CSCI446/946 Big Data Analytics

Week 3 Lab: Introduction to Data Analytic Methods Using R

School of Computing and Information Technology
University of Wollongong Australia

Brief Recap

Last week: Data Analytics Lifecycle

- Key roles (7)?
- Phases (6)?

Brief Recap

Last week: Data Analytics Lifecycle

- Key roles (7): Business user, sponsor, project manager, BI analyst, DA, DE, data scientist.
- Phases (6)
 - **Discovery**: Domain understanding, framing of problem, H₀, data sourcing,...
 - **Data Preparation**: Prepare sandbox, ETLT, preprocessing, inspect data, understand data, conditioning, ...
 - **Model Planning**: Identify candidate models, variable selection, model selection, ...
 - Model Building: Train, validate, and test model,
 - **Communication of results**: Articulate results, explain results, make recommendations for future work,
 - Operationalize: Communicate benefits, Set up pilot project, deploy to full enterprise, prepare for ongoing monitoring and model updates, ...

Data Analytic Methods Using R

- Introduction to R
 - R, RStudio, Data I/O, Attribute and Data Types
 - Descriptive statistics
- Exploratory Data Analysis
 - Visualization before analysis
 - Visualizing single or multiple variables
- Statistical Methods for Evaluation
 - Hypothesis Testing, ANOVA

All the figures, tables and codes are from the book "<u>Data Science and Big Data Analytics:</u> <u>Discovering, Analyzing, Visualizing and Presenting Data</u>" unless indicated otherwise.

Data Analytic Methods Using R

- The success of a data analysis project requires a deep understanding of the data
- It requires a toolbox for mining and presenting the data
 - Basic statistical measures
 - Creation of graphs and plots
 - Identify relationships and patterns
- R: popularity and versatility

- A high level scripting language and software framework for statistical analysis and graphics
- Comprehensive R Archive Network
- Today:
 - An overview the basic functionality of R
 - We begin with understanding the flow of a basic R script to address an analytic problem
 - Command-line interface (CLI)
 - Graphical user interface (GUI)

The first example

The first example

```
# perform a statistical analysis (fit a linear
regression model)
results <- lm(sales$sales_total ~ sales$num_of_orders)
results
summary(results)

# perform some diagnostics on the fitted model
# plot histogram of the residuals
hist(results$residuals, breaks = 800)</pre>
```

R Graphical User Interface (RStudio)

- Scripts
- Workspace
- Plots
- Console

- Help functionality
 - Help(lm) or ?lm
- Edit() and fix()
 - Allow to update the contents of an R variable
- Save.image() function to create .Rdata file
- Load.image() function to load .Rdata file
- Please install R and RStudio to try out the R examples

Data Import and Export

```
sales <- read.csv("c:/data/yearly_sales.csv")

setwd("c:/data/")
sales <- read.csv("yearly_sales.csv")

# add a column for the average sales per order
sales$per_order <- sales$sales_total/sales$num_of_orders

# export data as tab delimited without the row names
write.table(sales, "sales_modified.txt", sep="\t",
row.names=FALSE)</pre>
```

Automatically save plots

```
# export a histogram to a jpeg
jpeg(file="c:/data/sales_hist.jpeg") #create a new jpeg file
hist(sales$num_of_orders) # export histogram to jpeg
dev.off() # shut off the graphic device
```

- More information
 - https://cran.r-project.org/doc/manuals/rrelease/R-data.html

Attribute and Data Types

 Attributes: Nominal, Ordinal, Interval, and Ratio (NOIR)

	Categorical (Qualitative)		Numeric (Quantitative)		
	Nominal	Ordinal	Interval	Ratio	
Definition	The values represent labels that distinguish one from another.	Attributes imply a sequence.	The difference between two values is meaningful.	Both the difference and the ratio of two values are meaningful.	
Examples	ZIP codes, national- ity, street names, gender, employee ID numbers, TRUE or FALSE	Quality of diamonds, academic grades, mag- nitude of earthquakes	Temperature in Celsius or Fahrenheit, cal- endar dates, latitudes	Age, temperature in Kelvin, counts, length, weight	
Operations	=, ≠	=, ≠,	=, ≠,	=, ≠,	
		<, ≤, >, ≥	<, ≤, >, ≥,	<, ≤, >, ≥,	
			+, -	+, -,	
				X. ÷	

