1. Cleaning and Exploration

In [4]:

import pandas as pd

In [5]:

wine=pd.read_csv(r'C:\Users\DIVYANJALI\Downloads\Wine.csv')
wine.head()

Out[5]:

	Alcohol	Malic acid	Ash	Alcalinity of ash	Magnesium	Total phenols	Flavanoids	Nonflavanoid phenols	Proanthocya
0	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	
1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	
2	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	
3	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	
4	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	
4									•

In [6]:

wine.isna().sum()

Out[6]:

Alcohol	0
Malic acid	0
Ash	0
Alcalinity of ash	0
Magnesium	0
Total phenols	0
Flavanoids	0
Nonflavanoid phenols	0
Proanthocyanins	0
Color intensity	0
Hue	0
OD280/OD315 of diluted wines	0
Proline	0
dtype: int64	

In [7]:

wine.duplicated()

Out[7]:

0 False 1 False 2 False 3 False False 173 False 174 False False 175 176 False False 177

Length: 178, dtype: bool

In [9]:

wine.describe()

Out[9]:

	Alcohol	Malic acid	Ash	Alcalinity of ash	Magnesium	Total phenols	Flavanoids	Ne
count	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	
mean	13.000618	2.336348	2.366517	19.494944	99.741573	2.295112	2.029270	
std	0.811827	1.117146	0.274344	3.339564	14.282484	0.625851	0.998859	
min	11.030000	0.740000	1.360000	10.600000	70.000000	0.980000	0.340000	
25%	12.362500	1.602500	2.210000	17.200000	88.000000	1.742500	1.205000	
50%	13.050000	1.865000	2.360000	19.500000	98.000000	2.355000	2.135000	
75%	13.677500	3.082500	2.557500	21.500000	107.000000	2.800000	2.875000	
max	14.830000	5.800000	3.230000	30.000000	162.000000	3.880000	5.080000	
4								

•

In [10]:

wine.nunique()

Out[10]:

Alcohol	126
Malic acid	133
Ash	79
Alcalinity of ash	63
Magnesium	53
Total phenols	97
Flavanoids	132
Nonflavanoid phenols	39
Proanthocyanins	101
Color intensity	132
Hue	78
OD280/OD315 of diluted wines	122
Proline	121
dtype: int64	

In [11]:

wine.dtypes

Out[11]:

Alcohol	float64
Malic acid	float64
Ash	float64
Alcalinity of ash	float64
Magnesium	int64
Total phenols	float64
Flavanoids	float64
Nonflavanoid phenols	float64
Proanthocyanins	float64
Color intensity	float64
Hue	float64
OD280/OD315 of diluted wines	float64
Proline	int64
dtype: object	

```
In [12]:
wine.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 178 entries, 0 to 177
Data columns (total 13 columns):
 #
     Column
                                    Non-Null Count Dtype
                                    -----
---
 0
     Alcohol
                                    178 non-null
                                                    float64
     Malic acid
                                                    float64
 1
                                    178 non-null
 2
                                    178 non-null
                                                    float64
     Ash
     Alcalinity of ash
                                    178 non-null
                                                    float64
 3
 4
     Magnesium
                                    178 non-null
                                                    int64
 5
     Total phenols
                                                    float64
                                    178 non-null
 6
     Flavanoids
                                    178 non-null
                                                    float64
 7
     Nonflavanoid phenols
                                    178 non-null
                                                    float64
 8
     Proanthocyanins
                                    178 non-null
                                                    float64
 9
     Color intensity
                                    178 non-null
                                                    float64
 10 Hue
                                    178 non-null
                                                    float64
 11 OD280/OD315 of diluted wines 178 non-null
                                                    float64
 12 Proline
                                    178 non-null
                                                    int64
dtypes: float64(11), int64(2)
memory usage: 18.2 KB
In [13]:
wine.shape
Out[13]:
(178, 13)
In [14]:
len(wine)
Out[14]:
178
In [15]:
wine.columns
Out[15]:
Index(['Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', 'Magnesium',
       'Total phenols', 'Flavanoids', 'Nonflavanoid phenols',
       'Proanthocyanins', 'Color intensity', 'Hue',
```

