Projekt Algorytmy Tekstowe

Rafał Kilar

17 czerwca 2022

Wstęp

Rozważamy problem najdłuższego wspólnego podciągu. Mamy dane dwa słowa A[1..m] i B[1..n]. Przedstawimy algorytm Hunta-Szymanskiego działający w czasie $O((r+n)\log n + n)$ dla słów z r dopasowaniami i zakładając m=n. Następnie przedstawimy jego usprawnioną wersję działającą w czasie $O(m\log n + d\log (2mn/d) + n)$ dla słów z d dominującymi dopasowaniami.

Algorytm Hunta-Szymanskiego

Algorytm i omówienie na podstawie pracy [HS77].

Definiujemy wartości progowe $T_{i,k}$ jako

$$T_{i,k} = min\{j \colon A[i..i] \text{ i } B[1..j] \text{ posiadają wspólny podciąg długości } k\}$$

Możemy udowodnić kilka prostych faktów o wartościach progowych:

Lemat 1. Jeśli
$$T_{i,1}, \ldots, T_{i,k}$$
 są zdefiniowane, to $T_{i,1} < \cdots < T_{i,k}$.

Dowód. Zauważmy, że $B[T_{i,k}]$ jest ostatnim znakiem pewnego wspólnego podciągu A[1..i] i $B[1..T_{i,k}]$. W przeciwnym przypadku $T_{i,k}$ nie byłoby minimalne. Wiemy więc, że A[1..i] i $B[1..T_{i,k}-1]$ mają wspólny podciąg długości k-1, zatem $T_{i,k-1}\leqslant T_{i,k}-1$.

Lemat ten przyda nam się w konstrukcji algorytmu.

Lemat 2.
$$T_{i,k-1} < T_{i+1,k} \le T_{i,k}$$

Dowód. Ponieważ A[1..i] i $B[1..T_{i,k}]$ mają wspólny podciąg długości k, to mają je także A[1..i+1] i $B[1..T_{i,k}]$, więc $T_{i+1,k} \leqslant T_{i,k}$. A[1..i+1] i $B[1..T_{i+1,k}]$ mają wspólny podciąg długości k. Usunięcie końcowych znaków z tych słów zmniejsza długość najdłuższego wspólnego podciągu o co najwyżej 1, więc A[1..i] i $B[1..T_{i+1,k}-1]$ mają wspólny podciąg długości k-1, czyli $T_{i,k-1} \leqslant T_{i+1,k}-1$.

Używając tego lematu możemy wyznaczyć wartości $T_{i,k}$.

Lemat 3.

$$T_{i+1,k} = \begin{cases} \min\{j \colon A[i+1] = B[j] \land T_{i,k-1} < j \leqslant T_{i,k} \} & \text{jeśli takie } j \text{ istnieje} \\ T_{i,k} & \text{wpp.} \end{cases}$$

Dowód. Rozważamy przypadek, że takie j nie istnieje. Z minimalności $T_{i+1,k}$, każdy maksymalny wspólny podciąg A[1..i+1] i $B[1..T_{i+1,k}]$ kończy się w $B[T_{i+1,k}]$. Z założenia, że szukane j nie

istnieje, wiemy że $A[i+1] \neq B[j]$ dla każdego $T_{i,k-1} < j \leqslant T_{i,k}$. Z lematu 2. mamy natomiast $T_{i+1,k} \leqslant T_{i,k}$, więc $B[T_{i+1,k}] \neq A[i+1]$, czyli rozważany podciąg jest także podciągiem A[1..i] i $B[1..T_{i+1,k}]$, więc $T_{i,k} \leqslant T_{i+1,k}$ i z lematu 2. $T_{i,k} = T_{i+1,k}$.

Załóżmy teraz, że takie minimalne j istnieje. A[1..i+1] i B[1..j] mają wspólny podciąg długości k - wspólne podciąg długości k-1 A[1..i] i $B[1..T_{i,k-1}]$ powiększone o A[i+1] i B[j], więc $T_{i+1,k} \leqslant j$.

Załóżmy niewprost, że $T_{i+1,k} < j$. Z lematu 2. mamy $T_{i,k-1} < T_{i+1,k}$. Z definicji j zachodzi $A[i+1] \neq B[l]$ dla każdego $T_{i,k-1} < k < j$, w szczególności $B[T_{i+1,k}] \neq A[i+1]$. Otrzymujemy więc, że ostatni znak najdłuższego wspólnego podciągu A[1..i+1] i $B[1..T_{i+1,k}]$ długości k nie jest równy A[i+1]. A[1..i] i $B[1..T_{i+1,k}]$ muszą również mieć podciąg długości k, więc $T_{i,k} \leqslant T_{i+1,k}$. Z lematu 2. mamy więc równość $T_{i,k} = T_{i+1,k}$. Z założenia niewprost i wymogu $T_{i+1,k} < j \leqslant T_{i,k}$ mamy $T_{i,k} \neq T_{i+1,k}$, co daje nam sprzeczność i kończy dowód.

