Ejercicios sobre convolución

```
#imports
import numpy as np
import matplotlib.pyplot as plt
from itertools import product
import tensorflow as tf
# función útil
def mostrar_kernel(kernel, label=True, digits=None, text_size=28):
    # Format kernel
    kernel = np.array(kernel)
    if digits is not None:
        kernel = kernel.round(digits)
    # Plot kernel
    cmap = plt.get_cmap('Blues_r')
    plt.imshow(kernel, cmap=cmap)
    rows, cols = kernel.shape
    thresh = (kernel.max()+kernel.min())/2
    # Optionally, add value labels
    if label:
        for i, j in product(range(rows), range(cols)):
            val = kernel[i, j]
            color = cmap(0) if val > thresh else cmap(255)
            plt.text(j, i, val,
                     color=color, size=text_size,
                     horizontalalignment='center', verticalalignment='center')
    plt.xticks([])
    plt.yticks([])
kernel3 = tf.constant(
    [[1, 0, -1],
     [1, 0, -1],
     [1, 0, -1]],
mostrar_kernel(kernel3)
# kernel5 = tf.constant(
#
      [[1, 1, 0, -1,-1],
#
       [1, 1, 0, -1,-1],
       [1, 1, 0, -1,-1],
       [1, 1, 0, -1,-1],
#
       [1, 1, 0, -1,-1]],
#)
# mostrar_kernel(kernel5)
```


→ Sección 1: Creación de kernels o filtros

```
# Edge detection
edge0 = tf.constant(
    [[1, 0, -1],
      [1, 0, -1],
      [1, 0, -1]],
```

```
24/6/23, 13:31
```

```
edge = tf.constant(
    [[-1, -1, -1],
     [-1, 8, -1],
     [-1, -1, -1]],
# Blur
blur = tf.constant(
    [[0.0625, 0.125, 0.0625],
     [0.125, 0.25, 0.125],
     [0.0625, 0.125, 0.0625]],
# Bottom sobel
bottom_sobel = tf.constant(
    [[-1, -2, -1],
     [0, 0, 0],
     [1, 2, 1]],
# Emboss South-East
emboss = tf.constant(
    [[-2, -1, 0],
     [-1, 1, 1],
     [0, 1, 2]],
# Sharpen
sharpen = tf.constant(
    [[0, -1, 0],
     [-1, 5, -1],
     [0, -1, 0]],
kernels = [edge0,edge, bottom_sobel, emboss, sharpen]
names = ["Edge Detect3","Edge Detect2", "Bottom Sobel", "Emboss", "Sharpen"]
plt.figure(figsize=(12, 12))
for i, (kernel, name) in enumerate(zip(kernels, names)):
    plt.subplot(1, 5, i+1)
    mostrar_kernel(kernel)
    plt.title(name)
plt.tight_layout()
```


- Sección 2: Carga de imagen de prueba

```
#cargando imagen
image_path = '/content/car_feature.jpg'
imagen_prueba = tf.io.read_file(image_path)
imagen_prueba = tf.io.decode_jpeg(imagen_prueba)
plt.figure(figsize=(6, 6))
plt.imshow(tf.squeeze(imagen_prueba), cmap='gray')
plt.axis('off')
plt.show();
```


- Sección 3: Aplicación de convolución

```
kernel_ejemplo = tf.constant([
   [-1, -1, -1],
    [-1, 8, -1],
    [-1, -1, -1],
image = tf.image.convert_image_dtype(imagen_prueba, dtype=tf.float32)
image = tf.expand_dims(image, axis=0)
kernel = tf.reshape(kernel_ejemplo, [*kernel_ejemplo.shape, 1, 1])
kernel = tf.cast(kernel, dtype=tf.float32)
image_filter = tf.nn.conv2d(
      input=image,
      filters=kernel,
      strides=1.
      padding='VALID',
imagen_resultado = tf.squeeze(image_filter)
plt.figure(figsize=(6, 6))
plt.imshow(imagen_resultado)
plt.axis('off')
plt.show();
```


Pregunta 1: Para que es usado el método expand_dims en las lineas de código previas,

