Appendix: Efficient Stochastic Routing in Path-Centric Uncertain Road Networks

Chenjuan Guo^{1,2*}, Ronghui Xu¹, Bing Yang^{1,2}, Ye Yuan², Tung Kieu², Yan Zhao², Christian S. Jensen²
¹East China Normal University, ²Aalborg University

{cjguo,byang}@dase.ecnu.edu.cn,xrhics@163.com,yeyuan.ds@gmail.com,{tungkvt,yanz,csj}@cs.aau.dk

1 NAIVE STOCHASTIC ROUTING IN PACE

Algorithm 1: Naive Stochastic Routing in PACE Input: Source v_s ; Destination v_d ; Budget B; PACE graph $\mathcal{G}^{\mathcal{P}}$; Output: The path with the largest probability of getting v_d within B; 1 Priority queue $Q \leftarrow \emptyset$; 2 Double $maxProb \leftarrow 0$; Path $P^* \leftarrow \emptyset$; 3 $Q.push(\langle v_s, v_s \rangle, 0)$; 4 while $Q \neq \emptyset$ do 5 Path $\hat{P} \leftarrow Q.peek()$; 6 If \hat{P} reaches v_d and $Prob(D(\hat{P}) \leq B) > maxProb$ then 7 $maxProb \leftarrow Prob(D(\hat{P}) \leq B)$; $P^* \leftarrow \hat{P}$; 8 for each outgoing edge or T-path e do 9 Extend \hat{P} by edge e; 10 $Q.insert(\hat{P}, Expectation(D(\hat{P})))$; 11 return P^* ;

2 COMPLEXITY ANALYSIS

2.1 Algorithm 1

Given graph $\mathcal{G}^{\mathcal{P}}_{rev} = (\mathbb{V}, \mathbb{E}', \mathbb{P}', \mathbb{W}')$, the time complexity for building the binary heuristics is $O((|\mathbb{E}'| + |\mathbb{P}'|)lg|\mathbb{V}|)$. Specifically, in the worst case, we visit all edges and T-paths, thus having $|\mathbb{E}'| + |\mathbb{P}'|$. For each visit, we need to update the priority queue, which at most has $|\mathbb{V}|$ elements, and thus the update takes at most $lg|\mathbb{V}|$.

The space complexity is $O(|\mathbb{V}|^2)$. For each destination, each vertex maintains a binary heuristic value.

2.2 Algorithms 2 and 3

Given graph $\mathcal{G}^{\mathcal{P}} = (\mathbb{V}, \mathbb{E}, \mathbb{P}, \mathbb{W})$, the time complexity for Algorithms 2 and 3 is $O(|\mathbb{V}| \cdot \eta^2 \cdot |out|)$, where η is the number of columns in the heuristic table and |out| is the largest outdegree of a vertex. We apply dynamic programming to build the heuristics table using Eq. (4). The heuristics table has in total $\mathbb{V} \cdot \eta$ elements. To fill in an element in the table, we need to visit at most $|out| \cdot \eta$ other elements because we may visit up to |out| rows (see $Z \in ON(v_i)$ in Eq. (4)) and each row we may visit up to η elements (see $\sum_{k=1}^{\infty}$ in Eq. (4)).

The space complexity is $O(|\mathbb{V}|^2 \cdot \eta)$. For each destination, we maintain a heuristic table taking $|\mathbb{V}| \cdot \eta$, therefore a total of $|\mathbb{V}| \cdot |\mathbb{V}| \cdot \eta$.

2.3 Building V-paths

Given graph $\mathcal{G}^{\mathcal{P}} = (\mathbb{V}, \mathbb{E}, \mathbb{P}, \mathbb{W})$, the time complexity for building V-paths is $O(|\mathbb{P}| \cdot |\mathbb{V}|)$.

Recall that V-paths are generated iteratively. Each iteration can at most generate $|\mathbb{P}|$ new V-paths and we can at most have $|\mathbb{V}|$ iterations. In the first iteration, overlapping T-paths are combined into V-paths.

Thus, the number of generated V-paths must be smaller than the number of T-paths because the generated V-paths must have higher cardinality than the corresponding T-paths and they both represent the same path. In the next iteration, the same principle applies. Thus, each iteration can at most generate $O(|\mathbb{P}|)$ new V-paths.

Next, we explain why we can get most have $|\mathbb{V}|$ iterations. At each iteration, the cardinality of V-paths are at least one more than the V-paths in the previous iteration. In a graph with $|\mathbb{V}|$ vertices, the longest simple path (i.e., without loops) in the graph can at most have $|\mathbb{V}|$ vertices. Otherwise, there must be at least one vertex that appears twice in the path making a loop and thus the path is not a simple path anymore. Thus, we only need to perform at most $|\mathbb{V}|$ iterations as we need to ensure that V-paths are simple paths.

Space complexity is $O(|\mathbb{P}| \cdot |\mathbb{V}| \cdot |St|)$ where |St| is the storage used for the longest V-path.

3 OFFLINE PRE-COMPUTATION COSTS

We report the overall offline pre-computation cost for building binary heuristics for D_1 and D_2 in Table 1, where run time and storage is reported by hours (H) and megabytes (MB), respectively.

Data Set D_1												
	Off-	Peak Hou	ırs	Peak Hours								
Methods	T-B-EU	T-B-E	T-B-P	T-B-EU	T-B-E	T-B-P						
Run time (H)	1.8	17.6	32.3	2	19.2	34.7						
Storage (MB)	1.14	1.14	1.14	1.14	1.14	1.14						
Data Set D ₂												
	Off-	Peak Hot	ırs	Peak Hours								
	T-B-EU	T-B-E	T-B-P	T-B-EU	T-B-E	T-B-P						
Run time (H)	0.56	5.1	8.9	0.67	5.5	10						
Storage (MB)	0.66	0.66	0.66	0.66	0.66	0.66						

Table 1: Binary Heuristics Pre-computation

When building budget-specific heuristics, we did not use parallelization, which, however, is possible because building the heuristics for different vertices is independent. The offline pre-computation cost for D_1 and D_2 is reported in Table 2, where run time and storage is reported by hours (H) and gigabytes (GB), respectively.

Data Set D_1												
	Off-Peak Hours				Peak Hours							
δ	30	60	120	240	30	60	120	240				
Run time (H)	43.2	33.4	20.4	16.8	56	28.5	17.4	13.2				
Storage (GB)	5.77	5.13	4.67	4.29	5.10	4.75	4.46	4.17				
Data Set D_2												
	Off-Peak Hours				Peak Hours							
δ	30	60	120	240	30	60	120	240				
Run time (H)	48.5	23.4	13.4	10.9	40.2	28.4	20.1	16.7				
Storage (GB)	3.49	3.16	2.84	2.56	3.23	2.99	2.76	2.53				

Table 2: Budget-Specific Heuristics Pre-computation

Figure 5: Stochastic Routing with Budget-Specific Heuristics at Peak Hours

4 EXPERIMENTAL RESULTS

We provide experimental results for stochastic routing with binary heuristics at off-peak and peak hours for data sets D_1 and D_2 in Figure 2 and 3, respectively.

We provide experimental results for stochastic routing with budgetspecific heuristics at off-peak and peak hours for data sets D_1 and D_2 in Figure 4 and 5, respectively.

We provide experimental results for V-path based stochastic routing at off-peak and peak hours for data sets D_1 and D_2 in Figure 6 and 7, respectively.

Figure 7: V-Path based Stochastic Routing at Peak Hours