

Decizie și Estimare în Prelucrarea Informației

Capitolul II. Elemente de teorie statistică a detecției

Introducere

- Detecția semnalelor = a decide care semnal este prezent dintre două sau mai multe posibilități
 - inclusiv că nu există nici un semnal (este 0)
- Avem la dispoziție observații cu zgomot
 - semnalele sunt afectate de zgomot
 - zgomotul este aditiv (se adună la semnalul original)

Schema bloc a detecției semnalelor

Figure 1: Signal detection model

- Conţinut:
 - ightharpoonup Sursa de informație: generează mesajele a_n cu probabilitățile $p(a_n)$
 - Generator: generează semnalele diferite $s_1(t), \dots s_n(t)$
 - Modulator: transmite semnalul $s_n(t)$ la mesajul a_n
 - Canal: adaugă zgomot aleator
 - **E**șantionare: ia eșantioane din semnalul $s_n(t)$
 - ightharpoonup Receptor: **decide** ce mesaj a_n s-a fost receptionat
 - Utilizator: primește mesajele recuperate

Scenarii practice

- Transmisie de date
 - ▶ nivele constante de tensiune (de ex. $s_n(t)$ = constant 0 sau 5V)
 - ▶ modulație PSK (Phase Shift Keying): $s_n(t) = \text{cosinus cu aceeași}$ frecventă dar faze initiale diferite
 - ightharpoonup modulație FSK (Frequency Shift Keying): $s_n(t) = \text{cosinus cu frecvențe}$ diferite
 - modulație OFDM (Orthogonal Frequency Division Multiplexing): caz particular de FSK
- Radar
 - se emite un semnal; în cazul unui obstacol, semnalul se reflectă înapoi
 - receptorul așteaptă posibilele reflecții ale semnalului emis și decide
 - nu este prezentă o reflecție -> nici un obiect
 - semnalul reflectat este prezent -> obiect detectat

- Decizie între mai mult de două semnale
- Numărul de eșantioane (observații):
 - un singur eșantion
 - mai multe esantioane
 - observarea întregului semnal continuu, pentru un timp T

Detecția unui semnal cu 1 eșantion

- Cel mai simplu caz: detecția unui semnal afectat de zgomot, folosind un singur esantion
 - ▶ două mesaje a₀ și a₁
 - mesajele sunt modulate cu semnalele $s_0(t)$ și $s_1(t)$
 - Pentru a_0 : se transmite $s(t) = s_0(t)$
 - pentru a_1 : se transmite $s(t) = s_1(t)$
 - **p**este semnal se suprapune zgomot aditiv, alb, n(t)
 - ightharpoonup se receptionează un semnal cu zgomot, r(t) = s(t) + n(t)
 - ightharpoonup eșantionarea preia un singur eșantion la timpul t_0 , $r(t_0)$
 - decizie: pe baza $r(t_0)$, care semnal a fost cel transmis?

Ipoteze și decizii

- Există două ipoteze:
 - $ightharpoonup H_0$: semnalul adevărat este $s(t)=s_0(t)$ (s-a transmis a_0)
 - $ightharpoonup H_1$: semnalul adevărat este $s(t)=s_1(t)$ (s-a transmis a_1)
- Receptorul poate lua una din două decizii:
 - $ightharpoonup D_0$: receptorul decide că semnalul corect este $s(t) = s_0(t)$
 - ▶ D_1 : receptorul decide că semnalul corect este $s(t) = s_1(t)$

Rezultate posibile

- Există 4 situații posibile:
 - Rejecție corectă: ipoteza corectă este H₀, decizia este D₀
 Probabilitatea este P_r = P(D₀ ∩ H₀)
 - 2. **Alarmă falsă** (detecție falsă): ipoteza corectă este H_0 , decizia este D_1 Probabilitatea este $P_{af} = P(D_1 \cap H_0)$
 - Pierdere (rejecție falsă): ipoteza corectă este H₁, decizia este D₀
 Probabilitatea este P₀ = P(D₀ ∩ H₁)
 - Detecție corectă: ipoteza corectă este H₁, decizia este D₁
 Probabilitatea este P_d = P(D₁ ∩ H₁)

Originea termenilor

- Terminologia are la origine aplicații radar (prima aplicație a teoriei detecției)
 - un semnal se emite de către sursă
 - semnal recepționat = o posibilă reflecție din partea unei ținte, puternic afectată de zgomot
 - $ightharpoonup H_0 = \text{nu există un obiect, nu există semnal reflectat (doar zgomot)}$
 - $ightharpoonup H_1 = ext{există un obiect, există un semnal reflectat}$
 - de aceea numele celor 4 scenarii sugerează "detecția unui obiect"

Zgomotul

- In general se consideră zgomot aditiv, alb, staționar
 - ▶ aditiv = zgomotul se adună ci semnalul
 - ► alb = două eșantioane distincte sunt necorelate
 - ▶ staționar = are aceleași proprietăți statistice la orice moment de timp
- ightharpoonup Semnalul de zgomot n(t) este necunoscut
 - este o realizare a unui proces aleator
 - se cunoaște doar distribuția sa, nu și valorile particulare

Eșantionul preluat la recepție

- La recepție se primește semnalul r(t) = s(t) + n(t)
 - $ightharpoonup s(t) = \text{semnalul original, fie } s_0(t), \text{ fie } s_1(t)$
 - n(t) = semnalul de zgomot necunoscut
- Valoarea eșantionului luat la momentul t_0 este $r(t_0) = s(t_0) + n(t_0)$
 - $ightharpoonup s(t_0) = \text{fie } s_0(t_0), \text{ fie } s_1(t_0)$
 - $n(t_0)$ este un eșantion din semnalul de zgomot

Eșantionul preluat la recepție

- **E**șantionul $n(t_0)$ este o **variabilă aleatoare**
 - fiind un eșantion de zgomot (un eșantion dintr-un proces aleator)
 - presupunem o v.a. continuă, adică intervalul valorilor posibile e continuă
- $ightharpoonup r(t_0) = s(t_0) + n(t_0 = o \text{ constant} \\
 ightharpoonup r(t_0) = s(t_0) + n(t_0 = o \text{ constant} \\
 ightharpoonup r(t_0) = s(t_0) + n(t_0 = o \text{ constant} \\
 ightharpoonup r(t_0) = s(t_0) + n(t_0 = o \text{ constant} \\
 ightharpoonup r(t_0) = s(t_0) + n(t_0 = o \text{ constant} \\
 ightharpoonup r(t_0) = s(t_0) + n(t_0 = o \text{ constant} \\
 ightharpoonup r(t_0) = s(t_0) + n(t_0 = o \text{ constant} \\
 ightharpoonup r(t_0) = s(t_0) + n(t_0 = o \text{ constant} \\
 ightharpoonup r(t_0) = s(t_0) + n(t_0 = o \text{ constant} \\
 ightharpoonup r(t_0) = s(t_0) + n(t_0 = o \text{ constant} \\
 ightharpoonup r(t_0) = s(t_0) + n(t_0) +$
 - este de asemenea o variabilă aleatoare
 - $ightharpoonup s(t_0)$ este o constantă, egală fie cu $s_0(t_0)$, fie cu $s_1(t_0)$
- ► Care e distribuția lui $r(t_0)$?
 - o constantă + o v.a. = aceeași distribuție ca v.a., dar translată cu valoarea constantei

Funcții de plauzibilitate

- Fie distribuția zgomotului w(x), cunoscută
 - ightharpoonup aceasta este distribuția v.a. $n(t_0)$
- lacktriangle Distribuția lui $r(t_0)=s(t_0)+n(t_0)=w(x)$ translată cu $s(t_0)$
- lacktriangle În ipoteza H_0 , distribuția eșantionului este $w(r|H_0)=w(x)$ translată cu $s_0(t_0)$
- lackbox În ipoteza H_1 , distribuția eșantionului este $w(r|H_1)=w(x)$ translată cu $s_1(t_0)$
- Distribuțiile $w(r|H_0)$ și $w(r|H_1)$ se numesc distribuții condiționate sau funcțiile de plauzibilitate
 - " înseamnă "condiționat de", "dat fiind"
 - ▶ adică dat fiind una sau cealaltă dintre ipoteze
 - r reprezintă necunoscuta funcției

Criteriul plauzibilității maxime (Maximum Likelihood)

- Cum se decide care ipoteză este adevărată, pe baza eșantionului observat $r = r(t_0)$?
- **Criteriul plauzibilității maxime**: se alege ipoteza care este **cea mai plauzibilă** a fi generat eșantionul observat $r = r(t_0)$
 - ightharpoonup se alege valoarea maximă dintre $w(r(t_0)|H_0)$ și $w(r(t_0)|H_1)$
 - în engleză: Maximum Likelihood (ML)
- Criteriul ML exprimat la un raport de plauzibilitate:

$$rac{w(r|H_1)}{w(r|H_0)} \overset{H_1}{\underset{H_0}{\gtrless}} 1$$

ightharpoonup criteriul este evaluat pentru eșantionul observat $r=r(t_0)$

Exemplu: zgomot gaussian

- ► Fie cazul în care zgomotul are distribuție normală
- La tablă:
 - schiță a celor două distribuții condiționate $w(r|H_0)$ și $w(r|H_1)$
 - discuție: ce decizie se ia pentru diferite valori ale lui r
 - discuție: care este pragul T pentru decizii

Zgomot cu distribuție normală (AWGN)

- lacktriangle Caz particular: zgomotul are distribuția normală $\mathcal{N}(0,\sigma^2)$
 - zgomot de tip AWGN
- Raportul de plauzibilitate este $\frac{w(r|H_1)}{w(r|H_0)} = \frac{e^{-\frac{(r-s_1(t_0))^2}{2\sigma^2}} \underset{e^{-\frac{(r-s_0(r_0))^2}{2\sigma^2}}}{\frac{H_1}{H_0}} 1$
- Pentru distribuția normală, e preferabil să aplicăm logaritmul natural
 - logaritmul este o funcție monoton crescătoare, deci nu schimbă rezultatul comparației
 - ▶ dacă A < B, atunci log(A) < log(B)
- Valoarea log-likelihood al unui observații = logaritmul plauzibilității (likelihood)
 - de obicei se folosește logaritmul natural, dar poate fi în orice bază

