Statistica A – Esercitazione 1

Esercizio 1. Si dimostri che se $(F_{X_2|X_1}(\cdot|x_1))_{x_1}$ è una famiglia di distribuzioni condizionate, allora la famiglia di distribuzioni condizionate $(p_{X_2|X_1}(\cdot|x_1))_{x_1}$ soddisfa

$$p_{X_2|X_1}(x_2|x_1)p_{X_1}(x_1) = p_{X_1,X_2}(x_1,x_2)$$

Esercizio 2. Sia X_1, X_2 un vettore aleatorio con funzione di ripartizione countinua F_{X_1, X_2} .

- 1. Dimostrare che le distribuzioni marginali sono continue.
- 2. Dimostrare che esiste una famiglia di funzioni di densità $(f_{x_2|x_1})_{x_1\in\mathbb{R}}$ tale per cui

$$f_{X_1,X_2}(x_1,x_2) = f_{X_2|X_1}(x_2|x_1)f_{X_1}(x_1)$$

e $F_{X_2|X_1}(x|x_1):=\int_{-\infty}^x f_{X_2|X_1}(x_2|x_1)\,\mathrm{d}x_1$ è una famiglia di distribuzione condizionate.

Esercizio 3. Siano $U:=(U_n)_{n\geq 0}$ una successione di variabili aleatorie i.i.d. con distribuzione esponenziale e valore atteso $1/\lambda$, $\bar{\lambda}>0$ e $N\sim Poisson(\theta)$, $\theta>0$ una variabile indipendente da U, si calcoli la funzione di ripartizione di $S:=\sum_{i=1}^N U_i$, si utilizza la convenzione che $\sum_{i=1}^0 =0$. La funzione di ripartizione è continua o discreta?

Esercizio 4. Sia (X, Θ) un vettore aleatorio tale che la distribuzione marginale di Θ , che indichiamo con π_{Θ} , sia continua e la distribuzione condizionale di X dato $\Theta = \theta$ sia discreta con distribuzione p_{θ} .

- 1. Calcolare la distribuzione congiunta del vettore aleatorio (X, Θ) .
- 2. Dimostrare che la distribuzione di Θ condizionata a X è ancora una distribuzione continua e calcolarne la funzione di densità.
- 3. Calcolare la distribuzione di X.

Cosa succede se la distribuzione condizionale di $X|\Theta = \theta$ è continua e quella di Θ è discreta?

Esercizio 5. Siano (X,Y) un vettore con componenti indipendenti, $g:\mathbb{R}^2\to\mathbb{R}$ una funzione misurabile e si definisca la variabile aleatoria U:=g(X,Y). Dimostrare che

- 1. se g(x,y)=x+y, allora $\mathbb{P}\left(X+Y\leq u|Y=y\right)=\mathbb{P}\left(X+y\leq u\right)$ e $f_{U|V}(u|v)=f_X(u-v)$;
- 2. se g è una generica funzione misurabile

$$\mathbb{P}\left(U \le u | Y = y\right) = \mathbb{P}\left(g\left(X, y\right) \le u\right).$$

Esercizio 6. Con la notazione dell'Esercizio 5, supponendo però che $X \in \mathbb{R}^n$, $Y \in \mathbb{R}^m$ e $g : \mathbb{R}^{n+m} \to \mathbb{R}^k$, $k \geq 1$, dimostrare che

$$\mathbb{P}\left(\boldsymbol{U} \leq \boldsymbol{u} | \boldsymbol{Y} = \boldsymbol{y}\right) = \mathbb{P}\left(g\left(\boldsymbol{X}, \boldsymbol{y}\right) \leq \boldsymbol{u}\right)$$

per ogni $\boldsymbol{u} \in \mathbb{R}^k$.

Esercizio 7. Siano $(X, Y) \in \mathbb{R}^{n+m}$ un vettore aletorio (n+m)-dimensionale continuo con funzione di densità $f_{X,Y}$ e definiamo la densità Y condizionata a X come

$$f_{oldsymbol{Y}|oldsymbol{X}}(oldsymbol{y}|oldsymbol{x}) := rac{f_{oldsymbol{X},oldsymbol{Y}}\left((oldsymbol{x},oldsymbol{y}
ight)
ight)}{f_{oldsymbol{X}}(oldsymbol{x})}$$

definita per ogni $(\boldsymbol{x}, \boldsymbol{y})$. Dimostrare che

$$F_{oldsymbol{Y}|oldsymbol{X}}(oldsymbol{u}|oldsymbol{x}) := \int_{(-\infty,oldsymbol{u}|} f_{oldsymbol{Y}|oldsymbol{X}}(oldsymbol{y}|oldsymbol{x}) \, \mathrm{d}oldsymbol{y}$$

in cui $(-\infty, \mathbf{u}] = \{ \mathbf{y} \in \mathbb{R}^m : y_i \leq u_i, i = 1, \dots, m \}$, è la funzione di ripartizione condizionata di \mathbf{Y} dato \mathbf{X} .

