BEST AVAILABLE COPY

PCT/JP 2004/009572 30. 6. 2004

REC'D .1 9 AUG 2004

PCT

68.

WIPO

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2003年 6月30日

出 願 番 号 Application Number:

特願2003-188898

[ST. 10/C]:

[JP2003-188898]

出 願 人 Applicant(s):

松下電器產業株式会社

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

2004年 8月 5日

特許庁長官 Commissioner, Japan Patent Office i) (11)

11

【書類名】 特許願

【整理番号】 2931050015

【提出日】 平成15年 6月30日

【あて先】 特許庁長官殿

【国際特許分類】 H04L 27/32

【発明者】

【住所又は居所】 大阪府門真市大字門真1006番地 松下電器産業株式

会社内

【氏名】 村上 豊

【発明者】

【住所又は居所】 大阪府門真市大字門真1006番地 松下電器産業株式

会社内

【氏名】 小林 聖峰

【発明者】

【住所又は居所】 大阪府門真市大字門真1006番地 松下電器産業株式

会社内

【氏名】 折橋 雅之

【発明者】

【住所又は居所】 大阪府門真市大字門真1006番地 松下電器産業株式

会社内

【氏名】 松岡 昭彦

【特許出願人】

【識別番号】 000005821

【氏名又は名称】 松下電器産業株式会社

【代理人】

【識別番号】 100105050

【弁理士】

【氏名又は名称】 鷲田 公一

ページ: 2/E

【手数料の表示】

【予納台帳番号】 041243

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 9700376

【プルーフの要否】 要

【書類名】

明細書

【発明の名称】 送信方法及び送信装置

【特許請求の範囲】

【請求項1】 送信装置が複数のアンテナを備え、互いに同じデータが含ま れた複数の信号を複数のアンテナからそれぞれ送信する第1の送信方法と、互い に異なるデータが含まれた複数の信号を複数のアンテナからそれぞれ送信する第 2の送信方法とのいずれかを決定し、複数の変調方式のうちいずれかを決定する 際、通信開始から終了までは送信方法と変調方式のうち、変調方式のみを決定す ることを特徴とする送信方法。

【請求項2】 前記第1の送信方法に適用される変調方式と前記第2の送信 方法に適用される変調方式とは、変調多値数の最大値が等しいことを特徴とする 請求項1に記載の送信方法。

【請求項3】 前記第1又は第2の送信方法の決定を伝送路に基づいて行う ことを特徴とする請求項1又は請求項2に記載の送信方法。

【請求項4】 複数のアンテナを備える送信装置と、当該送信装置の複数の アンテナから送信された信号を受信する受信装置とを備える無線通信システムに おいて、

前記受信装置は、

送信装置の複数のアンテナから送信された信号について伝送路を推定する伝送 路推定手段と、

互いに同じデータが含まれた複数の信号を複数のアンテナからそれぞれ送信す る第1の送信方法と、互いに異なるデータが含まれた複数の信号を複数のアンテ ナからそれぞれ送信する第2の送信方法とのいずれかを、前記伝送路推定手段に よって推定された推定結果に基づいて決定し、決定した送信方法を前記送信装置 に通信開始時に要求する送信方法要求手段と、

前記伝送路推定手段によって推定された推定結果に基づいて、複数の変調方式 のうちいずれかを決定し、決定した変調方式を前記送信装置に要求する変調方式 要求手段と、

を具備し、

前記送信装置は、

前記受信装置から要求された送信方法に対応する信号を生成する生成手段と、 前記受信装置から要求された変調方式で前記生成手段によって生成された信号 を変調し、変調後の信号を各アンテナから送信する送信処理手段と、

を具備することを特徴とする通信システム。

【請求項5】 複数の送信アンテナと、

互いに同じデータが含まれた複数の信号を複数のアンテナからそれぞれ送信する第1の送信方法と、互いに異なるデータが含まれた複数の信号を複数のアンテナからそれぞれ送信する第2の送信方法とのいずれかを通信開始時に決定する送信方法決定手段と、

複数の変調方式のうちいずれかを決定する変調方式決定手段と、

前記決定された送信方法及び変調方式を適用した信号を前記複数のアンテナから送信する送信処理手段と、

を具備することを特徴とする送信装置。

【請求項6】 前記送信処理手段は、第1の送信方法に適用される変調方式と第2の送信方法に適用される変調方式とを、変調多値数の最大値を等しい変調方式とすることを特徴とする請求項5に記載の送信装置。

【請求項7】 互いに同じデータが含まれた複数の信号を複数のアンテナからそれぞれ送信する第1の送信方法と、互いに異なるデータが含まれた複数の信号を複数のアンテナからそれぞれ送信する第2の送信方法とのいずれかを決定し、決定した送信方法を通信相手に通信開始時に要求する送信方法要求手段を具備することを特徴とする受信装置。

【請求項8】 受信した信号について伝送路及び又は受信電界強度を推定する伝送路推定手段を具備し、

前記送信方法要求手段は、前記伝送路推定手段によって推定された推定結果に 基づいて送信方法を決定することを特徴とする請求項7に記載の受信装置。

【請求項9】 前記第1の送信方法に適用される変調方式と前記第2の送信 方法に適用される変調方式とは、変調多値数の最大値が等しいことを特徴とする 請求項7又は請求項8に記載の受信装置。

[0001]

【発明の属する技術分野】

本発明は、複数のアンテナから同時にデータを送信する送信方法、送信装置に関する。

[0002]

【従来の技術】

従来、複数アンテナを用いた送信方法として、非特許文献1に開示された技術が知られている。以下、この非特許文献1に開示された内容について図面を用いて説明する。

[0003]

図21は、従来のフレーム構成を示す図である。この図において、送信信号A及び送信信号Bは異なるアンテナから同時に送信される信号である。送信信号A及び送信信号Bは、互いに同じデータを含むシンボル群からなる。ここで、図中S1及びS2はシンボルを示し、複素共役を"*"で示す。送信信号AはデータシンボルS1、-S2*の順にフレーム構成され、送信信号BはデータシンボルS2、S1*の順にフレーム構成される。そして、送信信号Aと送信信号Bは同期させて送信される。このため、データシンボルS1とS2が同時に送信され、データシンボル-S2*とS1*が同時に送信されることになる。

[0004]

図22は、従来の通信システムを示す図である。送信装置11は、アンテナ12とアンテナ13とを備え、例えば、図21に示した送信信号Aをアンテナ12から、送信信号Bをアンテナ13から受信装置21に送信する。受信装置21は、送信装置11の各アンテナから送信された信号をアンテナ22で受信する。アンテナ22で受信された信号は送信信号Aと送信信号Bの送信信号が合成されているので、送信信号A及び送信信号Bに分離した後、復調する。

[0005]

このような従来の通信システムにおいて、送信装置11は送信信号Aをアンテナ12から、送信信号Bをアンテナ13から送信しており、各アンテナから送信

された信号は、異なる伝送路(h1 (t) 及びh2 (t))を介して受信装置に受信される。このことを利用して、図21に示すようなフレーム構成としており、受信装置21において受信品質を向上させることができる。

[0006]

【非特許文献1】

"Space-Time Block Codes from Orthogonal Design" IEEE Transactions on Information Theory, pp. 1456-1467, vol.45, no.5, July 1999

[0007]

【発明が解決しようとする課題】

しかしながら、上述した従来の通信システムでは、S1*や-S2*は受信装置においては、S1、S2として復調され、実質的にはS1、S2と同じ情報である。このため、同じ情報を2度送信していることになり、データの伝送効率が悪い。

[0008]

本発明はかかる点に鑑みてなされたものであり、複数のアンテナを用いてデータを送信する際のデータ伝送効率を向上させる通信方法及び送信装置を提供することを目的とする。

[0009]

【課題を解決するための手段】

かかる課題を解決するため、本発明の送信方法は、送信装置が複数のアンテナ を備え、互いに同じデータが含まれた複数の信号を複数のアンテナからそれぞれ 送信する第1の送信方法と、互いに異なるデータが含まれた複数の信号を複数の アンテナからそれぞれ送信する第2の送信方法とのいずれかを決定し、複数の変 調方式のうちいずれかを決定する際、通信開始から終了までは送信方法と変調方 式のうち、変調方式のみを決定するようにした。

[0010]

この方法によれば、送信方法の決定を通信開始時にのみ行うことになり、通信中に送信方法と変調方式の両方の決定、すなわち変更を行わないことになり、送信方法と変調方式を共に変更する場合に比べ、少ない処理で済むため、システム

[0011]

本発明の送信方法は、上記方法において、前記第1の送信方法に適用される変調方式と前記第2の送信方法に適用される変調方式とは、変調多値数の最大値が 等しいようにした。

[0012]

この方法によれば、変調多値数が大きいほど変調信号の振幅変動範囲が大きく、これに対応する増幅器の消費電力も変調信号の振幅変動範囲が大きいほど大きくなるので、第1の送信方法と第2の送信方法とのいずれにも適用する変調多値数の最大値を等しくすることにより、増幅器の消費電力が増大することを抑えることができる。

[0013]

本発明の送信方法は、上記方法において、前記第1又は第2の送信方法の決定 を伝送路に基づいて行うようにした。

[0014]

この方法によれば、第2の送信方法は、直接波を受信することにより受信品質が劣化する可能性が高くなるので、第1又は第2の送信方法の決定を伝送路に基づいて行うことにより、直接波を受信する場合には第1の送信方法を用いることで受信品質の劣化を回避し、直接波を受信しない場合には第2の送信方法を用いることでデータの伝送効率を向上させることができる。

[0015]

本発明の通信システムは、複数のアンテナを備える送信装置と、当該送信装置の複数のアンテナから送信された信号を受信する受信装置とを備える無線通信システムにおいて、前記受信装置は、送信装置の複数のアンテナから送信された信号について伝送路を推定する伝送路推定手段と、互いに同じデータが含まれた複数の信号を複数のアンテナからそれぞれ送信する第1の送信方法と、互いに異なるデータが含まれた複数の信号を複数のアンテナからそれぞれ送信する第2の送信方法とのいずれかを、前記伝送路推定手段によって推定された推定結果に基づいて決定し、決定した送信方法を前記送信装置に通信開始時に要求する送信方法

要求手段と、前記伝送路推定手段によって推定された推定結果に基づいて、複数の変調方式のうちいずれかを決定し、決定した変調方式を前記送信装置に要求する変調方式要求手段と、を具備し、前記送信装置は、前記受信装置から要求された送信方法に対応する信号を生成する生成手段と、前記受信装置から要求された変調方式で前記生成手段によって生成された信号を変調し、変調後の信号を各アンテナから送信する送信処理手段と、を具備する構成を採る。

[0016]

この構成によれば、誤り耐性の強い第1の送信方法と、データ伝送速度の速い 第2の送信方法とを伝送路推定手段の推定結果に基づいて切り替えることにより 、データの伝送効率と受信品質とを向上させることができる。

[0017]

本発明の送信装置は、複数の送信アンテナと、互いに同じデータが含まれた複数の信号を複数のアンテナからそれぞれ送信する第1の送信方法と、互いに異なるデータが含まれた複数の信号を複数のアンテナからそれぞれ送信する第2の送信方法とのいずれかを通信開始時に決定する送信方法決定手段と、複数の変調方式のうちいずれかを決定する変調方式決定手段と、前記決定された送信方法及び変調方式を適用した信号を前記複数のアンテナから送信する送信処理手段と、を具備する構成を採る。

[0018]

この構成によれば、送信方法の決定を通信開始時に行うことにより、通信中に 送信方法と変調方式の両方の決定、すなわち変更を行わないことになり、送信方 法と変調方式を共に変更する場合に比べ、少ない処理で済むため、システムの処 理負担が増大することを回避することができる。

[0019]

本発明の送信装置は、上記構成において、前記送信処理手段が、第1の送信方法に適用される変調方式と第2の送信方法に適用される変調方式とを、変調多値数の最大値を等しい変調方式とする構成を採る。

[0020]

この構成によれば、変調多値数が大きいほど変調信号の振幅変動範囲が大きく

、これに対応する増幅器の消費電力も変調信号の振幅変動範囲が大きいほど大きくなるので、第1の送信方法と第2の送信方法とのいずれにも適用する変調多値数の最大値を等しくすることにより、増幅器の消費電力が増大することを抑えることができる。

[0021]

本発明の受信装置は、互いに同じデータが含まれた複数の信号を複数のアンテナからそれぞれ送信する第1の送信方法と、互いに異なるデータが含まれた複数の信号を複数のアンテナからそれぞれ送信する第2の送信方法とのいずれかを決定し、決定した送信方法を通信相手に通信開始時に要求する送信方法要求手段を具備する構成を採る。

[0022]

この構成によれば、誤り耐性の強い第1の送信方法と、データ伝送速度の速い第2の送信方法とを伝送路や受信電界強度に基づいて決定し、決定した送信方法を送信装置に要求し、送信装置が要求された送信方法で送信することにより、通信中に送信方法と変調方式の両方の決定、すなわち変更を行わないことになり、送信方法と変調方式を共に変更する場合に比べ、少ない処理で済むため、システムの処理負担が増大するのを回避することができる。

[0023]

本発明の受信装置は、受信した信号について伝送路及び又は受信電界強度を推定する伝送路推定手段を具備し、前記送信方法要求手段が、前記伝送路推定手段によって推定された推定結果に基づいて送信方法を決定する構成を採る。

[0024]

この構成によれば、送信方法要求手段が、受信した信号について推定した伝送 路及び又は受信電界強度に基づいて、誤り耐性の強い第1の送信方法と、データ 伝送速度の速い第2の送信方法とのいずれかを決定することにより、データの伝 送効率と受信品質とを向上させることができる。

[0025]

本発明の受信装置は、上記構成において、前記第1の送信方法に適用される変調方式と前記第2の送信方法に適用される変調方式とは、変調多値数の最大値が

[0026]

この構成によれば、変調多値数が大きいほど変調信号の振幅変動範囲が大きく、これに対応する増幅器の消費電力も変調信号の振幅変動範囲が大きいほど大きくなるので、第1の送信方法と第2の送信方法とのいずれにも適用することができる変調多値数の最大値を等しくすることにより、送信装置における増幅器の消費電力が増大するのを抑えることができる。また、受信装置においては、振幅変動範囲が大きい信号を処理しなくてよいので、回路構成の簡易化を図ることができる。

[0027]

【発明の実施の形態】

本発明の骨子は、送信装置が複数のアンテナを備え、互いに同じデータが含まれた複数の信号を複数のアンテナからそれぞれ送信する第1の送信方法と、互いに異なるデータが含まれた複数の信号を複数のアンテナからそれぞれ送信する第2の送信方法とのいずれかを送受信間の伝送路に基づいて決定し、複数の変調方式のうちいずれかを決定する際、通信開始から終了までは送信方法と変調方式のうち、変調方式のみを決定することである。

[0028]

以下、本発明の実施の形態について図面を用いて説明する。

[0029]

(実施の形態1)

フレーム構成

図1は、本発明の実施の形態1におけるフレーム構成を示す図である。図1(a)は、送信方法Xにおける変調信号Aと変調信号Bのフレーム構成を示しており、図1(b)は、送信方法Yにおける変調信号Aと変調信号Bのフレーム構成を示している。伝搬モデル推定シンボル101及び電波伝搬環境推定シンボル103は、通信相手の受信装置がチャネル変動を推定するためのシンボルであり、パイロットシンボル、プリアンブル、制御シンボル、既知シンボル、ユニークワードなどと称されるものである。

[0030]

送信方法通知シンボル102は、基地局装置が送信した変調信号の送信方法(X又はY)、変調方式、誤り訂正方式を示すシンボルである。

[0031]

データシンボル104は、基地局装置が通信端末装置に送信する音声データや 画像データ、文字データ等のユーザ情報である。

[0032]

送信方法X及び送信方法Yについて

送信方法Xは、上述した従来例と同様に、非特許文献1に開示された送信方法であり、互いに同じデータが含まれた(以下、「時空間符号化」という)データシンボルを2本のアンテナから送信する。具体例としては、データシンボルS1、S2、S1*、-S2*("*"は複素共役を示す)のうち、変調信号AはデータシンボルS1、-S2*の順に構成され、変調信号BはデータシンボルS2、S1*の順に構成される。一方、送信方法Yは、情報が互いに異なるデータシンボルでフレーム構成が行われる。具体例としては、それぞれ異なる情報のデータシンボルS1、S2、S3、S4のうち、変調信号AはデータシンボルS1及びS3で構成し、変調信号BはデータシンボルS2及びS4で構成する。

[0033]

