The following is a step-by-step process for solving cubic spline interpolation:

- 1. Given a set of data points (x_i, y_i) , where i = 0, 1, ..., n, the first step is to calculate the values of the second derivatives of the interpolating function at each data point, denoted by y''_i .
- 2. Next, divide the domain into n subintervals, each of which corresponds to a pair of adjacent data points. Let $[x_i, x_i+1]$ denote the ith subinterval.
- 3. Then, construct a cubic polynomial function $S_i(x)$ for each subinterval $[x_i, x_i+1]$, using the following formula:

$$S_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3$$

where a_i = y_i, b_i =
$$(y_i+1 - y_i)/(x_i+1 - x_i) - (2*y''_i + y''_i+1)*(x_i+1 - x_i)/6$$
, c_i = $y''_i/2$, and d_i = $(y''_i+1 - y''_i)/(6*(x_i+1 - x_i))$.

- 4. To obtain the values of the coefficients a_i, b_i, c_i, and d_i, we need to solve a system of linear equations. This can be done using various methods such as Gaussian elimination, LU decomposition, or tridiagonal matrix algorithm.
- 5. Once the coefficients have been calculated for all subintervals, the cubic spline function can be expressed as:

$$S(x) = S_i(x)$$
 for $x_i \le x \le x_{i+1}$

6. Finally, to evaluate the value of the cubic spline function at a particular point x, we need to determine which subinterval $[x_i, x_i+1]$ x belongs to, and then evaluate $S_i(x)$ at that subinterval using the coefficients obtained in step 4.

That concludes the procedure for solving cubic spline interpolation.