1 Introduction

We will review the definition of a Springer fiber and define, for a nilpotent $Y \in \mathfrak{gl}_m$, the Springer fiber at the *n*-Slodowy slice at Y. For every n and every nilpotent $Y \in \mathfrak{gl}_m$, we will find the irreducible components of the Springer fiber at the *n*-Slodowy slice at Y. Finally, we will use our results about Springer fibers at *n*-Slodowy slices to find the irreducible components of some other variety (which probably needs a name), and show that they all have the same dimension.

2 Springer fibers

Let $G \subseteq GL_m(\mathbb{C})$ be a connected semisimple Lie group, and let $\mathfrak{g} \subseteq \mathfrak{gl}_m(\mathbb{C})$ be its Lie algebra. Let $\mathcal{N} \subseteq \mathfrak{g}$ be the subset consisting of nilpotent elements. Let \mathcal{B} be the variety of Borel subalgebras of \mathfrak{g} . Let $\widetilde{\mathcal{N}} = \{(\mathfrak{b}, n) : n \in \mathfrak{b}\} \subseteq \mathcal{B} \times \mathcal{N}$. Let $\pi : \widetilde{\mathcal{N}} \to \mathcal{N}$ be the projection onto the second coordinate. For $n \in \mathcal{N}$, we call $\pi^{-1}(n)$ the *Springer fiber at n*.

We mention some results about Springer fibers, which we will use later in this paper. TODO: mention them.

3 Slodowy slice

A basis for $\mathfrak{sl}_2(\mathbb{C})$ is

$$e':=\begin{pmatrix}0&1\\0&0\end{pmatrix},h':=\begin{pmatrix}1&0\\0&-1\end{pmatrix},f':=\begin{pmatrix}0&0\\1&0\end{pmatrix}.$$

Given a Lie algebra \mathfrak{g} , and a homomorphism $\phi: \mathfrak{sl}_2 \to \mathfrak{g}$ sending (e', h', f') to (e, h, f), we say that (e, h, f) is an \mathfrak{sl}_2 -triple. Observe that e, f must be nilpotent, and h must be Cartan (???). If \mathfrak{g} is semisimple, then given any nilpotent $e \in \mathfrak{g}$, the Jacobson-Morozov theorem [1, 3.7.1] says that there exist $h, f \in \mathfrak{g}$ such that (e, h, f) is an \mathfrak{sl}_2 -triple.

Given (e, h, f), we define the *Slodowy slice at* e as $S_e := e + \ker \operatorname{ad}_f$. By the Jacobson-Morozov theorem, we can always find a Slodowy slice at any nilpotent $e \in \mathfrak{g}$, when \mathfrak{g} is semisimple.

4 Finding \mathfrak{sl}_2 -triples (E, H, F) in \mathfrak{gl}_{m+n} with a particular E.

Let

$$e = \begin{pmatrix} 0 & & & \\ 1 & 0 & & & \\ & 1 & \ddots & & \\ & & \ddots & 0 & \\ & & & 1 & 0 \end{pmatrix} \in \mathfrak{gl}_n,$$

and let $E = \begin{pmatrix} 0 & 0 \\ 0 & e \end{pmatrix} \in \mathfrak{gl}_{m+n}$. We will show that there is exactly one \mathfrak{sl}_2 -triple (E, H, F), and we will find what it looks like. First we solve the case m = 0 (so E = e), and then we use this to solve the case of arbitrary m.

Lemma 4.1. There is exactly one way to choose $h, f \in \mathfrak{gl}_n$ so that (e, h, f) is an \mathfrak{sl}_2 -triple.

Proof. Note that [h', e'] = 2e', and [e', f'] = h', and [h', f'] = -2f'. Thus e, h, f must obey the same relations. In particular, he - eh = 2e. The matrix eh is h shifted down one, and he is h shifted left one. Thus, $2e_{ij} = (he - eh)_{ij} = h_{i,j+1} - h_{i-1,j}$. We can use this to show that $h_{ij} = 0$ when $i \neq j$. Then we can use it to show that $h_{ii} = h_{i-1,i-1} + 2$, so that $h_{ii} = h_{i1} + 2(i-1)$.

Similarly, from [e, f] = h we get that $h_{ij} = (ef - fe)_{ij} = f_{i-1,j} - f_{i,j+1}$. We can use this to show that $f_{ij} = 0$ when $j \neq i+1$. Then we can use it to show that $f_{i,i+1} = f_{i+1,i+2} + h_{i+1,i+1}$, that $f_{1,2} = -h_{1,1}$, and that $f_{n-1,n} = h_{n,n}$. From the first equation we find that

$$-h_{1,1} = f_{1,2} = f_{n-1,n} + \sum_{i=1}^{n-1} h_{ii} = \sum_{i=1}^{n} h_{ii} \implies$$
$$\sum_{i} h_{ii} = 0.$$

Remark: this is just the statement that $h \in \mathfrak{sl}_n$; in other words, we will see that every choice of \mathfrak{sl}_2 -triple in \mathfrak{gl}_{m+n} is also an \mathfrak{sl}_2 -triple in \mathfrak{sl}_{m+n} . This shows that $h_{11} = n - 1, h_{22} = n - 3, ..., h_{nn} = 1 - n$. So we have determined

h; it is

$$h = \begin{pmatrix} n-1 & & & & \\ & n-3 & & & \\ & & \ddots & & \\ & & & 3-n & \\ & & & & 1-n \end{pmatrix}.$$

Now, we can use our expression for f in terms of h to obtain

$$f = \begin{pmatrix} 0 & 1-n & & & & & & & & \\ & 0 & (1-n)+(3-n) & & & & & & & \\ & & & \ddots & & & & & & \\ & & & 0 & (1-n)+\dots+(n-1) \end{pmatrix} = \begin{pmatrix} 0 & 1(1-n) & & & & & \\ & 0 & 2(2-n) & & & & \\ & & 0 & (n-2)(-2) & & & \\ & & 0 & (n-1)(-1) \end{pmatrix}.$$

Lemma 4.2. There is exactly one way to choose $H, F \in \mathfrak{gl}_{m+n}$ so that (E, H, F) is an \mathfrak{sl}_2 -triple.

