Теория автоматов и формальных языков Контекстно-свободные языки: нисходящий анализ

Лектор: Екатерина Вербицкая

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ»

16 ноября 2021

В предыдущей серии

- Контекстно-свободные грамматики (все правила вида A o lpha)
- КС языки и разрешимость проверки пустоты
- Нормальная форма Хомского
- Алгоритм СҮК

В предыдущей серии: НФХ

КС грамматика находится в **нормальной форме Хомского**, если все ее правила имеют вид:

- $A \rightarrow BC$, где $A, B, C \in V_N$
- ullet A o a, где $A\in V_N, a\in V_T$
- S
 ightarrow arepsilon, если в языке есть пустое слово, где S стартовый нетерминал
- 1 Удалить стартовый нетерминал из правых частей правил
- 2 Избавиться от неодиночных терминалов в правых частях
- 3 Удалить длинные правила (длины больше 2)
- 4 Удалить непродуктивные правила (ε -правила)
- 5 Удалить цепные правила

В предыдущей серии: СҮК

- Алгоритм синтаксического анализа, работающий с грамматиками в НФХ
- Динамическое программирование

CYK

- ullet Дано: строка ω длины \emph{n} , грамматика $\emph{G} = \langle \emph{V}_{\emph{T}}, \emph{V}_{\emph{N}}, \emph{P}, \emph{S}
 angle$ в HФX
- Используем трехмерный массив d булевых значений размером $|V_N| \times n \times n, \ d[A][i][j] = true \Leftrightarrow A \Rightarrow \omega[i \dots j]$
- Инициализация: i = j
 - lacktriangledown d[A][i][i] = true, если в грамматике есть правило $A o \omega[i]$
 - ightharpoonup d[A][i][i] = false, иначе
- Динамика. Предполагаем, d построен для всех нетерминалов и пар $\{(i',j') \mid j'-i' < m\}$
 - $d[A][i][j] = \bigvee_{A \to BC} \bigvee_{k=i}^{j} d[B][i][k] \wedge d[C][k+1][j]$
- В конце работы алгоритма в d[S][1][n] записан ответ, выводится ли ω в данной грамматике

СҮК — алгоритм восходящего анализа

Восходящий анализ: начинаем с символов входной строки, строим дерево вывода до стартового нетерминала

Восходящий анализ контринтуинтивен (особенно при диагностике ошибок)

Нисходящий синтаксический анализ

- Top-down parsing
- Начинаем разбирать со стартового нетерминала, применяем правила грамматики, пока не получим строку
 - С откатом ([full] backtracking)
 - ▶ Без отката (without backtracking)

Нисходящий синтаксический анализ с откатом

- Метод грубой силы, bruteforce
- Перебираем все возможные варианты разбора, если что-то пошло не так возвращаемся к началу и пробуем снова

.

$$egin{array}{lll} S &
ightarrow & {\sf aAd} & | & {\sf aB} \ {\sf A} &
ightarrow & {\sf b} & | & c \ {\sf B} &
ightarrow & {\sf ccd} & | & {\sf ddc} \ \end{array}$$
 $\omega = {\sf addc}$

$$S \Rightarrow aAd$$

$$egin{array}{lll} S &
ightarrow & {\sf aAd} & | & {\sf aB} \ {\sf A} &
ightarrow & {\sf b} & | & {\sf c} \ {\sf B} &
ightarrow & {\sf ccd} & | & {\sf ddc} \ \end{array}$$
 $\omega = {\sf addc}$

