All MA 107 Assignments

Aryaman Maithani

14-01-2019

- (1) Let $S \subset \mathbb{R}$ and $a \in \mathbb{R}$. Define what it means to say that
 - (a) a is a minimum of the set S.
 - (b) the set S has a minimum.
- (2) Prove the following statements given that \mathbb{R} is a field. State clearly the axioms you are using.
 - (a) For all $a, b, c \in \mathbb{R}$ a + b = a + c implies b = c.
 - (b) For all $a, b, c \in \mathbb{R}$ and $a \neq 0$, $a \cdot b = a \cdot c$ implies b = c
 - (c) For all $a \in \mathbb{R}$, $a \cdot 0 = 0$
 - (d) If for any $a, b \in \mathbb{R}$, $a \cdot b = 0$ then a = 0 or b = 0.
 - (e) For all $a \in \mathbb{R}, -a = (-1) \cdot a$
 - (f) For all $a, b \in \mathbb{R}$, $a, b \neq 0$, then $1/(a \cdot b) = (1/a) \cdot (1/b)$
- (3) Prove the following statements given that \mathbb{R} is an ordered field. State clearly the axioms you are using.
 - (a) For all $a, b \in \mathbb{R}$, if a < b then (-b) < (-a).
 - (b) 0 < 1.
 - (c) For all $a, b \in \mathbb{R}$, is 0 < a < b then 0 < 1/b < 1/a.
 - (d) $a \in \mathbb{R}, a \neq 0$ then $a^2 > 0$.
 - (e) If for some $a, b \in \mathbb{R}$, $a^2 + b^2 = 0$ then a = b = 0.
 - (f) For all $a, b \in \mathbb{R}$, if 0 < ab then 0 < a, b or a, b < 0.
 - (g) For all $a, b \in \mathbb{R}$, if ab < 0 then a < 0, 0 < b or b < 0, 0 < a.
 - (h) If $a \in \mathbb{R}$ is such that $a \cdot a = a$ then a = 0 or a = 1.
 - (i) For all $a, b \in \mathbb{R}$, if 0 < a < b then $a^2 < b^2$
 - (j) For all $a, b \in \mathbb{R}$, if 0 < a < b then $a < \sqrt{a \cdot b} < b$
 - (k) For all $a, b \in \mathbb{R}$, if $a \le b$ then $a \le \frac{a+b}{2} \le b$
 - (l) For all $a, b \in \mathbb{R}$, if 0 < a < b then $\sqrt{a \cdot b} < \frac{a + b}{2}$

Notation i) a^2 denotes $a \cdot a$

ii) \sqrt{x} is a number such that $(\sqrt{x})^2 = x$.

As we have not proven that such a number does exist, you may assume for now that it does.

21-01-2019

- (1) Let X be a set, $A, B \subset X, x \in X$. Define (i) $A \cap B$ (ii) $A \cup B$ (iii) $A \subset B$ (iv) A = B
- (2) Write A as a subset of B, where:
 - (a) $A = \emptyset$; (i) $B = \mathbb{R}$ (ii) $B = \mathbb{Q}$ (iii) $B = \mathbb{Z}$ (iv) $B = \mathbb{N}$
 - (b) $B = \mathbb{R}$; (i) A = (0,1] (ii) $A = \mathbb{Z}$ (iii) $A = \mathbb{Q}$
 - (c) $B = \mathbb{R}^2$; A is (i) the X-axis (ii) the unit circle (iii) the set of solutions of the equation x + 2y = 0
- (3) Describe the following sets:
 - (a) (i) $\{x \in \mathbb{R} : x(x-1)(x-2) > 0\}$ (ii) $\{x \in \mathbb{R} : \cos(2\pi x) = 0\}$ (iii) $\{x \in \mathbb{R} : x^2 = 1\}$
 - (b) (i) $\left\{ (x,y) \in \mathbb{R}^2 : \frac{x}{y} + \frac{y}{x} \ge 2 \right\}$ (ii) $\{ (x^2,x) : x \in \mathbb{R} \}$
 - (c) $A \times B$, where (i) $A = [0, \infty)$ and B = [2, 3]. (ii) A = [3, 4] and $B = \mathbb{N}$.
- (4) What is the st A+2, where (i) $A=\mathbb{Z}$ (ii) $A=\{1,2,3,4\}$ (iii) A=[1,2) (iv) $A=(\infty,0)$ What is the set 2A where A is as above? What is the set $\frac{\pi}{4}(2\mathbb{Z}+1)$? Is it related to any of the sets in the previous question?
- (5) What is the set $c + \mathbb{Q}$? When does it contain a rational number? What can you say in the other cases? Answer similar questions about $c\mathbb{Q}$.
- (6) Let A and B be non-empty subsets of \mathbb{R} , and $c \in \mathbb{R}$ Describe the sets $-A, cA, c+A, A \cap B, A \cup B$ and A+B. How is their lub/glb (if they exist), related to the lub/glb of A and B?
- (7) Identify some rational and irrational numbers in $\mathbb{Q} + [0,1]$? What is this set?
- (8) Let $S \in \mathbb{R}$. Is S has a maximum, then S is bounded above and $\max(S) = \text{lub}(S)$.

Note: In (1), the first two sub-parts would require a set description while the last two would be a condition.

28-01-2019

- (1) Identify the set $A \subset \mathbb{N}$ given that: if $x \in A$, then $x + 1 \in A$. Justify your answer.
- (2) The absolute value or mod function is defined as follows: $\forall x \in \mathbb{R}$, define

$$|x| = \begin{cases} x & \text{when } x \ge 0\\ -x & \text{when } x < 0 \end{cases}$$

Identify the following sets:

- (i) $\{x \in \mathbb{R} : |x| = 3\}$ (ii) $\{x \in \mathbb{R} : |x| \le 3\}$ (iii) $\{x \in \mathbb{R} : |x + 5| \le 3\}$
- (3) Find lub(A) and glb(A) in B in the following examples, if they exist. If not, explain why they do not exist.
 - (a) $A = \mathbb{N}, B = \mathbb{N}$
 - (b) $A = \{x \in \mathbb{Z} : -1 \le |x+5| < 8\}, B = \mathbb{Z}$. Does your answer change if $B = \mathbb{R}$?
 - (c) $A = \{x \in \mathbb{Q} : -1 \le |x+5| < 8\}, B = \mathbb{Q}$. Does your answer change if $B = \mathbb{R}$?
 - (d) $A = \{x \in \mathbb{Q} : x \neq 0, 1/x \in \mathbb{N}\}, B = \mathbb{Q}$. Does your answer change if $B = \mathbb{R}$?
- (4) Let $A \subset \mathbb{R}$ and $\alpha \in \mathbb{R}$ such that α in an upper bound of S in \mathbb{R} . Show that the following statements are equivalent.
 - (a) α is the least upper bound of A in \mathbb{R} .
 - (b) For every $\epsilon > 0 \in \mathbb{R}$, there exist $a \in A$ such that $\alpha \epsilon < a \le \alpha$
 - (c) For every $t \in \mathbb{R}$ with $t < \alpha$, there exists $a \in A$ such that $t < a \le \alpha$.
- (5) Let $c \in \mathbb{R}$; $A, B \subset \mathbb{R}$ be bounded and non-empty. State whether the following are true or false. If true, prove it. If false, give a counter-example, and state and prove the corrected version.
 - (a) If $A \subset B$ then lub(A) = lub(B).
 - (b) $lub(A \cup B) = min\{lub(A), lub(B)\}$
 - (c) $lub(A \cap B)$ ____{{lub}(A), lub(B)}
 - (d) lub(cA) = c lub(A)
 - (e) lub(A + B) = lub(A) + lub(B)
- (6) Let X be a set, $A, B \subset X$. Show that the following are equivalent:
 - (i) $A \subset B$ (ii) $A = A \cap B$ (iii) $A \subset (A \cap B)$
 - (iv) $B^c \subset A^c$ (v) $B = A \cup B$ (vi) $(A \cup B) \subset B$
- (7) Let $a, b, c, d \in \mathbb{N}$. State the following mathematically and write their negations:
 - (a) c divides a. (Easier to think of: a is a multiple of c).
 - (b) c is a common divisor of a and b,
 - (c) d is a greatest common divisor of a and b.

