

AID-521 Mathematics for Data Science

Module: Probability | Lecture: 4

SOME FREQUENTLY USED PROB. DISTRIBUTIONS

discrete distributions, continuous distributions, examples, properties

Why learn about these probability distributions?

- → Underlying processes of such distributions appear in many practical cases.
- → Theoretical properties of these distributions are well known.
- Modelling and analyzing an unknown distribution?
 One among these may be a good starting point.

Before we begin

X: S - RealL

D: X(S) – [0,1]

Discrete Uniform Distribution

 $\frac{n_A}{N}$

Binomial Distribution

Bernoulli distribution

X is a discrete r.v. with values 0 or 1. The Bernoulli probability function of *X* is

$$p(\mathbf{x}) = P(\mathbf{X} = \mathbf{x}) = \begin{cases} p^{\mathbf{x}} (1 - p)^{1 - \mathbf{x}}, & \mathbf{x} = 0, 1 \\ 0, & \text{otherwise}. \end{cases}$$

- → In a Bernoulli trial, 1 is usually called success and 0 is called failure.
- \rightarrow The Bernoulli distribution is fully characterized by one parameter, i.e., p.

Binomial Distribution

Fix a number n. The process of Bernoulli trial with parameter p is repeated n times.

- \rightarrow The sample space here is all possible sequences of 1 and 0 of length n.
- \rightarrow The probabilities of outcomes will depend on p.

Let *X* be the binomial r.v., i.e., it counts the number of successes *x* for each outcome of the process.

The probability distribution of X, called binomial probability distribution with parameters (n,p), is as below.

$$p(x) = P(X = x) = \binom{n}{x} p^{x} (1 - p)^{n - x};$$
$$x \in \{0, 1, ..., n\}, \ p \in [0, 1]$$

Binomial Distribution -- Properties

$$\rightarrow E[X] = \mu = n \cdot p$$

$$\rightarrow Var(X) = \sigma^2 = n \cdot p \cdot (1 - p)$$

Poisson Distribution

Pronounced Pwa-sson. Its French.

A is a random event of an underlying process (or experiment).

X is a r.v. that counts the occurrences of A. It is assumed that values of X in disjoint intervals are independent and its mean value λ is constant.

The discrete r.v. X follows Poisson probability distribution with parameter $\lambda>0$ if

$$P(X = x) = \frac{e^{-\lambda} \cdot \lambda^{X}}{x!}; x \in \{0, 1, 2, ...\}$$

→ Helpful for modeling rare events.

Poisson Distribution -- Properties

$$\rightarrow E[X] = \mu = \lambda$$

$$\rightarrow Var(X) = \sigma^2 = \lambda$$

$$ightarrow \lim_{n o \infty, \ p o 0, \ np = \lambda} {n \choose x} p^x (1-p)^{n-x} = \frac{e^{-\lambda} \lambda^x}{x!}$$

Continuous Uniform Distribution

A r.v. X has uniform prob. distribution on (a,b) if X has the density function

$$f(x) = \begin{cases} \frac{1}{b-a}, & a \in [a,b], \\ 0, & \text{otherwise.} \end{cases}$$

The cdf of X

$$F(x) = \int_{-\infty}^{x} \frac{1}{b-a} dx = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & a \le x < b, \\ 1, & x \ge b. \end{cases}$$

Cont. Uniform Distribution -- Properties

$$\rightarrow E[X] = \mu = \frac{a+b}{2}$$

$$\rightarrow Var(X) = \sigma^2 = \frac{(b-a)^2}{12}$$

Normal or Gaussian Distribution

A r.v. X has a normal probability distribution with parameters μ and σ^2 if X has the density function

$$f(x) = \frac{1}{\sqrt{2\pi} \cdot \sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}; x \in \mathbb{R}.$$

- \rightarrow If $\mu = 0$ and $\sigma = 1$, X is called standard normal r.v.
- $\rightarrow {\it X} \sim {\it N}(\mu,\sigma^2)$

Gaussian Distribution -- Properties

$$\rightarrow E[X] = \mu$$

$$\rightarrow Var(X) = \sigma^2$$

Log-normal Distribution

Let *Y* be a r.v. with normal distribution. Then $X = e^{Y}$ has a log-normal distribution.

So, when do we use log-normal to model a distribution?

Gamma Distribution

••

Gamma Distribution -- Properties

$$\rightarrow E[X] = \alpha \beta$$

$$\rightarrow Var(X) = \alpha \beta^2$$

Exponential Distribution

••

Exponential Distribution -- Properties

$$\rightarrow E[X] = \beta$$

$$\rightarrow Var(X) = \beta^2$$

Chi-square Distribution

••

Chi-square Distribution -- Properties

$$\rightarrow E[X] = n$$

$$\rightarrow Var(X) = 2n$$

The list of distributions we discussed here is incomplete.

An exhaustive list.. probably.

List of probability distributions

From Wikipedia, the free encyclopedia

Many probability distributions that are important in theory or applications have been given specific names.

Contents [hide]

- 1 Discrete distributions
 - 1.1 With finite support
 - 1.2 With infinite support
- 2 Continuous distributions
 - 2.1 Supported on a bounded interval
 - 2.1.1 Supported on intervals of length 2π directional distributions
 - 2.2 Supported on semi-infinite intervals, usually [0,∞)
 - 2.3 Supported on the whole real line
 - 2.4 With variable support
- 3 Mixed discrete/continuous distributions
- 4 Joint distributions
 - 4.1 Two or more random variables on the same sample space
 - 4.2 Distributions of matrix-valued random variables
- 5 Non-numeric distributions
- 6 Miscellaneous distributions
- 7 See also
- 8 References

appendix, beginning of chapter