なお、図1 (a) 及び (b) に示す送信方法X及び送信方法Yは共に、変調信号Aと変調信号Bを同期させて送信する。例えば、送信方法Xでは、データシンボル-S2*とS1*が同時に送信され、送信方法Yでは、データシンボルS3とS4が同時に送信されることになる。また、変調信号A及び変調信号Bにおいて、同種のシンボルも同時に送信される。

[0034]

図2は、本発明の実施の形態1に係る通信システムを示す模式図である。この図において、基地局装置201はアンテナ202とアンテナ203とを備え、通信端末装置251と無線回線を介して通信を行う。通信端末装置251はアンテナ252とアンテナ253とを備える。この図では、基地局装置201から通信端末装置251に信号を送信している様子を示す。

[0035]

送信方法X及び送信方法Yの特徴

ここで、アンテナ202とアンテナ252との伝送路におけるチャネル変動を h11(t)とし、アンテナ202とアンテナ253との伝送路におけるチャネル変動をh12(t)とする。同様に、アンテナ203とアンテナ252間はチャネル変動をh21(t)とし、アンテナ203とアンテナ253間はチャネル変動をh22(t)とする。ただし、tは時間を示す。なお、チャネル変動h11(t)、h12(t)、h21(t)、h22(t)は、通信端末装置251が伝搬モデル推定シンボル101、電波伝搬環境推定シンボル103を用いて推定される。

[0036]

このとき、送信方法Xでは、図2に示すアンテナ252の受信信号をR1(t)とすると以下の式が成り立つ。

[0037]

【数1】

$${R1(i) \choose R1(i+1)} = {h11(i) \choose h21*(i+1) - h11*(i+1)} {S1 \choose S2} \cdots (1)$$

[0038]

この式から分かるように、送信方法XではデータシンボルS1及びS2を時間 t=iとt=i+1で繰り返し送信している。なお、ここでは、時空間ブロック 符号を用いた場合について説明しているが、例えば、下記参考文献を例とする時空間トレリス符号を用いてもよい。(参考文献:"Space-Time Block Codes for High Data Rate Wireless Communication: Performance Criterion and Code Construction" IEEE Transactions on Information Theory, pp.744-765, vol.4 4, no.2, March 1998)

一方、送信方法 Y では、図 2 に示すアンテナ 2 5 2 及び 2 5 3 の受信信号をそれぞれ R 1 (t)、R 2 (t) とすると以下の式が成り立つ。

[0040]

【数2】

$$\begin{pmatrix} R1(i) \\ R2(i) \end{pmatrix} = \begin{pmatrix} h11(i) & h12(i) \\ h21(i) & h22(i) \end{pmatrix} \begin{pmatrix} S1 \\ S2 \end{pmatrix} \cdots (2)$$

[0041]

[0042]

これらのことから、送信方法X及び送信方法Yを比較すると、送信方法Xは送信方法Yより伝送速度は低速であるが、受信品質は良好である。逆に、送信方法Yは送信方法Xより伝送速度は高速であるが、受信品質は劣化する傾向にある。特に、送信方法Yは直接波を受信した場合、受信品質が著しく劣化するという性質がある。このため、直接波を受信した場合には送信方法Xを用い、直接波を受信しない場合には送信方法Yを用いることが考えられる。

[0043]

このように、誤り耐性が強いため受信品質が高い送信方法Xと伝送速度の速い送信方法Yとを伝送路の状態に応じて決定することにより、受信品質と伝送速度の向上を両立させることができる。すなわち、送信方法Xと送信方法Yとを切り替えると共に、変調方式も切り替えることで、受信品質と伝送速度の向上の両立をさらに図ることができる。

[0044]

基地局装置201における送信装置の構成

図3は、本発明の実施の形態1に係る基地局装置201における送信装置の構成を示すブロック図である。この図において、フレーム生成指示部401は通信端末装置251から送信された送信方法要求情報及び変調方式要求情報に基づいて、送信方法(X又はY)及び変調方式(例えば、QPSK、16QAM、64QAMのいずれか)を決定し、決定した内容をフレーム生成指示信号S1でデータ系列生成部402、送信処理部403及び送信処理部404に指示する。

[0045]

データ系列生成部402は、フレーム生成指示部401の指示にしたがって送

信ディジタル信号から、図1で示したようなフレーム構成の変調信号Aの送信ディジタル信号S2及び変調信号Bの送信ディジタル信号S3を生成する。生成された変調信号Aの送信ディジタル信号S2はデータ系列生成部402から送信処理部403に出力され、変調信号Bの送信ディジタル信号S3はデータ系列生成部402から送信処理部404に出力される。

[0046]

送信処理部403は、データ系列生成部402から出力された変調信号Aの送信ディジタル信号S2について、送信処理部404は、データ系列生成部402から出力された変調信号Bの送信ディジタル信号S3について、それぞれフレーム生成指示部401からの指示にしたがって送信処理を行う。送信処理部403 と送信処理部404の内部構成は同一なので、以下、送信処理部403内の構成について説明する。

[0047]

変調部4031は、複数の変調方式で変調することができ、データ系列生成部402から出力された変調信号Aの送信ディジタル信号S2をフレーム生成指示部401から指示された変調方式で変調する。変調された信号S4は変調部4031から拡散部4032に出力される。

[0048]

拡散部4032は変調部4031から出力された信号S4に対して、拡散符号を乗算し、拡散後の変調信号Aが無線部4033に出力され、無線部4033は 拡散後の信号S5に対して所定の無線処理(D/A変換やアップコンバート等) を行い、無線処理後の信号S6を増幅器4034に出力する。

[0049]

増幅器4034は、無線部4033から出力された信号S6を電力増幅し、電力増幅された信号S7をアンテナ202から通信端末装置251に無線送信する

[0050]

通信端末装置251における受信装置の構成

図4は、本発明の実施の形態1に係る通信端末装置251における受信装置の

構成を示すブロック図である。この図において、アンテナ252は基地局装置201のアンテナ202とアンテナ203とから送信された信号の合成信号S51を受信し、無線部501は、アンテナ252で受信された信号S51に所定の無線処理(ダウンコンバートやA/D変換等)を行い、無線処理後の信号S52を逆拡散部502に出力する。

[0051]

逆拡散部502は、無線部501から出力された信号S52に拡散符号を乗算し、逆拡散を行う。逆拡散された信号S53は、逆拡散部502からフレーム同期部503、第1伝送路推定部504、第2伝送路推定部505、復調部510及び受信電界強度推定部511に出力される。

[0052]

フレーム同期部503は、逆拡散部502から出力された信号S53及び逆拡散部507から出力された信号S56に基づいて、変調信号A及び変調信号Bのフレーム同期をとり、タイミング信号S57を形成する。タイミング信号S57はフレーム同期部503から第1伝送路推定部504及び508、第2伝送路推定部505及び509、復調部510に出力される。

[0053]

第1伝送路推定部504は、フレーム同期部503から出力されたタイミング信号S57にしたがって、逆拡散部502から出力された信号S53のうち、変調信号Aの伝搬モデル推定シンボル101と、電波伝搬環境推定シンボル103とを用いて、変調信号Aの伝送路推定、すなわち、チャネル変動の推定を行う。推定された変調信号Aの伝送路情報は伝送路推定信号S58として、第1伝送路推定部504から復調部510及び固有値算出部512に出力される。変調信号Aの伝送路推定信号S58は、式(2)のh11(t)に相当する。

[0054]

第2伝送路推定部505は、フレーム同期部503から出力されたタイミング信号S57にしたがって、逆拡散部502から出力された信号S53のうち、変調信号Bの伝搬モデル推定シンボル101と、電波伝搬環境推定シンボル103とを用いて、変調信号Bの伝送路(チャネル変動)推定を行う。推定された変調

信号Bの伝送路情報は伝送路推定信号S59として、第2伝送路推定部505から復調部510及び固有値算出部512に出力される。変調信号Bの伝送路推定信号S59は、式(2)のh12(t)に相当する。

[0055]

なお、アンテナ253で受信された信号S54は、無線部506、逆拡散部507、第1伝送路推定部508及び第2伝送路推定部509において、上述した処理と同様の処理が行われるので、その詳しい説明は省略する。ちなみに、第1伝送路推定部508から復調部510に出力される伝送路推定信号S60は、式(2)のh21(t)に相当し、第2伝送路推定部509から復調部510に出力される伝送路推定信号S61は、式(2)のh22(t)に相当する。

[0056]

