Recordemos un ejercicio que vimos anteriormente

- a) Escriba la ecuación diferencial de movimiento de cada masa en la aproximación de pequeñas oscilaciones.
- b) Obtenga las frecuencias naturales de oscilación y los correspondientes modos normales.
- c) Determine la solución si en el tiempo inicial el sistema se encuentra en el equilibrio y su velocidad es [-1, 0, 1] m/s.
- d) Determine todas las condiciones iniciales tales que el sistema oscile solo en los dos modos de mayor frecuencia.

¿Cómo habíamos planteado las condiciones iniciales?

Veamos la posición inicial

- Necesitamos como dato la posición inicial de cada masa
- Escribimos la solución general con coeficientes que no conocemos:

$$\overrightarrow{m{\Psi}} = c_1 \overrightarrow{m{a_1}} e^{i\omega_1 t} + c_2 \overrightarrow{m{a_2}} e^{i\omega_2 t} + c_3 \overrightarrow{m{a_3}} e^{i\omega_3 t}$$

Evaluamos en t = 0 y juntamos todo:

$$\mathbf{\Phi}(t=0) = \mathbf{\Phi}_0 = c_1 \mathbf{a}_1 + c_2 \mathbf{a}_2 + c_3 \mathbf{a}_3$$

Tomábamos parte real:

$$oldsymbol{\Phi}_0 = \mathfrak{R}[c_1] oldsymbol{\dot{a_1}} + \mathfrak{R}[c_2] oldsymbol{\dot{a_2}} + \mathfrak{R}[c_3] oldsymbol{\dot{a_3}} \ \ lacktriangleleft = c_j = lpha_j + ieta_j$$

- Debíamos hallar tres incógnitas y para eso invertíamos el sistema de ecuaciones.
- Hoy vamos a tomar un camino alternativo...

Veamos otra manera de lograr lo mismo

Quiero hallar mis tres incógnitas:

$$\mathbf{\vec{\Psi}}_0 = \alpha_1 \mathbf{\vec{a_1}} + \alpha_2 \mathbf{\vec{a_2}} + \alpha_3 \mathbf{\vec{a_3}}$$

Vamos a usar que tenemos una base ortogonal:

$$\overrightarrow{\mathbf{a}_i} \cdot \overrightarrow{\mathbf{a}_j} = \delta_{ij} = egin{cases} 1, & ext{si } i = j \ 0, & ext{si } i
eq j \end{cases}$$
 (δ_{ij} = delta de Kronecker)

Vamos a multiplicar mi ecuación por un vector de la base:

$$\vec{\Phi}_0 \cdot \vec{\mathbf{a_1}} = (\alpha_1 \vec{\mathbf{a_1}} + \alpha_2 \vec{\mathbf{a_2}} + \alpha_3 \vec{\mathbf{a_3}}) \cdot \vec{\mathbf{a_1}}$$

Distribuimos el producto interno del lado derecho:

$$= \alpha_1 \underbrace{\vec{\mathbf{a_1}} \cdot \vec{\mathbf{a_1}}}_{i = j} + \alpha_2 \underbrace{\vec{\mathbf{a_2}} \cdot \vec{\mathbf{a_1}}}_{i \neq j} + \alpha_3 \underbrace{\vec{\mathbf{a_3}} \cdot \vec{\mathbf{a_1}}}_{i \neq j}$$

De este modo logramos despejar α_1 :

$$\mathbf{\Phi}_0 \cdot \mathbf{a_1} = 1 \cdot \alpha_1 + 0 \cdot \alpha_2 + 0 \cdot \alpha_3 = \alpha_1$$

Despejamos un coeficiente sin invertir el sistema de ecuaciones...

Veamos otra manera de lograr lo mismo

Repitamos el proceso multiplicando por los otros autovectores:

$$\mathbf{\Psi}_{0} \cdot \mathbf{\tilde{a}_{2}} = (\alpha_{1}\mathbf{\tilde{a}_{1}} + \alpha_{2}\mathbf{\tilde{a}_{2}} + \alpha_{3}\mathbf{\tilde{a}_{3}}) \cdot \mathbf{\tilde{a}_{2}} = \alpha_{1}\mathbf{\tilde{a}_{1}} \cdot \mathbf{\tilde{a}_{2}} + \alpha_{2}\mathbf{\tilde{a}_{2}} + \alpha_{2}\mathbf{\tilde{a}_{2}} + \alpha_{3}\mathbf{\tilde{a}_{3}} \cdot \mathbf{\tilde{a}_{2}}$$

$$\mathbf{\tilde{\Psi}}_{0} \cdot \mathbf{\tilde{a}_{2}} = 0 \cdot \alpha_{1} + 1 \cdot \alpha_{2} + 0 \cdot \alpha_{3} = \alpha_{2}$$

