Metatheory of the Logic of Hereditary Harrop Formulas in Coq

Chelsea Battell

University of Ottawa

June 17, 2016

Coq

Interactive theorem prover developed at

Implementation of extension of Calculus of Constructions (CoC) created by Thierry Coquand

Calculus of Constructions

Notation: A : B means A has type B

If $P : \mathtt{Prop}$ and t : P, then P is a theorem and t is a proof of P

Example:

$$(\forall (n: \mathtt{nat}), 0+n=n) : \mathtt{Prop}$$

$$(\mathtt{fun}\; (n: \mathtt{nat}) \Rightarrow \mathtt{eq_refl}) : \forall (n: \mathtt{nat}), 0+n=n$$

$$\frac{P_1 \quad \cdots \quad P_n}{C}$$
 name

Vertical "implication" notation

$$\frac{P_1 \quad \cdots \quad P_n}{C}$$
 name

Vertical "implication" notation

▶ If P_1 , ..., P_n , then C

$$\frac{P_1 \quad \cdots \quad P_n}{C}$$
 name

Vertical "implication" notation

- ▶ If P_1 , ..., P_n , then C
- ▶ To prove C, show P_1 , ..., P_n all true

$$\frac{P_1 \quad \cdots \quad P_n}{C}$$
 name

Vertical "implication" notation

- ▶ If *P*₁, ..., *P*_n, then *C*
- ▶ To prove C, show P_1 , ..., P_n all true
- ▶ If you can build P_1 , ..., P_n , then you can build C

Natural Deduction

Set of inference rules to encode "natural" reasoning

$$\text{e.g.} \quad \frac{\mathsf{A} \quad \mathsf{B}}{\mathsf{A} \wedge \ \mathsf{B}} \ \wedge_I \quad \frac{\mathsf{A} \wedge \ \mathsf{B}}{\mathsf{A}} \ \wedge_{E_1} \quad \frac{\mathsf{A} \wedge \ \mathsf{B}}{\mathsf{B}} \ \wedge_{E_2}$$

Claim: If $p \wedge q$, then $q \wedge p$

Proof:

$$\frac{\mathsf{p} \wedge \mathsf{q}}{\mathsf{q}} \wedge_{E_2} \frac{\mathsf{p} \wedge \mathsf{q}}{\mathsf{p}} \wedge_{I}$$

Sequent Calculus

Sequent

$$\Gamma \vdash P$$

P is provable in context Γ (a set of assumptions)

Example Sequent Rule

$$\frac{\Gamma, P \vdash Q}{\Gamma \vdash P \to Q} \to_I$$

Prove "If P then Q" by assuming P and deriving Q

Goal-Reduction Sequent

 $\mathtt{grseq}:\mathtt{context}\to\mathtt{oo}\to\mathtt{Prop}$

 $\Gamma \rhd \beta$ is notation for grseq $\Gamma \ \beta$

Backchaining Sequent

 $\mathtt{bcseq} : \mathtt{context} \to \mathtt{oo} \to \mathtt{atm} \to \mathtt{Prop}$

Goal-Reduction Sequent

 $\texttt{grseq}: \boxed{\texttt{context}} \rightarrow \texttt{oo} \rightarrow \texttt{Prop}$

 $\Gamma \rhd \beta$ is notation for grseq $\Gamma \ \beta$

Backchaining Sequent

 $\texttt{bcseq}: \boxed{\texttt{context}} \rightarrow \texttt{oo} \rightarrow \texttt{atm} \rightarrow \texttt{Prop}$

Goal-Reduction Sequent

 $\Gamma \rhd \beta$ is notation for grseq $\Gamma \ \beta$

Backchaining Sequent

 $\texttt{bcseq}: \texttt{context} \to \boxed{\texttt{oo}} \to \texttt{atm} \to \texttt{Prop}$

Goal-Reduction Sequent

 $\mathtt{grseq}:\mathtt{context}\to\mathtt{oo}\to\mathtt{Prop}$

 $\Gamma \rhd \beta$ is notation for grseq $\Gamma \beta$

Backchaining Sequent

 $\mathtt{bcseq} : \mathtt{context} \to \mathtt{oo} \to \boxed{\mathtt{atm}} \to \mathtt{Prop}$

The Specification Logic (Hereditary Harrop)

Goal-Reduction Rules

Backchaining Rules

The Specification Logic (Hereditary Harrop)