$$S \Rightarrow aAd \Rightarrow abd$$

$$S \Rightarrow aAd \Rightarrow abd$$

не подходит, откатываемся

$$S \Rightarrow aAd \Rightarrow abd$$

 $S \Rightarrow aAd$

не подходит, откатываемся

$$S \Rightarrow aAd \Rightarrow abd$$

 $S \Rightarrow aAd \Rightarrow acd$

не подходит, откатываемся

$$S \Rightarrow aAd \Rightarrow abd$$

 $S \Rightarrow aAd \Rightarrow acd$

$$S \Rightarrow aAd \Rightarrow abd$$

 $S \Rightarrow aAd \Rightarrow acd$
 $S \Rightarrow aAd \Rightarrow acd$

$$S \Rightarrow aAd \Rightarrow abd$$

 $S \Rightarrow aAd \Rightarrow acd$
 $S \Rightarrow aB$

$$S \Rightarrow aAd \Rightarrow abd$$

 $S \Rightarrow aAd \Rightarrow acd$
 $S \Rightarrow aB \Rightarrow accd$

$$S \Rightarrow aAd \Rightarrow abd$$

 $S \Rightarrow aAd \Rightarrow acd$
 $S \Rightarrow aB \Rightarrow accd$

не подходит, откатываемся не подходит, откатываемся не подходит, откатываемся

$$S \Rightarrow aAd \Rightarrow abd$$

 $S \Rightarrow aAd \Rightarrow acd$
 $S \Rightarrow aB \Rightarrow accd$
 $S \Rightarrow aB$

не подходит, откатываемся не подходит, откатываемся не подходит, откатываемся

$$S \Rightarrow aAd \Rightarrow abd$$

 $S \Rightarrow aAd \Rightarrow acd$
 $S \Rightarrow aB \Rightarrow accd$
 $S \Rightarrow aB \Rightarrow addc$

не подходит, откатываемся не подходит, откатываемся не подходит, откатываемся

$$S \Rightarrow aAd \Rightarrow abd$$

 $S \Rightarrow aAd \Rightarrow acd$
 $S \Rightarrow aB \Rightarrow accd$
 $S \Rightarrow aB \Rightarrow addc$

не подходит, откатываемся не подходит, откатываемся не подходит, откатываемся ура!

Проблема: ну очень уж долго работает: экспоненциальное время!

Нисходящий синтаксический анализ без отката

- Рекурсивный спуск (recursive descent parsing)
 - ▶ Для каждого нетерминала написана функция
 - Функции для нетерминалов рекурсивно вызывают друг друга

Код

Нисходящий синтаксический анализ без отката: $\mathsf{LL}(1)$

- Идея: откат запрещен, но разрешен предпросмотр
- По следующему терминалу принять решение о том, какую продукцию использовать
- Как и предыдущие 2 подхода не может обрабатывать леворекурсивные правила грамматики
- Достаточно хорош для используемых на практике языков

LL(1)-анализ

- Нисходящий синтаксический анализ с предпросмотром одного символа
- Читает вход слева направо (L: left-to-right), строит левый вывод в грамматике (L: leftmost)
- Состоит из:
 - Входного буфера (откуда читается входная строка)
 - Стека (для промежуточных данных)
 - Таблицы анализатора (управляет процессом разбора)
- Работает за O(n), где n длина входной строки

Таблица LL(1)-анализатора

Управляет процессом разбора: показывает, какую продукцию применять, если во время анализа рассматривается нетерминал A, а следующий символ входа — t

	 t	 \$
Α	 $A \rightarrow \alpha$	

Для заполнения таблицы надо научиться считать множества символов, которые можно встретить во время анализа

Множество FIRST

Множество символов, которые могут появиться первыми во время вывода из данной сентенциальной формы

- $FIRST(a\alpha) = \{a\},$ если $a \in V_T, \alpha \in (V_T \cup V_N)^*$
- $FIRST(\varepsilon) = \{\varepsilon\}$
- $FIRST(\alpha\beta) = FIRST(\alpha) \cup (FIRST(\beta), \text{ если } \varepsilon \in FIRST(\alpha))$
- $\mathit{FIRST}(S) = \mathit{FIRST}(\alpha) \cup \mathit{FIRST}(\beta)$, если есть правило $S \to \alpha \mid \beta$

$$\begin{array}{ccc} S & \rightarrow & aS' \\ S' & \rightarrow & AbBS' \mid \varepsilon \\ A & \rightarrow & aA' \mid \varepsilon \\ A' & \rightarrow & b \mid a \\ B & \rightarrow & c \mid \varepsilon \end{array}$$

$$\begin{array}{ccc} S & \rightarrow & aS' \\ S' & \rightarrow & AbBS' \mid \varepsilon \\ A & \rightarrow & aA' \mid \varepsilon \\ A' & \rightarrow & b \mid a \\ B & \rightarrow & c \mid \varepsilon \end{array}$$

