1		
	In 1997 the average CO ₂ emissions of new cars in the UK was 190 g/km.	
	In 2005 the average CO_2 emissions of new cars in the UK had fallen to $169\mathrm{g/km}$.	
	Given $A g/km$ is the average CO_2 emissions of new cars in the UK n years after 1997 and using a linear model,	
	(a) form an equation linking A with n .	(2)
		(3)
	In 2016 the average CO ₂ emissions of new cars in the UK was 120 g/km.	
	(b) Comment on the suitability of your model in light of this information.	(3)

2		
2	A tree was planted in the ground. Its height, <i>H</i> metres, was measured <i>t</i> years after planting.	
	Exactly 3 years after planting, the height of the tree was 2.35 metres. Exactly 6 years after planting, the height of the tree was 3.28 metres.	
	Using a linear model,	
	(a) find an equation linking H with t .	(3)
	The height of the tree was approximately 140 cm when it was planted.	
	(b) Explain whether or not this fact supports the use of the linear model in part (a).	(2)

3.

Figure 1

A company makes a particular type of children's toy.

The annual profit made by the company is modelled by the equation

$$P = 100 - 6.25(x - 9)^2$$

where P is the profit measured in thousands of pounds and x is the selling price of the toy in pounds.

A sketch of *P* against *x* is shown in Figure 1.

Using the model,

(a) explain why £15 is not a sensible selling price for the toy.

(2)

Given that the company made an annual profit of more than £80000

(b) find, according to the model, the least possible selling price for the toy.

(3)

The company wishes to maximise its annual profit.

State, according to the model,

- (c) (i) the maximum possible annual profit,
 - (ii) the selling price of the toy that maximises the annual profit.

(2)

Question 3 continued

4.	A company started mining tin in Riverdale on 1st January 2019.	
	A model to find the total mass of tin that will be mined by the company in Riverdale is given by the equation	
	$T = 1200 - 3(n - 20)^2$	
	where T tonnes is the total mass of tin mined in the n years after the start of mining.	
	Using this model,	
	(a) calculate the mass of tin that will be mined up to 1st January 2020,	(1)
	(b) deduce the maximum total mass of tin that could be mined,	
		(1)
	(c) calculate the mass of tin that will be mined in 2023.	(2)
	(d) State, giving reasons, the limitation on the values of n .	(2)

Question 4 continued

5.	A small factory makes bars of soap.	
	On any day, the total cost to the factory, $\pounds y$, of making x bars of soap is modelled to be the sum of two separate elements:	
	a fixed cost	
	• a cost that is proportional to the number of bars of soap that are made that day	
	(a) Write down a general equation linking y with x , for this model.	(1)
		(1)
	The bars of soap are sold for £2 each.	
	On a day when 800 bars of soap are made and sold, the factory makes a profit of £500	
	On a day when 300 bars of soap are made and sold, the factory makes a loss of £80	
	Using the above information,	
	(b) show that $y = 0.84x + 428$	
		(3)
	(c) With reference to the model, interpret the significance of the value 0.84 in the equation	on. (1)
	Assuming that each bar of soap is sold on the day it is made,	
	(d) find the least number of bars of soap that must be made on any given day for the factory to make a profit that day.	
		(2)

Question 5 continued

6.	The height, h metres, of a tree, t years after being planted, is modelled by the equation
	$h^2 = at + b \qquad 0 \leqslant t < 25$
	where a and b are constants.
	 Given that the height of the tree was 2.60 m, exactly 2 years after being planted the height of the tree was 5.10 m, exactly 10 years after being planted
	(a) find a complete equation for the model, giving the values of a and b to 3 significant figures. (4)
	Given that the height of the tree was 7 m, exactly 20 years after being planted
	(b) evaluate the model, giving reasons for your answer. (2)

7. An archer shoots an arrow.	
The height, H metres, of the arrow above the ground is modelled by the formula	
$H = 1.8 + 0.4d - 0.002d^2, \qquad d \geqslant 0$	
where d is the horizontal distance of the arrow from the archer, measured in metres.	
Given that the arrow travels in a vertical plane until it hits the ground,	
(a) find the horizontal distance travelled by the arrow, as given by this model.	(3)
(b) With reference to the model, interpret the significance of the constant 1.8 in the form	ula. (1)
(c) Write $1.8 + 0.4d - 0.002d^2$ in the form	
$A - B(d - C)^2$	
where A , B and C are constants to be found.	(3)
It is decided that the model should be adapted for a different archer.	
The adapted formula for this archer is	
$H = 2.1 + 0.4d - 0.002d^2, \qquad d \geqslant 0$	
Hence or otherwise, find, for the adapted model	
(d) (i) the maximum height of the arrow above the ground.	
(ii) the horizontal distance, from the archer, of the arrow when it is at its maximum he	eight. (2)

Question 7 continued

8.

Figure 3 is a graph of the trajectory of a golf ball after the ball has been hit until it first hits the ground.

The vertical height, *H* metres, of the ball above the ground has been plotted against the horizontal distance travelled, *x* metres, measured from where the ball was hit.

The ball is modelled as a particle travelling in a vertical plane above horizontal ground.

Given that the ball

- is hit from a point on the top of a platform of vertical height 3 m above the ground
- reaches its maximum vertical height after travelling a horizontal distance of 90 m
- is at a vertical height of 27 m above the ground after travelling a horizontal distance of 120 m

Given also that H is modelled as a quadratic function in x

(a) find H in terms of x

(5)

- (b) Hence find, according to the model,
 - (i) the maximum vertical height of the ball above the ground,
 - (ii) the horizontal distance travelled by the ball, from when it was hit to when it first hits the ground, giving your answer to the nearest metre.

(3)

(c) The possible effects of wind or air resistance are two limitations of the model. Give one other limitation of this model.

(1)

Question 8 continued

	,	
۹	L	

On a roller coaster ride, passengers travel in carriages around a track.

On the ride, carriages complete multiple circuits of the track such that

- the maximum vertical height of a carriage above the ground is 60 m
- a carriage starts a circuit at a vertical height of 2 m above the ground
- the ground is horizontal

The vertical height, H m, of a carriage above the ground, t seconds after the carriage starts the first circuit, is modelled by the equation

$$H = a - b(t - 20)^2$$

where a and b are positive constants.

(a) Find a complete equation for the model.

(3)

(b) Use the model to determine the height of the carriage above the ground when t = 40 (1)

In an alternative model, the vertical height, H m, of a carriage above the ground, t seconds after the carriage starts the first circuit, is given by

$$H = 29\cos(9t + \alpha)^{\circ} + \beta$$
 $0 \le \alpha < 360^{\circ}$

where α and β are constants.

(c) Find a complete equation for the alternative model.

(2)

Given that the carriage moves continuously for 2 minutes,

(d) give a reason why the alternative model would be more appropriate.

(1)

Question 9 continued