Section 2.6 Shape Analysis

Reporter: Xie Li

August 30, 2021

Syntax of Pointer Language

Selectors: a set of selector names are given (What can be selectors?)

$$sel \in \mathbf{Sel}$$

A set of pointer expressions.

$$p \in \mathbf{PExp}$$

where $p := x \mid x.sel$ The extended WHILE-language:

Arithmetic a is extended to pointer expressions, but not pointer arithmetic. op_r allows equality test for pointers.

Structural Operational Semantics Basic Definitions

- An infinite set of locations Loc: $\xi \in \text{Loc}$.
- A set of states State: $\sigma \in \mathbf{State} = \mathbf{Var}_* \to (\mathbf{Z} + \mathbf{Loc} + \{\diamond\})$
- A set of heaps Heap: $\mathcal{H} \in \mathbf{Heap} = (\mathbf{Loc} \times \mathbf{Sel}) \rightarrow_{fin} (\mathbf{Z} + \mathbf{Loc} + \{\diamond\})$

where the partial means not all selector fields need to be defined.

The semantic of pointer arithmetic is given by:

- oval nodes: heap cells
- ξ_i s': locations
- labelled edges: heap
- unlabelled edges: state

Semantics of Expressions

Extend the old semantic to store and heap:

Semantics of Statements

•
$$\langle [x := a]^{\ell}, \sigma, \mathcal{H} \rangle$$

•
$$\langle [x.sel := a]^{\ell}, \sigma, \mathcal{H} \rangle$$

• malloc: allocation for pointers.

Semantic of Statements

For malloc: a limited reused strategy is used.

- ullet x can be reused: $[\mathrm{malloc}x]^1$; $[x:=\mathrm{nil}]^2$; $[\mathrm{malloc}x]^3$
- x cannot be reused although unreachable: $[\mathrm{malloc} x]^1; [x.cdr:=\mathrm{nil}]^2; [x:=\mathrm{nil}]^3; [\mathrm{malloc} x]^4$

Shape Graphs: Abstraction of the Memory Configurations

Definition

Shape Graph A shape graph is a triplet (S, H, is), where

• Abstract state S is a map from variables to abstract locations:

$$S \in \mathbf{AState} = \mathscr{P}(\mathbf{Var}_* \times \mathbf{ALoc})$$

Abstract heap H is set specifies the links between abstract locations :

$$H \in \mathbf{AHeap} = \mathcal{P}(\mathbf{ALoc} \times \mathbf{Sel} \times \mathbf{ALoc})$$

• A set of abstract locations that are shared:

$$is \in IsShared = \mathcal{P}(ALoc)$$

Abstract Locations

The abstract locations have the form n_X where X is a subset of the variables of Var_* :

$$ALoc = \{n_X \mid X \subseteq Var_*\}$$

Finiteness: the set Var_* is finite.

- Intuitively, n_X is the abstraction of the location $\sigma(x)$ of pointer variables $x \in X$
- We shall enforce:
 - **Invariant 1:** If n_X and n_Y occur in the same shape graph, then either X = Y or $X \cap Y = \emptyset$.
- We use abstract summary location n_{\emptyset} to represent all locations that cannot be reached directly from the state without using the heap.

Example of Abstract Locations

Abstract States and Heaps

• Abstract state: Abstract state S is a map from variables to abstract locations:

$$S \in \mathbf{AState} = \mathcal{P}(\mathbf{Var}_* \times \mathbf{ALoc})$$

Invariant 2. If x is mapped to n_X by the abstract state then $x \in X$.

Define the set $ALoc(S) = \{n_X \mid \exists x : (x, n_X) \in S\}$ to be the abstract locations occurring in S.

