Introdução aos Processos Estocásticos

Luiz Renato Fontes

Processos Markovianos de saltos

Seja $\mathcal S$ um cj enumerável qquer e $\mathbf Q=(q_{xy})_{x,y\in\mathcal S}$ uma Q-matriz, i.e., $\mathbf Q$ satisfaz $\forall~x,y\in\mathcal S$

- (i) $0 \le q_x := -q_{xx} < \infty$;
- (ii) $q_{xy} \ge 0$, se $x \ne y$;
- (iii) $\sum_{z\in\mathcal{S}}q_{xz}=0$.

Obs.
$$\sum_{z \in \mathcal{S}, z \neq x} q_{xz} = q_x$$

Para $x, y \in \mathcal{S}$, sejam

$$\pi_{xy} = \begin{cases} \frac{q_{xy}}{q_x}, & \text{ se } q_x \neq 0 \text{ e } x \neq y; \\ 0, & \text{ se } q_x = 0 \text{ e } x \neq y. \end{cases} \text{ e } \pi_{xx} = \begin{cases} 0, & \text{ se } q_x \neq 0; \\ 1, & \text{ se } q_x = 0. \end{cases}$$

Então $\Pi := \{\pi_{xy}; x, y \in \mathcal{S}\}$ é uma matriz estocástica.

PMSs (cont)

Vamos a seguir construir um processo de saltos (X_t) , definindo a cadeia de saltos e depois os tempos de salto.

- 1) Cadeia de saltos: $(Y_n) \sim CM(\mu, \Pi)$, onde μ é a distr de X_0 .
- 2) Dada (Y_n) , T_1, T_2, \ldots são va's exponenciais indep com taxas q_{Y_0}, q_{Y_1}, \ldots , resp.

Construção de (X_t)

Sejam τ_0, τ_1, \ldots va's iid Exp(1). Dada (Y_n), façamos $T_{n+1} = \tau_n/q_{Y_n}, n > 0$

(conv: $\tau_n/0 = \infty$). Note que $T_n > 0 \ \forall \ n \ge 1$ qc.

Há 3 casos (como já vimos antes, mais genericamente).

3 casos

- 1) Se $T_n < \infty \ \forall \ n \geq 1$ e $S_n = \sum_{i=1}^n T_i \to \infty$ qdo $n \to \infty$, então $X_t = Y_n$, se $S_n \leq t < S_{n+1}$ para algum $n \geq 0$ ($S_0 = 0$), está bem definido para todo $t \geq 0$.
- 2) Se $T_n = \infty$ para algum $n \ge 1$, seja $n^* = \min\{n \ge 1 : T_n = \infty\}$, então $X_t = Y_n, \text{ se } S_n \le t < S_{n+1} \text{ para algum } n < n^* \ (S_{n^*} = \infty),$ está bem definido para todo t > 0.
- 3) Se $T_n < \infty \ \forall \ n \ge 1$ e $S_n \to \zeta < \infty$ qdo $n \to \infty$, então $X_t = Y_n$, se $S_n \le t < S_{n+1}$ para algum $n \ge 0$ $= \infty$, se $t \ge \zeta$, onde

 ∞ é um pto adicionado a \mathcal{S} , está bem definido para todo $t \geq 0$.

 $(X_t)_{t\geq 0}$ assim definido é dito *processo Markoviano de saltos (mínimo)* associado a \mathbf{Q} . Not: $(X_t)\sim \mathsf{PMS}(\cdot,\mathbf{Q})$.

PMS — Ppdde de Markov

Teorema 1

Dados $0 \le t_0 < t_1 < \dots < t_n < t_{n+1} \ e \ x_0, \dots, x_{n+1} \in S$,

$$\mathbb{P}(X_{t_{n+1}} = x_{n+1} \mid X_{t_n} = x_n, \dots, X_{t_0} = x_0) = \mathbb{P}_{x_n}(X_{t_{n+1}-t_n} = x_{n+1}).$$

Dem. Segue da construção, usando a falta de memória da distr exponencial e ppdde de Markov de (Y_n) .

