Review

Linear First Order DE:

$$y' + p(t)y = g(t)$$

 $y'_h + p(t)y_h = 0$
Homogeneous Problem

Linearity ⇒ General Solution Structure:

$$y_g = \underbrace{ y_p }_{ \text{Particular Part}} + \underbrace{ y_h }_{ \text{Homogeneous Part}}$$

Method of Undetermined Coefficients General Solution

Method of Integrating Factors

What happens when we add in y''

Overview

Second order linear differential equations

- Where do these DEs arise?
- Existence & uniqueness of solutions
- Superposition again:
 - General solution = homogeneous solution + particular solution

-x(t) =displacement from rest position f(t) =applied force

Newton's 2nd Law:

$$F = ma$$
$$-kx - \beta \frac{dx}{dt} + f(t) = m \frac{d^2x}{dt^2}$$

Torsional motion of a weight on a twisted shaft:

$$I\frac{d^2\theta}{dt^2} + c\frac{d\theta}{dt} + k\theta = T(t)$$

L-R-C series circuits:

Q=charge on capacitor

$$\frac{\mathrm{d}Q}{\mathrm{d}t} = \text{current in circuit}$$

$$E(t) = applied voltage$$

Kirchoff's Laws:

$$L\frac{\mathrm{d}^2 Q}{\mathrm{d}t^2} + R\frac{\mathrm{d}Q}{\mathrm{d}t} + \frac{1}{C}Q = E(t)$$

Small oscillations of a pendulum:

$$mL^2 \frac{\mathrm{d}^2 \theta}{\mathrm{d}t^2} = -cL \frac{\mathrm{d}\theta}{\mathrm{d}t} - mgL\theta + F(t)$$

Equivalence of Problems

These 4 physical systems are modelled identically by:

$$Ay'' + By' + Cy = D(t)$$

Constants have different physical meaning (& units)

System	Α	В	С	D
Spring Dashpot	Mass	Damping Coeff.	Spring Constant	Applied Force
Pendulum	Mass x (Length) ²	Damping x Length	Gravitational Moment	Applied Moment
Series Circuit	Inductance	Resistance	$Capacitance^{-1}$	Imposed Voltage
Twisted Shaft	Moment of Inertia	Damping	Elastic Shaft Constant	Applied Torque

General Linear 2nd Order DE's

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} + p(t)\frac{\mathrm{d}y}{\mathrm{d}t} + q(t)y = g(t) \tag{1}$$

- g(t) represents the "forcing" term, an external influence.
 - Homogeneous if g(t) = 0 for all $t \in I$
 - Inhomogeneous if $g(t) \neq 0$ for all $t \in I$
- ullet p(t) and q(t) represent the intrinsic properties of the physical system.
 - Often consant, but not always
 - e.g., an aging spring could be modelled by q = q(t).
- Solution to (1) is defined on an interval $t \in I = (\alpha, \beta)$

Initial Conditions

IVP = Initial Value Problem

• Consists of Eq. (1) plus a set of initial conditions:

$$y(t_0) = y_0, \quad y'(t_0) = v_0$$
 (2)

Why are there two initial conditions?

2nd order ⇒ integrate twice to solve ⇒ two constants of integration

Need two initial conditions for a well-defined solution

Existence and uniqueness of solutions

Theorem 1: Consider the IVP

$$\frac{d^2y}{dt^2} + p(t)\frac{dy}{dt} + q(t)y = g(t), t \in I$$

$$y(t_0) = y_0, y'(t_0) = v_0, t_0 \in I$$

where p(t), q(t), and g(t) are **continuous** for $t \in I = (\alpha, \beta)$

There is a single solution to this IVP, and the solution is defined throughout the time interval *I*

Notes: Discontinuities create kinks or jumps in the solution.

Superposition Principle

Theorem 2: Suppose y_1 and y_2 are solutions to

$$rac{{ ext{d}}^2 y_1}{{ ext{d}} t^2} + p(t) rac{{ ext{d}} y_1}{{ ext{d}} t} + q(t) y_1 = g_1(t), \qquad \qquad t \in I \ rac{{ ext{d}}^2 y_2}{{ ext{d}} t^2} + p(t) rac{{ ext{d}} y_2}{{ ext{d}} t} + q(t) y_2 = g_2(t), \qquad \qquad t \in I.$$

Then, for any values of the constants c_1 and c_2 , the linear combination $y = c_1 y_1 + c_2 y_2$ satisifes

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} + p(t)\frac{\mathrm{d}y}{\mathrm{d}t} + q(t)y = c_1g_1(t) + c_2g_2(t), \qquad t \in I.$$

Solution Structure

$$\frac{d^{2}y}{dt^{2}} + p(t)\frac{dy}{dt} + q(t)y = g(t)$$

$$y(t_{0}) = y_{0}, \quad y'(t_{0}) = v_{0}$$

$$\frac{d^{2}y}{dt^{2}} + p(t)\frac{dy}{dt} + q(t)y = 0$$
(2)

Homogeneous Solution Structure

1st Order DE:

$$y' + q(t)y = 0$$

 $\Rightarrow y_h = c_1y_1$
ex. $p(t) = a \Rightarrow y_h = Ce^{-at}$

2nd Order DE:

$$y'' + p(t)y' + q(t)y = 0$$

 $\Rightarrow y_h = c_1y_1 + c_2y_2$

Both y_1 and y_2 make the LHS=0, independently.

