robotron

Zentrale Recheneinheit K 2526 / K 2527

Betriebsdokumentation

6. Auflage

Karl-Marx-Stadt 1988

Inhaltsverzeichnis

- 1. Kurzcharakteristik
- 2. Technische Daten
- 2.1. Allgemeine Daten
- 2.2. Takterzeugung
- 2.3. Zentrale Verarbeitungseinheit
- 2.4. Speicher
- 2.5. Zähler/Zeitgeber
- 2.6. Programmierbarer DMA-Kanal
- 2.7. Universelles E/A-Tor (U-Bus)
- 2.8. Speicher- und E/A-Schutz
- 2.9. Zentrale Baugruppensteuerung (BS-PIO)
- 3. Bezeichnung und Bedeutung der Signale
- 4. Aufbau des Rechnerbusses
- 4.1. Systembus
- 4.1.1. Datenbus
- 4.1.2. Adresbus
- 4.1.3. Steuer- und Kontrollbus
- 4.1.4. Stromversorgungsleitungen
- 4.2. Koppelbus
- 4.3. Anschlußbelegung der Steckverbinder X1 und X2
- 5. Prioritätenzuordnung
- 6. Technische Beschreibung
- 6.1. Blockschaltbilder
- 6.2. Takterzeugung
- 6.3. Ein- und Ausschaltung Lade-ROM
- 6.3.1. Allgemeines
- 6.3.2. Funktionsbeschreibung
- 6.4. Rücksetzschaltung
- 6.5. WAIT-Einblendung für ZVE2
- 6.5.1. Allgemeines
- 6.5.2. Funktionsbeschreibung

- 6.6. RDY-Bildung 6.6.1. Allgemeines 6.6.2. RDY-Bildung bei Ansteuerung 6.6.3. RDY-Bildung durch die Zentrale Baugruppensteuerung 6.6.4. RDY-Bildung bei Interruptquittungszyklen 6.7. Programmierbarer DMA-Kanal 6.7.1. Allgemeines 6.7.2. Arbeitsweise der ZVE-Umschaltung 6.8. Bustreiber und -steuerung für den vollständigen ZRE- und Universalbus 6.8.1. Bussystem 6.8.2. Treibersteuerung 6.9. ZRE interne E/A-Tore 6.9.1. Allgemeines 6.9.2. Adressenbelegung für interne E/A-Tore der ZRE K 2526
- 6.9.3. Ansteuerung des BS-PIO 6.9.4. Ansteuerung des Zähler/Zeitgebers 6.9.5. Universelles Ein-/Ausgabe-Tor 6.9.5.1 Struktur und Anschlußbedingungen 6.9.5.2 Funktion 6.10. Zentrale Baugruppensteuerung 6.10.1. Struktur 6.10.2. Funktion Speicher- und E/A-Schutz 6.11.1. Schutzaufgabe 6.11.2. Beschreibung des RAM 6.11.3. Funktion des Speicherschutzes 6.12. Bildung des Steuersignals IEP 6.12.1. Allgemeines 6.12.2. Funktion Serviceschaltpläne

1. Kurzcharakteristik

Die Zentrale Recheneinheit ZRE K 2526/27 kann an das realisierte BUS-System des MR K 1520 als zentrale Baugruppe angeschlossen werden. Diese ZRE-Variante berücksichtigt die Forderungen nach hoher Leistungsfähigkeit, insbesondere bei der Simultanarbeit mehrerer E/A-Einheiten. Sie besitzt die Funktionen zum Speicher- und E/A-Schutz und zum Betriebssystem.

Nach Betriebsbeginn gibt ein abschaltbarer Anfangslader den gesamten Adreßbereich des Rechners wieder frei. Ein zentraler Zähler/Zeitgeber dient als Zeitnormal und übernimmt Überwachungsfunktionen im System. Die ZRE besitzt ein universelles E/A-Tor, was vorzugsweise zum Anschluß einer Tastatur benutzt werden kann.
Es werden Bauelemente auf der Systembasis des Schaltkreises Q 300 eingesetzt. Die ZRE K 2526 umfaßt die Funktionsgruppen:

- Zentrale Verarbeitungseinheit (ZVE)
- programmierbarer DMA-Kanal mit einer 2. ZVE (DMA-ZVE)
- Speicher (ROM)
- Speicher- und E/A-Schutz (RAM)
- Zähler/Zeitgeber (CTC)
- universelles E/A-Tor (U-Bus)
- Zentrale Baugruppensteuerung mit einem Parallel-interface-Baustein (BS-PIO)
- Systembustreiber
- quarzstabilisierter Taktgenerator.

Die ZRE K 2527 entspricht der ZRE K 2526 ohne programmierbaren DMA-Kanal. Beide Zentralen Recheneinheiten sind nicht als "Single-board-computer" verwendbar, ihren Anfangszustand erhalten sie über die RESET-Leitung des Systembusses.

2. Technische Daten

2.1. Allgemeine Daten

Steckeinheitenabmessung:

Steckraster:

Steckverbinder:

Einsatzklasse:

Stromaufnahme (max.):

215 mm x 170 mm

20 mm

2 x 58-polig, indirekt

Bauform 304-58, TGL 29331/03

1 x 26-polig, indirekt

Bauform 102-26, TGL 29331/04-7 PdAu

5/60/30/95/10-1E

wie K 2521

 $5P = +5V \pm 5\%, 1.5A$

 $5N = -5V \pm 5\%$, 0.07 A

12 P = + 12 $V \pm 5\%$, 0,12 A

2.2. Takterzeugung

Quarztyp:
Quarznennfrequenz:
Systemtaktfrequenz:
Systemtaktzyklus:
Elektrische Parameter:

Q 51/E2-010, 9832 kHz TGL 33584

9,832 MHz ± 0,1 %

2,4576 MHz ± 0,1 %

407 ns ± 0,1 %

Pegel TTL-kompatibel

2.3. Zentrale Verarbeitungseinheit

Schaltkreistyp: Befehlsanzahl: Befehlslänge: Verarbeitungsbreite:

Wortlänge Daten: Adressierbarer Speicher:

E/A-Adresbereich: Unterbrechungsarten:

Wartesteuerung: Refreshsteuerung:

2.4. Speicher

Schaltkreistyp: Kapazität:

Adressierung: Adressen: Bemerkungen:

2.5. Zähler/Zeitgeber

Schaltkreistyp: Anzahl der Kanale: Adressierung:

Ausgangssignale: Eingangssignal: Betriebsarten:

Zeitgeber

Erzeugbare Intervalle:

Q 300

158 Basisbefehle 1, 2, 3 und 4 Byte 1 Byte parallel

1 oder 2 Byte 64 K Byte

256 Ein-/256 Ausgabeadressen (erweiterbar)

1. maskierbare Unterbrechung

(3 verschiedene Behandlungsmodi)

2. nichtmaskierbare Unterbrechung

vorhanden vorhanden

Y 708

1 K Byte PROM (ROM)

programmiert abschaltbar über zentrale

Baugruppensteuerung

fest

0000_H ... 03FF_H

- nach dem Systemsignal RESET zugeschaltet

- bei aktiviertem Lade-ROM, Bildung des Speichersperrsignals MEMDI

- bei Speicherschreibzyklen wird der Lade-ROM nicht angesprochen

Q 302

über 8 Bit E/A-Adressen Adresgruppe AB4 ... AB7:

O_H, (2_H, 4_H, 6_H, 8_H, A_H, C_H, E_H) Adresgruppe ABO ... AB3:

 C_H , D_H , E_H , F_H

MOS, TTL-kompatibel (max. 1,8 mA)

MOS, TTL-kompatibel

1. Zeitgeber

2. Zähler

programmierbar (16 ... 256^2) . t_a t, - Systemtaktzyklus

Zähler

Zählbereich:

programmierbar, 1 ... 256 externe Ereignisse

Max. Zählbereich:

Bemerkungen:

256⁴ externe Ereignisse erreichbar durch Reihenschaltung von 4 Kanälen

- Der Zeitgeberausgang ZC/TO2 ist mit dem Zählereingang CLK/TRG3 fest verdrahtet; vorzugsweise zur Bildung einer vom Systemtakt abgeleiteten Systemzeit.
- Zähler/Zeitgeber am Ende der 1. Prioritätenkette angeordnet, d. h. an IEI (Systembus) und ausgangsseitig an IEO1 (Koppelbus).

