We also review the concept of limit of a sequence. Given any set E, a sequence is any function $x : \mathbb{N} \to E$, usually denoted by $(x_n)_{n \in \mathbb{N}}$, or $(x_n)_{n > 0}$, or even by (x_n) .

Definition 37.19. Given a topological space (E, \mathcal{O}) , we say that a sequence $(x_n)_{n\in\mathbb{N}}$ converges to some $a\in E$ if for every open set U containing a, there is some $n_0\geq 0$, such that, $x_n\in U$, for all $n\geq n_0$. We also say that a is a limit of $(x_n)_{n\in\mathbb{N}}$. See Figure 37.20.

Figure 37.20: A schematic illustration of Definition 37.19.

When E is a metric space with metric d, it is easy to show that this is equivalent to the fact that,

for every $\epsilon > 0$, there is some $n_0 \geq 0$, such that, $d(x_n, a) \leq \epsilon$, for all $n \geq n_0$.

When E is a normed vector space with norm $\| \|$, it is easy to show that this is equivalent to the fact that,

for every $\epsilon > 0$, there is some $n_0 \ge 0$, such that, $||x_n - a|| \le \epsilon$, for all $n \ge n_0$.

The following proposition shows the importance of the Hausdorff separation axiom.

Proposition 37.12. Given a topological space (E, \mathcal{O}) , if the Hausdorff separation axiom holds, then every sequence has at most one limit.

Proof. Left as an exercise.

It is worth noting that the notion of limit is topological, in the sense that a sequence converge to a limit b iff it converges to the same limit b in any equivalent metric (and similarly for equivalent norms).

If E is a metric space and if A is a subset of E, there is a convenient way of showing that a point $x \in E$ belongs to the closure \overline{A} of A in terms of sequences.

Proposition 37.13. Given any metric space (E, d), for any subset A of E and any point $x \in E$, we have $x \in \overline{A}$ iff there is a sequence (a_n) of points $a_n \in A$ converging to x.