

LÓGICA PROPOSICIONAL E ÁLGEBRA BOOLEANA

Thiago Felski Pereira

ROTEIRO

Introdução

Sistemas de numeração

- Sistema decimal
- Sistema binário
- Sistema hexadecimal

Conversão entre bases

DO PRINCÍPIO A APLICAÇÃO

Um dos pioneiros no estudo da lógica formal foi Aristóteles (384-322 AC), que publicou um tratado sobre o tema denominado "De Interpretatione".

□O matemático inglês George Boole (1815-1864) publicou em 1854 os princípios da lógica booleana, onde variáveis assumem valores de 0 (falso) ou 1(verdadeiro)

DO PRINCÍPIO A APLICAÇÃO

- Claude B. Shannon mostrou (em sua tese de mestrado no MIT) que o trabalho de Boole poderia ser utilizado para descrever a operação de sistemas de comutação telefônica. As observações de Shannon foram divulgadas em 1938 no trabalho "Uma Análise Simbólica de Relés e Circuitos de Comutação".
- □ Alan Turing utilizou a lógica booleana para conceber a Máquina de Turing, que deu origem à computação digital

A lógica booleana foi usada na implementação dos circuitos elétricos internos do computador digital

VISÃO GERAL

Trabalha com sentenças da Linguagem Natural levando em conta apenas, aquelas sentenças que são denominadas proposições

Sentenças que possam ser classificadas como sendo verdadeiras ou falsas

Um dos objetivos da lógica é estabelecer uma linguagem formal

 Onde se pode expressar com clareza, precisão e emitir juízo de verdadeiro ou falso para determinadas sentença

PROPOSIÇÕES

Proposição é uma sentença (conjunto de palavras ou símbolos) declarativa à qual se pode atribuir um valor lógico

Verdadeiro ou Falso

Por exemplo

- Japão fica na África
- Onde você vai?
- 3 + 4
- $3^2+5^2=(3+5)^2$

PROPOSIÇÕES

Proposição é uma sentença (conjunto de palavras ou símbolos) declarativa à qual se pode atribuir um valor lógico

Verdadeiro ou Falso

Por exemplo

- Japão fica na África
- Onde você vai? (Não é uma proposição lógica)
- 3 + 4 (Não é uma proposição lógica)
- $3^2+5^2=(3+5)^2$

AGORA É A SUA VEZ

Indique se a proposição lógica é verdadeira, falsa ou que não é uma proposição lógica:

- Fortaleza é a capital do Maranhão
- Eu gostaria que vocês não faltassem as aulas
- Tiradentes morreu afogado
- −1 < −7
- Quer dançar?
- Todo número divisível por 5 termina em 5
- A lua é feita de queijo

PROPOSIÇÕES

Proposições simples ou atômicas

- Não contém nenhuma outra proposição como parte integrante de si mesma
 - Notação: letras minúsculas

Proposição composta ou molecular

- É formada pela combinação de duas ou mais proposições
 - Notação: letras maiúsculas
- Também costumam ser chamadas fórmulas proposicionais ou apenas fórmulas
 - P(p, q, r, ...)

PRINCÍPIOS DE ARISTÓTELES

- 1. Princípio da Identidade
 - 1. "O que é, é"
- 2. Princípio da Não-Contradição
 - 1. "Uma coisa não pode ser e não ser ao mesmo tempo."
- 3. Princípio no Meio Excluído ou Princípio do Terceiro Excluído
 - 1. "Toda coisa deve ser ou não ser, não existindo um meio termo"
 - 2. "Toda coisa deve ser ou não ser, não existindo uma terceira possibilidade."

