Part-of-speech Tagging and HMM

Hidden Markov Models

- What we've described with these two kinds of probabilities is a Hidden Markov Model (HMM)
 - Transition Probabilities
 - Observation Likelihoods
- Formalizing HMM: A weighted finite-state automaton where each arc is associated with a probability
 - The probability indicates how likely a path is to be taken

Transition Probabilities

Observation Likelihoods

Hidden Markov Model

- in part-of-speech tagging
 - The input symbols are words
 - But the hidden states are part-of-speech tags

- It has many other applications
 - Named entity recognition, gene prediction, etc.

Hidden Markov Models

- States $Q = q_1, q_2...q_{N_1}$ Tags q_0, q_{F_2} start and end states
- Observations $O = o_1, o_2...o_{T}$: Words
 - Each observation is a symbol from a vocabulary $V = \{v_1, v_2, ... v_V\}$
 - s_i: the state of the ith observation
- Transition probabilities
 - Transition probability matrix $A = \{a_{ij}\}$ $a_{ij} = P(s_t = j \mid s_{t-1} = i) \quad 1 \le i, j \le N$
- Observation likelihoods
 - Output probability matrix $B=\{b_i(k)\}$

$$b_i(k) = P(X_t = o_k \mid s_t = i)$$

• Special initial probability vector π

$$\pi_i = P(s_1 = i) \quad 1 \le i \le N$$

 q_0 , q_F not associated with observation Start state a_{01} ... a_{0N} a_{01} a_{02} a_{03} End state a_{1F} ... a_{NF} a_{14} a_{24} a_{34}

HMM for Ice Cream

- You are a climatologist in the year 2799 studying global warming
- You can't find any records of the weather in Singapore for summer of 2012
- But you find your grandma's diary which lists how many ice-creams she ate every date that summer
- Your job: figure out whether each day was cold/hot

Task

- Given : Observations O
 - Ice Cream Observation Sequence: 1,2,3,2,2,2,3...
 - Special initial probability vector
- Produce: States S
 - Weather Sequence: H,C,H,H,H,C...

HMM for Ice Cream

Decoding

 Ok, now we have a complete model that can give us what we need. Recall that we need to get

$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} P(t_1^n | w_1^n)$$

- Determine sequences of variables, given sequence of observations
- We could just enumerate all paths given the input and use the model to assign probabilities to each.
 - Not a good idea. 12 -- HH, HC,CC,CH
 - $N^T : N$ (number of states) T (size of sequence)
 - Luckily dynamic programming helps us here

Intuition

- You're interested in the shortest distance from here to Woodland
- Consider a possible location on the way to Woodland, say Jurong.
- Find the shortest distance among all the possible ways to get to Jurong
- Afterwards, we do not need to remember all the ways to Jurong, as finding the shortest distance from Jurong to Woodland

Intuition

- Consider a state sequence (tag sequence) that ends at state i with a particular tag T.
- The probability of that tag sequence can be broken into two parts
 - The probability of the BEST tag sequence up through i-1
 - Multiplied by the transition probability from the tag at the end of the i-1 sequence to T.
 - And the observation probability of the word given tag T.

```
Let T': the tag at the end of the i-1 sequence W: the word at state i Viterbi[T, i] = Viterbi[T', i-1] * p(T|T') * p(W|T) v_t[i] a_{T',T} b_{T}(W)
```

Main Idea

- We also have a matrix.
 - Each column— a time (observation)
 - Each row a state
- Variable v_t[i] the Viterbi path probability at time t for state i
 - Time t corresponds to observation
 - For each cell v_t[i], we compute the probability of the best path to the cell

