

Housekeeping items

- Wi-fi password
- rstudio::confapp
- Access your server

9am - 10:30am

Break (30 mins)

11am - 12:30am

Lunch (1.5hrs)

2pm - 3:30pm

Break (30 mins)

4pm - 5:30pm

The team

Cole
Arendt
Infrastructure

Mara Averick

Ron Blum

Javier Luraschi Guy in the back

James Blair Instructor

Edgar Ruiz Instructor

Class / material overview

- Server
- Database
- Spark
- Deck
- Exercise book

Unit 1 Accessing databases

Photo by Florian Pircher on Unsplash

Exercise 1.1 – 1.3

Connection requirements

Credentials

Location

Driver

Requirement definitions

- User name & passwordToken

- ODBC (Used by ADO & OLE DB)
 JDBC

Connection info

Data Source Name (DSN)

The ideal connection

Why DSN?

Exercise 1.4

Alternatives for securing connections

- 1. config
- 2. keyring
- 3. Environment variables
- 4. options()
- 5. Prompt for credentials

Exercise 1.5 – 1.8

Let's talk about Big Data

Photo by Chris Christensen on Unsplash

Data > RAM

Garrett Grolemund

Remote Data

Edgar Ruiz (circa 2018)

Big Data in R

Big Data Strategies

Sample

Most common approach for **modeling**

Parts

Most common approach for general analysis

Whole

In most cases, **the preferred approach,**it's just not feasible

Parts - "The Method"

Typical DS project

Remote Data Sources

Flat Files

Only Data

Remote Sources

Data & Compute engine

Unit 2 & 3
Using dplyr
/dee-plier/

Photo by Arthur Lambillotte on Unsplash

Wrangle inside the DB

rstudio::conf

Options to Push Compute

Write SQL statements

SELECT "name", COUNT(*) AS "n" FROM "vwFlights" GROUP BY "name"

Use dplyr verbs

```
flights %>%
group_by(name) %>%
tally()
```

Advantages

dplyr translates to
 SQL

- 2. Take advantage of piped code
- 3. All your code is in R!

Exercise 2.1 – 2.6

DS project using DBs

How to access a database

1. R Package – As implemented by <u>RPostgreSQL</u> and others

2. ODBC - As implemented in <u>odbc</u> package

3. JDBC - As implemented in *RJDBC* and other

Packages

- 1. dplyr Simplifies data wrangling
- 2. dbplyr Provides database specific translation
- 3. DBI Common interface for Databases and R
- 4. DB R Package Back-end interface for a specific database, such as RPostgreSQL
- 5. odbc Back-end interface to a database using an ODBC driver

Architecture

How dbplyr translates

rstudio::conf

Translations available in dbplyr

1. Microsoft SQL Server

7. MariaDB (MySQL)

2. Oracle

8. SQLite

3. Apache Hive

9. Amazon Redshift

4. Apache Impala

10.Teradata

- 5. PostgreSQL
- 6. MS Access

Exercise 3.1 – 3.6

Some advice...

- 1. Think before you collect()
- 2. Just a bit off the top, use head()
- 3. Be select()ive of fields to bring back
- 4. tbl(con, "No SQL statements in tbl")

Unit 4 Visualizations

Photo by <u>Luis Alfonso Orellana</u> on <u>Unsplash</u>

Visualizations

Local data

Remote data

rstudio::conf

Exercise 4.1 – 4.6

Complex plots

Single function

Exercise 4.7 – 4.10

Unit 5 Modeling

Photo by Roman Mager on Unsplash

Modeling scenario

1. Training sample

2. Model on sample

3. Testing sample

4. Verify model

5. Score data

Modeling with a Database

Exercise 5.1 – 5.2

Multi-step sampling

Exercise 5.2

Score inside the DB

Exercise 5.3 – 5.4

Unit 6 Advanced Operations

Photo by <u>Holly Stratton</u> on <u>Unsplash</u>

Run same code? Create a [tidy] function

```
my_mean("arrtime",
        flights)
```

```
flights %>%
```

```
my_mean("arrtime")
```

```
flights %>%
 my_mean(arrtime)
```



```
flights %>%
  summarise(
    m = mean(arrtime)
```

Tidy eval functions to remember

Prevent evaluation

Prevent evaluation of arguments

Evaluate expression

exp()

enquo()

!!

enquos()

!!!

Exercise 6.1 – 6.2

Multiple queries

Many trips to the database

One trip to the database

Map/Reduce data code

Many trips to the database

One trip to the database

```
map(
 expr(
 expr( dplyr )
 expr(
   ) %>%
     reduce()
```

Exercise 6.3 – 6.4

Units 7 & 8 sparklyr /s-par-klee-r/

Photo by Matthew Ronder-Seid on Unsplash

What is Spark?

Processing

- Cluster Computing
- Machine Learning
- SQL Interface
- Extensible API

Storage

Typical architecture

sparklyr – An R interface for Spark

- dplyr
- ML
- Extensions

- Cluster Computing
- Machine Learning
- SQL Interface
- Extensible API

Exercise 7.1 – 7.3

Working with data in Spark

Option 1

Use Spark as a pass-through for each query

Option 2

Cache the data into Spark memory & query there

Query

Results

Cache

rstudio::conf

Exercise 7.4 – 7.9

Deployment options

Managed Cluster

Stand Alone

Livy

Local

Kubernetes

- Deployment seen at most business
- Spark version(s) available are limited to what's on the cluster

 Since there's no central data repository, all data has to be either imported or connected to a common shared location (NAS, S3)

- Great for accessing a remote cluster
- Not recommended for Production deployments

- Great for learning
- Works on <u>Windows</u> and <u>Mac</u> too
- Quick and easy way to access multiple cores

 New – It allows to connect to a Spark cluster inside a Kubernetes cluster

Let's talk about Data Science projects

Photo by Jo Szczepanska on Unsplash

Different deliverables

Data Science

- Deliverable: Insights
- Experimental
- Iterative

Production

- Deliverable: Software
- Tested
- Automated
- Apply SDLC

Unit 8 Spark Pipelines

Photo by <u>Iker Urteaga</u> on <u>Unsplash</u>

Spark pipelines types

Estimator (Plan)

Transformer (Fit)

Exercise 8.1 – 8.4

Production Implementation

Units 9 & 10 Dashboards

Photo by **Benjamin Child** on **Unsplash**

Normal Shiny app

Database + Shiny Dashboard

Exercise 9.1 - 9.4

Database + Shiny Dashboard

Exercise 10.1 – 10.4

General advice

Photo by Daria Nepriakhina on Unsplash

Bookmark and check regularly

- http://db.rstudio.com/
- http://spark.rstudio.com/
- https://www.tidyverse.org/
- https://rviews.rstudio.com/
- https://rviews.rstudio.com/categories/databases
- https://blog.rstudio.com/

Join the community!

https://community.rstudio.com/

Familiarize yourself with the repos

If I need to	Check out
Report an issue or see if others are having the same problem	Issues
See if an feature exists or if it's coming up in future releases	NEWS
See the basics about the package	README

- https://github.com/tidyverse/dplyr
- https://github.com/tidyverse/dbplyr
- https://github.com/tidyverse/ggplot2
- https://github.com/r-dbi/odbc
- https://github.com/r-dbi/DBI
- https://github.com/edgararuiz/dbplot
- https://github.com/edgararuiz/tidypredict
- https://github.com/rstudio/sparklyr

Thank you!!!!!

Photo by Gary Bendig on Unsplash