On Logic Embeddings and Gödel's God

Christoph Benzmüller¹

(jww Bruno Woltzenlogel Paleo)

5th of September 2014

WADT 2014

This talk: two related topics

Embeddings of expressive logics in classical higher-order logic (HOL) (own research since about 2008)

Application in Philosophy: study of Gödel's ontological argument (jww with Bruno since 2013)

This talk: outline

Gödel's ontological argument — Introduction

Embeddings of expressive logics in HOL / Automation

Gödel's ontological argument — Results

Vision of Leibniz (1646-1716): Calculemus!

If controversies were to arise, there would be no more need of disputation between two philosophers than between two accountants. For it would suffice to take their pencils in their hands, to sit down to their slates, and to say to each other ...: Let us calculate.

(Translation by Russell)

Quo facto, quando orientur controversiae, non magis disputatione opus erit inter duos philosophos, quam inter duos Computistas. Sufficiet enim calamos in manus sumere sedereque ad abacos, et sibi mutuo ... dicere: calculemus. (Leibniz, 1684)

Required: characteristica universalis and calculus ratiocinator

Our Contribution: Towards a Computational Metaphysics

Ontological argument for the existence of God

We focused on Gödel's modern version in higher-order modal logic

Automation with provers for higher-order classical logic (HOL)

- confirmation of known results
- detection of some novel results
- systematic variation of the logic settings
- exploited HOL as a universal metalogic via logic embeddings (characteristica universalis?)

A Long History

pros and cons

Anselm's notion of God (Proslogion, 1078):

"God is that, than which nothing greater can be conceived."

Gödel's notion of God:

"A God-like being possesses all 'positive' properties."

To show by logical reasoning

"God exists."

 $\exists x G(x)$

Anselm's notion of God (Proslogion, 1078):

"God is that, than which nothing greater can be conceived."

Gödel's notion of God:

"A God-like being possesses all 'positive' properties."

To show by logical reasoning:

"God exists."

 $\exists x G(x)$

A Long History

Anselm's notion of God (Proslogion, 1078):

"God is that, than which nothing greater can be conceived."

Gödel's notion of God:

"A God-like being possesses all 'positive' properties."

To show by logical reasoning:

"Necessarily God exists."

 $\Box \exists x G(x)$

Different Interests in Ontological Arguments:

- Philosophical: Boundaries of Metaphysics & Epistemology
 - We specify a metaphysical concept (God),
 - but we want to draw a conclusion for the real world.
- Theistic: Successful argument could convince atheists?
- Ours: Can computers (theorem provers) be used . . .
 - ...to formalize the definitions, axioms and theorems?
 - ...to verify the arguments step-by-step?
 - ...to fully automate (sub-)arguments?

The Ontological Proof Today

Gödel's Manuscript: 1930's, 1941, 1946-1955, 1970

	Ontologischer Berreis	Feb 10, 1970
P(p)	19 is positive 12	9 EP.)
At. 1.	P(9) P(4) 5 P(9,4) Az	Pant Pan
11	(4) / P(4) > O(X)]	-3-40 KB . ()
12	7 mon = (4) [4 (x) 3 N(y) [9(3) 3	Y(3)] (Enwordy
P >N9	(1, 3)	y
At 2		
#7		cause it follows the nature of the surposty
T7.		
DP.	[(x) = (p)[qEnxoN]x q(x)]	merchany Eristen
Ax3	P(E)	
Th.	e(x) > N(3) e(d)	
h	(3x) e(x) > N(33) e(3)	
	" > N(39) e(3) M(3x) e(4) > MN(39) e(4)	M= pontating
any to	o enerces of x are ner equivalent	
exclusive	or and for any mumber of sun	nmanih

```
M (3x) F(x) means all pos prope is com-
   patible This is the because of:
    A+4: P(4). 92, 4: > P(4) which imple
     the X=X is possitive in regarive
    Dut if a yetem 5 of por. projo, veic incom
      It would mean, that the Aum prop. A (which
     uporitive) would be x + x
    Positive means positive in the moral acide
  sense (in depanily of the accidental stynether of
  The avoild ). Only then the at time.
  also mean! "attenduction at as opposed to privation
  (or contain y per vation) - This interpret for pla proof
   of a hundred (X) NABOX) CHENTY (X) 3 x+
      honce x + x positive por XEX of Techniq Ar-
X i.e. the formal forms in terms if eller plays " contains "
Member without negation.
```

Axiom A1 Either a property or its negation is positive, but not both: $\forall \phi [P(\neg \phi) \leftrightarrow \neg P(\phi)]$

Axiom A2 A property necessarily implied by a positive property is positive:

$$\forall \phi \forall \psi [(P(\phi) \land \Box \forall x [\phi(x) \to \psi(x)]) \to P(\psi)]$$

Thm. T1 Positive properties are possibly exemplified: $\forall \phi [P(\phi) \rightarrow \Diamond \exists x \phi(x)]$

Def. D1 A *God-like* being possesses all positive properties: $G(x) \leftrightarrow \forall \phi [P(\phi) \rightarrow \phi(x)]$

Axiom A3 The property of being God-like is positive: P(G)

Cor. C Possibly, God exists: $\Diamond \exists x G(x)$

Axiom A4 Positive properties are necessarily positive: $\forall \phi[P(\phi) \rightarrow \Box P(\phi)]$ Def. D2 An *essence* of an individual is a property possessed by it and necessarily

implying any of its properties: ϕ ess $x \leftrightarrow \phi(x) \land \forall \psi(\psi(x) \rightarrow \Box \forall y(\phi(y) \rightarrow \psi(y)))$

Thm. T2 Being God-like is an essence of any God-like being: $\forall x[G(x) \rightarrow G \ ess \ x]$

Def. D3 Necessary existence of an individual is the necessary exemplification of all its essences: $E(x) \leftrightarrow \forall \phi [\phi \ ess \ x \rightarrow \Box \exists y \phi(y)]$

Axiom A5 Necessary existence is a positive property: P(E)

Thm. T3 Necessarily, God exists: $\Box \exists x G(x)$

Axiom A1 Either a property or its negation is positive, but not both: $\forall \phi [P(\neg \phi) \leftrightarrow \neg P(\phi)]$

Axiom A2 A property necessarily implied by a positive property is positive:

$$\forall \phi \forall \psi [(P(\phi) \land \Box \forall x [\phi(x) \to \psi(x)]) \to P(\psi)]$$

Thm. T1 Positive properties are possibly exemplified: $\forall \phi [P(\phi) \rightarrow \Diamond \exists x \phi(x)]$

Def. D1 A *God-like* being possesses all positive properties: $G(x) \leftrightarrow \forall \phi [P(\phi) \to \phi(x)]$

Axiom A3 The property of being God-like is positive:

Cor. C Possibly, God exists: $\Diamond \exists x G(x)$

Axiom A4 Positive properties are necessarily positive: $\forall \phi [P(\phi) \rightarrow \Box P(\phi)]$ Def. D2 An essence of an individual is a property possessed by it and necessarily

implying any of its properties: $\phi \ ess \ x \leftrightarrow \phi(x) \land \forall \psi(\psi(x) \rightarrow \Box \forall \psi(\phi(y) \rightarrow \psi(y)))$

Thm. T2 Being God-like is an essence of any God-like being: $\forall x[G(x) \rightarrow G \ ess \ x]$

Def. D3 Necessary existence of an individual is the necessary exemplification of all its $E(x) \leftrightarrow \forall \phi [\phi \ ess \ x \rightarrow \Box \exists y \phi(y)]$ essences:

Axiom A5 Necessary existence is a positive property P(E)

Thm. T3 Necessarily, God exists: $\Box \exists x G(x)$

Difference to Gödel (who omits this conjunct)

P(G)

- Axiom A1 Either a property or its negation is positive, but not both: $\forall \phi [P(\neg \phi) \leftrightarrow \neg P(\phi)]$
- Axiom A2 A property necessarily implied by a positive property is positive:

$$\forall \phi \forall \psi [(P(\phi) \land \Box \forall x [\phi(x) \to \psi(x)]) \to P(\psi)]$$

 $\forall \phi [P(\phi) \rightarrow \Diamond \exists x \phi(x)]$

 $\forall \phi [P(\phi) \rightarrow \Box P(\phi)]$

- Thm. T1 Positive properties are possibly exemplified:
- Def. D1 A *God-like* being possesses all positive properties: $G(x) \leftrightarrow \forall \phi [P(\phi) \to \phi(x)]$
- Axiom A3 The property of being God-like is positive:
 - Cor. C Possibly, God exists: 1xG(x)
- Axiom A4 Positive properties are necessarily positive:
 - Def. D2 An essence of an individual is a property possessed by it and necessarily implying any of its properties: $\phi \ ess \ x \leftrightarrow \phi(k) \land \forall \psi(\psi(x) \rightarrow \Box \forall y(\phi(y) \rightarrow \psi(y)))$
 - Thm. T2 Being God-like is an essence of any God-like being:
 - $\forall x[G(x) \to G \ ess \ x]$ Def. D3 Necessary existence of an individual is the necessary exemplification of all its $E(x) \leftrightarrow \forall \phi [\phi \ ess \ x \to \Box \exists y \phi(y)]$ essences:
- Axiom A5 Necessary existence is a positive property
 - P(E) $\Box \exists x G(x)$
 - Thm. T3 Necessarily, God exists:

P(G)

Modal operators are used

4 D > 4 D > 4 D > 4 D > -

Axiom A1 Either a property or its negation is positive, but not both: $\forall \phi[P(\neg \phi) \leftrightarrow \neg P(\phi)]$

Axiom A2 A property necessarily implied by a positive property is positive:

$$\forall \phi \forall \psi | (P(\phi) \land \Box \forall x [\phi(x) \to \psi(x)]) \to P(\psi)]$$

Thm. T1 Positive properties are possibly exemplified:

$$\forall \phi [P(\phi) \to \Diamond \exists x \phi(x)]$$

Def. D1 A *God-like* being possesses all positive properties:

$$G(x) \leftrightarrow \forall \phi [P(\phi) \to \phi(x)]$$

Axiom A3 The property of being God-like is positive:

$$\Diamond \exists x G(x)$$

P(G)

Cor. C Possibly, God exists:

xiom A4 Positive properties are necessarily positive:
$$\forall \phi[P(\phi) \rightarrow \Box P(\phi)]$$

Def. D2 An essence of an individual is a property possessed by it and necessarily

implying any of its properties:

$$\phi \text{ ets } x \leftrightarrow \phi(x) \land \forall \psi(\phi(x) \rightarrow \Box \forall y(\phi(y) \rightarrow \psi(y)))$$

Thm. T2 Being God-like is an essence of any God-like being:

$$\forall x [G(x) \to G \ ess \ x]$$

Def. D3 Necessary existence of an individual is the necessary exemplification of all its essences:

$$E(x) \leftrightarrow \forall \phi [\phi \ ess \ x \to \Box \exists y \phi(y)]$$

Axiom A5 Necessary existence is a positive property:

Thm. T3 Necessarily, God exists:

$$\Box \exists x G(x)$$

second-order quantifiers

Proof Overview

D1:
$$G(x) \equiv \forall \varphi.[P(\varphi) \rightarrow \varphi(x)]$$

D2: $\varphi \ ess \ x \equiv \varphi(x) \land \forall \psi.(\psi(x) \rightarrow \Box \forall x.(\varphi(x) \rightarrow \psi(x)))$
D3: $NE(x) \equiv \forall \varphi.[\varphi \ ess \ x \rightarrow \Box \exists y.\varphi(y)]$

$$\begin{array}{c} \mathbf{A2} \\ \mathbf{PG} \\ \hline \\ PG \\ \hline \\ PG \\ \hline \\ \hline \\ PG \\ \hline \\ \hline \\ PG \\ \hline \\ \hline \\ \mathbf{PG} \\ \\ \mathbf{PG}$$

T3: $\Box \exists x.G(x)$

How to automate Higher-Order Modal Logic?

Challenge: No provers for Higher-order Modal Logic (HOML)

Our solution: **Embedding in Higher-order Classical Logic (HOL)**Then use existing HOL theorem provers for reasoning in HOML
[BenzmüllerPaulson, Logica Universalis, 2013]

Previous empirical findings:

Embedding of First-order Modal Logic in HOL works well

[BenzmüllerOttenRaths, ECAI, 2012]

[Benzmüller, LPAR, 2013]

Simple Types

$$\alpha ::= o \mid \iota \mid \mu \mid \alpha_1 \rightarrow \alpha_2$$

HOL
$$s,t ::= C_{\alpha} \mid x_{\alpha} \mid (\lambda x_{\alpha} s_{\beta})_{\alpha \to \beta} \mid (s_{\alpha \to \beta} t_{\alpha})_{\beta} \mid$$

$$(\neg_{o \to o} s_{o})_{o} \mid (s_{o} \lor_{o \to o \to o} t_{o})_{o} \mid (\forall_{(\alpha \to o) \to o} s_{\alpha \to o})_{o}$$

(note: binder notation $\forall x_{\alpha}t_{o}$ as syntactic sugar for $\forall_{(\alpha \to o) \to o} \lambda x_{\alpha}t_{o}$)

HOL with Henkin semantics is (meanwhile) well understood

Origin [Church,JSymbLog,1940]

Henkin semantics [Henkin, JSymb.Log, 1950]

[Andrews, JSymbLog,1971,1972]

Extens./Intens. [BenzmüllerEtAl,JSymbLog,2004

[Muskens,JSymbLog,2007]

Sound and complete provers do exists

interactive: Isabelle/HOL, HOL4, Hol Light, Coq/HOL, PVS, ...

$$\alpha ::= o \mid \iota \mid \mu \mid \alpha_1 \rightarrow \alpha_2$$

HOL
$$s,t ::= C_{\alpha} \mid x_{\alpha} \mid (\lambda x_{\alpha} s_{\beta})_{\alpha \to \beta} \mid (s_{\alpha \to \beta} t_{\alpha})_{\beta} \mid$$

$$(\neg_{o \to o} s_{o})_{o} \mid (s_{o} \lor_{o \to o \to o} t_{o})_{o} \mid (\forall_{(\alpha \to o) \to o} s_{\alpha \to o})_{o}$$

(note: binder notation $\forall x_{\alpha}t_{o}$ as syntactic sugar for $\forall_{(\alpha \to o) \to o} \lambda x_{\alpha}t_{o}$)

HOL with Henkin semantics is (meanwhile) well understood

Origin [Church, JSymbLog, 1940]

Henkin semantics [Henkin, JSymb.Log, 1950]

Andrews, JSymbLog,1971,1972

Extens./Intens. [BenzmüllerEtAl,JSymbLog,2004

[Muskens,JSymbLog,2007]

Sound and complete provers do exists

interactive: Isabelle/HOL, HOL4, Hol Light, Coq/HOL, PVS, ...

Simple Types

$$\alpha ::= o \mid \iota \mid \mu \mid \alpha_1 \rightarrow \alpha_2$$

$$s, t ::= C_{\alpha} \mid x_{\alpha} \mid (\lambda x_{\alpha} s_{\beta})_{\alpha \to \beta} \mid (s_{\alpha \to \beta} t_{\alpha})_{\beta} \mid (\neg_{o \to o} s_{o})_{o} \mid (s_{o} \lor_{o \to o \to o} t_{o})_{o} \mid (\forall_{(\alpha \to o) \to o} s_{\alpha \to o})_{o}$$

(note: binder notation $\forall x_{\alpha}t_{o}$ as syntactic sugar for $\forall_{(\alpha \to o) \to o}\lambda x_{\alpha}t_{o}$)

HOL with Henkin semantics is (meanwhile) well understood

Origin [Church,JSymbLog,1940]

Henkin semantics [Henkin, JSymb.Log, 1950]

[Andrews, JSymbLog,1971,1972]

Extens./Intens. [BenzmüllerEtAl,JSymbLog,2004]

[Muskens,JSymbLog,2007]

Sound and complete provers do exists

interactive: Isabelle/HOL, HOL4, Hol Light, Coq/HOL, PVS, ...

Simple Types

$$\alpha ::= o \mid \iota \mid \mu \mid \alpha_1 \rightarrow \alpha_2$$

HOL
$$s, t := C_{\alpha} | x_{\alpha} | (\lambda x_{\alpha} s_{\beta})_{\alpha \to \beta} | (s_{\alpha \to \beta} t_{\alpha})_{\beta} |$$

 $(\neg_{\alpha \to \alpha} s_{\alpha})_{\alpha} | (s_{\alpha} \lor_{\alpha \to \alpha \to \alpha} t_{\alpha})_{\alpha} | (\forall_{(\alpha \to \alpha) \to \alpha} s_{\alpha \to \alpha})_{\alpha}$

(note: binder notation $\forall x_{\alpha}t_{o}$ as syntactic sugar for $\forall_{(\alpha \to o) \to o} \lambda x_{\alpha}t_{o}$)

HOL with Henkin semantics is (meanwhile) well understood

Origin [Church,JSymbLog,1940]

Henkin semantics [Henkin, JSymb.Log, 1950]

[Andrews, JSymbLog,1971,1972]

Extens./Intens. [BenzmüllerEtAl,JSymbLog,2004]

[Muskens,JSymbLog,2007]

Sound and complete provers do exists

interactive: Isabelle/HOL, HOL4, Hol Light, Coq/HOL, PVS, ...

