



# Improved Supervised Classification of Underwater Military Munitions Using Height Features Derived from Optical Imagery

Arthur Gleason, Nuno Gracias, ASM Shihavuddin, Gregory Schultz









#### **Outline**

- Motivation and Objectives
- Approach
- Testing methodology
- Results
- Conclusions

#### **Motivation**

After World War II, the United States and other European nations dumped 300,000 tonnes of chemical and conventional munitions into the ocean









- Underwater Military Munitions (UWMM) are a safety and environmental hazard.
- Methods for *detection, identification and mapping* are needed, to assess remediation feasibility.

#### **Motivation**

- Underwater Military Munitions (UWMM) are a safety and environmental hazard.
- Methods for detection, identification and mapping are needed, to assess remediation potential.



# Why use optical images?

- Acoustic, metal detection and chemical sensing are the current methods of choice for wide-area mapping for UWMM
- No single technology works best in all situations. A multi-modal approach with different technologies provides the most robust solution.
- Optical images have much higher spatial resolution and can supplement existing approaches.
- However optical images have limitations:
  - a) Not useful everywhere. Yes, but very useful in some important places.
  - b) Hard to map large areas. Largely overcome within last 15 years.
  - c) Manual analysis for quantitative data extraction. Bottleneck we address!

Bomb, projectiles, and M47A2 chemical munitions imaged in ~500 m depth off Pearl Harbor, HI.







# Why use optical sensing?

- Wide-area search and detailed mapping for UWMM currently rely on acoustic and/or metal detection methods.
- No single technology works best in all situations. A multi-modal approach using several different technologies provides the most robust solution. (True on land also.)
- Optical images of the seabed could be a valuable supplement to existing approaches due do high spatial resolution.
   (1-2 or more orders of magnitude better than alternatives).
- Obstacles for quantitative analysis of optical images of the seabed:
  - a) Not useful everywhere. Yes, but very useful in some important places.
  - b) Hard to map large areas. Largely overcome within last 15 years.
  - c) Manual analysis for quantitative data extraction. Bottleneck we address!

#### **More Examples:**

Bomb, projectiles, and M47A2 chemical munitions imaged in ~500 m depth off Pearl Harbor, HI.







#### Previous work

Combined color/texture image classification algorithm works fairly well (2-D)

2D classifier: munitions (yellow) and corals (green) Original mosaic and details

How much does the addition of height information improve accuracy?

#### 2-D Classifier



- 7 Steps (green optional, blue mandatory, grey mutually exclusive)
- Not really a single method; the mutually exclusive (grey) steps tend to be fixed, but here they can vary
- Very supervised method; requires good training data

## **Computing height features**

#### Many overlapping images









etc...

Create a height map





#### **Computing height features**



Combined 2-D and 2.5-D features are used in classifier. Other steps of classifier remain the same as 2-D only case.

#### 2.5-D Classifier



# Dataset collected near Miami, FL



#### 16 types of Inert / training rounds used:

- A BDU-28 Submunition
- B 60mm Mortar (without fuze)
- C 60mm Mortar (with fuze)
- D1 81mm M43A1/M49A2 Mortar (fuze)
- D2 81mm M43A1/M49A2 Mortar (no fuze)
- E 81mm Mortar (with fuze)
- F 81mm M821A1/M889A1
- G 2" Rocket APFSDS-T M735
- H 76mm Projectile (no fuse)
- I 3" Armor Piercing Projectile MK28
- J 90mm Projectile (no widscreen)
- K 90mm Projectile M71
- L APDS Adapter with Cap and Cartridge
- M 105mm Projectile
- N 105mm Projectile (with solid tip)
- Z 155 mm Howitzer Projectile



# **Accuracy Assessment**

Error matrix approach: hypothetical example with N = 400 reference points



| B) Pro       | ducer's <i>F</i><br>Predi |      |
|--------------|---------------------------|------|
| æ            | C1                        | C2   |
| erence<br>C2 | 80%                       | 20%  |
| ₩ C2         |                           | 100% |
| Ref          |                           |      |

| B) (       | Jsers | s' Accura<br>Predi |     |
|------------|-------|--------------------|-----|
| æ          |       | C1                 | C2  |
| Š          | C1    | 100%               | 8%  |
| eference   | C2    |                    | 92% |
| <b>Zef</b> |       |                    |     |

- (A) Overall accuracy = % of points correctly classified: 0.94 = (100+275)/400
- (B) Producers accuracy = (A) normalized by row sums

  Indicates false negatives (high producer's accuracy = few false negatives)
- (C) Users accuracy = (A) normalized by column sums

  Indicates false positives (high user's accuracy = few false positives)

# Improvement with 2.5-D: One Seagrass Site



2.5-D products for the Seagrass 1 site. Left: DEM with low (blue) to high (red) colormap. Center: Mosaic of the site. Right: Greayscale of mosaic with pixels classified as munitons colored red.





