

Team Leader

- 프로젝트 기획 총괄
- <u>Lim Heejin</u>
- dg961108@naver.com
- https://github.com/heejvely

Team Member

- Data 구축 총괄
- Choi Yunjin
- <u>cyunjin@gmail.com</u>
- https://github.com/ete-llorona

Team Member

- BERT Fine-tuning 총괄
- <u>Lee Minchan</u>
- leemc9955@naver.com
- https://github.com/Leemc95

Team Member

- 웹 페이지 구축 총괄
- Han A-Leum
- hal0576@naver.com
- https://github.com/zena-H

Team Member

- 데이터 시각화 총괄
- Park Kibeom
- ssw4110@gmail.com
- https://github.com/KIBEOMP

Project git hub:

https://github.com/CAKD3-Intent-Classification

분석 환경

모델링

대시보드

- Python
- Google_colab

- Tensorflow
- KorBERT(Etri)

- Django
- Figma
- QGIS

INDEX

1. 기획의도

2. 모델 구축 및 평가

3. 대시보드

고사 위기 제주 외국인 관광시장 '트레블 버블'로 도약 준비

[위드코로나] 위드코로나로 여행 기대감 '쑥'..활기 띠는 관광업계

경남도, '트레블 버블' 선제 대응...해외마케팅 시동 건다

경기도, 트레블버블 대비 '외국인 관광객 유치' 간담회

고사 위기 제주 외국인 관광시장 '트레블 버블'로 도약 준비

[위드코프트배블버블(비격리한전된역):쑥'..활기 띠는 관광업계

코로나19 상황에서 두 국가 이상의 방역 우수 지역이 경남도 등 비를 서를 성제 대응 행외마케팅 시동 건다 서로 자유로운 여행을 허용하는 것

경기도, 트레블버블 대비 '외국인 관광객 유치' 간담회

• 서비스 대상: 국내 관광 시설 관계자

서비스 기획 목적: 위드코로나 시대에 대비하여 기존 관광 시설
 의 재정비에 필요한 정보를 제공

이용자들의 경험과 의견이 구체적으로 담겨 있어 관광지에 대한 많은 정보 파악 가능

기획 의도

- 리뷰와 별점 불일치로 인한 리뷰 신뢰성 하락
- 관광지 개선점 파악의 어려움

Ex) 긍정 리뷰지만 부정적 별점 부여

리뷰와 별점 불일치로 인한 N사의 평가 방식 변경

[리뷰 중심의 평가]

자연어 딥러닝 모델을 통해

리뷰 문장의 긍/부정성을 가려내고

이를 기반으로 관광지 개선 솔루션을 제시

Data crawling Fine-tuning을 위한 Data refining 데이터 준비 Labeling Pre-trained BERT BERT Fine-tuning ETRI KorBERT를 이용한 Fine-tuning 및 평가 Evaluation Analysis Solution 제공 Solution

BERT: Bidirectional Encoder Representations from Transformers (2018, Google AI Language)

- 33억 개의 단어를 학습시킨 언어 모델
- transformer encoder 부분 사용
- Masked Language Modeling(MLM),
 Next sentence prediction을 통한 사전 학습 진행

- Feature-based approach: 특정 task를 수행하는 network에 feature로 제공
- Fine-tuning approach:
 pre-trained model에 추가적인 task 학습

Fine-Tuning tasks

의도 분류

질의 응답

슬롯 태깅

두 문장 관계 분류

한국어 언어적 특성을 잘 반영하여 훈련시킨 pre-trained model (23GB 원시 말뭉치 학습)

예문: 한국어 단어는 형태소로 구성된다.