Construções equivalentes

1)
$$\{\tau_n^y; y \in \mathcal{S}, n \ge 0\}$$
 iid $Exp(1)$

Dado que $Y_n = x$, então faca

$$\begin{split} T_{n+1}^y &= \tau_n^y/q_{xy}, \ y \neq x; \quad T_{n+1} = \inf_{y \neq x} \ T_{n+1}^y; \\ Y_{n+1} &= \begin{cases} y, & \text{se } T_{n+1} = T_{n+1}^y; \\ x, & \text{se } T_{n+1} = \infty. \end{cases} \end{split}$$

2) Sejam $(N_t^{xy}), x, y \in \mathcal{S}$, PPs indep c/txs q_{xy} , resp.

Dados Y_0 e $S_0 = 0$, façamos indutiva/e

$$S_{n+1}=\inf\{t>S_n:\,N_t^{Y_n,y}
eq N_{S_n}^{Y_n,y}\,\, {\sf para algum}\,\,y
eq Y_n\},\,\,{\sf e}$$

$$Y_{n+1} = egin{cases} y, & ext{ se } S_{n+1} < \infty ext{ e } N_{S_{n+1}}^{Y_n,y}
eq N_{S_n}^{Y_n,y}; \ Y_n, & ext{ se } S_{n+1} = \infty. \end{cases}$$

Obs. Os infs acima estão bem defs pois $\sum_{y \neq x} q_{xy} = q_x < \infty$.

Explosão

Dizemos que um PMS $(\cdot, \mathbf{Q})/a$ Q-matriz \mathbf{Q} é explosivo/a se $\mathbb{P}_x(S_n \to \zeta < \infty \text{ qdo } n \to \infty) > 0$ para algum $x \in \mathcal{S}$. Do contrário, dizemos que o PMS $/\mathbf{Q}$ é $n\~ao$ explosivo/a.

Teorema 2

Seja $(X_t) \sim \mathsf{PMS}(\mu, \mathbf{Q})$. Então (X_t) é não explosivo se

- (i) S for finito; ou
- (ii) $\sup_{x \in \mathcal{S}} q_x < \infty$; ou
- (iii) $X_0 = x$ e x for recorrente para (Y_n) .

Dem. Usamos a constr de (X_t) com tempos de salto $T_{n+1} = \tau_n/q_{Y_n}$, $n \ge 0$, onde τ_0, τ_1, \ldots va's iid $\mathsf{Exp}(1)$.

Dem. Teo 2 (cont)

Em (i) e (ii), seja $q = \sup_{x \in \mathcal{S}} q_x$. Então

$$q\zeta = q\sum_{n=0}^{\infty} T_{n+1} \geq \sum_{n=0}^{\infty} au_n = \infty$$
 qc

Em (iii), vamos supor que $q_x > 0$, do contrário temos uma situação trivial. Então, existe qc uma subsequência $0 = N_0 < N_1 < \cdots$ tq $Y_{N_i} = x$, $i \ge 0$. Logo

$$q_{\mathsf{x}}\zeta\geq\sum_{i=0}^{\infty} au_{\mathsf{N}_{i}}=\infty$$
 qc.

Teorema 3

Seja $(X_t) \sim \mathsf{PMS}(\cdot, \mathbf{Q})$, e ζ o tempo de explosão de (X_t) .

Fixado $\theta > 0$, seja $z_x = \mathbb{E}_x(e^{-\theta\zeta})$, $x \in \mathcal{S}$. Então $z := (z_x)$ satisfaz:

- (i) $|z_x| \leq 1$, $x \in \mathcal{S}$;
- (ii) $\mathbf{Q}z = \theta z$.

Além disto, se \tilde{z} satisfizer (i-ii), então $\tilde{z}_x \leq z_x$, $x \in \mathcal{S}$.

