

RD-A130 652

PARAMETRIC EXCITATION AND SUPPRESSION OF CONVECTIVE
PLASMA INSTABILITIES I. (U) NAVAL RESEARCH LAB
WASHINGTON DC M J KESKINEN ET AL. 14 JUL 83

1/1

UNCLASSIFIED

NRL-MR-5133

F/G 4/1

NL

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

ADA130652

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER NRL Memorandum Report 5133	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) PARAMETRIC EXCITATION AND SUPPRESSION OF CONVECTIVE PLASMA INSTABILITIES IN THE HIGH LATITUDE F-REGION IONOSPHERE		5. TYPE OF REPORT & PERIOD COVERED Interim report on a continuing NRL problem.
7. AUTHOR(s) M.J. Keekinen, P.K. Chaturvedi*, and S.L. Ossakow		6. PERFORMING ORG. REPORT NUMBER
9. PERFORMING ORGANIZATION NAME AND ADDRESS Naval Research Laboratory Washington, DC 20375		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 61153N; 62715H; RR0330244; 47-0883-0-3; 47-0889-0-3
11. CONTROLLING OFFICE NAME AND ADDRESS Office of Naval Research Defense Nuclear Agency Arlington, VA 22217 Washington, DC 20305		12. REPORT DATE July 14, 1983
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		13. NUMBER OF PAGES 28
		15. SECURITY CLASS. (of this report) UNCLASSIFIED
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES *Present address: Science Applications, Inc., McLean, VA 22102 This research was sponsored by the Defense Nuclear Agency under Subtask S99QMXBC, work unit 00067, work unit title "Plasma Structure Evolution," and the Office of Naval Research.		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Convective plasma instabilities High latitude F region Parametric excitation Linear theory		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) Parametric coupling processes of a large amplitude electromagnetic pump wave with convective plasma fluid instabilities ($E \times B$ gradient drift and current convective) in the high latitude F region ionosphere have been studied. We find that a pump wave, with frequency near the upper hybrid frequency and with electric field component perpendicular to the ambient magnetic field, can stabilize or destabilize the $E \times B$ gradient-drift and/or current convective instability. For parameters typical of the nighttime high latitude F region ionosphere we find stabilization or destabilization with a vertically incident O mode carrying a free space incident power density on the order of 10^{-4} W/m^2 .		

CONTENTS

INTRODUCTION	1
THEORY	2
SUMMARY	8
APPENDIX I	10
ACKNOWLEDGMENTS	11
REFERENCES	12

**S DTIC
SELECTED**
JUL 26 1983 **D**
B

Accession For	
NTIS GRA&I	<input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification	
By _____	
Distribution/ _____	
Availability Codes	
Dist	Avail and/or Special
A	

PARAMETRIC EXCITATION AND SUPPRESSION OF CONVECTIVE PLASMA INSTABILITIES IN THE HIGH LATITUDE F-REGION IONOSPHERE

1. INTRODUCTION

Using a variety of experimental techniques, e.g., satellites [Dyson, 1969; Dyson et al., 1974; Sagalyn et al., 1974; Clark and Raitt, 1976; Phelps and Sagalyn, 1976; Rodriguez et al., 1981], rockets [Olesen et al., 1976; Ogawa et al., 1976; Kelley et al., 1980], scintillations [Aarons et al., 1973; Fremouw et al., 1977; Erukhimov et al., 1981], and radar backscatter [Weaver, 1965; Greenwald, 1974; Hower et al., 1966; Vickrey et al., 1980; Hanuise et al., 1981], it is now known that the high latitude ionosphere, from the auroral zone into the polar cap, is a highly structured and nonequilibrium medium containing irregularities (plasma density fluctuations and structures) with scale sizes ranging from hundreds of kilometers to meters. Aside from being an interesting scientific phenomenon, ionospheric irregularities are of practical interest since they can disrupt transionospheric radio wave communications channels (see recent review by Davies [1981] and references therein).

Several theories, e.g., particle precipitation, plasma instabilities and processes, and neutral fluid dynamics have been proposed to account for high latitude ionospheric irregularities (see recent review by Keskinen and Ossakow [1983a] and references therein). Recently, considerable quantitative progress has been made, especially in the area of ionospheric plasma instabilities, in identifying the physical processes that can lead to high latitude irregularities. In particular, convective plasma instabilities such as the $E \times B$ gradient drift instability [Simon, 1963; Linson and Workman, 1970; Keskinen and Ossakow, 1982, 1983b] and current convective instability [Lehnert, 1958; Kadomtsev and Nedospasov, 1960; Ossakow and Chaturvedi, 1979; Chaturvedi and Ossakow, 1979; Keskinen et al., 1980; Chaturvedi and Ossakow, 1981] have been invoked to explain high latitude density irregularities in and near large scale convecting auroral plasma enhancements [Vickrey et al., 1980].

However, it is well known [Silin, 1965; Dubois and Goldman, 1965; Nishikawa, 1968] that under the influence of high-frequency long wavelength electromagnetic fields electrostatic modes of oscillation in a plasma may become parametrically coupled and may grow exponentially in time or space

Manuscript approved May 18, 1983.

before saturating at large amplitudes. These results have been used by many investigators [see reviews by Perkins et al., 1974, Fejer, 1979 and references therein] to study the role of parametric instabilities, induced by high power ground based radars, in ionospheric modification. In addition, parametric effects have been used to study the possible stabilization or destabilization of plasma instabilities, e.g., drift waves [Fainberg and Shapiro, 1967; Sundaram and Kaw, 1973] by high frequency electric fields. Lee et al. [1972] have shown that high frequency electromagnetic waves launched from ground based heaters might lead to stabilization or destabilization of the Farley-Buneman and gradient-drift instabilities in the equatorial electrojet E region ionosphere. In this paper we show that the E \times B gradient drift and current convective instabilities in the high latitude F region ionosphere can be stabilized or destabilized by high power radio waves. In section 2 we outline the theory of the E \times B gradient drift and current convective instabilities in the presence of a high frequency electromagnetic pump wave with frequency near the local upper hybrid frequency. We calculate the incident power density required to stabilize or destabilize these instabilities. Finally, in section 3 we summarize and discuss our results.

2. THEORY

For wavelengths greater than the ion mean free path we use fluid equations to describe the ion and electron plasma. The following geometry is used: the y-axis is in the north-south direction, the x-axis points west, and the z-axis is along the magnetic field. The set of equations, in the frame of reference in which the neutrals are at rest, become

$$\frac{\partial N_e}{\partial t} + \nabla \cdot (N_e \underline{v}_e) = 0 \quad (1)$$

$$\frac{\partial \underline{v}_e}{\partial t} + (\underline{v}_e \cdot \nabla) \underline{v}_e = - \frac{\nabla P_e}{m_e N_e} - \frac{e}{m_e} \left(\underline{E} + \frac{\underline{v}_e \times \underline{B}}{c} \right) - v_{en} \underline{v}_e - \underline{R}_e \quad (2)$$

$$\frac{\partial N_i}{\partial t} + \nabla \cdot (N_i \underline{v}_i) = 0 \quad (3)$$

$$\frac{\partial \underline{v}_i}{\partial t} + (\underline{v}_i \cdot \nabla) \underline{v}_i = - \frac{\nabla P_i}{m_i N_i} + \frac{e}{m_i} \left(\underline{E} + \frac{\underline{v}_i \times \underline{B}}{c} \right) - v_{in} \underline{v}_i - \underline{R}_i \quad (4)$$

$$\nabla \cdot \underline{E} = 4\pi e (N_i - N_e) \quad (5)$$

Here N_α ($\alpha = i$ or e) is the species density, $\underline{E} = \underline{E}_0 + \underline{E}_p \cos \omega_0 t - \nabla \phi$ is the total electric field which includes the ambient electric field \underline{E}_0 , pump field $\underline{E}_p \cos \omega_0 t$, and self-consistent field $\nabla \phi$. In addition, $R_e = -R_i = v_{ei}(\underline{V}_e - \underline{V}_i)$, $P_\alpha = N_\alpha T_\alpha$, v_{ei} is the electron-ion collision frequency, v_{an} is the electron or ion neutral collision frequency, c is the speed of light, and T_α the species temperature. Production and loss terms have been neglected. Since we will be considering perturbations with scale sizes much less than the wavelength of the pump wave we take \underline{E}_p to be spatially uniform. Since pump frequencies of a few MHz corresponds to free space pump wavelengths of several hundred meters, we restrict ourselves to maximizing irregularity scale sizes on the order of tens of meters.

