

अध्याय 9

वृत्त

9.1 जीवा द्वारा एक बिन्दु पर अंतरित कोण

एक रेखाखंड PQ तथा एक बिन्दु R, जो रेखा PQ पर स्थित न हो, लीजिए। PR तथा QR को मिलाइए (देखिए आकृति 9.1)। तब कोण PRQ, रेखाखंड PQ द्वारा बिन्दु R पर अंतरित कोण कहलाता है। आकृति 9.2 में कोण POQ, PRQ तथा PSQ क्या कहलाते हैं? \angle POQ जीवा PQ द्वारा केन्द्र O पर अंतरित कोण है, \angle PRQ तथा \angle PSQ क्रमश: PQ द्वारा दीर्घ चाप PQ तथा लघु चाप PQ पर स्थित बिन्दुओं R और S पर अंतरित कोण हैं।

आइए हम जीवा की माप तथा उसके द्वारा केन्द्र पर अंतरित कोण में संबंध की जाँच करें। आप एक वृत्त में विभिन्न जीवाएँ खींचकर तथा उनके द्वारा केन्द्र पर अंतरित कोणों को बनाकर देख सकते हैं कि जीवा यदि बड़ी होगी, तो उसके द्वारा केन्द्र पर अंतरित कोण भी बड़ा होगा। क्या होगा यदि आप दो बराबर जीवाएँ लेंगे? क्या केन्द्र पर अंतरित कोण समान होंगे या नहीं?

गणित 136

एक वृत्त की दो या अधिक बराबर जीवाएँ खींचिए तथा केन्द्र पर उनके द्वारा अंतरित कोणों को मापिए (देखिए आकृति 9.3)। आप पाएँगे कि उनके द्वारा केन्द्र पर अंतरित कोण बराबर हैं। आइए इस तथ्य की हम उपपत्ति दें।

प्रमेय 9.1: वत्त की बराबर जीवाएँ केन्द्र पर बराबर कोण अंतरित करती हैं।

उपपत्ति: आपको एक वृत्त, जिसका केन्द्र O है, की दो बराबर जीवाएँ AB और CD दी हुई हैं (देखिए आकृति 9.4) तथा आप सिद्ध करना चाहते हैं कि $\angle AOB = \angle COD$ है। त्रिभुजों AOB तथा COD में.

अत:.

OA = OC (एक वृत्त की त्रिज्याएँ) OB = OD (एक वृत्त की त्रिज्याएँ)

AB = CD (दिया है)

 \triangle AOB \cong \triangle COD (SSS नियम) आकृति 9.4

∠ AOB = ∠ COD (सर्वांगसम त्रिभुजों के संगत भाग) इस प्रकार, हम पाते हैं कि

टिप्पणी: सुविधा के लिए 'सर्वांगसम त्रिभुजों के संगत भाग' के स्थान पर संक्षेप में CPCT का प्रयोग किया जाएगा, क्योंकि जैसा कि आप देखेंगे कि इसका हम बहुधा प्रयोग करते हैं।

अब यदि एक वृत्त की दो जीवाएँ केन्द्र पर बराबर कोण अंतरित करें, तो उन जीवाओं के बारे में आप क्या कह सकते हैं? क्या वे बराबर हैं अथवा नहीं? आइए हम इसकी निम्न क्रियाकलाप द्वारा जाँच करें।

एक अक्स कागज़ (tracing paper) लीजिए और इस पर एक वृत्त खींचिए। इसे वृत्त के अनुदिश काटकर एक चकती (disc) प्राप्त कीजिए। इसके केन्द्र O पर एक कोण AOB बनाइए, जहाँ A, B वृत्त पर स्थित बिन्दु हैं। केन्द्र पर, एक दूसरा कोण POQ कोण AOB के बराबर बनाइए। चकती को इन कोणों के सिरों को मिलाने वाली जीवाओं के अनुदिश काटें (देखिए आकृति 9.5)। आप

दो वृत्तखंड ACB तथा PRQ प्राप्त करेंगे। यदि आप एक को दूसरे के ऊपर रखेंगे, तो आप क्या अनुभव करेंगे? वे एक दूसरे को पूर्णतया ढक लेंगे, अर्थात् वे सर्वांगसम होंगे। इसलिए AB = PQ है।

यद्यपि आपने इसे एक विशेष दशा में ही देखा है, इसे आप अन्य समान कोणों के लिए दोहराइए। निम्न प्रमेय के कारण सभी जीवाएँ बराबर होंगी:

प्रमेय 9.2 : यदि एक वृत्त की जीवाओं द्वारा केन्द्र पर अंतरित कोण बराबर हों, तो वे जीवाएँ बराबर होती हैं।

उपर्युक्त प्रमेय, प्रमेय 9.1 का विलोम है। ध्यान दीजिए कि आकृति 9.4 में यदि आप ∠ AOB = ∠ COD लें, तो

$$\Delta AOB \cong \Delta COD (क्यों?)$$

क्या अब आप देख सकते हैं कि AB = CD है?

