Überblick

- Von C nach Java
- Background
- Konzepte des objektorientierten Programmierens
- Ein ausgearbeitetes Java-Programm als Beispiel
- Ein weiteres Java-Programm als Beispiel
- → Typen und Subtypen
 - Vom Design zum Programmieren (OOD zu OOP)
 - Patterns in OOP
 - Testen (von objektorientierten Programmen)

Institute of Computer Technology

Typen und Subtypen

- Was ist ein Typ?
- Typen in Java
- Subklasse vs. Subtyp
- Ersetzbarkeit
- Subtyp vs. Spezialisierung

Institute of Computer Technology

(c) Herritariii Kairiui

Was ist ein Typ?

Antwort hängt davon ab, welche Rolle von größtem Interesse ist, die ein Typ spielt:

- Aus der Sicht des Systemprogrammierens
 Filter für die Interpretation von Rohdaten (Bits und Bytes)
- Sichtweise des Implementierenden Speicher-Abbildung für Werte
- Aus der Sicht der Typenkontrolle Kompatibilität von Operator und Operand
- Objektorientierte Sichtweise Verhaltensspezifikationen

Institute of Computer Technology

Institute of Computer Technology

(c) Herriariii Kainu

Subklasse vs. Subtyp

- Jede Klasse in Java wird als Typ angesehen.
- Ist jede Subklasse wirklich ein Subtyp?
- Frage der "Behavioral Compatibility"

TU

Institute of Computer Technology

(c) Herritariii Kainui

Ersetzbarkeit

- Jede Instanz eines Subtyps kann verwendet werden, wo auch immer eine Instanz des Supertyps erwartet wird.
- Wichtig für Wiederverwendung
- Besserer Ansatz im Beispiel:

Ersetzbarkeit – Bedingungen

- "Kompatible Schnittstellen"
 Subtype_of_A hat alle Methoden von A_type – vererbt oder umbenannt
- "Kompatible" Resultate was Zusicherungen angeht

Institute of Computer Technology

- Pre-conditions von MethodenPre (A_type:m) impliziert Pre (Subtype_of_A:m)
- Post-conditions von MethodenPost (Subtype_of_A:m) impliziert Post (A_type:m)
- InvariantsInv (Subtype_of_A) impliziert Inv (A_type)

A_type

Subtype_of_A

A:m)

ype:m)

(c) Herriariii Kairiu

Ersetzbarkeit – Direkt prüfbare Bedingungen

Kontravarianz

Typ von \mathcal{X} in $\operatorname{Subtype_of_A}$ ist ein $\operatorname{Supertyp}$ des Typs von \mathcal{X} in $\operatorname{A_type}$

X: (Eingangs-)Parameter der Methode

Kovarianz

Typ von Yin Subtyp_of_A ist ein Subtyp des Typs von Yin A_type

Y: Resultat der Methode

Invarianz

Typ von Z ist gleich in Subtype_of_A und in A_type

Z: Instanzvariable

Institute of Computer Technology

Subtyp vs. Spezialisierung

■ Als Mengen betrachtet: Retiree ⊆ Person

Alter von Person: 0..120

Alter von Retiree: 65..120

Variable: Person p1; Retiree r1;

Zuweisung: p1 = r1;

 Zuweisung von 40 für das Alter von p1 würde Fehler ergeben.

Keine Ersetzbarkeit!

A type

Subtype_of_A

Institute of Computer Technology