# Quantitative text analysis: Word Embeddings

Blake Miller

MY 459: Quantitative Text Analysis

March 22, 2021

Course website: lse-my459.github.io

- 1. Overview and Fundamentals
- 2. Descriptive Statistical Methods for Text Analysis
- 3. Automated Dictionary Methods

Supervised Scaling Models for Texts

8. Similarity and Clustering Methods

- 4. Machine Learning for Texts
- 6 Panding Wook
- 6. Reading Week
- 7. Unsupervised Models for Scaling Texts
- 9. Topic models
- 10. Word embeddings
- 11. Working with Social Media

#### Overview of text as data methods



#### Outline

- Overview of topic models
- Latent Dirichlet Allocation (LDA)
- Validating the output of topic models
- Examples
- Choosing the number of topics
- Extensions of LDA

#### Extensions of LDA

- 1. Structural topic model (Roberts et al, 2014, AJPS)
- 2. Dynamic topic model (Blei and Lafferty, 2006, ICML; Quinn et al, 2010, AJPS)
- 3. Hierarchical topic model (Griffiths and Tenembaun, 2004, NIPS; Grimmer, 2010, PA)

#### Why?

- Substantive reasons: incorporate specific elements of DGP into estimation
- Statistical reasons: structure can lead to better topics.

## Structural topic model (STM)

- ▶ Basic idea: STM = LDA + Contextual Information
- ► STM provides two ways to include contextual information
  - ► Topic prevalence can vary by metadata (e.g. Democrats talk more about education than Republicans)
  - ► Topic content can vary by metadata (e.g. Democrats are less likely to use the word "life" when talking about abortion than Republicans)
- ▶ Including context improves the model:
  - more accurate estimation
  - better qualitative interpretability

## Structural topic model (STM)



- ▶ Prevalence: Prior on the mixture over topics is now document-specific, and can be a function of covariates (documents with similar covariates will tend to be about the same topics)
- Content: distribution over words is now document-specific and can be a function of covariates (documents with similar covariates will tend to use similar words to refer to the same topic)

## Structural topic model (STM)

- User specifies the number of topics: K
- Observed data for standard topic models
  - **Each** document  $(d \in 1 ... D)$  is a collection of  $N_d$  tokens
  - ▶ Each token is a particular word from a dictionary of *V* entries
  - ▶ Data summarized in a single matrix  $D \times V$  matrix W
- Additional data for STM
  - ▶ Topic prevalence covariates: D × P matrix X
  - Topical content groups: D length vector Y
- Latent variables
  - $\triangleright$   $D \times K$  matrix  $\theta$ : proportion of document on each topic.
  - ightharpoonup K imes V matrix  $\beta$ : probability of drawing a word conditional on topic.
  - Low rank approximation to expected counts:  $\tilde{W} \sim \frac{\theta}{D \times V} \sim \frac{\beta}{D \times K_{K \times V}}$

# Dynamic topic model



Source: Blei, "Modeling Science"

## Dynamic topic model



Source: Blei, "Modeling Science"

Figure 5. Two topics from a dynamic topic model. This model was fit to *Science* from 1880 to 2002. We have illustrated the top words at each decade.







## Outline

- Extensions of LDA
- ► Word embeddings:
  - Overview
  - Applications
  - Bias
  - ► Embeddings demo
- Encoding issues

## Beyond bag-of-words

Most applications of text analysis rely on a bag-of-words representation of documents

- Only relevant feature: frequency of features
- Ignores context, grammar, word order...
- Wrong but often irrelevant

#### An alternative: Word Vectors

- One alternative to the bag-of-words approach is word embeddings
- Word embeddings represent words as real-valued vector in a multidimensional space (often 100–500 dimensions)
- Central logic:
  - "You shall know a word by the company it keeps" (Rupert Firth)
  - Synonyms like oculist and eye-doctor tend to occur in the same environment.
  - ► The difference in meaning between two words corresponds "roughly to the amount of difference in their environments" (Harris, 1954, 157).
- Word vectors learn vector representations of words from the context in which they appear.

## Word embeddings example

| word  | $D_1$ | $D_2$ | $D_3$ | <br>$D_N$ |
|-------|-------|-------|-------|-----------|
| man   | 0.46  | 0.67  | 0.05  | <br>      |
| woman | 0.46  | -0.89 | -0.08 | <br>      |
| king  | 0.79  | 0.96  | 0.02  | <br>      |
| queen | 0.80  | -0.58 | -0.14 | <br>      |



## word2vec (Mikolov 2013)

- Statistical method to efficiently learn word embeddings from a corpus, developed by Google engineer
- Most popular, in part because pre-trained vectors are available.
- Two models to learn word embeddings:



#### How word2vec works

```
... lemon, a [tablespoon of apricot jam, a] pinch ...  c1 \qquad c2 \qquad t \qquad c3 \qquad c4
```

#### How word2vec works

- ▶ Main idea: Train a classifier on a binary prediction task:
  - ► Is w likely to show up near "apricot"?
- We don't actually care about this task, but we'll take the learned classifier weights as the word embeddings

#### How word2vec works

- ▶ A word *s* near apricot acts as "correct answer" to the question
  - ► "Is word w likely to show up near apricot?"
- ► No need for hand-labeled supervision
- The idea comes from neural language modeling
  - ► Bengio et al. (2003)
  - ► Collobert et al. (2011)

## Skip-gram algorithm

- 1. Treat the target word and a neighboring context word as positive examples.
- Randomly sample other words in the lexicon to get negative samples
- 3. Use logistic regression to train a classifier to distinguish those two cases
- 4. Use the weights as the embeddings

## Setup

```
... lemon, a [tablespoon of apricot jam, a] pinch ... c1 \hspace{1cm} c2 \hspace{1cm} t \hspace{1cm} c3 \hspace{1cm} c4
```

- Let's represent words as vectors of some length (say 300), randomly initialized.
- ightharpoonup So we start with 300 imes V random parameters
- Over the entire training set, we'd like to adjust those word vectors such that we
  - Maximize the similarity of the target word, context word pairs (t,c) drawn from the positive data
  - Minimize the similarity of the (t,c) pairs drawn from the negative data.

