REEVALUATING AUTOMATED WILDLIFE SPECIES DETECTION: A REPRODUCIBILITY STUDY ON A CUSTOM IMAGE DATASET

Preprint, compiled September 13, 2025

Tobias Abraham Haider 1, 2*

¹Vienna University of Technology ²University of Veterinary Medicine Vienna

Abstract

This experiment reproduces the results of the paper Automated detection of European wild mammal species in camera trap images with an existing and pre-trained computer vision model [1], which tests the pretrained Google Inception-ResNet-v2 model for animal species identification. We describe the required software, image loading processes, and model outputs. Furthermore, we calculate the prediction accuracies for each present species and the whole dataset and compare them to the metrics from the original paper. The observed total prediction accuracy of 62% comes close to the reported 71% by Carl et al. The large difference in per-class accuracy, ranging from 0% to 100%, can also be observed in our experiment. Like Carl et al., we recommend the use of the pretrained Inception-ResNet-v2 model for simple animal species identification tasks, ideally refitted to the species relevant for the specific use case.

Keywords machine learning, reproducibility, camera tramp, pre-trained model, animal species classification, computer vision, neural networks, cnn, resnet, tensorflow, wildlife monitoring

Introduction

While biodiversity is decreasing at a rapid pace, the rise of specific species, be they invasive or predatory, concerns societies around the world. As a consequence, researchers and conservationists are interested in continuously monitoring wildlife populations in terms of their geographical distribution, size, and behavior. Researchers successfully deploy camera traps that can take photographs of passing animals without disturbing them [2]. The photos are typically manually collected from the traps and annotated with the name of the species present in the image [3]. This experiment tests one popular software for eliminating the need for manual annotation of images: deep convolutional neural networks.

EXPERIMENT SETUP

Carl et al. do not supply great insight into the runtime environment. This is likely due to the standardized way the [4] can be used through the TensorFlow library. To maximize the readability and reproducibility of the experiment, a minimal setup was chosen, defining all necessary code, data, and requirements in one GitHub project. State-of-the-art Python packages are chosen, installed, and imported. The exact versions are shown in Table 3. The Jupyter notebook is run locally on a Thinkpad T14 with an AMD Ryzen 5 PRO 5650U processor, 16 GB of memory, and Linux Mint 22.1 installed. No GPU was used, but it can be expected that the results would not change if one were used.

!python3.12 -m pip install -r requirements.txt

3 Model

Once the Python runtime is set up and the packages are imported, the neural network can be instantiated and directly fit to the ImageNet dataset [5]. This eliminates all model design and training work.

model = InceptionResNetV2(weights="imagenet")

Data

Cal et al. provide the source for their wildlife images for their dataset [6]. This source is no longer available, requiring us to run the experiment on a different dataset. To test the generalizability of the model, we take a larger public dataset containing images of 90 different species [7]. To mimic the original experiment setup, only 10 samples are used for each species, resulting in a total test sample size of 900 images.

4.1 Data Preprocessing

The images are loaded with three color channels (RGB), resized to 299 by 299 pixels and converted into an 1-dimensional vector. The color intensities are scaled to be floating point numbers from 0 to 1. This is the minimal preprocessing required to fit the required input size of the neural network.

Table 1: Subset of Inception-ResNet-v2 raw predictions

	*
y_true	y_pred
antelope	gazelle
badger	badger
bat	hummingbird
bear	brown_bear
bee	bee
beetle	honeycomb
bison	bison
boar	wild_boar
butterfly	ringlet
cat	Egyptian_cat
-	<u> </u>

```
def load_normalized_image(path, target_size):
    image = Image.open(path).convert("RGB")
    image = image.resize(target_size)
    return np.array(image) / 255.0
```

The testing data is constructed by stacking the normalized image vectors and using the folder names as the label.

x_test = np.stack(animal_images, axis=0)
y_true = animal_species

5 Test

The model yields a probability for each of the 1000 classes. The classes represent 1000 different classes taken from the ImageNet database. For this experiment, we use the output from the top neuron of the final softmax layer and compare its label to the true label.

When looking at the results, it becomes apparent that the model yields usable results. Almost all inference outputs are animal species somehow related to the one present in the image. This shows that the InceptionResNetV2 is generalizable to some extent.

5.1 Label Mapping

The main issue with this experiment is the set of classes known to the model, which do not match the dataset used for testing. This is not specific to this dataset, but it is very likely to happen in any kind of realistic setup. We manually define a mapping table to relate the model output label to the labels from the dataset.

This mapping is done manually, as a best-effort approach following the Linnean system of taxonomy, and we acknowledge some shortcomings of it:

Table 2: Prediction accuracy for 5 different species and the total accuracy

species	accuracy
bison	1.0
goose	1.0
gorilla	0.9
dolphin	0.0
woodpecker	0.0
TOTAL	0.62

Table 3: Runtime dependencies

package	version	
pathlib	1.0.1	
Pillow	11.3.0	
numpy	2.1.3	
pandas	2.3.1	
tensorflow	2.19.0	
scikit-learn	1.7.1	

- Some semantic information is lost as species are sometimes mapped to their families. (e.g., all bear species are mapped to bear)
- The dataset contains images of species that are not directly related to any class from the model. (e.g., all bats, deers)

We document all defined mappings in Table 4.

6 Evaluation

Carl et al. provide two kinds of performance metrics: overall model accuracy and the accuracy for each species. By grouping the samples by the true species, it is straightforward to calculate metrics that can be directly compared to the results from Carl et al.

```
accuracy = accuracy_score(y_true, y_pred_mapped)
```

Refer to Table 6 for the group accuracies for each species.

7 Summary

8 Future Work

.. tabularcolumns:: |p{1cm}|p{10cm}|

REFERENCES

[1] Christin Carl, Fiona Schönfeld, Ingolf Profft, Alisa Klamm, and Dirk Landgraf. Automated detection of European wild mammal species in camera trap images with an existing and pre-trained computer vision model. *European Journal of Wildlife Research*, 66(4), 7 2020. ISSN 1439-0574. doi: 10. 1007/s10344-020-01404-y. URL http://dx.doi.org/10.1007/s10344-020-01404-y.

Table 4: Imagenet label mapping

Table 5:	Inception-Re	esNet-v2	predictions
----------	--------------	----------	-------------

mapped label	imagenet label	truth	mapped predic-	model prediction
antelope	gazelle, impala		tion	14
bear	American_black_bear,	antelope	antelope	gazelle
	brown_bear	antelope	antelope	impala
beetle	ground_beetle, leaf_beetle,	antelope	antelope	impala
	rhinoceros_beetle,	antelope	antelope	gazelle
	dung_beetle	antelope	antelope	gazelle
boar	wild_boar	antelope	antelope	impala
butterfly	ringlet, monarch, sul-	antelope	goat	ibex
	phur_butterfly, lycaenid	antelope	antelope	gazelle
cat	Egyptian_cat, tabby,	antelope	antelope	impala
	Siamese_cat, Persian_cat,	antelope	antelope	impala
	lynx	badger	badger	badger
cow	water_buffalo	badger	badger	badger
crab	Dungeness_crab, fid-	badger	badger	badger
	dler_crab, rock_crab,	badger	badger	badger
	king_crab	badger	bear	American_black_b
crow	magpie, jay	badger	badger	badger
deer	red_deer, elk	badger	badger	badger
dog	Labrador_retriever, basset,	badger	badger	badger
uog	Border_collie, Chihuahua,	badger	badger	badger
				badger
	Bouvier_des_Flandres,	badger bat	badger	
	Brittany_spaniel,		hummingbird	hummingbird
	English_setter,	bat	wood_rabbit	wood_rabbit
	Greater_Swiss_Mountain_dog,	bat	hook	hook
	Ibizan_hound, Mexi-	bat	hummingbird	hummingbird
	can_hairless, tox_terrier,	bat	cowboy_boot	cowboy_boot
	Pekinese, Pomeranian,	bat	barracouta	barracouta
	golden_retriever, pug	bat	house_finch	house_finch
donkey	ass	bat	chime	chime
duck	mallard, drake	bat	cat	tabby
eagle	bald_eagle, golden_eagle	bat	mink	mink
elephant	African_elephant, In-	bear	bear	brown_bear
1	dian_elephant, tusker	bear	bear	brown_bear
fox	Arctic_fox, red_fox,	bear	bear	American_black_b
	grey_fox, kit_fox	bear	bear	brown_bear
goat	ibex, mountain_goat	bear	bear	American_black_b
horse	Arabian_horse, Appaloosa	bear	bear	brown bear
kangaroo	wallaby	bear	bear	brown_bear
lizard	agama, alligator_lizard,	bear	bear	American_black_b
iizaiu		bear	bear	
	banded_gecko, Ko- modo_dragon, whiptail			brown_bear
1-1		bear	bear	brown_bear
lobster	American_lobster,	bee	bee	bee
	spiny_lobster	bee	bee	bee
mouse	house_mouse	bee	honeycomb	honeycomb
owl	great_grey_owl	bee	bee	bee
panda	giant_panda	bee	bee	bee
parrot	African_grey, macaw,	bee	bee	bee
	sulphur-crested_cockatoo	bee	bee	bee
pelecaniformes	pelican, black_stork	bee	bee	bee
penguin	king_penguin	bee	bee	bee
pig	hog	bee	bee	bee
sandpiper	red-backed_sandpiper, red-	beetle	honeycomb	honeycomb
	shank, dowitcher	beetle	beetle	ground_beetle
shark	great_white_shark, ham-	beetle	fly	fly
	merhead, tiger_shark	beetle	beetle	ground_beetle
sheep	ram, bighorn	beetle	cockroach	cockroach
snake	horned_viper, vine_snake,	beetle	beetle	leaf_beetle
onano	king_snake, night_snake,	beetle	beetle	ground_beetle
		beetle	beetle	rhinoceros_beetle
	neck_snake, rock_python,	beetle	beetle	rhinoceros_beetle
	thunder_snake	beetle	beetle	dung_beetle
squirrel	fox_squirrel	bison	bison	bison
swan	black_swan	bison	bison	bison
turtle	box_turtle, logger-	bison	bison	bison

