## Tutorial Sheet F' EE 280 24 March 2021

Q1 Given  $L(s) = \frac{K}{(s+1)^3}$ . Draw the Nyquist plot for K = 4 and K = 10. Comment on the stability of the closed look system.

SOLL

Nyquist Contour The contour does not include any Let's evaluate L(s) for part a of Ne.  $L(j\omega) = \frac{4}{(j\omega+1)^3} = \frac{4}{(1-3\omega^2)+j}(3\omega-\omega^3)$ 4 (1-30°) - j 4(3w-w3)  $= \frac{1}{(1-3u^{2})^{2} + (3w-w^{3})^{2}}$   $L(ju) = -3 + can^{2} w$ 

(LUW) (L(jw)) W 2 V2 -135-270 00 Since the Nyquist plot would cross real axis, to find out the crossing point, Im(L(jw)) = 0 $4(3\omega-\omega^2)$  $(1-3\omega^{2})^{2}+(3\omega-\omega^{3})^{2}=0$  $3\omega - \omega^3 = 0$  $\omega(3-\omega^{\prime})=0=)$   $\omega=\pm\sqrt{3}$  $|L(jw)| = \frac{4}{(V\omega^{2}+1)^{3}} = \frac{4}{(V3+1)^{3}} = \frac{9}{8} = 0.5$ AIM(L(S)) & Part C part 5 > Re Us) A part a Corresponding b (CG) plane

Nyquist plot & part c is the mirror image around the real axis. The onter semicircle count map to origin. Since the plot does not encircle -1+j0, the system in closed look is stable.

9f we take K = 10, [Lin) will not change. The crossing of the real axis a will take place at the same  $\omega = \pm v_3$ . The gain |L(v)| at  $\omega = \pm v_3$  is  $\frac{10}{(\omega^2+1)^3/2} = \frac{10}{8} = 1.25$ .

The Nyquist plat would look as AIm L(S)



The plot encircles -1+jo two times clock wise

N = Z - P, N = Q, P = 0

2 = X - 0 => X = 2.

There are two closed loop botes in the RHS-plane. System is thus unstable.

<u>Q</u>2

The ofen loop transfer function
of a system in a unity feed Lack
configuration is Siven as

$$G(8) = K \frac{S+2}{(s-2)^2}$$

a. Draw the Nyquist plot for k=1. Comment on the stability. Compute the gain margin.

b: How does this plot change when K=10. Comment on the stability. Compute the phan margin.

Soll Ne: Myquist contour

$$G(j\omega) = K \frac{j\omega + 2}{(j\omega + 2)^2}$$

$$\frac{-2}{[180^0 - \tan^2 \omega]}$$

For part  $a + b = S = j\omega$ , K = 1  $[G(j\omega)] = \frac{j\omega + 2}{(j\omega - 2)^2} = \frac{(j\omega + 2)(4-\omega^2) + j\omega}{(4-\omega^2)^2 + (4\omega)^2}$   $= \frac{1}{\sqrt{\omega^2 + 4}} = \frac{y_2}{\sqrt{\frac{\omega}{4} + 1}}$   $[G(j\omega)] = tan! \frac{\omega}{2} - tan!(-\frac{\omega}{2}) - tan!(-\frac{\omega}{2})$   $= tan! \frac{\omega}{2} - (180^\circ - tan!\frac{\omega}{2}) - (180^\circ 6 - tan!\frac{\omega}{2})$ 

$$6(iw) = 3 + ain \frac{1}{2} - 3600$$
  
=  $3 + ain \frac{1}{2}$ 

| 20"                                          |           |          |       |
|----------------------------------------------|-----------|----------|-------|
| Fer                                          | part      | a of No  |       |
|                                              | $\omega$  | (G(j'w)) | (Gjw) |
|                                              | 0         | 0.5      | 0     |
|                                              | 1         | 0-45     | 79.5  |
|                                              | 1.15      | 0.43     | 900   |
|                                              | 2         | 0.353    | 1350  |
|                                              | 3.46      | 0.25     | 1800  |
|                                              | $\bowtie$ | 0        | 270°  |
| Jan G(S)  O.353  Parte  O.35  Parte  Apart b |           |          |       |

The Nyquist plot would cross the real axis at -1500 it

$$9m \left(G_{00}^{(0)}\right) = 0 \quad \text{ot} \qquad G$$

$$-3 + an^{1} \frac{1}{2} = 1800$$

$$G_{00}^{(1)} = \frac{2(4 - w^{2})^{2} - 4w^{2} + j(8w + w(4 - w^{2})^{2})}{(4 - w^{2})^{2} + (4w)^{2}}$$

$$9m(G_{00}^{(1)}) = \frac{8w + w(4 - w^{2})}{(4 - w^{2})^{2} + (4w)^{2}} = 0$$

$$8w + w(4 - w^{2}) = 0$$

$$w = \pm \sqrt{12} = \pm 3v^{2}$$

$$w = 2 \cdot 46 \text{ rad/sec}$$

$$+ an^{1} \frac{w}{2} = 60$$

$$w/2 = \tan 60 = 1.7322$$

$$w = 3 \cdot 46 \text{ rad/sec}$$

$$+ tw = 3 \cdot 46 \text{ rad/sec}, |G_{00}^{(1)}| = \frac{0.5}{\sqrt{34v^{2} + 1}} = 0.35$$

