Artificial Neural Network HW1

刘泓尊 2018011446 计84

Department of Computer Science, Tsinghua University

2020年10月4日

目录

1	Running Guide	1				
2	Network Structure and Hyperparameters	2				
	2.1 1-Layer MLP	2				
	2.2 2-Layer MLP	2				
	2.3 Additional Implementations	2				
3	Experiment Result					
	3.1 Overview	2				
	3.2 Loss	3				
	3.3 Accuracy	3				
	3.4 Other Comparations	4				
4	Summary	5				

1 Running Guide

在 codes 文件夹下运行 run_mlp.py 脚本,参数设置与含义如下:

```
1
   usage: run_mlp.py [-h] [--activ {relu,sigmoid,gelu,tanh}] [--lr LR]
2
                      [--loss {cross_entropy,enclidean,hinge}]
3
                      [--nlayer {1,2}] [--wd WD] [--mo MO] [--bsz BSZ]
   optional arguments:
4
5
       -h, --help
                          show this help message and exit
       --activ {relu,sigmoid,gelu,tanh}
6
7
                          activation function, default=relu
       --loss {cross_entropy,enclidean,hinge}
8
9
                          loss function, default=cross_entropy
       --nlayer {1,2}
                          layers of mlp, default=1
10
       --1r LR
                          learning rate, default=0.001
11
12
       --wd WD
                          weight decay, default=0.001
13
       --mo MO
                          momentum, default=0.9
       --bsz BSZ
                          batch size, default=200
14
```

2 Network Structure and Hyperparameters

2.1 1-Layer MLP

网络结构为:

 $784Linear360 \rightarrow ReLU/Sigmoid/GeLU \rightarrow 360Linear10 \rightarrow CELoss/Euclidean/HingeLoss$ 权值初始化: std = 0.01

超参: lr = 0.01, $weight_decay = 0.001$, momentum = 0.9, batchsize = 200maxepoch = 100,其余默认

您可以运行如下命令复现我的结果:

```
python run_mlp.py --nlayer 1 --activ relu --loss cross_entropy --lr 0.01 --
wd 0.001 --mo 0.9
```

2.2 2-Layer MLP

网络结构为:

 $784 Linear 512 \rightarrow ReLU/Sigmoid/GeLU \rightarrow 512 Linear 256 \rightarrow ReLU/Sigmoid/Gelu \rightarrow 256 Linear 10 \rightarrow CELoss/Euclidean/HingeLoss$

权值初始化: std = 0.01

超参: $lr = 0.01, weight_decay = 0.001, momentum = 0.9, batch size = 200, maxepoch = 100$,其余默认

您可以运行如下命令复现我的结果:

```
python run_mlp.py --nlayer 2 --activ relu --loss cross_entropy --lr 0.01 --
wd 0.001 --mo 0.9
```

2.3 Additional Implementations

实现了 Tanh 层和 Softmax 层,并对 Tanh 层的表现做了测试。

Softmax 层的反向传播过程与 Sigmoid 基本一致。Tanh 层的反向传播实际上是 $\delta \cdot (1 - \tanh(x)^2)$

您可以在 layers.py 中找到对应的代码。

3 Experiment Result

实验环境: Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz

3.1 Overview

超参: $lr = 0.01, weight_decay = 0.001, momentum = 0.9, batchsize = 200, maxepoch = 100$,其余默认。

损失函数选择 CELoss, 不同激活函数的对比:

Metric	1L+Sigmoid	1L+ReLU	1L+GeLU	2L+Sigmoid	2L+ReLU	2L+GeLU
Train Loss	0.2073	0.0544	0.0609	0.2298	0.0264	0.0334
Train Acc	94.76	98.97	98.66	95.59	$\boldsymbol{99.64}$	99.29
Test Loss	0.2159	0.0788	0.0827	0.2349	0.0603	0.0656
Test Acc	94.33	97.88	97.64	95.10	$\boldsymbol{98.17}$	97.95
$\mathrm{Time}(\mathrm{s})/\mathrm{epoch}$	5.17	3.47	9.49	9.93	4.11	18.73

激活函数选择 ReLU, 不同损失函数的对比:

Metric	1L+Eud	1L+CE	1L+Hinge	2L+Eud	2L+CE	2L+Hinge
Train Loss	0.0332	0.0544	0.0009	0.0166	0.0264	0.0015
Train Acc	98.51	98.97	99.77	99.23	99.64	99.49
Test Loss	0.0386	0.0788	0.0041	0.0226	0.0603	0.0037
Test Acc	97.58	97.88	98.31	98.27	98.17	98.41
${ m Time(s)/epoch}$	3.91	3.47	4.00	3.99	4.11	4.07

3.2 Loss

下面对不同的损失函数、激活函数下的 MLP 的 Loss 进行对比:

图 1: 不同激活函数的 MLP Train/Valid Loss (loss=CE, lr=0.01, wd=0.001, mo=0.9)

图 2: 不同损失函数的 MLP Train/Valid Loss (loss=CE, lr=0.01, wd=0.001, mo=0.9)

3.3 Accuracy

下面对不同的损失函数、激活函数下的 MLP 的 Accuracy 进行对比:

图 3: 不同激活函数的 MLP Train/Valid Acc (loss=CE, lr=0.01, wd=0.001, mo=0.9)

图 4: 不同损失函数的 MLP Train/Valid Acc (loss=CE, lr=0.01, wd=0.001, mo=0.9)

3.4 Other Comparations

我还对比了不同 learning rate, weight decay 和 momentum 的影响。在控制变量下对比了 lr = 0.1, 0.01, 0.001, 0.0001, weight decay = 0.0, 0.001, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01

图 5: MLP Train Accuracy

图 7: MLP Valid Accuracy

4 Summary

损失函数: 对于不同的激活函数在测试集上的表现,ReLU > GeLU > Tanh > Sigmoid. 其中 ReLU, GeLU, Tanh 三者表现相近,Sigmoid 因为存在梯度消失的原因,在 train loss 上收敛很慢,valid loss 的表现也并不好;收敛速度: $GeLU > ReLU > Tanh \gg Sigmoid$;耗时:GeLU > Sigmoid > ReLU.

因为 MNIST 数据集的特点,各种激活函数的 Loss 都没有出现明显的过拟合,换成 CIFAR-10 应该会有更直接的体现;

下面对不同激活函数深入讨论一下,从 Valid Loss 曲线1上可以看到,2-layer MLP 使用 Sigmoid 在初始阶段出现了平台,这反映了 Sigmoid 对函数值变化的敏感性,当自变量 |x| > 4.0 时,Sigmoid 接近饱和,几乎不能更新权重。同时因为 $\frac{dSigmoid(x)}{dx} = Sigmoid(x)(1 - Sigmoid(x)) \leq 0.25$,所以

图 8: MLP Valid Loss

随着网络层数的加深会引发梯度消失的问题;

但与之有相似形状的 Tanh 有明显不同,Tanh 是零均值的,不存在很严重的梯度消失问题,实际上在特征相差明显时 Tanh 效果会更好;ReLU, GeLU 因为在 x>0 时导数较大,所以不存在梯度消失的问题,同时因为负半轴几乎为 0,所以保证了神经网络的稀疏性,起到类似 Dropout 的效果,减轻过拟合程度。

激活函数:对于不同损失函数在测试集上的表现,HingeLoss > CELoss > Euclidean. HingeLoss 比较适合做分类,因为它的优化目标是最大化间隔,使得模型有了更好的防止误分类的能力,泛化能力更强; CELoss 是很常用的分类问题损失函数,它可以一直优化下去,效果也非常好; Euclidean 会出现离群点 (ourliers) 的损失占比过大的问题,但是在 MNIST 上依然表现不错。收敛速度: Hinge > CELoss > Euclidean.

网络层数: 2 层网络表现略好于 1 层网络,但提升不明显。2 层网络增加了参数量,所以训练速度会比 1 层的变慢,但实际测试发现,numpy 的 exp 运算实际上占据了绝大部分时间: 当激活函数使用 ReLU 时,2 层 MLP 仅仅比 1 层 MLP 慢一点;使用 Sigmoid,GeLU,Tanh 时,2 层 MLP 的速度和 1 层 MLP 的差距较大,可以推测激活函数层存在指数运算会明显增加训练时间。

学习率:从3.4节中可以看到,更小的学习率意味着更慢的收敛速度,但是往往最终测试准确率较高。但是学习率不宜过低,以免参数难以更新。实验发现,1-layer MLP 使用 lr=0.01 是较优的。过低的学习率会使得模型难以收敛到很好的准确率。

Weight Decay: 权重衰减是在损失上加了 L2 正则化项,使得模型的参数值较小,以保证足够强的泛化能力,减少过拟合。实验发现,1-layer MLP 使用 0.001 的 weight decay 较为合适。较大的 weight decay 会使得模型收敛不到准确率高的点。实际上,weight decay = 0.0 时模型依然表现地很好。此外,weight decay 越小,收敛速度越快。

Momentum: 动量项在数学上实际是对梯度进行了指数移动平均 (Exponential Moving Average),减轻了梯度的抖动,以保证更快的收敛速度。我的实验发现: momentum 较大 (意味着考虑更多的历史梯度) 时,模型的收敛速度和测试准确率都较高;而较低的 momentum(意味着梯度抖动很大) 会带来较低的准确率,收敛速度也有所下降。