

Asian Herpetological Research 2020, 11(2): 108-114

DOI: 10.16373/j.cnki.ahr.190055

Ring Clinal Variation in Morphology of the Green Odorous Frog (Odorrana margaretae)

Guannan WEN^{1,2} and Jinzhong FU^{1,3*}

Abstract The green odorous frog (Odorrana margaretae) has an interesting ring-shaped divergence pattern around the Sichuan Basin and documenting its morphological variations is essential in understanding its evolutionary history. Using curvilinear models, we detected significant geographical clinal variations in morphological traits, particularly sizes, of female O. margaretae. Males had significantly smaller sizes than females, and also had smaller variation ranges than females. One major trend of morphological variations was clinal: populations from the west tended to have a larger size with wider head and longer posterior limbs than populations from the east. Species history, with an early extended isolation and two subsequent secondary contacts, may explain most of the geographical clinal variations of O. margaretae. Bioclimatic factors may also contribute in explaining the variance of morphology.

Keywords geographical clinal, intraspecific variation, morphology, *Odorrana margaretae*

E-mail: jfu@uoguelph.ca

Received: 5 October 2019 Accepted: 14 November 2019

1. Introduction

The odorous green frog (Odorrana margaretae) displays an interesting ring-shaped divergence pattern around the Sichuan Basin of western China, much like a ring species (Qiao et al. 2018). It is a large stream-dweller primarily distributed in the mountains of western China with a few sporadic distribution records at the east (Figure 1A; Fei et al., 2009). Using DNA sequence and microsatellite DNA data, Qiao et al. (2018) examined its phylogeographical history. The current ringshaped distribution pattern likely originated from two refugial populations, one at the west and the other at the southeast of the Sichuan Basin. Both populations expanded around the Basin and formed two contact zones. Extensive admixture occurred at the south contact zone, which became an evolutionary 'melting pot', and the second contact zone at the northwestern corner of the Basin only revealed limited hybridization and partial reproductive isolation has developed between the two expansion fronts (Qiao et al., 2018). Furthermore, the chain populations demonstrated a strong isolation by distance pattern around the Basin, suggesting that the genetic variation were mostly gradual and continuous (Qiao et al. 2018).

Morphological variations among these populations have been noticed (Fei et al., 2009; Shen et al., 2009). For example, Fei et al. (2009) reported that individuals from the western populations (Mt. O'mei) are larger than individuals from the eastern (Wushan) and southern (Anlong) populations. Large ventral color pattern variations were also described (Fei et al. 2009). With its ring-shaped divergence pattern, we would

¹ Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China

² University of Chinese Academy of Sciences, Beijing 100049, China

³ Department of Integrative Biology, University of Guelph, Ontario N1G 2W1, Canada

^{*}Corresponding author: Prof. Jinzhong FU, from University of Guelph, Guelph, Ontario, Canada, with his research focusing on herpetology, molecular evolution and phylogenetics.

No. 2

Figure 1 A: Sampling sites of *Odorrana margaretae* around Sichuan Basin. B: Patterns of geographical clinal variation in male and female morphology: mean scores of PC1 from every site were plotted in coordinates. The grey scale and size of symbols are according to increasing size.

expect morphological clinal variations around the Sichuan Basin, in a similar fashion to genetic variation. Numerous early works have demonstrated that both primary differentiation and secondary contact can result in clinal variation (e.g. Endler 1977), and clinal variation in morphological traits has been well documented in various animal groups (e.g. mammals, Okeefe *et al.*, 2013; John and Richmond, 1993; turtles, Ennen *et al.*, 2014; geckos, Fitness *et al.*, 2012; frogs, Poynton and Loader, 2008; fishes, Moore and Hendry, 2005). Understanding the significance and the mechanisms of clinal variation will lead to a broad understanding of fundamental evolutionary processes

such as local adaptation, population differentiation, and ultimately, speciation (Mayr, 1942; Endler, 1977).

In this study, we examined the morphological traits of *O. margaretae* populations around the Sichuan Basin. Our objectives are 1) documenting morphological variations quantitively and 2) exploring potential causes of these variations. We specifically considered two alternative causes, its evolutionary history in particular the formation of its ring distribution, or climatic factors. If the evolutionary history is the leading cause, we would expect a clinal variation follow the ring distribution; if climate dominates these variations, we

110 Vol. 11

would expect a strong correlation between morphological traits and climatic factors, irrelevant to its ring distribution.

2. Materials and Methods

2.1. Data collection A total of 152 adult *O. margaretae* specimens (61 females, 91 males) from 20 locations around the Sichuan Basin were measured (Appendix Table S1, Figure 1A). Specimens were collected from 1956 to 2018 (Appendix Table S1), and are deposited at the Herpetology Collection of the Chengdu Institute of Biology, Chinese Academy of Sciences (in 10% formalin), and at the Henan Normal University. We selected 21 external body characteristics that are most commonly used for anurans (Table 1). All measurements were collected using a Mitutoyo ditgimatic caliper (Mitutoyo Corp., Japan) and measured to the nearest 0.01mm.

For environmental factors, 19 bioclimatic variables for the years 1970-2000 with a spatial resolution of 30 arc-seconds resolution (~1km) were first obtained from WorldClim version 2 database (http://www.worldclim.org/; Fick and Hijmans 2017), and extracted by site using ArcMap 10.2. Eleven of these

variables are related to variations in temperature (BIO1-11, Table 2), and eight are related to variations in precipitation (BIO12-19, Table 3).

2.2. Data Analysis We first compared the snout-vent length (SVL) between females and males using ANOVA. Since significant differences were detected, all downstream analysis was conducted separately for males and females.

The 21 morphological measurements were first subjected to a principal component analysis (PCA). For morphological traits, we plotted the mean scores value of PC1 from every site. Wilcoxon rank sum test was used to compare the morphological data among different geological groups by using the first principle component score values. The Wilcoxon tests were conducted on an online calculator (https://astatsa.com/WilcoxonTest/).

To avoid autocorrelation, a PCA was also performed on the 19 bioclimatic variables. Values of bioclimatic variables with loading score greater than 0.2 on PC1 and PC2 were then plotted around the Basin. The PCA analyses were carried out with the 'prcomp' function using R (v. 3.6.1), and plotting was conducted using R package 'ggplot2' (Wickham 2016).

Table 1 Summary of 21 morphological characteristics and the corresponding PC1 (PC1morph) loadings on PCA in *Odorrana margaretae*. All measurements are in unit of millimeter. Values in bold represent loading absolute values greater than 0.2. Asterisks indicate significant difference between the sexes.

D. J.,]	Male	Fe	emale
Body measure —	Mean (±SD)	PC1morph (79.37%)	Mean (±SD)	PC1morph (90.57%)
Snout-vent length, SVL*	72.75 (±5.24)	0.6205	87.67 (±10.21)	0.6586
Head length, HL	22.04 (±1.98)	0.1817	25.83 (±2.35)	0.1236
Head width, HW	24.39 (±1.97)	0.2194	30.35 (±3.91)	0.252
Snout length, SL	9.44 (±0.88)	0.0541	11.23 (±1.22)	0.0546
Internarial distance, IND	8.61 (±0.68)	0.059	10.37 (±1.09)	0.0596
Interoptic distance, IOD	5.93 (±0.75)	0.0388	6.87 (±1.26)	0.0563
Antoptic distance, AOD	12.66 (±1.03)	0.1041	15.26 (± 1.88)	0.1135
Postoptic distance, POD	19.28 (±1.52)	0.155	22.72 (±2.54)	0.1536
Eye-nostril distance, EN	5.20 (±0.45)	0.0363	6.11 (±0.75)	0.0353
Eye diameter, ED	8.72 (±0.71)	0.0504	9.82 (±0.87)	0.0404
Tympanum diameter, TD	3.91 (±0.37)	0.0178	4.28 (±0.46)	0.0154
Hand length, HAL	18.29 (±1.50)	0.1457	21.50 (±2.51)	0.138
Forearm length, FLL	21.19 (±1.51)	0.1589	25.04 (±2.68)	0.1635
Forearm width, FLW	7.71 (±1.27)	0.0691	8.14 (±1.26)	0.0352
Foot length, FL	42.93 (±3.36)	0.3688	50.99 (±5.32)	0.3335
Tarsus length, TSL	20.68 (±1.56)	0.1522	24.30 (±2.58)	0.1569
Inner metatarsal tubercle length, IMTL	4.28 (±0.51)	0.0431	5.15 (±0.74)	0.0378
Inner metatarsal tubercle width, IMTW	1.96 (±0.28)	0.0138	2.32 (±0.37)	0.0148
Tibia length, TL	44.52 (±2.99)	0.3476	52.56 (±5.32)	0.3414
Tibia width, TW	10.58 (±1.25)	0.1136	13.17 (±2.08)	0.1223
Thigh length, THL	42.35 (±3.28)	0.3752	50.03 (±5.50)	0.3494

No. 2

Table 2 The loadings on the first two components (PC1bioc and PC2bioc) of PCA of 19 bioclimatic factors. Values in bold represent loading absolute values greater than 0.2 (the cutoff was inferred from Sidlauskas *et al.*, 2010).