- Data Types
 - Numeric, character, logical (and list)

```
i <- 1
                             # create a numeric variable
sport <- "football"</pre>
                             # create a character variable
flag <- TRUE
                             # create a logical variable
                             # returns "numeric"
class(i)
typeof(i)
                             # returns "double"
class(sport)
                             # returns "character"
typeof(sport)
                             # returns "character"
class(flag)
                             # returns "logical"
typeof(flag)
                             # returns "logical"
```

- Vectors
 - A basic building block for data in R
 - Simple R variables are actually vectors
 - Can only consist of values in the same class

```
# Vectors
is.vector(i)  # returns TRUE
is.vector(flag)  # returns TRUE
is.vector(sport)  # returns TRUE
```

Vectors

```
u <- c("red", "yellow", "blue") # create a vector "red" "yellow" "blue"</pre>
                                 # returns "red" "yellow" "blue"
u
u[1]
                                 # returns "red" (1st element in u)
                                 # create a vector 1 2 3 4 5
v <- 1:5
                                 # returns 1 2 3 4 5
V
sum(v)
                                 # returns 15
W < - V * 2
                                 # create a vector 2 4 6 8 10
                                 # returns 2 4 6 8 10
W
                                 # returns 6 (the 3rd element of w)
w[3]
                                 # sums two vectors element by element
Z \leftarrow V + W
                                 # returns 3 6 9 12 15
Z
                                 # returns FALSE FALSE TRUE TRUE TRUE
z > 8
z[z > 8]
                                 # returns 9 12 15
z[z > 8 | z < 5]
                                 # returns 3 9 12 15 ("|" denotes "or")
```

 vector() function, by default, create a logical vector

```
a <- vector(length=3)</pre>
                                 # create a logical vector of length 3
                                 # returns FALSE FALSE FALSE
a
b <- vector(mode="numeric", 3) # create a numeric vector of length 3
                                 # returns "double"
typeof(b)
                                 # assign 3.1 to the 2nd element
b[2] < 3.1
                                 # returns 0.0 3.1 0.0
h
c <- vector(mode="integer", 0) # create an integer vector of length 0</pre>
                                 # returns integer(0)
C
length(c)
                                 # returns 0
```

Arrays and Matrices

```
# the dimensions are 3 regions, 4 quarters, and 2 years
quarterly_sales <- array(0, dim=c(3,4,2))</pre>
quarterly_sales[2,1,1] <- 158000</pre>
quarterly_sales
sales matrix <- matrix(0, nrow = 3, ncol = 4)</pre>
sales matrix
install.packages("matrixcalc") # install, if necessary
library(matrixcalc)
# build a 3x3 matrix
M \leftarrow matrix(c(1,3,3,5,0,4,3,3,3),nrow = 3,ncol = 3)
M %*% matrix.inverse(M) # multiply M by inverse(M)
```

- Data Frames
 - A structure for storing and accessing several variables of possibly different data types
 - Preferred input format for many R functions

```
sales <- read.csv("c:/data/yearly_sales.csv")
is.data.frame(sales)  # returns TRUE

is.vector(sales$cust_id)  # returns TRUE
is.vector(sales$sales_total)  # returns TRUE
is.vector(sales$num_of_orders)  # returns TRUE
is.vector(sales$gender)  # returns FALSE
is.factor(sales$gender)  # returns TRUE</pre>
```

 List: a collection of objects that can be of various types, including other lists

```
sales <- read.csv("c:/data/yearly_sales.csv")
class(sales)  #returns "data.frame"
typeof(sales)  #returns "list"

# build an assorted list of a string, a numeric,
# a list, a vector, and a matrix
housing <- list("own", "rent")
assortment <- list("football", 7.5, housing, v, M)
assortment</pre>
```

- Factors: a categorical variable, typically with a few finite levels such as "F" and "M"
- Factors can be ordered or not ordered

```
# Factors

class(sales$gender)  # returns "factor"
is.ordered(sales$gender)  # returns FALSE
```

