Lineare Algebra Übungsstunde 5

Wiona Glänzer

19.10.2020

Polynome

Übungen zu Polynomdivision

- ▶ Bestimme q und r für f = g
- ▶ Bestimme q und r für deg(f) < deg(g) (**Tipp:** Probiere ein Beispiel aus)
- ▶ Betrachte $K = \mathbb{Q}$. $f = 2x^5 + 2x^3 + x^2 3x$, $g = x^3 4x^2$.
- ▶ Betrachte $K = \mathbb{F}_3$. $f = 2x^5 + 2x^3 + x^2 3x$, $g = x^3 4x^2$. (Polynome f und g wie im vorherigen Beispiel, aber wir betrachten das Problem über einem anderen Körper!)
- ▶ Betrachte $K = \mathbb{F}_7$. $f = 4x^3 + 2x^2 x + 3$, g = x + 1
- ▶ Betrachte $K = \mathbb{R}$. $f = ex^2 + \pi x \sqrt{2}$, $g = x \sqrt{7}$

Übungen zu Polynomdivision

- Für f = g gilt q=1 und r=0.
- ▶ F deg(f) < deg(g) gilt q=0 und r=f.
- ▶ Betrachte $K = \mathbb{Q}$. $f = 2x^5 + 2x^3 + x^2 3x$, $g = x^3 4x^2$. (Lösung: $q = 2x^2 + 8x + 34$, $r = 137x^2 3x$.)
- ▶ Betrachte $K = \mathbb{F}_3$. $f = 2x^5 + 2x^3 + x^2 3x$, $g = x^3 4x^2$. (Polynome f und g wie im vorherigen Beispiel, aber wir betrachten das Problem über einem anderen Körper!) (Lösung: $q = 2x^2 + 2x + 1$, $r = 2x^2$.)
- ▶ Betrachte $K = \mathbb{F}_7$. $f = 4x^3 + 2x^2 x + 3$, g = x + 1 (Lösung: $q = 4x^2 + 5x + 1$, r = 2.)
- ► Betrachte $K = \mathbb{R}$. $f = ex^2 + \pi x \sqrt{2}$, $g = x \sqrt{7}$ (Lösung: $q = ex + (\pi \sqrt{7}e)$, $r = 7e \sqrt{7}\pi \sqrt{2}$.)

Definition Nullstelle

Sei $f \in K[x]$ ein Polynom. Ein Element $\lambda \in K$ heisst Nullstelle von f, falls $f(\lambda) = 0$.

Beispiele Nullstelle

1. $K = \mathbb{R}$, $f = x^2 + 9$. Dann ist $f(\lambda) \ge 9$ für alle $\lambda \in \mathbb{R}$. Also hat f keine Nullstelle.

Beispiele Nullstelle

- 1. $K = \mathbb{R}$, $f = x^2 + 9$. Dann ist $f(\lambda) \ge 9$ für alle $\lambda \in \mathbb{R}$. Also hat f keine Nullstelle.
- 2. $K = \mathbb{R}$, $f = x^2 9$. Wir bemerken, dass f(3) = 0 und f(-3) = 0. Also haben wir zwei Nullstellen gefunden. Tatsächlich haben wir schon alle Nullstellen gefunden. Wieso das so ist, sehen wir später.

Beispiele Nullstelle

- 1. $K = \mathbb{R}$, $f = x^2 + 9$. Dann ist $f(\lambda) \ge 9$ für alle $\lambda \in \mathbb{R}$. Also hat f keine Nullstelle.
- 2. $K = \mathbb{R}$, $f = x^2 9$. Wir bemerken, dass f(3) = 0 und f(-3) = 0. Also haben wir zwei Nullstellen gefunden. Tatsächlich haben wir schon alle Nullstellen gefunden. Wieso das so ist, sehen wir später.
- 3. Sei $p \in \mathbb{N}$ eine Primzahl und sei $K = \mathbb{F}_p$. Für $f = (x 0)(x 1) \dots (x (p 1)) + 1$ gilt $f(\lambda) = 1$ für alle $\lambda \in \mathbb{F}_p$. Also hat f keine Nullstelle.

Proposition

Sei K ein Körper und sei $0 \neq f \in K[x]$. Es gilt folgende Äquivalenz:

$$\lambda \in K$$
 ist Nullstelle von $f \iff (x - \lambda)$ teilt f .