$$\vec{\Psi}_0 \cdot \vec{\mathbf{a}_3} = (\alpha_1 \vec{\mathbf{a}_1} + \alpha_2 \vec{\mathbf{a}_2} + \alpha_3 \vec{\mathbf{a}_3}) \cdot \vec{\mathbf{a}_3} = \alpha_1 \vec{\mathbf{a}_1} \cdot \vec{\mathbf{a}_3} + \alpha_2 \vec{\mathbf{a}_2} \cdot \vec{\mathbf{a}_3} + \alpha_3 \vec{\mathbf{a}_3} \cdot \vec{\mathbf{a}_3}$$

$$\vec{\Psi}_0 \cdot \vec{\mathbf{a}_3} = 0 \cdot \alpha_1 + 0 \cdot \alpha_2 + 1 \cdot \alpha_3 = \alpha_3$$

Logramos despejar todos los coeficientes sin invertir el sistema:

$$egin{align} ar{m{\Psi}}_0 \cdot ar{m{a_1}} &= lpha_1 \ ar{m{\Psi}}_0 \cdot ar{m{a_2}} &= lpha_2 \ ar{m{\Psi}}_0 \cdot ar{m{a_3}} &= lpha_3 \ \end{pmatrix}$$

¿Qué fue lo que hicimos?

Aprovechamos que el sistema de ecuaciones corresponde a una combinación lineal de vectores de una base ortogonal:

$$\mathbf{\vec{\Psi}}_0 = \alpha_1 \mathbf{\vec{a_1}} + \alpha_2 \mathbf{\vec{a_2}} + \alpha_3 \mathbf{\vec{a_3}}$$

Usando producto interno, pudimos despejar, de a uno por vez, los tres coeficientes alfa

$$egin{align} ar{m{\Psi}}_0 \cdot ar{m{a}_1} &= lpha_1 \ ar{m{\Psi}}_0 \cdot ar{m{a}_2} &= lpha_2 \ ar{m{\Psi}}_0 \cdot ar{m{a}_3} &= lpha_3 \ \end{pmatrix}$$

Si queremos generalizar el resultado para sistemas de mayor dimensión

$$\mathbf{\dot{\Phi}}_0 \cdot \mathbf{\dot{a}_j} = \alpha_j$$

...siempre que se cumpla la ortogonalidad de los autovectores.

(no incluímos el desarrollo para la velocidad inicial ya que es análogo)

Plan para hoy

Vamos a trabajar con un sistema continuo (cuerda).

Ya obtuvimos los modos normales para diferentes condiciones de contorno (clase pasada).

Ahora vamos a resolver las condiciones iniciales...

...y para esto vamos a usar lo que aprendimos sobre ortogonalidad en sistemas discretos.

Condiciones iniciales: Ejercicio 6

6. Una cuerda de densidad lineal de masa μ_0 está sujeta en un extremo mientras el otro oscila libre manteniendo una tensión T_0 . En t=0se le impone la deformación dibujada (obvié el hecho de que eso es físicamente imposible sin modificar la homogeneidad de μ). La velocidad de propagación es $v = 80 \frac{\text{m}}{\text{s}}$.

- a) Halle $\psi(x,t)$ y grafíquelo para $\omega_1 t = 0, \pi$ y 2π .
- b) Si tomara un sistema de coordenadas con el origen en el extremo libre de la cuerda, diga qué es lo que cambiaría. ¿Es conveniente tal sistema?

Sistema de coordenadas:

El sistema está definido para x entre 0 y L ← Sistema conveniente

Condiciones de contorno mixtas:

- Extremo **fijo** en x = 0
- Extremo **libre** en x = L

Condiciones iniciales

- Posición, f(x): función escalón
 Velocidad, g(x): parte del reposo

 Datos del problema

f y g son funciones del espacio!!

¿Qué sabemos sobre este sistema?

Ejercicio 1c de la guía de Sistemas continuos

- Ecuación de ondas clásica (EOC): $rac{\partial^2 \Psi}{\partial t^2} = c^2 rac{\partial^2 \Psi}{\partial x^2}$
- Condiciones de contorno: $\left. \left\{ egin{array}{l} \Psi(x=0,t) = 0 \\ \left. rac{\partial \Psi}{\partial x}
 ight|_{x=L,t} = 0 \end{array}
 ight.$
- Modos normales son funciones espaciales:

$$A_p(x) = \sin(rac{2p-1}{2L}\pi x)$$
 Modo p-ésimo, p = 1,2,...

