(11) EP 1 148 109 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 24.10.2001 Bulletin 2001/43

(51) Int CI.7: C09K 11/06

(21) Application number: 01303660.3

(22) Date of filing: 20.04.2001

(84) Designated Contracting States: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR Designated Extension States: AL LT LV MK RO SI

(30) Priority: 21.04.2000 JP 2000121724 19.04.2001 JP 2001121664

(71) Applicant: TDK Corporation Chuo-ku, Tokyo 103-8272 (JP) (72) Inventors:

 Ara, Kensuke Tokyo 103-8272 (JP)

Inque, Tetsushi
 Tokyo 103-8272 (JP)

Fujita, Tetsuji
 Tokyo 103-8272 (JP)

(74) Representative: Wise, Stephen James et al c/o RAWORTH, MOSS & COOK
36 Sydenham Road
Croydon, Surrey CR0 2EF (GB)

(54) Organic electroluminescent device

(57) In an organic EL device comprising organic layers between a pair of electrodes participating in at least a light emitting function, at least one organic layer contains an organic compound selected from naphthacene, tetraaryldiamine, anthracene and quinoxaline derivatives as a host material and an organic compound hav-

ing a specific skeleton, typically diindeno[1,2,3-cd:1',2', 3'-lm]perylene derivative as a dopant. The device is capable of light emission to a satisfactory luminance, especially in a long wavelength region, and with a chromatic purity sufficient for use in full color displays, and had a sufficient durability to sustain such improved light emission performance over a long time.

FIG. 1

Description

BACKGROUND OF THE INVENTION

5 Field of the Invention

[0001] This invention relates to an organic electroluminescent (EL) device, and more particularly, to a compound for use in a device of the type wherein an electric field is applied across a thin film of an organic compound to emit light.

10 Background Art

25

35

45

50

[0002] Organic electroluminescent (EL) devices include a thin film containing a luminescent organic compound interleaved between an electron injecting electrode and a hole injecting electrode. Electrons and holes are injected into the thin film where they are recombined to create excitons. Light is emitted by utilizing luminescence (phosphorescence or fluorescence) upon deactivation of excitons.

[0003] The organic EL devices are characterized by plane light emission at a high luminance of about 100 to 10,000 cd/m² with a voltage of about 10 volts and light emission in a spectrum from blue to red color by a simple choice of the type of fluorescent material.

[0004] Doping is one technique for producing light emission of any desired color from organic EL devices. It was reported in Jpn. J. Appl. Phys., 10, 527 (1971) to change emission color from blue to green by doping anthracene crystals with a minor level of tetracene. With respect to organic thin film EL devices having a multilayer structure, it was reported in JP-A 63-264692 to incorporate in a host material having a light emitting function a minor amount of a fluorescent dye capable of emitting light different from that of the host material in response to light emission from the host material as a dopant to form a light emitting layer, thereby changing the color of light emission from green to orange or red.

[0005] With respect to long wavelength light emission of yellow to red, known light emitting materials or dopant materials include laser dyes capable of red oscillation (EPO 281381), compounds capable of exciplex emission (JP-A 2-255788), perylene compounds (JP-A 3-791), coumarin compounds (JP-A 3-792), dicyanomethylene compounds (JP-A 3-162481), thioxanthene compounds (JP-A 3-177486), mixtures of a conjugated polymer and an electron transporting compound (JP-A 6-73374), squalirium compounds (JP-A 6-93257), oxadiazole compounds (JP-A 6-136359), oxynate derivatives (JP-A 6-145146), and pyrene compounds (JP-A 6-240246).

[0006] It is reported in J. Am. Chem. Soc., 118, 2374-2379, 1996, that benzofluoranthene derivatives have a very high fluorescent quantum yield. JP-A 10-330295 and JP-A 11-233261 disclose organic EL devices having a light emitting layer in which a variety of host materials are doped with dibenzo[f,f']diindeno[1,2,3-cd:1',2',3'-lm]perylene derivatives derived from benzofluoranthene.

[0007] Other light emitting materials disclosed heretofore include condensed polycyclic aromatic compounds (JP-A 5-32966 and 5-214334). Also dopant materials proposed heretofore include various condensed polycyclic aromatic compounds (JP-A 5-258859).

[0008] However, when these materials are used as the dopant, EL devices often fail to allow dopant molecules to exert their own fluorescence due to the interaction between dopants or between the dopant and the host.

[0009] Therefore, with respect to organic EL devices of the type in which a host material is doped with a fluorescent dye, a choice of host material is an important and difficult task in order for the device to produce high efficiency light emission. Currently available organic EL devices fail to reach a practically acceptable level of emission efficiency although fluorescent dyes having a high fluorescent quantum yield are used as the dopant.

[0010] When organic EL devices are fabricated using the doping technique, the energy transfer from host molecules in the excited state to the dopant is not 100%, and often not only the dopant, but also the host material emit light. Especially in the case of red light emitting devices, the chromatic purity is often exacerbated by faint light emission of the host material since the host material emits light in a wavelength region of higher visibility than the dopant. Further improvements in properties pertaining to the luminous lifetime and durability are needed, with the target placed on practical application.

SUMMARY OF THE INVENTION

[0011] An object of the invention is to provide an organic EL device capable of light emission to a satisfactory luminance, especially in a long wavelength region, and with a chromatic purity sufficient for use in full color displays, and having a sufficient durability to sustain such improved light emission performance over a long time.

[0012] The above and other objects are achieved by the invention which is defined below.

[1] An organic EL device comprising one or more organic layers between a pair of electrodes participating in at least a light emitting function,

at least one of the organic layers containing at least one of organic compounds having basic skeletons of the following formulas (I) to (IV) and at least one organic compound having a skeleton of the following formula (V) at the same time:

$$Q^{5} \qquad Q^{4} \qquad Q^{3} \qquad \qquad (1)$$

$$Q^{6} \qquad Q^{1} \qquad Q^{2} \qquad Q^{8}$$

wherein Q¹ to Q⁸ are independently hydrogen or substituted or unsubstituted alkyl, aryl, amino, heterocyclic or alkenyl radicals,

$$(R_3)_{r3}$$
 $(R_6)_{r5}$
 $(R_6)_{r6}$
 $(R_1)_{r1}$
 $(R_2)_{r2}$

30

5

10

15

20

25

wherein R_1 , R_2 , R_3 and R_4 are independently aryl, fluorene, carbazolyl, alkyl, alkoxy, aryloxy, amino or halogen radicals, at least one of R_1 , R_2 , R_3 and R_4 is aryl, r1, r2, r3 and r4 each are 0 or an integer of 1 to 5, with the proviso that r1, r2, r3 and r4 are not 0 at the same time, R_5 and R_6 are independently alkyl, alkoxy, amino, aryl or halogen radicals and may be the same or different, r5 and r6 each are 0 or an integer of 1 to 4,

35

$$\left(A_{101}\right)_{n} L \qquad (111)$$

40

wherein A_{101} is a monophenylanthryl or diphenylanthryl radical and may be the same or different, L is hydrogen, a single bond or an n-valent linkage, and n is an integer of 1 to 4,

$$Q_n-L_{101} \hspace{1.5cm} (IV)$$

45

wherein Q is a pyrazinyl radical having fused thereto a six-membered aromatic ring containing 0 to 2 nitrogen atoms and may be the same or different, n is 2 or 3, and L_{101} is a single bond or n-valent radical,

50

$$L_1 \xrightarrow{X_9} X_{10} X_1 X_2 X_3 X_4 X_3$$
 (V)

15

20

25

30

35

5

 $wherein \ X_1 \ to \ X_{10}, \ L_1 \ and \ L_2 \ are \ independently \ hydrogen, \ halogen \ atoms, \ straight, \ branched \ or \ cyclic \ alkyl \ radicals$ which may have substituents, straight, branched or cyclic alkoxy radicals which may have substituents, straight, branched or cyclic alkylthio radicals which may have substituents, straight, branched or cyclic alkenyl radicals which may have substituents, straight, branched or cyclic alkenyloxy radicals which may have substituents, straight, branched or cyclic alkenylthio radicals which may have substituents, substituted or unsubstituted aralkyl radicals, substituted or unsubstituted aralkyloxy radicals, substituted or unsubstituted aralkylthio radicals, substituted or unsubstituted aryl radicals, substituted or unsubstituted aryloxy radicals, substituted or unsubstituted arylthio radicals, substituted or unsubstituted amino radicals, cyano, hydroxyl, -COOR1 radicals (wherein R1 is hydrogen, a substituted or unsubstituted straight, branched or cyclic alkyl radical, a substituted or unsubstituted straight, branched or cyclic alkenyl radical, a substituted or unsubstituted aralkyl radical or a substituted or unsubstituted aryl radical), -COR2 radicals (wherein R2 is hydrogen, a substituted or unsubstituted straight, branched or cyclic alkyl radical, a substituted or unsubstituted straight, branched or cyclic alkenyl radical, a substituted or unsubstituted aralkyl radical, a substituted or unsubstituted aryl radical or an amino radical), or -OCOR3 radicals (wherein R3 is a substituted or unsubstituted straight, branched or cyclic alkyl radical, a substituted or unsubstituted straight, branched or cyclic alkenyl radical, a substituted or unsubstituted aralkyl radical, or a substituted or unsubstituted aryl radical), or at least two adjoining radicals selected from X_1 to X_{10} , L_1 and L_2 may bond or fuse together to form a substituted or unsubstituted carbocyclic aliphatic ring, aromatic ring or fused aromatic ring with the carbon atoms to which they are attached, or L1 and L2 each may be a single bond. n is 1 or 2.

[2] The organic EL device of [1] wherein the at least one of the organic layers contains a host material and a dopant, said host material comprises at least one compound selected from the organic compounds having basic skeletons of the formulas (I) to (IV) and

said dopant comprises at least one compound selected from the organic compounds having a skeleton of the formula (V).

[3] The organic EL device of [1] or [2] wherein in formula (V), at least two adjoining radicals selected from X_1 to X_{10} , L_1 and L_2 bond or fuse together to form a substituted or unsubstituted carbocyclic aliphatic ring, aromatic ring or fused aromatic ring with the carbon atoms to which they are attached.

[4]The organic EL device of any one of [1] to [3] wherein the compound of formula (V) is a compound of the following formula (VI):

40

$$X_{12}$$

$$X_{13}$$

$$X_{14}$$

$$X_{16}$$

$$X_{17}$$

$$X_{18}$$

$$X_{18}$$

$$X_{18}$$

$$X_{18}$$

$$X_{18}$$

$$X_{18}$$

$$X_{18}$$

$$X_{18}$$

$$X_{18}$$

$$X_{19}$$

$$X_{19}$$

$$X_{19}$$

$$X_{19}$$

$$X_{10}$$

$$X$$

50

55

45

wherein X_1 to X_6 , X_9 , X_{10} , X_{11} to X_{16} , X_{19} and X_{20} are independently hydrogen, halogen atoms, straight, branched or cyclic alkyl radicals which may have substituents, straight, branched or cyclic alkoxy radicals which may have substituents, straight, branched or cyclic alkenyl radicals which may have substituents, straight, branched or cyclic alkenyl radicals which may have substituents, straight, branched or cyclic alkenyloxy radicals which may have substituents, straight, branched or cyclic alkenylthio radicals which may have substituents, substituted or unsubstituted aralkyloxy radicals, substituted or unsubstituted aralkyloxy radicals.

alkylthio radicals, substituted or unsubstituted aryl radicals, substituted or unsubstituted arylay radicals, substituted or unsubstituted arylay radicals, substituted or unsubstituted arylay radicals, substituted or unsubstituted alkenylary radicals, substituted or unsubstituted amino radicals, cyano, hydroxyl, -COOR¹ radicals (wherein R¹ is hydrogen, a substituted or unsubstituted straight, branched or cyclic alkyl radical, a substituted or unsubstituted arylay radical, a substituted or unsubstituted arylay radical or a substituted or unsubstituted arylay radical or a substituted or unsubstituted arylay radical, a substituted or unsubstituted or unsubstituted straight, branched or cyclic alkylay radical, a substituted or unsubstituted arylay radical, or a substituted arylay radical, or a substituted or unsubstituted arylay radical, and radical radi

[5] The organic EL device of [4] wherein the compound of formula (VI) is a compound of the following formula (VI):

$$X_{32}$$
 X_{34}
 X_{14}
 X_{15}
 X_{16}
 X_{6}
 X_{5}
 X_{10}
 X_{10}
 X_{11}
 X_{41}
 X_{42}
 X_{43}
 X_{15}
 X_{16}
 X_{6}
 X_{5}
 X_{4}
 X_{44}

wherein X_1 to X_{44} are as defined for X_1 to X_{20} in formula (VI).

5

10

15

20

25

30

35

40

45

50

55

[6]The organic EL device of [4] or [5] wherein X_1 to X_{20} in formula (VI) and X_1 to X_{44} in formula (VI') are independently substituted or unsubstituted aryl, alkyl, alkenyl, alkoxy or aryloxy radicals.

[7] The organic EL device of any one of [4] to [6] wherein at least one of X_1 to X_{20} in formula (VI) and X_1 to X_{44} in formula (VI') is an ortho-substituted phenyl radical.

[8] The organic EL device of any one of [4] to [7] wherein in formula (VI) or (VI'), either one or both of X_1 and X_4 and/or either one or both of X_{11} and X_{14} are ortho-substituted phenyl radicals.

[9] The organic EL device of any one of [1] to [8] wherein said at least one of the organic layers contains at least one organic compound having a basic skeleton of the formula (I).

[10] The organic EL device of any one of [1] to [9] wherein said at least one of the organic layers contains at least one organic compound having a basic skeleton of the formula (I) and at least one organic compound having a basic skeleton of the formula (II) at the same time.

[11] The organic EL device of any one of [4] to [10] wherein at least one of the organic compounds has a vibration structure in both an excitation spectrum and a fluorescence spectrum.

[12] The organic EL device of any one of [4] to [11] wherein at least one of the organic compounds has a Stokes shift of up to 0.1 eV.

[13]The organic EL device of any one of [4] to [12] wherein the host material in a light emitting layer has a greater electron affinity than an electron transporting layer and/or a hole transporting layer.

[14] The organic EL device of any one of [1] to [13] wherein the organic compound having a basic skeleton of the formula (I) is one wherein at least two of Q^1 to Q^8 are substituted or unsubstituted anyl radicals.

[15] The organic EL device of [14] wherein the organic compound having a basic skeleton of the formula (I) is one wherein at least six of Q¹ to Q⁸ are substituted or unsubstituted aryl radicals.

[16] The organic EL device of [14] or [15] wherein the organic compound having a basic skeleton of the formula (I) is one wherein at least two of Q^1 , Q^2 , Q^3 and Q^4 are substituted or unsubstituted anyl radicals.

[17] The organic EL device of any one of [14] to [16] wherein the organic compound having a basic skeleton of the formula (I) is one wherein at least four of Q^1 , Q^2 , Q^3 and Q^4 are substituted or unsubstituted anyl radicals.

[18] The organic EL device of any one of [14] to [17] wherein at least two of the aryl radicals represented by Q1, Q2, Q3 and Q4 have aryl radicals substituted thereon.

[19] The organic EL device of any one of [2] to [18] wherein the at least one of the organic layers contains 80 to 99.9% by weight of the host material.

[20] An organic EL device wherein at least one of organic layers contains at least one organic compound having a basic skeleton of the formula (I) as set forth in [16] and at least one organic compound having a basic skeleton of the formula (IV').

- [21] The organic EL device of any one of [1] to [20], further comprising at least one hole injecting and transporting layer.
- [22] The organic EL device of any one of [1] to [21], further comprising at least one electron injecting and transporting layer.
- [23] An organic EL device comprising one or more organic layers between a pair of electrodes participating in at least a light emitting function, wherein the one or more organic layers contain organic compounds, at least one of which has a vibration structure in both an excitation spectrum and a fluorescence spectrum.
 - [24] An organic EL device comprising one or more organic layers between a pair of electrodes participating in at least a light emitting function, wherein the one or more organic layers contain organic compounds, at least one of which has a Stokes shift of up to 0.1 eV.
 - [25] The organic EL device of [24] wherein a host material in a light emitting layer has a greater electron affinity than an electron transporting layer and/or a hole transporting layer.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013]

10

15

20

30

35

- FIG. 1 is a schematic cross-sectional view showing the basic construction of an organic EL device according to the invention.
- Fig. 2 is a diagram showing the excitation and fluorescence spectra of the host material and dopant used in Example.
 - FIG. 3 is a diagram showing the excitation and fluorescence spectra of the host material and dopant used in Comparative Example.

25 DESCRIPTION OF THE PREFERRED EMBODIMENT

[0014] According to the invention, an organic EL device having a high luminous efficiency and a long lifetime is obtained by combining an organic compound of formula (V) or (VI) with at least one of organic compounds of formulas (I) to (IV), especially by combining an organic compound of formula (V) or (VI) as a dopant with an organic compound of formula (I) as a host material. First the organic compounds useful as the host material are described in detail.

Host materials

Naphthacene compounds

[0015] One class of organic compounds useful as the host material according to the invention have a basic skeleton of the following formula (I).

[0016] In the device of the invention, the use of the naphthacene derivative, preferably as the host material, helps induce strong light emission from the dopant.

- [0017] Naphthacene derivatives belong to a class of preferable organic compounds, especially effective as the host material, among others. For example, the fluorescence intensity of a film of a naphthacene derivative of host material in example 1 doped with 1 wt% of a dibenzo[f,f']diindeno[1,2,3-cd:1',2',3'-lm]perylene derivative of dopant material in Example 1, as measured on photoexcitation, is about 2 times the fluorescence intensities of films of other organic compounds (e.g., Alq3) as the host.
- [0018] The reason why such intense fluorescence is produced is presumably that the combination of a naphthacene derivative with the above dopant is an ideal combination that avoids interaction such as formation of an exciplex, and bipolar interaction between the respective molecules maintains a high intensity of fluorescence.
 - [0019] In the event of a red dopant, since the energy gap of a naphthacene derivative is relatively approximate to that of the dopant, an energy transfer phenomenon due to emission resorption takes place as well as energy transfer by electron exchange. This accounts for a high fluorescence intensity as well.
 - [0020] The combination with the above host material minimizes the concentration quenching of the dopant, which also accounts for a high fluorescence intensity.
 - [0021] In an exemplary organic EL device which was fabricated using the above doped film as a light emitting layer, a luminance of at least 600 cd/m² at maximum was obtained at a current density of 10 mA/cm² and a drive voltage as low as about 6 V. When operated at a current density of about 600 mA/cm², the device consistently produced a luminance of greater than about 20,000 cd/m². As compared with other organic compounds (e.g., Alq3) serving as the host, this provides a luminous efficiency greater by a factor of about 4 when assessed in terms of current efficiency, and because of possible driving at a lower voltage, a luminous efficiency greater by a factor of about 5 when assessed

in terms of power efficiency. In the event of doping with a red dopant as in the above example, entailing the high efficiency of energy transfer from the host to the dopant, the device is characterized by a high chromatic purity in that only the dopant produces light emission, with little light emission from the host being observable.

[0022] It is believed that such a very high luminous efficiency exerted when organic EL devices are fabricated is due to the effects of an improved recombination probability of carriers in the light emitting layer and a singlet excitation state that the dopant forms as a result of energy transfer from the triplet excitation state of naphthacene, as well as the above-mentioned mechanism of providing a high fluorescence intensity.

[0023] As opposed to conventional organic EL devices whose drive voltage is increased by carrier trapping of the dopant, the inventive organic EL device using the above-mentioned light emitting layer has a very low drive voltage, because the order of carrier trapping of the dopant is low and high efficiency light emission is accomplished by the above-mentioned mechanism. Another accomplished by the above-mentioned mechanism. Another probable reason is the ease of injection of carriers into the light emitting layer.

[0024] Since the naphthacene derivative is very stable and highly durable against carrier injection, the device fabricated using the above host-dopant combination has a very long lifetime. For example, an organic EL device having a light emitting layer of a compound of formula (VII') doped with 1 wt% of a dibenzo[f,f']diindeno[1,2,3-cd:1',2',3'-lm] perylene derivative of dopant material in Example 1 is highly durable as demonstrated by its ability to sustain a luminance of at least 2,400 cd/m² over a period of 1,000 hours or longer, with an attenuation of less than about 1%, when driven at 50 mA/cm².

[0025] In organic EL devices as mentioned above, the dopant concentration ensuring a chromatic purity and maximum efficiency is about 1% by weight although dopant concentrations of about 2 or 3% by weight lead to devices which are practically acceptable albeit a drop of less than about 10%.

$$Q^{5} \xrightarrow{Q^{4}} Q^{3} \xrightarrow{Q^{7}} Q^{7}$$

$$Q^{6} \xrightarrow{Q^{1}} Q^{2} \qquad (1)$$

30

40

20

25

[0026] In formula (I), Q¹ to Q⁴ are independently selected from among hydrogen and substituted or unsubstituted alkyl, aryl, amino, heterocyclic and alkenyl radicals. Preferred are aryl, amino, heterocyclic and alkenyl radicals. It is also desirable that Q² and Q³ are these preferred radicals and Q¹ and Q⁴ are hydrogen.

[0027] The aryl radicals represented by Q¹ to Q⁴ may be monocyclic or polycyclic, inclusive of fused rings and a collection of rings. Those aryl radicals having 6 to 30 carbon atoms in total are preferred and they may have substituents. Preferred examples of the aryl radical include phenyl, o-, m- and p-tolyl, pyrenyl, perylenyl, coronenyl, 1- and 2-naphthyl, anthryl, o-, m- and p-biphenylyl, terphenyl and phenanthryl.

[0028] The amino radicals represented by Q¹ to Q⁴ may be selected from among alkylamino, arylamino, aralkylamino and analogous radicals. They preferably have aliphatic radicals having 1 to 6 carbon atoms in total and/or aromatic carbocyclic radicals having 1 to 4 rings. Illustrative examples include dimethylamino, diethylamino, dibutylamino, diphenylamino, ditolylamino, bisdiphenylylamino, and bisnaphthylamino radicals.

[0029] The heterocyclic radicals represented by Q¹ to Q⁴ include 5- or 6-membered ring aromatic heterocyclic radicals containing O, N or S as a hetero atom, and fused polycyclic aromatic heterocyclic radicals having 2 to 20 carbon atoms. Examples of the aromatic heterocyclic radicals and fused polycyclic aromatic heterocyclic radicals include thienyl, furyl, pyrolyl, pyridyl, quinolyl, and quinoxalyl radicals.

[0030] The alkenyl radicals represented by Q¹ to Q⁴ are preferably those having a phenyl group as at least one substituent, such as 1- and 2-phenylalkenyl, 1,2- and 2,2-diphenylalkenyl, and 1,2,2-triphenylalkenyl although unsubstituted alkenyl radicals are acceptable.

[0031] When Q¹ to Q⁴ are substituted radicals, at least two of the substituents are preferably aryl, amino, heterocyclic, alkenyl or aryloxy groups. These aryl, amino, heterocyclic and alkenyl groups are as illustrated above for Q¹ to Q⁴. The aryloxy groups to substitute on Q¹ to Q⁴ are preferably those of aryl groups having 6 to 18 carbon atoms in total, for example, o-, m- and p-phenoxy. At least two of these substituents may form a fused ring. Also, these substituents may be further substituted ones, in which preferred substituents are as described above.

[0032] When Q^1 to Q^4 have substituents, it is preferred that at least two of the substituents have the above-described substituents. The position of substitution is not particularly limited and may be a meta, para or ortho position. Q^1 and Q^4 , and Q^2 and Q^3 in the respective pairs are preferably identical although they may be different.

[0033] Q^5 to Q^8 are independently selected from among hydrogen and substituted or unsubstituted alkyl, aryl, amino, heterocyclic and alkenyl radicals.

[0034] The alkyl radicals represented by Q⁵ to Q⁸ are preferably those of 1 to 6 carbon atoms, which may be straight or branched. Preferred examples of the alkyl radical include methyl, ethyl, n- and i-propyl, n-, i-, sec- and tert-butyl, n-, i-, neo- and tert-pentyl.

[0035] The aryl, amino and alkenyl radicals represented by Q⁵ to Q⁸ are as illustrated above for Q¹ to Q⁴. Q⁵ and Q⁶ and Q⁷ and Q⁸ in the respective pairs are preferably identical although they may be different.

[0036] It is preferred that rubrene of formula (I) wherein all Q¹ to Q⁴ are phenyl and all Q⁵ to Q⁸ are hydrogen be excluded.

[0037] The naphthacene derivative contained in the light emitting layer should preferably have a basic skeleton of the following formula (VII).

10

30

35

40

 Q^{41} Q^{42} Q^{43} Q^{33} Q^{33} Q^{7} Q^{6} Q^{11} Q^{12} Q^{13} Q^{23} Q^{23} Q^{23} Q^{23}

[0038] In formula (VII), Q¹¹ to Q¹³, Q²¹ to Q²³, Q³¹ to Q³³ and Q⁴¹ to Q⁴³ are hydrogen, aryl, amino, heterocyclic, aryloxy or alkenyl radicals. Preferably the Q's in at least one of these sets are radicals having substituents selected from among aryl, amino, heterocyclic and aryloxy groups. Two or more of these Q's may form a fused ring.

[0039] Preferred examples of the aryl, amino, heterocyclic and aryloxy radicals are as exemplified above for Q¹ to Q⁴. Preferably Q¹¹ to Q¹³ and Q⁴¹ to Q⁴³, and Q²¹ to Q²³ and Q³¹ to Q³³ in the respective paired sets are identical although they may be different.

[0040] The amino groups substituting on Q¹¹ to Q¹³, Q²¹ to Q²³, Q³¹ to Q³³ and Q⁴¹ to Q⁴³ may be selected from among alkylamino, arylamino, aralkylamino and analogous groups. They preferably have aliphatic groups having 1 to 6 carbon atoms in total and/or aromatic carbocyclic groups having 1 to 4 rings. Illustrative examples include dimethylamino, diethylamino, dibutylamino, diphenylamino, ditolylamino, and bisbiphenylylamino groups.

[0041] Examples of the fused ring include indene, naphthalene, anthracene, phenanthrene, quinoline, isoquinoline, quinoxaline, phenazine, acridine, indole, carbazole, phenoxazine, phenothiazine, benzothiazole, benzothiophene, benzofuran, acridone, benzimidazole, coumarin, and flavone.

[0042] Of the naphthacene derivatives used herein, those of the following formula (VII') are preferred because devices are given a longer lifetime.

45

50

$$Q^{52}$$
 Q^{53}
 Q^{54}
 Q^{55}
 Q^{5}
 Q^{21}
 Q^{25}
 Q^{24}

[0043] In formula (VII'), Q⁵¹ to Q⁵⁵ and Q²¹ to Q²⁵ are the same as Q¹¹ in formula (VII).
 [0044] Illustrative examples of the preferred naphthacene derivatives used herein are given below as IB-1 to IB-189.
 The substituents Q¹ to Q⁸ are denoted as Q¹⁰ to Q⁸⁰.

•

5		080	Ţ	I	I	I	I	I	r	I
		۵۷۵	I	I	I	I	I	I	I.	ı
10		090	I	I	I	I ·	I	I	I	r
15		O ₂₀	I	I	I	I	I	I	I	±
20		Q ⁴⁰			\Diamond			\Diamond		
25	SUBSTITUENT	Q ³⁰								
30	SUB		~		•	Y		•	Ť	
35		O ²⁰								
40										
45		O ¹⁰	0					Q	\Diamond	
50	Table 1	Compound No.	IB-1	IB-2	1B-3	IB-4	18-5	<u>1</u> 8-6	18-7	B-8

EP 1 148 109 A2

5		O ₈₀	I	I	I	I	I	I	I	I
3		۵ ⁷⁰	Ι	I	I	I	I	I	I	I
10		O ₆₀	Ī	I	I	I	I	I	I	r
15		Q ⁵⁰	I	I	I	I	I	I	I	I
20		Q ⁴⁰	\$					Q	()	
25						^	^			
30	SUBSTITUENT	O ₃₀								
35	SUE	Q^{20}		Pos						
40										
45		Q ¹⁰	P	Q	Q .		Q	\Diamond	\Diamond	
50	Table 2	Compound No.	IB-9	IB-10	IB-11	IB-12	IB-13	IB-14	IB-15	IB-16

5		080	I	I	I	I	I	I	I	r
,		۵۲۵	I	I	I	I	I	I	I	I
10		O ⁶⁰	I	I	I	I	I	I	I	Ξ
15		Q ⁵⁰	I	I	I	I	I	I	エ	Σ
20		Q ⁴⁰	Q	\Diamond		P	P	0		\$
25	SUBSTITUENT	Q ³⁰								
35	S	Q ²⁰		Ŷ _O						
40		Q ¹⁰			P					P
50	Table 3	Compound No.	IB-17	IB-18	IB-19	IB-20	IB-21	18-22	IB-23	IB-24

EP 1 148 109 A2

5		080	ェ	I	I	I	I	I	I	I
		۵۲۵	Ι	I	I	I	I	I	I	I
10		Q ⁶⁰	Ι	I	I	r	I	I	I	I
15		Q ⁵⁰	I	I	I	I	r	I	ı	I
20		Q ⁴⁰	P	P	P	0	0			\$
25	SUBSTITUENT					^	^			
30	SAUS.	O ₃₀	ofo							
35		Q ²⁰	000						Q 8	
40					·	*				
<i>45</i> .		Ω ¹⁰	P	P	P		P		P	
50	Table 4	Compound No.	IB-25	18-26	IB-27	IB-28	IB-29	IB-30	IB-31	IB-32

5		80	I	I	I	Ţ	I	I	I	I
v		٥٧٥	I	I	I	I	I	I	I	I
10		Oeo	I	I	I	I	I	I	エ .	Ξ
15		O ₂₀	I	ī	I	I	I	I	I	I
20		Q ⁴⁰	0	P	0	P				
25	SUBSTITUENT									
30	SUB	Q ₃₀		Y ~	OI O	10°				
35		Q^{20}		Ŷ _O				0		00
40										
45		010	P	P	P	P				
50	Table 5	Compound No.	IB-33	IB-34	IB-35	IB-36	IB-37	IB-38	IB-39	18-40

EP 1 148 109 A2

5	•	080	I	I	I	I	I	I	I
J		۵۲۵	I	I	I	I	I ,	I	ı
10		Q ₆₀	I	r	I	I	I	I	I
15		Q ⁵⁰	Ι	I	I	I	I	I	I
20		Q ⁴⁰							
25	SUBSTITUENT	Q ³⁰		600					
30	SUE			,	Y	' \			1
35		Q ²⁰							
40		0							
45		Q ¹⁰	\Diamond	\Diamond	\Diamond		\Diamond	\Diamond	\Diamond
50	Table 6	Compound No.	IB-41	IB-42	IB-43	IB-44	IB-45	IB-46	IB-47

5	8	O O	, ±	I	I	I	I	I	I	I
	Ş	0,0	I	I	I	I	I	エ	I	I
10		O	I	I	r	I	I	I	I	I
15		020	I	I	I	I	I	I	I	I
20		Q40								
25	SUBSTITUENT					Qı				
30	SUBS	O ₃₀			\$		Y	J10 '		
35		Q^{20}					Ŷ _Ċ Ŏ	ofo"		
40									\Diamond	
45		Q ¹⁰		\Diamond	\Diamond	\Diamond	\$	\Diamond	\Diamond	
50	Table 7	Compound No.	IB-48	IB-49	IB-50	18-51	18-52	IB-53	IB-54	18-55

		080	Ι	I	I	I	I	I	ı
5		۵۲۵	Ι	I	I	I	I	I	I
10		O ₆₀	I	I	I	I	I	I	π
15		Q ⁵⁰	Ι	I	I	I	I	I	I
20		Q ⁴⁰			•				0
<i>25</i>	SUBSTITUENT	Q ³⁰	QCC	P000	CCC) Q				
35		Q^{20}	QCC	P000					
40		Q ¹⁰	Q		\$			0	P
50	Table 8	Compound No.	IB-56	, 1B-57	18-58		IB-60	IB-61	IB-62

5		080	I	I	I	I	I	I	I
		۵۷۵	I	I	I	I	I	I	I
10		O ⁶⁰	Ι	I	I	I	I	I	I
15		Q ⁵⁰	I.	I	I	I	I	r T	I
20	_	Ω40	P	P			0	0	
25	SUBSTITUENT	Q ³⁰				0-			
30	SUB	Ö					Q Q		
35		Q^{20}	Q000						
45		۵ ¹⁰	P	P		0		0	
50	Table 9	Compound No.	IB-63	IB-64	IB-65	IB-66	1B-67	(B-68	IB-69

5		080	ı I	Ť	I	I	I	I	I	I
J		0,0	I	I	I	I	I	I	I	I
10		090	Ι.	I	I	I	I	I	I	I
15		020	ェ	I	I	I	I	I	I	I
20	5	040					Q		\$	0
25	SUBSTITUENT	30				•				
30	ઝ	O ₃₀	\Diamond) .	(C)		\$\phi\$	Ÿ
35		Q ²⁰				P	ÇO			
40		10								
45		0,0	Ď	Ď		Q		Image: Control of the	Image: Control of the	
50	Table 10	Compound No.	IB-70	18-71	IB-72	IB-73	IB-74	18-75	18-76	18-77

		080	I	I	I.	I	I s	I	I	ı
5		۵۲۵	Ι	I	I	I	I	I	I	I
10		090	I	I	I	I	I	I	I	ı
15		020	I	I	I	I	I	I	I	x
20		Ω40	Q		Q	0	P			0
25	SUBSTITUENT	Q^{30}				\bigcirc		9	P	
30	0,			J	Y	Ŷ				4
35		Q^{20}		opo		P	ÇO			P
40		0								
45		Ω ¹⁰				Ŷ	Q"	Ŷ	Ÿ	
50	Table 11	Compound No.	IB-78	IB-79	IB-80	18-81	IB-82	IB-83	IB-84	18-85

EP 1 148 109 A2

5		080	π	I	I	I	I	r	I	ı
		0,0	I	I	I	I	I	I	I	• т
10		090	Ι	I	I	I	I	I	I	I
15		Q ⁵⁰	I	I	I	I	I	I	I	I
20		Q ⁴⁰	\$				0			00
25	SUBSTITUENT	Q ³⁰					~~	(
30	S					Ŷ			\$	
35		Q ²⁰				0	Q			
40		۵10					9		9	9
45		J	4	Ŷ	Q ^r				Ş	
50	Table 12	Compound No.	18-86	18-87	IB-88	1B-89	18-90	18-91	IB-92	IB-93

5		080	r	I	I	I	I	I	I
·		0,0	, <u>T</u>	I	I	·	I	I	I
10		090	I	I	I	I	I	r	I
15		020	Ι	r	I	I	I	ı	I
20		Ω40	0				P		
25	SUBSTITUENT	Q ³⁰		9					QŽ)
35		Q^{20}		opo					ÇŽ
45		010	0		0				
50	Table 13	Compound No.	IB-94	IB-95	18-96	(8-97	IB-98	18-99	IB-100

EP 1 148 109 A2

5		Q ⁸⁰	I	I	I	I	I	I	I	ı
		۵70	I	I	Ι.	I	I	I	I	Ι
10		Q ⁶⁰	π	I	I	I	I	I	I	I
15		O ₂₀	Ι	I	I	I	I	Ι	I	Ι
20	LN:	Q ⁴⁰			()		\Diamond	\Diamond	\Diamond	Q
25	SUBSTITUENT					Å	~ 0.6°	چ	^ Z ^	
30	Ŋ	O ₃₀	¢ο		(, , , , , , , , , , , , , , , , , , ,		(J)			QD
35		Q^{20}			ر ک ^ی کا)Ž))	
40		0								
45		Q ¹⁰			Ÿ					
50	Table 14	Compound No.	IB-101	IB-102	IB-103	IB-104	IB-105	IB-106	IB-107	IB-108

5		080	I	I	I	I	I	I	I	I	
3	·	070	I	I	I	I	I	I	I	I	
10		O ₆₀	I	I	I	I	I	ı	I	I	
15		Q ⁵⁰	I	I	I	I	I	I	I	I	
20	L	Q ⁴⁰		P	P	P	P	0	0	P	
25	SUBSTITUENT		z 💭	, Z√Z√,	, ² ,	, Z,	^ ² ,		~ 0 a	, _z Q	
30	0,	O ₃₀	♥ ²		\(\mathcal{P}\)	(z			(J)		
35		Q ²⁰		ÇÖ	ÇO	(Q ^z)	QZ ₂		QY		
40	`	۵10								\bigcirc	
45		O	\	Ÿ	Ÿ	Ÿ	Ÿ	Ÿ	Y	Y	
50	Table 15	Compound No.	IB-109	IB-110	IB-111	IB-112	IB-113	IB-114	IB-115	IB-116	

EP 1 148 109 A2

		O ⁸⁰	Ι	I	I	I	I	I	I	I
5		070	Ι	I	I	I	I	I	I	I
10		O ⁶⁰	I	I	I	I	I	I	I	Ι.
15		Q ⁵⁰	I	I	I	I	I	I	I	r
20	Z	Q ⁴⁰	P		P	0				
25	SUBSTITUENT			·						Q
30	SUB	O ₃₀	QZ)			ÇŽ	ÇΟ	() ^z)	() z	
35		Q ²⁰	QŽO	Q ² 0	Z CZ	(Ž)	ÇO	(Z)	() ²)	
40	0									
45		010	P		P	\(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			\(\rightarrow\)	V
50	Table 16	Compound No.	IB-117	IB-118	IB-119	IB-120	IB-121	IB-122	IB-123	18-124

		080	I	I	I	I	I	I.	I	I
5		070	I	I	I	I	I	I	I	I
10		000	I	I	I	I	I	I	I	I
15		O ⁵⁰	I	I	I	I	I	I	r	I
20	ᄂ	Q ⁴⁰	0			O O	O			
<i>25</i>	SUBSTITUENT	Q ³⁰	Q°J°		Çζ	Q _Z O				
35		Q ²⁰	ÇŸ		ÇŽ)	QŽO			000	
45		Q ¹⁰	O O		P	Q Q				
50	Table 17	Compound No.	IB-125	IB-126	18-127	IB-128	IB-129	IB-130	IB-131	IB-132

	0 80	I	I	I	I	I	I	I	I	I
	0,0	I	I	I	I	I	I	I	I	I
	o S	I	I	I	I	I	I	I	I	I
	0,20	I	I	I	I	I	I	I	I	I
	Q ⁴⁰					0		900	000	
				_		,				
SUBSTITUENT	Q ³⁰	000	PPQ		900	PPQ	000	900	PPQ	000
	Q ²⁰	000	000		000	000	000	000	000	
	Q ¹⁰		\otimes		000	O O	0	000	000	
Table 18	Compound No.	IB-133	IB-134	IB-135	IB-136	IB-137	IB-138	IB-139	IB-140	IB-141
		SUBSTITUENT Q ¹⁰ Q ²⁰ Q ²⁰ Q ³⁰ Q ⁴⁰ Q ⁵⁰ Q ⁶⁰ Q ⁷⁰	SUBSTITUENT No. Q ¹⁰ Q ²⁰ Q ³⁰ Q ⁴⁰ Q ⁵⁰ Q ⁶⁰ Q ⁷⁰ \bigcirc	SUBSTITUENT Q10 Q20 Q30 Q40 Q50 Q50 Q70 Q70 H H H H H	SUBSTITUENT 010 020 020 030 040 040 050 060 070 H H H H H H H H H H H H H H H H H	210 020 030 040 050 060 070 210 020 030 040 050 060 070 211 11 11 11 11 11 11 11 11 11 11 11 11	SUBSTITUENT O10 O20 O20 O20 O40 O40 O40 O40 O4	SUBSTITUENT O10 O10 O20 O20 O20 O20 O20 O20	SUBSTITUENT O10 O10 O20 O20 O20 O20 O20 O20	Substituent Other Control Con

5		080	I	r		I	I	I	CH3	CH3	Q	Q	
10		Q ⁷⁰	Ι	r		I	I	I	CH ₃	CH ₃	9		
		090		OH3		0	0	0	CH3	0	\Diamond		0
15		Q ⁵⁰		CH ₃		9			CH ₃	9			Q
20		Ω40	0	Q	0		0			0	0	\Diamond	0
25	SUBSTITUENT												
30	<i>ත</i>	O ₃₀	OPE		046				OME)) PO	P		
35	R ₁₀ R ₂₀	Q^{20}	of c	9 ^P 0	OPE	P			9 ^P 0) 9Po	9		
40	R ₆₀	۵ ¹⁰	\Q			\(\)			\bigsig				
45			•	,		,	,	,	,	. 1	,	ı	,
50	Table 19	Compound No.	IB-142	IB-143	IB-144	IB-145	IB-146	IB-147	IB-148	IB-149	JB-150	IB-151	IB-152

5		0 ₈₀	I	I	I		I	I	I	CH3	CH ₃
		070	I	r	I		I	I	I	CH3	CH3
10		Oeo	r		CH3		9	0		CH3	P
15		O ₂₀	I	P	CH ₃		0	Q	P	CH3	Q
20		O ₄₀		0							0
25	SUBSTITUENT	Q ³⁰	o ^p o	ofo [©]	Mo ₍	ofo	0			9 ⁹ 0	oro
30		σ					8	\Diamond	T 🖄		
35		Q ²⁰	ofo	ofo [©]	PO,	9 ^P 9	9	9	Q _o	990	000
40	R ₅₀ ,	Q ¹⁰			0	000	000	000		0	9
45		No.									
50	Table 20	Compound No.	IB-153	IB-154	IB-155	IB-156	18-157	18-158	IB-159	(B-160	18-161

		080	I	I	r	I	I	I	I	I	I
5		۵ ⁷⁰	I	I	I	I	I	I	I	I	I
10		090	CH ₃	S H	I	I	I	I	c H3	CH ₃	CH3
15		O ₂₀	CH3	CH ₃	I	I	I	I	CH3	CH ₃	CH ₃
20		Ω ⁴⁰	P	Q	CH3	, CH ₃	CH ₃	CH ₃	I	I	Ι
25	SUBSTITUENT	Q ³⁰							0		
35		Ω^{20}						0000	0		
40	R. O. B.	O ¹⁰	()	Q	č H	cH ₃	CH3	CH ₃	I	I	I
45		No.					·				
50	Table 21	Compound No.	IB-162	IB-163	IB-164	IB-165	IB-166	IB-167	IB-168	IB-169	IB-170

		080	I	CH3	G F3	CH ₃	CH3
5		۵۲۵	r	CH3	CH3	CH ₃	CH ₃
10		Oeo	CH3	CH3	CH ₃	CH ₃	CH ₃
15		050	СН³	CH3	CH ₃	CH ₃	CH ₃
20		Q ⁴⁰	Ι,	I	Ι	I	I
25 30	SUBSTITUENT	Q ³⁰					
35	R ₅₀ R ₄₀ R ₅₀ R ₇₀	Ω ²⁰			P o		
40		O 10	I	I	r	I	I
45		J No.					
50	Table 22	Compound No.	IB-171	IB-172	IB-173	IB-174	IB-175

5			080	r	I	I	I	I	I
3	,		0,20	I	I	I	I	I	I
10			090	CH3	CH3	I	I	I	I
15			O ₂₀	CH3	CH3	I	I	I	I
20		-	Q40		P	CH3	CH ₃	CH	СНЗ
25		SUBSTITUENT	030						000
35			Q ²⁰						
40			Q ¹⁰	9	Image: Control of the	CH3	S H O	ÇH3	CH ₃
45			No.						
50		Table 23	Compound No.	IB-176	18-177	IB-178	IB-179	IB-180	IB-181

5			080	I	I	I	I	CH3	CH3	5 F	CH ₃
			۵۲۵	I	r	I	I	CH3	CH ₃	CH ₃	ČH ₃
10			090	CH3	CH3	CH3	CH3	CH3	CH ₃	CH ₃	СН3
15			O ₂₀	c H	CH ₃	S. E.	CH ₃	CH ₃	CH ₃	CH ₃	СН3
20			040	I	I	, T	I	I	I	r	I
25		SUBSTITUENT					9		^		
30		S	O ₃₀								
35			O ₂₀	000				0			000
40			010	·	I	I	I	Ţ	I	I	I
45			o.								
50	Table 24		Compound No.	IB-182	IB-183	IB-184	IB-185	IB-186	IB-187	IB-188	IB-189

⁵⁵ [0045] Other illustrative examples of the preferred naphthacene derivatives used herein are given below as IIB-1 to IIB-32 and IIIB-1 to IIIB-36. The substituents Q¹ to Q⁸ are denoted as Q¹⁰ to Q⁸⁰.

5		080	I	I	=	I	I	I	Ι	Σ
		۵70	I	I	I	x	I	I	I	I
10		090	I	I	I	I	I	I	I	I
15		Q ⁵⁰	Ι	I	I	I	I	x	I	I
20	5	Q ⁴⁰			\Diamond	• 🗘	Ŷ			
25	SUBSTITUENT	30	Å, Å	ર્ક્ 💭	£ .	ŧ 🔎	€ 1	CH3 CH3	£ .	وْ الْ
30	S	O ₃₀		\Diamond		\Diamond	\Diamond		\$\tilde{\pi}	
35		Q^{20}	CH3 CH3	É D	A PONTO	ę N	N CH3	CH3 CH3		P. N. O.
40		۵10								
45		Ø	\	\		Ÿ		Y	Ÿ	Q
50	Table 25	Compound No.	18.1	IIB-2	IIB-3	118-4	IIB-5	118-6	118-7	IIB-8

5		080	I	I	I	I	I	I	I
		070	Ī	I	I	I	I	I	I
10		Q ⁶⁰	Ι	İ	I	I	I	r	I
15		Q ⁵⁰	Ι	I	I	I	I	I	Ι
20	L	Q ⁴⁰						P	\$
25	SUBSTITUENT	O ₃₀	£	£ £	£ 1	F. N	5		
30		U				Q	\	Q	1 2
<i>35</i> ·		Q^{20}	5 7	CH3 CH3	£ 1	5			
40		۵ ¹⁰							Q
45			'	Y	Y	Y	Y	I	1
50	Table 26	Compound No.	· 6-8II	IIB-10	IIB-11	IIB-12	IIB-13	IIB-14	118-15

. 5		080	ı I	I	ī	I	I,	I
		070	I	I	I	I	I	I
10		090	I	I	I	I	I	I
15		0.20	I	I	I	· I	I	I
20		Q ⁴⁰	0		Q	P		P
25	SUBSTITUENT	030						
30				Y	Q	\		
35		Q ²⁰					Q D ⁽	
40		O ₁₀						
45			Ÿ	¥	\	. 🖓	Y	4
50	Table 27	Compound No.	IIB-16	118-17	IIB-18	IIB-19	118-20	IIB-21

		080	I	I	I	I	I
,		0,70	Ŧ	I	I	I	I
10		Oeo	I	I	I	I	I
15		O ₂₀	Ι	r	I	I	I
20		Q ⁴⁰	P	P.	P	P	P
25	SUBSTITUENT	Q ³⁰	r Ch3				<i>z</i> -√ √ − z
30	o,		\Diamond	Q	Ÿ	\$	Y
35		Q ²⁰	Chi Chi				
40		0					
45		010	P	P		P	
50	Table 28	Compound No.	IIB-22	IIB-23	IIB-24	118-25	118-26

5		O ₈₀	I	Ι	I	I	I	I
		۵۷۵	I	I	I	I	I	I
10	•	O ₆₀	I	I	I	I	r	I
15		O ⁵⁰	I	I	Ι	I	I	I
20	.	Q ⁴⁰						
25	SUBSTITUENT			·			() ()=z ()	
30	SUB	Q ³⁰						\Diamond
35		Q^{20}						
40			4	Y	Ĭ	ı	Ŷ	,
45		Q ¹⁰						
50	Table 29	Compound No.	118-27	IIB-28	IIB-29	IIB-30	IIB-31	118-32

		080	Ι	I	I	r	I	r
5		Q ⁷⁰	I	I	I	I	I	ı
10		Qeo	I	I	I	I	I	I
15		O ₅₀	I	I	I	I	ı	I
20		Ω40	\Diamond		\Diamond		\Diamond	
25	SUBSTITUENT	O ₃₀	T T				I I	
30			1	i	1	l	1	,
35		Q ²⁰	T I					
40					•		•	
45		٠. ۵	P	P	P	P	P	
50	Table 30	Compound No.	IIIB-1	1118-2	IIIB-3	IIIB-4	IIIB-5	1118-6

		080	I	I	I	I	I	I
5		0,0	I	I	I	I	I	r
10		Q ⁶⁰	I	r	r	I	I	I
15		O ₅₀	I	I	I	I	I	I
20		Ω40			P			P
25	SUBSTITUENT	Q ³⁰	r Ţ				I I	
30					V	Y	Ÿ	Y
35		Q ²⁰	T T					
40		۵۱٥						
45			Ť	Ť	Ť	Y	Ť	Υ
50	Table 31	Compound No.	B-7	IIIB-8	6-8111	IIIB-10	IIIB-11	IIIB-12

		O G	I	I	I	I	I	I
5		۵۲۵	I	I	I	I	I	I
10		090	I	I	I	I	I	I
15		050	I	I	I	I	I	I
20	►	Q ⁴⁰	00			P		
25	SUBSTITUENT	O ₃₀	1				x x	
30			T	T	T	Ť	Y	Υ
35		Q ²⁰					x x x	
40		O 10	\Diamond	\Diamond				
45		J		\Diamond	\Diamond	Ď	Ď	Ť
50	Table 32	Compound No.	IIIB-13	IIIB-14	IIIB-15	IIIB-16	IIIB-17	IIIB-18

5		080		I	I	I	I	I	
·		٥٧٥	I	I	I	, I	I	I	
10		Q ⁶⁰	I	I	I	I	I	I	
15		Q ⁵⁰	I	I	I	ı,	I	I	
20		Q ⁴⁰						Q	
25	SUBSTITUENT	30	T			$\langle \overline{\ } \rangle$		ı İ	-
30	SUB	S	- Ā		-	>	I I	I	
35		Q^{20}	- - -						
40		Q ¹⁰							
45		σ	\	\	\	\	Y	Y	
50	Table 33	Compound No.	IIIB-19	IIIB-20	IIIB-21	IIIB-22	IIIB-23	IIIB-24	

		080	I	r	I	I	I	I
5		۵۲۵	I	I	I	Ι	I	I
10		0 ₆₀	I	I	I	I	I.	I
15		O ₅₀	I	I '	Ι	I	I	I
20		Ω40				P	P	P
25	SUBSTITUENT	Q ³⁰						
30				'			- 7	-
35		Q ²⁰		- P			x - x	I - I
40		Q ¹⁰						
45	:		Ý	Y	Y	Ý	4	
50	Table 34	Compound No.	IIIB-25	IIIB-26	IIIB-27	IIIB-28	IIIB-29	IIIB-30

5		O ₈₀	I	I	r	I	I	I
,		۵۲۵	I	I.	I	I	I	Ι
10		O ₆₀	Ι	I	I	I	I	I
15		O ⁵⁰	Ι	I	ı	I	I	I
20	L-7	Ω ⁴⁰						
25	SUBSTITUENT							I I
30	SU	O ₃₀	I T	- \			I - I	- J
35		Q ²⁰	I - I					
40		Q ¹⁰	\Diamond	\Diamond	\Diamond	\Diamond	Q	\Diamond
45					\Diamond		\Diamond	
50	Table 35	Compound No.	IIIB-31	IIIB-32	IIIB-33	IIIB-34	IIIB-35	IIIB-36

[0046] Further illustrative examples of the preferred naphthacene derivatives used herein are given below as IVB-1 to IVB-206 and VB-1 to VB-142. The substituents Q^1 to Q^8 are denoted as Q^{10} to Q^{80} .

Table 36

5	SUBSTITUENT									
	Compound No.	Q ¹⁰	Q ²⁰		Q ⁵⁰	O ₆₀	Q ⁷⁰	Q ⁸⁰		
10	IVB-1	— СН₃	- (_)−CH ₃		CH ₃	CH ₃	н	Н		
15	IVB-2	-√∑-осн₃	√ росн₃	√	CH ₃	CH ₃	Н	Н		
20	IVB-3 -	→ H) -Q-H-Q	-⊘ -⊘	CH ₃	CH ₃	Н	Н		
25	IVB-4	_N _N	-N	-⊘ -⊘	СН₃	СН₃	н	н		
	IVB-5			-⊘ -⊘	CH ₃	CH ₃	Н	н		
30	IVB-6	-{∑-сн₃	-{∑-сн₃ -{∑-(сн₃ –⟨¯}–сн₃	CH ₃	CH₃	CH ₃	СН₃		
35	IVB-7			»	CH ₃	CH ₃	CH ₃ (СН₃		
40	IVB-8 -⟨	∑≻осн₃ -{		н₃ −Ѿ−осн₃	CH ₃	CH ₃	CH ₃ (CH₃		
45	IVB-9	H-0-(CH ₃	CH ₃	CH ₃ (CH ₃		
50	IVB-10	~ ~ ~		-N	CH₃	CH ₃	CH₃ (CH₃		
. 55	IVB-11				CH ₃	CH ₃	CH ₃ (CH₃		

Table 37

40

45

50

55

SUBSTITUENT Q^{20} Compound No. Q¹⁰ O_{30} Q^{40} Q^{50} Q^{60} $Q^{70} Q^{80}$ 10 $\overline{}$ CH $_3$ $\overline{}$ CH $_3$ CH $_3$ CH $_3$ CH $_3$ CH $_3$ 15 → → ← CH₃ CH₃ CH₃ CH₃ 20 IVB-14 - OCH $_3$ - OCH $_3$ - CH $_3$ C IVB-15 $\stackrel{\frown}{-N}$ $\stackrel{\rightarrow}{-N}$ $\stackrel{\frown}{-N}$ $\stackrel{\rightarrow}{-N}$ $\stackrel{\rightarrow}{-N}$ $\stackrel{\frown}{-N}$ $\stackrel{\rightarrow}{-N}$ $\stackrel{\rightarrow}{-N}$ $\stackrel{$ 25 IVB-16 — CH₃ 30

Table 38

	SUBSTITUENT								
5	Compound No. Q ¹⁰ Q ²⁰ Q ³⁰ Q ⁴⁰	Q ⁵⁰ Q ⁶⁰	Q ⁷⁰ Q ⁸⁰						
10	IVB-20	-{∑}-сн₃ -{∑}-сн₃	-{С}-сн₃ -{С}-сн₃						
	IVB-21	-0-0-0-0	0-0-0-0						
15	IVB-22 -	-{∑-осн₃ -{∑-осн₃	-{∑-осн₃ -{∑-осн₃						
20	IVB-23								
25	IVB-24								
30	IVB-25 -\(\bigcirc\) -\(\bigcirc\)	~\bar{\bar{\bar{\bar{\bar{\bar{\bar{	-♡ -♡						
	IVB-26 -\(\bar{\bar{\bar{\bar{\bar{\bar{\bar{	-{СН₃ -{СН₃	-∅ -∅						
35	IVB-27 -	-O-O -O-O	-∅ -∅						
40	IVB-28 -\(\bar{\bar{\Bar}}\) -\(\bar{\Bar}\) -\(\bar{\Bar}\)		-۞ -۞						
		-Осн₃-Осн₃	-♡ -♡						
45	IVB-30		-⊘ -⊘						
50	IVB-30 -\(\bigcirc -\bigcirc -\bigcirc -\bigcirc \bigcirc -\bigcirc -\bigcirc \bigcirc -\bigcirc -\bi		· · · · · · · · · · · · · · · · · · ·						
55	IVB-32	a a	-⊘ -⊘						

Table 39

5			SUBSTITUENT						
	Compound No. Q ¹⁰	Q ²⁰	Q ³⁰	Q ⁴⁰	Q ⁵⁰	Q ⁶⁰	Q ⁷⁰	Q ⁸⁰	
10	IVB-33 -√-CH ₃	-{- СН₃	-{	-{		-	-	-	
	IVB-34 -	- □-□	- ⊘ - ⊘	$-\bigcirc$		-	√	- ⟨¯⟩	
15	IVB-35				-	-	- ⟨¯⟩	- ⟨□⟩	
20	IVВ-36 -{\$}-ОСН	₃ -{∑-осн	3-{∑-осн₃	-{_}ОСН₃	-	√ >		-	
25	IVB-37			_					
	IVB-38				→	- ⟨□⟩	- ⟨¯⟩	-⟨¯⟩	
30	IVB-39 -N	-N	-⟨□⟩	- ⊘	-⟨□⟩	- ⟨¬>	- ⟨¯⟩	- ⟨¬>	
35	IVB-40 -⟨¯⟩-CH ₃	-{¯}-СН₃	-()-CH ₃	-СН3	→	- ⟨□⟩	н	н	
	IVB-41 -	$-\bigcirc$	√ >√>	√ >√>	→		н	н	
40	IVB-42 - OCH	₃ -{∑}-осн	₃ -{∑}-осн	₃-{∑}-осн₃		→	Н	н	
45	IVB-43				- ♡	→	Н	н	
50	IVB-44 - H		H -	→ H	- ⟨¬⟩	- ⟨¬⟩	н	Н	
55	IVB-45 -N	_N	- ◆>	-⊘	√ >	√	н	н	

Table 40

5					SUBSTIT	UENT			
3	Compound I	No. Q ¹⁰	Q ²⁰	Q ³⁰	Q ⁴⁰	Q ⁵⁰	Q ⁶⁰	Q ⁷⁰	Q ⁸⁰
10	IVB-46	→	-	√		-{	-{_}СН₃	Н	Н
	IVB-47		- (¯)	→		√ > √ >	- ♥	Н	Н
15	IVB-48	√ >	-	√ >	- ⟨¬̄⟩	-{}ОСН3	-{- ОСН₃	н	н
	IVB-49	-(7)	-	→	- ⟨□⟩			Н	н
20	IVB-50	- ⟨□⟩	- ⟨¯⟩	→	→	-⊕H	-Q	γн	н
25	IVB-51	-⟨□⟩	- ⟨¯⟩	-	√			н	Н
30	IVB-52	-{}-сн	- ()-Сн	з - ()—сн	- (-)−СН ₃	CH ₃	CH ₃	н	н
	IVB-53	-(C)-(C)	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\) -(-)-(-)	O- O	CH₃	CH ₃	н	н
35	IVB-54	-{->-00	-{_}-O(CH₃ -{oci	-{_}_Осн н₃	H ₃ CH ₃	CH ₃	Н	Н
40	IVB-55	₽				° СН₃	CH ₃	Н	н
45	IVB-56	-) H	У сн₃	CH₃	Н	н
50	IVB-57	-N	-N	-N	-N	CH₃	CH₃	н	н
55	IVB-58	8				CH ₃	CH₃	н	н

5		080	F	I	I	x	I	I	I	I	I	I	ェ
		070	I	I	I	I	I	I	I	I	I	I	I
10		090	SH ₂	CH3	CH ₃	CH ₃	CH ₃	CH ₃	CH3	CH3	CH ₃	CH3	CH ₃
15		Q ⁵⁰	CH ₃	CH3	CH3	CH3	CH ₃	CH ₃	CH3	CH3	CH3	CH3	CH3
20	L	Q ⁴⁰	Q							0			
25 30	THEITEN	030	Ŷ	Q		Ŷ		0				P	
35	,	Q ²⁰	0			Q 0						0	
45		۵10	0		0	P	Q					0	0
50	Table 41	Compound No.	IVB-59	IVB-60	IVB-61	IVB-62	IVB-63	IVB-64	IVB-65	IVB-66	IVB-67	IVB-68	IVB-69

		080	I	I	I	I	I	I	I	I	I	I
5					I	I	I	I	I	I	I	I
		Ω ⁷⁰	I	I	CH ₃	CH3	CH ₃	CH ₃	OH3	CH3	CH3	CH3
10		090	СН3	CH3	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH3	CH3	CH3
15		Q ⁵⁰	CH3	CH ₃	0		00	000				Q
20		Ω40	\Diamond		ì		'	•	Y	Y		
<i>25</i> <i>30</i>	SUBSTITUENT	Q ³⁰	CH3, CH3			000	900	000	000			
35		Q ²⁰	N OH3								I - I	
45		010	\Q	P		P	000		900			
50	Table 42	Compound No.	IVB-70	IVB-71	IVB-72	IVB-73	IVB-74	IVB-75	IVB-76	IVB-77	IVB-78	IVB-79

5		080	I	r	I	I	CH ₃	CH3	CH3	CH ₃
		070	I	I	I	I	CH ₃	CH3	CH3	CH ₃
10		090	CH ₃	CH3	CH3	SH,	CH ₃	CH3	CH3	CH3
15		050	HO FHO	CH ₃	CH ₃	CH ₃	CH ₃	CH3	CH ₃	СН ₃
20		Q ⁴⁰	\Diamond	\Diamond	\Diamond	\Diamond			\Diamond	\Diamond
25	SUBSTITUENT	O ₃₀		- - -			\Diamond			
30			Y					·		Y
35	·	Q ²⁰		I - I	7		\Diamond			
40			,							,
45		Q ¹⁰		P	P	P		\Diamond		
50	Table 43	Compound No.	IVB-80	IVB-81	IVB-82	IVB-83	IVB-84	. IVB-85	IVB-86	IVB-87
55										1

5		080	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH_3	CH ₃	CH ₃	CH3	CH3
		۵70	CH ₃	CH3	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH S	CH3	CH3
10		090	CH ₃	CH3	СН3	CH3	CH3	CH ₃	CH ₃	CH ₃	CH3	CH ₃	CH3
15		O ₅₀	CH ₃	CH3	CH3	CH3	CH3	CH ₃	CH3	CH ₃	CH3	CH3	CH3
20		Q ⁴⁰		\Diamond									
25	SUBSTITUENT	O.						000		\bigcirc		ج بر کی (
30	SUB	O ₃₀			P	~	P	\Diamond	Y	Y	1	\Diamond	
35		Q ²⁰	0			0				P		CH ₃	
40		Q ¹⁰				\Diamond		\Diamond					
45		J	\ \'	Y	Ÿ	\Diamond	\Diamond	\Diamond		Q	\Diamond	Y	*
50	Table 44	Compound No.	IVB-88	IVB-89	IVB-90	IVB-91	IVB-92	IVB-93	IVB-94	IVB-95	IVB-96	IVB-97	IVB-98

		080	CH ₃	CH_3	CH_3	CH_3	CH3	CH3	CH3	CH3	CH3	CH3
5		020	CH3	CH3	CH3	CH ₃	CH3	CH3	CH3	CH3	CH ₃	CH3
10		090	CH3	CH3	CH ₃	CH3	c H S	CH ₃	CH ₃	CH3	CH3	CH3
		050	CH ₃	CH3	CH3	CH3	CH3	CH3	CH3	CH3	CH3	CH ₃
15		Q ⁴⁰		P								
20					Y	Y	,Q	P				
25	SUBSTITUENT	O ₃₀							ı ı	- 2=		
30	ಶ		Ö	J	Ŏ	J	Ö	J				
35		Q^{20}		000				000				
40	ļ		Ť	~	Y	~				Y		Y
45		O ¹⁰		P		9			Q	P	P	
50	Table 45	Compound No.	IVB-99	IVB-100	IVB-101	IVB-102	IVB-103	IVB-104	IVB-105	IVB-106	IVB-107	IVB-108

EP 1 148 109 A2

5		080	CH ₃	CH3	CH ₃	CH ₃	S. F			
		070	CH ₃	CH ₃	OH ₃	CH3	CH ₃			
10		090	СН3	CH3	CH3	CH ₃	CH3			
15		020	CH ₃	CH3	CH ₃	CH ₃	CH ₃			
20		040	0			\Diamond	\Diamond	\Diamond		0
25	SUBSTITUENT	O ³⁰	I-							O
30			ļ	-		<i>'</i>		Ť	Y	
35		Q ²⁰	- - -					\Diamond		
40		Q ¹⁰								
45		J		8	Ÿ	Y	· Y		\	
. 50	Table 46	Compound No.	IVB-109	IVB-110	IVB-111	IVB-112	IVB-113	IVB-114	IVB-115	IVB-116

5		080	\Diamond	0	0	\Diamond					\Diamond	
		0,0					\Diamond	\Diamond		\Diamond		
10		Q ₆₀	0				\Diamond					
15		050								\Diamond		
20	5	Q ⁴⁰										
25	SUBSTITUENT	Q ³⁰	P	QO	P						CH3, CH3	
35		Q ²⁰	P	00						ÇO	CF, CF,	
40		۵10	\Diamond									
50	Table 47	Compound No.	IVB-117	IVB-118	IVB-119	IVB-120	IVB-121	IVB-122	IVB-123 -	IVB-124	IVB-125	

f,

55

5		080	P		P	P	P	P	P	P	
		070	Ŷ	P			P		P		
10		090	P	P			P	\Diamond	P		0
15		020	P	P			P				P
20		Q ⁴⁰	P	9	Ŷ		0			000	000
25	SUBSTITUENT	30			0						
30	ns	O ₃₀	\Diamond	Ö	Ţ			J	J.		5
35 ·		Q^{20}		900							000
40		Q ¹⁰						\Diamond			9
45)	\	Y	P			Ø	P	P	P
50	Table 48	Compound No.	IVB-126	IVB-127	IVB-128	IVB-129	IVB-130	IVB-131	IVB-132	IVB-133	IVB-134

5		080				\Diamond		\Diamond	
		07م		\Diamond					
10		O ⁶⁰			\Diamond				
15		O ₂₀	\Diamond	\Diamond	\Diamond			Q	
20		Q ⁴⁰			Q_{\perp}				
25	SUBSTITUENT	Q ³⁰							
30	S			Q		Y	•	(,
35		Q ²⁰		T T		}			
40		0		1	1		^		
45		Q ¹⁰	9.		Ŷ				
50	Table 49	Compound No.	IVB-135	IVB-136	IVB-137	IVB-138	IVB-139	IVB-140	IVB-141

5		080			I	I	I	I	I	I	I
		۵۲۵		\Diamond	I	I	I	I	I	I	I .
10		O ₆₀						\Diamond		\Diamond	
15		Q ⁵⁰			\Diamond	\Diamond		\Diamond	\Diamond		
20		Q ⁴⁰			\Diamond	\Diamond	Q	\Diamond	\Diamond		
<i>25</i>	SUBSTITUENT	Q ³⁰		\$\\ \}\	\Diamond		Q _C		P		
35		Q ²⁰		90			Q _C		P	ÇO	
40		010							\Diamond	\Diamond	\Diamond
<i>45 50</i>	Table 50	Compound No.	IVB-142	IVB-143	IVB-144	IVB-145	IVB-146	IVB-147	IVB-148	IVB-149	IVB-150

		080	I	I	I	I	I	I	I	I	I	I	I
5		۵70	I	I	I	I	I	I	I	I	I	I	I
10		O ₆₀	0			\Diamond	\Diamond				\Diamond		\Diamond
15		O ₂₀	0	0	0	Q	\Diamond	Q	0				0
20	11	Q ⁴⁰				0	000			\$		0	000
25	SUBSTITUENT	O ³⁰		0		P	\$	ÇO	CH ₃				000
35		Q ²⁰	\(\rightarrow\)			P	P	ÇO	CH ₃				000
45		۵10							Q	\$	0		
50	Table 51	Compound No.	IVB-151	IVB-152	IVB-153	IVB-154	IVB-155	IVB-156	IVB-157	IVB-158	IVB-159	IVB-160	IVB-161

		080	I	I	I	I	I	I	I	I
5		۵۲۵	I	I	I	I	I	I	I	I
10		090	P	P			\Diamond	\Diamond		Q
		Q ⁵⁰		P	P		\Diamond	\Diamond		9
20		Ω ⁴⁰	00				\Q	P		Q
25	SUBSTITUENT	O ₃₀								
35		Q ²⁰		000	000					- I
45		۵10		000	000		\Diamond			\Diamond
50	Table 52	Compound No.	IVB-162	IVB-163	IVB-164	IVB-165	IVB-166	IVB-167	IVB-168	IVB-169

5		080	I	I	I	Ξ	I	Ŧ
Š		۵ ⁷⁰	I	I	I	I	I	I
10		O ₆₀		\Diamond		\Diamond	- - -	
15 20		Q ⁵⁰		\Diamond		P		ı ļ
25	SUBSTITUENT	Q ⁴⁰	Q			P		
30	SUBS	O ₃₀					Q	
35 .		Q ²⁰				070	\Diamond	
40		Q ¹⁰						
45			T	Ī	ſ	, [ı	
50	Table 53	Compound No.	IVB-170	IVB-171	IVB-172	IVB-173	IVB-174	IVB-175

		080	I	I	I	I	I	I	I	I	I	I
5		0,70	I	I	I	I	I	I	I	I	I	Ι
10		Q ⁶⁰							I PI	\$-	I I	\$=
15								. 🔎	- P	Q		
20		Q ⁵⁰	- T				r ^I T .	1	- [1 ;	
25	SUBSTITUENT	Q ⁴⁰								P	P	
30	SUBS	Q ³⁰		ÇO	Q		P	ÇO				000
35		Q ²⁰				\Diamond				P		9
40		O	Ÿ			Ö	P					
45		, Q ¹⁰		\(\rightarrow\)			0			P	P	000
50	Table 54	Compound No.	IVB-176	IVB-177	IVB-178	IVB-179	IVB-180	IVB-181	IVB-182	IVB-183	IVB-184	IVB-185

EP 1 148 109 A2

5		080	I	I '	I	I					7
10		Q ⁷⁰	Ι	I	I	I					
15		090								7:	
20		050	2							\$\frac{1}{2}\tau_{\tau}	
25	SUBSTITUENT	Q ⁴⁰		\Diamond			Q		\Diamond	·	Ф
30	SUBST	Q ³⁰			I-J:		: 🗘		90		
35				\	,	1	•	Y		4	Υ •
40		Q ²⁰			I				90	P	
45		۵10			\Diamond	Q			Q		
50	Table 55	Compound No.	IVB-186	(VB-187	IVB-188	IVB-189	IVB-190	IVB-191	IVB-192	IVB-193	IVB-194

5		Q ⁸⁰						- PI		ı Pı	ı Pı
10	;	1 !									
15		090						I I	ı Pı		
20										^	^
25	SUBSTITUENT	Q ⁴⁰	0							Q	
30		O ₃₀								<u> </u>	
<i>35 40</i>		Q ²⁰							_	•	- P=
45		Q ¹⁰		0			·	Q			Q
50	Table 56	Compound No.	IVB-195	IVB-196	IVB-197	WB-198	IVB-199	IVB-200	IVB-201	IVB-202	IVB-203

_	_	

080	I I	I	I
۵۲۵		ı ļ	I T
Oeo	I I	ı ļ	I I
Q^{50}	I I	I T	I I
Q ⁴⁰	Ŷ	0	000
Q^{30}		000	000
Q^{20}	000	-000	7 07 07 000 000 000 00
. Q ¹⁰	Ŷ	Q Q	
Compound No	IVB-204	IVB-205	JVB-206
	Compound No. Q^{10} Q^{20} Q^{30} Q^{40} Q^{50} Q^{60} Q^{70} Q^{80}	Q10 Q20	0.00 0.

	Table 58			SUBSTITUENT					
5	Compound No.	Q ¹⁰	Q ²⁰	Q ³⁰	Q ⁴⁰	Q ⁵⁰	Q ⁶⁰	Q ⁷⁰	Q ⁸⁰
	VB-1	Н	-	-	Н	н	Н	·Н	Н
10	VB-2	Н	-(-)-(-)		Н	н	Н	Н	Н
	VB-3	Н		\bigcirc - \bigcirc	Н	Н	н	Н	Н
15	VB-4	Н	\bigcirc - \bigcirc		н	Н	Н	Н	н
	VB-5	н -		- ()-()	Н	н	н	Н	н
20	VB-6	Н			Н	Н	н	н	н
	VB-7	н	$\bigcirc\!$	$\bigcirc\!$	Н	Н	Н	Н	Н
25	VB-8	н			Н	н	н	Н	Н.
30	VB-9	Н			Н	н	Н	н	н
35	VB-10	н			Н	Н	Н	Н	Н
40	VB-11	Н	090		H	н	н	н	H
	VB-12	Н	000	000	н	н	Н	Н	Н
45									
	VB-13	Н		000	н	н	н	Н	н
50	VB-14	н		olo	н	Н	н	н	н
55			1						

	Table 50								
	Table 59			SUBSTITUENT					
5	Compound No.	Q ¹⁰	Q ²⁰	Q ³⁰	Q ⁴⁰	Q ⁵⁰	Q ⁶⁰	Q ⁷⁰	Q ⁸⁰
10	VB-15	н			н	н	н	н	Н
15	VB-16	Н			н	н	н	н	н
	VB-17	Н			Н	Н	Н	н	Н
20	VB-18	Н			н	н	н	н	н
25	VB-19	Н	900	000	Н	Н	Н	н	Н
30	VB-20	Н			Н	Н	Н	Н	н
	VB-21	Н	OP		Н	Н	н	Н	Н
35	VB-22	н	90		Н	Н	Н	Н	Н
40	VB-23	н			, н	н	н	н	н
45	VB-24	н) H	Н	н	н	н
50	VB-25	н	PCCC) Pac) Н	н	Н	н	Н
					•				

VB-26

Table 60

SUBSTITUENT

5	Compound No.	Q ¹⁰	Q ²⁰	Q ³⁰	Q ⁴⁰	Q ⁵⁰	Q ⁶⁰	Q ⁷⁰	Q ⁸⁰
10	VB-27	н			н	н	Н	н	н
	VB-28	Н	√ >∘√̄	- ⟨¬•⟨¬	Н	н	н	н	н.
15	VB-29	Н	$\varphi \varphi$	ÇO .	Н	Н	Н	Н	н
20	VB-30	Н			н	Н	Н	Н	н
25	VB-31	Н			н	н	н	н	н
	VB-32	Н			Н	н	Н	н	н
30	VB-33	H,			Н	н	Н	н	н
	VB-34	н			Н	н	Н	н	Н
35	VB-35	н	opo	9	Н	н	Н	Н	н
40	VB-36	н			н	Н	Н	н	Н
45	VB-37	н			н	н	н	н	н
50	VB-38	н			н	н	Н	Н	Н
55	VB-39	н	QN)	QN)	Н	Н	Н	н	н

SUBSTITUENT

5	Compound N	o. Q ¹⁰	Q ²⁰	Q ³⁰	Q ⁴⁰	Q ⁵⁰	Q ⁶⁰	Q ⁷⁰	Q ⁸⁰
	VB-40	н	\mathbb{Q}_{N}^{N}	\mathbb{Q}_{N}^{N}	н	Н	н	н	Н
10	VB-4.1	н	QN _N	QN,	Н	Н	Н	Н	Н
15	VB-42	н		$Q_N^N \bigcirc$	н	Н	Н	Н	Н
20	VB-43	н	CNO	CNO	Н	Н	н	Н	Н
	VB-44	н			н	н	Н	Н	н
25	VB-45	Н			Н	Н	н	Н	Н
30	VB-46	Н	$\mathbb{Q}_{N}^{N}\mathbb{Q}$	$\mathbb{Q}_{N}^{N}\mathbb{Q}$	Н	Н	Н	н	н
35	VB-47	Н	W.l.	TT,	Н	Н	Н	Н	Н
33	VB-48	н	٥٠٠	do.	Н	н	н	н	Н
40	VB-49	н	-CH ₃ CH ₃	CH ₃	н	н	н	Н	н
	VB-50	н	$-$ CH $_3$	-CH ₃	н	н	Н	н	н
50 55	VB-51	Н			Н	н	Н	н	Н

	Table 62			SUBSTITUENT					
5	Compound No.	Q ¹⁰	Q ²⁰	Q ³⁰	Q ⁴⁰	Q ⁵⁰	Q ⁶⁰	Q ⁷⁰	Q ⁸⁰
10	VB-52	н	-⟨\rightarrow\rightar	−Q-N CH ₃	н	н	Н	Н	Н
15	VB-53	н			н	н	н	н	Н
20	VB-54	н		-O-N	н	н	н	н	Н
25	VB-55	н			н	Н	н	н	н
<i>30</i>	VB-56	н	-CH ₃ -	N ^{CH3}	н	н	н	Н	H
40	VB-57	н			н	н	н	н	Н
45	VB-58	н			н	н	н	н	н
50	VB-59	Н	-O+-	-O-H-O	н	н	Н	Н	н
55	VB-60	н	——————————————————————————————————————		н	н	н	Н	н

	Table 63			SUBSTITUENT					
5	Compound N	o. Q ¹⁰	Q ²⁰	Q ³⁰	Q ⁴⁰	Q ⁵⁰	Q ⁶⁰	Q ⁷⁰	Q ⁸⁰
10	VB-61	Н			Н	Н	Н	Н	Н
15	VB-62	н	—	-<	Н	н	Н	Н	Н
20	VB-63	Н	H H O	HHO	Н	н	Н	Н	н
25	VB-64	н	H		Н	н	н	н	н
25	VB-65	н	H H H	H H	н	н	н	н	н
30	VB-66	н	H (2)	H T	н	н	Н	н	н
35	VB-67	н		THE STATE OF THE S	н	н	H	н	н
40	VB-68	Н			н	н	Н	н	н
45			HHH						
50	VB-70	н	H	H	Н	н	н	Н	н

	Table 64			SUBSTITUENT					
5	Compound No.	Q ¹⁰	Q ²⁰	Q ³⁰	Q ⁴⁰	Q ⁵⁰	Q ⁶⁰	Q ⁷⁰	Q ⁸⁰
	VB-71	н	-	~	Н	Ph	Ph	Ph	Ph
10	VB-72	Н	-(-)-(-)	-	Н	Ph	Ph	Ph	Ph
15	VB-73	н -		- \$-\$-\$	н	Ph	Ph	Ph	Ph
	VB-74	н			Н	Ph	Ph	Ph	Ph
20	VB-75	н	$\bigcirc\!$		н	Ph	Ph	Ph	Ph
25	VB-76	н	OPO	090	H	Ph	Ph	Ph	Ph
	VB-77	н			н	Ph	Ph	Ph	Ph
30	VB-78				н	Ph	Ph	Ph	Ph
35	VB-79	н			Н	Ph	Ph	Ph	Ph
40	VB-80	н			н	Ph	Ph	Ph	Ph
45	VB-81	н		- ⟨¬}-o-⟨¬⟩	Н	Ph	Ph	Ph	Ph
	VB-82	н	QQ	\Diamond	Н	Ph	Ph	Ph	Ph
50	VB-83	н			н	Ph	Ph	Ph	Ph
55	VB-84	н			Н	Ph	Ph	Ph	Ph

	Table 65			SUBSTITUENT		- 4-			
5	Compound No.	Q ¹⁰	Q ²⁰	Q ³⁰	Q ⁴⁰	Q ⁵⁰	Q ⁶⁰	Q ⁷⁰	Q ⁸⁰
10	VB-85	н			Н	Ph	Ph	Ph	Ph
	VB-86	Н			Н	Ph	Ph	Ph	Ph
15	VB-87	н	\mathbb{Q}_{N}^{N}		Н	Ph	Ph	Ph	Ph
20	VB-88	н			Н	Ph	Ph	Ph	Ph
	VB-89	Н			Н	Ph	Ph	Ph	Ph
25	VB-90	Н			Н	Ph	Ph	Ph	Ph
30	VB-91	н	CCC.	0000	Н	Ph	Ph	Ph	Ph
35	VB-92			رائ	н	Ph	Ph	Ph	Ph
33	VB-93	н	−√CH ₃ CH ₃	-√CH ₃ CH ₃	Н	Ph	Ph	Ph	Ph
40	VB-94	н			н	Ph	Ph	Ph	Ph
45	VB-95	Н			н	Ph	Ph	Ph	Ph
50	VB-96	Н			н	Ph	Ph	Ph	Ph
55			\ = /						

EP 1 148 109 A2

	Table 66			SUBSTITUENT					
5	Compound No.	Q ¹⁰	Q ²⁰	Q ³⁰	Q ⁴⁰	Q ⁵⁰	Q ⁶⁰	Q ⁷⁰	Q ⁸⁰
10	VB-97	Н	-√-N-CH ₃ -	CH ₃	н	Ph	Ph	Ph	Ph
15	VB-98	н			Н	Ph	Ph	Ph	Ph
20	VB-99	н		-\(\)_H	Н	Ph	Ph	Ph	Ph
25	VB-100	н	-€HH	———H H H	Н	Ph	Ph	Ph	Ph
30	VB-101	Н	H H	H H H	н	Ph	Ph	Ph	Ph
35	VB-102	Н	H	H H H	Н	Ph	Ph	Ph	Ph
40	VB-103	н	H-KH H	H-K H H	Н	Ph	Ph	Ph	Ph
	VB-104	н	H T	H H	н	Ph	Ph	Ph	Ph
			++						
50	VB-106	Н	H H	H H	Н	Ph	Ph	Ph	Ph

	Table 67			SUBSTITUENT					
5	Compound No.	Q ¹⁰	Q ²⁰	Q ³⁰	Q ⁴⁰	Q ⁵⁰	Q ⁶⁰	Q ⁷⁰	Q ⁸⁰
,	VB-107	Н	-	-	Н	Ph	Ph	Н	Н
10	VB-108	Н	-		Н	Ph	Ph	Н	Н
	VB-109	н -	- ○ - ○	- ()-()	Н	Ph	Ph	Н	Н
15	VB-110	Н			н	Ph	Ph	Н	н
22	VB-111	Н		$\bigcirc -\bigcirc -\bigcirc$	н	Ph	Ph	Н	Н
20	VB-112	н	000		н	Ph	Ph	Н	н
25	VB-113	Н			н	Ph	Ph	Н	Н
30	VB-114	Н			н	Ph	Ph	Н	н
35	VB-115	Н			H >	Ph	Ph	н	н
. 40	VB-116	н			н	Ph	Ph	Н	н
40	VB-117	н	- ⟨\$\tag{\tag{\tag{\tag{\tag{\tag{\tag{	- \$-0-\$	н	Ph	Ph	н	н
45	VB-118	Н	ÇO	Ç	н	Ph	Ph	Н	н
50	VB-119	Н			н	Ph	Ph	Н	н
	VB-120	Н			н	Ph	Ph	Н	н

	Table 68			SUBSTITUENT					
5	Compound No.	Q ¹⁰	Q ²⁰	Q ³⁰	Q ⁴⁰	Q ⁵⁰	Q ⁶⁰	Q ⁷⁰	Q ⁸⁰
	VB-121	H [']			Н	Ph	Ph	н	н
10	VB-122	Н	Q")		н	Ph	Ph	H	н
15	VB-123	н			Н	Ph	Ph	Н	н
20	VB-124	Н			н	Ph	Ph	н	н
	VB-125	Н			Н	Ph	Ph	Н	н
25	VB-126	Н	$\mathbb{O}_{N}^{N}\mathbb{O}$		н	Ph	Ph	н	н
30	VB-127	Н	TO.	TO,I.	н	Ph	Ph	Н	Н
	VB-128	н	da.	O.J.	н	Ph	Ph	Н	Н
35	VB-129	Н	-√CH ₃	−CH ₃ CH ₃	н	Ph	Ph	н	Н
40	VB-130	н	-O-N	~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Н	Ph	Ph	Н	Н
45	VB-131	н			н	Ph	Ph	н	Н
55	VB-132	Н			н	Ph	Ph	Н	н

Table 69

5				SUBSTITUENT					
,	Compound No.	Q ¹⁰	Q ²⁰	Q ³⁰	Q ⁴⁰	Q ⁵⁰	Q ⁶⁰	Q ⁷⁰	Q ⁸⁰
10	VB-133	н	-(CH ₃ -	√N,CH3	Н	Ph	Ph	н	H
15	VB-134	н	-_N	-\(\)_N	н	Ph	Ph	н	Н
20	VB-135	Н		H H	Н	Ph	Ph	н	н
25	VB-136	н	-€-H	-€H H	Н	Ph	Ph	Н	н
30	VB-137	н	HH	H H	н	Ph	Ph	н	н
35	VB-138	Н		H H	н	Ph	Ph	Н	н
40	VB-139	н	H H H	H H H	н	Ph	Ph	н	н
45	VB-140	Н	H	H	н	Ph	Ph	н	Н
45			H H						
50	VB-142	н	H	H	н	Ph	Ph	Н	н

[0047] The naphthacene derivatives used herein can be synthesized, for example, using diphenyltetracene quinone and analogues. A typical synthesis scheme is shown below.

. 35

5

$$Q^1$$
 Q^2
 Q^3
 [0048] The naphthacene derivatives are used as the host material in combination with dopants.

Tetraaryldiamine compounds

30

35

50

55

[0049] Another class of organic compounds useful as the host material according to the invention are tetraaryldiamine derivatives of the following formula (II).

[0050] In the device of the invention, the use of the tetraaryldiamine derivative, preferably as the host material, helps induce strong light emission from the dopant while controlling the interaction with the dopant.

[0051] In an exemplary organic EL device which was fabricated using a tetraaryldiamine derivative doped with a dibenzo[f,f']diindeno[1,2,3-cd:1',2',3'-lm]perylene derivative, a luminance of at least 300 cd/m² at maximum was obtained at a current density of 10 mA/cm² and a drive voltage as low as about 6.5 V. When operated at a current density of about 500 mA/cm², the device consistently produced a luminance of greater than about 15,000 cd/m². When operated at a current density of about 50 mA/cm², the device marked a very long lifetime as demonstrated by a half-life time of more than 300 hours at an initial luminance of at least 2400 cd/cm². Since the tetraaryldiamine derivative has hole transporting ability, a mixture thereof with another of the above-mentioned host materials enables to control carrier balance, resulting in a device with a high efficiency and long lifetime.

[0052] In organic EL devices as mentioned above, the dopant concentration ensuring a chromatic purity and maximum efficiency is about 1% by weight although dopant concentrations of about 2 or 3% by weight lead to devices which are practically acceptable albeit a drop of less than about 10%.

$$(R_3)_{r3}$$
 $(R_5)_{r5}$
 $(R_6)_{r6}$
 $(R_4)_{r4}$
 $(R_7)_{r1}$
 $(R_7)_{r2}$

10

20

25

30

40

50

55

[0053] In formula (II), R_1 to R_4 are independently aryl, fluorene, carbazolyl, alkyl, alkoxy, aryloxy, amino or halogen radicals, at least one of R_1 to R_4 is aryl, and r1 to r4 each are 0 or an integer of 1 to 5, with the proviso that r1 to r4 are not 0 at the same time, that is, r1+r2+r3+r4 is an integer of at least 1. R_5 and R_6 are independently alkyl, alkoxy, amino or halogen radicals and may be the same or different, and r5 and r6 each are 0 or an integer of 1 to 4.

[0054] The aryl radicals represented by R_1 to R_4 may be monocyclic or polycyclic, inclusive of fused rings and a collection of rings. Those aryl radicals having 6 to 20 carbon atoms in total are preferred. They may have substituents, examples of which are alkyl, alkoxy, aryl, aryloxy, amino and halogen groups. Preferred examples of the aryl radical represented by R_1 to R_4 include phenyl, o-, m- and p-tolyl, pyrenyl, naphthyl, anthryl, biphenylyl, phenylanthryl and tolylanthryl. Of these, phenyl is most preferred. Preferably the aryl radical, especially phenyl is bonded at the 3- or 4-position.

[0055] The alkyl radicals represented by R₁ to R₄ may be straight or branched alkyl radicals, preferably of 1 to 10 carbon atoms. They may have substituents, examples of which are as illustrated for the aryl radicals. Preferred examples of the alkyl radical represented by R₁ to R₄ include methyl, ethyl, n- and i-propyl, n-, i-, sec- and tert-butyl.

[0056] The alkoxy radicals represented by R_1 to R_4 are preferably those having an alkyl moiety of 1 to 6 carbon atoms, for example, methoxy, ethoxy, and t-butoxy. The alkoxy radicals may have substituents.

[0057] Examples of the aryloxy radicals represented by R_1 to R_4 include phenoxy, 4-methylphenoxy, and 4-(t-butyl)-phenoxy.

[0058] The amino radicals represented by R_1 to R_4 may be substituted or unsubstituted, with the substituted amino radicals being preferred. Illustrative examples include dimethylamino, diethylamino, diphenylamino, phenyltolyl-amino and bis(biphenyl)amino radicals.

[0059] Examples of the halogen atom represented by R_1 to R_4 are chlorine and bromine.

[0060] At least one of R₁ to R₄ is an aryl radical, and preferably at least two, more preferably at least three of R₁ to R₄ are aryl radicals. It is then preferred that at least two, more preferably at least three of r1 to r4 are integers of at least 1. Especially at least two, even more preferably at least three of r1 to r4 are equal to 1.

[0061] In formula (II), the alkyl, alkoxy, amino and halogen radicals represented by R_5 and R_6 are the same as illustrated for R_1 to R_4 .

[0062] It is preferred that both r5 and r6 be 0, that is, the biphenylene radical connecting two arylamino radicals be an unsubstituted one.

[0063] When r1 to r4 are integers of at least 2, the R_1 groups, R_2 groups, R_3 groups and R_4 groups may be identical or different, respectively. When r5 and r6 are integers of at least 2, the R_5 groups and R_6 groups may be identical or different, respectively.

⁴⁵ [0064] Of the compounds of formula (II), those compounds of the following formulas (II-1) and (II-2) are preferred.

$$(R_{13})_{r13}$$

$$(R_{9})_{r9}$$

$$(R_{10})_{r10}$$

$$(R_{10})_{r10}$$

$$(R_{10})_{r10}$$

$$(R_{10})_{r10}$$

$$(R_{11})_{r11}$$

$$(R_{12})_{r12}$$

$$(R_{13})_{r13}$$

$$(R_{13})_{r13}$$

$$(R_{14})_{r14}$$

$$(R_{16})_{r16}$$

$$(R_{17})_{r17}$$

$$(R_{17})_{r17}$$

$$(R_{18})_{r18}$$

$$(R_{10})_{r10}$$

[0065] In formulas (II-1) and (II-2), R_7 to R_{10} are independently alkyl, alkoxy, aryl, aryloxy, amino radicals or halogen atoms, and may be the same or different. Illustrative examples are the same as described for R_1 to R_4 in formula (II). Letters r7 to r10 are each 0 or an integer of 1 to 4. It is preferred that r7 to r10 be 0 in both formulas (II-1) and (II-2). [0066] R_{11} to R_{14} are independently alkyl, alkoxy, aryl, aryloxy, amino radicals or halogen atoms, and may be the same or different. Illustrative examples are the same as described for R_1 to R_4 in formula (II). Letters r11 to r14 are each 0 or an integer of 1 to 5.

[0067] R₅, R₆, r5 and r6 in formulas (II-1) and (II-2) are as defined in formula (II). It is preferred that r5 and r6 be 0. [0068] In formulas (II-1) and (II-2), when each of r7 to r10 is an integer of at least 2, the R₇ groups, R₈ groups, R₉ groups and R₁₀ groups may be the same or different, respectively; and when each of r11 to r14 is an integer of at least 2, the R₁₁ groups, R₁₂ groups, R₁₃ groups and R₁₄ groups may be the same or different, respectively.

[0069] Of the compounds of formula (II), those compounds of the following formula (II-3) are also preferred.

40

$$(R_{17})_{r17} \qquad (R_{18})_{r5} \qquad (R_{18})_{r18} \qquad (R_{1$$

[0070] R₅, R₆, r5 and r6 in formula (II-3) are as defined in formula (II). It is preferred that r5 and r6 be 0.

15

20

30

35

40

45

50

55

[0071] Ar₁ and Ar₂ each are an aryl radical and may be the same or different. Illustrative examples of the aryl radical are as described for R_1 to R_4 in formula (II). Phenyl and biphenyl radicals are preferred among others.

[0072] R_{15} and R_{16} are independently alkyl, alkoxy, aryl, aryloxy, amino radicals or halogen atoms, and may be the same or different. Illustrative examples are the same as described for R_1 to R_4 in formula (II). Letters r15 and r16 are each 0 or an integer of 1 to 4. It is preferred that r15 and r16 be 0.

[0073] R_{17} and R_{18} are independently alkyl, alkoxy, aryloxy, amino radicals or halogen atoms, and may be the same or different. Illustrative examples are the same as described for R_1 to R_4 in formula (II). Letters r17 and r18 are each 0 or an integer of 1 to 5. It is preferred that r17 and r18 be 0.

[0074] In formula (II-3), when each of r15 and r16 is an integer of at least 2, the R_{15} groups and R_{16} groups may be the same or different, respectively; and when each of r17 and r18 is an integer of at least 2, the R_{17} groups and R_{18} groups may be the same or different, respectively.

[0075] Illustrative, non-limiting, examples of the compound of formula (II) are given below. It is noted that general formulas are followed by lists of R's to show illustrative examples by combinations of R's and optionally Ar's. As to a set of R's, when all R's in that set are hydrogen, H is assigned to that set. When a substituent is present as any of R's in a set, only the substituent is designated in the set, indicating that the remainders are hydrogen. Ar_1 and Ar_2 are individually shown.

5	R37~R44	H	H	Н	Н	Н	Ħ	Н	H	н	Н	Н	Н	Н	Н	Н
10	R ³² ~R ³⁶	Н	R^{36} = CH_3	R34=CH3	R^{34} =t- C_4H_9	R34=OCH3	$R^{34}=Ph$	R ³⁴ =-{}-CH ₃	R34=0Ph	$R^{34}=N(C_2H_5)_2$	$R^{34}=N(Ph)_2$	R34=C1	Н	\mathbb{R}^{35} =Ph	Н	н
15	R ²⁸ ~R ³¹	H.	H	Н	H	Н	H	Н	H	H	H	H	$\mathbb{R}^{29} = \mathbb{CH}_3$	Ħ	H	н
20	R ¹³ ~R ¹⁷	H	\mathbb{R}^{26} = $\mathbb{C}\mathbb{H}_3$	R25=CH3	R^{25} =t- $\mathrm{C}_4\mathrm{H}_9$	R25=0CH3	R^{25} =Ph	R ²⁵ = CH ₃	$R^{25}=OPh$	$R^{25}=N(C_2H_5)_2$	$R^{25}=N(Ph)_2$	$R^{25}=Cl$	Н	$R^{26}=Ph$	Н	Н
25	R19~R22	H	H	Н	H	H	H	Н	н	H	H	Н	$\mathrm{R}^{20} = \mathrm{CH}_3$	Н	Н	Н
30	R14~R18	H	$R^{17}=CH_3$	$R^{16}=CH_3$	R16=t-C4H9	R16=OCH3	R16=Ph	R18 = CH3	R ¹⁶ =OPh	R16=N(C2H5)2	R16=N(Ph)2	R16=C1	н	R17=Ph	R^{16} =Ph	R ¹⁷ =Ph
35	R10~R13	H	Ħ	н	H	H	Н	Н	н	н	H	н	R11=CH3	Н	Н	н
40	$\mathrm{R}^{5}{\sim}\mathrm{R}^{9}$	H	R^6 = CH_3	R^7 = CH_3	$R^7=t-C_4H_9$	$R'=OCH_3$	R'=Ph	R' = CH3	R'=OPh	$R^7=N(C_2H_5)_2$	$R^7=N(Ph)_2$	\mathbf{R}^{7} =Cl	н	$R^6 = Ph$	R^7 =Ph	R ⁶ =Ph
***	$\mathbb{R}^1{\sim}\mathbb{R}^4$	Н	Н	Н	H	H	H	н	H	Н	Н	н	R^2 = CH_3	н	Н	Н
50	Sompound No.	.1	-2	က္	4-	٠. ت	9-	<i>L</i> -:	8-	6-	-10	:-11	-12	-13	-14	-15

EP 1 148 109 A2

									5)2						1
5	R37~R44	Н	H	H	Н	Н	R³7=R42=CH3	R37=R42=OCH3	$R^{37}=R^{42}=N(C_2H_5)_2$	$R^{37} = R^{42} = Cl$	R40=R43=CH3	Н	Н	Н	Н
10	R32~R36	H	Ħ	Н	H	Н	Ħ	H	н	Н	Н	\mathbb{R}^{34} =Ph	H	\mathbb{R}^{34} = $\mathbb{C}\mathbb{H}_3$	H
15	R ²⁸ ~R ³¹	R ²⁹ =OCH ₃	$R^{29}=Ph$	R29=0Ph	R23=N(C2H5)2	$R^{29}=Cl$	Н	H	Н	Н	н	$R^{29}=Ph$	$R^{29}=Ph$	Н	Н
20	$ m R^{23}{\sim}R^{27}$	H	н	н	Н	Н	,	Н	н	Н	Н	R^{25} =Ph	Н	$R^{26}=CH_3$	R24=R26=CH3
<i>25</i> <i>30</i>	R ¹⁹ ~R ²²	R20=OCH3	$ m R^{20}$ =Ph	R20=OPh	$ m R^{20} = N(C_2 H_5)_2$	R^{20} =Cl	н	н	н	н	Н	R ²⁰ =Ph ·	R^{20} =Ph	н	Н
35	R14~R18	H	н	Н	Н	Н	H	Н	н	н	н	R16=Ph	Н	R16=CH3	н
40	R10~R13	R11=0CH3	R11=Ph	R11=OPh	R11=N(C2H6)2	R"=CI	Н	Н	Н	Н	Н	R11=Ph	R11=Ph	Н	Н
45	R5~R9	H	Н	H	Н	Н	н	Н .	Н	Н	H	R'=Ph	Н	R6=CH3	R6=R8=CH3
50	R1~R4	R2=OCH3	R²=Ph	R^2 =OPh	R2=N(C2H5)2	R^2 =Cl	н	н	H	H	H	$R^2=Ph$	$R^2=N(Ph)_2$	н	Н
55	Compound No.	I-16	I.17	I-18	I-19	1.20	1.21	I-22	I-23	I-24	I-25	I-26	1.27	I-28	1.29

EP 1 148 109 A2

55	50	40	35	30	25	20	15	10	5
Compound No.	R51~R54	R ⁵⁵ ~R ⁵⁹	R ⁶⁰ ~R ⁶³	R ⁶⁴ ~R ⁶⁸	R69~R72	R'3~R'7	R78~R81	R ⁸² ~R ⁸⁶	R87~R94
П-1	H	Н	Н	H	Н	H	H	Н	н
11.2	Н	$ m R^{56}=CH_3$	H	R^{67} = CH_3	Н	R'4=CH3	н	$R^{86}=CH_3$	Н
11.3	Н	R57=CH3	Н	R^{66} = CH_3	Н	R'5=CH3	Н	R^{84} = CH_3	н
II-4	Н	R57=t-C4H9	H	R66=t-C4H9	Н	R75=t-C4H9	н	$\mathrm{R}^{84}\text{=}\mathrm{t\text{-}}\mathrm{C_4H_9}$	н
11.5	Н	R57=OCH3	н	R ⁶⁶ =OCH ₃	H	R'5=0CH3	Н	R84=OCH3	н
9-11	Н	R ⁵⁷ =Ph	Н	R^{66} = Ph	Н	R'5=Ph	H	R84=Ph	Н
11.7	Н	R ⁵⁷ = CH ₃	н	R ⁶⁶ = CH ₃	Ħ	R ⁷⁵ = CH ₃	H	R84 = - CH3	H
II-8	H	R ⁵⁷ =OPh	Н	$ m R^{66}=OPh$	Н	R'5=0Ph	Н	R84=OPh	Н
6-II	H	$R^{57}=N(C_2H_5)_2$	H	$\mathrm{R}^{66}\mathrm{=}\mathrm{N}(\mathrm{C}_{2}\mathrm{H}_{5})_{2}$	H	$\mathrm{R}^{75} = \mathrm{N}(\mathrm{C}_2\mathrm{H}_5)_2$	Н	R84=N(C2H5)2	Н
11.10	Н	$R^{57}=N(Ph)_2$	н	$R^{66}=N(Ph)_2$	H	R75=N(Ph)2	Н	$R^{84}=N(Ph)_2$	Н
11-11	Н	R ⁵⁷ =Cl	н	R ⁶⁶ =Cl	Н	R^{75} =Cl	H	$R^{84}=C1$	Н

55	50	45	35		25	20	15	10	5
Compound	R61~R64	R ⁵⁵ ~R ⁵⁹	$ m R^{60}{\sim}R^{63}$	R64~R68	R ⁶⁹ ~R ⁷²	R73~R77	R ⁷⁸ ~R ⁸¹	R ⁸² ~R ⁸⁶	R87~R94
No.						, , , , , , , , , , , , , , , , , , ,	1	W - W	11- 11
II-12	R^{52} = CH_3	Н	$ m R^{62}=CH_3$	H	R ⁷² =CH ₃	Н	R79=CH3	Н	Н
II-13	R^{52} = $0CH_3$	н	R ⁶² =OCH,	н	R^{72} =0CH ₃	н	R79=0CH3	H	Н
II-14	$ m R^{62} = Ph$	H	$ m R^{62}\!\!=\!\!Ph$	H	$R^{72}=Ph$	Н	R79=Ph	Ħ	Н
II-15	R ⁵² =OPh	н	$ m R^{62}\!\!=\!\!OPh$	н	R ⁷² =OPh	н	R79=OPh	н	Н
II-16	$R^{52} = N(C_2H_5)_2$	н	$\mathrm{R}^{62}\!\!=\!\!\mathrm{N}(\mathrm{C}_2\mathrm{H}_5)_2$	н	$R^{72}=N(C_2H_5)_2$, H	R79=N(C2H6)2	Н	Н
11.17	R ⁵² =Cl	H	R^{62} =CI	Ħ	R^{72} =Cl	Н	R79=C1	н	Н
II-18	Ħ	H .	н	Н	н	н	Н	Н	R87=R92=CH3
II-19	н	H.	Н	Н	н	н	н	н	R87=R92=OCH3
11.20	Н	Н	H	H	H	H	н	н	$R^{87} \!\!=\!\! R^{92} \!\!=\!\! N(C_2 H_5)_2$
11.21	Н	н	H	Ħ	H	H	н	н	R ⁸⁷ =R ⁹² =Cl
11-22	Н	Н	H	н	H	Н	н	н	$R^{90} = R^{92} = CH_3$
11.23	Н	R^{57} = CH_3	н	R67=CH3	H	R'5=CH3	н	R85=CH3	Н
II-24	H	R56=R58=CH3	H	Н	Н	R'4=R'6=CH3	Н	Н	Н

5

	1	1													
5	R119~R126	Н	Н	Н	Н	Н	Н	Н	Н	Н	н	Н	Н	Н	Н
10	R114~R118	H	R115=CH3	R116=CH3	R116=t-C4H9	R116=OCH3	R116=Ph	R ¹¹⁶ = CH ₃	R116=OPh	$R^{116}=N(C_2H_5)_2$	R116=N(Ph)2	R116=C1	Н	R115=CH3	R115=OCH3
15	R113				H,	$_3$		Усн3		$_2^{\rm H_5}$	h)2			•	I3
20	R109~R113	Н	R110=CH3	R'''=CH3	R111=t-C4H9	Ŗ111=OCH3	R111=Ph	R ¹¹¹ =	R111=OPh	$R^{111}=N(C_2H_5)_2$	R111=N(Ph)2	R111=C1	H	R111=CH3	R111=OCH3
25	R105~R108	Н	H	Н	Н	Н	Н	Н	Н	H	H .	Н	R106=CH3	н	Н
30	R ¹⁰¹ ~R ¹⁰⁴	H	Н	н	Н	н	Н	н	н	H	H	H	$R^{102}=CH_3$	Н	Н
35	Ar ₂	Ph	Ph	Ph	Ph	Ph	Ph	Ph	Ph	Ph	Ph	Ph	Ph	Ph	Ph
40	Ar_1	Ph	Ph	Ph	Ph	Ph	Ph	Ph	Ph	Ph	Ph	Ph	Ph	Ph	Ph
45	Compound No.	III-1	III-2	III-3	II-4	9-III	9-III	7-111	8-III	6·III	II-10	II-11	II-12	III-13	II-14

5	R119~R126	H	н	Н	Н	H	$R^{119}=R^{124}=CH_3$	R119=R124=OCH3	R119=R124=N(C2H5)2	R119=R124=Cl	Н	Н	H	Н	н
15	R114~R118	H	Ħ	Н	Н	Н	Н	Ħ	Н	н	H	н	н	Н	H
20	R109~R113	H	н	н	Н	Н	Н	Ħ	Ħ	Н	#	Н	н	Н	Ħ
25	R105~R108	R106=OCH3	$R^{106}=Ph$	R106=OPh	$R^{106}=N(C_2H_5)_2$	R104=C1	н	н	н	н	н	н	н	н	н
30	R101~R104	R102=OCH3	R^{102} = Ph	R102=OPh	R102=N(C2H5)2	R102=C1	H	н	Н	Н	н	н	Н	н	Н
40	Ar ₂	Ph		Ph	Ph	Ph	Ph	Ph	Ph	Ph	CH ₃			CH ₃	
45	Arı	Ph	Ph	Ph	Ph	Ph	$_{ m Ph}$	Ph	Ph	Ph	CH ₃			Ph	
50	Compound No.	III-15	III-16	111-17	III-18	91-III	111-20	111-21	111-22	III-23	111.24	III-25	III-26	III-27	111-28

VI- 1 5 10 15 20 VI- 2 CH₃ -CH₃ 25 CH₃ 30 осн₃ СН₃О VI-3 35 40 45 -N(C₂H₅) 50 55

$$R_{23}$$
 R_{22} R_{24} R_{25} R_{26} R_{36} R_{32} R_{33} R_{13} R_{14} R_{15} R_{15}

$$R_{23}$$
 R_{22} R_{23} R_{22} R_{32} R_{32} R_{33} R_{13} R_{14} R_{15} R_{15}

R ₃ =R ₂₃	R ₄ =R ₂₄	R ₁₃ =R ₃₃	R ₁₄ =R ₄₄
Ph	Н	Н	Н
Н	Ph	Н	Н
Ph	Н	Ph	Н
Н	Ph	Н	Ph
CH ₃	Н	Н	Н
Н	CH ₃	Н	Н
CH ₃	н	CH₃	Н
Н	CH₃	Н	CH₃

[0076] The above-described host compounds can be synthesized by the method described in Jean Piccard, Herr. Chim. Acta., 7, 789 (1924), Jean Piccard, J. Am. Chem. Soc., 48, 2878 (1926), etc. or similar methods. More particularly, Ullmann reaction is effected by heating in the presence of copper a combination of a di(biphenyl)amine compound with a diiodobiphenyl compound or a combination of a N,N'-diphenylbenzidine compound with a iodobiphenyl compound, selected in accordance with the end compound.

55 [0077] The host compounds can be identified by mass analysis, infrared (IR) absorption spectroscopy or nuclear magnetic resonance spectroscopy (¹H-NMR).

[0078] These compounds have a molecular weight of about 640 to about 800, a high melting point of about 190 to about 300°C, and a high glass transition temperature of about 80 to about 150°C. On conventional vacuum evaporation,

they form satisfactory smooth films which are transparent and remain amorphous even above room temperature. The films maintain the stable amorphous state over a long period of time. Accordingly, thin films can be formed from the compounds alone without a need for binder resins.

Anthracene compounds

10

20

25

30

35

40

45

50

55

[0079] A further class of organic compounds useful as the host material according to the invention are phenylan-thracene derivatives of the following formula (III).

[0080] In the device of the invention, the use of the anthracene derivative of formula (III), preferably as the host material, helps induce strong light emission from the dopant while controlling the interaction with the dopant. Since the anthracene derivatives are fully heat resistant and durable, organic EL devices with a longer lifetime are obtainable.

[0081] In an exemplary organic EL device which was fabricated using an anthracene derivative doped with a dibenzo [f,f']diindeno[1,2,3-cd:1',2',3'-lm]perylene derivative, a luminance of at least 250 cd/m² was obtained at a current density of 10 mA/cm² and a drive voltage as low as about 6.5 V. When operated at a current density of about 600 mA/cm², the device consistently produced a luminance of greater than about 13,000 cd/m². When operated at a current density

the device consistently produced a luminance of greater than about 13,000 cd/m². When operated at a current density of about 50 mA/cm², the device marked a very long lifetime as demonstrated by a half-life time of more than 300 hours at an initial luminance of at least 2400 cd/cm².

[0082] In organic EL devices as mentioned above, the dopant concentration ensuring a chromatic purity and maximum efficiency is about 1% by weight although dopant concentrations of about 2 or 3% by weight lead to devices which are practically acceptable albeit a drop of less than about 10%.

$$\left(A_{101}\right)_{n} L \qquad (111)$$

Herein A₁₀₁ is a monophenylanthryl or diphenylanthryl radical and may be the same or different, L is hydrogen, a single bond or a divalent linkage, and n is an integer of 1 or 2.

[0083] Of the compounds of formula (III), those compounds of the following formulas (III-1) and (III-2) are preferred.

$$(M_2)_{q2}$$

$$(III-1)$$

$$(M_1)_{q1}$$

$$(M_3)_{q_3}$$
 L_2 $(M_4)_{q_4}$

10

20

25

55

[0084] Evaporated films of these compounds remain in a stable amorphous state, that is, have sufficient physical properties to produce consistent uniform light emission. The films remain stable over one year in the ambient atmosphere without crystallization.

[0085] Referring to formula (III), A₁₀₁ is a monophenylanthryl or diphenylanthryl radical and may be the same or different, and n is an integer of 1 or 2. The monophenylanthryl or diphenylanthryl radical represented by A₁₀₁ may be substituted or unsubstituted. Exemplary substituents are alkyl, aryl, alkoxy, aryloxy and amino groups. These substituents may further have substituents thereon and will be described later. The position of a substituent on the monophenylanthryl or diphenylanthryl radical is not critical although the preferred substitution position is on the phenyl group bonded to the anthracene ring rather than the anthracene ring.

[0086] Preferably the phenyl group is bonded to the anthracene ring at the 9- and 10-positions.

[0087] In formula (III), L is hydrogen, a single bond or a divalent linkage. The divalent linkage represented by L is preferably an arylene radical which may be separated by an alkylene or analogous group. The arylene radical will be described later.

[0088] Of the phenylanthracene derivatives of formula (III), those of formulas (III-1) and (III-2) are preferred. Formula (III-1) is described in detail.

[0089] In formula (III-1), M₁ and M₂ each are alkyl, cycloalkyl, aryl, alkoxy, aryloxy, amino or heterocyclic radicals.

[0090] The alkyl radicals represented by M₁ and M₂ may be substituted or unsubstituted, straight or branched alkyl radicals, preferably of 1 to 10 carbon atoms, more preferably 1 to 4 carbon atoms. Unsubstituted alkyl radicals of 1 to 4 carbon atoms are preferred, such as, for example, methyl, ethyl, n- and i-propyl, and n-, i-, sec- and tert-butyl.

[0091] Exemplary of the cycloalkyl radicals represented by M₁ and M₂ are cyclohexyl and cyclopentyl.

[0092] The aryl radicals represented by M₁ and M₂ are preferably those aryl radicals having 6 to 20 carbon atoms which may have substituents such as phenyl and tolyl. Preferred examples of the aryl radical include phenyl, o-, m-and p-tolyl, pyrenyl, naphthyl, anthryl, biphenyl, phenylanthryl and tolylanthryl.

[0093] The alkenyl radicals represented by M_1 and M_2 are preferably those having 6 to 50 carbon atoms in total, which may be substituted or unsubstituted, with the substituted ones being preferred. Such substituents are anyl groups such as phenyl. Exemplary alkenyl radicals are triphenylvinyl, tritolylvinyl and tribiphenylvinyl.

[0094] The alkoxy radicals represented by M₁ and M₂ are preferably those having an alkyl moiety of 1 to 6 carbon atoms, for example, methoxy and ethoxy. The alkoxy radicals may have substituents.

[0095] Exemplary of the aryloxy radicals represented by M₁ and M₂ is phenoxy.

[0096] The amino radicals represented by M_1 and M_2 may be substituted or unsubstituted, with the substituted amino radicals being preferred. Such substituents are alkyl groups such as methyl and ethyl and aryl groups such as phenyl. Illustrative examples of the amino radical include diethylamino, diphenylamino and di(m-tolyl)amino radicals.

[0097] The heterocyclic radicals represented by M_1 and M_2 include bipyridyl, pyrimidyl, quinolyl, pyridyl, thienyl, furyl and oxadiazoyl radicals and may have substituents such as methyl and phenyl.

[0098] In formula (III-1), q1 and q2 each are 0 or an integer of 1 to 5, especially 0 or 1. When q1 and q2 each are an integer of 1 to 5, especially 1 or 2, M_1 and M_2 each are preferably alkyl, aryl, alkenyl, alkoxy, aryloxy or amino radicals.

[0099] In formula (III-1), M₁ and M₂ may be the same or different. Where a plurality of M₁ or M₂ are included, the M₁ groups or M₂ groups may be the same or different. Alternatively, the M₁ groups or M₂ groups bond together to form a ring such as a benzene ring. The ring formation is also a preferred embodiment.

[0100] In formula (III-1), L_1 is hydrogen, a single bond or an arylene radical. The arylene radicals represented by L_1 are preferably unsubstituted ones, for example, ordinary arylene radicals such as phenylene, biphenylene and anthrylene as well as two or more arylene radicals which are directly bonded. L_1 is preferably a single bond, p-phenylene or 4,4'-biphenylene.

[0101] The arylene radical represented by L₁ may consist of two or more arylene radicals which are connected by an alkylene radical, -O-, -S- or -NR- wherein R is an alkyl or aryl radical. Exemplary alkyl radicals are methyl and ethyl,

and an exemplary aryl radical is phenyl. R is preferably an aryl radical, such as phenyl. Alternatively, R is A₁₀₁ or a phenyl radical having A₁₀₁ substituted thereon. The alkylene radicals are preferably methylene and ethylene. [0102] Illustrative examples of the arylene radical are given below.

[0103] Next referring to formula (III-2), M₃ and M₄ are the same as M₁ and M₂ in formula (III-1), q3 and q4 are the same as q1 and q2 in formula (III-1), and L₂ is the same as L₁ in formula (III-1). Preferred examples of these radicals are also the same.

[0104] In formula (III-2), M_3 and M_4 may be the same or different. Where a plurality of M_3 or M_4 are included, the M_3 groups or M_4 groups may be the same or different. Alternatively, the M_3 groups or M_4 groups bond together to form a ring such as a benzene ring. The ring formation is also a preferred embodiment.

[0105] Illustrative, non-limiting, examples of the compounds of formulas (III-1) and (III-2) are given below. It is noted that general formulas are followed by lists of M's to show illustrative examples by combinations of M_{11} to M_{15} and M_{21} to M_{25} or combinations of M_{31} to M_{35} and M_{41} to M_{45} .

$$M_{15}$$
 M_{12}
 M_{14}
 M_{13}
 M_{14}
 M_{13}
 M_{23}
 M_{24}
 M_{25}
 M_{25}
 M_{21}

EP 1 148 109 A2

	Compound	M ₁₁	M ₁₂	M ₁₃	M ₁₄	M ₁₅	M ₂₁	M ₂₂	M ₂₃	M ₂₄	$\overline{\mathrm{M}_{25}}$
	No.										
5	I-1	H	H	H	H	H	H	H	Н	H	H
	I-2	CH_3	H	H	H	H	CH_3	H	H	H	H
	I-3	$t \cdot C_4 H_9$	H	H	H	H	$t-C_4H_9$	H	H	H	H
10	I-4	OCH_3	H	H	H	H	OCH_3	H	H	H	H
	I-5	OPh	Н	H	H	H	OPh	H	H	H	H
	I-6	$N(C_2H_5)_2$	Н	Н	Н	H	$N(C_2H_5)_2$	Н	Н	Н	H
	I-7	$N(Ph)_2$	H	H	H	H	$N(Ph)_2$	H	Н	H	H
15	I-8	Ph	H	H	H	H	Ph	Н	H	Н	Н
	I-9	-{Сн₃	H	H	Н	Н	-{	H	H	H	Н
	I-10	H	CH_3	H	H	Н	Н	CH_3	H	Н	Н
20	I-11	Н	CH ₃	H	CH ₃	H	Н	CH ₃	H	CH ₃	H
	I-12	H	H	CH ₃	H	H	Н	Н	CH_3	Н	H
	I-13	H	CH_3	H	H	CH_3	Н	CH ₃	H	H	CH ₃
25	I-14	$t-C_4H_9$	H	H	H	H	H	H	Н	Н	Н
25	I-15	$-\bigcirc\!$	H	H	H	H	$-\bigcirc\!$	H	H	H	Н
	I-16	Н	Ph	H	H	H	H	Ph	H	H	H
	I-17	H	H	Ph	H	H	Н	H	Ph	Н	Н
30	I-18	C=C Ph Ph	Н	Н	Н	Н	C=C Ph Ph	Н	Н	Н	Н
	I-19	$n-C_4H_9$	H	H	H	H	$n-C_4H_9$	H	H	H	H
35	I-20	$-\bigcirc$	H	Н	Н	Н	$-\bigcirc\!\!-\!\bigcirc$	H	H	Н	H
	I-21	H	H	$ \bigcirc \!\!\!\! \bigcirc \!\!\!\! \bigcirc$	H	H	Н	H	$-\bigcirc$	Н	Н
	I-22		H	Н	Н	Н		н	Н	Н	Н
40	I-23	Н	Н	\bigcirc	H	н	Н	H		Н	Н
	I-24	H	H	Ph	H	Ph	Н	Н	Ph	Н	Ph
45	I-25	H	Н	Ph	Ph	Н	Н	H	Ph	Ph	Н

M₂₅

M₂₁

M₁₂

'M₁₃

.M₂₄

M₂₅

M₂₂

25

30

35

40

45

50

55

EP 1 148 109 A2

	Compound No.	M ₁₁	M ₁₂	M ₁₃	M ₁₄	M ₁₅	M ₂₁	M ₂₂	M ₂₃	M ₂₄	M ₂₅
5	II-1	Н	Н	H	Н	Н	Н	Н	H	Н	H
	II-2	CH_3	H	H	H	Н	CH_3	H	H	H	H
	II-3	$t-C_4H_9$	H	H	H	H	$t \cdot C_4 H_9$	Н	H	H	H
10	II-4	OCH_3	H	H	H	H	OCH ₃	H	H	H	Н
,,,	II-5	OPh	Н	H	H	H	OPh	H	H	H	H
	II-6	$N(C_2H_5)_2$	Н	Н	Н	Н	$N(C_2H_5)_2$	Н	Н	Н	H
	II-7	$N(Ph)_2$	Н	H	Н	H	$N(Ph)_2$	Н	Н	H	H
15	II-8	Ph	H	H	H	H	Ph	H	Н	H	Н
	II-9	-{Сн₃	H	H	Н	H	-{	H	Н	H	H
	II-10	H	CH ₃	Н	H	H	H	CH ₃	Н	H	Н
20	II-11	Н	Н	CH ₃	H	Н	H	CH ₃	CH ₃	H	H
	II-12	H	H	CH ₃	CH_3	H	H	H	CH_3	CH ₃	H
	II-13	H	H	CH_3	H	CH_3	H	CH_3	CH_3	H	CH ₃
	II-14	CH_3	CH ₃	CH_3	CH_3	CH_3	CH_3	CH_3	CH_3	CH_3	CH_3
25	II-15	t-C ₄ H ₉	H	H	Н	H	H	H	Н	H	H
	II-16	$\bigcirc \bigcirc$	H	H	H	H	$-\bigcirc\!$	Н	H	H	H
	II-17	H	Ph	H	H	H	H	Ph	H	H	H
30	II-18	H	H	Ph	H	H	H	H	Ph	H	H
	II-19	Н	H		H	Н	H	H	- ()-().	H	H
	II-20	$-\bigcirc-\bigcirc$	H	H	H	Н	$-\bigcirc$	H	H	H	H
35	II-21	$\bigcirc \bigcirc$	Н	Н	Н	Н	$\bigcirc\bigcirc$	Н	Н	Н	Н
	II-22	Н	Н	\bigcirc	Н	Н	Н	Н	$-\bigcirc$	Н	Н
40	II-23	H	H	Ph	H	Ph	H	H	Ph	Н	Ph
	II-24	H	Н	Ph	Ph	Н	Н	Н	Ph	Ph	H

5

$$M_{15}$$
 M_{12}
 M_{14}
 M_{13}
 M_{15}
 M_{14}
 M_{13}
 M_{24}
 M_{25}
 M_{25}
 M_{25}
 M_{21}

EP 1 148 109 A2

	Compound No.	M_{11}	M ₁₂	M ₁₃	M ₁₄	M ₁₅	M ₂₁	M ₂₂	M ₂₃	M ₂₄	M ₂₅
5	III-1	H	Н	Н	H	Н	Н	Н	Н	H	Н
	III-2	$\mathrm{CH_3}$	H	H	H	H	CH_3	H	H	H	H
	III-3	$t-C_4H_9$	H	H	H	H	$t-C_4H_9$	H	H	H	H
10	III-4	OCH_3	H	H	H	H	OCH_3	H	H	H	H
	III-5	OPh	H	H	H	H	OPh	H	H	H	H
	III-6	$N(C_2H_5)_2$	H	H	H	H	$N(C_2H_5)_2$	H	H	H	H
	III-7	$N(Ph)_2$	H	H	H	H	$N(Ph)_2$	H	H	H	H
15	8-III	Ph	H	H	H	H	Ph	H	H	H	H
	III-9	-{	H	H	H	H	-{∑}-сн₃	H	H	H	H
	III-10	H	CH_3	Н	Н	H	Н	CH ₃	H	H	H
20	III-11	Н	H	CH ₃	H	H	Н	H	CH_3	H	H
	III-12	H	H	CH_3	CH_3	H	H	H	CH_3	CH_3	H
	III-13	H	H	CH_3	H	CH_3	H	H	CH_3	H	CH_3
25	III-14	CH_3	CH ₃	CH_3	CH_3	CH_3	CH_3	CH ₃	CH_3	CH ₃	CH_3
23	III-15	H	Ph	<u>H</u>	H	H	<u>H</u>	Ph	H	H	<u>H</u>
	III-16	H	H	Ph	H	H	H	H	Ph	H	H
	III-17	$-\bigcirc-\bigcirc$	H	H	H	H	$-\bigcirc-\bigcirc$	H	H	H	H
30	III-18	$t-C_4H_9$	H	Н	H	H	H	H	H	H	H
	III-19	\leftarrow	H	Н	H	Н	\leftarrow	H	Н	H	H
35	III-20	N−N Ph	Н	Н	Н ·	Н	N-N Ph	Н	Н	Н	H
	III-21	СH ₃	H	H	Н	H	{S} CH₃	H	H	H	H
40	III-22		Н	Н	Н	Н		Н	H	Н	Н
	III-23	$-\bigcirc +\bigcirc$	H	H	Н	Н	$-\bigcirc$	Н	H	Н	H
	III-24	H	H	$ \bigcirc \bigcirc$	H	H	H	H	$-\bigcirc+\bigcirc$	H	H
45	III-25	$\bigcirc\bigcirc$	Н	Н	н	Н		Н	Н	Н	Н
	III-26	Н	Н	\bigcirc	Н	Н	Н	Н	\bigcirc	Н	Н
50	III-27	H	H	Ph	H	Ph	H	H	Ph	H	Ph
	III-28	H	Н	Ph	Ph	Н	H	Н	Ph	Ph	H

$$M_{15}$$
 M_{11}
 M_{15}
 M_{14}
 M_{13}
 M_{23}
 M_{24}
 M_{25}
 M_{21}
 M_{25}

EP 1 148 109 A2

	Compound	M ₁₁	M ₁₂	M ₁₃	M ₁₄	M ₁₅	M ₂₁	M ₂₂	M ₂₃	M_{24}	M_{25}
	No.										-
5	IV-1	H	Н	Н	Н	Н	H	Н	Н	Н	Н
	IV-2	CH_3	H	H	H	H	CH_3	H	H	H	H
	IV-3	$t-C_4H_9$	H	H	H	H	$t \cdot C_4 H_9$	H	Н	H	H
10	IV-4	OCH_3	H	H	H	H	OCH ₃	H	H	H	H
,,,	IV-5	OPh	H	H	H	H	OPh	H	Н	Н	Н
	IV-6	$N(C_2H_5)_2$	Н	Н	H	H	$N(C_2H_5)_2$	H	Н	H	H
	IV-7	$N(Ph)_2$	H	H	H	H	$N(Ph)_2$	H	H	H	H
15	IV-8	Ph	H	H	H	H	Ph	H	H	H	H
	IV-9	-{	H	H	H	H	-{∑}-сн₃	H	H	H	H
	IV-10	H	CH ₃	H	Н	Н	Н	CH ₃	H	H	·H
20	IV-11	H	H	CH ₃	H	H	Н	H	CH ₃	H	Н
	IV-12	H	H	CH ₃	CH_3	H	H	H	CH_3	CH_3	H
	IV-13	H	H	CH_3	H	$\mathrm{CH_3}$	H	H	CH_3	H	CH_3
	IV-14	CH_3	CH_3	CH_3	CH_3	CH_3	CH_3	CH_3	CH_3	CH ₃	CH ₃
25	IV-15	H	H	H	H	H	H	H	Н	Н	H
	IV-16	H	H	Ph	H	H	H	H	Ph	H	H
	IV-17	\bigcirc	H	H	H	H	$\bigcirc\!$	H	H	H	H
30	IV-18	$t-C_4H_9$	H	H	H	H	H	H	H	H	H
	IV-19	$\overline{}$	Н	, H	H	Н	$\overline{}$	H	Н	Н	Н
35	IV-20	Ph	H	Н	Н	Н	Ph	·H	Н	Н	Н
	IV-21	$ \bigcirc \bigcirc$	H	Н	H	Н	$-\bigcirc$	Н	Н	H	H
	IV-22	H	H	$ \bigcirc \bigcirc$	Н	H	H	H	$-\bigcirc\!$	H	Н
40	IV-23	\bigcirc	H	Н	Н	Н		H	Н	Н	H
	IV-24	Н	Н	\bigcirc	Н	Н	. Н	Н	$\bigcirc\!$	Н	Н
45	IV-25	H	H	Ph	H	Ph	H	H	Ph	H	Ph
	IV-26	H	Н	Ph	Ph	H	H	H	Ph	Ph	H

$$M_{31}$$
 M_{32}
 M_{33}
 M_{33}
 M_{43}
 M_{42}

EP 1 148 109 A2

	Compound No.	M ₃₁	M ₃₂	, M ₃₃	M ₃₄	M ₃₅	M ₄₁	M ₄₂	M ₄₃	M ₄₄	M ₄₅
5	V-1	Н	Н	Н	Н	Н	H	Н	<u>н</u>	H	<u>н</u>
	V-2	CH ₃	Н	Н	Н	Н	CH_3	Н	Н	Н	Н
	V-3	$t-C_4H_9$	Н	H	H	H	t-C ₄ H ₉	Н	Н	H	Н
10	V-4	OCH_3	Н	Н	Н	Н	OCH_3	Н	Н	Н	Н
	V-5	OPh	Н	Н	H	Н	OPh	Н	Н	Н	H
	V-6	$N(C_2H_5)_2$	H	Н	H	Н	$N(C_2H_5)_2$	H	H	Н	H
	V-7	$N(Ph)_2$	H	H	H	Н	$N(Ph)_2$	Н	Н	Н	Н
15	V-8	Ph	H	H	H	Н	Ph	Н	Н	H	Н
	V-9	-{_}Сн₃	Н	Н	Н	H	-{_}Сн₃	H	Н	H	Н
	V-10	Н	CH ₃	н	H	Н	H	CH ₃	н	Н	Н
20	V-11	Н	H	CH ₃		Н	H	H	CH ₃	H	<u>H</u>
	V-12	Н	Н	CH ₃	CH_3	Н	H	Н	CH ₃	CH ₃	H
	V-13	H	H	CH ₃	Н	CH ₃	H	Н	CH_3	Н	CH ₃
	V-14	CH_3	CH_3	CH_3	CH_3	CH ₃	CH_3	CH ₃	CH_3	CH ₃	•
25	V-15	H	Ph	H	H	H	Н	Ph	Н	Н	Н
	V-16	Н	Н	Ph	Н	H	Н	H	Ph	Н	H
	V-17	$-\bigcirc$	H	H	H	Н	$\overline{\langle \rangle \langle \rangle}$	Н	Н	Н	Н
30	V-18	$t-C_4H_9$	Н	Н	Н	H	t-C₄H ₉	Н	Н	Н	Н
	V-19		Н	Н	Н	Н		Н	н	Н	н
35	V-20		Н	Н	Н	Н		н	Н	Н	Н
40	V-21	-	Н	H	Н	Н	\leftarrow	Н	Н	Н	Н
40	V-22	N-N Ph	Н	Н	Н	Н	N−N Ph	Н	Н	Н	Н
	V-23	{S} CH₃	Н	Н	H	H	CH ₃	Н	Н	Н	H
45	V-24	$-\bigcirc-\bigcirc$	H	H	H	Н	$-\bigcirc\!$	H	Н	Н	H
	V-25	H	Н	$-\bigcirc$	Н	Н	Н	H	$\bigcirc \bigcirc$	Н	Н
50	V-26		Н	Н	Н	Н	$\bigcirc\bigcirc$	Н	Н	Н	Н
	V-27	Н	Н	\bigcirc	Н	Н	Н	H		Н	Н
	V-28	H	H	Ph	H	Ph	H	H	Ph	H	Ph
55	V-29	Н	Н	Ph	Ph	Н	Н	Н	Ph	Ph	H

EP 1 148 109 A2

$$M_{31}$$
 M_{32}
 M_{33}
 M_{33}
 M_{44}
 M_{45}
 M_{41}
 M_{43}
 M_{42}

EP 1 148 109 A2

	Compound No.	M ₃₁	M ₃₂	M ₃₃	M ₃₄	M ₃₅	M ₄₁	M ₄₂	M ₄₃	M ₄₄	M ₄₅
5	VI-1	Н	Н	H	Н	Н	H	<u>Н</u>	H	Н	
	VI-2	CH_3	Н	H	Н	Н	CH_3	Н	Н	Н	H
	VI-3	$t-C_4H_9$	H	H	H	H	$t-C_4H_9$	H	Н	Н	Н
	VI-4	OCH_3	Н	Н	Н	H	OCH ₃	H	H	H	Н
10	VI-5	OPh	H	H	H	H	OPh	H	н	Н	Н
	VI-6	$N(C_2H_5)_2$	Н	Н	Н	Н	$N(C_2H_5)_2$	H	H	H	H
	VI-7	$N(Ph)_2$	H	Н	H	H	$N(Ph)_2$	Н	H	H	H
15	VI-8	Ph	H	H	H	Н	Ph	H	Н	Н	H
	VI-9	-{	H	Н	Н	Н	-{Сн₃	H	H	H	H
	VI-10	Н	CH ₃	Н	Н	Н	Н	CH	H	Н	н
20	VI-11	H	H	CH_3	H	H	H	H	CH ₃	H	H
	VI-12	H	H	CH ₃	CH_3	H	H	H	CH_3	CH_3	Н
	VI-13	H	H	CH_3	H	CH_3	H	H	CH_3	H	CH_3
	VI-14	CH_3	CH_3	CH_3	CH_3	CH_3	CH_3	CH ₃	CH ₃	CH ₃	CH_3
25	VI-15	H	Ph	H	H	H	H	Ph	Н	H	Н
	VI-16	Н	Н	Ph	Н	Н	Н	Н	Ph	Н	H
	VI-17	$ \bigcirc \bigcirc$	H	Н	H	Н	$-\bigcirc$	H	Н	H	H
30	VI-18	$t \cdot C_4 H_9$	Н	Н	Н	H	Н	Н	н	Н	H
	VI-19		Н	Н	Н	Н	φ	Н	Н	Н	Н
35	VI-20		Н	Н	Н	Н		Н	Н	н	Н
40	VI-21	Ph	Н	Н	Н	Н	Н	Н	Н	Н	Н
	VI-22	CH ₃ -(C)-(C)	Н	H	Н	Н	CH ₃	Н	Н	Н	Н
45	VI-23	$\overline{}$	Н	Н	Н	H	$\overline{}$	Н	Н	Н	Н
	VI-24	Ph	Н	Н	Н	Н	Ph	Н	Н	Н	Н
50	VI-25	H	Н	Ph	H	Ph	H	H	Ph	H	Ph
	VI-26	Н	Н	Ph	Ph	Н	Н	H	Ph	Ph	H
	VI-27	Н	H	$-\bigcirc$	Н	Н	H	H		Н	Н

EP 1 148 109 A2

$$M_{31}$$
 M_{32}
 M_{33}
 M_{33}
 M_{43}
 M_{43}
 M_{42}

Compound No.	M ₃₁	M ₃₂	M ₃₃	M ₃₄	M ₃₅	M_{41}	M ₄₂	M ₄₃	M ₄₄	M ₄₅
VII-1	Н	H	H	Н	Н	Н	H	Н	Н	
VII-2	CH_3	H	Н	Н	Н	CH ₃	Н	H	Н	Н
VII-3	$t-C_4H_9$	Н	\mathbf{H}_{i}	Н	H	t-C₄H ₉	Н	Н	H	Н
VII-4	OCH ₃	H	Н	H	Н	OCH ₃	Н	Н	Н	Н
VII-5	OPh	H	H	H	H	OPh	H	Н	Н	H
VII-6	$N(C_2H_5)_2$	Н	Н	Н	Н	$N(C_2H_5)_2$	Н	Н	H	H
VII-7	$N(Ph)_2$	H	H	Н	H	$N(Ph)_2$	Н	Н	Н	Н
VII-8	Ph	Н	H	Н	Н	Ph	H	Н	H	Н
VII-9	-⟨	Н	н	Н	Н	-{	Н	H	Н	H
VII-10	H	H	CH ₃	CH ₃	H	Н	Н	CH ₃	CH ₃	Н
VII-11	Н	Н	CH ₃	Н	CH ₃	Н	Н	CH ₃	H	CH ₃
VII-12	H	CH ₃	H	H	H	H	CH_3	H	Н	H
VII-13	H	H	CH_3	H	H	Н	H	ĊH ₃	H	H
VII-14	CH_3	CH_3	CH ₃	CH ₃	CH_3	CH_3	CH_3	CH_3	CH ₃	CH_3
VII-15	Н	H	Ph	H	Ph	H	H	Ph	H	Ph
VII-16	Н	H	Ph	Ph	H	H	Н	Ph	Ph	H
VII-17	H	н -		H	Н	H	н -		Ή	н
VII-18	Н	Н		Н	Н	Н	н 🤄	$\bigcirc \bigcirc$) H	н

EP 1 148 109 A2

	Compound No.	M ₃₁	M ₃₂	Мээ	M ₃₄	M ₃₅	M ₄₁	M ₄₂	M ₄₃	M ₄₄	M_{45}
5	VII-19	Н	Ph	Н	Н	Н	Н	Ph	H	Н	H
	VII-20	Н	Н	Ph	H	Н	H	Н	Ph	H	Н
	VII-21	$-\bigcirc-\bigcirc$	Н	H	H	Н	$-\bigcirc$	H	Н	Н	H
10	VII-22	$t-C_4H_9$	Н	H	Н	Н	H	H	Н	H	H
	VII-23	$-\bigcirc$	Н	Н	Н	Н	$-\bigcirc\!$	Н	Н	Н	Н
15	VII-24		Н	Н	Н	Н	-	Н	Н	Н	Н
	VII-25		Н	Н	Н	Н	-N-N Ph	Н	Н	H	Н
20	VII-26	CH ₃	Н	Н	Н	Н	СH ₃	Н	Н	H	Н
	VII-27	C=C Ph Ph	Н	H	Н	Н	C=C Ph Ph	Н	Н	Н	Н
25	VII-28	$n-C_4H_9$	H	Н	H	Н	$n-C_4H_9$	H	H	H	H
	VII-29	Н	H	OCH ₃	H	H	H	H	OCH ₃	H	Н
30	VII-30	Н	forn	and R ₃₃ n a fused ene ring.	Н	н	Н	form	and R_{33} a fused ene ring.	Н	Н
	VII-31	$N \left(\begin{array}{c} CH_3 \\ \end{array} \right)_2$	Н	Н	Н	Н	$N\left(-\sum^{CH_3}\right)_2$	H	Н	н	Н
35	VII-32	-	Н	Н	Н	Н		H	H	H	H
	VII-33	H	Н	$-\bigcirc$	H	H	H	H	-⊘-⊘	H	Н
40	VII-34		н	Н	Н	Н		Н	Н	н .	Н
	VII-35	Н	Н	$\bigcirc\bigcirc$	H	Н	Н	H	$\bigcirc\!$	Н	Н
	VII-36	H	H	Ph	H	Ph	Н	H	Ph	H	Ph
45	VII-37	<u> </u>	H	Ph	Ph	Н	Н	H	Ph	Ph	H

EP 1 148 109 A2

20	Compound No.	M ¹¹ =M ²¹	M ¹² =M ²²	$M^{13}=M^{23}$	M ¹⁴ =M ²⁴	M ¹⁵ =M ²⁵
	VIII'-1	Н	H	H	Н	H
	VIII'-2	CH_3	H	H	Н	H
25	VIII'-3	Н	CH_3	H	Н	Н
-	VIII'-4	H	H	CH ₃	H	H
	VIII'-5	Ph	H	CH ₃	CH ₃	Н
	VIII'-6	Н	Ph	Н	H	Н
30	VIII'-7	H	H	Ph	H	H
	VIII'-8	H	H	Ph	Ph	H
	VIII'-9	Н	H	Ph	H	Ph
35	VIII'-10	Н	H	$-\bigcirc -\bigcirc -$	H	Н
	VIII'-11		H	H	Н	Н
40	VIII'-12	Н	Н		Н	Н
	VIII'-13		Н	Н	Н	Н
45	VIII'-14	$N(Ph)_2$	H	н	H	Н
	VIII'-15	$N(C_2H_5)_2$	Н	Н	H	H
	VIII'-16	OCH ₃	Н	Н	Н	H
	VIII'-17	Oph	H	H	H	H
50	VIII'-18	-⟨>-CH ₃	Н	Н	Н	Н
	VIII'-19		н	н	Н	н
55						

EP 1 148 109 A2

EP 1 148 109 A2

20

25

35

1X - 1

30 IX - 2

1X - 3

1X - 4

50

1X - 4

55

[0106] The phenylanthracene derivatives used herein can be prepared by coupling a halogenated diphenylanthracene compound with Ni(cod)₂ wherein cod represents 1,5-cyclooctadiene, or cross-coupling a Grignard reagent of a dihalogenated aryl with a nickel complex such as NiCl₂(dppe) or NiCl₂(dppp) wherein dppe represents diphenylphosphinoethane and dppp represents diphenyl-phosphinopropane. Alternatively, the phenylanthracene derivatives are prepared by a cross-coupling process involving reacting anthraquinone, benzoquinone, phenylanthrone or bianthrone with a Grignard reagent of aryl or a lithiated aryl followed by reduction.

[0107] These compounds can be identified by elemental analysis, mass analysis, IR spectroscopy, ¹H and ¹³C NMR, etc.

[0108] In general, the phenylanthracene derivatives have a molecular weight of about 400 to about 2,000, preferably about 400 to about 1,000, a high melting point of about 200 to about 500°C, and a high glass transition temperature (Tg) of about 80 to about 250°C, preferably about 100 to 250°C, more preferably about 130 to 250°C, especially about 150 to 250°C. By conventional vacuum deposition or the like, they form a transparent, smooth film of quality which

maintains a stable amorphous state even above room temperature and over a long period of time.

[0109] Since the phenylanthracene derivatives are relatively neutral compounds, better results are obtained on use of them in a light emitting layer. A freedom of design of the recombination/light emitting region is available by controlling the film thickness in consideration of the carrier mobility and carrier density (which is dependent on ionization potential and electron affinity) of the light emitting layer, hole injecting and transporting layer, and electron injecting and transporting layer to be combined. This enables free design of luminous color, control of the luminance and spectrum of light emission by the interference of the electrodes, and control of the space distribution of light emission.

Ouinoxaline compounds

10

25

30

35

40

50

[0110] A still further class of organic compounds useful as the host material according to the invention are quinoxaline compounds of the following formula (IV).

$$Q_{n}^{-}L_{101}$$
 (IV)

[0111] Herein Q is a pyrazinyl radical having fused thereto a six-membered aromatic ring containing 0 to 2 nitrogen atoms and may be the same or different, and n is 2 or 3. Two or three Q radicals may be the same or different. The six-membered aromatic rings forming part of Q are preferably benzene, pyridine, pyrimidine and pyridazine rings. Such a six-membered aromatic ring may be fused to the pyrazine ring at any positions although it is preferred that carbon atoms be present and nitrogen atoms be absent at the fusion positions. It is therefore preferred that fusion be on the side between the 2 and 3-positions or 5 and 6-positions on the pyrazine ring, and on the side between the 2 and 3-positions) or the side between the 3 and 4-positions (or 4 and 5-positions) on the pyridine ring, on the side between the 4 and 5-positions) or the side between the 5 and 4-positions on the pyridazine ring.

[0112] L₁₀₁ is a single bond or n-valent radical, i.e., di- or trivalent radical. Preferred divalent radicals are arenediyl radicals, such as phenylene, biphenyldiyl, naphthalenediyl, anthracenediyl and pyrenediyl. Preferred trivalent radicals are arenetriyl radicals (e.g., benzenetriyl), nitrogen atoms, and triarylaminetriyl radicals (e.g., triphenylaminetriyl).

[0113] The radicals represented by Q and L₁₀₁ may further have substituents. Such substituents may be ones containing Q therein. The total number of Q radicals per molecule should preferably be 2 to 10, more preferably 2 to 4. Two or more Q radicals included in one molecule may be the same or different although they are often the same for the sake of easy synthesis.

[0114] Of the quinoxaline compounds of formula (IV), those of formula (VIII) are preferred.

[0115] In formula (VIII), Z is a group of atoms necessary to form a benzene, pyridine, pyrimidine or pyridazine ring with the two carbon atoms of the pyrazine ring.

[0116] The ring completed by Z may further have a substituent(s) or a fused ring. The preferred positions of fusion of the ring completed by Z to the pyrazine ring are the same as described above in conjunction with formula (IV).

[0117] A is a monovalent substituent attached to the pyrazine ring, and k is 0, 1 or 2. Preferred examples of the substituents on the ring completed by Z and the substituents represented by A are the same as A_{13} etc. in formulas (VIII-a) to (VIII-m) to be described later and will be described later.

[0118] The letter n is 2 or 3. When n is 2, L_{101} is a single bond, phenylene, biphenyldiyl or naphthalenediyl radical. When n is 3, L_{101} is a benzenetriyl radical, nitrogen atom or triphenylaminetriyl radical. These radicals will be described later in conjunction with formulas (VIII-a) to (VIII-m).

[0119] The rings completed by Z may be the same or different although they are preferably the same as described in conjunction with formula (IV).

[0120] The fused pyrazine ring having the ring completed by Z may be bonded, at any position, to L_{101} .

[0121] Of the quinoxaline compounds of formula (VIII), those of formulas (VIII-a) to (VIII-m) are preferred.

$$A_{17}$$
 A_{18}
 A_{17}
 A_{18}
 A_{11}
 A_{15}
 A_{23}
 A_{25}
 A_{26}
 A_{26}
 A_{27}
 A_{28}
 A_{27}
 A_{28}
 A_{29}
 A_{29}
 A_{29}
 A_{29}

$$A_{17}$$
 A_{18}
 A_{111}
 A_{111}
 A_{28}
 A_{27}
 A_{18}
 A_{11}
 A_{11}
 A_{28}
 A_{27}
 A_{28}
 A_{28}
 A_{29}

$$A_{17}$$

$$A_{18}$$

$$A_{11}$$

$$A_{13}$$

$$A_{15}$$

$$A_{23}$$

$$A_{21}$$

$$A_{28}$$

$$A_{27}$$

$$A_{28}$$

$$A_{27}$$

$$A_{28}$$

$$A_{27}$$

$$A_{28}$$

$$A_{27}$$

$$A_{18}$$

$$A_{111}$$

$$A_{28}$$

$$A_{16}$$

$$A_{13}$$

$$A_{13}$$

$$A_{28}$$

$$A_{19}$$

$$A_{19}$$

$$A_{19}$$

$$A_{19}$$

$$A_{19}$$

EP 1 148 109 A2

$$A_{17}$$
 A_{18}
 A_{17}
 A_{18}
 A_{11}
 A_{23}
 A_{11}
 A_{28}
 A_{27}
 A_{28}
 A_{27}
 A_{13}
 A_{13}

$$\begin{array}{c|c}
A_{23} & A_{25} \\
N & A_{11} \\
N & A_{15}
\end{array}$$

$$\begin{array}{cccc}
A_{23} & N & A_{25} \\
N & N & N \\
A_{13} & A_{28}
\end{array}$$

$$\begin{array}{cccc}
(VIII-f)
\end{array}$$

5
$$A_{25}$$
 A_{26} A_{27} A_{28} A_{28} A_{28} A_{31} A_{32} A_{34} A_{35} A_{35} A_{36} A_{37} A_{35} A_{36} A_{37} A_{35} A_{36} A_{37} A_{35} A_{36} A_{37} A_{38} Å₂₈

$$A_{23}$$
 A_{25}
 A_{17}
 A_{18}
 A_{12}
 A_{13}
 A_{13}
 A_{14}
 A_{15}
 A_{27}
 A_{28}
 A_{27}

10

15

20

30

35

45

55

[0122] First described are those compounds wherein L_{101} in formula (VIII) is a divalent radical L_{111} or single bond, as represented by formulas (VIII-a) to (VIII-f) and (VIII-m).

[0123] In formulas (VIII-a) to (VIII-f) and (VIII-m), L_{111} is a phenylene, biphenyldiyl or naphthalenediyl radical. The phenylene radical represented by L_{111} may be an o-, m- or p-phenylene radical, with the p-phenylene being especially preferred. The preferred biphenyldiyl radical represented by L_{111} is 4,4'-biphenyl-1,1'-diyl. The preferred naphthalenediyl radical represented by L_{111} is 1,5-naphthalenediyl. These divalent radicals are preferably unsubstituted although they may have substituents such as alkyl and aryl groups.

[0124] A_{13} , A_{15} to A_{18} , A_{23} , A_{25} to A_{28} in formula (VIII-a), A_{13} , A_{16} to A_{18} , A_{23} , A_{26} to A_{28} in formula (VIII-b), A_{13} , A_{15} , A_{16} , A_{18} , A_{23} , A_{25} , A_{25} , A_{27} and A_{28} in formula (VIII-c), A_{13} , A_{16} , A_{18} , A_{23} , A_{26} and A_{28} in formula (VIII-d), A_{13} , A_{17} , A_{18} , A_{23} , A_{25} and A_{28} in formula (VIII-f), A_{12} , A_{13} , A_{15} , A_{17} , A_{18} , A_{22} , A_{25} , A_{27} and A_{28} in formula (VIII-m) each independently stand for hydrogen, halogen atoms, hydroxyl, carboxy, nitro, cyano, alkyl, aryl, alkoxy, aryloxy, amino, alkylthio, arylthio and heterocyclic radicals. In each formula, these radicals may be the same or different.

[0125] Examples of the halogen atoms represented by A_{13} etc. include fluorine and chlorine atoms.

[0126] The alkyl radicals represented by A₁₃ etc. are preferably those of 1 to 6 carbon atoms in total, which may be straight or branched. The alkyl radicals are preferably unsubstituted ones although they may have substituents such as halogen atoms (e.g., F and Cl). Illustrative examples of the alkyl radicals include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, t-butyl, pentyl and hexyl.

[0127] The aryl radicals represented by A₁₃ etc. are preferably those of 6 to 30 carbon atoms in total, which may be monocyclic or polycyclic (fused ring or ring collection) or have substituents. Such substituents are halogen atoms (e. g., F and Cl), alkyl groups (e.g., methyl) and heterocyclic groups. The heterocyclic groups as the substituent are preferably the same as the fused pyrazinyl radical bonded to L₁₁₁ in formula (VIII-a), such as quinoxalinyl. Illustrative examples of the aryl radicals represented by A₁₃, etc. include phenyl, 1-naphthyl, 2-naphthyl, 2-biphenylyl, and 4-biphenylyl radicals, which may have substituted thereon a fused pyradinyl group such as quinoxalinyl.

[0128] The alkoxy radicals represented by A₁₃, etc. are preferably those of alkyls of 1 to 6 carbon atoms in total. The alkoxy radicals are preferably unsubstituted ones although they may have substituents. Illustrative examples of the alkoxy radicals include methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, sec-butoxy and t-butoxy.

[0129] Exemplary of the aryloxy radicals represented by A_{13} , etc. is phenoxy.

[0130] The amino radicals represented by A_{13} , etc. may have substituents such as alkyl and aryl groups. Exemplary amino radicals are amino, methylamino, dimethylamino, phenylamino and diphenylamino.

[0131] Examples of the alkylthio radical represented by A₁₃, etc. include methylthio and ethylthio.

[0132] Exemplary of the arylthio radical represented by A₁₃, etc. is phenylthio.

[0133] Examples of the heterocyclic radicals represented by A_{13} , etc. include furyl, thienyl, pyrrole, pyridyl, and quinolýl as well as the same as the fused pyradinyl radical bonded to L_{111} in formula (VIII-a) such as quinoxalinyl.

[0134] Two adjoining ones among A_{15} to A_{18} and A_{25} to A_{28} in formula (VIII-a), two adjoining ones among A_{16} to A_{18} and A_{26} to A_{28} in formula (VIII-b), a pair of A_{17} and A_{18} or a pair of A_{27} and A_{28} in formula (VIII-b), a pair of A_{17} and A_{18} or a pair of A_{27} and A_{28} in formula (VIII-e), and a pair of A_{12} and A_{13} , a pair of A_{17} and A_{18} , a pair of A_{27} and A_{28} in formula (VIII-m) may bond together to form a ring. The ring formed herein is preferably a benzene ring. Two or more benzene rings thus formed may be fused together, or the benzene ring thus formed may further have a ring fused thereto.

[0135] In preferred embodiments, A_{13} and A_{23} in formulas (VIII-a) to (VIII-f) and A_{12} , A_{13} , A_{22} and A_{23} in formula (VIII-m) are aryl radicals; A_{15} to A_{18} and A_{25} to A_{28} in formula (VIII-a) are hydrogen, alkyl or alkoxy radicals or two adjoining ones thereof bond together to form a benzene ring; and A_{16} to A_{18} and A_{26} to A_{28} in formula (VIII-b), A_{15} ,

EP 1 148 109 A2

 A_{17} , A_{18} , A_{27} and A_{28} in formula (VIII-c), A_{16} , A_{18} , A_{26} and A_{28} in formula (VIII-d), A_{17} , A_{18} , A_{27} and A_{28} in formula (VIII-e), A_{15} , A_{18} , A_{25} and A_{28} in formula (VIII-f), and A_{15} , A_{17} , A_{18} , A_{25} , A_{27} and A_{28} in formula (VIII-m) are hydrogen. [0136] Described next are those compounds wherein L_{101} in formula (VIII) is a trivalent radical L_{112} , as represented by formulas (VIII-g) to (VIII-1).

- [0137] In formulas (VIII-g) to (VIII-1), L₁₁₂ is a benzenetriyl radical, nitrogen atom or triphenylaminetriyl radical. The preferred benzenetriyl radical represented by L₁₁₂ is 1,3,5-benzenetriyl. The preferred triphenylaminetriyl radical represented by L₁₁₂ is 4,4',4"-triphenyl-1,1',1"-triyl. These trivalent radicals are preferably unsubstituted although they may have substituents such as alkyl and aryl groups.
- [0138] A₁₃, A₁₅ to A₁₈, A₂₅ to A₂₈, A₃₃, A₃₅ to A₃₈ in formula (VIII-g), A₁₃, A₁₆ to A₁₈, A₂₃, A₂₆ to A₂₈, A₃₃, A₃₆ to A₃₈ in formula (VIII-h), A₁₃, A₁₅, A₁₇, A₁₈, A₂₃, A₂₅, A₂₇, A₂₈, A₃₃, A₃₅, A₃₇ and A₃₈ in formula (VIII-i), A₁₃, A₁₆, A₁₈, A₂₃, A₂₆, A₂₈, A₃₃, A₃₆ and A₃₈ in formula (VIII-j), A₁₃, A₁₇, A₁₈, A₂₃, A₂₇, A₂₈, A₃₃, A₃₇ and A₃₈ in formula (VIII-k), A₁₃, A₁₅, A₁₈, A₂₃, A₂₅, A₂₈, A₃₃, A₃₅ and A₃₈ in formula (VIII-1) each independently stand for hydrogen, halogen atoms, hydroxyl, carboxy, nitro, cyano, alkyl, aryl, alkoxy, aryloxy, amino, alkylthio, arylthio and heterocyclic radicals. In each formula, these radicals may be the same or different. Illustrative examples of these radicals are the same as described above in conjunction with formulas (VIII-a) to (VIII-f).
 - [0139] Two adjoining ones among A_{15} to A_{18} , A_{25} to A_{28} and A_{35} to A_{38} in formula (VIII-g), two adjoining ones among A_{16} to A_{18} , A_{26} to A_{28} and A_{36} to A_{38} in formula (VIII-h), a pair of A_{17} and A_{18} or a pair of A_{27} and A_{28} , or a pair of A_{37} and A_{38} in formula (VIII-k), and a pair of A_{17} and A_{18} , a pair of A_{27} and A_{28} or a pair of A_{37} and A_{38} in formula (VIII-k) may bond together to form a ring. Illustrative examples of the ring are the same as described above in conjunction with formulas (VIII-a) to (VIII-f). A_{13} , A_{23} and A_{33} in formulas (VIII-a) to (VIII-1) are preferably hydrogen and aryl radicals such as phenyl.

20

30

35

40

45

50

- [0140] In preferred embodiments, A_{15} to A_{18} , A_{25} to A_{28} and A_{35} to A_{38} in formula (VIII-g) are hydrogen, or two adjoining ones among them bond together to form a ring; A_{16} to A_{18} , A_{26} to A_{28} , and A_{36} to A_{38} in formula (VIII-h), A_{15} , A_{17} , A_{18} , A_{25} , A_{27} , A_{28} , A_{35} , A_{37} and A_{38} in formula (VIII-i), A_{16} , A_{18} , A_{26} , A_{28} , A_{36} and A_{38} in formula (VIII-j), A_{17} , A_{18} , A_{27} , A_{28} , A_{37} and A_{38} in formula (VIII-k), A_{15} , A_{18} , A_{25} , A_{28} , A_{35} and A_{38} in formula (VIII-1) are hydrogen.
- [0141] Illustrative, non-limiting, examples of the quinoxaline compounds of formula (IV) are given below. They are shown by combinations of L₁₁₁, L₁₁₂, and A's in formulas (VIII-a) to (VIII-m). When A₁₃ and A₂₃ are different, they are individually shown. The expressions of formulas (VIII-a) to (VIII-m) are typical examples and to be construed to encompass corresponding structural isomers because an actual product as synthesized is a mixture of structural isomers due to the synthesis route.

EP 1 148 109 A2

	Formula (VIII) Compound No.	L ₁₁₁	A ₁₃ =A ₂₃	A ₁₅ =A ₁₅	A ₁₆ =A ₂₆	A ₁₇ =A ₂₇	A ₁₈ =A ₂₈
5	VIII-a-1		-Ph	Н	Н	Н	Н
10	VIII-a-2	~ <u></u>	-Ph	Н	Н	CH ₃	Н
15	VIII-a-3		-Ph	Н	CH ₃	CH ₃	Н
20	VIII-a-4		-Ph	Н	Н	C_2H_5	Н
20	VIII-a-5		-Ph	Н	Н	n=C ₃ H ₇	Н
25	VIII-a-6		-Ph	Н	Н	n-C ₄ H ₉	Н
30	VIII-a-7		-Ph	Н	Н	t-C ₄ H ₉	Н
35	VIII-a-8		-Ph	Н	Н	-0CH ₃	Н
40	VIII-a-9		-Ph	Н	Н	A_{17} and A_{1} benzene A_{27} and A_{2} benzene	ring. s form a
	VIII-a-10	~>~>	-Ph	н	A ₁₆ and A ₁₇ benzene A ₂₆ and A ₂₇ benzene	form a ring.	Н
45	VIII-a-11	- <u></u> -	-Ph	benzen A ₂₅ and A	A ₁₆ form a se ring. A ₂₆ form a se ring.	A_{17} and A_{1} benzene A_{27} and A_{2} benzene	ring. ₂₈ form a
50	VIII-a-12	~ <u></u>	-Ph	H 1	A ₁₆ and A ₁₈ , an rings, respec to form a phe (The same app	d A ₁₇ and A ₁₈ f tively, whic nalene ring	form benzene ch are fused as a whole.

EP 1 148 109 A2

5	Formula (VIII) Compound No.	L ₁₁₁	A ₁₃ =A ₂₃	A ₁₅ =A ₁₅	A ₁₆ =A ₂₆	A ₁₇ =A ₂₇	A ₁₈ =A ₂₈
10	VIII-a-13	-(-)-(-)-	-Ph	benzen phenan	e rings, respec	$_{7}$, and $_{17}$ and $_{1}$ and $_{1}$ etively, which for a whole. (The s	orm a
,-	VIII-a-14	~ <u></u>	-Ph	Н	Н	-Ph	Н
15	VIII-a-15		-Ph	Н	-Ph	-Ph	Н
20	VIII-a-16		-Ph	-Ph	Н	Н	-Ph
25	VIII-a-17	~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-Ph	Н	Н	l-naphthyl	Н
	VIII-a-18	-(>-(>-	-Ph	Н	н	2-naphthyl	Н
30	VIII-a-19	~ <u></u>	Ph	Н	Н	4-biphenylyl	Н
35	VIII-a-20		-Ph	н	Н	3-biphenylyl	Н
40	VIII-a-21	-(>-(>-(>-(>-(>-(-)-(-)-(-)-(-)-(-)-(-)-	~Ph	Н	н	2-biphenylyl	Н
45	VIII-a-22		-Ph	Н	4-biphenylyl	4-biphenylyl	Н
	VIII-a-23		-Ph	Н	Н	C1	Н
50	VIII-a-24	~ <u></u>	-Ph	Н	Н	-ОН .	Н

EP 1 148 109 A2

5	Formula (VIII) Compound No.	L ₁₁₁	A ₁₃ =A ₂₃	A ₁₅ =A ₁₅	A ₁₆ =A ₂₆	A ₁₇ =A ₂₇	A ₁₈ =A ₂₈
	VIII-a-25		-Ph	Н	Н	-NO ₂	Н
10	VIII-a-26	~><>	-Ph	Н	Н	-CN	Н
15	VIII-a-27		-Ph	Н	Н	-OPh	Н
20	VIII-a-28	~ <u></u>	-Ph	Н	Н	-SCH ₃	Н
25	VIII-a-29	~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-Ph	Н	Н	-SPh	Н
	VIII-a-30	-	-Ph	Н	Н	Н	Н
30	VIII-a-31	-<>-	-Ph	Н	Н	CH ₃	Н
35	VIII-a-32	· -<>	-Ph	Н	CH₃	CH ₃	Н
40	VIII-a-33	-(>-	-Ph	CH ₃	Н	Н	CH ₃
45	VIII-a-34	-	-Ph	Н	Н	C_2H_5	Н
4 3	VIII-a-35	-(>-	-Ph	Н	Н	n-C ₃ H ₇	Н
50	VIII-a-36	-	-Ph	Н	Н	n-C ₄ H ₉	Н

EP 1 148 109 A2

Formula (VIII) Compound No.	L ₁₁₁	A ₁₃ =A ₂₃	A ₁₅ =A ₁₅	A ₁₆ =A ₂₆	A ₁₇ =A ₂₇	A ₁₈ =A ₂₈
VIII-a-37	-	-Ph	Н	Н	t-C ₄ H ₉	Н
VIII-a-38	-<>	-Ph	Н	Н	-OCH ₃	Н
VIII-a-39	~ <u></u>	-Ph		Н	A ₁₇ and A ₁₈ benzene r A ₂₇ and A ₂₈ benzene r	ing. form a
VIII-a-40		−Ph '	Н	A_{26} and A_{27}	form a benzene ing. form a benzene ing.	Н
VIII-a-41		-Ph	A_{25} and A_{26} f	form a benzene ing. form a benzene ing.		ing. form a
VIII-a-42	~ <u></u>	-Ph	Н	benzene ring are fused to	and A ₁₇ and A ₁₈ , respectivel form a phenal (The same appli to A ₂₈ .)	y, which
VIII-a-43		· -Ph	rings, resp	pectively, whi	A_{17} and A_{18} form ich form a phenale applies to A_{25}	enthrene
VIII~a-44	-	-Ph	Н	Н	-Ph	Н
VIII-a-45	-<>	-Ph	Н	-Ph	-Ph	Н
VIII-a-46	-	-Ph	-Ph	Н	Н	-Ph
VIII-a-47	→	-Ph	Н	Н	1-naphthyl	Н

EP 1 148 109 A2

Formula (VIII) Compound No.	L ₁₁₁	A ₁₃ =A ₂₃	A ₁₅ =A ₁₅	A ₁₆ =A ₂₆	A ₁₇ =A ₂₇	A ₁₈ =A ₂₈
VIII-a-48		-Ph	Н	Н	2-naphthyl	Н
VIII-a-49	-<>	-Ph	Н	Н	4-biphenylyl	Н
VIII-a-50	-	-Ph	Н	Н	3-biphenylyl	Н
VIII-a-51	- ◇-	−Ph′	Н	Н	2-biphenylyl	Н
VIII-a-52		-Ph	Н	Н	Cl	Н
VIII-a-53	- <u></u>	-Ph	Н	Н	-ОН	Н
VIII-a-54		-Ph	Н	Н	-NO ₂	Н
VIII-a-55	~ <u></u>	-Ph	Н	Н	-CN	Н
VIII-a-56	~ <u></u>	-Ph	Н	Н	-OPh	Н
VIII-a-57	-	-Ph	Н	Н	−SCH₃	Н
VIII-a-58	~ <u></u>	-Ph	Н	Н .	-SPh	Н
VIII-a-59	M	-Ph	Н	Н	Н	Н

EP 1 148 109 A2

5	Formula (VIII) Compound No.	L ₁₁₁	A ₁₃ =A ₂₃	A ₁₅ =A ₁₅	A ₁₆ =A ₂₆	A ₁₇ =A ₂₇	A ₁₈ =A ₂₈
10	VIII-a-60	TO	-Ph	Н	Н	CH₃	Н
	VIII-a-61	M	-Ph	Н	CH ₃	СН3	Н
15	VIII-a-62	VQ.	-Ph	CH ₃	Н	Н	CH ₃
20	VIII-a-63		-Ph	CH ₃	CH₃	CH ₃	Н
25	VIII-a-64	VQ.	-Ph	CH ₃	CH₃	CH₃	CH ₃
30	VIII-a-65	VQ.	-Ph	Н	Н	C_2H_5	Н
<i>3</i> 5	VIII-a-66	VQ.	-Ph	Н	Н	n-C ₃ H ₇	Н
	VIII-a-67	TO	-Ph	Н	Н	n-C ₄ H ₉	Н
40	VIII-a-68	M	-Ph	Н	Н	t−C₄H ₉	Н
45	VIII-a-69	VQ.	-Ph	Н	Н	-OCH ₃	Н
50	VIII-a-70	VQ.	-Ph	Н	Н	A ₁₇ and A ₁₈ benzene A ₂₇ and A ₂₈ benzene	ring. form a

EP 1 148 109 A2

	Formula (VIII) Compound No.	L ₁₁₁	A ₁₃ =A ₂₃	A ₁₅ =A ₁₅	A ₁₆ =A ₂₆	$A_{17} = A_{27}$	A ₁₈ =A ₂₈
5	VIII-a-71	M	-Ph	Н		7 form a benzene ring. 7 form a benzene ring.	Н
10	VIII-a-72	M	-Ph	A ₁₅ and A benzene A ₂₅ and A ₂₅ benzene	e ring. ₂₆ form a	A_{17} and A_{18} form ring. A_{27} and A_{28} form ring.	
15	VIII-a-73	M	~Ph	Н	benzen which are	A ₁₈ , and A ₁₇ and e rings, respect e fused to form a p a whole. (The sam to A ₂₆ to A ₂₈ .)	tively, ohenalene
20	VIII-a-74	M	-Ph	benzene r	ings, res rene ring	A_{17} , and A_{17} and pectively, which as a whole. (The to A_{25} to A_{28} .)	form a
25	VIII-a-75	VQ.	-Ph	H	Н	-Ph	Н
30	VIII-a-76	VQ.	-Ph	Н	-Ph	-Ph	Н
35	VIII-a-77	M	-Ph	-Ph	H _.	Н	-Ph
40	VIII-a-78	M	-Ph	Н	Н	l-naphthyl .	Н
	VIII-a-79	M	-Ph	Н	Н	2-naphthyl	Н
45	VIII-a-80	M	-Ph	Н	Н	4-biphenylyl	H
50	VIII-a-81	M	-Ph	Н	Н	3-biphenylyl	Н

. 55

EP 1 148 109 A2

5	Formula (VIII) Compound No.	. L ₁₁₁	A ₁₃ =A ₂₃	A ₁₅ =A ₁₅	A ₁₆ =A ₂₆	A ₁₇ =A ₂₇	A ₁₈ =A ₂₈
10	VIII-a-82	TO	-Ph	Н	Н	2-biphenylyl	Н
	VIII-a-83	CQ	-Ph	Н	Н	C1	Н
15	VIII-a-84		-Ph	Н	Н	-ОН	Н
20	VIII-a-85		−Ph	H	Н	-NO ₂	Н
25	VIII-a-86		-Ph	Н	Н	-CN	Н
30	VIII-a-87	M	-Ph	Н	Н	-0Ph	Н
35	VIII-a-88	VQ.	-Ph	Н	Н	-SCH ₃	Н
40	VIII-a-89	VQ.	-Ph	Н	Н	-SPh	Н
40	VIII-a-90		A ₁₃ =	H N	Н	н	Н
45			$A_{23} = -Ph$				
50	VIII-a-91	-\$\dagger__\	$A_{13} = \bigoplus_{Ph} N_{N}$ $= -Ph$	benze A ₂₅ and	A ₁₆ form ne ring. A ₂₆ form ne ring.	Н	Н

EP 1 148 109 A2

Formula (VIII) Compound No	L ₁₁₁	A ₁₃ =A ₂₃ .	A ₁₅ =A ₁₅	A ₁₆ =A ₂₆	A ₁₇ =A ₂₇	A ₁₈ =A ₂₈
VIII-a-92	-0-0-	$A_{13} = - \bigcirc P_h N$ $A_{23} = -Ph$	A ₁₅ and A ₁₆ benzene A ₂₅ and A ₂₆ benzene	ring. form a	A ₁₇ and A ₁ benzene A ₂₇ and A ₂ benzene	ring. s form a
VIII-a-93		$A_{13} = $ $Ph N$ $A_{23} = -Ph$	Н	Н	н	Н
VIII-a-94	-(_)-	$A_{13} = \begin{pmatrix} A_{13} &$	A ₁₅ and A ₁₆ benzene A ₂₅ and A ₂₆ benzene	ring. form a	Н	Н
VIII-a-95		$A_{13} = $ $Ph N$ $A_{23} = -Ph$	A ₁₆ and A ₁₆ benzene A ₂₅ and A ₂₆ benzene	ring. form a	A ₁₇ and A ₁₄ benzene A ₂₇ and A ₂₄ benzene	ring. form a
VIII-a-96	- ◇ - ◇-	-Ph	Н	Н	-NPh ₂	Н
VIII-a-97		-Ph	Н	Н	-СООН	. Н
VIII-a-98		-Ph	Н	Н	2-pyridyl	Н
VIII-a-99	-<>	-Ph	Н	Н	-NPh ₂	Н

EP 1 148 109 A2

	Formula (VIII)	Liii	A ₁₃ =A ₂₃	A ₁₅ =A ₁₅	A ₁₆ =A ₂₆	A ₁₇ =A ₂₇	A ₁₈ =A ₂₈
5	Compound No.						
	VIII-a-100	∼	-Ph	Н	Н	-СООН	н
10	VIII-a-101	-	-Ph	Н	Н	2-pyridyl	Н
15	VIII-a-102		-Ph	Н	Н	-NPh ₂	Н
20	VIII-a-103		-Ph	Н	Н	-СООН	Н
25	VIII-a-104	VQ.	-Ph	Н	Н	2-pyridyl	Н

30 $^{\circ}$

EP 1 148 109 A2

	Formula (VIII) Compound No.	L ₁₁₁	A ₁₃ =A ₂₃	A ₁₆ =A ₂₆	A ₁₇ =A ₂₇	A ₁₈ =A ₂₈
5	VIII-b-1		-Ph	Н	Н	Н
10	VIII-b-2	(-)-	-Ph	Н	Н	Н
15	VIII-b-3	VQ.	-Ph	Н	Н	Н
20	VIII-b-4	- \$-\$-	$A_{13} = Ph$ $A_{23} = -Ph$	Н	Н	Н
25	VIII-b-5		$A_{13} = \underbrace{\qquad \qquad}_{Ph} \underbrace{\qquad \qquad}_{N} \underbrace{\qquad \qquad}_{N}$ $A_{23} = -Ph$	Н	Н	Н
30	VIII-b-6		~Ph	Н	Н	CH ₃
35	VIII-b-7	- ⊘ - ⊘-	-Ph	Н	СН₃	Н
40	VIII-b-8		-Ph	CH₃	Н	Н
	VIII-b-9	-(-)-(-)-	-Ph	Н	C_2H_5	Н
45	VIII-b-10	-	-Ph	Н	n-C ₃ H ₇	Н
50	VIII-b-11	-	-Ph	Н	n-C ₄ H ₉	Н

EP 1 148 109 A2

	Formula (VIII) Compound No.	L ₁₁₁	A ₁₃ =A ₂₃	A ₁₆ =A ₂₆	A ₁₇ =A ₂₇	A ₁₈ =A ₂₈
5	VIII-b-12	-(\$__	-Ph	Н	$t-C_4H_9$	Н
10	VIII-b-13	- ⟨>-⟨>-	-Ph	Н	-OCH ₃	Н
15	VIII-b-14		-Ph	rii	rm a benzene	Н
20	VIII-b-15		~Ph	Н	A_{17} and A_{18} benzene r A_{27} and A_{28} benzene r	ing. form a
25	VIII-b-16	- ○	-Ph	Н	Ph	Н
	VIII-b-17	- \$-\$-	-Ph	Ph	Ph	Н
30	VIII-b-18		-Ph	Н	1-naphthyl	Н
35	VIII-b-19	-(-)-(-)-	-Ph	l-naphthyl	1-naphthyl	Н
40	VIII-b-20	- (\$\-(\$\	-Ph	H	2-naphthyl	Н
15	VIII-b-21	~\$\d}-	-Ph	2-naphthyl	2-naphthyl	Н
45	VIII-b-22	-	-Ph	Н	4-biphenylyl	Н
50	VIII-b-23	- ○ -	-Ph	4-biphenylyl	4-biphenylyl	Н

EP 1 148 109 A2

5	Formula (VIII) Compound No.	_. L ₁₁₁	A ₁₃ =A ₂₃	A ₁₆ =A ₂₆	A ₁₇ =A ₂₇	A ₁₈ =A ₂₈
	VIII-b-24	-(-)-(-)-	-Ph	Н	3-biphenylyl	Н
10	VIII-b-25		-Ph	3-biphenylyl	3-biphenylyl	Н
15	VIII-b-26	-(\$)-(\$)-	-Ph	Н	2-biphenylyl	Н
20	VIII-b-27	-(\$)-(\$)-	-Ph	2-biphenylyl	2-biphenylyl	Н
25	VIII-b-28	- ⟨\$\-\$\-	-Ph	Н	Cl	н
	VIII-b-29		-Ph	Н	-OH	Н
30	VIII-b-30	-(\$)-(\$)-	-Ph	Н	-NO ₂	Н
35	VIII-b-31	~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-Ph	Н	-CN	н
40	VIII-b-32	-(-)-(-)-	-Ph	Н	-OPh	Н
45	VIII-b-33		-Ph	• Н	-SCH₃	Н
	VIII-b-34	-(-)-(-)-	-Ph	Н	-SPh	Н
50	VIII-b-35		-Ph	Н	−NPh ₂	Н

EP 1 148 109 A2

Formula (VIII) Compound No.	L ₁₁₁	A ₁₃ =A ₂₃	A ₁₆ =A ₂₆	A ₁₇ =A ₂₇	A ₁₈ =A ₂₈
VIII-b-36	- ○ - ○-	-Ph	Н	-СООН	Н
VIII-b-37	- ○	-Ph	Н	2-pyridyl	Н
VIII-b-38	(-)-	-Ph	Н	Н	CH ₃
VIII-b-39	(-)-	-Ph	Н	CH ₃	Н
VIII-b-40	-	-Ph	CH ₃	Н	Н
VIII-b-41		-Ph	Н	C_2H_5	Н
VIII-b-42		-Ph	Н	n-C ₃ H ₇	Н
VIII-b-43	-	-Ph	Н	n-C ₄ H ₉	Н
VIII-b-44	-(5)-	-Ph	Н	$t-C_4H_9$	Н
VIII-b-45	→	-Ph	. Н	-OCH ₃	Н
VIII-b-46	√ >	-Ph	benzer A ₂₆ and	A ₁₇ form a ne ring. A ₂₇ form a ne ring.	Н
VIII-b-47		-Ph	Н	A_{17} and A_{18} benzene A_{27} and A_{28} benzene	ring. form a

EP 1 148 109 A2

Formula (VIII) Compound No.	L ₁₁₁	A ₁₃ =A ₂₃	A ₁₆ =A ₂₆	A ₁₇ =A ₂₇	A ₁₈ =A ₂₈
VIII-b-48		-Ph	Н	Ph	Н
VIII-b-49	- ◇-	-Ph	Ph	Ph	н
VIII-b-50	-	-Ph	Н	1-naphthyl	Н
VIII-b-51	-	-Ph	1-naphthyl	1-naphthyl	Н
VIII-b-52	-{>-	-Ph	Н	2-naphthyl	Н
VIII-b-53	-	-Ph	2-naphthyl	2-naphthyl	Н
VIII-b-54		-Ph	Н	4-biphenylyl	Н
VIII-b-55		-Ph	4-biphenylyl	4-biphenylyl	Н
VIII-b-56		~Ph	Н	3-biphenylyl	Н
VIII-b-57	-(-)-	-Ph	3-biphenylyl	3-biphenylyl	Н
VIII-b-58		-Ph	Н	2-biphenylyl	Н
VIII-b-59	-	-Ph	2-biphenylyl	2-biphenylyl	Н

EP 1 148 109 A2

5	Formula (VIII) Compound No.	L ₁₁₁	A ₁₃ =A ₂₃	A ₁₆ =A ₂₆	A ₁₇ =A ₂₇	A ₁₈ =A ₂₈
	VIII-b-60	-{>-	-Ph	Н	C1	Н
10	VIII-b-61	√ >	-Ph	Н	-ОН	Н
15	VIII-b-62	-(5)-	-Ph	Н	-NO ₂	Н
20	VIII-b-63	√ >	-Ph	Н	-CN	Н
25	VIII-b-64	- ⟨□}-	-Ph	Н	-OPh	Н
	VIII-b-65		-Ph	Н	−SCH₃	Н
30	VIII-b-66	· -	-Ph	Н	-SPh	Н
35	VIII-b-67	- ⟨\$\rightarrow\$	-Ph	Н	-NPh ₂	Н
40	VIII-b-68	-	-Ph	Н	-СООН	Н
45	VIII-b-69	-{->-	-Ph	Н	2-pyridyl	Н
50	VIII-b-70	TQ.	-Ph	Н	Н	CH ₃
50	VIII-b-71		-Ph	Н	CH ₃	Н

EP 1 148 109 A2

5	Formula (VIII) Compound No.	L ₁₁₁	A ₁₃ =A ₂₃	A ₁₆ =A ₂₆	A ₁₇ =A ₂₇	A ₁₈ =A ₂₈
10	VIII-b-72	VQ.	-Ph	CH₃	Н	Н
	VIII-b-73	TO	-Ph	Н	C_2H_5	Н
15	VIII-b-74	TO	Ph	Н	n-C ₃ H ₇	Н
20	VIII-b-75	M	· -Ph	Н	n-C ₄ H ₉	Н
25	VIII-b-76	M	-Ph	Н	Н	t-C₄H ₉
30	VIII-b-77	M	-Ph	Н	$t-C_4H_9$	Н
35	VIII-b-78	TO .	-Ph	Н	-OCH ₃	Н
	VIII-b-79	TO	-Ph	A ₁₆ and A ₁ benzene A ₂₆ and A ₂ benzene	ring. 7 form a	Н
40	VIII-b-80		-Ph	Н	A ₁₇ and A ₁ benzene A ₂₇ and A ₂ benzene	ring. _B form a
45	VIII-b-81	VQ.	-Ph	Н	Ph	Н
50	VIII-b-82		-Ph	Ph	Ph	Н

EP 1 148 109 A2

5	Formula (VIII) Compound No.	L ₁₁₁	A ₁₃ =A ₂₃	A ₁₆ =A ₂₆	A ₁₇ =A ₂₇	A ₁₈ =A ₂₈
	VIII-b-83	TO	-Ph	Н	1-naphthyl	Н
10	VIII-b-84	VQ.	-Ph	1-naphthyl	1-naphthyl	Н
15	VIII-b-85	VQ.	-Ph	Н	2-naphthyl	Н
20	VIII-b-86	TO .	-Ph	2-naphthyl	2-naphthyl	Н
25	VIII-b-87		-Ph	Н	4-biphenylyl	Н
30	VIII-b-88	M	-Ph	4-biphenylyl	4-biphenylyl	Н
35	VIII-b-89		-Ph	н	3-biphenylyl	Н
	VIII-b-90	VQ.	-Ph	3-biphenylyl	3-biphenylyl	Н
40	VIII-b-91		-Ph	Н	2-biphenylyl	Н
45	VIII-b-92		-Ph	2-biphenylyl	2-biphenylyl	Н
50	VIII-b-93		-Ph	Н	Cl	H

EP 1 148 109 A2

5	Formula (VIII) Compound No.	L ₁₁₁	A ₁₃ =A ₂₃	A ₁₆ =A ₂₆	A ₁₇ =A ₂₇	A ₁₈ =A ₂₈
10	VIII-b-94	VQ.	-Ph	Н	-0Н	Н
	VIII-b-95	VQ.	-Ph	Н	-NO ₂	Н
15	VIII-b-96	M	-Ph	Н	-CN	Н
20	VIII-b-97	VQ.	`−Ph	Н	-OPh	Н
25	VIII-b-98	TQ.	-Ph	Н	−SCH₃	Н
30	VIII-b-99	VQ.	-Ph	Н	-SPh	Н
35	VIII-b-100	VQ.	-Ph	Н	-NPh ₂	Н
	VIII-b-101	M	-Ph	Н	-соон	Н
40	VIII-b-102	VQ.	-Ph	Н	2-pyridyl	Н

EP 1 148 109 A2

Formula (VIII) Compound No.	L ₁₁₁	A ₁₃ =A ₂₃	A ₁₅ =A ₂₅	A ₁₇ =A ₂₇	A ₁₈ =A ₂₈
VIII-c-1	-(\$)-(\$)-	-Ph	Н	Н	H
VIII-c-2	- ⟨\$\rightarrow\$-	-Ph	Н	Н	Н
VIII-c-3		-Ph	Н	Н	Н
VIII-c-4		$A_{13} = \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad$	н	Н	Н
VIII-c-5	-(5)-	$A_{13} = \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad$	Н	Н	Н
VIII-c-6		Ph	Н	Н	CH ₃
VIII-c-7		-Ph	Н	CH ₃	Н
VIII-c-8		-Ph	CH₃	Н	Н
VIII-c-9		-Ph	Н	C_2H_5	Н
VIII-c-10		_Ph	Н	n-C ₃ H ₇	Н
VIII-c-11		-Ph	Н	n−C₄H ₉	H

