

Assignment

เรื่อง การใช้งาน RapidMiner Studio

จัดทำโดย

นายวรงค์รัชต์ มณีพันธ์ 5735512049

นายณัฐวัตร ทองอร่าม 5735512125

เสนอ

อาจารย์ อัมรินทร์ ดีมะการ

รายงานฉบับนี้เป็นส่วนหนึ่งของรายวิชา 242-425 Data Mining มหาวิทยาลัยสงขลานครินทร์ วิทยาเขตภูเก็ต ภาคเรียนที่ 1 ปีการศึกษา 2560

1. Data Exploration

Operator ที่ใช้

Read CSV อ่านไฟล์ CSV จากภายนอก

อ่านไฟล์ Data01_customer-churn.csv

Set Role เซ็ตหน้าที่ของ Attribute

เซ็ต Customer_id เป็น id

เซ็ต Churn? เป็น Label

Result

จะเห็นได้ว่า Customer_id จะเป็นสีฟ้า ซึ่งเป็น ID และ Churn? จะเป็นสีเขียว ซึ่งเป็น label

2. Data Bending

Operator ที่ใช้

Retrieve ใช้สำหรับดึงข้อมูลที่เก็บไว้ใน Repository มาใช้งานใน Process

ดึงข้อมูล Retrieve Data02 customer-info และ Data03 customer-churn

Join ใช้สำหรับเชื่อมโยงข้อมูลจาก 2 ตารางเข้าด้วยกัน มีลักษณะเหมือนคำสั่ง join ใน SQL

เชื่อมโยงข้อมูล Retrieve Data02_customer-info และ Data03_customer-churn

Rename ใช้สำหรับเปลี่ยนชื่อ Attributes ต่าง ๆ

เปลี่ยนชื่อ Attributes Place ofBirth เป็น Hometown

Generate Attributes ใช้สำหรับสร้าง Attributes ใหม่ขึ้นมา

เปลี่ยน Attributes Age เป็นไปตามโค้ด ate get(date now(),DATE UNIT YEAR) -

date get(DOB,DATE UNIT YEAR)

Select Attributes เลือก Attributes

เลือก Attributes Area Code, DOB, Hometown, Phone, State, email, first_name, last_name

Replace Missing Values เป็นการแทนที่ค่าที่หายไป

แทนที่ค่า Attribute Age ด้วยค่าคงที่ 30 และ แทนที่ Attributes gender ด้วยค่าเฉลี่ย

Detect Outlier (Distances) ตรวจจับ Outlier

Filter Examples ใช้สำหรับเลือกข้อมูลที่สนใจออกมาแสดงผล

เลือกข้อมูลที่ Outlier เท่ากับ False

Result

เชื่อมโยงข้อมูล Retrieve Data02_customer-info และ Data03_customer-churn เข้าด้วยกัน โดยใช้ Primary key เป็น ID

3. Decision Tree

Operator ที่ใช้

Retrieve ใช้สำหรับดึงข้อมูลที่เก็บไว้ใน Repository มาใช้งานใน Process

ดึงข้อมูล Data04_Campaign และ Data05_Campaign-new

Decision Tree เป็นอัลกอริทึมในการจำแนกข้อมูล

Apply Model เป็นการใช้ training set และ testing set เพื่อทำนายผลลัพธ์

Result

แผนผังต้นไม้ โดยใช้แบบ information gain ในการทำนายผลลัพธ์

4. Decision Tree, Naive Bayes and K-NN

Operator ที่ใช้

Retrieve ใช้สำหรับดึงข้อมูลที่เก็บไว้ใน Repository มาใช้งานใน Process

ดึงข้อมูล Data04_Campaign และ Data05_Campaign-new

Multiply คือการนำ input เดียวให้สามารถนำไปใช้ได้หลาย ๆ อัน

Decision Tree เป็นอัลกอริทึมในการจำแนกข้อมูล

Naïve Bayes เป็นอัลกอริทึมในการจำแนกข้อมูล

k-NN เป็นอัลกอริทึมในการจำแนกข้อมูล

Apply Model เป็นการใช้ training set และ testing set เพื่อทำนายผลลัพธ์

Operator ที่ตรงกับที่เรียน

Decision Tree เป็นอัลกอริทึมในการจำแนกข้อมูล Naïve Bayes เป็นอัลกอริทึมในการจำแนกข้อมูล k-NN เป็นอัลกอริทึมในการจำแนกข้อมูล

