

介绍

教程简介:

• 面向对象:量子计算初学者

• 依赖课程:线性代数,解析几何,量子力学(非必需)

知乎专栏:

https://www.zhihu.com/column/c_1501138176371011584

Github & Gitee 地址:

https://github.com/mymagicpower/quantum https://gitee.com/mymagicpower/quantum

* 版权声明:

- 仅限用于个人学习,或者大学授课使用 (大学授课如需ppt 原件,请用学校邮箱联系我获取)
- 禁止用于任何商业用途

我们用 $x \in \{0,1\}^n$ 表示是由 0 或 1 组成的任意 n 位二进制数,比如:

$$n = 3 \dot{\Box} - 010$$
, $n = 5 \dot{\Box} - 10001$

综合上面两个情况,我们就可以描述为 $\forall x \in \{0,1\}^n$, 对于 0 和 1 组成的任意 n 位长度二进制数的两种操作:

$$n = 1$$
的例子: $f:\{0,1\} \longrightarrow \{0,1\}$

常数函数: 平衡函数: f(x) = 0 或 f(x) = 1 f(x) = 0 的数量等于 f(x) = 1 的数量

多伊奇的问题就是:如果有一个符合以上条件的未知函数,那么如何尝试**最少且足够的次数**,来**确定它是常数函数还是平衡函数。**

本源量子<<量子计算与编程入门>>


```
n 位 2 进制最多表示 2^n 个数字,比如:
```

2 位, 2² 种:00、01、10、11,可以表示十进制的0~3;

3 位, 2³种:000、001、010、011、100、101、110、111,可以表示表示十进制0~7;

•••

n 位,表示 2^n 种..

本源量子<<量子计算与编程入门>>

所以,对于经典计算机来说,需要尝试 $\frac{2^n}{2}$ + 1次(也就是一半多一次),才能确保足够可以判断未知函数属于哪一种,因为前提只有 2 种函数可选,一半多一次恰好刚刚超过 50%,如果这么多情况的结果都是相同的,那么它就是常数函数,否则就是平衡函数。

平衡函数:

$$f(x) = x \qquad \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} |0\rangle = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = |0\rangle$$

$$f(x) = \neg x \qquad \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} |0\rangle = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} = |1\rangle$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} | 1 \rangle = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} = | 1 \rangle$$

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} | 1 \rangle = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = | 0 \rangle$$

常数函数:

$$f(x) = |0\rangle \quad \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} |0\rangle = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = |0\rangle$$

$$f(x) = |1\rangle \quad \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} |0\rangle = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} = |1\rangle$$

$$\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} | 1 \rangle = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = | 0 \rangle$$

$$\begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} | 1 \rangle = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} = | 1 \rangle$$

现在问题是,假设有一个函数操作,我们只知道它是四种操作里的一种,但我们可以用输入输出进行测试,那么,要确定属于平衡函数还是常数函数,我们最少做几次测试?

Oracle

注:古希腊时期,**Oracle**是Delphi 的阿波罗神庙女祭司,她们有时会对 询问的问题给出 yes 或 no 的回复。 而在量子计算里:

Oracle代表的功能是输入数据,输出 1 (yes)或 0 (no)。

Oracle要点:

- 需尽可能快速且高效
- 调用Oracle次数尽可能少,减少算法复杂度

Oracle 也被称为黑盒,意思是我们知道它的行为,但是不知道它如何实现。 输入的数据用 0.1 串表示,则功能 f 可以表示为:

$$f: \{0,1\}^n \to \{0,1\}$$

量子计算里, Oralce可以表示为:

$$f(|\psi\rangle) = \begin{cases} |1\rangle & \text{如}: |\psi\rangle = |1000\rangle \\ |0\rangle & 其它 \end{cases}$$

量子计算算法

首先我们需要设计一个量子线路,它包含我们需要进行判断的函数 f(x),可以传入一些量子比特,然后输出另外一些量子比特,并且可以让我们从输出的量子比特中一眼就可以看出其是常量函数还是平衡函数。

 $U: |x\rangle|y\rangle \rightarrow |x\rangle|y\oplus f(x)\rangle$ 这里的 \oplus 意思是异或,即:

у	f(x)	$y \oplus f(x)$
0	0	0
0	1	1
1	0	1
1	1	0

在这里我们输入两个量子位 InputA 和 InputB, 其中 InputA是固定的 |0>, 你可以把它视为辅助输入;

同样输出的 OutputA 是真正的操作结果,而 OutputB 也可以视为冗余输出。那么我们可以构造出 4 种操作对应的线路:

常数函数:

平衡函数:

Calvin, QQ: 179209347 Mail: 179209347@qq.com

量子计算算法 - 特殊量子态构造(一次查询可以判断函数类型)

Oracle $x \longrightarrow U_f$ $y \longrightarrow y \oplus f(x)$

 $x, y, f(x) \in \{0,1\}$

假设以量子态 $\frac{1}{2}(|00\rangle - |01\rangle + |10\rangle - |11\rangle)$, 查询oralce ,

那么输出量子态为 $\frac{1}{2}(|0\rangle|\ 0\oplus f(0)\rangle - |\ 0\rangle|\ 1\oplus f(0)\ \rangle + |\ 1\rangle|\ 0\oplus f(1)\ \rangle - |\ 1\rangle|\ 1\oplus f(1)\ \rangle)$:

常数函数		平衡函数	
f(x) = 0	f(x) = 1	f(x) = x	$f(x) = \neg x$
$\frac{1}{2}(00\rangle - 01\rangle + 10\rangle - 11\rangle) \qquad \frac{1}{2}($	01> - 00> + 11> - 10>)	$\frac{1}{2}(00\rangle - 01\rangle + 11\rangle - 11\rangle$	$ 10 \rangle $ $ 100 \rangle + 100 \rangle + 110 \rangle - 111 \rangle $
$\frac{1}{2} \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix}$	$\frac{1}{2} \begin{bmatrix} -1\\1\\-1\\1 \end{bmatrix}$	$\frac{1}{2} \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix}$	$\frac{1}{2} \begin{bmatrix} -1\\1\\1\\-1 \end{bmatrix}$
$\begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$	$ \begin{array}{c} H \\ \begin{bmatrix} 0 \\ -1 \\ 0 \\ 0 \end{array} $	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \qquad H$	
100 % 01>	100 % 01>	100 % 11> 847 Mail: 179209347@qc	100 % 11>
	Caiviii, QQ. 173203	547 IVIdii. 175205547 @qc	1.10111

量子计算算法 - 量子线路构造

量子计算算法 - 量子线路替代简化

 $-y \oplus f(x)$

Oracle

 $U_{\rm f}$

量子计算算法 - 量子线路替代简化

$$-H - - Z -$$

Calvin, QQ: 179209347 Mail: 179209347@qq.com

Deutsch (多伊奇)算法推导 - 2个量子比特

输入两个量子比特,一个 |0> 一个 |1>, 所以:

$$|\psi_0\rangle = |0\rangle|1\rangle$$

$$\begin{aligned} |\psi_1\rangle &= H|0\rangle \otimes H|1\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle + |1\rangle \right) \otimes \frac{1}{\sqrt{2}} \left(|0\rangle - |1\rangle \right) \\ &= \frac{1}{2} (|0\rangle|0\rangle - |0\rangle|1\rangle + |1\rangle|0\rangle - |1\rangle|1\rangle) \\ &= \frac{1}{2} (|00\rangle - |01\rangle + |10\rangle - |11\rangle) \end{aligned}$$

