Math 493 Lecture 12

Professor Andrew Snowden

Transcribed by Thomas Cohn

10/16/19

Defn: Let G be a group, and X be a set. An **action** of G on X is a function $G \times X \to X$. $(g,x) \mapsto g \cdot x$

s.t.

- 1. $1 \cdot x = x, \forall x \in X$
- 2. $(gh)x = g(hx), \forall g, h \in G, \forall x \in X$

We may also say X is a G-set.

Ex:

- 1. M, the group of rigid motions of the plane $P = \mathbb{R}^2$. M acts on P.
- 2. G, any group, acts on X = G by
 - (a) $g \cdot h = gh$
 - (b) $g \cdot h = hg^{-1}$. Check:

 $\forall g, h, x \in G, (gh) \cdot x = x(gh)^{-1} = xh^{-1}g^{-1} = (xh^{-1})g^{-1} = g \cdot (xh^{-1}) = g \cdot (h \cdot x)$

- (c) $g \cdot x = gxg^{-1}$
- 3. $G = S_n, X = \{1, 2, \dots, n\}. \ \sigma \in G, i \in X, \ \sigma \cdot i = \sigma(i).$
- 4. $G = GL_n(F)$, (F is a field). $X = F^n$. $g \cdot x$ is just matrix-vector multiplication.

Defn: X and Y are G-sets. A **homomorphism** from X to Y is a function $f: X \to Y$ such that $f(gx) = gf(x), \forall x \in X, g \in G$. We say that f is a G-map.

Defn: An **isomorphism** of *G*-sets is a bijective homomorphism.

Defn: If G is any group, X is any set, we have the **trivial action** of G on X by $g \cdot x = x, \forall g \in G, x \in X$.

Defn: Let X be a G-set. The **orbit** of $x \in X$ (under G) is $O_x = \{g \cdot x \mid g \in G\}$.

Note: we can define an equivalence relation on X by $x \sim y$ if $\exists g \in G$ s.t. x = gy. O_x is the equivalence class.

Equivalence classes partition their set, so the orbits partition X.

Observation: given $y \in O_x g \in G$, $gy \in O_x$, because y = hx for some $h \in O_x$, so $gy = ghx = (gh)x \in O_x$.

Defn: We say G acts **transitively** on X if there is only one orbit.

Ex:

- 1. $S_n \subset \{1,\ldots,n\}$. This action is transitive.
- 2. $GL_n(F) \odot F^n$. There are two orbits, $\{0\}$ and $F^n \setminus \{0\}$.
- 3. $G \odot G$ by left multiplication. This is transitive, because $\forall g \in G, g = g \cdot 1$, so $g \in O_1$.
- 4. $G \odot G$ by conjugation. Given $g \in G$, $O_g = \{hgh^{-1} \mid h \in G\}$, the set of elements conjugate to g.

Defn: The set of elements conjugate to g is called the **conjugacy class** of g, and often denoted C_q .

Defn: Given G-sets X and Y, we can define a new G-set $X \perp\!\!\!\perp Y$ called the **disjoint union**, by putting together X and Y. X and Y are isomorphic to G-subsets of $X \perp\!\!\!\perp Y$ and $X \perp\!\!\!\perp Y = X \cup Y$ and $X \cap Y = \emptyset$.

Prop: Every G-set is isomorphic to a disjoint union of transitive G-sets. Proof: X is the disjoint union of its orbits. \square

Defn: Let X be a G-set. A subset Y of X is G-stable if $y \in Y, g \in G \Rightarrow gy \in Y$. Y is also called a G-subset.

Defn: Let X be a G-set, $x \in X$. The **stabilizer** of X is $G_x = \{g \in G \mid gx = x\}$.

Observe: G_x is a subgroup of G. Proof:

- $1 \in G_x$ because $1 \cdot x = x$.
- If $g \in G_x$, then gx = x, so $g^{-1}gx = g^{-1}x$. Thus, $x = g^{-1}x$, so $g^{-1} \in G_x$.
- If $g, h \in G_x$, then (gh)x = g(hx) = gx = x, so $gh \in G_x$.

Thus, G_x is a subgroup of G. \square

Prop: Let $x \in X$, $g \in G$. $G_{gx} = gG_xg^{-1}$. Proof: Suppose $h \in G_x$. Then $(ghg^{-1}) \cdot gx = ghx = gx$, so $ghg^{-1} \in G_{gx}$. Thus, $G_{gx} \supseteq gG_xg^{-1}$. The other direction is similar. \square

Cor: Any 2 elements in the same orbit have conjugate stabilizers.

Given $H \subseteq G$ a subgroup, consider the set of all left cosets $G/H = \{gH \mid g \in G\}$. This is naturally a G-set by $g \cdot (g'H) = gg'H$.

Some observations:

- G/H is a transitive G-set $gH = g \cdot H$. Thus, every coset is in the orbit of H.
- The stabilizer of H under this action is H, because $g \cdot H = gH$; if $g \in H$, then $g \cdot H = H$. Conversely, if $g \cdot H = H$, then $g \in H$.

Thm: Every transitive G-set is isomorphic to G/H for some subgroup H. More precisely, if $x \in X$, $H = G_x$, then the function $f: G/H \to X$ is well defined and an isomorphism of G-sets. $gH \mapsto gx$

Proof: First, check that f is well defined. Suppose gH = g'H. It's enough to show gx = g'x. We know g = g'h for some $h \in H$. So gx = g'hx = g'x, because h stabilizes x.

Map of G-sets: Let $g, g' \in G$. Then $f(g \cdot (g'H)) = f(gg'H0 = gg'x = g(g'x) = gf(g'H)$.

Surjectivity: Given $y \in X$, we can write y = gx for some $g \in G_x$ because X is transitive. Thus, y = f(gH), so $y \in \text{im } f$.

Injectivity: Suppose f(gH) = gx = f(g'H) = g'x. Then $x = g^{-1}g'x$, so $g^{-1}g' \in G_x = H$, so gH = g'H. \square

Prop: Given subgroups $H, H' \subseteq G, G/H$ and G/H' are isomorphic as G-sets iff H and H' are conjugates. Proof: this is left as an exercise to the reader.

Cor: (Counting Formula) Suppose f is finite, X is a G-set, and $x \in X$. Then $|G| = |O_x| \cdot |G_x|$. Proof: O_x is a transitive G-set, and G_x is the stabilizer of $x \in O_x$. So $O_x \cong G/G_x$, so $|O_x| = [G:G_x]$. \square