Notes...

...où il est montrée que Soit $(u_n)_n$ et $(v_n)_n$ deux suites réelles, et supposons que $u_n \leq v_n$ pour tout $n \in \mathbb{N}$. Alors, $\limsup_n u_n \leq \limsup_n v_n$ et $\liminf_n u_n \leq \liminf_n v_n$. Montrons le résultat sur la limite supérieure – la démonstration est similaire pour la limite inférieure, et laissée en exercice.

Démonstration Prenons une sous-suite $(u_{n_k})_k$ telle que $\lim_k u_{n_k} = \limsup u_n$. Par hypothèse, on a $u_{n_k} \leq v_{n_k}$ pour tout $k \in \mathbb{N}$. Pour simplifier les notifications, posons $\tilde{u}_k := u_{n_k}$ et $\tilde{v}_k := v_{n_k}$. On a donc $\tilde{u}_k \leq \tilde{v}_k$ pour tout $k \in \mathbb{N}$. On considère ensuite une sous-suite de la suite $(\tilde{v}_k)_k$, disons $(\tilde{v}_{k_\ell})_\ell$, telle que $\lim_\ell \tilde{v}_{k_\ell} = \limsup_k \tilde{v}_k$. Comme $\tilde{u}_k \leq \tilde{v}_k$, en particulier $\tilde{u}_{k_\ell} \leq \tilde{v}_{k_\ell}$ pour tout $\ell \in \mathbb{N}$. En passant à la limite dans cette inégalité (ce qui est légal car les limites existent), on obtient

$$\lim_{\ell} \tilde{u}_{k_{\ell}} \le \lim_{\ell} \tilde{v}_{k_{\ell}}$$

Mais $\lim_{\ell} \tilde{u}_{k_{\ell}} = \lim_{k} \tilde{u}_{k}$ (car $(\tilde{u}_{k})_{k}$ est une suite convergente et donc, par conséquent, toutes ses sous-suites sont convergentes et convergent vers la même limite). Or, par définition, $\lim_{k} \tilde{u}_{k} = \lim\sup_{n} u_{n}$. De l'autre côté, par définition, $\lim_{\ell} \tilde{v}_{k_{\ell}} = \lim\sup_{k} \tilde{v}_{k}$, donc on obtient

$$\limsup_n u_n \le \limsup_k \tilde{v}_k$$

Mais, $\limsup_k \tilde{v}_k$ est une valeur d'adhérence d'une sous-suite de la suite $(v_n)_n$, et par conséquent, il est immédiat qu'il s'agit aussi d'une valeur d'adhérence de ce suite (i.e. $(v_n)_n$). Par conséquent, par définition, on a

$$\limsup_{k} \tilde{v}_k \le \limsup_{n} v_n$$

(car, on le rappelle, la limite supérieure est la plus grande des valeurs d'adhérence d'une suite). On a donc bien obtenu que $\limsup_n u_n \le \limsup_n v_n$.