HOML
$$\varphi, \psi ::= \ldots | \neg \varphi | \varphi \land \psi | \varphi \rightarrow \psi | \Box \varphi | \diamond \varphi | \forall x_{\gamma} \varphi | \exists x_{\gamma} \varphi$$

Kripke style semantics (possible world semantics)

$$\begin{array}{ll} M,g,s \vDash \neg \varphi & \text{iff} & \text{not } M,g,s \vDash \varphi \\ M,g,s \vDash \varphi \land \psi & \text{iff} & M,g,s \vDash \varphi \text{ and } M,g,s \vDash \psi \\ \dots & \\ M,g,s \vDash \Box \varphi & \text{iff} & M,g,u \vDash \varphi \text{ for all } u \text{ with } \textbf{\textit{r}}(s,u) \\ \dots & \\ M,g,s \vDash \forall x_{\gamma} \varphi & \text{iff} & M,[d/x]g,s \vDash \varphi \text{ for all } d \in D_{\gamma} \\ \dots & \\ \end{array}$$

[BenzmüllerWoltzenlogelPaleo, ECAI, 2014] [Muskens, HandbookOfModalLogic, 2006]

HOML
$$\varphi, \psi ::= \ldots | \neg \varphi | \varphi \land \psi | \varphi \rightarrow \psi | \Box \varphi | \diamond \varphi | \forall x_{\gamma} \varphi | \exists x_{\gamma} \varphi$$
HOL $s, t ::= C | x | \lambda x_{S} | st | \neg s | s \lor t | \forall x t$

HOML in HOL: HOML formulas arphi are mapped to HOL predicates $arphi_{\mu o o}$

$$\begin{array}{lll} & = & \lambda \varphi_{\mu \to o} \lambda w_{\mu} \neg \varphi w \\ & \wedge & = & \lambda \varphi_{\mu \to o} \lambda \psi_{\mu \to o} \lambda w_{\mu} (\varphi w \wedge \psi w) \\ & \to & = & \lambda \varphi_{\mu \to o} \lambda \psi_{\mu \to o} \lambda w_{\mu} (\neg \varphi w \vee \psi w) \\ \forall & = & \lambda h_{\gamma \to (\mu \to o)} \lambda w_{\mu} \forall d_{\gamma} \ h dw \\ & \exists & = & \lambda h_{\gamma \to (\mu \to o)} \lambda w_{\mu} \exists d_{\gamma} \ h dw \\ & \exists & = & \lambda \varphi_{\mu \to o} \lambda w_{\mu} \forall u_{\mu} (\neg rwu \vee \varphi u) \\ & \diamondsuit & = & \lambda \varphi_{\mu \to o} \lambda w_{\mu} \exists u_{\mu} (rwu \wedge \varphi u) \\ & & \forall \text{valid} & = & \lambda \varphi_{\mu \to o} \forall w_{\mu} \cdot \varphi w \end{array}$$

The equations in Ax are given as axioms to the HOL provers!

HOML
$$\varphi, \psi ::= \ldots |\neg \varphi| \varphi \land \psi | \varphi \rightarrow \psi | \Box \varphi | \diamond \varphi | \forall x_{\gamma} \varphi | \exists x_{\gamma} \varphi$$
HOL $s, t ::= C |x| \lambda xs |st| \neg s |s \lor t| \forall x t$

HOML in HOL: HOML formulas φ are mapped to HOL predicates $\varphi_{\mu\to o}$

Ax (polymorphic over y)

HOML
$$\varphi, \psi ::= \ldots | \neg \varphi | \varphi \land \psi | \varphi \rightarrow \psi | \Box \varphi | \diamond \varphi | \forall x_{\gamma} \varphi | \exists x_{\gamma} \varphi$$
HOL $s, t ::= C | x | \lambda xs | st | \neg s | s \lor t | \forall x t$

HOML in HOL: HOML formulas φ are mapped to HOL predicates $\varphi_{\mu\to o}$

Ax (polymorphic over y)

The equations in Ax are given as axioms to the HOL provers!

HOML
$$\varphi, \psi ::= \ldots | \neg \varphi | \varphi \wedge \psi | \varphi \rightarrow \psi | \Box \varphi | \diamond \varphi | \forall x_{\gamma} \varphi | \exists x_{\gamma} \varphi$$
HOL $s, t ::= C | x | \lambda xs | st | \neg s | s \lor t | \forall x t$

HOML in HOL: HOML formulas φ are mapped to HOL predicates $\varphi_{\mu \to o}$

$$\begin{array}{lll} \neg & & = & \lambda \varphi_{\mu \to o} \lambda w_{\mu} \neg \varphi w \\ \wedge & & = & \lambda \varphi_{\mu \to o} \lambda \psi_{\mu \to o} \lambda w_{\mu} (\varphi w \wedge \psi w) \\ \rightarrow & & = & \lambda \varphi_{\mu \to o} \lambda \psi_{\mu \to o} \lambda w_{\mu} (\neg \varphi w \vee \psi w) \\ \forall & & = & \lambda h_{\gamma \to (\mu \to o)} \lambda w_{\mu} \forall d_{\gamma} h dw \\ \exists & & = & \lambda h_{\gamma \to (\mu \to o)} \lambda w_{\mu} \exists d_{\gamma} h dw \\ \forall \varphi_{\mu \to o} \forall w_{\mu} [\ (\Box \varphi) w & \equiv & \forall u_{\mu} (\neg rwu \vee \varphi u) \] \\ \diamond & & = & \lambda \varphi_{\mu \to o} \lambda w_{\mu} \exists u_{\mu} (rwu \wedge \varphi u) \\ \text{valid} & & = & \lambda \varphi_{\mu \to o} \forall w_{\mu^{\bullet}} \varphi w \\ \end{array}$$

The equations in Ax are given as axioms to the HOL provers!

Example

HOML formula

HOML formula in HOL expansion, $\beta\eta$ -conversion expansion, $\beta\eta$ -conversion expansion, $\beta\eta$ -conversion

$\Diamond \exists x G(x)$

 $\forall w_{\mu}(\Diamond \exists xG(x))_{\mu \to c} \\ \forall w_{\mu}(\Diamond \exists xG(x))_{\mu \to c} \\ u_{\mu}(\neg wu \land (\exists xG(x))_{\mu \to c} u) \\ \forall w_{\mu} \exists u_{\mu}(\neg wu \land \exists xG(xu)) \\ \forall w_{\mu} \exists u_{\mu}(\neg wu \land \exists xG(xu)) \\ \forall w_{\mu} \exists u_{\mu}(\neg wu \land \exists xG(xu)) \\ \forall w_{\mu} \exists u_{\mu}(\neg wu \land \exists xG(xu)) \\ \forall w_{\mu} \exists u_{\mu}(\neg wu \land \exists xG(xu)) \\ \forall w_{\mu} \exists u_{\mu}(\neg wu \land \exists xG(xu)) \\ \forall w_{\mu} \exists u_{\mu}(\neg wu \land \exists xG(xu)) \\ \forall w_{\mu} \exists u_{\mu}(\neg wu \land \exists xG(xu)) \\ \forall w_{\mu} \exists u_{\mu}(\neg wu \land \exists xG(xu)) \\ \forall w_{\mu} \exists u_{\mu}(\neg wu \land \exists xG(xu)) \\ \forall w_{\mu} \exists u_{\mu}(\neg wu \land \exists xG(xu)) \\ \forall w_{\mu} \exists u_{\mu}(\neg wu \land \exists xG(xu)) \\ \forall w_{\mu} \exists u_{\mu}(\neg wu \land \exists xG(xu)) \\ \forall w_{\mu} \exists u_{\mu}(\neg wu \land \exists xG(xu)) \\ \forall w_{\mu} \exists u_{\mu}(\neg wu \land \exists xG(xu)) \\ \forall w_{\mu} \exists u_{\mu}(\neg wu \land \exists xG(xu)) \\ \forall w_{\mu} \exists u_{\mu}(\neg wu \land \exists xG(xu)) \\ \forall w_{\mu} \exists u_{\mu}(\neg wu \land \exists xG(xu)) \\ \forall w_{\mu} \exists u_{\mu}(\neg wu \land \exists xG(xu)) \\ \forall w_{\mu} \exists u_{\mu}(\neg wu \land \exists xG(xu)) \\ \forall w_{\mu} \exists u_{\mu}(\neg wu \land \exists xG(xu)) \\ \forall w_{\mu} \exists xG(xu) \\ \forall x$

Expansion: user or prover may flexibly choose expansion depth

What are we doing?

In order to prove that φ is valid in HOML, —> we instead prove that valid $\varphi_{\mu \to \sigma}$ can be derived from Ax in HOL

This can be done with interactive or automated HOL theorem provers.

Example

HOML formula in HOL

expansion, $\beta\eta$ -conversion expansion, $\beta\eta$ -conversion expansion, $\beta\eta$ -conversion

Expansion: user or prover may flexibly choose expansion depth

What are we doing?

In order to prove that φ is valid in HOML,

–> we instead prove that valid $arphi_{\mu
ightarrow\sigma}$ can be derived from Ax in HOL

This can be done with interactive or automated HOL theorem provers.

Example

```
HOML formula HOML formula in HOL expansion, \beta\eta-conversion expansion, \beta\eta-conversion expansion, \beta\eta-conversion
```

Expansion: user or prover may flexibly choose expansion depth

What are we doing?

In order to prove that φ is valid in HOML, -> we instead prove that valid $\varphi_{\mu o \sigma}$ can be derived from Ax in HOL.

This can be done with interactive or automated HOL theorem provers.

Example

HOML formula HOML formula in HOL expansion, $\beta\eta$ -conversion expansion, $\beta\eta$ -conversion expansion, $\beta\eta$ -conversion

Expansion: user or prover may flexibly choose expansion depth

What are we doing?

In order to prove that φ is valid in HOML, -> we instead prove that valid $\varphi_{\mu \to \sigma}$ can be derived from Ax in HOL.

This can be done with interactive or automated HOL theorem provers.

Example

HOML formula HOML formula in HOL expansion, $\beta\eta$ -conversion expansion, $\beta\eta$ -conversion expansion, $\beta\eta$ -conversion

Expansion: user or prover may flexibly choose expansion depth

What are we doing?

In order to prove that φ is valid in HOML, —> we instead prove that valid $\varphi_{\mu \to o}$ can be derived from Ax in HOL.

This can be done with interactive or automated HOL theorem provers.

Example

```
HOML formula HOML formula in HOL expansion, \beta\eta-conversion expansion, \beta\eta-conversion expansion, \beta\eta-conversion
```

Expansion: user or prover may flexibly choose expansion depth

```
What are we doing?
```

In order to prove that φ is valid in HOML, -> we instead prove that valid $\varphi_{\mu \to o}$ can be derived from Ax in HOL.

This can be done with interactive or automated HOL theorem provers.

Example

```
HOML formula HOML formula in HOL expansion, \beta\eta-conversion expansion, \beta\eta-conversion expansion, \beta\eta-conversion
```

Expansion: user or prover may flexibly choose expansion depth

What are we doing?

In order to prove that φ is valid in HOML, -> we instead prove that valid $\varphi_{\mu \to o}$ can be derived from Ax in HOL.

This can be done with interactive or automated HOL theorem provers.

Example

```
HOML formula HOML formula in HOL expansion, \beta\eta-conversion expansion, \beta\eta-conversion expansion, \beta\eta-conversion
```

Expansion: user or prover may flexibly choose expansion depth

What are we doing?

In order to prove that φ is valid in HOML, -> we instead prove that valid $\varphi_{\mu \to o}$ can be derived from Ax in HOL.

This can be done with interactive or automated HOL theorem provers.

Example

```
HOML formula HOML formula in HOL expansion, \beta\eta-conversion expansion, \beta\eta-conversion expansion, \beta\eta-conversion
```

Expansion: user or prover may flexibly choose expansion depth

What are we doing?

In order to prove that φ is valid in HOML, -> we instead prove that valid $\varphi_{\mu \to o}$ can be derived from Ax in HOL.

This can be done with interactive or automated HOL theorem provers.

Propositional Quantification [Fitting, J.Symb.Log., 2002]

$$M, g, s \models \forall p \varphi$$
 iff $M, [v/p]g, s \models \varphi$ for all $v \in P$

Embedding in HOL

$$\forall \quad = \quad \lambda h_{(\mu \to o) \to (\mu \to o)^{n}} \lambda s_{\mu^{n}} \forall v_{(\mu \to o)} hvs$$

Modal logic axioms valid $\forall \varphi (\Box \varphi \supset \Diamond \varphi)$

Bridge rules
valid ∀\(\phi(\pi_\pi\pi) ⊃ \pi_\chi\pi\)

Semantical Condition $\forall x \exists y (rxy)$

Semantical Condition $\forall x \forall y (rxy \supset sxy)$

We get a wide range of modal logics and combinations for free!

Propositional Quantification [Fitting, J.Symb.Log., 2002]

$$M, g, s \models \forall p \varphi$$
 iff $M, [v/p]g, s \models \varphi$ for all $v \in P$

Embedding in HOL

$$\forall \quad = \quad \lambda h_{(\mu \to o) \to (\mu \to o)^{\bullet}} \lambda s_{\mu^{\bullet}} \forall v_{(\mu \to o)} hvs$$

Modal logic axioms valid $\forall \alpha (\Box \alpha \supset \Diamond \alpha)$

Bridge rules valid $\forall \varphi (\Box_r \varphi \supset \Box_c \varphi)$

Semantical Condition $\forall x \exists y (rxy)$

Semantical Condition $\forall x \forall y (rxy \supset sxy)$

We get a wide range of modal logics and combinations for free!

Propositional Quantification [Fitting, J.Symb.Log., 2002]

$$M, g, s \models \forall p \varphi$$
 iff $M, [v/p]g, s \models \varphi$ for all $v \in P$

Embedding in HOL

$$\forall = \lambda h_{(\mu \to 0) \to (\mu \to 0)} \lambda s_{\mu} \forall v_{(\mu \to 0)} hvs$$

Modal logic axioms

valid $\forall \varphi (\Box \varphi \supset \Diamond \varphi)$

Bridge rules valid $\forall \varphi (\Box_r \varphi \supset \Box_s \varphi)$

Semantical Condition $\forall x \exists y (rxy)$

Semantical Condition $\forall x \forall u (rxu \supset sxu)$

We get a wide range of modal logics and combinations for free!

. . .

$$M, g, s \models \forall p \varphi$$
 iff $M, [v/p]g, s \models \varphi$ for all $v \in P$

Embedding in HOL

$$\forall \quad = \quad \lambda h_{(\mu \to 0) \to (\mu \to 0)^{\bullet}} \lambda s_{\mu \bullet} \forall v_{(\mu \to 0)} hvs$$

Modal logic axioms

valid
$$\forall \varphi (\Box \varphi \supset \Diamond \varphi)$$

Bridge rules

valid
$$\forall \varphi (\Box_r \varphi \supset \Box_s \varphi)$$

Semantical Condition

$\forall x \exists y (rxy)$

Semantical Condition

$$\forall x \forall y (rxy \supset sxy)$$

We get a wide range of modal logics and combinations for free!

Propositional Quantification [Fitting, J.Symb.Log., 2002]

$$M, g, s \models \forall p \varphi$$
 iff $M, [v/p]g, s \models \varphi$ for all $v \in P$

Embedding in HOL

$$\forall \quad = \quad \lambda h_{(u \to o) \to (u \to o)} \lambda s_{u} \forall v_{(u \to o)} hvs$$

Modal logic axioms

valid
$$\forall \varphi (\Box \varphi \supset \Diamond \varphi)$$

Bridge rules

valid
$$\forall \varphi (\Box_r \varphi \supset \Box_s \varphi)$$

Semantical Condition

 $\forall x \exists y (rxy)$

Semantical Condition

 $\forall x \forall y (rxy \supset sxy)$

We get a wide range of modal logics and combinations for free!

Embeddings in HOL — Theoretical Results

Soundness and Completeness

$$\models^L \varphi$$
 iff $\mathsf{Ax} \models^{HOL}_{\mathsf{Henkin}} valid \varphi_{\mu \to o}$

Logic L:

- Higher-order Modal Logics
- First-order Multimodal Logics
- Propositional Multimodal Logics
- Quantified Conditional Logics
- Propositional Conditional Logics
- Intuitionistic Logics
- Access Control Logics
- Logic Combinations

...more is on the way ...

[BenzmüllerWoltezenlogelPaleo, ECAI, 2014] [BenzmüllerPaulson, LogicaUniversalis, 2013]

[BenzmüllerPaulson, Log.J.IGPL, 2010]

[Benzmüller, IJCAI, 2013]

[BenzmüllerEtAl., AMAI, 2012]

[BenzmüllerPaulson, Log.J.IGPL, 2010]

[Benzmüller, IFIP SEC, 2009]

[Benzmüller, AMAI, 2011]

4 D > 4 A > 4 B > 4 B > ...

Embeddings in HOL — Theoretical Results

Soundness and Completeness (and Cut-elimination)

$$\models^{L} \varphi$$
 iff $Ax \models^{HOL}_{Henkin} valid \varphi_{\mu \to o}$ (iff $Ax \vdash^{seq^{HOL}}_{cut-free} valid \varphi_{\mu \to o}$)

Logic L:

- Higher-order Modal Logics
- First-order Multimodal Logics
- Propositional Multimodal Logics
- Quantified Conditional Logics
- Propositional Conditional Logics
- Intuitionistic Logics
- Access Control Logics
- Logic Combinations
- ... more is on the way ...

- [BenzmüllerWoltezenlogelPaleo, ECAI, 2014]
- [BenzmüllerPaulson, LogicaUniversalis, 2013]
 - [BenzmüllerPaulson, Log.J.IGPL, 2010]
 - [Benzmüller, IJCAI, 2013]
 - [BenzmüllerEtAl., AMAI, 2012]
 - [BenzmüllerPaulson, Log.J.IGPL, 2010]
 - [Benzmüller, IFIP SEC, 2009]
 - [Benzmüller, AMAI, 2011]

Cut-free Calculi for HOL: History

- Takeuti (1953): defined GLC (generalized logical calculus) by extending Gentzen's LK; conjectured cut-elimination for GLC
- Schütte (1960): simplified verion GLC; gave a semantic characterization Takeuti's conjecture.
- Tait (1966): proved Schütte's conjecture.
- Takahashi (1967), Prawitz (1968): proved higher-order versions of the conjecture.
- Girard (1971): Takeuti's conjecture as a consequence of strong normalization for System F.
- Andrews (1971): Completeness of resolution in elementary type theory with abstract consistency technique.
- Takeuti (1975): Henkin complete cut-free sequent calculus with extensionality.
- Brown (2004), Benzmüller et al. (2004, 2009), and Brown and Smolka (2010): Various complete cut-free calculi with/without extensionality, use of abstract consistency technique

Cut-free sequent calculus for HOL

One-sided sequent calculus $\mathcal{G}_{\beta f b}$ [BenzmüllerBrownKohlhase, LMCS, 2009] (Δ : finite sets of β -normal closed formulas, $\Delta * \mathbf{A}$ stands for $\Delta \cup \{\mathbf{A}\}$, cwff_{α} : set of closed terms of type α , $\dot{=}$ abbreviates Leibniz equality):

$$\underline{ \text{Base Rules}} \quad \frac{\textbf{A} \text{ atomic } (\& \ \beta \text{-normal})}{\Delta * \textbf{A} * \neg \textbf{A}} \ \mathcal{G}(\textit{init}) \quad \frac{\Delta * \textbf{A}}{\Delta * \neg \neg \textbf{A}} \ \mathcal{G}(\neg) \qquad \frac{\Delta * \neg \textbf{A} \quad \Delta * \neg \textbf{B}}{\Delta * \neg (\textbf{A} \lor \textbf{B})} \ \mathcal{G}(\lor_{-})$$

$$\frac{\Delta * \mathbf{A} * \mathbf{B}}{\Delta * (\mathbf{A} \vee \mathbf{B})} \, \mathcal{G}(\vee_{+}) \qquad \frac{\Delta * \neg (\mathbf{AC}) \!\! \downarrow_{\beta} \quad \mathbf{C} \in \mathit{cwff}_{\alpha}}{\Delta * \neg \Pi^{\alpha} \mathbf{A}} \, \mathcal{G}(\Pi_{-}^{\mathbf{C}}) \qquad \frac{\Delta * (\mathbf{A}c) \!\! \downarrow_{\beta} \quad \mathit{c}_{\alpha} \mathit{new}}{\Delta * \Pi^{\alpha} \mathbf{A}} \, \mathcal{G}(\Pi_{+}^{c})$$

$$\frac{ \text{Full Extensionality} }{ \Delta * (A \stackrel{\dot{=}}{=} BX) \Big|_{\beta} } \mathcal{G}(\mathfrak{f}) \qquad \frac{ \Delta * \neg A * B \quad \Delta * \neg B * A}{ \Delta * (A \stackrel{\dot{=}}{=} B)} \mathcal{G}(\mathfrak{b})$$

Initial. and Decomp. of Leibniz Equality

$$\frac{\Delta*(\mathbf{A}\stackrel{{}_{=}}{\circ}\mathbf{B})\quad \mathbf{A},\mathbf{B} \text{ atomic}}{\Delta*\neg\mathbf{A}*\mathbf{B}}\mathcal{G}(\mathit{Init}^{\stackrel{{}_{=}}{=}})$$

$$\frac{\Delta * (\mathbf{A}^1 \stackrel{\dot{=}}{=}^{\alpha_1} \mathbf{B}^1) \cdots \Delta * (\mathbf{A}^n \stackrel{\dot{=}}{=}^{\alpha_n} \mathbf{B}^n) \quad n \geq 1, \beta \in \{o, \iota\}, h_{\overline{\alpha^n} \to \beta} \in \Sigma}{\Delta * (h\overline{\mathbf{A}^n} \stackrel{\dot{=}}{=}^{\beta} h\overline{\mathbf{B}^n})} \mathcal{G}(d)$$

Automated Proof Search and Consistency Check

Automated Theorem Provers and Model Finders for HOL

- all accept TPTP THF Syntax [SutcliffeBenzmüller, J.Form.Reas, 2009]
 - can be called remotely via SystemOnTPTP at Miami
 - they significantly gained in strength over the last years
 - they can be bundled into a combined prover HOL-P

Exploit HOL with Henkin semantics as metalogic

Automate other logics (& combinations) via semantic embeddings

— HOL-P becomes a Universal Reasoner —

Proof Automation and Consistency Checking with HOL-P

```
MacBook-Chris %
MacBook-Chris %
MacBook-Chris % ./call_tptp.sh T3.p
Asking various HOL-ATPs in Miami remotely (thanks to Geoff Sutcliffe)
MacBook-Chris % agsyHOL---1.0 : T3.p ++++++ RESULT: SOT_7L4x_Y - agsyHOL---1.0 says Unknown - CPU = 0.00 WC = 0.02
LEO-II---1.6.0 : T3.p ++++++ RESULT: SOT_E4SCha - LEO-II---1.6.0 says Theorem - CPU = 0.03 WC = 0.09
Satallax---2.7 : T3.p ++++++ RESULT: SOT_kVZ1cB - Satallax---2.7 says Theorem - CPU = 0.00 WC = 0.14
Isabelle---2013 : T3.p ++++++ RESULT: SOT_xa0aEp - Isabelle---2013 says Theorem - CPU = 14.06 WC = 17.73 SolvedBy = auto
TPS---3,120601S1b : T3.p ++++++ RESULT: S0T R0Easa - TPS---3,120601S1b says Unknown - CPU = 33.56 WC = 41.57
Nitrox---2013 : T3.p ++++++ RESULT: S0T WGY1Tx - Nitrox---2013 says Unknown - CPU = 75.55 WC = 49.24
MacBook-Chris %
MacBook-Chris % ./call toto.sh Consistency.p
Asking various HOL-ATPs in Miami remotely (thanks to Geoff Sutcliffe)
MacBook-Chris % agsyHOL---1.0 : Consistency.p ++++++ RESULT: SOT_ZtY_70 - agsyHOL---1.0 says Unknown - CPU = 0.00 WC = 0.00
Nitrox---2013 : Consistency.p ++++++ RESULT: SOT_HUZ10C - Nitrox---2013 says Satisfiable - CPU = 6.56 WC = 8.50
TPS---3.120601S1b : Consistency.p ++++++ RESULT: SOT_fpJxTM - TPS---3.120601S1b says Unknown - CPU = 43.00 WC = 49.42
Isabelle---2013 : Consistency,p ++++++ RESULT: SOT_6Tpp9i - Isabelle---2013 says Unknown - CPU = 69.96 WC = 72.62
LEO-II---1.6.0 : Consistency,p ++++++ RESULT: SOT_dY10si - LEO-II---1.6.0 says Timeout - CPU = 90 WC = 89.86
Satallax---2.7 : Consistency.p ++++++ RESULT: SOT_09WSLf - Satallax---2.7 says Timeout - CPU = 90 WC = 90.50
MacBook-Chris %
```

Provers are called remotely in Miami — no local installation needed!

Download our experiments from https://github.com/ FormalTheology/GoedelGod/tree/master/Formalizations/THF

Automation and Verification in Isabelle/HOL Interactive Verification in Coo

Home

Overview

Installation

Community
Site Mirrors:

Combridge (.uk)

Isabile is a generic proof assistant. It allows mathematical formulas to be expressed in a formal language and provides tools for proving those formulas in a logical cacitus, isabile is developed at Universit of Cambridge (Larry Paulson), Technische Universität München (Tobias Nipicos) and Université Paris-Sud (Makasius Wenzel). See the Isabelle overvieur for a brief introduction.

Now available: Isabelle2013

Download for Linux - Download for Windows

Some highlights:

- Improvements of Isabelle/Scala and Isabelle/iEdit Prover IDE.
- Advanced build tool based on Isabelle/Scala.
- Updated manuals: isar-ref, implementation, system.
- · Pure: improved support for block-structured specification contexts.
- HOL tool enhancements: Sledgehammer, Lifting, Quickcheck.
- . HOL library enhancements: HOL-Library, HOL-Probability, HOL-Cardinals.
- HOL: New BNF-based (co)datatype package.
- Improved performance thanks to Poly/ML 5.5.0.

See also the cumulative NEWS.

Distribution & Support

Isabelle is distributed for free under the BSD license. It includes source and binary packages and documentation, see the detailed installation instructions. A vast collection of Isabelle examples and applications is available from the Archive of Formal Proofs.

Support is available by ample documentation, the Isabelle community Wiki, and the following mailing lists:

- isabelle-users@cl.cam.ac.uk provides a forum for Isabelle users to discuss problems, exchange information, and make announcements. Users of official
- Isabelle releases should <u>subscribe</u> or see the <u>archive</u> (also available via <u>Google groups</u> and <u>Narkive</u>).

 isabelle-dev@in.tum.de.covers the Isabelle development process, including intermediate repository versions, and administrative issues concerning the
- isabelle-dev@in.tum.de covers the Isabelle development process, including intermediate repository versions, and administrative issues concerning the
 website or testing infrastructure. Early adopters of repository versions should <u>subscribe</u> or see the <u>archive</u> (also available at <u>mail-archive.com</u> or <u>gmane.org</u>).

Last updated: 2013-03-09 12:21:39

Interaction and Automation in Proof Assistant Isabelle/HOL

See verifiable Isabelle/HOL document (Archive of Formal Proofs) at: http://afp.sourceforge.net/entries/GoedelGod.shtml

Interaction in Proof Assistant Coo

See verifiable Coq document at: https://github.com/ FormalTheology/GoedelGod/tree/master/Formalizations/Coq

	HOL encoding	dependencies	logic	status	LEO-II const/vary	Satallax const/vary	Nitpick const/vary
A 1	$[\dot{\forall}\phi_{\mu\to\sigma}\cdot p_{(\mu\to\sigma)\to\sigma}(\lambda X_{\mu}\cdot\dot{\neg}(\phi X)) \stackrel{.}{=} \dot{\neg}(p\phi)]$,	,	
A2	$[\dot{\forall}\phi_{\mu\to\sigma^*}\dot{\forall}\psi_{\mu\to\sigma^*}(p_{(\mu\to\sigma)\to\sigma}\phi\dot{\wedge}\dot{\Box}\dot{\forall}X_{\mu^*}(\phi X)]$	$(\neg \psi X)) \supset p\psi$					
T1	$[\dot{\forall}\phi_{\mu\to\sigma^*}p_{(\mu\to\sigma)\to\sigma}\phi\dot{\supset}\dot{\Diamond}\dot{\exists}X_{\mu^*}\phi X]$	A1(⊃), A2	K	THM	0.1/0.1	0.0/0.0	—/—
	τ τμπο Εφπο)ποτ - τμ-τ3	A1, A2	K	THM	0.1/0.1	0.0/5.2	—/— —/—
D1	$g_{u \to \sigma} = \lambda X_u \cdot \dot{\forall} \phi_{u \to \sigma} \cdot p_{(u \to \sigma) \to \sigma} \phi \supset \phi X$	•			•	•	
A3	$[p_{(\mu o \sigma) o \sigma}g_{\mu o \sigma}]$						
C	$[\dot{\Diamond}\exists X_{\mu}, g_{\mu\to\sigma}X]$	T1, D1, A3	K	THM	0.0/0.0	0.0/0.0	—/—
	ι τμ- 8μ-σ3	A1, A2, D1, A3	K	THM	0.0/0.0	5.2/31.3	_/_
A4	$[\dot{\mathbf{Y}}\phi_{u\to\sigma^*}p_{(u\to\sigma)\to\sigma}\phi\dot{\supset}\dot{\Box}p\phi]$,
D2	$\operatorname{ess}_{(\mu \to \sigma) \to \mu \to \sigma} = \lambda \phi_{\mu \to \sigma} \lambda X_{\mu} \phi X \dot{\Lambda} \dot{\Psi}_{\mu \to \sigma}$	$(d_t X \stackrel{.}{\supset} \dot{\Box} \dot{V} Y (d_t Y \stackrel{.}{\supset} d_t Y))$					
T2	$[\dot{Y} X_{\mu^*} g_{\mu \to \sigma} X \supset (ess_{(\mu \to \sigma) \to \mu \to \sigma} g X)]$	A1, D1, A4, D2	K	THM	19.1/18.3	0.0/0.0	—/—
	$[\cdot 11\mu \cdot 8\mu \rightarrow 011 = (000(\mu \rightarrow 0) \rightarrow \mu \rightarrow 0811)]$	A1, A2, D1, A3, A4, D2	ĸ	THM	12.9/14.0	0.0/0.0	_/_
D3	$NE_{\mu \to \sigma} = \lambda X_{\mu^*} \dot{\forall} \phi_{\mu \to \sigma^*} (ess \phi X \supset \dot{\Box} \dot{\exists} Y_{\mu^*} \phi)$,	,	,
A5	$[p_{(\mu o \sigma) o \sigma} \mathrm{NE}_{\mu o \sigma}]$	-,					
T3	$[\dot{\Box}\dot{\exists}X_{\mu},g_{\mu\to\sigma}X]$	D1, C, T2, D3, A5	K	CSA	—/—	—/—	3.8/6.2
	L=μ-8μ-σσ3	A1, A2, D1, A3, A4, D2, D3, A5	K	CSA	_/_	_/_	8.2/7.5
		D1, C, T2, D3, A5	KB	THM	0.0/0.1	0.1/5.3	—/—
		A1, A2, D1, A3, A4, D2, D3, A5	KB	THM	_/_	_/_	<u> </u>
	r. 44.1	D0 T0 T0	I/D	TTT 4	17.07	2.2.0.2	,
MC	$[s_{\sigma} \supset \Box s_{\sigma}]$	D2, T2, T3	KB	THM	17.9/—	3.3/3.2	—/ <u> </u>
F.C.	nie in a view	A1, A2, D1, A3, A4, D2, D3, A5	KB	THM	—/— 16.5.1	-/-	—/ <u>—</u>
FG	$[\dot{\forall}\phi_{\mu\to\sigma^*}\dot{\forall}X_{\mu^*}(g_{\mu\to\sigma}X\dot{\supset}(\dot{\neg}(p_{(\mu\to\sigma)\to\sigma}\phi)\dot{\supset}$	$\neg (\phi X)))] AI,DI$	KB	THM	16.5/—	0.0/0.0	-/-
. em	nim in / mar/ marriage	A1, A2, D1, A3, A4, D2, D3, A5	KB	THM	12.8/15.1	0.0/5.4	—/—
MT	$[\dot{\forall} X_{\mu^*} \dot{\forall} Y_{\mu^*} (g_{\mu \to \sigma} X \dot{\supset} (g_{\mu \to \sigma} Y \dot{\supset} X \dot{=} Y))]$	D1,FG	KB	THM	—/ <u>—</u>	0.0/3.3	<u> </u>
		A1, A2, D1, A3, A4, D2, D3, A5	KB	THM	—/—	—/—	—/—
CO	Ø (no goal, check for consistency)	A1, A2, D1, A3, A4, D2, D3, A5	KB	SAT	—/—	—/—	7.3/7.4
					,	,	
	$\rho = \lambda \phi_{1} - \lambda X - \lambda y_{1} - \lambda (y_{1} X - y_{2})$						
D2' CO'	ess _{(μ→σ)→μ→σ} = $\lambda \phi_{μ→σ}$ • $\lambda X_{μ*} \dot{\forall} \psi_{μ→σ}$ • (ψX : 0 (no goal, check for consistency)	$A1(\supset), A2, D2', D3, A5$	KB	UNS	7.5/7.8	—/—	—/—

	HOL encoding	dependencies	logic	status	LEO-II	Satallax	Nitpick
					const/varv	const/vary	const/varv
A1	$[\forall \phi_{\mu \to \sigma^{-}} p_{(\mu \to \sigma) \to \sigma} (\lambda X_{\mu} \dot{\neg} (\phi X)) \stackrel{.}{=} \dot{\neg} (p\phi)]$	·					
A2	$[\dot{\forall}\phi_{\mu\to\sigma^*}\dot{\forall}\psi_{\mu\to\sigma^*}(p_{(\mu\to\sigma)\to\sigma}\phi\dot{\wedge}\dot{\Box}\dot{\forall}X_{\mu^*}(\phi X)]$	$(\neg \psi X)$					
T1	$[\dot{\forall} \phi_{\mu \to \sigma^*} p_{(\mu \to \sigma) \to \sigma} \phi \supset \dot{\Diamond} \exists X_{\mu^*} \phi X]$	A1(⊃), A2	K	THM	0.1/0.1	0.0/0.0	—/—
	,, -, -, -, -, -, -, -, -, -, -, -, -, -,	A1, A2	K	THM	0.1/0.1	0.0/5.2	—/—
D1	$g_{\mu \to \sigma} = \lambda X_{\mu} \cdot \dot{\forall} \phi_{\mu \to \sigma} \cdot p_{(\mu \to \sigma) \to \sigma} \phi \supset \phi X$						
A3	$[p_{(\mu o \sigma) o \sigma} g_{\mu o \sigma}]$						
C	$[\dot{\Diamond}\exists X_{\mu},g_{\mu\to\sigma}X]$	T1, D1, A3	K	THM	0.0/0.0	0.0/0.0	—/—
	, -r	A1, A2, D1, A3	K	THM	0.0/0.0	5.2/31.3	—/—
A4	$[\dot{\forall} \phi_{\mu \to \sigma^*} p_{(\mu \to \sigma) \to \sigma} \phi \supset \Box p \phi]$						
D2	$\operatorname{ess}_{(\mu \to \sigma) \to \mu \to \sigma} = \lambda \phi_{\mu \to \sigma} \cdot \lambda X_{\mu} \cdot \phi X \dot{\wedge} \dot{\forall} \psi_{\mu \to \sigma}$	$(\psi X \stackrel{.}{\supset} \dot{\Box} \dot{\forall} Y_{\mu^*} (\phi Y \stackrel{.}{\supset} \psi Y))$					
T2	$[\dot{V} X_{\mu} \cdot g_{\mu \to \sigma} X \supset (ess_{(\mu \to \sigma) \to \mu \to \sigma} g X)]$	A1, D1, A4, D2	K	THM	19.1/18.3	0.0/0.0	—/—
	- 707 - 410,710	A1, A2, D1, A3, A4, D2	K	THM	12.9/14.0	0.0/0.0	_/_
D3	$NE_{\mu \to \sigma} = \lambda X_{\mu} \cdot \dot{\forall} \phi_{\mu \to \sigma} \cdot (ess \phi X \supset \dot{\Box} \dot{\exists} Y_{\mu} \cdot \phi)$	Y)					
A5	$[p_{(\mu \to \sigma) \to \sigma} NE_{\mu \to \sigma}]$						
T3	$[\Box \exists X_{\mu} \cdot g_{\mu o \sigma} X]$	D1, C, T2, D3, A5	K	CSA	—/—	—/—	3.8/6.2
		A1, A2, D1, A3, A4, D2, D3, A5	K	CSA	—/—	_/_	8.2/7.5
		D1, C, T2, D3, A5	KB	THM	0.0/0.1	0.1/5.3	—/—
		A1, A2, D1, A3, A4, D2, D3, A5	KB	THM	—/—	—/—	—/—
MC	$[s_{\sigma} \supset \Box s_{\sigma}]$	D2, T2, T3	KB	THM	17.9/—	3.3/3.2	—/—
		A1, A2, D1, A3, A4, D2, D3, A5	KB	THM	—/ ·	—/—	_/_
FG	$[\dot{\forall}\phi_{\mu\to\sigma^*}\dot{\forall}X_{\mu^*}(g_{\mu\to\sigma}X\dot{\supset}(\dot{\neg}(p_{(\mu\to\sigma)\to\sigma}\phi)\dot{\supset}$	$\dot{\neg}(\phi X)))$] A1, D1	KB	THM	16.5/—	0.0/0.0	_/_
						0.015.4	1.
		A1, A2, D1, A3, A4, D2, D3, A5	KB	THM	12.8/15.1	0.0/5.4	—/—
MT	$[\dot{\forall} X_{u^*}\dot{\forall} Y_{u^*}(g_{u\to\sigma}X \supset (g_{u\to\sigma}Y \supset X \doteq Y))]$		KB KB	THM THM	12.8/15.1	0.0/5.4 0.0/3.3	—/— —/—
MT	$[\dot{\forall} X_{\mu^*} \dot{\forall} Y_{\mu^*} (g_{\mu \to \sigma} X \supset (g_{\mu \to \sigma} Y \supset X \stackrel{.}{=} Y))]$	A1, A2, D1, A3, A4, D2, D3, A5					
MT	$[\dot{V} X_{\mu^*} \dot{V} Y_{\mu^*} (g_{\mu \to \sigma} X \mathrel{\dot{\supset}} (g_{\mu \to \sigma} Y \mathrel{\dot{\supset}} X \stackrel{\dot{=}}{=} Y))]$	A1, A2, D1, A3, A4, D2, D3, A5 D1, FG	KB	THM	_/_	0.0/3.3	_/_
мт со	Ø(no goal, check for consistency)	A1, A2, D1, A3, A4, D2, D3, A5 D1, FG A1, A2, D1, A3, A4, D2, D3, A5 A1, A2, D1, A3, A4, D2, D3, A5	KB	THM	_/_	0.0/3.3	_/_
	\emptyset (no goal, check for consistency) $\mathbf{ess}_{(\mu \to \sigma) \to \mu \to \sigma} = \lambda \phi_{\mu \to \sigma^*} \lambda X_{\mu^*} \dot{\mathbf{v}} \psi_{\mu \to \sigma^*} (\psi X)$	A1, A2, D1, A3, A4, D2, D3, A5 D1, FG A1, A2, D1, A3, A4, D2, D3, A5 A1, A2, D1, A3, A4, D2, D3, A5 $\dot{\Box} \dot{\Box} \dot{\Psi} \dot{Y}_{\mu} \cdot (\phi \dot{Y} \dot{\supset} \psi \dot{Y}))$	KB KB	THM THM	_/_	0.0/3.3	_/_ _/_
СО		A1, A2, D1, A3, A4, D2, D3, A5 D1, FG A1, A2, D1, A3, A4, D2, D3, A5 A1, A2, D1, A3, A4, D2, D3, A5	KB KB	THM THM	_/_	0.0/3.3	_/_ _/_

		HOL encoding		dependencies	logic	status	LEO-II const/vary	Satallax const/vary	Nitpick const/vary	
_	A1	$[\dot{\mathbf{V}}\boldsymbol{\phi}_{\mu\to\sigma}, \boldsymbol{p}_{(\mu\to\sigma)\to\sigma}(\lambda X_{\mu}, \dot{\boldsymbol{\gamma}})]$	$(\phi X)) \stackrel{.}{=} \neg (p\phi)]$	' → \(\(\forall \) → \(m\(\forall \)						_
J	T1	$[\dot{\forall}\phi_{\mu o \sigma^*}p_{(\mu o \sigma) o \sigma}\dot{\phi}\dot{\supset}\dot{\Diamond}\dot{\exists}.$		A1(⊃), A2 A1, A2	K K	THM THM	0.1/0.1 0.1/0.1	0.0/0.0 0.0/5.2	_/_ _/_	1
•	A3	$g_{\mu \to \sigma} = \lambda \Lambda_{\mu} \cdot \nabla \psi_{\mu \to \sigma} \cdot p_{(\mu \to \sigma)}$	$\sigma \rightarrow \sigma \psi \rightarrow \psi \lambda$							-
1	C	$egin{aligned} [p_{(\mu o\sigma) o\sigma}g_{\mu o\sigma}]\ [\dot{\diamondsuit}\dot{\exists}X_{\mu^*}g_{\mu o\sigma}X] \end{aligned}$		T1, D1, A3 A1, A2, D1, A3	K K	THM THM	0.0/0.0 0.0/0.0	0.0/0.0 5.2/31.3	—/— —/—	
1	A4	$[\dot{\forall}\phi_{\mu o \sigma^*}p_{(\mu o \sigma) o \sigma}\phi \ \dot{\Box}p\phi$,	,	,	
\	D2 T2	$\operatorname{ess}_{(\mu \to \sigma) \to \mu \to \sigma} = \lambda \phi_{\mu \to \sigma} \lambda$ $[\dot{V} X_{\mu} g_{\mu \to \sigma} X \supset (\operatorname{ess}_{(\mu \to \sigma)})$	<i>Χ_μ•φΧ</i> λ Ϋψ _{μ→ο} ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	$A_*(\psi X \stackrel{.}{\supset} \dot{\Box} \dot{\forall} Y_{\mu^*}(\phi Y \stackrel{.}{\supset} \psi Y))$ $A1, D1, A4, D2$	K	THM	19.1/18.3	0.0/0.0	_/_	
1				A1, A2, D1, A3, A4, D2	K	THM	12.9/14.0	0.0/0.0	_/_	
	D3 A5 T3	$ \mathbf{N}\mathbf{E}_{\mu \to \sigma} = \lambda X_{\mu^*} \dot{\mathbf{V}} \phi_{\mu \to \sigma^*} (\mathbf{e}) $ $ [p_{(\mu \to \sigma) \to \sigma} \mathbf{N}\mathbf{E}_{\mu \to \sigma}] $ $ [\dot{\mathbf{D}} \dot{\mathbf{J}} X_{\mu^*} g_{\mu \to \sigma} X] $	Auton	nating Scott's pr	oof scri	pt				
		[23.8], 8], 49.2.		Positive proper			ssibly (exempl	ified"	
	MC	$[s_{\sigma} \stackrel{.}{\supset} b s_{\sigma}]$	● in	logic: K						ı
	FG	$[\dot{V}\phi_{\mu o\sigma},\dot{V}X_{\mu},(g_{\mu o\sigma}X\dot{\supset})]$	• fr	om axioms:						
	МТ	$[\dot{\forall} X_{\mu^*}\dot{\forall} Y_{\mu^*}(g_{\mu o\sigma}X\dot{\supset}(g_\mu$		A1 and A2						

for domain conditions:

constant domains

CO

D2'

CO'

Ø (no goal, check for cons

ess_{(μ→σ)→μ→σ} = λφ_{μ→σ*}λθ (no goal, check for cons

		HOL encoding		dependencies	logic	status	LEO-II const/vary	Satallax const/vary	Nitpick const/vary	
	A1	$[\dot{\mathbf{V}}\phi_{\mu\to\sigma}, p_{(\mu\to\sigma)\to\sigma}(\lambda X_{\mu}, \dot{\neg}(\lambda X_{\mu}, \dot{\rightarrow}(\lambda X_{\mu}, \dot{\rightarrow}$	$(\phi X)) \stackrel{.}{=} \neg (p\phi)$] Y ¬ ((Y)) ¬ (n(t)						
J	T1	$[\dot{\forall}\phi_{\mu\to\sigma^*}p_{(\mu\to\sigma)\to\sigma}\phi\dot{\supset}\dot{\Diamond}\dot{\exists}Z$		A1(⊃), A2 A1, A2	K K	THM THM	0.1/0.1 0.1/0.1	0.0/0.0 0.0/5.2	_/_ _/_	1
_	A3 C	$egin{align*} egin{align*} $	$\sigma_{\sigma} \to \sigma \psi \to \psi X$	T1, D1, A3	K	ТНМ	0.0/0.0	0.0/0.0	_/_	4
\	A4	$[\dot{Y}\phi_{\mu o\sigma^*}p_{(\mu o\sigma) o\sigma}\phi\dot{\supset}\dot{\Box}p\phi$	<i>6</i>]	A1, A2, D1, A3	K	THM	0.0/0.0	5.2/31.3	-/-	
\	D2 T2	$\begin{aligned} &\operatorname{ess}_{(\mu \to \sigma) \to \mu \to \sigma} = \lambda \phi_{\mu \to \sigma} \cdot \lambda \\ & [\dot{V} X_{\mu} \cdot g_{\mu \to \sigma} X \dot{\supset} (\operatorname{ess}_{(\mu \to \sigma)}) \end{aligned}$		$_{,\sigma^*}(\psi X \supset \dot{\Box} \dot{\forall} Y_{\mu^*}(\phi Y \supset \psi Y))$ A1, D1, A4, D2 A1, A2, D1, A3, A4, D2	K K	THM THM	19.1/18.3 12.9/14.0	0.0/0.0 0.0/0.0	—/— —/—	L
	D3 A5 T3	$ NE_{\mu \to \sigma} = \lambda X_{\mu^*} \dot{\nabla} \phi_{\mu \to \sigma^*} (\mathbf{e}) $ $ [p_{(\mu \to \sigma) \to \sigma} NE_{\mu \to \sigma}] $ $ [\dot{\Box} \dot{\exists} X_{\mu^*} g_{\mu \to \sigma} X] $	Autor	nating Scott's pr	oof scri	pt				
		(======================================		"Positive propered by LEO-II and			ssibly	exempl	ified"	
	MC	$[s_{\sigma} \supset ks_{\sigma}]$	● ii	n logic: K						ı
	FG	$[\dot{\forall}\phi_{\mu\to\sigma}.\dot{\forall}X_{\mu}.(g_{\mu\to\sigma}X\dot{\supset})]$	● fi	rom axioms:						ı
	MT	$[\dot{\forall} X_{\mu^*}\dot{\forall} Y_{\mu^*}(g_{\mu o\sigma}X\dot{\supset}(g_\mu$		 A1 and A2 A1(⊃) and A2 						

for domain conditions:

constant domains

CO

D2'

CO'

Ø (no goal, check for cons

ess_{(μ→σ)→μ→σ} = λφ_{μ→σ*}λθ (no goal, check for cons

		HOL encoding	dependencies	logic	status	LEO-II const/vary	Satallax const/vary	Nitpick const/vary
	A1	$[\dot{\mathbf{V}}\phi_{\mu\to\sigma} \cdot p_{(\mu\to\sigma)\to\sigma}(\lambda X_{\mu} \cdot \dot{\neg}(\phi X)) \stackrel{.}{=} \dot{\neg}(p\phi X_{\mu} \cdot \dot{\neg}(\phi X)) \stackrel{.}{=} \dot{\neg}(p\phi X_{\mu} \cdot \dot{\neg}(\phi X))$)] 6 <i>Y</i> 六 ((<i>Y</i>)) 六 ((())			, ,		
4	T1	$[\forall \phi_{\mu \to \sigma^*} p_{(\mu \to \sigma) \to \sigma} \phi \supset \Diamond \exists X_{\mu^*} \phi X]$	A1(⊃), A2 A1, A2	K K	THM THM	0.1/0.1 0.1/0.1	0.0/0.0 0.0/5.2	_/_ _/_
	A3	$g_{\mu o \sigma} = \lambda X_{\mu} \cdot \nabla \varphi_{\mu o \sigma} \cdot p_{(\mu o \sigma) o \sigma} \varphi \supset \varphi X$ $[p_{(\mu o \sigma) o \sigma} g_{\mu o \sigma}]$						
١	С	$[\dot{\phi}\exists X_{\mu^*}g_{\mu o\sigma}X]$	T1,D1,A3 A1,A2,D1,A3	K K	THM THM	0.0/0.0 0.0/0.0	0.0/0.0 5.2/31.3	—/— —/—
\	A4 D2	$[\dot{\forall}\phi_{\mu\to\sigma^*}p_{(\mu\to\sigma)\to\sigma}\phi\supset\dot{\Box}p\phi]$	(4V ÷ † 4V (4V ÷ 4V))					
\	T2	$\begin{array}{l} \operatorname{ess}_{(\mu \to \sigma) \to \mu \to \sigma} = \lambda \phi_{\mu \to \sigma} \cdot \lambda X_{\mu} \cdot \phi X \wedge \forall \psi_{\mu} \\ [\forall X_{\mu} \cdot g_{\mu \to \sigma} X \supset (\operatorname{ess}_{(\mu \to \sigma) \to \mu \to \sigma} g X)] \end{array}$	A1,D1,A4,D2 $A1,A2,D1,A3,A4,D2$	K K	THM	19.1/18.3 12.9/14.0	0.0/0.0	—/— —/—
	D3	$NE_{xy} = \lambda X_{xy} \dot{y} \phi_{xy} = (e$			-	12/1/10	0107010	

$$NE_{\mu \to \sigma} = \lambda X_{\mu} \dot{\forall} \phi_{\mu \to \sigma^*} (0)$$

$$[p_{(\mu \to \sigma) \to \sigma} NE_{\mu \to \sigma}]$$

$$[\dot{\Box} \dot{\exists} X_{\mu^*} g_{\mu \to \sigma} X]$$

Automating Scott's proof script

"Positive properties are possibly exemplified" proved by LEO-II and Satallax

- in logic: K
- from axioms:
 - A1 and A2
 - A1(⊃) and A2
- for domain conditions:
 - constant domains
 - varying domains (individuals)