04-02-2019

- (1) Let X, Y b non-empty sets, $A \subset X, B \subset Y$. Show that $A \times B$ is a subset of $X \subset Y$.
- (2) Find $A \times B \subset \mathbb{R}^2$, where (i) $A = (0,1), B = \mathbb{R}$ (ii) $A = \{0,1\}, B = \mathbb{R}$ (iii) $A = \mathbb{N}, B = \mathbb{R}$ How do your answers change when (i) A and B are interchanged. (ii) $B = \mathbb{R}$ is replaced by $B = \mathbb{Z}$? (iii) $B = \mathbb{R}$ is replace by $[0,\infty)$
- (3) Prove or disprove: Let $Z \subset X \times Y$. Then there are subsets A and B of X and Y respectively such that $Z = A \times B$.
- (4) What is the set $c + \mathbb{Q}$ where $c \in \mathbb{R}$? When does it contain a rational number? What can you say in other cases? Answer similar questions about $c\mathbb{Q}$.
- (5) Identify some rational and irrational numbers in $\mathbb{Q} + [0,1]$? What is this set?
- (6) Find the lub and glb of the following sets in \mathbb{R} if they exist. Give an argument supporting your answer.
 - (a) $\{1/2^q \in \mathbb{R} | q \in \mathbb{Z}\}$
 - (b) $\{x \in \mathbb{R} | x < 1/n \text{ for some } n \in \mathbb{N} \}$
 - (c) $\{x \in \mathbb{R} | x > 1/n \ \forall n \in \mathbb{N} \}$
- (7) Let $S \subset \mathbb{R}$. If lub(S) = a, then show that glb $(\{-s \in \mathbb{R} | s \in S\}) = -a$.
- (8) Let $S \subset \mathbb{R}$ be a bounded subset of \mathbb{R} . Let $T = \{s^2 \in \mathbb{R} | s \in S\}$. Does it follow that $lub(T) = (lub(S))^2$? If yes, prove it. If false, give a counterexample, correct the statement and then prove the corrected statement.

20-02-2019

- (1) Let $x, y \in \mathbb{R}$ be such that x, y > 0 and $n \in \mathbb{N}$. Show that if $x^n \leq y^n$, then $x \leq y$.
- (2) Show that if $x \in (0,1)$, then $x \notin \mathbb{Z}$.
- (3) If $r \in \mathbb{R} \setminus \mathbb{Q}$ and $x \in \mathbb{Q} \setminus \{0\}$, show that rx and r + x are elements of $\mathbb{R} \setminus \mathbb{Q}$.
- (4) Show that there is no rational number x such that $x^2 = 3$.
- (5) For all $0 < x \in \mathbb{R}$ and $m \in \mathbb{N}$, define $x^{1/m}$ to the unique real number y > 0 such that $y^m = x$. Show the following:
 - (a) For all $0 < x \in \mathbb{R}, m, n \in \mathbb{N}, (x^m)^{1/n} = (x^{1/n})^m$.
 - (b) For $m, n, l, k \in \mathbb{N}$, if m/n = l/k, then show that $(x^m)^{1/n} = (x^l)^{1/k}$.
- (6) Let $f: \mathbb{R} \to \mathbb{R}$ be given by $f(x) = x^2$. Find f(A) for A = (i) $\{1, 1/2, 1/3, -1/2\}$ (ii) [0, 2] (iii) [0, 2] (iv) [-2, 1) (v) [-2, -1]
- (7) Is the function $f(x) = x^2$ one-one or onto as a function from (i) \mathbb{R} to \mathbb{R} ? (ii) \mathbb{R} to $[0,\infty)$? (iii) $(0,\infty)$ to $(0,\infty)$? (iv) (0,1) to (0,1)? Can you identify properties of the graph that give the one-one or onto conditions?
- (8) Let $f: X \to Y$ and $g: Y \to Z$ be functions.
 - (a) If f and g are one-one, show that $g \circ f$ is one-one.
 - (b) Is the converse true?
 - (c) Answer (a) and (b) with "one-one" being replaced by "onto".
- (9) Find a bijection from (0,1) to A, where A =(i) (1,2) (ii) (0,2) (iii) (1,3) (iv) Can you find a bijection from (0,1) to \mathbb{R} ?
- (10) Show that A is countable, where A = (i) $\{2, 3, 4, 5, ...\}$ (ii) $\{2, 4, 6, 8, ...\}$ (iii) $\{1, 3, 5, 7, ...\}$ (iv) $2\mathbb{Z}$ (v) $2\mathbb{Z}+1$ (vi) \mathbb{Z} (vii) $\mathbb{N} \times \mathbb{N}$

