Algoritmos y Estructura de Datos:

Colas con Prioridad y Montículos

Guillermo Román Díez groman@fi.upm.es

Universidad Politécnica de Madrid

Curso 2022/2023

• Son útiles: se usan en la implementación de múltiples algoritmos (veremos ejemplos en el material de grafos)

- Son útiles: se usan en la implementación de múltiples algoritmos (veremos ejemplos en el material de grafos)
- Tienen una implementación eficiente:

- Son útiles: se usan en la implementación de múltiples algoritmos (veremos ejemplos en el material de grafos)
- Tienen una implementación eficiente:
 - ► Todas las operaciones $O(log \ n)$ o mejor

- Son útiles: se usan en la implementación de múltiples algoritmos (veremos ejemplos en el material de grafos)
- Tienen una implementación eficiente:
 - ► Todas las operaciones O(log n) o mejor
 - No usa más memoria que un array normal en Java

- Son útiles: se usan en la implementación de múltiples algoritmos (veremos ejemplos en el material de grafos)
- Tienen una implementación eficiente:
 - ► Todas las operaciones *O*(*log n*) o mejor
 - No usa más memoria que un array normal en Java
- Se pueden implementar usando árboles (la implementación eficiente usa un array)

- Son útiles: se usan en la implementación de múltiples algoritmos (veremos ejemplos en el material de grafos)
- Tienen una implementación eficiente:
 - ► Todas las operaciones $O(log \ n)$ o mejor
 - No usa más memoria que un array normal en Java
- Se pueden implementar usando árboles (la implementación eficiente usa un array)
- Los algoritmos de insertar, acceder (get) y borrar son fáciles de implementar y fáciles de explicar

- Son útiles: se usan en la implementación de múltiples algoritmos (veremos ejemplos en el material de grafos)
- Tienen una implementación eficiente:
 - ► Todas las operaciones O(log n) o mejor
 - No usa más memoria que un array normal en Java
- Se pueden implementar usando árboles (la implementación eficiente usa un array)
- Los algoritmos de insertar, acceder (get) y borrar son fáciles de implementar y fáciles de explicar
- Y tienen un nombre que explica como usarlas . . . : -)

Colas con Prioridad

- En una cola FIFO el primer elemento en entrar es el primero en salir
- En las *colas con prioridad* el orden de salida viene determinado por la **prioridad** del elemento
- Se puede ver una cola con prioridad como una estructura de datos en la que los elementos se almacenan en orden de prioridad
 - A nivel de implementación no es necesario que esto ocurra así, lo importante es que la cola devuelva primero el elemento con más prioridad (ojo!)
- Las entradas de una cola con prioridad tienen
 - Una clave que indica la prioridad del elemento
 - Un valor que indica el elemento a insertar
 - ► Al par *clave-valor* lo llamamos **entrada** (entry)

Interfaz Entry<K,V>

- En el interfaz Entry<K,V> tenemos:
 - K es la clave (key) de la entrada que vamos a insertar
 - V es el valor (value) que vamos a insertar
- Por convención, la clave establece la prioridad inversamente: cuanto menor es la clave mayor es la prioridad
 - También se conocen como min-max queue porque al desencolar se devuelve el elemento con la menor clave
 - ► Se utilizará el orden total entre las claves. Los objetos que se usen para la clave deben ser Comparable o disponer de un Comparator

Interfaz Entry<K,V>

- En el interfaz Entry<K,V> tenemos:
 - K es la clave (key) de la entrada que vamos a insertar
 - ▶ V es el valor (value) que vamos a insertar
- Por convención, la clave establece la prioridad inversamente: cuanto menor es la clave mayor es la prioridad
 - También se conocen como min-max queue porque al desencolar se devuelve el elemento con la menor clave
 - ► Se utilizará el orden total entre las claves. Los objetos que se usen para la clave deben ser Comparable o disponer de un Comparator
- Nos podemos encontrar con:
 - Dos o más entradas con la misma clave pero distintos valores
 - Dos o más entradas con el mismo valor pero distintas
 - ▶ Dos o más entradas con la misma clave y los mismos valores claves

```
public interface PriorityQueue < K, V >
                       extends Iterable < Entry < K , V >> {
  int size(); public boolean isEmpty();
  Entry<K,V> enqueue(K key, V value) throws
      InvalidKeyException;
  Entry < K, V > first() throws EmptyPriorityQueueException;
  Entry < K, V > dequeue() throws EmptyPriorityQueueException;
  void remove(Entry < K, V > entry) throws InvalidKeyException;
  void replaceKey(Entry<K,V> entry, K newKey) throws
      InvalidKeyException;
  void replaceValue(Entry < K, V > entry, V newValue) throws
      InvalidKeyException;
```

