Kanapki

PREOI 2025

Dzień 4 – 28 stycznia 2025

Kod zadania:

kan

Podzadanie 1 ($a_i = b_i$)

Wynikiem dla tego podzadania jest: $min(\lfloor \frac{x_i}{a_i} \rfloor)$ po wszystkich $i \in [1; n]$. Złożoność O(n).

Podzadanie 2 ($1 \le n, x_i \le 100$ **)**

Niech a – ilość kanapek Bajtka oraz b – ilość kanapek Bitka. Można rozpatrzeć każdą parę a0, Para jest dobra jeśli dla każdego $i \in [1; n]$ zachodzi $x_i >= a * a_i + b * b_i$. Wynik to max(a + b) po wszystkich dobrych parach $a_i > 0$. Par jest $max(x_i)^2$, każdą z nich sprawdzamy w O(n), zatem złożoność to $O(max(x_i)^2 * n)$.

Podzadanie 2 ($1 < n, x_i < 1500$ **)**

Zauważmy, że gdy liczymy na ile kanapek starczy nam i-tego składnika, oraz wiemy, ile kanapek zrobi Bajtek, możemy łatwo obliczyć na ile kanapek Bitka wystarczy nam tego składnika. Jeśli Bajtek robi *a* kanapek to *i-*tego składnika starczy na $(x_i - a_i * a)/b_i$ kanapek Bitka. Zatem rozważając każdą możliwą liczbę kanapek Bajtka możemy w O(n) sprawdzić, ile maksymalnie kanapek może zrobić Bitek, będzie to minimum po powyższych wartościach dla każdego i. Zatem otrzymujemy złożoność $O(max(x_i) * n)$.

Wzorcówka

Żeby rozwiązać to zadanie można użyć wyszukiwania binarnego po wyniku, bo oczywiście jeśli da się zrobić k kanapek, to również da się zrobić k-1 kanapek. Zatem musimy umieć sprawdzać, czy da się stworzyć k kanapek. Zdefiniujmy a,b tak jak wyżej. Będziemy po kolei rozpatrywać każdy składnik *i*, wyznaczając dla niego przedział, z którego może być *a*, tak żeby przy takim a dało sie zrobić k kanapek. Jeśli i-tego nie starcza na k kanapek niezależnie od k , to wiemy, że nie da się zrobić k kanapek. W przeciwnym przypadku mamy 3 przypadki:

- 1. $a_i = b_i$
- 2. $a_i < b_i$
- 3. $a_i > b_i$

Jeśli $a_i = b_i$ to przedział możliwych a to oczywiście [0; k]. W przypadku $a_i < b_i$ bardziej ópłaca sięńam brać składnik Bajtka, dlatego na pewno można zrobić k kanapek Bajtka. Pytanie ile minimalnie kanapek Bajtka można zrobić, tak żeby wciąż dało się utworzyć w sumie k kanapek? Otóż po wzięciu k kanapek Bajtka mamy $x_i - k * a_i$ źapasu" i-tego składnika, dlatego możemy zastąpić maksymalnie $\lfloor \frac{x_i - k * a_i}{b_i - a_i} \rfloor$ kanapek Bajtka kanapkami Bitka. Zatem przedział możliwych a to $[k-\lfloor \frac{x_i-k*a_i}{b_i-a_i} \rfloor;k]$. Trzeci przypadek jest podobny do tego, pozostawiam wyprowadzenie wzoru jako ćwiczenie dla czytelnika. Jako, że żeby zrobić k kanapek musi być wystarczająco każdego składnika, należy sprawdzić, czy przecięcie wszystkich wyznaczonych przedziałów jest puste. Od tego zależy, czy da się utworzyć k kanapek. Całe to sprawdzanie działa w O(n), czyli rozwiązanie ma złożoność $O(n * \log max(x_i))$.

1/1