Az informatika logikai alapjai 3. előadás

Vaszil György

vaszil.gyorgy@inf.unideb.hu

I. emelet 110-es szoba

A múlt órán:

Állításlogika (más néven kijelentéslogika vagy nulladrendű logika)

- Állítások, nemlogikai és logikai konstansok
- Szintaxis:
 - Az állításlogika nyelve, formulák
- Szemantika:
 - A formulák jelentése, interpretáció, igazságtáblázat
- Szemantikai fogalmak:
 - modell
 - kielégíthetőség, kielégíthetetlenség
 - érvényesség

Elemi állításokat jelölő jelek és logikai jelek

<u>és</u>, <u>vagy</u>, <u>nem</u>, <u>(</u>, <u>)</u>

Je: Juli elmegy

Ém: Éva itt marad

Ée: Éva elmegy

Jv: Juli visszajön

ÉV: Éva visszajön

Juli elmegy, és Éva itt marad, vagy mindketten elmennek, és Juli vissza sem jön, de Éva vagy visszajön, vagy nem.

A múlt órán:

Állításlogika (más néven kijelentéslogika vagy nulladrendű logika)

- Állítások, nemlogikai és logikai konstansok
- Szintaxis:
 - Az állításlogika nyelve, formulák
- Szemantika:
 - A formulák jelentése, interpretáció, igazságtáblázat
- Szemantikai fogalmak:
 - modell
 - kielégíthetőség, kielégíthetetlenség
 - érvényesség

sremonti ka Hegyan rendelin ? jelentést a Gréveghez? Heggan tell a nørreget meg formålmi? - jolfosmailt sa'9 - gramat Gari nalvisor

Szintaxis: Az állításkalkulus nyelve

Klasszikus nulladrendű nyelv:

$$L^{(0)}=\langle LC, Con, Form \rangle$$
 aho

- LC={¬,¬,∧,∨,≡,(,)}
- Con≠Ø
 Con ={p, q, r, ...}
 LC∩Con=Ø

Form

- -logikai konstansok halmaza
- -nemlogikai konstansok (állítás- vagy kijelentésparaméterek) legfeljebb megszámlálhatóan végtelen halmaza
- -**formulák** (jól formált kifejezések)

LC véges. Mi az, hogy Con megsz.-ható végtelen?

A formulák megformálásának szabályai (ez egy ún. induktív definíció)

Con⊆Form

- p, q, r,...
- ←atomi formulák

- Ha A,B∈Form, akkor
 - $-\neg(A) \in Form$
 - (A ∧ B)∈Form,
 - $(A \lor B) \in Form,$
 - $(A \equiv B) \in Form$
 - (A ⊃ B)∈Form,

- $\neg(p), \neg(q), \neg(r), ...$
- $(p \land q), (\neg(r) \land p), ...$
- $(p \lor \neg(r)), ((\neg(r) \land p) \lor p), ...$
- $((\neg(r) \land p) \lor p) \equiv (\neg(r) \land p)), \dots$
- $((((\neg(r) \land p) \supset p)) \supset (p \land q)), ...$

és így tovább, pl.:

...
$$\neg ((((\neg(r) \land p) \supset p)) \supset (p \land q)), ((\neg(r) \land p) \supset (p \lor \neg(r))), ...$$

Zarojelet helling a sormig representació hem egger telens

Birongo zarojelor avert elhagystetér - porecedencia

bissen a univeleter pecedencia janet paccedencia janet somer dje : *, +

(A * precederciaja

A leginai greraitent pecedenciaja

Gibraio somerella: 7,1, V, D, =

her renit, például:

$$(p - q) = (-p - q - q)$$
 $(p - q - p - q - q)$

•
$$(p)(q=(7(p)7(q)))$$
 $\iff p)(q=7(p)7q))$
Tourible : $(p\'eld\'ak)$
• $pv(q)r)vs$ $\iff pvq)rvs$

toniulie: (példák)

· progry federation in its :

I'm winden

(pv(qur)) (pv(qvr))