Interfaz PriorityQueue<K,V>

- Los métodos first y dequeue devuelven objetos que implementan el interfaz Entry<K,V>
- enqueue: recibe por separado una clave key y un valor value
- first: es un método observador para consultar el elemento con mayor prioridad (con la clave con menor valor)
- dequeue: devuelve el elemento con mayor prioridad (con la clave con menor valor) y lo borra de la cola
- EmptyPriorityQueueException se lanza cuando se intenta acceder la entrada de clave mínima en una cola vacía
- InvalidKeyException se lanza cuando la clave es null o no tiene definido un orden para los elementos de su clase

Interfaz PriorityQueue<K,V>: remove, replaceKey y replaceValue

- Los métodos remove, replaceKey y replaceValue requieren un Entry<K,V> como argumento pero no vale cualquier Entry<K,V>!
- Los Entry<K,V> que sirven como argumentos a estos métodos tienen que haber sido devuelto por uno de los métodos:
 - ▶ first
 - enqueue
 - o usando el iterador sobre la cola
- Un Entry<K,V> devuelto por estos métodos contiene una referencia (position) dentro la estructura de datos implementando la cola, para poder implementar eficientemente los métodos remove, replaceKey y replaceValue.

Ejemplo de Colas con Prioridad

```
PriorityQueue < Integer, String > cola = new
   SortedListPriorityQueue < Integer, String > ();
cola.enqueue(1, "Programacion II");
cola.enqueue (4, "Algoritmica Numerica");
cola.enqueue(3, "Lenguajes y Automatas");
cola.enqueue(0, "AED");
while (!cola.isEmpty()) {
  ...println(cola.dequeue());
Entry < Integer , String > entry =
     cola.enqueue (7, "Programacion Funcional");
// Cambiamos programacion functional a 9
cola.replaceKey(entry, 9);
// Lo borramos
cola.remove(entry);
```

- Con una lista de posiciones desordenada
 - enqueue tiene complejidad O(1)
 - ▶ first tiene complejidad *O*(*n*)
 - dequeue tiene complejidad O(n)

- Con una lista de posiciones desordenada
 - enqueue tiene complejidad O(1)
 - first tiene complejidad O(n)
 - dequeue tiene complejidad O(n)
- Con una lista de posiciones desordenada con caché
 - \triangleright enqueue tiene complejidad O(1)
 - ▶ first tiene complejidad *O*(1)
 - dequeue tiene complejidad O(n)

- Con una lista de posiciones desordenada
 - enqueue tiene complejidad O(1)
 - ▶ first tiene complejidad *O*(*n*)
 - ightharpoonup dequeue tiene complejidad O(n)
- Con una lista de posiciones desordenada con caché
 - enqueue tiene complejidad O(1)
 - ▶ first tiene complejidad *O*(1)
 - dequeue tiene complejidad O(n)
- Con una lista de posiciones ordenada (incluida en aedlib.jar como SortedListPriorityQueue)
 - enqueue tiene complejidad O(n)
 - ▶ first tiene complejidad *O*(1)
 - dequeue tiene complejidad O(1)

Motivación Montículos

- Como acabamos de ver, en las implementaciones de colas con prioridad alguno de los métodos tiene complejidad O(n)
- El montículo es una implementación de colas con prioridad que satisface las siguientes complejidades

```
insert O(log(n))
first O(1)
dequeue O(log(n))
```

 Los métodos adicionales también tienen complejidad logarítmica o mejor:

```
replaceKey O(\log(n))
replaceValue O(1)
remove O(\log(n))
```

• Incluida en aedlib.jar como HeapPriorityQueue

Motivación

- En la implementación de colas con prioridad mediante una lista usamos una lista ordenada usando el orden total de claves
- En una implementación con un montículo se utiliza un árbol binario (casi)completo para particionar la entrada
 - ▶ Reduciendo de esta forma las búsquedas a complejidad O(log(n))
- Podemos decir que cambiamos una única fila de tamaño n por múltiples filas de tamaño log(n)
- Aunque, en realidad un montículo se describe como un árbol binario pero se implementa mediante un array

- Un árbol (casi)completo es un árbol binario que puede estar completo o faltarle únicamente nodos "a la derecha" del último nivel
 - ► Todos los niveles (menos el último) deben estar completos
 - ▶ El último nivel se va llenando de izquierda a derecha
- Un nodo 'v' está a la izquierda de otro 'w' si 'v' aparece a la izquierda de 'w' en un recorrido en inorden
- El último nodo de un árbol (casi)completo es la hoja más a la derecha en el último nivel
- La **altura** de un árbol casi completo es log(n), donde n es el número de nodos almacenados en el árbol
- El último nodo de un árbol casi completo es el que se encuentra más a la derecha en el último nivel