'OD280/OD315 of diluted wines', 'Proline'],

dtype='object')

```
In [16]:
```

len(wine.columns)

Out[16]:

13

In [17]:

wine.size

Out[17]:

2314

In [18]:

wine.tail()

Out[18]:

	Alcohol	Malic acid	Ash	Alcalinity of ash	Magnesium	Total phenols	Flavanoids	Nonflavanoid phenols	Proanthod
173	13.71	5.65	2.45	20.5	95	1.68	0.61	0.52	
174	13.40	3.91	2.48	23.0	102	1.80	0.75	0.43	
175	13.27	4.28	2.26	20.0	120	1.59	0.69	0.43	
176	13.17	2.59	2.37	20.0	120	1.65	0.68	0.53	
177	14.13	4.10	2.74	24.5	96	2.05	0.76	0.56	
4									•

In [19]:

wine.corr()

Out[19]:

	Alcohol	Malic acid	Ash	Alcalinity of ash	Magnesium	Total phenols	Flavanoids
Alcohol	1.000000	0.094397	0.211545	-0.310235	0.270798	0.289101	0.236815
Malic acid	0.094397	1.000000	0.164045	0.288500	-0.054575	-0.335167	-0.411007
Ash	0.211545	0.164045	1.000000	0.443367	0.286587	0.128980	0.115077
Alcalinity of ash	-0.310235	0.288500	0.443367	1.000000	-0.083333	-0.321113	-0.351370
Magnesium	0.270798	-0.054575	0.286587	-0.083333	1.000000	0.214401	0.195784
Total phenols	0.289101	-0.335167	0.128980	-0.321113	0.214401	1.000000	0.864564
Flavanoids	0.236815	-0.411007	0.115077	-0.351370	0.195784	0.864564	1.000000
Nonflavanoid phenols	-0.155929	0.292977	0.186230	0.361922	-0.256294	-0.449935	-0.537900
Proanthocyanins	0.136698	-0.220746	0.009652	-0.197327	0.236441	0.612413	0.652692
Color intensity	0.546364	0.248985	0.258887	0.018732	0.199950	-0.055136	-0.172379
Hue	-0.071747	-0.561296	-0.074667	-0.273955	0.055398	0.433681	0.543479
OD280/OD315 of diluted wines	0.072343	-0.368710	0.003911	-0.276769	0.066004	0.699949	0.787194
Proline	0.643720	-0.192011	0.223626	-0.440597	0.393351	0.498115	0.494193
4							>

2. Univariate EDA

In [20]:

```
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
%matplotlib inline
import warnings
warnings.filterwarnings("ignore")
```

In [21]:

```
rows=5
cols=3
fig,ax=plt.subplots(nrows=rows,ncols=cols,figsize=(15,15))
col=wine.columns
index=0
for i in range(rows):
   for j in range(cols):
        sns.distplot(wine[col[index]], ax=ax[i][j],
                     color='green', bins=20,
                     hist_kws={'edgecolor':'black'},
                     kde_kws={'linewidth':3})
        index=index+1
        if index>=12:
            break
plt.tight_layout()
'''Here we can conclude that, Alkalinity of ash, Magnesium and Proanthocyanins approximatel
Alcohol, Malic acid, Total Phenols, Flavanoids, Hue, OD280/OD315 and Proline of diluted win
suggests the presence of 2 clusters.'''
```

Out[21]:

'Here we can conclude that, Alkalinity of ash, Magnesium and Proanthocyanins approximately follows Normal distribution.\nAlcohol, Malic acid, Total Pheno ls, Flavanoids, Hue, OD280/OD315 and Proline of diluted wines\nsuggests the presence of 2 clusters.'

In []:
Alcohol,OD280/OD315 of diluted wines and Ash are negatively skewed. The other variables a

In [22]:

```
rows=5
cols=3
fig,ax=plt.subplots(nrows=rows,ncols=cols,figsize=(15,15))
col=wine.columns
index=0
for i in range(rows):
    for j in range(cols):
        sns.boxplot(wine[col[index]],ax=ax[i][j], palette="Set3")
        index=index+1
        if index>=12:
            break
plt.tight_layout()

'''From the boxplots we observe that the variables
Malic acid, Ash, Alcalinity of Ash, Magnesium, Proanthocyanins, Color intensity, Hue
seem to have outliers'''
```

Out[22]:

'From the boxplots we observe that the variables \nMalic acid, Ash, Alcalini ty of Ash, Magnesium, Proanthocyanins, Color intensity, Hue \nseem to have o utliers'

In []:

From the boxplots we observe the variables Malic acid, Ash, Alcalinity of Ash, Magnesium, # Color intensity, Hue seem to have outliers.

