参考书籍:

• 《机器学习高级实践·计算广告、供需预测、智能营销、动态定价》机械工业出版社

前言

算是又开了个坑吧,之前写过B站的Recommendation System,但是理论很美好,实践出大问题。最严重的问题是正负类比例严重失衡,而且SMOTE没有丝毫作用,所以打算先学习他人的处理方法。

本文分为小型demo与项目实践两部分。

小型demo可能是对于某些数据集的解决方案,而项目实践则是对于某个项目的解决方案。比如kaggle上的好例子可能归为小型demo,而比较大的项目或者是某一类数据的分析方法则归为项目实践。

如果是他人的项目,会使用@引用。如果是自己的项目,会使用©。

1. 小型demo

2. 项目实践

2.1 计算广告——广告点击率预估 @《机器学习高级实践·计算广告、供需预测、智能营销、动态定价》

代码	描述
data_preprocessing.ipynb	数据预处理
data_visualization.ipynb	数据可视化

2.1.1 项目背景

2.1.1.1 计算广告的目标

广告主(Demand,需求方)期望在线广告针对性更强,广告平台(Supply,供给方)期望广告点击率更高,用户期望广告更加个性化。

- 针对性:广告能依据用户偏好精准地投放给潜在的、有需求的用户,以提高投入产出比。
- 点击率: 是广告投放效果的重要指标, 是广告点击次数与广告曝光次数的比值。
- 个性化: 是指广告内容、形式、投放时间等因素能够根据用户的个性化需求进行定制。

2.1.1.2 计算广告的术语

Computational Advertising:利用计算机技术、数学模型、统计方法等手段,通过对广告投放对象、广告内容、广告投放时机等进行精准分析,实现广告投放效果的最大化。

术语	全称	含义		
CTR	Click-Through Rate, 点击率	点击次数÷曝光次数		
CVR	Conversion Rate, 转化率	转化次数÷点击次数,用户点击广告后完成特定行为Action(购买、下载等)的 比例		
CPM	Cost Per Mille, 千次曝光成本	每千次曝光需支付的费用		
CPC	Cost Per Click, 单次点击成本	每次点击需支付的费用		
CPA	Cost Per Action, 单次行为成本	每次有效行为转化需支付的费用		
CPT	Cost Per Time, 单次时间成本	按播放时长计费		
ROI	Return On Investment, 投资回报 率	收益÷成本		

2.1.1.3 计算广告的流程

1. 合约广告

合约广告是单次交易,但粗粒度的广告投放方式会导致成本、收益不可控,不够理性。核心问题是:

- 1. 构建受众标签:聚类、分类、关联规则挖掘等
- 2. 事前流量预测: 时序模型,如ARIMA、Prophet、LSTM、Transformer、DeepAR等
- 3. 在线流量分配: $\max \sum_{i=1}^n (r_i c_i)$, s.t. $\sum_{i=1}^n d_i \leq D$, 其中 r_i 是收入, c_i 是成本, d_i 是投放量, D是需求方的总投放量。转为为优化问题。

2. 竞价广告

ADX(Ad Exchange): 广告交易平台,负责广告位的竞价、广告投放、广告效果监控等。 DSP(Demand Side Platform): 需求方平台。

竞价广告是实时交易,是精细化的广告投放方式,但是需要解决的问题更多,尤其是CTR预估与实时性。

2.1.2 核心算法

该部分内容在推荐系统中有详细介绍,这里不再赘述。

2.1.3 数据集介绍

<u>Ali_Display_Ad_Click</u>是阿里巴巴提供的一个淘宝展示广告点击率预估数据集。114万用户8天内的广告展示/点击日志(2600万条记录),用前面7天的做训练样本(20170506-20170512),用第8天的做测试样本(20170513)。目前已有的研究: <u>CSDN</u>, <u>CSDN</u>, <u>arXiv</u>, <u>arXiv</u>。

1. ad_feature.csv 广告信息表, 29.8MB

属性	adgroup_id	cate_id	campaign_id	customer	brand	price
解释	广告ID	商品类别ID	广告计划ID	广告主ID	品牌ID	商品价格
第一行数据	63133	6406	83237	1	95471	170.0

- 一个广告ID对应一个商品,一个商品属于一个类目,一个商品属于一个品牌。
- 2. raw_sample.csv 原始样本骨架,用户-广告展示/点击数据,1.01GB

属性	user	time_stamp	adgroup_id	pid	nonclk	clk
解释	用户ID	日志时间戳	广告ID	广告资源位	未点击	点击
第一行数据	581738	1494137644	1	430548_1007	1	0

- 未点击的时候, clk=0, nonclk=1
- 3. user_profile.csv 用户信息表, 22.9MB

属性	userid	cms_segid	cms_group_id	final_gender_code	age_level	pvalue_level	shopping_level	occupation	new_user_class_level
解释	用户ID	微群ID	微群ID	性别	年龄分层	消费能力	购物深度	职业	城市层级
第一行数 据	234	0	5	2	5		3	0	3

• 性别: 1-男, 2-女

• 消费能力: 1-低, 2-中, 3-高

• 购物深度: 1-低, 2-中, 3-高

• 职业: 是否是大学生, 0-否, 1-是

4. behavior_log.csv 用户行为日志表, 22GB

属性	user	time_stamp	btag	cate	brand
解释	用户ID	日志时间戳	行为类型	商品类别ID	品牌ID
第一行数据	558157	1493741625	pv	6250	91286

• 行为标签: pv-浏览, cart-加入购物车, fav-喜欢, buy-购买

5. 基线AUC: 0.622

2.1.4 数据预处理与初步分析

2.1.4.1 读取数据

源代码请查看<u>data_preprocessing.ipynb</u>。

因为数据过大,使用采样读取 behavior_log.csv ,并保留采样的用户,主要代码如下:

n_sample = int(frac * total_rows) # 采样的行数
behavior_log = pd.read_csv(f'{root_path}/behavior_log.csv', nrows=n_sample)
sampled_users = behavior_log['user'].unique() # 采样的用户
raw_sample = raw_sample[raw_sample['user'].isin(sampled_users)] # 保留采样的用户
user_profile = user_profile[user_profile['userid'].isin(sampled_users)]

假设选取0.1%(即使0.1%也很大了)的 behavior_log.csv 数据,采样其他表格,最后得到的数据shape为:

user_profile用户数据: (185915, 9)
raw_sample样本数据: (7114606, 6)
behavior_log用户行为数据: (723268, 5)
ad_feature广告特征数据: (846811, 6)

顺便,对同一含义的不同列名进行统一,统一为 user_id 和 cate_id。

2.1.4.2 缺失值&编码

pvalue_level, new_user_class_level、 brand 有缺失值,比例分别为52.70%,26.45%、29.09%。在初步分析 阶段暂时不做缺失值处理。

new_user_class_level为分类属性,众数填充; brand为id类数据,填充上一条数据的值; pvalue_level通过KNN算法进行预测填充(train是pvalue_level≠0的行, test是pvalue_level=0的行。X是非pvalue_level属性, y是pvalue_level属性)。来源

对 cate_id, brand 进行编码,使用 LabelEncoder。意义不大,故不做了

2.1.4.3 了解特征

源代码请看data visualization.ipynb。

下面列举部分特征的取值情况(分布较为均匀的、特征是ID的不列出,部分数据使用给出图像方便查看):

1. ad_feature

基本为ID型数据,略去。

2. raw_sample

pid(2个取值):

430548_1007	430539_1007
4016881	3097725

clk(2个取值):

0	1
6722820	391786

样本不平衡率 $\frac{6722820}{391786} = 17.16$,严重不平衡。0类占比94.5%。

用户在傍晚的数据反而较少,有可能是数据集做的时间脱敏,也可能是本身在傍晚的广告投放量较少,也可能是下班了陪伴家人或者刷视频而不会去摸鱼购物

3. user_profile

final_gender_code(2个取值):

1	2
52258	133657

女性是男性的2.56倍,占71.9%。

pvalue_level消费能力(3个取值):

1.0	2.0	3.0
24351	55492	8467

大部分用户消费能力在中等水平与偏下水平。

shopping_level购物深度(3个取值):

1	2	3
7318	16606	161991

大部分用户购物深度在高水平。

occupation是否大学生(2个取值):

0	1
174450	11465

大学生只占6.2%。

new_user_class_level城市层级(4个取值):

1.0	2.0	3.0	4.0
16012	63962	33769	25057

大部分用户城市层级在中等水平与偏下水平。

分析见上文

4. behavior_log

btag(4个取值):

pv	cart	buy	fav
688331	16119	9577	9241

加入购物车的比例是 $\frac{16119}{688331}=2.34\%$,购买的比例是 $\frac{9577}{688331}=1.39\%$ 。 buy与fav相近,可能是用户购买之后加入了收藏,(yysy我才知道淘宝有收藏功能)具体的行为链还需要进一步分析。

day (20个取值,下面只列出最主要的3个):

用户在傍晚的日志反而较少,这个与之前的图raw-sample-hour-distribution类似

2.1.4.4 异常值等处理

让我们转回data_preprocessing.ipynb。

使用price_90 = np.percentile(ad_feature["price"], 90), sns.histplot(ad_feature["price"][ad_feature["price"] <= price_90], kde=False, bins=100)绘制前90%的数据

