The 8th International Conference on Construction Engineering and Project Management (ICCEPM 2020)

A Framework to Automate Reliability-based Structural Optimization based on Visual Programming and OpenSees

Jia-Rui Lin, Ph.D. Assistant Professor, Jian Xiao, Yi Zhang

Department of Civil Engineering, Tsinghua University

December 8, 2020

Background

Structural design

- Investigation of the stability, strength and rigidity of structures
- produce a structure capable of resisting all applied loads without failure

Background

- Deterministic Design Optimization (DDO)
 - finds optimal shape or configuration in terms of mechanics
 - neglects parameter uncertainty and its effects on structural safety

Objectives

- Automate Design Generation and Evaluation Process
 - Generative design based on visual programming
 - Structural simulation based on OpenSees

- A three-step framework
 - Parameterization: extract & define parametric equations for design generation
 - Simulation: generate design models and run simulation automatically
 - Evaluation: post-process results and calculate reliability of design candidates

Parameterization

Model Generation

Grid: Xoffset, Yoffset, Xcount, Ycount, Elevation, Ecount

Element: Category, Material, Section, Location

Other: Connection, Constraint

Load Sampling

$$F(x_i) = \exp[-\exp(-\frac{x_i - \alpha}{\beta})]$$

$$x_i = \alpha - \beta \ln(-\ln u_i)$$
 $u_i \sim Unif[0,1]$

Uniform

Simulation

① Data Format	Definition
model	model basic -ndm \$ndm -ndf \$ndf
node	<pre>node \$nodeTag (ndm \$coords)</pre>
constraint	fix \$nodeTag (ndf \$constrValues)
transformation	geomTransf Linear \$transfTag
frame element	element elasticBeamColumn \$eleTa
load pattern	<pre>pattern Plain \$patternTag \$tsTag{}</pre>
uniform load	eleLoad -ele \$eleTag1 -type -beamU
point load	load \$nodeTag (ndf \$LoadValues)

③ Run Simulation

```
adr=IN[0]
 str=IN[1]
 ans=IN[2]
 openseesadr=IN[3]
 word=[]
4 for i in range(len(adr)):
     f=open(adr[i],'w')
     f.write(str[i])
     f.close()
 p=Process()
p.StartInfo.UseShellExecute=False
 p.StartInfo.CreateNoWindow=True
2 #p.StartInfo.RedirectStandardOutput=True
 p.StartInfo.FileName='put your path Opensees.exe here'
4 for i in range(len(openseesadr)):
     p.StartInfo.Arguments=openseesadr[i]
     p.Start()
 p.WaitForExit()
```


Evaluation

$$Z = g(R,S) = R - S \qquad P_r = 1 - P_f = 1 - p(Z < 0) = 1 - \int_{-\infty}^{0} f_Z(Z) dZ = 1 - \Phi(-\frac{\mu_Z}{\sigma_Z}) = \Phi(\frac{\mu_Z}{\sigma_Z}) \qquad \beta = \frac{\mu_Z}{\sigma_Z}$$

Demonstration

- A five-story steel frame structure is used for validation
- Considered variables: section, load (dead+live+wind)

	L1	L2		
ZS	F1 8	L2 92		
22	F1 8	75 25		
ZS	F1	22 L2		
Z1	EZ L1	L2 22		
21	73	22		
π	6400	7700	<i>}</i> ∤	
14100				

Element ID	Section
L1	HN496×199×10×14
L2	HN500×200×10×16
Z 1	HW350×350×12×19
Z 2	HW300×300×10×15
Z 3	HW400×400×13×21
Z4	HW350×350×12×19
Z 5	HW350×350×12×19
Z 6	HW300×300×10×15

Demonstration

- A five-story steel frame structure is used for validation
- Considered variables: section, load (dead+live+wind)
- Configuration: elastic simulation
- Indicators: total weight as objective function, maximum lateral movement for reliability

Conclusions

- Framework to Automate Design Generation and Reliability Evaluation
 - Based on visual programming and OpenSees
 - Create load samples based on Monte-Carlo Simulation
 - Run OpenSees simulation automatically
- Benefits: Save Time + New Possibilities
 - Avoid manual model creation and save time
 - Explore a large parameter space
- Future Work: Extension & Improvements

The 8th International Conference on Construction Engineering and Project Management (ICCEPM 2020)

Thank You for Your Attention!

Jia-Rui Lin, Ph.D. Assistant Professor, Jian Xiao, Yi Zhang

Department of Civil Engineering, Tsinghua University

December 8, 2020