An Analysis of Risk in Open-Source Project Dependencies

Róisín Ní Bhriain - 23269640 Sneha Dechamma Mallengada Suresh - 23262168

Course: MCM Computing Supervisor: Darragh O'Brien

Introduction

- → Popularity of Open Source Software has shown a steady increase over time
 - ◆ 3.6 million repos depend on the top 50 open-source projects
- → The use comes with the risk of software vulnerabilities
 - Attackers can exploit these
- → Prediction of risk is important for this
 - ◆ Software metrics
 - Project Activity
 - Vulnerability Data

Research Questions

Question 1:

Are there feature combinations that can be made from risk prediction methods that could provide developers with a more effective risk measure that allows them to minimise risk when choosing between multiple candidate open-source components?

Question 2:

Can a visual dependency tree be created for a project consisting of colour-coded nodes based on the predicted risks?

Background Research

Vulnerability Propagation

- → Only 1.2% directly use vulnerable code
- → Small packages can affect many packages in the Maven ecosystem
 - CVEs can affect a large number of projects
- → The more dependencies the more complex it is to find vulnerabilities in dependencies

Project Metadata Analysis

- → Project activity level is an indicator of survival
 - ♦ Number of commits, time-to-fix
 - ◆ Long-time Contributors
- → Less than 50% of abandoned projects find new contributors
- → Standard measurement for commits is:
 - Number of commits per month

Vulnerability CVE Data Analysis

- → Predicting number of vulnerabilities per month is also important
- → ARIMA is a very popular method of prediction
 - Seasonality not a factor
- → Datasets from the NVD were used in every study we analysed
 - Prediction of CVEs
- → Most models fall flat at the three month mark

Case Studies

Log4j Vulnerability

- → Discovered in November 2021 in popular logging library
- → Gateway to gain control of the machine
- Many projects unaware they were affected

Heartbleed Vulnerability

- → Discovered in April 2014 in popular cryptography library
- → Receive private information after crafting similar messages
- Many servers unaware they were affected

Methodology

Data & Dependencies Gathering

- → Different GitHub projects to test the algorithm
- → GitHub API for project activity
- → NVD API for vulnerability
 Data

- Each Maven Dependency as a node
- → NetworkX graph
- → Keywords and libraries extracted for prediction
- → Colour-coded

TABLE I LIST OF SOURCES USED				
Data Source Purpose Type				
GitHub projects	Find Dependencies	Maven-dependency trees		
GitHub API	Project Meta-data	API		
NVD API	Vulnerability Prediction	CVE API		

Predictions

Fig. 1. The Time Series Pipeline.

Project Activity

- → GitHub API
 - All available data gathered
- → Commits, average time-to-fix issues or both
- → AutoARIMA prediction
- → Final fitted value returned

Vulnerabilities

- → NVD API
 - Call made for each keyword
- → Number of vulnerabilities per month
- → AutoARIMA Prediction
- → Final fitted value returned

Risk Calculations

$$projectActivityScore = (x/numDaysToFixIssues)*10$$

$$projectActivityScore = (numCommits/x) * 10$$

$$vulnerabilityScore = (x/vulsCountPerMonth) * 10$$

$$overallScore = (projectActivityScore + \\ vulnerabilityScore)/2$$

- → User-decided acceptable levels
- → Options for project activity score
- → Combination of project activity and vulnerability for overall score

Score	Risk Level		
<0	Not Enough Data		
0 - 2.5	Low Risk		
2.5-5	Medium Risk		
5-7.5	High Risk		
>7.5	Severe Risk		

Results

Example Final Graph

Example Graph of Project Activity Risk Prediction

- → JUnit4 package commits over time
- → Clear to see that activity has declined in recent years
- → 2012 to 2017 were high commit years
 - At its height over 200 commits per month
- → Prediction is fairly accurate as can be seen in the graph

Example Graph of Vulnerability Risk Prediction

- → Log4j vulnerabilities over time
- → Clear where many were released in 2021
 - 5 released in one month
- Reasonably accurate predictions in subsequent months

Evaluations

Prediction	MAPE	MAE	RMSE
Commits per month	6191.33	123.18	213.96
Vulnerabilities per month	11.51	0.15	0.48

- → Log4j sample project
- → Project Activity Predictions > CVE Data Predictions
- → Commonly used metrics
 - Mean Absolute Percentage Error (MAPE)
 - Mean Absolute Error (MAE)
 - Root Mean Squared Error (RMSE)
- → Large fluctuations in commits
- → Small fluctuations in vulnerability prediction

Technical Challenges

Student Contribution

Róisín Ní Bhriain

- → Gitlab setup + Issues
- → Literature Review
- → Software
- → Practicum Paper First + Second

 Draft

Sneha Dechamma Mallengada Suresh

 \rightarrow

Conclusion

References

Thank You For Listening!