LE Jantes

· p > 9 > r - t ('n eiter (b > (d > r))

A múlt órán:

Állításlogika (más néven kijelentéslogika vagy nulladrendű logika)

- Állítások, nemlogikai és logikai konstansok
- Szintaxis:
 - Az állításlogika nyelve, formulák
- Szemantika:
 - A formulák jelentése, interpretáció, igazságtáblázat
- Szemantikai fogalmak:
 - modell
 - kielégíthetőség, kielégíthetetlenség
 - érvényesség

sremonti ka Hegyan rendelin ? jelentést a Gréveghez? Heggan tell a nørreget meg formålmi? - jolfosmailt sa'9 - gramat Gari nalvisor

(userpresairio

p: « a leal géner van viz"
q: « a bolssonnar van élérilaga"
r: « a bolsson a nap rivil kenis"

Fild

egyik interpretáció >

p: izar

g: (sar

v: i jas

pl

pagar: ija

Mars

p: ham

q: homic

v: i'gar

progre: han's

másik ←interpretáció

Interpretáció: értelmezés ("interpreter")

(uterpreta u'i - Forma lisan

L'= (LC, (on, Ferm) unlladrerdi ugelv in terpretailié ja objan 3 fri ggne y, aun:

8: Con -> {0,17}

3 legiten erte tehet (igan: 1, lanis: 0) rendel az asomi semula tha (a nembegitan Constansor her)

Az iménti szemantikai szabályok táblázatba foglalva

A _e	B _e	¬A _e	(A⊃B) _e	(A\B) _e	(AVB) _e	(A≡B) _e
0	0	1	1	0	0	1
0	1	1	1	0	1	0
1	0	0	0	0	1	0
1	1	0	1	1	1	1

Még egy példa

Example 2.23 The computation of the truth value of $(p \to q) \leftrightarrow (\neg q \to \neg p)$ for the interpretation $\mathscr{I}(p) = T$ and $\mathscr{I}(q) = F$ is:

$$(p o q) o (\neg q o \neg p)$$
 $T F F T$
 $T F T F T$
 $T F T F T$
 $T F F T$

Azaz: Ebben az interpretációban a formula igaz

(Mások a jelölések: interpretáció, implikáció, ekvivalencia, F, T) (Melyik melyik?)

A múlt órán:

Állításlogika (más néven kijelentéslogika vagy nulladrendű logika)

- Állítások, nemlogikai és logikai konstansok
- Szintaxis:
 - Az állításlogika nyelve, formulák
- Szemantika:
 - A formulák jelentése, interpretáció, igazságtáblázat
- Szemantikai fogalmak:
 - modell
 - kielégíthetőség, kielégíthetetlenség
 - érvényesség

Formla ei formlahorlina modellje

· L(°) = (L() (an, Form) unlledrerdingle · g interpre ja' 4' o' z Legan adoff:

Eller:

- are A € Form Jemla modellse, · 9 interpretaini A (g = 1
- · 3 in terpretaisió au FE Form formula halman medelle,

Alg=1 minder A & I'-ra

(uterpreta vio

p: « a leal géner van viz"
q: « a bolssonnar van élérilaga"
r: « a bolsson a nap rivil kenis"

Fild

egyik interpretáció >

modellje

p∧q∧r-nek

9 V

r: ijaz

pagar: iga

Mars

p: ham's

q: homic

v: i'gar

másik ←interpretáció

nem modellje $p \land q \land r$ -nek

progre: han's

(Adott: L')=(LC, (an, Form), A & Form, I' & Form)

Conformula van en [formlabaluen

Lielizikhelo", la voia modellje.

Megjegyzés.

- Az A fomula kielégíthető, ha van olyan interpretáció, amelyben a formula igaz.
- Kielégíthető formula: a formula lehet igaz, azaz nem logikai hamisság.
- Ha egy formulahalmaz kielégíthető, akkor minden eleme kielégíthető.
- Az előző állítás megfordítása nem igaz. Pl.: a {p,¬p} formulahalmaz minden eleme kielégíthető, de maga a formulahalmaz nem kielégíthető.

