Нормальное распределение. Контрольная работа № 2. 2024

Задача 1. Найти вероятность того, что случайная величина x с центром распределения \bar{x} = 5,0 и σ = 1,0 находится в пределах 3,0 < x < 6,5.

Считать распределение x - нормальным.

- Задача 2. Погрешность измерения напряжения ΔU распределена по нормальному закону с нулевым математическим ожиданием, среднее квадратическое отклонение σ равно 40 мВ. Найдите вероятность того, что результат измерения U отличается от истинного значения напряжения Uи не более чем на 70 мВ. ($\Delta U = U U_{\rm II}$). Пояснить решение на графике.
- **Задача 3.** В результате поверки амперметра установлено, что 80% погрешностей результатов измерений, произведенных с его помощью, не превосходят \pm 10 мА. Считая, что погрешности распределены по нормальному закону с нулевым математическим ожиданием, определить среднее квадратическое отклонение данного распределения. Пояснить решение на графике.
- **Задача 4.** В результате поверки амперметра установлено, что 60% погрешностей результатов измерений, произведенных с его помощью, не превосходят ± 20 мА. Считая, что погрешности распределены по нормальному закону с нулевым математическим ожиданием, найдите вероятность того, что погрешность результата измерения превзойдет ± 35 мА.
- Задача 5. В результате поверки амперметра установлено, что 50% погрешностей результатов измерений, произведенных с его помощью, не превосходят \pm 20 мА. Считая, что погрешности распределены по нормальному закону с нулевым математическим ожиданием, найдите симметричный доверительный интервал для погрешности, вероятность попадания в который равна 0,8.
- Задача 6. Результат измерения тока содержит случайную погрешность, распределенную по нормальному закону с нулевым математическим ожиданием; среднее квадратическое отклонение σ равно 10 мА. Какова вероятность того, что погрешность измерения превысит по абсолютной величине 15 мА?

Задача 7. Результат измерения мощности содержит случайную погрешность, распределенную по нормальному закону с нулевым математическим ожиданием; среднее квадратическое отклонение σ равно 100 мВт. Систематическая погрешность измерения мощности (поправка) Δ_c , по оценкам, равна минус 50 мВт (-50 мВт). Найдите вероятность того, что результат измерения (неисправленный) превысит истинное значение мощности. Пояснить решение на графике.

Задача 8. Случайная погрешность измерения напряжения ΔU распределена по нормальному закону с нулевым математическим ожиданием, среднее квадратическое отклонение σ равно 50 мВ. Систематическая погрешность (поправка) ΔU с равна +20 мВ. Найдите вероятность того, что результат измерения U (неисправленный) отличается от истинного значения напряжения Uи не более чем на 50 мВ. Пояснить решение на графике.

Задача 9. Измеряем ток *I*, А. Ток постоянный, колебания тока в цепи имеют нормальное распределение с математическим ожиданием, равным \bar{I} , и дисперсией D_I . Построить распределение случайной величины *I*, указать интервал $\{\bar{I}-\Delta < I < \bar{I}+\Delta \}$, соответствующий уровню доверия P=0.9. Пояснить решение на графике.

 \bar{I} =100 mA, D_I=0.25 mA².

Задача 10. Измеряем температуру T, K в заданном стационарном режиме. Измеряемая величина распределена нормально, известны оценки среднего значения \overline{T} и дисперсии D_T . При каждом измерении, равном или меньшем (\overline{T} - ΔT), срабатывает датчик сигнала. Определить, какая доля от общего числа измерений N ($N \gg 1$) будет «озвучена». Пояснить решение на графике. $\overline{T} = 60$ °C, $D_T = 9$ °C 2 , $\Delta T = 5$ °C.

Задача 11. Проводятся измерения температуры. Погрешность измерения температуры распределена нормально с нулевым математическим ожиданием и дисперсией D_T , равной $0.04~^{\circ}C^2$. Определить вероятность того, что погрешность измеренного значения температуры окажется больше заданной величины Δ^* : Δ^* =0.3 °C. Пояснить решение на графике.

Задача 12. Дано распределение величины T, °C. Известно математическое ожидание \overline{T} и дисперсия D_T . Известно, что распределение можно считать нормальным. Все скачки T в диапазоне $[\overline{T}+\Delta; \overline{T}+2,5\Delta]$ регистрируются отдельным прибором. Оценить, какая доля из N измерений $(N\gg 1)$ будет записана. Пояснить решение на графике.

$$\overline{T}$$
=100 °C, D_T=4 °C², Δ =1 °C.

Задача 13. Среднее квадратическое отклонение σ случайной погрешности измерения величины X σ = 0,5. Определить вероятность того, что случайная погрешность отдельного измерения выйдет за пределы доверительного интервала с границами \pm 0,9. Ответ выразить в процентах. Пояснить решение на графике.

Задача 14. Случайные ошибки измерения подчинены нормальному закону с параметрами \bar{x} =0 мм и σ = 4 мм. Записать функцию распределения плотности вероятности f(x) и найти вероятность того, что при измерении допущена ошибка в интервале от 4 до 8 мм. Пояснить решение на графике.

Задача 15. Случайные ошибки измерения тока подчинены нормальному закону. Известно, что 40% ошибок оказались выше 10 мА. Выяснить, какая доля измерений будет иметь погрешность меньше 5 мА. Пояснить решение на графике.

Задача 16. Случайная величина x распределена по нормальному закону с \bar{x} = 5 и σ = 0,5. Определить вероятность того, что ее значение отклоняется от \bar{x} по абсолютной величине не более чем на 0,9. Пояснить решение на графике.

Задача 17. Случайная величина х задана дифференциальной функцией

$$f(x) = \sqrt{\frac{2}{\pi}} \cdot e^{-\frac{(x-1)^2}{0.5}}.$$

Найти вероятность того, что случайная величина X попадет в интервал (1,5;2,5). Пояснить решение на графике.

- Задача 18. Случайные ошибки при измерении длины стержня имеют нормальный закон распределения с математическим ожиданием 0 и СКО, равным 0,3 см. Найти вероятность того, что при измерении стержня длиной 1 м результат измерения окажется в интервале от 99,5 до 101 см. Пояснить решение на графике.
- **Задача 19**. Известно, что содержание некоторого элемента имеет нормальное распределение и составляет в среднем 10 единиц, а в 10% случаев превосходит 12 единиц. Найти вероятность, с которой содержание элемента превосходит 11 единиц. Пояснить решение на графике.
- **Задача 20**. Известно, что содержание некоторого элемента имеет нормальное распределение и составляет в среднем 20 единиц, а в 30% случаев превосходит 22 единицы. Найти вероятность, с которой содержание элемента не превосходит 25 единиц. Пояснить решение на графике.
- Задача 21. В нормальном законе распределения случайной величины X среднее значение равно 10, $\sigma = 3$. Чему равно число Y, если вероятность того, что случайная величина X принимает значения меньше Y, равна 2/3? Пояснить решение на графике.