In equilibrium ($\frac{\partial}{\partial t} = 0$) we have

$$\nabla \cdot N_0 (\underline{V}_{ao} + \underline{V}_{ap}) = 0 \quad (6)$$

$$0 = \pm \frac{e}{m_\alpha} (\underline{E}_0 + \frac{\underline{V}_{ao} \times \underline{B}}{c}) - v_\alpha \underline{V}_{ao} \quad (7)$$

$$\frac{d}{dt} \underline{V}_{ap} = \pm \frac{e}{m_\alpha} (\underline{E}_p + \frac{\underline{V}_{ap} \times \underline{B}}{c}) - v_\alpha \underline{V}_{ap} \quad (8)$$

where $\alpha = i, e$ and \underline{V}_{ao} , \underline{V}_{ap} refer to the drifts induced by the ambient and pump electric fields, respectively. Linearizing equations (1)-(5) by assuming $N_\alpha = N_{\alpha 0} + \delta n_\alpha$, $n_\alpha \ll N_{\alpha 0}$, $\underline{V}_\alpha = \underline{V}_{\alpha 0} + \delta \underline{V}_\alpha$, $\underline{E} = \underline{E}_0 + \underline{E}_p \cos \omega_0 t + \delta \underline{E}$ we obtain

$$\frac{\partial \delta n_\alpha}{\partial t} + (\underline{V}_{ao} + \underline{V}_{ap}) \cdot \nabla \delta n_\alpha + \delta \underline{V}_\alpha \cdot \nabla N_0 + N_0 \nabla \cdot \delta \underline{V}_\alpha = 0 \quad (9)$$

$$\begin{aligned} \frac{\partial \delta \underline{V}_\alpha}{\partial t} + (\underline{V}_{ao} + \underline{V}_{ap}) \cdot \nabla \delta \underline{V}_\alpha &= \pm \frac{e}{m_\alpha} (\delta \underline{E} + \frac{\delta \underline{V}_\alpha \times \underline{B}}{c}) \\ &- \frac{\nabla \delta p_\alpha}{m_\alpha N_{\alpha 0}} - v_\alpha \delta \underline{V}_\alpha - \delta R_\alpha \end{aligned} \quad (10)$$

$$\nabla \cdot \delta \underline{E} = 4\pi e (\delta n_i - \delta n_e) \quad (11)$$

The equations (9)-(11) can be reduced to a single equation (dispersion relation) for one scalar function in six different ways: one may work in either the lab or oscillating frame; and one may eliminate the electron density, eliminate the ion density, or (using Poisson's equation) eliminate

both densities in favor of the electrostatic potential. We will work in the oscillating frame [Silin, 1965; Arnush et al., 1973; Lee et al., 1972] to find the density perturbations, eliminate the electron density, and finally transform back to the laboratory frame to use Poisson's equation.

The oscillating frame (denoted by tildes) is defined by

$\tilde{r}_\alpha = \underline{r} - \underline{R}_\alpha(t)$, with $(d/dt) \underline{R}_\alpha(t) = \underline{v}_{ap}(t)$, $\delta n_\alpha(\underline{r}, t) = \delta \tilde{n}_\alpha(\tilde{\underline{r}}_\alpha, t)$, $\delta v_\alpha(\underline{r}, t) = \delta \tilde{v}_\alpha(\tilde{\underline{r}}_\alpha, t)$, $\delta E(\underline{r}, t) = \delta \tilde{E}(\tilde{\underline{r}}_\alpha, t)$. Equations (9) and (10) in the oscillating frame are identical to those in the lab frame except for the substitutions $\underline{v}_{oo} + \underline{v}_{ap} \rightarrow \underline{v}_{ao}$, $\delta n_\alpha \rightarrow \delta \tilde{n}_\alpha$, $\delta v_\alpha \rightarrow \delta \tilde{v}_\alpha$, $\delta E \rightarrow \delta \tilde{E}$, $\underline{r} \rightarrow \tilde{\underline{r}}_\alpha$. Assuming $\delta \tilde{v}_\alpha$, $\delta \tilde{n}_\alpha$, $\delta \tilde{E} \propto \exp[i(\underline{k} \cdot \underline{r} - \omega t)]$ with $\underline{k} = k_x \underline{x} + k_y \underline{y} + k_z \underline{z}$, $\omega = \omega_r + i\gamma$, $kL \gg 1$, $L^{-1} \equiv N_o^{-1} (\nabla N_o)$, one can then define susceptibilities χ_i and χ_e by $\delta n_i = (-ik\chi_i/e)\delta \tilde{E}$ and $\delta n_e = (ik\chi_e/e)\delta \tilde{E}$ giving

$$\chi_i = -\frac{i}{4\pi} \frac{\omega_{pi}^2}{\omega - \omega_i} \frac{1}{\Omega_i} \left[\frac{v_{in}}{\Omega_i} \frac{k_\perp^2}{k^2} + \frac{\Omega_i}{v_{in}} \frac{k_z^2}{k^2} + i \frac{\tilde{z} \times \underline{k}_\perp \cdot \nabla N_o}{N_o k^2} \right] \quad (12)$$

and

$$\chi_e = \frac{i}{4\pi} \frac{\omega_{pe}^2}{\omega - \omega_e} \frac{1}{\Omega_e} \left[\frac{\tilde{k}_e}{1 + \tilde{k}_e^2} \frac{k_\perp^2}{k^2} - \frac{\Omega_e}{v_e} \frac{k_z^2}{k^2} + i \frac{\tilde{k}_e^2}{1 + \tilde{k}_e^2} \frac{\tilde{z} \times \underline{k}_\perp \cdot \nabla N_o}{N_o k^2} \right] \quad (13)$$

where $\omega_{pa}^2 = 4\pi N_o e^2/m_\alpha$, $\bar{\omega}_i = \frac{c}{B} \underline{E}_{o\perp} \times \hat{\underline{z}} \cdot \underline{k} + \underline{k} \cdot \underline{V}_{oiz} + i(D_\perp k_\perp^2 + D_z k_z^2)$, $D_\perp = (v_{in}/\Omega_i)(T_i/m_i \Omega_i) + (v_{ei}/\Omega_e)(C_s^2/\Omega_i)$, $D_z = C_s^2/v_{in}$, $\Omega_\alpha = eB/m_\alpha c$, $\omega_e = \frac{c}{B} \underline{E}_{o\perp} \times \hat{\underline{z}} \cdot \underline{k} + \underline{k} \cdot \underline{V}_{oez}$, $\tilde{k}_e = \Omega_e/v_{ei}$, $\tilde{v}_{ei} = v_{ei} - i\omega$, and $k_\perp^2 = k_x^2 + k_y^2$. In deriving the above susceptibilities we have used $\Omega_e/v_{ei} \gtrsim \Omega_i/v_i \gg 1$ (F-region approximation). In addition, we have modeled weak cold diffuse auroral field aligned currents as a relative drift, between electrons and ions, with velocity $\underline{v}_d = \hat{\underline{z}} \underline{v}_d = \tilde{z}(\underline{v}_{oez} - \underline{v}_{oiz})$.

Having found the susceptibilities in the oscillating frame we must now transform back to the laboratory frame to use Poisson's eqn. (5). (Since we will be considering high frequency pump waves with $\omega_o \gg \omega_{pi}$ one can neglect the effect of the pump on the ions.) This transformation and resultant dispersion relation can be found in Arnush et al. [1973] and Lee et al. [1972] and can be written:

$$[1 + 4\pi(\chi_i + \chi_e)] = -J_1^2(\zeta)4\pi \chi_i (1 + 4\pi \chi_e) \times \left[\frac{1}{H_e(\omega + \omega_o)} + \frac{1}{H_e(\omega - \omega_o)} \right] \quad (14)$$

where $J_n(\zeta) = \frac{1}{\pi} \int_0^\pi e^{i\zeta \cos \theta} \cos n \theta d\theta$ is the Bessel function of integral order n , ζ is defined by $k \cdot R = \zeta \sin (\omega_0 t + \beta)$, and $H_e = - (4\pi \chi_e)^{-1} (1 + 4\pi \chi_e)$. In deriving (14), the approximation $\zeta \ll 1$ has been made, i.e., the electron excursion length is small compared to the perturbation wavelength.

In the absence of the pump $E_p = 0$, for low frequency modes, $\delta n_e \approx \delta n_i$. This gives

$$(\omega - \bar{\omega}_e) \left[\frac{v_{in}}{\Omega_1} \frac{k_\perp^2}{k^2} + \frac{\Omega_1}{v_{in}} \frac{k_z^2}{k^2} + i \frac{\hat{z} \times \hat{k}_\perp \cdot \nabla N_o}{N_o k^2} \right] = (\omega - \bar{\omega}_i) \left[\frac{v_{ei}}{\Omega_e} \frac{k_\perp^2}{k^2} - \frac{\Omega_e}{v_{ei}} \frac{k_z^2}{k^2} + i \frac{\hat{z} \times \hat{k}_\perp \cdot \nabla N_o}{N_o k^2} \right] \quad (15)$$

with solution $\omega = \omega_{kr}^L + i\gamma_k^L$ given by the linear growth rate [Keskinen and Ossakow, 1982]

$$\omega_{kr}^L = \frac{c}{B} \underline{E}_{o\perp} \times \hat{z} \cdot \hat{k} \quad (16a)$$

$$\begin{aligned} \gamma_k^L &= \left(\frac{k_z^2}{k_\perp^2} + \frac{v_{in}}{\Omega_1} \frac{v_{ei}}{\Omega_e} \right)^{-1} \frac{v_{ei}}{\Omega_1} \left(\frac{v_{in}}{\Omega_1} \frac{c}{B} \underline{k}_\perp \cdot \underline{E}_o - k_z v_d \right) \frac{\hat{z} \times \hat{k}_\perp \cdot \nabla N_o}{k_\perp^2 N_o} \\ &\quad - D_\perp k_\perp^2 - D_z k_z^2 \end{aligned} \quad (16b)$$

$$\text{with } D_\perp \approx \frac{v_{in}}{\Omega_1} \frac{T}{m_1 \Omega_1} + \frac{v_{ei}}{\Omega_e} \frac{C_s^2}{\Omega_1} \text{ and } D_z \approx \frac{C_s^2}{v_{in}} .$$

For finite E_p we have

$$\begin{aligned} &(\omega - \bar{\omega}_e) \left[\frac{v_{in}}{\Omega_1} \frac{k_\perp^2}{k^2} + \frac{\Omega_1}{v_{in}} \frac{k_z^2}{k^2} + i \frac{\hat{z} \times \hat{k}_\perp \cdot \nabla N_o}{N_o k^2} \right] - (\omega - \bar{\omega}_i) \left[\frac{v_{ei}}{\Omega_e} \frac{k_\perp^2}{k^2} - \frac{\Omega_e}{v_{ei}} \frac{k_z^2}{k^2} + i \frac{\hat{z} \times \hat{k}_\perp \cdot \nabla N_o}{N_o k^2} \right] \\ &= - J_1^2(\xi) (\omega - \bar{\omega}_e) \frac{\Omega_1}{\omega_{p1}^2} \left[\frac{\omega_{pe}}{\omega - \bar{\omega}_1} \frac{1}{\Omega_1} \left(\frac{v_{in}}{\Omega_1} \frac{k_\perp^2}{k^2} + \frac{\Omega_1}{v_{in}} \frac{k_z^2}{k^2} + i \frac{\hat{z} \times \hat{k}_\perp \cdot \nabla N_o}{N_o k^2} \right) \right] \\ &\quad \times \left[1 + i \frac{\omega_{pe}}{\omega - \bar{\omega}_e} \frac{1}{\Omega_e} \left(\frac{v_{ei}}{\Omega_e} \frac{k_\perp^2}{k^2} - \frac{\Omega_e}{v_{ei}} \frac{k_z^2}{k^2} + i \frac{\hat{z} \times \hat{k}_\perp \cdot \nabla N_o}{N_o k^2} \right) \right] \end{aligned}$$

$$x \left[\frac{1}{H_e(\omega + \omega_0)} + \frac{1}{H_e(\omega - \omega_0)} \right] \quad (17)$$

Defining $\tilde{\omega}_{\text{uH}}^2 = \frac{\omega_{pe}^2}{v_{ei}} + \Omega_e^2 + v_e^2$, $\delta = \tilde{\omega}_{\text{uH}}^2 - \omega_0^2$, a measure of the frequency mismatch, $\delta_0 = \frac{\omega_{pe}}{\omega} (\omega_{pe}^2 - 2\omega_0^2)$, we find from (17) (see Appendix 1) the modified growth rate

$$\gamma = \gamma_k^L + 2\zeta^2 \left(\frac{k_z^2}{k_\perp^2} + \frac{v_{in} v_{ei}}{\Omega_i \Omega_e} \right)^{-1} \left(\frac{z \times k_\perp \cdot \nabla N_0}{k^2 N_0} \right)^2 \left(\frac{\omega_{pe}}{v_{ei}} \frac{v_e^2}{\Omega_e^2} \right) \frac{\omega_{pe}^2 \delta}{\delta^2 + \delta_0^2} \omega_{pe} \quad (18)$$

$$\text{where } \zeta^2 = \frac{e^2}{m_e^2 (\omega_0^2 - \Omega_e^2)^2} \left\{ k_x^2 E_{px}^2 + k_y^2 E_{py}^2 + \frac{\Omega_e^2}{\omega_0^2} (k_y^2 E_{px}^2 + k_x^2 E_{py}^2) \right.$$

$$\left. + 2E_{px} E_{py} [k_x k_y \cos \psi (1 - \frac{\Omega_e^2}{\omega_0^2}) - \frac{\Omega_e}{\omega_0} k_\perp^2 \sin \psi] \right\}$$

$$+ \frac{\omega_0^2 - \Omega_e^2}{\omega_0^2} k_z E_{pz} [k_x E_{px} - \frac{\Omega_e}{\omega_0} k_x E_{px} \sin \psi + k_y E_{py} \cos \psi] \quad (19)$$

Here we have taken [Lee et al., 1972]

$$\underline{E_p} = \frac{E_{px}}{-2i} \exp(-i\omega_0 t) \hat{x} + \frac{E_{py}}{-2i} \exp(-i\omega_0 t - i\psi) \hat{y} + \frac{E_{pz}}{-2i} \exp(-i\omega_0 t) \hat{z} + \text{c.c.} \quad (20)$$

and included E_{pz} since we are considering modes for which $k_\parallel \neq 0$.

When $\delta > 0$, i.e., when $\omega_0 < \tilde{\omega}_{\text{uH}}$ the pump induced term produces a destabilizing effect whereas when $\delta < 0$ it produces a stabilizing influence. We assume that the length of the irregularities along the magnetic field ($k_\parallel \ll k_\perp$) exceeds the length of regions in which destabilization ($\delta > 0$) or stabilization ($\delta < 0$) occurs. The pump induced term in eq. (18) contains terms proportional to ω_{pe} , an increasing (decreasing) function of altitude on the bottomside (topside) ionosphere, e.g., $\omega_{pe}^2(z) \approx \omega_0^2(1 + z/L_N)$ with L_N constant, in local bottomside regions. In addition, Das and Fejer [1979] have shown that the altitude

dependence of the pump wave electric field near the resonance region must also be considered. As a result, a net destabilization (stabilization) will occur in bottomside regions if the pump electric field increases (decreases) with height in the resonance region. For topside regions, the opposite is true. For simplicity, in this discussion, we have neglected the effects of spatial dispersion. Spatial dispersion will cause a resonance at a somewhat lower height than when $\omega_0 = (\omega_{pe}^2 + \Omega_e^2)^{1/2}$. The physical mechanism responsible for stabilization or destabilization of these convective instabilities can be understood as follows. A nonlinear interaction between $\underline{E} \times \underline{B}$ and current convective perturbation electric fields $\delta\underline{E}$ and the pump field \underline{E}_p gives a new field \underline{E}' . The combined beating of the fields \underline{E}' and \underline{E}_p can produce a low frequency force with component of the form $\exp[i(\underline{k}_L \cdot \underline{x} - \omega_L t + \delta)]$, $\underline{k}_L = \underline{k}' \pm \underline{k}_p$, $\omega_L = \omega' \pm \omega_p$, with phase determined by the sign of δ , which can in turn affect $\delta\underline{E}$ and modify the dispersion relation. This force will be ponderomotive if $k_{L\parallel} > 1.55/\lambda_c$ whereas the partial pressure force will dominate if $k_{L\parallel} < 1.55/\lambda_c$ [Fejer, 1979]. Here λ_c is the electron mean free path and $k_{L\parallel}$ the component of \underline{k}_L parallel to the magnetic field. We take $\underline{k} = k_x \hat{x} + k_z \hat{z}$, an ambient electric field $\underline{E}_0 \hat{x}$, and $N = N_0(y)$, i.e., a configuration unstable to the $\underline{E} \times \underline{B}$ and current convective instabilities. The growth rate in (18) is maximized for $\delta_{max} = \pm \delta_0 = \pm (\nu_{ei}/\omega_0) (\omega_{pe}^2 - 2\omega_0^2)$. Inserting this value for δ , eq. (18) can be written as

$$\gamma = \left(\frac{k_z^2}{k_x^2} + \frac{\nu_{in}}{\Omega_1} \frac{\nu_{ei}}{\Omega_e} \right)^{-1} \frac{\nu_{ei}}{\Omega_e} (k_x L)^{-1} \left[\frac{\nu_{in}}{\Omega_1} \frac{c}{B} k_x E_0 - k_z v_d \pm \frac{\zeta^2}{4} (k_x L)^{-1} \right. \\ \left. \times \left(\frac{\omega_{pe}}{\Omega_e} \right) \left(\frac{\omega_{pe}}{\nu_{ei} \omega_0} \right) \omega_{pe} \right] - D_\perp k_\perp^2 - D_\parallel k_\parallel^2 \quad (21)$$

Here the upper (plus) sign refers to the case when $\delta > 0$ (destabilization) while the lower (minus) sign applies when $\delta < 0$ (stabilization). Eq. (21) gives the approximate minimum required power density for destabilization or stabilization

$$|\frac{cE_p^2}{8\pi}| = \frac{(k_x L)^2 \omega_0}{\omega_{pe}^4} \left[(k_x L)^{-1} \frac{\nu_{ei}}{\Omega_e} \left(\frac{\nu_{in}}{\Omega_1} \frac{c k_x E_0}{B} - k_z v_d \right) - (D_\perp k_\perp^2 + D_\parallel k_\parallel^2) \right]$$

$$x \left(\frac{k_z^2}{k_x^2} + \frac{v_{in}}{\Omega_i} \frac{v_{ei}}{\Omega_e} \right) \frac{B^2 (\omega_0^2 - \Omega_e^2)^2}{ck^2} \quad (22)$$

where we have assumed a circularly polarized 0 mode with $\psi = -\pi/2$ in eq. (19).

For typical ionospheric F region parameters at diffuse auroral latitudes in the 300–400 km altitude range, which give linear unstable growth ($\Omega_e \approx 8.5 \times 10^6 \text{ sec}^{-1}$, $\omega_{pe} \approx 3 \times 10^7 \text{ sec}^{-1}$, $v_{ei} \approx 5 \times 10^2 \text{ sec}^{-1}$, $v_{in}/\Omega_i \approx 10^{-4}$, $E \approx 10 \text{ mV/m}$, $T_e \approx T_{\perp} \approx 1000^\circ \text{K}$, $j_{\parallel} \approx n_o e V_d \approx 1 \mu\text{A/m}^2$, $kL \approx 2 \times 10^3 \text{ km}^{-1} \approx 30 \text{ m}$, $k_z/k_{\perp} \approx 10^{-4}$), we find from (22) the approximate power density for stabilization to be $cE_p^2/8\pi \approx 6 \times 10^{-4} \text{ W/m}^2$. This is an overestimate since we have not considered electric field enhancements near the reflection point [Ginzburg, 1964]. For an linearly damped mode $k^{-1} \approx 5 \text{ m}$, we find, using eq. (22) the approximate power density necessary for destabilization ($\delta > 0$) to be $cE_p^2/8\pi = -3.2 \times 10^{-4} \text{ W/m}^2$. This power density corresponds to a pump electric field amplitude of $E_p \approx 1.5 \times 10^{-2} \text{ V/m}$. This electric field amplitude is comparable to that required by the thermal coupling mechanism of Vaskov and Gurevich [1975, 1977] and Das and Fejer [1979] to destabilize field-aligned density irregularities with scale lengths on the order of 0.5 – 5 m. In reality, both the mechanism discussed in this paper and thermal mechanisms are probably acting simultaneously. From the coupling parameter ζ as given by (19) we see that there must be a component of E_p perpendicular to B since $k_{\parallel}/k_{\perp} \ll 1$. At high latitudes this can be accomplished using a vertically incident pump wave. An 0-mode pump wave is preferred since the X-mode will be reflected at the right hand cutoff before it ever reaches the coupling region near the local upper hybrid frequency.

3. SUMMARY

The parametric effects of a large amplitude electromagnetic pump wave on convective plasma fluid instabilities ($E \times B$ gradient drift and current convective) in the high latitude F region ionosphere have been studied analytically. These convective instabilities have been invoked [Keskinen and Ossakow, 1982] to explain naturally occurring density irregularities in

and near large scale convecting auroral plasma enhancements [Vickrey et al., 1980]. We find that parametric coupling effects associated with a pump wave oscillating with approximately the upper hybrid frequency can stabilize or destabilize the $\underline{E} \times \underline{B}$ gradient drift and/or the current-convective instability. For parameters typical of the nighttime high latitude F region ionosphere, we find that these modes can be stabilized/destabilized with a free space incident power density on the order of 10^{-4} W/m^2 . Since the pump wave should have a component of its electric field vector perpendicular to the magnetic field, a vertically propagating O mode is suggested. In addition, we note that these power density levels needed could be achieved using current ionospheric heaters located in Norway [Stubbe et al., 1981] and Alaska [Wong et al., 1981].

In our development we have made several approximations. We have assumed that the pump electric fields are spatially uniform (dipole approximation). We have ignored pump induced temperature and density changes. The time scale for these changes, to a first approximation, is longer than the parametric time scales of the instabilities studied here. In addition, we have neglected lower altitude absorption effects. Finally, we have assumed that the instabilities studied here are at or near marginal stability. We reserve these topics for a future report.

Appendix I

In solving eq. (17) for the growth rate V we must first evaluate the quantity $H_e^{-1}(\omega + \omega_0) + H_e^{-1}(\omega - \omega_0)$ where $H_e(\omega) = -[4\pi \times_e(\omega)]^{-1}$ $[1 + 4\pi \times_e(\omega)]$ and $\times_e(\omega)$ is given by eq. (13). We have

$$\begin{aligned}
 H_e(\omega) &= -\left\{ i \frac{\omega_{pe}^2}{\omega - \bar{\omega}_e} \left[-\frac{1}{\bar{v}_{ei}} \frac{k_z^2}{k^2} + \frac{1}{\Omega_e} \frac{\tilde{\kappa}_e}{1+\tilde{\kappa}_e} \frac{k_\perp^2}{k^2} + \frac{i}{\Omega_e} \frac{\tilde{\kappa}_e^2}{1+\tilde{\kappa}_e^2} \frac{\hat{z} \times k_\perp \cdot \nabla N_o}{N_o k^2} \right] \right\}^{-1} \\
 &\times \left\{ 1 + i \frac{\omega_{pe}^2}{\omega - \bar{\omega}_e} \left[-\frac{1}{\bar{v}_{ei}} \frac{k_z^2}{k^2} + \frac{1}{\Omega_e} \frac{\tilde{\kappa}_e}{1+\tilde{\kappa}_e^2} \frac{k_\perp^2}{k^2} + \frac{i}{\Omega_e} \frac{\tilde{\kappa}_e^2}{1+\tilde{\kappa}_e} \frac{\hat{z} \times k_\perp \cdot \nabla N_o}{N_o k^2} \right] \right\} \\
 &\approx -\left[1 - i \frac{(\omega - \bar{\omega}_e) \Omega_e}{\omega_{pe}^2} \frac{1 + \tilde{\kappa}_e^2}{\tilde{\kappa}_e} \right] \\
 &= -\left[1 + \frac{\omega - \bar{\omega}_e}{\omega + i v_{ei}} \frac{\Omega_e^2 - (\omega + i v_{ei})^2}{\omega_{pe}^2} \right] \tag{A1}
 \end{aligned}$$

where we have neglected the small k_z and ∇N_o effects on the sidebands $H_e(\omega + \omega_0)$ and $H_e(\omega - \omega_0)$. As a result we can write, with $\bar{\omega}_+ = \omega + \omega_0 - \bar{\omega}_e$,

$$\begin{aligned}
 H_e^{-1}(\omega + \omega_0) &= \left[1 + \frac{\bar{\omega}_+}{\bar{\omega}_+ + \bar{\omega}_e + i v_{ei}} \frac{\Omega_e^2 - (\bar{\omega}_+ + \bar{\omega}_e + i v_{ei})^2}{\omega_{pe}^2} \right]^{-1} \\
 &= \frac{\bar{\omega}_+ + \bar{\omega}_e + i v_{ei}}{\omega_{pe}^2 [\bar{\omega}_+ + \bar{\omega}_e + i v_{ei}] + \bar{\omega}_+ [\Omega_e^2 - (\bar{\omega}_+ + \bar{\omega}_e + i v_{ei})^2]} \\
 &= \frac{1 + i v_{ei} (\bar{\omega}_+ + \bar{\omega}_e)^{-1}}{\omega_{pe}^2 [1 + i v_{ei} (\bar{\omega}_+ + \bar{\omega}_e)^{-1}] + \bar{\omega}_+ (\bar{\omega}_+ + \bar{\omega}_e)^{-1} [\Omega_e^2 - (\bar{\omega}_+ + \bar{\omega}_e + i v_{ei})^2]} \\
 &\approx \frac{1 + i v_{ei} / \omega_0}{\delta + i \frac{v_{ei}}{\omega_0} (\omega_{pe}^2 - 2\omega_0^2)} \tag{A2}
 \end{aligned}$$

where we have assumed that $\bar{\omega}_+ + \omega_e \approx \omega_0$, $\bar{\omega}_+ \approx \omega_0$, $v_{ei}/\omega_0 \ll 1$, and $\delta = \omega_{pe}^2 + \omega_e^2 + v_e^2 - \omega_0^2$. Similarly,

$$H_e^{-1}(\omega - \omega_0) = \frac{1 - i v_{ei}/\omega_0}{\delta - i \frac{v_{ei}}{\omega_0} (\omega_{pe}^2 - 2\omega_0^2)} \quad (A3)$$

As a result

$$H_e^{-1}(\omega + \omega_0) + H_e^{-1}(\omega - \omega_0) \approx \delta(\delta^2 + \omega_0^2)^{-1} \quad (A4)$$

where $\omega_0 = (v_{ei}/\omega_0)(\omega_{pe}^2 - 2\omega_0^2)$. Inserting Eq. (A4) into eq. (17) it is straightforward to solve for $I_m \omega \equiv \gamma$ as given by eq. (18).

Acknowledgments

This work was supported by the Defense Nuclear Agency and the Office of Naval Research.

REFERENCES

- Aarons, J., A descriptive model of F layer high-altitude irregularities as shown by scintillation observations, J. Geophys. Res., 78, 7441, 1973.
- Arnush, D., Nishikawa, B.D. Fried, C.F. Kennel, and A.Y. Wong, Theory of double resonance parametric excitation in plasmas, Phys. Fluids, 16, 2270, 1973.
- Chaturvedi, P.K. and S.L. Ossakow, Nonlinear stabilization of the current convective instability in the diffuse aurora, Geophys. Res. Lett., 6, 957, 1979.
- Chaturvedi, P.K. and S.L. Ossakow, The current convective instability as applied to the auroral ionosphere, J. Geophys. Res., 86, 4811, 1981.
- Clark, D.H. and W.J. Raitt, The global morphology of irregularities in the topside ionosphere as measured by the total ion current probe on ESRO-4, Planet. Space Sci., 24, 873, 1976.
- Das, A.C., and J.A. Fejer, Resonance instability of small-scale field-aligned irregularities, J. Geophys. Res., 84, 6701, 1979.
- Davies, K., Review of recent progress in ionospheric prediction, Radio Sci., 16, 1407, 1981.
- DuBois, D.F. and M.V. Goldman, Radiation-induced instability of electron plasma oscillations, Phys. Rev. Lett., 14, 544, 1965.
- Dyson, P.L., Direct measurement of the size and amplitude of irregularities in the topside ionosphere, J. Geophys. Res., 74, 6291, 1969.
- Dyson, P.L. and J.D. Winnigham, Topside ionospheric spread F and particle precipitation in the dayside magnetospheric clefts, J. Geophys. Res., 79, 5219, 1974.
- Erushimov, L.M., A.M. Lerner, V.I. Kosolapenko, and E.N. Myasnikov, The spectral form of small-scale plasma turbulence in the auroral ionosphere, Planet. Space Sci., 29, 931, 1981.
- Fainberg, Y. and V.D. Shapiro, Drift instabilities of a plasma situated in a high frequency electric field, JETP, 25, 189, 1967.
- Fejer, J.A., Ionospheric modification and parametric instabilities, Rev. Geophys. and Space Physics, 17, 135, 1979.
- Fremouw, E.J., C.L. Rino, R.C. Livingston, and M.D. Cousins, A persistent subauroral scintillation enhancement observed in Alaska, Geophys. Res. Lett., 4, 539, 1977.

