Math 215A — UCB, Spring 2017 — William Guss

Partners: Alekos, Chris Selected Problems: 1

(11.1) (Chain Homotopy) Find degree-wise free chain complexes A, B and a chain map $f: A \to B$, not chain homotopic to the zero map, but such that the induced homomorphism $f_*: H_*(A) \to H_*(B)$ is zero.

<u>Solution</u>. We will first describe a suitable general structure for candidate chain complexes and maps, and then provide an example. Let G be any free abelian group (or R-module), then let A, B be chain complexes diagramatically follows

where the chain map f is defined by the downward arrows.

Lemma 0.1. If $Im(\partial) \subsetneq G$, and for any homomorphism $\gamma : G \to G$, we have that $\gamma \circ \partial = \partial \circ \gamma$ then $f \not\simeq 0$.

Proof. Suppose that f were chain-nullhomotopic. Then there exists γ and ψ so that $\mathrm{id}-0=0\circ\psi+\gamma\circ\partial$. By our hypothesis, $\gamma\circ\partial=\partial\circ\gamma$ and therefore $\mathrm{id}=\partial\circ\gamma$. But then this contradicts $Im(\partial\circ\gamma)\subset Im(\partial)\subsetneq G=Im(\mathrm{id})$. Therefore there cannot exist such γ and $f\not\simeq 0$.

Lemma 0.2. The induced homomorphism of homologies, f_* is the zero map when $Ker(\partial) = 0$.

Proof. Application of the homology functor yields automatically the following diagram

$$A: 0 \longrightarrow H_1(A) \xrightarrow{H_*(\partial)} H_0(A) \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow H_*(\mathrm{id}) \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$B: 0 \longrightarrow H_1(B) \longrightarrow 0 \longrightarrow 0$$

Then $H_1(B) = G$ since the kernel of thre constant boundary map from G into 0 is G and the image of the constant inclusion map from 0 into G is $\{0\}$. Furthermore, since $Ker(\partial) = 0$ we yield that $H_1(A) = 0$. Therefore f_* is the zero map at every degree.

With this in mind, finding chain complexes satisfying the statement of the problem is reduced to finding a group G and a homomorphism ∂ with the properties of both lemmas. Take $G = \mathbb{Z}$ and ∂ to be any (non-trivial) multiplicitive operator.