Package 'pscsne'

September 8, 2022

```
Type Package
Title Polyspherical Cauchy SNE
Version 0.0.1.900005
Date 2022-09-07
Description
     Implementation the polyspherical cauchy SNE, a nonlinear dimensionality reduction technique.
License GPL-3
LazyData true
Encoding UTF-8
Depends R (>= 3.5.0)
Imports DirStats,
     optimParallel,
     parallel,
     rlang,
     sphunif,
     sdetorus,
     utils
Suggests knitr,
     markdown,
     rmarkdown,
     scatterplot3d,
     viridisLite,
     Directional,
     mvtnorm,
     numDeriv,
     rotasym,
     testthat,
     abind,
     rgl
URL https://github.com/luisrodrigar/psc-sne
BugReports https://github.com/luisrodrigar/psc-sne
RoxygenNote 7.2.0
Roxygen list(old_usage = TRUE)
VignetteBuilder knitr
Config/testthat/edition 3
```

R topics documented:

Index

pscsne-package	. 3
bin_search	. 3
clusterFactory	. 4
cosine_polysph	. 4
cos_sim_i	. 5
diag_3d	. 5
d_ij_psph_cauchy	. 6
d_i_psph_cauchy	
d_i_sph_cauchy	. 7
d_sph_cauchy	. 8
d_total_psph_cauchy	. 8
fibonacci_lattice	. 9
gen_opt_sphere	. 9
high_dimension	. 10
high_dimension_i	. 10
high_dimension_p	. 11
index_upper_trian	
condi_psph	. 12
condi_sph	. 13
idf	. 13
kl_divergence_grad	
kms_dir	
low_dimension_Q	
prob_cond_i_psph	. 17
prob_cond_i_sph	
psc_sne	. 18
radial_projection	. 20
rho_optimize_1	
rho_optimParallel	. 21
rho_optim_bst	
rho_optim_ineff	. 23
rho_optim_i_bst	
rho_optim_par	
rho_optim_serial	
r_block	. 25
samplers_one	. 26
show_iter_sol	
smallrna	
symmetric_probs	. 29
to perp	
to_perplexity_P	
to_perp_i	
vec2matrix	

33

pscsne-package 3

package pscsne: Polyspherical Cauchy SNE
--

Description

Implementation of the Polyspherical Cauchy SNE

Author(s)

Eduardo García-Portugués and Luis Ángel Rodríguez García.

bin_search	Binary search tree algorithm

Description

Calculate the rho value based on a perplexity difference and current values of rho, rho min and rho max.

Usage

```
bin_search(perp_diff, rho, rho_min, rho_max)
```

Arguments

perp_diff difference between the value obtained and the fixed perplexity

rho_min the current value optimized
rho_min min value for the current rho
rho_max max value for the current rho

Value

Rho concentration parameter found in this step, currently min and max rho

4 cosine_polysph

clusterFactory

Cluster factory

Description

Cluster factory for concurrent tasks.

Usage

```
clusterFactory(num_cores, outfile = "")
```

Arguments

num_cores number of cores to be available in the cluster.

outfile text file where print the output, empty means no output.

Value

Cluster created with the number of cores passing as parameter.

Examples

```
clusterFactory(2)
clusterFactory(2, "log.txt")
file.remove("log.txt")
```

cosine_polysph

Cosine similarity for the poly-sphere

Description

Calculates the cosine similarity for each sphere of the 3 dimensional array.

Usage

```
cosine_polysph(x)
```

Arguments

Х

an array of size c(n,d+1,r) with the polyspherical data, where n is the number of observations, d is the dimension of each sphere, and r is the number of spheres.

Value

An array of size c(n,n,r) with the cosine similarities of each sphere S^d from x.

```
x <- sphunif::r_unif_sph(100, 3, 3)
cosine_polysph(x)</pre>
```

cos_sim_i 5

cos_sim_i	Cosine similarities vector for the i-th observation
-----------	---

Description

Obtain the index of an element within a vector for the equivalent in the upper triangular matrix without diagonal

Usage

```
cos_sim_i(cos_sim_psh, i, r, n)
```

Arguments

cos_sim_psh a vector of size n/2 with the cosine similarities in high-dimension for the polysphere $(S^p)^r$. The way that the cosine similarities matrix is treated makes the calculus faster since it is flat in a vector object. Optional parameter, defaults to NULL.

i corresponds to the i-th observation index.

r the number of spheres in the polysphere

n the sample size.

Examples

```
n <- 6
r <- 6
x <- sphunif::r_unif_sph(n, 3, r)
cos_sim_psh <- sphunif::Psi_mat(x, scalar_prod = TRUE)
cos_sim_i(cos_sim_psh, 4, r, n)</pre>
```

diag_3d

Set each object's diagonal of a 3d-array

Description

Set a specific value to the diagonal of a each matrix of a 3 dimensional array.

Usage

```
diag_3d(x, k, val)
```

Arguments

Х	an array of size $c(n,d+1,r)$ with the polyspherical data, where n is the number of observations, d is the dimension of each sphere, and r is the number of spheres.
k	the k-th sphere from $(\mathcal{S}^p)^r$.
val	value to set to each array's diagonal of the poly-sphere x.

d_i_psph_cauchy

Value

The k-th matrix of x with the diagonal set to val.

Examples

```
x <- sphunif::r_unif_sph(100, 3, 3)
diag_3d(x, 1, 0)
diag_3d(x, 3, 0)</pre>
```

d_ij_psph_cauchy

Polyspherical Cauchy density for the i-th and j-th observations

Description

Calculate the high-dimension polyspherical Cauchy density for the i-th and j-th observations.