Raportul "log-likelihood" în cazul ML

Aplicarea logaritmului natural la ambii termeni ai relației conduce la:

$$-(r-s_1(t_0))^2+(r-s_0(t_0))^2 \underset{H_0}{\stackrel{H_1}{\gtrless}} 0$$

Care este echivalent cu:

$$|r-s_0(t_0)| \stackrel{H_1}{\underset{H_0}{\gtrless}} |r-s_1(t_0)|$$

- Notă: |r A| = distanța dintre r și A
 - |r| = distanța de la r la 0
- lacktriangle Aşadar, se alege distanța minimă dintre $r(t_0)$ și $s_1(t_0)$ sau $s_0(t_0)$

Criteriul ML pentru zgomot gaussian

- ► Criteriul ML **pentru zgomot gaussian**: ipoteza se alege pe baza **celei mai apropiate** valori dintre $s_0(t_0)$ și $s_1(t_0)$ față de eșantionul $r = r(t_0)$
 - principiul cel mai apropiat vecin ("nearest neighbor")
 - un principiu foarte general, întâlnit în multe alte scenarii
 - un receptor ce folosește ML se mai numește receptor de distanță minimă ("minimum distance receiver")

Etape pentru decizia pe baza ML

- 1. Se schițează cele două distribuții condiționate $w(r|H_0)$ și $w(r|H_1)$
- 2. Se determină care dintre cele două funcții este mai mare în dreptul valorii eșantionului observat $r=r(t_0)$

Etape pentru decizia pe baza ML, zgomot gaussian

- Doar dacă zgomotul este gaussian, identic pentru toate ipotezele:
 - 1. Se determină $s_0(t_0)=$ valoarea semnalului original, în absența zgomotului, în cazul ipotezei H_0
 - 2. Se determină $s_1(t_0)=$ valoarea semnalului original, în absența zgomotului, în cazul ipotezei H_1
 - 3. Se compară cu eșantionul observat $r(t_0)$, se alege cea mai apropiată valoare

Decizie pe bază de prag

- Alegerea valorii celei mai apropiate = identic cu compararea r cu un prag $T = \frac{s_0(t_0) + s_1(t_0)}{2}$
 - i.e. dacă cele doup valori sunt 0 și 5, decidem prin compararea lui r cu
 2.5
- În general, pragul = punctul de intersecție al celor două distribuții conditionate

Exercițiu

- ▶ Un semnal poate avea două valori posibile, 0 sau 5. Semnalul este afectat de zgomot alb, gaussian, cu distribuția \mathcal{N} ($\mu = 0, \sigma^2 = 2$). Receptorul ia un singur esantion, cu valoarea r = 2.25
 - a. Scrieți expresiile celor două distribuții condiționate, și reprezentați-le
 - b. Ce decizie se ia pe baza criteriului plauzibilității maxime?
 - c. Dar dacă semnalul 0 este afectat de zgomot gaussian $\mathcal{N}(0,0.5)$, iar semnalul 5 de zgomot uniform $\mathcal{U}[-4,4]$?
 - d. Repetați b. și c. dacă valoarea 0 se înlocuiește cu -1

Regiuni de decizie

- ▶ Regiuni de decizie = intervalul de valori ale eșantionului r pentru care se ia o anumită decizie
- ightharpoonup Regiunea de decizie $R_0=$ intervalul de valori ale lui r care conduc la decizia D_0
- Regiunea de decizie $R_1=$ intervalul de valori ale lui r care conduc la decizia D_1
- ▶ Regiunile de decizie acoperă întreg domeniul de valori ale lui r (toată axa reală)
- Exemplu: indicați regiunile de decizie la exercițiul anterior
 - $ightharpoonup R_0 = [-\infty, 2.5]$
 - ▶ $R_1 = [2.5, \infty]$

Funcția de plauzibilitate

- Să notăm în mod generic ipotezele cu H_i , și semnalele $s_i(t)$, unde i este 0 sau 1
- ▶ Să considerăm distribuția condiționată $w(r|H_i)$
 - ▶ fie cea de le exemplul anterior:

$$w(r|H_i) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(r-s_i(t_0))^2}{2\sigma^2}}$$

- Care este variabila necunoscută în această expresie?
 - ▶ nu r, din moment ce acesta ni se dă în problemă
 - i este necunoscuta

Terminologie: probabilitate și plauzibilitate

- ▶ În aceeași expresie matematică a funcției de distribuție:
 - ▶ dacă se cunosc parametrii statistici (de ex. μ , σ , H_i), și necunoscuta este valoarea însăși (de ex. r, x) atunci funcția reprezintă densitatea de **probabilitate**
 - ▶ dacă se cunoaște valoarea însăși (de ex. r, x), și necunoscuta o reprezintă un parametru statistic (de ex. μ , σ , i), atunci avem o functie de plauzibilitate
- Distinctie subtilă între termenii "probabilitate" și "plauzibilitate"

Funcția de plauzibilitate

- ▶ În cazul detecției semnalelor, funcția $w(r|H_i) = f(i)$ este o funcție de plauzibilitate
 - necunoscuta este i
- Funcția este definită doar pentru i = 0 și i = 1
 - ightharpoonup sau, în general, pentru i= câte ipoteze are problema
- Criteriul ML = se alege i pentru care această funcție este maximă

Decizia
$$D_i = \arg \max_i w(r|H_i)$$

- ► Notatie:
 - ightharpoonup arg max f(x) = argumentul x pentru care funcția f(x) este maximă
 - $ightharpoonup \max f(x) = \text{valoarea maximă a funcției } f(x)$
 - a se vedea exemplul grafic la tablă
- Criteriul plauzibilității maxime înseamnă "se alege i care maximizează funcția de plauzibilitate $f(i) = w(r|H_i)$ "

- ► Dacă zgomotul are altă distribuție?
 - Se schiţează distribuţiile condiţionate
 - Se evaluează pentru $r = r(t_0)$
 - ightharpoonup Criteriul ML = se alege cea mai mare funcție $w(r|H_i)$ în punctul r dat
- Regiunile de decizie sunt date de punctețe de intersecție ale distributiilor conditionate
 - Pot fi mai multe intersectări, în general, deci mai multe praguri

- ▶ Dacă zgomotul are distribuție diferită în ipoteza H_0 față de ipoteza H_1 ?
- Similar:
 - ► Se schitează distributiile conditionate
 - ightharpoonup Se evaluează pentru $r = r(t_0)$
 - lacktriangle Criteriul ML = se alege cea mai mare funcție $w(r|H_i)$ în punctul r dat

- ▶ Dacă cele două semnale $s_0(t)$ și $s_1(t)$ sunt constante / nu sunt constante?
- Nu contează forma semnalelor
 - Tot ce contează sunt valorile celor două semnale la momentul de eșantionare t_0 :
 - $ightharpoonup s_0(t_0)$
 - $ightharpoonup s_1(t_0)$

- ▶ Dacă avem mai mult de 2 ipoteze?
- ► Se extinde raționamentul la *n* ipoteze
 - Avem *n* semnale posibile $s_0(t)$, ... $s_{n-1}(t)$
 - Avem *n* valori diferite $s_0(t_0)$, ... $s_{n-1}(t_0)$
 - Avem *n* distribuții condiționate $w(r|H_i)$
 - Pentru $r = r(t_0)$ dat, se alege valoarea maximă dintre cele n valori $w(r|H_i)$

- Dacă se iau mai multe eșantioane din semnale?
- Va fi tratat separat într-un subcapitol ulterior

Exercițiu

▶ Un semnal poate avea patru valori posibile: -6, -2, 2, 6. Fiecare valoare este transmisă timp de o secundă. Semnalul este afectat de zgomot alb cu distribuție normală. Receptorul ia un singur eșantion pe secundă. Folosind criteriul plauzibilității maxime, decideți ce semnal s-a transmis, dacă receptorul primește eșantioanele următoare:

$$4, 6.6, -5.2, 1.1, 0.3, -1.5, 7, -7, 4.4$$

Probabilități condiționate

- Putem calcula probabilitățile condiționate ale celor 4 rezultate posibile
- ► Fie regiunile de decizie:
 - $ightharpoonup R_0$: dacă $r \in R_0$, decizia este D_0
 - $ightharpoonup R_1$: daca $r \in R_1$, decizia este D_1
- Probabilitatea condiționată a rejecției corecte
 - ightharpoonup = probabilitatea de a lua decizia D_0 când ipoteza este H_0
 - ightharpoonup = probabilitatea ca r să fie în R_0 , calculată pe distribuția $w(r|H_0)$

$$P(D_0|H_0) = \int_{R_0} w(r|H_0) dx$$

- ▶ Probabilitatea conditionată a alarmei false
 - ightharpoonup = probabilitatea de a lua decizia D_1 când ipoteza este H_0
 - ightharpoonup = probabilitatea ca r să fie în R_1 , calculată pe distribuția $w(r|H_0)$

$$P(D_1|H_0) = \int_{R_1} w(r|H_0) dx$$

Probabilități condiționate

- ► Probabilitatea condiționată de pierdere
 - ightharpoonup = probabilitatea de a lua decizia D_0 când ipoteza este H_1
 - ightharpoonup = probabilitatea ca r să fie în R_0 , calculată pe distribuția $w(r|H_1)$

$$P(D_0|H_1) = \int_{R_0} w(r|H_1) dx$$

- ▶ Probabilitatea condiționată a detecției corecte
 - ightharpoonup = probabilitatea de a lua decizia D_1 când ipoteza este H_1
 - lacktriangle = probabilitatea ca r să fie în R_1 , calculată pe distribuția $w(r|H_1)$

$$P(D_1|H_1) = \int_{R_1} w(r|H_1) dx$$

Probabilități condiționate

- Relații între probabilitățile condiționate
 - ▶ suma rejecție corectă + alarmă falsă = 1
 - suma pierdere + detecție corectă = 1
 - De ce? Justificați.

