

PrivacyRaven: Comprehensive Privacy Testing for Deep Learning

Suha S. Hussain

whoami

- Suha S. Hussain (@suhackerr)
 - CS Undergraduate at Georgia Tech
 - Threads: Theory & People
 - Security Engineering Intern at Trail of Bits
 - Cryptography Team

Auditing Deep Learning

How can this system be attacked?

- Purpose: Detect a brain bleed from images of a scan
 - Black-box
 - Binary result
- Use PrivacyRaven to simulate privacy attacks

Privacy Violations

Intellectual Property

A substitute model was created from a **model extraction** attack.

Data Reconstruction

The adversary launched a **model inversion** attack.

Re-identification

A **membership inference** attack was executed.

Threat Model

Affordances

- Determine the susceptibility of a model to different privacy attacks
- Evaluate privacy preserving machine learning techniques
- Develop novel privacy metrics and attacks
- Repurpose attacks for data provenance auditing and other use cases

Model Extraction

TRAJL BITS

Attack Objectives

Model with High Accuracy

This attack is typically **financially motivated**.

Avoid paying for the target model in the future or profit off of extracted model.

Model with High Fidelity

This attack is typically reconnaissance-motivated.

Learn more about the original model and launch other classes of attacks.

A Framework for Model Extraction

Model extraction attacks can be partitioned into **multiple phases**.

Extract an MNIST model

Launch an attack in under 15 lines of code

```
model = train_mnist_victim()
def query_mnist(input_data):
    return get_target(model, input_data)
emnist_train, emnist_test = get_emnist_data()
attack = ModelExtractionAttack(query_mnist, 100,
    (1, 28, 28, 1),
    10,
    (1, 3, 28, 28),
    "copycat",
    ImagenetTransferLearning,
    1000,
    emnist_train,
    emnist_test,
```

Extraction Results

- Target Model Statistics
- Synthetic Dataset Details
- Substitute Model Statistics
- Accuracy Metrics
- Fidelity Metrics

Membership Inference

TRAJL BITS

An Overview of Membership Inference

Objective: Re-identification

- Integrates the extraction API
- Unique threat model

A Framework for Membership Inference

Membership inference attacks can also be partitioned into **multiple phases**.

Label-Only Membership Inference Attacks

Christopher A. Choquette-Choo*†, Florian Tramèr‡, Nicholas Carlini‡, Nicolas Papernot* University of Toronto*, Vector Institute†, Stanford University†, Google[§]

1 INTRODUCTION

nettai corrections [1, 4], or financial information [1, 4]. Problem in infantry to Popule are continued score, Popular and Comparison of the Comparison of t information permissing experiturally to according of the model's solution operation permission generalized by the consideration of the configuration of the

prediction confidence that models exhibit on their training data [7, 10, 11, 12, 13, 14]. This difference in prediction the training data [7, 10, 11, 12, 13, 14]. This difference in prediction the training defenses either implicitly or explicitly rely on a strategy

Advance—Mandroodly inference situate, or one of the singlar flower of privacy behalps for mandred to moving models great
and the privacy behalps for mandred to moving models great
truth to model. For the single models of the model of a stage of dark
truth to model for the single models of the model of a stage of dark
truth to model. For the single models of the model of a stage of dark
truth to model or mixed models or the model or models or the model or mixed models or the models or mixed models or the model or mixed models or the models or mixed models or mixed models or models or mixed models and mixed models or mixed models and mixed mo

labels when querying the trained model, without any prediction Machine learning algorithms are often trained on sensitive confidences. This threat model is more realistic in practiceor private user information, such as medical records [1, 3], as many machine learning models deployed in user-facing textual conversations [1, 4], of financial information [6, 4], or financial information [6, 4], or financial information [6, 4], products are utilizely to expose raw confidence scans.

set reveals that the victim indeed has cancer.

Existing membership inference attacks exploit the higher

Model Inversion

TRAJL

An Overview of Model Inversion

Objective: Obtain memorized data

- More nebulous area of work
- Integrates the extraction API
- Trains an "inverse" network

Upcoming Features

- New interface for metrics visualizations
- Automated hyperparameter optimization
- Certifiable differential privacy verification
- Privacy thresholds and metric calculations
- Side channel and property inference attacks
- Federated learning and generative model attacks
- Built-in victim models implementing PPML techniques

Thank you for your time!

Are there any questions?

Repository:

github.com/trailofbits/PrivacyRaven

Contact:

suha.hussain@trailofbits.com james.miller@trailofbits.com

TRAIL OF BITS