Analysis on the Real Line

Cam Quilici

Fall 2023

The Real Numbers

Introduction

• Lemma. The equation $x^2 - 2 = 0$ has no solution in \mathbb{Q} .

Proof. By contradiction, assume there exists some $p/q \in \mathbb{Q}, p, q \in \mathbb{N}, q \neq 0$ such that

$$\left(\frac{p}{q}\right)^2 - 2 = 0. \quad (*)$$

Without loss of generality, we can assume that the greatest common divisor between p and q is 1. We rewrite (*) as $p^2 = 2q^2$ which implies that p^2 is even. This means that p is even as well.

- \bullet We say that $\mathbb N$ is well-ordered, but not $\mathbb Q$ since $\mathbb Q$ does not have a least element
- **Proposition**. There is no natural number such that 0 < n < 1.

Proof. Left as an exercise.

Axioms of the Real Numbers

- Binary operations:
 - \blacksquare (+): $\mathbb{R} \times \mathbb{R} \mapsto \mathbb{R}$ $x, y \in \mathbb{R}, x + y \in \mathbb{R}$,
 - $\blacksquare (\cdot): \mathbb{R} \times \mathbb{R} \mapsto \mathbb{R} \qquad x, y \in \mathbb{R}, \ x \cdot y \in \mathbb{R}.$
- We have axioms for the real numbers as follows:
 - I Algebraic Axioms
 - (i) Associativity: For $x, y, z \in \mathbb{R}$, we have

$$x + (y + z) = (x + y) + z$$
$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

(ii) Commutativity: For $x, y \in \mathbb{R}$, we have

$$x + y = y + x$$
$$x \cdot y = y \cdot x$$

(iii) Distributivity: For $x, y, z \in \mathbb{R}$, we have

$$x \cdot (y+z) = x \cdot y + x \cdot z$$

- (iv) Identity:
 - Addition: There exists some $0 \in \mathbb{R}$ such that for all $x \in \mathbb{R}$, x + 0 = x.
 - Multiplication: There exists some $1 \in \mathbb{R}$ such that for all $x \in \mathbb{R}, x \cdot 1 = x$.
- (v) Inverses:

■ Addition: For all $x \in \mathbb{R}$, there exists some $y \in \mathbb{R}$ such that

$$x + y = 0 \iff y = -x.$$

■ Multiplication: For all $x \in \mathbb{R}$, there exists some $y \in \mathbb{R}$ such that

$$x \cdot y = 1 \iff y = \frac{1}{x} \iff y = x^{-1}.$$

II Ordering

(i) For some $x, y, z \in \mathbb{R}$, we have

$$x \le y \implies x + z \le y + z.$$

(ii) For some $x, y \in \mathbb{R}$, we have

$$0 \leq x, 0 \leq y \implies 0 \leq x \cdot y.$$

(iii) For some $x, y, z \in \mathbb{R}$, we have

$$x \leq y, y \leq z \implies x \leq z.$$

(iv) For some $x, y \in \mathbb{R}$, we have

$$x \le y, y \le x \implies x = y.$$

(v) For some $x, y \in \mathbb{R}$, we have

$$x \neq y \implies x \leq y \text{ or } y \leq x.$$

III No Hole (not satisfied by \mathbb{Q})

For any non-empty subset X of $\{x > 0\}$, there exists some $a \in \mathbb{R}$ such that

- (1) $a \le x \ \forall x \in X$, and
- (2) For all $\varepsilon>0$ ($\varepsilon\neq0,0\leq\varepsilon$), there exists some x_{ε} such that $x_{\varepsilon}-a\leq\varepsilon$.

Bounded Intervals

- Given a < b, the set X of real numbers is a bounded interval if it is in the form:
 - \blacksquare Open interval with endpoints a, b

$${x \in X \mid a < x < b} = (a, b).$$

■ Closed intervals

$${x \in X \mid a \le x \le b} = [a, b].$$

■ Half-open intervals

$${x \in X \mid a < x \le b} = (a, b].$$

Supremum and Infimum

• **Definition**. Let $X \subseteq \mathbb{R}$ be non-empty. A number $m \in \mathbb{R}$ (not necessarily in X) is a **lower bound** for X if for all $x \in X$, $m \le x$.

If a set has a lower bound, it is called **bounded below** (for instance, \mathbb{Z}).