- MC FG
- MT $[\dot{\forall} X_{\mu^*}\dot{\forall} Y_{\mu^*}(g_{\mu\to\sigma}X\dot{\supset}(g_{\mu}))]$
- CO 0 (no goal, check for cons
- D2' $ess_{(u \to \sigma) \to u \to \sigma} = \lambda \phi_{u \to \sigma}$
- CO' 0 (no goal, check for cons

	HOL encoding		dependencies	logic	status	LEO-II const/vary	Satallax const/vary	Nitpick const/vary
A1	$[\dot{\forall}\phi_{\mu\to\sigma}, p_{(\mu\to\sigma)\to\sigma}(\lambda X_{\mu}, \dot{\neg})]$	$(\phi X)) \doteq \dot{\neg}(p\phi)$						
A2	$[\dot{\mathbf{V}}\phi_{\mu o\sigma},\dot{\mathbf{V}}\psi_{\mu o\sigma},(p_{(\mu o\sigma) o\sigma})]$	$_{\sigma}\phi \dot{\wedge} \dot{\Box}\dot{\forall} X_{\sigma} \cdot (\phi X)$	$(\exists \psi X)) (\exists \psi Y)$					
T1	$[\dot{\mathbf{V}}\phi_{\mu\to\sigma^*}p_{(\mu\to\sigma)\to\sigma}\phi\dot{\supset}\dot{\Diamond}\dot{\exists}.$	$X_{\mu} \cdot \phi X$	A1(⊃), A2	K	THM	0.1/0.1	0.0/0.0	—/—
	- 12 - 14 - 7 - 1		A1, A2	K	THM	0.1/0.1	0.0/5.2	—/—
D1	$g_{\mu \to \sigma} = \lambda X_{\mu} \cdot \dot{\forall} \phi_{\mu \to \sigma} \cdot p_{(\mu \to \sigma)}$	$\phi \rightarrow \sigma \phi \supset \phi X$						
A3	[n, , -q, -]							
C	$[\diamondsuit \exists X_{\mu} \cdot g_{\mu \to \sigma} X]$		T1, D1, A3	K	THM	0.0/0.0	0.0/0.0	—/ <u> </u>
١.,			A1, A2, D1, A3	K	THM	0.0/0.0	5.2/31.3	—/—
D2	$\Gamma^{\dagger} \Psi_{\mu \to \sigma^*} P_{(\mu \to \sigma) \to \sigma} \Psi \to \Box P_{\Psi}$		(LV ÷ ÷\'IV (LV ÷ LV))					
D2 T2			$A_{\bullet}(\psi X \supset \Box \dot{\forall} Y_{\mu^{\bullet}}(\phi Y \supset \psi Y))$ A1, D1, A4, D2	K	THM	19.1/18.3	0.0/0.0	,
12	$[\forall X_{\mu^*} g_{\mu \to \sigma} X \supset (\operatorname{ess}_{(\mu \to \sigma)})$	$\rightarrow \mu \rightarrow \sigma \mathbf{g} \mathbf{A})$	A1, A2, D1, A3, A4, D2	K	THM	12.9/14.0		_/_
D3	$NE_{\mu \to \sigma} = \lambda X_{\mu \bullet} \dot{\forall} \phi_{\mu \to \sigma \bullet} (e$					12.7/14.0	0.070.0	
A5	$[p_{(\mu \to \sigma) \to \sigma} NE_{\mu \to \sigma}]$	Autom	nating Scott's pro	of scri	pt			
Т3	$[\Box \exists X_{\mu}, g_{\mu \to \sigma} X]$				_			
	τ μομιο τ	0 "5						
\		C: "Po	ssibly, God exists	S				
'	\	proved	d by LEO-II and Sa	atallax				
MC	$[s_{\sigma} \dot{\Sigma} \dot{\Box} s_{\sigma}]$			u.uu.				
MC	$[s_{\sigma} \rightarrow \Box s_{\sigma}]$	● in	logic: K					
FG	$[\dot{V}\phi_{\mu o\sigma}.\dot{V}X_{\mu}.(a_{u o\sigma}X\dot{\supset}($	• fr	om assumptions:					
MT	$[\dot{\forall} X_{\mu^*}\dot{\forall} Y_{\mu^*}(g_{\mu o \sigma} X \dot{\supset} (g_{\mu}$		T1, D1, A3					
MI	$[\forall \mathbf{A}_{\mu^*} \forall \mathbf{I}_{\mu^*} (\mathbf{g}_{\mu \to \sigma} \mathbf{A} \supset (\mathbf{g}_{\mu}))$							
			• A1, A2, D1, A3					
co	0 (no goal, check for cons	o fo	r domain condition	ons:				
D2'	$ess_{(\mu \to \sigma) \to \mu \to \sigma} = \lambda \phi_{\mu \to \sigma} \lambda$			_				
CO,	0 (no goal, check for cons		 constant domain 	ıs				
			varying domains	(indivi	duals	3)		

	HOL encoding	dependencies	logic	status	LEO-II const/vary	Satallax const/vary	Nitpick const/vary
A1	$[\dot{\forall} \phi_{\mu \to \sigma^*} p_{(\mu \to \sigma) \to \sigma} (\lambda X_{\mu^*} \dot{\neg} (\phi X)) \stackrel{.}{=} \dot{\neg} (p\phi X)$	5)]					
A2	$[\dot{\forall}\phi_{\mu o \sigma^*}\dot{\forall}\psi_{\mu o \sigma^*}(p_{(\mu o \sigma) o \sigma}\phi \dot{\wedge} \dot{\Box}\dot{\forall}X_{\mu^*}($	$\phi X \supset \psi X)) \supset p\psi$					
T1	$[\dot{\forall} \phi_{\mu \to \sigma^*} p_{(\mu \to \sigma) \to \sigma} \phi \supset \dot{\Diamond} \exists X_{\mu^*} \phi X]$	A1(⊃), A2	K	THM	0.1/0.1	0.0/0.0	—/—
	, , , , , , , , , , , , , , , , , , , ,	A1, A2	K	THM	0.1/0.1	0.0/5.2	—/—
D1	$g_{u \to \sigma} = \lambda X_u \cdot \dot{\forall} \phi_{u \to \sigma} \cdot p_{(u \to \sigma) \to \sigma} \phi \supset \phi X$						
A3	$[p_{(\mu o \sigma) o \sigma} g_{\mu o \sigma}]$						
C	$[\dot{\diamondsuit}\exists X_{\mu} \ g_{\mu o \sigma}X]$	T1, D1, A3	K	THM	0.0/0.0	0.0/0.0	—/—
	• •	A1, A2, D1, A3	K	THM	0.0/0.0	5.2/31.3	/
A4	$[\dot{\forall} \phi_{\mu o \sigma^*} p_{(\mu o \sigma) o \sigma} \phi \supset \Box p \phi]$						
D2	OSS(H-O)-H-O - H-O - NY +V i V-	(4.V ÷ ÷\(1.V \)					
T2	$[\forall X_{\mu}, g_{\mu \to \sigma}X \supset (ess_{(\mu \to \sigma) \to \mu \to \sigma}gX)]$	A1, D1, A4, D2	K	THM	19.1/18.3	0.0/0.0	—/—
		A1, A2, D1, A3, A4, D2	K	THM	12.9/14.0	0.0/0.0	_/_

Automating Scott's proof script

T2: "Being God-like is an ess. of any God-like being" proved by LEO-II and Satallax

- in logic: K
- from assumptions:
 - A1, D1, A4, D2
 - A1, A2, D1, A3, A4, D2
- for domain conditions:
 - constant domains
 - varying domains (individuals)

MC $\dot{\Rightarrow} \dot{\Box} s_{\sigma}$]

FG $[\dot{\forall} \phi_{\mu \rightarrow \sigma}, \dot{\nabla} X_{\mu}, (g_{\mu \rightarrow \sigma} X \dot{\Rightarrow} (g_{\mu \rightarrow \sigma$

0 (no goal, check for cons

 $ess_{(u \to \sigma) \to u \to \sigma} = \lambda \phi_{u \to \sigma}$

0 (no goal, check for cons

CO

D2'

CO'

 $NE_{\mu \to \sigma} = \lambda X_{\mu} \cdot \nabla \phi_{\mu \to \sigma} \cdot (e$

 $[p_{(\mu \to \sigma) \to \sigma} \mathbf{N} \mathbf{E}_{\mu \to \sigma}]$ $[\Box \exists X_{\mu} \ g_{\mu \to \sigma} X]$

	HOL encoding	dependencies	logic	status	LEO-II const/vary	Satallax const/vary	Nitpick const/vary
A1	$[\dot{\forall}\phi_{\mu\to\sigma^*}p_{(\mu\to\sigma)\to\sigma}(\lambda X_{\mu^*}\dot{\neg}(\phi X)) \stackrel{.}{=} \dot{\neg}(p\phi)$	1					
A2	$[\dot{\mathbf{V}}\phi_{\mu o \sigma^*}\dot{\mathbf{V}}\psi_{\mu o \sigma^*}(p_{(\mu o \sigma) o \sigma}\phi \dot{\mathbf{\Lambda}} \dot{\mathbf{D}}\dot{\mathbf{V}}X_{\mu^*}(\phi)]$	$(X \supset \psi(X)) \supset p\psi$					
T1	$[\dot{\forall} \phi_{\mu \to \sigma^*} p_{(\mu \to \sigma) \to \sigma} \phi \supset \dot{\Diamond} \exists X_{\mu^*} \phi X]$	A1(⊃), A2	K	THM	0.1/0.1	0.0/0.0	<i>—</i> /—
		A1, A2	K	THM	0.1/0.1	0.0/5.2	_/_
D1	$g_{u \to \sigma} = \lambda X_u \cdot \dot{\forall} \phi_{u \to \sigma} \cdot p_{(u \to \sigma) \to \sigma} \phi \supset \phi X$						
A3	$[p_{(\mu o \sigma) o \sigma} g_{\mu o \sigma}]$						
C	$[\dot{\Diamond}\exists X_{\mu}, g_{\mu\to\sigma}X]$	T1, D1, A3	K	THM	0.0/0.0	0.0/0.0	—/—
	- , -,	A1, A2, D1, A3	K	THM	0.0/0.0	5.2/31.3	—/—
A4	$[\dot{\forall} \phi_{\mu o \sigma^*} p_{(\mu o \sigma) o \sigma} \phi \supset \dot{\Box} p \phi]$						
D2	$ess_{(\mu \to \sigma) \to \mu \to \sigma} = \lambda \phi_{\mu \to \sigma} \cdot \lambda X_{\mu} \cdot \phi X \dot{\lambda} \dot{\forall} \psi_{\mu}$	$_{\sigma^*}(\psi X \stackrel{.}{\supset} \dot{\Box} \dot{\forall} Y_{\mu^*}(\phi Y \stackrel{.}{\supset} \psi Y))$					
T2	$[\dot{\mathbf{V}}X_{\mu}, g_{\mu \to \sigma}X \supset (\mathbf{ess}_{(\mu \to \sigma) \to \mu \to \sigma}gX)]$	A1, D1, A4, D2	K	THM	19.1/18.3	0.0/0.0	—/—
	- 404 - 404	A1 A2 D1 A3 A4 D2	K	THM	12 9/14 0	0.0/0.0	/

D3
$$NE_{\mu \to \sigma} = \lambda X_{\mu} \cdot \dot{\nabla} \phi_{\mu \to \sigma^*} (e$$
A5 $[n_{(\mu \to \sigma)} \cdot \sigma NE_{\mu \to \sigma}]$
T3 $[\dot{\Box} \dot{\exists} X_{\mu} \cdot g_{\mu \to \sigma} X]$

Automating Scott's proof script

T3: "Necessarily, God exists" proved by LEO-II and Satallax

- in logic: KB
- from assumptions:
 - D1, C, T2, D3, A5
- for domain conditions:
 - constant domains
 - varying domains (individuals)

For logic K we got a countermodel by Nitpick

FG $[\dot{V}\phi_{\mu\to\sigma},\dot{V}Y,(g_{\mu\to\sigma}X\dot{\supset})]$

 $MT \quad [\dot{\forall} X_{\mu^*} \dot{\forall} Y_{\mu^*} (g_{\mu \to \sigma} X \dot{\supset} (g_{\mu}))]$

CO \emptyset (no goal, check for constant D2' $ess_{(\mu \to \sigma) \to \mu \to \sigma} = \lambda \phi_{\mu \to \sigma} \lambda \phi_{\mu \to \sigma}$

CO' \emptyset (no goal, check for cons

	HOL encoding	dependencies	logic	status	LEO-II const/vary	Satallax const/vary	Nitpick const/vary
A1	$[\forall \phi_{\mu \to \sigma} \cdot p_{(\mu \to \sigma) \to \sigma}(\lambda X_{\mu} \cdot \neg (\phi X)) \stackrel{.}{=} \neg (p\phi)$]					
A2	$[\dot{\forall} \phi_{u \to \sigma^*} \dot{\forall} \psi_{u \to \sigma^*} (p_{(u \to \sigma) \to \sigma} \phi \dot{\wedge} \dot{\Box} \dot{\forall} X_{u^*} (\phi)]$	$(X \supset \psi X)) \supset p\psi$					
T1	$[\dot{\forall} \phi_{\mu \to \sigma^*} p_{(\mu \to \sigma) \to \sigma} \phi \supset \dot{\Diamond} \dot{\exists} X_{\mu^*} \phi X]$	$A1(\supset), A2$	K	THM	0.1/0.1	0.0/0.0	<i>—/</i> —
11	- 1,5 - 2,5 - 1, - 1, - 1, - 1, - 1, - 1, - 1, -	A1, A2	K	THM	0.1/0.1	0.0/5.2	_/_
D1	$g_{\mu \to \sigma} = \lambda X_{\mu} \dot{\nabla} \phi_{\mu \to \sigma} p_{(\mu \to \sigma) \to \sigma} \phi \supset \phi X$						
A3	$[p_{(\mu o \sigma) o \sigma} g_{\mu o \sigma}]$						
C	$[\dot{\Diamond}\exists X_{\mu}\cdot g_{\mu\to\sigma}X]$	T1, D1, A3	K	THM	0.0/0.0	0.0/0.0	—/—
11	, ,	A1, A2, D1, A3	K	THM	0.0/0.0	5.2/31.3	—/—
A4	$[\dot{\forall} \phi_{\mu \to \sigma^*} p_{(\mu \to \sigma) \to \sigma} \phi \supset \dot{\Box} p \phi]$						
D2	$\operatorname{ess}_{(\mu \to \sigma) \to \mu \to \sigma} = \lambda \phi_{\mu \to \sigma} \cdot \lambda X_{\mu} \cdot \phi X \dot{\wedge} \dot{\vee} \psi_{\mu}$	$_{\rightarrow \sigma^*}(\psi X \supset \dot{\Box} \dot{\forall} Y_{\mu^*}(\phi Y \supset \psi Y))$					
T2	$[\forall X_{\mu}. g_{\mu \to \sigma} X \supset (\operatorname{ess}_{(\mu \to \sigma) \to \mu \to \sigma} g X)]$	A1, D1, A4, D2	K	THM	19.1/18.3	0.0/0.0	—/—
11	. 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4	A1, A2, D1, A3, A4, D2	K	THM	12.9/14.0	0.0/0.0	_/_
D3	$NE_{\mu \to \sigma} = \lambda X_{\mu} \cdot \dot{\forall} \phi_{\mu \to \sigma} \cdot (ess \phi X \supset \dot{\Box} \dot{\exists} Y_{\mu} \cdot \dot{\Box} \dot{\Box} \dot{\Box} \dot{\Box} \dot{\Box} \dot{\Box} \dot{\Box} \dot{\Box}$	• • • Y)					
A5	$[p_{(\mu o \sigma) o \sigma} NE_{\mu o \sigma}]$						

<u> </u>		
MC	$[s_{\sigma} \stackrel{.}{\supset} \Box s_{\sigma}]$	

MC

	5	Sum	ma

FG	$[\dot{V}\phi_{\mu o\sigma}, V\Lambda_{\mu}](\sigma_{u o\sigma}X\dot{\supset})$
мт	$[\dot{\mathbf{Y}}X\dot{\mathbf{Y}}Y(gX\dot{\mathbf{Y}})]$

 $[\Box \exists X_u \cdot g_{u \to r} X]$

- 0 (no goal, check for cons CO D2' $ess_{(\mu \to \sigma) \to \mu \to \sigma} = \lambda \phi_{\mu \to \sigma} \lambda$
- CO' 0 (no goal, check for cons

