In company

I – Objetivo

"Nós estamos testemunhando um movimento que irá transformar completamente qualquer negócio e a sociedade. O nome que nós damos a esse movimento é **Big Data** e irá mudar tudo, a maneira que banco e varejistas operam, a forma que tratamos o câncer e protegemos o mundo contra o terrorismo. Não importa qual o trabalho que você está fazendo ou a indústria que você trabalha, Big Data irá transformá-lo" (Bernard Marr, 2016).

Big Data, basicamente, refere-se ao fato de que agora nós podemos coletar e analisar dados de formas que eram inimagináveis há alguns anos atrás. E há duas coisas que impulsionam esse movimento: o fato que temos mais dados de tudo e a nossa habilidade de guardar e analisar qualquer dado. Para exemplificar, estima-se que nós criamos mais dados nos últimos dois anos que em toda a nossa história. O avanço da computação distribuída significou que um grande volume de dados pudesse ser armazenado (em pequenos pedaços através de várias bases de dados) e analisados compartilhando as análises em diferentes servidores (cada um executando uma pequena parte da análise).

A quantidade de empresas que utilizam "**Big Data e Data Science**" para buscar soluções é extenso. Por exemplo, os *Data Scientists* do Walmart, maior rede varejista do mundo, em um Halloween perceberam, através do monitoramento das vendas e análise dos dados, que um novo *cookie* (é um biscoito e não um pequeno pacote de dados enviados de um website para o navegador do usuário quando o usuário visita um site) estava com as vendas abaixo do esperado em algumas lojas. Tal fato, fez com que o laboratório de dados acionasse o departamento de vendas, que descobriram que nessas lojas os *cookies* não haviam sido colocados na prateleira.

Esse curso, além de abordar o estado da arte sobre Big Data (e.g. Ecossistema Hadoop, Hive, Pig, NoSQL), utilizará para a análise de dados o software preferido da maior comunidade de cientistas de dados do mundo (Kaggle - http://goo.gl/j7b19s), o **software R**. Com mais de 2 milhões de usuários mundo afora, o **R** está se tornando rapidamente a linguagem de programação líder em *Data Science* e Estatística. Todo ano o número de usuários cresce a taxa de 40% e um grande número de empresas estão usando o R em suas atividades do dia a dia.

Ao terminar o curso você estará apto a trabalhar com grandes bases de dados, conhecerá o Python (outro software muito utilizado por cientistas de dados) e terá profundo conhecimento sobre o R. Você entenderá Estatística e Machine Learning. Saberá visualizar dados e criar Relatórios Dinâmicos. Compreenderá a magia por trás da Inteligência Artificial. Saberá como prever sua receita e qual é o impacto que as mídias sociais poderão causar sobre ela. Analisará espacialmente os dados e entenderá como a Big Data está influenciando os modelos financeiros.

Então, ao invés de colocar sua cabeça na areia ou ficar perdido nesse novo mundo chamado "**Big Data e Data Science**" você deveria se inscrever nesse curso e encontrar maneiras inteligentes de criar valor com as informações que estão por aí.