15-03-2019

- (1) For $x, y \in \mathbb{R}$, show that (i) |xy| = |x||y|(ii) (Triangle Inquality) $|x+y| \le |x| + |y|$
- (2) For $x,y \in \mathbb{R}$, show that $\max\{x,y\} = \frac{x+y+|x-y|}{2}$. Identify a similar relation for $\min\{x,y\}.$
- (3) Identify the set $\{x \in \mathbb{R} | |x-3| < 5\}$ (with proof).
- (4) Prove or disprove: For $x, y \in \mathbb{C}, |xy| = |x||y|$.
- (5) For a function $f: X \to A \subset X$, and $B \subset Y$, define $f^{-1}(B) = \{a \in X | f(a) \in B\}$ and $f(A) = \{b \in Y | \text{ there exists } a \in X \text{ such that } b = f(a) \}.$ Let $f: \mathbb{R} \to \mathbb{R}$ be given by $f(x) = x^2$.
 - (a) Find f(A) for $A = (i) \{1, \frac{1}{2}, \frac{1}{3}, -\frac{1}{2}\}$ (ii) [0, 2] (iii) (1, 2] (iv) [-2, 1] (b) Find $f^{-1}(B)$ for $B = (i) \{4\}$ (ii) $\{1\}$ (iii) [0, 1] (iv) [-4, 1] (v) (0, 1)

What are your answers when (i) $f(x) = x^3$ (ii) $f(x) = \sin(\pi x)$?

- (6) Let X be the set of 2×2 matrices with entries in \mathbb{R} .
 - (a) Find $f^{-1}(\{0\})$, where $f: X \to X$ is given by (i) $f(M) = M^2$ (ii) $f(M) = M^2 - M$ (iii) $f(M) = M - M^T$ (iv) $f(M) = MM^T$. In (iv), what is $f^{-1}(\{I\})$?
 - (b) Let $f: X \to \mathbb{R}$ be given by $f(M) = \det(M)$. (i) If A is the set of orthogonal matrices, what if f(A)? (ii) What if $f^{-1}(\{0\})$?
- (7) For $B = \{0\}, \{1\}, [0,1], (1,2], \text{ find } f^{-1}(B), \text{ where } f : \mathbb{R}^2 \to \mathbb{R} \text{ is given by }$ $f(x,y) = (i) x (ii) y (iii) x^2 + y^2 (iv) xy.$
- (8) Let $f: X \to Y$ be a function, $A, A_1, A_2 \subset X; B, B_1, B_2 \subset Y$.
 - (a) If $A \subset A_1$, show that $f(A) \subset f(A_1)$. Is the same true under inverse images?
 - (b) Show that $f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$. Is the same true for unions and complements?
 - (c) For $A_1, A_2 \subset X$, is one of $f(A_1 \cup A_2)$ and $f(A_1) \cup f(A_2)$ contained in the other? Is the containment proper? When does equality hold? Answer these questions for unions and complements.
 - (d) What is the relation between A and $f^{-1}(f(A))$? Is the containment proper? When does equality hold? Answer these questions for B and $f(f^{-1}(B))$.
- (9) Find the limit of the following sequences if they exist, else prove that the sequence diverges.
 - (i) $a_n = \frac{1}{n^2}$ for all $n \in \mathbb{N}$.

(ii) $b_n = \frac{1}{n^2}$ for all $n \in \mathbb{N}$. (iv) $d_n = (-1)^n$ for all $n \in \mathbb{N}$.

(iii) $c_n = n$ for all $n \in \mathbb{N}$.

25-03-2019

Notation: For $c, a \in \mathbb{Z}$, "c is a divisor of a" (or "a is a multiple of c") is denoted by c|a.