Usage

```
d_ij_psph_cauchy(x, i, j, rho)
```

Arguments

X	an array of size $c(n,d+1,r)$ with the polyspherical data, where n is the number of observations, d is the dimension of each sphere, and r is the number of spheres.
i	corresponds to the i -th observation index.
j	corresponds to the j -th observation index.
rho	concentration parameter must be in [0, 1).

Value

Polyspherical Cauchy density value given the parameters.

d_i_psph_cauchy

Marginal polyspherical Cauchy density for the i-th observation

Description

Calculate the high-dimension polyspherical Cauchy density for the i-th observation.

Usage

```
d_i_psph_cauchy(x, i, rho_list)
```

d_i_sph_cauchy 7

Arguments

X	an array of size $c(n,d+1,r)$ with the polyspherical data, where n is the number of observations, d is the dimension of each sphere, and r is the number of spheres.
i	corresponds to the i -th observation index.
rho_list	rho list of size n for each i-th observation that stands for the concentration parameter.

Value

Polyspherical Cauchy density value given the parameters.

Examples

```
x <- sphunif::r_unif_sph(20, 3, 4)
d_i_psph_cauchy(x, 1, rep(0.5, 20))
d_i_psph_cauchy(x, 4, rep(0.9999, 20))</pre>
```

d_i_sph_cauchy

Marginal spherical Cauchy density function

Description

Calculate the marginal low-dimension spherical Cauchy probability.

Usage

```
d_i_sph_cauchy(y, i, rho)
```

Arguments

У	matrix that stands for a sphere, S^d .
i	corresponds to the i -th observation index.
rho	concentration parameter must be in [0, 1).

Value

Spherical marginal Cauchy density probability given the parameters.

8 d_total_psph_cauchy

d_sph_cauchy High-dimension polyspherical Cauchy density	
--	--

Description

Calculate the high-dimension spherical Cauchy density function.

Usage

```
d_sph_cauchy(x, i, j, rho, k, p)
```

Arguments

X	an array of size $c(n,d+1,r)$ with the polyspherical data, where n is the number of observations, d is the dimension of each sphere, and r is the number of spheres.
i	corresponds to the i -th observation index.
j	corresponds to the j -th observation index.
rho	concentration parameter must be in $[0, 1)$.
k	corresponds to the k-th sphere index.
p	corresponds to S^p , associated to $R^(p+1)$.

Value

Spherical Cauchy density value given the parameters.

d_total_psph_cauchy	Polyspherical marginal density function values for all the observations
---------------------	---

Description

Calculate the marginal high-dimension polyspherical Cauchy probabilities for the i-th observation.

Usage

```
d_total_psph_cauchy(x, rho_list)
```

Arguments

х	an array of size $c(n,d+1,r)$ with the polyspherical data, where n is the number of observations, d is the dimension of each sphere, and r is the number of spheres.
rho_list	rho list of size n for each i-th observation that stands for the concentration parameter.

Value

Marginal polyspherical Cauchy probabilities vector given the ho parameters.

fibonacci_lattice 9

Examples

```
x <- sphunif::r_unif_sph(20, 3, 4)
d_total_psph_cauchy(x, rep(0.5, 20))
d_total_psph_cauchy(x, rep(0.9999, 20))</pre>
```

fibonacci_lattice

Fibonacci lattice algorithm to generate evenly separated points

Description

Generated optimal evenly separated points onto the sphere S^2 .

Usage

```
fibonacci_lattice(n)
```

Arguments

n

positive integer that defines the size of the sample to generate.

Value

Evenly optimal separated points onto the low-dimension sphere S^2 .

Examples

```
fibonacci_lattice(100)
fibonacci_lattice(250)
```

gen_opt_sphere

Generate optimum evenly separated points

Description

Generated optimal evenly separated points onto the sphere S^d .

Usage

```
gen_opt_sphere(n, d)
```

Arguments

- n positive integer that defines the size of the sample to generate.
- d size of the low-dimension which defines the sphere \mathcal{S}^d .

Value

Evenly optimal separated points onto the low-dimension sphere S^d .

```
gen_opt_sphere(100, 1)
gen_opt_sphere(250, 2)
```

10 high_dimension_i

high_dimension	Polyspherical Cauchy conditional probability matrix (matrix version)

Description

Calculates the high-dimension conditional probabilities of a polyspherical Cauchy distribution. Matrix version algorithm.

Usage

```
high_dimension(x, rho_list, cos_sim_psh = NULL)
```

Arguments

X	an array of size $c(n,d+1,r)$ with the polyspherical data, where n is the number of observations, d is the dimension of each sphere, and r is the number of spheres
	spheres.
rho_list	rho list of size n for each i-th observation that stands for the concentration parameter.
cos_sim_psh	a vector of size n/2 with the cosine similarities in high-dimension for the polysphere $(S^p)^r$. The way that the cosine similarities matrix is treated makes the calculus faster since it is flat in a vector object. Optional parameter, defaults to NULL.

Value

An array of size c(n,n) with the high-dimension conditional probabilities of x.

Examples

```
x <- sphunif::r_unif_sph(100, 3, 3)
high_dimension(x, rep(0.5, 100))
high_dimension(x, rep(0.5, 100), sphunif::Psi_mat(x, scalar_prod = TRUE))</pre>
```

Description

Calculates the high-dimension conditional probabilities of a polyspherical Cauchy distribution for the i-th observation. Matrix version algorithm.

Usage

```
high_dimension_i(x, i, rho, cos_sim_psh = NULL)
```

high_dimension_p

Arguments

X	an array of size $c(n,d+1,r)$ with the polyspherical data, where n is the num-
	ber of observations, d is the dimension of each sphere, and r is the number of
	spheres

i corresponds to the i-th observation index. rho concentration parameter must be in [0, 1).

cos_sim_psh a vector of size n/2 with the cosine similarities in high-dimension for the poly-

sphere $(S^p)^r$. The way that the cosine similarities matrix is treated makes the calculus faster since it is flat in a vector object. Optional parameter, defaults to

NULL.

