ASCON

(A Submission to CAESAR)

Ch. Dobraunig¹, M. Eichlseder¹, F. Mendel¹, M. Schläffer²

¹IAIK, Graz University of Technology, Austria ²Infineon Technologies AG, Austria

22nd Crypto Day, Infineon, Munich

Overview

- CAESAR
- Design of ASCON
- Security analysis
- Implementations

CAESAR

- CAESAR: Competition for Authenticated Encryption Security, Applicability, and Robustness (2014–2018)
 - http://competitions.cr.yp.to/caesar.html
 - Inspired by AES, eStream, SHA-3
- Authenticated Encryption
 - Confidentiality as provided by block cipher modes
 - Authenticity, Integrity as provided by MACs

"it is very easy to accidentally combine secure encryption schemes with secure MACs and still get insecure authenticated encryption schemes"

- Kohno, Whiting, and Viega

CAESAR

- CAESAR: Competition for Authenticated Encryption Security, Applicability, and Robustness (2014–2018)
 - http://competitions.cr.yp.to/caesar.html
 - Inspired by AES, eStream, SHA-3
- Authenticated Encryption
 - Confidentiality as provided by block cipher modes
 - Authenticity, Integrity as provided by MACs

"it is very easy to accidentally combine secure encryption schemes with secure MACs and still get insecure authenticated encryption schemes"

Kohno, Whiting, and Viega

Generic compositions

MAC-then-Encrypt (MtE)

- e.g. in SSL/TLS
- security depends on E and MAC

Encrypt-and-MAC (E&M)

- e.g. in SSH
- security depends on E and MAC

Encrypt-then-MAC (EtM)

- IPSec, ISO/IEC 19772:2009
- provably secure

Pitfalls: Dependent Keys (Confidentiality)

Encrypt-and-MAC with CBC-MAC and CTR

What can an attacker do?

Pitfalls: Dependent Keys (Confidentiality)

Encrypt-and-MAC with CBC-MAC and CTR

What can an attacker do?

Tags for
$$M = IV \oplus (N||1)$$
, $M = IV \oplus (N||2)$, ... are the key stream to read $M_1, M_2, ...$

(Keys for) E^* and MAC must be independent!

CAESAR - Candidates

ACORN	++AE	AEGIS	AES-CMCC
AES-COBRA	AES-COPA	AES-CPFB	AES-JAMBU
AES-OTR	AEZ	Artemia	Ascon
AVALANCHE	Calico	CBA	CBEAM
CLOC	Deoxys	ELmD	Enchilada
FASER	HKC	HS1-SIV	ICEPOLE
iFeed[AES]	Joltik	Julius	Ketje
Keyak	KIASU	LAC	Marble
McMambo	Minalpher	MORUS	NORX
OCB	OMD	PAEQ	PAES
PANDA	$\pi ext{-Cipher}$	POET	POLAWIS
PRIMATEs	Prøst	Raviyoyla	Sablier
SCREAM	SHELL	SILC	Silver
STRIBOB	Tiaoxin	TriviA-ck	Wheesht
YAFS			

CAESAR - Candidates

ACORN	++AE	AEGIS	AES-CMCC
AES-COBRA	AES-COPA	AES-CPFB	AES-JAMBU
AES-OTR	AEZ	Artemia	Ascon
AVALANCHE	Calico	CBA	CBEAM
CLOC	Deoxys	ELmD	Enchilada
FASER	HKC	HS1-SIV	ICEPOLE
iFeed[AES]	Joltik	Julius	Ketje
Keyak	KIASU	LAC	Marble
McMambo	Minalpher	MORUS	NORX
OCB	OMD	PAEQ	PAES
PANDA	π -Cipher	POET	POLAWIS
PRIMATEs	Prøst	Raviyoyla	Sablier
SCREAM	SHELL	SILC	Silver
STRIBOB	Tiaoxin	TriviA-ck	Wheesht
YAES			

ASCON - Design Goals

- Security
- Efficiency
- Lightweight
- Simplicity

- Online
- Single pass
- Scalability
- Side-Channel robustness

Duplex sponge constructions

- Sponges became popular with SHA-3 winner Keccak
- Can be transformed to AE mode: duplex sponges
- Based on permutation p instead of block cipher E_K
- Security parameter: capacity *c*

ASCON - General Overview

- Nonce-based AEAD scheme
- Sponge inspired

ASCON-128: (c, r) = (256, 64)ASCON-96: (c, r) = (192, 128)