3. Multivariate EDA

In []:

In [23]:

Out[23]:

'From the bivariate Kdeplots it can be said that there might be 2 or 3 clust ers.'

In [24]:

```
#Malic Acid
rows=2
cols=6
fig,ax=plt.subplots(nrows=rows,ncols=cols,figsize=(15,5))
col=wine.columns
index=0
for i in range(rows):
    for j in range(cols):
        if index==0:
            sns.kdeplot(x=wine["Malic acid"],y=wine[col[index]],ax=ax[i][j],
                    shade=True, color='blue')
        else:
            sns.kdeplot(x=wine["Malic acid"],y=wine[col[index+1]],ax=ax[i][j],
                    shade=True, color='blue')
        index=index+1
plt.tight_layout()
```


In [25]:

```
#Ash
rows=2
cols=6
fig,ax=plt.subplots(nrows=rows,ncols=cols,figsize=(15,5))
col=wine.columns
index=0
for i in range(rows):
    for j in range(cols):
        if index in range(0,2):
            sns.kdeplot(x=wine["Ash"],y=wine[col[index]],ax=ax[i][j],
                    shade=True, color='pink')
        else:
            sns.kdeplot(x=wine["Ash"],y=wine[col[index+1]],ax=ax[i][j],
                    shade=True, color='pink')
        index=index+1
plt.tight_layout()
```


In []:

From the bivariate Kdeplots it can be said that there might be two or at maximum 3 cluste

In [26]:

```
fig=plt.figure(figsize=(10,7))
ax=plt.axes(projection='3d')
ax.scatter(wine['Ash'],wine['Alcohol'],wine['Magnesium'], c='orange');
ax.set_xlabel('Ash')
ax.set_ylabel('Alcohol')
ax.set_zlabel("Magnesium");
```


In [27]:

```
plt.figure(figsize=(20,15))
mask = np.triu(np.ones_like(wine.corr(), dtype=bool), k=1)
sns.heatmap(wine.corr(), annot=True, cmap='RdYlGn', mask=mask);
```

#there seems to be a high correlation between Flavanoids and total phenols #and Flavanoids and OD280/OD315 of diluted wines.


```
In [28]:
```

```
for a in range(len(wine.corr().columns)):
    for b in range(a):
        if abs(wine.corr().iloc[a,b]>0.7):
            name=wine.corr().columns[a]
            print(name)
```

Flavanoids OD280/OD315 of diluted wines

· Removing outliers

In [29]:

```
def outliers(df, ft):
    Q1=df[ft].quantile(0.25)
    Q3=df[ft].quantile(0.75)
    IQR=Q3-Q1
    lower_bound=Q1-(IQR*1.5)
    upper_bound=Q3+(IQR*1.5)
    ls=df.index[ (df[ft]<lower_bound)| (df[ft]>upper_bound) ]
    return ls
```

In [30]:

```
index_list=[]
for feature in wine.keys():
    index_list.extend(outliers(wine, feature))
print(index_list, end='')
```

```
[123, 137, 173, 25, 59, 121, 59, 73, 121, 127, 69, 73, 78, 95, 95, 110, 151, 158, 159, 166, 115]
```

In [31]:

```
def remove(df, ls):
    ls=sorted(set(ls))
    df=df.drop(ls)
    return df
wine_cleaned=remove(wine, index_list)
wine_cleaned.shape
```

Out[31]:

```
(161, 13)
```

In [32]:

```
rows=5
cols=3
fig,ax=plt.subplots(nrows=rows,ncols=cols,figsize=(15,15))
col=wine_cleaned.columns
index=0
for i in range(rows):
    for j in range(cols):
        sns.boxplot(wine_cleaned[col[index]],ax=ax[i][j], color='yellow')
        index=index+1
        if index>=12:
            break
plt.tight_layout()
```


