Automated Black-Box Verification of Networking Systems

Stefan Zetzsche University College London

Project

Automated Black-Box Verification of Networking Systems

Introduction

Can host A send packets to host B?

Do all packets from A to C pass B?

Is there a loop involving A?

White box vs. Black box

White box vs. Black box

Black box learning

L*: Example

- ▶ Actions $A = \{a\}$
- ▶ Behaviour $\mathcal{L} = \{ w \in A^* \mid |w| \neq 1 \} = 1 + a \cdot a \cdot a^*$

$$\mathsf{L}_{\mathcal{T}}^{\star}$$

$X \to FTX$

Deterministic Automata	Non-deterministic Automata
$FX = X^A \times 2$	$FX = X^A \times \mathcal{P}(1)$
TX = X	$TX = \mathcal{P}(X)$
Partial Automata	Weighted Automata
$FX = X^A \times (1+1)$	$FX = X^A imes \mathbb{S}^1$
TX = 1 + X	$TX = \mathbb{S}^X$
Writer Automata	NetKAT Automata
$\mathit{FX} = \mathit{X}^{A} imes (1 imes \mathbb{M})$	$FX = X^{Pk} \times (2^{Pk})^{Pk}$
$TX = X \times M$	$TX = X^{Pk}$

NetKAT

 $\label{eq:NetKAT} \begin{aligned} \text{NetKAT} &= \\ \text{Kleene Algebra with Tests (KAT)} &+ \\ \text{Expressions for the modification and} \\ & \text{filtering of packets} \end{aligned}$

NetKAT

$$sw = A$$
; $pt = 1$; $pt \leftarrow 2 + sw = B$; drop

"Let switch A only forward packets from port 1 to port 2, and let switch B drop all packets"

$$sw = A$$
; $pt = 1$; $sw \leftarrow B$; $pt \leftarrow 2$
 $+sw = B$; $pt = 2$; $sw \leftarrow A$; $pt \leftarrow 1$

"There exists a bidirectional link between the port 1 of switch A and the port 2 of switch B"

NetKAT automata

NetKAT automata read packets:

```
(sw=A; pt=80; dst=10.0.2.1; proto=http; ...),

(sw=B; pt=22; dst=10.0.0.2; proto=ssh; ...),

(sw=X; pt=25; dst=10.0.0.1; proto=smtp; ...),

(sw=D; pt=20; dst=10.0.3.1; proto=ftp; ...),

(sw=E; pt=443; dst=10.0.7.1; proto=https; ...),

...
```

NetKAT automata accept packet traces:

$$h = p_1 :: p_2 :: ... :: p_n :: []$$

Symbolic NetKAT automata

$$X \to (X^{Pk})^{Pk} \times (2^{Pk})^{Pk}$$

Learnable?