1模型介绍

1.1 模型概述

Word2Vec是Google在2013年提出的一个NLP工具,它通过一个浅层的双层神经网络,高效率、高质量地将海量单词向量化。训练得到的词向量满足:

- 相似单词的词向量彼此接近。例如 $\operatorname{dis}(\vec{V}(\operatorname{man}), \vec{V}(\operatorname{woman})) \ll \operatorname{dis}(\vec{V}(\operatorname{man}), \vec{V}(\operatorname{computer}))$
- 保留单词间的线性规则性。例如 $ec{V}(\mathrm{king}) ec{V}(\mathrm{man}) + ec{V}(\mathrm{woman}) pprox ec{V}(\mathrm{queen})$

Word2Vec模型的灵感来源于Bengio在2003年提出的NNLM模型(Nerual Network Language Model),该模型使用一个三层前馈神经网络 $f(w_k,w_{k-1},w_{k-2},\ldots,w_{k-n+1};\theta)$ 来拟合一个词序列的条件概率 $P(w_k|w_{k-1},w_{k-2},\ldots,w_1)$ 。第一层是映射层,通过一个共享矩阵,将One-Hot向量转化为词向量,第二层是一个激活函数为tanh的隐含层,第三层是Softmax输出层,将向量映射到[0,1]概率空间中。根据条件概率公式与大数定律,使用词频 $\frac{\mathrm{Count}(w_k,w_{k-1},w_{k-2},\ldots,w_{k-n+1})}{\mathrm{Count}(w_{k-1},w_{k-2},\ldots,w_{k-n+1})}$ 来近似地估计真实的条件概率。

Bengio发现,我们可以使用映射层的权值作为词向量表征。但是,由于参数空间非常庞大,NNLM模型的训练速度非常慢,在百万级的数据集上需要耗时数周才能得到相对不错的结果,而在千万级甚至更大的数据集上,几乎无法得到结果。

Mikolov发现, NNLM模型可以被拆分成两个步骤:

- 用一个简单的模型训练出一个连续的词向量(映射层)
- 基于词向量表征, 训练出一个N-Gram神经网络模型 (隐含层+输出层)

而模型的计算瓶颈主要在第二步,特别是输出层的Sigmoid归一化部分。如果我们只是想得到词向量,可以对第二步的神经网络模型进行简化,从而提高模型的训练效率。因此,Mikolov对NNLM模型进行了以下几个部分的修改:

- 舍弃了隐含层。
- NNLM在利用上文词预测目标词时,对上文词的词向量进行了拼接,Word2Vec模型对其直接进行了求和,从而降低了隐含元的维度。
- NNLM在进行Sigmoid归一化时需要遍历整个词汇表,Word2Vec模型提出了Hierarchical Softmax 与Negative Sampling两种策略进行优化。
- 依据分布式假设(上下文环境相似的两个词有着相近的语义),将下文单词也纳入训练环境,并提出了两种训练策略,一种是用上下文预测中心词,称为CBOW,另一种是用中心词预测上下文,称为Skip-Gram。

1.2 CBOW模型

假设我们的语料是"NLP is so interesting and challenging"。循环使用每个词作为中心词,来其上下 文词来预测中心词。我们通常使用一个指定长度的窗口,根据马尔可夫性质,忽略窗口以外的单词。

中心词	上下文
NLP	is, so
is	NLP, so, interesting
so	NLP, is, interesting, and
interesting	is, so, and, challenging
and	so, interesting, challenging
challenging	interesting, and

我们的目标是通过上下文来预测中心词,也就是给定上下文词,出现该中心词的概率最大。这和完形填空颇有点异曲同工之妙。也即 $\max P(\text{NLP}|\text{is, so})*P(\text{is}|\text{NLP, so, interesting})*\dots$

用公式表示如下:

$$egin{aligned} \max_{ heta} L(heta) &= \prod_{w \in D} p(w|C(w)) \ &= \sum_{w \in D} \log p(w|C(w)) \end{aligned}$$

