

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS14060041103

FCC REPORT (WIFI)

Applicant: Canales Electronicos De Ventas SAS

Address of Applicant: Cra 51 # 9C Sur-85 Bodega 403 Medellin, Colombia

Equipment Under Test (EUT)

Product Name: Mobile Phone

Model No.: Kingo T 4.5

FCC ID: 2ACHQ-KINGOT45

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 05 Jun., 2014

Date of Test: 06 Jun., to 18 Jun., 2014

Date of report issued: 19 Jun., 2014

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	19 Jun., 2014	Original

Prepared by: Date: 19 Jun., 2014

Report Clerk

Reviewed by: Date: 19 Jun., 2014

Project Engineer

3 Contents

			Page
1	CO	/ER PAGE	1
2	VER	SION	2
3		ITENTS	
		T SUMMARY	
4			
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND MODE	7
	5.4	LABORATORY FACILITY	8
	5.5	LABORATORY LOCATION	
	5.6	TEST INSTRUMENTS LIST	9
6	TES	T RESULTS AND MEASUREMENT DATA	10
	6.1	ANTENNA REQUIREMENT:	10
	6.2	CONDUCTED EMISSION	11
	6.3	CONDUCTED OUTPUT POWER	
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND EDGE	
	6.6.		
	6.6.2 6.7	2 Radiated Emission Method Spurious Emission	
	6.7.		
	6.7.2		
7	TES	T SETUP PHOTO	
-			
8	EUT	CONSTRUCTIONAL DETAILS	

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Canales Electronicos De Ventas SAS
Address of Applicant:	Cra 51 # 9C Sur-85 Bodega 403 Medellin, Colombia
Manufacturer :	Canales Electronicos De Ventas SAS
Address of Manufacturer:	Cra 51 # 9C Sur-85 Bodega 403 Medellin, Colombia

5.2 General Description of E.U.T.

Product Name:	Mobile Phone
Model No.:	Kingo T 4.5
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20) 7 for 802.11n(H40)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	2.3dBi
AC adapter:	Input: AC 100-240V 50/60Hz 0.2A Output: DC 5V, 500mA
Power supply:	Rechargeable Li-ion Battery DC3.7V-1500mAh

Operation Frequency each of channel For 802.11b/g/n(H20)							
Channel Frequency Channel Frequency Channel Frequency Channel Frequency							
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Operation Frequency each of channel For 802.11n(H40)									
Channel	Channel Frequency Channel Frequency Channel Frequency Channel Frequency								
		4	2427MHz	7	2442MHz				
		5	2432MHz	8	2447MHz				
3	2422MHz	6	2437MHz	9	2452MHz				

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

802.11n (H40)

Channel	Frequency
The lowest channel	2422MHz
The middle channel	2437MHz
The Highest channel	2452MHz

5.3 Test environment and mode

Operating Environment:			
Temperature:	24.0 °C		
Humidity:	54 % RH		
Atmospheric Pressure:	1010 mbar		
Test mode:			
Operation mode	Keep the EUT in continuous transmitting with modulation		

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate		
802.11b	1Mbps		
802.11g	6Mbps		
802.11n(H20)	6.5Mbps		
802.11n(H40)	13.5Mbps		

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20) and 13.5 Mbps for 802.11n(H40). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

5.6 Test Instruments list

Radia	ated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	July 09 2013	July 08 2014
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	Jun., 25 2013	Jun., 24 2014
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	Jun., 25 2013	Jun., 24 2014
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
5	Coaxial Cable	CCIS	N/A	CCIS0016	Apr. 01 2014	Mar. 31 2015
6	Coaxial Cable	CCIS	N/A	CCIS0017	Apr. 01 2014	Mar. 31 2015
7	Coaxial cable	CCIS	N/A	CCIS0018	Apr. 01 2014	Mar. 31 2015
8	Coaxial Cable	CCIS	N/A	CCIS0019	Apr. 01 2014	Mar. 31 2015
9	Coaxial Cable	CCIS	N/A	CCIS0087	Apr. 01 2014	Mar. 31 2015
10	Amplifier(10kHz- 1.3GHz)	HP	8447D	CCIS0003	Apr. 01 2014	Mar. 31 2015
11	Amplifier(1GHz- 18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	July 09 2013	July 08 2014
12	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	Apr. 01 2014	Mar. 31 2015
13	Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 30 2014	Mar. 29 2015
14	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A
15	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A
16	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	Jun., 25 2013	Jun., 24 2014
17	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	Apr 01 2014	Mar. 31 2015
18	Loop antenna	Laplace instrument	RF300	EMC0701	Aug. 12 2013	Aug. 11 2014
19	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	Jun., 25 2013	Jun., 24 2014
20	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	Jun., 25 2013	Jun., 24 2014

Cond	Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	July 09 2013	July 08 2014	
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	Jun., 25 2013	Jun., 24 2014	
3	LISN	CHASE	MN2050D	CCIS0074	Apr 01 2014	Mar. 31 2015	
4	Coaxial Cable	CCIS	N/A	CCIS0086	Apr. 01 2014	Mar. 31 2015	
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 2.3dBi.

