Sri Chaitanya Narayana IIT Academy

03-01-16_Sr.IPLCO_JEE-ADV_(2013_P2)_RPTA-17_Q'Paper

IIT-JEE-2013-P2-Model

PHYSICS:

Section	Question Type	+Ve Marks	- Ve Marks	No.of Qs	Total marks
Sec – I(Q.N : 1 – 8)	Questions with Multiple Correct Choice	3	-1	8	24
Sec - II(Q.N : 9 - 16)	Questions with Comprehension Type (4 Comprehensions $-2 + 2 + 2 + 2 = 8Q$)	3	-1	8	24
Sec – III(Q.N : 17 – 20)	Matrix Matching Type	3	-1	4	12
Total			20	60	

CHEMISTRY:

Section	Question Type	+Ve Marks	- Ve Marks	No.of Qs	Total marks
Sec – I(Q.N : 21 –28)	Questions with Multiple Correct Choice	3	-1	8	24
Sec – II(Q.N : 29 – 36)	Questions with Comprehension Type (4 Comprehensions – 2 +2+2+2 = 8Q)	3	-1	8	24
Sec – III(Q.N : 37 – 40)	Matrix Matching Type	3	-1	4	12
Total			20	60	

MATHEMATICS:

Section	Question Type	+Ve Marks	- Ve Marks	No.of Qs	Total marks
Sec - I(Q.N : 41 - 48)	Questions with Multiple Correct Choice	3	-1	8	24
Sec – II(Q.N : 49 – 56)	Questions with Comprehension Type (4 Comprehensions $-2+2+2+2=8Q$)	3	-1	8	24
Sec – III(Q.N : 57 – 60)	Matrix Matching Type	3	-1	4	12
Total			20	60	

Sr. IPLCO_P2_Advanced

space for rough work

PHYSICS: Max. Marks: 60

SECTION – I (MULTIPLE CORRECT CHOICE TYPE)

This section contains **8 multiple choice questions.** Each question has 4 choices (A), (B), (C) and (D) for its answer, out of which **ONE OR MORE** is/ are correct

- 1. A vessel of volume 30l is separated into three equal parts by partitions. The left, middle and right parts are filled with 30g of H_2 , 160g of O_2 and 70g of nitrogen. The left partition lets through only hydrogen. The right partition allows hydrogen and nitrogen. The vessel is maintained at 300K. On reaching the steady state
 - A) The pressures in all the compartments are same
 - B) The pressure in the left compartment is least
 - C) The pressure in the middle compartment is highest
 - D) The pressure in the right compartment is $1.56 \times 10^5 Pa$
- 2. A metal cylinder of mass 0.5 kg is heated electrically by a 12 W heater in a room at $15^{\circ}C$. The cylinder temperature rises uniformly to $25^{\circ}C$ in 5 min and finally becomes constant at $45^{\circ}C$. Assuming that the rate of heat loss is proportional to excess temperature over the surrounding.
 - A) The rate of less of heat of the cylinder to surroundings at 20°C is 2W.
 - B) The rate of less of heat of the cylinder to surrounding at 45°C is 12 W
 - C) specific heat capacity of metal is $\frac{240}{ln(3/2)}J/kg^{0}C$
 - D) specific heat capacity of metal is $\frac{120}{ln(3/2)}J/kg/^{0}C$

Sr. IPLCO P2 Advanced

space for rough work

Sri Chaitanya Narayana IIT Academy

03-01-16_Sr.IPLCO_JEE-ADV_(2013_P2)_RPTA-17_Q'Paper

An ideal gas undergoes a process A at constant pressure P_A between temperatures T₁ and T₂. The gas under goes another process at constant pressure P_B between the same temperatures. If W_A and W_B are the works done during the two processes then

A)
$$|W_B| = |W_A|$$
 for $P_B = P_A$ B) $|W_B| = |W_A|$ for $P_B > P_A$

B)
$$|W_B| = |W_A|$$
 for $P_B > P_A$

C)
$$|W_B| = |W_A|$$
 for $P_B < P_A$

- C) $|W_B| = |W_A|$ for $P_B < P_A$ D) data is insufficient to conclude
- An ideal gas is taken from state A(pressure P, volume V) to state B (pressure 4. $\frac{P}{2}$, volume 2V) along a straight line path in the P-V diagram. Selected the correct statements from the following:
 - A) The work done by the gas in the process A to B exceeds the work done that would be done by it if the system were taken from A to B along an isotherm
 - B) In the T-V diagram, the path AB becomes a part of a parabola
 - C) In the P-T diagram, the path AB become part of hyperbola
 - D) In going from A to B, the temperature T of the gas first increases to a maximum value and then decrease

Sr. IPLCO P2 Advanced

space for rough work

5. An ideal gas undergoes a cyclic process $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 1$ as shown in the figure.

Choose the incorrect option

- A) Work done by the goes in closed process $1 \rightarrow 0 \rightarrow 4 \rightarrow 1$ is positive.
- B) Work done by the gas is closed process $0 \rightarrow 2 \rightarrow 3 \rightarrow 0$ is negative.
- C) Work done by gas in closed process $1 \rightarrow 0 \rightarrow 4 \rightarrow 1$ is $\frac{1}{2}(P_2 P_1)(V_2 V_1)$
- D) Work done by the gas in the closed process $0 \rightarrow 2 \rightarrow 3 \rightarrow 0$ is $\frac{1}{4}(P_2 P_1)(V_2 V_1)$

Sr. IPLCO_P2_Advanced

 $space\ for\ rough\ work$

6. A partition divides a container having insulated walls into two compartments I and II. The same gas fills the two compartments whose initial parameters are given. The partition is a conducting wall which can move freely without friction. Which of the following statements is/are correct, with reference to the final equilibrium position?

- A) The Pressure in the two compartments are equal.
- B) Volume of compartment I is $\frac{3V}{5}$
- C) Volume of compartment II is $\frac{12V}{5}$
- D) Final pressure in compartment I is $\frac{5V}{3}$

7. An ideal gas undergoes an expansion from a state with temperature T_1 and volume V_1 to V_2 through three different polytropic processes A.B and C as shown in the P-V diagram If $|\Delta E_A^{-1}|, |\Delta^2 E_B|$ and $|\Delta E_C|$ be the magnitude of changes in internal energy along the three paths respectively, then:

- A) $|\Delta E_A| < |\Delta E_B| < |\Delta E_C|$ if temperature in every process decreases
- B) $|\Delta E_A| > |\Delta E_B| > |\Delta E_C|$ if temperature in every process decreases
- C) $|\Delta E_A| < |\Delta E_B| < |\Delta E_C|$ if temperature in every process increases
- D) $|\Delta E_A| > |\Delta E_B| > |\Delta E_C|$ if temperature in every process increases
- 8. An ideal gas can be expanded from an initial state to a certain volume through two different processes (i) PV^2 = constant and (ii) $P = KV^2$ where K is a positive constant. Then.
 - A) Final temperature in (i) will be greater than in (ii)
 - B) Final temperature in (ii) will be greater than in (i)
 - C) Total heat given to the gas in (i) case is greater than in (ii)
 - D) Total heat given to the gas in (ii) case is greater than in (i)

Sr. IPLCO_P2_Advanced

space for rough work

SECTION - II (COMPREHENSION TYPE)

This section contains 4 groups of questions. Each group has 2 multiple choice questions based on a paragraph. Each question has 4 choices A), B), C) and D) for its answer, out of which ONLY ONE is correct.

Paragraph for Questions 9 and 10

A ray of light traveling in air is incident at an angle of incidence $i \approx 90^{\circ}$ on a long rectangular slab of a transparent medium of thickness y_0 . The medium has a variable index of $\mu(x) = \sqrt{1 + e^{2x/a}} \ \forall x \ge 0$, where a is a positive constant.

- In the above situation, if $y_0 = a/2$, the co-ordinates of the point where the ray 9. intersects the upper surface of the slab – air boundary are
 - A) $\left| ae^2, \frac{a}{2} \right|$
- B) $\left[a \ln 2, \frac{a}{2}\right]$ C) $\left[\frac{a}{2} \ln 2, \frac{a}{2}\right]$ D) $\left[\sqrt{2}a, \frac{a}{2}\right]$
- In the previous questions, the angle made by light ray with +ve x-axis at the upper surface of slab air boundary, inside the medium is
 - A) $\pi/4$
- B) $\pi/3$
- C) $tan^{-1}(2)$
- D) $tan^{-1}(1/2)$

Sr. IPLCO_P2_Advanced

space for rough work

Paragraph for Questions 11 and 12

In Youngs double slit experiment we have two coherent cylindrical wave fronts interfering and the pattern is observed on a screen which is a placed a large distance away compared to the distance between the slits. The interference pattern has a constant fringe width only over a small region at the centre of screen, (small value of θ) and would increase we go to points of greater θ . We can have constant fringe width over the screen if two plane wave fronts propagating with a small angle of divergence interfere on the screen.

- 11. Two coherent plane light waves propagating with a divergence angle $\psi \ll 1^0$ fall almost normally on a screen. The amplitudes of the waves are equal. If the wavelength of light is λ the distance between two neighboring maxima on the screen is
 - A) $\frac{2\lambda}{\psi}$
- B) $\frac{\lambda}{\psi}$
- C) $\frac{\lambda}{2\psi}$
- D) $\frac{\lambda}{4w}$

Sr. IPLCO_P2_Advanced

 $space\ for\ rough\ work$

12. A lens of diameter 5.0 cm and focal length f = 25.0 cm was cut along the diameter into two identical halves. In the process, the layer of the lens a=1.00 mm in thickness was lost. Then the halves were put together to form a composite lens. In this focal plane a narrow slit is placed, emitting monochromatic light with wavelength $\lambda = 0.60 \ \mu$ m. Behind the lens a screen is placed at a distance b = 50 cm form it.

The number of maxima observed on the screen are

A) 11

B) 12

C) 13

D) 14

Paragraph for Questions 13 and 14

A young double slit apparatus is immersed in a liquid of refractive index (μ_1) . The slit plane touches the liquid surface. A parallel beam of monochromatic light of wavelength 5000° A travelling through air is incident normally on the slits. Initially no transparent plate (1&2) is introduced.

Sr. IPLCO_P2_Advanced

space for rough work

If one of the slits (s₂) is covered by a transparent slab 2 of refractive index μ_2 and thickness t as shown, the shift in the position of central maxima is.

A) $\frac{D(\mu_2 - 1)t}{d}$ B) $\frac{D(\mu_2 + 1)t}{d}$ C) $\frac{d}{D(\mu_2 - 1)t}$ D) $\frac{d}{D(\mu_2 + 1)t}$

Now the other slit S_1 is also covered by a slab of same thickness and refractive 14. index μ_3 as shown in the figure due to which the central maxima recovers its position. Find the value of μ_3

A) $\mu_1\mu_2$

B) μ_1/μ_2 C) $\mu_1^2\mu_2$

D) none of these

Paragraph for Questions 15 and 16

A linear object AB is at a distance of 36 cm from a equi-convex lens of focal length 30 cm. In front of lens there is a plane mirror which is inclined at an angle 45° with the principal axis of the lens at a distance of 1 m from the lens, as shown in the figure.

A container with water layer d is placed as shown in the figure. refractive index of water as $\frac{4}{3}$.

Sr. IPLCO_P2_Advanced

space for rough work

Answer the following questions.

- After reflection from the mirror the image of AB will be 15.
 - A) Parallel to principal axis of lens
 - B) Perpendicular to Principal axis of lens
 - C) Inclined at an angle 45° with the Principal axis of lens.
 - D) a cross(x)
- After reflection from the mirror the image of AB from the Principal axis will be 16. formed at a distance of
 - A) 80 cm
- B) 100 cm C) 180 cm
- D) 90 cm

Sr. IPLCO_P2_Advanced

space for rough work

SECTION - III

(MATRIX MATCH TYPE)

This section contains 4 multiple choice questions. Each question has matching lists. The codes for the lists have choices (A), (B), (C), and (D) out of which **ONLY ONE** is correct.

17. F_1 = First principal focus

 F_2 = Second principal focus

Lens is conversing and ray is incident from left

List-I

- List-II
- Q) Object is to right of F₁

P) Object is to left of F₁

1) Image is definitely diminished

2) Image is definitely virtual

- R) Object is between F₁ and optic center 3) Image is to right of F₂
- S) Object is virtual

4) Image is to left of F₂

- A) P-3; Q-4; R-2; S-1 B) P-4; Q-4; R-2; S-2
- C) P-3; Q-2; R-4; S-1 D) P-3; Q-4; R-4; S-4

Sr. IPLCO_P2_Advanced

space for rough work

Incident wave

18.

LIST-I

Reflected / Refracted wave front

LIST-II

Possible optical entity used

front

A)
$$P-1$$
; $Q-3$; $R-4$; $S-2$

C)
$$P-1,4; Q-2,4; R-2,3; S-2,4$$
 D) $P-2,3; Q-2,4; R-2,3; S-1,4$

D)
$$P - 2.3$$
; $Q - 2.4$; $R - 2.3$; $S - 1.4$

Sr. IPLCO_P2_Advanced

space for rough work

19.

PQ represents an isotherm Q, RS an adiabatic and AB a thermodynamic process for same sample of an ideal gas. AB is tangential to both PQ & RS at points C & D resp.

Column - I

Column - II

- P) AD
- Q) CB
- R) QC
- S) DR

- 1) Internal energy continuously increases
- 2) Internal energy continuous increases
- 3) Heat is continuously absorbed
- 4) Heat is continuously released
- A) P-3; Q-4; R-2; S-3
- B) P-3; Q-2; R-4; S-1
- C) P-3; Q-2; R-2; S-1 D) P-2; Q-4; R-3; S-1

Sr. IPLCO_P2_Advanced

space for rough work

Volume versus pressure curves are given for 4 processes as shown in the figure. Match the entries of column – I with those of column II (ΔQ is heat gained by the system)

LIST - I

- P) For process 1
- Q) For process 2
- R) For process 3
- S) For process 4
- A) P-1, 3; Q-2, 4; R-1, 3; S-2, 4 B) P-1, 4; Q-3; R-3; S-2
- C) P-3; Q-2, 4; R-2, 4; S-2 D) P-3; Q-2; R-1; S-4

LIST - II

- 1) work done is maximum
- 2) work done is minimum
- 3) Temperature may increase
- 4) $\Delta Q > 0$