

Report No.: SZEM160300145301

No. 1 Workshop, M-10, Middle section, Science & Technology Park, Nanshan

District, Shenzhen, Guangdong, China 518057

Telephone: +86 (0) 755 2601 2053 Fax: +86 (0) 755 2671 0594

Email: ee.shenzhen@sgs.com Page: 1 of 57

FCC REPORT

Application No: SZEM1603001453CR

Applicant:Guangdong Cheerson Hobby Technology Co., Ltd.Manufacturer:Guangdong Cheerson Hobby Technology Co., Ltd.Factory:Guangdong Cheerson Hobby Technology Co., Ltd.

Product Name: UFO
Model No.(EUT): CX-10W

CX-10W-D, CX-10W-TX, CX-10D, CX-10D-A, CX-10D-B, CX-10D-C,

Add Model No.: CX-10D-D, CX-10D-E, CX-10D-F, CX-10, CX-10A, CX-10C, CX-10,

CX-91, CX-92, CX-93.

FCC ID: 2AD6LGC03241023

Standards: 47 CFR Part 15, Subpart C (2015)

Date of Receipt: 2016-03-17

Date of Test: 2016-03-25 to 2016-04-06

Date of Issue: 2016-04-14

Test Result: PASS *

. * In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Jack Zhang EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

Report No.: SZEM160300145301

Page: 2 of 57

2 Version

Revision Record							
Version	Chapter	Date	Modifier	Remark			
00		2016-04-14		Original			

Authorized for issue by:		
Tested By	Peter Gene	2016-04-06
	(Peter Geng) /Project Engineer	Date
Prepared By	Joyce Shi	2016-04-14
	(Joyce Shi) /Clerk	Date
Checked By	Eric Fu	2016-04-14
	(Eric Fu) /Reviewer	Date

Report No.: SZEM160300145301

Page: 3 of 57

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 2013	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	ANSI C63.10 2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(2)	ANSI C63.10 2013	PASS
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e)	ANSI C63.10 2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS

Report No.: SZEM160300145301

Page: 4 of 57

4 Contents

			Page
1	cov	VER PAGE	1
2	VER	RSION	2
^	TEC	ST SUMMARY	2
3	IES	51 SUMMARY	3
4	CON	NTENTS	4
5	GEN	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF EUT	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	TEST LOCATION	
	5.6	TEST FACILITY	
	5.7	DEVIATION FROM STANDARDS	
	5.8	ABNORMALITIES FROM STANDARD CONDITIONS	
	5.9	OTHER INFORMATION REQUESTED BY THE CUSTOMER.	
	5.10	EQUIPMENT LIST	
6	TES.	ST RESULTS AND MEASUREMENT DATA	12
•			
	6.1	ANTENNA REQUIREMENT	
	6.2	CONDUCTED EMISSIONS	
	6.3	CONDUCTED PEAK OUTPUT POWER	
	6.4	6DB OCCUPY BANDWIDTH	
	6.5	Power Spectral Density	
	6.6	BAND-EDGE FOR RF CONDUCTED EMISSIONS	
	6.7	RF CONDUCTED SPURIOUS EMISSIONS	
	6.8 6.9	DUTY CYCLE	
	6.9.1	RADIATED SPURIOUS EMISSIONS	
	6.9.1 6.9.2		
	6.10	RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY	
7	РНО	OTOGRAPHS - EUT TEST SETUP	56
	7 1	CONDUCTED EMISSION	56
	7.1	RADIATED EMISSION	E SHIPPING
	7.2	RADIATED SPURIOUS EMISSION	57
			N.C.
8	PHO	OTOGRAPHS - EUT CONSTRUCTIONAL DETAILS	
		0 -0	- D
			+111 /00/
			711/5/1
		HA	14
		EN	7

Report No.: SZEM160300145301

Page: 5 of 57

5 General Information

5.1 Client Information

Applicant:	Guangdong Cheerson Hobby Technology Co., Ltd.		
Address of Applicant:	FENGXIN NO.2 ROAD&LAIMEI ROAD FENGXIN INDUSTRIAL ZONE CHENGHAI SHANTOU GUANGDONG PROVINCE CHINA		
Manufacturer:	Guangdong Cheerson Hobby Technology Co., Ltd.		
Address of Manufacturer:	FENGXIN NO.2 ROAD&LAIMEI ROAD FENGXIN INDUSTRIAL ZONE CHENGHAI SHANTOU GUANGDONG PROVINCE CHINA		
Factory:	Guangdong Cheerson Hobby Technology Co., Ltd.		
Address of Factory:	FENGXIN NO.2 ROAD&LAIMEI ROAD FENGXIN INDUSTRIAL ZONE CHENGHAI SHANTOU GUANGDONG PROVINCE CHINA		

5.2 General Description of EUT

Product Name:	UFO
Model No.:	CX-10W
Operation Frequency:	IEEE 802.11g: 2412MHz to 2462MHz
Channel Numbers:	IEEE 802.11g: 11 Channels
Channel Separation:	5MHz
Type of Modulation:	IEEE for 802.11g : OFDM(64QAM, 16QAM, QPSK, BPSK)
Sample Type:	Fixed production
Antenna Type:	Integral
Antenna Gain:	0dBi
Battery	DC 3.7V by lithium battery(DC 3.7V, 150mAh)

Remark:

Model No.: CX-10W, CX-10W-TX, CX-10W-D, CX-10W-TX, CX-10D, CX-10D-A, CX-10D-B, CX-10D-C, CX-10D-D, CX-10D-E, CX-10D-F, CX-10, CX-10A, CX-10C, CX-10, CX-91, CX-92, CX-93.

Only the model CX-10W was tested, since the circuitry design, PCB layout, electrical components used, internal wiring and functions were identical for all above models. Only different on model name.

Report No.: SZEM160300145301

Page: 6 of 57

Operation	Operation Frequency each of channel(802.11g)								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency		
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz		
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz		
3	2422MHz	6	2437MHz	9	2452MHz				

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

For 802.11g:

Channel	Frequency
The Lowest channel	2412MHz
The Middle channel	2437MHz
The Highest channel	2462MHz

Report No.: SZEM160300145301

Page: 7 of 57

5.3 Test Environment and Mode

Operating Environment:	
Temperature:	25.0 °C
Humidity:	52 % RH
Atmospheric Pressure:	1020 mbar
Test mode:	
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all
	kind of data rate.

5.4 Description of Support Units

The EUT has been tested independent unit.

5.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch E&E Lab,

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

Report No.: SZEM160300145301

Page: 8 of 57

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

· CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

VCCI

The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively.

FCC – Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 556682.

Industry Canada (IC)

The 3m Semi-anechoic chambers and the 10m Semi-anechoic chambers of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-2, 4620C-3.

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

Report No.: SZEM160300145301

Page: 9 of 57

5.10Equipment List

	Conducted Emission								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)			
1	Shielding Room	ZhongYu Electron	GB-88	SEL0042	2015-05-13	2016-05-13			
2	LISN	Rohde & Schwarz	ENV216	SEL0152	2015-10-09	2016-10-09			
3	LISN	ETS-LINDGREN	3816/2	SEL0021	2015-05-13	2016-05-13			
4	8 Line ISN	Fischer Custom Communications Inc.	FCC-TLIS N-T8-02	SEL0162	2015-08-30	2016-08-30			
5	4 Line ISN	Fischer Custom Communications Inc.	FCC-TLIS N-T4-02	SEL0163	2015-08-30	2016-08-30			
6	2 Line ISN	Fischer Custom Communications Inc.	FCC-TLIS N-T2-02	SEL0164	2015-08-30	2016-08-30			
7	EMI Test Receiver	Rohde & Schwarz	ESCI	SEL0022	2015-05-13	2016-05-13			
8	Coaxial Cable	SGS	N/A	SEL0025	2015-05-13	2016-05-13			
9	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2015-10-09	2016-10-09			
10	Humidity/ Temperature Indicator	Shanhai Qixiang	ZJ1-2B	SEL0103	2015-10-24	2016-10-24			
11	Barometer	Chang Chun	DYM3	SEL0088	2015-05-13	2016-05-13			

Report No.: SZEM160300145301

Page: 10 of 57

	RE in Chamber								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)			
1	10m Semi-Anechoic Chamber	SAEMC	FSAC1018	SEL0303	2015-08-01	2016-08-01			
2	EMI Test Receiver (9k-3GHz)	Rohde & Schwarz	ESCI	SEL0175	2015-05-13	2016-05-13			
3	EMI Test software	AUDIX	E3	SEL0050	N/A	N/A			
4	Coaxial cable	SGS	N/A	SEL0288	2015-05-13	2016-05-13			
5	Coaxial cable	SGS	N/A	SEL0275	2015-05-13	2016-05-13			
6	Coaxial cable	SGS	N/A	SEL0274	2015-05-13	2016-05-13			
8	Trilog-Broadband Antenna(30M-1GHz)	Schwarzbeck	VULB9168	SEM003-17	2016-01-26	2017-01-26			
9	Pre-amplifier	Sonoma Instrument Co	310N	SEL0298	2015-05-13	2016-05-13			
10	Loop Antenna	ETS-LINDGREN	6502	SEL0802	2015-08-14	2016-08-14			

	RE in Chamber							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)		
1	3m Semi-Anechoic Chamber	AUDIX	N/A	SEL0198	2015-05-13	2016-05-13		
2	EMI Test Receiver	Rohde & Schwarz	ESIB26	SEL0023	2015-05-13	2016-05-13		
3	EMI Test software	AUDIX	E3	SEL0201	N/A	N/A		
4	Coaxial cable	SGS	N/A	SEL0202	2015-05-13	2016-05-13		
5	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEL0015	2015-11-15	2016-11-15		
6	Amplifier (0.1-1300MHz)	HP	8447D	SEL0153	2015-10-09	2016-10-09		
7	Horn Antenna (1-18GHz)	Rohde & Schwarz	HF907	SEL0311	2015-06-14	2016-06-14		
8	Horn Antenna (18-26GHz)	ETS-Lindgren	3160	SEM003-12	2014-11-24	2017-11-24		
9	Low Noise Amplifier	Black Diamond Series	BDLNA- 0118- 352810	SEL0319	2015-10-09	2016-10-09		
10	Band filter	Amindeon	Asi 3314	SEL0094	2015-05-13	2016-05-13		

Report No.: SZEM160300145301

Page: 11 of 57

	RF connected test					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)
1	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2015-10-09	2016-10-09
2	Humidity/ Temperature Indicator	HYGRO	ZJ1-2B	SEL0033	2015-10-24	2016-10-24
3	Spectrum Analyzer	Rohde & Schwarz	FSP	SEL0154	2015-10-17	2016-10-17
4	Coaxial cable	SGS	N/A	SEL0178	2015-05-13	2016-05-13
5	Coaxial cable	SGS	N/A	SEL0179	2015-05-13	2016-05-13
6	Barometer	ChangChun	DYM3	SEL0088	2015-05-13	2016-05-13
7	Signal Generator	Rohde & Schwarz	SML03	SEL0068	2015-04-25	2016-04-25
8	POWER METER	R & S	NRVS	SEL0144	2015-10-09	2016-10-09
9	Attenuator	Beijin feihang taida	TST-2-6d B	SEL0205	2015-04-25	2016-04-25

Note: The calibration interval is one year, all the instruments are valid.

Report No.: SZEM160300145301

Page: 12 of 57

6 Test results and Measurement Data

6.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.

Report No.: SZEM160300145301

Page: 13 of 57

6.2 Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.207				
Test Method:	ANSI C63.10: 2013				
Test Frequency Range:	150kHz to 30MHz				
Limit:	(MII-)	Limit (dBuV)			
	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	* Decreases with the logarithm	n of the frequency.			
Test Procedure: 1) The mains terminal disturbance voltage test was conroom. 2) The EUT was connected to AC power source through Impedance Stabilization Network) which provides linear impedance. The power cables of all other units of the connected to a second LISN 2, which was bor reference plane in the same way as the LISN 1 for the unit bein multiple socket outlet strip was used to connect multiple socket outlet strip was u			C power source through a LISN 1 (Line twork) which provides a $50\Omega/50\mu H + 5\Omega$ s of all other units of the EUT were SN 2, which was bonded to the ground LISN 1 for the unit being measured. A as used to connect multiple power cables to		
	single LISN provided the rating of the LISN was not excess. 3) The tabletop EUT was placed upon a non-metallic table ground reference plane. And for floor-standing arrange was placed on the horizontal ground reference plane, 4) The test was performed with a vertical ground reference of the EUT shall be 0.4 m from the vertical ground reference vertical ground reference plane was bonded to the horizon reference plane. The LISN 1 was placed 0.8 m from the unit under test and bonded to a ground reference plane mounted on top of the ground reference plane. This distributed on top of the ground reference plane. This distributed on the closest points of the LISN 1 and the EUT. At the EUT and associated equipment was at least 0.8 m from the ground reference plane. This distributed is the closest points of the LISN 1 and the EUT. At the EUT and associated equipment was at least 0.8 m from the ground reference plane. This distributed is the closest points of the LISN 1 and the EUT. At the EUT and associated equipment was at least 0.8 m from the ground reference plane. This distributed is the closest points of the LISN 1 and the EUT. At the EUT and associated equipment was at least 0.8 m from the ground reference plane. This distributed is the closest points of the LISN 1 and the EUT. At the EUT and associated equipment was at least 0.8 m from the ground reference plane.			ear he the of 2.	

Report No.: SZEM160300145301

Page: 14 of 57

Report No.: SZEM160300145301

Page: 15 of 57

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live Line:

Site : Shielding Room Condition : CE LINE Job No. : 1453CR Test Mode : 1

	Frea		LISN Factor				Over	Remark
	1104	2000	140001	20101	20,01	22110	221120	Tremuz A
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.15080	0.02	9.59	37.34	46.95	55.96	-9.00	Peak
2	0.19758	0.02	9.60	34.90	44.52	53.71	-9.19	Peak
3	0.29711	0.01	9.59	30.03	39.63	50.32	-10.70	Peak
4 @	0.57923	0.01	9.61	32.72	42.34	46.00	-3.66	Peak
5	1.269	0.02	9.60	28.74	38.36	46.00	-7.64	Peak
6	2.931	0.02	9.62	28.20	37.84	46.00	-8.16	Peak

Report No.: SZEM160300145301

Page: 16 of 57

Neutral Line:

Site : Shielding Room Condition : CE NEUTRAL Job No. : 1453CR Test Mode : 1

	Freq		LISN Factor					Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.15080	0.02	9.62	37.23	46.87	55.96	-9.08	Peak
2	0.19550	0.02	9.62	32.64	42.27	53.80	-11.53	Peak
3	0.24165	0.02	9.61	29.31	38.93	52.04	-13.11	Peak
4 @	0.56709	0.01	9.63	31.20	40.85	46.00	-5.15	Peak
5	0.71219	0.02	9.63	25.50	35.16	46.00	-10.84	Peak
6	7.062	0.01	9.74	23.21	32.96	50.00	-17.04	Peak

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No.: SZEM160300145301

Page: 17 of 57

6.3 Conducted Peak Output Power

Test Requirement:	47 CFR Part 15C Section 15.247 (b)(3)		
Test Method:	ANSI C63.10 2013		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.		
Test Instruments:	Refer to section 5.10 for details		
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates		
Final Test Mode:	Through Pre-scan, find the 6Mbps of rate is the worst case of 802.11g.		
Limit:	30dBm		
Test Results:	Pass		

Report No.: SZEM160300145301

Page: 18 of 57

Pre-scan und	Pre-scan under all rate at lowest channel 1							
Mode				802	2.11g			
Data Rate	6Mbps	9Mbps	12Mbps	18Mbps	24Mbps	36Mbps	48Mbps	54Mbps
Power (dBm)	23.12	23.09	23.06	22.98	23.01	22.85	22.79	23.10
Through Pre-scan 6Mbps of rate is the worst case of 802.11g.								

Report No.: SZEM160300145301

Page: 19 of 57

Measurement Data

802.11g mode				
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
Lowest	23.12	30.00	Pass	
Middle	22.52	30.00	Pass	
Highest	22.18	30.00	Pass	

Report No.: SZEM160300145301

Page: 20 of 57

Test plot as follows:

Test mode: 802.11g Test channel: Lowest

Test mode: 802.11g Test channel: Middle

Report No.: SZEM160300145301

Page: 21 of 57

Report No.: SZEM160300145301

Page: 22 of 57

6.4 6dB Occupy Bandwidth

Report No.: SZEM160300145301

Page: 23 of 57

Measurement Data

802.11g mode					
Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result		
Lowest	16.50	≥500	Pass		
Middle	16.53	≥500	Pass		
Highest	16.56	≥500	Pass		

Report No.: SZEM160300145301

Page: 24 of 57

Test plot as follows:

Test mode: 802.11g Test channel: Lowest

Test mode: 802.11g Test channel: Middle

Report No.: SZEM160300145301

Page: 25 of 57

Test mode: 802.11g Test channel: Highest

Report No.: SZEM160300145301

Page: 26 of 57

6.5 Power Spectral Density

Test Requirement:	47 CFR Part 15C Section 15.247 (e)		
Test Method:	ANSI C63.10 2013		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.		
Test Instruments:	Refer to section 5.10 for details		
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates		
Final Test Mode:	Through Pre-scan, find the 6Mbps of rate is the worst case of 802.11g.		
Limit:	≤8.00dBm/3kHz		
Test Results:	Pass		

Report No.: SZEM160300145301

Page: 27 of 57

Measurement Data

802.11g mode					
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result		
Lowest	-11.64	≤8.00	Pass		
Middle	-12.42	≤8.00	Pass		
Highest	-12.20	≤8.00	Pass		

Report No.: SZEM160300145301

Page: 28 of 57

Test plot as follows:

Test mode:	802.11g	Test channel:	Lowest
i cot mode.	1 002.119	i Col Charlici.	LOWCSI

Report No.: SZEM160300145301

Page: 29 of 57

Test mode: 802.11g Test channel: Highest

Report No.: SZEM160300145301

Page: 30 of 57

6.6 Band-edge for RF Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)		
Test Method:	ANSI C63.10 2013		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table		
	Ground Reference Plane		
	Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.		
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates		
Final Test Mode:	Through Pre-scan, find the 6Mbps of rate is the worst case of 802.11g.		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread		
	spectrum intentional radiator is operating, the radio frequency power that is		
	produced by the intentional radiator shall be at least 20 dB below that in the		
	100 kHz bandwidth within the band that contains the highest level of the		
	desired power, based on either an RF conducted or a radiated		
	measurement.		
Instruments Used:	Refer to section 5.10 for details		
Test Results:	Pass		

Report No.: SZEM160300145301

Page: 31 of 57

Test plot as follows:

Test mode: 802.11g Test channel: Lowest

Report No.: SZEM160300145301

Page: 32 of 57

6.7 RF Conducted Spurious Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10 2013
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates
Final Test Mode:	Through Pre-scan, find the 6Mbps of rate is the worst case of 802.11g.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass

Report No.: SZEM160300145301

Page: 33 of 57

Test plot as follows:

Test mode: 802.11g Test channel: Lowest

Report No.: SZEM160300145301

Page: 34 of 57

Test mode: 802.11g Test channel: Middle

Report No.: SZEM160300145301

Report No.: SZEM160300145301

Page: 36 of 57

Test mode: 802.11g Test channel: Highest

Report No.: SZEM160300145301

Page: 37 of 57

Remark:

Use 100kHz RBW to determine the relative limit in the band 2.4GHz to 2.5GHz, and Use 1MHz RBW to measure spurious emissions in the band 30MHz to 10GHz and 10GHz to 25GHz. The sweep points set to 30001.

Report No.: SZEM160300145301

Page: 38 of 57

6.8 Duty Cycle

Test Requirement:	47 CFR Part 15C Section 15.35 (c)
Test Method:	ANSI C63.10:2013
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Instruments Used:	Refer to section 5.10 for details
Limit:	N/A
Test Mode:	Transmitting mode
Test Results:	Pass

Test plot as follows:

Report No.: SZEM160300145301

Page: 39 of 57

6.9 Radiated Spurious Emissions

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205						
Test Method:	ANSI C63.10 2013						
Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)						
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark		
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak		
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average		
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak		
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak		
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average		
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak		
	30MHz-1GHz	Quasi-peak	100 kHz	300kHz	Quasi-peak		
	Above 1GHz	Peak	1MHz	3MHz	Peak		
	Above IGHZ	Peak	1MHz	10Hz	Average		
Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)		
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300		
	0.490MHz-1.705MHz	24000/F(kHz)	-	-	30		
	1.705MHz-30MHz	30	-	-	30		
	30MHz-88MHz	100	40.0	Quasi-peak	3		
	88MHz-216MHz	150	43.5	Quasi-peak	3		
	216MHz-960MHz	200	46.0	Quasi-peak	3		
	960MHz-1GHz	500	54.0	Quasi-peak	3		
	Above 1GHz	500	54.0	Average	3		
	Note: 15.35(b), Unless of	-		-			
	emissions is 20dB		-	_			
	applicable to the peak	equipment under	test. This p	eak limit app	olies to the total		
	emission level rad	iated by the device	Э.				

Report No.: SZEM160300145301

Page: 40 of 57

Test Setup:

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

Test Procedure:

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at 10 meters semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

Report No.: SZEM160300145301

Page: 41 of 57

	f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	h. Test the EUT in the lowest channel (2402MHz),the middle channel (2441MHz),the Highest channel (2480MHz)
	i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	j. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates.
	Transmitting mode, Charge + Transmitting mode.
Final Test Mode:	Pretest the EUT at Transmitting mode and Charge +Transmitting mode, found the Charge +Transmitting mode which it is worse case
	Through Pre-scan, find the 6Mbps of rate is the worst case of 802.11g.
	Only the worst case is recorded in the report.
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass

Report No.: SZEM160300145301

Page: 42 of 57

6.9.1 Radiated emission below 1GHz

30MHz~1GHz (QP)		
Test mode:	Charge + Transmitting	Vertical

Condition: 10m Vertical

Job No. : 1453CR

Test Mode: Charge+TX Mode

		0						
		Cable	Ant	Preamp	Read		Limit	0ver
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	41.28	6.80	13.21	32.99	27.31	14.33	29.50	-15.17
2	110.57	7.26	10.44	32.79	36.96	21.87	33.00	-11.13
3	368.11	8.30	14.24	32.60	27.47	17.41	35.60	-18.19
4	552.88	8.78	17.78	32.60	26.99	20.95	35.60	-14.65
5 pp	742.26	9.20	20.68	32.60	27.84	25.12	35.60	-10.48
6	962.16	9.60	22.77	32.50	27.27	27.14	44.40	-17.26

Report No.: SZEM160300145301

Page: 43 of 57

Test mode: Charge + Transmitting Horizontal

Condition: 10m Horizontal

Job No. : 1453CR

Test Mode: Charge+TX Mode

		Cable	Ant	Preamp	Read		Limit	0ver
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	36.64	6.73	12.87	32.98	28.44	15.06	29.50	-14.44
2	160.35	7.50	13.36	32.73	27.23	15.36	33.00	-17.64
3	425.03	8.36	15.55	32.60	27.54	18.85	35.60	-16.75
4	597.22	8.89	18.65	32.60	27.29	22.23	35.60	-13.37
5 pp	742.26	9.20	20.68	32.60	27.89	25.17	35.60	-10.43
6	965.54	9.60	22.78	32.50	27.63	27.51	44.40	-16.89

12603.270

37.90

14.44

37.75

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM160300145301

Horizontal

Page: 44 of 57

6.9.2 Transmitter emission above 1GHz

Test mode:	802	2.11g	Test ch	annel:	Lowest Remark:		:	Peak	
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
3814.467	32.91	7.75	38.49	44.92	47.09	74	-26.91	Vertical	
4824.000	34.12	8.90	38.75	45.67	49.94	74	-24.06	Vertical	
6016.949	34.71	10.54	38.94	45.43	51.74	74	-22.26	Vertical	
7236.000	35.58	10.69	37.63	42.88	51.52	74	-22.48	Vertical	
9648.000	37.10	12.52	36.29	36.38	49.71	74	-24.29	Vertical	
12603.270	37.90	14.44	37.75	38.32	52.91	74	-21.09	Vertical	
3797.945	32.89	7.74	38.48	44.55	46.70	74	-27.30	Horizontal	
4824.000	34.12	8.90	38.75	46.21	50.48	74	-23.52	Horizontal	
6016.949	34.71	10.54	38.94	45.06	51.37	74	-22.63	Horizontal	
7236.000	35.58	10.69	37.63	42.15	50.79	74	-23.21	Horizontal	
9648.000	37.10	12.52	36.29	34.89	48.22	74	-25.78	Horizontal	

39.03

53.62

74

-20.38

Test mode:	:	802.	.11g	Test ch	annel:	Middle	Remark	:	Peak
Frequency (MHz)	Cab Los (dB	s	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3892.524	32.9	99	7.77	38.52	45.52	47.76	74	-26.24	Vertical
4874.000	34.1	17	8.97	38.76	45.86	50.24	74	-23.76	Vertical
6148.967	34.7	77	10.37	38.76	45.04	51.42	74	-22.58	Vertical
7311.000	35.5	54	10.72	37.59	41.60	50.27	74	-23.73	Vertical
9748.000	37.1	0	12.58	36.16	38.41	51.93	74	-22.07	Vertical
12639.790	37.9	92	14.55	37.79	38.96	53.64	74	-20.36	Vertical
3814.467	32.9	91	7.75	38.49	44.83	47.00	74	-27.00	Horizontal
4874.000	34.1	17	8.97	38.76	45.31	49.69	74	-24.31	Horizontal
6069.413	34.7	74	10.47	38.87	45.36	51.70	74	-22.30	Horizontal
7311.000	35.5	54	10.72	37.59	41.39	50.06	74	-23.94	Horizontal
9748.000	37.1	0	12.58	36.16	39.31	52.83	74	-21.17	Hori <mark>zontal</mark>
12676.420	37.9	94	14.65	37.82	38.85	53.62	74	20.38	- Horizontal
								10	1 A A I I

Report No.: SZEM160300145301

Page: 45 of 57

Test mode:	802.11g	Test channel:	Highest	Remark:	Peak
------------	---------	---------------	---------	---------	------

Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3792.453	32.87	7.74	38.48	44.33	46.46	74	-27.54	Vertical
4924.000	34.22	9.04	38.77	45.11	49.60	74	-24.40	Vertical
6087.002	34.74	10.45	38.85	45.65	51.99	74	-22.01	Vertical
7386.000	35.51	10.75	37.56	41.72	50.42	74	-23.58	Vertical
9848.000	37.15	12.63	36.03	38.98	52.73	74	-21.27	Vertical
12676.420	37.94	14.65	37.82	38.09	52.86	74	-21.14	Vertical
3825.521	32.93	7.75	38.49	45.13	47.32	74	-26.68	Horizontal
4924.000	34.22	9.04	38.77	45.18	49.67	74	-24.33	Horizontal
6140.076	34.77	10.38	38.78	45.63	52.00	74	-22.00	Horizontal
7386.000	35.51	10.75	37.56	41.96	50.66	74	-23.34	Horizontal
9848.000	37.15	12.63	36.03	39.29	53.04	74	-20.96	Horizontal
12639.790	37.92	14.55	37.79	38.27	52.95	74	-21.05	Horizontal

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level = Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

Report No.: SZEM160300145301

Page: 46 of 57

6.10Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205						
Test Method:	ANSI C63.10 2013						
Test Site:	Measurement Distance: 3m	(Semi-Anechoic Chambe	er)				
Limit:	Frequency	Limit (dBuV/m @3m)	Remark				
	30MHz-88MHz	40.0	Quasi-peak Value				
	88MHz-216MHz	43.5	Quasi-peak Value				
	216MHz-960MHz	46.0	Quasi-peak Value				
	960MHz-1GHz	54.0	Quasi-peak Value				
	Above 1CHz	54.0	Average Value				
Above 1GHz 74.0 Peak \							
Test Setup:							

Figure 1. 30MHz to 1GHz

Figure 2. Above 1 GHz

Report No.: SZEM160300145301

Page: 47 of 57

Test Procedure:	a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	c. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	g. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel
	h. Test the EUT in the lowest channel, the Highest channel
	i. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates.
	Charge + Transmitting mode.
Final Test Mode:	Pretest the EUT at Transmitting mode and Charge +Transmitting mode, found the Charge +Transmitting mode which it is worse case
	Through Pre-scan, find the 6Mbps of rate is the worst case of 802.11g.
	Only the worst case is recorded in the report.
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass

Report No.: SZEM160300145301

Page: 48 of 57

Test plot as follows:

Worse case mode: Test channel: Lowest Remark: Peak Vertical

Condition: 3m Vertical Job No: : 1453CR

Mode: : 2412 Band edge

: G

Cable Ant Preamp Read Limit 0ver Loss Factor Factor Level Level Line Limit MHz dB dB/m dB dBuV dBuV/m dBuV/m dB 2390.00 5.34 28.57 38.11 71.47 67.27 2 pp 2405.86 5.35 28.63 38.11 101.68 97.55 74.00 23.55

Report No.: SZEM160300145301

Page: 49 of 57

Worse case mode: Test channel: Lowest Remark: AV Vertical

Condition: 3m Vertical Job No: : 1453CR

Mode: : 2412 Band edge

: G

1

Ant Preamp Read Cable limit Over Loss Factor Factor Level Line Limit Freq Level dB dBuV dBuV/m dBuV/m MHz dB dB/m 2390.00 5.34 28.57 38.11 42.20 38.00 54.00 -16.00 2416.06 5.36 28.68 38.11 83.89 79.82 54.00 25.82

Report No.: SZEM160300145301

Page: 50 of 57

Worse case mode: Test channel: Lowest Remark: Peak Horizontal

Condition: 3m Horizontal

Job No: : 1453CR

Mode: : 2412 Band edge

: G

Cable Ant Preamp Read Limit 0ver Loss Factor Factor Level Level Limit MHz dBuV dBuV/m dBuV/m dΒ dB/m dΒ dΒ 1 2390.00 5.34 28.57 38.11 77.00 72.80 74.00 -1.202406.30 5.35 28.63 38.11 104.31 100.18 74.00 26.18

Report No.: SZEM160300145301

Page: 51 of 57

Worse case mode: Test channel: Lowest Remark: AV Horizontal

Condition: 3m Horizontal

Job No: : 1453CR

Mode: : 2412 Band edge

: G

Ant Preamp Cable Read Limit Loss Factor Factor Level Line Limit Freq Level MHz dB dB/m dB dBuV dBuV/m dBuV/m 28.57 38.11 49.72 45.52 54.00 -8.48 2390.00 5.34 1 2 pp 2416.96 5.36 28.68 38.11 88.38 84.31 54.00

Report No.: SZEM160300145301

Page: 52 of 57

|--|

Condition: 3m Vertical Job No: : 1453CR

Mode: : 2462 Band edge

: G

	Freq			Preamp Factor				
-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 pp	2460.62 2483.50							

Report No.: SZEM160300145301

53 of 57 Page:

Test channel: ΑV Worse case mode: Highest Remark: Vertical

Frequency (MHz)

Condition: 3m Vertical Job No: : 1453CR

Mode: : 2462 Band edge

: G

Cable Ant Preamp Read Limit 0ver Loss Factor Factor Level Level Line Limit dBuV dBuV/m dBuV/m MHz dB dB/m dB 2458.83 5.39 28.87 38.12 81.40 77.54 54.00 23.54 2483.50 5.41 28.98 38.12 37.31 33.58 54.00 -20.42

Report No.: SZEM160300145301

Page: 54 of 57

Test channel: Peak Worse case mode: Highest Remark: Horizontal

Condition: 3m Horizontal

Job No: : 1453CR

2

Mode: : 2462 Band edge

: G

Ant Preamp Limit 0ver Cable Read Freq Loss Factor Factor Level Level Line Limit MHz dΒ dBuV dBuV/m dBuV/m dΒ dB/m dΒ 38.12 101.93 98.08 2461.11 5.39 28.88 74.00 24.08 2483.50 5.41 28.98 38.12 65.89 62.16 74.00 -11.84

Report No.: SZEM160300145301

Page: 55 of 57

Worse case mode: Test channel: Highest Remark: AV Horizontal

Condition: 3m Horizontal

Job No: : 1453CR

Mode: : 2462 Band edge

: G

	Freq			Preamp Factor				
_	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
	2458.73 2483.50							

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

Report No.: SZEM160300145301

Page: 56 of 57

7 Photographs - EUT Test Setup

Test model No.: CX-10W

7.1 Conducted Emission

7.2 Radiated Emission

Report No.: SZEM160300145301

Page: 57 of 57

7.3 Radiated Spurious Emission

8 Photographs - EUT Constructional Details

Refer to Appendix A - Photographs of EUT Constructional Details for SZEM1603001453CR.