- Ginzburg, V.L., The Propagation of Electromagnetic Waves in Plasma, Addison-Wesley, Reading, Mass., 1964.
- Greenwald, R.A., Diffuse radar aurora and the gradient drift instability, J. Geophys. Res., 79, 4807, 1974.
- Hanuise, C., J.P. Villain, and M. Crochet, Spectral studies of F region irregularities in the auroral zone, Geophys. Res. Lett., 8, 1083, 1981.
- Hower, G.L., D.M. Ranz, and C.L. Allison, Comparison of HF radar echoes and high latitude spread-F measurements, J. Geophys. Res., 71, 3215, 1966.
- Kadomtsev, B.B. and A.V. Nedospasov, Instability of the positive column in a magnetic field and the "anomalous diffusion effect," J. Nucl. Energy, Part C, 1, 230, 1960.
- Kelley, M.C., K.D. Baker, C. Rino, and J.C. Ulwick, Simultaneous rocket probe scintillation and incoherent scatter radar observations of irregularities in the auroral zone ionosphere, Radio Sci., 15, 491, 1980.
- Keskinen, M.J., S.L. Ossakow, and B.E. McDonald, Nonlinear evolution of diffuse auroral F region ionospheric irregularities, Geophys. Res. Lett., 7, 573, 1980.
- Keskinen, M.J. and S.L. Ossakow, Nonlinear evolution of plasma enhancements in the auroral ionosphere I: Long wavelength irregularities, J. Geophys. Res., 87, 144, 1982.
- Keskinen, M.J. and S.L. Ossakow, Nonlinear evolution of convecting plasma enhancements in the auroral ionosphere II: Small scale irregularities, J. Geophys. Res., 88, 474, 1983b.
- Keskinen, M.J. and S.L. Ossakow, Theories of high latitude ionospheric irregularities - a review, Radio Sci., (in press), 1983a.
- Lee, K., P.K. Kaw, and C.F. Kennel, External production and control of electrojet irregularities, J. Geophys. Res., 77, 4197, 1972.
- Lehnert, B., Diffusion processes in the positive column in a longitudinal magnetic field, in Proceedings of the Second Geneva Conference on the Peaceful Uses of Atomic Energy, 32, 349, 1958.
- Linson, L.M. and J.B. Workman, Formation of striations in ionospheric plasma clouds, J. Geophys. Res., 75, 3211, 1970.
- Nishikawa, K., Parametric excitation of coupled waves, 2, Parametric plasmon-photon interaction, J. Phys. Soc. Japan, 24, 916, 1968.

- Ogawa, T., H. Mori, and S. Miyazaki, Rocket observations of electron density irregularities in the antarctic auroral E region, J. Geophys. Res., 81, 4013, 1976.
- Olesen, J.K., F. Primdahl, F. Spangslev, E. Ungstrup, A. Bahnsen, U. Fahlsøn, C.-G. Faltherammer, and A. Pedersen, Rocket borne wave and plasma observations in unstable polar cap E region, Geophys. Res. Lett., 3, 399, 1976.
- Ossakow, S.L. and P.K. Chaturvedi, Current convective instability in the diffuse aurora, Geophys. Res. Lett., 6, 332, 1979.
- Perkins, F.W., C. Oberman, and E.J. Valeo, Parametric Instabilities and Ionospheric Modification, J. Geophys. Res., 79, 1478-1496, 1974.
- Phelps, A.D.R. and R.C. Sagalyn, Plasma density irregularities in the high-latitude topside ionosphere, J. Geophys. Res., 81, 515, 1976.
- Rodriguez, P., M. Singh, D.N. Walker, E.P. Szuszczewicz, and J.C. Holmes, The STP/S3-4 satellite experiment: high latitude, Effects of the Ionosphere on Radiowave Systems, ed. J.M. Goodman, U.S. Government Printing Office, Washington, D.C., 1981.
- Sagalyn, R.C., M. Smiddy, and M. Ahmed, High-latitude irregularities in the topside ionosphere based on Isis 1 thermal probe, J. Geophys. Res., 79, 4252, 1974.
- Silin, V.P., Parametric resonance in a plasma, JETP, 21, 1127, 1965.
- Simon, A., Instability of a partially ionized plasma in crossed electric and magnetic fields, Phys. Fluids, 6, 382, 1963.
- Stubbe, P., H. Kopka, and R.L. Dowden, Generation of ELF and VLF waves by polar electrojet modulation: experimental results, J. Geophys. Res., 86, 9073, 1981.
- Sundaram, A.K. and P.K. Kaw, Parametric excitation and suppression of drift waves by lower hybrid fields, Nucl. Fusion, 13, 901, 1973.
- Vickrey, J.F., C.L. Rino, and T.A. Potemra, Chatanika/Triad observations of unstable ionization enhancements in the auroral F-region, Geophys. Res. Lett., 789, 1980.
- Weaver, P.F., Backscatter echoes from field-aligned irregularities in the F region, J. Geophys. Res., 70, 5425, 1965.

Wong, A.Y., J. Roederer, R. Hunsucker, G. Dimonte, P. Viezbicke, J. Gregorio, and J. Santoru, Project HIPAS - High power active stimulation of the auroral plasma, Effect of the Ionosphere on Radiowave Systems, ed. J.M. Goodman, U.S. Government Printing Office, Washington, D.C. 1981.

DISTRIBUTION LIST

DEPARTMENT OF DEFENSE

ASSISTANT SECRETARY OF DEFENSE
COMM, CMD, CONT 7 INTELL
WASHINGTON, D.C. 20301

DIRECTOR
COMMAND CONTROL TECHNICAL CENTER
PENTAGON RM B2 685
WASHINGTON, D.C. 20301
01CY ATTN C-650
01CY ATTN C-312 R. MASON

DIRECTOR
DEFENSE ADVANCED RSCH PROJ AGENCY
ARCHITECT BUILDING
1400 WILSON BLVD.
ARLINGTON, VA. 22209
01CY ATTN NUCLEAR MONITORING RESEARCH
01CY ATTN STRATEGIC TECH OFFICE

DEFENSE COMMUNICATION ENGINEER CENTER
1860 WIEHLE AVENUE
RESTON, VA. 22090
01CY ATTN CODE R410
01CY ATTN CODE R812

DEFENSE TECHNICAL INFORMATION CENTER
CAMERON STATION
ALEXANDRIA, VA. 22314
02CY

DIRECTOR
DEFENSE NUCLEAR AGENCY
WASHINGTON, D.C. 20305
01CY ATTN STVL
04CY ATTN TITL
01CY ATTN DDST
03CY ATTN RAAE

COMMANDER
FIELD COMMAND
DEFENSE NUCLEAR AGENCY
KIRTLAND, AFB, NM 87115
01CY ATTN FCPR

DIRECTOR
INTERSERVICE NUCLEAR WEAPONS SCHOOL
KIRTLAND AFB, NM 87115
01CY ATTN DOCUMENT CONTROL

JOINT CHIEFS OF STAFF
WASHINGTON, D.C. 20301
01CY ATTN J-3 WWMCCS EVALUATION OFFICE

DIRECTOR
JOINT STRAT TGT PLANNING STAFF
OFFUTT AFB
OMAHA, NE 68113
01CY ATTN JLTW-2
01CY ATTN JPST G. GOETZ

CHIEF
LIVERMORE DIVISION FLD COMMAND DNA
DEPARTMENT OF DEFENSE
LAWRENCE LIVERMORE LABORATORY
P.O. BOX 808
LIVERMORE, CA 94550
01CY ATTN FCPLR

COMMANDANT
NATO SCHOOL (SHAPE)
APO NEW YORK 09172
01CY ATTN U.S. DOCUMENTS OFFICER

UNDER SECY OF DEF FOR RSCH & ENGRG
DEPARTMENT OF DEFENSE
WASHINGTON, D.C. 20301
01CY ATTN STRATEGIC & SPACE SYSTEMS (OS)

WWMCCS SYSTEM ENGINEERING ORG
WASHINGTON, D.C. 20305
01CY ATTN R. CRAWFORD

COMMANDER/DIRECTOR
ATMOSPHERIC SCIENCES LABORATORY
U.S. ARMY ELECTRONICS COMMAND
WHITE SANDS MISSILE RANGE, NM 88002
01CY ATTN DELAS-EO F. NILES

DIRECTOR
BMD ADVANCED TECH CTR
HUNTSVILLE OFFICE
P.O. BOX 1500
HUNTSVILLE, AL 35807
01CY ATTN ATC-T MELVIN T. CAPPS
01CY ATTN ATC-O W. DAVIES
01CY ATTN ATC-R DON RUSS

PROGRAM MANAGER
BMD PROGRAM OFFICE
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333
01CY ATTN DACS-BMT J. SHEA

CHIEF C-E- SERVICES DIVISION
U.S. ARMY COMMUNICATIONS CMD
PENTAGON RM 1B269
WASHINGTON, D.C. 20310
01CY ATTN C- E-SERVICES DIVISION

COMMANDER
FRADCOM TECHNICAL SUPPORT ACTIVITY
DEPARTMENT OF THE ARMY
FORT MONMOUTH, N.J. 07703
01CY ATTN DRSEL-NL-RD H. BENNET
01CY ATTN DRSEL-PL-ENV H. BOMKE
01CY ATTN J.E. QUIGLEY

COMMANDER
U.S. ARMY COMM-ELEC ENGRG INSTAL AGY
FT. HUACHUCA, AZ 85613
01CY ATTN CCC-EMEO GEORGE LANE

COMMANDER
U.S. ARMY FOREIGN SCIENCE & TECH CTR
220 7TH STREET, NE
CHARLOTTESVILLE, VA 22901
01CY ATTN DRXST-SD

COMMANDER
U.S. ARMY MATERIAL DEV & READINESS CMD
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333
01CY ATTN DRCLDC J.A. BENDER