EP 1 148 109 A2

5	Formula (VIII) Compound No.	L ₁₁₁	A ₁₃ =A ₂₃	A ₁₅ =A ₂₅	A ₁₇ =A ₂₇	A ₁₈ =A ₂₈
	VIII-c-12		-Ph	Н	$t-C_4H_9$	Н
10	VIII-c-13	-(5)-(5)-	-Ph	Н	-OCH ₃	Н
15	VIII-c-14		-Ph	Н	A ₁₇ and A ₁₈ form ring. A ₂₇ and A ₂₈ form ring.	
20	VIII-c-15		-Ph	Н	Н	-Ph
25	VIII-c-16		-Ph	Н	-Ph	Н
30	VIII-c-17		-Ph	-Ph	Н	Н
30	VIII-c-18	-(5)-(5)-	-Ph	Н	l-naphthyl	Н
35	VIII-c-19	-(\$)-(\$)-	-Ph	Н	2-naphthyl	Н
40	VIII-c-20	-(-)-(-)-	-Ph	Н	4-biphenylyl	Н
45	VIII-c-21		-Ph	Н	3-biphenylyl	Н
50	VIII-c-22		-Ph	Н	2-biphenylyl	Н
50	VIII-c-23	-	-Ph	Н	C1	Н

EP 1 148 109 A2

5	Formula (VIII) Compound No.	L _m	A ₁₃ =A ₂₃	A ₁₅ =A ₂₅	A ₁₇ =A ₂₇	A ₁₈ =A ₂₈
10	VIII-c-24		-Ph	Н	-ОН	Н
	VIII-c-25	-(-)-(-)-	-Ph	Н	-NO ₂	Н
15	VIII-c-26		-Ph	Н	-CN	Н
20	VIII-c-27	-(-)-(-)-	-Ph	Н.	-OPh	Н
25	VIII-c-28		-Ph	Н	−SCH₃	Н
30	VIII-c-29		-Ph	Н	-SPh	Н
30	VIII-c-30	-(\$)-(\$)-	-Ph	Н	−NPh₂	Н
<i>35</i> _.	VIII-c-31	-{\bar{\bar{\bar{\bar{\bar{\bar{\bar	-Ph	Н	-соон	Н
40	VIII-c-32	-(-)-(-)-	-Ph	Н	2-pyridyl	Н
45	VIII-c-33	- \$-	-Ph	Н	Н	CH ₃
	VIII-c-34	- \$-	-Ph	Н	CH ₃	Н
50	VIII-c-35	- 	-Ph	CH₃	Н	Н

EP 1 148 109 A2

5	Formula (VIII) Compound No.	L ₁₁₁	A ₁₃ =A ₂₃	A ₁₅ =A ₂₅	A ₁₇ =A ₂₇	A ₁₈ =A ₂₈
	VIII-c-36	-	-Ph	Н	C_2H_5	Н
10	VIII-c-37		-Ph	Н	n-C ₃ H ₇	Н
15	VIII-c-38	-	-Ph	Н	n-C ₄ H ₉	Н
20	VIII-c-39	-	-Ph	Н	$t-C_4H_9$	Н
25	VIII-c-40	-	-Ph	-OCH ₃	Н	. Н
30	VIII-c-41		-Ph	Н	A_{17} and A_{18} form a ring. A_{27} and A_{28} form a ring.	
	VIII-c-42	→	-Ph	Н	Н	-Ph
35	VIII-c-43	-	-Ph	Н	-Ph	Н
40	VIII-c-44	-{>-	-Ph	-Ph	Н	н
45	VIII-c-45	-{>-	-Ph	Н	l-naphthyl	H.
	VIII-c-46	_	-Ph	Н	2-naphthyl	Н
50	VIII-c-47	- ⟨>-	-Ph	Н	4-biphenylyl	Н

EP 1 148 109 A2

5	Formula (VIII) Compound No.	L ₁₁₁	A ₁₃ =A ₂₃	A ₁₅ =A ₂₅	A ₁₇ =A ₂₇	A ₁₈ =A ₂₈
10	VIII-c-48		-Ph	Н	3-biphenylyl	Н
10	VIII-c-49	- \$	-Ph	Н	2-biphenylyl	Н
15	VIII-c-50		-Ph	Н	Cl	Н
20	VIII-c-51	-	, -Ph	Н	-ОН	Н
25	VIII-c-52	-	-Ph	Н	-NO ₂	Н
	VIII-c-53	-(5)-	-Ph	Н	-CN	. Н
30	VIII-c-54	- ⟨□}-	-Ph	Н	-OPh	Н
35	VIII-c-55	-{>-	-Ph	Н	-SCH ₃	Н
‡O	VIII-c-56	-	-Ph	Н	-SPh	Н
15	VIII-c-57	-{	-Ph	Н	-NPh ₂	H
	VIII-c-58	- \$	-Ph	Н	-СООН	Н
50	VIII-c-59		-Ph	Н	2-pyridyl	Н

EP 1 148 109 A2

5	Formula (VIII) Compound No.	L ₁₁₁	A ₁₃ =A ₂₃	A ₁₅ =A ₂₅	A ₁₇ =A ₂₇	A ₁₈ =A ₂₈
40	VIII-c-60	TO	-Ph	Н	Н	CH ₃
10	VIII-c-61	TO .	-Ph	Н	CH ₃	Н
15	VIII-c-62	M	-Ph	CH ₃	Н	Н
20	VIII-c-63	TO	-Ph	Н	C_2H_5	Н
25	VIII-c-64	XX	-Ph	н	n-C ₃ H ₇	Н
30	VIII-c-65		-Ph	Н	n-C ₄ H ₉	Н
<i>35</i>	VIII-c-66	VII.	-Ph	Н	t-C ₄ H ₉	Н .
	VIII-c-67	TO	-Ph	н	-OCH ₃	Н
40	VIII-c-68	VQ.	-Ph	Н	A ₁₇ and A ₁ benzene A ₂₇ and A ₂ benzene	ring. s form a
45	VIII-c-69	VQ.	-Ph	Н	Н	-Ph
50	VIII-c-70	VQ.	-Ph	Н	-Ph	Н

EP 1 148 109 A2

5	Formula (VIII) Compound No.	L ₁₁₁	A ₁₃ =A ₂₃	A ₁₅ =A ₂₅	A ₁₇ =A ₂₇	A ₁₈ =A ₂₈
	VIII-c-71	VQ.	-Ph	-Ph	Н	Н
10	VIII-c-72		-Ph	Н	l-naphthyl	Н
15	VIII-c-73	VQ.	-Ph	Н	2-naphthy1	Н
20	VIII-c-74	VQ.	-Ph	Н	4-biphenylyl	Н
25	VIII-c-75	M	-Ph	Н	2-biphenylyl	Н.
30	VIII-c-76	VQ.	-Ph	Н	C1	Н
35	VIII-c-77	OQ	-Ph	Н	-ОН	Н
	VIII-c-78	W	-Ph	Н	-NO ₂	Н
40	VIII-c-79	TO	-Ph	Н	-CN	Н
45	VIII-c-80	TO	-Ph	Н	-OPh	Н
50	VIII-c-81	TO	-Ph	Н	−SCH₃	H

EP 1 148 109 A2

5	Formula (VIII) Compound No.	L ₁₁₁	A ₁₃ =A ₂₃	A ₁₅ =A ₂₅	A ₁₇ =A ₂₇	A ₁₈ =A ₂₈
	VIII-c-82	TO	-Ph	Н	-SPh	Н
10	VIII-c-83	TOQ.	-Ph	Н	-NPh ₂	Н
15	VIII-c-84	W	-Ph	н	-СООН	Н
20	VIII-c-85	TO	' - Ph	Н	2-pyridyl	Н

EP 1 148 109 A2

	Formula (VIII) Compound No.	L ₁₁₁	A ₁₃ =A ₂₃	A ₁₆ =A ₂₆	A ₁₈ =A ₂₈
5	VIII-d-1	- ⟨> - ⟨>	-Ph	Н	Н
10	VIII-d-2	-(5)-	-Ph	Н	Н
15	VIII-d-3	VQ.	-Ph	Н	Н
20	VIII-d-4		$A_{13} = \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad$	Н	Н
25	VIII-d-5	($A_{13} = \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Н	Н
30	VIII-d-6		-Ph	Н	CH ₃
35	VIII-d-7		-Ph	CH ₃	Н .
40	VIII-d-8		-Ph	СН₃	CH₃
	VIII-d-9	~ <u></u>	-Ph	C_2H_5	Н
45	VIII-d-10	~ <u></u>	-Ph	n-C ₃ H ₇	Н
50	VIII-d-11	~>-<>	-Ph	n-C ₄ H ₉	Н

EP 1 148 109 A2

Formula (VIII) Compound No.	L ₁₁₁	A ₁₃ =A ₂₃	A ₁₆ =A ₂₆	A ₁₈ =A ₂₈
VIII-d-12	(-)(-)-	-Ph	$t-C_4H_9$. Н
VIII-d-13		-Ph	-OCH ₃	Н
VIII-d-14	-<>-	-Ph	Н	-Ph
VIII-d-15	~~~~ ₁	−Ph .	~Ph	Н
VIII-d-16		-Ph	1-naphthyl	н
VIII-d-17		-Ph	2-naphthyl	н
VIII-d-18		-Ph	4-biphenylyl	н
VIII-d-19		-Ph	3-biphenylyl	н
VIII-d-20		-Ph	2-biphenylyl	Н
VIII-d-21		-Ph	Cl	н
VIII-d-22		-Ph	-ОН	Н .
VIII-d-23	-(>-(>-	-Ph	-NO ₂	Н

EP 1 148 109 A2

Formula (VIII) Compound No.	. L ₁₁₁	A ₁₃ =A ₂₃	A ₁₆ =A ₂₆	A ₁₈ =A ₂₈
VIII-d-24	(5)(5)	-Ph	-CN	Н
VIII-d-25		-Ph	-0Ph	Н
VIII-d-26		-Ph	-SCH ₃	н
VIII-d-27		-Ph	-SPh	Н
V <u>IIII-d-28</u>		-Ph	-NH ₂	Н
VIII-d-29	-	Ph	-NH-Ph	Н
VIII-d-30	-(\$)-(\$)-	-Ph	−NPh ₂	Н
VIII-d-31		-Ph	-СООН	Н
VIII-d-32	~ <u></u>	-Ph	2-pyridyl	Н
VIII-d-33		-Ph	Н	CH ₃
VIII-d-34	-<>	-Ph	CH ₃	Н
VIII-d-35	~ <u></u>	-Ph	CH ₃	СН ₃

EP 1 148 109 A2

5	Formula (VIII) Compound No.	L ₁₁₁	A ₁₃ =A ₂₃	A ₁₆ =A ₂₆	A ₁₈ =A ₂₈
	VIII-d-36		-Ph	C_2H_5	Н
10	VIII-d-37	~ <u></u>	-Ph	n-C ₃ H ₇	Н
15	VIII-d-38		-Ph	$n-C_4H_9$	Н
20	VIII-d-39	~>-	-Ph	$t-C_4H_9$	Н
25	VIII-d-40		-Ph	-OCH ₃	н
	VIII-d-41	-	-Ph	Н	-Ph
30	VIII-d-42	-<>	-Ph	. −Ph	Н
35	VIII-d-43	-<>-	-Ph	1-naphthyl	Н
40	VIII-d-44	-<>	-Ph	4-biphenylyl	Н
45	VIII-d-45	-	-Ph	3-biphenylyl	Н
	VIII-d-46	-<>	-Ph	2-biphenylyl	Н
50	VIII-d-47		-Ph	C1	Н

EP 1 148 109 A2

5	Formula (VIII) Compound No.	L ₁₁₁	A ₁₃ =A ₂₃	A ₁₆ =A ₂₆	A ₁₈ =A ₂₈
	VIII-d-48	-	-Ph	-ОН	Н
10	VIII-d-49		-Ph	-NO ₂	Н
15	VIII-d-50		-Ph	-CN	Н
20	VIII-d-51	-	-Ph	-OPh	Н
	VIII-d-52	-(-Ph	-SCH₃	Н
25	VIII-d-53		-Ph	-SPh	Н
30	VIII-d-54	-<>-	-Ph	-NPh ₂	Н
35	VIII-d-55		-Ph	-соон	Н
40	VIII-d-56	-<>>	-Ph	2-pyridyl	Н
	VIII-d-57	XX	-Ph	Н	CH ₃
45	VIII-d-58	VQ.	-Ph	CH ₃	Н
50	VIII-d-59	CO	-Ph	CH₃	CH ₃

EP 1 148 109 A2

	Formula (VIII) Compound No.	L,,,	A ₁₃ =A ₂₃	A ₁₆ =A ₂₆	A ₁₈ =A ₂₈
5	VIII-d-60	TQ.	-Ph	Н	C_2H_5
10	VIII-d-61	TO .	-Ph	C_2H_5	н
15	VIII-d-62	TO .	-Ph	$n-C_3H_7$	н
20	VIII-d-63	TOO,	-Ph	n-C ₄ H ₉	Н
25	VIII-d-64	TO	-Ph	t-C₄H ₉	Н
	VIII-d-65	TO .	-Ph	Н	-OCH ₃
30	VIII-d-66	TO .	-Ph	-OCH ₃	Н
35	VIII-d-67	M	−Ph	-OCH ₃	−OCH ₃
40	VIII-d-68		-Ph	н	-Ph
45	VIII-d-69	TO	-Ph	-Ph	Н
50	VIII-d-70	VOI.	-Ph	H	1-naphthyl

EP 1 148 109 A2

Formula (VIII) Compound No.	L _m	A ₁₃ =A ₂₃	A ₁₆ =A ₂₆	A ₁₈ =A ₂₈
VIII-d-71	TO .	-Ph	l-naphthyl	Н
VIII-d-72	XX	-Ph	2-naphthyl	Н
VIII-d-73	XX	~Ph	Н	4-biphenylyl
VIII-d-74	W.	-Ph	4-biphenylyl	Н
VIII-d-75	W	-Ph	3-biphenylyl	Н
VIII-d-76	M	-Ph	2-biphenylyl	Н
VIII-d-77		-Ph	Cl	Н
VIII-d-78	M	-Ph	-ОН	н
VIII-d-79	TO .	-Ph	-NO ₂	Н
VIII-d-80	M	-Ph	-CN	Н
VIII-d-81	XX	-Ph	-OPh	Н

EP 1 148 109 A2

Formula (VIII) Compound No.	L _m	A ₁₃ =A ₂₃	A ₁₆ =A ₂₆	A ₁₈ =Å ₂₈
VIII-d-82	VQ.	-Ph	−SCH₃	Н
VIII-d-83	M	-Ph	-SPh	Н
VIII-d-84	TO .	-Ph	-NPh ₂	Н
VIII-d-85	00	-Ph	-СООН	Н
VIII-d-86	M	-Ph	2-pyridyl	Н

EP 1 148 109 A2

	Formula (VIII) Compound No.	L ₁₁₁	A ₁₃ =A ₂₃	A ₁₇ =A ₂₇	A ₁₈ =A ₂₈
5	VIII-e-1	-(-)-(-)-	-Ph	Н	Н
10	VIII-e-2	-	-Ph	Н	Н
15	VIII-e-3	VQ.	-Ph	Н	Н
20	VIII-e-4		-Ph	Н	CH ₃
	VIII-e-5	~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-Ph	CH ₃	Н
25	VIII-e-6		-Ph	CH ₃	CH ₃
30	VIII-e-7		-Ph	C_2H_5	. Н
35	VIII-e-8	-(-)-(-)-	-Ph	n-C ₃ H ₇	Н
40	VIII-e-9	-(>-(>-	-Ph	n-C ₃ H ₇	n-C ₃ H ₇
	VIII-e-10		-Ph	n-C ₄ H ₉	Н
45	VIII-e-11	-	-Ph	t−C₄H ₉	Н
50	VIII-e-12	-	-Ph	-0CH ₃	Н

EP 1 148 109 A2

	Formula (VIII) Compound No.	L ₁₁₁	A ₁₃ =A ₂₃	A ₁₇ =A ₂₇	A ₁₈ =A ₂₈
5	VIII-e-13	-(>-(>-(>-(>-(>-(>-(>-(>-(>-(>-(>-(>-(>-	-Ph	A_{17} and A_{18} form a A_{27} and A_{28} form a A_{28}	penzene ring.
10	VIII-e-14		-Ph	Н	-Ph
15	VIII-e-15	-(5)-(5)-	-Ph	-Ph	Н
20	VIII-e-16	-<>-<>-<>-	-Ph	-Ph	-Ph
25	VIII-e-17	-(-)-(-)-	-Ph	1-naphthyl	Н
	VIII-e-18	- ◇ - ◇-	-Ph	2-naphthyl	Н
30	VIII-e-19	-(-)-(-)-	-Ph	4-biphenylyl	Н
35	VIII-e-20	-(-)-(-)-	-Ph	3-biphenylyl	Н
40	VIII-e-21		-Ph	2-biphenylyl	Н
45	VIII-e-22	-	-Ph	C1	Н
45	VIII-e-23		-Ph	-ОН	н
50	VIII-e-24	~>~>	-Ph	-NO ₂	Н

EP 1 148 109 A2

	Formula (VIII) Compound No.	L ₁₁₁	A ₁₃ =A ₂₃	A ₁₇ =A ₂₇	A ₁₈ =A ₂₈
5	VIII-e-25		-Ph	-CN	Н
10	VIII-e-26	-(5)-(5)-	-Ph	-OPh	Н
15	VIII-e-27	- \$-	−Ph	−SCH₃	Н
	VIII-e-28		-Ph	-SPh	Н
20	VIII-e-29	-\	~Ph	-NPh ₂	Н
25	VIII-e-30	- ∅ - ⊘-	-Ph	-соон	Н
<i>30</i>	VIII-e-31	- ∅ - ⊘-	-Ph	2-pyridyl	Н
	VIII-e-32	-	-Ph	Н	CH ₃
35	VIII-e-33	-	-Ph	CH ₃	Н
40	VIII-e-34	- ⟨□}-	-Ph	CH ₃	CH₃
	VIII-e-35	- ⟨>	-Ph	C_2H_5	Н
	VIII-e-36	-{>-	-Ph	n-C ₃ H ₇	Н
50	VIII-e-37		-Ph	n-C ₃ H ₇	n-C ₃ H ₇

EP 1 148 109 A2

	Formula (VIII) Compound No.	L ₁₁₁	A ₁₃ =A ₂₃	A ₁₇ =A ₂₇	A ₁₈ =A ₂₈
5	VIII-e-38	- ⟨\$\}-	-Ph	n-C ₄ H ₉	Н
10	VIII-e-39	- ⟨¯⟩-	-Ph	t−C₄H ₉	Н
15	VIII-e-40	-<>-	-Ph	н	-OCH ₃
20	VIII-e-41	-	-Ph	-OCH ₃	Н
	VIII-e-42		-Ph	A_{17} and A_{18} form A_{27} and A_{28} form	a benzene ring. a benzene ring.
25	VIII-e-43	(-)-	-Ph	Н	-Ph
30	VIII-e-44		-Ph	-Ph	Н
35	VIII-e-45	(-)-	-Ph	Ph	-Ph
40	VIII-e-46	√ >	-Ph	1-naphthyl	Н
	VIII-e-47	√ >	-Ph	2-nap h thyl	Н
45	VIII-e-48	- ⟨>	-Ph	Н	4-biphenylyl
50	VIII-e-49	∼	-Ph	4-biphenylyl	4-biphenylyl

EP 1 148 109 A2

	Formula (VIII) Compound No.	L ₁₁₁	A ₁₃ =A ₂₃	A ₁₇ =A ₂₇	A ₁₈ =A ₂₈
5	VIII-e-50	-	-Ph	3-biphenylyl	Н
10	VIII-e-51	-	-Ph	2-biphenylyl	Н
15	VIII-e-52	-{>-	-Ph	Cl	Н
20	VIII-e-53	-{>	-Ph	-ОН	Н
	VIII-e~54	→	-Ph	-NO ₂	Н
25	VIII-e-55	-	-Ph	-CN	Н
30	VIII-e-56	- ⟨□}-	-Ph	-OPh	Н
35	VIII-e-57		-Ph	-SCH ₃	Н
40	VIII-e-58		-Ph	-SPh	н
40	VIII-e-59	(-)-	-Ph	-NPh ₂	Н
45	VIII-e-60		-Ph	-СООН	Н
50	VIII-e-61		-Ph	2-pyridyl	Н

EP 1 148 109 A2

	Formula (VIII) Compound No.	L ₁₁₁	A ₁₃ =A ₂₃	A ₁₇ =A ₂₇	A ₁₈ =A ₂₈
5	VIII-e-62	TQ .	-Ph	Н	CH ₃
10	VIII-e-63	CO	-Ph	CH ₃	Н
15	VIII-e-64	M	-Ph	CH ₃	CH ₃
20	VIII-e-65	TOO,	-Ph	C_2H_5	н
25	VIII-e-66	TO	-Ph	n-C ₃ H ₇	Н
	VIII-e-67	VQ.	-Ph	n-C ₃ H ₇	n-C ₃ H ₇
30	VIII-e-68	· OQ	-Ph	n-C ₄ H ₉	Н
35	VIII-e-69	TOQ.	-Ph	t-C₄H ₉	Н
40	VIII-e-70	VQ.	-Ph	$t-C_4H_9$	$t-C_4H_9$
45	VIII-e-71	TO .	-Ph	-0CH ₃	Н
50	VIII-e-72	TO	-Ph	A_{17} and A_{18} form a A_{27} and A_{28} form a	

EP 1 148 109 A2

	Formula (VIII) Compound No.	L ₁₁₁	A ₁₃ =A ₂₃	A ₁₇ =A ₂₇	A ₁₈ =A ₂₈
5	VIII-e-73	VQ.	-Ph	Н	-Ph
10	VIII-e-74	VQ.	-Ph	-Ph	Н
15	VIII-e-75	VQ.	-Ph	-Ph	-Ph
20	VIII-e-76		-Ph	1-naphthyl	Н
25	VIII-e-77	TO .	-Ph	2-naphthyl	Н
30	VIII-e-78	TO .	-Ph	3-biphenylyl	Н
30	VIII-e-79	TO .	−Ph·	2-biphenylyl	Н
35	VIII-e-80	TO .	-Ph	C1	Н
40	VIII-e-81	TO	-Ph	-ОН	Н
45	VIII-e-82	TO	-Ph	-NO ₂	Н
50	VIII-e-83		-Ph	-CN	Н

EP 1 148 109 A2

5	Formula (VIII) Compound No.	L ₁₁₁	A ₁₃ =A ₂₃	A ₁₇ =A ₂₇	A ₁₈ =A ₂₈
5	VIII-e-84	XX	-Ph	-0Ph	Н
10	VIII-e-85		-Ph	−SCH ₃	Н
15	VIII-e-86	TO .	-Ph	-SPh	Н
20	VIII-e-87	YOU,	-Ph	-NPh ₂	Н
25	VIII-e-88	TO .	-Ph	-СООН	Н
	VIII-e-89	VQ.	Ph	2-pyridyl	Н
30					

EP 1 148 109 A2

	Formula (VIII) Compound No.	L ₁₁₁	A ₁₃ =A ₂₃	A ₁₅ =A ₂₅	A ₁₈ =A ₂₈
5	VIII-f-1	-(-)-(-)-	-Ph	Н	Н
10	VIII-f-2		-Ph	Н	Н
15	VIII-f-3	VQ.	-Ph	н	Н
. 20	VIII-f-4		-Ph	Н	CH ₃
	VIII-f-5	- 	-Ph	CH ₃	Н
25	VIII-f-6		-Ph	CH ₃	CH ₃
30	VIII-f-7		-Ph	C_2H_5	н
35	VIII-f-8		~Ph	n-C ₃ H ₇	Н
40	VIII-f-9	~>\<>	-Ph	n−C₄H ₉	Н
	VIII-f-10	-	-Ph	t-C₄H ₉	Н
45	VIII-f-11		-Ph	-OCH ₃	H
50	VIII-f-12	~ <u></u>	-Ph	Н	-Ph

EP 1 148 109 A2

	Formula (VIII) Compound No.	L ₁₁₁	A ₁₃ =A ₂₃	A ₁₅ =A ₂₅	A ₁₈ =A ₂₈
5	VIII-f-13	-	-Ph	-Ph	Н
10	VIII-f-14	-(-)-(-)-	-Ph	-Ph	-Ph
15	VIII-f-15		-Ph	Н	1-naphthyl
20	VIII-f-16	-	-Ph	1-naphthyl	Н
	VIII-f-17	~>-<>-	-Ph	2-naphthyl	н
25	VIII-f-18	~ <u></u>	-Ph	4-biphenylyl	Н
30	VIII-f-19	~ <u></u>	-Ph	3-biphenylyl	Н
<i>35</i> ·	VIII-f-20		-Ph	2-biphenylyl	Н
40	VIII-f-21		-Ph	Cl	Н
	VIII-f-22		-Ph	Ph -OH	Н
45	VIII-f-23	~ <u></u>	-Ph	-NO ₂	Н
50	VIII-f-24	~>~>	-Ph	-CN	Н

EP 1 148 109 A2

	Formula (VIII) Compound No.	L ₁₁₁	A ₁₃ =A ₂₃	A ₁₅ =A ₂₅	A ₁₈ =A ₂₈
.	VIII-f-25	-	-Ph	-OPh	Н
10	VIII-f-26		-Ph	−SCH₃	H
15	VIII-f-27		-Ph	-SPh	Н
20	VIII-f-28		-Ph	-NPh ₂	Н
	VIII-f-29	~~ <u>`</u>	-Ph	-СООН	Н
25	VIII-f-30		-Ph	2-pyridyl	Н
30	VIII-f-31		-Ph	Н	CH ₃
35	VIII-f-32	- ⟨\$\tag{\tau}.	-Ph	CH ₃	Н
40	VIII-f-33	-⟨□⟩ -	-Ph	CH ₃	CH ₃
40	VIII-f-34	-⟨¯⟩ -	-Ph	C_2H_5	Н
45	VIII-f-35	~ <u>~</u> ~	-Ph	n-C ₃ H ₇	Н
50	VIII-f-36		-Ph	n-C ₄ H ₉	Н

EP 1 148 109 A2

	Formula (VIII) Compound No.	L ₁₁₁	A ₁₃ =A ₂₃	A ₁₃ =A ₂₃ A ₁₅ =A ₂₅	
5	VIII-f-37	-	-Ph	t-C ₄ H ₉	Н
10	VIII-f-38		-Ph	-OCH ₃	Н
15	VIII-f-39	- ⟨□}-	-Ph	Н	-Ph
20	VIII-f-40		-Ph	-Ph	Н
	VIII-f-41	- ⟨□}-	-Ph	-Ph	-Ph
25	VIII-f-42	-	-Ph	1-naphthyl	Н
30	VIII-f-43		-Ph	2-naphthyl	Н
35	VIII-f-44	-(>-	-Ph	4-biphenylyl	н
	VIII-f-45	-	-Ph	3-biphenylyl	Н
40	VIII-f-46		-Ph	2-biphenylyl	Н
45	VIII-f-47	- ⟨□}-	-Ph	C1	Н
50	VIII-f-48	~~~	-Ph	-ОН	Н

EP 1 148 109 A2

	Formula (VIII) Compound No.	L ₁₁₁	A ₁₃ =A ₂₃	A ₁₅ =A ₂₅	A ₁₈ =A ₂₈
5	VIII-f-49		-Ph	-NO ₂	Н
10	VIII-f-50	-(5)-	-Ph	-CN	Н
5	VIII-f-51	-(5)-	~Ph	-0Ph	Н
o	VIII-f-52	-	-Ph	−SCH ₃	Н
	VIII-f-53	- €>-	-Ph	-SPh	Н
5	VIII-f-54	-	-Ph	−NPh ₂	Н
ס	VIII-f-55	- ⟨¬>-	-Ph	-С00Н	Н
ī	VIII-f-56	-(5)-	-Ph	2-pyridyl	H
	VIII-f-57	M	-Ph	Н	CH₃
	VIII-f-58	VQ.	-Ph	CH ₃	Н
	VIII-f-59	TO	-Ph	CH ₃	CH ₃
	VIII-f-60		~Ph	C_2H_5	н

EP 1 148 109 A2

	Formula (VIII) Compound No.	L ₁₁₁	A ₁₃ =A ₂₃	A ₁₅ =A ₂₅	A ₁₈ =A ₂₈
5	VIII-f-61	VQ.	-Ph	n-C ₃ H ₇	Н
10	VIII-f-62	TO	-Ph	$n-C_4H_9$	Н
15	VIII-f-63	TOO.	-Ph	$t-C_4H_9$	Н
20	VIII-f-64	TOO,	-Ph	−OCH ₃	Н
25	VIII-f-65	TO	-Ph	Н	-Ph
	VIII-f-66	W	-Ph	-Ph	Н
30	VIII-f-67	M	-Ph	−Ph	-Ph.
35	VIII-f-68	TO .	−Ph	1-naphthyl	Н
40	VIII-f-69	XXX	-Ph	2-naphthyl	Н
45	VIII-f-70	TO	-Ph	4-biphenylyl	Н
50	VIII-f-71		-Ph .	3-biphenylyl	Н

EP 1 148 109 A2

	Formula (VIII) Compound No.	L ₁₁₁	A ₁₃ =A ₂₃	A _{.15} =A _{.25}	A ₁₈ =A ₂₈
5	VIII-f-72	M	-Ph	2-biphenylyl	Н
10	VIII-f-73	XXX	-Ph	Cl	Н
15	VIII-f-74		-Ph	-ОН	Н
20	VIII-f-75		-Ph	-NO ₂	Н
25	VIII-f-76		-Ph	-CN	Н
30	VIII-f-77		-Ph	-0Ph	Н
30	VIII-f-78	M	-Ph	−SCH₃	Н
35	VIII-f-79	M	-Ph	-SPh	Н
40	VIII-f-80	VQ.	-Ph	-NPh ₂	Н
45	VIII-f-81	VQ.	-Ph	-соон	Н
50	VIII-f-82	CO	-Ph	2-pyridyl	Н

EP 1 148 109 A2

	Formula (VIII)	1	A ₁₃ =A ₂₃	A ₁₅ =A ₂₅	A ₁₆ =A ₂₆	A ₁₇ =A ₂₇	A:6=A28
	Compound No.	L ₁₁₂	=A ₃₃	=A ₃₅	=A ₃₆	=A ₃₇	=A ₃₈
5	VIII-g-1		Н	Н	Н	Н	Н
10	VIII-g-2		Н	A_{15} and A_{16} form a A_{25} and A_{26} form a A_{35} and A_{36} form a	benzene ring.	A_{27} and A_{28} form	a benzene ring. a benzene ring. a benzene ring.
15	VIII-g-3		Н	A_{16} and A_{16} form a A_{25} and A_{26} form a A_{35} and A_{36} form a	benzene ring.	Н	н
	VIII-g-4		-Ph	Н	Н	Н	Н
20	VIII-g-5		-Ph	A_{15} and A_{16} form a A_{25} and A_{26} form a A_{35} and A_{36} form a	benzene ring.	A_{17} and A_{18} form A_{27} and A_{28} form A_{37} and A_{38} form	a benzene ring.
25	VIII-g-6		-Ph	A_{15} and A_{16} form a A_{25} and A_{26} form a A_{35} and A_{36} form a	benzene ring.	Н	Н
	VIII-g-7	-N-	Н	Н .	Н	Н	Н
30	VIII-g-8	-N	Н	A_{15} and A_{16} form a A_{25} and A_{26} form a A_{35} and A_{36} form a	benzene ring.	A_{17} and A_{18} form A_{27} and A_{28} form A_{37} and A_{38} form	a benzene ring.
35	VIII-g-9	-N-	Н	A_{15} and A_{16} form a A_{25} and A_{26} form a A_{36} and A_{36} form a	benzene ring.	Н	Н
10	VIII-g-10	-N-	-Ph	Н	H	Н	H .
40	VIII-g-11	-N-	-Ph	A_{15} and A_{16} form a A_{25} and A_{26} form a A_{35} and A_{36} form a	benzene ring.	A_{17} and A_{18} form A_{27} and A_{28} form A_{37} and A_{38} form	a benzene ring.
45	VIII-g-12	-N-	-Ph	A_{15} and A_{16} form a A_{25} and A_{26} form a A_{35} and A_{36} form a	benzene ring.	Н	Н

EP 1 148 109 A2

5	Formula (VIII) Compound No.	L ₁₁₂	$A_{13} = A_{23}$ = A_{33}	A ₁₅ =A ₂₅ =A ₃₅	A ₁₆ =A ₂₆ =A ₃₆	A ₁₇ =A ₂₇ =A ₃₇	A ₁₈ =A ₂₈ =A ₃₈
10	VIII-g-13	~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Н	Н	н	Н	H
15	VIII-g-14		Н	A25 and A26 for	m a benzene ring. m a benzene ring. m a benzene ring.	Н	Н
20	VIII-g-15	~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Н .	A_{25} and A_{26} for	m a benzene ring. m a benzene ring. m a benzene ring.	A_{17} and A_{18} form a A_{27} and A_{28} form a A_{37} and A_{38} form a	benzene ring.
25	VIII-g-16		-Ph ,	Н	Н	Н	Н
30	VIII-g-17	₩	-Ph	A_{25} and A_{26} for	m a benzene ring. m a benzene ring. m a benzene ring.	A_{17} and A_{18} form a A_{27} and A_{28} form a A_{37} and A_{38} form a	benzene ring.
35	VIII-g-18		-Ph	A ₂₅ and A ₂₆ for	m a benzene ring. m a benzene ring. m a benzene ring.	Н	Н
40	VIII-g-19		-Ph	Н	Н	-Ph	Н
	VIII-g-20		-Ph	-Ph	, Н	Н	Н
45	VIII-g-21		-Ph	Н	-Ph	Н	Н
50	VIII-g-22		-Ph	Н	Н	Н	-Ph

EP 1 148 109 A2

5	Formula (VIII) Compound No.	L ₁₁₂	A ₁₃ =A ₂₃ =A ₃₃	A ₁₅ =A ₂₅ =A ₃₅	A ₁₆ =A ₂₆ =A ₃₆	A ₁₇ =A ₂₇ =A ₃₇	A ₁₈ =A ₂₈ =A ₃₈
10	VIII-g-23		-Ph	Н	Н	C1	Н
	VIII-g-24		-Ph	Н	Н	-0Н	Н
15	VIII-g-25		-Ph	H	Н	-NO ₂	Н
20	VIII-g-26		-Ph	Н	Н	-CN	Н
25	VIII-g-27		-Ph	н	Н	-0Ph	Н
30	VIII-g-28		-Ph	Н	Н	-SCH ₃	Н
	VIII-g-29		-Ph	Н	Н	-SPh	Н
35	VIII-g-30		-Ph	Н	Н	-NPh	Н
40	VIII-g-31		-Ph	Н	Н	CH ₃	Н
45	VIII-g-32		-Ph	Н	Н	-0CH ₃	Н
50	VIII-g-33		-Ph	Н	Н	-соон	Н
<i>3v</i>	VIII~g-34		-Ph	Н	Н	2-pyridyl	Н

EP 1 148 109 A2

5	Formula (VIII) Compound No.	L ₁₁₂	A ₁₃ =A ₂₃ =A ₃₃	A ₁₅ =A ₂₅ =A ₃₅	A ₁₆ =A ₂₆ =A ₃₆	A ₁₇ =A ₂₇ =A ₃₇	A ₁₈ =A ₂₈ =A ₃₈
	VIII-g-35	-N-	-Ph	Н	Н	-Ph	Н
10	VIII-g-36	-N-	-Ph	-Ph	Н	Н	Н
15	VIII-g-37	-N-	-Ph	Н	-Ph	Н	Н
	VIII-g-38	-N-	-Ph	. Н	Н	Н	-Ph
20	VIII-g-39	-N-	-Ph	Н	Н	Cl	Н
25	VIII-g-40	-N-	-Ph	Н	Н	-ОН	Н
	VIII-g-41	-N-	-Ph	Н	Н	-NO ₂	Н
30	VIII-g-42	-N-	-Ph	Н	Н	-CN	Н
35	VIII-g-43	-N-	-Ph	Н	Н	-OPh	Н
	VIII-g-44	-N-	-Ph	Н	Н	-SCH ₃	Н
10	VIII-g-45	-N	-Ph	Н	Н	-SPh	Н
15	VIII-g-46	-N-	-Ph	Н	Н	-NPh	Н
	VIII-g-47	-N-	-Ph	Н	Н	CH ₃	Н
o	VIII-g-48	-N-	-Ph	Н	Н	-0CH ₃	Н

EP 1 148 109 A2

5	Formula (VIII) Compound No.	L ₁₁₂	A ₁₃ =A ₂₃ =A ₃₃	$A_{15} = A_{25}$ = A_{35}	A ₁₆ =A ₂₆ =A ₃₆	$A_{17} = A_{27} = A_{37}$	A ₁₈ =A ₂₈ =A ₃₈
	VIII-g-49	-N-	-Ph	Н	Н	-соон	Н
10	VIII-g-50	-N-	-Ph	Н	Н	2-pyridyl	Н
15	VIII-g-51	- ○ -N- ○ -	-Ph	Н	Н	-Ph	Н
20	VIII-g-52		−Ph	-Ph	Н	Н	Н
25	VIII-g-53		-Ph	Н	-Ph	н	Н
30	VIII-g-54		-Ph	Н	Н	Н	-Ph
35	VIII-g-55		-Ph	Н	Н	Cl	Н
40	VIII-g-56		-Ph	Н	Н	-ОН	Н
<i>45 50</i>	VIII-g-57	-	-Ph	Н	Н	-NO ₂	Н

EP 1 148 109 A2

5	Formula (VIII) Compound No.	L ₁₁₂	$A_{13} = A_{23}$ = A_{33}	A ₁₅ =A ₂₅ =A ₃₅	$A_{16} = A_{26}$ = A_{36}	A ₁₇ =A ₂₇ =A ₃₇	A ₁₈ =A ₂₈ =A ₃₈
10	VIII-g-58	— N-√>	-Ph	Н	Н	-CN	Н
15	VIII-g-59		-Ph	Н	Н	-0Ph	Н
20	VIII-g-60		-Ph	Н	Н	−SCH₃	Н
25	VIII-g-61		-Ph	Н	Н	-SPh	Н
30	VIII-g-62		-Ph	Н	Н	-NPh	Н
35	VIII-g-63		-Ph	Н	Н	СН₃	Н
40	VIII-g-64		-Ph	н	Н	−OCH ₃	Н
45	VIII-g-65		-Ph	Н	Н	-СООН	Н
50	VIII-g-66	-O-N-O-	-Ph	Н	Н	2-pyridyl	Н

EP 1 148 109 A2

Formula (VIII) Compound No.	L ₁₁₂	$A_{13} = A_{23}$ = A_{33}	A ₁₆ =A ₂₆ =A ₃₆	A ₁₇ =A ₂₇ =A ₃₇	A ₁₈ =A ₂₈ =A ₃₈
VIII-h-1	Y	Н	Н	Н	Н
VIII-h-2	T	-Ph	Н	H	Н
VIII-h-3	-N-	Н	Н	Н	Н
VIII-h-4	-N-	· -Ph	Н	Н	Н
VIII-h-5	~>N-<>	Н	Н	Н	Н
VIII-h-6		-Ph	Н	Н	Н
VIII-h-7	Ŷ	Н	A_{16} and A_{17} form a A_{26} and A_{27} form a A_{36} and A_{37} form a	benzene ring.	Н
VIII-h-8	Y	-Ph	A_{16} and A_{17} form a A_{26} and A_{27} form a A_{36} and A_{37} form a	benzene ring.	Н
VIII-h-9	T	Н	A ₂₇ a	and A_{18} form a be and A_{28} form a be and A_{38} form a be	nzene ring.
VIII-h-10	Ţ	-Ph	, A ₂₇ a	and A_{18} form a be and A_{28} form a be and A_{38} form a be	nzene ring.

EP 1 148 109 A2

5	Formula (VIII) Compound No.	L ₁₁₂	$A_{13} = A_{23}$ = A_{33}	A ₁₆ =A ₂₆ =A ₃₆	$A_{17} = A_{27}$ = A_{37}	$A_{18} = A_{28}$ = A_{38}
10	VIII-h-11	T	-Ph	-Ph	Н	Н
	VIII-h-12	T	-Ph	Н	-Ph	Н
15	VIII-h-13	T	-Ph	Н	Н	-Ph
20	VIII-h-14	Y	Ph	Н	C1	Н
25	VIII-h-15	Y	-Ph	Н	-OH	Н
30	VIII-h-16	Y	-Ph	Н	-NO ₂	Н
30	VIII-h-17	Y	-Ph	Н	-CN	Н
35	VIII-h-18	Ÿ.	-Ph	Н	-OPh	Н
40	VIII-h-19	Ŷ	-Ph	Н	−SCH ₃	Н
45	VIII-h-20	Ŷ	-Ph	H	-SPh	Н
	VIII-h-21	P	-Ph	Н	-NPh ₂	Н
50	VIII-h-22	Ŷ	-Ph	Н	CH ₃	Н

EP 1 148 109 A2

5	Formula (VIII) Compound No.	L ₁₁₂	$A_{13} = A_{23}$ = A_{33}	$A_{16} = A_{26}$ = A_{36}	A ₁₇ =A ₂₇ =A ₃₇	$A_{18} = A_{28}$ = A_{38}
	VIII-h-23	Ŷ	-Ph	Н	−OCH ₃	Н
10	VIII-h-24	Y	-Ph	Н	СООН	н
15	VIII-h-25	P	-Ph	Н	2-pyridyl	Н
20	VIII-h-26	-N-	H	A_{26} and A_{27} fo	rm a benzene ring. rm a benzene ring. rm a benzene ring.	н
25	VIII-h-27	-N-	-Ph	A_{26} and A_{27} fo	rm a benzene ring. rm a benzene ring. rm a benzene ring.	Н
20	VIII-h-28	-N-	Н	Н	A_{17} and A_{18} form a be A_{27} and A_{28} form a be A_{37} and A_{38} form a be	nzene ring.
30	VIII-h-29	-N	-Ph	Н	A_{17} and A_{18} form a be A_{27} and A_{28} form a be A_{37} and A_{38} form a be	nzene ring.
35	VIII-h-30	-N-	~Ph	-Ph	Н	Н
40	VIII-h-31	-N-	~Ph	Н	-Ph	Н
	VIII-h-32	-N-	-Ph	Н	Н .	-Ph
45	VIII-h÷33	-N-	-Ph	Н	Cl	Н

EP 1 148 109 A2

5 5	Formula (VIII) Compound No.	L ₁₁₂	A ₁₃ =A ₂₃ =A ₃₃	A ₁₆ =A ₂₆ =A ₃₆	A ₁₇ =A ₂₇ =A ₃₇	A ₁₈ =A ₂₈ =A ₃₈
10	VIII-h-34	-N-	-Ph	Н	~OH	Н
70	VIII-h-35	-N-	-Ph	Н	-NO ₂	Н
15	VIII-h-36	-N-	-Ph	Н	-CN	Н
20	VIII-h-37	-N-	-Ph	Н	-OPh	Н
20	VIII-h-38	-N-	-Ph	Н	-SCH ₃	Н
25	VIII-h-39	-N-	-Ph	Н	-SPh	Н
	VIII-h-40	-N-	-Ph	Н	-NPh ₂	Н
30	VIII-h-41	-N-	-Ph	Н	CH ₃	Н
35	VIII-h-42	-N-	-Ph	Н	-OCH ₃	Н
	VIII-h-43	-N-	-Ph	Н	-СООН	Н
40	VIII-h-44	N	-Ph	Н	2-pyridyl	Н
45	VIII-h-45	- ○ N- ○ -	Н	A_{16} and A_{17} form A_{26} and A_{27} form A_{36} and A_{37} form		Н
50	VIII-h-46		-Ph	A_{16} and A_{17} form A_{26} and A_{27} form A_{36} and A_{37} form	a benzene ring.	Н

EP 1 148 109 A2

Formula (VIII) Compound No.	L ₁₁₂	A ₁₃ =A ₂₃ =A ₃₃	A ₁₆ =A ₂₆ =A ₃₆	$A_{17} = A_{27}$ $= A_{37}$	A ₁₈ =A ₂₈ =A ₃₈
VIII-h-47	-(_)-N-(_)-	Н	Н	A_{27} and A_{28} for	rm a benzene ring. rm a benzene ring. rm a benzene ring.
VIII-h-48		-Ph	Н	A_{27} and A_{28} for	rm a benzene ring. rm a benzene ring. rm a benzene ring.
VIII-h-49		-Ph	-Ph	н	Н
VIII-h-50		-Ph	Н	-Ph	Н
VIII-h-51		-Ph	Н	Н	-Ph
VIII-h-52		-Ph	Н	Cl	Н
VIII-h-53		-Ph	Н	-0Н	Н
VIII-h-54		-Ph	Н	-NO ₂	Н

EP 1 148 109 A2

5	Formula (VIII) Compound No.	L ₁₁₂	A ₁₃ =A ₂₃ =A ₃₃	A ₁₆ =A ₂₆ =A ₃₆	$A_{17} = A_{27}$ = \dot{A}_{37}	$A_{18} = A_{28}$ = A_{38}
10	VIII-h-55		-Ph	Н	-CN	Н
15	VIII-h-56		-Ph	Н	-OPh	Н
20	VIII-h-57		, -Ph	Н	−SCH₃	Н
25	VIII-h-58		-Ph	Н .	-SPh	Н
30	VIII-h-59		-Ph	Н	-NPh ₂	Н
35	VIII-h-60		-Ph	Н	СН₃	Н
40	VIII-h-61		-Ph	Н	-OCH ₃	Н
45	VIII-h-62		-Ph	Н	-соон	H
50	VIII-h-63	-⊘-N-⊘-	-Ph	H .	2-pyridyl	. Н
55						

EP 1 148 109 A2

5	Formula (VIII) Compound No.	L ₁₁₂	A ₁₃ =A ₂₃ =A ₃₃	A ₁₅ =A ₂₅ =A ₃₅	$A_{17} = A_{27}$ = A_{37}	A ₁₈ =A ₂₈ =A ₃₈
	VIII-i-1	Ÿ	Н	Н	Н	Н
0	VIII-i-2	T	-Ph	Н	Н	Н
5	VIII-i-3	-N-	Н	Н	Н	Н
o	VIII-i-4		у Н	Н	Н	Н
5	VIII-i-5	-⊘-N-⊘-	-Ph	Н	Н	Н
o	VIII-i-6	Ŷ	Н	Н	A_{17} and A_{18} form A_{27} and A_{28} form A_{37} and A_{38} form	a benzene ring.
5	VIII-i-7	P	-Ph	Н	A_{17} and A_{18} form A_{27} and A_{28} form A_{37} and A_{38} form	a benzene ring.
0	VIII-i-8	-N -	Н .	Н	A_{17} and A_{18} form : A_{27} and A_{28} form : A_{37} and A_{38} form :	a benzene ring.
5	VIII-i-9		Н	Н	A_{17} and A_{18} form a A_{27} and A_{28} form a A_{37} and A_{38} form a	a benzene ring.
o	VIII-i-10		-Ph	Н	A_{17} and A_{18} form a A_{27} and A_{28} form a A_{37} and A_{38} form a	benzene ring.

EP 1 148 109 A2

5	Formula (VIII) Compound No.	L ₁₁₂	A ₁₃ =A ₂₃ =A ₃₃	A ₁₅ =A ₂₅ =A ₃₅	A ₁₇ =A ₂₇ =A ₃₇	A ₁₈ =A ₂₈ =A ₃₈
40	VIII-i-11	Ŷ	-Ph	-Ph	Н	Н
10	VIII-i-12	Ţ	-Ph	Н	-Ph	Н
15	VIII-i-13	Y	-Ph	Н	Н	-Ph
20	VIII-i-14	Y	, -Ph	Н	C1	Н
25	VIII-i-15	T.	-Ph	Н	-OH	Н
30	VIII-i-16	V	-Ph	Н	-NO ₂	Н
30	VIII-i-17	V	-Ph	Н	-CN	Н
35	VIII-i-18	T	-Ph	Н	-0Ph	Н
40	VIII-i-19	T.	-Ph	Н	−SCH ₃	Н
45	VIII-i-20	T	-Ph	Н	-SPh	Н
	VIII-i-21	T	-Ph	Н	-N-Ph ₂	Н
50	VIII-i-22	Y	-Ph	Н	CH ₃	Н

EP 1 148 109 A2

VIII-i-24 — Ph H -C00H H VIII-i-25 — Ph H 2-pyridyl H VIII-i-26 — N- Ph Ph H H VIII-i-27 — Ph H -Ph H	5	Formula (VIII) Compound No.	L ₁₁₂	A ₁₃ =A ₂₃ =A ₃₃	A ₁₅ =A ₂₅ =A ₃₅	A ₁₇ =A ₂₇ =A ₃₇	A ₁₈ =A ₂₈ =A ₃₈
VIII-i-25	10	VIII-i-23	Y	-Ph	Н	−OCH ₃	Н
VIII-i-25		VIII-i-24	T	-Ph	Н	-СООН	Н
VIII-i-27 $-\stackrel{1}{N}-$ -Ph H -Ph H VIII-i-28 $-\stackrel{1}{N}-$ -Ph H H -Ph VIII-i-29 $-\stackrel{1}{N}-$ -Ph H -OH H VIII-i-30 $-\stackrel{1}{N}-$ -Ph H -OH H VIII-i-31 $-\stackrel{1}{N}-$ -Ph H -ON H VIII-i-32 $-\stackrel{1}{N}-$ -Ph H -CN H VIII-i-33 $-\stackrel{1}{N}-$ -Ph H -OPh H VIII-i-34 $-\stackrel{1}{N}-$ -Ph H -SCH ₃ H VIII-i-35 $-\stackrel{1}{N}-$ -Ph H -SCH ₃ H	15	VIII-i-25	Y	-Ph	Н	2-pyridyl	Н
VIII-i-28	20	VIII-i-26	-N-	, -Ph	-Ph	Н	Н
VIII-i-28		VIII-i-27	-N-	-Ph	Н	-Ph	Н
VIII-i-30	75	VIII-i-28	-N-	-Ph	Н	Н	-Ph
VIII-i-31 $-N-$ -Ph H -NO ₂ H VIII-i-32 $-N-$ -Ph H -CN H VIII-i-33 $-N-$ -Ph H -SCH ₃ H VIII-i-35 $-N-$ -Ph H -SPh H	0	VIII-i-29	- N -	-Ph	Н	C1	Н
VIII-i-31 $-N -Ph$ H $-NO_2$ H 0 VIII-i-32 $-N -Ph$ H $-CN$ H VIII-i-33 $-N -Ph$ H $-OPh$ H 5 VIII-i-34 $-N -Ph$ H $-SCH_3$ H 0 VIII-i-35 $-N -Ph$ H $-SPh$ H	_	VIII-i-30	-N-	-Ph	Н	-ОН	Н
VIII-i-33 $-\stackrel{1}{N}-$ -Ph H -OPh H VIII-i-34 $-\stackrel{1}{N}-$ -Ph H -SCH ₃ H VIII-i-35 $-\stackrel{1}{N}-$ -Ph H -SPh H	5	VIII-i-31	-N-	-Ph	Н	-NO ₂	Н
VIII-i-33 $-\dot{N}$ -Ph H -OPh H VIII-i-34 $-\dot{N}$ -Ph H -SCH ₃ H VIII-i-35 $-\dot{N}$ -Ph H -SPh H	o	VIII-i-32	-N-	-Ph	Н	-CN	Н
VIII-i-34 $-\frac{1}{N-}$ -Ph H -SCH ₃ H VIII-i-35 $-\frac{1}{N-}$ -Ph H -SPh H		VIII-i-33	-N-	-Ph	. Н	-OPh	Н
	5	VIII-i-34	-N-	-Ph	Н	-SCH ₃	Н
VIII-i-36 $-N-$ -Ph H $-N-$ Ph ₂ H	o	VIII-i-35	-N-	-Ph	Н	-SPh	Н
	_	VIII-i-36	-N-	-Ph	Н	-N-Ph ₂	Н

EP 1 148 109 A2

5	Formula (VIII) Compound No.	L ₁₁₂	A ₁₃ =A ₂₃ =A ₃₃	A ₁₅ =A ₂₅ =A ₃₅	A ₁₇ =A ₂₇ =A ₃₇	A ₁₈ =A ₂₈ =A ₃₈
	VIII-i-37	-N	-Ph	Н	CH ₃	Н
10	VIII-i-38	-N-	-Ph	Н	−OCH ₃	Н
15	VIII-i-39	-N	-Ph	Н	-СООН	Н
	VIII-i-40	-N-	-Ph	Н	2-pyridyl	Н
20	VIII-i-41		-Ph	-Ph	Н	Н
25 30	VIII-i-42		-Ph	Н	-Ph	Н
35	VIII-i-43		-Ph	Н	Н	-Ph
40	VIII-i-44		-Ph	H	Cl	Н
45	VIII-i-45		-Ph	Н	-ОН	Н
50	VIII-i-46	-⟨>n-⟨>	-Ph	Н	-NO ₂	Н

EP 1 148 109 A2

5	Formula (VIII) Compound No.	L ₁₁₂	A ₁₃ =A ₂₃ =A ₃₃	$A_{15} = A_{25}$ = A_{35}	A ₁₇ =A ₂₇ =A ₃₇	$A_{18} = A_{28}$ = A_{38}
10	VIII-i-47		-Ph	Н	-CN	Н
15	VIII-i-48		-Ph	. Н	-0Ph	Н
20	VIII-i-49		-Ph	Н	−SCH ₃	Н
25	VIII-i-50		-Ph	Н	-SPh	Н
30	VIII-i-51		-Ph	н	−N−Ph₂	Н
35	VIII-i-52		-Ph	Н	СН₃	Н
10	VIII-i-53	-⟨_>-N-⟨_>-	-Ph	Н	-OCH ₃	Н
1 5	VIII-i-54	- ⊘ -N- ⟨ >	-Ph	Н	-СООН	Н
o	VIII-i-55		-Ph	Н	2-pyridyl	Н
5			····			

EP 1 148 109 A2

5	Formula (VIII) Compound No.	L ₁₁₂	A ₁₃ =A ₂₃ =A ₃₃	A ₁₆ =A ₂₆ =A ₃₆	A ₁₈ =A ₂₈ =A ₃₈
10	VIII-j-1	Ŷ	Н	Н	Н
	VIII-j-2	P	-Ph	Н	Н
15	VIII-j-3	-N	Н	Н	Н
20	VIII-j-4		Н	Н	Н
25	VIII-j-5		-Ph	Н	Н
30	VIII-j-6		-Ph	-Ph	Н
35	VIII-j-7		-Ph	Н	-Ph
40	VIII-j-8		-Ph	Cl	Н
	VIII-j-9		-Ph	-ОН	Н
45	VIII-j-10		-Ph	-NO ₂	Н
50	VIII-j-11	\Diamond	-Ph	-CN	Н
55	VIII-j-12		-Ph	-OPh	Н

EP 1 148 109 A2

5	Formula (VIII) Compound No.	L ₁₁₂	A ₁₃ =A ₂₃ =A ₃₃	A ₁₆ =A ₂₆ =A ₃₆	A ₁₈ =A ₂₈ =A ₃₈
10	VIII-j-13		-Ph	-SCH ₃	Н
	VIII-j-14		-Ph	-SPh	Н
15	VIII-j-15		-Ph	-N-Ph ₂	Н
20	VIII-j-16		-Ph	CH₃	Н
25	VIII-j-17		-Ph	-OCH ₃	Н
30	VIII-j-18		-Ph	-соон	Н
	VIII-j-19		-Ph	2-pyridyl	Н
35	VIII-j-20	-N-	-Ph	-Ph	Н
40	VIII-j-21	-N-	-Ph	Н	-Ph
	VIII-j-22	-N-	-Ph	C1	Н
45	VIII-j-23	-N-	-Ph	-ОН	Н
50	VIII-j-24	-N-	-Ph	-NO ₂	Н
	VIII-j-25	N-	-Ph	-CN	Н

EP 1 148 109 A2

5	Formula (VIII) Compound No.	L ₁₁₂	A ₁₃ =A ₂₃ =A ₃₃	A ₁₆ =A ₂₆ =A ₃₆	A ₁₈ =A ₂₈ =A ₃₈
	VIII-j-26	-N-	-Ph	-OPh	Н
10	VIII-j-27	-N-	-Ph	-SCH ₃	Н
15	VIII-j-28	-N-	-Ph	-SPh	Н
	VIII-j-29	-N-	-Ph	-N-Ph ₂	Н
20	VIII-j-30	-N-	-Ph	CH ₃	Н
25	VIII-j-31	-N-	-Ph	-OCH ₃	. Н
	VIII-j-32	-N-	-Ph	-соон	Н
30	VIII-j-33	-N-	-Ph	2-pyridyl	Н
35	VIII-j-34		-Ph	-Ph	Н
40	VIII-j-35	-<	-Ph	Н	-Ph
45	VIII-j-36		-Ph	C1	Н
50	VIII-j-37	~___	-Ph	-ОН	Н

194 . .

EP 1 148 109 A2

5	Formula (VIII) Compound No.	L ₁₁₂	A ₁₃ =A ₂₃ =A ₃₃	A ₁₆ =A ₂₆ =A ₃₆	A ₁₈ =A ₂₈ =A ₃₈
10	VIII-j-38	-<	-Ph	-NO ₂	Н
15	VIII-j-39	-⟨>N-⟨>-	-Ph	-CN	Н
20	VIII-j-40		-Ph	-0Ph	Н
25	VIII-j-41	-⟨>-N-⟨>-	-Ph	-SCH ₃	Н
30	VIII-j-42		Ph	-SPh	Н
35	VIII-j-43		-Ph	-N-Ph ₂	Н
40	VIII-j-44		-Ph	CH ₃	Н
45	VIII-j-45.		-Ph	-OCH ₃	Н
50	VIII-j-46	-◇-N-<>-	-Ph	-СООН	Н

EP 1 148 109 A2

5	Formula (VIII) Compound No.	L ₁₁₂	A ₁₃ =A ₂₃ =A ₃₃	A ₁₆ =A ₂₆ =A ₃₆	A ₁₈ =A ₂₈ =A ₃₈
10	VIII-j-47	-⟨>N-⟨>	-Ph	2-pyridyl	Н

EP 1 148 109 A2

5	Formula (VIII) Compound No.	L ₁₁₂	A ₁₃ =A ₂₃ =A ₃₃	A ₁₇ =A ₂₇ =A ₃₇	A ₁₈ =A ₂₈ =A ₃₈
10	VIII-k-1	P	Н	Н	Н
	VIII-k-2	Ŷ	-Ph	Н	Н
15	VIII-k-3	-N-	. Н	Н	h
20	VIII-k-4	-N-	-Ph	Н	Н
25	VIII-k-5	-\(\)-\(\)-\(\)-\(\)-\(\)-\(\)	Н	Н	Н
30	VIII-k-6	-()-N-()-	Ph	Н	Н
35	VIII-k-7	Y	H	A_{17} and A_{18} form a A_{27} and A_{28} form a A_{37} and A_{38} form a	benzene ring.
	VIII-k-8	P	-Ph	A_{17} and A_{18} form a A_{27} and A_{28} form a A_{37} and A_{38} form a	benzene ring.
40	VIII-k-9	-N-	н	A_{17} and A_{18} form a A_{27} and A_{28} form a A_{37} and A_{38} form a	benzene ring.
45	VIII-k-10	-N-	-Ph	A_{17} and A_{18} form a A_{27} and A_{28} form a A_{37} and A_{38} form a	benzene ring. benzene ring.