2.6. Programmierbarer DMA-Kanal

Schaltkreistyp: Arbeitsweise: Q 300

- komplementär zum Zentralprozessor auf den Systembus aufschaltbar
- Befehlsanzahl, Befehlslänge, Verarbeitungsbreite, adressierbarer Speicher, E/A-Adresbereich siehe ZVE1
- Ab- und Zuschaltung über BUSRQ-Signal
- vorzugsweise Anwendung für FD-Anschluß
- niedrigste Priorität in der BAI/BAO-Kette
- programmiert rücksetzbar durch RES-ZVE2
- Bedienung mehrerer Steckeinheiten für schnelle E/A-Geräte im DMA-Betrieb möglich (nicht simultan)

keine

vorhanden

entsprechend der Programmierung und der angeschlossenen Peripherie (wie ZVE)

Unterbrechungsarten: Refresh- und Wartesteuerung: Übertragungsgeschwindigkeit:

2.7. Universelles E/A-Tor

Schaltkreistyp:

Datenleitungen:

Auswahlleitungen:

Adressierung der Auswahlleitungen:

2 x U 216: 1 x U 212

8 Bit - bidirektional

TTL-kompatibel (max. 15 mA)

4, TTL-kompatibel (max. 10 mA)

AB4 ... AB7: OH (2H, 4H, 6H, 8H, AH, CH, EH)

ABO ... AB3: 1_{H} , 3_{H} , 5_{H} , 6_{H}

Anschluß über einen 26-poligen zweireihigen Steck-verbinder

2.8. Speicher- und E/A-Schutz

Schaltkreistyp: Arbeitsweise: Q 240

- Speicherbereichsaufteilung in 1024 Segmente zu 64 Byte Zuordnung der Schutzfunktion für die Segmente durch Programmierung des Q 240

- Aktivierung des Speichersperrsignals bei unerlaubtem Zugriff auf ein geschütztes Segment

- (nur bei Speicherschreibzyklen)
- Aktivieren einer nichtmaskierten Unterbrechungsanforderung bei unerlaubtem E/A-Befehl aus einem ungeschützten Speicherbereich (abschaltbar über Lötbrücke)
- Abschaltung der Schutzfunktion bei DMA-Betrieb

2.9. Zentrale Baugruppensteuerung

Schaltkreistyp:

Funktionen:

- Q 301
- Einzelbefehlsabarbeitung
- Speicherseitenauswahl
- Spannungsüberwachung für CMOS-Speicher
- Speicher- und E/A-Schutzanzeige
- Abschaltung des Speichers auf der ZRE (Lade-ROM)
- Programmiersteuerung des Speicherschutz-RAM
- Sonderfunktion (z. B. programmiertes Netzausschalten)
- Aufruf Betriebssystemebene
- Konfigurationstest
- 3 Bit wahlfreier Codeschlüssel (Ausrüstungsvariante)
- RD4-Auswertung für Konfigurationstest (außerhalb der normalen Arbeitsweise)

Die zentrale Baugruppensteuerung ist am Ende der 2. Prioritätenkette eingeordnet, d. h. an IEII (Koppelbus).

3. Bezeichnung und Bedeutung der Signale

Signalname	Signalbedeutung	Aktiv.	Wirkungsrich-	Sonstige Bedingungen
		Pegel	tung bez. auf	
			ZRE/DMA	
DBO	Datenbus: Leitungen führen	high	 bidirektional	am Bus angeschlossene Sen-
DB7	beim Datenaustausch auf dem			der müssen 3-state-Aus-
•	Bus die Befehls- bzw. Daten-	,		gange besitzen
	informationen zum Speicher			
	und E/A-Geräten.			
ABO	Adresbus: 16 Leitungen füh-	high	unidirektional	ZRE bzw. DMA müssen
AB15	ren die Adresse des Speicher-	4	ZRE bzw. DMA	3-state-Ausgänge besitzen
	platzes oder des E/A-Gerätes.	<u> </u>	ist Sender	
MREQ	Speicheranforderung (memory	low	unidirektional	ZRE bzw. DMA müssen
	request): Das Signal zeigt			3-state-Ausgange besitzen
	an, daß der Adresbus eine			
	gültige Adresse für eine		,	
	Speicherlese- bzwschreib-			
	operation hat.			

Signalname	Signalbedeutung	Aktiv. Pegel	Wirkungsrich- tung bez. auf	Sonstige Bedingungen
			ZRE/DMA	
IORQ	Ein-/Ausgabeanforderung (input/output request): Das Signal zeigt an, daß der Adresbus im	low	unidirektional	ZRE bzw. DMA (Sender) müssen 3-state-Aus- gänge besitzen
	unteren Byte (ABO AB7) eine gültige E/A-Adresse führt. AB8 AB15 = gültige Daten. Die ZRE erzeugt TORQ, wenn ein INT-Gesuch von der ZRE akzeptiert wurde und der neue Befehl bzw. INT-Vektor auf den Bus gelegt werden kann (siehe MT).			
RD	Lesen (read): Das Signal zeigt an, daß durch die ZRE bzw. DMA Informationen (Daten oder Befeh- le) vom Speicher oder E/A-Gerät gelesen werden können.	low	unidirektional	Sender muß 3∸state- Ausgänge besitzen
WR	Schreiben (write): Das Signal zeigt an, daß von der ZRE gültige Daten auf den Datenbus gelegt wurden, die im Speicher einzutragen bzw. vom E/A-Gerät zu übernehmen sind.	low	unidirektional	Sender müssen 3-state Ausgänge besitzen
UPSH	Speicherauffrischung (refresh): Das Signal zeigt an, daß die un- teren 7 Bit des Adreßbusses eine Refreshadresse zum Auffrischen dynamischer RAM's bilden. RFSH wird während der Zeit T3 und T4 bereitgestellt.	low	unidirektional	Sender muß 3-state- Ausgang besitzen
ក	Befehlslesezyklus (Maschinenzyklus 1): Das Signal zeigt an, daß der laufende Prozessorzyklus ein Be-	low	unidirektional	Sender muß 3-state- Ausgang besitzen
	fehlslesezyklus des auszuführen- den Befehls ist. Mit TORQ zeigt es an, daß ein Interruptgesuch akzeptiert wurde und der INT- Vektor auf den Datenbus zu legen ist.			
	Warten (wait): Das Signal zeigt an, daß Speicher oder E/A-Gerät für Datenaustausch nicht "bereit" sind. Er hält solange an, wie WAIT aktiv ist. (Beachte: RFSH muß in bestimmter	low	i	Sender müssen Open- Kollektor-Stufen besitzen

•

Signalname	Signelbedeutung	Aktiv. Pegel	Wirkungsrich- tung bez. auf ZRE/DMA	Sonstige Bedingungen
	Maskiertes Unterbrechungsgesuch (interrupt request): Das INT- An- forderungssignal wird durch ein E/A- Gerät erzeugt und ist ein Gesuch an die ZRE zur Unterbrechung. Die An- forderung wird am Ende des gültigen Befehls beachtet. Wird INT akzep- tiert, so wird das INT-Annahmesignal bei Beginn des nächsten Befehlszy- klus ausgesandt (MI . IORC).		unidirektional ZRE ist Em- pfänger	Sender müssen Open- Kollektor-Stufen besitzen
NMI	Nichtmaskierter Interrupt (non maskable interrupt): Unterbrechungs-gesuch an die ZRE. Es besitzt höhere Priorität als INT und wird sofort akzeptiert. NMI zwingt den Prozessor bei der Adresse 0066 _H zu starten. Der Befehlszählerstand wird gerettet so daß der Anwender zu dem unterbrochenen Programm zurückkehren kann.	•	unidirektional ZRE ist Em- pfänger	Sender müssen Open- Kollektor-Stufen besitzen
HALT	ZRE-Halt (halt state): Das Signal zeigt an, daß sich der Prozessor im Halt-Zustand befindet und zur weiteren Arbeit auf einen Interrupt wartet.	low	unidirektional	Sender muß 3-state- Ausgang besitzen
	Bereit (ready): Das Signal zeigt an, daß der angesprochene Speicher oder das angesprochene E/A-Gerät am Bus vorhanden ist und für Lese- oder Schreiboperationen zur Verfügung steht.	low		Sender müssen Open- Kollektor-Stufen besitzen
	Rücksetzen: Das Signal dient als Zentrales Rücksetzeignal im Rechner.		ZRE ist Em-	Sender müssen Open- Kollektor-Stufen besitzen
S d D b	Susanforderung (bus request): Das signal zeigt an, daß ein Gesuch auf irektem Speicherverkehr durch einen MA-Kanal gestellt wurde. BUSRQ hat ezüglich der Busanforderung höchste riorität.		ZRE ist Em-	Sender müssen Open- Kollektor-Stufen besitzen
a S h S	nerkennung der Busanforderung (bus cknowledge): Die ZVE zeigt mit dem ignal an, daß sie BUSRQ akzeptiert at. Datenbus, Adreßbus und 3-state teuerausgänge sind in den hochhmigen Zustand geschaltet. Der Bus teht dem DMA-Kanal zur Verfügung.		unidirektional ZRE ist Sender	

Signalname	Signalbedeutung	Aktiv. Pegel	Wirkungsrich- tung bez. auf ZRE/DMA	Sonstige Bedeutung
IEI	Interrupt-Freigabe-Eingang (inter- rupt enable input): Es kennzeichnet, daß die am Bus näher zur ZRE ge- steckte Ste keinen INT angemeldet hat.	low	unidirektional	
TEO	Interrupt-Freigabe-Ausgang (inter- rupt enable output): Das Signal sagt aus, daß die Ste kein Interrupt fordert. Die Leitung wird direkt mit IEI der nachfolgenden Ste verbunden.		unidirektional	
MEMDI	Speichersperren (memory disable): Das Signal dient der Sperrung der Speicher für alle Lese- und Schreib- operationen.	low	unidirektional	Sender muß Open- Kollektor-Stufen besitzen
IODI	E/A-Gerätesperrung (input output disable): Das Signal dient der Sperrung von E/A-Operationen der ZRE mit den E/A-Geräten.	low	unidirektionel	Sender am Bus muß Open-Kollektor- Stufen besitzen
١ ١	Takt für das System: Das Signal dient zur zeitlichen Synchronisa-tion interner Vorgänge.	TTL	unidirektional	
	Anerkennung einer Busanforderung (busak input): BAT bildet am Bus eine prioritätsbestimmende Kette zur Durchschaltung von BUSAK. BAT ist dabei das Eingangssignal der Kette (siehe IET).	low		
	Anerkennung einer Busanforderung (busak output): Dieses Signal ist das Ausgangssignal obiger Kette.	low		

4. Aufbau des Rechnerbusses

Die Schnittstelle zwischen der ZRE und den Anschlußeinheiten ist der Rechnerbus K 1520, der durch die Systembusrichtlinie MR K 1520 charakterisiert wird.

