

Métodos Iterativos

	Sumário da Aula	
Q 1	Introdução	6
0.1	8.1.1 Revisão da Álgebra: Norma Matricial	
	8.1.2 Convergência dos Métodos Iterativos	
	8.1.3 Critério de Parada	
8.2	Método de Jacobi	 . 7
	8.2.1 Critério de Convergência	 . 7
8.3	Exercícios	 . 7

8.1 Introdução

Assim como os métodos diretos, métodos iterativos também podem ser aplicados na resolução de um sistema Ax=B cujo $det(A)\neq 0$. São apresentados a seguir um breve resumo de resultados e definições necessários para a compreensão dos métodos iterativos aplicados na solução de sistemas de equações lineares.

Para determinar a solução de um sistema de equações lineares por meio de um método iterativo é preciso transformá-lo em um sistema de equações equivalente que possibilite a definição de um esquema iterativo. Ou seja, transformar Ax = B na seguinte **função de iteração**:

$$x^k = Mx^{k-1} + C$$

onde M é uma matriz iterativa de ordem n e C é um vetor de tamanho $n \times 1$.

Um método iterativo é dito **estacionário** quando a matriz M da função de iteração for fixa, ou seja, quando uma nova aproximação é obtida da anterior sempre pelo mesmo processo.

Partindo de uma aproximação inicial x^0 , a função de iteração fornece uma sequência de soluções aproximadas $x^1, x^2, \dots, x^k, \dots$, onde cada uma delas é **obtida da solução anterior** por meio da aplicação de um mesmo procedimento, da seguinte forma:

$$x^{1} = Mx^{0} + C$$
 $x^{2} = Mx^{1} + C$
 \vdots
 $x^{k} = Mx^{k-1} + C, \quad k = 1, 2, \cdots$

Pretende-se que esta sequência gerada seja convergente para a solução \bar{x} do sistema linear, ou seja:

$$\lim_{k \to \infty} x^k = \bar{x}$$

Definição 8.1. Se a sequência $\{x^{(k)}\}$ convergir para um limite, qualquer que seja a aproximação inicial x^0 , então o método iterativo é dito **convergente**.

Definição 8.2. Considere I a matriz identidade. Se os sistemas de equações Ax = B e (I - M)x = C possuírem a mesma solução, então o método iterativo é dito **consistente**.

Proposição 8.1. Seja $det(A) \neq 0$. O método iterativo proposto é consistente se, e somente se,

$$(I - M)A^{-1}B = C.$$

Prova: O sistema linear é consistente, se admite pelo menos uma solução.

Temos as seguintes relações:

(I)
$$x = Mx + C \Rightarrow x - Mx = C \Rightarrow (I - M)x = C$$

(II)
$$Ax = B \Rightarrow A^{-1}Ax = A^{-1}B \Rightarrow Ix = A^{-1}B \Rightarrow x = A^{-1}B$$

Substituindo a relação (II) em (I) obtém-se

$$(I - M).(A^{-1}B) = C.$$

8.1.1 Revisão da Álgebra: Norma Matricial

Definição 8.3. (Norma de vetores) Define-se norma de um vetor $x \in V$ (espaço vetorial):

$$\|\cdot\|: \quad V \to \mathbb{R}$$
$$x \to \|x\|$$

onde as seguintes condições são satisfeitas:

$$n_1$$
 $||x|| \ge 0$, $\forall x \in V$; $||x|| = 0 \Leftrightarrow x = 0$

$$n_2$$
) $\|\alpha x\| = |\alpha| \|x\|$; $\forall \alpha \in \mathbb{R}, \ \forall x \in V$

$$(n_3) \|x + y\| \le \|x\| + \|y\|; \ \forall x, y \in V$$

Considere $x=(x_1,x_2,\cdots,x_n)\in\mathbb{R}^n$, logo:

$$||x||_1 = \sum_{i=1}^n |x_i| = |x_1| + |x_2| + \dots + |x_n|$$

$$||x||_2 = \left(\sum_{i=1}^n |x_i|^2\right)^{1/2} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

$$||x||_{\infty} = \max_{1 \le i \le n} |x_i| = \max\{|x_1|, |x_2|, \dots, |x_n|\}$$

