二叉排序 1452764 何冬怡

目录

项目简介	`	3
	}	
	<u>\$</u>	
	算法思路	
3.	文件目录	4
成品变量	引承数接口	4

项目简介

二叉排序树就是指将原来已有的数据根据大小构成一棵二叉树,二叉树中的所有结点数据 满足一定的大小关系,所有的左子树中的结点均比根结点小,所有的右子树的结点均比根结点 大。

二叉排序树查找是指按照二叉排序树中结点的关系进行查找,查找关键自首先同根结点进行比较,如果相等则查找成功;如果比根节点小,则在左子树中查找;如果比根结点大,则在右子树中进行查找。这种查找方法可以快速缩小查找范围,大大减少查找关键的比较次数,从而提高查找的效率。

使用手册

- 打开 exe 文件后,出现用户界面,可通过输入对应数字进入不同的工作模式。
- 2. 输入 1 建立新的排序树。输入需要输入的数字后以 ctrl+z 结束输入,将以中序遍历输出二叉树,故输出关键码从大到小排列。

```
Binary Sort Tree
                                       **
-----
          1 --- Generate a tree
          2 --- Insert a key
                                      **
          3 --- Search a key
                                      **
          4 --- Exit
Please select:1
Please input keys to generate a binary sort tree:
56 87 34 9 7 13 76 45 <sup>^</sup>Z
Here is the new tree:
7 9 13 34 45 56 76 87
Please select:
```

3. 输入 2 为二叉树插入新的关键码。具体操作如图。

```
Please select:2
Please input key:47
Here is the new tree:
7 9 13 34 45 47 56 76 87
```

4. 输入3在二叉树中搜索关键码是否存在。若搜到则输出 success, 否则输出 fail。

```
Please select:3
Please input key:7
Succeed in searching the key 7
Please select:3
Please input key:11
Failed searching the key 11
```

5. 输入4退出程序。若输入了1234以外的输入,程序会要求重新输入。

```
Please select:43
Error selection. Please try again.
```

程序概述

1. 数据结构

包括二叉树节点类 BSTNode 和二叉树类 BST。BSTNode 成员变量包括左右节点指针和关键码值,BST 封装了一个二叉树根节点指针以及相关成员函数。

2. 算法思路

根据二叉排序树的性质进行元素插入,同理可以完成排序树的建立以及搜索。

3. 文件目录

可执行文件9_1452764_hedongyi.exe		类定义声明9_1452764_hedongyi.h	
主文件	9_1452764_hedongyi.cpp	项目文档 9_1452764_hedongyi.pdf	

成员变量/函数接口

成员变量名	数据类型	功能说明	
_left	BSTNode*	左节点指针	
_right	BSTNode*	右节点指针	
_data	int	关键码值	
成员函数名	功能	参数	返回值
BSTNode(int)	构造对应关键码的节点	int 关键码	BSTNode

left()	获得左节点指针	空	BSTNode*
right()	获得右节点指针	空	BSTNode*
setleft(BSTNode*)	修改左节点	BSTNode* 目标节点指针	void
setright(BSTNode*)	修改右节点	BSTNode* 目标节点指针	void
data()	获取关键码值	空	int

表 1 BSTNode 类接口

成员变量名	数据类型	功能说明	
_root	BSTNode*	二叉树根节点指针	
成员函数名	功能	参数	返回值
BST(BSTNode* p)	以p为根节点构造树	BSTNode*目标根节点	BST
search(int x)	搜索关键码为x的节点	int 目标关键码	BSTNode* 若搜 索失败则返回 nullptr
insert(int x)	插入关键码为x的节点	int 要插入的关键码	void
show(BSTNode* p)	中序遍历输出二叉树	空	void

表 2 BST 类接口