In [33]:

```
sns.pairplot(wine_cleaned, diag_kws={'color':'grey'})
```

Out[33]:

<seaborn.axisgrid.PairGrid at 0x1db533469a0>

Principal Component Analysis

In [34]:

```
x=wine_cleaned
```

#standardisation

from sklearn.preprocessing import StandardScaler
sc= StandardScaler()
x_scaled=pd.DataFrame(sc.fit_transform(x), columns=x.columns)
x_scaled.head(2)

Out[34]:

	Alcohol	Malic acid	Ash	Alcalinity of ash	Magnesium	Total phenols	Flavanoids	Nonflavanoid phenols	ı
0	1.495711	-0.571130	0.277425	-1.208619	2.309259	0.808420	1.034224	-0.643463	
1	0.200698	-0.504145	-0.928625	-2.672685	0.118914	0.570475	0.728906	-0.808165	
4								>	

In [35]:

#PCA

from sklearn.decomposition import PCA
pca=PCA()
x_pca1=pd.DataFrame(pca.fit_transform(x_scaled), columns=x_scaled.columns)
x_pca1.head(2)

Out[35]:

	Alcohol	Malic acid	Ash	Alcalinity of ash	Magnesium	Total phenols	Flavanoids	Nonflavanoid phenois
0	3.482298	-1.494604	0.133281	-0.171033	0.650584	-0.512913	-0.733783	0.342958
1	2.278164	0.375183	-1.873077	-0.672753	0.530476	-1.217015	-0.049324	-0.893003
4								•

In [36]:

pca.explained_variance_ratio_

#The first 5 Principal Components are capturing around 80% of the variance so we can replac #with the new 5 features having 80% of the information.
#So, we have reduced the 11 dimensions to only 5 dimensions while retaining most of the inf

Out[36]:

```
array([0.38853448, 0.20487624, 0.09547051, 0.06919384, 0.05789018, 0.04289108, 0.03510666, 0.0259047, 0.02394086, 0.01980589, 0.0175546, 0.01308515, 0.00574581])
```

In [37]:

```
#Dimentionality Reduction
pca=PCA(n_components=5)
x_pca2=pd.DataFrame(pca.fit_transform(x_scaled), columns=['PC1','PC2','PC3','PC4','PC5'])
x_pca2.head(2)
```

Out[37]:

```
        PC1
        PC2
        PC3
        PC4
        PC5

        0
        3.482298
        -1.494604
        0.133281
        -0.171033
        0.650584

        1
        2.278164
        0.375183
        -1.873077
        -0.672753
        0.530476
```

1. K means clustering

In [38]:

```
from sklearn.cluster import KMeans
ssd=[]
K=range(1,13)
for k in K:
    km=KMeans(n_clusters=k)
    km=km.fit(x_pca2)
    ssd.append(km.inertia_)

plt.plot(K, ssd, 'rx-');
plt.xlabel('k');
plt.ylabel('Sum of squared distance');
plt.title('Elbow method');
```


In []:

```
# Thus, we choose no. of clusters to be 3.
```

```
In [40]:
km=KMeans(n_clusters=3,init='k-means++', random_state=0)
km.fit(x_pca2)
Out[40]:
KMeans(n_clusters=3, random_state=0)
In [41]:
centroids=km.cluster_centers_
centroids
Out[41]:
array([[ 2.38884698, -0.88560974, -0.02554146, -0.08793572, -0.0877621 ],
    [-2.78775617, -1.2489108, -0.29375436, 0.08181669, 0.03935514],
    [-0.22593271, 1.85459226, 0.25345433, 0.02445725, 0.05722795]])
In [42]:
km.inertia
Out[42]:
699.8420783063123
In [43]:
labels=km.labels_
labels
Out[43]:
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 2, 2, 2, 2, 2,
    2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2,
    1, 1, 1, 1, 1, 1])
In [44]:
from collections import Counter
Counter(labels)
Out[44]:
Counter({0: 58, 2: 58, 1: 45})
```

