Data Preprocessing

Handling Missing Values: Missing values were checked using df.isnull().sum(). The specific handling strategy was not detailed in the snippet.

Dealing with Duplicates: Duplicate entries were identified using df.duplicated().sum() and were presumably removed.

Data Splitting: Data was split into training, validation, and test subsets using sklearn's train_test_split, with a distribution aimed at creating training, validation, and test sets.

Statistical Summary

Basic statistical details using df.describe() to understand the central tendency and variability of the data.

Data Visualization:

Visualizations included histograms and a heatmap of correlations among numerical features to identify relationships and distribution patterns.

Machine Learning Models

K-Nearest Neighbors (KNN)

Model Building: KNN was used with varying numbers of neighbors to find the optimal.

Model Evaluation: Accuracy scores computed for different configurations, with results printed out as lists of accuracies for training, validation, and testing data.

```
print("Training Accuracies:", train_accuracies)

print("Validation Accuracies:", val_accuracies)

print("Test Accuracies:", test_accuracies)

Training Accuracies: [1.0, 0.9439842070010929, 0.9345013572108436, 0.925171267082643, 0.9149598712118542, 0.9129739956052221, 0.90491298574634

Validation Accuracies: [0.873601667032244, 0.8577538933976749, 0.8748080719456021, 0.8720662425970608, 0.8767821890765519, 0.8733274840973898,
Test Accuracies: [0.8701540823600373, 0.8561715194385041, 0.8784339529527883, 0.8703185831002906, 0.8787081208532105, 0.874321434446455, 0.876
```


Linear Regression

Evaluation: Performance was assessed using metrics like R², Mean Squared Error (MSE), and Root Mean Squared Error (RMSE).

Support Vector Machine (SVM)

Model Setup: Configured with RBF kernel.

Evaluation: Validation and test accuracies were provided to assess the model's effectiveness.

Neural Network

A multi-layer perceptron model with sigmoid activations.

Training and Evaluation: The model's performance was tracked over epochs, showing training and validation accuracies and losses.

```
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
                      batch_size=1024,
                      epochs=100,
                      validation_data=(X_val, y_val))
                                                9s 9ms/step - loss: 1.3018 - accuracy: 0.7141 - val_loss: 1.2849 - val_accuracy: 0.7178
    832/832 [===
    Epoch 2/100
                                                 9s 11ms/step - loss: 1.1729 - accuracy: 0.7236 - val_loss: 1.0629 - val_accuracy: 0.7262
                                                 7s 8ms/step - loss: 1.0226 - accuracy: 0.7261 - val_loss: 0.9865 - val_accuracy: 0.7274
    Epoch 4/100
    832/832 [==:
Epoch 5/100
                                                10s 12ms/step - loss: 0.9526 - accuracy: 0.7276 - val_loss: 0.9215 - val_accuracy: 0.7295
                                                 7s 8ms/step - loss: 0.8990 - accuracy: 0.7309 - val_loss: 0.8761 - val_accuracy: 0.7318
    Epoch 6/100
    832/832 [==:
                                                10s 12ms/step - loss: 0.8580 - accuracy: 0.7327 - val_loss: 0.8372 - val_accuracy: 0.7341
    Epoch 7/100
                                                   9ms/step - loss: 0.8212 - accuracy: 0.7355 - val_loss: 0.8058 - val_accuracy: 0.7370
    Epoch 8/100
                                                 9s 11ms/step - loss: 0.7918 - accuracy: 0.7379 - val_loss: 0.7809 - val_accuracy: 0.7389
    832/832 [==:
    Epoch 9/100
    832/832 [===
                                                8s 9ms/step - loss: 0.7676 - accuracy: 0.7422 - val_loss: 0.7575 - val_accuracy: 0.7466
                                                9s 11ms/step - loss: 0.7457 - accuracy: 0.7468 - val_loss: 0.7357 - val_accuracy: 0.7482
    832/832 [====
Epoch 11/100
                                                11s 14ms/step - loss: 0.7271 - accuracy: 0.7501 - val_loss: 0.7208Ctivate Windows.7501
```

Logistic Regression
Model Setup and Evaluation: Logistic regression was used to classify activities, with performance evaluated through accuracy scores and classification reports

Evaluate the model on the validation data
val_accuracy = accuracy_score(y_val, y_val_pred)
print(f'Validation Accuracy: {val_accuracy}')

print(classification_report(y_val, y_val_pred))

→	Validation	Accurac	y: 0.7279	0.7279257740099363					
		prec	ision	recall	f1-score	support			
		0	0.74	0.96	0.84	130896			
		1	0.00	0.00	0.00	4580			
		2	0.00	0.00	0.00	4786			
		3	0.68	0.92	0.78	4556			
		4	0.01	0.00	0.00	4595			
		5	0.01	0.00	0.00	4657			
		6	0.05	0.01	0.01	4210			
		7	0.11	0.01	0.01	4404			
		8	0.01	0.00	0.00	4406			
		9	0.54	0.37	0.44	4492			
		10	0.40	0.08	0.14	4587			
		11	0.49	0.23	0.32	4613			
		12	0.17	0.00	0.00	1580			
	accura	су			0.73	182362			
	macro a	vg	0.25	0.20	0.19	182362			
	weighted a	vg	0.59	0.73	0.64	182362			

Confusion Matrix																
	0	.2550	242	38	1891	38	20	339	170	78	1399	449	919	0	- 120000	0
	1	-4604	0	0	0	0	0	0	0	0	0	0	0	0		
	7	-4589	0	0	0	0	0	0	0	0	0	0	0	0	- 100000	0
	m	- 400	0	0	4181	0	0	0	0	0	0	0	0	0		
	4	-4579	22	0	0	2	0	6	0	0	0	0	0	0	- 80000	
els	2	-4521	0	0	2	1	0	18	10	44	56	0	0	0		
e Labels	9	-4232	12	0	0	0	0	23	0	0	0	0	0	0	- 60000	
True	7	-4291	21	0	0	0	0	3	22	0	0	0	0	0		
	00	-4340	0	0	0	0	0	0	0	1	0	0	0	0	- 40000	
	6	-2903	0	0	0	0	0	0	1	0	1682	0	0	0	40000	
	10	-3896	0	0	10	0	3	7	1	10	0	342	266	0	- 20000	
	11	-3108	4	91	40	17	53	35	2	38	0	61	1124	4	20000	
	12	-1488	0	4	5	7	0	4	3	3	0	42	44	0		
		Ó	í	2	3	4	5	6	. '	8	9	10	11	12	- 0	
Predicted Labels																