The WKB Method

Damon Binder

Introduction

▶ Time-independent Schrödinger Equation:

$$\left[-\eta^2 \frac{d^2}{dx^2} + U(x)\right] \psi(x,\eta) = E \psi(x,\eta)$$

$$\eta^2 = \frac{\hbar^2}{2m} << 1$$

Wentzel-Kramers-Brillouin (WKB) Approximation

- Semiclassical method for calculating the wavefunction
- Developed in 1926 by Wentzel, Kramers and Brillouin
- First derived by a mathematician, Jeffreys, in 1923 for general linear second order equations

WKB Approximation

Classical Particle:

$$p(x) = \pm \sqrt{2m(E - U(x))}$$

For a free quantum particle

$$\psi(x) = e^{ipx/\hbar}$$

▶ Gives us "0th order" WKB approximation

$$\psi(x) \approx e^{i/\hbar \int p(x) dx}$$

WKB Approximation

▶ Classically, we want:

$$|\psi(x)|^2 \propto \frac{1}{|p(x)|}$$

▶ We get "1st order" WKB approximation

$$\psi(x) \approx \frac{1}{\sqrt{|p(x)|}} e^{i/\hbar \int p(x) dx}$$

Quantization Condition

Energy Levels are the energies for which there are bounded eigenfunctions:

Quantization Condition

Matching decaying solutions only possible if:

$$\int_{a}^{b} p(x) dx = \left(n - \frac{1}{2}\right) \pi \hbar$$

- Wave function has completely disappeared!
- Corresponds to Bohr-Sommerfeld quantization rule used in old quantum theory

Example: Homogenous Potential

For a $U(x) = x^{2K}$, this can be solved to get:

$$E_{n} = \left(\frac{\Gamma\left(\frac{3K+1}{2K}\right)\eta\sqrt{\pi}}{\Gamma\left(\frac{2K+1}{2K}\right)}\right)^{2K/(K+1)} \left(n - \frac{1}{2}\right)^{2K/(K+1)}$$

Numerical Results

For $U(x) = x^4$ and $\eta = 1$ we get:

$$E_n = 2.1850693 \left(n - \frac{1}{2} \right)^{4/3}$$

Eigenvalue	WBK Value	Exact Value [1]	Relative Error (%)
1	0.867145	1.060362	18
2	3.751920	3.799673	1.3
3	7.413988	7.455698	0.56
5	16.23361	16.26183	0.17
10	43.96395	43.98116	0.039
20	114.6863	114.6970	0.0093
30	199.1718	199.1799	0.0041
40	293.9418	293.949	0.0023

WKB to Higher Order

Make substitution:

$$\psi(x,\eta) = \exp(\int S(x,\eta) dx)$$

Schrödinger equation becomes:

$$S^2 + S' = \frac{U(x) - E}{\eta^2}$$

Take power series

$$S(x,\eta) = \eta^{-1}S_{-1}(x) + S_0(x) + \eta^1S_1(x) + \dots$$

First two terms give WKB approximation

WKB to Higher Order

We get recursive relation

$$-S_{l+1} = -\frac{1}{2S_{-1}} \left(\sum_{j=0}^{l} S_{j} S_{l-j} + \frac{dS_{l}}{dx} \right)$$

Dunham quantization condition [2]:

$$\sum_{j=0}^{\infty} \eta^{2j-1} \oint_{C} S_{2j-1}(z,E) dz = 2\pi \left(n - \frac{1}{2} \right)$$

Numerical Results

For $U(x) = x^4$ and $\eta = 1$ we get:

$$1.748 E_n^{3/4} - 0.1498 E_n^{-3/4} + 0.0376 E_n^{-9/4}$$

$$+0.0939 E_n^{-15/4} - 0.5574 E_n^{-21/4} + \dots = \pi \left(n - \frac{1}{2}\right)$$

Eigenvalue	WBK1	WKB3	WKB5	Exact [1]
1	0.867145	0.951643	1.128838	1.060362
Relative Error (%)	18	10	6.5	
3	7.413988	7.455282	7.455238	7.455698
Relative Error (%)	0.56	0.0056	0.0062	
10	43.96395	43.9811582184	43.981158094	43.981158097
Relative Error (%)	0.049	2.8×10 ⁻⁷	7.2×10 ⁻⁹	
40	293.9418	2293.9484582662	293.948458266002	293.948458266006
Relative Error (%)	0.0023	5.4×10 ⁻¹¹	1.4×10 ⁻¹²	

Relative Error vs Eigenvalue Number

Applicable to 3D central potentials

$$\[-\eta^2 \frac{d^2}{dr^2} + U(r) + \frac{l(l+1)}{r^2} \] \psi(r,\eta) = E \psi(r,\eta)$$

Quarkonia Spectra [3]

- Calculate tunnelling and reflection coefficients
- Gamow theory of alpha decay (1928) [4]

- False Vacuum Decay [5]
- Black Hole Thermodynamics [6]

- Method generalizes to other ODEs
- Inflationary Cosmology [7]
- Black Hole Dynamics [8]
- Population Dynamics [9]

Conclusion

- WKB method is a useful calculation tool
- Can be used to quickly and accurately calculate eigenvalues
- Widely applicable to many problems in physics

References

- 1. K. Banerjee, S. Bhatnagar, V. Choudhry, S. Kanwal. (1978). *The anharmonic oscillator*. Proc. R. Soc. Lond. A. **360**, 575
- J. Dunham.(1932). The Wentzel-Brillouin-Kramers Method of Solving the Wave Equation. Physics Review 41, 713.
- 3. A. Martin. (1980). A Fit of Upsilon and Charmonium Spectra. Physics Letters, **93B**, 140.
- 4. G. Gamow (1928). Zur Quantentheorie des Atomkernes. Z. Phys. **51**, 204.
- 5. T. Tanaka, M. Sasaki. (1992). *False Vacuum Decay with Gravity*. Progress of Theoretical Physics, **88**, 503.
- 6. S. Sarkar, S. Shankarnarayana, L. Sriramkumar. (2008). Sub-leading contributions to the black hole entropy in the brick wall approach. Physical Review D, **78**, 024003.
- J. Martin, D. Schwarz. (2003). WKB approximation for inflationary cosmological perturbations. Physics Review D 67, 083512.
- 8. S. Iyer, C. Will (1986). *Black-hole normal modes: A WKB approach*. Physical Review D, **35**, 3621.
- 9. B. Meerson, P. Sasorav. (2009) *WKB Theory of epidemic fade-out in stochastic populations*. Physics Review E, **80**, 041130.