Probabilități condiționate

Figure 2: Probabilități condiționate

- Ignorați textul, contează zonele colorate
- [sursa: hhttp://gru.stanford.edu/doku.php/tutorials/sdt]*

Probabilitățile celor 4 rezultate

- Probabilitățile condiționate sunt calculate dat fiind una sau alta dintre ipoteze
- Nu includ și probabilitățile ipotezelor înselor
 - ▶ adică, $P(H_0)$ = probabilitatea de a avea ipoteza H_0
 - $ightharpoonup P(H_1) = \text{probabilitatea de a avea ipoteza } H_1$
- Pentru a le lua în calcul, se multiplică cu $P(H_0)$ sau $P(H_1)$
 - $P(H_0)$ și $P(H_1)$ se numesc probabilitățile **inițiale** (sau **a priori**) ale ipotezelor

Reamintire (TCI): regula lui Bayes

Reamintire (TCI): regula lui Bayes

$$P(A \cap B) = P(B|A) \cdot P(A)$$

- Interpretare
 - Probabilitatea P(A) este extrasă din P(B|A)
 - P(B|A) nu mai conține nici o informație despre P(A), șansele ca A chiar să aibă loc
 - **Exemplu:** P(gol | sut la poartă) = $\frac{1}{2}$. Câte goluri se înscriu?
- ▶ La noi: $P(D_i \cap H_j) = P(D_i|H_j) \cdot P(H_j)$
 - pentru toți i și j (în toate cele 4 cazuri)

Exercițiu

- ▶ Un semnal constant poate avea două valori posibile, 0 sau 5. Semnalul este afectat de zgomot gaussian \mathcal{N} ($\mu=0,\sigma^2=2$). Receptorul decide pe baza criteriului plauzibilității maxime, folosind un singur eșantion din semnal.
 - a. Calculati probabilitatea conditionată a alarmei false
 - b. Calculați probabilitatea condiționată de pierdere
 - c. Dacă $P(H_0) = \frac{1}{3}$ și $P(H_1) = \frac{2}{3}$, calculați probabilitatea rejecției corecte și a detecției corecte (nu cele condiționate)

Dezavantaje ale criteriului plauzibilității maxime

- Criteriul ML compară distribuțiile condiționate ale eșantionului observat
 - ► condiționate de ipotezele H₀ sau H₁
- Condiționarea de ipotezele H_0 și H_1 ignoră probabilitatea celor două ipoteze H_0 și H_1
 - Decizia e aceeași indiferent dacă $P(H_0) = 99.99\%$ și $P(H_1) = 0.01\%$, sau invers
- Dacă $P(H_0) > P(H_1)$, am vrea să împingem pragul de decizie înspre H_1 , și vice-versa
 - Pentru că este mai probabil ca semnalul să fie $s_0(t)$
 - ightharpoonup și de aceea vrem să "favorizăm"/"încurajăm" decizia D_0
- Avem nevoie de un criteriu mai general . . .

Criteriul probabilității minime de eroare

- ▶ Se iau în calcul probabilitățile $P(H_0)$ și $P(H_1)$
- Se urmărește minimizarea probabilității totale de eroare $P_e = P_{af} + P_p$
 - erori = alarmă falsă și pierdere
- ► Trebuie să găsim un nou criteriu
 - ightharpoonup adică, alte regiuni de decizie R_0 și R_1

Probabilitatea de eroare

▶ Probabilitatea unei alarme false este:

$$P(D_1 \cap H_0) = P(D_1|H_0) \cdot P(H_0)$$

$$= \int_{R_1} w(r|H_0) dx \cdot P(H_0)$$

$$= (1 - \int_{R_0} w(r|H_0) dx \cdot P(H_0)$$

Probabilitatea de pierdere este:

$$P(D_0 \cap H_1) = P(D_0|H_1) \cdot P(H_1)$$

= $\int_{R_0} w(r|H_1) dx \cdot P(H_1)$

Probabilitatea totală a erorilor (suma lor) este:

$$P_{e} = P(H_{0}) + \int_{-\infty}^{T} [w(r|H_{1}) \cdot P(H_{1}) - w(r|H_{0}) \cdot P(H_{0})] dx$$

Probabilitatea de eroare minimă

- ightharpoonup Urmărim minimizarea P_e , adică să minimizăm integrala
- ightharpoonup Putem alege R_0 cum dorim, pentru acest scop
- Pentru a minimiza integrala, se alege R_0 astfel încât pentru toți $r \in R_0$, termenul din integrala este **negativ**
 - integrarea pe întregul interval în care o funcție este negativă conduce la valoarea minimă
- Aşadar, când $w(r|H_1) \cdot P(H_1) w(r|H_0) \cdot P(H_0) < 0$ avem $r \in R_0$, adică decizia D_0
- ▶ Invers, dacă $w(r|H_1) \cdot P(H_1) w(r|H_0) \cdot P(H_0) > 0$ avem $r \in R_1$, adică decizia D_1
- Astfel

$$w(r|H_1) \cdot P(H_1) - w(r|H_0) \cdot P(H_0) \underset{H_0}{\overset{H_1}{\geqslant}} 0$$

$$\frac{w(r|H_1)}{w(r|H_0)} \underset{H_0}{\overset{H_1}{\geqslant}} \frac{P(H_0)}{P(H_1)}$$

Criteriul probabilității minime de eroare

► Criteriul probabilității minime de eroare (MPE):

$$\frac{w(r|H_1)}{w(r|H_0)} \underset{H_0}{\overset{H_1}{\geqslant}} \frac{P(H_0)}{P(H_1)}$$

prescurtat MPE (Minimum Probability of Error)

Interpretare

- Criteriul MPE este o generalizare a criteriului ML, depinde de probabilitățile celor două ipoteze (cazuri, simboluri)
 - se exprimă tot sub forma unui raport de plauzibilitate
- ► Când una dintre ipoteze este mai probabilă decât cealaltă, pragul este împins în favoarea sa, înspre cealaltă ipoteză
- ► Criteriul ML este un caz particular al MPE pentru for $P(H_0) = P(H_1) = \frac{1}{2}$

Criteriul probabilității minime de eroare - zgomot gaussian

• Presupunând că zgomotul este gaussian (normal), $\mathcal{N}(0, \sigma^2)$

$$w(r|H_1) = e^{-\frac{(r-s_1(t_0))^2}{2\sigma^2}}$$
$$w(r|H_0) = e^{-\frac{(r-s_0(t_0))^2}{2\sigma^2}}$$

Se aplică logaritmul natural

$$-\frac{(r-s_1(t_0))^2}{2\sigma^2} + \frac{(r-s_0(t_0))^2}{2\sigma^2} \mathop{\gtrless}_{H_0}^{H_1} \ln\left(\frac{P(H_0)}{P(H_1)}\right)$$

► Echivalent

$$(r-s_0(t_0))^2 \stackrel{H_1}{\geq} (r-s_1(t_0))^2 + 2\sigma^2 \cdot \ln\left(\frac{P(H_0)}{P(H_1)}\right)$$

sau, dacă se desfac parantezele:

$$r \underset{H_0}{\overset{H_1}{\geqslant}} \frac{s_0(t_0) + s_1(t_0)}{2} + \frac{\sigma^2}{s_1(t_0) - s_0(t_0)} \cdot \ln\left(\frac{P(H_0)}{P(H_1)}\right)$$

Interpretarea 1: Comparație între distanțe

La criteriul ML, se compară distanțele (la pătrat):

$$|r-s_0(t_0)| \stackrel{H_1}{\underset{H_0}{\gtrless}} |r-s_1(t_0)|$$
 $(r-s_0(t_0))^2 \stackrel{H_1}{\underset{H_0}{\gtrless}} (r-s_1(t_0))^2$

▶ La criteriul MPE, se compară pătratul distanțelor, dar cu un termen suplimentar în favoarea ipotezei mai probabile:

$$(r-s_0(t_0))^2 \underset{H_0}{\overset{H_1}{\geqslant}} (r-s_1(t_0))^2 + 2\sigma^2 \cdot \ln\left(\frac{P(H_0)}{P(H_1)}\right)$$

▶ termenul depinde de raportul $\frac{P(H_0)}{P(H_1)}$

Interpretarea 2: valoarea de prag

ightharpoonup La criteriul ML, se compară r cu un prag T

$$r \underset{H_0}{\overset{H_1}{\geqslant}} \frac{s_0(t_0) + s_1(t_0)}{2}$$

► La criteriul MPE, pragul este împins înspre ipoteza mai puțin probabilă:

$$r \underset{H_0}{\overset{H_1}{\gtrsim}} \frac{s_0(t_0) + s_1(t_0)}{2} + \frac{\sigma^2}{s_1(t_0) - s_0(t_0)} \cdot \ln\left(\frac{P(H_0)}{P(H_1)}\right)$$

▶ în funcție de raportul $\frac{P(H_0)}{P(H_1)}$

Exerciții

- Fie decizia între două semnale constante: $s_0(t) = -5$ și $s_1(t) = 5$. Semnalele sunt afectate de zgomot alb cu distribuție gaussiană $\mathcal{N}(0, \sigma^2 = 1)$ Receptorul ia un singur eșantion cu valoarea r.
 - a. Să se găsească regiunile de decizie conform criteriului MPE
 - b. Calculați probabilitatea alarmei false și probabilitatea de pierdere
 - c. Repetați a) și b) dacă $s_1(t)$ este afectat de zgomot uniform $\mathcal{U}[-4,4]$?

