Deep neural networks

-Attention, transformers, and Homework C

Daniel Midtvedt

Purpose

- To provide intuition about some common deep learning techniques:
 - Convolutional neural networks
 - Encoder-decoder structures
 - Attention and transformers
- Specifically, these are the tools needed for Homework C

What is a neural network

$$y = \phi(z) = \phi(\mathbf{w} \cdot \mathbf{x} + b)$$

 $\phi(z)$: Activation function

What is a neural network

Each arrow represents one weight (i.e. one parameter) that needs to be determined

Why deep networks?

Each arrow represents one weight (i.e. one parameter) that needs to be determined

Think:

- Why deep networks instead of shallow?
- Can networks be too deep?

How are the weights optimized?

- The model is trained on data with known, ground truth, output
 - The model is supplemented with a loss function
 - Depends on difference between predicted values and ground truth
 - Weights are optimized using back propagation to minimize this loss function

How does it generalize?

- The network is optimized for predicting data in the training set
 - Does not necessarily predict outside the training set (overfitting)
 - Overcome by use of validation data

Fundamental problem

- Machine learning algorithms are often benchmarked against human capacity
- Humans are generating the training data!
- How to extend neural networks beyond human capacity?

Think:

- Can neural network performance be enhanced beyond human capability?
- If so, how can their results be validated?

Problems with densely connected networks

- Scales poorly with input size
 - Each pixel in an image corresponds to one input
- Not adapted to learn sequences of data

Convolutional neural networks solves the problem of dimensionality

Helgadottir, Argun & Volpe. Optica 6, 506 (2019)

Convolutional neural networks solves the problem of dimensionality

Coding example

How to define a CNN-architecture?

We need convolutional blocks: Keras: keras.layers.Conv2D

• We need downsampling layers: Keras: keras.layers.MaxPool2D

• We need dense layers: Keras: keras.layers.Dense

Conv2D=keras.layers.Conv2D
MaxPool2D=keras.layers.MaxPooling2D
Dense=keras.layers.Dense
Flatten=keras.layers.Flatten

model=keras.models.Sequential() #Defines the model

Conv2D=keras.layers.Conv2D
MaxPool2D=keras.layers.MaxPooling2D
Dense=keras.layers.Dense
Flatten=keras.layers.Flatten

model=keras.models.Sequential() #Defines the model model.add(Conv2D(8,(3,3),activation="relu")padding="same",input_shape=(64,64,1)))


```
model=keras.models.Sequential() #Defines the model model.add(Conv2D(8,(3,3),activation="relu") padding="same",input_shape=(64,64,1))) model.add(MaxPool2D(pool_size=(2,2)))
```



```
model=keras.models.Sequential() #Defines the model model.add(Conv2D(8,(3,3),activation="relu") padding="same",input_shape=(64,64,1))) model.add(MaxPool2D(pool_size=(2,2))) model.add(Conv2D(16,(3,3),activation="relu",padding="same")) model.add(MaxPool2D(pool_size=(2,2))) model.add(Conv2D(32,(3,3),activation="relu",padding="same"))
```



```
model=keras.models.Sequential() #Defines the model model.add(Conv2D(8,(3,3),activation="relu",padding="same",input_shape=(64,64,1))) model.add(MaxPool2D(pool_size=(2,2))) model.add(Conv2D(16,(3,3),activation="relu",padding="same")) model.add(MaxPool2D(pool_size=(2,2))) model.add(Conv2D(32,(3,3),activation="relu",padding="same")) model.add(Flatten()) model.add(Dense(32,activation="relu")) model.add(Dense(32,activation="relu"))
```

```
Conv2D=keras.layers.Conv2D
MaxPool2D=keras.layers.MaxPooling2D
Dense=keras.layers.Dense
Flatten=keras.layers.Flatten
```



```
model=keras.models.Sequential() #Defines the model
model.add(Conv2D(8,3,3),activation="relu") padding="same",input_shape=(64,64,1)))
model.add(MaxPool2D(pool_size=(2,2)))
model.add(Conv2D(16,(3,3),activation="relu",padding="same"))
model.add(MaxPool2D(pool_size=(2,2)))
model.add(Conv2D(32,(3,3),activation="relu",padding="same"))
model.add(Flatten())
model.add(Dense(32,activation="relu"))
model.add(Dense(32,activation="relu"))
model.add(Dense(2))
```

Compile the model

optimizer=keras.optimizers.Adam(learning_rate=0.01)

model.compile(optimizer=optimizer,loss="mae")

Mean Square Error (MSE)