另外为了节约存储空间,这里顺便对pid进行编码。 raw_sample['pid'] = raw_sample['pid'].apply(lambda x: 1 if x == '430548_1007' else 2)

2.1.4.5 corr

回到data visualization.ipynb。

后三个数据的corr较小,我们这里重点分析用户画像。

首先是 cms_segid 与 cms_group_id 与性别、年龄都有一定的相关性,可能是相似的用户往往会聚在一起,而这种聚集与购物深度、职业、城市层级等特征关系很小。

现在不考虑userid、cms_segid、cms_group_id这三列, age_level 与 pvakue_level 相关性为0.25,与 occupation 相关性为-0.29,年龄越大消费能力越高,越不可能为大学生。 pvalue_level 与 occupation 和 new_user_class_level 相关性都是-0.11,说明消费能力越高越不可能为大学生,越可能是一线城市。

2.1.4.6 合并数据

```
# 1. 合并 raw_sample 和 user_profile。通过主键user_id 字段进行连接。
merged_data = pd.merge(raw_sample, user_profile, on='user_id', how='left')
# 2. 再将上述结果与 ad_feature 合并。通过主键adgroup_id 字段进行连接。
ad_u_data = pd.merge(merged_data, ad_feature, on='adgroup_id', how='left')
保存为 ad_u_data.csv。
其实这等价于

SELECT * FROM raw_sample
LEFT JOIN user_profile ON raw_sample.user_id = user_profile.userid
LEFT JOIN ad_feature ON raw_sample.adgroup_id = ad_feature.adgroup_id
```

2.1.4.7 其余可视化

点击量/点击率的时间趋势:

点击与不点击的数量随时间的变化趋势, 十分有规律

点击率的变化不大

二八定律:

小于20%的品牌贡献了大于80%的广告数量

约20%的用户贡献了80%的点击量

性别、价格与点击率:

男性点击的商品价格一般比女性高,并且不点击的商品价格均值也都比点击的商品要高一点点

点击率与点击量的关系:

x轴是点击的次数,点击量低的可能是某些小众群体的喜好,点击量高的可能是大众喜好,所以点击量高一点。因为平台的展示量比较固定,点击量与点击率近似成正比,所以我认为这个图体现的信息不多。

x轴是展示的次数,展示次数多的点击率更高。这可能是与平台的正反馈的一个良性循环,质量越好、投放越精准的广告能让平台给予更大的支持力度,从而更加提升点击量与点击率

2.1.4.8 构建embedding向量

代码可见<u>P_AD_3_book_optimbyGPT</u>,这是书上的代码经过GPT优化后的版本(文件名包含book的就是纯照抄书上的代码,加上byGPT后缀的就是经过GPT修改了的代码)。

这个代码依据id进行embedding来训练(使用点积结果与clk的BCE进行训练),书上最后给了acc评价指标(我还加上了AUC指标),但是我觉得这样评估不合适,如果**只是使用id**进行embedding,本身无法泛化,而valid的会被train的id泄露(请看中间的shape输出,我写了注释的),不然怎么acc那么高呢?所以这个模型是不可靠的,只是一个embedding的示例,或者是只是为了建模每个id的embedding而已。

另外暂时无法使用pytorch复现结果(模型几乎不会去预测类别为1),原因未知。

模型输出如下:

User length: 116430, Ad length: 76846

Input data: ((524761,), (524761,)) # 整个数据集, 属性为user_id, adgroup_id

(419808, 2) # 训练集的shape

(289265, 2) # 验证集的user_id在训练集中出现的次数

2.1.5 特征工程

书里面的代码根本没办法运行,要么参数不对,要么OOM,准备看CSDN了,希望有用。

2.1.6 ItemCF

2.1.7 NCF

Neural Collaborative Filtering

这里主要实现NCF中的Multi-Layer Perceptron (MLP):

用户潜在向量User Latent Vector为 $P \in \mathbb{R}^{M \times K}$,物品潜在向量Item Latent Vector为 $Q \in \mathbb{R}^{N \times K}$,其中M是用户数,N是物品数,K是潜在向量的维度。

将其拼接为2K维的向量,然后通过多层感知机(使用ReLU),最后使用无bias的全连接层和激活函数得到预测分数。

论文中还有GMF(Generalized Matrix Factorization)、NeuMF(Neural Matrix Factorization)。

GMF是MF的一种推广,使用element-wise的乘法(即哈达玛积,这里wise的意思是a way of doing)来模拟用户和物品之间的潜在特征交互。

NeuMF是GMF和MLP的结合,通过将GMF和MLP的输出连接在一起,然后通过一个全连接层来预测评分。