

А7682E Дизайн оборудования

Модуль LTE

SIMCom Wireless Solutions Limited

SIMCom Headquarters Building, Building 3, No. 289 Linhong Road, Changning District, Shanghai P.R. China Тел: 86-21-31575100 support@simcom.com www.simcom.com

Название документа:	Проектирование аппаратного обеспечения А7682Е	
Версия:	V1.00	
Дата:	2021-03-09	
Статус:	Выпущено	

ОБЩИЕ УКАЗАНИЯ

КОМПАНИЯ SIMCOM ПРЕДОСТАВЛЯЕТ ЭТУ ИНФОРМАЦИЮ В КАЧЕСТВЕ УСЛУГИ СВОИМ КЛИЕНТАМ ДЛЯ ПОДДЕРЖКИ ПРИКЛАДНЫХ И ИНЖЕНЕРНЫХ РАБОТ, В КОТОРЫХ ИСПОЛЬЗУЮТСЯ ПРОДУКТЫ, РАЗРАБОТАННЫЕ КОМПАНИЕЙ SIMCOM. ПРЕДОСТАВЛЕННАЯ ИНФОРМАЦИЯ ОСНОВАНА НА ТРЕБОВАНИЯХ, СПЕЦИАЛЬНО ПРЕДОСТАВЛЕННЫХ SIMCOM ЗАКАЗЧИКАМИ. КОМПАНИЯ SIMCOM НЕ ПРОВОДИЛА НЕЗАВИСИМОГО ПОИСКА ДОПОЛНИТЕЛЬНОЙ ИНФОРМАЦИИ, ВКЛЮЧАЯ ЛЮБУЮ ИНФОРМАЦИЮ, КОТОРАЯ МОЖЕТ НАХОДИТЬСЯ В РАСПОРЯЖЕНИИ ЗАКАЗЧИКА. КРОМЕ ТОГО, ЗА ПРОВЕРКУ СИСТЕМЫ ДАННОГО ПРОДУКТА, РАЗРАБОТАННОГО КОМПАНИЕЙ SIMCOM, В РАМКАХ БОЛЕЕ КРУПНОЙ ЭЛЕКТРОННОЙ СИСТЕМЫ ОТВЕЧАЕТ ЗАКАЗЧИК ИЛИ СИСТЕМНЫЙ ИНТЕГРАТОР ЗАКАЗЧИКА. ВСЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ, ПРЕДСТАВЛЕННЫЕ В НАСТОЯЩЕМ ДОКУМЕНТЕ, МОГУТ БЫТЬ ИЗМЕНЕНЫ.

COPYRIGHT

ДАННЫЙ ДОКУМЕНТ СОДЕРЖИТ СЛУЖЕБНУЮ ТЕХНИЧЕСКУЮ ИНФОРМАЦИЮ, КОТОРАЯ ЯВЛЯЕТСЯ СОБСТВЕННОСТЬЮ КОМПАНИИ SIMCOM WIRELESS SOLUTIONS LIMITED КОПИРОВАНИЕ, ПЕРЕДАЧА ДРУГИМ ЛИЦАМ И ИСПОЛЬЗОВАНИЕ ДАННОГО ДОКУМЕНТА ЗАПРЕЩЕНЫ БЕЗ СПЕЦИАЛЬНОГО РАЗРЕШЕНИЯ КОМПАНИИ SIMCOM. НАРУШИТЕЛИ НЕСУТ ОТВЕТСТВЕННОСТЬ ПЕРЕД

ВЫПЛАТА КОМПЕНСАЦИЙ. ВСЕ ПРАВА НА ЗАПАТЕНТОВАННУЮ ТЕХНИЧЕСКУЮ ИНФОРМАЦИЮ, ВКЛЮЧАЯ, НО НЕ ОГРАНИЧИВАЯСЬ РЕГИСТРАЦИЕЙ ПАТЕНТА, ПОЛЕЗНОЙ МОДЕЛИ ИЛИ ПРОМЫШЛЕННОГО ОБРАЗЦА, СОХРАНЯЮТСЯ ЗА КОМПАНИЕЙ SIMCOM. ВСЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ, ПРЕДСТАВЛЕННЫЕ В НАСТОЯЩЕМ ДОКУМЕНТЕ, ПОДЛЕЖАТ

ИЗМЕНЯТЬ БЕЗ ПРЕДВАРИТЕЛЬНОГО УВЕДОМЛЕНИЯ В ЛЮБОЕ ВРЕМЯ.

SIMCom Wireless Solutions Limited

Здание штаб-квартиры SIMCom, корпус 3, № 289 Linhong Road, район Чаннин, Шанхай, Китай.

Тел: +86 21 31575100

Электронная почта: simcom@simcom.com

Для получения дополнительной информации посетите сайт:

https://www.simcom.com/download/list-863-en.html

Для получения технической поддержки или сообщения об ошибках в документации, пожалуйста, посетите сайт:

www.simcom.com 2/86

https://www.simcom.com/ask/ или по электронной почте: support@simcom.com

Copyright © 2021 SIMCom Wireless Solutions Limited Все права защищены.

www.simcom.com 3/86

История версий

Дата	Версия	Описание изменений	Автор
2021-03-09	1.00	Onural log popula	Xiaojun.Guo
2021-03-09	1.00	Оригинальная версия.	Ю.Ся

www.simcom.com 4/86

Содержание

1	Введение	9
	1.1 Основные сведения о продукте	9
	1.2 Обзор аппаратного интерфейса	10
	1.3 Блок-схема аппаратного обеспечения	10
	1.4 Функциональный обзор	11
2	Информация о пакете	13
	2.1 Обзор назначений выводов	13
	2.2 Описание контактов	15
	2.3 Механическая информация	20
	2.4 Рекомендуемые размеры печатной платы	21
	2.5 Рекомендуемый размер трафарета	22
3	Интерфейсное приложение	23
	3.1 Источник питания	
	3.1.1 Эталонный проект источника питания	24
	3.1.2 Рекомендуемая схема источника питания	25
	3.1.3 Монитор напряжения	26
	3.2 Включение/выключение питания и сброс	26
	3.2.1 Питание модуля включено	26
	3.2.2 Выключение питания модуля	28
	3.2.3 Сброс модуля	29
	3.3 UART	30
	3.3.1 Описание RI/DTR	31
	3.4 Интерфейс USB	32
	3.4.1 Эталонный дизайн USB	33
	3.4.2 Интерфейс BOOT_CFG	33
	3.5 Интерфейс USIM	34
	3.5.1 Руководство по применению USIM	35
	3.5.2 Рекомендуем Держатель для USIM-карты	36
	3.6 Аналоговый аудиоинтерфейс	38
	3.6.1 Эталонный дизайн аналогового аудио	38
	3.7 Интерфейс GPIO	39
	3.8 Шина I2С	39
	3.9 Состояние сети	40
	3.10 Другой интерфейс	41
	3.10.1 АЦП	41
	3.10.2 LDO	41
4	Технические характеристики RF	43
	4.1 GSM/LTE	43
	4.2 Эталонный дизайн антенны GSM/ LTE	44

	4.3	Эталонный дизайн антенны	45
	4.4	Разметка печатной платы	45
5	Эле	ктрические характеристики	46
	5.1	Максимальные абсолютные значения	
	5.2	Условия эксплуатации	
	5.3	Режим работы	
		5.3.1 Определение режима работы	
		5.3.2 Режим сна	
		5.3.3 Режим минимальной функциональности и режим полета	
	5.4	Потребление тока	49
	5.5	Примечания ESD	
•		OMT	=0
6		оводство по производству SMT	
	6.1	Вид сверху и снизу на А7682Е	
	6.2	Информация об этикетке	53
	6.3	Типичный профиль для SMT-расплавления	54
	6.4	Уровень чувствительности к влаге (MSL)	54
7	Упаі	ковка	56
8	При	ложение	59
	8.1	Схемы кодирования и максимальная чистая скорость передачи данных по воздушном интерфейсу	
	8.2	Похожие документы	
	8.3	Термины и сокращения	62
	8 4	Предостережения по безопасности	63

Индекс таблицы

Таблица 1: Частотные диапазоны А7682Е	9
Таблица 2: Общие характеристики	11
Таблица 3: Описание контактов	14
Таблица 4: Определение параметров ввода-вывода	15
Таблица 5: Определение электрических параметров ввода-вывода 1,8 В	15
Таблица 6: Определение электрических параметров ввода-вывода 3,3 В	16
Таблица 7: Описание выводов	16
Таблица 8: Электрические параметры вывода VBAT	
Таблица 9: Список рекомендуемых диодов TVS	25
Таблица 10: Параметры последовательности включения питания	27
Таблица 11: Параметры последовательности выключения питания	29
Таблица 12: Электрический параметр RESET	30
Таблица 13: Описание BOOT_CFG	33
Таблица 14: Электронная характеристика USIM в режиме 1,8 В (USIM_VDD=1,8 В)	34
Таблица 15: Электронная характеристика USIM в режиме 3,0 В (USIM_VDD=3 В)	35
Таблица 16: Описание контактов гнезда Amphenol USIM	37
Таблица 17: Таблица параметров АЦП с аналоговым входом МІС	38
Таблица 18: Список ресурсов GPIO	
Таблица 19: Состояние контактов NETLIGHT в режиме 2G	40
Таблица 20: Состояние контактов NETLIGHT в режиме LTE	41
Таблица 21: Электронные характеристики АЦП	41
Таблица 22: Электрические характеристики VDD_EXT	41
Таблица 23: Мощность кондуктивных выбросов	43
Таблица 24: Рабочие диапазоны GSM	43
Таблица 25: Рабочие диапазоны E-UTRA	43
Таблица 26: Чувствительность кондуктивного приема	44
Таблица 27: Эталонная чувствительность (QPSK)	44
Таблица 28: Требования к антеннам GSM/LTE	44
Таблица 29: Список рекомендуемых деталей TVS	45
Таблица 30: Абсолютные максимальные значения	46
Таблица 31: Рекомендуемые рабочие параметры	46
Таблица 32: Характеристики цифровых входов/выходов 1,8 В*	47
Таблица 33: Рабочая температура	47
Таблица 34: Определение режима работы	
Таблица 35: Потребляемый ток на контактах VBAT (VBAT=3,8 B)	49
Таблица 36: Таблица измерения характеристик ESD (температура: 25°C, влажность: 45%)	50
Таблица 37: Описание информации на этикетке	
Таблица 38: Уровень чувствительности к влаге и срок службы пола	
Таблица 39: Размер лотка	57
Таблица 40: Размер маленькой картонной коробки	57
Таблица 41: Размер большой коробки	58

Таблица 42: Схемы кодирования и максимальная чистая скорость передачи данных по во интерфейсу	
Таблица 43: Связанные документы	
Таблица 44: Термины и сокращения	62
	63

www.simcom.com 8/86

Рисунок Индекс

Рисунок 1: Блок-схема	10
Рисунок 2: Схема выводов модуля (вид сверху)	13
Рисунок 3: Габаритный чертеж (Единицы измерения: мм)	20
Рисунок 4: Рекомендуемая площадь печатной платы Размеры (Единицы измерения: мм)	21
Рисунок 5: Рекомендуемые размеры трафарета (Единицы измерения: мм)	
Рисунок 6: Ток разрыва, вызванный падением напряжения VBAT	23
Рисунок 7: Опорная схема входа VBAT	24
Рисунок 8: Рекомендуемая схема линейного источника питания	25
Рисунок 9: Рекомендуемые схемы импульсного источника питания	
Рисунок 10: Опорная схема включения/выключения питания	27
Рисунок 11: Последовательность включения питания PWRKEY	27
Рисунок 12: Последовательность выключения питания PWRKEY	29
Рисунок 13: Схема опорного сброса	29
Рисунок 14: Схема подключения последовательного порта (полнофункциональный режим)	30
Рисунок 15: Схема подключения последовательного порта (режим NULL)	31
Рисунок 16: Схема триодного преобразования уровня	31
Рисунок 17: Изменение уровня на RI (SMS, URC, Входящий вызов)	32
Рисунок 18: Схема USB	33
Рисунок 19: Эталонная схема BOOT_CFG	34
Рисунок 20: Порт принудительной загрузки	34
Рисунок 21: Опорная схема интерфейса USIM (6PIN)	35
Рисунок 22: Опорная схема интерфейса USIM (8PIN)	35
Рисунок 23: Разъем для карты Amphenol C707 10M006 512 USIM	37
Рисунок 24: Опорная схема аналогового аудиоинтерфейса	38
Рисунок 25: Опорная схема I2C	39
Рисунок 26: Опорная схема NETLIGHT	40
Рисунок 27: Схема подключения пассивной антенны	45
Рисунок 28: Схема эталонной печатной платы	46
Рисунок 29: Вид сверху и снизу на А7682Е	52
Рисунок 30: Информация об этикетке	53
Рисунок 31: Профиль темповой пропитки А7682Е	54
Рисунок 32: схема упаковки	
Рисунок 33: Рисунок лотка	56
Рисунок 34: Чертеж небольшой картонной коробки	57
Рисунок 35: Чертеж большой коробки	57

1 Введение

Этот документ описывает аппаратный интерфейс модуля, что может помочь пользователям быстро понять определение интерфейса, электрические характеристики и размеры структуры модуля. В сочетании с этим документом и другими документами по применению пользователи могут быстро понять и использовать модуль A7682E для проектирования и разработки приложений.

Компания SIMCom предоставляет набор оценочных плат для облегчения тестирования и использования модуля A7682E. Инструменты для оценочных плат включают в себя плату EVB, кабель USB, антенну и другие периферийные устройства.

1.1 Описание продукта

Модуль A7682E поддерживает GSM и LTE-FDD. Подробное описание частотных диапазонов приведено в следующей таблице:

Таблица 1: Частотные диапазоны А7682Е

СТАНДАРТ	БАНДА	A7682E
GSM	900 МГц	✓
GSIVI	1800 МГц	✓
	FDD B1	✓
	FDD B3	✓
LTE-FDD	FDD B5	✓
LIE-FDD	FDD B7	✓
	FDD B8	✓
	FDD B20	✓
Категория		CAT1

Небольшой физический размер 19,6 * 19,6 * 2,4 мм позволяет удовлетворить требования к размеру пространства практически во всех М2М-приложениях, таких как транспортные средства, приборы учета, безопасность, маршрутизация, беспроводные POS, мобильное вычислительное оборудование, PDA, планшетные компьютеры и т.д.

A7682E имеет 85 выводов, включая 50 выводов LGA на внешнем кольце и 35 выводов LGA на внутреннем кольце. В этом документе будут представлены все функциональные выводы.

www.simcom.com 10/86

1.2 Обзор аппаратного интерфейса

А7682Е предоставляет следующие аппаратные интерфейсы.

- Вход питания
- Интерфейс USB 2.0
- Три интерфейса UART (один основной последовательный порт, один отладочный последовательный порт и один обычный двухпроводный последовательный порт)
- Интерфейс I2C
- Два интерфейса для карт USIM
- Интерфейс АЦП
- Выход источника питания
- Загрузочный USB-интерфейс и руководство
- Два аудиоинтерфейса, один порт МІС и один порт Receiver.
- Общие интерфейсы ввода и вывода (GPIO)
- Интерфейс индикации состояния сети
- Антенный интерфейс
- Интерфейс индикации состояния работы модуля

1.3 Блок-схема аппаратного обеспечения

Блок-схема модуля А7682Е показана на рисунке ниже.

Рисунок 1: Блок-схема

www.simcom.com

1.4 Функциональный обзор

Таблица 2: Общие характеристики

Характеристика	Реализация	
Электропитание	VBAT: 3,4B ~4,2B, рекомендуемый VBAT: 3,8B	
Потребляемая мощность	Потребляемый ток в спящем режиме: <2 мА	
БАНДА	См. таблицу 1	
Мощность TX	Уровень мощности GSM/GPRS: EGSM900: 4 (33 дБм±2 дБ) DCS1800: 1 (30 дБм±2 дБ)	
	Уровень мощности EDGE: EGSM900: E2 (27 дБм±3 дБ) DCS1800: E1 (26 дБм+3 дБ/-4 дБ) Уровень мощности LTE: 3 (23 дБм±2,7 дБ)	
Пропускная способность передачи данных	GPRS Несколько тайм-слотов уровня 12 EDGE Несколько тайм-слотов уровня 12 FDD-LTE категории 1: 10 Мбит/с (DL), 5 Мбит/с (UL)	
Антенный интерфейс	Интерфейс антенны GSM/LTE	
Короткие сообщения (SMS)	МТ, МО, СВ, Техt, режим PDU Устройство хранения коротких сообщений (SMS): USIM-карта, СВ не поддержка сохранения в SIM-карте Поддержка домена CS и домена PS SMS	
Интерфейс карты USIM	Поддержка 1,8 В/3 В USIM-карты	
Инструментарий для применения USIM	Поддержка SAT class3, GSM 11.14 Release 99 Поддержите USAT	
Управление телефонной книгой	Поддержка типов телефонных книг : SM/FD/ON/AP/SDN	
Аудиофункция	Поддержка одного аналогового микрофона, один аналоговый интерфейс аудиовыхода	
	 ●Главный последовательный порт Поддержка скорости передачи данных от 300 до 3,6 Мбит/с АТ-команды и данные могут быть отправлены через последовательный порт Поддержка RTS/CTS 	
Интерфейс UART	Аппаратный контроль потока ■ UART3 один обычный двухпроводной последовательный порт Скорость передачи данных по умолчанию составляет 115200bps.	
	Отладочный последовательный портПоддержка использования отладки	

www.simcom.com 12/86

USB-интерфейс	Совместимость с USB 2.0, режим хоста не поддерживается. Этот интерфейс можно использовать для отправки АТ-команд, передачи данных, отладки и обновления программного обеспечения.
Обновление микропрограммы	Обновление микропрограммы через интерфейс USB
Физические характеристики	Размер: 19,6*19,6*2,4 мм Вес: 1,9 г±0,1

www.simcom.com 13/86

	Температура эксплуатации: -30°C ~ +80°C
Диапазон температур	Расширенная рабочая температура: -40°C ~ +85°C*
	Температура хранения: -45°C ~ +90°C

ПРИ

HUE

Модуль способен совершать и принимать голосовые звонки, звонки для передачи данных, SMS и осуществлять GPRS/LTE трафик при температуре -40° C ~.