Viterbi Example

Variable v_t[i] the Viterbi path probability at time t for state i

The Viterbi Algorithm

function VITERBI(observations of len T, state-graph of len N) **returns** best-path

```
create a path probability matrix viterbi[N+2,T]

for each state s from 1 to N do ; initialization step viterbi[s,1] \leftarrow a_{0,s} * b_s(o_1)
backpointer[s,1] \leftarrow 0

for each time step t from 2 to T do ; recursion step for each state s from 1 to N do viterbi[s,t] \leftarrow \max_{s'=1}^{N} viterbi[s',t-1] * a_{s',s} * b_s(o_t)
backpointer[s,t] \leftarrow \underset{s'=1}{\operatorname{argmax}} viterbi[s',t-1] * a_{s',s}
```


$$viterbi[q_F,T] \leftarrow \max_{s=1}^{N} viterbi[s,T] * a_{s,q_F}$$
 ; termination step

$$backpointer[q_F,T] \leftarrow \underset{s=1}{\operatorname{argmax}} viterbi[s,T] * a_{s,q_F}$$
 ; termination step

return the backtrace path by following backpointers to states back in time from $backpointer[q_F, T]$

T: word N: tag

Viterbi Summary

- Create an array
 - With columns corresponding to inputs
 - Rows corresponding to possible states
- Sweep through the array in one pass filling the columns left to right using our transition probs and observations probs
- Dynamic programming key is that we need only store the MAX prob path to each cell, (not all paths).

summary

- HMM
 - Transition Probabilities
 - Observation Likelihoods
- Decoding
 - Viterbi
- Next
 - Evaluation
 - Assigning probabilities to inputs
 - Forward
 - Finding optimal parameters for a model

Evaluation

- So once you have your POS tagger running, how do you evaluate it?
 - Overall error rate with respect to a gold-standard test set.
 - Error rates on particular tags
 - Error rates on particular words
 - Tag confusions...

Error Analysis

Look at a confusion matrix

Returned by tagger

	IN	JJ	NN	NNP	RB	VBD	VBN
IN	_	.2			.7		
JJ	.2	_	3.3	2.1	1.7	.2	2.7
NN		8.7	_				.2
NNP	.2	3.3	4.1	_	.2		
RB	2.2	2.0	.5		_		
VBD		.3	.5			_	4.4
VBN		2.8				2.6	_

correct

- See what errors are causing problems
 - Noun (NN) vs ProperNoun (NNP) vs Adj (JJ)
 - Preterite (VBD) vs Participle (VBN) vs Adjective (JJ)

Evaluation

- The result is compared with a manually coded "Gold Standard"
 - Typically accuracy reaches 96-97%
 - This may be compared with result for a baseline tagger (one that uses no context).
- Important: 100% is impossible even for human annotators.

3 Problems

- Given this framework there are 3 problems that we can pose to an HMM
 - Given an observation sequence and a model, what is the most likely state sequence?
 - Given an observation sequence, what is the probability of that sequence given a model?
 - Given an observation sequence, infer the best model parameters for model

Problem

Most probable state sequence given a model and an observation sequence

Decoding: Given as input an HMM $\lambda = (A,B)$ and a sequence of observations $O = o_1, o_2, ..., o_T$, find the most probable sequence of states $Q = q_1q_2q_3...q_T$.

- Typically used in tagging problems, where the tags correspond to hidden states
- Viterbi solves problem

Problem

The probability of a sequence given a model.. P(seq| model).

Computing Likelihood: Given an HMM $\lambda = (A, B)$ and an observation sequence O, determine the likelihood $P(O|\lambda)$.

Forward algorithm

function FORWARD(observations of len T, state-graph of len N) **returns** forward-prob

create a probability matrix forward[N+2,T]

for each state s from 1 to N do ; initialization step

 $forward[s,1] \leftarrow a_{0,s} * b_s(o_1)$

for each time step t from 2 to T do ; recursion step

for each state s from 1 to N do

$$forward[s,t] \leftarrow \sum_{s'=1}^{N} forward[s',t-1] * a_{s',s} * b_{s}(o_{t})$$

$$forward[q_F,T] \leftarrow \sum_{s=1}^{N} forward[s,T] * a_{s,q_F}$$
; termination step

return $forward[q_F, T]$

Problem

- Infer the best model parameters, given a model and an observation sequence...
 - That is, fill in the A and B tables with the right numbers...
 - The numbers that make the observation sequence most likely
 - Useful for getting an HMM without having to hire annotators...
 - Baum-Welch (or forward-backward): Expectation-Maximization (EM) (Section 6.5-6.8)

Summary

- HMM model- two probabilities
- Viterbi algorithm
- Evaluation
- Three problems in HMM model