${\bf 6.854~Advanced~Algorithms} \\ {\tiny Problem~Set~7}$

John Wang Collaborators:

Problem 1: Another way to formulate the maximum-flow problem as a linear program is via flow decomposition. Suppose we consider all s-t paths P in the network G and let f_P be the amount of flow on path P. Then maximum flow says to find $z = \max \sum f_P$ subject to $\sum_{P\ni e} f_P \le u_e$ for all edges e and $f_P \ge 0$ for all paths P. Take the dual of this LP and give an English explanation of the objective and constraints.

Solution: To take the dual of this problem, we must find corresponding variables for each of the constraints. Let y_e be the variables in the dual corresponding to the constraints $\sum_{P\ni e} f_P \leq u_e$. \square