Due: 8:30 a.m. November 23, Thursday, 2021(No late homework accepted)

- 1.1 [25 points] (Hyperelastic material) Using the results derived in homework 4 and the material properties listed in Table 3.7 of the Allen Bower book, plot graphs showing the e_1 -directional Cauchy (left panel) and nominal (right panel) stresses as a function of stretch ratio λ for each of (a) a Neo-Hookean material; (b) a Mooney-Rivlin material; (c) the Arruda-Boyce material and (c) the Ogden material when subjected to *uniaxial* tension $(0.5 \le \lambda \le 2)$.
- 2.1. [25 points] Repeat problem 1.1. for *biaxial* tension (plot stresses in the e_1 -direction only).
- 3.1 [20 points] (Viscoelastic material Maxwell model) Given a viscoelastic material, we impose constant stress σ_0 at t=0. Derive the constitutive equation using the Maxwell model (i.e., express strain ε as a function of stiffness k, damping factor η , time t, and given stress σ_0).
- 4.1 [10 points] (Viscoelastic material Maxwell model) Plot the strain of this viscoelastic material as a function of time t (0 to 600 s), given $\sigma_0 = 1$ MPa, k = 0.1 GPa, and $\eta = 20$ GPa-s. Which behavior does this model represent, retarded elastic behavior or steady-state creep behavior?
- 5.1 [20 points] (Viscoelastic material Maxwell model) Given a viscoelastic material, we impose constant strain ε_0 at t=0. Derive the constitutive equation using the Maxwell model (i.e., express stress σ as a function of stiffness k, damping factor η , time t, and given stress ε_0).