Assignment 2

Hao Dong h45dong@uwaterloo.ca 20757585

Question 1

a. How many execution paths does Prog1 have? List the paths.

- i 1, 2, 3, 4, 8, 9, 10, 11, 12, 13, 17
- ii 1, 2, 3, 4, 8, 9, 10, 11, 14, 15, 16, 17
- iii 1, 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 17
- iv 1, 2, 5, 6, 7, 8, 9, 10, 11, 14, 15, 16, 17

b. Symbolically execute each path and provide the resulting path condition. Show the table.

Edge	Symbolic State(PV)	Path Condition (PC)
$1 \rightarrow 2$	$x \mapsto X_0, y \mapsto Y_0$	true
$2 \rightarrow 3$	$x \mapsto X_0, y \mapsto Y_0$	$X_0 + Y_0 > 10$
$3 \rightarrow 4$	$x \mapsto X_0 + 1, y \mapsto Y_0$	$X_0 + Y_0 > 10$
$4 \rightarrow 8$	$x \mapsto X_0 + 1, y \mapsto Y_0 - 2$	$X_0 + Y_0 > 10$
$8 \rightarrow 9$	$x \mapsto X_0 + 1, y \mapsto Y_0 - 2$	$X_0 + Y_0 > 10$
$9 \rightarrow 10$	$x \mapsto X_0 + 3, y \mapsto Y_0 - 2$	$X_0 + Y_0 > 10$
$10 \rightarrow 11$	$x \mapsto X_0 + 3, y \mapsto Y_0 - 2$	$X_0 + Y_0 > 10$
$11 \rightarrow 12$	$x \mapsto X_0 + 3, y \mapsto Y_0 - 2$	$X_0 + Y_0 > 10 \land 2(X_0 + Y_0) - 2 > 27$
$12 \rightarrow 13$	$x \mapsto 3(X_0+3), y \mapsto Y_0-2$	$X_0 + Y_0 > 10 \land 2(X_0 + Y_0) - 2 > 27$
$13 \rightarrow 17$	$x \mapsto 3(X_0+3), y \mapsto 2(Y_0-2)$	$X_0 + Y_0 > 10 \land 2(X_0 + Y_0) - 2 > 27$

Table 1: symbolic execution table for i

Edge	Symbolic State(PV)	Path Condition (PC)
$1 \rightarrow 2$	$x \mapsto X_0, y \mapsto Y_0$	true
$2 \rightarrow 3$	$x \mapsto X_0, y \mapsto Y_0$	$X_0 + Y_0 > 10$
$3 \rightarrow 4$	$x \mapsto X_0 + 1, y \mapsto Y_0$	$X_0 + Y_0 > 10$
$4 \rightarrow 8$	$x \mapsto X_0 + 1, y \mapsto Y_0 - 2$	$X_0 + Y_0 > 10$
$8 \rightarrow 9$	$x \mapsto X_0 + 1, y \mapsto Y_0 - 2$	$X_0 + Y_0 > 10$
$9 \rightarrow 10$	$x \mapsto X_0 + 3, y \mapsto Y_0 - 2$	$X_0 + Y_0 > 10$
$10 \rightarrow 11$	$x \mapsto X_0 + 3, y \mapsto Y_0 - 2$	$X_0 + Y_0 > 10$
$11 \rightarrow 14$	$x \mapsto X_0 + 3, y \mapsto Y_0 - 2$	$X_0 + Y_0 > 10 \land 2(X_0 + Y_0) - 2 \le 27$
$14 \rightarrow 15$	$x \mapsto X_0 + 3, y \mapsto Y_0 - 2$	$X_0 + Y_0 > 10 \land 2(X_0 + Y_0) - 2 \le 27$
$15 \rightarrow 16$	$x \mapsto 4(X_0+3), y \mapsto Y_0-2$	$X_0 + Y_0 > 10 \land 2(X_0 + Y_0) - 2 \le 27$
$16 \rightarrow 17$	$x \mapsto 4(X_0+3), y \mapsto 3Y_0+4X_0+6$	$X_0 + Y_0 > 10 \land 2(X_0 + Y_0) - 2 \le 27$

