

MATHEMATICAL REASONING Chapter 3

Razonamiento Inductivo

HELICOMOTIVACIÓN

Kelly recibe de parte de su amigo Daniel 1 rosa el día lunes, 3 rosas el día martes, 5 rosas el día miércoles... y así sucesivamente. ¿Cuántas rosas habrá recibido Kelly de parte de su amigo Daniel el sexto día?

DÍA	1 × 2	2 × 2	3 × 2	6 × 2
CANTIDAD DE ROSAS	1 - 1	3 - 1	5 - 1	11 - 1

RPTA.: 11 rosas

Razonamiento inductivo

Se refiere al tipo de razonamiento que inicia de situaciones particulares (de menor a mayor complejidad) y se obtiene una conclusión, una veracidad el de tipo probable.

PARTICULARES

Ejemplo 1

Calcule la suma de las cifras del resultado de M. $M = \underbrace{(6666 \cdots 666)^2}_{100 \ cifras}$

Iniciamos el análisis desde lo mas simple de la

expresiténcifras en cada resultado

$$M = \underbrace{(6)^{2}}_{1 \text{ cifra}} = 36$$

$$M = \underbrace{(66)^{2}}_{2 \text{ cifras }} = 2 \times 9$$

$$\underbrace{(666)^{2}}_{3 \text{ cifras }} = 3 \times 9$$

$$\underbrace{(666)^{2}}_{3 \text{ cifras }} = 3 \times 9$$

$$\underbrace{(6666 \cdots 666)^{2}}_{100 \text{ cifras }} = 900 = 100 \times 9$$

$$Respuesta$$

Calcule la suma de los números de la fila 1

Analizamos progresivamente el gráfico

Suma de números en cada fila

Ejemplo 3

Halle el total de BOLITAS de:

Resolución

Números triangulares

Respuesta 55

Halle el número de triángulos que tiene la figura 25.

Fig. 1

Fig. 2

Fig. 3

RESOLUCIÓN:

N° de triángulos

$$F_1 \longrightarrow 1 = 1 \times 4 - 3$$

$$F_2 \rightarrow 5 = 2 \times 4 - 3$$

$$F_3 \rightarrow 9 = 3 \times 4 - 3$$

Por lo tanto para la figura 25 diremos:

$$25 \times 4 -3 = 97$$

Calcule la suma de cifras de M

$$= \underbrace{(666 ... 666)}^{2}$$

RESOLUCIÓN:

 $9 = 9 \times 1$ (1 cifra)

Por lo tanto, la suma de cifras de:

$$6^2 = 36 \implies Suma\ de\ cifras = 9$$

 $18 = 9 \times 10^{-1}$

 $(666...666)^2$ sera:

$$66^2 = 4356 \implies Suma\ de\ cifras = 18$$

 $27 = 9 \times 3$

(3 cifras)

 $0 \times 200 = 1800$

$$666^2 = 443556 \implies Suma \ de \ cifras = 27$$

Halle el número total de palitos del siguiente arreglo:

RESOLUCIÓN: Cantidad de palitos

Por lo tanto para nuestro arreglo diremos:

◎1

PROBLEMA 4

Daniel es un alumno muy observador, al estar desarrollando su tarea semanal en su cuaderno, se da cuenta que es cuadrada hoja cada cuadriculada con 20 cuadraditos por lado, y que si le traza una diagonal principal podría contar de cantidad máxima una triángulos. ¿Cuántos triángulos podrá máximo contar como Daniel en la cara de una hoja de su cuaderno?

Calcule la suma de todos los términos de la fila 50.

$$F_1 \rightarrow 1$$
 $F_2 \rightarrow 3$
 $F_3 \rightarrow 7$
 $F_4 \rightarrow 13$
 $F_5 \rightarrow 17$
 $F_6 \rightarrow 17$
 $F_7 \rightarrow 19$
 $F_8 \rightarrow 17$
 $F_8 \rightarrow 17$
 $F_8 \rightarrow 17$
 $F_8 \rightarrow 19$

RESOLUCIÓN: " "

$$F_1 \rightarrow 1 = 1 = 1^3$$

$$F_2 \rightarrow 3 + 5 = 8 = 2^3$$

$$F_3 \rightarrow 7 + 9 + 11 = 27 = 3^3$$

Entonces diremos para la fila 50

$$50^3 = 125000$$

RESOLUCIÓN:

Problema 6

Calcule la suma de todos los elementos del siguiente arreglo

Rpta. 2 x 10³

De acuerdo a la secuencia de las figuras, ¿Cuántos cuadraditos no sombreados habrá en la figura 150?

RESOLUCIÓN:

CUADRADITOS NO SOMBREADOS

$$F_1$$
:

$$= \frac{1(2)}{2}$$

$$F_2$$
:

$$3 = \frac{2(3)}{2}$$

$$F_3$$
:

$$6 = \frac{3(4)}{2}$$

Para
$$F_{150}$$

$$\frac{150(151)}{2} = 11325$$