

EGZAMIN MATURALNY W ROKU SZKOLNYM 2013/2014

MATEMATYKA POZIOM ROZSZERZONY

ROZWIĄZANIA ZADAŃ I SCHEMAT PUNKTOWANIA

Zadanie 1. (0-4)

Dana jest funkcja f określona wzorem $f(x) = \frac{|x+3| + |x-3|}{x}$ dla każdej liczby rzeczywistej $x \neq 0$. Wyznacz zbiór wartości tej funkcji.

Obszar standardów	Opis wymagań
Wykorzystanie	Wykorzystanie pojęcia wartości bezwzględnej i jej
i interpretowanie	interpretacji geometrycznej.
reprezentacji	Sporządzanie wykresu, odczytywanie własności i
	rozwiązywanie zadań umieszczonych w kontekście
	praktycznym związanych z proporcjonalnością odwrotną.
	(II.1.f, 4.m)

Rozwiązanie

Wzór funkcji f możemy zapisać w każdym ze zbiorów: $(-\infty, -3), \langle -3, 3 \rangle \setminus \{0\}, \langle 3, +\infty \rangle$ bez symbolu wartości bezwzględnej. Wówczas

$$f(x) = \begin{cases} \frac{-(x+3) + \left[-(x-3)\right]}{x} & \text{dla } x \in (-\infty, -3) \\ \frac{x+3 + \left[-(x-3)\right]}{x} & \text{dla } x \in (-3, 0) \cup (0, 3), \\ \frac{x+3 + (x-3)}{x} & \text{dla } x \in (3, +\infty) \end{cases}$$

czyli

$$f(x) = \begin{cases} -2 & \text{dla } x \in (-\infty, -3) \\ \frac{6}{x} & \text{dla } x \in \langle -3, 0 \rangle \cup (0, 3) \\ 2 & \text{dla } x \in \langle 3, +\infty \rangle \end{cases}$$

Wykres ma więc postać

Zbiorem wartości funkcji f jest $(-\infty, -2) \cup (2, +\infty)$.

Schemat oceniania

- zapisze przedziały: (-∞, -3), ⟨-3,3), ⟨3, +∞) i na tym poprzestanie lub dalej
 popełni błędy, np. przy korzystaniu z definicji wartości bezwzględnej
 albo
 - zaznaczy na osi liczbowej przedziały: $(-\infty, -3)$, $\langle -3, 3 \rangle$, $\langle 3, +\infty \rangle$ i na tym poprzestanie lub dalej popełni błędy, np. przy korzystaniu z definicji wartości bezwzględnej.

bez użycia symbolu wartości bezwzględnej, np.:

$$|x+3|+|x-3| = -(x+3)+[-(x-3)] \text{ dla } x \in (-\infty, -3),$$

$$|x+3|+|x-3| = x+3+[-(x-3)] \text{ dla } x \in (-3,0) \cup (0,3),$$

$$|x+3|+|x-3| = x+3+x-3 \text{ dla } x \in (3,+\infty).$$

Uwaga

Nie wymagamy, żeby zdający rozpatrując funkcję f w przedziale $\langle -3,3 \rangle$ zapisał warunek $x \neq 0$.

- zapisze wzór funkcji f w poszczególnych przedziałach popełniając błąd rachunkowy i konsekwentnie do popełnionego błędu poda jej zbiór wartości albo
 - poprawnie narysuje wykres funkcji f i błędnie odczyta zbiór wartości (np. R).

Uwaga

Jeżeli zdający narysuje poprawnie wykres funkcji i nie poda zbioru jej wartości, to otrzymuje **3 punkty**.

Zadanie 2. (0-6)

Wyznacz wszystkie wartości parametru m, dla których funkcja kwadratowa $f(x) = x^2 - (2m+2)x + 2m + 5$ ma dwa różne pierwiastki x_1 , x_2 takie, że suma kwadratów odległości punktów $A = (x_1, 0)$ i $B = (x_2, 0)$ od prostej o równaniu x + y + 1 = 0 jest równa 6.

Obszar standardów	Opis wymagań
Użycie i tworzenie strategii	Rozwiązywanie zadań (również umieszczonych w kontekście praktycznym), prowadzących do badania funkcji kwadratowej. Obliczanie odległości punktu od prostej. (IV.4.l, 8.c)

I sposób rozwiązania

Funkcja kwadratowa f ma dwa różne pierwiastki wtedy i tylko wtedy, gdy spełniony jest warunek $\Delta > 0$. Zatem

$$[-(2m+2)]^{2} - 4 \cdot 1 \cdot (2m+5) > 0,$$

$$4m^{2} - 16 > 0,$$

$$4(m-2)(m+2) > 0,$$

$$m \in (-\infty, -2) \cup (2, +\infty).$$

Odległość punktu $A = (x_1, 0)$ od prostej o równaniu x + y + 1 = 0 jest równa

$$d_1 = \frac{|1 \cdot x_1 + 1 \cdot 0 + 1|}{\sqrt{2}} = \frac{|x_1 + 1|}{\sqrt{2}}.$$

Analogicznie odległość punktu $B = (x_2, 0)$ od tej prostej jest równa $d_2 = \frac{|x_2 + 1|}{\sqrt{2}}$.

Suma kwadratów tych odległości jest równa 6, więc otrzymujemy równość

$$\left(\frac{\left|x_1+1\right|}{\sqrt{2}}\right)^2 + \left(\frac{\left|x_2+1\right|}{\sqrt{2}}\right)^2 = 6.$$

Przekształcając równoważnie tę równość otrzymujemy

$$\frac{\left(x_1+1\right)^2}{2} + \frac{\left(x_2+1\right)^2}{2} = 6,$$

$$x_1^2 + 2x_1 + 1 + x_2^2 + 2x_2 + 1 = 12,$$

$$x_1^2 + x_2^2 + 2\left(x_1 + x_2\right) - 10 = 0,$$

$$\left(x_1 + x_2\right)^2 - 2x_1x_2 + 2\left(x_1 + x_2\right) - 10 = 0.$$

Wykorzystując wzory Viete'a otrzymujemy równanie z niewiadomą m

$$(2m+2)^{2}-2(2m+5)+2(2m+2)-10=0,$$

$$4m^{2}+8m+4-4m-10+4m+4-10=0,$$

$$4m^{2}+8m-12=0,$$

$$m^{2}+2m-3=0,$$

$$(m-1)(m+3)=0.$$

Stad

$$m = 1$$
 lub $m = -3$.

Tylko dla m = -3 istnieją pierwiastki x_1 , x_2 .

II sposób rozwiązania

Funkcja kwadratowa f ma dwa różne pierwiastki wtedy i tylko wtedy, gdy spełniony jest warunek $\Delta > 0$. Zatem

$$[-(2m+2)]^{2} - 4 \cdot 1 \cdot (2m+5) > 0,$$

$$4m^{2} - 16 > 0,$$

$$4(m-2)(m+2) > 0,$$

$$m \in (-\infty, -2) \cup (2, +\infty).$$

Odległość punktu $A = (x_1, 0)$ od prostej o równaniu x + y + 1 = 0 jest równa

$$d_1 = \frac{|1 \cdot x_1 + 1 \cdot 0 + 1|}{\sqrt{2}} = \frac{|x_1 + 1|}{\sqrt{2}}.$$

Analogicznie odległość punktu $B = (x_2, 0)$ od tej prostej jest równa $d_2 = \frac{|x_2 + 1|}{\sqrt{2}}$.

Suma kwadratów tych odległości jest równa 6, więc otrzymujemy równość

$$\left(\frac{\left|x_{1}+1\right|}{\sqrt{2}}\right)^{2} + \left(\frac{\left|x_{2}+1\right|}{\sqrt{2}}\right)^{2} = 6, \text{ czyli } \frac{\left(x_{1}+1\right)^{2}}{2} + \frac{\left(x_{2}+1\right)^{2}}{2} = 6.$$

Pierwiastki x_1 , x_2 są równe:

$$x_1 = \frac{2m + 2 - \sqrt{4m^2 - 16}}{2} = m + 1 - \sqrt{m^2 - 4} \text{ oraz } x_2 = \frac{2m + 2 + \sqrt{4m^2 - 16}}{2} = m + 1 + \sqrt{m^2 - 4}.$$

Otrzymujemy więc równanie z niewiadomą m

$$\frac{\left(m+1-\sqrt{m^2-4}+1\right)^2}{2} + \frac{\left(m+1+\sqrt{m^2-4}+1\right)^2}{2} = 6,$$

$$\left(m+2-\sqrt{m^2-4}\right)^2 + \left(m+2+\sqrt{m^2-4}\right)^2 = 12,$$

$$\left(m+2\right)^2 - 2\left(m+2\right)\sqrt{m^2-4} + m^2 - 4 + \left(m+2\right)^2 + 2\left(m+2\right)\sqrt{m^2-4} + m^2 - 4 = 12,$$

$$2\left(m+2\right)^2 + 2m^2 - 8 = 12,$$

$$\left(m^2 + 4m + 4\right) + m^2 - 10 = 0,$$

$$m^2 + 2m - 3 = 0,$$

$$\left(m-1\right)\left(m+3\right) = 0.$$

Stad

$$m = 1$$
 lub $m = -3$.

Tylko dla m = -3 istnieją pierwiastki x_1 , x_2 .

Schemat oceniania I i II sposobu oceniania

Rozwiązanie zadania składa się z trzech etapów.

Pierwszy z nich polega na rozwiązaniu nierówności $\Delta > 0$: $m \in (-\infty, -2) \cup (2, +\infty)$.

Za poprawne rozwiązanie tego etapu zdający otrzymuje 1 punkt.

<u>Uwaga</u> Jeżeli zdający zapisze $\Delta \ge 0$, to za tę część otrzymuje **0 punktów**.

Drugi etap polega na rozwiązaniu równania $d_1^2 + d_2^2 = 6$.

Za tę część rozwiązania zdający otrzymuje 4 punkty.

