

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address COMMISSIONER FOR PATENTS FO Box 1430 Alexandria, Virginia 22313-1450 www.tepto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/672,081	09/26/2003	Gregory Scott Clark	215,1019.01	4691
22883 77590 077/21/20099 SWERNOFSKY LAW GROUP PC 548 MARKET ST.			EXAMINER	
			ALLEN, WILLIAM J	
SAN FRANCISCO, CA 94104			ART UNIT	PAPER NUMBER
			3625	
			MAIL DATE	DELIVERY MODE
			07/21/2009	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Application No. Applicant(s) 10/672.081 CLARK ET AL. Office Action Summary Examiner Art Unit WILLIAM J. ALLEN 3625 -- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --Period for Reply A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS. WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION. - Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication. If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication - Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b). Status 1) Responsive to communication(s) filed on 17 June 2009. 2a) This action is FINAL. 2b) This action is non-final. 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213. Disposition of Claims 4) Claim(s) 1-19 and 21-37 is/are pending in the application. 4a) Of the above claim(s) is/are withdrawn from consideration. 5) Claim(s) _____ is/are allowed. 6) Claim(s) 1-19 and 21-37 is/are rejected. 7) Claim(s) _____ is/are objected to. 8) Claim(s) _____ are subject to restriction and/or election requirement. Application Papers 9) The specification is objected to by the Examiner. 10) The drawing(s) filed on is/are; a) accepted or b) objected to by the Examiner. Applicant may not request that any objection to the drawing(s) be held in abevance. See 37 CFR 1.85(a). Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d). 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152. Priority under 35 U.S.C. § 119 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some * c) None of: Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received. Attachment(s)

1) Notice of References Cited (PTO-892)

3) Information Disclosure Statement(s) (PTC/G5/08)
Paper No(s)/Mail Date ______

Notice of Draftsperson's Patent Drawing Review (PTO-948)

Interview Summary (PTO-413)
 Paper No(s)/Mail Date.

6) Other:

Notice of Informal Patent Application

DETAILED ACTION

Prosecution History Summary

Claims 1-19 and 21-37 are pending and rejected as set forth below.

Response to Arguments

Applicant's arguments filed 6/19/09 with respect to the Objection to the Specification (New Matter) have been fully considered but they are not persuasive. On page 11-12 of the remarks, Applicant asserts that Page 23 provides support for the features of transmitting "a portion of the content of the transitive information to the business entities in response to a security parameter" as it describes the functionality with respect privacy preferences and the degree to which the information owner wishes it to be public or private. Though the specification may be indicative of setting a desired level of privacy, the cited portions fail to describe how the privacy is effected or how the privacy is maintained. Though the aspect of privacy may imply some level of security, there is no disclosure of what may be considered a "security parameter" that coincides with providing the desired level of privacy.

Additionally, even assuming arguendo that a privacy "preference" is analogous to a "security parameter", page 23 of the specification merely states that the public/private information is visible to the order collaboration system (OCS) and fails to provide for the OCS being operable to provide a portion of the information in response to a security parameter (claim 21) or aggregating data in such a way that it is responsive to said request and responsive to a security parameter. The Objection to the Specification is hereby maintained.

Applicant's arguments, see Page 12 – top Page 13, filed 6/17/09, with respect to the rejection of claims 1-19 and 21-23 have been fully considered and are persuasive. The rejection has been withdrawn.

Applicant's arguments on page 13 regarding the rejection of claims 24-37 under 35 USC 101 have been fully considered but they are not persuasive. Applicant relies on the recitations of "receiving, at a server" and "presenting on a workstation" to overcome the rejection; however, such recitations are not adequate to create meaningful limits on the method scope. More specifically, reciting a machine or transformation in an insignificant step (e.g. data gathering, outputting, displaying, receiving, and the like) will not move to make an unpatentable process patentable. The recitation of "receiving" merely represents the transmission of the request to a server, while the "presentation" constitutes the simple display of resulting information. In both cases, the steps amount to insignificant extra-solution activity as outlined in the rejection under 35 USC 101. The rejection is hereby maintained.

Applicant's arguments on pages 13-14 regarding the rejection made under 35 USC 112, first paragraph have been fully considered but they are not persuasive. These remarks parallel the remarks made with respect to the objection to the specification (new matter) and are treated similarly.

Applicant's arguments on pages 14-15 regarding the rejection made under 35 USC 112, second paragraph have been fully considered but they are not persuasive. The Examiner again reiterates the response to the objection to the specification, and notes the following:

On page 15, second paragraph, Applicant asserts that a mere login or password would be insufficient as a security parameter because "different portions of the information are treated differently depending on the value of the information". The Examiner disagrees, and first notes that the specification does not clearly illustrate what may constitute a security parameter (the specification merely describes having privacy preferences). Further, in lieu of an adequate description, the Examiner's interpretation of a security parameter as a measure taken to prevent unauthorized use or access of information (e.g. login/password) is both reasonable and consistent with the knowledge of one of ordinary skill in the art. Lastly, it is noted that the features upon which applicant relies (i.e., different portions of the information are treated differently depending on the value of the information) are not recited in the rejected claim(s). Although the claims are interpreted in light of the specification, limitations from the specification are not read into the claims. See *In re Van Geuns*, 988 F.2d 1181, 26 USPQ2d 1057 (Fed. Cir. 1993). The rejection has hereby been maintained.

Applicant's arguments on pages 16-17 regarding the rejection made under 35 USC 103, second paragraph have been fully considered but they are not persuasive. Specifically, Applicant states that Rivera "only discloses the use of a login to access a system" and thereby fails to teach the noted recitation. With the above response regarding the rejection under 35 USC 112, second paragraph in mind. Rivera teaches the following:

Art Unit: 3625

[0057]...Initially, a user must login (step 310) and authenticate to the data manager 135 via the document viewer 147. Based upon the user's authenticated identity, the document-viewing module 210 retrieves relationship data associated with that user's trading partner (step 312). This relationship data defines what data can be viewed, personal viewing preferences, last activity, etc. For example, a shipping employee could be permitted to view shipping receipts but not invoices.

[0058] After the user has logged in and the relationship data identified, he can be shown a list of documents available for viewing (step 314). The user can then select a document to view from one of the trading relationships to which he has access...

As can be seen, not only does Rivera teach a security parameter (i.e. login), but Rivera shows that based on the user relationship data acquired by logging in, certain information may be available or restricted from view.

Furthermore, in response to applicant's arguments against the references individually, one cannot show nonobviousness by attacking references individually where the rejections are based on combinations of references. See *In re Keller*, 642 F.2d 413, 208 USPQ 871 (CCPA 1981); *In re Merck & Co.*, 800 F.2d 1091, 231 USPQ 375 (Fed. Cir. 1986). In addition, the Examiner notes that the references pertain to the same field of endeavor and solve similar problems. In accordance with the above, the rejections set forth in the office action mailed 3/17/09 have been maintained. This action is thereby made FINAL.

