A 217 670

	REPORT	DOCUMENTATIO	N PAGE	Form Approved OMB No. 0704-0188				
٦	18. REPORT SECURITY CLASSIFICATION Unclassified	Mariante de la companya de la compa	1b. RESTRICTIVE MARKINGS					
	2a. SECURITY CLASSIFICATION AUTHORITY	3. DISTRIBUTION	AVAILABILITY OF R	REPORT				
I	2b. DECLASSIFICATION/DOWNGRADING SCHEDU	LE	Approved for public release; distribution unlimited					
ł	4. PERFORMING ORGANIZATION REPORT NUMBER	R(S)	L	ORGANIZATION REP				
				ONDANIER HON REP				
	6a. NAME OF PERFORMING ORGANIZATION George Washington University	6b. OFFICE SYMBOL (If applicable)	73. NAME OF MONITORING ORGANIZATION					
Ī	6c. ADDRESS (City, State, and ZIP Code)		76. ADDRESS (Cit	y, State, and ZIP Coo	and the same of th			
I	Department of Electrical Engine	ering			The state of the s			
۱	and Computer Science		}					
ŀ	Washington DC 20052 8a. NAME OF FUNDING SPONSORING	86. OFFICE SYMBOL	9. PROCUREMENT	INSTRUMENT IDEN	ITIFICATION NUMBER			
	ORGANIZATION U.S. Army Medical Research & Development Command	(If applicable)	Contract	Contract No. DAMD17-84-C-4129				
ļ	8c. ADDRESS (City, State, and ZIP Code)	<u> </u>	10. SOURCE OF F	UNDING NUMBERS				
1	Fort Detrick		PROGRAM ELEMENT NO.		ASK WORK UNIT NO. ACCESSION NO.			
	Frederick, Maryland 21701-5012		63764A	NO. 3M46 3764D995	AB 017			
1	11. TITLE (Include Security Classification) Pattern Recognition of Cardiov	vascular and Psy	chomotor Var	<u> </u>				
L	Pharmacological Agents							
l	12. PERSONAL AUTHOR(S) Murray H. Loew, Linda Sibert							
H	13a. TYPE OF REPORT 13b. TIME CO	VERED	14. DATE OF REPO	RT (Year, Month, Da	y) 15. PAGE COUNT			
L	والمراجعة	5/85 to 4/14/86	1986 Augu	st	127			
BETS-ALCED	16. SUPPLEMENTARY NOTATION							
H	17. COSATI CODES	10 SUDJECT TERMS		of account and in	danife by black number			
H	FIELD GROUP SUB-GROUP		Continue on reverse if necessary and identify by block number) Recognition; Signal Processing; Time					
t	09 02	Series; Point						
L	06 - 16		•					
I.	 ABSTRACT (Continue on reverse if necessary onent of pattern-recognition and 	end identity by block ni sianal-processi	umber) The goal	l of this pro	ject is the develop-			
ľ	ponsivity to challenge when appl	ied to Armv-sup	ng methods th plied human d	ardio-vascul	ar and nevchomotor			
ŀ	lata. Time-series and point-pro	cess techniques	will form th	ne basis of the	he approach, and the			
į	assumptions that underlie the me	thods will be e	xamined and t	ested. The	relationship of infre-			
٩	quent and brief events, if any,				1.1.1			
L	This report presents the re							
	along three parallel lines: the design, implementation, and testing of data-preprocessing steps that restore physiologic integrity to noise-corrupted data; the preliminary implementa-							
ŀ	tion and evaluation of several clustering and pattern-recognition methods; and the selection							
	of a data-segmentation algorithm for the particioning of time-series data. The work followed							
	naturally from that of the previous year, in which we reviewed the state of the art of the							
ì	understanding of the links between the noninvasive measurements described here, and the underlying physiology. Plans are descirbed for the third year of the work, which will combine those separate							
L	Plans are descirbed for the	third year of	the work, whi	ch will comb	ine those separate			
1	20. DISTRIBUTION/AVAILABILITY OF ABSTRACT UNCLASSIFIED/UNLIMITED SAME AS RI		21. ABSTRACT SECURITY CLASSIFICATION Unclassified					
12	Za. NAME OF RESPONSIBLE INDIVIDUAL	- One oseks	22b. TELEPHONE (H	nclude Area Code)	22c. OFFICE SYMBOL			
L	Mrs. Virginia Miller		301/663-7	7325	SGRD-RMI-S			
D	D Form 1473, JUN 86	Previous editions are o	obsolete.	SECURITY CLA	ASSIFICATION OF THIS PAGE			

Previous editions are obsolete.

SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

-D	 	

Pattern Recognition of Cardiovascular and Psychomotor Variability in Response to Pharmacological Agents

Annual Progress Report

Murray H. Loew Linda Sibert

August 1986

Supported by
UNITED STATES ARMY MEDICAL RESEARCH AND DEVELOPMENT COMMAND
Fort Detrick, Frederick, Maryland 21/01-5012

Contract No. DAMD1/-84-C-4129

Department of Electrical Engineering and Computer Science The George Washington University Washington, DC 20052

DOD Distribution Statement

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents

		TABLE OF CONTENTS	PAGE
Rep	le Page ort Do tents	e cumentation Page (DD Form 14/3)	
Abs	tract		1
-	eword		2
	t of F	-	3
Lis	t of T	ables	ל
ł.	Intro	duction	6
2.	Scope	of Work and Progress to Date	6
		Data	6
	2.2	Preprocessing	৪
		2.2.1 R-R Interval Data	8
		2.2.1.1 Algorithm. Part 1: Preprocessing and Elimination of Noise Caused by Stopping the Tape	y
		2.2.1.2 Algorithm, Part 2: Convervative Approach	
		2.2.1.3 Algorithm. Part 3	11
		2.2.2 Noise Removal: Actigraph Data	12
	2.3	Segmentation	13
		2.3.1 Part 1	15
		2.3.1.1 Rough Boundary Searching	15 16
		2.3.1.2 Optimum Boundary Searching 2.3.2 Part 2	18
	9 4	Feature Extraction	19
	_	Clustering	19
		Evaluation	20
		Feature Selection	20
		Classitier Design	70
		2.8.1 Parametric Methods	20
		2.8.1.1 Introduction	20
		2.8.1.2 The Bayes Decision Rule for Minimum	
		Error	21
		2.8.2 A Nonparametric Method: The Empirical	
		Processing Algorithm (EPA)	23
		2.8.2.1 Origin of the EPA and the Structure	
•		ot Its Classifier	23
		2.8.2.1.1 Background and Development of	
		the EPA	23
		2.8.2.1.2 The General Classifier Structure	25
		2.8.2.2 Construction of the Classifier 2.8.2.2.1 Introduction	28
			28
		2.8.2.2.2 The Algorithm $2.8.2.2.3$ Comments on the Use of two	28
		Algorithm	32
		2.8.3 Examples	32
	2.9		33
3.	Result		34
4.	Conclu		36
5.		for the Coming Year	36
6.		ography	36

Appendix A. program	Flowcharts for preprocessing and noise removal	38
Appendix B.	Classifier Testing Results	39
Appendix C.	Preprocessing and noise removal program	40
Appendix D. and noise r	Plots of ECG data before and after preprocessing emoval	41
Appendix E.	Part one of segmentation program	42
Appendix F.	Classifier variable definitions	43

• ,

LIST OF FIGURES

Figure	1
	2
Figure	3
Figure	4
Figure	2-1 The Basic Selection Unit
Figure	2-2 Structure of a Typical Classifier27
Figure	2-3 Conceptual Internal Structure of a BSU29
Figure	2-4 Illustration of Basic Algorithm with Score=41, K=5,0=330
Figure	B-153
Figure	B-269

LIST OF TABLES

Table	1	-	Task Sequence	. 7
Table	2	-	Experiment Protocol	8

Abstract

The goal of this project is the development of pattern-recognition and signal-processing methods that will provide indices of responsivity to challenge when applied to Army-supplied human cardio-vascular and psychomotor data. Time-series and point-process techniques will form the basis of the approach, and the assumptions that underlie the methods will be examined and tested. The relationship of frequent and brief events, if any, to the indices will be elucidated.

This report presents the results of the work over the past year, which has proceeded along three parallel lines: the design, implementation, and testing of data-preprocessing steps that restore physiologic integrity to noise-corrupted data; the preliminary implementation and evaluation of several clustering and pattern-recognition methods; and the selection of a data-segmentation algorithm for the partitioning of time-series data. The work followed naturally from that of the previous year, in which we reviewed the state of the art of the understanding of the links between the noninvasive measurements described here, and the underlying physiology.

Plans are described for the third year of the work, which will combine those separate tasks into a single tool for physiologic state characterization.

FOREWORD

Citations of commercial organizations and trade names in this report do not constitute an official Department of the Army endorsement or approval of the products or services of these organizations.

. .

1. Introduction

The study of heart-rate variability (HRV) has become of increasing interest, especially in the 10 years since the Biological Engineering Society held a meeting on the subject in London. In addition to the studies dealing with underlying physiology, analysis techniques, and applications to physiology, there has been work in applications: e.g., the estimation of levels of workload, and detection of mental illness, using the HRV.

In a monitoring environment, where an individual's ability to perform a task is to be described, it is important to have a rapid, unambiguous measure. Because of the relationship of sleep and sleep deprivation to performance, it seems reasonable to evaluate the effect of adding a sleep-related parameter to any kind of noninvasive measurement system.

Accordingly, we are considering in this work the combination of HRV and an activity measure (recorded with an actigraph or actometer) to assess performance. The ways in which the data are processed and described are presented in the following report.

2. Scope of Work and Progress to Date

Our approach makes use of pattern-recognition and signal processing techniques in the development of methods for classifying human cardiovascular and psychomotor response to challenge. Table I presents the sequence of tasks which constitute our effort. Detailed information about the topics represented by each box make up the bulk of this report.

It is important to note that a number of the tasks have been proceeding in parallel. Tasks 2.2, 2.4 (development of computer programs). 2.8 and 2.9 (development of programs and performance evaluation using sample data from outside this project) are essentially complete. The programs developed there are now ready for immediate application once Task 2.3 (segmentation of signals) has been completed.

2.1 Data

The actigraph and R-R interval signals supplied by the Army were each broken into 10 twenty-four hour periods which are further subdivided into half-hour files. The data are binary with no end-of-tile marks. These tiles have been converted into ASCII tiles, uploaded onto the IBM 4341, and stored on a tape. A VAX 11//80 version of that tape also has been produced.

The data come from a study of the effect of different doses of atropine on the heart and physical movement. Two males in their twenties participated. The subjects were hospitalized, ambulatory but restricted. During the experiment, an ECG and an actigraph signal were continuously recorded. The subjects wore actigraphs on their right wrists which recorded a voltage signal proportional to the amount of g-torce of the wrist in the lateral-medial plane.

TABLE 1 TASK SEQUENCE

2.1	Receive raw R-R interval and actigraph waveforms from the Army.
2.2	Remove noise. Base algorithms on physiological criteria and known instrumentation artifacts. Collect statistics about number and kinds of problems.
2.3	Segment actigraph and R-R interval signals.
2.4	Extract features from each segment. Work in both the time domain and frequency domain. Study correlation among features. Choose those least correlated.
2.5	Use clustering algorithms to learn the natural groupings of the segments in feature space.
2.6	Use segment labels to be provided by Walter Reed to evaluate the results of clustering.
2.7	Reduce the number of features using dimensionality- reduction techniques.
2.8	Build classifiers. Examine both parametric and nonparametric models.
2.9	Test classifiers with new data and evaluate performance.

The experiment was conducted over 5 non-contiguous days, one for each level of atropine. Atropine was given about 30 minutes after the start of each session, either in an intravenous or intramuscular form. Table 2 outlines the protocol used.

Table 2
EXPERIMENT PROTOCOL

Study Schedule	Subject	1	Subject 2		
Day	Start Time	Dose	Start Time	Dose	
1 2	0907 0717	0.0 0.5 mg IM	0818 0847	1.0 mg IM 2.0 mg IV	
3	0835	1.0 mg IM	0921	U.5 mg IM	
4	0837	2.0 mg IM	0912	0.0	
כ	0835	$2.0~{ m mg~IV}$	0909	2.0 mg Im	

The Army performed the following operations on the data before providing it for analysis. Both the ECG and actigraphy signals were converted to digital form. On playback, the actigraphy signal was amplified (Oxford Event Demodulator Amplifier model PM-3) and filtered (bandpass filter [.04-4 Hz] by Coulbourn Instrument model S/>-36). The signal was sampled with a programmable digital oscilloscope (Norland model 3001A with 128K-word buffer memory for the channel). The signal was sampled at an effective rate of 15 Hz and the RMS value of each 2-sec interval stored in a Corona computer running under MS-DOS 1.00. For the ECG signal, the R-peaks were detected using a maximum-slope detection algorithm with a real sampling rate of 400 Hz. The R-R intervals were stored. Both the processed ECG and actigraphy data were divided into half-hour tiles.

2.2 Preprocessing

Before the data can be analyzed, any noise produced by instrumentation and physiological artitacts must be removed. Data adjustment algorithms have been written to process R-R interval and actigraph data. Statistics on the number and kinds of problems which appear in the data will be kept for future analysis which may lead to more streamlined data-adjustment algorithms.

2.2.1 R-R Interval Data

Noise can be introduced into the ECG data in three ways: (1) physiologic artifacts, (2) tape-drive-induced artifact, and (3) residual instrument noise. To identify the noise in the signal, we determined an acceptable range for heart rate. We reviewed the physiological literature which indicated that a normal heart rarely talls below a resting heart rate of 35 beats per minute (bpm) or above 200 bpm which can be reached during extremely vigorous exercise. A

reasonable acceptable range, therefore, is 40 bpm to 180 bpm (corresponding to R-R intervals between 333 ms and 1499 ms). By this standard, the ECG data are fairly noise-tree. On average, only 2% of the intervals in each 30-minute tile are out of range.

A three-part algorithm, described in detail below, was developed to eliminate the noise from each ECG file. The first part truncates the data file to eliminate the tape stoppage noise which appears as a cluster of intervals less than 333 ms, about 150 intervals from the end of each file. The second part makes adjustments to the data in a conservative manner. The algorithm is designed so that most of the correction happens here. The third part is made up of two sections, both of which are designed to change the data file just enough to allow the second part of the algorithm to resume. The flow chart of the following algorithm can be found in Appendix 1.

At the beginning and end of this process, information about the original data set, the difficulty of the noise-elimination task, and the resulting noise-free data set is stored for use in developing confidence measures needed in future analysis. Specifically, the following information about each file is kept:

- 1. the amount of time truncated from the data file which represents bad data due to tape stoppage.
- 2. the number of times the algorithm reached a point between the second and third parts, a measure of how difficult it was to correct the data.
- 3. the number of intervals less than 333 ms.
- 4. the number of intervals between 1500 and 2999 ms.
- o. the number of intervals greater than 2999 msec..
- 6. the number and lengths of runs of intervals between 333 and 1499 ms. our acceptable range.

After truncation, the majority of out-of-range intervals in each tile tall between 1500 and 2999 ms. Those greater than 2999 ms constitute the next largest group. Intervals less than 333 ms rarely occur.

2.2.1.1 Algorithm Part 1: Preprocessing and Elimination of Noise Caused by Stopping the Tape

The goal of this part of the algorithm is to cut the data file at the earliest interval in the cluster of short intervals caused by stopping the tape during processing. The method used is a search procedure which locates this point by using our knowledge that a cluster of short intervals, occuring more densely than anywhere else in the tile, occurs between 100 and 200 intervals from the end of each tile.

First, tive non-overlapping windows, which each hold five intervals, move as one window from the end of each file toward the

beginning. examining one interval at a time. When three out of the five windows contain at least one interval less than 333 ms, the search stops. We want our chosen interval to be in a region containing many short intervals and not to be an isolated point. The interval less than 333 ms which is closest to the end of the file is selected. From that interval, we jump 150 intervals back in time into a section of the file which should be near the cluster of short intervals. At this point, 2 windows of 15 intervals each are created. They are moved back in time, in a step-wise, non-overlapping fashion, until no short intervals are contained in the left window. When this occurs, the focus switches to the right window which is moved one interval at a time toward the end of the file (i.e., to the right), until the window contains at least three intervals smaller than 333 ms. The file is truncated at this earliest short interval.

2.2.1.2 Algorithm Part 2: Conservative Approach

For the remaining discussion of the algorithm, it is useful to visualize an interval, with a left neighborhood made up of the intervals which precede it in time, and a right neighborhood that contains the intervals which tollow it in time. These neighborhoods will always be qualified by a number which is the size of the neighborhood (i.e., the number of members in the set called neighborhood).

In Part 2, the out-of-range data values (those not between 333 and 1499 ms) are broken into three cases. The first is called short and contains all values less than 333 ms. The second is called medium and contains the intervals between 1500 and 2999 ms. The large case contains all intervals greater than 2999 ms.

Short intervals can be the result of equipment-caused noise or an extra systole which is a premature contraction of the heart originating at a site other than the usual pacemaker. An extra systole can cause the cardiac cycle to lengthen slightly. In either case, a talse R-peak has been detected. This short interval probably belongs to one of its immediate neighbors (if it has been caused by noise), and its sum with the neighbor should be close to the lengths of the other intervals surrounding it. If it is an extra systole, the length of the sum will be somewhat larger than that of those intervals surrounding it.

Case 1. which deals with these short intervals, requires that three intervals in the acceptable range lie on either side of the short interval. This short interval is than added to each neighbor. and these two sums are compared with the mean of the six closest neighbors. The sum closer to the mean is chosen and accepted as the correct interval, if it is less than 1500 ms.

Medium intervals are the result of system noise. The average heart interval is about $750~\rm ms$, and $2999~\rm ms$, the longest medium interval, represents four $750-\rm ms$ intervals. Our strategy, therefore, is based on the fact that these intervals represent no more than three missed peaks.

In Case 2, each medium interval is divided into equal sub-intervals based on the size of the median interval of its surrounding neighborhood. To qualify for this procedure, a medium interval must have either four contiguous neighbors on each side in the range of 333

to $1499~\mathrm{ms}$, or three contiguous neighbors on each side in that range. The median of those neighbors is calculated.

We chose not to use an unequal number of in-range neighbors from each side in order not to bias the median determination. Four and three were chosen since they represent enough time to estimate the rate in that area. Including more neighbors would give influence to intervals too far away in time to be related. It has been noted [1,2] that heart rate can be altered by the sympathetic system within a tew beats at most and within a cycle at best.

The interval is partitioned into sub-intervals the size of the neighborhood median: any remaining time is distributed among the sub-intervals. At this point, if any interval is greater than 1499 ms or the remainder is greater than half the mediam, the original interval is repartitioned into the number of previous subintervals plus one, and the new remainder distributed.

Intervals exceeding 2999 ms arise when three or more consecutive R-peaks are missed; we call this situation the large case. Any information about heart rate acceleration or deceleration would be lost if this larger span of time simply were divided into equal pieces. Another strategy has been chosen.

Again, two contiguous neighborhoods of intervals in the acceptable range are required, but this time each neighborhood is a "spanning set" made up of a varying number of intervals whose total time equals or just exceeds the amount of time in the large interval. From these spanning sets, we calculate a left limit and a right limit for an arithmetic progression that is used to divide the large interval. When the variation in a spanning set is in the range ±20%, we use the mean of the set as the limit associated with that spanning set. Otherwise, we use the median, which is less affected by extreme values.

