Результаты выполнения программы

1 Дислокация в квадратной области

По результатам выполнения программы - выведения среднего значения времени при фиксированном a для 10000 выполнений программы Lab.cpp построим график, как видно, функцию можно аппроксимировать полиномом вида

$$t = Ba^2 + Ca + D$$

- где значения $B=0,1447,\,C=-0,7059\,\,D=1,7565$ Также можно аппроксимировать степенной функцией вида

$$t = Ca^{\beta}$$

- где $\beta = 2,28$ C = 0,1044

Рис.1

2 Отношение площади к времени остановки

Проведем запуск программы Lab.cpp и по результатам построим график зависимости времени в ходах от n - числа сгенерированных дислокаций, сторона квадрата в условиях программы постоянная и равно 20, тогда отношение занятой площади к изначальной $\alpha = \frac{n}{400}$:

Как видно из графика сначала функция возрастает до максимального значения при отношении площади $\alpha_1=\frac{7}{400}=0,0175,$ а затем спадает до значения 1

3 Предельный случай одномерного массива

3.1 Одна дислокация

Из результатов программы 1_dim.cpp получим значения для одномерного массива Аналогично, функцию можно аппроксимировать полиномом вида

Рис.2

$$t = Ba^2 + Ca + D$$

- где значения $B=0,3457,\,C=-1,2735\,\,D=2,1804$ Также можно аппроксимировать степенной функцией вида

$$t=Ca^{\beta}$$

- где
$$\beta = 2,25$$
 $C = 0,1044$

3.2 Отношение площадей

По результатам программы 1_dim.cpp для a=50 - длина одномерного массива.

В отличие от двумерного случая функция убывающая, это можно объяснить качественно тем что чем больше элементов тем выше вероятность им столкнуться, и эта вероятность возрастает быстрее чем в двумерном.