$$9n + w = 2 \cdot 46 \text{ rad/sec}, |G_{00}^{(1)}| = \frac{0.5}{\sqrt{34v^{2} + 1}} = 0.35$$

$$9n + w = 2 \cdot 46 \text{ rad/sec}, |G_{00}^{(1)}| = \frac{0.5}{\sqrt{34v^{2} + 1}} = 0.35$$

$$9n + w = 2 \cdot 46 \text{ rad/sec}, |G_{00}^{(1)}| = \frac{0.5}{\sqrt{34v^{2} + 1}} = 0.35$$

$$9n + w = 2 \cdot 46 \text{ rad/sec}, |G_{00}^{(1)}| = \frac{0.5}{\sqrt{34v^{2} + 1}} = 0.35$$

$$9n + w = 2 \cdot 46 \text{ rad/sec}, |G_{00}^{(1)}| = \frac{0.5}{\sqrt{34v^{2} + 1}} = 0.35$$

$$9n + w = 2 \cdot 46 \text{ rad/sec}, |G_{00}^{(1)}| = \frac{0.5}{\sqrt{34v^{2} + 1}} = 0.35$$

$$9n + w = 2 \cdot 46 \text{ rad/sec}, |G_{00}^{(1)}| = \frac{0.5}{\sqrt{34v^{2} + 1}} = 0.35$$

$$9n + w = 2 \cdot 46 \text{ rad/sec}, |G_{00}^{(1)}| = \frac{0.5}{\sqrt{34v^{2} + 1}} = 0.35$$

$$9n + w = 2 \cdot 46 \text{ rad/sec}, |G_{00}^{(1)}| = \frac{0.5}{\sqrt{34v^{2} + 1}} = 0.35$$

$$9n + w = 2 \cdot 46 \text{ rad/sec}, |G_{00}^{(1)}| = \frac{0.5}{\sqrt{34v^{2} + 1}} = 0.35$$

$$9n + w = 2 \cdot 46 \text{ rad/sec}, |G_{00}^{(1)}| = \frac{0.5}{\sqrt{34v^{2} + 1}} = 0.35$$

$$9n + w = 2 \cdot 46 \text{ rad/sec}, |G_{00}^{(1)}| = \frac{0.5}{\sqrt{34v^{2} + 1}} = 0.35$$

$$9n + w = 2 \cdot 46 \text{ rad/sec}, |G_{00}^{(1)}| = \frac{0.5}{\sqrt{34v^{2} + 1}} = 0.35$$

$$N = 0.9 + 2.46 \text{ rad/sec}, |G_{00}^{(1)}| = \frac{0.5}{\sqrt{34v^{2} + 1}} = 0.35$$

$$N = 0.9 + 2.46 \text{ rad/sec}, |G_{00}^{(1)}| = \frac{0.5}{\sqrt{34v^{2} + 1}} = 0.35$$

$$N = 0.9 + 2.46 \text{ rad/sec}, |G_{00}^{(1)}| = \frac{0.5}{\sqrt{34v^{2} + 1}} = 0.35$$

$$N = 0.9 + 2.46 \text{ rad/sec}, |G_{00}^{(1)}| = \frac{0.5}{\sqrt{34v^{2} + 1}} = 0.35$$

$$N = 0.9 + 2.46 \text{ rad/sec}, |G_{00}^{(1)}| = 0.35$$

$$N = 0.9 + 2.46 \text{ rad/sec}, |G_{00}^{(1)}| = 0.35$$

$$N = 0.9 + 2.46 \text{ rad/sec}, |G_{00}^{(1)}| = 0.35$$

$$N = 0.9 + 2.46 \text{ rad/sec}, |G_{00}^{(1)}| = 0.35$$

$$N = 0.9 + 2.46 \text{ rad/sec}, |G_{00}^{(1)}| = 0.35$$

925

K = 10, (G(w) is unchanged.

The crossing of the real axis at 1800 is also unchanged at  $\omega = 3.46$  radbec.

 $|G(\omega)|$   $|\omega=3.46$   $|\omega+4$ 

 $=\frac{10}{4}=2.5$ 

The Nyquist plot would encircle -1+jo a times anti clock wise.

N = -2

= K-P Given P=2

= 7 - 2

=> X=0 => There are

NO Closed loop poles in RHS plane. The system is stable.

At phax rearsia, |G(jw) = 1

 $\frac{10}{(\omega^2+4)^{1/2}}=1$ 

 $\omega^{2}+4=100$ 

 $w^{2} = 96 = 0$   $\omega_{g}^{2} = \sqrt{96} = 9.798$  rad/sec.

 $G(ju) = 3 \tan(\frac{wg}{2}) = 235.38^{\circ}$  $PM = -180 + 235.38^{\circ} = 55.38^{\circ}$ 

Draw the Nyquist plot of the system L(s) = K S+2 (= OLTFin units feedback). Find the range of K for stability. Soln No has four parts as there is a pole of oxisin. For part a 40  $L(j\omega) = K \frac{j\omega+2}{j\omega(j\omega-1)}$  $= K \left[ \frac{-3\omega^2}{\omega^4 + \omega^2} + j \frac{2\omega - \omega^2}{\omega^4 + \omega^2} \right]$  $= K \left[ \frac{-3}{\omega^{4}} + j \frac{2\omega - \omega^{2}}{\omega^{4} + \omega^{2}} \right]$  $L(j\omega) = tan |\omega/2 - 90^0 - (180^0 - tan |\omega)$ = -2700 + tan' W/, + tan' W