Bioclimatic factors	PC1bioc (86.36%)	PC2bioc (12.48%)
BIO1 _ Annual Mean Temperature	-0.0018	-0.0066
BIO2 _ Mean Diurnal Range (Mean of monthly (max temp - min temp))	-0.0021	-0.0104
BIO3 _ Isothermality (BIO2/BIO7) (* 100)	-0.0069	-0.0376
BIO4 _ Temperature Seasonality (standard deviation *100)	0.0641	0.3896
BIO5 _ Max Temperature of Warmest Month	-0.0019	-0.0047
BIO6 _ Min Temperature of Coldest Month	-0.0015	-0.0058
BIO7 _ Temperature Annual Range (BIO5-BIO6)	-0.0004	0.0011
BIO8 _ Mean Temperature of Wettest Quarter	-0.0012	-0.0025
BIO9 _ Mean Temperature of Driest Quarter	-0.0023	-0.0105
BIO10 _ Mean Temperature of Warmest Quarter	-0.0007	-0.0007
BIO11 _ Mean Temperature of Coldest Quarter	-0.0023	-0.0105
BIO12 _ Annual Precipitation	-0.7526	0.5832
BIO13 _ Precipitation of Wettest Month	-0.1891	-0.2453
BIO14 _ Precipitation of Driest Month	-0.0165	0.0459
BIO15 _ Precipitation Seasonality (Coefficient of Variation)	-0.0032	-0.1301
BIO16 _ Precipitation of Wettest Quarter	-0.4309	-0.4373
BIO17 _ Precipitation of Driest Quarter	-0.0543	0.1523
BIO18 _ Precipitation of Warmest Quarter	-0.4492	-0.4354
BIO19 _ Precipitation of Coldest Quarter	-0.0543	0.1523

Table 3 Regression analysis for morphology, geography and bioclimatic factors. Six regression models are compared. (1) The cubic polynomial regression model that morphology (PC1morph) is regressed onto geographical coordinates (x, longitude; y, latitude); (2) (3) The linear regression model that morphology is regressed onto bioclimatic factors (PC1bioc and PC2bioc); (4) The linear regression model that morphology is regressed onto locality altitude; (5) The linear regression model that morphology is regressed onto the year of collection; (6) The full regression model that morphology is regressed onto geographical coordinates as well as bioclimatic factors. Significant predictors are indicated by "*" (P < 0.05). R^2 is the correlation coefficient between the outcomes and the predictors, and P-value represents significance of the regression analysis. Akaike information criterion, AIC, was used to compare the goodness of fit of the models.

		M	ale			Fer	nale	
Candidate models	Significant Predictors	$R^{2}(\%)$	P-value	AIC	Significant Predictors	$R^{2}(\%)$	P-value	AIC
(1) PC1morph~polym (x,y)	-	0.8393	0.2167	81.32	xy*	0.7725	0.0414	143.75
(2) PC1morph~PC1bioc	-	0.0021	0.8758	90.88	-	0.0008	0.91	155.87
(3) PC1morph~PC2bioc	PC2bioc*	0.6166	0.0009	77.49	PC2bioc*	0.3397	0.0088	148
(4) PC1morph~alt	-	0.1271	0.2108	89.01	-	0.0199	0.5651	155.5
(5) PC1morph~year	-	0.0133	0.6951	90.73	-	0.0389	0.4187	155.13
(6) PC1morph~polym (x,y) + PC2bioc	-	0.8402	0.3901	83.24	y*, xy*, x ² y*	0.8224	0.038	141.05

For testing correlation between morphological traits and geographical and climatic factors, six models were analyzed and compared (Table 3). First, a trend surface analysis (Borcard *et al.*, 1992; Legendre and Legendre, 1998; Botes *et al.*, 2006; Cardini *et al.*, 2007) was applied to fit geographical coordinates to variations in morphology, taking into account of nonlinearities. The morphological variables were regressed onto a third-order polynomial of longitude and latitude:

 $f(x,y) = b_0 + b_1x + b_2y + b_3x^2 + b_4xy + b_5y^2 + b_6x^3 + b_7x^2y + b_8xy^2 + b_9y^3$, where x and y are longitude and latitude respectively. Second, a basic ordinary least squares (OLS) model was used for fitting bioclimatic factors, locality altitude, and the year of collection to morphological variations separately. Finally, a full model evaluation, including geographical variables and other variables that were identified as significant predictors in the OLS model, was conducted to explain variance in morphology.

112 Vol. 11

The first principle component of PCA on morphology and the first two principle components of PCA on bioclimatic factors were included in relevant models. Akaike information criterion (AIC) was used to compare the goodness of fit of the models. All correlation models were conducted separately on males and females. The 'lm' function in R was used to archive all the regressions.

3. Results

Morphological data revealed significant sexual size dimorphism in *O. margaretae*. The SVLs of females were significantly larger than males (Table 1). The raw measurement data are provided in Appendix Table S2.

The principle component analysis on 21 morphological measurements revealed that the first axis explained the vast majority of total variations in both males (PC1, 79.37%; PC2, 5.28%) and females (PC1, 90.57%; PC2, 3.33%). For both males and females, PC1 represented mostly body length (SVL), head width (HW) and hind leg length (FL, TL, and THL) (loading > 0.2; Table 1). The highest loading was for snot-vent length (SVL) (males: 0.6205; females: 0.6586).

The males and females of O. margaretae displayed similar variation patterns of morphology around the Sichuan Basin, but the pattern was stronger in females than in males (Figure 1B). Individuals at the eastern region of the Basin (site 7–8, Figure 1) had the smallest body size, with mean PC1 scores of -12.03 (males) and -26.37 (females). The body size increased both westward and northward around the Basin, but the western populations (site 14-20) attained a much larger size (mean PC1 scores: males, 4.28; females, 9.13) than the northern populations did (site 1-6, the mean PC scores: males, -0.98; females, -11.04), with a significant difference between those two regions (males, Wilcoxon W = 0.99, P < 0.05; females, Wilcoxon W = 3.06, P <0.005). The southern populations possessed an intermediate size (site 9-13, the mean PC1 scores: males, 0.99; females: 3.06) between the eastern and western populations (Appendix Table S3). No significant difference was found between the southern populations and others.

PCA of 19 bioclimatic factors summarized 98.84% of the variation in the first two components, with PC1 explaining 86.36% of total variance, and PC2 explaining 12.48% (Table 2). PC1 mostly represented the precipitation related factors (e.g., BIO12, BIO16 and BIO18), with the highest loading for annual precipitation (BIO12). PC2 was correlated positively with annual precipitation (BIO12) and temperature seasonality (BIO4), and moreover, was negatively correlated with several precipitation factors (e.g., BIO13, BIO16 and BIO18). For precipitation, the annual precipitation was high in both eastern and western regions, and became drier toward the north. The west of the

basin showed noticeably abundant rainfall in the wettest month/quarter and warmest quarter (Appendix Figure S1A). As for temperature, the western region possessed a more stable seasonality than others; the temperature seasonality reduced gradually from east to west (Appendix Figure S1B).

We detected a significant correlation between geography and morphology in females, and between bioclimatic factors and morphology in both sexes (Table 3). The best-performing model in females was the full regression model that included both geographical and bioclimatic factors (with the minimum AIC: 141.05), and the spatial components (y, xy and x^2y) were significant in explaining the morphological variations. The model that included only geographical components also provided good fit for morphology (AIC: 143.75), and geography explained 77.25% the variance of the morphological variations in females (Table 3). Male morphology was not significantly correlated with geography, but was significantly correlated with PC2 of the bioclimatic factors ($F_{3,10} = 9.547$, P < 0.005, Table 3). Neither locality altitudes nor collecting years showed any significant effects on morphology.