Goal-Reduction Rules

Backchaining Rules

Encoding Sequents as Inductive Dependent Types

```
 \begin{array}{c} \vdots \\ \frac{\Gamma \rhd G_1 \quad \Gamma \rhd G_2}{\Gamma \rhd G_1 \& G_2} \\ \frac{\vdots}{\Gamma \rhd G_1 \& G_2} \end{array} \text{g\_and} \\ \vdots \\ \frac{\Gamma \rhd G \quad \Gamma, [D] \rhd A}{\Gamma, [G \longrightarrow D] \rhd A} \text{ b\_imp} \\ \vdots \\ \vdots \\ \frac{\Gamma \rhd G \quad \Gamma, [D] \rhd A}{\Gamma, [G \longrightarrow D] \rhd A} \end{array} \text{b\_imp} \\ \begin{array}{c} \vdots \\ \text{grseq L G } \\ \text{grseq L G } \\ \text{corall (L : grseq L G } \\ \text{corall } \\
```

```
Inductive grseq : context -> oo -> Prop :=
forall (L : context) (G1 G2 : oo),
grseq L G1 -> grseq L G2 ->
 grseq L (G1 & G2)
with bcseq : context -> oo -> atm -> Prop :=
 forall (L : context) (F G : oo) (A : atm),
 grseq L G -> bcseq L D A
 -> bcseq L (G ---> D) A.
```

Inductive Types

Encapsulate infinite collection in finite set of rules

Example:

```
Inductive nat : Set :=
| 0 : nat
| S : nat -> nat.
```

Induction principle for property $P : \mathtt{nat} \to \mathtt{Prop}$:

$$\frac{P \quad 0 \quad \forall (n : nat), P \quad n \rightarrow P \quad (S \quad n)}{\forall (n : nat), P \quad n}$$

In linear form:

$$\begin{split} \forall (P: \mathtt{nat} &\to \mathtt{Prop}), \\ (P \ 0) &\to \\ (\forall (n: \mathtt{nat}), P \ n \to P \ (S \ n)) &\to \\ \forall (n: \mathtt{nat}), P \ n. \end{split}$$

Sequent Mutual Induction Principle

```
seq\_mutind : \forall (P_1 : context \rightarrow oo \rightarrow Prop)
                                                                                          (P_2: \mathtt{context} \to \mathtt{oo} \to \mathtt{atm} \to \mathtt{Prop}),
                                                                                            (\forall (c: \mathtt{context})(o_1 \ o_2: \mathtt{oo}),
  \frac{\Gamma\rhd G_1\quad \Gamma\rhd G_2}{\Gamma\rhd G_1\ \&\ G_2}\ \ {\rm g\_and}
                                                                                                c \triangleright o_1 \rightarrow P_1 \ c \ o_1 \rightarrow c \triangleright o_2 \rightarrow P_1 \ c \ o_2 \rightarrow
                                                                                                P_1 c (o_1 \& o_2)) \rightarrow
                                                                                            (\forall (c : \mathtt{context})(o_1 \ o_2 : \mathtt{oo})(a : \mathtt{atm}),
\frac{\Gamma\rhd G\quad \Gamma,[D]\rhd A}{\Gamma,[G\longrightarrow D]\rhd A} \  \, \text{b\_imp}
                                                                                                c \triangleright o_1 \rightarrow P_1 \ c \ o_1 \rightarrow c, [o_2] \triangleright a \rightarrow P_2 \ c \ o_2 \ a \rightarrow c
                                                                                                P_2 c (o_1 \longrightarrow o_2) a) \rightarrow
                                                                                  (\forall (c: context)(o:oo),
                                                                                                                         c \triangleright o \rightarrow P_1 \ c \ o) \land
                                                                                  (\forall (c : context)(o : oo)(a : atm),
                                                                                                                         c, [o] \triangleright a \rightarrow P_2 \ c \ o \ a)
```

