C.C.P., MP, 2001, Mathématiques II

(7 pages)

Erreur d'énoncé: n doit être non nul (et $n \ge 2$ aurait été préférable pour la partie IV).

Partie I

- Par développement par rapport à la première ligne, on obtient $\det C_P = (-1)^{n+1} (-a_0) = (-1)^n a_0 = (-1)^n P(0)$. Donc C_P est inversible si et seulement si $P(0) \neq 0$.
- 2. En développant par rapport à la dernière colonne, on obtient :

$$\chi_{C_P} = \begin{vmatrix} -X & 0 & \cdots & 0 & -a_0 \\ 1 & -X & \ddots & \vdots & -a_1 \\ 0 & \ddots & \ddots & 0 & \vdots \\ \vdots & \ddots & 1 & -X & -a_{n-2} \\ 0 & \cdots & 0 & 1 & -X -a_{n-1} \end{vmatrix}$$

$$= (-X - a_{n-1}) \begin{vmatrix} -X & 0 & \cdots & 0 \\ 1 & -X & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 1 & -X \end{vmatrix} + \dots + (-1)^{n+k+1} (-a_k) \begin{vmatrix} -X & 0 & \cdots & 0 & 0 & \cdots & \cdots & 0 \\ 1 & -X & \ddots & \vdots & \vdots & & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & \vdots & & \vdots & \vdots \\ 0 & \cdots & 1 & -X & 0 & \cdots & \cdots & 0 \\ \hline 0 & \cdots & \cdots & 0 & 1 & -X & \cdots & 0 \\ \vdots & & & \vdots & \vdots & \ddots & 1 & -X \\ 0 & \cdots & \cdots & 0 & 0 & \cdots & 0 & 1 \end{vmatrix}$$

$$+ \cdots + (-1)^{n+1}(-a_0) \begin{vmatrix} 1 & -X & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & 1 & -X \\ 0 & \cdots & 0 & 1 \end{vmatrix}$$

$$= (-X - a_{n-1})(-X)^{n-1} + \dots + (-1)^{n+k+1}(-a_k)(-X)^k + \dots + (-1)^{n+1}(-a_0)$$

$$= (-1)^n \left[X^n + a_{n-1}X^{n-1} + \dots + a_kX^k + \dots + a_0 \right]$$

soit $\chi_{C_P} = (-1)^n P$.

3. Si $Q = \chi_A$ alors $\deg Q = n$ et son coefficient dominant est $(-1)^n$. Réciproquement, si $\deg Q = n$ et son coefficient dominant est $(-1)^n$, posons $P = (-1)^n Q$: on a alors $Q = \chi_{C_P}$ d'après [4].

Il existe $A \in \mathcal{M}_n(\mathbb{K})$ telle que $Q = \chi_A$ si et seulement si Q a pour terme de plus haut degré $(-1)^n X^n$.

4. a. $\chi_{{}^t\!C_P} = \chi_{C_P}$ donne $\operatorname{Sp}({}^t\!C_P) = \operatorname{Sp}(C_P)$.

m01pm2cb.tex - page 1

$$\mathbf{b.} \ \ X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathrm{Ker}({}^tC_P - \lambda I_n) \Longleftrightarrow \begin{pmatrix} 0 & 1 & 0 \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \\ -a_0 & \cdots & -a_{n-2} & -a_{n-1} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \lambda \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

$$\Leftrightarrow \begin{cases} \lambda x_1 = x_2 \\ \lambda x_2 = x_3 \\ \vdots \\ \lambda x_{n-1} = x_n \\ \lambda x_n = -a_0 x_1 - \cdots - a_{n-2} x_{n-1} - a_{n-1} x_n \end{cases}$$

$$\Leftrightarrow \begin{cases} x_2 = \lambda x_1 \\ x_3 = \lambda^2 x_1 \\ \vdots \\ x_n = \lambda^{n-1} x_1 \\ 0 = P(\lambda) x_1 \end{cases}$$

$$\Leftrightarrow \begin{cases} 1 \\ \lambda \\ \vdots \\ \chi^{n-1} \end{pmatrix}.$$

$$\Leftrightarrow \begin{cases} 1 \\ \lambda \\ \vdots \\ \chi^{n-1} \end{pmatrix}.$$