4. Discussion

There are substantial morphological variations within the green odorous frog around the Sichuan Basin. The variations exhibit a clear geographical clinal pattern. While the eastern populations possess the smallest body size, the size increases along the southern margin of the Basin and the western populations attain the largest body size. Along the northern margin, populations also increase their body sizes, albeit to a less degree compared to the western populations (Figure 1B, Table 1). Furthermore, sexual size dimorphism is significant; females are larger than males and also show a larger variation range than males. For example, females have an SVL range of 67.96–109.69 mm, while the range is 58.89–84.67 mm in males (Appendix Table S2, Table 1).

Climate has a clear effect on morphological traits of this species. We detected a significant correlation between the morphological traits and PC2 of climate data (Table 3). Nevertheless, the climate data did not act as a significant predictor in the full model; this is likely because of the commonly observed autocorrelation between climate and geography. Climate often has significant influence on phenotypic variations both plastically or genetically, which is well-documented (e.g. Hubbe *et al.*, 2009; Siepielski *et al.*, 2017; Urban *et al.*, 2014). The western region of the Sichuan Basin has a warm and stable climate that is wet overall and receives abundant rainfall during the wettest period of the year (Appendix Figure S1). These favorable environmental factors likely promote growth. Furthermore, high environmental

No. 2

humidity, long wet periods, and mild winters often improve larval survivorship and breeding success of those aquatic breeders (Banks et al. 1994; Blaustein et al., 2010; Scherer et al., 2008). All of these may have contributed to the large body size of green odorous frogs in this region. The initial isolation of the species (Qiao et al. 2018) likely produced a west-large and east-small dichotomy, and during the westward expansion of the east refugial population along both the southern and the northern margins of the Basin, the body sizes increased. Although this parallelism could be caused by several other mechanisms (e.g. chance, boundary effect), climatic factors likely played an important role. The observed climatic variations may have also caused several other phenotypic variations of the species. As important cues for the onset of reproduction, high temperature and precipitation may also promote an early breeding season, which is likely beneficial (Altwegg and Reyer, 2003). The breeding season of the western populations are generally earlier than the eastern populations. For example, the Mt. O'mei population at the west starts breeding during winter or early spring (Fei et al., 2009), while the Mt. Tian Ping population at the east has a breeding season from late August to early September (Shen et al. 2016).

Species evolutionary history may also explain the observed morphological variations. The observed clinal variation is consistent with its ring distribution pattern and is compatible with the two-refugia hypothesis of its species history (Qiao et al. 2018). The green odorous frog likely evolved from two historical refugia formed during Pleistocene, the western region and the south-eastern region of the Sichuan Basin (Qiao et al., 2018). The extended isolation period, which produced the initial genetic divergence, may have also generated the morphological difference, mostly body size difference with the eastern population being small and the western population being large. Climatic differences induced natural selection likely contributed to the observed phenotypical variations, while genetic drift likely also played an important role, as it has been demonstrated in many cases (e.g., cichlids, Arnegard et al., 1999; Van Oppen et al., 1997; Markert et al., 1999). Post-glacial expansion and subsequent hybridization likely produced the geographical clinal variation (Figure 1B). The genetic data suggested that the two refugial populations expanded around the Basin and re-connected at two zones. A broad contact zone at the south, which became an evolutionary 'melting pot' (Dufresnes et al 2016; Qiao et al., 2018), incurred extensive admixture between the two refugial populations. The intermediate phenotypes of the southern populations are likely consequences of this admixture (Figure 1B, Wilcoxon test on southern and western populations showed no significant). The second contact zone is located at the north-western corner of the Basin, where only limited gene exchange occurred. Concordantly, the morphological variations also showed significant difference between the western and northern populations with limited intermediate forms (Wilcoxon test between northern and western populations were significant in both sexes: males, Wilcoxon W = 0.99, P < 0.05; females, Wilcoxon W = 3.06, P < 0.005).

It is probably difficult to completely reject one of the two alternative hypotheses, as they are not mutually exclusive and partially correlated. In the case of the green odorous frog, its evolutionary history combined with climatic factor clearly provides a better explanation of its morphological variation than either hypothesis itself.

We study also rejected several other factors that often contribute to morphological variations. We tested the year of collection and locality altitude, and neither is correlated with the morphological traits that we examined (Table 3). Nevertheless, our small sample sizes may limit the detecting power of our analysis. Furthermore, we did not determine the ages of our samples. Since amphibians have indeterminate growth, the impacts of sample age need to be taken into account for formulating hypotheses in future studies.

Odorrana margaretae has a ring-species alike genetic divergence pattern around the Sichuan Basin, which make it an excellent model system for studying speciation. This study revealed a compatible geographical clinal variation of its morphology. Future work on other phenotypic variations, particularly these may potential link to reproductive isolation, are essential to understand it species history and hybridization dynamics.

Acknowledgements We are grateful to L. QIAO and Y. WU for most of samples collection. Dr. X. H. CHEN of the Henan Normal University provided specimens from Jinfoshan (site 10), Dafang (site 11) and Xishui (site 12) for measuring generously. Dr. Yin QI and Xia QIU provided valuable comments on regression analysis.

References

Altwegg R., Reyer H. U. 2003. Patterns of natural selection on size at metamorphosis in water frogs. Evolution, 57(4): 872–882

Arnegard M. E., Markert J. A., Danley P. D., Stauffer Jr. J. R., Ambali A. J., Kocher T. D. 1999. Population structure and colour variation of the cichlid fishes *Labeotropheus fuelleborni Ahl* along a recently formed archipelago of rocky habitat patches in southern Lake Malawi. Proc R Soc London, Ser. B, 266(1415): 119–130

Banks B., Beebee T. J., Cooke A. S. 1994. Conservation of the natterjack toad *Bufo calamita* in Britain over the period 1970–1990 in relation to site protection and other factors. Biol Conserv, 67(2): 111–118

Blaustein A. R., Walls S. C., Bancroft B. A., Lawler J. J., Searle C. L., Gervasi S. S. 2010. Direct and indirect effects of climate change on amphibian populations. Diversity, 2(2): 281–313

Borcard D., Legendre P., Drapeau P. 1992. Partialling out the spatial

114 Vol. 11

- component of ecological variation. Ecology, 73(3): 1045-1055
- Botes A., McGeoch M. A., Robertson H. G., Niekerk A., Davids H. P., Chown S. L. 2006. Ants, altitude and change in the northern Cape Floristic Region. J Biogeogr, 33: 71–90
- Cardini A., Jansson A. U., Elton S. 2007. A geometric morphometric approach to the study of ecogeographical and clinal variation in vervet monkeys. J Biogeogr, 34(10): 1663–1678
- Dufresnes C., Litvinchuk S. N., Leuenberger J., Ghali K., Zinenko O., Stock M., Perrin N. 2016. Evolutionary melting pots: A biodiversity hotspot shaped by ring diversifications around the Black Sea in the Eastern tree frog (*Hylaorientalis*). Mol Ecol, 25(17): 4285–4300
- Endler J. A. 1977. Geographic variation, speciation, and clines (No. 10). New jersey, USA: Princeton University Press
- Ennen J. R., Kalis M. E., Patterson A. L., Kreiser B. R., Lovich J. E., Godwin J. C., Qualls C. P. 2014. Clinal variation or validation of a subspecies? A case study of the *Graptemys nigrinoda* complex (Testudines: Emydidae). Biol J Linn Soc, 111(4): 810–822
- Fei L, Hu S, Ye C, Huang Y. 2009. Fauna Sinica, Amphibia, Vol. 3. Beijing, China: Science Press (In Chinese)
- Hubbe M., Hanihara T., Harvati K. 2009. Climate signatures in the morphological differentiation of worldwide modern human populations. Anat Rec, 292: 1720–1733
- Hayes J. P., Richmond M. E. Clinal variation and morphology of woodrats (*Neotoma*) of the eastern United States. J Mammal, 74(1): 204–216
- Fick S. E., Hijmans R. J. 2017. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int J Climatol, 37(12): 4302–4315
- Fitness J., Hitchmough R. A., Morgan-Richards M. 2012. Little and large: Body size and genetic clines in a New Zealand gecko (*Woodworthia maculata*) along a coastal transect. Ecol Evol, 2(2): 273–285
- Legendre P., Legendre L. 1998. Numerical Ecology, 2nd Edition. Amsterdam: Elsevier Academic Press
- Markert J. A., Arnegard M. E., Danley P. D., Kocher T. D. 1999. Biogeography and population genetics of the Lake Malawi cichlid Melanochromis auratus: Habitat transience, philopatry and speciation. Mol Ecol, 8(6): 1013–1026
- Mayr E. 1942. Systematics and the Origin of Species. New York, USA: Columbia University Press
- Moore J., Hendry A. P. 2005. Both selection and gene flow are necessary to