由于 U_f 的作用是将 $U: |x\rangle|y\rangle \rightarrow |x\rangle|y\oplus f(x)\rangle$ 所以:

$$|\psi_{2}\rangle = U |\psi_{1}\rangle$$

$$= \frac{1}{2}(|0\rangle|0 \oplus f(0)\rangle - |0\rangle|1 \oplus f(0)\rangle + |1\rangle|0 \oplus f(1)\rangle - |1\rangle|1 \oplus f(1)\rangle)$$

$$H|0\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$$

$$H|1\rangle = \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle)$$

9 Qubits qubits.top

Deutsch (多伊奇)算法推导 - 2个量子比特

由于 f(0) 只能取 0 或 1, 所以:

$$\begin{aligned} |\psi_{2}\rangle &= U |\psi_{1}\rangle \\ &= \frac{1}{2}(|0\rangle| |0 \oplus f(0)\rangle - |0\rangle| |1 \oplus f(0)\rangle + |1\rangle| |0 \oplus f(1)\rangle - |1\rangle| |1 \oplus f(1)\rangle) \\ &= \frac{1}{2}(|0\rangle(|0 \oplus f(0)\rangle - |1 \oplus f(0)\rangle) + |1\rangle(|0 \oplus f(1)\rangle - |1 \oplus f(1)\rangle)) \end{aligned}$$

当
$$f(0) = 0$$
时,
$$|0 \oplus f(0)\rangle - |1 \oplus f(0)\rangle = |0 \oplus 0\rangle - |1 \oplus 0\rangle = |0\rangle - |1\rangle$$

当
$$f(0) = 1$$
时, $|0 \oplus f(0)\rangle - |1 \oplus f(0)\rangle = |0 \oplus 1\rangle - |1 \oplus 1\rangle = -(|0\rangle - |1\rangle)$

综合两种情况可得:

$$\mid 0 \oplus f(0) \rangle - \mid 1 \oplus f(0) \rangle = (-1)^{f(0)} (\mid 0 \rangle - \mid 1 \rangle)$$

同理,当
$$f(1) = 0$$
或1时,可得: $|0 \oplus f(1)\rangle - |1 \oplus f(1)\rangle = (-1)^{f(1)}(|0\rangle - |1\rangle)$

Deutsch (多伊奇)算法推导 - 2个量子比特

代入 $|\psi_2\rangle$ 可得:

$$\begin{aligned} |\psi_{2}\rangle &= U |\psi_{1}\rangle \\ &= \frac{1}{2}(|0\rangle (|0 \oplus f(0)\rangle - |1 \oplus f(0)\rangle) + |1\rangle (|0 \oplus f(1)\rangle - |1 \oplus f(1)\rangle)) \\ &= \frac{1}{2}(|0\rangle (-1)^{f(0)} (|0\rangle - |1\rangle) + |1\rangle (-1)^{f(1)} (|0\rangle - |1\rangle)) \\ &= \frac{1}{2}((-1)^{f(0)} |0\rangle + (-1)^{f(1)} |1\rangle) (|0\rangle - |1\rangle))) \end{aligned}$$

|ψ3⟩是对|ψ2⟩进行Hadamard变换

$$\begin{split} |\psi_{3}\rangle &= H |\psi_{2}\rangle \\ &= \frac{1}{2} H \left(\left(-1 \right)^{f(0)} | 0 \right) + \left(-1 \right)^{f(1)} | 1 \right) \left(| 0 \right) - | 1 \right) \right) \right) \\ &= \frac{1}{2} \left(\left(-1 \right)^{f(0)} H | 0 \right) + \left(-1 \right)^{f(1)} H | 1 \right) \left(| 0 \right) - | 1 \right) \right) \right) \\ &= \frac{1}{2} \left(\left(-1 \right)^{f(0)} \frac{1}{\sqrt{2}} \left(| 0 \right) + | 1 \right) \right) + \left(-1 \right)^{f(1)} \frac{1}{\sqrt{2}} \left(| 0 \right) - | 1 \right) \right) \left(| 0 \right) - | 1 \right) \right) \right) \\ &= \left(\left(-1 \right)^{f(0)} \frac{1}{2} \left(| 0 \right) + | 1 \right) \right) + \left(-1 \right)^{f(1)} \frac{1}{2} \left(| 0 \right) - | 1 \right) \right) \left(\frac{1}{\sqrt{2}} | 0 \right) - \frac{1}{\sqrt{2}} | 1 \right) \right) \right) \end{split}$$

