Going Beyond CNNs Self Attention & Transformers

Self Attention

 Transformers are Widely used in NLP: "Attention is All you Need [1]".

- Example: Machine Translation Task
- Understanding "it" in the context of the sentence.

"The animal didn't cross the street because **it** was too tired"

Self Attention

 Transformers are Widely used in NLP: "Attention is All you Need [1]".

- Dictionary Lookup
- Relate, Aggregate operations.

"Thinking Machines"

Think of this as your Dictionary keys used for addressing

Detailed information - what I want to read out from memory

Thinking Machines Input **Embedding** Queries q1 q2 Keys Values V₂ $q_1 \cdot k_1 = 112$ Score $q_1 \cdot k_2 = 96$ Divide by 8 ($\sqrt{d_k}$) 14 12 0.88 0.12 Softmax Softmax X V₁ V₂ Value Sum Z₁ \mathbb{Z}_2

1] Relate

Scaled: because for large values of d_k \rightarrow large values of dot product \rightarrow pushes the softmax to have small gradients.

2] Aggregate

Aggregate information from all tokens

Single-Headed Attention

- Single Headed Attention:
 - Learn weights to obtain key, value, query

^[1] Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems. 2017.

Multi-Headed Attention

- Single Headed Attention:
 - Learn weights to obtain key, value, query

- Multi Headed Attention:
 - Multiple sets of weight matrices.
 - Multiple representation subspaces.

^[1] Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems. 2017.

Multi-Headed Attention

- ATTENTION HEAD #0
- ATTENTION HEAD #1

ATTENTION HEAD #7

- Single Headed Attention:
 - Learn weights to obtain key, value, query

1) Concatenate all the attention heads

 Multiply with a weight matrix W^o that was trained jointly with the model

X

- Multi Headed Attention:
 - Multiple sets of weight matrices

3) The result would be the Z matrix that captures information from all the attention heads. We can send this forward to the FFNN

Multi-Headed Attention

Multiple representation subspaces.

As we encode the word "it", one attention head is focusing most on "the animal", while another is focusing on "tired" -- in a sense, the model's representation of the word "it" bakes in some of the representation of both "animal" and "tired".

Transformers - Encoder

Transformers - Full Model

Transformers - Full Model

Positional Encoding

 Helps to determine the position of each word, to encode order of the sequence.

Positional Encoding

Helps to determine the position of each word, to encode order of the

sequence

What about in Computer Vision Tasks?

- Widely used Convolutions: is there something better?
- Two main Operations
 - **Feature aggregation**: happens in the convolution
 - Feature transformation: successive linear and non-linear mappings

Fixed weights through all positions

Can weights be Adaptive to input?

https://www.youtube.com/watch?v=GuAsn4E3fP8

What about in Computer Vision Tasks?

- Widely used Convolutions: is there something better?
- Two main Operations
 - **Feature aggregation**: happens in the convolution
 - Feature transformation: successive linear and non-linear mappings

Fixed weights through all positions

Can weights be Adaptive to input?

https://www.youtube.com/watch?v=GuAsn4E3fP8

What about in Computer Vision Tasks?

• **Feature aggregation**: replace convolution with self attention.

- Can weights be Adaptive to input?
 - Pairwise Attention
 - Patchwise Attention

https://www.youtube.com/watch?v=GuAsn4E3fP8

- R(i): local footprint of aggregation, set of indices.
- $\beta(\mathbf{x}_i)$, : Values, what to read from.
- $\alpha(\mathbf{x}_i, \mathbf{x}_j)$ adaptive weights.

$$\mathbf{y}_i = \sum_{j \in \mathcal{R}(i)} \alpha(\mathbf{x}_i, \mathbf{x}_j) \odot \beta(\mathbf{x}_j), 2$$
 Aggregate

- R(i): local footprint of aggregation
- $\beta(\mathbf{x}_j)$, : Values
- $\alpha(\mathbf{x}_i, \mathbf{x}_j)$ adaptive weight vectors

$$\alpha(\mathbf{x}_i, \mathbf{x}_j) = \gamma(\delta(\mathbf{x}_i, \mathbf{x}_j)).$$

1] Relate

Summation: $\delta(\mathbf{x}_i, \mathbf{x}_j) = \varphi(\mathbf{x}_i) + \psi(\mathbf{x}_j)$

Subtraction: $\delta(\mathbf{x}_i, \mathbf{x}_j) = \varphi(\mathbf{x}_i) - \psi(\mathbf{x}_j)$

Concatenation: $\delta(\mathbf{x}_i, \mathbf{x}_j) = [\varphi(\mathbf{x}_i), \psi(\mathbf{x}_j)]$