復調部510は、フレーム同期部503から出力されたタイミング信号S57にしたがって、第1伝送路推定部504及び508、第2伝送路推定部505及び509から出力された伝送路推定信号S58、S59、S60、S61を用いて、逆拡散部502及び逆拡散部507から出力された信号S53及びS56の復調を行い、変調信号Aの受信ディジタル信号と変調信号Bの受信ディジタル信号を得る。このとき、復調部510では、逆拡散部502及び逆拡散部507から出力された信号S53、S56の送信方法通知シンボル102から、当該信号の送信方法(X又はY)、変調方式及び誤り訂正方式を取得し、取得した内容に応じてデータシンボルを復調する。

[0057]

受信電界強度推定部511は、逆拡散部502及び逆拡散部507から出力された信号S51及びS52に基づいて、受信電界強度を推定し、推定結果を受信電界強度推定信号S62として変調方式決定部513及び送信方法決定部514に出力する。なお、ここでいう受信電界強度は、有効なキャリアパワを意味する。また、第1伝送路推定部504、508、及び第2伝送路推定部505、509の伝送路推定部と受信電界強度推定部511は、伝送路推定部及び受信電界強度推定部511のいずれか又は両方が伝送路推定手段として機能する。

[0058]

固有値算出部512は、第1伝送路推定部504及び508、第2伝送路推定部505及び509から出力された伝送路情報を式(2)に示すようにチャネル行列としたとき、その固有値を算出する。算出された固有値は固有値信号S63として、固有値算出部512から変調方式決定部513及び送信方法決定部514に出力される。

[0059]

変調方式要求手段としての変調方式決定部513は、受信電界強度推定部51 1から出力された受信電界強度推定信号S62と固有値算出部512から出力された固有値信号S63とに基づいて、基地局装置201に要求する変調方式を決定し、変調方式要求情報として出力する。なお、変調方式は、受信電界強度のみで決定してもよく、この場合、伝送速度及び伝送品質に与える影響は小さい。

[0060]

[0061]

受信信号が直接波で到来した信号か否かを判断する方法

受信信号が直接波で到来した信号か否かを判断する方法について、図5を用いて説明する。まず、受信ベースバンド信号のI成分及びQ成分からt a n - 1 (

Q/I)を算出する。図5はt a n^{-1} (Q/I)を横軸とし、確率密度を縦軸で表した図である。図5 (a)は直接波を受信した場合を示し、直接波の位相でピークが現れる可能性が高くなる。一方、図5 (b)は直接波を含まない散乱波のみを受信した場合を示し、ピークが現れる可能性が低くなる。このように、直接波を受信したか否かはt a n^{-1} (Q/I)の確率密度を求め、いずれの分布状態となるかを判断することにより特定することができる。

[0062]

また、上述した式(2)のチャネル変動成分で表した 2×2 行列(以下、「チャネル行列」という)の固有値は2つ得られ、 λ 1、 λ 2($|\lambda$ 1 |> $|\lambda$ 2 |)で固有値を表すと、 λ 1と λ 2との関係に直接波の受信の有無が反映される。このため、チャネル行列の固有値に基づいて直接波を受信したか否かを判断してもよい。具体的には、固有値の大きさも確率密度分布で表すことができ、受信品質は固有値の分布に依存するので、直接波を受信したときの受信品質であるか否かを固有値の分布に基づいて判断することができる。

[0063]

送信方法通知シンボルに適用する送信方法及び変調方式

送信方法通知シンボル102は、変調信号の送信方法、変調方式、誤り訂正方式を通知する情報であり、この送信方法通知シンボル102が正しく復調されないとデータの復調も困難となるので、送信方法通知シンボル102を送信方法X、変調方式はBPSKで送信するとよい。また、誤り訂正を組み込むとさらによい。これにより、送信方法通知シンボル102の誤り耐性が高くなり、このシンボルの復調精度を高めることができるため、通信端末装置251において送信方法、変調方式、誤り訂正方式を正確に取得することができる。したがって、基地局装置201は、通信端末装置251にデータシンボル104の送信方法、変調方式、誤り訂正方式の情報を的確に伝えることができ、通信端末装置251がデータの復調を行うことができないという事態を回避することができる。

[0064]

また、例えば、通信開始時に送信方法Yが決定された場合でも、送信方法Xを 用いて送信方法通知シンボルを伝送することで、変調方式、誤り訂正方式を的確 に伝送することができるため、受信品質が向上することになる。そして、送信方法X、送信方法Yどちらも送信する変調信号は2系統であるため、基地局装置の送信装置のアンテナ数を変えることなく送信方法の変更、すなわち、送信方法Yから送信方法Xに変更するので、無線装置のハードウェアとしての変更が伴わず、送信方法通知シンボルが的確に伝送されるため、データの受信品質を容易に向上させることができる。

[0065]

基地局装置201と通信端末装置251の動作

図6は、本発明の実施の形態1に係る基地局装置201及び通信端末装置25 1の通信手順を示すシーケンス図である。この図において、ステップ(以下、「 ST」と省略する)601では、通信端末装置251が基地局装置201に対し て通信開始の要求を行い、基地局装置201がこの要求を受け付ける。

[0066]

ST602では、基地局装置201がST601で通信開始要求を受け付けたことを通知する要求受付通知を通信端末装置251に行う。このとき、図1に示す伝搬モデル推定シンボル101も共に送信する。

[0067]

ST603では、通信端末装置251がST602で送信された伝搬モデル推 定シンボル101を用いて、チャネル変動を推定し、式(2)で示したチャネル 行列の固有値に基づいて、基地局装置201が送信する変調信号の送信方法(X 又はY)及び変調方式を決定し、決定した送信方法及び変調方式を基地局装置2 01に対して要求する。基地局装置201はこの要求を受け付ける。

[0068]

ST604では、基地局装置201が通信端末装置251から送信された送信 方法及び変調方式の要求に基づいて、送信方法及び変調方式を決定し、決定した 送信方法及び変調方式を送信方法通知シンボル102を用いて通信端末装置25 1に送信する。

[0069]

ST605では、基地局装置201が図1に示すフレーム構成にしたがって、

ST604で決定された送信方法及び変調方式を用いて電波伝搬環境推定シンボル103やデータシンボル104を通信端末装置251に送信する。

[0070]

ST606では、通信端末装置251が基地局装置201と通信中に、再度、電波伝搬環境推定シンボル103に基づいて変調方式のみを決定し、決定した変調方式を基地局装置201に要求する。基地局装置201はこの要求を受け付ける。

[0071]

ST607では、基地局装置201が通信端末装置251から送信された変調方式の要求に基づいて、再度、変調方式のみを決定し、送信方法通知シンボル102を用いて通信端末装置251に通知する。

[0072]

ST608では、基地局装置201が図1に示すフレーム構成にしたがって、 ST607で決定された変調方式を用いて電波伝搬環境推定シンボル103やデータシンボル104を通信端末装置251に送信する。

[0073]

ST609では、基地局装置201が通信端末装置251に通信終了の通知を 行い、通信端末装置251がこの通知を受け付け、通信が終了する。

[0074]

送信方法及び変調方式の変更の仕方

上述した一連の通信手順において、基地局装置201が適用する送信方法及び変調方式の時間推移に伴う変更の様子を図7に示す。ここでは、変調方式がQPSK、16QAM、64QAMの3つが用いられるものとする。この図において、時間t0で基地局装置201と通信端末装置251との通信が開始され、時間t1~t2では送信方法X及びQPSKが用いられるとする。時間t2では変調方式のみがQPSKから16QAMに変更され、時間t2~t3では送信方法X及び16QAMが用いられる。さらに、時間t3では再度変調方式のみが変更され、16QAMから64QAMに変更される。時間t3~t4では送信方法X及び64QAMが用いられ、時間t5で通信が終了する。

[0075]

さらに、時間 t 6 で上記の基地局装置 2 0 1 と通信端末装置 2 5 1 が通信を開始すると、時間 t 7~ t 8 で送信方法 Y 及び 6 4 Q A M が用いられるとする。時間 t 8 では変調方式のみが 6 4 Q A M から 1 6 Q A M に変更され、時間 t 8~ t 9 では送信方法 Y 及び変調方式 1 6 Q A M が用いられる。さらに、時間 t 9 では 再度変調方式のみが変更され、1 6 Q A M から Q P S K に変更される。時間 t 9~ t 1 0 では送信方法 Y 及び Q P S K が用いられ、時間 t 1 1 で通信が終了する。

[0076]

