Introduction to High Performance Computing

Pratyush Gaurav HPC Team, TCS Pune

pratyush.gaurav@tcs.com

Outline

- What is High Performance Computing?
- Characteristics of HPC
- Building Blocks of an HPC System
- Evolution of Supercomputers
- A Modern Supercomputer
- Architecture of a Supercomputer
- Vector Processing
- Accelerators
- Why Use HPC
- HPC is not just...
- Paradigms Influenced by HPC
- HPC Domains

What is High Performance Computing?

- As the name suggests: computing on high performance computers
- Combination of hardware & software
- Originally implemented in supercomputers for scientific research
- Main purpose is development of parallel processing software which can be executed simultaneously on multiple processors
- Modern day HPC does not require a supercomputer

Characteristics of HPC

- Massively Parallel Processing
- Vector Processing
- Floating Point Arithmetic
- Multi Threading
- Low Latency
- High Bandwidth
- Efficiency measured in FLOPS

Building Blocks of an HPC System

- Compute Hardware
 - Cluster of computers
 - Accelerators (GPU or MIC)
 - Specialized Accelerators (FPGA or ASIC)
- Network Fabric
 - Infiniband
 - Gigabit Ethernet
 - Others (MyriNet, Quadrics etc.)
- Software (Programming Models)
 - MPI (Message Passing Interface)
 - SHMEM (Shared Memory)
 - PGAS (Partitioned Global Address Space)

Evolution of Supercomputers

- Vector Computers (VC)
 - Designed keeping in mind the numerical problems at hand
 - Too specific
- Massively Parallel Processors (MPP)
- Symmetric Multiprocessors (SMP)
- Distributed Systems
- Clusters
 - Easier to integrate
 - Cost effective
 - Serves a wide variety of purpose

A Modern Supercomputer

- Modern Supercomputer: cluster of commercially available off the shelf (COTS) computers
- Compute units: multi socket, multi core CPUs or Accelerators
- Interconnected via high throughput network fabric
- Parallel File System
- Message Passing Interface

Supercomputer (A Visual Example)

Architecture of a Supercomputer

Vector Processing

 The diagram below shows the architecture of a vector supercomputer during the early ages of

HPC

 In modern times similar processing and much more is achieved within a normal CPU

Accelerators

Nvidia GPU

Altera FPGA

Intel MIC

Bitmain Bitcoin ASIC Unit

Why Use HPC?

- Simulation & modelling
 - Cost of real experiment is too high
 - E.g. CFD analysis of an aircraft
 - Real experiment may be too dangerous
 - · E.g. simulation of nuclear fission reaction
- Time bound completion
 - Application must finish within set time limits
 - E.g. weather forecasting
 - Application needs to perform in real time
 - E.g. high performance trading
- Experimental data is too large
- Allows more permutations & combinations to be tried

HPC is not just...

- Supercomputing
- Grid Computing
- Distributed Computing

Paradigms influenced by HPC

- Many computing paradigms have been influenced by HPC, often to be confused as being part of HPC
 - Big Data
 - Cloud Computing
 - Machine Learning

HPC Domains

- HPC has moved beyond the domains of scientific research and has gone mainstream
- HPC touches our day to day life in form of medicines, weather forecasts, automobiles, banking, animated movies etc.

Life Sciences & Molecular Research

- Utilities
 - Formulation of new molecules
 - Drug discovery
 - Genome sequencing
- Softwares
 - AMBER
 - NAMD
 - LAMMPS
 - GROMACS

Weather Modelling & Forecasting

- Utilities
 - Weather forecasting
 - Atmospheric Research
 - Oceanography
 - Ice cap & glacial modelling
- Softwares
 - WRF
 - ROMS
 - GEOS

Computational Fluid Dynamics

- Utilities
 - Design of aircrafts, automobiles
 - Design of cooling units
 - Design of jet & rocket engines
- Softwares
 - OpenFOAM
 - Ansys Fluent
 - Abaqus

Nuclear & Quantum Physics

- Utilities
 - Simulation of nuclear experiments
 - Behaviour analysis of quarks
 - Quantum Chromodynamics
 - Research at Large Hadron Collider
- Softwares
 - MILC
 - QPHIX

A QCD simulation showing quark and gluon field fluctuations

Other HPC Domains

- Finance & trading
 - Banking
 - High performance trading
 - Stock market modelling
 - Cryptocurrencies (e.g. Bitcoin)
- Cryptography & Security
 - Code breaking
 - Cyber forensics
 - Cryptocurrency
- Media & entertainment
 - Animation
 - Special Effects (VFX)
- Oil & gas exploration
- Astronomy & astrophysics

