

PRÉDICTION DEMANDE EN ÉLECTRICITÉ

La transition énergétique commence aujourd'hui

ÉNERGIES RENOUVELABLES

- intermittentes
- donc difficile de prévoir les capacités de production d'électricité
- demande en électricité des utilisateurs varie au cours du temps
- dépend de paramètres comme la météo (température, luminosité, etc.)

Besoin de mettre en adéquation l'offre et la demande!

MISSION

Consommation

Météo

Modélisation

Prévision

Python / Notebook Jupyter / Colab

QUESTIONS

- Il y a t-il un effet température sur les données de consommation mensuelles dues au chauffage électrique ?
- 2. Il y a t-il une saisonnalité de la consommation mensuelle?
- 3. Quelle est la meilleure modélisation pour une prédiction de la consommation mensuelle

DONNÉES

DONNÉES

Consommation

Degré Jour Unifié (DJU)

Données:

- RTE pour la France
- 1182 obs
- 22 variables

France:

• Consommation totale janvier 2012 à mai 2020

Soit 101 observations.

- Écart entre la T° d'une journée donnée et un seuil de T° préétabli (18 °C)
- Effet température sur consommation
- Corriger effet température (volatile)

Données:

- CEGIBAT
- 18°C
- Orly (94)
- Janvier 2012 à juin 2019

DONNÉES

- Absence valeurs atypiques
- Données manquantes pour DJU semestre 2 sur 2019

90 observations (Consommation totale et DJU) de Janvier 2012 à juin 2019

"date" en DateTime et index

Consommation	totale	dju	
	51086	365.4	
	54476	466.9	
	43156	247.1	
	40176	257.4	
	35257	109.4	
	Consommation	Consommation totale 51086 54476 43156 40176 35257	

ANALYSE DESCRIPTIVE

TENDANCES CENTRALES

	Consommation totale	dju
count	90.000000	90.000000
mean	40187.800000	204.544444
std	7138.137168	142.359230
min	31004.000000	4.300000
25%	33757.750000	65.275000
50%	37488.500000	197.150000
75%	45631.750000	321.175000
max	57406.000000	498.800000

CV

Consommation: 17%

DJU: 69%

Influence DJU sur consommation?

EXPLORATION GRAPHIQUE

CORRELATION

Corr = 0.97

CORRECTION EFFET TEMPÉRATURE

MODÉLISATION

DJU

Consommation

				LS Regres	221011 KE	SUILS		
Dep. Variable: Consommation			ommatio	n totale	R-squ	ared:		0.042
Model:				OLS	Adj.	R-squared:		0.941
Method:		Least Squares F-statistic:					1424	
Date:		W	Wed, 08 Jul 2020		Prob	Prob (F-statistic):		
Time:			09:33:46		Log-L	Log-Likelihood:		
No. Obse	rvations:			90	AIC:			1600.
Df Resid	uals:			88	BIC:			1605.
Df Model	:			1				
Covariance Type:			n	onrobust				
	co	ef	std e	 rr	t	P> t	[0.025	0.975]
const	3.023e-	+04	320.7	83 94	1.252	0.000	2.96e+04	3.09e+04
dju	48.66	606	1.2	90 37	7.735	0.000	46.098	51.223

MODÉLISATION

Kolmogorov-Smirnov

H0 = adhésion loi normalep > 0.05

Pas de rejet de H0, adhésion loi normale.

CORRECTION EFFET TEMPÉRATURE

Consommation corrigée = Consommation totale - (DJU * coef)

QUESTIONS

 Il y a t-il un effet température sur les données de consommation mensuelles dues au chauffage électrique ?

-> **OUI**

- 2. Il y a t-il une saisonnalité de la consommation mensuelle?
- 3. Quelle est la meilleure modélisation pour une prédiction de la consommation mensuelle

AD Fuller

H0 = non stationnairep > 0.05

Pas de rejet de H0, non stationnaire

AD Fuller

H0 = non stationnairep < 0.05

Rejet de H0, stationnaire

Saisonnalité estimée à 6 mois, 1 différence

CORRECTION VARIATIONS SAISONNIÈRES

Consommation CVS = Consommation corrigée effet température - composante saisonnière

QUESTIONS

- 1. Il y a t-il un effet température sur les données de consommation mensuelles dues au chauffage électrique ?
- 2. Il y a t-il une saisonnalité de la consommation mensuelle?
- -> OUI : hypothèse de 6 mois
- 3. Quelle est la meilleure modélisation pour une prédiction de la consommation mensuelle

PRÉDICTIONS

PRÉDICTIONS

Holt Winters

SARIMA

Train, Test split 60 obs / 30 obs Consommation corrigée effet température

PRÉDICTIONS : paramètres

Holt Winters

SARIMA

Scoring: RMSE et MAPE

- Lissage exponentiel
- Saisonnalité à 6 mois et 12 mois

HW 6 mois

- Recherche sur grille
- Saisonnalité à 6 mois et sur 12 mois
- Critère d'information d'Akaike (AIC)

SARIMA (4,0,2)x(0,1,0,12), AIC (1329)

PRÉDICTIONS : évaluations modèles

Holt Winters

SARIMA

Shapiro & JB

H0 = adhésion loi normale

p > 0.05

Pas de rejet de H0, adhésion loi normale.

PRÉDICTIONS: évaluations modèles

PRÉDICTIONS: évaluations modèles

SARIMA

PRÉDICTIONS

QUESTIONS

- 1. Il y a t-il un effet température sur les données de consommation mensuelles dues au chauffage électrique ?
- 2. Il y a t-il une saisonnalité de la consommation mensuelle?
- 3. Quelle est la meilleure modélisation pour une prédiction de la consommation mensuelle

SARIMA (4,0,2)x(0,1,0,12) est le meilleur modèle disponible.

CONCLUSION

CONCLUSION

SARIMA (4,0,2)x(0,1,0,12)

SARIMA

REMARQUE

SARIMA (4,0,2)x(0,1,0,12) est le meilleur modèle disponible, mais :

- prédiction consommation corrigée de l'effet température
- consommation finale dépend de paramètres comme la météo (température, luminosité, etc.)

MERCI!

@xavbarbier

https://www.linkedin.com/in/barbierxavier/

https://github.com/xavierbarbier/

contact@xavierbarbier.com