なお、時間 t 2 、 t 3 、 t 8 及び t 9 の変調方式の変更は、図 6 に示す S T 6 0 6 における変調方式要求を反映した結果であり、電波伝搬環境に応じた変調方式に変更される。

[0077]

このように、送信方法は通信開始時に決定され、通信開始から通信終了までは 送信方法の変更は行わず、変調方式のみを変更するものとする。

[0078]

図7に示す以外の送信方法及び変調方式の変更の仕方

ところで、図7に示すような送信方法及び変調方式の変更の仕方以外にも、図8に示す変更の仕方も考えられる。以下、図8について説明する。

[0079]

図8において、時間 t 0 で基地局装置と通信端末装置との通信が開始され、時間 t 1~t 2 では送信方法 X 及び Q P S K が 用いられる。時間 t 2 では、送信方法 X から送信方法 Y に、変調方式が Q P S K から 1 6 Q A M に変更される。時間 t 3 では、送信方法 Y から送信方法 X に、変調方式が 1 6 Q A M から 6 4 Q A M に変更される。時間 t 4 では送信方法のみが X から Y に変更され、時間 t 5 では変調方式だけが 6 4 Q A M から 1 6 Q A M に変更される。時間 t 7 で通信が終了する。

[0800]

このように、通信中に送信方法及び変調方式の両方を電波伝搬環境に応じて変

更することも考えられる。ところが、このような変更の仕方では、変更の際に選択することができる送信方法及び変調方式の組合せ(以下、単に「組合せ」という)が多くなり、複雑なシステムとなってしまう。すなわち、多くの組合せの中から1つの組合せを選択することになると、電波伝搬環境の推定を高精度に行う必要があり、高精度な推定を行わないと電波伝搬環境に適していない組合せを選択してしまう可能性があり、受信品質の劣化を招いてしまう。

[0081]

また、電波伝搬環境の推定精度を向上させれば、電波伝搬環境に適した組合せ を選択することができるものの、高精度な推定を通信端末装置が行うことになる と、通信端末装置の電波伝搬環境推定精度にシステムの安定性が依存することに なり、端末装置の小型化、低消費電力化を図ることが困難となる。

[0082]

したがって、図7に示したように、通信中に送信方法の変更を行わず、変調方式の変更のみを行うことにより、基地局装置及び通信端末装置が複雑な通信手続きを行わずに済む。また、通信端末装置の電波伝搬環境の推定精度を緩和してもよく、通信端末装置の小型化、低消費電力化を図ることができ、さらに、システム全体の処理負担が増大することを防ぐことができる。

[0083]

ちなみに、このように通信中に送信方法を変更しないとしても、伝搬モデルは 急激には変化しない。また、送信方法Yは、データの伝送速度は高速であるが、 伝搬モデルが受信品質に多大な影響を与える。

[0084]

送信方法X又は送信方法Yと組合せる変調方式

図9は、送信方法X及び送信方法Yと各変調方式との組合せによる単位時間当たりの送信ビット数を示したものである。送信方法Yは、各変調方式において送信方法Xの送信ビット数の2倍を送信することができる。ここで、送信方法Yが64QAMで単位時間当たりに送信するビット数と同じ伝送量を送信方法Xでも得ることを考えると、送信方法Xは4096QAMとの組合せを実現する必要がある。

ところが、送信方法Xで4096QAMとしたときの受信品質は、送信方法Yで64QAMとしたときの受信品質より悪い。このため、受信品質と伝送速度を共に向上させるためには、送信方法Xで4096QAMを実現することは好ましくない。

[0086]

また、図3に示した基地局装置201における増幅器4034及び4044の入出力特性について図10を用いて考えてみる。図10は、増幅器の入出力特性を示す図である。この図において、横軸を入力レベル、縦軸を出力レベルとし、QPSKの入力範囲をA1、64QAMの入力範囲をA2、4096QAMの入力範囲をA3とする。また、異なる2つの入出力特性について実線と点線でそれぞれ示した。実線で示した入出力特性を有する増幅器(以下、「増幅器P1」と記す)は入力特性をA2の範囲とし、点線で示した入出力特性を有する増幅器(以下、「増幅器P2」と記す)は入力特性をA3の範囲とする。なお、変調方式が変わらなければ、変調信号の振幅変動範囲、すなわち入力範囲も送信方法にかかわらず変わらない。また、一般的に、変調多値数が大きいほど、変調信号の振幅変動範囲は大きくなる。

[0087]

送信方法Yで最大変調多値数を64QAMとすれば、増幅器P1を用いれば十分である。これに対し、送信方法Yと64QAMとの組合せによる伝送速度を送信方法Xで実現するためには、4096QAMの変調方式を用いる必要があり、この場合、増幅器P2を用いなければならない。増幅器P2の出力特性は増幅器P1の出力特性より広範囲な出力レベルにわたり、受信装置では変動範囲の広い信号を処理することになるため、受信装置はこの信号の線形性を確保しなければならず、回路構成が複雑になってしまう。

[0088]

また、増幅器 P 2 は増幅器 P 1 より消費電力が大きいため、電力効率が悪いうえ、増幅器 自体の規模も大きい。

[0089]

これらのことから、送信方法X又は送信方法Yと組合せる変調方式の最大変調 多値数は等しくすることが望ましい。これにより、送信装置の消費電力を抑えら れ、受信装置の回路構成を簡素化することができる。

[0090]

送信アンテナ数を4本としたときの変調多値数の最大値

上述したような送信アンテナ数を2本とする場合から、送信アンテナ数を4本とする場合に変更し、4本の送信アンテナからそれぞれ変調信号を送信する場合に切り替えるとき、送信アンテナ数を4本とするときの変調多値数の最大値を、送信アンテナ数を2本とするときの変調多値数の最大値より小さくすることにより、受信装置では変動範囲の広い信号を処理しないでよいので、受信装置の回路構成を簡素化することができる。

[0091]

上述した変調多値数についての説明は、シングルキャリア方式に限らず、OF DM方式を含むマルチキャリア方式を用いた場合でも同様である。また、スペクトル拡散方式を用いていても、用いていなくてもよい。

[0092]

このように本実施の形態によれば、基地局装置及び通信端末装置のそれぞれが複数のアンテナを備え、基地局装置は、互いに同じデータが含まれた変調信号Aと変調信号Bとを複数のアンテナからそれぞれ送信する送信方法Xと、互いに異なるデータが含まれた変調信号Aと変調信号Bとを複数のアンテナからそれぞれ送信する送信方法Yとのいずれかの送信方法を通信開始時に決定し、通信中は送信方法を変更せず、変調方式のみを変更することにより、データの伝送速度と伝送品質の向上を共に図ることができる。

[0093]

なお、本実施の形態では、通信端末装置は通信開始時に基地局装置から送信された伝搬モデル推定シンボルを用いて伝搬モデルを推定し、送信方法を要求しているが、例えば、基地局装置が他の通信端末装置と通信を行っている際に、基地局装置が送信している電波伝搬環境推定シンボルやデータシンボルを受信し、これらを用いて伝搬モデルを推定し、通信開始時に送信方法を要求するようにして

もよい。これにより、伝搬モデル推定シンボルをフレームに挿入する必要がなくなるため、データの伝送速度をさらに高速にすることができる。

[0094]

また、本実施の形態では、通信端末装置が固有値及び受信電界強度に基づいて、送信方法及び変調方式の決定を行っているが、本発明はこれに限らず、ビットエラー率、パケット損失率及びフレームエラー率のうち少なくとも一つと受信電界強度とに基づいて送信方法及び変調方式を決定してもよい。例えば、受信電界強度が強いものの、ビットエラー率が高い場合、送信方法Xに決定するといった具合である。

[0095]

(実施の形態2)

実施の形態1では、通信中に送信方法の変更を行わないものとして説明したが 、本実施の形態では通信中に送信方法の変更を行う場合について説明する。

[0096]

本実施の形態における基地局装置及び通信端末装置の構成は実施の形態1と同じなので、図3及び図4を代用し、その詳しい説明は省略する。

[0097]

図11は、本発明の実施の形態2に係る基地局装置と通信端末装置の通信手順を示すシーケンス図である。ただし、この図のST1101~ST1108は図6のST601~ST608と同一であり、また、ST1111~ST1114はST605~ST608と同一であるので、その詳しい説明は省略する。

[0098]

