Universidade do Minho

10 de novembro de 2017

$1^{\underline{\mathrm{o}}}$ Teste de

Computabilidade e Complexidade

Lic. Ciências da Computação

Duração: 2h30min

Este teste é constituído por 5 questões. Todas as respostas devem ser devidamente justificadas.

1. Seja $A = \{a, b\}$. Considere a máquina de Turing

$$\mathcal{T} = (\{0, 1, 2, 3, 4\}, A, A \cup \{\Delta\}, \delta, 0, 4, \Delta)$$

onde a função transição δ é definida pela tabela seguinte:

δ	a	b	Δ
0			$(1, \Delta, D)$
1	(1, a, D)		(2, a, D)
2	(2,b,D)	(2,b,D)	$(3, \Delta, E)$
3	(3, a, E)	(3, b, E)	$(4, \Delta, C)$

A máquina \mathcal{T} calcula uma função parcial $g: A^* \times A^* \to A^*$.

- a) Represente \mathcal{T} graficamente.
- b) Indique a sequência de configurações que podem ser computadas a partir da configuração $(0, \underline{\Delta}aa\Delta ababb).$
- c) Identifique o domínio D da função g.
- d) Para cada elemento $(u, v) \in D$, determine a palavra g(u, v).
- **2**. Seja A o alfabeto $\{a,b\}$ e seja L a linguagem $L = \{a^{2n}ba^{3n} : n \in \mathbb{N}_0\}$.
 - a) Construa uma máquina de Turing que reconheça L e descreva informalmente a estratégia dessa máquina.
 - b) Explique se o problema de decisão P(w): " $w \in L \cup a^*$?" é ou não decidível.
- 3. Diga, justificando, quais das afirmações seguintes são verdadeiras e quais são falsas.
 - a) Existem linguagens não recursivas $L \in K$ tais que as linguagens $L \cap K \in L \cup K$ são ambas recursivas.
 - b) O seguinte problema é decidível: Dada uma máquina de Turing \mathcal{T} de alfabeto A, será que $L(\mathcal{T}) \subseteq A^*$?
 - c) Se L é uma linguagem não recursivamente enumerável, então \overline{L} também não é recursivamente enumerável.
 - d) A linguagem reconhecida pela composição sequencial $\mathcal{T}_1 \longrightarrow \mathcal{T}_2$, de duas máquinas de Turing \mathcal{T}_1 e \mathcal{T}_2 , está contida na linguagem reconhecida pela máquina \mathcal{T}_2 .

4. Seja $A = \{a, b, c\}$ e seja \mathcal{T} a seguinte máquina de Turing sobre A com duas fitas (onde $t \in \{a, \Delta\}$),

- a) Indique a sequência de configurações que podem ser computadas a partir da configuração $(0, \Delta abacaa, \Delta)$ e diga se a palavra abacaa é aceite por \mathcal{T} .
- b) Para que palavras $u \in A^*$, $(0, \underline{\Delta}u, \underline{\Delta})$ é uma configuração de ciclo?
- c) Para que palavras $v \in A^*$, a partir de $(0, \underline{\Delta}v, \underline{\Delta})$ pode ser computada uma configuração de rejeição?
- d) Identifique a linguagem L reconhecida por \mathcal{T} .
- e) Verifique que é possível fazer uma alteração (simples) na máquina \mathcal{T} de modo a obter uma máquina de Turing \mathcal{T}' que reconhece L e que nunca entra em ciclo. Conclua que L é recursiva.
- 5. Para cada palavra $u \in A^*$ considere o problema de decisão
 - $Aceita_u$: dada uma máquina de Turing \mathcal{T} , será que \mathcal{T} aceita a palavra u?
 - a) Dada uma máquina de Turing \mathcal{T} , defina uma máquina de Turing \mathcal{T}' que aceita a palavra ab se e só se \mathcal{T} aceita a palavra a.
 - **b)** Sabendo que o problema $Aceita_a$ é indecidível, conclua que o problema $Aceita_{ab}$ é indecidível.

(FIM)

$$\text{Cotação:} \quad \left\{ \begin{array}{l} \textbf{1.} \quad 4.5 \text{ valores } (1+1+1.25+1.25) \\ \textbf{2.} \quad 3.5 \text{ valores } (2.25+1.25) \\ \textbf{3.} \quad 4 \text{ valores } (1+1+1+1) \\ \textbf{4.} \quad 5.5 \text{ valores } (1+1+1.25+1+1.25) \\ \textbf{5.} \quad 2.5 \text{ valores } (1.25+1.25) \end{array} \right.$$