COMMANDER
U.S. ARMY NUCLEAR AND CHEMICAL AGENCY
7500 BACKLICK ROAD
BLDG 2073
SPRINGFIELD, VA 22150
01CY ATTN LIBRARY

DIRECTOR
U.S. ARMY BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MD 21005
01CY ATTN TECH LIBRARY EDWARD BAICY

COMMANDER
U.S. ARMY SATCOM AGENCY
FT. MONMOUTH, NJ 07703
01CY ATTN DOCUMENT CONTROL

COMMANDER
U.S. ARMY MISSILE INTELLIGENCE AGENCY
REDSTONE ARSENAL, AL 35809
01CY ATTN JIM GAMBLE

DIRECTOR
U.S. ARMY TRADOC SYSTEMS ANALYSIS ACTIVITY
WHITE SANDS MISSILE RANGE, NM 88002
01CY ATTN ATAA-SA
01CY ATTN TCC/F. PAYAN JR.
01CY ATTN ATTA-TAC LTC J. HESSE

COMMANDER
NAVAL ELECTRONIC SYSTEMS COMMAND
WASHINGTON, D.C. 20360
01CY ATTN NAVALEX 034 T. HUGHES
01CY ATTN PME 117
01CY ATTN PME 117-T
01CY ATTN CODE 5011

COMMANDING OFFICER
NAVAL INTELLIGENCE SUPPORT CTR
4301 SUITLAND ROAD, BLDG. 5
WASHINGTON, D.C. 20390
01CY ATTN MR. DUBBIN STIC 12
01CY ATTN NISC-50
01CY ATTN CODE 5404 J. GALET

COMMANDER
NAVAL OCEAN SYSTEMS CENTER
SAN DIEGO, CA 92152
01CY ATTN J. FERGUSON

NAVAL RESEARCH LABORATORY
WASHINGTON, D.C. 20375
01CY ATTN CODE 4700 S. L. Ossakow
26 CYS IF UNCLASS. 1 CY IF CLASS)
01CY ATTN CODE 4701 I Vitkovitsky
01CY ATTN CODE 4780 BRANCH HEAD (100
CYS IF UNCLASS, 1 CY IF CLASS)
01CY ATTN CODE 7500
01CY ATTN CODE 7550
01CY ATTN CODE 7580
01CY ATTN CODE 7551
01CY ATTN CODE 7555
01CY ATTN CODE 4730 E. MCLEAN
01CY ATTN CODE 4108
01CY ATTN CODE 4730 B. RIPIN
22CY ATTN CODE 2628

COMMANDER
NAVAL SEA SYSTEMS COMMAND
WASHINGTON, D.C. 20362
01CY ATTN CAPT R. PITKIN

COMMANDER
NAVAL SPACE SURVEILLANCE SYSTEM
DAHLGREN, VA 22448
01CY ATTN CAPT J.H. BURTON

OFFICER-IN-CHARGE
NAVAL SURFACE WEAPONS CENTER
WHITE OAK, SILVER SPRING, MD 20910
01CY ATTN CODE F31

DIRECTOR
STRATEGIC SYSTEMS PROJECT OFFICE
DEPARTMENT OF THE NAVY
WASHINGTON, D.C. 20376
01CY ATTN NSP-2141
01CY ATTN NSSP-2722 FRED WIMBERLY

COMMANDER
NAVAL SURFACE WEAPONS CENTER
DAHLGREN LABORATORY
DAHLGREN, VA 22448
01CY ATTN CODE DF-14 R. BUTLER

OFFICER OF NAVAL RESEARCH
ARLINGTON, VA 22217
01CY ATTN CODE 465
01CY ATTN CODE 461
01CY ATTN CODE 402
01CY ATTN CODE 420
01CY ATTN CODE 421

COMMANDER
AEROSPACE DEFENSE COMMAND/DC
DEPARTMENT OF THE AIR FORCE
ENT AFB, CO 80912
01CY ATTN DC MR. LONG

COMMANDER
AEROSPACE DEFENSE COMMAND/XPD
DEPARTMENT OF THE AIR FORCE
ENT AFB, CO 80912
01CY ATTN XPDQQ
01CY ATTN XP

AIR FORCE GEOPHYSICS LABORATORY
HANSOM AFB, MA 01731
01CY ATTN OPR HAROLD GARDNER
01CY ATTN LKB KENNETH S.W. CHAMPION
01CY ATTN OPR ALVA T. STAIR
01CY ATTN PHD JURGEN BUCHAU
01CY ATTN PHD JOHN P. MULLEN

AF WEAPONS LABORATORY
KIRTLAND AFT, NM 87117
01CY ATTN SUL
01CY ATTN CA ARTHUR H. GUENTHER
01CY ATTN NTYCE 1LT. G. KRAJEI

AFTAC
PATRICK AFB, FL 32925
01CY ATTN TF/MAJ WILEY
01CY ATTN TN

AIR FORCE AVIONICS LABORATORY
WRIGHT-PATTERSON AFB, OH 45433
01CY ATTN AAD WADE HUNT
01CY ATTN AAD ALLEN JOHNSON

DEPUTY CHIEF OF STAFF
RESEARCH, DEVELOPMENT, & ACQ
DEPARTMENT OF THE AIR FORCE
WASHINGTON, D.C. 20330
01CY ATTN AFRDQ

HEADQUARTERS
ELECTRONIC SYSTEMS DIVISION/XR
DEPARTMENT OF THE AIR FORCE
HANSOM AFB, MA 01731
01CY ATTN XR J. DEAS

HEADQUARTERS
ELECTRONIC SYSTEMS DIVISION/YSEA
DEPARTMENT OF THE AIR FORCE
HANSOM AFB, MA 01732
01CY ATTN YSEA

HEADQUARTERS
ELECTRONIC SYSTEMS DIVISION/DC
DEPARTMENT OF THE AIR FORCE
HANSCOM AFB, MA 01731
01CY ATTN DCKC MAJ J.C. CLARK

COMMANDER
FOREIGN TECHNOLOGY DIVISION, AFSC
WRIGHT-PATTERSON AFB, OH 45433
01CY ATTN NICD LIBRARY
01CY ATTN ETDP B. BALLARD

COMMANDER
ROME AIR DEVELOPMENT CENTER, AFSC
GRIFFISS AFB, NY 13441
01CY ATTN DOC LIBRARY/TSLD
01CY ATTN OCSE V. COYNE

SAMSO/SZ
POST OFFICE BOX 92960
WORLDWAY POSTAL CENTER
LOS ANGELES, CA 90009
(SPACE DEFENSE SYSTEMS)
01CY ATTN SZJ

STRATEGIC AIR COMMAND/XPPS
OFFUTT AFB, NB 68113
01CY ATTN ADWATE MAJ BRUCE BAUER
01CY ATTN NRT
01CY ATTN DOK CHIEF SCIENTIST

SAMSO/SK
P.O. BOX 92960
WORLDWAY POSTAL CENTER
LOS ANGELES, CA 90009
01CY ATTN SKA (SPACE COMM SYSTEMS)
M. CLAVIN

SAMSO/MN
NORTON AFB, CA 92409
(MINUTEMAN)
01CY ATTN MNML

COMMANDER
ROME AIR DEVELOPMENT CENTER, AFSC
HANSCOM AFB, MA 01731
01CY ATTN EEP A. LORENTZEN

DEPARTMENT OF ENERGY
LIBRARY ROOM G-042
WASHINGTON, D.C. 20545
01CY ATTN DOC CON FOR A. LABOWITZ

DEPARTMENT OF ENERGY
ALBUQUERQUE OPERATIONS OFFICE
P.O. BOX 5400
ALBUQUERQUE, NM 87115
01CY ATTN DOC CON FOR D. SHERWOOD

EG&G, INC.
LOS ALAMOS DIVISION
P.O. BOX 809
LOS ALAMOS, NM 85544
01CY ATTN DOC CON FOR J. BREEDLOVE

UNIVERSITY OF CALIFORNIA
LAWRENCE LIVERMORE LABORATORY
P.O. BOX 808
LIVERMORE, CA 94550
01CY ATTN DOC CON FOR TECH INFO DEPT
01CY ATTN DOC CON FOR L-389 R. OTT
01CY ATTN DOC CON FOR L-31 R. HAGER
01CY ATTN DOC CON FOR L-46 F. SEWARD

LOS ALAMOS NATIONAL LABORATORY
P.O. BOX 1663
LOS ALAMOS, NM 87545
01CY ATTN DOC CON FOR J. WOLCOTT
01CY ATTN DOC CON FOR R.F. TASCHEK
01CY ATTN DOC CON FOR E. JONES
01CY ATTN DOC CON FOR J. MALIK
01CY ATTN DOC CON FOR R. JEFFRIES
01CY ATTN DOC CON FOR J. ZINN
01CY ATTN DOC CON FOR P. KEATON
01CY ATTN DOC CON FOR D. WESTERVELT

SANDIA LABORATORIES
P.O. BOX 5800
ALBUQUERQUE, NM 87115
01CY ATTN DOC CON FOR W. BROWN
01CY ATTN DOC CON FOR A. THORNBROUGH
01CY ATTN DOC CON FOR T. WRIGHT
01CY ATTN DOC CON FOR D. DAHLGREN
01CY ATTN DOC CON FOR 3141
01CY ATTN DOC CON FOR SPACE PROJECT DIV

SANDIA LABORATORIES
LIVERMORE LABORATORY
P.O. BOX 969
LIVERMORE, CA 94550
01CY ATTN DOC CON FOR B. MURPHEY
01CY ATTN DOC CON FOR T. COOK

