

Logic

Propositional Logic

Truth Tables

Implication

(uni-

directional)

Implication (multidirectional)

Consider This

Discrete Structures: CMPSC 102

Oliver BONHAM-CARTER

Fall 2018 Week 6

Logic Is it logical to say ... ?

Logic

Propositional Logic

Truth Tables

Implication (unidirectional)

Implication (multidirectional)

Consider This

• Water is *blue*, the shirt is also *blue*, therefore this shirt is made up of water?

Logic

Propositional Logic And, Or, Not

Truth Tables

Implication (unidirectional)

Implication (multidirectional)

Consider This

Logic is ... a truth-preserving system of inference

- **Truth-preserving**: If the initial statements are True, the inferred statements will also be true
- **System**: A set of mechanistic transformations which are based on syntax alone
- **Inference**: The process of deriving (inferring) new statements from old statements (i.e., finding conclusions based on previous observations)

Prepositional Logic

Logic

Propositional Logic And, Or, Not

Truth Tables

Implication (unidirectional)

Implication (multidirectional)

Consider This

- A proposition is a statement that is either true or false
- Every proposition is true or false, but its truth value (true or false) may be unknown
- Examples:
 - ullet You are in Discrete Structures (CMPSC102) o True
 - $\bullet \ \, \mathsf{Today} \,\, \mathsf{is} \,\, \mathsf{Sunday} \, \to \, \mathsf{False}$
 - $\bullet \ 1 == 2 \to \mathsf{False}$
 - It is currently raining in Paris \rightarrow who can say?
 - \bullet In Alice's pocket, she has exactly 58 cents \to who can say?

Different from philosophical assessments of truth...

- Philosopher Ludwig Wittgenstein observed, structures have spatial locations, but facts do not
- The Eiffel Tower can be moved from Paris to Rome, but there is a fact that it is currently in Paris (and nowhere else)
- "Truth" is something of a system of beliefs (i.e., I believe that it is in Paris, because I have seen it there)

Prepositional Logic

Logic Propositional Logic And, Or, Not

Truth Tables

Implication (unidirectional)

Implication (multidirectional)

- A proposition statement:
 - Denoted by a capital letter (i.e., "A")
 - A negation of a proposition statement
 - ullet $\sim A$: "not A"
 - Two proposition statements joined by a connective
 - $A \wedge B$: "A and B"
 - $A \vee B$: "A or B"
 - If a connective joins complex statements, parenthesis are added
 - $A \wedge (B \vee C)$: "A and (B or C)"

Prepositional Logic

Logic Propositional Logic And, Or, Not

Truth Tables

Implication (unidirectional)

Implication (multidirectional)

- A = "It is raining"
 - $\bullet \sim A$: "not A"
 - "It is not raining"
- A = "I will have peanut butter"
- B = "I will have jelly"
 - Sandwich order: $A \wedge B$: "A and B"
 - I will have a sandwich composed of peanut butter and Jelly
- A = "I will wear a white t-shirt"
- B = "I will wear a blue t-shirt"
 - I will wear a t-shirt: $A \vee B$: "A or B"
 - I will wear the white or the blue t-shirt

Truth Tables

Logic

Truth Tables

Negation Conjunction Disjunction

Implication (unidirectional)

Implication (multidirectional)

- Compound propositional statements are built out of simple statements using logical operations: negations, conjugations (using AND's) and disjunctions (using OR's)
- Determined by truth tables
 - A table of a combinations of truths using the connectives
 - Truth tables define the truth value of a connective for every possible truth value of its terms

Negation of Proposition

Logic

Truth Tables

Negation
Conjunction
Disjunction

Implication (uni-

(unidirectional)

Implication (multidirectional)

- ullet Negation of proposition A is $\sim A$
- A: It is sunny.
- $\bullet \sim A$: It is not sunny.
- A: Newton often drank tea.
- $\bullet \sim A$: Newton did not often drink tea.
- A: I am from the planet Zogitron.
- $\bullet \sim A$: I am not from the planet Zogitron. (regretfully)

Negation of Proposition

Logic

Truth Tables

Negation

Conjunction

Disjunction

Implication (unidirectional)

Implication (multidirectional)

Consider This

Let A be a propositional statement \dots

 $egin{array}{|c|c|c|c|} \hline A & \sim A \\ \hline \hline {\rm True} & {\rm False} \\ \hline {\rm False} & {\rm True} \\ \hline \end{array}$

In Python

True # True not True # False not False # True

A = True not(A) # False

Logical AND (Conjunction)

Logic

Truth Tables

Negation Conjunction

Disjunction

Implication (unidirectional)

Implication (multidirectional)

Consider This

- Conjunction of A and B is: $A \wedge B$
 - A: We are learning logical expressions
 - ullet B: We are learning Python code for logical expressions
 - $A \wedge B$: We are learning logical expressions and python code for logical expressions

In Python

A = True

B = True

A & B # True

A and B # True

Logical AND (Conjunction)

