Registration No: FAIR-BSM-039
Name: Sana Shaheen
Strain-displacement relation from cylinderical to spherical coordinate system:
Strain-aisplacement revation to
to spherica coordinate of
As the relation blu cylinderical & spherical
Coordinates is:
$y = S \sin \phi$, $z = S \cos \phi$, $\theta = \theta$
where
$S = \sqrt{r^2 + z^2}$, $\theta = \tan^2(\frac{y}{x})$, $\phi = \operatorname{arc} \cos(\frac{x}{y})$
Partial derivatives for the above equations
96 16 16 16 18 9 - 95 - 90 - 90
$= Sind 2 + 1^2 - 2$
$= Sin \phi \frac{\partial}{\partial 9} + \frac{r}{\sqrt{r^2 - z^2} \int_{-2}^{3/2} d\phi}$
2 = 2P, 2 + 30, 3
72 72 73 72 70 P
$\frac{z \cos \theta}{\partial P} \frac{\partial}{\partial x^2} + \frac{\nabla z}{\partial \theta} \frac{\partial}{\partial \theta}$
Now
Ux= Upsing+ Up 282 + Uz= Upcosp
$V8-2U$ $4U\phi V_2$, $V8^2 > p^3/2$
U0 = U0

Calculating
$$eP = \frac{3ur}{3r}$$
 $eP = \frac{3in\phi}{3p} \left[\frac{3}{3p} \left(\frac{4Psin\phi}{3p} + \frac{4u\phi}{3r^2 - r^2 - r^3/3} \right) + \frac{3u}{3p} \left(\frac{3u}{3p} + \frac{3u\phi}{3p} + \frac{3u\phi}{3p}$

$$\frac{\partial \phi}{\partial p} = \frac{\partial U^{2}}{\partial p} \frac{\cos \phi}{\partial p} + \left(\frac{\partial U\phi}{\partial p} + \frac{1}{2} \frac{U\phi}{\partial p} + \frac{1}{2} \frac$$