- explain adaptive divergence: Evidence from clinal variation in stream stickleback. Evol Ecol Res, 7(6): 871–886
- Okeefe F. R., Meachen J. A., Fet E. V., Brannick A. 2013. Ecological determinants of clinal morphological variation in the cranium of the North American gray wolf. J Mammal, 94(6): 1223–1236
- Poynton J. C., Loader S. P. 2008. Clinal variation and its taxonomic consequences in the common Tanzanian forest frog, *Arthroleptis af finis*. Copeia, 2008(3): 517–526
- Qiao L., Wen G., Qi Y., Lu B., Hu J., Song Z., Fu J. 2018. Evolutionary melting pots and reproductive isolation: A ring-shaped diversification of an odorous frog (*Odorrana margaretae*) around the Sichuan Basin. Mol Ecol, 27(23): 4888–4900
- R Core Team. 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria
- Scherer R. D., Muths E., Lambert B. A. 2008. Effects of weather on survival in populations of boreal toads in Colorado. J Herpetol. 42(3): 508–518
- Shen Y. 2016. Fauna of Hunan, Amphibia. Changsha, China: Hunan Science and Technology Press (In Chinese)
- Sidlauskas B. L., Mol J. H., Vari R. P. 2011. Dealing with allometry in linear and geometric morphometrics: A taxonomic case study in the *Leporinus* cylindriformis group (Characiformes: Anostomidae) with description of a new species from Suriname. Zool J Linn Soc, 162(1): 103–130
- Siepielski A. M., Morrissey M. B., Buoro M., Carlson S. M., Caruso C. M., Clegg S., Coulson T., DiBattista J., Gotanda K. M., Francis C. D., Hereford J., Kingsolver J. G., Augustine K. E., Kruuk L. E., Martin R. A., Sheldon B. C., Sletvold N., Svensson E. I., Wade M. J., Maccoll A. D. 2017. Precipitation drives global variation in natural selection. Science, 355(6328): 959–962
- Urban M. C., Richardson J. L., Freidenfelds N. A. 2014. Plasticity and genetic adaptation mediate amphibian and reptile responses to climate change. Evol Appl, 7(1): 88–103
- Van Oppen M. H., Turner G. F., Rico C., Deutsch J. C., Ibrahim K. M., Robinson R. L., Hewitt G. M. 1997. Unusually fine–scale genetic structuring found in rapidly speciating Malawi cichlid fishes. Proc R Soc London, Ser. B, 264(1389): 1803–1812
- Wickham H. 2016. ggplot2: Elegant Graphics for Data Analysis. New York, USA: Springer-Verlag Science Press

Handling Editor: Heling Zhao

How to cite this article:

Wen G. N., Fu J. Z. Ring Clinal Variation in Morphology of the Green Odorous Frog (*Odorrana margaretae*). Asian Herpetol Res, 2020, 11(2): 108–114. DOI: 10.16373/j.cnki.ahr.190055

Appendix

 Table S1 Sample site and sample size information for specimens of the odorous frog Odorrana margaretae.

Site	Group	Location	nSamples	nMales	nFemales	Coordinates	Elevations(m)	Collected year
1	north	Ningqiang, Qingmuchuan	1	0	1	105.57457E, 32.83312N	1071	2012
2	north	Nanjiang, Guangwushan	22	19	3	106.40704E, 32.34705N	1412	2012
3	north	Wanyuan, Hua'eshan	10	6	4	108.22810E, 32.05360N	1111	2018
4	north	Chongqing, Wushan	16	12	4	109.97463E, 31.40330N	765	1956
5	north	Shengnongjia, Muyuxia	1	0	1	110.30216E, 31.20768N	743	2011
6	north	Baokang, Wudaoxia	1	0	1	111.20576E, 31.71790N	519	2012
7	east	Changyang, Xiufengqiao	6	5	1	110.60970E, 30.56640N	1430	2018
8	east	Sangzhi, Badagongshan	9	4	5	109.81263E, 29.67515N	1138	2011
9	south	Nanchuan, Jinfoshan	10	7	3	107.14056E, 29.04139N	793	2017
10	south	Hejiang, Zihuai	1	0	1	106.17358E, 28.37992N	763	2011
11	south	Zunyi, Xishui	10	5	5	106.20278E, 28.28610N	1182	2015
12	south	Bijie, Dafang	9	6	3	105.99911E, 27.54319N	852	2014
13	south	Junlian, Daxueshan	3	0	3	104.99920E, 27.99139N	967	2011
14	west	Leshan, Mt. O'mei	11	7	4	103.38918E, 29.56418N	749	2012
15	west	Hongya, Yanziyan	9	5	4	103.00639E, 29.63583N	1105	1956
16	west	Ya'an, Yanchang	16	7	9	103.07560E, 29.74135N	919	2012
17	west	Dayi, Xilingxueshan	3	3	0	103.28039E, 30.68014N	1283	2012
18	west	Dujiangyan, Hongkou	5	0	5	103.65208E, 31.12045N	1102	2012
19	west	Anxian, Qianfoshan	4	3	1	104.264285E, 31.74066N	1141	2016
20	west	Pingwu, Laohegou	5	3	2	104.71170E, 32.46250N	1106	2018

Table \$2 Raw data of 21 morphological measurements from 152 individuals of Odorrana margaretae.