Value

An vector of size n with the high-dimension conditional probabilities of the i-th observation in x.

Examples

```
x <- sphunif::r_unif_sph(100, 3, 3)
high_dimension_i(x, 1, 0.5)
high_dimension_i(x, 100, 0.5, sphunif::Psi_mat(x, scalar_prod = TRUE))</pre>
```

high_dimension_p

Polyspherical Cauchy conditional probability matrix (scalar version)

Description

Calculates the high-dimension conditional probabilities of a polyspherical Cauchy distribution. Scalar version algorithm.

Usage

```
high\_dimension\_p(x, rho\_list)
```

Arguments

x an array of size c(n,d+1,r) with the polyspherical data, where n is the num-

ber of observations, d is the dimension of each sphere, and r is the number of

spheres.

rho_list rho list of size n for each i-th observation that stands for the concentration pa-

rameter.

Value

An array of size c(n,n) with the high-dimension conditional probabilities of x.

```
x <- sphunif::r_unif_sph(100, 3, 3)
high_dimension_p(x, rep(0.5, 100))</pre>
```

jcondi_psph

indev	_upper_	trian
IIIUCA_	_uppci_	_ (1 1 411

Vector index of an upper triangular matrix withou diagonal

Description

Obtain the index of an element within a vector for the equivalent in the upper triangular matrix without diagonal

Usage

```
index_upper_trian(i, j, n)
```

Arguments

- i corresponds to the i-th observation index.
- j corresponds to the j-th observation index.
- n the sample size of the symmetric matrix (n x n)

Examples

```
mat <- rbind(c(0, 1, 2), c(0, 0, 1), c(0, 0, 0))
vec <- c(1, 2, 1)
index <- index_upper_trian(1, 2, 3)
all.equal(vec[index], mat[1, 2])</pre>
```

jcondi_psph

Conditional polyspherical Cauchy probability for the i-th and j-th observations

Description

Calculate the conditional high-dimension probability of the j-th observation given the i-th.

Usage

```
jcondi_psph(x, i, j, rho_list, d_total_i_psph_cauchy = NULL)
```

Arguments

х	an array of size $c(n,d+1,r)$ with the polyspherical data, where n is the number of observations, d is the dimension of each sphere, and r is the number of spheres.
i	corresponds to the i -th observation index.
j	corresponds to the j -th observation index.
rho_list	rho list of size n for each i-th observation that stands for the concentration parameter.
d_total_i_psph_cauchy	

marginal probability of the i-th observation. Optional, defaults to NULL.

jcondi_sph 13

Value

Conditional polyspherical Cauchy probability of the j-th given the i-th observation.

Examples

jcondi_sph

Conditional spherical Cauchy probability

Description

Calculate the probability of choosing a pair of elements where the i-th and the j-th observations are selected.

Usage

```
jcondi_sph(y, i, j, rho, d_i_sph_cauchy = NULL)
```

Arguments

y matrix that stands for a sphere, S^d .

i corresponds to the i-th observation index.

j corresponds to the j-th observation index.

rho concentration parameter must be in [0, 1).

d_i_sph_cauchy the marginal probability of the *i*-th observation. Optional, defaults to NULL.

Value

Spherical marginal Cauchy density probability given the parameters.

jdf

Juan de Fuca currents

Description

Sea currents defined by their angle and speed produced in some geographic coordinates in Juan de Fuca strait area from 2020-06-01 to 2022-07-01, last day excluded.

Usage

jdf

14 kl_divergence_grad

Format

A data frame with 638,400 observations (rows) and 5 variables (columns):

lat latitude coordinate in decimal format.

lon longitude coordinate in decimal format.

time time in the following format yyyy-MM-dd hh:mm:ss.

theta angle in radians of the sea current vector.

speed module of the sea current vector.

Details

The data object is created with the code in https://github.com/luisrodrigar/psc-sne/blob/main/data-raw/strait-juan-fuca/data-acquisition-juan-fuca.R

Source

```
https://github.com/luisrodrigar/psc-sne/blob/main/data/jdf.rda
```

References

TODO

Examples

```
# Load data
data("jdf")

# Plot vector field
# TODO
```

kl_divergence_grad

Kullback-Leibler divergence gradient

Description

Calculates analytically the gradient of the Kullback-Leibler divergence between low- and high-dimensional pairwise probabilities.

Usage

```
kl_divergence_grad(Y, i, rho, d, P, cos_sim = NULL, Q = NULL)
```

Arguments

Υ	matrix of size $c(n,d)$, where n is the number of observation, with the points onto the sphere \mathcal{S}^d .
i	corresponds to the i -th observation index.
rho	concentration parameter must be in [0, 1).
d	target dimension to reduce the data.

kms_dir 15

Р	matrix of size $c(n,n)$ with the high-dimensional polyspherical Cauchy probabilities.
cos_sim	a vector of size $n/2$ with the cosine similarities in high-dimension for the polysphere $(S^p)^r$. The way that the cosine similarities matrix is treated makes the calculus faster since it is flat in a vector object. Optional parameter, defaults to NULL.
Q	matrix of size $c(n,n)$ with the low-dimension spherical Cauchy probabilities. Optional parameter, defaults to NULL.

Value

Resulting reduced data for the *i*-th observation onto the sphere S^d .

Examples

kms_dir

Kernel mean shift clustering for directional data

Description

Performs kernel mean shift clustering on S^d using an adapted Euler algorithm and kernel density estimator.