प्रश्नावली 9.1

- 1. याद कीजिए कि दो वृत्त सर्वांगसम होते हैं, यदि उनकी त्रिज्याएँ बराबर हों। सिद्ध कीजिए कि सर्वांगसम वृत्तों की बराबर जीवाएँ उनके केन्द्रों पर बराबर कोण अंतरित करती हैं।
- 2. सिद्ध कीजिए कि यदि सर्वांगसम वृत्तों की जीवाएँ उनके केन्द्रों पर बराबर कोण अंतरित करें, तो जीवाएँ बराबर होती हैं।

9.2 केन्द्र से जीवा पर लम्ब

क्रियाकलाप: एक अक्स कागज पर एक वृत्त खींचिए। माना इसका केन्द्र O है। एक जीवा AB खींचिए। कागज को O से जाने वाली एक रेखा के अनुदिश इस प्रकार मोड़िए कि जीवा का एक भाग दूसरे भाग पर पड़े। मान लीजिए कि मोड़ का निशान AB को M पर काटता है। तब ∠OMA = ∠OMB = 90° अथवा OM, AB पर लम्ब है (देखिए आकृति 9.6)। क्या बिन्दु B, A के संपाती होता है?

हाँ, यह होगा। इसलिए MA = MB है।

गणित

OA और OB को मिलाकर तथा समकोण त्रिभुजों OMA और OMB को सर्वांगसम सिद्ध कर इसकी उपपत्ति स्वयं दीजिए। यह उदाहरण निम्न परिणाम का विशेष दृष्टांत है:

प्रमेय 9.3 : एक वृत्त के केन्द्र से एक जीवा पर डाला गया लम्ब जीवा को समद्विभाजित करता है।

इस प्रमेय का विलोम क्या है? इसको लिखने के लिए, सर्वप्रथम हमें स्पष्ट होना है कि प्रमेय 9.3 में क्या दिया गया है और क्या सिद्ध करना है। दिया है कि केन्द्र से जीवा पर लंब खींचा गया है और सिद्ध करना है कि वह जीवा को समद्विभाजित करता है। अत: विलोम में परिकल्पना है 'यदि एक केन्द्र से जाने वाली रेखा वृत्त की एक जीवा को समद्विभाजित करे' और सिद्ध करना है 'रेखा जीवा पर लम्ब है'। इस प्रकार, विलोम है:

प्रमेय 9.4 : एक वृत्त के केन्द्र से एक जीवा को समद्विभाजित करने के लिए खींची गई रेखा जीवा पर लंब होती है।

क्या यह सत्य है? इसको कुछ स्थितियों में प्रयत्न करके देखिए। आप देखेंगे कि यह इन सभी स्थितियों में सत्य है। निम्न अभ्यास करके देखिए कि क्या यह कथन व्यापक रूप में सत्य है। हम इसके कुछ कथन देंगे और आप इनके कारण दीजिए।

मान लीजिए कि एक वृत्त, जिसका केन्द्र O है, की AB एक जीवा है और O को AB के मध्य-बिन्दु M से मिलाया गया है। आपको सिद्ध करना है कि OM \perp AB है। OA और OB को मिलाइए (देखिए आकृति 9.7)। त्रिभुजों OAM तथा OBM में,

अत:, $\Delta OAM \cong \Delta OBM$ (क्यों?)

इससे प्राप्त होता है: ∠OMA = ∠OMB = 90° (क्यों?)