ST1109では、通信端末装置が基地局装置から送信された伝搬モデル推定シンボルを用いて、チャネル変動を推定し、実施の形態1の式(2)で示したチャネル行列の固有値に基づいて、基地局装置が適用する送信方法及び変調方式を通信中に決定する。通信端末装置は、決定した送信方法及び変調方式を基地局装置に対して要求する。基地局装置はこの要求を受け付ける。

[0099]

ST1110では、基地局装置が通信端末装置から送信された要求に基づいて

、送信方法及び変調方式を決定し、決定した組合せを送信方法通知シンボルを用いて通信端末装置に通知する。

[0100]

ST1115では、基地局装置が通信端末装置に通信終了の通知を行い、通信端末装置がこの通知を受け付け、通信が終了する。

[0101]

[0102]

時間 t 4 では、通信端末装置が送信方法及び変調方式の変更要求を行い、送信方法については送信方法 Y へ、変調方式については 6 4 Q A M を維持する要求を行う。

[0103]

時間 t 5 では、通信中において送信方法の変更が行われ、送信方法Xから送信方法Yへの変更が行われ、変調方式については 6 4 Q A M のまま維持される。時間 t 5 \sim t 6 では送信方法Y 及び 6 4 Q A M が用いられる。

[0104]

時間 t 6 では変調方式のみが 6 4 Q A M から 1 6 Q A M に変更され、時間 t 6 \sim t 7 では送信方法 Y 及び変調方式 1 6 Q A M が用いられる。さらに、時間 t 7 では再度変調方式のみが変更され、 1 6 Q A M から Q P S K に変更される。時間 t 7 \sim t 8 では送信方法 Y 及び Q P S K が用いられ、時間 t 9 で通信が終了する

[0105]

このように、送信方法の変更を通信中においても所定の時間間隔で行うことにより、伝搬路モデルの変更に対応することができる。なお、所定の時間間隔は不必要に送信方法の変更が行われないような間隔とする。

[0106]

このように本実施の形態によれば、通信時間が長くなる場合には、伝搬モデルが変化することもあるので、通信中に送信方法の変更を行うことにより、通信中に伝搬モデルが変化した場合でも、受信品質の向上と伝送速度の高速化の両立を図ることができる。

[010.7]

なお、本実施の形態において、通信開始時は伝搬モデルの推定を行わず、強制的に送信方法Xで通信を開始し、通信中に電波伝搬環境推定シンボルを用いて、 伝搬モデルの推定を行うようにしてもよい。これにより、伝搬モデル推定シンボルをフレームに挿入する必要がなくなるため、データの伝送速度をさらに高速にすることができる。

[0108]

また、実施の形態1及び実施の形態2では、スペクトル拡散通信方式について 説明したが、これに限らず、例えば、拡散部を削除したシングルキャリア方式、 またはOFDM方式においても同様に実施することができる。

[0109]

(実施の形態3)

実施の形態1では、スペクトル拡散通信方式の場合について説明したが、本発明の実施の形態3では、OFDM方式において通信開始時の送信方法及び変調方式を固定とする場合について説明する。

[0110]

図13は、本発明の実施の形態3におけるフレーム構成を示す図である。ただし、図13が図1と共通する部分には、図1と同一の符号を付し、その詳しい説明を省略する。図13が示すように、OFDM方式は時間方向のみならず、周波数方向にもシンボルを配置する方式であり、ここでは、キャリア数を4とする。

各キャリアは送信方法通知シンボル102、電波伝搬環境推定シンボル103、 データシンボル104の順に配置される。

[0111]

図13(a)は、送信方法Xにおける変調信号Aと変調信号Bのフレーム構成を示す図である。キャリア1についてみると、図1(a)で示したデータシンボルの配置と同様であり、このような配置のデータシンボルが送信される。キャリア2~キャリア4についても、キャリア1と同様の符号が施されたデータシンボルが配置され、配置されたデータシンボルが送信される。

[0112]

図13(b)は、送信方法Yにおける変調信号Aと変調信号Bのフレーム構成を示す図である。キャリア1についてみると、図1(b)で示したデータシンボルの配置と同様であり、キャリア1は情報内容の異なるデータシンボルを送信する。キャリア2~キャリア4についても、キャリア1と同様に情報内容の異なるデータシンボルが配置され、配置されたデータシンボルが送信される。

[0113]

図13は、データシンボルを時間領域に符号化されたOFDM方式の場合について示したが、図14に示すように周波数領域に符号化されたOFDM方式の場合でもよい。図14(a)は送信方法Xのフレーム構成を、図14(b)は送信方法Yのフレーム構成をそれぞれ示す。このとき、図2に示すアンテナ252においてキャリア1、時間tの受信信号をR1(t,1)とし、キャリア2、時間tの受信信号をR1(t,2)とすると、以下の式が成り立つ。

[0114]

【数3】

$$\binom{R1(i,1)}{R1(i,2)} = \binom{h11(i)}{h21*(i)} - \frac{h21(i)}{h11*(i)} \binom{S1}{S2} \cdots (3)$$

ただし、キャリア3及びキャリア4においても同様に符号化されていてもよい

[0115]

図15は、本発明の実施の形態3に係る基地局装置の構成を示すブロック図で

ある。ただし、図15が図3と共通する部分は、図3と同一の符号を付し、その詳しい説明は省略する。この図において、データ系列生成部1401は、フレーム生成指示部401の指示(フレーム生成指示信号S71)にしたがって送信ディジタル信号から、図13で示したようなフレーム構成に対応する変調信号Aの送信ディジタル信号S72及び変調信号Bの送信ディジタル信号S73を生成する。生成された変調信号Aの送信ディジタル信号S72はデータ系列生成部1401から送信処理部1402に出力され、変調信号Bの送信ディジタル信号S73は送信処理部1405に出力される。

[0116]

送信処理部1402は、データ系列生成部1401から出力された変調信号Aの送信ディジタル信号S72について、送信処理部1405は、データ系列生成部1401から出力された変調信号Bの送信ディジタル信号S73について、それぞれフレーム生成指示部401からの指示にしたがって送信処理を行う。送信処理部1402と送信処理部1405の内部構成は同一なので、以下、送信処理部1402内の構成について説明する。

[0117]

S/P変換部1403は、変調部4031から出力されたシリアル信号S74 をパラレル信号S75に変換して、変換後のパラレル信号S75をIDFT部1 404に出力する。

[0118]

IDFT部1404は、S/P変換部1403から出力されたパラレル信号S75に逆離散フーリエ変換(Inverse Discrete Fourier Transform)を施すことにより、OFDM信号S76を形成し、形成したOFDM信号S76を無線部4033に出力する。

[0119]

図16は、本発明の実施の形態3に係る通信端末装置の構成を示すブロック図である。ただし、図16が図4と共通する部分には、図4と同一の符号を付し、 その詳しい説明は省略する。

[0120]

無線部501は、アンテナ252で受信された信号S90に所定の無線処理(ダウンコンバートやA/D変換等)を行い、無線処理後の信号S91をDFT部1501及び受信電界強度推定部1509に出力する。

[0121]

DFT部1501は、無線部501から出力された信号S91に離散フーリエ 変換 (Discrete Fourier Transform) を施し、変換後の信号S92を第1伝送路 推定部1502、第2伝送路推定部1503及び復調部1507に出力する。

[0122]

第1伝送路推定部1502は、DFT部1501から出力された信号S92の うち、変調信号Aの電波伝搬環境推定シンボルを用いて、変調信号Aの伝送路推 定、すなわち、チャネル変動の推定を行う。推定された変調信号Aの伝送路情報 は伝送路推定信号S93として、第1伝送路推定部1502から復調部1507 に出力される。

[0123]

第2伝送路推定部1503は、DFT部1501から出力された信号S92のうち、変調信号Bの電波伝搬環境推定シンボルを用いて、変調信号Bの伝送路(チャネル変動)推定を行う。推定された変調信号Bの伝送路情報は伝送路推定信号S94として、第2伝送路推定部1503から復調部1507に出力される。第1伝送路推定部1502及び第2伝送路推定部1503から出力された伝送路信号S93及びS94には、キャリア1~キャリア4における伝送路情報が含まれている。

[0124]

なお、アンテナ253で受信された信号S95は、無線部506、DFT部1 504、第1伝送路推定部1505及び第2伝送路推定部1506において、上述した処理と同様の処理が行われるので、その詳しい説明は省略する。

[0125]

