Quelques exercices

Exercices

- 1 Impact de lois a priori non informatives
 - Calcul inférentiel
 - Sélection de modèles : un exemple discret
- 2 Un exemple complet et réel de traitement bayésien en fiabilité industrielle

2/13

Exemple 1 : modèle à effets aléatoires autour d'une constante (Hobert-Casella) (1/3)

Pour $i = 1, \ldots, I$ et $j = 1, \ldots, J$

$$x_{ij} = \beta + u_i + \epsilon_{ij}$$

où
$$u_i \sim \mathcal{N}(0, \sigma^2)$$
 et $\epsilon_{ij} \sim \mathcal{N}(0, \tau^2)$

Application possible : β = tendance moyenne population, u_i = variation personnelle, ϵ_{ij} = variation au sein d'un sous-groupe

A priori de Jeffreys :

$$\pi(\beta, \sigma^2, \tau^2) \propto \frac{1}{\sigma^2 \tau^2}$$

Exemple: modèle à effets aléatoires autour d'une constante (Hobert-Casella) (2/3)

On note $\mathbf{x}_{\mathbf{IJ}}$ l'échantillon des données observées, \bar{x}_i la moyenne sur les j

On note $\mathbf{u_l}$ l'échantillon manquant des u_1, \ldots, u_l (reconstitué dans l'inférence)

Construire un algorithme de Gibbs à partir de la description des lois conditionnelles a posteriori

$$\begin{split} & U_{l}|\mathbf{x_{lJ}}, \beta, \sigma^{2}, \tau^{2} &\sim & \mathcal{N}\left(\frac{J(\bar{\mathbf{x}}_{l} - \beta)}{J + \tau^{2}\sigma^{-2}}, (J\tau^{-2} + \sigma^{-2})^{-1}\right) \\ & \beta|\mathbf{x_{lJ}}, \sigma^{2}, \tau^{2}, \mathbf{u_{l}} &\sim & \mathcal{N}\left(\bar{\mathbf{x}} - \bar{\mathbf{u}}, \tau^{2}/IJ\right) \\ & \sigma^{2}|\mathbf{x_{lJ}}, \beta, \tau^{2}, \mathbf{u_{l}} &\sim & \mathcal{IG}\left(I/2, (1/2)\sum_{i=1}^{I}u_{i}^{2}\right) & \textit{(loi inverse gamma)} \\ & \tau^{2}|\mathbf{x_{lJ}}, \beta, \sigma^{2}, \mathbf{u_{l}} &\sim & \mathcal{IG}\left(IJ/2, (1/2)\sum_{i=1}^{I}\sum_{j=1}^{J}(\mathbf{x_{ij}} - u_{i} - \beta)^{2}\right) \end{split}$$

sont bien définies

Exemple : modèle à effets aléatoires autour d'une constante (Hobert-Casella) (3/3)

Cependant, la loi a posteriori jointe

$$\pi(\sigma^2, \tau^2 | \mathbf{x}_{\mathbf{IJ}}) = \int \pi(\beta, \sigma^2, \tau^2 | \mathbf{x}_{\mathbf{IJ}}) \ d\beta$$
$$= \int \left[\int_1 \dots \int_i \dots \int_I \pi(\beta, \sigma^2, \tau^2 | \mathbf{x}_{\mathbf{IJ}}) \ du_i \right] d\beta$$

est proportionnelle à

$$\frac{\sigma^{-2-I}\tau^{-2-IJ}}{(J\tau^{-2}+\sigma^{-2})^{I/2}}\sqrt{\tau^2+J\sigma^2}\exp\left\{-\frac{1}{2\tau^2}\sum_{i,j}(y_{ij}-\bar{y}_i)^2-\frac{J}{2'\tau^2+J\sigma^2}\sum_i(\bar{y}_i-\bar{y})^2\right\}$$

qui se comporte comme σ^{-2} au voisinage de $\sigma=0$, pour $\tau\neq 0$

Cette loi jointe n'est donc pas intégrable (propre)

Rappel.

Soient 2 modèles bayésiens \mathcal{M}_1 et \mathcal{M}_2 , tel que

$$\mathcal{M}_i = \{f_i(x|\theta_i), \ \pi_i(\theta_i)\}\$$

et

$$P_r(\mathcal{M}_1) = 1 - P_r(\mathcal{M}_2)$$

la fonction de masse (densité discrète) a priori accordée à chaque modèle

Sachant des observations $\mathbf{x_n} = (x_1, \dots, x_n)$, le facteur de Bayes B_{12} est défini comme

$$B_{12}(\mathbf{x_n}) = \frac{P_r(\mathcal{M}_1|\mathbf{x_n})}{P_r(\mathcal{M}_2|\mathbf{x_n})} \left(\frac{P_r(\mathcal{M}_1)}{P_r(\mathcal{M}_2)}\right)^{-1}$$
$$= \frac{\int_{\Theta_1} f_1(x|\theta_1)\pi(\theta_1) d\theta_1}{\int_{\Theta_2} f_2(x|\theta_2)\pi(\theta_2) d\theta_2}$$

