ORACLES AND CHOICE SEQUENCES FOR TYPE-THEORETIC PRAGMATICS

Jon Sterling October 8, 2015

joint work with Darryl McAdams

INTRODUCTION

[A woman walked in.]] ∇ (∑ $p \in Woman$)

[A woman walked in.]] $vis_{}$ (∑ $p \in Woman$) WalkedIn(p)

[She sat down]

∇

[She sat down]

∇

SatDown(???)

[A woman walked in. She sat down]

[A woman walked in. She sat down]]
$$∇$$

$$(Σx ∈ (Σp ∈ Woman) WalkedIn(p))$$

[A woman walked in. She sat down]
$$\nabla$$

$$(\Sigma x \in (\Sigma p \in Woman) \ WalkedIn(p)) \ SatDown(???)$$

THE "DONKEY SENTENCE"

[Every farmer who owns a donkey beats it.]] ∇ $(\Pi p \in (\Sigma x \in Farmer) (\Sigma y \in Donkey) Owns(x; y))$

THE "DONKEY SENTENCE"

[Every farmer who owns a donkey beats it.]] ∇ $(\Pi p \in (\Sigma x \in Farmer) (\Sigma y \in Donkey) Owns(x; y)) Beats(???; ???)$

THE "DONKEY SENTENCE"

[Every farmer who owns a donkey beats it.]] ∇ $(\Pi p \in (\Sigma x \in Farmer) \, (\Sigma y \in Donkey) \, Owns(x;y)) \, Beats(\pi_1(p); \pi_1(\pi_2(p)))$

 \cdot terms for presuppositions

- terms for presuppositions
- \cdot resolution of presuppositions

- terms for presuppositions
- resolution of presuppositions

- terms for presuppositions (this talk)
- resolution of presuppositions

THE require ORACLE: STATICS

require — FORMAL RULES

require — FORMAL RULES

```
require : (0;1) (operator)

require x : A in N \triangleq \text{require}(A; x.N) (notation)
```

require — FORMAL RULES

```
require : (0;1) (operator)

require x : A in N \triangleq \text{require}(A; x.N) (notation)

\frac{\Gamma \vdash A \text{ type } \Gamma, x : A \vdash N \in B}{\Gamma \vdash \text{require } x : A \text{ in } N \in B} (require)
```

require — EXAMPLES

[A woman walked in. She sat down]
$$\nabla$$
 $(\Sigma x \in (\Sigma p \in Woman) WalkedIn(p)) SatDown(???)$

require — EXAMPLES

[A woman walked in. She sat down]

 $(\Sigma x \in (\Sigma p \in Woman) \ WalkedIn(p))$ require y : Woman in SatDown(y)

The meaning of a sentence is a logical proposition.

The meaning of a sentence is a logical proposition.

The meaning of a sentence is a logical proposition.

The meaning of a sentence is a type-theoretic expression which may <u>evaluate</u> to a canonical proposition.

The meaning of a sentence is a logical proposition.

The meaning of a sentence is a type-theoretic expression which may <u>evaluate</u> to a canonical proposition.

The meaning of a sentence is a logical proposition.

The meaning of a sentence is a type-theoretic expression which may <u>evaluate</u> to a canonical proposition.

What we want:

```
(\Sigma x \in (\Sigma p \in Woman) \ WalkedIn(p)) require y : Woman in SatDown(y) \sim (\Sigma x \in (\Sigma p \in Woman) \ WalkedIn(p)) \ \pi_1(x)
```

The meaning of a sentence is a logical proposition.

The meaning of a sentence is a type-theoretic expression which may <u>evaluate</u> to a canonical proposition.

