

Leging inlorpdilion (no, 2) (n, y,) (n, y)

(no, 2) (1, y,) (n, y)

(no, 2) (1, y,) (n, y)

(no, 2) (n, y,) (n, y)

(no, 2) (n, y,) (n, y)

(no, 2) (no, y)

(no, 2) NEVIlles Method Mx - n; hx - n; n; -n; n; n; Mx - xx + xx + xx = 1 -0 Por = ?11 800

Janey Johnwill 1.5-1.6 f(1.3) + (1.5-1.3) /(1.6) f(x)0.76 5/(1.2) = Q. 5102 P₁(11) = 20.5128 | P₃ (Most claver) Pu = 0.51182 1.5 = 0.5118277

Algorithm: Input (xo,yo), (x,y) -- (xn,yn), X for k=0 to n Pxx=yx for d=1 +0 v PKK = JK for i=0 to n-d d+c $P_{ij} = \frac{P_{i+1,j}(x-x_i) - P_{i,j-1}(x-x_j)}{P_{ij}}$ Xj-XC retur ~

Solution In the construction, five successive polynomials appear; these are labeled p_0 , p_1 , p_2 , p_3 , and p_4 . The polynomial p_0 is defined to be

Polynomials p₀, p₁, p₂, p₃, p₄

$$p_0(x) = -5$$

The polynomial p_1 has the form

$$p_1(x) = p_0(x) + c(x - x_0) = -5 + c(x - 0)$$

The interpolation condition placed on p_1 is that $p_1(1) = -3$. Therefore, we have -5 + c(1-0) = -3. Hence, c = 2, and p_1 is

$$p_1(x) = -5 + 2x$$

The polynomial p_2 has the form

$$p_2(x) = p_1(x) + c(x - x_0)(x - x_1) = -5 + 2x + cx(x - 1)$$

The interpolation condition placed on p_2 is that $p_2(-1) = -15$. Hence, we have -5 + 2(-1) + c(-1)(-1 - 1) = -15. This yields c = -4, so

$$p_2(x) = -5 + 2x - 4x(x-1)$$

The remaining steps for $p_3(x)$ are similar. The final result is the Newton form of the interpolating polynomial:

$$p_4(x) = -5 + 2x - 4x(x-1) + 8x(x-1)(x+1) + 3x(x-1)(x+1)(x-2)$$

```
Devively.
                 Pa(n) = a. + a,(n-n.) + 92(n.x.) 7-2, + -
                    P, (n) = a = 3 (no)
                     Pn (n1) = a. + 6, (2- n.)
                                                                              = a, + a,(4,-4.) = 4,
                                                                                          Q_1: Y_1-Y_2 - \{(\lambda, \lambda, \lambda)\}
              d (n.) = 4. / d (hn) = 4n
                                                                           1 ( ), , n, ) = 1 (h,)
                                                                       1 (no no no no) - 1 (n, no) - f(n, n)
                   az= /[x., 7,, 2)
                      as - / ( h. , h., h., h.)
                                   7. 7. 7:3] f(n): 9. + a, ( n-1)
                                                                                                                                                                                                              -1 02 ( 7. 7) (N- N)
                                    \frac{1}{2} \frac{1}
                                                                                                                                                                                                                                                                 1 (1, in) - + q(in-)
                                                                                                                                                         / ( yo 1 y 1 1 yr) =
```

$$(3,-10)$$
 and on more point
$$(3,-10) \times (10.14) \times (10.14) = -10$$

$$(3,-10) \times (10.14) = -10$$

$$(3,-$$