Podział punktów za drugi etap rozwiązania:

1 punkt zdający otrzymuje za zapisanie odległości punktu A lub B od prostej o równaniu x + y + 1 = 0 w zależności od pierwszej współrzędnej punktu:

$$d_1 = \frac{|x_1 + 1|}{\sqrt{2}}, \ d_2 = \frac{|x_2 + 1|}{\sqrt{2}}.$$

2 punkty zdający otrzymuje za zapisanie

• wyrażenia $d_1^2 + d_2^2$ w postaci: $\frac{(x_1 + x_2)^2 - 2x_1x_2 + 2(x_1 + x_2)}{2}$

albo

• równości $d_1^2 + d_2^2 = 6$, w postaci równoważnej, np.:

$$(x_1 + x_2)^2 - 2x_1x_2 + 2(x_1 + x_2) - 10 = 0$$

albo

• równania z niewiadomą m w postaci:

$$\frac{\left(m+1-\sqrt{m^2-4}+1\right)^2}{2}+\frac{\left(m+1+\sqrt{m^2-4}+1\right)^2}{2}=6.$$

3 punkty zdający otrzymuje za zapisanie równania stopnia drugiego z jedną niewiadomą m, np.: $(2m+2)^2 - 2(2m+5) + 2(2m+2) - 10 = 0$ lub $2(m+2)^2 + 2m^2 - 8 = 12$.

4 punkty zdający otrzymuje za rozwiązanie tego równania: m = 1 lub m = -3.

Trzeci etap polega na wyznaczeniu części wspólnej rozwiązań nierówności z etapu pierwszego i drugiego: m = -3.

Rozwiązanie pełne (trzeci etap)......6 pkt

Wyznaczenie części wspólnej zbiorów rozwiązań nierówności i równania oraz podanie odpowiedzi: m = -3.

Uwaga

Za ostatni etap **1 punkt** może zostać przyznany tylko wówczas, gdy zdający poprawnie wykona etapy I i II rozwiązania albo poprawnie wykona etap I i popełnia błędy w rozwiązaniu równania z etapu II, albo gdy popełnia błędy w etapie I i dobrze rozwiąże równanie z etapu II.

Zadanie 3. (0–1)

Rozwiąż równanie $\sqrt{3} \cdot \cos x = 1 + \sin x$ w przedziale $\langle 0, 2\pi \rangle$.

Obszar standardów	Opis wymagań
Wykorzystanie	Rozwiązywanie równań i nierówności trygonometrycznych.
i interpretowanie	(II.6.e.R)
reprezentacji	

I sposób rozwiązania

Równanie zapisujemy w postaci równoważnej

$$\sqrt{3} \cdot \cos x - \sin x = 1$$
.

Dzieląc obie strony równania przez 2 otrzymujemy

$$\frac{\sqrt{3}}{2} \cdot \cos x - \frac{1}{2} \cdot \sin x = \frac{1}{2}.$$

Ponieważ $\frac{\sqrt{3}}{2} = \sin \frac{\pi}{3}$ oraz $\frac{1}{2} = \cos \frac{\pi}{3}$, więc równanie możemy zapisać w postaci

$$\sin\frac{\pi}{3}\cdot\cos x - \cos\frac{\pi}{3}\cdot\sin x = \frac{1}{2}.$$

Ze wzoru na sinus różnicy dostajemy

$$\sin\left(\frac{\pi}{3}-x\right)=\frac{1}{2}.$$

Stad

$$\frac{\pi}{3} - x = \frac{\pi}{6} + 2k\pi$$
 lub $\frac{\pi}{3} - x = \left(\pi - \frac{\pi}{6}\right) + 2k\pi$, gdzie k jest liczbą całkowitą,

czyli

$$x = \frac{\pi}{6} - 2k\pi$$
 lub $x = -\frac{\pi}{2} - 2k\pi$.

W przedziale $\langle 0, 2\pi \rangle$ są tylko dwa rozwiązania tego równania: $x = \frac{\pi}{6}$, $x = \frac{3}{2}\pi$.

Uwaga

Równanie $\frac{\sqrt{3}}{2} \cdot \cos x - \frac{1}{2} \cdot \sin x = \frac{1}{2}$ możemy również zapisać w postaci równoważnej

$$\cos\frac{\pi}{6}\cdot\cos x - \sin\frac{\pi}{6}\cdot\sin x = \frac{1}{2},$$

a następnie zastosować wzór na cosinus sumy. Wtedy otrzymujemy

$$\cos\left(x+\frac{\pi}{6}\right)=\frac{1}{2}$$
.

Stad

$$x + \frac{\pi}{6} = \frac{\pi}{3} + 2k\pi$$
 lub $x + \frac{\pi}{6} = -\frac{\pi}{3} + 2k\pi$, gdzie k jest liczbą całkowitą,

więc

$$x = \frac{\pi}{6} + 2k\pi$$
 lub $x = -\frac{\pi}{2} + 2k\pi$, gdzie k jest liczbą całkowitą.

Uwaga

Do równania elementarnego, np. $\sin\left(\frac{\pi}{3} - x\right) = \frac{1}{2}$ możemy również dojść nieco inaczej.

Zauważmy, że $\sqrt{3} = \lg \frac{\pi}{3}$, czyli $\sqrt{3} = \frac{\sin \frac{\pi}{3}}{\cos \frac{\pi}{3}}$. Zatem równanie $\sqrt{3} \cdot \cos x - \sin x = 1$ możemy

zapisać w postaci równoważnej

$$\frac{\sin\frac{\pi}{3}}{\cos\frac{\pi}{3}} \cdot \cos x - \sin x = 1,$$

$$\sin\left(\frac{\pi}{3}-x\right)=\frac{1}{2}.$$

Schemat oceniania I sposobu rozwiązania

Zdający zapisze równanie w postaci równoważnej, np.: $\sin \frac{\pi}{3} \cdot \cos x - \cos \frac{\pi}{3} \cdot \sin x = \frac{1}{2}$ lub

$$\cos\frac{\pi}{6} \cdot \cos x - \sin\frac{\pi}{6} \cdot \sin x = \frac{1}{2} \text{ lub } \frac{\sin\frac{\pi}{3}}{\cos\frac{\pi}{3}} \cdot \cos x - \sin x = 1.$$

Zdający zapisze równanie w postaci równoważnej: $\sin\left(\frac{\pi}{3} - x\right) = \frac{1}{2}$ lub $\cos\left(x + \frac{\pi}{6}\right) = \frac{1}{2}$.

 $x = \frac{\pi}{6} - 2k\pi$ lub $x = -\frac{\pi}{2} - 2k\pi$, gdzie k jest liczbą całkowitą.

Rozwiązanie pełne4 pkt

Zdający poda wszystkie rozwiązania równania z przedziału $\langle 0, 2\pi \rangle$: $x = \frac{\pi}{6}$, $x = \frac{3}{2}\pi$.

Uwaga

Jeżeli zdający zapisze tylko jedną serię rozwiązań równania elementarnego i konsekwentnie poda tylko jedno rozwiązanie z przedziału $\langle 0, 2\pi \rangle$, to otrzymuje 3 **punkty**.

II sposób rozwiązania

Ponieważ prawa strona równania $\sqrt{3} \cdot \cos x = 1 + \sin x$ jest nieujemna, więc równanie ma rozwiązania tylko wtedy, gdy $\cos x \ge 0$. Wówczas podnosząc obie strony równania do kwadratu otrzymujemy równanie równoważne

$$3\cos^2 x = 1 + 2\sin x + \sin^2 x$$
.

Stąd i z "jedynki trygonometrycznej" otrzymujemy

$$3(1-\sin^2 x) = 1 + 2\sin x + \sin^2 x,$$

$$4\sin^2 x + 2\sin x - 2 = 0,$$

$$2\sin^2 x + \sin x - 1 = 0.$$

Podstawiając $t = \sin x$ otrzymujemy równanie kwadratowe

$$2t^{2} + t - 1 = 0,$$

$$(t+1)(2t-1) = 0.$$

Stad

$$t = -1$$
 lub $t = \frac{1}{2}$.

Zatem

$$\sin x = -1 \text{ lub } \sin x = \frac{1}{2}.$$

Rozwiązaniem pierwszego z tych równań jest każda liczba $x=\frac{3}{2}\pi+2k\pi$, gdzie k jest liczbą całkowitą. Rozwiązaniem drugiego jest każda liczba $x=\frac{\pi}{6}+2k\pi$ lub $x=\frac{5}{6}\pi+2k\pi$, gdzie k jest liczbą całkowitą.

Ponieważ dla każdego k jest liczbą całkowitą mamy $\cos\left(\frac{5}{6}\pi + 2k\pi\right) = \cos\left(\frac{5}{6}\pi\right) < 0$, więc

żadna z liczb $x = \frac{5}{6}\pi + 2k\pi$ nie jest rozwiązaniem naszego równania. Spośród pozostałych

rozwiązań, w przedziale $\langle 0, 2\pi \rangle$ znajdują się tylko dwie takie liczby: $x = \frac{\pi}{6}$, $x = \frac{3}{2}\pi$.

Uwaga

Zamiast przekształcać równanie $\sqrt{3} \cdot \cos x = 1 + \sin x$ w sposób równoważny do układu równania $3\cos^2 x = 1 + 2\sin x + \sin^2 x$ i nierówności $\cos x \ge 0$ możemy wyznaczyć wszystkie liczby z przedziału $\langle 0, 2\pi \rangle$, spełniające równanie $3\cos^2 x = 1 + 2\sin x + \sin^2 x$,

a więc liczby $x = \frac{\pi}{6}$, $x = \frac{5}{6}\pi$, $x = \frac{3}{2}\pi$, a następnie sprawdzić, które z nich spełniają

równanie $\sqrt{3} \cdot \cos x = 1 + \sin x$. Wówczas dla $x = \frac{\pi}{6}$ lewa strona równania jest równa

$$\sqrt{3} \cdot \cos \frac{\pi}{6} = \sqrt{3} \cdot \frac{\sqrt{3}}{2} = \frac{3}{2}$$
, a prawa $1 + \sin \frac{\pi}{6} = 1 + \frac{1}{2} = \frac{3}{2}$, więc liczba $x = \frac{\pi}{6}$ jest rozwiązaniem

równania $\sqrt{3} \cdot \cos x = 1 + \sin x$. Dla $x = \frac{5}{6}\pi$ lewa strona równania jest równa

$$\sqrt{3} \cdot \cos \frac{5}{6} \pi = \sqrt{3} \cdot \left(-\frac{\sqrt{3}}{2} \right) = -\frac{3}{2}$$
, a prawa $1 + \sin \frac{5}{6} \pi = 1 + \frac{1}{2} = \frac{3}{2}$, wiec liczba $x = \frac{5}{6} \pi$ nie jest

rozwiązaniem równania $\sqrt{3} \cdot \cos x = 1 + \sin x$. Dla $x = \frac{3}{2}\pi$ lewa strona równania

$$\sqrt{3} \cdot \cos \frac{3}{2}\pi = \sqrt{3} \cdot 0 = 0$$
, a prawa $1 + \sin \left(\frac{3}{2}\pi\right) = 1 - 1 = 0$, więc liczba $x = \frac{3}{2}\pi$ jest

rozwiązaniem równania.

