Emission Sources - Maximum Allowable Emission Rates

Permit Numbers 50607, PSDTX331M1, PSDTX804, and PSDTX1017M1

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities, sources, and related activities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Air Contaminants Data

Emission Point	Source Name	Air Contaminant	Emissio	on Rates
No. (1)	(2)	Name (3)	lbs/hour	TPY (4)
Normal Operations Emission Cap (10)	Combustion Units, Cooling Towers, Flares/Vapor Combustor, Fugitives (5), Loading, Process Vents, Storage Tanks, and Wastewater	Benzene	10.59	11.69
Normal Operations Emission Cap (10)	Combustion Units, Flares/Vapor Combustor, Fugitives, Process Vents, and Storage Tanks	H ₂ S	2.84	6.88
H-028	Crude Charge Heater 1 (100-H1)	NO _x	11.18	23.41
	(100-п1)	СО	14.61	44.41
		VOC	1.10	4.80
		SO ₂	15.53	14.52
		PM	1.51	6.63
		PM ₁₀	1.51	6.63
		PM _{2.5}	1.51	6.63
H-036	Crude Charge Heater 2 (100-H2)	NO _x	11.18	31.56
	(100-112)	СО	14.61	55.54
		VOC	1.10	4.80
		SO ₂	13.53	14.52
		PM	1.51	6.63
		PM ₁₀	1.51	6.63
		PM _{2.5}	1.51	6.63

Emission Sources - Maximum Allowable Emission Rates

Г				
H-016	Vacuum Unit Charge Heater (14- H1401)	NO _x	4.95	21.66
	112101)	СО	8.43	18.45
		VOC	0.76	3.34
		SO ₂	9.41	10.10
		PM	1.05	4.62
		PM ₁₀	1.05	4.62
		PM _{2.5}	1.05	4.62
H-021	ROSE "DAO" Heater (160-H1)	NO _x	1.90	8.31
		СО	2.41	5.27
		VOC	0.22	0.96
		SO ₂	2.70	2.89
		PM	0.30	1.32
		PM ₁₀	0.30	1.32
		PM _{2.5}	0.30	1.32
H-022	Asphalt Heater (160-H2)	NO _x	0.98	4.22
		СО	1.62	3.51
		VOC	0.15	0.64
		SO ₂	1.81	1.92
		PM	0.20	0.88
		PM ₁₀	0.20	0.88
		PM _{2.5}	0.20	0.88

Emission Sources - Maximum Allowable Emission Rates

	T			1
H-020	Isostripper Reboiler Heater (440- H1)	NO _x	1.99	4.90
	,	СО	3.08	3.79
		VOC	0.27	0.67
		SO ₂	1.90	1.53
		PM	0.37	0.92
		PM ₁₀	0.37	0.92
		PM _{2.5}	0.37	0.92
B-007	"BTX" Boiler (54-F1)	NO _x	12.33	34.16
		СО	18.02	27.76
		VOC	1.26	4.70
		SO ₂	0.17	0.48
		PM	1.74	6.49
		PM ₁₀	1.74	6.49
		PM _{2.5}	1.74	6.49
H-043	Reformate Splitter Heater No. 1. (54-H101)	NO _x	4.27	9.86
	(54 11101)	СО	4.24	4.90
		VOC	0.38	0.89
		SO ₂	4.73	2.68
		PM	0.53	1.22
		PM ₁₀	0.53	1.22
		PM _{2.5}	0.53	1.22

Emission Sources - Maximum Allowable Emission Rates

	1		1	1
H-044	Reformate Splitter Heater No. 2 (54-H102)	NO _x	1.78	5.75
	(6 · · · · = 6 = 7)	СО	3.03	5.75 4.90 0.89 2.68 1.22 1.22 1.22 72.43 12.80 2.23 5.16 3.08 3.08
		VOC	0.27	0.89
		SO ₂	3.38	2.68
		PM	0.38	1.22
		PM ₁₀	0.38	1.22
		PM _{2.5}	0.38	1.22
B-004	Boiler 6F1-A and Boiler 6F1-B	NO _x	25.97	72.43
	(6F1-A & 6F1-B)	СО	9.18	12.80
		VOC	0.80	2.23
		SO ₂	5.66	5.16
		PM	1.11	3.08
		PM ₁₀	1.11	3.08
		PM _{2.5}	1.11	3.08