आकृति 9.7

9.3 समान जीवाएँ और उनकी केन्द्र से दूरियाँ

मान लीजिए AB एक रेखा है और P कोई बिन्दु है। क्योंकि एक रेखा पर असंख्य बिन्दु होते हैं, इसिलए यदि आप इन सभी को P से मिलाएँ तो आपको असंख्य रेखाखंड PL_1 , PL_2 , PM, PL_3 , PL_4 , आदि मिलेंगे। इनमें से कौन सी बिन्दु P से AB की दूरी है? आप थोड़ा

सोचकर इसका उत्तर प्राप्त कर सकते हैं। इन रेखाखंडों, में से P से AB पर लम्ब रेखाखंड अर्थात् आकृति 9.8 में PM सबसे छोटा होगा। गणित में इस सबसे छोटी लम्बाई PM को P से AB की दूरी के रूप में परिभाषित करते हैं। अत:, आप कह सकते हैं कि:

एक बिन्दु से एक रेखा पर लम्ब की लम्बाई रेखा की बिन्दु से दूरी होती है।

ध्यान दीजिए कि यदि बिन्दु रेखा पर स्थित है, तो रेखा की इससे दूरी शून्य है।

एक वृत्त में असंख्य जीवाएँ हो सकती हैं। आप एक वृत्त में जीवाएँ खींचकर जाँच कर सकते हैं कि लंबी जीवा, छोटी जीवा की तुलना में केन्द्र के निकट होती है। इसकी आप विभिन्न लम्बाई की कई जीवाएँ की खींचकर तथा उनकी केन्द्र से दूरियाँ मापकर जाँच कर सकते हैं। व्यास, जो वृत्त की सबसे बड़ी जीवा है, की केन्द्र से क्या दूरी है? क्योंकि केन्द्र इस पर स्थित है, अत: इसकी दूरी शून्य है। क्या आप सोचते हैं कि जीवा की लम्बाई और उसकी केन्द्र से दूरी में कोई संबंध है? आइए देखें कि क्या ऐसा है।

आकृति 9.9

क्रियाकलाप: किसी त्रिज्या का अक्स कागज पर एक वृत्त खींचिए। इसकी दो बराबर जीवाएँ AB तथा CD खींचिए तथा इन पर केन्द्र O से लम्ब OM तथा ON भी बनाइए। आकृति को इस प्रकार मोड़िए कि D, B पर तथा C, A पर पड़े [देखिए आकृति 9.9 (i)]। आप पाएँगे कि O मोड़ के निशान पर पड़ता है और N, M पर पड़ता है। अत:, OM = ON है। इस क्रियाकलाप को केन्द्रों O तथा O' के सर्वांगसम वृत्त खींचकर और अलग-अलग बराबर जीवाएँ AB तथा CD लेकर दोहराएँ। उन पर लम्ब OM तथा O'N खींचिए [देखिए आकृति 9.9(ii)]। इनमें से एक वृत्ताकार चकती को काटकर दूसरे वृत्त पर इस प्रकार

रखें कि AB, CD को पूर्ण रूप से ढक ले। तब आप पाएँगे कि O, O' पर पड़ता है तथा M, N पर पड़ता है। इस प्रकार, आपने निम्न को सत्यापित किया है:

प्रमेय 9.5 : एक वृत्त की (या सर्वांगसम वृत्तों की) बराबर जीवाएँ केन्द्र से (या केन्द्रों से) समान दूरी पर होती है।

अब यह देखा जाए कि क्या इसका विलोम सत्य है अथवा नहीं। इसके लिए केन्द्र O वाला एक वृत्त खींचिए। केन्द्र O से वृत्त के भीतर रहने वाले दो बराबर लम्बाई के रेखाखंड OL तथा OM खींचिए [देखिए आकृति 9.10(i)]। अब क्रमश: दो जीवाएँ PQ और RS खींचिए जो OL और OM पर लम्ब हों [देखिए आकृति 9.10(ii)]। PQ और RS की लम्बाइयाँ मापिए। क्या ये असमान हैं? नहीं, दोनों बराबर हैं। क्रियाकलाप को और अधिक समान रेखाखंडों तथा उन पर लम्ब जीवाएँ खींचकर दोहराइए। इस प्रकार, प्रमेय 9.5 का विलोम

सत्यापित हो जाता है, जिसका कथन नीचे दिया गया है:

प्रमेय 9.6 : एक वृत्त के केन्द्र से समदूरस्थ जीवाएँ लम्बाई में समान होती हैं।

अब हम उपर्युक्त परिणामों पर आधारित एक उदाहरण लेते हैं।

उदाहरण 1 : यदि एक वृत्त की दो प्रतिच्छेदी जीवाएँ प्रतिच्छेद बिन्दु से जाने वाले व्यास से समान कोण बनाएँ, तो सिद्ध कीजिए कि वे जीवाएँ बराबर हैं।

हल: दिया है कि एक वृत्त, जिसका केन्द्र O है, की दो जीवाएँ AB और CD बिन्दु E पर प्रतिच्छेद करती हैं। E से जाने वाला PQ एक ऐसा व्यास है कि $\angle AEQ = \angle DEQ$ है (देखिए आकृति 9.11)।

