Math 115AH Homework 3

Edi Zhang

May 2, 2024

1. Prove that the linear transformation $T: M_{n \times m}(F) \to M_{m \times n}(F)$ given by $T(A) = A^t$ is linear.

Recall that A^t is the matrix given by the formula $(A^t)_{ij} = A_{ji}$.

Let $w, v \in M_{n \times m}(F)$ and $\lambda \in F$.

To show that T is linear, we must show that $T(w + \lambda v) = T(w) + \lambda T(v)$.

Suppose

$$w = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{bmatrix} \text{ and } \lambda v = \begin{bmatrix} \lambda b_{11} & \lambda b_{12} & \dots & \lambda b_{1m} \\ \lambda b_{21} & \lambda b_{22} & \dots & \lambda b_{2m} \\ \dots & \dots & \dots & \dots \\ \lambda b_{n1} & \lambda b_{n2} & \dots & \lambda b_{nm} \end{bmatrix}$$

Then

$$w + \lambda v = \begin{bmatrix} a_{11} + \lambda b_{11} & a_{12} + \lambda b_{12} & \dots & a_{1m} + \lambda b_{1m} \\ a_{21} + \lambda b_{21} & a_{22} + \lambda b_{22} & \dots & a_{2m} + \lambda b_{2m} \\ \dots & \dots & \dots & \dots \\ a_{n1} + \lambda b_{n1} & a_{n2} + \lambda b_{n2} & \dots & a_{nm} + \lambda b_{nm} \end{bmatrix}$$

$$\implies T(w + \lambda v) = \begin{bmatrix} a_{11} + \lambda b_{11} & a_{21} + \lambda b_{21} & \dots & a_{n1} + \lambda b_{n1} \\ a_{12} + \lambda b_{12} & a_{22} + \lambda b_{22} & \dots & a_{n2} + \lambda b_{n2} \\ \dots & \dots & \dots & \dots \\ a_{1m} + \lambda b_{1m} & a_{2m} + \lambda b_{2m} & \dots & a_{nm} + \lambda b_{nm} \end{bmatrix}$$

$$= \begin{bmatrix} a_{11} & a_{21} & \dots & a_{n1} \\ a_{12} & a_{22} & \dots & a_{n2} \\ \dots & \dots & \dots & \dots \\ a_{1m} & a_{n2} & \dots & a_{nm} \end{bmatrix} + \begin{bmatrix} \lambda b_{11} & \lambda b_{21} & \dots & \lambda b_{n1} \\ \lambda b_{12} & \lambda b_{22} & \dots & \lambda b_{n2} \\ \dots & \dots & \dots & \dots \\ \lambda b_{1m} & \lambda b_{2m} & \dots & \lambda b_{nm} \end{bmatrix} = T(w) + \lambda T(v)$$

- 2. Counting elements in vector spaces over finite fields.
 - (a) Let p be a prime number. How many elements does $\mathbb{Z}/p\mathbb{Z}$ have? How about $(\mathbb{Z}/p\mathbb{Z})^2$ and $(\mathbb{Z}/p\mathbb{Z})^3$? $\mathbb{Z}/p\mathbb{Z}$ contains p elements, $(\mathbb{Z}/p\mathbb{Z})^2$ contains p^2 elements, and $(\mathbb{Z}/p\mathbb{Z})^3$ contains p^3 elements.
 - (b) Explain why, for every $i \ge 1, (\mathbb{Z}/p\mathbb{Z})^{i+1} = (\mathbb{Z}/p\mathbb{Z})^i \times (\mathbb{Z}/p\mathbb{Z})$

First, observe that i must be at least one, because otherwise

$$(\mathbb{Z}/p\mathbb{Z})^0 = \emptyset \implies (\mathbb{Z}/p\mathbb{Z})^0 \times (\mathbb{Z}/p\mathbb{Z})^1 = \{(a,b)\} \text{ for } a \in \emptyset \text{ and } b \in \mathbb{Z}/p\mathbb{Z}$$

1

However, there exists no $a\in\emptyset$ so $(\mathbb{Z}/p\mathbb{Z})^0\times(\mathbb{Z}/p\mathbb{Z})^1=\emptyset\neq(\mathbb{Z}/p\mathbb{Z})^1$

$$(\mathbb{Z}/p\mathbb{Z})^{i+1} = \{(a_1, a_2, ..., a_{i+1})\} \text{ for each } a_i \in \mathbb{Z}/p\mathbb{Z}$$

Similarly,

$$(\mathbb{Z}/p\mathbb{Z})^i = \{(b_1, b_2, ..., b_i)\}$$
 for each $b_j \in \mathbb{Z}/p\mathbb{Z}$
$$(\mathbb{Z}/p\mathbb{Z}) = \{c\} \text{ for } c \in \mathbb{Z}/p\mathbb{Z}$$

The cartesian product

$$(\mathbb{Z}/p\mathbb{Z})^i \times (\mathbb{Z}/p\mathbb{Z})$$

then becomes

$$\{(b_1, b_2, ..., b_i, c)\}$$
 for $b_j, c \in \mathbb{Z}/p\mathbb{Z}$

Notice this contains the same number of elements as $(\mathbb{Z}/p\mathbb{Z})^{i+1}$, which is precisely i+1 elements. Each element is also from the same field, which means any i+1-tuple in $(\mathbb{Z}/p\mathbb{Z})^{i+1}$ can be represented by a tuple in $(\mathbb{Z}/p\mathbb{Z})^i \times (\mathbb{Z}/p\mathbb{Z})$. This shows that $(\mathbb{Z}/p\mathbb{Z})^{i+1} \subset (\mathbb{Z}/p\mathbb{Z})^i \times (\mathbb{Z}/p\mathbb{Z})$. The same can be said vice versa. If $v \in (\mathbb{Z}/p\mathbb{Z})^i \times (\mathbb{Z}/p\mathbb{Z})$, $v \in (\mathbb{Z}/p\mathbb{Z})^{i+1} \implies (\mathbb{Z}/p\mathbb{Z})^i \times (\mathbb{Z}/p\mathbb{Z}) \subset (\mathbb{Z}/p\mathbb{Z})^{i+1}$. Therefore $(\mathbb{Z}/p\mathbb{Z})^i \times (\mathbb{Z}/p\mathbb{Z}) = (\mathbb{Z}/p\mathbb{Z})^{i+1}$.

(c) How many elements does the vector space $(\mathbb{Z}/p\mathbb{Z})^n$ have? Prove using induction

Consider the base case n = 0:

 $(\mathbb{Z}/p\mathbb{Z})^0$ is the empty set, which contains n=0 elements.

This is likely a trivial case, so consider n = 1:

 $(\mathbb{Z}/p\mathbb{Z})^1 = \mathbb{Z}/p\mathbb{Z} = \{a\}, a \in \mathbb{Z}/p\mathbb{Z}, \text{ which contains } p \text{ elements.}$

For the sake of showing an example of a tuple, consider n = 2:

 $(\mathbb{Z}/p\mathbb{Z})^2 = \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z} = \{(a_1, a_2)\}, a_i \in \mathbb{Z}/p\mathbb{Z}, \text{ which from part (a), we know contains } p^2 \text{ elements. Notice that this is equal to } p^n.$

Now for the inductive step:

Assume that $(\mathbb{Z}/p\mathbb{Z})^n$ has p^n elements. WTS that this implies $(\mathbb{Z}/p\mathbb{Z})^{n+1}$ has p^{n+1} elements.

From part (b), we know that $(\mathbb{Z}/p\mathbb{Z})^{n+1} = (\mathbb{Z}/p\mathbb{Z})^n \times (\mathbb{Z}/p\mathbb{Z})$ and that $\mathbb{Z}/p\mathbb{Z}$ contains p elements. By our assumption that $(\mathbb{Z}/p\mathbb{Z})^n$ contains p^n elements, $(\mathbb{Z}/p\mathbb{Z})^{n+1} = (\mathbb{Z}/p\mathbb{Z})^n \times (\mathbb{Z}/p\mathbb{Z})$ contains $p^n * p = p^{n+1}$ elements.

Therefore $(\mathbb{Z}/p\mathbb{Z})^n$ contains p^n elements by induction.

