(/) Explore(/explore/) Problems(/problemset/all/) Interview Contest

Discuss(/discuss/)

ಭ Premium Store (/subscribe? ref=nb_npl)

⋄ osorted-list-to-

binary-search-tree/)

2584. Split the Array to Make Coprime Products

My Submissions (/contest/weekly-contest-335/problems/split-the-array-to-make-coprime-products/submissions/)

Back to Contest (/contest/weekly-contest-335/)

You are given a $\mathbf{0}$ -indexed integer array nums of length \mathbf{n} .

A **split** at an index i where $0 \le i \le n - 2$ is called **valid** if the product of the first i + 1 elements and the product of the remaining elements are coprime.

• For example, if nums = [2, 3, 3], then a split at the index i = 0 is valid because 2 and 9 are coprime, while a split at the index i = 1 is not valid because 6 and 3 are not coprime. A split at the index i = 2 is not valid because i == n - 1.

Return the smallest index i at which the array can be split validly or -1 if there is no such split.

Two values val1 and val2 are coprime if gcd(val1, val2) == 1 where gcd(val1, val2) is the greatest common divisor of val1 and val2.

User Accepted:	985
User Tried:	6602
Total Accepted:	1065
Total Submissions:	17645
Difficulty:	Hard

Example 1:

index	prefixproduct	suffixproduct	gcd
0	4	12600	4
1	28	1800	4
2	224	225	1
3	3360	15	15
4	10080	5	5

Input: nums = [4,7,8,15,3,5]

Output: 2

Explanation: The table above shows the values of the product of the first i + 1 elements, the remaining elements, and their gcd The only valid split is at index 2.

Example 2:

index	prefixproduct	$\operatorname{suffixproduct}$	gcd
0	4	12600	4
1	28	1800	4
2	420	120	60
3	3360	15	15
4	10080	5	5

Input: nums = [4,7,15,8,3,5]

Output: -1

Explanation: The table above shows the values of the product of the first i + 1 elements, the remaining elements, and their gcd There is no valid split.

Constraints:

- n == nums.length
- 1 <= n <= 10⁴
- $1 \le nums[i] \le 10^6$

 $Discuss\ (https://leetcode.com/problems/split-the-array-to-make-coprime-products/discuss)$

```
JavaScript
                                                                                                                                    \boldsymbol{z}
                                                                                                                              क
  1 v const findValidSplit = (a) ⇒ {
          let \ N = Math.max(...a), \ n = a.length, \ first = Array(N + 1).fill(-1), \ last = Array(N + 1).fill(0);
  3
          let lpf = enumLowestPrimeFactors(N), imos = Array(n + 1).fill(0);
  4 1
          for (let i = 0; i < n; i++) {
               let f = factorFast(a[i], lpf);
  5
  6 •
               for (const e of f) {
  7 ▼
                   if (first[e[0]] == -1) {
  8
                       first[e[0]] = i;
  9
 10
                   last[e[0]] = i;
 11
              }
 12
 13 ▼
          for (let i = 1; i <= N; i++) {
 14 ▼
               if (first[i] != -1 && first[i] != last[i]) {
 15
                   imos[first[i]]++;
                   imos[last[i]]--;
 16
 17
              }
 18
          }
 19
          for (let i = 0; i < n; i++) imos[i + 1] += imos[i];
 20 •
          for (let i = 0; i < n - 1; i++) {
 21
               if (imos[i] == 0) return i;
 22
 23
          return -1;
 24
     };
 25
 26
     // reference: https://www.geeksforgeeks.org/least-prime-factor-of-numbers-till-n/
     function enumLowestPrimeFactors(n) {
 27
 28
          let lpf = Array(n + 1).fill(0);
 29 •
          for (let i = 2; i <= n; i++) {
              if (lpf[i] == 0) {
 30 ▼
 31
                   lpf[i] = i;
                   for (let j = i * i; j \Leftarrow n; j += i) {
 32 •
 33
                       if (lpf[j] == 0) lpf[j] = i;
 34
 35
              }
 36
          }
 37
          return lpf;
 38
     }
 39
 40 ▼
     const factorFast = (n, lpf) => {
          let f = Array(9), q = 0;
 41
 42 🔻
          while (lpf[n] > 0) {
 43
               let p = lpf[n];
 44 ▼
               if (q == 0 || p != f[q - 1][0]) {
 45
                   f[q++] = [p, 1];
 46 •
              } else {
 47
                   f[q - 1][1]++;
 48
              }
 49
              n \neq p;
 50
 51
          return f.slice(0, q); // f[0] ^ f[1] = n
 52
     };
☐ Custom Testcase
                      Use Example Testcases
                                                                                                                          Run
                                                                                                                                    △ Submit
Submission Result: Accepted (/submissions/detail/913173401/) ?
                                                                            More Details > (/submissions/detail/913173401/)
Share your acceptance!
Copyright © 2023 LeetCode
Help Center (/support) | Jobs (/jobs) | Bug Bounty (/bugbounty) | Online Interview (/interview/) | Students (/student) | Terms (/terms) | Privacy Policy (/privacy)
United States (/region)
```