0x05 - Design Evaluation

ENGR 3410: Computer Architecture

Jon Tse

Fall 2020

Housekeeping

- Next week's lecture is optional
- Please use the Makefile
- Ask for help early!

•

Review - Delay

Delay Unit is dependent on CMOS technology Table of Timing Arcs from Input -> Output pins

- Naive Gate Delay = 1 Delay Unit
- Improved Gate Delay

 # of gate inputs
- Actual Simulation + Experimentation -> GIANT table to cover statistical variation

Remember, CMOS Implementation!

- NAND, NOR, NOT = 1 delay
- AND, OR = 2 delay

Review - Area

1 Area Unit ≈ 1 Transistor

Area Table - Gates to Transistor Counts 🖰 🤼

- Naive 2 transistors/input
- Better Ideal implementation count (below)
- Actual Measure CMOS implementation

Gate	Transistors	Gate	Transistors
NAND2	4	AND2	6
NOR2	4	OR2	6
NOT	2	DLatch	16
XOR2	12	DFF	34

Review - Delay Scaling

LUT Full Adder

	A/B0	A/B1	A/B2
S0	6	ı	-
C1	5	ı	-
S1	5+3	6	-
C2	5+2	5	-
S2	5+2+3	5+3	6
C3 (5+2+2	5+2	5

S1	C1
	S0
	C1
	S1
	C2
	S2
	C3

Max Carry Delay = 3N			
/B0 A/B1		A/B2	
3	ı	ı	
3	ı	ı	
3+3	3	ı	
3+3	3	ı	
-3+3	3+3	3	
-3+3	3+3	3	

Review - Delay Scaling

Which is better?

NAND FA?

2N + 5

LUT FA?

3N

Depends on N!

Tipping Point N = 5

Wrap Up - Area Scaling

NAND 2 Full Adder 9x NAND2 = 36 transistors LUT Full Adder

Decoder = 2³ AND3 + 3 NOT

OR8 = 16 transistors

1 LUT = 2³(6+2) + 6 + 16 = 86

2 LUT = 172!

Wrap Up - Area Scaling

- For a decoder with S select bits and D outputs
 - Num Outputs: D = 2^S
- Need
 - S Inverters
 - D AND Gates with S inputs
- Area
 - $-S + 2^{S}(2S) = S(1+2^{S+1})$
 - If we include D-input OR, add 2D+2

LUTs Seem Bad? J(4)-19(4)

Used to represent arbitrary gates, but less efficient than dedicated circuit.

Very flexible, used in FPGAs

FPGA = Field Programmable Gate Array

Key Concept: Specialization -> Efficiency When to exercise the tradeoff?

Today

VERY Brief Discussion of Energy/Power

Add 1 more class!

Bonus Class: Heuristic Methods for Optimization

https://www.jontse.com/courses/cs5722.html

Energy Consumption 4 4

 Energy (Joules) is dissipated every time a circuit switches from 0-1 and back

• Energy (stored in capacitor):

$$\frac{1}{2}CV^2$$

Power Consumption

- Dynamic power (Watts) depends on switching frequency: $\propto C \cdot V^2 \cdot f$
- Not every node switches every cycle, so we can also model an activity factor
- Static or leakage power plays a large role in modern technologies: $\propto V$

Energy vs Power

- Can trade off power for performance
- Energy represents true cost of a computation
 - Fast or slow, it takes the same number of Joules
- Must keep power within reasonable range
 - e.g. what battery can source or what you can cool
- Static power is a constant "tax" whenever system is operating

Intro to Optimization

Goal:

To Answer the Question: "Which one is best?"

Problem: Define "Best."

Example: Buying a Car

Defining Metrics

What did I care about?

- Cost (in Dollars)
- Fuel Efficiency (in Miles per Gallon)
- Cargo Capacity

My search:

- Look for SUVs
- Looked at Toyota, Subaru, and Hyundai

Raw Data

Make	Model	MPG	Dollars
Toyota	RAV4	35	\$25,950.00
Toyota	RAV4	41	\$28,350.00
Toyota	4Runner	19	\$36,120.00
Toyota	Highlander	29	\$34,600.00
Toyota	Highlander	36	\$38,200.00
Toyota	Sequoia	17	\$49,980.00
Toyota	Sienna	27	\$31,640.00
Subaru	Crosstrek	33	\$22,245.00
Subaru	Crosstrek	34	\$26,495.00
Subaru	Forester	33	\$24,795.00
Subaru	Outback	33	\$26,795.00
Subaru	Outback	30	\$35,145.00
Subaru	Ascent	27	\$32,295.00
Subaru	Ascent	26	\$39,595.00
Hyundai	Venue	35	\$17,350.00
Hyundai	Kona	33	\$20,400.00
Hyundai	Tuscon	28	\$23,700.00
Hyundai	SantaFe	29	\$26,275.00
Hyundai	Palisade	26	\$32,525.00

Raw Data

Make	Model	MPG	Dollars	Dollars/MPG
Toyota	RAV4	35	\$25,950.00	\$741.43
Toyota	RAV4	41	\$28,350.00	\$691.46
Toyota	4Runner	19	\$36,120.00	\$1,901.05
Toyota	Highlander	29	\$34,600.00	\$1,193.10
Toyota	Highlander	36	\$38,200.00	\$1,061.11
Toyota	Sequoia	17	\$49,980.00	\$2,940.00
Toyota	Sienna	27	\$31,640.00	\$1,171.85
Subaru	Crosstrek	33	\$22,245.00	\$674.09
Subaru	Crosstrek	34	\$26,495.00	\$779.26
Subaru	Forester	33	\$24,795.00	\$751.36
Subaru	Outback	33	\$26,795.00	\$811.97
Subaru	Outback	30	\$35,145.00	\$1,171.50
Subaru	Ascent	27	\$32,295.00	\$1,196.11
Subaru	Ascent	26	\$39,595.00	\$1,522.88
Hyundai	Venue	35	\$17,350.00	\$495.71
Hyundai	Kona	33	\$20,400.00	\$618.18
Hyundai	Tuscon	28	\$23,700.00	\$846.43
Hyundai	SantaFe	29	\$26,275.00	\$906.03
Hyundai	Palisade	26	\$32,525.00	\$1,250.96

Synthetic Metrics Hide Data

- Dollars per MPG
 - How many MPG does it actually get?
 - What's the actual COST of the car?!

- Your Grades
 - What did you have trouble with?
 - o How can we help you better?

Scatter Plot

Pareto Optimality

Evaluating Designs

Optimization Space

of dimensions = # of metrics of interest

Figure 8.5: 65 nm 600 µm 2-Bit Link

Sweeping Optimization Space

Exhaustive Search Intractable

Therefore, must "sample" space

... and give up on global optimum

... but *where* to sample?

Basic Optimization Flow

1. Define a "Design Instance" or "Sample"

2. Define a "Cost Function" AND a way to evaluate it

3. Try a bunch of samples

4. Do something smart to search the space and try new samples

Heuristic Optimization

The "smart" thing I referred to earlier.

Example Algorithms (There are Many)

Genetic Algorithms
Simulated Annealing
Tabu Search

Genetic Algorithms (Car)

Vector of Design Choices

- Engine
- Gearbox
- Chassis

Cost Function

- Calculate cost to build
- Test MPG

Back to Computer Architecture