

Kenneth Jahnke

Assignment 2 – 25 Jan 2025

CSCI 389 (Online) - Spring '25

2.1.

Reforumlation:

Given any positive integer n and any integer a, if we divide a by n, we get an integer quotient q and an integer remainder r that obey the following relationship:

$$a = qn + r$$
 where $0 \le r < n$; $q = \lfloor a / n \rfloor$

There is no requirement for a to be non-negative. (I don't know why the textbook version of this equation says so, especially given they used a negative integer a in an example.) For this reformulation that specifically requests the removal of restrictions on a to work, all that's required is for n to be positive.

Examples:

$$a = -33$$
; $n = 9$: $q = L -33 / 9$] = -4

$$-33 = -4(9) + r$$

$$-33 = -36 + r$$

$$-33 + 36 = r$$

$$3 = r$$

$$a = -11$$
; $n = 7$: $q = \lfloor -11/7 \rfloor = -2$

$$-11 = -2(7) + r$$

$$-11 = -14 + r$$

$$-11 + 14 = r$$

$$3 = r$$


```
2.3.a.
4/5
            4 \equiv 1 \pmod{3}
            5 \equiv 2 \pmod{3} [Note: x]
            2x \equiv 1 \pmod{3}
            2 \cdot 2 = 4 \text{ and } 4 \equiv 1 \pmod{3} : x = 2
            x = 2 mod 3
            2.3.b.
            6 \equiv 1 \pmod{5}
            7 \equiv 2 \pmod{5} [Note: x]
4/5 \quad 2x \equiv 1 \pmod{5}
            2 \cdot 3 = 6 \text{ and } 6 \equiv 1 \pmod{5} : x = 3
            x=3Mod7
            2.3.c.
            8 \equiv 1 \pmod{7}
            9 \equiv 2 \pmod{7} [Note: x]
            2x \equiv 1 \pmod{7}
            2 \cdot 4 = 8 \text{ and } 8 \equiv 1 \pmod{7} : x = 4
            x = 4 Mod 7
```

$$5 \mod 3 = 2$$

$$[5/3] = 1 = q$$

$$5 = 1(3) + r$$

$$r = 2$$

$$5 \mod -3 = -1$$

$$[5/-3] = -2 = q$$

$$5 = -2(-3) + r$$

2.4.c.

$$-5 \mod 3 = 1$$

$$[5/-3] = -2 = q$$

$$-5 = -2(3) + r$$

$$r = 1$$

2.4.d.

$$-5 \mod -3 = -2$$

$$[-5/-3] = 1 = q$$

$$-5 = 1(-3) + r$$

2.7.

k = 1

Smallest: 1

Divisors: 1

k = 2

Smallest: 2

Divisors: 1, 2

k = 3

Smallest: 4

Divisors: 1, 2, 4

k = 4

Smallest: 6

Divisors: 1, 2, 3, 6

k = 5

Smallest: 16

Divisors: 1, 2, 4, 8, 16

k = 6

Smallest: 12

Divisors: 1, 2, 3, 4, 6, 12

5 5

2.10.

$$1x \equiv 1 \pmod{5} \rightarrow x = 1$$

$$2x \equiv 1 \pmod{5} \rightarrow x = 3$$

$$3x \equiv 1 \pmod{5} \rightarrow x = 2$$

$$4x \equiv 1 \pmod{5} \rightarrow x = 4$$

$$321 \mod 9 = 6$$

$$321 = 35(9) + 6$$

$$3 + 2 + 1 = 6$$

$$3 + 2 + 1 = 6$$

6 mod 9

$$6 = 0(9) + 6$$

$$321 \equiv 3 + 2 + 1 \equiv 6 \pmod{9}$$

2.12.a.

10/20

$$24140 = 1 \cdot 16762 + 7378$$

$$7378 = 3 \cdot 2006 + 1360$$

$$1360 = 2 \cdot 646 + 68$$

$$646 = 9 \cdot 68 + 34$$

$$68 = 2 \cdot 34 + 0$$

2.12.b.

$$12075 = 2 \cdot 4655 + 2765$$

10/10

$$1890 = 2 \cdot 875 + 140$$

$$875 = 6 \cdot 140 + 35$$

$$140 = 4 \cdot 35 + 0$$

$$gcd(4655, 12075) = 35$$

$$1234 = 1 \cdot 619 + 615$$

$$619 = 1 \cdot 615 + 4$$

$$615 = 153 \cdot 4 + 3$$

$$4 = 1 \cdot 3 + 1$$

$$3 = 3 \cdot 1 + 0$$

$$gcd = 1$$

q	r1	r2	r	s1	s2	S	t1	t2	t
3	4321	1234	619	1	0	1	0	1	-3
1	1234	619	4	0	1	-1	1	-3	4
153	619	4	3	1	-1	154	-3	4	-615
1	4	3	1	-1	154	-155	4	-615	619
3	3	1	0	154	-155	619	-615	619	-2472
	1	0		-155	619		619	-2472	

Multiplicative inverse: 619 3239

$$40902 = 1 \cdot 24140 + 16762$$

$$24140 = 1 \cdot 16762 + 7378$$

$$1360 = 2 \cdot 646 + 68$$

$$646 = 9 \cdot 68 + 34$$

$$68 = 2 \cdot 34 + 0$$

$$gcd = 34$$

No multiplicative inverse.

$$119 = 1 \cdot 74 + 45$$

$$74 = 1 \cdot 45 + 29$$

$$29 = 1 \cdot 16 + 13$$

$$16 = 1 \cdot 13 + 3$$

$$13 = 4 \cdot 3 + 1$$

$$gcd = 1$$

q	r1	r2	r	s1	s2	S	t1	t2	t
3	1769	550	119	1	0	1	0	1	- 3
4	550	119	74	0	1	-4	1	-3	13
1	119	74	45	1	-4	5	-3	13	-16
1	74	45	29	-4	5	- 9	13	-16	29
1	45	29	16	5	-9	14	-16	29	-45
1	29	16	13	-9	14	-23	29	-45	74
1	16	13	3	14	-23	37	-45	74	-119
4	13	3	1	-23	37	-171	74	-119	550
3	3	1	0	37	-171	550	-119	550	1769
	1	0		-171	550		550	1769	

Multiplicative inverse: 550

2.19. If d is the common divisor of n and n + 1 then we can say,

$$d \mid n; d \mid (n + 1)$$

$$d \mid ((n + 1) - 1)$$
, or $d \mid 1$

1 is the integer that divides itself, therefore d = 1. 1 divides any number larger than it, hence the greatest common factor of 1 and any other integer is 1.