

GateMate™ FPGA Datasheet

CCGM1A1

DS1001 Pre-Release Datasheet December 2020

Tel.: +49 (0) 221 / 91 24-0 Fax: +49 (0) 221 / 91 24-100

https://colognechip.com info@colognechip.com

Copyright 1994-2020 Cologne Chip AG

All Rights Reserved

The information presented can not be considered as assured characteristics. Data can change without notice. Parts of the information presented may be protected by patent or other rights. Cologne Chip products are not designed, intended, or authorized for use in any application intended to support or sustain life, or for any other application in which the failure of the Cologne Chip product could create a situation where personal injury or death may occur.

Contents

1	Intro	oduction	9
	1.1	Introduction	9
	1.2	Features	10
2	Arcl	hitecture	11
	2.1	GateMate™ FPGA Overview	11
	2.2	FPGA Functional Elements	12
		2.2.1 CPE	12
		2.2.2 General Purpose Input/Output (GPIO)	13
		2.2.3 Dual Port SRAM	15
		2.2.4 Clock Generators (PLLs)	18
		2.2.5 JTAG Interface	19
	2.3	Routing Structure	28
	2.4	Power Supply	30
3	Wor	kflow and Hardware Setup	31
	3.1	FPGA Workflow	31
	3.2	Hardware Setup	33
		3.2.1 Power-on Reset	33
	3.3	Configuration Procedure	34
		3.3.1 Configuration Modes	34
		3.3.2 SPI Configuration	35
4	Elec	etrical Characteristics	39
5	Pinc	out	43
	5.1	CCGM1A1 324-Ball FBGA Pinout	43
	5.2	CCGM1A1 Pinout Description	45
6	Med	chanical Dimensions	57

DS1001 December 2020 3 of 60

List of Figures

2.1	Simplified Architecture Overview	1
2.2	Central Programming Element	12
2.3	General Purpose Input/Output cell in single-ended mode	13
2.4	General Purpose Input/Output cell in LVDS mode	14
2.5	General Purpose Input/Output bank	15
2.6	Dual Port SRAM blocks	17
2.7	JTAG connection scheme	19
2.8	Finite State Machine of the JTAG interface	20
2.9	JTAG instruction shift	20
2.10	JTAG data shift	20
2.11	JTAG-SPI bypass connection scheme.	22
2.12	Timing diagram of the JTAG-SPI bypass mode	23
2.13	Switch Box interconnection scheme	28
2.14	Small and Big Switch Boxes	29
2.15	CPE connection into the routing structure	29
3.1	GateMate™ FPGA Workflow	32
3.2	Configuration data from Flash memory in SPI single-I/O or dual-I/O mode	35
3.3	Configuration data from Flash memory in SPI quad-I/O mode	35
3.4	Configuration data stream from a single Flash memory	36
3.5	Connection of CFG_DONE and CFG_FAILED_N signals in multi-FPGA applications with a single Flash memory	37
5.1	CCGM1A1 FBGA pinout	44
5.2	Configuration pads of CCGM1A1 BGA pinout for use as GPIO after configuration	44
61	FRGA 324 nackage dimensions	59

DS1001 December 2020 5 of 60

List of Tables

2.1	Dual Port SRAM configurations	16
3.1	Configuration mode setup	34
3.2	Configuration process state	36
4.1	Absolute maximum ratings	39
4.2	Operation range	39
4.3	GPIO characteristics in single-ended mode	40
4.4	GPIO characteristics in LVDS mode	40
4.5	PLL characteristics	41
5.1	Pad Types	45
5.2	CCGM1A1 Pad list sorted by ball name	46

DS1001 December 2020 7 of 60

Revision History

This Datasheet is constantly updated. The latest version of the document can be found following the link below:

Date	Remarks
December 2020	Expanded JTAG interface documentation in Section 2.2.5. Updated package height and tolerances in Figure 6.1.
October 2020	 Updated 324-ball FBGA package to final pinout: FBGA pinout in Figures 5.1 and 5.2. Pad types and pad lists in Tables 5.1 and 5.2.
February 2020	Initial pre-release.

Chapter 1

Introduction

1.1 Introduction

The Cologne Chip GateMate™ FPGA Series is a family of small to medium-sized FPGAs that addresses all requirements of typical applications. The programmable silicon can be used from low-power to high-speed applications and thus in a wide range of fields: industry, automation, communication, security, automotive, IoT, AI, and lots more.

Logic capacity, power consumption, package size and PCB compatibility are optimized for a wide range of applications. As these FPGAs combine various features with lowest cost in the market, the devices are well suited from university projects to high volume applications. Because of the outstanding ratio of circuit size to cost, even pricesensitive applications can also now take advantage of FPGAs. The devices are manufactured using Globalfoundries™ 28 nm SLP process in Dresden, Germany. The GateMate™ FPGA program is supported by the German Federal Ministry for Economic Affairs and Energy as part of the Important Project of Common European Interest (IPCEI) on Microelectronics project, which is also supported by the European Commission.

Supported by:

on the basis of a decision by the German Bundestag

Cologne Chip is a semiconductor company based in Cologne, Germany. The company, which celebrates its 25th anniversary in 2020, has excellent industry knowledge and an experienced team of developers. The design and manufacturing location *Made in Germany* represents a unique selling proposition of globally competitive FPGAs in the market.

Cologne Chip offers and supports a variety of development tools:

- The GateMate™ Evaluation Board is a feature-rich, ready-to-use development platform that serves as a reference design and for a direct entry into application development.
- With the help of the GateMate[™] Programmer, the FPGA can be configured in various ways.

Cologne Chip provides a comprehensive technical support. Please contact our support and sales teams or visit our website for more information.

DS1001 December 2020 9 of 60

Introduction _

1.2 Features

- Novel Programmable Element Architecture
 - 20,480 programmable elements for combinatorial and sequential logic
 - 20,480 8-input LUT-trees / 40,960 4-input LUT-trees
 - 40,960 Latches / Flip-flops within programmable elements
 - · Each programmable element configurable as:
 - · 1-bit full adder
 - · 2-bit full adder or
 - 2x2-bit multiplier
 - · Dedicated logic and routing for fast arithmetic and arbitrary-sized multipliers
- 9 GPIO Banks
 - 162 user-configurable GPIOs
 - · All GPIOs configurable as single-ended or LVDS differential pairs
 - · Double Data Rate (DDR) registers in I/O cells
 - I/O voltage range from 1.2 to 2.5 V
- · 4 Clock Generators (PLL)
 - max. oscillator output frequency from 500 MHz to 1,250 MHz
- 2.5 Gb/s Serializer/Deserializer (SerDes) Controller
- Flexible Memory Resources
 - 1,310,720 total RAM bits distributed over 32 SRAM blocks
 - Each RAM block configurable as two independent 20K blocks or single 40K block
 - Simple or True Dual Port (SDP/TDP) or FIFO mode
 - Data width from 1 bit up to 40 bits (TDP) or 80 bits (SDP)
 - · Bit-wide write enable
 - · Error Checking and Correction (ECC) for certain bit widths
- Flexible Device Configuration
 - Configuration bank switchable to user I/O
 - JTAG interface with bypass to SPI interface
 - active/passive SPI interface for singe-, dual- and quad-mode operation
 - · SPI flash interface in active mode
 - Multi-Chip configuration from single source
- Application modes: low power, economy, speed
 - Mode adjustable on each chip via core voltage
 - Core voltage range from 0.9 to 1.1 V
- Package
 - 15x15 mm 324 balls 0.8 mm Fine-pitch Ball Grid Array (FBGA) package
 - · Only 2 signal layers required on PCB

Chapter 2

Architecture

2.1 GateMate™ FPGA Overview

The basic functional elements of GateMate^{M} FPGA are set up in an array structure of 128×160 elements called Central Programming Element (CPE) as described in Section 2.2.1.

All CPEs are interconnected by a routing structure of 132×164 so called Switch Boxes (SBs) as described in Section 2.3.

Additional functional blocks are Dual Port SRAMs, Phase Locked Loops (PLLs), GPIO cells, SPI configuration and data flash interface, JTAG interface and Serializer/Deserializer (SerDes) interface.

Figure 2.1: Simplified Architecture Overview

DS1001 December 2020 11 of 60

2.2 FPGA Functional Elements

2.2.1 CPE

General purpose combinatorial and sequential circuits are implemented using Central Programming Elements (CPEs). The CCGM1A1 has 20,480 CPEs arranged in a 160 \times 128 matrix. Each CPE can be set up to the following combinatorial functions:

- 8 inputs with LUT-2 tree
- · 6 inputs with MUX-4 function
- Dual 4 inputs with LUT-2 tree each
- · 1-bit or 2-bit full adder, expandable to any length in horizontal or vertical arrangement
- · 2x2-bit multiplier, expandable to any multiplier size

Figure 2.2: Central Programming Element

Two CPE outputs OUT1 and OUT2 are available and each can use a Flip-Flop or Latch function.

