DCA, CIKM'16

Dmitry Dremov, Julia Ivkina, "ML Trainings" 3rd place

"ML Trainings"

- Moscow community
- Discussing competitions, experience sharing
- DCA: 3, 4, 7, 10 @ Top-10

Plan

- Train set transformation
- Filtration
- Features
- Edge probability prediction
- Closure

Train set transformation

- Find components
- Add random components up to 96000 nodes
- Add 443 random nodes from distinct components
- Two folds with 197352 nodes and 412945 edges total

Filtration

- kNN with visited URLs sparse matrix
- Shared URLs
- Train set edges ~400000
- Recall ~53%
- Precision ~5%

KNN

- URLs sparse matrix
- Every visit "A/B/C/D": {"A", "A/B", "A/B/C", "A/B/C", "A/B/C/D"}
- TF-IDF, row-wise L₂ normalisation
- L₂ distance
- 15 nearest neighbour

Shared URLs

- URLs visited by less than 40 devices.
- These devices are frequently linked
- Count shared URLs for every edge

Features

- Visited URLs-based
- Time-based

Visited URLs

- Sparse visited URLs matrix
- L₁, L₂, L_{max}, KLD, cosine
- Edge AB: (Aurls, Burls)
- SVD, 40 components

Time based

- Intraday usage
- Consecutive visits interval
- Time window intersection

Edge probability

- OOF base models usage
- Base RF and SVM models
- Meta XGBoost model

Base models

- SVM on sparse URLs matrix
- Separate model for every neighbour number, high regularisation
- Random Forest on dense features

Meta features

- Dense features
- Random Forest probability
- SVM boundary distance
- "Rank" features

Rank features

Closure

- Transitive closure
- Fully connected closure

Transitive closure

P* ~ 0.8

Fully connected closure

P* ~ 0.9

Resulted edges set

- Top edges by model 97000
- Transitive closure +12000 edges
- Fully connected closure +4000

Calculations

- 12 cores, 64 GB RAM
- ~4 hours total work time

Analysis

- 3rd place with F1* ~ 0.4137
- Strong model
- Good filtration
- Good features

Thank you!