EP 1 148 109 A2

5	Formula (VIII) Compound No.	L ₁₁₂	A ₁₃ =A ₂₃ =A ₃₃	A ₁₇ =A ₂₇ =A ₃₇	A ₁₈ =A ₂₈ =A ₃₈
10	VIII-k-11	~>N~>	Н	A_{17} and A_{18} form a A_{27} and A_{28} form a A_{37} and A_{38} form a	benzene ring.
15	VIII-k-12		-Ph	A_{17} and A_{18} form a A_{27} and A_{28} form a A_{37} and A_{38} form a	benzene ring.
20	VIII-k-13		-Ph	-Ph	Н
	VIII-k-14		-Ph	Н	-Ph
25	VIII-k-15		-Ph	C1	Н
30	VIII-k-16		-Ph	-OH	Н
35	VIII-k-17		-Ph	-NO ₂	Н
40	VIII-k-18		-Ph	-CN	Н
	VIII-k-19		-Ph	-OPh	Н
45	VIII-k-20		-Ph	-SCH ₃	Н
50	VIII-k-21		-Ph	-SPh	Н

EP 1 148 109 A2

	Formula (VIII) Compound No.	L ₁₁₂	A ₁₃ =A ₂₃ =A ₃₃	A ₁₇ =A ₂₇ =A ₃₇	A ₁₈ =A ₂₈ =A ₃₈
5	VIII-k-22		· -Ph	-N-Ph ₂	Н
10	VIII-k-23		-Ph	CH ₃	Н
15	VIII-k-24		-Ph	-0CH ₃	Н
20	VIII-k-25		-Ph	-соон	Н
	VIII-k-26		-Ph	2-pyridyl	H
25	VIII-k-27	-N-	-Ph	-Ph	Н
30	VIII-k-28	-N-	~Ph	Н	-Ph
	VIII-k-29	-N	-Ph	Cl	Н
35	VIII-k-30	-N-	-Ph	-ОН	Н
40	VIII-k-31	-N-	-Ph	-NO ₂	Н
	VIII-k-32	-N-	-Ph	-CN	Н
45	VIII-k-33	-N-	-Ph	~OPh	Н
50	VIII-k-34	-N~	-Ph	−SCH ₃	Н
	VIII-k-35	-N	-Ph	-SPh	Н

EP 1 148 109 A2

	Formula (VIII) Compound No.	L ₁₁₂	A ₁₃ =A ₂₃ =A ₃₃	A ₁₇ =A ₂₇ =A ₃₇	A ₁₈ =A ₂₈ =A ₃₈
5	VIII-k-36	-N-	-Ph	-N-Ph ₂	Н
10	VIII-k-37	-N-	-Ph	CH₃	Н
	VIII-k-38	-N-	-Ph	-OCH ₃	Н
15	VIII-k-39	-N-	-Ph	-соон	Н
20	VIII-k-40	-N-	-Ph	2-pyridyl	Н
25	VIII-k-41	-\(\)-\(\)-\(\)-\(\)-\(\)	-Ph	-Ph	Н
30	VIII-k-42	-\(\)-\(\)-\(\)-\(\)-\(\)-\(\)	-Ph	Н	-Ph
35	VIII-k-43	-\(\)-N-\(\)-	-Ph	C1	Н
40	VIII-k-44	-O-N-O-	-Ph	-ОН	Н
45	VIII-k-45	-\(\)-\(\)-\(\)-\(\)-\(\)-\(\)	-Ph	-NO ₂	н
50	VIII-k-46		-Ph	-CN	Н

EP 1 148 109 A2

5	Formula (VIII) Compound No.	L ₁₁₂	A ₁₃ =A ₂₃ =A ₃₃	A ₁₇ =A ₂₇ =A ₃₇	A ₁₈ =A ₂₈ =A ₃₈
10	VIII-k-47		-Ph	-OPh	Н
15	VIII-k-48		-Ph	−SCH₃	Н
20	VIII-k-49		-Ph	-SPh	Н
25	VIII-k-50		-Ph	-N-Ph ₂	Н
30	VIII-k-51	~>N~>	-Ph	CH ₃	Н
35	VIII-k-52		-Ph	−OCH ₃	Н
40	VIII-k-53		-Ph	-соон	Н
45	VIII-k-54	~~~~	-Ph	2-pyridyl	Н

EP 1 148 109 A2

5	Formula (VIII) Compound No.	L ₁₁₂	A ₁₃ =A ₂₃ =A ₃₃	A ₁₅ =A ₂₅ =A ₃₅	A ₁₈ =A ₂₈ =A ₃₈
10	VIII-1-1	Ÿ	Н	Н	Н
,,	VIII-1-2	Y	-Ph	Н	Н
15	VIII-1-3	-N-	Н	Н	Н
20	VIII-1-4	-N	-Ph	Н	Н
25	VIII-1-5	~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Н	Н	Н
30	VIII-1-6		-Ph	-Ph	Н
30	VIII-1-7		Ph	Н	-Ph
35	VIII-1-8	\Diamond	-Ph	C1	H
40	VIII-1-9		-Ph	-ОН	Н
45	VIII-1-10		-Ph	-NO ₂	Н
	VIII-1-11		-Ph	-CN	Н
50	VIII-1-12		-Ph	-0Ph	Н

EP 1 148 109 A2

	Formula (VIII) Compound No.	L ₁₁₂	A ₁₃ =A ₂₃ =A ₃₃	A ₁₅ =A ₂₅ =A ₃₅	A ₁₈ =A ₂₈ =A ₃₈
5	VIII-1-13		-Ph	−SCH ₃	. Н
10	VIII-1-14		-Ph	-SPh	Н
15	VIII-1-15		-Ph	-N-Ph ₂	Н
20	VIII-1-16		-Ph	CH ₃	Н
	VIII-1-17		-Ph	−OCH ₃	Н
25	VIII-1-18		-Ph	-соон	Н
30	VIII-1-19		-Ph	2-pyridyl	Н
35	VIII-1-20	-N-	-Ph	-Ph	Н
	VIII-1-21	-N	-Ph	Н	-Ph
40	VIII-1-22	-N-	-Ph	C1	Н
45	VIII-1-23	-N-	-Ph	-ОН	Н
	VIII-1-24	-N-	-Ph	-NO ₂	Н
50	VIII-1-25	-N-	-Ph	-CN	Н

EP 1 148 109 A2

5	Formula (VIII) Compound No.	L ₁₁₂	A ₁₃ =A ₂₃ =A ₃₃	A ₁₅ =A ₂₅ =A ₃₅	A ₁₈ =A ₂₈ =A ₃₈
	VIII-1-26	-N-	-Ph	-OPh	Н
10	VIII-1-27	-N	-Ph	-SCH ₃	Н
15	VIII-1-28	-N-	-Ph	-SPh	Н
	VIII-1-29	-N-	-Ph	-N-Ph ₂	Н
20	VIII-1-30	-N-	-Ph	CH ₃	Н
25	VIII-1-31	- n -	-Ph	-OCH ₃	Н
	VIII-1-32	-N-	-Ph	-СООН	Н
30	VIII-1-33	-N-	-Ph	2-pyridyl	Н
35	VIII-1-34		-Ph	-Ph	н
40	VIII-1-35	-<	-Ph	H	-Ph
45	VIII-1-36		-Ph	Cl	Н
50	VIII-1-37		-Ph	ОН	Н

EP 1 148 109 A2

5	Formula (VIII) Compound No.	L ₁₁₂	A ₁₃ =A ₂₃ =A ₃₃	A ₁₅ =A ₂₅ =A ₃₅	A ₁₈ =A ₂₈ =A ₃₈
10	VIII-1-38		-Ph	-NO ₂	Н
15	VIII-1-39		-Ph	-CN	Н
20	VIII-1-40		-Ph	−0Ph	н
25	VIII-1-41	- ○ -N- ○ -	-Ph	−SCH₃	Н .
30	VIII-1-42		-Ph	-SPh	Н
35	VIII-1-43		-Ph	-N-Ph ₂	Н
40	VIII-1-44		-Ph	CH ₃	Н
45	VIII-1-45	~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-Ph	-OCH ₃	Н
50	VIII-1-46		-Ph	-соон	Н
55					

EP 1 148 109 A2

5	Formula (VIII) Compound No.	L ₁₁₂	A ₁₃ =A ₂₃ =A ₃₃	A ₁₅ =A ₂₅ =A ₃₅	A ₁₈ =A ₂₈ =A ₃₈
10	VIII-1-47		-Ph	2-pyridyl	Н .

EP 1 148 109 A2

5	Formula (VIII) Compound No.	L ₁₁₁	A ₁₂ =A ₂₂	A ₁₃ =A ₂₃	A ₁₅ =A ₂₅	A ₁₇ =A ₂₇	A ₁₈ =A ₂₈
	VIII-m-1	single bond	Н	Н	Н	Н	Н
10	VIII-m-2	single bond	Н	H	CH ₃	Н	Н
10	VIII-m-3	single bond	Н	Н	Н	CH ₃	Н
	VIII-m-4	single bond	Н	Н	Н	Н	CH ₃
15	VIII-m-5	single bond	Н -	Н	Н	$n-C_2H_5$	Н
	VIII-m-6	single bond	Н	Н	Н	$n-C_3H_7$	Н
20	VIII-m-7	single bond	Η,	Н	Н	n−C₄H ₉	Н
	VIII-m-8	single bond	Н	Н	Н	$t-C_4H_9$	Н
25	VIII-m-9	single bond	Н	Н	Ph	Н	Н
	VIII-m-10	single bond	Н	Н	Н	Ph	Н
	VIII-m-11	single bond	Н	Н	Н	н	Ph
30	VIII-m-12	single bond	Н	H	Н	1-naphthyl	Н
	VIII-m-13	single bond	Н	Н	Н	2-naphthyl	Н
35	VIII-m-14	single bond	Н	Н	Н	4-biphenylyl	Н
	VIII-m-15	single bond	Н	Н	Н	3-biphenylyl	Н
40	VIII-m-16	single bond	H	Н	Н	2-biphenylyl	Н
	VIII-m-17	single bond	Н	Н	Н	2-biphenylyl	Н
	VIII-m-18	single bond	Ph	Ph	Н	Н	Н
45	VIII-m-19	single bond	Ph	Ph	CH ₃	Н	Н
	VIII-m-20	single bond	Ph	Ph	Н	CH ₃	Н
50	VIII-m-21	single bond	Ph	Ph	Н	Н	CH ₃
	VIII-m-22	single bond	Ph	Ph	Н	$n-C_2H_5$	Н

EP 1 148 109 A2

5	Formula (VIII) Compound No.	L ₁₁₁	A ₁₂ =A ₂₂	A ₁₃ =A ₂₃	A ₁₅ =A ₂₅	A ₁₇ =A ₂₇	A ₁₈ =A ₂₈
	VIII-m-23	single bond	Ph	Ph	Н	$n-C_3H_7$	Н
10	VIII-m-24	single bond	Ph	Ph	Н	$n-C_4H_9$	Н
,,,	VIII-m-25	single bond	Ph	Ph	Н	$t-C_4H_9$	Н
	VIII-m-26	single bond	Ph	Ph	Ph	Н	Н
15	VIII-m-27	single bond	Ph	Pħ	Н	Ph	Н
	VIII-m-28	single bond	Ph	Ph	Н	Н	Ph
20	VIII-m-29	single bond	Ph,	Ph	Н	1-naphthyl	Н
	VIII-m-30	single bond	Ph	Ph	Н	2-naphthyl	Н
25	VIII-m-31	single bond	Ph	Ph	Н	4-biphenylyl	Н
	VIII-m-32	single bond	Ph	Ph	Н	3-biphenylyl	Н
	VIII-m-33	single bond	Ph	Ph	Н	2-biphenylyl	Н
30	VIII-m-34	single bond			Н	Н	Н
	VIII-m-35	single bond	-	- (5)-(5)-	CH ₃	Н	Н
35	VIII-m-36	single bond		- \$-\$-	Н	CH ₃	Н
	VIII-m-37	single bond	-	- \$-\$-	Н	Н	CH ₃
40	. VIII-m-38	single bond	-	- \$-\$-	Н	$n-C_2H_5$	Н
	VIII-m-39	single bond	-		Н	$n-C_3H_7$	Н
45	VIII-m-40	single bond -		-(-)-(-)-	Н	$n-C_4H_9$	Н
	VIII-m-41	single bond -			Н	$t-C_4H_9$	Н
50	VIII-m-42	single bond -	-		Ph	Н	Н
	VIII-m-43	single bond -		-(-)-(-)-	Н	Ph	Н
55							

EP 1 148 109 A2

5	Formula (VIII) Compound No.	L ₁₁₁	A ₁₂ =A ₂₂	A ₁₃ =A ₂₃	A ₁₅ =A ₂₅	A ₁₇ =A ₂₇	A ₁₈ =A ₂₈
	VIII-m-44	single bond	-0-0-	-(-)-(-)-	Н	Н	Ph
10	VIII-m-45	single bond	- ()-()-	- ()-()-	Н	1-naphthyl	Н
	VIII-m-46	single bond	- \$-\$-	- ()-()-	Н	2-naphthyl	H
15	VIII-m-47	single bond		-(-)-(-)-	Н ·	4-biphenylyl	Н
	VIII-m-48	single bond		- \$-\$-	Н	3-biphenylyl	Н
20	VIII-m-49	single bond		-	Н	2-biphenylyl	Н
	VIII-m-50	-	Н	Н	Н	Н	Н
25	VIII-m-51	-<>-	Н	Н	CH ₃	Н	Н
	VIII-m-52	-<>-	Н	Н	Н	CH ₃	Н
30	VIII-m-53	-	Н	Н	Н	Н	CH ₃
	VIII-m-54		Н	Н	Н	$n-C_2H_5$	Н
35	VIII-m-55	-	Н	Н	Н	n-C ₃ H ₇	Н
	VIII-m-56	-	Н	Н	Н	n-C ₄ H ₉	Н
40	VIII-m-57		Н	Н	Н	$t-C_4H_9$	Н
	VIII-m-58	-<>-	Н	Н	Ph	Н	Н
45	VIII-m-59	-	Н	Н	Н	Ph	Н
	VIII-m-60	-	Н	Н	Н	Н	Ph
50	VIII-m-61		Н	Н	Н	1-naphthyl	Н
	VIII-m-62	- ←	Н	н .	Н	2-naphthyl	Н

EP 1 148 109 A2

5	Formula (VIII) Compound No.	L ₁₁₁	A ₁₂ =A ₂₂	A ₁₃ =A ₂₃	A ₁₅ =A ₂₅	A ₁₇ =A ₂₇	A ₁₈ =A ₂₈
	VIII-m-63		Н	Н	Н	4-biphenylyl	Н
10	VIII-m-64	-	Н	Н	Н	3-biphenylyl	Н
	VIII-m-65	-	Н	Н	Н	2-biphenylyl	Н
15	VIII-m-66	-	н .	Н	Н	2-biphenylyl	Н
	VIII-m-67		Ph	Ph	Н	Н	Н
20	VIII-m-68	-\(\sigma\)	Ph ,	Ph	CH ₃	Н	Н
	VIII-m-69	-(Ph	Ph	Н	CH ₃	Н
25	VIII-m-70	_	Ph	Ph	Н	Н	CH ₃
	VIII-m-71	_	Ph	Ph	Н	$n-C_2H_5$	Н .
30	VIII-m-72		Ph	Ph	Н	$n-C_3H_7$	Н
	VIII-m-73	-	Ph	Ph	Н	n=C ₄ H ₉	Н
35	VIII-m-74	-(>-	Ph	Ph	Н	$t-C_4H_9$	Н
	VIII-m-75		Ph	Ph	Ph	Н	Н
40	VIII-m-76	-	Ph	Ph	Н	Ph	Н
	VIII-m-77		Ph	Ph	. Н	Н	Ph
45	VIII-m-78	-<>	Ph	Ph	Н	1-naphthyl	Н
	VIII-m-79		Ph	Ph	Н	2-naphthyl	Н
50	VIII-m-80	- ◇-	Ph	Ph	Н	4-biphenylyl	Н
	VIII-m-81	~ <u></u>	Ph	Ph	Н	3-biphenylyl	Н

EP 1 148 109 A2

5	Formula (VIII) Compound No.	L ₁₁₁	A ₁₂ =A ₂₂	A ₁₃ =A ₂₃	A ₁₅ =A ₂₅	A ₁₇ =A ₂₇	A ₁₈ =A ₂₈
	VIII-m-82	-<>	Ph	Ph	Н	2-biphenylyl	Н
10	VIII-m-83		- ○	-(-)-(-)-	Н	Н	Н
	VIII-m-84		- (>-(>-(>-(>-(->-(->-(->-(->-(->-(->-(-	- (\$\-\\$\-	CH ₃	Н	Н
15	VIII-m-85	-(>	- ()-()-	-(-)-(-)-	Н	CH ₃	Н
	VIII-m-86	-<>	-(-)-(-)-	~ <u></u>	Н	н	CH ₃
20	VIII-m-87	-(_)-	- \$-\$-	- \$-\$-	Н	$n-C_2H_5$	Н
	VIII-m-88	-	-(-)-(-)-	-(>-(>-	Н	$n-C_3H_7$	H
25	VIII-m-89	-<>	-		Н	n-C ₄ H ₉	Н
	VIII-m-90	-<>	~\\[\]	- \$	Н	$t-C_4H_9$	Н
30	VIII-m-91	-	~ \	- (>-(>-(>-(>-(-)-(-)-(-)-(-)-(-)-(-)-(-)-	Ph	Н	Н
	VIII-m-92	- <u></u>		- \$-\$-	Н	Ph	Н
35	VIII-m-93		√ >	√ > √ >	Н	Н	Ph
	VIII-m-94	-	- \$-\$-	- \$-\$-	Н	1-naphthyl	Н
40	VIII-m-95			- ○ - ○-	Н	2-naphthyl	Н
	VIII-m-96			-\$-\$-	Н	4-biphenylyl	Н
45	VIII-m-97	-<>-	-		Н	3-biphenylyl	Н
	VIII-m-98	-	- \$	-(-)-(-)-	Н	2-biphenylyl	Н
50	VIII-m-99	-(-)-(-)-	Н	Н	Н	Н	Н
	VIII-m-100	-\$-\$-	Н	н	CH ₃	Н	Н

EP 1 148 109 A2

5	Formula (VIII) Compound No.	L ₁₁₁	A ₁₂ =A ₂₂	A ₁₃ =A ₂₃	A ₁₅ =A ₂₅	A ₁₇ =A ₂₇	A ₁₈ =A ₂₈
	VIII-m-101	- ○-	Н	Н	Н	CH ₃	Н
10	VIII-m-102	- ○ - ○-	Н	Н	Н	Н	CH ₃
	VIII-m-103	~>~>	Н	Н	Н	n-C ₂ H _E	Н
15	VIII-m-104		Н	Н	Н	n-C ₃ H ₇	Н
	VIII-m-105	$-\bigcirc$	Н	Н	Н	$n-C_4H_9$	Н
20	VIII-m-106	$-\bigcirc$	Н	Н	Н	$t-C_4H_9$	Н
	VIII-m-107	$-\bigcirc$	Н	Н	Ph	Н	Н
25	VIII-m-108		Н	Н	Н	Ph	Н
	VIII-m-109		Н	Н	Н	Н	Ph
30	VIII-m-110		Н	Н	Н	1-naphthyl	Н
	VIII-m-111		Н	Н	Н	2-naphthyl	Н
<i>35</i>	VIII-m-112		Н	Н	Н	4-biphenylyl	Н
	VIII-m-113		Н	Н	Н	3-biphenylyl	Н
40	VIII-m-114		Н	Н	Н	2-biphenylyl	Н
	VIII-m-115		Н	Н	Н	2-biphenylyl	Н
45	VIII-m-116		Ph	Ph	Н	Н	Н
,0	VIII-m-117		Ph	Ph	CH ₃	Н	Н
50	VIII-m-118		Ph ·	Ph	Н	CH ₃	Н
	VIII-m-119	- ○ - ○-	Ph	Ph	Н	Н	CH ₃

EP 1 148 109 A2

5	Formula (VIII) Compound No.	L ₁₁₁	A ₁₂ =A ₂₂	A ₁₃ =A ₂₃	A ₁₅ =A ₂₅	A ₁₇ =A ₂₇	A ₁₈ =A ₂₈
	VIII-m-120		Ph	Ph	Н	n-C ₂ H ₅	H
10	VIII-m-121		Ph	Ph	Н	$n-C_3H_7$	Н
	VIII-m-122	- ○ - ○-	Ph	Ph	Н	n-C ₄ H ₉	Н
15	VIII-m-123	$-\bigcirc-\bigcirc-$	Ph	Ph	Н	t-C ₄ H ₉	Н
	VIII-m-124	$-\bigcirc\!$	Ph	Ph	Ph	Н	Н
20	VIII-m-125	- ♥ - ♥	Ph	Ph	Н	Ph	Н
	VIII-m-126	$-\bigcirc$	Ph	Ph	Н	Н	Ph
25	VIII-m-127		Ph	Ph	Н	1-naphthyl	Н
	VIII-m-128	$-\bigcirc-\bigcirc-$	Ph	Ph	Н	2-naphthyl	Н
30	VIII-m-129	$-\bigcirc-\bigcirc-$	Ph	Ph	Н	4-biphenylyl	Н
	VIII-m-130		Ph	Ph	Н	3-biphenylyl	Н
35	VIII-m-131		Ph	Ph	Н	2-biphenylyl	Н
	VIII-m-132		-⟨}-⟨⟩-	- \$-\$-	Н	. Н	Н
40	VIII-m-133	- \$-\$-	- ⟨> - ⟨>	- ○ -	CH ₃	Н	Н
	VIII-m-134		- ○ - ○-	$-\bigcirc\!$	Н	CH ₃	Н
45	VIII-m-135		- ○ - ○-		Н	Н	CH ₃
	VIII-m-136	$-\bigcirc$	- ○ - ○-	- ○ - ○-	Н	$n-C_2H_5$	Н
50	VIII-m-137	~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	- ○ - ○-	- ○ - ○-	Н	$n-C_3H_7$	Н
	VIII-m-138	- \$\-\$\-	- \$-\$-	- \$\-\$\-	Н	n-C ₄ H ₉	Н

EP 1 148 109 A2

5	Formula (VIII) Compound No.	L ₁₁₁	A ₁₂ =A ₂₂	A ₁₃ =A ₂₃	A ₁₅ =A ₂₅	A ₁₇ =A ₂₇	A ₁₈ =A ₂₈
	VIII-m-139				Н	$t-C_4H_9$	Н
10	VIII-m-140	$-\bigcirc-\bigcirc-$	-(-)-(-)-	- ∅ - ∅-	Ph	Н	Н
	VIII-m-141	→	-	$-\bigcirc\!\!-\!\!\bigcirc\!\!-\!\!\bigcirc\!\!-$	Н	Ph	н .
15	VIII-m-142	$-\bigcirc\!$	- \$-\$-\$-	- □ - □	Н	Н	Ph
	VIII-m-143		- \$-\$-	-(-)-(-)-	Н	1-naphthyl	Н
20	VIII-m-144	$-\bigcirc$		$-\bigcirc$	Н	2-naphthyl	Н
20	VIII-m-145	$-\bigcirc$	-O-O-	$-\bigcirc\!$	H	4-biphenylyl	Н
05	VIII-m-146	- ○ - ○		$-\bigcirc\!$	Н	3-biphenylyl	Н
25	VIII-m-147	₩	-○-○	$-\bigcirc-\bigcirc-$	Н	2-biphenylyl	Н

[0142] These quinoxaline compounds are obtained by (i) a process involving condensing diaminobenzene or derivatives thereof, diaminopyridine or derivatives of 1,5-cyclooctadiene or the like, (ii) condensing diaminobenzene or derivatives thereof, diaminopyridine or derivatives thereof, diaminopyrimidine or derivatives thereof, diam

[0143] These compounds can be identified by elemental analysis, mass analysis, IR spectroscopy, ¹H and ¹³C NMR, etc.

[0144] In general, the quinoxaline compounds have a molecular weight of about 500 to about 2,000, a melting point of about 250 to about 500°C, and a glass transition temperature (Tg) of about 90 to about 200°C. By conventional vacuum deposition or the like, they form a transparent, smooth film of quality which maintains a stable amorphous state even above room temperature and over a long period of time.

[0145] The term "host material" used herein means a material which participates in light emission, but does not emit light by itself or emits light at a very low luminance. Specifically, an appropriate difference in luminance between the host and the dopant is such that the maximum luminance of the host is equal to or less than 10%, especially equal to or less than 2% of the maximum luminance of the dopant.

Dopants

[0146] A class of organic compounds useful as the dopant according to the invention are compounds of the following formula (V).

55

50

30

35

40

$$L_1 \xrightarrow{X_9} \xrightarrow{X_{10}} \xrightarrow{X_1} \xrightarrow{X_2} L_2 \xrightarrow{X_6} \xrightarrow{X_5} \xrightarrow{X_4} \xrightarrow{X_1} n \tag{V}$$

15

20

5

Herein X₁ to X₁₀, L₁ and L₂ are independently hydrogen, halogen atoms, straight, branched or cyclic alkyl radicals which may have substituents, straight, branched or cyclic alkoxy radicals which may have substituents, straight, branched or cyclic alkylthio radicals which may have substituents, straight, branched or cyclic alkenyl radicals which may have substituents, straight, branched or cyclic alkenyloxy radicals which may have substituents, straight, branched or cyclic alkenylthio radicals which may have substituted or unsubstituted aralkyl radicals, substituted or unsubstituted aralkyloxy radicals, substituted or unsubstituted aralkylthio radicals, substituted or unsubstituted aryl radicals, substituted or unsubstituted aryloxy radicals, substituted or unsubstituted arylthio radicals, substituted or unsubstituted amino radicals, cyano, hydroxyl, -COOR1 radicals (wherein R1 is hydrogen, a substituted or unsubstituted straight, branched or cyclic alkyl radical, a substituted or unsubstituted straight, branched or cyclic alkenyl radical, a substituted or unsubstituted aralkyl radical or a substituted or unsubstituted aryl radical), -COR2 radicals (wherein R2 is hydrogen, a substituted or unsubstituted straight, branched or cyclic alkyl radical, a substituted or unsubstituted straight, branched or cyclic alkenyl radical, a substituted or unsubstituted aralkyl radical, a substituted or unsubstituted aryl radical or an amino radical), or -OCOR3 radicals (wherein R3 is a substituted or unsubstituted straight, branched or cyclic alkyl radical, a substituted or unsubstituted straight, branched or cyclic alkenyl radical, a substituted or unsubstituted aralkyl radical, or a substituted or unsubstituted aryl radical), or at least two adjoining groups selected from X_1 to X_{10} , L_1 and L_2 may bond or fuse together to form a substituted or unsubstituted carbocyclic aliphatic ring, aromatic ring or fused aromatic ring with the carbon atoms to which they are attached, or L₁ and L₂ each may be a single bond. [0147] Preferably, at least two adjoining groups selected from X_1 to X_{10} , L_1 and L_2 bond or fuse together to form a substituted or unsubstituted carbocyclic aliphatic ring, aromatic ring or fused aromatic ring with the carbon atoms to which they are attached. L1 and L2 each may be a single bond. n is 1 or 2.

[0148] Of the compounds of formula (V), preferred are diindeno[1,2,3-cd:1',2',3'-lm]perylene derivatives, having a skeleton of the following formula (VI).

35

40

30

$$X_{12}$$

$$X_{13}$$

$$X_{14}$$

$$X_{15}$$

$$X_{16}$$

$$X_{6}$$

$$X_{6}$$

$$X_{5}$$

$$X_{16}$$

$$X_{15}$$

$$X_{16}$$

$$X_{16}$$

$$X_{15}$$

$$X_{16}$$

$$X_{16}$$

$$X_{15}$$

$$X_{16}$$

$$X_{15}$$

$$X_{16}$$

$$X_{16}$$

$$X_{15}$$

$$X_{16}$$

$$X_{15}$$

$$X_{16}$$

$$X_{16}$$

$$X_{15}$$

$$X_{17}$$

$$X_{17}$$

$$X_{17}$$

$$X_{17}$$

$$X_{17}$$

$$X_{17}$$

$$X_{17}$$

$$X_{17}$$

$$X_{18}$$

$$X_{17}$$

$$X_{1$$

45

55

[0149] In formula (VI), X₁ to X₆, X₉ to X₁₀, X₁₁ to X₁₆, X₁₉ and X₂₀ are independently hydrogen, halogen atoms, straight, branched or cyclic alkyl radicals which may have substituents, straight, branched or cyclic alkenyl radicals which may have substituents, straight, branched or cyclic alkenyl radicals which may have substituents, straight, branched or cyclic alkenyloxy radicals which may have substituents, straight, branched or cyclic alkenyloxy radicals which may have substituents, straight, branched or cyclic alkenyloxy radicals which may have substituted aralkyl radicals, substituted or unsubstituted aralkyloxy radicals, substituted or unsubstituted aralkylthio radicals, substituted or unsubstituted aryladicals, cyano, hydroxyl, -COOR¹ radicals (wherein R¹ is hydrogen, a substituted or unsubstituted straight, branched or cyclic alkyl radical, a substituted aryladical, a substituted or unsubstituted aryladical, a substituted aryladical, a substituted or unsubstituted aryladical, a substituted or unsubstituted aryladical, a substituted aryladical, a substituted aryladical, a substituted or unsubstituted aryladical, a substituted aryladical,

EP 1 148 109 A2

or unsubstituted straight, branched or cyclic alkenyl radical, a substituted or unsubstituted aralkyl radical, a substituted or unsubstituted aryl radical or an amino radical), or $-OCOR^3$ radicals (wherein R^3 is a substituted or unsubstituted straight, branched or cyclic alkyl radical, a substituted or unsubstituted straight, branched or cyclic alkenyl radical, a substituted or unsubstituted aryl radical), or at least two adjoining groups selected from X_1 to X_{20} may bond together to form a substituted or unsubstituted carbocyclic aliphatic ring, aromatic ring or fused aromatic ring with the carbon atoms to which they are attached.

[0150] The term "aryl radicals" is used herein to encompass carbocyclic aromatic radicals such as phenyl and naphthyl and heterocyclic aromatic radicals such as furyl, thienyl and pyridyl.

[0151] The straight, branched or cyclic alkyl radicals, straight, branched or cyclic alkoxy radicals, straight, branched or cyclic alkenyl radicals, straight, branched or cyclic alkenyloxy radicals, and straight, branched or cyclic alkenylthio radicals, represented by X₁ to X₂₀ in formulas (V) and (VI), may have a substituent or substituents, for example, halogen atoms, aryl groups of 4 to 20 carbon atoms, alkoxy groups of 1 to 20 carbon atoms, alkoxyalkoxy groups of 2 to 20 carbon atoms, alkenyloxy groups of 2 to 20 carbon atoms, aralkyloxy groups of 4 to 20 carbon atoms, aralkyloxy groups of 5 to 20 carbon atoms, aryloxyalkoxy groups of 4 to 20 carbon atoms, aryloxyalkoxy groups of 5 to 20 carbon atoms, aralkylalkenyl groups of 6 to 20 carbon atoms, alkylthio groups of 1 to 20 carbon atoms, alkoxyalkylthio groups of 2 to 20 carbon atoms, alkylthioalkylthio groups of 2 to 20 carbon atoms, aralkylthioalkylthio groups of 5 to 20 carbon atoms, aralkylthio groups of 5 to 20 carbon atoms, aralkylthio groups of 5 to 20 carbon atoms, aralkylthio groups of 5 to 20 carbon atoms, arylthioalkylthio groups of 6 to 20 carbon atoms, arylthioalkylthio groups of 6 to 20 carbon atoms, arylthioalkylthio groups of 6 to 20 carbon atoms, arylthioalkylthio groups of 7 to 20 carbon atoms, arylthioalkylthio groups of 8 to 20 carbon atoms, arylthioalkylthio groups of 1 to 10 carbon atoms, alkoxy groups of 1 to 10 carbon atoms, aryl groups of 1 to 10 carbon atoms, alkoxy groups of 1 to 10 carbon atoms, aryl groups of 1 to 10 carbon atoms, and aralkyl groups of 4 to 10 carbon atoms, among others.

[0152] The aralkyl radicals, aralkyloxy radicals, aralkylthio radicals, aryl radicals, aryloxy radicals and arylthio radicals, represented by X₁ to X₂₀ in formulas (V) and (VI), may have a substituent or substituents, for example, alkyl groups of 1 to 20 carbon atoms, alkenyl groups of 2 to 20 carbon atoms, aralkyl groups of 4 to 20 carbon atoms, aryl groups of 3 to 20 carbon atoms, alkoxy groups of 1 to 20 carbon atoms, alkoxyalkyl groups of 2 to 20 carbon atoms, alkoxyalkyloxy groups of 2 to 20 carbon atoms, alkenyloxy groups of 2 to 20 carbon atoms, alkenyloxyalkyl groups of 3 to 20 carbon atoms, alkenyloxyalkyloxy groups of 3 to 20 carbon atoms, aralkyloxy groups of 4 to 20 carbon atoms, aralkyloxyalkyl groups of 5 to 20 carbon atoms, aralkyloxyalkyloxy groups of 5 to 20 carbon atoms, aryloxy groups of 3 to 20 carbon atoms, aryloxyalkyl groups of 4 to 20 carbon atoms, aryloxyalkyloxy groups of 4 to 20 carbon atoms. alkylcarbonyl groups of 2 to 20 carbon atoms, alkenylcarbonyl groups of 3 to 20 carbon atoms, aralkylcarbonyl groups of 5 to 20 carbon atoms, arylcarbonyl groups of 4 to 20 carbon atoms, alkoxycarbonyl groups of 2 to 20 carbon atoms, alkenyloxycarbonyl groups of 3 to 20 carbon atoms, aralkyloxycarbonyl groups of 5 to 20 carbon atoms, aryloxycarbonyl groups of 4 to 20 carbon atoms, alkylcarbonyloxy groups of 2 to 20 carbon atoms, alkenylcarbonyloxy groups of 3 to 20 carbon atoms, aralkylcarbonyloxy groups of 5 to 20 carbon atoms, arylcarbonyloxy groups of 4 to 20 carbon atoms, alkylthio groups of 1 to 20 carbon atoms, aralkylthio groups of 4 to 20 carbon atoms, arylthio groups of 3 to 20 carbon atoms, nitro, cyano, formyl, halogen atoms, halogenated alkyl, hydroxyl, amino, N-mono-substituted amino groups of 1 to 20 carbon atoms, and N,N-di-substituted amino groups of 2 to 40 carbon atoms. The aryl groups included in these substituents may be further substituted with halogen atoms, alkyl groups of 1 to 10 carbon atoms, alkoxy groups of 1 to 10 carbon atoms, aryl groups of 6 to 10 carbon atoms, and aralkyl groups of 7 to 10 carbon atoms, among others. [0153] The amino radicals represented by X_1 to X_{20} in formulas (V) and (VI) may have a substituent or substituents, for example, be mono- or di-substituted with alkyl groups of 1 to 20 carbon atoms, aralkyl groups of 4 to 20 carbon atoms, and anyl groups of 3 to 20 carbon atoms.

30

[0154] The alkyl, alkenyl, aralkyl and aryl radicals represented by R^1 , R^2 and R^3 in formulas (V) and (VI) may have a substituent or substituents, as exemplified for X_1 to X_{20} .

[0155] In a preferred embodiment, X₅, X₆, X₉, X₁₀, X₁₅, X₁₆, X₁₉ and X₂₀ are hydrogen, and X₁ to X₄ and X₁₁ to X₁₄ are independently hydrogen, halogen atoms, straight, branched or cyclic alkyl radicals of 1 to 24 carbon atoms in total which may have substituents, straight, branched or cyclic alkoxy radicals of 1 to 24 carbon atoms in total which may have substituents, straight, branched or cyclic alkenyl, alkenylaryl and arylalkenyl radicals of 2 to 24 carbon atoms in total which may have substituents, substituted or unsubstituted aralkyl groups of 7 to 24 carbon atoms in total, substituted or unsubstituted aryl radicals of 6 to 24 carbon atoms in total, cyano radicals, heterocyclic radicals, hydroxyl radicals, -COOR¹, -COR² or -OCOR³ radicals wherein R¹, R² and R³ are as defined above.

[0156] Two adjoining groups selected from X_1 to X_{20} may bond or fuse together to form a substituted or unsubstituted carbocyclic aliphatic ring, aromatic ring or fused aromatic ring with the carbon atoms to which they are attached.

[0157] The organic EL device of the invention is characterized by the inclusion of at least one fluoranthene derivative or diindeno[1,2,3-cd:1',2',3'-lm]perylene derivative. The use of a diindeno[1,2,3-cd:1',2',3'-lm]perylene derivative in a light emitting layer as a luminescent component, for example, enables to produce an organic EL device having improved

luminance and durability over similar EL devices of the prior art. The use of the specific derivative in combination with another luminescent component to form a light emitting layer enables to produce an organic EL device capable of emitting white light and having improved luminance and durability.

[0158] Illustrative, non-limiting, examples of the compounds of formulas (V) and (VI) according to the invention are given below. Ph designates phenyl.

5		X14	I	ď		\$ of	\otimes	CH3	\bigcirc	Ą.	P.	ч	A.	H.	æ	Ą	Ą	4	
10		X13	Ξ	I	x	I	r	Ι	r	ā	0	СНЗ	I	.r	I	I	I	I	
15		X12	Ξ	I	I	I	I	I	r	ā	000	CH3	I	I	I	I	I	r	
20	means (X11	Ι	£	0	\$	8	снз	Image: control of the	£	£	£	£	ч	4	ጜ	4	ď	
25	ring" in	X8	π	I	r	x	I	I	r	I	Ι	I	£	000	CH3	I	r	I	
30	"A and B form a fused ring" in	7X	Ŧ	I	I	I	r	I	I	I	r	I	I	I	r	£	0	CH3	
35	"A ar	9X	I	r	I	¥	r	I	I	I	I	I	I	I	Ξ.	Ē	x	I	
40		х3	I	x	I	I	Ι	I	I	I	I	I	I	I	I	I	I	I	
40	׎Ž×	X2	I	I	r	I	I	I	I	r	I	I	I	I	I	윤	0	CH3	
45	× ×	×	Ι	I	I	I	I	I	I	I	ĭ	I	£	0	СНЗ	I	I	I	
50		Compound No.	A-f	A-2	A-3	A-4	A-5	A-6			6-A			A-12		A-14	A-15	A-16	

5		X14	I	. 4	Ç			CH3		£	£	ų.	ቼ	£	£	ą	Ŧ.	P,	
10		X13	r	x	Ŧ	I	x	I	r	£	0	CH3	I	r	Ξ	r	r	I	
15		X12	I	x	I	r	I	I	I	£	0	CH3	I	I	Ι	I	I	I	
20	means (XII	π	đ	9		\geqslant	СНЭ	?	£	4	ዷ	뜐	4	ጜ	æ	ዊ	£	
25	id ring" in %	8X	I	I	I	I	r	Ι	I	I	I	x	4	\bigcirc	CH3	r	I	I	
30	"A and B form a fused ring" in	ίχ	I	I	I	r	I	I	I	r	I	I	I	r	I	£	9	СНЗ	
35	, A an	9X	I	I	I	I	I	I	T ·	I	I	I	I	ı	I	I	I	I	
		£X	ı	Ι	x	I	I	I	I	I	I	I	r	Ι	I	I	I	I	
40 ·	* * * * * * * * * * * * * * * * * * * *	X2	X1 and X2 form a fused ring.	X1 and X2 form a fused ring.	X1 and X2 form a fused ring.	X1 and X2 form a fused ring.	X1 and X2 form a fused ring.	XI and X2 form a fused ring.	X1 and X2 form a fused ring.	X1 and X2 form a fused ring.	X1 and X2 form a fused ring.	X1 and X2 form a fused ring.	X1 and X2 form a fused ring.	X1 and X2 form a fused ring.	X1 and X2 form a fused ring.	X1 and X2 form a fused ring.	X1 and X2 form a fused ring.	X1 and X2 form a fused ring.	
45	x x x	1 No X1	X1 and X2 fo	X1 and X2 fe	X1 and X2 fc	X1 and X2 fe	X1 and X2 fc	XI and X2 fc	X1 and X2 fc	X1 and X2 fc	X1 and X2 fo		X1 and X2 fo	X1 and X2 fo	X1 and X2 fo				
50		Compound No	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24	A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	

5		X14	m a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	
10		X13	X13 and X14 form a fused ring.	X13 and X14	X13 and X14	X13 and X14	X13 and X14	X13 and X14	X13 and X14	X13 and X14	X13 and X14	X13 and X14	X13 and X14	X13 and X14	X13 and X14	X13 and X14	X13 and X14	X13 and X14	
15		X12	Ι	I	I	I	r	I	Ι	£	0	CH3	x	I	I	I	I	I	
20	means (XII	Ι	ď	0		\otimes	СНЗ	O P	æ	£	£	á	ď	£	£	£	£	
25	ring" in	8x	r	I	I	I	ı	I	r	I	r	I	æ	0	СНЗ	I	r	I	
30	"A and B form a fused ring" in	tχ	I	I	I	I	I	I	I	r	I	I	I	I	=	£	0	CH3	
	A an	9x	I	I	I	I	I	I	I	I	I	I	I	ı	ı	I	I	I	
35		ХЗ	Ι	I	I	I	r	I	I	I	I	I	I	I	r	I	I	I	
40		X2	Ι	I	I	I	I	Ι	I	I	I	I	I	x	I	æ	0	CH3	
45	× × × × × × × × × × × × × × × × × × ×	١×	I	I	I	I	I	I	I	I	I	r	£	0	CH3	r	I		
50	X,13, X,14, X,15,	Compound No.	A-33	A-34	A-35	A-36	A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48	

5		X14	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.
10		X13	X 13 and X	X13 and X	X 13 and X	X 13 and X	X 13 and X	X13 and >	X13 and)
15		X12	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.
20	means	XII	X13 and X14						
25	id ring in	8x	I	£	0	CH3	x	I	τ
30	"A and B form a fused ring" in	rx	r	I	I	I	£	0	СНЗ
	*	9x	I	I	I	I	I	I	I
35		Х3	r	I	I	I	I	I	π .
40	* * *	X2	Ι	I	I	I	£	0	СНЗ
45	* : X : X : X : X : X : X : X : X : X :	ïx	I	£	0	CH3	I	I	I
50	X ₁₁ X ₁₁ X ₁₂ X ₁₃ X ₁₄ X ₁₅ X ₁₅ X ₁₅ X ₁₅ X ₁₅ X ₁₅ X ₁₆	Compound No.	A-49	A-50	A-51	A-52	A-53	A-54	A-55

5		X14	I	Ę				CH3		P.	ď	ъ.	Ą.	
10		X13	Ι	Ξ	I	r	Ι	I	I	ď	9	CH3	Ξ	
15	. sue	X12	I	I	I	I	Ξ	Ξ	I	ď	0	CH3	Ţ.	
25	means	XII	Ι	ď	0	÷		CH3	?	đ	£	æ	đ	
30	"A and B form a fused ring" in	8X	X1 and X2 form a fused ring.	X1 and X2 form a fused ring.	X1 and X2 form a fused ring.	X1 and X2 form a fused ring.	X1 and X2 form a fused ring.	X1 and X2 form a fused ring.	X1 and X2 form a fused ring.	X1 and X2 form a fused ring.	X1 and X2 form a fused ring.	X1 and X2 form a fused ring.	X1 and X2 form a fused ring.	
35	"A and B fo	LΧ			X and X	X1 and X	X and X	X pud X	X1 and X	X1 and X	X1 and X	X1 and X	X1 and X	
40		x3 x6	H	I	I	I	I	I	I	I	I	I	I	
45		X2	X1 and X2 form a fused ring.	X1 and X2 form a fused ring.	X1 and X2 form a fused ring.	X1 and X2 form a fused ring.	X1 and X2 form a fused ring.	X1 and X2 form a fused ring.	X1 and X2 form a fused ring.	X1 and X2 form a fused ring.	X1 and X2 form a fused ring.	X1 and X2 form a fused ring.	X1 and X2 form a fused ring.	
50	x x x x x	Vo. X1	X1 and X2 fo.	X1 and X2 fo	X1 and X2 fo	X1 and X2 fo	X1 and X2 for	X1 and X2 for	X1 and X2 for	X1 and X2 fo	X1 and X2 fo	X1 and X2 for	X1 and X2 for	
55		Compound No.	A-56	4-57	A-58	۹-59	۷-60	4-61	4-62	۸-63	۸-64	۱-65	۷-66	

5		x 18	fused ring.	fused ring.	i fused ring.	fused ring.	fused ring.	fused ring.	fused ring.	fused ring.	fused ring.	fused ring.	fused ring.	fused ring.	
10		71X	X15 and X16 form a fused ring. X17 and X18 form a fused ring.	X17 and X18 form a fused ring.	X17 and X18 form a fused ring.	X17 and X18 form a fused ring.	Xi7 and X18 form a fused ring.	X17 and X16 form a fused ring. X17 and X18 form a fused ring.							
15	1	X16	form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	form a fused ring.	
20	Su	X15	X15 and X16	X15 and X16	X15 and X16	X15 and X16	X15 and X16	X15 and X16	X15 and X16	X15 and X16	X15 and X16	X15 and X16	X15 and X16	X15 and X16	
25	means	X14	I	윤	0		8	СНЗ	P	£	£	æ	ą	£	
	B in B	XIIX	Ξ	£	0	\$	β	СНЗ	?	윰	Ę	£	Ą	£	
30	"A and B form a fused ring in	8X	Ŧ	I	#	τ	x	x	I	0	СНЗ	I	≖ .	I	
35	"A and B f	rx x	Ι	I	I	I	I	I	I	I	r	£	000	СНЗ	
40		9x	Ŧ	I	I	Ξ	, =	I	Í	I	I	I	ı	I	
		хз	I	I	x	I	I	I	±	I	I	I	I	I	
45	* * * * * * * * * * * * * * * * * * * *	X2	Ι	I	I	I	I	I	I	τ Ο Ο	I	F.	0	СНЗ	
50	x s:x x s:x	x	I	I	r	ı	I	I		1			¥	I	
55		N punodua	8-1	B-2	B-3	B-4	B-5	9-8	B-7	8-B	B-9	B-10	B-11	B-12	

5	* •	X18	ı	I	I	I	I	I	I	ď	0	Q.	\otimes	СН3	Ç) _I	I
		rıx	I	I	I	I	I	I	ı	I	ī	Ι	΄. ±	I	I	£ .	00
10		X16	I	I	I	I	I	ı	ī	I	I	I	I	I	I	ъ Ч	
15	\$	X15	Ξ	I	I	I	I	I	I	£	000			CH3	0	I	ı
20	means	X14	I	£	0	\$ 000 miles	8	СНЗ	\rightarrow	£	£	ę.	£	£ .	Ą.	£	£
25	ng in	X=1	Ŧ	£	00	- F	\geqslant	CH3	\bigcirc	ę	ፈ	ę	ą	ą	£	Ę.	ą
30	"A and B form a fused ring in	8X	a fused ring.	a fused ring.	a fused ring	a fused ring.											
35	"A and B	r×	X7 and X8 form a fused ring.	X7 and X8 form a fused ring.	X7 and X8 form a fused ring.	X7 and X8 form a fused ring.	X7 and X8 form a fused ring.	X7 and X8 form a fused ring.	X7 and X8 form a fused ring.	X7 and X8 form a fused ring.	X7 and X8 form a fused ring.	X7 and X8 form a fused ring.	X7 and X8 form a fused ring.	X7 and X8 form a fused ring.	X7 and X8 form a fused ring.	X7 and X8 form a fused ring.	X7 and X8 form a fused ring.
		9x	I	I	I	æ	I	I	r	I	I	ı	I	I	I	I	I
40		χ	I	I	I	x	x	r	I	I	I	x	r	I	x	I	I
45	× × × × × × × × × × × × × × × × × × ×	X2	I	r	I	I	I	r	I	I	x	I	I	I	I	I	Ξ
50	X 81 X 11	ıx .	I	I	I	I	I	I	x	I	I	I	I	I	I	I	r
55		Compound No.	B-13	B-14	B-15	B-16	8-17	B-18	B-19	B-20	B-21	B-22	B-23	B-24	B-25	B-26	B-27

5		X18	ı	I	ı	I	
10		r1X	CH3	I	I	I	
15		X16	CH3	I	Ι	I	
	sur sur	X15	Ι	I	I	r	
20	means	X14	P,	£	ď	ą	
25	ıB in	X1.	4	ā	ą	£	
30	"A and B form a fused ring in	8X	fused ring.	tused ring.	fused ring.	fused ring.	
35	. A and B	×	X7 and X8 form a fused ring.	X7 and X8 form a fused ring.	X7 and X8 form a fused ring.	X7 and X8 form a fused ring.	
40		9X	I	r	I	r	
40		S	ı	I	Ŧ	I	
45		x2	Ι	I	x	I	
50	X X X X X X X X X X X X X X X X X X X	ΧI	I	£	000	CH3	
55		Compound No.	B-28	B-29	B-30	B-31	

5		X18	I	I	r	I	I	I	Ι	ď	0	\$	\geqslant	СНЗ) _	I
10		rıx	r	±	I	I	Ξ	I	I	I	I	Ξ.	r	I	I	£	\bigcirc
		X16	n a fused ring.	m a fused ring.	m a fused ring.	m a fused ring.	m a fused ring.	m a fused ring.	m a fused ring.	m a fused ring.	m a fused ring.	m a fused ring.	m a fused ring.	m a fused ring.	m a fused ring.	m a fused ring.	m a fused ring
15	-	X15	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	XI5 and X16 form a fused ring	X15 and X16 form a fused ring	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.
20	means	X14	Ŧ	£	000	- F-5	\geqslant	СНЗ	\bigcirc	H.	Ą	A H	A H	ч	돈	£	Ph
25	√	XII.	Ξ	Æ	\bigcirc	\$		СНЗ	\bigcirc	ኇ	ď	4	ď	ę	ą	Ę	£
30	"A and B form a fused ring in	8x	ı	Ι	Ι	I	I	I	I	I	I	I	x	I	I	I	I
35	"A and B forr	rx	Ι	Ι	I	I	r	I	I	r	I	I	r	I	r	I	I
40		9x	I	I	I	I	I	I	I	r	I	I	I	I	I	I	I
40		×	I	I	r	Ξ	I	I	I	I	I	Ι	I	I	Ι	I	I
45	* * * *	X2	π	I	I	Ι	r	I	I	Ι	I	I	=	I	I	I	r
50	X,1,7 X,1,8 X,1,8 X,1,8	o. X1	I	I	I	I	r	I	I	I	r	I	I	I	I	I	r
55		Compound No.	B-32	B~33	B-34	B-35	B-36	8-37	B-38	B-39	8-40	B-41	B-42	B-43	B-44	8-45	B-46

			1							
5		X18	I	I	I	I	I	I	x	
		71X	CH3	I	I	I	I	I	I	
10		10	d ring.							
15		X16	form a fuse							
20		X15	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	
	means	X14	Ę	ď	ą	đ	ą.	á	ć	
25	₩ H	X11	£	£	£	뜐	£	£	룹	
<i>30</i>	"A and B form a fused ring in	8X	I	£	000	CH3	I	I	T	
35	"A and B form	, x	I	x	x	I	£	000	CH3	
		9x	I	I	I	I	I	r	Ι	
40		×	I	r	I	x	I	I	I	
45		X2	Ξ	I	x	I	Ę	000	СНЗ	
50	X ₁₁ X ₁₀ X ₁₁ X ₁₀	ιχ	Ι	£	0	CH3	I	I	I	
55	X,1,7 X,10 X,1, X,2, X,2, X,2, X,2, X,2, X,2, X,2,	Compound No.	B-47	B-48	B-49	B-50	B-51	B-52	B~53	

5		A ×	I	I	π	I	τ	I	Ţ	£	0	C.F.		CH3	Ç) =	I
j		X17	ı		I	I	I	I	I	T	I	I	ī	I	ı	ď	\bigcirc
10		X16	I	I	I	I	I	r	I	r	I	I	x .	т 	I	ď	400
15	\$	X15	Ξ	I	Ι	I	I	I	I	£	\bigcirc	\$	£	CH3	Q	I	I
20	means	X14	I	Ą	000		\otimes	CH3	?	£	4	£	£	£	Ę	£	ď
25	*	XII	I	Ą	000		β	CH3	\bigcirc	ď	ď	Æ	£	4	ģ	P,	£
30	"A and B form a fused ring in	8x	Ι	r	I	I	I	I	r	I	I	r	I	I	r	I	r
35	"A and B for	۲×	I	I	I	I	I	x	I	x	Ι	I	I	I	I	ı	I
40		x3 x6	ı	ı	r	I I	I	ı	ı	I	I	I	I	I	I	I	I
45	* * * * * * * * * * * * * * * * * * *	X2	Ι	r	I	I.	I	I	I	I.	I	I	I ,	r	r	I	r
50	X ₁₁ X X ₁₆ X X ₁₈ X	o. X1	Ι	Ι	r	I	r	Ι	I	I	I	I	I	I	I	I	I
55		Compound No.	B-54	B-55	B-56	8-57	B-58	B-59	09-B	B-61	B-62	B-63	B-64	B-65	B-66	B-67	B-68

5		X18	r	r	I	I	r	ı	I	
10		71X	CH3	I	I	I	r	I	ı	
		X16	CH3	I	I	r	I	Ι	I	
15		X15	I	I	I	r	I	I	r	
20	means	X14	Æ	£	ď	£	ą	4	£	
25	√	X11X	44	£	£	듄	ą	£	4	
30	s fused ring in	8X	r	£	9	CH3	Ι	I	I	
35	"A and B form a fusad ring in	ιx	Ι	I	Ι	I	£	0	СНЗ	
		9x	I	I	I	I	r	I	I	
40		ξX	I	Ι	I	r	r	I	I	
45	x x x x x x x x x x x x x x x x x x x	X2	I	I	± • • • • • • • • • • • • • • • • • • •	I	4		CH3	
50	x x x x x x x x x x x x x x x x x x x		I	ę	0	СНЗ	I	Ŧ	I	
55		Compound No.	B-69	B-70	Y 11-8	8-72	8-73	B-74 ·	B-75	

5		× 18	I	I	I	I	I	I	I	£	0		8	CH3	Ç) _	I
		71X	I	Ξ	x	Ι	Ŧ	I	I	Ι	ı	ı	r	I	ı	g.	0
10		X16	I	I	r	r	I	I	r	I	r	I	Ι	I	r	Æ	700
15	\$	X15	I	I	ŗ	I	I	I	I	£	0	\$	8	СНЗ		I	ĭ
20	means	X14	I	P,	000	\$		СН3		£	£	£	ą.	Ъ	£.	£	£
25	ng in	X11	Ξ	Ę	00	-	8	CH3	\bigcirc	Æ	Ę	£	P _r	£	Ę	£	£
30	"A and B form a fused ring in	8X	fused ring.														
35	"A and B	rx.	X7 and X8 form a fused ring.	X7 and X8 form a fused ring.	X7 and X8 form a fused ring.	X7 and X8 form a fused ring.	X7 and X8 form a fused ring.	X7 and X8 form a fused ring.	X7 and X8 form a fused ring.	X7 and X8 form a fused ring.	X7 and X8 form a fused ring.	X7 and X8 form a fused ring.	X7 and X8 form a fused ring.	X7 and X8 form a fused ring.	X7 and X8 form a fused ring.	X7 and X8 form a fused ring.	X7 and X8 form a fused ring.
		9x	· エ	I	I	I	I	I	I	I	I	r	I	I	I	I	r
40		χ 33	I	I	I	I	I	I	I	I	I	I	I	I	ı	I	I
45	(10 X11 X6 X1 X7 X7 X7 X7 X1 X1 X1 X1 X1 X1 X1 X1 X1 X1 X1 X1 X1	×2	X1 and X2 form a fused ring.	X1 and X2 form a fused ring.	X1 and X2 form a fused ring.	X1 and X2 form a fused ring.	X1 and X2 form a fused ring.	X1 and X2 form a fused ring.	X1 and X2 form a fused ring.	X1 and X2 form a fused ring.	X1 and X2 form a fused ring.	X1 and X2 form a fused ring.	X1 and X2 form a fused ring.	X1 and X2 form a fused ring.	X1 and X2 form a fused ring.	X1 and X2 form a fused ring.	X1 and X2 form a fused ring.
50	X11X X11X X11X X11X X11X X11X X11X X11	x	X1 and X2 fo	X1 and X2 fo	X1 and X2 fo	X1 and X2 fo.	X1 and X2 fo	X1 and X2 fo.	X1 and X2 fo.	XI and X2 for	X1 and X2 for	X1 and X2 fo	X1 and X2 fo	X1 and X2 for			
55		Compound No.	B-76	8-77	B-78	B-79	B-80	B-81	B-82	B-83	B-84	B-85	B-86	B-87	B-88	B-89	B-90

* * * * * * * * * * * * * * * * * * *	"A and B form a fused ring in	d ring in BA	means	ı		
Compound No. X1· X2 X3 X6 X7	9x	X11	X14 X15	X16	X17	X18
B-91 X1 and X2 form a fused ring. H H X7 and X8 form		Ę	H H	CH3	CH3	Ŧ

5		X18	=	I	Ξ	I	Ι	I	I	P.	0	f	\otimes	CH3	Ç) <u>.</u>	:
10		71X	I	I	I	r	I	I	x	I	I	I	I	I	I	£	
15		X16	I	I	ī	r	x	I	I	I	I	ĸ	I	I	Ι	£	
20	means	X15	I	I	I	Ι	I	ı	I	đ	0	\$		СНЗ	Ç	I	ا ع
20	Ē V	X14	Ŧ	ď	0		8	CH3		£	ď	£	Æ	£	£	Æ	á
25	,E * <u>%</u>	x 11x	I	£	0		8	CH3	?	ď	Ę	£	£	£	ď	æ	á
30	"C, A and B form a fused ring" in	rx	I	I	Ξ.	I	Ŧ	I	Ι	I	I	I	x	I	I	I	2
35	C, A and B	33 X6	I	I	ı	I	I	I	ı	r	ı	I	I I	I	I	ı	ï
40		8X	fused ring.	ed ring.	fused ring.	fused ring.	fused ring.	fused ring.	fused ring.	fused ring.	fused ring.	fused ring.	fused ring.	fused ring.	fused ring.	fused ring.	ed ring.
45	× × × × × × × × × × × × × × × × × × ×	X2	X1, X2 and X8 form a fus	X1, X2 and X8 form a fused ring.	X1, X2 and X8 form a fus	XI, X2 and X8 form a fur	X1, X2 and X8 form a fus	X1. X2 and X8 form a fus	XI, X2 and X8 form a fus	. X1, X2 and X8 form a fus	XI, X2 and X8 form a fus	X1, X2 and X8 form a fused ring.					
50	× × × × × × × × × × × × × × × × × × ×	X1	X1, X2 a	X1, X2 8I	X1, X2 a	X1, X2 a	X1, X2 a	X1, X2 a	X1, X2 aı	. X1, X2 ar	X1, X2 ar	X1, X2 ar	X1, X2 ar	X1, X2 ar	X1, X2 ar	X1, X2 ar	X1, X2 ar
55		Compound No.	8-92	B-93	B-94	B-95	B-96	B-97	86-98	B-99	B-100	B-101	B-102	B-103	B-104	B-105	B-106

		1	1				
5		X18	I	I	x	I	
10		71X	СНЗ	I	I	I	
		X16	CH3	I	Ξ.	x	
15	means	X15	I	I	I	x	
20		X14	å	g.	Ą	£	
25	nng" in	X11	Ph	Æ	Ph	P	
<i>30</i>	"C, A and B form a fused ring" in	, tx	I	æ		СНЗ	
35	C, A an	9x 8	r	x	T I	I	
40		EX 8X	ed ring.	ed ring. H	ed ring.	ed ring. H	
45 .	x x x x x x x x x x x x x x x x x x x	X2	X1, X2 and X8 form a fused ring.	X1, X2 and X8 form a fused ring.	X1, X2 and X8 form a fused ring.	X1, X2 and X8 form a fused ring.	
50	** ** ** ** ** ** ** ** ** ** ** ** **	X	X1, X2	X1, X2	X1, X2	X1, X2	
55		Compound No.	8-107	B-108	B-109	8-110	

