杭州电子科技大学概率论与数理统计 2017 年 1 月考题 (重码版)

(B) $A = \bar{B}$

(D) $\bar{A} \cup \bar{B} = S$

一、单项选择题(每题3分,	共15分)		

1. 设随机事件 $A \times B$ 互斥,则下列等式正确的是()

(A) $\bar{A} \cap \bar{B} = \phi$

(C) $\bar{A} \cup \bar{B} = \phi$

2.	若随机变量 X 的概率密度函数 $f(x) = \begin{cases} x \\ y \\ y \end{cases}$	$egin{array}{c} x \ k-x \ 0 \end{array}$	$0 < x < 1$ $1 \le x < 2$,则 k 的取值为() otherwise
	(A) 1		(B) -1
	(C) 2		(D) -2
3.	设任意随机变量 X 、 Y ,下列等式不正码	角的是	()
	(A) $D(X) = Cov(X, X)$		(B) $E(XY) = E(X)E(Y)$
	(C) $E(X-Y) = E(X) - E(Y)$		(D) $Cov(X,Y) = Cov(Y,X)$
4.	设随机变量 X 、 Y 相互独立,其分布函数	数分别	为 $F_X(x)$, $F_Y(y)$,则随机变量
$Z = \min$	$\inf\{X,Y\}$ 的分布函数 $F_Z(z)$ 等于()		
	$(\mathrm{A}) \ \min\{F_X(z),F_Y(z)\}$		(B) $\frac{1}{2}[F_X(z) + F_Y(z)]$
	(C) $F_X(z) \cdot F_Y(z)$		(D) $1 - [1 - F_X(z)][1 - F_Y(z)]$
5.	设总体 $X\sim N(\mu,\sigma^2)$,其中 μ , σ^2 未知,	X_1, X_2	x_1, \dots, X_n 为来自该总体的样本,则下
列统计	量是σ ² 的无偏估计量是()		
	(A) $\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$		(B) $\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X}^2)$
	$(C) \frac{1}{n} \sum_{i=1}^{n} \left(X_i - \bar{X} \right)^2$		$(\mathbf{D}) \ \frac{1}{n} \sum_{i=1}^{n} \left(X_i - \bar{X}^2 \right)$
二、填	空题 (每空 3 分, 共 18 分)		
1.	设事件 A , B , 已知 $P(A \cup B) = 0.8$, P	(B)=	0.4 ,则 $Pig(A ar{B}ig)$ =
2.	在一批产品中,有7件正品,3件次品,	不放回	回地抽取3件产品,则至少取到1件
次品的	概率=		
3.	设随机变量 X 的分布律为: $P\{X=k\}=$	$C\left(\frac{1}{4}\right)$	k , $k = 1, 2, 3, \dots$, $\square C = $
4.	设随机变量 $X \sim N(2,4)$, $Y \sim b(10,0.3)$,	Z ~ χ^2	$\mathcal{C}(5)$,且 X,Y,Z 相互独立,则

5. 设总体 $X \sim N(\mu, \sigma^2)$,其中 μ, σ^2 未知, X_1, X_2, \cdots, X_n 为一样本, \bar{X}, S^2 分别为样本均值和样本方差,则在显著水平 α 下的检验假设 H_n : $\mu = \mu_0$, H_1 : $\mu \neq \mu_0$ 的拒绝域为____. 三、(本题 8 分)

一文具店有三种水笔出手,由于出售哪一种水笔是随机的,因此售出一支水笔的价格是一个随机变量X,它取 1 元,1.2 元,1.5 元各个值的概率分别为 0.3、0.2、0.5。

求: (1) 求X的分布函数F(x); (2) 利用中心极限定理计算: 若售出 300 支水笔,售出价格为 1.2 元的水笔多于 60 支的概率。

四、(本题18分)

设随机变量(X,Y)的概率分布律为:

X Y	-2	-1	1	2
1	0	$\frac{1}{4}$	$\frac{1}{4}$	0
4	$\frac{1}{4}$	0	0	$\frac{1}{4}$

- 求:(1)关于XY的分布律;
 - (2) $P\{X \le 0 \mid Y = 1\}$;
 - (3) E(X), E(Y), E(XY);
 - (4) 验证X和Y是不相关的,但X和Y是不相互独立的。

五、(本题15分)

设二维随机变量(X,Y)的概率密度函数为:

$$f(x,y) = \begin{cases} 8xy & 0 < x < 1, \ x < y < 1 \\ 0 & \text{otherwise} \end{cases}$$

- (1) 求关于X和Y的边缘概率密度 $f_X(x)$, $f_Y(y)$;
- (2) 求概率 $P\{X+Y \leq 1\}$;
- (3) 求D(X)的值。

六、(本题8分)

设总体 X 具有分布律:

其中 p_i ($0<\theta<1$)为未知参数,已知取得了样本值 $x_1=1$, $x_2=2$, $x_3=1$,试求 θ 的矩估计值和最大似然估计值。

七、(本题8分)

假定初生婴儿(男孩)的体重服从正态分布 $N(\mu,\sigma^2)$,随机抽样 16 名新生婴儿(男孩),而测得的体重(单位g)的样本均值观察值 $\bar{x}=3057$,样本标准差观察值s=376,求 μ 的置信水平为 0.95 的置信区间(已知: $t_{0.05}(15)=1.753$, $t_{0.025}(15)=2.1314$, $t_{0.05}(16)=1.7459$, $t_{0.025}(16)=2.1199$)

八、(本题6分)

某厂家有两台机器生产某金属部件,分别在两台机器所生产的部件中各取容量为 $n_1=60,\ n_2=40$ 的样本,测得部件质量(kg)样本方差分别为 $s_1^2=15.46$, $s_2^2=9.66$,设两样本相互独立,两总体分别服从 $N(\mu_1,\sigma_1^2),\ N(\mu_2,\sigma_2^2)$ 。 $\mu_1,\ \sigma_1^2,\ \mu_2,\ \sigma_2^2$ 均未知。试在显著水平a=0.05 下检验假设

$$H_0: \sigma_1^2 \leq \sigma_2^2, H_1: \sigma_1^2 > \sigma_2^2$$

(己知:
$$F_{0.05}(60,40)=1.74$$
, $F_{0.05}(59,39)=1.64$)

九、(本题4分)

对于给定的 $a \in [0,1)$, n_1 , n_2 为大于 0 的自然数, 证明:

$$F_{1-a}(n_1,n_2)\!=\!rac{1}{F_a(n_1,n_2)}$$

答案暂时没时间还原了。看群里的原本的糊版,或者可以用搜题软件搜一下,大题大部分都搜得到,还原的时候我也都试过且有所参考。

考试加油!