Homework 10

Michael Brodskiy Professor: D. Wood

December 6, 2023

- 1. As a simplified model of a planet being bombarded with cosmic rays at the poles, consider a conducting sphere of radius R that is being charged with wires at the north and south poles that each have a current I/2 flowing onto the sphere, so that the total charge of the sphere is increasing with time $\left(\frac{dQ}{dt} = I\right)$. Assume the charge is always distributed uniformly on the surface of the sphere.
 - (a) Calculate the displacement current density just above the surface of the sphere.
 - (b) Use the Ampre-Maxwell equation to calculate the induced magnetic field just above the surface at location that is an angle θ from the north pole (latitude = $90^{\circ} \theta$). [Hint: Use a ring of constant latitudeas the amperian loop and use a cap-shaped enclosed surface of the loop that follows the surface of the sphere.Be sure to include both the physical current and the displacement current.] (While this is an interesting calculation, note that this is not a significant contribution to the Earth's magnetic field.)
- 2. Consider a capacitor with circular parallel plates of radius a and separation d, where $d \ll a$, there the capacitor is discharging with a current I.
 - (a) Find the Poynting vector in the space between the plates. Assume that the surface charge is distributed uniformly over the plates.
 - (b) Calculate the rates of energy flow out of the volume between the plates by integrating \vec{S} over an appropriate surface and show that it is equal to -IV—.
- 3. An ideal parallel plate capacitor with area A and separation d is oriented with the lower plate in the xy plane and is immersed in a uniform horizontal magnetic field $\vec{B} = B_o \hat{\mathbf{x}}$. The capacitor starts with a charge +Q on the lower plate and Q on the upper plate. At time t=0, a vertical wire with resistance R is connected between the plates.
 - (a) Find the momentum (magnitude and direction) stored in the \vec{E} and \vec{B} fields at time t=0.

- (b) Find the force on the wire as a function of time
- (c) Find the total impulse $(\int \vec{F} dt)$ on the wire for $t \to \infty$. Compare this with the change in stored momentum.
- 4. We re-revisit the spinning hollow sphere from earlier assignments a hollow insulating sphere of radius R and mass M centered at the origin is covered with a uniform surface charge $\sigma = Q/(4\pi R^2)$, rotating about the z-axis with angular frequency ω . This time we consider both the magnetic field and the electric field produced by the sphere itself.
 - (a) Calculate the total energy of the electric and magnetic fields. You can use the results from Homework 8, Problem 1 for the \vec{B} -field you do not need to re-derive it. Be sure to include the magnetic field inside the sphere as well as outside.
 - (b) Calculate the total angular momentum of the electromagnetic fields, L_Q .
 - (c) Consider a spinning shell whose rest energy (Mc^2) is equal to its electrostatic potential energy $(Q^2/(8\pi\varepsilon_o R))$. Find the ratio between the mechanical (L_M) and electromagnetic (L_Q) contributions to the angular momentum. Use the fact that $c = 1/\sqrt{\varepsilon_o \mu_o}$.