\leftarrow BACK TO SIMULATIONS

LOAD PATH TRACER

VISUALIZING FORCE FLOW THROUGH STRUCTURAL SYSTEMS ${\it Jerome\ Maurseth,\ P.E.,\ US\ ACE,\ Ret'd.}$

PARAMETERS

RUCTURE TYPE	
RIGID FRAME	
TRUSS SYSTEM	
SHEAR WALL	
SIMPLE BEAM	
ESCRIPTION:	
oment-resisting frame with fixed connections	
ADING	
LIED LOAD (KN)	
.000	
D POSITION ((0=LEFT, 1=RIGHT))	
50	
SPLAY OPTIONS	
SHOW FORCES	
SHOW MOMENTS MATION SPEED	
0	
START LOAD PATH ANIMATION	

VISUALIZATION

FIGURE 1. LOAD PATH VISUALIZATION

Fig. 1. Interactive demonstration of how forces travel through different structural systems

KEY CONCEPTS

- Load Path: Route forces take from application to foundation
- Stiffness: Controls distribution of forces between elements
- Continuity: Ensures forces have complete path to supports
- Redundancy: Multiple paths provide backup if one fails

STRUCTURAL SYSTEMS

- Frames: Moment connections allow force redistribution
- Trusses: Pin connections create predictable force paths
- Shear Walls: Resist lateral forces through cantilever action
- Simple Beams: Direct load transfer to supports

© 2025 Civil Engineering Educational Platform