Práctica 1: Señales Básicas en Tiempo Discreto y Muestreo Básico

Dino Chuluc, 201900150,^{1,*} Diego España, 201900480,^{1,**} and Lorenzo Santizo, 201905906^{1,***}

¹Facultad de Ingeniería, Universidad de San Carlos,
Edificio T1, Ciudad Universitaria, Zona 12, Guatemala.

I. DESCRIPCIÓN

En esta práctica se generaran y grafican algunas de las señales básicas en tiempo discreto utilizando la herramienta o plataforma de software que los integrantes del grupo prefiera utilizar. Además se realizará el muestreo básico de una señal sinusoidal.

II. PROCEDIMIENTO

- 1. Un impulso unitario centrado en n=0 con una longitud de X puntos con $0 \le n \le X-1$.
- 2. Una secuencia x[n] = 0.5 δ [n-5] , para $-X \le n \le X$.
- 3. Un escalón que inicie en n=0 con una longitud de X puntos. La grafica debe ser $-X \le n \le X$.
- 4. Una secuencia cuadrada períodica con ciclo de trabajo $\rm X/5$ y frecuencia $\rm 10^*X~Hz$
- Dos secuencias sinusoidales: una cosenoidal y una senoidal de frecuencia 10*X Hz.
- Una secuencia exponencial real creciente y decreciente. Utilice el parámetro de crecimiento y decrecimiento con el valor X.
- Una secuencia senoidal amortiguada exponencialmente, utilizando las secuencias de los incisos 5 y 6.
- 8. Una secuencia exponencial compleja de longitud X. Grafique su parte real e imaginaria en la misma pantalla.
- 9. Genere y grafique con la función Plot(Matlab) una señal senoidal en tiempo continuo xc(t) con frecuencia de 10*X Hz.
- 10. Utilizando la señal del inciso 9, muestree dicha señal xc(t) con una frecuencia de muestro fs de 20*X Hz = 1 / Ts para obtener la secuencia x[n], Grafique con la función Stem la secuencia x[n]. Para muestrear xc(t) utilice la relación entre frecuencias n* ω 0 = Ω 0*n*Ts en donde ω 0 es la frecuencia angular de la secuencia que se obtuvo del proceso de muestreo y Ω 0 es la frecuencia angular de la señal senoidal en tiempo contínuo.

III. RESULTADOS

Figura 1: Impulso unitario

Fuente: Elaboración Propia

Figura 2: Tiempo Discreto

Fuente: Elaboracion Propia

^{*} e-mail: 201900150dinochuluc@gmail.com

^{**} e-mail: diegoespana@gmail.com

^{***} e-mail: lorenzoandres.1999@gmail.com

Figura 3: Tiempo Continuo

Fuente: Elaboracion Propia

Figura 5: Seno y Coseno

Fuente: Elaboracion Propia

Figura 4: Secuencia Cuadrada

Fuente: Elaboracion Propia

Figura 6: Exponencial creciente y decreciente

Fuente: Elaboracion Propia

Figura 7: Seno amortiguado

Fuente: Elaboracion Propia

Figura 8: Exponencial compleja

Fuente: Elaboracion Propia

Figura 9: Seno continuo

Fuente: Elaboracion Propia

^[1]Ing. Guillermo Puente. Práctica 1. Laboratorio de Comunicaciones 4.