$$H|0\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$$

$$H|1\rangle = \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle)$$

Deutsch (多伊奇)算法推导 - 2个量子比特

$$\begin{split} |\psi_3\rangle &= H \; |\psi_2\rangle \\ &= (\; (\text{-}1)^{f(0)} \frac{1}{2} \; \left(\; |0\rangle + |1\rangle \; \right) \, + (\text{-}1)^{f(1)} \frac{1}{2} \; \left(\; |0\rangle - |1\rangle \; \right) \,) \, \left(\frac{1}{\sqrt{2}} \, |\; 0 \; \right) - \frac{1}{\sqrt{2}} \, |\; 1 \; \rangle))) \end{split}$$

当
$$f(0) = f(1) = 0$$
时:

$$|\psi_{3}\rangle = (\frac{1}{2} (|0\rangle + |1\rangle) + \frac{1}{2} (|0\rangle - |1\rangle)) (\frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}} |1\rangle)))$$

$$= |0\rangle \otimes (\frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}} |1\rangle)))$$

当
$$f(0) = f(1) = 1$$
时:

$$|\psi_{3}\rangle = \left(-\frac{1}{2} (|0\rangle + |1\rangle) - \frac{1}{2} (|0\rangle - |1\rangle) (\frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}} |1\rangle)\right)$$

$$= (-|0\rangle) \otimes (\frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}} |1\rangle))$$

Oracle

对于被测量的线路,量子态为:

当
$$f(0) = f(1) = 0$$
 时: $|0\rangle$

当
$$f(0) = f(1) = 1$$
时: $-|0\rangle$

根据测量公式:

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

$$p(0) = \langle \psi | M_0^{\dagger} M_0 | \psi \rangle = \langle \psi | M_0 | \psi \rangle = |\alpha|^2$$

$$p(1) = \langle \psi | M_1^{\dagger} M_1 | \psi \rangle = \langle \psi | M_1 | \psi \rangle = |\beta|^2$$

测量0结果都为1,即说明是常数函数。

Deutsch (多伊奇)算法推导 - 2个量子比特

如果f(x)为平衡函数,则:f(0) = 1 - f(0)

$$\begin{split} |\psi_3\rangle &= H \; |\psi_2\rangle \\ &= (\; (\text{-}1)^{f(0)} \frac{1}{2} \; \left(\; |0\rangle + |1\rangle \; \right) \, + (\text{-}1)^{f(1)} \frac{1}{2} \; \left(\; |0\rangle - |1\rangle \; \right) \,) \, \left(\frac{1}{\sqrt{2}} \, |0\rangle - \frac{1}{\sqrt{2}} \, |1\rangle))) \end{split}$$

当
$$f(0) = 1$$
, $f(1) = 0$ 时:

$$|\psi_{3}\rangle = \left(-\frac{1}{2} \left(|0\rangle + |1\rangle \right) + \frac{1}{2} \left(|0\rangle - |1\rangle \right) \left(\frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}} |1\rangle \right) \right)$$

$$= (-|1\rangle) \otimes \left(\frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}} |1\rangle \right) \right)$$

当
$$f(0) = 0$$
, $f(1) = 1$ 时:

$$|\psi_{3}\rangle = (\frac{1}{2} (|0\rangle + |1\rangle) - \frac{1}{2} (|0\rangle - |1\rangle)) (\frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}} |1\rangle)))$$

$$= |1\rangle \otimes (\frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}} |1\rangle)))$$

$$H|0\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$$

$$H|1\rangle = \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle)$$

Deutsch (多伊奇)算法推导 - 2个量子比特

对于被测量的线路,量子态为:

当
$$f(0) = 1, f(1) = 0$$
时: $-|1\rangle$

当
$$f(0) = 0$$
, $f(1) = 1$ 时: $|1\rangle$

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

$$p(0) = \langle \psi | M_0^{\dagger} M_0 | \psi \rangle = \langle \psi | M_0 | \psi \rangle = |\alpha|^2$$

$$p(1) = \langle \psi | M_1^{\dagger} M_1 | \psi \rangle = \langle \psi | M_1 | \psi \rangle = |\beta|^2$$

