This listing of claims will replace all prior version, and listings, of claims in the application:

Listing of Claims:

1. (Currently amended) An apparatus for treating ocular disease comprising:

a locating means for non-invasively locating Schlemm's Canal in an eye, and

a microsurgical device coupled with the locating means and using location data so as to

advance the microsurgical device into a tissue space identified with Schlemm's Canal,

wherein the location data consists of real-time data collected by the location means.

2. (Original) The apparatus of claim 1, wherein the microsurgical device is under control by the

locating means.

3. (Original) The apparatus of claim 1, wherein the locating means comprises a device for

ultrasound examination of the sclera.

4. (Original) The apparatus of claim 1, wherein the locating means comprises an ultrasound

imaging system.

5. (Withdrawn) The apparatus of claim 1, wherein the locating means comprises a non-imaging

ultrasound detection system.

6. (Original) The apparatus of claim 1, wherein the locating means comprises an ultrasound

device for examination of the sclera with an ultrasound frequency greater than 10 MHz.

7. (Original) The apparatus of claim 1, wherein the locating means comprises an ultrasound

device for examination of the sclera with an ultrasound frequency of at least 40 MHz.

Response to Office Action Mailed July 17, 2006 Serial Number 09/735,408 Page 2 of 18

8. (Original) The apparatus of claim 3, wherein the locating means utilizes an ultrasound

contrast tracer introduced into the aqueous humor.

9. (Withdrawn) The apparatus of claim 1, wherein the locating means comprises a non-imaging

ultrasound device for examination of the sclera.

10. (Previously presented) The apparatus of claim 1, wherein the locating means comprises a

transducer assembly with signaling means for directing the transducer location.

11. (Withdrawn) The apparatus of claim 1, wherein the locating means comprises an optical

imaging device for non-invasively locating Schlemm's Canal in the eye.

12. (Withdrawn) The apparatus of claim 11, wherein the optical imaging device comprises a

high intensity white light illumination source.

13. (Withdrawn) The apparatus of claim 11, wherein the optical imaging device comprises an

optically coherent illumination source.

14. (Withdrawn) The apparatus of claim 11, wherein the optical imaging device comprises a

fiber optic device.

15. (Withdrawn) The apparatus of claim 11, wherein the optical imaging device utilizes

detection via visible wavelengths of light.

16. (Withdrawn) The apparatus of claim 11, wherein the optical imaging device utilizes

detection via infrared wavelengths.

17. (Withdrawn) The apparatus of claim 11, wherein the optical imaging device utilizes optical

imaging of a fluorescent tracer in the aqueous humor.

Response to Office Action Mailed July 17, 2006 Serial Number 09/735,408

Page 3 of 18

- 18. (Original) The apparatus of claim 1, wherein a tissue contacting surface of the locating means is curved to approximate the surface of the eye.
- 19. (Original) The apparatus of claim 1, wherein a tissue contacting surface of the locating means incorporates a circumferential raised portion to maintain placement of a coupling fluid over a transducer face to aid in energy transfer between the locating means and the tissue surface.
- 20. (Currently amended) An apparatus for treating ocular disease comprising:

 a non-invasive locating means for locating Schlemm's Canal in the eye, and

 a microcannula coupled with the locating means and using location data so as to slidably advance into a tissue space identified with Schlemm's Canal,

 wherein the location data consists of real-time data collected by the location means.
- 21. (Original) The apparatus of claim 20, wherein the microcannula has an outer diameter of less than 200 microns.
- 22. (Original) The apparatus of claim 20, wherein the microcannula is coupled to the locating means at an angle between 0 and 30 degrees from the plane of Schlemm's Canal in the eye.
- 23. (Original) The apparatus of claim 20, wherein an angle of the microcannula with respect to the locating means is adjustable.
- 24. (Original) The apparatus of claim 20, wherein the locating means and the microcannula are disposed within a unitary body.
- 25. (Original) The apparatus of claim 20, wherein the microcannula is coupled to the locating means by way of a clip mechanism.

26. (Original) The apparatus of claim 20, wherein a distal portion of the microcannula is curved

to accommodate a curvature of Schlemm's Canal.

27. (Original) The apparatus of claim 20, wherein the microcannula incorporates a cutting tip to

penetrate a sclera of the eye.

28. (Original) The apparatus of claim 20, wherein the microcannula is comprised of an outer

sheath and an inner cannula.

29. (Original) The apparatus of claim 28, wherein the inner cannula incorporates a cutting tip to

penetrate a sclera of the eye.

30. (Withdrawn) The apparatus of claim 29, wherein the outer sheath is comprised of a rigid

tube.

31. (Original) The apparatus of claim 29, wherein the outer sheath is comprised of a flexible

tube.

32. (Currently amended) An apparatus for treating ocular disease comprising:

a non-invasive locating means for locating Schlemm's Canal,

a microcannula which is linked with the locating means and using location data to advance

the microcannula into an identified tissue space for Schlemm's Canal, and

a dilation mechanism at the tip of the microcannula,

wherein the location data consists of real-time data collected by the location means.

