COSC 4368 Fundamentals of Artificial Intelligence

Nonparametric Models October 2nd, 2023

Parametric Model vs Nonparametric Model

- Parametric model: summarizes data with a set of parameters of fixed size
 - E.g., linear regression model,
- Nonparametric model: does not use a bounded set of parameters to characterize data
 - A.k.a. instance-based learning or memory-based learning

Nearest Neighbor

e.g., image classification

Nearest Neighbor

Training data with labels

query data

Distance Metric

Distance Metrics

• Given a query point and an example point, norm (Minkowski distance) is used to measure their distance:

• E.g., norm with:

1	test image				training image				pixe I	pixel-wise absolute value differences				
56	32	10	18		10	20	24	17		46	12	14	1	
90	23	128	133		8	10	89	100		82	13	39	33	add
24	26	178	200	-	12	16	178	170		12	10	0	30	→ 456
2	0	255	220		4	32	233	112		2	32	22	108	

Nearest Neighbor Classifier with L1 Distance

```
import numpy as np
class NearestNeighbor:
 def init (self):
   pass
 def train(self, X, y):
    """ X is N x D where each row is an example. Y is 1-dimension of size N """
   # the nearest neighbor classifier simply remembers all the training data
   self.Xtr = X
    self.ytr = y
 def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
   num test = X.shape[0]
   # lets make sure that the output type matches the input type
   Ypred = np.zeros(num test, dtype = self.ytr.dtype)
    # loop over all test rows
```

Memorize the training data

```
# loop over all test rows
for i in xrange(num_test):
    # find the nearest training image to the i'th test image
    # using the L1 distance (sum of absolute value differences)
    distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
    min_index = np.argmin(distances) # get the index with smallest distance
    Ypred[i] = self.ytr[min_index] # predict the label of the nearest example
```

For each test image:

- Find closest train image
- Predict label of the nearest image

Nearest Neighbor Classifier with L1 Distance

```
import numpy as np
class NearestNeighbor:
 def init (self):
   pass
 def train(self, X, y):
    """ X is N x D where each row is an example. Y is 1-dimension of size N """
   # the nearest neighbor classifier simply remembers all the training data
   self.Xtr = X
   self.ytr = y
 def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
   num test = X.shape[0]
   # lets make sure that the output type matches the input type
   Ypred = np.zeros(num test, dtype = self.ytr.dtype)
   # loop over all test rows
   for i in xrange(num test):
      # find the nearest training image to the i'th test image
      # using the L1 distance (sum of absolute value differences)
      distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
      min index = np.argmin(distances) # get the index with smallest distance
      Ypred[i] = self.ytr[min index] # predict the label of the nearest example
```

return Ypred

Q: With N examples, how fast are training and prediction?

A: Train, test

Bad: we want classifiers to be fast at prediction; slow for training is ok

What Does It Look Like

1-nearest neighbor

Overfitting and underfitting also exist here

K-Nearest Neighbors

- Instead of directly copying label from nearest neighbor, take majority vote from K closest neighbors
- E.g., if K=3, neighbor values: <Yes, No, Yes>, result of vote: Yes

Different Metrics Change the Decision Surface

$$dist(\mathbf{x}_{q}, \mathbf{x}_{j}) = (\mathbf{x}_{q,1} - \mathbf{x}_{j,1})^{2} + (\mathbf{x}_{q,2} - \mathbf{x}_{j,2})^{2}$$

$$dist(\mathbf{x}_{q}, \mathbf{x}_{j}) = (\mathbf{x}_{q,1} - \mathbf{x}_{j,1})^{2} + (\mathbf{3} \mathbf{x}_{q,2} - \mathbf{3} \mathbf{x}_{j,2})^{2}$$

• The choices of the hyperparameters, e.g., distance metrics and value of, are very problem dependent

Curse of Dimensionality

• In high dimensional spaces, points that are drawn from a probability distribution tend to never be close together

- All training data uniformly locate in unit cube with dimension
- Let be the edge length of the smallest hypercube that contains all -nearest neighbors of a test point
- The volume of this hyper-cube is

Curse of Dimensionality

• For,

$oxed{d}$	ℓ
2	0.1
10	0.63
100	0.955
1000	0.9954

• Almost the entire space is needed to find the 10-nearest neighbors for large

Support Vector Machines

- Revisit linear classification
 - Binary classification can be viewed as the task of separating classes in feature space

Support Vector Machines

• Which linear separator is better?