PopID	Group labID	labID	Sex	SAL	HL	HW	ST	IND	IOD	AOD	POD	END	ED	TD	HAL	FLL	FLW	FL	TST	IMTL	IMTW	TL	TW	THL
1	north	north 103478	Щ	80.04	21.73	29.26	10.71	10.22	7.55	14.03	20.8	5.5	96.6	3.64	19.67	24.08	7.09	48.43	25.57	4.55	2.1	50.68	8.6	49.82
2	north	north 103511	M	68.34	21.09	22.22	8.61	7.77	5.85	11.33	18.15	4.57	8.42	3.55	17.39	18.85	6.63	39.52	18.95	3.57	1.41	41.39	8.6	40.26
2	north	north 103527	M	68.65	20.13	22.13	9.53	8.47	6.52	12.46	18.88	4.91	∞	3.71	18.44	20.05	68.9	40.01	18.45	4.07	2.14	42.15	10.83	41.24
2	north	north 103529	M	74.03	20.48	23.59	9.36	8.82	6.38	12.38	20.88	4.98	9.05	3.76	18.86	20.26	9.4	43.45	19.19	4.36	2.31	43.24	10.89	43.49
2	north	north 103530	江	83.65	25.54	28.53	12.74	11.56	6:39	15.77	21.67	5.9	9.12	4.51	16.84	24.62	7.21	49.8	21.55	6.12	3.14	50.36	12.32	50.39
2	north	north 103532	Н	72.07	24.66	24.06	9.55	6.7	5.87	12.71	18.41	5.14	9.26	5.01	16.87	22	9.19	44.83	20.86	4.73	2.1	44.99	11.12	44.69
2	north	103534	M	78.7	21.11	24.69	10.42	9.25	6.13	13.03	18.85	5.27	∞	4.38	20.06	21.42	80.6	43.38	19.67	5.22	1.93	43.91	11.68	42.68
2	north	north 103535	M	67.13	18.69	21.25	6	7.95	5.04	11.3	18.26	4.6	6.72	3.12	17.52	19.14	89.9	38.73	17.76	3.92	1.55	39.62	9.74	37.81
2	north	north 103536	M	76.89	21	23.62	10.72	8.85	69.9	13.51	19.67	5.23	9.11	4.31	18.04	20.64	7.94	40.8	20.29	4.06	1.85	45.05	11.7	43.23
2	north	north 103537	M	70.23	21.11	23.38	8.83	8.82	6.15	12.45	19.09	4.32	8.05	3.73	18.38	20.39	9.22	42.02	19.32	4.04	1.8	42.77	10.22	41.52
7	north	north 103544	M	72.57	21.23	23.17	8.99	8.53	5.3	12.63	19.27	4.12	7.46	4.1	19.11	19.53	7.35	39.07	19.41	4.38	2.02	41.76	11.18	41.31
2	north	north 103545	M	76.82	23.44	25.7	9.83	8.78	80.9	12.63	20.91	4.92	9.61	4.49	20.14	21.93	9.19	44.64	20.12	5.26	2.62	46.3	11.62	45.5
7	north	north 103546	M	71.93	21.77	23.83	9.08	8.61	6.03	12.07	20.34	5.89	9.63	3.66	18.76	20.66	9.54	42.22	20.28	3.95	1.79	43.09	10.94	40.95
2	north	north 103547	M	73.89	20.6	23.57	9.08	8.97	7.3	12.71	20.25	4.95	8.11	4.48	18.52	21.04	8.7	39.81	19.11	4.19	1.84	43.63	11.23	43.23
7	north	north 103548	M	74.81	22.69	25.33	10.04	8.91	6.84	13.35	20.5	5.07	9.49	4.16	18.58	21.42	8.63	41.53	19.44	4.51	2.02	43.3	11.85	43.31
2	north	north 103549	M	73.87	22.5	25.1	89.6	9.51	90.9	12.4	20.49	4.98	9.43	4.29	19.56	21.2	9.52	44.2	19.78	4.49	2.15	45.16	12	43.08
2	north	north 103561	M	75.39	21.57	24.13	10.24	9.27	6.55	12.14	19.79	5.16	8.84	3.44	20.47	21.83	9.56	44.02	20.21	4.63	2.34	44.88	10.73	44.37
2	north	north 103562	M	29.89	20.1	22.6	8.92	8.47	5.86	12.01	17.12	4.7	7.42	4.11	17.58	19.36	7.71	38.26	18.5	4.13	1.92	41.04	9.83	39.89
2	north	north 103564	M	84.67	24.46	28.19	96.6	9.49	6.54	15.38	21.98	5.27	6.07	3.99	21.27	24.22	6.9	47.36	22.72	4.73	2.85	50.55	11.67	48.59
2	north	north 103565	Н	75.25	25.5	26.07	10.72	9.1	6.28	13.25	19.04	5.23	9.48	4.59	17.35	21.75	8.43	42.44	19.13	4.66	2.15	44.76	12.95	42.54
2	north	north 103566	M	65.7	18.15	21.3	8.61	7.77	5.85	11.92	17.36	4.52	7.2	3.47	16.7	19.38	6.19	35.21	19.33	3.35	1.46	40.25	9.71	37.95
2	north	north 103567	M	72.67	22	24.96	9.29	8.22	6.42	12.78	20.68	5.17	9.24	3.79	19.41	21.56	9.19	43.77	20.19	4.39	2.11	44.63	12.47	42.58
2	north	north 103568	M	70.71	20.26	23.18	9.45	8.95	7.08	12.36	18.25	5.34	99.8	4.11	19.62	20.44	8.05	40.89	19.82	4.47	1.71	42.26	11.36	42.04
3	north	6632	М	62.19	19.37	21.35	9.75	7.41	5.35	11.39	16.22	4.75	7.65	3.79	16.59	18.18	6.49	36.82	19.04	3.7	1.79	37.61	69.7	37.35
3	north	6633	M	70.25	22.17	23.18	9.85	7.59	5.69	12.05	17.39	5.73	8.29	4.19	17.54	20.39	8.39	41.91	20.11	4.47	2.01	43.85	10.18	42.84
3	north	6634	M	69.83	21.44	23.73	99.6	8.26	6.46	12.18	18.03	5.34	7.84	3.72	19.01	19.73	8.46	42.14	19.92	4.9	2.45	44.14	10.04	43.83
3	north	6635	江	84.89	24.52	28.99	10.69	9.78	5.82	14.15	21.11	5.99	9.85	4.06	23.02	25.32	7.35	49.86	25.1	4.75	2.14	53.11	12.33	49.48
3	north	9699	ഥ	87.77	24.14	29.19	11.59	9.93	5.49	14.91	21.52	5.68	9.04	4.59	21.55	26.24	7.73	51.12	25.54	5.59	2.33	53.51	13.27	51.4
3	north	6637	ഥ	71.88	21.76	22.42	9.72	8.39	4.77	12.06	17.41	5.06	8.51	3.54	17.77	19.56	7.92	41.22	20.35	4.49	1.69	43.22	9.56	39.61
3	north	8638	M	83.06	24.33	29.07	10.93	9.5	4.73	15.03	22.56	5.98	9.36	3.99	20.63	23.48	7.38	48.88	23.86	4.51	2.12	51.83	11.77	50.73
3	north	6639	M	65.42	19.39	21.09	8.18	7.95	4.58	11.2	17.51	4.5	8.04	3.59	16.55	19.41	6.01	38.65	18.79	3.52	1.78	40.37	8.51	37.31
3	north	6640	щ	81.93	24.66	28.49	12.88	10.26	5.14	14.52	21.2	5.84	9.37	4.01	21.07	22.19	7.86	49.04	22.79	4.66	2.62	51.38	10.96	49.47

THL	42.61	45.68	52.07	43.31	38.27	43.91	39.07	40.88	40.17	43.72	44.68	33.75	42.84	43.75	39.84	50.14	36.02	41.76	43.68	36.17	40.81	38.91	46.97	40.97	35.26	37.04	38.71	34.11	37.43	44.31	42.61
ΤW	29.6	11.7	14.98	12.15	9.45	10.83	10.61	11.5	9.51	11.98	11.53	8.4	6.97	12.23	86.6	14.47	9.45	10.4	13.35	8.21	9.45	8.49	9.74	6.6	7.78	10.68	9.91	7.78	9.49	12.01	10.44
TL	43.72	47.38	57.9	47.02	42.92	45.27	43.31	46.08	44.09	48.47	47.07	38.69	46.46	46.86	45.25	53.74	44.31	45.51	46.02	38.42	43.42	40.24	49.08	44.9	37.26	41.41	40.64	37.24	40.49	45.95	45
IMTW	2.59	2.01	2.93	2.26	2.02	2.26	1.57	2.11	2.16	2.02	1.93	1.63	1.99	2.21	1.56	2.87	1.64	2.14	2.46	1.96	1.83	2.08	1.89	2.59	1.73	1.89	1.8	1.59	1.78	2.23	2.13
IMTL I	4.62	5.17	6.02	4.27	3.7	5	3.97	5.22	3.92	3.99	4.65	3.54	4.93	5.22	4.05	4.3	3.53	4.38	4.25	3.91	3.99	4.53	4.43	4.62	3.15	4.36	3.29	3.06	3.83	4.65	3.86
TSL	19.16	21.66	26.41	21.27	20.52	23.01	21.11	22.01	22.24	22.81	23	17.69	20.96	20.88	19.57	24.19	19.67	21.59	22.14	17.86	20.69	18.43	21.98	20.7	17.32	19.66	19.7	17.3	18.61	21.92	21.6
FL	44.72	46.53	53.87	46.02	42.07	45.38	42.56	46.26	42.26	45.21	46.78	36.02	45.06	46.54	46.16	51.94	41.39	44.34	45.02	37.3	42.51	40.41	45.03	43.55	35.84	38.43	38.5	35.96	38.41	43.83	44.02
FLW	7.87	8.26	8.39	9.21	. 92.2	7.34	9.25	9.5	5.31	8.42	8.45	5.38	8.09	7.62	98.9	9.31	6.39	6.26	9.88	5.14	5.86	7.42	, 68.9	6.7	5.55	8.1	7.84	6.23	7.32	7.48	80.9
FLL	20.09	22.87	69.97	22.61	21.67	21.67	21.88	22.93	21.11	21.8	23.01	18.92	21.87	23.02	23.41	26.47	20.73	21.61	22.65	18.41	18.88	18.72	24.01	20.46	17.33	19.66	20.14	18.51	19.17	21.78	22.56
HAL	18.48	20.74	24.62	18.46	17.79	16.35	17.61	17.97	14.71	19.55	19.22	15.92	18.09	18.24	16.38	22.65	16.61	18.35	19.52	14.69	16.04	17.07	18.55	18.67	14.62	17.45	17.28	15.61	16.29	18.71	17.97
TD	4.21	3.76 2	4.37 2	4.16	4.01	3.88	1.75	3.74	4.01	4.02	4.12	3.53	4.73	3.96	3.88	4.36	4.39	3.6	3.71	3.18	4.02	3.81	4.58	3.64	3.55	3.07	3.75	3.51	3.78	3.83	3.95
ED	8.42	9.31	9.72	9.44	9.04	9.74	9.64	9.18	60.6	8.77	8.63	8.33	8.95	10.09	8.45	10.58	7.67	8.09	9.48	8.23	9.03	8.4	9.18	9.35	7.86	8.64	7.71	7.58	8.04	99.6	8.29
END	4.94	4.89	7.06	5.3	4.72	5.29	5.13	4.73	4.94	5.21	5.15	4.83	5.1	5.21	4.79	6.9	5.08	5.54	5.14	4.57	5.19	3.99	99.5	5.36	4.96	4.77	4.82	4.19	4.89	80.9	5.59
POD	18.75	20.45	24.69	19.86	18.27	19.79	19.27	19.16	18.94	19.79	19.45	17.64	19.48	20.27	19.26	23.35	18.07	18.99	21.04	16.61	19.19	17.95	19.3	19.26	16.27	17.36	17.92	15.69	17.02	20.34	19.87
AOD	12.62	12.33	17.97	13.03	12.17	13.65	12.45	13.18	11.72	13.1	13.18	11.12	12.33	13.31	12.82	15.52	11.65	12.93	13.28	11.12	12.75	11.76	13.47	13.49	11.13	10.96	11.46	10	10.95	13.62	11.82
IOD	5.56	4.86	6.03	5.62	6.1	6.14	5.39	5.59	5.48	6.34	5.14	5.75	6.52	6.16	5.82	7.82	5.11	6.26	7.31	4.6	6.36	4.92	5.59	5.4	4.29	5.99	5.82	5.35	6.05	6.74	6 43
IND	8.77	9.43	11.7	10.34	7.91	9.17	9.35	6.6	8.26	9.28	8.77	7.32	9.45	8.28	9.43	11.54	8.13	8.75	9.49	7.65	8.92	8.24	8.91	8.64	7.02	8.26	8.43	7.81	8.55	9.75	8.82
ST	11.16	11.43	13.14	10.08	8.79	9.45	8.25	8.05	8.26	8.52	9.25	69.7	9.17	8.86	6	10.39	7.39	9.49	10.28	8.99	10.24	8.93	10.16	11.87	8.86	10.78	9.93	9.24	8.8	10.52	10.23
HM	23.38	26.36	35.15	26.52	21.92	24.82	23.52	25.58	23.72	23.85	24.22	19.98	25.43	26.18	22.97	32.29	22.55	24.66	25.67	21.47	23.96	22.28	26.04	25.86	20.66	21.23	21.93	20.54	21.62	26.54	24.92
HL	24.86	25.45	27	25.43	23.23	26.16	24.37	24.72	24.32	24.19	25.83	19.68	26.79	25.34	22.89	30.46	21.35	22.01	25.08	19.95	22.76	19.95	24.11	22.58	19.5	18.63	17.51	19.34	19.7	24.21	21 93
SVL	71.42	82.11	97.94	80.2	70.51	77.43	75.11	76.86	9.79	75.47	77.68	60.04	74.98	74.67	74	6.87	68.71	70.28	81.49	26.09	75.74	68.83	80.42	78.61	58.89	68.79	65.16	61.13	65.5	6.62	71.62
Sex	M	щ	Щ	ഥ	M	M	M	M	M	M	M	M	M	M	M	ГT	M	Щ	Щ	M	M	щ	M	M	M	M	M	M	M	щ	ĹΤ
labID	6641	103389	103395	41154	41155	41156	41157	41158	41159	41160	41161	41162	41163	41164	41166	41167	41168	103388	103385	6649	0599	6651	6653	6654	9599	103397	103398	103399	103400	103401	103402
Group	north	north 1	north 1	north	north	north	north	north	north	north	north	north	north	north	north	north	north	north 1	north 1	east	east	east	east	east	east	east	east	east	east	east	Past
PopID		4	4	4		4		4	4	4	4	4	4	4	4	4	4	5	9			_				∞	8	∞	8	· **	∞

