## Maths 04

Université A.MIRA — Béjaïa Faculté de Technologie Département de Technologie-2<sup>ème</sup> Année

® 2012-2013

## 4 Examen de Remplacement en Probabilités et Statistiques -4

Exercice 1 (08.00 points) : Une enquête a été réalisée sur le nombre de salariés de 40 entreprises industrielles. Les résultats obtenus sont représentés dans le tableau suivant :

| Nombres de salariés | $n_i$ | $f_i$ | $F_i \nearrow$ |
|---------------------|-------|-------|----------------|
| [20, 40]            | - 50  | 0.2   |                |
| [40, 50]            | 18    | 0.2   |                |
| [50, 60]            | 30    |       | 0.7            |
| [60, 80]            | 10    |       | 0.9            |
| [80, 100[           | 200   |       | 1              |
| Total               |       | 1     | /              |

- 1. Compléter le tableau statistique ci-dessus.
- 2. Définir la population étudiée sa taille, l'unité statistique, le caractère et sa nature.
- 3. Représenter le polygône des fréquences et calculer le mode.
- Tracer la courbe des fréquences cumulées croissantes et décroissantes.
- Calculer la moyenne, la médiane, l'écart type et l'intervalle interquartile.
- Déterminer le nombre d'entreprises ayant un nombre de salariés entre 50 et 70.

Exercice 2 : Soit la distribution conjointe suivante entre deux variables X et Y.

| X/Y             | [0,10] | [10,20[ | [20,30] | fi.  |
|-----------------|--------|---------|---------|------|
| 0               |        |         |         | €0.3 |
| 1               |        | -       |         |      |
| 2               |        | -       |         | 0.2  |
| $f_{\bullet j}$ | 0.1    |         | 0.5     |      |

- Compléter le tableau ci-dessus en supposant que les deux variables sont indépendantes. Représenter le nuage de points.
- 2. Déterminer les distributions de  $Y/0 \le X \le 2$ ;  $X/Y \in [0, 30[$  et  $X/Y \in [0, 10[$ . Calculer leurs moyennes et leurs variances.
- Déterminer l'équation de la droite de régression de X en Y.
- 4. Donner le coefficient de corrélation linéaire. Conclure.

Exercice 3 (08.00 points): Le tableau suivant donne la demande Y d'un produit en fonction de son prix de vente X en Dinars :

| Le prix de vente en Dinar $X$ |     |     |     |     |     |     |
|-------------------------------|-----|-----|-----|-----|-----|-----|
| La demande Y                  | 550 | 430 | 400 | 310 | 260 | 210 |

- Représenter le nuage de points (X, Y) ainsi que le centre de gravité.
- 2. On pose  $z_i = \frac{y_i 10}{100}$ . Calculer  $\overline{Z}$ , V(Z) et déduire  $\overline{Y}$  et V(Y).
- 3. Déterminer l'équation de la droite de régression de X en Z.
- Considérons la série (z<sub>i</sub>)<sub>i=1,6</sub> de Médiane Me.
  - Partager le nuage de points en deux sous-nuages : l'un contient les points  $(x_i, z_i)$  tel que  $z_i < Me$ , l'autre contient les points  $(x_i, z_i)$  tel que  $z_i > Me$ .
  - Calculer les points moyens G1 et G2 de chacun de ces deux nuages respectivement.
  - Déterminer l'équation de la droite qui passe par les points G<sub>1</sub> et G<sub>2</sub>. Tracer cette droite sur le graphe.
- 5. Quelle serait la demande sur le nouveau produit si le prix de vente est de 600 Dinars?

## Corrigé de l'examen Maths 14

On étuolie le Nombre de salariés de 40 entreprises.

| & Completer le tableaus | T) | Comy | oleter | le | tableay! |
|-------------------------|----|------|--------|----|----------|
|-------------------------|----|------|--------|----|----------|

