Statystyczna Eksploracja Danych

Wykład 6 - maszyny wektorów podpierających (SVM)

dr inż. Julian Sienkiewicz

4 kwietnia 2019

maszyny wektorów podpierających - support vector machines (SVM),

 maszyny wektorów podpierających - support vector machines (SVM),

Brak separowalności

klasyfikacja pod nadzorem,

Cechy

 maszyny wektorów podpierających - support vector machines (SVM),

- klasyfikacja pod nadzorem,
- dość nowa metoda, zaproponowana przez Władimira Wapnika w latach 90-tych XX w.,

Cechy

maszyny wektorów podpierających - support vector machines (SVM),

- klasyfikacja pod nadzorem,
- dość nowa metoda, zaproponowana przez Władimira Wapnika w latach 90-tych XX w.,
- nowe spojrzenie na zadanie wyboru najlepszej hiperpłaszczyzny dyskryminacyjnej,

- maszyny wektorów podpierających support vector machines (SVM),
- klasyfikacja pod nadzorem,
- dość nowa metoda, zaproponowana przez Władimira Wapnika w latach 90-tych XX w.,
- nowe spojrzenie na zadanie wyboru najlepszej hiperpłaszczyzny dyskryminacyjnej,
- następnie pomysł wzbogacenia przestrzeni obserwacji i szukania hiperpłaszczyzny dyskryminacyjnej w nowej przestrzeni,

Brak separowalności

- maszyny wektorów podpierających support vector machines (SVM),
- klasyfikacja pod nadzorem,
- dość nowa metoda, zaproponowana przez Władimira Wapnika w latach 90-tych XX w.,
- nowe spojrzenie na zadanie wyboru najlepszej hiperpłaszczyzny dyskryminacyjnej,
- następnie pomysł wzbogacenia przestrzeni obserwacji i szukania hiperpłaszczyzny dyskryminacyjnej w nowej przestrzeni,
- opiera się na rozwiązaniu prostej optymalizacji kwadratowo-liniowej,

Brak separowalności

- maszyny wektorów podpierających support vector machines (SVM),
- klasyfikacja pod nadzorem,
- dość nowa metoda, zaproponowana przez Władimira Wapnika w latach 90-tych XX w.,
- nowe spojrzenie na zadanie wyboru najlepszej hiperpłaszczyzny dyskryminacyjnej,
- następnie pomysł wzbogacenia przestrzeni obserwacji i szukania hiperpłaszczyzny dyskryminacyjnej w nowej przestrzeni,
- opiera się na rozwiązaniu prostej optymalizacji kwadratowo-liniowej,
- często wykorzystywana do:

- maszyny wektorów podpierających support vector machines (SVM),
- klasyfikacja pod nadzorem,
- dość nowa metoda, zaproponowana przez Władimira Wapnika w latach 90-tych XX w.,
- nowe spojrzenie na zadanie wyboru najlepszej hiperpłaszczyzny dyskryminacyjnej,
- następnie pomysł wzbogacenia przestrzeni obserwacji i szukania hiperpłaszczyzny dyskryminacyjnej w nowej przestrzeni,
- opiera się na rozwiązaniu prostej optymalizacji kwadratowo-liniowej,
- często wykorzystywana do: kategoryzacji tekstu,

- maszyny wektorów podpierających support vector machines (SVM),
- klasyfikacja pod nadzorem,
- dość nowa metoda, zaproponowana przez Władimira Wapnika w latach 90-tych XX w.,
- nowe spojrzenie na zadanie wyboru najlepszej hiperpłaszczyzny dyskryminacyjnej,
- następnie pomysł wzbogacenia przestrzeni obserwacji i szukania hiperpłaszczyzny dyskryminacyjnej w nowej przestrzeni,
- opiera się na rozwiązaniu prostej optymalizacji kwadratowo-liniowej,
- często wykorzystywana do: kategoryzacji tekstu, klasyfikacji obrazów,

- maszyny wektorów podpierających support vector machines (SVM),
- klasyfikacja pod nadzorem,
- dość nowa metoda, zaproponowana przez Władimira Wapnika w latach 90-tych XX w.,
- nowe spojrzenie na zadanie wyboru najlepszej hiperpłaszczyzny dyskryminacyjnej,
- następnie pomysł wzbogacenia przestrzeni obserwacji i szukania hiperpłaszczyzny dyskryminacyjnej w nowej przestrzeni,
- opiera się na rozwiązaniu prostej optymalizacji kwadratowo-liniowej,
- często wykorzystywana do: kategoryzacji tekstu, klasyfikacji obrazów, rozpoznawania pisma odręcznego.

Wstęp

rozważamy zadanie analizy dyskryminacyjnej w \mathbb{R}^p z g = 2 (liczba klas),

Wstep

- rozważamy zadanie analizy dyskryminacyjnej w \mathbb{R}^p z g = 2 (liczba klas),
- zakładamy, że obie podpróby sa liniowo separowalne, to znaczy, że można je idealnie rozdzielić hiperpłaszczyzną dyskryminacyjna,

Wstep

rozważamy zadanie analizy dyskryminacyjnej w \mathbb{R}^p z g = 2 (liczba klas),

- zakładamy, że obie podpróby sa liniowo separowalne, to znaczy, że można je idealnie rozdzielić hiperpłaszczyzną dyskryminacyjna,
- implikuje to istnienie marginesów ograniczonych dwiema równoległymi hiperpłaszczyznami, wewnątrz których nie leży ani ieden element próby uczącej,

Wstęp

zadanie optymalizacji polega na znalezieniu najszerszego możliwego marginesu,

Wstęp

- zadanie optymalizacji polega na znalezieniu najszerszego możliwego marginesu,
- pośrodku marginesu umieszcza się hiperpłaszyznę dyskryminacyjną,

Wstep

- zadanie optymalizacji polega na znalezieniu najszerszego możliwego marginesu,
- pośrodku marginesu umieszcza sie hiperpłaszyznę dyskryminacyjną,

Brak separowalności

nazwa SVM ma swoje źródło w tym, że hiperpłaszczyzny marginesów muszą przechodzić przez konkretne elementy prób uczących (inaczej margines można byłoby rozszerzyć) - są to właśnie wektory podpierające.

Brak separowalności

Ogólny opis

Wstęp

Wstep

W przypadku, gdy próby nie są liniowo separowalne, wprowadza się karę (podobnie jak to jest w przypadku funkcji celu w algorytmach genetycznych) za nieidealne rozdzielenie podprób.

W przypadku, gdy próby nie są liniowo separowalne, wprowadza się karę (podobnie jak to jest w przypadku funkcji celu w algorytmach genetycznych) za nieidealne rozdzielenie podprób.

0000

Wstep

Aby dokonać jak najlepszego rozdzielenia, zadania często rozwiązuje się w przestrzeni o znacznie większym wymiarze niż p (ponieważ hiperpłaszczynzy są opisywane iloczynem skalarnym, można wybrać inne iadro).

W przypadku, gdy próby nie są liniowo separowalne, wprowadza się karę (podobnie jak to jest w przypadku funkcji celu w algorytmach genetycznych) za nieidealne rozdzielenie podprób.

Wstep

Aby dokonać jak najlepszego rozdzielenia, zadania często rozwiązuje się w przestrzeni o znacznie większym wymiarze niż p (ponieważ hiperpłaszczynzy są opisywane iloczynem skalarnym, można wybrać inne iadro).

W przypadku, gdy próby nie są liniowo separowalne, wprowadza się karę (podobnie jak to jest w przypadku funkcji celu w algorytmach genetycznych) za nieidealne rozdzielenie podprób.

Wstep

Aby dokonać jak najlepszego rozdzielenia, zadania często rozwiązuje się w przestrzeni o znacznie większym wymiarze niż p (ponieważ hiperpłaszczynzy są opisywane iloczynem skalarnym, można wybrać inne iadro).

W przypadku, gdy próby nie są liniowo separowalne, wprowadza się karę (podobnie jak to jest w przypadku funkcji celu w algorytmach genetycznych) za nieidealne rozdzielenie podprób.

Rozpoczynamy od rozważań, dotyczących najprostszego przypadku: liniowej separowalności klas.

Wstęp 0000

$$(\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n),$$

$$(\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n), y_i \in \{-1, 1\},\$$

$$(\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n), \quad y_i \in \{-1, 1\}, \quad \mathbf{x}_i \in \mathbb{R}^p,$$

$$(\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n), \quad y_i \in \{-1, 1\}, \quad \mathbf{x}_i \in \mathbb{R}^p,$$

przy czym klasy zostały zakodowane jako 1 oraz -1.

Teori

Rozpoczynamy od rozważań, dotyczących najprostszego przypadku: liniowej separowalności klas. Zakładamy, że mamy do czynienia z problemem dwuklasowym (g=2). Mamy daną próbę uczącą:

$$(\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n), \quad y_i \in \{-1, 1\}, \quad \mathbf{x}_i \in \mathbb{R}^p,$$

przy czym klasy zostały zakodowane jako 1 oraz -1. Zakładamy, że istnieje hiperpłaszczyzna punktów ${\bf x}$ w ${\mathbb R}^p$, rozdzielająca klasy

$$(\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n), \quad y_i \in \{-1, 1\}, \quad \mathbf{x}_i \in \mathbb{R}^p,$$

przy czym klasy zostały zakodowane jako 1 oraz -1. Zakładamy, że istnieje hiperpłaszczyzna punktów ${\bf x}$ w ${\mathbb R}^p$, rozdzielająca klasy