→ muestre las dimensiones de la imagen antes y después de ejecutar la función expand_dims.

```
# image = tf.expand_dims(image, axis=0):
#
# Utilizando la función expand_dims de TensorFlow, se agrega una dimensión adicional al tensor de imagen en el eje 0.
# Esto es necesario para que la función 'conv2d' de TensorFlow pueda aplicar el filtro de convolución correctamente.
```

Pregunta 2: Para que es usado el método reshape en las lineas de código previas, muestre las dimensiones del kernel antes y después de ejecutar la función reshape.

```
# kernel = tf.reshape(kernel_ejemplo, [*kernel_ejemplo.shape, 1, 1]):
#
# Se utiliza la función reshape de TensorFlow para darle al kernel la forma requerida
# por la función 'conv2d'. Se agrega una dimensión adicional al kernel en los ejes 2 y 3
```

Pregunta 3: Para que es usado el método squeeze en las lineas de código previas, muestre las dimensiones de la imagen antes y después de ejecutar la función squeeze.

```
# imagen_resultado = tf.squeeze(image_filter):
# Utilizando la función squeeze de TensorFlow, se elimina la dimensión adicional agregada anteriormente al tensor de imagen filtrada.
print(imagen_prueba.shape)
     (361, 421, 1)
def ejecutar_convolucion_en_imagen(image,kernel):
 #organizando los datos en las dimensiones correctas
 image = tf.image.convert_image_dtype(image, dtype=tf.float32)
 image = tf.expand_dims(image, axis=0)
 kernel = tf.reshape(kernel, [*kernel.shape, 1, 1])
  kernel = tf.cast(kernel, dtype=tf.float32)
  #aplicando un convolucion
  image_filter = tf.nn.conv2d(
      input=image,
      filters=kernel.
      strides=1,
      padding='VALID',
  return image_filter
#ejemplo de como usar la función "ejecutar_convolucion_en_imagen"
kernel_ejemplo = tf.constant([
   [-1, -1, -1],
    [-1, 8, -1],
    [-1, -1, -1],
imagen_resultante = ejecutar_convolucion_en_imagen(imagen_prueba,kernel_ejemplo)
plt.figure(figsize=(6, 6))
plt.imshow(tf.squeeze(imagen_resultante))
plt.axis('off')
plt.show();
```


Pregunta 4: Use la función ejecutar_convolucion_en_imagen y aplique los 5 filtros
• presentados en la "sección 1: Creación de kernels o filtros" a la imagen de prueba y
muestre los resultados.

```
# kernels = [edge0,edge, bottom_sobel, emboss, sharpen]
# names = ["Edge Detect3","Edge Detect2", "Bottom Sobel", "Emboss", "Sharpen"]

plt.figure(figsize=(12, 12))
for i, (kernel, name) in enumerate(zip(kernels, names)):
    # Aplicar convolución a la imagen
    filtered_image = ejecutar_convolucion_en_imagen(imagen_prueba, kernel)

    # Eliminar dimensión adicional y convertir imagen resultante a numpy array
    filtered_image = tf.squeeze(filtered_image).numpy()

# Mostrar imagen resultante
    plt.subplot(1, 5, i+1)
    plt.imshow(filtered_image, cmap='gray')
    plt.title(name)
    plt.axis('off')

plt.tight_layout()
plt.show()
```


Pregunta 5: Explique las principales diferencias perceptibles entre los resultados obtenidos en la pregunta previa.

```
# DIFERENCIAS
#
# Edge Detect3: Este filtro resalta los bordes en la imagen. Los bordes verticales aparecen resaltados en blanco y negro.
#
# Edge Detect2: Similar al filtro anterior, este también resalta los bordes en la imagen. Sin embargo, los bordes se muestran con mayor g
#
# Bottom Sobel: Este filtro resalta los bordes horizontales en la imagen. Los bordes horizontales aparecen resaltados en blanco y negro.
#
# Emboss: Este filtro crea un efecto de relieve en la imagen. Genera un efecto tridimensional resaltando los bordes de los objetos y crea
#
# Sharpen: Este filtro acentúa los detalles y bordes en la imagen, produciendo un efecto de mayor nitidez.
```

