- The basic unit of power is the watt (W).
 - Multiple units of power are:
 - kilowatt (kW): 1000 watts or 10³ W
 - megawatt (MW):
 1 million watts or 10⁶ W
 - Submultiple units of power are:
 - milliwatt (mW):
 1-thousandth of a watt or 10⁻³ W
 - microwatt (µW):
 1-millionth of a watt or 10-6 W

- Work and energy are basically the same, with identical units.
- Power is different. It is the time rate of doing work.
 - Power = work / time.
 - Work = power × time.

- Practical Units of Power and Work:
 - The rate at which work is done (power) equals the product of voltage and current. This is derived as follows:
 - First, recall that:

1 volt =
$$\frac{1 \text{ joule}}{1 \text{ coulomb}}$$
 and 1 ampere = $\frac{1 \text{ coulomb}}{1 \text{ second}}$

Power = Volts
$$\times$$
 Amps, or $P = V \times I$

Power (1 watt) =
$$\frac{1 \text{ joule}}{1 \text{ coulomb}} \times \frac{1 \text{ coulomb}}{1 \text{ second}} = \frac{1 \text{ joule}}{1 \text{ second}}$$

Kilowatt Hours

- The kilowatt hour (kWh) is a unit commonly used for large amounts of electrical work or energy.
- For example, electric bills are calculated in kilowatt hours. The kilowatt hour is the billing unit.
- The amount of work (energy) can be found by multiplying power (in kilowatts) × time in hours.

To calculate electric cost, start with the power:

- An air conditioner operates at 240 volts and 20 amperes.
- The power is $P = V \times I = 240 \times 20 = 4800$ watts.
 - Convert to kilowatts:

4800 watts = 4.8 kilowatts

- Multiply by hours: (Assume it runs half the day)
 energy = 4.8 kW × 12 hours = 57.6 kWh
- Multiply by rate: (Assume a rate of \$0.08/ kWh)
 cost = 57.6 × \$0.08 = \$4.61 per day

Problem

How much is the output voltage of a power supply if it supplies 75 W of power while delivering a current of 5 A?

How much does it cost to light a 300-W light bulb for 30 days if the cost of the electricity is 7¢/kWh.

3-8: Power Dissipation in Resistance

- When current flows in a resistance, heat is produced from the friction between the moving free electrons and the atoms obstructing their path.
- Heat is evidence that power is used in producing current.

3-8: Power Dissipation in Resistance

 The amount of power dissipated in a resistance may be calculated using any one of three formulas, depending on which factors are known:

$$P = I^2 \times R$$

•
$$P = V^2 / R$$

$$P = V \times I$$

Problem

Solve for the power, P, dissipated by the resistance,
 R

- a. $I = 1 A, R = 100\Omega, P = ?$
- b. $I = 20 \text{ mA}, R = 1 \text{ k}\Omega, P = ?$
- c. $V = 5 V, R = 150\Omega, P = ?$
- d. $V = 22.36 \text{ V}, R = 1 \text{ k}\Omega, P = ?$

How much power is dissipated by an 8-Ω load if the current in the load is 200 mA?