OFFICE OF MILITARY APPLICATION
DEPARTMENT OF ENERGY
WASHINGTON, D.C. 20545
01CY ATTN DOC CON DR. YO SONG

OTHER GOVERNMENT

DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS
WASHINGTON, D.C. 20234
(ALL CORRES: ATTN SEC OFFICER FOR)
01CY ATTN R. MOORE

INSTITUTE FOR TELECOM SCIENCES
NATIONAL TELECOMMUNICATIONS & INFO ADMIN
BOULDER, CO 80303
01CY ATTN A. JEAN (UNCLASS ONLY)
01CY ATTN W. UTLAUT
01CY ATTN D. CROMBIE
01CY ATTN L. BERRY

NATIONAL OCEANIC & ATMOSPHERIC ADMIN
ENVIRONMENTAL RESEARCH LABORATORIES
DEPARTMENT OF COMMERCE
BOULDER, CO 80302
01CY ATTN R. GRUBB
01CY ATTN AERONOMY LAB G. REID

DEPARTMENT OF DEFENSE CONTRACTORS

AEROSPACE CORPORATION
P.O. BOX 92957
LOS ANGELES, CA 90009
01CY ATTN I. GARFUNKEL
01CY ATTN T. SALMI
01CY ATTN V. JOSEPHSON
01CY ATTN S. BOWER
01CY ATTN D. OLSEN

ANALYTICAL SYSTEMS ENGINEERING CORP
5 OLD CONCORD ROAD
BURLINGTON, MA 01803
01CY ATTN RADIO SCIENCES

AUSTIN RESEARCH ASSOC., INC.
1901 RUTLAND DRIVE
AUSTIN, TX 78758
01CY ATTN L. SLOAN
01CY ATTN R. THOMPSON

BERKELEY RESEARCH ASSOCIATES, INC.
P.O. BOX 983
BERKELEY, CA 94701
01CY ATTN J. WORKMAN
01CY ATTN C. PRETTIE
01CY ATTN S. BRECHT

BOEING COMPANY, THE
P.O. BOX 3707
SEATTLE, WA 98124
01CY ATTN G. KEISTER
01CY ATTN D. MURRAY
01CY ATTN G. HALL
01CY ATTN J. KENNEY

CALIFORNIA AT SAN DIEGO, UNIV OF
P.O. BOX 6049
SAN DIEGO, CA 92106
CHARLES STARK DRAPER LABORATORY, INC.
555 TECHNOLOGY SQUARE
CAMBRIDGE, MA 02139
01CY ATTN D.B. COX
01CY ATTN J.P. GILMORE

COMSAT LABORATORIES
LINTHICUM ROAD
CLARKSBURG, MD 20734
01CY ATTN G. HYDE

CORNELL UNIVERSITY
DEPARTMENT OF ELECTRICAL ENGINEERING
ITHACA, NY 14850
01CY ATTN D.T. FARLEY, JR.

ELECTROSPACE SYSTEMS, INC.
BOX 1359
RICHARDSON, TX 75080
01CY ATTN H. LOGSTON
01CY ATTN SECURITY (PAUL PHILLIPS)

EOS TECHNOLOGIES, INC.
606 Wilshire Blvd.
Santa Monica, Calif 90401
01CY ATTN C.B. GABBARD

ESL, INC.
495 JAVA DRIVE
SUNNYVALE, CA 94086
01CY ATTN J. ROBERTS
01CY ATTN JAMES MARSHALL

GENERAL ELECTRIC COMPANY
SPACE DIVISION
VALLEY FORGE SPACE CENTER
GODDARD BLVD KING OF PRUSSIA
P.O. BOX 8555
PHILADELPHIA, PA 19101
01CY ATTN M.H. BORTNER SPACE SCI LAB

GENERAL ELECTRIC COMPANY
P.O. BOX 1122
SYRACUSE, NY 13201
01CY ATTN F. REIBERT

GENERAL ELECTRIC TECH SERVICES CO., INC.
HME
COURT STREET
SYRACUSE, NY 13201
01CY ATTN G. MILLMAN

GEOPHYSICAL INSTITUTE
UNIVERSITY OF ALASKA
FAIRBANKS, AK 99701
(ALL CLASS ATTN: SECURITY OFFICER)
01CY ATTN T.N. DAVIS (UNCLASS ONLY)
01CY ATTN TECHNICAL LIBRARY
01CY ATTN NEAL BROWN (UNCLASS ONLY)

GTE SYLVANIA, INC.
ELECTRONICS SYSTEMS GRP-EASTERN DIV
77 A STREET
NEEDHAM, MA 02194
01CY ATTN DICK STEINHOF

HSS, INC.
2 ALFRED CIRCLE
BEDFORD, MA 01730
01CY ATTN DONALD HANSEN

ILLINOIS, UNIVERSITY OF
107 COBLE HALL
150 DAVENPORT HOUSE
CHAMPAIGN, IL 61820
(ALL CORRES ATTN DAN MCCLELLAND)
01CY ATTN K. YEH

INSTITUTE FOR DEFENSE ANALYSES
1801 NO. BEAUREGARD STREET
ALEXANDRIA, VA 22311
01CY ATTN J.M. AEIN
01CY ATTN ERNEST BAUER
01CY ATTN HANS WOLFARD
01CY ATTN JOEL BENGSTON

INTL TEL & TELEGRAPH CORPORATION
500 WASHINGTON AVENUE
NUTLEY, NJ 07110
01CY ATTN TECHNICAL LIBRARY

JAYCOR
11011 TORREYANA ROAD
P.O. BOX 85154
SAN DIEGO, CA 92138
01CY ATTN J.L. SPERLING

JOHNS HOPKINS UNIVERSITY
APPLIED PHYSICS LABORATORY
JOHNS HOPKINS ROAD
LAUREL, MD 20810
01CY ATTN DOCUMENT LIBRARIAN
01CY ATTN THOMAS POTEMRA
01CY ATTN JOHN DASSOULAS

KAMAN SCIENCES CORP
P.O. BOX 7463
COLORADO SPRINGS, CO 80933
01CY ATTN T. MEAGHER

KAMAN TEMPO-CENTER FOR ADVANCED STUDIES
816 STATE STREET (P.O DRAWER QQ)
SANTA BARBARA, CA 93102
01CY ATTN DASIAC
01CY ATTN WARREN S. KNAPP
01CY ATTN WILLIAM MCNAMARA
01CY ATTN B. GAMBILL

LINKABIT CORP
10453 ROSELLE
SAN DIEGO, CA 92121
01CY ATTN IRWIN JACOBS

LOCKHEED MISSILES & SPACE CO., INC
P.O. BOX 504
SUNNYVALE, CA 94088
01CY ATTN DEPT 60-12
01CY ATTN D.R. CHURCHILL

LOCKHEED MISSILES & SPACE CO., INC.
3251 HANOVER STREET
PALO ALTO, CA 94304
01CY ATTN MARTIN WALT DEPT 52-12
01CY ATTN W.L. IMHOF DEPT 52-12
01CY ATTN RICHARD G. JOHNSON DEPT 52-12
01CY ATTN J.B. CLADIS DEPT 52-12

MARTIN MARIETTA CORP
ORLANDO DIVISION
P.O. BOX 5837
ORLANDO, FL 32805
01CY ATTN R. HEFFNER

M.I.T. LINCOLN LABORATORY
P.O. BOX 73
LEXINGTON, MA 02173
01CY ATTN DAVID M. TOWLE
01CY ATTN L. LOUGHLIN
01CY ATTN D. CLARK

MCDONNELL DOUGLAS CORPORATION
 5301 BOLSA AVENUE
 HUNTINGTON BEACH, CA 92647
 01CY ATTN N. HARRIS
 01CY ATTN J. MOULE
 01CY ATTN GEORGE MROZ
 01CY ATTN W. OLSON
 01CY ATTN R.W. HALPRIN
 01CY ATTN TECHNICAL LIBRARY SERVICES

MISSION RESEARCH CORPORATION
 735 STATE STREET
 SANTA BARBARA, CA 93101
 01CY ATTN P. FISCHER
 01CY ATTN W.F. CREVIER
 01CY ATTN STEVEN L. GUTSCHE
 01CY ATTN D. SAPPENFIELD
 01CY ATTN R. BOGUSCH
 01CY ATTN R. HENDRICK
 01CY ATTN RALPH KILB
 01CY ATTN DAVE SOWLE
 01CY ATTN F. FAJEN
 01CY ATTN M. SCHEIBE
 01CY ATTN CONRAD L. LONGMIRE
 01CY ATTN B. WHITE

MISSION RESEARCH CORP.
 1400 SAN MATEO BLVD. SE
 SUITE A
 ALBUQUERQUE, NEW MEXICO 87108
 01CY R. STELLINGWERF
 01CY M. ALME
 01CY L. WRIGHT

MITRE CORPORATION, THE
 P.O. BOX 208
 BEDFORD, MA 01730
 01CY ATTN JOHN MORGANSTERN
 01CY ATTN G. HARDING
 01CY ATTN C.E. CALLAHAN

MITRE CORP
 WESTGATE RESEARCH PARK
 1820 DOLLY MADISON BLVD
 MCLEAN, VA 22101
 01CY ATTN W. HALL
 01CY ATTN W. FOSTER

PACIFIC-SIERRA RESEARCH CORP
 12340 SANTA MONICA BLVD.
 LOS ANGELES, CA 90025
 01CY ATTN E.C. FIELD, JR.

