COMMENTARY

(b) Area enclosed by shear flow path

Fig. R22.7—(a) Thin-walled tube; and (b) area enclosed by shear flow path.

R22.7.1 General

R22.7.1.1 Torsional moments that do not exceed the threshold torsion T_{th} will not cause a structurally significant reduction in either flexural or shear strength and can be ignored.

22.7.1 *General*

- **22.7.1.1** This section shall apply to members if $T_u \ge \phi T_{th}$, where ϕ is given in Chapter 21 and threshold torsion T_{th} is given in 22.7.4. If $T_u < \phi T_{th}$, it shall be permitted to neglect torsional effects.
- **22.7.1.2** Nominal torsional strength shall be calculated in accordance with 22.7.6.
- **22.7.1.3** For calculation of T_{th} and T_{cr} , λ shall be in accordance with 19.2.4.

22.7.2 *Limiting material strengths*

- **22.7.2.1** The value of $\sqrt{f_c'}$ used to calculate T_{th} and T_{cr} shall not exceed 8.3 MPa.
- **22.7.2.2** The values of f_y and f_{yt} for longitudinal and transverse torsional reinforcement shall not exceed the limits in 20.2.2.4.

R22.7.2 Limiting material strengths

- **R22.7.2.1** Because of a lack of test data and practical experience with concretes having compressive strengths greater than 70 MPa, the Code imposes a maximum value of 8.3 MPa on $\sqrt{f_c'}$ for use in the calculation of torsional strength.
- **R22.7.2.2** The upper limit of 420 MPa on the value of f_y and f_{yt} used in design is intended to control diagonal crack width.

