Wintersemester 2017

Lineare Algebra 1

Blatt 9

Abgabe: 21. Dezember 2017

Vektorraum-Homomorphismen, Moduln

Aufgabe 36 (Präsenzaufgabe). Vektorraum-Homomorphismen

Seien U, V und W K-Vektorräume, $F \in \text{Hom}_K(V, W)$ und $G \in \text{Hom}_K(U, V)$. Zeigen Sie:

- (a) $\operatorname{Hom}_K(V, W)$ bildet einen Untervektorraum von $\operatorname{Abb}(V, W)$.
- (b) F(0) = 0 und F(x y) = F(x) F(y) für alle $x, y \in V$.
- (c) $F \circ G \in \operatorname{Hom}_K(U, W)$.

Aufgabe 37 (5 Punkte). Ein Modul ohne Dimension

Zeigen Sie:

- (a) \mathbb{Z} ist ein Modul (über \mathbb{Z}).
- (b) Ebenso sind $2\mathbb{Z}$ und $3\mathbb{Z}$ Moduln (über \mathbb{Z}).
- (c) $\{1\}$ ist ein unverkürzbares Erzeugendensystem von \mathbb{Z} .
- (d) $\{2,3\}$ ist auch ein unverkürzbares Erzeugendensystem von \mathbb{Z} .

Bem. Für Moduln ist (i.A.) der Begriff der Dimension folglich nicht sinnvoll.

Aufgabe 38 (5 Punkte). Strukturen auf $Hom_K(V, V)$

Sei V ein K-Vektorraum. Zeigen Sie:

- (a) $\operatorname{End}_K(V)$, mit Verkettung als Multiplikation, ist ein Ring, und für alle $f, g \in \operatorname{End}_K(V)$, und alle $\lambda \in K$ gilt $(\lambda f) \circ g = \lambda(f \circ g) = f \circ (\lambda g)$; ein K-Vektorraum, der außerdem eine Ringstruktur trägt, so dass diese Verträglichkeitsbedingung gilt, heißt K-Algebra.
- (b) $\operatorname{Aut}_K(V)$ ist eine Gruppe bzgl. Verkettung, aber für $V \neq \{0\}$ kein K-Vektorraum.

Aufgabe 39 (5 Punkte).

U, V und W seien K-Vektorräume, $F \in \operatorname{Hom}_K(V, W), G \in \operatorname{Hom}_K(U, V)$. Zeigen Sie:

- (a) Falls F ein Vektorraum-Isomorphismus ist, dann gilt $F^{-1} \in \text{Hom}_K(W, V)$.
- (b) Ist I eine Indexmenge und $(v_i)_{i \in I} \in V$, dann gilt:
 - (i) $(v_j)_{j\in I}$ ist linear abhängig $\Rightarrow (F(v_j))_{j\in I}$ ist linear abhängig.
 - (ii) $(F(v_i))_{i \in I}$ ist linear unabhängig $\Rightarrow (v_i)_{i \in I}$ ist linear unabhängig.
- (c) (i) Ist $\tilde{V} \subset V$ ein Untervektorraum, dann ist auch $F(\tilde{V}) \subset W$ ein Untervektorraum; insbesondere ist im $(F) \subset W$ ein Untervektorraum.
 - (ii) Ist $\tilde{W} \subset W$ ein Untervektorraum, dann ist auch $F^{-1}(\tilde{W}) \subset V$ ein Untervektorraum; insbesondere ist $\ker(F) \subset V$ ein Untervektorraum.
 - (iii) Ist F ein Isomorphismus, dann gilt $F(\tilde{V}) \cong \tilde{V}$ für jeden Untervektorraum $\tilde{V} \subset V$.
- (d) $\dim(\operatorname{im}(F)) \leq \dim(V)$.

Abgabe der Übungsblätter in den (mit den Nummern der Übungsgruppen gekennzeichneten) Fächern im UG der Eckerstraße 1. Die Übungsblätter müssen bis **15:00** Uhr am jeweils angegebenen Abgabedatum eingeworfen werden.