Partiel S1 Architecture des ordinateurs

Durée: 1 h 30

Répondre exclusivement sur le sujet. Ne pas détailler les calculs sauf si cela est explicitement demandé. Ne pas écrire à l'encre rouge.

Exercice 1 (2 points)

Convertissez les nombres suivants de la forme de départ vers la forme d'arrivée. Ne pas écrire le résultat sous forme de fraction ou de puissance (p. ex. écrire 0,25 et non pas $\frac{1}{4}$ ou 2^{-2}).

Nombre à convertir	Forme de départ	Forme d'arrivée	Résultat
101011101,0101	Binaire	Décimale	
1E2,5	Hexadécimale	Décimale	
750	Décimale	Base 5	
1707,66	Hexadécimale	Base 8	

Exercice 2 (5 points)

Effectuez les opérations suivantes en binaire (les deux opérandes et le résultat sont codés sur 8 bits). Convertissez le résultat en une valeur décimale non signée et signée. Si un dépassement apparaît, écrire « ERREUR » à la place de la valeur décimale.

Onévotion	Dágultat hinaina	Valeur d	écimale
Opération	Résultat binaire	Non signée	Signée
10110111 + 00101101			
01011010 - 10001101			
01110111 + 11111000			
10000001 - 10000000			
11010111 - 01111100			

Partiel S1 1/6

Exercice 3 (3 points)

On cherche à simplifier le montage ci-dessous :

1. Exprimez, sans simplification, la sortie S en fonction des entrées a, b et c.

S =

2. Donnez l'expression la plus simplifiée de S.

S =

3. À partir de l'expression la plus simplifiée, donnez un nouveau montage constitué de trois portes NON, d'une porte ET à deux entrées et d'une porte OU à deux entrées.

Partiel S1 2/6

Exercice 4 (4 points)

On souhaite réaliser le comparateur suivant :

Les entrées A et B représentent deux entiers non signés sur deux bits (A0 et B0 sont les bits de poids faible):

- Si A > B alors la sortie 'A > B' est au niveau logique 1 et les autres sorties sont au niveau logique 0;
- Si A = B alors la sortie A = B' est au niveau logique 1 et les autres sorties sont au niveau logique 0;
- Si A < B alors la sortie 'A < B' est au niveau logique 1 et les autres sorties sont au niveau logique 0.
- 1. Complétez la table de vérité suivante :

A1	A0	B1	В0	A > B	A = B	A < B
0	0	0	0			
0	0	0	1			
0	0	1	0			
0	0	1	1			
0	1	0	0			
0	1	0	1			
0	1	1	0			
0	1	1	1			
1	0	0	0			
1	0	0	1			
1	0	1	0			
1	0	1	1			
1	1	0	0			
1	1	0	1			
1	1	1	0			
1	1	1	1			

2. Sans l'aide de tableaux de Karnaugh, donnez l'expression simplifiée de la sortie 'A = B'. Utilisez une simplification à l'aide de l'opérateur OU EXCLUSIF.

$$'A = B' =$$

Partiel S1 3/6

3. Remplissez les tableaux de Karnaugh ci-dessous (bulles comprises) puis donnez les expressions simplifiées des sorties A > B' et A < B'. Aucun point ne sera attribué à une expression si son tableau est faux.

	B1 B0					
	A > B	00	01	11	10	
	00					
A1 A0	01					
	11					
	10					

	A < B	00	01	11	10
A 1 A O	00				
A1 A0	01				
	11				
	10				

B1 B0

A > B' = A < B' =

Exercice 5 (6 points)

Soit les tables de vérité ci-dessous. A, B, C et D sont les entrées. U, V, W, X, Y et Z sont les sorties.

A	В	C	U	V
0	0	0	0	1
0	0	1	1	1
0	1	0	0	1
0	1	1	1	1
1	0	0	0	1
1	0	1	0	0
1	1	0	0	0
1	1	1	0	1

A	В	C	W	X
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	0	0

A	В	C	D	Y	Z
0	0	0	0	0	1
0	0	0	1	0	0
0	0	1	0	0	1
0	0	1	1	Φ	0
0	1	0	0	0	0
0	1	0	1	0	Φ
0	1	1	0	0	0
0	1	1	1	Φ	Φ
1	0	0	0	Φ	1
1	0	0	1	Φ	0
1	0	1	0	1	1
1	0	1	1	1	0
1	1	0	0	1	0
1	1	0	1	1	Φ
1	1	1	0	1	0
1	1	1	1	1	Φ

Partiel S1 4/6

2. Donnez la seconde forme canonique de la sortie V.

V =

3. Remplissez les diagrammes de Karnaugh ci-dessous (bulles comprises) puis donnez l'expression la plus simplifiée pour chaque sortie. Aucun point ne sera attribué à une expression si son tableau est faux. Pour l'instant, ne pas simplifier à l'aide de l'opérateur OU EXCLUSIF.

	BC						
	W	00	01	11	10		
	0						
A	1						
		•		•			

W =

	C			
	X	0	1	
AB	00			
	01			
	11			
	10			

 $\mathbf{X} =$

	CD						
	Y	00	01	11	10		
AB	00						
	01						
	11						
	10						

Y =

		CD			
	Z	00	01	11	10
AB	00				
	01				
	11				
	10				

 $\mathbf{Z} =$

4. Parmi les sorties W, X, Y et Z, voyez si certaines peuvent être simplifiées à l'aide de l'opérateur OU EXCLUSIF. Si c'est le cas, simplifiez-les et donnez les nouvelles expressions (pas de détail).

Partiel S1 5/6

Partiel S1 6/6