- c. Si P est scindé à racines simples alors χ_{C_P} aussi et donc ${}^t\!C_P$ est diagonalisable. Réciproquement, si ${}^t\!C_P$ est diagonalisable alors χ_{C_P} est scindé donc P aussi et, pour tout λ racine de P, on a $\lambda \in \operatorname{Sp}({}^t\!C_P)$ et la multiplicité de λ est égale à $\dim\left(\operatorname{Ker}({}^t\!C_P - \lambda I_n)\right)$. Or, on a vu au $[\mathbf{b}]$ que $\dim\left(\operatorname{Ker}({}^t\!C_P - \lambda I_n)\right) = 1$. Donc P est scindé à racines simples. Ainsi ${}^t\!C_P$ est diagonalisable si et seulement si P est scindé à racines simples .
- **d.** \diamond Puisque deg P=n, si P a n racines deux à deux distinctes alors P est scindé à racines simples et donc [c] donne ${}^{t}C_{P}$ est diagonalisable .
 - $\diamond \text{ La famille} \left(\begin{pmatrix} 1 \\ \lambda_1 \\ \vdots \\ \lambda_1^{n-1} \end{pmatrix}, \dots, \begin{pmatrix} 1 \\ \lambda_n \\ \vdots \\ \lambda_n^{n-1} \end{pmatrix} \right) \text{ est formée de vecteurs propres associés à des valeurs propres}$

5. a. Prenons $\underline{n=2002}, \quad P=X^{2002}-X^{2001}-X^{2000}-1999$ et $A=C_P$. On a $\chi_A=P$ et le théorème de Cayley-Hamilton donne P(A)=O.

REMARQUE: Comme P(0) = 0 et $P(t) \xrightarrow[t \to +\infty]{} +\infty$, P a au moins une racine α dans \mathbb{R} donc dans \mathbb{K} et, pour tout n, la matrice $A = \alpha I_n$ vérifie l'équation.

b. Puisque $f^{n-1} \neq 0$, on a Ker $f^{n-1} \neq E$ et on peut fixer $e \in E \setminus \text{Ker } f^{n-1}$ puis poser, pour $k \in [1, n], e_k = f^{k-1}(e)$. Montrons que (e_1, \ldots, e_n) est une base de E: si il existe $(\lambda_1, \ldots, \lambda_n) \in \mathbb{K}^n$ et $(\lambda_1, \ldots, \lambda_n) \neq 0$

 $(0,\ldots,0)$ tel que $\sum_{k=1}^{n} \lambda_k e_k = \vec{0}$, posons $r = \min\{k \mid \lambda_k \neq 0\}$; on a alors

$$\vec{0} = f^{n-r} \left(\sum_{k=1}^n \lambda_k e_k \right) = f^{n-r} \left(\sum_{k=r}^n \lambda_k e_k \right) = \sum_{k=r}^n \lambda_k f^{n-r+k-1}(e)$$
$$= \lambda_r f^{n-1}(e) + f^n \left(\sum_{k=r+1}^n \lambda_k f^{k-r}(e) \right) = \lambda_r f^{n-1}(e)$$

donc, puisque $f^{n-1}(e) \neq \vec{0}$, $\lambda_r = 0$ ce qui contredit la définition de r. Donc (e_1, \ldots, e_n) est une famille libre de E donc une base de E et, pour $k \in [1, n-1]$, $f(e_k) = f^k(e) = e_{k+1}$ et $f(e_n) = f^n(e) = \vec{0}$.

Donc il existe une base
$$\mathcal{B}$$
 de E telle que Mat $(f,\mathcal{B}) = \begin{pmatrix} 0 & & & 0 \\ 1 & 0 & & 0 \\ & \ddots & \ddots & \vdots \\ & & 1 & 0 \end{pmatrix} = C_{X^n}$.

Partie II

- **6.** On a $\lambda X = AX$ donc $\forall i \in [1, n]$, $\lambda x_i = \sum_{k=1}^n a_{ik} x_k$ donc $|\lambda x_i| = \left|\sum_{k=1}^n a_{ik} x_k\right| \leqslant \sum_{k=1}^n |a_{ik}| |x_k| \leqslant \sum_{k=1}^n |a_{ik}| |X||_{\infty}$ donc $\underline{\forall i \in [1, n]}$, $|\lambda x_i| \leqslant r_i ||X||_{\infty}$.
- 7. Appliquons le résultat de [6] à i_0 tel que $|x_{i_0}| = ||X||_{\infty}$, on obtient $|\lambda| ||X||_{\infty} \leqslant r_{i_0} ||X||_{\infty}$ donc, puisque $X \neq \vec{0}$, $|\lambda| \leqslant r_{i_0}$ donc $\lambda \in D_{i_0}$.

