

Jun 02, 2022

Assessment of PKC-dependent activation of LRRK1 in vitro

Athanasios Karapetsas¹, Asad Malik¹, Dario R Alessi¹

¹Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences , University of Dundee, Dow Street, Dundee DD1 5EH, UK

dx.doi.org/10.17504/protocols.io.5jyl89d5rv2w/v1

asa	0
	Dario Alessi

We describe a non-radioactive assay that we deploy for analysing the kinase activity of recombinant LRRK1 following *in vitro* activation by Protein kinase C (PKC) isoforms. This assay can also be used to analyse the effect of PKC on LRRK1 immunoprecipitated from cells.

393-856.docx

DOI

dx.doi.org/10.17504/protocols.io.5jyl89d5rv2w/v1

Athanasios Karapetsas, Asad Malik, Dario R Alessi 2022. Assessment of PKC-dependent activation of LRRK1 in vitro. **protocols.io** https://dx.doi.org/10.17504/protocols.io.5jyl89d5rv2w/v1

PKC activation, lipid vesicles, Phosphorylation of LRRK1, immunoblotting analysis, ASAPCRN

protocol,

Mar 28, 2022

Jun 02, 2022

Mar 28, 2022 renuka.s

Mar 31, 2022 Dario Alessi

1

Citation: Athanasios Karapetsas, Asad Malik, Dario R Alessi Assessment of PKC-dependent activation of LRRK1 in vitro https://dx.doi.org/10.17504/protocols.io.5iyl89d5rv2w/v1

Note: Once the in vitro kinase assay has been performed, we recommend analysing the reaction products by quantitative immunoblotting (as described in **XXXXX**).

Note: This protocol can be adapted to analyse activation of LRRK1 that has been immunoprecipitated from cells (as described in **XXXXXX**).

Reagents:

- 1. Recombinant PKC isoform protein (available from MRC Reagents and Services: https://mrcppureagents.dundee.ac.uk/)
- 2. Recombinant Rab7A protein (available from MRC Reagents and Services: https://mrcppureagents.dundee.ac.uk/)
- 3. Recombinant LRRK1 wild type [27-2015] protein

Note: Recombinant LRRK1 protein is expressed and purified by following the protocol described in: **XXXXX**

4. Kinase assay buffer:

Α	В	
HEPES pH 7.5	25 mM	
2-mercaptoethanol	0.1% (v/v)	
KCI	50 mM	
CaCl2	1 mM	
MgCl2	10 mM	
ATP	1 mM	

- 1. L- α -Phosphatidylserine (Avanti Polar Lipids, resuspended in methanol and chloroform at a 1:1 ratio for long-term storage)
- 2. L- α -Diacylglyerol (Avanti Polar Lipids, resuspended in methanol and chloroform at a 1:1 ratio for long-term storage)
- 3. 4X Loading buffer:

⋈ NUPAGE LDS sample buffer (4x) Thermo Fisher

Scientific Catalog #NP0007

, or

4X SDS loading buffer

Α	В	
Tris-HCl, pH6.8	250mM	
SDS	8% (w/v)	
Glycerol	40% (v/v)	
Bromophenol blue	0.02% (w/v)	

 ⊗ Anti-Rab7 antibody Mouse monoclonal Sigma

 Aldrich Catalog #R8779

 ⊗ Recombinant Anti-PKC alpha

 antibody Abcam Catalog #ab11723

Equipment:

• Refrigerated bench-top centrifuge (Eppendorf microcentrifuge 5417R, or equivalent).

Refrigerated Centrifuge
Centrifuge
Eppendorf EP-5417R

- Savant SpeedVac system (Thermo #SPD140DDA, or equivalent)
- Thermo mixer (Eppendorf ThermoMixer, or equivalent)
- Disposable Glass Culture Tubes (Fisherbrand Round Bottom Disposable Borosilicate Glass Tubes, or equivalent)

Preparation of lipid vesicles for PKC activation

1

Clean a disposable glass culture tube by washing. Allow to air-dry.

- 1 1 Clean a disposable glass culture tube by washing with 100% methanol. (1/3)
- 1.2 Clean a disposable glass culture tube by washing with 100% methanol. (2/3)
- 1.3 Clean a disposable glass culture tube by washing with 100% methanol. (3/3)

2

Pipette $\square 0.5 \,\mu L$ of Diacylglycerol (stock concentration is $\square 10 \,mg/mL$) and $\square 5 \,\mu L$ of

protocols.io

3

Phosphatidylserine (stock concentration is **10 mg/mL**) into the cleaned and dried glass tube.

Note: These quantities will provide sufficient lipid vesicles for 25 reactions at a volume of $20 \, \mu L$ per reaction.

Wacuum dry lipids using a SpeedVac system for © 00:10:00. This should leave a visible, translucent lipid pellet.

Note: Ensure that lipids are completely dried as any residual chloroform or methanol will inhibit the kinase reaction.