Furthermore, the CPEs include fast signal routing paths, typically used for fast clock and carry propagation in adder and multiplier functions, e.g., fast CPE to adjacent CPE connections or even fast signal propagation over any span of CPEs.

Figure 2.2 illustrates the general structure of a CPE. General combinatorial and sequential functions are supported from fast signal path routing. In addition, the Dual Port SRAM blocks of GateMate $^{\text{TM}}$ FPGA, as described in Chapter 2.2.3, require some CPE ports RAM_I[2:1] and RAM_O[2:1] for CPE-to-SRAM connection.

2.2.2 General Purpose Input/Output (GPIO)

The GateMate™ FPGA offers up to 162 general purpose input/output pins. These are organized in signal pairs, so called *pad cells*, which can either operate as two independent, bidirectional single-ended signals or they can be set up as bidirectional Low-Voltage Differential Signaling (LVDS). Figures 2.3 and 2.4 show the structure of the pad cells and their interconnection to the FPGA elements.

Nine pad cells build up a GPIO bank as shown in Figure 2.5 on page 15. Eight banks and another optional bank ¹ are available.

The single-ended GPIO support the LVCMOS standard up to 2.5 V nominal supply voltage, compliant to the standards JESD8-5 (2.5 V) and JESD8-7 (1.8 V and 1.2 V).

Figure 2.3: General Purpose Input/Output cell in single-ended mode

The single-ended GPIO pins have the following output features:

- 0/1/high-Z
- Slew-rate control
- Driver strength 3 mA / 6 mA / 9 mA and 12 mA
- 2 Flip-Flops
- · Programmable delay line

DS1001 December 2020 13 of 60

¹The FPGA configuration pins are arranged within the ninth GPIO bank. These pins can be used as normal GPIO bank after configuration process.

Figure 2.4: General Purpose Input/Output cell in LVDS mode

The single-ended GPIO pins have the following input features:

- Schmitt trigger input
- · Pull-up / pull-down resistors or keeper functionality
- · Input receiver disable for power reduction
- 2 Flip-Flops
- · Programmable delay line

If a pad cell is used in its LVDS mode, both pads can be used together only. The LVDS pad is compliant to the LVDS 2.5 V standard. It further can operate down to 1.8 V nominal supply voltage, with common mode voltage $V_{DD}/2$. The LVDS input receiver can be used as voltage comparator.

Figure 2.5: General Purpose Input/Output bank

2.2.3 Dual Port SRAM

The GateMate™ FPGA has SRAM blocks which are organized as configurable 40 Kbits Dual Port SRAM (DPSRAM). 32 DPSRAM blocks are available. They are arranged in 4 columns as shown in Figure 2.6. The DPSRAM ports are all connected to CPE outputs RAM_0[2:1] and CPE inputs RAM_I[2:1] as shown in Figure 2.2 on page 12. This means, DPSRAM inputs are feed by CPE outputs and DPSRAM output signals are connected to the Switch Boxes of the routing structure.

Each DPSRAM block allows usage of the memory in four different modes:

- True dual port non-split mode (TDP non-split)
- True dual port split mode (TDP split)
- · Simple dual port non-split mode (SDP non-split)
- Simple dual port split mode (SDP split)

DS1001 December 2020 15 of 60

True dual port (TDP) mode

The DPSRAM has two independent access ports. All combinations of operations at these two ports are possible: two reads, two writes or one read and one write. The ports can have two independent clock frequencies and different data widths.

Non-Split mode

Both ports have access to the entire 40 Kbit memory. Input and output data widths can be different.

versus Simple dual port (SDP) mode

One port can only be used for write access while the other port can only do read access. By that, data width can be increased up to 80 bit. The ports can have two independent clock frequencies and different data widths.

versus Split mode

The DPSRAM is split into two completely independent DPSRAMs of half size 20 Kbit each.

The DPSRAM supports several data bit widths. The smaller the bit width, the larger the available address space. Table 2.1 shows all available DPSRAM configurations.

Each data bit has it's own write enable signal.

Table 2.1: Dual Port SRAM configurations

DPSRAM	Non-Split TDP	Non-Split SDP	DPSRAM	Split TDP	Split SDP
configuration	40 Kbit	40 Kbit	configuration	2x20 Kbit	•
$32\mathrm{K} \times 1\mathrm{bit}$	✓	✓	(RAM size per	20 Kbit bloc	k)
$16\text{K}\times2\text{bit}$	✓	✓	$16\text{K}\times1\text{bit}$	✓	✓
$8\text{K} \times 5\text{bit}$	1	✓	$8\mathrm{K} imes 2\mathrm{bit}$	✓	✓
$4\textrm{K}\times10\textrm{bit}$	✓	1	$4\mathrm{K} imes 5\mathrm{bit}$	✓	✓
$2\textrm{K}\times20\textrm{bit}$	✓	1	$2\textrm{K}\times10\textrm{bit}$	✓	✓
$1\text{K}\times40\text{bit}$	✓	✓	$1\mathrm{K} imes 20\mathrm{bit}$	✓	✓
$512 \times 80 \text{bit}$	×	✓	$512 \times 40 \text{bit}$	×	✓

Based on these four modes, additional features and functions can be configured:

- Different data widths ranging from 1 bit up to 40 bits (in case of TDP mode) or up to 80 bits (in case of SDP mode).
- Flexible selective forwarding of clocks, address and control signals.
- · Write enable can be set for each bit separately.
- Usage as First-In First-Out (FIFO) memory in asynchronous or synchronous mode.
- Interconnection of several DPSRAMs in order to support larger bit widths (more than 40 bits in TDP mode, more than 80 bits in SDP).
- Interconnection of adjacent DPSRAMs (in case of 1-bit data words) in order to support more addresses (cascade mode).
- · Error checking and correction (ECC) for certain bitwidths.

Figure 2.6: Dual Port SRAM blocks

The DPSRAM blocks contain a FIFO controller which can be configured in asynchronous or synchronous mode. The FIFO functionality is available for the following SRAM modes:

- · TDP non-split, arbitrary but equal input and output bitwidth
- · SDP non-split, 80 bit input and output bitwidth

If data shall be protected against unintended changes, the DPSRAM provides error checking and correction (ECC) encoding. For this feature the user can only use 32 or 64 bits data width since the remaining 8 or 16 bits are required for storage of parity bits. ECC is only available for the following configurations:

- TDP non-split, configured to 40 bit of which user can use only 32
- SDP non-split, configured to 80 bit of which user can use only 64
- SDP split, configured to 40 bit of which user can use only 32

For ECC the Hamming-code with 7 parity bits is used. It can correct one bit error and detect two bit errors.

DS1001 December 2020 17 of 60

2.2.4 Clock Generators (PLLs)

Four independent Phase Locked Loop (PLL) clock generators are available:

- All-digital phase locked loop (ADPLL) clock generator for versatile FPGA clock generation.
- Clock generation based on a digitally controlled oscillator DCO running with a typical frequency tuning range from 1 GHz to 2 GHz.
- Programmable clock frequency dividers for reference clock input, PLL loop divider and core clock outputs, enabling wide output and reference frequency ranges.
- Core clock outputs available at four 90°-spaced phases.
- · Fast lock-in by binary frequency search.
- Autonomous free-running oscillator mode for FPGA configuration clock after power-up.

The maximum oscillator output frequency depends on the FPGA supply voltage as follows:

 $\begin{array}{lll} \mbox{Low power mode} & (\mbox{VDD}_{\mbox{PLL}} = 0.9 \, \mbox{V} \pm 50 \, \mbox{mV}) \mbox{:} \; \; 500 \, \mbox{MHz} \\ \mbox{Economy mode} & (\mbox{VDD}_{\mbox{PLL}} = 1.0 \, \mbox{V} \pm 50 \, \mbox{mV}) \mbox{:} \; \; 1000 \, \mbox{MHz} \\ \mbox{Speed mode} & (\mbox{VDD}_{\mbox{PLL}} = 1.1 \, \mbox{V} \pm 50 \, \mbox{mV}) \mbox{:} \; \; 1250 \, \mbox{MHz} \\ \end{array}$

There are different reference clock pins selectable individually for each PLL:

- SerDes clock input SER_CLK (can also be used as general purpose clock input)
- SPI clock input SPI_CLK
- JTAG clock input JTAG_TCK
- Clock input IO_SB_A5
- Clock input IO_SB_A6
- Clock input IO_SB_A7
- Clock input IO_SB_A8

The same reference clock can be used from several PLLs at the same time.