2.2.1.3 Algorithm Part 3

The program iterates through Part 2 until there are no more out-of-range intervals which meet the requirements, principally that an interval must have intervals in the range of 333 to 1499 ms on either side of it. At this point, Section A of Part 3 is invoked. All intervals which meet its criteria are now adjusted. Again, the intervals are identified as short, medium, and large but medium and large are handled in the same way. The medium and large intervals are merged into the class medium/large.

Both cases in Section A use an alternate approach from that used in Part 2 which required intervals in the acceptable range to be on both sides. Here, only a contiguous string of 10 in-range intervals which lie on one side of the out-of-range interval is required. Ten intervals was chosen because an interval much farther away would add little information about the true nature of the heart rate, while the tewer might contain too little information about how the heart rate is changing. The areas in which we are now working have clusters of out-of-range intervals (there are only acceptable intervals on one side), implying considerable noise.

For the short case, there could be a run of ten intervals in the acceptable range on either side if, in Part 2, the interval when added

to a neighbor was greater than 1499 ms. Therefore, it is necessary to check both sides of the out-of-range interval. The short interval is added to either nearest neighbor which meets the criterion of being in a run of ten and, if more than one, the new value closer to the mean of its associated run of ten is chosen as the correct interval. Otherwise, if only one run of ten was found, the sum of the interval and its near neighbor is accepted. This new interval must be less than 1000 ms.

The medium/large case is a variation of the large case in Part 2. Part 2 bridges the gap created by the out-of-range value by filling in values with an arithmetic progression run from the mean of the left neighborhood to that of the right. In the medium/large case, however, since we have already identified a run of ten intervals in the acceptable range on one side, we have one of those neighborhood statistics. What we do not have is something for the other end of the progression.

Our solution works only with the five intervals closest to the out-of-range interval, among the run of 10. One limit is the median of that neighborhood of five. It serves as one end of the arithmetic progression. The other end of the progression is the average of: (1) twice the mean of the neighborhood of five: (2) the mean of whatever intervals in the acceptable range are found within five intervals on the other side. Whatever close, in-range intervals exist on the other side should have some limited influence on the nature of the arithmetic progression. After the arithmetic progression is calculated, the remaining time is distributed uniformly.

If no out-of-range intervals could be changed in Section A. Section B is used because something has to be altered to allow Part 2 to resume. Hence, only one or two out-of-range intervals are changed. The two cases are again short and medium/large.

First, the longest run of in-range intervals in the entire tile is identified. The medium/large out-of-range values at either end are chosen first. The medium/large case is similar to that found in Section A. One end of the arithmetic progression is the median of the five closest in-range values or however many in-range values there are in the run. The other end is the mean of that five (or howevermany in-range values there are in the run), modified by any in-range values lying within five of the medium/large value. Any remainder after the progression has been calculated is uniformly distributed.

A short interval is adjusted only it nothing has been changed by the Section B medium/large algorithm, because this procedure is the most arbitrary. The short interval is simply added to its smaller neighbor and no test for variability or size is made.

2.2.2 Noise Removal: Actigraph Data

Each data tile has an offset which must be subtracted to produce a zero-minimum signal. The signals are otherwise quite clean. These are true time-series data, of fixed length per tile.

2.3 Segmentation

Once the noise has been removed, we will subdivide the signals into pieces at points where the nature of the signal changes. Since each 24-hour R-R interval signal has a companion 24-hour actigraph signal, several approaches are available. First, the R-R interval signal and the actigraph signal may be segmented separately and the correspondence of their boundaries examined.

A second approach is a hierarchical one in which the segmentation of one signal would determine the boundaries of the other. The hierarchical technique will be examined during the next year. The actigraph signal will guide the process because it represents only activity, a simpler physiological event than heart rate which contains many components like respiratory sinus arrhythmia (RSA) and biorhythms. Statistics on the number and lengths of segments will be kept to aid in the evaluation of the method.

The segmentation algorithm we have chosen [3] looks for differences in the parameters between two segments of the signal which have been modeled as autoregressive (AR) processes of the same order, and fixes a boundary between dissimilar pieces.

The approach is to model the finite-duration random time series by a stationary, normally-distributed autoregressive process of order p. Stationarity means, qualitatively, that the graph of the time series looks about the same near one time as near another. More tormally, all statistical properties of stationary time series remain unchanged when the period of observation is shifted forward or backward in time. In particular, the mean and the variance (as well as the higher-order moments) do not change with time, and the autocovariance between two values separated by t time units depends only on t. Although many real time series may not fulfill those conditions perfectly, the tools that are derived under the assumption of stationarity often work quite well on those series.

By autoregressive of order p, we mean that the series $\{r(t)\}$, $t=1,2,\ldots,N$ can be written

$$\sum_{i=0}^{p} a r(t-i) = \sigma u(t)$$

where $a_0=1$ and a_1 , a_2 ,..., a_p are coefficients that allow r(t) to be expressed in terms of the p previous values of the series. The error, or disturbance, term $\sigma u(t)$ is assumed to be an uncorrelated stationary normally-distributed series with variance σ^2 .

Standard methods $\{4\}$ exist for estimating the parameters a_1 , and if two time series r(t) and s(t) exist, it is possible to compute the joint likelihood (probability) of $\{r(t)\}$ and $\{s(t)\}$ conditioned on the tirst p observations of each sequence. We thus can find the maximum likelihood under the null hypothesis that the parameter sets are equal and compare it to the maximum likelihood under the alternative hypothesis that the parameters are arbitrary. A maximum-likelihood

ratio then can be tound that can be transformed into a distance measure d such that d=0 for sequences having identical parameter sets. This measure is derived in [3] as tollows:

The joint likelihood of $\{r(t)\}\$ and $\{s(t)\}\$ is

$$I = (\sigma_{R}^{-\sqrt{2}\pi})^{-N_{R}^{+}} (\sigma_{S}^{-\sqrt{2}\pi})^{-N_{S}^{+}} \exp \left\{ -\frac{N_{R}^{+}}{2\sigma_{R}^{2}} \frac{a_{R}^{T}}{a_{R}^{T}} C_{R} \frac{a_{R}}{a_{R}} - \frac{N_{S}^{+}}{2\sigma_{S}^{2}} \frac{a_{S}^{T}}{a_{S}^{T}} C_{S} \frac{a_{S}}{a_{S}^{T}} \right\}$$
where

 $N_R = length of \{r(t)\}$

Ng= length of {s(t)}

p = order of process

 $N'_R = N_R - p$ $N'_S = N_S + p$

 C_R and C_S are the covariance matrices of $\{r(t)\}\$ and $\{s(t)\}\$,

$$a = (a_0 a_1 a_2 \dots a_p)$$

Let I denote the maximum likelihood under the null hypothesis that $\underline{a}_R = \underline{a}_S$ and $\sigma_R = \sigma_S$. Thus I_0 can be written as

$$I_{(j)} = (\sigma_{p}\sqrt{2\pi})^{-(N_{R}^{+} + N_{S}^{+})} \exp \left\{ -\frac{1}{2} (N_{R}^{+} + N_{S}^{+}) \right\}$$

where $\sigma = a^{T}C$ a and

 $\sigma_{\rm p}$ = pooled estimate of r.

Similarly let $I_1 {
m denote}$ the maximum likelihood under arbitrary parameters settings. I_1 is written as:

$$I_1 = (\sigma_R^{-1} \sqrt{2\pi})^{-N_R^+} (\sigma_S^{-1} \sqrt{2\pi})^{-N_S^+} \exp \left\{ -\frac{1}{2} (N_R^+ + N_S^+) \right\}$$

The maximum likelihood ratio is given by

$$\lambda = \frac{1}{1_1} = \sigma_p^{-(N_R^i + N_S^i)} \cdot \sigma_R^{N_R^i} \cdot \sigma_S^{N_S^i}$$

Detine d as

$$d = -2 \ln \lambda$$

In general

$$d = (N_{R}^{+} + N_{S}^{+}) \ln \sigma_{p}^{2} + N_{R}^{+} \ln \sigma_{R}^{2} + N_{S}^{+} \ln \sigma_{S}^{2}$$
 (1)

with σ^2 and C being computed separately for R.S. and P.

Thus d is a measure of the statistical differences between the two signal segments. The larger d is, the more the parameters of the segments are expected to be different. Because a logarithm was used in the derivation of d to make it zero for identical sets, it is called an "entropy distance" by Chen [3].

The order p of the autoregressive model, the size of the window w, and the threshold $d_{\rm th}$, above which the segments are considered different, must all be estimated. A suggestion for estimating the threshold $d_{\rm th}$ is to construct a histogram of the entropy distances which have been calculated for all adjacent pairs of segments of the signal after it has been initially segmented into equal-length pieces, each of size w. They observe that such a histogram seems to have Chi-square distribution which might help in selecting a cut-off. It is noted $|\cdot|$ that w $\geq (p/3)^2$ where p is the order of the underlying AR process, because "...in any ergodic time series where statistical parameters are calculated as time averages a minimum interval of length L is necessary to estimate the statistical parameters with sufficient accuracy" $\{p,31\}$. In general, however, selecting p,w, and $d_{\rm th}$ requires experience and a general understanding of the characteristics of the signal.

Our segmentation algorithm consists of a broad initial search for an optimum boundary tollowed by a specific point-by-point search. These two parts, themselves, are each broken down into two subsections. Part I begins with Rough Boundary Searching, tollowed by Optimum Boundary Searching. The final search, carried out in Part 2, takes one of two forms. The choice is based on the location of the currently selected optimum boundary point.

2.3.1 Part 1

2.3.1.1 Rough Boundary Searching

Once w, the window length, and p, the order of the autoregressive process, have been selected the signal is partitioned into w-length segments, each labeled as in Figure 1. The last point in each segment $s_{\bf i}$ is called a node and labeled $n_{\bf i}$. For consistency, the first segment begins at point 2 of the signal, and point 1 is labeled n_0 .

Figure 1

This crude segmentation of the signal is retined in the remaining sections of the algorithm. It is important to note that the number of segment boundaries, which is initially a function of the window length w. is a fixed upper limit. The number of boundaries can only decrease.

The entropy distance between each pair of adjacent segments s_i and s_{i+1} is calculated using Eq.(1), and that value, labeled $d(s_i,s_{i+1})$, is associated with the intervening node n_i .

An entropy distance threshold $d_{\mbox{th}}$ is calculated for the data. This threshold is used during Optimum Boundary Searching.

For the remainder of the discussion of the segmentation algorithm, the first point in the data file will be referred to as the lettmost point and the last as the rightmost point.

2.3.1.2 Optimum Boundary Searching

Locate the rightmost $d(s_i,s_{i+1})$ which is greater than d_{th} , the threshold distance. All the n_i associated with each $d(s_i,s_{i+1}) < d_{th}$ are no longer boundaries because the segments s_i and s_{i+1} are considered statistically similar since their entropy distances are below the threshold. It no $d(s_i,s_{i+1})$ is greater than d_{th} , then the chosen threshold should be re-evaluated.

The rightmost $d(s_i,s_{i+1}) \geq d_{th}$ is associated with node n_i and is called the current optimum boundary between the two segments. When the characteristics of the signal change between any two consecuive segments, the entropy distance between those segments will exceed the threshold. A finer search is then conducted in s_{i+1} for a better optimum boundary. The left segment s_i is not searched at this time. It will be searched if the final optimum boundary is to the left of s_{i+1} after the completion of Part 2 of the algorithm. We divide s_{i+1} into equal subsegments of length w_s . The nodes are labeled in the same manner as before: Node n_i is relabeled m_0 and the following points are m_1, m_2, \ldots, m_n . The last subsegment m_n is also labeled n_{i+1} . The labeling of this section of the signal is shown in Figure 2.

Figure 2

Two pairs of windows (s_1, s_{1+1}) and (s_1, s_{1+1}) are created. (Initially, $s_1 = s_1$.) They are shown in Figure 3. We call s_1 and s_1 test windows, and s_{1+1} and s_{1+1} reference windows $\{b\}$. A window must be at least w points long.

Figure 3

These windows move through \mathbf{s}_{i+1} in \mathbf{w}_s increments in a search for a better optimum boundary than the currently selected one. The process will stop after \mathbf{m}_{n-1} is considered. Stopping at \mathbf{m}_{n-1} rather than at \mathbf{m}_n is a departure from Chen's specification. It was done to simplify the point-by-point search carried out in Part 2. The sizes of the windows will vary over time. The only conditions are (1) that both test windows always start at \mathbf{n}_{i-1} . (2) that \mathbf{s}_{i+1}^n is always with the minimum window length), and (3) that both reference windows always end at the same point.

At the start, the windows are positioned as in Figure 3. Test windows s_1^* and s_1^* begin at n_{1-1} . These test windows end at the same point at which their reference windows begin; namely s_{1+1}^* at m_0 and s_{1+1}^* on m_1 . The junction of both s' windows is always the current optimum boundary and is labeled b_1 . Therefore, $m_0 = b_1$. The junction of both s'' windows is always labeled b_{1+1} . Therefore, $m_1 = b_{1+1}$. Both reference windows end at the point $b_{1+1} + w$.

The entropy distance between the s' windows is calculated again using Eq.(1). The value is associated with $\mathbf{b_i}$. The entropy distance between the s" windows is likewise calculated and associated with $\mathbf{b_{i+1}}$. The point associated with the larger entropy distance is chosen as the current optimum boundary. It the distances are the same then the current optimum boundary is not changed.

The end of s_1^* is now moved to the current optimum boundary and the end of s_1^* is moved a distance w_s from its former position. The label b_i again is associated with the optimum boundary and the end of s_1^* . The end of s_1^* is associated with b_{i+1} . It is necessary to check that s_{i+1}^* and s_{i+1}^* both end at $b_{i+1}^* + w$.

A new pair of entropy distances is calculated, the larger selected, and the windows moved. The procedure is tollowed over all subsegments up to and including \mathbf{m}_{n-1} . The final optimum boundary is located at \mathbf{b}_1 .

2.3.2 Part 2

The search continues to the left and right of b_i in a point-by-point manner. The range to be covered is $(b_i - w_s, b_i + w_s)$, and the search is carried out in the same manner as before. The point $b_i - w_s$ is considered the current optimum bondary. The only difference is that when s_i^* changes position, it moves up only one point. Figure 4 shows the arrangement of the windows.

Figure 4

After all points are examined and if $b_i * m_0 * n_n$, then the point associated with b_i is accepted as the optimum boundary. However, if $b_i * m_0 * n_n$, then the point at b_i is accepted only if the final b_i is either at m_0 or to the right of m_0 . If b_i is to the left of m_0 , then it is necessary to look at the entropy distance associated with the previous pair of windows $d(s_{i-1}, s_i)$. If $d(s_{i-1}, s_i) \geq d_{th}$ then no boundary is accepted. If $d(s_{i-1}, s_i)$ (d_{th} , then we consider $d(s_{i-1}, s_i)$ to be greater than d_{th} and search for an optimum boundary in those segmenets.

The algorithm is repeated for all $d(s_i, s_{i+1}) \ge d_{th}$.

The limitations of this algorithm are minor. First, the data tile initially must be segmented into equal pieces. Rarely will this division come out equally, so some points at the end of the tile will be lost. Second, the first segment will not be searched because only $\mathbf{s_{i+1}}$ is considered, and similarly, the last segment will never be searched because of the requirement that $\mathbf{s_{i+1}}$ must be v points long. However, these lost points represent only a small fraction of total in the file.

2.4 Feature Extraction

Features will be extracted from each segment. The goal of feature extraction is the characterization of each segment by a set of measurements (the teature vector) that are invariant in the presence of noise or sample-to-sample differences. Ideally, the feature vectors will be similar for segments of the same type, and easily distinguished from each other for dissimilar segments. The notion of feature extraction from a sample may be thought of conveniently as the location of a point in an n-dimensional space. The coordinates of the point are the values of the n features, and the label of the point is its class. Thus, we intend that non-identical segments of the same class will have representations which are close to each other. The pattern recognition problem then is equivalent to the construction of boundaries in the n-dimensional space that result in the separation of groups of points on one label from groups of points with other labels. Ideally, each group would contain points all having the same label.

Our candidate feaures will include time-domain measurements (e.g., the number of zero-crossings, amplitude-based measures | mean-square, other moments, histogram shape], inter-peak intervals and slopes, autoregressive (AR) parameters, and frequency-domain measurements (e.g., shape of the power spectrum: location of maximum-power band, number of maxima).

2.5 Clustering

Clustering seeks to partition a given data set into homogeneous subsets (clusters) by considering similarities of data points (feature vectors) in each subset and their relationship to the elements of other subsets. Typical similarity measures are: the Euclidean distance, the city-block distance, the Minkowski metric (a generalized Euclidean distance), and a quadratic distance function [6]. The use of such metrics as similarity measures can be justified by the heuristic argument made above that points in the same cluster should be close to each other and, at the same time, distant from the elements of other clusters.

There are basically two approaches to clustering. The first, known as the *dynamic clustering method*, uses an iterative algorithm to optimize a clustering criterion function. Various criteria of clustering have been suggested in the literature. Among these, the most useful have proved to be the family of functions that quantify the average affinity of data points to cluster representatives. At each iteration of a dynamic clustering algorithm, data points are assigned to clusters, the number of which must be specified in advance. The assignment is performed on the basis of the points' similarity with the current cluster representatives. In subsequent steps, the cluster representatives are updated to reflect any changes in the data-point assignments. Those new cluster models are used in the next iteration to reclassify the data, and the process is continued until a stable partition is obtained.

A second approach, known as hierarchical clustering, is non-iterative. At any stage of a hierarchical clustering algorithm the two most-similar existing clusters are merged, thus reducing the number of potential clusters by one. After n-1 steps where n is the cardinality of the set being analyzed, the algorithm terminates. The number of clusters in the data set need not be known a priori. Rather, natural clusters of points in the data set, for a given measure of similarity, are detected by assessing the changes in the values of the measure at various stages of the algorithm.

A number of very good algorithms of both types are documented in the literature $\{7,8\}$. These algorithms will be evaluated using the teatures extracted as indicated above.

2.6 Evaluation

At this stage of the work, the Army will provide the physiological-state labels, and the times at which they begin in each of the ten 24-hour signals. This information will permit evaluation of the segmentation method and of the several clustering methods. If the algorithms are working well, then (1) the partitions found in this work will agree with the beginning-points of the states provided by the Army, and (2) most of the points in a given cluster will have the same label.

2./ Feature Selection

The teatures chosen will be prewhitened both approximately (by removing all but one of the teatures making up a set of highly-correlated teatures) and exactly (by a diagonalization of the teatures' correlation matrix). The resulting sets will be evaluated in several ways:

- (1) by the probability of error associated with their use in a classifier (see below)
- (2) by the Karhunen-Loeve transformation (which uses the eigenvalues of the features' covariance matrix to rank them according to their intrinsic ability to separate the samples); and
 - (3) by the homogeneity of the clusters found in Sec. 2.5.

2.8 Classifier Design

2.8.1 Parametric Methods

2.8.1.1 Introduction

The purpose of pattern recognition is to determine to which category or class a given sample belongs. Feature extraction provides a set of numbers which make up the observation vector. The observation vector serves as the input to a decision rule by which we assign the sample to one of the given classes. Let us assume that the observation vector is a random vector whose conditional density

Algorithms

runction depends on its class. It the conditional density function for each class is known (this is the parametric case), then the pattern recognition problem becomes a problem in statistical hypothesis testing.

