MATH 53 WORKSHEET 12/02

(1) Calculate $\int \int_S \text{curl}(\mathbf{F}) \cdot d\mathbf{S}$ where $\mathbf{F} = \langle x+z, x+y, x^3 \rangle$ and S is the portion of the surface $z = 25 - x^2 - y^2$ strictly above the plane z = 9, oriented upwards.

- (2) True or false
 - (a) Let **F** and **G** be smooth vector fields in \mathbb{R}^3 . If C is a path from point (a_1, b_1, c_1) to (a_2, b_2, c_2) , then $\int_C (\mathbf{F} \times \mathbf{G}) \cdot d\mathbf{r}$ is independent of the path C.
 - (b) If f is a smooth function on \mathbb{R}^3 , then $\nabla \times (f\nabla f) = \mathbf{0}$.
 - (c) If \mathbf{F} is a smooth conservative vector field on \mathbb{R}^3 , then its flux through an smooth closed surface is zero.

(3) Calculate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F} = \langle xy, yz, xz \rangle$, and C, oriented counterclockwise, is the curve of the intersection of the surfaces $x^2 + y^2 - z^2 = 9$ and z = 4. Sketch C and the surfaces.

(4) Calculate $\int \int_S \mathbf{F} \cdot d\mathbf{S}$, where $\mathbf{F} = \langle z \arctan y^2, z^3 \ln(x^2 + 1), z \rangle$, and S is the part of the paraboloid $z = 2 - x^2 - y^2$ that lies strictly above the plane z = 1 oriented downward.