Usage

```
kms_dir(data, x = data, h = NULL, N = 500, eps = 0.001, tol = 0.1, keep_paths = FALSE, show_prog = TRUE)
```

Arguments

data	a matrix of size $c(n, d + 1)$ with the sample.
х	a matrix of size $c(nx,d+1)$ with the initial points for the Euler algorithm. Defaults to data.
h	bandwidth. Chosen automatically if NULL (default).
N	maximum number of iterations. Defaults to 500.
eps	convergence tolerance. Defaults to 1e-3.
tol	tolerance for equality of modes. Defaults to 1e-1.
keep_paths	keep the ascending paths? Defaults to FALSE.
show_prog	display progress? Defaults to TRUE.

16 low_dimension_Q

Value

A list with the following entries:

- end_points: end points of the Euler algorithm. A matrix of the same size as x.
- cluster: vector giving the cluster labels.
- modes: estimated modes for each cluster (sorted).
- paths: ascension paths, if keep_paths = TRUE. A list of length nx with matrices of size c(np,d + 1), where np is at most N + 1.
- tree: internal hierarchical clustering tree used to merge modes.
- · h: used bandwidth.

Examples

```
# Detection of three clusters in S^2
samp <- rbind(</pre>
  rotasym::r_vMF(n = 50, mu = c(0, 0, 1), kappa = 5),
  rotasym::r_vMF(n = 50, mu = c(0, 0, -1), kappa = 5),
  rotasym::r_vMF(n = 50, mu = c(1, 0, 0), kappa = 5)
kms <- kms_dir(data = samp, keep_paths = TRUE)</pre>
sd3 \leftarrow scatterplot3d::scatterplot3d(samp, xlim = c(-1, 1),
                                     ylim = c(-1, 1), zlim = c(-1, 1),
                                     color = kms cluster + 1, pch = 16,
                                     cex.symbol = 0.5)
for (i in seq_len(nrow(samp))) sd3$points3d(kms$paths[[i]], type = "1",
                                              1ty = 3
sd3$points3d(kms$end_points, col = kms$cluster + 1, pch = "*", cex = 2)
# Detection of three clusters in S^1
samp <- rbind(</pre>
  rotasym::r_vMF(n = 50, mu = c(0, 1), kappa = 5),
  rotasym::r_vMF(n = 50, mu = c(-sqrt(2), -sqrt(2)) / 2, kappa = 5),
  rotasym::r_vMF(n = 50, mu = c(sqrt(2), -sqrt(2)) / 2, kappa = 5)
kms <- kms_dir(data = samp, keep_paths = TRUE)</pre>
plot(samp, col = kms$cluster + 1, pch = 16, xlim = c(-1.5, 1.5),
     ylim = c(-1.5, 1.5))
for (i in seq_len(nrow(samp))) {
1 <- seq(0, 1, length.out = nrow(rbind(kms$paths[[i]])))</pre>
lines(sqrt(1 + 1) * kms*paths[[i]], lty = 3)
points(sqrt(2) * kms$end_points, col = kms$cluster + 1, pch = "*", cex = 2)
kms
```

low_dimension_Q

Low-dimension probabilities

Description

Calculate the low-dimension probabilities of a reduced matrix Y.

prob_cond_i_psph 17

Usage

```
low_dimension_Q(Y, rho)
```

Arguments

Y matrix of size c(n,d), where n is the number of observation, with the points

onto the sphere S^d .

rho concentration parameter must be in [0, 1).

Value

A matrix with the values of x projected onto the sphere of radius 1.

Examples

```
Y <- rotasym::r_unif_sphere(100, 2)
low_dimension_Q(Y, 0)
low_dimension_Q(Y, 0.5)
low_dimension_Q(Y, 0.9999)</pre>
```

prob_cond_i_psph

Conditional polyspherical Cauchy probability for the i-th observation

Description

Calculate the conditional high-dimension probability for all the j-th observation given the i-th.

Usage

```
prob_cond_i_psph(x, i, rho_list, d_total_i_psph_cauchy = NULL)
```

Arguments

x an array of size c(n,d+1,r) with the polyspherical data, where n is the number of observations, d is the dimension of each sphere, and r is the number of

spheres.

i corresponds to the i-th observation index.

rho_list rho list of size n for each i-th observation that stands for the concentration pa-

rameter.

d_total_i_psph_cauchy

marginal probability of the i-th observation. Optional, defaults to NULL.

Value

Conditional polyspherical Cauchy probability for all the j-th given the i-th observation.

18 psc_sne

Examples

```
x <- sphunif::r_unif_sph(20, 3, 4)
rho_list_1 <- rep(0.5, 20)
rho_list_2 <- rep(0.9999, 20)
d_total_1_psph <- d_total_psph_cauchy(x, rho_list_1)[1]
d_total_4_psph <- d_total_psph_cauchy(x, rho_list_2)[4]
prob_cond_i_psph(x, 1, rho_list_1, d_total_1_psph)
prob_cond_i_psph(x, 4, rho_list_2, d_total_4_psph)</pre>
```

prob_cond_i_sph

Conditional spherical Cauchy probabilities given the i-th observation

Description

Calculate n, where it stands for the sample size, probabilities where each element is the probability of choosing the i-th and the j-th observations, the i-th element is a fixed element in the chosen pairs.

Usage

```
prob_cond_i_sph(y, i, rho)
```

Arguments

```
y matrix that stands for a sphere, S^d.

i corresponds to the i-th observation index.

rho concentration parameter must be in [0, 1).
```

Value

Spherical marginal Cauchy density probability given the parameters.