One of the frames used for the Seagrass 1 mosaic presented in grayscale. Pixels have been colored red where they were classified as munitions by the 2-D algorithm (top) and the 2.5-D algorithm (bottom). Note fewer false posistives in the 2.5-D results.

#### **Results: Overall Accuracy**

| Dataset          | MTypes | Binary |
|------------------|--------|--------|
| Reef 1 2-D       | 76     | 80     |
| Reef 1 2.5-D     | 94     | 94     |
|                  |        |        |
| Reef 2 2-D       | 71     | 75     |
| Reef 2 2.5-D     | 95     | 95     |
|                  |        |        |
| Seagrass 1 2-D   | 67     | 72     |
| Seagrass 1 2.5-D | 95     | 95     |
|                  |        |        |
| Seagrass 2 2-D   | 53     | 60     |
| Seagrass 2 2.5-D | 89     | 89     |

Mtypes = 13 classes 12 munitions types 1 class for everything else

**Binary** = 2 classes munitions not munitions

OA higher for Binary than MTypes (as expected, due to fewer # of classes). OA using 2.5-D features greater than OA using only the 2-D features (!)

#### **Results: Binary Classification Scheme**

**Users Accuracy (%): Main Diagonals with Binary Class Scheme** 

|           | R   | eef 1 | Red | ef 2  | Seagi | rass 1 | Seagi | rass 2 |
|-----------|-----|-------|-----|-------|-------|--------|-------|--------|
| Class     | 2-D | 2.5-D | 2-D | 2.5-D | 2-D   | 2.5-D  | 2-D   | 2.5-D  |
| Seabed    | 94  | 98    | 97  | 98    | 98    | 97     | 98    | 98     |
| Munitions | 25  | 73    | 28  | 76    | 25    | 86     | 18    | 54     |

Producers Accuracy (%): Main Diagonals with Binary Class Scheme

|           | Reef 1 |       | Reef 1 Reef 2 |       | Seagrass 1 |       | Seagrass 2 |       |
|-----------|--------|-------|---------------|-------|------------|-------|------------|-------|
| Class     | 2-D    | 2.5-D | 2-D           | 2.5-D | 2-D        | 2.5-D | 2-D        | 2.5-D |
| Seabed    | 83     | 94    | 74            | 97    | 70         | 97    | 57         | 89    |
| Munitions | 54     | 91    | 80            | 84    | 86         | 86    | 89         | 90    |

- Users and producers accuracy **2.5-D** for all 4 sites.
- False positive matches for munitions. The evidence for this was high producer's accuracy (all munitions were classified as munitions) but low user's accuracy (many pixels classified as munitions were actually something else).
- 2.5-D processing gave fewer false positive matches for munitions.

#### **Results: Munitions Types Scheme**

Users Accuracy (%): Main Diagonals

|        | _   |       |     | ·     |      | <b>~</b> 9~ |      |        |
|--------|-----|-------|-----|-------|------|-------------|------|--------|
|        | Re  | ef 1  | Re  | ef 2  | Seag | rass 1      | Seag | rass 2 |
| Class  | 2-D | 2.5-D | 2-D | 2.5-D | 2-D  | 2.5-D       | 2-D  | 2.5-D  |
| Seabed | 94  | 98    | 97  | 98    | 98   | 97          | 98   | 98     |
| MA     |     |       |     |       |      |             | 0    | 80     |
| MB     |     |       |     |       |      |             | 6    | 25     |
| MC     | 7   | 63    | 71  | 70    | 49   | 88          |      |        |
| MD     |     |       |     |       |      |             | 0    | 71     |
| ME     | 0   | 78    |     |       |      |             |      |        |
| MF     | 0   | 93    | 22  | 79    | 2    | 91          |      |        |
| MG     | 0   | 88    | 14  | 69    | 0    | 80          |      |        |
| MH     | 84  | 68    | 0   | 86    |      |             | 52   | 88     |
| MI     |     |       |     |       |      |             | 0    | 67     |
| MJ     |     |       |     |       | 7    | 71          |      |        |
| MK     |     |       | 87  | 86    | 29   | 80          |      |        |
| ML     |     |       |     |       | 26   | 92          |      |        |