$$\mathbf{w}^T\mathbf{x} + b \equiv \mathbf{w} \cdot \mathbf{x} + b = 0$$

Teori

Rozpoczynamy od rozważań, dotyczących najprostszego przypadku: liniowej separowalności klas. Zakładamy, że mamy do czynienia z problemem dwuklasowym (g=2). Mamy daną próbę uczącą:

$$(\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n), \quad y_i \in \{-1, 1\}, \quad \mathbf{x}_i \in \mathbb{R}^p,$$

przy czym klasy zostały zakodowane jako 1 oraz -1. Zakładamy, że istnieje hiperpłaszczyzna punktów ${\bf x}$ w ${\mathbb R}^\rho,$ rozdzielająca klasy

$$\mathbf{w}^T\mathbf{x} + b \equiv \mathbf{w} \cdot \mathbf{x} + b = 0$$

gdzie \cdot oznacza iloczyn skalarny, a wektor \mathbf{w} oraz stała b są odpowiednio dobrane.

Brak separowalności

Wstęp 0000 Teoria

Ze względu na liniowa separowalność, hiperpłaszczyzna dyskryminująca (tu: prosta) H leży w pasie ograniczonym dwiema hiperpłaszczyznami H_1 i H_2 , wewnątrz którego nie ma żadnego elementu próby uczącej.

Ze względu na liniową separowalność, hiperpłaszczyzna dyskryminująca (tu: prosta) H leży w pasie ograniczonym dwiema hiperpłaszczyznami H_1 i H_2 , wewnątrz którego nie ma żadnego elementu próby uczącej. Aby uczynić ten pas (margines) jak największym, trzeba oprzeć jego brzegi o punkty próby uczącej.

Brak separowalności

Teoria

Dla każdej obserwacji z próby uczącej \mathbf{x}_i , i = 1, ..., n jest spełniona jedna z nierówności

Dla każdej obserwacji z próby uczącej \mathbf{x}_i , i=1,...,n jest spełniona jedna z nierówności

$$\mathbf{x}_i \cdot \mathbf{w} + b \ge +1$$
, gdy $y_i = +1$,

Dla każdej obserwacji z próby uczącej \mathbf{x}_i , i = 1, ..., n jest spełniona jedna z nierówności

$$\mathbf{x}_i \cdot \mathbf{w} + b \ge +1$$
, gdy $y_i = +1$,

$$\mathbf{x}_i \cdot \mathbf{w} + b \le -1$$
, gdy $y_i = -1$,

Dla każdej obserwacji z próby uczącej \mathbf{x}_i , i=1,...,n jest spełniona jedna z nierówności

$$\boldsymbol{x}_i\cdot\boldsymbol{w}+b\geq +1, \quad \text{gdy} \quad y_i=+1,$$

$$\mathbf{x}_i \cdot \mathbf{w} + b \le -1$$
, gdy $y_i = -1$,

Dla wektorów leżących na H_1 i H_2 przechodzą one w równości.

Wstęp 0000 Teoria

Dla każdej obserwacji z próby uczącej \mathbf{x}_i , i=1,...,n jest spełniona jedna z nierówności

$$\mathbf{x}_i \cdot \mathbf{w} + b \ge +1$$
, $gdy \quad y_i = +1$,

$$\mathbf{x}_i \cdot \mathbf{w} + b \le -1$$
, gdy $y_i = -1$,

Dla wektorów leżących na H_1 i H_2 przechodzą one w równości.

Można je zapisać jako jedną nierówność dla wszystkich \mathbf{x}_i jako

$$y_i(\mathbf{x}_i \cdot \mathbf{w} + b) - 1 \geq 0$$

Brak separowalności

Teoria

Teori

*H*₁ jest odległa od początku układu współrzędnych o

H₁ jest odległa od początku układu współrzędnych o

Brak separowalności

$$\frac{|1-b|}{||\mathbf{w}||}$$

natomiast H_2 jest odległa od początku układu współrzędnych o

H₁ jest odległa od początku układu współrzędnych o

$$\frac{|\mathbf{v}|}{|\mathbf{w}|}$$

Brak separowalności

natomiast H_2 jest odległa od początku układu współrzędnych o

$$\frac{|-1-b|}{||\mathbf{w}||}$$

Stad odległość pomiędzy H_1 i H_2 to

$$d_+ + d_- = \frac{2}{||\mathbf{w}||}$$

W efekcie zadanie znalezienia optymalnego położenia hiperpłaszczyzny H sprowadza się do maksymalizacji wyrażenia

Wstep

W efekcie zadanie znalezienia optymalnego położenia hiperpłaszczyzny *H* sprowadza się do maksymalizacji wyrażenia

$$d_+ + d_- = \frac{2}{||\mathbf{w}||}$$

W efekcie zadanie znalezienia optymalnego położenia hiperpłaszczyzny *H* sprowadza się do maksymalizacji wyrażenia