Examples

```
y <- rotasym::r_unif_sphere(100, 2)
prob_cond_i_sph(y, 1, 0.5)
prob_cond_i_sph(y, 4, 0.9999)</pre>
```

psc_sne

Polyspherical Cauchy SNE

Description

Calculates the polyspherical-Cauchy SNE given a data onto the polysphere and the reduced dimension.

psc_sne 19

Usage

```
psc_sne(X, d, rho_psc_list = NULL, rho = 0.5, perplexity = 30,
   maxit = 1000, initial_momentum = 0.5, final_momentum = 0.8,
   eta = 200, early_exaggeration = 4, colors = NULL, show_prog = 100,
   show_plots = TRUE, tol = 1e-06,
   parallel_cores = parallel::detectCores() - 1, init = c("equispaced",
   "random", "most_promising")[1], N = 10)
```

Arguments

X an array of size c(n,d+1,r) with the polyspherical data, where n is the number of observations, d is the dimension of each sphere, and r is the number of

spheres.

d the target dimension to use for the reduced data of X.

rho_psc_list rho parameters of the high-dimensional polyspherical Cauchy probabilities. Mul-

tiple types of parameters are allowed, distinguishing three scenarios. The first one when the type of the parameter is a list, then it contains the vector rho_values and the matrix P, the second scenario when the type is a vector, then this object contains the rho values, within this function the high_dimension function is called to get the matrix P. The last scenario that is when this object is set to NULL, i.e., the rho_optim_bst function is called to get the rho values (given a fixed perplexity) and the probabilities matrix. Optional parameter, defaults to

NULL).

rho parameter of the low-dimensional spherical Cauchy probabilities. Optional, de-

faults to 0.5).

perplexity parameter that measures the number of neighbors to use when mapping between

high- and low-dimension. Defaults to 30).

maxit maximum number of iterations. Defaults to 1e3).

initial_momentum

first value of the momentum of the first 250 iterations. Defaults to 0.5.

final_momentum momentum to take into account after the 250 iteration. Defaults to 0.8.

eta is the learning rate of the optimization algorithm. Optional param, defaults to

200.

early_exaggeration

the first 100 iterations results are exaggerated by this factor. Optional parameter,

defaults to 4.0).

colors list with as many elements as observations are, only valid when visualization is

true. Optional parameter, defaults to NULL).

show_prog defines the number of iterations skipped when reporting the progress. Defaults

to 100, i.e., only multiples of 100 are reported. If FALSE, no progress is shown

at all.

show_plots show convergence plots? If TRUE (default), a plot is shown: after 2 * show_prog

iterations and at the end of the search.

tol is the tolerance, when is below this value it is considered that a good solution

has been obtained. Defaults to 1e-6).

parallel_cores number of cores to use concurrently for the calculation of the gradient. De-

faults to parallel::detectCores() -1, that means that uses the total number

of cores of the computer except one of them.

20 radial_projection

init how to initialize the scores: "equispaced" (evenly spaced points on the circumference/sphere), "random" (random points generated uniformly), "most_promising" (best configuration obtained in N differently-initialized searches run with maxit / 100 iterations), or a matrix. Defaults to "equispaced".

N number of differently-initialized searches (see above). Defaults to 10.

Details

When init = "most_promising", N -1 initializations are random and one is an equispaced grid.

Value

A list with the following entries:

- best_Y: best configuration of scores found.
- last_Y: last configuration of scores found.
- rho_psc_list: vector or rho's.
- diagnostics: data frame with the objective function values, absolute/relative errors, gradient norms, and moment norms.
- convergence: convergence flag.

Examples

radial_projection

Radial projection onto the sphere

Description

Projection of the points onto the sphere of radius 1.

Usage

```
radial_projection(y)
```

Arguments

У

matrix with the points in the sphere.

Value

A matrix with the values of x projected onto the sphere of radius 1.

```
y <- rotasym::r_unif_sphere(100, 2)
radial_projection(y)</pre>
```

rho_optimize_1 21

rho_optimize_1	Concurrent optimization of the ρ concentration parameters (matrix version)

Description

Calculate the rho list values based on a fixed perplexity and a given data in $(S^p)^r$. Optimize the value using the method L-BFGS-B. The boundaries are set from 0 to 0.9999. It prints the time consumption.

Usage

```
rho_optimize_1(x, perplexity, num_cores = parallel::detectCores() - 1,
  cos_sim_psh = NULL)
```

Arguments

_	
X	an array of size $c(n,d+1,r)$ with the polyspherical data, where n is the number of observations, d is the dimension of each sphere, and r is the number of spheres.
perplexity	a fixed value (between 5 and 100) to optimize the rho parameters.
num_cores	number of cores to execute the code concurrently. This value must be below the total number of the CPU has available.
cos_sim_psh	a vector of size $n/2$ with the cosine similarities in high-dimension for the polysphere $(S^p)^r$. The way that the cosine similarities matrix is treated makes the calculus faster since it is flat in a vector object. Optional parameter, defaults to NULL.

Value

Rho list (ρ) with the values optimized for the given perplexity.

rha antimDarallal	Consument antim to calculate a concentration nanameters (scalar year
rho_optimParallel	Concurrent optim to calculate ρ concentration parameters (scalar ver-
	sion)

Description

Calculate the rho list values based on a fixed perplexity and a given data in $(S^p)^r$. Optimize the value using the concurrently method L-BFGS-B (optimParallel). The boundaries are set from 0 to 0.9999. It prints the time consumption.

Usage

```
rho_optimParallel(x, perplexity, num_cores = parallel::detectCores() - 1)
```

22 rho_optim_bst

Arguments

X	an array of size $c(n,d+1,r)$ with the polyspherical data, where n is the num-
	ber of observations, d is the dimension of each sphere, and r is the number of
	spheres.

perplexity a fixed value (between 5 and 100) to optimize the rho parameters.

num_cores number of cores to execute the code concurrently. This value must be below the

total number of the CPU has available.

Value

Rho list (ρ) with the values optimized for the given perplexity.

rho_optim_bst	Binary search rho optimization for each observation

Description

Calculate the rho list values based on a fixed perplexity and a given data in $(S^p)^r$. The boundaries are set from 0 to 0.9999 for each value. It prints the time consumption.