Table 2: symbolic execution table for ii

Edge	Symbolic State(PV)	Path Condition (PC)
$1 \rightarrow 2$	$x \mapsto X_0, y \mapsto Y_0$	true
$2 \rightarrow 5$	$x \mapsto X_0, y \mapsto Y_0$	$X_0 + Y_0 \le 10$
$5 \rightarrow 6$	$x \mapsto X_0, y \mapsto Y_0$	$X_0 + Y_0 \le 10$
$6 \rightarrow 7$	$x \mapsto X_0, y \mapsto Y_0 + 7$	$X_0 + Y_0 \le 10$
$7 \rightarrow 8$	$x \mapsto X_0 - 3, y \mapsto Y_0 + 7$	$X_0 + Y_0 \le 10$
$8 \rightarrow 9$	$x \mapsto X_0 - 3, y \mapsto Y_0 + 7$	$X_0 + Y_0 \le 10$
$9 \rightarrow 10$	$x \mapsto X_0 - 1, y \mapsto Y_0 + 7$	$X_0 + Y_0 \le 10$
$10 \rightarrow 11$	$x \mapsto X_0 - 1, y \mapsto Y_0 + 7$	$X_0 + Y_0 \le 10$
$11 \rightarrow 12$	$x \mapsto X_0 - 1, y \mapsto Y_0 + 7$	$X_0 + Y_0 \le 10 \land 2 * (X_0 + Y_0) + 12 > 27$
$12 \rightarrow 13$	$x \mapsto 3(X_0 - 1), y \mapsto Y_0 + 7$	$X_0 + Y_0 \le 10 \land 2 * (X_0 + Y_0) + 12 > 27$
$13 \rightarrow 17$	$x \mapsto 3(X_0 - 1), y \mapsto 2(Y_0 + 7)$	$X_0 + Y_0 \le 10 \land 2 * (X_0 + Y_0) + 12 > 27$

Table 3: symbolic execution table for iii

Edge	Symbolic State(PV)	Path Condition (PC)
$1 \rightarrow 2$	$x \mapsto X_0, y \mapsto Y_0$	true
$2 \rightarrow 5$	$x \mapsto X_0, y \mapsto Y_0$	$X_0 + Y_0 \le 10$
$5 \rightarrow 6$	$x \mapsto X_0, y \mapsto Y_0$	$X_0 + Y_0 \le 10$
$6 \rightarrow 7$	$x \mapsto X_0, y \mapsto Y_0 + 7$	$X_0 + Y_0 \le 10$
$7 \rightarrow 8$	$x \mapsto X_0 - 3, y \mapsto Y_0 + 7$	$X_0 + Y_0 \le 10$
$8 \rightarrow 9$	$x \mapsto X_0 - 3, y \mapsto Y_0 + 7$	$X_0 + Y_0 \le 10$
$9 \rightarrow 10$	$x \mapsto X_0 - 1, y \mapsto Y_0 + 7$	$X_0 + Y_0 \le 10$
$10 \rightarrow 11$	$x \mapsto X_0 - 1, y \mapsto Y_0 + 7$	$X_0 + Y_0 \le 10$
$\boxed{11 \rightarrow 14}$	$x \mapsto X_0 - 1, y \mapsto Y_0 + 7$	$X_0 + Y_0 \le 10 \land 2 * (X_0 + Y_0) + 12 \le 27$
$14 \rightarrow 15$	$x \mapsto X_0 - 1, y \mapsto Y_0 + 7$	$X_0 + Y_0 \le 10 \land 2 * (X_0 + Y_0) + 12 \le 27$
$15 \rightarrow 16$	$x \mapsto 4(X_0 - 1), y \mapsto Y_0 + 7$	$X_0 + Y_0 \le 10 \land 2 * (X_0 + Y_0) + 12 \le 27$
$16 \rightarrow 17$	$x \mapsto 4(X_0 - 1), y \mapsto 3Y_0 + 4X_0 + 17$	$X_0 + Y_0 \le 10 \land 2 * (X_0 + Y_0) + 12 \le 27$

Table 4: symbolic execution table for iv

- c. For each path in part (b), indicate whether it is feasible or not. For each feasible path, give values for X_0 and Y_0 that satisfy the path condition.
 - i Path (i) is feasible. $X_0 = 7, Y_0 = 8$
- ii Path(ii) is feasible. $X_0 = 5, Y_0 = 6$
- iii Path(iii) is feasible. $X_0 = 5, Y_0 = 4$
- iv Path(iv) is feasible. $X_0 = 5, Y_0 = 1$

Question 2

a. Encode the constraint $at - most - one(a_1, a_2, a_3, a_4)$ into an equivalent set of clauses.

