ΘΈΜΑ ΠΤΥΧΙΑΚΉΣ ΕΡΓΑΣΊΑΣ :

ΥΛΟΠΟΙΗΣΗ ΚΑΙ ΠΡΟΣΟΜΟΙΩΣΗ ΤΟΥ MICROBLAZE ΕΠΕΞΕΡΓΑΣΤΗ ΣΕ FPGA

ΑΡΙΘΜΌΣ ΜΗΤΡΏΟΥ :

2026202100134

ΟΝΟΜΑΤΕΠΏΝΥΜΟ :

ΑΝΑΣΤΆΣΙΟΣ ΠΟΥΤΑΧΊΔΗΣ

ΠΑΝΕΠΙΣΤΉΜΙΟ :

Πελοποννήσου.

TM'HMA:

Ψηφιακών Συστημάτων.

ΠΑΡΟΥΣΊΑΣΗ:

Πτυχιακής Εργασίας 20'.

ΕΡΓΑΛΕΊΑ ΥΛΟΠΟΊΗΣΗΣ :

Vitis(SW DEVELOPER)2023.2

Click: Create Project > .

Project Name : arraysum Xilinx Board Part : xc7a200tfbg676-2

Create Block Design : Add MicroBlaze and Run Block Automation.

Set: Local Memory 128KB and Click OK.

(Improves Performance).

Click: Run Connection Automation.

Select: All(3 out of 3 selected) and Click OK.

Add BRAM and Run Connection Automation.

(BRAM: boosts system performance by minimizing the delay in data access).

Select: All(3 out of 3 selected) and Click OK.

Add UART and Set: Baud Rate 115200.

<u>*Baud Rate:</u> Symbols/Second

(My testbench is written for this baud rate).

(UART: MicroBlaze can send and receive serial data with external devices).

OK

Cancel

Click: Run Connection Automation.

Select: All(3 out of 3 selected) and Click OK.

Click: Validate Design (F6).

(Given: The Form Of The Block Design).

Click: OK. If The Validation Is Successful.

(This window will open).

Click: Generate Output Products...

(For synthesizing the design and implementing it to test the system).

Click: OK. If the synthesis and implementation are successful.

(This window will open).

Click: Create HDL Wrapper...

(Manages the design within the FPGA).

Click: OK.

(Let Vivado manage wrapper and auto-update).

HDL Wrapper Generated.

(With name: design 1 wrapper.vhd).

Click: Export <u>H</u>ardware...

(implementing the design on an FPGA).

Click: Next > .

(pre-synthesis ensures that the hardware is ready for software development).

Click: Launch Vitis IDE.

(Make sure .xsa file is exported successfully).

Open the project workspace and create a platform.

(Platform : based on the .xsa file).

Click: Build.

(Build: To build the platform).

Select: Hello World Application From Templates.

(Renamed: Array sum sdk).

Program : helloworld.c

(Calculates the sum of an array of nine floats, stores the result in BRAM and prints the sum via UART).

Click: Build.

(Build : To build the Application and generate ELF File).

Right-click: Block design and associate ELF files. (Apply the ELF file from SDK only to the simulation sources).

Right-click: Simulation Sources and Add Sources...

Click: Create Source File.

(File name : testbench).

Click: Run Behavioral Simulation.

(The testbench contains VHDL code for UART communication and displaying data in the TCL Console).

Vivado Simulator

Click: Run All (F3). (Simulation launched).

Click: TCL Console to see the result.

(Sum = 45.000000).

Sim Time: 1786145 ns

Using TinyAES In SDK for Data Encryption | Decryption.

Simulation Results: Original Sum | Encrypted Sum | Decrypted Sum

Thank you for your participation.