Der Rechnerbus besteht aus 2 Leitungsbündeln, die konstruktiv 2 58-poligen Steckverbindern jeder Steckeinheit zugeordnet sind. Es handelt sich um den Systembus (Stecker X1 und den Koppelbus (Stecker X2).

4.1. Systembus

Er umfaßt die zum Systemaufbau unbedingt erforderlichen Hauptsignale. Er bildet die gemeinsame Verbindung zwischen ZRE, Speicher und E/A-Einheiten zur Durchführung des Datentransfers zwischen diesen. Der Systembus ist durch eine gedruckte Rückverdrahtung gekennzeichnet. Lediglich die Signale IEI, IEO, BAI und BAO können wahlweise gebrückt werden (siehe Prioritätenzuordnung). Der Bus wird durch folgende Leitungsbündel gebildet:

4.1.1. Datenbus (DBO ... DB7)

Beim Datenaustausch führen diese Leitungen die Befehls- bzw. Dateninformation. Der Bus besteht aus 8 Leitungen und ist bidirektional nutzbar.

4.1.2. Adresbus (ABO ... AB15)

Die 16 Adresseitungen ermöglichen die Adressierung eines Speicherbereiches von 64 K Byte bzw. von Adressen der E/A-Tore. Er ist unidirektional.

ABO ... AB15 sind mit MREQ als Speicheradresse, ABO ... AB7 mit TORQ als E/A-Geräteadresse (max. 256 Eingabe- oder 256 Ausgabeadressen möglich) und ABO ... AB6 mit RFSH als Refreshadresse für das Auffrischen dynamischer RAM-Speicher gültig.

AB8 ... AB15 sind mit TORQ gultig und enthalten bei Ein- und Ausgabebefehlen den Inhalt vom ZVE-Register A bzw. B (je nach Befehlsart).

4.1.3. Steuer- und Kontrollbus

Er beinhaltet alle Steuer- und Kontrollsignale, die zur Steuerung des aufgebauten Systems unbedingt erforderlich sind.

MREQ	RD ·	MMI
TOMEM	WR	INT
IORQ	WAIT	IEI
IODI	RDY	IEO
MT	HALT	BAI
RESH	RESET	BAO
BUSRQ	BUSAK	TAKT

4.1.4. Stromversorgungsleitungen

Sie führen die Leitungen: 5 P, 12 P, 5 N, 5 PH und 00.

4.2. Koppelbus

Der zur Mehrrechnerkopplung benutzte Signalbündelteil wird als Koppelbus bezeichnet. Seine freien Steckverbinderanschlüsse können in der Rückverdrahtung zur Herstellung spezifischer Verbindungen zwischen den Steckeinheiten benutzt werden. Bei diesem Bus sind nur die Masse- und Stromversorgungsanschlüsse gedruckt ausgeführt. Alle weiteren Verbindungen sind gewickelt. Der Koppelbus ist somit speziell auch für die Verbindung der Anschlüsse anwenderspezifischer Steckeinheiten geeignet.

4.3. Anschlußbelegung der Steckverbinder X1 und X2

Sys	tem	bus	(X1)

Koppelbus (X2)

Systembus (X1)				Koppelbus (X2)			
Spannung	C A	Spannung	·	Spannung	CA	Spannung	
Name		Name		Name		Name	
						1.0	
5 P	29	5 P		00	29	00	
12 P	28	12 P	·	00	28	00	
BAI	27	BAO		12 N	27	12 N	
HALT	26	MT		IEI1	26	IEO1	
RDY	25	rfsh		CLK/TRGO	25	ZC/TO	
IORQ	24	WAIT	·	CLK/TRG1	24	ZC/TO1	
INT	23	NMI	· ·	CLK/TRG2	23	ZC/TO2	
00	22	IODI		SUE	22		
00	21	TAKT		MEMDI2	21	MEMDIT	
BUSRQ	20	RESET		SA	20		
AB1	19	ABO .	٠ .		19		
AB3	18	AB2			18		
AB5	17	AB4			17		
AB7	16	AB6			16		
(5 N)	15	5 N			15		
AB9	14	AB8			14		
AB11	13	AB10			13		
AB13	12	AB12			12		
AB15	11	AB14			1 1		
TEI	10	IEO	. `		10		
MEMDI	9	MREQ	, i		9	·	
RD	8	WR			- 8		
DBO	7	DB1	ર	IEP	7		
DB2	- 6	DB3			6		
DB4	5	DB5		UIŅĪ	5	00	
DB6	4	DB7		X-TAKT	4	00	
5 PG	3	5 PG	,	SSp2 (5P)		SSp3	
00	2	00		SSp1	. 2	SSp1	
00	1	00		5 P	1	5 P	

5. Prioritätenzuordnung

Jede Steckeinheit ist im Gestell ESE 083-6-050-002 (Paneel) prinzipiell an eine beliebige Stelle steckbar.

Die Entfernung der STE mit peripheren Schaltkreisen von der ZRE-Steckeinheit K 2526/27 bestimmt die Prioritäten dieser Steckeinheit bei der Bedienung von Interruptanforderung (IEI-IEO-daisy-chain-Kette) oder bei Anforderung der Busherrschaft (BAI-BAO-daisy-chain-Kette). Je kleiner die Entfernung von der ZRE-Steckeinheit ist, um so höher ist ihre Priorität, d. h. je eher wird eine Interruptanforderung von der ZRE anerkannt und bearbeitet.

Nichtbelegte Steckplätze im Gestell sind entweder mit Brücken IEI-IEO oder BAI-BAO (Kurzschlußstecker oder Wickelbrücken an entsprechender Stelle der Rückverdrahtung) zu versehen. Eine Ausnahme bilden die Speichersteckeinheiten:

OPS K 3520 - 4 K Byte statischer Schreib-Lese-Speicher (sRAM) nMOS

PFS K 3820 - 16 K Byte programmierbarer Festwertspeicher (EPROM)

OPS K 3525 - 16 K Byte dynamischer Schreib-Lese-Speicher

OPS K 3521 - 4 K Byte statischer Schreib-Lese-Speicher CMOS

Auf ihnen sind die daisy-chain-Ketten bereits gebrückt. Sind mehrere periphere Schalt-kreise auf einer Steckeinheit, z. B. auf der ZRE-Steckeinheit der CTC- und der Betriebs-system-PIO, so wird die Priorität dieser Schaltkreise durch die interne Reihenschaltung der Interrupt-Enable-Ein-/Ausgänge festgelegt.

Bei der ZRE K 2526 hat der CTC eine höhere Priorität als der BS-PIO (siehe Abb. 1).

Abb. 1

6.6. Technische Beschreibung

6.6.1. Blockschaltbilder

13

6.2. Takterzeugung

Der Quarzgenerator Q 51/E2 schwingt mit einer Resonanzfrequenz von 9,832 MHz \pm 0,1 % (T1).

Abb. 4 Quarzgenerator

Der am A23/6 erzeugte Rechteckimpuls von 9,832 MHz wird durch die nachfolgenden FFs A15/05 und A15/09 zwei Mal untersetzt, so daß der Systemtakt T3 von 2,458 MHz erzeugt wird und den Systembus speist. Dieser Takt wird durch die beiden Transistorstufen V1 und V2 verstärkt und definiert den "high"-Pegel und eine geforderte Flankensteilheit von ≤ 30 ns.

Abb. 5 Takterzeugung

6.3. Ein- und Ausschaltung Lade-ROM

6.3.1. Allgemeines

Der Lade-ROM A26 ist ein 1 K-Speicherchip, in dem sich der 1. Teil des Startprogramms befindet. Er belegt die absoluten Adressen 0000 ... $03FF_{H^{\bullet}}$ Der 1. Teil des Startprogramms hat folgende Aufgaben:

- Löschen der ersten 2 K-RAM
- Rücksetzen Speicherschutz-FF und Austasten des Speichers
 - Abfrage: ROM- oder RAM-Variante?
 - bei RAM-Variante: Einlesen des Systemladers und Kontrolle
 - Adressen AAWA (Anfangsadresse-Anwender-RAM) und EBSA (Ende-Betriebssystem-RAM) eintragen
 - bei ROM-Variante: AGM abspeichern (Anfangsadresse-Grundmodul im EROM)

Der Lade-ROM wird nur beim Lesezyklus (\overline{RD} = 0) angesprochen, um auch während des Zustandes LD-ROM aktiv ein Beschreiben des Hintergrund RAM (Speicher außerhalb der ZRE) gleichen Adreßbereiches zu ermöglichen.

Die Schaltung "Ein- und Ausschaltung Lade-ROM" verhindert durch die Bildung $\overline{\text{MEMDI}} = 0$ im aktiven Zustand des LD-ROM ($\overline{\text{CS}} = 0$) das Lesen des Adreßbereiches 0000/... $03FF_H$ im Hintergrundspeicher.

6.3.2. Funktionsbeschreibung

Nach der Einschaltlöschung wird durch das Signal RESET = 0 die ZRE K 2526 auf einen definierten Anfangszustand gesetzt. Alle rücksetzbaren Bauelemente besitzen den Ausgang "low", der BS-PIO-Ausgang 3-state bzw. der Eingang A23/06 durch den Ziehwiderstand R3:4 "high"-Potential, d. h. LD-ROM zugeschaltet.

Der Programmcounter der ZVE1 A3 steht auf der Adresse 00, d. h. 1. Speicherplatz im Lade-ROM angesteuert.