De forma geral, quando $V=\mathbb{R}^n$, as normas l_p são definidas por:

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}, \quad p \ge 1$$
$$||x||_{\infty} = \max_{1 \le i \le n} |x_i|$$

Exemplo 19. Seja o vetor $x = \begin{bmatrix} 2 & 5 & 3 & 1 \end{bmatrix}$, logo:

$$||x||_1 = |2| + |5| + |3| + |1| = 11$$

$$||x||_2 = \sqrt{2^2 + 5^2 + 3^2 + 1^2} = \sqrt{39}$$

$$||x||_{\infty} = \max\{|2|, |5|, |3|, |1|\} = 5$$

Definição 8.4. (Norma de matrizes) Considere $V = \mathbb{R}(n,n)$ o espaço vetorial de todas as matrizes quadradas de ordem $(n \times n)$ sobre \mathbb{R} . Uma norma em V é uma aplicação indicada por $\|\cdot\|$ tal que:

$$\|\cdot\|: \quad \mathbb{R}(n,n) \to \mathbb{R}$$

$$A \to \|A\|$$

satisfazendo as seguintes condições:

$$|n_1| \|A\| \ge 0, \quad \forall A \in \mathbb{R}(n,n); \|A\| = 0 \Leftrightarrow A = 0$$

$$n_2$$
) $\|\alpha A\| = |\alpha| \|A\|$; $\forall \alpha \in \mathbb{R}, \forall A \in \mathbb{R}(n, n)$

$$||A + B|| < ||A|| + ||B||; \forall A, B \in \mathbb{R}(n, n)$$

Considere $A=(a_{ij})_{i,j=1,\cdots,n}$. São definidas as seguintes normas de matrizes:

$$\|A\|_1 = \|A\|_C = \max_{1 \le j \le n} \left(\sum_{i=1}^n |a_{ij}|\right) \to \text{Norma coluna}$$

$$\|A\|_{\infty} = \|A\|_L = \max_{1 \le i \le n} \left(\sum_{j=1}^n |a_{ij}|\right) \to \text{Norma linha}$$

$$||A||_2 = \sqrt{\sum_{i=1}^n \sum_{j=1}^n (a_{ij})^2} \rightarrow \text{Norma Euclidiana}$$

Para as normas $\|\cdot\|_1$, $\|\cdot\|_2$ e $\|\cdot\|_\infty$, vale a seguinte propriedade:

$$||A + B|| \le ||A|| + ||B||, \quad \forall A, B \in \mathbb{R}(n, n)$$

Exemplo 20. Considere, por exemplo, a matriz

$$A = \begin{bmatrix} 2 & 1 & 3 \\ 3 & -4 & 2 \\ 1 & 2 & -5 \end{bmatrix}.$$

São calculadas as seguintes normas:

$$\begin{split} \|A\|_1 &= \|A\|_C &= \max_{1 \leq j \leq n} \left(\sum_{i=1}^n |a_{ij}| \right) \\ &= \max \left\{ (2+3+1), (1+4+2), (3+2+5) \right\} = \max \left\{ (6), (7), (10) \right\} = 10 \\ \|A\|_\infty &= \|A\|_L &= \max_{1 \leq i \leq n} \left(\sum_{j=1}^n |a_{ij}| \right) \\ &= \max \left\{ (2+1+3), (3+4+2), (1+2+5) \right\} = \max \left\{ (6), (9), (8) \right\} = 9 \\ \|A\|_2 &= \sqrt{\sum_{i=1}^n \sum_{j=1}^n (a_{ij})^2} \\ &= \sqrt{2^2 + 1^2 + 3^2 + 3^2 + (-4)^2 + 2^2 + 1^2 + 2^2 + (-5)^2} = \sqrt{73} \approx 8,5440 \end{split}$$