What we want:

$$(\Sigma x \in (\Sigma p \in Woman) \ WalkedIn(p))$$
 require $y : Woman$ in $SatDown(y)$

~

$$(\Sigma x \in (\Sigma p \in Woman) WalkedIn(p)) \pi_1(x)$$

where
$$M \sim N \stackrel{\text{\tiny def}}{=} (M \leq N) \wedge (N \leq M)$$

EVERY GRAMMATICAL SENTENCE HAS A MEANING

EVERY GRAMMATICAL SENTENCE HAS A MEANING

...but only some of them denote propositions (types)!

require—NAÏVE DYNAMICS

$$\underline{M \in A \quad [M/x] \ N \Downarrow N'} \\
\mathbf{require} \ x : A \ \mathbf{in} \ N \Downarrow N'$$
(??)

require—NAÏVE DYNAMICS

$$\underline{M \in A \quad [M/x] \, N \, \downarrow \, N'} \\
\text{require } x : A \text{ in } N \, \downarrow \, N'$$
(??)

Can the above be made precise?

require—NAÏVE DYNAMICS

Can the above be made precise? There are two problems:

require—NAÏVE DYNAMICS

$$\underline{M \in A \quad [M/x] \, N \, \downarrow \, N'} \\
\text{require } x : A \text{ in } N \, \downarrow \, N'$$
(??)

Can the above be made precise? There are two problems:

1. impredicativity

require—NAÏVE DYNAMICS

$$\underline{M \in A \quad [M/x] \ N \Downarrow N'} \\
\mathbf{require} \ x : A \ \mathbf{in} \ N \Downarrow N'$$
(??)

Can the above be made precise? There are two problems:

- 1. impredicativity
- 2. non-determinism

[The President ran a marathon]

▽

[The President ran a marathon]
∇

require x: President in $(\Sigma y \in Marathon) Ran(x; y)$

require x: *President* **in** $(\Sigma y \in Marathon) Ran(x; y)$

```
require x: President in (\Sigma y \in Marathon) Ran(x; y)
\downarrow \downarrow
(\Sigma y \in Marathon) Ran(Obama; y)
```

[The unicorn ran a marathon]

▽

[The unicorn ran a marathon]

 ∇

require x : *Unicorn* **in** $(\Sigma y \in Marathon) Ran(x; y)$

 \llbracket The unicorn ran a marathon \rrbracket ∇

require x: Unicorn in (Σy ∈ Marathon) Ran(x; y)

(not a proposition)

IS require COMPUTATIONALLY EFFECTIVE?	

1. judgments shall be local / sensitive to knowledge

- 1. judgments shall be local / sensitive to knowledge
- 2. non-determinism must be eliminated

- 1. judgments shall be local / sensitive to knowledge (via forcing)
- 2. non-determinism must be eliminated

- 1. judgments shall be local / sensitive to knowledge (via forcing)
- 2. non-determinism must be eliminated

- 1. judgments shall be local / sensitive to knowledge (via forcing)
- 2. non-determinism must be eliminated (via choice sequences)

- 1. judgments shall be local / sensitive to knowledge (via forcing)
- 2. non-determinism must be eliminated (via choice sequences)

All mathematics is a mental construction performed by an idealized subject, subject to the following observations about knowledge:

All mathematics is a mental construction performed by an idealized subject, subject to the following observations about knowledge:

All mathematics is a mental construction performed by an idealized subject, subject to the following observations about knowledge:

1. experiences are never forgotten (monotonicity, functoriality)

All mathematics is a mental construction performed by an idealized subject, subject to the following observations about knowledge:

- 1. experiences are never forgotten (monotonicity, functoriality)
- 2. at a point in time, the subject knows whether or not it has experienced a judgment (decidability)

All mathematics is a mental construction performed by an idealized subject, subject to the following observations about knowledge:

- 1. experiences are never forgotten (monotonicity, functoriality)
- 2. at a point in time, the subject knows whether or not it has experienced a judgment (decidability)

Corollary

The meaning of a judgment \mathscr{J} must be explained in terms of its forcing condition, $w \Vdash \mathscr{J}$, for any stage/world w.