3. Textbook 2.1, 18

Give an example of linear transformation $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ such that $\operatorname{Ker}(T) = \operatorname{Im}(T)$.

By rank-nullity Ker(T) = Im(T) = 1.

Suppose we define $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ such that

$$T(e_1) = \vec{0} \text{ and } T(e_2) = e_1$$

Then we have that $\operatorname{span}(e_1) = \operatorname{span}(1,0) = \operatorname{Ker}(T)$. Notice that $\vec{0} = (0,0) \in \operatorname{span}(e_1)$.

Since $T(e_2) = e_1 \neq \vec{0}$, span $(e_2) \notin \text{Ker}(T)$. Furthermore, $T(e_2)$ spans $e_1 \Longrightarrow \text{span}(e_1) = \text{Im}(T)$. For the case of the zero vector, since T is linear, $T(\vec{0}) = \vec{0}$, so $\vec{0} \in \text{Im}(T)$.

Let $v \in \text{Im}(T)$. Then $v = (r_1e_1 + r_2e_2), r_1, r_2 \in \mathbb{R}$. Then

$$T(v) = T(r_1e_1 + r_2e_2)$$

$$= T(r_1e_1) + T(r_2e_2)$$

$$= r_1T(e_1) + r_2T(e_2)$$

$$= r_1\vec{0} + r_2e_1$$

$$= \vec{0} + r_2e_1$$

$$= r_2e_1 \implies v \in \text{Ker}(T)$$

$$\implies \text{Im}(T) \subset \text{Ker}(T)$$

Now let $v \in \text{Ker}(T)$ and let $r_i \in \mathbb{R}$. Then

$$v = (r_1 e_1)$$

$$= r_1 T(e_2)$$

$$= T(r_1 e_2 \implies v \in \operatorname{Im}(T)$$

$$\implies \operatorname{Ker}(T) \subset \operatorname{Im}(T)$$

Therefore, Im(T) = Ker(T).

- 4. Consider the set of all linear transformations from a vector space V over a field F to a vector space W over a field F. Prove that
 - (a) If that $S:V\to W$ and $T:V\to W$ are linear transformations from V to W, then the function $S+T:V\to W$ defined by (S+T)(x)=S(x)+T(x) for all $x\in V$ is also linear.

Consider $(S+T)(x+\lambda y)$

Then:

$$(S+T)(x+\lambda y) = S(x+\lambda y) + T(x+\lambda y) \quad \text{(By definition of } S+T)$$

$$= S(x) + \lambda S(y) + T(x) + \lambda T(y) \quad \text{(By linearity of } S \text{ and } T)$$

$$= S(x) + T(x) + \lambda (S(y) + T(y)) \quad \text{(By associativity and distributivity on } W)$$

$$= (S+T)(x) + \lambda (S+T)(y) \implies S+T \text{ is linear.}$$

(b) If T is a linear transformation from V to W and $\lambda \in F$, then the function $\lambda T : V \to W$ defined by $(\lambda T)(x) = \lambda T(x)$ for all $x \in V$ is also linear.

Consider $(\lambda T)(x + \alpha y)$

Then:

$$(\lambda T)(x + \alpha y) = \lambda(T)(x + \alpha y)$$
 (By definition of λT)

$$= \lambda(T(x) + \alpha T(y)) \quad \text{(By linearity of } T)$$

$$= \lambda T(x) + \alpha \lambda T(y) \quad \text{(By distributivity on } W)$$

$$= (\lambda T)(x) + \alpha(\lambda T)(y) \implies \lambda T \text{ is linear.}$$

(c) The function $\vec{0}: V \to W$ defined by $\vec{0}(x) = \vec{0}_W$ for all $x \in V$ is a linear transformation. First notice that $\vec{0}$ sends $\vec{0}_V$ to $\vec{0}_W$.

Now suppose we have $\vec{0}(a + \lambda b)$ for $a, b \in V$ and $\lambda \in F$.

$$\vec{0}(a + \lambda b) = \vec{0}_W = \vec{0}_W + \vec{0}_W = \vec{0}_W + \lambda \vec{0}_W = \vec{0}(a) + \lambda \vec{0}(b)$$

(d) Consider the set L(V, W) of linear transformations with domain V and codomain W. Prove that L(V, W) is a a vector space over F.

