Universidade Federal do Ceará

Departamento de Computação

Disciplina: Métodos Numéricos

Prof. João Paulo do Vale Madeiro

Aula Prática 01 – Estudo de Erros

1 – Considere o seguinte processo iterativo:

$$x^{(1)}=\frac{1}{3}$$

$$x^{(n+1)} = 4x^{(n)} - 1$$
, $n = 1, 2, ...$

Observe que $x^{(1)} = \frac{1}{3}$, $x^{(2)} = 4 \cdot \frac{1}{3} - 1 = \frac{1}{3}$, $x^{(3)} = \frac{1}{3}$, ou seja, temos uma sequência constante igual a 1/3. No entanto, ao calcularmos no computador, usando o sistema de numeração double, a sequência obtida não é constante e, de fato, diverge. Faça o teste em Python, colocando x = 1/3, e itere algumas vezes a linha de comando

$$>>> x = 4*x-1$$
:

Justifique com base no conteúdo das aulas teóricas!

2 – A corrente I em ampères e a tensão V em volts em uma lâmpada se relacionam conforme a seguinte expressão:

 $I=\left(\frac{V}{V_0}\right)^{\alpha}$, em que α é um número entre 0 e 1, e V_0 é tensão nominal em volts. Sabendo que $V_0=220\pm3\%$ e $\alpha=-0.8\pm4\%$, calcule a corrente e o erro relativo associado quando a tensão vale $220\pm1\%$.

OBS: Este problema pode ser resolvido de duas formas distintas: usando a expressão aproximada para a propagação do erro e inspecionando os valores máximos e mínimos que a expressão pode assumir. Pratique os dois métodos. Dica: lembre que $x^{\alpha} = e^{\alpha . \ln{(x)}}$

3 – Considere as expressões:

$$\frac{\exp{(\frac{1}{\mu})}}{1 + exp(1/\mu)}$$

e

$$\frac{1}{exp(-1/\mu)+1}$$

Com $\mu > 0$. Verifique que elas são idênticas como funções reais. Teste no computador cada uma delas para $\mu = 0.1$, $\mu = 0.01$, $\mu = 0.001$. Qual dessas expressões é mais adequada quando μ é um número pequeno? Por quê ?

4) Encontre expressões alternativas para calcular o valor das seguintes funções quando x é próximo de zero.

a)
$$f(x) = \frac{1 - \cos(x)}{x^2}$$

b)
$$g(x) = \sqrt{1+x} - 1$$

c)
$$h(x) = \sqrt{x + 10^6} - 10^3$$

d)
$$i(x) = \sqrt{1 + e^x} - \sqrt{2}$$
 Dica: Faça $y = e^x - 1$