Árbol (casi)completo

Añadimos el nodo 6

El nodo 5 está a la izquierda de 6

Añadimos el nodo 7

Al tener el nivel 2 completo, cambiamos de nivel

Añadimos más nodos en el nuevo nivel

El nodo 11 es el último nodo

Definición Montículo

Montículo

"Es un árbol binario (casi)completo que almacena entradas en los nodos tal que para todo nodo distinto de la raíz, su entrada es mayor o igual que la entrada almacenada en el nodo padre"

- El nombre "montículo" viene de "amontonar" claves en orden ascendente
- Cumple la heap-order property
 - Todos los caminos de la raíz a las hojas están ordenados ascendentemente
 - ► Si lo usamos para una *priority queue*, la entrada de menor clave (la más prioritaria) está almacenada en el nodo raíz

PriorityQueues con montículos

- Podemos implementar una cola con prioridad mediante un montículo
- El montículo ser ordena considerando las claves de los elementos de la cola con prioridad
- Al igual que en la implementación con listas, necesitamos un Comparator o bien que las claves sean Comparable
- Podríamos conseguir que las operaciones de una cola con prioridad tengan las siguientes complejidades:

```
enqueue O(log(n))
first O(1)
dequeue O(log(n))
```

Montículo y Heap-order Property

Pregunta

¿tiene el padre de cada nodo mayor o igual prioridad que el nodo?

Montículo y Heap-order Property

Pregunta

¿tiene el padre de cada nodo mayor o igual prioridad que el nodo?

Si es un árbol casi completo y se cumple para todos los nodos, entonces, es un montículo que puede implementar una cola con prioridad

Operación enqueue

- La inserción de un nuevo nodo se hace incluyendo el nuevo nodo como el último nodo del árbol
- Como ésto puede *violar* la *heap-order property* puede ser necesario reajustar los nodos del árbol
 - ▶ Se comprueba la "heap-order property" entre el nuevo nodo y su padre
 - ★ Si se cumple hemos acabado
 - ★ Si no se cumple entonces se intercambian las entradas entre el nodo nuevo y el padre
 - Se repite la operación con el nodo intercambiado y el padre correspondiente hasta que se cumpla la "heap-order property" o hasta llegar a la raíz
- Esto se conoce como up-heap bubbling

up-heap bubbling

up-heap bubbling

Insertamos el nuevo 2 nodo en la último posición libre

¿violamos la heap-order property?

Intercambiamos los nodos

¿violamos la heap-order property?

Intercambiamos los nodos

¿violamos la heap-order property?

Intercambiamos los nodos

FIN

Operación dequeue

- La entrada de menor clave siempre es la raíz, pero la raíz no se puede borrar directamente
- Intercambiamos la raíz con el último nodo del árbol y borramos el último nodo
- Como ésto puede *violar* la *heap-order property* puede ser necesario reajustar los nodos del árbol
 - ► Se comprueba la *heap-order property* entre la raíz y sus hijos
 - ★ Si se cumple hemos acabado
 - Si no se cumple entonces se intercambian las entradas entre la raiz y el nodo hijo de menor clave
 - Se repite la operación con el hijo intercambiado y sus hijos hasta que se cumpla la "heap-order property" o hasta llegar a una hoja
- Esto se conoce como down-heap bubbling

Ejecutamos dequeue

Quitamos la raíz y ponemos el último como raíz

Quitamos la raíz y ponemos el último como raíz

¿violamos la heap-order property?

Intercambiamos con el hijo con mayor prioridad

Intercambiamos con el hijo con mayor prioridad

¿violamos la heap-order property?

Implementando un árbol binario con un Array

- Un árbol binario (casi)completo se puede implementar mediante un array
- Como el árbol es perfecto es todos los niveles menos el último
- En el último nivel se meten de izquierda a derecha, es decir,
 consecutivamente en el array
- Dado un nodo en el indice i en el array
 - ▶ su padre *siempre* esta en el indice (i-2)/2 (si existe)
 - ▶ su hijo izquierdo *siempre* esta en el indice i * 2 + 1 (si existe)
 - ▶ su hijo derecho *siempre* esta en el indice i * 2 + 2 (si existe)
- Esto nos permite tener complejidad O(1) para
 - En las inserciones por el final
 - ► En el borrado del último elemento
 - Las operaciones de intercambio entre dos nodos
- Con esta implementación conseguimos que la inserción y el borrado tengan complejidad O(log(n))

Implementando un árbol binario con un Array

Heap-sort

- Ya hemos visto que en una cola con prioridad implementada con un montículo, las inserciones se pueden hacer con O(log(n))
- Podemos utilizar esto para implementar un algoritmo de ordenación eficiente
- El algoritmo **heap-sort** ordena los elementos de una lista con complejidad $O(n \cdot log(n))$
 - ▶ Otros algoritmos de ordenación como *bubble-sort* o *quick-sort* tienen complejidad $O(n^2)$
 - ▶ Merge-sort o shell-sort también tienen complejidad $O(n \cdot log(n))$