(Commutativity) Let $S, T \in L$ such that $S: V \to W$ and $T: V \to W$. Then for all $v \in V, (S+T)(v) = S(v) +_W T(v) = T(v) +_W S(v) = (T+S)(v)$.

 $(\text{Associativity}) \text{ Let } R, S, T \in L. \text{ Then for all } v \in V, (R+S)(v) + T(v) = R(v) +_W S(v) +_W T(v) = R(v) +_W (S+T)(v).$

(Additive Identity) Let $Z, S \in L$, define $Z(v) = \vec{0}$ for all $v \in V$. Precisely, let Z be the function $\vec{0}$ from part (c) which we proved to be linear. Then $(Z + S)(v) = Z(v) +_W S(v) = \vec{0}_W +_W S(v) = S(v)$.

(Additive Inverse) Let $S \in L$. Define $T: V \to W$ such that for all $v \in V$, $T(v) = (-1) \cdot_W S(v)$. To show that T is linear, first observe that $T(\vec{0}_V) = (-1) \cdot_W S(\vec{0}_V) = (-1) \cdot_W \vec{0}_W = \vec{0}_W$. Additionally, consider $T(v + \lambda u)$ for $v, u \in V$.

$$T(v + \lambda u) = -S(v + \lambda u)$$

$$= -S(v) + -S(\lambda u) \quad \text{(By linearity of } S\text{)}$$

$$= -S(v) + (\lambda)(-S(u)) \quad \text{(By linearity of } S\text{)}$$

$$= T(v) + \lambda T(u)$$

Therefore T is linear so $\exists T \in L$. Then (S+T)(v) = S(v) + T(v) = S(v) + -S(v) = 0.

(e) (Multiplicative Identity) Let $T \in L$ and $v \in V$. Then

$$1 \cdot T = (1 \cdot T)(v) = 1$$

$$= 1 \cdot_W T(v) \quad \text{(By Linearity of } T\text{)}$$

$$= T(v)$$

(f) (Associativity of scalars) Let $a, b \in F$, let $v \in V$, and let $T \in L$. Then

$$a \cdot (b \cdot T)(v) = a \cdot (b \cdot T(v))$$
 (By Linearity of T)
$$= (a \cdot b) \cdot T(v)$$
 (By associativity on W)
$$= ((a \cdot b) \cdot T)(v)$$
 (By linearity of T)

(g) (Distributivity over vectors) Let $a \in F$, let $v \in V$, and let $S, T \in L$. Then

$$a \cdot (S+T)(v) = a \cdot (S(v)+T(v))$$
 (By addition of linear functions)
$$= a \cdot S(v) + a \cdot T(v)$$
 (By distributivity on W)
$$= (a \cdot S)(v) + (a \cdot T)(v)$$
 (By linearity of S and T)

(h) (Distributivity over scalars) Let $a, b \in F$, let $v \in V$, and let $T \in L$. Then

$$((a+b)\cdot T)(v)=(a+b)\cdot T(v)$$
 (By linearity of T)
$$=a\cdot T(v)+b\cdot T(v)$$
 (By distributivity on W)
$$=(a\cdot T)(v)+(b\cdot T)(v)$$
 (By linearity of T)

5. Textbook 2.1, 2,6

Find bases for Ker(T) and Im(T), compute the nullity and rank of T, and verify dimension theorem. Finally, use the appropriate theorems to determine whether T is injective or surjective.

(2)

Suppose we have $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ defined by $T(a_1, a_2, a_3) = (a_1 - a_2, 2a_3)$

To solve for Ker(T), first solve for $(a_1 - a_2, 2a_3) = (0, 0)$:

$$a_1 - a_2 = 0 \implies a_1 = a_2$$

$$2a_3 = 0 \implies a_3 = 0$$

Therefore a basis B_K for $Ker(T) = \{1, 1, 0\} \implies nullity = 1$.

Observe that Im(T) is just \mathbb{R}^2 , so a basis B_I for $\text{Im}(T) = \{(1,0),(0,1)\} \implies \text{rank} = 2$.

