

TENTAMEN

Kursnummer:	HF0024		
	Matematik för basår II		
Moment:	TENA		
Program:	Tekniskt basår		
Rättande lärare:	Niclas Hjelm & Maria Shamoun		
Examinator:	Niclas Hjelm		
Datum:	2020-10-26		
Tid:	08:00-12:00		
Hjälpmedel:	Formelsamling: ISBN 978-91-27-45720-1 eller ISBN 978-91-27-72279-8 eller ISBN 978-91-27-42245-2 (utan anteckningar). Inga andra formelsamlingar är tillåtna! Miniräknare, penna, radergummi, linjal, gradskiva		
Omfattning och betygsgränser:	Poäng Betvg 11 Fx 12-14 E 15-17 D 18-20 C 21-23 B 24-26 A Till samtliga uppgifter krävs fullständiga lösningar. Lösningarna skall vara tydliga och lätta att följa. Införda beteckningar skall definieras. Uppställda samband skall motiveras.		

avrundning på tillämpade uppgifter. Svara exakt på

övriga uppgifter, om inte annat anges. Lycka till!

1. Låt
$$f(x) = \sin x \cos x$$
. Beräkna $f''\left(\frac{\pi}{3}\right)$ (2p)

2. Lös ekvationen
$$\tan\left(2x - \frac{\pi}{18}\right) = \sqrt{3}$$
. (2p)

3. För vinkeln v gäller att $\sin v = \frac{5}{13}$ och $\frac{\pi}{2} \le v \le \frac{3\pi}{2}$. Bestäm det <u>exakta</u> värdet av

a)
$$\cos v$$
 (2p)

b)
$$\cos\left(v - \frac{\pi}{2}\right)$$

- 4. Bestäm perioden och värdemängden till funktionen $y(x) = 2\cos\frac{3x}{4} + \sin\frac{3x}{4}$. (2p)
- 5. En sfärisk ballong fylls med gas med ett tillflöde av 1,0 dm³/s. Med vilken hastighet ökar ballongens radie just i det ögonblick då radien är 18 cm? (2p)

6. Låt
$$f(x) = \frac{2x}{x^2 + x + 1}$$
.

- a) Bestäm eventuella vertikala/lodräta asymptoter till kurvan f(x). (1p)
- b) Funktionen har två extrempunkter. Bestäm extrempunkternas koordinater och bestäm även för varje punkt om denna är max- eller minpunkt. (2p)

7. Visa att
$$\frac{1+\sin x}{\cos x} + \frac{1-\cos x}{1-\sin x} = \frac{1}{1-\sin x}$$
 (2p)

8. Figuren nedan visar graferna till funktionen $f(x) = 2x^3 - 2x^2 - 4x + 1$ och linjen y = 1. Beräkna arean av det skuggade området exakt. Avläsning i figuren får enbart göras i de punkter **som är markerade – dessa punkter har heltalskoordinater!** (2p)

9. För funktionen f(x) gäller $f''(x) = \cos x - \sin x$ samt att grafen till f(x) går genom punkten (0, 1) och tangerar linjen y = 4x + 1 i denna punkt. Bestäm f(x). (2p)

10. Bestäm
$$\int_{0}^{\infty} \frac{1}{(3x+1)^3} dx$$
. (3p)

11. Funktionen F är en primitiv funktion till funktionen $f(x) = x^3 - 4a^2x$. Bestäm konstanten a så att det minsta värdet för funktionen F är 0 och F(2) = 4. (3p)

Lösningsförslag

1. $f(x) = \sin x \cos x$

Deriverar f(x) och efter förenklingen skriver om uttrycket enligt:

$$f'(x) = \cos x \cos x + \sin x(-\sin x) = \cos^2 x - \sin^2 x = [\cos^2 x - \sin^2 x = \cos 2x] = \cos 2x$$

Deriverar en gång till:

$$f''(x) = -2\sin 2x$$

$$f''\left(\frac{\pi}{3}\right) = -2\sin\left(2\cdot\frac{\pi}{3}\right) = -2\cdot\frac{\sqrt{3}}{2} = -\sqrt{3}$$

Alternativ lösning: Skriv om funktionen till $f(x) = \frac{1}{2}\sin 2x$ och därefter derivera två gånger.