 Ainsi $\forall \lambda \in \operatorname{Sp}(A), \ \exists i_0 \in [\![1,n]\!], \quad \lambda \in D_{i_0}$ donc $\operatorname{Sp}(A) \subset \bigcup_{k=1}^n D_k$.
- 8. On a vu au [2] que les racines de P sont les valeurs propres de C_P et on peut appliquer [7] à $A = C_p$ avec $r_1 = \left|a_0\right|$ et pour $i \in [2, n]$, $r_i = 1 + \left|a_{i-1}\right|$. Or, $\bigcup_{k=1}^n D_k$ est le disque fermé de centre 0 et de rayon $\max_{1 \leqslant i \leqslant n} r_i$ donc toutes les racines de P appartiennent à $B_f(0, R)$ où $R = \max\left\{\left|a_0\right|, 1 + \left|a_1\right|, \dots, 1 + \left|a_{n-1}\right|\right\}$.
- Pour fixer les idées, supposons que $a = \operatorname{Max}\{a,b,c,d\}$. Si $n \in \mathbb{N}$ est solution de l'équation proposée, il est racine de $P = X^a + x^b X^c X^d \in \mathbb{C}_a[X]$ donc, avec les notations de $[\mathbf{8}]$, on a $|n| \leq R$ avec R = 2 car $|a_0| = 0$ et $1 + |a_k| = \begin{cases} 2 & \text{si } k \in \{b,c,d\} \\ 1 & \text{sinon} \end{cases}$ Mais, si 2 était solution, on aurait, en supposant, par exemple, c > d, $2^b \left(2^{a-b} + 1\right) = 2^d \left(2^{c-d} + 1\right)$ donc, par unicité de la décomposition en produit de nombres premiers, b = d ce qui est exclu. 0 et 1 étant clairement solutions, on peut conclure que : les seules solutions $n \in \mathbb{N}$ de $n^a + n^b = n^c + n^d$ sont 0 et 1.

REMARQUE: Plus simplement, si $n \neq 0$ est solution de l'équation, en notant $m = \text{Min}\{a, b, c, d\}$, on a $n^{a-m} + n^{b-m} = n^{c-m} + n^{d-m}$ donc, modulo $n, 1 \equiv 0$ ce qui donne n = 1.