Here we discuss the two-class problem, which arises because each sample belongs to one of two classes, ω_1 or ω_2 . The conditional density functions and the *a priori* probabilities are assumed to be known. See Appendix F for variable definitions.

2.8.1.2 The Bayes Decision Rule for Minimum Error

Let X be a feature vector, and let it be our purpose to determine whether X belongs to ω_1 or ω_2 . A decision rule based simply on probabilities may be written as follows:

$$P(\omega_1/X) \stackrel{?}{\geq} P(\omega_2/X) \rightarrow X \varepsilon \begin{pmatrix} \omega_1 \\ \omega_2 \end{pmatrix}$$
 (2.8.1-1)

The a posteriori probabilities $P(w_i \mid X)$ may be calculated from the a priori probabilities $P(w_i)$ and the conditional density functions $p(X/w_i)$, using Bayes' theorem, that is

$$P(\omega_{i}/X) = \frac{p(X/\omega_{i}) P(\omega_{i})}{p(X)}$$

Since p(X) is common to both sides of the inequality (2.8.1-1), the decision rule of (2.8.1-1) can be expressed as

$$p(X/\omega_1)P(\omega_1) \stackrel{?}{\sim} p(X/\omega_2)P(\omega_2) \rightarrow X \in \left\{ \begin{array}{c} \omega_1 \\ \omega_2 \end{array} \right.$$

or

$$1(X) = \frac{p(X/\omega_1)}{p(X/\omega_2)} \gtrless \frac{P(\omega_2)}{P(\omega_1)} \to X \in \left\{ \begin{array}{c} \omega_1 \\ \omega_2 \end{array} \right.$$
 (2.8.1-2)

The term I(X) is called the *likelihood ratio* (related to, but not the same as, that used in segmentation) and is the basic quantity in hypothesis testing. We call $P(\omega_2)/P(\omega_1)$ the *threshold value* of the likelihood ratio for the decision. Sometimes it is more convenient to write the minus-log-likelihood ratio rather than writing the likelihood ratio itself. In that case, the decision rule (2.8.1-2) becomes

$$-\ln 1(X) = -\ln p(X/\omega_1) + \ln p(X/\omega_2) \leq \ln \{P(\omega_1)/P(\omega_2)\} \rightarrow X \in \begin{cases} \omega_1 \\ \omega_2 \end{cases}$$

$$(2.8.1-3)$$

The direction of the inequality is changed because we have used the negative logarithm.

Equation (2.8.1-2) or (2.8.1-3) is called the *Bayes test for minimum error*.

In general, the decision rule of (2.8.1-3), or any other decision rule, does not lead to perfect classification. In order to evaluate the performance of a decision rule, we must calculate the *probability of error*, that is, the probability that a sample is assigned to the wrong class.

Let ℓ_1 and ℓ_2 be the regions in the domain of X such that $P(\omega_1/X) > P(\omega_2/X)$ and $P(\omega_1/X) < P(\omega_2/X)$, respectively. Then, if X ϵ ℓ_1 , we assign the sample to class ω_1 . The probability of error can be calculated as follows:

$$\varepsilon = Pr \{error\} = Pr \{error/\omega_1\}P(\omega_1) + Pr\{error/\omega_2\}P(\omega_2)$$

It the sample belongs to ω_1 , an error occurs whenever X ϵ 1_2 , and, similarly, it the sample belongs to ω_2 , an error occurs whenever X ϵ t_1 . Thus,

$$\varepsilon = \Pr\{\mathbf{X} \in \mathbb{F}_2/\omega_1\} \Pr(\omega_1) + \Pr\{\mathbf{X} \in \Gamma_1/\omega_2\} \Pr(\omega_2)$$

$$= \Pr(\omega_1) \int_{-1}^{1} p(\mathbf{X}/\omega_1) d\mathbf{X} + \Pr(\omega_2) \int_{-1}^{1} p(\mathbf{X}/\omega_2) d\mathbf{X}$$

$$= \Pr(\omega_1) \varepsilon_1 + \Pr(\omega_2) \varepsilon_2$$

We can distinguish two types of errors: one which results from misclassitying samples from ω_1 and the other which results from misclassitying samples from ω_2 . The total error is a weighted sum of these errors.

The problem of calculating the probability of error is solved essentially by the integration of density functions in an n-dimensional space. Therefore, it is sometimes more convenient to integrate the density function of the likelihood ratio $p(1/\omega_1)$, which is one-dimensional.

$$\varepsilon_{1} = \int \frac{P(\omega_{2})/P(\omega_{1})}{0} p(1/\omega_{1}) d1 \qquad (2.8.1-4)$$

$$\varepsilon_{2} = \int \frac{+\infty}{P(\omega_{2})/P(\omega_{1})} p(1/\omega_{2}) d1$$

where the region of integration of (2.8.1-4) is from 0 to $P(\omega_2)$ /($P\omega_1$) because the likelihood ratio is always positive.

In the common case when the $p(X/\omega_1)^3s$ are normal with expected vectors M_1 and covariance matrices Σ_1 , the decision rule of (2.8.1-3) becomes

$$h(X) = -\ln I(X)$$

$$= \frac{1}{2} (X - M_1)^T \lambda_1^{-1} (X - M_1) - \frac{1}{2} (X - M_2)^T \lambda_2^{-1} (X - M_2) + \frac{1}{2} \ln \frac{\frac{1}{2} \lambda_1!}{\frac{1}{2} \lambda_2!}$$

$$\leq \ln \frac{P(\omega_1)}{P(\omega_2)} \to X \in \frac{1}{2} \frac{\omega_1}{\omega_2}$$

$$(2.8.1-5)$$

Equation (2.8.1-5) shows that the decision boundary is given by a quadratic form in X.

When $\Sigma_1 = \Sigma_2 = \Sigma$, the boundary becomes a linear function of x_i as

$$h(X) = (M_2 - M_1)^T \Sigma^{-1} X + \frac{1}{2} (M_1^T \Sigma^{-1} M_1 - M_2^T \Sigma^{-1} M_2)$$

$$\int \ln \frac{P(\omega_1)}{P(\omega_2)} \to \varepsilon \int_{-\infty}^{\omega_1} \frac{\omega_1}{\omega_2}$$

2.8.2 A nonparametric Method: The Empirical Processing Algorithm (EPA)

2.8.2.1 Origin of the EPA and the Structure of Its Classifier

2.8.2.1.1 Background and Development of the EPA

A nonparametric problem in two-class pattern recognition was considered by Henrichon [9] and by Loew and Fu [10]; one approach involved the use of the empirical distribution function as an approximation to the underlying distribution function. A principal result obtained there in the case of one-dimensional observations (i.e., the feature vector has only one element) was an algorithm for determining the relative extrema of the function:

$$\frac{\mathbf{t}(\mathbf{x}|\omega_1)}{\mathbf{t}(\mathbf{x}|\omega_2)} \qquad \qquad \geq 1, \qquad \mathbf{x} \in \omega_1$$

$$(2.1)$$

Here $f(x|\omega_1)$ and $f(x|\omega_2)$ are the (assumed) continuous cumulative distibution functions (cdf's) for the populations (classes) ω_1 and ω_2 .

The need to find the relative extrema of (2-1) was motivated by the following observations. It we assume equal a priori class probabilitites, and equal costs of misclassification, then the likelihood-ratio test yields the optimal decision boundaries (those which minimize the expected risk). In the two-class case, the resulting decision rule is, if

$$\frac{f(x|\omega_1)}{f(x|\omega_2)} \le 1, \qquad x \in \omega_1$$

$$x \in \omega_2$$

where $f(x|\omega_1)$ and $f(x|\omega_2)$ are the probability density functions (pdf's) for the two classes. The decision boundary of (2-2) can then be expressed as

$$f(x|\omega_1) - f(x|\omega_2) = 0$$

But the same result can be obtained if the locations of the maxima and minima of (2-1) can be found.

The algorithm for finding those extrema makes use of the empirical cdf's for the two classes, and assumes that they are both continuous and monotonically increasing. The empirical cdf is defined as

$$F_n(x) = \frac{\text{number of } \{x_1, x_2, \dots, x_n\} < x}{n}$$

In $\{9\}$ the asymptotic optimality of the algorithm is proved, that is, that the boundaries obtained from it converge to the optimal ones which would be determined from (2-2). In addition, expressions for the probability of misclassifications are found.

The method described above has the advantage of requiring little a priori information: it assumes that the underlying distributions are continuous, which in most cases is not a serious restriction. It is able to deal with multimodal distributions and mulitple decision boundaries.

Two principal disadvantages, however, are noted when an attempt is made to use the method in multidimensional and/or multiclass problems, as would typity the present work. We observe that, for the multidimensional-teature-vector case, the multivariate analog of a function composed as the difference of empirical cdf's cannot be stored in a computer in a form amenable to convenient extrema determination. In the n-class case, the only possibility for implementation of the algorithm would seem to be the committee solution technique [11], which requires all two-class comparisons to be made; then the class with a majority of favorable decisions is selected. For large problems this approach might not be acceptable, however, since n(n-1)/2 individual two-class classifiers would be required.

A method is proposed in [9,10] which is an attempt at avoiding the difficulties listed above. Instead of approximating the difference of distribution functions, the procedure partitions the combined rank ordering of the multiclass samples. It is suitable for both multidimensional and multiclass classification. The next section presents the general structure of the classifier, and Section 2.8.2.2 gives the method and an algorithm for determining the specifications of that structure.

2.8.2.1.2 The General Classifier Structure

The basic building block of the classifier is called the basic selection unit (BSU), and as many BSU's as required are interconnected to form the classifier. A typical BSU is shown in Figure 2-1. The vector F is a 1-dimensional feature vector to be classified by the BSU as coming from one of the m+l pattern classes $\omega_0,\ \omega_1,\ldots,\omega_m,$ where ω_0 denotes indecision. As will be explained in Section 2.8.2.2, it a decisoin is made that the pattern class is a member of $\{\omega_1,\ldots,\omega_m\}$. the procedure stops: it the BSU is unable to make a classification from that set, its decision is ω_0 , and the procedure continues. The BSU allows for these two possibilities by having two kinds of output lines: a decision line and a set of selection lines. If ω_0 is the decision made by a particular BSU, then one of q selection lines, s_i (i=1,...,q), from that BSU will become active. A logical one (1) shall be used to indicate an active state of a selection line, i.e., $s_i = 1$; and a logical zero (0) for an inactive state ($s_i \neq 0$). We denote by $\mathbf{s}_{1,1,k}$ the ith selection line from the jth BSU in the kth layer of the classifier (see Figure 2-2). The selection line performs the function of triggering the active state (1) of a BSU in the next (i.e., (k+1)st) layer of the classifier. Unless the selection line entering a BSU is active (s=1), that BSU will remain inactive, and no processing will occur within it.

The decision line $d_{j,k}$ originates at the jth BSU in the kth layer, and is active only if the BSU has decided that the pattern represented by F is an element of $\{\omega_1,\ldots,\omega_m\}$. Thus, the allowable states for $d_{j,k}$ are

$$d_{j,k} = \begin{cases} i, & \text{if class } \omega_i \text{ is decided, } i = 1, ..., m \text{ (active states)} \\ 0, & \text{it class } \omega_0 \text{ is decided (inactive state).} \end{cases}$$

The BSU, then, serves to either (1) reach a decision as to which of m classes ω_1,\ldots,ω_m should be assigned to the input, of (2) decide which subsequent BSU should repeat the process. For any given input to a structure of BSU's there can be at most one BSU which has an active decision line. Other constraints on BSU operation also tollow from the structure definitions given above, and can be summarized by the following expressions.

(1)
$$s$$
 = 0 inactive state, all i,j, and k. i.j,k = 1 active state,

(2)
$$\sum_{i=1}^{q} s_{i,j,k} \leq 1, \quad \text{all j and } k.$$

This says that, at most, one selction line per BSU can be active.

Picure 2-1. The basic selection unit

FIGURE 2-2. STRUCTURE OF A TYPICAL CLASSIFIER

(3)
$$\left(\sum_{j=1}^{q} s_{i,j,k}\right) \cdot d_{j,k} = 0$$

The decision line and selection line states are mutually exclusive.

(4)
$$\left(\sum_{j=1}^{q} s_{j,k} + d_{j,k}\right) > 0$$
 if $s_{\ldots,k-1}=1$

A BSU is inhibited unless there is an active selection line input to it from the previous layer.

Figure 2-3 indicates the conceptual structure of a BSU. Each of its three main components as well as the interconnection scheme is discussed in the next section.

2.8.2.2 Construction of the Classifier

2.8.2.2.1 Introduction

The three subunits of a BSU, as shown in Figure 2-3, are the transgeneration box (optional), which augments the incoming feature F by forming new features which are combinations of the components of F; the component selection box selects one of the features (original or transgenerated) as an input x to the threshold unit. The threshold unit activates one of the F selection lines, or the decision line, depending on the value of F.

In the following discussions the decision lines, selection line labels, and component selection box will be omitted from the structure diagrams. A circled number next to a terminal region in the threshold unit shall indicate which pattern class is selected. The algorithm which follows determines which feature component x should be selected in each BSU, and the intervals, corresponding to the domain of x, which should be connected to the selection and decision lines.

2.8.2.2.2 The Algorithm

Let $X=\{x_1,\ldots,x_{n1}\}$ be a set of n_1 independent observations from class ω_1 , and let $Y=\{y_1,\ldots,y_{n2}\}$ be a set of n_2 independent observations from class ω_2 . Let K and θ be two prespecified parameters determined from the combined sample size $n=n_1+n_2$. (Some guidelines for the choices of K and θ are discussed below.)

Step i. Order the combined sample set X+Y according to increasing numerical value to form an ordered set Z. Partition the set Z into successive groups of K samples. (See Figures 2-4(a)-2-4(c).)

Step 2. For each group count the total number of x's and y's and assign a class label as follows:

PIGURE 2-3. CONCEPTUAL INTERNAL STRUCTURE OF A BSU

FIGURE 2-4. ILLUSTRATION OF BASIC ALCORITHM WITH SCORE - i_1 , K = 5, θ = 3.

number of x's > θ , assign class ω_1 number of y's > θ , assign class ω_2 otherwise, assign class ω_0

Then merge adjacent regions which were assigned the same class (Figures 2-4(d) = 2-4(e)).

Step 3. Adjust the boundaries by perturbing them a maximum of K/2 samples in either direction and relocate them at positions where the most improvement in classification accuracy is obtained (Figure 2-4(f)).

Step 4. It tower than K/2 samples remain in any one region, dissolve that region and place its samples (preserving the rank order) among the neighboring two regions so as to yield the least increase in misclassification (Figure 2-4(g)).

Step 5. Repeat Step 2. For this final partition compute the empirical classification probability, or SCORE, as

SCORE = number of samples correctly classified.

This training procedure thus yields a set of thresholds to which the (single) feature value of an unknown input sample would be compared: its class would then be assigned according to the label of the region along the "feature axis" in Figure 2-4(g) in which it fell.

The procedure can be extended to the case of a multidimensional teature space by applying the algorithm to each feature separately, and the SCORE (from Step 5) for each component is recorded). The dimension associated with the highest SCORE is selected as the dominant dimension. The observation space is then partitioned by parallel hyperplanes which have the dominant dimension as the common normal vector and intersect it at the boundaries determined by the algorithm for this feature. For each region formed by the above partitions, the procedure is repeated until no new regions are produced. Each time one or more regions of class ω_0 (indecision) in a layer of the classifier are subdivided, an additional layer is added, and this is what produces the selection lines of Figure 2-2.

As mentioned in Section 2.8.2.1.1, one of the disadvantages of the extrema-determination algorithm was that the extension to the multiclass case would involve a substantial amount of additional calculation.

That disadvantage does not exist for the algorithm just discussed: the extension is direct. The original procedure for labeling the partitioned regions was: if

number of x's > θ , assign ω_1 number of y's > θ , assign ω_2 otherwise, assign ω_0 .

This step can be reformulated by considering n pattern classes ω_1,\ldots,ω_n (letting ω_0 continue to denote indecision). Let $x_{\omega 1}$ represent an observation whose true class is ω_1 . Then the reformulated assignment rule for each block is: it

number of $x_{\omega,i}$'s > 0 for some i, assign ω_i otherwise. assign ω_0

The classifier structure of Figure 2-2 remains as it was in the two-class case.

2.8.2.2.3 Comments on the use of the Algorithm

The choice of K in Step 1 of the algorithm is not of concern in the concept of the procedure, but does play a part in the implementation of the method. The purpose of partitioning the combined sample set (of size n, say) is to reduce the number of partitions which need be considered. This also has the effect of placing an upper bound on the complexity of the classifier at the outset, since the first BSU in the classifier will not require more than K thresholds, and subsequent BSU's (if any) will, in general, have fewer thresholds than the first. The only constraint required on K, therefore, is that it does not increase as fast as n does, i.e.,

$$\lim_{n \to \infty} \frac{k}{n} = 0$$

In the experiments described below, K was chosen proportional to $\mathbf{N}^{1/2}$.

An obvious condition on the value of θ used in Step 2 is that $\theta \ge K/2$. It $\theta \le K/2$, then conceivably two or more classes would satisfy the inequality governing the assignment of classes to the groups of samples, resulting in an ambiguous procedure. Henrichon [9] has empirically tound that good results are obtained with $\theta = 0.6K + (\Delta)$, where $0 \le \Delta \le 0$. This approximation, with various values of Δ , was used in the experiments presented below.

The SCORE computed in Step 5 of the algorithm is used in the multidimensional case to determine the order in which teatures should be chosen by the component selection boxes (Figure 2-3) of the BSU's. As specified in Step 5, the SCORE was simply the number of correctly classified samples. This is a reasonable approach as long as the number of training samples per class remains the same from feature to teature. In some situations, however, the number of samples available per feature varies. A straightforward solution in that case is to use a normalized SCORE, i.e., a percentage. Where necessary, then, the SCORE will be defined as

2.8.3 Examples

To test the design process for the two kinds of classifiers described above, we must use data from some real cases. Because the segmentation routine is still under development, we have chosen to use some data that describe ultrasound signals acquired during examination of human livers. The goal is to use features extracted from the signals to classify a liver as normal or abnormal (in this case, hepatitis).

Four teatures were used:

- (1) d, the average spacing between scatterers
- (2) γ , the ratio of the specular to the diffuse backscatter intensities
- (3) $\sigma_{\rm S}\,,$ the ratio of the standard deviation of the specular backscatter to the diffuse backscatter
 - (4) a. the attenuation coefficient.

In the following, the four features are abbreviated. respectively, as $D.R.\ V.$ and A.

The classitier designs were the tollowing:

(1) Parametric case

The Bayes classifier was used under two alternative cases: (a) that the covariance matrices were different for the different classes (resulting in a nonlinear boundary in feature space), and (b) that the matrices were the same (resulting in a linear boundary). The design data were separated by class for estimation of the covariance matrices in the first case, and pooled in the second case.

(2) Nonparametric Case

The design algorithm was followed, for various values of K and $\boldsymbol{\theta}_{+}$

The results for all of these trials are presented in the next section.