Megjegyzés.

- A Γ fomulahalmaz kielégíthető, ha van olyan interpretáció, amelyben a formulahalmaz minden eleme igaz.
- Kielégíthető formulahalmaz: nem tartalmaz logikai ellentmondást, azaz a formulahalmaz elemei lehetnek egyszerre igazak.

(Adot: L'0)=(LC, Con, Form), A = Form, P = Form)

Can A familie van en f familie halver 'cielé'sithetetter,
lia vem 'cielé'jitheté', ana, ha ving wodelsje.

Megjegyzés.

 Az A fomula kielégíthetetlen, ha nincs olyan interpretáció, amelyben a formula igaz, azaz minden interpretációban a formula hamis értékű.

Megjegyzés.

- A Γ formulahalmaz kielégíthetetlen, ha nincs olyan interpretáció, amelyben a formulahalmaz mindeneleme igaz.
- Kielégíthetetlen formulahalmaz: logikai ellentmondást tartalmaz, azaz a formulahalmaz elemei nem lehetnek egyszerre igazak

(Adott 10) F (LC, Con, Form), A E Form)

Con A Jonnela everge , lea

unider interpreta à à ban igan para

1Alz=1 mider 3: Con -> £0,17-re

He A famela eineigh, alles A tantaligia

logikai törvény

uei ir elnenses

Érvényes, kielégíthető, kielégíthetetlen formulák halmazai

A mai órán:

Állításlogika (más néven kijelentéslogika vagy nulladrendű logika)

- Szemantikai fogalmak:
 - modell
 - kielégíthetőség, kielégíthetetlenség, érvényesség
- Kielégíthető és kielégíthetetlen formulahalmazok tulajdonságai
- Logikai (szemantikai) következmény reláció
 - logikai ekvivalencia
- A logikai következményreláció tulajdonságai
 - érvényesség még egyszer
- Nyelvi "szintek"
 - A logikai következményreláció és az implikáció
 - A logikai ekvivalencia és az ekvivalencia operátor

A kielégíthetőségről

Tétel

Legyen $L^{(0)} = \langle LC, Con, Form \rangle$ egy **nulladrendű nyelv**, $\Gamma \subseteq Form$ egy formulahalmaz.

Ha Γ kielégíthető formulahalmaz és $\Delta \subseteq \Gamma$, akkor Δ kielégíthető formulahalmaz.

Megjegyzés

- A tétel röviden úgy fogalmazható meg, hogy egy kielégíthető formulahalmaz minden részhalmaza kielégíthető.
- Szemléletes értelemben a tétel azt mondja ki, hogy a logikai ellentmondástalanság szűkítéssel nem rontható el.

Forrás: Mihálydeák Tamás, https://arato.inf.unideb.hu/mihalydeak.tamas/Logika_my_twt-treeview.html

A kielégíthetőségről

Tétel

Legyen $L^{(0)} = \langle LC, Con, Form \rangle$ egy **nulladrendű nyelv**, $\Gamma \subseteq Form$ egy formulahalmaz.

Ha Γ kielégíthető formulahalmaz és $\Delta \subseteq \Gamma$, akkor Δ kielégíthető formulahalmaz.

Bizonyítás

Legyen $\Gamma \subseteq Form$ egy tetszőleges **kielégíthető formulahalmaz**, és $\Delta \subseteq \Gamma$!

 Γ kielégíthetősége miatt a Γ formulahalmaznak van modellje, legyen Γ egy modellje a ϱ interpretáció.

 ϱ tulajdonsága: Ha $A \in \Gamma$, akkor $|A|_{\varrho} = 1$

Mivel $\Delta \subseteq \Gamma$, ha $A \in \Delta$, akkor $A \in \Gamma$, s így $|A|_{\varrho} = 1$. Azaz a ϱ interpretáció modellje Δ -nak, tehát Δ kielégíthető.

A kielégíthetetlenségről

Tétel

Legyen $L^{(0)} = \langle LC, Con, Form \rangle$ egy **nulladrendű nyelv**, és Γ , $\Delta \subseteq Form$ két formulahalmaz.

