Problem sheet: Week 2

2 Topics: Counting, axiomatic definition of probability, conditional probability

2.1 Prerequisites: Lecture 4

Exercice 2-1: (Suggested for personal/peer tutorial)

Explain, without direct calculation that, for $k, N \in \mathbb{N}, k < N$,

$$\sum_{n=k}^{N} \binom{n}{k} = \binom{N+1}{k+1}.$$

Use a proof where you only comment on sampling from sets of an appropriate cardinality.

2.2 Prerequisites: Lecture 5

Exercice 2- 2: Given two events $E, F \subseteq \Omega$, prove that the probability of *one and only one* of them occurring is

$$P(E) + P(F) - 2P(E \cap F)$$
.

Exercice 2-3: Consider the following statements, which are claimed to be true for events A_1 , A_2 in a sample space Ω :

(a)
$$P(A_1) = 0$$
 $\Longrightarrow P(A_1 \cup A_2) = 0$

(b)
$$P(A_1) = P(A_2^c)$$
 $\Longrightarrow A_1^c = A_2$

(c)
$$A_1 \subseteq A_2$$
 and $P(A_1) = P(A_2^c) \implies P(A_1) \le 1/2$

(d)
$$P(A_1^c) = x_1, P(A_2^c) = x_2 \implies P(A_1 \cup A_2) \ge 1 - x_1 - x_2$$

In each case, either prove that the statement is true for all Ω , A_1 , A_2 , or provide a specific counter-example to show that there exists Ω , A_1 , A_2 for which it is false

Exercice 2-4: Show the so-called *Boole's inequality*: For any events A_1, \ldots, A_n with $n \in \mathbb{N}$, we have

$$P(A_1 \cup A_2 \cup \cdots \cup A_n) \leq P(A_1) + \cdots + P(A_n).$$

Exercice 2-5: Show the so-called *inclusion-exclusion principle*: For any events A_1, \ldots, A_n with $n \in \mathbb{N}$, we have

$$P(A_1 \cup A_2 \cup \dots \cup A_n) = \sum_{1 \le i \le n} P(A_i) - \sum_{1 \le i_1 < i_2 \le n} P(A_{i_1} \cap A_{i_2}) + \sum_{1 \le i_1 < i_2 < i_3 \le n} P(A_{i_1} \cap A_{i_2} \cap A_{i_3}) - \dots + (-1)^{n+1} P(A_1 \cap A_2 \cap \dots \cap A_n)$$

2.3 Prerequisites: Lecture 6

Exercice 2- 6: Consider a standard 52-card deck which has been shuffled well. You pick two cards at random, one at a time without replacement. We denote by A the event that the first card is a spade and by B the event that the second card is black. Find P(A|B) and P(B|A).

Week 2 Page 1 of 1