Result

Decision Tree

Naïve Bayes

k-NN

5. Decision Tree, Naive Bayes and K-NN with subprocesses Operator ที่ใช้

Retrieve ใช้สำหรับดึงข้อมูลที่เก็บไว้ใน Repository มาใช้งานใน Process ดึงข้อมูล Data04_Campaign และ Data05_Campaign-new Subprocess ใช้สำหรับรวบรวม process ที่สร้างขึ้นมาไว้ภายใน operator ภายในได้รวบรวมโปรเซส Decision Tree, Naïve Bayes and k-NN

Result

Parameter 1

Subprocessor เลือกใช้งาน Decision Tree

Parameter 2

Subprocessor เลือกใช้งาน Naïve Bayes

Parameter 3

Subprocessor เลือกใช้งาน k-NN

6. Cross Validation - Decision Tree

Operator ที่ใช้

Retrieve ใช้สำหรับดึงข้อมูลที่เก็บไว้ใน Repository มาใช้งานใน Process

ดึงข้อมูล Data06_Heart-Attack

Cross Validation ใช้ในการทำนายข้อมูล

Performant ใช้ในวัดประสิทธิภาพของข้อมูล

หลักการของ 10-fold cross-validation โดยพฤติกรรมของการทำ 10-fold จะทำการแบ่งข้อมูล ออกเป็น 10 ส่วน โดยที่แต่ละส่วนมีจำนวนข้อมูลเท่ากัน หลังจากจะนำข้อมูลจำนวน 9 ส่วนไปสร้าง Model (Train Model) เมื่อ Train Model เสร็จ ก็จจะใช้ข้อมูล 1 ส่วน เป็นตัวทดสอบประสิทธิภาพ ของโมเดล ทำวนไปเช่นนี้จนครบจำนวนที่แบ่งไว้ นั่นหมายความว่ามีการ Train และ ทดสอบ 9 ครั้ง

Confusion Matrix

accuracy: 94.95% +/- 5.60% (mikro: 94.93%)

	true Yes	true No	class precision
pred. Yes	67	6	91.78%
pred. No	1	64	98.46%
class recall	98.53%	91.43%	

Tree และกฎ ที่ได้ออกมา


```
Tree
       Logins 4 weeks > 4.500
               Logins 6 months > 6.500: yes {no=1, yes=93}
Logins 6 months \leq 6.500
       | Logins of months & 6.500 |
| | Gender = female: no {no=7, yes=1} | |
| | Gender = male |
| | | Area = rural: no {no=1, yes=1} |
| | | Area = urban: yes {no=0, yes=9} |
| Logins 4 weeks & 4.500 |
               Mobile = always
               Mobile = aiways

| Sales Total > 28

| | Age > 49: yes {no=0, yes=3}

| | Age ≤ 49: no {no=4, yes=1}

| Sales Total ≤ 28: no {no=26, yes=0}

Mobile = never
                       Sales 6 months > 116
                                Area = rural: no {no=1, yes=1}
Area = urban: yes {no=0, yes=16}
                        Sales 6 months ≤ 116
                                Logins 6 months > 2.500
| Sales Total > 45
                                               Logins 4 weeks > 1: yes {no=0, yes=4}
Logins 4 weeks \le 1
| Logins 6 months > 5.500
                                                       | Age > 30: no {no=1, yes=1}
| Age ≤ 30: yes {no=0, yes=2}
Logins 6 months ≤ 5.500: no {no=14, yes=1}
                                        Sales Total ≤ 45
                                                 Logins 6 months > 10.500
                                                       Gender = female: no {no=5, yes=1}

Gender = male

| Age > 66.500: no {no=2, yes=0}

| Age ≤ 66.500: yes {no=0, yes=3}
                                                 Logins 6 months ≤ 10.500
                                                       Logins 4 weeks > 3.500
| Age > 39.500: no {no=7, yes=0}
                                                        | Age ≤ 39.500: no {no=1, yes=2}
| Logins 4 weeks ≤ 3.500: no {no=82, yes=0}
                                                  months \leq 2.500: no {no=280, yes=1}
```

7. Neural Network with 10-Fold Cross Validation

Operator ที่ใช้

Retrieve ใช้สำหรับดึงข้อมูลที่เก็บไว้ใน Repository มาใช้งานใน Process

ดึงข้อมูล Data10_Student

Cross Validation ใช้ในการทำนายข้อมูล

Performant ใช้ในวัดประสิทธิภาพของข้อมูล

Neural Net เป็นอัลกอริทึมในการจำแนกข้อมูล

Nominal to Numerical เป็นการแปลงข้อมูลจากข้อมูลที่แทนด้วยตัวหนังสือเป็นตัวเลข Replace Missing Values เป็นการแทนที่ค่าที่หายไป