- Solución de un modo normal:

$$\Psi_p(x,t) = C_p \sin(k_p x) \cos(\omega_p t + heta_p)$$
 con ω_p = ck $_p$

Solución general:

$$\Psi(x,t) = \sum_{p=1}^{\infty} C_p \sin(k_p x) \cos(\omega_p t + \theta_p)$$

Superposición <u>infinita</u> de modos normales con amplitudes (C) y fases (θ) arbitrarias

Planteo de las condiciones iniciales

Evaluamos la solución general para la posición y la velocidad...

$$\Psi(x,t) = \sum_{p=1}^\infty C_p \sin(k_p x) \cos(\omega_p t + heta_p)$$
 — Desplazamiento transversal $rac{\partial \Psi}{\partial t} = -\sum_{p=1}^\infty \omega_p C_p \sin(k_p x) \sin(\omega_p t + heta_p)$ — Velocidad transversal

...en t = 0...

$$egin{aligned} \Psi(x,t=0) &= \sum_{p=1}^{\infty} C_p \sin(k_p x) \cos(heta_p) \ rac{\partial \Psi}{\partial t}igg|_{x,t=0} &= -\sum_{p=1}^{\infty} \omega_p C_p \sin(k_p x) \sin(heta_p) \end{aligned}$$

...e igualamos a la posición y velocidad iniciales que nos dieron como dato

$$\left\{ egin{aligned} \sum_{p=1}^{\infty} C_p \sin(k_p x) \cos(heta_p) &= f(x) \ -\sum_{p=1}^{\infty} \omega_p C_p \sin(k_p x) \sin(heta_p) &= g(x) \end{aligned}
ight.$$

Dos ecuaciones para infinitas incógnitas C_p y θ_p ...

¿Cómo despejar coeficientes de una serie infinita?

Veamos la ecuación para la posición inicial:

$$\sum_{p=1}^{\infty} C_p \sin(k_p x) \cos(\theta_p) = f(x)$$

Recordemos cómo era esa ecuación para un sistema discreto:

$$\sum_{p=1}^{N} \alpha_p \vec{\mathbf{a_p}} = \vec{\mathbf{\Psi}}_0$$

Dejando de lado que en el caso continuo $N \rightarrow Inf$, podemos identificar:

Condición inicial (dato): $oldsymbol{ar{\Psi}_0}
ightarrow f(x)$

Modos normales: $\mathbf{a_p} o \sin(k_p x)$

Coeficientes (incógnitas): $lpha_p o C_p \cos(heta_p)$

El caso discreto podía resolverse fácilmente usando ortogonalidad entre modos

$$\sum_{p=1}^{N} \alpha_p \vec{\mathbf{a_p}} \cdot \vec{\mathbf{a_j}} = \alpha_j = \vec{\mathbf{\Psi}}_0 \cdot \vec{\mathbf{a_j}}$$

Quiero hacer lo mismo para el caso continuo...

¿Producto interno entre funciones?

Modos normales discretos vs continuos

Modos normales discretos vs continuos

Producto interno entre funciones

El producto interno entre vectores se define como:

- Multiplicar elemento a elemento
- Luego sumar para todos los pares de elementos

$$\vec{\mathbf{a_1}} \cdot \vec{\mathbf{a_2}} = a_{1,1} a_{2,1} + \dots + a_{N,1} a_{N,1}$$

¿Cómo generalizamos para el caso de funciones?

- Multiplicar "elemento a elemento" es simple:

f(x)g(x)

f y g son dos funciones arbitrarias!

- Sumar también: $f(x_1)g(x_1) + \cdots + f(x_N)g(x_N)$

Pero no debemos olvidar que las funciones son continuas:

$$\sum
ightarrow \int_0^L f(x)g(x)dx$$

Esta es la generalización del producto interno para funciones continuas!!

Producto interno entre modos normales del sistema

El producto interno entre los modos n y m es:

$$\int_0^L \sin(k_n x) \sin(k_m x) dx = \frac{L}{2} \delta_{nm}$$

Sin olvidar que: $k_n=(2n-1)rac{\pi}{2L}, n\in\mathbb{N}$

El resultado muestra que los modos normales del sistema forman una base ortogonal:

- El producto interno entre modos distintos es 0
- Y entre modos iguales es distinto de 0

Lo que vamos a hacer a continuación es aplicar este producto interno para despejar los coeficientes C_p y θ_p de nuestro problema

Probemos el método

Partimos de la ecuación para la posición inicial:

$$\sum_{p=1}^{\infty} C_p \sin(k_p x) \cos(heta_p) = f(x)$$

Aplicar el producto interno lleva dos pasos:

- Multiplicar a ambos lados por la función del modo normal j-ésimo:

$$\left(\sum_{p=1}^{\infty} C_p \sin(k_p x) \cos(heta_p)
ight) \sin(k_j x) = f(x) \sin(k_j x)$$

- Integrar a ambos lados entre 0 y L (es decir dentro del sistema):

$$\int_0^L \left(\sum_{p=1}^\infty C_p \sin(k_p x) \cos(heta_p)\right) \sin(k_j x) dx = \int_0^L f(x) \sin(k_j x) dx$$

