# Report for Machine learning

#### Assignment 2 - S5089493 - Raghuveer Siddaraboina

#### Introduction

Linear Regression is a statistical supervised learning technique to predict the quantitative variable by forming a linear relationship with one or more independent features.

### It helps determine:

- If a independent variable does a good job in predicting the dependent variable.
- Which independent variable plays a significant role in predicting the dependent variable.

#### **Types of Linear Regression**

#### **Simple Linear Regression:**

Simple Linear Regression helps to find the linear relationship between two continuous variables, One independent and one dependent feature.

### Formula can be represented



### **Multiple Linear Regression:**

Multiple linear Regression is the most common form of linear regression analysis. As a predictive analysis, the multiple linear regression is used to explain the relationship between one continuous dependent variable and two or more independent variables.

The independent variables can be continuous or categorical (dummy coded as appropriate).

We Often use Multiple Linear Regression to do any kind of predictive analysis as the data we get has more than 1 independent features to it.

Formula can be represented as

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + ... + \beta_p x_{ip} + \epsilon$$

where, for i = n observations:

 $y_i = \text{dependent variable}$ 

 $x_i =$ expanatory variables

 $\beta_0 = \text{y-intercept (constant term)}$ 

 $\beta_p$  = slope coefficients for each explanatory variable

 $\epsilon$  = the model's error term (also known as the residuals)

In a regression context, the slope is very important in the equation because it tells you how much you can expect Y to change as X increases

### **Assignment tasks**

## Task 2: Filt a linear regression model

1. One dimensional problem without intrcept of turkish stock exchange data.

The basic equation for a line with slope and intercept is used for this task.But,as per instructions intercept is set to zero i.e the equation reduces to

$$y = m*x$$

From equation and the data x is taken as first collumn and y is taken as second column and the below result is obtained



The slope obtained in the above task is **0.6339**.

2. Compare graphically the solution obtained on different random subsets (10%) of the whole data set

The graph obtained by performing this task we gat the below graph. First graph is with the points and lines for the second graph only lines are shown for clarity.





From the above graph we can see that each result of a random subset has a **different slope** but all of them has same intercept i.e, **zero**.

3. One-dimensional problem with intercept on the Motor Trends car data, using columns mpg and weight



The above graph is the result of the task 2.3 from which we get the value of **slope** as **-5.3445** and the **intercept** of the line is **37.2851**.

4. Multi-dimensional problem on the complete MTcars data, using all four columns (predict mpg with the other three columns)

|    | Predicted values | Target values | error  |
|----|------------------|---------------|--------|
| 1  | 23.5700          | 21            | 2.5700 |
| 2  | 22.6008          | 21            | 1.6008 |
| 3  | 25.2887          | 22.8000       | 2.4887 |
| 4  | 21.2167          | 21.4000       | 0.1833 |
| 5  | 18.2407          | 18.7000       | 0.4593 |
| 6  | 20.4722          | 18.1000       | 2.3722 |
| 7  | 15.5656          | 14.3000       | 1.2656 |
| 8  | 22.9115          | 24.4000       | 1.4885 |
| 9  | 22.0409          | 22.8000       | 0.7591 |
| 10 | 20.0411          | 19.2000       | 0.8411 |
| 11 | 20.0411          | 17.8000       | 2.2411 |
| 12 | 15.7693          | 16.4000       | 0.6307 |
| 13 | 17.0616          | 17.3000       | 0.2384 |
| 14 | 16.8715          | 15.2000       | 1.6715 |
| 15 | 10.3215          | 10.4000       | 0.0785 |
| 16 | 9.3598           | 10.4000       | 1.0402 |
| 17 | 9.2115           | 14.7000       | 5.4885 |
| 18 | 26.6135          | 32.4000       | 5.7865 |
| 19 | 29.2760          | 30.4000       | 1.1240 |
| 20 | 28.0391          | 33.9000       | 5.8609 |
| 21 | 24.6016          | 21.5000       | 3.1016 |
| 22 | 18.7549          | 15.5000       | 3.2549 |
| 23 | 19.0911          | 15.2000       | 3.8911 |
| 24 | 14.5488          | 13.3000       | 1.2488 |
| 25 | 16.6639          | 19.2000       | 2.5361 |
| 26 | 27.6204          | 27.3000       | 0.3204 |
| 27 | 26.0236          | 26            | 0.0236 |
| 28 | 27.7450          | 30.4000       | 2.6550 |
| 29 | 16.5025          | 15.8000       | 0.7025 |
| 30 | 20.9888          | 19.7000       | 1.2888 |
| 31 | 12.8168          | 15            | 2.1832 |
| 32 | 23.0296          | 21.4000       | 1.6296 |

For the multi dimensional problem the results are shown in the above table which shows the predicted values of mpg, target values and error value.

## **Task 3 : Test regression model**

In this task the data is split in to random subsets as 10% of training data and 90% of test data (cause 5% is too small)

The objective function is calculated in this task. This is mean squared error. It tends to amplify the impact of outliers on the model's accuracy.

For the linear regression data the objective function value is calculated by using

$$J_{\text{MSE}} = \frac{1}{N} \sum_{l=1}^{N} (t_l - y_l)^2 .$$

For the multiple linear regression data the objective function value is calculated by using

$$\begin{split} J_{\text{MSE}} &= \frac{1}{2} \|\mathbf{t} - \mathbf{y}\|^2 \\ &= \frac{1}{2} \|\mathbf{t} - X\mathbf{w}\|^2 \\ &= \frac{1}{2} (\mathbf{t} - X\mathbf{w})^T (\mathbf{t} - X\mathbf{w}) \\ &= \frac{1}{2} (\mathbf{t}^T - \mathbf{w}^T X^T) (\mathbf{t} - X\mathbf{w}) \\ &= \frac{1}{2} (\mathbf{t}^T \mathbf{t} - \mathbf{t}^T X \mathbf{w} - \mathbf{w}^T X^T \mathbf{t} + \mathbf{w}^T X^T X \mathbf{w}) \\ &= \frac{1}{2} \|\mathbf{t}\|^2 - \mathbf{w}^T X^T \mathbf{t} + \frac{1}{2} \|X\mathbf{w}\|^2 \end{split}$$

For the testing and training of the data the matlab codes are named as task3\_1.m, task3\_3.m, task3\_4.m

For the last task i.e, Repeat for different training-test random splits. A matlab code is made named test.m and in the code in order to choose change the value of task as required i.e, chose values from 1,3 and 4. The test.m script runs one of the three functions named task1, task3 and task4.

The following figure shows the values of MSE task 4 for a random set repeated for 10 times.

|    | trainMSE values | testMSE values |
|----|-----------------|----------------|
| 1  | -2.2737e-13     | 95.9279        |
| 2  | -1.1369e-13     | 96.5124        |
| 3  | 2.2737e-13      | 88.7133        |
| 4  | 0.4900          | 89.9060        |
| 5  | 4.5475e-13      | 76.1471        |
| 6  | 1.1369e-13      | 92.7122        |
| 7  | 0               | 90.7547        |
| 8  | 5.6843e-14      | 91.0729        |
| 9  | 5.6843e-14      | 74.0427        |
| 10 | -4.5475e-13     | 77.7603        |