

Meaning of the Acronym Word in Chess Project

- FIDE-Average International Chess Federation
- GMs-International Grandmaster
- IMs-Life Master"
- FMs-FMs failed / aspiring to become IM
- WGMs-Woman Grandmaster
- WIMs Woman International Master
- WFMs-Woman FIDE Master (WFM)
- CM-Candidate Master
- WCM-woman candidate master

Importing the necessary libraries

```
In [1]: import seaborn as sns
   import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   %matplotlib inline
```

Impporting the Data set into Jupyter

In [2]: CG=pd.read_csv('International_Chess_Stats.csv',index_col=False)

Checking the head of the Data set

In [3]: CG.head(7)

Out[3]:		Unnamed: 0	#	Country	Flag	Num Players	Women	% of Women	FIDE Average	GMs	IMs	FMs	WGMs	WIMs	WFMs	Age Avg
	0	0	1	Russia	NaN	34497	5734	16.62	1666	236	522	1177	50	101	409	34
	1	1	2	India	NaN	32735	3581	10.94	1275	64	114	83	9	41	42	27
	2	2	3	Germany	NaN	26577	1751	6.59	1841	94	273	861	18	40	69	49
	3	3	4	Spain	NaN	25009	1430	5.72	1429	55	134	365	2	14	37	42
	4	4	5	France	NaN	23784	2143	9.01	1580	50	117	234	4	18	21	41
	5	5	6	Poland	NaN	10596	1537	14.51	1622	45	105	172	9	30	39	37
	6	6	7	Italy	NaN	10256	604	5.89	1621	16	45	161	0	1	13	44

Checking for Missing Value

In [4]: CG.isna().any()

```
Unnamed: 0
                         False
Out[4]:
                         False
         Country
                          True
         Flag
                          True
         Num Players
                         False
                         False
         Women
        % of Women
                         False
         FIDE Average
                         False
                         False
         GMs
                         False
         IMs
         FMs
                         False
         WGMs
                         False
         WIMs
                         False
         WFMs
                         False
                         False
         Age Avg
         dtype: bool
        CG.isna().sum()
In [5]:
                           0
         Unnamed: 0
Out[5]:
                           0
         Country
                           2
         Flag
                         190
         Num Players
                           0
         Women
                           0
        % of Women
        FIDE Average
         GMs
                           0
         IMs
                           0
         FMs
         WGMs
                           0
         WIMs
                           0
         WFMs
         Age Avg
         dtype: int64
```

Droping the missing value

```
In [6]: CG = CG.loc[:, ~CG.columns.str.contains('^Unnamed')]
    CG = CG.drop ('Flag', axis=1)
In [7]: CG = CG.drop("#", axis='columns')
```

Checking the head after droping the miss vlave

n [8]:	CG	i.head()											
ut[8]:		Country	Num Players	Women	% of Women	FIDE Average	GMs	IMs	FMs	WGMs	WIMs	WFMs	Age Avg
	0	Russia	34497	5734	16.62	1666	236	522	1177	50	101	409	34
	1	India	32735	3581	10.94	1275	64	114	83	9	41	42	27
	2	Germany	26577	1751	6.59	1841	94	273	861	18	40	69	49
	3	Spain	25009	1430	5.72	1429	55	134	365	2	14	37	42
	4	France	23784	2143	9.01	1580	50	117	234	4	18	21	41

Checking if there is still more missing values

Checking the data structure of the data set

In [11]: CG.dtypes

Out[11]:	Country	object			
out[II].	Num Players	int64			
	Women	int64			
	% of Women	float64			
	FIDE Average	int64			
	GMs	int64			
	IMs	int64			
	FMs	int64			
	WGMs	int64			
	WIMs	int64			
	WFMs	int64			
	Age Avg	int64			
	dtype: object				

General statistics of the data set

In [12]:	CG.describe()													
Out[12]:	Num Players		Women	% of Women	FIDE Average	GMs	IMs	FMs	WGMs	WIMs	WFMs	Age A		
	count	188.000000	188.000000	188.000000	188.000000	188.000000	188.000000	188.000000	188.000000	188.000000	188.000000	188.0000		
	mean	1851.632979	197.750000	11.820638	1634.659574	9.074468	20.462766	42.750000	1.654255	4.351064	9.106383	36.7393		
	std	4870.425325	561.516593	8.239526	166.601067	23.446031	51.465514	118.988546	4.853207	10.010911	31.322872	8.2676		
	min	2.000000	0.000000	0.000000	1141.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	21.0000		
	25%	47.750000	6.000000	5.935000	1544.500000	0.000000	0.000000	2.000000	0.000000	0.000000	0.000000	31.0000		
	50%	298.500000	33.500000	10.785000	1651.000000	0.000000	3.000000	8.500000	0.000000	0.500000	3.000000	36.0000		
	75%	1228.750000	181.500000	17.402500	1742.000000	8.250000	22.000000	30.250000	1.000000	4.000000	9.000000	41.2500		
	max	34497.000000	5734.000000	37.500000	2250.000000	236.000000	522.000000	1177.000000	50.000000	101.000000	409.000000	63.0000		