6.2 Conducted Emission

Test Requirement: FCC Part15 C Section 15.207 Test Method: ANSI C63.4: 2003 Test Frequency Range: 150 kHz to 30 MHz Class / Severity: Class B Receiver setup: RBW=9 kHz, VBW=30 kHz Limit: Frequency range (MHz) Limit (dBuV) Quasi-peak Average 0.15-0.5 66 to 56° 56 to 46° 0.5-5 56 46 5-30 60 50 * Decreases with the logarithm of the frequency. Test procedure 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a lise impedance stabilization network (d.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. Test setup: Reference Plane Reference Plane Reference Plane Test lnstruments: Refer to section 5.6 for details Test mode: Refer to section 5.3 for details Test results: Passed							
Test Frequency Range: Class / Severity: Class B Receiver setup: RBW=9 kHz, VBW=30 kHz Limit: Frequency range (MHz) Quasi-peak Average 0.15-0.5 66 to 56° 56 to 46° 0.5-5 56 46 050 50° Decreases with the logarithm of the frequency. 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. Test setup: Reference Plane LISN Reference Plane LISN Reference Plane LISN Reference Plane Test Instruments: Refer to section 5.6 for details Refer to section 5.3 for details	Test Requirement:	FCC Part15 C Section 15.207					
Class / Severity: Receiver setup: RBW=9 kHz, VBW=30 kHz Limit: Frequency range (MHz) Quasi-peak Average 0.15-0.5 66 to 56° 56 to 46° 0.5-5 56 46 5-30 60 50 * Decreases with the logarithm of the frequency. 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. Test setup: Reference Plane LISN Reference Plane LISN AUX EUT: Equipment Under Test LISN Line impedence Stabilization Network Test table height-0 im the logist-0 im tender to section 5.3 for details Test mode: Refer to section 5.3 for details	Test Method:	ANSI C63.4: 2003					
Receiver setup: RBW=9 kHz, VBW=30 kHz	Test Frequency Range:	150 kHz to 30 MHz	150 kHz to 30 MHz				
Limit: Frequency range (MHz)	Class / Severity:	Class B					
Limit: Frequency range (MHz)	Receiver setup:	RBW=9 kHz, VBW=30 kHz					
Test procedure 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance or the measuring equipment. 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. Test setup: Reference Plane Reference Plane Reference Plane Test table/Insulation plane Receiver Test table/Insulation Network Test table height=0 time. Test node: Refer to section 5.6 for details Refer to section 5.3 for details	•	Francisco de (NALIE)	Limit (c	dBuV)			
Test procedure 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. Test setup: Reference Plane Comparison C		Frequency range (MHz)	Average				
Test procedure Test procedure 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. Test setup: Reference Plane LISN AUX Equipment Under Test LISN Line impedence Stabilization Network Test Instruments: Refer to section 5.6 for details Test mode: Refer to section 5.3 for details							
* Decreases with the logarithm of the frequency. 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. Test setup: Reference Plane Reference Plane Reference Plane Reference Plane LISN AUX E.U.T. Equipment Under Test LISN Line impedence Stabilization Network Test lable height=0 8m Test Instruments: Refer to section 5.6 for details Refer to section 5.3 for details							
Test procedure 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. Test setup: Reference Plane Reference Plane Remark E.U.T. Equipment Under Test LISN Line impedance Stabilization Network Test table height=0 &m Test Instruments: Refer to section 5.6 for details Refer to section 5.3 for details				50			
LISN 40cm 80cm Filter AC power Equipment E.U.T Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m Test Instruments: Refer to section 5.6 for details Test mode: Refer to section 5.3 for details		 * Decreases with the logarithm of the frequency. The E.U.T and simulators are connected to the main power the a line impedance stabilization network (L.I.S.N.), which provides 50ohm/50uH coupling impedance for the measuring equipmer The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relating positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted 					
Test mode: Refer to section 5.3 for details	Test setup.	AUX Equipment Test table/Insulation pla Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization	U.T EMI Receiver	er — AC power			
	Test Instruments:	Refer to section 5.6 for details	3				
Test results: Passed	Test mode:	Refer to section 5.3 for details	.				
	Test results:	Passed					

Measurement Data

Neutral:

Trace: 73

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL : 411RF Condition

Job. no

EUT : Mobile Phone Model : Kingo T 4.5
Test Mode : Wifi mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Carey Remark

