

Homework 2

Image Classification on Small Datasets

Machine Learning course 2021-2022

Recap

- Ensembles of small-scale convolutional networks provide good accuracy in small-data settings (Seminar 1)
- Tuning the hyper-parameters like learning rate and weight decay is a critical factor to ensure the highest performance (Seminar 2)

(Some) open questions

- Do custom/newer architectures work better than popular ResNets?
- Can we do even better choosing hyper-parameters?
- Do heterogeneous ensembles perform better than homogeneous ones?

Answering these questions with crowd-sourcing

What if each student will train a "small" network to provide an ensemble member?

In this way:

- Obtaining a (very!) large and heterogeneous ensemble
- Exploring its own search space is easier for each single member (i.e. hyper-parameters)

Dataset [link]

- The dataset is ciFAIR-10 of the DEIC Benchmark (Seminar 2)
 - o 10-class problem
 - o 50 training images per class
 - o 1000 testing images per class
 - image dimension 32x32x3
- Categories:
 - o airplane
 - automobile
 - o bird
 - o cat
 - o deer

- \circ dog
- \circ frog
- horse
- o boat
- o truck

Objectives

- Train your favorite network architecture:
 - o published one (e.g. ResNet, Wide ResNet, EfficientNet...)
 - custom one (note that published ones are a good starting point)
- Analyze results concerning few modifications of chosen architecture:
 - size (e.g., network depth/width)
 - o layer configurations (e.g., kernel size, convolution stride)
- Analyze results concerning few modifications of optimization process:
 - o optimizer (e.g. SGD, Adam, ...)
 - o optimizer parameters (e.g. learning rate, weight decay, momentum)
 - training (e.g. epochs, batch size)

Code Repository [link]

We provide a code repository as starting point for your experiments

sapienza_ml21_deic is the main directory containing: file with package requirements, readme of the repository and subdirectories.

Put the provided dataset repository (ciFAIR-10 shared on Drive) inside this directory.

Notebook for dataset visualization and readme file with baseline performance along with terminal command to reproduce the baseline result.

small_data is the directory that you will submit, with all its content.

The folder **architectures** is the place to add other architecture files (e.g., densenet.py).

The folder datasets contains functions for loading data.

The folder **methods** contains functions for running the training algorithms.

The folder **scripts** contains higher-level scripts to actually run the training or visualize results.

Google Colab Demo

- Setup the code repository on Google Drive with <u>SetupGitRepoOnDrive.ipynb</u>
- Run baseline experiment with ExampleTrain.ipynb

Your Task

Add something in the code, save the trained model and evaluate it on the test set.

Examples:

- New architecture
- A different optimizer for training
- A choosable hyper-parameter (e.g., momentum parameter of SGD)
- At least perform two of these tasks.
- Only running the demo would translate in 0 points for your homework.

Adding a new architecture

Adding a new architecture

You should add a file that define the architecture inside **architectures**.

Adding a new architecture

Steps:

- Create a new file inside folder **architectures** (e.g., wrn.py) to contain all the python classes/functions needed by the given architecture.
- The main class must have an __init__, forward, get_classifiers, and build classifier method.

You should sub-class the method get_optimizer of LearningMethod defined in common.py with a different instance inside xent.py.

The main training class contains multiple methods that can be sub-classed:

- LearningMethod is the general class for a training pipeline of a method defined in common.py.
- An instance of this class is CrossEntropyClassifier which is defined in xent.py.
- CrossEntropyClassifier, when called will override all methods of LearningMethod defined inside its file.
- Any change can be applied by modifying the desired class method (e.g., get optimizer).

Original get optimizer function defined inside common.py.

New get_optimizer method (with Adam instead of SGD) of CrossEntropyClassifier defined inside xent.py.

Add choosable hyper-parameter

Making the momentum parameter of SGD as choosable hyper-parameter by the user.

Add choosable hyper-parameter

You should sub-class the static methods default hparams and get optimizer of class CrossEntropyClassifier in xent.py.

Add choosable hyper-parameter

Sub-class the static default_hparams method of CrossEntropyClassifier to add momentum:

Update the get optimizer method too:

Deep Learning Library

The code is written in PyTorch which is very similar to Tensorflow:

- PyTorch (1.7) documentation [<u>link</u>].
- The modules of torch.nn are equivalent to layers in tf.keras.layers. Docs [link].
- To use different network architectures I advise looking at the available models at torchvision.models [link] and copying, using/modifying their source code (e.g., EfficientNet).

EfficientNet

Save the trained model

Models in PyTorch are saved similarly to Tensorflow:

- A torch.nn.Module has a state dictionary containing all the information concerning the layer weights.
- It is enough to simply call: torch.save(model.state_dict(), "model.pth")
- Note that to load back the model, you should first instantiate an instance of the model class and then override the state dictionary.
- Therefore, you should call: model.load_state_dict(torch.load("model.pth"))
- Additional documentation is available [link]

Suggestions

To start from a good baseline take into account these tricks:

- Small batch sizes (e.g., 10 or less) are preferable to improve generalization.
- An high number of epochs (e.g., > 500) allow the network to find better local minima with better generalization.
- Not all lr-wd couples work the same. Choosing a good couple strongly increases the results (Seminar 2) and may change with network width/depth.
- Network width ease the optimization process. With the right hyper-parameters, a wider network (i.e., more conv. filters) may find better solutions than thinner ones.
- Baseline to beat:
 - Wide ResNet-16-8 (wrn-16-8), epochs = 500, bs = 10, lr = 4.55e-3, wd = 5.29e-3
 - Accuracy on test set: 58.22%
- **Note**: the homework evaluation won't be related to the test set performance obtained (unless for extremely bad results).

Submission

Through Google Classroom:

- **PDF report** with description of the models and results on the test set.
- **ZIP file of small_data folder**, named with your matricola code (e.g, 1771597.zip).
- Your trained model saved with your matricola code (e.g, 1771597.pth).

Expected Outcome

Publish a paper with 100 names!! Or less optimistically:

- Get interesting insights and results about this crowd-sourcing experiment with ensembles on small datasets.
- Not getting the same model from all of you since this would basically ruin the experiment:
 - o predictions of average of 100 identical models = predictions of 1 model
- And would give 0 points to your homework!!
- You'll learn important tools and practices to train neural networks.

Summary

To run the code you need a GPU either locally or on the Cloud:

- Use Colab or make sure to have PyTorch locally installed with GPU support
- [For Colab] Use the notebook <u>SetupGitRepoOnDrive.ipynb</u> to clone the repository on your Google Drive.
- [For Colab] Use/take inspiration from ExampleTrain.ipynb to run experiments.
- [For Colab] Note that to change the running code, you should modify the files of the repo that are located in your Google Drive.