Politechnika Świętokrzyska w Kielcach	
Wydział Elektrotechniki, Automatyki i Informatyki	
Laboratorium IoT Rozproszone sieci sensoryczne	
Grupa: 3ID14B	Laboratorium 6
Data: 16.12.2018	Lesiak Karol

Packet Tracer - Explore The Smart City

Explore the Smart City

Understanding the devices that comprise the smart city

Sieci miejskie podłączone za pomocą czerwonych kabli szeregowych: Smart Grid, City Offices, Smart Parking, Smart Traffic

Sieci miejskie połączone za pomocą niebieskich kabli koncentrycznych: Smart Home, Cell Tower, City Offices

Dwa połączenia prowadzące z chmury ISP do urzędów miejskich:

Jedno z połączeń prowadzi do routera (City-Office_RT), drugie do kontroli ruchu (Traffic-Control)

Sieci miejskie połączone bezprzewodowo z Cell Tower:

Smart Home, Smart Parking, City Offices

Urządzenia z Smart Home podłączone do Cell Tower:

Smartfon oraz tablet

Urządzenia z klastra Smart Parking podłączone do Cell Tower:

Smartfon oraz router (S-Parking-RT)

Smart Parking

Interacting With the Smart Parking Cluster (City Offices Personnel)

Wyświetlane są urządzenia z obszaru Smart Parking oraz ich status.

Wartość wyświetlana przez p-Space-1

Po ustawieniu czerwonego samochodu na miejscu numer jeden gdzie znajduje się p-Space-1 wartość wskazywana zmieniła się

Interacting With the Smart Parking Cluster (Regular Citizens)

Po przejściu na adres 10.10.10.10 za pomocą przeglądarki telefonu dostajemy się na stronę która pokazuje wolne i zajęte miejsca parkingowe

Po przeciągnięciu zielonego samochodu na miejsce parkingowe numer pięć strona pokazuje, że to miejsce jest zajęte

Smart Traffic

Po przybliżeniu karetki do świateł, powoduje zmianę koloru na zielony co umożliwi przejazd

Oddalenie karetki od świateł, świecą na czerwono co uniemożliwia przejazd.

Packet Tracer – Explore the Smart Grid

Explore the Smart Grid

Understanding the devices that comprise the smart grid

Ile routerów widzisz w Smart Grid? Jak się nazywają? Power Main RT, Coal_RT, Wind_RT

Jakie funkcje pełnią routery?

Główny router Power Main RT jest podłączony do sieci Internet i udostępnia ją reszcie urządzeń do niego podłączonych, udostępnia również zasoby przechowywane na serwerze Power IoT Server. Kolejne dwa routery zbierają informacje od urządzeń do nich podłączonych i dają im dostęp do sieci Internet.

Nazwa i pełniona funkcja punktu dostępowego używanego w sieci:

Nazwa: Power Access Point

Funkcja: łączy się bezprzewodowo z laptopem oraz ogniwa fotowoltaiczne

Czy możemy określić które źródło energii aktywnie ją wytwarza?

Jakie urządzenie odpowiada za przełączanie między różnymi źródłami zasilania? Smart Power Grid Switch

W jaki sposób Smart Power Grid decyduje, którego źródła zasilania użyć: Wybiera to urządzenie które aktualnie produkuje najwięcej energii

Adres IP serwera Power IoT:

100.2.0.2

Nazwa użytkownika i hasło serwera, oraz na jakim urządzeniu je odkryłem

Login: Power Hasło: Power

Urządzenie: Solar-Cells

Która sekcja sprawia że ta preferencja (solar>wind>coal) jest jasna?

```
if (solar > 0) {
    console.log("Using Solar Power...");
    analogWrite(A3, 1);
} else if (wind > 0) {
        console.log("Using Wind Power...");
        analogWrite(A3, 2);
} else if (coal > 0) {
        console.log("Using Coal Power...");
        analogWrite(A3, 0);
} else {
        console.log("Blackout!");
        analogWrite(A3, 5);
}
```