復調部1507は、第1伝送路推定部1502及び1505、第2伝送路推定 部1503及び1506から出力された伝送路情報S93、S94、S98、S 99を用いて、DFT部1501及びDFT部1504から出力された信号S9 2及びS 9 7の復調を行う。このとき、復調部1507では、DFT部1501及びDFT部1504から出力された信号S 9 2及びS 9 7の送信方法通知シンボルから、当該信号の送信方法(X又はY)、変調方式及び誤り訂正方式を取得し、取得した内容に応じてデータシンボルを復調し、変調信号Aの受信ディジタル信号S 100と変調信号Bの受信ディジタル信号S 101を得る。なお、復調の際には、式(1)及び式(2)の関係式に基づいて行われる。復調された信号は、復調部1507から受信ディジタル信号S 100及びS 101として出力されると共に、受信品質推定部1508に出力される。

[0126]

受信品質推定部1508は、復調部1507から出力された信号S100及びS101に基づいて、ビットエラー率、パケット損失率、フレームエラー率などを算出し、これにより受信品質を推定する。推定結果は受信品質推定信号S102として、受信品質推定部1508から送信方法決定部1510及び変調方式決定部1511に出力される。

[0127]

受信電界強度推定部 1 5 0 9 は、無線部 5 0 1 及び無線部 5 0 6 から出力された信号 S 9 1 及び S 9 6 に基づいて、受信電界強度を推定し、推定結果を受信電界強度推定信号 S 1 0 3 として送信方法決定部 1 5 1 0 及び変調方式決定部 1 5 1 1 に出力する。

[0128]

送信方法決定部1510は、受信品質推定部1508から出力された受信品質推定信号S102と、受信電界強度推定部1509から出力された受信電界強度推定信号S103とに基づいて、基地局装置に要求する送信方法X又は送信方法Yを後述する所定のタイミングで決定し、送信方法要求情報として出力する。例えば、受信電界強度は確保できているが、受信品質が確保できていない場合、送信方法Xを決定し、受信電界強度に対して、受信品質が十分確保できている場合、送信方法Yを決定する。

[0129]

変調方式決定部1511は、受信品質推定部1508から出力された受信品質

推定信号S102と、受信電界強度推定部1509から出力された受信電界強度 推定信号S103とに基づいて、基地局装置に要求する変調方式を後述する所定 のタイミングで決定する。決定された方式は、変調方式要求情報として通信端末 装置から出力される。変調方式要求情報と送信法法要求情報は、基地局装置に電 送される。

[0130]

次に、上述した構成を有する基地局装置と通信端末装置の動作について説明する。図17は、本発明の実施の形態3に係る基地局装置及び通信端末装置の通信 手順を示すシーケンス図である。この図において、ST1601では、通信端末 装置が基地局装置に対して通信開始の要求を行い、基地局装置がこの要求を受け 付ける。

[0131]

ST1602では、基地局装置がST1601で行った通信開始要求を受け付けると共に、送信方法X、変調方式をBPSKで電波伝搬環境推定シンボルやデータシンボルを通信端末装置に送信する。これにより、通信開始直後のデータシンボルの受信品質を高めることができ、通信端末装置において高い復調精度を実現することができる。

[0132]

以下、ST1603~ST1609は、図6のST603~ST609に対応 するので、その詳しい説明は省略する。

[0133]

このような一連の通信手順において、基地局装置が適用する送信方法及び変調方式の時間推移に伴う変更の様子を図18に示す。ここでは、変調方式がQPS K、16QAM、64QAMの3つが用いられるものとする。この図において、時間 t 0で基地局装置と通信端末装置との通信が開始され、時間 t 1~ t 3では送信方法X及びBPSKが強制的に用いられる。時間 t 2では通信端末装置から送信方法及び変調方式の変更要求があり、時間 t 3では変調方式のみがBPSKから16QAMに変更され、時間 t 3~ t 5では送信方法X及び16QAMが用いられる。さらに、時間 t 4では通信端末装置から変調方式のみの変更要求があ

り、時間 t 5 では再度変調方式のみが変更され、16 Q A M から6 4 Q A M に変更される。時間 t 5 ~ t 6 では送信方法 X 及び6 4 Q A M が用いられ、時間 t 7 で通信が終了する。

[0134]

さらに、時間 t 8 で上記の基地局装置と通信端末装置が通信を開始すると、時間 t 9~ t 1 1 で送信方法 X 及び B P S K が強制的に用いられる。時間 t 1 0 では通信端末装置から送信方法 及び変調方式の変更要求があり、時間 t 1 1 では送信方法が X から Y に変更され、変調方式が B P S K から 1 6 Q A M に変更され、時間 t 1 1~ t 1 3 では送信方法 Y 及び 1 6 Q A M が用いられる。さらに、時間 t 1 2 では通信端末装置から変調方式のみの変更要求があり、時間 t 1 3 では再度変調方式のみが変更され、16 Q A M から Q P S K に変更される。時間 t 1 3~ t 1 4 では送信方法 Y 及び Q P S K が用いられ、時間 t 1 5 で通信が終了する。

[0135]

このように、基地局装置は、誤り耐性が強く、高い受信品質が得られる送信方法X及びBPSKを、通信開始の際、強制的に用いることにより、通信開始からデータ送信までの通信手順を簡略化することができ、通信端末装置は通信開始直後のデータを確実に復調することができる。

[0136]

このように本実施の形態によれば、基地局装置及び通信端末装置のそれぞれが複数のアンテナを備え、互いに同じデータが含まれた第1の変調信号と第2の変調信号とを複数のアンテナからそれぞれ送信する第1の送信方法と、互いに異なるデータが含まれた第3の変調信号と第4の変調信号とを複数のアンテナからそれぞれ送信する第2の送信方法とのいずれかの送信方法のうち、誤り耐性の強い送信方法と変調方式とを通信開始時に強制的に適用することにより、通信開始からデータ送信までの通信手順を簡略化することができ、通信端末装置は通信開始直後のデータを確実に復調することができる。また、OFDM方式においてもデータの伝送速度と伝送品質の向上を共に図ることができる。

[0137]

なお、本実施の形態においては、通信開始時に送信方法及び変調方式を固定と した場合について説明したが、送信方法のみを固定とし、変調方式は選択可能と してもよい。

[0138]

また、本実施の形態においては、送信方法及び変調方式の選択をビットエラー率、パケット損失率、フレームエラー率等の受信品質に基づいて行っているが、 実施の形態1で説明したチャネル行列の固有値に基づいて行ってもよい。

[0139]

(実施の形態4)

実施の形態3では、通信開始時に送信方法及び変調方式を選択せずに、通信中に1回のみ送信方法を変更する場合について説明したが、本発明の実施の形態4では、通信中に所定の時間間隔で送信方法の変更を行う場合について説明する。

[0140]

本実施の形態における基地局装置及び通信端末装置の構成は実施の形態3と同じなので、図15及び図16を代用し、その詳しい説明は省略する。

[0141]

図19は、本発明の実施の形態4に係る基地局装置と通信端末装置の通信手順を示すシーケンス図である。ただし、この図のST1906及びST1907の みが図17のST1606及びST1607と異なり、その他の手順については 図17と同一なので、ST1906及びST1907についてのみ説明する。

[0142]

ST1906では、通信端末装置が通信開始から所定時間経過後、基地局装置が適用する送信方法及び変調方式を決定し、決定した内容を基地局装置に要求する。基地局装置はこの要求を受け付ける。

[0143]

ST1907では、基地局装置が通信端末装置から送信された要求に基づいて、送信方法及び変調方式を決定し、決定した送信方法及び変調方式を送信方法通知シンボルを用いて通信端末装置に通知する。

[0144]

このような一連の通信手順において、基地局装置が適用する送信方法及び変調方式の時間推移に伴う変更の様子を図20に示す。ここでは、変調方式がQPS K、16QAM、64QAMの3つが用いられるものとする。この図において、時間t0で基地局装置と通信端末装置との通信が開始され、時間t1~t3では送信方法X及びBPSKが強制的に用いられる。時間t2では通信端末装置が送信方法をXからYへ、変調方式をBPSKから16QAMへ変更する要求を行い、時間t3~t5では送信方法Y及び16QAMが用いられる。さらに、時間t4では通信端末装置が変調方式のみを16QAMから64QAMへ変更する要求を行い、時間t5~t6では送信方法Y及び64QAMが用いられる。

[0145]

時間 t 6 では、通信端末装置が送信方法及び変調方式の変更要求を行い、送信 方法についてはYからXへ、変調方式については 6 4 Q A M を維持する要求を行 う。

[0146]

