This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

AUTOMATIC REGULATING CIRCUIT FOR OFFSET

Patent Number:

JP5026909

Publication date:

1993-02-05

Inventor(s):

NOMA MOTONOBU

Applicant(s):

MITSUBISHI ELECTRIC CORP

Requested Patent:

☐ JP5026909

Application Number: JP19910186144 19910725

Priority Number(s):

IPC Classification:

G01R19/00; H03M1/10

EC Classification:

Equivalents:

Abstract

PURPOSE:To regulate automatically the offset of an A/D conversion circuit. CONSTITUTION: A sampling circuit 6 for sampling an input signal, a low-pass filter 7 for removing a sampling frequency component contained in the sampled input signal and an A/D conversion circuit 3 subjecting an output of the low-pass filter 7 to A/D conversion are provided. A construction is so made that an offset error is determined by integrating a digital signal obtained from the A/D conversion for one period and by dividing it at a sampling rate for one period and that the input signal is corrected on the basis of the offset error obtained.

Data supplied from the esp@cenet database - 12

(19)日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-26909

(43)公開日 平成5年(1993)2月5日

(51)Int.Cl.5

識別配号

庁内整理番号

FI

技術表示箇所

G 0 1 R 19/00

N 9016-2G

H 0 3 M 1/10

A 9065-5 J

審査請求 未請求 請求項の数1(全 4 頁)

(21)出願番号

(22)出願日

特願平3-186144

平成3年(1991)7月25日

(71)出願人 000006013

三菱電機株式会社

東京都千代田区丸の内二丁目 2番 3号

(72)発明者 野間 元暢

丸亀市蓬萊町8番地 三菱電機株式会社丸

龟製作所内

(74)代理人 弁理士 高田 守 (外1名)

(54)【発明の名称】 オフセツト自動調整回路

(57)【要約】

【目的】 A/D変換回路のオフセットを自動的に調整 する。

【構成】 入力信号をサンプリングするサンプリング回 路、サンプリングされた入力信号に含まれるサンプリン グ周波数成分を除去するローパスフィルタ、ローパスフ ィルタの出力をA/D変換するA/D変換回路を備え、 A/D変換されたデジタル信号の1周期分を積分しかつ 1周期のサンプリングレートで割算することによりオフ セット誤差を求め、得られたオフセット誤差に基づいて 入力信号を補正するように構成している。

【特許請求の範囲】

【請求項1】 入力信号を処理するべき回路システムの オフセットを自動調整する回路システムにおいて、 入力端子に与えられる較正用の正弦波信号を1周期につ

1

いてn回のサンプリングレートでサンプリングするサン

プリング回路、

サンプリング回路の出力信号が入力され同出力信号に含 まれるサンプリング周波数成分を除去するローパスフィ ルタ、

サンプリング回路の出力端からローパスフィルタを通し 10 て与えられた信号をA/D変換するA/D変換回路、及 びA/D変換されたデジタル信号が入力され、1周期分 のn個のデジタル信号の値を積分し、その積分値をnで 割ることによりオフセットによる誤差を求めるととも に、前記誤差をその極性にしたがって前記の入力信号に 加え又は滅じて入力信号の値を補償する中央処理装置、 を有するオフセット自動調整回路

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明はA/D変換回路等にお 20 けるオフセットを自動的に調整するオフセット自動調整 回路に関する。

[0002]

【従来の技術】図5は従来のA/D変換回路におけるオ フセット調整手段を示すブロック図である。図におい て、アナログ入力IAはオペレーショナルアンプ1によっ て増幅されA/D変換回路3に入力される。A/D変換 されたデジタル信号は中央演算装置5に入力され所定の 演算を行なうようになされている。

【0003】上記の回路においては、オペレーショナル 30 アンプ1とA/D変換回路3においてオフセット誤差が 生じるおそれがある。したがってそれぞれに可変抵抗2 及び4を設けてオフセット調整を行なうようになされて いる。

[0004]

[発明が解決しようとする課題] 従来のオフセット調整 回路では可変抵抗2及び4を人手により調整する必要が ありその作業は繁雑である。また一度調整しても経時変 化で誤差が生じる場合がある。

[0005]

【課題を解決するための手段】この発明のオフセット自 動調整回路は、正弦波の入力信号を1周期についてn回 のサンプリングレートでサンプリング回路によりサンプ リングし、サンプリングされた入力信号に含まれるサン プリング周波数成分をローパスフィルタにより除去し、 サンプリングされた入力信号をA/D変換回路によりA /D変換し、A/D変換されたデジタル信号の1周期分 のn個のデジタル信号の値を積分し、その積分値をnで 割ることによりオフセットによる誤差を求めるととも に、前記誤差を用いて入力信号の値を中央処理装置で補 50

償するように構成している。

[0006]

【作用】 1 周期の正弦波の入力信号を積分した結果の出 力が零でないときはオフセット誤差が生じているのであ り、その値を中央処理装置の入力値から減算又は入力値 に加算することによりオフセット誤差が補正される。

9

[0007]

【実施例】図1はこの発明のA/D変換回路のプロック ダイヤグラムを示す。図において、正弦波の入力信号IA (図3にその波形を示す)はオペレーションアンプ1で 増幅されてサンプリング回路6に入力される。サンプリ ング回路6においては、1周期にn回のサンプリングレ ートでサンプリングされる。サンプリングされた信号GA の波形は図4に示すように正負の電圧のパルス列からな る。サンプリングされた信号6Aはローパスフィルタ? (図1においてはLPFと略記する) によって高周波数成

分が除去され、A/D変換回路3に入力される。 [0008] A/D変換回路3においては、図4に示す パルス信号がA/D変換され、デジタル値として中央処 理装置5に入力される。図2は中央処理装置の動作を示 すフローチャートである。中央処理装置5においては、 ステップ5Aにおいて信号値が入力されると、正弦波の較 正用信号の1周期分のサンプル数であるn個のパルス信 号のディジタル値(符号を含む)を積分する(ステップ 5B,5C)。次に積分された値を1周期のサンプル数nで 割算する (ステップ5D) 。その結果得られる値がオフセ ット誤差の値を表わしている(ステップ5E)。得られた オフセット誤差に基づいて、中央処理装置5において入 力信号を補正する(ステップ5F)。

【0009】中央処理装置5においては、入力信号の値 に対して上記のオフセット誤差をその誤差の極性にした がって加算又は減算して補償を行ない、オペレーショナ ルアンプ1とA/D変換回路3のオフセット誤差を実質 的に零にすることができる。図2に示すオフセット誤差 の演算及び調整は自動的にかつ定期的 (例えば1分毎 に) に行なわれるのが好ましい。

[0010]

【発明の効果】この発明によればオペレーショナルアン プ1及びA/D変換回路3にオフセット誤差があって 40 も、その誤差は中央処理装置5において補償されるので 人手によるオフセットの調節は不要である。又オフセッ ト誤差の調整を定期的に行なうことによりA/D変換回 路3のオフセット誤差が経時変化する場合でも常に適正 に補償される。

【図面の簡単な説明】

【図1】この発明の実施例ブロックダイヤグラム。

【図2】この実施例の動作を示すフローチャート。

【図3】入力信号の波形図。

【図4】サンプリングされた入力信号の波形図。

【図 5】従来のA/D変換回路のブロックダイヤグラ

o Ç

3

۵.

【符号の説明】

IA 入力信号

3 A/D変換回路

5 中央処理装置

6 サンプリング回路

7 ローパスフィルタ

【図2】