Usage

```
rho_optim_bst(x, perp_fixed, num_cores = parallel::detectCores() - 1)
```

Arguments

X	an array of size $c(n, d+1, r)$ with the polyspherical data, where n is the number of observations, d is the dimension of each sphere, and r is the number of spheres.
perp_fixed	a fixed value used to optimized the rho values.
num_cores	number of cores to execute the code concurrently. This value must be below the

total number of the CPU has available.

Value

Rho values and conditional probability matrix obtained as a result of the optimization.

```
x <- sphunif::r_unif_sph(20, 3, 4)
rho_optim_bst(x, perp_fixed = 15, num_cores = 2)
rho_optim_bst(x, perp_fixed = 26, num_cores = 2)</pre>
```

rho_optim_ineff 23

rho_optim_ineff	Serial optimization of the ρ concentration parameters (matrix version)

Description

Calculate the rho list values based on a fixed perplexity and a given data in $(S^p)^r$. Optimize the value using the method L-BFGS-B. The boundaries are set from 0 to 0.9999. It prints the time consumption.

Usage

```
rho_optim_ineff(x, perplexity)
```

Arguments

x an array of size c(n,d+1,r) with the polyspherical data, where n is the num-

ber of observations, d is the dimension of each sphere, and r is the number of

spheres.

perplexity a fixed value (between 5 and 100) to optimize the rho parameters.

Value

Rho list (ρ) with the values optimized for the given perplexity.

rho_optim_i_bst	Binary search rho optimization for the i-th observation

Description

Calculate the rho based on a fixed perplexity and a given data in $(S^p)^r$. The boundaries are set from 0 to 0.9999.

Usage

```
rho_optim_i_bst(x, i, perp_fixed, tolerance = 0.001, rho = 0.5, max_tries = 20)
```

Arguments

Χ	an array of size $c(n,d+1,r)$ with the polyspherical data, where n is the num-
	ber of observations, d is the dimension of each sphere, and r is the number of
	spheres.

i the *i*-th observation.

perp_fixed a fixed value used to optimized the rho values.

tolerance whether the difference between previous and current results is below this value

(optional, default value 1e-3).

rho parameter which determines the concentration of the spherical Cauchy distribu-

tion (optional, default value 0.5).

max_tries number of maximum tries for each value of the rho list.

24 rho_optim_serial

Value

Rho concentration parameter and conditional probabilities calculated for the i-th observation.

rho_optim_par	Concurrent optimization of the ρ concentration parameters (scalar version)

Description

Calculate the rho list values based on a fixed perplexity and a given data in $(S^p)^r$. Optimize the value using the method L-BFGS-B, setting the boundaries within [0, 1). The limit is considered as 1-1e-4. Each value is calculated concurrently. At the end, the time consumption is shown.

Usage

```
rho_optim_par(x, perplexity, num_cores = parallel::detectCores() - 1)
```

Arguments

X	an array of size $c(n,d+1,r)$ with the polyspherical data, where n is the num-
	ber of observations, d is the dimension of each sphere, and r is the number of
	spheres.
perplexity	a fixed value (between 5 and 100) to optimize the rho parameters.

num_cores number of cores to execute the code concurrently. This value must be below the

total number of the CPU has available.

Value

Rho list (ρ) with the values optimized for the given perplexity.

Examples

```
x <- sphunif::r_unif_sph(20, 3, 4)
rho_optim_par(x, 22, 2)
rho_optim_par(x, 30, 2)</pre>
```

rho_optim_serial

Serial optimization ρ *concentration parameters (scalar version)*

Description

Calculate the rho list values based on a fixed perplexity and a given data in $(S^p)^r$. Optimize the value using a method L-BFGS-B, setting the boundaries from 0 to 0.9999. Each value is calculated serially. It prints the time consumption.

Usage

```
rho_optim_serial(x, perplexity)
```

 $r_{-}block$ 25

Arguments

x an array of size c(n,d+1,r) with the polyspherical data, where n is the num-

ber of observations, d is the dimension of each sphere, and r is the number of

spheres.

perplexity a fixed value (between 5 and 100) to optimize the rho parameters.

Value

Rho list (ρ) with the values optimized for the given perplexity.

r_block

Sample correlation matrices with block structure

Description

Sample a zero-mean multivariate normal $N_{gp}(0,\Sigma)$ with a diagonal block matrix Σ partitioned into g blocks with p variables. Each block is constructed as a toeplitz correlation matrix.

Usage

```
r_block(n, g = 5, p = 20, rho = rep(0.9, times = g))
```

Arguments

n sample size.

g number of groups of variables that are uncorrelated between them.

p number of variables on each group.

rho a vector of size g with the correlations determining the toeplitz correlation

matrices of each group.

Value

A matrix of size c(n, g * p) with the sample.

```
# Visualize some features n <-200 g <-10 p <-10 x <-r_block(n = n, g = g, p = p) pairs(x[, c(1:2, p + 1:2)], labels = c("Var 1", "Var 2", paste("Var", p + 1), paste("Var", p + 2)))  
# Standardize variables -- now the vectors of observations for each variable # (the columns) live on \sqrt{n - 1} * S^{n - 1}! <math>x_sca <-scale(x) colSums(x_sca^2) # Make the features live on S^{n - 1} x_sca <-scale(x) / sqrt(n - 1)
```

26 samplers_one

```
# Transpose matrix (features become observations)
feat <- t(x_sca)

# Run psc_sne() with colors being the groups of variables
# dim(feat) <- c(dim(feat), 1)
# cols <- rep(1:g, each = p)
# psc_sne(X = feat, d = 1, colors = cols)</pre>
```

samplers_one

Samplers of one-dimensional modes of variation for polyspherical data

Description

Functions for sampling data on $(S^d)^r$ for d=1,2 using one-dimensional modes of variation.

