Top Down Parsing

TEACHING ASSISTANT: DAVID TRABISH

```
void f(int a) {
     ((((8))));
}
```

```
void f(int a) {
     ((((8))));
}
```



```
void f(int a) {
     (((8);
}
```

```
void f(int a) {
    (((8);
}
```

Invalid

```
void f(int a) {
    5;;;;
}
```

```
void f(int a) {
    5;;;;
}
```



```
void f(int a[]) {
}
```

```
void f(int a[]) {
}
```



```
void f() {
    int a[];
}
```

```
void f() {
    int a[];
}
```

Invalid

```
void f() {
   int a[10.0];
}
```

```
void f() {
    int a[10.0];
}
```

Invalid

```
void f() {
   int i = 0;
   i = 8;
   int j = i;
}
```

```
void f() {
   int i = 0;
   i = 8;
   int j = i;
}
```

Valid

```
void f() {
   int i = 0;
   i = 8;
   int j = z;
}
```

```
void f() {
    int i = 0;
    i = 8;
    int j = z;
}
```



```
void f() {
   int i = 0;
   i = 8;
   int j = i
}
```

```
void f() {
    int i = 0;
    i = 8;
    int j = i
}
```

Invalid

```
void f() {
    g()++;
}
```

```
void f() {
    g()++;
}
```


Contains string of the form:

• 8, (1), (((O3))), ...

Not allowing:

• ((1), 8()

Contains string of the form:

• 8, (1), (((O3))), ...

Not allowing:

• ((1), 8()

Is there a DFA/NFA that accepts the language? Is there a regular expression the accepts the language?

The language is **not regular**

There is no DFA that accepts it

Proof:

- ullet If it has a DFA, the we have d states
- Consider the input ((... 77 that has d + 1 left parentheses
- Every time we read (, we need to change to a new state
 - We need to act differently if we saw 4 parentheses or 10
- But we have only *d* states...

- A set of terminals T and a set of non-terminals V
- Production rules of the form
 - $A \rightarrow a_1 a_2 \dots a_n$
 - $A \in V$, $a_i \in T \cup V$
- Starting rule:
 - $S \rightarrow a_1 a_2 \dots a_n$

Example:

- $S \rightarrow c$
- $S \rightarrow aSb$

Which words belong to this grammar?

Example:

- $S \rightarrow c$
- $S \rightarrow aSb$

Which words belong to this grammar?

• c, acb, aacbb, aaacbbb, ...

Is the language of **balanced parentheses** has a CFG?

Is the language of **balanced parentheses** has a CFG?

- $S \rightarrow D \mid (D)$
- $D \to 0 \mid 1 \mid 2 \mid ... \mid 9$

Context Free Grammar: Questions

Are there languages which are has no CFG? Yes
Is it possible to have multiple CFG describing the same? Yes

Predictive Parser: Definition

Some languages has a predictive parser:

- We determine the production rule according to the current token
- We begin we the start symbol
 - From the top...

The language of balanced parentheses:

- $S \rightarrow D \mid (D)$
- $D \rightarrow 0 \mid 1 \mid 2 \mid ... \mid 9$

has a predictive parser.

```
void parse S() {
  switch (token) {
  case INT:
   parse token(INT);
    break;
  case L PAREN:
    parse token(L PAREN);
    parse S();
    parse token(R PAREN);
    break
  default:
    // error
```

```
void parse_token(int expected) {
   if (token == expected) {
      token = lexer.next_token();
   } else {
      // error
   }
}
```

What happens for the input (7)? Call trace:

- parse_S
 - parse_token // match with '('
 - parse_S
 - parse_token // match with '7'
 - parse_token // match with ')'

What happens for the input ((7)? Call trace:

- parse_S
 - parse_token // match with '('
 - parse_S
 - parse_token // match with '('
 - parse_S
 - parse_token // match with '7'
 - parse_token // match with ')'
 - parse_token // error, expecting ')'

Find a CFG for a language with the 3 kinds of parentheses:

• (), [], {}

Contains string of the form:

- (([][]{}))[]
- [()]

Not allowing:

• (({))

Language of Balanced Parentheses 2

CFG definition:

- $S \rightarrow (S)S$
- $S \rightarrow [S]S$
- $S \rightarrow \{S\}S$
- $S \rightarrow \epsilon$

Language of Balanced Parentheses 2

```
void parse S() {
  switch (token) {
  case L PAREN:
    parse S1();
    break;
  case L BRACKET:
    parse S2();
    break;
  case L BRACE:
    parse S3();
    break;
  default:
    // error
```

```
void parse S1() {
  parse token(L PAREN);
 parse S();
  parse token(R PAREN);
  parse S();
void parse S2() {
  parse token(L BRACKET);
  parse S();
  parse token(R BRACKET);
  parse S();
void parse S3() {
  parse token(L BRACE);
  parse S();
  parse token(R BRACE);
  parse S();
```

A language with binary operators (+,-,*,/) and numbers:

- 1
- 1+1
- (1+1)*(7/2)
- 2+1-7

A (possible) CFG for that language:

- $S \rightarrow N$
- $S \rightarrow S + S$
- $S \rightarrow S S$
- $S \rightarrow S * S$
- $S \rightarrow S / S$
- $S \rightarrow (S)$

A (possible) CFG for that language:

- $S \rightarrow N$
- $S \rightarrow S + S$
- $S \rightarrow S S$
- $S \rightarrow S * S$
- $S \rightarrow S / S$
- $S \rightarrow (S)$

Will predictive parsing work here?

Left Recursion

There is no predictive parser which can handle the previous CFG

Why?