Definição 8.5. Considere uma norma de vetor $x \in \mathbb{R}^n$ e uma norma de matriz $A \in \mathbb{R}(n,n)$. Dizemos que estas normas são **consistentes** se satisfazem a expressão:

$$||Ax|| < ||A|| ||x||, \quad \forall A \in \mathbb{R}(n,n) \text{ e } \forall x \in \mathbb{R}^n.$$

8.1.2 Convergência dos Métodos Iterativos

Definição 8.6. (Sequência Convergente:) Considere uma sequência de vetores $x^{(i)} = \left(x_1^{(i)}, x_2^{(i)}, \cdots, x_n^{(i)}\right)$ do espaço vetorial \mathbb{R}^n . Dizemos que a sequência converge para

$$\bar{x} = (\bar{x_1}, \bar{x_2}, \cdots, \bar{x_n}) \in \mathbb{R}^n$$

se $\|x^{(i)} - \bar{x}\| \to 0$, quando $i \to \infty$, para qualquer norma em \mathbb{R}^n .

Teorema 8.1. A condição necessária e suficiente para a convergência do processo iterativo $x^k = Mx^{k-1} + C$ é que $max|\lambda_i| < 1$, onde λ_i são os autovalores da matriz M.

Corolário 8.1. (Critério Geral de Convergência) O processo iterativo $x^k = Mx^{k-1} + C$ é convergente se, para qualquer norma de matrizes, ||M|| < 1.

8.1.3 Critério de Parada

Nos métodos iterativos escolhe-se um $x^{(0)}$ como uma aproximação inicial para a solução do sistema linear Ax=B. Esta aproximação inicial é refinada pelo processo iterativo até obter uma nova solução que possua uma determinada precisão (número de casas decimais corretas).

O critério de parada usado para finalizar o processo iterativo quando se obtém x^k será tal que $\max_{1 < i < n} |x_i^k - x_i^{k-1}|$ seja menor ou igual a uma precisão estabelecida, ou seja,

$$\max_{1 < i < n} |x_i^k - x_i^{k-1}| \le \epsilon$$

onde ϵ é uma precisão pré-fixada, x_i^k e x_i^{k-1} são duas aproximações consecutivas para \bar{x} . O valor de x^k é tomado como uma aproximação para a solução do sistema de equações.

Também é possível usar como critério de parada, junto com a precisão, o número máximo de iterações $k=k_{max}$ aplicado pelo método iterativo. Assim, o método poderá ser interrompido quando atingir a precisão desejada ou quando atingir o número máximo de iterações pré-estabelecido.

Nesta disciplina serão estudados dois métodos iterativos estacionários: Jacobi e Gauss-Seidel.

8.2 Método de Jacobi

Considere o sistema de equações lineares Ax=B, em que $A=(a_{ij})_{i,j=1,\dots,n}$, $det(A)\neq 0$ e com a diagonal principal $a_{ii}\neq 0,\ i=1,2,\cdots,n$:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n &= b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n &= b_2 \\ & \ddots & \vdots \\ a_{n1}x_1 + a_{n2}x_2 + a_{n3}x_3 + \dots + a_{nn}x_n &= b_n \end{cases}$$

Podemos reescrever o sistema na forma equivalente, dividindo cada linha pelo elemento da diagonal principal e explicitando x_1 na primeira coluna, x_2 na segunda coluna, x_3 na terceira coluna, e, sucessivamente, até x_n na n-ésima coluna. Assim:

$$\begin{cases} x_1 &= \frac{1}{a_{11}}(b_1 & -a_{12}x_2 & -a_{13}x_3 & -\cdots - & a_{1n}x_n) \\ x_2 &= \frac{1}{a_{22}}(b_2 & -a_{21}x_1 & -a_{23}x_3 & -\cdots - & a_{2n}x_n) \\ \vdots & & \ddots & \\ x_n &= \frac{1}{a_{nn}}(b_n & -a_{n1}x_1 & -a_{n2}x_2 & -a_{n3}x_3 & -\cdots - &) \end{cases}$$

