1. Loi normale (p.149, p.158)

Théorème 1 On dit que la variable aléatoire X obéit à une loi normale de moyenne μ (où $-\infty < x < \infty$) et de variance $\sigma^2 > 0$ lorsqu'elle présente la fonction de densité :

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

En abrégé, on écrit $X \sim N(\mu, \sigma^2)$. Il est intéressant de noter que la courbe de densité de la loi normale est symétrique par rapport à μ .

FIGURE 1 – Densité de lois normales

Théorème 2 Soit $X_1, X_2, ..., X_n$ des variables aléatoires indépendantes telles que $X_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$ et les constantes $a_1, a_2, ..., a_n$ Alors, si $X = \sum_{i=1}^n a_i X_i$:

$$X \sim \mathcal{N}\left(\sum_{i=1}^{n} a_i \mu_i, \sum_{i=1}^{n} a_i^2 \sigma_i^2\right)$$

2. Théorème central limite (p.160)

Théorème 3 Soit $X_1, X_2, ..., X_n$ une suite de n variables aléatoires indépendantes telles que $E(X_i) = \mu_i$ et $V(X_i) = \sigma_i^2$ (deux grandeurs finies). Si $Y = X_1 + X_2 + ... + X_n$, alors

dans certaines conditions générales, la variable :

$$Z_n = \frac{Y - \sum_{i=1}^n \mu_i}{\sqrt{\sum_{i=1}^n \sigma_i^2}}$$

obéit approximativement à une loi N(0,1) lorsque n tend vers l'infini. Soit F_n la fonction de répartition de Z_n . On a alors :

$$\lim_{n \to \infty} \frac{F_n(z)}{\Phi(z)} = 1 \quad (\star)$$

où $\Phi(z)$ est la fonction de répartition de la loi normale et $F_n(z)$ est la fonction de répartition de Z_n .

Corollaire 1 Soit $X_1, X_2, ..., X_n$ une suite de n variables aléatoire indépendantes et identiquement distribuées, telles que $E(X_i) = \mu$ et $V(X_i) = \sigma^2$. Si $Y = X_1 + X_2 + ... + X_n$ alors la variable :

$$Z_n = \frac{Y - n\mu}{\sigma\sqrt{n}} \quad (\star\star)$$

obéit approximativement à une loi N(0,1) de la manière indiquée par l'équation (\star) (voir théorème 3).

Astuce : En divisant le numérateur et le dénominateur de l'expression $(\star\star)$ par n, on obtient alors que $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \sim N(0,1)$, où $\bar{X} = \frac{\sum_{i=1}^n X_i}{n}$ désigne la moyenne. Autrement dit : $\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$.