Hadamard product: $\delta(\mathbf{x}_i, \mathbf{x}_j) = \varphi(\mathbf{x}_i) \odot \psi(\mathbf{x}_j)$

Dot product: $\delta(\mathbf{x}_i, \mathbf{x}_j) = \varphi(\mathbf{x}_i)^{\top} \psi(\mathbf{x}_j)$

Compatibility Functions

- R(i): local footprint of aggregation
- $\beta(\mathbf{x}_j)$, : Values
- $\alpha(\mathbf{x}_i, \mathbf{x}_j)$ adaptive weight vectors

$$\alpha(\mathbf{x}_i, \mathbf{x}_j) = \gamma(\delta(\mathbf{x}_i, \mathbf{x}_j)).$$

1] Relate

Summation: $\delta(\mathbf{x}_i, \mathbf{x}_j) = \varphi(\mathbf{x}_i) + \psi(\mathbf{x}_j)$

Subtraction: $\delta(\mathbf{x}_i, \mathbf{x}_j) = \varphi(\mathbf{x}_i) - \psi(\mathbf{x}_j)$

Concatenation: $\delta(\mathbf{x}_i, \mathbf{x}_j) = [\varphi(\mathbf{x}_i), \psi(\mathbf{x}_j)]$

Hadamard product: $\delta(\mathbf{x}_i, \mathbf{x}_j) = \varphi(\mathbf{x}_i) \odot \psi(\mathbf{x}_j)$

Dot product: $\delta(\mathbf{x}_i, \mathbf{x}_j) = \varphi(\mathbf{x}_i)^\top \psi(\mathbf{x}_j)$

Scalar Attention similar to what Transformers used

- R(i): local footprint of aggregation
- $\beta(\mathbf{x}_j)$, : Values
- $\alpha(\mathbf{x}_i, \mathbf{x}_j)$ adaptive weight vectors

$$\alpha(\mathbf{x}_i, \mathbf{x}_j) = \gamma(\delta(\mathbf{x}_i, \mathbf{x}_j)).$$

1] Relate

Summation: $\delta(\mathbf{x}_i, \mathbf{x}_j) = \varphi(\mathbf{x}_i) + \psi(\mathbf{x}_j)$

Subtraction: $\delta(\mathbf{x}_i, \mathbf{x}_j) = \varphi(\mathbf{x}_i) - \psi(\mathbf{x}_j)$

Concatenation: $\delta(\mathbf{x}_i, \mathbf{x}_j) = [\varphi(\mathbf{x}_i), \psi(\mathbf{x}_j)]$

Hadamard product: $\delta(\mathbf{x}_i, \mathbf{x}_j) = \varphi(\mathbf{x}_i) \odot \psi(\mathbf{x}_j)$

Dot product: $\delta(\mathbf{x}_i, \mathbf{x}_j) = \varphi(\mathbf{x}_i)^{\top} \psi(\mathbf{x}_j)$

Vector Attention, not all feature channels will be treated the same

- R(i): local footprint of aggregation
- $\beta(\mathbf{x}_j)$, : Values
- $\alpha(\mathbf{x}_i, \mathbf{x}_j)$ adaptive weights

1] Relate

Dot product: $\delta(\mathbf{x}_i, \mathbf{x}_j) = \varphi(\mathbf{x}_i)^\top \psi(\mathbf{x}_j)$

Subtraction: $\delta(\mathbf{x}_i, \mathbf{x}_j) = \varphi(\mathbf{x}_i) - \psi(\mathbf{x}_j)$

- R(i): local footprint of aggregation
- $\beta(\mathbf{x}_j)$, : Values
- $\alpha(\mathbf{x}_i, \mathbf{x}_i)$ adaptive weight vectors

$$\alpha(\mathbf{x}_i, \mathbf{x}_j) = \gamma(\delta(\mathbf{x}_i, \mathbf{x}_j)).$$

$$\gamma = \{\text{Linear} \rightarrow \text{ReLU} \rightarrow \text{Linear}\}$$

2] Aggregate

- R(i): local footprint of aggregation
- $\beta(\mathbf{x}_j)$, : Values
- $\alpha(\mathbf{x}_i, \mathbf{x}_j)$ adaptive weights

$$\mathbf{y}_i = \sum_{j \in \mathcal{R}(i)} \alpha(\mathbf{x}_i, \mathbf{x}_j) \odot \beta(\mathbf{x}_j),$$

- R(i): local footprint of aggregation
- $\beta(\mathbf{x}_i)$, : Values
- $\alpha(\mathbf{x}_i, \mathbf{x}_j)$ adaptive weight vectors

$$\mathbf{y}_i = \sum_{j \in \mathcal{R}(i)} \alpha(\mathbf{x}_i, \mathbf{x}_j) \odot \beta(\mathbf{x}_j),$$

$$\alpha(\mathbf{x}_i, \mathbf{x}_j) = \gamma(\delta(\mathbf{x}_i, \mathbf{x}_j)).$$

$$eta$$
 Values-Fn

Summation:
$$\delta(\mathbf{x}_i, \mathbf{x}_j) = \varphi(\mathbf{x}_i) + \psi(\mathbf{x}_j)$$

Subtraction:
$$\delta(\mathbf{x}_i, \mathbf{x}_j) = \varphi(\mathbf{x}_i) - \psi(\mathbf{x}_j)$$

Concatenation:
$$\delta(\mathbf{x}_i, \mathbf{x}_j) = [\varphi(\mathbf{x}_i), \psi(\mathbf{x}_j)]$$

Hadamard product:
$$\delta(\mathbf{x}_i, \mathbf{x}_j) = \varphi(\mathbf{x}_i) \odot \psi(\mathbf{x}_j)$$

Dot product:
$$\delta(\mathbf{x}_i, \mathbf{x}_j) = \varphi(\mathbf{x}_i)^{\mathsf{T}} \psi(\mathbf{x}_j)$$

Queries-Fn Keys-Fn

- R(i): local footprint of aggregation
- $\beta(\mathbf{x}_j)$, : Values
- $\alpha(\mathbf{x}_i, \mathbf{x}_j)$ adaptive weight vectors

$$\mathbf{y}_i = \sum_{j \in \mathcal{R}(i)} \alpha(\mathbf{x}_i, \mathbf{x}_j) \odot \beta(\mathbf{x}_j),$$

$$\alpha(\mathbf{x}_i, \mathbf{x}_j) = \gamma(\delta(\mathbf{x}_i, \mathbf{x}_j)).$$

Operation	Content adaptive	Channel adaptive
Convolution [19]	X	/
Scalar attention [33, 35, 27, 13]	/	X
Vector attention (ours)	/	✓

Summation: $\delta(\mathbf{x}_i, \mathbf{x}_j) = \varphi(\mathbf{x}_i) + \psi(\mathbf{x}_j)$

Subtraction: $\delta(\mathbf{x}_i, \mathbf{x}_j) = \varphi(\mathbf{x}_i) - \psi(\mathbf{x}_j)$

Concatenation: $\delta(\mathbf{x}_i, \mathbf{x}_j) = [\varphi(\mathbf{x}_i), \psi(\mathbf{x}_j)]$

Hadamard product: $\delta(\mathbf{x}_i, \mathbf{x}_j) = \varphi(\mathbf{x}_i) \odot \psi(\mathbf{x}_j)$

Dot product: $\delta(\mathbf{x}_i, \mathbf{x}_j) = \varphi(\mathbf{x}_i)^{\top} \psi(\mathbf{x}_j)$

Positional Encoding

- R(i): local footprint of aggregation
- $\beta(\mathbf{x}_i)$, : Values
- $\alpha(\mathbf{x}_i, \mathbf{x}_j)$ adaptive weight vectors

Augment feature maps with positions normalized [-1, 1] that goes through a trainable linear layer

Relative positions

2] Aggregate

Adaptive Weights → similar to convolutional Kernel

Patch for the local footprint R(i)

2] Aggregate

$$\mathbf{y}_i = \sum_{j \in \mathcal{R}(i)} \alpha(\mathbf{x}_{\mathcal{R}(i)})_j \odot \beta(\mathbf{x}_j),$$

1] Relate

$$\alpha(\mathbf{x}_{\mathcal{R}(i)}) = \gamma(\delta(\mathbf{x}_{\mathcal{R}(i)}))$$

Star-product: $\delta(\mathbf{x}_{\mathcal{R}(i)}) = [\varphi(\mathbf{x}_i)^{\top} \psi(\mathbf{x}_j)]_{\forall j \in \mathcal{R}(i)}$

Clique-product: $\delta(\mathbf{x}_{\mathcal{R}(i)}) = [\varphi(\mathbf{x}_j)^{\mathsf{T}} \psi(\mathbf{x}_k)]_{\forall j,k \in \mathcal{R}(i)}$

Concatenation: $\delta(\mathbf{x}_{\mathcal{R}(i)}) = [\varphi(\mathbf{x}_i), [\psi(\mathbf{x}_j)]_{\forall j \in \mathcal{R}(i)}]$