Emission Sources - Maximum Allowable Emission Rates

B-006	East Plant Boiler (6-F2)	NO _x	13.07	49.82
		СО	6.81	12.98
		VOC	0.59	2.24
		SO ₂	0.08	0.23
		PM	0.81	3.09
		PM ₁₀	0.81	3.09
		PM _{2.5}	0.81	3.09
H-041	DOT H ₂ Recycle Furnace (F2201)	NO _x	3.40	5.70
	(1 2201)	СО	2.90	2.43
		VOC	0.26	0.44
		SO ₂	3.24	1.33
		PM	0.36	0.60
		PM ₁₀	0.36	0.60
		PM _{2.5}	0.36	0.60
H-039	No. 1 SRU Hot Oil Heater (H101)	NO _x	0.69	1.60
		СО	0.43	0.50
		VOC	0.04	0.08
		SO ₂	0.27	0.20
		PM	0.05	0.11
		PM ₁₀	0.05	0.11
		PM _{2.5}	0.05	0.11

Emission Sources - Maximum Allowable Emission Rates

H-047	No. 2 SRU Hot Oil Heater (H401)	NO _x	1.84	6.58
		СО	2.06	3.69
		VOC	0.18	0.65
		SO ₂	2.28	2.00
		PM	0.25	0.91
		PM ₁₀	0.25	0.91
		PM _{2.5}	0.25	0.91

Emission Sources - Maximum Allowable Emission Rates

H-015A	Lubricating Oil Crude Atmospheric Heater (H1001)	NO _x	0.58	2.53
	(12002)	СО	1.01	2.20
		VOC	0.09	0.38
		SO ₂	0.02	0.04
		PM	0.12	0.53
		PM_{10}	0.12	0.53
		PM _{2.5}	0.12	0.53
H-015B	Lubricating Oil Crude Atmospheric Heater (H1002)	NO _x	0.32	1.41
		СО	0.55	1.23
		VOC	0.05	0.22
		SO ₂	0.01	0.03
		PM	0.06	0.30
		PM ₁₀	0.06	0.30
		PM _{2.5}	0.06	0.30
H-037	HDU Charge Heater 2 (H101)	NO_x	2.68	6.72
		СО	3.02	3.78
		VOC	0.26	0.66
		SO ₂	1.86	1.52
		PM	0.36	0.91
		PM ₁₀	0.36	0.91
		PM _{2.5}	0.36	0.91
H-038	HDU Reboiler Heater 2 (H102)	NO_x	1.85	4.65
		СО	2.86	3.60
		VOC	0.25	0.63

Emission Sources - Maximum Allowable Emission Rates

		SO ₂	1.76	1.45
		PM	0.34	0.87
		PM ₁₀	0.34	0.87
		PM _{2.5}	0.34	0.87
H-014	Crude Charge Heater 3 (H1102)	NO _x	4.16	13.11
		СО	5.51	8.69
		VOC	0.50	1.58
		SO ₂	6.16	4.76
		PM	0.69	2.18
		PM ₁₀	0.69	2.18
		PM _{2.5}	0.69	2.18
H-034	H.C.U. Recycle Heater (H1401)	NO _x	3.47	11.24
		СО	4.29	6.95
		VOC	0.37	1.21
		SO ₂	2.64	2.80
		PM	0.52	1.67
		PM ₁₀	0.52	1.67
		PM _{2.5}	0.52	1.67

Emission Sources - Maximum Allowable Emission Rates

H-035	H.C.U. Debutanizer Reboiler Heater (H1402)	NO _x	3.39	11.67
		СО	5.24	9.02
		VOC	0.46	1.57
		SO ₂	3.23	3.63
		PM	0.63	2.17
		PM ₁₀	0.63	2.17
		PM _{2.5}	0.63	2.17
H-018	H.C.U. Fractionation Heater (H1501A)	NO _x	2.40	10.51
	TITI ATTA	СО	3.71	16.22
		VOC	0.32	1.42
		SO ₂	2.28	3.27
		PM	0.45	1.96
		PM ₁₀	0.45	1.96
		PM _{2.5}	0.45	1.96
H-019	H.C.U. Fractionation Heater (H1501B)	NO _x	2.40	8.02
		СО	3.71	6.20
		VOC	0.32	1.09
		SO ₂	2.28	2.50
		PM	0.45	1.50
		PM ₁₀	0.45	1.50
		PM _{2.5}	0.45	1.50

Emission Sources - Maximum Allowable Emission Rates

H-045	DHT Charge Heater (H28001)	NO _x	1.91	8.37
		СО	2.28	4.99
		VOC	0.21	0.91
		SO ₂	2.55	2.73
		PM	0.28	1.25
		PM ₁₀	0.28	1.25
		PM _{2.5}	0.28	1.25
H-046	Fractionator Feed Heater (H28002)	NO _x	2.69	11.76
		СО	3.56	7.79
		VOC	0.32	1.41
		SO ₂	3.97	4.26
		PM	0.44	1.95
		PM ₁₀	0.44	1.95
		PM _{2.5}	0.44	1.95
H-023	Dowtherm Heater (160-H3)	NO _x	0.09	0.27
		СО	0.15	0.22
		VOC	0.01	0.04
		SO ₂	0.17	0.13
		PM	0.02	0.06
		PM ₁₀	0.02	0.06
		PM _{2.5}	0.02	0.06

Emission Sources - Maximum Allowable Emission Rates

H-004	Process Oil Treater (POT) (H401)	NO _x	0.41	1.79
		СО	0.72	3.12
		VOC	0.06	0.27
		SO ₂	0.01	0.03
		PM	0.09	0.37
		PM ₁₀	0.09	0.37
		PM _{2.5}	0.09	0.37
H-031	No. 1 HDU Stripper Reboiler Heater (H501)	NO _x	0.79	3.44
		СО	1.32	5.79
		VOC	0.12	0.51
		SO ₂	1.46	1.57
		PM	0.16	0.71
		PM ₁₀	0.16	0.71
		PM _{2.5}	0.16	0.71
H-010	No. 1 HDU Reactor Charge Heater (H502)	NO _x	1.05	4.59
		СО	1.76	7.71
		VOC	0.16	0.69
		SO ₂	1.95	2.09
		PM	0.22	0.96
		PM ₁₀	0.22	0.96
		PM _{2.5}	0.22	0.96

Emission Sources - Maximum Allowable Emission Rates

H-030	No. 2 Reformer Charge Heaters	NO _x	19.06	-
	(H201: H203: H204)	СО	13.63	
		VOC	2.38	
			16.78	
		SO ₂		-
		PM	3.29	-
		PM ₁₀	3.29	-
		PM _{2.5}	3.29	-
H-032	No. 2 Reformer Charge Heater (H202)	NO _x	12.27	-
		СО	11.16	-
		VOC	0.97	-
		SO ₂	6.87	-
		PM	1.35	-
		PM ₁₀	1.35	-
		PM _{2.5}	1.35	-
H-033	No. 2 Reformer Stab. Reboiler (H205)	NO _x	2.25	-
		СО	3.48	-
		VOC	0.30	-
		SO ₂	2.14	-
		PM	0.42	-
		PM ₁₀	0.42	-
		PM _{2.5}	0.42	-
H-012	No.1 Reformer Charge Heaters (H504, H505A, H505B)	NO _x	5.41	-
	11 EAGE 1 EAA 11 EAA 11 11	СО	6.34	-
		VOC	0.57	-