PENNSYLVANIA STATE UNIVERSITY
 IONOSPHERE RESEARCH LAB
 318 ELECTRICAL ENGINEERING EAST
 UNIVERSITY PARK, PA 16802
 (NO CLASS TO THIS ADDRESS)
 01CY ATTN IONOSPHERIC RESEARCH LAB

PHOTOMETRICS, INC.
 4 ARROW DRIVE
 WOBURN, MA 01801
 01CY ATTN IRVING L. KOFSKY

PHYSICAL DYNAMICS, INC.
 P.O. BOX 3027
 BELLEVUE, WA 98009
 01CY ATTN E.J. FREMOUW

PHYSICAL DYNAMICS, INC.
 P.O. BOX 10367
 OAKLAND, CA 94610
 ATTN A. THOMSON

R & D ASSOCIATES
 P.O. BOX 9695
 MARINA DEL REY, CA 90291
 01CY ATTN FORREST GILMORE
 01CY ATTN WILLIAM B. WRIGHT, JR.
 01CY ATTN ROBERT F. LELEVIER
 01CY ATTN WILLIAM J. KARZAS
 01CY ATTN H. ORY
 01CY ATTN C. MACDONALD
 01CY ATTN R. TURCO
 01CY ATTN L. DeRAND
 01CY ATTN W. TSAI

RAND CORPORATION, THE
 1700 MAIN STREET
 SANTA MONICA, CA 90406
 01CY ATTN CULLEN CRAIN
 01CY ATTN ED BEDROZIAN

RAYTHEON CO.
 528 BOSTON POST ROAD
 SUDBURY, MA 01776
 01CY ATTN BARBARA ADAMS

RIVERSIDE RESEARCH INSTITUTE
 80 WEST END AVENUE
 NEW YORK, NY 10023
 01CY ATTN VINCE TRAPANI

SCIENCE APPLICATIONS, INC.

P.O. BOX 2351

LA JOLLA, CA 92038

01CY ATTN LEWIS M. LINSON
01CY ATTN DANIEL A. HAMLIN
01CY ATTN E. FRIEMAN
01CY ATTN E.A. STRAKER
01CY ATTN CURTIS A. SMITH
01CY ATTN JACK McDougall

SCIENCE APPLICATIONS, INC

1710 GOODRIDGE DR.

MCLEAN, VA 22102

ATTN: J. COCKAYNE

SRI INTERNATIONAL

333 RAVENSWOOD AVENUE

MENLO PARK, CA 94025

01CY ATTN DONALD NEILSON
01CY ATTN ALAN BURNS
01CY ATTN G. SMITH
01CY ATTN R. TSUNODA
01CY ATTN DAVID A. JOHNSON
01CY ATTN WALTER G. CHESNUT
01CY ATTN CHARLES L. RINO
01CY ATTN WALTER JAYE
01CY ATTN J. VICKREY
01CY ATTN RAY L. LEADABRAND
01CY ATTN G. CARPENTER
01CY ATTN G. PRICE
01CY ATTN J. PETERSON
01CY ATTN R. LIVINGSTON
01CY ATTN V. GONZALES
01CY ATTN D. McDANIEL

STEWART RADIANCE LABORATORY

UTAH STATE UNIVERSITY

1 DE ANGELO DRIVE

BEDFORD, MA 01730

01CY ATTN J. ULWICK

TECHNOLOGY INTERNATIONAL CORP

75 WIGGINS AVENUE

BEDFORD, MA 01730

01CY ATTN W.P. BOQUIST

TOYON

34 WALNUT LAND

SANTA BARBARA, CA 93111

01CY ATTN JOHN ISE, JR.

01CY ATTN JOEL GARBARINO

TRW DEFENSE & SPACE SYS GROUP

ONE SPACE PARK

REDONDO BEACH, CA 90278

01CY ATTN R. K. PLEBUCH
01CY ATTN S. ALTSCHULER
01CY ATTN D. DEE
01CY ATTN D. STOCKWELL
SNTF/1575

VISIDYNE

SOUTH BEDFORD STREET

BURLINGTON, MASS 01803

01CY ATTN W. REIDY
01CY ATTN J. CARPENTER
01CY ATTN C. HUMPHREY

IONOSPHERIC MODELING DISTRIBUTION LIST
(UNCLASSIFIED ONLY)

PLEASE DISTRIBUTE ONE COPY TO EACH OF THE FOLLOWING PEOPLE (UNLESS OTHERWISE NOTED)

NAVAL RESEARCH LABORATORY
WASHINGTON, D.C. 20375
DR. P. MANGE - CODE 4101
DR. E. SZUSZCZEWCZ - CODE 4108
DR. J. GOODMAN - CODE 4180
DR. P. RODRIGUEZ - CODE 4108

A.F. GEOPHYSICS LABORATORY
L.G. HANSCOM FIELD
BEDFORD, MA 01730
DR. T. ELKINS
DR. W. SWIDER
MRS. R. SAGALYN
DR. J.M. FORBES
DR. T.J. KENESHEA
DR. W. BURKE
DR. H. CARLSON
DR. J. JASPERSE

BOSTON UNIVERSITY
DEPARTMENT OF ASTRONOMY
BOSTON, MA 02215
DR. J. AARONS

CORNELL UNIVERSITY
ITHACA, NY 14850
DR. W.E. SWARTZ
DR. R. SUDAN
DR. D. FARLEY
DR. M. KELLEY

HARVARD UNIVERSITY
HARVARD SQUARE
CAMBRIDGE, MA 02138
DR. M.B. McELROY
DR. R. LINDZEN

INSTITUTE FOR DEFENSE ANALYSIS
400 ARMY/NAVY DRIVE
ARLINGTON, VA 22202
DR. E. BAUER

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
PLASMA FUSION CENTER
LIBRARY, NW16-262
CAMBRIDGE, MA 02139

NASA
GODDARD SPACE FLIGHT CENTER
GREENBELT, MD 20771
DR. R.F. BENSON
DR. K. MAEDA
Dr. S. CURTIS
Dr. M. DUBIN
DR. N. MAYNARD - CODE 696

NATIONAL TECHNICAL INFORMATION CENTER
CAMERON STATION
ALEXANDRIA, VA 22314
12CY ATTN TC

COMMANDER
NAVAL AIR SYSTEMS COMMAND
DEPARTMENT OF THE NAVY
WASHINGTON, D.C. 20360
DR. T. CZUBA

COMMANDER
NAVAL OCEAN SYSTEMS CENTER
SAN DIEGO, CA 92152
MR. R. ROSE - CODE 5321

NOAA
DIRECTOR OF SPACE AND ENVIRONMENTAL
LABORATORY
BOULDER, CO 80302
DR. A. GLENN JEAN
DR. G.W. ADAMS
DR. D.N. ANDERSON
DR. K. DAVIES
DR. R. F. DONNELLY

OFFICE OF NAVAL RESEARCH
800 NORTH QUINCY STREET
ARLINGTON, VA 22217
DR. G. JOINER

PENNSYLVANIA STATE UNIVERSITY
UNIVERSITY PARK, PA 16802

DR. J.S. NISBET
DR. P.R. ROHRBAUGH
DR. L.A. CARPENTER
DR. M. LEE
DR. R. DIVANY
DR. P. BENNETT
DR. F. KLEVANS

PRINCETON UNIVERSITY
PLASMA PHYSICS LABORATORY
PRINCETON, NJ 08540
DR. F. PERKINS

SCIENCE APPLICATIONS, INC.
1150 PROSPECT PLAZA
LA JOLLA, CA 92037
DR. D.A. HAMLIN
DR. L. LINSON
DR. E. FRIEMAN

STANFORD UNIVERSITY
STANFORD, CA 94305
DR. P.M. BANKS

U.S. ARMY ABERDEEN RESEARCH
AND DEVELOPMENT CENTER
BALLISTIC RESEARCH LABORATORY
ABERDEEN, MD
DR. J. HEIMERL

GEOPHYSICAL INSTITUTE
UNIVERSITY OF ALASKA
FAIRBANKS, AK 99701
DR. L.C. LEE

UNIVERSITY OF CALIFORNIA,
BERKELEY
BERKELEY, CA 94720
DR. M. HUDSON

UNIVERSITY OF CALIFORNIA
LOS ALAMOS SCIENTIFIC LABORATORY
J-10, MS-664
LOS ALAMOS, NM 87545
DR. M. PONGRATZ
DR. D. SIMONS
DR. G. BARASCH
DR. L. DUNCAN
DR. P. BERNHARDT
DR. S.P. GARY

UNIVERSITY OF CALIFORNIA,
LOS ANGELES

405 HILLGARD AVENUE
LOS ANGELES, CA 90024
DR. F.V. CORONITI
DR. C. KENNEL
DR. A.Y. WONG

UNIVERSITY OF MARYLAND
COLLEGE PARK, MD 20740
DR. K. PAPADOPOULOS
DR. E. OTT

JOHNS HOPKINS UNIVERSITY
APPLIED PHYSICS LABORATORY
JOHNS HOPKINS ROAD
LAUREL, MD 20810
DR. R. GREENWALD
DR. C. MENG

UNIVERSITY OF PITTSBURGH
PITTSBURGH, PA 15213
DR. N. ZABUSKY
DR. M. BIONDI
DR. E. OVERMAN

UNIVERSITY OF TEXAS
AT DALLAS
CENTER FOR SPACE SCIENCES
P.O. BOX 688
RICHARDSON, TEXAS 75080
DR. R. HEELIS
DR. W. HANSON
DR. J.P. McCLURE

UTAH STATE UNIVERSITY
4TH AND 8TH STREETS
LOGAN, UTAH 84322
DR. R. HARRIS
DR. K. BAKER
DR. R. SCHUNK
DR. J. ST.-MAURICE

KIRUNA GEOPHYSICAL INSTITUTE
BOX 709
S-98127 KIRUNA, SWEDEN
CHRISTER JUREN

END

FILMED

9-83

DTIC