Analsobel Esquirel Castro 436578 Agosto 120250

Predice el valor de X-1 con h=1 usando la sovie de Taylor de orden O hasta 4 y calculando el residuo en cada caso.

η	f(x)=1	Bo	E=fix) - aproximación o
0	1.2	0.9125 0	$\frac{1-f(x)=0.2-1.2=-1}{=-0.75}$
1	0.95	-6.375	$\frac{0.2 - 0.95}{0.2 - 0.45} = -0.25$
2	0.45	-0.35	0.2-6.31
3	0,3	-0.1	
4	0.2	0	0.2-0.2 =0

Función original: -0.1 x4-0 15 x3-0.5 x2-0.25x+1.2.

$$B_n = \frac{f^{(n+1)}(x_i)h^{(n+1)}}{(n+1)!}$$
 for independent

Tomanos un punto medio entre 0 y 1 = 0.5

y sustituimos en la primero dirivada de la función original.

(1)2'-0:4(0)3-0.45(0)2-(0)-0.25=-0.25 $f(0) = 1.2 + \frac{f(0)h'}{1!_0}$ $f(0) = 1.2 + \frac{-0.25(1)!}{100} = 6.95^{2}$ An=Como en la anterior que la 1º derivada, en esta es la 2º derivada = Pn(0) = F"(0,5)h21. $f''(0) = -1.2 \times ^2 - 0.9 \times -1 = -1.2 (0.5)^2 - 0.9(0.5) -1 = -1.75$ Pm= -1.75 (1)2! = -0.875" First = +0.2 - 0.95= -0.75 $f'(0) = -1.2 \times^2 -0.9 \times -1 = 1.2(0)^2 -0.9(0) -1 = -1$ $f'(0) = 7.2 + \frac{11}{600 p_1} + \frac{2}{600 p_2} =$ Enoi = 0.2-0,45 = -0,25 fin= 1.2+6-0.25)+(-1)=0.45/ $P_{1} = 10 = F'''(0.5) h^{31}$ f'''(0) = -2.4x - 0.9 = -2.4(0.5) - 0.9 = 0.21Phn = 0.21 (1)31 = -0.35 31 hes $f'''(0) = -0.9(1)^{3} = -0.9$ $f'''(0) = -0.9(1)^{3} = -0.15$ $f'''(0) = -0.9(1)^{3} = -0.15$ $f'''(0) = -0.9(1)^{3} = -0.15$ $f'''(0) = -0.9(1)^{3} = -0.15$ FW=0.45-0.15=0.7