33. (Original) The apparatus of claim 32, wherein the dilation mechanism is comprised of an

Page 5 of 18

expandable balloon.

Response to Office Action Mailed July 17, 2006 Serial Number 09/735,408

- 34. (Original) The apparatus of claim 32, wherein the dilation mechanism is comprised of an
- expandable tip on the microcannula.
- 35. (Withdrawn) The apparatus of claim 32, wherein the dilation mechanism is comprised of a
- series of nested cannulae having successively larger diameters.
- 36. (Withdrawn) The apparatus of claim 32, wherein the dilation mechanism is comprised of an
- elongate rod having steps of successively increasing diameters.
- 37. (Original) The apparatus of claim 32, wherein the microcannula is coupled coaxially with
- the locating means.
- 38. (Currently amended) An apparatus for treating ocular disease comprising:
 - a non-invasive locating means for locating Schlemm's Canal,
 - a microcannula which is linked with the locating means to advance the microcannula into an
 - identified tissue space for Schlemm's Canal, and
 - an implant which is delivered into Schlemm's Canal,
 - wherein the location data consists of real-time data collected by the location means.
- 39. (Original) The apparatus of claim 38, wherein the implant comprises an expandable stent.
- 40. (Withdrawn) The apparatus of claim 38, wherein the implant comprises microparticles.
- 41. (Withdrawn) The apparatus of claim 38, wherein the implant comprises a drug releasing
- material.
- 42. (Original) The apparatus of claim 38, wherein the stent comprises a biodegradable material.

- 43. (Withdrawn) The apparatus of claim 40, wherein the microparticles comprise a biodegradable material.
- 44 (Withdrawn) The apparatus of c
- 44. (Withdrawn) The apparatus of claim 41, wherein the drug releasing material contains a drug
- effective in the treatment of glaucoma.
- 45. (Currently amended) An apparatus for treating ocular disease comprising:
 - a non-invasive locating means for locating Schlemm's Canal,
 - a microcannula which is linked with the locating means <u>and using location data</u> to advance the microcannula into an identified tissue space for Schlemm's Canal, and
 - a construct which is delivered through the microcannula to effect a surgical procedure on a trabecular meshwork of the eye,
 - wherein the location data consists of real-time data collected by the location means.
- 46. (Original) The apparatus of claim 45, wherein the construct comprises a surgical tool for cutting tissues.
- 47. (Withdrawn) The apparatus of claim 45, wherein the construct comprises a fiber optic device.
- 48. (Withdrawn) The apparatus of claim 47, wherein the fiber optic device is an imaging fiber.
- 49. (Withdrawn) The apparatus of claim 47, wherein the fiber optic device is an illuminating fiber.
- 50-63. (Canceled)
- 64. (Canceled) CANCEL
- 65. (Canceled) CANCEL

66. (Previously presented) The apparatus of claim 1, wherein said microsurgical device is

capable of being atraumatically inserting into a tissue space within Schlemm's Canal.

67. (Previously presented) The apparatus of claim 1, wherein said apparatus is configured such

that said microsurgical device is capable of being advanced within Schlemm's Canal.

68. (Currently Amended) The apparatus of claim 20, wherein said microcannula is capable of

being slidably advanced approximately in the plane of Schlemm's Canal to effect access from a

substantially tangential direction.

69. (Previously presented) The apparatus of claim 20, wherein said apparatus is configured such

that said microsurgical device is capable of being slidably advanced within Schlemm's Canal.

70. (Previously presented) The apparatus of claim 32, wherein said microcannula which is

linked with the locating means to advance the microcannula approximately in the plane of

Schlemm's Canal to effect access from a substantially tangential direction into an identified

tissue space for Schlemm's Canal.

71. (Previously presented) The apparatus of claim 32, wherein said apparatus is configured such

that said microsurgical device is capable of being advanced within Schlemm's Canal.

72. (Previously presented) The apparatus of claim 45, wherein said microcannula which is

linked with the locating means to advance the microcannula approximately in the plane of

Schlemm's Canal to effect access from a substantially tangential direction into an identified

tissue space for Schlemm's Canal.

73. (Currently amended) An apparatus for treating ocular disease comprising:

a locating means for non-invasively locating Schlemm's Canal in an eye, and

Serial Number 09/735,408

a microsurgical device coupled with the locating means <u>and using location data</u> so as to allow at least a distal portion of said microsurgical device to be minimally-invasively advanced into a tissue space within Schlemm's Canal,

wherein the location data consists of real-time data collected by the location means.

- 74. (Previously presented) The apparatus of claim 73, wherein said microsurgical device is capable of being atraumatically inserting into the tissue space.
- 75. (Previously presented) The apparatus of claim 73, wherein said microcannula is capable of being slidably advanced approximately in the plane of Schlemm's Canal to effect access from a substantially tangential direction.
- 76. (Canceled) CANCEL
- 77. (Canceled) CANCEL