Partie III

- 10. Si $\forall n, \ u(n) = \lambda^n \text{ alors } \forall n, \ u(n+p) + a_{p-1}u(n+p-1) + \dots + a_0u(n) = \lambda^n \left(\lambda^p + a_{p-1}\lambda^{p-1} + \dots + a_0\right) = \lambda^n P(\lambda)$. Donc la suite $n \mapsto \lambda^n$ appartient à F si et seulement si λ est racine de P.
- 11. $\diamond \varphi$ est clairement linéaire et soit $\alpha = (\alpha_0, \dots, \alpha_{p-1}) \in \mathbb{C}^p$, il existe une et une seule suite $u \in F$ telle que $\varphi(u) = \alpha$: c'est la suite définie par $u(0) = \alpha_0, \dots u(p-1) = \alpha_{p-1}$ et, pour $n \geqslant p$, $u(n) = -a_{p-1}u(n-1) \dots a_0u(n-p)$. Donc φ est bijective et donc $\underline{\varphi}$ est un isomorphisme de F sur \mathbb{C}^p . \diamond On a donc dim $F = \dim \mathbb{C}^p$ soit dim F = p.
- **12.** a. $e_i(p) = -a_{p-1}e_i(p-1) \cdots a_ie_i(i) \cdots a_0e_i(0)$ donc $e_i(p) = -a_i$.
 - **b.** Notons $(\varepsilon_1, \ldots, \varepsilon_p)$ la base canonique de \mathbb{C}^p . On a $e_i = \varphi^{-1}(\varepsilon_{i+1})$ donc la famille (e_0, \ldots, e_{p-1}) est l'image par l'isomorphisme φ^{-1} de la base $(\varepsilon_1, \ldots, \varepsilon_p)$. Ainsi (e_0, \ldots, e_{p-1}) est une base de F.
 - **c.** $\forall u \in F, \ u = \varphi^{-1} \left[\varphi(u) \right] = \varphi^{-1} \left[\sum_{i=0}^{p-1} u(i) \, \varepsilon_{i+1} \right] = \sum_{i=0}^{p-1} u(i) \, \varphi^{-1} \left(\varepsilon_{i+1} \right) \text{ donc } \underbrace{\forall u \in F, \ u = \sum_{i=0}^{p-1} u(i) \, e_i}_{}.$
- 14. Pour $u \in F$, $f(u) \in F$ donc [13.c] donne $f(u) = \sum_{k=0}^{p-1} f(u)(k) e_k = \sum_{k=0}^{p-1} u(k+1) e_k = \sum_{k=0}^{p-2} u(k+1) e_k + u(p) e_{p-1} = u(1) e_0 + \sum_{k=1}^{p-1} u(k) e_{k-1} + u(p) e_{p-1}$. En particulier, $f(e_i) = \begin{cases} e_{i-1} a_i e_{p-1} & \text{si } 1 \leqslant i \leqslant p-1 \\ -a_0 e_{p-1} & \text{si } i = 0 \end{cases}$ $\text{donc Mat} \left(f, (e_0, \dots, e_{p-1}) \right) = \begin{pmatrix} 0 & 1 & \dots & 0 \\ 0 & 0 & \ddots & \vdots \\ \vdots & \vdots & & 1 \\ -a_0 & -a_1 & \dots & -a_{p-1} \end{pmatrix} = {}^tC_P.$
- **15. a.** D'après [**4.d**], une base de vecteurs propres pour tC_P est $\left(\begin{pmatrix} 1\\ \lambda_1\\ \vdots\\ \lambda_1^{n-1} \end{pmatrix}, \dots, \begin{pmatrix} 1\\ \lambda_n\\ \vdots\\ \lambda_n^{n-1} \end{pmatrix}\right)$ donc une base de vecteurs propres pour g est (v_0, \dots, v_{p-1}) avec $v_i = \sum_{k=0}^{p-1} \lambda_i^k e_k$. Mais la suite $w_i : n \mapsto \lambda_i^n$ appartient à F d'après [**10**] et s'écrit $w_i = \sum_{k=0}^{p-1} \lambda_i^k e_k$. Donc une base de vecteurs propres pour g est (v_0, \dots, v_{p-1}) avec $\forall n, v_i(n) = \lambda_i^n$.
 - **b.** Donc $\forall u \in F, \exists (k_0, \dots, k_{p-1}) \in \mathbb{C}^p, \ u = \sum_{i=0}^{p-1} k_i v_i \text{ soit } \exists (k_0, \dots, k_{p-1}) \in \mathbb{C}^p, \quad \forall n \in \mathbb{N}, \ u(n) = \sum_{i=0}^{p-1} k_i \lambda_i^n.$
- 16. Ici, $P = X^3 (a+b+c)X^2 + (ab+ac+bc)X abc = (X-a)(X-b)(X-c)$ avec a,b,c distincts (l'hypothèse "non nulles" ne sert pas) donc [15] donne : une base de F est $\left((a^n)_{n\in\mathbb{N}},(b^n)_{n\in\mathbb{N}},(c^n)_{n\in\mathbb{N}}\right)$.

Partie IV

- Non (si $n \ge 2$) car $\operatorname{rg}(C_A) \ge n-1$ donc si $\operatorname{rg}(A) < n-1$ alors A ne saurait être semblable à C_A (si n=1, 17. $\overline{A = C_A}$). On peut aussi, selon [4.c], prendre A diagonalisable mais avec une valeur propre au moins double.
- Si on a (**) alors $U V = P^{-1}(C_U C_V)P$. Or, les (n-1) premières colonnes de $C_U C_V$ sont nulles 18. donc $\operatorname{rg}(C_U - C_V) \leq 1$ et si on avait $\operatorname{rg}(C_U - C_V) = 0$ alors $C_U - C_V = 0$ donc U - V = 0 ce qui est exclu $(U \text{ et } V \text{ distinctes}) \text{ donc } \operatorname{rg}(C_U - C_V) = 1. \text{ Donc } \operatorname{rg}(U - V) = 1. \text{ On a donc montré que } (**) \Longrightarrow (*).$
- $\frac{U=I_2, \quad V=\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad \text{v\'erifient (*) mais pas (**) et on a PGCD } \left(\chi u, \chi v\right)=X^2-1}{\text{On a bien rg}(U-V)=1 \text{ et, d'autre part } \chi_U=\chi_V \text{ donc } C_U=C_V \text{ et, si on avait (**)}, \text{ on a urait } U=V$ 19.

ce qui n'est pas.