Proof. Suppose we have H, F so that (E, H, F) is an \mathfrak{sl}_2 -triple. Writing $F =: \begin{pmatrix} F_{11} & F_{12} \\ F_{21} & f \end{pmatrix}$, and similarly for H, we have

$$2E = [H, E] = \begin{pmatrix} 0 & H_{12}e \\ 0 & he \end{pmatrix} - \begin{pmatrix} 0 & 0 \\ eH_{21} & eh \end{pmatrix},$$

$$H = [E, F] = \begin{pmatrix} 0 & 0 \\ eF_{21} & ef \end{pmatrix} - \begin{pmatrix} 0 & F_{12}e \\ 0 & fe \end{pmatrix}.$$

From these we observe that (e, h, f) must also be an \mathfrak{sl}_2 -triple, so h, f must be as in Lemma 4.1. We also see that $H_{11} = 0$. Recalling that left multiplication by e is a down-shift, and right multiplication is a left-shift, we see that H_{12}

is all zeroes except for the leftmost column, and H_{21} is all zeroes except for the bottom row. Then our final constraint is that

$$-2F = [H, F] =$$

$$\begin{pmatrix} H_{12}F_{21} & H_{12}F_{22} \\ H_{21}F_{11} + H_{22}F_{21} & H_{21}F_{12} + H_{22}F_{22} \end{pmatrix} - \begin{pmatrix} F_{12}H_{21} & F_{11}H_{12} + F_{12}H_{22} \\ F_{22}H_{21} & F_{21}H_{12} + F_{22}H_{22} \end{pmatrix}.$$

Now $H_{12} = F_{12}e$, and $H_{21} = eF_{21}$, from the equation H = [E, F]. Substituting in the equation above then,

$$-2F = \begin{pmatrix} F_{12}eF_{21} & F_{12}ef \\ eF_{21}F_{11} + hF_{21} & eF_{21}F_{12} + hf \end{pmatrix} - \begin{pmatrix} F_{12}eF_{21} & F_{11}F_{12}e + F_{12}h \\ feF_{21} & F_{21}F_{12}e + fh \end{pmatrix} = \\ \begin{pmatrix} 0 & F_{12}(fe+h) \\ eF_{21}F_{11} + hF_{21} & eF_{21}F_{12} + hf \end{pmatrix} - \begin{pmatrix} 0 & F_{11}F_{12}e + F_{12}h \\ (ef-h)F_{21} & F_{21}F_{12}e + fh \end{pmatrix} = \\ \begin{pmatrix} 0 & F_{12}fe \\ eF_{21}F_{11} & eF_{21}F_{12} + hf \end{pmatrix} - \begin{pmatrix} 0 & F_{11}F_{12}e \\ efF_{21} & F_{21}F_{12}e + fh \end{pmatrix}.$$

Now we see that $F_{11} = 0$, and consequently that $F_{12} = F_{21} = 0$ as well. This shows that $H_{12} = H_{21} = 0$. We conclude that H and F just have h and f in their bottom-right corners, respectively.

5 Finding the Slodowy slices with the same E

First we find ker ad_f . We have $(fX)_{ij} = i(n-i)A_{i+1,j}$, and $(Xf)_{ij} = (j-1)(n-(j-1))A_{i,j-1}$. So, for all $i,j\in\{1,...,n\}$, we have

$$i(n-i)A_{i+1,j} = (j-1)(n-(j-1))A_{i,j-1}.$$

Taking j = 1, we find that $A_{i,1} = 0$ for $i \ge 2$. Then, taking j > 1, we find that for $i, j \in \{1, ..., n-1\}$,

$$A_{i+1,j+1} = \frac{(j-1)(n-(j-1))}{i(n-i)} A_{ij}.$$

So, $\ker \operatorname{ad}_f$ is the set of matrices which are upper triangular and satisfy the above condition.

To find the Slodowy slice associated to the previous \mathfrak{sl}_2 -triple (E, H, F), we just need to find ker ad_F . We have

$$[F, X] = \begin{pmatrix} 0 & 0 \\ fX_{21} & fX_{22} \end{pmatrix} - \begin{pmatrix} 0 & X_{12}f \\ 0 & X_{22}f \end{pmatrix}.$$

Thus, X_{21} must be all zeroes except for the first row, and X_{12} must be all zeroes except for the last column, and $X_{22} \in \ker \operatorname{ad}_f$. There is no restriction on X_{11} . This describes $\ker \operatorname{ad}_F$.

For $X \in \mathcal{S}_{m,n}$, define $u(X) := X_{11}$.

5.1 Finding $\widetilde{\mathcal{N}}_{m,n}$

Let $\mathcal{N}_m \subseteq \mathfrak{gl}_m$ be the nilpotent elements. Let $\mathcal{S}'_{m,n}$ be the set of $X \in \mathcal{S}_{m,n}$ such that both X and u(X) are nilpotent. Let $\widetilde{\mathcal{N}}_{m,n} = \{(\mathfrak{b},X) : X \in \mathfrak{b}\} \subseteq \mathcal{B}_{m+n} \times \mathcal{S}'_{m,n}$. Define $\pi_{m,n} : \widetilde{\mathcal{N}}_{m,n} \to \mathcal{N}_m$ by $(\mathfrak{b},X) \mapsto X_{11}$. For $Y \in \mathfrak{gl}_m$, we call $\pi_{m,n}^{-1}(Y)$ the Springer fiber at the n-Slodowy slice at Y.

Lemma 5.1. Let J be a jordan block with zeroes along the diagonal, and let A be upper triangular and nonzero. Then J + A is not nilpotent.

Proof. It is straightforward to show by induction that if $v_i = 0$ for i < j, and $v_j \neq 0$, then $((J+A)^k v_j)_{j+k} = v_j$. Let i be such that $Ae_i \neq 0$. Then $(J+A)^{i-1}e_1$ has nonzero e_i -component. Then $(J+A)^ie_1$ has some nonzero e_i -component for some $i' \leq i$. Then $(J+A)^{i+(n-i')}e_1$ has some nonzero e_n -component. And $i + (n-i') \geq n$, so we're done.

Lemma 5.2. Let $X \in \mathfrak{gl}_m$, and let

$$Y = \begin{pmatrix} y_{11} & y_{12} & y_{13} & \cdots & y_{1,n-1} & y_{1n} \\ d_1 & y_{22} & y_{23} & \cdots & y_{2,n-1} & y_{2n} \\ & d_2 & y_{33} & \cdots & y_{3,n-1} & y_{3n} \\ & & \ddots & \ddots & \vdots & \vdots \\ & & & d_{n-2} & y_{n-1,n-1} & y_{n-1,n} \\ & & & & d_{n-1} & y_{nn} \end{pmatrix} \in \mathfrak{gl}_n.$$

For any $a, b \in \mathbb{C}^m$,

$$\det \begin{pmatrix} X & & | & b \\ X & & | & b \\ \hline - & a & - & | & Y \end{pmatrix} =$$

$$\det X \det Y + \left(\prod_i d_i\right) \det \begin{pmatrix} X & \begin{vmatrix} 1 \\ b \\ -a & - \end{vmatrix} 0$$

Proof. By induction on n. In the case n = 1, expanding along the last row (taking the usual interpretation of the empty product) gives the desired result.