2.9 Classifier Testing

The probability of error is the key quantity in pattern recognition: the estimation of that quantity, therefore, deserves special consideration. There are two kinds of problems. The first is the estimation of the probability of error from available samples, assuming that a classifier is given. The second is the estimation of the probability of error for given distributions. For this problem, the probability of error depends on the classifier to be used as well as on the distributions. Therefore, we first have to specify the nature of the classifier (e.g., the Bayes classifier for minimum error that was defined above): the task then becomes one of finding a way to use available samples for designing the classifier and evaluating the error. Since we have only a finite number of samples, we cannot design the optimum classifier, and the parameters of the classifier are, therefore, also random variables. Furthermore, based on this random classifier, we have to estimate the probability of error.

It we assume that sutticient data are available for estimating accurately the class-conditional density (and distribution) functions of our features, then classical methods exist [12] for estimating the probability of error from N samples drawn from those distributions. Those methods will be employed, with random sampling, to estimate error probabilities and their confidence intervals for the Army data.

To continue the examples presented in Sec. 2.8, however, we must use the second of our approaches, namely, that for the limited-data case. When N samples are given without a classifier design, we have to use those samples to design a classifier as well as to test it. The probability of error to be estimated depends on the given distributions and on the classifier to be used. A number of useful theoretical results have been obtained [13] for the case of the Bayes classifier for minimum error: we will use those results not only for the Bayes classifiers but also for the nonparametric classifiers, all as described in Sec. 2.8.

We described two approaches: (1) N samples are used to design the Bayes classifier and the same N samples are tested. This method has been shown [13] to yield an optimistic bias of the probability of error; (2) N samples are used to design the Bayes classifier, and the samples from the true distributions are used for testing. This method also yields a biased estimate of the probability of error, but the bias is such that the expected value is an upper bound. The samples from the true distribution, however, may be replaced by the samples which are not used to design the classifier and which are independent of them. As the number of test samples increases, the distributions of the test samples tend toward the true distributions.

There are several ways to realize this second approach. The tirst is to divide available samples into two groups and use one of them for designing the classifier and the other for testing. The second is a refinement of the first; we take out one sample, design a classifier by using N-I samples, and test the unused sample. This is called the leaving-one-out method. This operation is repeated N times and the number of misclassified samples is counted. The proportion of the total that that number represents is then the estimate of the probability of error. A disadvantage of this method is that N classifiers must be designed. For the nonparametric case, however, it is the only effective conservative approach.

Appendix B contains confusion matrices for the examples of Sec. 2.8, computed using both methods -- testing using the design set, and leaving-one-out.

3. Results

We now consider the results of applying these classifiers to the two kinds of liver disease. Three different kinds of classifiers are used for each of the four features. In addition, all possible subsets of the four features are used to evaluate the performance of multiple measurements. In all cases, a standard format is used: the confusion matrix. The confusion matrix has as its rows the names of the two correct classes and as its columns the names of the classes of the decisions made by the classifier. Hence, an ideal classifier would have all entries on the diagonal, indicating perfect classification. We compute error probability as the total number of misclassified samples divided by the total number of samples.

The three classifier cases we consider are: the leave-one-out case with the Bayes rule for normally distributed data with equal covariance matrices. (Note that the fourth equality of the covariance matrices by pooling the data for the covariance calculation.);

the second case keeps the two classes separate and computes covariance matrices individually. Again, the terms "linear" and "nonlinear" are used because of the nature of the decision boundary that results from the two kinds of covariance matrices. The third kind of classifier again uses two separately-computed covariance matrices but now the design set of data is also used as the testing set. As was noted earlier, this yields an optimistic estimate of error probability for the classifier.

Appendix B presents the three confusion matrices for each feature and combination of features. A total of 4/ samples was used: eighteen from the normal class and twenty-nine from the abnormal. Note the relatively high probabilities of error for all three classifiers for certain features and groups of features. These relatively high values are due in part to the error associated with estimating parameters of the probability density function of a small number of samples. We may contrast these results with the second set shown in Appendix B; here we have /9 samples total. Note that the errors are in general smaller.

In any pattern recognition problem, feature selection is a very important step. From a set of candidate features -- even after they have been de-correlated -- one generally seeks to use the smallest number sufficient to achieve the desired error probability. Several recent results [14.15] make it clear that in order to choose the best subset of any given size of an initial candidate set of features, one must examine all possible subsets. In fact, it is possible to do arbitrarily badly it the search is non-exhaustive. In light of those results, we examined the fifteen possible subsets of our four features. Figures 1 and 2 in Appendix B illustrate the variation in probability of error for different kinds of classifiers when different subsets of features are used. For example, in the case in which we have 4/ samples all together, we note that the two best features using the nonlinear round-robin or leave-one-out classifier were R and D, but the best set of two features were D and V. This illustrates the tact that in general, the best two features are not necessarily the two best. Note also that if we instead use the linear leave-one-out classifier shown in the left of each set of three bars in the figure. that the two best features are \boldsymbol{D} and \boldsymbol{V} , and that the best are also \boldsymbol{D} and V. Thus we may generalize to say from this example that the best two are not necessarily the two best. That is true as well in the case of three-at-a-time, where the best three are A, R and D, but the three best are D, R, and V. It therefore is important to perform an exhaustive search of all possible subsets if the goal is to find the best performance at a given number of features. In the /9-sample case. in both of the leave-one-out cases (the left bar and center bar of each triplet) we see that the two best features are V and D and that the best two features are also D and V. Note also that the best triplets, D.R.V and D.V.A. are both composed of the best pair, D.V. In the previous data set (the 4/-sample case) the best triplet. D.R.V as measured by the nonlinear leave-one-out method was indeed composed of the best two (D.V); but when we examine the linear leave-one-out case, there is a tie for the best set (D,V.A and D.R.A). the latter of which is composed neither of the best two nor of the second best two.

We are led to conclude that any kind of step-wise search for a best subset of features will not in general produce optimal results. This experimental conclusion supports the theoretical results cited earlier.

The non-parametric procedure was applied to the set of 79 samples. The confustion matrices that resulted are shown in Appendix B. Notice that for the features used individually, i.e., stopping the process at the first stage, yields results not far different from what we achieved earlier. In the case, however, where we had two features being used, that is, either D and V or D and R, our performance improved considerably (0.14 error probability). Although the method has not yet been tested with the leave-one-out procedure, that programming is nearly complete and is expected to yield similar results.

4. Conclusions

Work to date has yielded a set of tools that will now work well once features have been extracted from the actual time-series data that we have. The experimental results on the liver ultrasound data are very encouraging and we believe that there will be good performance once the physiological data are analyzed. This set of tools, along with the segmentation routines, should yield results early in the third year of this study.

5. Plans for the Coming Year

During the coming year we expect to segment all of the time-series data, independently for both the activity and the heart-rate data. Separately, we will use a hierarchical approach, referred to earlier in this report, in which we will allow the segments apparent in the activity data to guide the segmentation of the heart-rate data. Again, the rationale for this is that the activity data are in general cleaner than the heart-rate data. Once a set of segments has been established the teatures that are extracted will be submitted to the classifiers that have been described above. The classification accuracy, concordance with physiological truth (as supplied by the Army), the number of features, and their ease of extraction all will be evaluated with the goal of eventually constructing a very simple signal-processing system for determination of physiological state.

6. Bibliography

- M.N. Levy, P. Martin, "Parasympathetic Control of the Heart," Nervous Control of Cardiovascular Function, Oxford University Press. 1984.
- R.D. Wurster. "Central Nervous System Regulation of the Heart: An Overview", Nervous Control of Cardiovascular Function, Oxford University Press, 1984.
- C.H. Chen, "On a Segmentation Algorithm for Seismic Signal Analysis." Geoexploration, Vol. 23, 35-40.

- L. Marple. "A New Autoregressive Spectrum Analysis Algorithm," IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. ASSP-28, No. 4, 441-454, 1980.
- U. Appel. A.V. Brandt, "Adaptive Sequential Segmentation of Piecewise Stationary Time Series," Information Sciences, Vol. 29, 27-56, 1983.
- R.O. Duda, P.E. Hart, *Pattern Classification and Scene Analysis*. John Wiley and Sons, New York, 1973.
- M.R. Anderberg. Cluster Analysis for Applications, Academic Press. New York, 1973.
- [8] J.A. Hartigan, Clustering Algorithms, John Wiley and Sons, New York, 1975.
- [9] E.G. Henrichon. Jr.. "On Nonparametric Methods for Pattern Recognition." Ph.D. Thesis, Purdue University. Latayette. Ind., January 1969.
- M.H. Loew and K.S. Fu, "Computer-Aided Medical Diagnosis Using Sequential Pattern-Recognition Techniques," Purdue University, School of Electrical Engineering, Rept. No. TR-EE-/2-14, May 19/2.
- C.M. Ablow and D.J. Kaylor. "A Committee Solution of the Pattern Recognition Problem." IEEE Trans. Information Theory. Vol. IT-11. No. 3, July 1965, pp. 453-455.
- W.H. Highleyman. "The design and analysis of pattern recognition experiments," Bell Sys. Tech. Journal. Vol. 41, 1962. pp. 723 744.
- (13) K. Fukunaga. Introduction to Statistical Pattern Recognition. Academic Press. New York, 1972.
- T.M. Cover, and J.M. Van Campenhout, "On the possible orderings in the measurement selection problem", IEEE Transactions on Systems, Man and Cybernetics, Vol. SMC-/, No. 9, September 19//, pp. 65/-661.
- J.M. Van Campenhout, "The arbitrary relation between probability of error and measurement subset," Journal of the American Statistical Association, Vol. /5, No. 369, March 1980, pp. 104-109.

APPENDIX A

Flowcharts for preprocessing and noise removal program

.

APPENDIX B

Classitier Testing Results

Linear Round- Rivin

2017- 2314				
Tave CLAN		ASNOW, W	10 mm	
MORMAL	10	8	18	
ABNORMAL	7.	22	29	

$$2RRO2 = \frac{15}{47} = .32$$

Jecision Sound - ROBIN				
TEUE CLUSS	,	ABNOTMA	TOTAL ME. If Same, I don't	
MORMAL	11	7	18	
ABADSmal	17	12	29	

$$ERROR = \frac{24}{47} = .51$$

CPTIMISTE MAN-LINEAR

Ĭ.	THE CHIEF K			
Trop cien	Normal	A H Nosi,=,	2.00	
weens!	13	5	18	
ا يه سه و دره د	14	15	29	

CLASIFIERS RESULTS FOR FEATURE(S): Attenuation

Linear Round-Rion

Decision Taus Class Cuss	NORMAL	ASNOW. WA	13. 34. 13. 34.
MRUAL	12	6	18
ABNORMAL	15	14	29

$$ERROR = \frac{21}{47} = .45$$

-ON-LINEAR ROUND-ROBIA

LOW- LINEAR ROUND-ROBIN				
Decision TRUE CLASS	NORMAL	A B Notma	TOTAL Samples Then	
NORMAL	12	6	18	
AB NOBMAL	15	14	29	

$$ERROR = \frac{21}{47} = .45$$

COTIMIST'S AGAILINGS

Tiens class	~108mpL	D.H.N.SIL.M.	
~atma[12	6	18
ا يه ښځ ريا د د	15	14	. 29

$$f \times R = \frac{21}{47} = .45$$

CLASSIFIERS RESULTS FOR FEATURE(S): R

Linear Round- 2001

Cin Car			
Decision Trus CLAIS CLAIS	NORMAL	ASNOW WE	3. Jac. 5. Jac
NORMAL	10	8	18
ABNORMAL	13	16	29

$$ERROR = \frac{21}{47} = .45$$

ROUND- ROBIN

NON- LINEAR ROUND-ROBIN				
Decision Teve Class	MARMAL	D BNO FMAL	TOTAL SAME	
MRMAL	8	10	18	
ABADEMAL	10	19	29	

ERROR =
$$\frac{20}{47}$$
 = .43

200.5.70			-, -,
CIANS CIANS	1/0 M = 1/4	A HABIT P.S.	مرد مده رواند روم
Nosmal	10	8	18
يه ساء وبديد	9	20	. 29

Linear Round-Robin

Decision True CLASS	NORMAL	REMORM	(3, 40 - 5, 44)
NORMAL	13	5	18
ABNORMAL	8:	21	29

NON-LINEAR ROUND-ROBIN

NON- LINEAR KOUND- KUBIA			
Pecision True CUSS	NORMAL	a e notan	rotal mo. if samples class
WORMAL	\3	5	18
ABADEMAL	8	21	29

$$ERROR = \frac{13}{47} = .28$$

OPTIMISTIC AND LINEAR

DECISION TRAS CIES Class	Nolmal	P Y NO HAL	and the play
NOEMAL	١3	5	18
A3 ~O FM AL	8	21	29

Linear Round . Ribin

Decision			2.2
TRUE CLAIS	NORMAL	A3NOK.MA	1,24
NORMAL	12	6	18
ABNORMAL	16	\3	29

$$ERROR = \frac{22}{47} = .47$$

NON-LINEAR ROUND-ROBIN			
Decisions True Class	MRMAL	A B NO PAPL	TOTAL TOTAL TOTAL SA-July Class
~oR MAL	10	8	18
ABADRAPL	14	15	29

$$ERROR = \frac{22}{47} = .47$$

Tres class	~108mpL	A HADOTA, OSO	- 10 mg
ا مدود	10	8	/8
latina timbe	12	17	. 29

CLASIFIERS RESULTS FOR FEATURE(S): RV

Linear Round- 2:00

Decisor True CLASS CLASS		A3NON.uq	10 m
NORMAL	9	9	18
ABNORMAL	\0	19	29

$$SROR = \frac{19}{47} = 40$$

LON- LINEAR ROUND-ROBIN			
TEVE CLASS	NORMAL	A B NoPM/L	Total so-its class
WORMAL	\2	6	18
ABARRAL	\2	١٦	29

$$ERROR = \frac{18}{47} = .38$$

TAZE CIES	Noimpl	A Y No i-er	20 ° 10 10 10 10 10 10 10 10 10 10 10 10 10
~02~01	14	4	18
يه سه د ۱۰۰۰ هر	*	21	29

$$f \times R = \frac{12}{47} = .26$$

CLASSIFIERS RESULTS FOR FEATURE(S): R.A

Linear Round- Rion

Decision	l .		15 To
TRUE CLAIS	NORMAL	ASNOW, W.	
NORMAL	11	7	\8
ABNORMAL	11	18	29

$$ERROR = \frac{18}{47} = .38$$

NON-LINEAR ROUND-ROBIN			
TRUE CLASS	NORMAL	A BAIRMAL	TOTAL TOTAL TOTAL TOTAL THE
MANAGE	10	ર્જ	18
pbarent.	11	18	29

$$ERROR = \frac{19}{47} = .40$$

OPFIMISTIC MON-LINEAR

Troj clas	Normal	PHNOSER	-10 mg
Nother	10	8	18
של מיד במידם	9	مد	' 29

Linear Road- Rion

Decision Teur Class Ciass	ı	ASNOW.INA	10 4 7 10 1 10 1 10 1 10 1 10 1 10 1 10
MRMAL	13	5	18
ABNORMAL	11	18	29

ERROR = # 0 is mischanized

$$\text{ERROR} = \frac{16}{47} = .34$$

LINEAR ROUND-ROBIN

LON- LINEAR ROUND- YOUN			
TEUE CLASS	NORMAL	a B wotma	TOTAL TOTAL SO-July Class Class
WORMAL	13	5	18
p8 adampl	11	18.	29

$$ERZOR = \frac{16}{47} = .34$$

CATIANISTY ARABALLUERA

Terr class	NožmpL	P Hodariere	2. 14 2. 16,
~04~^1	14	4	18
a toward to the	11	18	29

CLASIFIERS RESULTS FOR FEATURE(S): D.A

Linear Kurda Cina

2014: 0014				
Decises Trus (Lais	NORMAL	A3NOW.u,	10 % A	
NORMAL	13	5	18	
ABNOEMAL	9	عه	29	

$$ERROR = \frac{14}{47} = .30$$

NON- LINEAR ROUND-ROBIN			
TEVE CLASS	MEMAL	à E NOPAN	To Fall the second
MORMAL	12	6	18
ASARBMAL	10	19	29

$$ERROR = \frac{16}{47} = .34$$

CPTIMISTIC NON-LINEAR				
TESS CIESS	Normal	<i>קייי</i> ון פאה צי ב <i>ק</i>	- 2 - 20 1 - 20	
Notwal	\3	5	18	
34 N 2 TM Pg	9	مد	29	

$$f^{KRGR} = \frac{14}{47} = 30$$

CLASSIFIERS RESULTS FOR FEATURE(S): DY

Linear Road- 200

Decision Tave Class Class	Normal	ASNOT US	3184 8 W
NORMAL	13	5	18
ABNORMAL	8	21	29

$$ERROR = \frac{13}{47} = 28$$

LON- LINEAR ROUND-ROBIA

NON- LINEAR ROUND- ROUN			
TEVE CLASS	MORMAL	A BNOTMAL	Potal sure of samples class
WRAAL	13	5	18
ABADPAPL	9	20	29

$$ERROR = \frac{14}{1/7} = .30$$

OPTIMISTIC MAN-LINEAR

TEST CIASS	Norma	A YNOICE)	200 mg
Notwal	13	5	18
t i a a up tim eg	7	22	29

$$fRRGR = \frac{12}{47} = .26$$

CLASSIFIERS RESULTS FOR FEATURE(S): R-V-A

Linear Round Ribin

Decision True CLAIS	.VORMAL	ABNOW, W	10 5 61
MORMAL	\\	7	18
ABNORMAL	13	16	29

$$202 = \frac{20}{47} = .43$$

NON- LINEAR ROUND-ROBIA

MAN. LINEAR ROUND - KOBIN			
DECISION TRUE CLASS CLASS	NORMAL	A G AN FRAZ	TOTAL TOTAL SO-JOS Clan
MORMAL	11	7	18
ABAD8mAL	11	18.	29

ERROR =
$$\frac{18}{47} = .38$$

CPTIMIST'S MON-LINEAR

71.51 CIESS	Noimal	PYNOV.O)	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
~o2~^{	11	7	18
إد سرة و بد ت هر	8	21	29

CLASSIFIERS RESULTS FOR FEATURE(S): D-R-A

Linear Round - Ribin

Decision Teur CLASS	NORMAL	ABNOW.WA	\$ 10 m
NORMAL	13	5	18
ABWRNAL	9	مه	29

$$ERROR = \frac{14}{47} = .30$$

LON- LINEAR ROUND-ROBIN			
TRUE CLUSS	MRMAL	A BNOEMAL	Total and of some of the sound
WORMAL	12	6)8
abadempi.	\0	\9	29

$$ERXOR = \frac{16}{47} = .34$$

Decision They class Class	Normal	יריי יונוע או פ	200 Per 12 12 12 12 12 12 12 12 12 12 12 12 12
wetwal	13	5	18
يه ست د په ټه	9	20	29

CLASSIFIERS RESULTS FOR FEATURE(S): D-V-A

Linear Road- 2:00

Decision Tave Class Class	JOKMAL	A SNOK.uq	10 mm
NORMAL	12	6	18
ABNORNAL	8	21	29

$$2 RROR = \frac{14}{47} = .30$$

MON- LINEAR ROUND-ROBIN			
TRUE CLASS	NORMAL	à BNO PMPL	TOTAL TOTAL SO-THIS THOS
MORMAL	12	6	18
ABARRAL.	9	20	29

ERROR =
$$\frac{15}{47} = .32$$

377141157	·C M2M-	1).VFAR	
Try class	Noimpl	A Y NO H M.	- 10
Notwal	15	3	18
يه سټر د د د	7	22	29

$$f^{KRGZ} = \frac{10}{47} = .21$$

Linear Round- 2:00

Decisione Teus (Lass CLASS		ASNOW WA	10 Take 1
NORMAL	12	6	18
ABNORMAL	9	20	29

ERROR =
$$\frac{15}{47}$$
 = . 32

NOW- LINEAR ROUND-ROBIN

WIND- YOUND - YOUN			
TEUE CLOSS	MARMAL	à S eofma <u>t</u>	TOTAL TOTAL SO-THIS CLASS CLASS
~~R MAL	13	5	18
ABADEMAL	7	22	29

OPTIMISME MANGELLINGAR

TESS CIESS	Normal	P H sdajiyo	2. 24 2. 26 2. 26,
ا مدادم	13	5	18

423 6 23 29

CLASSIFIERS RESULTS FOR FEATURE(S): D-R-V-A

Linear Road Lion

Decision Tave cum cuss	JORMAL	A3NOK.UA	53.0 K
NORMAL	13	5	18
ABNORMAL	8	21	29

NON-LINEAR ROUND-ROBIN			
Decision Trus Class CLass	MORMAL	A Briot MAL	Total of the services
MRMAL	12	6	18
peasempl.	6	23	29

$$ERROR = \frac{12}{47} = .26$$

GPFIMISTE MON-LINEAR

Dreisian TESE CIES Eleis	Noimpl	PHNOV.	
wetwas	14	4	18
असे कर दे के बहु	4	25	29

CLASIFIERS RESULTS FOR FEATURE(S): V. 6 . 6.

