Monolayer MoSe₂

Structure: hexagonal, P-6m2, layer group 78

Lattice vectors: $R_1 = (a, 0, 0)$; $R_2 = (-a/2, a \times \text{sqrt}(3)/2, 0)$ (2D structure – define vacuum space with third lattice vector)

Atom positions: Mo = (0, a/sqrt(3), 0); Se₁ = (a/2, a/(2×sqrt(3)), Δ); Se₂ = (a/2, a/(2×sqrt(3)), -Δ) Atom positions crystallographic: Mo = (1/3, 2/3, 0); Se₁ = (1/3, 2/3, Δ); Se₂ = (1/3, 2/3, -Δ) Isotopes: 14.649% 92 Mo (91.907 amu); 9.187% 94 Mo (93.905 amu); 15.873% 95 Mo (94.906 amu); 16.673% 96 Mo (95.905 amu); 9.582% 97 Mo (96.906 amu); 24.292% 98 Mo (97.905 amu); 9.744% 100 Mo (99.907 amu); 0.89% 74 Se (73.922 amu); 9.37% 76 Se (75.919 amu); 7.63% 77 Se (76.920 amu); 23.77% 78 Se (77.917 amu); 49.61% 80 Se (79.917 amu); 8.73% 82 Se (81.917 amu)

DFT: Use VASP, QE, or both. PBEsol PAW

(QE: Mo.pbesol-spn-kjpaw_psl.1.0.0.UPF; Se.pbesol-dn-kjpaw_psl.1.0.0.UPF

VASP: standard version with sol flag; Mo sv)

Checklist (all data should be reported for the 3-atom primitive cell)

• Please provide all computational costs in cores*hours

Structure

- Converged relaxed 'temperature (T)=0' lattice constant a and internal degree of freedom Δ related to distance between Se atoms in separate layers (2 Δ) (target accuracy < 0.05 Å)
 - Two values with 3 significant figures: X.XX
- Methods / convergence criteria
 - Energy/force thresholds
 - Vacuum layer distance
- Other notes / cpu hours (e.g., multiple relaxations, compilers, hardware)
- All input files to run fully converged calculations (e.g., qe.scf.in, POSCAR)

Electrons

- Converged electron band dispersion (target accuracy < 0.1 eV for $\Gamma/X/L$ frequencies)
 - Numerical data: normalized wavevectors (q) and band energies (E): top 7 valence bands and 4 conduction bands (excel or text file)
 - q in units of $2\pi/a$ and f in eV
 - 2 segments: Γ→M and Γ→K→M evenly divided with ~100 q points per segment
 - 3 files, one for each segment. For each scaled q from 0 to 1 list (~100 rows): q, E₁, E₂, E₃, E₄, E₅, E₆, E₇, E₈, E₉, E₁₀, E₁₁
- Methods / convergence criteria
 - Thresholds/ Integration mesh / grid shifting
- Evidence of converged band structure
 - Band structure with varying integration meshes
- Other notes / cpu hours
- All input files to run fully converged calculations

Harmonic

- Converged dispersion (target accuracy < 0.1 THz for Γ/M frequencies)
 - Numerical data: normalized wavevectors (q) and frequencies (f) for 9 polarizations (j) (excel or text file)
 - q in units of $2\pi/a$ and f in THz ($f=\omega/2\pi$)
 - 3 segments: Γ→M and Γ→K→M evenly divided with ~100 q points per segment
 - 3 files, one for each segment. For each scaled q from 0 to 1 list (~100 rows): q, f₁, f₂, f₃, f₄, f₅, f₆, f₇, f₈, f₉ (Note that 3 more bands with respect to previous materials)
- Converged harmonic interatomic force constants (IFCs)
 - Standard format for code used (*e.g.*, QE, Phonopy)
 - Will be supplied as supplemental material upon publication
- Long range Coulomb corrections
 - Dielectric matrix (1 matrix)
 - Born effective charge matrices (3 matrices)
 - Method of long-range Coulomb corrections
- Methods / convergence criteria
 - Thresholds
 - Supercell size / integration mesh
 - Symmetries / irreducibility / number of calculations (*linked to cpu hours below*)
 - Post-processing (e.g., enforce invariance constraints)
- Evidence of converged dispersion
 - Dispersions with varying supercell sizes and integration meshes
- Other notes / cpu hours (e.g., accuracy vs cpu cost, shifted meshes)
- All input files to run fully converged calculations

Anharmonic thermal transport

- Use thickness of 6.470 Å (measured c/2 of bulk MoSe₂)
- Four converged T-dependent thermal conductivities (k) (target accuracy <2% difference between successive grids please contact us if a problem): natural isotopes with full BTE solution ($k_{nat,full}$), natural isotopes with the relaxation time approximation (RTA) ($k_{nat,RTA}$), isotopically pure (e.g., 100% ⁹⁸Mo and 100% ⁸⁰Se) with full BTE solution ($k_{pure,full}$), and isotopically pure with RTA ($k_{pure,RTA}$). If only RTA available, then only $k_{nat,RTA}$ and $k_{pure,RTA}$
 - Do not include boundary scattering, even at low T. We want to see how the codes behave at low T without this extrinsic scattering.
 - Numerical data: T (K) and k (W/m/K) in range 50K < T < 1000K (excel or text file)
 - For 50K ≤ T ≤ 300K increments of 25K (11 data points); for 300K < T ≤ 1000K increments of 100K (7 data points). Note: not sampling T<50K range here.
 - 1 file with T from 50K to 1000K list (18 rows): T, knat,full, knat,RTA, kpure,full, kpure,RTA
 - Masses used for pure and natural calculations
- Accumulated T=300K k_{acc} vs frequency and k_{acc} vs mean free path (mfp) for converged

$k_{nat,RTA}$ value

- Numerical data for each mode (q, j) sampled in the Brillouin zone integration: f (THz), mfp=|sqrt($v_x^2+v_y^2+v_z^2$)×lifetime| (nm), mode contribution to k (W/m/K) for $k_{nat,RTA}$
- 1 file (excel or text) with row for each mode (q, j): f, mfp, mode contribution to k
- RTA T=300K three-phonon scattering rates $(1/\tau_{3ph})$ and phonon-isotope scattering rates for natural abundance $(1/\tau_{iso})$
 - Numerical data: f (THz), $1/\tau_{3ph}$ (THz=1/ps), and $1/\tau_{iso}$ (THz)
 - 1 file (excel or text) with row for each mode (q, j): f, $1/\tau_{3ph}$, $1/\tau_{iso}$
- Converged third-order anharmonic IFCs
 - Standard format for code used
 - Will be supplied as supplemental material upon publication
- Methods / convergence criteria: thermal conductivity
 - Delta function representation (with details; e.g., adaptive smearing, cutoff)
 - Integration grid
 - Symmetries used
- Methods / convergence criteria: anharmonic IFCs
 - Cutoff radius, supercell size, integration mesh, thresholds, displacement parameter for supercell derivatives
 - Post-processing
- Evidence of converged k at T=300K
 - Varying integration meshes
- Other notes / cpu hours
- All input files to run fully converged calculations