 $at - most - one(a_1, a_2, a_3, a_4)$ is satisfied if at most one of a_1, a_2, a_3, a_4 is true. Thus, the following must be satisfied:

$$\neg((a_1 \land a_2) \lor (a_1 \land a_3) \lor (a_1 \land a_4) \lor (a_2 \land a_3) \lor (a_3 \land a_4))$$

which is equivalent to:

$$(\neg a_1 \lor \neg a_2) \land (\neg a_1 \lor \neg a_3) \land (\neg a_1 \lor \neg a_4) \land (\neg a_2 \lor \neg a_3) \land (\neg a_2 \lor \neg a_4) \land (\neg a_3 \lor \neg a_4)$$

b. Reduce Graph Reachability to Propositional Satisfiability. Specifically, develop a set of clauses in CNF such that $Reachable(G, V, v_{init}, v_{end})$ are satisfiable if and only if there is a path from v_{init} to v_{end} in G.

Each vertex $v \in V$ needs a propositional variable a_v . The constrains needed to be satisfied at the same time (CNF) are as following:

1. The path starts at v_{init} and ends at v_{end} .

$$a_{init} \wedge a_{end}$$

2. For each vertex $v \in V$

 v_{end} , any path that starts from v, that is, any $(v,u) \in E$, proceeds to at least one successor u of v. That is:

$$\neg(a_v \land \neg a_{u_1} \land \neg a_{u_2} ... \land \neg a_{u_k})$$

which is equivalent to:

$$\neg a_v \lor_{u|(v,u)\in E} a_u$$

Validation:

For the graph in the left part of Figure 1, the constraints are:

$$\neg a_{init} \lor a_1 \lor a_2$$
$$\neg a_1 \lor a_{end}$$
$$\neg a_2 \lor a_{end}$$
$$a_{init} \land a_{end}$$

A possible satisfying assignment is: $a_{init} \mapsto 1, a_1 \mapsto 1, a_2 \mapsto 1, a_{end} \mapsto 1$. For the graph in the right part of Figure 1, the constraints are:

$$\neg a_{init} \lor a_1 \lor a_2$$

$$\neg a_1$$

$$\neg a_2$$

$$a_{init} \land a_{end}$$

The constraints can not be satisfied.

Question 3

a. Write down quantifier free constraints in First Order Logic to solve the puzzle above for any positive integer n.

 $n_{/0}$ constant of the size of square

 $Square_{/2}$ value of a square element at a given position eg:Square(0,0)

 $Sum_{/n}$ sum of a list of values

 $\forall i_1, i_2, j_1, j_2 \cdot 0 \leq i_1 < n \land 0 \leq i_2 < n \land 0 \leq j_1 < n \land 0 \leq j_2 < n \land 1 \leq Square(i_1, j_1) \leq n^2 \land 1 \leq Square(i_2, j_2) \leq n^2 \land (i_1 \neq i_2 \lor j_1 \neq j_2) \Longrightarrow Square(i_1, j_1) \neq Square(i_2, j_2)$

$$\begin{split} \forall i \cdot 0 &\leq i < n \Longrightarrow Sum(\forall j \cdot 0 \leq j < n \cdot Square(i,j)) = \frac{(1+n^2)n^2}{2n} \\ \forall j \cdot 0 \leq i < n \Longrightarrow Sum(\forall i \cdot 0 \leq j < n \cdot Square(i,j)) = \frac{(1+n^2)n^2}{2n} \\ Sum(\forall i \cdot 0 \leq i < n \cdot Square(i,i)) = \frac{(1+n^2)n^2}{2n} \\ Sum(\forall i \cdot 0 \leq i < n \cdot Square(i,n-i-1)) = \frac{(1+n^2)n^2}{2n} \end{split}$$

Question 4

(e) Provide a program on which your symbolic execution engine diverges (i.e., takes longer than a few seconds to run).

```
havoc x, y, z;
while (x > 1 and y < 1) or z = 1 do {
    x := x - 1;
    y := y + 1;
    z := z * -1;
    while (x > 10 and y < 1000) or z = 100 do {
        x := x - 1;
        y := y + 1;
        z := z * -1
    }
}
```

Question 5

a. Show whether the following First Order Logic (FOL) sentence is valid or not. Either give a proof of validity, or show a model in which the sentence is false.

$$(\forall x \cdot \exists y \cdot P(x) \vee Q(y)) \Longleftrightarrow (\forall x \cdot P(x)) \vee (\exists y \cdot Q(y))$$

Answer:

