N.I. Lobachevsky State University of Nizhni Novgorod

Probability theory and mathematical statistics:

Geometric Probability, Statistical Probability, Axiomatic Probability

Associate Professor A.V. Zorine

Outline

- Geometric probabilities. Examples.
- Properies of geometric probability.
- Statistical probability and its properties. Comparision to geometric probability.
- Axiomatic definition of probability.
- General properties of probabilities.
- Summation theorem for probabilities.
- Objecte probability space.

Definition

Classical probability is applicable only for experiments with finite number of elementary outcomes. When the number of elementary outcomes is infinite and non-denumerable, it is impossible to assign equal positive probability to each outcome.

Assume Ω can be represented as a segment, or flat figure on a plane, or a body in space. Denote by G its geometric representation.

Definition

Let $g \subset G$ be a geometric representation of A. Geometric probability P(A) of event A is defined by

$$P(A) = \frac{\text{measure of } g}{\text{measure of } G}$$

A measure is either length, or area, or volume depending on G.

Buffon's needle (1733, 1777)

A needle of length 2l is dropped on a floor with equally spaced parallel lines at a distance 2b apart. What's the probability that the needle crosses a line?

Buffon's needle (1733, 1777)

A needle of length 2*l* is dropped on a floor with equally spaced parallel lines at a distance 2*b* apart. What's the probability that the needle crosses a line?

Let x denote the distance between the needle's center and the nearest line, let φ equal the angle between the needle and the nearest line. The needle crosses the line if and only if $x < l \sin \varphi$.

Buffon's needle

Here

$$\Omega = G = \{ (\varphi, x) \colon 0 \leqslant \varphi \leqslant \pi, \ 0 \leqslant x < b \},$$

$$A = g = \{ (\varphi, x) \colon 0 \leqslant \varphi \leqslant \pi, \ 0 \leqslant x < l \sin \varphi \}$$

Buffon's needle

Here

$$\Omega = G = \{ (\varphi, x) \colon 0 \leqslant \varphi \leqslant \pi, \ 0 \leqslant x < b \},$$

$$A = g = \{ (\varphi, x) \colon 0 \leqslant \varphi \leqslant \pi, \ 0 \leqslant x < l \sin \varphi \}$$

The measure of an event is the area of its geometric representation, area of G is $b\pi$, area of g is

$$\int_0^{\pi} l \sin \varphi \, d\varphi = -l \cos \varphi \Big|_0^{\pi} = 2l,$$

$$P(A) = \frac{2l}{\pi h}.$$

Dating problem

Ann and Bart have a date tonight. They are to meet each other between 8 p. m. and 9 p. m. Each of them waits for 10 minutes for another and then leaves. What's the probability they'll meet?

Dating problem

Ann and Bart have a date tonight. They are to meet each other between 8 p. m. and 9 p. m. Each of them waits for 10 minutes for another and then leaves. What's the probability they'll meet?

Let t_A denote Ann's arrival time (measured in minutes), t_B denote Bart's arrival time (in minutes, too). An elementary outcome is $\omega = (t_A, t_B)$, and the meet each if $|t_A - t_B| \le 10$.

Dating problem

$$\Omega = G = \{(t_A, t_B) : 8^{00} \le t_A \le 9^{00},
8^{00} \le t_B \le 9^{00}\},
A = g = \{(t_A, t_B) : 8^{00} \le t_A \le 9^{00},
8^{00} \le t_B \le 9^{00}, |t_A - t_B| \le 10\},
\text{area of } g = 60^2 - 50^2 = 1100,
\text{area of } G = 60^2,
P(A) = \frac{60^2 - 50^2}{60^2} = \frac{11}{36}.$$

Properties of geometric probability

Corollary

For any elementary outcome $E = {\omega}$, P(A) = 0.

Proof. A length of a point is 0, an area of a point is 0, etc.

Corollary

For any event A, $P(\bar{A}) = 1 - P(A)$.

Proof.

measure of $\bar{A} = \text{measure of } \Omega - \text{measure of } A$

Corollary

For any events A and B,

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

If A and B are mutually exclusive, then

$$P(A \cup B) = P(A) + P(B).$$

Proof.

measure of $A \cup B =$ measure of $A \cap B$ + measure of B - measure of $A \cap B$

Event *A* is not necessarily impossible when P(A) = 0. Events *A* and *B* are not necessarily mutually exclusive when $P(A \cap B) = 0$.

Definition

Denote by $\mu(A, N)$ the number of occurrences of event A in N repetitions of an experiment. A statistical probability of event A is defined by

$$P(A) = \frac{\mu(A, N)}{N}$$

Properties

$$0 \leqslant P(A) \leqslant 1, \quad P(\Omega) = 1,$$

 $P(A \cup B) = P(A) + P(B) - P(A \cap B),$
 $P(A \cup B) = P(A) + P(B) \quad \text{when } A \cap B = \emptyset.$

Statistical probability for Buffon's needle

For a statistically stable random experiment,

$$P_{\text{classical}}(A) \approx P_{\text{statistical}}(A)$$

or

$$P_{geometric}(A) \approx P_{statistical}(A)$$

Wolf, 1849: needle's length 2l=36 mm, distance between lines 2b=45 mm, N=500 trials, $\mu(A,N)=2532$, $P(A)\approx0.5064$. From

$$\frac{2l}{\pi b} \approx 0.5064$$

we obtain

$$\pi \approx 3.159$$

Exact value of π is 3,14159...