Usage

```
r_path_s1r(n, r, alpha = runif(r, -pi, pi), k = sample(-2:2, size = r,
    replace = TRUE), sigma = 0.25, angles = FALSE)

r_path_s2r(n, r, t = 0, c = 1, Theta = t(rotasym::r_unif_sphere(n = r, p = 3)), sigma = 0.25, spiral = FALSE)
```

Arguments

n	sample size.
r	number of spheres in the polysphere $(S^d)^r$.
alpha	a vector of size r valued in $[-\pi,\pi)$ with the initial angles for the linear trend. Chosen at random by default.
k	a vector of size r with the integer slopes defining the angular linear trend. Chosen at random by default.
sigma	standard deviation of the noise about the one-dimensional mode of variation. Defaults to 0.25 .
angles	return angles in $[-\pi,\pi)$? Defaults to FALSE.
t	latitude, with respect to Theta, of the small circle. Defaults to \emptyset (equator).
С	Clélie curve parameter, changing the spiral wrappings. Defaults to 1.
Theta	a matrix of size $c(3,r)$ giving the north poles for S^2 . Useful for rotating the sample. Chosen at random by default.
spiral	consider a spiral (or, more precisely, a Clélie curve) instead of a small circle? Defaults to FALSE.

Value

An array of size c(n,d,r) with samples on $(S^d)^r$. If angles = TRUE for r_path_s1r, then a matrix of size c(n,r) with angles is returned.

show_iter_sol 27

Examples

```
# Straight trends on (S^1)^2
n <- 200
samp_1 \leftarrow r_path_s1r(n = n, r = 2, k = c(1, 2), angles = TRUE)
plot(samp_1, xlim = c(-pi, pi), ylim = c(-pi, pi), col = rainbow(n),
     axes = FALSE, xlab = "", ylab = "", pch = 16)
sdetorus::torusAxis()
# Straight trends on (S^1)^3
n <- 200
samp_2 \leftarrow r_path_s1r(n = n, r = 3, angles = TRUE)
pairs(samp_2, xlim = c(-pi, pi), ylim = c(-pi, pi), col = rainbow(n),
      pch = 16)
sdetorus::torusAxis()
scatterplot3d::scatterplot3d(
 samp_2, xlim = c(-pi, pi), ylim = c(-pi, pi), zlim = c(-pi, pi),
 xlab = "", ylab = "", zlab = "", color = rainbow(n), pch = 16
# Small-circle trends on (S^2)^2
n <- 200
samp_3 < - r_path_s2r(n = n, r = 2, sigma = 0.1)
old_par <- par(mfrow = c(1, 2))
scatterplot3d::scatterplot3d(
  samp_3[, , 1], xlim = c(-1, 1), ylim = c(-1, 1), zlim = c(-1, 1),
 xlab = "", ylab = "", zlab = "", color = rainbow(n), pch = 16
scatterplot3d::scatterplot3d(
  samp_3[, , 2], xlim = c(-1, 1), ylim = c(-1, 1), zlim = c(-1, 1), xlab = "", ylab = "", zlab = "", color = rainbow(n), pch = 16
par(old_par)
# Spiral trends on (S^2)^2
n <- 200
samp_4 \leftarrow r_path_s2r(n = n, r = 2, c = 3, spiral = TRUE, sigma = 0.01)
old_par <- par(mfrow = c(1, 2))
scatterplot3d::scatterplot3d(
  samp_4[, , 1], xlim = c(-1, 1), ylim = c(-1, 1), zlim = c(-1, 1),
 xlab = "", ylab = "", zlab = "", color = rainbow(n), pch = 16
scatterplot3d::scatterplot3d(
  samp_4[, , 2], xlim = c(-1, 1), ylim = c(-1, 1), zlim = c(-1, 1),
  xlab = "", ylab = "", zlab = "", color = rainbow(n), pch = 16
par(old_par)
```

show_iter_sol

Visualize the reduction status

Description

Visualize the iteration solution in a plot for the i-th iteration.

28 smallrna

Usage

```
show_iter_sol(Y, i, d, colors = NULL)
```

Arguments

Υ	matrix of size $c(n,d)$, where n is the number of observation, with the points onto the sphere S^d .
i	the i -th iteration.
d	the dimension to reduce the original data.
colors	defines the group colors in the plot. Optional parameter, default value set to NULL.

smallrna Small RNA dataset	
----------------------------	--

Description

"Small RNA dataset". Among others, used in Section 5.2 in Zoubouloglou et al. (2022) and references therein.

Usage

smallrna

Format

A data frame with 190 rows and 10 variables:

angles matrix of 7 dihedral angles.

clusters vector of cluster labels.

torsion matrix of 2 torsion angles.

Details

Clusters are defined from the torsion angles, see Section 5.2 in Zoubouloglou et al. (2022) and references therein.

Source

Dataset put together by Duarte and Pyle (1998) and updated by Wadley et al. (2007). Previously used by Eltzner et al. (2018).

symmetric_probs 29

References

Duarte, C. M. and Pyle, A. M. (1998). Stepping through an RNA structure: A novel approach to conformational analysis. *Journal of Molecular Biology*, 284(5):1465–1478. doi: 10.1006/jmbi.1998.2233.

Eltzner, B., Huckemann, S., and Mardia, K. V. (2018). Torus principal component analysis with applications to RNA structure. *The Annals of Applied Statistics*, 12(2):1332–1359. doi: 10.1214/17AOAS1115.

Wadley, L. M., Keating, K. S., Duarte, C. M., and Pyle, A. M. (2007). Evaluating and learning from RNA pseudotorsional space: Quantitative validation of a reduced representation for RNA structure. *Journal of Molecular Biology*, 372(4):942–957. doi: 10.1016/j.jmb.2007.06.058.