Now suppose n > 1. Expanding along the last row, we get

Using our inductive hypothesis for the first determiniant, and using that $\det \begin{pmatrix} A_{11} & 0 \\ A_{21} & A_{22} \end{pmatrix} = \det A_{11} \det A_{22}$ for the second, the expression becomes

$$d_{n-1}\left(\det X\det Y_{n,n-1}+\left(\prod_{i\leq n-2}d_i\right)\det\left(\begin{array}{c|c}X&\begin{vmatrix}|\\&X&\\&&|\\-&a&-\end{vmatrix}0\right)\right)-y_{nn}\det X\det Y_{nn}=$$

$$(d_{n-1}Y_{n,n-1} - y_{nn} \det Y_{nn}) \det X + \left(\prod_{i} d_{i}\right) \det \begin{pmatrix} X & \begin{vmatrix} 1 \\ b \end{vmatrix} \\ -a & - \end{vmatrix} =$$

$$\det Y \det X + \left(\prod_i d_i\right) \det \begin{pmatrix} & & & | & | \\ & X & & | & b \\ \hline - & a & - & | & 0 \end{pmatrix}.$$

Corollary 5.3. If X is nilpotent, and

$$egin{pmatrix} X & & b \ & b \ & & ert \ & & & ert \ \end{pmatrix}$$

is nilpotent as well, then Y is nilpotent (TODO: and that other determinant is zero).

Proof. By the previous lemma, the characteristic polynomial of the big matrix is

$$g_X(\lambda)g_Y(\lambda) + f(\lambda),$$

where $g_X(\lambda) = \lambda^m$ is the characteristic polynomial of X, and $f(\lambda)$ is some polynomial of degree at most m-1.

Now, taking the previous corolloary and the first lemma together, we see that

$$\mathcal{S}'_{m,n} = \left\{ \left(\begin{array}{c|ccc} X & & & | \\ X & & & b \\ \hline - & a & - & 0 \\ & & 1 & 0 \\ & & & \ddots & \ddots \\ & & & 1 & 0 \\ \end{array} \right) : a,b \in \mathbb{C}^m, X \in \mathfrak{gl}_m \text{ is nilpotent} \right\}.$$

6 Simplifying the definition of a Springer fiber at a Slodowy slice

Let $\mathcal{N}_m \subseteq \mathfrak{gl}_m(\mathbb{C})$ be the subset consisting of nilpotent elements. For $X \in \mathcal{N}_m$ and $a, b \in \mathbb{C}^m$, let

By the definition given in the previous section, we have

$$\widetilde{\mathcal{N}}_{m,n} = \{(\mathfrak{b}, X) : X \in \mathfrak{b}\} \subseteq \mathcal{B}_{m+n} \times \mathcal{S}'_{m,n},$$

and the Springer fiber at the n-Slodowy slice at a nilpotent $X \in \mathfrak{gl}_m$ is

$$\pi_{m,n}^{-1}(X) = \{ (\mathfrak{b}, A_{X,a,b}) : A_{X,a,b} \in \mathfrak{b}, A_{X,a,b} \in \mathcal{S}'_{m,n} \}$$

$$= \{ (\mathfrak{b}, A_{X,a,b}) : A_{X,a,b} \in \mathfrak{b}, A_{X,a,b} \text{ nilpotent} \}$$

$$\cong \{ (\mathfrak{b}, a, b) : A_{X,a,b} \in \mathfrak{b}, A_{X,a,b} \text{ nilpotent} \}.$$

We will make one last simplification to this by using a correspondence between Borel subalgebras and complete flags. TODO: fix the next few paragraphs, they are out of context.

We have $\mathcal{M} = \{AHA^{-1} : A \in \operatorname{GL}_{m+n}(\mathbb{C})\}$, where $H \subseteq \mathfrak{gl}_{m+n}(\mathbb{C})$ is the set of upper triangular matrices. We say a map $X : \mathfrak{gl}_{m+n} \to \mathfrak{gl}_{m+n}$ preserves a flag $V_0 \subseteq \cdots \subseteq V_{m+n}$ if $XV_i \subseteq V_i$ for each i. Let $E_0 \subseteq \cdots \subseteq E_{m+n}$ be the standard flag of \mathbb{C}^{m+n} . Since H is the set of X which preserve E,

$$\mathcal{M} = \{ \{ X : \forall i. \ X(AE_i) \subseteq AE_i \} : A \in \operatorname{GL}_n(\mathbb{C}) \}.$$

So, for $X \in \mathcal{N}$,

$$\pi^{-1}(X) \cong \{(V, a, b) : \forall i. \ A_{X,a,b} V_i \subseteq V_{i-1}\}.$$

7 Strategy and setup for finding the irreducible components of a Springer fiber at a Slodowy slice

Fix any $X \in \mathcal{N}$. As we have fixed X, we now write $A_{a,b} := A_{X,a,b}$. Let $(e_{ij})_{1 \leq i \leq k, 1 \leq j \leq \lambda_i}$ be a Jordan basis for X. For convenience we define $e_{i0} := 0$; now we may express the fact that (e_{ij}) is a Jordan basis by writing $\forall i.Xe_{ij} = e_{i,j-1}$.

In this section we find the irreducible components of

$$\pi^{-1}(X) \cong V := \{ (A_{a,b}, U) : \forall i. \ A_{a,b}U_{i+1} \subseteq U_i \}.$$

For $1 \le w \le k$ and $0 \le r \le \lambda_w$ (note that we allow r = 0), define

$$V_{w,r} := \{ (A_{a,b}, U) \in V : \exists P \in GL_m . \exists b'. (P^{-1}, I_n) A_{a,b}(P, I_n) = A_{e_{wr},b'} \}.$$

Lemma 7.1. $V = \bigcup_{1 \leq w \leq k, 0 \leq r \leq \lambda_w} V_{w,r}$. Further, $V_{w_1r_1} = V_{w_2r_2}$ exactly when either $r_1 = r_2 = 0$, or $\lambda_{w_1} = \lambda_{w_2} \wedge r_1 = r_2$. When $V_{w_1r_1} \neq V_{w_2r_2}$, we have $V_{w_1r_1} \cap V_{w_2r_2} = \emptyset$.

