

Matematyka Dyskretna I

Studenckie rozwiązania zadań z ćwiczeń z Matematyki Dyskretnej I. Ćwiczenia z $MD\ I$ w gr. 3 prowadzi dr inż. Tomasz Brengos i też oto pod jego opieką powstaje ten plik. Ostatnia aktualizacja: 9 kwietnia 2025

Spis treści

1.	Zestaw																								2	2
2.	Zestaw									 															Ę	5
3.	Zestaw																								7	7
	Zestaw																									
5.	\mathbf{Zestaw}																								11	L
	\mathbf{Zestaw}																									
	Zestaw																									
	Zestaw																									
	\mathbf{Zestaw}																									
	.Zestaw																									
	.Zestaw																									
12	.Zestaw									 													 		13	3
13	Zestaw																								1.9	₹

Zadanie 1.1. Na płaszczyźnie poprowadzono n prostych, z których żadne dwie nie są równoległe i żadne trzy nie przechodzą przez ten sam punkt. Wyznacz liczbę:

- 1. obszarów, na które te proste dzielą płaszczyznę;
- 2. obszarów ograniczonych, na które te proste dzielą płaszczyznę.

Rozwiązanie Autora 1.

Rozwiązanie Autora 2.

Zadanie 1.2 (W). Ciąg Fibonacciego $\{F_n\}_{n\in\mathbb{N}}$ zadany jest przez $F_0=0$, $F_1=1$ i $F_{n+2}=F_{n+1}+F_n$. Udowodnij, że:

- 1. $F_0 + ... + F_n = F_{n+2} 1$;
- 2. $5|F_{5n}$,
- 3. $F_n < 2_n$.

Rozwiązanie Autora 1.

Rozwiązanie Autora 2.

Zadanie 1.3. Turniej n-wierzchołkowy to dowolny graf skierowany G = (V, E), gdzie |V| = n i w którym $(u, v) \in E$ lub $(v, u) \in E$ dla dowolnych $u, v \in V$. Pokaż, że w dowolnym niepustym turnieju istnieje wierzchołek z którego można "przejść" po krawędziach zgodnie z ich skierowaniem do dowolnego innego wierzchołka w co najwyżej dwóch krokach.

Rozwiązanie Autora 1.

Rozwiązanie Autora 2.

Zadanie 1.4 (W). Udowodnij, że każdy turniej ma ścieżkę Hamiltona.

Rozwiązanie Autora 1.

Rozwiązanie Autora 2.

Zadanie 1.5 (W). W każdym polu szachownicy rozmiaru nxn znajduje się jedna osoba. Część osób zarażona jest wirusem grypy. Wirus grypy rozprzestrzenia się w dyskretnych odstępach czasowych w sposób następujący:

- osoby zarażone pozostają zarażone,
- osoba ulega zarażeniu jeżeli co najmniej dwie sąsiadujące z nią osoby są już zarażone (przez osobę sąsiednią rozumiemy osobę siedzącą z przodu, z tylu, z lewej lub prawej strony). Wykaż, że jeżeli na początku zarażonych jest istotnie mniej niż n osób, to w każdej chwili przynajmniej jedna osoba pozostaje niezarażona.

Rozwiązanie Autora 1.

Rozwiązanie Autora 2.

Zadanie 1.6. Wykaż, że w grupie n osób istnieją dwie, które mają taka samą liczbę znajomych.

Rozwiązanie Autora 1.

Rozwiązanie Autora 2.

Zadanie 1.7. Przy okrągłym stole jest n miejsc oznaczonych proporczykami różnych państw. Ambasadorowie tych państw usiedli przy tym stole tak, że żaden z nich nie siadł przy właściwym proporczyku. Wykaż, że można tak obrócić stołem, że co najmniej 2 ambasadorów znajdzie się przed proporczykiem swojego państwa.

Rozwiązanie Autora 1.

Rozwiązanie Autora 2.

Zadanie 1.8 (W). Pokaż, że w dowolnym ciągu n liczb całkowitych istnieje (niepusty) podciąg kolejnych elementów taki, że suma wyrazów podciągu jest wielokrotnością n.

Rozwiazanie Autora 1.

Rozwiązanie Autora 2.

Zadanie 1.9. Rozważ dowolną rodzinę podzbiorów zbioru n-elementowego zawierającą więcej niż połowę wszystkich podzbiorów. Wykaż, że w tej rodzinie muszą być dwa zbiory takie, że jeden zawiera się w drugim.

Rozwiązanie Autora 1.

Rozwiązanie Autora 2.

