

Positive voltage regulators

Features

- Output current to 1.5 A
- Output voltages of 5; 6; 8; 8.5; 9; 12; 15; 18; 24 V
- Thermal overload protection
- Short circuit protection
- Output transition SOA protection

Description

The L78xx series of three-terminal positive regulators is available in TO-220, TO-220FP, TO-3, D²PAK and DPAK packages and several fixed output voltages, making it useful in a wide range of applications. These regulators can provide local on-card regulation, eliminating the distribution problems associated with single point regulation. Each type employs internal current limiting, thermal shut-down and safe area protection, making it essentially indestructible. If adequate heat sinking is provided, they can deliver over 1 A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltage and currents.

Table 1. Device summary

Part n	umbers
L7805	L7809C
L7805C	L7812C
L7806C	L7815C
L7808C	L7818C
L7885C	L7824C

L78xx - L78xxC Maximum ratings

3 Maximum ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit	
V	DC input voltage	for V _O = 5 to 18 V	35	V
V _I	DC input voltage	for V _O = 20, 24 V	40	v
Io	Output current	Internally limited		
P_{D}	Power dissipation		Internally limited	
T _{STG}	Storage temperature range		-65 to 150	°C
_		for L7800	-55 to 150	°C
T _{OP}	Operating junction temperature range	for L7800C	0 to 150	

Note: Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

Table 3. Thermal data

Symbol	Parameter	D ² PAK	DPAK	TO-220	TO-220FP	TO-3	Unit
R _{thJC}	Thermal resistance junction-case	3	8	5	5	4	°C/W
R _{thJA}	Thermal resistance junction-ambient	62.5	100	50	60	35	°C/W

Figure 4. Application circuits

Electrical characteristics L78xx - L78xxC

Table 17. Electrical characteristics of L7809C (refer to the test circuits, $T_J = 0$ to 150 °C, $V_I = 15$ V, $I_O = 500$ mA, $C_I = 0.33$ μ F, $C_O = 0.1$ μ F unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
V _O	Output voltage	T _J = 25°C	8.64	9	9.36	V	
V _O	Output voltage	$I_O = 5$ mA to 1 A, $P_O \le 15$ W V _I = 11.5 to 26 V	8.55	9	9.45	٧	
$\Delta V_{O}^{(1)}$	Line regulation	V _I = 11.5 to 26 V, T _J = 25°C			180	.,	
ΔνΟ, ,	Line regulation	V _I = 12 to 18 V, T _J = 25°C			90	mV	
ΔV _O ⁽¹⁾	Lood regulation	I _O = 5 mA to 1.5 A, T _J = 25°C			180	.,	
ΔνΟ, ,	Load regulation	I _O = 250 to 750 mA, T _J = 25°C			90	mV	
I _d	Quiescent current	T _J = 25°C			8	mA	
	Quiescent current change	I _O = 5 mA to 1 A			0.5	- mA	
ΔI_d		V _I = 11.5 to 26 V			1		
$\Delta V_O/\Delta T$	Output voltage drift	I _O = 5 mA		-1		mV/°C	
eN	Output noise voltage	B =10 Hz to 100 kHz, T _J = 25°C		70		μV/V _O	
SVR	Supply voltage rejection	V _I = 12 to 23 V, f = 120 Hz	55			dB	
V _d	Dropout voltage	I _O = 1 A, T _J = 25°C		2		V	
R _O	Output resistance	f = 1 kHz		17		mΩ	
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25°C		0.40		Α	
I _{scp}	Short circuit peak current	T _J = 25°C		2.2		Α	

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Electrical characteristics L78xx - L78xxC