2.2.5 JTAG Interface

The GateMate™ FPGA configuration bank provides a standard IEEE 1149.1-2001 compliant Test Access Point (TAP) that can be used for the following functions:

- Load configuration via JTAG²
- · Full access to SPI interface using JTAG-SPI bypass
- Utilities to access external SPI dataflashes
- · Boundary-Scan Testability: SAMPLE/PRELOAD and EXTEST
- Access to supplementary internal registers

Figure 2.7 illustrates the typical wiring between a single FPGA and a JTAG host controller. By connecting devices via the data input and output signals it is possible to chain multiple TAPs in a serial configuration. The operating range of the supply voltage on the configuration bank is shown in Table 4.3. The JTAG interface is always available after global reset. It will no longer be available once the configuration bank is switched to user I/O after configuration.

Figure 2.7: JTAG connection scheme

Four signals support the TAP according to the IEEE 1149.1-2001 requirements:

Test Mode Select (TMS) controls the TAP controller state machine. The signal is sampled on the rising edge of TCK.

Test Clock (TCK) provides a clock signal. The mode TMS is sampled on the rising edge of TCK. Input data on TDI is shifted into the instruction (IR) or data (DR) registers on the rising edge of TCK. Output data on TDO is shifted out on the falling edge of TCK.

Test Data Input (TDI) is the serial input to all JTAG instruction (IR) and data (DR) registers depending on the sequence previously applied at TMS.

Test Data Output (TDO) is the serial output for all JTAG instruction (IR) and data (DR) registers depending on the sequence previously applied at TMS.

DS1001 December 2020 19 of 60

²See Section 3.3.1 for more ways to load the FPGA configuration.

JTAG Usage

The TMS signal is evaluated on the rising edge of TCK. Its value decides the next state into which the Finite State Machine (FSM) changes. The FSM states are shown in Figure 2.8.

Figure 2.8: Finite State Machine of the JTAG interface

The typical procedure is to first load the instruction and then write or read the data associated with this instruction. The JTAG host controller must drive the signals TCK, TMS and TDI in the according way as illustrated shown in Figures 2.9 and 2.10. The instruction register (IR) size is 6 bits. Instructions have to be shifted into the JTAG TAP with LSB first.

Figure 2.9: JTAG instruction shift

Figure 2.10: JTAG data shift

Common JTAG Instructions

According to IEEE 1149.1-2001, the IDCODE register is optional and thus only contains a place-holder value.

The bypass mode connects the JTAG TDI and TDO lines via a single-bit pass-through register and allows the testing of other devices in a JTAG chain. In bypass mode, the TDI input is delayed by one clock cycle before outputting to TDO.

Instruction:	0x3F	JTAG_BYPASS	Shift width:	1 bit
		· , .	node. The bypass register is se s in the CAPTURE-DR state.	et to zero
Shift-in bits:	_			
Shift-out bits:	_	Input bit pattern delayed	by one clock cycle.	

JTAG Configuration

The JTAG interface can be used to configure the FPGA as well. The configuration stream must have a length of a multiple of 8 bits. The JTAG TAP automatically combines every 8 received bits to a single byte and forwards it to the configuration processing block. JTAG configuration works independently of the configuration mode pins CFG_MD[3:0]. However, in order to avoid conflicts, the pins should be set to 0xC. Further information on the configuration modes can be found in Section 3.3.1. The configuration byte stream is in big endian while the bytes are in little endian. If the configuration bank is not switched to user I/O after configuration, the status can be read as usual using the CONFIG_DONE and CONFIG_FAILED pins.

Instruction:	0x06	JTAG_CONFIGURE	Shift width:	M · 8 bits
		Configure the FPGA with a configu	ration stream of	M bytes.
Shift-in bits:	M·[7:0]	The configuration byte stream is in are in little endian.	n big endian whil	e the bytes
Shift-out bits:	M·[7:0]	Don't care		

DS1001 December 2020 21 of 60

Access to SPI Bus

The SPI bus can be accessed directly using the JTAG interface. This way, bitstreams may be written to an external dataflash without having to access the bus with additional hardware. There are two ways of acting on the SPI bus via the JTAG interface:

- Full access to SPI interface using JTAG-SPI bypass
- Utilities to access external SPI dataflashes

Figure 2.11 illustrates the wiring between a single FPGA connected to an external SPI component and a JTAG host controller.

Figure 2.11: JTAG-SPI bypass connection scheme.

In active JTAG-SPI bypass mode all JTAG signals TCK, TDI and TDO are directly connected to the SPI pins. Due to the direct connection of TCK and SCK, the clock frequency on the SPI bus is the same as that of the JTAG clock. Before accessing the SPI bus via active bypass it must be ensured that the SPI bus is not busy, e.g. by checking the JTAG_GET_SPI_BUSY command. There is no restriction on the length of a SPI transfer. The SPI bypass mode works for all four SPI modes (CPOL, CPHA), but only in single-IO mode as set via the SPI configuration mode pins CFG_MD[1:0] described in Table 3.1.

With each DR-shift one bit at TDI is shifted into the JTAG TAP and directly forwarded to SPI_D0 output. Simultaneously, one bit is shifted into SPI_D1 input. The bit will be available on the JTAG output TDO at the next falling edge of TCK. There must be one more DR-shift cycle than bits to transmit. The last bit shifted into the TAP will not be shifted to the external SPI device and the very first bit shifted out of the TAP is an invalid bit.

Instruction:	0x05	JTAG_SPI_BYPASS	Shift width:	N bits	
		Active access to SPI bus via	JTAG.		
Shift-in bits:	-	Data to be shifted into extern	al SPI device		
Shift-out bits:	-	Data to be shifted from external SPI device			

Figure 2.12 illustrates the function of the active JTAG-SPI bypass in all four available SPI single-IO modes.

Figure 2.12: Timing diagram of the JTAG-SPI bypass mode.

Access to SPI Dataflash

The JTAG_SPI_ACCESS provides access to external SPI dataflashes with a conventional command structure, in which command, mode, address and bidirectional data bits can be exchanged. In order to support a wide range of SPI dataflashes, all command fields can be adjusted. First, the instructions have to be shifted into the JTAG TAP register with LSB first. The actual SPI transfer start as soon as the DR-UPDATE state in JTAG FSM was executed. In contrast to the JTAG-SPI bypass mode, the SPI clock rate is determined by the clock frequency of the internal oscillator.

The JTAG_SPI_ACCESS command allows transmissions of at most 32 TX data bits. The number of TX bits must be specified and TX words must be set to 1. Moreover, up to 32 bits of data can be received via the JTAG_GET_SPI_RXDATA command after execution of JTAG_SPI_ACCESS with the corresponding read command and number of bits to be received. The RX data flag is only valid if the read command was previously executed.

In order to transfer more than 32 bits, the JTAG TAP contains a register file of 256 bytes that can be filled via the JTAG command JTAG_FLASH_PAGE_PREP before the execution of an JTAG_SPI_ACCESS with a number of TX data word greater than 1. The total number of bits to be transmitted from the register file is the product of TX data bits times TX data words.

DS1001 December 2020 23 of 60

Architecture

The internal file register for transmitting more than 32 bits contains a 256 byte memory that can be pre-loaded by using the JTAG_FLASH_PAGE_PREP command. An entire 32-bit word must always be followed by a DR-UPDATE. This procedure can be repeated up to 64 times to load a full page of 256 bytes. As long as no test logic reset command is executed, the file register retains its content, but can be overwritten. Its address counter is set to zero each time the command is called. For correct functioning it is necessary to transmit the first word of the register file again during JTAG_SPI_ACCESS.

It is highly recommended to verify the idle state before accessing the SPI bus by executing the JTAG_GET_SPI_BUSY command.