Linear Round- Robin

Decision Tave CLAN	NORMAL	}	3. 4. 5. 4. 5. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.
MORNAL	2.0	11	31
ABNORMAL	9	<i>3</i> 9	48

ERROR =
$$\frac{20}{79} = .25$$

---- LINEAR ROUND-ROBIA

LINEAR ROUND-KOOM			
TRUE CLOSS	wamal	ABMIMA	P. 10 . 16 . 16 . 16 . 16 . 16 . 16 . 16
MRAAL	20	1)	31
AB AND PARK	11	37	48

$$ERROR = \frac{22}{79} = .28$$

TOTO CIAS	Normal	A YMHER.	مراد المراد ا
20822	20	U	31
a a wa think	11	37	. 48

CLASIFIERS RESULTS FOR FEATURE(S): A

Linear Round . Coin

<u> </u>	- E413	-	
Teus CLAIS		A SNOR.W	10 of
NORWAL	17	14	31
ABNORMAL	િ લ	29	48

$$52202 = \frac{33}{79} = .42$$

MON- LINEA	ROUND.	ROBIN	
PECISION TRUE CLASS	NORMAL	A BNOSMAL	TOTAL SETANS
NORMAL	17	14	31
امساودهم	19	29	48

$$ERZOR = \frac{33}{79} = .42$$

OPPIMISTIC NAME OF THE PROPERTY OF THE PROPERT

E		LINEAR	
Tegs class	Noimal	وه. در ولدي هر	
Notwal	17	14	21
يه سژ ده ۱۵.	19	29	48

CLASIFIERS RESULTS FOR FEATURE(S): $R = \frac{\overline{I_s}}{I_d}$

Linear Round - 2:00

Decision True CLASS CLASS	NORMAL	ASNORM	(1 40 6 4)
ADRUAL	20	16	31
ABNORMSL	17	31	48

MON. LINEA	R LOUND-	ROBIN	
THUE CLASS	Memal	A E NOTENT	70 Par 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
MRAAL	22	9	31
peademal.	22	26	48

$$ERROR * \frac{31}{79} = .39$$

Notwal	2.2	9	31
		<u>.</u>	

CLASSIFIERS RELILYS FOR FEATURE (5) : D

Linear Round 2:3in

Decision True Class Curs	1	ASNORMA	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
NORMAL	.B.5	.۵	31
ABNORMAL	:9	39	48

ERROR = -	*	نج و	,	scell	ro. Leed
					samples

$$2 \times 100 = \frac{15}{79} = .19$$

NON- LINEAR ROUND-ROBIN

MON. LINEA	R ROUND-	Z U D I M	
DECISION CLASS	NORMAL	A B NO PMAL	TOTAL MAN . If so Takes
wormal	25	6	31
ABABRMAL	13	35	48

$$ERLOR = \frac{19}{79} = .24$$

COTIMISTY About LINEAR

Decision Trap cien	Normal	PHNOLOG	مراد المراد ا
wormal	27	4	31
يه ست و سه د	13	35	48

Linear Round- Ribin

Decises. Teus CLAN CLAN	NORMAL	A SNOW, W	10 mm
ADRINAL	23	8	31
ABWENS	11	37	48

$$SROR = \frac{19}{79} = .24$$

Decision	R ROUND	- 80B)N	
TRUE CLASS	MEMAL	ABNOEMO	TO FALL
MORMAL	23	8	31
#8408mpl	11	37	48

$$ERROR = \frac{19}{79} = .24$$

NON-LINEAR				
Tit of Class	NORMAL	PYNON.	"	
~se~~[23	8	31	
24.27.46	11	37	48	

CLASIFIERS RESULTS FOR FEATURE(S): R.V

Linear Round- 200

Decision True GLASS CLASS	7	ASNOW, WA	10 mg
NORWAL	23	8	31
ABNORMAL	10	38	48

$$ERROR = \frac{18}{79} = \cdot 23$$

NON- LINEAR ROUND-ROBIN			
Teuf CLASS	NORMAL	a e notmol	rotal so-phs class
MRMAL	25	6	31
ABARRAL	\5	3.3	48

$$ERROR = \frac{2!}{79} = .27$$

SPECIAL NOW 1 20				
Class	Nermal	A YNOICOS	3 7 7 10 10 10 10 10 10 10 10 10 10 10 10 10	
water	26	5	31	
يه ست د سامه	\4	34	48	

Linear Road- Con

Decision True Class Class	1	ASNOW 4	13. B. S.
NORMAL	18	\3	31
ABNORMAL	16	32	48

$$5000 = \frac{29}{79} = .37$$

NON-LINEAR ROUND-ROBIN			
DECISION TRUE CLASS CLASS	NORMAL	A ENOTANL	TOTAL SO-phs Ilan
well was	17	14	31
#6a08mAL	18	30	48

ERROR =
$$\frac{32}{79} = .41$$

SPTINISTE MON-LINEAR

Tress class	~08mpL	PHOIST W.O.	and the same
winal	18	13	31
ا يم دو دو دو	16	32	48

CLASIFIERS RESULTS FOR FEATURE (5): D-R

Decision Tava (Lais Cuas)	T .	A3NOR.W	\$ 5. 34. 34. 34. 34. 34. 34. 34. 34. 34. 34
NORWAL	26	5	31
ABNORMAL	11	37	48

$$2000 = \frac{16}{79} = .20$$

LINEAR ROUND-ROBIN			
PECISION CLASS	NORMAL	A End Park	Total sar, of sarphs class
NORMAL	27	4	31
*BNO8m*L	13	35	48

$$ERROR = \frac{17}{79} = .22$$

CHIMITE MINELINEAR				
Tegy Class	NoimpL	 - AdMarina -		
Notional	27	4	31	
t assumer	13	35	48	

Linear Runda Cion

Decision True flan class	عده ۶۵۷	ASNOR 44	(1) 40 (4) (4) (4)
NORWAL	26	5	31
ABNORMAL	10	38	48

$$\text{ERROR} = \frac{15}{79} = .19$$

LOW- LINEAR ROUND-ROBIN

TEVE CLASS	NORMAL	à B MOPPAL	10 car 1 can
WARMAL	25	6	31
ABARRAL	11	37	48

ERROR =
$$\frac{17}{79} = .22$$

UPTIMISTIC MON-LINEAR

TETE GLESS	i jožne je L	A Y Not- 41	2 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Matmai	28	3	31
) 	10	38	48

CLASSIFIERS RECULTS FOR FEATURE(S): D-V

Linear Road- Rion

Decision Taug Class Ciuss	}	ASNOR uz	10 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
NORMAL	27	4	31
ABNORMAL	٩	39	48

$$EZZOR = \frac{13}{79} = \cdot 16$$

NOW- LINEAR ROUND-ROBIN

LOW- LINEAR ROUND- YOU!			
TEUF CLUSS	NORMAL	ABNOTMAL	Total services of the services
WERMAL	27	Ħ	31
ABADSMAL	Ιά	38	48

PSIMISTIC MON-LINEAR

Test cien	Normal	A KNOPED	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
wsimal	27	4	31		
and the state of	9	39	48		

$$fReq = \frac{13}{29} = .16$$

CLASSIFIERS RESULTS FOR FEATURE(S): RVA

Linear Round . 26in

Decision True CLIS	NOR.MAL	A SNOK, NA	10 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
MRMAL	22	9	31
ABNORMAL	11	37	48

$$EREOR = \frac{20}{79} = .25$$

LOW- LINEAR ROUND-ROBIN

NON- LINEAR ROUND-ROBIN				
Teve CLASS	NORMAL	A BNOFMAL	TOTAL SAINES CLOS	
wormal	24	7	31	
personal	12	36	48	

ERXOR =
$$\frac{19}{79} = .24$$

Carlada Carro Ababa I Indiada R

Test Class	i Jožn PL	A HARIFER	
إمسهيه	24	7	31
		i	· -

9 39 48

CASIFIERS RESULTS FOR FEATURE (5): DRA

Linear Round- 250

Decision True CLASS	1	ASNOW.u.a	3,5 e
MRUAL	25	6	31
ABNORMAL	11	37	48

ERROR = # 02 in schooled

$$ERROR = \frac{17}{79} = .22$$

NON-LINEAR ROUND-ROBIA

NON- LINEAR ROUND-ROBIN			
Decision Teue CLASS CLASS	MARAAL	A BNO FARL	Total an f sa-phs class
NORMAL	25	6	31
ام سموهد کام	11	37	48

$$ERROR = \frac{17}{79} = .22$$

CBPIANISHIP ARM LUCAN

TASE CIES	Noi-AL	AYNOV.	
~or~ = [26	5	31
يد سه و ۵ د د	9	39	48

CLASIFIERS RESULTS FOR FEATURE(S): DVA

Linear Round- L'oin

Decision Tevi Chin	Normal	ASNON.u4	13. Take 1. 15. 15. 15. 15. 15. 15. 15. 15. 15.
NORMAL	27	4	31
ABNORMAL	10	38	48

$$ERROR = \frac{14}{79} = -18$$

LOW. LINEAR ROUND- ROBIN					
DECISION TRUE CLOSS	1)		-		moral me. of sames class
MORMAL	26	5	31		
pendempl	10	38	48		

$$ERXOR = \frac{15}{79} = .19$$

THE ST CIESS	1.302m p L	A MADELLEY.	-1. "
~35~01	27	4	31
t Laster of the second	10	38	48

Linear Round - 2000

Decision True Chair Chars		A SNOK, WA	15. 8. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15
MRMAL	27	4	31
ABNORMAL	9	39	48

$$5000 = \frac{13}{79} = 16$$

NON- LINEAR ROUND-ROBIN			
TEVE CLOSS	NORMAL	a e nolma	70 Fal. 18 50 7 85 7 185 185
MORMAL	27	4	31
#8 ADSMAL	\I	37	48

$$ERROR = \frac{15}{79} = .19$$

Test Glass	NOSMAL	وه درولدي هر	2. "Al
National	27	4	31
a a wood in ag i	9	39	48

Linear Road- Ein

Clustic Country of the Country of th			
Decision Teus Chies Chies	~04.4AL	A \$work, un	13. The 13. Th
MORMAL	26	5	31
AGWORNAL	10	38	48

MON. LINEAR ZOUND-KOUIN				
TRUE CLASS	- 1	MARMAL ARMOPMAL		Total
44 إناوس	L	24	7	31
م ۱۵ مساوم کار	٠.	9	39	48

$$FRROR = \frac{16}{79} = .20$$

COPIMISTY ABOUT 100 CAR

THE STATE CLASS	Normal	AHMOLOGI	
~200~2	26	5	31
ع م.۳ د م 4 د. ا	6	42	. 48

CLASSIFIERS RESULTS FOR FEATURE(S) in Non-parametric

ERROR = _	* • ;	»=:sck:	mied
			samples

A

Decision Taug CLAN CLAN	i .	ASNOT.uq	13. Take 15. 3. 4. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15
NORMAL	24	7	31
ABNORMAL	٩	39	48

$$5222 = \frac{16}{79} = .20$$

V

Teve CLASS	NORMAL	2840 FM/L	TOTAL TOTAL SO-July Class
MORMAL	19	1.2	31
ABADRMAL	6	42	48

$$ERROR = \frac{18}{79} = .23$$

$$fxe_{52} = \frac{22}{79} = .28$$

CLASIFIERS RESULTS FOR FEATURE(S) in Non-Parametric

1	
d	1

		d/r	
Decision Teue Chair Chars	:	A SNOW WA	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MRUAL	21	10	31
ABNORMAL	1	47	48

$$2000 = \frac{11}{79} = .14$$

	**.J		
TRUE CLASS CLASS	HORMAL	à BNO FMAL	Total so if so its
NORMAL	22	9	31
ABARRAL	2	46	48

ERROR =
$$\frac{11}{79}$$
 = .14

OPFIMISTIC NON-LINGER

TICT CIES	NOTMAL	مره روفاري فر	ارداد درداد درداد
James			
!			. <u>-</u>

£ 48:2 =

ومامات ريانه فا

APPENDIX C

Preprocessing and Noise Removal Program

• SpanArray = Array(i. 1001 of Integet: < New structure for Bubble Sort) (Added : 7/28/86) The George Hashington University, Mashington D C SweepNumber, Datum, GmaliBad, MediumBad, LargeBad, NumBad, NumFinal, Index, NumPumpfrimes, DirtyNum, CleanNum, ScratchNum : Integer, Nochanges Boolean. : Arraydl. Max Sweep 3 of Integer • Nochanges Boolean. DirtySet, CleanSet, ScretchSet; DetaArray. Sfailineigh, Sfail3Neigh, (* SfailDey DEACTIVATED 3/14/86, *) BfailLge, Smallfised, MfailNeigh, LfailNeigh, LfailVar This is an experimental program developed to clean noise points out of EKG data files. The program produces hard-copy of various statistics, and a new disk file containing the cleaned data. to This procedure initializes the variables which hold statistical Mfized4. Mfized3 : Array[1 : MasSweep, 13., 291 of Integer; Lfized Array[1., MasSweep, 6., 321 of Integer; SFall Design (index) = 0, (e. BFall Devilodex) = 0, (f. BFall Devilodex) = 0, (f. BFall Lge (index) = 0), (f. BFall Lge (index) = 0, (f. BFall Lge (index) = 0), (f. BFall Lg U.S. Army, Dr. Redmond DataArray a Array(1 . 10000) of Integers NeighArray a Array(1 . 9) of integers Information regarding the cleaning process. Murray H. Loew Linda Sibert m 1 to MaxSweep DO Lee Spector VAR Index, Index2 : Integer: Supporting Institution CONST MAxSweep = 100, Procedure InitStates Project Funding à Lergebad - 0, SmallBad = 0; Investigators 1. This is 411 Programmer Mediumbad Regio For Indea TYPE Begin VAR

that the potential pater.

.

firstliventingeri of the state of the state

< 333 (Small) : ', BmallBad), HediumBed), LergeBad), BealiBad + MediumBad + LargeBad), Writeln ('Small Fallures due to BAD NEICHBORHOODS OF 3 Writein (' es NOTE es '.NumPumpPrimes,' Pump-Primes have taken place.'); Writein, Writein (' Small Failures due to BAD NEIGHBORB DIBTANCE 1 Writein (' Resses Biatiblics FOR BMEEP MUBER ', Index,' estesses') >= 3000 (Large) : . 24 1500 and < 3000 (Medium) ; TOTAL in this procedure prints histograms and other statistical output as Writeln (' Bad Points After Cleaning : ', Numbed); Writeln, For Index : 1 to SweepNumber DO VAR Index, 12 Integer! Procedure PrintState, Writein (' Writein C. Writein, Begin

. LFeilNeigh [Index]) Writeln, Harge Failures due to VARIABILITY CRITERION: '.LFailVar[Index]),
Writeln, Harge Successes:'); Writeln,
Writeln(' RANGE HANGE HALLE),
Hriteln(' ------'),
For 12 = 6 to 31 DO '. MFas INesgh (Index 3). WriteIn((12*1000)DIV 2:10.' - ',(((12*1)*1000)DIV 2)-1:8, LFixedIndex,[2]:21), in(' 16000 and up ', LFixedEindex,22]:21), WriteIn Writeln.
Writeln ('Medium Successes with Neighborhoods of 3 (* 2) :'); Writeln:
Writeln ('RANGE 'Amage 'Ama Writein (' Medium Successes with Neighborhoods of 4 (* 2) : '). Writein the NANCE SANCE SUCCESSES'): Fur 12 = 15 to 29 00 Writeln(' ',100*12,' - ',100*(12*1)-1, MFixed4(Index,121:25)) For 12 . = 15 to 29 DQ '. . '.100*([2+1]-1.MFixed3[index.[2] :25]) Writeln ('Small Successes ', SmallFired[Index]), (Writeln ('Medium Failures due to BAD NEIGHBURHOODS Writeln(' Large Failures due to BAD NEIGHBORHDODB Writein.

Startiget Indeadt.

Writeln.

Function Good(EKGvalue . Integer) : Booleans

End. (* PrintStats *)

(* This function returns "trus" if its argument satisfies 333 <* EKOvalue < 1500

Good = (ENGvelue >= 333) AND (ENGvelue < 1500) End. (* Good *) Begin

Function Guodonaigh (Arg. DataArray, Point : Integer: N : Integer) . Boolean. in this function returns "true" if the pointed-at value has three good

neighbors on each side

(* Point near #) (* beginning or EUF *) It itali it into be 30 AND ((Paint + 3) (a N)) Inen AND (Guud(Ary(Point - 21))
AND (Guud(Ary(Point - 11))
AND (Guud(Ary(Point + 11))
AND (Guud(Ary(Point + 21))
AND (Guud(Ary(Point + 21)) # (Cood(Ary[Point - 33)) Gund.Mergh = false End. (* Good3Neigh *) Else Good.ineigh

Function Good-Angigh (Ary . DateArray: Point : Integer: N . Integer) : Boolean is This function returns "true" if the pointed-at value has four good

• (a beginning or EOF (* Point near *) If (ROI (Point >= 4) AND ((Point + 4) <= N)) Then (GoodANeigh := False Else GoodANeigh := (Good(Ary(Point - 4)))
AND (Good(Ary(Point - 2)))
AND (Good(Ary(Point - 2)))
AND (Good(Ary(Point - 1)))
AND (Good(Ary(Point + 1)))
AND (Good(Ary(Point + 1)))
AND (Good(Ary(Point + 2)))
AND (Good(Ary(Point + 2)))
AND (Good(Ary(Point + 2))

End. in Good4Neigh e)

function GuodiefilOlindes : Integer, Ary : DataArray) : Boolean;

For Counter + 1 to 10 DO

16 (Index - Counter) < 1 Then Temp := False

Else if NOT Good(Arylindex-Counter)? Then Temp = False, VAR Counter Integer: Temp Boolean - True. Z e m p # . y . n

Condimitio - Temp

integer. Ary . DataArray, NumPoints . Integer) . Boolean, Function GuadRight10(Index

Integer. VAM Counter

Boulten. 4 Beyin

* True. .

