

All-Pairs Shortest Paths (APSP)

Algorithms: Design and Analysis, Part II

Problem Definition

Problem Definition

Input: Directed graph G = (V, E) with edge costs c_e for each edge $e \in E$, [No distinguished source vertex.]

Goal: Either

(A) Compute the length of a shortest $u \to v$ path for $\underline{\operatorname{all}}$ pairs of vertices $u,v \in V$

OR

(B) Correctly report that G contains a negative cycle.

Quiz

Question: How many invocations of a single-source shortest-path subroutine are needed to solve the all-pairs shortest path problem? [n = # of vertices]

- A) 1
- B) n-1
- C) n
- D) n^2

Running time (nonnegative edge costs):

$$n \cdot \text{Dijkstra} = O(nm \log n) = O(n^2 \log n) \text{ if } m = \Theta(n)$$

 $O(n^3 \log n) \text{ if } m = \Theta(n^2)$

Running time (general edge costs):

$$n$$
· Bellman-Ford = $O(n^2m)$ = $O(n^3)$ if $m = \Theta(n)$
 $O(n^4)$ if $m = \Theta(n^2)$