Art Unit: 3625

Examiner Comment - Potential Amendments

The Examiner notes that the below amendment would overcome the objection to the specification and 112 rejections noted below and may result in favorable action.

In claim 1, amending lines 16-18 to read as follows:

"...said order collaboration system operative to transmit a portion of the content of the transitive information to the business entities in response to a security parameter based on privacy preferences set by a party that owns the information,...".

The same or similar amendments may be made to claim 24; however, claim 24 must also overcome the noted deficiencies under 35 USC 101 (e.g. by incorporating a machine/apparatus in one of the pertinent steps including the determining and/or translating steps.

Specification

The amendment filed 12/30/2008 is objected to under 35 U.S.C. 132(a) because it introduces new matter into the disclosure. 35 U.S.C. 132(a) states that no amendment shall introduce new matter into the disclosure of the invention. The added material which is not supported by the original disclosure is as follows: "said order collaboration system operative to transmit a portion of the content of the transitive information to the business entities in response to a security parameter" (claim 1), and "aggregating said data in such a way that said aggregated data is responsive to said request, and responsive to a security parameter" (claim 24).

Applicant is required to cancel the new matter in the reply to this Office Action.

Application/Control Number: 10/672,081 Page 7

Art Unit: 3625

Claim Rejections - 35 USC § 101

35 U.S.C. 101 reads as follows:

Whoever invents or discovers any new and useful process, machine, manufacture, or composition of matter, or any new and useful improvement thereof, may obtain a patent therefor, subject to the conditions and requirements of this title.

 Claims 24-37 are rejected under 35 U.S.C. 101 because the claimed invention is directed to non-statutory subject matter.

Regarding claims 24-37, based upon the Court of Appeals for Federal Circuit's recent decision, in order to qualify as a statutory process (i.e. method), a method claim must meet a specialized, limited meaning to qualify as a patent-eligible process claim. The test for a method is whether the claimed method is (1) tied to a particular machine or apparatus, or (2) transforms a particular article to a different state or thing. In addition, mere field of use limitations or limitations reciting insignificant extra-solution activity will not transform an unpatentable process into a patentable one as the machine or transformation must impose meaningful limits on the method claim's scope. This means that reciting a particular machine or transformation in an insignificant step (e.g. data gathering, outputting, displaying, receiving, and the like) will not move to make an unpatentable process patentable.

Claims 24-37 fail to recite a machine or apparatus in such a way as to impose meaningful limitations upon the claim. Moreover, merely claiming the storage, transmission, or display of data does not move to make a non-statutory claim statutory as such activities merely represent insignificant extra solution activities.

Art Unit: 3625

Claim Rejections - 35 USC § 112

The following is a quotation of the first paragraph of 35 U.S.C. 112:

The specification shall contain a written description of the invention, and of the manner and process of making and using it, in such full, clear, concise, and exact terms as to enable any person skilled in the art to which it pertains, or with which it is most nearly connected, to make and use the same and shall set forth the best mode contemplated by the inventor of carrying out his invention.

2. Claims 1-19 and 21-37 are rejected under 35 U.S.C. 112, first paragraph, as failing to comply with the written description requirement. The claim(s) contains subject matter which was not described in the specification in such a way as to reasonably convey to one skilled in the relevant art that the inventor(s), at the time the application was filed, had possession of the claimed invention.

Regarding claims 1-19 and 21-37, these claims encompass subject matter not supported by the original disclosure. For example, claim 1 recites "said order collaboration system operative to transmit a portion of the content of the transitive information to the business entities in response to a security parameter". Similarly, claim 24 recites "aggregating said data in such a way that said aggregated data is responsive to said request, and responsive to a security parameter". Dependent claims 2-19, 21-23, and 25-37 fail to remedy the above noted deficiencies and are rejected for at least the reasons regarding claims 1 and 24.

Application/Control Number: 10/672,081 Page 9

Art Unit: 3625

Claim Rejections - 35 USC § 112

The following is a quotation of the second paragraph of 35 U.S.C. 112:

The specification shall conclude with one or more claims particularly pointing out and distinctly claiming the subject matter which the applicant regards as his invention.

Claims 1-19 and 21-37 are rejected under 35 U.S.C. 112, second paragraph, as being
indefinite for failing to particularly point out and distinctly claim the subject matter which
applicant regards as the invention.

Regarding claims 1 and 24, claim 1 recites "said order collaboration system operative to transmit a portion of the content of the transitive information to the business entities in response to a security parameter". Similarly, claim 24 requires "aggregating said data in such a way that said aggregated data is responsive to said request, and responsive to a security parameter". Applicant's disclosure does not provide an adequate description of the term "security parameter" and further fails to show the necessary use of the parameter as claimed. For examination purposes, the term shall be interpreted to encompass any security measure taken to prevent undesired or unauthorized use of information (e.g. user name and password, public/private key, or the like).

Application/Control Number: 10/672,081 Page 10

Art Unit: 3625

Claim Rejections - 35 USC § 103

The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

4. Claims 1-2, 4-7, 16-20, 24-25, and 31 are rejected under 35 U.S.C. 103(a) as being unpatentable over Wong (US 20030149578) in view of Ouchi (US 20030036968) in view of Beurskens (US 7200572) in view of Rivera (US 20020107699) in further view of Yehia (US 20020091614).

Regarding claim1, Wong teaches:

- One or more business entities defining a head of a supply chain (see at least: abstract, 0007-0009, 0055, Fig. 12).
- One or more sets of tiers of suppliers, wherein each said set of tiers is disposed in an
 extended supply chain (see at least: 0010). The Examiner notes that the suppliers of the
 unit level components constitute a tier of suppliers in an extended supply chain.
- A workstation coupled to said one or more business entities and said one or more of tier
 of suppliers (see at least: 0055-0056, 0058, Fig. 12).
- A database including information from said one or more sets of tiers of suppliers relating to two or more of the following: price, inventory, delivery schedules, backorders and supply interruptions, exceptional events, contracts and past transactions (see at least:

0072-0073, 0094, 0787). Note: database stores demand, days of supply (DOS), target DOS and actual supply, exception events, lead-time, inventory, etc. and thereby teaches a database with *two or more* of the above.

• An order collaboration system coupled to said electronic commerce facilitator, whereby said one or more business entities can view updates to supply chain conditions for said plurality of said tiers (see at least: 0381-0384). The system further includes an execution module that receives the determination from the decision support module, triggers an action that is corrective and generates an interactive output (see at least: abstract). By providing and interactive output and allowing the user to hold, accept, or terminate actions, the IPA system permits a user to view updates to supply chain conditions and make a decision based on those conditions and the proposed actions. The Examiner further notes the workstation is coupled to the resolution manager (order collaboration system).

Wong teaches all of the above and further suggests using such a feature as a dictionary of translation, stating that the IPA is configured to map and translate B2B compliant messages (see at least: 0056, 0069, 0097, 0717, Table 18). Wong, however, does not explicitly teach a dictionary of translations that can be used to translate transitive information in said information from one or more sets of tiers of suppliers for cross-tier communication in said extended supply chain.

In the same field of endeavor, Ouchi teaches an electronic information transfer between trading partners using a standard format (see at least: abstract). More specifically, Ouchi teaches various

Art Unit: 3625

"processes" such as A-S which represent various transformations that make up a multitude of transformations (i.e. form a dictionary)(see at least: 0039, Fig. 4). Ouchi further discloses that, aside from just the transformation of format, similar processing is used to transform information (i.e. content), such as part number, to standard part numbers and then subsequently to the receiving trading partners part numbers (see at least: 0046, Fig. 11A-11B; Note Applicant's remarks filed 7/9/2007, page 16, first paragraph). In this respect, Ouchi clearly teaches a dictionary of translations that can be used to translate the content of transitive information in said information from one or more sets of tiers of suppliers for cross-tier communication in said extended supply chain.

It would have been obvious to one of ordinary skill in the art at the time of invention to have modified the invention of Wong to have included the noted features as taught by Ouchi because the incorporation of such features is no more than the combination of known prior art elements according to their established function yielding predictable results.

Furthermore, Wong teaches a database including information related to two or more of price, inventory, delivery schedules, backorders and supply interruptions, exceptional events, contracts and past transactions (see at least: 0072-0073, 0094, 0787). In particular, Wong discloses where a database stores demand [related to price and inventory] days of supply (DOS) [relates to inventory and delivery schedules], target DOS and actual supply [related to supply interruptions and inventory], exceptional events, lead-time [related to backorders, interruptions, and inventory], inventory itself, etc. Wong thereby teaches the claimed limitation. Wong merely does

Art Unit: 3625

not teach where the information relates to one or more contracts and one or more of the above. In the same field of endeavor, Beurskens teaches a method for pricing commodities (see at least: abstract). Specifically speaking, Beurskens teaches a database including information from a set of suppliers in a supply chain relating to one or more contracts (see at least: col. 5 lines 55-58, col. 6 lines 53-60, col. 10 lines 30-40, Figures 1A (server 10), 2, 4-10, and 17).

It would have been obvious to one of ordinary skill in the art at the time of invention to have modified the invention of Wong to have included the noted features as taught by Beurskens because the incorporation of such features is no more than the combination of known prior art elements according to their established function yielding predictable results.

In addition, though the combination Wong and Ouchi teaches all of the above including transmitting transitive information to the business entities (see Ouchi), the combination fails to teach said order collaboration system operative to transmit a portion of the content of the transitive information to the business entities in response to a security parameter.

In the same field of endeavor, Rivera teaches a system and method for exchanging data between a supplier and a buyer through the incorporation of both parties' backend systems (see at least: abstract). Moreover, Rivera teaches where the system is operative to transmit a portion of the content of the transitive information to the business entities in response to a security parameter (see at least: 0057-0058, Fig. 10 – note: the use of a login is analogous to a security parameter).

Art Unit: 3625

It would have been obvious to one of ordinary skill in the art at the time of invention to have modified the invention of Wong and Ouchi to have included the noted features as taught by Rivera because the incorporation of such features is no more than the combination of known prior art elements according to their established function yielding predictable results.

Lastly, Wong teaches the combination teaches an order collaboration system and database storing information regarding supplier contracts but does not expressly teach where the system is operative to determine contract compliance among the tiers of suppliers in response to one of the following: price, inventory, delivery schedules, backorders and supply interruptions, exceptional events, and past transactions.

In the same field of endeavor, Yehia discloses a system and method for reconciling contracts between two or more trading partners, the system based on a hub and spoke model. When a contract is received it is parsed into requested tags. Each tag represents a predefined field in a contract such as price, quantity, delivery date, and/or other contractual terms. Each partner in the hierarchical contract relationship places predefined rules in the system. The contract tag values are analyzed for compliance with the requested tag values to determine if the requested tag values are in compliance with the contract tag values bases on one or more predefined rules. Contracts with outside providers act as a virtual inventory, making it critical to track orders against contracts in order for trading partners to be able to initiate multilateral actions to resolve issues (see at least: abstract; [0016]). Yehia, then, effectively teaches where the system is operative to determine contract compliance among the tiers of suppliers in response to one of the

following: price, inventory, delivery schedules, backorders and supply interruptions, exceptional events, and past transactions.

It would have been obvious to one of ordinary skill in the art at the time of invention to modify the invention of Wong in view of Ouchi in view of Beurskens to provide a compliance element capable of reviewing and enforcing contract terms as taught by Yehia in order to provide a contract management system with supply chain visibility, allowing trading partners to initiate multilateral actions and resolve supply issues more expediently (see at least: Yehia, abstract, 0016).

Regarding claim 2, Wong in view of Ouchi in view of Beurskens in view of Rivera in view of Yehia further discloses including an aggregation element for aggregation of information relating to one or more products associated with said one or more business entities, wherein said information is stored in a database (see at least: Wong, 0059). An ERP of a business entity connected to the system may determine that due to additional output required by a buyer, production needs to be increased at a manufacturing facility (i.e. information relating to one or more products). The request from the ERP is received and extracted by an external program, and then forwards the extracted information, allowing the IPA to receive the raw ERP data to the ERP raw database (see at least: 0071). The Examiner notes that in this instance, the ERP system and ERP raw database gather (i.e. aggregate) information and store it in a database.

Regarding claim 4, Wong in view of Ouchi in view of Beurskens in view of Rivera in view of Ychia further discloses said aggregation element includes a performance evaluation element capable of collecting and analyzing information regarding supply chain performance of multiple tiers of suppliers (see at least: Wong, 0109-0111). The application of the implication manager is performed in, but not limited to, the context of cost, availability (dearth or surplus), responsiveness (delivery schedule) and quality issues (quality defects). The implication manager is in communication with the ERP raw database and receives part identifier and exception event information. The Examiner notes that the system is monitoring the conditions for multiple parts, which in turn are supplied from a number of suppliers, thereby creating multiple tiers of suppliers.

Regarding claim 5, Wong in view of Ouchi in view of Beurskens in view of Rivera in view of Yehia further discloses wherein said information regarding supply chain information includes at least one of: costs, ship dates, evaluation regarding whether a selected supplier performed well with regard to price adjustments, with regard to promised supply amounts or deliver schedules, whether the selected supplier has had an unusual number of quality defects, or whether there have been an unusual number of supply chain exceptions (see at least: Wong, 0109-0110). The implication manager evaluates the context and implications of an exception event. The application of the implication manager is performed in (but not limited to) the context of cost, availability (dearth or surplus), responsiveness (delivery schedule) and quality issues (quality defects).

Regarding claim 6 and 7. Wong in view of Ouchi in view of Beurskens in view of Rivera in view of Yehia further discloses a system including a brokering module that is part of said hub or logically distinct from said hub and acts on that information on dearth and surplus parts and products to attempt to broker deals between or among entities that have dearth and surplus of the same parts or product, whereby the dearth and surplus are eliminated or mitigated (see at least; Wong, 0005, 0007, 0102-0103, 0108, 0754-0756, Fig. 10-11). The IPA system manages exceptions to normal operating situations in the procurement of supplies (e.g. events that require a corrective action due to a corresponding condition in the procurement process such as supply shortage). An action module works simultaneously with the auto trigger manager to resolve exception events. For example, the action module may send an inquiry to a supplier for a lead-time reduction request (i.e. mitigating a dearth of supply). Furthermore, additional vendors may be sought out and contacted regarding an alternate supply of products or parts (see at least: [0754] to [0756]; FIG. 10 and 11). The Examiner notes that by seeking out alternate vendors and inquiring about lead-time reductions the system is attempting to broker deals with other entities. Additionally, as part of the IPA system, the ERP and ERP raw database work in conjunction with the multiple modules and managers to disseminate information throughout the system as needed.

Regarding claims 16, Wong in view of Ouchi in view of Beurskens teaches:

Said information transferred across the supply chain is done so via said hub. The system
also comprises a web server as well as an IPA APP server for transmitting data,
messages, etc. throughout the various elements of the system (see at least: 0068, 0511,
FIG. 12).

Said messages contain reference to one or more said messages that are its causal
antecedents (see at least: 0084, 0372). The Examiner notes that the request for a
corrective action references a previous action, and therefor a previous message.

Said references contained are analyzed by said aggregation element. The recipient of the
message can issue a reply, which is transmitted to the implication manager. The
implication manager evaluates collective impact of acknowledged corrective action (see
at least: 0084-0085).

Wong in view of Ouchi in view of Beurskens teaches all of the above and further suggests using such a feature as a dictionary of translation, stating that the IPA is configured to map and translate B2B compliant messages (see at least: 0056, 0069, 0097, 0717, Table 18). Wong in view of Ouchi in view of Beurskens, however, does not explicitly teach where said aggregation element uses the analysis to build said dictionary, storing said analysis in said database, and reporting said dictionary to said one or more business entities or said suppliers via said order collaboration system.

In the same field of endcavor, Rivera teaches where said aggregation element uses the analysis to build said dictionary, storing said analysis in said database, said dictionary able to be reported to said one or more business entities or said suppliers via said order collaboration system (see at least: abstract, 0008-0010, 0053-0055, claims 1, 26, and 33). The Examiner notes that the data manager extracts (i.e. aggregates) relevant data, analyzes the data, translates it into a neutral format, and stores the neutral format in a central database that is associated with the

Art Unit: 3625

appropriate trading partner (i.e. originating or destination party). With the data translated into the neutral format and stored, its is then available to the destination party (i.e. able to be reported).

It would have been obvious to one of ordinary skill in the art at the time of invention to have modified the invention of Wong in view of Ouchi in view of Beurskens to have included aggregating, building, analyzing and reporting said database as taught by Rivera in order to provide a flexible, low-impact for connecting trading partners, thereby easily managing "any-to-any" system integration and translation in a complex "many-to-many" trading partner environment, including trading partners arranged in a multi-link supply chain (see at least: 0012, 0030).

Regarding claim 17 and 18, Wong in view of Ouchi in view of Beurskens in view of Rivera in view of Yehia further discloses a feedback element capable of obtaining feedback information for a design process in response to supply chain performance and wherein said feedback information includes information relating to at least one of: selected preferred parts, selected preferred suppliers at one of said multiple tiers, selected parts that do not require new approval for use, selected preferred parts suppliers that do not need approval. The system manages the supply of a good (i.e. part, component, or the like for a designed system) based on a request for said good using a decision support module that evaluates said request against a plurality of indicators and determines whether said request involves an exception that is indicative of a procurement problem in accordance with exception data. An execution module receives a determination from the decision support module, triggers an action that is configured

Art Unit: 3625

to correct said exception and generates an interactive output (i.e. feedback) to an external entity (see at least: 0026). Furthermore, the Examiner notes that the system is adapted to manage the supply of individual parts (see at least: 0046, 0096, 0098).

Regarding claims 19-20, Wong in view of Ouchi in view of Beurskens in view of Rivera in view of Yehia teaches all of the above and further teaches generating corrective actions for exception events such as supply shortage, quality issues, etc. (see at least: abstract). Wong in view of Ouchi in view of Beurskens in view of Rivera in view of Yehia, however, does not teach a compliance element capable of reviewing and enforcing compliance with contract terms between one or more business entities and its suppliers, wherein compliance includes at least one of: delivery price, delivery quantity, price-quantity breakpoints, terms for part returns, and delivery methods.

In the same field of endeavor, Yehia discloses a system and method for reconciling contracts between two or more trading partners, the system based on a hub and spoke model. When a contract is received it is parsed into requested tags. Each tag represents a predefined field in a contract such as price, quantity, delivery date, and/or other contractual terms. Each partner in the hierarchical contract relationship places predefined rules in the system. The contract tag values are analyzed for compliance with the requested tag values to determine if the requested tag values are in compliance with the contract tag values bases on one or more predefined rules. Contracts with outside providers act as a virtual inventory, making it critical to track orders

against contracts in order for trading partners to be able to initiate multilateral actions to resolve issues (see at least: abstract; [0016]).

It would have been obvious to one of ordinary skill in the art at the time of invention to modify the invention of Wong in view of Ouchi in view of Beurskens in view of Rivera in view of Yehia to provide a compliance element capable of reviewing and enforcing contract terms as taught by Yehia in order to provide a contract management system with supply chain visibility, allowing trading partners to initiate multilateral actions and resolve supply issues more expediently (see at least: Yehia, abstract, 0016).

Application/Control Number: 10/672,081 Page 22

Art Unit: 3625

Regarding claim 24, Wong teaches:

Receiving a request from one or mote business entities regarding supply chain

information relevant to one or more designs of parts used in designs (see at least: 0010,

0055). When an exception (e.g. shortage) is detected, the system generates actions (i.e.

requests) that are responded to by suppliers (see at least; 0055). Each product or finished

good may include hundreds or thousands of unit level components (i.e. parts used in

designs).