4 Resuspend lipids in **50 μL** of [M]25 millimolar (mM) HEPES [P+7.4], [M]50 millimolar (mM) KCl. Vortex gently until pellet is no longer visible.

Kinase Reaction Step 1: Phosphorylation of LRRK1 by PKC

5

Note: If using immunoprecipitated LRRK1 from cells, perform immunoprecipitation and washes (as described in **XXXXXX**) before proceeding with Step 5.

Prepare a primary "2X master mix" containing

Α	В	
HEPES pH 7.5	50 mM	
KCI	100 mM	
2-Mercaptoethanol	0.2% (v/v)	
MgCl2	20 mM	
ATP	2 mM	
CaCl2	2 mM	
Phosphatidylserine	200 μg/ml	
Diacylglycerol	20 μg/ml	

For each reaction, add $\Box 10 \mu L$ of the primary "2X master mix" to a clean Eppendorf tube.

7

5m

Add $\Box 5~\mu L$ of [M]200 nanomolar (nM) LRRK1 wild type protein (final concentration is [M]50 nanomolar (nM)) to each reaction and allow equilibration § On ice for © 00:05:00.

Note: If using LRRK1 immunoprecipitated from cells, add 10 μL of the primary "2X master mix" and 5 μL of [M]25 millimolar (mM) HEPES [P+7.5], [M]50 millimolar (mM) KCl, 0.1% (v/v) 2-Mercaptoethanol to each tube containing beads-bound immunoprecipitated LRRK1.

8

Start the kinase reaction by adding $\Box 5~\mu L$ of [M]400 nanomolar (nM) PKC Alpha protein (final concentration is [M]100 nanomolar (nM)).

Note: The final reaction volume should be $\;\; \mbox{\Large \square} 20~\mu\mbox{\Large L}$.

9 After © 00:30:00, transfer the Eppendorf tubes from Step 8 & On ice.

30m

Kinase Reaction Step 2: Phosphorylation of Rab7A by PKC-activated LRRK1

10 Prepare a secondary "master mix" (=Master Mix B) containing

Α	В	
HEPES pH 7.5	25 mM	
KCI	50 mM	
MgCl2	10 mM	
ATP	1 mM	
Rab7A	1 μΜ	

11

Start the second step of the kinase reaction by adding $\blacksquare 10~\mu L$ Master Mix B to the Eppendorf tubes from Step 5.

Transferring the Eppendorf tubes to the thermo mixer set at & 30 °C , 1,000 rpm. Incubate for & 00:45:00 .

13

Stop the kinase reaction by adding $\Box 10~\mu L$ of 4× LDS (supplemented with 5% (v/v) 2-Mercaptoethanol) loading buffer to the reaction mix to a final concentration of 1×.

If using LRRK1 immunoprecipitated from cells, stop the kinase reaction by adding $\Box 30~\mu L$ of 4× LDS loading buffer to the reaction mix to a final concentration of 2×, incubate the mixture at $\& 70~^{\circ}C$ on a heat block for @ 00:10:00 to elute LRRK1 from the resin, and collect the eluent by centrifugation through a 0.22- μ m-pore-size Spinex column.

Incubate the samples for \circlearrowleft **00:05:00** at \circlearrowleft **70 °C** on a heat block before proceeding to quantitative immunoblotting analysis.

m protocols.io

Note: If using LRRK1 immunoprecipitated from cells, supplement the samples from Step 14 with 2-Mercaptoethanol to 1% (v/v) before proceeding to Step 15.

Analysis of kinase reaction products by quantitative immunoblotting analysis:

1h 15m

16

The reaction products can be analysed by quantitative immunoblotting analysis (as described in XXXX). **Table 1** lists the primary antibodies that we recommend using, which include antibodies to detect Rab7A phosphorylation at Serine-72.

Α	В	С	D	E
Antibody Target	Company	Cat. number		Dilution
			species	
pS72 Rab7A	Abcam Inc.	MJF-38,	Rabbit	1 mg/ml
		Clone 1		
Rab7A (Total)	Sigma	R8779	Mouse	1.430556
LRRK1 (total) (C-	MRC-PPU Reagents and Services,	S405C	Sheep	1 mg/ml
terminus)	University of Dundee			
PKC Alpha	Abcam Inc.	ab11723	Mouse	1.430556

17 1h 15m

Figure 1: PKC alpha dose-dependent activation of recombinant LRRK1 in vitro. Recombinant LRRK1 wild type [27-2015] was incubated with increasing concentrations of PKC Alpha (1 to 300 nM) at δ 30 °C for © 00:30:00 with excess Mg-ATP. Reactions were subsequently incubated with [M]1 micromolar (μM) recombinant Rab7A and subjected to a

© **00:45:00** kinase reaction at **30°C** in the presence of excess Mg-ATP. Kinase reactions were subjected to immunoblot analysis with the indicated antibodies and the membranes were developed using the Odyssey CLx scan Western Blot imaging system.