5	.	P2	I	I	Ξ	Ι	Ŧ	I	I	ų	000	CH3	I	r	r	r	I	Ŧ
10		۵	Ξ	I	I	I	I	I		ę	00	СНЗ	I	I	x	ı. I	r	Ŧ
15	means	X14	r	£	000		\otimes	CH3	0	ę	4	£	ę	ą	4	£	ď	4g
20	4-A	X11	I	æ	0		\otimes	СНЗ	0	£	Ą	£	ď	£	đ	£	£	£
25	"A and B form a fused ring in	8X	I	I	I	I	Τ,	r	, x	r	I	I	£	000	CH3	I	I	Ι
25	"A and B form	LX.	π	I,	I	r	I	I	I	I	I	I	I	I	I	£	000	СНЗ
30	·	9x	Ξ	I	I	I	I	r	I	I	, x	I	I	I	I	I	I	I
		χ3	I	I	I	I	Ξ	I	I	I	I	I	I	= .	I	x	I	=
35	x x x x x x x x x x x x x x x x x x x	X2	Ι	Ι	I	ı	I	I	I	I	I	I	I	I	I	ᄯ		CH3
40	Z Z Z	ΙX	I	I	I	I	Ι	I	r	I	x	π	£	0	СНЗ	r	x	τ
45		Compound No.	-5	C-2	د د	C-4	C-5	9-O	C1	0-8 0	6-O	C-10	0-11	C-12	C-13	C-14	C-15	C-16

			1								\bigcirc							1	
5		X18	Ι	I	I	I	I	r	I	£	Þ	CH3	x	I	I	I	I	I	
10		71X	I	I	I	r	I	I	I	I	I	r	ፈ	0	СНЗ	I	r	I	
15		X16	I	I	I	I	I	I	I	I	I	I	£	0	СНЗ	r	I	π	
20		X15	I	I		I	I	I	I	£	0	СНЗ	I	I	I	I	Ξ	Ŧ	
20	Means	X14	r	£	0	\$	CH3	8	?	£	£	&	Æ	ቼ	£	£	£	æ	
25	₩ ₩	X11	Ι	£	0	f f	СНЗ	8	?	뒽	ዋ	ኟ	£	£	£	£	ď	ď	
30	"A and B form a fused ring" in	8x	I	r	I	<u>.</u>	r	I	r	r	I	r	I	I	Ι	£		СНЗ	
35	m a fus	, X	Ŧ	I	I	I	I	r	ı	I	I	I	I	Ŧ	I	x	I	ı	
	nd B fo	9X	Ŧ	I	Ŧ	I	I	I	I	I	I	I	I	I	I	I	I	I	
40	۲, ۲	X 25	Ξ	r	I	I	I	I	I	I	I	I	I	I	I	I	r	I	
		×	Ξ	I	I	I	I	I	I	I	I	I	I	I	I	Ι	I	Ŧ	
		x x	Ξ	I	I	r	I	I	I	I	I	I	I	I	I	I	I	Ŧ	
· 45		X	Ξ	I	I	r	I	Ι	I	I	·I	I	I	I	I	Ι	I A	I	
50	x x x	×	Ξ	I	I	Ξ	I	I	I	I	I	I	I	I	I	£	0	СНЗ	
55		Compound No.	D-1	D-2	D-3	D-4	D-5	9-Q	1-0	0-8	6-Q	D-10	D-11	D~12	0-13	D-14	D-15	D-16	

		X 18	r	I	I	I	r	I	ı	ď	2	CH3	I	=	I	r	I	Ι	
5											Y			0		•			
10		71X	I	r	x	Ι	I	r	I	I	I	Ξ	ፈ	þ	CH3	I	Ţ	x	
		X16	I	I	I	I	I	I	I	I	I	I	£	00	СН3	I	I	π	
15		X15	ı	r	I	I	ı	I	I	턴	0	CH3	I	τ	π	I	I	I	
20	means	XI4	Ŧ	£	000	f	CH3	8	0	줖	.	돈	ď	£	ፈ	£	£	£	
25	*	XII	I	£	0	· •	СНЗ	8	O	£	£	£	£	Ą	£	£	£	đ	
30	"A and B form a fused ring" in	8x	I	I	I	Ι.	I	r	ı	I	I	x	I	I	r	£	0	CH3	
	form a fu	×	Ξ	I	=	I	I	I	I	x	I	I	I	I	I	±	±	I	
35	"A and B	9x	n a fused ring n a fused ring	n a fused ring	n a fused ring	n a fused ring	n a fused ring	n a fused ring	n a fused ring	n a fused ring	n a fused ring								
40		XS	X5 and X6 form a fused ring.	X5 and X6 form a fused ring.	X5 and X6 form a fused ring.	X5 and X6 form a fused ring.	X5 and X6 form a fused ring.	X5 and X6 form a fused ring.	X5 and X6 form a fused ring	X5 and X6 form a fused ring.	X5 and X6 form a fused ring.	X5 and X6 form a fused ring.	X5 and X6 form a fused ring.	X5 and X6 form a fused ring.	X5 and X6 form a fused ring.	X5 and X6 form a fused ring.	X5 and X6 form a fused ring.	X5 and X6 form a fused ring.	
		×	Ξ	I	I	I	×	Ξ	İ	I	I	I	I	I	I	I	x	x	
45		×	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	Ξ	
		×	I	I	I	I	I	I	r	I	I	x	I	r	x	I	I	I	
50		×	I	ı	I	x	I	I	I	I	x	r	I	I	I	ξ	Q	СНЗ	
55		Compound No.	D-17	D-18	D-19	D-20	D-21	D-22	0-23	0-24	D-25	0-26	D-27	D-28	D-29	D-30	D-31	0-32	

5		X16	I	I	I	I	I	I	I	P.	9	СН3	x	r	π	
10		X15	I	I	I	I	I	I	Ξ	Ph	400	СНЗ	I	r	Ι	
15	means	X14	T	4	0	OH ₂	CH3		P	£	4 '	ď	Ą.	P,	Ph	
20	4 J	X11	н	£	0	CH ₃	CH3		9	Ą.	Ph	ď	Ph	Ph	Ph	
25	"A and B form a fused ring" in	8X	Ŧ	I	I	Ŧ	I	I	I	I	I	Ι	ď	0	СНЗ	
30	orm a fus	×	I	I	I	I	I	I	I	Ť	I	I	r	Ξ	I	
35	'A and B f	9X	Ξ	Ξ	I	I	x	İ	I	r	I	I	I	I	I	
55		X5	I	I	I	Ξ.	x	I	I	I	I	Ξ	I	I	I	
40		× 4	Ι	I	Ξ	I	I	I	I	I	I	I	I	I	I	
		£	I	I	Ι	I	I	I	r	I	I	I	I	I	I	
45		X2	Ι	Ι	I	I	I	I	I	I	I	x	I	I	I	
50	SX XX XX XX XX XX XX XX XX XX XX XX XX X	XI	I	I	I		I	I	I	I	Ξ	I	ď		СН3 Н	
55		Compound No.	D-33	D-34	D-35	D-36	D-37	D-38	D-39	D-40	D-41	D-42	D-43	D-44	D-45	

	. 1	X16	l z	I	I	I	I	I	I	품	2	СНЗ	, I	I	I	
5											7	J				
10	,	X15	I	I	Ι	Ι	I	I	I	₹	\	CH3	I	I	I	
15	means	X14	r	£		\$\frac{1}{2}	CH3		P	P.	ď	£	ę	Ą	Ph	
20	<u></u>	X11	T	£	0	\$	CH3		O P	ዳ	£	Ph	æ	ď	ъ Ч	
25	R in B	8X	Ξ	I	I	r	I	I	I	I	I	x	£	000	СНЗ	
30	ı fused ri	7X	I w	ī.	Ħ	Ξ	II	II.	Ξ.	Ξ Ξ	ρ. Ι	Σ	Ξ	Ξ	Ξ Ξ	
35	"A and B form a fused ring" in	X5 X6	X5 and X6 form a fused ring.	X5 and X6 form a fused ring.	X5 and X6 form a fused ring.	X5 and X6 form a fused ring.	X5 and X6 form a fused ring.	X5 and X6 form a fused ring.	X5 and X6 form a fused ring.	X5 and X6 form a fused ring.	X5 and X6 form a fused ring.	X5 and X6 form a fused ring.	X5 and X6 form a fused ring.	X5 and X6 form a fused ring.	X5 and X6 form a fused ring.	
40		X4	I	ı	I	I	I	I	ı	× I	× I	ĭ	×	ĭ	× I	
		£	I	I	I	I	I	I	I	I	x	=	I	I	I	
45	******	×2	I	I	I	I	I	I	Í	Ι	I	I	I	I	Ξ	
50	x	×	I	I	I	I	I	I	r	I	r	±	g.		СНЗ	
55		Compound No.	D-46	D-47	D-48	D-49	D-50	D-51	D-52	D53	D-54	D-55	D-56	D-57	D-58	

5		X16	ı	π	I	I	I	I	I	ť	000	CH3	I	I	Ξ
10		X15	I	I	r	r	ī	I	π	ď		СНЗ	I	I	π
15	means	X14	I	4	0	\$ \	СНЗ		P	ቒ	£	æ	Ą.	Ą	£
20	<	X11	I	P.	0	*	CH3		O	P.	Ph	Ą	呑	ዊ	Ъ.
25	ing"in B	8X	x	r	I	I	I	· エ	r	I	I	I	F.	0	СНЗ
30	"A and B form a fused ring" in	7x 9x	I	ı	I	I	I	I I	I	I	I I	ı	I	I	I
35	"A and B f	X4 X5	I	I	I	I	I	I	I	ı	I	ı.	r r	I I	I
40		x2 x3	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.
45			X2 an		X2 en	- 1									
50	× x × * * * * * * * * * * * * * * * * *	o. X1	I	x	I	I		I	I	I	I	I	ď	Image: Control of the control of the	СНЗ
55		Compound No.	D-59	09-Q	D-61	D-62	D-63	D-64	D-65	D66	D-67	D-68	69Q	0-70	D-71

55	50	45	40		33	35	30	25	20 ·	15	16	10	5
×	******			₹ .	and B f	orm a	"A and B form a fused ring" in	√	means	J			
Compound No.	×	X2	£X	×	×S	9x	x7 x8	, X	X14	X15	X16	71X	X18
D-72	I	X2 and X3 form a fused ring.	n a fused ring.	Ξ	r	_	I	Ξ	Ŧ	I	I	=	r
D-73	I	X2 and X3 form a fused ring.	n a fused ring.	I	x	I	I	£	£	I	I	Ξ	I
D-74	I	X2 and X3 form a fused ring.	n a fused ring.	r	I	I	I	0	0	I	Ŧ	I	I
D-75	x	X2 and X3 form a fused ring.	n a fused ring.	I	r	I	I	\$	\$	I	I	x	I
9 <i>2</i> -0	I	X2 and X3 form a fused ring.	n a fused ring.	I	I	I	I	CH3	СНЗ	I	I	I	I
0-11	I	X2 and X3 form a fused ring.	n a fused ring.	I	I	I	ı	8	8	I	r	I	I
D-78	r	X2 and X3 form a fused ring.	n a fused ring.	I	I	I	r	7	P	I	I	I	r
D-79	I	X2 and X3 form	n a fused ring.	r	I	I	I	ď	ቼ	£	I	I	ť
D-80	I	X2 and X3 form a fused ring.	n a fused ring.	I	I	I	I	£	ę	0	x	I	0
D-8(I	X2 and X3 form a fused ring.	n a fused ring.	I	x	I	I	æ	윤	CH3	I	I	CH3
D-82	r	X2 and X3 form a fused ring.	n a fused ring.	I	I	I.	I	ř	፳	I	£	£	I
D-83	I	X2 and X3 form	n a fused ring.	I	I	. I	I	£	ď	I	0	000	I
D-84	I	X2 and X3 form a fused ring.	n a fused ring.	I	I	I	I	đ	ቒ	ı	СНЗ	CH3	I
D-85	ą	X2 and X3 form a fused ring.	n a fused ring.	I	I	I	H Ph	£	Ę	I	x	I	r
- 98-O	0	X2 and X3 form a fused ring.	n a fused ring.	I	I	r	Ţ	á	Ą	I	I	r	I
D-87	СНЗ	X2 and X3 form	n a fused ring.	I	I	¥	Н	đ	ጜ	I	I	r	I

5		X18	18 form a fused ring.	18 form a fused ning.	18 form a fused ring.							
10		X16 X17	X15 and X16 form a fused ring. X17 and X18 form a fused ring.	X15 and X16 form a fused ring. X17 and X18 form a fused ring.	X15 and X16 form a fused ring, X17 and X18 form a fused ring.	X15 and X16 form a fused ring. X17 and X18 form a fused ring.	XIS and XI6 form a fused ring. XI7 and XI8 form a fused ring.	X15 and X16 form a fused ring. X17 and X18 form a fused ring.	X15 and X16 form a fused ring. X17 and X18 form a fused ring.	X15 and X16 form a fused ring. X17 and X18 form a fused ring.	X15 and X16 form a fused ring. X17 and X18 form a fused ring.	XIS and XI6 form a fused ring. XI7 and XI8 form a fused ring.
15	\$	X15	X15 and X16 form									
20	теалѕ	X14	I	Ę	0	(CH3	8	0	ď	£	ď
25	<	XII	Ŧ	秥	000	§	СН3	8	?	£	£	£
30	"A and B form a fused ring" in	8X	Ξ	I	I	ı	r	I	I	£	0	용
	ботт в	LX	Ŧ	r	Ŧ	I	I	r	r	r	æ	≖
35	and B	9X	Ξ	±	I	I	I	r	x	I	I	I
	. ۲	XS	I	I	r	I	I	I	I	π	I	I
		X4	I	I	I	I	I	I	I	I	I	±
40		х3	ım a fused ring.	ırm a fused ring.	rm a fused ring.	rm a fused ring.	rm a fused ring	rm a fused ring.				
45	ŢŢŢŢŢ	X2	X2 and X3 form									
50		×	I	x	I	I	r	r	Ŧ,	£	\Diamond	СНЗ
55		Compound No.	D-88	. 68-Q	O90	D-91	D-92	D-93	D-94	D-95	96-0	- 26-0

ş - 5		X14=X24	I	윰.	0	ŝ		CH3		占	£	£	d	년	£
10	means	X13=X23	I	I	I	I	I	I	I	뚭	000	CH3	x	Ξ	I
15	√	X12=X22	T	x	I	I	I	r	Ť	Ą	000	CH3	I	x	I
25	"A and B form a fused ring" in	X11=21	Ι	준	000		\otimes	СНЗ	\bigcirc	ď	Ь	ď	ዊ	ď	£
30	"A and B form	X7	Ξ	I	I	I	I	x	I	I	I	I	I	I	I
35		9X	I	I	I	I	I	Ι	I	I	r	I	ę	Q Q	СН3
40	, X2, X33, X33, X33, X33, X33, X33, X33,	X3	Ŧ	I	I	I	I	I	I	I	I	I	x	I	I
45	X,13 X,14 X,2 X,11 X,3 X,3 X,3 X,3 X,3 X,3 X,3 X,3 X,3 X,3	X2	I	I	I	I	I	I	, T	Ι	I	r	£	000	СНЗ
50	^	Compound No.	Ŧ	E-2	E-3	E-4	E-5	E-6	E-7	F-8	E-9	E-10	E-11	E-12	E-13

242 ...

5		X14 X23 X24	fused	X13 and X14, X23 and X24 form fused rings.	X13 and X14, X23 and X24 form fused rings.	X13 and X14, X23 and X24 form fused rings.	X13 and X14, X23 and X24 form fused rings.	X13 and X14, X23 and X24 form fused rings.	X13 and X14, X23 and X24 form fused rings.	X13 and X14, X23 and X24 form fused rings.	X13 and X14, X23 and X24 form fused rings.	X13 and X14, X23 and X24 form fused rings.	X13 and X14, X23 and X24 form fused rings.	X13 and X14, X23 and X24 form fused rings.	X13 and X14, X23 and X24 form fused rings.
15	means	X13	X13 and X14	X13 and X14	X13 and X14	X13 and X14	X13 and X1	X13 and X14							
20	.i.	X12=X22	r	x	I	±	I	I	I	£	9	CH3	I	I	x ·
<i>25</i> <i>30</i>	"A and B form a fused ring" in	X11=21	Ŧ	F.	000	f		CH3	0	Рh	£	£	Æ	£	£
35	"A and B	rx x	I	I	I	I	I	I	I	x	Ξ	Ι	Ą.	000	CH3
•	. X ₂₂ X ₂₃	9x	I	I	I	I	I	r	I	r	I	x	r	I	I
40	ž-\ž	×	Ξ	I	I	I	I	I	I	I	I	I	I	I	I
45	X X X X X X X X X X X X X X X X X X X	×	I	I	I	I	x	I	Ξ	I .	I	I	ዋ	0	CH3
50	X ₁₃ X ₁₄ X ₅ X ₇ X ₁₁ X ₃ X ₇ X ₁₁ X ₃ X ₇ X ₁₁ X ₃ X ₇	Compound No.	E-14	E-15	E-16	E-17	E-18	E-19	E-20	E-21	E-22	E-23	E-24	E-25	E-26

5		X14=X24	24 form fused rings.				
10	means	X13=23	X13 and X14, X23 and X24 form fused rings.	X13 and X14, X23 and X24 form fused rings.	X13 and X14, X23 and X24 form fused rings.	X13 and X14, X23 and X24 form fused rings.	
	5		×	×	×	×	
20	n B	X12=X22	X11 and X12, X21 and X22 form fused rings.	X11 and X12, X21 and X22 form fused rings.	X11 and X12, X21 and X22 form fused rings.	X11 and X12, X21 and X22 form fused rings.	
25	, ji		X pu	X P	×	X	
	sed ri		. X21	. X21	. X21	, X21	
30	"A and B form a fused ring" in	X11=X21	X11 and X12	X11 and X12	X11 and X12	X11 and X12	
	A an	7X	I	I	I	I	
35	*				\sim		
40		9X	I	ď	Y	CH3	
	x x x x x x x x x x x x x x x x x x x	X3	π	I	I	I	
45	×						
50	X X X X X X X X X X X X X X X X X X X	X2	I	ą	00	CH3	
		nd No.					
55		Compound No.	E-27	E-28	E-29	E-30	

5		X24	r	á	0	\$		CH3	0	£	ቼ	£	£	£	ą	
10		x23	Ι	I	I	I	r	I	I	4	0	CH3	I	I	I	
15	means	X14	m a fused ring.	m a fused ring	m a fused ring.	m a fused ring.	m a fused ring.	X13 and X14 form a fused ring.	m a fused ring.	m a fusad ring.	m a fused ring.					
20	₹	X13	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 for	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	
25	fused ring" in	X12=X22	Ι	r	x	I	π	I	I	퓹	0	СНЗ	I	I	r	
30	"A and B form a fused ring" in	X11=21	Ξ	Ph	0		8	CH3	?	Ą	ቼ	ď	Ę	£	Ę	
35		7X	I	I	I	I	I	I	I	I	I	I	r	I.	I	
40	2 E	9X	Ι	I	I	I	I	I	I	I	Ι	I	£	0	СНЗ	
45		£X	I	I	I	I	I	I	Í	I	I	I	I	I	r	
50	X ₁₃ X ₁₄ X X ₁₂ X ₁₁ X ₃	Х2	x	I	I	I	I	I	I	r	I	I	ą	9	СНЗ	
55	·	Compound No.	E-31	E-32	E-33	E-34	E-35	E-36	E-37	E-38	E-39	E-40	E-41	E-42	E-43	

5		X24	ı	4				CH3	O P	4	H.	æ	£	£	æ
10		X23	I	I	I	I	r	Ŧ	I	£	CX Y	CH3	r	I	I
	\$	X22	I	Ι	r	r	π	I	I	£		용	Ι	I	I
15	means	X21	I	£	9		8	СНЗ	Image: Control of the control of the	£	£	£	£	昋	£
20	E .	X14	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.
25	d ring" in	X13	X13 and X14	X13 and X14	X13 and X14	X13 and X14	X13 and X14	X13 and X14	X13 and X14						
30	"A and B form a fused ring" in	X12	X11 and X12 form a fused ring.	X11 and X12 form a fused ring.	X11 and X12 form a fused ring.	X11 and X12 form a fused ring.	X11 and X12 form a fused ring.	X11 and X12 form a fused ring.	X11 and X12 form a fused ring.	X11 and X12 form a fused ring.	X11 and X12 form a fused ring.	X11 and X12 form a fused ring.	X11 and X12 form a fused ring.	X11 and X12 form a fused ring.	XII and XI2 form a fused ring.
35	, A	X11	XII and XI2 fc	X11 and X12 fo	X11 and X12 fo	X11 and X12 fo	X11 and X12 fo	X11 and X12 fo	Xf1 and Xf2 fo	X11 and X12 fo					
40		rx	I	I	x	I	I	I	I	I	I	I	I	I	I
45	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	9x	r	Ι	I	r	I	I.	I	I	I	I	£		CH3
	× V × × × × × × × × × × × × × × × × × ×	×	r	I	I	r	I	ı	I	I	I	I	I	I	r
50	× × × × × × × × × × × × × × × × × × ×	x2	r	I	I	I	I	ı	I	I	I	I	£	\$	СНЗ
55	3	Compound No.	E-44	E-45	E-46	E-47	E-48	E-49	E-50	E-51	E-52	E-53	E-54	E55	E-56

5		X24	Ŧ	Æ	0	\$	8	CH3	O P	£	£	æ	£	£	4	
10	,	X23	m a fused ring.	т a fused ring	m a fused ring.	m a fused ring.	m a fused ring.	m a füsed ring.	m a fused ring.							
15	means	X22	X22 and X23 form a fused ring.	X22 and X23 form a fused ring.	X22 and X23 form a fused ring.	X22 and X23 form a fused ring.	X22 and X23 form a fused ring.	X22 and X23 form a fused ring.	X22 and X23 form a fused ring.	X22 and X23 form a fused ring.	X22 and X23 form a fused ring.	X22 and X23 form a fused ring.	X22 and X23 form a fused ring.	X22 and X23 form a fused ring.	X22 and X23 form a fused ring.	
20	ě	X14	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	
20	√ -	XI3	X13 and X14 fo													
25	"A and B form a fused ring" in	XIZ	r	I	I	I	I	I	I	£	0	CH3	I	r	I	
30	"A and B form	X11=21	Ŧ	đ		₹	8	CH3	O	£	ď	£	£	£	ď	
35		X7	I	ı	ı	r	I	I	ı	I	I	I	I	I	I	
40		9x	I	I	I	I	I	I	I	I	τ	I	£	0	СНЗ	
45	x x x x x x x x x x x x x x x x x x x	£	I	I	I	I	x	I	I	I	I	I	I	I	I	
50	x x x x x x x x x x x x x x x x x x x	. x2	I	I	Ξ.	r	Ŧ.	I	r	Ι	I	I	£	Q Q	СНЗ	
55		Compound No.	E-57	E-58	E-59	E-60	E-61	E-62	E-63	E-64	E-65	E-66	E-67	E-68	E-69	

5		X22	X13 and X14 form a fused ring. X21 and X22 form a fused ring.	X13 and X14 form a fused ring. X21 and X22 form a fused ring.	X13 and X14 form a fused ring. X21 and X22 form a fused ring.	X13 and X14 form a fused ring. X21 and X22 form a fused ring.	X13 and X14 form a fused ring. X21 and X22 form a fused ring.	X13 and X14 form a fused ring. X21 and X22 form a fused ring.	XI3 and X14 form a fused ring. X21 and X22 form a fused ring.	X21 and X22 form a fused ring.	X21 and X22 form a fused ring.	X21 and X22 form a fused ring.	X13 and X14 form a fused ring. X21 and X22 form a fused ring.	X13 and X14 form a fused ring. X21 and X22 form a fused ring.	X13 and X14 form a fused ring. X21 and X22 form a fused ring.	
10	<i>_</i>	X21	ig. X21 and X	ng. X21 and X	ig X21 and X	g X21 and X	1g. X21 and X	ig. X21 and X	ug. X21 and X	g X21 and X			ig. X21 and X	ig. X21 and X;	g. X21 and X	
15	means	X X	form a fused rir	form a fused rin	form a fused rir	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	form a fused rir	form a fused rin	form a fused rin					
20	*	X13	X13 and X14	X13 and X14	X13 and X14	X13 and X14	X13 and X14	X13 and X14	X13 and X14							
25	ing"in B	X12=X23	Ι	Ι	I	I	Ι	I	I	£	Q Q	CH3	Ι	I	I	
30	"A and B form a fused ring" in	X11=24	r	ą	0	\$5	\otimes	CH3	P	ď	ą	ዋ	A.	ዋ	ሳ <mark>ሪ</mark>	
35	Ř.	×	Ξ	Ι	Ι	Ξ	I	x	I	I	τ	Ι	I	. . ,	I	
40	52 52 53	9x	Ι	Ĩ	I	I	I	r	Ι	Ι	I	I	ď		СНЗ	
45		£X	x	I	I	ı	I	I	x	I	I	I	x	I	I	
50	× × × × × × × × × × × × × × × × × × ×	Х2	Ι	x	I	I	I	r	Ι	Ι	I	I	g f	0	CH3	
55		Compound No.	E-70	E-71 .	E-72	E-73	E-74	E-75	E-76	E-77	E-78	E-79	E-80	E-81	E-82	

5		X24	Ξ	ď	Ç		8	, EH	Ç)	£	£	
10		X22 X23	23 form a fu	X22 and X23 form a fused ring.	X22 and X23 form a fused ring	X22 and X23 form a fused ring	X22 and X23 form a fused ring.	X22 and X23 form a fused ring.	X22 and X23 form a fused ring.	X22 and X23 form a fused ring.	X22 and X23 form a fused ring.	X22 and X23 form a fused ring.	
15	\$		X22 a	X22 #	X22 a	X22 a	X22 e	X22 B	X22 B	X22 a	X22 B	X22 B	
20	means	x21	I	Ę	9	\Diamond	8	СНЗ	P	£	ą	đ	
25	₹	X14	rm a fused ring.	orm a fused ring.	rm a fused ring.	ırm a fused ring.	ım a fused ning.	ım a fused ring.	rm a fused ring.	X13 and X14 form a fused ring.	rm a fused ring.	rm a fused ring.	
25	ring" in	X13	13 and X14 fo	13 and X14 fo	13 and X14 fo	13 and X14 fo							
30	"A and B form a fused ring" in	X12	XII and XI2 form a fused ring. X13 and X14 form a fused ring.	XII and XI2 form a fused ring. XI3 and XI4 form a fused ring.	X11 and X12 form a fused ring. X13 and X14 form a fused ring.	X11 and X12 form a fused ring. X13 and X14 form a fused ring.	XII and XI2 form a fused ring. XI3 and XI4 form a fused ring.	X11 and X12 form a fused ring. X13 and X14 form a fused ring.	X11 and X12 form a fused ring. X13 and X14 form a fused ring.	X11 and X12 form a fused ring. X	X11 and X12 form a fused ring. X13 and X14 form a fused ring.	XII and XI2 form a fused ring. XI3 and XI4 form a fused ring.	
35	, A ar	XII	1									X11 and X12 fo	
40		x6 x7	I	I	I	ı	I	I	I	ž		СН3	
45		X3	I	π	x	I	I	r	I	I	I	I	
50	* * * * * * * * * * * * * * * * * * * *	X2	I	ĭ	I	I	r	I	I	ŧ (2	СНЗ	
55		Compound No.	E-83	E-84	E-85	98-3	E-87	88-11	-89	06-	-91	:-92	

5		X24	I	£	0	Ó	8	CH3	?	£	£	£	£	£	ď	
10		X23	Ι	I	I	x	r	I	I	ď	0	CH3	I	I	r	
15		X22	ım a fused ring.	ım a fused ring.	orm a fused ring.	rm a fused ring.	orm a fused ring.	orm a fused ring.	X13 and X14 form a fused ring. X21 and X22 form a fused ring.	orm a fused ring.	X13 and X14 form a fused ring. X21 and X22 form a fused ring.	XI3 and XI4 form a fused ring. X21 and X22 form a fused ring.	X13 and X14 form a fused ring. X21 and X22 form a fused ring.	X13 and X14 form a fused ring. X21 and X22 form a fused ring.	X13 and X14 form a fused ring. X21 and X22 form a fused ring.	
		X21	X21 and X22 fo X21 and X22 fo	X21 and X22 fo	X21 and X22 fo	X21 and X22 fe	X21 and X22 fe	X21 and X22 fe	X21 and X22 fa	X21 and X22 f	X21 and X22 f					
20	Reans	X14	X13 and X14 form a fused ring. X21 and X22 form a fused ring.	X13 and X14 form a fused ring. X21 and X22 form a fused ring.	X13 and X14 form a fused ring. X21 and X22 form a fused ring.	X13 and X14 form a fused ring. X21 and X22 form a fused ring	X13 and X14 form a fused ring. X21 and X22 form a fused ring.	XI3 and XI4 form a fused ring. X21 and X22 form a fused ring	orm a fused ring.	X13 and X14 form a fused ring. X21 and X22 form a fused ring.	orm a fused ring	orm a fused ring.				
25	*	X13	X13 and X14 fc	X13 and X14 fc	X13 and X14 fc	X13 and X14 fo	X13 and X14 fe	X13 and X14 fc	X13 and X14 f							
30	"A and B form a fused ring" in	X12	Ξ	I	r	I	x	r	I	£	9	CH3	I	I	I	
35	"A and B form	X11	I	£	000	¢	8	CH3		£	£	ć	£	£	£	
		τx	Ι	I	I	I	I	I	Ŧ	I	I	ı	x	I	ı	
40		9x	Ξ	r	ı	I	I	r	I	r	I	I	£	000	CH3	
45	× × × × × × × × × × × × × × × × × × ×	cx	n a fused ring. n a fused ring.	n a fused ring.	n e fused ring.	n a fused ring.	n a fused ring.	X2 and X3 form a fused ring.	m a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.					
50	X II X X X II X X X II X X X II X	x2	X2 and X3 form a fused ring	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 for	X2 and X3 form a fused ring.	X2 and X3 for	X2 and X3 for	
55		Compound No.	E-93	E-94	E-95	E-96	E-97	E-98	E-99	E-100	E-101	E-102	E-103	E-104	E-105	

5		X14=X24	r	£		- F		CH3		£	£	Ą	Ph	ď	Ą	
10	means	X13=X23	I	I	I	I	I	Ι	Ι	ą	000	CH3	Ι	I	I	
20	ring" in B	X12=X22	Ξ	x	x	=	I	Ξ	I	Ph	000	CH3	Ι	r	I	
25	"A and B form a fused ring" in	X11=21	Ŧ	줌	9	\$		CH3	\bigcirc	ቒ	ď	듑	ą	뚭	ď	
30	, A ar	×	I	I	I	I	I	I	I	I	I	I	I	I	I	
35		9X	Ι	I	x	I	I	I	I	I	I	I	Ph	0	СНЗ	
40	× × × × × × × × × × × × × × × × × × ×	£X	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	form a fused ring.	form a fused ring.	form a fused ring.	form a fused ring.	form a fused ring.	form a fused ring.	form a fused ring.	X2 and X3 form a fused ring.	form a fused ring.	
45	X ₁₃ X ₁₄ X ₁₄ X ₁₂ X ₁₁	. X2	X2 and X3	X2 and X3	X2 and X3 (X2 and X3 (X2 and X3 f	X2 and X3 f								
50	10	Compound No.	E-106	E-107	E-108	E-109	E-110	E-111	E-112	E-113	E-114	E-115	E-116	E-117	E-118	

5	X14=X24	I	栕	0	\$ -		CH3	0	. .	줌	£	£	£	ď	
10	×23	X22 and X23 form a fused ring.	X22 and X23 form a fused ring.	X22 and X23 form a fused ring.	X22 and X23 form a fused ring.	X22 and X23 form a fused ring.	X22 and X23 form a fused ring.	X22 and X23 form a fused ring.	X22 and X23 form a fused ring.	X22 and X23 form a fused ring.	X22 and X23 form a fused ring.	X22 and X23 form a fused ring.	X22 and X23 form a fused ring.	X22 and X23 form a fused ring.	
15 Supple	X22	X22 and X23													
20	× × × ×	x	I	I	=	I	I	I	£	0	СНЗ	I	Ι	I	
.iiiiiiiiii.	X 12	x	I	I	I	r	I	I	Ą.	0	CH3	Ŧ	I	I	
A and B form a fused ring" in	 X11=21	π	£	0	\$	8	CH3	\bigcirc	£	윰	Æ	£	£	£	100000000000000000000000000000000000000
35	7	I	I	±	I	I	I	I	¥	I	I	I	I	I	
40	9x	Ι	I	x	I	I	I	I	I	r	r	舌	0	CH3	
45	x3 x3 x3 X33	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	
50	X ₁₂ X ₁₁ X ₃	X2 and X3	X2 and X3	X2 and X3	X2 and X3	X2 and X3	X2 and X3	X2 and X3	X2 and X3	X2 and X3	X2 and X3	X2 and X3	X2 and X3	X2 and X3	
55	Compound No.	E-119	E-120	E-121	E-122	E-123	E-124	E-125	E-126	E-127	E-128	E-129	E-130	E-131	

5	X14=X24	т	ቼ	9	C. C.		CH3		Ą	ቒ	£	
ueans	X13=X23	I	I	r	I	r	I	Ι	Ph	0	CH3	
20	X12=X22	I	τ	I	I	r	I	r	ď	\bigcirc	СНЗ	
% and B form a fused ring" in	X11=21	Ι	ą	0	Cet ²		CH3		ď	r <mark>q</mark>	Ą	
% A and B for	LX	a fused ring.	ı a fused ring.	a fused ring.	ı a fused ring. —	a fused ring.	a fused ring.		a fused ring.	a fused ring.	a fused ring.	
	9x	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	
45 × × × × × × × × × × × × × × × × × × ×	2	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	
50 X X X		X2 and)										
55	Compound No.	E-132	E-133	E-134	E-135	E-136	E-137	E-138	E-139	E-140	E-141	

		,	i									
5	-	X14=X24	x	á	0		8	CH3	P	ፈ	Ь	ą.
10	Z	X23	X22 and X23 form a fused ring.	X22 and X23 form a fused ring.	X22 and X23 form a fused ring.	X22 and X23 form a fused ring.	X22 and X23 form a fused ring.	X22 and X23 form a fused ring.	X22 and X23 form a fused ring.	X22 and X23 form a fused ring.	X22 and X23 form a fused ring.	X22 and X23 form a fused ring.
15	means	X22	X22 and X23 fo	X22 and X23 fc	X22 and X23 fo	X22 and X23 f						
20	me me	X13	Ι	II.	I	Ι	I	I	I	ď	0	CH3
25	used ring" in	X12	τ	I	I	Ξ	Ι	I	I	ď	0	СНЗ
30	"A and B form a fused ring" in	X11=21	¥	ዊ	0	\$	8	СНЗ	?	ď	£	£
35		X7	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.
40		9X	X6 and X7 fo	X6 and X7 fo	X6 and X7 fo	X6 and X7 fc	X6 and X7 fc	X6 and X7 fc	X6 and X7 fo	X6 and X7 fe	X6 and X7 fe	X6 and X7 fe
45	× × × × × × × × × × × × × × × × × × ×	хз	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.
50	x, x, x, x, x, x, x, x, x, x, x, x, x, x	X2	X2 and X3 fe	X2 and X3 fe	X2 and X3 f							
55		Compound No.	E-142	E-143	E-144	E-145	E-146	E-147	E-148	E-149	E-150	E-151

5		X24	r	æ	Ç) *		CH3	Q.	4	ą	ą	
10		X23	I	I	ī	ı	ī	I	I	£	9	СНЗ	
15	means	X14	X13 and X14 form a fused ring.	rm a fused ring.	rm a fused ring.	rm a fused ring.	rm a fused ring.	rm a fused ring.	rm a fused ring.	rm a fused ring.	X13 and X14 form a fused ring	X13 and X14 form a fused ring.	
20	. EB	X13	X13 and X14 fo	Xf3 and X14 form a fused ring	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 for	X13 and X14 for	
25	"A and B form a fused ring" in	X12=X22	Ŧ	I	I	I	I	r	I	Ph	9	CH3	
30	A and B	X11=21	Ι	£	0	₹ →		CH3	0	£	£	£	
35		tx	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	
40		9X	X6 and X7 fo	X6 and X7 for	X6 and X7 for	X6 and X7 for	X6 and X7 for	X6 and X7 for	X6 and X7 for	X6 and X7 for	X6 and X7 for	X6 and X7 for	
45	x x x x x x x x x x x x x x x x x x x	х3	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	
50	× × × × × × × × × × × × × × × × × × ×	. x2	X2 and X3 fo	X2 and X3 fo	X2 and X3 fo.	X2 and X3 fo	X2 and X3 fo	X2 and X3 fo.	X2 and X3 for	X2 and X3 for	X2 and X3 for	X2 and X3 for	
55		Compound No.	E-152	E-153	E-154	E-155	E-156	E-157	E-158	E-159	E-160	E-161	

5		X24	X23 and X24 form a fused ring.	X23 and X24 form a fused ring.	X23 and X24 form a fused ring.	X23 and X24 form a fused ring.	X23 and X24 form a fused ring.	X23 and X24 form a fused ring.	X23 and X24 form a fused ring.	X23 and X24 form a fused ring.	X23 and X24 form a fused ring.	X23 and X24 form a fused ring.	
10		X23	X23 and X24										
15	means	X14	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fusad ring.	
20	4	X13	X13 and X14										
25	"A and B form a fused ring" in	X12=X22	I	I	I	T	τ.	Ι	I	Ę	000	CH3	
30	"A and B fo	X11=21	Ξ	Ę	0		β	CH3	9	Ę	£	Ą	
<i>35</i> ·		tχ	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	
40		9X	X6 and X7										
45	x, x, x, x, x, x, x, x, x, x, x, x, x, x	Х3	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	
50	X13 X14 X12 X14	X2	X2 and X;	X2 and X;	X2 and X;	X2 and X;	X2 and X3						
55		Compound No.	E-162	E-163	E-164	E-165	E-166	E-167	E-168	E-169	E-170	E-171	

5		X24	I	Æ			8	CH3	O	4	£	£	
10		X23	r	r	ı	I	ı	r	I	£	0	СНЗ	
15		x22	X13 and X14 form a fused ring. X21 and X22 form a fused ring.	X13 and X14 form a fused ring. X21 and X22 form a fused ring.	X13 and X14 form a fused ring. X21 and X22 form a fused ring.	X13 and X14 form a fused ring. X21 and X22 form a fused ring.	X13 and X14 form a fused ring. X21 and X22 form a fused ring.	X13 and X14 form a fused ring. X21 and X22 form a fused ring.	X13 and X14 form a fused ring. X21 and X22 form a fused ring.	X13 and X14 form a fused ring. X21 and X22 form a fused ring.	X13 and X14 form a fused ring. X21 and X22 form a fused ring.	X13 and X14 form a fused ring. X21 and X22 form a fused ring.	
	means	X21	. X21 and X22	X21 and X22	. X21 and X22	. X21 and X22	. X21 and X22						
20	*	X14	orm a fused ring	om a fused ring	om a fused ring								
25	ت. ت-	XI3	X13 and X14 f										
	"A and B form a fused ring" in	X12	I	I	I	r	I	I	I	£	0	СНЗ	
35	A and	XII	I	£	00	Ó	8	СНЗ	O	£	£	đ	
40		7X	a fused ring.	a fused ring.	a fused ring	a fused ring. —	a fused ring.						
		9x	X6 and X7 form a fused ring.	X6 and X7 form	X6 and X7 form a fused ring.	X6 and X7 form							
45	\$ \$\frac{1}{2} \frac{1}{2} \fr	£X	X2 and X3 form a fused ring.	X2 and X3 form a fused ring. X6 and X7 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring. X6 and X7 form a fused ring.	
· 50	x x x x x x x x x x x x x x x x x x x	×	X2 and X3 fon	X2 and X3 fan	X2 and X3 for	X2 and X3 for							
55		Compound No.	E-172	E-173	E-174	E-175	E-176	E-177	E-178	E-179	E-180	E-181	

		1	1										
5		X24	=	: ถึ	C		8) 공	Ç) £	£	£	
10		×23	orm a fused ring.	orm a fused ring.	orm a fused ring.	rm a fused ring.	orm a fused ring.	orm a fused ring.	orm a fused ring.	rm a fused ring.	X22 and X23 form a fused ring.	irm a fused ring.	
15		X22	X22 and X23 fa	X22 and X23 fa	X22 and X23 fo	X22 and X23 fe	X22 and X23 fo	X22 and X23 fo	X22 and X23 fc	X22 and X23 fc	X22 and X23 fo	X22 and X23 fo	
20	means	X14	XI3 and X14 form a fused ring. X22 and X23 form a fused ring.	X13 and X14 form a fused ring. X22 and X23 form a fused ring.	X13 and X14 form a fused ring. X22 and X23 form a fused ring.	XI3 and XI4 form a fused ring. X22 and X23 form a fused ring.	XI3 and XI4 form a fused ring. X22 and X23 form a fused ring.	XI3 and XI4 form a fused ring. X22 and X23 form a fused ring.	X13 and X14 form a fused ring. X22 and X23 form a fused ring.	XI3 and XI4 form a fused ring. X22 and X23 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring. X22 and X23 form a fused ring.	
	√	X13	X13 and X14 fe	X13 and X14 fo	X13 and X14 fc	X13 and X14 fc	X13 and X14 fe	X13 and X14 fc	X13 and X14 fc	XI3 and X14 fc	XI3 and X14 fc	XI3 and X14 fc	
25	ed ring" in	X12	I	r	r	r	I	π	r	Ę	0	СНЗ	
30	"A and B form a fused ring" in	X11=21	Ξ	æ	9	₹	\bigcirc	CH3	\Diamond		ą.	ą	
35	, ,	, tx	sed ring.	sed ring.	and ring.	sed ring.	and ring.	sed ring.	sed ringO-	sed ring.	ed ring.	ed ring.	
40		(9x	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	K6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	
45	**************************************	CX	X2 and X3 form a fused ring.	X2 and X3 form a fused ring, 🕽	X2 and X3 form a fused ring.	X2 and X3 form a fused ring. >	X2 and X3 form a fused ring. >	X2 and X3 form a fused ring.	X2 and X3 form a fused ring. 🗴	X2 and X3 form a fused ring. X	X2 and X3 form a fused ring. X	X2 and X3 form a fused ring. X	
50	X X X X X X X X X X X X X X X X X X X	x x	X2 and X3 for	X2 and X3 fon	X2 and X3 fon	X2 and X3 for	X2 and X3 fon	X2 and X3 for	X2 and X3 fon				
55		Compound No.	E-182	E-183	E~184	E~185	E-186	E-187	E-188	E-189	E-190	E~191	

5	/	X18=X28	I	I	I	I	Ι	I	I	4	9	СНЗ	I	I	I
10	means	X17=X27	I	I	I	I	I	Ι	I	Ξ	Ŧ	I	P,		СНЗ
15	Ě	X16=X26	Ŧ	I	I	I	I	I	I	I	I	I	H H	00	СНЗ
20	. <u>s</u>	X15=X25	Ξ	I	I	Ξ,	I	I	I	ፈ	0	CH3	ı I	I	I
25	"A and B form a fused ring" in	X14=X24	Ŧ	#	000	(F)		СНЗ	9	Ą	, ,	Ъ	Ь	4 H	Ph
30	"A and B for	X11=X21	I	£	000	\$		СНЗ	0	F.	£	昋	Ъ	ዊ	4
35		LX.	Ι	I	I	I	I	I	¥	I	x	I	I	I	I
40	7.25 X.26 X.27 X.27	9x	Ξ	I	I	I	I	I	π	I	I	I	I	I	Ŧ
45		X2 X3	r	I	I	I	I	H . H	<u> </u>	I	r r	I	I	II	T
50	X,17 X,18 X,17 X,18 X,18 X,18 X,18 X,18 X,18 X,18 X,18	Compound No. X			-	•	*	-	<u> </u>	-	*		-	Ι	I
55		Сотро	Ī	F-2	F-3	F-4	F5	F-6	F-7	F-8	F9	F-10	F-1	F-12	F-13

Xi Xi Xi Xi Xi Xi Xi Xi		50	45	40	35	30	25	20	15	10	5
X2 and X3 form a fused ring. X3 form a fused ring. X1 = X21 X14=X24 X15=X25 X16=X26 X17=X27 X2 and X3 form a fused ring. H H H H H H H X2 and X3 form a fused ring. H H H H H H H X2 and X3 form a fused ring. H H CH3 CH3 H H H X2 and X3 form a fused ring. H H CH3 CH3 H H H X2 and X3 form a fused ring. H H Ph Ph Ph H H X2 and X3 form a fused ring. H H Ph Ph Ph H H X2 and X3 form a fused ring. H H Ph Ph Ph H H H X2 and X3 form a fused ring. H H Ph Ph Ph Ph H H H H H H H H H H H <t< th=""><th>)—(<u>o</u></th><th></th><th>Ž-\-\Z</th><th></th><th>,¥</th><th>and B form a fu:</th><th>sed ring" in</th><th>4-\$\frac{1}{2}</th><th>means</th><th></th><th></th></t<>)—(<u>o</u>		Ž-\-\Z		,¥	and B form a fu:	sed ring" in	4-\$\frac{1}{2}	means		
ring. H <th>nd No.</th> <th></th> <th>x3</th> <th>»×</th> <th>r×</th> <th>X11=X21</th> <th>X14=X24</th> <th>X15=X25</th> <th>X16=X26</th> <th>X17=X27</th> <th>X18=X28</th>	nd No.		x3	»×	r×	X11=X21	X14=X24	X15=X25	X16=X26	X17=X27	X18=X28
ring. H H Ph Ph H H H H H H H H H H H H H H H		X2 and X3 for	rm a fused ring.	I	I	I	1	1			
ring. H H CO3 CO43 H		X2 and X3 for	rm a fused ring.	I	r	: £	: £	: I	t x	ı ı	r r
ring H CH3 CH3 H<		X2 and X3 for		I	I	0	000	I	ï	: т	: I
ring. H H CH3 H </td <td></td> <td>X2 and X3 for</td> <td></td> <td>I</td> <td>·</td> <td></td> <td>\$</td> <td></td> <td>I</td> <td>I</td> <td>I</td>		X2 and X3 for		I	·		\$		I	I	I
ring. H H CH3 CH3 H H H ring. H H Ph Ph Ph H H ring. H H Ph Ph H H H ring. H H Ph Ph H Ph Ph ring. H H Ph Ph H Ph Ph ring. H H Ph Ph H Ph Ph		X2 and X3 for		I	I		8	_	π	ı I	Ξ
ring. H H OO H <td></td> <td>X2 and X3 for</td> <td></td> <td>τ</td> <td>I</td> <td>CH3</td> <td>CH3</td> <td>I</td> <td>Ι</td> <td>I</td> <td>I</td>		X2 and X3 for		τ	I	CH3	CH3	I	Ι	I	I
ring. H Ph Ph Ph H H ring. H H Ph Ph Ph Ph Ph ring. H H Ph Ph H Ph Ph ring. H H Ph Ph H CH3 CH3		X2 and X3 for		I	x		P	I	I	· I	Ξ
ring. H H Ph CH3 H H H H H H H H H H H H H H Ph H Ph H Ph Ph Ph H CH3 CH3 CH3		X2 and X3 for	rm a fused ring.	I	I	£	£	Ь	I	I	Ą
ring. H Ph Ph CH3 H H ring. H Ph Ph H Ph ring. H H Ph H CH3 CH3		X2 and X3 for	rm a fused ring.	I	I	ď	£	0	I	I	0
ring. H Ph H Ph Ph ring. H H Ph H CH3 CH3		X2 and X3 for	rm a fused ring.	I	I	ď	£	СНЗ	I	I	СНЗ
ring. H H Ph Ph H CH3 CH3		X2 and X3 for	rm a fused ring.	I	I	ď	ዊ	I	Ą	4	I
ring. Н H Ph H CH3 СН3		X2 and X3 for	m a fused ring.	I	I	Ą	ቒ	ı	0	0	I
		X2 and X4 for	m a fused ring.	I	I	Ph	ď	I	СНЗ	СНЗ	I

5		72X	=	ı	I	I	I	I	I	I	I	I	g	2	CH3
J	1	X26	I	I	I	I	I	ı	I	I	r	I	I	¥ =	I
10		X18=X28 X	Ŧ	I	I	I	I	I	I	ቼ	2	СНЗ	I	I	I
15	means		ring.	ring.	ring.	ring.	ring.	'ring.	' ring.	ring.	l ring.		l ring.	ring.	ring
20		71X	X16 and X17 form a fused ring.	X16 and X17 form a fused ring.	X16 and X17 form a fused ring.	X16 and X17 form a fused ring.	X16 and X17 form a fused ring.	X16 and X17 form a fused ring.	X16 and X17 form a fused ring.	X16 and X17 form a fused ring.	X16 and X17 form a fused ring.	X16 and X17 form a fused ring.	X16 and X17 form a fused ring.	X16 and X17 form a fused ring.	X16 and X17 form a fused ring.
20	B	X16	(16 and X17	K16 and X17											
25	"A and B form a fused ring" in	X15=X25	r	ı	I	ī	I	ī	r	Æ		сн3	ī	r	ī
30	B form a fu			_	Q	ş	\bigcirc	13	\bigcirc	_	Υ .	_	r	ŗ	
35	. "A and	X14=X24	I	된	0	O	$\langle \cdot \rangle$	СНЗ	1	£	•	듄	ዊ	Ą	昋
	×.×.×.×.×.	X11=X21	r	P.	4			CH3	O i	െ	£	£	昋	£	昋
40	× × × × × × × × × × × × × × × × × × ×	ίχ	I	I	Ι	ı	I	I	I	I	. ±	I	I	I	Ι
45	× × ×	9X	I	I	I	r	I	I	I	I	I	I	I	I	I
	X18 X11 X8 X11 X X11 X X12 X12 X12 X13 X13 X13 X13 X13 X13 X13 X13 X13 X13	×3	Ξ	I	I	I	Ŧ	I	I	I	I	I	I	I	I
50	X X X X X X X X X X X X X X X X X X X	. X2	I	Ï	I	Ι	I	I	I	I	I	I	I	I	I
55		Compound No. X2	F-27	F-28	F-29	F-30	F-31	F-32	F-33	F-34	F-35	F-36	F-37	F-38	F-39

5		r2X	X26 and X27 form a fused ring.	X26 and X27 form a fused ring.	X26 and X27 form a fused ring.	X26 and X27 form a fused ring.	X26 and X27 form a fused ring.	X26 and X27 form a fused ring.	X26 and X27 form a fused ring.	X26 and X27 form a fused ring.	X26 and X27 form a fused ring.	X26 and X27 form a fused ring.
10		X26	X26 and X27 fe	X26 and X27 fe	X26 and X27 for	X26 and X27 fo	X26 and X27 fc	X26 and X27 fo	X26 and X27 fc	X26 and X27 fc	X26 and X27 fc	X26 and X27 fc
15	means	X18=X28	Ι	I	I	I	I,	I	r	.	P	СНЗ
20	₩.	71X	X16 and X17 form a fused ring.	X16 and X17 form a fused ring.	X16 and X17 form a fused ring.	X16 and X17 form a fused ring.	X16 and X17 form a fused ring.	X16 and X17 form a fused ring.	X16 and X17 form a fused ring.	X16 and X17 form a fused ring.	X16 and X17 form a fused ring. "	X16 and X17 form a fused ring.
25	ised ring" in	X16	X16 and X1	X16 and X1								
30	"A and B form a fused ring" in	X15=X25	Ŧ	I	I	I	I	Ι	I	ď	Y	. СНЗ
<i>35</i>	, A an	X14=X24	Ι	£	0		8	CH3	9	ď	æ	ę.
40	× ₂₈	X11=X21	Ι	đ (CH3	P	£	Ą.	Ph
	× × × × × × × × × × × × × × × × × × ×	LX.	τ	I	I	I	r	I	I	I	I	Ξ
45	×	9x	I	I	I	I	I	I	I	I	I	I
	x x x	χ χ	x :	I	I	I	I	I	r	I	I	I
50	× F × ei	×2	T :	I	I	r	I	I	I	I	I	I
55		Compound No. X2	9-1	-	F~42	F-43	F-44	F-45	F-46	F-47	F-48	F-49

5		X18=X28] =	: т	I	I	Ι	Ι	I	ą	0	СНЗ	I	I	ı
10		X17=X27	1	: =	I	I	Ŧ	I	I	I	I	I	Ph	00	СНЗ
. 15	means	X16=X26	I	I	r	I	I	I	I	r	r	I	ዊ	000	сн3
20	∀ -√>	X15=X25	Ξ	I	I	π,	I	I	I.	ď	000	СНЗ	ı	I	I
25	sed ring" in	X14=X24	I	ዊ	000	\$ \(\frac{\fin}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fin}}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fir}}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}}}{\frac{\f	8	СНЗ	0	4	Ч	£	ď	£	Ph
30	"A and B form a fused ring" in	X11=X21	Ŧ	£	000	\$ \	\otimes	СНЗ		£	Ą	Ą	H.	4	4
35	. ✓ . ✓	ΓX	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.
40	×25 ×28 ×28 ×29 ×29 ×29 ×29 ×29 ×29 ×29 ×29 ×29 ×29	9x	1												- 1
45	X ₁₀ X ₁₁ X ₆ X ₇ X ₇₀ X	X2 X3	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.
55	×, ×	Compound No.	F-50	F-51	F-52	F-53	F-54 X	F-55	F-56 X	F-57 X	F-58 X	F-59 ×	F-60	F-61 X	F-62 ×

	1.	X18=X28	I	I	r	I	π	I	I,	đ	0	СНЗ	ı	I	I
10		X17=X27	I	·I	I	x	x	I	I	I	I	ı	£	0	СНЗ
		X26	I	I	I	I	I	I	ı	I	I	I	£	0	СНЗ
15	means	X25	Ŧ	x	I	I	I	r	I	£	0	CH3	I	I	I
20	«- ()-	X14=X24	Ξ	ፈ	000		8	СНЗ	Image: Control of the control of the	₹	£	Ą	£	. &	Ъ
25	. i. i. ii.	X16	n a fused ring.	n a fused ring.	n a fused ring.	n a fused ring	n a fused ring.	n a fused ring.	m a fused ring.	m a fused ring.	m a fused ring.	m a fused ring.	m a fused ring.	m a fused ring.	m a fused ring.
30	"A and B form a fused ring" in	X15	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.
35	"A and B	X11=X21	Ŧ	£	00		\otimes	СНЗ	?	£	£	£	£	€ .	£
40		7X 9X	X2 and X3 form a fused ring. X6 and X7 form a fused ring.	X2 and X3 form a fused ring. X6 and X7 form a fused ring.	X2 and X3 form a fused ring. X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.
45	X34 X35 X26 X31 X33	x3	a fused ring. X6	a fused ring. X6	a fused ring. X6	a fused ring. X6			a fused ring. X6	a fused ring. X6				a fused ring. X6	a fused ring. X6
50		x2	X2 and X3 form	X2 and X3 form	X2 and X3 form	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.
55	X es.	Compound No.	F-63	7-64 4	F-65	F-66	F-67	F-68	F-69	F-70	F-71	F-72	F-73	F-74	F-75

5		82X	I	I	ı	I	I	I	I	£	0	CH3	I	I	I
		x27	I	I	r	I	I	I	ı	I	ī	I	£	0	СНЗ
10		X26	Ι	I	Ι	I	x	r	I	I	I	I	£	0	СНЗ
15		x25	I	I	I	I	I	I	I	£	0	СНЗ	ı	ī	ı
20		X14=X24	Ξ	đ	0		8	CH3	?	£	á	£	£	Ę	P.
	means	81X	m a fused ring.	m e fused ring	m a fused ring.	m a fused ring.	m a fused ring.	m a fused ring	m a fused ring.	m a fused ring.	m e fused ring.				
25	√	71X	X15 and X16 form a fused ring. X17 and X18 form a fused ring.	X15 and X16 form a fused ring. X17 and X18 form a fused ring.	X15 and X16 form a fused ring. X17 and X18 form a fused ring.	X15 and X16 form a fused ring. X17 and X18 form a fused ring.	X15 and X16 form a fused ring. X17 and X18 form a fused ring.	X15 and X16 form a fused ring. X17 and X18 form a fused ring.	X15 and X16 form a fused ring. X17 and X18 form a fused ring.	X15 and X16 form a fused ring. X17 and X18 form a fused ring.	XIS and XIB form a fused ring. XI7 and XIB form a fused ring.	X15 and X16 form a fused ring. X17 and X18 form a fused ring.	X15 and X18 form a fused ring. X17 and X18 form a fused ring.	X15 and X16 form a fused ring. X17 and X18 form a fused ring.	X15 and X16 form a fused ring. X17 and X18 form a fused ring.
30	ring" in	91X	m s fused ring.	orm a fused ring.	rm a fused ring.	rm e fused ring.	orm a fused ring.	erm & fused ring.	vm a fused ring.	orm a fused ring.	arm a fused ring.	orm a fused ring.	orm a fused ring.	orm & fused ring.	om e fused ring.
as-	"A and B form a fused ring" in	X15	X15 and X16 fo	X15 and X16 fo	X15 and X16 fo	X15 and X16 fa	X15 and X16 fo	X15 and X16 fo	X15 and X16 fe	X15 and X16 fc	X15 and X16 fe	X15 and X16 fc	X15 and X18 fc	X15 and X18 fc	X15 and X16 fc
35	A and f	X11=X21	I	£ (¢	8	8	?	£	£	£	£	£	£
40		rx	m a fused ring.	m a fused ring	m a fused ring.	m a fused ring	m a fused ring.	m a fusad ring.	m a fused ring.	m a fused ring.	m a fused ring.	m a fused ring.			
45	* * *	92	X2 and X3 form a fused ring. X6 and X7 form a fused ring.	X2 and X3 form a fused ring. X8 and X1 form a fused ring.	X2 and X3 form a fused ring. X8 and X7 form a fused ring.	X2 and X3 form a fused ring. X6 and X7 form a fused ring.	X2 and X3 form a fused ring. X6 and X7 form a fused ring.	X2 and X3 form a fused ring. X6 and X7 form a fused ring.	X2 and X3 form a fused ring. X6 and X7 form a fused ring.	X2 and X3 form a fused ring. X6 and X7 form a fused ring.	X2 and X3 form a fused ring. X6 and X7 form a fusad ring.	X2 and X3 form a fused ring. X6 and X7 form a fused ring.	X2 and X3 form a fused ring. X8 and X7 form a fused ring.	X2 and X3 form a fused ring. X6 and X7 form a fused ring.	X2 and X3 form a fused ring. X6 and X7 form a fused ring.
		χ.	orm a fused ring	orm a fused rin	orm a fused ring	orm a fused ring	orm a fused ring	orm e fused ring	orm a fused ring						
50	X 1 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		X2 and X3 i	XZ end X3	X2 and X3 f	X2 and X3 (X2 and X3 f	X2 and X3 t	X2 and X3 f	X2 and X3 1	X2 and X3 i				
55	×	Compound Na.	F-76	Ī	F~78	F-79	F-80	F-81	F-82	F-83	F-8	F-85	F-86	F-8,	F-88