Use of factors is important in R statistical modelling functions

- Contingency Tables
 - A class of objects used to store the observed counts across the factors for a given dataset
 - The basis for performing a statistical test on the independence of the factors

```
# build a contingency table based on the gender and
spender factors
sales_table <- table(sales$gender,sales$num_of_orders)
sales table</pre>
```

- Contingency Tables
 - A class of objects used to store the observed counts across the factors for a given dataset
 - The basis for performing a statistical test on the independence of the factors

```
class(sales_table) # returns "table"
typeof(sales_table) # returns "integer"
dim(sales_table) # returns 2 3

# performs a chi-squared test
summary(sales_table)
```

- Descriptive Statistics
 - Summary() function: mean, median, min, max
 - R functions include descriptive statistics

```
# to simplify the function calls, assign
x <- sales$sales_total</pre>
y <- sales$num of orders
cor(x,y)
                 # returns 0.7508015 (correlation)
cov(x,y)
                 # returns 345.2111 (covariance)
IQR(x)
                 # returns 215.21 (interquartile range)
mean(x)
                 # returns 249.4557 (mean)
median(x)
                 # returns 151.65 (median)
range(x)
                 # returns 30.02 7606.09 (min max)
sd(x)
                 # returns 319.0508 (std. dev.)
var(x)
                 # returns 101793.4 (variance)
```

 Linear relationship and distributions are more difficult to see from descriptive statistics

- Detect patterns and anomalies in the data
 - Through exploratory data analysis by visualization
 - Visualization gives a succinct, holistic view
 - Visualization is an important facet at the initial data exploration

Scatterplot of X and Y

```
# Figure 3-5
x \leftarrow rnorm(50)
y < -x + rnorm(50, mean=0, sd=0.5)
data <- as.data.frame(cbind(x, y))</pre>
summary(data)
library(ggplot2)
ggplot(data, aes(x=x, y=y)) +
  geom_point(size=2) +
  ggtitle("Scatterplot of X and Y") +
  theme(axis.text=element_text(size=12),
        axis.title = element_text(size=14),
        plot.title = element_text(size=20, face="bold"))
```

Visualization Before Analysis

#	1	#	2	#	3	#	4
х	у	х	у	х	у	х	у
4	4.26	4	3.10	4	5.39	8	5.25
5	5.68	5	4.74	5	5.73	8	5.56
6	7.24	6	6.13	6	6.08	8	5.76
7	4.82	7	7.26	7	6.42	8	6.58
8	6.95	8	8.14	8	6.77	8	6.89
9	8.81	9	8.77	9	7.11	8	7.04
10	8.04	10	9.14	10	7.46	8	7.71
11	8.33	11	9.26	11	7.81	8	7.91
12	10.84	12	9.13	12	8.15	8	8.47
13	7.58	13	8.74	13	12.74	8	8.84
14	9.96	14	8.10	14	8.84	19	12.50

Figure 3-6 Anscombe's quartet

 The four data sets have nearly identical statistical properties

TABLE 3-3 Statistical Properties of Anscombe's Quartet

Statistical Property	Value	
Mean of X	9	
Variance of <i>y</i>	11	
Mean of <i>y</i>	7.50 (to 2 decimal points)	
Variance of <i>y</i>	4.12 or 4.13 (to 2 decimal points)	
Correlations between <i>x</i> and <i>y</i>	0.816	
Linear regression line	y = 3.00 + 0.50x (to 2 decimal points)	

However, the reality is a different story...

- Dirty Data
 - Detect dirty data with visualization
 - Look for anomalies, verify with domain knowledge
 - Clean the data appropriately

```
hist(age, breaks=100,
main="Age Distribution of
Account Holders", xlab="Age",
ylab="Frequency", col="gray")
```


Any dirty data?

