Continuity

Intrition: a continuous function is a function you can graph without lifting your pen.

How to make this a precise definition?

We want a definition of "continuous" that guarantees all the important theorems are true:

- Intermediate Value Theorem:

If f(x) is continuous, and $a \in B$,

Then c is between f(a) and f(b), those exists an x with $a \in x \le b$ so f(x) = c.

- dx Standar (++) dt = f(x)

can you even integrate every continuous fct?

Old, defunct of continuous:

f(x) is continuous if it enterties the intermediate value theorem: given c with $f(a) \le c \le f(b)$. There exists x so f(x) = c.

A (1074) function: Conlugy's Base-13 function. (it satisfies above definition, but Shouldn't count as continuous.)

Given x to compute f(x):

- 1) Write x in base 13, coshy 0-9, A, B, C.
- 2) Turn A into "+" B into "-" (into "!
- 3) If ends with:

or (some numbers). (some numbers, then two-that.

maple infinite)

4) It it doesn't end like that,
$$f(x)=0$$
.

If

 $X_{13}=1AB.32CA9134C1347...$
 $\rightarrow 1+-.32.+9134.1347...$

Hen $f(x)=+9134.1347...$
 $X_{13}=AB.12A12A12A12A...$
 $\Rightarrow +-.12+12+12+12+...$
 $f(x)=0$

No way to graph $i+1$

Why does it satisfy IVT?

→ Given any all b, and any target

Value (whatsoever (doesn't have to be between a and b), there's x ∈ (a, b) so (κ)= (.

Children G=TT=3.141592 $b=2\sqrt{2}=4.2...$ C=e=2.71828...

 $X_{13}=4.0000A2(71828182845...$ Hen f(x)=e!

Modern definition (Canchy, 1860s?) tist need to define limit of a function. Suppose f(x) is a function. We say lim f(x)=L if... for any E>O, x is with there exists a S=0 such that it 1x-a/cs then $f(x)-L|<\epsilon$.

Prove that $\lim_{x\to 2} x^2 = 4$.

Suppose $\epsilon > 0$. You need to find 8 so that if |x-2| < 8, then $|x^2-4| < \epsilon$.

want: |X2-4/< €

X-21 |X+21<€.

We can make this
as small as we want!
by picking 8.

As long as we pick a Sthat's \leq), x will be detimined 3 and S, so $X+21\leq S$

Another: Prove lim 3x = 3

Suppose $\epsilon > 0$. You need a δ so that if $|x-1| < \delta$ then $|3x-3| < \epsilon$.

Pf. Suppose $\epsilon > 0$. Let $S = \frac{\epsilon}{3}$. If $|x-1| < \delta = \frac{\epsilon}{3}$, then $3|x-1| < \epsilon$ so $|3x-3| < \epsilon$, which is what we worked.

Def f(x) is <u>Continuous</u> if for any value of a,

I'm f(x) exists (and is equal to f(a).)

x > a

4 automatic it it exists

Some non-continuous functions.

Im sin(1/x) doen't exist.

Raindrop function

 $f(X) = \begin{cases} \frac{1}{4} & \text{if } X \text{ is rational and } X = \frac{p}{4}. \\ 0 & \text{if } X \text{ is Nrational} \end{cases}$ and f(0) = 1

P.g. f(6/7)=1/7

are there a values where it is continuous at x=a?

 $\lim_{x \to a} f(x) = x + 3$?

Is it continuous at X=6? f(x)=4 No Take E=4? Can we find a & so every x between (1/2-8, 1/2+8) has IfW-f(1/2)/<E i.e. A 1/4 4x)<3/4? no! no matter how small 8 is, there's an irrational x is (1/2-8, 1/2+8), Which has f(x)=0

I claim that if Da is irrational then

F(X) is continuous at a.

e.g. $0 = \frac{1}{\pi} = 0.318309...$ Suppose we have $E = \frac{1}{10}$.

Trying to come up with S so that if $X = \frac{1}{|x|} < S$, then $|f(x) - f(x)| < E = \frac{1}{|x|}$ So $|f(x)| < \frac{1}{|x|}$

But there are only finitely many x's for which 1401=10!

 $X=\frac{1}{2},\frac{2}{3},\frac{1}{10},\frac{9}{10}$

a=4 Anitely many x values
Where P(1)=10 pick & so (a-8, a+5) avoids for humbers! f(x)= { if x is rational { O otherwise t(x)