EC ENGR 113 (Digital Signal Processing)

October 3, 2022

1 9.26 1m

syllabus

1.1 ece102: signals & systems

- signals were modeled as functions of time
 - -x(t): $t ∈ \mathbb{R}$ (continuous time)
 - $-x:\mathbb{R}\to\mathbb{R},\mathbb{C}$
 - sampling $t = nT_s$
 - * T_s = sampling interval
 - * n = integer
 - * t x plot $\xrightarrow{\text{sampling}} n x$ plot
 - * x(t) bandlimited ($|X(f)| \le f_{max}$) then if sampling rate is $f_s > 2f_{max}$ (nyquist rate) then it is possible to recover the original signal
 - * sampling at lower rate then there will be aliasing
- sytems

$$-x(t) \to \boxed{S} \to y(t)$$
$$-x[n] \to \boxed{S} \to y[n]$$

1.2 three ways tor write out signals

- mathematical expression
 - $-x[n] = 3\cos(2n), n \in \mathbb{Z}$
- tabular list of significant samples

$$-x[n] = \{-1, 8, 0, 5, -2\}, n \in \mathbb{Z}$$

- * underspecified signal: loss of indices
- * typically put an arrow underneath the 0 index
- * convention: any sample not listed has 0 amplitude
- plotting

1.3 signal operations

- arithmetic
 - g[n] = x[n] + A
 - -g[n] = Bx[n]
 - signal addition: $g[n] = x_1[n] + x_2[n]$
 - signal multiplication: $g[n] = x_1[n] \cdot x_2[n]$
- time shifting
 - ece102
 - * $x(t) \rightarrow x(t \tau)$ delays signal by shifting it right
 - * $x(t) \rightarrow x(t + \tau)$ advances signal by shifting left
 - ece113

*
$$g[n] = x[n-k], k > 0$$

- time scaling
 - ece102
 - * x(at), a > 1: contraction
 - * x(at), 0 < a < 1: dilation
 - ece113
 - * g[n] = x[2n] (downsampling)
 - * $g[n] = x \left[\frac{1}{2}n\right]$ (upsampling)
 - * g[n] = x[-n] (time reversal)

1.4 basic signals

- $\delta(t)$ from ece102 \rightarrow hard concept to grasp
- $\delta[t]$ from ece113 \rightarrow :)

$$-\delta[n] = \begin{cases} 1 & n=0\\ 0 & n \neq 0 \end{cases}$$

- $\delta[n]$ does not have complexities of $\delta(t)$
- sampling property of δ

$$-x[n] * \delta[n] = x[0] \cdot \delta[0] = x[0]$$

$$-x[n] * \delta[n-k] = x[k] \cdot \delta[0] = x[k]$$

2 9.28 1w

2.1 sampling properties hold in discrete domain as well

•
$$\sum_{n=-\infty}^{\infty} x[n] \cdot \delta[n-k] = \sum_{n} x[k] \delta[n-k] = x[k] \sum_{n} \delta[n-k] = x[k]$$

2.2 systems

• unit step system
$$u[n] = \begin{cases} 1 & n \ge 0 \\ 0 & n < 0 \end{cases}$$

$$- u[n] - u[n-1] = \delta[n]$$

– $\delta[n]$ is the first derivative of u[n]

- ece102:
$$\delta(t) = \frac{du(t)}{dt}$$

$$-u[n] = \sum_{k=0}^{\infty} \delta[n-k]$$

• unit ramp signal
$$r[t] = \begin{cases} n & n \ge 0 \\ 0 & n < 0 \end{cases}$$

$$-102: r(t) = tu(t)$$

$$-r[n] = n \cdot u[n] = \sum_{k=1}^{\infty} u[n-k]$$

2.3 how wan se express x[n] using basic signals?

• generic signal representation using the "canonical basis" of $\{\delta[n-k] \forall k\}$

- $x[n] = \{1, 2, (0), 1, 1\}$
- $x[n] = \delta[n+2] + 2\delta[n+1] + \delta[n-1] \delta[n-2]$

2.4 sinusoidal signals

- $x(t) = A\cos(\omega_0 t + B), \, \omega_0 = 2\pi f_0$
- $x[n] = A\cos(\Omega_0 n + \theta)$, $\Omega_0 = 2\pi F_0 \in [-\pi, \pi)$ where F_0 is the normalized frequency
- $x[n]A\cos(2\pi f_0 nT_0 + \theta) = A\cos\left(2\pi \frac{f_0}{f_s}n + \theta\right)$
- $F_n := \frac{f_0}{f_s} < 1$

2.5 complex exponential

• $x[n] = Ae^{j(2\pi F_0 n + \theta)}$

2.6 additional signal properties

- 1. duration of signal
- 2. real or complex
- 3. periodicity: a signal is periodic if $\exists N \in \mathbb{Z} : x[n+N] = x[n] \ \forall n$
- x[n] is also periodic with 2N, 3N, etc.
- $x[n+kN] = x[n] \forall k, n$
- fundamental period: smallestpositive N such that x[n + N] = x[n]
- e.g. $x[n] = \cos(2\pi F_0 n) \rightarrow \exists k \in \mathbb{Z} : 2\pi F_0 N = 2\pi k \rightarrow F_0 N \in \mathbb{Z}, N = \frac{k}{F_0}$
- is $x[n] = \cos(0.2n)$ periodic?
 - no
 - $-\ 2\pi F_0 = 0.2 \longrightarrow \tfrac{k}{F_0} = 10k\pi \notin \mathbb{Z}$