PROPOSIÇÃO

- 1. Princípio da Identidade
- Toda proposição é necessariamente verdadeira ou falsa, não existindo outra possibilidade
- 2. Princípio da Não-Contradição
 - Nenhuma proposição pode ser verdadeira e falsa simultaneamente
- 3. Princípio no Meio Excluído ou Princípio do Terceiro Excluído
 - Toda proposição verdadeira é sempre verdadeira, não podendo ser ora verdadeira ora falsa

CONECTIVOS LÓGICOS

Os conectivos lógicos são usados para formar novas proposições a partir de outras proposições

- \overline{a} (não)
- a * b (e)
- $a \oplus b$ (ou exclusivo)
- a+b (ou)
- $a \rightarrow b$ (se então)
- $a \leftrightarrow b$ (se e somente se)

TABELA VERDADE

Para uma proposição simples p o valor será V ou F

O valor de qualquer proposição composta depende unicamente dos valores lógicos das proposições simples componentes

• Por exemplo: P = p * q

p	q
V	V
V	F
F	V
F	F

NEGAÇÃO

Se p é uma proposição, a negação da proposição p é denotada por \overline{p}

A negação apresenta valor lógico oposto ao da proposição dada

p	\overline{p}
V	F
F	V

Exemplo

- p: O professor é bonzinho
- \overline{p} : O professor não é bonzinho

CONJUNÇÃO

Chama-se conjunção de duas proposições p e q a proposição representada por "p*q" cujo o valor lógico é V quando ambas as proposições são verdadeira e F nos demais casos

$$V(p*q) = V(p)*V(q)$$

p	q	p * q
V	V	V
V	F	F
F	V	F
F	F	F

DISJUNÇÃO

Chama-se disjunção de duas proposições p e q a proposição representada por "p+q" cujo o valor lógico é V quando ao menos uma das proposições é verdadeira e F quando ambas as proposições são falsas.

$$V(p+q) = V(p) + V(q)$$

p	q	p + q
V	V	V
V	F	V
F	V	V
F	F	F

DISJUNÇÃO EXCLUSIVA

Chama-se disjunção exclusiva de duas proposições p e q a proposição representada por " $p \oplus q$ " cujo o valor lógico é V quando uma das proposições é verdadeira e a outra e falsa e F quando ambas as proposições são falsas ou ambas são verdadeiras.

$$\bullet$$
 \vee ($p \oplus q$) = \vee (p) \oplus \vee (q)

p	q	p 🕀 q
V	V	F
V	F	V
F	V	V
F	F	F

CONDICIONAL

Chama-se proposição condicional uma proposição representada por " $p \to q$ " cujo o valor lógico é F quando p é verdadeira e q é falsa e V nos demais casos.

$$\lor \lor (p \to q) = \lor (p) \to \lor (q)$$

p	q	$p \longrightarrow q$
V	V	V
V	F	F
F	V	V
F	F	V

BICONDICIONAL

Chama-se proposição bicondicional uma proposição representada por " $p \leftrightarrow b$ " cujo o valor lógico é V quando p e q são ambos verdadeiros ou falsos e F nos demais casos.

$$\lor \lor (p \longleftrightarrow q) = \lor (p) \longleftrightarrow \lor (q)$$

p	q	$p \longleftrightarrow q$
V	V	V
V	F	F
F	V	F
F	F	V

PRINCÍPIOS LÓGICOS

TAUTOLOGIA

 Toda a proposição composta cujo o valor lógico é sempre verdade (V) quaisquer que sejam os valores lógicos das proposições simples componentes

Ex: $p * \overline{p}$

p	\overline{p}	$p*\overline{p}$	$\overline{p*\overline{p}}$
V	F	F	V
F	V	F	V

PRINCÍPIOS LÓGICOS

CONTRADIÇÃO

 Toda a proposição composta cujo o valor lógico é sempre falso (F) quaisquer que sejam os valores lógicos das proposições simples componentes

Ex: $(p * \overline{p})$

p	\overline{p}	$p*\overline{p}$
V	F	F
F	V	F

PRINCÍPIOS LÓGICOS

CONTINGÊNCIA

 Toda proposição composta que não é uma TAUTOLOGIA e não é uma CONTRADIÇÃO

Ex: $p \to \overline{p}$

p	\overline{p}	$p o \overline{p}$
V	F	F
F	V	V

LEIS DE EQUIVALÊNCIA

Dadas as proposições compostas P e Q, diz-se que ocorreu uma equivalência entre P e Q quando suas tabelas-verdade forem idênticas ($P \equiv Q$)