- - proof verified and automated

Automating Scott's proof script

- KB is sufficient (critisized logic S5 not needed!)
- proof works for constant and varying domains
- exact dependencies determined experimentally
- ATPs have found alternative proofs (shorter)

A1 A2 T1	HOL encoding $ [\dot{\mathbf{V}}\phi_{\mu-\sigma}, p_{(\mu-\sigma)-\sigma}(\lambda X_{\mu}, \dot{\neg}(\phi X)) {=} \dot{\neg}(p\phi)] $ $ [\dot{\mathbf{V}}\phi_{\mu-\sigma}, \mathbf{V}\psi_{\mu-\sigma}, (p_{(\mu-\sigma)-\sigma}\phi \dot{\Lambda} \dot{\square} \dot{\nabla} X_{\mu}, (\phi X)] $ $ [\dot{\mathbf{V}}\phi_{\mu-\sigma}, \mathbf{V}\phi_{\mu-\sigma}, \mathbf{V}\phi_{\mu-\sigma}) {=} \dot{\nabla} \dot{\Delta} X_{\mu} \underbrace{\dot{\mathbf{V}}}_{\mathbf{V}} X_{\mu} \underbrace{\dot{\mathbf{V}}}_$	dependencies	logic	status	LEO-II const/vary	Satallax const/vary	Nitpick const/vary		
D1 A3 C A4 D2 T2 D3 A5 T3	Do $g_{\mu \to \sigma} = \lambda X_{\mu} \cdot \dot{\mathbf{v}} \phi_{\mu \to \sigma} \cdot p_{\mu}$ and $g_{\mu \to \sigma} = \lambda X_{\mu} \cdot \dot{\mathbf{v}} \phi_{\mu \to \sigma} \cdot p_{\mu}$ and $g_{\mu \to \sigma} = \lambda X_{\mu} \cdot \dot{\mathbf{v}} \phi_{\mu \to \sigma} \cdot p_{\mu}$ and $g_{\mu \to \sigma} = \lambda \chi_{\mu} \cdot \dot{\mathbf{v}} \phi_{\mu \to \sigma} \cdot p_{\mu}$ and $g_{\mu \to \sigma} = \lambda \chi_{\mu} \cdot \dot{\mathbf{v}} \phi_{\mu \to \sigma} \cdot p_{\mu}$ and $g_{\mu \to \sigma} = \lambda \chi_{\mu} \cdot \dot{\mathbf{v}} \phi_{\mu \to \sigma} \cdot p_{\mu}$ and $g_{\mu \to \sigma} = \lambda \chi_{\mu} \cdot \dot{\mathbf{v}} \phi_{\mu \to \sigma} \cdot p_{\mu}$ and $g_{\mu \to \sigma} = \lambda \chi_{\mu} \cdot \dot{\mathbf{v}} \phi_{\mu \to \sigma} \cdot p_{\mu}$ and $g_{\mu \to \sigma} = \lambda \chi_{\mu} \cdot \dot{\mathbf{v}} \phi_{\mu \to \sigma} \cdot p_{\mu}$ and $g_{\mu \to \sigma} = \lambda \chi_{\mu} \cdot \dot{\mathbf{v}} \phi_{\mu \to \sigma} \cdot p_{\mu}$ and $g_{\mu \to \sigma} = \lambda \chi_{\mu} \cdot \dot{\mathbf{v}} \phi_{\mu \to \sigma} \cdot p_{\mu}$ and $g_{\mu \to \sigma} = \lambda \chi_{\mu} \cdot \dot{\mathbf{v}} \phi_{\mu \to \sigma} \cdot p_{\mu}$ and $g_{\mu \to \sigma} = \lambda \chi_{\mu} \cdot \dot{\mathbf{v}} \phi_{\mu \to \sigma} \cdot p_{\mu}$ and $g_{\mu \to \sigma} = \lambda \chi_{\mu} \cdot \dot{\mathbf{v}} \phi_{\mu \to \sigma} \cdot p_{\mu}$ and $g_{\mu \to \sigma} = \lambda \chi_{\mu} \cdot \dot{\mathbf{v}} \phi_{\mu \to \sigma} \cdot p_{\mu}$ and $g_{\mu \to \sigma} = \lambda \chi_{\mu} \cdot \dot{\mathbf{v}} \phi_{\mu \to \sigma} \cdot p_{\mu}$ and $g_{\mu \to \sigma} = \lambda \chi_{\mu} \cdot \dot{\mathbf{v}} \phi_{\mu \to \sigma} \cdot p_{\mu}$ and $g_{\mu \to \sigma} = \lambda \chi_{\mu} \cdot \dot{\mathbf{v}} \phi_{\mu \to \sigma} \cdot p_{\mu}$ and $g_{\mu \to \sigma} = \lambda \chi_{\mu} \cdot \dot{\mathbf{v}} \phi_{\mu \to \sigma} \cdot p_{\mu}$ and $g_{\mu \to \sigma} = \lambda \chi_{\mu} \cdot \dot{\mathbf{v}} \phi_{\mu \to \sigma} \cdot p_{\mu}$ and $g_{\mu \to \sigma} = \lambda \chi_{\mu} \cdot \dot{\mathbf{v}} \phi_{\mu \to \sigma} \cdot p_{\mu}$ and $g_{\mu \to \sigma} = \lambda \chi_{\mu} \cdot \dot{\mathbf{v}} \phi_{\mu \to \sigma} \cdot p_{\mu}$ and $g_{\mu \to \sigma} = \lambda \chi_{\mu} \cdot \dot{\mathbf{v}} \phi_{\mu \to \sigma} \cdot p_{\mu}$ and $g_{\mu \to \sigma} = \lambda \chi_{\mu} \cdot \dot{\mathbf{v}} \phi_{\mu \to \sigma} \cdot p_{\mu}$ and $g_{\mu \to \sigma} = \lambda \chi_{\mu} \cdot \dot{\mathbf{v}} \phi_{\mu \to \sigma} \cdot p_{\mu}$ and $g_{\mu \to \sigma} = \lambda \chi_{\mu} \cdot \dot{\mathbf{v}} \phi_{\mu \to \sigma} \cdot p_{\mu}$ and $g_{\mu \to \sigma} = \lambda \chi_{\mu} \cdot \dot{\mathbf{v}} \phi_{\mu \to \sigma} \cdot p_{\mu}$ and $g_{\mu \to \sigma} = \lambda \chi_{\mu} \cdot \dot{\mathbf{v}} \phi_{\mu \to \sigma} \cdot p_{\mu}$ and $g_{\mu \to \sigma} = \lambda \chi_{\mu} \cdot \dot{\mathbf{v}} \phi_{\mu \to \sigma} \cdot p_{\mu}$ and $g_{\mu \to \sigma} = \lambda \chi_{\mu} \cdot \dot{\mathbf{v}} \phi_{\mu \to \sigma} \cdot p_{\mu}$ and $g_{\mu \to \sigma} = \lambda \chi_{\mu} \cdot \dot{\mathbf{v}} \phi_{\mu \to \sigma} \cdot p_{\mu}$ and $g_{\mu \to \sigma} = \lambda \chi_{\mu} \cdot \dot{\mathbf{v}} \phi_{\mu \to \sigma} \cdot p_{\mu}$ and $g_{\mu \to \sigma} = \lambda \chi_{\mu} \cdot \dot{\mathbf{v}} \phi_{\mu \to \sigma} \cdot p_{\mu}$ and $g_{\mu \to \sigma} = \lambda \chi_{\mu} \cdot \dot{\mathbf{v}} \phi_{\mu \to \sigma} \cdot p_{\mu}$ and $g_{\mu \to \sigma} = \lambda \chi_{\mu} \cdot \dot{\mathbf{v}} \phi_{\mu \to \sigma} \cdot p_{\mu}$ and $g_{\mu \to \sigma} = \lambda \chi_{\mu} \cdot \dot{\mathbf{v}} \phi_{\mu \to \sigma} \cdot p_{\mu}$ and $g_{\mu \to \sigma} = \lambda \chi_{\mu} \cdot \dot{\mathbf{v}} \phi_{\mu \to \sigma} \cdot p_{\mu}$ and $g_{\mu \to \sigma} = \lambda \chi_{\mu} \cdot \dot{\mathbf{v}} \phi_{\mu \to \sigma} \cdot p$								
/		D1, C, T2, D3, A5 A1, A2, D1, A3, A4, D2, D3, A5	KB KB	THM THM	0.0/0.1 —/—	0.1/5.3	_/_ _/_		
MC FG MT	$\begin{split} & [s_{\sigma} \mathrel{\dot{\supset}} \mathrel{\dot{\cap}} s_{\sigma}] \\ & [\dot{\mathbf{V}} \phi_{\mu \to \sigma}, \dot{\mathbf{V}} X_{\mu^*} (g_{\mu \to \sigma} X \mathrel{\dot{\supset}} (\mathrel{\dot{\vdash}} (p_{(\mu \to \sigma) \to \sigma} \phi) \mathrel{\dot{\supset}} \\ & [\dot{\mathbf{V}} X_{\mu^*} \dot{\mathbf{V}} Y_{\mu^*} (g_{\mu \to \sigma} X \mathrel{\dot{\supset}} (g_{\mu \to \sigma} Y \mathrel{\dot{\supset}} X \mathrel{\dot{\subseteq}} Y))] \end{split}$	A1, A2, D1, A3, A4, D2, D3, A5	KB KB KB KB KB	THM THM THM THM THM THM	17.9/— —/— 16.5/— 12.8/15.1 —/— —/—	3.3/3.2 —/— 0.0/0.0 0.0/5.4 0.0/3.3 —/—	-/- -/- -/- -/- -/-		
CO D2' CO'	\emptyset (no goal, check for consistency) $\mathbf{ess}_{(\mu \to \sigma) \to \mu \to \sigma} = \lambda \phi_{\mu \to \sigma} \star \lambda X_{\mu} \cdot \dot{\mathbf{v}} \psi_{\mu \to \sigma} \star (\psi X \otimes \mathbf{v})$ \emptyset (no goal, check for consistency)	A1, A2, D1, A3, A4, D2, D3, A5 $\dot{\Box}\dot{\Box}\dot{\Psi}Y_{\mu^*}(\phi Y \dot{\Box}\psi Y))$ A1(\Box), A2, D2', D3, A5 A1, A2, D1, A3, A4, D2', D3, A5	KB KB KB	SAT UNS UNS	/ 7.5/7.8 /	_/_ _/_ _/_	7.3/7.4 _/_ _/_		