- (1) Let $a, b, c, d \in \mathbb{N}$. State the following mathematically and write their negations:
 - (a) c divides a. (Easier to think of: a is a multiple of c).
 - (b) c is a common divisor of a and b.
 - (c) d is the greatest common divisor of a and b.
- (2) Let $a, b, c \in \mathbb{Z}$. Prove the following:
 - (a) c|0.
 - (b) If a|b and c|a, then c|b.
 - (c) If c|a and c|b, then $\forall m, n \in \mathbb{Z}$, c|(ma+nb). In particular, c|(a+b) and c|(a-b).
 - (d) Suppose c|a. If $a \neq 0$, then $|a| \geq |c|$.
 - (e) If a|c and c|a, then $a = \pm c$.
- (3) Let $S \subset \mathbb{N}$ be such that (1) $1 \in S$ and (2) For $k \in \mathbb{N}$, if $\{1, 2, \dots, k\} \subset S$, then $k + 1 \in S$. Show that $S = \mathbb{N}$.
- (4) Prove the following statement by (i) induction and (ii) well-ordering principle: Given $n \in \mathbb{N} \setminus \{1\}$, there is a prime number $p \in \mathbb{N}$ such that p|n.
- (5) Let (a_n) , (b_n) be sequences of real numbers which converge and $c \in \mathbb{R}$. Prove the following statements.
 - (a) The sequence $(a_n + b_n)$ converges.
 - (b) The sequence (ca_n) converges.
 - (c) The sequence (a_nb_n) converges.

If you do not assume that (b_n) converges, what can you say about the convergence in each of the above cases?

- (6) Let (a_n) be a sequence of real numbers. If (a_n) is bounded (converges), every subsequence is bounded (converges). If we assume that all the subsequences excluding the original sequence are bounded (convergent), then is the converse true?
- (7) Show that every convergent sequence of real numbers is bounded. Is the converse true? Justify your answer.
- (8) Let $(a_n), (b_n)$ be sequences of real numbers such that $a_n \leq b_n$ for all $n \in \mathbb{N}$. If they converge to a and b respectively, then, $a \leq b$.
- (9) Let (a_n) be a sequence of non-negative real numbers converging to $a \in \mathbb{R}$. Show that $(\sqrt{a_n})$ converges to \sqrt{a} .

01-04-2019

- (1) Let $a, b, c \in \mathbb{Z}$. Prove or disprove:
 - (a) If c|(a+b), then c|a or c|b.
 - (b) If c|a or c|b, then c|ab.
 - (c) If c|ab, then c|a or c|b.
- (2) Let $W = \mathbb{Z} \cap [-100, \infty)$. Show that every non-empty subset of W has a least element.
- (3) Let $a_0 = 1$, and for $n \in \mathbb{N}$, let $a_n = \sqrt{2a_{n-1}}$.
 - (a) Show that for each $n \in \mathbb{N}$, $a_{n+1} \ge a_n$. HINT: Use induction on n.
 - (b) Show that the set $\{a_n : n \in \mathbb{N}\}$ is bounded above.
 - (c) Show that the sequence $\{a_n\}_{n\in\mathbb{N}}$ is convergent and find its limit.
- (4) Prove or disprove: Let (a_n) and (b_n) be two convergent sequences of real numbers with limits a and b respectively. If $a_n < b_n$ for all $n \in \mathbb{N}$, then a < b.
- (5) Show that the sequence $(p^{1/n})$ converges to 1 for all p > 0. HINT: First prove for p > 1 by finding the limit of $a_n = (p^{1/n}) - 1$.
- (6) (a) Let $a \in (-1, \infty)$ and $n \in \mathbb{N}$. Show that $(1+a)^n \ge 1 + na$.
 - (b) Show that the sequence $a_n = (1 + 1/n)^n$ is strictly increasing.
 - (c) Show that the sequence $b_n = (1 + 1/n)^{n+1}$ is strictly decreasing.
 - (d) Show that both (a_n) and (b_n) converge to the same limit which lies in (2,4).
- (7) Let $A \subset \mathbb{R}$ be bounded above and $\alpha = \text{lub}(A)$. Show that there is a sequence (a_n) in A, which converges to α .
- (8) Let (a_n) be a bounded sequence. Recall the definition of limit inferior and limit superior defined in class. Show that

$$\operatorname{glb}(a_n) \le \lim \inf(a_n) \le \lim \sup(a_n) \le \operatorname{lub}(a_n).$$

- (9) Let $a, b \in \mathbb{Z}$, $L = \{c \in \mathbb{Z} | \exists k, l \in \mathbb{Z} (c = ka + lb) \}$, and $C = \{c \in \mathbb{N} | c | a \text{ and } c | b \}$.
 - (a) Identify L and C when (a, b) = (1)(2, 3)(2)(4, 6)(3)(4, 8).
 - (b) Show that if $c \in L$, then for all $n \in \mathbb{Z}$, $nc \in L$.
 - (c) Show that if $c \in C$ and d|c, then $d \in C$.
 - (d) Prove or disprove: For $a, b \in \mathbb{N}, L \cap C \neq \emptyset$.