Pregunta 6: Usando la imagen de prueba y el filtro de ejemplo muestre los resultados de la función ejecutar_convolucion_en_imagen variando el parametro strides del método tf.nn.conv2d, pruebe con valores de strides: 5, 3 y 1 e explique las diferencias de los resultados.

```
plt.figure(figsize=(6, 6))
plt.imshow(tf.squeeze(imagen_prueba), cmap='gray')
plt.axis('off')
plt.show();
```

```
kernel_ejemplo = tf.constant([
        [-1, -1, -1],
        [-1, 8, -1],
        [-1, -1, -1],
])
mostrar_kernel(kernel_ejemplo)
```



```
strides_values = [5, 3, 1]
def ejecutar_convolucion_en_imagen_add_stride(image,kernel,_stride_):
 #organizando los datos en las dimensiones correctas
 image = tf.image.convert_image_dtype(image, dtype=tf.float32)
 image = tf.expand_dims(image, axis=0)
 kernel = tf.reshape(kernel, [*kernel.shape, 1, 1])
 kernel = tf.cast(kernel, dtype=tf.float32)
 #aplicando un convolucion
 image_filter = tf.nn.conv2d(
      input=image,
      filters=kernel,
      strides=_stride_,
      padding='VALID',
 return image_filter
plt.figure(figsize=(18, 6))
for i, strides in enumerate(strides_values):
    imagen_resultante = ejecutar_convolucion_en_imagen_add_stride(imagen_prueba, kernel_ejemplo, strides)
    plt.subplot(1, 3, i+1)
    plt.imshow(tf.squeeze(imagen_resultante))
    plt.axis('off')
    plt.title(f"Strides = {strides}")
plt.tight_layout()
plt.show()
```


Como notamos entre la diferencia entre cada imagen es que cada imagen es mas distorcionada por lo que podriamos inferir que # Un valor de strides mayor producirá un mayor espaciado entre las regiones convolucionadas, lo que puede resultar en una pérdida de deta # y resolución en la imagen resultante.

Pregunta 7: Usando la imagen de prueba y el filtro de ejemplo muestre los resultados de la función ejecutar_convolucion_en_imagen variando el parametro padding del método tf.nn.conv2d, pruebe con valores de padding: 'SAME','VALID' e explique las diferencias de los resultados.

```
plt.figure(figsize=(6, 6))
plt.imshow(tf.squeeze(imagen_prueba), cmap='gray')
plt.axis('off')
plt.show();

kernel_ejemplo = tf.constant([
     [-1, -1, -1],
     [-1, 8, -1],
     [-1, -1, -1],
])
mostrar_kernel(kernel_ejemplo)
```



```
padding_values = ['SAME','VALID']
\tt def\ ejecutar\_convolucion\_en\_imagen\_add\_padding(image,kernel,\_padding\_): \\
  #organizando los datos en las dimensiones correctas
  image = tf.image.convert_image_dtype(image, dtype=tf.float32)
  image = tf.expand_dims(image, axis=0)
  kernel = tf.reshape(kernel, [*kernel.shape, 1, 1])
  kernel = tf.cast(kernel, dtype=tf.float32)
  #aplicando un convolucion
  image_filter = tf.nn.conv2d(
      input=image,
      filters=kernel,
      strides=1.
      padding=_padding_,
  return image_filter
plt.figure(figsize=(18, 6))
for i, padd in enumerate(padding_values):
    imagen_resultante = ejecutar_convolucion_en_imagen_add_padding(imagen_prueba, kernel_ejemplo, padd)
    plt.subplot(1, 3, i+1)
    plt.imshow(tf.squeeze(imagen_resultante))
    plt.axis('off')
    plt.title(f"Padding = {padd}")
plt.tight_layout()
plt.show()
```


Padding = 'SAME': En este caso, se aplica un relleno para asegurar que el tamaño de la imagen resultante sea el mismo que el tamaño de # Se añaden píxeles de valor cero alrededor de la imagen antes de la convolución. Esto tiene el efecto de mantener la resolución espacial # preservar los bordes y detalles.