Buffon's needle

Who?	When?	How many times?	Observed π
Wolf	1850	5000	3,1596
Smith	1855	3204	3,1553
Fox	1894	1120	3,1419
Lazzarini	1901	3408	3,1415929
π with 8 decimal places			3,1415927

	Classical	Geometric	Statistical
Property	probability	probability	probability
$P(A) \geqslant 0$			

		Geometric	
Property	probability	probability	probability
$P(A) \geqslant 0$	yes	yes	yes
$P(\Omega) = 1$	•		

	Classical	Geometric	Statistical
Property	probability	probability	probability
$P(A) \geqslant 0$	yes	yes	yes
$P(\Omega) = 1$	yes	yes	yes
$P(A \cup B) = P(A) + P(B)$			
when $A \cap B = \emptyset$			

	Classical	Geometric	Statistical
Property	probability	probability	probability
$P(A) \geqslant 0$	yes	yes	yes
$P(\Omega) = 1$	yes	yes	yes
$P(A \cup B) = P(A) + P(B)$			
when $A \cap B = \emptyset$	yes	yes	yes

	Classical	Geometric	Statistical
Property	probability	probability	probability
$P(A) \geqslant 0$	yes	yes	yes
$P(\Omega) = 1$	yes	yes	yes
$P(A \cup B) = P(A) + P(B)$			
when $A \cap B = \emptyset$	yes	yes	yes

A.N. Kolmogorov proposed in 1933 a set of axioms for probability in general case. His main idea: any probability should behave as probabilities above.

A set of observable events should be closed under main operations: union, intersection, etc.

Definition

A set $\mathfrak F$ of events is called sigma-algebra (σ -algebra) if

- $\Omega \in \mathfrak{F}$
- $\bar{A} \in \mathfrak{F}$ if $A \in \mathfrak{F}$
- $A_1 \cup A_2 \cup \ldots \in \mathfrak{F} \text{ if } A_1 \in \mathfrak{F}, A_2 \in \mathfrak{F}, \ldots$

A set of observable events should be closed under main operations: union, intersection, etc.

Definition

A set $\mathfrak F$ of events is called sigma-algebra (σ -algebra) if

- $\Omega \in \mathfrak{F}$
- $\bar{A} \in \mathfrak{F}$ if $A \in \mathfrak{F}$
- $A_1 \cup A_2 \cup \ldots \in \mathfrak{F} \text{ if } A_1 \in \mathfrak{F}, A_2 \in \mathfrak{F}, \ldots$

Theorem

$$A_1 \cap A_2 \cap \ldots \in \mathfrak{F} \text{ if } A_1 \in \mathfrak{F}, A_2 \in \mathfrak{F}, \ldots$$

Proof.
$$A_1 \cap A_2 \cap \ldots = \overline{A_1 \cup \overline{A_2 \cup \ldots}} \in \mathfrak{F}$$
, because $\overline{A_1} \in \mathfrak{F}$, $\overline{A_2} \in \mathfrak{F}$, ..., and $\overline{A_1} \cup \overline{A_2} \cup \ldots \in \mathfrak{F}$.

Axiomatic definition of probability

Suppose every event $A \in \mathfrak{F}$ is assigned with a number P(A) so that

- $P(\Omega) = 1$
- **③** $P(A_1 \cup A_2 \cup ...) = P(A_1) + P(A_2) + ...$ if $A_i \cap A_j = \emptyset$ for $i \neq j$

Then P(A) is called a *probability of event A*.

Here \mathfrak{F} is a domain of P. Axioms 1)–3) are not contradictious, they are incomplete as well. They don't define a unique probability, and we know that some probabilities satisfying the axioms exist.

A triple $(\Omega, \mathfrak{F}, P)$ is called a *probability space*.

The third axiom is called *axiom of denumerable additivity*. A weaker condition of *finite additivity* $P(A \cup B) = P(A) + P(B)$ for mutually exclusive events *A* and *B* is not sufficient to construct deep theory.

In what follows it is useful to recall definitions of events operations.

Theorem

$$P(\varnothing) = 0$$

Proof. Since $\Omega \cup \emptyset = \Omega$ and events Ω and \emptyset are mutually exclusive, by axiom 3 obtain

$$P(\Omega \cup \varnothing) = P(\Omega) + P(\varnothing)$$

Using axiom 1, we have

$$1 = 1 + P(\emptyset)$$

Thus, $P(\emptyset) = 0$.

