

University of Iceland

Faculty of Industrial Eng., Mechanical Eng. and Computer Science

ALICE

Helga

Introduction

Problem Space

Subspace of

Feature Space

Algorithm Space

Performance Space

Footprints in Instance Space

Preference Set

Preference Learning

Conclusion

ALICE

Analysis & Learning Iterative Consecutive Executions

Helga Ingimundardóttir

University of Iceland

June 30, 2016

Introduction

ALICE

Helga

Introduction

Problem Space

Subspace of Instances

Feature Space

Algorithm Space

Performance Space

Footprints in Instance Space

Preference Set

Preference Learning

Canalinaiani

Motivation:

★ The general goal is to train optimisation algorithms using data.

Contribution:

* The main contribution of this thesis is towards a better understanding of how this training data should be constructed.

Framework for Algorithm Learning Outline

ALICE

Helga

Introduction

Problem Space

Subspace of Instances

Feature Space

Algorithm Space

Performance Space

Footprints in Instance Space

Preference Set

Preference Learning

Mad Hatter Tea-party Definition

ALICE Helga

J

Introduction

Problem Space

Subspace of Instances

Feature Space

Algorithm Space

Performance Space

Footprints in Instance Space

Preference Set

Preference Learning

onclusions

The attending guests: They all have to:

 J_1) Alice M_1) have wine or pour tea

 J_2) March Hare M_2) spread butter

 J_3) Dormouse M_3) get a haircut

 M_4) Mad Hatter. M_4) check the time of the broken watch

 M_5) say what they mean.

This can be considered as a typical 4×5 job-shop, where:

* our guests are the jobs

* their tasks are the machines

 \star objective is to minimise C_{max} (when Alice can leave).

ALICE

Helga

Introduction

Problem Space

Subspace of Instances

Feature Space

Algorithm Space

Performance Space

Footprints in Instance Space

Preference Set

Preference Learning

Conclusions

Midway: k = 10

Figure: Disjunctive graph

Figure: Gantt chart

Mad Hatter Tea-party K-solutions

ALICE

Helga

Introduction

Problem Space

Subspace of Instances

Feature Space

Algorithm Space

Performance Space

Instance Space

Preference Set

Preference Learning

Problem Instance Generators

Based on Watson et al. (2002)

ALICE

Helga

Introductio

Problem Space

Subspace of Instances

Feature Space

Algorithm Space

Performance Space

Instance Space

Preference Set

Preference Learning

	name	size $(n \times m)$	N_{train}	N_{test}	note
JSP	$\mathcal{P}_{j.rnd}^{6 \times 5}$	6 × 5	500	500	random
	$\mathcal{P}_{j.rndn}^{6 \times 5}$	6×5	500	500	random-narrow
	$\mathcal{P}_{i,rnd,h}^{6\times5}$	6×5	500	500	random with job variation
	$\mathcal{P}_{i.rnd.M_1}^{6\times5}$	6×5	500	500	random with machine variation
	$\mathcal{P}_{i,rnd}^{10\times10}$	10×10	300	200	random
	$\mathcal{P}_{j,rndn}^{10\times10}$	10×10	300	200	random-narrow
	$\mathcal{P}_{j,rnd,J_1}^{10\times 10}$	10×10	300	200	random with job variation
	$\mathcal{P}_{i.rnd,M_1}^{10\times10}$	10×10	300	200	random with machine variation
	$\mathcal{P}_{\mathit{JSP.ORLIB}}$	various	-	82	various
FSP	$\mathcal{P}_{f.rnd}^{6 \times 5}$	6 × 5	500	500	random
	$\mathcal{P}_{f.rndn}^{6 \times 5}$	6×5	500	500	random-narrow
	$\mathcal{P}_{f.jc}^{6 imes5}$	6×5	500	500	job-correlated
	$\mathcal{P}_{f.mc}^{6\times5}$	6×5	500	500	machine-correlated
	$\mathcal{P}_{f.mxc}^{6\times5}$	6×5	500	500	mixed-correlation
	$\mathcal{P}_{f.rnd}^{10 \times 10}$	10×10	300	200	random
	$\mathcal{P}_{\textit{FPS}.\textit{ORLIB}}$	various	-	31	various

Feature Space for job-shop

ALICE

Helga

Introductio

Problem Space

Subspace of Instances

Feature Space

Algorithi Space

Performanc Space

Footprints in Instance Space

Preference Set

Preference Learning

doį	 φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 	job processing time job start-time job end-time job arrival time time job had to wait total processing time for job total work remaining for job number of assigned operations for job	
machine	$egin{array}{c} \phi_9 \ \phi_{10} \ \phi_{11} \ \phi_{12} \ \phi_{13} \ \phi_{14} \ \phi_{15} \ \phi_{16} \ \end{array}$	$ \begin{array}{ll} \phi_{10} & \text{total processing time for machine} \\ \phi_{11} & \text{total work remaining for machine} \\ \phi_{12} & \text{number of assigned operations for machin} \\ \phi_{13} & \text{change in idle time by assignment} \\ \phi_{14} & \text{total idle time for machine} \\ \phi_{15} & \text{total idle time for all machines} \\ \end{array} $	
final makespan	ϕ_{17} ϕ_{18} ϕ_{19} ϕ_{20} ϕ_{RND} ϕ_{21} ϕ_{22} ϕ_{23} ϕ_{24}	final makespan using SPT final makespan using LPT final makespan using LWR final makespan using MWR final makespans using 100 random rollouts mean for $\phi_{\rm RND}$ standard deviation for $\phi_{\rm RND}$ minimum value for $\phi_{\rm RND}$ maximum value for $\phi_{\rm RND}$	

Trajectory Strategies for **Φ**

ALICE

Helga

Introduction

Problem Space

Subspace of Instances

Feature Space

Algorithm Space

Performance Space

Footprints in Instance Space

Preference Set

Preference Learning

Conclusions

Following the policy:

- * (Φ^{OPT}) expert π_* .
- \star (Φ ^{SPT}) shortest processing time (SPT).
- * (Φ^{LPT}) longest processing time (LPT).
- \star (Φ^{LWR}) least work remaining (LWR).
- \star (Φ^{MWR}) most work remaining (MWR).
- \star (Φ ^{RND}) random policy (RND).
- * $(\Phi^{ES.\rho})$ the policy obtained by optimising with CMA-ES.
- \star (Φ ^{ALL}) union of all of the above.

Sampled Size of $|\Phi(k)|$ 6 × 5, N_{train} = 500

ALICE

Helga

Introduction

Problem Space

Subspace of

Feature Space

Algorithm Space

Performance Space

Footprints in Instance Space

Preference Set

Preference Learning

Various Methods for Solving JSP

15

Based on Jain and Meeran (1999)

ALICE

Helga

Introduction

Problem Space

Subspace of

Feature Space

Algorithm Space

Performance Space

Footprints in Instance Space

Preference Set

Preference Learning

Performance Measure

ALICE Helga

Introduction

Problem Space

Subspace of Instances

Feature Space

Algorithm Space

Performance Space

Footprints in Instance Space

Preference Set

Preference Learning

Conclusion

Performance of policy π compared with its optimal makespan, found using an expert policy, π_{\star} , is the following loss function:

$$\rho = \frac{C_{\mathsf{max}}^{\pi} - C_{\mathsf{max}}^{\pi_{\star}}}{C_{\mathsf{max}}^{\pi_{\star}}} \cdot 100\%$$

The goal is to minimise this discrepancy between predicted value and true outcome.