Padding = 'VALID': En este caso, no se aplica ningún relleno a la imagen antes de la convolución. La convolución se realiza solo en las # que tienen suficientes píxeles para alinear completamente el kernel. Esto puede resultar en una reducción del tamaño de la imagen resul # con la imagen original.

Sección 4: Aplicación de ReLu

1. En las siguientes lineas de código aplicaremos la función ReLu a la imagen resultante de la convolución.

Pregunta 8: Compare el valores almacenados en las imagenes:

▼ "imagen_resultante_convolucion" y "imagen_resultante_relu" logra identificar como afecta el uso de la relu en la imagen?

```
imagen_resultante_convolucion
     <tf.Tensor: shape=(1, 359, 419, 1), dtype=float32, numpy=
     array([[[[-2.7451336e-02],
              [ 1.7881393e-07],
              [-3.9213300e-03],
              [-7.8430772e-03],
              [-3.9215684e-03],
              [-3.9215684e-03]],
             [[ 7.8427196e-03],
                1.9607663e-02],
              [ 3.9213896e-03],
              [-3.9215088e-03],
              [ 2.3529470e-02],
              [ 1.5686452e-02]],
             [[-3.9218068e-03],
                7.8431964e-03],
              [ 3.1372547e-02],
              [-1.1764526e-02],
              [-1.5686035e-02],
              [ 1.5686512e-02]],
             [[-1.1764705e-02],
              [-1.1764705e-02],
              [-1.1764705e-02],
              [-1.1920929e-07],
              [-1.1920929e-07],
```

```
[-1.1920929e-07]],
             [[ 1.1764884e-02],
                1.1764884e-02],
              [ 1.1764884e-02],
              [-1.1920929e-07],
              [ 3.9214492e-03],
              [ 7.8429580e-03]],
             [[-3.5294056e-02],
              [-3.5294056e-02],
              [-3.5294056e-02],
              [-3.9216280e-03],
              [ 7.8429580e-03],
              [-2.3529649e-02]]]], dtype=float32)>
imagen_resultante_relu
     <tf.Tensor: shape=(1, 359, 419, 1), dtype=float32, numpy=
     array([[[[0.000000e+00],
              [1.7881393e-07],
              [0.0000000e+00],
              [0.0000000e+00],
              [0.0000000e+00],
              [0.0000000e+00]],
             [[7.8427196e-03],
              [1.9607663e-02],
              [3.9213896e-03],
              [0.0000000e+00],
              [2.3529470e-02],
              [1.5686452e-02]],
             [[0.0000000e+00],
               [7.8431964e-03],
              [3.1372547e-02].
              [0.0000000e+00],
              [0.000000e+00],
              [1.5686512e-02]],
             . . . ,
             [[0.0000000e+00],
              [0.0000000e+00],
              [0.0000000e+00],
              [0.0000000e+00],
              [0.000000e+00],
              [0.0000000e+00]],
             [[1.1764884e-02],
              [1.1764884e-02],
              [1.1764884e-02],
              [0.0000000e+00],
              [3.9214492e-03],
              [7.8429580e-03]],
             [[0.0000000e+00],
              [0.0000000e+00],
              [0.0000000e+00],
              [0.0000000e+00],
              [7.8429580e-03],
              [0.0000000e+00]]]], dtype=float32)>
# En este caso, la imagen resultante de la convolución se pasa a través de la función ReLU para resaltar los píxeles que tienen valores p
# y descartar los píxeles con valores negativos. El resultado es una imagen que resalta aún más los bordes y características distintivas
# en la imagen original.
# A comparación de la imagen original que considera los pixeles negativos
# Podemos observar cómo se realzan los bordes y detalles en la imagen, ya que los píxeles negativos se han establecido en cero.
```

Sección 4: Aplicación de pooling

```
imagen_resultante_pooling = tf.nn.pool(
    input=imagen_resultante_relu,
```

```
window_shape=(2,2),
pooling_type='MAX',
strides=(2, 2),
padding='SAME',
)

plt.figure(figsize=(6, 6))
plt.imshow(tf.squeeze(imagen_resultante_pooling))
plt.axis('off')
plt.show();
```


Pregunta 9: Compare el valores almacenados en las imagenes: "imagen_resultante_relu"