PopID	Group	labID	Sex	SAL	HL	HW	ST	IND	IOD	AOD	POD	END	ED	TD	HAL	FLL	FLW	FL	LSL	IMTL I	IMTW	TL	TW	THI
∞	east	103404	Ħ	77.23	22.21	26.34	10.97	9.41	6.36	13.48	20.97	6.01	9.39	3.51	19.28	23.09	7.66	48.04	21.77	4.47	1.96	48.04	11.34	45.02
~	east	103405	ഥ	85.01	24.71	28.65	10.8	10.71	7.65	13.9	20.87	5.46	8.89	3.82	21.59	21.08	8.1	52.1	23.95	2.67	2.2	50.87	12.35	47.09
6	south	1407II192	ഥ	84.06	25.31	28.05	10.43	9.74	6.21	14.08	21.1	5.59	9.17	4.22	20.03	24.28	8.81	48.3	23.21	4.55	2.26	49.87	14.63	47.16
6	south	1407II194	M	72.04	23.06	27.37	9.43	8.81	5.26	12.65	19.85	90.9	9.28	3.69	19.15	22.15	8.19	45.91	22.96	4.08	1.76	47.64	11.18	43.42
6	south	south 1407II195	M	77.12	21.68	27.25	10.15	8.76	7.72	13.63	19.53	5.31	8.95	4.13	18.58	22.15	6.02	43.45	23.73	4.27	1.88	47.31	10.59	45.38
6	south	1407II196	M	71.5	22.04	26.78	10.89	8.69	4.89	12.15	17.83	5.18	7.89	3.71	18.04	21.59	5.98	44.14	21.72	3.28	1.71	45.08	6.6	41.43
6	south	1407II197	M	74.37	21.33	26.39	9.55	8.2	5.82	12.98	18.88	5.39	8.75	4.08	17.28	20.77	5.88	43.26	23.42	4.29	1.97	46.93	10.4	44.79
6	south	1407II198	ഥ	79.33	23.66	26.27	11.55	8.99	5.67	12.95	20.86	5.6	8.96	3.73	18.73	22.41	29.6	46.45	21.01	4.29	1.66	48.38	11.85	44.32
6	south	140711199	Ţ	98.46	28.44	36.41	13.12	11.32	6.42	17.64	24.76	6.91	10.68	4.57	25.38	28.69	9.58	57.78	27.61	5.31	2.47	61.16	15.82	59.03
6	south	1407II200	M	77.27	23.13	28.01	9.95	9.12	5.39	13.33	19.26	5.93	9.44	3.76	19.17	24.19	5.51	45.38	22.4	4.52	1.92	48.42	11.44	46.14
6	south	1407II201	M	90.89	21.83	24.19	9.57	8.79	5.33	12.67	17.77	5.12	8.37	4	17.09	20.26	5.29	40.16	20.49	3.78	1.97	42.36	10.04	40.23
6	south	1407II213	ΙΉ	80.75	23.86	26.69	10.05	8.58	4.61	13.34	21.24	5.05	9.54	3.24	19.28	23.31	9.84	45.86	21.81	4.31	1.66	47.77	12.41	45.53
10	south	103575	Ţ	86.98	24.67	31.17	10.39	9.92	7.64	15.65	22.31	6.19	10.14	4.43	21.77	24.02	6.03	48.17	24.72	5.5	2.52	54.19	11.45	52.93
11	south	15071239	Н	9.68	25.65	33.16	10.83	10.1	8.03	16.55	25.67	6.63	10.89	4.82	22.78	28.18	8.03	55.74	25.33	4.86	2.55	56.4	13.92	49.4
11	south	15071243	Щ	96.94	28.43	35.06	12.52	11.71	7.3	17.65	26.39	7.06	10.18	4.39	24	28.64	7.53	57.77	27.87	5.8	2.37	59.37	14.92	55.53
11	south	15071250	M	69.21	20.79	24.29	7.88	7.5	5.37	12.26	18.3	4.8	9.3	4.12	16.91	21.11	6.83	43.35	21.49	4.28	1.6	44.95	11.2	43.34
11	south	15071251	江	95.4	27.43	34.13	13.89	10.8	8.85	17.11	25.52	69.7	11.47	4.87	21.3	25.55	6.44	51.95	25.98	5.04	2.05	56.31	15.49	53.05
11	south	15071252	Н	89.28	25.48	33.16	11	11.07	5.91	16.42	24.58	6.4	10.57	4.87	23.22	28.26	8.14	60.25	26.74	5.93	2.48	58.35	15.71	55.33
11	south	15071254	M	86.89	19.95	23.49	8.21	8.33	5.27	13.41	19.41	5.23	8.37	3.83	17.06	20	7.72	41.36	18.94	4.51	1.83	43.91	10.05	39.74
111	south	15071257	M	71.56	22.1	23.27	9.34	8.05	5.76	12.02	19.05	5.37	8.2	3.6	17.13	20.53	8.23	42.99	20.59	4.03	1.76	45.42	11.2	41.5
11	south	15071260	江	98.06	28.56	32.5	10.76	10.81	8.11	17.78	27.12	5.79	11.4	4.4	22.33	26.78	7.52	52.91	25.29	5.2	2.12	55.56	13.25	53.24
111	south	15071261	M	20.68	21.33	25.48	9.04	7.4	60.9	12.83	19.34	5.25	8.58	4.27	19.2	22.46	7.21	45.93	21.74	4.45	1.93	45.39	10.99	43.88
11	south	15071263	M	29	20.6	22.75	8.77	8.35	4.2	12.07	18.04	4.96	8.11	3.67	17.31	21.2	8.04	40.65	19.92	4.13	1.89	42.04	9.74	38.61
12	south	1408II059	H	80.5	24.95	27.82	10.73	62.6	6.12	14.45	21.27	6.24	9.49	3.93	20.7	22.86	7.29	46.15	23.27	4.36	2.06	49.07	12.2	44.32
12	south	1408II060	M	69.43	20.16	24.14	8.91	7.48	5.24	11.76	18.98	4.85	9.24	3.51	16.61	20.65	5.22	38.14	21.4	3.86	1.68	42.8	8.9	41.41
12	south	1408II061	M	77.99	21.86	26.16	9.93	8.49	5.78	12.7	20.23	5.53	8.38	3.72	19.31	22.78	8.28	47.51	21.76	4.97	2.03	48.28	11.16	46.19
12	south	1408II063	M	75.49	22.08	26.72	90.6	8.57	5.43	12.01	19.52	5.36	9.19	4.11	17.88	22.09	5.28	44.75	23.52	3.88	1.8	47.37	11.19	8.44
12	south	1408II064	ц	89.97	24.93	29.58	10.81	9.84	5.58	15.17	20.8	6.01	9.34	4.92	20.7	26.44	90.8	52.04	24.27	4.65	2.11	55.09	12.87	51.59
12	south	1408II065	M	65.94	21.6	21.85	8.48	7.7	5.09	10.96	15.62	4.87	7.95	3.75	16.27	19.08	7	38.85	18.81	4.2	2.17	40.38	99.8	38.25
12	south	1408II066	M	78.83	24.71	25.59	9.84	8.31	6.13	12.23	19.87	5.98	9.33	4.09	18.02	22.2	8.91	44.42	20.94	4.2	1.78	46.57	12.64	47.04
12	south	1408II067	Щ	91.58	26.47	30.43	10.88	10.25	7.2	14.98	22.61	6.38	10.36	3.99	21.09	23.72	8.16	52.01	23.41	6.71	2.09	53.32	14.31	50.01
12	south	1408II068	M	64.41	18.24	22.05	6.58	6.95	4.76	10.61	17.05	4.66	8.74	3.38	15.43	19.37	5.69	38.63	18.84	2.91	1.62	41.03	89.8	39.16