Brak separowalności

$$d_+ + d_- = \frac{2}{||\mathbf{w}||}$$

lub, co jest równoważne, do minimalizacji

W efekcie zadanie znalezienia optymalnego położenia hiperpłaszczyzny H sprowadza się do maksymalizacji wyrażenia

Brak separowalności

$$d_+ + d_- = \frac{2}{||\mathbf{w}||}$$

lub, co jest równoważne, do minimalizacji

$$\frac{||\mathbf{w}||^2}{2}$$

W efekcie zadanie znalezienia optymalnego położenia hiperpłaszczyzny H sprowadza się do maksymalizacji wyrażenia

Brak separowalności

$$d_+ + d_- = \frac{2}{||\mathbf{w}||}$$

lub, co jest równoważne, do minimalizacji

$$\frac{||\mathbf{w}||^2}{2}$$

przy danych ograniczeniach

W efekcie zadanie znalezienia optymalnego położenia hiperpłaszczyzny H sprowadza się do maksymalizacji wyrażenia

Brak separowalności

$$d_+ + d_- = \frac{2}{||\mathbf{w}||}$$

lub, co jest równoważne, do minimalizacji

$$\frac{||\mathbf{w}||^2}{2}$$

przy danych ograniczeniach

$$y_i(\mathbf{x}_i \cdot \mathbf{w} + b) - 1 \geq 0$$

W efekcie zadanie znalezienia optymalnego położenia hiperpłaszczyzny H sprowadza się do maksymalizacji wyrażenia

Brak separowalności

$$d_+ + d_- = \frac{2}{||\mathbf{w}||}$$

lub, co jest równoważne, do minimalizacji

$$\frac{||\mathbf{w}||^2}{2}$$

przy danych ograniczeniach

$$y_i(\mathbf{x}_i \cdot \mathbf{w} + b) - 1 \ge 0$$

Optymalna hiperpłaszczyzna dyskryminacyjna będzie umieszczona w środku, tzn tak, aby $d_+ = d_-$.

Jest to zadanie minimalizacji funkcjonału, które można zapisać w formie funkcji Lagrange'a:

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2}(\mathbf{w} \cdot \mathbf{w}) - \sum_{i=1}^{n} \alpha_i \{ [\mathbf{x}_i \cdot \mathbf{w} + b] y_i - 1 \}$$

Jest to zadanie minimalizacji funkcjonału, które można zapisać w formie funkcji Lagrange'a:

Brak separowalności

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2}(\mathbf{w} \cdot \mathbf{w}) - \sum_{i=1}^{n} \alpha_i \{ [\mathbf{x}_i \cdot \mathbf{w} + b] y_i - 1 \}$$

gdzie α to wektor nieujemnych współczynników Lagrange'a. Szukamy maksimum funkcji względem α_i i minimum względem **w** i b.

Jest to zadanie minimalizacji funkcjonału, które można zapisać w formie funkcji Lagrange'a:

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2}(\mathbf{w} \cdot \mathbf{w}) - \sum_{i=1}^{n} \alpha_i \{ [\mathbf{x}_i \cdot \mathbf{w} + b] y_i - 1 \}$$

gdzie α to wektor nieujemnych współczynników Lagrange'a. Szukamy maksimum funkcji względem α_i i minimum względem \mathbf{w} i b. Żądamy więc, aby pochodne L względem \mathbf{w} oraz b zerowały się oraz, aby został spełniony warunek

$$\sum_{i=1}^n \alpha_i \left\{ [\mathbf{x}_i \cdot \mathbf{w_0} + b_0] y_i - 1 \right\} = 0$$

Zerowanie się pochodnej (gradientu) względem w daje

$$\mathbf{w} = \sum_{i=1}^{n} y_i \alpha_i \mathbf{x}_i$$

Zerowanie się pochodnej (gradientu) względem w daje

$$\mathbf{w} = \sum_{i=1}^{n} y_i \alpha_i \mathbf{x}_i$$

Brak separowalności

a względem b

$$\sum_{i=1}^n y_i \alpha_i = 0$$

Uwzględniając powyższe mamy funkcję Lagrange'a

$$L(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} y_i y_j \alpha_i \alpha_j (\mathbf{x}_i \cdot \mathbf{x}_j)$$

leor

Zerowanie się pochodnej (gradientu) względem **w** daje

$$\mathbf{w} = \sum_{i=1}^{n} y_i \alpha_i \mathbf{x}_i$$

Brak separowalności

a względem b

$$\sum_{i=1}^n y_i \alpha_i = 0$$

Uwzględniając powyższe mamy funkcję Lagrange'a

$$L(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} y_i y_j \alpha_i \alpha_j (\mathbf{x}_i \cdot \mathbf{x}_j)$$

maksymalizowaną przy ograniczeniach

$$\alpha_i \geq 0$$
 $i = 1, ..., n$ $\sum_{i=1}^{n} y_i \alpha_i = 0$.