Compatibility Fns

2] Aggregate
$$\begin{aligned} \mathbf{y}_i &= \sum_{j \in \mathcal{R}(i)} \alpha(\mathbf{x}_{\mathcal{R}(i)})_j \odot \beta(\mathbf{x}_j), \\ \alpha(\mathbf{x}_{\mathcal{R}(i)}) &= \gamma(\delta(\mathbf{x}_{\mathcal{R}(i)})) \\ \end{aligned}$$
 1] Relate
$$\begin{aligned} \mathbf{x}_i &= \sum_{j \in \mathcal{R}(i)} \alpha(\mathbf{x}_{\mathcal{R}(i)})_j \odot \beta(\mathbf{x}_j), \\ \alpha(\mathbf{x}_{\mathcal{R}(i)}) &= \gamma(\delta(\mathbf{x}_{\mathcal{R}(i)})) \\ \mathbf{x}_i &= [\varphi(\mathbf{x}_i)^\top \psi(\mathbf{x}_j)]_{\forall j \in \mathcal{R}(i)} \\ \mathbf{x}_i &= [\varphi(\mathbf{x}_i)^\top \psi(\mathbf{x}_j)]_{\forall j \in \mathcal{R}(i)} \\ \mathbf{x}_i &= [\varphi(\mathbf{x}_i)^\top \psi(\mathbf{x}_j)]_{\forall j \in \mathcal{R}(i)} \\ \mathbf{x}_i &= [\varphi(\mathbf{x}_i), [\psi(\mathbf{x}_j)]_{\forall j \in \mathcal{R}(i)} \\ \mathbf{x}_i &= [\varphi(\mathbf{x}_i), [\psi(\mathbf{x}_i)]_{\forall j \in \mathcal{R}(i)} \\ \mathbf{x}_i &= [\varphi(\mathbf{x}_i), [\psi(\mathbf{x}_i)]_{$$

Pairwise vs Patchwise Relate

Pairwise

Dot product: $\delta(\mathbf{x}_i, \mathbf{x}_j) = \varphi(\mathbf{x}_i)^\top \psi(\mathbf{x}_j)$

Single scalar/vector (if not dot product)

Concatenation: $\delta(\mathbf{x}_{\mathcal{R}(i)}) = [\varphi(\mathbf{x}_i), [\psi(\mathbf{x}_j)]_{\forall j \in \mathcal{R}(i)}]$

Output Tensor based on local footprint

K: patch size

36

K: patch size

X ϕ Fin generate Keys $\delta(x_{R(i)}) = [\phi(x_i), [\psi(x_j)]_{orall j \in R(i)}]$ C imes 1 imes WH C imes 1 imes WH C imes 1 imes WH $\gamma = \{ imes 1 imes 2 imes 1 imes 2 imes 2$

 $\alpha: C \times K^2 \times WH$

For every pixel corresponding adaptive weights

C imes W imes H

$$\alpha$$
 $C \times K \times K$

SAN Module

 Performing feature aggregation and transformation in self attention blocks with residual connections.

 SANX: [10, 15, 19], X→ Number of self attention block.

Experiments

They use **subtraction** for **pairwise**. **Concatenation** for **patchwise**

Method	ResNet26 vs. SAN10			ResNet38 vs. SAN15			ResNet50 vs. SAN19					
	top-1	top-5	Params	Flops	top-1	top-5	Params	Flops	top-1	top-5	Params	Flops
Convolutional	73.6	91.7	13.7M	2.4G	76.0	93.0	19.6M	3.2G	76.9	93.5	25.6M	4.1G
SAN, pairwise	74.9	92.1	10.5M	2.2G	76.6	93.1	14.1M	3.0G	76.9	93.4	17.6M	3.8G
SAN, patchwise	77.1	93.5	11.8M	1.9G	78.0	93.9	16.2M	2.6G	78.2	93.9	20.5M	3.3G

Table 3. Comparison of self-attention networks and convolutional residual networks on ImageNet classification. Single-crop testing on the val-original set.