Valid. By algebraic manipulation of the formulas:

```
 \forall x \cdot \exists y \cdot (P(x) \vee Q(y)) \equiv \forall x \cdot (\exists y \cdot P(x)) \vee (\exists y \cdot Q(y))) 
 \equiv \forall x \cdot (P(x) \vee (\exists y \cdot Q(y))) 
 \equiv (\forall x \cdot P(x)) \vee (\forall x \cdot \exists y \cdot Q(y)) 
 \equiv (\forall x \cdot P(x)) \vee (\exists y \cdot Q(y))
```

b. Question same as above for

$$(\forall x \cdot \exists y \cdot P(x,y) \vee Q(x,y)) \Longrightarrow (\forall x \cdot \exists y \cdot P(x,y)) \vee (\forall x \cdot \exists y \cdot Q(x,y))$$

Answer:

The sentence is not valid. Suppose there is a model $M = (S, Q^M, P^M)$ where:

- the universe S = a, b
- $Q^M = (b, b)$
- $P^M = (a, a)$

Because P(a,a), Q(b,b) are true in M, it can be deduced that $M \models (\forall x \cdot \exists y \cdot P(x,y) \vee Q(x,y))$. However, neither $\exists y \cdot P(b,y)$ nor $\exists y \cdot Q(a,y)$ are true in M, $M \not\models (\forall x \cdot \exists y \cdot P(x,y)) \vee (\forall x \cdot \exists y \cdot Q(x,y))$. Therefore, the sentence is invalid.

c. Consider the following FOL formula $\Phi: \exists x \exists y \exists z (P(x,y) \land P(z,y) \land P(x,z) \land \neg P(z,x))$ For each of the following FOL models, explain whether they satisfy or violate the formula Φ

a)
$$M_1 = \langle S_1, P_1 \rangle$$
, where $S_1 = \mathbb{N}$, and $P_1 = (x, y) | x, y \in \mathbb{N} \land x < y$. Does $M_1 \models \Phi$

Answer:

Satisfy.

For example, x = 0, z = 1, y = 2. It satisfies

$$x < y \land z < y \land x < z \land z \not< x$$

, which means satisfying

$$P(x,y) \wedge P(z,y) \wedge P(x,z) \wedge \neg P(z,x)$$

b)
$$M_2 = \langle S_2, P_2 \rangle$$
, where $S_2 = \mathbb{N}$, and $P_2 = (x, x+1) | x \in \mathbb{N} \land x < y$. Does $M_2 \models \Phi$

Answer:

Violate.

For proving by contradiction, we assume that there exist $x, y, z \in \mathbb{N}$ that satisfies

$$P(x,y) \wedge P(z,y) \wedge P(x,z) \wedge \neg P(z,x)$$

. That means,

$$y = x + 1 \land y = z + 1 \land z = x + 1 \land x \neq z + 1$$

in which the first three equations can lead to the contradiction:

$$y = x + 1 \land y = x + 2$$

So this FOL model violates the formula Φ .

c) $M_3 = \langle S_3, P_3 \rangle$, where $S_3 = P(\mathbb{N})$, the powerset of natural numbers, and $P_3 = \{(A, B) | A, B \subseteq \mathbb{N} \land A \subseteq B\}$. Does $M_3 \models \Phi$

Answer:

Satisfy. For example, $x = \{0\}, z = \{1\}, y = \{0, 1\}$. It satisfies

$$x \subseteq y \land z \subseteq y \land x \subseteq z \land z \not\subseteq x$$

, which means satisfying

$$P(x,y) \wedge P(z,y) \wedge P(x,z) \wedge \neg P(z,x)$$

d. Express in FOL: "Location i is a pivot of an array A such that all elements in locations lower than i are less than any elements in locations higher than i".

Answer:

$$isArray(A) \land 0 \le i < len(A) \land (\forall j, k \cdot 0 \le j < i < k < len(A) \Longrightarrow read(A, j) < read(A, k)$$

e. Express in FOL: an array A is a permutation of an array B.

Answer:

$$Sort_{/1}$$
 the sorted array

 $isArray(A) \land isArray(B) \land len(A) = len(B) \land (\forall i \cdot 0 \leq i < len(A) \Longrightarrow read(Sort(A), i) = read(Sort(B), i)$

f. Axiomatize Stack operations in FOL with equality by writing a set of FOL formulas.

Answer:

$$empty(nil) = true$$

$$\forall x, y \cdot empty(push(x, y)) = false$$

$$\forall x, y \cdot push(x, y) \neq nil$$

$$\forall x, y \cdot pop(push(x, y)) = x$$

$$\forall x, y \cdot top(push(x, y)) = y$$