• $FIRST(S) = \{a\}$

$$\begin{array}{ccc} S & \rightarrow & aS' \\ S' & \rightarrow & AbBS' \mid \varepsilon \\ A & \rightarrow & aA' \mid \varepsilon \\ A' & \rightarrow & b \mid a \\ B & \rightarrow & c \mid \varepsilon \end{array}$$

- $FIRST(S) = \{a\}$
- $FIRST(A) = \{a, \varepsilon\}$

$$\begin{array}{ccc} S & \rightarrow & aS' \\ S' & \rightarrow & AbBS' \mid \varepsilon \\ A & \rightarrow & aA' \mid \varepsilon \\ A' & \rightarrow & b \mid a \\ B & \rightarrow & c \mid \varepsilon \end{array}$$

- $FIRST(S) = \{a\}$
- $FIRST(A) = \{a, \varepsilon\}$
- $FIRST(A') = \{a, b\}$

$$\begin{array}{ccc} \mathcal{S} & \rightarrow & a\mathcal{S}' \\ \mathcal{S}' & \rightarrow & AbB\mathcal{S}' \mid \varepsilon \\ \mathcal{A} & \rightarrow & a\mathcal{A}' \mid \varepsilon \\ \mathcal{A}' & \rightarrow & b \mid a \\ \mathcal{B} & \rightarrow & c \mid \varepsilon \end{array}$$

- $FIRST(S) = \{a\}$
- $FIRST(A) = \{a, \varepsilon\}$
- $FIRST(A') = \{a, b\}$
- $FIRST(B) = \{c, \varepsilon\}$

$$\begin{array}{ccc} S & \rightarrow & aS' \\ S' & \rightarrow & AbBS' \mid \varepsilon \\ A & \rightarrow & aA' \mid \varepsilon \\ A' & \rightarrow & b \mid a \\ B & \rightarrow & c \mid \varepsilon \end{array}$$

- $FIRST(S) = \{a\}$
- $FIRST(A) = \{a, \varepsilon\}$
- $FIRST(A') = \{a, b\}$
- $FIRST(B) = \{c, \varepsilon\}$
- $FIRST(S') = \{a, b, \varepsilon\}$

Множество FOLLOW

Множество символов, которые могут появиться в некотором выводе сразу после данной сентенциальной формы

- Положим $FOLLOW(X) = \emptyset$
- ullet Если X стартовый нетерминал, $FOLLOW(X) = FOLLOW(X) \cup \{\$\}$ символ конца строки
- Для всех правил вида A o lpha X eta, $FOLLOW(X) = FOLLOW(X) \cup (FIRST(eta) \setminus \{ arepsilon \})$
- Для всех правил вида $A \to \alpha X$ и $A \to \alpha X \beta$, где $\varepsilon \in FIRST(\beta)$, $FOLLOW(X) = FOLLOW(X) \cup FOLLOW(A)$
- Повторять последние 2 пункта, пока можно что-то добавлять

Множество FOLLOW: пример

$$\begin{array}{ccc} S & \rightarrow & aS' \\ S' & \rightarrow & AbBS' \mid \varepsilon \\ A & \rightarrow & aA' \mid \varepsilon \\ A' & \rightarrow & b \mid a \\ B & \rightarrow & c \mid \varepsilon \end{array}$$

$$\begin{array}{ccc} S & \rightarrow & aS' \\ S' & \rightarrow & AbBS' \mid \varepsilon \\ A & \rightarrow & aA' \mid \varepsilon \\ A' & \rightarrow & b \mid a \\ B & \rightarrow & c \mid \varepsilon \end{array}$$