• Abstract heap: heap H is set specifies the links between abstract locations :

$$H \in \mathbf{AHeap} = \mathcal{P}(\mathbf{ALoc} \times \mathbf{Sel} \times \mathbf{ALoc})$$

Intuitively, if $\mathcal{H}(\xi_1,sel)=\xi_2$ and ξ_1,ξ_2 are represented by n_V,n_V resp., then $(n_V,sel,n_W)\in \mathsf{H}.$

Invariant 3. Whenever (n_V, sel, n_W) and $(n_V, sel, n_{W'})$ are in the abstract heap, then either $V = \emptyset$ or W = W'.

Both abstract state and abstract heap are changing along the execution.

Example of Abstract States and Heaps

Sharing Information

A set of abstract locations that are shared due to pointers in the *heap*:

$$\mathtt{is} \in \mathbf{IsShared} = \mathscr{P}(\mathbf{ALoc})$$

Sharing Information

With above observations we have following invariant:

And the connection of is to the abstract heap H:

Sharing information clearly gives extra information: \textit{n}_{\emptyset}

Use of Shape Graph

The Complete Lattice of Shape Graph

$$\begin{split} \mathbf{S} &\in \mathbf{AState} = \mathscr{P}(\mathbf{Var}_* \times \mathbf{ALoc}) \\ \mathbf{H} &\in \mathbf{AHeap} = \mathscr{P}(\mathbf{ALoc} \times \mathbf{Sel} \times \mathbf{ALoc}) \\ \mathbf{is} &\in \mathbf{IsShared} = \mathscr{P}(\mathbf{ALoc}) \end{split}$$

$$\mathbf{ALoc} = \{ n_Z \mid Z \subseteq \mathbf{Var}_* \}.$$

A shape graph (S,H,is) is compatible if it satisfies **Invariant 1.- 5.**, the set of compatible shape graphs is denoted:

$$\mathbf{SG} = \{(S,H,is) \mid S,H,is is compatible\}$$

The analysis will operate over on $\mathcal{P}(SG)$. Since it is a power set, it is trivially a complete lattice over union and subset relation. Due to the finiteness of Var_* is finite.

The Analysis: Basic Framework

An instance of monotone framework: let $\mathcal{P}(\mathbf{SG})$ be the complete lattice of properties. For label consistent program S_* , we obtain a set of equations by

In the following, the transfer functions over different statements will be developed. The transfer function associate with label $l\colon f_\ell^{\mathrm{SA}}: \mathscr{P}(\mathbf{SG}) \to \mathscr{P}(\mathbf{SG})$.

$$f_{\ell}^{\mathrm{SA}}(SG) = \bigcup \{\phi_{\ell}^{\mathrm{SA}}((\mathrm{S},\mathrm{H},\mathrm{is})) \mid (\mathrm{S},\mathrm{H},\mathrm{is}) \in SG\}$$

 $\phi_{\ell}^{\mathrm{SA}}:\mathbf{SG}\to\mathcal{P}(\mathbf{SG}).$

Transfer Functions

- \bullet For $[b]^\ell$ and $[\mathrm{skip}]^\ell\colon\,\phi_\ell^{\mathrm{SA}}((\mathrm{S},\mathrm{H},\mathrm{is}))=\{(\mathrm{S},\mathrm{H},\mathrm{is})\}$
- For $[x := a]^{\ell}$ where a is of the form $n, a_1 o p_a a_2$ or nil:
 - ullet Renaming of abstract locations to exclude x: $k_x(n_Z) = n_{Z\setminus\{x\}}$
 - \bullet Function $\phi_{\ell}^{\rm SA}$ is given by

Transfer Functions

- For $[x := y]^{\ell}$: x = y. $x \neq y$
- Based on previous (S', H', is'):

Here (y', n_Y) means n_Y must can be visit by a pointer variable by state.

Transfer Functions

• For $[x:=y.sel]^{\ell}$, we can regard it as an equivalent sequence:

$$[t := y.sel]^{l_1}; [x := t]^{l_2}; [t := nil]^{l_3}$$

and

$$f_{\ell}^{\mathrm{SA}} = f_{\ell_3}^{\mathrm{SA} \cdot f_{\ell_2}^{\mathrm{SA}}}$$