Ha Γ kielégíthetetlen formulahalmaz, és $\Gamma \subseteq \Delta$, akkor Δ kielégíthetetelen formulahalmaz.

Megjegyzés

- A tétel röviden úgy fogalmazható meg, hogy egy kielégíthetetlen formulahalmaz minden bővítése kielégíthetetlen.
- Szemléletes értelemben a tétel azt mondja ki, hogy a logikai ellentmondás bővítéssel nem szüntethető meg.

A kielégíthetetlenségről

Tétel

Legyen $L^{(0)} = \langle LC, Con, Form \rangle$ egy **nulladrendű nyelv**, és Γ , $\Delta \subseteq Form$ két formulahalmaz.

Ha Γ kielégíthetetlen formulahalmaz, és $\Gamma \subseteq \Delta$, akkor Δ kielégíthetetelen formulahalmaz.

Bizonyítás

Indirekt bizonyítás:

Tegyük fel, hogy $\Gamma \subseteq Form$ tetszőleges **kielégíthetetlen formulahalmaz**,

és $\Delta \subseteq Form$ olyan formulahalmaz, hogy $\Gamma \subseteq \Delta$.

Indirekt feltétel: Γ kielégíthetetlen, és Δ kielégíthető.

 $\Gamma \subseteq \Delta$

A kielégíthetőségre vonatkozó tétel miatt Γ kielégíthető (mivel Δ

kielégíthető), ez pedig ellentmondás.

(Használjuk, amit az előbb beláttunk)

A mai órán:

Állításlogika (más néven kijelentéslogika vagy nulladrendű logika)

- Szemantikai fogalmak:
 - modell
 - kielégíthetőség, kielégíthetetlenség, érvényesség
- Kielégíthető és kielégíthetetlen formulahalmazok tulajdonságai
- · Logikai (szemantikai) következmény reláció
 - logikai ekvivalencia
- A logikai következményreláció tulajdonságai
 - érvényesség még egyszer
- Nyelvi "szintek"
 - A logikai következményreláció és az implikáció
 - A logikai ekvivalencia és az ekvivalencia operátor

Premisszák: Esik az eső.

Ha esik az eső, sáros az út.

Konklúzió: Sáros az út.

Premisszák: Ha dolgozom, elfáradok.

Dolgozom.

Konklúzió: Elfáradok.

Premisszák: Ha három lábon gyábokorsz, a Kálán Púgra nem tudsz menni.

Három lábon gyábokorsz.

Konkhúzió: A Kálán Púgra nem tudsz menni.

Preminer: Ha A arla B.

Mi is hát a helyes következtetés?

· A presonissair cigarsaiga nii segmenien honja huaga utan a romelinió cigarsaigant

(<u>delietetle</u> egan eret, hang a prenunissair ('gard, a Generlii vic hanis.)

Tiestami rell vissent a [1 sni reignai y sia [1 deletelle "jelatsi ét

(AdeH: L(0)=(L(, Can, Form), A & Form, I'E Form)

B & Form

o A € Forn famla not Gørethezeneige a B formela, A ⊨ B, ha A miden modellje modellje B-net is

· r∈ Form formlahalmesenar rønetresmeje Betorn [= B, la ruinder medellje medellje B-neris.

Vizsgáljuk meg ezt a példát is, az előzőek szellemében:

- Feri idősebb mint Péter.
- Ha Feri idősebb mint Péter, akkor Ferinek több gyertya van a tortáján.
- 3. Ferinek több gyertya van a tortáján.

Következtetések (!?)

- Következik-e 1 és 2-ből 3? (Dedukció)
- Következik-e 2 és 3-ból 1?
- Következik-e 1 és 3-ból 2?

- 1. A
- 2. Ha A, akkor B
- 3. B

Ismét a korábbi dia ezzel kapcsolatban:

Még egy példa

Erler

hissen.

Milph 3 interpretáció wellett teljsül Törne elene?