Daten LD-ROM - interner Datenbus der ZRE

Da im Adresbereich des Lade-ROM die Adresseitungen AB11 ... AB15 = 0 sind und MEMDI = 1, decodiert der 1 aus 8-Decoder A 22 ein low am Ausgang A22/15. A21 bildet CS-ROM = 0 bei LD-ROM = 1 (vom BS-PIO). (Bei Speicheranforderung ist MREQ = 0, AB10 = 0, RD = 0). Über A28 geht CS-ROM = 0 in Selbsthaltung und über A10/06 und A5/08 wird MEMDI = 0 (externes Speichersperrsignal) und sperrt den Hintergrundspeicher 0. bis 63. K Byte RAM/ROM außerhalb der ZRE. Der 1. Teil des Startprogramms wird abgearbeitet.

Dieser Teil des Startprogramms wird beendet mit einem Sprung zum 2. Teil des Startprogramms (1. GM des Hintergrundspeichers). Damit werden die Adresseitungen AB10 ... AB13, AB15 = 1 und MEMDI = 1.

Im 2. Teil des Startprogramms wird der Lade-ROM abgeschaltet, d. h. LD-ROM = 0 durch das BS-PIO. Damit ist der Lade-ROM inaktiv und kann bei den Sprungadressen 0000 ... 03FF_H nicht angesprochen werden.

Der 2. Teil des Startprogramms hat u. a. die Aufgaben:

- Tabellen für Anfangsadressen laden
- Merkplätze und Stack, Tabellen, Anzeigefelder ect. im O. K (K1) festlegen und laden
- Aufruf der Betriebsbeginnroutinen
- INT-Vektor BS-PIO und CTC laden

- Chiptest mit Fehleranzeige
- Sprung in den Monitor (Funktionsauswahlprogramm)

. Abb. 6
Ein- und Ausschaltung des Lade-ROM

Soll während des Lesevorgangs des Lade-ROM in den gleichen Adreßbereich des Hinter-grundspeichers eine Information geschrieben werden, wird durch RD = 1 der A 21/15 = 1 und MEMDI = 1. Der Speicher wird freigegeben solange RD = 1 ist und kann beschrieben werden.

6.4. Rücksetzschaltung

Sind nach dem Betätigen der Netztaste alle erforderlichen Spannungen gemäß Ausstattungsvariante im Netzteil aufgebaut worden, wird durch die Ablaufsteuerung das Signal RESET (aktiv low) für 2 ms gebildet und setzt die ZVE zurück (entspricht einer Anfangslöschung).

Unter anderem erfolgen folgende Reaktionen in der ZVE:

- Rücksetzen des internen Interrupt-FFs
- Löschen des Befehlszählers im Programmcounter
- Löschen des Interrupt-Vektor-Registers I
- Löschen des Refresh-Adreß-Registers R
- Setzen INT-Mode O

6.5. WAIT-Einblendung für ZVE2

6.5.1. Allgemeines

Bei der derzeitigen Speicherkonzeption mit ROM-Bausteinen von 450 ns Zugriffszeit, ist ein WAIT-Takt im M1-Zyklus erforderlich. Das Signal WAIT wird im M1-Zyklus von den Speichersteckeinheiten in Abhängigkeit vom Signal MT gebildet.

Die 2. ZVE darf das M1-Signal nicht für den Systembus liefern, da sonst die Interruptprioritätenkette der Peripheriebausteine durcheinander käme. Würde die Umschaltung der ZVE1 und ZVE2 beispielsweise nach dem 1. Byte eines RETI-Befehls (Rücksprung vom Interrupt) durch BUSRQ vom Floppy erfolgen, so würde das nächstfolgende Signal M1 in dem Falle von der ZVE2 als 2. Byte des RETI erkannt werden.

WAIT-ZVE2 wird also nicht auf den Speichersteckeinheiten gebildet, sondern es erfolgt eine automatische WAIT-Einblendung für die M1-Zyklen der 2. ZVE. Werden schnellere Speicher verwendet, ist diese WAIT-Einblendung programmiert abschaltbar über den BS-PIO Tor B/3 (WAIT-ZVE2) auf der ZRE.

6.5.2. Funktionsbeschreibung

Uber den Betriebssystem-PIO A36/B3 erfolgt durch das Signal WAIT-ZVEZ = 0 über den A37/10 die Freigabe des FF A11 (Eingang O1) und das NAND A 5/O2 ist vorbereitet. Bei MT-ZVEZ inaktiv (high) wird das FF A11 über A10/O2 gesetzt. Am D-Eingang liegt low vom getriggert geschalteten Ausgang A11/O6.

Wird beim Befehlsaufruf MT = 0, wird der Eingang S des FF A11 freigegeben.

Mit der Vorderflanke des Taktes T2 wird low am D-Eingang durchgeschaltet. A11/06 = 1 setzt über A5/03 WAIT auf low. Die ZVE2 erkennt die WAIT-Anforderung und quittiert mit der Einblendung eines WAIT-Taktes, solange das Signal aktiv ist.

Mit der nächstfolgenden aufsteigenden Flanke des Systemtaktes wird "high" durchgeschaltet und A11/06 = 1, d. h. WAIT = 1. Die ZVE2 geht wieder aus dem WAIT-Zustand heraus.

Abb. 7
WAIT-Bildung

6.6. RDY-Bildung

6.6.1. Allgemeines

Das Signal RDY zeigt auf dem BUS an, daß der angesprochene Speicher oder das angesprochene E/A-Gerät am BUS vorhanden ist und für Lese- und Schreiboperationen (Datentransfer) zur Verfügung steht.

Es wird aus folgenden Bedingungen, die entsprechend der BUS-Richtlinie K 1520 vorgegeben sind, gebildet:

- durch Speicher:
 - RDY = "Adresse erkannt" + MEMDI + MREQ + RFSH
- durch E/A-Einheiten:
 - RDY = "Adresse erkannt" + IODI + IORQ + M1
- durch den INT liefernden Teilnehmer: RDY = IEI + IEO + IORQ + M1

Die Bildung vom Signal RDY erfolgt auf der ZRE selbst durch die Baugruppen

- Anfangslader (LD-ROM)
- CTC
- zentrale Baugruppensteuerung (BS-PIO)

auch bei INT-Quittungszyklen

Das Signal RDY wird entsprechend der Systembusrichtlinie K 1520 durch Open-Kollektor-Stufen (D 103) gebildet. Ausgewertet wird es nur im Konfigurationstest des Startprogramms in Verbindung mit BS-PIO A36, WR (A5) und RDY (A6).

Von den 16 Adreßleitungen werden die niederen 8 Bit \overline{ABO} ... $\overline{AB7}$ zur Adressierung der E/A-Tore benutzt (A29/15). Die ZRE internen E/A-Tore haben die Codierung OC ... OF_H, d. h. für diese Torbelegung ist der Ausgang 15 des 1 aus 8-Decoders A29 = O ______ A23/08 = 1. Ist IORQ aktiv ($\overline{IORQ} = 0$), wird $\overline{CS-E/A}$ gebildet.

Abb. 8
Bildung des Signals RDY

6.6.2. RDY-Bildung bei Ansteuerung des LD-ROM (A26)

Bei Freigabe des LD-ROM wird durch das Signal LD-ROM = 1 und MEMDI noch high (vor Ansprechen des LD-ROM) bei einem Speicherlesezyklus (RD und MREQ = 0) das Signal CS-ROM = 0 ("Adresse erkannt") gebildet.

Über die interne Treibersteuerung (siehe Punkt 6.8.2.) wird - nur bei einem Lesezyklus,

bei dem \overline{RD} = 0 ist - das Signal \overline{RQ} RDY mit low aktiv (A38/6, A31/8, A32/8). Durch das NAND A14/6 erfolgt die Verknüpfung mit \overline{CS} - $\overline{E/A}$ und die Bildung von \overline{RDY} = 0 - aktiv (A6/6).

6.6.3. RDY-Bildung durch die zentrale Baugruppensteuerung

Bei E/A-Zyklen vor ZRE internen E/A-Befehlen wird mit dem Anlegen der entsprechenden Adressen am 1 aus 8-Decoder A29/15 (z. Zt. gebrückt) sofort CS-E/A = 0 gebildet.

Mit TORG = 0 erfolgt die Bildung von RDY = 0 über das NAND A6/6 für alle auf der ZRE befindlichen Peripheriebaugruppen, wie CTC, PIO.

6.6.4. RDY-Bildung bei Interruptquittungszyklen

Das Signal RDY = 0 wird auch gebildet, wenn ein Interruptquittungszyklus des CTC oder der zentralen Baugruppensteuerung auftritt. Hier macht es sich erforderlich, die Signale IEI, IEO1 und IEI1 mit auszuwerten, da der CTC beispielsweise am Ende der Systembus-Prioritätenkette und die zentrale Baugruppensteuerung am Ende der Koppelbus-Prioritätenkette liegt. Dazu wird die Treibersteuerlogik A31, A32, A38, A17 mitbenutzt, indem das Signal RQ RDY über A14/6 und A6/6 RDY aktiviert wird.

Abb. 9 logische Struktur des programmierbaren DMA-Kanals der ZRE K 1526

6.7. Programmierbarer DMA-Kanal

6.7.1. Allgemeines

Die ZRE K 2526 vefügt über einen programmierbaren DMA-Kanal, der die Abarbeitung von Befehlsfolgen vorzugsweise zur schnellen Datenübertragung (z. B. durch Floppy-Disk) gewährleistet. Die 2. ZVE (A8) arbeitet komplmentär zur 1. ZVE (A3). Sie sind mit dem Steuersignal BUSRQ umschaltbar, was bei Busanforderung durch das entsprechende externe Gerät (Floppy-Disk) auf low geschaltet wird.