Support Vector Machines

- Classification margin:
 - Distance from example \mathbf{x}_i to the separator is
 - Examples closed to the hyperplane are *support vectors*
 - Margin ρ of the separator is the distance between support vectors

Maximum Margin Separator

- Maximizing the margin is good according to intuition and PAC theory
- Implies that only support vectors matter; other training examples are ignorable

Linear SVM Mathematically

• Let training set $\{(\mathbf{x}_i, y_i)\}_{i=1..n}$, $\mathbf{x}_i \in \mathbb{R}^d$, $y_i \in \{-1, 1\}$ be separated by a hyperplane with margin ρ . Then for each training example (\mathbf{x}_i, y_i) :

$$\mathbf{w}^{\mathsf{T}}\mathbf{x}_{i} + b \leq -\rho/2 \quad \text{if } y_{i} = -1$$

$$\mathbf{w}^{\mathsf{T}}\mathbf{x}_{i} + b \geq \rho/2 \quad \text{if } y_{i} = 1$$

$$\Leftrightarrow \quad y_{i}(\mathbf{w}^{\mathsf{T}}\mathbf{x}_{i} + b) \geq \rho/2$$

• For every support vector \mathbf{x}_s the above inequality is an equality. After rescaling \mathbf{w} and b by $\rho/2$ in the equality, we obtain that distance between each \mathbf{x}_s and the hyperplane is:

$$r = \frac{\mathbf{y}_s(\mathbf{w}^T \mathbf{x}_s + b)}{\|\mathbf{w}\|} = \frac{1}{\|\mathbf{w}\|}$$

• Then the margin can be expressed through (rescaled) w and b as:

$$\rho = 2r = \frac{2}{\|\mathbf{w}\|}$$

Linear SVM Mathematically

• Then we can formulate the *quadratic optimization problem*:

Find **w** and *b* such that
$$\rho = \frac{2}{\|\mathbf{w}\|} \text{ is maximized}$$
 and for all (\mathbf{x}_i, y_i) , $i=1..n$: $y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1$

Which can be reformulated as:

Find w and b such that

$$\Phi(\mathbf{w}) = ||\mathbf{w}||^2 = \mathbf{w}^T \mathbf{w}$$
 is minimized

$$\mathbf{\Phi}(\mathbf{w}) = ||\mathbf{w}||^2 = \mathbf{w}^{\mathrm{T}}\mathbf{w} \text{ is minimized}$$
and for all (\mathbf{x}_i, y_i) , $i=1..n$: $y_i (\mathbf{w}^{\mathrm{T}}\mathbf{x}_i + b) \ge 1$

Solving the Optimization Problem

- Quadratic programming problems are a well-known class of optimization problems for which several algorithms exist
- One way to construct a dual problem where a Lagrange multiplier α_i is associated with every inequality constraint in the primal (original) problem:

Find $\alpha_1 ... \alpha_n$ such that

 $\begin{vmatrix} \mathbf{Q}(\boldsymbol{\alpha}) = \sum \alpha_i - \frac{1}{2} \sum \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j \text{ is maximized and} \\ (1) \sum \alpha_i y_i = 0 \\ (2) \alpha_i \ge 0 \text{ for all } \alpha_i \end{vmatrix}$

Solving the Optimization Problem

• Given a solution $\alpha_1...\alpha_n$ to the dual problem, solution to the primal is:

$$\mathbf{w} = \sum \alpha_i y_i \mathbf{x}_i \qquad b = y_k - \sum \alpha_i y_i \mathbf{x}_i^{\mathsf{T}} \mathbf{x}_k \quad \text{for any } \alpha_k > 0$$

- Each non-zero α_i indicates that corresponding \mathbf{x}_i is a support vector.
- Then the classifying function is (note that we don't need w explicitly):

$$f(\mathbf{x}) = \sum \alpha_i y_i \mathbf{x}_i^{\mathsf{T}} \mathbf{x} + b$$

- Notice that it relies on an *inner product* between the test point \mathbf{x} and the support vectors \mathbf{x}_i we will return to this later.
- Also keep in mind that solving the optimization problem involved computing the inner products $\mathbf{x}_i^{\mathsf{T}}\mathbf{x}_i$ between all training points.

Soft Margin Classification

- What if the training set is not linearly separable due to inherent noise?
- *Slack variables* ξ_i can be added to allow misclassification of difficult or noisy examples, resulting margin called *soft margin*.

Soft Margin Classification Mathematically

• The old formulation:

```
Find w and b such that \Phi(\mathbf{w}) = \mathbf{w}^{\mathrm{T}}\mathbf{w} is minimized and for all (\mathbf{x}_{i}, y_{i}), i=1..n: y_{i}(\mathbf{w}^{\mathrm{T}}\mathbf{x}_{i} + b) \ge 1
```

Modified formulation incorporates slack variables:

```
Find \mathbf{w} and \mathbf{b} such that \mathbf{\Phi}(\mathbf{w}) = \mathbf{w}^{\mathsf{T}}\mathbf{w} + C\Sigma \xi_{i} \text{ is minimized} and for all (\mathbf{x}_{i}, y_{i}), i=1..n: y_{i}(\mathbf{w}^{\mathsf{T}}\mathbf{x}_{i} + b) \geq 1 - \xi_{i}, \xi_{i} \geq 0
```

• Parameter C can be viewed as a way to control overfitting: it "trades off" the relative importance of maximizing the margin and fitting the training data.

Soft Margin Classification Solution

Dual problem is identical to separable case:

Find $\alpha_1 ... \alpha_N$ such that

$$\mathbf{Q}(\mathbf{\alpha}) = \sum \alpha_i - \frac{1}{2} \sum \sum \alpha_i \alpha_j y_i y_j \mathbf{x}_i^{\mathsf{T}} \mathbf{x}_j \text{ is maximized and}$$

$$(1) \quad \sum \alpha_i y_i = 0$$

$$(2) \quad 0 \le \alpha_i \le C \text{ for all } \alpha_i$$

- Again, \mathbf{x}_i with non-zero α_i will be support vectors.
- Solution to the dual problem is:

$$\mathbf{w} = \sum \alpha_i y_i \mathbf{x}_i$$

$$b = y_k (1 - \xi_k) - \sum \alpha_i y_i \mathbf{x}_i^{\mathsf{T}} \mathbf{x}_k \quad \text{for any } k \text{ s.t. } \alpha_k > 0$$

Again, we don't need to compute w explicitly for classification:

$$f(\mathbf{x}) = \sum \alpha_i y_i \mathbf{x}_i^{\mathsf{T}} \mathbf{x} + b$$

Linear SVM: Overview

- The classifier is a *separating hyperplane*.
- Most "important" training points are support vectors; they define the hyperplane.
- Quadratic optimization algorithms can identify which training points \mathbf{x}_i are support vectors with non-zero Lagrangian multipliers α_i
- Both in the dual formulation of the problem and in the solution training points appear only inside inner products:

Find $\alpha_{I}...\alpha_{N}$ such that $\mathbf{Q}(\boldsymbol{\alpha}) = \sum \alpha_{i} - \frac{1}{2} \sum \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j}$ is maximized and $(1) \sum \alpha_{i} y_{i} = 0$ $(2) \quad 0 \leq \alpha_{i} \text{ for all } \alpha_{i}$

$$f(\mathbf{x}) = \Sigma \alpha_i y \mathbf{x}_i^{\mathsf{T}} \mathbf{x} + b$$

Non-linear SVM

• Datasets that are linearly separable with some noise work out great:

• But what are we going to do if the dataset is just too hard?

• How about... mapping data to a higher-dimensional space:

Non-linear SVM: Feature Space

- General idea:
 - The original feature space can always be mapped to some higher-dimensional feature space where the training set is separable

• In general, N data points will always be separable in spaces of N-1 dimensions or more

The "Kernel Trick"

- The linear classifier relies on inner product between vectors $K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^T \mathbf{x}_j$
- If every datapoint is mapped into high-dimensional space via some transformation $\Phi: \mathbf{x} \to \phi(\mathbf{x})$, the inner product becomes:

$$K(\mathbf{x}_i,\mathbf{x}_j) = \mathbf{\varphi}(\mathbf{x}_i)^{\mathrm{T}}\mathbf{\varphi}(\mathbf{x}_j)$$

- A kernel function is a function that is equivalent to an inner product in some feature space.
- Example:

2-dimensional vectors $\mathbf{x} = [x_1 \ x_2]$; let $K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^2$

