Dive a Bit Deeper into Hierachical Clustering

Presenter | Sijie Li 2025.08.25

Fast optimal leaf ordering for hierarchical clustering

Ziv Bar-Joseph 1, David K. Gifford 1, 2 and Tommi S. Jaakkola 2

¹Laboratory for Computer Science, MIT, 545 Technology Square, Cambridge, MA, 02139, USA and ²Artificial Intelligence Laboratory, MIT, 545 Technology Square, Cambridge, MA, 02139, USA

Received on February 5, 2001; revised and accepted on March 26, 2001

BIOINFORMATICS APPLICATIONS NOTE

Vol. 24 no. 5 2008, pages 719–720 doi:10.1093/bioinformatics/btm563

Gene expression

Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R

Peter Langfelder^{1,†}, Bin Zhang^{2,†} and Steve Horvath^{1,*}

Bioinformatics

I want to know deeper out of curiosity.

- What's behind the concise codes?
- Widely used in biology → may be useful to know more.
- Utilize to develop useful bioinformatic tools...

^{*} Also, taste papers form unfamiliar realms

(Hovarth et al., 2006)

Why should we care?

Wisdom from the classical maching learning algorithem may sometimes overweighs the fancy deep-learning.

- Absord the wisdom from old papers to get new ideas.
- Make the most of them!

nature methods

Brief Communication

https://doi.org/10.1038/s41592-025-02772-6

Deep-learning-based gene perturbation effect prediction does not yet outperform simple linear baselines

(Anders et al., 2025)

Process of hierarchical clustering--pre

Distance matrix records the dissimilarity.

from scipy.spatial.distance import pdist
distance = pdist(rna_bulk,"correlation")

$$\int_{-\infty}^{\infty} \frac{Cov(X,Y)}{6x6Y} = \frac{E[(\pi i - \overline{x})(y i - \overline{y})]}{E[(\pi i - \overline{x})^2]^{N}} \cdot E[(y i - \overline{y})^2]^{N}$$

* Supplement

- There are many ways to define "distance"
- Also, other dissimilarity metrics are introduced

e.g. topological overlap dissimilarity measure (dTOM) in WGCNA package. It even considers the scale-free property of the gene network!

Linkage records the hierarchically merging process.

- 1. Iterate to find minimum
- 2. merge and replace the distance by the avg
- 3. [repeat] Iterate to find minimum...

There are 2ⁿ⁻¹ ways to arrange a dendrogram.

- What is the best ordering?
 - ✓ Max similarity between neighbors
- How to get the best ordering?

Dendrogram revealing biological structures is obtained in a bottom up manner.

```
optOrdering(v, S) {
     If |v| = 1 {
                        // v has only one leaf
        M(v, u, u) = 0
                          // u is the only leaf in v
       return M(v, u, u)
     Else
                            // v has more than one leaf
        M(v_l, L, R) = optOrdering(v_l, S)
                                                    //v_l is the left subtree of v
                                               // v_r is the right subtree of v
        M(v_r, L, R) = optOrdering(v_r, S)
       For all leaves u \in v_l {
            For all leaves w \in v_r {
                M(v, u, w) = \max_{m \in v_{l,r}, k \in v_{r,l}} M(v_l, u, m) + M(v_r, w, k) + S(m, k)
                M(v, w, u) = M(v, u, w)
       return M(v, L, R)
                                  // L, R stands for all possible pairs of leaves from v_l and v_r
```


V: subtree/internal node

Stopping earlier can shorten the time to find the optimal ordering.

(Bar-Joseph et at., 2001)

To get clusters!

Specifying cut height or cluster number manually may miss biological insights.

- Manually specifying parameters places the burden of choosing good settings on the user! E.g. adjusting the resolution when doing single cell clustering
- Makes the whole process hard to automate.

To get clusters!—Dynamic Tree

Cut height can be softened to make clusters more

reasonable.

Goal

$$egin{array}{lll} l_m & = & rac{1}{n} \sum_{i=1}^n h_i \,, \\ \\ l_u & = & rac{1}{2} (l_m + max\{h_1, h_2, ..., h_n\}) \,, \\ \\ l_d & = & rac{1}{2} (l_m + min\{h_1, h_2, ..., h_n\}) \,. \end{array}$$

Reproduce DynamicTreeCut

def TreeCut(H,l,min_size):

Many subnode No subnode

- > Nodes here including merging nodes
- > # Nodes in the cluster = # continuous minus-
- ➤ If # > min_size → form a cluster
- \bigcirc Order of H = $[h_1, h_2, ...]$?
- hclust() and linkage() only do return the merging process
- Order is the <u>same as dendrogram!</u>

You're right to be confused. The only explanation that makes sense is that "dendrogram height sequence" has an unconventional meaning the authors never managed to mention. Ther e's a possible clue in an implementation comment that says it's "the sum of the dissimilarity me asure from the root to the node" http://www.bioinformatics.org/cgi-bin/viewvc.cgi/catch/branch es/catch-engine/splitter/splitter.c?r1=482&r2=483&view=patch - Gene

Arduous!
Confusions in the paper!

(From stack overflow)

Reproduce DynamicTreeCut

def node_order(link):

Then map the height to the node with link get height_order

Reproduce DynamicTreeCut

Def AdaptiveTreeCut(H):

- If ≥ 2 sub-clusters in the lower cut level result, update
- > Or else, expand the cluster range

Clusters are defined based on the structure of the dendrogram.

We can detect clusters easily with our bare eye! Shape matters!

Criteria to be a cluster

✓ # leaves ≥ N₀

Our eyes judge like this!

Flat clustering methods can be included for optimization.

Apply to assign

- > unlabeled leaves
- ➤ unlabeled tiny cluster (# leaves < N₀)

PAM (partition around medoid)-like method

- Method 1: assign according to avg(leaves-leaves) distance
- Method 2: assign according to leaves-medoid/medoidmedoid distance

^{*} Flat clustering methods always have resolution problem, but hierarchical clustering do not have. Eg. Specify radius for DBSCAN; select number of clusters for k-means

In summary

Now, what's happen behind these codes and the principles to get the results are clear!