Instruction:	0x01	JTAG_SPI_ACCESS	Shift width:	119 bits	
		Access external SPI dataflash via	JTAG.		
Shift-in bits:	[118:115]	Number of command bits to be sl	nifted to SPI data	aflash	
	[114:109]	Number of address bits to be shif	ted to SPI datafl	ash	
	[108:105]	Number of mode bits to be shifted	d to SPI dataflas	h	
	[104: 99]	Number of TX data bits to be shifted to SPI dataflash			
	[98: 92]	Number of TX data words to be shifted to SPI data			
	[91: 86]	Number of dummy cycles to be shifted to SPI dataflas			
	[85: 80]	Number of RX data bits to be shif	ted to SPI datafla	ash	
	[79: 72]	Command to be transferred to SP	l dataflash		
	[71: 64]	Mode to be transferred to SPI data	aflash		
	[63: 32]	Address to be transferred to SPI of	lataflash		
	[31: 0]	TX data word to be transferred to stream is in big endian while the Must contain the first word when the JTAG_FLASH_PAGE_PREP contains.	bytes are in little transmitting da	e endian.	
Shift-out bits:	[118: 0]	Don't care			

Instruction:	0x02	JTAG_FLASH_PAGE_PREP	Shift width:	K · 32 bits
		Load data for writing up to one 25 Must be followed by 0x1 – JTAG	,	e into FPGA.
Shift-in bits: K⋅[31:0]		K 32-bit words to be written to 0 with $1 \le K \le 64$. Each word UPDATE. The byte stream is in b in little endian.	must be followed	ed by a DR-
Shift-out bits:	K·[31:0]	Don't care		

CCGM1A1

Architecture ___

Instruction:	0x03	JTAG_GET_SPI_RXDATA Shift width:	33 bits
		Get data read from SPI dataflash via after JTAG_SPI_ACCESS.	0x1 -
Shift-in bits:	[32:0]	Don't care	
Shift-out bits:	[32:1]	RX data read from SPI dataflash	
	[0]	RX data valid flag. Only true if the preceding comman JTAG_SPI_ACCESS.	nd was

Instruction:	0x04	JTAG_GET_SPI_BUSY	Shift width:	1 bit
		Checks if the SPI controller is any SPI access.	busy. Recommended to u	se before
Shift-in bits:	[0:0]	Don't care		
Shift-out bits:	[0:0]	Obtain SPI bus state: 0b0: SPI idle 0b1: SPI busy		

DS1001 December 2020 25 of 60

Architecture

Boundary-Scan Test

A JTAG IEEE 1149.1-2001 compliant boundary-scan allows to test pin connections without physically probing pins by shifting a boundary-scan register that is composed of cells connected between the FPGA logic and IOs.

The SAMPLE instruction allows to take a snapshot of the input and output signal states without interfering with the device pads. The snapshot is taken on the rising edge of TCK in the DR-CAPT state. The data can then be accessed by shifting through the TDO output.

The PRELOAD instruction allows scanning of the boundary-scan register without causing interference to the FPGA logic. It allows an initial pattern to be shifted into the boundary-scan register cells.

Both instructions SAMPLE and PRELOAD are combined in the JTAG_SAMPLE_PRELOAD command. While preloading the boundary-scan register cells by shifting data into the input TDI the sample results are shifted through the TDO output.

The EXTEST instruction allows access to the external circuitry through the device pads. The boundary-scan register cells connected to the output pins are used to apply test stimuli, while those at the input pins capture external signals from the device pads.

The boundary-scan register length is 317 bits. To enable boundary-scan test, the testmode register must be set first by using the JTAG_SET_TESTMODE instruction. Please refer to the official BSDL files for more information.

Instruction:	0x20	JTAG_SET_TESTMODE	Shift width:	2 bits
		Set value in testmode register.		
Shift-in bits:	[1:0]	· ·		
Shift-out bits:	[1:0]	Don't care		

Instruction:	0x3D	JTAG_SAMPLE_PRELOAD	Shift width:	317 bits
		Boundary-scan SAMPLE and PF ter 0x20 – Set Testmode must		The regis-
Shift-in bits:	[316:0]	Preload value for boundary-sca	n shift register.	
Shift-out bits:	[316:0]	Sample value of boundary-scar	shift register.	

Instruction:	0x3E	JTAG_EXTEST	Shift width:	317 bits
		Boundary-scan EXTEST instruction Testmode must be set to 0b11.	on. The register 0	x20 - Set
Shift-in bits:	[316:0]	Don't care.		
Shift-out bits:	[316:0]	Value of boundary-scan shift regis	ster.	

DS1001 December 2020 27 of 60

2.3 Routing Structure

All functional elements of the GateMate^{IM} FPGA are interconnected by the routing structure. This consist of so called *Switch Boxes* mainly and is supplemented by additional *Input Multiplexers* and *Output Multiplexers*. All Switch Boxes are arranged in a matrix $(x,y) = (-1,-1)\dots(162,130)$ as shown in Figure 2.13.

Figure 2.13: Switch Box interconnection scheme

Every second coordinate is populated by Switch Boxes. There are two types of Switch Boxes which differ only in the span they can forward into the routing matrix. Mainly, Switch Boxes connect bidirectional to other Switch Boxes in horizontal and vertical direction. Big Switch Boxes connect six other Switch Boxes in every direction and Small Switch Boxes only two others. Direction change from vertical to horizontal and vice versa is possible. From an arbitrary point (x_n,y_m) all coordinates in row y_m or column x_n are reachable.

Furthermore, diagonal neighbors to upper right (x_n+1,y_m+1) and lower left (x_n-1,y_m-1) coordinate can be connected. This allows change to neighbored rows or columns.

Figure 2.14: Small and Big Switch Boxes

Signals are feed into the routing structure either directly from CPE outputs or, for more flexibility, through so called *Output Multiplexers*. GPIO input signals are connected to the Switch Boxes as well.

Switch Boxes decouple all signals through so called Input Multiplexers to the CPEs.

Figure 2.15: CPE connection into the routing structure

DS1001 December 2020 29 of 60

2.4 Power Supply

The GateMate™ FPGA has a single power supply for the chip core and GPIO power supply pins for each GPIO bank. There are some more power pins for dedicated parts of the FPGA:

VDD Core supply voltage.

VDD_CLK Supply voltage for the input pins SER_CLK, SER_CLK_N, RST_N and POR_ADJ.

VDD_PLL Supply pin for PLLs.

VDD_SER Supply pin for the SerDes module.

VDD_SER_PLL Supply pin for the SerDes PLL.

VDD_EA, VDD_BB, VDD_NA, VDD_NB, VDD_SA, VDD_SB, VDD_WA, VDD_WB and VDD_WC Supply pins for GPIO banks.

Core voltage can be chosen to select the application mode:

VDD_PLL has the same core voltage range. VDD_SER and VDD_SER_PLL have a voltage range from 1.0 V \pm 50 mV to 1.1 V \pm 50 mV. All voltages should be connected to noise filters.

The voltage range of GPIO banks and VDD_CLK can be set from 1.1 V to 2.7 V.

Chapter 3

Workflow and Hardware Setup

3.1 FPGA Workflow

The workflow from the design to the GateMate[™] FPGA configuration file is shown in Figure 3.1. Typically, a software framework for FPGA design is already installed at the customer side.

The design flow starts with HDL source generation with direct HDL implementation or any higher-level programming language.

Logic synthesis generates a Verilog netlist containing an abstraction of the HDL sources using low-level primitives. The resulting Verilog netlist is then passed to EasyConvert™to convert the primitives netlist to the data format required by the GateMate™ FPGA Place and Route software.

In the first step of Place and Route a procedure for speed or area optimization is executed and these results are passed to the mapping module. After placement and routing, the static timing analysis (STA) might lead to further optimization steps. This design closure is an iterative process of constraint-driven re-placement and re-routing steps to finally achieve user requirements.

Finally, a Verilog netlist and SDF file are written. These can be used by the customer testbench for post implementation simulation. The FPGA configuration file is written as well. This can either be written into a Flash memory or directly into the FPGA configuration controller.

DS1001 December 2020 31 of 60

Figure 3.1: GateMate™ FPGA Workflow

3.2 Hardware Setup

3.2.1 Power-on Reset

The GateMate™ FPGA has a reset pin RST_N with internal pull-up resistor. Signal polarity is active low.

The power-on reset module (POR) ensures a safe reset as soon as VDD_CORE and VDD_CLK supply voltages are stable. The POR has the following features:

- Safe reset generation after stable VDD_CORE and VDD_CLK voltages.
- Voltage drop detection for VDD_CORE and VDD_CLK voltages.
- · Adjustable VDD_CLK voltage threshold.
- · No restrictions concerning order of voltage switch-on.
- · Temperature compensated voltage reference.

The POR must be enabled with POR_EN signal:

- 0: Reset state depends only on the RST_N signal.
- 1: FPGA changes from reset to operation state when RST_N is 1 and POR indicates VDD_CORE and VDD_CLK voltages are stable.

POR_EN has an internal pull-down resistor and can be left open if not used.

DS1001 December 2020 33 of 60

3.3 Configuration Procedure

3.3.1 Configuration Modes

The GateMate™ FPGA can be configured from four different sources:

- 1. The configuration process is controlled by the FPGA itself where it acts in SPI active mode, e.g. after reset. Configuration data is read from an external Flash memory.
- 2. A processor unit operating as SPI in active mode feeds the configuration data to the FPGA which acts in SPI passive mode.
- 3. The JTAG interface of the FPGA connects to a JTAG test & programming adapter.
- 4. User configured logic of the FPGA can feed configuration data to the FPGA itself.

With the rising edge of the reset signal the configuration mode setup at pins CFG_MD[3:0] gets captured as shown in Table 3.1. These pins must always be connected to either GND or VDD_WA.

Table 3.1: Configuration mode setup

CFG_MD[3:0]*		Configuration mode	
0x0	0000	SPI Active Mode	CPOL = 0, CPHA = 0
0x1	0001	SPI Active Mode	CPOL = 0, CPHA = 1
0x2	0010	SPI Active Mode	CPOL = 1, CPHA = 0
0x3	0011	SPI Active Mode	CPOL = 1, CPHA = 1
0x4	0100	SPI Passive Mode	CPOL = 0, CPHA = 0
0x5	0101	SPI Passive Mode	CPOL = 0, CPHA = 1
0x6	0110	SPI Passive Mode	CPOL = 1, CPHA = 0
0x7	0111	SPI Passive Mode	CPOL = 1, CPHA = 1
0xC	1100	JTAG	

^{*} Modes not mentioned in the list may not be selected and lead to a malfunction of the device.

3.3.2 SPI Configuration

The SPI bus of GateMate™ FPGA can be used to load the configuration either in SPI active or passive mode. Both modes use the same pins. Typically, a Flash memory is connected to the SPI bus to provide the configuration data. Figure 3.2 shows a typical circuitry which uses only single-I/O or dual-I/O mode. The Flash signals I/O_2 and I/O_3 can have further functions depending on the used device and should have pull-up resistors in most cases.

Figure 3.2: Configuration data from Flash memory in SPI single-I/O or dual-I/O mode

When SPI quad-I/O mode is used, Figure 3.3 shows the typical circuitry. Now, all data lines are connected and no pull-up resistors are required. Depending on the used Flash device, pull-up resistors are recommended at I/O_2 and I/O_3 signals.

Figure 3.3: Configuration data from Flash memory in SPI quad-I/O mode

Finally, Figure 3.4 shows two GateMate™ FPGAs using the same SPI configuration data source. This is done using the SPI forward function. Only SPI single-I/O mode can be used in this case.

The GateMate™ FPGA is able to load it's configuration automatically after reset. No external clock is required. When SPI active Mode is set up, the rising edge of RST_N starts reading the configuration data from the Flash memory. The internal clock needs no external reference clock. If an external reference clock is available, the configuration stream can set up a PLL to any configuration clock frequency.

DS1001 December 2020 35 of 60

Figure 3.4: Configuration data stream from a single Flash memory

When operating in SPI active mode, error detection and correction is done automatically. In this case a short CFG_FAILED_N pulse is given and the failed configuration sequence will be re-read.

When operating in SPI passive mode, the configuration controller can only react on the incoming data stream while the external device in SPI active mode is in control over the bus.

The signals CFG_DONE and CFG_FAILED_N indicate the end of the configuration process as described in Table 3.2.

Table 3.2: Configuration process state

CFG_DONE	CFG_FAILED_N	Description
0	0 *	Invalid state
0	1	Configuration procedure is still in progress
1	0 *	Unable to load configuration. Data stream might be invalid
1	1 **	Configuration successful

^{*} Only long CFG_FAILED_N pulses. Short pulses have no significance.

CFG_FAILED_N requires a pull-up resistor. If multiple FPGAs are configured from a single Flash memory, all CFG_FAILED_N have to be connected as shown in Figure 3.5.

^{**} CFG_DONE might not be retrievable in case the configuration bank is set to user mode.

Figure 3.5: Connection of CFG_DONE and CFG_FAILED_N signals in multi-FPGA applications with a single Flash memory

DS1001 December 2020 37 of 60

Chapter 4

Electrical Characteristics

Table 4.1: Absolute maximum ratings

Symbol	Min	Тур	Max	Unit	Description
	-40		125	°C	Junction temperature
VDD_IO			2.75	V	I/O supply voltage (GPIO banks and VDD_CLK)
VDD _{core}			1.20	V	Core supply voltage (VDD_CORE, VDD_PLL, VDD_SER and VDD_SER_PLL)

Table 4.2: Operation range

Symbol	Min	Тур	Max	Unit	Description
	-20		85	°C	Operating temperature
VDD _{low power}	0.85	0.9	0.95	V	Core supply voltage (VDD_CORE, VDD_PLL) in low power mode
$VDD_{economy}$	0.95	1.0	1.05	V	Core supply voltage (VDD_CORE, VDD_PLL) in economy mode
VDD_{speed}	1.05	1.1	1.15	V	Core supply voltage (VDD_CORE, VDD_PLL) in speed mode
VDD _{SER}	0.95		1.15	٧	SerDes supply voltage (VDD_SER)
VDD _{SER_PLL}	0.95		1.15	V	SerDes PLL supply voltage (VDD_SER_PLL)

DS1001 December 2020 39 of 60

Table 4.3: GPIO characteristics in single-ended mode

Symbol	Min	Typ	Max	Unit	Description	
	IVIIII	Тур	IVIdX	UIIIL	Description	
VDD _{IO}	1.1		2.7	V	I/O supply voltage (GPIO banks and VDD_CLK)	
V _{IN}	-0.4		VDD _{IO} +04	V	Input voltage range	
Schmitt-tr	igger fu	unction	n disabled:			
V_{IH}	0.43		0.51	VDD_IO	Input high threshold voltage	
V_{IL}	0.45		0.51	VDD_IO	Input low threshold voltage	
V_{HYST}		0		V	Hysteresis	
Schmitt-tr	igger fu	ınctior	n enabled:			
V_{IH}	0.61		0.67	VDD_{IO}	Input high threshold voltage	
V_{IL}	0.31		0.39	VDD_{IO}	Input low threshold voltage	
V_{HYST}	0.26		0.33	VDD_IO	Hysteresis	
Output dri	ver dis	abled:				
I_{IL}			1	μΑ	Input pin current when driven active low	
I _{IH}			1	μΑ	Input pin current when driven active high	
R _{PU}		50		kΩ	Pull-up resistance	
R_{PD}		50		kΩ	Pull-down resistance	
I _{DD, max}			158	μΑ	Maximum supply current at GPIO input at transition point	

Table 4.4: GPIO characteristics in LVDS mode

Symbol	Min	Тур	Max	Unit	Description
VDD_{IO}	1.62		2.75	٧	I/O supply voltage
l _{out}		3.2		mA	Output current when LVDS output current boost is set to nominal current
l _{out}		6.4		mA	Output current when LVDS output current boost is set to increased output current
VCM_{TX}		VDD _{IO} /2		V	
R _{term}	90	100	130	Ω	

Table 4.5: PLL characteristics

Symbol	Min	Тур	Max	Unit	Description
t _{lock}			1100	Number of ref. clock cycles	Lock in time (coarse tune, fast-lock mode) with lock detection
t _{lock}			57	Number of ref. clock cycles	Lock in time (coarse tune, fast-lock mode) without lock detection
f _{DCO, low power}	500		1000	MHz	DCO frequency in low power mode
$f_{DCO,economy}$	1000		2000	MHz	DCO frequency in economy mode
$f_{DCO,speed}$	1250		2500	MHz	DCO frequency in speed mode
T _{DCO, step}			10	ps	DCO period tuning step size

DS1001 December 2020 41 of 60

Chapter 5 Pinout

5.1 CCGM1A1 324-Ball FBGA Pinout

The GateMate™ FPGA CCGM1A1 has a 18×18 pin 0.8 mm Fine-pitch Ball Grid Array (FBGA) package with 324 balls.

GPIO ball arrangement is defined for 4-layer PCB layout with only 2 signal layers.

DS1001 December 2020 43 of 60

Figure 5.1: CCGM1A1 FBGA pinout

Figure 5.2: Configuration pads of CCGM1A1 BGA pinout for use as GPIO after configuration

5.2 CCGM1A1 Pinout Description

Table 5.1: Pad Types

Color	Pad Types	Pads
	North GPIO banks NA and NB Each bank has 18 GPIO signals and both have separate power supply balls and can be driven individually. GPIO signals are grouped by pairs and each pair can get configured to be either two single ended or a differential pair signal.	36
	East GPIO banks EA and EB Each bank has 18 GPIO signals and both have separate power supply balls and can be driven individually. GPIO signals are grouped by pairs and each pair can get configured to be either two single ended or a differential pair signal.	36
	South GPIO banks SA and SB Each bank has 18 GPIO signals and both have separate power supply balls and can be driven individually. GPIO signals are grouped by pairs and each pair can get configured to be either two single ended or a differential pair signal.	36
	Configuration pads or west GPIO bank WA alternatively The configuration interface consists of 18 pads. After configuration procedure, these balls can be configured to be normal GPIO signals. They are grouped by pairs and each pair can get configured to be either two single ended or a differential pair signal.	18
	West GPIO banks WB and WC Each bank has 18 GPIO signals and both have separate power supply balls and can be driven individually. GPIO signals are grouped by pairs and each pair can get configured to be either two single ended or a differential pair signal.	36
	SerDes signal pads The SerDes interface consists of differential transmit and receive signals and a termination input pad. Furthermore, dedicated power supply exists to the SerDes interface and the SerDes PLL function.	5
	Power supply pads for FPGA core and GPIO GateMate™ FPGAcore gets supplied from a single power source. The GPIO banks have own power supply pads each. Additionally, some further power supply pads are available for SerDes and other functions.	78
	Ground pads GateMate™ FPGAhas a single ground level for all supply voltages. All ground pads must be connected.	74
	Any other pads Clock input (single ended or differential), Reset input and power-on reset adjustment input are available in this pad group.	5

DS1001 December 2020 45 of 60

Table 5.2: CCGM1A1 Pad list sorted by ball name

Ball		Signal name	Signal group	Description
	A1	GND	Ground	
	A2	VDD_WC	Power	3rd GPIO west bank power supply
	А3	IO_NA_A0	GPIO	1st GPIO north bank signal A0
	A4	IO_NA_A1	GPIO	1st GPIO north bank signal A1
	A5	VDD_NA	Power	1st GPIO north bank power supply
	A6	IO_NA_A4	GPIO	1st GPIO north bank signal A4
	A7	GND	Ground	
	A8	IO_NA_A7	GPIO	1st GPIO north bank signal A7
	Α9	IO_NB_B0	GPIO	2nd GPIO north bank signal B0
	A10	GND	Ground	
	A11	IO_NB_B2	GPIO	2nd GPIO north bank signal B2
	A12	IO_NB_B4	GPIO	2nd GPIO north bank signal B4
	A13	GND	Ground	
	A14	IO_NB_B7	GPIO	2nd GPIO north bank signal B7
	A15	IO_EB_B8	GPIO	2nd GPIO east bank signal B8
	A16	VDD_EB	Power	2nd GPIO east bank power supply
	A17	IO_EB_B5	GPIO	2nd GPIO east bank signal B5
	A18	GND	Ground	
	B1	IO_WC_A8	GPIO	3rd GPIO west bank signal A8
	B2	IO_WC_B8	GPIO	3rd GPIO west bank signal B8
	В3	IO_NA_B0	GPIO	1st GPIO north bank signal B0
	B4	IO_NA_B1	GPIO	1st GPIO north bank signal B1
	B5	IO_NA_A2	GPIO	1st GPIO north bank signal A2
	B6	IO_NA_B4	GPIO	1st GPIO north bank signal B4
	B7	VDD_NA	Power	1st GPIO north bank power supply
	B8	IO_NA_B7	GPIO	1st GPIO north bank signal B7
	В9	IO_NB_A0	GPIO	2nd GPIO north bank signal A0
	B10	VDD_NB	Power	2nd GPIO north bank power supply
	B11	IO_NB_A2	GPIO	2nd GPIO north bank signal A2
	B12	IO_NB_A4	GPIO	2nd GPIO north bank signal A4
	B13	VDD_NB	Power	2nd GPIO north bank power supply
	B14	IO_NB_A7	GPIO	2nd GPIO north bank signal A7
	B15	IO_EB_A8	GPIO	2nd GPIO east bank signal A8

Continued on next page

Table 5.2: CCGM1A1 Pad list sorted by ball name

Ball		Signal name	Signal group	Description
	B16	GND	Ground	
	B17	IO_EB_A5	GPI0	2nd GPIO east bank signal A5
	B18	VDD_EB	Power	2nd GPIO east bank power supply
	C1	GND	Ground	
	C2	VDD_WC	Power	3rd GPIO west bank power supply
	C3	IO_WC_A7	GPI0	3rd GPIO west bank signal A7
	C4	IO_WC_B7	GPI0	3rd GPIO west bank signal B7
	C5	IO_NA_B2	GPI0	1st GPIO north bank signal B2
	C6	IO_NA_A3	GPI0	1st GPIO north bank signal A3
	C7	IO_NA_A5	GPI0	1st GPIO north bank signal A5
	C8	IO_NA_A6	GPI0	1st GPIO north bank signal A6
	C9	IO_NA_A8	GPI0	1st GPIO north bank signal A8
	C10	IO_NB_B1	GPI0	2nd GPIO north bank signal B1
	C11	IO_NB_B3	GPI0	2nd GPIO north bank signal B3
	C12	IO_NB_B5	GPI0	2nd GPIO north bank signal B5
	C13	IO_NB_B6	GPI0	2nd GPIO north bank signal B6
	C14	IO_NB_B8	GPIO	2nd GPIO north bank signal B8
	C15	IO_EB_B7	GPI0	2nd GPIO east bank signal B7
	C16	IO_EB_B6	GPI0	2nd GPIO east bank signal B6
	C17	IO_EB_B4	GPI0	2nd GPIO east bank signal B4
	C18	IO_EB_A4	GPI0	2nd GPIO east bank signal A4
	D1	IO_WC_A5	GPI0	3rd GPIO west bank signal A5
	D2	IO_WC_B5	GPI0	3rd GPIO west bank signal B5
	D3	IO_WC_A6	GPI0	3rd GPIO west bank signal A6
	D4	IO_WC_B6	GPI0	3rd GPIO west bank signal B6
	D5	VDD_WC	Power	3rd GPIO west bank power supply
	D6	IO_NA_B3	GPI0	1st GPIO north bank signal B3
	D7	IO_NA_B5	GPI0	1st GPIO north bank signal B5
	D8	IO_NA_B6	GPI0	1st GPIO north bank signal B6
	D9	IO_NA_B8	GPI0	1st GPIO north bank signal B8
	D10	IO_NB_A1	GPI0	2nd GPIO north bank signal A1
	D11	IO_NB_A3	GPI0	2nd GPIO north bank signal A3

Continued on next page

DS1001 December 2020 47 of 60

			_	
- 1	7in	ou	t	

Table 5.2: CCGM1A1 Pad list sorted by ball name

Ball		Signal name	Signal group	Description
	D12	IO_NB_A5	GPIO	2nd GPIO north bank signal A5
	D13	IO_NB_A6	GPI0	2nd GPIO north bank signal A6
	D14	IO_NB_A8	GPI0	2nd GPIO north bank signal A8
	D15	IO_EB_A7	GPI0	2nd GPIO east bank signal A7
	D16	IO_EB_A6	GPIO	2nd GPIO east bank signal A6
	D17	IO_EB_B2	GPI0	2nd GPIO east bank signal B2
	D18	IO_EB_A2	GPI0	2nd GPIO east bank signal A2
	E1	IO_WC_A3	GPIO	3rd GPIO west bank signal A3
	E2	IO_WC_B3	GPI0	3rd GPIO west bank signal B3
	E3	IO_WC_A4	GPIO	3rd GPIO west bank signal A4
	E4	IO_WC_B4	GPI0	3rd GPIO west bank signal B4
	E5	GND	Ground	
	E6	VDD_NA	Power	1st GPIO north bank power supply
	E7	GND	Ground	
	E8	VDD_NA	Power	1st GPIO north bank power supply
	E9	GND	Ground	
	E10	VDD_NB	Power	2nd GPIO north bank power supply
	E11	GND	Ground	
	E12	VDD_NB	Power	2nd GPIO north bank power supply
	E13	GND	Ground	
	E14	VDD_EB	Power	2nd GPIO east bank power supply
	E15	IO_EB_B3	GPI0	2nd GPIO east bank signal B3
	E16	IO_EB_A3	GPI0	2nd GPIO east bank signal A3
	E17	VDD_EB	Power	2nd GPIO east bank power supply
	E18	GND	Ground	
	F1	GND	Ground	
	F2	VDD_WC	Power	3rd GPIO west bank power supply
	F3	IO_WC_A2	GPIO	3rd GPIO west bank signal A2
	F4	IO_WC_B2	GPIO	3rd GPIO west bank signal B2
	F5	VDD_WC	Power	3rd GPIO west bank power supply
	F6	GND	Ground	
	F7	VDD_NA	Power	1st GPIO north bank power supply

