Zadanie 19. *(4 pkt)*

Funkcja f jest funkcją wykładniczą. Określ liczbę rozwiązań równania f(x-1) = m w zależności od wartości parametru m. Odpowiedź uzasadnij.

Zadanie 11. (3 pkt)

Wyznacz dziedzinę funkcji $f(x) = \log_{x^2-3}(x^3 + 4x^2 - x - 4)$ i zapisz ją w postaci sumy przedziałów liczbowych.

Zadanie 3. (4 pkt)

Na rysunku poniżej przedstawiono wykres funkcji logarytmicznej f.

Rozwiąż równanie $(f(x))^2 - 16 = 0$.

Zadanie 20. (4 pkt)

Dane są funkcje
$$f(x) = 3^{x^2 - 5x}$$
 i $g(x) = \left(\frac{1}{9}\right)^{-2x^2 - 3x + 2}$.

Oblicz, dla których argumentów x wartości funkcji f są większe od wartości funkcji g.

Zadanie 13. (5 pkt)

Wyznacz dziedzinę funkcji $f(x) = \log_x (4^x - 12 \cdot 2^x + 32)$.

Zadanie 2. (5 pkt)

Rozwiąż nierówność:
$$\log_{\frac{1}{3}}(x^2-1) + \log_{\frac{1}{3}}(5-x) > \log_{\frac{1}{3}}(3(x+1))$$
.

Zadanie 9. *(4 pkt)*

Wyznacz dziedzinę i najmniejszą wartość funkcji $f(x) = \log_{\frac{\sqrt{2}}{2}} (8x - x^2)$.

Zadanie 2. (4pkt)

Na rysunku przedstawiono wykres pewnej funkcji wykładniczej $f(x) = a^x$ dla $x \in R$:

- a) Narysuj wykres funkcji g, który jest obrazem wykresu funkcji f w przesunięciu o wektor $\vec{u} = [2, -1].$
- b) Wyznacz a i zapisz wzór funkcji g otrzymanej w wyniku tego przesunięcia.
- c) Odczytaj z wykresu zbiór wszystkich argumentów, dla których g(x) > 0.

Zadanie 12. (0-4)

Liczba m jest sumą odwrotności dwóch różnych pierwiastków równania $k^2x^2 + (k-1)x + 1 = 0$, gdzie $k \neq 0$.

Wyznacz zbiór wartości funkcji określonej wzorem $f(x) = 2^m$.

Zadanie 1. (0-1)

Funkcja f określona jest wzorem $f(x) = |3+5^{3-x}|-1$ dla każdej liczby rzeczywistej. Zbiorem wartości funkcji f jest

A.
$$(2,+\infty)$$

B.
$$\langle 1,3 \rangle$$

B.
$$\langle 1,3 \rangle$$
 C. $\langle -1,+\infty \rangle$ **D.** $(0,+\infty)$

D.
$$(0,+\infty)$$

Zadanie 3. (4 pkt)

Na rysunku przedstawiony jest wykres funkcji wykładniczej $f(x) = a^x$ dla $x \in R$.

- a) Oblicz a.
- b) Narysuj wykres funkcji g(x) = |f(x)-2| i podaj wszystkie wartości parametru $m \in R$, dla których równanie g(x) = m ma dokładnie jedno rozwiązanie.

ZADANIE 3 (4 PKT.)

Dany jest wykres funkcji logarytmicznej f.

- a) Wyznacz wzór funkcji f.
- b) Narysuj wykres funkcji g(x) = |f(x) 2|.
- c) Odczytaj z rysunku zbiór argumentów, dla których wartości funkcji g są nie mniejsze od wartości funkcji f.

Zadanie 1. (*3 pkt*)

Na rysunku narysowano fragment wykresu funkcji $f(x) = 2^{x-3} - b$ określonej dla $x \in R$.

- a) Podaj wartość b.
- b) Naszkicuj wykres funkcji g(x) = |f(x)|.
- c) Podaj wszystkie wartości parametru p, dla których równanie g(x) = p ma dokładnie jedno rozwiązanie.

Zadanie 5. (0–1)

Funkcja f jest określona dla wszystkich liczb rzeczywistych wzorem $f(x) = 3^{x-2} + 3$. Prosta l ma równanie y = 3,3. Ile punktów wspólnych mają wykres funkcji f i prosta l?

- A. Zero.
- B. Jeden.
- C. Dwa.
- D. Nieskończenie wiele.

Zadanie 18. (10 pkt)

Rozwiąż nierówność $\frac{1}{2^x} + \frac{1}{4^x} + \frac{1}{8^x} + ... > 2^x - 0$, (9), gdzie lewa strona tej nierówności jest sumą nieskończonego ciągu geometrycznego.

Zadanie 22. (10 pkt)

Rozwiąż równanie $\log_3(\log_9 x) = \log_9(\log_3 x)$.

Zadanie 11. (4 pkt)

Na rysunku przedstawiono fragment wykresu funkcji wykładniczej określonej wzorem $f(x) = \left(\frac{1}{2}\right)^x$. Rozważamy funkcję g określoną wzorem $g(x) = \left|f(x+3)-2\right|$. Wyznacz wszystkie wartości parametru k, dla których równanie g(x) = k ma dwa rozwiązania takie, że ich iloczyn jest liczbą ujemną.

Zadanie 12. *(3 pkt)*

Na rysunku przedstawiony jest fragment wykresu funkcji logarytmicznej f określonej wzorem $f(x) = \log_2(x-p)$.

- a) Podaj wartość p.
- b) Narysuj wykres funkcji określonej wzorem y = |f(x)|.
- c) Podaj wszystkie wartości parametru m, dla których równanie |f(x)| = m ma dwa rozwiązania o przeciwnych znakach.