If V is the domain of T, then by the dimension theorem, $\dim V = \dim \operatorname{Ker}(T) + \dim \operatorname{Im}(T)$. Clearly, this is satisfied as $\dim V = 3$ and $\dim(\operatorname{Ker}(T)) = 1$, $\dim(\operatorname{Im}(T)) = 2$

Since $Im(T) = \mathbb{R}^2$, T must be surjective.

We know that T is injective if and only if $Ker(T) = \{\vec{0}\}$. Since we showed above that $K = \text{span}\{1, 1, 0\}$, T is not injective.

(6)

Suppose we have $T: M_{n \times n}(F) \to F$ defined by $T(A) = \operatorname{tr}(A)$.

Since all entries of M are in the field F, $\operatorname{tr}(A)$ is the sum of n arbitrary elements in F. Therefore, every element in F can be represented as a sum of n arbitrary elements in $F \Longrightarrow \operatorname{Im}(T) = F$. $\Longrightarrow \operatorname{dim}(\operatorname{Im}(T)) = 1$. A basis B_I for $\operatorname{Im}(T)$ can be written as $\operatorname{span}(a)$ for $a \in F$.

For the kernel, first recognize that by rank nullity, $\dim(\text{Ker}(T)) = n^2 - 1$. Notice that each non-diagonal entry contribute a basis vector, being the matrix with that specific non-diagonal entry $a_{ij} = 1$ and all other entries being 0 for all $1 \le i, j \le n$ with $i \ne j$. These, in total, contribute $n^2 - n$ basis vectors.

Then we look at diagonal entries. Since the diagonal contains n entries, imagine we collapse it into one n column vector.

Then the basis vectors would be

$$\begin{bmatrix} 1 \\ -1 \\ 0 \\ ... \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ -1 \\ ... \\ 0 \end{bmatrix}, \dots, \begin{bmatrix} 1 \\ 0 \\ 0 \\ ... \\ -1 \end{bmatrix}$$

Notice that there are exactly n-1 basis vectors here. Therefore the total number of basis vectors equals $n^2-n+(n-1)=n^2-1$, which matches the result from rank nullity. Let E_{ij} represent the $n \times n$ matrix such that the entry $e_{ij}=1$ and all other entries equal 0, and let A_n represent the $n \times n$ matrix such that $a_{11}=1, a_{nn}=-1$, and all other entries equal 0. Then the basis for Ker(T) would look like:

$$\{E_{ij} : i \neq j, 1 \leq i, j \leq n\} \cup \bigcup_{i=2}^{n} A_i$$

T can only be injective if and only if $Ker(T) = \{\vec{0}\}$ which is clearly not the case, so T is not injective. For every element $k \in F$, there exists n other elements in F that sum to k. An example would be k and n-1 0_F 's. Therefore, there exists an $n \times n$ matrix with the diagonal summing to k for all $k \in F \implies T$ is surjective.

6. Textbook 2.1, 17

Let V, W be finite-dimensional vector spaces and $T: V \to W$ be linear.

- (a) Prove that if $\dim(V) < \dim(W)$, then T cannot be onto. Suppose for the sake of contradiction that T is onto. Then $\operatorname{Im}(T) = W \implies \dim(\operatorname{Im}(T)) = \dim(W)$. By the dimension theorem, $\dim(V) = \dim(\operatorname{Ker}(T)) + \dim(\operatorname{Im}(T)) = \dim(\operatorname{Ker}(T)) + \dim(W)$. However, this is not possible as $\dim(V) < \dim(W)$ and there cannot be a negative dimension. Therefore T cannot be onto.
- (b) Prove that if $\dim(V) > \dim(W)$, then T cannot be one-to-one. By the dimension theorem, $\dim(V) = \dim(\operatorname{Ker}(T)) + \dim(\operatorname{Im}(T))$. Suppose T is one-to-one. Recall that T is one-to-one if and only if $\operatorname{Ker}(T) = \{\vec{0}\} \implies \dim(\operatorname{Ker}(T)) = 0$. Then $\dim(V) = 0 + \dim(\operatorname{Im}(T)) = \dim(\operatorname{Im}(T))$. Because $\operatorname{Im}(T) \subset W$, $\dim(\operatorname{Im}(T)) \leq \dim(W) \implies \dim(V) \leq \dim(W)$. However, this is a contradiction because we defined that $\dim(V) > \dim(W)$. Therefore T cannot be one-to-one.