•	9239 53	5.25 English 1.45	2002		DIST BASE	200	
Even							Popoule
rreq	rever	ractor	LOSS	rever	Line	LIMIC	Kemark
MHz	dBu∀	dB	dB	dBu∀	dBu∀	dB	
0.175	19.94	0.25	10.77	30.96	54.72	-23.76	Average
0.180	31.82	0.25	10.77	42.84	64.50	-21.66	QP
0.235	27.31	0.25	10.75	38.31	62.26	-23.95	QP
0.235	19.94	0.25	10.75	30.94	52.26	-21.32	Average
0.300	25.63	0.26	10.74	36.63			
0.356	15.90	0.25	10.73	26.88	48.83	-21.95	Average
0.410	19.18	0.25	10.72	30.15	47.64	-17.49	Average
0.419	26.18	0.26	10.73	37.17	57.46	-20.29	QP
0.524	28.89	0.27	10.76	39.92	56.00	-16.08	QP
0.529	23.53	0.27	10.76	34.56	46.00	-11.44	Average
0.694	24.88	0.18	10.77	35.83	56.00	-20.17	QP
0.705	17.40	0.18	10.77	28.35	46.00	-17.65	Average
	0. 175 0. 180 0. 235 0. 235 0. 300 0. 356 0. 410 0. 419 0. 524 0. 529 0. 694	MHz dBuV 0.175 19.94 0.180 31.82 0.235 27.31 0.235 19.94 0.300 25.63 0.356 15.90 0.410 19.18 0.419 26.18 0.524 28.89 0.529 23.53 0.694 24.88	MHz dBuV dB 0.175 19.94 0.25 0.180 31.82 0.25 0.235 27.31 0.25 0.235 19.94 0.25 0.300 25.63 0.26 0.356 15.90 0.25 0.410 19.18 0.25 0.410 19.18 0.25 0.419 26.18 0.26 0.524 28.89 0.27 0.529 23.53 0.27 0.694 24.88 0.18	MHz dBuV dB dB 0.175 19.94 0.25 10.77 0.180 31.82 0.25 10.77 0.235 27.31 0.25 10.75 0.235 19.94 0.25 10.75 0.300 25.63 0.26 10.74 0.356 15.90 0.25 10.73 0.410 19.18 0.25 10.73 0.419 26.18 0.26 10.73 0.524 28.89 0.27 10.76 0.529 23.53 0.27 10.76 0.694 24.88 0.18 10.77	MHz dBuV dB dB dB dBuV 0.175 19.94 0.25 10.77 30.96 0.180 31.82 0.25 10.77 42.84 0.235 27.31 0.25 10.75 38.31 0.235 19.94 0.25 10.75 30.94 0.300 25.63 0.26 10.74 36.63 0.356 15.90 0.25 10.73 26.88 0.410 19.18 0.25 10.73 30.15 0.419 26.18 0.26 10.73 37.17 0.524 28.89 0.27 10.76 39.92 0.529 23.53 0.27 10.76 34.56 0.694 24.88 0.18 10.77 35.83	MHz dBuV dB dB dBuV dBuV 0.175 19.94 0.25 10.77 30.96 54.72 0.180 31.82 0.25 10.77 42.84 64.50 0.235 27.31 0.25 10.75 38.31 62.26 0.235 19.94 0.25 10.75 30.94 52.26 0.300 25.63 0.26 10.74 36.63 60.24 0.356 15.90 0.25 10.73 26.88 48.83 0.410 19.18 0.25 10.72 30.15 47.64 0.419 26.18 0.26 10.73 37.17 57.46 0.524 28.89 0.27 10.76 34.56 46.00 0.529 23.53 0.27 10.76 34.56 46.00 0.694 24.88 0.18 10.77 35.83 56.00	MHz dBuV dB dB dBuV dBuV dB dB

Line:

Site : CCIS Shielding Room Condition : FCC PART15 B QP LISN LINE

Job. no : 411RF EUT : Mobile Phone Model : Kingo T 4.5 Test Mode : Wifi mode Power Rating : AC 120V/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Carey

Remark

omarr.	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark	
0.000	MHz	dBu∀	dB	dB	dBu∀	dBu∀	dB		-
1	0.180	31.65	0.28	10.77	42.70	64.50	-21.80	QP	
2	0.180	15.88	0.28	10.77	26.93	54.50	-27.57	Average	
2	0.240	27.79	0.27	10.75	38.81		-23.27		
4	0.240	12.38	0.27	10.75	23.40	52.08	-28.68	Average	
4 5	0.296	25.79	0.26	10.74	36.79	60.37	-23.58	QP	
6	0.296	12.87	0.26	10.74	23.87	50.37	-26.50	Average	
7 8 9	0.419	13.14	0.28	10.73	24.15	47.46	-23.31	Average	
8	0.481	26.00	0.29	10.75	37.04	56.32	-19.28	QP	
9	0.529	27.41	0.28	10.76	38.45	56.00	-17.55	QP	
10	0.529	15.48	0.28	10.76	26.52	46.00	-19.48	Average	
11	0.771	11.13	0.23	10.80	22.16	46.00	-23.84	Average	
12	0.779	24.28	0.23	10.80	35.31	56.00	-20.69	QP	

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)		
Test Method:	ANSI C63.4:2003 and KDB558074		
Limit:	30dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		
Remark:	Test method refer to KDB558074 (DTS Measure Guidance) section 8.2, option 1.		

Measurement Data

T	Max	kimum Conduct	1: ://ID)	5 "		
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBm)	Result
Lowest	18.32	18.60	17.90	16.62		
Middle	18.56	18.00	17.07	16.34	30.00	Pass
Highest	18.35	17.92	17.31	16.13		

Test plot as follows:

Highest channel

Highest channel

Highest channel

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)		
Test Method:	ANSI C63.4:2003 and KDB558074		
Limit:	>500kHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

		6dB Emission		_		
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result
Lowest	9.78	16.11	17.31	36.87		
Middle	9.94	16.51	17.47	36.87	>500	Pass
Highest	9.62	16.19	17.47	36.87		

T O		99% Occupy		5 "		
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result
Lowest	12.42	16.43	17.64	36.07		
Middle	12.42	16.43	17.64	36.07	N/A	N/A
Highest	12.42	16.43	17.56	36.07		

Test plot as follows:

Highest channel

Center 2.462 GHz

17.JUN.2014 17:47:36

Highest channel

Center 2.462 GHz

12.JUN.2014 16:33:47

Highest channel

Center 2.462 GHz

12.JUN.2014 16:43:29

Highest channel

Center 2.452 GHz

12.JUN.2014 16:50:33

Highest channel

Center 2.462 GHz

17.JUN.2014 17:44:39

Highest channel

Center 2.462 GHz

12.JUN.2014 16:12:12

Highest channel

Center 2.462 GHz

12.JUN.2014 16:10:38

Highest channel

Center 2.452 GHz

12.JUN.2014 16:01:08

6.5 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)	
Test Method:	ANSI C63.4:2003 and KDB558074	
Limit:	8dBm	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.6 for details	
Test mode:	Refer to section 5.3 for details	
Test results:	Passed	