W przedziale $\langle 0, 2\pi \rangle$ znajdują się dwa rozwiązania: $x = \frac{\pi}{6}$, $x = \frac{3}{2}\pi$.

Schemat oceniania II sposobu rozwiązania

<u>Uwaga</u>

Wystarczy, że zdający zapisze t = -1 lub $t = \frac{1}{2}$, jeśli wykonał podstawienie.

$$x = \frac{\pi}{6} + 2k\pi$$
, $x = \frac{5}{6}\pi + 2k\pi$, $x = \frac{3}{2}\pi + 2k\pi$, gdzie k jest liczbą całkowitą.

Uwaga

Jeżeli zdający zapisze tylko jedną serię rozwiązań spośród $x = \frac{\pi}{6} + 2k\pi$, $x = \frac{3}{2}\pi + 2k\pi$,

i konsekwentnie poda tylko jedno rozwiązanie z przedziału $\langle 0, 2\pi \rangle$, to otrzymuje 3 **punkty**.

III sposób rozwiązania

Dopisując do równania $\sqrt{3} \cdot \cos x - \sin x = 1$ "jedynkę trygonometryczną" otrzymujemy układ równań

$$\begin{cases} \sqrt{3} \cdot \cos x - \sin x = 1\\ \sin^2 x + \cos^2 x = 1 \end{cases}$$

z niewiadomymi $\sin x$ i $\cos x$.

Rozwiązując ten układ dostajemy kolejno:

$$\begin{cases} \sin x = \sqrt{3} \cdot \cos x - 1 \\ \left(\sqrt{3} \cdot \cos x - 1\right)^2 + \cos^2 x = 1 \end{cases}$$

$$\begin{cases} \sin x = \sqrt{3} \cdot \cos x - 1 \\ 4\cos^2 x - 2\sqrt{3}\cos x = 0 \end{cases}$$

$$\begin{cases} \sin x = \sqrt{3} \cdot \cos x - 1 \\ 4\cos x \left(\cos x - \frac{\sqrt{3}}{2}\right) = 0 \end{cases}$$

$$\begin{cases} \sin x = \sqrt{3} \cdot \cos x - 1 \\ \cos x = 0 \text{ lub } \cos x = \frac{\sqrt{3}}{2} \end{cases}$$

$$\begin{cases} \sin x = -1 \\ \cos x = 0 \end{cases}$$

$$\begin{cases} \sin x = \frac{1}{2} \\ \cos x = \frac{\sqrt{3}}{2} \end{cases}$$

Rozwiązując otrzymane równania elementarne mamy

$$\begin{cases} x = \frac{3}{2}\pi + 2k\pi \\ x = \frac{\pi}{2} + k\pi \end{cases} \text{ lub } \begin{cases} x = \frac{\pi}{6} + 2k\pi \text{ lub } x = \frac{5}{6}\pi + 2k\pi \\ x = \frac{\pi}{6} + 2k\pi \text{ lub } x = -\frac{\pi}{6} + 2k\pi \end{cases}, \text{ gdzie } k \text{ jest liczbą całkowitą.}$$

Stad

$$x = \frac{3}{2}\pi + 2k\pi$$
 lub $x = \frac{\pi}{6} + 2k\pi$, gdzie k jest liczbą całkowitą.

W przedziale $\langle 0, 2\pi \rangle$ znajdują się dwa rozwiązania: $x = \frac{\pi}{6}, x = \frac{3}{2}\pi$.

Schemat oceniania III sposobu rozwiązania

$$\begin{cases} \sin x = \sqrt{3} \cdot \cos x - 1 \\ \left(\sqrt{3} \cdot \cos x - 1\right)^2 + \cos^2 x = 1 \end{cases}$$

$$\cos x = 0 \text{ lub } \cos x = \frac{\sqrt{3}}{2}.$$

Zdający rozwiąże otrzymane równania w zbiorze R:

$$x = \frac{\pi}{2} + k\pi$$
 lub $x = -\frac{\pi}{6} + 2k\pi$ lub $x = \frac{\pi}{6} + 2k\pi$ lub $x = \frac{5\pi}{6} + 2k\pi$, gdzie k jest liczbą całkowitą.

Uwaga

Jeżeli zdający zapisze tylko jedną serię rozwiązań równania elementarnego i konsekwentnie poda tylko jedno rozwiązanie z przedziału $\langle 0, 2\pi \rangle$, to otrzymuje 3 **punkty**.

IV sposób rozwiązania

Narysujmy w jednym układzie współrzędnych wykresy funkcji $f(x) = \sqrt{3} \cos x$ oraz $g(x) = \sin x + 1$ określonych w przedziale $\langle 0, 2\pi \rangle$.

W przedziałe $\left\langle 0,\frac{\pi}{2}\right\rangle$ funkcja f jest malejąca, a jej wartości maleją od $\sqrt{3}$ do 0, natomiast funkcja g jest w tym przedziałe rosnąca, a jej wartości rosną od 1 do 2. Zatem równanie f(x)=g(x) ma w tym przedziałe jedno rozwiązanie. Rozwiązaniem tym jest $x=\frac{\pi}{6}$, gdyż $f\left(\frac{\pi}{6}\right)=\sqrt{3}\cos\frac{\pi}{6}=\sqrt{3}\cdot\frac{\sqrt{3}}{3}=\frac{3}{2}$ oraz $g\left(\frac{\pi}{6}\right)=\sin\frac{\pi}{6}+1=\frac{1}{2}+1=\frac{3}{2}$. Drugim rozwiązaniem równania f(x)=g(x) w przedziałe $\left\langle 0,2\pi\right\rangle$ jest $x=\frac{3}{2}\pi$. Jest to wspólne miejsce zerowe funkcji f i g.

Zatem w przedziale $\langle 0, 2\pi \rangle$ znajdują się dwa rozwiązania równania: $x = \frac{\pi}{6}, \ x = \frac{3}{2}\pi$.

Schemat oceniania IV sposobu rozwiązania

Uwaga

Zdający może rozważać funkcje określone na dowolnym zbiorze zawierającym przedział $\langle 0, 2\pi \rangle$.

$$\dot{z}e f\left(\frac{\pi}{6}\right) = g\left(\frac{\pi}{6}\right) = \frac{3}{2}.$$

Uwaga

Jeżeli zdający poda tylko jedno poprawne rozwiązanie równania z przedziału $\langle 0, 2\pi \rangle$:

$$x = \frac{\pi}{6}$$
 albo $x = \frac{3}{2}\pi$ i wykona odpowiednie sprawdzenie, to otrzymuje 3 punkty.

Zadanie 4. (0-3)

Udowodnij, że dla dowolnych liczb rzeczywistych dodatnich x, y prawdziwa jest nierówność $(x+1)\frac{x}{y}+(y+1)\frac{y}{x}>2$.

Obszar standardów	Opis wymagań
Rozumowanie	Przeprowadzenie dowodu twierdzenia związanego
i argumentacja	z działaniami na wyrażeniach wymiernych: dodawaniem,
	odejmowaniem, mnożeniem i dzieleniem wyrażeń
	wymiernych, skracaniem, rozszerzaniem wyrażeń
	wymiernych. (V.2.f)

Rozwiązanie I sposób

Przekształcając nierówność $(x+1)\frac{x}{y} + (y+1)\frac{y}{x} > 2$ w sposób równoważny otrzymujemy $(x+1)x^2 + (y+1)y^2 > 2xy$, $x^3 + x^2 + y^3 + y^2 > 2xy$, $x^2 - 2xy + y^2 + x^3 + y^3 > 0$, $(x-y)^2 + x^3 + y^3 > 0$.

Ostatnia nierówność jest prawdziwa, gdyż $(x-y)^2 \ge 0$ dla dowolnych liczb rzeczywistych, natomiast $x^3 > 0$ i $y^3 > 0$, gdyż liczby x i y są dodatnie. To kończy dowód.

Schemat oceniania I sposobu rozwiązania

Rozwiązanie II sposób

Ponieważ x > 0 i y > 0, więc x + 1 > 1 i y + 1 > 1. Stąd wynika, że

$$(x+1)\frac{x}{y} + (y+1)\frac{y}{x} > 1 \cdot \frac{x}{y} + 1 \cdot \frac{y}{x} = \frac{x}{y} + \frac{y}{x}.$$

Suma $\frac{x}{y} + \frac{y}{x}$ to suma liczby dodatniej i jej odwrotności, więc jest co najmniej równa 2, czyli

$$\frac{x}{y} + \frac{y}{x} \ge 2$$
. W rezultacie $(x+1)\frac{x}{y} + (y+1)\frac{y}{x} > 2$, co kończy dowód.

Uwaga

Nierówność $\frac{x}{v} + \frac{y}{x} \ge 2$ wynika również wprost z twierdzenia o średniej arytmetycznej

i geometrycznej:
$$\frac{\frac{x}{y} + \frac{y}{x}}{2} \ge \sqrt{\frac{x}{y} \cdot \frac{y}{x}} = 1$$
. Stąd $\frac{x}{y} + \frac{y}{x} \ge 2$.

Schemat oceniania II sposobu rozwiązania

Rozwiązanie III sposób

Przekształcając nierówność $(x+1)\frac{x}{y} + (y+1)\frac{y}{x} > 2$ w sposób równoważny otrzymujemy $\frac{x^2}{y} + \frac{x}{y} + \frac{y^2}{x} + \frac{y}{x} > 2,$ $\frac{x}{y} + \frac{y}{x} + \frac{x^2}{y} + \frac{y^2}{x} > 2.$

Suma $\frac{x}{y} + \frac{y}{x}$ to suma liczby dodatniej i jej odwrotności, więc jest co najmniej równa 2,

natomiast suma $\frac{x^2}{y} + \frac{y^2}{x}$ jest dodatnia, gdyż jest sumą dwóch dodatnich składników. Zatem nierówność $\frac{x}{v} + \frac{y}{r} + \frac{x^2}{v} + \frac{y^2}{r} > 2$ jest prawdziwa. To kończy dowód.

