Théorie des langages II - TD1

Wassim SAIDANE

Question 1

Montrer que le langage a^nb^n (pour $n \ge 1$) n'est pas rationnel. Concevoir un automate à pile qui reconnît ce langage.

Langage rationnel 1 :

- Ce sont les langages décrits par les expressions régulières ou rationnelles, d'où le nom de langages réguliers.
- Ce sont les langages obtenus, à partir des lettres et de l'ensemble vide, par les opérations rationnelles, à savoir l'union, le produit et l'étoile de Kleene, d'où le nom de langages rationnels.
- ce sont les langages reconnus par des automates finis, d'où le nom de langages reconnaissables.

Soit le langage $L=\{a^nb^n\mid n\geq 0\}$ sur l'alphabet $A=\{A,B\}$. Supposons par l'absurde que L est rationnel.

Par le lemme d'itération, $\{\exists x, y, z \mid w=xyz\}$, $|xy| \le p$, $|y| \ge 1$ et $\forall i \ge 0, xy'z \in L$.

Comme $|xy| \supseteq p$, alors $w = a^l a^{l'} a^{l''} b^p$ où $x = a^l$, $y = a^{l'}$, $z = a^l b^p$ $l' \ge 1$. Si on applique la proposition $4 \ (\forall i \ge 0, xy^iz \in L \)$ du lemme d'itération avec i = 0 on obtient $a^l a^{l''} b^p \in L$, or l + l'' < P. $(l + l' + l'' = p, l' \ge 1)$

CONTRADICTION.

L n'est donc pas un langage rationnel.

^{1.} D'après wikepedia