(pvr) n (79 v7r)

A mai órán:

Állításlogika (más néven kijelentéslogika vagy nulladrendű logika)

- Szemantikai fogalmak:
 - modell
 - kielégíthetőség, kielégíthetetlenség,érvényesség
- Kielégíthető és kielégíthetetlen formulahalmazok tulajdonságai
- · Logikai (szemantikai) következmény reláció
 - logikai ekvivalencia
- A logikai következményreláció tulajdonságai
 - érvényesség még egyszer
- Nyelvi "szintek"
 - A logikai következményreláció és az implikáció
 - A logikai ekvivalencia és az ekvivalencia operátor

Logitai etuivalencia - remartitai etuivalencia (Adolf. L⁽⁰⁾= {L(1, (an; Fem), A, B & Form)

| Ket formen 1 A 2' B <u>logitarilar</u> etnivalens ha

Donitarilar etnivalens ha

esta media interpreta i i ban urganaz a logitari
esta meginal

(A | g = | B | g minder

main g: (an -> £913)

A | B 2' B | A

eretein

jdiles: A => B

A mai órán:

Állításlogika (más néven kijelentéslogika vagy nulladrendű logika)

- Szemantikai fogalmak:
 - modell
 - kielégíthetőség, kielégíthetetlenség, érvényesség
- Kielégíthető és kielégíthetetlen formulahalmazok tulajdonságai
- · Logikai (szemantikai) következmény reláció
 - logikai ekvivalencia
- A logikai következményreláció tulajdonságai
 - érvényesség még egyszer
- Nyelvi "szintek"
 - A logikai következményreláció és az implikáció
 - A logikai ekvivalencia és az ekvivalencia operátor

Az imént láttuk:

(AdeH: L(0)=(L(, Con, Form), A & Form, I's Form)

- o A € Forn famla nar Goverrezeneige a B formela, A = B, ha A miden modellje modellje B-ner is
- · C = Form formlahalmaserar tie nettrezmeje B ctorn

 [= B, la Cuinder modellje modellje B-neris.

Ismét a korábbi dia:

Adett (°)=(L(,(an, Form), (°) = FORM, A & Form.

Titel:

[F A arlear & sor area, lor [° o FAZ kiele'gither texten.

Micanjitan: (=))

Teoprit jel, han Turiden medellje modellje A-nar is 1 de Puf7Az hillegithetor. Then Tu §7Az-nat hera medellije. Leggen & a ginterpretainio. That: [6]g=1 mider BET-2, de [7A]g=1, and

Vaegis P-var van agan modellje, ani vem medellje A-var.

Ellentmondás.

Nézzük meg a gondolatmenet sémáját (tábla)

Adett (°)=(L(, (an, Form), (= Form, A & Form.

Titel:

[FA aller & car aller, ler [o & A & biele gither tetlen.

Billyitei: (€)

Tegnik pl indisert, her [o & FA] willegithetetlen.

Tegrik bl indisert, hen Γ v ΣrA millegitheteten.

Tegrik bl indisert, hen Γ v ΣrA millegitheteten.

de $\Gamma \not\models A$, over Γ -nar van alson modelsje, am A-not

nem modelsje. Legger erag in perpretainió.

Gela $\lceil B \mid g = 1$ minder $B \in \Gamma$ eretai, de $\lceil A \mid g = 0 \rceil$ are $\lceil rA \mid g = 1$.

Vaggir 3 hilligit Pu \$7A}-t.
ane Tu \$7A7 Willigitheto".

Er ellertmadris (avar an indikt feltétel hanis.

1

Ewe yorse's (Adet 10) = (LC, Con, Form), A E Form) Em A Jenula évégs, la viegtigt o minden insterporteta'a' o ban igan jana meis 1 1A/g=1 miden 3: Can -> \{6,17}-re

p = A (Az ürorhalmar vonlettezmerze.) 2. megfogalman

Tétel

Legyen $L^{(0)} = \langle LC, Con, Form \rangle \setminus \text{egy nulladrendű nyelv}, A \in Form.$ Ha A érvényes formula $(\models A)$, akkor minden $\Gamma \subseteq Form$ formulahalmaz esetén $\Gamma \models A$.

Megjegyzés

A tétel szemléletesen úgy is megfogalmazható, hogy egy érvényes formula minden formulahalmaznak következménye.

Tétel

Legyen $L^{(0)} = \langle LC, Con, Form \rangle \setminus \text{egy nulladrendű nyelv}, A \in Form.$ Ha A érvényes formula $(\models A)$, akkor minden $\Gamma \subseteq Form$ formulahalmaz esetén $\Gamma \models A$.

Bizonyítás

Ha A érvényes formula, akkor

 $\emptyset \models A$.

Így Ø $\cup \{\neg A\}$ (= $\{\neg A\}$) kielégíthetetlen, s így a **kielégíthetetlenségre kimondott tétel** alapján ennek a halmaznak a bővítései is kielégíthetetlenek.

 $\Gamma \cup \{\neg A\}$ bővítése $\{\neg A\}$ -nak, így kielégíthetetlen, tehát $\Gamma \models A$.

Tétel

Legyen $L^{(0)} = \langle LC, Con, Form \rangle \setminus \text{egy nulladrendű nyelv \'es } \Gamma \subseteq Form$ egy formulahalmaz..

Ha a Γ formulahalmaz kielégíthetetlen, akkor minden A formula esetén $\Gamma \models A$.

Megjegyzés

A tétel szemléletesen úgy is megfogalmazható, hogy egy kielégíthetetlen formulahalmaznak minden formula következménye.

Bizonyítás

A már bizonyított tétel szerint ha a Γ formulahalmaz kielégíthetetlen, akkor Γ minden bővítése is kielégíthetetlen.

 $\Gamma \cup \{\neg A\}$ bővítése Γ -nak, így kielégíthetetlen, tehát $\Gamma \models A$.

A mai órán:

Állításlogika (más néven kijelentéslogika vagy nulladrendű logika)

- Szemantikai fogalmak:
 - modell
 - kielégíthetőség, kielégíthetetlenség, érvényesséf
- Kielégíthető és kielégíthetetlen formulahalmazok tulajdonságai
- Logikai (szemantikai) következmény reláció
 - logikai ekvivalencia
- A logikai következményreláció tulajdonságai
 - Érvényesség még egyszer
- Nyelvi "szintek"
 - A logikai következményreláció és az implikáció
 - A logikai ekvivalencia és az ekvivalencia operátor

Az implikáció/kondicionális és a következményreláció kapcsolata

- Különböző "szintek":
 - Az implikáció (kondicionális) logikai operátor, logikai formulákban jelenik meg, a logikai formulák nyelvének része
 - A következményreláció logikai formulák (formulahalmazok) közötti viszonyt ír le, nem a logikai formulák nyelvének, ha nem a logikai formulákról beszélő "metanyelvnek" a része

Ezt szeretnénk belátni:

Legyen $L^{(0)} = \langle LC, Con, Form \rangle$ egy **nulladrendű nyelv**, és $A, B \in Form$ két formula.

 $A \models B$ akkor és csak akkor, ha $\models (A \supset B)$

Az implikáció és a következményreláció kapcsolata

Tétel (Dedukció tétel)

Legyen $L^{(0)} = \langle LC, Con, Form \rangle$ egy **nulladrendű nyelv**, $\Gamma \subseteq Form$ egy formulahalmaz és $A, B \in Form$ két formula.

Ha $\Gamma \cup \{A\} \vDash B$, akkor $\Gamma \vDash (A \supset B)$.

Megjegyzés

 $\Gamma \cup \{A\} \vDash B$ helyett gyakran használjuk a következő rövidebb írásmódot: $\Gamma A \vDash B$

Tétel (Dedukció tétel)

Ha $\Gamma \cup \{A\} \vDash B$, akkor $\Gamma \vDash (A \supset B)$

Bizonyítás

Indirekt feltétel: Tegyük fel, hogy $\Gamma \cup \{A\} \models B$ teljesül, de $\Gamma \models (A \supset B)$ nem teljesül.

