Laboratorium 8 — wahadło z magnesami

Zadanie 1 (4 pkt)

Zbuduj model reprezentujący wahadło z magnesami na podstawie poniższego równania różniczkowego:

$$\begin{cases} \ddot{x} + \frac{k}{m} \cdot \dot{x} + \frac{g}{l} \cdot x - \sum_{i=1}^{n} \left(a_i \cdot \frac{x_i - x}{\left(\sqrt{(x_i - x)^2 + (y_i - y)^2 + d_i^2} \right)^3} \right) = 0 \\ \ddot{y} + \frac{k}{m} \cdot \dot{y} + \frac{g}{l} \cdot y - \sum_{i=1}^{n} \left(a_i \cdot \frac{y_i - y}{\left(\sqrt{(x_i - x)^2 + (y_i - y)^2 + d_i^2} \right)^3} \right) = 0 \end{cases}$$

gdzie:

 $n - \text{liczba magnesów} \Rightarrow 3$,

g – przyśpieszenie ziemskie \Rightarrow 9.81,

k – wsp. tłumienia $\Rightarrow 1$,

m – masa wahadła $\Rightarrow 2$,

l – długość linki dla wahadła $\Rightarrow 4$,

x, y – początkowa współrzędne wahadła $\Rightarrow x = -1, y = -1,$

 x_i – położenie x magnesów \Rightarrow [-1 1 1],

 y_i – położenie y magnesów $\Rightarrow [1 \ 1 \ -1],$

 d_i – odległość magnesów od płaszczyzny XY \Rightarrow [0.1 0.1 0.1],

 a_i – siła z jaką magnesy oddziałują na wahadło $\Rightarrow [1 - 1 \ 1.5]$.

Przyjmij:

Czas symulacji = 15,

Metoda: Ode45, maks. krok = 0.02, min. krok = 0.01, początkowy krok = 0.01.

Zadanie 2 (2 pkt)

Wykreśl trajektorię wahadła za pomocą bloku "XY Graph" lub polecenia plot.

Zadanie 3 (4 pkt)

Przy użyciu jednej z poznanych wcześniej metod utwórz wizualizację 3D wahadła z magnesami. Oblicz współrzędną z tak, aby linka posiadała stałą długość l. Jako punkt zaczepienia wahadła załóż punkt $(x_z=0,\,y_z=0\,\,,\,z_z=l).$

Uwaga! Współrzędną z można wyznaczyć stosując twierdzenie Pitagorasa na podstawie długości liny (przeciwprostokątna) oraz odległości w linii prostej (odległość euklidesowa) od punktu zaczepienia wahadła (x_z, y_z) (rzut 2D) do punktu (x, y).

W przypadku wizualizacji offline, rozpoczęcie symulacji oraz pobranie niezbędnych parametrów powinno odbyć się z poziomu kodu.