Lecture 14: Symbolic Execution

17-355/17-665/17-819: Program Analysis Rohan Padhye October 28, 2025

* Course materials developed with Jonathan Aldrich and Claire Le Goues

Recall: VCGen from Axiomatic Semantics

```
  \begin{cases}
  P \\
  x := e_1 \\
  x := e_2 \\
  \{Q\}
  \end{cases}
```

What is the Proof Obligation for backwards reasoning?

What if we just went forwards?

$$\{P\}$$
 $x := e_1$
 $x := e_2$
 $\{Q\}$

Generate "fresh" math variables for every mutable program variable

Proof Obligation:

$$\forall x_n : ([x_0/x]P \land x_1 = [x_0/x]e_1 \land x_2 = ([x_1/x]e_2)) \Rightarrow [x_2/x]Q$$

What if we just went forwards?

$$\{P\}$$
 $x := e_1$
 $x := e_2$
 $\{Q\}$

$$\{x > 0\}$$

 $x := x * 2$
 $x := x + 1$
 $\{x > 1\}$

Proof Obligation:

$$\forall x_n : ([x_0/x]P \land x_1 = [x_0/x]e_1 \land x_2 = ([x_1/x]e_2)) \Rightarrow [x_2/x]Q$$

$$\forall x_0, x_1, x_2 \in \mathbb{Z} : (x_0 > 0 \land x_1 = x_0 * 2 \land x_2 = x_1 + 1) \Rightarrow x_2 > 1$$

Dealing with conditional paths

```
\{true\}
if (x < 0):
```

$$y := -x$$

else:

$$y := x$$

$$\{y \geqslant 0\}$$

Dynamic Symbolic Execution:

$$\forall x_0, y_0 \in \mathbb{Z} : (x_0 < 0 \land y_0 = -x_0) \Rightarrow y_0 \geqslant 0$$

$$\forall x_0, y_0 \in \mathbb{Z} : (x_0 \geqslant 0 \land y_0 = x_0) \Rightarrow y_0 \geqslant 0$$

Static Symbolic Execution:

$$\forall x_0, y_0 \in \mathbb{Z} : ((x_0 < 0 \Rightarrow y_0 = -x_0) \land (x_0 \geqslant 0 \Rightarrow y_0 = x_0)) \Rightarrow y_0 \geqslant 0$$

Dealing with conditional paths

$$\{x > 0\}$$

if $(x < 0)$:
 $y := x$

else:

$$y := x$$

$$\{y \geqslant 0\}$$

Exercise: Generate the VC for this program. Is it true?

Formalizing DSE with Guards and Symbolic Formulas

$$egin{array}{lll} \Sigma \in \mathit{Var} & o a_s \ g & ::= & \mathsf{true} & a_s & ::= & lpha \ & | & n \ & | & n \ & | & a_{s1} \ op_a \ a_{s2} \ & | & a_{s1} \ op_r \ a_{s2} \ & | & a_{s1} \ op_r \ a_{s2} \ \end{array}$$

Symbolic Evaluation of Expressions

$$\overline{\langle \Sigma, n \rangle \Downarrow n}$$
 big-int

$$\frac{}{\langle \Sigma, x \rangle \Downarrow \Sigma(x)}$$
 big-var

$$\frac{\langle \Sigma, a_1 \rangle \Downarrow a_{s1} \quad \langle \Sigma, a_2 \rangle \Downarrow a_{s2}}{\langle \Sigma, a_1 + a_2 \rangle \Downarrow a_{s1} + a_{s2}} \ \textit{big-add}$$

Symbolic Execution of Statements (DSE)

$$\overline{\langle g, \Sigma, \mathtt{skip} \rangle \Downarrow \langle g, \Sigma
angle} \; \mathit{big-skip}$$

$$\frac{\langle g, \Sigma, s_1 \rangle \Downarrow \langle g', \Sigma' \rangle \ \langle g', \Sigma', s_2 \rangle \Downarrow \langle g'', \Sigma'' \rangle}{\langle g, \Sigma, s_1; s_2 \rangle \Downarrow \langle g'', \Sigma'' \rangle} \ \textit{big-seq}$$

$$\frac{\langle \Sigma, a \rangle \Downarrow a_s}{\langle g, \Sigma, x := a \rangle \Downarrow \langle g, \Sigma[x \mapsto a_s] \rangle} \ \textit{big-assign}$$