Now, fix any w and r. We will find the irreducible components of $V_{w,r}$. These will all happen to be equidimensional (with dimensions independent of w and r), so their closures in V will be the irreducible components of V.

Let

$$G := \{ P \in \operatorname{GL}_m : P^{-1}XP = X \},$$

and

$$G_{wr} = \{ A \in G : e_{wr}A = e_{wr} \}.$$

Now, define

$$U_{wr} = \{(A_{e_{wr},b}, U) \in V_{wr}\}.$$

Let G act on V_{wr} by

$$P \cdot (A_{e_{wr},b}, U) := ((P, I_n)A_{e_{wr},b}(P, I_n)^{-1}, (P, I_n)U) = (A_{e_{wr}P^{-1},Pb}, (P, I_n)U).$$

Consider the map $\varphi: U_{wr} \times G \to V_{wr}$ defined by

$$(x, P) \mapsto P \cdot x.$$

By restriction of G to G_{wr} and V_{wr} to U_{wr} , we obtain an action of G_{wr} on U_{wr} . Then, letting G_{wr} act on G by $g \cdot h := hg^{-1}$, we obtain an action of G_{wr} on $U_{wr} \times G$.

Lemma 7.2. As an algebraic variety, G is irreducible.

Proof. It's just $\mathbb{C}^{something}$, since its blocks are the lower-left-toeplitz matrices.

Lemma 7.3. The map φ is some sort of quotient by the action of G_{wr} .

Proof. Let $y \in V_{wr}$. By definition of V_{wr} , there is $P_y \in G$ with $P_y \cdot y \in U_{wr}$. We have

$$\varphi^{-1}(y) = \{(x, P) : P \cdot x = y = P_y^{-1} \cdot (P_y \cdot y)\} =$$

$$\{(x, P) : x = (P^{-1}P_y^{-1}) \cdot (P_y \cdot y)\} =$$

$$\{((P^{-1}P_y^{-1}) \cdot (P_y \cdot y), P) : (P^{-1}P_y^{-1}) \in G_{wr}\} =$$

$$(\text{taking } Q := P^{-1}P_y^{-1}, \text{ so } P = (QP_y)^{-1} = P_y^{-1}Q^{-1})$$

$$\{(Q \cdot (P_y \cdot y), P_y^{-1}Q^{-1}) : Q \in G_{wr}\} =$$

$$\{Q \cdot (P_y \cdot y, P_y^{-1}) : Q \in G_{wr}\}.$$

So we see that the fibers are exactly the G_{wr} -orbits.

Now, what kind of quotient is this? All I need is something that allows me to deduce the dimension of the quotient... \Box

Our strategy is to find the irreducible components $X \subseteq U_{wr}$, and we will then argue that the irreducible components of V_{wr} are of the form $\varphi(X \times G)$. So, we will now find the irreducible components of U_{wr} .

Actually this will be unnecessarily difficult to think about; it is easiest in the case r=0. So, we will change basis to make r=0. Let $\lambda'=(\lambda_1,...,\lambda_{w-1},\lambda_w-r,\lambda_{w+1},...,\lambda_k)$. Let X' be in Jordan normal form with shape λ' . Let $U'_{wr}=\{(A_{X',0,b},U): \forall i.A_{X',0,b}U_{i+1}\subseteq U_i\}$. Let e'_{ij} be a Jordan basis for X'. Let $f_1,...,f_n$ be a Jordan basis for the restriction of $A_{X,0,b}$ to ... Set m':=m-r, and n':=n+r. Let $f'_1,...,f'_{n'}$ blah. Define the linear map $Q_{wr}:\mathbb{C}^{m'+n'}\to\mathbb{C}^{m+n}$ by:

- For all $i, e'_{ij} \mapsto e_{ij}$.
- For $j = 1, ..., r, f'_{n+j} \mapsto e_{w,(\lambda_w r) + j}$.

• For $j = 1, ..., n, f'_j \mapsto f_j + e_{w,(\lambda_w - r) - n + j}$.

Observe that conjugation by Q_{wr} maps U_{wr} to U'_{wr} , and conjugation by Q_{wr}^{-1} maps U'_{wr} to U_{wr} . We conclude that $U_{wr} \cong U'_{wr}$; so to find the irreducible components of U_{wr} we just need to find the irreducible components of U'_{wr} . To clear the context, which is rather cluttered by now, and to avoid writing primes everywhere, we move to a new section.

8 Finding the irreducible components of U_0

Let X be nilpotent with Jordan basis $(e'_{ij})_{1 \leq i \leq k, 1 \leq j \leq \lambda'_i}$. Let $V = \{(A_{a,b}, U) : \forall i. A_{a,b}U_{i+1} \subseteq U\}$. Let

$$U_0 = \{ (A_{0,b}, U) \in V \}.$$

We will find the irreducible components of U_0 .

We write b_{ij} to denote the projection of $b \in \mathbb{C}^m$ onto e_{ij} . For each row i, let $p_i(b) = \max\{j : b_{ij} \neq 0\}$ (the maximum of the empty set is zero). Then set $q_i(b) = \lambda_i - p_i(b)$. When it is clear enough from context, we will just write p_i and q_i instead of $p_i(b)$ and $q_i(b)$.

For any $I \subseteq \{1, ..., k\}$ and any values $(\rho_i)_{i \in I}$ such that (1) $\rho_i \leq \lambda_i$, (2) ρ_i is decreasing with i, and (3) $\lambda_i - \rho_i$ is decreasing with i, define

$$U_{I,(\rho_i)} := \{ (A_{0,b}, U) \in U_0 : \{ (p_i, q_i) : i \in I \} = \{ (p_i, q_i) : p_i = \max_{j: q_j = q_i} p_j > \max_{j: q_j < q_i} p_j \}$$

$$\land \forall i \in I. \ p_i = \rho_i \}.$$

Lemma 8.1. $U_0 = \bigcup_{I,(\rho_i)} U_{I,(\rho_i)}$, where I ranges over all subsets of $\{1,...,k\}$, and (ρ_i) ranges over all maps $I \to \mathbb{N}_{>0}$ such that ρ_i and $\lambda_i - \rho_i$ are both decreasing with i. TODO: something about overlap being small (they're not disjoint). They are distinct. Is that good enough for my purposes?