→ e "imagen_resultante_pooling" logra identificar como afecta el uso del pooling en la imagen?

```
imagen_resultante_relu
     <tf.Tensor: shape=(1, 359, 419, 1), dtype=float32, numpy= array([[[[0.0000000e+00],
               [1.7881393e-07],
               [0.0000000e+00],
               [0.0000000e+00],
               [0.0000000e+00],
               [0.0000000e+00]],
              [[7.8427196e-03],
               [1.9607663e-02],
               [3.9213896e-03],
               [0.0000000e+00],
               [2.3529470e-02],
               [1.5686452e-02]],
              [[0.0000000e+00],
               [7.8431964e-03],
               [3.1372547e-02],
               [0.0000000e+00],
               [0.0000000e+00]
               [1.5686512e-02]],
              [[0.0000000e+00],
               [0.0000000e+00],
               [0.0000000e+00],
               [0.0000000e+00],
               [0.0000000e+00],
               [0.0000000e+00]],
              [[1.1764884e-02],
               [1.1764884e-02],
               [1.1764884e-02],
               [0.0000000e+00],
```

[3.9214492e-03],

```
[7.8429580e-03]],
             [[0.0000000e+00],
              [0.0000000e+00],
              [0.0000000e+00],
              [0.0000000e+00],
               [7.8429580e-03]
              [0.0000000e+00]]]], dtype=float32)>
imagen_resultante_pooling
     <tf.Tensor: shape=(1, 180, 210, 1), dtype=float32, numpy=
     array([[[[0.01960766],
              [0.00392139],
              [0.00784314],
              Γ0.
              [0.02352947]
              [0.01568645]],
             [[0.0078432],
              [0.03137255],
              [0.03137249],
              [0.0078432],
              [0.0078432],
              [0.01568651]],
             [[0.01568609],
              [0.00784314],
              [0.01568615],
              [0.01568639],
              [0.02352947],
              [0.00392187]],
             [[0.01176435],
              [0.01176435],
              [0.01176435],
              [0.00784314],
              [0.01568615],
                         11,
             [[0.01176488],
              [0.01176488],
              [0.01176488],
              [0.01568615],
               [0.00392145].
              [0.00784296]],
             [[0.
                         j,
              [0.
              [0.
              [0.00392139],
              [0.00784296],
                         ]]]], dtype=float32)>
# imagen_resultante_relu : Resaltan los píxeles que tienen valores positivos y descartar los píxeles con valores negativos.
# El resultado es una imagen que resalta aún más los bordes y características distintivas presentes en la imagen original.
# imagen_resultante_polling : El resultado es una imagen con una resolución espacial reducida, ya que se han tomado los valores máximos c
# El pooling máximo tiende a resaltar las características más prominentes en la imagen, preservando la información más relevante mientras
# Por último Puedes observar cómo la resolución espacial se ha reducido y cómo se han conservado las características distintivas de la im
```

Pregunta 10: Compare los resultados obtenidos variando el parametro window_shape,

→ pruebe con valores de (2,2), (8,8), (16,16), como estos parametros afectan la apariencia
y el tamanio de la imagen_resultante_pooling.

```
input=imagen_resultante_relu,
......window_shape=window_shape,
.....pooling_type='MAX',
.....strides=(2,-2),
.....padding='SAME',
.....)

# Mostrar imagen_resultante
....plt.subplot(1, len(window_shapes), i+1)
....plt.imshow(tf.squeeze(imagen_resultante_pooling))
....plt.axis('off')
....plt.title(f"Window_Shape = {window_shape}")

plt.tight_layout()
plt.show()
```


A medida que el valor de window_shape aumenta, la imagen resultante tendrá una menor resolución espacial y un tamaño más pequeño. # Si queremos mas detalle deberemos de tener una ventana de pooling más pequeño, se conservará más detalle y nivel de información en la i

Pregunta 11: Compare los resultados obtenidos variando el parametro pooling_type,

