Examen Parcial

24 de Abril de 2007

Aprendizaje de Maquina - 2007-I Maestría en Ing. de Sistemas y Computación

1. Considere el siguiente problema de clasificación de dos clases, C_1 y C_2 . La probabilidad de que una observación $x \in [0,1]$ pertenezca a cada una de las clases está dada por

$$P(x|C_1) = 2 - 2x$$

 $P(x|C_2) = \begin{cases} 8x - 4 & \text{si } x > 0.5 \\ 0 & \text{o.c.} \end{cases}$

Además, las probabilidades a priori de las clases son: $P(C_1) = 4/5$ y $P(C_2) = 1/5$.

- a) ¿Qué valores de x deberían clasificarse en C_1 y qué valores en C_2 ?
- b) Suponga ahora que es posible rechazar una entrada, es decir no clasificarla en ninguna de las clases. Además, hay un costo asociado con clasificar mal un elemento dado por $\lambda_e = 2$ y un costo por rechazar dado por $\lambda_r = 1/2$. Calcule los intervalos en que la entrada es clasificada como C_1 o C_2 , o es rechazada.
- 2. Sean A, B, C y D variables binarias relacionadas de acuerdo con la siguiente red de creencia Bayesiana:

a) Establezca las probabilidades condicionales y absolutas necesarias para especificar totalmente la red basándose en los siguientes ejemplos:

A	В	\mathbf{C}	D
1	0	0	1
1	1	0	1
1	0	1	1
0	1	0	0
0	1	1	0
1	0	1	0
0	1	1	1
0	0	0	1
0	0	1	0

b) Calcule la siguiente probabilidad condicional P(A=0|C=1,D=0)

- c) Dada la siguiente evidencia A = 0 y C = 1, ¿qué valor le daría a D?
- 3. Dada la muestra $X_i = \{x_i^t, r_i^t\}$, definimos $g_i(x) = r_i^1$, es decir nuestro estimado para cualquier x es el valor r de la primera instancia en el conjunto de datos (desordenado) X_i . ¿Qué puede decir acerca de su sesgo y varianza, cuando se compara con $g_i(x) = 2$ y $g_i(x) = \sum_t r_i^t/N$? ¿Qué pasa si la muestra está ordenada, de manera que $g_i(x) = \min_t r_i^t$?
- 4. Considere 3 objetos x_1 , x_2 y x_3 tal que $< x_1, x_1 >= 1$, $< x_2, x_2 >= 20$, $< x_3, x_3 >= 13$, $< x_1, x_2 >= 6$, $< x_1, x_3 >= 5$ y $< x_2, x_3 >= 14$.
 - a) ¿Cuál es el valor de $||x_i x_j||^2$ para todos los valores $i \neq j$?
 - b) ¿Cuál es el valor de $||x_i x_j||_{\phi}^2$ para todos los valores $i \neq j$? Donde ϕ es el espacio de características inducido por el kernel $k(x,y) = (\langle x,y \rangle + 1)^2$.