Proof. Let $(A_{0,b}, U) \in U_0$. Let $I' = \{(p_i, q_i) : p_i = \max_{j:q_j = q_i} p_j > \max_{j:q_j < q_i} p_j\}$. Then let $I = \{\max\{i : (p_i, q_i) = (p, q)\} : (p, q) \in I'\}$. Choosing the maximal i is an arbitrary choice; we just have to pick one. For $i \in I$, $\rho_i := p_i$. All we need to do is show that each ρ_i is positive, and that ρ_i and $\lambda_i - \rho_i$ are decreasing. Then we get that $(A_{0,b}, U) \in U_{I,(\rho_i)}$, and we are done.

Recall that by convention the maximum of the empty set is zero. So, the fact that $p_i > \max_{i>i} p_i$ tells us that $\rho_i = p_i$ is positive.

Let $i, j \in I$ with i < j. Since $\lambda_i \ge \lambda_j$, we have either $p_i \ge p_j$ or $q_i \ge q_j$. Further, since $(p_i, q_i) \ne (p_j, q_j)$ (clear from definition of I), either $p_i > p_j$ or $q_i > q_j$. And for $i, j \in I'$ we clearly have $p_i > p_j \iff q_i > q_j$. So in either case, both $p_i > p_j$ and $q_i > q_j$, and consequently both $\rho_i > \rho_j$ and $\lambda_i - \rho_i > \lambda_j - \rho_j$.

Lemma 8.2. Here we have an alternative characterization of $U_{I,(\rho_i)}$. Namely, $p_i = \rho_i$ for $i \in I$ and for $i \notin I$, we have $p_i \leq something$.

 \square

TODO: explain here why we are finding a Jordan basis here. Fix any I and (ρ_i) as in Lemma 8.1. We will find an algebraic map $b \mapsto P_b$ with the desired property. This is equivalent to finding an algebraic map taking b to a Jordan basis for $A_{0,b}$. This is what we do.

We note that even finding the irreducible components of $\{A_{0,0}, U \in V\}$ is a pretty hard problem. Not ambitious enough to try to re-solve that problem, we will use its solution.

To find the irreducible components of U_0 , we will use a known result about the irreducible components of the usual Springer fiber at an element $J(\mu) \in \mathfrak{gl}_{m+n}$. (I should define this somewhere else, but $J(\mu)$ just has the blocks in order of nonincreasing size.)

Theorem 8.3. (Needs citation!) The irreducible components of the Springer fiber at $J(\mu)$ are in bijection with the standard Young tableaus of shape μ . Further, the irreducible components are equidimensional, of dimension $\sum_{i\neq j} \min(\mu_i, \mu_j) = \sum_i (i-1)\mu_i$.

Let W_{μ} denote the Springer fiber at $J(\mu)$, and let $(W_{\mu,d})_d$ be the irreducible components. We remark that the Springer fiber at $PJ(\mu)P^{-1}$ is PW_{μ} , and its irreducible components are $(PW_{\mu,d})_d$. We will use this result; to find the regular Springer fiber at any $X \in \mathfrak{gl}_{m+n}$, we just need to find P such that $P^{-1}XP$ is in Jordan normal form; equivalently, we just need to find a Jordan basis for X.

So, our strategy will be to find a subset of the possible values of b such that $A_{0,b}$ has some fixed Jordan form μ , and we have an algebraic map $b \mapsto P_b$ such that for $A_{0,b}$ in the subset, $P_b J(\mu) P_b^{-1} = A_{0,b}$. Then we obtain an

irreducible component by picking one of these subsets of the possible values of b and picking a Springer fiber at $J(\mu)$.

Finding the map $b \mapsto P$ amounts to finding a Jordan basis for $A_{0,b}$. So, with this as our motivation, we find a Jordan basis for $A_{0,b}$.

Normally we index e_{ij} so that λ_i is nonincreasing with i. Now, it will be more convenient to assume our indices are such that q_i is nonincreasing, so we will do that: from now on, we assume that q_i is nonincreasing.

We list the chains of the Jordan basis in (roughly) order of decreasing length. First, for each i such that $q_i \geq n$, we take the chain of length $p_i + q_i$ beginning with e_{i,p_i+q_i} .

Now we handle f_n . Let $P = \max_{i:q_i < n} p_i$. Set

$$v = f_n - (A^{n+P} f_n >> n + P).$$

Note that $A^n f_n = b$, so $A^{n+P} f_n = A^P b = b \lt \lt P$. By shifting b left P times, we zero out all the rows i where $q_i \lt n$. This ensures that the operation of shifting $b' \lt \lt P$ right n + P times is invertible by applying A, and thus shifting left, n + P times. So, we take the chain of length n + P beginning with v.

Now, it is clear that each f_i is in the span of the chains we have listed so far. It is also clear that b << k is in the span, for each $k \ge 0$.

Now, we handle the i with $q_i < n$. We take as an inductive hypothesis that for all i' < i and all j, we have $e_{i'j}$ in the span of the chains we have already listed.

If $p_i \leq \max_{k>i} p_k$, then we take the chain beginning with e_{i,p_i+q_i} of length $p_i + q_i$. Clearly we then have $e_{i'j}$ in the span of the chains we have listed, for $i' \leq i$.

Otherwise, we set

$$v_i = A^{n-q_i} f_n - \sum_{k=1}^{p_i} b_{i,k} e_{i,k+q_i}.$$

Note that $A^{q_i}v_i$ is just b with row i zeroed out. Then, $A^{q_i+\max_{k>i}p_k}v_i$ will have, in addition, rows k zeroed out, for all k>i. This ensures that shifting $A^{q_i+\max_{k>i}p_k}v_i$ right $q_i+\max_{k>i}p_k$ times will be inverted by applying A, and thus shifting left, $q_i+\max_{k>i}p_k$ times. So, we take the chain beginning with $v_i-(A^{q_i+\max_{k>i}p_k}v_i>>q_i+\max_{k>i}p_i)$, which has length $q_i+\max_{k>i}p_k$.

Now, we want to show that for each j, e_{ij} is in the span of the chains we've listed so far. Since $A^{q_i+\max_{k>i}p_k}v_i$ has rows k zeroed out for $k\geq i$,

our inductive hypothesis tells us that $A^{q_i+\max_{k>i}p_k}v_i >> q_i+\max_{k>i}p_k$ is in the span of the chains already listed. So it suffices to show that the closure of $\langle v_i \rangle$ under action by A contains the span of e_{ij} . And $A^{n-q_i}f_n$ is also in the span of chains already listed, so it suffices to show that the closure of $\langle \sum_k b_{ik} e_{i,k+q_i} \rangle$ under action by A contains $\langle e_{ij} \rangle$. And this just follows from the fact that b_{i,p_i} is nonzero.

Now, I've shown that my purported Jordan basis has a large enough span; to show that it is indeed a Jordan basis I just need to count the number of vectors and show that we obtain m + n. I list the purported basis here:

• TODO

Indeed, the sum of the lengths is

$$\left[\sum_{i:q_{i} \geq n+r} (p_{i} + q_{i}) \right] + (r+n + \max_{i:q_{i} < n+r} p_{i}) + \sum_{i:q_{i} < n+r} \begin{cases} p_{i} + q_{i}, & p_{i} \leq \max_{k > i} p_{k} \\ q_{i} + \max_{k > i} p_{i}, & p_{i} > \max_{k > i} p_{k} \end{cases} =$$

$$\left[\sum_{i:q_{i} \geq n+r} (p_{i} + q_{i}) \right] + (r+n + \max_{i:q_{i} < n+r} p_{i}) + \sum_{i:q_{i} < n+r} (q_{i} + \min(p_{i}, \max_{k > i} p_{i})).$$

Let $i_1 < \cdots < i_s$ be the 'peaks': that is, the set $I_1 = \{i : q_i < n + r \land p_i > \max_{k>i} p_k\}$. (As I should've mentioned before, we take the max of the empty set to be zero.) Let $I_2 = \{i : q_i < n + r\} \setminus I_1$. Then

$$\sum_{i:q_i < n+r} (q_i + \min(p_i, \max_{k>i} p_i)) = \sum_{i \in I_2} (p_i + q_i) + \sum_{k=1}^s (q_{i_k} + p_{i_{k+1}}).$$

Clearly then, the whole sum is m+n.

9 Finding the irreducible components of a springer fiber at a slodowy slice

Apply things from the previous two sections, and conclude.

10 Finding a centralizer

For nilpotent X in Jordan form and a in 'normalized' form (i.e., with at most one nonzero element, which is a one), we will find the centralizer of $A_{X,a,b}$ in

$$\{(A,I):A\in\mathfrak{gl}_m\}\subseteq\mathfrak{gl}_{m+n}$$
.

Note that an element of the form (A, I) commutes with $A_{X,a,b}$ if and only if A commutes with X, and aA = a, and Ab = b. So, we just have to find

$${A \in \mathfrak{gl}_m : AX = XA, aA = a, Ab = b}.$$

We begin by finding

$${A \in \mathfrak{gl}_m : AX = XA}.$$

We write the shape of X as $\lambda = (\lambda_1, ..., \lambda_k)$, so that

$$X = \begin{pmatrix} J_{\lambda_1} & & \\ & \ddots & \\ & & J_{\lambda_k} \end{pmatrix}.$$

Then we write A as the block matrix

$$A =: \begin{pmatrix} A_{11} & \cdots & A_{1k} \\ \vdots & & \vdots \\ A_{k1} & \cdots & A_{kk} \end{pmatrix},$$

where A_{ij} is a block of size $\lambda_i \times \lambda_j$. We have

$$XA = \begin{pmatrix} J_{\lambda_1} A_{11} & \cdots & J_{\lambda_1} A_{1k} \\ \vdots & & \vdots \\ J_{\lambda_k} A_{k1} & \cdots & J_{\lambda_k} A_{kk} \end{pmatrix}, \text{ and } AX = \begin{pmatrix} A_{11} J_{\lambda_1} & \cdots & A_{1k} J_{\lambda_k} \\ \vdots & & \vdots \\ A_{k1} J_{\lambda_1} & \cdots & A_{kk} J_{\lambda_k} \end{pmatrix}.$$

So, the constraint that XA = AX is simply saying that

$$\forall i, j. \ J_{\lambda_i} A_{ij} = A_{ij} J_{\lambda_j}.$$

It's easy to see that left multiplication by J_{λ_i} is just a down-shift by one, and right multiplication by J_{λ_j} is a left-shift by one. This means that A_{ij} is constrained to be a "lower-left-Toeplitz" matrix. A Toeplitz matrix is one which is constant along diagonal bands: $\forall ijk.\ x_{ij}=x_{i+k,j+k}$. A lower-left-Toeplitz matrix is one which is all zeroes except for the bottom-left corner; that is, the bands start in the bottom-left corner, and continue until hitting the band which includes the lower-right corner or the band which includes the upper-left corner (whichever comes first). In other words, an $n \times m$ lower-left-Toeplitz matrix is one which satisfies $x_{ij}=0$ for all i,j with i< j

and all i, j with i - j < m - n. In yet other words, a matrix is lower-left-Toeplitz if it is Toeplitz, satisfies $x_{1j} = 0$ for $j \neq 1$, and satisfies $x_{in} = 0$ for $i \neq m$. Anyway, it is easy to see that the lower-left-Toeplitz matrices are exactly those matrices A such that left-shifting A by one has the same result as down-shifting by one.

So, we have found the set

$$C_1 := \{ A \in \mathfrak{gl}_m : AX = XA \}.$$

It is just the set of $A = [A_{ij}]_{ij}$, where each A_{ij} is lower-left-Toeplitz. Let v_{ij} be the leftmost column of A_{ij} , so that

$$A_{ij} = \left(v_{ij} \stackrel{\checkmark}{\searrow} 0 \quad \cdots \quad v_{ij} \stackrel{\checkmark}{\searrow} [\lambda_j - 1]\right).$$

Since A_{ij} is lower-left-Toeplitz, v_{ij} is of the form

$$v_{ij} = \begin{pmatrix} 0 \\ v'_{ij} \end{pmatrix},$$

where $v'_{ij} \in \mathbb{C}^{\min(\lambda_i,\lambda_j)}$ can be chosen freely. Now we determine which matrices of this form satisfy aA = a. For simplicity, we will instead find the matrices A such that aA = 0 (so that a(A + I) = a). (Note that $I \in C_1$, and C_1 is closed under addition, so this is really the same thing.)