Die ZVE1 quittiert diese Anforderung mit dem Quittungssignal BUSAK = low und wird inaktiv; die 2. ZVE (A8) wird aktiv geschaltet durch das Verknüpfen des Signals BUSRQ
und BAT. Die Signale BAI/BAO bilden am Bus nur die prioritätsbestimmende Kette zur
Durchschaltung des Signals BUSAK. BAT ist das Eingangssignal (BUSAK input) und BAO
das entsprechende Ausgangssignal (BUSAK output).

6.7.2. Arbeitsweise der ZVE-Umschaltung

Beim Einschalten der Anlage wird für 2 ms vom Netzteil das Signal RESET = low gebildet, das über den Treiber A18 am Rücksetzeingang des FF A11/13 liegt, das FF rücksetzt (Ausgang A11/09 liegt am Eingang RESET der ZVE2 und setzt diese in den Grundzustand zurück). Gleichzeitig wird auch die ZVE1 zurückgesetzt.

- ZVE1 aktiv, ZVE2 inaktiv

Durch das Rücksetzen des FF A11 liegt am Eingang A14/10 low-Potential. A14/08 = 1 und verknüpft mit BUSRQ = 1 (keine Busanforderung) wird BUSRQ-ZVET = 1, die ZVE1 ist aktiv. A3/23 ist als Quittungssignal ebenfalls low.

Am Exklusiv OR-Gatter A4/08 werden die Signale BAI und BAO ausgewertet. Liegt keine externe Busanforderung auf der BAI/BAO-Kette vor, ist A4/08 = low und als CS der Daten-bustreiber A6/A7 und des Steuerbustreibers A1 wird dieser aktiviert. Die Richtungssteuerung erfolgt durch das Steuersignal RD und MT (A14/11).

Das Exklusiv OR-Gatter A4/06 wertet die Signale BUSRQ und BAI aus. BUSRQ-ZVE2 am Ausgang des A4/06 wird low, d. h. ZVE2 erkennt eine Busanforderung durch die ZVE1 und schaltet seinen Adreß- und Datenbus und die Steuerbussignale in den hochohmigen Zustand.

- ZVE1 inaktiv, ZVE2 aktiv

Erfolgt beispielsweise vom Floppy-Disk die Busanforderung durch das Signal BUSRQ = 0 auf den Eingang 09 des NAND A9, so wird BUSRQ-ZVET = 0. Die ZVE1 quittiert diese Anforderung mit dem Steuersignal BUSAK-ZVET = 0 nach Beenden des Maschinenzyklus. BAO und BAI sind ebenfalls low und über Daten-, Adreß- und Steuerbustreiber (A1, A12, A13,

A6, A7) werden freigegeben (A4/08). Sie sind aber zunächst noch hochohmig, da die 1. ZVE schon abgeschaltet und die 2. ZVE noch nicht zugeschaltet hat.

Mit BUSRQ-ZVE2 = 1 (A4/06) wird die 2. ZVE freigegeben und mit dem letzten Takt zugeschaltet. Gleichzeitig wird das RESET-FF (A4/09) auf low gehalten, durch low auf den Setzeingang.

Ein Rücksezten der 2. ZVE während ihres aktiven Zustandes ist nicht möglich und nicht erforderlich, da sich das BUSRQ = 0 im Fehlerfall wieder abschaltet (siehe FD-Adapter). Die 2. ZVE ist aktiv, solange BUSRQ = low bleibt.

Die Anschlußsteuerung des Floppy-Disk schaltet BUSRQ = 1, wenn der Datentransfer beendet ist. Über A4/06 wird BUSRQ-ZVEZ = 0. Erst wenn die 2. ZVE die Abschaltanforderung mit BUSAK-ZVEZ = 0 quittiert, wird die 1. ZVE über A9/08 wieder freigegeben. Nachfolgend auch die entsprechenden Treiber.

Da die Eingänge NMI und INT der 2. ZVE fest auf "high" liegen, ist die 2. ZVE nicht interruptfähig.

- ZVE1 inaktiv, ZVE2 inaktiv

Erfolgt die Busanforderung durch ein externes Gerät (z. B. BUSSIAN), wird BUSRQ = 0. BUSRQ-ZVE1 = 0 fordert Busfreigabe der ZVE1 (A9/O8). Die ZVE1 schaltet sich nach dem letzten Takt des laufenden Maschinenzyklus ab und aktiviert das Busfreigabesignal BUSAK-ZVE1 = 0. Da die BAI/BAO-Kette aber in diesem Fall durch ein externes Gerät gesperrt wird, liegt an den Eingängen A4/O1 und A4/13 BAO = 0 und an A4/O9 und A4/10 BAI = 0. CS der Datentreiber A6/A7 und des Steuerbustreibers A1 ist high, d. h. die Treiber werden hochohmig und geben den entsprechenden BUS frei. Entsprechend wird CS2 der Adreßbustreiber low. A12 und A13 sind ebenfalls hochohmig.

Die 2. ZVE wird über das Exklusiv OR A4/06 durch \overline{BAI} = 1 und \overline{BUSRQ} = 0 inaktiv geschaltet (\overline{BUSRQ} -ZVE2 = 0). Eine externe Benutzung des Systembusses kann erfolgen.

6.8. Bustreiber und Bustreibersteuerung für den vollständigen ZRE- und Universalbus

6.8.1. Bussystem

16 Adreßleitungen bilden den Systembus (SA-Bus), der von den Adreßbustreibern A12/13 getrieben wird. Es werden 2 SE 8212 verwendet (unidirektional).

Der Systemdatenbus (SD-Bus) ist bidirektional und wird über 2 4-Bit-bidirektionale Bustreiber SE 8216.getrieben, die in Abhängigkeit der Treibersteuerung der ZRE richtungsgesteuert werden.

Die Peripheriebausteine auf der ZRE-STE sind durch einen internen Datenbustreiber (ID-Bus) - 2 SE 8216 A24/25 - vom Datentreiber A6/7 entkoppelt. Sie belasten damit den Datenbus nur mit einer Lasteinheit. An diesem Treiber sind angeschlossen:

- 1 K Byte LD-ROM
- CTC
- BS-PIO

Der Treiber für den Universalbus (U-Bus), ebenfalls 2 SE 8216 A40/41, arbeiten aus Lastgründen auch auf dem internen Datenbus. Die Treiber sind bidirektional steuerbar. Die Ausgabesteuersignale der ZVE1 und ZVE2 (MREQ, TORQ, RD, WR) werden über 4 Zwei-Eingang-AND A2 und dem Bustreiber A1 SE 8212 getrieben.

Die Ausgänge dieser Treiber sind nachfolgend auf dem Systembus zusammengeführt.

Durch den SE 8212 A1 werden auch die Signale

RESH ZVE1 . RESH ZVE2

M1 ZVE1

HALT ZVE1 verstärkt.

Die Signale RESET und BUSRQ sind über den ständig aktivierten Treiber A18 angeschlossen. Zusätzlich wird über diesen Treiber noch der Systemtakt und der Ausgang des Speicherschutz-RAM geführt. (Siehe Blockschaltbild Abb. 3 und Punkt 4.).

6.8.2. Treibersteuerung

Die Treibersteuerung muß in Abhängigkeit vom Arbeitszustand des Systems die Richtung und die Zu- bzw. Abschaltung der Bustreiber steuern. Folgende Bedingungen sind möglich:

- ADT (Adresdatentreiber A12/13)

Im normalen Betrieb sind die Treiber auf Ausgabe geschaltet (DI DO). Sie schalten ihre Ausgänge hochohmig, wenn der Adreßbus von einem externen Baustein oder Gerät benötigt wird (z. B. DMA-Anforderung durch ein Bus-Simulations-Gerät). Die Anforderung erfolgt mit dem Signal BUSRQ = low. Die ZVE1 bestätigt nachfolgend die Anforderung mit dem Signal BUSAK (A3), das auf low geht (2 ZVE1 hochohmig).

Dieses Signal schaltet unter der Voraussetzung, daß die BAT-BAO-Kette nicht bis zur ZRE durchgeschaltet ist (Anmeldung einer Busanforderung durch ein externes Gerät), den Adreßbustreiber in den hochohmigen Zustand (A4/08 — A10/08).

- DT (Datentreiber A6/7)

Sie sind bidirektional. Je nach Art der Operation werden sie richtungsgesteuert in Abhängigkeit des Signals $\overline{\text{RD}}$ (A14/12) und $\overline{\text{M1}}$ (A14/13).

RD = low → Lesen zur ZVE RD = high → Schreiben von ZVE

MT = low --- Lesen des INT-Vektors im Interruptquittungszyklus

 $TS2 = \overline{M1} \cdot \overline{RD}$

Gleichermaßen werden auch die Adreßbustreiber aktiviert.

TS3 = TS1

- SST 1: 2 (Steuersignaltreiber A1)

Der Steuersignaltreiber wird entsprechend den Datentreibern zu- bzw. abgeschaltet. Es entspricht TS6 = TS3.

Die Steuersignale WR, RD, TORQ und MREQ der 1. und 2. ZVE werden über das AND A2 (T108) jeweils verknüpft und über den Steuerbustreiber A1 auf den Systembus geführt. Über diesen Treiber sind auch die Steuersignale M1-ZVE1, HALT und RFSH zum Steuerbus geschaltet. Das Aktivieren dieses Treibers erfolgt über das Auswahlsignal CS1 (A1/O1).

