HDT 6

1. El problema no indica que hacer, por lo que se hizo una regresión polinomial.

2. Encontrar la mejor curva de ajuste

curva: $y = -4.8067x^2+9.3958x+0.6711$ Gráficamente se ve así:

MATRIZ		25	В	
7	2.6419	1.87766	20.495	
2.6419	1.87766	1.51734	12.1216	
1.87766	1.51734	1.30136	9.2614	
MATRIZ IN	/ERSA		В	
0.41621	-1.7363	1.42393	0.67108	b0
-1.7363	16.4599	-16.686	9.39581	b1
1.42393	-16.686	18.1697	-4.8067	b2

3. Encontrar la velocidad cinemática para T = 10,30,60,90

La curva de ajuste es la siguiente:

El resultado a evaluar T es:

Т	mu
10	1.4479
30	0.91339
60	0.4129
90	0.2719

De forma gráfica se ve así.

MATRIZ			В	
7	372.2	27597.5	5.09	
372.2	27597.5	2260655	160.201	
27597.5	2260655	2E+08	10176.7	
MATRIZ IN	VERSA		В	
0.82926	-0.0294	0.00022	1.77494	b0
-0.0294	0.0017	-2E-05	-0.0347	b1
0.00022	-2E-05	1.5E-07	0.0002	b2
				1000

4. Para la elaboración de este problema fue necesario primero normalizar los datos que se nos proporcionan para poder encontrar una función que mejor se ajuste.

La función que mejor se ajusta es:

$$\gamma = 0.0477x^2 - 0.8822x + 3.1497$$

 $R^2 = 0.9987$

Donde x es el valor del número de Reynold's "Re" normalizado y "y" es el coeficiente de arrastre "Cd" normalizado

Los datos se normalizaron aplicandoles logaritmo natural y quedaron de la siguiente forma:

Ln(Re) Normalizado	Ln(Cd) Normalizado
-1.609437912	4.634728988
0.693147181	2.63188884
2.995732274	1.00063188
5.298317367	-0.223143551
7.60090246	-0.913793852
9,903487553	-0.837017551

Gráfico que se obtuvo con Excel de los datos proporcionados en el ejercicio normalizados.

Calculo del Cd normalizado en base a la función que se obtuvo:

Cd Normalizado
1.853410725
0.428510479
-0.490588687
-0.903886774

Para obtener el valor del Cd original se aplicó e^{Cd} siendo el Cd de la fórmula anterior el Cd normalizado, y los resultado obtenidos fueron:

Re	Cd
5	6.38154815
50	1.53496945
500	0.61226585
5000	0.40499248

5. La función que mejor se ajusta es:

Donde "x" es el valor de de la altura "h" en kilometros y "y" representa a "p" como la densidad relativa del aire.

Gráfica de los datos obtenida en Excel.

Valor de la Determine la densidad relativa del aire a 10.5 km:

Densidad relat	iva del aire a
10.5 km	
	0.3301