Variable Compleja

Definición de números complejos @definición, campo	2
a Forma binómica de un complejo @definición, forma binómica	3
a1 Potencias de la unidad imaginaria	2
b Propiedades de campo @campo, propiedades	5
c Norma, conjugado y partes de un complejo @definición, norma, conjugado, parte real, parte imaginaria	ϵ
c1 Propiedades de normas, conjugados y partes @propiedades, normas, conjugados, partes	7
d Forma polar de un complejo @definición, argumento, forma polar	8
e Proyección estereográfica @proyección estereográfica, esfera de Riemann	g
d1 Determinación del argumento principal @argumento principal	10
d2 Relación entre argumentos de conjugados @argumento, conjugados	1 1

Definición de números complejos

definición, campo

Definición 1. En \mathbb{R}^2 se definen las siguientes operaciones de suma y multiplicación

(I)
$$(a,b) + (c,d) = (a+c,b+d),$$

(II)
$$(a,b)(c,d) = (ac - bd, ad + bc)$$
.

Estas operaciones hacen a \mathbb{R}^2 un campo, donde

$$-(a,b) = (-a,-b)$$
 y $(a,b)^{-1} = \left(\frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2}\right)$,

la última igualdad definida siempre que $(a, b) \neq (0, 0)$. A este campo se le denotará como \mathbb{C} y a sus elementos se les llamará **números complejos** o **número imaginarios**.

Forma binómica de un complejo

DEFINICIÓN 2. Obsérvese que si $(a, b) \in \mathbb{C}$, entonces (a, b) = (a, 0) + (0, 1)(b, 0) = (a, 0) + i(b, 0), donde i = (0, 1). De ahora en adelante, se hará la convención de escribir x en lugar de $(x, 0), x \in \mathbb{R}$, de tal manera que (a, b) = a + ib. Esta forma de escribir números complejos se llamará **forma binómica**. Se escribirá ia en vez de 0 + ia, a en vez de a + i0 y $a \pm i$ en vez de $a \pm i1$.

1a

definición, forma binómica

Potencias de la unidad imaginaria

Proposición 1. Se pueden efectuar las operaciones con números complejos de forma binómica como si fueran binomios algebráicos, reemplazando i^2 por -1, i^3 por -i, i^4 por 1, i^5 por i, etc. Específicamente, si $n \in \mathbb{N}$, entonces

$$i^{n} = \begin{cases} 1 & si \ n \equiv 0 \pmod{4} \\ i & si \ n \equiv 1 \pmod{4} \\ -1 & si \ n \equiv 2 \pmod{4} \\ -i & si \ n \equiv 3 \pmod{4}. \end{cases}$$

Demostración. Nótese que $i^2 = -1$, $i^3 = -i$ y $i^4 = 1$. Si $n \in \mathbb{N}$, entonces por el algoritmo de la división, existen $k, r \in \mathbb{Z}$ tal que n = 4k + r, $0 \le r \le 3$. Si r = 0, entonces $i^n = i^{4n} = (i^4)^n = 1^n = 1$. Si r = 1 se tiene que $i^n = i^{4k+1} = (i^4)^k i^1 = 1^k i^1 = i$. Si r = 2 se puede escribir $i^n = i^{4k+2} = (i^4)^k i^2 = 1^k - 1 = -1$ y finalmente, si r = 3, se tiene $i^n = i^{4k+3} = (i^4)^k i^3 = 1^k i^3 = -i$.

Más aún, dado que (a,0)(b,0)=(ab,0) para cualesquiera $a,b\in\mathbb{R}$, se pueden utilizar las propiedades de conmutatividad, asociatividad y distributividad del campo \mathbb{C} para operar sus elementos como si fueran binomios algebraicos cuando están en su forma binómica.

Propiedades de campo

1b

Teorema 1. Si $z, w \in \mathbb{C}$ $y n \in \mathbb{N}$, se verifican las siguientes propiedades

campo, propiedades

(I) (Binomio de Newton)

$$(z+w)^n = \sum_{k=0}^n \binom{n}{k} z^k w^{n-k}, \ donde \binom{n}{k} = \frac{n!}{k!(n-k)!},$$

(II) (Factorización de diferencia de potencias)

$$z^{n} - w^{n} = (z - w) \sum_{k=0}^{n-1} z^{k} w^{n-1-k}$$
$$= (z - w)(z^{n-1} + z^{n-2}w + \dots + zw^{n-2} + w^{n-1}).$$

(III) (Suma de cuadrados) $z^2 + w^2 = (z + iw)(z - iw)$.

Demostración. (I) Se verifica en cualquier anillo siempre que zw = wz. (II) Se verifica en cualquier anillo. (III) $(z+iw)(z-iw)=z^2-ziw+iwz-i^2w=z^2+w^2$, pues ziw=iwz y $i^2=-1$.

Norma, conjugado y partes de un complejo

Definición 3. Dado un número complejo $z=a+ib\in\mathbb{C}$, se define

- (I) La **norma** o **valor absoluto** de z como el número real $|z|=(a^2+b^2)^{1/2}$,
- (II) El **conjugado** de z como el número complejo $\overline{z} = a ib$,
- (III) La parte real de z como Re(z) = a y la parte imaginaria de z como Im(z) = b.

