Sieci komputerowe Lista 1

Deklaracja

Zad 1	Zad 2	Zad 3	Zad 4	Zad 5	Zad	Zad 7	Zad 8	Zad 9	Zad 10
X	X	X	Х	Х	Х	X			

Zadanie 1

- 10.1.2.3/8 adres komputera
 - Adres sieci: 10.0.0.0 Adres rozgłoszeniowy: 10.255.255.255
- Inny adres IP: 10.0.0.1

Adres sieci: -

- 156.17.0.0/16 adres sieci
- o Adres rozgłoszeniowy: 156.17.255.255
- Inny adres IP: 156.17.0.1 • 99.99.99.99/27 - adres komputera
- Adres sieci: 99.99.99.96
- Adres rozgłoszeniowy: 99.99.99.127
- Inny adres IP: 99.99.99.97
- 156.17.64.4/30 adres sieci Adres sieci: -
- Adres rozgłoszeniowy: 156.17.64.7 Inny adres IP: 156.17.64.5
- 123.123.123.123/32 konkretny adres komputera Jest to jednocześnie adres sieci, rozgłoszeniowy

Zadanie 2

Moje podsieci:

- 10.10.0.0/19
- 10.10.32.0/19
- 10.10.64.0/19 • 10.10.96.0/19
- 10.10.128.0/17

wcześniej, przed podziałem. Maska ta jako jedyna ma zapalony ostatni bit 3ego bajtu. Liczba adresów IP możliwych do użycia w:

Maska ostatniego adresu jest mniejsza, jako że chcemy objąć wszystkie adresy IP używane

- 1 podsieci: 2¹³
- 2 podsieci: 2¹³
- 3 podsieci: 2¹³
- 4 podsieci: 2¹³
- 5 podsieci: 2¹⁵

Aby sprawdzić najmniejszą możliwą do utworzenia podsieć, weźmy największą możliwą i od niej próbujmy ciąć: Podsieci:

- 10.10.128.0/17
- 10.10.64.0/18
- 10.10.32.0/19 • 10.10.16.0/20
- 10.10.0.0/20
- Ta ostatnia sieć ma możliwych $2^{32-20} 2 = 4094$ adresów

Zadanie 3

- 10.0.2.0/24 i 10.0.3.0/24 można skonsolidowaćdo 10.0.2.0/23 i wysyłamy do routera B Wtedy 10.0.2.0/23 i 10.0.0.0/23 można złączyć do 10.0.0.0/22
- 10.0.0.128/25 jest podzbiorem 10.0.0.0/22 więc można go wywalić
- 10.0.1.16/29 i 10.0.1.24/29 można skleić do 10.0.1.16/28 która w pełni obejmuje te dwie
- podsieci

Adres IP	Gdzie
0.0.0.0/0	router A
10.0.0.0/22	router B
10.0.1.0/24	router C
10.0.1.8/29	router B
10.0.1.16/28	router B

Zadanie 4

Możemy zauważyć że adresy które idą do routera C obejmują tak naprawdę 3 adresy idące do routera B: 10.3.0.32/27, 10.3.0.64/27, 10.3.0.96/27, zaś C jest objęte przez 10.0.0.0/8 idące do B. Możemy więc wydzielić sobie dwie podsieci dla C i reszte przesyłać do B przez 10.0.0.0/8

Adres IP	Gdzie	Zasięg
0.0.0.0/0	router A	duży
10.0.0.0/8	router B	10.0.0.0 - 10.255.255.255
10.3.0.0/27	router C	10.3.0.0 - 10.3.0.31
10.3.0.128/25	router C	10.3.0.128 - 10.3.0.255

Zadanie 5

Wpisy w tablicy routingu dopasowujemy po najdłuższym pasującym prefiksie, a więc uporządkowujemy wpisy od największych masek do najmniejszych

Udowodnić: pierwszy pasujący wpis daje najlepsze dopasowanie.

Założenie: Wpisy w tablicy routingu są uporządkowane od największych masek do najmniejszych.

