CNNs

Definition of CNNs

One or more layers in the net use convolutions

Convolutions

- Confusing terminology
 - o Convnets actually perform *cross-correlation*
- Computing a single output pixel:

$$S(i,j) = \sum_m \sum_n I(i+m,j+n) K(m,n)$$

Convolutions

$$S(i,j) = \sum_m \sum_n I(i+m,j+n) K(m,n)$$

Full connectivity

Sparse connectivity

Receptive field sizes

Receptive field sizes

- As we go through higher layers, individual neurons "see" more of the input
- Add to this the increasing number of non-linearities
- This way, higher layers learn more abstract concepts

https://tekworld.org/2018/12/25/day-45-100-days-mlcode-convolutional-neural-networks-cnn/#page-conter

Weight matrices as filters

- Early layers in a CNN learn to extract primitive features
- 96 of the learned AlexNet filters
 (11x11x3) are shown here

Krizhevsky et al., 2012

Higher-level abstractions

• Girshick et al., 2014

Padding

- Input
- Filter
- Output feature map
- Helps maintaining dimensions in the output feature map
- Kernel size:
 - 0 3
- Padding:
 - 0
- Stride:
 - o 1

Strided convolutions

- Input
- Filter
- Output feature map
- Reduces data
- Maintains local invariance
- Kernel size:
 - 0 3
- Padding:
 - 0 1
- Stride:
 - **2**

Pooling

- Data reduction
- Local invariance

Pooling (1D)

DETECTOR STAGE

0.2

Strided pooling

- Similar to strided convolutions, but no parameters
- The stride (here 2) controls how much to downsample
- The pool size controls the "locality"

Pooling in 2D

• Here we use a stride of 2 and a pool size of 2x2

12	20	30	0			
8	12	2	0	2×2 Max-Pool	20	30
34	70	37	4	7	112	37
112	100	25	12			

https://computersciencewiki.org/index.php/Max-pooling_/_Pooling

Some famous CNNs

LeNet

AlexNet

VGGNet

Simonyan & Zisserman, 2015

		ConvNet C	onfiguration			
A	A-LRN	В	C	D	E	
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight	
layers	layers	layers	layers	layers	layers	
	i	nput (224 \times 2	24 RGB image	e)		
conv3-64 conv3-64 con		conv3-64			conv3-64	
	LRN	conv3-64	conv3-64	conv3-64	conv3-64	
			pool			
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	
		conv3-128	conv3-128	conv3-128	conv3-128	
			pool			
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	
			conv1-256	conv3-256	conv3-256	
					conv3-256	
			pool			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
			conv1-512	conv3-512	conv3-512	
	,		,		conv3-512	
	1111		pool			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
			conv1-512	conv3-512	conv3-512	
					conv3-512	
			pool			
			4096			
			4096			
		FC-	1000			
		soft	-max			

The all convolutional net

- Springenberg et al., 2015
- Replace all pooling operations with stride-2 convolutions
- Use global average pooling in the output layer

Im	-		AT.	-4			
	219	1	N	-	ш	m	ш

imageriet moder				
Layer name	Layer description			
input	Input 224×224 RGB image			
conv1	11×11 conv. 96 ReLU units, stride 4			
conv2	1×1 conv. 96 ReLU, stride 1			
conv3	3×3 conv. 96 ReLU, stride 2			
conv4	5×5 conv. 256 ReLU, stride 1			
conv5	1×1 conv. 256 ReLU, stride 1			
conv6	3×3 conv. 256 ReLU, stride 2			
conv7	3×3 conv. 384 ReLU, stride 1			
conv8	1×1 conv. 384 ReLU, stride 1			
conv9	3×3 conv. 384 ReLU, stride 2, dropout 50 %			
conv10	3×3 conv. 1024 ReLU, stride 1			
conv11	1×1 conv. 1024 ReLU, stride 1			
conv12	1×1 conv. 1000 ReLU, stride 1			
global_pool	global average pooling (6×6)			
softmax	1000-way softmax			

Global Average Pooling

https://towardsdatascience.com/iclr-2015-striving-for-simplicity-the-all-convolutional-net-with-interactive-code-manual-b4976e206760

ResNet

- He. et al., 2015
- Residual "shortcuts" allow for gradient flow
- 100-layer barrier overcome for the first time

weight

ReLU

weight

addition

ReLU

Densely connected CNNs

- Huang et al., 2016
- In dense blocks, all feature maps are concatenated
- Downsampling only occurs between blocks

Figure 3: Comparison of the DenseNets and ResNets top-1 error rates (single-crop testing) on the ImageNet validation dataset as a function of learned parameters (*left*) and FLOPs during test-time (*right*).

Challenge - CIFAR10

Previously: KNN (30-40 %), MLP (50-60 %)

- Design and train a CNN on CIFAR10 (> 80 %)
 - Increase the channels while decreasing the resolution through pooling or strided convolutions
 - Potential help: ~ 4 conv layers, use Adam, batchnorm,
 data augmentation, batchsize: 128, num_workers: 4
- Bonus: Transfer Learning (> 90 %)
 - Load a <u>pretrained resnet 18</u> model and replace the head with a new head to classify CIFAR10 images
 - Potential help:
 - resnet18.fc = [your new head]
 - <u>Upscale</u> the CIFAR10 images to the image size it was pretrained on (224 x 224)
 - Lower the learning rate to avoid destroying the pretrained weights

CNN topologies (classification)

Notice how many CNNs follow a similar pattern