测量0结果都为0,即说明是平衡函数。

输入n 个|0)量子比特, 一个|1)量子比特, 所以:

$$|\psi_0\rangle = |0\rangle \otimes |0\rangle \otimes |0\rangle \otimes \dots |0\rangle \otimes |0\rangle \otimes |1\rangle = |0\rangle^{\otimes n} |1\rangle$$

$$\begin{aligned} |\psi_{1}\rangle &= (\mathsf{H}|0\rangle)^{\otimes n} \otimes \; \mathsf{H}|1\rangle \\ &= \frac{1}{\sqrt{2^{n}}} \; (\;|0\rangle + \;|1\rangle\;)^{\otimes n} \otimes \frac{1}{\sqrt{2}} \; (\;|0\rangle - |1\rangle\;) \\ &= \frac{1}{\sqrt{2^{n}}} {1 \brack 1}^{\otimes n} \otimes \frac{1}{\sqrt{2}} \; (\;|0\rangle - |1\rangle\;) \end{aligned}$$

$$= \frac{1}{\sqrt{2^n}} \begin{bmatrix} 1 \\ 1 \\ \dots \\ 1 \end{bmatrix} \otimes \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle)$$

$$H|0\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$$

$$H|1\rangle = \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle)$$

$$= \frac{1}{\sqrt{2^{n}}} \left(\begin{vmatrix} 1 \\ 0 \\ ... \\ 0 \end{vmatrix} + \begin{vmatrix} 0 \\ 1 \\ ... \\ 0 \end{vmatrix} + ... + \begin{vmatrix} 0 \\ 0 \\ ... \\ 1 \end{vmatrix} \right) \otimes \frac{1}{\sqrt{2}} \left(|0\rangle - |1\rangle \right) = \frac{1}{\sqrt{2^{n}}} \left(|0\rangle + |1\rangle + ... + |2^{n} - 1\rangle \right) \otimes \frac{1}{\sqrt{2}} \left(|0\rangle - |1\rangle \right)$$

$$=\frac{1}{\sqrt{2^n}}\sum_{x=0}^{2^{n-1}}|x\rangle\otimes\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)$$

输入n 个|0>量子比特, 一个|1>量子比特, 所以:

$$|\psi_1\rangle = \frac{1}{\sqrt{2^n}} \sum_{x=0}^{2^{n-1}} |x\rangle \otimes \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle)$$

由于 U_f 的作用是将 $U: |x\rangle|y\rangle \rightarrow |x\rangle|y\oplus f(x)\rangle$

当f(0) = 0或1时,有:

$$U(|0\rangle - |1\rangle) = |0 \oplus f(0)\rangle - |1 \oplus f(0)\rangle = (-1)^{f(0)}(|0\rangle - |1\rangle)$$

$$U(| \ 0 \ \rangle - | \ 1 \ \rangle) = | \ 0 \ \oplus \ f(1) \ \rangle - | \ 1 \ \oplus \ f(1) \ \rangle = (-1)^{f(1)} \ (| \ 0 \ \rangle - | \ 1 \ \rangle)$$

实际上对于 ∀ f(x) ∈ {0,1} , 推广可得:

$$U(|0\rangle - |1\rangle) = (-1)^{f(x)} (|0\rangle - |1\rangle)$$

代入 $|\psi_2\rangle$ 可得:

$$\begin{aligned} |\psi_{2}\rangle &= U |\psi_{1}\rangle = U \frac{1}{\sqrt{2^{n}}} \sum_{x=0}^{2^{n-1}} |x\rangle \otimes \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) \\ &= U \frac{1}{\sqrt{2^{n}}} \sum_{x=0}^{2^{n-1}} |x\rangle \otimes \frac{1}{\sqrt{2}} U (|0\rangle - |1\rangle) = \frac{1}{\sqrt{2^{n}}} \sum_{x=0}^{2^{n-1}} (-1)^{f(x)} |x\rangle \otimes \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) \end{aligned}$$

$$H|0\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$$

$$H|1\rangle = \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle)$$

计算|ψ3⟩,此时我们忽略最后一个量子比特:

$$\frac{1}{\sqrt{2}}(\mid 0 \rangle - \mid 1 \rangle)$$

只关注前n个量子比特:

$$|\psi_{2}'\rangle = \frac{1}{\sqrt{2^{n}}} \sum_{x=0}^{2^{n-1}} (-1)^{f(x)} |x\rangle$$

