

Metabarcoding for diet analysis and environmental DNA – day 3

Recap & summary: dada2 pipeline

- Primer removal cutadapt
- Quality assessment & trimming
- Error models
- Merging, chimera removal & sanity check
- Taxon plots
- Diversity analyses

MiFish-U amplicon length is ~170bp

MiFish-U amplicon length is ~170bp

Cutadapt options:

-g: primer 5' end

-a: primer 3' end

-G and **-A**: for paired-end data

Forward primer FWD 5'-GTCGGTAAAACTCGTGCCAGC-3'

Reverse primer REV
5'-CATAGTGGGGTATCTAATCCCAGTTTG-3'

MiFish-U amplicon length is ~170bp

Cutadapt options:

-g: primer 5' end

-a: primer 3' end

-G and **-A**: for paired-end data


```
# Trim FWD and the reverse-complement of REV off of R1 (forward reads)
R1.flags <- paste("-g", FWD, "-a", REV.RC)
# Trim REV and the reverse-complement of FWD off of R2 (reverse reads)
R2.flags <- paste("-G", REV, "-A", FWD.RC)</pre>
```


dada2 quality plots

dada2 error model plots

Red line - expected based on the quality score

Black line - estimate

Black dots - observed

Track reads table

	input	filtered	denoisedF	denoisedR	merged	nonchim
S16	326080	323224	322464	322303	298970	258956
S17	47643	47305	47212	47086	45724	36541
S18	292556	289929	289795	289745	271083	249236
S25	80091	79456	79136	79249	64996	49766
S26	72054	71610	71240	71470	61042	48982
S27	88832	88026	87632	87633	70331	52770
S28	95054	94380	94056	94145	89173	73909
S29	118894	118040	117868	117854	112784	98042
S30	77321	76867	76356	76562	70981	60402
S31	159473	158262	158097	157649	152496	129603
S32	319652	317812	317195	317244	301715	243508
S33	268470	266299	265943	265813	252415	177440
S40	276096	265923	265485	265453	71	71
S41	95	89	81	80	74	74
S42	81764	81044	80938	80933	73528	68204

Taxa plots: 12S-V5

Alpha diversity: 12S-V5

Beta diversity: 12S-V5

Further community analysis

- Further analysis and visualisations on community data
- Using phyloseq objects in R
- Online NEOF course
- Dates for 2024 to be announced soon!
- https://neof.org.uk/training/

Thank you!

Questions?