Symbolic Execution with Branching (DSE)

$$\frac{\langle \Sigma, b \rangle \Downarrow g' \quad g \land g' \text{SAT} \quad \langle g \land g', \Sigma, s_1 \rangle \Downarrow \langle g'', \Sigma' \rangle}{\langle g, \Sigma, \text{if } b \text{ then } s_1 \text{ else } s_2, \rangle \Downarrow \langle g'', \Sigma' \rangle} \text{ big-iftrue}$$

$$\frac{\langle \Sigma, b \rangle \Downarrow g' \quad g \land \neg g' \text{SAT} \quad \langle g \land \neg g', \Sigma, s_2 \rangle \Downarrow \langle g'', \Sigma' \rangle}{\langle g, \Sigma, \text{if } b \text{ then } s_1 \text{ else } s_2, \rangle \Downarrow \langle g'', \Sigma' \rangle} \text{ big-iffalse}$$

Symbolic Execution of Loops

Q. What's wrong here?

$$\frac{\langle \Sigma, b \rangle \Downarrow g' \quad g \land g' \text{SAT} \quad \langle g \land g', \Sigma, s; \text{while } b \text{ do } s \rangle \Downarrow \langle g'', \Sigma' \rangle}{\langle g, \Sigma, \text{while } b \text{ do } s, \rangle \Downarrow \langle g'', \Sigma' \rangle} \text{ big-while true}$$

$$\frac{\langle \Sigma, b \rangle \Downarrow g' \quad g \land \neg g' \text{SAT}}{\langle g, \Sigma, \text{while } b \text{ do } s, \rangle \Downarrow \langle g \land \neg g', \Sigma \rangle} \ \textit{big-whilefalse}$$

Symbolic Execution of Loops

Bounded exploration (k-limited)

$$\frac{k > 0 \quad \langle \Sigma, b \rangle \Downarrow g' \quad g \land g' \text{SAT} \quad \langle g \land g', \Sigma, s; \text{while}_{\mathtt{k-1}} \ b \ \text{do} \ s \rangle \Downarrow \langle g'', \Sigma' \rangle}{\langle g, \Sigma, \text{while}_{\mathtt{k}} \ b \ \text{do} \ s, \rangle \Downarrow \langle g'', \Sigma' \rangle} \ \textit{big-whiletrue}$$

$$\frac{\langle \Sigma, b \rangle \Downarrow g' \quad g \land \neg g' \text{SAT}}{\langle g, \Sigma, \text{while}_k \ b \ \text{do} \ s, \rangle \Downarrow \langle g \land \neg g', \Sigma \rangle} \ \textit{big-whilefalse}$$

Q. What are the implications?

Symbolic Execution with Loops

- Loop invariants can be used if given
 - Often works better with SSE
- But we can choose to explore only partial set of paths
 - K-bounded loops (often: k < 3)
 - "Unsound" for verification
 - Sound but "Incomplete" for bug finding when used with DSE
 - DSE formulas for a given path can be solved to find a witness = test input

Recap: Soundness and Completeness

- Soundness = "Doesn't lie" or "all claims are true"
- Completeness = "All truths are claimed"
- For Verification (claim is "program is correct")
 - Soundness: Reasoning along all possible paths (over-approximation)
- For Bug-Finding (claim is "a bug exists")
 - Soundness: Reasoning along feasible paths only (under-approximation)
- Soundness & Completeness is impossible in general (Rice's theorem)
 - Most systems are sound but incomplete (e.g. can't prove all programs, or can't find all bugs)

Symbolic Execution: A Generalization of Testing

```
int x=0, y=0, z=0;
if(a) {
    x = -2;
}

if (b < 5) {
    if (!a && c) { y = 1; }
    z = 2;
}

assert(x + y + z != 3);</pre>
```

What input values of a,b,c will cause the assert to fail?

```
1 int x=0, y=0, z=0;
2 if(a) {
3    x = -2;
4 }
5 if (b < 5) {
6    if (!a && c) { y = 1; }
7    z = 2;
8 }
9 assert(x + y + z != 3);</pre>
```

line	g	$oldsymbol{E}$

```
int x=0, y=0, z=0;
if(a) {
    x = -2;
}

if (b < 5) {
    if (!a && c) { y = 1; }
    z = 2;
}

assert(x + y + z != 3);</pre>
```

line	g	$\mid E \mid$
0	true	$a \mapsto \alpha, b \mapsto \beta, c \mapsto \gamma$

```
1 int x=0, y=0, z=0;
2 if(a) {
3    x = -2;
4 }
5 if (b < 5) {
6    if (!a && c) { y = 1; }
7    z = 2;
8 }
9 assert(x + y + z != 3);</pre>
```

	line	g	$\mid E \mid$
_	0	true	$a \mapsto \alpha, b \mapsto \beta, c \mapsto \gamma$
	1	true	$\dots, x \mapsto 0, y \mapsto 0, z \mapsto 0$

```
1 int x=0, y=0, z=0;
2 if(a) {
3    x = -2;
4 }
5 if (b < 5) {
6    if (!a && c) { y = 1; }
7    z = 2;
8 }
9 assert(x + y + z != 3);</pre>
```

