If $A \subset \mathbb{R}^n$ is not closed, then A^C is not open. Thus, $\exists y \in A^C$ where each open ball containing y intersects A. Define $f: A \to \mathbb{R}$ where $f(x) = \frac{1}{|x-y|}$.

First, we show f is unbounded. By way of contradiction, assume there is an upper bound M s.t. $f(x) \leq M \, \forall x \in A$.

Consider the open ball of radius $\frac{1}{M}$ about y: $B = \{x \in \mathbb{R}^n : |x-y| < \frac{1}{M}\}$. Let $S = B \cap A$. S is not empty because its an open ball containing y; thus, it must intersect A. Take any point $s \in S$. $f(s) = \frac{1}{|s-y|} > M$. This contradicts that f(x) is bounded above by M. Thus, f must be unbounded.

Next, we show f is continuous. It suffices to show that the preimage of every open interval on $\mathbb R$ is open in A, as every open set on $\mathbb R$ is the union of open intervals.

Consider the interval $D=(a,b)\subset\mathbb{R}$. Then,

$$f^{-1}(D) = \{x \in A : a < \frac{1}{|x - y|} < b\} = \underbrace{\{x \in A : \frac{1}{|x - y|} > a\}}_{D_1} \cap \underbrace{\{x \in A : \frac{1}{|x - y|} < b\}}_{D_2}$$

Note that if $a \leq 0 \implies D_1 = \emptyset$ and $b \leq 0 \implies D_2 = A$, which are both open in A.

If a>0, D_1 is the intersection between A and open ball with radius $\frac{1}{a}$ about y, which is open in A by definition.

If b > 0, D_2 is the intersection between A, and the complement of the closed ball of radius $\frac{1}{b}$ (i.e. $\{x \in \mathbb{R}^n : |x-y| \le \frac{1}{b}\}$), which is an open set because its the complement of a closed set. Thus, D_2 is open in A.

Since for any $D \subset \mathbb{R}$, D_1 and D_2 are open in A, the intersection of two open sets is an open set. Thus, D open in $\mathbb{R} \implies f^{-1}(D)$ open in A, thus f is continuous.