

Agenda

01

INTRODUCTION

A brief description of the problem

03

MODELS

- Faster RCNN
- YOLOv5

02

DATASET

Dataset description and formatting

04

FUTURE SCOPE & CONCLUSION

What improvements can be made?

Introduction [1]

- Great Barrier Reef is a complex of coral reefs, shoals, and islets in the Pacific Ocean. UNESCO issued a second recommendation to include this site in the Danger list.
- COTs are marine invertebrates that feed on coral and can reach plague proportions and devastate hard coral communities(coral bleaching)
- Since 1962, crown-of-thorns starfish outbreaks have had a major impact on the many reefs. During an outbreak, which is when 15 or more COTS are found in a one-hectare area, the starfish can strip a reef of 90% of its living coral tissue.
- COTS are covered in spikes containing toxins and eat by extruding their stomachs out from their bodies, wrapping it around corals and digesting their tissues.

Image <u>Source</u>

Data Information

video_id	sequence	video_frame	sequence_frame	image_id	annotations
0	40258	13	13	0-13	0
0	40258	14	14	0-14	0
0	40258	15	15	0-15	0
0	40258	16	16	0-16	[{'x': 559, 'y': 213, 'width': 50, 'height': 32}]
0	40258	17	17	0-17	[{'x': 558, 'y': 213, 'width': 50, 'height': 32}]
0	40258	18	18	0-18	[{'x': 557, 'y': 213, 'width': 50, 'height': 32}]
0	40258	19	19	0-19	[{'x': 556, 'y': 214, 'width': 50, 'height': 32}]
0	40258	20	20	0-20	[{'x': 555, 'y': 214, 'width': 50, 'height': 32}]
0	40258	21	21	0-21	[{'x': 550, 'y': 214, 'width': 50, 'height': 32}]

train_images
video_0 - 6,709 images
video_1 - 8,233 images
video_2 - 8,562 images

Faster RCNN Model

RCNN, Fast RCNN_[2,3,8]

- Problems with RCNN
 - Takes lot of time to classify 2000 regions per image
 - Selective Search is a fixed algorithm with no learning
- Problems with Fast RCNN
 - Region proposal slows down the process

Figure 1: Source

Figure 2: Source

Faster RCNN Model_[2,5]

R-CNN & Fast R-CNN uses selective search to find out the region proposals - slow and time-consuming.

Faster RCNN eliminates the selective search algorithm and let the network learn the region proposals.

Faster RCNN is composed from 3 parts:

- Part 1: Convolution layers
- Part 2 : Region Proposal Network (RPN)
- Part 3 : Classes and Bounding Boxes prediction

Faster RCNN Model Results

Performed on a subset of data.

Fine Tune YOLOv5s

>

Nano YOLOv5n Small YOLOv5s

YOLOv5m

Medium

YOLOv5I

Large

XLarge YOLOv5x

 $\begin{array}{c} 4 \text{ MB}_{\text{FP16}} \\ 6.3 \text{ ms}_{\text{V100}} \\ 28.4 \text{ mAP}_{\text{COCO}} \end{array}$

 $\begin{array}{c} \text{14 MB}_{\text{FP16}} \\ \text{6.4 ms}_{\text{V100}} \\ \text{37.2 mAP}_{\text{COCO}} \end{array}$

 $41~{\rm MB_{\rm FP16}}\\8.2~{\rm ms_{\rm V100}}\\45.2~{\rm mAP_{\rm COCO}}$

 $89 \, \mathrm{MB}_{\mathrm{FP16}} \\ 10.1 \, \mathrm{ms}_{\mathrm{V100}} \\ 48.8 \, \mathrm{mAP}_{\mathrm{COCO}}$

 $\begin{array}{c} \text{166 MB}_{\text{FP16}} \\ \text{12.1 ms}_{\text{V100}} \\ \text{50.7 mAP}_{\text{COCO}} \end{array}$

YOLOV5 [7, 9, 10, 11]

 YOLOv5 launched in 2020, is one of the most advanced object identification algorithms available.

 YOLOv5 comes in four main versions: small (s), medium (m), large (l), and extra large (x), each offering progressively higher accuracy rates. Each variant also takes a different amount of time to train.

 Uses CNN that detects objects using a single neural network to process the entire picture and predicts bounding boxes and probabilities of each component.

Architecture:

- **Backbone:** used to extract key features/ useful characteristics from an input image
- **Neck:** used to create feature pyramids. Feature pyramids help models in object scaling by identifying the same object in various sizes and scales.
- **Head:** final detection where anchor boxes are used to construct final output vectors with class probabilities, object scores and bounding boxes.