REMARK ON DECIDABILITY

•••

2. at a point in time, the subject knows whether or not it has experienced a judgment (decidability)

REMARK ON DECIDABILITY

•••

2. at a point in time, the subject knows whether or not it has experienced a judgment (decidability)

Remark

Contra Dummett, I <u>by no means</u> take the above as requiring that the following shall be true in a constructive metatheory, <u>divorced from time</u>:

$$\forall w. \forall \mathcal{J}. \ [\![w \Vdash \mathcal{J}\!]\!] \lor \neg [\![w \Vdash \mathcal{J}\!]\!]$$
 (Dummett's infelicity)

The above is impossible in a Beth model.

$logical\ consequence \Rightarrow semantic\ consequence$

Brouwer?, Martin-Löf, Sundholm ⇒ Brouwer?, Heyting, Allen, Zeilberger

$logical\ consequence \Rightarrow semantic\ consequence$

Brouwer?, Martin-Löf, Sundholm ⇒ Brouwer?, Heyting, Allen, Zeilberger

proof conditions ⇒ assertion conditions

Martin-Löf, Sundholm ⇒ Heyting, Van Atten

logical consequence ⇒ semantic consequence

Brouwer?, Martin-Löf, Sundholm ⇒ Brouwer?, Heyting, Allen, Zeilberger

proof conditions ⇒ assertion conditions

Martin-Löf, Sundholm ⇒ Heyting, Van Atten

global meaning explanation \Rightarrow local meaning explanation

Husserl, Dummett, Martin-Löf ⇒ Brouwer?, Beth, Kripke, Grothendieck, Lawvere, Joyal

BETH-KRIPKE SEMANTICS FOR ASSERTIONS

assertion acts (judgments) are intensional (local)

assertion acts (judgments) are intensional (local)

$$|_{x} \mathcal{J}(x)$$

(general judgment)

$$I_x \mathcal{J}(x)$$
 (general judgment)
 $\mathcal{J}_2 (\mathcal{J}_1)$ (hypothetical judgment)

$$I_x \mathcal{F}(x)$$
 (general judgment)
 $\mathcal{F}_2 (\mathcal{F}_1)$ (hypothetical judgment)
 $M \Downarrow N$ (evaluation)

$ _{x} \mathcal{J}(x)$	(general judgment
\mathcal{J}_2 (\mathcal{J}_1)	(hypothetical judgment
$M \Downarrow N$	(evaluation)
A type	(typehood)

$ _{x} \mathcal{J}(x)$	(general judgment)
\mathcal{J}_2 (\mathcal{J}_1)	(hypothetical judgment)
$M \Downarrow N$	(evaluation)
A type	(typehood)
A verif	(verification)

$ _{x} \mathcal{J}(x)$	(general judgment)
\mathcal{J}_2 (\mathcal{J}_1)	(hypothetical judgment)
$M \downarrow N$	(evaluation)
A type	(typehood)
A verif	(verification)
A true	(truth)

$ _{x} \mathcal{J}(x)$	(general judgment)
$\mathcal{J}_2(\mathcal{J}_1)$	(hypothetical judgment)
$M \Downarrow N$	(evaluation)
A type	(typehood)
A verif	(verification)
A true	(truth)
$M = N \in A$	(membership)

$w \Vdash _{x} \mathcal{J}(x)$	(general judgment)
$w \Vdash \mathcal{J}_2 (\mathcal{J}_1)$	(hypothetical judgment)
$w \Vdash M \Downarrow N$	(evaluation)
$w \Vdash A \ type$	(typehood)
$w \Vdash A \ verif$	(verification)
$w \Vdash A \ true$	(truth)
$w\Vdash M=N\in A$	(membership)

$$w \Vdash |_{x} \mathcal{J}(x)$$

 $w \Vdash \mathcal{J}_{2} (\mathcal{J}_{1})$

(general judgment) (hypothetical judgment)

$$w \Vdash |_{x} \mathcal{J}(x) \iff \cdots$$
$$w \Vdash \mathcal{J}_{2} (\mathcal{J}_{1}) \iff \cdots$$