 $+85^{\circ}$ С. Производительность будет немного ниже, чем в спецификациях 3GPP, если температура за пределами нормального диапазона рабочих температур и в расширенном диапазоне рабочих температур.

www.simcom.com 14/86

2 Информация о пакете

2.1 Обзор назначений выводов

А7682Е обеспечивает 85контактный интерфейс.

15/86 www.simcom.com

Таблица 3: Описание контактов

Контакт №.	Название вывода	Контакт №.	Название вывода
1	UART1_TXD	2	UART1_RXD
3	UART1_RTS	4	UART1_CTS
5	UART1_DCD	6	UART1_DTR
7	UART1_RI	8	GND
9	MICP	10	MICN
11	SPK1P	12	SPK1N
13	GND	14	SIM1_DET
15	SIM1_DATA	16	SIM1_CLK
17	SIM1_RST	18	SIM1_VDD
19	GND	20	NC
21	GND	22	UART3_TXD
23	UART3_RXD	24	USB_VBUS
25	USB_DP	26	USB_DM
27	GND	28	NC
29	NC	30	GND
31	GND	32	RF_ANT
33	GND	34	VBAT
35	VBAT	36	GND
37	GND	38	АЦП
39	PWRKEY	40	VDD_EXT
41	NETLIGHT	42	СТАТУС
43	NC	44	NC
45	GND	46	NC
47	NC	48	NC
49	NC	50	NC
51	NC	52	SIM2_DET
53	SIM2_DATA	54	SIM2_CLK
55	SIM2_RST	56	SIM2_VDD
57	GPIO1	58	GPIO2
59	NC	60	NC
61	NC	62	NC
63	GND	64	SDA
65	SCL	66	GND
67	GND	68	NC
69	GND	70	GND
71	GND	72	GND
73	GND	74	GND
75	GND	76	GND

www.simcom.com 16/86

77	GND	78	GPIO3
79	GPIO4	80	GPIO5
81	GPIO6	82	BOOT_CFG●
83	СБРОС	84	DBG_RXD
85	DBG_TXD		

ПРИ

Контакт 'BOOT_CFG' не может быть подтянут до подачи питания на модуль, иначе это повлияет на нормальный запуск модуля.

2.2 Описание контактов

Таблица 4: Определение параметров ввода-вывода

Тип штыря	Описание
ПИ	Вход питания
PO	Выходная мощность
Al	Аналоговый вход
AO	Аналоговый выход
ВВОД/ВЫВ ОД	Вход/выход
DI	Цифровой вход
DO	Цифровой выход
DOH	Цифровой выход с высоким уровнем
DOL	Цифровой выход с низким уровнем
ПУ	Подтягивания
PD	Потяните вниз
OD	Открытый слив

Таблица 5: Определение электрических параметров входа/выхода 1,8 В

Мощность домен	Параметр	Описание	Мин	Тип.	Макс
	VCC=1,8 B				
	VIH	Вход высокого уровня	VCC * 0,7	1.8V	VCC+0.2
	вил	Вход низкого уровня	-0.3V	0V	VCC *0.3
	Rpu	Подтягивающий	55 KΩ	79 ΚΩ	121ΚΩ

www.simcom.com 17/86

	резистор			
Rpd	Понижающий резистор	51ΚΩ	87 ΚΩ	169ΚΩ

www.simcom.com 18/86

	VCC=1,8 E	VCC=1,8 В Типичный								
	IIL	Входной ток утечки	-	-	10uA					
	Рабочие у	словия постоянного тока	на входе (VCC =	: 1,8 В в типично	м случае)					
1.8V	VOH	Диапазон высоких уровней выходного сигнала	VCC-0.2	-	-					
	VOL	Диапазон низкого уровня выходного сигнала	-	-	0.2V					
	lol	Выходной ток низкого уровня Vpad=0,2 В	-	-	13 мА					
	лох	Выходной ток высокого уровня Vpad=VCC-0.2V	-	-	11 мА					

Таблица 6: Определение электрических параметров ввода-вывода 3,3 В

Мощность домен	Paramet er	Описание	Мин	Тип.	Макс				
	VCC=3,3 B								
	VIH	Вход высокого уровня	2V	-	VCC+0.3				
	вил	Вход низкого уровня	-0.3V	0V	0.8V				
	Rpu	Подтягивающи й резистор	26K	47K	72K				
	Rpd	Понижаю щий резистор	27K	54K	267K				
	VCC=3,3 В Типичный								
3,3 B (SIM)	IIL	Входной ток утечки	-	-	10uA				
	Рабочие условия постоянного тока на входе (VCC = 3,3 B, типично)								
	VOH	Диапазон высоких уровней выходного сигнала	2.4V	-	-				
	VOL	Диапазон низкого уровня выходного сигнала	-	-	0.4V				
	lol	Низкий уровень выход ток Vpad=0,4 B	-	-	7 мА				

www.simcom.com

лох	Выходной сигнал высокого уровня ток Vpad=VCC-0,5 В	-	-	7 мА
	Ъ			

Таблица 7: Описание выводов

		Параметр выво	ода	
Название вывода	Контакт №.	Мощнос ть Тип домен	Описание	[*] Примечание

www.simcom.com 20/86

Электропитан					
VBAT	34,35	-	ПИ	Входное напряжение A7682E варьируется от 3,4 В до 4,2 В, а пиковое значение тока может достигать 2A.	
VDD_EXT	40	-	PO	Выходное напряжение 1,8 В, выходной ток до 50 мА. Он может обеспечить питание для схем преобразования уровня, но не для мощные нагрузки.	
GND	8,13,19,2 1,27,30,3 1,33,36,3 7,45,63,6 6,67,69,7 0,71,72,7 3,74,75,7 6,77	-	-	Земля	
Управление си	истемой				
PWRKEY	39	-	DI, PU	Вход включения/выключения питания, активный низкий. VIH: 0.7*VBAT VIL: 0,5 B	РWRKEY имеет внутренне подтянуто к VBAT с 50КΩ резистор, по умолчанию высокий.
СБРОС	83	-	DI, PU	Вход управления сбросом системы, активный низкий уровень. VIH: 0.7*VBAT VIL: 0.5V	RESET подтянут к VBAT с 50КΩ (типовой) резистор, по умолчанию высокий.
Интерфейс SII	M				
SIM1_DET	14	1.8V	ВВОД/В ЫВОД, PD	Обнаружение горячей замены карты SIM1	
SIM1_DATA	15	1.8/3.0 V	ВВОД/В ЫВОД, ПУ	Данные шины SIM1, этот вывод подтянут с помощью 4,7KΩ резистора к SIM1_VDD.	
SIM1_RST	17	1.8/3.0 V	ВВОД/В ЫВОД, ПУ	Выход сброса шины SIM1.	
SIM1_CLK	16	1.8/3.0 V	ВВОД/В ЫВОД,	Выход тактового генератора шины SIM1.	

www.simcom.com 21/86

			ПУ		
SIM1_VDD	18	1.8/3.0 V	PO	Выход питания SIM-карты, поддерживает выход 1.8v/3.0v в зависимости от типа карты, выходной ток до 50 мА.	
SIM2_DET	52	1.8V	ВВОД/В ЫВОД, PD	Обнаружение горячей замены карты SIM2	
SIM2_DATA	53	1.8/3.0 V	ВВОД/В ЫВОД, ПУ	Данные шины SIM2, этот вывод подтянут резистором 4,7KΩ к SIM2_VDD.	
SIM2_RST	55	1.8/3.0 V	ВВОД/В ЫВОД, ПУ	Выход сброса шины USIM2.	
SIM2_CLK	54	1.8/3.0	ВВОД/В ЫВОД, ПУ	Выход тактового генератора шины USIM2.	

www.simcom.com 22/86

		V			
SIM2_VDD	56	1.8/3.0 V	PO	Выход питания USIM-карты, поддерживает выход 1.8v/3.0v в соответствии с картой Тип, выходной ток до 50 мА.	
USB-интерфей	йС				
USB_VBUS	24	-	Al	Вход обнаружения действительного USB, активный высокий уровень Vmin=3.0V, Vmax=5.2V, Vnorm=5V	
USB_DM	26	-	ВВОД/В ЫВОД	Отрицательная линия дифференциального двунаправленного сигнала USB.	
USB_DP	25	-	ВВОД/В ЫВОД	Положительная линия дифференциального двунаправленного сигнала USB.	
Полнофункци	ональны	й интерс	рейс UA	RT	
UART1_TXD	1	1.8V	DOH	Вывод данных	
UART1_RXD	2	1.8V	DI	Ввод данных	
UART1_RTS	3	1.8V	DI	Вход RTS	
UART1_CTS	4	1.8V	DO	Выход CTS	Если он не
UART1_DCD	5	1.8V	DO	Обнаружение носителя	используется,
UART1_DTR	6	1.8V	DI	Готовность DTE	держите его
UART1_RI	7	1.8V	DO	Индикатор звонка	открытым.
Отладочный І	JART				
DBG_TXD	85	1.8V	DOH	Выход CP UART	По умолчанию
DBG_RXD	84	1.8V	DI	Вход CP_UART	используется как порт отладки.
UART 3					
UART3_TXD	22	1.8V	DOH	Выход UART3	
UART3_RXD	23	1.8V	DI	Вход UART3	
Интерфейс I20	C				
SCL	65	1.8V	DO	Выход тактового генератора	Если он не
ODA	0.4	4.0)/		I2C	используется,
SDA	64	1.8V	ВВОД/В ЫВОД	Ввод/вывод данных I2С	держите его открытым. Если вам необходимо его использовать, используйте VDD_EXT (40 PIN модуля) дл

www.simcom.com 23/86

					подтягивание
Аналоговый	аудиоинте	рфейс			
MICP	9	1.8V	AIO	Аудио микрофон положительный вход	Если он не используется,
MICN	10	1.8V	AIO	Аудио микрофон отрицательный вход	держите его открытым.
SPK1P	11	1.8V	AIO	Аудиовыход положительный	
SPK1N	12	1.8V	AIO	Аудиовыход отрицательный	
GPIO					
GPIO1	57	1.8V	IO, PU	Общий фиолетовый ввод/вывод	Если он не используется, храните его

www.simcom.com 24/86

					открыто.
GPIO2	58	1.8V	IO, PD	Общий фиодологий	-
GPI02	20	1.00	10, PD	Общий фиолетовый ввод/вывод	Если он не используется, храните его
					открыто.
GPIO3	78	1.8V	IO, PD	Общий фиолетовый ввод/вывод	Если он не используется, храните его открыто.
GPIO4	79	1.8V	IO, PU	Общий фиолетовый	Если он не
			,,,,	ввод/вывод	используется, храните его открыто.
GPIO5	80	1.8V	IO, PU	Общий фиолетовый	Если он не
G. 150			,	ввод/вывод	используется, храните его
					открыто.
GPIO6	81	1.8V	IO, PU	Общий фиолетовый ввод/вывод	Если он не используется, храните его
					открыто.
Интерфейс Al	NT				
RF_ANT	32	-	AIO	Основной интерфейс ANT	
Другие штифт	ГЫ				
АЦП	38	-	Al	АЦП общего назначения	Если он не используется, храните его открыто.
NETLIGHT	41	1.8V	DO	Индикатор состояния	
				сетевой регистрации	
				(светодиод).	
				Для получения более подробной информации, пожалуйста, обратитесь к глава 3.9.	
СТАТУС	42	1.8V	DO	Индикатор состояния включения питания	
BOOT_CFG	82	1.8V	DI	Вход управления руководством по загрузке прошивки. При подтягивании к GND и нажатии кнопки PWRKEY, A7682E получит доступ к USB. режим загрузки.	Установите 2 контрольные точки для отладки. Не тяните вниз ВООТ_СFG во время при нормальном включении!

ПРИ

MEMA

- пожалуйста, зарезервируйте тестовые точки для BOOT_CFG, VDD_EXT, DBG_TXD и DBG_RXD.
- Если разъем USB отсутствует, зарезервируйте контрольные точки USB_VBUS, USB_DP и USB_DM для обновления прошивки.

2.3 Механическая информация

На следующем рисунке показан чертеж корпуса модуля А7682Е.

Рисунок 3: Габаритный чертеж (Единицы измерения: мм)

Длина стороны составляет 19,60 ± 0,15 мм, без учета заусенцев.

www.simcom.com 26/86

2.4 Рекомендуемые размеры печатной платы

Рисунок 4: Рекомендуемая площадь печатной платы Размеры (Единицы измерения: мм)

www.simcom.com 27/86

2.5 Рекомендуемый размер трафарета

Рекомендуемая толщина трафарета≥0,12 мм и ≤0,15 мм.

Рисунок 5: Рекомендуемые размеры трафарета (Единицы измерения: мм)

www.simcom.com 28/86

3 Интерфейсное приложение

3.1 Источник питания

А7682E предлагает два вывода питания (34, 35) в качестве входных выводов питания VBAT. А7682E использует эти PIN-коды для питания внутренних радиочастотных и широкополосных цепей.

Когда модуль работает на максимальной мощности в режиме GSM TX, пиковый ток может достигать 2A (пиковый ток), что приводит к большому падению напряжения на VBAT. Чтобы обеспечить падение напряжения менее 300 мВ, мощность внешнего источника питания должна быть не менее 2 A.

На следующем рисунке показано падение напряжения VBAT.

Рисунок 6: Ток разрыва, вызванный падением напряжения VBAT

HUE

Условия тестирования: Питание VBAT 3,8 В, для тестирования используется плата SIMCom TE, добавьте танталовый конденсатор 330 мкФ к клемме питания VBAT.

Таблица 8: Электрические параметры вывода VBAT

Параметр	Описание	Мин	Тип.	Макс	Едини ца
VBAT	Напряжение питания модуля	3.4	3.8	4.2	V
IVBAT(пик)	Пиковый ток потребления модуля	-	2	-	Α

www.simcom.com 29/86

IVBAT(среднее) Средний ток потребления модуля (нормальный

См. таблицу 39

www.simcom.com 30/86

	режим)				
IVBAT(сон)	Средний ток потребления модуля (сон режим)				
IVBAT (выключение питания)	Среднее потребление по модулю текущее (утечка при отключении ток)	-	30	-	uA

3.1.1 Эталонный проект источника питания

При проектировании необходимо убедиться, что напряжение на контактах VBAT никогда не опустится ниже 3,4 В, даже если потребляемый модулем ток достигнет 2 А. Если напряжение упадет ниже 3,4 В, это повлияет на радиочастотные характеристики модуля. Рекомендуется выбрать микросхему LDO или DC-DC с выводом разрешения, причем вывод разрешения управляется MCU.

ПРИ

Если источник питания может обеспечить пиковый ток 2A, общая емкость внешнего источника питания рекомендуется не менее 300uf. Если пиковый ток 2A не может быть обеспечен, общая емкость внешнего источника питания рекомендуется не менее 600uf, чтобы падение

напряжения на выводе VBAT в любой момент времени не превышало 300mV.

Рекомендуется разместить четыре керамических конденсатора 0,1/1µF , 33/10pF вблизи VBAT для улучшения ВЧ-характеристик и стабильности системы. В то же время рекомендуется, чтобы ширина разводки VBAT от источника питания на печатной плате до модуля составляла не менее 3 мм. Рекомендации по эталонному дизайну приведены ниже:

Рисунок 7: Опорная схема входа VBAT

Если на входе VBAT присутствуют высокочастотные помехи, рекомендуется добавить магнитные шарики для фильтрации. Рекомендуемые типы магнитных шариков - BLM21PG300SN1D и MPZ2012S221A.

Кроме того, чтобы предотвратить повреждение A7682E, вызванное скачками и перенапряжением, рекомендуется подключить один TVS к выводу VBAT модуля.

www.simcom.com 31/86

Таблица 9: Список рекомендуемых диодов TVS

Нет.	Производител ь	Номер детали	VRWM	Пакет
1	JCET	ESDBW5V0A1	5V	DFN1006-2L
2	WAYON	WS05DPF-B	5V	DFN1006-2L
3	УИЛЛ	ESD5611N	5V	DFN1006-2L
4	УИЛЛ	ESD56151W05	5V	SOD-323

ПРИ

При выборе TVS обратите внимание на напряжение зажима для защиты от перенапряжения, напряжение зажима не должно быть выше 10 В для входного импульса 100 В.

3.1.2 Рекомендуемая схема источника питания

МСU должен иметь функцию отключения питания модуля, но модуль не может быть выключен или перезапущен в нормальном режиме. Только если модуль работает нештатно и не может быть выключен или перезапущен в нормальном режиме, можно отключить питание модуля. Рекомендуется использовать источник питания с импульсным режимом или линейный регулятор. Микросхема DC-DC рекомендуется для входной мощности более 9 В; источник питания LDO рекомендуется для входной мощности менее 9 В.

На следующем рисунке показана опорная схема линейного регулятора:

Рисунок 8: Рекомендуемая схема линейного источника питания

На следующем рисунке показана опорная схема DC-DC регулятора:

www.simcom.com 32/86

Рисунок 9: Рекомендуемые схемы импульсных источников питания

3.1.3 Монитор напряжения

AT-команда 'AT+CBC' может использоваться для контроля напряжения VBAT.

AT-команда 'AT+CVALARM' может быть использована для установки сигнализации высокого/низкого напряжения, когда фактическое напряжение выходит за пределы заданного диапазона, предупреждающее сообщение будет передано через AT-порт.

AT-команда 'AT+CPMVT' может быть использована для установки высокого/низкого напряжения питания, когда фактическое напряжение превышает заданный диапазон, модуль автоматически отключается.

ПРИМЕ

Функция контроля напряжения находится в стадии отладки, сигнализация перенапряжения и отключение перенапряжения по умолчанию отключены. Подробную информацию о командах см. в документе [1].