15-04-2019

- (1) Given $a, b \in \mathbb{Z}, a \neq 0$, consider the set $R = \{c \in \mathbb{Z} | \exists q \in \mathbb{Z} (c = b aq) \}$. Show that $R \cap \mathbb{N} \neq \emptyset$. What can you say about the least element of $R \cap \mathbb{N}$?
- (2) Given $a, b \in \mathbb{Z} \setminus \{0\}$, find (a) gcd(a, 0) (b) gcd(a, 1) (c) gcd(a, a). If a|b, what is gcd(a, b)? Show that gcd(a, b - a) = gcd(a, b), gcd(a, a + b) = gcd(a, b), and gcd(|a|, |b|) = gcd(a, b).
- (3) Show that the set of primes in \mathbb{N} is not finite.
- (4) Consider the following relations on \mathcal{A} , identify whether it is reflexive, symmetric, transitive, or anti-symmetric.
 - (a) $\mathcal{A} = \mathbb{R}$, and for $a, b \in \mathcal{A}$, a is related to b if $a \leq b$.
 - (b) $\mathcal{A} = \mathbb{R}^2$, and for $a = (a_1, a_2), b = (b_1, b_2) \in \mathcal{A}$, a is related to b if $a_1 \leq b_1$ and $a_2 \leq b_2$. What happens if 'and' is replaced by 'or'?
 - (c) \mathcal{A} is the set of subsets of a set X, and for $A, B \in \mathcal{A}$, A is related to B if $A \subset B$.
 - (d) \mathcal{A} is the set of human beings, and for $a, b \in \mathcal{A}$, a is related to b if a is a mother/brother/sibling of b.
 - (e) \mathcal{A} is the set of students at IITB in your batch, and for $a, b \in \mathcal{A}$, a is related to b if a is in the same hostel as b.
 - (f) $A = \mathbb{Z}$, and for $a, b \in A$, a is related to b if 12|(b-a).
 - (g) $\mathcal{A} = \mathbb{R}^2$, and for $a, b \in \mathcal{A}$, a is related to b if a has the same y-coordinate as b.
 - (h) $\mathcal{A} = \mathbb{R}$, and for $a, b \in \mathcal{A}$, a is related to b if b a is an integer.

In each example, pick two unrelated points in A, and identify all points related to each.

- (5) Show that every convergent sequence of real numbers is a Cauchy sequence.
- (6) Show that every Cauchy sequence of real numbers is bounded.
- (a) Show that the series $\sum_{k=1}^{n} \frac{1}{k}$ is a divergent series.
 - (b) More generally, for $p \in \mathbb{Z}$, show that $\sum_{k=1}^{n} \frac{1}{k^p}$ converges if and only if $p \ge 1$.
- (8) Show that if $\sum_{n=0}^{\infty} a_n$ converges, then $\lim_{n\to\infty} a_n = 0$.

The converse need not be true, i.e., if $\lim_{n\to\infty} a_n = 0$, then $\sum_{n=1}^{\infty} a_n$ need not converge. Give an example of this phenomenon.

- (9) Write a_n in terms of n for the following sequences:

 - 1. $\{3,7,11,15,19,\cdots\}$. 3. $\{x^{3/2},x^{9/4},x^{15/8},x^{21/16},x^{27/32},\cdots\}$.
- 2. $\{2, 3, 4/2, 5/6, 6/24, 7/120, \cdots\}$. 4. $\{1, 3, 15, 105, 945, \cdots\}$.

(10) Find the limits of the following sequences if they exist:

1.
$$a_n = \frac{\sin^2(n\pi/6)}{2^n}$$

2.
$$a_n = \frac{\ln(3 + 2e^{n^2})}{n^2 + 1}$$
.

3.
$$a_n = n^p, p \in \mathbb{R}$$
.

4.
$$a_n = \frac{n!}{n^n}$$
.

$$5. \ a_n = \frac{\ln(n)}{n}.$$

6.
$$a_n = \ln(n+1) - \ln(n)$$
.

7.
$$a_n = \frac{(-5)^n}{n!}$$
.

8.
$$a_n = \frac{1 + 2n + 4n^3}{2 + 3n^2}$$
.

