P5 PartA GroupPi

Lydia, Jordan, Alan Bouwman

April 2021

- 1. Group Pi. Lydia Savatsky, Jordan DeYonker, Alan Bouwman
 - a. Bernoulli Naive Bayes

i
$$P(X_{peony}|Class = 2) = \frac{4+1}{14+2} = \frac{5}{16}$$

ii $P(X_{crocus}|Class = 2) = \frac{1+1}{14+2} = \frac{2}{16} = \frac{1}{8}$
iii $P(X_{peony}|Class = 1) = \frac{1+1}{8+2} = \frac{2}{10} = \frac{1}{5}$

b. Multinomial Naive Bayes

i
$$P(X_{peony}|Class = 2) = \frac{4+1}{14+14} = \frac{5}{28}$$

ii $P(X_{crocus}|Class = 2) = \frac{1+1}{14+14} = \frac{2}{28} = \frac{1}{14}$
iii $P(X_{peony}|Class = 1) = \frac{1+1}{8+14} = \frac{2}{22} = \frac{1}{11}$

c. Prediction using Bernoulli Naive Bayes

Prediction using Bernoulli Naive Bayes
$$P(X_{daffodil}|Class=1) = \frac{0+1}{8+2} = \frac{1}{10}$$

$$P(X_{corcus}|Class=1) = \frac{0+1}{8+2} = \frac{1}{10}$$

$$P(X_{daisy}|Class=1) = \frac{0+1}{8+2} = \frac{1}{10}$$

$$P(X_{tulip}|Class=1) = \frac{1+1}{8+2} = \frac{2}{10} = \frac{1}{5}$$

$$P(X_{clematis}|Class=1) = \frac{1+1}{8+2} = \frac{2}{10} = \frac{1}{5}$$

$$P(X_{peony}|Class=1) = \frac{1+1}{8+2} = \frac{2}{10} = \frac{1}{5}$$

$$P(X_{daffodil}|Class=2) = \frac{0+1}{14+2} = \frac{1}{16}$$

$$P(X_{corcus}|Class=2) = \frac{1+1}{14+2} = \frac{2}{16} = \frac{1}{8}$$

$$P(X_{daisy}|Class=2) = \frac{0+1}{14+2} = \frac{1}{16}$$

$$P(X_{tulip}|Class=2) = \frac{0+1}{14+2} = \frac{1}{16}$$

$$P(X_{clematis}|Class=2) = \frac{2+1}{14+2} = \frac{3}{16}$$

$$P(X_{peony}|Class=2) = \frac{4+1}{14+2} = \frac{5}{16}$$

$$P(X_{daffodil}|Class=3) = \frac{0+1}{7+2} = \frac{1}{9}$$

$$P(X_{corcus}|Class=3) = \frac{0+1}{7+2} = \frac{1}{9}$$

$$P(X_{daisy}|Class=3) = \frac{1+1}{7+2} = \frac{2}{9}$$

$$P(X_{tulip}|Class=3) = \frac{1+1}{7+2} = \frac{2}{9}$$

$$P(X_{clematis}|Class = 3) = \frac{0+1}{7+2} = \frac{1}{9}$$

 $P(X_{peony}|Class = 3) = \frac{0+1}{7+2} = \frac{1}{9}$
Thus,

$$P(Class = 1|doc) = \frac{1}{4} \cdot \frac{1}{10} \cdot \frac{1}{10} \cdot \frac{1}{10} \cdot \frac{1}{5} \cdot \frac{1}{5} \cdot \frac{1}{5} = 2.0 \times 10^{-6}$$

$$P(Class = 2|doc) = \frac{1}{2} \cdot \frac{1}{16} \cdot \frac{1}{8} \cdot \frac{1}{16} \cdot \frac{1}{16} \cdot \frac{3}{16} \cdot \frac{5}{16} = 8.94 \times 10^{-7}$$

$$P(Class = 3|doc) = \frac{1}{4} \cdot \left(\frac{1}{9}\right)^4 \cdot \left(\frac{2}{9}\right)^2 = 1.88 \times 10^{-6}$$

We will predict class 1.

d. Prediction using Multinomial Naive Bayes

. Prediction using Multinomial Naive Bayes
$$P(X_{daffodil}|Class=1) = \frac{0+1}{8+14} = \frac{1}{22}$$

$$P(X_{corcus}|Class=1) = \frac{0+1}{8+14} = \frac{1}{22}$$

$$P(X_{daisy}|Class=1) = \frac{0+1}{8+14} = \frac{1}{22}$$

$$P(X_{tulip}|Class=1) = \frac{1+1}{8+14} = \frac{1}{22} = \frac{1}{11}$$

$$P(X_{clematis}|Class=1) = \frac{1+1}{8+14} = \frac{2}{22} = \frac{1}{11}$$

$$P(X_{peony}|Class=1) = \frac{1+1}{8+14} = \frac{2}{22} = \frac{1}{11}$$

$$P(X_{aaffodil}|Class=2) = \frac{0+1}{14+14} = \frac{1}{28}$$

$$P(X_{corcus}|Class=2) = \frac{1+1}{14+14} = \frac{2}{28} = \frac{1}{14}$$

$$P(X_{daisy}|Class=2) = \frac{0+1}{14+14} = \frac{1}{28}$$

$$P(X_{tulip}|Class=2) = \frac{0+1}{14+14} = \frac{1}{28}$$

$$P(X_{clematis}|Class=2) = \frac{2+1}{14+14} = \frac{3}{28}$$

$$P(X_{peony}|Class=2) = \frac{4+1}{14+14} = \frac{3}{28}$$

$$P(X_{daffodil}|Class=3) = \frac{0+1}{7+14} = \frac{1}{21}$$

$$P(X_{corcus}|Class=3) = \frac{0+1}{7+14} = \frac{1}{21}$$

$$P(X_{daisy}|Class=3) = \frac{1+1}{7+14} = \frac{2}{21}$$

$$P(X_{tulip}|Class=3) = \frac{1+1}{7+14} = \frac{2}{21}$$

$$P(X_{clematis}|Class=3) = \frac{0+1}{7+14} = \frac{1}{21}$$

$$P(X_{clematis}|Class=3) = \frac{0+1}{7+14} = \frac{1}{21}$$

$$P(X_{peony}|Class=3) = \frac{0+1}{7+14} = \frac{1}{21}$$

$$\begin{split} P(Class = 1|doc) &= \frac{1}{4} \cdot \frac{1}{22} \cdot \frac{1}{22} \cdot \frac{1}{22} \cdot \frac{1}{11} \cdot \frac{1}{11} \cdot \frac{1}{11} = 1.764 \times 10^{-8} \\ P(Class = 2|doc) &= \frac{1}{2} \cdot \frac{1}{28} \cdot \frac{1}{14} \cdot \frac{1}{28} \cdot \frac{1}{28} \cdot \frac{3}{28} \cdot \frac{5}{28} = 3.11 \times 10^{-8} \\ P(Class = 3|doc) &= \frac{1}{4} \cdot \left(\frac{1}{21}\right)^4 \cdot \left(\frac{2}{21}\right)^2 = 1.166 \times 10^{-8} \end{split}$$

We would choose class 2 this time.

3.

a. Term Document Matrix:

	1	2	3
bat	1	3	0
cat	3	0	1
fat	1	0	1
$_{\mathrm{mat}}$	0	1	1
$_{\mathrm{pat}}$	0	1	1
rat	1	1	1
sat	0	0	1

b. TF-IDF Matrix:

We start with the document frequency vector:

word	df
bat	2
cat	2
fat	2
$_{\mathrm{mat}}$	2
pat	2
rat	3
sat	1

Now here is the TF-IDF matrix:

word	1	2	3
bat	0.053	0.106	0
cat	0.106	0	0.053
fat	0.053	0	0.053
$_{\mathrm{mat}}$	0	0.053	0.053
pat	0	0.053	0.053
rat	0	0	0
sat	0	0	0.144

c. The term-document pair with the highest TF-IDF value is (sat, 3).