3.2 Включение/выключение и сброс

3.2.1 Модуль Питание включено

Клиент может включить модуль, подтянув контакт PWRKEY. Внутри модуля этот вывод подтянут к VBAT.

При использовании модуля рекомендуется добавить TVS-диод на контакт модуля для эффективного улучшения характеристик ESD.

Рекомендуемая схема выглядит следующим образом:

www.simcom.com 33/86

Рисунок 10: Опорная схема включения/выключения питания

ПРИ

MEYA

Не подключайте параллельно контактам PWRKEY или RESET конденсаторы, значение которых превышает 100nF. Это приведет к автоматическому включению питания модуля при подаче напряжения VBAT.

Запрещено одновременно подтягивать к модулю кнопки RESET и PWRKEY для включения питания.

Рисунок 11: Последовательность включения питания PWRKEY

Таблица 10: Параметры последовательности включения питания

Символ	Параметр	Мин.	Тип.	Макс.	Един ица
Тон	Ширина импульса низкого уровня при	-	50	-	MC

www.simcom.com 34/86

	включении питания				
Тон(статус)	Время включения (в соответствии с интерфейсом Status)	-	TBD	-	S

www.simcom.com 35/86

Тон(uart)	Время включения питания (в соответствии с интерфейсом UART)	-	8	-	S
Тон (usb)	Время включения (в соответствии с интерфейсом USB)	-	9	-	S
VIH	Высокий уровень напряжения на входе PWRKEY	0,7*VBAT	-	VBAT	
ВИЛ	Низкий уровень напряжения на входе PWRKEY	0	0	0.5V	

Когда модуль работает, отключение питания модуля приведет к повреждению вспышки. Рекомендуется выключать модуль с помощью AT-команды или PWRKEY перед отключением питания. При использовании AT-команды для выключения убедитесь, что PWRKEY находится на высоком уровне; в противном случае модуль автоматически включится снова после завершения выключения.

3.2.2 Выключение питания модуля

А7682Е имеет следующие способы выключения:

- Выключите питание, переведя вывод PWRKEY# в низкий уровень.
- Выключите модуль с помощью АТ-команды 'AT+CPOF'.
- Автоматическое отключение питания при повышенном или пониженном напряжении, 'AT+CPMVT' устанавливает диапазон напряжения
- Автоматическое отключение питания при перегреве или недогреве.

Настоятельно рекомендуется использовать PWRKEY или 'AT+CPOF' для выключения, а затем отключить питание VBAT (особенно если модуль не должен работать). Кроме того, нельзя отключать VBAT, отсоединив его, это может привести к повреждению FLASH.

ПРИ МЕЦА

Когда температура выходит за пределы диапазона - 30 \sim + 80 $^{\circ}$ С, A7682E будет сообщать предупреждающую информацию через AT порт. Когда температура превышает диапазон - 40 \sim + 85 $^{\circ}$ С, A7682E будет выключен

автоматически. Подробное описание 'AT+ CPOF' и 'AT+ CPMVT' приведено в документе [1].

PWRKEY может использоваться для отключения питания модуля, последовательность отключения питания показана на следующем рисунке:

www.simcom.com 36/86

Рисунок 12: Последовательность

выключения питания PWRKEY Таблица 11: Параметры

последовательности выключения питания

Символ	Параметр	Мин.	Тип.	Макс.	Едини ца
Toff	Ширина импульса низкого уровня выключения питания	2.5	-	-	S
Тофф(статус)	Время отключения питания (в соответствии с интерфейсом состояния)	-	TBD	-	S
Toff(uart)	Время отключения питания (в соответствии с интерфейсом UART)	-	2	-	S
Toff(usb)	Время отключения питания (в соответствии с интерфейсом USB)	-	2	-	S
Toff-on	Выключение - включение буферного времени	2	-	-	S

3.2.3 Сброс модуля

А7682Е может перезапустить модуль, подтянув к себе контакт сброса модуля. Контакт Reset также имеет функцию включения питания, когда на PMU впервые подается действительное напряжение питания (активный низкий уровень, но этот ключ не имеет функции выключения). После первого включения питания некоторые регистры этого вывода будут записаны, после чего он потеряет эту функцию, поэтому рекомендуется использовать PWRKEY для включения питания модуля, а ключ RESET использовать только как функцию сброса.

Резистор 50К Ω используется для подтяжки к VBAT внутри модуля, поэтому нет необходимости добавлять подтягивающий резистор снаружи. Рекомендуемая схема показана ниже:

www.simcom.com 37/86

Рисунок 13: Схема опорного сброса

www.simcom.com 38/86

Таблица 12: Электрический параметр RESET

Символ	Параметр	Мин.	Тип.	Макс.	Единица
Treset	Ширина импульса низкого уровня перезапуска	2	2.5	-	S
VIH	Высокое напряжение на входе вывода RESET	0,7*VBAT	-	VBAT	V
ВИЛ	Низкое напряжение на входе штырька RESET	0	0	0,3*VBAT	V

ПРИ

Рекомендуется использовать контакт сброса только в экстренных случаях, например, если модуль не отвечает. Рекомендуемое время сброса составляет 2,5 с.

3.3 UART

A7682E предоставляет три последовательных порта, основной коммуникационный последовательный порт UART, один обычный двухпроводной последовательный порт и UART_LOG, предназначенный для печати журнала. Модуль является оборудованием DCE (Data Communication Equipment).

При использовании полнофункционального последовательного порта можно использовать следующий режим подключения:

Рисунок 14: Схема подключения последовательного порта (полнофункциональный режим)

При использовании 2-проводного последовательного порта, пожалуйста, обратитесь к следующему режиму подключения:

www.simcom.com 39/86

Рисунок 15: Схема подключения последовательного порта (режим NULL)

На следующем рисунке показано использование триода для схем переключателей уровня. Схема с пунктирной линией может относиться к схеме со сплошной линией TXD и RXD, при этом следует обратить внимание на направление сигнала.

Рекомендуемая модель триода - ММВТ3904.

Рисунок 16: Схема триодного преобразования уровня

ПРИ

- 1. А7682E поддерживает следующие скорости передачи данных: 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600,
- 115200, 230400, 460800, 921600, 1842000, 3686400. По умолчанию скорость передачи данных составляет 115200 бит/с.
- 2. Паразитная емкость транзистора будет влиять на фронт высокоскоростного цифрового сигнала. Не рекомендуется использовать эту схему, если скорость сигнала превышает 115200bps.

3.3.1 Описание RI/DTR

Контакт RI может использоваться в качестве прерывания для пробуждения хоста. Обычно он поддерживает высокое напряжение на выходе.

При получении короткого сообщения или отчета URC RI выдает низкое напряжение в течение 120 мс

www.simcom.com 40/86

(SMS)/60 мс (URC), а затем возвращается в состояние высокого напряжения; RI будет выдавать низкое напряжение. При приеме телефонного вызова в качестве

www.simcom.com 41/86

вызываемого абонента, RI выдает низкий уровень напряжения, и затем он будет оставаться низким до тех пор, пока хост не примет вызов с помощью команды "ATA", или пока вызывающий абонент не прекратит вызов, RI возобновит выдачу высокого уровня.

Рисунок 17: Изменение уровня на RI (SMS, URC, Входящий вызов)

DTR может использоваться в качестве вывода пробуждения модуля A7682E в режиме сна. Когда модуль A7682E переходит в спящий режим, подтяните DTR, чтобы разбудить модуль A7682E.

Когда пользователь установит 'AT+CSCLK=1' и подтянет контакт DTR, модуль перейдет в спящий режим. Функция последовательного порта не сможет осуществлять обмен данными. Когда модуль A7682E переходит в спящий режим, подтяните низкий уровень DTR для пробуждения.

В режиме установки "AT+CSCLK=0", подтяните контакт DTR, нормальная связь последовательного порта не будет нарушена.

3.4 Интерфейс USB

A7682E содержит интерфейс USB, соответствующий спецификации USB2.0, в качестве периферийного устройства, но не поддерживает функцию зарядки USB и не поддерживает режим USB HOST.

Поддержка высокой скорости (480 Мбит/с) и полной скорости (12 Мбит/с). Интерфейс может использоваться для отправки АТ-команд, передачи данных, отладки и обновления программного обеспечения. Возможность подключения ttyUSB1-ttyUSB2 под Linux или android (подробнее см. документ по отладке Linux или android).

USB является основным портом отладки и интерфейсом обновления программного обеспечения. Рекомендуется резервировать тестовые точки USB во время проектирования. Если подключена главная управляющая микросхема, необходимо зарезервировать резисторы 0R для переключения внешних тестовых точек во время проектирования, как показано на рисунке ниже.

www.simcom.com 42/86

3.4.1 Эталонный дизайн USB

A7682E можно использовать в качестве ведомого устройства USB. Рекомендуемая схема подключения выглядит следующим образом:

Рисунок 18: Схема подключения USB

При использовании устройства D3 покупателям следует обратить внимание на его выбор. Рекомендуется выбирать антистатическое и антинакаливающее устройство "два в одном". Можно установить TVS-трубку. Рекомендуемая модель - ESD5681N07.

ПРИ

- 1. Кабель данных USB должен быть проложен строго в дифференциальном режиме 90 Ом +/- 10%. TVS-устройства D1 и D2 на линии данных должны быть выбраны с эквивалентной емкостью менее 1 пФ. TVS-устройство должно быть размещено рядом с разъемом USB или тестовой точкой, рекомендуемые модели ESD73011N и WS05DUCFM.
- 2. Определение скорости USB2.0 определяется автоматически протоколом USB. Клиенту не нужно подтягивать внешний DP, иначе это может повлиять на перечисление USB устройства.

3.4.2 Интерфейс BOOT_CFG

A7682E предоставляет один интерфейс принудительной загрузки 'BOOT CFG'.

Таблица 13: Описание BOOT_CFG

Контакт номер	Название вывода	ВВО Д/В ЫВ ОД	Описание	Мощность домен	По умолчани ю государств о	Ремарка
82	BOOT_CFG	DI	Принудительная загрузка	1.8V	B-PU	

www.simcom.com 43/86

	загрузочный порт		

Если при обновлении модуля загрузка не происходит, вы можете принудительно обновить модуль через порт BOOT_CFG.

www.simcom.com 44/86

Перед включением питания модуля подтяните вывод BOOT_CFG к GND, затем подайте на модуль питание VBAT и нажмите RESET, чтобы войти в режим загрузки. После входа в режим загрузки необходимо разблокировать BOOT CFG и снять подтяжку.

Рисунок 19: Эталонная схема BOOT_CFG

Пользователи увидят порт загрузки в диспетчере устройств системы Widows.

Рисунок 20: Порт принудительной загрузки

ПРИМЕ

BOOT_CFG выполняет только функцию принудительной загрузки и перегрузки перед загрузкой (его нельзя перетянуть вниз).

3.5 Интерфейс USIM

A7682E поддерживает работу с USIM-картами с напряжением 1,8 и 3,0 В. Питание интерфейса USIM-карты обеспечивается стабилизатором напряжения внутри модуля, а нормальное значение напряжения составляет 3 В или 1,8 В.

Таблица 14: Электронная характеристика USIM в режиме 1,8 В (USIM VDD=1,8 В)

Символ	Параметр	Мин.	Тип.	Макс.	Един
					ица

www.simcom.com 45/86

USIM_VDD Выход	д напряжения питания арты USIM	1.62	1.8	1.98	V
----------------	-----------------------------------	------	-----	------	---

www.simcom.com 46/86

VIH	Входное напряжение высокого уровня	0,7*USIM_VDD	-	USIM_VDD +0.4	V
вил	Входное напряжение низкого уровня	-0.4	0	0,25*USIM_VDD	V
VOH	Выходное напряжение высокого уровня	USIM_VDD -0.4	-	USIM_VDD	V
VOL	Выходное напряжение низкого уровня	0	0	0.2	V

Таблица 15: Электронная характеристика USIM в режиме 3,0 В (USIM_VDD=3 В)

Символ	Параметр	Мин.	Тип.	Макс.	Един ица
USIM_VDD	Выход напряжения питания для карты USIM	2.7	3	3.3	V
VIH	Входное напряжение высокого уровня	0,7*USIM_VDD	-	USIM_VDD +0.4	V
вил	Входное напряжение низкого уровня	-0.4	0	0,25*USIM_VDD	V
VOH	Выходное напряжение высокого уровня	USIM_VDD -0.45	-	USIM_VDD	V
VOL	Выходное напряжение низкого уровня	0	0	0.3	V

3.5.1 Руководство по применению USIM

Рекомендуется использовать компонент защиты от электростатического разряда, например ESDA6V1W5 производства ST (www.st.com) или SMF15C производства ON SEMI (www.onsemi.com). Обратите внимание, что периферийная схема USIM должна находиться рядом с разъемом USIM-карты. На следующем рисунке показана эталонная схема 6-контактного держателя SIM-карты. На следующем рисунке показана опорная схема 6-контактного держателя SIM-карты.

Рисунок 21: Опорная схема интерфейса USIM (6PIN)

На следующем рисунке показана контрольная схема 8-контактного держателя SIM-карты.

www.simcom.com

22pF_NM 22pF_NM 22pF_NM

Рисунок 22: Опорная схема интерфейса USIM (8PIN)

www.simcom.com 48/86

USIM_DATA подтянута резистором 4,7КΩ к USIM_VDD в модуле. Конденсатор 100nF на USIM_VDD используется для уменьшения помех. Для получения более подробной информации о AT-командах USIM, пожалуйста, обратитесь к документу [1].

Поскольку схема SIM-карты подвержена помехам, из-за чего карта не распознается или падает, при проектировании придерживайтесь следующих принципов:

- На этапе разводки печатной платы держите держатель USIM-карты подальше от основной антенны.
- Проводка USIM-карты должна быть максимально удалена от радиочастотных линий, VBAT и высокоскоростных сигнальных линий, а проводка USIM-карты не должна быть слишком длинной.
- GND держателя USIM-карты и GND модуля поддерживают хорошее соединение, так что GND обоих модулей имеют одинаковый потенциал.
- Чтобы USIM_CLK не мешал другим сигналам, рекомендуется защищать USIM_CLK отдельно.
- Рекомендуется установить конденсатор 220nF на линию сигнала USIM_VDD рядом с разъемом USIM-карты.
- Установите TVS рядом с гнездом USIM-карты. Паразитная емкость TVS не должна превышать 50 пФ, например ESD9L5.0ST5G.
- Последовательное подключение резистора 22 Ом между разъемом USIM-карты и модулем может повысить эффективность защиты от электростатического разряда.
- Чтобы сделать разводку гладкой, рекомендуется использовать одноканальный TVS, размещенный рядом с каждым контактом гнезда карты.
- Сигнал USIM_CLK очень важен. Клиенты должны убедиться, что время нарастания и спада фронта сигнала USIM_CLK составляет менее 40 нс, в противном случае может произойти неправильное распознавание карты.

3.5.2 Рекомендуйте держатель для USIM-карты

Рекомендуется использовать 6-контактный разъем USIM, например C707 10M006 512 производства Amphenol. Пользователь может посетить сайт http://www.amphenol.com для получения дополнительной информации о держателе.

www.simcom.com 49/86

Рисунок 23: Гнездо для карты Amphenol C707 10M006 512 USIM

Таблица 16: Описание контактов гнезда Amphenol USIM

Контакт	Сигнал	Описание
C1	USIM_VDD	USIM-карта Источник питания.
C2	USIM_RST	Сброс карты USIM.
C3	USIM_CLK	Часы для карты USIM.
C5	GND	Подключите к GND.
C6	VPP	NC
C7	USIM_DATA	Ввод/вывод данных карты USIM.

ПРИ

При разработке автомобильных продуктов, пожалуйста, выбирайте более надежные держатели SIM-карт со структурой push-push.

www.simcom.com 50/86

3.6 Аналоговый аудиоинтерфейс

А7682E объединяет аудиокодек и аудиофронтэнд, обеспечивает 1 набор аналоговых аудиоинтерфейсов МІС, 1 набор аналоговых аудиоинтерфейсов SPK. Клиенты могут подключить телефонную ручку для голосовых вызовов.

--ADC: 90 дБ SNR@20~20KHz -ЦАП: 95 дБ SNR@20~20KHz

-Класс-АВ: THD<-85 дБ@32-омная нагрузка

-- SPK1P SPK1N Поддержка выхода для наушников

Таблица 17: Таблица параметров АЦП с аналоговым входом МІС

параметр	условия	DR (Типичный)	THD+N(Типичный)	Максимальный мощность
АЦП	RL=10K	101 дБА	-96 дБ(@vout -2 дБв)	1,59 Вп
Класс-АВ	Моно, 32Ω Разница	100 дБА	-90 дБ (0,00316%) (@20 мВт на выходе)	37 мВт

3.6.1 Эталонный дизайн аналогового аудио

Рекомендуемая схема для аналогового звука показана ниже:

Рисунок 24: Опорная схема аналогового аудиоинтерфейса

www.simcom.com 51/86

3.7 Интерфейс GPIO

Модуль A7682E обеспечивает 6 GPIO.

Таблица 18: Список ресурсов GPIO

Контакт №.	Назв ание выв ода	АТ команда номер операционного GPIO	Тип вы во да.	Област ь питани я	Функци я по умолча нию	Пробужде ние по фронту кадра
57	GPIO1	GPIO1	IO, PD	1.8V	GPIO	Да
58	GPIO2	GPIO2	IO, PD	1.8V	GPIO	Да
78	GPIO3	GPIO3	IO, PD	1.8V	GPIO	Да
79	GPIO4	GPIO4	IO, PD	1.8V	GPIO	Да
80	GPIO5	GPIO5	IO, PD	1.8V	GPIO	Да
81	GPIO6	GPIO6	IO, PD	1.8V	GPIO	Да

3.8 Шина I2С

Модуль предоставляет набор интерфейсов I2C, поддерживает стандартную скорость тактовой частоты 100 Кбит/с, поддерживает высокую скорость тактовой частоты 400 Кбит/с, его рабочее напряжение составляет 1,8 В.

