Zepto Data Analysis

May 28, 2025

0.0.1 Food Order Sales Analysis: Revenue Trends by City, Influencer Impact, and **Product Category**

0.0.2 Objective

- Load the Zepto sales dataset using pandas
- Inspect the first few rows to understand the structure

```
[1]: import pandas as pd
[3]: food_orders = pd.read_csv("/Users/sourabh/Desktop/python/zepto_sales_dataset.
      ⇔csv")
[4]: food_orders.head(10)
[4]
```

[4]:	Product Name	Category	City	Original Price	Current Price	/
0	Britannia Cake	Snacks	Delhi	148	163	
1	Britannia Cake	Snacks	Pune	81	86	
2	Fortune Oil 1L	Grocery	Hyderabad	138	143	
3	Pepsi 500ml	Beverages	Delhi	127	127	
4	Aashirvaad Atta	Grocery	Chennai	34	49	
5	Amul Milk 500ml	Dairy	Delhi	149	159	
6	Britannia Cake	Snacks	Bangalore	82	87	
7	Amul Milk 500ml	Dairy	Bangalore	46	51	
8	Aashirvaad Atta	Grocery	Mumbai	137	137	
9	Maggi Noodles	Instant Food	Hyderabad	196	201	

	Discount	Orders	Total Revenue	Influencer	Active
0	5	283	44714		No
1	10	284	21584		Yes
2	10	69	9177		No
3	10	83	9711		No
4	10	169	6591		Yes
5	0	246	39114		No
6	0	254	22098		Yes
7	5	179	8234		No
8	10	268	34036		No
9	0	59	11859		Yes

0.0.3 Insights

• Data looks clean and ready for analysis

0.0.4 Objective:

• Identify top revenue-generating categories

```
[53]: revenue df = food orders.groupby("Category")["Total Revenue"].sum().
           ⇔reset index(name="Total Revenue Sum")
         revenue_df = revenue_df.sort_values(by="Total Revenue Sum", ascending=False)
         revenue_df["Total Revenue Sum"] = revenue_df["Total Revenue Sum"].apply(lambda_
           \Rightarrow x: f'' \{x:,.2f\}''
         import plotly.express as px
         plot df = food orders.groupby("Category")["Total Revenue"].sum().reset index()
         plot_df["Formatted Revenue"] = plot_df["Total Revenue"].apply(lambda x: f" {x:,.

<
         fig = px.bar(
               plot_df,
               x="Category",
               y="Total Revenue",
               text="Formatted Revenue",
               title="Total Revenue by Category",
               color="Category"
         fig.show()
```

0.0.5 Insights

- Snacks and Beverages are the top revenue-generating categories.
- These categories can be prioritized in future marketing or stock decisions.

0.0.6 Objective

• Identify which individual products bring in the highest total revenue.

```
fig = px.pie(
    plot_df,
    names = "Product Name",
    values = "Total Revenue",
    title="Total Revenue by Category",
    color="Product Name"
)
fig.show()
```

0.0.7 Insights

- Coca Cola 1L leads in revenue contribution.
- Beverages and dairy items dominate the top 5 list.
- Optimize product placements or promotions.

0.0.8 Objective

• Determine which cities generate the highest total revenue from orders.

```
[55]: revenue_df = food_orders.groupby("City")["Total Revenue"].sum().
           →reset_index(name="Total Revenue Sum")
         revenue_df = revenue_df.sort_values(by="Total Revenue Sum", ascending=False)
         revenue_df["Total Revenue Sum"] = revenue_df["Total Revenue Sum"].apply(lambda_
           \hookrightarrow x: f'' \{x:,.2f\}")
         import plotly.express as px
         plot_df = food_orders.groupby("City")["Total Revenue"].sum().reset_index()
         plot_df["Formatted Revenue"] = plot_df["Total Revenue"].apply(lambda x: f" {x:,.

<pr
         fig = px.bar(
               plot_df,
               x="City",
               y="Total Revenue",
               text="Formatted Revenue",
               title="Total Revenue by City",
               color="City"
         fig.show()
```

0.0.9 Insights

- Hyderabad is the top-performing city with over 1.25M in revenue.
- Bangalore and Pune also contribute significantly.
- This could guide regional marketing, inventory planning, or expansion strategies.

0.0.10 Objective

• Understand the revenue distribution between products promoted by influencers vs those not promoted.

```
[56]: revenue_df = food_orders.groupby("Influencer Active")["Total Revenue"].sum().
       →reset_index(name="Total Revenue Sum")
      revenue_df = revenue_df.sort_values(by="Total Revenue Sum", ascending=False)
      revenue df["Total Revenue Sum"] = revenue df["Total Revenue Sum"].apply(lambda,
       \Rightarrow x: f'' \{x:, .2f\}''
      import plotly.express as px
      plot_df = food_orders.groupby("Influencer Active")["Total Revenue"].sum().
       →reset_index()
      plot_df["Formatted Revenue"] = plot_df["Total Revenue"].apply(lambda x: f" {x:,.
       ⇔2f}")
      fig = px.pie(
          plot_df,
          names = "Influencer Active",
          values = "Total Revenue",
          title="Influencer Split",
          color="Influencer Active"
      fig.show()
```

0.0.11 Insights

- 71.2% of total revenue comes from non-influencer products.
- 28.8% is driven by influencer-promoted products.
- While influencers don't dominate revenue share, they still play a significant role and might have a stronger impact in specific categories.

0.0.12 Objective

- Analyze how order value varies across product categories.
- Identify categories with high variability, outliers, and consistent performance.

0.0.13 Insights

- Beverages, Dairy, and Confectionery have higher median revenue per order.
- Grocery orders have more variability and some lower revenue orders.

- All categories show outliers, suggesting unique or bulk purchase behaviors.
- Snacks and Instant Food have more tightly packed distributions, indicating consistent pricing or order sizes.

```
[64]: food_orders["Discount %"] = (food_orders["Discount"] / food_orders["Current

→Price"]) * 100
```

0.0.14 Objective

• To analyze how discount percentages affect order numbers across different product categories.

```
fig = px.scatter(
    food_orders,
    x="Discount %",
    y="Orders",
    color="Category",
    title="Impact of Discount % on Number of Orders",
    trendline="ols"
)
fig.show()
```

0.0.15 Insights

- The impact of discounts on order volume varies by category.
- Snacks and Confectionery see a positive correlation
- while others like Instant Food, Dairy see negative or flat trends, suggesting a need for targeted discount strategies.

0.0.16 Objective

• To assess how discount percentages impact revenue per order, segmented by product category.

```
fig.update_layout(xaxis_title="Discount (%)", yaxis_title="Number of Orders")

fig = px.scatter(
    food_orders,
    x="Discount %",
    y="Revenue per Order",
    color="Category",
    title="Impact of Discount % on Revenue per Order",
    trendline="ols"
)

fig.update_layout(xaxis_title="Discount (%)", yaxis_title="Revenue per Order_
    \( \( \) ( \) ")
    fig.show()
```

0.0.17 Insights

- Increased discounts consistently decrease revenue per order across all categories.
- This highlights a trade-off between potentially higher order volume (for some categories) and lower per-order revenue.
- Necessitating a balanced discount approach.

[]: