TD : série 3 Variables aléatoires continues

Année universitaire 2016/2017

SMC4-M26: Probabilités et Statistiques

Variables aléatoires

I. Soit *X* une variable aléatoire continue ayant une densité de probabilité définie par :

$$f(x) = \begin{cases} k|x|^3, & si - 1 \le x \le 1; \\ 0, & ailleurs. \end{cases}$$

- 1) Ouelle est la valeur de la constante k?
- 2) Déterminer la fonction de répartition de X. En déduire la valeur de $P(-\frac{1}{2^n} < X \le \frac{1}{2^n}); n \ge 0$.
- 3) Pour tout $n \in \mathbb{N}^*$, calculer $E[X^n]$. En déduire la valeur de E[X] et celle de $E[X^2]$.
- II. On choisit un nombre au hasard entre et -3 et 5.
 - 1) Quelle est la probabilité d'obtenir un nombre strictement inférieur à 1?
 - 2) Quelle est la probabilité d'obtenir le nombre supérieur ou égal à 3?
 - 3) Quelle est la probabilité que le nombre choisi soit strictement inférieur à 1, sachant qu'il est strictement positif ?
- III. La durée de vie d'une particule radioactive peut être modélisée par une variable aléatoire qui suit une loi exponentielle. Notons X la durée de vie exprimée en <u>milliers d'années</u> d'une particule de carbone 14, élément radioactif de demi-vie 5 700 ans (5,7 milliers d'années).
 - 1) Déterminer le paramètre λ de la loi exponentielle suivie par X. En déduire la durée de vie moyenne en année d'une particule de carbone 14. (On arrondira la valeur de λ à 10^{-4})
 - 2) Quelle est la probabilité qu'une particule de carbone 14 se désintègre au bout de 10 000 ans ?
 - 3) Sachant qu'une particule de carbone 14 ne s'est pas désintégrée au bout de 5 000 ans, quelle est la probabilité qu'elle ne se désintègre pas dans les 10 000 années suivantes.
 - 4) Au bout de combien d'années cette particule se désintègre-elle avec une probabilité de 0,95 ?
- IV. Une usine fabrique des barres de fer. Soit X la variable aléatoire qui à toute barre extraite de la production associe sa longueur en mètres.

On admet que X soit la loi normale d'espérance $\mu=5$ et d'écart-type $\sigma=0,02$.

- 1) Calculer la probabilité pour que la longueur de la barre soit comprise entre 4,98 m et 5,019 m.
- 2) Parmi les barres ayant une longueur supérieure à 5 m, quelle est la proportion de celles qui ont une longueur inférieure à 5,019 m.
- 3) Déterminer le nombre réel a tel que : $P(\mu a < X \le \mu + a) = 95\%$.
- V. Une usine fabrique des composants mécaniques utilisés dans le montage de voitures. L'épaisseur de ces composants varie selon une loi normale de moyenne μ = 2 cm et d'écart-type 0,05 cm.
 Tous les composants dont l'épaisseur n'est pas comprise entre 1,88 cm et 2,12 cm sont inutilisables (sont rejetés).
 - 1) Quelle est la probabilité qu'un composant choisi au hasard soit utilisable ?
 - 2) Si on choisit au hasard un composant parmi les utilisables, quelle est la probabilité qu'il ait une épaisseur inférieure à 2,05 cm?
 - 3) On choisit au hasard un lot de n composants. On appelle Y la variable aléatoire dont la valeur correspond au nombre de composants inutilisables dans cet échantillon.
 - i. Quelle est la loi de probabilité Y?

ii. Calculer, en utilisant une approximation appropriée de la loi de *Y*, la valeur de la probabilité d'avoir au plus 2% de composants inutilisables dans les cas n=200 et n=350.

Fonction de répartition de la loi normale centrée réduite (probabilité F(z) de trouver une valeur inférieure à z)

Z	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823	0,7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
2,0	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916
2,4	0,9918	0,9920	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,9936
2,5	0,9938	0,9940	0,9941	0,9943	0,9945	0,9946	0,9948	0,9949	0,9951	0,9952
2,6	0,9953	0,9955	0,9956	0,9957	0,9959	0,9960	0,9961	0,9962	0,9963	0,9964
2,7	0,9965	0,9966	0,9967	0,9968	0,9969	0,9970	0,9971	0,9972	0,9973	0,9974
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,9980	0,9981
2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,9986

Table pour les grandes valeurs de z

	Z	3,0	3,1	3,2	3,3	3,4	3,5	3,6	3,7	3,8	3,9
	F(z)	0,998650	0,999032	0,999313	0,999517	0,999663	0,999767	0,999841	0,999892	0,999928	0,999952
ſ	Z	4,0	4,1	4,2	4,3	4,4	4,5	4,6	4,7	4,8	4,9
	F(z)	0,999968	0,999979	0,999987	0,999991	0,999995	0,999997	0,999998	0,999999	0,999999	1,000000