Zadanie 1.10. Dla n-elementowego zbioru X rozważ pewną rodzinę jego podzbiorów \mathcal{F} , gdzie |F| > n/2dla każdego $F \in \mathcal{F}$. Wykaż, że istnieje $x \in X$ należący do co najmniej polowy zbiorów $z \mathcal{F}$.

Rozwiązanie Autora 1.

Rozwiązanie Autora 2.

Zadanie 1.11 (W). Dana jest kwadratowa szachownica $2n \times 2n$ z wyciętym jednym polem. Wykaż, że dla wszystkich wartości $n \ge 1$ możemy pokryć tę szachownicę kostkami w kształcie litery L (czyli kwadrat $2 \geqslant 2$ bez jednego pola).

Rozwiązanie Autora 1.

Rozwiązanie Autora 2.

Zadanie 1.12 (W). Dana jest kwadratowa szachownica $n \times n$. Dla jakich wartosci $n \geqslant 1$ możemy pokryć tę szachownicę kostkami wielkości 2×2 oraz 3×3 .

Rozwiazanie Autora 1.

Rozwiązanie Autora 2.

Zadanie 1.13.

Wydział MiNI PW	Rozwiązania zadań	Informatyka
Rozwiązanie Autora 1.		

 ${\bf Matematyka\ Dyskretna\ 1}$

Grupa 3

Zadanie 2.1 (R). Na ile sposobów można ustawić n wież na szachownicy $n \times n$ tak, by żadne dwie nie znajdowały się w polu wzajemnego rażenia.

Rozwiązanie Autora 1.

Rozwiązanie Autora 2.

Zadanie 2.2 (R). Na ile sposobów można ustawić k wież na szachownicy $n \times m$ tak, by żadne dwie nie znajdowały się w polu wzajemnego rażenia.

Rozwiązanie Autora 1.

Rozwiązanie Autora 2.

 ${\bf Zadanie~2.3~(R).}~{\it Znal\'z\'c~ definicje~ rekurencyjne~ następujących~ ciąg\'ow:}$

- 1. a(n) liczba słów długości n nad alfabetem $\{0,1\}$, które nie zawierają dwóch jedynek koło siebie.
- 2. b(n) liczba różnych pokryć prostokąta o wymiarze $2 \times n$ dominami wymiaru 2×1 .

Rozwiązanie Autora 1.

Rozwiązanie Autora 2.

Zadanie 2.4 (W/R). Ile rozwiązań ma równanie $x_1 + x_2 + x_3 + x_4 = 7$:

- 1. $gdzie x_i sq liczbami naturalnymi?$
- 2. $gdzie x_i sq dodatnimi liczbami naturalnymi?$

Rozwiązanie Autora 1.

Rozwiązanie Autora 2.

Zadanie 2.5 (W). Rozważmy czekoladę złożoną z $m \times n$ kostek. Na ile sposobów można wykroić prostokąt złożony z $k \times k$ sąsiadujących ze sobą kostek ze sobą kostek czekolady?

Rozwiązanie Autora 1.

Rozwiązanie Autora 2.

Zadanie 2.6 (W). (Regula sumowania po górnym indeksie). Udowodnij, że dla $n, k \in \mathbb{N}$ zachodzi

$$\sum_{j=0}^{n} \binom{j}{k} = \binom{n+1}{k+1}$$

Rozwiązanie Autora 1.

Rozwiazanie Autora 2.

Zadanie 2.7 (W). (Regula sumowania równoległego). Udowodnij, że dla $n, k \in \mathbb{N}$ zachodzi

Rozwiązanie Autora 1.

Rozwiązanie Autora 2.

Zadanie 2.8 (W). Ile jest funkcji $f: \{1,...,n\} \rightarrow \{1,...,n\}$ monotonicznych takich, że $f(i) \leq f(j)$ dla i < j?

Rozwiązanie Autora 1.

Rozwiązanie Autora 2.

Zadanie 2.9 (R). Ile jest k-elementowych podzbiorów zbioru n-elementowego, które nie zawierają dwóch sąsiednich liczb?

Rozwiazanie Autora 1.

Rozwiązanie Autora 2.

Zadanie 2.10. Posługując się interpretacją kombinatoryczną udowodnij, że:

$$\sum_{i=0}^{k} \binom{n}{i} \binom{n-i}{k-i} = 2^k \binom{n}{k}$$

Rozwiązanie Autora 1.

Rozwiązanie Autora 2.