• *FOLLOW(S)* = {\$}

$$\begin{array}{ccc} S & \rightarrow & aS' \\ S' & \rightarrow & AbBS' \mid \varepsilon \\ A & \rightarrow & aA' \mid \varepsilon \\ A' & \rightarrow & b \mid a \\ B & \rightarrow & c \mid \varepsilon \end{array}$$

- *FOLLOW(S)* = {\$}
- $FOLLOW(S') = \{\$\}$

 $(S \rightarrow aS')$

$$\begin{array}{ccc} S & \rightarrow & aS' \\ S' & \rightarrow & AbBS' \mid \varepsilon \\ A & \rightarrow & aA' \mid \varepsilon \\ A' & \rightarrow & b \mid a \\ B & \rightarrow & c \mid \varepsilon \end{array}$$

- *FOLLOW(S)* = {\$}
- $FOLLOW(S') = \{\$\}$
- $FOLLOW(A) = \{b\}$

$$(S' \rightarrow AbBS')$$

$$\begin{array}{ccc} S & \rightarrow & aS' \\ S' & \rightarrow & AbBS' \mid \varepsilon \\ A & \rightarrow & aA' \mid \varepsilon \\ A' & \rightarrow & b \mid a \\ B & \rightarrow & c \mid \varepsilon \end{array}$$

- *FOLLOW(S)* = {\$}
- $FOLLOW(S') = \{\$\}$
- $FOLLOW(A) = \{b\}$
- $FOLLOW(A') = \{b\}$

$$(S
ightarrow aS')$$

 $(S'
ightarrow AbBS')$
 $(A
ightarrow aA')$

$$\begin{array}{ccc} S & \rightarrow & aS' \\ S' & \rightarrow & AbBS' \mid \varepsilon \\ A & \rightarrow & aA' \mid \varepsilon \\ A' & \rightarrow & b \mid a \\ B & \rightarrow & c \mid \varepsilon \end{array}$$

•
$$FOLLOW(S') = \{\$\}$$

•
$$FOLLOW(A) = \{b\}$$

•
$$FOLLOW(A') = \{b\}$$

•
$$FOLLOW(B) = \{a, b, \$\}$$

$$(S' \rightarrow AbBS')$$

$$(A \rightarrow aA')$$

$$(S' \to AbBS', \varepsilon \in FIRST(S'))$$

$$S \rightarrow (S) \mid \varepsilon$$

- ullet Продукции вида A o lpha в ячейки (A,a), где $a\in \mathit{FIRST}(lpha),$ a
 eq arepsilon
- Продукции вида $A o \alpha$ в ячейки (A,a), где $a \in FOLLOW(A)$, если $\varepsilon \in FIRST(\alpha)$

$$S \rightarrow (S) \mid \varepsilon$$

- ullet Продукции вида A o lpha в ячейки (A,a), где $a\in \mathit{FIRST}(lpha), a
 eq arepsilon$
- Продукции вида $A o \alpha$ в ячейки (A,a), где $a \in FOLLOW(A)$, если $\varepsilon \in FIRST(\alpha)$

Ν	FIRST	FOLLOW	()	\$
S	$\{(,\varepsilon\}$	{),\$}			

$$S \rightarrow (S) \mid \varepsilon$$

- ullet Продукции вида A o lpha в ячейки (A,a), где $a\in \mathit{FIRST}(lpha), a
 eq arepsilon$
- Продукции вида A o lpha в ячейки (A,a), где $a \in FOLLOW(A)$, если $arepsilon \in FIRST(lpha)$