- 20. $\operatorname{rg}(u-v) = \operatorname{rg}(U-V) = 1$ et le théorème du rang donne $\dim(\operatorname{Ker}(u-v)) = n-1: H$ est un hyperplan de E.
- **21.** a. Si on avait $F \subset H$ alors $\forall x \in F$, $(u-v)(x) = \vec{0}$ donc $\forall x \in F$, u(x) = v(x) c'est à dire que $u_F = v_F$. On a donc $\chi_{u_F} = \chi_{v_F}$. Posons $P = \chi_{u_F} = \chi_{v_F}$, on a deg $P = \dim F \geqslant 1$ et P divise χu et χv ce qui contredit PGCD $(\chi u, \chi v) = 1$. Donc $F \not\subset H$.
 - **b.** \diamond On a donc $F \neq F \cap H$ donc dim $F > \dim(F \cap H)$ et donc dim $(F + H) = \dim H + \dim F \dim(F \cap H) > 0$ $\dim H = n - 1 \operatorname{donc} \operatorname{dim}(F + H) = n \operatorname{et} \underline{F + H = E}$.

 \diamond Notons $p = \dim F$. Soit $\mathcal{B}_F = (u_1, \dots, u_p)$ une base de F, $\mathcal{B}_H = (v_1, \dots, v_{n-1})$ une base de H. Tout élément de E s'écrit $x = \sum_{i=1}^p \lambda_i u_i + \sum_{j=1}^{n-1} \mu_j v_j$ donc $(u_1, \dots, u_p, v_1, \dots, v_{n-1})$ est génératrice de E et

 (u_1,\ldots,u_p) est libre donc le théorème de la base incomplète montre qu'on peut compléter \mathcal{B}_F par des vec--teurs de H en une base \mathcal{B}' de E.

 \diamond On a donc $\mathcal{B}' = (u_1, \dots, u_p, u_{p+1}, \dots, u_n)$ avec $u_k \in H$ pour $k \geqslant p+1$. Or, si $x \in H$, u(x) = v(x) et Fest stable par u et par v donc on a

$$\operatorname{Mat}(u, \mathcal{B}') = \begin{pmatrix} A_1 & B \\ \hline O & C \end{pmatrix} \qquad \operatorname{Mat}(v, \mathcal{B}') = \begin{pmatrix} A_2 & B \\ \hline O & C \end{pmatrix} \qquad \operatorname{avec} A_i \in \mathcal{M}_p(\mathbb{K}) .$$

Donc $\chi_C \mid \chi_U, \chi_C \mid \chi_V$ et $\deg(\chi_C) = n - p \geqslant 1$ puisque $F \neq E$, ce qui contredit PGCD $(\chi_U, \chi_V) = 1$. Donc $\underline{F} = \underline{E}$.

- **c.** $\{\vec{0}\}$ et E sont stables par u et par v et on vient de montrer que si F est stable par u et par v et $F \neq \{\vec{0}\}$ alors F = E. Donc les seuls sous-espaces stables par u et par v sont E et $\{\vec{0}\}$.
- **22.** a. Pae définition, $G_j = (u^j)^{-1}(H)$ et $U \in GL_n(\mathbb{K})$ donc $u \in GL(E)$ et donc $u^j \in GL(E)$ donc dim $G_j =$ $\dim H.$ Ainsi, pour tout $j\in\mathbb{N},\ G_j$ est un hyperplan de E .
 - **b.** On a donc $G_j = \operatorname{Ker} \varphi_j$ où φ_j est une forme linéaire non nulle sur E. On a alors dim $\left| \bigcap_{i=0}^{n-2} G_j \right| =$ $\dim \left[\bigcap_{j=0}^{n-2} \operatorname{Ker} \varphi_j\right] = n - \operatorname{rg}(\varphi_0, \dots, \varphi_{n-2}) \geqslant n - 2n - (n-1) = 1. \operatorname{Donc} \bigcap_{j=0}^{n-2} G_j \neq \{\vec{0}\}.$
 - **c.** Suppposons le résultat faux et considérons comme le suggére l'énoncé, $F = \text{Vect}\left\{y, u(y), \dots, u^{p-1}(y)\right\}$ où p est le plus grand entier naturel non nul pour lequel la famille $(y, u(y), \dots, u^{p-1}(y))$ est libre qui est bien défini car $\{k \ge 1 \mid (y, u(y), \dots, u^{k-1}(y))\}$ est non vide car (y) est libre et majoré par n-1. Par définition