Table 23. Electrical characteristics of L7824C (refer to the test circuits, $T_J = 0$ to 150 °C, $V_I = 33$ V, $I_O = 500$ mA, $C_I = 0.33$ μ F, $C_O = 0.1$ μ F unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	23	24	25	V
Vo	Output voltage	I_O = 5 mA to 1 A, $P_O \le$ 15 W V _I = 27 to 38 V	22.8	24	25.2	V
ΔV _O ⁽¹⁾	Line regulation	V _I = 27 to 38 V, T _J = 25°C			480	mV
ΔνΟ, ,	Line regulation	V _I = 30 to 36 V, T _J = 25°C			240	IIIV
ΔV _O ⁽¹⁾	Load regulation	$I_{O} = 5$ mA to 1.5 A, $T_{J} = 25^{\circ}$ C			480	mV
$\nabla \mathbf{A}^{O}$,	Load regulation	I _O = 250 to 750 mA, T _J = 25°C			240	
I _d	Quiescent current	T _J = 25°C			8	mA
ΔI	Quiescent current change	I _O = 5 mA to 1 A			0.5	mA
ΔI_d		V _I = 27 to 38 V			1	IIIA
$\Delta V_O/\Delta T$	Output voltage drift	I _O = 5 mA		-1.5		mV/°C
eN	Output noise voltage	B = 10 Hz to 100 kHz, T _J = 25°C		170		μV/V _O
SVR	Supply voltage rejection	V _I = 28 to 38 V, f = 120 Hz	50			dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25°C		2		V
R _O	Output resistance	f = 1 kHz		28		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25°C		0.15		Α
I _{scp}	Short circuit peak current	T _J = 25°C		2.1		Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Figure 38. Drawing dimension TO-220 (type SMIC-subcon.)

577

L20

b1(X3) -

H1

<u>D1</u>

D

"GATE"
Notes 9-10

L30

L 1

b (X3)

__e1__

Figure 39. Drawing dimension TO-220 (type STD-ST)

TYPE "A"
STD-ST

"GATE"
Notes 9-10

0015988/A

Table 24. TO-220 mechanical data

	Type STD-ST			Type SMIC-Subcon.			
Dim.		mm.			mm.		
	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α	4.40		4.60	4.47	4.57	4.67	
A1	0.61		0.88	0.80	0.81	0.86	
b1	1.14		1.70	1.15		1.44	
С	0.49		0.70		0.56		
c1					0.38		
D	15.25		15.75	15.07	15.24	15.45	
D1		1.27					
E	10.00		10.40	10	10.15	10.30	
е	2.40		2.70	2.29	2.54	2.79	
e1	4.95		5.15	4.83	5.08	5.33	
F	1.23		1.32		1.27		
H1	6.20		6.60		6.24		
J1	2.40		2.72	2.04	2.67	2.92	
L	13.00		14.00	13.35	13.50	13.65	
L1	3.50		3.93		3.90		
L20		16.40		16.25	16.40	16.55	
L30		28.90			28.74		
ØP	3.75		3.85		3.83		
Q	2.65		2.95	2.72	2.74	2.80	

Note: In spite of some difference in tolerances, the packages are compatible.

Order codes L78xx - L78xxC

8 Order codes

Table 32. Order codes

Part numbers	Order codes							
Part numbers	TO-220	DPAK	D ² PAK	TO-220FP	TO-3			
L7805					L7805T			
L7805C	L7805CV	L7805CDT-TR	L7805CD2T-TR	L7805CP	L7805CT			
L7806C	L7806CV		L7806CD2T-TR		L7806CT			
L7808C	L7808CV		L7808CD2T-TR	L7808CP				
L7885C	L7885CV		L7885CD2T-TR (1)	L7885CP ⁽¹⁾	L7885CT ⁽¹⁾			
L7809C	L7809CV		L7809CD2T-TR	L7809CP				
L7812C	L7812CV		L7812CD2T-TR	L7812CP	L7812CT			
L7815C	L7815CV		L7815CD2T-TR	L7815CP	L7815CT			
L7818C	L7818CV		L7818CD2T-TR (1)		L7818CT			
L7824C	L7824CV		L7824CD2T-TR	L7824CP	L7824CT			

^{1.} Available on request.