Steps for GUI

- 1. Window 1
 - Option between
 - Forward modelling
 - Parameter estimation

A. FORWARD MODELLING

INPUT

- 1. For Forward modelling
 - Window 2 (*in_3.dat* file 1st line)
 - nz
 - nm
- 2. Window 2 (*in_3.dat* file 2nd line)
 - Length (L_e)
 - Bulk density of porous media (ρ_h)
 - Run time (T_{max})
 - Pulse time (T_p)
 - \bullet Δt
 - \bullet Δx
- 3. Window 3 (in_3.dat file 3rd line)
 - Porosity of the macropore region (θ_f)
 - Porosity of the mesopore region (θ_s)
 - Porosity of the micropore region (θ_{im})
- 4. Window 4 (in 3.dat file 4th line)
 - Instantaneous sorption fraction in macropore region (F_f)
 - Instantaneous sorption fraction in mesopore region (F_s)
 - Instantaneous sorption fraction in micropore region (F_{im})
 - Fraction of sorption site available for macropore region (f_f)
 - Fraction of sorption site available for mesopore region (f_s)
 - Fraction of sorption site available for immobile region (f_{im})
- 5. Window 4 (*in_3.dat* file 5th line)
 - Equilibrium sorption coefficient in macropore region (K_f)
 - Equilibrium sorption coefficient in mesopore region (K_s)
 - Equilibrium sorption coefficient in micropore region (K_{lm})
 - Rate-limited sorbed coefficient in macropore region (k_f)
 - Rate-limited sorbed coefficient in mesopore region (k_s)
 - Rate-limited sorbed coefficient in micropore region (k_{im})
- 6. Window 5 (*in_1.dat* file)
 - Mesopore seepage velocity (q_s)
 - Macropore seepage velocity (q_f)
 - Solute mass transfer rate b/w meso-micropore (ω_{im})
 - Solute mass transfer rate b/w meso-macropore (ω_{sf})

- Dispersivity (α_L)
- No. of observation time steps
- Experimental data (%Input from txt file or excel copy paste)
- 7. Window 6 (*in_2.dat* file)
 - No. of observation distances to print
 - Observation distances (% according to No.of observation distances)
 - Time steps (%Input from txt file or excel copy paste)
- 8. Run test.exe

OUTPUT

- 1. Read *OUTPUT.dat* here first column is experimental data and rest is simulated data at different distances. (Concentrations)
- 2. Read No. of observation time steps from *IN_2.dat* (Time)
- 3. Plot Concentration vs time graph for different distances with option to display one at a time to all at a time

B. PARAMETER ESTIMATION

INPUT

Same steps until pt. 6

- 1. Window 5 (*in_1.dat* file)
 - Mesopore seepage velocity (q_s) [checkbox for Determined or Initial guess]
 - Macropore seepage velocity (q_f) [checkbox for Determined or Initial guess]
 - Solute mass transfer rate b/w meso-micropore (ω_{im}) [checkbox for Determined or Initial guess]
 - Solute mass transfer rate b/w meso-macropore (ω_{sf}) [checkbox for Determined or Initial guess]
 - Dispersivity (α_L) [checkbox for Determined or Initial guess]
 - No. of observation time steps
 - Experimental data (%Input from txt file or excel copy paste)
- 2. Window 6 (*in_2.dat* file)
 - No. of observation distances to print
 - Observation distances (% according to No.of observation distances)
 - Time steps (% Input from txt file or excel copy paste)
- 3. Run test.exe
- 4. Save as *in_1.dat* file as *in_1.tpl* as

```
ptf #
#qs #
0.4
#omegaim #
#omegasf #
#alpha #
43
0.006706908
0.046277666
0.075117371
0.117370892
0.153588196
```

Changes to be made:-

- First line write [ptf #]
- Parameters which are to be estimated should come in between ## e.g. [# qs #]
- Parameter determined will remain with the same values given before e.g.[qf = 0.4]
- 5. Run *tempchek in_1.tpl* in command prompt
- 6. Create *in_1.par* such as

```
single point
qs 0.2641 1.0 0.0
omegaim 0.000047 1.0 0.0
omegasf 0.00976 1.0 0.0
alpha 0.52 1.0 0.0
```

Here

- first character is name of the parameter
- second is the initial guess supplied
- next 1 and 0 are default
- 7. Run tempchek in_1.tpl in_1.dat in_1.par in command prompt
- 8. Write a file *output.ins* such as

```
pif #
11 (o1)19:26
11 (o2)19:26
11 (o3)19:26
11 (o4)19:26
11 (o5)19:26
11 (o6)19:26
11 (o7)19:26
11 (o8)19:26
```

Here

- (o1) is the observation point and it should go up to max. observation time steps
- Rest will remain same for each line
- 9. Run inschek output.ins in command prompt
- 10. Run inschek output.ins output.dat
- 11. Save experimental data from *in_1.dat* in *measure.obf* corresponding to observation number

```
01
        0.006706908
ο2
        0.046277666
о3
        0.075117371
о4
        0.117370892
о5
        0.153588196
        0.174379611
06
        0.210596915
ο7
08
        0.240107311
        0.26425218
о9
```

12. Run *pestgen test in_1.par measure.obf* (It will generate *test.tpl* file)

13. Window 7 (edit *test.tpl* file)

```
    parameter data

                             1.000000E-10 1.000000E+10 gsl
        none relative 0.200
                                                                    1.0000
                                                                              0.0000
          none relative 4.700000E-02 1.000000E-10 1.000000E+10 alphaim
alphaim.
                                                                              1.0000
                                                                                        0.0000
         none relative 6.760000E-03 1.000000E-10 1.000000E+10 alphasf
alphasf
                                                                            1.0000
                                                                                       0.0000
                                                                                                 1
         none relative 0.20000
                                 1.000000E-10 1.000000E+10 alpha
alpha
                                                                        1.0000
                                                                                   0.0000
```

- Ask for Lower Bound and Upper Bound for the estimating parameters
- Insert values of lower bound in place of Blue highlighted and upper bound in place of yellow highlighted area corresponding to parameters.
- Edit highlighted part of *test.tpl*

```
* model command line
model
* model input/output
model.tpl model.inp
model.ins model.out
* prior information
```

into

- * model command line

 test

 * model input/output
 in_1.tpl in_1.dat
 output ins output.dat

 * prior information
- 14. Run pestchek test
- 15. Run pest test (It generates test.rec file)

OUTPUT

1. Display table from test.rec

Parameter	Estimated	95% percent confidence limits	
	value	lower limit	upper limit
qsl	0.293725	0.288016	0.299434
qfs	0.388452	0.375032	0.401873
alphaim	1.000000E-10	-11534.3	11534.3
alphasf	6.139572E-03	4.165871E-03	8.113274E-03
alpha	0.366416	0.287786	0.445046

2. Display table from *test.rec*

```
K-L information statistics ---->

AIC = -394.7743

AICC = -392.4409

BIC = -384.2071

KIC = -386.7281
```

- 3. Read *OUTPUT.dat* here first column is experimental data and rest is simulated data at different distances. (Concentrations)
- 4. Read No. of observation time steps from *IN_2.dat* (Time)
- 5. Plot Concentration vs time graph for different distances with option to display one at a time to all at a time