Determining which data is relevant to said request, wherein said data is derived from one

or more suppliers across one or more supply chains or past business records associated

with said manufacture ad is related to at least one of the following: price of at least one

electronic or computer part, quantity available of said electronic or computer part.

delivery schedules for said electronic or computer part, backorders, supply interruptions,

exceptional events and contracts, and said data is stored in a database coupled to a hub

(see at least: 0109, 0111) in the context of the context of cost, availability (dearth or

surplus), responsiveness (delivery schedule) and quality issues (quality defects),

shortage/quantity available, lead-time issues, etc.

Aggregating said data in such a way that said aggregated data is responsive to said

request (see at least: 0059, 0071). The Examiner notes that in this instance, the ERP

system and ERP raw database gather (i.e. aggregate) information and store it in a

database and aid in generating responses to requests from an IPA user.

Art Unit: 3625

Generating a report and presenting said report to said one or more business entities,
 wherein said report is responsive to said request (see at least: abstract; 0381-0384). By
 providing an interactive output and allowing the user to hold, accept, or terminate actions,
 the IPA system presents a report responsive to the request.

Wong teaches all of the above and further suggests using such a feature as a dictionary of translation, stating that the IPA is configured to map and translate B2B compliant messages (see at least: 0056, 0069, 0097, 0717, Table 18). Wong, however, does not explicitly teach translating, for cross-tier communication in said extended supply chain, the content of transitive information in said data using a dictionary of translations of said transitive information.

In the same field of endeavor, Ouchi teaches an electronic information transfer between trading partners using a standard format (see at least: abstract). More specifically, Ouchi teaches various "processes" such as A-S which represent various transformations that make up a multitude of transformations (i.e. form a dictionary)(see at least: 0039, Fig. 4). Ouchi further discloses that, aside from just the transformation of format, similar processing is used to transform information (i.e. content), such as part number, to standard part numbers and then subsequently to the receiving trading partners part numbers (see at least: 0046, Fig. 11A-11B; Note Applicant's remarks filed 7/9/2007, page 16, first paragraph). In this respect, Ouchi clearly teaches translating, for cross-tier communication in said extended supply chain, the content of transitive information in said data using a dictionary of translations of said transitive information.

It would have been obvious to one of ordinary skill in the art at the time of invention to have modified the invention of Wong to have included the noted features as taught by Ouchi because

Art Unit: 3625

the incorporation of such features is no more than the combination of known prior art elements according to their established function yielding predictable results.

Furthermore, Wong teaches a database including information related to two or more of price, inventory, delivery schedules, backorders and supply interruptions, exceptional events, contracts and past transactions (see at least: 0072-0073, 0094, 0787). Wong merely does not teach where the information relates to one or more contracts and where the report identifies the terms of said contract related to said request. In the same field of endeavor, Beurskens teaches a method for pricing commodities (see at least: abstract). Specifically speaking, Beurskens teaches a database including information from a set of suppliers in a supply chain relating to one or more contracts as well as where a report identifies the terms of said contract related to said request (see at least:

It would have been obvious to one of ordinary skill in the art at the time of invention to have modified the invention of Wong to have included the noted features as taught by Beurskens because the incorporation of such features is no more than the combination of known prior art elements according to their established function yielding predictable results.

col. 5 lines 55-58, col. 6 lines 53-60, col. 10 lines 30-40, Figures 1A (server 10), 2, and 4-17).

In addition, though the combination Wong and Ouchi teaches all of the above including aggregating said data, the combination fails to teach where the aggregation is also done in response to a security parameter.

Art Unit: 3625

In the same field of endeavor, Rivera teaches a system and method for exchanging data between a supplier and a buyer through the incorporation of both parties' backend systems (see at least: abstract). Moreover, Rivera teaches where the system is operative to aggregate data (i.e. collect and present for display) in response to a security parameter (see at least: 0057-0058, Fig. 10 – note: the use of a login is analogous to a security parameter).

It would have been obvious to one of ordinary skill in the art at the time of invention to have modified the invention of Wong and Ouchi to have included the noted features as taught by Rivera because the incorporation of such features is no more than the combination of known prior art elements according to their established function yielding predictable results.

Lastly, the combination teaches generating a report and presenting said report to said one or more business entities but does not expressly teach where the report *indicates contract compliance*.

In the same field of endeavor, Yehia discloses a system and method for reconciling contracts between two or more trading partners, the system based on a hub and spoke model. When a contract is received it is parsed into requested tags. Each tag represents a predefined field in a contract such as price, quantity, delivery date, and/or other contractual terms. Each partner in the hierarchical contract relationship places predefined rules in the system. The contract tag values are analyzed for compliance with the requested tag values to determine if the requested tag values are in compliance with the contract tag values bases on one or more predefined rules. Contracts with outside providers act as a virtual inventory, making it critical to track orders

Art Unit: 3625

against contracts in order for trading partners to be able to initiate multilateral actions to resolve

issues (see at least: abstract; [0016], Fig. 4 and 11).

It would have been obvious to one of ordinary skill in the art at the time of invention to modify the invention of Wong in view of Ouchi in view of Beurskens to provide a compliance element

capable of reviewing and enforcing contract terms as taught by Yehia in order to provide a contract management system with supply chain visibility, allowing trading partners to initiate

multilateral actions and resolve supply issues more expediently (see at least: Yehia, abstract,

0016).

Regarding claim 25, Wong in view of Ouchi in view of Beurskens in view of Rivera in

view of Yehia teaches all of the above and further teaches generating corrective actions for

exception events such as supply shortage, quality issues, etc. (see at least: abstract). Wong in

view of Ouchi in view of Beurskens in view of Rivera in view of Yehia, however, does not teach

a compliance element capable of reviewing and enforcing compliance with contract terms

between one or more business entities and its suppliers, wherein compliance includes at least

 $one\ of:\ delivery\ price,\ delivery\ quantity,\ price-quantity\ breakpoints,\ terms\ for\ part\ returns,\ and$

delivery methods.

In the same field of endeavor, Yehia discloses a system and method for reconciling contracts

between two or more trading partners, the system based on a hub and spoke model. When a

contract is received it is parsed into requested tags. Each tag represents a predefined field in a contract such as price, quantity, delivery date, and/or other contractual terms. Each partner in the hierarchical contract relationship places predefined rules in the system. The contract tag values are analyzed for compliance with the requested tag values to determine if the requested tag values are in compliance with the contract tag values bases on one or more predefined rules. Contracts with outside providers act as a virtual inventory, making it critical to track orders against contracts in order for trading partners to be able to initiate multilateral actions to resolve issues (see at least: abstract; [0016]).

