Instituto Tecnológico de Buenos Aires

20.02 Electrotecnia I

Trabajo Práctico 1

VERIFICACIÓN DE LOS TEOREMAS DE THÉVENIN Y NORTON

Grupo 2: Marcelo Regueira 00000 Joaquin Mestanza 00000 Ariel Nowik 00000

Profesores: Claudio Muñoz Gustavo Ayub

Realizado: 16/3/2018Presentado: 27/3/2018

Corrección:

1 Introduccion

En este trabajo consistió en dos partes

- Verificar los teoremas de Thevenin y Norton (1)
- Estudiar la variación de la resistencia de una lámpara segun su temperatura (2)

Para llevar a cabo los objetivos, se procedió al armado, la puesta en marcha, la medición y el análisis de dos circuitos.

2 Metodo operativo

Figure 1: Circuitos 1 y 2 (De izquierda a derecha)

2.1 Circuito 1

En total se realizaron tres procedimientos

- Se midieron los valores de R_1, R_2, R_3 (con ellos se dedujó R_{th}). A continuación se conecto la fuente y se midió, por un lado la tensión entre A y B sin carga (V_{th}) , y por el otro la corriente entre A y B a circuito cerrado (I_n) .
- Se procedió a medir, también por separado, todas las tensiones y corrientes de las tres resistencias a circuito cerrado entre A y B. En total con este procedimiento se realizaron entonces 6 mediciones, las de $I_{R1,R2,R3}V_{R1,R2,R3}$
- Por ultimo, se coloco una resistencia variable entre los nodos A y B, y
 se midió V e I simultaneamente en sucesivas oportunidades alterando la
 magnitud de R, con el objetivo de establecer cual valor de R provocaba la
 maxima transferencia de potencia.

2.2 Circuito 2

• Se procedió a conectar una lámpara a la fuente y medir en sucesivas oportunidades, simultaneamente, separadas por un lapso de 20 segundos, la tensión, la corriente, y temperatura de la lámpara.

2.3 Detalles de las mediciones

Para medir la magnitud de los resistores, y la temperatura de la lámpra se utilizó un multimetro digital, mientras que para medir las tensiones y corrientes del circuito se utilizaron voltimetros y amperimetros de aguja, conectados en paralelo y serie respectivamente. En los casos donde se necesito medir corriente y tensión a la vez se empleo el formato de conexión conocido como conexionado corto.

3 Analisis de resultados

3.1 Mediciones

3.1.1 Parte 1A

	Teórico	Práctico
V_{fuente}		$12V \pm 0.05V$
R_1	70Ω	$70.1 \pm 0.2\Omega$
R_2	200Ω	$199.6 \pm 0.2\Omega$
R_3	100Ω	$100.4 \pm 0.2\Omega$
R_{th}	151.8Ω	$161.8 \pm 0.2\Omega$
V_{th}		$8.95 \pm 0.05V$
I_n		$55 \pm 1mA$

3.1.2 Parte 1B

Teórico	Práctico

4 Conclusión