Uwaga

Nierówność $\frac{x}{y} + \frac{y}{x} \ge 2$ wynika również wprost z twierdzenia o średniej arytmetycznej

i geometrycznej:
$$\frac{\frac{x}{y} + \frac{y}{x}}{2} \ge \sqrt{\frac{x}{y} \cdot \frac{y}{x}} = 1$$
. Stąd $\frac{x}{y} + \frac{y}{x} \ge 2$.

Schemat oceniania III sposobu rozwiązania

Zdający otrzymuje.3 pkt gdy uzasadni prawdziwość nierówności $\frac{x}{y} + \frac{y}{x} + \frac{x^2}{y} + \frac{y^2}{x} > 2$, np. stwierdzi, że $\frac{x}{y} + \frac{y}{x} \ge 2$ jest prawdziwa dla dowolnych liczb dodatnich, co wynika z twierdzenia o sumie liczby dodatniej i jej odwrotności oraz $\frac{x^2}{y} > 0$ i $\frac{y^2}{x} > 0$ dla liczb rzeczywistych dodatnich x i y.

Zadanie 5. (0-5)

Dane są trzy okręgi o środkach A, B, C i promieniach równych odpowiednio r, 2r, 3r. Każde dwa z tych okręgów są zewnętrznie styczne: pierwszy z drugim w punkcie K, drugi z trzecim w punkcie L i trzeci z pierwszym w punkcie M. Oblicz stosunek pola trójkąta KLM do pola trójkąta ABC.

Obszar standardów	Opis wymagań
Modelowanie matematyczne	Znajdowanie związków miarowych w figurach płaskich, także z zastosowaniem trygonometrii, również w zadaniach
	umieszczonych w kontekście praktycznym. (III.7.c)

I sposób rozwiązania

Przyjmijmy oznaczenia jak na rysunku.

Pole trójkąta AMK jest równe

$$P_{AMK} = \frac{1}{2} |AM| \cdot |AK| \cdot \sin \alpha = \frac{1}{2} r^2 \cdot \sin \alpha ,$$

pole trójkata ABC jest równe

$$P_{ABC} = \frac{1}{2} |AC| \cdot |AB| \cdot \sin \alpha = \frac{1}{2} \cdot 4r \cdot 3r \cdot \sin \alpha = \frac{1}{2} \cdot 12r^2 \cdot \sin \alpha.$$

Zatem

$$\frac{P_{AMK}}{P_{ABC}} = \frac{\frac{1}{2}r^2 \cdot \sin \alpha}{\frac{1}{2} \cdot 12r^2 \cdot \sin \alpha} = \frac{1}{12}.$$

Podobnie, pole trójkąta BKL jest równe

$$P_{BKL} = \frac{1}{2} \left| BK \right| \cdot \left| BL \right| \cdot \sin \beta = \frac{1}{2} \left(2r \right)^2 \cdot \sin \beta = \frac{1}{2} \cdot 4r^2 \cdot \sin \beta ,$$

natomiast pole trójkata ABC jest równe

$$P_{ABC} = \frac{1}{2} |BA| \cdot |BC| \cdot \sin \beta = \frac{1}{2} \cdot 3r \cdot 5r \cdot \sin \beta = \frac{1}{2} \cdot 15r^2 \cdot \sin \beta ,$$

więc

$$\frac{P_{BKL}}{P_{ABC}} = \frac{\frac{1}{2} \cdot 4r^2 \cdot \sin \beta}{\frac{1}{2} \cdot 15r^2 \cdot \sin \beta} = \frac{4}{15}.$$

Pole trójkata CLM jest równe

$$P_{CLM} = \frac{1}{2} |CM| \cdot |CL| \cdot \sin \gamma = \frac{1}{2} (3r)^2 \cdot \sin \gamma = \frac{1}{2} \cdot 9r^2 \cdot \sin \gamma,$$

natomiast pole trójkąta ABC jest równe

$$P_{ABC} = \frac{1}{2} |CA| \cdot |CB| \cdot \sin \gamma = \frac{1}{2} \cdot 4r \cdot 5r \cdot \sin \gamma = \frac{1}{2} \cdot 20r^2 \cdot \sin \gamma ,$$

Zatem

$$\frac{P_{CLM}}{P_{ABC}} = \frac{\frac{1}{2} \cdot 9r^2 \cdot \sin \gamma}{\frac{1}{2} \cdot 20r^2 \cdot \sin \gamma} = \frac{9}{20}.$$

Pole trójkąta KLM jest więc równe

$$P_{KLM} = P_{ABC} - P_{AMK} - P_{BKL} - P_{CLM} = P_{ABC} - \frac{1}{12} P_{ABC} - \frac{4}{15} P_{ABC} - \frac{9}{20} P_{ABC} = \frac{1}{5} P_{ABC},$$

czyli

albo

$$\frac{P_{KLM}}{P_{ABC}} = \frac{1}{5}.$$

Schemat oceniania I sposobu rozwiązania

- wyznaczy pole każdego z trójkątów AMK, BKL lub CLM w zależności od pola trójkąta ABC, np.: $P_{AMK} = \frac{1}{12} P_{ABC}$, $P_{BKL} = \frac{4}{15} P_{ABC}$, $P_{CLM} = \frac{9}{20} P_{ABC}$ i na tym poprzestanie
- obliczy stosunek pola trójkąta *KLM* do pola trójkąta *ABC*, popełniając błędy rachunkowe (nawet na wcześniejszych etapach rozwiązania).

II sposób rozwiązania

Długości boków trójkąta ABC są równe |AB| = 3r, |AC| = 4r i |BC| = 5r. Ponieważ

$$|AB|^2 + |AC|^2 = (3r)^2 + (4r)^2 = 9r^2 + 16r^2 = 25r^2 = (5r)^2 = |BC|^2$$
,

wiec trójkat ABC jest prostokatny. Zatem

$$\sin \beta = \frac{4r}{5r} = \frac{4}{5}$$
, $\sin \gamma = \frac{3r}{5r} = \frac{3}{5}$ oraz $P_{ABC} = \frac{1}{2} \cdot 3r \cdot 4r = 6r^2$.

Pole trójkata prostokatnego AMK jest równe

$$P_{AMK} = \frac{1}{2} |AM| \cdot |AK| = \frac{1}{2} r^2.$$

Pole trójkata BKL jest równe

$$P_{BKL} = \frac{1}{2} |BK| \cdot |BL| \cdot \sin \beta = \frac{1}{2} (2r)^2 \cdot \sin \beta = \frac{1}{2} \cdot 4r^2 \cdot \frac{4}{5} = \frac{8}{5}r^2,$$

a pole trójkąta CLM jest równe

$$P_{CLM} = \frac{1}{2} |CM| \cdot |CL| \cdot \sin \gamma = \frac{1}{2} (3r)^2 \cdot \sin \gamma = \frac{1}{2} \cdot 9r^2 \cdot \frac{3}{5} = \frac{27}{10} r^2.$$

Pole trójkata KLM jest więc równe

$$P_{KLM} = P_{ABC} - P_{AMK} - P_{BKL} - P_{CLM} = 6r^2 - \frac{1}{2}r^2 - \frac{8}{5}r^2 - \frac{27}{10}r^2 = \frac{1}{5}P_{ABC}$$

czyli

$$\frac{P_{KLM}}{P_{ABC}} = \frac{1}{5} .$$

Schemat oceniania II sposobu rozwiązania

- zapisze, że trójkąt *ABC* jest prostokątny albo
 - wyrazi pole trójkąta KLM jako różnicę pól odpowiednich trójkątów: $P_{KLM} = P_{ABC} P_{AMK} P_{BKL} P_{CLM}$.

Rozwiązanie, w którym jest istotny postęp......2 pkt Zdający

- obliczy sinusy kątów ostrych trójkąta *ABC*: $\sin \beta = \frac{4}{5}$, $\sin \gamma = \frac{3}{5}$ albo
- wyznaczy pole trójkąta ABC w zależności od r: $P_{ABC} = 6r^2$ albo
 - wyznaczy pole trójkąta AMK w zależności od r: $P_{AMK} = \frac{1}{2}r^2$.

 wyznaczy pole każdego z trójkątów ABC, AMK, BKL lub CLM w zależności od r i na tym poprzestanie

albo

• obliczy stosunek pola trójkąta *KLM* do pola trójkąta *ABC*, popełniając błędy rachunkowe (nawet na wcześniejszych etapach rozwiązania).

III sposób rozwiązania

Niech

$$|AB| = 3r$$
, $|BC| = 5r$, $|CA| = 4r$
 $|AK| = |AM| = r$, $|BK| = |BL| = 2r$, $|CL| = |CM| = 3r$

Zauważamy, że $| \angle BAC | = 90^{\circ}$, ponieważ $(3r)^2 + (4r)^2 = (5r)^2$, zatem

$$|KM| = \sqrt{r^2 + r^2} = r\sqrt{2} .$$

$$\cos\left| \ll CBA \right| = \frac{3r}{5r} = \frac{3}{5}, \qquad \cos\left| \ll ACB \right| = \frac{4r}{5r} = \frac{4}{5}$$

Zatem z twierdzenia kosinusów mamy

$$|KL| = \sqrt{4r^2 + 4r^2 - 2 \cdot 2r \cdot 2r \cdot \frac{3}{5}} = \frac{4\sqrt{5}}{5}r$$
$$|LM| = \sqrt{9r^2 + 9r^2 - 2 \cdot 3r \cdot 3r \cdot \frac{4}{5}} = \frac{3\sqrt{10}}{5}r$$

Obliczamy cos *≮KLM*:

$$2r^{2} = |KM|^{2} = |ML|^{2} + |KL|^{2} - 2 \cdot |ML| \cdot |KL| \cdot \cos| \ll KLM| =$$

$$= \frac{18r^{2}}{5} + \frac{16r^{2}}{5} - \frac{24\sqrt{50}}{25} r^{2} \cdot \cos| \ll KLM| = \frac{34}{5} r^{2} - \frac{24\sqrt{2}}{5} r^{2} \cdot \cos| \ll KLM|.$$

Zatem

$$\cos | \ll KLM | = \frac{\frac{34}{5} - 2}{24 \frac{\sqrt{2}}{5}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}, \text{ wiec } \sin | \ll KLM | = \frac{\sqrt{2}}{2}.$$

Wobec tego

$$P_{\Delta KLM} = \frac{1}{2} \cdot \frac{4\sqrt{5}}{5} \cdot r \cdot \frac{3\sqrt{10}}{5} r \cdot \frac{\sqrt{2}}{2} = \frac{6r^2}{5}$$
.