It would have been obvious to one of ordinary skill in the art at the time of invention to modify the invention of Wong in view of Ouchi in view of Beurskens in view of Rivera in view of Yehia to provide a compliance element capable of reviewing and enforcing contract terms as taught by Yehia in order to provide a contract management system with supply chain visibility, allowing trading partners to initiate multilateral actions and resolve supply issues more expediently (see at least: Yehia, abstract, 0016).

Regarding claim 31, claim 31 closely parallels claim 16 and is rejected for at least the same rationale.

Art Unit: 3625

5. Claims 3, 21, and 28-29 are rejected under 35 U.S.C. 103(a) as being unpatentable over Wong in view of Ouchi in view of Beurskens in view of Rivera in view of Yehia, as applied to 1-2, 4-7, 16-20, 24-25, and 31 above, and further in view of Katz et al. (US 20020178077).

Regarding claim 3, Wong in view of Ouchi teaches all of the above as noted and further teaches aggregating information and determining corrective actions for exception events such as supply shortage while generating interactive outputs containing aggregation (see at least; Wong, abstract; [0071]; [0381] to [0384]). Wong in view of Ouchi in view of Beurskens in view of Rivera in view of Yehia, however, does not teach a presentation element wherein said presentation element presents aggregated information. Katz discloses a method and system that enables suppliers and procurement professionals to leverage enterprise and marketplace data in order to potentially improve decision making in business enterprises. Internal data from enterprises and external data from suppliers, catalogs, and marketplaces are integrated and analyzed in real time for their impact on supply chains processes (see at least; abstract). Katz further discloses displaying recommendations as aggregated reports on a user interface (i.e. presentation element) (see at least: abstract, 0019, 0065). It would have been obvious to one of ordinary skill in the art at the time of invention to modify the invention of Wong in view of Ouchi in view of Beurskens in view of Rivera in view of Yehia to include allocation of parts in relatively short supply to selected projects as taught by Katz in order to enable suppliers and procurement professionals to leverage enterprise and marketplace data, thereby improving decision-making in business enterprises (see at least: Katz, abstract).

Application/Control Number: 10/672,081 Page 29

Art Unit: 3625

Regarding claim 21, Wong in view of Ouchi in view of Beurskens in view of Rivera in view of Yehia teaches all of the above as noted and further teaches determining corrective actions for exception events such as supply shortage (see at least; Wong, abstract; [0381] to [0384]). Wong in view of Ouchi in view of Beurskens in view of Rivera in view of Yehia, however, does not teach directing said suppliers to allocate parts in a relatively short supply to selected projects. Katz discloses a method and system that enables suppliers and procurement professionals to leverage enterprise and marketplace data in order to potentially improve decision making in business enterprises. A BOM optimization module aids in determining the optimal allocation of components in the face of a component shortage. Thus, if there is a shortage of a component with part number X and if part number X is used in a plurality of products 1-N, then what the manufactured quantities should be are determined considering criteria set by procurement, manufacturing, and/or finance (see at least; abstract; [0315]). It would have been obvious to one of ordinary skill in the art at the time of invention to modify the invention of Wong to include allocation of parts in relatively short supply to selected projects as taught by Katz in order to enable suppliers and procurement professionals to leverage enterprise and marketplace data, thereby improving decision-making in business enterprises (see at least: Katz, abstract).

Regarding claim 28, Wong in view of Ouchi in view of Beurskens in view of Rivera in view of Yehia teaches all of the above as noted and further teaches aggregating information and

determining corrective actions for exception events such as supply shortage (see at least: abstract; [0381] to [0384]). Wong in view of Ouchi in view of Beurskens in view of Rivera in view of Yehia, however, does not teach evaluating the supply chain performance of multiple tiers of suppliers. Katz discloses a method and system that enables suppliers and procurement professionals to leverage enterprise and marketplace data in order to potentially improve decision making in business enterprises. Internal data from enterprises and external data from suppliers, catalogs, and marketplaces are integrated and analyzed in real time for their impact on supply chains processes (see at least: abstract). A BOM optimization module aids in determining the optimal allocation of components in the face of a component shortage (see at least: [0315]). It would have been obvious to one of ordinary skill in the art at the time of invention to modify the invention of Wong in view of Ouchi in view of Beurskens in view of Rivera in view of Yehia to include allocation of parts in relatively short supply to selected projects as taught by Katz in order to enable suppliers and procurement professionals to leverage enterprise and marketplace data, thereby improving decision-making in business enterprises (see at least: Katz, abstract).

Regarding claim 29, Wong in view of Ouchi in view of Beurskens in view of Rivera in view of Yehia teaches all of the above as noted under the 102(e) rejection and further teaches determining corrective actions for exception events such as supply shortage (see at least: abstract; [0381] to [0384]). Wong in view of Ouchi in view of Beurskens in view of Rivera in view of Yehia, however, does not teach directing said suppliers to allocate parts in a relatively short supply to selected projects. Katz discloses a method and system that enables suppliers and procurement professionals to leverage enterprise and marketplace data in order to potentially

improve decision making in business enterprises. A BOM optimization module aids in determining the optimal allocation of components in the face of a component shortage. Thus, if there is a shortage of a component with part number X and if part number X is used in a plurality of products 1-N, then what the manufactured quantities should be are determined considering criteria set by procurement, manufacturing, and/or finance (see at least: abstract; [0315]). It would have been obvious to one of ordinary skill in the art at the time of invention to modify the invention of Wong in view of Ouchi in view of Beurskens in view of Rivera in view of Yehia to include allocation of parts in relatively short supply to selected projects as taught by Katz in order to enable suppliers and procurement professionals to leverage enterprise and marketplace data, thereby improving decision-making in business enterprises (see at least: Katz, abstract).

6. Claims 8-10, 12-15, and 32-37 are rejected under 35 U.S.C. 103(a) as being unpatentable over Wong in view of Ouchi in view of Beurskens in view of Rivera in view of Yehia, as applied to claims 1-2, 4-7, 16-20, 24-25, and 31, and further in view of Johnson et al. (US 20030023540).