EDA (Exploratory Data Analysis)

Checking the Country again the number of each Country Players

Data Head After Cleaning

n [13]:	CG	head()											
ut[13]:		Country	Num Players	Women	% of Women	FIDE Average	GMs	IMs	FMs	WGMs	WIMs	WFMs	Age Avg
	0	Russia	34497	5734	16.62	1666	236	522	1177	50	101	409	34
	1	India	32735	3581	10.94	1275	64	114	83	9	41	42	27
	2	Germany	26577	1751	6.59	1841	94	273	861	18	40	69	49
	3	Spain	25009	1430	5.72	1429	55	134	365	2	14	37	42
	4	France	23784	2143	9.01	1580	50	117	234	4	18	21	41

Country haviing the most player

```
In [14]: # count of the player by country
         country counts = CG['Country']. value counts()
         # Display top countries with the most players
         print (country counts.head())
         Netherlands Antilles
         Brunei
                                 2
         Russia
                                 1
         Palau
                                 1
         Oman
         Name: Country, dtype: int64
In [15]: # plotting the distribution of women percentage
         plt.figure(figsize=(10,6))
         plt.hist(CG['% of Women'], bins=20, color='skyblue', edgecolor='black')
         plt.title('Distribution of Women Percentage')
         plt.xlabel('% of Women')
         plt.ylabel('Frequency')
         plt.show()
```

Distribution of Women Percentage


```
In [16]: # Plotting the distribution of avarage age
plt. figure(figsize=(10,6))
plt.hist(CG['Age Avg'], bins=20, color='salmon', edgecolor='black')
plt.title('Distributation of Average Age')
plt.xlabel('Average Age')
plt.ylabel('Frequency')
plt.show
```

Out[16]: <function matplotlib.pyplot.show(close=None, block=None)>


```
In [17]: # Correlation matrix

correlation_matrix = CG.corr()

# Heatmap of the correlation matrix
plt.figure(figsize=(12,8))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm',linewidths=.5)
plt.title('Correlation Matrix')
plt.show()
```



```
In [18]: # Top countries by average FIDE rating
top_countries_by_rating =CG.groupby ('Country')['FIDE Average']. mean().sort_values(ascending=False)
# Display top countries
print(top_countries_by_rating.head())
```

```
Country
         Cambodia
                        2250.0
         South Sudan
                        1961.0
         Kosovo
                        1923.0
                        1899.0
         Nigeria
         Myanmar
                        1891.0
         Name: FIDE Average, dtype: float64
In [ ]:
         # Top countries by number of Grandmasters (GMs)
In [19]:
         top countries by gms = CG.groupby('Country')['GMs'].sum().sort values(ascending=False)
         # Display top countries
         print(top_countries_by_gms.head())
         Country
         Russia
                          236
         United States
                           95
         Germany
                           94
         Ukraine
                           89
         India
         Name: GMs, dtype: int64
         # Number of player by country
In [20]:
         players by country =CG.groupby('Country') ['Num Players'].sum().sort values(ascending =False)
         # display top countries with the most players
         print(players by country.head())
         Country
         Russia
                    34497
         India
                    32735
                    26577
         Germany
         Spain
                    25009
                    23784
         France
         Name: Num Players, dtype: int64
In [ ]:
         # Set Seaborn style
In [21]:
         sns.set(style="whitegrid")
         # Plotting the distribution of GMs, IMs, FMs
         plt.figure(figsize=(16, 8))
```

```
ax = sns.barplot(data=CG[['GMs', 'IMs', 'FMs']], palette="muted", ci=None)

# Customize the plot
ax.set_title('Distribution of GMs, IMs, FMs by Country')
ax.set_xlabel('Country')
ax.set_ylabel('Count')

# Rotate x-axis labels for better readability
ax.set_xticklabels(ax.get_xticklabels(), rotation=45, ha='right', fontsize=10)

plt.tight_layout()
plt.show()
```