(ETRI 형태소 기반 언어모델과 구글 언어모델 비교)

총 154,449건의 리뷰 데이터 수집 총 122,495건의 리뷰 데이터 확보 train, validation, test set 구축을 위한 레이블링 작업

Data를 토큰화 작업 후 fine-tuning 진행

Google maps

- 리뷰의 사실 관계 파악을 위한 검증 시스템 보유

방문 인증된 이용자에 한해 리뷰 작성 가능

20년 1월 기준 순 이용자수 약 1,380만 명

- 지도 컨텐츠 참여에 따른 보상으로 지속적인 참여와 성의있는 리뷰 작성 유도

Trip advisor

- 엄격한 리뷰 게시 가이드라인을 통한 신뢰성
- 자체 리뷰 분석 시스템으로 부정 행위 색출 후 리뷰 게시를 통한 신뢰성 보유
- 세계 최대의 여행 플랫폼, 월간 이용자수 4억 6천만명

사전 조사 데이터 합계 3,000건 이상 관광지 목록 선정

총 64곳 관광지 154,449건의 리뷰 수집

[Refining list]

- 1. 특수문자 제거
- 2. 이모티콘제거
- 3. 개행(\n) 제거
- 4. Multi space(2번 이상 띄어쓰기) 변경
- 5. 10자 미만, 250자 초과 제거
- 6. 중복리뷰제거

총 122,495건 데이터 확보

Data Labeling

Labeling 기준

긍정	중립	부정
긍정 리뷰 100%	긍정, 부정 mix	부정 리뷰 100%
관광지 정보 + 긍정 리뷰 포함	관광지 정보만 있는 리뷰	관광지 정보 + 부정 리뷰 포함

긍정, 중립, 부정 각 4,000개씩 레이블링 진행 → 총 12,000개의 data 구축

학습에 도움되지 않는 리뷰(장소와 상관없는 리뷰, 정치적 견해 등)는 학습 데이터에서 제외

Train, Validation, Test = 7 : 1.5 : 1.5 비율로 데이터 구축

Fine-tuning_prepare data

• Fine-tuning을 위한 데이터 준비

Label	Review tokenization
0	'서울_', '다른_', '아', '쿠', '아', '리', '움', '에_', '비해_', '규모', '가_', '작', '음_', '금액_', '조정이_', '있다면_', ' 가', '볼', '만_', '함', ''
1	'어린', '아이들이_', '탈', '것이_', '많', '아요', '', '시설', '점', '검', '으로_', '운', '행', '하지_', '않는_', '놀', '이_', ' 기', '구가_', '많', '네요_'
2	'규모', '가_', '작', '아요_', '아이', '들', '이', '좋아', '함_'

기존의 vocabulary에 없는 신조어나 오타가 일으키는 OOV(out of vocabulary) 문제를 해결하기 위해 word piece modeling 방식으로 tokenization 진행

Fine-tuning_prepare data

BPE(Byte pair embedding)?

OOV(out of vocabulary) 문제를 해결하기 위해 연속적으로 가장 많이 등장한 글자의 쌍을 찾아서 하나의 글자로 병합하는 방식 수행

Word piece modeling?

BPE 변형 알고리즘으로, BPE와 달리 corpus의 우도 (likelihood)를 가장 높이는 쌍을 병합하는 방식. BERT를 훈련하기 위해 사용된 모델

Fine-tunining Hyper parameter 설정

--train data

필수

--model 저장 경로 지정

옵션

--validation data 적용

--epochs 설정

--batch size 설정

--type 선택 [bert or albert]

Label	Review vectorization
0	<mark>'[CLS]',</mark> '서울_', '다른_', '아', '쿠', '아', '리', '움', '에_', '비해_', '규모', '가_', '작', '음_', '금액_', '조정이_', '있 다면_', '가', '볼', '만_', '함', '', '[SEP]'
1	<mark>'[CLS]',</mark> '어린', '아이들이_', '탈', '것이_', '많', '아요', '', '시설', '점', '검', '으로_', '운', '행', '하지_', '않는_', '놀 ', '이_', '기', '구가_', '많', '네요_', '[SEP]'
2	<mark>'[CLS]',</mark> '규모', '가_', '작', '아요_', '아이', '들', '이', '좋아', '함_', '[SEP]'

- Vectorization 진행 → CLS, SEP 토큰 생성
- CLS(special classification token): BERT 내부의 transformer 층을 거친 후 토큰화된 문장의 의미 보유