line	g	$\mid E \mid$
0	true	$a \mapsto \alpha, b \mapsto \beta, c \mapsto \gamma$
1	true	$\ldots, x \mapsto 0, y \mapsto 0, z \mapsto 0$
2	$\neg \alpha$	$\ldots, x \mapsto 0, y \mapsto 0, z \mapsto 0$

```
1 int x=0, y=0, z=0;
2 if(a) {
3    x = -2;
4 }
5 if (b < 5) {
6    if (!a && c) { y = 1; }
7    z = 2;
8 }
9 assert(x + y + z != 3);</pre>
```

line	g	$\mid E \mid$
0	true	$a \mapsto \alpha, b \mapsto \beta, c \mapsto \gamma$
1	true	$\ldots, x \mapsto 0, y \mapsto 0, z \mapsto 0$
2	$\neg \alpha$	$\ldots, x \mapsto 0, y \mapsto 0, z \mapsto 0$
5	$\neg \alpha \land \beta \geqslant 5$	$\ldots, x \mapsto 0, y \mapsto 0, z \mapsto 0$

```
1 int x=0, y=0, z=0;
2 if(a) {
3    x = -2;
4 }
5 if (b < 5) {
6    if (!a && c) { y = 1; }
7    z = 2;
8 }
9 assert(x + y + z != 3);</pre>
```

line	${m g}$	$\mid E \mid$
0	true	$a \mapsto \alpha, b \mapsto \beta, c \mapsto \gamma$
1	true	$\ldots, x \mapsto 0, y \mapsto 0, z \mapsto 0$
2	$\neg \alpha$	$\ldots, x \mapsto 0, y \mapsto 0, z \mapsto 0$
5	$\neg \alpha \land \beta \geqslant 5$	$\ldots, x \mapsto 0, y \mapsto 0, z \mapsto 0$
9	$\neg \alpha \land \beta \geqslant 5 \land 0 + 0 + 0 \neq 3$	$\ldots, x \mapsto 0, y \mapsto 0, z \mapsto 0$

```
1 int x=0, y=0, z=0;
2 if(a) {
3    x = -2;
4 }
5 if (b < 5) {
6    if (!a && c) { y = 1; }
7    z = 2;
8 }
9 assert(x + y + z != 3);</pre>
```

Exercise: Generate path constraints for another path.

line	g	$\mid E \mid$
0	true	$a \mapsto \alpha, b \mapsto \beta, c \mapsto \gamma$
1	true	$\dots, x \mapsto 0, y \mapsto 0, z \mapsto 0$
2	$\neg \alpha$	$\dots, x \mapsto 0, y \mapsto 0, z \mapsto 0$
5	$\neg \alpha \land \beta \geqslant 5$	$\dots, x \mapsto 0, y \mapsto 0, z \mapsto 0$
9	$\neg \alpha \land \beta \geqslant 5 \land 0 + 0 + 0 \neq 3$	$\ldots, x \mapsto 0, y \mapsto 0, z \mapsto 0$

```
int x=0, y=0, z=0;
if(a) {
    x = -2;
}

if (b < 5) {
    if (!a && c) { y = 1; }
    z = 2;
}

assert(x + y + z != 3);</pre>
```

Exercise: Generate path constraints for another path (e.g. one that executes line 6).

 line	$\mid g \mid$	$\mid E \mid$
		-

```
int x=0, y=0, z=0;
if(a) {
    x = -2;
}

if (b < 5) {
    if (!a && c) { y = 1; }
    z = 2;
}

assert(x + y + z != 3);</pre>
```

Exercise: Generate path constraints for another path (e.g. one that executes line 6).

line	$\mid g \mid$	$\mid E \mid$
0	true	$a \mapsto \alpha, b \mapsto \beta, c \mapsto \gamma$
1	true	$ \ldots, x \mapsto 0, y \mapsto 0, z \mapsto 0$
2	$\neg \alpha$	$ \ldots, x \mapsto 0, y \mapsto 0, z \mapsto 0$
5	$\neg \alpha \land \beta < 5$	$ \ldots, x \mapsto 0, y \mapsto 0, z \mapsto 0$
6	$\neg \alpha \land \beta < 5 \land \gamma$	$ \ldots, x \mapsto 0, y \mapsto 1, z \mapsto 0$
6	$\neg \alpha \land \beta < 5 \land \gamma$	$ \ldots, x \mapsto 0, y \mapsto 1, z \mapsto 2$
9	$\neg \alpha \land \beta < 5 \land \neg (0+1+2 \neq 3)$	$ \dots, x \mapsto 0, y \mapsto 1, z \mapsto 2$

```
int x=0, y=0, z=0;
if(a) {
    x = -2;
}

if (b < 5) {
    if (!a && c) { y = 1; }
    z = 2;
}

assert(x + y + z != 3);</pre>
```

Symbolic Execution Tree

Exercise: How many feasible paths are in the program?