* Regular expressions (and pattern-matching)
Let Z be an alphabet

** Defn: A regular expression (or regex) τ is a string in the letters of Σ , together with the symbols "1", "**, and "\$\phi\$", satisfying one of the following:

- 1) 7 = 0
- 2) 7 = 8
- 3) r=a for some a ∈ ∑
- 4) $r = r_1 r_2$ for regexes r_1 and r_2 on concatenation
- 5) $\gamma = \gamma_1 | \gamma_2$ for regexes γ_1 and γ_2 are "or"
- 6) $r = r_1^*$ for a regex r_1 . star

Additionally, we can use parentheses "(" & ")" to signify grouping.

(Just like in an algebraic expression)

** We assume that Σ does not contain χ , Γ , ϕ , ϵ , C, C.

** Order of operations

Brackets are subexpressions, so they come first.

Apply * first, then concatenation, and then or.

Concatenation & | are associative, so we don't need to bracket multiple concatenations or multiple "or"s

** Examples $\Sigma' = \{0, 13\}$ $\gamma = 0$, $\gamma = \epsilon$, $\gamma = 0$, $\gamma = 1$ $\gamma = \phi^*, \gamma = \epsilon^*$ Y= 0* 7 = 01, Y= E1 Y=1 different, but they'll have the same meaning $\gamma = (01 | \phi^* | 110)^* 010 (0|1|E)$ How to parse? Mentally, break it up as: $V = 8, 82 V_3$ an or of 3 subexpressions (Keep going)

(keep going) $\gamma_2 = 010 = \text{concatenation of } 0,1,0$ $\gamma_3 = 0|1|\varepsilon = \text{or of } 0,1,\varepsilon$

** Matching

A word we Z* is said to match a reger r if one or more of the following hold.

- i) $r = \varepsilon$ and $w = \varepsilon$
- 2) $\gamma = a$ and w = a, for some $a \in \Sigma$
- 3) $r = r_1 r_2$ and w can be written as w = xy, where x and y are words, and x matches r_1 and y Matches r_2 .
- 4) $r = 8/r_2$ and w either matches r_1 , or matches r_2 , or matches both.
- 5) $Y = Y_1^*$ and either $w = \xi$, or $w = \chi_1 \chi_2 \dots \chi_k$, where each χ_i is a word, and each χ_i matches Y_1 .

** Examples. Let $\Sigma = [0, 13]$

- i) v = 0: w = 0 is the only string that matches v = 1: w = 1 is the only string that matches v = 1: w = 1 is the only string that matches
- 2) $r = \phi$: no strings match this.
- 3) r = 01: w = 01 is the only string that matches
- 4) r= \$1: no strings match this

5) r=0[1: W=0, W=1] match.

6) $Y = 1^*$: $\omega = \Sigma$, $\omega = 1$, $\omega = 11, \omega = 111111$ etc

match.

7) ~= (00 | 11)*

Match: $\omega = 00$, $\omega = 11$, $\omega = 000000$, $\omega = 111111$

 $\omega = \varepsilon$, $\omega = 0011110011$

each of these

match (00/11)

(and many others...)

8) $Y = 0(1|0)^{*}1$

w starts with a o and ends with a 1. these are exactly all the words that match.

 $\omega = 0 \in 1 = 01$ matches $(011)^*$

** The language of a reger

Let r be a regex. The language of r, denoted L(r) is the set of all words that watch r.

** Example

 $Y = 0 (1 | 0)^{*} 1$

 $L(r) = \{ w \in \Sigma^* \mid w \text{ begins with a 0 and ends with a 13} \}$

** Question: Given some L= 5!*, is there a regular expression & such that L(x)=L?.

*** Example

LE Z*, L= [w] w begins with a 0 or ends with a 13.

(Homework ... finish next time)