Esercizio 8. Si lanciano due dadi e si indica l'esito del lancio con X_1 e X_2 . Si dimostri che X_1 e X_2 sono indipendenti, ma che X_1 e X_2 non sono indipendenti condizionatamente a Y=3, in cui $Y=X_1+X_2$.

Esercizio 9. Siano X e Y due vettori aleatori condizionatamente indipendenti dato Θ . Dimostrare che

$$\mathbb{P}\left(\boldsymbol{Y} \in A | \boldsymbol{X} \in B, \Theta \in T\right) = \mathbb{P}\left(\boldsymbol{Y} \in A | \Theta \in T\right)$$

per tutti gli insiemi $A, B \in T$ misurabili.

Esercizio 10. Sia X una variabile aleatoria con distribuzione f(x) = cg(x) in cui c > 0 è una costante. Dimostrare che la conoscenza di g determina univocamente quella di f. In questo caso scriveremo $f(x) \propto g(x)$ e diremo g il nucleo della distribuzione.

Esercizio 11. Sia X una variabile aleatoria reale tale che $\mathbb{P}(X=0)=0$.

- 1. Calcolare le distribuzioni di U := X/|X| e R = |X|
- 2. Dimostrare che se X ha distribuzione simmetrica, allora U e R sono indipendenti.
- 3. Dimostrare che X ha distribuzione simmetrica se e solo se U e R sono indipendenti e $\mathbb{P}(U=-1)=\mathbb{P}(U=1)=1/2$.

Esercizio 12. Data una funzione di densità f simmetrica rispetto all'origine, si definisca la funzione

$$g_{a,b}(x) := af(x)\mathbb{I}_{(-\infty,0]}(x) + bf(x)\mathbb{I}_{(0,\infty)}(x)$$

in cui $a, b \in \mathbb{R}$.

- 1. Determinare i valori di a e b per i quali le funzioni $g_{a,b}$ sono densità e quelli per cui non sono simmetriche rispetto allo 0.
- 2. Sia $X \sim g_{a,b}$ calcolare la distribuzione di U e R definite nell'Esercizio 11 e verificare per quali valori di a e b sono indipendenti.

Esercizio 13. Siano X una v. a. con distribuzione $Gamma(\alpha, \beta)$, diciamo V := 1/X variabile $InvGamma(\alpha, \beta)$.

1. Si dimostri che V ha distribuzione continua e che ha la seguente densità

$$f_V(v) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} v^{-(\alpha+1)} \exp\left\{-\beta/v\right\} \mathbb{I}_{(0,+\infty)}(v).$$

- 2. Si stabilisca per quali $k \in \mathbb{N}$ esiste finito $\mathbb{E}\left[V^k\right]$ e si calcoli.
- 3. Si dimostri che

$$\mathbb{E}[V] = \frac{\beta}{\alpha - 1} e \operatorname{Var}(V) = \frac{\beta^2}{(\alpha - 1)^2 (\alpha - 2)}.$$

Esercizio 14 (Teorema di Poisson). Data una successione di variabili aleatorie X_n con distribuzione $Bin(n, p_n)$, in cui $p_n \in (0, 1)$ è una successione tale che

$$p_n \to 0 \text{ e } np_n \to \lambda.$$

Dimostrare che

$$\lim_{n \to \infty} \mathbb{P}\left(X_n = k\right) = \frac{e^{-\lambda} \lambda^k}{k!}.$$

Esercizio 15. Date $Z_{\Theta}, Z_X \stackrel{iid}{\sim} Gauss\left(0,1\right)$ si definisca il vetttore aleatorio

$$\left[\begin{array}{c} X \\ \Theta \end{array}\right] = \left[\begin{array}{c} \Theta + \sigma Z_X \\ \mu_0 + \tau_0 Z_\Theta \end{array}\right].$$

- 1. Si calcolino le distribuzioni marginali del vettore.
- 2. Si calcoli la distribuzione di X condizionata a Θ .

Esercizio 16. Nel modello gaussiano con varianza nota e prior gaussiana

- 1. si calcoli la distribuzione predittiva a priori per una osservazione;
- 2. si calcoli la distribuzione predittiva a posteriori per una osservazione.