12С имеет выход с открытым затвором, а опорная схема выглядит следующим образом:

Рисунок 25: Опорная схема І2С

Выводы SCL и SDA не имеют внутренних подтягивающих резисторов, и зарезервированное подтягивающее питание должно быть выведено модулем на VDD_EXT.

www.simcom.com 5z/86

3.9 Состояние сети

Вывод NETLIGHT используется для управления светодиодным индикатором состояния сети, его опорная схема показана на следующем рисунке.

Рисунок 26: Опорная схема NETLIGHT

ПРИ

Значение резистора 'R' зависит от характеристики светодиода.

Сигнал NETLIGHT используется для управления светодиодными индикаторами, отображающими состояние сети. Рабочее состояние этого вывода показано в таблице ниже.

Таблица 19: Состояние контактов NETLIGHT в режиме 2G

Состояние контактов NETLIGHT	Состояние модуля
Всегда включен	Поисковая сеть
200 мс включено, 200 мс выключено	Передача данных
800 мс включено, 800 мс выключено	Зарегистрированная сеть
OFF	Питание выключено / AT+CSCLK=1, и DTR подтянут к высокому уровню.

www.simcom.com 53/86

Таблица 20: Состояние контактов NETLIGHT в режиме LTE

Состояние контактов NETLIGHT	Состояние модуля
Всегда включен	Поисковая сеть
200 мс включено, 200 мс выключено	Передача данных/регистрация
OFF	Питание выключено / AT+CSCLK=1, и DTR подтянут к высокому уровню.

3.10 Другой интерфейс

3.10.1 АЦП

Модуль А7682Е обеспечивает 1 АЦП, его электрические характеристики приведены ниже:

Таблица 21: Электронные характеристики АЦП

Характеристики	Мин.	Тип.	Макс.	Единица
Разрешение	-	9	-	биты
Диапазон входного сигнала	0	-	1.8	V

ПРИ

Функция использования "AT+CADC" для считывания значения напряжения на выводе АЦП находится в стадии отладки. Для получения дополнительной информации обратитесь к документу [1].

3.10.2 LDO

Модуль A7682E обеспечивает один выход питания: VDD_EXT.

VDD_EXT - это источник питания системного ввода-вывода модуля, который может обеспечивать ток только 50 мА. Его нельзя использовать в качестве источника высокого тока.

Таблица 22: Электрические характеристики VDD_EXT

Символ	Описание	Мин.	Тип.	Макс.	Единиц а
VVDD_EXT	Выходное напряжение	_	1.8	-	V
I _O	Выходной ток	-	-	50	мА

www.simcom.com 54/86

ние

Этот источник питания является системным. Если повреждение повлияет на запуск системы, рекомендуется установить защиту TVS. Рекомендуемая модель - ESD56051N.

www.simcom.com 55/86

4 Технические характеристики RF

4.1 GSM/LTE

Таблица 23: Мощность кондуктивных выбросов

Частота	мощность	Минимальная мощность
EGSM900 (GMSK)	33 дБм ±2 дБ	5 дБм ± 5 дБ
DCS1800(GMSK)	30 дБм ±2 дБ	0 дБм ± 5 дБ
EGSM900 (8-PSK)	27 дБм ±3 дБ	5 дБм ± 5 дБ
DCS1800 (8-PSK)	26 дБм +3/-4 дБ	0 дБм ±5 дБ
LTE-FDD B1	23 дБм +/-2,7 дБ	<-40 дБм
LTE-FDD B3	23 дБм +/-2,7 дБ	<-40 дБм
LTE-FDD B5	23 дБм +/-2,7 дБ	<-40 дБм
LTE-FDD B7	23 дБм +/-2,7 дБ	<-40 дБм
LTE-FDD B8	23 дБм +/-2,7 дБ	<-40 дБм
LTE-FDD B20	23 дБм +/-2,7 дБ	<-40 дБм

Таблица 24: Рабочие диапазоны GSM

Частота	DL	UL
EGSM900	925~960MHz	880~915 МГц
DCS1800	1805∼1880 МГц	1710∼1785 МГц

Таблица 25: Рабочие диапазоны E-UTRA

E-UTRA БАНДА	UL	DL	Дуплексный режим
1	1920 ~1980 МГц	2110 ~ 2170 МГц	FDD
3	1710 ~ 1785 МГц	1805 ~ 1880 МГц	FDD
5	824~849 МГц	869~894MHz	FDD
7	2500~2570 МГц	2620~2690 МГц	FDD
8	880 ~ 915 МГц	925 ~ 960 МГц	FDD
20	832~862 МГц	791 ~ 821 МГц	FDD

www.simcom.com 56/86

Таблица 26: Чувствительность кондуктивного приема

Частота	Чувствительность (ТҮР)	Чувствительность (МАХ)
EGSM900	< -109 дБм	3GPP
DCS1800	< -108 дБм	3GPP
LTE FDD	См. таблицу 28.	3GPP

Таблица 27: Эталонная чувствительность (QPSK)

E-UTRA группа	Стандарт 3GPP (единицы измерения: дБм)					Измере но	Режи м	
	1,4 МГц	3 МГц	5 МГц	10 МГц	15 МГц	20 МГц		Duple x
1	-	-	-100	-97	-95.2	-94	-99	FDD
3	-101.7	-98.7	-97	-94	-92.2	-91	-98	FDD
5	-103.2	-100.2	-98	-95	-	-	-98.5	FDD
7	-	-	-98	-95	-93.2	-92	-98	FDD
8	-102.2	-99.2	-97	-94	-	-	-98	FDD
20	-	-	-97	-94	-91.2	-90	-98.5	FDD

4.2 Эталонный дизайн антенны GSM/ LTE

Для улучшения общих характеристик рекомендуется, чтобы конструкция антенны соответствовала требованиям к индексам, приведенным в следующей таблице.

Таблица 28: Требования к антеннам GSM/LTE

Параметр	Требование
рабочий диапазон	См. таблицу 25 и таблицу 26
Направление	всенаправленный
Усиление	> -3dBi (Avg)
Входной импеданс	50 Om
Эффективность	> 50 %
Максимальная потребляемая мощность	50W
VSWR	< 2
Изоляция	>20 дБ
Вносимые потери печатной платы (<1 ГГц)	<0,5 дБ
Вносимые потери печатной платы (1 ГГц ~ 2,2 ГГц)	<1 дБ
Вносимые потери печатной платы (2,3 ГГц	<1,5 дБ

www.simcom.com 57/86

~ 2,7 ГГц)

www.simcom.com 58/86

4.3 Эталонный дизайн антенны

Рисунок 27: Схема подключения пассивной антенны

На рисунке выше, компонент R1/R2/C1/C2 зарезервирован для согласования антенны, значение компонентов может быть получено только после настройки антенны, обычно предоставляемой заводом-изготовителем антенны. Среди них R1 и R2 паста 0Ω, C1 и C2 не паста по умолчанию. Компонент D1 представляет собой двунаправленное устройство защиты от электростатического разряда, которое предлагается добавить в цепь защиты, рекомендуемые номера деталей TVS приведены в следующей таблице:

Таблица 29: Список рекомендуемых деталей TVS

Пакет	Часть	Поставщик
0201	CE0201S05G01R	СОКАЙ
0402	PESD0402-03	ПРИЗЕМИ

4.4 Разметка печатной платы

Пользователям следует обратить внимание на импеданс печатной платы от ANT-порта модуля до антенного разъема, а длина транса печатной платы должна быть в пределах 20 мм, и вдали от таких помех, как сигналы питания и часы. Рекомендуется зарезервировать RF Switch Connector для проведения теста на проводимость. Эталонной моделью разъема RF Switch Connector является: ECT 818011998.

www.simcom.com 59/86

Рисунок 28: Схема эталонной печатной платы

5 Электрические характеристики

5.1 Абсолютный максимум номинальных значений

Абсолютные максимальные значения для цифровых и аналоговых выводов A7682E приведены в следующей таблице. Превышение этих пределов может привести к необратимому повреждению модуля.

Таблица 30: Абсолютные максимальные значения

Параметр	Мин.	Тип.	Макс.	Едини ца
Напряжение на VBAT	-0.5	-	4.8	V
Напряжение на шине VBUS	-0.5	-	5.4	V
Напряжение на цифровых выводах (GPIO, I2C, UART)	-0.3	-	2.0	V
Harnawaliaa ua liindhaan iy al ibaray (HSIM)	-0.3	-	2.0	V
Напряжение на цифровых выводах (USIM)	-0.3	-	3.9	V
Напряжение на PWRKEY、RESET	-0.3	-	4.8	V

5.2 Условия эксплуатации

Таблица 31: Рекомендуемые рабочие параметры

Параметр	Мин.	Тип.	Макс.	Еди ница	
----------	------	------	-------	-------------	--

www.simcom.com 60/86

Напряжение на VBAT	3.4	3.8	4.2	V
Напряжение на шине VBUS	3.0	5.0	5.2	V

www.simcom.com 61/86

Таблица 32: Характеристики цифровых входов/выходов 1,8 В*

Параметр	Описание	Мин.	Тип.	Макс.	Едини ца
VIH	Входное напряжение высокого уровня	VCC*0.7	1.8	VCC+0.2	V
ВИЛ	Входное напряжение низкого уровня	-0.3	0	VCC*0.3	V
VOH	Выходное напряжение высокого уровня	VCC-0.2	-	-	V
VOL	Выходное напряжение низкого уровня	0	-	0.2	V
ЮН	Выходной ток высокого уровня (без подтягивающего резистора)	-	-	13	мА
IOL	Выходной ток низкого уровня (без подтягивания повышающий резистор)	-	-	13	мА
IIH	Высокий ток утечки на входе (без подтягивающего резистора)	-	-	10	uA
IIL	Низкий входной ток утечки (без подтягивающего резистора)	-10	-	-	uA

ПРИ

Эти параметры предназначены для цифровых интерфейсных выводов, таких как GPIO, I2C, UART.

Таблица 33: Рабочая температура

Параметр	Мин.	Тип.	Макс.	Еди ница
Нормальная рабочая температура	-30	25	80	°C
Повышенная рабочая температура	-40	25	85	°C
Температура хранения	-45	25	+90	°C

Производительность будет немного ниже, чем в спецификациях 3GPP, если температура выходит за пределы нормального диапазона рабочих температур и остается в пределах экстремального диапазона рабочих температур.

www.simcom.com 62/86

5.3 Режим работы

5.3.1 Определение режима работы

В таблице ниже приведены различные режимы работы изделия А7682Е.

Таблица 34: Определение режима работы

Режим		Функция
	GSM/ LTE Sleep	В этом случае ток, потребляемый модулем, уменьшается до минимального уровня, и модуль по-прежнему может принимать пейджинговые сообщения и SMS.
	GSM /LTE В режиме ожидания	Программное обеспечение активно. Модуль зарегистрирован в сети, и модуль готов к обмену данными.
Нормаль	GSM / LTE Talk	Идет соединение между двумя абонентами. В этом В этом случае энергопотребление зависит от настроек сети.
работа GSM /LTE в режим ожидания	GSM /LTE в режиме ожидания	Модуль готов к передаче данных, но в данный момент данные не отправляются и не принимаются. В этом случае потребляемая мощность зависит от сетевые настройки.
	GPRS/EDGE/LTE Передача данных	Идет передача данных. В этом случае потребляемая мощность зависит от настроек сети (например, уровня управления мощностью); скорости передачи данных по восходящей/нисходящей линии связи и сети конфигурации (например, многослотовая конфигурация).
Режим минимальной функциональности Режим полета		АТ-команда 'AT+CFUN=0' может быть использована для перевода модуля в режим минимальной функциональности без отключения питания. В этом режиме радиочастотная часть модуля не будет работать, USIM-карта будет недоступна, но последовательный порт и порт USB по-прежнему доступны. Потребляемая мощность в этом режиме ниже, чем в обычном режиме.
		АТ-команда 'AT+CFUN=4' или подтягивание контакта FLIGHTMODE могут быть использованы для перевода модуля в режим полета без отключения питания. В этом режиме радиочастотная часть модуля не будет работать, но последовательный порт и порт USB по-прежнему доступны. Потребляемая мощность в этом режиме ниже, чем нормальный режим.

www.simcom.com 63/86

	Модуль перейдет в режим выключения питания, отправив	
	AT-команду 'AT+CPOF' или подтянув контакт PWRKEY. В	
Выключение питания	этом режиме блок управления питанием отключает	
	источник питания, а программное обеспечение не активно.	
	Последовательный порт и USB	
	недоступна.	

www.simcom.com 64/86

5.3.2 Режим сна

В спящем режиме потребление тока модулем снижается до минимального уровня, и модуль попрежнему может принимать пейджинговые сообщения и SMS.

Для того чтобы A7682E перешел в спящий режим, должны быть выполнены несколько аппаратных и программных условий:

- Состояние UART
- Cостояние USB
- Состояние программного обеспечения

Более подробную информацию о спящем режиме см. в документе [24].

5.3.3 Режим минимальной функциональности и режим полета

Команда "AT+CFUN=<fun>" позволяет перевести модуль в этот режим. Эта команда предоставляет три варианта настройки различных функций.

- AT+CFUN=0: минимальная функциональность
- AT+CFUN=1: полная функциональность (по умолчанию)
- AT+CFUN=4: режим полета

Если A7682E был установлен в режим минимальной функциональности, функция RF и функция USIM-карты будут закрыты. В этом случае последовательный порт и USB остаются доступными, но функция RF и USIM-карты, а также некоторые AT-команды будут недоступны.

Если A7682E был переведен в режим полета, функция RF будет закрыта. В этом случае последовательный порт и USB остаются доступными, но функция RF и некоторые AT-команды будут недоступны.

Когда A7682E находится в режиме минимальной функциональности или в режиме полета, он может вернуться к полной функциональности с помощью AT-команды 'AT+CFUN=1'.

Подробную информацию о команде "AT+CFUN" см. в документе [1].

5.4 Потребление тока

Потребляемый ток приведен в таблице ниже.

Таблица 35: Потребляемый ток на контактах VBAT (VBAT=3,8 B)

Режим сна/бездействия GSM		
Ток питания GSM/GPRS (без подключения USB)	Спящий режим @ BS_PA_MFRMS=2 значение: TBD	Типичное
,	Режим простоя @ BS_PA_MFRMS=2 TBD	Типичный:

www.simcom.com 65/86

Спящий/режим ожидания LTE

www.simcom.com 66/86

GSM Talk EGSM 900 @ уровень мощности #5 Типичный: ТВD DCS1800 @ уровень мощности #0 Типичный: ТВD Данные GPRS EGSM 900 (1 Rx, 4 Tx) @ уровень мощности #5 Типичный: ТВD DCS1800 (1 Rx, 4 Tx) @ уровень мощности #5 Типичный: ТВD DCS1800 (3 Rx, 2 Tx) @ уровень мощности #5 Типичный: ТВD DCS1800 (3 Rx, 2 Tx) @ уровень мощности #6 Типичный: ТВD DCS1800 (1 Rx, 4 Tx) @ уровень мощности #8 Типичный: ТВD EGSM 900 (3 Rx, 2 Tx) @ уровень мощности #8 Типичный: ТВD DCS1800 (3 Rx, 2 Tx) @ уровень мощности #8 Типичный: ТВD DCS1800 (3 Rx, 2 Tx) @ уровень мощности #8 Типичный: ТВD DCS1800 (3 Rx, 2 Tx) @ уровень мощности #8 Типичный: ТВD DCS1800 (3 Rx, 2 Tx) @ уровень мощности #8 Типичный: ТВD DCS1800 (3 Rx, 2 Tx) @ уровень мощности #8 Типичный: ТВD DCS1800 (3 Rx, 2 Tx) @ уровень мощности #8 Типичный: ТВD LTE-FDD B1 @5 MГц 23,0 дБмТипичный: ТВD : ТВD @5 MГц 23,0 дБмТипичный: ТВD : ТВD @10	Ток питания LTE	Спящий режим Типичный: TBD Режим простоя Типичный: TBD
DCS1800 ② уровень мощности #0 Типичный: ТВD Данные GPRS EGSM 900 (1 Rx, 4 Tx) ② уровень мощности #5 Типичный: ТВD DCS1800 (1 Rx, 4 Tx) ② уровень мощности #5 Типичный: ТВD EGSM 900 (3 Rx, 2 Tx) ② уровень мощности #5 Типичный: ТВD DCS1800 (3 Rx, 2 Tx) ② уровень мощности #0 Типичный: ТВD Данные EDGE ЕGSM 900 (1 Rx, 4 Tx) ② уровень мощности #8 Типичный: ТВD DCS1800 (1 Rx, 4 Tx) ② уровень мощности #2 Типичный: ТВD EGSM 900 (3 Rx, 2 Tx) ② уровень мощности #2 Типичный: ТВD DCS1800 (3 Rx, 2 Tx) ② уровень мощности #2 Типичный: ТВD DCS1800 (3 Rx, 2 Tx) ② уровень мощности #2 Типичный: ТВD Данные LTE ② 5 МГц 23.0 дБмТипичный: ТВD Типичный: ТВD LTE-FDD B1 ② 5 МГц 23.0 дБмТипичный: ТВD : ТВD LTE-FDD B3 ② 5 МГц 23.0 дБмТипичный: : ТВD : ТВD LTE-FDD B5 ② 5 МГц 23.0 дБмТипичный: : ТВD : ТВD LTE-FDD B7 ② 5 МГц 23.0 дБмТипичный: : ТВD : ТВD LTE-FDD B8 ② 5 МГц 23.0 дБмТипичный: : ТВD : ТВD </td <td></td> <td>Режим простоя типичный. ТВО</td>		Режим простоя типичный. ТВО
DCS1800 @ уровень мощности #0 Типичный: ТВD Данные GPRS EGSM 900 (1 Rx, 4 Tx) @ уровень мощности #5 Типичный: ТВD DCS1800 (1 Rx, 4 Tx) @ уровень мощности #5 Типичный: ТВD EGSM 900 (3 Rx, 2 Tx) @ уровень мощности #5 Типичный: ТВD DCS1800 (3 Rx, 2 Tx) @ уровень мощности #0 Типичный: ТВD Данные EDGE EGSM 900 (1 Rx, 4 Tx) @ уровень мощности #2 Типичный: ТВD EGSM 900 (1 Rx, 4 Tx) @ уровень мощности #2 Типичный: ТВD DCS1800 (3 Rx, 2 Tx) @ уровень мощности #8 Типичный: ТВD DCS1800 (3 Rx, 2 Tx) @ уровень мощности #2 Типичный: ТВD Данные LTE @5 МГц 23.0 дБмТипичный: ТВD Типичный: ТВD Данные LTE @5 МГц 23.0 дБмТипичный: ТВD : ТВD Ште-FDD B3 @10 МГц 23.0 дБмТипичный: : ТВD : ТВD LTE-FDD B5 @5MHz 23.0 дБмТипичный: : ТВD @10 : ТВD @10 MГц 23.0 дБмТипичный: : ТВD @10 MГц 23.0 дБмТипичный: : ТВD @10 LTE-FDD B8 @5MHz 23.0 дБмТипичный: : ТВD @10 LTE-FDD B20 @5MHz 23.0 дБмТипичный: : ТВD @10 MГц 23.0 дБм	EGSM 900	@ уровень мощности #5 Типичный: TBD
EGSM 900 (1 Rx, 4 Tx) @ уровень мощности #5 Типичный: ТВD DCS1800 (1 Rx, 4 Tx) @ уровень мощности #0 Типичный: ТВD EGSM 900 (3 Rx, 2 Tx) @ уровень мощности #5 Типичный: ТВD DCS1800 (3 Rx, 2 Tx) @ уровень мощности #0 Типичный: ТВD Данные EDGE EGSM 900 (1 Rx, 4 Tx) @ уровень мощности #8 Типичный: ТВD DCS1800 (1 Rx, 4 Tx) @ уровень мощности #2 Типичный: ТВD DCS1800 (3 Rx, 2 Tx) @ уровень мощности #2 Типичный: ТВD DCS1800 (3 Rx, 2 Tx) @ уровень мощности #2 Типичный: ТВD DCS1800 (3 Rx, 2 Tx) @ уровень мощности #2 Типичный: ТВD DCS1800 (3 Rx, 2 Tx) @ уровень мощности #2 Типичный: ТВD DCS1800 (3 Rx, 2 Tx) @ уровень мощности #2 Типичный: ТВD DCS1800 (3 Rx, 2 Tx) @ уровень мощности #2 Типичный: ТВD DCS1800 (3 Rx, 2 Tx) @ уровень мощности #2 Типичный: ТВD DCS1800 (3 Rx, 2 Tx) @ 5 МГц 23,0 дБмТипичный : ТВD LTE-FDD B3 . ТВD @ 5 МГц 23,0 дБмТипичный : ТВD LTE-FDD B4 . ТВD @ 5 МНz 23,0 дБмТипичный	DCS1800	@ уровень мощности #0 Типичный: TBD
DCS1800 (1 Rx, 4 Tx) @ уровень мощности #0 Типичный: ТВD EGSM 900 (3 Rx, 2 Tx) @ уровень мощности #5 Типичный: ТВD DCS1800 (3 Rx, 2 Tx) @ уровень мощности #0 Типичный: ТВD Данные EDGE EGSM 900 (1 Rx, 4 Tx) @ уровень мощности #8 Типичный: ТВD DCS1800 (1 Rx, 4 Tx) @ уровень мощности #2 Типичный: ТВD EGSM 900 (3 Rx, 2 Tx) @ уровень мощности #8 Типичный: ТВD DCS1800 (3 Rx, 2 Tx) @ уровень мощности #2 Типичный: ТВD Данные LTE @5 МГц 23,0 дБмТипичный : ТВD LTE-FDD B1 @5 МГц 23,0 дБмТипичный : ТВD LTE-FDD B3 @10 МГц 23,0 дБм Типичный : ТВD LTE-FDD B5 @5 МГц 23,0 дБмТипичный : ТВD @10 LTE-FDD B6 @5 МГц 23,0 дБмТипичный : ТВD @10 LTE-FDD B7 @5 МНд 23,0 дБмТипичный : ТВD @10 LTE-FDD B8 @5 МНд 23,0 дБмТипичный : ТВD @10 LTE-FDD B8 @5 МНд 23,0 дБмТипичный : ТВD @10 LTE-FDD B9 —6 МПд 23,0 дБмТипичный : ТВD @10 LTE-FDD B0 —7 ПД 23,0 дБмТипичный : ТВD @10 LTE-FDD B1 —7 ПД 23,0 дБмТипичный : ТВD @10 LTE-FDD B20 —7 ПД 23,0 дБмТипичный : ТВД 23,0 дБмТипичный : ТВД 23,0 дБмТипичный : ТВД 23,0 дБ	Данные GPRS	
EGSM 900 (3 Rx, 2 Tx) @ уровень мощности #5 Типичный: ТВD DCS1800 (3 Rx, 2 Tx) @ уровень мощности #0 Типичный: ТВD Данные EDGE EGSM 900 (1 Rx, 4 Tx) @ уровень мощности #8 Типичный: ТВD DCS1800 (1 Rx, 4 Tx) @ уровень мощности #2 Типичный: ТВD EGSM 900 (3 Rx, 2 Tx) @ уровень мощности #2 Типичный: ТВD DCS1800 (3 Rx, 2 Tx) @ уровень мощности #2 Типичный: ТВD Данные LTE LTE-FDD B1 @5 МГц 23,0 дБмТипичный : ТВD : ТВD @5 МГц 23,0 дБмТипичный : ТВD : ТВD @5 МГц 23,0 дБмТипичный : ТВD : ТВD LTE-FDD B3 @5 МГц 23,0 дБмТипичный : ТВD LTE-FDD B5 @5MHz 23,0 дБмТипичный : ТВD LTE-FDD B6 @5MHz 23,0 дБмТипичный : ТВD LTE-FDD B7 : ТВD @10 MГц 23,0 дБмТипичный : ТВD : ТВD @10 LTE-FDD B8 @5MHz 23,0 дБмТипичный : ТВD LTE-FDD B20 : ТВD @10 MГц 23,0 дБмТипичный : ТВD : ТВD @10 MГц 23,0 дБмТипичный : ТВD : ТВD @10 LTE-FDD B20 : ТВО @10	EGSM 900 (1 Rx, 4 Tx)	@ уровень мощности #5 Типичный: TBD
DCS1800 (3 Rx, 2 Tx) @ уровень мощности #0 Типичный: ТВD Данные EDGE EGSM 900 (1 Rx, 4 Tx) @ уровень мощности #8 Типичный: ТВD DCS1800 (1 Rx, 4 Tx) @ уровень мощности #2 Типичный: ТВD EGSM 900 (3 Rx, 2 Tx) @ уровень мощности #2 Типичный: ТВD DCS1800 (3 Rx, 2 Tx) @ уровень мощности #2 Типичный: ТВD Данные LTE @5 МГц 23,0 дБмТипичный : ТВD Типичный: Т LTE-FDD B1 @6 МГц 23,0 дБм Типичный : ТВD : ТВD @5 МГц 23,0 дБм Типичный : ТВD @10 МГц 23,0 дБм Типичный : ТВD : ТВD LTE-FDD B3 @5 МНz 23,0 дБмТипичный : ТВD : ТВD @10 LTE-FDD B5 @5 МНz 23,0 дБмТипичный : ТВD : ТВD @10 LTE-FDD B7 : ТВD @10 МГц 23,0 дБмТипичный : ТВD LTE-FDD B8 : ТВD @10 МГц 23,0 дБмТипичный : ТВD LTE-FDD B20 : ТВD @10 МГц 23,0 дБмТипичный : ТВD LTE-FDD B20 : ТВD @10 МГц 23,0 дБмТипичный : ТВD	DCS1800 (1 Rx, 4 Tx)	@ уровень мощности #0 Типичный: TBD
Данные EDGE EGSM 900 (1 Rx, 4 Tx)	EGSM 900 (3 Rx, 2 Tx)	@ уровень мощности #5 Типичный: TBD
EGSM 900 (1 Rx, 4 Tx) @ уровень мощности #8 Типичный: ТВD DCS1800 (1 Rx, 4 Tx) @ уровень мощности #2 Типичный: ТВD EGSM 900 (3 Rx, 2 Tx) @ уровень мощности #8 Типичный: ТВD DCS1800 (3 Rx, 2 Tx) @ уровень мощности #2 Типичный: ТВD Данные LTE	DCS1800 (3 Rx, 2 Tx)	@ уровень мощности #0 Типичный: TBD
DCS1800 (1 Rx, 4 Tx) @ уровень мощности #2 Типичный: ТВD EGSM 900 (3 Rx, 2 Tx) @ уровень мощности #8 Типичный: ТВD DCS1800 (3 Rx, 2 Tx) @ уровень мощности #2 Типичный: ТВD Данные LTE	Данные EDGE	
EGSM 900 (3 Rx, 2 Tx) @ уровень мощности #8 Типичный: ТВD DCS1800 (3 Rx, 2 Tx) @ уровень мощности #2 Типичный: ТВD Данные LTE LTE-FDD B1 @5 МГц 23,0 дБмТипичный : ТВD @10 МГц 23,0 дБм Типичный: ТВD @5 МГц 23,0 дБмТипичный : ТВD : ТВD @10 МГц 23,0 дБмТипичный : ТВD : ТВD LTE-FDD B5 @5MHz 23,0 дБмТипичный : ТВD @10 LTE-FDD B7 @5MHz 23,0 дБмТипичный : ТВD @10 LTE-FDD B8 @5MHz 23,0 дБмТипичный : ТВD @10 LTE-FDD B8 : ТВD @10 MГц 23,0 дБмТипичный : ТВD @10 : ТВD @10 MГц 23,0 дБмТипичный : ТВD @10 : ТВD @10 MГц 23,0 дБмТипичный : ТВD @10 : ТВD @10 MГц 23,0 дБмТипичный : ТВD @10 : ТВD @10	EGSM 900 (1 Rx, 4 Tx)	@ уровень мощности #8 Типичный: TBD
DCS1800 (3 Rx, 2 Tx) @ уровень мощности #2 Типичный: ТВD Данные LTE	DCS1800 (1 Rx, 4 Tx)	@ уровень мощности #2 Типичный: TBD
Данные LTE	EGSM 900 (3 Rx, 2 Tx)	@ уровень мощности #8 Типичный: TBD
LTE-FDD B1 @5 МГц 23,0 дБмТипичный : ТВD @10 МГц 23,0 дБм Типичный:Т BD @20 МГц 23,0 дБмТипичный : ТВD : ТВD LTE-FDD B3 @5 МГц 23,0 дБмТипичный : ТВD LTE-FDD B5 @10 МГц 23,0 дБмТипичный : ТВD LTE-FDD B5 @5MHz 23,0 дБмТипичный : ТВD @10 LTE-FDD B7 @5MHz 23,0 дБмТипичный : ТВD @10 LTE-FDD B8 @5MHz 23,0 дБмТипичный : ТВD @10 LTE-FDD B8 ©5MHz 23,0 дБмТипичный : ТВD @10 LTE-FDD B20 @5MHz 23,0 дБмТипичный : ТВD @10 LTE-FDD B20 : ТВD @10 МГц 23,0 дБмТипичный : ТВD @10 : ТВD @10 МГц 23,0 дБмТипичный : ТВD @10 : ТВD @10 МГц 23,0 дБмТипичный : ТВD @10 : ТВD @10	DCS1800 (3 Rx, 2 Tx)	@ уровень мощности #2 Типичный: TBD
LTE-FDD B1 @10 МГц 23,0 дБм TUПИЧНЫЙ: Т BD @20 МГц 23,0 дБмТиПИЧНЫЙ : TBD LTE-FDD B3 @5 МГц 23,0 дБм : TBD LTE-FDD B3 @10 МГц 23,0 дБм ТИПИЧНЫЙ: TBD LTE-FDD B5 @5MHz 23,0 дБмТиПиЧНЫЙ : TBD : TBD @10 MГц 23,0 дБмТиПиЧНЫЙ : TBD LTE-FDD B7 @5MHz 23,0 дБмТиПиЧНЫЙ : TBD @10 MГц 23,0 дБмТиПиЧНЫЙ : TBD : TBD @10 MГц 23,0 дБмТиПиЧНЫЙ : TBD LTE-FDD B20 @5MHz 23,0 дБмТиПиЧНЫЙ : TBD @10 MГц 23,0 дБмТиПиЧНЫЙ : TBD @10	Данные LTE	
LTE-FDD B3 @10 МГц 23,0 дБм LTE-FDD B5 @5MHz 23,0 дБмТипичный LTE-FDD B5 @5MHz 23,0 дБмТипичный LTE-FDD B7 @5MHz 23,0 дБмТипичный LTE-FDD B8 @5MHz 23,0 дБмТипичный LTE-FDD B8 @5MHz 23,0 дБмТипичный LTE-FDD B20 . ТВD @10 МГц 23,0 дБмТипичный . ТВD @10 МГц 23,0 дБмТипичный . ТВD @10	LTE-FDD B1	@10 МГц 23,0 дБм Типичный:Т BD @20 МГц 23,0 дБмТипичный
LTE-FDD B5 @5MHz 23,0 дБмТипичный : TBD @10 MГц 23,0 дБмТипичный : TBD	LTE-FDD B3	@10 МГц 23,0 дБм Типичный:Т BD @20 МГц 23,0 дБмТипичный
: TBD @10 МГц 23,0 дБмТипичный : TBD LTE-FDD B8 @5MHz 23,0 дБмТипичный : TBD @10 МГц 23,0 дБмТипичный : TBD LTE-FDD B20 @5MHz 23,0 дБмТипичный : TBD LTE-FDD B20 @5MHz 23,0 дБмТипичный : TBD @10 МГц 23,0 дБмТипичный :	LTE-FDD B5	@5MHz 23,0 дБмТипичный : TBD @10 МГц 23,0 дБмТипичный :
: TBD @10 МГц 23,0 дБмТипичный : TBD LTE-FDD B20 @5MHz 23,0 дБмТипичный : TBD @10 МГц 23,0 дБмТипичный :	LTE-FDD B7	: TBD @10 МГц 23,0 дБмТипичный :
: TBD @10 МГц 23,0 дБмТипичный :	LTE-FDD B8	: TBD @10 МГц 23,0 дБмТипичный :
IBB	LTE-FDD B20	: TBD @10

5.5 Примечания к ESD

www.simcom.com 67/86

А7682Е является электростатически чувствительным устройством. При производстве, сборке и эксплуатации модуля пользователи должны обращать внимание на электростатическую защиту. Ниже приведены параметры электростатических характеристик модуля:

Таблица 36: Таблица измерения характеристик ESD (температура: 25°C, влажность: 45%)

Часть	Контактный разряд	Выброс воздуха
VBAT, GND	TBD	TBD
Антенный порт	TBD	TBD

www.simcom.com 68/86

USB	TBD	TBD
UART	TBD	TBD
Другие ПАДы	TBD	TBD

ПРИ

Условием тестирования является установка модуля на плату SIMcom Development (с компонентами ESD).

www.simcom.com 69/86

6 Руководство по производству SMT

6.1 Вид сверху и снизу на А7682Е

Рисунок 29: Вид сверху и снизу на А7682Е

ПРИМЕЧА

Выше приведена схема дизайна модуля для справки. Фактический внешний вид зависит от реального продукта.

www.simcom.com 70/86

6.2 Информация об этикетке

Рисунок 30: Информация об этикетке

Таблица 37: Описание информации на этикетке

Нет.	Описание
Α	Название проекта
В	Код товара
С	Серийный номер
D	Homep IMEI модуля
Е	QR-код

www.simcom.com 71/86

6.3 Типичный профиль расплавления SMT

Рисунок 31: Профиль темповой пропитки А7682Е

Более подробную информацию о вторичном SMT можно найти в документе [21].

6.4 Уровень чувствительности к влаге (MSL)

A7682E соответствует уровню чувствительности к влаге (MSL) 3 в соответствии с JEDEC J-STD-033.

В следующих двух случаях модуль А7682Е должен быть полностью запечен перед пайкой, иначе модуль может получить необратимые повреждения в процессе пайки.

После распаковки или повреждения вакуумной упаковки и появления утечек, модуль A7682E необходимо заделать SMT в течение 168 часов в условиях окружающей среды при температуре <30 градусов и относительной влажности воздуха

<60%. Если вышеуказанные условия не соблюдаются, требуется запекание.

Если вакуумная упаковка не вскрыта, но срок годности истек, также требуется запекание.

Условия запекания: пользователи должны запекать модули в течение 192 часов в сушильном оборудовании (<5% относительной влажности) при температуре 40+5/-0°C или 72 часа при температуре 85+5/-5°C. (При использовании противня, пожалуйста, обратите внимание на то, устойчив ли противень к тепловой деформации).

www.simcom.com 72/86

Таблица 38: Уровень чувствительности к влаге и срок службы пола

Чувствительность к влаге	Срок службы (из упаковки) при заводских условиях≤30°С/60% относительной влажности или
Уровень (MSL)	как указано
1	Неограниченно при ≦30°C/85% относительной влажности
2	1 год
2a	4 недели
3	168 часов
4	72 часа
5	48 часов
5a	24 часа
6	Обязательное запекание перед использованием. После запекания необходимо повторно прогреть в течение срок, указанный на этикетке.

При производстве и хранении необходимо соблюдать стандарт IPC / JEDEC J-STD-033.

www.simcom.com 73/86

7 Упаковка

Упаковка опорного лотка А7682Е.

Рисунок 32: схема упаковки

Чертеж лотка модуля:

Рисунок 33: Рисунок лотка

www.simcom.com 74/86

Таблица 39: Размер подноса

Длина (±3 мм)	Ширина (±3 мм)	номер
242.0	161.0	24

Рисунок на маленькой коробке:

Рисунок 34: Чертеж небольшой картонной коробки

Таблица 40: Размер маленькой картонной коробки

Длина (±10 мм)	Ширина (±10 мм)	Высота (±10 мм)	номер
270	180	120	24*20=480

Чертеж большой коробки:

Рисунок 35: Чертеж большой коробки

www.simcom.com 75/86

Таблица 41: Размер большой коробки

Длина (±10 мм)	Ширина (±10 мм)	Высота (±10 мм)	номер
380	280	280	480*4=1920

www.simcom.com 76/86

8 Приложение

8.1 Схемы кодирования и максимальная чистая скорость передачи данных по воздушному интерфейсу

Таблица 42: Схемы кодирования и максимальная чистая скорость передачи данных по воздушному интерфейсу

Класс слотов	Номер слота DL	Номер слота UL	Номер активного слота
1	1	1	2
2	2	1	3
3	2	2	3
4	3	1	4
5	2	2	4
6	3	2	4
7	3	3	4
8	4	1	5
9	3	2	5
10	4	2	5
11	4	3	5
12	4	4	5
Схема кодирования GPRS	Максимальное ко	личество данных (4	Тип модуляции
	слота)		
CS 1 = 9,05 кбит/с / временной интервал	36,2 кб/с		GMSK
CS 2 = 13,4 кбит/с / временной интервал	53,6 кб/с		GMSK
CS 3 = 15,6 кбит/с / временной интервал	62,4 кб/с		GMSK
CS 4 = 21,4 кбит/с / временной интервал	85,6 кб/с		GMSK
Схема кодирования EDGE	Максимальное ко	личество данных (4	Тип модуляции
	слота)		
MCS 1 = 8,8 кб/с/временной интервал	•		GMSK
MCS 2 = 11,2 кб/с/временной интервал	44,8 кб/с		GMSK
	59,2 кб/с		ONAGIZ
MCS 3 = 14,8 кб/с/временной интервал	59,2 кб/с		GMSK

www.simcom.com 77/86

MCS 5 = 22,4 кб/с/тайм-слот	89,6 кб/с	8PSK
MCS 6 = 29,6 кб/с/тайм-слот	118,4 кб/с	8PSK
MCS 7 = 44,8 кб/с/временной интервал	179,2 кб/с	8PSK
MCS 8 = 54,4 кб/с/тайм-слот	217,6 кб/с	8PSK
MCS 9 = 59,2 кб/с/временной интервал	236,8 кб/с	8PSK
Категория устройств HSDPA	Максимальная скорость передачи данных (пиковая)	Тип модуляции