	HOL encoding	dependencies	logic	status	LEO-II const/vary	Satallax const/vary	Nitpick const/vary
A1	$[\dot{\forall}\phi_{\mu\to\sigma}, p_{(\mu\to\sigma)\to\sigma}(\lambda X_{\mu}, \dot{\neg}(\phi X_{\mu}))]$	$(Y) \doteq \dot{\neg}(n\phi)$			cons, and	consu, rang	consq rang
A2	$[\dot{\mathbf{V}}\phi_{\mu\to\sigma^*}\dot{\mathbf{V}}\psi_{\mu\to\sigma^*}(p_{(\mu\to\sigma)\to\sigma}\phi)]$	$\dot{\mathbf{A}} \stackrel{\cdot}{\Box} \dot{\mathbf{A}} \dot{\mathbf{Y}} = (\mathbf{A} \dot{\mathbf{X}} \stackrel{\cdot}{\Box} u(\mathbf{X})) \stackrel{\cdot}{\Box} u(\mathbf{X})$					
T1	$[\dot{\forall} \phi_{\mu \to \sigma^*} p_{(\mu \to \sigma) \to \sigma} \phi \dot{\supset} \dot{\Diamond} \dot{\exists} X_{\mu^*}]$	ϕX A1(\supset), A2	K	THM	0.1/0.1	0.0/0.0	_/_
••	$(\cdot \varphi_{\mu} \rightarrow \sigma \cdot P(\mu \rightarrow \sigma) \rightarrow \sigma \varphi \rightarrow \nabla \rightarrow \Sigma \mu$	A1, A2	ĸ	THM	0.1/0.1	0.0/5.2	_′/_
D1	$g_{u\to\sigma} = \lambda X_u \cdot \dot{\forall} \phi_{u\to\sigma} \cdot p_{(u-1)}$	4 ÷ 4 ¥			012, 012	0.0,0.	,
A3	$[p_{(\mu \to \sigma) \to \sigma} g_{\mu \to \sigma}]$	Curthan Daguita					
C	$[\dot{\diamondsuit}\exists X_{\mu}.g_{\mu\to\sigma}X]$	Further Results					
	21 μ θμ / 0 3						
A4	$[\dot{\mathbf{v}}\phi_{\mu\to\sigma^*}p_{(\mu\to\sigma)\to\sigma}\phi \supset \dot{\mathbf{p}}_{\mathbf{v}}$. Manakhalan balda					
D2	$\operatorname{ess}_{(\mu \to \sigma) \to \mu \to \sigma} \lambda \varphi_{\mu \to \sigma} \lambda$	Monotheism holds					
T2	$[\forall X_{\mu} \cdot g \xrightarrow{\sigma} X \supset (ess_{(\mu \to \sigma)})$. Oad is flanders					
		 God is flawless 					
D3	$\mathbf{E}_{\mu \to \sigma} = \lambda X_{\mu^*} \dot{\forall} \phi_{\mu \to \sigma^*} (\mathbf{e})$						
D3 A5	$[p_{(\mu \to \sigma) \to \sigma} NE_{\mu \to \sigma}]$						
		D1, C, T2, D3, A5	K	CSA	—/—	<i></i> /	3.8/6.2
	$[p_{(\mu \to \sigma) \to \sigma} NE_{\mu \to \sigma}]$	A1, A2, D1, A3, A4, D2, D3, A5	K	CSA	_/_	<u> </u>	8.2/7.5
	$[p_{(\mu \to \sigma) \to \sigma} NE_{\mu \to \sigma}]$	A1, A2, D1, A3, A4, D2, D3, A5 D1, C, T2, D3, A5	K KB	CSA THM	/ 0.0/0.1	/ 0.1/5.3	
	$[p_{(\mu \to \sigma) \to \sigma} NE_{\mu \to \sigma}]$	A1, A2, D1, A3, A4, D2, D3, A5	K KB	CSA	_/_	<u> </u>	8.2/7.5
A5 T3	$[p_{(\mu o \sigma) o \sigma} \mathrm{NE}_{\mu o \sigma}]$ $[\dot{\Box} \dot{\exists} X_{\mu^*} g_{\mu o \sigma} X]$	A1, A2, D1, A3, A4, D2, D3, A5 D1, C, T2, D3, A5 A1, A2, D1, A3, A4, D2, D3, A5	K KB KB	CSA THM THM	/ 0.0/0.1 /	0.1/5.3 —/—	8.2/7.5 —/— —/—
	$[p_{(\mu \to \sigma) \to \sigma} NE_{\mu \to \sigma}]$	A1, A2, D1, A3, A4, D2, D3, A5 D1, C, T2, D3, A5	K KB KB	CSA THM	/ 0.0/0.1	/ 0.1/5.3	8.2/7.5
A5 T3	$\begin{array}{c} [p_{(\mu-\sigma)-\sigma}\mathrm{NE}_{\mu-\sigma}] \\ [\dot{\Box} \dot{\exists} X_{\mu}, g_{\mu-\sigma} X] \end{array}$ $[s_{\sigma} \dot{\supset} \dot{\Box} s_{\sigma}]$	A1, A2, D1, A3, A4, D2, D3, A5 D1, C, T2, D3, A5 A1, A2, D1, A3, A4, D2, D3, A5 D2, T2, T3	K KB KB	CSA THM THM	/ 0.0/0.1 /	0.1/5.3 —/—	8.2/7.5 —/— —/—
A5 T3 MC	$\begin{array}{c} [p_{(\mu-\sigma)-\sigma}\mathrm{NE}_{\mu-\sigma}] \\ [\dot{\Box} \dot{\exists} X_{\mu}, g_{\mu-\sigma} X] \end{array}$ $[s_{\sigma} \dot{\supset} \dot{\Box} s_{\sigma}]$	A1, A2, D1, A3, A4, D2, D3, A4 D1, C, T2, D3, A5 A1, A2, D1, A3, A4, D2, D3, A4 D2, T2, T3	K KB KB	CSA THM THM THM	0.0/0.1 -/- 17.9/-	0.1/5.3 —/— 3.3/3.2	8.2/7.5 -/- -/- -/-
A5 T3 MC	$\begin{array}{c} [p_{(\mu-\sigma)-\sigma}\mathrm{NE}_{\mu-\sigma}] \\ [\dot{\Box} \dot{\exists} X_{\mu}, g_{\mu-\sigma} X] \end{array}$ $[s_{\sigma} \dot{\supset} \dot{\Box} s_{\sigma}]$	$\begin{array}{c} A_1, A_2, D_1, A_3, A_4, D_2, D_3, A_5'\\ D_1, C_1, T_2, D_3, A_5 \\ A_1, A_2, D_1, A_3, A_4, D_2, D_3, A_5'\\ \\ D_2, T_2, T_3\\ A_1, A_2, D_1, A_3, A_4, D_2, D_3, A_5'\\ \hline p_{(\mu \to \sigma) \to \sigma}\phi) \supset \div(\phi X))] A1, D1\\ A1, A2, D1, A3, A4, D2, D3, A_5'\\ \hline p_{(x, \tau) \to \sigma}\phi) \supset \bot(\phi X) D1, A_5, A_5, A_5, A_7, A_7, A_7, A_7, A_7, A_7, A_7, A_7$	K KB KB KB KB KB	CSA THM THM THM THM	0.0/0.1 -/- 17.9/- 16.5/-	3.3/3.2 0.0/0.0	8.2/7.5 —/— —/— —/— —/—
A5 T3 MC FG	$\begin{split} & [p_{(\mu \to \sigma) \to \sigma} \mathrm{NE}_{\mu \to \sigma}] \\ & [\dot{\Box} \dot{\exists} X_{\mu}, g_{\mu \to \sigma} X] \end{split}$ $[s_{\sigma} \: \dot{\supset} \: \dot{\Box} s_{\sigma}]$ $[\dot{\forall} \phi_{\mu \to \sigma}, \dot{\forall} X_{\mu}, (g_{\mu \to \sigma} X \: \dot{\supset} \: (\dot{\neg} (g_{\mu \to \sigma} X \: \dot{)} \: \dot{)})$	A1, A2, D1, A3, A4, D2, D3, A5 D1, C, T2, D3, A5 A1, A2, D1, A3, A4, D2, D3, A5 D2, T2, T3 A1, A2, D1, A3, A4, D2, D3, A5 $P_{(\mu \to \sigma) \to \sigma}(\phi X))] A1, D1$ A1, A2, D1, A3, A4, D2, D3, A5	K KB KB KB KB	CSA THM THM THM THM THM	17.9/— 16.5/— 12.8/15.1	0.1/5.3 -/- 3.3/3.2 0.0/0.0 0.0/5.4	8.2/7.5 —/— —/— —/— —/—
MC FG MT	$\begin{split} & [p_{\mu \to \sigma})_{-\sigma} \mathbf{N} \mathbf{E}_{\mu \to \sigma}] \\ & [\dot{\alpha} \dot{\exists} X_{\mu^*} g_{\mu \to \sigma} X] \end{split}$ $& [s_{\sigma} \dot{\supset} \dot{\alpha} s_{\sigma}] \\ & [\dot{\forall} \phi_{\mu \to \sigma^*} \dot{\forall} X_{\mu^*} (g_{\mu \to \sigma} X \dot{\supset} (\dot{\neg} (p_{\mu \to \sigma}) \dot{\nabla} (g_{\mu \to \sigma$	$\begin{array}{c} A.I, A.2, D.I, A.3, A.4, D.2, D.3, A.5\\ D.I, C, T.2, D.3, A.5\\ A.I, A.2, D.I, A.3, A.4, D.2, D.3, A.5\\ D.2, T.2, T.3\\ A.I, A.2, D.I, A.3, A.4, D.2, D.3, A.5\\ P_{(\mu \rightarrow \sigma) \rightarrow \sigma}\phi) \supset \dot{\neg}(\phi X)))] A.I, D.I\\ A.I, A.2, D.I, A.3, A.4, D.2, D.3, A.5\\ Y. \supset X \doteq Y))] D.I, F.G\\ A.I, A.2, D.I, A.3, A.4, D.2, D.3, A.5\\ A.I, A.I, A.I, A.I, A.I, A.I, A.I, A.I,$	KBKBKBKBKBKBKBKB	CSA THM THM THM THM THM THM THM	17.9/— 16.5/— 12.8/15.1	0.1/5.3 -/- 3.3/3.2 0.0/0.0 0.0/5.4	8.2/7.5 -/- -/- -/- -/- -/- -/-
MC FG MT CO	$\begin{aligned} & [p_{\mu \to \sigma 1 \to \sigma} \text{NE}_{\mu \to \sigma}] \\ & [\dot{\Box} \dot{\Xi} X_{\mu}, g_{\mu \to \sigma} X] \end{aligned}$ $[s_{\sigma} \dot{\supset} \dot{\Box} s_{\sigma}]$ $[\dot{V} \phi_{\mu \to \sigma}, \dot{V} X_{\mu}, (g_{\mu \to \sigma} X \dot{\supset} (\dot{\Box} (f_{\mu \to \sigma} X \dot{\supset} (g_{\mu \to \sigma} X \dot{)} \dot{)})$	$\begin{array}{c} A_1, A_2, D_1, A_3, A_4, D_2, D_3, A_5 \\ D_1, C_1, T_2, D_3, A_5 \\ A_1, A_2, D_1, A_3, A_4, D_2, D_3, A_5 \\ \end{array}$ $\begin{array}{c} D_2, T_2, T_3 \\ A_1, A_2, D_1, A_3, A_4, D_2, D_3, A_5 \\ D_4, D_1, D_1, A_3, A_4, D_2, D_3, A_5 \\ D_4, D_1, D_1, D_1, D_1 \\ A_1, A_2, D_1, A_3, A_4, D_2, D_3, A_5 \\ D_1, F_6 \\ A_1, A_2, D_1, A_3, A_4, D_2, D_3, A_5 \\ D_1, F_6 \\ A_1, A_2, D_1, A_3, A_4, D_2, D_3, A_5 \\ D_1, F_6 \\ A_1, A_2, D_1, A_3, A_4, D_2, D_3, A_5 \\ D_2, D_1, D_1, A_2, D_1, A_3, A_4, D_2, D_3, A_5 \\ D_3, D_1, D_1, D_2, D_1, D_2, D_2, D_3, D_3, D_2 \\ D_1, F_6 \\ D_2, D_1, D_2, D_2, D_3, D_3, D_3, D_4 \\ D_3, D_1, D_2, D_2, D_3, D_3, D_3, D_4 \\ D_4, D_1, D_2, D_2, D_3, D_4 \\ D_1, D_2, D_3, D_4, D_3, D_4, D_4, D_5, D_5, D_6 \\ D_1, D_2, D_3, D_4, D_4, D_5, D_6, D_6 \\ D_1, D_2, D_2, D_3, D_4, D_6 \\ D_2, D_2, D_3, D_4, D_6, D_6 \\ D_3, D_4, D_6, D_6, D_6, D_6 \\ D_4, D_6, D_6, D_6, D_6, D_6 \\ D_6, D_6, D_6, D_6, D_6, D_6 \\ D_6, D_6, D_6, D_6, D_6, D_6 \\ D_6, D_6, D_6, D_6, D_6, D_6 \\ D_7, D_8, D_8, D_6, D_6, D_6 \\ D_8, D_8, D_8, D_6, D_6, D_6 \\ D_8, D_8, D_8, D_6, D_6, D_6 \\ D_8, D_8, D_8, D_6, D_6, D_6, D_6 \\ D_8, D_8, D_8, D_6, D_6, D_6, D_6 \\ D_8, D_8, D_8, D_6, D_6, D_6, D_6 \\ D_8, D_8, D_8, D_8, D_8, D_8, D_8, D_8,$	K KB KB KB KB KB	CSA THM THM THM THM THM THM	17.9/— 16.5/— 12.8/15.1	0.1/5.3 -/- 3.3/3.2 0.0/0.0 0.0/5.4	8.2/7.5 —/— —/— —/— —/—
MC FG MT CO D2'	$\begin{bmatrix} p_{(\mu-\sigma)'\rightarrow\sigma} \text{NE}_{\mu-\sigma} \\ [\dot{\Box} \dot{\Xi} X_{\mu^*} g_{\mu-\sigma} X] \end{bmatrix}$ $[s_{\sigma} \dot{\supset} \dot{\Box} s_{\sigma}]$ $[\dot{\forall} \phi_{\mu-\sigma^*} \dot{\lor} X_{\mu^*} (g_{\mu-\sigma} X \dot{\supset} (\dot{\frown} (p_{\mu-\sigma} \dot{\lor} X_{\mu^*} \dot{\lor} y_{\mu^*} (g_{\mu-\sigma} X \dot{\supset} (g_{\mu-\sigma} \dot{\lor} X_{\mu^*} \dot{\lor} y_{\mu^*} (g_{\mu-\sigma} X \dot{\supset} (g_{\mu-\sigma} \dot{\lor} X_{\mu^*} \dot{\lor} y_{\mu^*} (g_{\mu-\sigma} X \dot{\supset} (g_{\mu-\sigma} \dot{\lor} X_{\mu^*} \dot{\lor} y_{\mu^*} g_{\mu-\sigma} \dot{\lor} A \dot{\lor} g_{\mu-\sigma} \dot{\lor} A \dot$	A1, A2, D1, A3, A4, D2, D3, A5 D1, C, T2, D3, A5 A1, A2, D1, A3, A4, D2, D3, A5 D2, T2, T3 A1, A2, D1, A3, A4, D2, D3, A5 $P_{(\mu \to 0) \to \sigma}(\phi) \supset \neg (\phi X)))]$ A1, D1 A1, A2, D1, A3, A4, D2, D3, A5 Y $\supset X = Y))]$ D1, FG A1, A2, D1, A3, A4, D2, D3, A5 ency) A1, A2, D1, A3, A4, D2, D3, A5 ency) A1, A2, D1, A3, A4, D2, D3, A5	KBKBKBKBKBKBKB	THM	17.9/— 16.5/— 12.8/15.1 —/—	0.1/5.3 -/- 3.3/3.2 0.0/0.0 0.0/5.4	8.2/7.5 -/- -/- -/- -/- -/- -/-
MC FG MT CO	$\begin{aligned} & [p_{\mu \to \sigma 1 \to \sigma} \text{NE}_{\mu \to \sigma}] \\ & [\dot{\Box} \dot{\Xi} X_{\mu}, g_{\mu \to \sigma} X] \end{aligned}$ $[s_{\sigma} \dot{\supset} \dot{\Box} s_{\sigma}]$ $[\dot{V} \phi_{\mu \to \sigma}, \dot{V} X_{\mu}, (g_{\mu \to \sigma} X \dot{\supset} (\dot{\Box} (f_{\mu \to \sigma} X \dot{\supset} (g_{\mu \to \sigma} X \dot{)} \dot{)})$	A1, A2, D1, A3, A4, D2, D3, A5 D1, C, T2, D3, A5 A1, A2, D1, A3, A4, D2, D3, A5 D2, T2, T3 A1, A2, D1, A3, A4, D2, D3, A5 $P_{(\mu \to 0) \to \sigma}(\phi) \supset \neg (\phi X)))]$ A1, D1 A1, A2, D1, A3, A4, D2, D3, A5 Y $\supset X = Y))]$ D1, FG A1, A2, D1, A3, A4, D2, D3, A5 ency) A1, A2, D1, A3, A4, D2, D3, A5 ency) A1, A2, D1, A3, A4, D2, D3, A5	K KB KB KB KB KB KB KB	CSA THM THM THM THM THM THM THM	17.9/— 16.5/— 12.8/15.1	0.1/5.3 -/- 3.3/3.2 0.0/0.0 0.0/5.4	8.2/7.5 -/- -/- -/- -/- -/- -/-

Modal Collapse

$$\forall \varphi (\varphi \supset \Box \varphi)$$

- proved by LEO-II and Satallax
- for constant and varying domains

Main critique on Gödel's ontological proof:

- there are no contingent truths
- everything is determined / no free will
- why using modal logic in the first place?

_								
ł	MC	$[s_{\sigma} \stackrel{.}{\supset} \Box s_{\sigma}]$	D2, T2, T3 A1, A2, D1, A3, A4, D2, D3, A5	KB KB	THM THM	17.9/— —/—	3.3/3.2 —/—	—/— —/—
	FG	FG $[\forall \varphi_{\mu \to \sigma^*} \forall X_{\mu^*} (g_{\mu \to \sigma} X \supset (\neg (p_{(\mu \to \sigma) \to \sigma} \varphi) \supset \neg (\varphi X)))]$ A1, D1		KB	I HIVI	10.5/—	0.0/0.0	_/_
		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	A1, A2, D1, A3, A4, D2, D3, A5	KB	THM	12.8/15.1	0.0/5.4	_/_
	MT	$[\dot{\forall} X_{\mu^*} \dot{\forall} Y_{\mu^*} (g_{\mu \to \sigma} X \supset (g_{\mu \to \sigma} Y \supset X \stackrel{.}{=} Y))]$	D1.FG	KB	THM	_/_	0.0/3.3	_/_
		Εμ μ - (δμυ	A1, A2, D1, A3, A4, D2, D3, A5	KB	THM	_/_	_/_	<u>-</u> /—
	CO D2'	Ø (no goal, check for consistency)	A1, A2, D1, A3, A4, D2, D3, A5	KB	SAT	—/—	-/-	7.3/7.4
	CO'	$\begin{array}{l} \operatorname{ess}_{(\mu \to \sigma) \to \mu \to \sigma} = \lambda \phi_{\mu \to \sigma^{\bullet}} \lambda X_{\mu^{\bullet}} \dot{\forall} \psi_{\mu \to \sigma^{\bullet}} (\psi X \\ \emptyset \text{ (no goal, check for consistency)} \end{array}$	$A1(\supset), A2, D2', D3, A5$ A1, A2, D1, A3, A4, D2', D3, A5	KB KB	UNS UNS	7.5/7.8	—/— —/—	—/— —/—
			,,,,,			,	,	,

Avoiding the Modal Collapse: Very recent work (not yet published)

Variants of Gödel's proof that avoid the modal collapse

- [Frode Børdal, **Understanding Gödel's Ontological Argument**, 1998] (verified and automated)
- [Anthony Anderson, **Some emendations of Gödel's ontological proof**, 1990] (verified and automated)
- [Melvin Fitting, Types, Tableaux and Gödel's God, 2002] (ongoing)

Future work

- [André Fuhrmann, 2005]
- [Petr Hajek, 1996, 2001, 2002, 2008, 2011]
- [Szatkowski, 2011]
- ...

Conclusion

Achievements

- significant contribution towards a Computational Metaphysics
- HOL very fruitfully exploited as a universal metalogic
- systematic study of a prominent philosophical argument
- even some novel results were found by HOL-ATPs
- infrastructure can be adapted for other logics and logic combinations

Relevance (wrt foundations and applications)

Theoretical Philosophy, Artificial Intelligence, Computer Science, Maths

Little related work: only for Anselm's simpler argument

first-order ATP PROVER9

[OppenheimerZalta, 2011]

interactive proof assistant PVS

[Rushby, 2013]

Future work

- continuation of systematic study of the ontological argument
- further studies in Computational Metaphysics

Germany

- Telepolis & Heise
- Spiegel Online
- FA7

- . . .

- Die Welt
- Berliner Morgenpost
- Hamburger Abendpost

Austria

- Die Presse
- Wiener Zeitung
- ORF

Italy

- Repubblica
- Ilsussidario
- . . .

India

- DNA India
- Delhi Daily News
- India Today
- . . .

US

- ABC News

- . . .

- . . .

International

- Spiegel International
- Yahoo Finance
- United Press Intl.

Germany

- Telepolis & Heise
- Spiegel Online
- FA7
- Die Welt
- Berliner Morgenpost
- Hamburger Abendpost
- _

Austria

- Die Presse
- Wiener Zeitung
- ORF - . . .

Italy

- Repubblica
- Ilsussidario
- . . .

India

- DNA India
- Delhi Daily News
- India Today
 - . . .

US

- ABC News
- . .

International

- Spiegel International
- Yahoo Finance
- United Press Intl.

Austria

- Die Presse
- Wiener Zeitung
- ORF
- . . .

Italy

- Repubblica
- Ilsussidario
- . . .

India

- DNA India
- Delhi Daily News
- India Today
 - . . .

US

- ABC News
- . . .

International

- Spiegel International
- Yahoo Finance
- United Press Intl.
- . . .

