6.002

CIRCUITS AND ELECTRONICS

Superposition, Thévenin and Norton

Reading: Chapter 3 of A&L

Review

Circuit Analysis Methods

• KVL: KCL: VI $\underset{loop}{\leqslant V_{i} = 0}$ KCL: $\underset{mode}{\leqslant I_{i} = 0}$

- Circuit composition rules
- Node method the workhorse of 6.002

 KCL at nodes using V's referenced from ground

 KVL implicit in pattern (((i (i)))

Overview

- Introduction to linear circuits
- Properties of linearity
- The superposition tool for your toolkit
- The Thévenin method
- The Norton method

Let's start by introducing linearity

Linearity

Consider

Write node equations -

$$\frac{e-V}{R_1} + \frac{e}{R_2} - I = 0$$

linear in e, V, I No terms

Linearity

Write node equations --

$$(R_1) + R_2 = 0$$
 linear in e, V, I

Rearrange --

$$\left[\frac{1}{R_1} + \frac{1}{R_2}\right]e = \frac{V}{R_1} + I$$

Linearity

$$\frac{e-V}{R_1} + \frac{e}{R_2} - I = 0$$

$$\frac{2+R}{2} + \frac{1}{R} + \frac{1}{R} = \frac{V}{R} + I$$

$$\frac{1}{R_1} + \frac{1}{R_2} = \frac{1}{R_1} + 1$$
ductoure matrix modern linear sur

$$= \frac{R_2 V + R_1 R_2 T}{R_1 + R_2}$$

Linearity \Longrightarrow Homogeneity Superposition

Linearity \Longrightarrow

Homogeneity Superposition

Homogeneity

Linearity \Longrightarrow Superposition

Homogeneity Superposition

Specific superposition example:

Method 4: Superposition method

- 1. Find the responses of the circuit to source acting alone
- 2. Sum the individual respones

Each source acting alone means this

Back to the example

Use superposition method

Back to the example

Use superposition method

 R_2 acting alone

Back to the example

Use superposition method

nethod

 $K_1 + K_2$

acting alone

15

Method 4: The Thévenin Method

Example: Find i_1 Network E

Short circuit current seen at port
$$V_m$$
:

Resistance of network seen from port V_m :

 V_m :
 V_n

Thevenin equivalent

Norton equivalent

Summary

Discretize matter by agreeing to observe the lumped matter discipline

Summary

