Espaces vectoriels

 $\alpha 2 - MP^*$

1 Espaces vectoriels

1.1 Sommes et sommes directes finies

 ${\cal E}$ est un espace vectoriel

- $f \in \mathcal{L}(E)$, $E = K \oplus \ker f$; alors $f|_K$ est un isomorphisme de K sur $\mathrm{Im}(f)$
- Soit E de dimension finie, $f \in \mathcal{L}(E)$. Si $\exists F/E = \ker f \oplus F$ et $f(F) \subset F$, alors $F = \operatorname{Im} f$.
- Projecteurs: soit E un ev, $p \in \mathcal{L}(E)$,
 - 1. Si $p \circ p = p$ alors $E = \operatorname{Im} p \oplus \ker p$ et $\operatorname{Im} p = \ker(p Id)$; p est le projecteur sur $\operatorname{Im} p$ parallèllement à $\ker p$.
 - 2. Si $E = F \oplus G$, alors $p: x = x_G + x_F \longrightarrow x_F$ avec $x_F \in F$ et $x_G \in G$ vérifie $p \circ p = p$, Im p = F et ker p = G. C'est le projecteur sur F parallèllement à G.
- Symétries : soit $E = F \oplus G$ un ev sur \mathbb{K} . Soit $s \in \mathcal{L}(E)$ telle que $s : x = x_F x_G$. Si carac(\mathbb{K}) = 2 alors s = Id. Sinon, $s \in \mathcal{L}(E)$ est une symétrie ssi (def) $s \circ s = Id$. Dans ce cas $E = \ker(s Id) \oplus \ker(s + Id)$.
- Notons $S_n(\mathbb{K})$ l'ensemble des matrices symétriques $n \times n$ à coefficients dans \mathbb{K} , $A_n(\mathbb{K})$ l'ensemble des matrices antisymétriques. Alors $\mathfrak{M}_n(\mathbb{K}) = S_n(\mathbb{K}) \oplus A_n(\mathbb{K})$.

1.2 Sommes quelconques

Soit E un ev, $(F_i)_{i\in I}$ une famille de sev. $\sum_{i\in I}F_i$ est l'ensemble des vecteurs de la forme $x_{i_1}+\ldots+x_{i_k}$ où $k\in\mathbb{N}$ et $\forall j,i_j\in I$ $(1\leqslant j\leqslant k)$. $\sum F_i$ est un sev de E. $\sum_{i\in I}F_i=\operatorname{Vect}(\bigcup_{i\in I}F_i)$.La somme est directe si : $\forall k\in\mathbb{N}, \forall i_1,\ldots,i_k\ 2\ a\ 2\neq (\sum x_{i_j}=0)\Longrightarrow (\forall j,x_{i_k}=0)$.

1.3 Homothéties

- Soit E un ev, $f \in \mathcal{L}(E)$. f est une homothétie ssi $f \in \text{Vect}(Id)$ ssi $\forall x \in E, (x, f(x))$ est liée.
- Soit E de dimension finie, $f \in \mathcal{L}(E)$. Alors :
 - 1. Si $\forall g \in \mathcal{L}(E), f \circ g = g \circ f \text{ alors } f \in \text{Vect}(Id)$
 - 2. Si $\forall g \in \mathrm{GL}(E), f \circ g = g \circ f$ alors $f \in \mathrm{Vect}(Id)$
 - 3. Si de plus E est euclidien, alors : Si $\forall g \in \mathcal{O}(E), f \circ g = g \circ f$ alors $f \in \text{Vect}(Id)$

1.4 Hyperplans

- Soit E un ev, F sev de E est un hyperplan si $\exists D = \text{Vect}(x_0)/E = F \oplus D$. Si de plus E est de dimension finie, F est un hyperplan ssi dim $E = \dim F + 1$.
- F est un hyperplan de E ssi $\exists \varphi \in \mathcal{L}(E, \mathbb{K}), \varphi \neq 0$ telle que $F = \ker \varphi$.
- Soit E un ev, H hyperplan de E, $\varphi \in \mathcal{L}(E, \mathbb{K})$ telle que $H = \ker \varphi$. Soit $H^{\circ} \stackrel{def}{=} \{ \psi \in \mathcal{L}(E, \mathbb{K})/H = \ker \psi \}$. Alors $H^{\circ} = \operatorname{Vect}(\varphi)$.
- Codimension: on dit que F sev de E est de codimension finie s'il possède un supplémentaire G de dimension finie. Dans ce cas on pose $\operatorname{codim} F = \dim G$

1.5 Résultats propres à la dimension finie

- Formule de Grassman: $\dim(F+G) = \dim F + \dim G \dim(F \cap G)$.
- $\dim E = \dim F + \operatorname{codim} F$.
- Formule du rang : $\forall f \in \mathcal{L}(E)$, dim $E = \operatorname{rg} f + \dim \ker f$.
- $\dim \mathcal{L}(E, F) = \dim E \times \dim F$
- $\dim(E \times F) = \dim E + \dim F$

