CA Assignment -3

١.	Data	Depend	lences.
----	------	--------	---------

ADD R3 L R1, R2 ADD RS L RY, R3

(i) without bypass.

ADD R3 - R1 R2: IF CO DE RR

DE DE DE RR AL RW 18 0 ADD R5 - RY R3: POC astalls

(ii) with bypass

RR ADD R3 - RI, R2: IF CO DE

CO DE RR PAL IF ADD R5 @ R4, R3: Ostalls

2) LD R2 ([RI] ADD RY + R3, R2

(i) without bypass

LDR26 [RI] ! IF CO DE RR AL DMI RW DM3 DM2 DE RR ALRO ADD RY - R3, R2: IF CO DE DE DE DE PE POC

(ii) with bypass

LDR2+[R]: IF CO DE RR AL DMI DM2 DM3 RW

RR . FPALI FPALZ FPAL3 IF CO DE DE DE DE ADDRYER3, RZ: POC. RW

[35 falls

FRAL3

(ii) with by paus ADD RI←RZ, R3: IF SD RI → [RY]	ADD RI & RZ R3: IF	(i) with bypass LD R24[R1]: IF C SD R3+[R2]: IF SD R3+[R2]: II SD R3+[R2]: II	SD R3 -> [R2] (i) without by park LD R2 + [R1]: 1F SD R3 -> [R2]:
IF CO DE RR FPALI EPALZ FRALS RW IF CO DE DE RR AL DM1 IISTELL DM2 DM3 RW ROC RIGHT WAS REAL TO BE PUT IN MEMO	IF CO DE RR PPALI FPALZ FPALS RW IF CO DE DE DE DE RR ILY STOWNS AL DMI DM2 DM3 RW	F CO DE RR AL DMI DM2 DM3 RW IF CO DE DE DE DE RR AL DMI DM2 R3 : R2 is needed for addition calc in AL R3	CO DE RR AL DMI DM2 DM3 RW THE CO DE DE DE DE DE RR 15 SHALLS DMI DM2 DM3 RW

5

< [RI]

2. Breanch delayslots and stalls of Given: - 10-stage-in-order processor. branch outcome after 4 stages. 3 stall ydes. breanches = 15% of all instructions breanch taken -70%, not taken - 30% total cycles = # of instructions + stall cycles Let total # of instructions be 100. I any CPI = total cycles total instructions when fetch is stalled for every branch. total cycles = 100 + 15×3 [:15 breanched instruction each having 3 stall cycles] 145 = 1:45 cycles/inst 2) breanch is predicted as not taken. =) 30% of 15 instructions i. e 4.5 have no stalls 270% of 15 instructions i.e. 10.5 have 3 stalls. total cycles = 100 + 10.5 x 3 131.5 = [1.315 cycles/inst] 3) processor how 3 delay soots. 1) Since there are no instanctions to fill the delayslate, cath of the 15 breanched instruction will have 3 Stall aydes. = 11.45 cycles/instr avg CP1 = 100+45

- (2) 3 instructions before the branch moved into delay stat =) no stall cycles introduced for the branches. ... ang CPI = 100 = / 100 cycle/m/n
- 3 2 instructions from the taken block moved into delayslot =) 10.5 instructions of the branch instructions won't have any stall cycles but 4.5 instructions will have 3 stall cycles.

- (4) 3 instructions from the not-taken block moved into delay instructions well have 3 stall cyclis
 - ang $CPI = \frac{100 + 10.5 \times 3}{100} = \frac{100 + 31.5}{100} = \frac{131.5}{100}$
 - = 1.315 cycles/insth
- 3. Deep Pipelines Tofinal: throughput in BIPS. Given: unpipelined processor.
 - cycletime = 20 ms Latch Latency = 0.2 is
 - POP AD POC = 6 Ms.
 - independent instructions = 40% dependent instructions = 60%.
 - (i) for unpipelined pococussor. aycle time = 20+0, 2 = 20, 2 ms.

since unpipelined a throughput = 1 = 10.049 BIPS

: gap between independent instructions - 2.21% # of cycli shifts for grap between Porce Pop. 6 = 3 stages. time per stage = 20 = 2 ns. 3 cycle fine = 2+0.2 = 2.2 rs.

(11) 10-stage pipeline.

: gap betueven dependent instructions - 3x a. 2 - 6.6 vs

and dat = 0.1x 8. 8 + 0. 6 x 6. 6 = 4.84 ms.

(E) . throughput - ors -20-stage pipeline 4.84 = 10.206 BIPS

=> cycletime = 1.2 ms. i gap between independent instructions = 1.2 ms # of cycle shifts = = 6 stages.

gop between dependent instructions - 6x1.2 = 7.2m and dat = 0.4x1.8 + 0.6x 1.2

= 4.8 ms

throughput = 1 = 10.208 BIPS