In the case that a = 0, clearly every A works. Otherwise, let i_0, j_0 be such that $a_{i_0,j_0} = 1$. Now, clearly the constraint that aA = 0 is just saying that the (i_0, j_0) th row of A must be zero. That is, for each j the j_0 th row of A_{i_0j} must be zero. This just requires that for each j, we must have

$$v_{ij} = \begin{pmatrix} 0 \\ v'_{ij} \end{pmatrix},$$

where $v'_{ij} \in \mathbb{C}^{\min(\lambda_i - j_0, \lambda_j)}$ can be chosen freely. So, we have now found the set

$$C_2 := \{ A \in \mathfrak{gl}_m : AX = XA, aA = a \}.$$

It is the matrices of the form I+A, where A_{ij} is a block matrix of size $\lambda_i \times \lambda_j$ with

$$A_{ij} = T(v_{ij}) = T\begin{pmatrix} 0 \\ v'_{ij} \end{pmatrix},$$

where $v'_{ij} \in \mathbb{C}^{\min(\lambda_i, \lambda_j)}$ in the case $i \neq i_0$ and $v'_{ij} \in \mathbb{C}^{\min(\lambda_i - j_0, \lambda_j)}$ if $i = i_0$.

11 A Jordan basis for $A_{X,a,b}$

11.1 A 'normalization' fact about Jordan bases

Let V be a finite-dimensional vector space, $A:V\to V$ a nilpotent operator, and $f:V\to\mathbb{C}$ a linear map. Let $(e_{ij}:i\leq m,j\leq\lambda_i)$ be a Jordan basis for A.

Lemma 11.1. There is a Jordan basis e_{ij} for A such that there is at most one pair (i, j) with $f(e_{ij}) \neq 0$.

Proof. For any change of basis $P: V \to V$ commuting with A, we obtain a new Jordan basis $(P(e_{ij}): i \leq m, j \leq \lambda_i)$. For any such P, define

$$S_P = \sum_{i} \begin{cases} -1, & \forall j. \ f \circ P(e_{ij}) = 0 \\ \lambda_i - \min\{j: f \circ P(e_{ij}) \neq 0\}, & \text{otherwise} \end{cases}$$

Let P be any operator, among all invertible operators commuting with A, which minimizes S_P . Write $e'_{i,j} := P(e_{i,j})$.

Suppose for contradiction that there are two distinct i's (and some j's) with $f(e'_{ij}) \neq 0$. Then we can take e'_{i_1,j_1} and e'_{i_2,j_2} , where for $k \in \{1,2\}$ we have $f(e'_{i_k,j_k}) \neq 0$, and $\forall j < j_k$. $f(e'_{i_k,j}) = 0$. Wlog, assume $\lambda_{i_1} - j_1 \leq \lambda_{i_2} - j_2$. Then, we can define $Q: V \to V$ by

- $Q(e'_{i_1,\lambda_1}) := e'_{i_1,\lambda_1} \frac{f(e'_{i_1,j_1})}{f(e'_{i_2,j_2})} e'_{i_2,j_2+(\lambda_{i_1}-j_1)}$
- For $j < \lambda_1, Q(e'_{i_1,i}) := A^{\lambda_{i_1}-j}Q(e'_{i_1,\lambda_{i_1}})$
- For $i \neq i_1$, $Q(e'_{ij}) = e'_{ij}$.

Clearly Q is invertible, and it commutes with A. Further, I claim that $S_{QP} < S_P$. It suffices to show that $\forall j \leq j_1$. $f \circ Q(e'_{i_1,j}) = 0$. We have

$$f \circ Q(e'_{i_1,j}) = f\left(A^{\lambda_{i_1}-j}\left(e'_{i_1,\lambda_1} - \frac{f(e'_{i_1,j_1})}{f(e'_{i_2,j_2})}e'_{i_2,j_2+(\lambda_{i_1}-j_1)}\right)\right) =$$

$$f\left(e'_{i_1,j} - \frac{f(e'_{i_1,j_1})}{f(e'_{i_2,j_2})}e'_{i_2,j_2+(j-j_1)}\right) = f(e'_{i_1,j}) - \frac{f(e'_{i_1,j_1})}{f(e'_{i_2,j_2})}e'_{i_2,j_2+(j-j_1)}.$$

Clearly (by design), this expression is zero when $j = j_1$. And for $j < j_1$, we have $f(e'_{i_1,j}) = f(e'_{i_2,j_2+(j_2-j_1)}) = 0$, so it is zero then as well. Thus we see

that $S_{QP} < S_P$, contradicting that S_P is minimal. So there must be at most one i such that there exists j such that $f(e'_{ij}) \neq 0$.

If there is no such i, we have found the desired basis. So, suppose there is such an i_0 . Let $U = \langle e'_{i_0,j} \rangle$. Simply write $e_j := e'_{i_0,j}$. Let $j_0 = \min\{j: f(e_j) \neq 0\}$. We just have to change basis to zero out e_j for $j \neq j_0$. Let $P_1(e_{\lambda_{i_0}}) := e_{\lambda_{i_0}} - \frac{f(e_{j_0+1})}{f(e_{j_0})} e_{\lambda_{i_0}-1}$, and notice that $f \circ P_1(e_j) = 0$ for all $j \leq j_0+1$ except for j_0 . Then we define $P_2(e_{\lambda_{i_0}}) := P_1(e_{\lambda_{i_0}}) - \frac{f \circ P_1(e_{j_0+2})}{f \circ P_1(e_{j_0})} e_{\lambda_{i_0}-2}$, and notice that $f \circ P_2(e_j) = 0$ for all $j \leq j_0+2$ except for j_0 . Eventually we get $P_{\lambda_{i_0}-j_0}$, and by applying this to the e_j 's we obtain a basis of U, in which there is exactly one j with $f \circ P_{\lambda_{i_0}-j_0}(e_j) \neq 0$.

11.2 When X is all zeroes

In this case we have $A(y,z)=(z_nb,(a\cdot y,z_1,...,z_{n-1})),$ and the condition becomes

$$\sum_{i} b_i a_i = 0.$$

In this case we will be able to write down explicitly the irreducible components of $F:=\{(V,a,b): \forall i.\ A_{X,a,b}V_i\subseteq V_i\}\cong \pi^{-1}(X)$. For any nonnegative $\delta_0,\delta_1,...,\delta_n,\delta_{n+1}$ summing to m, define the corresponding sequence $i_0=\delta_0,$ $i_n=\delta_{n+1}+i_n$, and for $j\in\{1,...,n\},\ i_j=i_{j-1}+1+\delta_j$. Let E be the span of the e_i 's, and let $E'=\{(x,0)\in E:x\cdot a=0\}$, where the dot is the m-dimensional dot product. Then define F_δ as the set of $(V,a,b)\in F$ such that

- $b \in V_{i_0} \subseteq E'$
- for all $j \in \{1, ..., n\}$, we have $f_j \in V_{i_j} \subseteq E' + \langle f_1, ..., f_j \rangle$

I claim that the F_{δ} 's are the irreducible components of F. To begin, I show that their union is F.