- DTI (Datentreiber intern A24/25)

Der Datentreiber für den internen Datenbus wird nur in seiner Richtung umgeschaltet, d.h. \overline{CS} = low.

Seine Arbeitsweise ergibt sich aus folgenden Bedingungen:

- Ausgabe auf Tastatur (out)
 Lampenansteuerung out 05_H
 - Ansteuerung Fehlerlampe out 03H
- Eingabe von Tastatur

 Abfrage Tastencode inp 06_H

 Abfrage Schlüsselschalter inp 01_H
- Lesen LD-ROM
- INT-Quittungszyklus des CTC
- INT-Quittungszyklus des PIO
- externe Speicher- oder E/A-Zyklen der 1. Prioritätenkette
- externe Speicher- oder E/A-Zyklen der 2. Prioritätenkette

TS7: Richtungsumschaltung interner Datenbustreiber TS9: Richtungsumschaltung Universalbus-Datentreiber

Abb. 10 Logik der internen Treibersteurung

- DTU (Datentreiber Universalbus A40/41)

Die Datentreiber für den Universalbus UBO ... UB7 werden durch die Adressen OO_H bis OO_H , die vom universellen E/A-Tor (siehe auch Punkt 6.9.5.2.) aus den auf den Adreßleitungen bereitgestellten Toradressen decodiert werden, ausgewählt ($\overline{CS} = low$). Das erfolgt über die internen Signale \overline{CSTI} und \overline{CSTI} (A28).

$$\overline{\text{CS}}_{\text{DTU}}$$
 = TS8 = $\overline{\text{CST1}}$. $\overline{\text{CST2}}$

Die Richtungsumschaltung wird durch die interne Bustreiberumschaltung gesteuert. Sie ist identisch mit der des internen Datenbustreibers.

$TS7 = \overline{TS9}$

Die Auswahlsignale für den Uni-Bus UCS1 ... UCS5 werden direkt über den 1 aus 8-Decoder A27 getrieben und auf den Steckverbinder X5 der ZRE geführt.

- SST 3 (Steuersignaltreiber A18)

Der Signaltreiber A18 ist als Eingangsverstärker für die Signale BUSRQ und RESET geschaltet. Die Eingänge liegen permanent auf low.

- BST (Bussignaltreiber)

Abb. 11
Blockschaltbild Treibersteuerung (komplett)

6.9. ZRE interne E/A-Tore

6.9.1. Allgemeines

Die unteren 8 Bit des Adresbusses ABO ... AB7 sind mit TORQ als E/A-Geräteadresse gültig. Bei den ZRE internen E/A-Adressen ist die Gruppenadresse AB4 ... AB7 low. Die Adresbits ABO und AB1 werden für die dierekte Ansteuerung der peripheren Schaltkreise verwendet, z. B. beim BS-PIO A36 für die Portauswahl ABO und AB1 für die C/D-Auswahl; beim CTC A35 zur Auswahl der Kanäle O bis 3 (siehe Adressenbelegung für interne E/A-Tore).

Sie besitzen die gleichen Adreßwahlgruppen wie die 4 Auswahlleitungen UCS1 ... UCS4. (siehe universelles E/A-Tor).

6.9.2. Adressenbelegung für interne E/A-Tore der ZRE K 2526

Adressen AB3/2/1/0	Codierung	Bedeutung	
0000	oo _H	CST1	INT-BS
0001	01 _H	USTT	UCS2
0010	02 _H	CST1	RES-SPA
0011	03 _H	CST1	UCS4
0100	04 _H	CST2	RES-ZVE2
0101	05 _H	CST2	UCS3
0110	06 _H	CST2	บตรา
0111	07 _H	CST2	•
1000	08 _H	CS-PIO-BS	
1001	09 _H	CS-PIO-BS	
1010	OA _H	CS-PIO-BS	
1011	ов _н	CS-PIO-BS	
1100	oc ^H	CS-CTC	Kanal O
1101	od ^H	CS-CTC	Kanal 1
1110	OE ^H	CS-CTC	Kanal 2
1111	of _H	CS-CTC	Kanal 3

Die Adresgruppe AB4 ... BB7 = O spezifiziert die Adressierung eines ZRE internen Tores. Diese 4 Adresleitungen werden am 1 aus 8-Decoder A29 decodiert und bilden bei obiger Codierung am Ausgang A29/15 = low. Dadurch werden Auswahldecoder A20 und A27 freigegeben (Eingänge ET und EZ).

ABO ... AB3 - Subadresse
AB4 ... AB7 - Gruppenadresse

Abb. 12
ZRE internes E/A-Tor

6.9.3. Ansteuerung des BS-PIO A36

Die Auswahl des Betriebssystem-PIO erfolgt mit dem Signal CS-PIO (aktiv low). Dieses Signal wird lt. Torbelegung aus den Adressen AB2 und AB3 am 1 aus 8-Decoder A20 (Eingang O1 und O2) gebildet und mit dem Systemsignal MREQ = 1 (inaktiver Zustand) bereitgestellt. Durch die Adressen O8_H, O9_H, OA_H und OB_H (unteren 8 Bits) wird bei Decodierung eines ZRE internen E/A-Befehls, d. h. CS-E/A = 0 durch A29, dieses Signal CS-PIO = 0 am Ausgang A20/13 aktiviert und der BS-PIO angesteuert.

6.9.4. Ansteuerung des Zähler/Zeitgebers A35

Die Auswahl des CTC A35 erfolgt durch das Signal CS-CTC (aktiv low). Gebildet wird es aus den Toradressen

der unteren 8 Adreßleitungen des Adreßbusses. Es ist zu beachten, daß CS-CTC genau wie CS-PIO mit dem Systemsignal MREQ = 1 bereitgestellt wird, da das Signal zeitlich vor

TORQ = 0 am Baustein anliegen muß.

6.9.5. Universelles Ein-/Ausgabe-Tor

6.9.5.1. Struktur und Anschlußbedingungen

Das universelle E/A-Tor besteht aus den bidirektionalen Treibern für die 8 Datenleitungen des Systembusses und 4 Auswahlleitungen zur Übergabe oder Übernahme der Dateninformation.

Abb. 13 logische Struktur des universellen E/A-Tores

6.9.5.2. Funktion

Das universelle E/A-Tor ist komplett an den Steckverbinder X5 der ZRE geführt. Über diesen erfolgt die Ankopplung der Tastatur.

Folgende Leitungen gehen auf diesen Steckverbinder:

UBO ... UB7 - 8 Datenleitungen

UCS1 ... UCS4 - 4 Auswahlleitungen

UINT - universelle Interruptleitung

SA - Sondersignalleitung

Stromversorgungsleitungen für 5 P, 5 N, 12 P, 5 PH und 00

Die 8 Datenleitungen UBO ... UB7 werden über die Treiber A40/41 geführt. Sie sind bidirektional betreibbar und werden durch das Signal DIEN richtungsgesteuert. CS wird gebildet aus den Signalen CSTI und CSTZ (A28), entsprechend der auf dem Adreßbus bereitgestellten Toradresse. Die Decodierung erfolgt am A20.

Es gilt für das universelle E/A-Tor die Adressenbelegung:

ABO AB7	A3 A0	A22	A29	Bedeutung
06 _H 01 _H	0110 0001	CST2 CST1	TEOU SEOU	Abfrage Tastencode — input Abfrage nach einer gültigen Tasteninforma-
о5 _Н	0101 0011	CST2 CST1	UCS3	input Lampenansteuerung (Selektoren) — output Ansteuerung Fehlerlampe bzw. der Anzeige für INS-MODE — output

Die Adreßgruppe AB4 ... AB7 ist bei ZRE internen E/A-Befehlen low. Die 4 Auswahlleitungen $\overline{UCS1}$... $\overline{UCS4}$ werden also aus den unteren 8 Bit des Adreßbusses gebildet und mit dem Systembussignal \overline{IORQ} bereitgestellt. Die Daten müssen 800 ns nach $\overline{UCS_n}$ = 0 am Peripheriesteckverbinder bereitstehen bzw. 850 ns danach abgeholt sein. $\overline{UCS1}$ bis $\overline{UCS4}$ sind aktiv low, MOS/TTL-kompatibel (max. 10 mA).

CSTI und CST2 werden am 1 aus 8-Decoder A20 mit MREQ freigegeben, da über diesen Baustein auch die Toradressen CS-PIO und CS-CTC aktiviert werden können. Diese internen E/A-Tore müssen angesteuert werden, bevor TORQ z. B. am BS-PIO anliegt. Die 2 Signale UINT und SA sind vom Steckverbinder X5 auf den Steckverbinder X2 durchgezogen. UINT kann im System als Unterbrechungsleitung der angeschlossenen Peripherie weiterverarbeitet werden.

SA auf dem Koppelbus wird als Ein- bzw. Ausschaltsignal des Rechners benutzt.

St	ec	ker	X5:
ひし	ec	Ker	A):

	A	В
1	00	00
2	5 PH	5 N
3	UB1	UBO
4	UB3	UB2
5	UB 5	UB4
6	UB7	UB6
7	5 P	UINT
8	ប្រភេទ	SA
9	UCS2	UCS1
10	5 P	ប្រជន្ធ
11	5 P	5 P
12	12 P	5 P
13	00	5 P

6.10. Zontrale Baugruppensteuerung

6.10.1. Struktur

Die zentrale Baugruppensteuerung erfolgt mit dem Schaltkreis M 301, einem Parallel-I/O-Interfacebaustein (PIO), der den Datenverkehr zwischen dem Mikroprozessor und der Umwelt (* "Peripherie") gewährleistet. In der K 2526/27 ist es der Betriebssystem-PIO(BS-PIO). In der Prioritätenkette des Rechnersystems ist er an niedrigster Stelle des Koppelbusses angeordnet (siehe Abb. 1). Er erfüllt Steuer- und Überwachungsfunktionen der ZRE.