Machine Learning

Would be Predicting the average FIDE rating this will be base on the bassed on the certain features from the table.

```
In [22]: from sklearn.model_selection import train_test_split
         from sklearn.linear model import LinearRegression
         from sklearn.metrics import mean squared error
         # Features (X) and target variable (y)
         X = CG[['Num Players', 'Women', '% of Women', 'GMs', 'IMs', 'FMs', 'WGMs', 'WIMs', 'WFMs', 'Age Avg']]
         v = CG['FIDE Average']
         # Split the data into training and testing sets
         X train, X test, y train, y test = train test split(X, y, test size=0.2, random state=42)
         # Initialize the model
         model = LinearRegression()
         # Fit the model to the training data
         model.fit(X train, y train)
         # Make predictions on the test set
         predictions = model.predict(X test)
         # Evaluate the model
         mse = mean squared error(y test, predictions)
         print(f'Mean Squared Error: {mse}')
         Mean Squared Error: 26067.279912831626
In [ ]:
In [23]: from sklearn.metrics import mean squared error, r2 score, mean absolute error
         # Evaluate the model
         mse = mean squared error(y test, predictions)
         r2 = r2 score(y test, predictions)
         mae = mean_absolute_error(y_test, predictions)
         print(f'Mean Squared Error: {mse}')
         print(f'R-squared: {r2}')
         print(f'Mean Absolute Error: {mae}')
         Mean Squared Error: 26067.279912831626
         R-squared: 0.12962237949543576
         Mean Absolute Error: 117.53287571205537
In [26]: from sklearn.ensemble import RandomForestRegressor
         from sklearn.model selection import GridSearchCV
```

```
from sklearn.metrics import mean squared error, r2 score, mean absolute error
# Features (X) and target variable (v)
X = CG[['Num Players', 'Women', '% of Women', 'GMs', 'IMs', 'FMs', 'WGMs', 'WIMs', 'WFMs', 'Age Avg']]
y = CG['FIDE Average']
# Split the data into training and testing sets
X train, X test, y train, y test = train test split(X, y, test size=0.2, random state=42)
# Initialize the Random Forest Regressor
rf model = RandomForestRegressor()
# Define hyperparameters to tune
param_grid = {
    'n estimators': [50, 100, 200],
    'max depth': [None, 10, 20],
    'min samples split': [2, 5, 10],
    'min samples leaf': [1, 2, 4]
# Perform GridSearchCV for hyperparameter tuning
grid search = GridSearchCV(estimator=rf model, param grid=param grid, cv=5, scoring='neg mean squared error')
grid search.fit(X train, y train)
# Get the best parameters
best params = grid search.best params
print(f'Best Hyperparameters: {best params}')
# Use the best model from GridSearchCV
best rf model = grid search.best estimator
# Make predictions on the test set
rf predictions = best rf model.predict(X test)
# Evaluate the model
rf mse = mean squared error(y test, rf predictions)
rf r2 = r2 score(y test, rf predictions)
rf mae = mean absolute error(y test, rf predictions)
print(f'Random Forest Mean Squared Error: {rf mse}')
print(f'Random Forest R-squared: {rf r2}')
print(f'Random Forest Mean Absolute Error: {rf mae}')
```

```
Random Forest Mean Squared Error: 29633.760335212628
         Random Forest R-squared: 0.0105388098253969
         Random Forest Mean Absolute Error: 126.54422822207023
In [ ]:
In [25]: from sklearn.ensemble import RandomForestRegressor
         from sklearn.model selection import GridSearchCV
         from sklearn.preprocessing import StandardScaler
         # Features (X) and target variable (y)
         X = CG[['Num Players', 'Women', '% of Women', 'GMs', 'IMs', 'FMs', 'WGMs', 'WIMs', 'WFMs', 'Age Avg']]
         y = CG['FIDE Average']
         # Standardize numerical features
         scaler = StandardScaler()
         X scaled = scaler.fit transform(X)
         # Split the data into training and testing sets
         X train, X test, y train, y test = train test split(X scaled, y, test size=0.2, random state=42)
         # Initialize the Random Forest Regressor
         rf model = RandomForestRegressor()
         # Define hyperparameters to tune
         param grid = {
             'n estimators': [50, 100, 200],
             'max depth': [None, 10, 20],
             'min samples split': [2, 5, 10],
             'min_samples_leaf': [1, 2, 4]
         # Perform GridSearchCV for hyperparameter tuning
         grid search = GridSearchCV(estimator=rf model, param grid=param grid, cv=5, scoring='neg mean squared error')
         grid_search.fit(X_train, y_train)
         # Get the best parameters
         best params = grid search.best params
         print(f'Best Hyperparameters: {best params}')
         # Use the best model from GridSearchCV
         best rf model = grid search.best estimator
         # Make predictions on the test set
```

Best Hyperparameters: {'max depth': None, 'min samples leaf': 1, 'min samples split': 5, 'n estimators': 100}

```
rf_predictions = best_rf_model.predict(X_test)

# Evaluate the model
rf_mse = mean_squared_error(y_test, rf_predictions)
rf_r2 = r2_score(y_test, rf_predictions)
rf_mae = mean_absolute_error(y_test, rf_predictions)

print(f'Random Forest Mean Squared Error: {rf_mse}')
print(f'Random Forest R-squared: {rf_r2}')
print(f'Random Forest Mean Absolute Error: {rf_mae}')

Best Hyperparameters: {'max_depth': None, 'min_samples_leaf': 1, 'min_samples_split': 5, 'n_estimators': 200}
Random Forest Mean Squared Error: 29292.202487532235
Random Forest R-squared: 0.021943310322680598
Random Forest Mean Absolute Error: 124.57159016385661
```

In []: