Modelización Adimensionalización

Rafael Orive Illera

Departamento de Matemáticas Universidad Autónoma de Madrid rafael.orive@uam.es

Noviembre 2019

Magnitudes

Una magnitud es una medida asignada para cada uno de los objetos de un conjunto medible. Las magnitudes se puedes abstraer de objetos del mundo físico o propiedades físicas que son susceptibles de ser medidos. Consideramos

$$mx''(t) = F(t,x), \quad t \in [0,T], \qquad x(0) = x_0, \ x'(0) = v_0,$$
 (1)

donde tenemos las magnitudes: t, m, x, F, T, x_0 y v_0 .

Llamamos magnitudes elementales aquellas que no se pueden descomponer en otras. En (1) tenemos 3 magnitudes elementales:

$$\{\text{tiempo}\} = L_1, \{\text{masa}\} = L_2, \{\text{longitud}\} = L_3.$$

Sean L_1, L_2, \ldots, L_n magnitudes elementales.

Una magnitud A tiene dimensión $[A] = L_1^{a_1} L_2^{a_2} \cdots L_n^{a_n}$ si supuesto que $a \in \mathbb{R}$ es la medida de A en el sistema de unidades de L_1, L_2, \ldots, L_n entonces, bajo el cambio de unidades $L_1' = \lambda_1 L_1, \ldots, L_n' = \lambda_n L_n$, la medida de A en el sistema L_1', L_2', \ldots, L_n' es:

$$a' = a\lambda_1^{a_1}\lambda_2^{a_2}\cdots\lambda_n^{a_n}.$$

Proposición: Sean A,B magnitudes tales que $[A]=L_1^{a_1}\cdots L_n^{a_n}$, $[B]=L_1^{ba_1}\cdots L_n^{b_n}$. Sea C otra magnitud dependiente de A y B. Si las medidas a,b,c de estas magnitudes verifican que existe $d,p,q\in\mathbb{R}$ tal que $c=da^pb^q$, entonces

$$[C] = L_1^{a_1 p + b_1 q} \cdots L_n^{a_n p + b_n q}.$$

- Una magnitud A se dice adimensional si [A] = 1 $(a_1 = 0, ..., a_n = 0)$.
- Dado un conjunto de magnitudes q_1, \ldots, q_m tales que $[q_i] = L_1^{a_{1i}} \cdots L_n^{a_{ni}}$ para $i = 1, \ldots, m$, a la matriz de coeficientes (a_{ji}) con $j = 1, \ldots, n$ se llama matriz de dimensiones del conjunto.
- Una "ley (física)" $f(q_i, \ldots, q_m) = 0$ se dice que es invariante frente al cambio de unidades si $f(q_i', \ldots, q_m') = 0$ para todo cambio de unidades $L_1' = \lambda_1 L_1, \ldots, L_n' = \lambda_n L_n$ y q_i' medida de q_i en el sistema de unidades L_1', \ldots, L_n' .

Proposición: Si n < m y el rango de la matriz de dimensiones es $r \le n$, entonces existen m-r cantidades adimensionales π_1, \ldots, π_{m-r} relacionadas con $q_1, \ldots q_m$. **Demostración**: Una magnitud $\pi = q_1^{\alpha_1} \ldots q_m^{\alpha_m}$ es adimensional si resuelve el sistema $A\alpha = 0$ y Teorema de Rouche-Frobenius

Teorema Pi

Sea $f(q_i, ..., q_m) = 0$ una ley invariante frente a los cambios de unidades. Supongamos n < m y el rango de la matriz de dimensiones es $r \le n$. Entonces, existen m-r cantidades adimensionales $\pi_1, ..., \pi_{m-r}$ relacionadas con $q_1, ..., q_m$ y tales que la ley invariante es equivalente a la relación

$$F(\pi_1,\ldots,\pi_{m-r})=0,$$

para una cierta función $F: \mathbb{R}^{m-r} \to \mathbb{R}$.

Demostración: Suponemos sin perdida de generalidad que las primeras r columnas de la matriz de dimensiones son linealmente independientes. Cada una de las magnitudes q_{r+1}, \ldots, q_m es una combinación de q_1, \ldots, q_r con lo que obtenemos las m-r magnitudes adimensionales π_j . Así podemos sustituir cada q_{r+j} por π_j y la combinación de q_1, \ldots, q_r , resultando:

$$0 = f(q_i, \dots, q_m) = f(q_i, \dots, q_r, \pi_1 q_i^{\alpha_{11}} \dots, q_r^{\alpha_{1r}}, \dots, \pi_{m-r} q_i^{\alpha_{m-r1}} \dots, q_r^{\alpha_{m-rr}})$$

= $G(q_i, \dots, q_r, \pi_1, \dots, \pi_{m-r}) = G(q'_i, \dots, q'_r, \pi_1, \dots, \pi_{m-r})$

y haciendo el cambio L'_1, \ldots, L'_n tal que las medidas $q'_i = 1, \ldots, q'_r = 1$ identificamos $F(\pi_1, \ldots, \pi_{m-r}) = 0$.