Criteriul riscului minim

- Dacă ne afectează mai mult un anume tip de erori (de ex. alarme false) decât celelalte (pierderi)?
 - Criteriul MPE tratează toate erorile la fel
 - ► Ne trebuie un criteriu mai general
- Idee: se atribuie un cost fiecărui scenariu, apoi se minimizează costul mediu
- $lackbox{C}_{ij} = \mathsf{costul}$ deciziei D_i când ipoteza adevărată este H_j
 - $ightharpoonup C_{00} = \text{costul unei rejecții corecte}$
 - $ightharpoonup C_{10} = \text{costul unei alarme false}$
 - $ightharpoonup C_{01} = costul unei pierderi$
 - $ightharpoonup C_{11} = \text{costul unei detecții corecte}$
- ▶ Ideea de "costuri" și minimizarea costului mediu este general întâlnită
 - ▶ de ex. TCI: codare: "costul" unui mesaj este lungimea cuvântului de cod, vrem să minimizăm costul mediu, adică lungimea medie

Criteriul riscului minim

► Definim **riscul** = **media costurilor**

$$R = C_{00}P(D_0 \cap H_0) + C_{10}P(D_1 \cap H_0) + C_{01}P(D_0 \cap H_1) + C_{11}P(D_1 \cap H_1)$$

- Criteriul riscului minim: se minimizează riscul R
 - adică se minimizează costul mediu
 - se mai numeste "criteriul costului minim"

Calcule

- Demonstratie la tablă
 - se folosește regula lui Bayes
- ► Concluzie: regula de decizie este

$$\frac{w(r|H_1)}{w(r|H_0)} \underset{H_0}{\overset{H_1}{\geqslant}} \frac{(C_{10} - C_{00})p(H_0)}{(C_{01} - C_{11})p(H_1)}$$

Criteriul riscului minim

Criteriul riscului minim (MR):

$$\frac{w(r|H_1)}{w(r|H_0)} \underset{H_0}{\overset{H_1}{\geqslant}} \frac{(C_{10} - C_{00})p(H_0)}{(C_{01} - C_{11})p(H_1)}$$

* prescurtat MR (Minimum Risk)

Interpretare

- Criteriul MR este o generalizare a MPE (la rândul lui o generalizare a ML)
 - se exprimă tot printr-un raport de plauzibilitate
- Atât probabilitățile cât și costurile pot influența decizia în favoarea uneia sau alteia dintre ipoteze
- lacktriangle Caz particular: dacă $C_{10}-C_{00}=C_{01}-C_{11}$, MR se reduce la criteriul MPE
 - de ex.: dacă $C_{00} = C_{11} = 0$ și $C_{10} = C_{01}$

În zgomot gaussian

- Dacă zgomotul este gaussian (normal), la fel ca lal celelalte criterii, se aplică logaritmul natural
- Se obţine:

$$(r-s_0(t_0))^2 \underset{H_0}{\overset{H_1}{\gtrless}} (r-s_1(t_0))^2 + 2\sigma^2 \cdot \ln\left(\frac{(C_{10}-C_{00})p(H_0)}{(C_{01}-C_{11})p(H_1)}\right)$$

sau

$$r \underset{\textit{H}_0}{\overset{\textit{H}_1}{\geqslant}} \frac{s_0(t_0) + s_1(t_0)}{2} + \frac{\sigma^2}{s_1(t_0) - s_0(t_0)} \cdot \ln \left(\frac{(\textit{C}_{10} - \textit{C}_{00}) p(\textit{H}_0)}{(\textit{C}_{01} - \textit{C}_{11}) p(\textit{H}_1)} \right)$$

Interpretarea 1: Comparație între distanțe

La criteriul MPE, se compară pătratul distanțelor, dar cu un termen suplimentar în favoarea ipotezei mai probabile:

$$(r-s_0(t_0))^2 \underset{H_0}{\overset{H_1}{\geqslant}} (r-s_1(t_0))^2 + 2\sigma^2 \cdot \ln\left(\frac{P(H_0)}{P(H_1)}\right)$$

- ▶ termenul depinde de raportul $\frac{P(H_0)}{P(H_1)}$
- La criteriul MR, pe lângă probabilități apar și costurile

$$(r-s_0(t_0))^2 \underset{H_0}{\overset{H_1}{\geqslant}} (r-s_1(t_0))^2 + 2\sigma^2 \cdot \ln\left(\frac{(C_{10}-C_{00})p(H_0)}{(C_{01}-C_{11})p(H_1)}\right)$$

Interpretarea 2: Valoarea de prag

La criteriul MPE, pragul este împins înspre ipoteza mai puțin probabilă:

$$r \underset{H_0}{\overset{H_1}{\geqslant}} \frac{s_0(t_0) + s_1(t_0)}{2} + \frac{\sigma^2}{s_1(t_0) - s_0(t_0)} \cdot \ln\left(\frac{P(H_0)}{P(H_1)}\right)$$

- ▶ în funcție de raportul $\frac{P(H_0)}{P(H_1)}$
- La criteriul MR, pragul este influențat și de costuri

$$r \underset{H_0}{\overset{H_1}{\geqslant}} \frac{s_0(t_0) + s_1(t_0)}{2} + \frac{\sigma^2}{s_1(t_0) - s_0(t_0)} \cdot \ln\left(\frac{(C_{10} - C_{00})p(H_0)}{(C_{01} - C_{11})p(H_1)}\right)$$

Influența costurilor

- Criteriul MR împinge decizia înspre minimizarea scenariilor cu cost ridicat
- Exemplu: din ecuații:
 - ightharpoonup ce se întâmplă dacă costul C_{01} crește, iar celelalte rămân la fel?
 - ightharpoonup ce se întâmplă dacă costul C_{10} crește, iar celelalte rămân la fel?
 - ightharpoonup ce se întâmplă dacă ambele costuri C_{01} și C_{10} cresc, iar celelalte rămân la fel?

Forma generală a criteriilor ML, MPE si MR

Criteriile ML, MPE și MR au toate forma următoare

$$\frac{w(r|H_1)}{w(r|H_0)} \underset{H_0}{\overset{H_1}{\geqslant}} K$$

- ightharpoonup pentru ML: K=1
- pentru MPE: $K = \frac{P(H_0)}{P(H_1)}$ pentru MR: $K = \frac{(C_{10} C_{00})p(H_0)}{(C_{01} C_{11})p(H_1)}$

Forma generală a criteriilor ML, MPE și MR

În zgomot gaussian, criteriile se reduc la:

Compararea pătratului distanțelor:

$$(r-s_0(t_0))^2 \underset{H_0}{\stackrel{H_1}{\gtrless}} (r-s_1(t_0))^2 + 2\sigma^2 \cdot \ln(K)$$

ightharpoonup Compararea eșantionului r cu un prag T:

$$r \underset{H_0}{\gtrless} \underbrace{\frac{s_0(t_0) + s_1(t_0)}{2} + \frac{\sigma^2}{s_1(t_0) - s_0(t_0)} \cdot \ln(K)}_{T}$$

Exercițiu

- ▶ Un sistem *airbag* detectează un accident prin eșantionarea semnalului de la un senzor cu 2 valori posibile: $s_0(t) = 0$ (OK) sau $s_1(t) = 5$ (accident).
- ▶ Semnalul este afectat de zgomot gaussian \mathcal{N} ($\mu = 0, \sigma^2 = 1$).
- Se ia un singur eșantion din semnal.
- ▶ Costurile scenariilor sunt: $C_{00} = 0$, $C_{01} = 100$, $C_{10} = 10$, $C_{11} = -100$
 - a. Găsiți regiunile de decizie R_0 și R_1 .

Criteriul Neyman-Pearson

- ▶ Un criteriu mai general decât toate cele de până acum
- ▶ Criteriul Neyman-Pearson: se maximizează probabilitatea de detecție $(P(D_1 \cap H_1))$ păstrând probabilitatea alarmei false sub o limită fixată $(P(D_1 \cap H_0) \leq \lambda)$
 - Se deduce pragul T din constrângerea la limită $P(D_1 \cap H_0) = \lambda$
- ightharpoonup Criteriile ML, MPE și MR sunt cazuri particulare ale Neyman-Pearson, pentru diverse valori ale λ .

Exercițiu

- O sursă de informație produce două mesaje cu probabilitățile $p(a_0) = \frac{2}{3}$ și $p(a_1) = \frac{1}{3}$.
- Mesajele sunt codate ca semnale constante cu valorile -5 (a_0) și 5 (a_1) .
- Semnalele sunt afectate de zgomot alb cu distribuție uniformă U[-5,5].
- \triangleright Receptorul ia un singur eșantion r.
 - a. Găsiți regiunile de decizie conform criteriului Neymar-Pearson, pentru $P_{\rm fa} \leq 10^{-2}$
 - b. Care este probabilitatea de detecție corectă?

Aplicație: Semnale diferențiale sau unipolare

- Aplicație: transmisie binară cu semnale constante (de ex. nivele constante de tensiune)
- Două modalităti frecvent întâlnite:
 - Semnal unipolar: o valoare este 0, cealaltă este nenulă
 - $> s_0(t) = 0, s_1(t) = A$
 - Semnal diferențial: două valori nenule cu semne contrare, aceeași valoare absolută
 - $ightharpoonup s_0(t) = -\frac{A}{2}, \ s_1(t) = \frac{A}{2}$
- Care metodă este mai bună?