आकृति 9.11

आपको सिद्ध करना है कि AB = CD है। जीवाओं AB और CD पर क्रमश: OL तथा OM लम्ब खींचिए। अब,

$$\angle$$
 LOE = $180^{\circ} - 90^{\circ} - \angle$ LEO = $90^{\circ} - \angle$ LEO (त्रिभुज के कोणों के योग का गुण)
= $90^{\circ} - \angle$ AEQ = $90^{\circ} - \angle$ DEQ
= $90^{\circ} - \angle$ MEO = \angle MOE

त्रिभुजों OLE तथा OME में,

	\angle LEO = \angle MEO	(दिया है)
	\angle LOE = \angle MOE	(ऊपर सिद्ध किया है)
	EO = EO	(उभयनिष्ठ)
अत:,	$\Delta \text{ OLE} \cong \Delta \text{ OME}$	(क्यों?)
इससे प्राप्त होता है:	OL = OM	(CPCT)
इसलिए,	AB = CD	(क्यों?)

प्रश्नावली 9.2

- 1. 5 cm तथा 3 cm त्रिज्या वाले दो वृत्त दो बिन्दुओं पर प्रतिच्छेद करते हैं तथा उनके केन्द्रों के बीच की दूरी 4 cm है। उभयनिष्ठ जीवा की लम्बाई ज्ञात कीजिए।
- 2. यदि एक वृत्त की दो समान जीवाएँ वृत्त के अन्दर प्रतिच्छेद करें, तो सिद्ध कीजिए कि एक जीवा के खंड दूसरी जीवा के संगत खंडों के बराबर हैं।
- यदि एक वृत्त की दो समान जीवाएँ वृत्त के अन्दर प्रतिच्छेद करें, तो सिद्ध कीजिए कि प्रतिच्छेद बिन्दु को केन्द्र से मिलाने वाली रेखा जीवाओं से बराबर कोण बनाती है।
- 4. यदि एक रेखा दो संकेन्द्री वृत्तों (एक ही केन्द्र वाले वृत्त) को, जिनका केन्द्र O है, A, B, C और D पर प्रतिच्छेद करे, तो सिद्ध कीजिए AB = CD है (देखिए आकृति 9.12)।
- 5. एक पार्क में बने 5 m त्रिज्या वाले वृत्त पर खड़ी तीन लड़िकयाँ रेशमा, सलमा एवं मनदीप खेल रही हैं। रेशमा एक गेंद को सलमा के पास, सलमा मनदीप के पास तथा मनदीप रेशमा के पास फेंकती है। यदि रेशमा तथा सलमा के बीच और सलमा तथा मनदीप के बीच की प्रत्येक दूरी 6 m हो, तो रेशमा और मनदीप के बीच की दूरी क्या है?

आकृति 9.12

6. 20 m त्रिज्या का एक गोल पार्क (वृत्ताकार) एक कालोनी में स्थित है। तीन लड़के अंकुर, सैय्यद तथा डेविड इसकी परिसीमा पर बराबर दूरी पर बैठे हैं और प्रत्येक के हाथ में एक खिलौना टेलीफोन आपस में बात करने के लिए है। प्रत्येक फोन की डोरी की लम्बाई ज्ञात कीजिए।

9.4 एक वृत्त के चाप द्वारा अंतरित कोण

आपने देखा है कि एक जीवा के अंत बिन्दु (व्यास के अतिरिक्त) वृत्त को दो चापों में एक (दीर्घ तथा दूसरा लघु) विभाजित करते हैं। यदि आप बराबर जीवाएँ लें, तो आप उन चापों की मापों के बारे में क्या कह सकते हैं? क्या एक जीवा द्वारा बना चाप दूसरी जीवा के द्वारा बने चाप के बराबर है? वास्तव में, ये बराबर लम्बाई से भी कुछ अधिक है। यह इस अर्थ में, कि यदि एक चाप को दूसरे चाप के ऊपर रखा जाए, तो बिना ऐंठे या मोड़े वे एक दूसरे को पूर्णतया ढक लेंगे।

इस तथ्य को आप जीवा CD के संगत चाप को वृत्त से CD के अनुदिश काटकर तथा उसे बराबर जीवा AB के संगत चाप पर रखकर सत्यापित कर सकते हैं। आप पाएँगे कि चाप CD, चाप AB को पूर्णरूप से ढक लेता है (देखिए आकृति 9.13)। यह दर्शाता है कि बराबर जीवाएँ सर्वांगसम चाप बनाती हैं तथा विलोमत: सर्वांगसम चाप वृत्त की बराबर जीवाएँ बनाते हैं। इसका निम्न प्रकार से कथन दे सकते हैं:

यदि किसी वृत्त की दो जीवाएँ बराबर हों, तो उनके संगत चाप सर्वांगसम होते हैं तथा विलोमत: यदि दो चाप सर्वांगसम हों, तो उनके संगत जीवाएँ बराबर होती हैं।

चाप द्वारा केन्द्र पर अंतरित कोण भी संगत जीवा द्वारा केन्द्र पर अंतरित कोण से इस अर्थ में परिभाषित किया जाता है कि लघु चाप कोण को अंतरित करता है और दीर्घ चाप संगत प्रतिवर्ती कोण अंतरित करता है। अत: आकृति 9.14 में, लघु चाप PQ द्वारा O पर अंतरित कोण POQ है तथा दीर्घ चाप PQ द्वारा O पर अंतरित संगत प्रतिवर्ती कोण POO है।

आकृति 9.13

आकृति 9.14

उपरोक्त गुण एवं प्रमेय 9.1 के संदर्भ में निम्न परिणाम सत्य है:

किसी वृत्त के सर्वांगसम चाप (या बराबर चाप) केन्द्र पर बराबर कोण अंतरित करते हैं। अत:, किसी वृत्त की जीवा द्वारा केन्द्र पर अंतरित कोण संगत (लघु) चाप द्वारा केन्द्र पर अंतरित कोण के बराबर होता है। निम्न प्रमेय एक चाप द्वारा केन्द्र पर अंतरित कोण तथा वृत्त के किसी बिन्दु पर अंतरित कोण में संबंध देती है।

प्रमेय 9.7 : एक चाप द्वारा केन्द्र पर अंतरित कोण वृत्त के शेष भाग के किसी बिन्दु पर अंतरित कोण का दुगुना होता है।

उपपत्ति: एक वृत्त का चाप PQ दिया है, जो केन्द्र O पर \angle POQ तथा वृत्त के शेष भाग के एक बिन्दु A पर \angle PAQ अंतरित करता है। हमें सिद्ध करना है कि \angle POQ = 2 \angle PAQ है।

आकृति 9.15 में दी गई तीन विभिन्न स्थितियों पर विचार कीजिए।

(i) में चाप PQ लघु है,(ii) में चाप PQ अर्धवृत्त है तथा (iii) में चाप PQ दीर्घ है। आइए हम AO को मिलाकर एक बिन्दु B तक बढ़ाएँ। सभी स्थितियों में.

$$\angle$$
 BOQ = \angle OAQ + \angle AQO

(क्योंकि त्रिभुज का बहिष्कोण उसके दो अभिमुख अंत: कोणों के योग के बराबर होता है।) साथ ही Δ OAO में.

$$OA = OQ$$
 (एक वृत्त की त्रिज्याएँ)
 $\angle OAQ = \angle AQO$ (प्रमेय 7.2)

अत:.

इससे प्राप्त होता है: $\angle BOQ = 2 \angle OAQ$ (1)

इसी प्रकार,
$$\angle BOP = 2 \angle OAP$$
 (2)

(1) और (2) से,
$$\angle BOP + \angle BOQ = 2(\angle OAP + \angle OAQ)$$

अर्थात्,
$$\angle POQ = 2 \angle PAQ$$
 (3)

स्थिति (iii) के लिए, जहाँ PQ दीर्घ चाप है, (3) के स्थान पर

प्रतिवर्ती कोण POQ = 2 ∠ PAQ होगा।

टिप्पणी: मान लीजिए कि उपर्युक्त आकृतियों में हम P और Q को मिलाकर जीवा PQ बनाते हैं। तब, \angle PAQ को वृत्तखंड PAQP में बना कोण भी कहते हैं।

प्रमेय 9.7 में वृत्त के शेष भाग पर कोई भी बिन्दु A हो सकता है। इसलिए यदि आप वृत्त के शेष भाग पर एक और बिन्दु C लें (देखिए आकृति 9.16), तो आप पाएँगे:

आकृति 9.16

$$\angle POQ = 2 \angle PCQ = 2 \angle PAQ$$

अत:.

$$\angle$$
 PCQ = \angle PAQ

यह निम्न को सिद्ध करता है:

प्रमेय 9.8: एक ही वृत्तखंड के कोण बराबर होते हैं।

आइए अब प्रमेय 9.8 की स्थिति (ii) की अलग से विवेचना करें। यहाँ $\angle PAQ$ उस वृत्तखंड में एक कोण है जो अर्धवृत्त है। साथ ही, $\angle PAQ = \frac{1}{2} \angle POQ = \frac{1}{2} \times 180^\circ = 90^\circ$ है। यदि आप कोई और बिन्दु C अर्धवृत्त पर लें, तो भी आप पाते हैं कि

$$\angle$$
 PCQ = 90°

इस प्रकार, आप वृत्त का एक और गुण पाते हैं जो निम्न है:

अर्धवृत्त का कोण समकोण होता है।

प्रमेय 9.8 का विलोम भी सत्य है, जिसका इस प्रकार कथन दिया जा सकता है:

प्रमेय 9.9: यदि दो बिन्दुओं को मिलाने वाला रेखाखंड, उसको अंतर्विष्ट करने वाली रेखा के एक ही ओर स्थित दो अन्य बिन्दुओं पर समान कोण अंतरित करे, तो चारों बिन्दु एक वृत्त पर स्थित होते हैं (अर्थात् वे चक्रीय होते हैं)।

आप इस कथन की सत्यता निम्न प्रकार से देख सकते हैं:

आकृति 9.17 में AB एक रेखाखंड है, जो दो बिन्दुओं C और D पर समान कोण अंतरित करता है। अर्थात्

$$\angle$$
 ACB = \angle ADB

यह दर्शाने के लिए कि बिन्दु A, B, C और D एक वृत्त पर स्थित हैं, बिन्दुओं A, C और B से जाने वाला एक वृत्त खींचिए। मान लीजिए कि वह D से होकर नहीं जाता है। तब, वह AD (अथवा बढ़ी हुई AD) को एक बिन्दु E (अथवा E') पर काटेगा।

यदि बिन्दु A, C, E और B एक वृत्त पर स्थित हैं, तो

$$\angle$$
 ACB = \angle AEB

(क्यों?)

परन्तु दिया है कि $\angle ACB = \angle ADB$

 \angle AEB = \angle ADB

यह तब तक संभव नहीं है जब तक E, D के संपाती न हो। (क्यों?) इसी प्रकार. E' भी D के संपाती होना चाहिए।

9.5 चक्रीय चतुर्भुज

एक चतुर्भुज ABCD चक्रीय कहलाता है, यदि इसके चारों शीर्ष एक वृत्त पर स्थित होते हैं (देखिए आकृति 9.18)। इन चतुर्भुजों में आप एक विशेष गुण पाएँगे। अलग-अलग भुजाओं वाले कई चक्रीय चतुर्भुज खींचिए और प्रत्येक का नाम ABCD रखिए (इसको विभिन्न त्रिज्याओं के कई वृत्त खींचकर तथा प्रत्येक पर चार बिन्दु लेकर किया जा सकता है)। सम्मुख कोणों को मापिए और आप अपने प्रेक्षण आगे दी गई सारणी में लिखिए:

आकृति 9.17

चतुर्भुज की क्रम संख्या	∠A	∠B	∠ C	∠ D	∠ A +∠ C	∠ B +∠ D
1.						
2.						
3.						
4.						
5.						
6.						

इस सारणी से आप क्या निष्कर्ष निकालते हैं?

यदि मापने में कोई त्रुटि न हुई हो, तो यह निम्न को सत्यापित करता है:

प्रमेय 9.10 : चक्रीय चतुर्भुज के सम्मुख कोणों के प्रत्येक युग्म का योग 180° होता है। वास्तव में इस प्रमेय का विलोम, जिसका कथन निम्न प्रकार से है, भी सत्य है:

प्रमेय 9.11 : यदि किसी चतुर्भुज के सम्मुख कोणों के एक युग्म का योग 180° हो, तो चतुर्भुज चक्रीय होता है।

इस प्रमेय की सत्यता आप प्रमेय 9.9 में दी गई विधि की तरह से जाँच सकते हैं।

उदाहरण 2: आकृति 9.19 में, AB वृत्त का एक व्यास है और CD त्रिज्या के बराबर एक जीवा है। AC और BD बढ़ाए जाने पर एक बिन्दु E पर मिलती हैं। सिद्ध कीजिए कि \angle AEB = 60° है।

हल: OC, OD और BC को मिलाइए।

त्रिभुज ODC एक समबाहु त्रिभुज है।

है। (क्यों?)

अत:.