Measurement Data

		Power Spec				
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBm)	Result
Lowest	3.55	4.66	4.57	-0.05		
Middle	3.67	6.94	5.62	-2.31	8.00	Pass
Highest	4.01	4.79	4.96	-2.50		

Test plot as follows:

Test mode:

Report No: CCIS14060041103

Highest channel

Highest channel

Center 2.462 GHz

12.JUN.2014 17:38:19

Test mode:

Report No: CCIS14060041103

Highest channel

Test mode:

Report No: CCIS14060041103

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)			
Test Method:	ANSI C63.4:2003 and KDB558074			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:				
	Spectrum Analyzer			
	E.U.T			
	Non-Conducted Table			
	Ground Reference Plane			
Test Instruments:	Refer to section 5.6 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Test plot as follows:

Lowest channel

Highest channel

Lowest channel

Highest channel

Lowest channel

Highest channel

Lowest channel

Highest channel

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205				
Test Method:	ANSI C63.4: 2003				
Test Frequency Range:	2.3GHz to 2.5GHz				
Test site:	Measurement Distance: 3m				
	Weasurement Distance. Sin				
Receiver setup:	Frequency	Detector	RBW	VBW	Remark
	Above 1GHz	Peak	1MHz	3MHz	Peak Value
	Above 10112	Peak	1MHz	10Hz	Average Value
Limit:	Frequency Limit (dBuV/m @3m) Remark				
	Above 1GHz		54.00		Average Value
			74.00		Peak Value
Test Procedure:	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data 				
Test setup:	Antenna Tower Horn Antenna Spectrum Analyzer Turn Table Amplifier				
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

802.11b

Test channel: Lowest

Horizontal:

Trace: 387

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Site Condition

Pro : 411RF

EUT : Mobile Phone Model : Kingo T4.5
Test mode : Wfif-B-L MODE
Power Rating : AC120V/60Hz
Environment : Temp: 25.5°C F
Test Engineer: Carey
REMARY

Huni:55%

:

REMARK

Freq					Level			Remark
MHz	dBu∜	<u>dB</u> /m	dB	dB	dBuV/m	dBuV/m	<u>dB</u>	
2390.000 2390.000								

Vertical:

Trace: 401

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

Pro EUT : 411RF

: Mobile Phone

Model : Kingo T4.5

Test mode : Wfif-B-L MODE

Power Rating : AC120V/60Hz

Environment : Temp:25.5°C F

Test Engineer: Carey

REMARK :

Huni:55%

	Freq	ReadAntenna Level Factor								
	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	dB		
1 2	2390.000 2390.000									

Test channel: Highest

Horizontal:

Trace: 417

Frequency (MHz)

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 411RF Condition

Pro

: Mobile Phone EUT : Kingo T4.5 : Wfif-B-H MODE Model Test mode

Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey REMARK :

2)IICIL			Antenna Factor						Remark
	MHz	dBu∜	dB/m	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
	2483.500 2483.500					54.40 43.11			

Vertical:

Frequency (MHz) Trace: 403

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

Pro : 411RF

: Mobile Phone : Kingo T4.5 : Wfif-B-H MODE EUT Model Test mode Power Rating: AC120V/60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: Carey

REMARK

	Freq	ReadAntenna Level Factor							Remark	
	MHz	dBu∜	<u>dB</u> /m	<u>dB</u>	dB	dBuV/m	dBuV/m	dB		
1 2	2483.500 2483.500									

802.11g

Test channel: Lowest

Horizontal:

Trace: 389

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

Pro : 411RF

EUT : Mobile Phone Model : Kingo T4.5
Test mode : Wfif-G-L MODE
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C : H
Test Engineer: Carey
REMARY

Huni:55%

REMARK

	Freq		Antenna Factor					Remark
	MHz	dBu∜	dB/m	<u>dB</u>	<u>dB</u>	dBuV/m	dBu∜/m	
1 2	2390.000 2390.000							

Vertical:

Trace: 399

Frequency (MHz)

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

Pro : 411RF

EUT : Mobile Phone

Model : Kingo T4.5

Test mode : Wfif-G-L MODE

Power Rating : AC120V/60Hz

Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey REMARK :

1 2

Freq		Antenna Factor					Remark
MHz	dBu∜	dB/m	 <u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
2390.000 2390.000			 				

Test channel: Highest

Horizontal:

Trace: 415

Frequency (MHz)

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: 411RF
EUT : Mobile Phone
Model : Kingo T4.5
Test mode : Wfif-G-H MODE
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C H
Test Engineer: Carey
REMARK :

Huni:55%

EMAKI			Antenna Factor						Romark	
	rred	rever	Factor	LUSS	ractor	rever	Line	LIMIT	Remark	
-	MHz	dBu∀	dB/m	<u>ab</u>	<u>ab</u>	dBuV/m	dBuV/m	<u>ab</u>		
1	2483.500	28.87	27.52	5.70	0.00	62.09	74.00	-11.91	Peak	
2	2483.500	12.51	27.52	5.70	0.00	45.73	54.00	-8.27	Average	