Deviation from Optimality

ρ

ALICE

Helga

Introductio

Problem Space

Subspace of Instances

Feature Space

Algorithm Space

Performance Space

Footprints in Instance Space

Preference Set

Preference

Making Optimal Decisions ξ^*_{π}

ALICE

Helga

Introductio

Problem Space

Subspace of Instances

Feature Space

Algorithm Space

Performance Space

Footprints in Instance Space

Preference Set

Preference Learning

Probability of SDR Being Optimal $\xi^*_{\langle SDR \rangle}$

ALICE

Helga

Introductio

Problem Space

Subspace of Instances

Feature Space

Algorithm Space

Performance Space

Footprints in Instance Space

Preference Set

Preference Learning

Blended Dispatching Rules

ALICE

Helga

Introduction

Problem Space

Subspace of

Feature Space

Algorithm Space

Performance Space

Footprints in Instance Space

Preference Set

Preference

Conclusions

Dispatching rule

Shortest Processing Time Most Work Remaining

SPT (first 10 %), MWR (last 90 %) SPT (first 15 %), MWR (last 85 %)

SPT (first 20 %), MWR (last 80 %)

SPT (first 30 %), MWR (last 70 %) SPT (first 40 %), MWR (last 60 %)

Data set

Impact of Sub-optimal Decision $\{\zeta_{\min}^*, \zeta_{\max}^*\}$

ALICE

Helga

Introductio

Problem Space

Subspace of Instances

Feature Space

Algorithm Space

Performance Space

Footprints in Instance Space

Preference Set

Preference Learning

Probability of SDR Being Optimal $\xi_{(SDR)}$

ALICE

Helga

Introductio

Problem Space

Subspace of

Feature Space

Algorithm Space

Performanc Space

Footprints in Instance Space

Preference Set

Preference Learning

Impact of Sub-optimal Decision

 $\{\zeta_{\min}^{\pi}, \zeta_{\max}^{\pi}\}$

ALICE

Helga

Problem Space

Subspace of

Feature Space

Algorithm

Footprints in Instance Space

Preference Set

Preference

Preference Set

ALICE

Helga

Introduction

Problem Space
Subspace of

Feature Space

Algorithm Space

Performance Space

Footprints in Instance Space

Preference Set

Preference Learning

`onclusions

Generating training data:

- ★ Generate feature set, $\Phi \subset \mathcal{F}$, both from
 - \star optimal solutions, ϕ^o
 - \star suboptimal solutions, ϕ^s

by exploring various trajectories within the feature-space (where $\phi^o, \phi^s \in \mathcal{F}$).

- \star Sample Φ to create training set Ψ with rank pairs:
 - \star optimal decision, $(\mathbf{z}^o, y_o) = (\phi^o \phi^s, +1)$
 - * suboptimal decision, $(z^s, y_s) = (\phi^s \phi^o, -1)$ using different ranking schemes (where $z^o, z^s \in \Psi$)
- \star Sample Ψ using stepwise bias for time independent policy.

Sampled Size of $|\Psi(k)|$ 6×5 , $N_{train} = 500$

ALICE

Helga

Problem Space

Feature Space

Instance Space

Preference Set

Preference

Stepwise Bias Strategies 6×5 , $N_{train} = 500$

ALICE

Helga

Introduction

Problem Space

Subspace of

Feature Space

Algorithm Space

Performanc Space

Footprints in Instance Space

Preference Set

Preference Learning

Ordinal Regression

ALICE

Helga

Introduction

Problem Space

Subspace of Instances

Feature Space

Algorithm Space

Performance Space

Instance Space

Preference Set

Preference Learning

onclusions

Preference learning:

* Mapping of points to ranks: $\{h(\cdot): \Phi \mapsto Y\}$ where

$$\phi_o \succ \phi_s \quad \Longleftrightarrow \quad h(\phi_o) > h(\phi_s)$$

* The preference is defined by a linear function:

$$h(\phi) = \langle \mathbf{w} \cdot \phi \rangle$$

optimised w.r.t. w based on training data Ψ

* Note: Limitations in approximation function to capture the complex dynamics incorporated in optimal trajectories.

Various Methods for Solving JSP Based on Jain and Meeran (1999)

Dated on Jam and Meetan (15)

ALICE

Helga

Introduction

Problem Space

Subspace of Instances

Feature Space

Algorithm Space

Performance Space

Footprints in Instance Space

Preference Set

Preference Learning

Passive Imitation Learning

ALICE

Helga

Introduction

Problem Space

Subspace of Instances

Feature Space

Algorithm Space

Performance Space

Footprints in Instance Space

Preference Set

Preference Learning

Conclusions

Passive imitation learning (single pass):

- * Prediction with expert advice, π_*
- * Follow the perturbed leader (OPT ϵ)
- * Follow a heuristic (e.g. SDRs).

Active Imitation Learning

ALICE

Helga

Introductio

Problem Space

Subspace of Instances

Feature Space

Algorithm Space

Performance Space

Instance Space

Preference Set

Preference Learning

Conclusions

Active imitation learning (iterative):

⋆ Dataset Aggregation (DAgger)

$$\pi_i = \beta_i \pi_\star + (1 - \beta_i) \hat{\pi}_{i-1}$$

where $\hat{\pi}_{i-1}$ is the previous learned model, and $\hat{\pi}_i$ learns on aggregated dataset of all previous iterations.

Deviation from Optimality

 ρ

ALICE

Helga

Introductio

Problem Space

Subspace of Instances

Feature Space

Algorithm Space

Performance Space

Instance Space

Preference Set

Preference Learning

Using ALICE Framework I

ALICE

Introduction

Problem Space
Subspace of

Feature Space

Algorithm Space

Performance Space

Instance Space

Preference Set

Preference Learning

Conclusions

The thesis introduces a framework for learning (linear) composite priority dispatching rule – using job-shop as a case-study – with the following guidelines:

- * For a given problem domain, use a suitable problem generator to train and test on.
- \star Define features to grasp the essence of visited k-solutions
- * Success is highly dependent on the preference pairs introduced to the system:
 - $\star \Psi_p$ reduces the preference set without loss of performance.
 - * Stepwise bias is needed to balance time dependent Ψ_p in order to create time independent models.

It is non intuitive how to go about collecting training data.

Using ALICE Framework II

ALICE

Helga

Introduction

Problem Space
Subspace of

Feature Space

Algorithm

Performance Space

Space

Footprints in Instance Space

Preference Set

Preference Learning

Conclusions

Continued from prev. slide:

- * Learning optimal trajectories predominant in literature. Study showed Φ^{OPT} can result in insufficient knowledge.
- * Following sub-optimal deterministic policies, yet labelling with an optimal solver, improves the guiding policy.
- * Active update procedure using DAgger ensures sample states the learned model is likely to encounter is integrated to Ψ_p^{DAi} .
- ★ Instead of reusing the same problem instances, extend the training set with new instances for quicker convergence of DAgger.
- * In sequential decision making, all future observations are dependent on previous operations.

Acknowledgements

ALICE

Helga

Introduction

Problem Space
Subspace of

Feature Space

Algorithm

Performance Space

Space

Footprints in Instance Space

Preference Set

Preference Learning

Conclusions

Funding: University of Iceland's Research Fund.

Doctoral committee:

- Prof. Tómas Philip Rúnarsson, University of Iceland (advisor).
- * Prof. Gunnar Stefánsson, University of Iceland.
- * Prof. Michèle Sebag, Université Paris-Sud.

Université Paris-Sud.

Illustrations: Sir John Tenniel (1820–1914)

Thank You for Your Attention

ALICE

Helga

Introduction

Problem Space

Subspace of Instances

Feature Space

Algorithm Space

Performance Space

Footprints in Instance Space

Preference Set

Preference Learning

Conclusions

Helga Ingimundardóttir hei2@hi.is

Supplementary material:

- * Shiny application
- * Github.