O sistema anterior é escrito na forma matricial como:

$$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} 0 & \frac{-a_{12}}{a_{11}} & \frac{-a_{13}}{a_{11}} & \cdots & \frac{-a_{1n}}{a_{11}} \\ \frac{-a_{21}}{a_{22}} & 0 & \frac{-a_{23}}{a_{22}} & \cdots & \frac{-a_{2n}}{a_{22}} \\ \vdots & & \ddots & & \vdots \\ \frac{-a_{n1}}{a_{nn}} & \frac{-a_{n2}}{a_{nn}} & & \cdots & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} \frac{b_1}{a_{11}} \\ \frac{b_2}{a_{22}} \\ \vdots \\ \frac{b_n}{a_{nn}} \end{bmatrix}.$$

ou na forma de função de iteração x=Mx+C, onde $M=(m_{ij})$ é a matriz iterativa:

$$m_{ij} = \begin{cases} 0 & i = j \\ \frac{-a_{ij}}{a_{ii}} & i \neq j \end{cases}$$
 $i, j = 1, 2, \cdots, n$ e $C_i = \frac{b_i}{a_{ii}}, i = 1, 2, \cdots, n$

Assim, o método iterativo de Jacobi é então definido como:

$$x^{(k)} = Mx^{(k-1)} + C, \quad k = 1, 2, \cdots$$

ou seja,

$$\begin{bmatrix} x_1^{(k)} \\ x_2^{(k)} \\ \vdots \\ x_n^{(k)} \end{bmatrix} = \begin{bmatrix} 0 & \frac{-a_{12}}{a_{11}} & \frac{-a_{13}}{a_{11}} & \cdots & \frac{-a_{1n}}{a_{11}} \\ \frac{-a_{21}}{a_{22}} & 0 & \frac{-a_{23}}{a_{22}} & \cdots & \frac{-a_{2n}}{a_{22}} \\ \vdots & & \ddots & & \vdots \\ \frac{-a_{n1}}{a_{nn}} & \frac{-a_{n2}}{a_{nn}} & & \cdots & 0 \end{bmatrix} \begin{bmatrix} x_1^{(k-1)} \\ x_1^{(k-1)} \\ x_2^{(k-1)} \\ \vdots \\ x_n^{(k-1)} \end{bmatrix} + \begin{bmatrix} \frac{b_1}{a_{11}} \\ \frac{b_2}{a_{22}} \\ \vdots \\ \frac{b_n}{a_{nn}} \end{bmatrix}$$

Ainda é possível escrever o método com a notação usual para sistemas:

$$\begin{cases} x_1^{(k)} &= \frac{1}{a_{11}} (b_1 & -a_{12} x_2^{(k-1)} & -a_{13} x_3^{(k-1)} & -\cdots & a_{1n-1} x_{n-1}^{(k-1)} & -a_{1n} x_n^{(k-1)}) \\ x_2^{(k)} &= \frac{1}{a_{22}} (b_2 & -a_{21} x_1^{(k-1)} & -a_{23} x_3^{(k-1)} & -\cdots & a_{2n-1} x_{n-1}^{(k-1)} & -a_{2n} x_n^{(k-1)}) \\ & & \ddots & & & & & \\ x_n^{(k)} &= \frac{1}{a_{nn}} (b_n & -a_{n1} x_1^{(k-1)} & -a_{n2} x_2^{(k-1)} & -a_{n3} x_3^{(k-1)} & -\cdots & a_{nn-1} x_{n-1}^{(k-1)} &) \end{cases}$$

Observação L

O método iterativo de Jacobi é escrito de forma geral por:

$$x_i^{(k)} = \frac{1}{a_{ii}} \left(b_i - \sum_{\substack{j=1\\i \neq j}}^n a_{ij} x_j^{(k-1)} \right), \quad i = 1, \dots, n$$