Zadanie 2.11. Udowodnij poniższe tożsamości na dwa sposoby: posługując się interpretacją kombinatoryczną albo rozwinięciem dwumianu $(1+x)^n$:

1.

$$\sum_{k=0}^{n} k \binom{n}{k} = n2^{n-1}$$

2.

$$\sum_{k=0}^{n} k^2 \binom{n}{k} = (n+n^2)2^{n-2}$$

3.

$$\sum_{i=0}^{k} \binom{m}{i} \binom{n}{k-i} = \binom{m+n}{k}$$

Rozwiązanie Autora 1.

Zadanie 3.1. Wykaż, że dla dowolnego $n \ge 1$ istnieje $k \ge 1$ takie, że:

$$S(n,0) < S(n,1) < \dots < S(n,k-1) \le S(n,k) > S(n,k+1) > \dots > S(n,n)$$

Rozwiązanie Autora 1.

Rozwiązanie Autora 2.

Zadanie 3.2. Wykaż, że:

$$B(n) = \sum_{i=0}^{n-1} \binom{n-1}{i} B(i)$$

Rozwiązanie Autora 1.

Rozwiązanie Autora 2.

Zadanie 3.3. Wykaż, że dla $n, k \in \mathbb{N}$ zachodzi:

$$S(n,k+1) = \frac{1}{(k+1)!} \sum_{0 < i_0 < \ldots < i_{k-1} < n} \binom{n}{i_{k-1}} \binom{i_{k-1}}{i_{k_2}} \ldots \binom{i_1}{i_0}$$

Rozwiązanie Autora 1.

Rozwiązanie Autora 2.

Zadanie 3.4. Rozważ następującą procedurę generującą pewne liczby naturalne $\{a_{i,j}\}_{1\geq i\geq j}$:

- 1. $a_{0,0} = 1$,
- 2. $a_{n+1,0} = a_{n,n}$, dla $n \ge 0$,
- 3. $a_{n+1,k+1} = a_{n,k} + a_{n+1,k}$, $dla \ n \ge k \ge 0$.

Rozwiązanie Autora 1.

Rozwiązanie Autora 2.

Zadanie 3.5. Wykaż, że liczba podziałów zbioru (n-1) elementowego jest równa liczbie podziałów zbioru $\{1,...,n\}$ niezawierających sąsiednich liczb w jednym bloku.

Rozwiązanie Autora 1.

Rozwiązanie Autora 2.

Zadanie 3.6. Udowodnij, że liczba ukorzenionych drzew binarnych na n wierzchołkach to n-ta liczba Catalana.

Ukorzenione drzewo jest drzewem binarnym, jeśli każdy wierzchołek ma co najwyżej dwójkę dzieci przy czym co najwyżej jedno lewe dziecko i co najwyżej jedno prawe dziecko.

Rozwiązanie Autora 2.

Zadanie 3.7. Triangulacją n – wierzchołkowego wielokąta wypukłego nazywamy zbiór (n-3) wzajemnie nieprzecinających się jego przekątnych, które dzielą jego obszar na (n-2) trójkątów.

- $1.\ ile\ jest\ triangulacji\ n-wierzchołkowego\ wielokąta\ wypukłego?$
- 2. Ile jest triangulacji n-wierzchołkowego wielokąta wypuklego, w których każdy trójkąt triangulacji ma przynajmniej jeden bok na brzegu wielokąta?

Rozwiązanie Autora 1.

Rozwiązanie Autora 2.

Zadanie 3.8. Wykaż, że liczba drzew etykietowanych na zbiorze 1, ..., n wynosi n^{n-2} .

Rozwiązanie Autora 1.

Zadanie 4.1. Oblicz S(n, 2).

Rozwiązanie Autora 1.

Rozwiązanie Autora 2.

Zadanie 4.2. Wykaż, że mamy dokładnie

$$\frac{n!}{1^{\lambda_1} \cdot 2^{\lambda_2} \cdot \dots \cdot n^{\lambda_n} \cdot \lambda_1! \cdot \dots \cdot \lambda_n!}$$

permutacji zbioru [n] o typie $1^{\lambda_1} \cdot 2^{\lambda_2} \cdot \dots \cdot n^{\lambda_n}$ (mających λ_i cykli długości i dla $i \in [n]$).

Rozwiązanie Autora 1.

Rozwiązanie Autora 2.

Zadanie 4.3. Posługując się interpretacją kombinatoryczną, wykaż tożsamość:

$$S(n+1, m+1) = \sum_{k} \binom{n}{k} S(k, m)$$

Rozwiązanie Autora 1.

Rozwiązanie Autora 2.

Zadanie 4.4. Zakładając, że zachodzi równość:

$$(x_1 + \dots + x_k)^n = \sum_{n_1 + \dots + n_k = n} {n \choose n_1 n_2 \dots n_k} x_1^{n_1} \cdot \dots \cdot x_k^{n_k}$$

podaj ile wynosi $\binom{n}{n_1 n_2 \dots n_k}$.