Vertical:

Trace: 405

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

Pro : 411RF

EUT : Mobile Phone

Model : Kingo T4.5

Test mode : Wfif-G-H MODE

Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Carey REMARK :

	Freq	ReadAntenna Level Factor							Remark	
	MHz	dBu₹	dB/m	<u>ав</u>	<u>dB</u>	dBuV/m	dBu√/m	dB		
1 2	2483.500 2483.500									

802.11n (H20) Test channel: Lowest Horizontal:

Trace: 391

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

Pro : 411RF

: Mobile Phone : Kingo T4.5 : Wfif-N20-L MODE EUT Model Test mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni:55%

Test Engineer: Carey

REMARK

Freq		Antenna Factor						Remark
MHz	dBu∜	dB/m	₫B	₫B	dBuV/m	dBuV/m	₫B	
2390.000 2390.000								

Vertical:

Trace: 397

Frequency (MHz)

Site Condition : 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

Pro : 411RF

EUT : Mobile Phone

Model : Kingo T4.5

Test mode : Wfif-N20-L MODE

Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Hur

Huni:55%

Test Engineer: Carey REMARK :

CIII(AI/)		Read	Ant enna	Cable	Preamp		Limit	Over		
	Freq		Factor							
	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	dB		
	2390.000 2390.000									

Test channel: Highest

Horizontal:

Trace: 413

Frequency (MHz)

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

Pro EUT : 411RF : Mobile Phone : Kingo T4.5 : Wfif-N20-H MODE Model Test mode Power Rating: AC120V/60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: Carey

REMARK

1 2

ш		ReadA	Int enna	Cable	Preamp		Limit	Over		
	Freq				Factor				Remark	
	MHz	dBu∀	<u>dB</u> /m	dB	dB	dBuV/m	dBuV/m	dB		
!	2483.500 2483.500									

Vertical:

Frequency (MHz) Trace: 407

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

Pro : 411RF

EUT : Mobile Phone : Kingo T4.5 : Wfif-N20-H MODE Model Test mode Power Rating: AC120V/60Hz Environment: Temp:25.5°C Test Engineer: Carey REMARK:

Huni:55%

1 2

	Freq		Antenna Factor					Remark	
-	MHz	dBu∜	dB/m	<u>ab</u>	<u>dB</u>	dBuV/m	dBu√/m	 	-
	2483.500 2483.500								

802.11n (H40) Test channel: Lowest Horizontal:

Trace: 393

Frequency (MHz)

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 411RF Condition

Pro

EUT : Mobile Phone Model : Kingo T4.5
Test mode : Wfif-N40-L MODE
Power Rating : AC120V/60Hz
Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Carey REMARK :

 Freq		Antenna Factor						Remark
 MHz	dBu∜	dB/m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>ab</u>	
 		27.58 27.58						Peak Average

Vertical:

Trace: 395

Frequency (MHz)

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

Pro EUT

: 411RF : Mobile Phone : Kingo T4.5 : Wfif-N40-L MODE Model Test mode Power Rating: AC120V/60Hz
Environment: Temp:25.5°C Huni:55%
Test Engineer: Carey
REMARK:

1

Freq		Antenna Factor						Remark
MHz	dBu∜	<u>dB</u> /m	<u>dB</u>	<u>d</u> B	dBuV/m	dBuV/m	<u>ab</u>	
2390.000 2390.000								

Test channel: Highest

Horizontal:

Trace: 411

Frequency (MHz)

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: 411RF Pro

: Mobile Phone : Kingo T4.5 : Wfif-N40-H MODE EUT Model Test mode

Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey REMARK :

	Freq		Intenna Factor						
	MHz	dBu∀	<u>dB</u> /m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500								

Vertical:

Trace: 409

Frequency (MHz)

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

Pro 411RF

EUT : Mobile Phone : Kingo T4.5 : Wfif-N40-H MODE Model Test mode Power Rating: AC120V/60Hz
Environment: Temp:25.5°C
Test Engineer: Carey
REMARK:

Huni:55%

EMARI			intenna Factor						Remark	
-	MHz	dBuV	dB/m	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>		
	2483.500 2483.500									

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.4:2003 and KDB558074
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.6 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Test plot as follows:

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Date: 19.MAY.2014 01:26:37

30MHz~25GHz

Date: 19.MAY.2014 01:25:47

30MHz~25GHz

Date: 19.MAY.2014 01:26:12

30MHz~25GHz

Date: 19.MAY.2014 01:27:02

30MHz~25GHz

Date: 19.MAY.2014 01:27:32

30MHz~25GHz

Date: 19.MAY.2014 01:27:58

30MHz~25GHz

Test mode: 802.11n(H20)