 \angle COD = 60°

अब,

 $\angle CBD = \frac{1}{2} \angle COD(प्रमेय 10.8)$

इससे प्राप्त होता है: \angle CBD = 30°

पुन:, ∠ ACB = 90°

(क्यों?)

इसलिए,

 \angle BCE = $180^{\circ} - \angle$ ACB = 90°

आकृति 9.19

जिससे \angle CEB =90° -30° = 60°, अर्थात् \angle AEB = 60° प्राप्त होता है।

<u>वृत्त</u> 147

उदाहरण 3: आकृति 9.20 में, ABCD एक चक्रीय चतुर्भुज है, जिसमें AC और BD विकर्ण हैं। यदि \angle DBC = 55° तथा \angle BAC = 45° हो, तो \angle BCD ज्ञात कीजिए।

हल : ∠ CAD = ∠ DBC = 55° (एक वृत्तखंड के कोण) अत:, ∠ DAB = ∠ CAD + ∠ BAC = 55° + 45° = 100°

आकृति 9.20

परन्तु, \angle DAB + \angle BCD = 180° (चक्रीय चतुर्भुज के सम्मुख कोण) इसलिए, \angle BCD = 180° – 100° = 80°

उदाहरण 4: दो वृत्त दो बिन्दुओं A और B पर प्रतिच्छेद करते हैं। AD और AC दोनों वृत्तों के व्यास हैं (देखिए आकृति 9.21)। सिद्ध कीजिए कि B रेखाखंड DC पर स्थित हैं।

हल: AB को मिलाइए। अब,

आकृति 9.21

इसलिए, ∠ ABD + ∠ ABC = 90° + 90° = 180° अत:, DBC एक रेखा है। अर्थात् B रेखाखंड DC पर स्थित है।

हल: आकृति 9.22 में, ABCD एक चतुर्भुज है जिसके अंत:कोणों A, B, C और D के क्रमश: कोण समद्विभाजक AH, BF, CF और DH एक चतुर्भुज EFGH बनाते हैं।

अब, \angle FEH = \angle AEB = 180° – \angle EAB – \angle EBA (क्यों?) = 180° – $\frac{1}{2}$ (\angle A + \angle B)

तथा \angle FGH = \angle CGD = $180^{\circ} - \angle$ GCD $- \angle$ GDC (क्यों?)

आकृति 9.22

=
$$180^{\circ} - \frac{1}{2} (\angle C + \angle D)$$

अतः, \angle FEH + \angle FGH = $180^{\circ} - \frac{1}{2} (\angle A + \angle B) + $180^{\circ} - \frac{1}{2} (\angle C + \angle D)$
= $360^{\circ} - \frac{1}{2} (\angle A + \angle B) + (\angle C + \angle D) = 360^{\circ} - \frac{1}{2} \times 360^{\circ}$
= $360^{\circ} - 180^{\circ} = 180^{\circ}$$

इसलिए, प्रमेय 9.11 से चतुर्भुज EFGH चक्रीय है।

प्रश्नावली 9.3

- 1. आकृति 9.23 में, केन्द्र O वाले एक वृत्त पर तीन बिन्दु A,B और C इस प्रकार हैं कि $\angle BOC = 30^\circ$ तथा $\angle AOB = 60^\circ$ है। यदि चाप ABC के अतिरिक्त वृत्त पर D एक बिन्दु है, तो $\angle ADC$ ज्ञात कीजिए।
- 2. किसी वृत्त की एक जीवा वृत्त की त्रिज्या के बराबर है। जीवा द्वारा लघु चाप के किसी बिन्दु पर अंतरित कोण ज्ञात कीजिए तथा दीर्घ चाप के किसी बिन्दु पर भी अंतरित कोण ज्ञात कीजिए।
- 3. आकृति 9.24 में, $\angle PQR = 100^{\circ}$ है, जहाँ P, Q तथा R, केन्द्र O वाले एक वृत्त पर स्थित बिन्दु हैं। $\angle OPR$ ज्ञात कीजिए।

आकृति 9.23

आकृति 9.24

4. आकृति 9.25 में, \angle ABC = 69° और \angle ACB = 31° हो, तो \angle BDC ज्ञात कीजिए।

आकृति 9.25

5. आकृति 9.26 में, एक वृत्त पर A, B, C और D चार बिन्दु हैं। AC और BD एक बिन्दु E पर इस प्रकार प्रतिच्छेद करते हैं कि \angle BEC = 130° तथा \angle ECD = 20° है। \angle BAC ज्ञात कीजिए।