Regarding claims 8-10, and 15, Wong in view of Ouchi in view of Beurskens in view of Rivera in view of Yehia teaches all of the above as noted and further teaches attempting to broker deals with multiple vendors/suppliers to resolve exception events (see at least; Wong, [0754] to [0756]). Wong in view of Ouchi in view of Beurskens in view of Rivera in view of Yehia, however, does not teach where one or more entities with said dearth in a certain part or product can be matched with one or more said entities with a surplus in the same said part or product, a brokering module brokers a deal among on or more said entities, where each entity can choose whether they would like to participate in the brokered deal. Johnson discloses a system and method for matching energy suppliers in need of resources to those with a surplus of resources in an auction format to stimulate competition between various providers. A local electric utility may be selling excess generating capacity (from its own generating plants) or buying power from nearby utilities, resellers, traders or brokers to cover a shortfall in its own supply (e.g., during certain peak periods), thereby matching an entity with a surplus to an entity with a shortage (see at least; [0002]). A bidding moderator receives offers from competing suppliers specifying the economic terms each is willing to offer to end users for estimated quantities of electric power or gas supply (separate auctions), thereby brokering a deal between the entities (see at least: abstract, [0002]). Bidding takes place between participating providers

Art Unit: 3625

(i.e. those who have chosen to participate). All Providers will have the opportunity thereafter to submit a lower or higher bid for any end user (or any reseller or group of resellers) or group of end users to whom they wish to supply electric power or natural gas (i.e. opt out of participating if they do not wish to sell to an end user) (see at least: [0003]). It would have been obvious to one of ordinary skill in the art at the time of invention to modify the invention of Wong in view of Ouchi in view of Beurskens in view of Rivera in view of Yehia to include matching entities from one or more brokering groups with corresponding dearth and surplus in order to stimulate this competition and facilitate the consumer's ability (and that of resellers) to make economic choices between providers. (see at least: Johnson, abstract, 0003).

Regarding 12-14, Wong in view of Ouchi in view of Beurskens in view of Rivera in view of Yehia teaches all of the above as noted and further teaches attempting to broker deals with multiple vendors/suppliers to resolve exception events (see at least: Wong, [0754] to [0756]). Wong in view of Ouchi in view of Beurskens in view of Rivera in view of Yehia further lacks said entities only matched within brokering groups, where a single said brokering group contains zero or more said entities, and the group of said entities can be within a single supply chain, across supply chains, or from within and outside of any number of supply chains, and where said brokering group can be assigned by said hub or by another said entity acting with authority from said hub. Johnson discloses a system and method for matching energy suppliers in need of resources to those with a surplus of resources in an auction format. A bidding moderator (Moderator) receives offers from competing suppliers specifying the economic terms each is willing to offer to end users for estimated quantities of electric power or gas supply in

separate auctions. The bidding process to supply electric power will be conducted separate and apart from the bidding process to supply natural gas. Power generators will compete only with other power generators. Gas producers will compete only with other gas producers (see at least: abstract; [0003]). The Examiner notes that the different auctions constitute brokering groups with multiple entities. Furthermore, the entities are matched in their specific auctions (i.e. within the brokering group), and thereby are involved in zero or more brokering groups. Additionally, a moderator (i.e. entity acting with authority) can select those Providers from whom participating end users or resellers will be provided electric power or natural gas and can change that selection at any time (see at least: [0003]). It would have been obvious to one of ordinary skill in the art at the time of invention to modify the invention of Wong to include matching entities from one or more brokering groups with corresponding dearth and surplus in order to stimulate this competition and facilitate the consumer's ability (and that of resellers) to make economic choices between providers. (see at least: Johnson, abstract, 0003).

Regarding claims 32-34, and 37 Wong in view of Ouchi in view of Beurskens in view of Rivera in view of Yehia teaches all of the above as noted and further teaches attempting to broker deals with multiple vendors/suppliers to resolve exception events (see at least: [0754] to [0756]). Wong in view of Ouchi in view of Beurskens in view of Rivera in view of Yehia, however, does not teach where one or more entities with said dearth in a certain part or product can be matched with one or more said entities with a surplus in the same said part or product, a brokering module brokers a deal among on or more said entities, where each entity can choose whether they would like to participate in the brokered deal. Johnson discloses a system and

method for matching energy suppliers in need of resources to those with a surplus of resources in an auction format to stimulate competition between various providers. A local electric utility may be selling excess generating capacity (from its own generating plants) or buying power from nearby utilities, resellers, traders or brokers to cover a shortfall in its own supply (e.g., during certain peak periods), thereby matching an entity with a surplus to an entity with a shortage (see at least; [0002]). A bidding moderator receives offers from competing suppliers specifying the economic terms each is willing to offer to end users for estimated quantities of electric power or gas supply (separate auctions), thereby brokering a deal between the entities (see at least: abstract, [0002]). Bidding takes place between participating providers (i.e. those who have chosen to participate). All Providers will have the opportunity thereafter to submit a lower or higher bid for any end user (or any reseller or group of resellers) or group of end users to whom they wish to supply electric power or natural gas (i.e. opt out of participating if they do not wish to sell to an end user) (see at least: [0003]). The Examiner notes that the participating suppliers represent all known suppliers. It would have been obvious to one of ordinary skill in the art at the time of invention to modify the invention of Wong in view of Ouchi in view of Beurskens in view of Rivera in view of Yehia to include matching entities from one or more brokering groups with corresponding dearth and surplus in order to stimulate this competition and facilitate the consumer's ability (and that of resellers) to make economic choices between providers. (see at least: Johnson, abstract, 0003).

Regarding claims 35-36, Wong in view of Ouchi in view of Beurskens in view of Rivera in view of Yehia teaches all of the above as noted and further teaches attempting to broker deals

with multiple vendors/suppliers to resolve exception events (see at least: [0754] to [0756]). Wong further lacks said entities only matched within brokering groups, where a single said brokering group contains zero or more said entities, and the group of said entities can be within a single supply chain, across supply chains, or from within and outside of any number of supply chains, and where said brokering group can be assigned by said hub or by another said entity acting with authority from said hub. Johnson discloses a system and method for matching energy suppliers in need of resources to those with a surplus of resources in an auction format. A bidding moderator (Moderator) receives offers from competing suppliers specifying the economic terms each is willing to offer to end users for estimated quantities of electric power or gas supply in separate auctions. The bidding process to supply electric power will be conducted separate and apart from the bidding process to supply natural gas. Power generators will compete only with other power generators. Gas producers will compete only with other gas producers (see at least: abstract; [0003]). The Examiner notes that the different auctions constitute brokering groups with multiple entities. Furthermore, the entities are matched in their specific auctions (i.e. within the brokering group), and thereby are involved in zero or more brokering groups. Additionally, a moderator (i.e. entity acting with authority) can select those Providers from whom participating end users or resellers will be provided electric power or natural gas and can change that selection at any time (see at least: [0003]). It would have been obvious to one of ordinary skill in the art at the time of invention to modify the invention of Wong in view of Ouchi in view of Beurskens in view of Rivera in view of Yehia to include matching entities from one or more brokering groups with corresponding dearth and surplus in order to stimulate this competition and facilitate the consumer's ability (and that of resellers) to make economic choices between providers, (see at least; Johnson, abstract, 0003).