Exemplo 21. Resolva o sistema linear pelo método de Jacobi com o limite de 6 iterações ou uma precisão menor que 10^{-2} . Utilize $x^{(0)} = \begin{bmatrix} 0 & 0 \end{bmatrix}^t$ como estimativa inicial e retenha, nos cálculos, quatro casas decimais.

$$\begin{cases} x_1 + 2x_2 - 2x_3 &= 1\\ x_1 + x_2 + x_3 &= 1\\ 2x_1 + 2x_2 + x_3 &= 1 \end{cases}$$

Solução: A função de iteração é dada por:

$$\begin{cases} x_1^k &= 1 - 2x_2^{k-1} + 2x_3^{k-1} \\ x_2^k &= 1 - x_1^{k-1} - x_3^{k-1} \\ x_3^k &= 1 - 2x_1^{k-1} - 2x_2^{k-1} \end{cases}$$

e os resultados da aplicação do método de Jacobi são apresentados no quadro a seguir:

k	x_1^k	x_2^k	x_3^k	$max_{1 \le i \le 3} x_i^k - x_i^{k-1} $
0	0	0	0	
1	1	1	1	1
2	1	-1	-3	4
3	-3	3	1	4
4	-3	3	1	0

Portanto, a solução do sistema linear é $x \approx x^4 = \begin{bmatrix} -3 & 3 & 1 \end{bmatrix}^t$.

8.2.1 Critério de Convergência

Embora a ordem das equações em um sistema linear não exerça qualquer influência com relação à existência de solução, quando se trata da utilização de um método iterativo esta ordem será relevante, uma vez que define-se uma função de iteração.

É condição suficiente para que o método iterativo de Jacobi gere uma sequência que converge para a solução de um sistema de equações Ax = B, qualquer que seja a aproximação inicial x^0 , que:

a) o critério das linhas seja satisfeito, isto é, se:

$$|a_{ii}| > \sum_{\substack{j=1\\i\neq j}}^{n} |a_{ij}|, i = 1, 2, \dots, n$$

Quanto mais próxima de zero estiver a relação $\dfrac{\displaystyle\sum_{j=1}^n|a_{ij}|}{|a_{ii}|}$, mais rápida será a convergência.

b) o critério das colunas seja satisfeito, isto é, se:

$$|a_{jj}| > \sum_{\substack{i=1\\i\neq j}}^{n} |a_{ij}|, \ j = 1, 2, \cdots, n$$

Quanto mais próxima de zero estiver a relação $\dfrac{\displaystyle\sum_{i=1}^{\infty}|a_{ij}|}{|a_{jj}|}$ mais rápida será a convergência.

73

Observe que estes dois critérios envolvem **condições que são apenas suficientes**. Assim, se pelo menos uma delas for satisfeita, então está assegurada a convergência. Entretanto, se nenhuma das duas for satisfeita nada se pode afirmar. Considere agora a Definição 8.7.

Definição 8.7. Seja uma matriz $A=(a_{ij})_{i,j=1,\cdots,n}$. Diz-se que A é estritamente diagonal dominante se:

$$|a_{ii}| > \sum_{\substack{j=1\\i\neq j}}^{n} |a_{ij}|, \quad i = 1, 2, \dots, n.$$

Caso

$$|a_{ii}| \ge \sum_{\substack{j=1\\i\neq j}}^{n} |a_{ij}|, \quad i = 1, 2, \dots, n$$

a matriz A é dita diagonalmente dominante.

Exemplo 22. Considere a matriz

$$A = \begin{bmatrix} 3 & -1 & 1 \\ 1 & 4 & 1 \\ 2 & 3 & -5 \end{bmatrix}$$

Da Definição 8.7, tem-se que:

$$|a_{ii}| \ge \sum_{j=1}^{3} |a_{ij}|, \quad i = 1, 2, 3$$

 $i \ne j$

Para
$$i = 1$$
: $|a_{11}| > |a_{12}| + |a_{13}| \rightarrow |3| > |-1| + |+1|$

Para
$$i = 2$$
: $|a_{22}| > |a_{21}| + |a_{23}| \rightarrow |4| > |1| + |1|$

Para
$$i = 3$$
: $|a_{33}| > |a_{31}| + |a_{32}| \to |-5| \ge |2| + |3|$

Portanto, conclui-se que a matriz A é diagonalmente dominante.