2 Dualité

- 1. Si E est un \mathbb{K} ev, on note $E^* = \mathcal{L}(E, \mathbb{K})$ son dual.
- 2. On a une forme bilinéaire $E^* \times E \longrightarrow \mathbb{K}$, notée aussi $(f \mid x)$. $(f, x) \longmapsto f(x)$

2.1 Cas où E est de dimension finie

- $\dim E^* = \dim E$
- Si $\mathcal{B} = (e_1, \dots, e_n)$ est une base de E, on peut lui associer une base $\mathcal{B}^* = (\varepsilon_1, \dots, \varepsilon_n)$ de E^* (base duale de \mathcal{B}) telle que pour tout $x = \sum x_i e_i$, on a $\varepsilon_i(x) = x_i \cdot \varepsilon_i$ est la i-ième forme coordonnée sur \mathcal{B} .
- Soient \mathcal{B}, \mathcal{C} deux bases de $E, P = \mathcal{M}_{\mathcal{B}, \mathcal{C}}$ la matrice de passage entre \mathcal{B} et \mathcal{C} . Alors ${}^tP = \mathcal{M}_{\mathcal{C}^*\mathcal{B}^*}$.

2.2 Base antéduale

- Toute base \mathcal{C} de E^* est la duale d'une unique base \mathcal{B} de E (son antéduale).
- E un ev de dimension n finie. Soit $\mathcal{F} = (f_1, \dots, f_r)$ une famille de r formes linéaires. \mathcal{F} engendre E^* ssi $\bigcap_{i=1}^r \ker f_i = \{0\}$.

2.3 Orthogonalité entre E et E^*

- E un ev. Si $\mathcal{P} \subset E$, on note $\mathcal{P}^{\circ} = \{ f \in E^* / \forall x \in \mathcal{P}, f(x) = 0 \}$.
 - 1. \mathcal{P}° est un sev de E^*
 - 2. $(\operatorname{Vect} \mathcal{P})^{\circ} = \mathcal{P}^{\circ}$
 - 3. Si $\mathcal{P} \subset \mathcal{Q}$ alors $\mathcal{Q}^{\circ} \subset \mathcal{P}^{\circ}$
- Si E est de dimension finie, F sev de E, alors dim $F^{\circ} = \operatorname{codim} F$
- Soit E un ev, si $\mathcal{P} \subset E^*$, on note $\mathcal{P}^{\circ} = \{x \in E / \forall f \in \mathcal{P}, f(x) = 0\}$.
 - 1. \mathcal{P}° est un sev de E
 - 2. $(\operatorname{Vect} \mathcal{P})^{\circ} = \mathcal{P}^{\circ}$
 - 3. Si $\mathcal{P} \subset \mathcal{Q} \subset E^*$ alors $\mathcal{Q}^{\circ} \subset \mathcal{P}^{\circ}$
 - 4. Si E est de dimension finie, F sev de E^* , alors dim $F^{\circ} = \operatorname{codim} F$
- E de dimension finie, F sev de E, alors $F^{\circ \circ} = F$ (même énoncé si F sev de E^*)

3 Théorème de décomposition des noyaux

Notations: si E est un ev, $\mathcal{L}(E)$ est une \mathbb{K} – algèbre. Si $P = \sum_{i=0}^{m} a_i X^i \in \mathbb{K}[X]$ et $u \in \mathcal{L}(E)$, alors on pose $P(u) = \sum_{i=0}^{m} a_i u^i$ en convenant $u^0 = Id$. (P(u))(x) est noté P(u)(x).

3.1 Premières propriétés

- E ev, $u \in \mathcal{L}(E)$, $(P,Q) \in (\mathbb{K}[X])^2$.
 - 1. Si $P \mid Q$ alors $\ker P(u) \subset \ker Q(u)$ et $\operatorname{Im} P(u) \supset \operatorname{Im} Q(u)$
 - 2. Si $D = P \wedge Q$, $\ker P(u) \cap \ker Q(u) = \ker D(u)$.
- Soit $P_1, \dots, P_m \in \mathbb{K}[X]$ deux à deux premiers entre eux, alors : $\sum_{i=1}^m \ker P_i(u)$ est directe.

3.2 Théorème de décomposition des noyaux

E ev, $u \in \mathcal{L}(E), P_1, \dots, P_m \in \mathbb{K}[X]$ 2 à 2 premiers entre eux ; soit $P = \prod_{i=1}^m P_i$. Alors

$$\ker P(u) = \bigoplus_{i=1}^{m} \ker P_i(u).$$

3