Structural Rules

$$\begin{split} \frac{\Gamma \rhd \beta_2}{\Gamma \,,\, \beta_1 \rhd \beta_2} \,\, & \text{gr_weakening} & \frac{\Gamma \,,\, [\beta_2] \rhd \alpha}{\Gamma \,,\, \beta_1 \,,\, [\beta_2] \rhd \alpha} \,\, \text{bc_weakening} \\ \\ \frac{\Gamma \,,\, \beta_1 \,,\, \beta_1 \rhd \beta_2}{\Gamma \,,\, \beta_1 \,\rhd \beta_2} \,\, & \text{gr_contraction} & \frac{\Gamma \,,\, \beta_1 \,,\, \beta_1 \,,\, [\beta_2] \rhd \alpha}{\Gamma \,,\, \beta_1 \,,\, [\beta_2] \rhd \alpha} \,\, \text{bc_contraction} \\ \\ \frac{\Gamma \,,\, \beta_2 \,,\, \beta_1 \rhd \beta_3}{\Gamma \,,\, \beta_1 \,,\, \beta_2 \rhd \beta_3} \,\, & \text{gr_exchange} & \frac{\Gamma \,,\, \beta_2 \,,\, \beta_1 \,,\, [\beta_3] \rhd \alpha}{\Gamma \,,\, \beta_1 \,,\, \beta_2 \,,\, [\beta_3] \rhd \alpha} \,\, \text{bc_exchange} \end{split}$$

These are all corollaries of a general theorem:

Theorem (monotone)

$$\frac{\Gamma \subseteq \Gamma' \quad \Gamma \rhd \beta}{\Gamma' \rhd \beta} \land \frac{\Gamma \subseteq \Gamma' \quad \Gamma, [\beta] \rhd \alpha}{\Gamma', [\beta] \rhd \alpha}$$

Theorem (monotone)

```
(\forall (\Gamma : \mathtt{context})(\beta : \mathtt{oo}),
                        \Gamma \triangleright \beta \rightarrow \forall (\Gamma' : context), \Gamma \subseteq \Gamma' \rightarrow \Gamma' \triangleright \beta) \land
      (\forall (\Gamma : \mathtt{context})(\beta : \mathtt{oo})(\alpha : \mathtt{atm}),
                        \Gamma, [\beta] \rhd \alpha \to \forall (\Gamma' : \mathtt{context}), \Gamma \subset \Gamma' \to \Gamma', [\beta] \rhd \alpha
Define
                        P_1 := \lambda(\Gamma : \mathtt{context})(\beta : \mathtt{oo}).
                                          \forall (\Gamma' : \mathtt{context}), \Gamma \subseteq \Gamma' \to \Gamma' \rhd \beta
                        P_2 := \lambda(\Gamma : \mathtt{context})(\beta : \mathtt{oo})(\alpha : \mathtt{atm}).
                                          \forall (\Gamma' : \mathtt{context}), \Gamma \subseteq \Gamma' \to \Gamma', [\beta] \rhd \alpha
```

Proof

By induction over $\Gamma \triangleright \beta$ and $\Gamma, [\beta] \triangleright \alpha$ using seq_mutind.

Theorem (monotone)

$$\begin{array}{c} (\;\forall (\Gamma: \mathtt{context})(\beta: \mathtt{oo}), \\ \hline \Gamma \rhd \beta \to \boxed{\forall (\Gamma': \mathtt{context}), \Gamma \subseteq \Gamma' \to \Gamma' \rhd \beta}) \; \land \\ (\;\forall (\Gamma: \mathtt{context})(\beta: \mathtt{oo})(\alpha: \mathtt{atm}), \\ \hline \Gamma, [\beta] \rhd \alpha \to \forall (\Gamma': \mathtt{context}), \Gamma \subseteq \Gamma' \to \Gamma', [\beta] \rhd \alpha \;\;) \end{array}$$

Define

$$\begin{split} P_1 &\coloneqq \lambda(\Gamma: \mathtt{context})(\beta: \mathtt{oo}) \;. \\ & \left[\forall (\Gamma': \mathtt{context}), \Gamma \subseteq \Gamma' \to \Gamma' \rhd \beta \right] \\ P_2 &\coloneqq \lambda(\Gamma: \mathtt{context})(\beta: \mathtt{oo})(\alpha: \mathtt{atm}) \;. \\ & \forall (\Gamma': \mathtt{context}), \Gamma \subseteq \Gamma' \to \Gamma', [\beta] \rhd \alpha \end{split}$$

Proof

By induction over $\Gamma \triangleright \beta$ and $\Gamma, [\beta] \triangleright \alpha$ using seq_mutind.