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y_i})^2$$

Mean Absolute Error (MAE)

$$ext{MAE} = rac{\sum_{i=1}^{n} |y_i - x_i|}{n}$$

Display a summary of the model

model.build()
model.summary()

```
Model: "sequential"
```

import deeptrack as dt import numpy as np import matplotlib.pyplot as plt

```
import deeptrack as dt
import numpy as np
import matplotlib.pyplot as plt
```

```
particle=dt.Sphere(position=lambda: (np.random.uniform(20,40),np.random.uniform(20,40))) optics=dt.Fluorescence(output_region=(0,0,64,64)) sample=optics(particle)>>dt.Gaussian(sigma=0.1)
```

```
import deeptrack as dt import numpy as np import matplotlib.pyplot as plt
```

```
particle=dt.Sphere(position=lambda: (np.random.uniform(20,40),np.random.uniform(20,40))) optics=dt.Fluorescence(output_region=(0,0,64,64)) sample=optics(particle)>>dt.Gaussian(sigma=0.1)
```

```
im=sample.update()()
plt.imshow(im[...,0])
```


Training_dataset=[sample.update()() for i in range(1000)] Validation_dataset=[sample.update()() for i in range(100)]

```
Training_dataset=[sample.update()() for i in range(1000)] Validation_dataset=[sample.update()() for i in range(100)]
```

```
def label_function(image):
    position=image.get_property("position")
    return np.array(position)
```

```
Training_dataset=[sample.update()() for i in range(1000)] Validation_dataset=[sample.update()() for i in range(100)]
```

```
def label_function(image):
    position=image.get_property("position")
    return np.array(position)
```

```
Training_labels=[label_function(Training_dataset[i]) for i in range(len(Training_dataset))] Validation_labels=[label_function(Validation_dataset[i]) for i in range(len(Validation_dataset))]
```

Train and test the model

h=model.fit(x=np.array(Training_dataset),y=np.array(Training_labels),validation_data=(np.array(Validation_dataset), np.array(Validation_labels)),epochs=40)

Train and test the model

p=model.predict(np.array(Validation_dataset))

Plot the feature maps

models=

[keras.Model(inputs=model.input,outputs=model.layers[0].output), keras.Model(inputs=model.input,outputs=model.layers[2].output), keras.Model(inputs=model.input,outputs=model.layers[4].output)]

Plot the feature maps

models=

[keras.Model(inputs=model.input,outputs=model.layers[0].output), keras.Model(inputs=model.input,outputs=model.layers[2].output), keras.Model(inputs=model.input,outputs=model.layers[4].output)] p2=models[1].predict(im[np.newaxis])

Plot the feature maps

models=

[keras.Model(inputs=model.input,outputs=model.layers[0].output), keras.Model(inputs=model.input,outputs=model.layers[2].output), keras.Model(inputs=model.input,outputs=model.layers[4].output)] p2=models[1].predict(im[np.newaxis])

Encoder-decoders

- CNNs requires relatively large amounts of labeled data to work
- What if we have only a small set of training data?
- Encoder-decoder models (or autoencoders) can help solve that problem

Autoencoders for data compression

Think! 10 -20 -30 30 -40 50 -60 -20 Autoencoder

Think!

Autoencoder

Autoencoders compress the input data to its essential features!

- Lower-dimensional input space -> less labeled data is required
- Let's try!

Conv2D=keras.layers.Conv2D
MaxPool2D=keras.layers.MaxPooling2D
Dense=keras.layers.Dense
Flatten=keras.layers.Flatten

encoder=keras.models.Sequential()

```
Conv2D=keras.layers.Conv2D
MaxPool2D=keras.layers.MaxPooling2D
Dense=keras.layers.Dense
Flatten=keras.layers.Flatten
```

```
encoder=keras.models.Sequential()
encoder.add(Conv2D(8,(3,3),activation="relu",padding="same",
input_shape=(64,64,1)))
```

Conv2D=keras.layers.Conv2D

```
MaxPool2D=keras.layers.MaxPooling2D
Dense=keras.layers.Dense
Flatten=keras.layers.Flatten

encoder=keras.models.Sequential()
encoder.add(Conv2D(8,(3,3),activation="relu",padding="same",input_shape=(64,64,1)))
encoder.add(MaxPool2D(pool_size=(2,2)))
```

```
Conv2D=keras.layers.Conv2D
MaxPool2D=keras.layers.MaxPooling2D
Dense=keras.layers.Dense
Flatten=keras.layers.Flatten
encoder=keras.models.Sequential()
encoder.add(Conv2D(8,(3,3),activation="relu",padding="same",
input shape=(64,64,1)))
encoder.add(MaxPool2D(pool size=(2,2)))
encoder.add(Conv2D(16,(3,3),activation="relu",padding="same
encoder.add(MaxPool2D(pool size=(2,2)))
encoder.add(Conv2D(32,(3,3),activation="relu",padding="same
encoder.add(Flatten())
encoder.add(Dense(32))
encoder.add(Dense(32))
encoder.add(Dense(2))
```

Conv2D=keras.layers.Conv2D

```
MaxPool2D=keras.layers.MaxPooling2D
Dense=keras.layers.Dense
Flatten=keras.layers.Flatten
encoder=keras.models.Sequential()
encoder.add(Conv2D(8,(3,3),activation="relu",padding="same",
input shape=(64,64,1)))
encoder.add(MaxPool2D(pool size=(2,2)))
encoder.add(Conv2D(16,(3,3),activation="rely",padding="same
encoder.add(MaxPool2D(pool size=(2,2)))
encoder.add(Conv2D(32,(3,3),activation="relu",padding="same"
encoder.add(Flatten())
encoder.add(Dense(32))
encoder.add(Dense(32))
encoder.add(Dense(2))
```

Conv2D=keras.layers.Conv2D
Dense=keras.layers.Dense
Reshape=keras.layers.Reshape
Upsample2D=keras.layers.UpSampling2D

decoder=keras.models.Sequential()

Conv2D=keras.layers.Conv2D

```
MaxPool2D=keras.layers.MaxPooling2D
Dense=keras.layers.Dense
Flatten=keras.layers.Flatten
encoder=keras.models.Sequential()
encoder.add(Conv2D(8,(3,3),activation="relu",padding="same",
input shape=(64,64,1)))
encoder.add(MaxPool2D(pool size=(2,2)))
encoder.add(Conv2D(16,(3,3),activation="rely",padding="same"
encoder.add(MaxPool2D(pool size=(2,2)))
encoder.add(Conv2D(32,(3,3),activation="relu",padding="same"
encoder.add(Flatten())
encoder.add(Dense(32))
encoder.add(Dense(32))
encoder.add(Dense(2))
```

Conv2D=keras.layers.Conv2D
Dense=keras.layers.Dense
Reshape=keras.layers.Reshape
Upsample2D=keras.layers.UpSampling2D

decoder=keras.models.Sequential() decoder.add(Dense(32)) decoder.add(Dense(32))

Conv2D=keras.layers.Conv2D

```
MaxPool2D=keras.layers.MaxPooling2D
Dense=keras.layers.Dense
Flatten=keras.layers.Flatten
encoder=keras.models.Sequential()
encoder.add(Conv2D(8,(3,3),activation="relu",padding="same",
input shape=(64,64,1)))
encoder.add(MaxPool2D(pool size=(2,2)))
encoder.add(Conv2D(16,(3,3),activation="rely",padding="same
encoder.add(MaxPool2D(pool size=(2,2)))
encoder.add(Conv2D(32,(3,3),activation="relu",padding="same"
encoder.add(Flatten())
encoder.add(Dense(32))
encoder.add(Dense(32))
encoder.add(Dense(2))
```

```
Conv2D=keras.layers.Conv2D
Dense=keras.layers.Dense
Reshape=keras.layers.Reshape
Upsample2D=keras.layers.UpSampling2D
```

```
decoder=keras.models.Sequential()
decoder.add(Dense(32))
decoder.add(Dense(32))
decoder.add(Dense(16*16*32))
decoder.add(Reshape((16,16,32)))
```

```
Conv2D=keras.layers.Conv2D
MaxPool2D=keras.layers.MaxPooling2D
Dense=keras.layers.Dense
Flatten=keras.layers.Flatten
encoder=keras.models.Sequential()
encoder.add(Conv2D(8,(3,3),activation="relu",padding="same",
input shape=(64,64,1)))
encoder.add(MaxPool2D(pool size=(2,2)))
encoder.add(Conv2D(16,(3,3),activation="rely",padding="same
encoder.add(MaxPool2D(pool size=(2,2)))
encoder.add(Conv2D(32,(3,3),activation="relu",padding="same"
encoder.add(Flatten())
encoder.add(Dense(32))
encoder.add(Dense(32))
encoder.add(Dense(2))
```

```
Conv2D=keras.layers.Conv2D
Dense=keras.layers.Dense
Reshape=keras.layers.Reshape
Upsample2D=keras.layers.UpSampling2D
decoder=keras.models.Sequential()
decoder.add(Dense(32))
decoder.add(Dense(32))
decoder.add(Dense(16*16*32))
decoder.add(Reshape((16,16,32)))
decoder.add(Conv2D(32,(3,3),activation="relu",padding="same
decoder.add(Upsample2D((2,2)))
```

Conv2D=keras.layers.Conv2D

```
MaxPool2D=keras.layers.MaxPooling2D
Dense=keras.layers.Dense
Flatten=keras.layers.Flatten
encoder=keras.models.Sequential()
encoder.add(Conv2D(8,(3,3),activation="relu",padding="same",
input shape=(64,64,1)))
encoder.add(MaxPool2D(pool size=(2,2)))
encoder.add(Conv2D(16,(3,3),activation="rely",padding="same
encoder.add(MaxPool2D(pool size=(2,2)))
encoder.add(Conv2D(32,(3,3),activation="relu",padding="same
encoder.add(Flatten())
encoder.add(Dense(32))
encoder.add(Dense(32))
encoder.add(Dense(2))
```

```
Conv2D=keras.layers.Conv2D
Dense=keras.layers.Dense
Reshape=keras.layers.Reshape
Upsample2D=keras.layers.UpSampling2D
decoder=keras.models.Sequential()
decoder.add(Dense(32))
decoder.add(Dense(32))
decoder.add(Dense(16*16*32))
decoder.add(Reshape((16,16,32)))
decoder.add(Conv2D(32,(3,3),activation="relu",padding="same
decoder.add(Upsample2D((2,2)))
decoder.add(Conv2D(16,(3,3),activation="relu",padding="same
decoder.add(Upsample2D((2,2)))
decoder.add(Conv2D(8,(3,3),activation="relu",padding="same"
decoder.add(Conv2D(1,(3,3),padding="same"))
```

```
Input=keras.layers.Input((64,64,1)) autoencoder=keras.models.Model(inputs=Input,outputs=decoder(encoder(Input)))
```

```
Input=keras.layers.Input((64,64,1))
autoencoder=keras.models.Model(inputs=Input,outputs=decoder(encoder(Input)))

optimizer=keras.optimizers.Adam(learning_rate=0.0001)
autoencoder.compile(optimizer=optimizer,loss="mae")
autoencoder.fit(x=np.array(Training_dataset),y=np.array(Training_dataset),epochs=50)
```

Input=keras.layers.Input((64,64,1))
autoencoder=keras.models.Model(inputs=Input,outputs=decoder(encoder(Input)))
optimizer=keras.optimizers.Adam(learning_rate=0.0001)

autoencoder.compile(optimizer=optimizer,loss="mae") autoencoder.fit(x=np.array(Training_dataset),y=np.array(Training_dataset),epochs=50)

Encoder output vs position

35.0

35.0

37.5

37.5

Optimization

```
small_model=keras.models.Sequential()
small_model.add(Dense(8,activation="tanh"))
small_model.add(Dense(2,activation="tanh"))
```

Optimization

```
small_model=keras.models.Sequential()
small_model.add(Dense(8,activation="tanh"))
small_model.add(Dense(2,activation="tanh"))

optimizer=keras.optimizers.Adam(learning_rate=0.01)
small_model.compile(optimizer=optimizer,loss="mae")
```

Optimization

```
small model=keras.models.Sequential()
 small_model.add(Dense(8,activation="tanh"))
 small_model.add(Dense(2,activation="tanh"))
optimizer=keras.optimizers.Adam(learning rate=0.01)
small_model.compile(optimizer=optimizer,loss="mae")
input_data=encoder.predict(np.array(Training_dataset)[:20])
label data=np.array(Training labels)[:20]
small_model.fit(x=input_data,y=label_data,epochs=20)
```

Results

```
val_inputs=encoder.predict(np.array(Validation_dataset))
val_labels=np.array(Validation_labels)
```

p=small_model.predict(val_inputs)

Attention!

Convolutional neural networks probe the image locally. Initially at a fine scale, scanning across the image, then progressively at larger and larger scales as the image is downsampled.

Think!

"Convolutional neural networks probe the image locally. Initially at a fine scale, scanning across the image, then progressively at larger and larger scales as the image is downsampled."

Does your brain process images this way?

Attention!

Spatial attention gate!

F Attention gate

 \longrightarrow Conv. $\boxed{\times}$ Resampler (obtains α)

g - gating signal (query)

x - input signal (key)

y - output signal (value)

α - attention coefficients

multiply

Oktay et al. Attention U-net: learning where to look for the pancreas

g is a coarse grained representation of the image x is sampled on a finer scale

Self-attention

latent space, or across

pixels

Khan et al. Transformers in Vision: A Survey

Think!

- What are the benefits of using attention in image processing?
- Any drawbacks?

In-depth view of the attention gate

- Attention was first developed for natural language processing
- Let's use that as an example!

Attention

a

$$\frac{\text{The}}{x_1} \frac{\text{man}}{x_2} \frac{\text{fell}}{x_3}$$
 from the chair because it was $\frac{\text{flimsy}}{x_n}$

Does "flimsy" refer to the word "man" or the word "chair"? This is where attention comes into play! Let's see how.

Attention

The man fell from the chair because it was flimsy $\frac{x_1}{x_1} = \frac{x_2}{x_2} = \frac{x_3}{x_3}$

b Input Embedding:

Number of features, d x_1 x_2 x_3 \vdots x_n

Does "flimsy" refer to the word "man" or the word "chair"? This is where attention comes into play! Let's see how.

In Keras:

d=5

Indicates that the input can be of any length, useful for language processing and time series!

X=keras.layers.Input(input_shape=(None,d))

The man fell from the chair because it was flimsy $\frac{x_1}{x_1} \frac{x_2}{x_2} \frac{x_3}{x_3}$

b Input Embedding:

Number of features, d x_1 x_2 x_3 \vdots x_n

Attention

In Keras:

```
d=5
X=keras.layers.Input(input_shape=(None,d))

dp=9
query_dense=Dense(dp,activation="linear",use_bias=False)
key_dense=Dense(dp,activation="linear",use_bias=False)
value_dense=Dense(dp,activation="linear",use_bias=False)
```


In Keras:

K=key_dense(X)

V=value_dense(X)

```
d=5
X=keras.layers.Input(input_shape=(None,d))

dp=9
query_dense=Dense(dp,activation="linear",use_bias=False)
key_dense=Dense(dp,activation="linear",use_bias=False)
value_dense=Dense(dp,activation="linear",use_bias=False)
Q=query_dense(X)
```


Attention

- Attention weights are, after training of the attention module, a map of the correlation between different input elements
- "Self-attention"

Attention

After multipication with V
 the output is an nxd' matrix
 in which each element
 represents a linear
 combination of the input
 elements, via the correlation
 matrix A

features, Z

In Tensorflow:

import tensorflow as tf
score=tf.matmul(Q,K,transpose_b=True)
A=tf.nn.softmax(score/tf.math.sqrt(dp*1.),axis=-1)

In Tensorflow:

import tensorflow as tf
score=tf.matmul(Q,K,transpose_b=True)
A=tf.nn.softmax(score/tf.math.sqrt(dp*1.),axis=-1)

self_attention_features=tf.matmul(A,V)

Transformer

Transformer

Transformer

Temporal attention

- Temporal self-attention creates a correlation map between different time points.
- However, the network has no sense of temporal order
- When predicting future outcomes based on past observations, likely attention should be placed primarily on datapoints late in the time series

This requries positional embedding of the input

Positional embedding (time 2 vector)

$$\mathbf{t2v}(\tau)[i] = \begin{cases} \omega_i \tau + \varphi_i, & \text{if } i = 0\\ F(\omega_i \tau + \varphi_i), & \text{if } 1 \le i \le k \end{cases}$$

Positional embedding (time 2 vector)

$$\mathbf{t2v}(\tau)[i] = \begin{cases} \omega_i \tau + \varphi_i, & \text{if } i = 0 \\ F(\omega_i \tau + \varphi_i), & \text{if } 1 \le i \le k \end{cases}$$

F is a periodic function ω_i and φ_i are learnable parameters

Positional embedding (time 2 vector)

$$\mathbf{t2v}(\tau)[i] = \begin{cases} \omega_i \tau + \varphi_i, & \text{if } i = 0 \\ F(\omega_i \tau + \varphi_i), & \text{if } 1 \le i \le k \end{cases}$$

F is a periodic function ω_i and φ_i are learnable parameters

Enables the network to learn the progression of time (i=0) and periodic features of the data (through the function F)

Other ways of encoding time in neural networks

Memory in neural networks

- Data is analysed sequentially, and output from current step is used in subsequent steps
- Difficult to learn long range dependencies
- Vanishing/exploding gradient

Long short term memory (LSTM)

tanh pointwise multiplication

pointwise addition

vector concatenation

Long short-term memory layers

- They work, but they take a long time to train
- Still difficult with long range dependencies

https://doi.org/10.3389/frai.2020.00004