If (Index + Counter) > NumPoints Then Temp : " False Else If NOT Good(Ary(Index+Counter)) Then Temp : " False: CoodRight10 - Temp For Counter - 1 to 10 DS

End. in Goodkightid es

function WithinDev(Val. Integer, Ary: DataArray, Point: Integer) Boolean, (DEACTIVATED 3/14/86

• (a This function returns "true" if val is within 20 % of the mean of the boints surrounding the "puint" ed-at point in any.

(* VAR Devietion, Mean . Integer.

- (Ary(Point-3)+Ary(Point-2)+Ary(Point-1)+Ary(Point+1)+Ary(P **1.** oint+21+

Ary(Point+31) DIV 6,
Deviation - Hean DIV 5,
WithinDev - (Val <- (Mean+Deviation)) AND (Val >- (Mean-Daviation))
End. el (e WithinDev e)

Integeria

Procedure PrintDev(Value, Mean (* ADDED 3/14/16 *)

Mritel . The new value deviates from the mean of its 6 neighbors by .. (100 e (Value - Mean)) DIV Mean, ' %')

£nd,

is This function returns the mean of the six points surrounding the "point"ed Eise if (MOT Good (inArray LinPointer-11)) OR (MOT Good (InArray LinPointer-11)) : if Screphuster = 1 Then Baslibad : = Baslibad+11 (* Mest track of @ bad a) Writeln(' Saslicase Algorithm Activated'. Value = '. [nArray[InFointer]) Protedure SmallCase(InArray . DataArray . VAR DutArray : DataArray. InPointer : Integer: VAR DutPointer : Integer: NumPuinte : Integer: VAR NoChanges, SkipDne : Boolean). Meanameigh - IAryfPoint-22+AryfPoint-23+AryfPoint-13+AryfPoint+13+ AryfPoint+23+AryfPoint+331 Bly a Mritein ('Value AT beginning of end of file. '), Sfailineigh (Buesenumber) + 1 te This procedure implements the algorithm for cleaning values < 333. GLOBAL VARIABLES REFERENCED: SeeliBad, Smallfiled, SFeillNeigh, BFeil3Neigh, BFeil3Neigh, BFeil3Neigh, BFeil3Neigh, Mritein (* Bad neighbor distance - 1 . .), SfaillNeigh(BucepNumber) - BfaillNeigh(GucepNumber) + 1 Writein (' Neighborhood of 3 not adequate. '); Sfall3Neigh(GwerpNumber) - BFall3Neigh(BweepNumber) + j Writein(' Neighborhood is . '. Inarray(InPointer-3), ' ', function Avanbheigh (Ary DateArray, Point : Integer) . Integeri Else If (MOT Good 3Neigh (finarray, InPointer, NumPoints)) Then 1f (InPuinter = 1) OR (InPointer = NumPoints) Then NegValue, NetghMean Integer, Success : Boolean Success a feine, Shipdne a felse, End to Else If a) End to Else If .. End. to MeanoNeigh e) MODIFIED 3/3/86 Else Begin (* Temp *) begin ₹>

```
Writelni' RightSum = '. InArray[InPointer]+InArray[InPointer+1]),
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Write('Proposed new velue >= 1500...'),
SFailLys(SasepNumber) := BFailLys(SasepNumber)+)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        BFailLge(BweepNumber) : # BFailLge(BweepNumber]+1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   NewValue . = InArray(InPointer-11 + InArray(InPointer
                                                                                                                                 Writelni' teftSum = ', InArray[InPointer]+inArray[InPointer-1]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 NewVelue . * InArreyfinPointer+13 + InArreyfinPointer
                                                                                                                                                                                                                                                        NeighMean * Messichergh (InArray, InPointer);
If Amminariay(ispussion - 13+InArray(ispointer)-NeighMean)

Amminay(ispassion)
                                                                                                                                                                                                                                                                                                                                                                                                                                                         (* Add to Preceeding Value a)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  (* NewValue OK - Make Change
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       ),
(* If MithinDev(NewValue, InArray, InPainter! Then DEACTIVATED 3/14/84
Begin e)(* NewValue OK - Make Change e)
If NewValue < 1500 Then
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               (* Add to Succeeding Value »)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       GutArrau(Gutpointer-11 :- NewValue:
Buccese :- True;
PrintDev(NewValue, NeighHean)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Writel' Proposed new value 2= 1500. ...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      1.
(e if WithinDev(NewValue, InArray, InPointer) DEACTIVATED 3/14/86 e)
(f (NewValue < 1300) Then
                             . Indicade Informer 11, 11,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          11 + [Lister Orest Dest] = Betlifficed (Best Notes of Orest Dest) + 1.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Outarray(Outpointer) : - NewValue,
           indicate the transfer of the continuence of the transfer and the transfer in t
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Outpointer : Dutpointer + 1. ShipOne : Fire.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Success : Trues
PrintDev(NemVelue, NeighMean)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     (* Else if NewValue < 1500 Then Begin DEACTIVATED 3/14/86 Writel' Proposed new value not within '); writelni'20 x of mean of 6 neighbors. ');
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Mritel Proposed new value not within ');
Writeln'20 % of mean of & neighbors. ');
SfailDev(SweepNumber] " BfailDev(GwaepNumber]+1
End a) (a Else if a)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Else If NewValue < 1300 Then DEACTIVATED 3/14/86
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   SFallDev[SweepNumber] - SFallDev[SweepNumber]+1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 End (* 10 %)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Else Begin
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Else Begin
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               End (* 1¢ +)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           End (* Else a)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Nuchanges = False,
                                                                                                                                                                                                                                                                                                                                                                                                                                              Begin
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Else Begin
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                End, (* Else *)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              If Success Then
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Ende) (a Else e)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           in End s) (s if s)
to deal el
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        •
```

Uutarray(Dutpointer) = Inarray(InPointer), Outpointer = Outpuinter + 1, Writein(' Algoritim Fails''), The state of the s Mritein End (# Else *) End. (* SaailCase *) tive degan

Procedure Bubbles (VAR Ary : Neigharfeu N : Integer)

in This procedure sorts the N values in Ary.

× × VAR Indect: Induct. Tomp

Integer

•

B . g . n

for index! = 1 to (N - 1) DO

For index2 = 1 to (N - 1) DO

If Ary(index2) > Ary(index2 + 1) Then

(* Eachange e) Toop : Ary(Index2), Ary(Index2) = Ary(Index2 + 1), Ary(Index2 + 1) : Toop

End. (* Bubble9 s)

function GetMedian44(Ary . DataArray, Point : Integer) : Integer,

is This function returns the median of the 8 neighbors of the pointed-at value in Arg.

VAR Neighburhoud NeighArray; Index Integer,

:

For Index = 4 to 4 DO

Neighburhood(Index+51 = Arg[Point + Index];
GetMedian44 = Neighborhood; 9);
End. (e GetMedian44 e)

8+810

function GelMedian33(Ary DataArray: Point ; Integer) ; Integer; is this function returns the median of the 6 neighbors of Naighborhaod(Index+4): Aryffoint + Index 1: Gethedian 3 = Naighborhaod(4) the painted at value in Ary. VAR Nothbothood Notabalfaut For Indee = - 3 to 3 DO Indes Integer.

• is this function returns the median of the 3 points in Ary BEOIMNING with the pointed-at value in Ary. function GetMedian5(Ary . DataArray, Point : Integer) : Integers For index — 1 to 3 DG

Neighborhoodilndex? — AryiPoint + Index — 13;
Gettredians — Neighborhoodis? VAR Neighborhood NeighArray; Index Integer, Deg 1 n

Protedure MediumCase(InArray : DataArray, VAR DutArray : DataArray, Integer, VAR DutArray : DataArray, NumPoints Integer, VAR NoChanges : Bousean,

•

```
•
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               (* Success - split up value =)
                                                                                                                                                                                                  IF SteepNumber s I fren Mediumbad : s Mediumbad+1) (s Neep track & bad s)
                                                                                                                                                                                                                        Writelai' Medicacase Algorithe Activated ... Value ... inArray(InPointerl)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                (# Distribute Remainder #1
                                                                                                                                                                                                                                                                                                                                                                                                                              Else If Cood-3Neight InArrey, InPointer, Numboints! Then (e ch neigh of 3
is list to the procedure which implements the absortable for cleaning values
                                              SweepNumber, MediumBed, HeailNeigh, Willeds,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           (* Send out new values *)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         (* Nestables - Median a)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       MF1sed3(BweepNumber, Indrray(InPointer) DIV 1001 : w MF1sed3(BweepNumber, Indrray(InPointer) DIV 1001
                                                                                                                                                                                                                                                                                                        Missed4(SweepNumber, InArray(InPointer) DIV 1001 -- Trised4(SweepNumber, InArray(InPointer) DIV 1003
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Numpertit : * Numpertit + 1, Hedian : * InArray(InPointer) DIV Numpertit, Remainder : * InArray(InPointer) HOD Median
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              NewValuesfinderl :- NewValuesfinderl + 1;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        DutArray(DutPointer] : - NewValuas(Index),
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      If Index > Numbertit Then Index : m 1;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          NumPartit : " InArray(InPointer) DIV Mediani
Remainder : " InArray(InPointer) MDD Mediani
If Remainder > " (Median DIV 2) Then
                                                                                                                                                                                                                                                                                                                                                                        Success := True;
Median = GetMedian44(InArray, InPolnter)
End (= If a)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Hedian = CatMedian33(InArray, InPointer)
                                                                                                                                                                                                                                                               if Good-Angigh (InArray, InPointer, Numpoints) Then
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ButPalater : - DutPointer + 1
                                                                                                  Median, NumPartit, Remainder, Index ; Integer;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Remainder - Remainder - 3 For Index - 1 to Numbertit DO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              NewValuesfindex3 := Mediani
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Writeln (' Algorithm Succeeda!'); Writeln
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   End: (* 16 a)
For Index: " 1 to Numpertit DQ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Index . - Index + 1;
                                                                                                                                             Arraytt 101 of Integer.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     While Remainder > 0 00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 End. (* Far #)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   - False.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Success : = True.
                                   C. GLOUAL VARIABLES ACCESSED
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Else Success im False,
If Success Then
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   index := 1;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Begin
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Begin
                                                                                                                             Success Bunlean:
NewValues Arrauf
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     NaChanges
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               (* 1E *)
                                                                                                                                                                                                                                                                                          Begin
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              End
                                                                                                    E47
                                                                                                                                                                                                                                                                                                                                                 ~
```

```
tion hegin
```

```
•
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                PointsUsed : PointsUsed + 1, if inArray(Index) < LeftHin Then LeftHin : - InArray(Index)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       If Indring(Index) > LeftHax Then LeftHex := InArray(Index
                                                                                                                                                                                                                                                                                                                                                                   LastLeftSpan : Integer 1: < <-- Added : 7/28/86 )
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Writein (' Left Spanning-Set Fails - Sum at failure m'. LeftSum)
                 Outfornier = Outfornier + 1.
MfailNeightSweepRomber3 = MfailNeightSweepNumber3 + 1.
Writein (* Algorithm Falls:**);
                                                                                                                                                                                                                                                                                                  Procedure Spanieft(InArray : DataArray, InPointer : Integer, VAR LeftBum, LeftMin, LeftMex, LeftMean : Integer, VAR LeftBetOR : Boolean ;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              LeftMean : * LeftSum DIV PointsUsed ;
LastLeftSpan : * Index ; { <-- Added : 7/28/86 }
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     UNTIL (NOT LeftSetOM) OR (LeftSum >= InArray[InPainter]);
UniArray(UniPointer) - InArray(InPointer),
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         LeftSum : = LeftGum + InArray[Index]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Else If NOT Good (Indrauglinder - 11) Then LeftGetCK: # Felse
                                                                                                                                                                                                                                                                                                                                                                                           (* This procedure forms the left spanning-set.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Index : - Index - 1,
                                                                                                                                                                                                                                                                                                                                                                                                                               VAR Index. PointsUsed : Integers
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  If Index = 1 Then
                                                                     Writeln
End (* Else *)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        = inPointer,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                LeftSetOM = True.
                                                                                                  End. in MediumCase at
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       LeftHin = 9999,
LeftHin = 9999,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           If LeftSetON Then
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                PointsUsed . = 0,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Bigin
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      End. (* Spanleft *)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                8 . g . n
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        E166
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    End
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 REPEAT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  B•91n
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ÷
```

Index = Index + 1; PointsUsed := PointsUsed + 1; If InArray(Index) < RightMin Then RightMin := InArray(Index If InArray[Index] > RightMex Then RightMex :- InArray[Index Writeln ('Right Spanning-Set Fails - Bum at failure - 'Right Bum) RightMean :" RightBum DIV PointsUsed ; LastRightSpan :" Index ; (<-- Added : 7/28/86) RightSum : " RightSum + InArray(Index)
End (a Eise +)
UNTIL (NOT RightSetDK) OR (RightSum > * InArray(InPointer)),
If RightSetDK Inen If Index - NumPoints Then
RightBatOM := False
Else If NOI Good(InArray(Index + 13) Then
RightBatOM := False te This procedure forms the right spanning-set Integer. Rightmin = 0. Rightmin = 9999, Rightman = -9999, PointsUned = 0. RightSetOM = Irue, Index - InPointer, RightSum = 0, VAR Indes. PointsUsed 8 • 9 i n End. (* SpanRight *) 0.910 Begin â

(-- Procedure for Bubble Sorting array

```
Temp := SortArray(Indes2) ;
SortArray(Indes2) := SortArray(Indes2+1) ;
SortArray(Indes2+1) := Temp ;
                                                                                                                                                                         FOR Index! = 1 to (Last-1) DO
FOR Index2 = 1 to (Last-1) DO
IF SortArray(Index2) > SortArray(Index2+1) THEN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    LastRightSpan : Integer ) : Integer :
PHINEDUKE BubbleSort ( SurtArring SpanArray , Last
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       FUNCTION FindRightMedian (InArray : DataArray : Integer :
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Surthrray(1) := InArray(Index) ;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Function for finding the Right Median used by the Procedure LargeCase Added 7/28/86
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Index = InPointer
Lest = LestRightSpan - InPointer
FOR I = 1 to Lest DO
                                                                                                       Integer
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          BubbleSort ( SurtArray, Last )
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       1. Index. Last. n. Integer
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Index : Index + 1
                                                                                                    Indest. Indes2. Temp
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               SpanArrey
                                                                                                                                                                                                                                      BECIN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            BortArray
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      BECIN
                                                                                                                                        DECIN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              BECIN
                                                                    ₹
>
                                                                                                                                                                                                                                                                                                                                          END
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       ₹
>
```

77.24/116

AD-A217 670 2/2 UNCLASSIFIED F/G 6/4


```
Ŀ
                                                                      n = Last DIV 2
FindRightMedian = TRUNC((SortArray(n)+SortArray(n+1])/2),
END (-- IF --)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               FindLeftHedian = TRUNC((SortArray[n]+BortArray[n+1])/2);
END (-- IF --)
                                                                                                                                                                                                                                                                                                                                                           FUNCTION FindLeftMedian ( InArray : DataArray ;
InPointer : Integer ;
LastLeftSpan : Integer ;
n - Last biv 2
FindRightHedian - SurtArraginell
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       11
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Index := Index - i
SortArraufil := inArraufindexl :
                                                                                                                                                                                                                                                                                            Function for finding the Left Median used by the Procedure LargeCase Added 7/28/86
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Index = InPointer
Last = InPointer - LastLeftSpan
FON I = 1 to Last DO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 BubbleSort( SortArray, Last )
                                                                                                                                                                                                                                                                                                                                                                                                                                                  I. Indez. Last. n : Integer
SortArray SpanArray
                                                                                                                        END (-- FindLeftMedian --)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             IF (Idd(Last) THEN BEGIN
                                                                                                                                                                                                                                                                                       C used by the Pr
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  BECIN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 BECIN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           END
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       SZ
SZ
                                         ELSE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ELSE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            BE01N
                                                                                                                                                                                                                                                                                                                                                                                                                         ₩
*
```

WHITE CHARLES THEN

ミッミ

ETTERUTE TO THE

Procedure LargeCase(InArray : DataArray, VAR OutArray : DataArray, Integer, VAR OutPointer : Integer,

Integer: VAR NoChanges Booleanli Numboints

(* This procedure implements the algorithm for cleaning values >= 3000.

=

LeftSum, LeftMin, LeftMas, LeftMasn, NumPartit, RightSum, RightMin, RightMas, RightMasn, ComDiff, Index, Accum, SmallerMean, StatArylind, LastLeftSpan, LastRightSpan : Integer, LeftSetOK, RightSetOK, Buccess : Boolean, NewValues : Array(I: 100] of Integer, RN, AllowedVar, PercVarLeft, PercVarRight : Real, ₹ >

Beg:n

Allowedvar := 0.20; (* *** SET ALLOWED VARIABILITY HENE *** *)
Success .= False;
If Success .= False;
If Succepvieber * 1 Then LargeBad := LargeBad*1; (* Kesp track ** bad *)
Writein(' LargeCase Algorithm Activated... Value **, inArrayCinPointerli;

Spanleft (InArray, InPointer, LeftBum, LeftMin, LeftMax, LeftMean. LeftSetOM. LastLeftSpan): SpenRight (InArray, InPointer, NumPoints, RightBus, RightMin, RightMax, RightMean. RightSetOK. LestRightSpan);

If LeftSetOK AND RightSetOK Then Beg 1.n

PercVerRight : # (1.0*(RightMex - RightMin)) / RightMean PercVarLeft := (1.0*(LeftMex - LeftMin)) / LeftMeans

(----- This Routine was modified on 7/28/86 ------

LeftHean : FindLeftHedian(InArray, Inpointer, IF NOT ((PercVarLeft >= (0.0 - Allowadvar)) AND (PercVarLeft <= Allowedvar)) THEN LestLeftBpen) IF NOT ((PercvarRight >= (0.0 - Allowedvar)) AND
 (PercvarRight <= Allowedvar)) THEN
 RightMean := FindRightMedian(InArray, Inpointer,</pre> LastRightSpan!

Success : True

End (* 16 #)

B•910 E1 se

LFailNeigh (Guesphumber) : m LFailNeigh (Bussphumber) + 1, Writeln(' Spanning-sets not formed...').

.