Így $\Gamma \cup \{\neg (A \supset B)\}$ kielégíthető, tehát van modellje. Legyen egy modellje a ϱ interpretáció!

A ϱ tulajdonságai:

1. Γ minden eleme igaz a ϱ interpretáció szerint.

$$2. \left| \neg \left(A \supset B \right) \right|_{Q} = 1$$

$$\left|\left(A\supset B\right)\right|_{\mathcal{Q}}=0$$
, azaz $\left|A\right|_{\mathcal{Q}}=1$ és $\left|B\right|_{\mathcal{Q}}=0$. Így $\left|\neg B\right|_{\mathcal{Q}}=1$.

 $\Gamma \cup \{A\} \cup \{\neg B\}$ formulahalmaz minden eleme igaz a ϱ interpretáció szerint, azaz a formulahalmaz **kielégíthető**, tehát $\Gamma \cup \{A\} \models B$ nem teljesül, ami ellentmondás.

Tétel (Dedukció tétel megfordítása)

Legyen $L^{(0)} = \langle LC, Con, Form \rangle$ egy **nulladrendű nyelv**, $\Gamma \subseteq Form$ egy formulahalmaz és $A, B \in Form$ két formula.

Ha $\Gamma \vDash (A \supset B)$, akkor $\Gamma \cup \{A\} \vDash B$.

Bizonyítás

Ha $\Gamma \models (A \supset B)$, akkor $\Gamma \cup \{A\} \models B$

Indirekt feltétel: Tegyük fel, hogy $\Gamma \models (A \supset B)$, és ugyanakkor $\Gamma \cup \{A\} \models B$ nem teljesül.

Így $\Gamma \cup \{A\} \cup \{\neg B\}$ kielégíthető, tehát van modellje. Legyen egy modellje a ϱ interpretáció!

A *ρ* tulajdonságai:

- Γ minden eleme igaz a ϱ interpretáció szerint.
- $\bullet |A|_{\rho} = 1$
- $|\neg B|_{\rho} = 1$, $|gy|_{\rho} = 0$

Így a ϱ interpretáció szerint $\left| \left(A \supset B \right) \right|_{\varrho} = 0$, következésképpen $\left| \neg \left(A \supset B \right) \right|_{\varrho} = 1$.

 $\Gamma \cup \{\neg(A \supset B)\}$ formulahalmaz minden eleme igaz a ϱ interpretáció szerint, azaz a ϱ interpretációja modellje a formulahalmaznak, ami egyben azt is jelenti, hogy a formulahalmaz kielégíthető. Tehát $\Gamma \models (A \supset B)$ nem teljesül, ami ellentmond indirekt feltételünknek.

Az implikáció és a következményreláció kapcsolata

A dedukciótétel és megfordításának következménye:

Legyen $L^{(0)} = \langle LC, Con, Form \rangle$ egy **nulladrendű nyelv**, és $A, B \in Form$ két formula.

 $A \vDash B$ akkor és csak akkor, ha $\vDash (A \supset B)$

Bizonyítás

Alkalmazzuk a **dedukció tételt** és **megfordítását** abban az esetben, amikor $\Gamma = \emptyset$.

A mai órán:

Állításlogika (más néven kijelentéslogika vagy nulladrendű logika)

- Szemantikai fogalmak:
 - modell
 - kielégíthetőség, kielégíthetetlenség, érvényesség
- Kielégíthető és kielégíthetetlen formulahalmazok tulajdonságai
- Logikai (szemantikai) következmény reláció
 - logikai ekvivalencia
- A logikai következményreláció tulajdonságai
 - érvényesség
- Nyelvi "szintek"
 - A logikai következményreláció és az implikáció
 - A logikai ekvivalencia és az ekvivalencia operátor

Az (materiális) ekvivalencia és a logikai ekvivalencia kapcsolata

A dedukciótétel és megfordításának következménye:

Legyen $L^{(0)} = \langle LC, Con, Form \rangle$ egy **nulladrendű nyelv** és $A, B \in Form$ két formula.

 $A \Leftrightarrow B$ akkor és csak akkor, ha $\models (A \equiv B)$

Tétel (Metszet tétel)

Legyen $L^{\left(0\right)}=\langle \mathit{LC},\mathit{Con},\mathit{Form}\,\rangle$ egy **nulladrendű nyelv**, Γ , $\Delta\subseteq\mathit{Form}$ két formulahalmaz és $A,B\in\mathit{Form}$ két formula.

Ha $\Delta \models A$, és $\Gamma \cup \{A\} \models B$ akkor $\Gamma \cup \Delta \models B$.

Indirekt bizonyítás

Ha $\Gamma \cup \{A\} \vDash B$ és $\Delta \vDash A$, akkor $\Gamma \cup \Delta \vDash B$

Indirekt feltétel: Tegyük fel, hogy $\Gamma \cup \{A\} \models B$ és $\Delta \models A$, de $\Gamma \cup \Delta \models B$ nem teljesül.

Ekkor $\Gamma \cup \Delta \cup \{\neg B\}$ kielégíthető (a következményreláció 1. tulajdonsága miatt), azaz van modellje. Legyen a formulahalmaz egy modellje a ϱ interpretáció.

A *ρ* interpretáció tulajdonságai:

- 1. Γ minden eleme igaz a ϱ interpretációban.
- 2. Δ minden eleme igaz a ϱ interpretációban.

3.
$$|\neg B|_{\rho} = 1$$

Mivel $\Delta \models A$ és Δ minden eleme igaz a ϱ interpretációban, $|A|_{\varrho} = 1$. Következésképpen a $\Gamma \cup \{A\} \cup \{\neg B\}$ halmaz minden eleme igaz a ϱ interpretációban, ami azt jelenti, hogy a $\Gamma \cup \{A\} \cup \{\neg B\}$ formulahalmaz **kielégíthető**. Ekkor azonban a **következményreláció** 1. tulajdonsága miatt $\Gamma \cup \{A\} \models B$ nem teljesül. Ez pedig ellentmond indirekt feltételünknek.

A mai órán:

Állításlogika (más néven kijelentéslogika vagy nulladrendű logika)

- Kielégíthető és kielégíthetetlen formulahalmazok tulajdonságai
- Logikai (szemantikai) következmény reláció
 - logikai ekvivalencia
- A logikai következményreláció tulajdonságai
 - Érvényesség még egyszer
- Nyelvi "szintek"
 - A logikai következményreláció és az implikáció
 - A logikai ekvivalencia és az ekvivalencia operátor

Egy korábbi példa még egyszer:

Vizsgáljuk meg ezt a példát is, az előzőek szellemében:

- 1. Ma kedd van.
- 2. Xéna keddenként miniszoknyában jár az órákra.
- 3. Xéna ma miniszoknyában van.

Következtetések (!?)

- Következik-e 1 és 2-ből 3? (Dedukció)
- Következik-e 2 és 3-ból 1?
- Következik-e 1 és 3-ból 2?

- 1. A
- 2. Ha A, akkor B
- 3. B

Foy korábbi nélda még egyszer:

Az előadáson megállapítottuk, hogy ez a példa problematikus: Formálisan, ha "A" igaz és "B" igaz, akkor "ha A akkor B" is igaz, noha a szöveges részben, a hétköznapi értelmezés szerint az 1. és a 3. állításból nem következik a 2. állítás. Azaz, a jobb oldali keretben lévő formalizáció nem jó, mert nem pontosan fedi le a bal oldali keretben lévő szöveg állításait. (Később látni fogjuk majd, hogyan küszöbölhető ki a probléma, ha elsőrendű nyelven formalizáljuk a bal oldali keretben lévő állításokat.)

előzőek

a A, akkor B

Következtetések (!?)

- Következik-e 1 és 2-ből 3? (Dedukció)
- Következik-e 2 és 3-ból 1?
- Következik-e 1 és 3-ból 2?