Ponieważ

$$P_{\Delta ABC} = \frac{1}{2} \cdot 3r \cdot 4r = 6r^2,$$

więc otrzymujemy $\frac{P_{\Delta KLM}}{P_{\Delta ARC}} = \frac{1}{5}$.

Uwaga

Można obliczyć miarę kąta KLM

$$| \angle KLM | = 180^{\circ} - \frac{1}{2} (180^{\circ} - | \angle ABC |) - \frac{1}{2} (180^{\circ} - | \angle ACB |) = \frac{1}{2} (| \angle ABC | + | \angle ACB |) = \frac{1}{2} \cdot 90^{\circ} = 45^{\circ}$$

Schemat oceniania III sposobu rozwiązania

Rozwiązanie, w którym jest istotny postęp......2 pkt Zdający wyznaczy trzy boki trójkąta *KLM*.

Pokonanie zasadniczych trudności zadania......3 pkt

Zdający wyznaczy kosinus jednego z kątów trójkąta *KLM*, np. $\cos \left| \angle KLM \right| = \frac{\sqrt{2}}{2}$.

Rozwiązanie zadania do końca, lecz z usterkami, które nie przekreślają poprawności rozwiązania (np. błędy rachunkowe)4 pkt

Zdający wyznaczy sinus jednego z kątów trójkąta *KLM*, np. $\sin \left| \ll KLM \right| = \frac{\sqrt{2}}{2}$.

Zdający obliczy stosunek pól trójkątów *KLM* i *ABC*: $\frac{P_{\textit{KLM}}}{P_{\textit{ABC}}} = \frac{1}{5}$.

Zadanie 6. (0-3)

Trójkąt ABC jest wpisany w okrąg o środku S. Kąty wewnętrzne CAB, ABC i BCA tego trójkąta są równe odpowiednio α , 2α i 4α . Wykaż, że trójkąt ABC jest rozwartokątny i udowodnij, że miary wypukłych kątów środkowych ASB, ASC i BSC tworzą w podanej kolejności ciąg arytmetyczny.

Obszar standardów	Opis wymagań
Rozumowanie	Badanie czy dany ciąg jest arytmetyczny lub geometryczny.
i argumentacja	Korzystanie ze związków między kątem środkowym, kątem wpisanym i kątem między styczną a cięciwą okręgu (V.5.b, 7.a)

Rozwiązanie

Suma kątów trójkąta jest równa 180°. Zatem $\alpha + 2\alpha + 4\alpha = 180^\circ$, więc $7\alpha = 180^\circ$. Stąd $\alpha = \left(25\frac{5}{7}\right)^\circ$ oraz $4\alpha = \left(102\frac{6}{7}\right)^\circ > 90^\circ$. To oznacza, że trójkąt *ABC* jest rozwartokątny.

Z twierdzenia o kącie środkowym i wpisanym wynika, że

$$| \angle BSC | = 2 | \angle BAC | = 2\alpha \text{ oraz } | \angle ASC | = 2 | \angle ABC | = 2 \cdot 2\alpha = 4\alpha.$$

Ponadto, wypukły kat środkowy ASB ma miarę równą

$$| ASB | = | SC | + | ASC | = 6\alpha$$
.

Ciąg $(6\alpha, 4\alpha, 2\alpha)$ jest arytmetyczny, a jego różnica jest równa (-2α) . To kończy dowód.

Schemat oceniania

Uwaga

Zdający nie musi obliczać miary kąta *CAB*. Wystarczy, że zapisze

$$4\alpha = \frac{4}{7} \cdot 180^{\circ} > \frac{1}{2} \cdot 180^{\circ} = 90^{\circ}$$
.

Uwaga

Jeżeli zdający nie uzasadni, że trójkąt *ABC* jest rozwartokątny, a udowodni, że miary kątów tworzą ciąg arytmetyczny, to otrzymuje **2 punkty**.

Zadanie 7. (0–6)

Ciąg geometryczny (a_n) ma 100 wyrazów i są one liczbami dodatnimi. Suma wszystkich wyrazów o numerach nieparzystych jest sto razy większa od sumy wszystkich wyrazów o numerach parzystych oraz $\log a_1 + \log a_2 + \log a_3 + \ldots + \log a_{100} = 100$. Oblicz a_1 .

Obszar standardów	Opis wymagań
Wykorzystanie	Badanie czy dany ciąg jest arytmetyczny lub geometryczny.
i interpretowanie	Stosowanie wzorów na <i>n</i> -ty wyraz i sumę <i>n</i> początkowych
reprezentacji	wyrazów ciągu arytmetycznego i ciągu geometrycznego.
	(II.5.b, c)

Rozwiazanie

Ponieważ wszystkie wyrazy ciągu (a_n) są dodatnie i suma wszystkich jego wyrazów o numerach nieparzystych jest 100 razy większa od sumy wszystkich wyrazów o numerach parzystych, więc ciąg ten nie jest stały.

Zauważmy, że ciąg, którego kolejnymi wyrazami są wyrazy ciągu geometrycznego o numerach nieparzystych również jest geometryczny, a jego iloraz jest równy q^2 , gdzie q oznacza iloraz ciągu (a_n) . Tak samo ciąg, którego kolejnymi wyrazami są wyrazy ciągu (a_n) o numerach parzystych jest geometryczny i jego iloraz również jest równy q^2 . Każdy z tych ciągów ma po 50 wyrazów. Ze wzoru na sumę n-początkowych wyrazów ciągu geometrycznego otrzymujemy równanie

$$a_1 \cdot \frac{1 - (q^2)^{50}}{1 - q^2} = 100a_2 \cdot \frac{1 - (q^2)^{50}}{1 - q^2}$$
.

Stąd mamy $a_1 = 100a_2$, czyli $a_1 = 100a_1q$. Zatem $q = \frac{1}{100}$, gdyż $a_1 > 0$.

Ponieważ

$$\log a_1 + \log a_2 + \log a_3 + \dots + \log a_{100} = 100$$
,

więc z własności logarytmów otrzymujemy

$$\log(a_1 \cdot a_2 \cdot a_3 \cdot \ldots \cdot a_{100}) = 100.$$

Z definicji logarytmu otrzymujemy więc

$$a_1 \cdot a_2 \cdot a_3 \cdot \ldots \cdot a_{100} = 10^{100}$$

Stąd i ze wzoru na n-ty wyraz ciągu geometrycznego dostajemy równanie z niewiadomą a_1

$$a_{1} \cdot \left(a_{1} \cdot \frac{1}{100}\right) \cdot \left(a_{1} \cdot \left(\frac{1}{100}\right)^{2}\right) \cdot \dots \cdot \left(a_{1} \cdot \left(\frac{1}{100}\right)^{99}\right) = 10^{100},$$

$$a_{1}^{100} \cdot \left(\frac{1}{100}\right)^{1+2+3+\dots+99} = 10^{100}.$$

Ze wzoru na sumę *n*-początkowych wyrazów ciągu arytmetycznego mamy

$$a_1^{100} \cdot \left(\frac{1}{100}\right)^{\frac{1+99}{2}.99} = 10^{100},$$
 $a_1^{100} \cdot \left(\frac{1}{100}\right)^{\frac{100.99}{2}} = 10^{100},$

Stad

$$a_1 = \frac{10}{\left(\frac{1}{100}\right)^{\frac{99}{2}}} = 10 \cdot 10^{99} = 10^{100}.$$

Schemat oceniania

zauważy, że ciąg, którego kolejnymi wyrazami są wyrazy ciągu geometrycznego
o numerach nieparzystych jest geometryczny oraz ciąg, którego kolejnymi wyrazami są
wyrazy ciągu (a_n) o numerach parzystych jest geometryczny, a iloraz każdego z tych
ciągów jest taki sam

albo

• zapisze równość $a_1 + a_3 + a_5 + ... + a_{99} = 100(a_1q + a_3q + a_5q + ... + a_{99}q)$

albo

• wykorzysta wzór na sumę logarytmów i definicję logarytmu oraz zapisze równość $\log a_1 + \log a_2 + \log a_3 + \ldots + \log a_{100} = 100$ w postaci: $a_1 \cdot a_2 \cdot a_3 \cdot \ldots \cdot a_{100} = 10^{100}$.

• zapisze równanie z niewiadomymi a_1 i q: $a_1 \cdot \frac{1 - (q^2)^{50}}{1 - q^2} = 100 a_2 \cdot \frac{1 - (q^2)^{50}}{1 - q^2}$

albo

• zapisze równość $a_1 + a_3 + a_5 + ... + a_{99} = 100q(a_1 + a_3 + a_5 + ... + a_{99})$ albo

• zapisze równość $a_1 \cdot (a_1 \cdot q) \cdot (a_1 \cdot q^2) \cdot \dots \cdot (a_1 \cdot q^{99}) = 10^{100}$.

Pokonanie zasadniczych trudności zadania......4 pkt Zdający zapisze równanie z niewiadomą a_1 , np.:

•
$$a_1 \cdot \left(a_1 \cdot \frac{1}{100} \right) \cdot \left(a_1 \cdot \left(\frac{1}{100} \right)^2 \right) \cdot \dots \cdot \left(a_1 \cdot \left(\frac{1}{100} \right)^{99} \right) = 10^{100}$$

albo

• zapisze zależności $a_1^{100}q^{4950} = 10^{100}$ i $q = \frac{1}{100}$.

<u>Uwaga</u>

Jeżeli zdający obliczy iloraz ciągu geometrycznego: $q = \frac{1}{100}$ i na tym poprzestanie lub dalej popełnia błędy rzeczowe, to otrzymuje **3 punkty**.