(11) Find the limit of the series, i.e., find $\sum_{n=1}^{\infty} a_n$ where

(1)
$$a_n = \frac{1}{2^n}$$
. (2) $a_n = \frac{1}{n(n+1)}$. (3) $a_n = \frac{1}{n(\ln n)^p}$ if $p > 1$.

(12) Do the following series $\sum_{n=1}^{\infty} a_n$ converge or diverge?

(1)
$$a_n = \sin(n\pi/2)$$
. (2) $a_n = \frac{\ln(n)}{n}$. (3) $a_n = \frac{10^n}{(n+1)4^{2n+1}}$.

15-04-2019

- (1) For $n \in \mathbb{N}$, show that the following operations on $\mathbb{Z}/n\mathbb{Z}$ are well-defined: For all $a, b \in \mathbb{Z}$, [a] + [b] = [a + b], and [a][b] = [ab]. Prove that $\mathbb{Z}/n\mathbb{Z}$ is a field under these operations if and only if n is a prime.
- (2) Show that $\mathcal{M}_2(\mathbb{R})$, the set of all 2×2 matrices with real entries, forms a group under matrix addition, and does not form a group under matrix multiplication.
- (3) Let G be a group and $H \subset G$ be non-empty. Show that H is a subgroup if and only if $ab^{-1} \in H$ for all $a, b \in H$.
- (4) Check if H is a subgroup of the given group G.
 - (a) $G = \mathbb{Z}/12\mathbb{Z}$; $H = (i) \{[1], [11]\}$ (ii) $\{[0], [3], [6], [9]\}$. Group operation being + as defined above.
 - (b) $G = \mathcal{M}_2(\mathbb{R})$; $H = (i) \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in D \middle| c = 0 \right\}$ (ii) the set of invertible 2×2 matrices. Group operation being + as defined in the standard manner.
 - (c) $G = S_4$; $H = (i) \{id, (12), (34), (12)(34)\}$. (ii) $\{(123), (134), (143), (132), (234), (243), (124), (142), id\}$. Group operation being the standard composition of cycles.
- (5) Show that every group of prime order is cyclic.
- (6) (a) Find all generators for $\mathbb{Z}/12\mathbb{Z}$, $\mathbb{Z}/9\mathbb{Z}$ and $\mathbb{Z}/13\mathbb{Z}$.
 - (b) What can you say in general about the generators of $\mathbb{Z}/n\mathbb{Z}$ for $n \in \mathbb{N}$ and $n \geq 2$.
- (7) Consider the following relations on \mathcal{A} , identify whether it is an equivalence relation, a partial order, or a total order.
 - (a) \mathcal{A} is the set of human beings, and for $a, b \in \mathcal{A}$, a is related to b if a is a sibling of b.
 - (b) \mathcal{A} is the set of students at IITB in your batch, and for $a, b \in \mathcal{A}$, a is related to b if a is in the same hostel as b.
 - (c) $\mathcal{A} = \mathbb{R}$, and for $a, b \in \mathcal{A}$, a is related to b if $a \leq b$.
 - (d) $\mathcal{A} = \mathbb{R}^2$, and for $a = (a_1, a_2), b = (b_1, b_2) \in \mathcal{A}$, a is related to b if $a_1 \leq b_1$ and $a_2 \leq b_2$.
 - (e) $\mathcal{A} = \mathbb{R}^2$, and for $a = (a_1, a_2), b = (b_1, b_2) \in \mathcal{A}$, a is related to b if $a_1 \leq b_1$ or $a_2 \leq b_2$.
 - (f) \mathcal{A} is the set of subsets of a set X, and for $A, B \in \mathcal{A}$, A is related to B if $A \subset B$.
 - (g) $\mathcal{A} = \mathbb{Z}$, and for $a, b \in \mathcal{A}$, a is related to b if 12|(b-a).
 - (h) $\mathcal{A} = \mathbb{R}^2$, and for $a, b \in \mathcal{A}$, a is related to b if a has the same y-coordinate as b.
 - (i) $\mathcal{A} = \mathbb{R}$, and for $a, b \in \mathcal{A}$, a is related to b if b a is an integer.

In each example of an equivalence relation, pick a point in $a \in \mathcal{A}$, and identify [a].

In each example of a partial (or total) order, pick a point in \mathcal{A} , and identify the points related to it.

In the examples in \mathbb{R} or \mathbb{R}^2 , identify these sets on the number line, or the xy-plane.