Confusion Matrix

accuracy: 83.90% +/- 3.73% (mikro: 83.90%)

	true computer	true marketing	true management	true hotel	class precision
pred. computer	315	15	26	15	84.91%
pred. marketing	5	100	7	10	81.97%
pred. management	10	4	102	10	80.95%
pred. hotel	20	18	21	322	84.51%
class recall	90.00%	72.99%	65.38%	90.20%	

Neural Network

8. บทความที่เกี่ยวกับเนื้อหาในบทเรียน

1.1 บทความภาษาอังกฤษ

International Journal of Science and Research (IJSR)

ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Comparative Study of K-NN, Naive Bayes and Decision Tree Classification Techniques

Sayali D. Jadhav¹, H. P. Channe²

- a) ระบบทำอะไร เป็นการเปรียบเทียบเทคนิคในการจำแนกข้อมูลแบบ unsupervised learning
- b) **ใช้เทคนิคอะไร** ใช้เทคนิค k-nearest neighbors, Naïve Bayes และ Decision Tree

c) ผลลัพธ์เป็นอย่างไร

Parameter	KNN	Naive Bayes	Decision Tree
Deterministic/	Non-deterministic	Non-deterministic	Deterministic
Non-deterministic			
Effectiveness on	Small data	Huge data	Large data
Speed	Slower for large data.	Faster than KNN.	Faster
Dataset	It can't deal with noisy data.	It can deal with noisy data.	It can deal with noisy data.
Accuracy	Provides high accuracy.	For obtaining good results it requires a very	High accuracy
		large number of records.	

Table 2: Results of Accuracy of Classifiers

Dataset	Size of Dataset	KNN	Naïve	Decision
			Bayes	Tree
Weather	Small	100%	92.857%	100%
Nominal	(14 instances)			
Segment	Medium	100%	81.667%	99%
Challenge	(1500 instances)			
Supermarket	Large	89.842%	63.713%	63.713%
	(4627 instances)			

Table 3: Results of Time taken for Classification

Dataset	Size of	Time	KNN	Naïve	Decision
	Dataset			Bayes	Tree
Weather	Smal1	To Build	0 sec	0 sec	0.02 sec
Nominal	(14	Model			
	instances)	To Test	0.02 sec	0 sec	0 sec
		Model			
Segment	Medium	To Build	0 sec	0.08 sec	0.16 sec
Challenge	(1500	Model			
	instances)	To Test	0.42 sec	0.31 sec	0.06 sec
		Model			
Super	Large	To Build	0.02 sec	0.06 sec	0.06 sec
market	(4627	Model			
	instances)	To Test	45.55 sec	0.28 sec	0.03 sec
		Model			

ผลลัพธ์ที่ได้จากการทดลองจะเห็นได้ว่าแต่ละวิธีมีข้อดีแตกต่างกัน

^{1.2} Department of Computer Engineering, Pune Institute of Computer Technology, Savitribai Phule Pune University, Pune, India

d) เนื้อหาที่ตรงกับที่เรียน k-nearest neighbors, Naïve Bayes และ Decision Tree

1.2 บทความภาษาไทย

NECTEC Technical Journal Vol. III, No. 11

การใช้เทกนิกดาต้าไมน์นิงเพื่อพัฒนาคุณภาพการศึกษากณะวิศวกรรมศาสตร์

กฤษณะ ไวยมัย, ชิคชนก ส่งศิริ และธนาวินท์ รักธรรมานนท์ อาจารย์ประจำสาขาวิชาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ และนิสิตปริญญาโทวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเกษตรศาสตร์

- a) ระบบทำอะไร นำความรู้ทางด้านดาต้าไมน์นิงมาประยุกต์ใช้กับข้อมูลนิสิต คณะวิศวกรรมศาสตร์ เพื่อเป็นแนวทางในการแก้ไขปัญหาต่าง ๆ อาทิเช่น ปัญหา การเลือกสาขาวิชาไม่ตรงกับความสามารถที่แท้จริง ปัญหาผลการเรียนของนิสิต ตกต่ำจนต้องออกจากสถาบันการศึกษา
- b) ใช้เทคนิคอะไร Association rule discovery, data classification และ data prediction