Zdający zapisze równanie w postaci $a_1^{100} \cdot \left(\frac{1}{100}\right)^{100 \cdot \frac{99}{2}} = 10^{100}$ i na tym zakończy lub dalej popełnia błędy.

Zadanie 8. (0–4)

Punkty A, B, C, D, E, F są kolejnymi wierzchołkami sześciokąta foremnego, przy czym $A = (0, 2\sqrt{3})$, B = (2, 0), a C leży na osi Ox. Wyznacz równanie stycznej do okręgu opisanego na tym sześciokącie przechodzącej przez wierzchołek E.

Obszar standardów	Opis wymagań
Użycie i tworzenie strategii	Rozwiązywanie zadań dotyczących wzajemnego położenia prostej i okręgu. (IV.8.b.R)

Rozwiazanie

Obliczmy długość boku sześciokata

$$|AB| = \sqrt{(2\sqrt{3})^2 + 2^2} = 4$$
.

Ponieważ wierzchołek C tego sześciokąta leży na osi Ox, więc C = (6,0).

Środek S okręgu opisanego na tym sześciokącie ma zatem współrzędne $S = (4, 2\sqrt{3})$.

Punkt S jest środkiem przekątnej BE sześciokąta, więc

$$S = \left(\frac{x_B + x_E}{2}, \frac{y_B + y_E}{2}\right) = \left(\frac{2 + x_E}{2}, \frac{0 + y_E}{2}\right).$$

Zatem

$$\frac{2 + x_E}{2} = 4 \text{ i } \frac{y_E}{2} = 2\sqrt{3} .$$

Stad
$$x_E = 6$$
 i $y_E = 4\sqrt{3}$, wiec $E = (6, 4\sqrt{3})$.

Styczna do okręgu opisanego na sześciokącie foremnym *ABCDEF* poprowadzona przez wierzchołek *E* tego sześciokąta jest prostopadła do prostej *BE*. Ponieważ współczynnik kierunkowy prostej *BE* jest równy

$$\frac{y_E - y_B}{x_E - x_B} = \frac{4\sqrt{3} - 0}{6 - 2} = \sqrt{3} ,$$

więc współczynnik kierunkowy stycznej jest równy $\left(-\frac{1}{\sqrt{3}}\right)$. Zatem styczna ma równanie

$$y = -\frac{1}{\sqrt{3}}(x-6) + 4\sqrt{3}$$
,

czyli

$$y = -\frac{\sqrt{3}}{3}x + 6\sqrt{3} .$$

Schemat oceniania

• zapisze długość boku sześciokąta ABCDEF: |AB| = 4

albo

• zapisze współrzędne środka S okręgu opisanego na sześciokącie: $S = \left(4, 2\sqrt{3}\right)$

albo

• obliczy lub poda współczynnik kierunkowy prostej BE: $\sqrt{3}$.

• obliczy lub poda współczynnik kierunkowy prostej BE: $\sqrt{3}$ i obliczy lub poda współrzędne wierzchołka E: $E = (6, 4\sqrt{3})$

albo

- ullet zapisze, że prosta AC jest równoległa do stycznej albo
 - obliczy lub poda współczynnik kierunkowy prostej AC: $-\frac{1}{\sqrt{3}}$.

Uwaga

Jeśli zdający obliczy współczynnik kierunkowy stycznej, ale nie obliczy współrzędnych punktu *E*, to otrzymuje **2 punkty.**

Zadanie 9. (0-6)

Oblicz objętość ostrosłupa trójkątnego ABCS, którego siatka została przedstawiona na rysunku.

Obszar standardów	Opis wymagań
Modelowanie matematyczne	Wyznaczanie związków miarowych w wielościanach i bryłach
	obrotowych z zastosowaniem trygonometrii. (III.9.b)

I sposób rozwiązania

Przyjmijmy, że podstawą ostrosłupa jest trójkąt *ABC*. Wówczas każda z krawędzi bocznych *AS*, *BS* i *CS* ma długość 65. Pozostałe oznaczenia przyjmijmy takie jak na rysunku.

Ponieważ wszystkie krawędzie boczne ostrosłupa mają tę samą długość, więc spodek O wysokości SO ostrosłupa jest punktem przecięcia symetralnych boków jest podstawy, a więc jest środkiem okręgu opisanego na trójkącie ABC.

Obliczmy promień R tego okręgu. Z twierdzenia Pitagorasa dla trójkąta ADC otrzymujemy

$$|AD|^2 + |DC|^2 = |AC|^2$$
, czyli $24^2 + |DC|^2 = 40^2$.

Stad

$$|DC| = \sqrt{40^2 - 24^2} = 32.$$

Trójkąty *OEC* i *ADC* są podobne (oba są prostokątne i mają wspólny kąt ostry przy wierzchołku *C*), więc

$$\frac{|OC|}{|CE|} = \frac{|AC|}{|CD|}, \text{ czyli } \frac{R}{20} = \frac{40}{32}.$$

Stad R = 25.

Z twierdzenia Pitagorasa dla trójkąta COS otrzymujemy

$$|OC|^2 + |SO|^2 = |CS|^2$$
, czyli $25^2 + h^2 = 65^2$.

Stad

$$h = \sqrt{65^2 - 25^2} = 60.$$

Pole trójkata ABC jest równe

$$P_{ABC} = \frac{1}{2} |AB| \cdot |CD| = \frac{1}{2} \cdot 48 \cdot 32 = 768$$
.

Objętość ostrosłupa jest więc równa

$$V_{ABCS} = \frac{1}{3} P_{ABC} \cdot h = \frac{1}{3} \cdot 768 \cdot 60 = 15360.$$

Uwaga

Pole trójkąta ABC możemy obliczyć stosując wzór Herona

$$P_{ABC} = \sqrt{p(p-a)(p-b)(p-c)} = \sqrt{64 \cdot 24 \cdot 24 \cdot 16} = 8 \cdot 24 \cdot 4 = 768$$
.

Promień R okręgu opisanego na trójkącie ABC możemy obliczyć wykorzystując wzór

 $P_{ABC} = \frac{abc}{4R}$.

Stad

$$R = \frac{abc}{4P_{ABC}} = \frac{40 \cdot 40 \cdot 48}{4 \cdot 768} = 25.$$

Schemat punktowania I sposobu rozwiązania

Rozwiązanie, w którym jest istotny postęp......2 pkt Zdający

• obliczy pole trójkąta *ABC*: $P_{ABC} = 768$

albo

obliczy wysokość trójkąta ABC opuszczoną z wierzchołka C oraz zapisze, że spodek
O wysokości SO ostrosłupa jest środkiem okręgu opisanego na podstawie ostrosłupa.
Uwaga

Wystarczy, że zdający oblicza promień okręgu opisanego na trójkącie ABC.

- obliczy wysokość ostrosłupa i na tym poprzestanie lub dalej popełnia błędy: h = 60 albo
 - obliczy objętość popełniając błędy rachunkowe (nawet na wcześniejszych etapach rozwiązania)

albo

• pominie we wzorze na objętość współczynnik $\frac{1}{3}$ i otrzyma: $V_{ABCS} = 46080$

albo

• pominie we wzorze na pole trójkąta współczynnik $\frac{1}{2}$ i otrzyma: $P_{ABC} = 1536$, $V_{ABCS} = 30720$.

Uwaga

Jeżeli zdający obliczy promień okręgu opisanego na trójkącie ABC: R = 25 oraz zapisze równanie pozwalające obliczyć wysokość ostrosłupa, np.: $25^2 + h^2 = 65^2$ i na tym poprzestanie lub dalej popełnia błędy, to otrzymuje **4 punkty**.

Uwaga

Jeżeli zdający pominie we wzorze na objętość ostrosłupa współczynnik $\frac{1}{3}$ i pominie współczynnik $\frac{1}{2}$ we wzorze na pole trójkąta, to otrzymuje co najwyżej **3 punkty** za całe zadanie.

II sposób rozwiązania

Przyjmijmy, że podstawą ostrosłupa jest trójkąt *ABC*. Wówczas każda z krawędzi bocznych *AS*, *BS* i *CS* ma długość 65. Pozostałe oznaczenia przyjmijmy takie jak na rysunku.

Ponieważ krawędzie podstawy AC i BC mają równe długości i krawędzie boczne AS i BS mają równe długości, więc spodek O wysokości SO ostrosłupa leży na symetralnej CD odcinka AB. Odcinek CD jest również wysokością trójkąta ABC opuszczoną z wierzchołka C. Z twierdzenia Pitagorasa dla trójkąta ADC otrzymujemy

$$|AD|^2 + |DC|^2 = |AC|^2$$
, czyli $24^2 + |DC|^2 = 40^2$.

Stad

$$|DC| = \sqrt{40^2 - 24^2} = 32.$$

Z twierdzenia Pitagorasa dla trójkąta ADS otrzymujemy

$$|AD|^2 + |DS|^2 = |AS|^2$$
, czyli $24^2 + h_1^2 = 65^2$.

Stad

$$h_1 = \sqrt{65^2 - 24^2} = \sqrt{3649} \ .$$

Z twierdzenia Pitagorasa dla trójkątów DOS i COS otrzymujemy

$$|DO|^2 + |SO|^2 = |SD|^2 \text{ oraz } |OC|^2 + |SO|^2 = |CS|^2,$$

czyli

$$x^{2} + h^{2} = 3649 \text{ oraz } (32 - x)^{2} + h^{2} = 65^{2}.$$

 $x^{2} + h^{2} = 3649 \text{ oraz } 32^{2} - 64x + x^{2} + h^{2} = 65^{2}.$

Stad

$$32^2 - 64x + 3649 = 65^2,$$

$$x = 7.$$

wiec

$$h = \sqrt{3649 - 7^2} = 60.$$

Pole trójkata ABC jest równe

$$P_{ABC} = \frac{1}{2} |AB| \cdot |CD| = \frac{1}{2} \cdot 48 \cdot 32 = 768$$
.

