E.M.E

Chapter 8: Symmetries of Regular Polygons

Mphako-Banda

LEARNING OUTCOMES FOR THE LECTURE

By the end of this lecture, students will be able to:

- describe a geometric figure
- describe a rigid motion as a permutation of a figure
- find the set of all symmetries for a given geometric figure
- write down the Cayley table for a given figure
- *

In this chapter we discuss the symmetries of geometric figures. By a figure we mean a finite set of points called vertices, some pairs of which are joined by straight lines or edges.

Let *F* be a figure. A symmetry of *F* is a permutation of its vertices (edges) that can be realised by a rigid motion. The motion of symmetry preserves distance between the vertices (edges) it permutes. Each rigid motion is a permutation (bijection) of *n* objects. But not all permutations can be realised as rigid symmetries of a plane figure (or a body in space).

Let S(F) denote the set containing symmetries of a figure F. Then

- S(F) is closed under composition of functions. i.e. $\forall \sigma, \tau \in S(F), \quad \sigma \circ \tau \in S(F).$
- S(F) contains an identity symmetry e such that for each $\sigma \in S(F)$, $\sigma \circ e = e \circ \sigma = \sigma$.
- For each $\sigma \in S(F)$, there is an inverse symmetry $\sigma^{-1} \in S(F)$ such that $\sigma \circ \sigma^{-1} = \sigma^{-1} \circ \sigma = e$.
- composition of symmetries is assosiative, i.e. $\forall \sigma, \tau, \gamma \in S(F), \quad \sigma \circ (\tau \circ \gamma) = (\sigma \circ \tau) \circ \gamma.$

When considering all possible symmetries for a figure it is very useful to draw up a Cayley table. A Cayley table shows all combinations of how each symmetry is composed with every symmetry. We will use the next example to show how symmetries for a rectangle are identified and named and how to set up a Cayley table.

Example (8.0.1 Symmetries of a Rectangle)

- What are all the symmetries of a non-square rectangle?
- Show the Cayley table for these symmetries.

There are two axes of symmetry and one point of rotation: These are the lines through the midpoints of opposite sides and a point of rotation through π radians: this point at the centre of the rectangle.

If we label the corners of the rectangle 1,2,3 and 4 as in the diagram below, we can label the symmetries as follows:

e = (1)(2)(3)(4) is the identity symmetry. The symmetry $v = (1 \ 2)(3 \ 4)$ and $h = (1 \ 4)(2 \ 3)$ result from reflecting the rectangle through vertical and horizontal axes of symmetry, respectively.

FMR

If we find $v \circ h = (1 \quad 2)(3 \quad 4)(1 \quad 4)(2 \quad 3) = (1 \quad 3)(2 \quad 4)$. $r = (1 \quad 3)(2 \quad 4)$ is the result of rotating the rectangle through π radians about its centre point.

 $r \circ h = (1 \quad 3)(2 \quad 4)(1 \quad 4)(2 \quad 3) = (1 \quad 2)(3 \quad 4) = v$. If fact e, v, h and r are all the possible symmetries of the rectangle. The Cayley table for the rectangle is as follows:

0	е	r	V	h
e	e	r	V	h
r	r	е	h	V
V	V	h	е	r
h	h	V	r	е

A regular *n*-gon has rotational and reflectional symmetries.

F.M.F

Example (8.0.2 Symmetries of an Equilateral Triangle)

An equilateral triangle has six symmetries: Three rotations and three reflections.

The elements of $S(\Delta)$ are:

ROTATIONS

$$e = (1)(2)(3)$$

$$\rho = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = (1 & 2 & 3)$$

$$\rho^2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} = (1 & 3 & 2)$$

REFLECTIONS

$$\tau = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 2 & 3 \end{pmatrix}$$

$$\rho^2 \tau = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 3 \end{pmatrix}$$

$$\rho\tau = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 \end{pmatrix}$$

F M B

$S(\Delta)$	е	(1 2 3)	(1 3 2)	(2 3)	(1 2)	(1 3)
e	е	(1 2 3)	(1 3 2)	(2 3)	(1 2)	(1 3)
(1 2 3)	(1 2 3)	(1 3 2)	е	(1 2)	(1 3)	(2 3)
(1 3 2)	(1 3 2)	е	(1 2 3)	(1 3)	(2 3)	(1 2)
(2 3)	(2 3)	(1 3)	(1 2)	е	(1 3 2)	(1 2 3)
(1 2)	(1 2)	(2 3)	(1 3)	(1 2 3)	е	(1 3 2)
(1 3)	(1 3)	(1 2)	(2 3)	(1 3 2)	(1 2 3)	е

$S(\Delta)$	е	ρ	ρ^2	au	$\rho\tau$	$\rho^2 \tau$
e	e	ρ	ρ^2	au	$\rho\tau$	$\rho^2 \tau$
ρ	ρ	$ ho^2$	e	$\rho\tau$	$ ho^2 au$	au
ρ^2	ρ^2	е	ρ	$ ho^2 au$	au	$\rho\tau$
au	au	$ ho^2 au$	$\rho\tau$	e	$ ho^2$	ρ
$\rho\tau$	$\rho\tau$	τ	$\rho^2 \tau$	ρ	е	$ ho^2$
$\rho^2 \tau$	$\rho^2 \tau$	$\rho\tau$	τ	$ ho^2$	ρ	е