Title: Merging filaments in toroidal geometry

Author: Ben Dudson

Date: 21^{st} March 2017

Project: Enabling Research CfP-AWP17-ENR-CCFE-01

This work aims to reproduce simulations of merging current filaments (flux ropes) in a MAST-like toroidal geometry. Parameters are taken from [Stanier 2013]: A.Stanier et al. Phys. Plasmas 20, 122302 (2013); doi: 10.1063/1.4830104.

All source code, inputs files, and analysis scripts used here are publicly available at https://github.com/boutproject/merging-filaments

Model

A 2D zero- β model in toroidal geometry. The vorticity ω and electromagnetic potential A_{\parallel} are evolved with a constant density n_0 and temperature $T_e = T_i$. The magnetic field consists of a constant "toroidal" field B_0 , and a time-evolving "poloidal" field so that the total field is:

$$\mathbf{B} = B_0 \mathbf{e}_{\phi} + \nabla \times \left(A_{\parallel} \hat{\mathbf{e}}_{\phi} \right) \tag{1}$$

$$= B_0 \mathbf{e}_{\phi} + \nabla \psi \times \nabla \phi \tag{2}$$

where $\psi = RA_{||}$ is the poloidal flux, and $A_{||}$ is the toroidal component of the vector potential, here approximated by the parallel component. The equations in SI units are:

$$\frac{\partial \omega}{\partial t} + \frac{1}{B_0} \mathbf{b}_0 \times \nabla \phi \cdot \nabla \omega = \nabla \cdot (\mathbf{b} J_{\parallel}) + \nu \nabla_{\perp}^2 \omega$$
 (3a)

$$\frac{\partial A_{\parallel}}{\partial t} = -\mathbf{b} \cdot \nabla \phi + \eta J_{\parallel} \tag{3b}$$

$$\omega = \nabla \cdot \left(\frac{\rho_0}{B_0^2} \nabla_\perp \phi\right) \tag{3c}$$

$$J_{||} = -\frac{1}{\mu_0} \nabla_{\perp}^2 A_{||}$$
 (3d)

Where $\mathbf{b}_0 = \mathbf{e}_{\phi}$ is the "toroidal" magnetic field unit vector, and $\mathbf{b} = \mathbf{B}/B_0$ is the unit vector along the total magnetic field, assuming the poloidal magnetic field is small compared to the toroidal field. $\nabla_{\perp} = \nabla - \mathbf{b}_0 \mathbf{b}_0 \cdot \nabla$ is the component of the gradient in the poloidal plane.

The dissipation terms are the kinematic viscosity ν (units m²/s) and resistivity η (units Ω m).

Normalised equations

Normalising to a reference mass density ρ_0 gives an Alfvén timescale

$$\tau_A = \sqrt{\mu_0 \rho_0} \tag{4}$$

where we take a reference magnetic field of 1m and length of 1m. Other quantities are normalised as:

$$\hat{J}_{||} = \mu_0 J_{||} \qquad \hat{A}_{||} = A_{||} \qquad \hat{\psi} = \psi$$
 (5a)

$$\hat{\omega} = \frac{\tau_A}{\rho_0} \omega \qquad \hat{\phi} = \tau_A \phi \tag{5b}$$

$$\hat{J}_{||} = \mu_0 J_{||} \qquad \hat{A}_{||} = A_{||} \qquad \hat{\psi} = \psi$$

$$\hat{\omega} = \frac{\tau_A}{\rho_0} \omega \qquad \hat{\phi} = \tau_A \phi$$

$$\hat{\nu} = \tau_A \nu \qquad \hat{\eta} = \frac{\tau_A}{\mu_0} \eta$$
(5a)
(5b)

where quantities with hats on are normalised, and without hats are in SI units. Taking a 2D domain, assuming no variation in the toroidal direction, the normalised equations solved are:

$$\frac{\partial \hat{\omega}}{\partial \hat{t}} + \frac{1}{B_0} \mathbf{b}_0 \times \nabla \hat{\phi} \cdot \nabla \hat{\omega} = -\frac{1}{RB_0} \mathbf{b}_0 \times \nabla \hat{\psi} \cdot \nabla \hat{J}_{||} + \hat{\nu} \nabla_{\perp}^2 \hat{\omega}$$
 (6a)

$$\frac{\partial \hat{A}_{||}}{\partial \hat{t}} = \frac{1}{RB_0} \mathbf{b}_0 \times \nabla \hat{\psi} \cdot \nabla \hat{\phi} + \hat{\eta} \hat{J}_{||}$$
 (6b)

$$\hat{\omega} = \frac{1}{B_0^2} \nabla_{\perp}^2 \hat{\phi} \tag{6c}$$

$$\hat{J}_{\parallel} = -\nabla_{\perp}^2 \hat{A}_{\parallel} \tag{6d}$$

and all terms of the form $\frac{1}{B_0}\mathbf{b}_0 \times \nabla f \cdot \nabla g$ are implemented as 2^{nd} -order Arakawa brackets.

Results

The same parameters as for the Cartesian geometry simulations are used, with the same resolution of 640×1280 . The differences are the toroidal field, which is $B_{\phi} = 0.5/R$ [T], and the addition of a uniform vertical field $B_V = -0.03$ [T].

Figure 1: Snapshots of the toroidal current density (colour) and poloidal flux ψ (black lines)