Portfolio Distribution, Years Since Origination

Visualizing a Single Variable

TABLE 3-4 Example Functions for Visualizing a Single Variable

Function	Purpose
plot(data)	Scatterplot where x is the index and y is the value; suitable for low-volume data
barplot(data)	Barplot with vertical or horizontal bars
dotchart(data)	Cleveland dot plot [12]
hist(data)	Histogram
plot(density(data))	Density plot (a continuous histogram)
stem(data)	Stem-and-leaf plot
rug(data)	Add a rug representation (1-d plot) of the data to an existing plot

Visualizing a Single Variable

Dotchart and Barplot
dotchart(mtcars\$mpg,labels=row.names(mtcars),cex=.7, main="Miles Per Gallon (MPG) of Car Models", xlab="MPG")
barplot(table(mtcars\$cyl), main="Distribution of Car Cylinder Counts", xlab="Number of Cylinders")

Visualizing a Single Variable (log transformation)


```
# plot the histogram
hist(income, breaks=500, xlab="Income", main="Histogram of Income")
# density plot
plot(density(log10(income), adjust=0.5), main="Distribution of Income (log10 scale)")
# add rug to the density plot
rug(log10(income))
```

Visualizing a Single Variable (unimodal or multimodal?)


```
# plot density plot of diamond prices
ggplot(niceDiamonds, aes(x=price, fill=cut)) + geom_density(alpha = .3, color=NA)
# plot density plot of the log10 of diamond prices
ggplot(niceDiamonds, aes(x=log10(price), fill=cut)) + geom_density(alpha = .3, color=NA)
```

Examining Multiple Variable


```
# 75 numbers between 0 and 10 of
uniform distribution
x \leftarrow runif(75, 0, 10)
x \leftarrow sort(x)
y \leftarrow 200 + x^3 - 10 * x^2 + x +
rnorm(75, 0, 20)
lr < -lm(y \sim x) # linear
regression
poly <- loess(y \sim x) # LOESS
fit <- predict(poly) # fit a</pre>
nonlinear line
plot(x,y)
# draw the fitted line for the
linear regression
points(x, lr$coefficients[1] +
lr$coefficients[2] * x,
       type = "1", col = 2)
# draw the fitted line with LOESS
points(x, fit, type = "l", col =
4)
```

Examining Multiple Variable


```
# sort by mpg
cars <-
mtcars[order(mtcars$mpg),]
# grouping variable must be a
factor
cars$cyl <- factor(cars$cyl)</pre>
cars$color[cars$cyl==4] <-</pre>
"red"
cars$color[cars$cvl==6] <-</pre>
"blue"
cars$color[cars$cyl==8] <-</pre>
"darkgreen"
dotchart(cars$mpg,
labels=row.names(cars),
cex=.7, groups= cars$cv1,
          main="Miles Per
Gallon (MPG) of Car
Models\nGrouped by Cylinder",
          xlab="Miles Per
Gallon", color=cars$color,
gcolor="black")
```

Examining Multiple Variable

Examining Multiple Variable (box-and-whisker plot)


```
## Box-and-Whisker Plot ##
DF <- read.csv("c:/data/zipIncome.csv", header=TRUE,</pre>
sep=",")
# Remove outliers
DF <- subset(DF, DF$MeanHouseholdIncome > 7000 &
DF$MeanHouseholdIncome < 200000)</pre>
summary(DF)
library(ggplot2)
# plot the jittered scatterplot w/ boxplot
# color-code points with zip codes
# the outlier.size=0 prevents the boxplot from
plotting the outlier
ggplot(data=DF, aes(x=as.factor(Zip1),
y=log10(MeanHouseholdIncome))) +
  geom point(aes(color=factor(Zip1)), alpha=0.2,
position="jitter") +
  geom boxplot(outlier.size=0, alpha=0.1) +
  guides(colour=FALSE) +
  ggtitle ("Mean Household Income by Zip Code")
# simple boxplot
boxplot(log10(MeanHouseholdIncome) ~ Zip1, data=DF)
title ("Mean Household Income by Zip Code")
```

Examining Multiple Variable (hexbinplot for large data)


```
plot(log10(MeanHouseholdIncome) ~ MeanEducation, data=DF)
# add a straight fitted line of the linear regression
abline(lm(log10(MeanHouseholdIncome) ~ MeanEducation, data=DF), col='red')
install.packages("hexbin")
library(hexbin)
# "g" adds the grid, "r" adds the regression line; sqrt transform on the count gives more dynamic range to the shading;
# inv provides the inverse transformation function of trans
hexbinplot(log10(MeanHouseholdIncome) ~ MeanEducation, data=DF, trans = sqrt, inv = function(x) x^2, type=c("g", "r"))
```