Theorem

$$P(\bar{A}) = 1 - P(A)$$

Proof. Since A and \bar{A} are mutually exclusive and $A \cup \bar{A} = \Omega$, we have

$$P(A) + P(\bar{A}) = P(\Omega)$$

and

$$P(\bar{A}) = P(\Omega) - P(A) = 1 - P(A).$$

Theorem (monotonicity)

Assume $A \subset B$ (A implies B), then

$$P(A) \leqslant P(B)$$
 and $P(B \backslash A) = P(B) - P(A)$

Proof. Observe that $B = A \cup (B \setminus A)$ and $A \cap (B \setminus A) = \emptyset$.

$$P(B) = P(A) + P(B \setminus A) \geqslant P(A)$$

by axiom 1. Now,

$$P(B \setminus A) = P(B) - P(A)$$

Theorem

For any not mutually exclusive events A, B one has

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Proof.

$$A \cup B = A \cup (B \setminus A) = A \cup (B \setminus (A \cap B)),$$

$$A \cap (B \setminus (A \cap B)) = \varnothing,$$

$$A \cap B \subset B,$$

$$P(A \cup B) = P(A) + P(B \setminus (A \cap B))$$

$$= P(A) + P(B) - P(A \cap B)$$

Extensions of summation theorem

Theorem

For any events A, B, C

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B)$$
$$- P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$$

Extensions of summation theorem

Theorem

For any events A, B, C

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B)$$
$$- P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$$

Proof.

$$P(A \cup B \cup C) = P(A) + P(B \cup C) - P(A \cap (B \cup C))$$

$$= P(A) + P(B) + P(C) - P(B \cap C) - P((A \cap B) \cup (A \cap C))$$

$$= P(A) + P(B) + P(C) - P(B \cap C) - P(A \cap B)$$

$$- P(A \cap C) + P(A \cap B \cap A \cap C).$$

Extensions of summation theorem (Cont.)

Theorem

For any events A_1, A_2, \ldots, A_n ,

$$P(A_1 \cup A_2 \cup \ldots \cup A_n) = P(A_1) + P(A_2) + \ldots + P(A_n)$$

$$- P(A_1 \cap A_2) - P(A_1 \cap A_3) - \ldots - P(A_{n-1} \cap A_n)$$

$$+ P(A_1 \cap A_2 \cap A_3) + \ldots + P(A_{n-2} \cap A_{n-1} \cap A_n)$$

$$+ (-1)^{n-1} P(A_1 \cap A_2 \cap \ldots \cap A_n)$$

Proof by induction.

Problem. If *n* dice are thrown at a time, what is the probability of having each of the points 1, 2, 3, 4, 5, 6 appear at least once?

Problem. If *n* dice are thrown at a time, what is the probability of having each of the points 1, 2, 3, 4, 5, 6 appear at least once?

Denote $A_i = i$ points appear at least once, i = 1, 2, ..., 6; We want $P(A_1 \cap A_2 \cap ... \cap A_6)$.

$$\begin{split} P(A_1 \cap A_2 \cap \ldots \cap A_6) &= 1 - P(\bar{A}_1 \cup \bar{A}_2 \cup \ldots \cup \bar{A}_6) \\ &= 1 - \left(P(\bar{A}_1) + \ldots + P(\bar{A}_6) - P(\bar{A}_1 \cap \bar{A}_2) - \ldots - P(\bar{A}_5 \cap \bar{A}_6) \right) \\ &+ P(\bar{A}_1 \cap \bar{A}_2 \cap \bar{A}_3) + \ldots + (-1)^6 P(\bar{A}_1 \cap \bar{A}_2 \cap \ldots \cap \bar{A}_6) \right) \\ P(\bar{A}_i) &= \frac{5^n}{6^n}, \qquad P(\bar{A}_i \cap \bar{A}_j) = \frac{4^n}{6^n}, \qquad \ldots \\ P(A_1 \cap A_2 \cap \ldots \cap A_6) &= 1 - 6\left(\frac{5}{6}\right)^n + 15\left(\frac{4}{6}\right)^n \\ &- 20\left(\frac{3}{6}\right)^n + 15\left(\frac{2}{6}\right)^n - 6\left(\frac{1}{6}\right)^n \end{split}$$

Discrete probability space

Let $\Omega = \{\omega_1, \omega_2, \ldots\}$ be a finite or denumerable infinite set, each outcome $\{\omega_i\}$, $i=1,2,\ldots$ is assigned a non negative number $p_i = p(\omega_i)$ in such a way that

$$p_1 + p_2 + \ldots = 1$$

Put by definition

$$P(A) = \sum_{\omega \in A} p(\omega)$$

Then P is (discrete) probability and $(\Omega, \mathfrak{F}, P)$ is called a *discrete* probability space. For example, when Ω is finite, putting

$$p(\omega) = \frac{1}{N(\Omega)}$$

we obtain classical probability. Another example: this kind of probability spaces is often used to model infinite sequences of repeated trials.