# Dasar-Dasar Penunjang Kalkulus

Pertemuan 1 dan 2

## Bilangan Riil



#### Pertidaksamaan

- Pertidaksamaan satu variabel adalah suatu bentuk aljabar dengan satu variabel yang dihubungkan dengan relasi urutan.
- Bentuk umum pertidaksamaan :

$$\frac{A(x)}{B(x)} < \frac{C(x)}{D(x)}$$
,  $A(x)$ ,  $B(x)$ ,  $C(x)$  dan  $D(x)$ : suku banyak. ( tanda < dapat

digantikan oleh  $\leq, \geq, >$ ).

dengan A(x), B(x), D(x), E(x) adalah suku banyak (polinom) dan B(x)  $\neq$  0, E(x)  $\neq$  0

### Nilai Mutlak

Misalkan  $x \in \mathbb{R}$ . Harga mutlak dari x, ditulis  $|x| = \begin{cases} -x & x \le 0 \\ x & x > 0 \end{cases}$  Contoh: |3| = 3, |-4| = 4, |0| = 0.

#### **Akar Kuadrat**

Misalkan  $x \ge 0$ . Akar kuadrat dari x, ditulis  $\sqrt{x}$  adalah **bilangan real non-negatif** a sehingga  $a^2 = x$ .

Ilustrasi: (a)  $\sqrt{9} = 3$ , (b)  $\sqrt{(-4)^2} = 4$ .

Secara umum : Bila  $b \in \mathbb{R}$  maka  $\sqrt{b^2} = |b|$ .

#### Teorema-teorema

Jika a dan b adalah bilangan ril, maka :

(i) 
$$|x| < a \Leftrightarrow -a < x < a$$

(ii) 
$$|x| > a \Leftrightarrow x > a$$
 atau  $x < -a$ 

(iii) 
$$|x| \le a \Leftrightarrow -a \le x \le a$$

(iv) 
$$|x| \ge a \Leftrightarrow x \ge a$$
 atau  $x \le -a$ 

(v) 
$$|x| = a \Leftrightarrow x = a$$
 atau  $x = -a$ 

(vi) 
$$|ab| = |a||b|$$
. Bukti  $|ab| = \sqrt{(ab)^2} = \sqrt{a^2b^2} = \sqrt{a^2}\sqrt{b^2} = |a||b|$  (terbukti)

$$(vii) \ \left|\frac{a}{b}\right| = \frac{|a|}{|b|}, b \neq 0. \ Bukti \ \left|\frac{a}{b}\right| = \sqrt{\left\{\frac{a}{b}\right\}^2} = \sqrt{\frac{a^2}{b^2}} = \frac{\sqrt{a^2}}{\sqrt{b^2}} = \frac{|a|}{|b|} \ (terbukti)$$

(viii) |a + b| ≤ |a| + |b| (ketidaksamaan segitiga)

Bukti: 
$$(a+b)^2 = a^2 + 2ab + b^2 \le |a|^2 + 2|a||b| + |b|^2 = \{|a| + |b|\}^2$$
  
$$\sqrt{(a+b)^2} \le \sqrt{\{|a| + |b|\}^2} = ||a| + |b|| = |a| + |b| \quad \text{(terbukti)}$$

(ix) 
$$|a - b| \le |a| + |b|$$
. Bukti  $|a - b| = |a + (-b)| \le |a| + |b|$  (terbukti)

(x) 
$$|a| - |b| \le |a - b|$$
. Bukti  $|a| = |(a - b) + b| \le |a - b| + |b|$   
Jika setiap suku dikurangi dengan  $|b|$ , maka  $|a| - |b| \le |a - b|$  (terbukti)

### Sistem Koordinat Kartesius



Sumbu horizontal dinamakan sumbu-x (absis) dan sumbu vertikal dinamakan sumbu-y (ordinat). Setiap pasangan terurut bilangan (a,b) dapat digambarkan sebagai sebuah titik pada koordinat tersebut dan sebaliknya, setiap titik pada bidang koordinat Kartesius berkorespondensi dengan satu buah pasangan bilangan (a,b).

## Jarak Dua Titik di Bidang

Misalkan  $P(x_1,y_1)$  dan  $Q(x_2,y_2)$  dua buah titik pada bidang, jaraknya adalah  $d(P,Q)=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$ 

#### **Garis Lurus**

Bentuk umum: Ax + By + C = 0 dengan A, B, dan C konstanta.

Nilai A dan B tidak boleh nol secara bersamaan.

Grafik garis lurus ditentukan oleh dua titik  $(x_1, y_1)$  dan  $(x_2, y_2)$  yang memenuhi persamaan tersebut.

#### Hal<sup>2</sup> khusus:

- Bila A=0, persamaan berbentuk  $y=\frac{-C}{R}$ , grafiknya sejajar sumbu-x.
- Bila B=0, persamaan berbentuk  $x=\frac{-C}{A}$ , grafiknya sejajar sumbu-y.
- Bila A, B tak nol,  $Ax + By + C = 0 \iff y = -\frac{A}{B}x \frac{C}{B}$ .



Misalkan  $(x_1,y_1)$  uan  $(x_2,y_2)$  garis tersebut. Kemiringan garis didefinisikan sebagai  $m=\frac{y_2-y_1}{x_2-x_1}$  Buktikan bahwa  $m=-\frac{A}{B}$ .

Persamaan garis lurus yang melalui dua titik  $(x_1,y_1)$  dan  $(x_2,y_2)$  :

$$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$$

Persamaan garis lurus dengan kemiringan m dan melalui titik  $(x_1,y_1)$ :

$$y - y_1 = m(x - x_1)$$

Misalkan garis  $\ell_1$  dan  $\ell_2$  dua buah garis dengan kemiringan  $m_1$  dan  $m_2$ .

Kedua garis tersebut sejajar  $\iff m_1 = m_2$ 

Kedua garis tersebut saling tegak lurus  $\iff m_1 \cdot m_2 = -1$  (mengapa?)

## Lingkaran

Lingkaran adalah himpunan titik-titik yang jaraknya sama terhadap titik tertentu (disebut pusat lingkaran). Persamaan lingkaran yang berpusat di (0,0) dan jari-jari r adalah:  $x^2+y^2=r^2$  (gambar sebelah kiri). Bila pusat lingkaran berada di titik (p,q) maka persamaannya menjadi  $(x-p)^2+(y-q)^2=r^2$  (gambar sebelah kanan).



lingkaran  $x^2 + y^2 = 3$ 



lingkaran 
$$(x-1)^2 + (y-2)^2 = 3$$

### **Soal Latihan**

Cari himpunan penyelesaian dari pertidaksamaan

$$1 \quad \frac{x+2}{4-2x} \ge 1-x$$

$$2 \frac{x-2}{x^2} \le \frac{x+1}{x+3}$$

$$3 |2-x|+|3-2x| \le 3$$

$$4 |x+1|^2 + 2|x+2| \ge 2$$

$$5 \ 2x + 3 \ge |4x + 5|$$

$$6 ||x| + 3x| \le 2$$