H 门作用在基态:

$$H|0\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$$

$$H|1\rangle = \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle)$$

$$\begin{aligned} & \text{H}|0\rangle = \frac{1}{\sqrt{2}} \; \left(\; |0\rangle + |1\rangle \; \right) = \frac{1}{\sqrt{2}} \; \left(\; (-1)^{0\cdot 0} \, |0\rangle + (-1)^{0\cdot 1} |1\rangle \; \right) = \frac{1}{\sqrt{2}} \sum_{z \in \{0,1\}} (-1)^{0\cdot z} |z\rangle \\ & \text{H}|1\rangle = \frac{1}{\sqrt{2}} \; \left(\; |0\rangle - |1\rangle \; \right) = \frac{1}{\sqrt{2}} \; \left(\; (-1)^{1\cdot 0} \, |0\rangle + (-1)^{1\cdot 1} |1\rangle \; \right) = \frac{1}{\sqrt{2}} \sum_{z \in \{0,1\}} (-1)^{1\cdot z} |z\rangle \end{aligned}$$

实际上对于 任意x_i , 推广可得:

$$H|x_i\rangle = \frac{1}{\sqrt{2}} \sum_{z \in \{0,1\}} (-1)^{xi \cdot z} |z\rangle$$

对于单比特,有:

$$H|x_{i}\rangle = \frac{1}{\sqrt{2}} \sum_{z \in \{0,1\}} (-1)^{xi \cdot z} |z\rangle$$

2个比特,有:

$$H|x_1\rangle H|x_2\rangle = \frac{1}{\sqrt{2}} \sum_{z_1 \in \{0,1\}} (-1)^{x_1 \cdot z_1} |z_1\rangle \frac{1}{\sqrt{2}} \sum_{z_2 \in \{0,1\}} (-1)^{x_2 \cdot z_2} |z_2\rangle$$

$$= \frac{1}{\sqrt{2^2}} \sum_{z_1 z_2 \in \{0,1\}} (-1)^{x_1 \cdot z_1 (-1) x_2 \cdot z_2} |z_1\rangle |z_2\rangle$$

= $\frac{1}{\sqrt{2^2}} \sum_{z_1 z_2 \in \{0,1\}} (-1)^{x_1 \cdot z_1 + x_2 \cdot z_2} |z_1\rangle |z_2\rangle$

$|0\rangle \stackrel{\otimes n}{\longleftarrow} H$ $|1\rangle \stackrel{}{\longleftarrow} H$ $|\psi_1\rangle \stackrel{}{\longleftarrow} |\psi_2\rangle \stackrel{}{\longleftarrow} |\psi_3\rangle$

H 门作用在基态:

$$H|0\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$$

$$H|1\rangle = \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle)$$

如果是n位的话,那么有:

$$H = \begin{cases} |x_1 x_2 x_3 \dots x_n| = \frac{1}{\sqrt{2^n}} \sum_{z_1 z_2 \dots z_n \in \{0,1\}} (-1)^{x_1 \cdot z_1 + x_2 \cdot z_2 + \dots + x_n z_n} |z_1 z_2 \dots z_n \rangle \end{cases}$$

我们用x表示 $x_1 x_2 \dots x_n$, z表示 $z_1 z_2 \dots zn$, 则 $x_1 \cdot z_1 + x_2 \cdot z_2 + \dots + xnzn$, 可以写成 $x \cdot z$, 点积的形式。

$$H^{\bigotimes_{1}^{n}} |x_{1} x_{2} x_{3 \dots} x_{n}\rangle = \frac{1}{\sqrt{2^{n}}} \sum_{z=0}^{2^{n}-1} (-1)^{x \cdot z} |z\rangle$$

$$\mathsf{H}^{\otimes n} | \mathbf{x}_1 \, \mathbf{x}_2 \, \mathbf{x}_3 \dots \mathbf{x}_n \rangle = \frac{1}{\sqrt{2^n}} \sum_{z=0}^{2^{n-1}} (-1)^{x \cdot z} | z \rangle$$