(b) = 1,N (c) = 1,N (d) = 0,0 (d) = 0,0 (e) = 0,0 (f) = 1,0 (f) = 0,0 (f) = 0,0

1111 111 SULFULTINE FOR FINDING THE ESTIMATED COUFFICIENT VECTOR SUBHINUI THE FOR CALCULATING SIGNA PARAMETER DESCRIPTION

F - ESTIMATE VELOSE

R - ORDER OF MATRICS C

CC - COVARIANCE MATRICS

O - OUTPUT SIGMA

O - VARIABLE SUBHUUT INF STOMACE, N. CC. o. Q. m.) DESCRIPTION OF PARAMETERS

B INPUT INVENSE MATRICS

N - ORGER OF MATRICS

C - INPUT SUBMATRICS DIMERCIAN B(m.m), C(m), D(m+1) SUBRIMITINE EST(B.N.C.D.m) CONTINUE

RETURN

END i 110 3 ر، ن 0000000000000

DIMERSION ECAD. CC (m. m). Gran

3

. •

SUBRINUTINE SHOWING LIP
PRINTS OF STATE TO THE MATRIX
DO TO 1 " 1.L.
DO TO 3 J. S.L.
PRINTS ' MATRIX' 1. ' 'J. ') " ' A(1, J) SUBROUTINE MATTELY (A. B. C. L.)
DINENSIDA ALL. L.), BILL. L.), CILL. L.)
DO 10 H = 1.L.
DO 20 I = 1.L.
SUM = A(K. J) = B(J. I) + SUM
CUNTINUE
CONTINUE
R. TUHN
ENG MATIPLY THE MATRICES TODETHER inverts Ath row of matrix 2 PRINT THE NATHIX DU 60 1- 1.8 IF (J L) K) K) GD 10 60 2(1,J) = 2(1,J) + 2(1,N) + 2(1,N) MATRIX INVEHSION HOUNTINE Constitue Parties Constitue Reform SUMMINUTINE SHEEP (2.K)

2 (K. K) 2 (23, 31)

2 (K. K) 2 (24, K)

3 (K. K) 2 (24, K)

4 (K. K) 2 (24, K)

5 (K. K) 2 (24, K)

6 (K. K) 2 (24, K)

7 (K. K) 2 (24, K) CONTINUE RETURN END 22 و، و، و، د ا 23 د، د، د، ن ن 2 \$3 00000

111

2 5

1111

E

. STARTING POINT has = 0 0

intil = 1.NIOI - 1

DO :000 | = 1.NIOI - 1

Editation(1) = [FL.NIOI
distanti) = distanti)
distanti) = distanti)
distanti) = next HAM = 'Setlug(s)jr) + injisigs)' - log(sigp) Digiaming = -2 *floatinp)*ram Hamilike = inc CDN)*IN-E | | | | 111 . SEQUENCE NO COPY A MAINIX INTO ANDTHER Z - 4 E PRINTS, GISTANCE ', SEQUEN
DO 500 1 * 1.NTGT
IFIRST * N*(NUM:1) ~ 1) + 1
PRINTS, DISTANCE, NUM:1), IFIRST print autput with descending order COMITIME
CALL SHAWOR. P)
CALL COPYMOR. X. P)
EQ 666. 1 = 1.P
CALL SHEEP (DR. 1)
CALL HALFTPLY (DR. X. Y. L)
CALL MALTIPLY (DR. X. Y. L)
CALL SHOW (Y. L) u. O SOLUTION OF DISTANCED 0 N 3 Fluir of Chick 2 · Z · - Z STUP ;

£ -

(1) (2) (3) (4) (4)

66c

ں ں ں ر، ر

SUBPLIE COPYNIA B.L.)
BIR PETER A(L.L.), BILL.L.)
PRINIA. COPYING THE MATRIX

ں یہ ن ن ن ن ن ر،

500

() () () () () ()

```
PERSONAL STREET, SECURITY OF S
```

```
Printe, "PRINTE, UDR((), UDS((), DDP(())
                                                                                                                                                pinnte, single dimension vector'
printe, (sr(1),134.np)
printe, (SS(1),141.NP)
printe, (
                    0.3 14 1 = 1.P
                                                                                                 CONTINUE
Filter . . .
       0 = CC
                                                                                                                     BUNITAGE
```

FIND HIVERSE MATRICS OF UR. DS. DP

```
DO 115 1 = 1,P
CALL SWEEP (DR. I)
CALL SWEEP (DS. I)
CALL SWEEP (DP. I)
CONTINUE
```

FIND ESTIMATE UF A. VECTUR

CALL EST DPR. P. DDM. EP. mp.) CALL EST DES. P. DDM. ES. mp.) CALL EST DPP. P. DDM. EP. mp.)

FIND SIGNAR, SIGNAS, SIGNAP

LL = P + 1 CALL STUMMER.LL.CR.SIGN.G.mp11 CALL SIGMA(ES.LL.CS.SIGS.G.mp1)

ں ں ں ں ں

.

```
LL = P + 1

KK = 0

DO 22 I = 1.LL

DO 12 J = 1. LL

SUM1 = 0 0

SUM2 = 0 0

SUM1 = SUM1 + BATA(K-J)

KK = K + N

SUM2 = SUM2 + BATA(K-J)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             PHINTS. (CCR(1, J), J=1,11,1,1=1,LL)
PHINTS.
PHINTS.
PHINTS.
(CS(1, J), J=1,LL), I=1,LL)
PHINTS.
CUMBINED COVARIANCE MATRICS'
PRINTS.
(CCP(1, J), J=1,LL), I=1,LL)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            COVARIANCE MATRICS OF R(T)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       CR(1, J) = sum1/float((N - P))
CS(1, J) = SUM2 /float((N - P))
CP(1, J) = ( CR(1, J) + CS(1, J) ) / 2
                                                                                                                                                                                                                                                                                                                                                                                                                 PRINTS.
                                                                                                                                                            DO 11 1 # 1F1HST . 11AST
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       IL . INDER OF MATRICS CH. CS. CP
                                                         DESCRIPTION OF THE PROPERTY OF
                                                                                                                                                                                                                     Dalatin = rUAIA(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        CALCULATE CR . CS. CP
                                                                                                                                                                                                                                                                                                                     PRINT INPUT DATA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      PRINI OR . CS. CP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          CONTINUE
                                                                                                                                                                                                                                                        CUSH INDE
                                                                                                                                                                                                                                                                                                                                                                                          JUNI LIMOS
-1
                                                                                                                                                                                                                                                                                                                                                                                                                                                 70000000000000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        .
```

IMARLIES FEATA TO DATA

```
PHINIS. HINDOM SIZE = ". N
PHINIS. GROER OF AUTOMEGNESSIVE FUNCTION = ". P
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    FIND DISTANCE BETWEEN STANENCE UNTIL NTOT BEQUENCE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 TOTAL EXAMINE SEQUENCE NUMBER - NTOT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          PRINTS. TOTAL DATA NUMBER . '. ITOT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    WATTETT, 112) ' WINDOM SIZE = '
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      tind actrage
ace " float(sum) / float(stot)
princh, sum m'.sum
princh, ace m'.sum
substrat; acerage from all data
do 9000 i m l'itot
                                                                                                                                                                                                                                                                                                                      Printe bata SET HAME = ... (A
                                                                                                                                                                                                                                                                                                                                                                                                                PRINT WINDOW SIZE AND DRUER
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       rdata(1) = rdata(1) - ave
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          PRINI 10 AL INPUT DATA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Sum = sum + idata(1)
rdstatt/ = idata(1)
GO 10 B
                                                                                                                                    READ DATE SET NAME
Britishs, order and address of the property of
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         HEDE = 1501/N -1
                                                                                                                                                                                                                               Feeding, 73 ch
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      READ ENG DATA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    1 - 1 = 1011
                                                                                                                                                                                                                                                                                    formal (a5)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           0 0 8 878
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Continue
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  7
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    9000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        2 د د د
```

St. Phys. on LLB

```
16-10 - 1849) DATA OF LENGTH 200 BAND BATA OF LENGTH 200 BAND BATA OF LENGTH 200 BAND BATA OF BADDING WEST BY COUNTRIES OF RITTORY OF CONTRIBUTE MATRICS OF RITTORY OF CONTRIBUTED MATRICS OF RITTORY OF STREET BAND BATA OF B
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  IF 1455 - F (RST INDEX OF EXAMINE SEQUENCE ILLEST - LAST INDEX OF EXAMINE SEQUENCE CIT - RAME OF UATA FILE (TOT - TOTAL DATA NUMBER NOTOT - TOTAL EXAMINE SEQUENCE NUMBER NOTOT - TOTAL EXAMINE SEQUENCE NUMBER NOTATION - OTHER OF OTHER SEQUENCE NUMBER NOTATION - OTHER OF OTHER SEQUENCE NUMBER NOTATION - OTHER OF OTHER OF OTHER SEQUENCES OF OTHER OT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              OPEN: UNIT . S. FILE . finame . STATUS . 'OLD')
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    DISTAH - FINAL QUIPUT OF THIS PROGRAM
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 READ DATA AND ASSIGN WINDOW SIZE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Characters on
CHARACTEP Fnames:2
PRINTs, 'Enter the Filename
READIS:111 Fname
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      PUTNIE, HINDON STEE N = 7
ACIEPT 200, n
FORMATTED
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  SET UP WINDOW SIZE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  FOUMATIALES
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    mp1 = 31
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     0E - d#
```

BEST PIPETUR OF PAPEMETCH

20.7

яваивана Канавара	4	3	8	8	RRRRRRR	RRRRRRR	RR	RE	88	88	æ	RR
RRRR	RR	8	AB	R.	RRRR	RRRH	AR			æ	RR	AR
900	00	00	00	00	0	8	00	8	8	8	g	8
000000	8	8	8	00	8	00	00	0	00	00	00000	000000

7 7 7 7	7	4	4	4	7	****	****	7	4 4	4	7	+	7
7	7	-1	7	7	.i	7777	7170						
## ***	7	4	7	4	†	444444	444444	4	44	4	4	4	7 4
7:	7	4	7	4	4	444	447						
	:	:	:::			::			:	:	:	:	:
RARARARA Rarara	98		2 0	XX 0	NX CCCCCCCC		אאאאאנאא						
000000							200				00000	000000	
FFFFFFFFF FFFFFFFF	L.	1	FF	FF	FFFFFFF	FFFFFFF	FF.	FF	FF	FF	FF	FF	

File _DUAL (FAJLUEM ARMYIUR FOR: 44 (2708,19,0). Jest revised on 27-AUG-1986 (PV 55, 15 a 24 block squential file owned ;; vl., [EECS.FACLUEM] The records are variable iongth with implied (CR) carriage cuntrol. The lungest 14cord is 72 bytes.

Jab OR (1564) guesed to SYS\$PRINT on 27-AUG-1986 09 35 by user FACLOEM. UIC (FEGS,FACLOEM), under 155cunt EFGS at priosing 155 started on printer _LPAO on 27-AUG-1986 09.33 from queue LPAO

APPENDIX D

Plots of ECG data before and after preprocessing and noise removal

APPENDIX E

Part one of segmentation program

```
OurtySet[Index] <> O Then (* Transfer raw data into *) (* BoratchBat. DO NOT *) ScratchNum - BoratchNum + 1) (* TRANBFER ZERDB! *)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Steam (ScratchSet, ScratchNes, CleanSet, CleanNes, NesFinal);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         For Indes: " 1 to NumFinel DO
ScratchBetfinder] : " CleanBetfInder]; { Transfer back }
ScratchNum : m NumFinel;
                                                                                                                                                                              ScratchSet(ScratchNum) := DirtyBet(Inder) End. (* 17 *)
NumbumpPrimes = 0, CleanNum = 0, ScratchNum = 0, Settop (DirtyNum): Settop (DirtyNum): For Index = 1 to DirtyNum DO | If DirtySet(Index) <> 0 Then (e Trans)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             If NOT Aliclean(ScratchSet, ScratchNum)
Then PumpPrime(ScratchSet, ScratchNum)
UNTIL Aliclean(ScratchSet, ScratchNum)
For Index " | to ScratchNum DO
CleanSet(Index) " ScratchNum DO
                                                                                                                                                                                                                                                                                                   PreSweepState(ScratchSet, ScratchNum),
                                                                                                                                                                                                                                                                                                                                                                                                                       NaChanges : # True:
SweepNumber : # SweepNumber + 1:
                                                                                                                                                                                                                                        PrePrucess(StratchSat, StratchNum),
                                                                                                                                                                                                                                                                                                                                SweepNumber : # 0;
InstState;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        UNTIL NoChanges:
PrintState:
                                                                                                                                                                                                                                                                                                                                                                                             REPEAT
                                                                                                                                                                                                                                                                        REPEAT
```

(Clean)

SetDown(CleanSet, CleanNum);

Writeln: Writeln('The file has been entirely cleaned'); Writeln('The final number of points is '. CleanNum);

CleanNum . ScratchNum.

(Option for "My_File" is "My_File ... 'MUAO : [] DirtyDate Dat' ...)
RESET(IN) DirtyNum := DirtyNum + 1; Readin (FN, DirtyBet(DirtyNum]) End, (= Maile =) OlftySet(Index) = 0, CleanSet(Index) = 0, ScratchSet(Index) = 0, End, (* For *) For linder = 1 to 3500 do DirtyNum = 0; While NOT EOF(FN) DO Ustal 114. Begin n t 6 a g Open car. C1080(FN)

End. (* SetUp *)

Procedure SetDown (Data . DataArray: Num : Integer); VAR Index : Integer, FN : Text, Dutfile Varying [30] of CHAR,

Begin

Writein (' Please specify the autput file name ...'), Open (FN.

Outfile.

History . mew),

Rewrite (FN);
For Index = 1 to Num Do
Histeln (FN, Date(Index] : 5);

Close(FN) End. (* SetDown *)

PROCRAM Z - 4 E 1111

For Outder : " I To OutPoints DO
Data(Outdex) : " OutAry(Outdex);

Num : " OutPoints
End (* 16 *) Outhry(Dutder) = Ary(Inder);
Outhoints = (butpoints + 1;
Outder = Outder + 1
End. (* Else *) tive in point is good a). Begin UNTIL finder >= Index + 1; UNTIL finder >= NumPoints + 1; If ChangeMade Then

Non-Posperson - Nospesperson + n

Elte PumpPrimeB(Data, Num);

Function AliClean(VAR ScratchBet : DataArray, BoratchNum : Integer) : Boolean,

VAR Dirtfound Booleans
Datum Index Integers

Begin If MOT Good(ScratchSet[Index]) Then Dirtfound = True, Index = Index + 1 Inder :- 1. While (Index <- BcratchNum) AND (NOT Dirtfound) DO DirtFound = False; 8.917

End. (* While e) AllClean * NOT DirtFound End. (* AllClean e)

Procedure SetUp(VAR DirtySet, CleanSat, ScratchSet : DataArray,

VAR DirtyNum : Integer) Integar VAR Inder

Varying 6301 of CHAR FN Test. Datafile

8.911

Writeln ('Please specify the input fills name ...').

Readin (DataFile);

for index | indoad + i) To (NumPoints - 1) DO Arylindex + i) Aryllnabad) . Newvalue, Num = Numpoints - 1, For Index = 1 To Num DO Detelindex) = Arylindex) End, (* £186 #) End. (* Puspprises s) 11-9-11

End: (a While b)
(MOT Good(Arytinderil) AND
(GoodLeftiO(Inder. Ary)) OR (GoodRightiO(Inder. Ary. NumPointe))) Then lte DutPoints, ChangeMade) PumprimeLargeA(Index, Aru. Dutdex, OutAry, NumPoints, OutPoints. ChangeHade: Writeln(' Bad point does not have 10 Bood neighbors on ',
Writeln(' (Pump-Primer A cannot fix this pointl'),
GutAry(GutAas) = Ary(Index), (* Pass bad value *)
GutPoints = GutPoints + 1 PumpPrimeSmallA(Index, Art, Outdex, OutArt, NumPoints, Writein: Writeinf' Pump-Primer (A) activated, '); Writein; Procedure PumpPrims(VAR Data : DataArray/ VAR Num : Integer), While Good (Ary (Index)) AND (Index C NumPoints) DO Outfoints .m O: Numfaints :m Num:
For index .m 1 To Numfaints DO
Arufindex1 :m Datafindex3;
Index .m i: Changefiade :m Faise; Outdex :m E: VAR ChangeMade Boolean. Art. OutAry DataArray. Index. Outdex. OutPoints. NumPoints : Integer! OuthryfOutderl = Aryfinderli Outfeints = Outfeints + 1; Inder = Inder + 1; Outder = Outder + 1 Else If NOT Good(Ary(Index1) Then if Arylinders C 333 Then End (# 14 #) £1 8. Begin -8+910

```
Index. NumPoints, indlastibles, indRightWad, indWad, NeWyalue ; integer;
                                                                                                                                                                                                                                                                                                                             Writein(' ***** MARNING !!! LARGE VALUE AS TARGET !!! ');
                                                                                                                                          Writeln('Pump-Primer B activated. (B PUST change a valual');
Numpaints = Num;
For index = 1 to Numpaints DO
Ary(index) = Data(index);
FindLongestRun(Ary, Numpainte, IndleftBad, IndRightBad);
If IndieftBad = 0 Then IndBad := IndRightBad
If Ary(indBad = 1 indleftBad;
If Ary(indBad > 333 Then
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        New/alve := ArufiNumPoints-13 + ArufiNumPoints1,
Addedfoleft := True;
End (a Else 1f a)
Else If AryfindBad-13 <= AryfindBad+13 Ihen
Procedure PumprimeBlVAR Data : DataArray, VAR Num : Integer),
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Arylindes - Indeed To (Numboints - 1) DO Arylindes - Arylindes + 13
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             NewValue := Ary(IndBed-1) + Ary(IndBed);
AddedToLeft := True
End (* Else If *)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             NewValue : m AryCindBad] + AryCindBad+1];
AddedToLaft : m False
End. (m Else s)
If AddedToLaft Then
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          NewValue := Art(13+Ary(23))
AddedToLeft := False
End (e 1f a)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Else If IndBed - NumPoints Then
                                                                                                                                                                                                                                                                                                                                                                                                                                  If IndBad = 1 Then
                                                                                   Added Toleft Booleans
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            End (* 1f *)
                                                             DataArray.
                                                                                                                                                                                                                                                                                                                                                                           End (* 1f *)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Begin
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Begin
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  B • 9 1 7
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Begin
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           E1 s.
                                                                                                                                                                                                                                                                                                                                                                                         E186
                                                                                                                      8.917
                                            ₹
>
```

```
Writeln(' Pump-Primer A succeeds in Pizing medium or large value. ')
                                                                       (a Distribute - residual a)
                                                                                                                           NewValues(Counter) - NewValues(Counter) - 1/
                                                                                                                                                   Accum . * Accum . 1:
Counter * Counter - 1:
If Counter * O Then Counter .* NumPartit
End. (* While *)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Outhry(Outdex) ... NewValues(Counter);
OutPoints :.. OutPoints + 1;
Outdex :.. Outdex + 1
End. (* For *)
                                                                                                                                                                                                                                                                                                                                           Dutary(Dutter) := NewValues(Counter);
DutPoints := OutPoints + 1;
Outder := Outdex + 1
tod to while a)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  for Counter := NumPartit DownTo 1 DO
                                                                                                                                                                                                                                                            If SaallerHean - LeftHean then
For Counter - 1 To Numbertit DO
                                          tise of Accom > Arylinder Then while Accom > Arylinder DO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  ChangeMade - Trues
                                                                                                                                                                                                                                                                                                                                                                                                                              End (* For *)
```

If (TempindRightBad - TempindLeftBad) > Longest Then Procedure FindLongestRuntAry : DataArray: NumPoints : Integeri-Longest ... TeapingRightBad-TeapindLeftBad; IndRightBad ... TeapingRightBad; TemplodalghtBad : TemplodalghtBad + 1/
1f (NOT Cood(Arg(Index)) OR (10dex - NumPoints) Then VAR Indes. TempindLeftBad, TempindRightBad, Longest : Integer: TempindRightBad : # 1/ Longest : # 0/ IndleftBad :- TempindLeftBad TempindLeftBad - Inden: TempindRightBad - Index + 1 If Good(Ary(Index1) Then End: (* [f *) Index - Index + 1, TempindLeftBad . = 0. 6-813 U15.8 REPEAL B • g : n

End. (* PumpPrimeLargeA *)

```
VAR fotter Integer: VAR Outary : DataArray:
NumPoints : Integer: VAR OutPoints : Integer:
Integer: VAR Ary . DataArray.
                                                                                                VAR ChangeMade . Booleanly
Procedure PumphrimetargeAcludes
```

NearMedian, FiveMean, OtherSideMean, FerMean, LeftMean, RightMean, NumPartit, Comdiff, SmallerMean, Counter, Actum NewValues Array(1 1001 of Integer) ₹ >

FiveMean = Mean3(Index-3, Ary); OtherSideMean := MeanDf0codIn3(Index+1, Ary, NumPoints); If Other Sidemeen <> 0 Then FarMean := ((2*FiveMean)+Other BideMean) DIV 3 - OetMedian3(Ary. Index-3); Else FarMean : m FiveMeans LeftMean . - NearMedians If Daudi efti0(Indes. Ary) Then RightMean : # FarMean NearMed 1 an End (* 14 *) 0.00 E186 8.g in

Other SideMean : - MeanOfOoodIn3(Index-3, Ary, NumPoints); FarMean := ((2*FiveMean)+OtherBideMean) DIV 3 NearMedian : # OetMedianS(Ary, Index+1): FiveMean . Mean5(Indes+1. Arg): If Other SideMean <> 0 Then Degin

Else FarMean : # FiveMeans LeftMean := FarMean;

RightMean : m NearMedian End: (* Else If *)

RN := (2.0 * AryCindex]) / (LeftHean+RightHean)) If RN <= 1 3 Then Beg 12

Milteln (sessesses) AN in Pumpfrimer (s. 1.3 !!!') Writeln('NumPartit set to 2')

Combiff := Round(ABS((1, O=(LeftMesn - RightMesn)) / (NumPartit - 1))); Else of RN C 2.0 Then NumPartit .- 2 Else Numbertit . . Round (RN).