Theorem (monotone)

```
(\forall (\Gamma : \mathtt{context})(\beta : \mathtt{oo}),
                        \Gamma \triangleright \beta \rightarrow \forall (\Gamma' : \mathtt{context}), \Gamma \subseteq \Gamma' \rightarrow \Gamma' \triangleright \beta) \land
      (\forall (\Gamma : \mathtt{context})(\beta : \mathtt{oo})(\alpha : \mathtt{atm}),
                        \Gamma, [\beta] \rhd \alpha \rightarrow \forall (\Gamma' : \mathtt{context}), \Gamma \subseteq \Gamma' \rightarrow \Gamma', [\beta] \rhd \alpha)
Define
                         P_1 := \lambda(\Gamma : \mathtt{context})(\beta : \mathtt{oo}).
                                            \forall (\Gamma' : \mathtt{context}), \Gamma \subseteq \Gamma' \to \Gamma' \rhd \beta
                         P_2 := \lambda(\Gamma : \mathtt{context})(\beta : \mathtt{oo})(\alpha : \mathtt{atm}).
                                          \forall (\Gamma' : \mathtt{context}), \Gamma \subseteq \Gamma' \to \Gamma', [\beta] \rhd \alpha
```

Proof

By induction over $\Gamma \triangleright \beta$ and $\Gamma, [\beta] \triangleright \alpha$ using seq_mutind.

Case
$$\frac{\Gamma, D \rhd G}{\Gamma \rhd D \longrightarrow G}$$
 g_imp:

From seq_mutind, proving

$$H: c, o_1 \rhd o_2$$

$$IH: P_1(c, o_1) o_2$$

$$P_1 c (o_1 \longrightarrow o_2)$$

Case
$$\frac{\Gamma\,,\,D\rhd G}{\Gamma\rhd D\longrightarrow G}$$
 g_imp:

From seq_mutind, proving

$$H: c, o_1 \rhd o_2$$

$$IH: P_1(c, o_1) o_2$$

$$P_1 c (o_1 \longrightarrow o_2)$$

Next: unfold P_1

Case
$$\frac{\Gamma, D \rhd G}{\Gamma \rhd D \longrightarrow G}$$
 g_imp:

From seq_mutind, proving

$$H: c, o_1 \rhd o_2$$

$$IH: \forall (\Gamma_0: \mathtt{context}), (c, o_1) \subseteq \Gamma_0 \to \Gamma_0 \rhd o_2$$

$$\forall (\Gamma': \mathtt{context}), c \subseteq \Gamma' \to \Gamma' \rhd o_1 \longrightarrow o_2$$

Case
$$\frac{\Gamma, D \rhd G}{\Gamma \rhd D \longrightarrow G}$$
 g_imp:

From seq_mutind, proving

$$H: c, o_1 \rhd o_2$$

$$IH: \forall (\Gamma_0: \mathtt{context}), (c, o_1) \subseteq \Gamma_0 \to \Gamma_0 \rhd o_2$$

$$\forall (\Gamma': \mathtt{context}), c \subseteq \Gamma' \to \Gamma' \rhd o_1 \longrightarrow o_2$$

Next: introduce from goal

Case
$$\frac{\Gamma, D \rhd G}{\Gamma \rhd D \longrightarrow G}$$
 g_imp:

From seq_mutind, proving

$$H: c, o_1 \rhd o_2$$
 $IH: \forall (\Gamma_0: \mathtt{context}), (c, o_1) \subseteq \Gamma_0 \to \Gamma_0 \rhd o_2$
 $P: c \subseteq \Gamma'$

Case
$$\frac{\Gamma, D \rhd G}{\Gamma \rhd D \longrightarrow G}$$
 g_imp:

From seq_mutind, proving

$$H: c, o_1 \rhd o_2$$
 $IH: \forall (\Gamma_0: \mathtt{context}), (c, o_1) \subseteq \Gamma_0 \to \Gamma_0 \rhd o_2$

$$P: c \subseteq \Gamma'$$

$$\Gamma' \rhd o_1 \longrightarrow o_2$$

Next: backchain with g_imp on goal

Case
$$\frac{\Gamma, D \rhd G}{\Gamma \rhd D \longrightarrow G}$$
 g_imp:

From seq_mutind, proving

$$H: c, o_1 \rhd o_2$$
 $IH: \forall (\Gamma_0: \mathtt{context}), (c, o_1) \subseteq \Gamma_0 \to \Gamma_0 \rhd o_2$
 $P: c \subseteq \Gamma'$

$$\Gamma', o_1 \rhd o_2$$

Case
$$\frac{\Gamma, D \rhd G}{\Gamma \rhd D \longrightarrow G}$$
 g_imp:

From seq_mutind, proving

$$H: c, o_1 \rhd o_2$$
 $IH: \forall (\Gamma_0: \mathtt{context}), (c, o_1) \subseteq \Gamma_0 \to \Gamma_0 \rhd o_2$

$$P: c \subseteq \Gamma'$$

$$\Gamma', o_1 \rhd o_2$$

Next: backchain with IH on goal with $(\Gamma_0 := \Gamma', o_1)$

Case
$$\frac{\Gamma, D \rhd G}{\Gamma \rhd D \longrightarrow G}$$
 g_imp:

From seq_mutind, proving

$$H: c, o_1 \rhd o_2$$
 $IH: \forall (\Gamma_0: \mathtt{context}), (c, o_1) \subseteq \Gamma_0 \to \Gamma_0 \rhd o_2$

$$P: c \subseteq \Gamma'$$

$$(c, o_1) \subseteq (\Gamma', o_1)$$

Case
$$\frac{\Gamma, D \rhd G}{\Gamma \rhd D \longrightarrow G}$$
 g_imp:

From seq_mutind, proving

$$H: c, o_1 \rhd o_2$$
 $IH: orall (\Gamma_0: \mathtt{context}), (c, o_1) \subseteq \Gamma_0
ightarrow \Gamma_0
hd o_2$
 $P: c \subseteq \Gamma'$
 $(c, o_1) \subseteq (\Gamma', o_1)$

Next: backchain with context lemma that says if $c \subseteq \Gamma'$ then $(c, o_1) \subseteq (\Gamma', o_1)$

Case
$$\frac{\Gamma\,,\,D\rhd G}{\Gamma\rhd D\longrightarrow G}$$
 g_imp:

From seq_mutind, proving

$$H: c, o_1 \rhd o_2$$
 $IH: orall (\Gamma_0: \mathtt{context}), (c, o_1) \subseteq \Gamma_0
ightarrow \Gamma_0
hd o_2$
 $P: c \subseteq \Gamma'$
 $c \subseteq \Gamma'$

Case
$$\frac{\Gamma, D \rhd G}{\Gamma \rhd D \longrightarrow G}$$
 g_imp:

From seq_mutind, proving

$$H: c, o_1 \rhd o_2$$
 $IH: \forall (\Gamma_0: \mathtt{context}), (c, o_1) \subseteq \Gamma_0 \to \Gamma_0 \rhd o_2$

$$P: c \subseteq \Gamma'$$

$$c \subseteq \Gamma'$$

Goal is provable by assumption P

Structural Rules Summary

Proof with 15 subcases proven automatically in Coq


```
Proof.
Hint Resolve context_sub_sup.
eapply seq_mutind; intros;
try (econstructor; eauto; eassumption).
Qed.
```

Prove cut admissibility with this one weird trick...

Theorem (cut_admissible)

$$\frac{\Gamma, \delta \rhd \beta \quad \Gamma \rhd \delta}{\Gamma \rhd \beta} \land \frac{\Gamma, \delta, [\beta] \rhd \alpha \quad \Gamma \rhd \delta}{\Gamma, [\beta] \rhd \alpha}$$

Proof by nested induction over δ then mutual structural induction over $\Gamma, \delta \rhd \beta$ and $\Gamma, \delta, [\beta] \rhd \alpha$

98 of 105 cases proven automatically in Coq

```
Proof.
Hint Resolve gr_weakening context_swap.
induction delta; eapply seq_mutind; intros;
subst; try (econstructor; eauto; eassumption).
...
```

Coq type system is useful for formal theorem proving

- Coq type system is useful for formal theorem proving
- ► Rich type systems make induction even more awesome

- Coq type system is useful for formal theorem proving
- Rich type systems make induction even more awesome
- Inference systems can be encoded as inductive types in Coq

- Coq type system is useful for formal theorem proving
- Rich type systems make induction even more awesome
- Inference systems can be encoded as inductive types in Coq
- Structural properties of logics can be proven in Coq

- Coq type system is useful for formal theorem proving
- Rich type systems make induction even more awesome
- Inference systems can be encoded as inductive types in Coq
- Structural properties of logics can be proven in Coq

Thank you!