计算上面 n 个量子比特 $|\psi_2\rangle$ 量子态经过H门后的量子态:

$$\begin{aligned} |\psi_{3}'\rangle &= H^{\otimes n} \frac{1}{\sqrt{2^{n}}} \sum_{x=0}^{2^{n-1}} (-1)^{f(x)} |x\rangle \\ &= \frac{1}{\sqrt{2^{n}}} \sum_{x=0}^{2^{n-1}} (-1)^{f(x)} H^{\otimes n} |x\rangle \\ &= \frac{1}{\sqrt{2^{n}}} \sum_{x=0}^{2^{n-1}} (-1)^{f(x)} \left[\frac{1}{\sqrt{2^{n}}} \sum_{z=0}^{2^{n-1}} (-1)^{x \cdot z} |z\rangle \right] \\ &= \sum_{z=0}^{2^{n-1}} \left[\frac{1}{2^{n}} \sum_{x=0}^{2^{n-1}} (-1)^{f(x)+x \cdot z} \right] |z\rangle \end{aligned}$$

这里,我们只关注取值:
$$|z_0\rangle = |0\rangle^{\otimes n} = |00000 \dots 0\rangle$$

$$\left[\frac{1}{2^n}\sum_{x=0}^{2^{n-1}}(-1)^{f(x)}\right]|z\rangle = \mathsf{a}_0\,|z_0\rangle + \mathsf{a}_1\,|z_1\rangle + \mathsf{a}_2\,|z_2\rangle + \dots + \mathsf{a}_{2^n-1}\,|z_{2^n-1}\rangle$$

$$H|0\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$$

$$H|1\rangle = \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle)$$

取系数的平方和:
$$p(z_0) = \left(\frac{1}{2^n}\sum_{x=0}^{2^{n-1}} (-1)^{f(x)}\right)^2$$

当f(x) 为常数函数的时候:

f(x) = 0 計:
$$(-1)^{f(x)} = 1$$

p(z₀) = $(\frac{1}{2^n} \sum_{x=0}^{2^{n-1}} (-1)^{f(x)})^2 = (\frac{1}{2^n} 2^n)^2 = 1$

f(x) = 1日寸:
$$(-1)^{f(x)} = -1$$

$$p(z_0) = \left(\frac{1}{2^n} \sum_{x=0}^{2^{n-1}} (-1)^{f(x)}\right)^2 = \left(-\frac{1}{2^n} 2^n\right)^2 = 1$$

H 门作用在基态:

$$H|0\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$$

$$H|1\rangle = \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle)$$

这意味着必然测得 $|z_0\rangle = |0\rangle^{\otimes n} = |00000 \dots 0\rangle$,反过来说,测得该结果说明是常数函数。

当f(x) 为平衡函数的时候:

一半是f(x) = 0,一半是f(x) = 1,那么 $\sum_{x=0}^{2^{n-1}} (-1)^{f(x)}$ 是 2^n 次求和,是偶数,所以必为0。 $p(z_0) = \left(\frac{1}{2^n}\sum_{x=0}^{2^{n-1}} (-1)^{f(x)}\right)^2 = 0$

这意味着必然无法测得 $|z_0\rangle = |0\rangle^{\otimes n} = |00000 \dots 0\rangle$,反过来说,测得该结果说明是平衡函数。

常数函数:

测得 $|z_0\rangle = |00\rangle$ 概率为1,该结果说明是**常数函数**。

Deutsch-Jozsa算法 – 2个量子比特线路设计(2/3)

Calvin, QQ: 179209347 Mail: 179209347@qq.com

Deutsch-Jozsa算法 – 2个量子比特线路设计(3/3)

Calvin, QQ: 179209347 Mail: 179209347@qq.com