5		X28	I	I	I	r	r	I	I	Ę	8	CH3	I	I	ı
3		rzx	ı	I	I	r	I	I	I	I	ĭ	I	£	0	CH3
10		XZ6	a fused ring.	a fused ring.	a fused ring.	e fused ring.	a fused ring.	a fused ring.	a fused ring.	a fused ring.	a fused ring.	e fused ring.	a fused ring.	a fused ring.	a fused ring.
15		X25	X25 and X26 form a fused ring.	X25 and X26 form a fused ring.	X25 and X26 form a fused ring.	X25 and X26 form a fused ring.	X25 and X26 form a fused ring.	X25 and X26 form a fused ring.	X25 and X26 form a fused ring.	X25 and X26 form a fused ring.	X25 and X28 form a fused ring.	X25 and X26 form a fused ring.	X25 and X26 form a fused ring.	X25 and X26 form a fused ring.	X25 and X26 form a fused ring.
	Means	X14=X24	x	£ (3	0	8	3	O	ŧ	£	£	£	Ę	Ę
20	«- (}-	X18	ı	r	ī	Ţ	I	ı	r	ı	x	ı	đ	000	СНЭ
25	<u>.c</u> .s₀	X17	I	I	r	ı	ı	ı	ı	I	0	CH3	r	ı	ı
30	"A and B form e fused ring" in	X15 X16	X15 and X16 form a fused ring.	Alb and Al6 form a fused ring.	X15 and X18 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.
35		ē	× 5		×	ž (*	CH3 X1	× •	Ph X	ry.	rx x	Ph X	rx X	Ph X1
40	, X ₁₁	7x 9x	X6 and X7 form a fused ring.	Sur Destruct to the surface of the s	and A / form a fused ring.	and X7 form a fused ring	and X7 form a fused ring.	and X7 form a fused ring.	and X7 form a fused ring.	and X7 form a fused ring.	and X7 form a fused ring.	and X7 form a fused ring.	and X7 form a fused ring.	and X7 form a fused ring.	and X7 form a fused ring.
45		- 1	sed ring. X5	1	פפס עשני אם	sed ring. X6 and	sed ring. X6	sed ring. X6 and	sed ring. X8 and	sed ring. X6	sed ring. X6 and	sed ring. X6 and	sed ring. X6 and	sed ring. X5 and	ted ring. X6 and
50	X X X X X X X X X X X X X X X X X X X	x	X2 and X3 form a fused ring. X6 and	X2 and X3 form a fixed rice		X2 and X3 form a fused ring.	X2 and X3 form a fused ring. X6 and	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring. X6 and	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.
55		Compound No.	F-90	F-91	;	۳-92	F-93	F-94	F-95	F-96	F-87	86-7	F-99		F-101

. 5		X18=X28	r	r	r	I	I	I	I	£	0	CH3
10	means	X17=X27	X16 and X17, X26 and X27 form fused rings.	X16 and X17, X26 and X27 form fused rings.	X16 and X17, X26 and X27 form fused rings.	X16 and X17, X26 and X27 form fused rings.	X16 and X17, X26 and X27 form fused rings.	X16 and X17, X26 and X27 form fused rings.	X16 and X17, X26 and X27 form fused rings.	X16 and X17, X26 and X27 form fused rings.	X16 and X17, X26 and X27 form fused rings.	X16 and X17, X26 and X27 form fused rings.
15	## H	X16=X26	X16 and X17, X26 a									
	ייה אַ יי ה	X15=X25	Ŧ	I	T	Ι	I	Ι	I	ቸ	Q Q	CH3
25	"A and B form a fused ring" in	X14=X24	I	£	0	f	\geqslant	CH3	O ₁	ቼ	₹.	£
30	"A and	X11=X21	Ι	£	0	\$	\geqslant	СНЗ	0	£	£	4
35		LX.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.					
40		9X	X6 and X7 fc	X6 and X7 fc		X6 and X7 fo						
45	X X X X X X X X X X X X X X X X X X X	x3	X2 and X3 form a fused ring.									
50	× × × × × × × × × × × × × × × × × × ×	No. X2	X2 and X3	X2 and X;	X2 and X;	X2 and X;	X2 and X;					
55	× ×	Compound No.	F-102	F-103	F-104	F-105	F-106	F-107	F-108	F-109	F-110	F-111

5		X24	I	4	9	Image: Control of the control of the	\bowtie	CH3	Ç	£	£	£	ą	ዊ		£		i
		x23	I	I	x	I	I	I	I	I	I	I	I	I	I	£	8	
10	\$	X22	I	I	Ξ.	I	I	I	r	I	I.	I	I	I	I	£	8	
15	means	X21	I	ᄯ	000	¢	\bowtie	CH3	Open	ğ	ፎ	ā	£	£	£	£	£	
	,						\otimes			£	£	£	£	돕	£	£	£	
20	4-\$\frac{1}{2}	X13	I	I	I	I =	Ŧ,	I	r	I	I	I	ī	I	I	£	9	
25	ring" in	X12	I	I	I	I	I	I	I	I	I	I	I	I	r	£	8	
	"A and B form a fused ring" in	XIX	I	ᄹ	0	Ó	\bowtie	CH3	Ç	£	£	£	£	Æ	ď	뮵	£	
30	id B fon	x37	I	I	ī	· I	±	I	I	I	I	I	r	I	I	I	I	
	^, A an	X36	I	I	I	I	I	I	I	r	I	I	I	I	I	I	I	
35		X33	I	I	I	I	I	·	I	I	I	I	£		CH3	I	I	
		X32	I	x	I	Ξ	I	I	I	셭		CH3	I	≖ .	I	I	I	
40	. X. 23	×	Ξ	I	I	I	I	I	I	r	I	Ι	I	I	I	r	x	
	× × × × × × × × × × × × × × × × × × ×	9×	Ŧ	I	π	I	I	I	I	I	I	I	I	I	I	I	I	
45		EX	Ξ	I	I.	I	I	I	I	I	Ι	I	ď	9	CH3	x	x	
50	X 12 X X X X X X X X X X X X X X X X X X	×2	r	x	I	Ξ	I	I	ı	4	9	СНЗ	r	I	I	I	I	
55	^	Compound No. X2		F-113				F-117					F-122					

55	50	45			40	35		30		25	20	15		10	5	
	× × × × × × × × × × × × × × × × × × ×			x X			Ā	7d B fo	"A and B form a fused ring" in	ning in	√	means		,		
Compound No.	× ×	£	9x	×	X32	X33	x36	xa7	XII.	X12	X13	X1X	x21	X22	X23	×24
F-128	I	Ŧ	I	Ŧ	Ŧ	Ξ	Ξ	Ξ	Ŧ	X12 and X13 fe	X12 and X13 form a fused ring.	I	I	Ŧ	I	=
F-129	I	I	I	I	I	I	I	I	£	X12 and X13 fo	X12 and X13 form a fused ring.	£	£	I	I	ቼ
F-130	I	ı	I	I	I	I	I	x	000	X12 and X13 fo	X12 and X13 form a fused ring	9	9	I	I	5
F-131	I	I	I	I	I	I	I	I	\$	X12 and X13 fo	X12 and X13 form a fused ring. —	\$	¢	I	I	5
F-132	r	I	I	I	I	I	I	I	8	X12 and X13 fo	X12 and X13 form a fused ring.	\otimes	\otimes	I	I	8
F-133	I	I	I	I	I	r	I	I	CH3	X12 and X13 fe	X12 and X13 form a fused ring.	CH3	8	I	I	CH3
F-134	r	I	I	I	I	I	I	I	Ç	X12 and X13 fo	X12 and X13 form a fused ring.	Ç	Ç	I	I	Ç
F-135	Ę	r	I	I	æ	I	I	x	£	X12 and X13 fe	X12 and X13 form a fused ring.	£	£	Ŧ	I) £
F-136	9	x	Έ.	I		I	I	I	Ę	X12 and X13 fe	X12 and X13 form a fused ring.	£	æ	I	I	£
F-137	CH3	r	π	r	CH3	I	I	I	£	X12 and X13 fe	X12 and X13 form a fused ring.	£	£	I	I	á
F-138	I	4	I	I	x	ę	I	x	á	X12 and X13 fc	X12 and X13 form a fused ring.	£	£	I	I	4
F-139	I		Ι	r	I		I	Ŧ	ą	X12 and X13 fe	X12 and X13 form a fused ring.	£	£	I	I	£
F-140	ı	CH3	r	I	I	CH3	r	I	£	X12 and X13 fc	X12 and X13 form a fused ring.	đ	£	I	I	£
F-141	I	r	I	I	I	I	r	I	ቒ	X12 and X13 fc	X12 and X13 form a fused ring.	£	£	£	£	ď
F-142 н н н	I	I	I	I	I	I	r	I	£	X12 and X13 fc	X12 and X13 form a fused ring.	£	æ	0	0	£
F-143	I	I	ı	I	I	ı	I	I	ď	X12 and X13 fe	X12 and X13 form a fused ring.	£	£	CH3	CH3	£

5		X23 X24	X21 and X22 form a fused ring. X23 and X24 form a fused ring.	X21 and X22 form a fused ring. X23 and X24 form a fused ring.	X21 and X22 form a fused ring. X23 and X24 form a fused ring.	X21 and X22 form a fused ring. X23 and X24 form a fused ring.	X21 and X22 form a fused ring. X23 and X24 form a fused ring	X21 and X22 form a fused ring. X23 and X24 form a fused ring.	X21 and X22 form a fused ring. X23 and X24 form a fused ring.	X21 and X22 form a fused ring. X23 and X24 form a fused ring.	X21 and X22 form a fused ring. X23 and X24 form a fused ring.	X21 and X22 form a fused ring. X23 and X24 form a fused ring.	X21 and X22 form a fused ring. X23 and X24 form a fused ring.	X21 and X22 form a fused ring. X23 and X24 form a fused ring.	3 and X24 form a fused ring.	and X24 form a fused ring.	X21 and X22 form a fused ring. X23 and X24 form a fused ring.	and X24 form a fire of ring
10		X22	1 X22 form a fused ring. X23	l X22 form a fused ring. X23	1 X22 form a fused ring. X23	1 X22 form a fused ring. X23	1 X22 form a fused ring. X23	l X22 form a fused ring. X23	1 X22 form a fused ring. X23	1 X22 form a fused ring. X23	l X22 form a fused ring. X23	X21 and X22 form a fused ring. X23 and X24 form a fused ring.	X21 and X22 form a fused ring. X23 and X24 form a fused ring.	X22 form a fused ring. X23	X21 and X22 form a fused ring. X23 and X24 form a fused ring.			
	теапѕ	X21	X21 and	X21 and	X21 and		X21 and		X21 and	X21 and	X2f and	X21 and	X21 and	X21 and	X21 and	X21 and	X21 and	X21 and
20	4	XI4	Ξ	£	X	\$	\Rightarrow	CH3	O	£	£	ę	£	g	ą	£	£	£
		x13	Ξ	I	I	I	r	r	I	r	I	I	I	I	I	£	3	CH3
25	n. in	X12	I	I	I	I	I	r	r	I	I	I	I	I	I	훕		CH3
30	"A and B form a fused ring" in	ž	x	£	9	¢	8	CH3	Ç	£	£	£	£	£	Ę	ď	£	æ
	nd B for	X37	Ŧ	I	I	I	I	I	I	I	. x	r	I	I	I	ı	r	I
	₹	x36	Ŧ	I	I	I	r	I	I	I	r	I	Ξ.	I	x	Ι	I	ı
35		X33	Ξ	I	I	I	I	I	I	x	I	I	£	\$	CH3	r	I	I
40		X32	Ξ	x	I	r	I	x	I	ď	\bigcirc	CH3	I	r	I	I	ı	I
	, x x x x x	x X	Ŧ	x	I	I	I	I	r	I	<u>.</u>	I	I	I	I	I	I	ı
45	ž . ž	9x	Ξ	I	I	I	I	Ξ	I	r	π	I	I	I	I	x	I	I
		X3	Ι	I	I	I	ï	I	I	r	I	I	£	000	CH3	I	ı	I
50	x x x	×5	Ι	I	r	r	r	I	r	£	9	CH3	I	x	I	I	I	r
55	, ,	Compound No.	F-144	F-145	F-146	F-147	F-148	F-149	F-150	F-151	F-152	F-153	F-154	F-155	F-156	F-157	F-158	F-159

5		X22 X23 X24	X11 and X12 form a fused ring. X13 and X14 form a fused ring. X21 and X22 form a fused ring. X23 and X24 form a fused ring.	X11 and X12 form a fused ring, X13 and X14 form a fused ring. X21 and X22 form a fused ring, X23 and X24 form a fused ring,	X11 and X12 form a fused ning. X13 and X14 form a fused ning. X21 and X22 form a fused ning. X23 and X24 form a fused ning.	XII and XI2 form a fused ring. XI3 and XI4 form a fused ring. X21 and X22 form a fused ring. X23 and X24 form a fused ring.	X11 and X12 form a fused ring. X13 and X14 form a fused ring. X21 and X22 form a fused ring. X23 and X24 form a fused ring.	X11 and X12 form a fused ning. X13 and X14 form a fused ring. X21 and X22 form a fused ring. X23 and X24 form a fused ring.	XII and XI2 form e fused ring. XI3 and XI4 form e fused ring. X21 and X22 form s fused ring. X23 and X24 form a fused ring.
15	\}	x21	g. X21 and X22 for	ug. X21 and X22 for	JE X21 and X22 for	1g. X21 and X22 for	ug. X21 and X22 for	Jg. X21 and X22 for	1g. X21 and X22 for
20	Reens	. X14	K14 form a fused ri	K14 form a fused rie	K14 form a fused rir	K14 form a fused rir	(14 form a fused rir	K14 form a fused ric	K14 form a fused riv
25	<	X12 X13	used ring, X13 and	used ring, X13 and	used ring, X13 and	used ring. X13 and	used ring, X13 and	used ring. X13 and	used ring. X13 and
30	"A and B form a fused ring" in	LIX	X11 and X12 form a fi	XII and XI2 form e fi					
	A and B	5 x37	I	I	r	I	I	I	I
35		X36	I	r	I	I	I	<u> </u>	I
		x33	I	I	I	I	£	4	<u>£</u>
40		X32	I	£	3	돐	r	I	ı
	, ³ , ³ , ³	LX.	r	I	r	I	, x	I	I.
45		9x	Ŧ	I	r	r	I	I	I
		cx	I	I	I	I	£	\Diamond	CH3
50	, x x x x x x x x x x x x x x x x x x x	x2	I	£	9	CH3	I	I	r
55		Compound No.	F-160	F-161	F~182	F~163	F~164	F-165	F-166

<i>45</i>	45			40	35		30	25	25	20	15	10	5	
x ₂ , x ₃	x ₂ , x ₃	x ₂ , x ₃	t.		t	A B B B B B	18 form a fu	"A and B form a fused ring" in		means				
X7 X32 X33	X7 X32 X33	X7 X32 X33	X32 X33			X36	11X 75X	X12	X13	X14	X21	X22	x23	X24
r r r	I	I		I		Ŧ	I	Ξ	X13 and X14	X13 and X14 form a fused ring. X21 and X22 form a fused ring.	(21 and X22 for	m a fused ring.	I	I
I I I	ı	ı		I		I	I F	I	X13 and X14	X13 and X14 form a fused ring. X21 and X22 form a fused ring.	(21 and X22 for	m a fused ring.	I	4
I I	I I	I I	I		_	I	†	τ •	X13 and X14	X13 and X14 form a fused ring. X21 and X22 form a fused ring.	.21 and X22 fon	m a fused ring.	I	Ç
H H H H H	I I	I I	I		_	_	غ	I	X13 and X14	X13 and X14 form a fused ring. X21 and X22 form a fused ring.	.21 and X22 fon	n a fused ring.	I	\$
I	I	I	I		-	I	⇉	1	X13 and X147	X13 and X14 form a fused ring. X21 and X22 form a fused ring.	.21 and X22 fon	m a fused ring.	I	8
I I	I I	I I	I		_	I	н	I	X13 and X14	X13 and X14 form a fused ring. X21 and X22 form a fused ring.	.21 and X22 fon	n a fused ring.	I	CHO
r r r	I	I		I		I	Y	Ι ~	X13 and X14	X13 and X14 form a fused ring. X21 and X22 form a fused ring.	.21 and X22 fon	n a fused ring.	I	Ç
н н н р.	н	н		I		I	Ŧ	ı	X13 and X14 i	X13 and X14 form a fused ring. X21 and X22 form a fused ring.	.21 and X22 fon	n a fused ring.	I) £
=	=	=				r	£	r	X13 and X14 i	X13 and X14 form a fused ring. X21 and X22 form a fused ring.	.21 and X22 fon	n a fused ring.	I	돈
н сн3 н	н сн3 н	н сн3 н	I		-	r	ξ	I	X13 and X14 f	X13 and X14 form a fused ring. X21 and X22 form a fused ring.	.21 and X22 for	n a fused ring.	I	ą
ī	ī	ī	Ē		-	r	H F	I	X13 and X14 (X13 and X14 form a fused ring. X21 and X22 form a fused ring.	21 and X22 for	n a fused ring.	I	Ę
	H #	H #			I		£	I	X13 and X14 f	X13 and X14 form a fused ring. X21 and X22 form a fused ring.	.21 and X22 for	n a fused ring.	I	£
н снз н н н снз н	н н снз	н н снз	CH3		I		Ŧ	I	X13 and X14 f	X13 and X14 form a fused ring. X21 and X22 form a fused ring.	21 and X22 for	n a fused ring.	I	ዊ
п	п	п	Ι		_	I	Į	ቒ	X13 and X14 f	X13 and X14 form a fused ring. X21 and X22 form a fused ring.	21 and X22 for	n a fused ring.	준	£
F-181 H H H H H	, I	, I	x			I	Ŧ.	\Rightarrow	X13 and X14 f	X13 and X14 form a fused ring. X21 and X22 form a fused ring.	21 and X22 for	n a fused ring		£
н н н н	I	I		I		I	£ ≖	CH3	X13 and X14 f	X13 and X14 form a fused ring. X21 and X22 form a fused ring.	21 and X22 for	n a fused ring	CH3	ą

5		X23 X24	I	X23 and X24 form a fused ring.	X23 and X24 form a fused ring.	X23 and X24 form a fused ring.	X23 and X24 form a fused ring.	X23 and X24 form a fused ring.	X23 and X24 form a fused ring.	X23 and X24 form a fused ring.	X23 and X24 form a fused ring.	X23 and X24 form a fused ring	X23 and X24 form a fused ring.	X23 and X24 form a fused ring.	X23 and X24 form a fused ring.	X23 and X24 form a fused ring.	X23 and X24 form a fused ring.	X23 and X24 form a fused ring.
10				×	XZ	X	X	XX	×	X	×	X	X	×	X	X	×	
		X22	I	I	I	I	I	I	I	I	I	r	I	Ι	x	돐		CH3
15		x21	I	£	8	\$	\otimes	CH3	Ç	£	đ	ξ	£	£	ą	ę	£	đ
20	means	XI4	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	XI3 and XI4 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.
25	√	XI3	X13 and X14 f	X13 and X14 f	X13 and X14 6	X13 and X14 f	X13 and X14 6	X13 and X14 f	X13 and X14 f	X13 and X14 E	X13 and X14 f							
	.E .e .E	x12	Ξ	I	I	I	r	I	I	I	x	I	I	r	I	£	\Rightarrow	CH3
30	"A and B form a fused ring" in	ī	I	£	9	¢	\bowtie	СНЗ	Ç	g.	Ę	ą	£	ቼ	£	£	£ ,	£
	and B	x37	I	I	I	I	I	x	I	I	r	I	I	I	I	x	π	I
35	, ∢	x36	Ξ	r	I	I	I	I	I	I	I	I	I	I	I	I	I	I
		x33	I	Ι	I	ı	I	I	I	I	x	Ι	ď	5	문	r	r	Ι
40		X32	x	I	ı	I	I	I	I	£		СНЗ	I	I	I	I	I	ı
	, Ž, ž	×	Ξ	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I
45	× × × × × × × × × × × × × × × × × × ×	×	Ξ	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I
		1	Ξ	I	I	I	I	I	I	I	r	I	£		CH3	I	I	I
50	x vis	x2	Ŧ	r	I	I	I	r	r	ፈ	9	CH3	I	I	I	I	I	I
55	^	Compound No.	F-183	F-184	F-185	F-186	F-187	F-188	F-189	F-190	F-191	F-192	F-193	F-194	F-195	F-196	F-197 H	F-198

		1	1								\sim							
5		X28	I	I	r	I	I	·	ī	ዊ	5	CH3	I	ī	ı	ı	r	I
	4	X27	I	I	I	r	ı	I	I	I	I	I				I	ĭ	I
10	means	x26	I	I	r	I	I	I	ı	I		I			CH3	I	I	r
	Ë	X25	ı	I	I	ı	r	I	I	£	2	CH3	I	r	ı	I	I	ī
15		X24	Ŧ	. £		Ş	8	CH3	Ç	モ	Ę	g	ą	Æ	£	æ	€	£
	8	X21	I	栕	8	Ó	8	SH3	Ç	돈	ď	돈	£	£	£	æ	£	£
20	id ring" in	X18	r	I	ī	r	I.	I	I	£	8	CH3	I	Ξ.	I	I	ı	I
25	'A and B form a fused ring" in	X17	I	r	I	I	I	I	I	I	ī	I	ቼ	9	CH3	I	I	I
	A and B fa	X16	I	I	I	ı	I	r	I	ı	ı					I		I
30	•	X15	I	I	r	I	I	I	ı	æ		CH3		}	r	r	ı	I
35		X14	I	윤	_		8				1				£	£	ኟ	윰
33	χ χ ₃₈ ζ,	X11	I	£	1	•	8								£	£	£	듄
40	Ž Ž Ž	X7=X37	I	I	I	I	I	I	I	I	I	x	I	r	I	I	I	I
		ဖ	r	I	I	I	I	Ŧ	ı	I	r	I	I	I	I	I	I	I
45	»[[]»	=x33 x6	I	I	I	I	I	r	I	I	I	I	I	I	I	I	I	I
50	× × × × × × × × × × × × × × × × × × ×	=x32 x3	I	I	r	I	I	I	I	r	_ x	I	I	I	I	£	8	CH3
	× ×	Compound No. X2=X32 X3=X33 X6=X3															\	
55		Compour	1-0	Z-5	G-3	G-4	G-5	9-9	6-7	. 8 -5	g-9	G-10	G-13	G-12	G-13	G-14	G-15	G-16

			X28	I	I	I	I	I	ı	I	I	I	I	I	ı	I
	5		72X	X26 and X27 form a fused ring.	X26 and X27 form a fused ring.	X26 and X27 form a fused ring.	X26 and X27 form a fused ring.	X26 and X27 form a fused ring.	X26 and X27 form a fused ring.	X26 and X27 form a fused ring.	X26 and X27 form a fused ring.	X26 and X27 form a fused ring.	X26 and X27 form a fused ring.	X26 and X27 form a fused ring.	X26 and X27 form a fused ring.	X26 and X27 form a fused ring.
	10		x26	X26 and X27	X26 and X27 i	X26 and X27 I	X28 and X27 (
	15	means	X25	I	I	ı.	I	ı	I	I	£	S) } }	I	I	I
		Ē	x24	Ξ	ቒ	4	\$	8	Q .	Ŷ	£	£	Ę	ą	Ę	£
2	20		X21	Ξ.	£	000	.	8	CH3	Ç	£	ď	£	£	£	£
		. <u>.</u>	X18	I	I	I	ı	r	I	I	£	0	CH3	I	I	I
ź	25	"A and B form a fused ring" in	X17	X16 and X17 form a fused ring.	X16 and X17 form a fused ring.	X16 and X17 form a fused ring.	X16 and X17 form a fused ring.	X16 and X17 form a fused ring.	X16 and X17 form a fused ring.	X16 and X17 form a fused ring.	X16 and X17 form a fused ring.	X16 and X17 form a fused ring.	X16 and X17 form a fused ring.	X16 and X17 form a fused ring.	X16 and X17 form a fused ring.	X16 and X17 form a fused ring.
3	30	"A and B for	X16	X16 and X17 f	X16 and X17 6	X18 and X17 f	X16 and X17 f	X16 and X17 fa	X16 and X17 f	X16 and X17 fo	X16 and X17 fo	X16 and X17 fo	X16 and X17 fe			
	ne.		X15	I	I	I	ı	I	r	I	£	5	윉	I	I	I
ن	35		XI4	I	£	000	Ó	8	CH3	P	£	£	£	£	Æ	ę
4	10	5° × ×	X11	I	£	7	Ó	8	C F	Ç	£	Ę	£	£	£	£
		× × × × × × × × × × × × × × × × × × ×	75×=7×	I	r	I	I	I	I	r	I	I	I	I	I	r
4	15	× × × × × × × × × × × × × × × × × × ×	x6=x36	I	I	I	I	I	I	Ι.	r	I	I	r	I	I
		× × × × × × × × × × × × × × × × × × ×	x3=x33	ı	I	I	I	I	I	r	I	I	I	r	I	I
5	50	x x x si x x x x x x x x x x x x x x x x	x2=x32	ı	I	I	I	I	I	I	I	I	I	£	\Diamond	CH3
5	5		Compound No. X2=X32 X3=X33 X6=X36 X7=X37	G-17	G-18	G-19	G-20	G-21	G-22	G-23	G-24	G-25	G-26	G-27	G-28	G-29

		X28	1							£		3 E						
5		1	1	I	Ι	I	I	I	I		~	, -	I		x) _	ı	I	I
		X27	ı	I	I	ı	ı	I	I	I	I	I	Ę	₹ ₹) E	I	I	I
10	<i>_</i>	X26	ı	r	ı	I	ı	ı	ı	I	I	I	Ę	\mathcal{L}	CH3	I	-	-
		X25		_	-	•	•	-	-	æ	5) 왕		,			I	I,
	means	1	I	I	Q T	I *	ī	I	I .		,		I	I	I	ı	I	I
15		X24	I	£	¢	¢	\triangleright	CH3	Ç	£	Ę	된	ቒ	ğ	ፈ	đ	ą	ŧ
	«-{ <u></u>	x21	I	ę	9	\(\frac{1}{2} \)	\bowtie	CH3	Ç	£	đ	ቒ	ቒ	£	듄	£	£	£
20	6	X18	I	I	I	ĭ	ïΙ	r	r	£	9	CH3	r	ı	I	ı	ı	ı
	ring. in		ring	ië Bi	ri Pi	rii R	3	r.	ring.	ri R	ring.		ring.	ring.	7. 89	rin g	ring.	ring.
25	a fused	X17	a fused	e fused	e fused	a fused	a fused	a fused	a fused	a fused	a fused	a fused						
	3 ботп 4		(17 form	.17 form	(17 form	.17 form	.17 form											
30	"A and B form a fused ring" in	X16	X16 and X17 form a fused ring.	X16 and X17 form a fused ring.	X16 and X17 form a fused ring.	X16 and X17 form a fused ring.	X16 and X17 form a fused ring.	X16 and X17 form a fused ring.	X16 and X17 form a fused ring.	X16 and X17 form a fused ring.	X16 and X17 form a fused ring.	X16 and X17 form a fused ring.	X16 and X17 form a fused ring.	X16 and X17 form a fused ring.	X16 and X17 form a fused ring.	X16 and X17 form a fused ring.	X16 and X17 form a fused ring.	X16 and X17 form a fused ring.
		X15	I	I	I	I	r	I	I	£	8	CH3	I	I	I	I	·	I
35		X14	I	£	2	f	8	CH3	Ç	£	Æ.	£	£	£	£	ď	£	£
	_	X11	I	£	\bigcap	Y O	\bigcirc		· •	£	£	Ę	_		_	-	_	_
40	x, , , , , , , , , , , , , , , , , , ,		_	Δ.	Q	9	5->	ؿ	F	ō.	ā.	ā	ቼ	ę	£	Ę	£	£
	×, ×, ×, ×, ×, ×, ×, ×, ×, ×, ×, ×, ×, ×	75×=7×	I	I	I	I	I	I	I	I	I	I	=	I	I	I	Ι	I
45		x6=x36	I	I	I	I	I	r	I	Ξ	· =	r	I	Ŧ	I	I	I	= ,
	x	=X33	I	I	I	I	Ξ	I	I	I	I	r	I	I	I	x	x	Ξ
	x - x x x x x x x x x x x x x x x x x x	X32 X3	_	_	_	_	_	_								_	\bigcirc	n
50	× ×	40. X2=	I	τ	I	I	x	I	I	r	I	I	x	I	I	ዊ	7	СНЗ
55		Compound No. X2=X32 X3=X33 X6=X36	G-30	G-31	G-32	G-33	G-34	G-35	G-36	G-3 7	G-38	G-39	G-40	G-41	G-42	G-43	G-44	G-45

5		X27 X28	X27 and X28 form a fused ring.	X27 and X28 form a fused ring.	X27 and X28 form a fused ring.	X27 and X28 form a fused ring.	X27 and X28 form a fused ring.	X27 and X28 form a fused ring.	X27 and X28 form a fused ring.	X27 and X28 form a fused ring.	X27 and X28 form a fused ring.	X27 and X28 form a fused ring.	X27 and X28 form a fused ring	X27 and X28 form a fused ring	X27 and X28 form a fused ring.	X27 and X28 form a fused ring.	X27 and X28 form a fused ring.	X27 and X28 form a fused ring.
10		x26 x	X27	X27	72X	X27	X27	X27	72X	н х27	н х27	н x27	Ph X27	X (Xz)	СН3 X27	727	X27	X27
15	meanc	x25	I	ı	ı	I	I	ı	r	£		CH3	I	· ·	r	ı	I	ı
	Ē	X24	Ŧ	£	0	\$	8	CH3	9	£	£	£	£	£	£	£	ę	£
20	« <u></u>	x21	I	æ	9	Ó	\bowtie	CH3	Ŷ	ď	Ę	£	£	ć	£	£	£	£
	.s	81X	Ŧ	I	I	I	I	I	I	ą	3	SH3	I	I	I	I	I	ı
25	ised ring"	×17	I	I	I	I	I	I	I	I	I	I	£	8	2			
30	"A and B form a fused ring" in	X16	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	XIS and XI6 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X18 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X18 form a fused ring.
35		X15	X15 and X1	X1S and X1	X15 and X1	X15 and X1	X15 and X1	X15 and X1	X15 and X1	X15 and X1	X15 and X11	X15 and X10						
		×14	Ξ	£	\$	¢	8	중	Ç	£	£	듄	£	đ,	đ	£	£	£
40	, x, x, x, x, x, x, x, x, x, x, x, x, x,	XII	I .	£	000	\$	\otimes	CH3	Ç	đ	£	£	£	đ	£	ቒ	£	Ę
	* * * * * * * * * * * * * * * * * * *	X7=X37	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I
45		x6=x36	I	I	I	I	I	I	r	Ŧ	I	I	I	I	I	I	I	I
	x x x x x x x x x x x x x x x x x x x	x3=x33	Ι	I	I	I	I	I	r	I	I	I	Ξ	I	Ξ	I	x	I
50	X ₁₁ , X ₁₆	Compound No. X2=X32 X3=X33 X6=X36 X7=X37	Ι	I	I	I	I	r	I	I	I	I	I	I	I	£	9	CH3
55	ă.	Compound N	94-0	G-47	G-48	64-0	020	G-51	G-52	G-53	G-54	G-55	G-58	6-57	G-58	G-59	09-D	G-61

5		, A.23	X25 and X26 form a fused ring. X27 and X28 form a fused ring.	X25 and Y2R form a final data.	X27 and X28 form a fused ring.	X27 and X28 form a fused ring	X27 and X28 form e fused ring.	X27 and X28 form a fixed ring	X27 and X28 form a fused ring.	X27 and X28 form a fired ring	X25 and X28 form a fused ring. X27 and X28 form a fused ring	X25 and X26 form e fused ring. X27 and X28 form a fused ring.
		x27	X27 and X	,	X27 and X	X27 and X	X27 and X	X27 and X	XZ7 and X		X27 and X	X27 and X
10		X26	orm e fused ring		X25 and X26 form a fused ring.	X25 and X26 form a fused ring.	X25 and X28 form a fused ring.	X25 and X26 form a fused ring.	X25 and X26 form a fused ring.	X25 and X26 form a fused ring.	orm e fused ring.	orm a fused ring.
15	, treat	x25	X25 and X26	X25 and X28	X25 end X26			X25 and X26 t			X25 and X28 f	X25 and X26 f
	Ë	¥2×	I	á	4	\$		5 E	Ç	£	£	£
20		x21	±	, đ	Ç	¢		SH3	Ç	£	á	ŧ
25	وط بته کی تابید کی است. تابید کی تابید کرد. تابید کرد تابید کرد تابید کرد تابید ک	81X 71X	18 form a fused ring.	:18 form a fused ring	18 form a fused ring	18 form a fused ring.						
<i>30</i>	"A and B form a fused ring" in	X16 X	XIS and X16 form a fused ring. XI7 and X18 form a fused ring.	X15 and X16 form a fused ring. X17 and X18 form a fused ring.	XIS and XIE form a fused ring. XI7 and XIB form a fused ring.	X15 and X16 form a fused ring. X17 and X18 form a fused ring.	X15 and X16 form a fused ring. X17 and X18 form a fused ring.	X15 and X16 form a fused ring. X17 and X18 form a fused ring.	XIS and XIB form a fused ring. XI7 and XIB form a fused ring.	X15 and X16 form a fused ring. X17 and X18 form a fused ring.	XIS and X16 form a fused ring. XI7 and XIB form a fused ring.	X15 and X16 form a fused ring. X17 and X18 form a fused ring.
· 35		X16	XIS and XIG 6	X15 and X16 for	X15 and X16 fe	X15 and X18 fo	X15 and X16 fc	X15 and X16 fe	X15 and X16 fo			
		X14	Ξ	£	9	þ	\bowtie	CH3	Ç	Ę	£	đ
40	۾ پ ^ٽ ٿ	ž	I	ą	8	¢	\approx	£	Ç	đ	đ	á
		X7=X37	Ξ	I	I	I	I	I	I	I	r	ı
45		x8≔x36	π	r	I	I	I	I	I	I	r	I.
	*	x3=x33	I	I	I	ı	I	I	I	r	ı	I
50	* * * * * * * * * * * * * * * * * * *	Compound No. X2=X32 X3=X33 X8=X36 X7=X37	I	I	ı	r	I	I	I	£	9	CH3
55		Compound No.	G-62	G-63	9-6 0	0-65	G-68	ê O	G-68	G-69	07-5	<u>-</u>

		1 00	1															
5		X18=X2	I	ı	r	I	I	I	I	준	3	CH3	r	I	I	I	I	I
3		X11=X21 X14=X24 X15=X25 X16=X26 X17=X27 X18=X28	r	I	I	ı	I	I	I	ı	ī	I	£	9	CH3			
10	мвапѕ	X16=X26	I	ı	I	r	I	, I	I	I	ı	ı	£	9	CH3			
	. /	X15=X25	r	I	I	I	I	I	I	£	8	CH3	I	I	I	I	I	I
15	√	X14=X24	Ŧ	£	8	Ó	β	CH3	Participation	ኇ	£	£	£	£	£	ą	£	£
20	ning" in	X11=X21	I	£	8	\$	8	CH3	Ç	Ą	ቒ	¥	£	ዊ	£	£	&	윤
	a fused	75X	I	I	x	I	I	I	I	Ι	ı	I	r	π	r	I	I	r
25	"A and B form a fused ring" in	9£X	I	x	I	I	r	ı	r	I	I	I	I	π	I	I	I	I
	Å	x33	Ŧ	I	I	I	r	I	I	I	r	I	I	I	I	r	I	·
30	·	X32	Ξ	I	r	I	x	I	I	Ξ	I	I	I	I	r	£		CH3
35	× × × × × × × × × × × × × × × × × × ×	×	I	I	I	I	I	I	I	I	I	x	I	I	I	I	I	I
	3 X 3	9X	Ŧ	r	r	I	I	I	I	I	ī	I	I	I	Ξ	I	I	I
40	× × ×	EX.	a fused ring.	a fused ring.	a fused ring.	a fused ring.	a fused ring.	a fused ring.	a fused ring.	a fused ring.	a fused ring.	a fused ring.	a fused ring.	n a fused ring.	n a fused ring.	a fused ring.	a fused ring.	ι a fused ring.
45	x, x, x, x, x, x, x, x, x, x, x, x, x, x	X2	X2 and X3 form	X2 and X3 form	X2 and X3 form	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form	X2 and X3 form	X2 and X3 form	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring	X2 and X3 form
50		Compound No.	G-72	G-73	G-74	G-75	g-76	C-17	G-78	G-79	Q-80	G-81	G-82	G-83	G-84	G-85	G-86	G-87

		1 80	ï												
		X18=X2	I	I	I	I	I	I	I	ą	4	CH3	I	I	I
5		XII=X21 X14=X24 X15=X25 X16=X26 X17=X27 X18=X28	I	I	I	I	ī	I	I	ı	I	I	윰	8	CH3
10	means	X16=X26	I	I	ı	I	I	I	I	I	I	I	£	8	CH3
	Ë	X15=X25	I	I	r	I	I	I	I	£	9	CH3	I	I	r
15	« <u></u>	X14=X24	I	ď	8	\$	β	CH3	Ç	ቒ	£	£	£	£	ą
20	.s 	X11=X21	Ι	윰	0	¢	\bowtie	CH3	\bigcirc	ፈ	æ	ጜ	£	£	£
	"A and B form a fused ring" in	X37	Ξ	I	r	Ξ.	I	I	I	I		I	I	I	I
25	В form а	x36	I	I	Ŧ	I	I	I	I	I	I	I	I	I	I
30	"A and I	X33	a fused ring.	a fused ring.	a fused ring.	a fused ring.	ı a fused ring.	a fused ring.	n a fused ring.	n a fused ring.	a fused ring.	n a fused ring.	a fused ring.	a fused ring.	a fused ring.
35		X32	X32 and X33 form a fused ring.	X32 and X33 form a fused ring.	X32 and X33 form a fused ring.	X32 and X33 form a fused ring.	X32 and X33 form a fused ring	X32 and X33 form a fused ring.	X32 and X33 form a fused ring	X32 and X33 form a fused ring	X32 and X33 form a fused ring	X32 and X33 form a fused ring.	X32 and X33 form a fused ring	X32 and X33 form a fused ring.	X32 and X33 form a fused ring
	× × × × × × × × × × × × × × × × × × ×	×	I	I	I	I	I	I	r	I	I	I	I	I	I
40	Ž Ž	9x	I	I	I	I	ı	I	I	I	r	Ŧ	I	I	I
45		x3	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.
50	x x x x x x x x x x x x x x x x x x x	. x2	X2 and X3 f	X2 and X3 (X2 and X3 f	X2 and X3 t	X2 and X3 f	X2 and X3 t	X2 and X3 (X2 and X3 (X2 and X3 t	X2 and X3 t	X2 and X3 (X2 and X3 (X2 and X3 (
55		Compound No.	G-88	68-9	06-D	G-91	G-92	G-93	G-94	G-95	96-5	G-97	G-98	66~D	G~100

		_	1							_	\bigcirc	Ē		I	-	_	_	-
5		X18	I	I	I	r	I	I	I	à	4	Ŧ	I			I	I	I
·			I	r	r	I	I	r	I	I	I	I	đ		CH3	I	I	I
10.		X16	I	I	I	I	I	I	I	I	r	I	£		СНЗ	I	ı	I
	พeans	X15	I	ı	I	I	I	I	I	£	\bigcirc	CH3	I	I	I	I	r	I
15	,	X14	Ŧ	듄	8	Ó	8	СНЗ	Ç				£	ę	ᄯ	£	£	ቼ
20		XII	Ŧ	đ	000	\$	\$	CH3	Ç	Ę	ą	£	F.	£	ዲ	ቼ	£	£
	. <u>c</u> .w	X34=X35	I	I	r	I	, I	r	r	I	ı	I	I	I	r	I	I	I
25	"A and B form a fused ring" in	X37 X3	r	I	I	I	r	I	I	I	ı	I	I	I	I	ı	I	I
	d B form	X36	I	I	I	I	I	ı	I	ı	r	ı	I	I	r	I	I	ı
30	Å M		ed ring.	d ning.	ed ring.	od ring.	sd ring.	d ring.	ed ring.	ad ring.	ed ring.	ed ring.	ed ring.	ed ring.	ed ring.	ed ring.	ed ring.	ed ring.
35		X33	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring,	X2 and X3 form a fused ring	X2 and X3 form a fused ring	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.
		X32	X2 and X2 and	X2 and	X2 and	X2 and	X2 and	X2 and										
40	× × × × × × × × × × × × × × × × × × ×	t×	Ξ	I	I	τ	I	I	I	x	x	Ι	I	I	I	I	I	I
45		9x	x	I	I	I	I	I	I	Ι.	x	I	x	Ξ	x	I	I	I
	× × ×	×	I	ı	I	ı	r	I	I	ı	I	I	r	r	I	ı	I	r
50	X 81X 81X 81X 81X 81X 81X 81X 81X 81X 81	×	ı.	I	I	I	ı	I	I	ı	I	I	I	r	ı	£		СНЗ
55	^	Compound No.	-	н-2	H-3	H-4	H-5	9-H	H-7	H-8					H-13	H-14		H-16
Jo		18	불	÷	÷	±	±	±	±	±	±	±	Í	İ	±	±	İ	İ

5	means	81X	ı	I	I	I	I	I	I	ď	8	CH3	I	I	I	I	I	I
	E	X17	ı	ı	I.	I	I	I	Ι,	I	π	ı	穒		윉	I	I	ı
10	√		r	I			I							8			I	I
15	<u>م</u> د	X15	I	I	I	I	I	I	I	. £	9	СНЗ	I	ı	I	I	I	I
	sed ring.	X14	Ξ	£	2	Ó	\otimes	CH3	Image: Control of the control of the	뜐	ą ,	£	æ	£	£	栕	ę.	£
20	"A and B form a fused ring" in	×	I	£	9	, \$	\mathfrak{A}	CH3	Ç	ቼ	托	Æ	£	£	£	£	숩	£
25	A and B	X3=X33 X6=X36 X7=X37 X34=X35	x	I	I	ı	I	I	I	I	I	I	I	I	r	I	x	I
	33 - X ₃ 4 35	7=X37	I	I	r	I	I	x	I	I	I	I	I	I	r	I	ı	I
30		(6=x36	I	I	I	I	I	I	I	I	I	I	I	I	I	r	I	I
	× × ×	(3=X33)	Ŧ	I	I	I	I	I	I	I	Ξ	I	I	I	I	I	I	I
35	× × × × × × × × × × × × × × × × × × ×		I	I	·	I	I	I	I	I	I	I	I	I	I	£	9	CH3
40		Compound No. X2=X32	H-17	H-18	H-19	н-20	H-21	н-22	H-23	H-24	Н-25	н-26	H-27	н-28	H-29	H-30	H-31	н-32

5		X18	ı	I	I	I	I	I	I	£	9	SH3	I	ı	I	I	I	I
5	means	71X	ı	r	ı	r	r	ı	I	I	I	I	ď		СНЗ			
10		X16	a fused ring.	a fused ring.	a fused ring.	a fused ring.	a fused ring.	a fused ring	a fused ring.	a fused ring.	a fused ring.	a fused ring.						
15	ring" in	X15	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring
20	"A and B form a fused ring" in	X14	π	Ę	7	\$	\bowtie	СНЗ	Image: Control of the control of the	줍	4	£	ቼ	£	£	£	ᄯ	£
	and B for	X11	x	£	0	¢		CH3	O	£	ቒ	Æ	ፈ	ዊ	ቼ	£	£	£
25	. <	X34=X35							I	I	I	Ι	I	I	I	I	I	r
30	**	x7=x37	I	I	I	I	I	I	I	I	I	I	I	r	I	I	I	I
30		x6=x36	Ŧ	I	I	r	I	r	r	I	I	I	I	I	I	I	I	I
35	× × × × × × × × × × × × × × × × × × ×	x3=x33	r	I	I	I	I	I	I	I	I	I	I	I	I	I	x	I
	x X X X X X X X X X X X X X X X X X X X	Compound No. X2=X32 X3=X33 X6=X36 X7=X37 X34=X35	I	I	I	I	x	Έ	r	I	I	I	I	r	Ι	£	000	CH3
40		ound No.								_			_	_				~
		Com	H-33	H-34	H-35	H-36	н-37	H-38	н-39	H-40	H-4-	H-42	H-43	H-44	H-45	H-46	H-47	H-48

									٠									
5	Heans	X18	r	ı	I	I	I	I	ı	£	8	CH3	I	I	r	I	I	I
10	₹	71X	X16 and X17 form a fused ring.	X16 and X17 form a fused ring.	X16 and X17 form a fused ring.	X16 and X17 form a fused ring.	X16 and X17 form a fused ring.	X16 and X17 form a fused ring.	X16 and X17 form a fused ring.	X16 and X17 form a fused ring.	X16 and X17 form a fused ring.	X16 and X17 form a fused ring.	X16 and X17 form a fused ring.	X16 and X17 form a fused ring.	X16 and X17 form a fused ring	X16 and X17 form a fused ring.	X16 and X17 form a fused ring.	X16 and X17 form a fused ring.
15	ring" in	X16	X16 and X17 X16 and X17	X16 and X17	X16 and X17													
20	m a fusec	X15	I	I	I	I	I	r	I	£		CH3	I	I	I	I	I	I
	"A and B form a fused ring" in	X14	Ι	£	0	¢	\$	CH3	Ç	ዋ	Ą.	ቼ	£	4	£.	Ą	ą	£
25	. 4	×	Ι	ę	9	¢	β	CH3	Ç	Ą	4	Ą.	£	ą	£	£	æ	문
		X34=X35	Ξ	I	I	I	I	I	I	r	I	I	I	I	I	I	Ξ	I
30		75X=1X	I	I	I	I	I	I	I	I	I	I	I	Ι	I	I	Ι	I
35	~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	X6=X36	I	r	I	I	I	Ι.	r	I	r	I	I	I	I	I	Ι.	I
	X18 X11 X8	(3=X33	I	I	r	I	I	I	I	I	I	I	I	I	I	r	I	I
40	× × × ×	Compound No. X2=X32 X3=X33 X6=X36 X7=X37 X34=X35	Ι	I	I	I	I	I	I	I	I	I	I	I	I	ę	9	CH3
45		Compound N	H~49	H-50	H-51	H-52	H-53	H-54	H~55	H-56	H-57	H-58	H-59	09-H	H-61	H-62	H-63	H-64

284 :

50

5	means	X17 X18	X17 and X18 form a fused ring.	X17 and X18 form a fused ring.	X17 and X18 form a fused ring.	X17 and X18 form a fused ring.	X17 and X18 form a fused ring.	X17 and X18 form a fused ring.	X17 and X18 form a fused ring.	X17 and X18 form a fused ring.	X17 and X18 form a fused ring.	X17 and X18 form a fused ring.
15	√	X16	•			m a fused ring.						
20	"A and B form a fused ring" in	X15	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.	X15 and X16 form a fused ring.
25	B form a fu	X14	I	ፈ	8	\$	\bowtie	CH3	\bigcirc	£	전	전
	*A and	X11	I	æ	7	\$	\otimes	CH3	Ç	4 4	줕	4
30		X34=X35	Ι	I	I	I	I	I	I	x	I	I
35	X33 X35 X35 X36	X3=X33 X6=X36 X7=X37	Ι	Ŧ	I	I	I	I	I	I	I	x
40	× × × × × × × × × × × × × × × × × × ×	9EX=9X	I	Ξ	I	I	x	x	I	I	I	I
	× × ×	x3=x33	I	I	r	Ŧ,	I	I	I	I	I	I
45	X 11X X 18 X 18 X 18 X 18 X 18 X 18 X 18	o. X2=X32	I	I	I	I	I	I	I	å	\bigcirc	CH3
50		Compound N	H-65	99-н	Н-67	Н-68	69-H	H-70	н-71	н-72	H-73	H-74

		x 18	r	I	1	I	I	I	I	£) }	I	I	I
5		X17	ı	ı	I	I	ı	I	I	I	ī	r	£		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
10		X16	I	I	I	r	I	ı	I	ı	I	I	£	0	H2 H2
	\	X15	r	I	r	I	ı	r	I	£	7) 동	r	I	I
15	means	X14	Ŧ	£	0	\$	8	CH3	Ŷ	ą	ą	æ	ď	Ę	£
	Ē	×	I	ቼ	0	\$	\otimes	CH3	Ç	£	ď	£	臣	ᄹ	栕
20		X34=X35	I	ı	π	'n	r	I	.I	I	I	I	ı	I	I
25	, ^{क्र} : त	T.E.X	I	I	1	I	I	I	I	I	r	I	I	I	I
	ised rie	X36	I	I	I	I	Ι	I	I	I	r	I	I	I	ı
	₽	ł													
30	"A and B form a fused ring" in	х33	form a fused ring.												
<i>30 35</i>	"A and B form a fu	X32 X33	X32 and X33 form a fused ring.	X32 and X33 form a fused ring.	X32 and X33 form a fused ring.	X32 and X33 form a fused ring.	X32 and X33 form a fused ring.	X32 and X33 form a fused ring.	X32 and X33 form a fused ring.	X32 and X33 form a fused ring.	X32 and X33 form a fused ring.	X32 and X33 form a fused ring.	X32 and X33 form a fused ring.	X32 and X33 form a fused ring.	X32 and X33 form a fused ring
	A and B form a fu		H X32 and X33 form a fused ring.	H X32 and X33 form a fused ring.	H X32 and X33 form a fused ring.	H X32 and X33 form a fused ring.	H X32 and X33 form a fused ring.	H X32 and X33 form a fused ring.	H X32 and X33 form a fused ring.	H X32 and X33 form a fused ring.	H X32 and X33 form a fused ring.	H X32 and X33 form a fused ring.	H X32 and X33 form a fused ring.	H X32 and X33 form a fused ring.	H X32 and X33 form a fused ring.
35	X _{3,3} X _{3,4} X _{3,5} X _{3,6}	X32													
35	X ₆ X ₇ X ₂₂ X ₂₃ X ₁ X ₂ X ₃ X ₃ X ₁ X ₂ X ₃ X ₃ X ₃ X ₂ X ₃ X ₃ X ₃ X ₃	X7 X32	ı	I	I	r	I	I	I	I	I	r	π _.	I	ı
<i>35</i>	X, X,12 X,13 X,14 X,14 X,2 X,17 X,18	X6 X7 X32	I	r	I	r	I	r	I	I	I	r	≖.	I	I

		8 8	_	т	т	T	1	I	I	Æ	Q	£	I	ı	I.	ı	I	r
5		×	-	_	_	_	_	_		_	φ	0					ı	
		X17	I	r	I	r	I	I	I	I	I	I	ą	5	CH3	I	ı	I
10	\$	X16	I											I			ı	
	means	X15	I	I	I	I	r	I	I	£		CH3	I	I	r	I	ı	r
15	Ε	X X	I	£	0	\$	8	CH3	\bigcirc	£	ď	£	£	£	ቒ	£	£	Ę
20	4 - ()-	ž	I	£	8	·	\bowtie	CH3	Ç	£	£	£	£	ď	ፎ	윱	£	Ph
20	. <u>e</u>	X34=X35	I	I	I	r	, I	r	ı	I	I	I	I	I	ı	I	I	I
25	and B form a fused ring"	x37 ,	I	I	I	I	I	I	r	I	ı	I	r	ı	Ι	I	ı	I
	d B form a	X36	Ι	r	ı	r	Ι	I	ı	I	r	I	I	I	I	I	I	r
30	^A and	X33	I	I	I	I	I	r	I	I	I	I	r	I	I	I	ī	I
35		x32	I	I	I	I	Ξ.	r,	I	ı	I	I	I	ı	I	ď		CH3
	A	t×	π	I	r	I	I	I	I	r	I	x	x	I	I	I	I	r
40	X,34 X,35 X,36 X,36 X,36 X,36 X,36 X,36 X,36 X,36	9X	Ι	I	I	I	π	I	I	I	I	I	I	r	x	I	I	I
45	X18 X11 X8 X1 X32 X37 X15 X15 X15 X15 X15 X15 X15 X15 X15 X15	x3	X2 and X3 form a fused ring.	X2 and X4 form a fused ring.	X2 and X5 form a fused ring.	X2 and X6 form a fused ring.	X2 and X7 form a fused ring.	X2 and X8 form a fused ring.	X2 and X9 form a fused ring.	X2 and X10 form a fused ring.	X2 and X11 form a fused ring.	X2 and X12 form a fused ring.	X2 and X13 form a fused ring.	X2 and X14 form a fused ring.	X2 and X15 form a fused ring.	X2 and X16 form a fused ring.	X2 and X17 form a fused ring.	X2 and X18 form a fused ring.
50	X ₁₇ X ₁₈ X ₁₆	. x2	X2 and X3	X2 and X4	X2 and X5	X2 and X6	X2 and X7	X2 and X8	X2 and X9	X2 and X10	X2 and X11	X2 and X12	X2 and X13	X2 and X14	X2 and X15	X2 and X16	X2 and X17	X2 and X18
55		Compound No.	н-88	68-H	06-н	H-91	н-92	H-93	H-94	H-95	96-H	H-97	H-98	66-H	H-100	H-101	H-102	H-103

5		X14	I	ą	8	\$	8	CH3	Ç	£	전	ą	듐	즆	£	-	Ę.	P,
3	means	×13	x	r	I	x	x	I	x	x	I	Ŧ	x	r	I	£	0	CH3
10	E	X12	Ξ	ı	I	I	Ι,	I	I	x	I	I	I	I	r	£	9	CH3
	<	XII	Ι	£	9	\$	8	CH3	Participation	£	Æ	£	任	4	ᄯ	£	ď	Æ
15	x í	X37	I	I	· I	ī.	I	I	x	I	I	x	I	I	I	I	I	I
	. <u>e</u> *	X36 X37	Ξ	I	I	I	I	I	I	I	I	I	I	Ξ	I	r	I	I
20	a fused ring	X34=X35	I	I	I	π	I,	Ξ	I	I	I	I	x	I	I	π	I	x
25	"A and B form a fused ring" in	X33	Ι	I	I	I		x	I	I	x	I	£	\bigcirc	CH3	I	I	I
25	, ¥	X32	I	I	I	r	I	I	I	栕	8	CH3	I	<u>.</u>	x	I.	I	I
30	·	×	I	I	r	r	I	I	r	I	I	I	r	I	r	I	I	x
	X32 X33 X34 X34 X37 X38	Х6	Ι	τ	I	I	I	I	r	x	r	I	r	I	I	I	I	I
35		x3	I	I	I	I	I	x	I	I	r	I	줕	9	CH3	I	I	· I
40	X X X X X X X X X X X X X X X X X X X	X2	±.	Ξ	I	I	I	I	I	ď	\$	CH3	I	r	I	I	I	I
45		Compound No.	1-1	1-2	<u>-1</u> 3	, •	1-5	9-1	<i>L</i> -1	8-1	6-1	1-10	1-1	1-12	1-13	J-14	51-1	1-16

5	\$	X14	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	XI3 and XI4 form a fused ring.	XI3 and XI4 form a fused ring	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring	XI3 and XI4 form a fused ring	X13 and X14 form a fused ring	X13 and X14 form a fused ring	X13 and X14 form a fused ring
10	means	X13	X13 and X13 and	X13 and	X13 and	X13 and		X13 and										
	1	X12	Ξ	I	I	I	I	r	r	I	I	I	Ι	Ι	I	ዊ	\Rightarrow	CH3
15	<- <u></u>	ı.x	Ξ	£	8	¢	\bowtie	СНЗ	Ç	ዊ	£	ዊ	ቒ	ዷ	ዷ	£	ڇ	ፈ
	. <u>s</u>	x37	I	I	I	I	I	I	I	I	I	x	I	I	I	I	I	I
20	ad ring.	x36	Ŧ	I	I	I	*	x	I	I	I	x	r	I	I	I	I	I
25	"A and B form a fused ring" in	X34=X35	x	I	I	I	I	I	I	I	I	x	I	x	I	I	I	I
	. A and B	X33	I	I	r	I	I	=	I	I	I	x	ፈ	0	CH3	I	I	I
30		X32	I	I	I	I	I	I	I	g	8	CH3	I	I	I	I	I	r
		×	Ξ	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I
35		9X	Ξ	I	Ι	I	I	I	I	I	I	I	I	I	I	I	I	I
40	, TTT,	£X	I	I	I	I	I	x	I	I	I	I	£	000	CH3	I	Ξ	I
	X X X X X X X X X X X X X X X X X X X	×2	Ι	I	I	I	I	I	I	£	5	CH3	I	I	I	I	I	I
45		Compound No.	1-17	1-18	I-19	1-20	1-21	1-22	1-23	1-24	1-25	1-26	1-27	1-28	I-29	I-30	1-31	I-32

5		X14	rm a fused ring.	rm a fused ring.	rm a fused ring.	X13 and X14 form a fused ring.	rm a fused ring.	rm a fused ring.	rm a fused ring.
10	means	X13	X13 and X14 fo	X13 and X14 fo	X13 and X14 fo	X13 and X14 fo	X13 and X14 form a fused ring.	X13 and X14 fo	X13 and X14 fo
15	<-\frac{1}{2}	X12	X11 and X12 form a fused ring. X13 and X14 form a fused ring.	X11 and X12 form a fused ring. X13 and X14 form a fused ring.	X11 and X12 form a fused ring. X13 and X14 form a fused ring.	X11 and X12 form a fused ring.	X11 and X12 form a fused ring.	X11 and X12 form a fused ring. X13 and X14 form a fused ring.	X11 and X12 form a fused ring. X13 and X14 form a fused ring
20	ring" in	X11	X11 and X12 f	X11 and X12 fa	X11 and X12 fe	X11 and X12 fe	X11 and X12 fo	X11 and X12 fo	X11 and X12 fc
25	lused	X37	I	I	x	Ξ	I	I	π
	form é	X36	Ξ	x	I	I	I	I	I
30	"A and B form a fused ring" in	X33	Ι	I	I	İ	ቒ		CH3
35		X32	Ξ	듑		СНЗ	I	I	I
	33 -X -X -35	X,	I	I	r	I	I	I	I
40	×	9x	I	I	I	I	I	I	I
45	x x x x x x x x x x x x x x x x x x x	X3	I	I		I	£	8	CH3
50	× × × × × × × × × × × × × × × × × × ×	XZ	I	ď	8	CH3	I	Ŧ	I
55		Compound No. X2 X3	I-33	1-34	1-35	1-36	I-37	1-38	1-39

45	40	35		30		25	20		15		10	5	
	X		* * * * *			"A and B form a fused ring" in	rm a fused	ring ":	•		Ë	means	
Compound No.	x2	KX	9×	×	X32	x33	X34=X35	x36	X3.	X	X12	X13	X14
	X2 and X3 form	X2 and X3 form a fused ring.	Ξ	Ξ	I	Ι	I	I	I	Ŧ	I	I	I
	X2 and X3 fon	X2 and X3 form a fused ring.	I	r	x	I	I	x	I	된	I	I	듄
	X2 and X3 for	X2 and X3 form a fused ring.	I	r	I	I	r	I	Ξ	8	I	I	9
	X2 and X3 fon	X2 and X3 form a fused ring.	I	I	I	I	I	I	I	¢	I	I	\$
	X2 and X3 for	X2 and X3 form a fused ring.	I	I	I	I	x	r	I	\otimes	I	I	\bowtie
	X2 and X3 for	X2 and X3 form a fused ring.	I	I	I	I	r	I	I	CH3	I	I	CH3
	X2 and X3 for	X2 and X3 form a fused ring.	I	r	I	I	r	I	I	O.	Ι	I	Ç
	X2 and X3 for	X2 and X3 form a fused ring.	I	I	£	I	I	I	I	£	I	I	£
	X2 and X3 for	X2 and X3 form a fused ring.	r	I	8	I	x	I	I	Æ	I	I	£
	X2 and X3 for	X2 and X3 form a fused ring.	I	I	CH3	I	I	I	I	H ₄	I	I	£
	X2 and X3 for	X2 and X3 form a fused ring.	I	I	I	돈	I	I	I	£	I	I	£
	X2 and X3 for	X2 and X3 form a fused ring.	I	I	ı	8	I	r	I	ę	I	I	Ę
	X2 and X3 for	X2 and X3 form a fused ring.	r	I	x	CH3	I	ĭ	I	Æ	r	I	ę
	X2 and X3 for	X2 and X3 form a fused ring.	I	I	I	I	π	I	I	£	£	ď	Ę
	X2 and X3 for	X2 and X3 form a fused ring.	I	I	I	I	I	I	I	£			ą
1-55	X2 and X3 for	X2 and X3 form a fused ring.	I	I	I	I	I	x	I	£	CH3	CH3	£

5		X14	Ι =	ď	()		\otimes	CH3	\bigcirc	뚭	á	£	£	£	£
	5	X13	π	I	I	I	I	I	I	I	I	r	<u>و</u>		CH3
10	means	X12	I	I	I	I	x	I	x	I	I	I	윰		СНЗ
15	~	X 11X	I	준	9	\$	\otimes	СНЗ	Image: Control of the control of the	ď	ዷ	Ą	Ą	£	ď
	ထ်	X37	Ŧ	I	I	I	I	I	I	I	I	I	I	I	I
20	្គគា ភ	x36	I	I	I	χ	I	I	I	I	I	I	I	I	I
25	ם fused rin	X34=X35	I	I	I	I	x	I	I	I	I	I	x	Ι	I
30	"A and B form a fused ring" in	X33	X32 and X33 form a fused ring.	X32 and X33 form a fused ring.	X32 and X33 form a fused ring.	X32 and X33 form a fused ring.	X32 and X33 form a fused ring.	X32 and X33 form a fused ring.	X32 and X33 form a fused ring.	X32 and X33 form a fused ring.	X32 and X33 form a fused ring.	X32 and X33 form a fused ring.	X32 and X33 form a fused ring.	X32 and X33 form a fused ring.	X32 and X33 form a fused ring.
35		X32	X32 and	X32 and	X32 and	X32 and	X32 and	X32 and	X32 and						
		r×	I	I	I	I	I	x	I	I	r	I	I	x	I
40	× × × × × × × × × × × × × × × × × × ×	9x	I	I	I	I	I	I	Ι	r	I	r	x	I	I
45	× × × ×	×3	I	I	I	I	I	I	I	I	I	I	I	I	r
50	X ₁₂ X ₁₄ X ₁₃ X ₁₄	X2	I	I	I	I	I	I	I	ę		CH3	I	I	I
55	X ₁₂ X ₁₁ X ₆ X ₇ X ₃₂ X ₃₃ X ₃₄ X ₁₄ X ₃ X ₂ X ₃₁ X ₃₄ X ₃₅ X ₃₅ X ₃₇ X ₃₆	Compound No.	1-56	1-57	1-58	1-59	1-60	1-61	79-1	1-63	1-64	1-65	99-1	L9-1	1-68

			1		_							
5		X 14	I	ዳ	5		\otimes	CH3	P	ዳ	ą	된
	5	X 13	I	I	I	I	I	I	I	ዳ		СНЗ
10	means	X12	I	I	I	I	I	I	I	ę		CH3
15		r:x	Ŧ	£	9	\$	8	CH3	Ç	£	£	g
	₹	x37	I	I	I	I	I	I	I	I	I	I
20	_	x36	I	Ξ,	I	I	I	I	I	I	Ι	I
25	sed ring″ in	X34=X35	I	I	I	I	I	I	I	I	I	x
30	"A and B form a fused ring" in	хэз	X32 and X33 form a fused ring.	X32 and X33 form a fused ring.	X32 and X33 form a fused ring.	X32 and X33 form a fused ring.	X32 and X33 form a fused ring.	X32 and X33 form a fused ring.	X32 and X33 form a fused ring.	X32 and X33 form a fused ring.	X32 and X33 form a fused ring.	X32 and X33 form a fused ring.
35	, «	X32	X32 and X33 fc	X32 and X33 fc	X32 and X33 fc	X32 and X33 fo						
		×	Ξ	I	π	I	I	r	I	I	I	I
40	.5. X x x x x x x x x x x x x x x x x x x	9x	r.	I	I	I	I	¥	I	I	I	×
45	x x x x x x x x x x x x x x x x x x x	x3	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.
50	X ₁₂ X ₁₄ X	X2	X2 and X3 for									
55		Compound No.	69-1	1-70	. 17-1	I-72	1-73	1-74	F-75	1-76	1-77	1-78

5		X14	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.	X13 and X14 form a fused ring.
10	\$ E	X13	X13 and X14 fc	X13 and X14 fo	X13 and X14 fo	X13 and X14 fc	X13 and X14 fo	X13 and X14 fa	X13 and X14 fo	X13 and X14 fa	X13 and X14 f							
	means	X12	Ξ	I	r	I	I	r	I	I	π	I	I	I	I	£	0	CH3
15	«- ()	XII	Ξ	윤	0	\$	β	CH3	Ç	£	£	Æ	ď	ď	£	Ą	A H	Æ
	B	ξ.	Ŧ	I	I	I	π	I	I	I	I	I	I	I	I	I	I	I
20	. <u>e</u>	X36	I	I	I	I	π,	I	I	I	I	I	I	I	I	I	I	I
25	a fused ring	X34=X35	I	I	I	I	r	I	I	I	I	I	I	π	r	x	I	I
25	"A and B form a fused ring" in	X33	Ξ	I	r	I	r	x	I	I	I	I	F.	9	CH3	x	I	x
30	, A	X32	Ŧ	I	I	x	x	x	I	£	9	CH3	r	I	I	Ξ	I	I
		×	Ξ	I	I	I	x	I	I	I	I	I	I	I	I	r	I	I
35	4 1/3	9x	I	I	I	I	r	I	I	I	I	I	I	I	I	I	I	I
[.] 40	X, X ₃₂ X ₃₃ X, X ₃ X ₃ X ₃	х3	a fused ring.	nd X3 form a fused ring.	nd X3 form a fused ring.	s a fused ring.	a fused ring.	n a fused ring.	n a fused ring.	n a fused ring.	nd X3 form a fused ring.	n a fused ring.	n a fused ring.	n a fused ring.				
45	x 1 x x x x x x x x x x x x x x x x x x	x2	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form	X2 and X3 form	X2 and X3 form a fused ring.	X2 and X3 form a fused ring	X2 and X3 form a fused ring	X2 and X3 form a fused ring.	X2 and X3 form a fused ring	X2 and X3 form	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.	X2 and X3 form a fused ring.
+3		Compound No.	1-79	1-80	1-81	1-82	1-83	I-84	1-85	1-86	1-87	1-88	68-1	06-1	16-1	1-92	1-93	1-94
50			-					-	-	_	-		_	_			_	-

X ₁₁ X ₆ X, X ₃₂ X ₃₃ X ₁₄ X ₃ X ₂ X ₃₁ X ₃₅ X ₁₄ X ₃ X ₂ X ₃₁ X ₃₆
X2 X3 X6 X7
X2 and X3 form a fused ring. H H X32 and X33 form a fused ring.
X2 and X3 form a fused ring. H H X32 and X33 form a fused ring.
X2 and X3 form a fused ring. H H X32 and X33 form a fused ring.
X2 and X3 form a fused ring. H H X32 and X33 form a fused ring.
X2 and X3 form a fused ring. H H X32 and X33 form a fused ring.
X2 and X3 form a fused ring. H H X32 and X33 form a fused ring.
X2 and X3 form a fused ring. H H X32 and X33 form a fused ring.
X2 and X3 form a fused ring. H H X32 and X33 form a fused ring.
X2 and X3 form a fused ring. H H X32 and X33 form a fused ring.
X2 and X3 form a fused ring. H H X32 and X33 form a fused ring.