Date: 19.MAY.2014 01:29:29

30MHz~25GHz

Date: 19.MAY.2014 01:29:08

30MHz~25GHz

Date: 19.MAY.2014 19:34:14

30MHz~25GHz

Date: 19.MAY.2014 01:30:13

30MHz~25GHz

Date: 19.MAY.2014 01:30:40

30MHz~25GHz

Date: 19.MAY.2014 01:31:12

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205											
Test Method:	ANSI C63.4:200)3										
Test Frequency Range:	9KHz to 25GHz											
Test site:	Measurement D	istance: 3m										
Receiver setup:												
·	Frequency	Detector	RBW	VBW	Remark							
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value							
	Above 1GHz	Peak	1MHz	3MHz	Peak Value							
	7,0000 10112	Peak	1MHz	10Hz	Average Value							
Limit:	_											
	Frequency Limit (dBuV/m @3m) Remark											
	30MHz-88MHz 40.0 Quasi-peak Value											
	88MHz-216MHz 43.5 Quasi-peak Value											
	216MHz-960MHz 46.0 Quasi-peak Value 960MHz-1GHz 54.0 Quasi-peak Value											
	9001011 12-	TGHZ	54.0		Average Value							
	Above 1	GHz	74.0		Peak Value							
Test Procedure:	the ground to determin 2. The EUT wantenna, wantenna, wantenna and the ground Both horizon make the normal and to find the rospecified Euthorises the limit spoof the EUT have 10dB	at a 3 meter of the position was set 3 meter was mountained to determine the antennation of the position of th	the top of a reamber. The famber. The famber. The famber is away from the don the total famber is away from the maximum is all polarizations in the EU is awas turned famber in peasiting. Was set to Polarize in peasiting could borted. Otherwood is a many in the famber is a many in the famber in	ctating table table was rest radiation. the interfer op of a variate meter to for value of the ons of the art to heights from 0 degreeak Detect old Mode. It was arranged to the entire of the entire of the entire of the entire of the entire one by one	e 0.8 meters above obtated 360 degrees rence-receiving able-height antenna our meters above he field strength. Intenna are set to higher to 4 ees to 360 degrees							

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL Condition

Pro 411RF EUT : Mobile Phone
Model : Kingo T4.5
Test mode : Wifi MODE
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C

Huni:55%

Test Engineer: Carey REMARK :

LMAKK	. :									
		Read	Ant enna	Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
-						75-57-				
	MHz	dBu∀	dB/m	qp	dB	qpn//w	qpn//w	dB		
1	39.162	31.46	13.34	0.51	29.91	15.40	40.00	-24.60	QΡ	
2	59.859	31.19	12.71			14.82			•	
3	104.536	31.64	12.73	1.00	29.50	15.87	43.50	-27.63	QP	
4	193.095	43.33	10.56	1.37	28.88	26.38	43.50	-17.12	QP	
5	247.682	33.65	12.07	1.61	28.55	18.78	46.00	-27.22	QP	
6	354.183	30.20	14.33	1.95	28.58	17.90	46.00	-28.10	QP	

Vertical:

Site

: 3m chamber : FCC_PART15 CLASS B 3m VULB9163(30M1G) VERTICAL Condition

: 411RF

Pro EUT : Mobile Phone : Kingo T4.5 : Wifi MODE Model Test mode Power Rating: AC120V/60Hz Environment: Temp:25.5°C Test Engineer: Carey REMARK:

Huni:55%

	Freq		Antenna Factor					Over Limit	
	MHz	dBu∀	<u>dB</u> /m	<u>dB</u>	dB	dBu∜/m	dBuV/m	<u>dB</u>	
1 2 3 4 5	37.548 44.901 93.113 154.821 265.676 590.974	39.00 39.38 40.76 34.10	13.55 12.50 8.45	0.92 1.33 1.67	29.86 29.56 29.18 28.51	26.72 23.25 23.24 21.36 19.52 25.64	40.00 43.50 43.50 46.00	-16.75 -20.26 -22.14 -26.48	QP QP QP QP

Above 1GHz

Test mod	de:	3	302.11b	Test chan	nel:	Lowest		Remark:		Peak	
Frequency (MHz)	Le	ad vel uV)	rel Factor Cable Loss		Prea Fac (d	•	Level (dBuV/m)	Limit Lir (dBuV/n	-	r Limit dB)	Pol.
4824.00	48.	.33	31.53	8.90	40.	24	48.52	74.00	-25	5.48	Vertical
4824.00	47.	.26	31.53	8.90	40.	24	47.45	74.00	-26	6.55	Horizontal

Test mod	le:	8	302.11b	Test chan	nel:	Lowest		Remark:		Average	
Frequency (MHz)	Le	Read Antenna Level Factor (dB)		Cable Loss (dB)	Prea Fac (dl	tor	Level (dBuV/m)	Limit Line (dBuV/m		· Limit IB)	Pol.
4824.00	37.	.85	31.53	8.90	40.	24	38.04	54.00	-15	5.96	Vertical
4824.00	37.	.12	31.53	8.90	40.	24	37.31	54.00	-16	6.69	Horizontal

Test mod	de:	3	302.11b	Test chan	nel:		Middle	Remark:		Peak	
Frequency (MHz)	' '		Antenna Factor (dB/m)	Cable Loss (dB)	Fac	amp ctor B)	Level (dBuV/m)	Limit Line		r Limit dB)	Pol.
4874.00	47.	.98	31.58	8.98	40	.15	48.39	74.00	-2	5.61	Vertical
4874.00	74.00 47.51 31.58 8.98		40	.15	47.92	74.00	-26	6.08	Horizontal		

Test mod	de:	3	302.11b	Test chan	nel:	Middle		Remark:		P	Average	
Frequency (MHz)	ency Level Fac		Antenna Factor (dB/m)	Cable Loss (dB)	Fa	amp ctor B)	Level (dBuV/m)	Limit Line (dBuV/m)		r Limit IB)	Pol.	
4874.00	37	.65	31.58	8.98	40	.15	38.06	54.00	-15	5.94	Vertical	
4874.00	37	.54	31.58	8.98	40	.15	37.95	54.00	-16	6.05	Horizontal	