Adaptive kernels are better than static kernels

Relation Fn Ablation

Vector attention is better than scalar attention

Met	top-1	top-5	Params	Flops	
ConvR	ConvResNet26			13.7M	2.4G
SAN10-pair.	summation	77.4	93.3	10.5M	2.2G
	subtraction	77.4	93.3	10.5M	2.2G
	concatenate	76.4	92.6	10.6M	2.5G
	Had. product	77.4	93.4	10.5M	2.2G
	dot product	77.0	93.0	10.5M	1.8G
SAN10-patch.	star-product	78.7	94.0	10.9M	1.7G
	clique-product	79.1	94.2	11.5M	1.9G
	concatenation	79.3	94.2	11.8M	1.9G

Transformation Fn ABlation

Different
Transformation Fns
better accuracy +
you can control to
reduce number of
parameters

Meth	top-1	top-5	Params	Flops	
ConvRe	76.0	92.8	13.7M	2.4G	
	$\varphi = \psi = \beta$	76.5	92.8	9.5M	3.0G
SAN10-pair.	$\varphi = \psi \neq \beta$	76.3	92.6	10.0M	2.1G
	$\varphi \neq \psi \neq \beta$	77.4	93.3	10.5M	2.2G
	$\varphi = \psi = \beta$	78.9	94.1	13.4M	2.2G
SAN10-patch.	$\varphi = \psi \neq \beta$	79.0	94.0	11.3M	1.8G
	$\varphi \neq \psi \neq \beta$	79.3	94.2	11.8M	1.9G

FootPrint Ablation

Larger footprints leads to significant increase of computations in Convolutional Nets unlike Self Attention Nets.

Method		top-1	top-5	Params	Flops
	3×3	76.0	92.8	13.7M	2.4G
ConvResNet26	5×5	77.4	93.6	22.7M	4.0G
	7×7	77.9	93.7	36.1M	6.5G
	3×3	75.3	92.0	10.5M	1.7G
	5×5	76.6	92.9	10.5M	1.9G
SAN10-pair.	7×7	77.4	93.3	10.5M	2.2G
	9×9	77.8	93.5	10.5M	2.5G
	11×11	77.6	93.3	10.5M	3.0G
	3×3	77.4	93.4	10.7M	1.6G
	5×5	78.7	94.0	11.2M	1.7G
SAN10-patch.	7×7	79.3	94.2	11.8M	1.9G
	9×9	79.3	94.1	12.7M	2.1G
	11×11	79.4	94.1	13.8M	2.3G

Position Encoding Ablation

Relative position encoding has great influence on pairwise attention accuracy

Metho	top-1	top-5	Params	Flops	
ConvRes	76.0	92.8	13.7M	2.4G	
SAN10-pair.	none	72.3	90.3	10.5M	2.1G
	absolute	74.7	91.7	10.5M	2.2G
	relative	77.4	93.3	10.5M	2.2G

Robustness

Pairwise attention is more robust than CNNs or patchwise att. Because it is a set operator

Method	no rotation		clockwise 90°		clockwise 180°		clockwise 270°		upside-down	
	top-1	top-5	top-1	top-5	top-1	top-5	top-1	top-5	top-1	top-5
ResNet26	73.6	91.7	49.1(24.5)	72.7(19.0)	50.6(23.0)	75.4(16.3)	49.2(24.4)	72.8(18.9)	50.5(23.1)	75.4(16.3)
SAN10-pair.	74.9	92.1	51.8(23.1)	74.6(17.5)	54.7(20.2)	78.5(13.6)	51.7(23.2)	74.5(17.6)	54.7(20.2)	78.5(13.6)
SAN10-patch.	77.1	93.5	53.1(24.0)	75.7(17.8)	54.6(22.5)	78.4(15.1)	53.3(23.8)	76.0(17.5)	54.7(22.4)	78.3(15.2)
ResNet38	76.0	93.0	51.2(24.8)	74.2(18.8)	52.2(23.8)	76.9(16.1)	51.6(24.4)	74.6(18.4)	52.2(23.8)	76.8(16.2)
SAN15-pair.	76.6	93.1	54.5(22.1)	77.1(16.0)	57.9(18.7)	80.8(12.3)	54.8(21.8)	77.0(16.1)	58.0(18.6)	80.8(12.3)
SAN15-patch.	78.0	93.9	53.7(24.5)	76.1(17.8)	56.0(22.2)	79.5(14.4)	53.9(24.3)	76.2(17.7)	56.0(22.2)	79.4(14.5)
ResNet50	76.9	93.5	52.6(24.3)	75.3(18.2)	52.9(24.0)	77.4(16.2)	52.6(24.3)	75.5(18.0)	53.0(23.9)	77.3(16.2)
SAN19-pair.	76.9	93.4	54.7(22.2)	77.1(16.3)	58.0(18.9)	80.4(13.0)	55.0(21.9)	77.1(16.3)	57.9(19.0)	80.4(13.0)
SAN19-patch.	78.2	93.9	54.2(24.0)	76.3(17.6)	56.2(22.0)	79.5(14.4)	54.1(24.1)	76.4(17.5)	56.3(21.9)	79.5(14.4)