→ pruebe con valores 'MAX', 'AVG' como estos parametros afectan la apariencia de la imagen_resultante_pooling.

```
pooling_type_values = ['MAX','AVG']
plt.figure(figsize=(12, 4))
for i, pool_type in enumerate(pooling_type_values):
    imagen_resultante_pooling = tf.nn.pool(
        input=imagen_resultante_relu,
        window_shape=(2,2),
        pooling_type=pool_type,
        strides=(2, 2),
        padding='SAME',
    # Mostrar imagen resultante
    plt.subplot(1, len(window_shapes), i+1)
    plt.imshow(tf.squeeze(imagen_resultante_pooling))
    plt.axis('off')
    plt.title(f"Pooling type = {pool_type}")
plt.tight_layout()
plt.show()
```

Pooling type = MAX Pooling type = AVG

- # Pooling máximo ('MAX'): Con el pooling máximo, se selecciona el valor máximo dentro de cada región de la ventana de pooling. # Esto tiende a resaltar características prominentes y bordes en la imagen. En la imagen resultante, se pueden observar regiones más # oscuras o de alto contraste donde se encuentran las características más distintivas.
- # Pooling promedio ('AVG'): Con el pooling promedio, se calcula el promedio de los valores dentro de cada región de la ventana de pooling # Esto suaviza la imagen y reduce el contraste entre las características. En la imagen resultante, las transiciones entre las característ # son más suaves y se observa una apariencia más uniforme en la imagen.

Sección 5: Primera red convolucional

para completar el laboratorio vamos a usar el conjunto de digitos de mnist para crear una red convolucional simple, incluyendo todos los componentes estudiados

```
#instalando el paquete que tiene imagenes
%pip install mnist
     Looking in indexes: <a href="https://pypi.org/simple">https://us-python.pkg.dev/colab-wheels/public/simple/</a>/
     Requirement already satisfied: mnist in /usr/local/lib/python3.10/dist-packages (0.2.2)
     Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from mnist) (1.22.4)
import numpy as np
import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten
from tensorflow.keras.utils import to_categorical
train images = mnist.train images()
train_labels = mnist.train_labels()
test_images = mnist.test_images()
test_labels = mnist.test_labels()
# Normalizizando las imagenes.
train_images = (train_images / 255) - 0.5
test_images = (test_images / 255) - 0.5
# Redimensionando las imagenes.
train_images = np.expand_dims(train_images, axis=3)
test_images = np.expand_dims(test_images, axis=3)
num filters = 8
filter_size = 3
pool\_size = 2
# Construyendo el modelo.
model1 = Sequential([
  Conv2D(num_filters, filter_size, input_shape=(28, 28, 1)),
  MaxPooling2D(pool_size=pool_size),
  Flatten(),
  Dense(10, activation='softmax'),
# Configurando el model.
model1.compile(
  'adam'.
  loss='categorical_crossentropy',
  metrics=['accuracy'],
```

Pregunta 12: cual es la dimensión de los conjuntos de entrenamiento y test (train_images, test_images)?

```
print("La dimension es : " , train_images.shape)
print("La dimension es : " , test_images.shape)
```

```
La dimension es : (60000, 28, 28, 1)
La dimension es : (10000, 28, 28, 1)
```

Pregunta 13: Cuantas imagenes tiene en conjunto de entrenamiento y el conjunto de test, y de que tamanio son las imagenes?

```
# El conjunto de entrenamiento contiene 60,000 imágenes, mientras que el conjunto de prueba contiene 10,000 imágenes.
# Estas imágenes son imágenes en escala de grises de tamaño 28x28 píxeles.
# Entrenando el modelo.
history1=model1.fit(
 train_images,
 to_categorical(train_labels),
 epochs=3,
 validation_data=(test_images, to_categorical(test_labels)),
  Epoch 1/3
         1875/1875 [
  Epoch 2/3
  Epoch 3/3
  1875/1875 [
```

import pandas as pd
#rescatando el historico del entrenamiento
history_frame = pd.DataFrame(history1.history)
history_frame

	loss	accuracy	val_loss	val_accuracy	1
0	0.336816	0.903717	0.202248	0.9407	
1	0.160295	0.954400	0.130065	0.9626	
2	0.120993	0.965283	0.112030	0.9657	

#mostrando el historico de loss de entrenamiento vs validación history_frame.loc[:, ['loss','val_loss']].plot()