Objętość ostrosłupa jest więc równa

$$V_{ABCS} = \frac{1}{3} P_{ABC} \cdot h = \frac{1}{3} \cdot 768 \cdot 60 = 15360.$$

Uwaga

Możemy też przyjąć, że podstawą tego ostrosłupa jest trójkąt ABS i wówczas wysokość ostrosłupa będzie odcinkiem CM, gdzie punkt M leży na wysokości SD tej podstawy. Tak jak w II sposobie rozwiązania obliczamy |CD|=32 oraz $|SD|=\sqrt{3649}$. Oznaczając |MD|=y oraz $|CM|=h_3$, a następnie stosując twierdzenie Pitagorasa dla trójkąta MDC i trójkąta ASM otrzymujemy

$$|MD|^2 + |CM|^2 = |CD|^2 \text{ oraz } |SM|^2 + |CM|^2 = |CS|^2$$
,

czyli

$$y^2 + h_3^2 = 32^2 \text{ oraz } (\sqrt{3649} - y)^2 + h_3^2 = 65^2,$$

 $y^2 + h_3^2 = 1024 \text{ oraz } 3649 - 2\sqrt{3649} \cdot y + y^2 + h_3^2 = 4225,$

Stad

$$3649 - 2\sqrt{3649} \cdot y + 1024 = 4225,$$

$$y = \frac{224}{\sqrt{3649}}.$$
Zatem $h_3 = \sqrt{1024 - y^2} = \sqrt{1024 - \left(\frac{224}{\sqrt{3649}}\right)^2} = \sqrt{1024 - \frac{50176}{3649}} = \frac{1920}{\sqrt{3649}}.$

Pole trójkąta ABC jest równe

$$P_{ABS} = \frac{1}{2} |AB| \cdot |SD| = \frac{1}{2} \cdot 48 \cdot \sqrt{3649} = 24\sqrt{3649}$$
.

Objętość ostrosłupa jest więc równa

$$V_{ABSC} = \frac{1}{3} P_{ABS} \cdot h_3 = \frac{1}{3} \cdot 24\sqrt{3649} \cdot \frac{1920}{\sqrt{3649}} = 15360$$
.

Schemat punktowania II sposobu rozwiązania

Kryteria oceniania odpowiedzi – poziom rozszerzony Rozwiązanie, w którym jest istotny postęp2 pkt Zdający obliczy pole trójkąta ABC: $P_{ABC} = 768$ albo obliczy wysokość trójkąta ABS opuszczoną z wierzchołka S oraz wysokość trójkąta ABC opuszczoną z wierzchołka C: $|SD| = \sqrt{3649}$, |DC| = 32. Pokonanie zasadniczych trudności zadania 3 pkt Zdający zapisze układ równań pozwalający obliczyć wysokość ostrosłupa opuszczoną na podstawę ABC z wierzchołka S: $x^2 + h^2 = 3649$ i $(32 - x)^2 + h^2 = 65^2$ albo zapisze układ równań pozwalający obliczyć wysokość ostrosłupa opuszczoną na podstawę ABS z wierzchołka C: $x^2 + h_3^2 = 32^2$ i $(\sqrt{3649} - x)^2 + h_3^2 = 65^2$. Rozwiązanie zadania do końca, lecz z usterkami, które nie przekreślają poprawności rozwiązania (np. błędy rachunkowe)...... 5 pkt Zdający obliczy wysokość ostrosłupa opuszczona na podstawę ABC z wierzchołka S i na tym poprzestanie lub dalej popełnia błędy: h = 60albo obliczy wysokość ostrosłupa opuszczoną na podstawę ABS z wierzchołka C i na tym poprzestanie lub dalej popełnia błędy: $h_3 = \frac{1920}{\sqrt{3640}}$ albo obliczy objętość popełniając błędy rachunkowe (nawet na wcześniejszych etapach rozwiazania) albo pominie we wzorze na objętość współczynnik $\frac{1}{3}$ i otrzyma: $V_{ABCS} = 46080$ albo pominie we wzorze na pole trójkąta współczynnik $\frac{1}{2}$ i otrzyma: $P_{ABC} = 1536$, $V_{ABCS} = 30720$. Uwaga Jeżeli zdający obliczy długość odcinka OD: x = 7 i na tym poprzestanie lub dalej popełnia błedy, to otrzymuje 4 punkty. Podobnie jeśli zdający obliczy długość odcinka MD:

$$y = \frac{224}{\sqrt{3649}}$$
 i na tym poprzestanie lub dalej popełnia błędy, to otrzymuje **4 punkty**

Rozwiązanie pełne 6 pkt Zdający obliczy objętość ostrosłupa: $V_{ABCS} = 15360$.

<u>Uwaga</u>

Jeżeli zdający pominie we wzorze na objętość ostrosłupa współczynnik $\frac{1}{3}$ i pominie współczynnik $\frac{1}{2}$ we wzorze na pole trójkąta, to otrzymuje co najwyżej **3 punkty** za całe rozwiązanie.

Zadanie 10. (0-5)

Wyznacz wszystkie całkowite wartości parametru m, dla których równanie $(x^3 + 2x^2 + 2x + 1)[x^2 - (2m+1)x + m^2 + m] = 0$ ma trzy różne pierwiastki rzeczywiste takie, że jeden z nich jest średnią arytmetyczną dwóch pozostałych.

Obszar standardów	Opis wymagań
Modelowanie matematyczne	Stosowanie twierdzenia o pierwiastkach wymiernych
	wielomianu o współczynnikach całkowitych. (III.2.c.R)

I sposób rozwiązania

Zauważmy, że jednym z pierwiastków równania jest liczba -1, gdyż $(-1)^3 + 2 \cdot (-1)^2 + 2 \cdot (-1) + 1 = 0$.

Pozostałe pierwiastki wielomianu równania to pierwiastki trójmianu kwadratowego

$$P(x) = x^2 - (2m+1)x + m^2 + m$$
.

Ponieważ $\Delta = (-(2m+1))^2 - 4(m^2+m) = 4m^2 + 4m + 1 - 4m^2 - 4m = 1$, więc tymi

pierwiastkami są liczby
$$x_1 = \frac{2m+1-1}{2} = m$$
, $x_2 = \frac{2m+1+1}{2} = m+1$.

Wyznaczmy wszystkie wartości parametru m, dla których jeden z pierwiastków wielomianu W(x) jest średnią arytmetyczną dwóch pozostałych. Mamy więc

$$-1 = \frac{m+1+m}{2}$$
 lub $m = \frac{m+1+(-1)}{2}$ lub $m+1 = \frac{m+(-1)}{2}$.

Stąd $m = -\frac{3}{2}$ lub m = 0 lub m = -3. Ponieważ m jest liczbą całkowitą, więc istnieją dwie szukane wartości parametru m: m = 0 lub m = -3.

Schemat oceniania I sposobu rozwiązania

• stwierdzi, że pozostałymi pierwiastkami równania są pierwiastki trójmianu kwadratowego $x^2 - (2m+1)x + m^2 + m$

Zdający wyznaczy wszystkie pierwiastki wielomianu W(x): -1, m, m+1 i na tym poprzestanie lub dalej popełnia błędy.

• zapisze równania pozwalające obliczyć szukane wartości parametru *m*:

$$-1 = \frac{m+1+m}{2}$$
 lub $m = \frac{m+1+(-1)}{2}$ lub $m+1 = \frac{m+(-1)}{2}$

albo

• zapisze jedno z równań i konsekwentnie obliczy wartość parametru m (w przypadku równania $-1 = \frac{m+1+m}{2}$ sformułuje wniosek, że nie istnieje taka całkowita wartość parametru m)

albo

• rozwiąże zadanie do końca z błędami rachunkowymi, konsekwentnie formułując końcowy wniosek.

Uwaga

równanie:

Jeżeli zdający zapisze równania pozwalające obliczyć szukane wartości parametru m:

$$-1 = \frac{m+1+m}{2}$$
 lub $m = \frac{m+1+(-1)}{2}$ lub $m+1 = \frac{m+(-1)}{2}$, rozwiąże je i nie odrzuci $m = -\frac{3}{2}$, to otrzymuje **4 punkty**.

II sposób rozwiązania ("wzory Viete'a")

Zauważmy, że jednym z pierwiastków równania jest liczba -1, gdyż $(-1)^3 + 2 \cdot (-1)^2 + 2 \cdot (-1) + 1 = 0$.

Pozostałe pierwiastki wielomianu równania to pierwiastki trójmianu kwadratowego

$$P(x) = x^2 - (2m+1)x + m^2 + m$$
.

Ponieważ $\Delta = (-(2m+1))^2 - 4(m^2 + m) = 4m^2 + 4m + 1 - 4m^2 - 4m = 1$, więc ten trójmian ma dwa różne pierwiastki x_1 i x_2 , spełniające zależności:

$$x_1 + x_2 = 2m + 1$$
, $x_1 \cdot x_2 = m^2 + m$.

Wyznaczymy teraz wszystkie wartości parametru m, dla których jeden z pierwiastków wielomianu W(x) jest średnią arytmetyczną dwóch pozostałych. Zapisujemy więc równości

$$-1 = \frac{x_1 + x_2}{2}$$
 lub $x_1 = \frac{x_2 - 1}{2}$ lub $x_2 = \frac{x_1 - 1}{2}$.

Uwzględniając wzory Viete'a, z pierwszego równania otrzymujemy $m=-\frac{3}{2}$. Ponieważ m jest liczba całkowitą, więc to rozwiązanie odrzucamy. Z drugiego równania wyznaczamy $x_2=2x_1+1$, a następnie ze wzoru Viete'a na sumę pierwiastków otrzymujemy $x_2=\frac{2}{3}m$. Po podstawieniu tej zależności do wzoru Viete'a na iloczyn pierwiastków otrzymujemy

$$\left(2\cdot\frac{2}{3}m+1\right)\cdot\frac{2}{3}m=m^2+m.$$

Po przekształceniach to równanie przyjmuje postać: $m^2 + 3m = 0$. Równanie to ma dwa rozwiązania: -3 oraz 0, stanowiące szukane całkowite wartości parametru.

Schemat oceniania II sposobu rozwiązania

$$x_1 + x_2 = 2m + 1$$
 i $x_1 \cdot x_2 = m^2 + m$.

Uwaga

Jeżeli zdający zapisze jedynie równanie $\frac{x_1 + x_2}{2} = -1$, rozwiąże je, otrzymując $m = -\frac{3}{2}$, i odrzuci ten wynik, to otrzymuje **2 punkty**.

$$\begin{cases} \frac{x_1 - 1}{2} = x_2 \\ x_1 + x_2 = 2m + 1 \\ x_1 \cdot x_2 = m^2 + m \end{cases}$$

do równania kwadratowego z niewiadomą m, np. $\frac{2}{3}m\left(\frac{4}{3}m+1\right)=m^2+m$.