Emission Sources - Maximum Allowable Emission Rates

		SO ₂	7.00	-
		PM	0.78	-
		PM_{10}	0.78	-
		PM _{2.5}	0.78	-
H-013	No. 1 Stabilizer Reboiler Heater (H506)	NO _x	1.86	-
		СО	1.05	-
		VOC	0.09	-
		SO ₂	1.15	-
		PM	0.13	-
		PM_{10}	0.13	-
		PM _{2.5}	0.13	-
H-030, H-032, H-033, H-012, and	Subcaps for No.1 and No.2 Reformer Unit Heaters	NO _x	-	91.88
		СО	-	59.57
		VOC	-	10.46
		SO ₂	-	26.77
		PM	-	14.46
		PM_{10}	-	14.46
		PM _{2.5}	-	14.46
S-036, S-119, S-120, S-130, S-680-6	Subcaps for Storage Tanks	VOC	9.35	17.43
FL-003, FL-004, FL-006 and FL-501	Subcaps for Flares	NO _x	15.59	18.83
		СО	80.33	96.98
		VOC	63.01	117.58
		SO ₂	5.17	7.00
F-28, F-100 (#1 Crude, Desalter),	VOC and NH₃ Subcaps for Equipment Fugitives (5)(10)	VOC	130.66	572.31

Emission Sources - Maximum Allowable Emission Rates

•			
	NH₃	0.01	0.04
No.1 West Plant Cooling Tower (5)	VOC	0.25	1.10
	PM	0.36	1.58
	PM ₁₀	0.14	0.60
	PM _{2.5}	0.01	0.01
East Plant Cooling Tower (5)	VOC	1.68	7.36
	PM	2.40	10.52
	PM ₁₀	0.36	1.58
	PM _{2.5}	0.01	0.01
No. 2 West Plant Cooling Tower (5)	VOC	0.59	2.58
	PM	0.84	3.68
	PM ₁₀	0.32	1.41
	PM _{2.5}	0.01	0.01
F-0680 Open-Top Biotreatment	VOC	23.08	36.23
No. 2 API Separator	VOC	0.48	0.95
Crude Unit Sump	VOC	3.70	6.50
No. 1 Reformer Sump	VOC	1.66	3.31
600 Unit Sump	VOC	0.01	0.03
R. R. Rack Sump	VOC	0.10	0.20
Truck Loading Sump	VOC	0.09	0.18
Land Farm	VOC	2.26	4.50
Vacuum Unit Sump	VOC	2.08	4.14
Crude Unload Sump	VOC	0.24	0.47
	East Plant Cooling Tower (5) No. 2 West Plant Cooling Tower (5) F-0680 Open-Top Biotreatment No. 2 API Separator Crude Unit Sump No. 1 Reformer Sump 600 Unit Sump R. R. Rack Sump Truck Loading Sump Land Farm Vacuum Unit Sump	No.1 West Plant Cooling Tower (5) VOC PM PM ₁₀ PM _{2.5} PM _{2.5} VOC PM PM ₁₀ PM _{2.5} No. 2 West Plant Cooling Tower (5) VOC PM PM _{2.5} F-0680 Open-Top Biotreatment VOC No. 2 API Separator VOC Crude Unit Sump VOC No. 1 Reformer Sump VOC 600 Unit Sump VOC R. R. Rack Sump VOC Truck Loading Sump VOC Land Farm VOC Vacuum Unit Sump VOC	No.1 West Plant Cooling Tower (5)

Emission Sources - Maximum Allowable Emission Rates

F-3110				
	No. 2 Reformer Sump	VOC	0.59	1.18

Emission Sources - Maximum Allowable Emission Rates

V-006				
	No. 1 Reformer Regeneration Vent	СО	37.50	1.50
		Cl ₂	0.40	0.02
		VOC	1.40	0.06
V-007	No. 2 Reformer Regeneration Vent	СО	5.00	14.02
		Cl ₂	0.01	0.04
		VOC	0.04	0.13
V-010	FCCU Regeneration Vent	NOx	62.69	28.82
		СО	195.47	184.29
		VOC	6.16	14.51
		SO ₂	43.64	52.65
		PM	30.00	69.98
		PM ₁₀	25.11	58.58
		PM _{2.5}	25.11	58.58
		H ₂ SO ₄	13.69	59.96
		O ₃	7.22	31.62