Examining Multiple Variable (scatterplot matrix)

Fisher's Iris Dataset


```
# define the colors
colors <- c("red", "green",</pre>
"blue")
# draw the plot matrix
pairs(iris[1:4], main = "Fisher's
Iris Dataset",
      pch = 21, bg =
colors[unclass(iris$Species)] )
# set graphical parameter to clip
plotting to the figure region
par(xpd = TRUE)
# add legend
legend(0.2, 0.02, horiz = TRUE,
as.vector(unique(iris$Species)),
       fill = colors, bty = "n")
```

Data Exploration Versus Presentation

Presenting the same data to different audience

- Statistics is crucial because it may exist throughout the entire Data Analytics Lifecycle
 - Initial data exploration and data preparation
 - Model planning and model building
 - Best input variables, predictability
 - Evaluation of the final models
 - Accuracy, better than guess or another one?
 - Assessment of the new models when deployed
 - Sound prediction? Have desired effect?

- Hypothesis Testing
 - Form an assertion and test it with data
 - Common assumption (there is no statistically significant difference)
 - Null hypothesis (H_0) vs Alternative hypothesis (H_A)
- Example: identify the effect of drug A compared to drug B on patients
 - What are the H_0 and H_A ?
- A hypothesis is formed before validation
 - It can define expectations.

- Hypothesis Testing
 - Clearly state Null and Alternative hypotheses
 - Either reject the null hypothesis in favour of the alternative or not reject the null hypothesis

Application	Null Hypothesis	Alternative Hypothesis
Accuracy Forecast	Model X <i>does not predict</i> better than the existing model.	Model X <i>predicts</i> better than the existing model.
Recommendation Engine	Algorithm Y <i>does not produce</i> better recommendations than the current algorithm being used.	Algorithm Y <i>produces</i> better recommendations than the current algorithm being used.
Regression Modeling	This variable <i>does not affect</i> the outcome because its coefficient is <i>zero</i> .	This variable <i>affects</i> outcome because its coefficient is not <i>zero</i> .

- Difference of Means (A common hypothesis test)
 - Whether two populations are different?
 - Compare their means based on sampled data

- What are H_0 and H_A ?

- Difference of Means (A common hypothesis test)
 - Assume we have two populations, one with mean=-3 and the other with mean=3
 - By comparing the means can we say that the difference between the two populations is significant?
 - Answer depends on variance.

- Student's t-test
 - Assumes that distributions of the two populations have equal but unknown variance.

Noise

Assumes that each population is normally distributed.

$$T = \frac{\overline{X}_{1} - \overline{X}_{2}}{S_{p} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}}$$

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$

T (the *t-statistic*) follows a <u>t-distribution</u> with (n₁+n₂-2) degree of freedom

• Student's t-test

 The further T is from zero the more significant the difference between the populations. If T is large then one would reject the null hypothesis

$$T = \frac{X_1 - X_2}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$

- Student's t-test
 - Significance level of the test (α): the probability of rejecting the null hypothesis, when the null hypothesis is actually TRUE
 - It is common to use $\alpha = 0.05$
 - Find T* such that $P(|T| ≥ T^*) = α$
 - Reject H_0 if $|T| ≥ T^*$

$$T = \frac{\overline{X}_1 - \overline{X}_2}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$

• Student's *t*-test (an example)

```
# generate random observations from the two populations
x <- rnorm(10, mean=100, sd=5) # normal distribution centered at 100
y <- rnorm(20, mean=105, sd=5) # normal distribution centered at 105
t.test(x, y, var.equal=TRUE) # run the Student's t-test
Two Sample t-test
data: x and y
t = -1.7828, df = 28, p-value = 0.08547
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
  -6.1611557 0.4271893
sample estimates:
 mean of x mean of y
102.2136 105.0806
```

• Student's *t*-test (an example)

```
# obtain t value for a two-sided test at a 0.05 significance level
qt(p=0.05/2, df=28, lower.tail= FALSE)
2.048407
```

- Shall we reject or accept the null hypothesis?
- What does the "two-sided test" mean?

