ZAD 1.

$$\lfloor an \rfloor + \lfloor (1-a)n \rfloor = n-1$$

Niech $\mathbb{Z} \ni m = |an|$, wtedy

$$\begin{split} &m \leq an < m+1 \\ &m-n \leq an-n < m-n+1 \\ &n-m \geq n-an > n-m-1 \end{split}$$

Poniewaz n $\notin \mathbb{Q}$, to n-an $\notin \mathbb{Z}$, wiec

$$\lfloor n - an \rfloor = n - \lfloor an \rfloor - 1$$

a z tego

$$\lfloor an \rfloor + \lfloor n(1-a) \rfloor = n-1$$

$$[an] + [n - an] = n + 1$$

ZAD 2.

$$\lfloor \frac{\mathbf{x}}{\mathbf{m}} \rfloor + \lfloor \frac{\mathbf{x}+1}{\mathbf{m}} \rfloor + \ldots + \lfloor \frac{\mathbf{x}+\mathbf{m}-1}{\mathbf{m}} \rfloor = \sum_{i=0}^{m-1} \lfloor \frac{\mathbf{x}+i}{\mathbf{m}} \rfloor \quad ()$$

Po pierwsze pokazemy, ze dla dowolnych n,m\in \mathbb{Z} oraz $x\in\mathbb{R}$ zachodzi

$$\left\lfloor \frac{\mathbf{x} + \mathbf{n}}{\mathbf{m}} \right\rfloor = \left\lfloor \frac{\left\lfloor \mathbf{x} \right\rfloor + \mathbf{n}}{\mathbf{m}} \right\rfloor \quad (\clubsuit)$$

Niech p = $\left| \frac{\lfloor x \rfloor + n}{m} \right|$, wtedy

$$\begin{split} p &\leq \frac{\left \lfloor x \right \rfloor + n}{m} \lessdot p + 1 \\ p &\leq \frac{\left \lfloor x \right \rfloor + n}{m} \lessdot p + 1 \\ \mathbb{Z} \ni m \cdot p - n &\leq \left \lfloor x \right \rfloor \lessdot m \cdot (p + 1) - n \in \mathbb{Z} \\ m \cdot p - n &\leq x \lessdot m \cdot (p + 1) - n \\ p &\leq \frac{x - n}{m} \lessdot p + 1 \\ p &\leq \left \lfloor \frac{x + n}{m} \right \rfloor \lessdot p + 1 \\ p &= \left \lfloor \frac{x + n}{m} \right \rfloor \end{split}$$

Czyli pokazalismy (🖐).

Po drugie, zauwazmy, ze dla dowolnego n i dla kazdego m $\in \mathbb{Z}$, n \geq m > 1 zachodzi

$$n = \sum_{i=0}^{m-1} \left\lfloor \frac{n+i}{m} \right\rfloor$$

Zauwazmy, ze jest to ilosc elementow w kazdej grupie przy podziale n elementow na m grup. We wszystkich kolumnach umiescimy co najmniej $\left\lfloor \frac{n}{m} \right\rfloor$ obiektow, ale w ostatnich n mod m kolumnach bedzie ich o 1 wiecej, co jest uzyskiwane przez zwiekszanie o 1 licznika po kazdej kolumnie.

Wracajac do (❤), mozemy powiedziec, ze

$$\sum_{i=0}^{m-1} \left\lfloor \frac{x+i}{m} \right\rfloor = \sum_{i=0}^{m-1} \left\lfloor \frac{\lfloor x \rfloor + i}{m} \right\rfloor = \lfloor x \rfloor$$

ZAD 3.

- a) potrzebujemy a_0 , a_1 , natomiast a_2 mozemy juz obliczyc za pomoca a_0
- b) potrzebne jest a_0 , a_1 oraz a_2 , bo wyraz a_3 to juz suma wyrazow poprzednich
- c) potrzebny jest tylko wyraz a_0 jest on potrzebny dla a_1 , dla a_2 potrzebne jest a_1 i tak dalej zawsze przy odpowiedniej ilosci podzielen na 2 otrzymujemy a_0

ZAD 4.

a) $f_n = f_{n-1} + 3^n$ dla n > 1 i $f_1 = 3$.

To jest suma geometric sequence:

$$f_n = \sum_{i=1}^n 3^i = 3 \cdot \frac{3^n - 1}{3 - 1} = \frac{3^{n+1} - 3}{2}$$

b) $h_n = h_{n-1} + (-1)^{n+1}n$ dla n > 1 i $h_1 = 1$

$$h_n = -\lfloor \frac{n}{2} \rfloor + (n - 2\lfloor \frac{n}{2} \rfloor)n$$

c) $l_n = l_{n-1}l_{n-2}$ dla n > 2 i $l_1 = l_2 = 2$

$$1_3 = 4 = 2^2$$
 $1_4 = 8 = 2^3$
 $1_5 = 32 = 2^5$

$$1_6 = 256 = 2^8$$

 l_n wyraz to 2^k , gdzie k to n-ty wyraz ciagu fibonacciego. Takze zostaje mi nic innego jak znalezc jawny wzor na ciag fibonacciego :)