Approximation Algorithms for the Fault-Tolerant Facility Placement Problem

Li Yan and Marek Chrobak

Computer Science University of California Riverside

May 22nd, 2013

Outline

- Introduction
 - The problem definition
 - Main result
- Related Work
 - The Uncapacitated Facility Location problem (UFL)
 - The Fault-tolerant Facility Location problem (FTFL)
 - The Fault-tolerant Facility Placement problem (FTFP)
- Techniques
 - Demand Reduction
 - Adaptive Partition
- Approximation Algorithms
 - 3-approximation
 - 1.736-approximation
 - 1.575-approximation
- Summary

The Fault-Tolerant Facility Placement Problem (FTFP)

Given

- F, a set of sites can have facilities built,
- C, a set of clients with demands,
- r_i , demand for client j,
- f_i, cost to build one facility at site i,
- d_{ij}, cost to connect one demand from client j to facility at at site i. Distances form a metric.

Find

- y_i, number of facilities to build at each site,
- x_{ij} , number of connections between site i and client j.

Goal: Minimize the total cost of opening facilities, sum of f_iy_i and connecting clients, sum of $d_{ii}x_{ii}$.

Main Result

An LP-rounding algorithm with approximation ratio 1.575.

Related Problems

- The Uncapacitated Facility Location problem (UFL), all $r_i = 1$, best approximation ratio 1.488 (Li'12).
- The Fault-tolerant Facility Location problem (FTFL), all $y_i \le 1$, best approximation ratio 1.7245 (Byrka *et al.*'10).
- The Fault-tolerant Facility Placement problem (FTFP), best approximation ratio 1.575 (this paper), matching the best known LP-based approximation ratio for UFL.

The Uncapacitated Facility Location Problem (UFL)

All demands are 1, each site can open only one facility.

 f_3

 f_2

$$r_2$$
 $r_2 = 1$ r_2

$$r_1$$
 $r_1=1$ r_1

The Fault-tolerant Facility Location Problem (FTFL)

 f_3

 f_2

Demands may be more than 1, each site can open only one facility.

$$r_4$$
 $r_4 = 2$ r_4

$$r_3$$
 $r_3 = 1$ r_3

$$r_2$$
 $r_2 = 1$ r_2

$$r_1$$
 $r_1=2$ r_1

The Fault-tolerant Facility Placement Problem (FTFP)

Demands may be more than 1, each site can open multiple facilities.

- f_3
- f_2
- f_1

$$r_4$$
 $r_4=4$

$$r_1$$
 $r_1=2$

The LP Formulation for FTFP

- y_i represent the number of facilities built at site i.
- x_{ij} represent the number of connections from client j to facilities at site i.

minimize
$$\sum_{i \in \mathbb{F}} f_i y_i + \sum_{i \in \mathbb{F}, j \in \mathbb{C}} d_{ij} x_{ij}$$
 (1)
subject to $y_i - x_{ij} \ge 0$ $\forall i \in \mathbb{F}, j \in \mathbb{C}$
 $\sum_{i \in \mathbb{F}} x_{ij} \ge r_j$ $\forall j \in \mathbb{C}$
 $x_{ij} \ge 0, y_i \ge 0$ $\forall i \in \mathbb{F}, j \in \mathbb{C}$

maximize
$$\sum_{j \in \mathbb{C}} r_j \alpha_j$$
 (2)
subject to $\sum_{j \in \mathbb{C}} \beta_{ij} \leq f_i$ $\forall i \in \mathbb{F}$
 $\alpha_j - \beta_{ij} \leq d_{ij}$ $\forall i \in \mathbb{F}, j \in \mathbb{C}$
 $\alpha_j \geq 0, \beta_{ij} \geq 0$ $\forall i \in \mathbb{F}, j \in \mathbb{C}$

Techniques

- Demand Reduction.
- Adaptive Partition.

Demand Reduction

- Reduce a general FTFP instance to a restricted FTFP instance with $r_i \leq |\mathbb{F}|$ for all clients j.
- Solving LP to obtain (x^*, y^*) .
- Round down $(\mathbf{x}^*, \mathbf{y}^*)$ to obtain integral part $(\hat{\mathbf{x}}, \hat{\mathbf{y}})$. Define $\hat{r}_j = \sum_i \hat{x}_{ij}$.
- The rest form fractional part $(\dot{\mathbf{x}},\dot{\mathbf{y}})$. Define $\dot{r}_j=r_j-\hat{r}_j$.
- Both parts are feasible and optimal for their respective FTFP instances $\hat{\mathcal{I}}$ and $\dot{\mathcal{I}}$.

Claim

 $\dot{r}_j \leq |\mathbb{F}|$ for all clients j in $\dot{\mathcal{I}}$.

Theorem

Theorem

Given any ρ -approximation algorithm \mathcal{A} for the restricted FTFP problem with $r_j \leq |\mathbb{F}|$, if ρ is an upper bound on comparing algorithm's cost and the optimal fractional solution's cost, then we have a ρ -approximation algorithm for the general FTFP problem.

Adaptive Partition

UFL Background: Cont.

The Shmoys, Tardos and Ardal's Algorithm (STA97)

- Start with optimal fractional solution $(\mathbf{x}^*, \mathbf{y}^*)$
- If all N(j) disjoint, then easy.
- To bound F^A, need neighborhood of chosen clients be disjoint.
- To bound C^A , need non-primary clients having a fail-over connection.
- The greedy clustering: iteratively find the best client and assign some other clients to it.
- Estimate $\max_{i \in N(j)} d_{ij}$, either cut the neighborhood N(j) or use dual solution.

UFL background: Cont.

UFL Background: End.

Chudak, Svi, Byrka and Li's improvement

- Chudak: randomized rounding, estimate on the expected connection cost
- Sviridenko: use a concave function to upper bound distance and to guide rounding
- Byrka: boost facility opening probability and use $N_{\rm cls}(j)$ for overlapping
- Li: find the right distribution for probability boost

Contribution: Approximation Algorithms for FTFP

- LP-rounding Algorithms
 - Demand Reduction
 - Adaptive Partition
 - 1.575 Approximation
- Combinatorial Algorithms
 - $O((\log R/\log\log R)^2)$ approximation
 - Analysis of Greedy

LP for the FTFP Problem

- y_i represent the number of facilities built at site i.
- x_{ij} represent the number of connections from client j to facilities at site i.

$$\begin{array}{ll} \text{maximize} & \sum_{j \in \mathbb{C}} r_j \alpha_j \\ \text{subject to} & \sum_{j \in \mathbb{C}} \beta_{ij} \leq f_i \qquad \forall i \in \mathbb{F} \\ & \alpha_j - \beta_{ij} \leq d_{ij} \qquad \forall i \in \mathbb{F}, j \in \mathbb{C} \\ & \alpha_j \geq 0, \beta_{ij} \geq 0 \qquad \forall i \in \mathbb{F}, j \in \mathbb{C} \\ \end{array}$$

Demand Reduction

Given an FTFP instance \mathcal{I} , we can reduce it to an instance such that $R = \max_j r_j$ is bounded by $|\mathbb{F}|$.

- $\bullet \ \hat{x}_{ij} = \lfloor x_{ij}^* \rfloor, \hat{y}_i = \lfloor y_i^* \rfloor$
- $\dot{x}_{ij} = x_{ij}^* \hat{x}_{ij}, \dot{y}_i = y_i^* \hat{y}_i$
- $\hat{r}_j = \sum_{j \in \mathbb{F}} \hat{x}_{ij}$ for instance $\hat{\mathcal{I}}$
- $\dot{r}_j = r_j \hat{r}_j$ for instance $\dot{\mathcal{I}}$

Claim

 \hat{x}_{ij}, \hat{y}_i is feasible and optimal for $\hat{\mathcal{I}}$, and \dot{x}_{ij}, \dot{y}_i is feasible and optimal for $\dot{\mathcal{I}}$.

Claim

Integral solutions for $\hat{\mathcal{I}}$ and $\dot{\mathcal{I}}$ combined is an integral solution to \mathcal{I} .

Theorem

Given any $\rho \geq 1$ approximation algorithm \mathcal{A} for solving restricted FTFP, we can obtain an algorithm with ρ -approximation for general FTFP.

Proof.

Solve LP and obtain $\hat{\mathcal{I}}$ and $\dot{\mathcal{I}}$. For $\hat{\mathcal{I}}$ we have ratio 1, and use \mathcal{A} to solve $\dot{\mathcal{I}}$ with ratio ρ . Final ratio is $\max\{1,\rho\}$.

Corollary

There is a 1.7245-approximation algorithm for the FTFP problem.

Proof.

We simply reduce the FTFP problem to the FTFL problem. The $\hat{\mathcal{I}}$ instance already has an integral solution $(\hat{\mathbf{x}}, \hat{\mathbf{y}})$. Solving the instance $\dot{\mathcal{I}}$ using the 1.7245-approximation algorithm for FTFL by Byrka *et al.*.

Improve from 1.7245 to 1.575-approximation

- We have shown that FTFP can be reduced to FTFL while preserving the approximation ratio.
- Next step is to show FTFP can be approximated with a better ratio than FTFL.
- Simple case is when all r_j 's are equal, then we can apply any UFL approximation results to FTFP as the uniform FTFP is simply a scaled version of UFL.
- For general FTFP, we need Adaptive Partition.

Adaptive Partition

Given an instance of FTFP, with its fractional optimal solution $(\mathbf{x}^*, \mathbf{y}^*)$, w.l.o.g. we assume *completeness*, i.e. $x_{ij}^* > 0$ implies $x_{ij}^* = y_i^*$. Then we can partition the instance into unit demands and facilities, with fractional solution $(\bar{\mathbf{x}}, \bar{\mathbf{y}})$ such that

- x_{ij}^* is spread among its demands.
- y_i^* is spread among its facilities.
- Each demand ν has a neighborhood $\overline{N}(\nu)$ with total connection value of 1.
- Primary demands have a smaller cost than non-primary demands assigned to them.
- Neighborhood $\overline{N}(\nu)$ overlaps with $\overline{N}(\kappa)$ and disjoint from $\overline{N}(\nu')$ and $\overline{N}(\kappa')$ (for fault-tolerant requirement).

An Example of Adaptive Partition

The instance has 4 sites and 4 clients. Only $d_{ij}=1$ edges are shown.

The Fractional Optimal Solution

Table: An optimal fractional solution to the FTFP instance.

The dual solution has all $\alpha_i^* = 4/3$.

Phase 1: Iteration 1

Choose client 1 and create a primary demand κ_{11} . Each of client 2,3,4 creates a demand and assigned to κ_{11} .

i				
\bar{y}	1	2	3	4
	1/3	1/3	1/3	1/3
x	1	2	3	4
1	0	1/3	1/3	1/3
2	0	0	1/3	1/3
3	0	1/3	0	1/3
4	0	1/3	1/3	0

Phase 1: Iteration 2

Choose client 4 and create a primary demand κ_{42} . Each of client 2,3 creates a demand and assigned to κ_{42} .

\bar{y}	1	2	3	4
	1			
\bar{x}	1	2	3	4
2	1	0	0	0
2 3 4	1 1 1	0	0	0
4	1	0	0	0

Phase 2: Augment to Unit

Notice all demands have connection value 1.

\bar{x}	1		2	3		4
1	0	1	./3	1/	3	1/3
1 2	1/3		0	1/	3	1/3
3	1/3	1	./3	0		1/3
4	1/3		./3	1/	3	0
	\bar{x}	1	2	3	4	
	2	1	0	0	0	_
	3	1	0	0	0	
	4	1	0	0	0	

3-approximation Algorithm

- Each primary demand open $\mu \in \overline{N}(\kappa)$ with probability \bar{y}_{μ} .
- Each primary demand connects to the only open facility $\phi(\kappa)$ in $\overline{N}(\kappa)$.
- Each non-primary demand connects to $\phi(\kappa)$.
- Expected facility cost at most F*.
- Expected connection cost at most $C^* + 2 LP^*$.

1.736-approximation Algorithm

- Improve connection cost estimate: For non-primary demands use μ in $\overline{N}(\nu)$ if one is open.
- Expected facility cost at most F^* .
- Expected connection cost at most $C^* + 2/e LP^*$.

1.575-approximation

- Need a more refined partition to deal with close and far neighborhood.
- $\overline{N}_{\rm cls}(\nu)$ has total connection value $1/\gamma$.
- $\overline{N}_{\rm far}(\nu)$ has total connection value $1-1/\gamma$.
- Assignment implies overlap of $\overline{N}_{\rm cls}$ of ν and κ .
- Expected facility cost at most γF^* .
- Expected connection cost at most $\max\{\frac{1/e+1/e^{\gamma}}{1-1/\gamma}, 1+2/e^{\gamma}\}$ C^* .
- Ratio is $\max\{\gamma, \frac{1/e+1/e^{\gamma}}{1-1/\gamma}, 1+2/e^{\gamma}\}$, for $\gamma=1.575$ the ratio is 1.575.

Primal-dual Algorithms

- A Simple $O((\log R/\log \log R)^2)$ Algorithm.
- Greedy Algorithm with Dual-fitting Analysis.

A Simple $O((\log R / \log \log R)^2)$ Algorithm

- Let r_1, \ldots, r_n be demands of the n clients.
- Group clients by $[k^{l-1} + 1, k^l]$ for k such that $k^k = R = \max_j r_j$.
- Solve each group by treating each client with $r_j = k^l$.
- Combine all solution to each group to obtain final integral solution.

Performance Analysis

Theorem

There is a primal-dual $O((\log R/\log \log R)^2)$ -approximation algorithm for FTFP.

Proof.

- Solving each group individually, by treating it as uniform demand instance with all $r_j = k^l$ for the l^{th} group. We pay a factor of k for each group, since each r_j is within a factor of k of k^l .
- When combining solutions, we pay a factor of k since each facility can be over counted at most k times. Notice we have k groups because $k^k = R$.

The Greedy Algorithm

- Repeatedly picking the star with minimum average cost.
- A star is a facility *i* and a set of clients *S*.
- Average cost is $(f_i + \sum_{j \in S} d_{ij})/|S|$.

Performance Analysis of Greedy

- Runs in polynomial time as the best star remains best until exhausted so can combine iterations into phases.
- $O(H_n)$ -approximation by dual-fitting analysis.
- Open question: Is it O(1)-approximation?

Summary

We studied the fault-tolerant facility placement problem (FTFP) on approximation algorithms.

- Known results (or work done)
 - LP-rounding algorithms achieve a best ratio of 1.575, matching the best LP-based ratio for its special case, UFL.
 - Primal-dual algorithms achieve $O(\log R/\log\log R)$, better than the $O(\log R)$ ratio for primal-dual algorithm for FTFL.
 - The greedy algorithm has ratio no more than $O(H_n)$.
- Work in progress: Resolve whether Greedy is O(1)-approximation or not.

Publications

- Li Yan, Marek Chrobak: LP-rounding Algorithms for the Fault-Tolerant Facility Placement Problem, in CIAC 2013.
- Li Yan, Marek Chrobak: Approximation algorithms for the Fault-Tolerant Facility Placement problem. Inf. Process. Lett. 111(11): 545-549 (2011).
- Francis Chin, Marek Chrobak and Li Yan, Algorithms for Placing Monitors in a Flow Network, Algorithmica.
- Francis Y. L. Chin, Marek Chrobak, Li Yan: Algorithms for Placing Monitors in a Flow Network. in AAIM 2009: 114-128.

END