$$\begin{split} w \Vdash \mid_{x} \mathcal{J}(x) &\iff \forall u \geq w. \forall x \in \mathcal{D}_{u}. \ u \Vdash \mathcal{J}(x) \\ w \Vdash \mathcal{J}_{2} \ (\mathcal{J}_{1}) &\iff \forall u \geq w. \ u \Vdash \mathcal{J}_{1} \Rightarrow u \Vdash \mathcal{J}_{2} \end{split}$$

$$w \Vdash |_{x} \mathcal{J}(x) \iff \forall u \geq w. \forall x \in \mathcal{D}_{u}. \ u \Vdash \mathcal{J}(x)$$

$$w \Vdash \mathcal{J}_{2} (\mathcal{J}_{1}) \iff \forall u \geq w. \ u \Vdash \mathcal{J}_{1} \Rightarrow u \Vdash \mathcal{J}_{2}$$

where \mathscr{D}_{w} is the species of constructions that have been effected by stage \boldsymbol{w}

THE MEANING OF A PROPOSITION

The meaning of a proposition/type is an intensional (world-indexed) specification of verification acts, i.e. a local meaning explanation for $w \Vdash P \ verif$ (and its synthesis).

THE MEANING OF A PROPOSITION

The meaning of a proposition/type is an intensional (world-indexed) specification of verification acts, i.e. a local meaning explanation for $w \Vdash P \ verif$ (and its synthesis).

For a type A, implicit in the explanation of $w \Vdash A \ verif$ is a \mathbb{W} -indexed family of PERs $\mathscr{V}\llbracket A \rrbracket_w \subseteq \mathscr{D}_w \times \mathscr{D}_w$ whose members reflect the computational content (extension) of verification acts.

INTUITIONISTIC SEMANTICS OF TRUTH

Truth (justification) consists in recognizing the effectiveness of a procedure for verification.

INTUITIONISTIC SEMANTICS OF TRUTH

Truth (justification) consists in recognizing the effectiveness of a procedure for verification.

In the model, this corresponds to the inevitability of verification (i.e. a <u>bar</u>, in which verification occurs at all nodes):

 $w \Vdash A \ true \iff \exists \mathfrak{B} \ \mathbf{bars} \ w. \forall u \in \mathfrak{B}. \ u \Vdash A \ verif \quad \text{(due to Dummett)}$

The analytic judgments of type theory are reflections on mathematical activity.

1. Canonical membership reflects verification

$$\mathscr{V}[A]_w(M,N)\bowtie w\Vdash A\ verif$$

- 1. Canonical membership reflects verification
- 2. Membership reflects justification

$$w \Vdash M = N \in A \bowtie w \Vdash A true$$

- 1. Canonical membership reflects verification
- 2. Membership reflects justification
- 3. Computation reflects the recognition of a <u>bar</u>

$$w \Vdash M = N \in A \bowtie w \Vdash A true$$

- 1. Canonical membership reflects verification
- 2. Membership reflects justification
- 3. Computation reflects the recognition of a bar

$$\land \left\{ \begin{array}{l} w \Vdash M \Downarrow M' \\ w \Vdash N \Downarrow N' \\ w \Vdash \mathscr{V} \llbracket A \rrbracket_w (M', N') \end{array} \right\} \bowtie \exists \mathfrak{B} \text{ bars } w. \forall u \in \mathfrak{B}. \ u \Vdash A \ verif$$

CHOICE SEQUENCES AND THE CREATING SUBJECT

choice sequences (streams of objects) may be propounded over time based on the previous experience of the creating subject.

CHOICE SEQUENCES AND THE CREATING SUBJECT

choice sequences (streams of objects) may be propounded over time based on the previous experience of the creating subject.

Example:

$$\alpha(i) = \begin{cases} 0 & i \Vdash A \ true \\ 1 & \neg(i \Vdash A \ true) \end{cases}$$
 (KS)

THE JUSTIFICATIONS SHEAF

Let \mathcal{K}_A : **FinSet**^{Wop} be the sheaf of constructions of A true effected prior to w for each canonical proposition A.