			_			
	1	AO M		<u>Einzelbefehlsabarbeitung</u>	TO	
		A1 S	ÜE	Spannungsüberwachung	·IS	~~~
	PIO	A2 N	MI	Netzausfall/E/A-Schutz		C22
Daten⇒	17 201	A3 S	PS-Ind.	Speicherschutzindikator		A23
	M 301	A4 E	BF	Einzelbefehlsabarbeitung	IS	
G 1	A36	A5 W.	R	Speicherausstattung	IS	
Steuer- ⇒		A6 R	DY	Peripherie und Speicher	X1,	A08
signale 🗡	J	A7 M	EMDI1/2	Speicherbereichsumschaltung	Хl,	025
'		70 7	T TAIL		IS	
	i		D-ROM	LD-ROM Abschaltung	·IS	
	ľ		NT-BS	Aufruf Betriebssystemebene		
		B2 S	PS-ESR	Speicherschutz-Einschreiben	IS	
		B3 W.	AIT-ZVE2	WAIT-Einblendung ZVE2	·IS	
		B4 S.	Ā	Sonderausgang Netz aus	·IS	
		B5)	X5,	B08
	i	В6		Gerätekonfiguration		
,		B7		40-400001112841442511		
	i		-2 4 4	,		
'		W6:2	1 2 3	IS - ZRE internes Signal		
			111			
				•		

6.10.2. Funktion

Tor A und B des BS-PIO arbeiten im Bitmode. Dabei wird der Interruptvektor vom Tor A für die Einzelbefehlsabarbeitung von Anwenderbefehlen benutzt und der von Tor B zum Aufruf der Betriebssystemebene.

Wird durch den Adresdecoder (A29) bei entsprechender Adresse ein interner E/A-Befehl decodiert (CS-E/A), aktiviert nachfolgend über den 1 aus 8-Decoder A27 der out 00 (INT-BS) den Eingang B1 des PIO und löst einen Interrupt aus.

AO - M1 (Eingang - aktiv low):

MT = 0 löst bei gewünschter Einzelbefehlsabarbeitung einen Interrupt aus. Der Interruptvektor Tor A dient zur Adressierung der vom Anwender durch die Makrobefehle (Ein-/Ausgabebefehle) bestimmbare Einzelbefehlsabarbeitungsroutinen. Wird keine Einzelbefehlsabarbeitung gewünscht, muß dieser PIO-Eingang maskiert werden, so daß er keinen Interrupt auslösen kann.

A1 - SUE (Eingang - aktiv low):

Das Signal SUE wird beim Unterschreiten einer bestimmten Ladespannung der Batterie bei CMOS-Speichersteckeinheiten verwendet. Es löst einen Interrupt aus. Da derselbe Interruptvektor bei der Einzelbefehlsabarbeitung verwendet wird, muß als erstes in der Unterbrechungsroutine eine Abfrage von AO und A1 erfolgen. Die Interruptbedingung an AO ist flüchtig, die an A1 permanent.

A2 - NMI (Eingang - aktiv low):

Durch eine Sonderbedingung (z. B. Netzeinbruch) oder durch einen unerlaubten E/A-Befehl (siehe Punkt 6.11.) wird die ZVE durch einen nichtmaskierten Interrupt unterbrochen. Der Eingang A2 ermöglicht ein Unterscheiden dieser beiden Fälle und wird in der NMI-Routine abgefragt.

A2 = low - Sonderbedingung (permanent)
A2 = high - unerlaubter E/A-Befehl (flüchtig)

A3 - SPS-Indikator (Eingang - aktiv low):

Bei unerlaubtem Zugriff auf einen geschützten Speicherbereich (siehe Speicherschutz Punkt 6.11.) löst dieser Eingang eine Unterbrechung am Tor A aus. Der Interruptvektor ist der gleiche wie bei der Erfüllung der Interruptbedingungen für AO und A1, d. h. vor Abarbeitung der adressierten Interruptroutine muß die Leitung A3 abgefragt werden. Wird dieser Eingang nicht benötigt, muß er bei der Programmierung maskiert werden.

A4 - EBF (Eingang - aktiv low):

Nach jedem Befehl niederer Ebene (z. B. Anwenderebene) als der des Tores A des BS-PIO kann eine Unterbrechung ausgelöst werden.

Bei entsprechender Programmierung des PIO löst das Signal M1 (A36/15) und EBF (A36/10) einen Interrupt aus. Anschließend wird zur Routine der Einzelbefehls-abarbeitung gesprungen und diese abgearbeitet.

A5 - WR (Eingang - aktiv low)

A6 - RDY (Eingang - aktiv low):

Diese 2 Eingänge können zum Speicher- und Peripherietest während des Startpro-

gramms verwendet werden. Bei angesprochenem Speicher oder Peripheriebaustein (CS = aktiv) wird von der betreffenden Steckeinheit das Systemsignal RDY gebildet, wenn die Tor-Adressen einen Anschluß adressiert, der vorhanden ist. In der Anfangsroutine - nach dem Einschalten des Gerätes - wird der BS-PIO außerhalb seiner normalen Arbeitsweise programmiert, d. h.

Tor A --- geladen mit dem Interruptvektor, der die Testroutine adressiert.

Bitmode

Das Tor A ist so programmiert, daß für den

Speichertest z. B. $\overline{WR} = 0$

 $\overline{RDY} = 0$

eine Unterbrechung auslösen kann.

Bei diesem Test müssen die anderen Eingänge maskiert sein.

Tor B --- bleibt im Three-State-Zustand

In der normalen Betriebsweise der ZRE müssen diese Eingänge maskiert sein.

A7 - MEMDI1/2 (Ausgang)

Der Ausgang dient zur Speicherbereichsumschaltung durch die Systemsignale MEMDI1 und MEMDI2. Dabei gilt:

 $A7 = 0 \longrightarrow \overline{MEMDI1} = 0 (aktiv)$

MEMDI2 = 1 (inaktiv)

 $A7 = 1 \longrightarrow MEMDIT = 1 (inaktiv)$

MEMDIZ = 0 (aktiv) unter der Bedingung, daß MEMDI = 1 ist

(A38/3/11, A39/3/11)

Bei MEMDI1 = 0 wird der Speicherbereich 0. bis 63. K, bei MEMDI2 = 0 wird der Adresbereich 64. bis 127. K Byte adressiert.

Ist MEMOI = 0, sind beide Speicherbereiche gesperrt.

BO - LD-ROM (Ausgang - aktiv low):

Mit diesem Signal kann der Lade-ROM (siehe Punkt 6.3.) nach dem 1. Teil des Anfangsladeprogramms programmiert abgeschaltet werden. Damit ist der Adreßbereich 0. K für den Hintergrundspeicher frei (RAM).

Im Einschaltmoment ist der Ausgang hochohmig, bzw. besitzt durch den Ziehwiderstand R3:4 das Potential high. Der Lade-ROM ist in diesem Zustand zugeschaltet.

B1 - INT-ES (Eingang - aktiv low):

Der Eingang B1 löst am Tor B die Unterbrechung zum Sprung in die Betriebssystemebene aus. Die Leitung wird durch einen E/A-Befehl aus der Makroebene durch den out OO_H aktiviert. Dafür wird der Interruptvektor des Tores B benutzt.

B2 - SPS-ESR (Ausgang - aktiv low):

Das Signal ist im Einschaltmoment logisch high (R3/5) und gibt den Speicherschutz-RAM A19 zum Beschreiben frei. Um die Speicher- und E/A-Schutzfunktion freizugeben, muß dieser Ausgang auf low programmiert werden.

B3 - WAIT-ZVE2 (Ausgang - aktiv high):

Bei Verwendung von Speicherbausteinen mit einer Zugriffszeit ≥ 450 ns, ist dieses Signal low (siehe WAIT-Einblendung ZVE2, Punkt 6.5.) ehe ein Zugriff auf diese Speicher erfolgt.

B4 - \overline{SA} (Ausgang - aktiv low):

Sonderausgang zum programmierten Ausschalten der Anlage. Mehrmalige Übergänge auf low-Potential in einem bestimmten Zeitintervall, führen über die Open-Kollektor-Stufe des Netzteils zum "Netz aus".

B5, B6, B7 - (Eingänge)

Über die Brücken W6:2 1 bis 3 kann eine bestimmte Gerätekonfiguration codiert werden (z. B. Ausstattungsvariante der Peripherie). Über die 3 PIO-Eingänge kann diese Konfiguration abgefragt werden.

Tor B	keine BAB	BAB1	BAB2	BAB3
B5	_	х	•	x
В6	-	-	х .	x
В7	_	-	_	_

x 2 "Brücke"

6.11. Speicher- und E/A-Schutz

6.11.1. Schutzaufgabe

Die Schutzschaltung hat zwei wesentliche Aufgaben. Einmal sollen unbefugte Schreiboperationen in geschützte Speicherbereiche (Betriebssystem im RAM) verhindert werden, zum anderen sollen unerlaubte E/A-Operationen, die nicht unter Kontrolle des Betriebssystems verlaufen (E/A-Steuerung, RST1-Routine) abgebrochen werden.

Um die Befehle auf ihre Zugehörigkeit zum BS oder Anwender testen zu können, werden sie in 2 Bereiche eingeteilt:

Bereich 1 2 Betriebssystem

Bereich 2 = Anwenderbereich

Diese Zugehörigkeit eines Befehls zum Bereich 1 oder 2 wird in dem 1 K RAM (A19) programmiert. Bei einer Speicherkapazität von max. 64 K kann mit einem Bit des RAM-Speichers ein Bereich von 64 Bytes im Hintergrundspeicher geschützt werden.