- Remark. X either has no lower bounds or infinitely many.
- **Definition**. Let $X \subseteq \mathbb{R}$ be non-empty. A number $s \in \mathbb{R}$ (not necessarily in X) is called an **infimum** of the set X if it is
 - (1) A lower bound and
 - (2) For all other lower bounds r_i of X, $s \ge r_i$.

The infimum is hence known as the "greatest lower bound." We denote "r is the infimum of X" as

$$r = \inf(X)$$
.

- **Definition**. Let $X \subseteq \mathbb{R}$ be non-empty. A number $s \in \mathbb{R}$ (not necessarily in X) is called a **supremum** of the set X if it is
 - (1) An upper bound and
 - (2) For all other upper bounds r_i of X, $s \leq r_i$.

The supremum is hence known as the "least upper bound." We denote "r is the supremum of X" as

$$r = \sup(X)$$
.

• **Theorem**. Let $X \subseteq \mathbb{R}$ be non-empty. X has an upper bound if and only if X has a finite supremum and the finite supremum is unique.

Proof. If X has a supremum then that supremum is an upper bound for X. Assume that b is an upper bound of X. Let $\overline{X} = \{b+1-y \mid y \in X\}$, then \overline{X} is non empty and $\overline{X} \subset \{x>0\}$ (there is a 1 so it is surely greater than 0).

So, by Axiom 3, there is a real number a such that

- (1) If $z \in \overline{X}$, then $a \leq z$ (i.e., a is a lower bound for \overline{X}) and
- (2) For every $\varepsilon > 0$, there exists a $z_{\varepsilon} \in \overline{X}$ such that

$$z_{\varepsilon} - a \leq \varepsilon$$
.

Claim. $b_1 = b + 1 - a$ is the supremum for X.

There are two things to check:

- (1) Is b_1 an upper bound for X? Well, if $y \in X$, then $a \le b+1-y$ and we have $y \le b+1-a=b_1$.
- (2) Is b_1 the least upper bound?

Let M be some upper bound for X. Let us show that $b_1 \leq M$. By way of contradiction, assume that $M < b_1 = b + 1 - a$. Let $\varepsilon = b_1 - M > 0$.

By Axiom 3, there exists some $z \in \overline{X}$ such that $z - a \leq \varepsilon$. We have

$$z = b + 1 - y, y \in X,$$
 $\varepsilon = b_1 - M = b + 1 - a - M.$

So, supposedly $z - a = b + 1 - y - a \le b + 1 - a - M$ with $M \le y$ (this is a contradiction since M is assumed to be an upper bound, it cannot be smaller than y) and therefore $b_1 \le M$ and $b_1 = \sup(X)$.

• Archimedean Axiom (satisfied in \mathbb{R}). For every $x > 0, y \geq 0$, there exists $n \in \mathbb{N}_*$ such that

$$n \cdot x > y$$
.

Proof. By way of contradiction, assume that $n \cdot x \leq y \ \forall n \in \mathbb{N}_*$ (for some $x > 0, y \geq 0$). Then let $S = \{n \cdot x \mid n \in \mathbb{N}_*\} \subset \mathbb{R}$. Clearly S is bounded above by y and S is non-empty. This implies that $\sup(S)$ exists and $n \cdot x \leq \sup(S) \ \forall n \in \mathbb{N}_*$. This all implies that $(m+1) \cdot x \leq \sup(S) \ \forall m \in \mathbb{N}_*$.

• **Lemma**. Let $X \subset \mathbb{R}$ be non-empty and bounded above. Then for every $\varepsilon > 0$, there exists some x_{ε} such that

$$\sup(X) - \varepsilon < x_{\varepsilon} \le \sup(X).$$

Proof. Since $\sup(X)$ is an upper bound for X, then we know $x \leq \sup(X) \ \forall x \in X$. This implies the second part of the inequality.

To prove the first part of the inequality, assume by way of contradiction that there exists some $\varepsilon_0 > 0$ such that for every $x \in X$, $\sup(x) - \varepsilon_0 \ge x$. However, this is not possible since $\sup(x)$ is an upper bound, i.e., subtract anything from it and it will be less than x.

• Lemma. Let $x, y \in \mathbb{R}$ with y > x, then there exists some $r \in \mathbb{Q}$ such that x < r < y.

Proof. Take y-x>0, the Archimidean principle guarantees the existence of $n\in\mathbb{N}$ such that

$$n \cdot (y - x) > 1 \iff y - x > \frac{1}{n}$$
.

Recall,

$$\lfloor x \rfloor \le x \le \rfloor x \lfloor +1$$
$$\lfloor nx \rfloor \le \frac{nx}{n} < \frac{nx+1}{n}.$$

Let $r := (\lfloor nx \rfloor + 1)/n \in \mathbb{Q}$. Then we have

$$x = \frac{nx}{n} < \frac{\lfloor nx \rfloor + 1}{n}$$

$$\leq \frac{nx + 1}{n}$$

$$= x + \frac{1}{n}$$

$$= x + y - x$$

$$< y.$$

• Corollary. Let $p, q \in \mathbb{Q}$ with p < q. There exists some $z \in \mathbb{R} \setminus \mathbb{Q}$ such that p < z < q.

Proof. By Lemma,

$$\frac{p}{c} < \frac{q}{c} \iff \frac{p}{c} < \underbrace{r}_{\in \mathbb{Q}} < \frac{q}{c}$$

$$\iff p < \underbrace{r \cdot c}_{\in \mathbb{R} \ \backslash \ \mathbb{Q}} < q.$$

Absolute Value

• **Definition**. For some $x \in \mathbb{R}$, the **absolute value** function is defined as follows:

$$|x| := \begin{cases} -x & \text{, if } x < 0 \\ x & \text{, if } x \ge 0. \end{cases}$$

- **Proposition**. Let $x, a \in \mathbb{R}$. Then we have
 - (i) $|x| = 0 \iff x = 0$.
 - (ii) Let a > 0, then
 - $\blacksquare |x| < a \iff -a < x < a$

Sequences

Convergence

• **Definition**. A sequence of real numbers $(x_n)_{n\in\mathbb{N}}$ is said to be **convergent** if there exists $x\in\mathbb{R}$ such that $\forall \varepsilon>0$ $\exists N(\varepsilon)\in\mathbb{N}$ such that

$$|x - x_n| \le \varepsilon \ \forall n \ge N(\varepsilon).$$

Furthermore, we write $\lim_{n\to\infty} x_n = x$.

• **Example**. Show that $\lim_{n\to\infty} 1 + \frac{1}{(n+1)} = 1$. We want

$$|x - x_n| = \left|1 - \left(1 + \frac{1}{n+1}\right)\right| = \left|\frac{1}{n+1}\right| = \frac{1}{n+1} \le \varepsilon \ \forall \varepsilon > 0.$$

Let $\varepsilon > 0$, set $N(\varepsilon) = \lfloor 1/\varepsilon \rfloor = N(\varepsilon)$. This holds for

$$|x - x_n| = \frac{1}{n+1} \le \frac{1}{\lfloor \frac{1}{\varepsilon} \rfloor + 1}$$
$$\le \frac{1}{\frac{1}{\varepsilon}} \le \varepsilon.$$

• Lemma. A sequence of real numbers has at most one limit.

Proof. Assume $l_1, l_2 \in \mathbb{R}$ are two limits. We will show that $l_1 = l_2$ by showing that for all $\varepsilon > 0$, $|l_1 - l_2| \le \varepsilon$. Let $\varepsilon > 0$.

(1) $(x_n)_{n\in\mathbb{N}}$ converges to l_1 , i.e., for all $\varepsilon_1>0$ $\exists N_1(\varepsilon_1)$ such that

$$|x_n - l_1| \le \varepsilon_1 \ \forall n \ge N_1(\varepsilon_1),$$

(2) $(x_n)_{n\in\mathbb{N}}$ converges to l_2 , i.e., for all $\varepsilon_2>0$ $\exists N_2(\varepsilon_2)$ such that

$$|x_n - l_2| \le \varepsilon_2 \ \forall n \ge N_2(\varepsilon_2).$$

Let $\varepsilon > 0$ and set $\varepsilon_1 - \varepsilon/2$, $\varepsilon_2 = \varepsilon/2$. Then we have

$$|l_1 - l_2| = |l_1 - x_n + x_n - l_2|$$

$$< |l_1 - x_n| + |l_2 - x_n| < \varepsilon$$

where $|l_1 - x_n| \le \varepsilon_1 \ \forall n \ge N_1 \ \text{and} \ |l_2 - x_n| \le \varepsilon_2 \ n \ge N_2 \ n \ge \max\{N_1, N_2\}.$ Altogether, this implies that $l_1 = l_2$.

