Rajalakshmi Engineering College

Name: NISHANTH ELANGO RAJAN Email: 241901075@rajalakshmi.edu.in

Roll no: 241901075 Phone: 9444909050

Branch: REC

Department: I CSE (CS) FB

Batch: 2028

Degree: B.E - CSE (CS)

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 3_COD_Question 4

Attempt : 1
Total Mark : 10
Marks Obtained : 10

Section 1: Coding

1. Problem Statement

You are a software developer tasked with building a module for a scientific calculator application. The primary function of this module is to convert infix mathematical expressions, which are easier for users to read and write, into postfix notation (also known as Reverse Polish Notation). Postfix notation is more straightforward for the application to evaluate because it removes the need for parentheses and operator precedence rules.

The scientific calculator needs to handle various mathematical expressions with different operators and ensure the conversion is correct. Your task is to implement this infix-to-postfix conversion algorithm using a stack-based approach.

Example

```
Input:
a+b
Output:
ab+
Explanation:
```

The postfix representation of (a+b) is ab+.

Input Format

The input is a string, representing the infix expression.

Output Format

The output displays the postfix representation of the given infix expression.

Refer to the sample output for formatting specifications.

```
Sample Test Case
```

```
Input: a+(b*e)
Output: abe*+

Answer

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

struct Stack {
   int top;
   unsigned capacity;
   char* array;
};

struct Stack* createStack(unsigned capacity) {
   struct Stack* stack = (struct Stack*)malloc(sizeof(struct Stack));

if (!stack)
```

```
return NULL;
                                                                                  241901015
      stack->top = -1;
      stack->capacity = capacity;
      stack->array = (char*)malloc(stack->capacity * sizeof(char));
       return stack;
    }
    int isEmpty(struct Stack* stack) {
      return stack->top == -1;
    }
return stack->array[stack->top];
    char pop(struct Stack* stack) {
      if (!isEmpty(stack))
         return stack->array[stack->top--];
       return '$';
    }
    void push(struct Stack* stack, char op) {
       stack->array[++stack->top] = op;
    #include <ctype.h>
   int precedence(char op) {
      if (op == '^')
         return 3;
      if (op == '*' || op == '/')
         return 2;
      if (op == '+' || op == '-')
         return 1;
      return 0:
    }
    int isLeftAssociative(char op) {
                                                                                  241901015
                                                      241901015
      return (op != '^');
    void infixToPostfix(char* exp) {
```

```
if (!stack) {
printf/"
       struct Stack* stack = createStack(strlen(exp));
         printf("Memory error\n");
         return;
       char result[100];
       int k = 0;
       for (int i = 0; exp[i]; i++) {
         char current = exp[i];
         if (isalnum(current)) {
         result[k++] = current;
         else if (current == '(') {
           push(stack, current);
         else if (current == ')') {
            while (!isEmpty(stack) && peek(stack) != '(') {
              result[k++] = pop(stack);
           }
            pop(stack);
         else {
           while (!isEmpty(stack) && (precedence(peek(stack)) >
    precedence(current) ||
              (precedence(peek(stack)) == precedence(current) &&
isLeftAssociative(current)))) {
              result[k++] = pop(stack);
           }
            push(stack, current);
         }
       }
       while (!isEmpty(stack)) {
         result[k++] = pop(stack);
                                                        241901015
ייינוגן = '\0';
printf("%s\n", result);
}
```

241901015

241901015

241901015

<pre>int main() { char exp[100]; scanf("%s", exp) infixToPostfix(e return 0; } Status : Correct</pre>		24,190,1015	2 ^{A1901015} Marks: 10/10
2A1901015	247901075	247907075	2A1901015
247907075	241901075	241901015	247901015