Exploring BERT Synonyms and Quality Prediction for Argument Retrieval

Tommaso Green Luca Moroldo Alberto Valente Search Engines - Team Yeagerists 1st June 2021

Task: Argument Retrieval

Respond to user queries with a set of relevant and high quality arguments.

Argument: "A conclusion (claim) supported by premises (reasons)"

Example of user query: "Should insider trading be allowed?"

Our approach

After indexing, given a user query:

- 1. Expand user query: try to expand query scope
- Search for each expanded query and merge retrieved arguments
- 3. Run argument quality re-ranking: boost arguments with higher "quality"

Indexing: Args.me arguments

We considered the following properties for each document, i.e. argument:

```
"id": "abc-123",
    "text": "I think climate change is fake because I feel cold during winter",
    "stance": "CON",
    "context": {
        "discussionTitle": "Is climate change real?"
    }
}
```

Indexing: Args.me arguments

A few documents were discarded due to:

- **Empty body** (text field): no reason to include them
- Repeated ID: the argument IDs are computed hashing the argument's body (plus other things), therefore same ID means same argument

Original dataset size: 8.2 GB

Final index size: 457 MB

Indexing: analyzer

We used to following filters (for title and argument body):

- Standard tokenizer
- Lower case filter

We tried and removed:

- Stop words filter: slightly lower score
- Stemming filter: any kind of stemmer significantly downgraded the performance
- English possessive filter: slightly reduced performance

Searching: similarity

 Similarity: we used LMDirichletSimilarity which almost doubled the score obtained with BM25

• Baseline nDCG@5 score: 0.8279 (using the corrected .qrels file)

Searching: query parser

Idea: the "discussionTitle" should briefly describe the topic of the argument, therefore we tried to match the query terms both in the body and title of the arguments.

We used **MultiFieldQueryParser**:

- Run the same boolean query on more fields (title and body)
- Assign a boost to each field

Parametrizing the boost given to a match of a query term with a title term, we found that the higher was the title boost the lower was the final score.

Possible reason: "bad" arguments may be pushed up in the final rank just because they inherit the discussion title.

Query Expansion: definition

- Query Expansion consists in enriching a user query:
 - o to increase its effectiveness in the search process.
 - o to improve the recall of the retrieval system.
- Transformer-based models -> Masked Language Model -> BERT¹
 - generates substitute terms depending on context of the query.
- No labelled data or external resources (e.g. WordNet)

Query Expansion: our approach

Sounds like a job for me!

- 1. Tokenization and PoS tagging.
- 2. Replace specific tokens with BERT's [MASK].
- 3. Generate the best 10 tokens that fit in place of each [MASK]
 - -> exploit BERT's bidirectional attention mechanism.
- 4. Compute the BERT embeddings of these 10 tokens and compare them, using cosine similarity, to the embedding of the original token.
- 5. Perform a two-phase screening: if generated tokens are not good enough -> use BERT again to generate new candidates.
- 6. Compose all the possible new queries and take a set of 10 random queries.

Query Expansion: some examples

permitted (+) "Should insider trading be <allowed>?" tolerated (+) forbidden (-) illegal (-) "Is homework acceptable?" "Is homework beneficial?" "Is homework great?" "Is homework appropriate?" e-book "Is vaping with <e-cigarettes> safe?" half-readers mini-com (?)

z-commerce (?)

Query Expansion: hardest topics

Query Expansion: hardest topics

- Topic 8: "Should abortion be legal?"
 - o it is a very short topic.
 - "abortion" and "divorce" are very similar according to BERT.
 - bias in BERT's pre-training dataset.

- Topic 10: "Should any vaccines be required for children?"
 - "required" is equally replaced with "mandatory" and "recommended".
 - there are contexts where lexical nuances make the difference.

Argument Quality re-ranking

- Objective: provide the user with relevant but also "good" arguments
- What makes an argument good? We can distinguish between¹
 - Logical quality
 - Rhetorical quality
 - Dialectical quality

The Argument Quality Dataset

- To train our models, we used the Argument Quality Dataset
- It contains 1271 arguments from *args.me*, each having:
 - Relevance Score
 - Rhetorical Quality
 - Logical Quality
 - Dialectical Quality
 - Combined Quality

BERT for Argument Quality Prediction

- Idea: use models from the BERT family to have an argument quality regressor
- Explored 4 different models¹:
 - o BERT
 - DistilBERT
 - RoBERTa
 - ALBERT

Ranking Functions

Normalization Function

$$R(q,d) = (1 - \alpha) r_{norm} + \alpha q_{norm}$$

Sigmoid Function

$$R(q,d) = (1 - \alpha) \sigma(\beta r(d)) + \alpha \sigma(\beta q(d))$$

Hybrid Function

$$R(q, d) = (1 - \alpha) r_{norm} + \alpha \sigma(\beta q(d))$$

Parameter Space

- α : regulates the importance of quality for the re-ranking
- β : controls sigmoid steepness
- n_{rerank}: number of documents that are re-ranked according to quality
- Query expansion: boolean value to activate QE
- Quality model: BERT, DistilBERT, ALBERT and RoBERTa.
- R(q,d): ranking function

Hyperparameter Study and Results

We studied several combination of parameters using Weights and Biases¹

• We selected 10 runs, 5 of which were sent to Touchè

Run	AQE	α	β	n_{rerank}	quality model	R(q,d)	nDCG@5
lunar-sweep-201	no	0.75	=	5	BERT	normalize	0.8279
chocolate-sweep-50	no	0.1	2	5	BERT	sigmoid	0.8273
volcanic-sweep-138	no	0.5	0.8	5	BERT	sigmoid	0.8271
swordsman baseline	no	-	-	-	-	-	0.8266
lunar-sweep-58	no	0.1	0.2	5	RoBERTa	hybrid	0.8230
vague-sweep-rev-204	no	0.75	1.1	5	ALBERT	sigmoid	0.8229
lucene-baseline	no	0	-	-	-	normalize	0.8224
sage-sweep-rev-160	no	0.5	1.5	5	RoBERTa	sigmoid	0.8093
distinctive-sweep-110	no	0.1	0.8	15	ALBERT	hybrid	0.7992
good-sweep-85	yes	0.1	0.3	15	DistilBERT	hybrid	0.6857
expert-sweep-rev-95	yes	0.1	0.3	20	RoBERTa	hybrid	0.6801