आकृति 9.26

- 6. ABCD एक चक्रीय चतुर्भुज है जिसके विकर्ण एक बिन्दु E पर प्रतिच्छेद करते हैं। यदि \angle DBC = 70° और \angle BAC = 30° हो, तो \angle BCD ज्ञात कीजिए। पुन: यदि AB = BC हो, तो \angle ECD ज्ञात कीजिए।
- 7. यदि एक चक्रीय चतुर्भुज के विकर्ण उसके शीर्षों से जाने वाले वृत्त के व्यास हों, तो सिद्ध कीजिए कि वह एक आयत है।
- 8. यदि एक समलंब की असमांतर भुजाएँ बराबर हों, तो सिद्ध कीजिए कि वह चक्रीय है।
- 9. दो वृत्त दो बिन्दुओं B और C पर प्रतिच्छेद करते हैं। B से जाने वाले दो रेखाखंड ABD और PBQ वृत्तों को A, D और P, Q पर क्रमश: प्रतिच्छेद करते हुए खींचे गए हैं (देखिए आकृति 9.27)। सिद्ध कीजिए कि ∠ACP = ∠QCD है।

आकृति 9.27

गणित

10. यदि किसी त्रिभुज की दो भुजाओं को व्यास मानकर वृत्त खींचे जाएँ, तो सिद्ध कीजिए कि इन वृत्तों का प्रतिच्छेद बिन्दु तीसरी भुजा पर स्थित है।

- 11. उभयनिष्ठ कर्ण AC वाले दो समकोण त्रिभुज ABC और ADC हैं। सिद्ध कीजिए कि ∠CAD=∠CBD है।
- 12. सिद्ध कीजिए कि चक्रीय समांतर चतुर्भुज आयत होता है।

9.6 सारांश

इस अध्याय में, आपने निम्न बिन्दुओं का अध्ययन किया है:

- 1. एक वृत्त किसी तल के उन सभी बिन्दुओं का समूह होता है, जो तल के एक स्थिर बिन्दु से समान दुरी पर हों।
- 2. एक वृत्त की (या सर्वांगसम वृत्तों की) बराबर जीवाएँ केन्द्र (या संगत केन्द्रों) पर बराबर कोण अंतरित करती हैं।
- 3. यदि किसी वृत्त की (या सर्वांगसम वृत्तों की) दो जीवाएँ केन्द्र पर (या संगत केन्द्रों पर) बराबर कोण अंतरित करें. तो जीवाएँ बराबर होती हैं।
- 4. किसी वृत्त के केन्द्र से किसी जीवा पर डाला गया लम्ब उसे समद्विभाजित करता है।
- 5. केन्द्र से होकर जाने वाली और किसी जीवा को समद्विभाजित करने वाली रेखा जीवा पर लम्ब होती है।
- 6. एक वृत्त की (या सर्वांगसम वृत्तों की) बराबर जीवाएँ केन्द्र से (या संगत केन्द्रों से) समान दूरी पर होती हैं।
- 7. एक वृत्त के केन्द्र (या सर्वांगसम वृत्तों के केन्द्रों) से समान दूरी पर स्थित जीवाएं बराबर होती हैं।
- 8. यदि किसी वृत्त के दो चाप सर्वांगसम हों, तो उनकी संगत जीवाएँ बराबर होती हैं और विलोमत: यदि किसी वृत्त की दो जीवाएँ बराबर हों, तो उनके संगत चाप (लघु, दीर्घ) सर्वांगसम होते हैं।
- 9. किसी वृत्त की सर्वांगसम चाप केन्द्र पर बराबर कोण अंतरित करते हैं।
- 10. किसी चाप द्वारा केन्द्र पर अंतरित कोण उसके द्वारा वृत्त के शेष भाग के किसी बिन्दु पर अंतरित कोण का दुगुना होता है।
- 11. एक वृत्तखंड में बने कोण बराबर होते हैं।
- 12. अर्धवृत्त का कोण समकोण होता है।
- 13. यदि दो बिन्दुओं को मिलाने वाला रेखाखंड उसको अंतर्विष्ट करने वाली रेखा के एक ही ओर स्थित दो अन्य बिन्दुओं पर समान कोण अंतरित करे, तो चारों बिन्दु एक वृत्त पर स्थित होते हैं।
- 14. चक्रीय चतुर्भुज के सम्मुख कोणों के प्रत्येक युग्म का योग 180º होता है।
- 15. यदि किसी चतुर्भुज के सम्मुख कोणों के किसी एक युग्म का योग 180° हो, तो चतुर्भुज चक्रीय होता है।