Observação

Da Definição 8.7 é possível concluir que se a matriz A for estritamente diagonalmente dominante, então o critério de linhas é satisfeito. Assim, para testar se o método de Jacobi converge basta verificar se a matriz dos coeficientes A é estritamente diagonalmente dominante.

Exemplo 23. Resolva o sistema linear pelo método de Jacobi com precisão menor ou igual a 10^{-3} e $k_{max} = 10$. Utilize $x^{(0)} = [5,7 \ 2,5 \ -0,8]^t$ como estimativa inicial e retenha, nos cálculos, quatro casas decimais.

$$\begin{cases} 10x_1 + 3x_2 - 2x_3 &= 57 \\ 2x_1 + 8x_2 - x_3 &= 20 \\ x_1 + x_2 + 5x_3 &= -4 \end{cases}$$

Solução: Da Definição 8.7, tem-se que a matriz A é estritamente diagonal dominante; isto é:

Para
$$i = 1$$
: $|a_{11}| > |a_{12}| + |a_{13}| \rightarrow |10| > |3| + |-2|$

Para
$$i = 2$$
: $|a_{22}| > |a_{21}| + |a_{23}| \rightarrow |8| > |2| + |-1|$

Para
$$i = 3$$
: $|a_{33}| > |a_{31}| + |a_{32}| \rightarrow |5| > |1| + |1|$

Portanto, conclui-se que o processo iterativo de Jacobi convergirá.

A função de iteração é dada por:

$$\begin{cases} x_1^k &= \frac{1}{10}(-3x_2^{k-1} + 2x_3^{k-1} + 57) \\ x_2^k &= \frac{1}{8}(-2x_1^{k-1} + 1x_3^{k-1} + 20) \\ x_3^k &= \frac{1}{5}(-x_1^{k-1} - x_2^{k-1} - 4) \end{cases}$$

Os resultados da aplicação do método de Jacobi estão sumarizados no quadro a seguir:

k	x_1^k	x_2^k	x_3^k	$max_{1 \le i \le 3} x_i^k - x_i^{k-1} $
0	5,7	2,5	-0,8	
1	4,79	0,975	-2,44	1,64
2	4,9195	0,9975	-1,953	0,487
3	5,0102	1,0260	-1,9834	0,0907
4	4,9955	0,9995	-2,0072	0,0265
5	4,9987	1,0002	-1,9990	0,0082
6	5,0001	1,0004	-1,9998	0,0007

Portanto, a solução do sistema linear é $x \approx x^6 = \begin{bmatrix} 5,0001 & 1,0004 & -1,9998 \end{bmatrix}^t$.

8.3 Exercícios

E. 1. Considere o seguinte sistema linear:

$$\begin{cases} 10x_1 + 2x_2 + 3x_3 &= 28\\ x_1 + 10x_2 + 6x_3 &= 7\\ 2x_1 - 2x_2 - 10x_3 &= -17 \end{cases}$$

- a) Verifique a condição de convergência do método de Jacobi.
- b) Resolva o sistema linear pelo método iterativo de Jacobi com $x^{(0)} = [0 \ 0 \ 0]^t$ e $\epsilon = 0,01$. Reordene as equações, se for preciso, de modo que a convergência esteja garantida.

E. 2. Considere o seguinte sistema linear:

$$\begin{bmatrix} 6 & 2 & -2 \\ 1 & 4 & 1 \\ 2 & 2 & 8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -1 \\ 6 \\ 9 \end{bmatrix}$$

- a) Verifique a condição de convergência do método de Jacobi.
- b) Resolva o sistema linear pelo método iterativo de Jacobi com $x^{(0)} = [0 \ 0 \ 0]^t$ e $\epsilon = 0,01$. Reordene as equações, se for preciso, de modo que a convergência esteja garantida.

