This week: lunot theory

What is a knot?

- "A closed loop in R3

- A function f:R->R3 periodic.

nit A>

05+51

 $f: CO[1] \longrightarrow \mathbb{R}^3$

4(+)=(x(+), y(+), z(+))

f(0)=f(1)(so it joins up)

f must be continuous (infinitely otherwise f(a) 7 f(b)

(you can draw without lifting pen)

for any a and b.
(so it doesn't cross itself)

Definition

A knot is an infinitely differentiable function $f: [0,1] \rightarrow \mathbb{R}^3 \text{ given by } f(t) = (xxt), x(t), z(t))$

Satisfixing:

1) f(0)=(1)

2) f(a) +f(b) unless a=b (with exeption of (O)).

Two knots are isotopic if:

(Shirt: the same) S_{AY} f: [b, 1] $\rightarrow \mathbb{R}^3$ $g: [0,1] \rightarrow \mathbb{R}^3$

there exists a family of knots

 $f_s: [0,1] \rightarrow \mathbb{R}^3$ (0\less\1)

Swalls smoothly varying as s varios and with

fo=f, f,=g.

Question - How can we dell it two knots are isotopic?

- How can we tell if a knot can be untired? (I.e. isotopic to the unknot O)

From playing with knots:

- The trefoil is not isotopic to its reverse.

"Overhand knot "chiral"

- The figure eight knot is isotopic to its veverse.

"Amphichial"

It's hard to tell whether two knots are isotopic!

It's hard to tell whether a knot is isotopic to the unknot!

Those are the "Perko pair": for 75 years thought to be different knots.

How to plove left-handed tretoil is different from right-handed and both are different from unlinet?

Idea: Assign numbers to a knot.
If two lines give different arounds the

If two knots give different arewes, they must be different knots.

But: held a number that doesn't depend on the exact way the knot is presented.

The crossing number of a knot is the minimum number of times the rope crosses itself in a 2D picture

Ex (rossing number of (left- or right-) theton) is 3.

() A) How can you prove it's 3? () not unknot,

b) This can't distinguish handedness. Which has crossing number 4.

"Knot invariants"

A knot diagram is a 2D pictures of a knot showing which strand goes on top at every crossing:

How can we draw isotopies in knot diagrams? What moves can we perform of a knot diagram without changing the knot?

e.g.

Every isotopy can be broken down into these steps! (Annoying to prove, though.)

Def A knot is tricdorable if (True) false in a knot diagram for the knot, we can color each str arc of the knot with one of three colors, such that:

- 1) At each crossing, either only one rolor, or all three colors appear.
- 2) At least two colors are used.

trefoi) tricolorable

unknot not ticolvable

(we still need to check that Reidemeister moves don't affect tricolorability!)

Is figure eight tricolerable?

- -> not the same as trefoil
- -> but maybe the same as unlinot?

Recap

-> We defined a knot and a knot diagram.

-> we defined three Reidemeister moves:

Today:
- bridge number

- Alexander polynomial

- Chirality (is knot same as neverse?)

we need to get a tricoloring on new diegram without changing colors of outbound" Strands.

Is there a knot with crossing number two? 12nd

hold

No! All are unless.

-> (rossing numbe

Theorem Trefoil is authory
not isotopic to the unknot, and cr(trefoil)=3.

Pf. It's tricolorable, and the unknot isn't.

(and tricolorability is isotopy invariant)

Cr(K) <3 because we can draw it with 3 crossings.

C((K) #2 because any knot with crossing number 2 is unknot (but trefoil is not unknot)

(r(K) \$1,0 for same reason.

How to prove crossing number of fig 8 is 4?

(Prove anything with 3 is trefoil or unlinot) and prove figure eight is not unlinot)

Crossing humber too hard to compute! Useless invarient. Tricalarability not precise enough.

We need more invariants!

(these have same defect as crossing II; hard to compute)

Bridge number

a bridge in a knot diegram is an arc that makes I a more overcrossings

the bridge number of a knot is the minimum number of bridges in a diagram for the knot.

Trefoil?

it's actually

at most 3...

Next the: Come up with invariants that aren't changed by Reidemobiler moves, since much easier to calculate Mostly assocrate a polynomial to a know Alexander poly

("Spen relations")

HOMFLY poly

Connected Sum

It K1, K2 are two knots

K, #Kz is abtained by cutting both open

and connecting together.

K, (1+K) Kz

Seienns like it shouldn't depend on where we cut it.

this closs depend on having an ornentation on the knot: a chosen direction to walk along the knot.

1) Is (right-handed fretoil) # (left-handed fretoil)

1) "square knot"

(right-hand fretoil) # (right-handed fretoil)

"granny knot"

2) Whot's $Cr(K_1 \# K_2)$ in terms of $Cr(K_1)$ and $Cr(K_2)$

3) Could Kith Kz be the unknot even it neither knot

1) A knot is a prime knot if it can't be written as a sum of two older knots. -> square/granny knots are not prime. -) figure 8/trefoil are prime. Every knot can be broken down into Prime Unots, (abit hard to prove.)
in a unique way.

2) $Cr(K_1 \# K_2) \leq cr(K_1) + Cr(K_2)$

Open problem: Is it always equal?

(probably pes)

3) (bulk K,#Kz=0?

It 2) true couldn't happen.

Cet's prove it's impossible.

Classic Wrong proof.

rebracketing non-convergent infinite series doesn't work.

Another warnly:

Knots, this proof is correct(able)! "Mazur's Swindle"

Suppose KI#Kz=0

K1=K1+(K2+K1)+(K2+K1)+(K2+K1)+... = (K, #K2) #(K, #K2) #(K, #K2) # ... = 0 # 0 # 0 # 0 = 0 50 K1=0. (artto K2) You can take on intinite sum of knots by making

Them smaller and smaller and smaller

Size of Kn=1/n

Alexander polynomial

Definition using "She in relations".

Suppose we have three knots, that only differ in one crossing:

The Alexander polynomial is defined recursively by two rules:

1)
$$\Delta_k(unknot)=1$$

2)
$$\Delta \zeta_{+} - \Delta \zeta_{-} + (f^{*}/2 - f^{-1/2}) \Delta \zeta_{0} = 0$$

(so if you know I for two, you can get the third)

This is defined not just for knots, but also links:

Warm-up: D for two disjoint unknots

 $\Delta L_{+} - \Delta L_{-} + (+1/2 - +1/2) \Delta L_{0} = 0$ $1 - 1 + (+1/2 - +1/2) \Delta L_{0} = 0$

$$\left(\Delta_{co}(t) = 0 \right)$$

$$K_{z} = two \ lmked \ circles$$

$$\Delta \kappa_{z} - \Delta \kappa_{3} + (\frac{1}{2} - \frac{1}{2} - \frac{1}{2}) \Delta \kappa_{y} = 0$$

$$\Delta \kappa_{z} - 0 + (\frac{1}{2} - \frac{1}{2} - \frac{1}{2}) I = 0$$

$$\Delta \kappa_{z} = -(\frac{1}{2} - \frac{1}{2} - \frac{1}{2})$$

$$Circles$$

$$K_{y} = unknot$$

$$Circles$$

Things to check

- not offected by Reidemenster
- those rules actually define it for any knot

HW (alculate Afigure 8.

(you should get 3-1-1-1)

—> not frefail

—> not unknot!

But:

 $\triangle_{k} = \triangle_{\text{reverse(k)}}$

(e.g. (oft- and right-) handed fresoil give Same answer

 $\Delta_{K,\#K_2} = \Delta_{K,\Delta_{K_2}} (HW!)$

5.

Degrave knot = $\triangle right + trefoil$: $\triangle left + trefoil$ $= (+-1++^{-1})(+-1++^{-1})$ $= (+-1++^{-1})^2$

$$\Delta granny | lnot = \Delta right + lnot oil. \Delta look right + lnot oil$$

an't fell the difference between square and granny knots!

Ender the Johns polynomial:

 $\frac{1}{7}\Delta_{K_{+}} - + \Delta_{K_{-}} = (\sqrt{4} - \frac{1}{4})\Delta_{K_{0}}.$

Calculate in the same way!

Jones polynomial can tell difference between square + granny knots.

but even this an't tell all knots apart...

Need hew Musients... (Chovanor homology...