1c

definición, norma, conjugado, parte real, parte imaginaria

Propiedades de normas, conjugados y partes

Teorema 2. Si $z, w \in \mathbb{C}$, se verifica lo siguiente

$$(1) z\overline{z} = |z|^2,$$

(II)
$$z^{-1} = \overline{z}/|z|^2$$
, $si z \neq 0$,

(III)
$$\text{Re}(z) = (z + \overline{z})/2 \ y \, \text{Im}(z) = (z - \overline{z})/2i$$
,

(IV)
$$\overline{z+w} = \overline{z} + \overline{w} y |zw| = |z||w|,$$

(v)
$$|z/w| = |z|/|w| \text{ si } w \neq 0$$
,

$$(\mathrm{vi}) \quad |\overline{z}| = |z|,$$

(VII)
$$|z + w|^2 = |z|^2 + 2\text{Re}(z\overline{w}) + |w|^2$$
,

(VIII) $|z - w|^2 = |z|^2 - 2\text{Re}(z\overline{w}) + |w|^2$,

(ix) $|z + w|^2 + |z - w|^2 = 2(|z|^2 + |w|^2)$,

(x)
$$\operatorname{Im}(z) = 0$$
 si y sólo si $z = \overline{z}$,

(XI)
$$\overline{\overline{z}} = z$$
,

(XII)
$$|z + w| \le |z| + |w|$$
,

(XIII)
$$||z| - |w|| \le |z - w|$$
,

(XIV)
$$|z+w| = [(z+w)(\overline{z}+\overline{w})]^{1/2}$$
.

Demostración. Pendiente.

1c1

propiedades, normas, conjugados, partes

Forma polar de un complejo

DEFINICIÓN 4. Sea $z = x + iy \in \mathbb{C}$ y considere el vector \overrightarrow{OP} que une al punto O = (0,0) con el punto P = (x,y) en el plano cartesiano. La longitud del vector \overrightarrow{OP} es igual a |z| y se suele denotar también como r. Un ángulo entre el eje horizontal positivo y el vector \overrightarrow{OP} , considerado positivo en el sentido de las manecillas del reloj y negativo en otro caso, se llamará un **argumento** de z y está definido solo para $z \neq 0$. Es claro que no existe un sólo único argumento de |z|, pues si Φ es un argumento de |z|, también lo son cualesquiera de los números $\Phi + 2\pi n$, $n \in \mathbb{Z}$. Se suelen usar dos convenciones para determinar un único argumento, como

definición, argumento, forma polar

1d

- (I) aquel ángulo φ tal que $-\pi < \varphi \leq \pi$,
- (II) o aquel ángulo φ tal que $0 \le \varphi < 2\pi$.

En cualquiera de estas convenciones, a φ se le llamará **argumento principal** de z, también denotado $\arg(z)$. Al par (r, Φ) , donde Φ es cualquier argumento de z, se les llamará **coordenadas polares** del número complejo z.

Proyección estereográfica

1e

Definición 5. Sea $S = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1^2 + x_2^2 + x_3^2 = 1\}$ y sea N = (0, 0, 1). La función

$$Z: \mathbb{C} \longrightarrow S - \{N\}$$

$$/ 2\operatorname{Re}(z)$$

$$z \longmapsto \left(\frac{2\text{Re}(z)}{|z|^2 + 1}, \frac{2\text{Im}(z)}{|z|^2 + 1}, \frac{|z|^2 - 1}{|z|^2 + 1}\right)$$

es una biyección y se le llamará **proyección esteteográfica**. A S en este contexto se le suele llamar **esfera de Riemann**. La inversa de Z está dada por

$$z: S - \{N\} \longrightarrow \mathbb{C}$$
$$(x_1, x_2, x_3) \longmapsto \frac{x_1 + ix_2}{1 - x_3}.$$

proyección estereográfica, esfera de Riemann Se tiene, de la definición anterior, que

argumento principal

$$\sin \Phi = \frac{y}{\sqrt{x^2 + y^2}}, \quad \cos \Phi = \frac{x}{\sqrt{x^2 + y^2}} \quad y \quad \tan \Phi = \frac{y}{x}.$$

Para obtener el argumento principal de z a partir de la tangente, se debe considerar la convención acordada. Si existe el valor y/x, se considerará siempre $-\pi/2 < \arctan(y/x) < \pi/2$. Sea $\omega = \arctan(y/x)$.

(I) Para la primera convención, se tiene

(II) Para la segunda, se tiene

$$\arg(z) = \begin{cases} \omega & \text{si } x > 0, \\ \omega + \pi & \text{si } x < 0, y \ge 0, \\ \omega - \pi & \text{si } x < 0, y < 0, \\ \pi/2 & \text{si } x = 0, y > 0, \\ -\pi/2 & \text{si } x = 0, y < 0. \end{cases} \qquad \arg(z) = \begin{cases} \omega + \pi & \text{si } x > 0, \\ \omega + 2\pi & \text{si } x < 0, y \ge 0, \\ \omega + \pi & \text{si } x < 0, y < 0, \\ \pi/2 & \text{si } x = 0, y > 0, \\ 3\pi/2 & \text{si } x = 0, y < 0. \end{cases}$$

Relación entre argumentos de conjugados

1d2

Proposición 2. Si $z = a + ib \in \mathbb{C}$ es un número real negativo, entonces $\arg(\overline{z}) = \arg(z) = \pi$, y en caso contrario, $\arg(\overline{z}) = -\arg(z)$.

argumento, conjugados

Demostración. Pendiente.