		X X	ı	ą.	S	()	\bowtie	CH3	P	ą.	ď	ą	g.	£	된
5	/				~	Y	<i>-</i>		٢					\Diamond	
		X13	I	I	Ι	I	I	I	I	I	I	I	ᅙ	\Diamond	CH3
10	means	X12	I	I	I	I	I	I	I	I	I	I	ద	3	СН3
15		r. Ex	Ŧ	ዊ	7	¢	\otimes	CH3	Ç	ď	£	£	£	£	£
	*	78X	fused ring. fused ring.	fused ring.											
20	ing" in	X36	X36 and X37 form a fused ring.	X36 and X37 form a fused ring.	X36 and X37 form a fused ring.	X36 and X37 form a fused ring.	X36 and X37 form a fused ring.	X36 and X37 form a fused ring.	X36 and X37 form a fused ring.	X36 and X37 form a fused ring.	X36 and X37 form a fused ring.	X36 and X37 form a fused ring.	X36 and X37 form a fused ring	X36 and X37 form a fused ring.	X36 and X37 form a fused ring.
25	a fused r		X36 an	Х36 ал	X36 an X36 and	X36 and									
	"A and B form a fused ring" in	X34=X35	I	I	I	I	x	I	I	I	I	I	I	I	I
30	"A and	X33	used ring. used ring.	used ring.											
		×	form a f	form a fi	form a fi	form a fi									
35		X32	X32 and X33 form a fused ring.	X32 and X33 form a fused ring.	X32 and X33 form a fused ring.	X32 and X33 form a fused ring.	X32 and X33 form a fused ring	X32 and X33 form a fused ring	X32 and X33 form a fused ring.	X32 and X33 form a fused ring.	X32 and X33 form a fused ring.	X32 and X33 form a fused ring	X32 and X33 form a fused ring	X32 and X33 form a fused ring	X32 and X33 form a fused ring
40		7X	I	I	I	I	I	I	I	I	I	I	I	I	I
		9x	r	I	I	I	I	I	I	π	I	I	I	I	I
45		X3	Ξ	I	I	I	I	I	I	ą		СНЗ	I	I	I
50	× × × × × × × × × × × × × × × × × × ×	x X	I	I	I	I	I	I	r	I	I	I	I	I	I
	× ^	Compound No. X2	-105	1-106	I-107	-108	I-109	F-110	F-111	1-112	1-113	14	15	91	71
55		ပိ	Ξ	Ξ	I	1	Ī	Ξ	Ξ	<u>T</u>	Ξ	<u>-1</u> 4	F-115	1-116	F-117

5	<i>\$</i>	XI2 XI3 XI4	I	£ H	\rightarrow \tau \tau \tau \tau \tau \tau \tau \tau	ţ I	; ;	н н сн3	н	н	ча н		ž H	I I	I I I	I I I I	тттта	
15	means	11X 6	I	£	000	¢	\bowtie	CH3	Ŷ	£	_. £		£					
	~	X36 X37	I	I	ı	I	ı	I	I	I	r		I					
20	ë. B	X34=X35	Ι	I	r	r	Ŧ	I	I	x	I		x	r r	т т т	r r r r	r r r r .	x x x x x x
25	"A and B form a fused ring" in	х33	π	I	x	Ξ	I	I	I	ı	I		r	r á	r f	r d G	r q C r	r & S & r r
	and B form	X32	Ŧ	I	I	I	I	x	r	£		:	CH3	E I	E I	i r r r	. T T T	
<i>30 35</i>		7x 9x	X6 and X7 form a fused ring.	6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.	X6 and X7 form a fused ring.		X6 and X7 form a fused ring.	X6 and X7 form a fused ring. X6 and X7 form a fused ring.	X6 and X7 form a fused ring. X6 and X7 form a fused ring. X6 and X7 form a fused ring.	X6 and X7 form a fused ring. X6 and X7 form a fused ring. X6 and X7 form a fused ring. X6 and X7 form a fused ring.	X6 and X7 form a fused ring. X6 and X7 form a fused ring. X6 and X7 form a fused ring. X6 and X7 form a fused ring.
40	X ₁₁ X ₆ X ₇ X ₃₂ X ₃₃ X ₁₄ X ₃ X ₂ X ₃₇ X ₃₈ X ₄ X ₃ X ₂ X ₃₇ X ₃₈	x2 x3	X2 and X3 form a fused ring. X6	X2 and X3 form a fused ring. X6 and X7 form a fused ring.	X2 and X3 form a fused ring. X6	X2 and X3 form a fused ring. X6	X2 and X3 form a fused ring. X6 and X7 form a fused ring.	X2 and X3 form a fused ring. X6	X2 and X3 form a fused ring. X6	X2 and X3 form a fused ring. Xf	X2 and X3 form a fused ring. X6	X2 and X3 form a fused ring. X6		X2 and X3 form a fused ring. X1	form a fused ring. form a fused ring.	form a fused ring. form a fused ring. form a fused ring.	orm a fused ring. orm a fused ring. orm a fused ring.	orm a fused ring. orm a fused ring. orm a fused ring. orm a fused ring.
50	x ×	Compound No.	I-118 X2 a	F-119 X2	I-120 X2 a	1-121 X2 i	I-122 X2	I-123 X2 i	I-124 X2	I-125 X2	I-126 X2	I-127 X2	1-120 X2					

[0159] The above dopants, for example, the compounds of formula (VI) can be produced, for example, by the method described in J. Amer. Chem. Soc., 118, 2374 (1996). Specifically, as shown by the following scheme, the end compound can be produced by reacting a compound of formula (2) with a compound of formula (3) in the presence of aluminum chloride/sodium chloride, cobalt fluoride or thallium trifluoroacetate.

50

55

10

15

20

25

30

35

40

45

[0160] It is noted that the fluoranthene derivatives of formulas (V), (2) and (3), can be produced, for example, by the method described in J. Amer. Chem. Soc., 118, 2374 (1996). Specifically, as shown by the following scheme, the end compound can be produced by reacting a compound of formula (4) with a compound of formula (5).

$$(4) \qquad (5)$$

[0161] Once the skeleton of formula (VI) is formed, exchange of substituents is effected by a conventional method, obtaining a compound having the desired substituent(s).

[0162] The compounds of formula (VI) are preferably compounds, dibenzo[f,f']diindeno[1,2,3-cd:1',2',3'-lm]-perylene derivatives in the following formula (VI').

$$X_{32}$$
 X_{33}
 X_{14}
 X_{15}
 X_{16}
 X_{6}
 X_{5}
 X_{5}
 X_{10}
 X_{10}
 X_{11}
 X_{41}
 X_{42}
 X_{43}
 X_{43}

[0163] In formula (VI'), X_1 to X_{44} are as defined for X_1 to X_{20} in formula (VI).

[0164] Preferably, X₁ to X₂₀ in formula (VI) and X₁ to X₄₄ in formula (VI') are independently selected from among substituted or unsubstituted aryl, alkyl, alkenyl, alkoxy and aryloxy radicals.

[0165] Further preferably, at least one of X_1 to X_{20} in formula (VI) and X_1 to X_{44} in formula (VI') is an ortho-substituted phenyl radical. Even more preferably, in formula (VI) or (VI'), either one or both of X_1 and X_4 and/or either one or both of X_{11} and X_{14} are ortho-substituted phenyl radicals. The introduction of a substituent at the ortho-position holds down the propensity for the compound to decompose upon sublimation purification and improves fluorescence.

[0166] The use of the ortho-substituted compound is effective for increasing the fluorescent luminance and holding down the concentration quenching of the EL device, thereby spreading the margin of the EL dopant and improving the freedom of design.

[0167] The introduction of an ortho-substituted phenyl group has several advantages. The ortho-substituted phenyl group introduced makes it possible to control the association of the perylene skeleton by virtue of its steric hindrance, to improve the solubility in solvents and to purify the compound to a high purity. For the same reason, sublimation purification becomes possible at a lower temperature and entails little decomposition. This is also advantageous in

obtaining a high purity material. Using such a pure material, an organic EL device having a high emission efficiency is obtainable because the deactivation of excitons by impurities is minimized. Another reason accounting for the high efficiency is that the association between similar or distinct molecules in the light emitting layer is suppressed whereby concentration quenching is restrained.

⁵ [0168] Preferred examples of the compound of formula (VI') are given below.

304

15

20

25

30

5

35

45

[0169] The diindeno[1,2,3-cd:1',2',3'-Im]perylene derivative should preferably have a vibration structure in both an excitation spectrum and a fluorescence spectrum. The presence of such a vibration structure is ascertainable by the appearance of two or more peaks in each of the spectra.

[0170] More preferably, a host material obtained by doping the indenoperylene derivative has such a vibration structure

[0171] The possession of a vibration structure leads to the manufacture of an organic EL device having improved temperature characteristics, and especially a minimal temperature change.

[0172] It is believed that a drop of EL luminous efficiency by temperature is due to thermal relaxation entailing a change of conformation in the excited state. Once a change of conformation in the excited state occurs, the overlap of molecular orbital function between the ground state and the excited state changes so that the fluorescence spectrum does not become a mirror image of the absorption spectrum. The fluorescence spectrum of a compound which can take a plurality of conformations in the excited state is the total of various vibration structures and thus becomes a broad spectrum apparently free of a vibration structure.

[0173] Accordingly, an organic compound which exhibits a vibration structure in the fluorescence spectrum and specifically, a compound whose vibration structure is a mirror image of the absorption spectrum experiences a minimal change of conformation in the excited state and therefore, when used as a luminescent material in an organic EL device, enables to produce a device having improved temperature characteristics as demonstrated by a minimal drop of EL luminous efficiency by temperature during driving.

[0174] For the same reason as above, the organic compound should preferably have a Stokes shift of up to 0.1 eV, especially up to 0.05 eV. The lower limit of Stokes shift is not critical although it is usually about 0.01 eV.

[0175] Another factor that governs the temperature characteristics of an organic EL device is the thermal excitation of carriers from the trap level. Especially in a doped light emitting layer, the dopant creates a trap level. Upon a temperature change, the hopping probability of carriers by thermal excitation changes. This sometimes results in changes

of the carrier balance in the light emitting layer, leading to temperature dependent characteristics with a high efficiency. In contrast, the device of the invention has a minimized thermal change of the trapping of the light emitting layer, that is, minimized temperature dependence with a high efficiency.

[0176] In a preferred embodiment, the host material, especially at least one of the organic compounds of formulas (I) to (IV), in a light emitting layer has a greater electron affinity than an electron transporting layer and/or a hole transporting layer. If the host material in a light emitting layer has a greater electron affinity than an electron transporting layer and/or a hole transporting layer, the injection efficiency of electrons into the light emitting layer increases and electrons are blocked at the hole transporting layer interface, leading to an improvement in luminous efficiency and hence, device lifetime.

Others

5

10

30

[0177] The light emitting layer containing the host material and the dopant according to the invention has functions of injecting holes and electrons, transporting them, and recombining holes and electrons to create excitons. The use of relatively electronically neutral compounds in the light emitting layer in addition to the compounds of the invention enables easy and well-balanced injection and transportation of electrons and holes.

[0178] The host material may be used alone or in admixture of two or more. When a mixture of two or more host materials is used, the mix ratio is not critical. In a preferred embodiment, the light emitting layer contains 80 to 99.9%, more preferably 90 to 99.9%, even more preferably 95.0 to 99.5% by weight of the host material.

[0179] The thickness of the light emitting layer preferably ranges from the thickness corresponding to a single molecule layer to less than the thickness of an organic compound layer, for example, preferably from 1 to 85 nm, more preferably 5 to 60 nm, most preferably 5 to 50 nm.

[0180] Preferably the mix layer is formed by a co-deposition process of evaporating the compounds from distinct sources. If both the compounds have equal or very close vapor pressure or evaporation temperature, they may be premixed in a common evaporation boat, from which they are evaporated together. The mix layer is preferably a uniform mixture of both the compounds although the compounds can be present in island form. The light emitting layer is generally formed to a predetermined thickness by evaporating an organic fluorescent material or coating a dispersion thereof in a resin binder.

[0181] One exemplary construction of the organic EL light emitting device fabricated using the inventive compounds has on a substrate, a hole injecting electrode, a hole injecting and transporting layer, a light emitting and electron injecting and transporting layer, and an electron injecting electrode in the described order. If desired, a protective electrode, an auxiliary electrode and a sealing layer are provided on the electron injecting electrode.

[0182] The organic EL device of the invention is not limited to the above exemplary construction and may have various other constructions. In another exemplary construction, the light emitting layer is provided singly and an electron injecting and transporting layer is interposed between the light emitting layer and the electron injecting electrode. Also, the light emitting layer may be mixed with the hole injecting and transporting layer, if desired.

[0183] The thicknesses of the light emitting layer, hole injecting and transporting layer, and electron injecting and transporting layer are not critical and vary with a particular formation technique. Usually a single layer is about 5 to 500 nm thick, especially about 10 to 300 nm thick.

[0184] The thicknesses of the hole injecting and transporting layer and electron injecting and transporting layer are equal to or range from 1/10 to 10 times the thickness of the light emitting layer although they depend on the design of a recombination/light emitting region. When the electron or hole injecting and transporting layer is divided into an injecting layer and a transporting layer, preferably the injecting layer is at least 1 nm thick and the transporting layer is at least 1 nm thick. The upper limit of thickness is generally about 500 nm for the injecting layer and about 500 nm for the transporting layer. The same applies when two injecting and transporting layers are provided.

[0185] The hole injecting and transporting layer has functions of facilitating injection of holes from the hole injecting electrode, transporting them stably, and blocking electrons. The electron injecting and transporting layer has functions of facilitating injection of electrons from the electron injecting electrode, transporting them stably, and blocking holes. These layers are effective for increasing the number of holes and electrons injected into the light emitting layer and confining holes and electrons therein for optimizing the recombination region to improve light emission efficiency.

[0186] In the hole injecting and transporting layer, there may be used various organic compounds as described, for example, in JP-A 63-295695, 2-191694, 3-792, 5-234681, 5-239455, 5-299174, 7-126225, 7-126226, and 8-100172, and EPO 650955A1. Exemplary are tetraarylbenzidine compounds (triaryldiamines or triphenyldiamines: TPD), aromatic tertiary amines, hydrazone derivatives, carbazole derivatives, triazole derivatives, imidazole derivatives, oxadiazole derivatives having an amino group, and polythiophenes. Two or more of these compounds may be used, and on such combined use, they may be formed as separate layers or mixed.

[0187] Where the hole injecting and transporting layer is formed separately as a hole injecting layer and a hole transporting layer, two or more compounds are selected in a proper combination from the compounds commonly used

in hole injecting and transporting layers. In this regard, it is preferred to laminate layers in such an order that a layer of a compound having a lower ionization potential may be disposed adjacent the hole injecting electrode (iTO). It is also preferred to use a compound having good thin film forming ability at the hole injecting electrode surface. The order of lamination also applies where a plurality of hole injecting and transporting layers are provided. Such an order of lamination is effective for lowering the drive voltage and preventing current leakage and the development and growth of dark spots. Since evaporation is utilized in the manufacture of devices, films as thin as about 1 to 10 nm can be formed uniform and pinhole-free, which restrains any change in color tone of light emission and a drop of efficiency by re-absorption even if a compound having a low ionization potential and absorption in the visible range is used in the hole injecting layer. Like the light emitting layer, the hole injecting and transporting layer may be formed by evaporating the above-mentioned compounds.

[0188] In the electron injecting and transporting layer, there may be used quinoline derivatives including organic metal complexes having 8-quinolinol or a derivative thereof as a ligand such as tris(8-quinolinolato)aluminum (Alq3), oxadiazole derivatives, perylene derivatives, pyridine derivatives, pyrimidine derivatives, quinoxaline derivatives, diphenylquinone derivatives, and nitro-substituted fluorene derivatives. The electron injecting and transporting layer can also serve as the light emitting layer. Like the light emitting layer, the electron injecting and transporting layer may be formed by evaporation or the like.

10

20

30

45

[0189] Where the electron injecting and transporting layer is formed separately as an electron injecting layer and an electron transporting layer, two or more compounds are selected in a proper combination from the compounds commonly used in electron injecting and transporting layers. In this regard, it is preferred to stack layers in such an order that a layer of a compound having a greater electron affinity may be disposed adjacent the electron injecting electrode. The order of stacking also applies where a plurality of electron injecting and transporting layers are provided.

[0190] In forming the hole injecting and transporting layer, the light emitting layer, and the electron injecting and transporting layer, vacuum evaporation is preferably used because homogeneous thin films are available. By utilizing vacuum evaporation, there is obtained a homogeneous thin film which is amorphous or has a crystal grain size of less than 0.1 μ m. If the grain size is more than 0.1 μ m, uneven light emission would take place and the drive voltage of the device must be increased with a substantial drop of hole injection efficiency.

[0191] The conditions for vacuum evaporation are not critical although a vacuum of 10⁻⁴ Pa or lower and a deposition rate of about 0.01 to 1 nm/sec are preferred. It is preferred to successively form layers in vacuum because the successive formation in vacuum can avoid adsorption of impunities on the interface between the layers, thus ensuring better performance. Also, the drive voltage of a device can be reduced and the development and growth of dark spots be restrained.

[0192] In the embodiment wherein the respective layers are formed by vacuum evaporation, where it is desired for a single layer to contain two or more compounds, preferably boats having the compounds received therein are individually temperature controlled to achieve co-deposition.

[0193] The electron injecting electrode is preferably made of metals, alloys or intermetallic compounds having a work function of up to 4 eV. With a work function of more than 4 eV, the electron injecting efficiency lowers and consequently, the light emission efficiency lowers. Examples of the metal having a work function of up to 4 eV of which the electron injecting electrode film is constructed include alkali metals such as Li, Na and K, alkaline earth metals such as Mg, Ca, Sr and Ba, rare earth metals such as La and Ce, and Al, In, Ag, Sn, Zn, and Zr. Examples of the film-forming alloy having a work function of up to 4 eV include Ag-Mg (Ag: 0.1 to 50 at%), Al-Li (Li: 0.01 to 12 at%), In-Mg (Mg: 50 to 80 at%), and Al-Ca (Ca: 0.01 to 20 at%). These materials may be present alone or in combination of two or more. Where two or more materials are combined, their mixing ratio is arbitrary. It is also acceptable that an oxide or halide of an alkali metal, alkaline earth metal or rare earth metal is thinly deposited and a supporting electrode (auxiliary electrode or wiring electrode) of aluminum etc. is used.

[0194] The electron injecting electrode may be formed by evaporation or sputtering.

[0195] The electron injecting electrode may have at least a sufficient thickness to effect electron injection, for example, a thickness of at least 0.1 nm. Although the upper limit is not critical, the electrode thickness is typically about 0.1 to about 500 nm.

[0196] The hole injecting electrode is preferably formed of such a material to such a thickness that the electrode may have a transmittance of at least 80% of emitted light. Illustratively, oxide transparent conductive thin films are preferred. For example, materials based on tin-doped indium oxide (ITO), zinc-doped indium oxide (IZO), indium oxide (In₂O₃), tin oxide (SnO₂) or zinc oxide (ZnO) are preferable. These oxides may deviate somewhat from their stoichiometry. An appropriate proportion of SnO₂ mixed with In₂O₃ is about 1 to 20% by weight, more preferably about 5 to 12% by weight. An appropriate proportion of ZnO₂ mixed with In₂O₃ is about 12 to 32% by weight.

[0197] The hole injecting electrode should preferably have a light transmittance of at least 80%, especially at least 90% in the light emission band, typically from 350 to 800 nm, and especially at each light emission. Since the emitted light is generally taken out through the hole injecting electrode, with a lower transmittance, the light emitted by the light emitting layer would be attenuated through the electrode, failing to provide a luminance necessary as a light emitting

device. It is noted that only the side from which the emitted light exits has a transmittance of at least 80%.

[0198] The hole injecting electrode has at least a sufficient thickness to effect hole injection, preferably a thickness of 50 to 500 nm, especially 50 to 300 nm. Although the upper limit of the electrode thickness is not critical, a too thick electrode would have the risk of separation. Too thin an electrode would have problems with respect to film strength during fabrication, hole transporting ability, and resistance value.

[0199] In depositing the hole injecting electrode, a sputtering process is preferred. The sputtering process may be a high-frequency sputtering process using an RF power supply although a dc sputtering process is preferably used when the ease of control of physical properties of the hole injecting electrode being deposited and the flatness of the deposited film are taken into account.

[0200] A protective film may be formed if necessary. The protective film may be formed using an inorganic material such as SiOx or an organic material such as Teflon. The protective film may be either transparent or opaque and have a thickness of about 50 to 1,200 nm. Apart from the reactive sputtering process mentioned above, the protective film may also be formed by an ordinary sputtering or evaporation process.

[0201] Further, a sealing layer is provided on the device in order to prevent the organic layers and electrodes from oxidation. In order to prevent the ingress of moisture, the sealing layer is formed by attaching a sealing plate such as a glass plate to the substrate with an adhesive resin layer such as a commercially available low moisture absorption photo-curable adhesive, epoxy base adhesive, silicone base adhesive, or crosslinking ethylene-vinyl acetate copolymer adhesive sheet. Metal plates and plastic plates may also be used instead of the glass plate.

[0202] Transparent or translucent materials such as glass, quartz and resins are used as the substrate when the emitted light exits from the substrate side. The substrate may be provided with a color filter film, a fluorescent material-containing color conversion film or a dielectric reflecting film for controlling the color of light emission. In the case of the inversely stacked layer structure, the substrate may be either transparent or opaque. For the opaque substrate, ceramic and other materials may be used.

[0203] The color filter film used herein may be a color filter as used in liquid crystal displays and the like. The properties of a color filter may be adjusted in accordance with the light emission of the organic EL device so as to optimize the extraction efficiency and chromatic purity.

[0204] It is also preferred to use a color filter capable of cutting external light of short wavelength which is otherwise absorbed by the EL device materials and fluorescence conversion layer, because the light resistance and display contrast of the device are improved.

[0205] An optical thin film such as a dielectric multilayer film may be used instead of the color filter.

[0206] Referring to FIG. 1, there is illustrated one exemplary construction of the organic EL device fabricated according to the invention. The organic EL device is shown in FIG. 1 as having on a substrate 1, a hole injecting electrode (or anode) 2, a hole injecting layer 3, a hole transporting layer 4, a light emitting layer 5, an electron injecting and transporting layer 6, an electron injecting electrode (or cathode) 7, and optionally, a protective electrode 8 in the described order. The organic EL device of the invention is not limited to the illustrated construction, and various other constructions are possible depending on the desired device function. For example, the order of lamination may be inverse to the above-described order. The hole injecting 3, the hole transporting layer 4 and the electron injecting and transporting layer 6 may be omitted or either one of them may be a common layer to the light emitting layer 5.

[0207] The organic EL device of the invention is generally of the dc or pulse drive type while it can be of the ac drive type. The applied voltage is generally about 2 to 30 volts.

EXAMPLE

30

40

50

[0208] Examples of the present invention are given below together with Comparative Examples for further illustrating the invention.

Example 1

[0209] On a glass substrate, a transparent ITO electrode thin film was deposited to a thickness of 100 nm by RF sputtering and patterned. The glass substrate having the transparent ITO electrode was subjected to ultrasonic washing with neutral detergent, acetone, and ethanol, pulled up from boiling ethanol, and dried. The transparent electrode surface was further cleaned with UV/ozone. Thereafter, the substrate was secured by a holder in a vacuum evaporation chamber, which was evacuated to a vacuum of 1x10⁻⁵ Pa or lower.

[0210] With the vacuum kept, N,N'-diphenyl-N,N'-bis[N-(4-methylphenyl)-N-phenyl-(4-aminophenyl)]-1,1'-biphenyl-4,4'-diamine was evaporated at a deposition rate of 0.1 nm/sec. to a thickness of 50 nm, forming a hole injecting layer.

[0211] Then, N,N,N',N'-tetrakis(m-biphenyl)-1,1'-biphenyl-4,4'-diamine (TPD) was evaporated at a deposition rate of 0.1 nm/sec to a thickness of 20 nm, forming a hole transporting layer.

[0212] With the vacuum kept, the host material and dopant of the following structural formulas were evaporated in

a weight ratio of 99:1 and at an overall deposition rate of 0.1 nm/sec to a thickness of 40 nm, forming a light emitting layer.

[0213] Next, with the vacuum kept, tris(8-quinolinolato)-aluminum was evaporated at a deposition rate of 0.1 nm/sec to a thickness of 20 nm, forming an electron transporting layer.

[0214] With the vacuum kept, LiF was evaporated at a deposition rate of 0.01 nm/sec to a thickness of 0.3 nm, forming an electron injecting electrode. Finally, aluminum was evaporated to a thickness of 150 nm to form a protective electrode, completing an organic EL device.

[0215] A DC voltage was applied across the organic EL device. Initially, the device was found to produce light emission to a luminance of 614 cd/m² when operated at a current density of 10 mA/cm² and a drive voltage of 5.9 volts. The current efficiency was 6.1 cd/A, the power efficiency was 3.3 lm/W, the chromaticity coordinates (x, y) were (0.65, 0.35), and the maximum luminance was 19,600 cd/m². When the device was continuously driven by conducting a constant current of 50 mA/cm², it exhibited an initial luminance of at least 3,200 cd/m² and a luminance half-life period of more than 600 hours.

Example 2

5

10

15

20

25

30

45

50

55

40 [0216] An organic EL device was prepared as in Example 1 except that the host material in the light emitting layer was changed to the following compound.

10

15

20

[0217] A DC voltage was applied across the organic EL device. Initially, the device was found to produce light emission to a luminance of 504 cd/m² when operated at a current density of 10 mA/cm² and a drive voltage of 5.9 volts. The current efficiency was 5.0 cd/A, the power efficiency was 2.7 lm/W, the chromaticity coordinates (x, y) were (0.64, 0.36), and the maximum luminance was 11,500 cd/m². When the device was continuously driven by conducting a constant current of 50 mA/cm², it exhibited an initial luminance of at least 2,170 cd/m² and a luminance half-life period of more than 1,500 hours.

Example 3

30

[0218] An organic EL device was prepared as in Example 1 except that the host material in the light emitting layer was changed to the following compound.

35

40

45

[0219] A DC voltage was applied across the organic EL device. Initially, the device was found to produce light emission to a luminance of 449 cd/m² when operated at a current density of 10 mA/cm² and a drive voltage of 5.9 volts. The current efficiency was 4.5 cd/A, the power efficiency was 2.4 lm/W, the chromaticity coordinates (x, y) were (0.66, 0.34), and the maximum luminance was 17,200 cd/m². When the device was continuously driven by conducting a constant current of 50 mA/cm², it exhibited an initial luminance of at least 2,440 cd/m² and a luminance half-life period of more 50 than 1,500 hours.

Example 4

[0220] An organic EL device was prepared as in Example 1 except that the host material in the light emitting layer was changed to the following compound.

[0221] A DC voltage was applied across the organic EL device. Initially, the device was found to produce light emission to a luminance of 441 cd/m² when operated at a current density of 10 mA/cm² and a drive voltage of 5.9 volts. The current efficiency was 4.4 cd/A, the power efficiency was 2.3 lm/W, the chromaticity coordinates (x, y) were (0.65, 0.34), and the maximum luminance was 35,200 cd/m². When the device was continuously driven by conducting a constant current of 50 mA/cm², it exhibited an initial luminance of at least 2,400 cd/m² and a luminance attenuation of up to 10% after 1,000 hours and up to 15% after 4,500 hours.

[0222] The host material and dopant used in this device were assessed for excitation and fluorescence spectra, from which a Stokes shift was computed. The host material and dopant had a Stokes shift of 0.06 eV and 0.03 eV, respectively. FIG. 2 shows excitation and fluorescence spectra of the host material and dopant. It is seen from these spectral curves that both the host material and dopant have vibration structures.

[0223] The temperature characteristics of the device were examined to find the following luminance change on 10 mA/cm² constant current driving in various temperature ranges:

	-40°C to 20°C	≤ 10%
	20°C to 60°C	≤ 3%
i	-40°C to 60°C	≤ 13%.

[0224] After 500 hours of continuous driving at 85°C, the device exhibited a luminance change of up to 10% and a drive voltage change of less than 2 V.

Example 5

[0225] An organic EL device was prepared as in Example 1 except that the host material in the light emitting layer was changed to the following compound.

[0226] A DC voltage was applied across the organic EL device. Initially, the device was found to produce light emission to a luminance of 296 cd/m² when operated at a current density of 10 mA/cm² and a drive voltage of 6.7 volts. The current efficiency was 3.0 cd/A, the power efficiency was 1.4 lm/W, the chromaticity coordinates (x, y) were (0.60, 0.38), and the maximum luminance was 16,500 cd/m². When the device was continuously driven by conducting a constant current of 79 mA/cm², it exhibited an initial luminance of at least 2,400 cd/m² and a luminance half-life period of more than 300 hours.

Example 6

15

20

35

40

45

50

55

10 [0227] An organic EL device was prepared as in Example 1 except that the host material in the light emitting layer was changed to the following compound.

[0228] A DC voltage was applied across the organic EL device. Initially, the device was found to produce light emission to a luminance of 267 cd/m² when operated at a current density of 10 mA/cm² and a drive voltage of 6.6 volts. The current efficiency was 2.7 cd/A, the power efficiency was 1.3 lm/W, the chromaticity coordinates (x, y) were (0.55, 0.37), and the maximum luminance was 12,860 cd/m². When the device was continuously driven by conducting a constant current of 97 mA/cm², it exhibited an initial luminance of at least 2,400 cd/m² and a luminance half-life period of more than 300 hours.

Example 7

[0229] An organic EL device was prepared as in Example 1 except that the host material in the light emitting layer was changed to the following compound.

[0230] A DC voltage was applied across the organic EL device. Initially, the device was found to produce light emission to a luminance of 260 cd/m² when operated at a current density of 10 mA/cm² and a drive voltage of 6.7 volts. The current efficiency was 2.6 cd/A, the power efficiency was 1.2 lm/W, the chromaticity coordinates (x, y) were (0.64, 0.36), and the maximum luminance was 8,780 cd/m². When the device was continuously driven by conducting a constant current of 95 mA/cm², it exhibited an initial luminance of at least 2,400 cd/m² and a luminance half-life period of more than 300 hours.

Example 8

[0231] An organic EL device was prepared as in Example 1 except that the host material in the light emitting layer was changed to a mixture of the following compounds in a weight ratio of 9:1 (the former compound is the same as used in Example 4).

The host material (mixture) and the dopant were evaporated in a weight ratio of 99:1 and at an overall deposition rate of 0.1 nm/sec to a thickness of 40 nm, forming a light emitting layer.

[0232] A DC voltage was applied across the organic EL device. Initially, the device was found to produce light emission to a luminance of 494 cd/m² when operated at a current density of 10 mA/cm² and a drive voltage of 5.9 volts. The current efficiency was 4.9 cd/A, the power efficiency was 2.6 lm/W, and the chromaticity coordinates (x, y) were (0.65, 0.34). When the device was continuously driven by conducting a constant current of 50 mA/cm², it exhibited an initial luminance of at least 2,640 cd/m² and a luminance attenuation of up to 10% after 2,000 hours.

Example 9

40

45 [0233] An organic EL device was prepared as in Example 8 except that the weight ratio of the host compounds in the light emitting layer was changed to 7.5:2.5.

[0234] A DC voltage was applied across the organic EL device. Initially, the device was found to produce light emission to a luminance of 510 cd/m² when operated at a current density of 10 mA/cm² and a drive voltage of 6 volts. The current efficiency was 5.1 cd/A, the power efficiency was 2.8 lm/W, and the chromaticity coordinates (x, y) were (0.65, 0.34). When the device was continuously driven by conducting a constant current of 50 mA/cm², it exhibited an initial

luminance of at least 2,330 cd/m² and a luminance attenuation of up to 10% after 2,000 hours.

Example 10

⁵⁵ [0235] An organic EL device was prepared as in Example 8 except that the weight ratio of the host compounds in the light emitting layer was changed to 5:5.

[0236] A DC voltage was applied across the organic EL device. Initially, the device was found to produce light emission to a luminance of 534 cd/m² when operated at a current density of 10 mA/cm² and a drive voltage of 5.9 volts. The

current efficiency was 5.3 cd/A, the power efficiency was 2.8 lm/W, and the chromaticity coordinates (x, y) were (0.65, 0.35). When the device was continuously driven by conducting a constant current of 50 mA/cm², it exhibited an initial luminance of at least 2,391 cd/m² and a luminance attenuation of up to 10% after 2,000 hours.

5 Example 11

[0237] An organic EL device was prepared as in Example 1 except that the host material and the dopant in the light emitting layer were changed to the following compounds.

15
HOST

20
25

30
35
DOPANT

The host material and the dopant were evaporated in a weight ratio of 99:1 and at an overall deposition rate of 0.1 nm/ sec to a thickness of 40 nm, forming a light emitting layer. The dopant material had to be heated at 460°C or higher for purification by sublimation.

[0238] A DC voltage was applied across the organic EL device. Initially, the device was found to produce light emission to a luminance of 505 cd/m² when operated at a current density of 10 mA/cm² and a drive voltage of 5.7 volts. The current efficiency was 5.1 cd/A, the power efficiency was 2.8 lm/W, and the chromaticity coordinates (x, y) were (0.65, 0.35). When the device was continuously driven by conducting a constant current of 50 mA/cm², it exhibited an initial luminance of at least 2,330 cd/m² and a luminance attenuation of up to 30% after 1,700 hours.

Example 12

50

55

[0239] An organic EL device was prepared as in Example 1 except that the host material and the dopant in the light emitting layer were changed to the following compounds.

HOST

DOPANT

30

35

40

25

The host material and the dopant were evaporated in a weight ratio of 99:1 and at an overall deposition rate of 0.1 nm/ sec to a thickness of 40 nm, forming a light emitting layer.

[0240] A DC voltage was applied across the organic EL device. Initially, the device was found to produce light emission to a luminance of 438 cd/m² when operated at a current density of 10 mA/cm² and a drive voltage of 6 volts. The current efficiency was 4.4 cd/A, the power efficiency was 2.3 lm/W, and the chromaticity coordinates (x, y) were (0.65, 0.35). When the device was continuously driven by conducting a constant current of 50 mA/cm², it exhibited an initial luminance of at least 2,650 cd/m² and a luminance attenuation of up to 10% after 2,300 hours.

Example 13

[0241] An organic EL device was prepared as in Example 1 except that the host material and the dopant in the light emitting layer were changed to the following compounds.

55

The host material and the dopant were evaporated in a weight ratio of 99:1 and at an overall deposition rate of 0.1 nm/ sec to a thickness of 40 nm, forming a light emitting layer.

[0242] The host material and dopant used in this device were assessed for excitation and fluorescence spectra, from which a Stokes shift was computed. The host material had a Stokes shift of 0.24 eV. It is seen from the spectral curves that both the host material and dopant have vibration structures.

15 [0243] The temperature characteristics of the device were examined to find the following luminance change in various temperature ranges:

-40°C to 20°C	≤ -4%
20°C to 60°C	≤ -3%
-40°C to 60°C	≤ -7%.

Example 14

5

20

25

30

35

40

45

50

55

[0244] An organic EL device was prepared as in Example 1 except that the host material and the dopant in the light emitting layer were changed to the following compounds.

The host material and the dopant were evaporated in a weight ratio of 99:1 and at an overall deposition rate of 0.1 nm/ sec to a thickness of 40 nm, forming a light emitting layer. It is noted that the dopant material could be purified by sublimation at a temperature below 360°C.

[0245] A DC voltage was applied across the organic EL device. Initially, the device was found to produce light emission to a luminance of 660 cd/m^2 when operated at a current density of 10 mA/cm^2 and a drive voltage of 5.6 volts. The current efficiency was 6.6 cd/A, the power efficiency was 3.7 lm/W, and the chromaticity coordinates (x, y) were (0.65, y) was (0.65, y) where (0.65, y) was (0.65, y) was (0.65, y) where (0.65, y) was (0.65, y) where (0.65, y) was (0.65, y) where (0.65, y) was (0.65, y) where (0.65, y) was (0.65, y) where (0.65, y) was (0.65, y) where (0.65, y) where (0.65, y) was (0.65, y) where (0.65, y) was (0.65, y) where (0.65, y) was (0.65, y) where (0.65, y) where (0.65, y) where (0.65, y) was (0.65, y) where (0.65, y) where (0.65, y) was (0.65, y) where (0.65, y) where (0.65, y) was (0.65, y) where (0.65, y) wher

0.35). The maximum luminance was 55,000 cd/m². When the device was continuously driven by conducting a constant current of 50 mA/cm², it exhibited an initial luminance of at least 3,530 cd/m² and a luminance attenuation of up to 10% after 500 hours.

5 Example 15

[0246] An organic EL device was prepared as in Example 1 except that the host material and the dopant in the light emitting layer were changed to the following compounds.

10

25

35

30

DOPANT

The host material and the dopant were evaporated in a weight ratio of 99:1 and at an overall deposition rate of 0.1 nm/ sec to a thickness of 40 nm, forming a light emitting layer. It is noted that the dopant material could be purified by sublimation at a temperature below 360°C.

[0247] A DC voltage was applied across the organic EL device. Initially, the device was found to produce light emission to a luminance of 764 cd/m² when operated at a current density of 10 mA/cm² and a drive voltage of 6 volts. The current efficiency was 7.6 cd/A, the power efficiency was 4.0 lm/W, and the chromaticity coordinates (x, y) were (0.65, 0.35). The maximum luminance was 24,500 cd/m². When the device was continuously driven by conducting a constant current of 50 mA/cm², it exhibited an initial luminance of at least 4,200 cd/m² and a luminance attenuation of up to 10% after 500 hours.

Comparative Example 1

[0248] An organic EL device was prepared as in Example 1 except that the host material in the light emitting layer was changed to the following compound.

50

45

20

5

10

[0249] A DC voltage was applied across the organic EL device. Initially, the device was found to produce light emission to a luminance of 160 cd/m² when operated at a current density of 10 mA/cm² and a drive voltage of 6.9 volts. The current efficiency was 1.6 cd/A, the power efficiency was 0.7 lm/W, the chromaticity coordinates (x, y) were (0.61, 0.37), and the maximum luminance was 9,570 cd/m². When the device was continuously driven by conducting a constant current of 145 mA/cm², it exhibited an initial luminance of at least 2,400 cd/m² and a luminance half-life period of less than 300 hours.

Comparative Example 2

[0250] An organic EL device was prepared as in Example 4 except that the host material and the dopant in the light emitting layer were changed to the following compounds.

30

35

45

50

40

DOPANT

The host material and the dopant were evaporated in a weight ratio of 97:3 and at an overall deposition rate of 0.1 nm/ sec to a thickness of 40 nm, forming a light emitting layer.

[0251] The host material and dopant used in this device were assessed for excitation and fluorescence spectra, from which a Stokes shift was computed. The host material and dopant had a Stokes shift of 0.2 eV and 0.31 eV, respectively.

FIG. 3 shows excitation and fluorescence spectra of the host material and dopant. It is seen from the spectral curves that the dopant does not have a vibration structure in the excitation spectrum, and the host material does not have a vibration structure in the fluorescence spectrum.

[0252] The temperature characteristics of the device were examined to find the following luminance change on 10 mA/cm² constant current driving in various temperature ranges:

-40°C to 20°C	≥ -12%
20°C to 60°C	≥ -9%
-40°C to 60°C	≥ -21%.

Comparative Example 3

10

15

20

25

30

35

40

45

50

[0253] An organic EL device was prepared as in Example 4 except that the host material and the dopant in the light emitting layer were changed to the following compounds.

The host material and the dopant were evaporated in a weight ratio of 99:1 and at an overall deposition rate of 0.1 nm/ sec to a thickness of 40 nm, forming a light emitting layer.

[0254] The host material and dopant used in this device were assessed for excitation and fluorescence spectra, from which a Stokes shift was computed. The host material and dopant had a Stokes shift of 0.2 eV and 0.31 eV, respectively. It is seen from the spectral curves that neither the host material nor the dopant has a vibration structure.

[0255] The temperature characteristics of the device were examined to find the following luminance change in various temperature ranges:

-40°C to 20°C	≥ 31%
20°C to 60°C	≥ 18%
-40°C to 60°C	≥ 49%.

[0256] There has been described an organic EL device which emits light to a satisfactory luminance, especially in a long wavelength region, is operated at a constant voltage, and has a sufficient durability to maintain satisfactory light emission performance over a long period of time, experience a minimal voltage rise during continuous operation, and undergo a minimal degradation on driving at elevated temperature. Especially when a red light emitting device is fab-

ricated, it has a high chromatic purity because the host produces little light emission. Over a wide temperature region, the device produces a consistent luminance with minimal changes of efficiency. The device can produce linear luminance characteristics in proportion to current flow over a wide current region covering from the low current region for use in TFT driving to the high current region for use in simple matrix driving and thus provide a satisfactory tone display.

[0257] Japanese Patent Application No. 2000-121724 is incorporated herein by reference.

[0258] Although some preferred embodiments have been described, many modifications and variations may be made thereto in light of the above teachings. It is therefore to be understood that the invention may be practiced otherwise than as specifically described without departing from the scope of the appended claims.

Claims

10

15

20

25

30

35

40

45

55

1. An organic EL device comprising one or more organic layers between a pair of electrodes participating in at least a light emitting function,

at least one of the organic layers containing at least one of organic compounds having basic skeletons of the following formulas (I) to (IV) and at least one organic compound having a skeleton of the following formula (V) at the same time:

$$Q^{5}$$
 Q^{6}
 Q^{1}
 Q^{2}
 Q^{2}
 Q^{8}
(1)

wherein Q^1 to Q^8 are independently hydrogen or substituted or unsubstituted alkyl, aryl, amino, heterocyclic or alkenyl radicals,

$$(R_5)_{r5}$$
 $(R_6)_{r5}$
 $(R_6)_{r6}$
 $(R_4)_{r4}$
 $(R_7)_{r2}$

wherein R_1 , R_2 , R_3 and R_4 are independently aryl, fluorene, carbazolyl, alkyl, alkoxy, aryloxy, amino or halogen radicals, at least one of R_1 , R_2 , R_3 and R_4 is aryl, r1, r2, r3 and r4 each are 0 or an integer of 1 to 5, with the proviso that r1, r2, r3 and r4 are not 0 at the same time, R_5 and R_6 are independently alkyl, alkoxy, amino, aryl or halogen radicals and may be the same or different, r5 and r6 each are 0 or an integer of 1 to 4,

$$(A_{101})_{n} L \qquad (III)$$

wherein A₁₀₁ is a monophenylanthryl or diphenylanthryl radical and may be the same or different, L is hydrogen, a single bond or an n-valent linkage, and n is an integer of 1 to 4,

$$Q_{n}-L_{101}$$
 (IV)

wherein Q is a pyrazinyl radical having fused thereto a six-membered aromatic ring containing 0 to 2 nitrogen atoms and may be the same or different, n is 2 or 3, and L₁₀₁ is a single bond or n-valent radical,

$$\begin{array}{c|c}
X_9 & X_{10} & X_1 \\
L_1 & X_2 & X_3 \\
\end{array}$$

$$\begin{array}{c|c}
X_1 & X_2 & X_3 & X_4 & X_3 \\
\end{array}$$

$$\begin{array}{c|c}
X_1 & X_2 & X_3 & X_4 & X_3 \\
\end{array}$$

5

10

15

20

25

30

35

45

- wherein X₁ to X₁₀, L₁ and L₂ are independently hydrogen, halogen atoms, straight, branched or cyclic alkyl radicals which may have substituents, straight, branched or cyclic alkoxy radicals which may have substituents, straight, branched or cyclic alkylthio radicals which may have substituents, straight, branched or cyclic alkenyl radicals which may have substituents, straight, branched or cyclic alkenyloxy radicals which may have substituents, straight, branched or cyclic alkenylthio radicals which may have substituents, substituted or unsubstituted aralkyl radicals, substituted or unsubstituted aralkyloxy radicals, substituted or unsubstituted aralkylthio radicals, substituted or unsubstituted aryl radicals, substituted or unsubstituted aryloxy radicals, substituted or unsubstituted arylthio radicals, substituted or unsubstituted amino radicals, cyano, hydroxyl, -COOR1 radicals (wherein R1 is hydrogen, a substituted or unsubstituted straight, branched or cyclic alkyl radical, a substituted or unsubstituted straight, branched or cyclic alkenyl radical, a substituted or unsubstituted aralkyl radical or a substituted or unsubstituted aryl radical), -COR2 radicals (wherein R2 is hydrogen, a substituted or unsubstituted straight, branched or cyclic alkyl radical, a substituted or unsubstituted straight, branched or cyclic alkenyl radical, a substituted or unsubstituted aralkyl radical, a substituted or unsubstituted aryl radical or an amino radical), or -OCOR3 radicals (wherein R3 is a substituted or unsubstituted straight, branched or cyclic alkyl radical, a substituted or unsubstituted straight, branched or cyclic alkenyl radical, a substituted or unsubstituted aralkyl radical, or a substituted or unsubstituted aryl radical), or at least two adjoining radicals selected from X_1 to X_{10} , L_1 and L_2 may bond or fuse together to form a substituted or unsubstituted carbocyclic aliphatic ring, aromatic ring or fused aromatic ring with the carbon atoms to which they are attached, or L_1 and L_2 each may be a single bond. n is 1 or 2.
- The organic EL device of claim 1 wherein the at least one of the organic layers contains a host material and a dopant, said host material comprises at least one compound selected from the organic compounds having basic skeletons of the formulas (I) to (IV) and

said dopant comprises at least one compound selected from the organic compounds having a skeleton of the formula (V).

- 3. The organic EL device of claim 1 or 2 wherein in formula (V), at least two adjoining radicals selected from X₁ to X₁₀, L₁ and L₂ bond or fuse together to form a substituted or unsubstituted carbocyclic aliphatic ring, aromatic ring or fused aromatic ring with the carbon atoms to which they are attached.
 - The organic EL device of any one of claims 1 to 3 wherein the compound of formula (V) is a compound of the following formula (VI):

$$X_{12}$$
 X_{13}
 X_{14}
 X_{15}
 X_{16}
 X_{6}
 X_{5}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 X_{10}
 $X_{$

wherein X_1 to X_6 , X_9 , X_{10} , X_{11} to X_{16} , X_{19} and X_{20} are independently hydrogen, halogen atoms, straight, branched or cyclic alkyl radicals which may have substituents, straight, branched or cyclic alkoxy radicals which may have substituents, straight, branched or cyclic alkylthio radicals which may have substituents, straight, branched or cyclic alkenyl radicals which may have substituents, straight, branched or cyclic alkenyloxy radicals which may have substituents, straight, branched or cyclic alkenylthio radicals which may have substituents, substituted or unsubstituted aralkyl radicals, substituted or unsubstituted aralkyloxy radicals, substituted or unsubstituted aralkylthio radicals, substituted or unsubstituted aryl radicals, substituted or unsubstituted aryloxy radicals, substituted or unsubstituted arylthio radicals, substituted or unsubstituted arylalkenyl radicals, substituted or unsubstituted alkenylaryl radicals, substituted or unsubstituted amino radicals, cyano, hydroxyl, -COOR1 radicals (wherein R1 is hydrogen, a substituted or unsubstituted straight, branched or cyclic alkyl radical, a substituted or unsubstituted straight, branched or cyclic alkenyl radical, a substituted or unsubstituted aralkyl radical or a substituted or unsubstituted aryl radical), -COR2 radicals (wherein R2 is hydrogen, a substituted or unsubstituted straight. branched or cyclic alkyl radical, a substituted or unsubstituted straight, branched or cyclic alkenyl radical, a substituted or unsubstituted aralkyl radical, a substituted or unsubstituted aryl radical or an amino radical), or -OCOR3 radicals (wherein R3 is a substituted or unsubstituted straight, branched or cyclic alkyl radical, a substituted or unsubstituted straight, branched or cyclic alkenyl radical, a substituted or unsubstituted aralkyl radical, or a substituted or unsubstituted aryl radical), or at least two adjoining radicals selected from X_1 to X_{20} may bond together to form a substituted or unsubstituted carbocyclic aliphatic ring, aromatic ring or fused aromatic ring with the carbon atoms to which they are attached.

5. The organic EL device of claim 4 wherein the compound of formula (VI) is a compound of the following formula (VI):

$$X_{32} \xrightarrow{X_{31}} X_{11} \xrightarrow{X_{20}} X_{19} \xrightarrow{X_{9}} X_{10} \xrightarrow{X_{1}} X_{41} \xrightarrow{X_{42}} (VI')$$

wherein X_1 to X_{44} are as defined for X_1 to X_{20} in formula (VI).

5

10

15

20

40

45

- 6. The organic EL device of claim 4 or 5 wherein X₁ to X₂₀ in formula (VI) and X₁ to X₄₄ in formula (VI') are independently substituted or unsubstituted aryl, alkenyl, alkoxy or aryloxy radicals.
 - 7. The organic EL device of any one of claims 4 to 6 wherein at least one of X₁ to X₂₀ in formula (VI) and X₁ to X₄₄ in formula (VI') is an ortho-substituted phenyl radical.
 - The organic EL device of any one of claims 4 to 7 wherein in formula (VI) or (VI'), either one or both of X₁ and X₄ and/or either one or both of X₁₁ and X₁₄ are ortho-substituted phenyl radicals.
 - The organic EL device of any one of claims 1 to 8 wherein said at least one of the organic layers contains at least one organic compound having a basic skeleton of the formula (I).
 - 10. The organic EL device of any one of claims 1 to 9 wherein said at least one of the organic layers contains at least one organic compound having a basic skeleton of the formula (I) and at least one organic compound having a basic skeleton of the formula (II) at the same time.
 - 11. The organic EL device of any one of claims 4 to 10 wherein at least one of the organic compounds has a vibration structure in both an excitation spectrum and a fluorescence spectrum.
- 12. The organic EL device of any one of claims 4 to 11 wherein at least one of the organic compounds has a Stokes shift of up to 0.1 eV.
 - 13. The organic EL device of any one of claims 4 to 12 wherein the host material in a light emitting layer has a greater electron affinity than an electron transporting layer and/or a hole transporting layer.

- 14. The organic EL device of any one of claims 1 to 13 wherein the organic compound having a basic skeleton of the formula (I) is one wherein at least two of Q¹ to Q⁸ are substituted or unsubstituted aryl radicals.
- 15. The organic EL device of claim 14 wherein the organic compound having a basic skeleton of the formula (I) is one wherein at least six of Q¹ to Q⁸ are substituted or unsubstituted aryl radicals.

5

15

25

35

40

45

50

- 16. The organic EL device of claim 14 or 15 wherein the organic compound having a basic skeleton of the formula (I) is one wherein at least two of Q¹, Q², Q³ and Q⁴ are substituted or unsubstituted aryl radicals.
- 17. The organic EL device of any one of claims 14 to 16 wherein the organic compound having a basic skeleton of the formula (I) is one wherein at least four of Q¹, Q², Q³ and Q⁴ are substituted or unsubstituted aryl radicals.
 - 18. The organic EL device of any one of claims 14 to 17 wherein at least two of the aryl radicals represented by Q¹, Q², Q³ and Q⁴ have aryl radicals substituted thereon.
 - 19. The organic EL device of any one of claims 2 to 18 wherein the at least one of the organic layers contains 80 to 99.9% by weight of the host material.
- 20. An organic EL device wherein at least one of organic layers contains at least one organic compound having a basic skeleton of the formula (I) as set forth in claim 16 and at least one organic compound having a basic skeleton of the formula (IV').
 - 21. The organic EL device of any one of claims 1 to 20, further comprising at least one hole injecting and transporting layer.
 - 22. The organic EL device of any one of claims 1 to 21, further comprising at least one electron injecting and transporting layer.
- 23. An organic EL device comprising one or more organic layers between a pair of electrodes participating in at least a light emitting function, wherein the one or more organic layers contain organic compounds, at least one of which has a vibration structure in both an excitation spectrum and a fluorescence spectrum.
 - 24. An organic EL device comprising one or more organic layers between a pair of electrodes participating in at least a light emitting function, wherein the one or more organic layers contain organic compounds, at least one of which has a Stokes shift of up to 0.1 eV.
 - 25. The organic EL device of claim 24 wherein a host material in a light emitting layer has a greater electron affinity than an electron transporting layer and/or a hole transporting layer.

FIG. 1

FIG. 2

FIG. 3

				*		f.
	•					
		•				
			•			
					Y.	
		s.				
				7.		
						;
				a .		
•						
· ·					4	
1						
e alle la 2011 un arasanda de	The second secon	- w.j.: - was 15 -		The second of th	e and a second of the second	a a records
			4	1 ₂ 42		
1		in the second	7	w	(1.0)	
		* *			* 1	
				u ×		
			5			
		T *	we and	€.	÷.	
**	,			· · · · · · · · · · · · · · · · · · ·	7	

		y				
		* .			*	
w ¹				e i	· .	
	- 14°	April April April				
The same of			The state of the s		*	
Section of the	and the second second	and the last A to day to the last of	Who The Line	all a second de season de	1 000	A Carlos Carlos