Hauptfaserbündel und Vektorbündel

Adrian Pegler

Christian-Albrechts-Universität zu Kiel Arbeitsgruppe Geometrie 24098 Kiel

1. August 2018

Zusammenfassung. This is my abstract.

1 Faserbündel

Definition 1.1. Faserbündel

Seien E, B, F Differenzierbare Mannigfaltigkeiten, $\pi: E \to B$ eine glatte surjektive Funktion.

Falls es um jeden Punkt $x \in B$ eine Umgebung U sowie einen Diffeomorphismus $\Phi_U \colon \pi^{-1}(U) \to U \times F$ gibt, sodass

$$\pi_U \circ \Phi_U = \pi \tag{1}$$

gilt, nennen wir (E, π, B) Faserbündel mit typischer Faser F. Nach Gleichung 1 kommutiert also folgendes Schema:

$$\pi^{-1}(U) \subset E \xrightarrow{\Phi_U} U \times F$$

$$\pi \qquad \qquad \pi_U$$

$$U \subset B$$

B heißt Basisraum und E Totalraum des Faserbündels. Die Abbildung Φ_U wird auch lokale Trivialisierung oder Bündelkarte genannt. Mit $E_x := \pi^{-1}(x)$ bezeichnen wir für alle $x \in B$ die Faser über x.

Diese Definition ist in Abbildung 1 veranschaulicht. Neben der Beziehung zwischen dem Totalraum E und dem Basisraum B, sind in blau ein Punkt $x \in B$ und sein Urbild E_x bezüglich π sowie in magenta die Umgebung U um x und deren Urbild unter π dargestellt. Zudem sind die typische Faser F in rot und der Diffeomorphismus Φ_U sowie dessen Bild $U \times F$ in orange abgebildet.

Abb. 1: Skizze eines Faserbündels.

Definition und Bemerkung 1.2.

Für alle $x \in B$ sei folgende Abbildung definiert:

$$\Phi_{U,x} \colon E_x \to F, \ \Phi_{U,x} := \pi_F \circ \Phi_U.$$

Dann ist für jede Faser E_x durch $\Phi_{U,x}$ ein Isomorphismus auf die typische Faser F gegeben, was der Grund für deren Benennung ist.

Definition 1.3. Isomorphie

Seien (E, π, B) und $(\tilde{E}, \tilde{\pi}, B)$ Faserbündel über dem gleichen Basisraum B. Wir nennen die Faserbündel isomorph, falls es einen Diffeomorphismus $\Psi \colon E \to \tilde{E}$ gibt, sodass $\tilde{\pi} \circ \Psi = \pi$. Schematisch gilt also Folgendes:

Beispiel 1.4.

Seien M und F Differenzierbare Mannigfaltigkeiten, $\pi \colon M \times F \to M$ die Projektion auf die erste Komponente. Dann ist $(M \times F, \pi, M)$ ein Faserbündel. Jedes zu diesem Faserbündel isomorphe Faserbündel nennen wir **trivial**.

Beispiel 1.5.

Sei M eine n-dimensionale Differenzierbare Mannigfaltigkeit. Die Folgenden Bündel sind Faserbündel mit Basisraum M:

- 1. das Tangentialbündel: $(TM, \pi, M); \mathbb{R}^n$,
- 2. das Cotangentialbündel: $(T^*M, \pi, M); \mathbb{R}^n$,
- 3. das k-Formenbündel: $(\Omega^k M, \pi, M); \mathbb{R}^{\binom{n}{k}}$.

Beispiel 1.6.

Sei (B, g) eine n-dimensionale Riemansche Mannigfaltigkeit. Setze:

$$\begin{split} E &:= \{x \in TB \ | \ \left\|x\right\|_g = 1\}, \\ \pi &:= \pi_{\scriptscriptstyle TB} \big|_E. \end{split}$$

Das Faserbündel (E, π, B) heißt **Einheits-Sphären-Bündel**.

Dieser Name leitet sich von der typischen Faser $F = S^{n-1}$ her. Dies folgt, da mit den Definitionen von E und π für alle $p \in B$ gilt:

$$\pi^{-1}(p) = \{ x \in T_p B \mid ||x||_q = 1 \}.$$

Die lokalen Trivialisierungen erhält man aus denen des Tangentialbündels.