$$\begin{split} & \text{de } p, \left(y, u(y), \dots, u^{p-1}(y)\right) \text{ est libre et } \left(y, u(y), \dots, u^{p-1}(y), u^p(y)\right) \text{ est liée donc } \exists \left(\alpha_0, \dots, \alpha_{p-1}\right) \in \mathbb{K}^p \text{ tel que } u^p(y) = \sum_{k=0}^{p-1} \alpha_k u^k(y). \text{ Ceci montre que } u^p(y) \in F \text{ et donc } u(F) = \text{Vect } \left\{u(y), u^2(y), \dots, u^p(y)\right\} \subset F. \\ & \text{D'autre part, } \forall k \in \llbracket 0, n-2 \rrbracket, \ y \in G_i \text{ donc } u^k(y) \in H \text{ et et donc } v\left(u^k(y)\right) = u\left(u^k(y)\right) \text{ donc, puisque } p-1 \leqslant n-2, \ v(F) = \text{Vect } \left\{u(y), u^2(y), \dots, u^p(y)\right\} = u(F) \subset F. \text{ On a donc } F \text{ stable par } u \text{ et par } v \text{ avec } 1 \leqslant \dim F \leqslant n-1 \text{ ce qui impossible d'après } [\mathbf{21}]. \text{ Donc } \underline{\mathcal{B}''} \text{ est une base de } \underline{E} \text{ .} \end{split}$$

- **d.** On a $u(e_k) = e_{k+1}$ pour $k \in [0, n-2]$ donc Mat $(u, \mathcal{B}'') = C_P$ où $P = X^n \sum_{k=0}^{n-1} e_k^* (u(e_{n-1})) X^k$. Mais alors, d'après $[\mathbf{2}]$, $P = (-1)^n \chi_u$ donc $C_P = C_U$. D'autre part, comme vu au $[\mathbf{c}]$, $\forall k \in [0, n-2]$, $v(e_k) = u(e_k) = e_{k+1}$ donc Mat (v, \mathcal{B}'') est aussi une matrice compagnon et, de même que ci-dessus, c'est C_V . On a donc Mat $(u, \mathcal{B}'') = C_U$ et Mat $(v, \mathcal{B}'') = C_V$.
- e. En notant P la matrice de passage de \mathcal{B}'' à \mathcal{B} , on a donc $U = P^{-1}C_UP$ et $V = P^{-1}C_VP$. On peut donc conclure que : $\underline{\forall}(U,V) \in \left(\mathrm{GL}_n(\mathbb{K})\right)^2$, $\left((*) \text{ et PGCD}\left(\chi_U,\chi_V\right) = 1\right) \Longrightarrow (**)$.
- On a bien: $(u, v) \in (GL(E))^2$ (car $\chi_u(0) \neq 0$ et $\chi_v(0) \neq 0$), PGCD $(\chi_u, \chi_v) = 1$ (car si $P \mid \chi_u$ et $P \mid \chi_v$ alors $P \mid \chi_u \chi_v = 2(-1)^n$) et $\operatorname{rg}(u v) = 1$.
 On peut donc appliquer le résultat de [22] à (u, v): il existe une base $\mathcal{B} = (e_1, \dots, e_n)$ de E telle que

$$\operatorname{Mat}(u,\mathcal{B}) = C_U = \begin{pmatrix} 0 & \cdots & 0 & -1 \\ 1 & \ddots & & 0 \\ & \ddots & \ddots & \vdots \\ 0 & & 1 & 0 \end{pmatrix} \quad \text{et} \quad \operatorname{Mat}(v,\mathcal{B}'') = C_V = \begin{pmatrix} 0 & \cdots & 0 & 1 \\ 1 & \ddots & & 0 \\ & \ddots & \ddots & \vdots \\ 0 & & 1 & 0 \end{pmatrix} .$$