Dem. Teo 3

- (i) é óbvio;
- (ii) Condicionando no 1o salto:

$$z_{x} = \mathbb{E}_{x}(e^{-\theta\zeta}) = \sum_{y \neq x} \int_{0}^{\infty} dt \, q_{x} e^{-q_{x}t} \pi_{xy} e^{-\theta t} \mathbb{E}_{y}(e^{-\theta\zeta})$$

$$= q_{x} \sum_{y \neq x} \pi_{xy} z_{y} \int_{0}^{\infty} dt \, e^{-(q_{x}+\theta)t} = \frac{q_{x}}{q_{x}+\theta} \sum_{y \neq x} \pi_{xy} z_{y}$$

$$\Rightarrow z_{x}(\theta - q_{xx}) = \sum_{y \neq x} q_{xy} z_{y} \Rightarrow \theta z_{x} = \sum_{y} q_{xy} z_{y}$$

O argumento acima pode ser repetido p/obtermos:

$$\mathbb{E}_{x}(e^{-\theta S_{n+1}}) = \sum_{y \neq x} \frac{q_{xy}}{q_{x} + \theta} \mathbb{E}_{y}(e^{-\theta S_{n}}), \ n \geq 0$$

□ii

Dem. Teo 3 (cont)

Se \tilde{z} satisfaz (i-ii), então

$$\tilde{z}_x \leq 1 = \mathbb{E}_x(e^{-\theta S_0}), x \in \mathcal{S}$$
, e, supondo indutiva/e que

$$ilde{z}_{\scriptscriptstyle X} \leq \mathbb{E}_{\scriptscriptstyle X}(e^{-\theta S_n})$$
, $x \in \mathcal{S}$, então, de (ii),

$$ilde{z}_x = \sum_{y
eq x} rac{q_{xy}}{q_x + heta} ilde{z}_y \leq \sum_{y
eq x} rac{q_{xy}}{q_x + heta} \mathbb{E}_x(e^{- heta S_n}) = \mathbb{E}_x(e^{- heta S_{n+1}}),$$

e completamos o passo de indução para concluir que

$$ilde{z}_{\mathsf{x}} \leq \mathbb{E}_{\mathsf{x}}(e^{- heta S_n}), \ n \geq 0, \ \mathsf{e} \ \mathsf{logo}$$

$$\widetilde{z}_{\mathsf{x}} \leq \lim_{n o \infty} \mathbb{E}_{\mathsf{x}}(e^{-\theta S_n}) = \mathbb{E}_{\mathsf{x}}(e^{-\theta \zeta}) = \mathsf{z}_{\mathsf{x}}, \ \mathsf{x} \in \mathcal{S}$$

Corolário

Para todo $\theta > 0$, são equivalentes

- (i) **Q** é não explosiva;
- (ii) $\mathbf{Q}z = \theta z \ \mathbf{e} \ |z_x| \le 1 \ \forall x \in \mathcal{S} \Rightarrow z \equiv 0.$

Dem. $(i \Rightarrow ii)$

$$(i) \Rightarrow \mathbb{P}_{x}(\zeta = \infty) = 1 \,\forall x \Rightarrow \mathbb{E}_{x}(e^{-\theta\zeta}) = 0 \,\forall x. \tag{*}$$

Se $\mathbf{Q}z = \theta z$ e $|z_x| \le 1$, então temos do Teo 3 que

$$\pm z_{\scriptscriptstyle X} \leq \mathbb{E}_{\scriptscriptstyle X}(e^{-\theta\zeta}) \stackrel{(*)}{=} 0 \Rightarrow z_{\scriptscriptstyle X} = 0$$
.

$$(ii \Rightarrow i)$$

Do Teo 3, temos que $\mathbb{E}_{x}(e^{-\theta\zeta})$ satisfaz a premissa de (ii).

Segue então da conclusão de (ii) que

$$\mathbb{E}_{x}(e^{-\theta\zeta}) = 0, x \in \mathcal{S} \text{ e, logo, } \mathbb{P}_{x}(\zeta = \infty) = 1, x \in \mathcal{S}.$$

