NSS COLLEGE OF ENGINEERING, PALAKKAD FOURTH SEMESTER B.TECH DEGREE SECOND INTERNAL EXAMINATION JUNE 2023.

Department of Computer Science & Engineering

CST 204 Database Management Systems

(Answer all five questions.)

Modules 4 to 6: Part 'a' of each question is compulsory and it carries 3 marks. Answer either part 'b' or part 'c' of each question, which carries 7 marks each.

	Time: 2:00 Hour Maximum Marks: 50								
Q .n o.	MODULE 3								
	For the database table given below, which will be a suitable indexing scheme to be								
		SID	Activity	Fee	Instructor				
	;	100	Basket Ball	200	Lebron				
		100	Golf	65	Arnold				
		200	Golf	65	Jack				
		300	Golf	65	Lebron				
			Answer	b or c					
b	Consider a disk with block size B=1024 bytes. A block pointer is P=6 bytes long, and a record pointer is Pr =7 bytes long. A file has r=50,000 EMPLOYEE records of								
	fixed-length.	Each record	has the following	g fields: NAI	ME (30 bytes),	SSN (9bytes),			
	DEPARTME	NTCODE(9 by	tes), ADDRESS	(40 bytes),	PHONE (9 by	tes),			
	BIRTHDAT	E (8 bytes), SE	X (1 byte), JOB	CODE (4 by	tes) and SALA	RY (4 bytes).			
	` '		ocking factor bfr spanned organi		mber of file blo (2)	cks b			
	(b) Suppose that the file is <i>ordered</i> by the key field SSN and we want to construct a <i>primary</i> index on SSN. Calculate (5)								
	 (i) the index blocking factor (ii) the number of first-level index entries and the number of first-level index blocks (iii) the number of levels needed if we make it into a multi-level index (iv) the total number of blocks required by the multi-level index (v) the number of block accesses needed to search for and retrieve a record from the file given its SSN value using the primary index. 								

Consider a disk with block size B=1024 bytes. A block pointer is P=6 bytes long, and a record pointer is Pr =7 bytes long. A file has r=60,000 EMPLOYEE records of fixed-length. Each record has the following fields: NAME (30 bytes), DEPARTMENTCODE (9 bytes), ADDRESS (40 bytes), PHONE (9 bytes), BIRTHDATE (8 bytes), SEX (1 byte), JOBCODE (4 bytes), and SALARY (4 bytes). Suppose that the file is *not ordered* and we want to construct an index on key field NAME.

Which will be suitable indexing method to follow. Show the improvement in disk block access by comparing the performance of search with index and without index.

Q.no.	MODULE 4								Marks	
2.a	Let R = (A, B, C, D, E, F) be a relation scheme with the following dependencies-								3	
	$C \rightarrow F$ E	$C \rightarrow F$ $E \rightarrow A$ $EC \rightarrow D$ $A \rightarrow B$								
	Which attribute	e (or a	attribut	e combir	nation) is	a key f	or R? Ju	stify		
	Answer b or c									
b	Consider the following relation								7	
		SID	CID	S_name	C_name	Grade	Faculty	F_phone		
		1	IS318	Adams	Database	A	Howser	60192	_	
		1	IS301	Adams	Program	В	Langley	45869		
		2	IS318	Jones	Database	A	Howser	60192		
		3	IS318	Smith	Database	В	Howser	60192	-	
		4	IS301	Baker	Program	A	Langley	45869	-	
		4	IS318	Baker	Database	В	Howser	60192		
									-	
	i) Identify the fo	unctio	onal de	penden	cies from	the ab	ove give	en data	(2)	
	ii) Normalize the table upto BCNF by following the normal forms (5)									

c	Given a relation R(A1,A2,A3,A4,A5) with functional dependencies	7
	A1→A2A4 and A4→A5, check if the decomposition R1(A1,A2,A3),	
	R2(A1,A4), R3(A2,A4,A5) is lossless.	

Q.no.					MOD	ULE 4			Marks
3.a	-	transitiv given be	_	nden	cy if any e	exist betwee	en two attributes i	n the	3
	SID Build			ding Fee Manager					
		100	Fen	n	300	Mr. T			
		300	ΔΠ	[400	Ali			
		200	Holiday	/ Inn	400	Tyson			
						•			
b	Conside	er the foll	owing r	elatic		er b or c			7
D		TEACH							,
		Stude	ent		Cours	e	Instructor		
		Nara	yan	Data	abase		Mark		
		Smith	Smith Database			Navathe			
		Smith	Smith Operating Systems		Systems	Ammar			
		Smith	n	Theory		Schulman			
		Walla	ace	Database		Mark			
		Walla	ace	Оре	erating S	Systems	Ahamad		
		Won	g	Data	abase		Omiecinski		
	Zelaya Database Navathe								
		Nara	yan	Оре	erating S	Systems	Ammar		
		,			·		n the above given	(2)	

c	A relation R (A , C , D , E , H) is having two functional dependencies sets F and	7
	G as $F = \{A \rightarrow C, AC \rightarrow D, E \rightarrow AD, E \rightarrow H\}$ and $G = \{A \rightarrow CD, E \rightarrow AH\}$.	
	Check the equivalence of F and G	

Q.no.	MODULE 5	Marks				
4.a	Explain the lost update problem in concurrent transaction processing					
	Answer b or c					
b	Consider the following two transactions and schedule (time goes from top to					
	bottom). Is this schedule conflict-serializable? Explain why or why not.					
	Transaction T_0 Transaction T_1					
	$egin{array}{c c} r_0[A] & & & \ w_0[A] & & & \end{array}$					
	$egin{array}{c} r_1[A] \ r_1[B] \end{array}$					
	$egin{array}{c} r_0[B] \ w_0[B] \ c_0 \end{array}$					
c	Justify whether the schedules S1 and S2 given below are recoverable or not	7				
	S1: R1(x), W1(x), R2(x), R1(y), R2(y), W2(x), W1(y), C1, C2;					
	S2: R1(x), R2(x), R1(z), R3(x), R3(y), W1(x), W3(y), R2(y), W2(z), W2(y), C1, C2, C3;					

Q.no.	MODULE 5			
5.a	Explain any three scenarios that need NoSQL stores for data management			
	Answer b or c			
b	Briefly explain the CAP theorem of distributed databases along properties of NoSQL databases that satisfy CAP theorem.	7		
c	Briefly explain the four major types of NoSQL databases	7		