How to construct y_c

We need y_h to satisfy (3) and the two initial values (2)

$$y(t_0) = y_0, \quad y'(t_0) = v_0$$
 (2)

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} + p(t)\frac{\mathrm{d}y}{\mathrm{d}t} + q(t)y = 0 \tag{3}$$

$$y_h = c_1 y_1 + c_2 y_2$$

Do some algebra to solve for c_1 and c_2 .

Is the algebra always possible?

Can we always satisfy (2) with $c_1y_1 + c_2y_2$?

• If so, then $y = c_1y_1 + c_2y_2$ is the general solution of (3)

$$c_1 y_1 + c_2 y_2 = y_0$$

 $c_1 y_1' + c_2 y_2' = v_0$

Express in matrix notation

$$\begin{bmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ v_0 \end{bmatrix}$$

$$A \qquad x = b$$
Solution: $x = A^{-1}b$ if A^{-1} exists

Under what conditions does the matrix A^{-1} exist?

$$\det A \neq 0$$

Wronskian Determinant

For two differentiable functions, $y_1(t)$ and $y_2(t)$, the Wronskian determinant is denoted $W(y_1, y_2)(t)$, and is defined by

$$W(y_1, y_2)(t) = \begin{vmatrix} y_1(t) & y_2(t) \\ y'_1(t) & y'_2(t) \end{vmatrix} = y_1(t)y'_2(t) - y_2(t)y'_1(t)$$

• $W(y_1, y_2)(t_0) \neq 0$ is the condition that allows $c_1y_1 + c_2y_2$ to satisfy ANY initial conditions at t_0 .

A set of 2 solutions, $y_1(t)$ and $y_2(t)$, to Eq. (3) on the time interval I, is called a **fundamental set of solutions** if $W(y_1, y_2)(t) \neq 0$ for some $t \in I$:

$$y_c = c_1 y_1 + c_2 y_2$$

Generality of Fundamental Solutions

For 2 solutions $y_1(t)$ and $y_2(t)$ of Eq. (3) on I, show that if $W(y_1, y_2)(t) \neq 0$ for for some $t_0 \in I$, then in fact $W(y_1, y_2)(t) \neq 0$ for all $t \in I$. $y'' + p(t)y' + q(t)y = 0 \qquad \Rightarrow \qquad y'' = -p(t)y' - q(t)y$ $W = y_1y_2' - y_1'y_2$ $\frac{dW}{dt} = y_1'y_2' + y_1y_2'' - y_1''y_2 - y_1''$

$$\frac{dW}{dt} = y_1'y_2' + y_1y_2'' - y_1''y_2 - y_1'y_2'$$

$$= y_1 \left[-p(t)y_2' - q(t)y_2 \right] - \left[-p(t)y_1' - q(t)y_1 \right] y_2$$

$$= -p(t)y_1y_2' - q(t)y_1y_2 + p(t)y_1'y_2 + q(t)y_1y_2$$

$$= -p(t)y_1y_2' + p(t)y_1'y_2 = -p(t) \left[y_1y_2' - y_1'y_2 \right]$$

$$W' = -p(t)W$$

We can solve W' + p(t)W = 0 using the method of integrating factors!

$$W' + p(t)W = 0$$
 \Rightarrow $\mu = e^{\int p(t)dt}$
$$\mu(t)W(t) = \int 0dt + C$$

$$W(t) = \frac{C}{\mu(t)}$$
 $\Rightarrow W(t) = Ce^{-\int p(t)dt}$

Assuming the integral of p(t) is finite, we have two cases:

1.
$$C = 0$$
 $\Rightarrow W(t) = 0$ for all t

2.
$$C \neq 0$$
 $\Rightarrow W(t) \neq 0$ for all t

Suppose that at some t_0 we find that $W(t_0) \neq 0$

$$\Rightarrow C \neq 0 \Rightarrow W(t) \neq 0$$
 for all t

Linear dependence of functions

• Two functions f and g are **linearly dependent** on $I = (\alpha, \beta)$ if there exist constants k_1 and k_2 , not both zero, such that

$$k_1f + k_2g = 0 \quad \forall t \in I$$

- The functions are **linearly independent** on I if they are not linearly dependent on 1.
- Note that if f and g are differentiable functions:
 - $W(f,g)(t_0) \neq 0$ \Leftrightarrow f & g are linearly independent on I.
 - f & g are linearly dependent W(f,g)(t) = 0.
 - but W(f,g)(t) = 0f & g are linearly dependent

Summary for linear homogeneous equations

- For linear equations with continuous coefficients functions p(t) & q(t), there exists a unique solution to an IVP.
 - Linear combinations of solutions are solutions
 - The Wronskian of two solutions is a determinant.
- If the Wronskian of 2 solutions is non-zero at a point, then any initial values can be satisfied at that point. The general solution of the DE is a linear combination of those 2 solutions
- Such a set of solutions is called a fundamental set of solutions
- If $y_1 \& y_2$ are 2 solutions to (3), the following 4 statements are equivalent:
 - The functions $y_1 \& y_2$ are a fundamental set of solutions on I.
 - The functions $y_1 \& y_2$ are linearly independent on I.
 - $W(f,g)(t) \neq 0$ for all $t \in I$.
 - $W(f,g)(t_0) \neq 0$ for some $t_0 \in I$.