ALGEBRA	LINEARE	- LEZION	VE 55
Titolo nota			11/12/2018
ISOMETRIE DELLE	O SPAZIO)		
Come sous fattes	le matrici 3×3	s ortogouali	
(t) (3)	leie A al a .		
(Fatto 1) Una ma	the A oltogolic	ale na Det = ±1	
Fatto 2\ Vua ma	trice A 3x3 ho	almeno un antova	done reale
		spani hanno almen	
radice of			
		una matrice ortog	zouale
	essere soltant	Cousewain a coru	
		v, quiudi se Av=	
		$vV = \lambda \cdot v \cdot eo \cdot eo $	
	za \ = 1)		
Consedienta: una	a 3×3 outogou	ale ha almeers u	u autoualore
ugu	ale a ±1.		
Classifichiones. O	o matrici patos	souali guardando al	i autovalmi
		3000000	
1 Tre autoralor	i reali		
3.4 +1,+1,+1	A = Id		
1.2 -1, -1, -1	A = - Jd		
1.3 +1,+1,-1		cz, cz i nispettiul a	
		tria respetto al pia	
		Span { 04, 02 }	

Saivre la simmetria rispetto al piamo di Esempio 2 equatione x - y + 2z = 0Cosa deve succedere · una base del piano deve amblare in se stessa • 11 vettore 1 al piano deve anolare ia - se stesso vettore 1 al piano: (1,-1,2)=01 base del piano (-2,0,1), (0,2,1) Ű² 1 -2 0 (-100) /1 + 2 0-10 |-1 0 2 0 1 0 12 1 1 001 Dalla [U1,Uz,U3] Cambio base dalla dalla (U1, U2, U3) alla Slessa causuica alla alla caubuica १८, ७२, ७३ } Alla fine la matrice A deve verificare AU3 = U3 $AU_1 = -U_1$ $AU_2 = U_2$ Questa rappresenta Esempio 3 $\begin{array}{c|c} o & o & = A \\ -1 & 0 & 0 \end{array}$ $(x,y,z) \rightarrow (z,y,-x)$ Osseno che le colonne sous ortonormati, quindi A è matrice extrapuale Calcoliamo gli antovalori $0 \longrightarrow \lambda^{2}(1-\lambda) + (1-\lambda) = (1-\lambda)(\lambda^{2}+1)$ $\lambda = 1 \qquad \lambda = \pm i$ 0 ->