- a) Big Data e Data Science + Introdução ao R (duração: 4h + Nivelamento R)
 - a. O que é Data Science?
 - b. O que é Big Data?
 - c. Roadmap para se tornar um cientista de dados
 - d. R software
 - i. Conceitos básicos e a filosofia do R
 - ii. Conhecendo o Ambiente (R e RStudio)
 - iii. Diferentes tipos de variáveis
 - iv. Objetos (Vetor, Data Frames, Matriz)
 - v. Trabalhando com listas
 - vi. Estrutura de condição: If, else e ifelse
 - vii. Estrutura de Repetição
 - viii. Funções
 - ix. Leitura\exportação arquivos (.xlsx,.csv,.txt entre outros)
- b) Estatistica (duração: 12h)
 - a. Modelos probabilísticos e modelos estatísticos
 - b. Revisão de Probabilidades:
 - i. Distribuições de Probabilidades discretas e contínuas
 - ii. Esperança e Variância.
 - iii. Funções do R: dxxx, pxxx, qxxx, rxxx.
 - iv. Lei dos Grandes Números e Teorema Central do Limite
 - c. Inferência Estatística:
 - i. Estimação Pontual
 - ii. Estimação por Intervalos
 - iii. Testes de Hipóteses
 - iv. Modelos Bayesianos
 - d. Modelagem:
 - i. Modelos de Regressão Linear
 - ii. Modelos de Regressão Logística
 - e. Análise de dados amostrais complexos
 - i. Pesquisa Nacional de Amostra de Domicílios Contínua (PNADC)
 - f. Modelagem Bayesiana: library rstan
- c) Visualização de dados e Dynamic reports (duração: 8h)
 - a. Gráficos:
 - i. Pontos
 - ii. Barras
 - iii. Pizza e Diagrama de Venn
 - iv. Histograma e Boxplot
 - v. Grafos
 - vi. Matriz de correlação
 - vii. Mapa de árvore (Tree Map)
 - viii. Nuvem de palavras (Word Cloud)
 - ix. Linha (para séries temporais)

- b. Relatórios dinâmicos e visualização de dados fora do R
 - i. R Markdown
 - ii. Shiny
- d) Data Management e Computação na Nuvem (duração: 8h)
 - a. Introdução a Bancos de Dados Estruturados
 - b. Diagramas Entidade-Relacionamento
 - c. SQL
 - i. Criação de bancos e tabelas
 - ii. Leitura de bases de dados grandes
 - iii. Comandos de consulta
 - d. Utilização do MySQL
 - e. Conceitos básicos de Cloud
 - i. Características
 - ii. Benefícios
 - iii. Riscos
 - f. Modelos de Serviço na Nuvem
 - i. Software as a Service
 - ii. Platform as a Service
 - iii. Infrastructure as a Service
 - g. Serviços na Nuvem
 - h. Utilização do Microsoft Azure
 - i. Data mining com R
- e) Hadoop e NoSQL (duração: 12h)
 - a. Fundamentos de Hadoop
 - i. Surgimento
 - ii. Objetivo
 - iii. Arquitetura
 - iv. Hadoop 1 X Hadoop 2
 - v. Distribuições
 - vi. Administração
 - vii. Ecossistema Hadoop
 - viii. Níveis de Maturidade em Análise de Dados
 - ix. Business Analytics X Business Intelligence
 - x. Data Lake
 - xi. Hands On sobre Fundamentos
 - b. Hive
 - i. Introdução ao Hive
 - ii. Hands On:
 - I. Importar e exportar dados,
 - II. Criação de bancos e tabelas,
 - III. Operações básicas
 - c. Pig
- i. Introdução ao Pig
- ii. Hands on:
 - I. Como ler dados (READ),
 - II. Como escrever dados (OUTPUT),

- III. Operadores,
- IV. Funções.

d. Introdução a NoSQL

- i. Conceitos e características
- Teorema de CAP
- iii. Tipos de bancos NoSQL
- iv. Casos de Uso

e. Stack ELK

- i. Introdução;
- ii. Arquitetura;
- iii. Logstash;
- iv. ElasticSearch;
- v. Kibana;
- vi. Hands On

f) Machine Learning (duração: 8h)

a. Introduction to Machine Learning

- i. Exemplos de utilização
- ii. Motivos para Estimar
- iii. Como estimar
- iv. Trade-off precisão-interpretabilidade
- v. Aprendizado Supervisionado e Não Supervisionado
- vi. Trade-Off Vício-Variância

b. Linear Regression

- i. Representação do modelo e função custo
- ii. Estimação de coeficientes
- iii. Gradient Descent

c. Classification

i. Logistic Regression

d. Resampling Methods

i. Cross-Validation

e. Regularization

- i. Shrinkage Methods (Ridge Regression e Lasso)
- ii. Dimension Reduction Methods
- iii. Problemas da dimensionalidade

f. Métodos Baseados em Árvores

- i. Regression Trees
- ii. Classification Trees
- iii. Bagging
- iv. Random Forests
- v. Boosting

g. Support Vector Machines

- i. Optimization objective
- ii. Large Margin intuition

h. Unsupervised Learning

- i. PCA
- ii. K-Means CLustering

iii. Hierarchical Clustering

i. Machine Learning at Scale

- i. Gradient descent at scale
- ii. Online Learning
- iii. Parallelism

g) Estatística Espacial (duração: 8h)

a. Visão Geral

- i. O que é Análise Espacial
- ii. Tipos de processos espaciais
- iii. Conceitos Gerais
- iv. Sistema de Informações Geográficas (GIS)

b. Processos pontuais espaciais

- i. Mapas interativos no R
- ii. Identificação de dependência espacial
- iii. Processo de Poisson

c. Dados de área

- i. Visualização e análise exploratória
- ii. Principais modelos: CAR e SAR

d. Geoestatística

- i. Interpolação espacial
- ii. Regressão espacial
- iii. Previsão linear

e. Análise espacial de cluster

h) Séries Temporais e Modelos Econométricos (duração: 8h)

a. Modelos (S)ARIMA

- i. Processos Auto-Regressivos de Médias Móveis ARMA(p,q)
- ii. Identificação
- iii. Estimação
- iv. Diagnóstico dos Resíduos
- v. Previsão
- vi. Modelagem da série temporal de venda de passagens aéreas (*AirPassengers*)
- vii. Hands-on: Previsão da Produção Industrial PIM-PF (IBGE) usando o R

b. Modelos de Regressão Dinâmica

- i. Modelo clássico de regressão linear
- ii. O problema da correlação serial
- iii. Modelos autoregressivos com defasagens distribuídas (*Autoregressive Distributed Lag* (ADL)
- iv. O problema da Cointegração e o Mecanismo de Correção de Erros (ECM)
- v. Regressão Espúria
- vi. The dunk and her dog

- vii. Teste de Cointegração de Engle-Granger
- viii. Modelos de Correção de Erros

i) Inteligência Artificial (duração: 8h)

a. Redes Neurais Artificiais

- i. Breve histórico do desenvolvimento das redes neurais artificiais
- ii. Estrutura do neurônio artificial
- iii. Perceptron
- iv. Regra de Hebb
- v. O problema do OU-Exclusivo
- vi. Regra delta
- vii. Multilayer Perceptron com Backpropagation
- viii. Previsão de Séries Temporais
- ix. Hands-on: Previsão de séries temporais com redes neurais usando o R
- x. Classificadores Bayesianos Robustos
- xi. Hands-on: Classificação com o R

b. Lógica fuzzy

- i. Raciocínio aproximado
- ii. Características de Sistemas Fuzzy
- iii. Conjuntos Fuzzy
- iv. Representação de informações linguísticas
- v. Relações Fuzzy
- vi. Sistemas de Inferência Fuzzy
- vii. Extração automática de regras pelo método de Wang & Mendel
- viii. Hands-on: Previsão de séries temporais com lógica fuzzy usando o R

c. Algoritmos genéticos

- i. Seleção natural e evolução
- ii. Componentes de um AG tradicional
- iii. Operadores genéticos (Reprodução, Seleção, Mutação e Crossover)
- iv. Fundamentos matemáticos
- v. Teoria de Schema
- vi. *Hands-on*: Ajuste dos hiperparâmetros de modelos de alisamento exponencial usando o R

i) Mídias Sociais (duração: 8h)

a. Análise textual utilizando o R

- i. Análise descritiva
- ii. Análise de sentimento utilizando dicionário
- iii. Métodos supervisionados
- iv. Métodos não supervisionados

b. Webscraping

- i. Dados Estruturados
- ii. Dados não estruturados
- iii. APIs
- c. Coleta e análise de dados de mídias sociais
 - i. Facebook
 - ii. Twitter
 - iii. Estudo de caso
- k) Captura e tratamento de dados financeiros (duração: 8h)
 - a. Introdução ao Java
 - b. Conhecendo os principais bancos de dados financeiros
 - i. Anbima;
 - ii. BMF,
 - iii. Banco Central;
 - iv. CETIP.
 - c. Automação de rotinas de captura de dados
 - d. Precificação de títulos públicos
 - e. Construção de Curvas de Juros

IV – Metodologia Geral

Aulas expositivas, estudos de caso, exercícios teórico-práticos, apresentação de vídeos e palestras.

Professor e coordenador:

Doutor em Engenharia Elétrica - (*Decision Support Methods*) e Mestre em Economia. Co-autor dos livros "Planejamento da Operação de Sistemas Hidrotérmicos no Brasil" e "Análise de Séries Temporais em R: um curso introdutório". É o primeiro pesquisador da América Latina a ser recomendado pela empresa RStudio Inc. Atuou em projetos de Pesquisa e Desenvolvimento (P&D) no setor elétrico nas empresas Light S.A. (e.g. estudo de contingências judiciais), Cemig S.A, Duke Energy S.A, entre outras. Ministrou cursos de estatística e séries temporais na PUC-Rio e IBMEC e em empresas como o Operador Nacional do Setor Elétrico (ONS), Petrobras e CPFL S.A. Atualmente é professor de Econometria de Séries Temporais e Estatística e cientista chefe do Núcleo de Métodos Estatísticos e Computacionais (FGV|IBRE). É também revisor de importantes journals, como Energy Policy e Journal of Applied Statistics. Principais estudos são em modelos Econométricos, Setor Elétrico, Incerteza Econômica, Preços, R software e Business Cycle.

email: pedro.guilherme@fgv.br

GitHub: https://github.com/pedrocostaferreira **Lattes:** https://lattes.cnpq.br/2228133411590933

Shiny app: https://pedroferreira.shinyapps.io/timeseries/

	AULA A AULA				
Dia/Mês	Conteúdo	Tópico	Leitura Prévia		
Aula 0	Definição Data Science Definição Big Data Roadmap para se tornar um cientista de dados R software:Conceitos básicos e a filosofia do R;Conhecendo o Ambiente (R e RStudio); Diferentes tipos de variáveis; Objetos (Vetor, Data Frames, Matriz); Trabalhando com listas; Estrutura de condição: If, else e ifelse; Estrutura de Repetição; Funções; Leitura\exportação arquivos (.xlsx,.csv,.txt entre outros)	Nivelamento			
1ª aula	Modelos de Probabilidade: Distribuições discretas e contínuas; Medidas de Centro e de Dispersão; Funções do R para calcular probabilidades, percentis e gerar dados de várias distribuições. Resultados de limites evidenciados por meio de simulação no R Modelos Estatísticos: Famílias de distribuições paramétricas; Inferência sobre parâmetros; Problema de medição. Estimação Pontual: Estimadores nãotendenciosos; Estimação de Máxima Verossimilhança. Estimadores consistentes	Big Data e Data Science + Introdução ao R			
2ª aula	Modelos de Probabilidade: Distribuições discretas e contínuas; Medidas de Centro e de Dispersão; Funções do R para calcular probabilidades, percentis e gerar dados de várias distribuições. Resultados de limites evidenciados por meio de simulação no R Modelos Estatísticos: Famílias de distribuições paramétricas; Inferência sobre parâmetros; Problema de medição. Estimação Pontual: Estimadores nãotendenciosos; Estimação de Máxima Verossimilhança. Estimadores consistentes	Estatística			

AULA A AULA				
Dia/Mês	Conteúdo	То́рісо	Leitura Prévia	
3ª aula	Intervalos de Confiança – Nível de confiança e intervalos aproximados	Estatística		
	Teste de Hipótese : Nível de significância, Erros de Tipos I e II, Teste-Z; Teste-t. Relação entre intervalo de confiança e teste de hipótese			
	Modelos Bayesianos.			
	Modelos Lineares: Regressão linear simples;			
	Teste-t e teste-F.			
4ª aula	Modelos Lineares: Regressão linear múltipla, testes, variáveis explicativas categóricas, interação; seleção de variáveis.	Estatística		
	Regressão Logística: Ajuste de modelos e uso em classificação.			
	Análise de dados Amostrais complexos : library survey do R; Exemplo da PNADC.			
	Stan – library rstan do R. Exemplo simples de utilização			
5ª aula	Introdução a bancos de dados estruturados. Diagramas ER. SQL: Comandos de criação, manutenção e consultas. MySQL: Carregamento de grandes bases de dados. Utilização do MySQL Workbench. Integração com o R.	Computação na Nuvem		
6ª aula	Conceitos basicos de computacao na nuvem. Tipos e modelos de servicos na nuvem. Utilizacao do Microsoft Azure. Data Mining com o R.	_		
7ª aula	Big Data: Surgimento, 3V's, Escalabilidade Vertical X Escalabilidade Horizontal	Hadoop e NoSQL		
	Hadoop: Surgimento, Conceitos, Arquitetura Hadoop 1 X Hadoop 2, Ecossistema Hadoop.			
	BI: KDD, BI x Big Data , Data Lake, Níveis de Maturidade.			
8ª aula	Ambari: Conceitos de monitoramento e manipulação do HDFS via interface.	Hadoop e NoSQL		
	HDFS: Conceitos e manipulação de arquivos via console.			
	Hive: Conceitos, Arquitetura, Funções, Integração com R, Integração com Tableau.			

	AULA A AULA				
Dia/Mês	Conteúdo	То́рісо	Leitura Prévia		
9ª aula	Pig: Conceitos, Pig X Hive, Arquitetura e funções. NoSQL: Conceitos, ACID x BASE, Teorema de CAP, Tipos de Banco NoSQL. ELK: Conceitos, Arquitetura, Sharding X Replica, Case Real Time.	Hadoop e NoSQL			
10ª aula	Introduction to Machine Learning: Exemplos de utilização e principais trade-offs Linear Regression: Métodos numéricos de estimação Classification: Regressão Logística Resampling Methods: Cross-Validation Regularization: Ridge Regression, Lasso e o Problema da dimensionalidade	Machine Learning			
11ª aula	Métodos Baseados em Árvores: Trees, Bagging, Random Forests e Boosting Support Vector Machines: Optimization objective e Large Margin intuition Unsupervised Learning: PCA, K-Means CLustering e Hierarchical Clustering Machine Learning at Scale: Gradient descent at scale, Online Learning e Parallelism	Machine Learning			
12ª aula	Gráficos: Pontos; Barras; Pizza e Diagrama de Venn; Histograma e Boxplot; Grafos; Matriz de correlação; Mapa de árvore (Tree Map); Nuvem de palavras (Word Cloud); Linha (para séries temporais). R Markdown: Instalação; Gerando documentos dinâmicos; Publicando na web.	Visualização de dados e Dynamic reports			
13ª aula	Shiny: Instalação; Desenvolvendo aplicativos básicos; Lendo base de dados locais; Adicionando imagens e documentos ao Shiny; Personalizando o Shiny; Publicando aplicativos na web.	Visualização de dados e Dynamic reports			

AULA A AULA				
Dia/Mês	Conteúdo	То́рісо	Leitura Prévia	
14ª aula	Introdução à análise espacial: dados espaciais x dados não espaciais; conceitos gerais; sistema de informações geográficas;	Estatística Espacial		
	Processos pontuais espaciais: mapas interativos no R; estimação via kernel; distâncias para vizinho mais próximo (função F e G); função K; aleatoriedade espacial completa; processos de Poisson.			
	Dados de área: visualização de dados de área; análise exploratória.			
15ª aula	Dados de área: índice de Moran; índice de Geary; indicadores locais de associação espacial (LISA); modelos CAR e SAR.	Estatistica Espacial		
	Geoestatística: visualização interativa no R; interpolação espacial; modelo de regressão espacial; krigagem.			
	Análise espacial de cluster: K-means; CLARA; AGNES; DIANA; DBSCAN.			
16ª aula	Modelos Univariados: Modelos ARIMA; Handson: Previsão da Produção Industrial - PIM-PF (IBGE) usando o R	Séries Temporais e Modelos Econométricos	Ferreira et. al.(capítulo 5)	
17ª aula	Modelos de Regressão Dinâmica: Modelo clássico de regressão linear; O problema da correlação serial; Modelos autoregressivos com defasagens distribuídas (Autoregressive Distributed Lag (ADL); Regressão Espúria; The dunk and her dog; Teste de Cointegração de Engle-Granger	Modelos Econométricos	Ferreira et. al.(capítulo 8)	
18ª aula	Redes Neurais Artificiais: Neurônio artificial, perceptron, Regra delta, Multilayer Perceptron com Backpropagation, Previsão de Séries Temporais, Classificadores Bayesianos.	Inteligência Artificial		
19ª aula	Lógica Fuzzy: Sistema de inferência fuzzy, Wang e Mendel, Previsão de séries temporais, Algoritmo Genético	Inteligência Artificial		

AULA A AULA			
Dia/Mês	Conteúdo	Tópico	Leitura Prévia
20ª aula	Análise textual utilizando o R: Análise descritiva, Análise de sentimento utilizando dicionário, Métodos supervisionados e Métodos não supervisionados Webscraping: Dados Estruturados, Dados não estruturados e APIs	Mídias Sociais	
21ª aula	Coleta e análise de dados de mídias sociais: Facebook, Twitter e Estudo de caso	Mídias Sociais	
22ª aula	Introdução ao Java: ferramentas para backup, parsing, transferência e upload de dados. Apresentação bases de dados do BCB, BMF, CETIP e ANBIMA.	Captura e tratamento de dados financeiros	
23ª aula	Precificação de títulos públicos, construção das curvas financeiras e interpolação de dados.	Captura e tratamento de dados financeiros	

Bibliografia Básica

Livro	Autor	Título / Publicação	Editora	Ano
L1	Walter Enders	Applied Econometric Time Series	Second Edition. Wiley.	2009
L2	Cowpertwait, P. S. P., Metcalfe, A. V.	Introductory Time Series with R	Springer.	2009
L3	Ferreira, P. C. et al	Análise de Séries Temporais em R - um curso introdutório	Rio de Janeiro.	2016
L4	Bivand, R. S. et al	Applied Spatial Data Analysis with R	Second Edition. Springer, NY.	2013
L5	Banerjee, S. et al	Hierarchical Modeling and Analysis for Spatial Data	Chapman & Hall – CRC.	2004
L6	Noel Cressie	Statistics for Spatial Data	Wiley Series, New York.	1993
L7	Diggle, P. J. & Ribeiro, P. J.	Model-based Geostatistics	Springer Science & Business Media.	2007
L8	Peter J. Diggle	Statistical Analysis of Spatial Point Patterns	Edward Arnold.	2003
L9	Munzert, S.; Rubba, C.; Meissner,P.; Nyhuis, D.	Automated Data Collection with R: A Practical Guide to Web Scraping and Text Mining	Wiley Series, New York	2015
L10	Ravindran, S.K.; Garg, V.	Mastering Social Media Mining with R	Packt Publishing	2015

L11	Hastie, T.,Tibshirani, R., Friedman J.	Elements of Statistical Learning	Springer	2009
L12	James, G., Witten, D., Hastie, T., Tibshirani, R.	Introduction to Statistical Learning with applications in R	Springer	2013