7. Textbook 2.1, 21

- (a) Prove that T and U are linear
 - i. Consider $T(v + \lambda u)$ for $v, u \in V$ and $\lambda \in F$.

More specifically suppose

$$v = (a_1, a_2, ...)$$
 and $u = (b_1, b_2, ...)$

Then by our operations defined,

$$\lambda u = (\lambda b_1, \lambda b_2, ...)$$

and

$$v + \lambda u = (a_1 + \lambda b_1, a_2 + \lambda b_2, \dots)$$

Then

$$T(v + \lambda u) = (a_2 + \lambda b_2, a_3 + \lambda b_3, ...)$$
$$= (a_2, a_3, ...) + (\lambda b_2, \lambda b_3, ...)$$
$$= (a_2, a_3, ...) + \lambda (b_2, b_3, ...)$$
$$= T(v) + \lambda T(u)$$

ii. Now consider $U(v + \lambda u)$ for $v, u \in U$ and $\lambda \in F$.

Let v and u be defined as in (i):

$$v = (a_1, a_2, ...)$$
 and $u = (b_1, b_2, ...)$

Then by our operations defined,

$$\lambda u = (\lambda b_1, \lambda b_2, ...)$$

and

$$v + \lambda u = (a_1 + \lambda b_1, a_2 + \lambda b_2, \dots)$$

Then

$$U(v + \lambda u) = (0, a_1 + \lambda b_1, a_2 + \lambda b_2, ...)$$

$$= (0, a_1, a_2, ...) + (0, \lambda b_1, \lambda b_2, ...)$$

$$= (0, a_1, a_2, ...) + \lambda (0, b_1, b_2, ...)$$

$$= U(v) + \lambda U(u)$$

(b) Prove that T is onto, but not one-to-one

We need to show that Im(T) = V.

By definition, $\operatorname{Im}(T) \subset V$, so we need to show $V \subset \operatorname{Im}(T)$

Let $y \in V$, then $y = (b_1, b_2, ...)$ $b_i \in F$. Notice that $\exists x \in V$ where $x = (a_1, b_1, b_2, b_3, ...)$ $a_i, b_i \in F$ and $T(x) = y \implies y \in \text{Im}(T) \implies V \subset \text{Im}(T) \implies \text{Im}(T) = V \implies T$ is onto. Observe that in the definition of x, a_1 is a completely arbitrary element in F. Suppose $x = (a_1, b_1, b_2, b_3, ...)$ and $x_1 = (a_2, b_1, b_2, b_3, ...)$ such that $a_1 \neq a_2$. However, $T(x) = T(x_1) = (b_1, b_2, ...) \implies T$ is not one-to-one

(c) Prove that U is one-to-one, but not onto.

Let $x_1, x_2 \in V$ such that $x_1 = (a_1, a_2, ...)$ and $x_2, = (b_1, b_2, ...)$ $a_i, b_i \in F$. Then $U(x_1) = (0, a_1, a_2, ...)$ and $U(x_2) = (0, b_1, b_2, ...)$. Suppose $U(x_1) = U(x_2) \implies a_1 = b_1, a_2 = b_2, ... \implies x_1 = x_2$. Therefore, U is injective. For U to be onto, every element in V must be in Im(U). However, let $y \in Im(U)$. Then $y = (0, c_1, c_2, ...), c_i \in F$. For some arbitrary element $v \in V$, $v = (d_1, d_2, ...)$ $d_i \in F$. But since d_i are arbitrary elements in F, $\exists v$ such that $d_1 \neq 0 \implies \exists v \notin Im(U) \implies V \not\subset Im(U) \implies U$ is not onto.

8. Textbook 2.1, 24

Let $T:V\to W$ be linear, $b\in W$, and $K=\{x\in V:T(x)=b\}$ be nonempty. Prove that if $s\in K$, then $K=\{s\}+\mathrm{Ker}(T)$.