Need to show that $K(\mathbf{x}_i, \mathbf{x}_i) = \varphi(\mathbf{x}_i)^T \varphi(\mathbf{x}_i)$:

$$K(\mathbf{x}_{i}, \mathbf{x}_{j}) = (1 + \mathbf{x}_{i}^{\mathsf{T}} \mathbf{x}_{j})^{2} = 1 + x_{il}^{2} x_{jl}^{2} + 2 x_{il} x_{jl} x_{i2} x_{j2} + x_{i2}^{2} x_{j2}^{2} + 2 x_{il} x_{jl} + 2 x_{i2} x_{j2} = 1 + x_{il}^{2} x_{jl}^{2} + 2 x_{il}^{2} x_{jl}^{2} + 2 x_{il}^{2} x_{j2}^{2} + 2 x_{il}^{2} x_{jl}^{2} + 2 x_{il}^{2} x_{j2}^{2} + 2 x_{il}^{2} x_$$

• Thus, a kernel function *implicitly* maps data to a high-dimensional space (without the need to compute each $\varphi(\mathbf{x})$ explicitly).

What Functions are Kernels

- For some functions $K(\mathbf{x}_i, \mathbf{x}_i)$ checking that $K(\mathbf{x}_i, \mathbf{x}_i) = \varphi(\mathbf{x}_i)^T \varphi(\mathbf{x}_i)$ can be cumbersome.
- Mercer's theorem:

Every semi-positive definite symmetric function is a kernel

• Semi-positive definite symmetric functions correspond to a semi-positive definite symmetric Gram matrix:

	$K(\mathbf{x}_1,\mathbf{x}_1)$	$K(\mathbf{x}_1,\mathbf{x}_2)$	$K(\mathbf{x}_1,\mathbf{x}_3)$		$K(\mathbf{x}_1,\mathbf{x}_n)$
	$K(\mathbf{x}_2,\mathbf{x}_1)$	$K(\mathbf{x}_2,\mathbf{x}_2)$	$K(\mathbf{x}_2,\mathbf{x}_3)$		$K(\mathbf{x}_2,\mathbf{x}_n)$
K=					
	•••	•••	•••	•••	
	$K(\mathbf{x}_n,\mathbf{x}_1)$	$K(\mathbf{x}_n,\mathbf{x}_2)$	$K(\mathbf{x}_n,\mathbf{x}_3)$	•••	$K(\mathbf{x}_n,\mathbf{x}_n)$

Examples of Kernel Functions

- Linear: $K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^T \mathbf{x}_j$
 - Mapping Φ : $\mathbf{x} \to \phi(\mathbf{x})$, where $\phi(\mathbf{x})$ is \mathbf{x} itself

- Polynomial of power $p: K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^p$
 - Mapping Φ : $\mathbf{x} \to \phi(\mathbf{x})$, where the dimension $\phi(\mathbf{x})$ is exponential in p

$$e^{-\frac{\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}}{2\sigma^{2}}}$$

- Gaussian (radial-basis function): $K(\mathbf{x}_i, \mathbf{x}_j) = e^{-2}$
 - Mapping Φ : $\mathbf{x} \to \mathbf{\phi}(\mathbf{x})$, where $\mathbf{\phi}(\mathbf{x})$ is *infinite-dimensional*: every point is mapped to *a function* (a Gaussian)
- Higher-dimensional space still has *intrinsic* dimensionality d, but linear separators in it correspond to *non-linear* separators in original space.

Non-linear SVM Mathematically

Dual problem formulation:

Find $\alpha_1 ... \alpha_n$ such that

 $\mathbf{Q}(\mathbf{\alpha}) = \sum \alpha_i - \frac{1}{2} \sum \sum \alpha_i \alpha_j y_i y_j K(\mathbf{x}_i, \mathbf{x}_j) \text{ is maximized and}$

- (1) $\sum \alpha_i y_i = 0$ (2) $\alpha_i \ge 0$ for all α_i

• The solution is:

$$f(\mathbf{x}) = \sum \alpha_i y_i K(\mathbf{x}_i, \mathbf{x}_j) + b$$

• Optimization techniques for finding α_i 's remain the same!

SVM Summary

- SVMs learn hyperplanes that separate two classes maximizing the *margin between them* (the empty space between the instances of the two classes).
- Soft margin SVMs introduce slack variables, in the case that classes are not linear separable and trying to maximize margins while keeping the training error low.
- The most popular versions of SVMs use non-linear kernel functions to map the attribute space into a higher dimensional space, to facilitate finding "good" linear decision boundaries in the modified space (which correspond to non-linear decision boundaries in the original space).
- SVMs find "margin optimal" hyperplanes by solving a convex quadratic optimization problem. The complexity of this optimization problem is high; however, as computer got faster, using SVMs on large datasets is no longer a major challenge.
- In general, SVMs accomplish quite high accuracies, if compared to other techniques.