SCIENCE NEWS

HOME / SCIENCE NEWS / RESEARCHERS SAY THEY USED MACBOOK TO PROVE GOEDEL'S GOD THEOREM

Researchers say they used MacBook to prove Goedel's God theorem

Oct. 23, 2013 | 8:14 PM | 1 comments

See more serious and funny news links at https://github.com/FormalTheology/GoedelGod/tree/master/Press

```
1
    %----Additional base type mu (for worlds)
    %----(already inbuilt: $i for individuals and $o for Booleans)
2
    thf(mu type, type, (mu:$tType)).
3
    %----Reserved constant r for accessibility relation
4
    thf(r,type,(r:$i>$i>$o)).
    %----Modal operators not, or, box
    thf(mnot type,type,(mnot:($i>$o)>$i>$o)).
7
    thf (mnot, definition, (mnot = (^[A:\$i>\$o,W:\$i]:~(A@W)))).
8
9
    thf(mor_type,type,(mor:($i>$0)>($i>$0)>$i>$0)).
    thf(mor,definition,(mor = (^[A:$i>$o,Psi:$i>$o,W:$i]:((A@W)|(Psi@W))))).
10
    thf(mbox type, type, (mbox: ($i>$i>$o)>($i>$o)>$i>$o)).
11
    thf(mbox, definition, (mbox = (^[A:\$i>\$o,W:\$i]:![V:\$i]:(^(r@W@V)|(A@V)))).
12
    %----Quantifier (constant domains) for individuals and propositions
13
    thf(mall_ind_type,type,(mall_ind:(mu>$i>$o)>$i>$o)).
14
    thf(mall ind, definition, (mall_ind = (^[A:mu>$i>$o,W:$i]:![X:mu]:(A@X@W)))).
15
    thf(mall indset type, type, (mall indset:((mu>$i>$o)>$i>$o)>$i>$o)).
16
17
    thf(mall indset, definition, (
        mall_indset = (^[A:(mu>$i>$o)>$i>$o,W:$i]:![X:mu>$i>$o]:(A@X@W)))).
18
    %----Definition of validity
19
    thf(v_type, type, (v: ($i>$o)>$o)).
20
    thf (mvalid, definition, (v = (^[A:\$i>\$o]:![W:\$i]:(A@W)))).
21
    %----Properties of accessibility relations
22
    thf(msymmetric_type,type,(msymmetric:($i>$i>$o)>$o)).
23
        msymmetric = (^[R:\$i>\$i>\$o]:![S:\$i,T:\$i]:((R@S@T)=>(R@T@S)))))
24
25
    %----Here we work with logic KB
```

thf(svm,axiom,(msvmmetric@r)).

26

C: $\Diamond \exists z. G(z)$

 $\mathbf{C}: \Diamond \exists z. G(z) \qquad \mathbf{L2}: \Diamond \exists z. G(z) \to \Box \exists x. G(x)$

L2:
$$\Diamond \exists z. G(z) \rightarrow \Box \exists x. G(x)$$

 $\mathbf{C}: \Diamond \exists z. G(z) \qquad \mathbf{L2}: \Diamond \exists z. G(z) \to \Box \exists x. G(x)$

C:
$$\Diamond \exists z. G(z)$$
 L2: $\Diamond \exists z. G(z) \rightarrow \Box \exists x. G(x)$

C: $\Diamond \exists z.G(z)$ L2: $\Diamond \exists z.G(z) \rightarrow \Box \exists x.G(x)$

←ロト ←団 ト ← 重 ト へ 重 ・ り へ で

C: $\Diamond \exists z. G(z)$ **L2:** $\Diamond \exists z. G(z) \rightarrow \Box \exists x. G(x)$ **T3:** $\Box \exists x. G(x)$

D1:
$$G(x) \equiv \forall \varphi . [P(\varphi) \rightarrow \varphi(x)]$$

$$\begin{array}{c|c} \textbf{L1:} \ \exists z.G(z) \rightarrow \Box \exists x.G(x) \\ \hline \Diamond \exists z.G(z) \rightarrow \Diamond \Box \exists x.G(x) \\ \hline \textbf{L2:} \ \Diamond \exists z.G(z) \rightarrow \Box \exists x.G(x) \\ \end{array}$$

C: $\Diamond \exists z. G(z)$ **L2:** $\Diamond \exists z. G(z) \rightarrow \Box \exists x. G(x)$ **T3:** $\Box \exists x. G(x)$

↓ロ > ∢母 > ∢喜 > ∢喜 > ・喜 ・ 夕 **◇** ◆

D1:
$$G(x) \equiv \forall \varphi . [P(\varphi) \rightarrow \varphi(x)]$$

D3*:
$$NE(x) \equiv \Box \exists y.G(y)$$

$$P(NE)$$

$$L1: \exists z.G(z) \to \Box \exists x.G(x)$$

$$\Diamond \exists z.G(z) \to \Diamond \Box \exists x.G(x)$$

$$\forall \xi_{\bullet}.[\Diamond \Box \xi \to \Box \xi]$$

$$L2: \Diamond \exists z.G(z) \to \Box \exists x.G(x)$$

L2: $\Diamond \exists z. G(z) \rightarrow \Box \exists x. G(x)$

T3: $\Box \exists x. G(x)$

C: $\Diamond \exists z. G(z)$

D1:
$$G(x) \equiv \forall \varphi . [P(\varphi) \rightarrow \varphi(x)]$$

D3*:
$$NE(x) \equiv \Box \exists y.G(y)$$
 (cheating!)

C: $\Diamond \exists z. G(z)$ **L2**: $\Diamond \exists z. G(z) \rightarrow \Box \exists x. G(x)$

D1:
$$G(x) \equiv \forall \varphi . [P(\varphi) \rightarrow \varphi(x)]$$

D3*:
$$NE(x) \equiv \Box \exists y.G(y)$$
 D3: $NE(x) \equiv \forall \varphi . [\varphi \ ess \ x \rightarrow \Box \exists y.\varphi(y)]$

D1:
$$G(x) \equiv \forall \varphi . [P(\varphi) \rightarrow \varphi(x)]$$

D3*:
$$NE(x) \equiv \Box \exists y. G(y)$$
 D3: $NE(x) \equiv \forall \varphi \cdot . [\varphi \ ess \ x \rightarrow \Box \exists y. \varphi(y)]$

D1:
$$G(x) \equiv \forall \varphi . [P(\varphi) \rightarrow \varphi(x)]$$

D3*:
$$NE(x) \equiv \Box \exists y.G(y)$$
 D3: $NE(x) \equiv \forall \varphi . [\varphi \ ess \ x \rightarrow \Box \exists y.\varphi(y)]$

D1:
$$G(x) \equiv \forall \varphi . [P(\varphi) \rightarrow \varphi(x)]$$

D2:
$$\varphi$$
 ess $x \equiv \varphi(x) \land \forall \psi \cdot .(\psi(x) \rightarrow \Box \forall x \cdot .(\varphi(x) \rightarrow \psi(x)))$

D3*:
$$NE(x) \equiv \Box \exists y.G(y)$$
 D3: $NE(x) \equiv \forall \varphi_{\bullet}.[\varphi \ ess \ x \rightarrow \Box \exists y.\varphi(y)]$

$$\frac{\textbf{A1b}}{\forall \varphi .. [\neg P(\varphi) \rightarrow P(\neg \varphi)]} \qquad \frac{\textbf{A4}}{\forall \varphi .. [P(\varphi) \rightarrow \Box P(\varphi)]} \qquad \frac{\textbf{A5}}{P(NE)}$$

$$\frac{\textbf{T2: } \forall y .. [G(y) \rightarrow G \ ess \ y]}{} \qquad P(NE)$$

$$\frac{\textbf{L1: } \exists z. G(z) \rightarrow \Box \exists x. G(x)}{\Diamond \exists z. G(z) \rightarrow \Diamond \Box \exists x. G(x)} \qquad \forall \xi .. [\Diamond \Box \xi \rightarrow \Box \xi]$$

$$\textbf{L2: } \Diamond \exists z. G(z) \rightarrow \Box \exists x. G(x)$$

$$\mathbf{C: } \Diamond \exists z. G(z) \qquad \mathbf{L2: } \Diamond \exists z. G(z) \rightarrow \Box \exists x. G(x)$$

D1:
$$G(x) \equiv \forall \varphi . [P(\varphi) \rightarrow \varphi(x)]$$

D2:
$$\varphi$$
 ess $x \equiv \varphi(x) \land \forall \psi$. $(\psi(x) \rightarrow \Box \forall x$. $(\varphi(x) \rightarrow \psi(x)))$

D3*:
$$NE(x) \equiv \Box \exists y.G(y)$$
 D3: $NE(x) \equiv \forall \varphi_{\bullet}.[\varphi \ ess \ x \rightarrow \Box \exists y.\varphi(y)]$

C:
$$\Diamond \exists z. G(z)$$

T3: $\Box \exists x.G(x)$

L2: $\Diamond \exists z. G(z) \rightarrow \Box \exists x. G(x)$

C: $\Diamond \exists z. G(z)$

D1:
$$G(x) \equiv \forall \varphi . [P(\varphi) \rightarrow \varphi(x)]$$

D2:
$$\varphi \ ess \ x \equiv \varphi(x) \land \forall \psi_{\bullet}.(\psi(x) \to \Box \forall x_{\bullet}.(\varphi(x) \to \psi(x)))$$

D3*:
$$NE(x) \equiv \Box \exists y.G(y)$$
 D3: $NE(x) \equiv \forall \varphi_{\bullet}.[\varphi \ ess \ x \rightarrow \Box \exists y.\varphi(y)]$

D1:
$$G(x) \equiv \forall \varphi . [P(\varphi) \to \varphi(x)]$$

D2: $\varphi \ ess \ x \equiv \varphi(x) \land \forall \psi_{\bullet} . (\psi(x) \to \Box \forall x_{\bullet} . (\varphi(x) \to \psi(x)))$

$$\mathbf{D2}^{\star} \cdot \mathbf{N}E(\mathbf{v}) = \mathbf{D2}^{\star} \cdot \mathbf{N}$$

D3*:
$$NE(x) \equiv \Box \exists y. G(y)$$
 D3: $NE(x) \equiv \forall \varphi \cdot [\varphi \ ess \ x \rightarrow \Box \exists y. \varphi(y)]$

$$\begin{array}{c|c} \underline{\textbf{A3}} \\ \hline P(G) \\ \hline \\ \hline \\ \textbf{C:} \diamond \exists z. G(z) \\ \hline \\ \underline{\textbf{A1b}} \\ \hline \forall \overline{\varphi_{\bullet}}. [\neg P(\overline{\varphi}) \rightarrow P(\neg \overline{\varphi})] \\ \hline \\ \forall \overline{\varphi_{\bullet}}. [P(\overline{\varphi}) \rightarrow \Box P(\overline{\varphi})] \\ \hline \\ \textbf{A5} \\ \end{array}$$

$$\begin{array}{ccc} \textbf{C:} \diamondsuit \exists z.G(z) & \textbf{L2:} \diamondsuit \exists z.G(z) \rightarrow \Box \exists x.G(x) \\ \hline \textbf{T3:} \ \Box \exists x.G(x) \\ \end{array}$$

D1:
$$G(x) \equiv \forall \varphi . [P(\varphi) \rightarrow \varphi(x)]$$

D2:
$$\varphi$$
 ess $x \equiv \varphi(x) \land \forall \psi_{\bullet}.(\psi(x) \to \Box \forall x_{\bullet}.(\varphi(x) \to \psi(x)))$

D3*:
$$NE(x) \equiv \Box \exists y.G(y)$$
 D3: $NE(x) \equiv \forall \varphi_{\bullet}.[\varphi \ ess \ x \rightarrow \Box \exists y.\varphi(y)]$

$$\begin{array}{c|c} \underline{\textbf{A3}}_{P(G)} & \textbf{T1:} \ \forall \varphi .. [P(\varphi) \rightarrow \Diamond \exists x. \varphi(x)] \\ \hline \textbf{C:} \ \Diamond \exists z. G(z) \\ \\ \hline \\ \underline{\textbf{A1b}}_{\forall \varphi .. [\neg P(\varphi) \rightarrow P(\neg \varphi)]} & \underline{\textbf{A4}}_{\forall \varphi .. [P(\varphi) \rightarrow \Box P(\varphi)]} & \underline{\textbf{A5}}_{P(NE)} \\ \hline \underline{\textbf{T2:}} \ \forall y .. [G(y) \rightarrow G \ ess \ y] & \underline{P(NE)} \\ \hline \\ \underline{\textbf{L1:}} \ \exists z. G(z) \rightarrow \Box \exists x. G(x) & \forall \xi .. [\Diamond \Box \xi \rightarrow \Box \xi] \\ \hline \\ \underline{\textbf{L2:}} \ \Diamond \exists z. G(z) \rightarrow \Box \exists x. G(x) \\ \hline \\ \underline{\textbf{L2:}} \ \Diamond \exists z. G(z) \rightarrow \Box \exists x. G(x) \\ \hline \\ \hline \\ \underline{\textbf{L2:}} \ \Diamond \exists z. G(z) \rightarrow \Box \exists x. G(x) \\ \hline \end{array}$$

T3: $\Box \exists x. G(x)$

←□ → ←□ → ← □ → ← □ → へ ○ ○

C: $\Diamond \exists z. G(z)$

L2: $\Diamond \exists z. G(z) \rightarrow \Box \exists x. G(x)$

D1:
$$G(x) \equiv \forall \varphi . [P(\varphi) \to \varphi(x)]$$

D2: $\varphi \ ess \ x \equiv \varphi(x) \land \forall \psi_{\bullet} . (\psi(x) \to \Box \forall x_{\bullet} . (\varphi(x) \to \psi(x)))$

D3*:
$$NE(x) \equiv \Box \exists y.G(y)$$
 D3: $NE(x) \equiv \forall \varphi_{\bullet}.[\varphi \ ess \ x \rightarrow \Box \exists y.\varphi(y)]$

D1:
$$G(x) \equiv \forall \varphi.[P(\varphi) \to \varphi(x)]$$

D2: $\varphi \ ess \ x \equiv \varphi(x) \land \forall \psi.(\psi(x) \to \Box \forall x.(\varphi(x) \to \psi(x)))$
D3: $NE(x) \equiv \forall \varphi.[\varphi \ ess \ x \to \Box \exists y.\varphi(y)]$

$$\begin{array}{c} \mathbf{A2} \\ \mathbf{P}(G) \\ \hline P(G) \\ \hline \\ \mathbf{P}(G) \\ \\ \mathbf{P}(G) \\ \hline \\ \mathbf{P}(G) \\ \\ \mathbf{P}(G) \\ \\ \mathbf{P}(G) \\ \\ \mathbf{P}(G) \\ \\ \mathbf$$

HOL e.g. assume an algebraic / categorical characterization

HOML example formula: $(\Box \Diamond (\Box \varphi \supset \Box \Diamond \varphi)) \supset (\Box \varphi \supset \Box \Diamond \varphi)$

HOL

e.g. assume an algebraic / categorical characterization

HOML example formula:

$$(\Box \Diamond (\Box \varphi \supset \Box \Diamond \varphi)) \supset (\Box \varphi \supset \Box \Diamond \varphi)$$

HOML in HOL: Signature

$$valid \ (\Box \diamondsuit (\Box \varphi \supset \Box \diamondsuit \varphi)) \supset (\Box \varphi \supset \Box \diamondsuit \varphi)$$

$$\varphi, \psi: \mu \to o$$

$$\square, \diamondsuit : (\mu \to o) \to (\mu \to o)$$

$$\supset: (\mu \to o) \to (\mu \to o) \to (\mu \to o)$$

valid :
$$(\mu \rightarrow o) \rightarrow o$$

$$r: \mu \rightarrow \mu \rightarrow o$$

HOL

e.g. assume an algebraic / categorical characterization

HOML example formula:

$$(\Box \Diamond (\Box \varphi \supset \Box \Diamond \varphi)) \supset (\Box \varphi \supset \Box \Diamond \varphi)$$

HOML in HOL: Signature

$$valid (\Box \Diamond (\Box \varphi \supset \Box \Diamond \varphi)) \supset (\Box \varphi \supset \Box \Diamond \varphi)$$

$$\varphi, \psi: \mu \to o$$

$$\square, \diamondsuit : (\mu \to o) \to (\mu \to o)$$

$$\supset: (\mu \to o) \to (\mu \to o) \to (\mu \to o)$$

valid :
$$(\mu \rightarrow o) \rightarrow o$$

$$r: \mu \to \mu \to o$$

Axiomatization (relative to HOL)

$$\forall s (valid \ s) \equiv \forall w (sw)$$

$$\forall s \forall t \forall w ((s \supset t)w) \equiv ((sw) \Rightarrow (tw))$$

$$\forall s \forall w ((\diamond s)w) \equiv \exists v (rwv) \land (sv)$$

$$\forall s \forall w ((\Box s)w) \equiv \forall v (rwv) \Rightarrow (sv)$$

HOL

e.g. assume an algebraic / categorical characterization

HOML example formula:

$$(\Box \Diamond (\Box \varphi \supset \Box \Diamond \varphi)) \supset (\Box \varphi \supset \Box \Diamond \varphi)$$

HOML in HOL: Signature

$$valid (\Box \Diamond (\Box \varphi \supset \Box \Diamond \varphi)) \supset (\Box \varphi \supset \Box \Diamond \varphi)$$

$$\varphi, \psi: \mu \to 0$$

$$\Box, \diamondsuit: (\mu \to o) \to (\mu \to o)$$

$$\supset: (\mu \to o) \to (\mu \to o) \to (\mu \to o)$$

valid :
$$(\mu \rightarrow o) \rightarrow o$$

$$r: \mu \rightarrow \mu \rightarrow o$$

Axiomatization (relative to HOL)

$$\forall s (valid \ s) \equiv \forall w (sw)$$

$$\forall s \forall t \forall w \, ((s \supset t)w) \equiv ((sw) \Rightarrow (tw))$$

$$\forall s \forall w ((\diamond s)w) \equiv \exists v (rwv) \land (sv)$$

$$\Box = \lambda s \lambda w \forall u (\neg rwu \lor su)$$