- If the first token was 5, we can't predict the right rule
- It can be 5 $(S \rightarrow N)$
- But also can be 5+8 ($S \rightarrow S + S$)

Left Recursion

Why it happens?

In the rule $S \rightarrow S + S$:

• S itself appears on the **left side** of the alternative

If we still want a predictive parser

• Need to **eliminate** left recursion

Left Recursion Elimination

If we have:

- $X \rightarrow a$
- $X \to Xb$

Then the language contains:

• *a*, *ab*, *abb*, *abbb*, ...

Define an alternative CFG:

- $X \rightarrow aY$
- $Y \rightarrow bY \mid \epsilon$

Left Recursion Elimination

In general, if we have:

- $X \rightarrow a_1 \mid a_2 \mid \dots$
- $X \rightarrow Xb_1 \mid Xb_2 \mid \dots$

We will rewrite as follows:

- $X \rightarrow a_1 Y |a_2 Y| \dots$
- $Y \rightarrow b_1 Y |b_2 Y| \dots |\epsilon|$

Before left recursion elimination:

- $S \rightarrow N$
- $S \to (S) | S + S | S S | S * S | S / S$

What are our a_i, b_i ?

Before left recursion elimination:

- $S \rightarrow N$
- $S \to (S) | S + S | S S | S * S | S / S$

What are our a_i, b_i ?

- $a_1 = N, a_2 = (S)$
- $b_1 = +S$, $b_2 = -S$, $b_3 = *S$, $b_4 = /S$

Before left recursion elimination:

- $S \rightarrow N$
- $S \to (S) | S + S | S S | S * S | S / S$

The resulting CFG:

- $S \rightarrow NT \mid (S)T$
- $T \rightarrow +ST \mid -ST \mid *ST \mid /ST \mid \epsilon$

TODO: Code snippet?

CFG vs Language

- A language may hove more the one CFG
- We might have a language which 2 CFG's where:
 - One has a predictive parser
 - The other one doesn't...

LL(1)

Definitions:

- A grammar that has a predictive parser is called LL(1)
- A language that has LL(1) grammar is called LL(1)

Derivation Tree

For the expression 8 * 4 + 3:

- S
- *NT*
- N * ST
- N * NTT
- N * N + NTT

Derivation Tree

For the expression 8 * 4 + 3:

- S
- *NT*
- N * ST
- N * NTT
- N * N + NTT

Is that what we expect to have?

Operator Precedence

Our CFG does not contain information about operator precedence!

- The expression 8 * 4 + 3 is interpreted as 8 * (4 + 3)
- We need to find another grammar...

Operator Precedence

A CFG with operator precedence:

- $S \rightarrow S + T \mid S T \mid T$
- $T \rightarrow T * F \mid T / F \mid F$
- $F \rightarrow N \mid (S)$

Operator Precedence

A CFG with operator precedence:

•
$$S \rightarrow S + T \mid S - T \mid T$$

•
$$T \rightarrow T * F \mid T / F \mid F$$

•
$$F \rightarrow N \mid (S)$$

After eliminating **left recursion**:

•
$$S \rightarrow TS'$$

•
$$S' \rightarrow +TS' | -TS' | \epsilon$$

•
$$T \rightarrow FT'$$

•
$$T' \rightarrow *FT' \mid /FT' \mid \epsilon$$

•
$$F \rightarrow N \mid (S)$$

Derivation Tree

With the new CFG, the derivation tree for 8 * 4 + 3:

Left Factoring

Left recursion was an issue, are there other issues? What about the following grammar:

- $E \rightarrow if(E)$ then E
- $E \rightarrow if(E)$ then E else E
- $E \rightarrow int$

Left Factoring

Rewrite the original CFG:

- $E \rightarrow if(E)$ then E
- $E \rightarrow if(E)$ then E else E
- $E \rightarrow int$

To the following:

- $E \rightarrow if(E)$ then EX
- $X \rightarrow \epsilon$
- $X \rightarrow else E$
- $E \rightarrow int$

Consider the following grammar:

- $S \rightarrow Aab$
- $A \rightarrow a$
- $A \rightarrow \epsilon$

No left recursion, no left factoring... But can we build a predictive parser for it?

Consider the following grammar:

- $S \rightarrow Aab$
- $A \rightarrow a$
- $A \rightarrow \epsilon$

No left recursion, no left factoring... But can we build a predictive parser for it?

No!

Consider the following grammar:

- $S \rightarrow Aab$
- $A \rightarrow a \mid \epsilon$

If the first symbol is a, we can't predict the right rule:

- If we choose $A \rightarrow a$, then it will fail to parse the input ab
- If we choose $A \to \epsilon$, then it will fail to parse the input aab

We can substitute A with it's possible alternatives.

The original grammar:

- $S \rightarrow Aab$
- $A \rightarrow a \mid \epsilon$

After substituion:

- $S \rightarrow ab$
- $S \rightarrow aab$

Are we done?

We need to perform left factoring:

- $S \rightarrow ab$
- $S \rightarrow aab$

After left factoring:

- $S \rightarrow aX$
- $X \rightarrow b \mid ab$

Building an LL(1) Parser

Some of the common issues:

- Left recursion
- Left factoring
- Nullable rules

LL(1) Parsing is not always possible

The following grammar can't be fixed:

- $S \rightarrow A$
- $S \rightarrow B$
- $A \rightarrow aAb$
- $A \rightarrow \epsilon$
- $B \rightarrow aBbb$
- $B \rightarrow \epsilon$

LL(1) Parsing: is it always desirable?

Grammars of real languages are overloaded with

- Left recursion
- Left factoring
- Nullable rules

Even if we can fix it, the resulting grammar may be unreadable...