 Claim 11 is rejected under 35 U.S.C. 103(a) as being unpatentable over Wong in view of Ouchi in view of Beurskens in view of Rivera in view of Yehia in further view of Johnson as applied to claims 8-10 and 12-15, and in further view of Dutta (US 20030028470).

Regarding claim 11, Wong in view of Ouchi in view of Beurskens in view of Rivera in view of Yehia in further view of Johnson teach all of the above as noted and further teaches brokering deals to mitigate a shortage/surplus of supplies (see at least: Wong, [0754] to [0756]; FIG. 10 and 11). Wong in view of Ouchi in view of Beurskens in view of Rivera in view of Yehia in further view of Johnson, however, does not teach where each entity is kept secret until after said brokered deal is complete, whereby said entities cannot broker said deal without said hub.

Dutta discloses a system and method for completing anonymous transactions to protect suppliers from being defrauded using enhanced certificates issued from a certificate authority server (see at least: [0003]; [0005]). A purchaser or supplier may input instructions requesting an enhanced certificate where the purchaser node or supplier server transmits the instructions over the Internet to the certificate authority server (see at least: [0014]; [0015]). The enhanced certificate provides a more secure anonymous transaction (see at least: [0017]; FIG. 2). A hyperlink may be provided on a web site for access by the requestor by the aggregate exchange server (see at least: [0006]). The aggregate exchange server acts as a hub houses tables pertinent to the completion of anonymous transactions (see at least: FIG. 3B-3E). The Examiner further notes that the

Application/Control Number: 10/672,081 Page 38

Art Unit: 3625

certificate is registered and must be approved by the aggregate exchange server otherwise the transaction is terminated (see at least; FIG. 5 element 340).

It would have been obvious to one of ordinary skill in the art at the time of invention to modify the invention of Wong in view of Ouchi in view of Beurskens in view of Rivera in view of Yehia in further view of Johnson to include keeping supplier identities secret as taught by Dutta in order to prevent outside entities from defrauding the supplier, thereby improving the security of transactions (see at least: Dutta, 0003, 0005).

Application/Control Number: 10/672,081 Page 39

Art Unit: 3625

8. Claims 22-23, 26-27, and 30 are rejected under 35 U.S.C. 103(a) as being unpatentable over Wong in view of Ouchi in view of Beurskens in view of Rivera in view of Yehia, as applied to claims 1-2, 4-7, 16-20, 24-25, and 31, and further in view of Harm et al. (US 20030040823, herein referred to as Harm).

Regarding claims 22-23, Wong in view of Ouchi in view of Beurskens in view of Rivera in view of Yehia teaches all of the above as noted and further teaches brokering deals to mitigate a shortage/surplus of supplies (see at least: Wong, [0109]; [0111]; [0754] to [0756]; FIG. 10 and 11). Wong, however, does not teach a blind design element capable of directing suppliers to use any design that meets design specifications, wherein the blind design element is responsive to a comparison of an estimated cost of optimization and an estimated possible cost savings due to design specifications. Wong also fails to teach comparing the overall projected cost of a particular design based upon process from multiple suppliers and determining the most cost efficient way to manufacture a design. Harm discloses a system and method for optimizing measured values associated with components of a product. Users may request bids on various products or assemblies having multiple components (e.g. car mirror assembly). Suppliers of the requested product or assembly may manufacture the assembly under a number of different designs that meet user criteria (i.e. the system allows a supplier to use any design that meets design specifications). The measure values received from suppliers of a product may represent the cost estimates for supplying these components, that is, bids by suppliers on the cost of supply of these components to the user, thereby providing a comparison of an estimated cost of optimization and an estimated possible cost savings. The invention allows for minimization (i.e.

most cost efficient) of cost (see at least: [0028] to [0031]). The Examiner further notes that when a supplier has been selected based on a cost comparison, the user directs the supplier to use a design meeting design specifications (i.e. the "any design" from above). It would have been obvious to one of ordinary skill in the art at the time of invention to modify the invention of Wong in view of Ouchi in view of Beurskens in view of Rivera in view of Yehia to have included a blind design element responsive to provide comparisons of estimated cost as taught by Harm in order to allow a user (e.g. trading partner, business entity, etc.) to obtain products, components, or the like at minimal cost, thereby decreasing manufacturing costs and increasing revenue (see at least: Harm, 0002-0003).

Regarding claims 26, 27, and 30, Wong in view of Ouchi in view of Beurskens in view of Rivera in view of Yehia teaches all of the above as noted and further teaches brokering deals to mitigate a shortage/surplus of supplies (see at least: [0109]; [0111]; [0754] to [0756]; FIG. 10 and 11). Wong in view of Ouchi in view of Beurskens in view of Rivera in view of Yehia, however, does not teach a blind design element capable of directing suppliers to use any design that meets design specifications, wherein the blind design element is responsive to a comparison of an estimated cost of optimization and an estimated possible cost savings due to design specifications. Wong also fails to teach comparing the overall projected cost of a particular design based upon process from multiple suppliers and determining the most cost efficient way to manufacture a design. Harm discloses a system and method for optimizing measured values associated with components of a product. Users may request bids on various products or

assemblies having multiple components (e.g. car mirror assembly). Suppliers of the requested product or assembly may manufacture the assembly under a number of different designs that meet user criteria (i.e. the system allows a supplier to use any design that meets design specifications). The measure values received from suppliers of a product may represent the cost estimates for supplying these components, that is, bids by suppliers on the cost of supply of these components to the user, thereby providing a comparison of an estimated cost of optimization and an estimated possible cost savings. The invention allows for minimization (i.e. most cost efficient) of cost (see at least; [0028] to [0031]). The Examiner further notes that when a supplier has been selected based on a cost comparison, the user directs the supplier to use a design meeting design specifications (i.e. the "any design" from above). It would have been obvious to one of ordinary skill in the art at the time of invention to modify the invention of Wong in view of Ouchi in view of Beurskens in view of Rivera in view of Yehia to include a blind design element responsive to provide comparisons of estimated cost as taught by Harm in order to allow a user (e.g. trading partner, business entity, etc.) to obtain products, components, or the like at minimal cost, thereby decreasing manufacturing costs and increasing revenue (see at least: Harm, 0002-0003).

Art Unit: 3625

Conclusion

THIS ACTION IS MADE FINAL. Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the mailing date of this final action.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to WILLIAM J. ALLEN whose telephone number is (571)272-1443. The examiner can normally be reached on 8:00 AM to 5:30 PM.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Jeff A. Smith can be reached on (571) 272-6763. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/Jeffrey A. Smith/ Supervisory Patent Examiner, Art Unit 3625

/William J Allen/ Examiner, Art Unit 3625