Algorithm 1 Algorytm HS

```
for i = 1..m do
   MATCHLIST[i] = \{j_1, j_2, \dots, j_p\} such that j_1 > \dots > j_p and A[i] = B[j_k]
   THRESH[i] = m + 1
end for
THRESH[0] = 0
LINK[0] = 0
for i = 1..m do
   for j in MATCHLIST[i] do
       find k such that THRESH[k-1] < j < THRESH[k]
       if j < THRESH[k] then
          THRESH[k] = j
          LINK[k] = newnode(i, j, LINK[k-1])
       end if
   end for
end for
recover LCS in reverse using the LINK array
```

W naszym algorytmie będziemy wyznaczać kolejne wiersze $T_{i,1}, \ldots$

Algorytm będzie iterował się po kolejnych znakach A. Na początku każdej iteracji tablica THRESH będzie zawierała kolejne wartości $T_{i,1}, T_{i,2}, \ldots$ Lista MATCHLIST[i] zawiera wszystkie indeksy j takie, że B[j] = A[i] w malejącej kolejności.

Załóżmy, że dla w iteracji i algorytm rozważa dopasowania A[i] do $B[j_1],\ldots,B[j_p]$ pomiędzy wartościami progowymi, to jest $THRESH[k-1]=T_{i-1,k-1}< j_1<\cdots< j_p\leqslant T_{i-1,k}=THRESH[k]$. Z lematu 3. $T_{i,k}=j_1$. Ponieważ rozważamy indeksy w malejącej kolejności, poprawimy wartość THRESH[k] na kolejne j_p,j_{p-1},\ldots aż skończymy na j_1 .

Dla prostoty zapisu załóżmy n=m. Ponieważ lemat 1 mówi nam, że wartości w THRESH są w kolejności rosnącej, możemy wyszukiwać k używając wyszukiwania binarnego w czasie $O(\log n)$. Jeśli oznaczymy ilość wszystkich dopasowań pomiędzy A i B przez r, to wykonanie głównej pętli zajmuje $O(r\log n + n)$. Wyznaczenie list MATCHLIST możemy wykonać na przykład przez posortowanie par znaków i indeksów z A i B i równoległe przejście po tak posortowanych tablicach wyznaczamy listy indeksów dla rosnących znaków z B i przypisujemy je do każdego odpowiadającemu im indeksowi z A. Taka implementacja działa w czasie $O(n\log n)$. Potrzebujemy O(n) pamięci na wykorzystywane listy i tablice oraz O(r) pamięci na linki.

Łączna złożoność czasowa to $O((r+n)\log n)$ i pamięciowa O(r+n).

Usprawniony algorytm

Przedstawimy teraz usprawnioną wersję powyższego algorytmu zaproponowaną w [Apo86]. Zanim to zrobimy wprowadzimy kilka pojęć. Powiemy, że dopasowanie [i,j] (para taka, że A[i]=B[j]) ma rząd k jeśli A[1..i] i B[1..i] mają najdłuższy wspólny podciąg długości k. Dopasowanie [i,j] nazwiemy k-dominującym jeśli [i,j] ma rząd k i dla każdego dopasowania [i',j'] o rzędzie k zachodzi albo $i'>i\wedge j'\leqslant j$ albo $i'\leqslant i\wedge j'>j$. Liczbę wszystkich dominujących dopasowań oznaczymy przez d. Na poniższym rysunku dominujące dopasowania oznaczone są czerwonymi okregami.

```
      c
      b
      a
      c
      b
      a
      a
      b
      a

      1
      2
      3
      4
      5
      6
      7
      8
      9

      a
      1
      0
      0
      1
      1
      1
      1
      1
      1
      1
      1

      b
      2
      0
      1
      1
      1
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      <t
```

Aby przyśpieszyć algorytm 1 zmodyfikujemy proces wyznaczania k-dominujących dopasowań. Nie będziemy sprawdzać wszystkich dopasowań. Zamiast tego, przechowujemy dla każdego symbolu σ listę $MATCHLIST[\sigma]$ listę aktywnych indeksów, to jest takich, które nie wyznaczają wartości progowych. Będziemy wyznaczać jedynie dominujące dopasowania. W tym celu posłużą nam operacje na słownikach:

- SEARCH(key, LIST) zwraca najmniejszy element listy LIST nie mniejszy niż key lub n+1 jeśli taki element nie istnieje. SEARCH(n+1, LIST) od razu zwraca n+1.
- INSERT(key, LIST) i DELETE(key, LIST) odpowiednio dodają i usuwają wartość key z listy LIST. Jeśli key=n+1, to nic nie robią.
- first(LIST) zwraca najmniejszy element w liście LIST

Algorytm przedstawiono poniżej (2). W zewnętrznej pętli iterujemy się po kolejnych znakach A. W każdej iteracji wewnętrznej pętli algorytm rozpatruje kolejne dominujące dopasowania [i,j], wyszukuje próg T, który ma zastąpić j. Następnie aktualizuje listę THRESH i listy aktywnych dopasowań $AMATCHLIST[\sigma]$ i zapamiętuje linki. Następnie wyszukuje kolejne dominujące dopasowanie [i,j] dla j>=T w liście aktywnych dopasowań AMATCHLIST[A[i]].

W wewnętrznej pętli zachowujemy następujący niezmiennik: jeśli $j \neq n+1$, wtedy [i,j] jest k-dominującym dopasowaniem i pierwsze k-1 pozycji w THRESH zawiera poprawne wartości dla i-tego wiersza. Po i-tej iteracji zewnętrznej pętli następujące niezmienniki są zachowane:

- THRESH zawiera wartości $T_{i,1}, \ldots, T_{i,l}$
- $AMATCHLIST[\sigma]$ zawiera indeksy σ w B, które nie są w THRESH

Algorithm 2 Algorytm HS1

```
for i = 1..m do
   \sigma = A[i]
   j = first(AMATCHLIST[\sigma])
   FLAG = true
   while FLAG do
      T = SEARCH(j, THRESH)
      k = rank(T)
      if T = n + 1 then
          FLAG = false
      end if
      INSERT(j, THRESH)
      DELETE(T, THRESH)
      LINK[k] = newnode(i, j, LINK[k-1])
      \sigma' = B[T]
      DELETE(j, AMATCHLIST[\sigma])
      j = SEARCH(T, AMATCHLIST[\sigma])
      INSERT(T, AMATCHLIST[\sigma'])
   end while
end for
recover LCS in reverse using the LINK array
```

Czas działania zależy od implementacji list THRESH i $MATCHLIST[\sigma]$. Skorzystamy ze struktury danych nazwanej C-drzewo opisanej w pracy [AG87]. Reprezentuje ona uporządkowaną listę elementów z ustalonego uniwersum U jako statyczne drzewo binarne. Kolejne liście odpowiadają kolejnym wartościom z U. Dodatkowo utrzymujemy wskaźniki na niedawno odwiedzone liście. Pozwala to na szybsze wyszukiwanie kolejnych wartości – możemy zacząć od zapamiętanego liścia i przejść najpierw w górę i później w dół po najkrótszej ścieżce do szukanego liścia. Po zakończeniu operacji przestawiamy ten wskaźnik.

Możemy pokazać, że jeśli wykonujemy operacje na liściach $i_0 < i_1 < \cdots < i_k$, gdzie $b_j = i_j - i_{j-1}$ operacje te wymagają czasu $O(\log m + \sum_{j=1}^k \log b_j)$. Pierwsza operacja działa w czasie $O(\log m)$, gdyż wskaźnik może wskazywać na późniejszy liść. Musimy wtedy przestawić wskaźnik na pierwszy liść. Następne operacje przechodzą po najkrótszej ścieżce między liśćmi, mają one długość $O(\log b_j)$.

W i-tej iteracji zewnętrznej pętli znajdujemy d_i dominujących dopasowań. Operacja na określonej liście zajmują $O(\log n + \sum_{j=1}^{d_i} \log b_j)$ czasu. Ponieważ rozmiar list to co najwyżej n, to $\sum_{j=1}^{d_i} b_j \leqslant 2n$. We wszystkich iteracjach wykorzystywany czas wynosi $O(m \log n + \sum_{j=1}^{d} b_j)$, gdzie $\sum_{j=1}^{d} b_j \leqslant 2nm$. Czas jest maksymalizowany gdy $b_j = 2nm/d$.

Czas działania algorytmu wynosi więc $O(m \log n + d \log (2nm/d) + n)$ gdy uwzględnimy liniowy czas potrzebny na inicjalizacje.

Literatura

[AG87] Alberto Apostolico and Concettina Guerra. The longest common subsequence problem revisited. *Algorithmica*, 2(1):315–336, 1987.

[Apo86] Alberto Apostolico. Improving the worst-case performance of the hunt-szymanski strategy

for the longest common subsequence of two strings. Information Processing Letters, 23(2):63-69, 1986.

[HS77] James W Hunt and Thomas G Szymanski. A fast algorithm for computing longest common subsequences. *Communications of the ACM*, 20(5):350–353, 1977.