Tutorial 3: Numerical Methods for Bayesian Linear Regression Models

Review the Concepts and Proofs

- 1. Consider the normal linear regression model. What is the difference between the natural conjugate and the independent normal-gamma prior?
- 2. What is Monte Carlo integration? Give three examples of often-used integrand functions $g(\theta)$.
- 3. Explain the probability integral transform.
- 4. Explain the acceptance-rejection method.
- 5. Explain importance sampling. Why is it particularly helpful for Monte Carlo integration of the normal linear regression model with inequality constraints?
- 6. Explain the Gibbs sampler. Why is it particularly helpful for Monte Carlo integration of the normal linear regression model with independent normal-gamma prior?
- 7. What does Markov chain Monte Carlo (MCMC) mean?
- 8. Why is it important to check convergence of MCMC algorithms?
- 9. Why is it, at least in principle, necessary to use a long-run variance estimator when computing the numerical standard error for a MCMC algorithm?
- 10. What is the Savage-Dickey density ratio?

Exercises

- 1. Show how you can apply importance sampling to simulate moments of a truncated normal distribution, $x \sim trunc \mathcal{N}(\mu, \sigma^2, a, b)$, $a \leq x \leq b$, using only normal random numbers.
- 2. How can you easily simulate draws from the general $t(\mu, \sigma, k)$ -distribution for integer values of k if your software offers you only standard normal random numbers? (Hint: think of the definition of the t-distribution.)
- 3. Suppose you have a posterior distribution of the scalar parameter θ which is logistic with parameters $-\infty < \bar{\alpha} < \infty$ and $0 < \bar{\beta} < \infty$ and cdf

$$F(\theta|\bar{\alpha}, \bar{\beta}) = \left[1 + \exp\left(-\frac{\theta - \bar{\alpha}}{\bar{\beta}}\right)\right]^{-1}.$$

You want to apply Monte Carlo integration to find (i) the mean of θ , (ii) the variance of θ , and (iii) the expected value of $g(\theta) = \exp(\sqrt{|\theta|} - 1)$ but you have access to random numbers from the uniform distribution and the standard normal distribution only.

- (a) Find the posterior pdf.
- (b) Write a pseudo code (i.e., a step-by-step algorithm) that applies the probability integral transform.
- (c) Consider the acceptance-rejection method. Show that the normal distribution is not a good proposal distribution $h(\theta)$ because the scale factor M is unbounded in this case. (Hint: what happens to $f(\theta)/h(\theta)$ as $\theta \to \infty$?) Next show that the t-distribution should work properly because M is bounded.
- (d) Write a pseudo code that applies the acceptance-rejection method.
- (e) Show in pseudo code how importance sampling can be used. Which importance function do you choose?
- 4. Consider the normal linear regression model with independent normal-gamma prior, $\beta \sim \mathcal{N}(\underline{\beta}, \underline{V})$ and $h \sim Gamma(\underline{s}^{-2}, \underline{\nu})$. Assume the regression model includes an intercept β_1 and one regressor with slope β_2 , i.e., $\beta = (\beta_1, \beta_2)'$.
 - (a) Explain how prior knowledge can be used to specify the prior pa-

rameters $\underline{\beta}$, \underline{V} , \underline{s}^{-2} , and $\underline{\nu}$.

- (b) State prior and likelihood. Find the posterior pdf.
- (c) Find the conditional posterior of β given h and the data.
- (d) Find the conditional posterior of h given β and the data.
- (e) Show in pseudo code how the acceptance-rejection method can be used to find the posterior mean and variance matrix of β if only standard normal random numbers are available. Find an efficient proposal distribution that minimizes the acceptance rate.
- (f) Show in pseudo code how importance sampling can be used to find the posterior mean and variance matrix of β if only standard normal random numbers are available.
- (g) Show in pseudo code how Gibbs sampling can be used to find the posterior mean and variance matrix of β if independent normal and gamma random numbers are available.