Test mod	de:	8	02.11b	Test chan	nel:	ŀ	Highest	Rem	ark:		Peak
Frequency (MHz)	Read (dBu	Level uV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prea Facto		Level (dBuV/m)	Limit Line (dBuV/m		r Limit dB)	Pol.
4924.00	47.	76	31.69	9.08	40.03		48.50	74.00	-25.50		Vertical
4924.00	47.	15	31.69	9.08	40.	.03	47.89	74.00	-26	5.11	Horizontal

Test mo	de:	8	02.11b	Test chan	nel:	ŀ	Highest	Rema	rk:	ļ ļ	Average
Frequency (MHz)	Read L (dBu		Antenna Factor (dB/m)	Cable Loss (dB)	Prea Factor		Level (dBuV/m)	Limit Line (dBuV/m)		· Limit IB)	Pol.
4924.00	37.3	36	31.69 9.08		40.0	03	38.10	54.00	-15	5.90	Vertical
4924.00	36.9	95	31.69	9.08	40.0	03	37.69	54.00	-16	3.31	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mod	de:	8	302.11g	Test chan	nel:		Lowest	Rer	nark:		Peak
Frequency (MHz)	Le	ad vel uV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prea Fac (d	•	Level (dBuV/m)	Limit Liı (dBuV/r		r Limit dB)	Pol.
4824.00	46.	15	31.53	8.90	40.	24	46.34	74.00) -2	7.66	Vertical
4824.00	47.	.23	31.53	8.90	40.	24	47.42	74.00) -2	6.58	Horizontal

Test mod	le:	8	302.11g	Test chan	nel:		Lowest	Rem	ark:	<i> </i>	Average
Frequency (MHz)		ad vel uV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)		Level (dBuV/m)	Limit Lin (dBuV/m		· Limit IB)	Pol.
4824.00	36.	.08	31.53	8.90	40.	24	36.27	54.00	-17	7.73	Vertical
4824.00	.00 36.48 31.53 8.90		40.	24	36.67	54.00	-17	7.33	Horizontal		

Test mod	de:	802.11g		Test chan	nel:		Middle	Rem	ark:		Peak
Frequency (MHz)	Re Lev (dB	/el	Antenna Factor (dB/m)	Cable Loss (dB)	Fac	amp ctor B)	Level (dBuV/m)	Limit Lin (dBuV/m		r Limit dB)	Pol.
4874.00	46.	93	31.58	8.98	40	.15	47.34	74.00	-20	6.66	Vertical
4874.00	46.	82	31.58	8.98	40	.15	47.23	74.00	-20	3.77	Horizontal

Test mod	de:	8	302.11g	Test chan	nel:		Middle	Rem	ark:	<i>-</i>	Average
Frequency (MHz)	Le	ead vel uV)	Antenna Factor (dB/m)	Cable Loss (dB)	Fac	amp ctor B)	Level (dBuV/m)	Limit Lin (dBuV/n	-	er Limit (dB)	Pol.
4874.00	36	.75	31.58	8.98	40	.15	37.16	54.00	-	16.84	Vertical
4874.00	36	.46	31.58	8.98	40	.15	36.87	54.00	-	17.13	Horizontal

Test mod	de:	8	02.11g	Test chan	nel:	ŀ	Highest	Rei	mark	ζ:		Peak
Frequency (MHz)	Read Level (dBuV) Antenna Factor (dB/m)		Cable Loss (dB)	Prea Facto		Level (dBuV/m)	Limit Li (dBuV/			Limit B)	Pol.	
4924.00	46.	57	31.69	9.08	40.	.03	47.31	74.00)	-26	.69	Vertical
4924.00	48.	09	31.69	9.08 40.		.03	48.83	74.00)	-25	.17	Horizontal

Test mod	de:	8	02.11g	Test chan	nel:	ŀ	Highest	Re	mark	(:	A	verage
Frequency (MHz)	Read (dB		Antenna Factor (dB/m)	Cable Loss (dB)	Prea Facto	amp r (dB)	Level (dBuV/m)	Limit L (dBuV			Limit B)	Pol.
4924.00	36.	.34	31.69	9 9.08 4		.03	37.08	54.0	0	-16	.92	Vertical
4924.00	37.	.86	31.69 9.08		40	.03	38.60	54.0	0	-15	.40	Horizontal

Remark

- 1.Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mod	de:	80	2.11(n20)	Test chan	nel:		Lowest	Ren	nark:		Peak
Frequency (MHz)	Le	ead vel suV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prea Fac (d		Level (dBuV/m)	Limit Lir (dBuV/n		r Limit dB)	Pol.
4824.00	46	.94	31.53	8.90	40.	24	47.13	74.00	-2	6.87	Vertical
4824.00	47	.12	31.53	8.90	40.	.24	47.31	74.00	-2	6.69	Horizontal

Test mod	le:	80	2.11(n20)	Test chan	nel:		Lowest	Ren	nark:		Average
Frequency (MHz)	Le	ead vel suV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prea Fac (d	ctor	Level (dBuV/m)	Limit Lir (dBuV/r		Over Limi (dB)	Pol.
4824.00	36	.38	31.53	8.90	40.	24	36.57	54.00)	-17.43	Vertical
4824.00	36	.98	31.53	8.90	40.	24	37.17	54.00)	-16.83	Horizontal