Semnale diferențiale sau unipolare

- ► Pentru că există aceeași diferență între nivele, performanțele deciziei sunt identice
- Dar puterea medie a semnalelor diferă
- Pentru semnale diferențiale: $P = \left(\pm \frac{A}{2}\right)^2 = \frac{A^2}{4}$
- Pentru semnale unipolare: $P = P(H_0) \cdot 0 + P(H_1)(A)^2 = \frac{A^2}{2}$
 - ightharpoonup presupunând probabilități egale $P(H_0)=P(H_1)=rac{1}{2}$
- Semnalul diferențial necesită putere la jumătate față de cel unipolar (mai bine)

Sumar: criterii de decizie

- Am văzut: decizie între două semnale, bazată pe 1 eșantion
- ► Toate criteriile au la bază raportul de plauzibilitate

$$\frac{w(r|H_1)}{w(r|H_0)} \underset{H_0}{\overset{H_1}{\geqslant}} K$$

- Criterii diferite conduc la valori diferite pentru K
- ▶ În funcție de distribuția zgomotului, axa reală este împărțită în regiuni de decizie
 - regiunea R_0 : dacă r este aici, se decide D_0
 - regiunea R_1 : dacă r este aici, se decide D_1
- Pentru zgomot gaussian, granița între regiuni (valoarea de prag) este:

$$T = \frac{s_0(t_0) + s_1(t_0)}{2} + \frac{\sigma^2}{s_1(t_0) - s_0(t_0)} \cdot \ln(K)$$

Caracteristica de operare a receptorului (ROC)

- Performanța unui receptor este ilustrată cu un grafic numit "Caracteristica de operare a receptorului" ("Receiver Operating Characteristic", ROC)
- ▶ Reprezintă probabilitatea $P_d = P(D_1|H_1)$ în funcție de probabilitatea $P_{af} = P(D_1|H_0)$

Figure 3: Sample ROC curves

Caracteristica de operare a receptorului (ROC)

- ightharpoonup Există întotdeauna un **compromis** între P_d (bun) și $P_{fa}(rău)$
 - ightharpoonup creșterea P_d implică și creșterea P_{fa}
 - **p**entru a fi siguri că nu ratăm nici un semnal (creșterea P_d), plătim prin creșterea probabilității de alarme false
- ▶ Criterii diferite = diferite praguri K = diferite puncte pe grafic = compromisuri diferite
- Cum să creștem performanțele unui receptor?
 - ightharpoonup adică să creștem P_D menținând P_{fa} la aceeași valoare

Examen 2018-2019

► Următoarele trei slide-uri nu se cer pentru examenul 2018-2019 (până la Raportul semnal zgomot).

Performanțele detecției în zgomot alb gaussian

- Considerăm probabilități egale $P(H_0) = P(H_1) = \frac{1}{2}$
 - ▶ Sau, echivalent, considerăm doar probabilități condiționate
- ▶ Deciziile se iau pe baza raportului de plauzibilitate

$$\frac{w(r|H_1)}{w(r|H_0)} \underset{H_0}{\overset{H_1}{\geqslant}} K$$

▶ Probabilitatea detecției corecte este

$$P_{d} = P(D_{1}|H_{1})$$

$$= \int_{T}^{\infty} w(r|H_{1})$$

$$= (F(\infty) - F(T))$$

$$= \frac{1}{2} \left(1 - erf\left(\frac{T - s_{1}(t_{0})}{\sqrt{2}\sigma}\right) \right)$$

$$= Q\left(\frac{T - s_{1}(t_{0})}{\sqrt{2}\sigma}\right)$$

Performanțele detecției în zgomot alb gaussian

Probabilitatea alarmei false este

$$\begin{aligned} P_{fa} = & P(D_1|H_0) \\ &= \int_T^\infty w(r|H_0) \\ &= & (F(\infty) - F(T)) \\ &= & \frac{1}{2} \left(1 - erf\left(\frac{T - s_0(t_0)}{\sqrt{2}\sigma}\right) \right) \\ &= & Q\left(\frac{T - s_0(t_0)}{\sqrt{2}\sigma}\right) \end{aligned}$$

- Problem Rezultă $\frac{T-s_0(t_0)}{\sqrt{2}\sigma}=Q^{-1}(P_{fa}),$
- Şi: $\frac{T s_1(t_0)}{\sqrt{2}\sigma} = Q^{-1}(P_{fa}) + \frac{s_0(t_0) s_1(t_0)}{\sqrt{2}\sigma}$

Performanțele detecției în zgomot alb gaussian

ightharpoonup Înlocuind în P_d , obținem:

$$P_d = Q\left(\underbrace{Q^{-1}(P_{fa})}_{constant} + \frac{s_0(t_0) - s_1(t_0)}{\sqrt{2}\sigma}\right)$$

- Fie un scenariu simplu:
 - $ightharpoonup s_0(t_0) = 0$
 - $ightharpoonup s_1(t_0) = A = constant$
- Obţinem:

$$P_d = Q\left(\underbrace{Q^{-1}(P_{fa})}_{constant} - \frac{A}{\sqrt{2}\sigma}\right)$$

Raportul semnal zgomot

- Raportul semnal zgomot (SNR) = $\frac{\text{puterea semnalului original}}{\text{puterea zgomotului}}$
- Puterea medie a unui semnal = valoarea pătratică medie = $\overline{X^2}$
 - Puterea semnalului original este $\frac{A^2}{2}$
 - lacktriangle Puterea zgomotului este $\overline{X^2}=\sigma^2$ (pentru valoare medie nulă $\mu=0$)
- ightharpoonup În cazul nostru, SNR = $\frac{A^2}{2\sigma^2}$

$$P_d = Q \left(\underbrace{Q^{-1}(P_{fa})}_{constant} - \sqrt{SNR} \right)$$

- Pentru P_{fa} de valoare fixă, P_d crește odată cu SNR
 - Q este o functie monoton descrescătoare

Performanța depinde de SNR

- Performanța receptorului crește odată cu creșterea SNR
 - ► SNR mare: performanță bună
 - SNR mic: performanță slabă

Figure 4: Performanțele detecției depind de SNR

[sursa: Fundamentals of Statistical Signal Processing, Steven Kay]

Alte aplicații ale teoriei deciziei

- Se pot utiliza aceste criterii de decizie în alte aplicații?
 - nu pentru a decide între semnale, ci în alte scopuri
- Matematic, problema se pune sub forma următoare:
 - avem 2 (sau mai multe) distribuții posibile
 - avem 1 valoare observată
 - determinăm cea mai plauzibilă distribuție, pe baza valorii observate
- ▶ În acest caz particular, decidem între două semnale
- ▶ Dar acest model matematic se poate aplica și în alte contexte:
 - medicină: un semnal ECG indică o boală sau nu?
 - business: va cumpăra clientul un produs, sau nu?
 - De obicei se folosesc mai multe eșantioane, dar principiul matematic este același

Alte aplicații ale teoriei deciziei

Exemplu (pur imaginar):

- ▶ O persoană sănătoasă cu greutatea = X kg are concentrația de trombocite pe ml de sânge distribuită aproximativ \mathcal{N} ($\mu = 10 \cdot X$, $\sigma^2 = 20$).
- ▶ O persoană suferind de boala B are o valoare mult mai scăzută, distribuită aproximativ \mathcal{N} (100, $\sigma^2 = 10$).
- ▶ În urma analizelor de laborator, ai obținut valoarea r=255. Greuatea ta este 70 kg.
- Decideti: sănătos sau nu?

Eșantioane multiple dintr-un semnal

- Contextul rămâne același:
 - \triangleright Se transmite un semnal s(t)
 - Există două ipoteze:
 - ► H_0 : semnalul original este $s(t) = s_0(t)$
 - ▶ H_1 : semnalul original este $s(t) = s_1(t)$
 - Receptorul poate lua două decizii:
 - ▶ D_0 : se decide că semnalul a fost $s(t) = s_0(t)$
 - ▶ D_1 : se decide că semnalul a fost $s(t) = s_1(t)$
 - Există 4 scenarii posibile

Eșantioane multiple dintr-un semnal

- \triangleright Fiecare eșantion r_i este o variabilă aleatoare
 - $ightharpoonup r(t_i) = s(t_i) + n(t_i) = \text{constant} \breve{a} + o \text{ v.a.}$
- ▶ Vectorul **r** reprezintă un set de *N* v.a. dintr-un proces aleator
- ► Considerând întreg vectorul **r**, valorile vectorului **r** sunt descrise de **distributii de ordin** *N*
- ightharpoonup În ipoteza H_0 :

$$w_N(\mathbf{r}|H_0) = w_N(r_1, r_2, ... r_N|H_0)$$

▶ În ipoteza *H*₁:

$$w_N(\mathbf{r}|H_1) = w_N(r_1, r_2, ... r_N|H_1)$$

Plauzibilitatea vectorului de eșantioane

► Se aplică aceleași criterii bazate pe raportul de plauzibilitate în cazul unui singur eșantion

$$\frac{w_N(\mathbf{r}|H_1)}{w_N(\mathbf{r}|H_0)} \underset{H_0}{\overset{H_1}{\geqslant}} K$$

- Observatii
 - r este un vector; prin el se consideră plauzibilitatea tuturor eșantioanelor
 - $ightharpoonup w_N(\mathbf{r}|H_0)=$ plauzibilitatea vectorului \mathbf{r} în ipoteza H_0
 - $ightharpoonup w_N(\mathbf{r}|H_1) = \text{plauzibilitatea vectorului } \mathbf{r}$ în ipoteza H_1
 - ▶ valoarea lui K este dată de criteriul de decizie utilizat
- Interpretare: se alege ipoteza cea mai plauzibilă de a fi generat datele observate
 - ▶ identic ca la 1 eșantion, doar că acum datele = mai multe eșantioane

Descompunere

- ightharpoonup Presupunând că zgomotul este alb, eșantioanele r_i sunt independente
- ▶ În acest caz, distribuția totală $w_N(\mathbf{r}|H_j)$ se poate descompune ca un produs

$$w_N(\mathbf{r}|H_j) = w(r_1|H_j) \cdot w(r_2|H_j) \cdot \dots \cdot w(r_N|H_j)$$