Bardzo istotnym jest fakt, iż warunki

$$\sum_{i=1}^n \alpha_i \left\{ [\mathbf{x}_i \cdot \mathbf{w_0} + b_0] y_i - 1 \right\} = 0$$

Brak separowalności

oznaczają, że **nie zerują się** tylko te współczynniki α_i , które odpowiadają wektorom podpierającym!

reor

Bardzo istotnym jest fakt, iż warunki

$$\sum_{i=1}^n \alpha_i \left\{ [\mathbf{x}_i \cdot \mathbf{w_0} + b_0] y_i - 1 \right\} = 0$$

oznaczają, że **nie zerują się** tylko te współczynniki α_i , które odpowiadają wektorom podpierającym! W efekcie wszystkie sumowania wykonywane są **tylko** po tych i, którym odpowiadają wektory leżące na H_1 i H_2 .

Bardzo istotnym jest fakt, iż warunki

$$\sum_{i=1}^{n} \alpha_i \left\{ [\mathbf{x}_i \cdot \mathbf{w_0} + b_0] y_i - 1 \right\} = 0$$

Brak separowalności

oznaczają, że **nie zerują się** tylko te współczynniki α_i , które odpowiadają wektorom podpierającym! W efekcie wszystkie sumowania wykonywane są **tylko** po tych *i*, którym odpowiadają wektory leżące na H_1 i H_2 . Jako rozwiązanie zadania otrzymujemy optymalne wsp. Lagrange'a $\alpha^0 = (\alpha_1^0, ..., \alpha_n^0)$.

Bardzo istotnym jest fakt, iż warunki

$$\sum_{i=1}^n \alpha_i \left\{ [\mathbf{x}_i \cdot \mathbf{w_0} + b_0] y_i - 1 \right\} = 0$$

Brak separowalności

oznaczają, że **nie zerują się** tylko te współczynniki α_i , które odpowiadają wektorom podpierającym! W efekcie wszystkie sumowania wykonywane są tylko po tych i, którym odpowiadają wektory leżące na H_1 i H_2 . Jako rozwiązanie zadania otrzymujemy optymalne wsp. Lagrange'a $\alpha^0 = (\alpha_1^0, ..., \alpha_n^0)$. Optymalna hiperpłaszczyzna przyjmuje postać

$$\sum_{SV} y_i \alpha_i^0(\mathbf{x}_i \cdot \mathbf{x}) + b^0 = 0$$

a stałą b⁰ można wziąć jako

$$b^0 = \frac{1}{2} \left(\mathbf{w} \cdot \mathbf{x}_1^* + \mathbf{w} \cdot \mathbf{x}_{-1}^* \right)$$

Do próby należy 12 punktów - po 6 z każdej klasy. Wywołujemy funkcję svm() z pakietu R.

Do próby należy 12 punktów - po 6 z każdej klasy. Wywołujemy funkcję svm() z pakietu R. Otrzymujemy następujące wartości α_i .

Xi	Уi	α_i
1.0	2.0	0.000
1.5	1.0	0.000
1.0	4.0	0.000
1.5	3.0	0.000
2.5	2.0	0.000
3.5	2.0	1.542
2.0	5.5	0.327
3.0	5.0	0.000
3.5	4.0	0.000
4.5	4.5	0.000
5.0	2.0	1.215
5.0	3.5	0.000

Do próby należy 12 punktów - po 6 z każdej klasy. Wywołujemy funkcję svm() z pakietu R. Otrzymujemy następujące wartości α_i . Te punkty, dla których $\alpha_i > 0$ są wektorami podpierającymi.

Xi	Уi	α_i
1.0	2.0	0.000
1.5	1.0	0.000
1.0	4.0	0.000
1.5	3.0	0.000
2.5	2.0	0.000
3.5	2.0	1.542
2.0	5.5	0.327
3.0	5.0	0.000
3.5	4.0	0.000
4.5	4.5	0.000
5.0	2.0	1.215
5.0	3.5	0.000

Przykład

Wektor w

$$\mathbf{w} = \sum_{i=1}^{n} y_i \alpha_i \mathbf{x}_i = \begin{pmatrix} -1.333 \\ -1.142 \end{pmatrix}$$

Przykład

Wektor w

$$\mathbf{w} = \sum_{i=1}^{n} y_i \alpha_i \mathbf{x}_i = \begin{pmatrix} -1.333 \\ -1.142 \end{pmatrix}$$

Stała b

$$b = \frac{1}{2} (\mathbf{w} \cdot \mathbf{x}_1^* + \mathbf{w} \cdot \mathbf{x}_{-1}^*) = 7.95$$

Wektor w

$$\mathbf{w} = \sum_{i=1}^{n} y_i \alpha_i \mathbf{x}_i = \begin{pmatrix} -1.333 \\ -1.142 \end{pmatrix}$$

Stała *b*

$$b = \frac{1}{2} (\mathbf{w} \cdot \mathbf{x}_1^* + \mathbf{w} \cdot \mathbf{x}_{-1}^*) = 7.95$$

a interesujace nas proste to

$$H_1: y = -\frac{w_x}{w_y} x + \frac{1-b}{w_x}$$

$$H_2: y = -\frac{w_x}{w_y} x - \frac{1+b}{w_x}$$

$$H_0: y = -\frac{w_x}{w_y} x - \frac{b}{w_x}$$

Teori

Oczywiście, bardzo często separowalność klas jest zbyt dużym wymaganiem (np. ze względu na losowośc danych). Na szczęście, ujęcie tego faktu w metodzie SVM nie nastręcza zbyt dużych trudności. Oryginalne nierówności zostają wtedy zastąpione przez

$$\mathbf{x}_i \cdot \mathbf{w} + b \ge 1 - \xi_i$$
, gdy $y_i = +1$,

Wstep

Oczywiście, bardzo często separowalność klas jest zbyt dużym wymaganiem (np. ze względu na losowośc danych). Na szczęście, ujęcie tego faktu w metodzie SVM nie nastręcza zbyt dużych trudności. Oryginalne nierówności zostają wtedy zastąpione przez

$$\mathbf{x}_i \cdot \mathbf{w} + b \ge 1 - \xi_i$$
, gdy $y_i = +1$,

$$\mathbf{x}_i \cdot \mathbf{w} + b < -1 + \xi_i$$
, $gdy \quad y_i = -1$,

Oczywiście, bardzo często separowalność klas jest zbyt dużym wymaganiem (np. ze względu na losowośc danych). Na szczęście, ujęcie tego faktu w metodzie SVM nie nastręcza zbyt dużych trudności. Oryginalne nierówności zostają wtedy zastąpione przez

$$\mathbf{x}_i \cdot \mathbf{w} + b \ge 1 - \xi_i$$
, gdy $y_i = +1$,

$$\mathbf{x}_i \cdot \mathbf{w} + b \le -1 + \xi_i$$
, gdy $y_i = -1$,

przy czym obecność stałych $\xi_i \geq 0$ umożliwia naruszenie oryginalnych ograniczeń.

Oczywiście, bardzo często separowalność klas jest zbyt dużym wymaganiem (np. ze względu na losowośc danych). Na szczęście, ujęcie tego faktu w metodzie SVM nie nastręcza zbyt dużych trudności. Oryginalne nierówności zostają wtedy zastąpione przez

$$\mathbf{x}_i \cdot \mathbf{w} + b \ge 1 - \xi_i$$
, gdy $y_i = +1$,

$$\mathbf{x}_i \cdot \mathbf{w} + b \le -1 + \xi_i$$
, gdy $y_i = -1$,

przy czym obecność stałych $\xi_i \geq 0$ umożliwia naruszenie oryginalnych ograniczeń. W efekcie zadanie sprowadza się do minimalizacji funkcji

$$\frac{||\mathbf{w}||^2}{2} + C\sum_{i=1}^n \xi_i$$

gdzie C jest z góry ustalonym współczynnikiem kary za niespełnienie oryginalnych ograniczeń.

Brak separowalności

00000

Rozwiązaniem problemu jest maksymalizacja funkcji

$$L(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,i=1}^{n} y_i y_j \alpha_i \alpha_j (\mathbf{x}_i \cdot \mathbf{x}_j)$$

Brak separowalności

000000

Wstep

Rozwiązaniem problemu jest maksymalizacja funkcji

$$L(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} y_i y_j \alpha_i \alpha_j (\mathbf{x}_i \cdot \mathbf{x}_j)$$

przy ograniczeniach

$$0 \le \alpha_i \le C$$
 $i = 1, ..., n$ $\sum_{i=1}^n y_i \alpha_i = 0$.

Rzecz jasna, stałą ${\cal C}$ musimy dobrać sami, np. na podstawie próby testowej, kroswalidacji albo oceny prawdopodobieństwa błędnej klasyfikacji. Biorąc pod uwagę losowy charakter danych, zaproponowanie małej wartości ${\cal C}$ umożliwia przeciwdziałanie nadmiernemu dopasowaniu do próby uczącej.

Przykła

Do próby należy 100 punktów - 50 z klasy 1 i tyle samo z klasy 2. Wywołujemy funkcję svm() z pakietu R z wartością kosztu C=10.

Brak separowalności

Do próby należy 100 punktów - 50 z klasy 1 i tyle samo z klasy 2. Wywołujemy funkcję svm() z pakietu R z wartością kosztu C=10. Następujące punkty są wektorami podpierającymi.