PopID	Group labID	labID	Sex	SVL	HL	HW	ST	IND	IOD	AOD	POD	END	ED	TD	HAL	FLL	FLW	FL	LSL	IMTL I	IMTW	TL	TW	THL
13	south	103579	H	86.04	23.84	31.24	10.17	10.8	7.2	15.06	22.64	6.55	10.07	5.06	22.56	25.04	6.59	50.73	25.18	4.97	2.44	51.25	13.03	50.29
13	south	south 103580	ഥ	80.68	27	31.34	12.02	10.74	6.63	14.81	22.17	5.91	10.7	4.79	23.24	26.19	8.57	53.32	26.33	5.53	2.12	53.04	14.2	52.56
13	south	south 103678	ഥ	87.03	24.95	29.37	10.9	9.97	8.32	15.62	22.56	7.08	9.92	4.33	22.69	26.67	7.3	52.19	24.93	5.22	1.9	54.75	11.83	52.51
14	west	103414	M	78.88	23.62	27.03	10.56	69.6	5.62	13.84	22.23	6.05	9.29	4.8	20.65	24.69	8.32	50.86	22.35	5.16	2.09	49.08	12.51	45.62
14	west	west 103442	ഥ	105.4	26.59	35.22	13.94	11.28	8.56	17.33	26.14	7.76	9.51	4.33	25.18	28.21	8.6	56.85	26.67	6.05	2.37	59.38	15.64	58.67
14	west	103609	M	79.04	23.54	27.02	10.05	9.33	7.06	13.39	21.23	5.73	8.79	3.62	20.44	22.94	7.02	47.84	22.71	4.69	1.95	49.7	11.05	47.29
14	west	103610	M	72.13	21.47	24.34	10.35	8.3	5.41	11.73	18.12	5.7	96.7	3.55	18	20.54	7.77	42.98	20.16	4.08	1.91	44.82	8.6	42.44
14	west	103611	M	72.58	23.74	24.77	11.18	9.52	6.17	12.97	19.57	6.14	9.39	3.66	19.2	22.65	8.2	46.97	21.89	4.12	1.82	48.41	10.37	45.86
14	west	west 103612	ഥ	89.57	26.96	30.93	12.01	11.48	8.61	16.32	23.73	6.21	9.52	4.05	21.6	26.27	7.44	52.3	25.84	4.85	2.69	56.1	13.87	53.67
14	west	103613	M	73.13	23.93	24.29	10.54	8.51	6.3	12.64	20.03	5.46	89.8	4.02	18.74	24.12	8.25	46.54	21.73	4.41	2.02	46.04	9.71	43.34
14	west	103614	M	74.15	21.91	25.99	9.5	9.42	7.16	12.91	19.68	5.11	9.43	3.82	18.89	22.36	8.06	45.84	22.77	4.27	2.13	46.73	9.45	45.47
14	west	103616	M	79.1	24.36	25.56	10.75	8.93	6.07	12.76	19.3	5.46	7.98	4.36	19.71	21.32	7.67	44.98	22.52	3.81	1.36	45.99	10.99	44.56
14	west	103617	江	81.12	25.77	30.85	9.65	9.53	6.52	14.97	23.01	6.94	9.77	4.12	21.39	26.28	7.5	52.99	25.78	5.04	2.4	51.36	12.72	48.42
14	west	west 103618	Ή	90.98	31.18	33.49	11.97	11.33	9.61	16.3	26.34	66.9	11.25	4.78	19	27.63	9.61	58.1	26.34	5.95	2.41	59.33	14.45	57.44
15	west	90512	M	76.23	21.96	24.33	9.42	8.09	6.31	12.42	19.36	5.59	7.83	3.49	19.61	21.26	8.22	45.43	20.39	5.15	2.16	44.64	10.75	43.51
15	west	90513	ഥ	90.89	26.13	32.1	10.5	10.15	6.3	15.96	23.12	7.07	9.88	3.96	21.89	26.36	8.53	52.95	26.18	4.36	2.65	53.45	13.64	51.1
15	west	90514	M	76.18	21.48	24.93	9.51	9.3	5.63	13.05	20	4.71	9.64	3.59	20.53	23.04	9.91	46.1	21.36	4.69	1.9	45.26	11.53	44.72
15	west	90515	ഥ	95.96	24.68	30.92	11.64	10.23	6.89	15.24	23.78	6.16	10.86	4.04	22.94	25.73	7.7	52.55	23.34	5.71	2.18	54.7	12.38	52.31
15	west	90516	M	71.05	20.65	22.41	90.6	7.79	5.63	12.06	18.15	5.25	8.14	3.33	18.08	20.79	7.52	43.99	19.34	4.18	1.54	42.56	9.95	40.91
15	west	90517	M	75.21	21.87	25.23	10.18	8.93	5.09	13.42	20.54	4.84	8.69	3.45	20.99	23.44	8.56	47.17	22.64	4.78	2.55	44.96	12.53	45.43
15	west	90518	ഥ	94.76	24.71	32.33	11.54	10.34	7.5	15.86	22.95	6.15	10.15	4.13	24.99	26.6	8.55	55.28	26.77	5.97	3.1	56.21	14.44	54.68
15	west	90519	M	69.97	21.37	25.37	9.52	8.71	5.98	12.3	18.67	4.93	88.88	3.75	19.12	21.46	62.6	42.49	21.58	4.65	1.68	43.71	12.18	41.73
15	west	90520	ഥ	93.45	25.51	32.21	12.08	10	5.85	17.06	23.65	5.84	86.6	3.99	22.7	25.61	8.92	52.11	24.44	5.41	2.38	52.5	13.13	51.55
16	west	103450	ഥ	68.55	23.02	23.92	7.77	9.22	5.24	12.27	18.91	4.4	8.95	3.37	16.2	21.47	5.04	41	20.46	3.61	1.61	42.28	8.92	38.78
16	west	103451	M	71.62	21.63	25.42	9.54	10.1	6.02	14.73	22.38	5.75	8.8	3.89	18.59	21.68	7.78	42.4	19.63	4.77	1.98	43.3	11.33	41.18
16	west	103452	伍	96.32	29.18	34.59	11.32	13.18	10.24	18.7	27.3	6.94	88.6	4.68	24.83	29.16	89.6	58.96	27.98	6.12	2.37	59.34	15.95	56.59
16	west	west 103453	M	79.92	27.77	27.75	9.22	10.27	7.39	15.47	22.42	6.07	9.74	3.46	19.98	22.1	9.03	48.07	21.87	4.79	1.65	47	13.71	45.94
16	west	west 103456	伍	99.76	28.17	34.35	9.81	10.94	8.11	16.34	25.64	5.92	10.59	3.92	25.59	29.03	9.84	59.87	26.78	5.65	2.23	29.87	16.65	57.44
16	west	103457	M	68.57	23.27	25	8.9	8.83	5.94	13.16	19.64	5.18	8.44	4.39	17.46	20.83	9.48	42.56	21.56	4.41	2.18	44.83	11.12	43.04
16	west	103458	M	77.26	23.94	25.25	8.84	9.27	5.26	14.45	22.08	5.48	8.42	3.9	18.95	21.26	9.11	43.72	20.54	4.94	2	46.22	13.13	44.61
16	west	west 103459	M	9.62	24.7	26.09	9.44	8.98	7.18	13.23	21.72	6.1	7.99	4.04	19.42	22.1	88.6	47.12	21.23	4.43	1.9	47.35	12.58	46
16	west	west 103460	M	76.92	23.17	25.45	96.6	8.7	6.17	13.27	21	5.55	8.94	4.74	18.74	21.75	8.36	43.71	20.32	4.52	1.82	44.71	12.76	43.4