Ν	FIRST	FOLLOW	()	\$
S	$\{(,\varepsilon\}$	{),\$}	S o (S)		

$$S \rightarrow (S) \mid \varepsilon$$

- ullet Продукции вида A o lpha в ячейки (A,a), где $a\in \mathit{FIRST}(lpha), a
 eq arepsilon$
- Продукции вида A o lpha в ячейки (A,a), где $a \in FOLLOW(A)$, если $arepsilon \in FIRST(lpha)$

LL(1)-анализ

- Инициализация: указатель в строке на первый символ, в стек помещаем \$ и стартовый нетерминал
- Пока стек не пуст
 - Если на вершине стека нетерминал N, указатель в строке на символе t, смотрим на содержимое ячейки (N,t) управляющей таблицы
 - ★ Если ячейка пуста, сообщаем об ошибке анализа
 - \star Если в ячейке продукция $extbf{ extit{N}} o arepsilon$, снимаем со стека $extbf{ extit{N}}$
 - * Если в ячейке продукция $N \to \alpha$, снимаем со стека N, символы α кладем на стек в обратном порядке
 - ightharpoonup Если на вершине стека терминал t
 - * Если указатель в строке на терминале t, снимаем со стека вершину, двигаем указатель на следующий символ
 - Если указатель в строке на любом другом терминале, сообщаем об ошибке
- Если строка прочитана полностью, анализ завершен успешно.
 Иначе полагается сообщить об ошибке

Пример (доска)

16 ноября 2021

Когда LL-анализ не возможен

- Леворекурсивные правила
- Когда при построении таблицы в одну ячейку нужно записать больше одной записи
 - FIRST-FIRST конфликт

★
$$A \rightarrow \alpha \mid \beta, FIRST(\alpha) \cap FIRST(\beta) \neq \emptyset$$

$$\star$$
 $E \rightarrow T + E \mid T * E$

- ► FIRST-FOLLOW конфликт
 - ★ $FIRST(A) \cap FOLLOW(A) \neq \emptyset$

★
$$S \rightarrow Aab, A \rightarrow a \mid \varepsilon$$

- Как с этим бороться?
 - Избавиться от левой рекурсии
 - Избавиться от недетерминизма
 - Факторизовать грамматику
 - ▶ Использовать аннотации (если есть)
 - Переписать грамматику
 - ▶ Использовать более одного символа предпросмотра

Леворекурсивные правила грамматики

- Явная (непосредственная) левая рекурсия
 - ightharpoonup A
 igh
- Неявная левая рекурсия
 - $A \to \alpha A \beta, \ \alpha \stackrel{*}{\Rightarrow} \varepsilon$
- Взаимная рекурсия
 - $A \to \alpha B\beta, B \to \gamma A\delta, \alpha \stackrel{*}{\Rightarrow} \varepsilon, \gamma \stackrel{*}{\Rightarrow} \varepsilon$

Избавление от левой рекурсии

• $A \rightarrow A\alpha \mid \beta \Leftrightarrow A \rightarrow \beta A', A' \rightarrow \varepsilon \mid \alpha A'$

Избавление от левой рекурсии

- $A \rightarrow A\alpha \mid \beta \Leftrightarrow A \rightarrow \beta A', A' \rightarrow \varepsilon \mid \alpha A'$
- $E \rightarrow E + T \mid T \Leftrightarrow E \rightarrow TE', E' \rightarrow \varepsilon \mid +TE'$

Избавление от левой рекурсии

- $A \rightarrow A\alpha \mid \beta \Leftrightarrow A \rightarrow \beta A', A' \rightarrow \varepsilon \mid \alpha A'$
- $E \rightarrow E + T \mid T \Leftrightarrow E \rightarrow TE', E' \rightarrow \varepsilon \mid +TE'$