THE JUSTIFICATIONS SHEAF

Let \mathcal{K}_A : **FinSet**^{Wop} be the sheaf of constructions of A true effected prior to w for each canonical proposition A.

We now can give a precise, but non-deterministic, dynamics to **require**:

THE JUSTIFICATIONS SHEAF

Let \mathcal{K}_A : **FinSet**^{Wop} be the sheaf of constructions of A true effected prior to w for each canonical proposition A.

We now can give a precise, but non-deterministic, dynamics to **require**:

$$\frac{w \Vdash A \Downarrow A' \quad M \in \mathcal{X}_{A'}(w) \quad w \Vdash [M/x] N \Downarrow N'}{w \Vdash \text{require } x : A \text{ in } N \Downarrow N'}$$
 (*)

ELIMINATING NON-DETERMINISM WITH A SPREAD

We need a way to deterministically choose a representative of $\mathcal{H}_A(w)$. First, let \varkappa_A be the choice sequence of lists given by enumerating $\mathcal{H}_A(w)$ at each world w, in order of construction.

ELIMINATING NON-DETERMINISM WITH A SPREAD

We need a way to deterministically choose a representative of $\mathcal{K}_A(w)$. First, let \varkappa_A be the choice sequence of lists given by enumerating $\mathcal{K}_A(w)$ at each world w, in order of construction.

Idea: reformulate Type Theory relative to a choice sequence of "choosers".

A spread \mathfrak{S} is a restriction on choice sequences which is defined by a condition on their finite approximations (prefixes, neighborhoods), subject to the following laws:

A spread \mathfrak{S} is a restriction on choice sequences which is defined by a condition on their finite approximations (prefixes, neighborhoods), subject to the following laws:

1. the empty neighborhood shall be admitted

A spread \mathfrak{S} is a restriction on choice sequences which is defined by a condition on their finite approximations (prefixes, neighborhoods), subject to the following laws:

1. the empty neighborhood shall be admitted

$$\mathfrak{S}(\langle \rangle)$$

2. if a neighborhood is admitted, so shall all its subneighborhoods

$$|_{\vec{u},m} \mathfrak{S}(\vec{u}) \left(\mathfrak{S}(\vec{u} - m) \right)$$

A spread \mathfrak{S} is a restriction on choice sequences which is defined by a condition on their finite approximations (prefixes, neighborhoods), subject to the following laws:

1. the empty neighborhood shall be admitted

$$\mathfrak{S}(\langle \rangle)$$

2. if a neighborhood is admitted, so shall all its subneighborhoods

$$|_{\vec{u},m} \mathfrak{S}(\vec{u}) \left(\mathfrak{S}(\vec{u} - m) \right)$$

inclusion of neighborhoods is closed under refinement/extension

$$|_{\vec{u}} \Im(\vec{u} - m) (\Im(\vec{u}))$$

require — DYNAMICS

A spread for index-choosers:

$$\frac{\Xi(\vec{u}) \quad |_{n} \, \rho(n) < n \, (n \in \mathbb{N}^{+})}{\Xi(\vec{u} - \rho)} \qquad \text{(spread law)}$$

require — DYNAMICS

A spread for index-choosers:

$$\frac{\Xi(\vec{u}) \quad |_{n} \, \rho(n) < n \, (n \in \mathbb{N}^{+})}{\Xi(\vec{u} - \rho)} \qquad \text{(spread law)}$$

Deterministic dynamics for require:

$$\frac{w \Vdash A \Downarrow_{\alpha} A' \quad |\varkappa_{A'}(w)| = \ell \quad \operatorname{hd}(\alpha)(\ell) = j \quad w \Vdash \left[\varkappa_{A'}(j)/x\right] N \Downarrow_{\operatorname{tl}(\alpha)} N'}{w \Vdash \operatorname{\mathbf{require}} x : A \text{ in } N \Downarrow_{\alpha} N'}$$
 (for $\alpha \in \mathfrak{S}$)