|     | 1                   | -  |     |       |    | /    | 1   | 1/   | 1            |                                             |
|-----|---------------------|----|-----|-------|----|------|-----|------|--------------|---------------------------------------------|
| FIL | Clauses             | Nº | 7:  | Fil T | ai | fie  | oce | noco | nº ai        | pc fo                                       |
| 1   | [20,40[             | 8  | 0,2 | 0,2   | 20 |      | 30  | 240  | 7200         | $\theta_i^C = \frac{f_i^o}{a_i^o} \times a$ |
| 018 | [40,50 [            |    | 0,2 | 0,4   | 10 | 0,2  | 45  | 360  | 16200        | a = PGCD (a?)                               |
| 0,6 | [50,60 C            | 12 | 0,3 | 0,7   | 40 | 0,3  | 55  | 660  | 36300        | =PGCD (40,20)                               |
|     | [60,80 [            | 8  | 0,2 | 0,9   | 20 |      | 70  | 560  | 39200        | 1 210                                       |
|     | [80,100 [           | 4  | 0,1 | 1     | 20 | 0,05 | 90  | 360  | 32400        |                                             |
| 2   | Total               | 40 | 1   | /     | 1  | 1    | /   | 2180 | 131300       |                                             |
|     | West and the second |    | 0.0 | T.    |    |      | 1   |      | Maria Salara |                                             |

2) Population: Les entreprises Taille: 40

Unité statistique: Une entreplise

Caractère: Nombre de Salarie Nature: quantitative Continue.

3) Représentation graphique: 0,3 014 0,05 40-50160 80

Mode: la classe Modale [5060 D1 = 0,3 - 0,2 = 0,1 A = 93 - 91 = 012 Mo = e - + a = 50+ 40 -0.1 = 5333 M = 53,33

Courbe Cumulative 0,74 40 50 60

Mediane: la classe Opriediane est [50,60] Me = e + + 100 (0,5-F(e; )) = 50 + 10 (0,5-0,4) =53,33

Pana 1

univdocs.com

<u>royenne</u>:  $\bar{X} = \frac{1}{n} \sum_{i=1}^{5} n_i \alpha_i = \frac{1}{40} (2.180) = 54,5$ 

Variance:  $V(x) = \frac{1}{N} \sum_{i=1}^{5} n_i x_i^2 - \overline{x}^2 = \frac{1}{40} (131300) = 31225$ East type:  $\sqrt{2} = \frac{1}{N} (131300) = 31225$ 

East type: 5 = 1/(x) = 1/31225 = 17,67

Intervale inter-quartife,

e) 
$$F(Q_{\lambda}) = 0.25 = 0$$
  $Q_{\lambda} \in [40,50]$   $Q_{\lambda} = e_{\lambda} + 9y_{\xi}(2xr - F(Q_{\lambda}))$   
 $Q_{\lambda} = 40 + \frac{40}{0.2}(0.25 - 925) = 42.5 (0.5)$ 

$$\begin{array}{l} F(P_3) = 0.75 \Rightarrow P_3 \in [60,80[.P_3 = e_1 + \frac{q_1^2}{4}] (0.75 - F(Q_1 - 1)) \\ P_3 = 60 + \frac{20}{0.2} (0.75 - 97) = 65. (0.5) \\ P_3 - P_4 = 65 - 42.5 = 22.5 (0.25) \end{array}$$

6) Nombre d'entreprise ayant un nombre de salaries dans [50,70[ F(70)-F(50)=?

$$F(50) = 0.4$$

$$F(70) = ? (3) = 0.00 - 0.7 = F(70) - 0.7 = 0.2 = F(70) - 0.7 = 0.2 = F(70) - 0.7 = 0.2 = 0.7 = 0.2 = 0.7 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2$$

F(70)-F(50) = 0,8-0,4 = 0,4 dance ilya 40%.

40% > X } X = 40 x 40 = 16 entreprises.

Exo2: 64 P/S)

Xet y sout deux Variables indépendantes fij = fixfij Vij

| X   | 704,0] | [10,20[ | [20,30[ | fie |
|-----|--------|---------|---------|-----|
| 0   | 0,030  | C9,124  | 0,15    | 0,3 |
| 4   | 0,05   | 0,2     | 0,25    | 0,5 |
| 2   | 0,02   | 0,08    | 0,1     | 0,2 |
| f.j | 0,1    | 0,4     | 0,5     | 1   |

Page 2

univdocs.com

age de points



2) Distribution: Y/ X & X & 2

| classey           | y; | Boy      | 4.7  | 7.142 |
|-------------------|----|----------|------|-------|
| ]01,0]            | 5  | 1,0      | 0,5  | 2,5   |
| J08,01)           | 15 | 014      | 6    | 90    |
| [20,30[           | 25 | 015      | 12,5 | 342,5 |
| Total<br>Distribu | 1  | <b>ਮ</b> | 19   | 405   |