|     | <u> </u> |     |       |      |        |      |        |
|-----|----------|-----|-------|------|--------|------|--------|
| Re  | ef 1     | Re  | ef 2  | Seag | rass 1 | Seag | rass 2 |
| 2-D | 2.5-D    | 2-D | 2.5-D | 2-D  | 2.5-D  | 2-D  | 2.5-D  |
| 83  | 94       | 74  | 97    | 70   | 97     | 57   | 89     |
|     |          |     |       |      |        | 0    | 89     |
|     |          |     |       |      |        | 3    | 95     |
| 45  | 96       | 60  | 92    | 27   | 95     |      |        |
|     |          |     |       |      |        | 0    | 90     |
| 0   | 88       |     |       |      |        |      |        |
| 0   | 84       | 62  | 74    | 5    | 76     |      |        |
| 0   | 89       | 64  | 79    | 0    | 84     |      |        |
| 26  | 92       | 0   | 85    |      |        | 55   | 73     |
|     |          |     |       |      |        |      |        |

83

54

17

45 75 81

86

86

**Producers Accuracy (%): Main Diagonals** 

Same general patterns as for the binary munitions / not-munitions class scheme:

- Users and producers accuracy 2.5-D > 2-D for all 4 sites.
- False positive matches for munitions. The evidence for this was high producer's accuracy (all munitions were classified as munitions) but low user's accuracy (many pixels classified as munitions were actually something else).
- 2.5-D processing gave fewer false positive matches for munitions.

Also: 2.5-D gave dramatic improvement in classifying individual munitions types!

•Accuracy of munitions ID increased from < 50% to > 80% in many cases.

95

# Results: Examples with 2-D only

Original images over reef and seagrass





Areas classified as munitions





Images show qualitatively what the error matrix has quantified: false positive matches for munitions

# Improvement with 2.5-D: One Reef Site







## **Summary**

- Incorporating height information greatly improved classification results.
  - ◆ Reduced false positives for munitions in the Miami dataset, increasing accuracy from the 0-80% range to the 50-100% range.
- Improvement not only on the basic, binary munitions / non-munitions classes
  - ♦ 2.5-D information improved the capability to discriminate different types of munitions from one another.

#### **Conclusions**

- Automated classification of optical imagery can improve wide-area
   high-resolution surveys by both identifying munitions and characterizing
   the surrounding environments.
- Automated classification at detailed levels (e.g. munitions types) was much more robust when using height information, compared to a texture-only approach.
- Further testing is due with partly proud munitions
- Based on the results, we expect that further improvements to the algorithms will allow joint classification of several classes of munitions and natural benthic objects (e.g. corals and sponges).

# **Backup Slides**

# Consistency of analysts

- Measured as Cohen's Kappa:  $\kappa = \frac{Pr(a) Pr(e)}{1 Pr(e)}$
- Corals vs. other accuracy was good
  - Self-consistency: 86-92%
  - Inter-operator: 79-86%
- Coral genera accuracy were also good
  - Self-consistency: ~80%
  - Inter-operator: 59%
- Algal groups accuracy were lower
  - Macro [self: 71%, inter:59%]
  - CCA [self: 51%, inter: 35%]
  - Turf algae [self: 62%, inter 43%]

#### Moorea, inter-operator:



- Beijbom et al. compared self-consistency (same person doing repeat IDs) and inter-operator consistency (agreement among multiple people) for typical benthic classes in coral reef environments.
- "Good" agreement by humans was 80-90%; algae were lower; hard to expect computer to do better.

Beijbom, O., P. J. Edmunds, C. M. Roelfsema, J. Smith, D. I. Kline, B. Neal, M. J. Dunlap, V. Moriarty, T.-Y. Fan, C.-J. Tan, S. Chan, T. Treibitz, A. Gamst, B. G. Mitchell and D. Kriegman (in review). Towards automated annotation of benthic survey images: variability of human experts and operational modes of automation. *PLoS ONE*.

# 2.5-D Features









#### Results: Ordnance Reef





Background shows a portion of the mosaic in grayscale.
Left: hand-drawn regions around munitions shown in yellow.
Right: munitions identified by the 2.5-D classifier in yellow.

Overall accuracy = 96% with 2-D data, 97% with 2.5-D data. Small increase because good already!