Korollar Ein Polynom $f \in K[x]$ mit $deg(f) = n \in \mathbb{N}_0$ hat höchstens n verschiedene Nullstellen.

Mit diesem Korollar folgt jetzt direkt, dass $f = x^2 - 9 \in \mathbb{R}[x]$ keine zusätzlichen Nullstellen abgesehen von $\{-3,3\}$ hat.

Polynome in $\mathbb{C}[x]$

Sei $P \in \mathbb{C}[x]$ ein Polynom mit $\deg(P) = n > 0$ und Leitkoeffizient $a \in \mathbb{C}$. Dann existieren $I_1, \ldots, I_k \in \mathbb{N}$ und paarweise verschiedene $\lambda_1, \ldots, \lambda_k \in \mathbb{C}$ sodass

$$P = a \prod_{j=1}^{k} (x - \lambda_j)^{l_j},$$

 $mit I_1 + \cdots + I_k = n.$

Wir definieren die <u>Vielfachheit</u> von P bei $\lambda \in \mathbb{C}$ als

$$\mu(P|\lambda) = \begin{cases} I_j, & \text{falls } \lambda = \lambda_j \text{ für ein } j \in \{1, \dots, k\} \\ 0, & \text{sonst.} \end{cases}$$

Polynome in $\mathbb{R}[x]$

 $f = x^2 + 9$ hat positiven Grad, aber keine Nullstellen!

Polynome in $\mathbb{R}[x]$

Sei $P \in \mathbb{R}[x]$. Dann existieren $k, l \in \mathbb{N}_0$, $\eta_1, \ldots, \eta_k \in \mathbb{R}$, $\lambda_1, \ldots, \lambda_l \in \mathbb{C} \setminus \mathbb{R}$, sodass $\{\eta_1, \ldots, \eta_k, \lambda_1, \ldots, \lambda_l, \overline{\lambda_1}, \ldots, \overline{\lambda_l}\}$ alle Nullstellen von P sind, und wir können P als Produkt schreiben:

$$P = \prod_{i=1}^k (x - \eta_i) \prod_{j=1}^l q_{\lambda_j},$$

wobei $q_{\lambda_j}=(x-\lambda_j)(x-\overline{\lambda_j})\in\mathbb{R}[x]$. Es gilt $\deg(P)=k+2I$. Wir bemerken: Komplexe Nullstellen treten immer in Paaren mit der komplexen Konjugation auf.

Mitternachtsformel

Seien $a,b,c\in\mathbb{R}$ mit $a\neq 0$. Unser Ziel ist es, das quadratische Polynom $f=ax^2+bx+c\in\mathbb{C}[X]$ in zwei Linearfaktoren über \mathbb{C} zu schreiben, bzw. die beiden Nullstellen zu finden. Das heisst, wir wollen die Gleichung $0=ax^2+bx+c$ lösen:

Nehmen wir c auf die linke Seite und multiplizieren dann die Gleichung mit 4a so erhalten wir $-4ac=4a^2x^2+4abx$. Nun addieren wir auf beiden Seiten b^2 und faktorisieren die rechte Seite. Wir erhalten $b^2-4ac=(2ax+b)^2$. Jetzt können wir die Wurzel ziehen und umstellen, um die Herleitung der MNF abzuschliessen:

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

Spezialfall: a = 1, beziehungsweise $f = x^2 + px + q$. Die MNF vereinfacht sich zur p-q-Formel

$$x_{1,2} = \frac{-p \pm \sqrt{p^2 - 4q}}{2} = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2 - q} \ .$$

Rational Root Theorem (Aufgabe 4 auf Serie)

Sei

$$f(x) = \sum_{i=0}^{n} a_i x^i = a_0 x^0 + a_1 x^1 + a_2 x^2 + \ldots + a_n x^n \in \mathbb{Z}[x]$$

mit $a_n \neq 0$. Zeigen Sie: Für jede Nullstelle $\frac{b}{c} \in \mathbb{Q}$ von f mit teilerfremden $b,c \in \mathbb{Z}$ gilt $b|a_0$ und $c|a_n$. Hierbei heißen zwei Zahlen $b,c \in \mathbb{Z}$ heißen teilerfremd, wenn es keine natürliche Zahl außer 1 gibt, die beide Zahlen teilt.

Endliche Körper

z.B. \mathbb{F}_p

Binomialsatz

Sei K ein Körper, und seien x,y Elemente in K. Dann gilt für alle $n \in \mathbb{N}_0$:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k = x^n + y^n + \sum_{k=1}^{n-1} \binom{n}{k} x^{n-k} y^k,$$

wobei
$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n(n-1)...(n-k+1)}{k!}$$
.

Freshman's Dream

Viele Schüler*innen vergessen beim Fall n=2 den mittleren Summanden 2xy. Für sie wäre es am angenehmsten, wenn $(x+y)^2=x^2+y^2$ bzw. allgemeiner $(x+y)^n=x^n+y^n$ gelten würde. Deshalb nennt man das auch *Freshman's Dream*. Normalerweise gilt dieser Freshman's Dream nicht. Doch es gibt Ausnahmen!

Proposition

Sei K ein Körper mit char(K) = p > 0 (zum Beispiel $K = \mathbb{F}_p$), und seien $x, y \in K$. Dann gilt: $(x + y)^p = x^p + y^p$.

Aufgabe zur Anwendung aller Konzepte

Gegeben sei das Polynom $f(x) = 2x^4 - 3x^3 + 5x^2 + 6x - 4 \in K[x]$. Bestimmen Sie jeweils alle Nullstellen in K von $f \in K[x]$ für $K \in \{\mathbb{R}, \mathbb{C}, \mathbb{F}_2, \mathbb{F}_3\}$ und geben Sie die Faktorisierung an.

Lösung K=ℂ

Mit Aufgabe 4 von der Serie (5) (Rational Root Theorem) erraten wir die rationale Nullstelle $\frac{1}{2}$. (Die Kandidaten für Nullstellen sind dabei $\pm\frac{1}{2},\pm1,\pm2,\pm4$.) Polynomdivision ergibt

$$f_2(x): (2x-1) = x^3 - x^2 + 2x + 4$$
.

Wir erraten die Nullstelle -1 und erhalten

$$(x^3 - x^2 + 2x + 4) : (x + 1) = x^2 - 2x + 4$$
.

Anwenden der p-q-Formel bestimmt die Nullstellen des quadratischen Polynoms:

$$1-i\sqrt{3}$$
, $1+i\sqrt{3}$.

Bemerkung: Alternativ beobachtet man, wenn y Nullstelle des Polynoms $x^2 + x + 1$ ist, dann ist $-\frac{1}{2y}$ Nullstelle des Polynoms $x^2 - 2x + 4$.

Bem: komplexe Nst treten in Paaaren auf (Lemma in 1.3.10 in Fischer)

Lösung

Für $K=\mathbb{R}$ gehen wir genau gleich vor, wobei wir die komplexen Nullstellen weglassen. Also haben wir nur zwei Nullstellen, nämlich $\frac{1}{2}$ und -1.

Über $K = \mathbb{F}_2$ ist

 $f=2x^4-3x^3+5x^2+6x-4=x^3+x^2=x^2(x+1)$. Also haben wir in diesem Fall die doppelte Nullstelle $\bar{0}$ und die einfache Nullstelle $\bar{-1}=\bar{1}$.

Über $K=\mathbb{F}_3$ ist $ar{2}\cdotar{2}=ar{1}$, also haben wir die Nullstelle $rac{ar{1}}{ar{2}}=ar{2}$.

Diese Nullstelle haben wir doppelt, da $\overline{-1} = \overline{2}$. Über \mathbb{F}_3 ist $x^2 - 2x + 4 = x^2 - 2x + 1 = (x - 1)^2$, also erhalten wir zusätzlich noch die doppelte Nullstelle $\overline{1}$.

Faktorisierungen

Wir erhalten folgende Faktorisierung:

$$f(x) = \begin{cases} 2(x - \frac{1}{2})(x+1)(x-1-i\sqrt{3})(x-1+i\sqrt{3}), & \text{für } K = \mathbb{C} \\ 2(x - \frac{1}{2})(x+1)(x^2 - 2x + 4), & \text{für } K = \mathbb{R} \\ x^2(x+1), & \text{für } K = \mathbb{F}_2 \\ 2(x-2)^2(x-1)^2, & \text{für } K = \mathbb{F}_3. \end{cases}$$