Zadanie 11. (0-4)

Z urny zawierającej 10 kul ponumerowanych liczbami od 1 do 10 losujemy jednocześnie trzy kule. Oblicz prawdopodobieństwo zdarzenia, że numer jednej z wylosowanych kul jest równy sumie numerów dwóch pozostałych.

Obszar standardów	Opis wymagań
Wykorzystanie	Wykorzystanie własności prawdopodobieństwa i stosowanie
i interpretowanie	twierdzenia znanego jako klasyczna definicja
reprezentacji	prawdopodobieństwa do obliczania prawdopodobieństw
	zdarzeń. (II.10.d)

I sposób rozwiązania (model klasyczny-kombinacje)

Zdarzeniami elementarnymi są trzyelementowe podzbiory $\{a,b,c\}$ zbioru $\{1, 2, ..., 10\}$.

Mamy do czynienia z modelem klasycznym.

Liczba wszystkich zdarzeń elementarnych jest równa

$$|\Omega| = {10 \choose 3} = \frac{10!}{3! \cdot 7!} = \frac{10 \cdot 9 \cdot 8}{1 \cdot 2 \cdot 3} = 5 \cdot 3 \cdot 8 = 120.$$

Niech A oznacza zdarzenie - wylosujemy takie trzy kule, że numer jednej z wylosowanych kul będzie równy sumie numerów dwóch pozostałych. Wystarczy wyznaczyć liczbę takich zbiorów $\{a,b,c\}$, że a>b>c i a=b+c. Liczba a może przyjąć wszystkie wartości od 10 do 3 włacznie. I tak:

10 = 9 + 1 = 8 + 2 = 7 + 3 = 6 + 4, wiec sa 4 takie podzbiory, gdzie a = 10,

9 = 8 + 1 = 7 + 2 = 6 + 3 = 5 + 4, wiec sa 4 takie podzbiory, gdzie a = 9,

8 = 7 + 1 = 6 + 2 = 5 + 3, wiec sa 3 takie podzbiory, gdzie a = 8,

7 = 6 + 1 = 5 + 2 = 4 + 3, wiec sa 3 takie podzbiory, gdzie a = 7,

6 = 5 + 1 = 4 + 2, wiec są 2 takie podzbiory, gdzie a = 6,

5 = 4 + 1 = 3 + 2, wiec są 2 takie podzbiory, gdzie a = 5,

4 = 3 + 1, wiec jest 1 taki podzbiór, gdzie a = 4,

3 = 2 + 1, wiec jest 1 taki podzbiór, gdzie a = 3.

W rezultacie

$$|A| = 2(4+3+2+1) = 2 \cdot 10 = 20$$
.

Prawdopodobieństwo zdarzenia A jest więc równe

$$P(A) = \frac{20}{120} = \frac{1}{6}.$$

Schemat oceniania I sposobu rozwiązania

- zapisze liczbę wszystkich zdarzeń elementarnych: $|\Omega| = {10 \choose 3}$
- albo
 - opisze zdarzenie elementarne sprzyjające zdarzeniu A, np. w postaci $\{a,b,c\}$, gdzie a > b > c i a = b + c.

Uwaga

Zdający może również zapisać a = b + c lub b = a + c lub c = a + b.

Rozwiązanie, w którym jest istotny postęp......2 pkt Zdający

• opisze zdarzenia sprzyjające np. w postaci $\{a,b,c\}$, gdzie a>b>c i a=b+c oraz obliczy ich liczbę: |A|=20

albo

• zapisze liczbę wszystkich możliwych zdarzeń elementarnych: $|\Omega| = \binom{10}{3}$ i opisze zdarzenia sprzyjające np. w postaci $\{a,b,c\}$, gdzie a > b > c i a = b + c.

Uwagi

- 1. Jeżeli zdający wypisując zdarzenia elementarne sprzyjające zdarzeniu *A* pominie co najwyżej jeden przypadek i konsekwentnie rozwiąże zadanie do końca, to otrzymuje **3 punkty**.
- 2. Jeżeli zdający wypisując zdarzenia elementarne sprzyjające zdarzeniu *A* zapisze podzbiór, który nie jest zdarzeniem elementarnym w przyjętym modelu, np. {10,5,5}, to może otrzymać co najwyżej **1 punkt**, o ile poprawnie zapisze liczbę wszystkich zdarzeń elementarnych.
- 3. Jeżeli zdający poprawnie poda liczbę wszystkich zdarzeń elementarnych, poprawnie opisze zdarzenia elementarne sprzyjające zdarzeniu A (lub je wypisze) i poda ich liczbę, ale popełni błędy rachunkowe i otrzymany wynik jest z przedziału (0,1), to otrzymuje 3 punkty. Jeżeli natomiast otrzyma wynik P(A) > 1, to otrzymuje **0 punktów** za całe zadanie.

<u>II sposób rozwiązania</u> (model klasyczny-wariacje)

Niech zdarzeniem elementarnym będzie trzywyrazowy ciąg (a,b,c), którego wyrazami są liczby ze zbioru $\{1,2,...,10\}$ takie, że $a \neq b$ i $a \neq c$ i $b \neq c$. Mamy do czynienia z modelem klasycznym. Liczba wszystkich zdarzeń elementarnych jest równa

$$|\Omega| = 10 \cdot 9 \cdot 8 = 720.$$

Niech A oznacza zdarzenie, że wylosujemy takie trzy kule, że numer jednej z wylosowanych kul będzie równy sumie numerów dwóch pozostałych. Wystarczy wyznaczyć liczbę takich ciągów (a,b,c), że a>b>c i a=b+c, czyli ciągów malejących.

Liczba a może przyjąć wszystkie wartości od 10 do 3 włącznie. I tak:

$$10 = 9 + 1 = 8 + 2 = 7 + 3 = 6 + 4$$
, wiec sa 4 takie ciagi, gdzie $a = 10$,

$$9 = 8 + 1 = 7 + 2 = 6 + 3 = 5 + 4$$
, wiec sa 4 takie ciągi, gdzie $a = 9$,

$$8 = 7 + 1 = 6 + 2 = 5 + 3$$
, wiec sa 3 takie ciagi, gdzie $a = 8$,

7 = 6 + 1 = 5 + 2 = 4 + 3, wiec sa 3 takie ciągi, gdzie a = 7, 6 = 5 + 1 = 4 + 2, więc są 2 takie ciągi, gdzie a = 6, 5 = 4 + 1 = 3 + 2, wiec sa 2 takie ciągi, gdzie a = 5, 4 = 3 + 1, wiec jest 1 taki ciąg, gdzie a = 4, 3 = 2 + 1, wiec jest 1 taki ciag, gdzie a = 3. Z każdego takiego ciągu malejącego można utworzyć 3! = 6 zdarzeń elementarnych sprzyjających zdarzeniu A. W rezultacie $|A| = 3! \cdot 2(4+3+2+1) = 6 \cdot 20 = 120$. Prawdopodobieństwo zdarzenia A jest więc równe $P(A) = \frac{120}{720} = \frac{1}{6}$. Schemat oceniania II sposobu rozwiazania Rozwiązanie, w którym postęp jest niewielki, ale konieczny na drodze do pełnego rozwiązania 1 pkt Zdający zapisze liczbę wszystkich możliwych zdarzeń elementarnych: $|\Omega| = 10.9.8$ albo opisze zdarzenie elementarne sprzyjające zdarzeniu A, np. w postaci (a,b,c), gdzie a = b + c lub b = a + c lub c = a + b. Rozwiązanie, w którym jest istotny postęp2 pkt Zdający opisze zdarzenia sprzyjające np. w postaci (a,b,c), gdzie a=b+c lub b=a+c lub c = a + b oraz obliczy liczbę ciągów (a,b,c), gdzie a > b > c i a = b + c (albo a < b < c i a + b = c): 49 albo opisze zdarzenia sprzyjające np. w postaci (a,b,c), gdzie a=b+c lub b=a+c lub c = a + b oraz obliczy liczbę ciągów (a,b,c) w jednej z tych sytuacji, np. w sytuacji, gdy a = b + calbo zapisze liczbę wszystkich zdarzeń elementarnych: $|\Omega| = 10.9.8$ i opisze zdarzenia sprzyjające zajściu zdarzenia A, np. w postaci (a,b,c), gdzie a=b+c lub b=a+club c = a + bZdający zapisze liczbę wszystkich zdarzeń elementarnych: $|\Omega| = 10.9.8$ oraz opisze zdarzenia sprzyjające zajściu zdarzenia A, np. w postaci (a,b,c), gdzie a=b+c lub b = a + c lub c = a + b oraz obliczy ich liczbę: $|A| = 6 \cdot 20$. Rozwiązanie pełne4 pkt Zdający obliczy prawdopodobieństwo zdarzenia A: $P(A) = \frac{1}{4}$.

Uwagi

- 1. Jeżeli zdający wypisując zdarzenia elementarne sprzyjające postaci (a,b,c), gdzie a > b > c i a = b + c (albo a < b < c i a + b = c), pominie co najwyżej jedno i konsekwentnie rozwiąże zadanie do końca, to otrzymuje **3 punkty**.
- 2. Jeżeli zdający wypisując zdarzenia elementarne sprzyjające postaci (a,b,c), gdzie a > b > c i a = b + c (albo a < b < c i a + b = c) zapisze ciąg, który nie jest zdarzeniem elementarnym w przyjętym modelu, np. (10,5,5), to może otrzymać co najwyżej **1 punkt**, o ile poprawnie zapisze liczbę wszystkich zdarzeń elementarnych.
- 3. Jeżeli zdający poprawnie poda liczbę wszystkich zdarzeń elementarnych, poprawnie opisze zdarzenia elementarne sprzyjające zdarzeniu A (lub je wypisze) i poda ich liczbę, ale popełni błędy rachunkowe, jednak otrzymany wynik jest z przedziału (0,1), to otrzymuje **3 punkty**. Jeżeli natomiast otrzyma wynik P(A) > 1, to otrzymuje **0 punktów** za całe zadanie.
- 4. Jeżeli zdający stosuje różne modele probabilistyczne do obliczenia $|\Omega|$ i |A|, to otrzymuje **0 punktów**.