Logic

Truth Tables

Negation Conjunction

Disjunction

Implication (uni-

directional)

(multidirectional)

Implication

Consider This

- Conjunction of A and B is: $A \wedge B$
 - A: I like art
 - B: I like this work of art
 - $A \land \sim B$: I like art but I do not like this work of art

In Python

A = True

= True

A and not(B) # False

Logical AND (Conjunction)

Logic

Truth Tables

Negation Conjunction

Disjunction

Implication (unidirectional)

Implication

(multidirectional)

Consider This

Table for Conjunction

Α	В	$A \wedge B$
False	False	False
False	True	False
True	False	False
True	True	True

Logical OR (Disjunction)

Logic

Truth Tables

Negation

Conjunction

Disjunction

Implication (unidirectional)

Implication (multidirectional)

Consider This

- Also known as the inclusive OR
- Conjunction of A or B is: $A \vee B$
 - A: Today is sunny
 - ullet B: It is Monday
 - $A \lor B$: Today is sunny or it is Monday
- This statement is true if any of the following hold:
 - Today is sunny
 - It is Monday
 - Both
- Otherwise it is false

In Python

A = True

B = False

A | B # True

A or B # True

Logical OR (Disjunction)

Logic

Truth Tables Negation Conjunction

Disjunction

Implication (unidirectional)

Implication (multidirectional)

Consider This

Truth Table for Disjunction (Inclusive OR)

А	В	$A \vee B$
False	False	False
False	True	True
True	False	True
True	True	True

Exclusive OR

Logic

Truth Tables

Negation

Conjunction

Disjunction

Implication (uni-directional)

Implication (multidirectional)

directional)

 The exclusive OR (⊗) is true if both arguments are not the same

• The inclusive OR is true if either or both arguments are true

Truth Table for Exclusive OR (either or)

ABA ⊗ BFalseFalseFalseFalseTrueTrueTrueFalseTrueTrueTrueFalse

Consider This

- ullet The conditional implication connective is o
 - $A \rightarrow B$: A implies B
 - If A is true, then B is also true such that the statement $A \to B$ is False only when A is True and B is False
- Logically equivalent to $\sim (A \land \sim B) == (\sim A \lor B)$

Truth Table for the Conditional Implication

А	В	$A \to B$
False	False	True
False	True	True
True	False	False
True	True	True

$Implication \rightarrow \\$

Logic

Truth Tables

Implication (unidirectional)

Meaning

Implication (multidirectional)

$Implication \rightarrow$

Logic

Truth Tables

Implication (uni-directional)

Meaning

Implication (multidirectional)

Consider This

Truth Table for the Conditional Implication

A = False

B = False

not(A) or B # True

A = False

B = True

not(A) or B # True

A = True

B = False

not(A) or B # False

A = True

B = True

not(A) or B # True

Meaning of Conditional Implication (\rightarrow)

Logic

Truth Tables

Implication (unidirectional)

Meaning

Implication (multidirectional)

- A: Homework is due
- B: It is Monday
- \bullet $A \rightarrow B$
 - If homework is due, then it must be Monday.
- Can we also conclude...?
 - If it is Monday, then a homework is due.

Implication \leftrightarrow

Logic

Truth Tables

Implication (unidirectional)

Implication (multidirectional)

Meaning

Consider This

- The conditional implication connective is \leftrightarrow
 - $A \leftrightarrow B$: "A if and only if B",
- Logically equivalent to

$$(A \to B) \land (B \to A) == (A \land B) \lor (\sim A \land \sim B)$$

Truth Table for the Conditional Implication

Α	В	$A \leftrightarrow B$
False	False	True
False	True	False
True	False	False
True	True	True

$Implication \leftrightarrow$

Logic

Truth Tables

Implication (uni-

Implication (multidirectional)

Meaning

$Implication \leftrightarrow$

```
Logic
```

Truth Tables

Implication (unidirectional)

Implication (multidirectional)

Meaning

```
Truth Table for the Conditional Implication
```

```
A = False
B = False
((A and B) or (not(A) and not(B))) # True
A = False
B = True
((A and B) or (not(A) and not(B))) # False
A = True
B = False
((A and B) or (not(A) and not(B))) # False
A = True
B = True
((A and B) or (not(A) and not(B))) # True
```


Meaning of Conditional Implication (\leftrightarrow)

Logic

Truth Tables

Implication (unidirectional)

Implication (multidirectional)

Meaning

- A: You can buy the shirt
- B: You have enough money
- \bullet $A \leftrightarrow B$
 - You can buy the shirt, if and only if, you have enough money (and vice versa)
- Can we also conclude...?
 - If you have enough money, then you can buy the shirt.

Consider this

Logic

Truth Tables

Implication (unidirectional)

Implication (multidirectional)

Consider This

Try coding these...

- Use Python to test the following conditions:
 - $\bullet \sim A \vee B$, for A = True and B = False
 - $\bullet \sim A \lor \sim B$, for A = True and B = False
 - $\bullet \sim A \rightarrow B$, for A = True and B = False