Emission Sources - Maximum Allowable Emission Rates

		HCN	19.49	45.47
V-008, V-009	Subcaps for Sulfur Plants	NO _x	6.83	19.32
		СО	29.09	82.32
		VOC	12.21	34.56
		SO ₂	38.88	98.27
		PM	0.37	1.02
		PM ₁₀	0.37	1.02
		PM _{2.5}	0.37	1.02
		TRS	2.63	9.51
L-001	Oil Truck Loading Rack	VOC	0.02	0.02
L-002	Gasoline Truck Loading Rack	VOC	9.09	3.46
L-004	Tank Car Loading Rack	VOC	0.01	0.01
VCU-1	Loading Rack Vapor Combustor	NO _x	3.01	0.71
		СО	8.75	2.07
		VOC	17.98	6.88
VCU-2	WWTP Vapor Combustor	VOC	1.41	2.09
		NOx	0.30	0.86
		СО	2.51	6.93
		SO ₂	0.19	0.16
		PM	0.03	0.10
		PM ₁₀	0.03	0.10
		PM _{2.5}	0.03	0.10
Planned Maintenance.				
Cooling Towers, Combustion Units		VOC (6) (7)	4,711.24	75.49

Emission Sources - Maximum Allowable Emission Rates

. —					
(1)	Emission point id	patification sither appoific aguinman	NO _x (6) (7)	305.53	16.34
(1)	a plot plan.	entification - either specific equipmen	CO (6) (7)	1,202.92	43.12
(2)	VOC - volat	rce names. For fugitive sources, use ile organic compounds as defined in oxides of nitrogen			
	CO - carb	oxides of fillogen on monoxide r dioxide	PM (6) (7)	4.54	0.66
	PM - total	particulate matter, suspended in the			<u>,Q</u> .66
	PM_{10} - particle $PM_{2.5}$ - particle Cl_2 - chloridge Cl_2	culate matter equal to or less than 10 culate matter equal to or less than 2.5	microns in diamete PMcro(6) (n7)diamete	r }4 .54	0.66
	COS - carb	onyl sulfide	H ₂ S (6) (7)	2.65	0.51
	H ₂ S - hydr	on disulfide ogen sulfide Iric acid	Benzene (6) (7) (8)	90.70	2.65
	NH ₃ - amm	onia Ireduced sulfur	CS ₂ (7)	0.33	0.02
	O ₃ - ozon		COS (7)	1.89	0.11
in (6) fe ren (7) b	complicional led spycial relacenes by Lib Seks on thing blothrow in Legal to the blothrow in Leg	n estimate and compliance is demon conditions and permit application rept C, NO _x , CO, SO ₂ , PM ₁₀ , H ₂ S, and Be ations Emission Caps. y 1, 2013, MSS emissions shall be be a supplied by the conditions are included in the VOC allowed by the conditions are included by the conditions are applied by the conditions are included in the vocallowed by the conditions are applied by the conditions are applied by the conditions are included in the vocallowed by the conditions are conditions are conditions and the conditions are conditions are conditions.	oresentations. nzene allowable em ased on a rolling 12-	issions are NOT month period.	included in
Regi	stration Number These emission c emissions. The c	allowable emissions are specified by aps have been carried forward from taps have been lowered to equal the s	he flexible permit ar sum of the normal o	nd do not include peration individu	MSS al limits and
B-01	Osubcaps. The ca Permit 83511.	psī do Broitein clude emissions from EP	N B-0100 dincorporat	egl <u>f</u> y reference	fpgng.\spandard
			СО	12.31	53.93
			VOC	1.83 Dated: Ja	8.03 nuary 22, 2020
			NH₃	1.49	6.55
			SO ₂	4.55	19.93
			PM	2.53	11.10
			PM ₁₀	2.53	11.10
			PM _{2.5}	2.53	11.10