5. Complementary Function, Auxiliary Equation 26 October 2023 18:02	
AUXILIARY EQN -> Replace D" buy m" , y	Gy 1
COMPLEMENTARY FUNCTION FOR SECON	Drofe DE
CASE 1 - Roots are real, distinct $\longrightarrow m_0$, of $GS = y = C_1 e^{m_1 x} + C_2^{m_2 x}$	$y = c_1 e^{m_1 x} + \dots + c_n^{m_n x}$
CASE 2 - Roots are real and equal -> m, =	$= m_2 = m$ $(1.10.34 + + C.x^{n_1})e^{mx}$
GS = y = (c, + c2x)e mx	$y = (C_1 + C_2 \cdot n + \ldots + C_n \times^{n-1}) e^{mx}$
CASE 3 - Roots are complex $m_1 = \alpha + i\beta \beta \text{conjugate pairs}$ $m_2 = \alpha - i\beta \beta \text{conjugate pairs}$	y = (c1+c2n+c3n2+cyn3)e mx + c5em5x + C6em6x + + cnemx
by = e an (c, cos, Bn + c, sin Bx)] Boy there are two pairs of imaginary one	
	$8n + c_y \sin 8y e^{x} + c_s e^{m_5 x} + \dots + e_n e^{m_n x}$
Say a pain of complex roots is repeated $y = ((C_1 + C_2x)\cos \beta x + (C_3 + C_{1x}) \sin \beta x)e^{\alpha}$	1x + C ₅ e m ₅ x + + C _n e m _n x