High OA partially due to chance (large background class) but Kappa and AMI also increase with 2.5-D data.

|          | 2D     | 2.5D   | 2D + 2.5D |
|----------|--------|--------|-----------|
| Accuracy | 96.01% | 94.59% | 96.95%    |
| Карра    | 66.51% | 57.58% | 71.82%    |
| AMI      | 0.146  | 0.107  | 0.165     |

# **Miami Classes**

| ALL CLASSES (36 classes)                        | MUNITIONS TYPES (16 classes)                    | BINARY   | (2 classes)                                |
|-------------------------------------------------|-------------------------------------------------|----------|--------------------------------------------|
| coral (1)                                       | Background (1)                                  | Backgro  | ound (1)                                   |
| macroalgae (2)                                  | coral                                           |          | coral                                      |
| turf algae (3)                                  | macroalgae                                      |          | macroalgae                                 |
| seagrass (4)                                    | turf algae                                      |          | turf algae                                 |
| sand (5)                                        | seagrass                                        |          | seagrass                                   |
| sand and seagrass (6)                           | sand                                            |          | sand                                       |
| sponge (7)                                      | sand and seagrass                               |          | sand and seagrass                          |
| octocoral (8)                                   | sponge                                          |          | sponge                                     |
| bare (9)                                        | octocoral                                       |          | octocoral                                  |
| unknown (10)                                    | bare                                            |          | bare                                       |
| crustose, turf & bare (11)                      | unknown                                         |          | unknown                                    |
| Acropora palmata (12)                           | crustose, turf & bare                           |          | crustose, turf & bare                      |
| Acropora cervicornis (13)                       | Acropora palmata                                |          | Acropora palmata                           |
| Acropora prolifera (14)                         | Acropora cervicornis                            |          | Acropora cervicornis                       |
| Dichocoenia stokesii (15)                       | Acropora prolifera                              |          | Acropora prolifera                         |
| Montastrea cavernosa (16)                       | Dichocoenia stokesii                            |          | Dichocoenia stokesii                       |
| Solenastrea bournoni (17)                       | Montastrea cavernosa                            |          | Montastrea cavernosa                       |
| Meandrina meandrites (18)                       | Solenastrea bournoni                            |          | Solenastrea bournoni                       |
| Porites astreoides (19)                         | Meandrina meandrites                            |          | Meandrina meandrites                       |
| Sideratrea siderea (20)                         | Porites astreoides                              |          | Porites astreoides                         |
| Palythoa (21)                                   | Sideratrea siderea                              |          | Sideratrea siderea                         |
| BDU-28 Submunition (22)                         | Palythoa                                        |          | Palythoa                                   |
| 60mm Mortar (without fuze) (23)                 | BDU-28 Submunition (2)                          | Munition | ns (2)                                     |
| 60mm Mortar (with fuze) (24)                    | 60mm Mortar (without fuze) ()                   |          | BDU-28 Submunition                         |
| 81mm M43A1/M49A2 Mortar (25)                    | 60mm Mortar (with fuze) (4)                     |          | 60mm Mortar (without fuze)                 |
| 81mm Mortar (with fuze) (26)                    | 81mm M43A1/M49A2 Mortar (5)                     |          | 60mm Mortar (with fuze)                    |
| 81mm M821A1/M889A1 (27)                         | 81mm Mortar (with fuze) (6)                     |          | 81mm M43A1/M49A2 Mortar                    |
| 2" Rocket APFSDS-T M735 (28)                    | 81mm M821A1/M889A1 (7)                          |          | 81mm Mortar (with fuze)                    |
| 76mm Projectile (no fuse) (29)                  | 2" Rocket APFSDS-T M735 (8)                     |          | 81mm M821A1/M889A1                         |
| 3" Armor Piercing Projectile MK28 Type A (30)   | 76mm Projectile (no fuse) (9)                   |          | 2" Rocket APFSDS-T M735                    |
| 90mm Projectile (no widscreen) (31)             | 3" Armor Piercing Projectile MK28 Type A (10)   |          | 76mm Projectile (no fuse)                  |
| 90mm High Explosive (HE) Projectile M71 (32)    | 90mm Projectile (no widscreen) (11)             |          | 3" Armor Piercing Projectile MK28 Type A   |
| APDS Adapter with End Cap and Cartridge (33)    | 90mm High Explosive (HE) Projectile M71 (12)    |          | 90mm Projectile (no widscreen)             |
| 105mm Projectile (Blue Training Round) (34)     | APDS Adapter with End Cap and Cartridge (13)    | )        | 90mm High Explosive (HE) Projectile M71    |
| 105mm Projectile (with band and solid tip) (35) | 105mm Projectile (Blue Training Round) (14)     |          | APDS Adapter with End Cap and Cartridge    |
| 155 mm Howitzer Projectile (36)                 | 105mm Projectile (with band and solid tip) (15) |          | 105mm Projectile (Blue Training Round)     |
|                                                 | 155 mm Howitzer Projectile (16)                 |          | 105mm Projectile (with band and solid tip) |
|                                                 |                                                 |          | 155 mm Howitzer Projectile                 |