Избавление от левой рекурсии: более общий случай

- $A \rightarrow A\alpha_1 \mid A\alpha_2 \mid \cdots \mid A\alpha_n \mid \beta_1 \mid \beta_2 \mid \cdots \mid \beta_k$
- $A \rightarrow \beta_1 A' \mid \beta_2 A' \mid \cdots \mid \beta_k A'$
- $A' \rightarrow \varepsilon \mid \alpha_1 A' \mid \alpha_2 A' \mid \cdots \mid \alpha_n A'$

Избавление от взаимной левой рекурсии

- Избавляемся от arepsilon-продукций
- Упорядочиваем правила по индексу нетерминала
- Добиваемся того, чтобы не было правил вида $A_i o A_i lpha, j \le i$
 - ▶ Перебираем все A_i
 - ▶ Перебираем все $A_j, 1 \leq j < i$
 - lacktriangle Для каждого правила $p:A_i o A_i\gamma$
 - ⋆ Удалить правило р
 - \star Для каждого правила $A_j o\delta_1\,|\,\cdots\,|\,\delta_k$ Добавить правила $A_i o\delta_l$
 - ightharpoonup Устранить непосредственную левую рекурсию для A_i

Левая факторизация грамматики

• Выделяем наибольший общий префикс продукций $A o lpha eta \mid lpha \gamma \Rightarrow A o lpha A', \ A' o eta \mid \gamma$

Пример

$$\begin{array}{ccc} S & \rightarrow & aSSbS \\ & | & aSaSb \\ & | & abb \\ & | & b \end{array}$$

Пример

Пример

LL(k)-анализ

- Можно использовать более одного символа предпросмотра
- Все равно применимо не ко всем КС-грамматикам

LL(k): функция *FIRST*

- Функция $\mathit{FIRST}_k^{\mathcal{G}}(\alpha) = \{\omega \in V_T^* \mid \mathsf{либо} \ |\omega| < k \ \mathsf{u} \ \alpha \stackrel{*}{\Rightarrow} \omega, \ \mathsf{либо} \ |\omega| = k \ \mathsf{u} \ \alpha \stackrel{*}{\Rightarrow} \omega\gamma, \gamma \in V_T^* \}$
 - ightharpoonup По сути: первые k символов, встречающиеся в выводе из lpha
- Пример
 - $S \rightarrow SS \mid aSb \mid \varepsilon$
 - $FIRST_3^G(aSb) = \{ab, aab, aaa\}$
 - aba ∉ FIRST^G₃(aSb)!

LL(k): функция FOLLOW

$$FOLLOW_k^{\mathcal{G}}(\beta) = \{\omega \in V_T^* \mid S \stackrel{*}{\Rightarrow} \gamma \beta \alpha, \omega \in FIRST_k^{\mathcal{G}}(\alpha)\}, k \geq 0$$

Пример: $S o SS \mid aSb \mid arepsilon$

- $FOLLOW_3^G(aa) = \{abb, aab, aaa, aba, baa, bab, bb, bba, \dots\}$
- $\varepsilon, b \notin FOLLOW_3^G!$

Нисходящий синтаксический анализ: LL-грамматики

Фундаментальное свойство: по сентенциальной форме $a_1a_2\dots a_jA\beta, a_i\in V_T, A\in V_N, \beta\in (V_T\cup V_N)^*$ однозначно определяется, какое правило нужно применять дальше, чтобы разобрать всю строку

Нисходящий синтаксический анализ: LL-грамматики

Фундаментальное свойство: по сентенциальной форме $a_1a_2\dots a_jA\beta, a_i\in V_T, A\in V_N, \beta\in (V_T\cup V_N)^*$ однозначно определяется, какое правило нужно применять дальше, чтобы разобрать всю строку

КС грамматика G является LL(k)-грамматикой для некоторого k, если для любых двух левосторонних выводов вида

- $S \stackrel{*}{\Rightarrow} \omega A \alpha \Rightarrow \omega \beta \alpha \stackrel{*}{\Rightarrow} \omega \delta$
- $S \stackrel{*}{\Rightarrow} \omega A \alpha \Rightarrow \omega \gamma \alpha \stackrel{*}{\Rightarrow} \omega \eta$

в которых $\mathit{FIRST}_k^{\mathit{G}}(\delta) = \mathit{FIRST}_k^{\mathit{G}}(\eta)$, верно $\beta = \gamma$

КС грамматика G является **LL**-грамматикой, если она является LL(k)-грамматикой для некоторого $k \geq 0$

Пример LL(1)-грамматики

$$S \rightarrow aBS \mid b \ B \rightarrow a \mid bSB$$

Надо показать: для любых левосторонних выводов

- $S \stackrel{*}{\Rightarrow} \omega A \alpha \Rightarrow \omega \beta \alpha \stackrel{*}{\Rightarrow} \omega \delta$
- $S \stackrel{*}{\Rightarrow} \omega A \alpha \Rightarrow \omega \gamma \alpha \stackrel{*}{\Rightarrow} \omega \eta$

если δ и η начинаются с одного символа, то $\beta=\gamma$ Рассматриваем выводы, где роль A выполняет $S\colon S\Rightarrow aBS, S\Rightarrow b.$ $\omega=\alpha=\varepsilon, \beta=aBS, \gamma=b.$ Любая цепочка, выводимая из $\beta\alpha=aBS$ начинается на a; любая цепочка, выводимая из $\gamma\alpha=b$ начинается на b. Однозначно определяется, какой альтернативе следовать.

Аналогично с $A = B : S \Rightarrow aBS \Rightarrow aaS; S \Rightarrow aBS \Rightarrow abSBS$

Простая LL(1)-грамматика

КС-грамматика G называется **простой LL(1)-грамматикой**, если в ней нет ε -правил, и все альтернативы для каждого нертерминала начинаются с терминалов, и притом различных.

 $orall (A,a), A \in V_N, a \in V_T, \exists$ максимум 1 альтернатива вида A o a lpha

LL-грамматика: необходимое и достаточное условие

Теорема

КС грамматика $G = \langle V_N, V_T, P, S \rangle$ является LL(k)-грамматикой $\Leftrightarrow FIRST_k^G(\beta\alpha) \cap FIRST_k^G(\gamma\alpha) = \emptyset$, для всех таких $\alpha, \beta, \gamma: A \to \beta, A \to \gamma \in P, \beta \neq \gamma, \exists$ вывод $S \stackrel{*}{\Rightarrow} \omega A\alpha$

LL(1)-грамматика: необходимое и достаточное условие

Теорема

КС-грамматика $G = \langle V_N, V_T, P, S \rangle$ является LL(1)-грамматикой $\Leftrightarrow FIRST_1^G(\beta FOLLOW_1^G(A)) \cap FIRST_1^G(\gamma FOLLOW_1^G(A)) = \emptyset, \forall A \in V_N, \beta, \gamma \in (V_N \cup V_T)^*, A \to \gamma, A \to \beta \in P, \beta \neq \gamma$

LL(1)-грамматика: необходимое и достаточное условие: другая формулировка

Теорема

KC-грамматика $G = \langle V_N, V_T, P, S \rangle$ является LL(1)-грамматикой $\Leftrightarrow \forall A \to \alpha_1 \mid \alpha_2 \mid \cdots \mid \alpha_n$ верно:

- $FIRST_1^G(\alpha_i) \cap FIRST_1^G(\alpha_j) = \emptyset, i \neq j, 1 \leq i, j \leq n$
- если $\alpha_i \stackrel{*}{\Rightarrow} \varepsilon$, то $\mathit{FIRST}_1^{\mathsf{G}}(\alpha_j) \cap \mathit{FOLLOW}_1^{\mathsf{G}}(A) = \varnothing, 1 \leq j \leq \mathsf{n}, i \neq j$

Леворекурсивность

Теорема

Если КС-грамматика $G=\langle V_N,V_T,P,S\rangle$ леворекурсивна, то она не является LL(k)-грамматикой ни при каком k