Lemma 11.2. Let $(V, a, b) \in \mathcal{F}$. Write $f_0 = b$, and $F = \langle f_0, f_1, ..., f_n \rangle$. For each i, either $F \subseteq V_i$, or else there exists j such that $e_j \notin V_i$, but $\langle e_0, ..., e_{j-1} \rangle \subseteq V_i \subseteq E' + \langle e_1, ..., e_j \rangle$.

Proof. For i = 0, we may take j = 0. Now assume the statement holds for i, and we will prove it for i + 1. If $F \subseteq V_i$, then $F \subseteq V_{i+1}$, and we are done.

So, suppose there is j such that $e_j \notin V_i$, but $\langle e_0, ..., e_{j-1} \rangle \subseteq V_i \subseteq E' + \langle e_0, ..., e_j \rangle$. We have two cases: either $V_{i+1} = V_i + \langle e_j \rangle$, or not.

- If so, then either j = n, in which case $F \subseteq V_{i+1}$, or else $j \neq n$, in which case $e_{j+1} \notin V_{i+1}$, but $\langle e_0, ..., e_j \rangle \subseteq V_{i+1} \subseteq E' + \langle e_0, ..., e_{j+1} \rangle$.
- If not, then $e_j \notin V_{i+1}$. Let v_{i+1} be so that $V_{i+1} = V_i + \langle v_{i+1} \rangle$. I just need to show that $v_{i+1} \in Y + \langle e_1, ..., e_j \rangle$. It suffices to show that $v_{i+1}^\top e_k = 0$ for k > j. And to do this, it suffices to show that $(Av_{i+1})^\top e_{k-1} = 0$ for k > j.

Note that $Av_{i+1} \in V_i \cap A\mathbb{C}^{2n} \subseteq \langle e_1, ..., e_j \rangle$. So, for k > j+1 it is clear that $(Av_{i+1})^{\top}e_{k-1} = 0$. Now, suppose for contradiction that $(Av_{i+1})^{\top}e_j \neq 0$. Then Av_{i+1} is linearly independent of $e_1, ..., e_{j+1}$. Since $Av_{i+1} \in \langle e_1, ..., e_j \rangle$, it follows that $e_j \in \langle e_1, ..., e_{j-1}, Av_{i+1} \rangle \subseteq V_i$, a contradiction.

Corollary 11.3. $\mathcal{F} = \bigcup_{\delta} \mathcal{F}_{\delta}$

Proof. Let $(V, a, b) \in F$. Let $i_0 = \min\{i : b \in V_i\}$, and let $i' = \max\{i : V_i \subseteq E'\}$. We want that $b \in V_{i_0} \subseteq E'$, so we want that $i_0 \leq i'$. For contradiction, suppose $i' < i_0$.

Lemma 11.4. Each \mathcal{F}_{δ} is a closed subvariety of \mathcal{F} .

$$\square$$

Lemma 11.5. Each \mathcal{F}_{δ} is irreducible of dimension m.

Proof. Let \mathcal{E} be the variety of partial flags of E of shape $(\delta_0, ..., \delta_{n+1})$. Define $g: \mathcal{F}_{\delta} \to \mathcal{E}$ by

$$(V, a, b) \mapsto 0 \subseteq V_{i_0} \cap E \subseteq V_{i_1} \cap E \subseteq \cdots \subseteq V_{i_{n+1}} \cap E = E.$$

It is clear that g is surjective, as the definition of \mathcal{F}_{δ} places no restriction on the intersections $V_i \cap E$. Now let's look more closely at the fibers $g^{-1}(U)$.

First let's find the flags V such that there exist a, b with g(V, a, b) = U. We see that, for instance, $V_{i_0} \cap E = U_1$. In fact $V_{i_0} \subseteq E$, so $V_{i_0} = U_1$. But we are free to choose the vector spaces between 0 and V_{i_0} however we wish, so we get some degrees of freedom like \mathcal{F}_{δ_0} , the complete flag variety on $\mathbb{C}^{\delta_0} \cong V_{i_0}/0$. Similarly, for every j = 1, ..., n+1, we can choose the vector spaces between $V_{i_{j-1}}$ and V_{i_j} arbitrarily, so we get degrees of freedom

like $\mathcal{F}_{\delta_{i_j}}$, the complete flag variety on $\mathbb{C}^{\delta_{i_j}} \cong V_{i_j}/V_{i_{j-1}}$. Finally, to meet the constraint of (V, a, b) being in \mathcal{F}_{δ} , we can choose any $b \in U_1$ and any a such that $\overline{a} \in U_n^{\perp}$. Thus we get an isomorphism

$$g^{-1}(U) \cong \mathcal{F}_{\delta_0} \times \cdots \times \mathcal{F}_{\delta_{n+1}} \times \mathbb{C}^{\delta_0} \times \mathbb{C}^{\delta_{n+1}}.$$

Theorem 11.6. The \mathcal{F}_{δ} 's are the irreducible components of \mathcal{F} .

11.3 In the case that X is a Jordan block

This case seems harder to work with explicitly than the case that X is zero, so our strategy is to reuse

12 A different variety

Define $R = \{(X, \mathfrak{b}_1, \mathfrak{b}_2) : X \in \mathfrak{b}_1 \wedge u(X) \in \mathfrak{b}_2\} \subseteq \mathcal{S}'_{m,n} \times \mathcal{B}_{m+n} \times \mathcal{B}_m$. We can obtain a subvariety of R by requiring that u(X) is in some fixed similarity class. (TODO: why is this a subvariety? Is it? Is this even the right way of explaining the significance of the m^2 ?) We expect that each of these subvarieties is an irreducible component of dimension m^2 . We will verify these things using our prvious computations of springer fibers.

12.1 TODO

• Why are SOn flags what they are.

References

[1] N. Chriss and victor ginzburg. Representation Theory and Complex Geometry. Modern Birkhäuser Classics. Birkhäuser Boston, 2009.