

commutes. (R $_{\tau}$ (t)) denotes the rotation semigroup of period τ (see A-I,2.5).

If X is compact, then j is a topological embedding.

<u>Proof.</u> Assume that Ah = i α h , α > 0 , and let $\tilde{h}(x)$:= h(x)/|h(x)| . Then we define j by

(3.9)
$$j(f) := |h| \cdot f \circ \tilde{h}$$
 (i.e., $(j(f))(x) = |h(x)| \cdot f(\tilde{h}(x))$).

Obviously, j is a lattice homomorphism and because h has no zeros and ñ has a dense image in Γ (Thm.3.6(c)), it follows that j is injective. For the functions $e_n \in C(\Gamma)$ given by $e_n(z) = z^n$ ($n \in \mathbb{Z}$) one has $j(e_n) = h^{[n]}$ ($n \in \mathbb{Z}$) and therefore $T(t) \circ j(e_n) = T(t) h^{[n]} = e^{in\alpha t} \cdot h^{[n]}$ (cf. Thm.2.4) and $j \circ R_{\tau}(t) (e_n) = j(e^{in\alpha t} e_n) = e^{in\alpha t} \cdot h^{[n]}$. Since $\{e_n : n \in \mathbb{Z}\}$ is a total subset of $C(\Gamma)$ we have $T(t) \circ j = j \circ R_{\tau}(t)$ for every $t \geq 0$. If X is compact, then $\tilde{h}(X)$ is closed, hence \tilde{h} is onto, moreover, $|h| \geq \varepsilon$ for some $\varepsilon \geq 0$ thus the definition of j implies that $||j(f)|| \geq \varepsilon ||f||$ for every $f \in C(\Gamma)$.

A consequence of Cor.3.8 is the following: If $\{s(A)\} \not\equiv P\sigma(A) \cap i\mathbb{R}$, then for every $\epsilon > 0$ there exists g > 0 such that T(t)g and T(s)g have disjoint support whenever $|s-t|=\epsilon$. Another consequence is that there exist positive functions f_1 and f_2 such that $T(t)f_1$ and $T(t)f_2$ have disjoint support for every $t \geq 0$ (consider the images under j of two disjoint functions on $C(\Gamma)$). This observation proves the following corollary.

Corollary 3.9. Suppose that the hypotheses of Thm.3.6 are satisfied and that for some $t_0 > 0$ we have $T(t_0) f >> 0$ whenever f > 0. Then $P\sigma(A) \cap i\mathbb{R} = \{0\}$.

Cor.3.9 can be applied if $T(t_0)$ is a kernel operator with strictly positive kernel. We give some examples: