ECEN325 Ref Sheet

Metric Prefixes				
ſ	peta	Р	10^{15}	1 000 000 000 000 000
	tera	Τ	10^{12}	1 000 000 000 000
ſ	giga	G	10^{9}	1 000 000 000
	mega	Μ	10^{6}	1 000 000
	kilo	k	10^{3}	1 000
ſ	hecto	h	10^{2}	100
	deca	da	10^{1}	10
	one		10^{0}	1
ſ	deci	d	10^{-1}	0.1
	centi	С	10^{-2}	0.01
ſ	milli	m	10^{-3}	0.001
ſ	micro	μ	10^{-6}	0.000 001
	nano	n	10^{-9}	0.000 000 001
	pico	р	10^{-12}	0.000 000 000 001
	femto	f	10^{-15}	0.000 000 000 000 001

Ohm's Law V = IR, $I = \frac{V}{R}$, $R = \frac{V}{I}$

Battery Symbol

The side with the longer line is the positive side

Complex Numbers

- $\bullet \frac{1}{i} = -i$
- $\sqrt[n]{z} = \sqrt[n]{r}e^{\frac{\theta}{n} + \frac{2k\pi}{n}}$ for $n \in N^*$ (ints ≥ 0) $e^{j\theta} = \cos(\theta) + j\sin(\theta)$ | $e^{-j\theta} = \cos(\theta) j\sin(\theta)$ $\cos(\theta) = \frac{1}{2}(e^{j\theta} + e^{-j\theta})$ | $\sin(\theta) = \frac{1}{2j}(e^{j\theta} e^{-j\theta})$
- normalized: $sinc(t) = \frac{\sin(\pi t)}{\pi t}$
- $\angle \frac{a}{b} = \angle a \angle b$ $\bullet \left| \frac{a}{b} \right| = \frac{|a|}{|b|}$

 $\cos(2a) = \cos^2(a) - \sin^2(a) = 2\cos^2(a) - 1 = 1 - 2\sin^2(a)$ $\cos^{2}(a) + \sin^{2}(a) = 1$ $\cos^{2}(a) = \frac{1}{2}(1 + \cos(2a))$ $\sin^{2}(a) = \frac{1}{2}(1 - \cos(2a))$

Bode Plots

- magnitude is plotted in dB: $|T(j\omega)|_{dB} = 20 \log_{10} |T(j\omega)|$
- starts on y-axis at DC offset with slope 0
- just add together the bode plots of each individual pole, zero, and the DC offset
- poles always slope down, zeros slope up (applies for both magnitude and phase)
- dec=decade, e.g. from 10^0 to 10^1
- magnitude:
- *Pole/Zero at origin:

constant slope $\pm 20db/dec$ for all ω ; 0dB at

 $\omega = 10^0 = 1$

- *Pole/Zero at ω_0 :

0 for $\omega < \omega_0$ slope $\pm 20 \frac{db}{dec}$ after

- *Constant C: constant line at $20 \log_{10}(|C|)$

- *Pole at origin: constant $-\frac{\pi}{2}$ or -90° *Zero at origin: constant $+\frac{\pi}{2}$ or $+90^{\circ}$
- *Pole/Zero at ω_0 :
- 0 for $\omega < \frac{\omega_0}{10}$
- slope linearly ($\pm 45^{\circ}/dec$) until $10\omega_0$
- 0 slope for $\omega > 10\omega_0$
- *Constant C: no effect (0 for all ω)
- Prof wants us to actually show the -3dB drop curve, not just a straight intersection

Solving systems with Op Amps

- © Josh Wright April 5, 2017 only applies if the op-amp has feedback
 - step 0: if the op amp is ideal, write out ideal properties:
 - $*V_{+} = V_{-}$ $*I_{-}=0,I_{+}=0$
 - $*A \approx \infty$
 - avoid doing KCL/KVL directly on the output node of the op amp
 - ignore resistors from a point at 0V to ground

Op Amp Equations

Inverting Amplifier

Non-Inverting Amplifier

- ideal open-loop behavior: $(V_p V_n) > 0 \rightarrow V_o = V_{DD}$
- $(V_p V_n) < 0 \rightarrow V_o = -V_{DD}$ general form: $T(s) = \frac{K_0}{1 + \frac{s}{\omega_0}}$
 - $*T(0) = K_0$: DC offset. For these simple ones, it's equal to ideal response
- $*\omega_0 = \frac{\omega_t}{1 + R_2/R_1}$
- inverting op amp: * ideal: $T(s) = \frac{V_o}{V_i} = -\frac{R_2}{R_1}$

* non-ideal:
$$T(s) = \frac{V_o}{V_i} = \frac{-R_2/R_1}{1 + \frac{1 + R_2/R_1}{A(s)}} = \frac{-R_2/R_1}{1 + \frac{s}{(\frac{\omega_t}{1 + R_2/R_1})}} = \frac{-R_2/R_1}{1 + \frac{s}{\omega_0}}$$
• non-inverting op-amp:

- non-inverting op-amp: *ideal: $T(s) = \frac{V_o}{V_i} = 1 + \frac{R_2}{R_1}$

*non-ideal:
$$T(s) = \frac{V_o}{V_i} = \frac{1 + R_2/R_1}{1 + \frac{1 + R_2/R_1}{A(s)}} = \frac{1 + R_2/R_1}{1 + \frac{s}{(\frac{\omega_t}{1 + R_2/R_1})}} = \frac{1 + R_2/R_1}{1 + \frac{s}{\omega_0}}$$