時間 t 7では、通信中において送信方法の変更が行われ、時間 t 7~ t 9では送信方法 X 及び 6 4 Q A M が H いられる。

[0147]

時間 t 8 では通信端末装置が変調方式のみを 6 4 Q A Mから 1 6 Q A Mに変更する要求を行い、時間 t 9 \sim t 1 1 では送信方法 X 及び 1 6 Q A Mが用いられる。さらに、時間 t 1 0 では通信端末装置が再度変調方式のみを 1 6 Q A Mから Q P S Kに変更する要求を行い、時間 t 1 1 \sim t 1 2 では送信方法 X 及び Q P S K が用いられ、時間 t 1 1 で通信が終了する。

[0148]

このように、送信方法の変更を通信中においても所定の時間間隔で行うことにより、伝搬路モデルの変更に対応することができる。なお、所定の時間間隔は不必要に送信方法の変更が行われないような間隔とする。

[0149]

このように本実施の形態によれば、通信時間が長くなる場合には、伝搬モデル が変化することもあるので、通信中に送信方法の変更を行うことにより、通信中 に伝搬モデルが変化した場合でも、受信品質の向上と伝送速度の高速化の両立を 図ることができる。

[0150]

なお、実施の形態3及び実施の形態4では、OFDM方式について説明したが、これに限ったものではなく、例えば、拡散部を加え、スペクトル拡散方式を用いたOFDM方式でも同様に実施することができる。また、OFDM方式以外のマルチキャリア方式でも同様に実施することができる。

[0151]

なお、上述した各実施の形態においては、受信装置として通信端末装置を例に、送信装置として基地局装置を例に説明したが、本発明はこれに限らず、通信端末装置が送信装置として、また基地局装置が受信装置として機能してもよい。また、上述した各実施の形態においては、受信装置が送信方法及び変調方式の決定を行っているが、本発明はこれに限らず、送信装置が受信装置から固有値及び受信電界強度を通知してもらうことにより、送信方法及び変調方式を決定してもよい。

[0152]

また、上述した各実施の形態においては、送信方法Xで送信するデータシンボルをS1とS1の複素共役であるS1*を送信しているが、本発明はこれに限らず、例えば、S1を繰り返し送信してもよい。

[0153]

また、上述した各実施の形態においては、送信アンテナ数及び受信アンテナ数をそれぞれ2本として説明したが、本発明はこれに限らず、送信アンテナ数及び受信アンテナ数をそれぞれ3本以上としてもよい。このとき、基地局装置における送信装置のアンテナ前段の送信処理部(例えば、変調部、拡散部、無線部、増幅器等)は送信アンテナ数に応じた数となることは言うまでもない。通信端末装置における受信装置についても同様である。また、3本以上のアンテナから任意の複数のアンテナを選択してもよい。

[0154]

例えば、送信アンテナ数を4本とし、4本のアンテナから4系統の変調信号を

送信するようにしてもよい。このとき、時空間符号を用いた送信方法A、時空間符号を用いない送信方法Bとすると、送信アンテナ数を2本としたときの送信方法X及び送信方法Y、さらに送信方法A、送信方法Bのいずれかの送信方法を任意に選択することができる。なお、送信方法X及び送信方法Yの変調多値数の最大値は、送信方法A及び送信方法Bの変調多値数の最大値より大きくしても、通信端末装置の回路構成の複雑さには影響しない。

[0155]

また、複数のアンテナを一組のアンテナとして扱ってもよい。すなわち、アンテナ202やアンテナ203がそれぞれ複数のアンテナであってもよい。

[0156]

【発明の効果】

以上説明したように、本発明によれば、送信装置が複数のアンテナを備え、互いに同じデータが含まれた複数の信号を複数のアンテナからそれぞれ送信する第1の送信方法と、互いに異なるデータが含まれた複数の信号を複数のアンテナからそれぞれ送信する第2の送信方法とのいずれかを送受信間の伝送路に基づいて決定し、複数の変調方式のうちいずれかを決定する際、通信開始から終了までは送信方法と変調方式のうち、変調方式のみを決定することにより、データの伝送速度及び受信品質を共に向上させることができる。

【図面の簡単な説明】

【図1】

本発明の実施の形態1における基地局装置が送信するフレーム構成を示す図

図2】

本発明の実施の形態1に係る通信システムを示す模式図

【図3】

本発明の実施の形態1に係る基地局装置における送信装置の構成を示すブロック図

【図4】

本発明の実施の形態1に係る通信端末装置における受信装置の構成を示すプロック図

【図5】

受信信号が直接波で到来した信号か否かを判断する方法を説明するための図

【図6】

本発明の実施の形態 1 に係る基地局装置及び通信端末装置の通信手順を示すシーケンス図

【図7】

実施の形態1における基地局装置が適用する送信方法及び変調方式の時間推移 に伴う変更の様子を示す図

【図8】

送信方法及び変調方式の変更の仕方を説明するための図

【図9】

送信方法 X 及び送信方法 Y と各変調方式との組合せによる単位時間当たりの送信ビット 数を示す図

【図10】

増幅器の入出力特性を示す図

【図11】

本発明の実施の形態 2 に係る基地局装置と通信端末装置の通信手順を示すシーケンス図

【図12】

実施の形態 2 における基地局装置が適用する送信方法及び変調方式の時間推移 に伴う変更の様子を示す図

【図13】

本発明の実施の形態3におけるフレーム構成を示す図

【図14】

本発明の実施の形態3におけるフレーム構成を示す図

【図15】

本発明の実施の形態3に係る基地局装置の構成を示すプロック図

【図16】

本発明の実施の形態3に係る通信端末装置の構成を示すブロック図

【図17】

本発明の実施の形態3に係る基地局装置及び通信端末装置の通信手順を示すシ ーケンス図

【図18】

実施の形態3における基地局装置が適用する送信方法及び変調方式の時間推移 に伴う変更の様子を示す図

【図19】

本発明の実施の形態 4 に係る基地局装置と通信端末装置の通信手順を示すシーケンス図

【図20】

実施の形態 4 における基地局装置が適用する送信方法及び変調方式の時間推移 に伴う変更の様子を示す図

【図21】

従来のフレーム構成を示す図

【図22】

従来の通信システムを示す図

【符号の説明】

- 101 伝搬モデル推定シンボル
- 102 送信方法通知シンボル
- 103 電波伝搬環境推定シンボル
- 104 データシンボル
- 201 基地局装置
- 202、203、252、253 アンテナ
- 251 通信端末装置
- 401 フレーム生成指示部
- 402、1401 データ系列生成部
- 403、404、1402、1405 送信処理部
- 4031、4041 変調部
- 4032、4042 拡散部

- 4033、4043、501、506 無線部
- 4034、4044 増幅器
- 502、507 逆拡散部
- 503 フレーム同期部
- 504、508、1502、1505 第1伝送路推定部
- 505、509、1503、1506 第2伝送路推定部
- 510、1507 復調部
- 511、1509 受信電界強度推定部
- 5 1 2 固有値算出部
- 513、1511 変調方式決定部
- 514、1510 送信方法決定部
- 1403、1406 S/P変換部
- 1404、1407 IDFT部
- 1501、1504 DFT部
- 1508 受信品質推定部

【書類名】

【図1】

図面

【図4】

【図5】

【図6】

	送信方法X	送信方法Y
QPSK	2 bit	4 bit
16QAM	4 bit	8 bit
64QAM	6 bit	12 bit

【図10】

【図11】

【図13】

【図14】

【図16】

【図17】

【図18】

【図20】

【図21】

【図22】

ページ: 1/E

【書類名】

要約書

【要約】

【課題】 複数のアンテナを用いてデータを送信する際のデータ伝送効率を向上させること。

【解決手段】 基地局装置 2 0 1 は、互いに同じデータが含まれた変調信号 A と変調信号 B とを複数のアンテナからそれぞれ送信する送信方法 X と、互いに 異なるデータが含まれた変調信号 A と変調信号 B とを複数のアンテナからそれぞれ送信する送信方法 Y のいずれかの送信方法を通信開始時に決定し、通信中は送信方法を変更せず、変調方式のみを変更する。基地局装置 2 0 1 は、決定した送信方法と変調方式を適用して、変調信号 A 及び変調信号 B を通信端末装置 2 5 1 に送信する。

【選択図】 図7

出願人履歴情報

識別番号

[000005821]

1. 変更年月日

1990年 8月28日

[変更理由]

新規登録

住所

大阪府門真市大字門真1006番地

氏 名

松下電器産業株式会社