ГУАП

КАФЕДРА № 44

ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКОЙ		
ПРЕПОДАВАТЕЛЬ		
старший преподаватель		А.Н.Долидзе
должность, уч. степень, звание	подпись, дата	инициалы, фамилия
ОТЧЕТ О	ЛАБОРАТОРНОЙ РАБО	OTE №4
ИССЛЕДОВАНИЕ И 1	НАСТРОЙКА ЭЛЕМЕН'	ГОВ СЕРИИ І-7000
/		
по курсу: ЦИФРОВЫЕ С	ИСТЕМЫ АВТОМАТИЗАЦ	ИИ И УПРАВЛЕНИЯ
РАБОТУ ВЫПОЛНИЛ		
СТУДЕНТ ГР. № 4143	подпись, дата	Е.Д.Тегай инициалы, фамилия
	,	, T

Цель работы

Изучить интерфейс программы 7000Util и базовые команды. Исследовать элементы серии I-7000 на заданном рабочем месте и связать с элементами технологического оборудования. Показать выполнение команд сторожевого таймера.

Ход работы

Назначение и режимы работы программы 7000Util

Программа 7000Util предназначена для конфигурации, диагностики и управления элементами серии I-7000K. Она предоставляет удобный интерфейс для настройки параметров устройств, чтения данных и выполнения тестирования в режиме реального времени.

Основными функциями данной программы являются:

- Идентификация подключённых модулей
- Конфигурация параметров (адресов, скоростей передачи данных, режимов работы)
- Мониторинг данных и диагностика ошибок
 Существуют следующие режимы работы:
- Режим настройки. Позволяет изменять параметры устройств.
- Режим тестирования. Используется для проверки корректности работы модулей.
- Режим мониторинга. Обеспечивает отображение текущего состояния системы.

Описание состава рабочего места с элементами І-7000

Схема используемого рабочего места продемонстрирована на рисунке 1.

Рисунок 1 – Схема рабочего места №2

Рабочее место состоит из следующих модулей:

MITSUBISHI FX3U-16M. Это модель программируемого логического контроллера. У устройства есть 16 встроенных точек (входов/выходов). Так как это М-версия, то он имеет транзисторные выходы. Он поддерживает модули расширения, включая модули ввода-вывода, аналоговые модули, коммуникационные модели, и модули для работы с высокоскоростными интерфейсами.

GOT1000. Это серия операторских панелей от компании Mitsubishi Electric, предназначенных для взаимодействия человека с автоматизированной системой. Эта панель используется для мониторинга, управления и визуализации данных из ПЛК.

I-7050. Это модуль ввода-вывода от компании Advantech, который используется для подключения различных устройств к ПЛК. Состоит из 7 дискретных входов и 8 дискретных выходов. Напряжение нагрузки: +30B, макс. Максимальный ток нагрузки: 30мА. Уровень логического 0: +1B, макс. Уровень логической 1: +3,5В...+30B. Напряжение питания: +10В...+30В. Потребляемая мощность: 0,4Вт. Схема продемонстрирована на рисунке 2.

Рисунок 2 – Блок-схема устройства

I-7041D. Это модуль цифрового ввода. Он предназначен для подключения к ПЛК и используется для приёма цифровых сигналов от внешних устройств, таких как датчики, переключатели и кнопки. Этот модуль является частью линейки I/O модулей. Состоит из 14 дискретных входов. Гальваническая развязка: развязка от общего провода источника сигнала. Напряжение изоляции: 3750В (эффективное). Уровень логического 0: +1В, макс. Уровень логической 1: +4В...+30В. Входной импеданс: 3кОм. Напряжение питания: +10В...+30В. Потребляемая мощность: 0,9Вт. Схема продемонстрирована на рисунке 3.

Рисунок 3 — Блок-схема устройства

1-7065. Это модуль цифрового ввода-вывода Он используется для подключения цифровых датчиков и получения сигналов от них. Имеет 4 дискретных входа и 5 дискретных выходов. Количество и тип реле: 5 реле типа А (1 группа замыкающих контактов). Номинальные значения коммутируемого тока и напряжения: 5А при 250В переменного тока, 5А при 30В постоянного тока. Напряжение изоляции: 4000В. Время срабатывания: 6 мс, макс. Время отпускания: 3 мс, макс. Минимальный срок службы: 10⁵ срабатываний. Гальваническая развязка: развязка от общего провода источника сигнала. Напряжение изоляции: 3750В (эффективное). Уровень логического 0: +1В, макс. Уровень логической 1: +4В...+30В. Входной импеданс: 3кОм. Напряжение питания: +10В...+30В. Потребляемая мощность: 1,3Вт. Схема продемонстрирована на рисунке 4.

Рисунок 4 — Блок-схема устройства

I-7042D. Это модуль цифрового выхода. Используется для подключения цифровых выходов и принятия сигналов от других цифровых устройств. Имеет 13 дискретных выходов. Гальваническая развязка: развязка от общего провода цепи питания. Напряжение изоляции: 3750В (эффективное). Напряжение нагрузки: 100 мА. Напряжение питания: +10В...+30В. Потребляемая мощность: 1,7Вт. Схема продемонстрирована на рисунке 5.

