Team Artifical Triangles E-commerce — SmartKart

Recommendation Engine

Recommendation Engine: SmartKart

SmartKart aims to do real-time Prediction of customized 'Add to Cart' recommendations based on 'Items viewed' by visitors and their properties on ecommerce website

Recommendation Engine: SmartKart

SmartKart aims to do real-time Prediction of customized 'Add to Cart' recommendations based on 'Items viewed' by visitors and their

Data Layout

Source	Visitor Events Data
Types	ViewAddtoCartBuy
#Visitors	1 407 580
#Activity	2.8 million
Duration	4.5 months.

Source	Items Property
Types	Price rangeVendorProduct typeAvailability
#Property Features	800 Property for Items
Total rows	20 million

Source	Items Data
Types	Item Tree
#Item	417 053

- Source :https://www.kaggle.com/retailrocket/ecommercedataset/home
- Data is stored in AWS S3 https://s3.console.aws.amazon.com/s3/buckets/smart
 kart/?region=us-east-2&tab=overview
- All words in text values were normalized (stemming procedure)
- All the timestamps are hashed to a sequence
- Property Data consists of snapshots for every week means changes to any item property is captured
- All numerical values were marked with "n" char at the beginning, and have 3 digits precision

Design Layout

Predictive Model Details

Variable Type	Variables
Target	AddToCart(Y/N)
Predictor(800)	#times item viewed, Item ID, Price, range, Vendor,Product type, Availability, etc

Dataset	Number of rows
Training(60%)	1329253
Testing(20%)	443084
Validation(20%)	443084
Total	2215422

Target distribution in Training Dataset	Count
Target = 1	7758
Target = 0	1279349

Evaluation Methodology	Iteration 1 Accuracy
Confusion matrix(Classification)	82%
AUC	.84

Python notebook(Code) is Available at: https://github.com/vbrahmbhatt1/ArtificialTriangle

Model results & Data available in AWS : Artificial Triangles

https://us-east-2.console.aws.amazon.com/console/home?region=us-east-2

Predictive Model Engine: Keras

Predictive model methodology : Sequential Model Keras

https://keras.io/getting-started/

Technical Design: AWS Sage Maker

Learning & Next Steps

Key Learning

- Recommendation Engine
- Python /Jupyter Notebook
- Keras /Tensorflow
- AWS Sagemaker /S3/EC2

Next steps

- Mutiple Iterations to improve accuracy
- Model Deployment
- Connecting Web Portal to Model in order to enable live scoring

References

https://arxiv.org/abs/1511.06939