What is the minimum value of the following function, where $t \in \{1, 2, 3, ...\}$:

$$\frac{1}{2}\left(1-2^{-t}\right)+\frac{1}{2}\left(1-\left(1-\frac{1}{t}\right)^{t}\right)$$

- (a) $\frac{1}{3}$
- (b) $\frac{1}{2}$ (c) $\frac{2}{3}$ (d) $\frac{3}{4}$

d.

What best describes the functions $g_1(x)$ and $g_2(x)$ in the following plot (Figure 1).

Figure 1: Problem 2

(a)
$$g_1(x) = c^{x-1}$$
, $g_2(x) = 1 - c^{-x}$ for some $c > 4$

(b)
$$g_1(x) = 1 - c^{-x}$$
, $g_2(x) = c^{x-1}$ for some $c > 4$

(c)
$$g_1(x) = c^{x-1}$$
, $g_2(x) = 1 - c^{-x}$ for some $c < 4$

(d)
$$g_1(x) = 1 - c^{-x}$$
, $g_2(x) = c^{x-1}$ for some $c < 4$

b.

Which of the following is <u>INCORRECT</u> for a concave continuous function f(x) defined over all real numbers?

(a)
$$f''(x) \le 0$$

(b)
$$\forall x \in (0,1), f(x) \ge f(0) + x \cdot (f(1) - f(0))$$

(c)
$$\forall x, y \in \mathbb{R}$$
, $f\left(\frac{x+y}{2}\right) \geqslant \frac{f(x) + f(y)}{2}$

(d)
$$\forall x \in \mathbb{R}, f(x) \geqslant f''(x)$$

d.

What best describes the term 'Integrality Gap' for an optimization problem with some ILP formulation and LP relaxation? Assume standard notations.

- (a) The extreme value of $\frac{\mathsf{ILP}\text{-}\mathsf{OPT}(\mathfrak{I})}{\mathsf{LP}\text{-}\mathsf{OPT}(\mathfrak{I})}$ over all instances \mathfrak{I}
- (b) The average of $\frac{\mathsf{ILP}\text{-}\mathsf{OPT}(\mathfrak{I})}{\mathsf{LP}\text{-}\mathsf{OPT}(\mathfrak{I})}$ over all instances \mathfrak{I}
- (c) The extreme value of {OPT(ℑ) − [OPT(ℑ)]} over all instances ℑ
- (d) The average of {OPT(I) [OPT(I)]} over all instances I

a.

Let X be a uniform random variable with the range [0.2, 1]. What is the expected value of $\frac{1}{X}$?

(a)
$$\frac{1}{0.6} \approx 1.6667$$

(c)
$$\frac{5}{4} \ln 5 \approx 2.1180$$

(d)
$$\ln 5 \approx 1.6094$$

с.

Recall the randomized rounding algorithm for the prize collecting Steiner tree problem on the graph G(V,E). Assuming standard notation, let (x^*,y^*) be an optimal solution to the LP relaxation. Let $U=\{v\in V\mid y^*_v\geqslant\alpha\}$ for some $\alpha\in(0,1)$. Let $T(V_T,E_T)$ be a Steiner tree with the terminal set U. Then, which of the following is correct?

- (a) V_T ⊆ U and V_T may or may not be equal to U.
- (b) $U \subseteq V_T$ and V_T may or may not be equal to U.
- (c) $V_T = U$
- (d) $V_T = V \setminus U$

b.

What was the method used to derandomize the 2.54-factor approximation algorithm for the prize collecting Steiner tree problem on G(V, E), keeping the approximation guarantee unchanged? Assume that the framework is to find an optimal solution (x^*, y^*) , choose all vertices $v \in V$ with $y_v^* \geqslant \alpha$, find a Steiner tree on these vertices and return it.

- (a) Set $\alpha = 2/3$.
- (b) Set $\alpha = \frac{1}{1 e^{-1/2}}$.
- (c) Run the algorithm |V| times, for all choices of $\alpha \in \{y_{\nu}^* \mid \nu \in V\}$.
- (d) Since integrality gap is 3, we cannot get a 2.54-factor deterministic algorithm.

c.

Consider the ILP formulation and its LP relaxation of the prize collecting Steiner tree problem where ILP-OPT and LP-OPT are their respective optimal values. On a cycle of $\mathfrak n$ vertices, where each vertex has cost ∞ , and each edge has cost 1, which of the following is true regarding the values of ILP-OPT and LP-OPT?

(a) ILP-OPT =
$$n-1$$
 and LP-OPT $\leqslant \frac{n}{2}$

(b) ILP-OPT
$$\leqslant \frac{\mathfrak{n}}{2}$$
 and LP-OPT $= \mathfrak{n} - 1$

(c)
$$ILP-OPT = n-1$$
 and $LP-OPT = n-1$

(d) ILP-OPT
$$\leqslant \frac{n}{2}$$
 and LP-OPT $\leqslant \frac{n}{2}$

a.

Consider the 3-factor approximation algorithm for the uncapacitated facility location problem using randomized rounding of LP. Let $c_{i,j}$ be the cost of assigning client j to facility i, and let f_i be the cost of opening the i-th facility. Following the notation discussed in class, let (x^*, y^*) and (v^*, w^*) be optimal primal and dual solutions of the corresponding LP's respectively. At the k-th iteration of the algorithm, how is the client j_k chosen among the unassigned clients? Note that we denote the set of facilities by F.

- (a) j_k is chosen with probability ν_i*
- (b) j_k is chosen such that it produces the minimum value of v_i^* among all unassigned j
- (c) j_k is chosen with probability $v_{j_k}^* + \sum_{i \in F} c_{i,j_k} x_{i,j_k}^*$
- (d) j_k is chosen such that it produces the minimum value of $\nu_j^* + \sum_{i \in F} c_{i,j} x_{i,j}^*$ among all unassigned j

d.

Identify the <u>INCORRECT</u> statement regarding the 3-factor approximation algorithm for the uncapacited location problem discussed in class.

- (a) The set of facilities opened in each iteration is random and may be different for different runs of the algorithm.
- (b) The set of clients, whose neighbourhoods are considered in each iteration, is random and can be different for different runs of the algorithm.
- (c) Both the relaxed primal LP as well as its dual LP needs to be solved using an LP solver as a subroutine of this algorithm.
- (d) The algorithm ends by opening some subset of facilities, and assigns every client to exactly one open facility.

b.