Рисунок 5 – Блок-схема устройства

I-7520. Это модуль последовательного интерфейса, предназначенный для соединения устройств с ПЛК, имеющих интерфейс RS-232, к сети RS-485. Поддерживаются связи до 1200 м без повторителей. Поддерживаемые скорости передачи, бод: от 300 до 115200. Режим работы: автоматический. Условия эксплуатации: температура (-25...+75)°С, влажность (5...95)% без конденсации. Питание: DC (10...30)В. Потребляемая мощность, не более: 2,2Вт. Гарантия: 18 месяцев. Блок-схема продемонстрирована на рисунке 6.

Рисунок 6 – Блок-схема устройства

ROBO 3140. Это роботизированный контроллер. В нём есть процессор AMD 80188: 40 МГц, 256 кбайт SRAM памяти (ОЗУ), электронный Flash-диск (аналог жёсткого диска) объёмом 512 кбайт, часы реального времени, 4 последовательных порта. Имеется также BIOS, особенностью которого является возможность работы без жёсткого и флоппи-дисков, стандартной клавиатуры и монитора. Контроллер не требователен к питанию: достаточно подать нестабилизированное напряжение в диапазоне 10-30В постоянного

тока. При этом модуль потребляет всего 2Вт. Работает при температурах от - 200° С до + 700° С

Помимо этого, рабочее место состоит из 2 реле, модуля питания, счётчика, электродвигателя с 5 дискретными выходами.

Примеры подключения к модулям I/O устройств технологического оборудования

Искомые примеры подключения продемонстрированы на рисунках 7 – 8.

Рисунок 7 – Пример подключения І-7050

Рисунок 8 – Пример подключения I-7041D

Команды сторожевого таймера для одного модуля вывода

Для начала выбирается модуль дискретного вывода на рабочем месте. Пусть таковым будет модуль I-7042D. Затем необходимо сформировать две двоичные последовательности.

Номер по журналу: 17. Соответственно, в двоичной системе это будет: $17_{10} = 00010001_2$

Этот номер должен повторяться, пока не получится последовательность необходимой длины. У выбранного модуля 13 выходов, соответственно — последовательность будет 13-битной. Результат показан на рисунке 9. Данная последовательность является значением при включении питания

		Последовательность												
Тип модуля	Номер по журналу	12	11	10	9	8	7	6	5	4	3	2	1	0
I-7042D	17	1	0	0	0	1	0	0	0	1	0	0	0	1

Рисунок 9 - Результат

Для получения второй последовательности необходимо инвертировать первую. Получаем:

0111011101110₂

Это значение будет выводится при срабатывании сторожевого таймера. Затем на рабочем месте необходимо отключить контроллер ROBO-3140. После запуска специализированного ПО 7000Utility выбирается пункт меню «СОМ Port». В появившемся окне указывается скорость передачи, а именно: 115200. После устанавливается время таймаута, равное 100 мс. Процесс установки скорости показан на рисунке 10.

Рисунок 10 – Установка скорости

Адресом модуля является число 2_{10} , равное 2_{16} . Переведём последовательности аналогично в шестнадцатеричную систему счисления:

$1000100010001_2 = 1111_{16}$ $0111011101110_2 = EEE_{16}$

Следующим шагом является установка на выходах модуля первой последовательности с последующим сохранением текущего состояния выходов как состояние, устанавливаемое при включении питания:

@21111 – Установка состояния дискретных выходов

 \sim **25***P* – Сохранение текущего состояния выходов как состояние, устанавливаемое при включении питания

Затем аналогично пишутся команды относительно второй последовательности, только в последнем случае устанавливается состояние для перехода в безопасный режим.

- @2EEE Установка состояния дискретных выходов
- ~25*S* Сохранение текущего состояния выходов как состояние, устанавливаемое при переходе модуля в безопасный режим

После этого необходимо проверить работу сторожевого таймера. Для этого используются следующие команды:

@23164 – Принудительный вызов срабатывания сторожевого таймера через
 10 секунд

~21 – Вывод модуля из безопасного режима

Дополнительное задание

Суть дополнительного задания заключается в следующем: считать состояние каналов дискретного ввода-вывода модуля или модулей, если на рабочем месте нет модуля, поддерживающего ввод и вывод, изменить состояние выходов модуля так, чтобы оно соответствовало входам (данные придётся масштабировать из-за разного числа входов и выходов).

Пусть в качестве первого модуля будет выступать модуль I-7041D с адресом 61, а в качестве второго – модуль I-7042D с адресом 62.

\$3D6 -считывание состояния дискретных входов-выходов и сигнализации

Ответ: !157200

Разберём ответ подробнее. Знак «!» говорит о том, что команда допустима (в случае ошибки символом был бы «?»). Затем идут данные, какие каналы включены, а какие нет.

Следующей командой является:

\$3Е1572 – задание на втором модуле значения выходов первого модуля

Ответ: >

Вывод

В данной лабораторной работе был изучен интерфейс программы 7000Util и базовые команды. Исследованы элементы серии I-7000 на заданном рабочем месте и связаны с элементами технологического оборудования. Было успешно показано выполнение команд сторожевого таймера.