- Luego hay que distribuir el producto dentro de la sumatoria

$$\sum_{p=1}^{\infty} C_p \cos(heta_p) \underbrace{\int_0^L \sin(k_p x) \sin(k_j x) dx}_{ extstyle L/2 \ \delta_{pj}} = \int_0^L f(x) \sin(k_j x) dx$$

Probemos el método

La clave es darse cuenta que un solo término de la sumatoria sobrevive (p = j)

$$\sum_{p=1}^{\infty} C_p \cos(\theta_p) \underbrace{\int_0^L \sin(k_p x) \sin(k_j x) dx}_{p=1} = \int_0^L f(x) \sin(k_j x) dx$$

$$\sum_{p=1}^{\infty} C_p \cos(\theta_p) \underbrace{\frac{L}{2} \delta_{pj}}_{pj} = \underbrace{\frac{L}{2} C_j \cos(\theta_j)}_{L} = \int_0^L f(x) \sin(k_j x) dx$$
Término j-ésimo

Finalmente, obtenemos una ecuación a partir de la **posición** inicial:

$$C_j \cos(\theta_j) = \frac{2}{L} \int_0^L f(x) \sin(k_j x) dx$$

El mismo procedimiento aplicado a la velocidad inicial nos da:

$$C_j\sin(heta_j) = -rac{1}{\omega_j}rac{2}{L}\int_0^L g(x)\sin(k_jx)dx$$

Probemos el método

Lo que obtenemos son infinitos sistemas de 2x2, indexados mediante j:

$$\begin{cases} C_j \cos(\theta_j) = \frac{2}{L} \int_0^L f(x) \sin(k_j x) dx \\ C_j \sin(\theta_j) = -\frac{1}{\omega_j} \frac{2}{L} \int_0^L g(x) \sin(k_j x) dx \end{cases}$$

El sistema nos permite obtener una **sucesión** de valores para C y θ en función del número de modo (j)

Resolvamos nuestro problema

Usemos las condiciones iniciales que nos dieron

Posición inicial:

$$f(x) = egin{cases} 0, & ext{si } x \in [0, lpha L) \ \Psi_0, & ext{si } x \in [lpha L, L] \end{cases}$$

Velocidad inicial:
$$g(x)=0$$

Reemplazando:

$$\left\{egin{aligned} C_j\cos(heta_j) &= rac{2}{L}\Psi_0\int_{lpha L}^L\sin(k_jx)dx \ C_j\sin(heta_j) &= 0 \end{aligned}
ight.$$

La fase es sencilla de determinar:

$$\theta_i = 0$$

Luego, la amplitud
$$C_j$$
 es: $C_j = rac{2}{L} \Psi_0 \int_{lpha L}^L \sin(k_j x) dx$

...que se puede integrar fácilmente

Resolvamos nuestro problema

La integral da:

$$egin{aligned} C_j &= rac{2\Psi_0}{L} \int_{lpha L}^L \sin(k_j x) dx \ &= -rac{2\Psi_0}{L k_j} \cos(k_j x) igg|_{lpha L}^L \ &= -rac{2\Psi_0}{L k_j} [\cos(k_j L) - \cos(k_j lpha L)] \end{aligned}$$

Amplitudes para los primeros 20 modos, alfa = 0.25 (además L = Psi0 = 1)

$$C_j = -rac{2\Psi_0}{Lk_j}[\cos(k_jL)-\cos(k_jlpha L)]$$

Solución del sistema

La solución es la superposición de modos con las amplitudes (C) y fases (tita) halladas:

$$\Psi(x,t) = \sum_{j=1}^{\infty} C_j \sin(k_j x) \cos(\omega_j t)$$

$$C_j = -rac{2\Psi_0}{Lk_j}[\cos(k_jL)-\cos(k_jlpha L)]$$

Recordar además que:

Número de onda para extremos fijo-libre: $k_j=(2j-1)rac{\pi}{2L}, j\in\mathbb{N}$

Relación de dispersión EOC: $\omega_j=ck_j$

Solución en t=0 para la suma de los primeros 100 modos (línea azul)

Con alfa = 0.25 y L = Psi0 = c = 1

Solución en t=0 para la suma de los primeros 1000 modos (línea azul)

Con alfa = 0.25 y L = Psi0 = c = 1

Gráfico en ciertos tiempos

Tiempo t = 0: es la posición inicial

Tiempo t = 2*pi/ omega_1: es un período del fundamental

Tiempo t = pi/ omega_1: es medio período del fundamental

La clave es que la frecuencia de todos los modos normales superiores es múltiplo de la fundamental

Sistema de coordenadas alternativo

La clave es pensar cómo se ven los modos normales desde un sistema de referencia alternativo