

Course > Module > Pop Qui > Pop Qui

>
Pop Quiz # 10
Pop Quiz # 10 6/8 points (graded) In the following, write your BRACU ID# and section number first. After you submit the quiz, it will show that the ID# and Section numbers are wrong. Please ignore this messages. You score will based on the MCQs only.
= = = = = Your BracU ID #
19101239
Your Theory class section #:

21,	, 1:48 PM Pop Quiz # 10 Pop Quiz # 10 CSE330 Courseware buX BRAC University
	3
	4
	5
	₹ 6
	X Releva eve the MCOs
	Below are the MCQs:
	Q#1: How do we deal with function with higher multiplicity?
	By dividing the domain of the function by their factors.
	By reducing multiplicity by terminating the term that has the highest degree.
	By dividing the domain of the function by their turning points.
	By finding a polynomial with a lower multiplicity of that function as a replacement.
	✓
	Q#2: How do we deal with functions that do not cross the x-axis, but touches it?
	By dividing the domain of the function by their turning points.
	By finding a polynomial with a lower multiplicity of that function as a replacement.
	By dividing the domain of the function by their factors.

By reducing multiplicity by terminating the term that has the highest degree.

Q#3: A function has multiple roots within the interval [a,b]. Let's say, $f'\left(c_1\right)=0$ and $f'\left(c_2\right)=0$ How can we divide the interval [a,b] if $c_1 < c_2$?

$$igcap [a,b] = [a,b] \cap [c_1,c_2].$$

$$igotimes [a,b] = [a,c_1] \cup [c_1,c_2] \cup [c_2,b]$$
 .

$$igcirc [a,b] = [a,c_2] \cup [c_2,c_1] \cup [c_1,b]$$
 .

$$igcup [a,b]=[a,b]-[c_1,c_2]$$

Q#4: Suppose you are given a function f(x) with an interval [a,b]. If you are asked to find the root of f(x) within the interval (a,b) using interval bisection method, which of the following will you check first?

$$\bigcap f(a) f(b) > .0$$

$$\bigcirc f(a) f(b) < .0$$

$$\bigcirc f(a) f(b) = 0$$

() None of the above.

Q#5: In the bisection method, suppose $f\left(a\right)<\Omega f\left(b\right)>0$ and $f\left(m_{0}\right)>0$ and there is only 1 root in $\left[a,b\right]$, in which of the following subintervals you will find the root?

- \bigcirc it can be wither in $[a,m_0]$ or $[m_0,b]$.
- $\bigcap [m_0,b]$.
- It cannot be determined.

Q#6: In the bisection method, suppose $f\left(a\right)>0$ $f\left(b\right)<0$ and $f\left(m_{0}\right)>0$ and there is only 1 root in $\left[a,b\right]$, in which of the following subintervals you will find the root?

- igcap it can be wither in $[a,m_0]$ or $[m_0,b]$.
- $\bigcap [a,m_0].$
- It cannot be determined.

Submit

≮ Previous

Next >

© All Rights Reserved

About Us

BracU Home

USIS

Course Catalog

Copyright - 2020