My title

Even longer subtitle

A Seminar Paper Presented

by

Miriam Musterfrau

(000000)

to

Dr. Martin Weber

and

Awdesch Melzer

Institute of Finance

Seminar

Topics in Finance

Berlin, August 31, 2017

Contents

1	Introduction	2
2	Definitions — relevant knowledge	2
3	The Model — Methodology	3
	3.1 Subsection	3
4	Data — Empirical results	5
	4.1 Subsection	5
	4.2 More subsections	5
5	Conclusion and outlook	6
A	Appendix	8

Abstract

Briefly summarise all your key findings in an economic context. $\textbf{Keywords:} \ .$

1 Introduction

Refer to Section 2 or Section 3.

${\bf 2}\quad {\bf Definitions-- relevant\ knowledge}$

Adding pictures:

Figure 1: Time series (2010-2015) and its density of TSO data

Adding graphs:

Figure 2: Deposit refund policy.

3 The Model — Methodology

Define the model, give some equations and explain them:

$$TSO(\tau_1, \tau_2) = \int_{\tau_1}^{\tau_2} \frac{WPL(s)}{C(s)} ds = \int_{\tau_1}^{\tau_2} U(s) ds.$$
 (1)

3.1 Subsection

Add aligned equations:

$$U_t = \Lambda_t + Y_t \tag{2}$$

$$d\Lambda_t = \Lambda_t dt \tag{3}$$

$$Y_t = \mathbf{b}^\top \mathbf{X}_t \tag{4}$$

$$d\mathbf{X}_{t} = (\mathbf{A}\mathbf{X}_{t} + \mathbf{e}_{p}\sigma_{t}\theta_{t})dt + \mathbf{e}_{p}\sigma_{t}dB_{t}^{\theta}, \tag{5}$$

with matrices and vectors

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \dots & \dots & 0 & 1 \\ -\alpha_p & -\alpha_{p-1} & \dots & -\alpha_1 \end{pmatrix} \quad \mathbf{e}_p = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$$

Integrals:

$$U_{s} = \int_{t}^{s} \tilde{U}_{u}^{\eta_{1}} \exp(\mathbf{A}(s-u))\mathbf{x}du + \int_{t}^{s} \tilde{U}_{u}^{\eta_{1}} \exp(\mathbf{A}(s-u))\Lambda_{u}du + \int_{t}^{s} \tilde{U}_{u}^{\eta_{1}} \exp(\mathbf{A}(s-u))\mathbf{e}_{p}\sigma_{u}dB_{u}^{\theta}$$

4 Data — Empirical results

4.1 Subsection

Some citation: Bowman & Azzalini (1997).

A table:

	Lévy				Gaussian	
	b_0	b_1	a_1	a_2	a_1	a_2
Estimate	1.000	74.268	-0.192	0.638	0.686	-0.154
Std. error	10.158	0.288	0.204	0.604	0.021	0.025

Table 1: CARMA(2,1) Coefficient estimates of the CARMA-Lévy process), CARMA(2,0) of the Gaussian process

4.2 More subsections

Link/refer to figures: Figure 2.

More citation: Weron (2008)

5 Conclusion and outlook

Brief summary of your findings.

References

Bowman, A. & Azzalini, A. (1997), Applied smoothing techniques for data analysis: The kernel approach with s-plus illustrations, 1 edn, Oxford: Clarendon Press.

Weron, R. (2008), 'Market price of risk implied by asian-style electricity options and futures', $Energy\ Economics\ 30(3)$, 1098-1115.

A Appendix

Extensive derivations and proofs belong here.