Second-order Møller-Plesset Perturbation Theory (MP2)

The Molecular Sciences Software Institute

Daniel G. A. Smith

I. CANONICAL MP2

For a canonical RHF reference the MP2 equations are rather straightforwardly,

$$E_{\text{MP2}} = \frac{(ia|jb)(ia|jb)}{\epsilon_i + \epsilon_j - \epsilon_a - \epsilon_b} - \frac{[(ia|jb) - (ib|ja)](ia|jb)}{\epsilon_i + \epsilon_j - \epsilon_a - \epsilon_b} \tag{1}$$

Where the first term is often noted as the opposite-spin (OS) term while the second, the same-spin (SS) term. Its worth thinking about why these are labeled in this way, and why the same-spin term has an exchange-like component to it. There is also a variant of MP2 which attempts to correct for the MP2 errors by scaling the spin term separately, this is denoted as spin-component scaled MP2 (SCS-MP2)¹. The following parameters are often used,

$$E_{SCS-MP2} = \frac{1}{3}E_{MP2-SS} + \frac{6}{5}E_{MP2-OS}$$
 (2)

The rate-limiting step of MP2 is the four-index transformation of the ERI tensor from atomic to molecular orbitals,

$$(ia|jb) = C_{\mu i}C_{\nu a}(\mu\nu|\lambda\sigma)C_{\lambda j}C_{\sigma b}$$
(3)

If this is performed in a single step this cost is $\mathcal{O}N^8$! However, factoring this However, factoring this transformation leads to rather straightforward intermediates and the overall contraction scales as $\mathcal{O}N^5$ as seen below,

$$(i\nu|\lambda\sigma) \leftarrow C_{\mu i}(\mu\nu|\lambda\sigma)$$

$$(i\nu|j\sigma) \leftarrow C_{\lambda j}(i\nu|\lambda\sigma)$$

$$(ia|j\sigma) \leftarrow C_{\nu a}(i\nu|j\sigma)$$

$$(ia|jb) \leftarrow C_{\sigma b}(ia|j\sigma)$$

$$(4)$$

Notice the order of occupied indices and then virtual indices, as the virtual index is generally much larger than the occupied one this ordering is quite important for performance.

II. DENSITY-FITTED MP2

The density-fitted discussion in the JK algorithm notes recall,

$$g_{\mu\nu\lambda\sigma} \approx (\mu\nu|P)(P|\lambda\sigma)$$
 (5)

At this point is would be trivial to reform the (ia|jb) tensor; while this would be slightly cheaper than the direct transformation of the 4-index integral above we would still create a large matrix in memory which is best avoided.

A better approach would be to build small blocks of the (ia|jb) tensor at a time. Consider the following pseudocode,

```
for i in range(ndocc):
    for j in range(i, ndocc):
        I_ab <- iaQ jbQ</pre>
```

In the above we only build a single block of virtual by virtual integrals which can than be contracted into the energy. This is one of the primary benefits of density-fitted MP2 builds.

Unlike the JK example previous you want to use a different fitting basis, in this case the RIFIT which has been optimized to recover MP2-like energies rather than the JK like properties used previously.

```
# Build the complementary RIFIT basis for the aug-cc-pVDZ basis (for example) psi4.core.BasisSet.build(mol, fitrole="RIFIT", other="aug-cc-pVDZ")
```

REFERENCES

¹S. Grimme, J. Chem. Phys. **118**, 9095 (2003).