Der Adreßbereich von 0. bis 3. K kann also in 64 Byte Schritten für die Schutzfunktion

aufgeteilt werden.

"1" & geschützter Bereich (BS)

"O" 2 ungeschützter Bereich (Anwender)

Bei einem unberechtigten Schreibzyklus auf den Speicher wird er durch das Signal MEMDI = O abgeschaltet. Bei einer unerlaubten E/A-Operation wird ein nichtmaskierter Interrupt (NMI) gebildet. Er wird erkannt durch die zentrale Baugruppensteuerung. Durch sie ist auch eine Unterscheidung zwischen einem permanent anliegenden NMI und dem flüchtigen NMI des unerlaubten E/A-Befehls möglich.

Abb. 15 logische Struktur des Speicher- und E/A-Schutzes

6.11.2. Beschreiben des RAM

Das Beschreiben des RAM kann nur aus dem Bereich 1 erfolgen. Durch Tor B/3 des BS-PIO (A36) wird das Beschreiben des RAM freigegeben (A33/13).

Zu Betriebsbeginn oder nach einem RESET-Signal ist die Schutzschaltung automatisch in Stellung "Schreiben". Die Schutzfunktionen sind unwirksam. Dadurch wird ein Speichersperren des Anfangladers (Lade-ROM) bei noch undefinierbarem RAM-Inhalt verhindert. Über ABO des Adreßbusses erfolgt die Programmierung des Speicherschutz-RAM. CS ist low. Zeitlich geschieht das im 2. Teil des Startprogramms und wird durch den BS-PIO A36 wieder abgeschaltet.

6.11.3. Speicherschutz

Befehle aus dem Bereich 1 (Betriebssystemstatus) können mit ihrem Operandenteil den Bereich 2 und 1 adressieren, Befehle aus dem Bereich 2 können nur im Bereich 2 arbeiten. (Gilt nur für Befehle mit Speicherzugriff nicht für Sprungbefehle).

Im Befehlsaufrufzyklus tritt noch keine Schutzfunktion auf. Mit der Auswertung des Systemsignals MT wird über die Zugehörigkeit für jeden Befehlsaufruf zum Bereich 1 oder Bereich 2 gespeichert. Es erfolgt noch keine Reaktion (über A30/8 gesperrt durch MT oder RFSH).

Uber A30/8 wird für Refresh-Zugriffe (RFSH = 0) und DMA-Betrieb (BAO) die Schutzschaltung außer Betrieb gesetzt (A28/11 -- A39/8 -- MEMDI = 1). Mit der letzten abfallenden Flanke des Systemtaktes während MT = aktiv ist (A30/6), wird das FF "Befehlsaufruf" auf seinen Wert entsprechend dem am Eingang A34/2 liegenden Wert gesetzt (2 SSA).

Ist MT aktiv, kann MEMDI nicht low werden (A39/9 = 0). Ebenfalls nicht bei einem folgenden Speicher-Lesezyklus (RD aktiv) durch A28/11 = 0 —— A39/8 = 1 —— MEMDI, unabhängig vom Schutzbereich.

Folgt ein Speicherschreibzyklus, wird MEMDI aktiviert in Abhängigkeit vom Inhalt des FF "Befehlsaufruf" A34/6 und vom Ausgang A19/13 des RAM und bei unerlaubtem Speicherzugriff zum Sperren des Speichers benutzt. Das Signal MEMDI muß eher am Speicher wirksam sein als CS.

Beispiel: - 1. Befehlsaufruf Bereich 1 SSA = 1

- 2. Speicherschreibzyklus Bereich 2 SSA = 0 --- MEMDI = inaktiv
- 1. Befehlsaufruf Bereich 2 SSA = 0
 - 2. Speicherschreibzyklus Bereich 1 SSA = 1 -- MEMDI = aktiv

Um einen unerlaubten Speicherschreibzyklus zu erkennen, wird im A33/3 der Zustand des FF "Befehlsaufruf" A34/6 über A30/8 — A23/12 — A28/11 = A33/1 mit dem Signal SSA verknüpft. Dieser Zustand wird mit der Rückflanke von MREQ in das FF "SPS-Indikator" A34/3 eingeschrieben und löst über das Signal SPS-Ind am Tor A des BS-PIO (A3) einen Interrupt aus (bei entsprechender Frogrammierung des PIO). Der nachfolgende M1-Zyklus wird noch ausgeführt (MEMDI = O wird aufgehoben).

Die Interruptanforderung wird im nachstfolgenden Zyklus erkannt und eine Fehlerbehandlungsroutine ausgeführt als Folge des verbotenen Speicherzugriffs. Der Ausgang A34/9 wird rückgekoppelt auf A33/9, um zu verhindern, daß ein nachfolgender Zyklus erneut Interrupt auslöst (A33 gesperrt).

Das Merkmal für unerlaubten Speicherzugriff (A34/9) wird mit $\overline{\text{RES-SPA}}$ zurückgesetzt. Dieses Signal wird vom BS-PIO gebildet und entspricht einem E/A-Befehl mit der Adresse 2_{H} und der entsprechenden Gruppenadresse (ZRE vorzugsweise 02_{H}).

Bei unerlaubtem E/A-Befehl ist die Funktion der Schaltung analog, nur daß mit dem Signal IORQ über A39/6 ein nichtmaskierter Interrupt (NMI) ausgelöst wird. Dabei bildet sich MEMDI = 0. Die Codierung der Adreßleitungen ABO ... AB7 entsprechen der Toradressen, AB8 ... AB15 sind undefiniert. Das ergibt einen undefinierten Wert am Ausgang des RAM. MEMDI wird mit der Vorderflanke des MT im NMI-Quittungszyklus zurückgesetzt.

6.12. Bildung des Steuersignals IEP

6.12.1. Allgemeines

Ein Rücksprung aus der Interruptroutine erfolgt mit dem 2 Byte-Befehl RETI (Codierung ED, 4D). Dieser Befehl holt mit dem 1. Byte den vor Beginn der UP-Routine gültigen PC-Stand aus dem Stack in den Befehlszähler und mit dem 2. Byte wird der gerede im Bearbeitung befindliche Baustein in den Grundzustand gesetzt.

Nur der Baustein, dessen IEI-Eingarg auf high und IEO-Ausgang auf low (INT = 1) liegt, bezieht diesen RETI-Befehl auf sich und schaltet in den Grundzustand zurück, d. h. IEI und IEO = 1. Die nachfolgenden Bausteine in der Prioritätenkette werden damit für eine INT-Anmeldung wieder freigegeben.

Meldet ein Baustein höhere Priorität zu einem Zeitpunkt einen Interrupt an, wo der gerade in Bearbeitung befindliche Baustein die UP-Routine noch nicht beendet hat (EI-Befehl steht am Ende der INT-Routine), wird der Ausgang des prioritätsmäßig höherem Bausteins low, obwohl seine INT-Anforderung nicht bearbeitet werden kann. Das bedeutet gleichzeitig, daß bei IEI = low der in Bearbeitung befindliche Baustein den RETI nicht interpretieren könnte. Um das zu verhindern, schaltet der Baustein höherer Priorität mit nicht quittiertem Interrupt beim 1. Byte des RETI-Befehls seinen IEO-Ausgang kurzfristig auf high. Damit ist die Kette bis zum bedienten Baustein freigegeben und dieser kann seine INT-Routine durch das 2. Byte des RETI-Befehls beenden.

Die kurzfristige Durchschaltung des high-Pegels beim 1. Byte des RETI-Befehls von einem prioritätsmäßig höher gelegenen Baustein durch alle interruptberechtigten Bausteine erfordert eine gewisse Durchschaltzeit.

Diese Durchschaltzeit vom ersten bis zum letzten Baustein muß kleiner sein als die Zeit des Auftretens des 1. und 2. Byte des RETI-Befehls (≨ 7 Bausteine).

Um die Prioritätenkette auf > 7 Bausteine verlängern zu können, wird bei jedem Zyklus das Zusatzsignal TEF (interrupt enable parallel) gebildet. Es liegt parallel an allen Bausteinen an, die einen Interrupt anmelden können.

Abb. 16 Fildung des Steuersignals TEP

Bei jedem Zyklus wird durch RFSH das Signal IEP = 0 gebildet und ermöglicht ein sicheres Erkennen des RETI-Befehls durch den sich in Behandlung befindlichen Baustein und damit den Rücksprung aus der Interruptroutine.

Bei RFSH = 0 (T3, T4) wird mit der Rückflanke des Systemtaktes (T3) der Ausgang A16/06 = 1. Das nachfolgende FF wird freigegeben und mit der Rückflanke des Steuersignals MREQ (T4) wird das Signal TEF = low aktiv. Dieses Signal liegt parallel am Eingang IEI aller interruptfähiger Peripheriebausteine und legt deren Eingange kurzfristig auf high. Nach > 200 µs werden beide FF A16 mit der fallenden Flanke des Systemtaktes T1 wieder zurückgekippt.

robotron

VEB Robotron Buchungsmaschinenwerk Karl-Marx-Stadt PSF 129 Annaberger Straße 93 Karl-Marx-Stadt

DDR · 9010 Exporteur:

Robotron – Export/Import Volkseigener Außenhandelsbetrieb der Deutschen Demokratischen Republik PSF 11 Allee der Kosmonauten 24

Berlin DDR - 1140