Model comparison

Untrained model

DNN

Accuracy = 0.55

Epochs: 10

optimizer: Adam(1e-4)

tokenizer: Tensorflow SubwordTextEncoder (Wordpiece Model) Text CNN(Conv1D)

Accuracy = 0.592

Epochs: 10

optimizer: Adam(1e-4)

tokenizer: Tensorflow SubwordTextEncoder (Wordpiece Model) LSTM

Accuracy = 0.55

Epochs: 10

optimizer: Adam(1e-4)

tokenizer: Tensorflow SubwordTextEncoder (Wordpiece Model)

Model comparison

ETRI KorBERT (eojeol)

Accuracy = 0.877

Accuracy = 0.86

SKT Brain KoBERT

Google BERT Word Piece 기반 다국어모델 (bert-multiligual-cased)

Accuracy = 0.84

Pretrained data: 신문기사와 백과사전 등 23GB의 대용량 텍스트

Epochs: 4 (early stopping checkpoint)

Optimizer: RMSprop(learning rate = 1e-4)

Tokenizer: ETRI Wordpiece Model

attention_probs_dropout_prob: 0.1 -> 0.3으로 변경

hidden_dropout_prob: 0.1 -> 0.3 으로 변경

Pretrained data: 위키 문서의 문장 500만개(5400만단어)와 뉴스 문장 2000만개(2억7000만단어)

Epochs: 20

Optimizer: Adam(learning rate = 5.0e-5, decay = 0.0025)

Tokenizer: Sentencepiece Model

Pretrained data: 다국어 wikipedia 문서, 104 languages

Epochs: 3

Optimizer: Adam(learning rate = 5.0e-5)

Tokenizer: Wordpiece Model

Model comparison

ETRI KorBERT (eojeol) Accuracy = 0.877

ETRI KorBERT (eojeol_Albert)

Accuracy = 0.875

ETRI KorBERT (morp)

Accuracy = 0.819

Pretrained data: 신문기사와 백과사전 등 23GB의 대용량 텍스트

Epochs: 4 (early stopping checkpoint)

Optimizer: RMSprop(learning rate = 1e-4)

Tokenizer: ETRI Wordpiece Model

attention_probs _dropout_prob: 0.1 -> 0.3으로 변경

hidden_dropout_prob: 0.1 -> 0.3 으로 변경

Pretrained data: 신문기사와 백과사전 등 23GB의 대용량 텍스트

Epochs: 2

Optimizer: Adam(learning rate = 5.0e-5)

Tokenizer: ETRI Wordpiece Model

Pretrained data: 신문기사와 백과사전 등 23GB의 대용량 텍스트(47억개 형태소)

Epochs: 2

Optimizer: Adam(learning rate = 5.0e-5)

Tokenizer: ETRI Wordpiece Model

Figma로 UI 디자인

Django 로 웹 구축

- Google Maps API를
 통해 각 테마 별 관광지
 의 위치 정보 수집
- 수집한 위치 정보를 QGIS를 이용하여 mapping
- 테마별지도이미지를 저장하고대시보드에 게시

- 각 테마 별 관광지 목록 - 게시
- 관광지 선택 시 관광지에 대한 페이지로 이동
- 테마 별로 리뷰에 긍정 비율 및 부정 비율이 높 은 관광지를 각각 게시

- 테마 별 긍정, 중립, 부정 리뷰 비율 그래프 게시

- 구축한 AI 모델을 직접 시현해 볼 수 있는 리뷰 분석기 창 구현

Dash board_Tourist attraction tool

- 관광지 별 부정 리뷰에대해 워드 클라우드 제작
- 부정리뷰에 대한 솔루션 작성 및 대시보드 게시

BERT code Demo

리뷰에 대한 정확한 정보 제공

관광지의 보완점 빠르게 파악 후 개선

다양한 리뷰를 수집하여 전국 관광지를 평가할 수 있는 모델로 확대