Test mod	de: 8	02.11(n20)	Test chan	nel:		Middle	Remark	(:		Peak
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prea Fac (dl	tor	Level (dBuV/m)	Limit Line (dBuV/m)		Limit IB)	Pol.
4874.00	46.91	31.58	8.98	40.	15	47.32	74.00	-26	6.68	Vertical
4874.00	46.11	31.58	8.98	40.	15	46.52	74.00	-27	'.48	Horizontal

Test mo	de:	802	2.11(n20)	Test chan	nel:		Middle	Rema	k:	P	verage
Frequency (MHz)	Le	ead vel suV)	Antenna Factor (dB/m)	Cable Loss (dB)	Fac	amp ctor B)	Level (dBuV/m)	Limit Line (dBuV/m)		· Limit IB)	Pol.
4874.00	36	.64	31.58	8.98	40	.15	37.05	54.00	-16	6.95	Vertical
4874.00	36	.05	31.58	8.98	40	.15	36.46	54.00	-17	7.54	Horizontal

Test mod	est mode: 802.11(n20)		Test chan	Test channel:		Highest	Remark:			Peak		
Frequency (MHz)	Read (dBu		Antenna Factor (dB/m)	Cable Loss (dB)	Prea Facto		Level (dBuV/m)	Limit Line (dBuV/m)			Limit B)	Pol.
4924.00	47.	53	31.69	9.08	40.	.03	48.27	74.00)	-25	.73	Vertical
4924.00	46.	58	31.69	9.08	40.	.03	47.32	74.00)	-26	.68	Horizontal

	Test mod	mode: 802.11(n20)		Test chan	Test channel:		Highest		Remark:			verage	
	Frequency (MHz)	Read (dBu		Antenna Factor (dB/m)	Cable Loss (dB)			Level (dBuV/m)	Limit Line (dBuV/m)		Over Limit (dB)		Pol.
ĺ	4924.00	37.	36	31.69	9.08	40	.03	38.10	54.0	0	-15	.90	Vertical
	4924.00	36.	24	31.69	9.08	40	.03	36.98	54.0	0	-17	.02	Horizontal

Remark

- 1.Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mod	Test mode: 802		2.11(n40)	Test chan	nel:		Lowest	Rer	nark:		Peak	
Frequency (MHz)	I LAVAL L Factor L		Cable Loss (dB)	Prea Fac (d	ctor	Level (dBuV/m)	Limit Li (dBuV/		Over Limit (dB)	Pol.		
4844.00	46	.76	31.53	8.90	40.	24	46.95	74.00)	-27.05	Vertical	
4844.00	46	.35	31.53	8.90	40.	24	46.54	74.00)	-27.46	Horizontal	

Test mod	Test mode: 80)2.11(n40) Test cha		nnel: Lowes		Lowest	Remark:		C :	Average	
Frequency (MHz)	Read Antenna Level Factor (dBuV) (dB/m) Cable Loss (dB)		Prea Fac (d	tor	Level (dBuV/m)	Limit Line (dBuV/m)		Over Limit (dB)		Pol.		
4844.00	36	.55	31.53	8.90	40.	24	36.74	54.0	0	-17.	.26	Vertical
4844.00	35	.89	31.53	8.90	40.	24	36.08	54.0	0	-17	.92	Horizontal

Test mod	Test mode: 80		2.11(n40)	Test chan	Test channel:		Middle	Remark:		Peak	
Frequency (MHz)	Read Level (dBuV)		Antenna Factor (dB/m)	Cable Loss (dB)		amp ctor B)	Level (dBuV/m)	Limit Line (dBuV/m)		· Limit IB)	Pol.
4874.00	47.55	5	31.58	8.98	40	.15	47.96	74.00	-26	6.04	Vertical
4874.00	46.92	2	31.58	8.98	40	.15	47.33	74.00	-26	6.67	Horizontal

Test mod	Test mode: 8		2.11(n40) Test c		nel:		Middle	Remark:		Average	
Frequency (MHz)	luency Level Facto		Antenna Factor (dB/m)	Cable Loss (dB)	Fac	ctor dB) Level (dBuV/m)		Limit Line (dBuV/m)		Limit B)	Pol.
4874.00	37	.22	31.58	8.98	40	.15	37.63	54.00	-16.37		Vertical
4874.00	38	.49	31.58	8.98	40	.15	38.90	54.00	-15	5.10	Horizontal

Test mod	Test mode: 802.11(n40)		Test channel:		ŀ	Highest	Remark:			Peak	
Frequency (MHz)	Read (dB	Level uV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prea Facto				e O	ver Limit (dB)	Pol.
4904.00	46.	.41	31.69	9.08	40.	03	47.15	74.00		-26.85	Vertical
4904.00	46.	.56	31.69	9.08	40.	03	47.30	74.00		-26.70	Horizontal

	Test mod	t mode: 802.11(n40)		Test chan	Test channel:		Highest		Remark:			verage	
	Frequency (MHz)	Read (dBu		Antenna Factor (dB/m)	Cable Loss (dB)			Level (dBuV/m)	Limit Line (dBuV/m)		Over Limit (dB)		Pol.
ĺ	4904.00	36.	24	31.69	9.08	40	.03	36.98	54.0	0	-17	.02	Vertical
	4904.00	36.	85	31.69	9.08	40	.03	37.59	54.0	0	-16	5.41	Horizontal

Remark

^{1.}Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

^{3.} The emission levels of other frequencies are very lower than the limit and not show in test report.