Symbolic Manipulation and Computation in the Same Graph

Darius Barbano

Contents

1	Background	4
2	Methods	4
	2.1 Network Construction	4
3	Results	5
4	Conclusions	Ę

Abstract

General artificial intelligence refers to machine intelligence than performs a task as successfully as a human does. A fundamental difference between human neural network and current machine neural networks is that only human networks combine symbolic reasoning with computation. Here we show how a graph can . . .

1 Background

1. What is symbolic computation?

A symbolic computation is a calculation performed with symbolic representations of values and operations. A simple example would be the expression (x+1)(x-1) which would evaluate to x^2-1 , rather than to some numerical result.

2. What is calculation?

A calculation is a process by which one or more inputs is transformed into one or more results. One may calculate that the product of 5 and 4 is 20.

3. What is meant by a computational class? - do you mean complexity class?

Code for each subsection of this document can be found at NeuralNetworkResearch.

2 Methods

2.1 Network Construction

Figure 2 illustrates a neuron that receives three ordered inputs.

Figure 1: Single neuron receiving ordered intputs.

While this model is suitable for biological networks of neurons, a neural network in the computational sense would look more like an abstract syntax tree. In the following diagram, a network of operators and operands form a tree-like structure in which elements at lower levels represent values to manipulate which at higher levels interact with each other through arithmetic operations to produce a result. Any computation which involves a combination of operations on one or more values can be represented in this structure, such as logical operations or large-scale machine learning models.

Figure 2: An Abstract Syntax Tree of arithmetic operations.

- 3 Results
- 4 Conclusions