- ▶ Termenii $w(r_i|H_j)$ sunt plauzibilitățile fiecărui eșantion în parte
 - ▶ de ex. plauzibilitatea obținerii vectorului [5.1,4.7,4.9] = plauzibilitatea obținerii lui $5.1 \times$ plauzibilitatea obținerii lui $4.7 \times$ plauzibilitatea obținerii lui 4.9
- Funcțiile $w(r_i|H_i)$ sunt distribuțiile condiționate ale fiecărui eșantion
 - de care am mai văzut deja

Descompunere^l

Prin urmare, criteriile bazate pe raportul de plauzibilitate devin

$$\frac{w_N(\mathbf{r}|H_1)}{w_N(\mathbf{r}|H_0)} = \frac{w(r_1|H_1)}{w(r_1|H_0)} \cdot \frac{w(r_2|H_1)}{w(r_2|H_0)} ... \frac{w(r_N|H_1)}{w(r_N|H_0)} \underset{H_0}{\overset{H_1}{\gtrsim}} K$$

- ► Raportul de plauzibilitate al unui vector de eșantioane = produsul rapoartelor plauzibilitate ale fiecărui eșantion
- ➤ **Se înmulțesc** rapoartele de plauzibilitate ale fiecărui eșantion în parte, și se aplică criteriile asupra rezultatului final

Criterii de decizie

► Toate criteriile de decizie pot fi scrise astfel:

$$\frac{w_N(\mathbf{r}|H_1)}{w_N(\mathbf{r}|H_0)} = \frac{w(r_1|H_1)}{w(r_1|H_0)} \cdot \frac{w(r_2|H_1)}{w(r_2|H_0)} ... \frac{w(r_N|H_1)}{w(r_N|H_0)} \overset{H_1}{\underset{H_0}{\gtrless}} K$$

- ▶ Valoarea lui K se alege ca pentru 1 esantion:
 - riteriul ML: K = 1
 - riteriul MPE: $K = \frac{P(H_0)}{P(H_1)}$
 - riteriul MR: $K = \frac{(C_{10} C_{00})p(H_0)}{(C_{01} C_{11})p(H_1)}$

Caz particular: AWGN

- ► AWGN = "Additive White Gaussian Noise" = Zgomot alb, gaussian, aditiv
- În ipoteza H_1 : $w(r_i|H_1) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(r_i-s_1(t_i))^2}{2\sigma^2}}$
- În ipoteza H_0 : $w(r_i|H_0) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(r_i-s_1(t_i))^2}{2\sigma^2}}$
- ► Raportul de plauzibilitate al vectorului r

$$\frac{w_N(\mathbf{r}|H_1)}{w_N(\mathbf{r}|H_0)} = \frac{e^{-\frac{\sum (r_i - s_1(t_i))^2}{2\sigma^2}}}{e^{-\frac{\sum (r_i - s_0(t_i))^2}{2\sigma^2}}} = e^{\frac{\sum (r_i - s_0(t_i))^2 - \sum (r_i - s_1(t_i))^2}{2\sigma^2}}$$

Criterii de decizie pentru AWGN

▶ Raportul de plauzibilitate global se compară cu K:

$$\frac{w_N(\mathbf{r}|H_1)}{w_N(\mathbf{r}|H_0)} = e^{\frac{\sum (r_i - s_0(t_i))^2 - \sum (r_i - s_1(t_i))^2}{2\sigma^2}} \underset{H_0}{\overset{H_1}{\gtrless}} K$$

► Se aplică logaritmul natural, obținându-se:

$$\sum (r_i - s_0(t_i))^2 \underset{H_0}{\overset{H_1}{\geq}} \sum (r_i - s_1(t_i))^2 + 2\sigma^2 \ln(K)$$

Interpretarea 1: distanța geometrică

Sumele reprezintă distanța geometrică la pătrat:

distanța între vectorul observat \mathbf{r} și semnalele originale $s_1(t)$, respectiv $s_0(t)$

 $\sum (r_i - s_1(t_i))^2 = ||\mathbf{r} - \mathbf{s_1}(\mathbf{t})||^2 = d(\mathbf{r}, s_1(t))^2$

- ightharpoonup vectori cu N eșantioane => distanța între vectori de dimensiune N
- Totul se reduce la a compara distanțele

Interpretarea 1: distanța geometrică

- Criteriul Maximum Likelihood:
 - K = 1, ln(K) = 0
 - ightharpoonup se alege **distanța minimă** între **r** și vectorii $s_1(t)$, respectiv $s_0(t)$)
 - de unde și numele "receptor de distanță minimă"
- Criteriul Minimum Probability of Error:
 - $K = \frac{P(H_0)}{P(H_1)}$
 - Apare un termen suplimentar, în favoarea ipotezei mai probabile
- Criteriul Minimum Risk:
 - $K = \frac{(C_{10} C_{00})p(H_0)}{(C_{01} C_{11})p(H_1)}$
 - Termenul suplimentar depinde și de probabilități, și de costuri

Exercițiu

Exercițiu:

- ▶ Un semnal poate avea două valori, 0 (ipoteza H_0) sau 6 (ipoteza H_1). Semnalul este afectat de AWGN $\mathcal{N}(0, \sigma^2 = 1)$. Receptorul ia 5 eșantioane cu valorile $\{1.1, 4.4, 3.7, 4.1, 3.8\}$.
 - a. Ce decizie se ia conform criteriului plauzibilitătii maxime?
 - b. Ce decizie se ia conform criteriului probabilității minime de eroare. dacă $P(H_0) = 2/3$ si $P(H_1) = 1/3$?
 - c. Ce decizie se ia conform criteriului roscului minim. dacă $P(H_0)=2/3$ și $P(H_1)=1/3$, iar $C_{00}=0$, $C_{10}=10$, $C_{01}=20$, $C_{11}=5$?

Alt exercițiu

Alt exercitiu:

- ▶ Fie detecția unui semnal $s(t) = 3\sin(2\pi ft)$ care poate fi prezent (ipoteza H_1) sau absent ($s_0(t) = 0$, ipoteza H_0). Semnalul este afectat de zgomot alb Gaussian $\mathcal{N}(0, \sigma^2 = 1)$. Receptorul ia două esantioane.
 - a. Care sunt cele mai bune momente de eșantionare t_1 și t_2 pentru a maximiza performanțele detecției?
 - b. Receptorul ia două eșantioane $\{1.1,4.4\}$, la momentele de timp $t_1=\frac{0.125}{f}$ și $t_2=\frac{0.625}{f}$. Care este decizia, conform criteriului plauzibilității maxime?â
 - c. Dacă se folosește criteriul probabilității minime de eroare, cu $P(H_0) = 2/3$ și $P(H_1) = 1/3$?
 - d. Dacă se folosește criteriul riscului minim, cu $P(H_0) = 2/3$ și $P(H_1) = 1/3$, iar $C_{00} = 0$, $C_{10} = 10$, $C_{01} = 20$, $C_{11} = 5$?
 - e. Dar dacă receptorul ia un al treilea eșantion la momentul $t_3 = \frac{0.5}{f}$. Se poate îmbunătăti detectia?

► Dacă se descompun parantezele:

$$\sum (r_i - s_0(t_i))^2 \underset{H_0}{\overset{H_1}{\geq}} \sum (r_i - s_1(t_i))^2 + 2\sigma^2 \ln(K)$$

► Se obtine:

$$\sum (r_i)^2 + \sum s_0(t_i)^2 - 2\sum r_i s_0(t_i) \underset{H_0}{\overset{H_1}{\geqslant}} \sum (r_i)^2 +$$

$$+ \sum s_1(t_i)^2 - 2\sum r_i s_1(t_i) + 2\sigma^2 \ln(K)$$

Echivalent cu:

$$\sum r_i s_1(t_i) - rac{\sum (s_1(t_i))^2}{2} \mathop{\gtrless}_{H_0}^{H_1} \sum r_i s_0(t_i) - rac{\sum (s_0(t_i))^2}{2} + \sigma^2 \ln(\mathcal{K})$$

Algebră: produsului scalar al vectorilor a și b:

$$\langle a,b\rangle = \sum_i a_i b_i$$

- $\sum r_i s_1(t_i) = \langle \mathbf{r}, \mathbf{s_1(t)} \rangle \text{ este produsul scalar al vectorului}$ $\mathbf{r} = [r_1, r_2, ... r_N] \text{ cu } \mathbf{s_1(t_i)} = [s_1(t_1), s_1(t_2), ... s_1(t_N)]$
- $\sum r_i s_0(t_i) = \langle \mathbf{r}, \mathbf{s_0(t)} \rangle \text{ este produsul scalar al vectorului}$ $\mathbf{r} = [r_1, r_2, ... r_N] \text{ cu } \mathbf{s_0(t_i)} = [s_0(t_1), s_0(t_2), ... s_0(t_N)]$
- $\sum (s_1(t_i))^2 = \sum s_1(t_i) \cdot s_1(t_i) = \langle \mathbf{s_1(t)}, \mathbf{s_1(t)} \rangle = E_1$ este **energia** vectorului $s_1(t)$
- $\sum (s_0(t_i))^2 = \sum s_0(t_i) \cdot s_0(t_i) = \langle \mathbf{s_0(t)}, \mathbf{s_0(t)} \rangle = E_0$ este **energia** vectorului $s_0(t)$

Decizia se poate rescris sub forma:

$$\langle \mathbf{r}, \mathbf{s_1} \rangle - \frac{E_1}{2} \underset{H_0}{\overset{H_1}{\geqslant}} \langle \mathbf{r}, \mathbf{s_0} \rangle - \frac{E_0}{2} + \sigma^2 \ln(K)$$

- ► Interpretare: comparăm produsele scalare
 - > se scad energiile semnalelor, pentru o comparatie corectă
 - există de asemenea termenul care depinde de criteriul ales
- Caz particular:
 - Dacă cele două semnale au energii egale:

$$E_1 = \sum s_1(t_i)^2 = E_0 = \sum s_0(t_i)^2$$

- Exemple:
 - ▶ modulație BPSK: $s_1 = A\cos(2\pi ft)$, $s_0 = -A\cos(2\pi ft)$
 - modulație 4-PSK: $s_{n=0,1,2,3} = A\cos(2\pi ft + n\frac{\pi}{4})$
- ► Atunci formula se simplifică:

$$\langle \mathbf{r}, \mathbf{s_1} \rangle \overset{H_1}{\underset{H_0}{\gtrless}} \langle \mathbf{r}, \mathbf{s_0} \rangle + \sigma^2 \ln(K)$$

- ▶ În domeniul prelucrărilor de semnale, produsul scalar măsoară similitudinea a două semnale
- Interpretare: verificăm dacă vectorul eșantioanelor \mathbf{r} este mai asemănător cu $s_1(t)$ sau cu $s_0(t)$
 - ► Se alege cel mai similar cu r
 - Se scad și energiile semnalelor (necesar d.p.d.v. matematic)

Legătura între produs scalar și corelație

Produsul scalar al vectorilor a și b:

$$\langle a,b\rangle=\sum_i a_ib_i$$

► Funcția de corelație (temporală):

$$R_{ab}[\tau] = E\{a_i b_{i+\tau}\}$$

Funcția de corelatie (temporală) pentru $\tau = 0$:

$$R_{ab}[0] = E\{a_ib_i\} = \frac{1}{N}\sum_i a_ib_i$$

- Produsul scalar = funcția de corelație în $\tau = 0$
 - ightharpoonup cu un factor de scalare $\frac{1}{N}$ în față

Implementare cu circuite de corelare

Figure 5: Decizie între două semnale

[sursa: Fundamentals of Statistical Signal Processing, Steven Kay]

Filtru adaptat

Cum se calculează produsul scalar a două semnale r[n] și s[n] de lungime N?

$$\langle \mathbf{r}, \mathbf{s} \rangle = \sum r_i s(t_i)$$

- Fie h[n] semnalul h[n] oglindit
 - ightharpoonup începe la momentul 0, durează până la momentul N-1, dar este oglindit

$$h[n] = s[N-1-n]$$

- Exemplu:
 - ▶ dacă s[n] = [1, 2, 3, 4, 5, 6]
 - ▶ atunci h[n] = s[N-1-n] = [6, 5, 4, 3, 2, 1]

Filtru adaptat

▶ Convoluția lui r[n] cu h[n] este

$$y[n] = \sum_{k} r[k]h[n-k] = \sum_{k} r[k]h[N-1-n+k]$$

Rezultatul convoluției, la finalul semnalului de intrare, y[N-1] (n=N-1), este chiar produsul scalar:

$$y[N-1] = \sum_{k} r[k]s[k]$$

Filtru adaptat

Pentru detecția unui semnal s[n] se poate folosi un **filtru a cărui răspuns la impuls = oglindirea lui** s[n], luându-se eșantionul de la finalul semnalului de intrare

$$h[n] = s[N-1-n]$$

- se obţine valoarea produsului scalar
- ▶ Filtru adaptat = un filtru proiectat să aibă răspunsul la impuls egal cu oglindirea semnalului care se dorește a fi detectat (eng. "matched filter")
 - ▶ filtrul este *adaptat* semnalului dorit

Detecția semnalelor cu filtre adaptate

- ightharpoonup Se folosește un filtru adaptat la semnalul $s_1(t_i)$
- lacktriangle Se folosește un filtru adaptat la semnalul $s_0(t_i)$
- ightharpoonup Se esantionează ieșirile la momentul final n=N-1
 - se obțin valorile produselor scalare
- Se folosește regula de decizie cu produse scalare

Detecția semnalelor cu filtre adaptate

Dacă $s_0(t) = 0$, avem nevoie doar de un singur filtru adaptat pentru $s_1(t)$, și se compară rezultatul cu un prag

Figure 6: Detecție folosind un filtru adaptat

[sursa: Fundamentals of Statistical Signal Processing, Steven Kay]

II.4 Detecția unui semnal oarecare cu observare continuă

Observarea continuă a unui semnal oarecare

- Observare continuă = fără eșantionare, se folosește întreg semnalul continuu
 - ightharpoonup similar cazului cu N esantioane, dar cu $N o \infty$
- ▶ Semnalele originale sunt $s_0(t)$ si $s_1(t)$
- ► Semnalele sunt afectate de zgomot
 - Presupunem doar zgomot Gaussian, pentru simplitate
- ▶ Semnalul recepționat este r(t)

Spațiu Euclidean

- ightharpoonup Se extinde cazul precedent cu N eșantioane la cazul unui semnal continuu, $N o \infty$
- Fiecare semnal r(t), $s_1(t)$ și $s_0(t)$ reprezintă un punct într-un spațiu Euclidian infinit dimensional
- Distanta între două semnale este:

$$d(\mathbf{r},\mathbf{s}) = \sqrt{\int (r(t) - s(t))^2 dt}$$

Produsul scalar între două semnale:

$$\langle \mathbf{r}, \mathbf{s} \rangle = \int r(t) s(t) dt$$

► Similar cu cazul N dimensional, dar cu integrală în loc de sumă

Decizie în cazul AWGN: distante

În cazul AWGN este aceeași regula de decizie:

$$d(\mathbf{r}, \mathbf{s_0})^2 \underset{H_0}{\overset{H_1}{\geqslant}} d(\mathbf{r}, \mathbf{s_1})^2 + 2\sigma^2 \ln(K)$$

- Distanța = se calculează cu formula precedentă, cu integrală
- Aceleași criterii de decizie:
 - Criteriul Maximum Likelihood: K = 1, ln(K) = 0
 - se alege distanța minimă
 - ► Criteriul Minimum Probability of Error: $K = \frac{P(H_0)}{P(H_1)}$
 - ► Criteriul Minimum Risk: $K = \frac{(C_{10} C_{00})p(H_0)}{(C_{01} C_{11})p(H_1)}$

Decizie în cazul AWGN: produse scalare

▶ În cazul AWGN este aceeași regulă de decizie:

$$\langle \mathbf{r}, \mathbf{s_1} \rangle - rac{E_1}{2} \mathop{\gtrless}_{H_0}^{H_1} \langle \mathbf{r}, \mathbf{s_0} \rangle - rac{E_0}{2} + \sigma^2 \ln(K)$$

- ▶ Produsul scalar = formula precedentă, cu integrală
- ► Toate interpretările rămân identice
 - se schimbă doar tipul de semnal cu care lucrăm

Filtru adaptat

- ▶ Produsul scalar a două semnale se poate calcula cu un filtru adaptat
- ► Filtru adaptat = filtru proiectat să aibă răspunsul la impuls egal cu oglindirea semnalului căutat
 - ightharpoonup dacă semnalul original s(t) are lungimea T
 - ightharpoonup atunci h(t) = s(T-t)
 - ▶ filtrul este analogic, răspunsul la impuls este continuu
- leşirea unui filtru adaptat la momentul t=T este egală cu produsul scalar al intrării r(t) cu s(t)

Detecția semnalelor cu filtre adaptate

- ightharpoonup Se folosește un filtru adaptat la semnalul $s_1(t)$
- ightharpoonup Se folosește un alt filtru adaptat la semnalul $s_0(t)$
- \triangleright Se esantionează iesirile filtrelor la sfârșitul semnalelor, t=T
 - se obțin valorile produselor scalare
- Se utilizează regula de decizie cu produse scalare

- Recapitulare: Spații vectoriale Euclidiene
- Spațiu vectorial
 - suma a două elemente = rămâne în același spațiu
 - multiplicarea cu o constantă = rămâne în același spațiu
 - există operații aritmetice de bază: sumă, multiplicare cu o constantă
 - Exemple
 - ► 1D = o dreaptă
 - ► 2D = un plan
 - ▶ 3D = spațiu tridimensional
 - ► N-D = ...
 - ▶ ∞-D = ..

- Operația fundamentală: produsul scalar
 - pentru semnale discrete

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i} x_{i} y_{i}$$

pentru semnale continue

$$\langle \mathbf{x}, \mathbf{y} \rangle = \int x(t)y(t)$$

▶ Norma (lungimea) unui vector = radical(produsul scalar cu sine însuși)

$$\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$$

▶ Distanța între doi vectori = norma diferenței dintre ei

$$d(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|$$

► Energia unui semnal = norma la pătrat

$$E_{\mathsf{x}} = \|\mathbf{x}\|^2 = \langle \mathbf{x}, \mathbf{x} \rangle$$

► Unghiul dintre doi vectori

$$cos(\alpha) = \frac{\langle x, y \rangle}{||x|| \cdot ||y||}$$

- ▶ are valoare între -1 si 1
- ▶ dacă $\langle x, y \rangle = 0$, vectorii sunt **ortogonali** (perpendiculari)

Description Bonus: transformata Fourier = produs scalar cu $e^{j\omega t}$

$$\mathcal{F}\{x(t)\} = \langle x(t), e^{j\omega t} \rangle = \int x(t)e^{-j\omega t}$$

ightharpoonup pentru semnale complexe, al doilea termen se conjugă, de aceea este -j în loc de j

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i} x_{i} y_{i}^{*}$$
 $\langle \mathbf{x}, \mathbf{y} \rangle = \int x(t) y(t)^{*}$

Identic pentru semnale discrete

- ➤ Concluzie: definirea algoritmilor în mod generic, pe bază de produse scalare / distanțe / norme, este extrem de folositoare!
 - se aplică automat tuturor spațiilor vectoriale
 - un singur algoritm, utilizări pentru multiple tipuri de semnale

Distribuții necunoscute

- Până acum, se cunoștea dpdv. matematic statistica tuturor datelor:
 - Se cunosteau semnalele:
 - $ightharpoonup s_0(t) = ...$
 - $ightharpoonup s_1(t) = ...$
 - Se cunostea zgomotul
 - gaussian, uniform, etc.
 - ► Se cunoșteau distribuțiile condiționate:
 - $w(r|H_0) = ...$
 - $w(r|H_1) = ...$
- ▶ În aplicații reale, lucrurile pot fi mai complicate