其中w指中心词,C(w)指上下文词集,D指语料库,也即所有中心词的词集。

问题的核心变成了如何构造 $\log p(w|C(w))$ 。我们知道,NNLM模型的瓶颈在Sigmoid归一化上,Mikolov提出了两种改进思路来绕过Sigmoid归一化这一操作。一种思想是将输出改为一个霍夫曼树,每一个单词的概率用其路径上的权重乘积来表示,从而减少高频词的搜索时间;另一种思想是将预测每一个单词的概率,概率最高的单词是中心词改为预测该单词是不是正样本,通过负采样减少负样本数量,从而减少训练时间。

1.2.1 Hierarchical Softmax

1.2.2 Negative Sampling

基于Hierachical Softmax的模型使用Huffman树代替了传统的线性神经网络,可以提高模型训练的效率。但是,如果训练样本的中心词是一个很生僻的词,那么在Huffman树中仍旧需要进行很复杂的搜索。负采样方法的核心思想是:设计一个分类器,对于我们需要预测的样本,设为正样本;而对于不是我们需要的样本,设置成负样本。在CBOW模型中,我们需要预测中心词w,因此正样本只有w,也即 $\operatorname{Pos}(w)=\{w\}$,而负样本为除了w之外的所有词。对负样本进行**随机采样**,得到 $\operatorname{Neg}(w)$,大大简化了模型的计算。

我们首先将C(w)输入映射层并求和得到隐含表征 $h_w = \sum_{u \in C(w)} \vec{v}(u)$

从而,

$$egin{aligned} p(u|C(w)) &= egin{cases} \sigma(h_w^T heta_u), & \mathcal{D}(w,u) = 1 \ 1 - \sigma(h_w^T heta_u), & \mathcal{D}(w,u) = 0 \ &= \left[\sigma(h_w^T heta_u)
ight]^{\mathcal{D}(w,u)} \cdot \left[1 - \sigma(h_w^T heta_u)
ight]^{1-\mathcal{D}(w,u)} \end{aligned}$$

从而,

$$\begin{split} \max_{\theta} L(\theta) &= \sum_{w \in D} \log p(w|C(w)) \\ &= \sum_{w \in D} \log \prod_{u \in \text{Pos}(w) \cup \text{Neg}(w)} p(u|C(w)) \\ &\approx \sum_{w \in D} \log \prod_{u \in \text{Pos}(w) \cup \text{Neg}(w)} p(u|C(w)) \\ &= \sum_{w \in D} \log \prod_{u \in \text{Pos}(w) \cup \text{Neg}(w)} \left[\sigma(h_w^T \theta_u)\right]^{\mathcal{D}(w,u)} \cdot \left[1 - \sigma(h_w^T \theta_u)\right]^{1 - \mathcal{D}(w,u)} \\ &= \sum_{w \in D} \sum_{u \in \text{Pos}(w) \cup \text{Neg}(w)} \mathcal{D}(w,u) \cdot \log \sigma(h_w^T \theta_u) + \left[1 - \mathcal{D}(w,u)\right] \cdot \log[1 - \sigma(h_w^T \theta_u)] \\ &= \sum_{w \in D} \left\{\sum_{u \in \text{Pos}(w)} \log \sigma(h_w^T \theta_u) + \sum_{u \in \text{Neg}(w)} \log[1 - \sigma(h_w^T \theta_u)]\right\} \end{split}$$

由于上式是一个最大化问题,因此使用随机梯度上升法对问题进行求解。

$$\diamondsuit L(w,u, heta) = \mathcal{D}(w,u) \cdot \log \sigma(h_w^T heta_u) + [1-\mathcal{D}(w,u)] \cdot \log[1-\sigma(h_w^T heta_u)]$$
 则 $\frac{\partial L}{\partial heta_u} = \mathcal{D}(w,u) \cdot [1-\sigma(h_w^T heta_u)]h_w + [1-\mathcal{D}(w,u)] \cdot \sigma(h_w^T heta_u)h_w = [\mathcal{D}(w,u)-\sigma(h_w^T heta_u)]h_w$ 因此 $heta_u$ 的更新公式为: $\theta_u := \theta_u + \eta[\mathcal{D}(w,u)-\sigma(h_w^T heta_u)]h_w$ 同样地, $\frac{\partial L}{\partial h_w} = [\mathcal{D}(w,u)-\sigma(h_w^T heta_u)]\theta_u$ 上下文词的更新公式为: $v(\tilde{w}) := v(\tilde{w}) + \eta \sum_{u \in \mathrm{Pos}(w) \cup \mathrm{Neg}(w)} [\mathcal{D}(w,u)-\sigma(h_w^T heta_u)]\theta_u$

1.3 Skip-Gram模型

仍旧使用上文的语料库**"NLP is so interesting and challenging"**,这次,我们的目标是通过中心词来预测上下文,也就是给定中心词,出现这些上下文词的概率最大。也即 $\max P(is|NLP)*P(so|NLP)*P(NLP|is)*P(so|is)*P(interesting|is)*...$

用公式表示如下:

$$\begin{aligned} \max_{\theta} L(\theta) &= \prod_{w \in D} \prod_{c \in C(w)} p(c|w) \\ &= \sum_{w \in D} \sum_{c \in C(w)} \log p(c|w) \end{aligned}$$

1.3.1 Hierarchical Softmax

1.3.2 Negative Sampling

2 常见面试问题

Q1: 介绍一下Word2Vec模型。

A: 两个模型: CBOW/Skip-Gram

两种加速方案: Hierarchical Softmax/Negative Sampling

Q2: Word2Vec模型为什么要定义两套词向量?

A: 因为每个单词承担了两个角色: 中心词和上下文词。通过定义两套词向量,可以将两种角色分开。cs224n中提到是为了更方便地求梯度。参考见: https://www.zhihu.com/answer/70646613

Q3: Hierarchial Softmax 和 Negative Sampling对比

A: 基于Huffman树的Hierarchial Softmax 虽然在一定程度上能够提升模型运算效率,但是,如果中心词是生僻词,那么在Huffman树中仍旧需要进行很复杂的搜索 $(O(\log N))$ 。而Negative Sampling通过随机负采样来提升运算效率,其复杂度和设定的负样本数K线性相关(O(K)),当K取较小的常数时,负采样在每一步的梯度计算开销都较小。

O4: HS为什么用霍夫曼树而不用其他二叉树?

这是因为Huffman树对于高频词会赋予更短的编码,使得高频词离根节点距离更近,从而使得训练速度加快。

Q5: Word2Vec模型为什么要进行负采样?

A: 因为负样本的数量很庞大,是 $O(|V^2|)$ 。

Q6: 负采样为什么要用词频来做采样概率?

为这样可以让频率高的词先学习,然后带动其他词的学习。

Q7: One-hot模型与Word2Vec模型比较?

A: One-hot模型的缺点

- 稀疏 Sparsity
- 只能表示维度数量的单词 Capacity
- 无法表示单词的语义 Meaning

O8: Word2Vec模型在NNLM模型上做了哪些改讲?

A: 相同点: 其本质都可以看作是语言模型;

不同点:词向量只不过 NNLM 一个产物,Word2vec 虽然其本质也是语言模型,但是其专注于词向量本身,因此做了许多优化来提高计算效率:

- 与 NNLM 相比,词向量直接 sum,不再拼接,并舍弃隐层;
- 考虑到 sofmax 归一化需要遍历整个词汇表,采用 hierarchical softmax 和 negative sampling 进行优化,hierarchical softmax 实质上生成一颗带权路径最小的哈夫曼树,让高

频词搜索路劲变小; negative sampling 更为直接,实质上对每一个样本中每一个词都进行负例采样;

Q9: Word2Vec与LSA对比?

A: LSA是基于共现矩阵构建词向量,本质上是基于全局语料进行SVD矩阵分解,计算效率低; 而Word2Vec是基于上下文局部语料计算共现概率,计算效率高。

Q10: Word2Vec的缺点?

忽略了词语的语序;

没有考虑一词多义现象

Q11: 怎么从语言模型理解词向量? 怎么理解分布式假设?

词向量是语言模型的一个副产物,可以理解为,在语言模型训练的过程中,势必在一定程度上理解了每个单词的含义。而这在计算机的表示下就是词向量。

分布式假设指的是相同上下文语境的词有似含义。

参考资料

word2vec 中的数学原理详解 https://blog.csdn.net/itplus/article/details/37969519

Word2Vec原理介绍 https://www.cnblogs.com/pinard/p/7160330.html

词向量介绍 https://www.cnblogs.com/sandwichnlp/p/11596848.html

- 一些关于词向量的问题 https://zhuanlan.zhihu.com/p/56382372
- 一个在线尝试Word2Vec的小demo https://ronxin.github.io/wevi/