ASCON - Permutation

320-bit permutation, several rounds of:

- Constant addition
- S-Box layer

■ Linear transformation

ASCON - Round

Analysis - Permutation

- Branch number 3 for S-box and linear transformation
- Proof on minimum number of active S-boxes
- Search for differential and linear characteristics

result	rounds	differential	linear
	1	1	1
proof	2	4	4
	3	15	13
heuristic	4	44	43
neuristic	≥ 5	> 64	> 64

Analysis – ASCON [DEMS15]

- Analysis of the building blocks
 - Permutation
- Attacks on round-reduced versions of ASCON-128
 - Key-recovery
 - Forgery

	rounds	time	method
Ascon-128	6 / 12 5 / 12	2 ⁶⁶ 2 ³⁵	cube-like
	5 / 12 2 ³⁶	differential-linear	

Implementation – ASCON

- Software
 - 64-bit Intel platforms
 - ARM NEON
 - 8-bit ATmega128
- Hardware [GWDE15]
 - High-speed
 - Low-area
 - Threshold implementations

Software – 64-bit Intel

■ One message per core (Core2Duo)

	64	512	1024	4096
Ascon-128 (c/B) Ascon-96 (c/B)				

■ Four messages per core [Sen15] (Haswell)

	64	512	1024	4096
ASCON-128 (c/B) ASCON-96 (c/B)	10.49 8.55			

Hardware – Results [GWDE15]

	Chip Area [kGE]	Throughput [Mbps]	Power [µW]	Energy [µJ/byte]		
Unprotected Implementations						
Fast 1 round	7.08	5 524	43	33		
Fast 6 rounds	24.93	13 218	184	23		
Low-area	2.57	14	15	5 706		

Hardware – Results [GWDE15]

	Chip Area [kGE]	Throughput Power [Mbps] [μW]		Energy [µJ/byte]	
Unprotected	Implementa	tions			
Fast 1 round	7.08	5 524	43	33	
Fast 6 rounds	24.93	13 218	184	23	
Low-area	2.57	14	15	5 706	
Threshold Implementations					
Fast 1 round	28.61	3 774	183	137	
Fast 6 rounds	123.52	9018	830	104	
Low-area	7.97	15	45	17 234	

Hardware - Comparison [GWDE15]

ASCON-128 - Choice of Parameters

- Now: (c,r) = (256, 64)
 - Conservative choice
- Proposed: (c,r) = (192, 128) [BDPA11]
 - Significant speedup (factor 2)
 - Limit on data complexity 2⁶⁴
- Proposed: (c,r) = (128, 192) [JLM14]
 - Significant speedup (factor 3)
 - More analysis needed

More Information

http://ascon.iaik.tugraz.at

Reference I

Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.

Duplexing the sponge: Single-pass authenticated encryption and other applications.

In Ali Miri and Serge Vaudenay, editors, Selected Areas in Cryptography – SAC 2011, volume 7118 of LNCS, pages 320–337. Springer, 2011.

CAESAR committee.

CAESAR: Competition for authenticated encryption: Security, applicability, and robustness.

http://competitions.cr.yp.to/caesar.html, 2014.

Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.

Ascon.

Submission to the CAESAR competition: http://ascon.iaik.tugraz.at, 2014.

Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.

Cryptanalysis of ascon.

In Kaisa Nyberg, editor, *Topics in Cryptology - CT-RSA 2015*, volume 9048 of *LNCS*, pages 371–387. Springer, 2015.

Itai Dinur, Pawel Morawiecki, Josef Pieprzyk, Marian Srebrny, and Michal Straus.

Cube attacks and cube-attack-like cryptanalysis on the round-reduced keccak sponge function.

In Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology – EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages 733–761. Springer, 2015.

Hannes Groß, Erich Wenger, Christoph Dobraunig, and Christoph Ehrenhöfer.

Suit up! made-to-measure hardware implementations of ascon.

IACR Cryptology ePrint Archive, 2015:34, 2015.

to appear on 18th Euromicro Conference on Digital Systems Design.

Reference II

Philipp Jovanovic, Atul Luykx, and Bart Mennink.

Beyond $2^{c/2}$ security in sponge-based authenticated encryption modes.

In Palash Sarkar and Tetsu Iwata, editors, Advances in Cryptology – ASIACRYPT 2014, Part I, volume 8873 of LNCS, pages 85–104. Springer, 2014.

Thomas Senfter.

Multi-message support for ascon.

Bachelors's Thesis, 2015.