AILAB SEMINAR

Graph Convolution over Pruned Dependency Trees Improves Relation Extraction

석 사 2 기 조 충 현

CONTENTS

O1

02

Background

03

Method

04

Experiments

- Dependency tree는 relation extraction 모델에 word간 사이가 큰 범위의 관계를 찾는데 도움을 준다
- 하지만 기존 Dependency-based model들은 dependency 트리를 너무 공격적으로 잘라내서 중요한 정보를 무시하거나 다른 트리 구조와 병렬화하기 어려워서 계산이 복잡한 단점이 있다
- 그래서 이 논문에서는 relation extraction에 맞춘 확장된 Graph convolution network 모델을 제안
 - ✓ 불필요한 정보는 최대한 제거하면서 필요한 정보를 통합
 - ✓ 두 엔티티간 최단 경로에 있는 단어들을 유지하는 새로운 pruning 전략을 제안

I had an e-mail exchange with Benjamin Cane of Popular Mechanics which showed that he was not a relative of *Mike Cane*.

Prediction from dependency path: per:other_family no relation

My dog also likes eating sausage.

$$h_i^{(l)} = \sigma \left(\sum_{j=1}^n A_{ij} W^{(l)} h_j^{(l-1)} + b^{(l)} \right)$$

문제점

- 각 노드별로 degree가 다르기 때문에 높은 degree로 치우치는 문제 발생
- 또한 인접행렬이기 때문에 자기자신의 정보를 전달하지 않는 문제 발생

$$\tilde{\mathbf{A}} = \mathbf{A} + \mathbf{I}$$

인접행렬에 단위행렬을 더해서 self-loop 추가

$$d_i = \sum_{j=1}^n \tilde{A}_{ij}$$

Normalizing을 통하여 해결

$$h_i^{(l)} = \sigma \left(\sum_{j=1}^n \tilde{A}_{ij} W^{(l)} h_j^{(l-1)} / d_i + b^{(l)} \right)$$

$$h_{\text{sent}} = f(\mathbf{h}^{(L)}) = f(GCN(\mathbf{h}^{(0)}))$$
$$h_s = f(\mathbf{h}_{s_1:s_2}^{(L)})$$

$$h_{\text{final}} = \text{FFNN}([h_{\text{sent}}; h_s; h_o])$$

I had an e-mail exchange with Benjamin Cane of Popular Mechanics which showed that **he** was not a relative of *Mike Cane*.

Prediction from dependency path: per:other_family
Gold label: no relation

두 엔티티간의 공통조상까지의 경로에 있는 노드들이 **relation**을 나타내는데 적절한 정보를 가지고 있고, 이전 연구에서 **LCA** 범위 외에 있는 토큰들을 제거하는 것이 불필요한 정보를 제거하는 것이라고 검증되었다

따라서! 이 pruning 전략을 GCN에 적용 시키겠다!

I had an e-mail exchange with Benjamin Cane of Popular Mechanics which showed that **he** was not a relative of *Mike Cane*.

Prediction from dependency path: per:other_family
Gold label: no relation

그러나 너무나 공격적으로 pruning을 하면 중요한 정보까지 잃게 되는 문제가 있다!

그래서! LCA경로에서 K거리만큼 떨어진 노드까지만 포함시키는 새로운 pruning전략을 제안했다

System	P	R	F_1
LR [†] (Zhang+2017)	73.5	49.9	59.4
SDP-LSTM † (Xu+2015b)	66.3	52.7	58.7
Tree-LSTM [‡] (Tai+2015)	66.0	59.2	62.4
PA-LSTM [†] (Zhang+2017)	65.7	<u>64.5</u>	65.1
GCN	69.8	59.0	64.0
C-GCN	69.9	63.3	<u>66.4</u> *
GCN + PA-LSTM	71.7	63.0	67.1*
C-GCN + PA-LSTM	71.3	65.4	68.2 *

Table 1: Results on TACRED. Underscore marks highest number among single models; bold marks highest among all. \dagger marks results reported in (Zhang et al., 2017); \ddagger marks results produced with our implementation. * marks statistically significant improvements over PA-LSTM with p < .01 under a bootstrap test.

System	with-m	mask-m
SVM [†] (Rink+2010)	82.2	_
SDP-LSTM † (Xu+2015b)	83.7	_
SPTree [†] (Miwa+2016)	84.4	_
PA-LSTM [‡] (Zhang+2017)	82.7	75.3
Our Model (C-GCN)	84.8*	76.5*

Table 2: F_1 scores on SemEval. † marks results reported in the original papers; ‡ marks results produced by using the open implementation. The last two columns show results from *with-mention* evaluation and *mask-mention* evaluation, respectively. * marks statistically significant improvements over PA-LSTM with p < .05 under a bootstrap test.

Figure 3: Performance of dependency-based models under different pruning strategies. For each model we show the F_1 score on the TACRED dev set averaged over 5 runs, and error bars indicate standard deviation of the mean estimate. $K=\infty$ is equivalent to using the subtree rooted at the LCA.

Figure 4: Dev set performance with regard to distance between the entities in the sentence for C-GCN, GCN and PA-LSTM. Error bars indicate standard deviation of the mean estimate over 5 runs.

Model	Dev F ₁
Best C-GCN	67.4
$-h_{\rm s},h_{\rm o},{\rm and}{\rm Feedforward}({\rm FF})$	66.4
 LSTM Layer 	65.5
 Dependency tree structure 	64.2
 FF, LSTM, and Tree 	57.1
- FF, LSTM, Tree, and Pruning	47.4

Table 3: An ablation study of the best C-GCN model. Scores are median of 5 models.

THANK YOU

석 사 2 기 조 충 현