

Aula 10 – Segmentação semântica

Prof. João Fernando Mari

joaofmari.github.io joaof.mari@ufv.br

Roteiro

- Localização, detecção e segmentação
- Modelos para segmentação semântica
- Aplicações de segmentação semântica
- U-Net
- Upsampling

Localização, detecção e segmentação

Stanford cs231n (2022): http://cs231n.stanford.edu/slides/2022/lecture 9 jiajun.pdf

Modelos para segmentação semântica

- Fully convolutional network
- Masked R-CNN
- U-Net
- PSPNet
- DeepLab
- ...

Modo retrato e substituição do fundo

Self-driving cars

Imagens biomédicas

Segmentação de imagens de satélite

Segmentação semântica

•

https://www.v7labs.com/blog/semantic-segmentation-guide

U-Net

 $Ronneberger, \ Fischer, \ Brox. \ U-Net: Convolutional \ Networks for \ Biomedical \ Image \ Segmentation. \ 2015.$

U-Net

https://pyimagesearch.com/2021/11/08/u-net-training-image-segmentation-models-in-pytorch/

Upsampling

Nearest Neighbor

		1	'	'	-	
1	2		1	1	2	2
3	4		3	3	4	4
			3	3	4	4

Input: 2 x 2

Output: 4 x 4

"Bed of Nails"

Input: 2 x 2

Output: 4 x 4

2

0

4

0

0

0

0

0

Upsampling

Max Pooling

Remember which element was max!

1	2	6	3
3	5	2	1
1	2	2	1
7	3	4	8

5 6
7 8 Rest of the network

Input: 4 x 4

Output: 2 x 2

Max Unpooling

Use positions from pooling layer

1	2	
3	4	

0	0	2	0
0	1	0	0
0	0	0	0
3	0	0	4

Input: 2 x 2

Output: 4 x 4

•

 $\underline{https://d2l.ai/chapter_computer-vision/transposed-conv.html}$

Input

0 1 2 3

Transposed Conv (stride 2) 0 1 2 3

Kernel

= 0 0

2 3

0	2	
4	6	

	0	3
	6	9

Output

Stride 2, padding 0

Imagem Final

https://didatica.tech/transposed-convolutional-layer/

Stride 1, padding 1

Imagem Final

https://didatica.tech/transposed-convolutional-layer/

Stride 2, padding 1

Imagem Final

https://didatica.tech/transposed-convolutional-layer/

Bibliografia

- Ronneberger, Fischer, Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. 2015.
 - https://arxiv.org/pdf/1505.04597.pdf
- Nilesh Barla. The Beginner's Guide to Semantic Segmentation.
 - https://www.v7labs.com/blog/semantic-segmentation-guide
- Anil Matcha. A 2021 guide to Semantic Segmentation.
 - https://nanonets.com/blog/semantic-image-segmentation-2020/
- Shivam Chandhok. U-Net: Training Image Segmentation Models in PyTorch.
 - https://pyimagesearch.com/2021/11/08/u-net-training-image-segmentation-models-in-pytorch/
- Jeremy Jordan. Evaluating image segmentation models.
 - https://www.jeremyjordan.me/evaluating-image-segmentation-models/
- CS231n: Deep Learning for Computer Vision. Stanford Spring 2022
 - http://cs231n.stanford.edu/

Bibliografia

- https://ai.googleblog.com/2018/03/mobile-real-time-video-segmentation.html
- Satellite Image Segmentation for Building Detection using U-net. Stanford CS229.
 - https://cs229.stanford.edu/proj2017/final-reports/5243715.pdf
- https://d2l.ai/chapter_computer-vision/transposed-conv.html
- https://didatica.tech/transposed-convolutional-layer/

FIM