#mostrando el historico de accuracy de entrenamiento vs validación history_frame.loc[:, ['accuracy','val_accuracy']].plot()

Pregunta 13: Por qué usamos el método tf.expand_dims antes de hacer la predicción en las siguientes lineas de código?

```
# Predicción usando imagenes de test
# indice de la imagem
indice=0
imagen_test = tf.expand_dims(test_images[indice], axis=0)
prediction = model1.predict(imagen test)
# Resultado de prediccion
print("Probabilidades")
print(prediction)
print("Mayor probabilidad")
print(np.argmax(prediction, axis=1))
# Etiqueta real de la imagen
print("Etiqueta real")
print(test_labels[indice])
     1/1 [=======] - 0s 42ms/step
     Probabilidades
     [[2.8309469e-06 2.4879991e-08 4.2914676e-06 6.2373321e-05 5.7485551e-07
       6.3787546e-08 1.5336048e-11 9.9992669e-01 5.0351076e-08 3.0276019e-06]]
     Mayor probabilidad
     [7]
     Etiqueta real
# tf.expand_dims() se utiliza antes de hacer la predicción en las siguientes líneas de código con el fin de ajustar
# la forma de la imagen de prueba (imagen_test) para que coincida con la forma de entrada requerida por el modelo.
# Al utilizar tf.expand_dims(), se agrega una dimensión adicional al tensor de la imagen de prueba en la posición especificada
# por el argumento axis. En este caso, axis=0 indica que se agrega una dimensión al principio del tensor, convirtiéndolo en un
# tensor de forma (1, height, width, channels), lo que corresponde a un tamaño de lote (batch) de 1.
```

Pregunta 14: por que no usamos el método tf.expand_dims antes de hacer la prediccines de en la siguiente linea de código?

→ Pregunta 15: Cuál es la función del método argmax en la siguiente linea de código?

se obtiene un arreglo de índices que representa las etiquetas predichas para cada imagen de prueba. Estos índices se utilizan # posteriormente en la construcción de la matriz de confusión

```
predicted_labels=np.argmax(predictions_probabilities, axis=1)

# mostrando matriz de confusion de los resultados de la predicción vs las etiquetas reales o verdaderas from sklearn import metrics

disp = metrics.ConfusionMatrixDisplay.from_predictions(test_labels, predicted_labels)
disp.figure_.suptitle("Matriz de Confusion")
plt.show()
```


Pregunta 16: Cuál es el efecto de agregar una capa convolucional a la red previamente creada?

```
num_filters = 8
filter size = 3
pool\_size = 2
# Construyendo el modelo.
model2 = Sequential([
 Conv2D(num_filters, filter_size, input_shape=(28, 28, 1)),
 Conv2D(num_filters, filter_size),
 MaxPooling2D(pool_size=pool_size),
 Flatten(),
 Dense(10, activation='softmax'),
# Configurando el model.
model2.compile(
 'adam',
 loss='categorical_crossentropy',
 metrics=['accuracy'],
# Entrenando el modelo.
history2=model2.fit(
 train_images,
 to_categorical(train_labels),
 epochs=3,
 validation_data=(test_images, to_categorical(test_labels)),
   Epoch 1/3
   1875/1875 [
          Fnoch 2/3
         1875/1875
   Epoch 3/3
   1875/1875 [=
```

#predicción
predictions_probabilities2 = model2.predict(test_images)
predicted_labels2=np.argmax(predictions_probabilities2, axis=1)
mostrando matriz de confusion de los resultados de la predicción vs las etiquetas reales o verdaderas
disp = metrics.ConfusionMatrixDisplay.from_predictions(test_labels, predicted_labels2)
disp.figure_.suptitle("Matriz de Confusion")
plt.show()

313/313 [============] - 3s 8ms/step

Matriz de Confusion

La adición de una capa convolucional adicional permite que la red aprenda representaciones más complejas y sofisticadas # de las características presentes en las imágenes de entrada. Esto puede resultar en una mayor capacidad de discriminación y # en la capacidad de capturar patrones más finos y detalles relevantes en los datos.

✓ 0 s completado a las 13:30