In [45]:

```
#Visualising the clusters using scatter plot

plt.figure(figsize=(15,5))
ax1=plt.subplot(1,2,1)
ax1.set_title('Original data')
sns.scatterplot(data = x_pca2, x='PC1', y='PC2', ax=ax1);
ax2=plt.subplot(1,2,2)
ax2.set_title('Model data')
sns.scatterplot(data = x_pca2, x='PC1', y='PC2', hue=km.labels_, ax=ax2);
plt.scatter(centroids[:, 0], centroids[:, 1], marker="X", c="r", s=80, label="centroids");
plt.legend()
```

Out[45]:

<matplotlib.legend.Legend at 0x1db5e0c4250>

In [47]:

```
from sklearn_extra.cluster import KMedoids
ssd=[]
for k in range(1,10):
    kmed=KMedoids(n_clusters=k, max_iter=300, random_state=1)
    kmed.fit(scaled_wine)
    ssd.append(kmed.inertia_)

plt.plot(range(1,10), ssd, 'rx-');
plt.xlabel('k')
plt.ylabel("Sum of squared distances");
plt.title("Elbow method")
```

Out[47]:

Text(0.5, 1.0, 'Elbow method')

2. K Medoids

In [48]:

```
from sklearn.decomposition import PCA
pca=PCA(n_components=2)
pc=pd.DataFrame(pca.fit_transform(scaled_wine), columns=['PC1', 'PC2'])
pc.head()
```

Out[48]:

	PC1	PC2
0	3.316751	-1.443463
1	2.209465	0.333393
2	2.516740	-1.031151
3	3.757066	-2.756372
4	1.008908	-0.869831

```
In [58]:
```

```
kmed=KMedoids(n_clusters=3, random_state=0)
kmed.fit(pc)
'''wine['Labels']=kmed.predict(scaled_wine)
wine.head(2)'''
```

Out[58]:

"wine['Labels']=kmed.predict(scaled_wine)\nwine.head(2)"

In [59]:

```
centroids=kmed.cluster_centers_
centroids
```

Out[59]:

In [60]:

Out[60]:

<matplotlib.legend.Legend at 0x1db5f8395e0>

3. Gaussian Mixture clustering

In [61]:

```
PC1 PC2
0 -0.832433 -0.318834
1 -0.639443 0.091947
```


4. Hierarchical Clustering — Agglomerative Clustering :

In [62]:

```
from sklearn.preprocessing import StandardScaler, normalize
sc=StandardScaler()
scaled_wine=sc.fit_transform(wine)

pca=PCA(n_components=2)
pc=pd.DataFrame(pca.fit_transform(scaled_wine), columns=['PC1', 'PC2'])
print(pc.head(2))

from scipy.cluster.hierarchy import dendrogram, linkage
plt.figure(figsize=(30,25))
link=linkage(pc, method='centroid')
plt.figure(figsize=(10, 7))
dendrogram(link);
```

```
PC1 PC2
0 3.316751 -1.443463
1 2.209465 0.333393
```

<Figure size 2160x1800 with 0 Axes>

In [69]:

```
from sklearn.cluster import AgglomerativeClustering
agg=AgglomerativeClustering(n_clusters=3, affinity='euclidean', linkage='ward')
agg.fit_predict(pc)
plt.scatter(pc['PC1'], pc['PC2'], c=agg.labels_, cmap='rainbow')
```

Out[69]:

<matplotlib.collections.PathCollection at 0x1db5ff68ca0>

5. Spectral Clustering

In [70]:

```
from sklearn.preprocessing import StandardScaler, normalize
sc=StandardScaler()
scaled_wine=sc.fit_transform(wine)

normalised_wine=normalize(scaled_wine)

from sklearn.decomposition import PCA
pca=PCA(n_components=2)
pc=pd.DataFrame(pca.fit_transform(normalised_wine), columns=['PC1', 'PC2'])

from sklearn.cluster import SpectralClustering
sp=SpectralClustering(n_clusters=3, affinity ='rbf')

labels = sp.fit_predict(normalised_wine)

plt.scatter(pc['PC1'],pc['PC2'], c=labels)
```

Out[70]:

<matplotlib.collections.PathCollection at 0x1db5ffd40a0>