(* Partition via arith prog *) If LeftMean < RightMean Then SmallerMean : - LeftMean For Counter . . 1 to NumPartit DO Else SaallerMean : * RightMean:

NewVelves(Counter) := SaslierMesn+((Counter-1) = Combiff), Accus := Accus + SaslierMesn + ((Counter-1) = Combiff) End. (# For #)

(* Distribute + residual While Accum C Arylinder 1 DO IP Accum C ArylIndex3 Then Counter - NumPartiti 0 0 g in

NewValues(Counter) : * NewValues(Counter) + 1: Accum : Accum + 1; Counter := Counter - 1;

```
Writelof 'Pusp-Priser A succeeds in changing small value '). Writelof Value added to left saighbor '), Writelor
                                                                                                                                                                                                                                                                     Writelm:
Writeln('Pump-Primer A succeeds in fliing small value.'):
Writeln('Value added to right neighbor.'): Writeln
                                                                                                                                                                                                                                                                                                                                                                                                              (a sola> bad easy a)
                                                                                                                                                                                       Outden := Outden + 1;
Inden := Inden + 1; (* skip a value on Ary =)
                                                                                                 Else If Success AND (AddedSidel.eft = False) Then
                                                                                                                                                                                                                                                                                                                                                                                                                                           OutAry(Outdes) := Ary(Indes)
                                                                                                                                                                                                                                     OutPoints = OutPoints + 11
                                                                                                                                                              OutAry(Outder) = NewValues
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Outden : = Outden + 1/
OutPaints := OutPoints + 1
                                                                                                                                                                                                                                                                                                                                                                                     If Success Then ChangeMade : - True
                                                                                                                                                                                                                                                                                                                                                        End. (* Else [f *)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       End. (* PumpPrimeSmellA *)
Writeln.
                                                                           End (* 1f .)
                                                                                                                                      Beain
                                                                                                                                                                                                                                                                                                                                                                                                                Elte Begin
```

OutAry(Outdes-1) . Hewvalue.

Function MeanOfGoodIn5(Index : Integer) Ary : DateArray, NumPoints : Integer, OK to give EOF, etc. e) If ((Inder+Counter)>0) AND ((Inder+Counter)<-NumPoints) Then Sum : # Sum + Ary[Index + Counter]: Num : # Num + 1 If New AV O Then MeanOfGooding is Bum DIV New Else MeanOfGooding is O (a Index must be the index of the FIRST of the S. If Good(Ary(Index+Counter)) Then End: (* 1f *) VAR Sum. Num. Counter : Integer: For Counter - 0 to 4 DO B•9 in 10 = ENN 10 = ENS Beg 1 n

(* MeanOfGundIn5 #)

End,

```
Newvalue, Counter, LeftSum, RightSum, LeftMean, RightMean Integer;
VAN Uniter Integer, VAN Ary Detagries, NAN Dusaries, Integer, VAN Dusary Detagries; VAN Cuthoints Integer, VAN Changemade Boolean),
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         RightSus a AryCindes + AryCindes+13,
LeftMan - MeanRightiO(Indes.Ary),
RightMean - MeanRightiO(Indes.Ary),
If Abstree - LeftMean > AbstrightBus-RightMean) Then
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           (* AND
(ABS(LeftHean-LeftSum) < (AlibuedDeveLeftHean)) DEACTIVATED 3/14/86 e)
                                                                                                                                                    AddedSideLeft = True, Success : m Felse;

If (GuedLeft)Oilndes.Ary! AND GoodRight!Oilndes.Ary.NumPoints))

AND (INOT (Index = 1)! AND (NOT (Index = NumPoints)); Then
                                                                                                                                                                                                                                                                                                                                                                                                              Else if CondieftiO(Index.Ary)
AND (:NOT (Index = 1)) AND (NOT (Index = NumFoints))) Then
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Else if GoodRightiOtlader. Ary. NumPaints)
AND ((NOT tinder m. 1)) AND (NOT (Index m. NumPoints))) Then
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         If NOT Success Then
Mrituln(' Smell Point not Pixeble by Pump Primer A'1,
If Success AND (AddedSideLeft = True) Then
                                                                                                                                                                                                                                                                                                                          NewValue := RightGum:
AddedSideLeft := Falue:
Else NewValue := LeftBum;
If NewValue C 2500 Then Buccess := Irue
                                                                                                  i CONST AllowedDev = 0 30, DEACTIVATED 3/14/86 +1
                                                                                                                                                                                                                            LeftSue - Arylinder] + Arylinder-13;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       LeftBum ... Arv[Index]+Arv[Index-1];
Lefthean ... MeanLeft10:1ndex;Arv];
If (LeftBum < 1500)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    RightSum : m Arvilnder 2+Arvilnder-13;
RightGean : m MeanRightlO(Inder, Arv);
If (RightSum < 1500)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   NewVelue : RightGuas
AddedGideLeft : Falses
Success : True
End (* 1f s)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          NewValue : # LePtGual
Success : # True
End (# 24 e)
                                                                                                                                                                                                                                                                                                                                                                                                    End (e 1p e)
                                                                                                                                    Begin
                                                        VAR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             (* AND
```

......

mileger, Ary DataArray) Integers

te index must be the index of the FIRST of the S

Mean3 = iAry(Index1:Ary(Index+11:Ary(Index+21:Ary(Index+3):+ Ary(Index+41) DIV 5 Lnd: (* Mean3 *)

Function Mean10(Index : Integer, Ary : DataArray) : Integer:

(. Index must be the index of the FIRBT of the 10.

MeanlO = (Ary(Index)+Ary(Index+1]+Ary(Index+2]+Ary(Index+3)+Ary(Index+3)+Ary(Index+5]+Ary(Index+5]+Ary(Index+5]+Ary(Index+5]+Ary(Index+5]+Ary(Index+5]) DIV 10

Function MeanLeft10(Index . Integer: Ary : DataArray) : Integer: MeanLeft10 = Mean10(Inder-10, Ary) 8.910

Function MeanRight10(Index: Integer: Ary: DataArray) : Integer: Begin

MeanRightio - Meanio(Index+1. Ary) End,

```
Writein.
If NosPusprimes = O Then Writein(' Post-Preprocessor Statistics '')
Else Writein(' Statistics for File after ', NusPusprimes,' Pusp-Primes');
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Bunkedium : 11:0),
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Bum m ',
BumBmell : 11 0);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Buntarge : 11:0),
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Writein:
Writein(' The following are the lengths (in numbers of data points) ');
Writein(' of all of the runs of good points: ');
Goods ... O. NumGoodRuns ... O,
For index ... I to NumPoints DO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Bum . '.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Bum . '.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 if Good(Data(Index)) Then Goods := Goods + 1, if (IND) Good(Data[Index])) Of (Index = NumPoints))
AND (Goode <> 0) Then
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Writein, Writein(' There are ', NumbaadRuns, ' good runs, '),
                                                                                                                                                                                                                                                                                                                Numbedium : Numbedium + 11
Sumbedium: Sumbedium + Date(Index)
                                                                                                                     Numberl - Numberl + 11
Sumberl - Gungaell + Date[Index]
                                                                                                                                                                                                                  Numierge : Numierge + 11
Sumierge : Bumlerge + Datafinder 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Writeln(' Number of Medium Point - '.NumMedium : 4,'
                                                                                                                                                                                                                                                                                                                                                                                                                                                             Writeln(' Number of Saall Points . '. Numbeell . 4.'
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Writeln(' Number of Large Points . '. NumLarge : 4.'
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    NumbeodRuns :- NumbeodRuns + 1/
                  0 0
• •
                                                                                                                                                                        Else If Data(Index) > 2999 Then
                                                                                                                                                                                                                                                                    Else If Oatalindans > 1499 Then
Combinal a O, Nonfraion a O, Nomberge
Comminal a O, Somfadion a O, Sombarge
For lines a 1 to NonPoints DD
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Writeini' '. Goods),
                                                                             If Datafinden] 333 Then
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     End (e 1f e)
                                                                                                    Begin
                                                                                                                                                                                                 Begin
                                                                                                                                                                                                                                                                                                 Begin
                                                                                                                                                                                                                                                                                                                                                                 End. (* For *)
                                                                                                                                                                                                                                                                                                                                                       End
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     End. (a For a)
                                                              Uegin
```

End. (* PreSweepStats #)

```
Index - Index - 150; (a see THIS IS THE AMOUNT JUMPED BACK eve e)

If Index < 1 Then Index := 1; (a Bafety Feature e)

Hhile SmallsInLeft15(Data, Index) AND (Index > 13) DG

Index := Index - 15;

While (NOT ThreeBeallsInRight15(Data, Index, NumPoints))

AND (Index := Index + 1;

While DataCindex >= 333 DG

Index := Index + 1;
                                                                                                                                                                               Inder = NumPoints.
While (NOT Smallin4of5WindowsOf5(Data, Index))
AND (Index >= (2*(NumPoints DIV 3))) DO
Index == Index == 1;
If Index >= (2*(NumPoints DIV 3)) Then (* Bad section was found *)
Procedure PreProcess(VAR Date: DataArrau) VAR NumPoints : Integer);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    NewNumPoints : # Indets
NumCut : # NumPoints - NewNumPoints;
SumCut : # 0,
For Index : # (NewNumPoints+1) TO NumPoints DO
SumCut : # SumCut + Date[Index];
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Index . " Index - 11
                                                             Index. NewNumPoints.
NumCul integer.
SumCut Reat.
```

Procedure PreSweepStats(VAR Data : DataArray, VAR NumPoints: Integer); NumSmall, NumMedium, NumLarge, NumBoodRune, Index, Goods Integer; ₩ ()

SumSmall, SumMedium, SumLarge | Real;

End (# PreProcess #)

Begin

₹ **X**

function SmallIn40f5WindowsOf5(Arg : DataArray: Index : Integer) : Boolean: Var sisa, s3, s4, s9 : Integer, s4 = OnelfSmallsInStAry, Index=13);
s9 = OnelfSmallsInStAry, Index=20);
SmallIn4OfSWindowsOf9 := (s1+s2+s3+s4+s3) >= 4
End. (* SmallIn4OfSWindowsOf9 *) a One (fise) band (Ary, Index))

a One (fise) band (Ary, index-3);

a One (fise) is (n3 (Ary, index-10)) (a Includes Index Point a) U. h.n

Function SmallsinLeft15(Ary : DataArray, Index : Integer) : Boolean, Var Temp : Boolean, I : Integer; Begin (* Does NOT include Index Point *)

Temp := False:

For I := 1 To 13 DO

For I := 1 Av 15 DO

If (Index - i) > 0 Then

I Temp := True:

Smallsintefti3 : Tamp End. (* Smallsintefti3 *) Function ThreeSmallsInRightIS(Ary . DataArray: Index, NumPoints : Integer) : Boolean;

Ver is Smalls Integer: Begin (* Includes Index Point *)

(* includes index Point *)
Smalls * 0,
for 1 * 0 To 14 DO
If (Index * 1) (* NumPoints)

If (Index + i) <= NumPoints Then If Aru[Index + i] < 333 Then Smalls := Smalls + i) ThreeSmallsInRightid := Smalls >= 3 End. (* IhreeSmallsInRightid := Smalls >= 3

(* Send to Array and *) NoChanges Nochenges Kegin SmaliCaseiinArray, OutArray, InPointer, OutPointer, NumPoints, NoChanges, SkipOn*), MediumCassiinArray, DutArray, InPointer, DutPointer, NumPoints, LargeCase(InArray, DutArray, InPointer, OutPointer, NuaPoints, in Cleaning Loop *) Herterne Shire Busepillumber 'IN PRUCRESS '.
Numbad, 'INITIAL BAD VALUES': Writelm.
OutPosnier = 1, InPuinter = 0, NumFinal = OutPointer - 1: OutNum = OutPointer - 1: Write ('SWEEP COMPLETED. '); If NoChanges Then Writeln ('NO CHANGES MADE THIB BWEEP.') Else Writeln (NumBad. 'VALUES ARE BTILL BAD.'); DutArray(DutPointer) := InArray(InPointer),
OutPointer := DutPointer + 1
End (= Else =)
[ind, (= While =) If StipOne Then InPointer : " InPointer + 1 OutDatafindar3 := OutArrayfindar3;
19 (NOT Good(OutArrayfindar3)) Then
NumBad := NumBad + 1 Else If InArray(InPointer) > 2999 Then Else If InArray[InPointer] > 1499 Then InPointer a inPointer + 1; if inArray[luPointer] < 333 Then NumBad = 0: For index = 1 to (ButPointer - 1) DO Eise (* Point is good *) White list unler i Numbuints Dil End (# 14 #) End, (* For *) Writeln. Writeln (* Sweep *) c 1 6 . 0 Begin End.

Function OnelfSmallsIn3(Ary : DataArray: Index : Integer) : Integer: Var Temp. 1 Integer: Begin (* Includes Index Point *)

Temp = 0. For i = 0 To 4 DO

If (Index - i) > 0 Then

If Ary(Index - i) < 333 Then

Temp . = 1; One!fSmallsinD : = Temp End, (* One!fSmallsinD *)

OutArray(OutPointer) : = NewValues(Numpartit+1-Index), (* Send out new values *) = DutArray[DutPointer] .m Newvalues[Index] trapil lead brows If Index # O Then Index : NumPartit GutArray(GutPeinter] := InArray(InPeinter); GutPeinter := GutPeinter + 1; Writein ('Algerithm Faile:'); If SmallerMean - LeftMean Then OutPointer := OutPointer + 1 End: (* For s)
Nochanges := False;
Writein(' Algorithm Succeeds!'), For Index # 1 to Numbertit DO Fides a fides - 1; .. While .. £150 Begin End, End (* E18. *) End (* 1f *) Writein End. (* LargeCase *) D = 9 1 n

(* Fill inArray and *) ::: Procedure SweepiVAR InData: DataArray; VAR InNum : Integer; VAR GutDate : DataArray; VAR GutNum : Integer; VAR NoChanges : Boolean; VAR NumBed; NumFinal : Integer); is This is the top-level data-cleaning procedure - it "sweeps" through is the data file once, Teplacing "bad" values with better values, and is returned to True data in an Array (OutDots). The flag "Nochanges" is the create as True if no changes were made to the data. NumPoints, InPointer, OutPointer, Index : Integer, Indray, Outhrray : DataArray, Skipone Boolean, Numbaints = 0; While NumPoints C> InNum DO NUMBER = 0, 9 + 9 in

InArray(NumPoints) = InData(NumPoints);
If (NOI Good(InArray(NumPoints)) Then
NumBad = NumBad + 1 NumPoints : " NumPoints + 1;

```
History (efficient laisone of fettions).

Writeln('Rightion at failure e', RightSum)

End, (e gise e)
```

If Success Then

```
NewValues(Index) := SmallerMean+((Index-1) = ComDiff),
Accum := Accum + SmallerMean + ((Index-1) = ComDiff)
End: (= For =)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              (* Partition via arith prog *)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          If Accum < InArray[InPointer] Then
While Accum < InArray[InPointer] DO < Distribute+residue] )</pre>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          if Accum > InArray[InPointer] Then
While Accum > InArray[InPointer] DO ( Distribute-residual )
                                                                                                                                                                                                                                                                                                                                 Writeln ('sessesses! BN <= 1,3 ;;sessesses').
Writeln ('NumPertit set to 2').
NumPertit := 2.
End (= 10 =)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Round (ABS((1. O# (LeftMean-RightMean))/(NumPartit-1)));
                                                                                                                                                                                                                           RN = (2 0 * InArray[InPointer]) / (LeftMean+RightMean);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     NewValues(Index) : - NewValues(Index) + 1:
                                           StatAryind = (InArray(InPointer1#2) DIV 1000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Accum .m Accum + 1.
Index :m Index - 1.
If Index = 0 Then Index :m NumPartit
                                                                                                                                                                                LF1 sed[SweepNumber, StatArgInd]+1;
                      If InArray(InPointer) < 16000 Then
                                                                                                                                              LFixed[SweepNumber, StatAryInd] :-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               NumPartit : - Round (RN):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            For Index - 1 to NumPartit DO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  SmallerMean - RightMean
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    SmallerMean . - LeftMean
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         If LeftMean < RightMean Then
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             NumPartit := 2
                                                                                                 StatAryInd = 32,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                IF RN C 2.0 then
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Index . * NumPertits
                                                                                                                                                                                                                                                                           If RN <= 1 3 Then
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Accum : # 0;
                                                                                                                                                                                                                                                                                                             Begin
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Begin
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Begin
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 ComDiff:=
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Eise
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             E130
                                                                        E150
0.6.0
```

APPENDIX F

Classifier Variable Definitions

The variables are:

 J_{max} = number of components in the feature vector

N = number of observations

 D_i = observation point in J_{max} -space

D(J) = array of the N observations ranked according to the Jth complement

 R_i = a region in J_{max} -space

 C_i = classification assigned to R_i

 IN_i = rank of first point in D(j) which is contained in R_i

 FN_i = rank of last point in D(J) which is contained in R_i

 $K = \mbox{the size}$ of the blocks into which the feature-value axis is initially partitioned

 I_{max} = number of new regions formed

S(.) = stored value of .