Continued on next page

Table 5.2: CCGM1A1 Pad list sorted by ball name

Ball		Signal name	Signal group	Description
	F8	GND	Ground	
	F9	VDD	Power	Core power supply
	F10	GND	Ground	
	F11	VDD_NB	Power	2nd GPIO north bank power supply
	F12	GND	Ground	
	F13	VDD_EB	Power	2nd GPIO east bank power supply
	F14	GND	Ground	
	F15	IO_EB_B1	GPIO	2nd GPIO east bank signal B1
	F16	IO_EB_A1	GPIO	2nd GPIO east bank signal A1
	F17	IO_EB_B0	GPIO	2nd GPIO east bank signal B0
	F18	IO_EB_A0	GPIO	2nd GPIO east bank signal A0
	G1	IO_WC_A0	GPIO	3rd GPIO west bank signal A0
	G2	IO_WC_B0	GPIO	3rd GPIO west bank signal B0
	G3	IO_WC_A1	GPIO	3rd GPIO west bank signal A1
	G4	IO_WC_B1	GPIO	3rd GPIO west bank signal B1
	G5	GND	Ground	
	G6	VDD	Power	Core power supply
	G7	GND	Ground	
	G8	VDD	Power	Core power supply
	G9	GND	Ground	
	G10	VDD	Power	Core power supply
	G11	GND	Ground	
	G12	VDD	Power	Core power supply
	G13	GND	Ground	
	G14	VDD_EA	Power	1st GPIO east bank power supply
	G15	IO_EA_B8	GPI0	1st GPIO east bank signal B8
	G16	IO_EA_A8	GPI0	1st GPIO east bank signal A8
	G17	IO_EA_B7	GPI0	1st GPIO east bank signal B7
	G18	IO_EA_A7	GPI0	1st GPIO east bank signal A7
	H1	IO_WB_A7	GPI0	2nd GPIO west bank signal A7
	H2	IO_WB_B7	GPI0	2nd GPIO west bank signal B7
	Н3	IO_WB_A8	GPIO	2nd GPIO west bank signal A8

Continued on next page

DS1001 December 2020 49 of 60

٠.				
PΙΙ	no	u	1	

Table 5.2: CCGM1A1 Pad list sorted by ball name

Ball		Signal name	Signal group	Description
	H4	IO_WB_B8	GPI0	2nd GPIO west bank signal B8
	H5	VDD_WB	Power	2nd GPIO west bank power supply
	Н6	GND	Ground	
	H7	VDD	Power	Core power supply
	Н8	GND	Ground	
	H9	VDD	Power	Core power supply
	H10	GND	Ground	
	H11	VDD	Power	Core power supply
	H12	GND	Ground	
	H13	VDD	Power	Core power supply
	H14	GND	Ground	
	H15	IO_EA_B6	GPIO	1st GPIO east bank signal B6
	H16	IO_EA_A6	GPIO	1st GPIO east bank signal A6
	H17	VDD_EA	Power	1st GPIO east bank power supply
	H18	GND	Ground	
	J1	GND	Ground	
	J2	VDD_WB	Power	2nd GPIO west bank power supply
	J3	IO_WB_A6	GPIO	2nd GPIO west bank signal A6
	J4	IO_WB_B6	GPIO	2nd GPIO west bank signal B6
	J5	GND	Ground	
	J6	VDD	Power	Core power supply
	J7	GND	Ground	
	J8	VDD	Power	Core power supply
	J9	GND	Ground	
	J10	VDD	Power	Core power supply
	J11	GND	Ground	
	J12	VDD	Power	Core power supply
	J13	GND	Ground	
	J14	VDD_EA	Power	1st GPIO east bank power supply
	J15	IO_EA_B5	GPI0	1st GPIO east bank signal B5
	J16	IO_EA_A5	GPI0	1st GPIO east bank signal A5
	J17	IO_EA_B4	GPIO	1st GPIO east bank signal B4

Continued on next page

Table 5.2: CCGM1A1 Pad list sorted by ball name

Ball		Signal name	Signal group	Description
	J18	IO_EA_A4	GPIO	1st GPIO east bank signal A4
	K1	IO_WB_A5	GPI0	2nd GPIO west bank signal A5
	K2	IO_WB_B5	GPI0	2nd GPIO west bank signal B5
	K3	IO_WB_A4	GPI0	2nd GPIO west bank signal A4
	K4	IO_WB_B4	GPI0	2nd GPIO west bank signal B4
	K5	VDD_WB	Power	2nd GPIO west bank power supply
	K6	GND	Ground	
	K7	VDD	Power	Core power supply
	K8	GND	Ground	
	K9	VDD	Power	Core power supply
	K10	GND	Ground	
	K11	VDD	Power	Core power supply
	K12	GND	Ground	
	K13	VDD	Power	Core power supply
	K14	GND	Ground	
	K15	IO_EA_B3	GPIO	1st GPIO east bank signal B3
	K16	IO_EA_A3	GPI0	1st GPIO east bank signal A3
	K17	IO_EA_B2	GPIO	1st GPIO east bank signal B2
	K18	IO_EA_A2	GPIO	1st GPIO east bank signal A2
	L1	IO_WB_A3	GPI0	2nd GPIO west bank signal A3
	L2	IO_WB_B3	GPI0	2nd GPIO west bank signal B3
	L3	IO_WB_A2	GPI0	2nd GPIO west bank signal A2
	L4	IO_WB_B2	GPI0	2nd GPIO west bank signal B2
	L5	GND	Ground	
	L6	VDD	Power	Core power supply
	L7	GND	Ground	
	L8	VDD	Power	Core power supply
	L9	GND	Ground	
	L10	VDD	Power	Core power supply
	L11	GND	Ground	
	L12	VDD	Power	Core power supply
	L13	GND	Ground	

Continued on next page

DS1001 December 2020 51 of 60

_			_	
P	in	ΛI	ıt	

Table 5.2: CCGM1A1 Pad list sorted by ball name

Ball		Signal name	Signal group	Description
	L14	VDD_EA	Power	1st GPIO east bank power supply
	L15	IO_EA_B1	GPIO	1st GPIO east bank signal B1
	L16	IO_EA_A1	GPI0	1st GPIO east bank signal A1
	L17	VDD_EA	Power	1st GPIO east bank power supply
	L18	GND	Ground	
	M1	GND	Ground	
	M2	VDD_WB	Power	2nd GPIO west bank power supply
	М3	IO_WB_A1	GPIO	2nd GPIO west bank signal A1
	M4	IO_WB_B1	GPIO	2nd GPIO west bank signal B1
	M5	VDD_WB	Power	2nd GPIO west bank power supply
	M6	GND	Ground	
	M7	VDD	Power	Core power supply
	M8	GND	Ground	
	M9	VDD	Power	Core power supply
	M10	GND	Ground	
	M11	VDD	Power	Core power supply
	M12	GND	Ground	
	M13	VDD	Power	Core power supply
	M14	IO_EA_B0	GPIO	1st GPIO east bank signal B0
	M15	IO_EA_A0	GPIO	1st GPIO east bank signal A0
	M16	GND	Ground	
	M17	IO_SB_A3	GPIO	2nd GPIO south bank signal A3
	M18	IO_SB_B3	GPIO	2nd GPIO south bank signal B3
	N1	IO_WB_A0	GPIO	2nd GPIO west bank signal A0
	N2	IO_WB_B0	GPIO	2nd GPIO west bank signal B0
	N3	SPI_CS_N IO_WA_A8	GPIO GPIO	1st function: Configuration SPI chip select 2nd function: 1st GPIO west bank signal A8
	N4	SPI_CLK IO_WA_B8	GPIO GPIO	1st function: Configuration SPI clock 2nd function: 1st GPIO west bank signal B8
	N5	VDD_WA	Power	1st GPIO west bank power supply
	N6	VDD	Power	Core power supply
	N7	GND	Ground	
	N8	VDD	Power	Core power supply

Continued on next page

Table 5.2: CCGM1A1 Pad list sorted by ball name

Ball		Signal name	Signal group	Description
	N9	GND	Ground	
	N10	VDD	Power	Core power supply
	N11	VDD_SB	Power	2nd GPIO south bank power supply
	N12	GND	Ground	
	N13	VDD_SB	Power	2nd GPIO south bank power supply
	N14	IO_SB_A8 CLK1	GPIO GPIO	1st function: 2nd GPIO south bank signal A8 2nd function: 1st clock input
	N15	IO_SB_B8	GPIO	2nd GPIO south bank signal B8
	N16	N.C.	Other	Not connected and must be left open
	N17	GND	Ground	
	N18	VDD_SB	Power	2nd GPIO south bank power supply
	P1	SPI_D1 IO_WA_A7	GPIO GPIO	1st function: Configuration SPI data bit 1 2nd function: 1st GPIO west bank signal A7
	P2	SPI_D0 IO_WA_B7	GPIO GPIO	1st function: Configuration SPI data bit 0 2nd function: 1st GPIO west bank signal B7
	Р3	VDD_WA	Power	1st GPIO west bank power supply
	P4	GND	Ground	
	P5	VDD_WA	Power	1st GPIO west bank power supply
	P6	VDD_SA	Power	1st GPIO south bank power supply
	P7	GND	Ground	
	P8	VDD_SA	Power	1st GPIO south bank power supply
	P9	GND	Ground	
	P10	VDD_SA	Power	1st GPIO south bank power supply
	P11	IO_SB_A4	GPIO	2nd GPIO south bank signal A4
	P12	IO_SB_A7 CLK2	GPIO GPIO	1st function: 2nd GPIO south bank signal A7 2nd function: 2nd clock input
	P13	IO_SB_B7	GPIO	2nd GPIO south bank signal B7
	P14	IO_SB_A6 CLK3	GPIO GPIO	1st function: 2nd GPIO south bank signal A6 2nd function: 3rd clock input
	P15	IO_SB_B6	GPI0	2nd GPIO south bank signal B6
	P16	VDD_PLL	Power	PLL power supply
	P17	IO_SB_A2	GPI0	2nd GPIO south bank signal A2
	P18	IO_SB_B2	GPIO	2nd GPIO south bank signal B2

Continued on next page

DS1001 December 2020 53 of 60

Pin	out	t	

Table 5.2: CCGM1A1 Pad list sorted by ball name

Ball		Signal name	Signal group	Description
	R1	SPI_D3 IO_WA_A6	GPIO GPIO	1st function: Configuration SPI data bit 3 2nd function: 1st GPIO west bank signal A6
	R2	SPI_D2 IO_WA_B6	GPIO GPIO	1st function: Configuration SPI data bit 2 2nd function: 1st GPIO west bank signal B6
	R3	JTAG_TCK IO_WA_A5	GPIO GPIO	1st function: Configuration JTAG clock 2nd function: 1st GPIO west bank signal A5
	R4	SPI_FWD IO_WA_B5	GPIO GPIO	1st function: Configuration SPI data forward 2nd function: 1st GPIO west bank signal B5
	R5	CFG_MD0 IO_WA_A0	GPIO GPIO	1st function: Configuration mode bit 0 2nd function: 1st GPIO west bank signal A0
	R6	IO_SA_A1	GPIO	1st GPIO south bank signal A1
	R7	IO_SA_A2	GPIO	1st GPIO south bank signal A2
	R8	IO_SA_A4	GPIO	1st GPIO south bank signal A4
	R9	IO_SA_A6	GPIO	1st GPIO south bank signal A6
	R10	IO_SA_A7	GPIO	1st GPIO south bank signal A7
	R11	IO_SB_B4	GPIO	2nd GPIO south bank signal B4
	R12	GND	Ground	
	R13	IO_SB_A5 CLK4	GPIO GPIO	1st function: 2nd GPIO south bank signal A5 2nd function: 4th clock input
	R14	IO_SB_B5	GPIO	2nd GPIO south bank signal B5
	R15	VDD_SB	Power	2nd GPIO south bank power supply
	R16	GND	Ground	
	R17	IO_SB_A1	GPIO	2nd GPIO south bank signal A1
	R18	IO_SB_B1	GPIO	2nd GPIO south bank signal B1
	T1	VDD_WA	Power	1st GPIO west bank power supply
	T2	JTAG_TDI IO_WA_A4	GPIO GPIO	1st function: JTAG data input 2nd function: 1st GPIO west bank signal A4
	Т3	JTAG_TMS IO_WA_B4	GPIO GPIO	1st function: JTAG test mode select 2nd function: 1st GPIO west bank signal B4
	T4	GND	Ground	
	T5	CFG_MD1 IO_WA_B0	GPIO GPIO	1st function: Configuration mode bit 1 2nd function: 1st GPIO west bank signal B0
	T6	IO_SA_B1	GPIO	1st GPIO south bank signal B1
	T7	IO_SA_B2	GPIO	1st GPIO south bank signal B2

Continued on next page

Table 5.2: CCGM1A1 Pad list sorted by ball name

Ball		Signal name	Signal group	Description
	T8	IO_SA_B4	GPI0	1st GPIO south bank signal B4
	T9	IO_SA_B6	GPIO	1st GPIO south bank signal B6
	T10	IO_SA_B7	GPI0	1st GPIO south bank signal B7
	T11	GND	Ground	
	T12	SER_CLK	Other	SerDes clock: positive LVDS signal (or common use clock single ended)
	T13	SER_CLK_N	Other	SerDes clock: negative LVDS signal
	T14	VDD_CLK	Power	Clock signal power supply
	T15	RST_N	Other	Reset
	T16	VDD_SER_PLL	Power	SerDes PLL power supply (1.0 V to 1.1 V \pm 50 mV)
	T17	GND	Ground	
	T18	VDD_SB	Power	2nd GPIO south bank power supply
	U1	POR_EN IO_WA_A3	GPIO GPIO	1st function: Enable power-on reset 2nd function: 1st GPIO west bank signal A3
	U2	JTAG_TDO IO_WA_B3	GPIO GPIO	1st function: JTAG data output 2nd function: 1st GPIO west bank signal B3
	U3	VDD_WA	Power	1st GPIO west bank power supply
	U4	CFG_MD2 IO_WA_A1	GPIO GPIO	1st function: Configuration mode bit 2 2nd function: 1st GPIO west bank signal A1
	U5	IO_SA_A0	GPIO	1st GPIO south bank signal A0
	U6	VDD_SA	Power	1st GPIO south bank power supply
	U7	IO_SA_A3	GPIO	1st GPIO south bank signal A3
	U8	IO_SA_A5	GPI0	1st GPIO south bank signal A5
	U9	VDD_SA	Power	1st GPIO south bank power supply
	U10	IO_SA_A8	GPIO	1st GPIO south bank signal A8
	U11	SER_RX_P	SerDes	Receive data line: positive LVDS signal
	U12	VDD_SER	Power	SerDes core power supply (1.0 V to 1.1 V \pm 50 mV)
	U13	SER_TX_P	SerDes	Transmit data line: positive LVDS signal
	U14	GND	Ground	
	U15	GND	Ground	
	U16	GND	Ground	
	U17	IO_SB_A0	GPI0	2nd GPIO south bank signal A0
	U18	IO_SB_B0	GPI0	2nd GPIO south bank signal B0

Continued on next page

DS1001 December 2020 55 of 60

P	ino	ııt	

Table 5.2: CCGM1A1 Pad list sorted by ball name

Ball	Ball Signal name Signal group		Signal group	Description
	V1	GND	Ground	
	V2	CFG_FAILED IO_WA_A2	GPIO GPIO	1st function: Configuration failed signal 2nd function: 1st GPIO west bank signal A2
	V3	CFG_DONE IO_WA_B2	GPIO GPIO	1st function: Configuration done signal 2nd function: 1st GPIO west bank signal B2
	V4	CFG_MD3 IO_WA_B1	GPIO GPIO	1st function: Configuration mode bit 3 2nd function: 1st GPIO west bank signal B1
	V5	IO_SA_B0	GPIO	1st GPIO south bank signal B0
	V6	GND	Ground	
	V 7	IO_SA_B3	GPIO	1st GPIO south bank signal B3
	V8	IO_SA_B5	GPIO	1st GPIO south bank signal B5
	V9	GND	Ground	
	V10	IO_SA_B8	GPIO	1st GPIO south bank signal B8
	V11	SER_RX_N	SerDes	Receive data line: negative LVDS signal
	V12	SER_RTERM	SerDes	Line termination
	V13	SER_TX_N	SerDes	Transmit data line: negative LVDS signal
	V14	GND	Ground	
	V15	POR_ADJ	Other	Power-on-Reset level adjustment
	V16	GND	Ground	
	V17	VDD_SER	Power	SerDes core power supply (1.0 V to 1.1 V \pm 50 mV)
	V18	GND	Ground	

Chapter 6

Mechanical Dimensions

DS1001 December 2020 57 of 60

Figure 6.1: FBGA 324 package dimensions

Acronyms

BSDL Boundary Scan Description Language.

CPE Central Programming Element.

DDR Double Data Rate.

DPSRAM Dual Port SRAM.

ECC Error Checking and Correction.

FBGA Fine-pitch Ball Grid Array.

FSM Finite State Machine.

GPIO General Purpose Input/Output.

IPCEI Important Project of Common European Interest.

LSB Least Significant Bit.

LVDS Low-Voltage Differential Signaling.

PLL Phase Locked Loop.

SB Switch Box.

SerDes Serializer/Deserializer.

TAP Test Access Point.

TCK Test Clock.

TDI Test Data Input.

TDO Test Data Output.

TMS Test Mode Select.

DS1001 December 2020 59 of 60

GateMate™ FPGA Datasheet DS1001 December 2020