Xi	Уi	α_i
-0.571	-0.384	10.000
-0.312	0.510	10.000
0.562	-0.154	10.000
-0.424	0.310	10.000
-0.250	1.153	10.000
0.398	0.338	10.000
-1.338	1.345	10.000
-0.003	0.192	10.000
0.348	0.749	1.947
-0.882	1.186	10.000
0.536	-0.777	10.000
-1.143	0.710	2.372
0.430	-1.454	9.575
-0.278	0.003	10.000
-0.475	2.192	10.000
-0.932	1.058	10.000
-0.635	0.596	10.000
0.524	0.327	10.000

Do próby należy 100 punktów - 50 z klasy 1 i tyle samo z klasy 2. Wywołujemy funkcję svm() z pakietu R z wartościa kosztu C = 10. Następujące punkty są wektorami podpierającymi.

Brak separowalności

00000

x_i	Уi	α_i
-0.571	-0.384	10.000
-0.312	0.510	10.000
0.562	-0.154	10.000
-0.424	0.310	10.000
-0.250	1.153	10.000
0.398	0.338	10.000
-1.338	1.345	10.000
-0.003	0.192	10.000
0.348	0.749	1.947
-0.882	1.186	10.000
0.536	-0.777	10.000
-1.143	0.710	2.372
0.430	-1.454	9.575
-0.278	0.003	10.000
-0.475	2.192	10.000
-0.932	1.058	-10.000
-0.635	0.596	10.000
0.524	0.327	10.000

Tylko punkty, dla których $\alpha_i < C$ są brane pod uwagę przy wyznaczaniu b.

Przykład

Wektor w liczymy jak poprzednio

$$\mathbf{w} = \sum_{i=1}^{n} y_i \alpha_i \mathbf{x}_i = \begin{pmatrix} 1.316 \\ 0.957 \end{pmatrix}$$

⊃rzykład

Wektor w liczymy jak poprzednio

$$\mathbf{w} = \sum_{i=1}^{n} y_i \alpha_i \mathbf{x}_i = \begin{pmatrix} 1.316 \\ 0.957 \end{pmatrix}$$

stałą b bierzemy z uśrednienia

$$b = \frac{1}{2} (\mathbf{w} \cdot \mathbf{x}_1^* + \mathbf{w} \cdot \mathbf{x}_{-1}^*) = -0.175$$

Wektor w liczymy jak poprzednio

$$\mathbf{w} = \sum_{i=1}^{n} y_i \alpha_i \mathbf{x}_i = \begin{pmatrix} 1.316 \\ 0.957 \end{pmatrix}$$

stała b bierzemy z uśrednienia

$$b = \frac{1}{2} (\mathbf{w} \cdot \mathbf{x}_1^* + \mathbf{w} \cdot \mathbf{x}_{-1}^*) = -0.175$$

a interesujace nas proste to

$$H_1: y = -\frac{w_x}{w_y} x + \frac{1 - b}{w_x}$$

$$H_2: y = -\frac{w_x}{w_y} x - \frac{1 + b}{w_x}$$

$$H_0: y = -\frac{w_x}{w_y} x - \frac{b}{w_x}$$

Z poprzednich wyprowadzeń jest jasne, że zależność od przestrzeni obserwacji \mathbb{R}^p przejawia się **jedynie** przez obliczanie iloczynu skalarnego.

Nieliniowe SVM

Wstep

Z poprzednich wyprowadzeń jest jasne, że zależność od przestrzeni obserwacji \mathbb{R}^p przejawia się **jedynie** przez obliczanie iloczynu skalarnego. Z drugiej strony, z algebry liniowej wiadomo, iż przejście od zależności liniowych w przestrzeni \mathbb{R}^p do zależności nieliniowych można opisać jako zależność liniową w **bogatszej przestrzeni**.

Z poprzednich wyprowadzeń jest jasne, że zależność od przestrzeni obserwacji \mathbb{R}^p przejawia się **jedynie** przez obliczanie iloczynu skalarnego. Z drugiej strony, z algebry liniowej wiadomo, iż przejście od zależności liniowych w przestrzeni \mathbb{R}^p do zależności nieliniowych można opisać jako zależność liniową w **bogatszej przestrzeni**. Weźmy przykład z p=2 i policzmy funkcję

$$(1+\mathbf{x}\cdot\mathbf{y})^2=(1+x_1y_1+x_2y_2)^2=1+2x_1y_1+2x_2y_2+x_1^2y_1^2+2x_1y_1x_2y_2+x_2^2y_2^2$$

Taka funkcja jest równoważna iloczynowi skalarnemu

$$\Phi(\mathbf{x})\Phi(\mathbf{y})$$

przekształconych zmiennych

$$\begin{aligned} & \Phi(\mathbf{x}) = \left(1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2\right) \\ & \Phi(\mathbf{y}) = \left(1, \sqrt{2}y_1, \sqrt{2}y_2, y_1^2, y_2^2, \sqrt{2}y_1y_2\right) \end{aligned}$$

Dlaczego jest to takie istotne? Otóż (i) wszystkie takie obliczenia dotyczą **jedynie iloczynu skalarnego**, a nie przekształconych obserwacji, (ii) dokonanie nieliniowej transformacji często umożlwia dokładną klasyfikację:

Dlaczego jest to takie istotne? Otóż (i) wszystkie takie obliczenia dotyczą **jedynie iloczynu skalarnego**, a nie przekształconych obserwacji, (ii) dokonanie nieliniowej transformacji często umożlwia dokładną klasyfikację:

Dlaczego jest to takie istotne? Otóż (i) wszystkie takie obliczenia dotyczą **jedynie iloczynu skalarnego**, a nie przekształconych obserwacji, (ii) dokonanie nieliniowej transformacji często umożlwia dokładną klasyfikację:

W praktyce takie podejście sprowadza się do zamiany iloczynu skalarnego w funkcji Lagrange'a

Brak separowalności

$$L(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,i=1}^{n} y_i y_j \alpha_i \alpha_j (\mathbf{x}_i \cdot \mathbf{x}_j)$$

W praktyce takie podejście sprowadza się do zamiany iloczynu skalarnego w funkcji Lagrange'a

Brak separowalności

$$L(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} y_i y_j \alpha_i \alpha_j (\mathbf{x}_i \cdot \mathbf{x}_j)$$

na odpowiednie jądro $K(\mathbf{x_i}, \mathbf{x_i})$

Wstep

$$L(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} y_i y_j \alpha_i \alpha_j K(\mathbf{x}_i, \mathbf{x}_j)$$

W praktyce takie podejście sprowadza się do zamiany iloczynu skalarnego w funkcji Lagrange'a

$$L(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} y_i y_j \alpha_i \alpha_j (\mathbf{x}_i \cdot \mathbf{x}_j)$$

na odpowiednie jądro $K(\mathbf{x_i}, \mathbf{x_j})$

$$L(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} y_i y_j \alpha_i \alpha_j K(\mathbf{x}_i, \mathbf{x}_j)$$

Co więcej, nie musimy de facto znać nawet nowej przestrzeni. Wystarczy, że jądro spełnia określone warunki, wynikające z tw. Mercera z analizy funkcjonalnej.

W praktyce takie podejście sprowadza się do zamiany iloczynu skalarnego w funkcji Lagrange'a

$$L(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} y_i y_j \alpha_i \alpha_j (\mathbf{x}_i \cdot \mathbf{x}_j)$$

na odpowiednie jadro $K(\mathbf{x}_i, \mathbf{x}_i)$

$$L(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} y_i y_j \alpha_i \alpha_j K(\mathbf{x}_i, \mathbf{x}_j)$$

Co więcej, nie musimy de facto znać nawet nowej przestrzeni. Wystarczy, że jądro spełnia określone warunki, wynikające z tw. Mercera z analizy funkcjonalnej. Najcześciej stosowanymi jadrami są: wielomianowe, radialne i sigmoidalne

W praktyce takie podejście sprowadza się do zamiany iloczynu skalarnego w funkcji Lagrange'a

$$L(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} y_i y_j \alpha_i \alpha_j (\mathbf{x}_i \cdot \mathbf{x}_j)$$

na odpowiednie jądro $K(\mathbf{x_i}, \mathbf{x_i})$

$$L(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} y_i y_j \alpha_i \alpha_j K(\mathbf{x}_i, \mathbf{x}_j)$$

Co więcej, nie musimy de facto znać nawet nowej przestrzeni. Wystarczy, że jądro spełnia określone warunki, wynikające z tw. Mercera z analizy funkcjonalnej.Najczęściej stosowanymi jądrami są: wielomianowe, radialne i sigmo-idalne

$$K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i \cdot \mathbf{x}_j)^d$$

$$K(\mathbf{x}_i, \mathbf{x}_j) = \exp(-\gamma ||\mathbf{x}_i - \mathbf{x}_j||^2)$$

$$K(\mathbf{x}_i, \mathbf{x}_i) = \tanh(\Psi_1(\mathbf{x}_i \cdot \mathbf{x}_i) + \Psi_2)$$

Przykład dla jądra radialnego z $\gamma=$ 0.5. Wyróżnione punkty są wektorami podpierającymi.

Poniżej hiperpłaszczyzny marginesów oraz hiperpłaszczyzna dyskryminująca.

Ten sam przypadek obliczony dla $\gamma=5$ (lewa strona) i $\gamma=0.05$ (prawa strona).

Brak separowalności

Poniżej przypadek większej ilości punktów obliczony dla $\gamma=0.5$ (lewa strona - brak separowalności) i $\gamma = 5$ (prawa strona).