Table 6: The prediction accuracy for each animal species

Table 6: The prediction accuracy for each animal species		
species	accuracy	
bison	1	
bear	1	
boar	1	
crab	1	
elephant	1	
eagle	1 1	
dog	1	
chimpanzee cockroach	1	
snake	1	
panda	1	
pelecaniformes	1	
pig	1	
koala	1	
orangutan	1	
ladybug	1	
leopard	1	
lobster	1	
hornbill	1 1	
jellyfish hyena	1	
hummingbird	1	
goose	1	
goldfish	1	
fox	1	
fly	1	
sandpiper	1	
zebra	1	
wombat	1	
turtle	1 0.9	
parrot shark	0.9	
starfish	0.9	
squirrel	0.9	
otter	0.9	
kangaroo	0.9	
penguin	0.9	
coyote	0.9	
butterfly	0.9	
flamingo	0.9 0.9	
badger bee	0.9	
antelope	0.9	
hare	0.9	
gorilla	0.9	
porcupine	0.9	
tiger	0.9	
hamster	0.9	
sheep	0.8	
lizard	0.8	
lion	0.8 0.8	
cat dragonfly	0.8	
wolf	0.8	
beetle	0.7	
hippopotamus	0.7	
OX	0.7	
grasshopper	0.7	
whale	0.6	
duck	0.4	
owl	0.3	
goat	0.3	
Crow	0.3	

0.1

swan

- [2] Franck Trolliet, Marie-Claude Huynen, Cédric Vermeulen, and Alain Hambuckers. Use of camera traps for wildlife studies. A review. *Biology Agriculture Science Environ*nement, 18:446–454, 1 2014.
- [3] Dhruv Tulasi, Alys Granados, Prabath Gunawardane, Abhay Kashyap, Zara McDonald, and Sunil Thulasidasan. Smart Camera Traps: Enabling Energy-Efficient Edge-AI for Remote Monitoring of Wildlife. In *Proceedings of the 1st ACM SIGSPATIAL International Workshop on AI-Driven Spatio-Temporal Data Analysis for Wildlife Conservation*, GeoWildLife '23, pages 9–16, Hamburg, Germany, 2023. Association for Computing Machinery. ISBN 9798400703553. doi: 10.1145/3615893.3628760. URL https://doi.org/10.1145/3615893.3628760.
- [4] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alex Alemi. Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning, 2016. URL https://arxiv.org/abs/1602.07261.
- [5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 6 2009. doi: 10.1109/cvpr.2009.5206848. URL http://dx.doi.org/10.1109/CVPR.2009.5206848.
- [6] Nationalparkverwaltung Hainich, FFK Gotha. Schwarzwildforschung im https://www.schwarzwild-hainich.de, 2019. URL https://www.schwarzwild-hainich.de.
- [7] Sourav Banerjee. Animal Image Dataset (90 Different Animals). https://www.kaggle.com/datasets/iamsouravbanerjee/animalimage-dataset-90-different-animals, 2024. URL https://www.kaggle.com/datasets/iamsouravbanerjee/animal-image-dataset-90-different-animals. Accessed: 2025-09-03.