Diodes

- ideal:
- $*I_D(V_D < 0) = 0; I_D(V_D \ge 0) = \infty$ constant drop model: (ideal model shifted right by 0.7V)
- $*I_D(V_D < 0.7) = 0; I_D(V_D \ge 0.7) = \infty$
- exponential model: $I_D = I_S(e^{\frac{V_D}{nV_T}} 1)$
- $*I_S = 10^{-12}$ A (saturation current)
- $*V_T = 25 \text{mV}$
- current goes \rightarrow from cathode (-) to anode (+)
- small signal resistance: $R_d = \frac{nV_T}{I_D}$
- $*I_D$: average (DC) current through diode (due to forward bias)
- bridge rectifier shape: square/diamond with all the diodes point toward the + end of the output (away from ground)
- To solve a circuit with an op-amp and diodes, try individually solving with each possible combination of diodes off/on, and throw out the ones that cause contradictions
- *Prof says try all diodes off first
- *if an op-amp has no feedback, you can't assume that $V_p = V_n$. Instead, use the open-loop behavior

Diode DC biasing for approximating AC linearity

- assumes $v(t) \ll nV_T$ (AC signal is much smaller than V_T
- $\bullet r_D = \frac{nV_T}{I_D}$
- first find DC solution to find I_D (it's the DC current)
- find r_D , then find AC solution

Design an (unregulated) AC adapter

• V_S : AC voltage input

*standard AC voltage is $110\sqrt{2}V \approx 155.563V$

• V_{S2} : output of transformer (still AC)

• V_p : peak DC output

• V_r : peak-to-peak ripple voltage (maximum variation) *often given as a small percentage of V_p

• $V_p = V_{S2}$ – (diode voltage)

*diode voltage = 0.7V for single wave rectifier or center-tapped transformer

*diode voltage = 1.4V for full-wave rectifier

*(corresponds to how many diodes you need)

• turns ratio = $n = \frac{V_S}{V_{S2}}$ * if the transformer is center-tapped, each sub-coil only gets half of V_{S2} ; so use $n = \frac{1}{2} \frac{V_S}{V_{S2}}$

• apparent load resistance: $R_L = \frac{\tilde{V}_o}{I_L}$

• ripple voltage: $V_r = V_p \frac{T}{R_L C}$

*T: period of ripple (half of frequency of AC input)

*f: actual ripple frequency (double for full-wave rectifier)

*C: filter cap size

• Peak Inverse Voltage: minimum reverse bias breakdown voltage of the diodes

*center-tapped transformer, two diodes:

 $PIV = 2\hat{V}_{S2} - 0.7$

* bridge rectifier topology (two-terminal transformer): $PIV = V_{S2} - 0.7V$

• avg diode current: $I_{Davg} = I_L \left(1 + \pi \sqrt{\frac{2}{V_o}}\right)$

• max diode current: $I_{Dmax} = I_L \left(1 + 2\pi \sqrt{\frac{2}{V_r}}\right)$ *only difference is $\pi \to 2\pi$

Transistors

• $V_T = 25 \text{mV}$ at room temperature (according to textbook and prof),

 $V_T = 26 \text{mV}$ at room temperature (according to lab)

• β : a physical constant of the transistor. Usually about 100 or 200

 $\bullet I_B + I_C = I_E, \ I_C = \beta I_B, \ I_E = (1 + \beta)I_B$ $\bullet \alpha = \frac{\beta}{1 + \beta}, \ I_C = \alpha I_E$

 $\bullet I_C = I_S(e^{\frac{V_{BE}}{nV_T}}),$

• AC (assumes correct DC bias): $g_m = \frac{1}{r_e} = \frac{I_C}{V_T}$

Current Mirror

• Q1 has the base shorted to collector, Q2 does not

• $R_{bias} = R_{ref}$: the current that is mirrored

 $\bullet I_{ref} = (V_{CC} - 0.7)/R_{ref}$

• R_{load} has the same current through it as R_{ref} does * that is, $I_{ref} = I_{load}$

• you can chain together multiple transistors (Q3,Q4...) all off of the same Q1 and they will all get the same

*In this case, each Q2,Q3... output is considered separate from each other in both DC and AC analysis • only applies when transistors are matched! (we assume

Transistor circuits by inspection

• this all assumes that the transistor is properly DC

• three types of amplifier circuits: common emitter, common base, common collector

*CE, CB, CC

*the "common" pin is the one that is neither AC input nor output

• intrinsic gain: gain directly from the input pin of the transistor to the output, ignoring any source resistance or such things whatever

* when you chain multiple amplifiers together, this is the one you use

• when you're driving a finite-impedance load (a load other than open circuit), you have to consider R_o as

* this will change the gain, which is why it's often helpful to put a CC buffer at the end of an amplifier

• R_i : input impedance: impedance as seen from the input *includes the transistor, does not include R_s

• CE: Common Emitter

(CE)

*input: base; output: collector

* intrinsic gain: $\frac{V_o}{V_b} = -\alpha \frac{R_C}{r_e + R_E} \approx -\frac{R_C}{r_e + R_E}$ * $R_i = (\beta + 1)(r_e + R_E)$ * $R_o = R_C$

*if you have a R_L then you have to put that in parallel with R_C when calculating $\frac{V_o}{V_i}$

$$*R_i = r_e + \frac{R_B}{\beta + 1}$$

 $*R_o = R_C$ • CC: Common Collector

 $*gain \approx 1$ because it's a buffer

$$*\frac{V_o}{V_i} = \frac{R_E}{r_o + R_E}$$

$$*R_i = (\beta + 1)(r_e + R_E)$$

$$* \frac{V_o}{V_b} = \frac{R_E}{r_e + R_E}
* R_i = (\beta + 1)(r_e + R_E)
* R_o = R_E || r_e = \frac{R_E * r_e}{R_E + r_e}$$