www.simcom.com 78/86

Категория 1 1,2 Мбит/с Категория 2 1,2 Мбит/с Категория 3 1,8 Мбит/с Категория 4 1,8 Мбит/с 160AM, QPSK Категория 4 1,8 Мбит/с 160AM, QPSK Категория 5 3,6 Мбит/с 160AM, QPSK Категория 6 3,6 Мбит/с 160AM, QPSK Категория 7 7,2 Мбит/с 160AM, QPSK Категория 8 7,2 Мбит/с Категория 8 7,2 Мбит/с Категория 9 10,2 Мбит/с 160AM, QPSK Категория 9 10,2 Мбит/с Категория 10 14,4 Мбит/с ОРSK Категория 11 О,9 Мбит/с Категория 12 1,8 Мбит/с ОРSK Категория 12 1,8 Мбит/с Категория 13 17,6 Мбит/с Категория 14 21,1 Мбит/с ОРSK Категория 14 21,1 Мбит/с Категория 16 28 Мбит/с Категория 16 28 Мбит/с Категория 17 23,4 Мбит/с Категория 18 28 Мбит/с Категория 19 35,5 Мбит/с Категория 20 42 Мбит/с Категория 21 23,4 Мбит/с Категория 21 23,4 Мбит/с Категория 21 23,4 Мбит/с Категория 20 42 Мбит/с Категория 21 42 Мбит/с Категория 21 43,5 Мбит/с Категория 24 42 Категория 24 42 Категория 24 42 Категория 24 42 Категория 24 43,5 Мбит/с Категория 24 42 Категория 24 42 Категория 24 43,6 Мбит/с Категория 24 44,2 Мбит/с Категория 25 45,5 Мбит/с 64QAM Категория 26 Категория 27 42 Категория 27 43,4 Мбит/с Категория 27 44,2 Мбит/с Категория 27 45,5 Мбит/с Категория 27 46,2 Мбит/с Категория 27 46,2 Мбит/с Категория 28 Категория 29 47,9 Мбит/с Категория 29 48,4 Мбит/с Сарок Категория 21 49,2 Мбит/с Сарок Категория 21 40,9 Мбит/с Сарок Категория 21 40,9 Мбит/с Сарок Категория 3 40,9 Мбит/с Сарок Категория 4 40,9 Мбит/с Сарок Категория 1 40,9 Мбит/с Сарок Категория 1 40,9 Мбит/с Сарок Категория 2 50 Мбит/с Сарок Категория 1 40 Мбит/с Сарок Категория 2 50 Мбит/с Сарок Категория 2 50 Мбит/с Сарок Категория 3 100 Мбит/с Сарок Категория 4 50 Мбит/с Сарок Категория 4 50 Мбит/с Сарок Категория 1 50			
Категория 3 1,8 Мбит/с Категория 4 1,8 Мбит/с Категория 5 3,6 Мбит/с Категория 6 3,6 Мбит/с Категория 7 7,2 Мбит/с Категория 7 7,2 Мбит/с Категория 8 7,2 Мбит/с Категория 9 10,2 Мбит/с Категория 9 10,2 Мбит/с Категория 10 14,4 Мбит/с Категория 11 0,9 Мбит/с Категория 12 1,8 Мбит/с Категория 12 1,8 Мбит/с Категория 13 17,6 Мбит/с С Категория 14 21,1 Мбит/с С Категория 15 23,4 Мбит/с Категория 16 23,4 Мбит/с Категория 16 23,4 Мбит/с Категория 17 23,4 Мбит/с Категория 18 28 Мбит/с Категория 19 35,5 Мбит/с Категория 20 42 Мбит/с Категория 21 23,4 Мбит/с Категория 20 42 Мбит/с Категория 20 42 Мбит/с Категория 21 23,4 Мбит/с Категория 20 43 Мбит/с Категория 20 44 Мбит/с Категория 21 23,4 Мбит/с Категория 21 23,4 Мбит/с Категория 20 42 Мбит/с Категория 21 43 Мбит/с Категория 21 43 Мбит/с Категория 21 44 Мбит/с Категория 21 45,5 Мбит/с Категория 21 46 Мбит/с Категория 21 47 Мбит/с Категория 24 47 Мбит/с Категория 24 47 Мбит/с Категория 24 48 Мбит/с С Категория 24 49 Мбит/с С Категория 24 40 Мбит/с С Категория 25 3,8 Мбит/с С Категория 26 Категория 27 3,9 Мбит/с С Категория 3 4,9 Мбит/с С СРЅК Категория 4 3,8 Мбит/с С СРЅК Категория 4 3,8 Мбит/с С СРЅК Категория 4 3,8 Мбит/с С СРЅК Категория 4 4 Пимовая) Тип модуляции Тип модуляции Тип модуляции Тип модуляции Тип модуляции Тип модуляции Тип модуляции Тип модуляции Данных (пиковая) Тип модуляции Данных (пиковая) Тип модуляции Категория 4 5 Мбит/с С СРЅК/16QAM/64QAM Категория 4 100 Мбит/с С СРЅК/16QAM/64QAM Категория 4 100 Мбит/с С СРЅК/16QAM/64QAM Категория 4 150 Мбит/с С Максимальная скорость передачи Данных (пиковая) Тип модуляции Тип модуляции Тип модуляции Тип модуляции Тип модуляции	Категория 1	1,2 Мбит/с	16QAM, QPSK
Категория 4 1,8 Мбит/с Категория 5 3,6 Мбит/с Категория 6 3,6 Мбит/с Категория 7 7,2 Мбит/с Категория 8 7,2 Мбит/с Категория 9 10,2 Мбит/с Категория 10 14,4 Мбит/с Категория 11 0,9 Мбит/с Категория 12 1,8 Мбит/с Категория 13 17,6 Мбит/с Категория 14 21,1 Мбит/с Категория 15 23,4 Мбит/с Категория 16 Категория 17 23,4 Мбит/с Категория 18 Категория 18 Категория 18 Категория 19 23,4 Мбит/с Категория 16 Категория 17 23,4 Мбит/с Категория 18 Категория 18 Категория 18 Категория 19 35,5 Мбит/с Категория 20 42 Мбит/с Категория 21 23,4 Мбит/с Категория 22 28 Мбит/с Категория 23 35,5 Мбит/с Категория 24 42,2 Мбит/с Категория 24 42,2 Мбит/с Категория 24 43,2 Мбит/с Категория 24 44,2 Мбит/с Категория 24 45,2 Мбит/с Категория 24 46,2 Мбит/с Категория 24 47,2 Мбит/с Категория 24 48,4 Мбит/с Категория 24 49,2 Мбит/с Категория 24 40,2 Мбит/с Категория 24 40,2 Мбит/с СаОАМ Категория 24 41,2 Мбит/с СаОАМ Категория 24 42,2 Мбит/с СаОАМ Категория 24 43,4 Мбит/с СаОАМ Категория 24 44,2 Мбит/с СаОАМ Категория 24 45,2 Мбит/с СаОАМ Категория 24 46,2 Мбит/с СаОАМ Категория 24 47,2 Мбит/с СаОАМ Категория 24 48,2 Мбит/с СаОАМ Категория 3 40,9 Мбит/с СаСОАМ Категория 3 40,9 Мбит/с СаСОАМ Категория 4 40,9 Мбит/с СаСОАМ СаСОВОАМ Категория 4 40,9 Мбит/с СаСОАМ СаСОВОАМ Категория 4 40,9 Мбит/с СаСОАМ СаСОВОАМ СаСОВОВОВОВ СаСОВОВОВ СаСОВОВОВОВ СаСОВОВОВ СаСОВОВ	Категория 2	1,2 Мбит/с	16QAM, QPSK
Категория 5 3,6 Мбит/с 16QAM, QPSK Категория 6 3,6 Мбит/с 16QAM, QPSK Категория 7 7,2 Мбит/с 16QAM, QPSK Категория 8 7,2 Мбит/с 16QAM, QPSK Категория 9 10,2 Мбит/с 16QAM, QPSK Категория 10 14,4 Мбит/с 16QAM, QPSK Категория 10 14,4 Мбит/с 16QAM, QPSK Категория 11 0,9 Мбит/с QPSK Категория 12 1,8 Мбит/с QPSK Категория 13 1,7 6 Мбит/с 64QAM Категория 14 21,1 Мбит/с 64QAM Категория 15 23,4 Мбит/с 16QAM Категория 16 28 Мбит/с 16QAM Категория 17 23,4 Мбит/с 64QAM Категория 18 28 Мбит/с 64QAM Категория 19 35,5 Мбит/с 64QAM Категория 19 35,5 Мбит/с 64QAM Категория 20 42 Мбит/с 64QAM Категория 21 23,4 Мбит/с 64QAM Категория 22 28 Мбит/с 64QAM Категория 24 42,2 Мбит/с 64QAM Категория 24 42,2 Мбит/с 64QAM Категория 25,5 Мбит/с 64QAM Категория 26 42,4 Мбит/с 64QAM Категория 27 1,92 Мбит/с 64QAM Категория 28 3,5 Мбит/с 64QAM Категория 29 3,5 Мбит/с 64QAM Категория 29 3,5 Мбит/с 64QAM Категория 29 3,5 Мбит/с 64QAM Категория 20 42,4 Мбит/с 64QAM Категория 21 3,4 Мбит/с 64QAM Категория 24 42,2 Мбит/с 64QAM Категория 24 3,84 Мбит/с 64QAM Категория 25 1,92 Мбит/с 64QAM Категория 3 1,92 Мбит/с 64QAM Категория 3 1,92 Мбит/с 64QAM Категория 4 3,84 Мбит/с 64QAM Категория 5 3,84 Мбит/с 64QAM Категория 5 3,84 Мбит/с 64QAM Категория 9 СТРОЙСТВ LTE- FDD (ПОФИПІК) Категория 9 СТ	Категория 3	1,8 Мбит/с	16QAM, QPSK
Категория 6 3,6 Мбит/с 16QAM, QPSK Категория 7 7,2 Мбит/с 16QAM, QPSK Категория 8 7,2 Мбит/с 16QAM, QPSK Категория 9 10,2 Мбит/с 16QAM, QPSK Категория 10 14,4 Мбит/с 16QAM, QPSK Категория 11 0,9 Мбит/с QPSK Категория 11 0,9 Мбит/с QPSK Категория 12 1,8 Мбит/с QPSK Категория 13 17,6 Мбит/с 64QAM Категория 14 21,1 Мбит/с 64QAM Категория 15 23,4 Мбит/с 16QAM Категория 16 28 Мбит/с 16QAM Категория 17 23,4 Мбит/с 64QAM Категория 18 28 Мбит/с 64QAM Категория 19 35,5 Мбит/с 64QAM Категория 20 42 Мбит/с 64QAM Категория 21 23,4 Мбит/с 64QAM Категория 21 23,4 Мбит/с 64QAM Категория 22 28 Мбит/с 64QAM Категория 24 Мбит/с 64QAM Категория 25 23,4 Мбит/с 64QAM Категория 27 10,9 Мбит/с 64QAM Категория 28 10,9 Мбит/с 64QAM Категория 29 10,9 Мбит/с 64QAM Категория 20 10,9 Мбит/с 64QAM Категория 20 10,9 Мбит/с 64QAM Категория 21 10,9 Мбит/с 64QAM Категория 21 10,9 Мбит/с 64QAM Категория 21 10,9 Мбит/с 10,9 КК Категория 3 1,9 Мбит/с 10,9 КК Категория 4 3,84 Мбит/с 10,9 КК Категория 4 3,84 Мбит/с 10,9 КК Категория 5 3,84 Мбит/с 10,9 КК Категория 9 СРЅК Категория 9 СРЅК Категория 1 10 Мбит/с 10,9 КК Категория 1 10 Мбит/с 10,9 КК/16QAM/64QAM Категория 9 СРЅК/16QAM/64QAM Категория 9 СРЅК/16	Категория 4	1,8 Мбит/с	16QAM, QPSK
Категория 7 7, 2 Мбит/с Категория 8 7, 2 Мбит/с Категория 9 10,2 Мбит/с 16QAM, QPSK Категория 10 14,4 Мбит/с 16QAM, QPSK Категория 11 0,9 Мбит/с Категория 12 1,8 Мбит/с Категория 13 17,6 Мбит/с Категория 13 17,6 Мбит/с Категория 14 21,1 Мбит/с Категория 15 23,4 Мбит/с Категория 16 28 Мбит/с Категория 17 23,4 Мбит/с Категория 18 28 Мбит/с Категория 18 28 Мбит/с Категория 18 28 Мбит/с Категория 18 Категория 18 28 Мбит/с Категория 18 Категория 18 28 Мбит/с Категория 19 35,5 Мбит/с Категория 20 42 Мбит/с Категория 21 23,4 Мбит/с Категория 23 35,5 Мбит/с Категория 24 42,2 Мбит/с С Категория 25 4,9 2 Мбит/с С Категория 26 4,9 2 Мбит/с С Категория 27 4,9 2 Мбит/с С Категория 27 4,9 2 Мбит/с С Категория 3 4,9 2 Мбит/с С С С С С С С С С С С С С С С С С С С	Категория 5	3,6 Мбит/с	16QAM, QPSK
Категория 8 7,2 Мбит/с Категория 9 10,2 Мбит/с 16QAM, QPSK Категория 10 14,4 Мбит/с 16QAM, QPSK Категория 11 0,9 Мбит/с ОРSK Категория 12 1,8 Мбит/с ОРSK Категория 13 17,6 Мбит/с 64QAM Категория 14 21,1 Мбит/с 64QAM Категория 15 23,4 Мбит/с Категория 16 Сам	Категория 6	3,6 Мбит/с	16QAM, QPSK
Категория 9 10,2 Мбит/с 16QAM, QPSK Категория 10 14,4 Мбит/с 16QAM, QPSK Категория 11 0,9 Мбит/с QPSK Категория 12 1,8 Мбит/с QPSK Категория 13 17,6 Мбит/с 64QAM Категория 14 21,1 Мбит/с 64QAM Категория 15 23,4 Мбит/с 16QAM Категория 16 28 Мбит/с 16QAM Категория 17 23,4 Мбит/с 64QAM Категория 17 23,4 Мбит/с 64QAM Категория 18 28 Мбит/с 64QAM Категория 18 28 Мбит/с 64QAM Категория 19 35,5 Мбит/с 64QAM Категория 20 42 Мбит/с 64QAM Категория 21 23,4 Мбит/с 16QAM Категория 22 28 Мбит/с 64QAM Категория 22 28 Мбит/с 64QAM Категория 23 35,5 Мбит/с 64QAM Категория 24 42,2 Мбит/с 64QAM Категория 25 35,5 Мбит/с 64QAM Категория 26 1,92 Мбит/с 64QAM Категория 27 1,92 Мбит/с 64QAM Категория 3 1,92 Мбит/с QPSK Категория 4 3,84 Мбит/с QPSK Категория 6 5,76 Мбит/с QPSK Категория 6 5,76 Мбит/с QPSK Категория 9 СРSК Категория 9 СРSК Категория 1 10 Мбит/с QPSK Категория 9 СРSК Категория 9 СРSК Категория 9 СРSК Категория 1 10 Мбит/с QPSK Категория 9 СРSК Категория 1 10 Мбит/с QPSK Категория 1 10 Мбит/с QPSK Категория 1 10 Мбит/с QPSK/16QAM/64QAM Категория 9 СРSК/16QAM/64QAM Категория 9 СРЗК/16QAM/64QAM Категория 9 СРЗК/16QAM/64Q	Категория 7	7,2 Мбит/с	16QAM, QPSK
Категория 10 14,4 Мбит/с QPSK Категория 11 0,9 Мбит/с QPSK Категория 12 1,8 Мбит/с QPSK Категория 13 17,6 Мбит/с 64QAM Категория 14 21,1 Мбит/с 64QAM Категория 15 23,4 Мбит/с 16QAM Категория 16 28 Мбит/с 16QAM Категория 16 28 Мбит/с 64QAM Категория 17 23,4 Мбит/с 64QAM Категория 18 28 Мбит/с 64QAM Категория 18 28 Мбит/с 64QAM Категория 19 35,5 Мбит/с 64QAM Категория 20 42 Мбит/с 64QAM Категория 21 23,4 Мбит/с 64QAM Категория 22 28 Мбит/с 64QAM Категория 24 28 Мбит/с 64QAM Категория 25 2 28 Мбит/с 64QAM Категория 26 4QAM Категория 27 2 28 Мбит/с 64QAM Категория 28 Мбит/с 64QAM Категория 29 1,2 Мбит/с 64QAM Категория 20 1,2 Мбит/с 64QAM Категория 3 1,2 Мбит/с 64QAM Категория 4 3,84 Мбит/с QPSK Категория 4 3,84 Мбит/с QPSK Категория 6 5,76 Мбит/с QPSK Категория 6 5,76 Мбит/с QPSK Категория 9 СРSК Категория 1 10 Мбит/с QPSK Категория 1 10 Мбит/с QPSK/16QAM/64QAM Категория 2 50 Мбит/с QPSK/16QAM/64QAM Категория 4 150 Мбит/с QPSK/16QAM/64QAM Категория 9 СТSК/16QAM/64QAM Категория 9 СТSК/16QAM/6	Категория 8	7,2 Мбит/с	16QAM, QPSK
Категория 11 0,9 Мбит/с Категория 12 1,8 Мбит/с Категория 13 17,6 Мбит/с Категория 14 21,1 Мбит/с Категория 15 23,4 Мбит/с Категория 16 28 Мбит/с Категория 17 23,4 Мбит/с Категория 18 28 Мбит/с Категория 19 35,5 Мбит/с Категория 20 42 Мбит/с Категория 21 23,4 Мбит/с Категория 21 23,4 Мбит/с Категория 22 28 Мбит/с Категория 24 42,2 Мбит/с С С С С ОРЅК Категория 2 1,92 Мбит/с С ОРЅК Категория 3 1,92 Мбит/с ОРЅК Категория 4 3,84 Мбит/с ОРЅК Категория 6 5,76 Мбит/с ОРЅК Категория устройств LTE-FDD Максимальная скорость передачи данных (пиковая) Тип модуляции Тип модуляции Тип модуляции Орожпілк) Категория 2 50 Мбит/с ОРЅК Категория 3 100 Мбит/с ОРЅК/16QАМ/64QАМ Категория 4 100 Мбит/с ОРЅК/16QАМ/64QАМ Категория 4 Категория 4 100 Мбит/с ОРЅК/16QАМ/64QАМ Категория 4 100 Мбит/с ОРЅК/16QАМ/64QАМ Категория устройств LTE-FDD Максимальная скорость передачи данных (пиковая) Тип модуляции Тип модуляции Тип модуляции Максимальная скорость передачи данных (пиковая) Тип модуляции	Категория 9	10,2 Мбит/с	16QAM, QPSK
Категория 12 1,8 Мбит/с 64QAM Категория 13 17,6 Мбит/с 64QAM Категория 14 21,1 Мбит/с 64QAM Категория 15 23,4 Мбит/с 16QAM Категория 16 28 Мбит/с 16QAM Категория 17 23,4 Мбит/с 64QAM Категория 18 28 Мбит/с 64QAM Категория 18 28 Мбит/с 64QAM Категория 18 28 Мбит/с 64QAM Категория 19 35,5 Мбит/с 64QAM Категория 20 42 Мбит/с 64QAM Категория 21 23,4 Мбит/с 16QAM Категория 21 23,4 Мбит/с 16QAM Категория 22 28 Мбит/с 16QAM Категория 23 35,5 Мбит/с 64QAM Категория 24 42,2 Мбит/с 64QAM Категория 25 28 Мбит/с 16QAM Категория 26 42,2 Мбит/с 64QAM Категория 27 1,2 Мбит/с 64QAM Категория 28 1,2 Мбит/с 64QAM Категория 29 1,2 Мбит/с QPSK Категория 3 1,2 Мбит/с QPSK Категория 4 3,8 Мбит/с QPSK Категория 4 3,8 Мбит/с QPSK Категория 6 5,76 Мбит/с QPSK Категория 9 5,76 Мбит/с QPSK Категория 1 10 Мбит/с QPSK Категория 1 10 Мбит/с QPSK Категория 1 10 Мбит/с QPSK Категория 2 50 Мбит/с QPSK Категория 3 100 Мбит/с QPSK/16QAM/64QAM Категория 4 150 Мбит/с QPSK/16QAM/64QAM Категория 4 150 Мбит/с QPSK/16QAM/64QAM Категория 4 150 Мбит/с QPSK/16QAM/64QAM Категория 9 СТЕГОР Максимальная скорость передачи данных (пиковая) Тип модуляции	Категория 10	14,4 Мбит/с	16QAM, QPSK
Категория 13 17,6 Мбит/с 64QAM Категория 14 21,1 Мбит/с 64QAM Категория 15 23,4 Мбит/с 16QAM Категория 16 28 Мбит/с 16QAM Категория 17 23,4 Мбит/с 64QAM Категория 18 28 Мбит/с 64QAM Категория 19 35,5 Мбит/с 64QAM Категория 20 42 Мбит/с 64QAM Категория 21 23,4 Мбит/с 64QAM Категория 21 23,4 Мбит/с 64QAM Категория 22 28 Мбит/с 64QAM Категория 23 35,5 Мбит/с 64QAM Категория 24 42,2 Мбит/с 64QAM Категория 25 28 Мбит/с 64QAM Категория 26 42,2 Мбит/с 64QAM Категория 27 16QAM Категория 28 Мбит/с 64QAM Категория 29 1,92 Мбит/с 64QAM Категория 29 1,92 Мбит/с 64QAM Категория 2 1,92 Мбит/с QPSK Категория 3 1,92 Мбит/с QPSK Категория 4 3,84 Мбит/с QPSK Категория 5 3,84 Мбит/с QPSK Категория 6 5,76 Мбит/с QPSK Категория 6 5,76 Мбит/с QPSK Категория 1 10 Мбит/с QPSK Категория 1 10 Мбит/с QPSK Категория 1 10 Мбит/с QPSK Категория 2 50 Мбит/с QPSK Категория 2 50 Мбит/с QPSK/16QAM/64QAM Категория 3 100 Мбит/с QPSK/16QAM/64QAM Категория 4 150 Мбит/с QPSK/16QAM/64QAM Категория 5 100 Мбит/с QPSK/16QAM/64QAM Категория 5 100 Мбит/с QPSK/16QAM/64QAM Категория 6 50 Мбит/с QPSK/16QAM/64QAM Категория 7 Категория 9 устройств LTE- FDD (Uplink) Категория 9 устройств LTE- FDD (Uplink)	Категория 11	0,9 Мбит/с	QPSK
Категория 14	Категория 12	1,8 Мбит/с	QPSK
Категория 15	Категория 13	17,6 Мбит/с	64QAM
Категория 16 28 Мбит/с 16QAM Категория 17 23,4 Мбит/с 64QAM Категория 18 28 Мбит/с 64QAM Категория 19 35,5 Мбит/с 64QAM Категория 20 42 Мбит/с 64QAM Категория 21 23,4 Мбит/с 16QAM Категория 22 28 Мбит/с 16QAM Категория 23 35,5 Мбит/с 64QAM Категория 24 42,2 Мбит/с 64QAM Категория 24 42,2 Мбит/с 64QAM Категория 24 42,2 Мбит/с 64QAM Категория 25 1,92 Мбит/с QPSK Категория 2 1,92 Мбит/с QPSK Категория 3 1,92 Мбит/с QPSK Категория 4 3,84 Мбит/с QPSK Категория 5 3,84 Мбит/с QPSK Категория 9 стройств LTE- FDD Максимальная скорость передачи данных (пиковая) Tип модуляции Категория 1 10 Мбит/с QPSK/16QAM/64QAM Категория 2 50 Мбит/с QPSK/16QAM/64QAM Категория устройств LTE- FDD <	Категория 14	21,1 Мбит/с	64QAM
Категория 17 Категория 18 Категория 19 З5,5 Мбит/с Категория 20 42 Мбит/с Категория 20 42 Мбит/с Категория 21 23,4 Мбит/с Категория 22 28 Мбит/с Категория 23 35,5 Мбит/с Категория 23 35,5 Мбит/с Категория 24 42,2 Мбит/с Категория 24 42,2 Мбит/с Категория 24 42,2 Мбит/с Категория устройств НЅUРА Категория 1 0,96 Мбит/с Категория 2 1,92 Мбит/с С Категория 3 1,92 Мбит/с С Категория 4 3,84 Мбит/с С Категория 4 3,84 Мбит/с Категория 6 5,76 Мбит/с С ОРЅК Категория 9 Категория 1 10 Мбит/с С ОРЅК Категория 1 0,96 Мбит/с ОРЅК Категория 2 0,95 Комбит/с ОРЅК Категория 4 0,96 Мбит/с ОРЅК Категория 6 0,76 Мбит/с ОРЅК Категория 9 0,76 Мбит/с ОРЅК Категория 1 00 Мбит/с ОРЅК/16QАМ/64QАМ Категория 3 100 Мбит/с ОРЅК/16QАМ/64QАМ Категория 4 150 Мбит/с ОРЅК/16QАМ/64QАМ Категория 4 150 Мбит/с ОРЅК/16QАМ/64QАМ Категория 4 150 Мбит/с ОРЅК/16QАМ/64QАМ Категория 9 0,75 Категория 4 150 Мбит/с ОРЅК/16QАМ/64QАМ Максимальная скорость передачи Данных (пиковая) Тип модуляции Тип модуляции Тип модуляции Тип модуляции	Категория 15	23,4 Мбит/с	16QAM
Категория 18 28 Мбит/с 64QAM Категория 19 35,5 Мбит/с 64QAM Категория 20 42 Мбит/с 64QAM Категория 21 23,4 Мбит/с 16QAM Категория 22 28 Мбит/с 16QAM Категория 23 35,5 Мбит/с 64QAM Категория 23 35,5 Мбит/с 64QAM Категория 24 42,2 Мбит/с 64QAM Категория 24 42,2 Мбит/с 64QAM Категория устройств Максимальная скорость передачи НВUPA Категория 1 0,96 Мбит/с QPSK Категория 2 1,92 Мбит/с QPSK Категория 3 1,92 Мбит/с QPSK Категория 4 3,84 Мбит/с QPSK Категория 5 3,84 Мбит/с QPSK Категория 6 5,76 Мбит/с QPSK Категория 9стройств LTE-FDD (Downlink) Категория 1 10 Мбит/с QPSK/16QAM/64QAM Категория 2 50 Мбит/с QPSK/16QAM/64QAM Категория 3 100 Мбит/с QPSK/16QAM/64QAM Категория 4 150 Мбит/с QPSK/16QAM/64QAM Категория 9стройств LTE-FDD Максимальная скорость передачи QPSK/16QAM/64QAM Категория 4 150 Мбит/с QPSK/16QAM/64QAM Категория 9стройств LTE-FDD Максимальная скорость передачи QPSK/16QAM/64QAM	Категория 16	28 Мбит/с	16QAM
Категория 19 35,5 Мбит/с 64QAM Категория 20 42 Мбит/с 64QAM Категория 21 23,4 Мбит/с 16QAM Категория 22 28 Мбит/с 16QAM Категория 23 35,5 Мбит/с 64QAM Категория 23 35,5 Мбит/с 64QAM Категория 24 42,2 Мбит/с 64QAM Категория устройств Максимальная скорость передачи Данных (пиковая) Категория 1 0,96 Мбит/с QPSK Категория 2 1,92 Мбит/с QPSK Категория 3 1,92 Мбит/с QPSK Категория 4 3,84 Мбит/с QPSK Категория 5 3,84 Мбит/с QPSK Категория 6 5,76 Мбит/с QPSK Категория 7 (Пиковая) Категория 1 10 Мбит/с QPSK Категория 9 (Помовіть LTE-рDD (Помовіть) Категория 1 10 Мбит/с QPSK Категория 2 50 Мбит/с QPSK Категория 2 50 Мбит/с QPSK/16QAM/64QAM Категория 3 100 Мбит/с QPSK/16QAM/64QAM Категория 4 150 Мбит/с QPSK/16QAM/64QAM Категория 9 Стройств LTE-рDD (Пиковая)	Категория 17	23,4 Мбит/с	64QAM
Категория 20 42 Мбит/с 64QAM Категория 21 23,4 Мбит/с 16QAM Категория 22 28 Мбит/с 16QAM Категория 23 35,5 Мбит/с 64QAM Категория 24 42,2 Мбит/с 64QAM Категория 24 42,2 Мбит/с 64QAM Категория 24 42,2 Мбит/с 64QAM Категория 25 Максимальная скорость передачи данных (пиковая) Тип модуляции Категория 2 1,92 Мбит/с QPSK Категория 3 1,92 Мбит/с QPSK Категория 4 3,84 Мбит/с QPSK Категория 5 3,84 Мбит/с QPSK Категория 9 5,76 Мбит/с QPSK Категория 9 Сустройств LTE-рD максимальная скорость передачи данных (пиковая) Тип модуляции Категория 2 50 Мбит/с QPSK/16QAM/64QAM Категория 4 150 Мбит/с QPSK/16QAM/64QAM Категория 9 100 Мбит/с QPSK/16QAM/64QAM	Категория 18	28 Мбит/с	64QAM
Категория 21 23,4 Мбит/с 16QAM Категория 22 28 Мбит/с 16QAM Категория 23 35,5 Мбит/с 64QAM Категория 24 42,2 Мбит/с 64QAM Категория устройств НЗГРА 1,92 Мбит/с QPSK Категория 3 1,92 Мбит/с QPSK Категория 4 3,84 Мбит/с QPSK Категория 5 3,84 Мбит/с QPSK Категория 6 5,76 Мбит/с QPSK Категория 9 СТРОВ 1 10 Мбит/с QPSK Категория 1 0,96 Мбит/с QPSK Категория 2 1,92 Мбит/с QPSK Категория 4 3,84 Мбит/с QPSK Категория 5 3,84 Мбит/с QPSK Категория 6 5,76 Мбит/с QPSK Категория 9 СТРОВ 1 10 Мбит/с QPSK Категория 1 10 Мбит/с QPSK Категория 2 50 Мбит/с QPSK/16QAM/64QAM Категория 3 100 Мбит/с QPSK/16QAM/64QAM Категория 4 150 Мбит/с QPSK/16QAM/64QAM Категория 9 СТРОВ 1 10 Мбит/с QPSK/16QAM/64QAM Категория 4 150 Мбит/с QPSK/16QAM/64QAM Категория 9 СТРОВ 1 10 Мбит/с QPSK/16QAM/64QAM Категория 9 СТРОЙ 1	Категория 19	35,5 Мбит/с	64QAM
Категория 22 28 Мбит/с 16QAM Категория 23 35,5 Мбит/с 64QAM Категория 24 42,2 Мбит/с 64QAM Категория 24 42,2 Мбит/с 64QAM Категория устройств НЗUPA Максимальная скорость передачи данных (пиковая) Категория 1 0,96 Мбит/с QPSK Категория 2 1,92 Мбит/с QPSK Категория 3 1,92 Мбит/с QPSK Категория 4 3,84 Мбит/с QPSK Категория 5 3,84 Мбит/с QPSK Категория 6 5,76 Мбит/с QPSK Категория устройств LTE-FDD (Downlink) Максимальная скорость передачи данных (пиковая) Tип модуляции Категория 4 100 Мбит/с QPSK/16QAM/64QAM Категория 4 150 Мбит/с QPSK/16QAM/64QAM Категория 9 150 Мбит/с QPSK/16QAM/64QAM Категория 9 150 Мбит/с QPSK/16QAM/64QAM Категория устройств LTE-FDD (Uplink) Максимальная скорость передачи данных (пиковая)	Категория 20	42 Мбит/с	64QAM
Категория 23 35,5 Мбит/с 64QAM Категория 24 42,2 Мбит/с 64QAM Категория устройств НSUPA Категория 1 0,96 Мбит/с QPSK Категория 2 1,92 Мбит/с QPSK Категория 3 1,92 Мбит/с QPSK Категория 4 3,84 Мбит/с QPSK Категория 5 3,84 Мбит/с QPSK Категория 6 5,76 Мбит/с QPSK Категория 9 СТЕГОВ ОВ О	Категория 21	23,4 Мбит/с	16QAM
Категория 24 Категория устройств НSUPA Категория 1 О,96 Мбит/с Категория 2 1,92 Мбит/с Категория 3 1,92 Мбит/с Категория 4 3,84 Мбит/с Категория 5 3,84 Мбит/с Категория 6 5,76 Мбит/с Соры Соры Соры Соры Соры Соры Соры Соры	Категория 22	28 Мбит/с	16QAM
Категория устройств HSUPAМаксимальная скорость передачи данных (пиковая)Тип модуляцииКатегория 10,96 Мбит/сQPSKКатегория 21,92 Мбит/сQPSKКатегория 31,92 Мбит/сQPSKКатегория 43,84 Мбит/сQPSKКатегория 53,84 Мбит/сQPSKКатегория 65,76 Мбит/сQPSKКатегория устройств LTE-FDD (Downlink)Максимальная скорость передачи данных (пиковая)Тип модуляцииКатегория 110 Мбит/сQPSK/16QAM/64QAMКатегория 3100 Мбит/сQPSK/16QAM/64QAMКатегория 4150 Мбит/сQPSK/16QAM/64QAMКатегория устройств LTE-FDD (Uplink)Максимальная скорость передачи данных (пиковая)Тип модуляции	Категория 23	35,5 Мбит/с	64QAM
Категория 1 0,96 Мбит/с QPSK Категория 2 1,92 Мбит/с QPSK Категория 3 1,92 Мбит/с QPSK Категория 4 3,84 Мбит/с QPSK Категория 5 3,84 Мбит/с QPSK Категория 6 5,76 Мбит/с QPSK Категория 9 5,76 Мбит/с QPSK Категория 9 5,76 Мбит/с QPSK Категория 9 5,76 Мбит/с QPSK Категория 9 5,76 Мбит/с QPSK Категория 9 5,76 Мбит/с QPSK Категория 9 5,76 Мбит/с QPSK Категория 9 5,76 Мбит/с QPSK/16QAM/64QAM Категория 1 10 Мбит/с QPSK/16QAM/64QAM Категория 3 100 Мбит/с QPSK/16QAM/64QAM Категория 4 150 Мбит/с QPSK/16QAM/64QAM Категория 9 5 Максимальная скорость передачи данных (пиковая)	Категория 24	42,2 Мбит/с	64QAM
Категория 1 0,96 Мбит/с QPSK Категория 2 1,92 Мбит/с QPSK Категория 3 1,92 Мбит/с QPSK Категория 4 3,84 Мбит/с QPSK Категория 5 3,84 Мбит/с QPSK Категория 6 5,76 Мбит/с QPSK Категория 9 5,76 Мбит/с QPSK Категория 9 5,76 Мбит/с QPSK Категория 9 5,76 Мбит/с QPSK Категория 9 5,76 Мбит/с QPSK Категория 9 5,76 Мбит/с QPSK Категория 9 5,76 Мбит/с QPSK Категория 9 5,76 Мбит/с QPSK/16QAM/64QAM Категория 1 10 Мбит/с QPSK/16QAM/64QAM Категория 2 50 Мбит/с QPSK/16QAM/64QAM Категория 4 150 Мбит/с QPSK/16QAM/64QAM Категория 4 150 Мбит/с QPSK/16QAM/64QAM Категория 9 5 Максимальная скорость передачи данных (пиковая)	Категория устройств	Максимальная скорость передачи	Тип модуляции
Категория 10,96 Мбит/сQPSKКатегория 21,92 Мбит/сQPSKКатегория 31,92 Мбит/сQPSKКатегория 43,84 Мбит/сQPSKКатегория 53,84 Мбит/сQPSKКатегория 65,76 Мбит/сQPSKКатегория устройств LTE-FDDМаксимальная скорость передачи данных (пиковая)Тип модуляции(Downlink)QPSK/16QAM/64QAMКатегория 110 Мбит/сQPSK/16QAM/64QAMКатегория 250 Мбит/сQPSK/16QAM/64QAMКатегория 3100 Мбит/сQPSK/16QAM/64QAMКатегория 4150 Мбит/сQPSK/16QAM/64QAMКатегория устройств LTE-FDDМаксимальная скорость передачи данных (пиковая)Tип модуляции	HSUPA	данных (пиковая)	
Категория 21,92 Мбит/сQPSKКатегория 31,92 Мбит/сQPSKКатегория 43,84 Мбит/сQPSKКатегория 53,84 Мбит/сQPSKКатегория 65,76 Мбит/сQPSKКатегория устройств LTE-FDD (Downlink)(Ватегория 110 Мбит/сQPSK/16QAM/64QAMКатегория 250 Мбит/сQPSK/16QAM/64QAMКатегория 3100 Мбит/сQPSK/16QAM/64QAMКатегория 4150 Мбит/сQPSK/16QAM/64QAMКатегория 5Максимальная скорость передачи данных (пиковая)Тип модуляции	Категория 1		QPSK
Категория 43,84 Мбит/сQPSKКатегория 53,84 Мбит/сQPSKКатегория 65,76 Мбит/сQPSKКатегория устройств LTE-FDD (Downlink)Максимальная скорость передачи данных (пиковая)Тип модуляцииКатегория 110 Мбит/сQPSK/16QAM/64QAMКатегория 250 Мбит/сQPSK/16QAM/64QAMКатегория 3100 Мбит/сQPSK/16QAM/64QAMКатегория 4150 Мбит/сQPSK/16QAM/64QAMКатегория устройств LTE-FDD (Uplink)Максимальная скорость передачи данных (пиковая)Тип модуляции	Категория 2	1,92 Мбит/с	QPSK
Категория 53,84 Мбит/сQPSKКатегория 65,76 Мбит/сQPSKКатегория устройств LTE-FDDМаксимальная скорость передачи данных (пиковая)Тип модуляции(Downlink)(Downlink)QPSK/16QAM/64QAMКатегория 110 Мбит/сQPSK/16QAM/64QAMКатегория 250 Мбит/сQPSK/16QAM/64QAMКатегория 3100 Мбит/сQPSK/16QAM/64QAMКатегория 4150 Мбит/сQPSK/16QAM/64QAMКатегория устройств LTE-FDDМаксимальная скорость передачи данных (пиковая)Тип модуляции	Категория 3	1,92 Мбит/с	QPSK
Категория 65,76 Мбит/сQPSKКатегория устройств LTE- FDDМаксимальная скорость передачи данных (пиковая)Тип модуляции(Downlink)0QPSK/16QAM/64QAMКатегория 110 Мбит/сQPSK/16QAM/64QAMКатегория 250 Мбит/сQPSK/16QAM/64QAMКатегория 3100 Мбит/сQPSK/16QAM/64QAMКатегория 4150 Мбит/сQPSK/16QAM/64QAMКатегория устройств LTE- FDD (Uplink)Максимальная скорость передачи данных (пиковая)Тип модуляции	Категория 4	3,84 Мбит/с	QPSK
Категория устройств LTE- FDDМаксимальная скорость передачи данных (пиковая)Тип модуляции(Downlink)(Downlink)Категория 110 Мбит/сQPSK/16QAM/64QAMКатегория 250 Мбит/сQPSK/16QAM/64QAMКатегория 3100 Мбит/сQPSK/16QAM/64QAMКатегория 4150 Мбит/сQPSK/16QAM/64QAMКатегория устройств LTE- FDDМаксимальная скорость передачи данных (пиковая)Тип модуляции	Категория 5	3,84 Мбит/с	QPSK
FDD данных (пиковая) Тип модуляции (Downlink) (Downlink) (Downlink) Категория 1 10 Мбит/с QPSK/16QAM/64QAM Категория 2 50 Мбит/с QPSK/16QAM/64QAM Категория 3 100 Мбит/с QPSK/16QAM/64QAM Категория 4 150 Мбит/с QPSK/16QAM/64QAM Категория устройств LTE-FDD Максимальная скорость передачи данных (пиковая) Тип модуляции	Категория 6	5,76 Мбит/с	QPSK
FDD данных (пиковая) тип модуляции (Downlink) (Downlink) (Downlink) Категория 1 10 Мбит/с QPSK/16QAM/64QAM Категория 2 50 Мбит/с QPSK/16QAM/64QAM Категория 3 100 Мбит/с QPSK/16QAM/64QAM Категория 4 150 Мбит/с QPSK/16QAM/64QAM Категория устройств LTE-FDD Максимальная скорость передачи данных (пиковая) Тип модуляции	Категория устройств LTE-	Максимальная скорость передачи	
Категория 110 Мбит/сQPSK/16QAM/64QAMКатегория 250 Мбит/сQPSK/16QAM/64QAMКатегория 3100 Мбит/сQPSK/16QAM/64QAMКатегория 4150 Мбит/сQPSK/16QAM/64QAMКатегория устройств LTE-FDDМаксимальная скорость передачи данных (пиковая)Тип модуляции			Тип модуляции
Категория 2 50 Мбит/с QPSK/16QAM/64QAM Категория 3 100 Мбит/с QPSK/16QAM/64QAM Категория 4 150 Мбит/с QPSK/16QAM/64QAM Категория устройств LTE-FDD Максимальная скорость передачи данных (пиковая) Тип модуляции		40 M5 /	
Категория 3 100 Мбит/с QPSK/16QAM/64QAM Категория 4 150 Мбит/с QPSK/16QAM/64QAM Категория устройств LTE-FDD (Uplink) Максимальная скорость передачи данных (пиковая) Тип модуляции			
Категория 4 150 Мбит/с QPSK/16QAM/64QAM Категория устройств LTE- FDD Максимальная скорость передачи данных (пиковая) Тип модуляции	·		
Категория устройств LTE- FDD Максимальная скорость передачи данных (пиковая) Тип модуляции	······································		
FDD данных (пиковая) (Uplink)	·		QPSK/16QAM/64QAM
			Тип модуляции
		данных (пиковая)	

www.simcom.com 79/86

 Категория 2
 25 Мбит/с
 QPSK/16QAM

www.simcom.com

Категория 3	50 Мбит/с	QPSK/16QAM
Категория 4	50 Мбит/с	QPSK/16QAM

8.2 Связанные документы

Таблица 43: Связанные документы

HET.	Название	Описание
[1]	A7600 Series_AT Command Manual _V1.00.04	Руководство по командам АТ
[2]	ITU-T Проект новой рекомендацииV.25ter	Последовательный асинхронный автоматический набор номера и управление
[3]	GSM 07.07	Цифровые сотовые телекоммуникации (фаза 2+); набор команд АТ для мобильного оборудования (МЕ) GSM
[4]	GSM 07.10	Поддержка протокола мультиплексирования GSM 07.10
[5]	GSM 07.05	Цифровые сотовые телекоммуникации (Фаза 2+); Использование интерфейса оконечного оборудования данных - оконечного оборудования цепей передачи данных (DTE - DCE) для службы коротких сообщений (SMS) и Служба сотового вещания (CBS)
[6]	GSM 11.14	Цифровая система сотовой связи (Фаза 2+); Спецификация набора приложений SIM для абонента Интерфейс "Модуль идентификации - мобильное оборудование" (SIM - ME)
[7]	GSM 11.11	Цифровая система сотовой связи (Фаза 2+); Спецификация интерфейса Модуль идентификации абонента - мобильное оборудование (SIM - ME)
[8]	GSM 03.38	Цифровая система сотовой связи (фаза 2+); Алфавиты и информация о конкретных языках
[9]	GSM 11.10	Цифровая система сотовой связи (Фаза 2); Спецификация соответствия мобильной станции (MS); Часть 1:
		Спецификация соответствия
[10]	3GPP TS 51.010-1	Цифровая система сотовой связи (Release 5);
[]		Спецификация соответствия мобильной станции (MS)
[11]	3GPP TS 34.124	Электромагнитная совместимость (ЭМС) для мобильных терминалов и
[12]	3GPP TS 34.121	вспомогательное оборудование. Электромагнитная совместимость (ЭМС) для мобильных терминалов и вспомогательного оборудования.
[13]	3GPP TS 34.123-1	Группа технических спецификаций Сеть радиодоступа; Спецификация соответствия терминала; Передача и прием радиосигналов (FDD)
[14]	3GPP TS 34.123-3	Спецификация соответствия пользовательского оборудования (UE); Часть 3: Абстрактные тестовые наборы.

www.simcom.com 81/86

[15]	EN 301 908-02 V2.2.1	Электромагнитная совместимость и вопросы радиочастотного спектра (ERM); базовые станции (БС) и пользовательское оборудование (UE) для сотовых сетей третьего поколения IMT-2000 ; часть 2: Гармонизированный стандарт EN для IMT-2000, CDMA с прямым распространением (UTRA FDD) (UE), охватывающий основные требования статьи 3.2 Директивы R&TTE	
[16]	EN 301 489-24 V1.2.1	Электромагнитная совместимость и вопросы радиочастотного спектра (ERM); Стандарт электромагнитной совместимости (ЭМС) для радиооборудования и услуг; Часть 24: Особые условия для	

www.simcom.com 82/86

		IMT-2000 CDMA Direct Spread (UTRA) для мобильных и портативных (UE) радиостанций и вспомогательного оборудования
[17]	IEC/EN60950-1(2001)	Безопасность оборудования информационных технологий (2000)
[18]	3GPP TS 51.010-1	Цифровая система сотовой связи (Release 5); спецификация соответствия мобильной станции (MS)
[19]	GCF-CC V3.23.1	Глобальный форум по сертификации - Критерии сертификации
[20]	2002/95/EC	Директива Европейского парламента и Совета от 27 января 2003 года об ограничении использования некоторых опасных веществ в электрическом и электронном оборудовании (RoHS)
[21]	Модуль secondary-SMT-UGD-V1.xx	Руководства по SMT для вторичных модулей
[22]	A7600Series_UART_Applicati on Note_V1.xx	В этом документе описано, как использовать интерфейс UART модулей SIMCom.
[23]	Рекомендации по проектированию антенн для многофункциональной приемной системы	Рекомендации по проектированию антенн для многофункциональной приемной системы
[24]	A7600 Series_SleepMode_Applicatio n Note_V1.xx	Памятка по применению спящего режима

8.3 Термины и сокращения

Таблица 44: Термины и сокращения

Аббревиатура	Описание
АЦП	Аналого-цифровой преобразователь
AMR	Адаптивный многоскоростной
CS	Схема кодирования
CSD	Данные с коммутацией цепей
CTS	Очистить для отправки
DTE	Оборудование терминала данных (обычно компьютер, терминал, принтер)
DTR	Готовность терминала данных
DTX	Прерывистая передача
EFR	Расширенный полный тариф
EGSM	Усовершенствованный GSM
ESD	Электростатический разряд
ETS	Европейский стандарт электросвязи
FR	Полная ставка
GPRS	Служба пакетной радиосвязи общего назначения
GSM	Глобальный стандарт для мобильной связи
HR	Половинная ставка

www.simcom.com 83/86

IMEI	Международная идентификация мобильного оборудования
Литий-ионный	Литий-ионный
MO	Мобильное происхождение

www.simcom.com 84/86

MS	Мобильная станция (двигатель GSM), также называемая ТЕ
MT	Мобильная связь прервана
PAP	Протокол аутентификации паролей
PBCCH	Канал управления пакетной трансляцией
ПЕЧАТНАЯ ПЛАТА	Печатная плата
PCL	Уровень контроля мощности
PCS	Система персональной связи, также обозначаемая как GSM 1900
PDU	Блок данных протокола
PPP	Протокол "точка-точка
РФ	Радиочастота
RMS	Среднеквадратичное отклонение (значение)
RTC	Часы реального времени
RX	Направление приема
SIM-KAPTA	Модуль идентификации абонента
SMS	Служба коротких сообщений
TE	Терминальное оборудование, также называемое DTE
TX	Направление передачи
UART	Универсальный асинхронный приемник и передатчик
URC	Код незапрошенного результата
USSD	Неструктурированные данные о дополнительных услугах
Аббревиатур	a PB
FD	Телефонная книга для набора номера на SIM-карте
LD	Телефонная книга последнего набора SIM (список номеров, набранных в последнее время)
MC	Мобильное оборудование Список неотвеченных вызовов МТ (пропущенных вызовов)
HA	Список собственных номеров SIM (или ME) (MSISDNs)
RC	Список принятых вызовов для мобильного оборудования
SM	Телефонная книга SIM-карты
NC	Не подключать

8.4 Предостережение о безопасности

Таблица 45: Предостережения по безопасности

Маркс	Требования
(?)	Находясь в больнице или другом медицинском учреждении, соблюдайте ограничения по использованию
	мобильных телефонов. Выключите сотовый терминал или мобильный телефон,
	медицинское оборудование может быть чувствительным и не работать
	нормально из-за радиочастотных помех.

www.simcom.com

Перед посадкой в самолет выключите сотовый терминал или мобильный телефон. Убедитесь, что он выключен. Эксплуатация беспроводных устройств в самолете запрещена во избежание помех системам связи. Забудьте об этих инструкции могут повлиять на безопасность полета, нарушить местное законодательство или и то, и другое.

Не пользуйтесь сотовым терминалом или мобильным телефоном в присутствии легковоспламеняющихся газов или паров. Выключайте сотовый терминал, если вы находитесь рядом с заправочными станциями, складами топлива, химическими заводами или там, где ведутся взрывные работы. Эксплуатация любого электрооборудования во взрывоопасной атмосфере может представлять собой угрозу безопасности опасность.

Ваш сотовый терминал или мобильный телефон принимает и передает радиочастотную энергию, в то время как

в к л ю ч е н о . При использовании вблизи т е л е в и з о р о в , радиоприемников, компьютеров и другого электрооборудования могут возникать радиочастотные помехи.

Безопасность на дороге превыше всего! Не пользуйтесь ручным сотовым терминалом или мобильным телефоном, когда

за рулем автомобиля, если только он не закреплен в держателе, предназначенном для работы в режиме "свободные руки". Перед выполнением вызова с помощью портативного терминала или мобильного телефона припаркуйте автомобиль.

Сотовые терминалы GSM или мобильные телефоны работают на радиочастотных сигналах и в сотовых сетях и не могут гарантировать соединение в любых условиях, особенно при наличии платы за мобильную связь или недействительной SIM-карты. Если вы находитесь в таком состоянии и нуждаетесь в экстренной помощи, пожалуйста, не забывайте использовать экстренные вызовы. Чтобы совершать или принимать вызовы, сотовый терминал или мобильный телефон должен быть включен и находиться в зоне обслуживания с достаточным уровнем сигнала сотовой связи.

Некоторые сети не позволяют выполнять экстренный вызов, если используются определенные сетевые услуги или функции телефона (например, функции блокировки, фиксированный набор и т. д.). Возможно, вам придется отключить эти функции, прежде чем вы сможете совершить экстренный вызов.

Кроме того, некоторые сети требуют, чтобы в сотовый телефон была правильно вставлена действующая SIM-карта.

терминал или мобильный телефон.

www.simcom.com 86/86