Giampiero Salvi

KTH/CSC/TMH giampi@kth.se

DD2431 HT2017

Independence Assumption

$$\mathcal{D} = \{x_1, x_2, \dots, x_N\}$$

Assumption: Independent and Identically Distributed (i.i.d.):

$$P(\mathcal{D}) = P(x_1, x_2, \dots, x_N) = P(x_1)P(x_2)\cdots P(x_N)$$

Independence Assumption

$$\mathcal{D} = \{x_1, x_2, \dots, x_N\}$$

Assumption: Independent and Identically Distributed (i.i.d.):

$$P(\mathcal{D}) = P(x_1, x_2, \dots, x_N) = P(x_1)P(x_2)\cdots P(x_N)$$

the order of observations is irrelevant!

Speech Example

Speech Example

Speech Example

Time sequences

Timeless sequences

Time sequences

Timeless sequences

Nel mezzo del cammin di nostra vita rit avvita rit avvita per una selva oscura, che ila diritta via era smarrita. Ahi quanto a dir qual era è cosa dura esta selva selvaggia e aspra e forte che nel pensier rinova la paura! Tant' è amara che poco è più morte; ma per trattar del ben chi? vi trovai, dirò de l'altre cose chi? v'ho scorte. Io non so ben ridir com! i v'intrai.

. . .

independence assumption (e.g. i.i.d) not satisfactory we cannot write $p(x_1, ..., x_N) = p(x_1)p(x_2) \cdots p(x_N)$

. . .

Most general case, applying product rule recursively (p(a,b) = p(a)p(b|a))

$$p(x_1,\ldots,x_N)=p(x_1)p(x_2,\ldots,x_N|x_1)$$

. . .

Most general case, applying product rule recursively (p(a, b) = p(a)p(b|a))

$$p(x_1,...,x_N) = p(x_1)p(x_2|x_1)p(x_3,...,x_N|x_1,x_2)$$

. . .

Most general case, applying product rule recursively (p(a, b) = p(a)p(b|a))

$$p(x_1,...,x_N) = p(x_1)p(x_2|x_1)p(x_3|x_1,x_2)\cdots \cdots p(x_N|x_1,...,x_{N-1})$$

Most general case, applying product rule recursively (p(a, b) = p(a)p(b|a))

$$p(x_1,...,x_N) = p(x_1)p(x_2|x_1)p(x_3|x_1,x_2)\cdots \cdots p(x_N|x_1,...,x_{N-1})$$

Most general case, applying product rule recursively (p(a, b) = p(a)p(b|a))

$$p(x_1,...,x_N) = p(x_1)p(x_2|x_1)p(x_3|x_1,x_2)\cdots \cdots p(x_N|x_1,...,x_{N-1})$$

Grows quadratically with sequence length (N)!!!

State Space Models

Adding latent variables z_n

Similar to Mixture Model

State Space Models

Adding latent variables z_n

State Space Models

Adding latent variables z_n

We can model indefinitely long dependencies with a limited set of parameters!

State Space Models Instances

- \bullet if z_n are continuous: Linear Dynamical Systems
- \bullet if z_n are discrete: Hidden Markov Models

Example of continuous z_n : tracking

Figure from Bishop

true positions noisy measurements inferred posterior (means and covariances)

Example of discrete z_n : speech recognition

- z_n describes the phonetic class at step n
- x_n describes the acoustic feature vector at step n

Possible inference:

- find likelihood of x_n (isolated word recognition)
- find posterior for z_n (phoneme recognition, continuous speech recognition)
- find best model parameters given sequences of observations (training)

Likelihood and Classification

Example: Isolated Words Recognition (unknown utterance X)

Likelihood and Classification

Example: Isolated Words Recognition (unknown utterance X)

Likelihood and Classification

Example: Isolated Words Recognition (unknown utterance X)

Compare Likelihoods

HMM Inference: Best Path

Example Continuous Speech Recognition

Solution: Viterbi algorithm

HMM Inference: Learning

- estimate model parameters from data
- ullet latent variables o Expectation Maximisation
- can be done efficiently with dynamic programming (Baum-Welch algorithm)

Emission Proabilities

• Emission: $p(x_n|z_n)$

Discrete HMMs

Typical uses:

- DNA analysis
- Text analysis
- Speech Recognition (Vector Quantization)

Continuous HMMs

Typically Gaussian Distributions

Discriminative HMMs

- Artificial Neural Networks
- Support Vector Machines
- Deep Neural Networks

The output of the models are interpreted as probabilities

More about HMMs in:

```
DD2434 Machine Learning, Advanced Course (2nd period)
DD2380 Artificial Intelligence (1st period)
DT2119 Speech and Speaker Recognition (4th period)
EQ2340 Pattern Recognition (1st period)
```