Le sous-groupe G de $\operatorname{GL}(E)$ engendré par u et v est $G = \left\{ w_p \circ \cdots \circ w_1 \;\middle|\; p \in \mathbb{N}^*, \; w_i \in \left\{ u, v, u^{-1}, v^{-1} \right\} \right\}$. Mais le théorème de Cayley-Hamilton donne $v^n = \operatorname{Id}_E$ et $u^n = -\operatorname{Id}_E$ donc $u^{2n} = \operatorname{Id}_E$ donc $v^{-1} = v^{n-1}$ et $u-1 = u^{2n-1}$ donc $G = \left\{ w_p \circ \cdots \circ w_1 \;\middle|\; p \in \mathbb{N}, \; w_i \in \left\{ u, v \right\} \right\}$.

Posons $X = \{e_1, \dots, e_n, -e_1, \dots, -e_n\}$ de cardinal 2n (car $e_i = \varepsilon e_j$ n'est possible que pour i = j et $\varepsilon = 1$ par liberté de \mathcal{B}) et montrons que $\forall (g, x) \in G \times X$, $g(x) \in X$ par récurrence sur p si $g = w_p \circ \cdots \circ w_1$ avec $w_i \in \{u, v\}$. Pour p = 0, $g = \mathrm{Id}_E$ et le résultat est vrai et si il est vrai pour $g = w_p \circ \cdots \circ w_1$ alors, pour $h = w_{p+1} \circ w_p \circ \cdots \circ w_1 = w_{p+1} \circ g$, on a $h(x) = w_{p+1} \left(g(x)\right)$ avec $w_{p+1} \in \{u, v\}$ et $g(x) \in X$ et, comme $u(e_i) = v(e_i) = e_{i+1}$ pour $1 \le i \le n-1$ et $u(e_n) = -v(e_n) = -e_1$, on a bien $x \in X \Rightarrow h(x) \in X$. Ainsi, on peut définir $*: G \times X \longrightarrow X$

 $(g,x) \longmapsto g * x = g(x)$

On a clairement $\forall x \in X$, $\mathrm{Id}_E * x = x$ et $\forall (g,h) \in G^2$, $\forall x \in X$, $g*(h*x) = (g \circ h) * x$ donc * est une opération de G sur X (d'aillleurs * n'est rien d'autre qu'une restriction de l'action canonique de $\mathrm{GL}\,(E)$ sur E). On sait qu'alors il existe un morphisme $\varphi: G \to \mathfrak{S}(X)$ de noyau $\mathrm{Ker}\, \varphi = \{g \in G \mid \forall x \in X, \ g(x) = x\}$. Mais, ici, si $g \in \mathrm{Ker}\, \varphi$, on a, en particulier, $\forall i \in [\![1,n]\!], \ g(e_i) = e_i \ \mathrm{donc} \ g = \mathrm{Id}_E \ \mathrm{ce} \ \mathrm{qui}$ prouve que φ est injective donc G est en bijection avec $\varphi(G) \subset \mathfrak{S}(X)$ et comme $\mathrm{card}\, \big(\mathfrak{S}(X)\big) = (2n)!,$ G est fini et $\mathrm{card}\, \big(G\big) \leqslant (2n)!$.

 pour $k \in [1, n]$, $h_k = g_{k-1} \circ g_k$, $(h_k(e_1), \dots, h_k(e_n)) = (e_1, \dots, e_{k-1}, -e_k, e_{k+1}, \dots, e_n)$. On obtient ainsi $(\varepsilon_1 e_{\sigma^k(1)}, \dots, \varepsilon_n e_{\sigma^k(n)}) = (g(e_1), \dots, g(e_n))$ en prenant $\alpha_i = \begin{cases} 0 & \text{si } \varepsilon_i = 1 \\ 1 & \text{si } \varepsilon_i = -1 \end{cases}$ et $g = v^k \circ h_1^{\alpha_1} \circ \dots \circ h_n^{\alpha_n}$ et on a $g \in G$. Donc $G'' \subset G'$ et, finalement, card $(G) = \operatorname{card}(G'')$ soit $\operatorname{card}(G) = n \, 2^n$.