Date - 11-01-2024

K-Medoid Algorithm

- The k-moderid agasithm is a clustering algorithm that is an extension of the more well known k-moon algorithm.

- chike k-moons, which uses the mean (centroid)

of a cluster to prevent it, k-medoid uses the
actual data point within a cluster that minimizes

the dissimilarity to other points in the
cluster.

- This data point is called the "medoid"

Here one the bodic steps of the K-Medoid
Algorithm

- 1. Anitializations: select k initial data point as the initial medoids
- 2. Assignment:

 assign each data point to the nearest medoid
 based on a dissimilarity measure (commonly),

 it could be endidean distance, manhattan distance,
 or any other appropriate metric).
- 3. Update Medoids:

-

- For each cluster a contable the total dissimilarity of each point to the other points in the cluster.
- Select the data point with the lawest total dissimilarity as the new medoid for that cluster.

4. Repeat:

Repeat the assignment and updale steps until convergence (no or minimal changes in cluster assignments)

5. autput: The first clusters and their respective medoids.

- K-medaid is more robust to authors since it uses actual data points as medaids.

- it can be computationally more expensive than k-means a especially when calculating dissimilarity for all pairs of points in the cluster during the medald update step.

-

Com

solved example:

Apply k- Medord clustering algorithm to form.
two clusters.

Here manhattan distance to find the distance between data point and medaid.

	- 1	21	91	C1 1	C2 1	Cluster 1	0	cluster
		-	6	3	7	er	8	CI
-	×1	2,		0	4	Cı	5	C,
_	1/2	3	4	4	8	Cı	9	Ci
W.	X3	3	8	14		C1	7	CI
	X4	4	7	4	6		7	
20	Xy	6	2	5	3	Ca	2	0
-	×6	6	4	3	1	02	2	0
-	XŦ	7	3	5	1	C2	G	O
-	Ka	17	14	14	10	C 2	11	0
-	Xg	18	5	6	7 2	C2	3	
	X10	7	6	. 6	2	Ca	13	0

ctop? Select any two medoids and find distance CT (3'4) CS= (+4) man hattan distance = | X1-x2 + | y1- y2 | md+ [(2,6), (3,4)] = |2-3|+(6-4)=3 Mdist [(3,4), (3,4)] = (3-3 |+ |4-4| = 0 similarly for othe data point. Man compare c, and c 2 distances for each data point and threm decide the that point Ites on which cluster exor Hance. clustons are C1: {(2,6), (3,9), (3,8), (4,7)} C2: 8(6.2) (6,4), (7,3), (7,4), (8,5), (7,6)4 first calculate the individual cost the colculate the total cost: cardinality of cost (Cax) = Eilci-Xil total cost = {cost((3,4),(2,6)) + (ost ((3,4),4(3,8)) + cost ((3,4),(+,7)) + cost ((7,9) , (6,2)) + Cost ((7,9) , (6,4)) + cost ((7,9), (7,3)) + cost ((794), (895)) + cost ((7,4), (7,6))} = 3+9+4+2+3+1+1+2=20 step? Rondomly select one non-medoid point and recolculate the cost. C1=(3,4) an c2=(7,4) 6 = (7-3) It ere swap c2 with 0

new medoids C1 = (3,4) and 0 = (7,3)

Hence our we manhattan distance | x,-x2 + | y,-y2 |
girailarly find rearhattan distance that
is are calculate in step-1 but with our
new medaids.

Here Men clusters and

(1: \(\left(2.6) \, \left(3.9) \right) \, \left(4.7) \right) \)

(3: \(\left(6.2) \, \left(6.4) \, \left(7.3) \) \(\left(7.4) \, \left(8.5) \) \(\left(7.6) \right) \)

(1: \(\left(6.2) \, \left(6.4) \, \left(7.3) \) \(\left(7.4) \, \left(8.5) \) \(\left(7.6) \right) \)

(2: \(\left(6.2) \, \left(6.4) \, \left(7.3) \) \(\left(7.4) \, \left(7.4) \) \(\lef

Total cost = 3+4+4+2+2+1+3+3=22

cost of swapping of medard c2 with 0

S= (urrent total cost - Previous Total cost

S= 22-20>0

Home suropping C2 with 0 is not good idea Home first medoids are C1= (3,4) and c2=(7,4)

-

-