• Example of Divergent Sequence. Take $x_n = n \cdot \sin(n \cdot \pi/2)$. By way of contradiction, assume that $(x_n)_{n \in \mathbb{N}}$ is converging to some $x \in \mathbb{R}$. Say

$$x_{p_n} = x_{4n+1} = (4n+1) \cdot \underbrace{\sin((4n+1) \cdot \frac{\pi}{2})}_{=1}$$

$$= 4n+1$$

$$x_{q_n} = x_{4n+5} = (4n+5) \cdot \underbrace{\sin((4n+5) \cdot \frac{\pi}{2})}_{=1}$$

$$= 4n+5$$

which implies that $|x_{p_n}-x_{x_n}|=4$. From the contradiction assumption, for $\varepsilon=1/2$ there exists N(1/2) such that

$$|x_n - x| \le \frac{1}{2} \ \forall n \ge N(\frac{1}{2}).$$

Take n such that $4n + 1 \ge N(1/2)$. Then we have

$$|x_{p_n} - x| \le \frac{1}{2}$$

$$|x_{q_n} - x| \le \frac{1}{2}$$

$$4 = |x_{p_n} - x_{q_n}| = |x_{p_n} - x + x - x_{q_n}|$$

$$\le |x_{p_n} - x| + |x_{q_n} - x|$$

$$\le \frac{1}{2} + \frac{1}{2} \le 1$$

but this is a contradiction, so $(x_n)_{n\in\mathbb{N}}$ must be divergent.

• Lemma. Every convergent sequence is bounded.

Proof. Let $(x_n)_{n\in\mathbb{N}}$ be a convergent sequence, that is, there exists some $x\in\mathbb{R}$ such that for all $\varepsilon>0$, there exists some $N(\varepsilon)\in\mathbb{N}$ and

$$|x - x_n| < \varepsilon \ \forall n > N(\varepsilon).$$

In particular, take for $\varepsilon = 1$, there is N(1) such that

$$|x_n - x| \le 1 \ \forall n \ge N(1).$$

Recall the reverse triangle inequality,

$$|x_n| - |x| \le |x - x_n| \le 1 \quad n \ge N(1)$$

$$\implies |x_n| \le 1 + |x| \quad n \ge N(1)$$

Let $M = \max\{|x_0|, |x_1|, \dots, |x_{N(1)|, 1+|x|}\}$. Then certainly

$$|x_n| \le M \qquad n \le N(1)$$

$$|x_n| \le M \qquad n \ge N(1)$$

$$\implies |x_n| \le M \qquad \forall n \in \mathbb{N}.$$

• Recall. A sequence $(x_n)_{n\in\mathbb{N}}$ convergent $\implies \exists M\in\mathbb{N}$ such that $|x_n|\leq M \ \forall n\in\mathbb{N}$.

- **Definition**. A sequence $(x_n)_{n\in\mathbb{N}}$ is said to be
 - Increasing if $x_m \ge x_n$ when $m \ge n$,
 - **Decreasing** if $x_m \leq x_n$ when $m \geq n$,
 - Monotone if $(x_n)_{n\in\mathbb{N}}$ is increasing or decreasing.
- Lemma. Any increasing sequence that is bounded above is convergent.

Proof. Let $X = \{x_n \mid n \in \mathbb{N}\}$. Then $x_n \leq M, n \in \mathbb{N} \implies X$ bounded above $\implies x = \sup(X)$.

We want to show that $(x_n)_{n\in\mathbb{N}}$ converges to $x=\sup(X)$. This means (by definition) that for every $\varepsilon>0$, there exists $N(\varepsilon)\in\mathbb{N}$ such that

$$|x_n - x| \le \varepsilon \ \forall n \ge N(\varepsilon).$$

Note that $x = \sup(X)$ implies two important things:

- (i) $x_n \leq x \ \forall n \in \mathbb{N}$,
- (ii) $\forall \varepsilon > 0$, $\exists x_{\varepsilon} \in X$ such that $x x_{\varepsilon} \leq \varepsilon$ by the characterization of supremum. Note, we can equivalently replace x_{ε} with $x_{n_{\varepsilon}} \in \mathbb{N}$ to obtain $\forall \varepsilon > 0$, $\exists x_{n_{\varepsilon}} \in X$ such that $x x_{n_{\varepsilon}} \leq \varepsilon$.

