

지난 주차 **복습**

복습하기

사물인터넷 개요

- ▶ 사물인터넷
 - 인터넷을 기반으로 모든 사물을 연결하여 사람과 사물, 사물과 사물 간의 정보를 상호 소통하는 지능형 기술 및 서비스

사물인터넷 활용

지난 주차 **복습**

복습하기

차세대 신기술

- ▶ 차세대 PC
 - 정보이용 환경과 사용 목적에 특화된 기능 가지며 사용자 중심의 편의성, 무선 네트워킹이 가능한 인간 친화적인 차세대 디지털 정보기기를 총칭함
- - 융합기술, 초소형 컴퓨터, 차세대 PC, 3D 프린팅, 신경망 컴퓨터, 양자 컴퓨터 등

2] 클라우드 컴퓨팅의 개념

♦ 클라우드 컴퓨팅에 대한 주요 정의

구분	주요 개념	클라우드 컴퓨팅과의 관계	
Grid Computing	높은 컴퓨팅 리소스를 필요로 하는 작업 수행을 위해 인터넷상에 분산된 다양한 시스템과 자원들을 공유하여 가상의 슈퍼 컴퓨터를 구성/활용 하는 방식 (분산컴퓨팅아키텍처,컴퓨팅/협업/ 데이터그리드, e-Science)	 Grid 방식의 분산컴퓨팅과 Utility 개념의 과금 모형을 혼합한 컴퓨팅 방식 Grid: 인터넷 상의 모든 컴퓨팅 리소스 Cloud: 서비스 제공 사업자의 사유 서버 네트워크 	
Utility Computing	컴퓨팅 리소스를 구매하거나 소유하지 않고 가스, 전기등과 같이 유틸리티로 필요할 때마다 필요한 만큼 사용하고 비용을 지불하는 방식(사용량 기반 과금 모형)		
		(1/2)	

2] 클라우드 컴퓨팅의 개념

구분	주요 개념	클라우드 컴퓨팅과의 관계
Server Based omputing	서버에 애플리케이션과 데이터를 두고 필요할 때마다 접속해서 사용하는 방식(클라이언트는 입/출력만 처리, 모든 작업은 서버가 처리, Thin-Client)	■ 클라우드 컴퓨팅은 가상화된 분산 컴퓨팅에, SBC는 특정 기업의 서버에 중심적이라는 차이가 있으나 SBC의 발전으로 점차 구분이 모호해짐
letwork mputing	SBC와 유사하나, 애플리케이션을 서버에서 로드하여 로컬에서 수행하는 형태(클라이언트CPU로 작업수행)	 작업 처리위치가 상이함 Network Computing - 클라이언트 PC Cloud Computing - 클라우드상의 IT 자원
		(2/2)

5] 기술 요소

♦ 가상화

가상화

1대의 컴퓨터에 하나의 OS만을 사용하는 통상적인 방법을 벗어나 1대의 컴퓨터에 여러 개의 OS를 동작 시킬 수 있도록 함으로써 마치 여러 대의 컴퓨터를 사용하는 것처럼 만들어 주는 기술

사전적 의미

하나의 물리적 자원을 여러 개의 논리적 자원으로 쪼개어 사용하거나, 여러 개의 물리적 자원을 하나의 논리적 자원처럼 합쳐서 사용할 수 있도록 하는 것

2] 클라우드 컴퓨팅의 장점

- 1 저 비용 컴퓨터
 - 모니터, 마우스, 키보드와 같은 기본 입출력 장치와 인터넷이 되는 환경
 - ➡ 인터넷에 접속하여 다양한 서비스를 제공받아 활용
 - ➡ 언제든지 원하는 만큼의 컴퓨팅 자원을 서비스 받을 수 있으며, 필요에 맞게 자원을 확장할 수 있다는 것을 의미
- 2 다양한 접근 채널, 안정성, 활용성
 - PC 뿐만 아니라 핸드폰, PMP, 노트북, 스마트 폰 등등의 여러 장치들을 통해서 활용
 - ➡ 개인이 가지고 다녀야 할 장비나 저장공간의 제약이 사라짐
 - ➡ 쉽게 고장날 수 있는 pc나 휴대용 기기에 저장하는 것보다 체계적으로 관리
 - ➡ 신뢰성 높은 서버에 보관함으로써 안전

2] 클라우드 컴퓨팅의 장점

- 3 소프트웨어 비용 절감과 편리한 업데이트
 - 실제로 애플리케이션을 사용하는 직원만이 클라우드의 애플리케이션에 접근할 수 있으면 됨
- 4 문서 작업의 편리성
 - 문서는 어디서나 인터넷 연결만 있으면 접근할 수 있는 클라우드에 저장되어 있음

4] 장/단점 비교 학습하기 개별 구축 클라우드 컴퓨팅 ■ 자원 절약 ■ 투자부담 경감 장점 ■ 자료유출 최소 ■ 가변적 자원활용 ■ 관리인력 절감 ■ 보안/데이터 보호: DDOS 공격 등 보안에 취약 ■ 자원낭비, 중복투자 등 투자 ■ 서비스의 연속성 문제 : 네트워크 부담 과다 단점 불안이나 공급기업의 도산 ■ 사용량에 따른 즉각 대처 곤란 ■ 호환성: 기존 데이터를 쉽게 클라우드 ■ 관리인력 필요 컴퓨팅 서비스 제공자에게 넘길 수 있는 기술개발

정리하기

정리하기

클라우드 컴퓨팅의 개요

- 클라우드 컴퓨팅
 - 데이터와 프로그램들이 개인의 PC에 저장되는 것이 아니라 눈에 보이지 않는 인터넷 기반의 구름들에 저장되는 것
 - 사용자는 컴퓨팅을 위해 PC, 휴대폰 등의 단말기를 통해 클라우드에 원격 접속하여 원하는 Service를 받을 수 있는 새로운 컴퓨팅 환경

정리하기

정리하기

클라우드 컴퓨팅의 특징과 장단점

- 확장성과 탄력성(Scalability & Elasticity)
- 요구에 따른 서비스 제공(On-Demand)
- ◆ 사용한 만큼의 비용 지불(Pay-Per-Use)