Moyenne:  $Y = \frac{1}{n} \sum_{j=1}^{n} h_{ij} y_{j} = \sum_{j=1}^{n} h_{ij} y_{j} = 19$ Version ce:  $y_{ij} = y_{ij} y_{ij} = 19$ Of  $y_{ij} = y_{ij} y_{ij} = 19$ 

= 405 - (49) = 44

Distribution X/YE [0,30[

| X     | fi. | fix: | fi. xi |
|-------|-----|------|--------|
| 0     | 03  | 0    | 0      |
| 1     | 0,5 | 0,5  | 0,5    |
| 2     | 0,2 | 014  | 018    |
| Potal | -01 | 0/9  | 1,3    |

Moyenne:  $\bar{X} = \frac{1}{n} \sum_{i=1}^{3} f_i x_i = 0.9$ Variance:  $\frac{3}{1} f_i x_i = 0.9$   $f(X) = \sum_{i=1}^{3} f_i x_i^2 - \bar{X}^2$  $= 2.3 - (0.9)^2 = 0.49$ 

& Distribution Marginale selon X.

Distribution X/YE [0,10[ = X1

| X     | fin  | fil/fin | \$11/Pin x: | fin/fix: |
|-------|------|---------|-------------|----------|
| 0     | 0,03 | 0.3     | 0           | 0 (      |
| 1     | 0,05 | 015     | 015         | 015      |
| 2/    | 0,02 | 0,2     | 0.4         | 018      |
| Total | 0,1  |         | 0,9         | 4,3      |

Moyenne 1

X15 1 + 1 = 0,9

Variance 1

 $\frac{\text{Varance}}{\text{V(X_1)} = \sum_{i=1}^{3} \frac{f_{i1}}{f_{i2}} \propto^2 - \frac{2}{X_1}}$   $= 1.3 - (0.9)^2 = 0.49$ 

Dano 2

Puisque Xet y Sont indépendentes  $\Rightarrow$  Cov(X,y) = 0  $X = \frac{\text{Cov}(X,Y)}{\text{V(y)}} = 0 \Rightarrow \Rightarrow = \overline{X} - \alpha \overline{Y} = \overline{X} \Rightarrow \Rightarrow = \overline{X} = 0.9$ Lor droite de régression est de la fonne. X = 0.91

4) Coeffecient de consilation.

Cov(x,y) = 0 => 3 = Cov(x,y) = 0 => 3/4 a abscence de correlation lineaire entre x et y.

Exo 3: X représente

y représente

| Xi | 200 | 250 | 300 | 350 | 450 | 500 |
|----|-----|-----|-----|-----|-----|-----|
| y: | 550 | 430 | 400 | 310 | 260 | 210 |



Page 4

univdocs.com

|                   |           | - 4     |         |
|-------------------|-----------|---------|---------|
| Centre de gravite | G(X, Y) = | (341,66 | , 360). |
| C                 |           | 1       |         |

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{6} 9c_i = \frac{1}{6} (2050) = 341,66$$
 $\overline{Y} = \frac{1}{n} \sum_{i=1}^{6} 9c_i = \frac{1}{6} (2160) = 360.$ 

2) On pose 
$$3 = \frac{y_1 - 10}{100}$$

|    | $x_i^{\circ}$ | 200 | 250 | 300 | 350 | 450 | 500 |
|----|---------------|-----|-----|-----|-----|-----|-----|
| 20 | ) y:          | 550 | 430 | 400 | 310 | 260 | 210 |
| 0  | 3°.           | 5,4 | 4,2 | 3,9 | 3   | 2,5 | 2   |

$$\overline{z} = \frac{1}{n} \sum_{i=1}^{h} 3_i = \frac{1}{6} (21) = 3.5$$

## Déduire y et V(y):

$$d = \frac{\text{COV}(XA)}{\text{VIZ}}$$
 $p = X - \alpha Z$ 

$$Cov(x, \bar{z}) = \frac{1}{n} \sum_{i=1}^{6} x_i z_i - \bar{x} \bar{y} = \frac{1}{6} (6475) - 1495,81 = 116,6$$

$$V = \frac{\text{GV}(X,Z)}{V(Z)} = -\frac{116.65}{12933} = -90,1956$$



Page 6