Exemplu

- ▶ Dacă semnalele $s_0(t)$ și $s_1(t)$ nu există / nu se cunosc?
- Exemplu: recunoașterea feței unei persoane
 - Identificarea persoanei A sau B bazată pe o imagine a feței
 - Avem:
 - ▶ 100 imagini ale persoanei A, în condiții diverse
 - ▶ 100 imagini ale persoanei B, în condiții diverse

Eșantioane vs distribuții

- Să comparăm recunoașterea fețelor cu detecția semnalelor
- Aspecte comune:
 - ▶ două ipoteze H_0 (persoana A) și H_1 (persoana B)
 - ightharpoonup un vector de eșantioane $m {f r}=imaginea$ pe baza căreia se face decizia
 - se pot lua două decizii
 - 4 scenarii: rejecție corectă, alarmă falsă, pierdere, detecție corectă
- ► Ce diferă? Nu există formule matematice
 - nu există semnalele "originale" $s_0(t) = ...$ și $s_1(t)...$
 - (fetele persoanelor A și B nu pot fi exprimate matematic ca semnale)
 - în schimb, avem multe exemple din fiecare distribuție
 - ▶ 100 imagini ale lui A = exemple ale \mathbf{r} în ipoteza H_0
 - ▶ 100 imagini ale lui B = exemple ale \mathbf{r} în ipoteza H_1

Terminologie

- Terminologia folosită în domeniul învățării automate (machine learning):
 - ► Acest tip de problemă = problemă de clasificare a semnalelor
 - se dă un vector de date, găsiți-i clasa
 - ▶ Clase de semnal = categoriile posibile ale semnalelor (ipotezele H_i , persoanele A/B etc)
 - ▶ Set de antrenare = un set de semnale cunoscute inițial
 - de ex. 100 de imagini ale fiecărei persoane
 - setul de date va fi folosit în procesul de decizie

Terminologie

- Terminologia folosită în domeniul învățării automate (machine learning):
 - Învățare supervizată = algoritmi unde se cunosc clasele semnalelor din setul de antrenare
 - se știe care semnale sunt din clasa A și care din clasa B
 - ▶ Învățare nesupervizată = algoritmi unde nu se cunosc clasele semnalelor din setul de antrenare
 - mai dificil, mai puțină informație disponibilă

Eșantioane și distribuții

- ▶ În învățarea supervizată, setul de antrenare conține informațiile pe care le-ar conține distribuțiile condiționate $w(r|H_0)$ și $w(r|H_1)$
 - $ightharpoonup w(r|H_0)$ exprimă cum arată valorile lui r în ipoteza H_0
 - $ightharpoonup w(r|H_1)$ exprimă cum arată valorile lui r în ipoteza H_1
 - setul de antrenare exprimă același lucru, nu prin formule, dar prin multe exemple
- Cum se face clasificarea în aceste condiții?

Algoritmul k-NN

Algoritmul k-Nearest Neighbours (k-NN)

- Intrare:
 - set de antrenare cu vectorii $\mathbf{x}_1...\mathbf{x}_N$, din L clase posibile de semnal $C_1...C_L$
 - clasele vectorilor de antrenare sunt cunoscute
 - vector de test r care trebuie clasificat
 - parametrul k
- 1. Se calculează distanța între \mathbf{r} și fiecare vector de antrenare \mathbf{x}_i
 - se poate utiliza distanța Euclidiană, aceeași utilizată pentru detecția semnalelor din secțiunile precedente
- 2. Se aleg cei mai apropiați k vectori de \mathbf{r} (cei k "nearest neighbours")
- 3. Se determină clasa lui ${\bf r}=$ clasa majoritară între cei k cei mai apropiați vecini
- leşire: clasa vectorului r

Algoritmul k-NN

Figure 7: Algoritmul k-NN ilustrat [1]

[1] sursa: "KNN Classification using Scikit-learn", Avinash Navlani,

https://www.datacamp.com/community/tutorials/k-nearest-neighbor-classification-scikit-learn

Exercițiu

Exercitiu

- 1. Fie următorul set de antrenare, compus din 5 vectori din clasa A și alți 5 vectori din clasa B:
 - Clasa A:

$$\textbf{v}_1 = \begin{bmatrix} 1 \\ -2 \end{bmatrix} \ \textbf{v}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix} \ \textbf{v}_3 = \begin{bmatrix} -4 \\ 2 \end{bmatrix} \ \textbf{v}_4 = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \ \textbf{v}_5 = \begin{bmatrix} -2 \\ -2 \end{bmatrix}$$

Clasa B:

$$\mathbf{v}_6 = \begin{bmatrix} 7 \\ 0 \end{bmatrix} \ \mathbf{v}_7 = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \ \mathbf{v}_8 = \begin{bmatrix} 3 \\ 2 \end{bmatrix} \ \mathbf{v}_9 = \begin{bmatrix} -3 \\ 8 \end{bmatrix} \ \mathbf{v}_{10} = \begin{bmatrix} -2 \\ 5 \end{bmatrix}$$

Determinați clasa vectorului $\mathbf{x} = \begin{bmatrix} -3 \\ 6 \end{bmatrix}$ utilizând algoritmul k-NN, cu $k=1,\ k=3,\ k=5,\ k=7$ and k=9

Discuție

- ▶ k-NN este un algoritm de învățare supervizată
 - se cunosc clasele vectorilor din setul de antrenare
- ▶ Efectul lui k: netezirea frontierei de decizie:
 - ▶ k mic: frontieră foarte cotită / "șifonată" / cu multe coturi
 - k mare: frontieră mai netedă
- ► Cum se găsește o valoare optimă pentru k?

Cross-validation

- ► Cum se găsește o valoare optimă pentru k?
 - prin încercări ("băbește")
- ► "Cross-validation" = folosirea unui mic set de test pentru a verifica care valoare a parametrului e mai bună
 - acest set de date se numeste set de "cross-validare"
 - se impune k = 1, se testează cu setul de "cross-validare" câți vectori sunt clasificati corect
 - ightharpoonup se repetă pentru k=2,3,...max
 - ▶ se alege valoarea lui k cu care s-au obținut rezultatele cele mai bune

Evaluarea algoritmilor

- Cum se evaluează performanța algoritmului k-NN?
 - Se folosește un set de date de testare, și se calculează procentajul vectorilor clasificati corect
- Setul de date pentru evaluarea finală trebuie să fie diferit de setul de "cross-validare"
 - pentru evaluarea finală se folosesc date pe care algoritmul nu le-a mai utilizat niciodată
- Cum se împarte setul de date disponibile?

Seturi de date

- Presupunem că avem în total 200 imagini tip fețe, 100 imagini ale persoanei A și 100 ale lui B
- Setul de date total se împarte în:
 - Set de antrenare
 - vectorii care vor fi utilizați de algoritm
 - ▶ cel mai numeros, aprox. 60% din datele totale
 - de ex. 60 imagini ale persoanei A și 60 ale lui B
 - Set de cross-validare
 - utilizat pentru a testa algoritmul în vederea alegerii parametrilor optimi
 (k)
 - mai mic, aprox. 20% din date (de ex. 20 imagini ale lui of A şi 20 ale lui B)
 - Set de testare
 - utilizat pentru evaluarea finală a algoritmului, cu valorile parametrilor fixate
 - mai mic, aprox. 20% din date (de ex. 20 imagini ale lui of A şi 20 ale lui B)

- k-Means: un algoritm pentru clusterizarea datelor
 - ▶ identificarea grupurilor de date apropiate între ele
- Un exemplu de algoritm de învățare nesupervizată
 - "învățare nesupervizată" = nu se cunosc clasele semnalelor din setul de antrenare

Algoritmul k-Means

- Intrare:
 - set de antrenare cu vectorii x₁...x_N
 - numărul de clase C
- ► Initializare: centroizii C iau valori aleatoare

$$\mathbf{c}_i \leftarrow \text{valori aleatoare}$$

- Repetă
 - Clasificare: se clasifică fiecare vector x pe baza celui mai apropiat centroid:

$$classx = arg \min_{i} d(\mathbf{x}, \mathbf{c}_i), \forall \mathbf{x}$$

2. Actualizare: se actualizează centroizii $\mathbf{c}_i = \text{media vectorilor } \mathbf{x}$ din clasa i

$$\mathbf{c}_i \leftarrow \text{ media vectorilor } \mathbf{x}, \forall \mathbf{x} \text{ din clasa } i$$

leşire: centroizii \mathbf{c}_i , clasele tuturor vectorilor de intrare \mathbf{x}_n

Algoritmul k-Means explicat video:

- Urmăriți video-ul următor, de la 6:28 to 7:08 https://www.youtube.com/watch?v=4b5d3muPQmA
- Urmăriți video-ul următor, de la 3:05 la final https://www.youtube.com/watch?v=luRb3y8qKX4

- ► Algoritmul *k-Means* poate să nu conveargă spre niște grupuri adecvate de date
 - rezultatele depind de initializarea aleatoare a centroizilor
 - se rulează de mai multe ori, se alege cel mai bun rezultat
 - există metode de inițializare optimizate (k-Means++)

Exercițiu

Exercițiu

1. Fie datele următoare:

$$\{\boldsymbol{v_n}\} = [1.3, -0.1, 0.5, 4.7, 5.1, 5.8, 0.4, 4.8, -0.7, 4.9]$$

Utilizați algoritmul k-Means pentru a găsi doi centroizi ${\bf c}_1$ și ${\bf c}_2$, pornind de la valorile aleatoare ${\bf c}_1=-0.5$ și ${\bf c}_2=0.9$. Realizați 5 iterații ale algoritmului.