

Linear Circuits

BONNIE FERRI, PROFESSOR AND ASSOCIATE CHAIR School of Electrical and Computer Engineering

Module 2

Lesson 3: Series and Parallel Resistance

Series and Parallel Resistors

Objective:

• Simplify combinations

Georgia Tech

Builds Upon:

- KCL: $\sum i_{leaving} = 0$
- KVL: $\sum v_{loop} = 0$

Equivalent Resistance

Series

$$\stackrel{i}{\underset{a}{\overset{+}{\bigvee}}} \underset{R_1}{\overset{+}{\bigvee}} \underset{R_2}{\overset{-}{\bigvee}} \underset{b}{\overset{+}{\bigvee}} \underset{a}{\overset{+}{\bigvee}} \underset{R_{eq}}{\overset{+}{\bigvee}} \underset{R}{\overset{-}{\bigvee}} \underset{a}{\overset{+}{\bigvee}} \underset{R_{eq}}{\overset{-}{\bigvee}} \underset{R}{\overset{+}{\bigvee}} \underset{a}{\overset{+}{\bigvee}} \underset{R}{\overset{+}{\bigvee}} \underset{a}{\overset{+}{\bigvee}} \underset{R}{\overset{+}{\bigvee}} \underset{a}{\overset{+}{\bigvee}} \underset{R}{\overset{+}{\bigvee}} \underset{A}{\overset{+}{\bigvee}} \underset{A}{\overset{A}{\overset{+}{\bigvee}} \underset{A}{\overset{+}{\bigvee}} \underset{A}{\overset{A}{\overset{+}{\bigvee}} \underset{A}{\overset{+}{\bigvee}} \underset{A}{\overset{+}{\bigvee}} \underset{A}{\overset{+}{\bigvee}} \underset{A}{\overset{+}{\bigvee$$

Parallel

Georgia Tech

Resistors in Series

$$R_{eq} = R_1 + R_2$$

$$V_{ab} = V_1 + V_2$$

$$V_{ab} = R_1 i + R_2 i$$

$$V_{ab} = (R_1 + R_2)i$$

Resistors in Series

- K resistors in series: $R_{eq} = \sum R_k$
- Example:

Resistors in Parallel

$$R_{eq} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2}} = \frac{R_1 R_2}{R_1 + R_2}$$

$$a \stackrel{R_1}{\longleftarrow} b \approx a \stackrel{b}{\longleftarrow} R_{eq}$$

$$R_{eq} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2}} = \frac{R_1 R_2}{R_1 + R_2}$$

Resistors in Parallel

$$R_{eq} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2}} = \frac{R_1 R_2}{R_1 + R_2}$$

$$\mathsf{KCL}: \ \mathsf{i} = \mathsf{i}_1 + \mathsf{i}_2 \ \Rightarrow \ \mathsf{i}_1 = \mathsf{i} - \mathsf{i}_2$$

$$\mathsf{KVL}: \quad \mathsf{V}_{\mathsf{ab}} = \mathsf{R}_1 \mathsf{i}_1 = \mathsf{R}_2 \mathsf{i}_2$$

$$R_1(i-i_2) = R_2i_2 \implies i_2 = \frac{R_1}{R_1 + R_2}i$$

$$\mathsf{KVL}\colon \ \mathsf{V}_{\mathsf{ab}} = \mathsf{R}_2\mathsf{i}_2$$

$$V_{ab} = R_2 \frac{R_1}{R_1 + R_2} i$$

Resistors in Parallel

• Shorted resistors:

$$R_{eq} = 0$$

• K resistors in parallel:

$$R_{eq} = \frac{1}{\sum \frac{1}{R_k}}$$

Key Concepts

• Resistors in Series:

$$R_{eq} = \sum R_k$$

• Resistors in Parallel:

$$R_{eq} = \frac{1}{\sum \frac{1}{R_k}}$$

$$R_{eq} = \frac{R_1 R_2}{R_1 + R_2}$$

R_{eq} = 0 for a short circuit in parallel with a resistor