Svar:
$$f''\left(\frac{\pi}{3}\right) = -\sqrt{3}$$

2.

$$\tan(2x - \frac{\pi}{18}) = \sqrt{3}$$

$$2x - \frac{\pi}{18} = \frac{\pi}{3} + n \cdot \pi$$

$$2x = \frac{\pi}{3} + \frac{\pi}{18} + n \cdot \pi = \frac{7\pi}{18} + n \cdot \pi$$

$$x = \frac{7\pi}{36} + \frac{n \cdot \pi}{2}$$

Svar:
$$x = \frac{7\pi}{36} + \frac{n \cdot \pi}{2}$$

3. För
$$\frac{\pi}{2} \le v \le \frac{3\pi}{2}$$
 gäller att $\sin v = \frac{5}{13}$.

a) Bestämmer det exakta värdet av $\cos v$ med hjälp av trigonometriska ettan:

$$\sin^2 v + \cos^2 v = 1 \iff \cos v = \pm \sqrt{1 - \sin^2 v}$$

$$\cos v = \pm \sqrt{1 - \left(\frac{5}{13}\right)^2} = \pm \sqrt{\frac{169 - 25}{169}} = \pm \frac{12}{13}$$

Eftersom $\frac{\pi}{2} \le v \le \frac{3\pi}{2}$ förkastas det positiva värdet.

Svar:
$$\cos v = -\frac{12}{13}$$

b) Från Fs $\sin v = \cos\left(\frac{\pi}{2} - v\right)$ och $\cos(-v) = \cos v$ vilket ger:

$$\cos\left(v - \frac{\pi}{2}\right) = \cos\left(-\left(\frac{\pi}{2} - v\right)\right) = \cos\left(\frac{\pi}{2} - v\right) = \sin v$$

Alternativ lösning: Använder subtraktionssatserna för cosinus följt av resultatet från a).

Svar:
$$\cos\left(v - \frac{\pi}{2}\right) = \frac{5}{13}$$

4. Perioden till funktionen
$$y = 2\cos\frac{3x}{4} + \sin\frac{3x}{4}$$
 är $\frac{360^\circ}{\frac{3}{4}} = \frac{4\cdot360^\circ}{3} = 480^\circ$

Värdemängden bestäms av funktionens största och minsta värde skriver därför om funktionen till sinusfunktionen $y=c\sin\left(\frac{3x}{4}+v\right)$ där $c=\sqrt{2^2+1^2}=\sqrt{5}$ och v är i denna uppgift inte nödvändig att beräkna. Funktionens y-värden ligger mellan $-\sqrt{5} \le y \le \sqrt{5}$. Svar: perioden är 480° och värdemängden är $-\sqrt{5} \le y \le \sqrt{5}$.

5. Informationen given i uppgiften är $\frac{dV}{dt}$ = 1,0 dm³/s = 1000 cm³/s och $\frac{dr}{dt}$ ska beräknas då r = 18 cm.

Volymen för en klot är $V(r) = \frac{4\pi r^3}{3}$ och derivatan av uttrycket med avseende på radien blir:

$$\frac{dV}{dr} = 4\pi r^2 \text{ vilket ger } \frac{dV}{dr} (r = 18) = 4\pi \cdot 18^2.$$

Enligt kedjeregeln
$$\frac{dV}{dt} = \frac{dV}{dr} \cdot \frac{dr}{dt} \implies \frac{dr}{dt} = \frac{dV}{dt} / \frac{dV}{dr} = \frac{1000}{4\pi \cdot 18^2} = 0,245609$$

Svar: radien ökar med 0,25 cm/s då radien är 18 cm.

6. a) Funktionens definitionsmängd är alla reella tal eftersom nämnaren saknar nollställen, dvs ekvationen $x^2 + x + 1 = 0 \implies x = -\frac{1}{2} \pm \sqrt{\frac{1}{4} - 1}$ saknar reella lösningar.

Svar: Saknar vertikala asymptoter.

b) Funktionen $f(x) = \frac{2x}{x^2 + x + 1}$ har två extrempunkter, dvs maximi- och/eller minimipunkt. I extrempunkterna är f'(x) = 0. Börjar därför med att derivera funktionen enligt kvotregeln:

$$f'(x) = \frac{2(x^2 + x + 1) - 2x(2x + 1)}{(x^2 + x + 1)^2} = \frac{2 - 2x^2}{(x^2 + x + 1)^2}$$

Löser ekvationen
$$f'(x) = 0$$
: $\frac{2-2x^2}{(x^2+x+1)^2} = 0 \implies 2-2x^2 = 0 \iff x = \pm 1$

Punkternas koordinater blir:

$$f(1) = \frac{2}{1+1+1} = \frac{2}{3}$$
$$f(-1) = \frac{-2}{1+1+1} = -2$$

För att avgöra vilken punkt är maximi/minimipunkt görs ett teckenstudium av f'(x).

Nämnaren $(x^2+x+1)^2 > 0$ för alla x. Vad gäller täljaren $2-2x^2=2(1-x^2)$ så är $1-x^2>0$ för -1 < x < 1 men $1-x^2 < 0$ för x < -1 eller x > 1. Resultatet visas i tabellen nedan:

X		-1		1	
y'	-	0	+	0	-
у	Ŋ	-2	7	2	7
				$\frac{\overline{3}}{3}$	

Vilket ger att $\left(-1,-2\right)$ är minimipunkten och $\left(1,\frac{2}{3}\right)$ maximipunkten.

Svar: (-1,-2) är minimipunkten och $(1,\frac{2}{3})$ maximipunkten

7. Visa att
$$\frac{1+\sin x}{\cos x} + \frac{1-\cos x}{1-\sin x} = \frac{1}{1-\sin x}$$
.

Väljer att arbeta med VL. Förlänger det första bråket med $\cos x$ och ersätter därefter $\cos^2 x = 1 - \sin^2 x$:

$$VL = \frac{1 + \sin x}{\cos x} + \frac{1 - \cos x}{1 - \sin x} = \frac{\cos x(1 + \sin x)}{\cos^2 x} + \frac{1 - \cos x}{1 - \sin x} = \frac{\cos x(1 + \sin x)}{1 - \sin^2 x} + \frac{1 - \cos x}{1 - \sin x} = \frac{\cos x(1 + \sin x)}{1 - \sin x} + \frac{1 - \cos x}{1 - \sin x} = \frac{\cos x(1 + \sin x)}{1 - \sin x} + \frac{1 - \cos x}{1 - \sin x} = \frac{\cos x(1 + \sin x)}{1 - \sin x} + \frac{1 - \cos x}{1 - \sin x} = \frac{\cos x(1 + \sin x)}{1 - \sin x} + \frac{1 - \cos x}{1 - \sin x} = \frac{\cos x(1 + \sin x)}{1 - \sin x} + \frac{1 - \cos x}{1 - \sin x} = \frac{\cos x(1 + \sin x)}{1 - \sin x} + \frac{1 - \cos x}{1 - \sin x} = \frac{\cos x(1 + \sin x)}{1 - \sin x} + \frac{1 - \cos x}{1 - \sin x} = \frac{\cos x(1 + \sin x)}{1 - \sin x} + \frac{1 - \cos x}{1 - \sin x} = \frac{\cos x(1 + \sin x)}{1 - \sin x} + \frac{1 - \cos x}{1 - \sin x} = \frac{\cos x(1 + \sin x)}{1 - \sin x} + \frac{1 - \cos x}{1 - \sin x} = \frac{\cos x(1 + \sin x)}{1 - \sin x} + \frac{1 - \cos x}{1 - \sin x} = \frac{\cos x(1 + \sin x)}{1 - \sin x} + \frac{1 - \cos x}{1 - \sin x} = \frac{\cos x(1 + \sin x)}{1 - \sin x} + \frac{1 - \cos x}{1 - \sin x} = \frac{\cos x(1 + \sin x)}{1 - \sin x} + \frac{1 - \cos x}{1 - \sin x} = \frac{\cos x(1 + \sin x)}{1 - \sin x} + \frac{1 - \cos x}{1 - \sin x} = \frac{\cos x(1 + \sin x)}{1 - \sin x} + \frac{1 - \cos x}{1 - \sin x} = \frac{\cos x(1 + \sin x)}{1 - \sin x} + \frac{1 - \cos x}{1 - \sin x} = \frac{\cos x(1 + \sin x)}{1 - \sin x} + \frac{1 - \cos x}{1 - \sin x} = \frac{\cos x(1 + \sin x)}{1 - \sin x} + \frac{1 - \cos x}{1 - \sin x} = \frac{\cos x(1 + \sin x)}{1 - \sin x} + \frac{\cos x}{1 - \sin x} = \frac{\cos x(1 + \sin x)}{1 - \sin x} + \frac{\cos x}{1 - \sin x} = \frac{\cos x(1 + \sin x)}{1 - \sin x} + \frac{\cos x}{1 - \sin x} = \frac{\cos x(1 + \sin x)}{1 - \sin x} + \frac{\cos x}{1 - \sin x} = \frac{\cos x(1 + \sin x)}{1 - \sin x} + \frac{\cos x}{1 - \sin x} = \frac{\cos x(1 + \sin x)}{1 - \sin x} + \frac{\cos x}{1 - \sin x} = \frac{\cos x(1 + \sin x)}{1 - \sin x} + \frac{\cos x}{1 - \sin x} = \frac{\cos x}{1 - \cos x} = \frac{\cos x}{$$

{Fortsätter med att förlänga det andra bråket med $1 + \sin x$:}

$$\frac{\cos x(1+\sin x)}{1-\sin^2 x} + \frac{(1-\cos x)(1+\sin x)}{(1-\sin x)(1+\sin x)} = \frac{\cos x(1+\sin x) + (1-\cos x)(1+\sin x)}{1-\sin^2 x} =$$

{I täljaren faktoriseras genom att bryta ut $1 + \sin x$:}

$$\frac{\cos x(1+\sin x) + (1-\cos x)(1+\sin x)}{1-\sin^2 x} = \frac{(1+\sin x)(\cos x + 1-\cos x)}{1-\sin^2 x} = \frac{1+\sin x}{1-\sin^2 x} = \frac{1+\sin x}{1-\sin^2 x}$$

$$\frac{1+\sin x}{(1+\sin x)(1-\sin x)} = \frac{1}{1-\sin x} = \text{HL}$$

Alternativ lösning: Gör uttrycken liknämnigt, dvs nämnaren $\cos x(1-\sin x)$.

8. $f(x) = 2x^3 - 2x^2 - 4x + 1$ och linjen y = 1.

För att beräkna area av det skuggade området ställs två integraler upp enligt, $A = A_1 + A_2$

$$A = \int_{-1}^{0} (f(x) - 1) dx + \int_{0}^{2} (1 - f(x)) dx$$

Beräknar en integral i taget för att summera arean i slutet.

$$A_{1} = \int_{-1}^{0} (f(x) - 1) dx = \int_{-1}^{0} (2x^{3} - 2x^{2} - 4x) dx = \left[\frac{x^{4}}{2} - \frac{2x^{3}}{3} - 2x^{2} \right]_{-1}^{0} = 0 - \left(\frac{1}{2} - \frac{-2}{3} - 2 \right) = \frac{-3 - 4 + 12}{6} = \frac{5}{6}$$

$$A_2 = \int_0^2 (1 - f(x)) dx = \int_0^2 (-2x^3 + 2x^2 + 4x) dx = \left[-\frac{x^4}{2} + \frac{2x^3}{3} + 2x^2 \right]_0^2 =$$

$$= -\frac{16}{2} + \frac{16}{3} + 8 - 0 = \frac{-48 + 32 + 48}{6} = \frac{32}{6}$$

Arean blir:
$$\int_{-1}^{0} (f(x) - 1) dx + \int_{0}^{2} (1 - f(x)) dx = \frac{5}{6} + \frac{32}{6} = \frac{37}{6}$$

Svar: Arean av det skuggade området är $\frac{37}{6}$ a.e

9.
$$f'(x) = \sin x + \cos x + C$$

$$f(x) = -\cos x + \sin x + Cx + D$$

Från uppgiften vet man att f(0) = 1 och om riktningskoefficienten för tangenten är k = 4 att f'(0) = 4. Insättningen av dessa värdet ger:

$$f'(0) = 4 \implies \sin 0 + \cos 0 + C = 4 \iff C = 3$$

$$f(0)=1 \implies -\cos 0 + \sin 0 + 3 \cdot 0 + D = 1 \Leftrightarrow D=2$$

Svar: $y = \sin x - \cos x + 3x + 2$

10. Integralen $\int_{0}^{\infty} \frac{1}{(3x+1)^3} dx$ är obestämd i den övre integrationsgränsen och skrivs därför om till $\lim_{t\to\infty} \int_{0}^{t} \frac{1}{(3x+1)^3} dx$. Börjar med att bestämma ett allmänt uttryck för integralen för att

sedan beräkna gränsvärdet av det.

$$\int_{0}^{t} (3x+1)^{-3} dx = \left[\frac{(3x+1)^{-2}}{-2 \cdot 3} \right]_{0}^{t} = \left[-\frac{1}{6(3x+1)^{2}} \right]_{0}^{t} = -\frac{1}{6(3 \cdot t+1)^{2}} + \frac{1}{6(3 \cdot 0+1)^{2}} = -\frac{1}{6(3 \cdot t+1)^{2}} + \frac{1}{6(3 \cdot t+1)^{2}} = -\frac{1}{6(3 \cdot t+1)$$

Gränsvärdet blir:
$$\lim_{t \to \infty} \left(-\frac{1}{6(3 \cdot t + 1)^2} + \frac{1}{6} \right) = \frac{1}{6} - \lim_{t \to \infty} \frac{1}{6(3 \cdot t + 1)^2} = \frac{1}{6} - 0 = \frac{1}{6}$$

Svar:
$$\int_{0}^{\infty} \frac{1}{(3x+1)^3} dx = \frac{1}{6}$$

11.
$$f(x) = x^3 - 4a^2x$$

$$F(x) = \frac{x^4}{4} - 2a^2x^2 + C$$

Eftersom F(2) = 4 så fås ekvationen:

$$\frac{2^4}{4} - 2a^2 \cdot 2^2 + C = 4 \iff C = 8a^2 \quad \text{dvs } F(x) = \frac{x^4}{4} - 2a^2 x^2 + 8a^2$$

Eftersom F är definierad för alla x gäller att minsta värdet för funktionen F inträffar i en punkt där F'(x) = f(x) = 0.

$$x^3 - 4a^2x = 0 \iff x(x^2 - 4a^2) = 0 \iff x = 0 \text{ eller } x = \pm 2a$$

1. **Om** a=0 har F'(x) endast ett nollställe x=0 ($x=\pm 2a=2\cdot 0=0$).

$$F(0) = \frac{0^4}{4} - 2 \cdot 0^2 \cdot 0^2 + 8 \cdot 0^2 = 0$$

Teckenstudium för F'(x):

X		0	
F'	-	0	+
F	7	0	7

Stämmer med att F har sitt minsta värde 0.

2. **Om** $a \neq 0$ så har F'(x) nollställena x = 0 och $x = \pm 2a$. Undersöker nollställena med andraderivatan till F:

$$F''(x) = f'(x) = 3x^2 - 4a^2$$

$$F''(0) = 3 \cdot 0^2 - 4a^2 = -4a^2 < 0$$
 maxpunkt

$$F''(2a) = 3 \cdot (2a)^2 - 4a^2 = 8a^2 > 0$$
 minpunkt

$$F''(-2a) = 3 \cdot (-2a)^2 - 4a^2 = 8a^2 > 0$$
 minpunkt

Funktionen F antar sitt minsta värde i x = 2a eller i x = -2a.

Eftersom

$$F(2a) = \frac{(2a)^4}{4} - 2 \cdot a^2 \cdot (2a)^2 + 8 \cdot a^2 = -4a^4 + 8a^2$$

$$F(-2a) = \frac{\left(-2a\right)^4}{4} - 2 \cdot a^2 \cdot \left(-2a\right)^2 + 8 \cdot a^2 = -4a^4 + 8a^2$$

så antar funktionen sitt minsta värde 0 i $x = \pm 2a$, fås ekvationen:

$$F(\pm 2a) = 0$$

$$-4a^4 + 8a^2 = 0$$

$$4a^2(-a^2+2)=0$$

$$4a^2 = 0$$
 eller $-a^2 + 2 = 0$

$$a = 0$$
 eller $a = \pm \sqrt{2}$

Svar: a = 0 eller $a = \pm \sqrt{2}$

Generella riktlinjer för tentamensrättning A Varie heräkningsfel

A. Varje berakningsfel	-1 poang
(Därefter fortsatt rö	ittning enligt nya förutsättningar)
B. Beräkningsfel; allvarliga och/eller leder till förenkling	-2 poäng eller mer
C. Prövning istället för generell metod	- samtliga poäng
D. Felaktiga antaganden/ansatser	- samtliga poäng
E. Antar numeriska värden	- samtliga poäng
F. Lösning svår att följa och/eller Svaret framgår inte tydligt	-1 poäng eller mer
(Vid flera svar väljs det minst gynnsamma. Svara antinge	n avrundat eller exakt, se nedan.)
G. Matematiska symboler används felaktigt/saknas	-1poäng eller mer
Bl.a Om '=' saknas (t.ex. '=>' används istället)	-1 poäng/tenta
Om '=' används felaktigt (t.ex. istället för '=>')	-1 poäng/tenta
Teoretiska uppgifter:	
H. Avrundat svar	-1 poäng/tenta
Tillämpade uppgifter:	
I. Enhet saknas/fel	-1 poäng/tenta
J. Avrundningar i delberäkningar som ger fel svar	-1 poäng/tenta
K. Svar med felaktigt antal värdesiffror (±1 värdesiffra ok)	-1 poäng/tenta
L. Andra avrundningsfel	-1 poäng/tenta
M. Exakt svar	-1 poäng/tenta
Preliminär Rättningsanvisning för uppgifter	
1. Deriveringsfel.	-2p
Fel vid beräkning då x-värdet sätts in.	-1p
2. Saknad/felaktig perioden.	-1p
Svarar i grader.	ok
3. a) Utelämnad eller felaktigt resonemang om lösningars g	iltighet (förkastar inte
någon lösning/förkastar fel lösning).	-1p
Svarar med vinkeln v.	-1p
b) —	
4. svarar med $-\sqrt{5} < y < \sqrt{5}$.	-1p
Motivering till perioden saknas.	-1p
Anger amplituden till $\pm \sqrt{5}$.	-1p
5. Felaktigt samband.	-2p
Deriveringsfel.	-2p
6. Verifierar inte karaktären för minst en av punkterna.	-1p
Svarar med x-värden.	-1p
Utreder inte definitionsmängden.	-0p
7. Utgår från likheten och flyttar termer mellan leden.	-2p
8. Korrekt uppställda integraler med korrekta integrationsg	-
fel.	+1p
Påstår att arean är $\int\limits_{0}^{2}f(x)dx$	-2p
$\mathbf{J}_{\mathbf{J}} \sim \gamma^{-n}$	-r

Integrationsfel.	-2p
Ej hänsyn till y=1 (ex. beräknar som om y=0).	-2p
A ₂ negativ.	-1p
A ₂ negativ, gör sedan teckenförändring utan godtagbar motivering.	-1p
A ₂ negativ, gör sedan teckenförändring med godtagbar motivering.	Ej avdrag
9. Integreringsfel/integrationskonstant saknas.	-2p
Felaktigt bestämd konstanter.	-1p
10. Integrationsfel (t ex inre derivatan saknas).	-2p
Formellt fel vid beräkning av integralen (t ex använder ∞som integra	ationsgräns istället
för att göra gränsvärdesberäkning).	-1p
Felaktig gränsvärdesberäkning av den generaliserade integralen.	-1p
11. Verifierar inte karaktären för alla punkter där derivatan är noll.	-1p
Undersöker inte a=0.	-1p
Antar att F(2a)=F(-2a) utan motivering.	-1p