Lemma und Definition 1.7. Rückzug

Seien M, N Differenzierbare Mannigfaltigkeiten, und $f: M \to N$ eine glatte Abbildung. Für ein Faserbündel (E, π, M) definieren wir $f^*(E, \pi, M) := (f^*E, \tilde{\pi}, N)$ durch:

$$f^*E := \{(y,e) \in N \times E \mid f(y) = \pi(e)\}$$

$$\tilde{\pi}(y,e) := y$$

Damit ist $(f^*E, \tilde{\pi}, N)$ ein Faserbündel über N und heißt der **Rückzug** (engl.: pull back) von (E, π, M) entlang f. Dabei bleibt die typische Faser erhalten.

Bemerkung 1.8.

Sei F eine glatte Mannigfaltigkeit und $\varphi \colon F \to F$ ein Diffeomorphismus. Dann wirkt \mathbb{Z} durch $(k,(t,f)) \mapsto (t+k,\varphi^k(f))$ eigentlich diskontinuierlich auf $\mathbb{R} \times F$. Mit $E := \mathbb{R}^{\times F}/\mathbb{Z}$ und $\pi \colon E \to \mathbb{R}/\mathbb{Z} \cong S^1 =: B$ ist (E,π,B) ein Faserbündel mit typischer Faser F.

Geometrisch wird der Totalraum E also aus den trivialen Bündeln $[0,1] \times F \to [0,1]$ durch "zusammenkleben" der Fasern durch den Diffeomorphismus φ konstruiert. Um lokale Trivialisierungen zu konstruieren, nutzt man die (globale) Trivialität der Projektion $\pi_{\mathbb{R}} \colon \mathbb{R} \times F \to \mathbb{R}$ sowie die eigentliche Diskontinuität der Wirkung.

Definition 1.9. Schnitt

Unter einem glatten Schnitt eines Faserbündels (E, π, B) versteht man eine glatte Abbildung $s: B \to E$, sodass $\pi \circ s = id_B$. Mit $\Gamma(E)$ bezeichnen wir die Menge aller Schnitte in E.

Bemerkung 1.10.

Für ein triviales Faserbündel $(M \times F, \pi_M, M)$ gilt offensichtlich:

$$\Gamma(M \times F) = \mathcal{C}^{\infty}(M, F)$$

Weitere bekannte Objekte aus der Geometrie, die als Schnitte von Faserbündeln aufgefasst werden können sind:

ausarbeiten

$$\Gamma(TB)$$
 Vektorfelder über B ,
 $\Gamma(T^*B)$ 1-Formen über B ,
 $\Gamma(\Omega^k T^*M)$ k-Formen über B .

Definition und Bemerkung 1.11. Vektorbündel

Für ein beliebiges Faserbündel (E, π, B) mit typischer Faser F, kann die Menge der Schnitte $\Gamma(E) = \emptyset$ sein.

Nullschnitt?

Existiert jedoch ein Isomorphismus $F \to \mathbb{K}^n$, so gibt es immer Schnitte. Ein solches Faserbündel nennen wir auf \mathbb{K} -Vektorbündel.

2 Hauptfaser- und Rahmenbündel

Definition 2.1. Hauptfaserbündel

Sei (P, π, B) ein Faserbündel und G eine Lie-Gruppe. $(P, \pi, B) = (P, \pi, B; G)$ heißt G-Hauptfaserbündel, falls gilt:

- 1. G wirkt von rechts als Liesche Transformationsgruppe auf P. Die Wirkung ist frei, fasertreu und faserweise transitiv.
- 2. Es gibt einen Bündelatlas $\{\Phi_U\}$ aus G-äquivarianten (lokalen) Trivialisierungen. Das heißt:
 - (a) $\Phi_U : \pi^{-1}(U) \to U \times G$ ist ein Diffeomorphismus.
 - (b) $\pi_U \circ \Phi_U = \pi^{1}$
 - (c) $\Phi_U(p \cdot g) = \Phi_U(p) \cdot g$ für alle $p \in \pi^{-1}$, $g \in G$.

Es gilt also folgendes Schema:

$$\pi^{-1}(U) \times G \xrightarrow{\cdot_G} \pi^{-1}(U)$$

$$\Phi_U \times id_G \qquad \qquad \pi_U$$

$$U \times G \times G \xrightarrow{id_U \times \cdot_G} U \times G$$

Die Lie-Gruppe G heißt auch Strukturgruppe des Haputfaserbündels.

¹ π_u ist die Projektion $U \times G \to U$.