Figure 4: Source

Data Workflow

	video_id	sequence	video_frame	sequence_frame	image_id	annotations	no_of_bboxes
0	0	40258	16	16	0-16	[{'x': 559, 'y': 213, 'width': 50, 'height': 32}]	1
1	0	40258	17	17	0-17	[{'x': 558, 'y': 213, 'width': 50, 'height': 32}]	1
2	0	40258	18	18	0-18	[{'x': 557, 'y': 213, 'width': 50, 'height': 32}]	1

v	ideo_id	sequence	video_frame	sequence_frame	image_id	annotations	no_of_bboxes	bbox	image_path
0	0	40258	16	16	0-16	[{'x': 559, 'y': 213, 'width': 50, 'height': 32}]	1	[[0, 0.45625, 0.7986111111111112, 0.0390625, 0	/content/drive/.shortcut- targets-by-id/1BJ54wg
1	0	40258	17	17	0-17	[{'x': 558, 'y': 213, 'width': 50, 'height': 32}]	1	[[0, 0.45546875, 0.7972222222222223, 0.0390625	/content/drive/.shortcut- targets-by-id/1BJ54wg
2	0	40258	18	18	0-18	[{'x': 557, 'y': 213, 'width': 50, 'height': 32}]	1	[[0, 0.4546875, 0.7958333333333333, 0.0390625,	/content/drive/.shortcut-targets-by-id/1BJ54wg

Training & Validation [6, 9]

- The dataset was trained on 30 epochs and the weights were saved as per pytorch model format (.pt).
- Trained on Google Colab GPU.

Evaluation metrics: There are various metrics used to measure the accuracy and performance of an object detection model – precision, recall, and mAP (mean average precision)

YOLOv5 Results

YOLOv5 Evaluation

COTS

all classes 0.68 at 0.364

Future Scope & Conclusion [9]

- YOLOv5 is much faster than Faster R-CNN model.
- YOLO is capable of processing the image only once and simultaneously detecting and classifying the images.
- The accuracy of YOLOv5 model was better than Faster R-CNN.
- We only trained YOLOv5 with 30 epochs; increasing the epochs could give better results.
- YOLOv5s has very less parameters compared to YOLOv5m, YOLOv5l, YOLOv5x and YOLOv5x6. Hence, these models can be explored too with higher computation power.
- Ensemble techniques using YOLOv5 and YOLOX (another version) can be explored.

Thank you!

References

- 1. *Crown-of-thorns starfish control.* Great Barrier Reef Foundation. (n.d.). Retrieved December 6, 2022, from https://www.barrierreef.org/what-we-do/reef-trust-partnership/crown-of-thorns-starfish-control
- 2. Gandhi, R. (2018, December 3). *R-CNN, Fast R-CNN, Faster R-CNN, YOLO Object Detection Algorithms*. Medium. https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-volo-object-detection-algorithms-36d53571365e
- 3. DeepLearning. (2020, December 4). R-CNN, Fast R-CNN and Faster R-CNN explained. YouTube. https://www.youtube.com/watch?v=vr5rs_cTKCs
- 4. Crown-of-thorns starfish reef resilience. (n.d.). Retrieved December 6, 2022, from https://www.reefresilience.org/pdf/COTS_Nov2003.pdf
- 5. you359. (n.d.). You359/Keras-FASTERRCNN: Keras implementation of faster R-CNN. GitHub. Retrieved December 6, 2022, from https://github.com/you359/Keras-FasterRCNN
- 6. Solawetz, J. (2022, November 21). What is YOLOv5? A Guide for Beginners. Roboflow Blog. https://blog.roboflow.com/yolov5-improvements-and-evaluation/
- 7. Garg, A. (2021, December 14). How to Use Yolo v5 Object Detection Algorithm for Custom Object Detection. Analytics Vidhya. https://www.analyticsvidhya.com/blog/2021/12/how-to-use-yolo-v5-object-detection-algorithm-for-custom-object-detection-an-example-use-case/
- 8. Sharma, P. (2020, May 24). A Step-by-Step Introduction to the Basic Object Detection Algorithms (Part 1). Analytics Vidhya. https://www.analyticsvidhya.com/blog/2018/10/a-step-by-step-introduction-to-the-basic-object-detection-algorithms-part-1/
- 9. Tips for Best Training Results 🖈 YOLOv5 Documentation. (n.d.). https://docs.ultralytics.com/tutorials/training-tips-best-results/
- Mean Average Precision (mAP) in Object Detection. Kukil.
 https://learnopencv.com/mean-average-precision-map-object-detection-model-evaluation-metric/
- 11. Bochkovskiy, A. (2020, April 23). YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv.org. https://arxiv.org/abs/2004.10934
- 12. Maunil2k/The-Great-Barrier-Reef-Kaggle: YOLOv5 trained on custom dataset for COTS detection Kaggle competition. Maunil2k. https://github.com/Maunil2k/The-Great-Barrier-Reef-Kaggle