- Student's *t*-test (an example)
 - What does the "p-value" mean?

```
t = -1.7828, df = 28, p-value = 0.08547
```

- The sum of $P(T \le -t)$ and $P(T \ge t)$
- p-value offers the probability of observing |T| ≥ t
 given the null hypothesis is TRUE

- Student's t-test (an example)
 - What is the "95 percent confidence interval"?

```
95 percent confidence interval:
-6.1611557 0.4271893
```

- A confidence level is an interval estimate of a population parameter based on sample data
- The above "95 percent confidence interval" straddles the TRUE value of the difference of the population means 95% of the time

• Welch's t-test

- Shall be used when the equal population variance assumption is NOT justified
- It uses the sample variance for each population instead of the pooled sample variance
- Still assumes two populations are normal with the same mean

$$T_{welch} = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$$

Welch's t-test

```
t.test(x, y, var.equal=FALSE) # run the Welch's t-test
Welch Two Sample t-test
data: x and y
t = -1.6596, df = 15.118, p-value = 0.1176
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
  -6.546629 0.812663
sample estimates:
 mean of x mean of y
102.2136 105.0806
```

- Wilcoxon Rank-Sum Test
 - What if the two populations are not normal?
- Parametric test
 - Makes assumptions about the population distributions from which the samples are drawn
- Nonparametric test
 - Shall be used if the populations cannot be assumed (or transformed) to be normal

- Wilcoxon Rank-Sum Test
 - A nonparametric test to check whether two populations are identically distributed
 - It uses "ranks" instead of numerical outcomes to avoid specific assumption about the distribution
- How to conduct the test
 - Rank two samples as if they are from one group
 - Sum assigned ranks for one population's sample
 - Determine the significance of the rank-sums

Wilcoxon Rank-Sum Test

```
wilcox.test(x, y, conf.int = TRUE)
Wilcoxon rank sum test
data: x and y
W = 55, p-value = 0.04903
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
  -6.2596774 -0.1240618
sample estimates:
  difference in location
-3.417658
```

p-value: the probability of the rank-sums of this magnitude being observed assuming that the population distributions are identical

- Type I and Type II Errors
 - Type I error: the rejection of the null hypothesis when the null hypothesis is TRUE
 - The probability of type I error is denoted by α
 - Type II error: the acceptance of the null hypothesis when the null hypothesis is FALSE
 - The probability of type II error is denoted by β
- Power (statistical power)
 - The probability of correctly rejecting the null hypothesis $(1-\beta)$

- ANOVA (Analysis of Variance)
 - What if there are more than two populations?
 - Multiple t-test may not perform well then
- A generalization of the hypothesis testing
 - ANOVA tests if any of the population means differ from the other population means
 - Each population is assumed to be normal and have the same variance

ANOVA (Analysis of Variance)

$$H_0: \mu_1 = \mu_2 = \ldots = \mu_n$$

 $\mathbf{H}_{\mathbf{A}}: \mu_i \neq \mu_j$ for at least one pair of i, j

- Compute F-test statistic
 - Between-groups mean sum of squares
 - Within-groups mean sum of squares

$$S_B^2 = \frac{1}{k-1} \sum_{i=1}^k n_i \cdot (\overline{x}_i - \overline{x}_0)^2 \qquad S_W^2 = \frac{1}{n-k} \sum_{i=1}^k \sum_{j=1}^{n_i} (x_{ij} - \overline{x}_i)^2$$

ANOVA (Analysis of Variance)

$$F = \frac{S_B^2}{S_W^2}$$

$$S_B^2 = \frac{1}{k-1} \sum_{i=1}^k n_i \cdot (\overline{x}_i - \overline{x}_0)^2 \qquad S_W^2 = \frac{1}{n-k} \sum_{i=1}^k \sum_{j=1}^{n_i} (x_{ij} - \overline{x}_i)^2$$

- ANOVA (Analysis of Variance)
 - Measures how different the means are relative to the variability within each group
 - The larger the F-test statistic, the greater the likelihood that the difference of means are due to something other than chance alone
 - The F-test statistic follows an F-distribution

$$F = \frac{S_B^2}{S_W^2}$$

ANOVA (Analysis of Variance)

Shall we accept or reject the null hypothesis?

- ANOVA (Analysis of Variance)
 - Additional tests for each pair of groups
 - Tukey's Honest Significant Difference (HSD)