So, let $\varepsilon > 0$, compute

$$|x_n - x| = x - x_n$$

$$\leq x - x_{n_{\varepsilon}} \leq \varepsilon$$

with $x_{n_{\varepsilon}} \leq x_n$ and $n \geq n_{\varepsilon}$ ($(x_n)_{n \in \mathbb{N}}$ increasing) and for all $\varepsilon > 0$, take $N(\varepsilon) = n_{\varepsilon}$.

- Corollary. A decreasing sequence $(x_n)_{n\in\mathbb{N}}$ that is bounded below is convergent.
- Remark. There are two cases:
 - (i) $(x_n)_{n\in\mathbb{N}}$ increasing, bounded above $\implies \lim_{n\to\infty} x_n = \sup\{x_n \mid n\in\mathbb{N}\},\$
 - (ii) $(x_n)_{n\in\mathbb{N}}$ decreasing, bounded below $\implies \lim_{n\to\infty} x_n = \inf\{x_n \mid n\in\mathbb{N}\}.$
- Example. Take $x_n = 2^{-n}$ decreasing, bounded below. Then

$$\lim_{n \to \infty} x_n = \inf\{2^{-n} \mid n \in \mathbb{N}\} = 0.$$

• Corollary. Let $(x_n)_{n\in\mathbb{N}}$ be a monotone sequence. Then $(x_n)_{n\in\mathbb{N}}$ is convergent if and only if $(x_n)_{n\in\mathbb{N}}$ is bounded.

Algebraic Manipulations of Limits

- Lemma. Let $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}$ be convergent sequences. Set $\lim_{n\to\infty} x_n = x$, $\lim_{n\to\infty} y_n = y$. Three things are true:
 - (1) The sequence $(x_n + y_n)_{n \in \mathbb{N}}$ is convergent and $\lim_{n \to \infty} (x_n + y_n) = x + y$,
 - (2) The sequence $(x_n \cdot y_n)_{n \in \mathbb{N}}$ is convergent and $\lim_{n \to \infty} (x_n \cdot y_n) = x \cdot y$,
 - (3) Assume $x_n \neq 0, y_n \neq 0$, then the sequence $(y_n/x_n)_{n \in \mathbb{N}}$ is convergent and $\lim_{n \to \infty} (y_n/x_n) = y/x$.

Proof. of (2). We want to show that $\forall \varepsilon > 0 \ \exists N(\varepsilon) \in \mathbb{N}$ such that

$$|x_n y_n - xy| < \varepsilon \ \forall n > N(\varepsilon).$$

Note that

$$|x_n y_n - xy| = |(x_n - x)y_n + x(y_n - y)|$$

$$\leq |x_n - x||y_n| + |x||y_n - y|$$

by the triangle inequality.

- Case 1: $x \neq 0$. Because $(y_n)_{n \in \mathbb{N}}$ is convergent, there exists $N_1 \in \mathbb{N}$ such that $|y_n - y| \leq \varepsilon/2 \cdot |x| \ \forall n \geq N_1$. Also, $(y_n)_{n \in \mathbb{N}}$ is bounded, i.e., $|y_n| \leq M \ \forall n \in \mathbb{N} \ \exists M \geq 1$.

Because $(x_n)_{n\in\mathbb{N}}$ is convergent, there exists some $N_2\in\mathbb{N}$ such that

$$|x - x_n| \le \frac{\varepsilon}{2M} \ \forall n \ge N_2.$$

Therefore, for all $\varepsilon > 0$, we set $N_{\varepsilon} = \max\{N_1, N_2\}$ and we have that

$$|x_n y_n - xy| \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \le \varepsilon \ \forall n \ge N_{\varepsilon}$$

which ultimately shows that $\lim_{n\to\infty} x_n \cdot y_n = x \cdot y$.

- Case 2: x = 0. Obviously it is true that

$$|x_n y_n - xy| = |x_n y_n| \le |x_n| |y_n|.$$

Then, consider that

- * $(y_n)_{n\in\mathbb{N}}$ convergent implies $|y_n|\leq M,$ and
- * $(x_n)_{n\in\mathbb{N}}$ convergent to 0 implies $\forall \varepsilon > 0 \ \exists N_1 \in \mathbb{N}$ such that $|x_n| \leq \varepsilon/2M \ \forall n \geq N_1$. Again, we have

$$|x_n y_n - xy| \le \frac{\varepsilon}{2M} \cdot M \le \frac{\varepsilon}{2} \le \varepsilon \ \forall n \ge N_1$$

which implies that $\lim_{n\to\infty} x_n y_n = 0$.