c) ผลลัพธ์เป็นอย่างไร

โมเคลกลางการ	โมเคลการจำแนก	โมเคลการพยากรณ์
จำแนกประเภทข้อมูล	ประเภทข้อมูล	ข้อมูล
	ในแต่ละสาขาวิชา	ในแต่ละสาขาวิชา
1. ความน่าเชื่อถือน้อย	1.ผลการทดสอบที่ได้มี	1.ผลการทดสอบที่ได้
ประมาณ 50% เนื่องจาก	ความถูกต้องสูง 84.58 %	มีความถูกต้องสูง
กลุ่มเป้าหมายมาก		96.84 %
2. ข้อมูลนิสิตในสาขา	2. ข้อมูลแต่ละสาขาวิชา	2. ข้อมูลแต่ละสาขา
วิชาต่างๆ มีจำนวนแตก	ไม่ส่งผลกระทบต่อกัน	วิชาไม่ส่งผลกระทบ
ต่างกันมาก ทำให้	เนื่องมาจากวิธีนี้ได้สร้าง	ต่อกัน
โมเคลการทำนายโอน	โมเคลแยกกันในแต่ละ	เนื่องมาจากวิธีนี้ได้
เอียงไปทางสาขาวิชาที่	สาขาวิชา	สร้างโมเคลแยกกันใน
มีนิสิตมาก		แต่ละสาขาวิชา
3. ต้องมีการจัดกลุ่มผล	3. ต้องมีการจัดกลุ่มผล	3. ข้อมูลผลการเรียน
การเรียนในแต่ละราย	การเรียนในแต่ละรายวิชา	ในแต่ละรายวิชาเป็น
วิชา (High, Medium,	(High, Medium, Low)	ข้อมูลผลการเรียนจริง
Low) เพื่อลดการ	เพื่อลดการกระจายตัวของ	(A, B+, B, C+, C, D+,
กระจายตัวของข้อมูล	ข้อมูล ทั้งนี้ถ้าไม่มีการ	D, F) ที่มิได้มีการจัด
ทั้งนี้ถ้าไม่มีการจัดกลุ่ม	จัดกลุ่มข้อมูล จะทำให้	กลุ่มทำให้ข้อมูลที่นำ
ข้อมูล จะทำให้ โมเคลที่	โมเคลที่ได้กระจายตัวข้อ	มาสร้างโมเคล
ได้กระจายตัว ข้อมูลใน	มูลในแค่ละเส้นทางของ	Prediction นั้นมีความ

แค่ละเส้นทางของ	โมเคลมีจำนวนน้อยเป็น	ละเอียดและแม่นยำ
โมเคลมีจำนวนน้อย	ผลทำให้ความถูกต้องของ	มากกว่าการจัดกลุ่มดัง
เป็นผลทำให้ความถูก	โมเคลลดลงอย่างมาก	เช่นโมเคลการจำแนก
ต้องของโมเคลลคลง		ประเภทข้อมูล
อย่างมาก		
4. โมเคลนำเสนอเพียง	4. โมเคลนำเสนอเฉพาะ	4. โมเคลนำเสนอแนว
สาขาวิชาเคียวที่เหมาะ	สาขาวิชาที่เหมาะสมให้	โน้มเกรดเฉลี่ยสะสม
สมชึ่งส่งผลกระทบ	กับนิสิตเท่านั้น สำหรับ	เมื่อจบการศึกษาของ
โดยตรงกับการตัดสืน	นิสิตบางส่วนที่มีผลการ	นิสิตในทุกสาขาวิชา
ใจของนิสิต	เรียนดีโมเคลจะเสนอทุก	ทำให้นิสิตได้เห็นแนว
	สาขาวิชาให้กับนิสิตเป็น	โน้ม และเห็นความ
	สาขาวิชาที่เหมาะสม และ	แตกต่างของผลการ
	สำหรับนิสิตบางส่วนที่มี	เรียนของตน เมื่อเข้า
	ผลการเรียนไม่พีโมเคล	ไปศึกษาในสาขาวิชาที่
	จะไม่นำเสนอสาขาวิชา	แตกต่างกัน นอกจากนี้
	ใดๆ ที่เหมาะสมให้กับ	การนำเสนอได้เพิ่มใน
	นิสิตเลย ทำให้การตัดสิน	ส่วนของ MEAN และ
	ใจทั้งหมดไปตกอยู่กับ	TOP30% ทั้งที่ได้เคย
	นิสิตโดยที่โมเคลมิได้	กล่าวไป ทำให้ช่วยให้
	ช่วยนิสิตในกลุ่มเหล่านี้	นิสิตได้เห็นความแตก
	เลย	ต่างในการเรียนในแต่
		ละสาขาวิชามากยิ่งขึ้น

ผลลัพธ์ที่ได้จากงานวิจัยนี้ค่อนข้างเป็นที่น่าพอใจ โดยมีเปอร์เซ็นต์ความ ถูกต้องค่อนข้างสูง แต่มีปัญหาบางประการ ได้แก่ จำนวนข้อมูลในบางสาขาวิชามี ปริมาณค่อนข้างน้อยทำให้โมเดลที่ได้ไม่แม่นยำเท่าที่ควร

d) เนื้อหาที่ตรงกับที่เรียน Association rule discovery, data classification และ data prediction