PopID	Group labID	labID	Sex	SAL	HL	HW	ST	IND	IOD	AOD	POD	END	ED	TD	HAL	FLL	FLW	FL	TST	IMTL	IMTW	TL	TW	THL
16	west	west 103462	ſΞ	96'.29	25.53	24.4	10.2	10.01	4.54	14.34	20.7	5.58	8.96	4.83	22.84	19.37	9.25	39.59	19.07	4.33	1.97	42.83	10.8	38.95
16	west	west 103463	M	76.47	23.07	25.87	8.6	9.07	7.15	13.67	19.32	5.26	8.39	4.42	19.6	21.69	8.83	44.48	21.98	4.18	2.04	47.37	11.44	44.73
16	west	west 103464	ഥ	82.58	25.35	30.34	11.99	9.58	9.9	14.64	21.24	5.89	62.6	4.23	20.61	25.99	99.9	49.87	23.14	4.67	2.02	52.14	11.84	49.69
16	west	west 103465	ഥ	91.12	28.76	32.09	11.53	11.29	7.08	15.6	24.4	6.83	10.53	4.83	22.9	26.51	7.61	52.18	27.21	4.98	2.24	57.11	14.17	53.65
16	west	west 103467	ഥ	7.86	30.59	36.07	7 13.56	13.23	7.84	16.88	26.44	5.27	10.78	4.65	24.77	26.94	11.8	55.67	26.49	5.91	2.62	58.41	15.98	57.08
16	west	west 103471	Ħ	94.49	26.43	31.32	12.59	10.54	7.72	14.9	22.18	99.9	10.01	4.63	22.43	24.16	7.17	51.16	25.81	5.15	2.11	54.7	14.03	52.24
16	west	west 103488	ΙΉ	86.54	27.23	29.77	7 12.66	5 10.42	6.72	16.83	24.7	2.67	9.53	4.82	21.82	25.81	6.51	51.69	22.85	4.76	1.97	52.22	12.07	51.15
17	west	west 107621	M	72.55	22.7	27.42	10.03	3 9.07	5.72	14.1	21.64	6.17	82.6	3.85	20.68	22.44	8.23	46.65	23.78	4.44	2.3	49.83	10.13	47.11
17	west	107622	M	72.27	21.48	25.15	9.43	8.48	7.84	13.95	21.16	5.27	99.6	3.91	20.01	20.98	8	44.63	21.5	4.52	1.92	46.48	10.68	43.6
17	west	west 107623	M	77.36	21.28	27.49	9.56	9.39	7.35	13.54	21.02	5.17	99.6	3.61	20.14	22.09	9.44	36.38	22.17	5.04	2.16	47.74	11.74	46.45
18	west	91672	H	106.97	28.55	36.14	12.35	5 12.5	6.81	17.73	25.62	95.9	10.34	4.67	24.41	28.33	9.19	55.39	26.44	5.98	3.03	57.65	15.9	56.36
18	west	91673	ц	104.45	28.1	35.59	11.81	11.39	8.09	17.62	26.66	6.21	10.91	4.65	24.56	27.93	9.82	58.17	27.95	5.96	2.64	58.46	15.42	56.75
18	west	91674	Н	106.26	27.77	36.46	5 12.06	5 11.92	7.88	18.5	25.57	6.31	11.01	4.68	25.03	28.81	8.08	57.78	28.36	6.77	3.36	59.15	16.62	56.56
18	west	91675	ц	106.46	29.39	37.74	12.52	11.37	8.45	18.83	26.84	7.02	8.6	4.95	26.13	30.2	10.17	61.36	29.02	6.01	2.66	60.3	17.02	58.8
18	west	91676	H	109.69	29.29	36.65	5 12.35	5 11.67	8.43	18.49	26.24	6.82	11.18	4.47	21.29	27.96	10.28	58.02	28.24	88.9	2.72	60.73	17.8	57.26
19	west	west 150407	M	65.83	20.11	22.9	8.6	8.21	5.91	12.47	18.77	5.23	9.3	4.05	17.39	20.51	7.65	39.23	19.48	4.22	1.95	42.26	8.53	39.64
19	west	west 150408	M	74.74	21.49	24.13	8.46	7.91	5.54	12.79	19.65	5.13	8.94	4.09	17.22	21.8	7.34	43.58	21.02	4.17	2.19	44.17	10.26	42.35
19	west	west 150413	M	78.03	21.47	25.29	10.36	9.1	6.32	13.64	19.95	5.56	6	3.55	18.31	21.37	8.75	44.07	21.1	4.75	2.03	45.7	10.93	42.24
19	west	west 150423	Щ	86.19	26.26	30.63	11.33	10.14	6.7	15.78	22.51	6.15	7.57	3.95	21.62	23.76	7.95	51.84	24.39	5.35	2.56	51.8	12.64	48.36
20	west	6482	M	78.66	22.66	25.87	7 10.1	9.22	6.18	13.78	20.47	5.31	9.84	3.87	20.08	21.88	7.07	45.1	21.07	4.08	1.9	46.57	10	45.67
20	west	6483	M	79.43	24.07	27.92	10.88	8.82	68.9	14.77	21.34	5.88	9.76	4.41	20.28	22.87	8.19	46.79	20.83	4.87	2.45	48.07	10.62	46.11
20	west	6484	ц	95.61	27.77	33.43	11.4	11.05	8.67	15.79	24.16	6.63	11.44	4.48	23.77	25.77	8.63	54.54	24.91	5.59	2.63	55.34	12.87	54.25
20	west	6485	Щ	81.32	24.73	29.65	11.05	9.39	5.85	15.01	22.58	6.48	98.6	4.58	20.64	23.12	88.9	48.91	22.48	4.47	2.32	50.27	10.13	47.51
20	west	6486	M	71.44	20.27	24.3	6	7.84	5.26	12.48	18.17	5.4	9.56	3.85	17.64	18.49	7.25	42.65	20.54	4.19	2.3	43.63	9.05	42.07

Figure S1 A: Patterns of geographical variation in precipitation related factors; B: Patterns of geographical variation in temperature related factors. For (A–B), mean values from every site were plotted in coordinates, and the grey scale of symbols is according to increasing size.

Table S3 The mean PC1 scores of PCA conducted on 21 morphological characters for individuals from each site. Males and females are shown separately.

Site	Group	Male	Female
1	north	-	-6.25
2	north	-0.71	-13.5
3	north	-2.5	-6.9
4	north	0.27	1.45
5	north	-	-29.96
6	north	-	-11.11
7	east	-11.27	-41.29
8	east	-12.79	-11.46
9	south	2.88	-1
10	south	-	2.13
11	south	-2.81	12.57
12	south	2.88	-2
13	south	-	3.59
14	west	6.67	11.51
15	west	3.24	8.99
16	west	5.59	3.07
17	west	5.32	-
18	west	-	27.04
19	west	-0.7	0.52
20	west	5.56	3.63