

HOUSING ANALYSIS

Mid-term project | Regression

Antonio Saleme Sastre & Marian Moreno Corral

INTRODUCTION

- The dataset consists of information on 22,000 properties sold between 2014 to 2015.
- Explore and understand the characteristics of the houses.
- Build a Machine Learning model to predict the price of a house based on features provided in the data.

PROCESSES

PROCESSES

EXPLORE THE DATA

analyse columns

DATA CLEANING

nulls, duplicates, errors

EDA

plots, visualization

DATA WRANGLING

normalizer, scaler

MODEL

Linear Regression KNN model

INSIGHTS

Newer houses, more expensive

More sold houses built before 2000

Zipcode 98039 extremely expensive: Bill Gates, Jeff Bezos

Price highly positively correlated with grade of the house and living area

Most popular houses: 3 bedrooms, followed closely by 4 bedrooms

Average selling price per category of year of construction

RESULTS

Best model performance

R2:84,45%

MAE: 86280\$

- Standard Scaler
- One Hot Encoder

THANKS FOR YOUR TIME!

We'll be happy to answer your questions

