Intercepts of the Quadratic

 $\triangle = \sqrt{b^2 - 4ac}$ Case1: △>0

Case2: △=0

Example 2.

Case3: △<0

 $\triangle = -1024 < 0$

no n-intercepts.

e(0) = -320 e-intercept.

 $n_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \text{ ac}}}{2a}$ computes the n-intercepts of multiplicity 1.

Given a quadratic $e(n) = a n^2 + b n + c$ compute its discriminant \triangle :

 $e(n) = -n^2 + n + 30$ compute its discriminant \triangle :

$$\triangle=121>0$$
 $n_{1,2}=6,-5$
 $e(0)=30$ $e-intercept.$

120

 $n_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \text{ ac}}}{2a} = \frac{-b \pm 0}{2a} = \frac{-b}{2a}$ single n-intercept of multiplicity 2.

$$e(n) = 3 n^2 + 36 n + 108$$
 compute its discriminant \triangle :
 $\triangle = 0$

 $\sqrt{\,\mathsf{b}^2\,}$ –4ac has no value in Real Numbers. Therefore there are

 $e(n) = -4 n^2 + 64 n - 320$ compute its discriminant \triangle :