Weźmy dowolny adres IP, oznaczmy go jako ${\bf IP}_1$. Niech ${\bf IP}_2$ będzie pierwszym w kolejności wpisem w tablicy routingu, do którego pasuje \mathbf{IP}_1 . Przez n oznaczmy długość prefiksu \mathbf{IP}_2 , a skoro ${\bf IP}_1$ pasuje do ${\bf IP}_2$, to pierwsze n bitów ${\bf IP}_1$ oraz ${\bf IP}_2$ są takie same. Weźmy teraz dowolny wpis ${\bf IP}_3$ będący w tablicy routingu niżej niż ${\bf IP}_2$. Oznacza to, że ${\bf IP}_3$ ma niewiększą maskę od ${\bf IP}_2$, a więc długość m prefiksu ${\bf IP}_3$ spełnia nierówność m \leq n. Skoro tak, to dopasowane zostanie nie więcej bitów ${\bf IP}_1$ niż n, czyli ${\bf IP}_2$ nie jest gorszym dopasowaniem niż ${\bf IP}_3$.

Możemy z tego wnioskować że w takim ułożeniu wpisów, metoda "pierwszy pasujący" daje najlepsze dopasowanie. "czarny kwadracik".

Zadanie 6

tablicami routingu. Oznacza to, że w każdym kroku tablica routingu jest aktualizowana o nowe wpisy. Na początku oczywiście każdy zna tylko swoich sąsiadów. W tabelce są to wpisy oznaczone przez "1", a puste komórki oznaczają nieosiągalne routery. Analogicznie jak na wykładzie

Algorytm wektora odległości polega na okresowym dzieleniu się sasiędnich routerów swoimi

Początkowa sytuacja:

	Α	В	С	D	Е	F
trasa do A	-	1				
trasa do B	1	-	1			
trasa do C		1	-		1	1
trasa do D				-	1	
trasa do E			1	1	-	1
trasa do F			1		1	-
trasa do S	1	1				

tras

	Α	В	С	D	E	F
trasa do A	-	1	2 (via B)			
trasa do B	1	-	1		2 (via C)	2 (via C)
trasa do C	2 (via B)	1	-	2 (via E)	1	1
trasa do D			2 (via E)	-	1	2 (via E)
trasa do E		2 (via C)	1	1	-	1
trasa do F		2 (via C)	1	2 (via E)	1	-
trasa do S	1	1	2 (via B)			

trasa do A	-	1	2 (via B)	3 (via E)	3 (via C)	3 (via C)
trasa do B	1	-	1	3 (via E)	2 (via C)	2 (via C)
trasa do C	2 (via B)	1	-	2 (via E)	1	1
trasa do D		3 (via C)	2 (via E)	-	1	2 (via E)
trasa do E	3 (via B)	2 (via C)	1	1	-	1
trasa do F	3 (via B)	2 (via C)	1	2 (via E)	1	-
trasa do S	1	1	2 (via B)		3 (via C)	3 (via C)
Krok 3:						

C D E F

	Α	В	С	D	E	F
trasa do A	-	1	2 (via B)	3 (via E)	3 (via C)	3 (via C)
trasa do B	1	-	1	3 (via E)	2 (via C)	2 (via C)
trasa do C	2 (via B)	1	-	2 (via E)	1	1
trasa do D	4 (via B)	3 (via C)	2 (via E)	-	1	2 (via E)
trasa do E	3 (via B)	2 (via C)	1	1	-	1
trasa do F	3 (via B)	2 (via C)	1	2 (via E)	1	-
trasa do S	1	1	2 (via B)	4 (via E)	3 (via C)	3 (via C)

W trzech krokach mamy pełna tablicę routingu

Zadanie 7

Jak zmieni się tablica?

	Α	В	С	D	E	F
trasa do A	-	1	2 (via B)	1	2 (via D)	3 (via C)
trasa do B	1	-	1	2 (via A)	2 (via C)	2 (via C)
trasa do C	2 (via B)	1	-	2 (via E)	1	1
trasa do D	1	2 (via A)	2 (via E)	-	1	2 (via E)
trasa do E	2 (via D)	2 (via C)	1	1	-	1
trasa do F	3 (via B)	2 (via C)	1	2 (via E)	1	-
trasa do S	1	1	2 (via B)	2 (via A)	3 (via C)	3 (via C)
trasa do S	1	1	2 (via B)	2 (via A)	3 (via C)	3 (via C)