Pour des données discrètes x_1, \ldots, x_n , on considère un modèle de Poisson $\mathcal{P}(\lambda)$ ou une loi binomiale négative $\mathcal{NB}(m,p)$ avec les *a priori*

$$\pi_1(\lambda) \propto 1/\lambda$$
 $\pi_2(m,p) = \frac{1}{M} \mathbb{1}_{\{1,...,M\}}(m) \mathbb{1}_{\{[0,1]}(p)$

Alors il existe une constante inconnue $\gamma > 0$ telle que

$$B_{12}(\mathbf{x_n}) = \gamma \frac{\int_0^\infty \frac{\lambda^{\sum_i (x_i - 1)}}{\prod_i x_i!} \exp(-n\lambda) \ d\lambda}{\frac{1}{M} \sum_{m=1}^M \int_0^\infty \left(\prod_i \left(\frac{m}{x_i - 1}\right)\right) p^{\sum_i x_i} (1 - p)^{m \cdot n - \sum_i x_i} \ dp},$$

$$= \gamma M \left(\sum_{m=1}^M \left(\frac{m}{x - 1}\right) \frac{x! (m - x)!}{m!}\right)^{-1} \text{ si } n = 1 \text{ et } x_i = x$$

$$= \gamma M \left(\sum_{m=1}^M x / (m - x + 1)\right)^{-1}$$

Impossible de faire un choix car γ n'est pas connu ! Il faut donc se passer des *a priori* non informatifs en sélection de modèle

Si on remplace $\pi_1(\lambda)$ par un a priori vague

$$\pi_1(\lambda) \equiv \mathcal{G}(\alpha, \beta)$$

avec $\alpha(\beta)$ ou/et $\beta(\alpha) \to 0$, on obtient après quelques calculs (pour n=1 et $x_i=x$)

$$B_{12} = \frac{\Gamma(\alpha + x)}{x!\Gamma(\alpha)} \beta^{-x} \left[\frac{1}{M} \sum_{m=1}^{M} \frac{x}{m - x + 1} \right]^{-1}$$
$$= \frac{(x + \alpha - 1) \dots \alpha}{x(x - 1) \dots 1} \beta^{-x} \left[\frac{1}{M} \sum_{m=1}^{M} \frac{x}{m - x + 1} \right]^{-1}$$

qui dépend fortement du choix de $\alpha(\beta)$ ou/et $\beta(\alpha) o 0$

On ne résoud donc pas le problème...

Un exemple complet et réel de traitement bayésien en fiabilité industrielle

Voici un jeu de données x_n de durées de vie de tubes-écrans de chaudière (en mois)

71.4	166.3	93.2	59.6	181.6	144.8	87.3	100.3	;
90.0	173.9	95.4	44.1	149.4	73.7	86.3	145.1	167.7

Vous bénéficiez de deux experts qui vous fournissent chacun, après un processus d'interrogation minutieux, les renseignements suivants :

	Durée de vie médiane (m)	Percentile 33%	Percentile 90%
Expert 1	100*	80	200
Expert 2	130	100	200*

L'astérique * indique qu'on peut surtout faire confiance en l'expert en cette spécification

Ils ne savent pas s'il y a vieillissement, mais ils savent qu'il n'y a pas de "rajeunissement" d \hat{u} à la maintenance. Une opération de maintenance est cependant supposée globalement bénéfique (pas de vieillissement accéléré)

Un exemple complet et réel de traitement bayésien en fiabilité industrielle

Question d'ingénierie

En tenant compte de toutes les informations disponibles, estimez la périodicité de visites de vérification.

Un exemple complet et réel de traitement bayésien en fiabilité industrielle

Étapes statistiques

- 1 Choisir 2 modèles utiles (exponentiel vs Weibull?)
- 2 Éventuellement estimer par maximisation de vraisemblance, histogramme, etc.
- Construire des lois a priori compatibles
- 4 Faire l'inférence pour chaque modèle, puis opérer une sélection
- 6 Proposer un estimateur de la périodicité

Quelques éléments utiles

Prior de Weibull

- **1** Utiliser la paramétrisation (μ, β)
- 2 $\mu | \beta$ suit une gamma m et de second terme

$$b_{\alpha}(m,\beta) = \left((1-\alpha)^{-1/m} - 1\right)^{-1} (t_{e,\alpha})^{\beta}$$

avec
$$P(T < t_{a,\alpha}) = \alpha$$

- **3** La loi de Jeffreys pour β est $1/\beta$
- lacktriangle Une loi approximative pour eta est une loi Gamma
- Introduire le sens d'hyperparamètres de calage
- Vérifier qu'on est proche des spécifications a priori
- Minimiser la distance de Kullback entre marginales pour équilibrer les priors