Zoubouloglou, P., García-Portugués, E., and Marron, J. S. (2022). Scaled torus principal component analysis. *Journal of Computational and Graphical Statistics*. doi: 10.1080/10618600.2022.2119985.

Examples

```
# Load data
data("smallrna")

# Clusters
pairs(smallrna$angles, col = smallrna$clusters, pch = 16)
```

symmetric_probs

Symmetric probabilities

Description

Calculate the symmetric probabilities of a given conditional polyspherical Cauchy probability ma-

Usage

```
symmetric_probs(P)
```

Arguments

Ρ

matrix of probabilities $(P_{i|j})_{ij}$ with size c(n,n) where n is the number of observations of the original array x.

Value

The sum of P and t(P) divided by twice the sample size.

```
symmetric_probs(matrix(runif(3 * 3), nrow = 3, ncol = 3))
symmetric_probs(diag(3))
```

30 to_perplexity_P

to_perp	Perplexity matrix (matrix version)	

Description

Calculate the perplexity of each observations for a given ρ parameters list. Matrix version algorithm.

Usage

```
to_perp(x, rho_list, cos_sim_psh = NULL)
```

Arguments

x	an array of size $c(n,d+1,r)$ with the polyspherical data, where n is the number of observations, d is the dimension of each sphere, and r is the number of spheres.
rho_list	rho list of size n for each i-th observation that stands for the concentration parameter.
cos_sim_psh	a vector of size $n/2$ with the cosine similarities in high-dimension for the polysphere $(S^p)^r$. The way that the cosine similarities matrix is treated makes the calculus faster since it is flat in a vector object. Optional parameter, defaults to NULL.

Value

Perplexity of each i-th observation for all the remainder observations.

Examples

Description

Calculate the perplexity of the i-th observation for a given a rho parameter.

Usage

```
to_perplexity_P(x, i, rho)
```

Arguments

x	an array of size $c(n,d+1,r)$ with the polyspherical data, where n is the number of observations, d is the dimension of each sphere, and r is the number of spheres.
i	corresponds to the i -th observation for the perplexity is calculated.
rho	concentration parameter must be in [0, 1).

to_perp_i 31

Value

Perplexity and probabilities of the *i*-th observation for all the remainder observations.

Examples

```
x <- sphunif::r_unif_sph(25, 3, 3)
to_perplexity_P(x, 1, 0.5)
to_perplexity_P(x, 4, 1 - 1e-4)</pre>
```

to_perp_i

Perplexity for the i-th observation (vector version)

Description

Calculate the perplexity of the i-th observation for a given ρ parameters list. Vector version algorithm.

Usage

```
to_perp_i(x, i, rho, cos_sim_psh = NULL)
```

Arguments

x an array of size c(n,d+1,r) with the polyspherical data, where n is the number of observations, d is the dimension of each sphere, and r is the number of spheres.

i corresponds to the i-th observation index.

rho concentration parameter must be in [0, 1).

cos_sim_psh a vector of size n/2 with the cosine similarities in high-dimension for the polysphere $(S^p)^r$. The way that the cosine similarities matrix is treated makes the

calculus faster since it is flat in a vector object. Optional parameter, defaults to

NULL.

Value

Perplexity of the *i*-th observation for all the remainder observations.

```
x <- sphunif::r_unif_sph(25, 3, 3)
i <- 1
to_perp_i(x, i, 0.25)</pre>
```

32 vec2matrix

_	•	
vec2i		

Reconstruct the symmetric matrix without diagonal

Description

Convert the vector into a symmetric matrix with diagonal equal to a specific value.

Usage

```
vec2matrix(vec, n, diag_value)
```

Arguments

vec vector containing all non-repeated values of the cosine similarity matrix (upper

triangular matrix).

n sample size of the original data.

diag_value value for the diagonal of the resultant matrix.

Value

Matrix formed by the vec.

```
n <- 6
x <- sphunif::r_unif_sph(n, 3)
cos_sim_vec <- drop(sphunif::Psi_mat(x, scalar_prod = TRUE))
vec2matrix(cos_sim_vec, n, diag_value = 1)</pre>
```

Index

* datasets jdf, 13 smallrna, 28	rho_optim_bst, 19, 22 rho_optim_i_bst, 23 rho_optim_ineff, 23	
bin_search, 3	rho_optim_par, 24 rho_optim_serial, 24	
<pre>clusterFactory, 4 cos_sim_i, 5 cosine_polysph, 4</pre>	<pre>rho_optimize_1, 21 rho_optimParallel, 2 samplers_one, 26</pre>	
d_i_psph_cauchy, 6 d_i_sph_cauchy, 7 d_ij_psph_cauchy, 6 d_sph_cauchy, 8 d_total_psph_cauchy, 8 diag_3d, 5	show_iter_sol, 27 smallrna, 28 symmetric_probs, 29 to_perp, 30 to_perp_i, 31 to_perplexity_P, 30	
fibonacci_lattice,9	toeplitz, 25	
gen_opt_sphere, 9	vec2matrix, 32	
high_dimension, 10, 19 high_dimension_i, 10 high_dimension_p, 11		
index_upper_trian, 12		
<pre>jcondi_psph, 12 jcondi_sph, 13 jdf, 13</pre>		
kl_divergence_grad, 14 kms_dir, 15		
low_dimension_Q, 16		
<pre>prob_cond_i_psph, 17 prob_cond_i_sph, 18 psc_sne, 18 pscsne (pscsne-package), 3 pscsne-package, 3</pre>		
<pre>r_block, 25 r_path_s1r (samplers_one), 26 r_path_s2r (samplers_one), 26 radial_projection, 20</pre>		