Rozwiązanie Autora 1.

Rozwiązanie Autora 2.

Zadanie 4.5. Wykaż, że

$$\sum_{i=0}^{n} i \begin{bmatrix} n \\ i \end{bmatrix} = n! H_n,$$

gdzie $H_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$.

Rozwiązanie Autora 1.

Rozwiazanie Autora 2.

Zadanie 4.6. Wykaż, że dla dowolnego $x \in \mathbb{R}$ zachodzi:

1.
$$x^n = \sum_k S(n,k)x^{\underline{k}}$$

2. $x^{\overline{n}} = \sum_k \begin{bmatrix} n \\ k \end{bmatrix} x^k$.

Wydział MiNI PW	Rozwiązania zadan	Informatyka
Rozwiązanie Autora 1.		
Rozwiązanie Autora 2.		

 ${\bf Matematyka\ Dyskretna\ 1}$

Grupa 3

Zadanie 5.1 (Autor 1, Autor 2). Wykaż zasadę włączeń i wyłączeń korzystając z indukcji po liczbie zbiorów.

Rozwiązanie Autora 1.

Rozwiazanie Autora 2.

Zadanie 5.2 (Autor 1, Autor 2). Wykaż, że mamy

$$\sum_{j=0}^{m} (-1)^j \binom{m}{j} (m-j)^n$$

suriekcji ze zbioru [n] w zbiór [m].

Rozwiązanie Autora 1.

Rozwiązanie Autora 2.

Zadanie 5.3 (Autor 1, Autor 2). Ile jest ciągów długości 2n takich, że każda liczba $i \in [n]$ występuje dokładnie dwa razy oraz każde sąsiednie dwa wyrazy są różne.

Rozwiązanie Autora 1.

Rozwiązanie Autora 2.

Zadanie 5.4 (Autor 1, Autor 2). Wykaż, że dla $n \ge 3$ zachodzi tożsamość

$$D(n) = (n-1)(D(n-1) + D(n-2))$$

 $gdzie\ D(n)\ jest\ liczbą\ permutacji\ zboru\ [n]\ bez\ punktów\ stałych.$

Rozwiązanie Autora 1.

Rozwiązanie Autora 2.

Zadanie 5.5 (Autor 1, Autor 2). Wykaż (najlepiej kombinatorycznie), że dla dowolnych $n, k \in \mathbb{N}$ zachodzi:

- 1. $S(n,k) = \sum_{0 \leqslant m_1 \leqslant m_2 \leqslant \dots \leqslant m_{n-k} \leqslant k} m_1 m_2 \cdot \dots \cdot m_{n-k}$
- 2. $c(n,k) = \sum_{0 < m_1 < m_2 < \dots < m_{n-k} < k} m_1 m_2 \cdot \dots \cdot m_{n-k}$
 - 1. Rozwiązanie Autora 1 podpunktu 1
 - 2. Rozwiązanie Autora 1 podpunktu 2
 - 1. Rozwiązanie Autora 2 podpunktu 1
 - 2. Rozwiązanie Autora 2 podpunktu 2

Zadanie 5.6 (Autor 1, Autor 2). Ciąg podziałów zbioru 1,..., n tworzymy następująco. Startujemy od podziału zawierającego tylko zbiór 1,..., n. Podział (i + 1)-wszy otrzymujemy z podziału i-tego poprzez:

- 1. wybranie jednego, co najmniej 2-elementowego zbioru z podziału i-tego i podzielenie go na dwa niepuste podzbiory,
- 2. podzielenie każdego, co najmniej 2-elementowego zbioru z podziału i-tego na dwa niepuste podzbiory.

Rozwiązania zadań

W obu przypadkach procedura kończy swoje działanie jeżeli wszystkie zbiory podziału są jednoelementowe. Na ile sposobów można wykonać powyższe procedury? Na ile sposobów możemy wykonać powyższe procedury zakładając, że po każdym kroku zbiory podziałów zawierają kolejne liczby naturalne?

Rozwiazanie Autora 1.

Nothing here. Tylko work in progress...

7. Zestaw

Nothing here. Tylko work in progress...

8. Zestaw

Nothing here. Tylko work in progress...

9. Zestaw

Nothing here. Tylko work in progress...

10. Zestaw

Nothing here. Tylko work in progress...

11. Zestaw

Nothing here. Tylko work in progress...

12. Zestaw

Nothing here. Tylko work in progress...

13. Zestaw

Nothing here. Tylko work in progress...