If $s \in K$, then T(s) = b. $\operatorname{Ker}(T) = \{x : T(x) = 0\}$. By the definition of nonempty sets, $\{s\} + \operatorname{Ker}(T) = \{j + k : j \in \{s\}, k \in \operatorname{Ker}(T)\}$. Since T is linear, T(j + k) = T(j) + T(k) = T(j) + 0 = T(j) = b. Therefore for all $y \in \{s\} + \operatorname{Ker}(T), T(y) = b \implies y \in \{j + k : j \in \{s\}, k \in \operatorname{Ker}(T)\} \implies y \in K \implies \{s\} + \operatorname{Ker}(T) \subset K$. Similarly, if $y \in K$, then T(y) = b = b + 0 = T(z) + T(x) for all $x \in \operatorname{Ker}(T)$ and $z \in \{s\}$. Then $y \in \{s\} + \operatorname{Ker}(T) \implies K \subset \{s\} + \operatorname{Ker}(T)$. Therefore $K = \{s\} + \operatorname{Ker}(T)$

- 9. Let V and W be vector spaces over F and let $B = \{v_1, ... v_n\}$ be a basis for V and $G = \{w_1, ... w_n\}$ be a basis for W.
 - (a) Prove that the linear transformation $T: V \to W$ determined by $T(v_i) = w_i$ for $1 \le i \le n$ is one-to-one and onto

Notice that V and W are both n-dimensional. Let $a, b \in V$ such that $a = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 + ... + \alpha_n v_n$ and $b = \beta_1 v_1 + \beta_2 v_2 + \beta_3 v_3 + ... + \beta_n v_n$

Then

$$T(a) = T(\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 + ... \alpha_n v_n)$$

$$= \alpha_1 T(v_1) + \alpha_2 T(v_2) + ... + \alpha_2 T(v_n) \quad \text{(Linearity of T)}$$

$$= \alpha_1 w_1 + \alpha_2 w_2 + \alpha_3 w_3 + ... \alpha_n w_n$$

Similarly

$$T(b) = T(\beta_1 v_1 + \beta_2 v_2 + \beta_3 v_3 + \dots \beta_n v_n)$$

= $\beta_1 T(v_1) + \beta_2 T(v_2) + \dots + \beta_2 T(v_n)$
= $\beta_1 w_1 + \beta_2 w_2 + \beta_3 w_3 + \dots \beta_n w_n$

If $T(a) = T(b) \implies \alpha_1 = \beta_1, \alpha_2 = \beta_2, ..., \alpha_n = \beta_n \implies a = b$, so T is one-to-one.

To prove surjectivity, we must show that $\forall w \in W, \exists v \in V \text{ such that } T(v) = w.$

Let $w \in W$, then $w = k_1w_1 + k_2w_2 + ... + k_nw_n$. Since we know that $T(v_i) = w_i$, we have that

$$w = k_1 T(v_1) + k_2 T(v_2) + ... + k_n T(v_n)$$

= $T(k_1 v_1 + k_2 v_2 + ... + k_n v_n)$ (By Linearity of T)

Since $v = k_1v_1 + k_2v_2 + ... + k_nv_n$ is a linear combination of elements in B, we know that $\exists v \in V \implies F$ is surjective.

(b) Let F be a field. Using the previous item, define an explicit linear map $T: P_3(F) \to \operatorname{Mat}_{2\times 2}(F)$ that is a bijection. $P_3(F) = \{a_0 + a_1x + a_2x^2 + a_3x^3 : a_i \in F\}$

Let \mathfrak{B} be a basis for $P_3(F)$. Then

$$\mathfrak{B} = \{1, x, x^2, x^3\} = \{v_1, v_2, v_3, v_4\}$$
 from part (a)

Let $p \in P_3(F)$. Then $p = a_0 + a_1 x + a_2 x^2 + a_3 x^3$ for some $a_i \in F$. Define T such that $T(p) = \begin{pmatrix} a_0 & a_1 \\ a_2 & a_3 \end{pmatrix}$.

Then the basis
$$\Re$$
 of $T(p) = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\} = \{w_1, w_2, w_3, w_4\}$ from part (a)

We know from part (a) that this is a bijection, since \mathfrak{R} and \mathfrak{B} are both 4-dimensional, and $T(v_i) = w_i$ for $1 \leq i \leq n$.