## Training Data

#### positive examples +

t c

apricot tablespoon apricot of apricot preserves apricot or

#### negative examples -

t c c t c c apricot aardvark apricot twelve apricot puddle apricot where apricot coaxial apricot forever

## How to learn word2vec (skip-gram) embeddings

- ► Start with *V* random 300-dimensional vectors as initial embeddings
- Use logistic regression, the second most basic classifier used in machine learning after naive bayes
- ► Take a corpus and take pairs of words that co-occur as positive examples
- ► Take pairs of words that don't co-occur as negative examples
- ► Train the classifier to distinguish these by slowly adjusting all the embeddings to improve the classifier performance
- Throw away the classifier and keep the embeddings.

## Vectors and Semantic Relationships



Vectors capture some general semantic information about words and their relationships to one another.

# Analogy: Embeddings capture relational meaning!





- ightharpoonup vector('king') vector('man') + vector('woman') pprox vector('queen')
- ightharpoonup vector('Paris') vector('France') + vector('Italy') pprox vector('Rome')

#### Outline

- Extensions of LDA
- ► Word embeddings:
  - Overview
  - Applications
  - Bias
  - Embeddings demo
- Encoding issues

## Application: Pomeroy et al 2018



Figure 4: Distances by core countries. Plot of Euclidian distances between US and Russia (gray), and US and China (maroon).

## Application: semantic shifts

Using word embeddings to visualize changes in word meaning:



Source: Hamilton et al, 2016 ACL. https://nlp.stanford.edu/projects/histwords/

## Application: semantic shifts

Using word embeddings to visualize changes in word meaning:



Source: Hamilton et al, 2016 ACL. https://nlp.stanford.edu/projects/histwords/

## Application: dictionary expansion

#### Using word embeddings to expand dictionaries (e.g. incivility)

```
> distance(file_name = "FBvec.bin",
> distance(file_name = "FBvec.bin",
                                                         search_word = "idiot".
          search_word = "libtard",
                                                         num = 10)
          num = 10)
                                             Entered word or sentence: idiot
Entered word or sentence: libtard
Word: libtard Position in vocabulary: 5753
                                             Word: idiot Position in vocabulary: 646
                           dist
         word
                                                      word
                                                                         dist
          lib 0.798957586288452
                                                 imbecile 0.867565214633942
        leftv 0.771853387355804
                                                  asshole 0.848560094833374
       libturd 0.762575328350067
                                                     moron 0.781079053878784
4
    teabagger 0.744283258914948
                                                   asshat 0.772150039672852
     teabilly 0.715277075767517
                                                   a-hole 0.765781462192535
6
      liberal 0.709996342658997
                                                     ahole 0.760824918746948
       retard 0.690707504749298
                                                   asswipe 0.742586553096771
      dumbass 0.690422177314758
                                                ianoramus 0.735219776630402
         rwni 0.684058785438538
                                                 arsehole 0.732272684574127
10 republitard 0.678197801113129
                                             10
                                                    idoit 0.720151424407959
```

## Outline

- Extensions of LDA
- ► Word embeddings:
  - Overview
  - Applications
  - ▶ Bias
  - Embeddings demo
- Encoding issues

## Bias in word embeddings

Semantic relationships in embeddings space capture stereotypes:

- Neutral example: man − woman ≈ king − queen
- ▶ Biased example: man woman  $\approx$  computer programmer homemaker

#### Gender stereotype she-he analogies.

| sewing-carpentry    |
|---------------------|
| nurse-surgeon       |
| blond-burly         |
| giggle-chuckle      |
| sassy-snappy        |
| volleyball-football |
|                     |

register-nurse-physician interior designer-architect feminism-conservatism vocalist-guitarist diva-superstar cupcakes-pizzas

housewife-shopkeeper softball-baseball cosmetics-pharmaceuticals petite-lanky charming-affable hairdresser-barber

#### Gender appropriate she-he analogies.

queen-king waitress-waiter

sister-brother ovarian cancer-prostate cancer convent-monastery

mother-father

Source: Bolukbasi et al. 2016. arXiv:1607.06520 See also Garg et al, 2018 PNAS and Caliskan et al, 2017 Science.

## Outline

- Extensions of LDA
- ► Word embeddings:
  - Overview
  - Applications
  - Bias
  - ► Embeddings demo
- Encoding issues

## Outline

- Extensions of LDA
- ► Word embeddings:
  - Overview
  - Applications
  - ▶ Bias
  - Embeddings demo
- Encoding issues

## Character encodings

- ► **Encoding:** how digital binary signals are translated into human-readable characters.
- $\rightarrow$  e.g. 0100100 is displayed as 'd'
- This also includes characters such as á, ç, ü, etc.
- ▶ **Problem:** many different translation tables, sometimes hard to know which one is used
- ▶ R works with the default encoding scheme in your system:
  - > Sys.getlocale(category = "LC\_CTYPE")
    [1] "en\_US.UTF-8"
- ► For English Mac and Linux systems, generally UTF-8. For Windows systems, Windows-1252.
- ► UTF-8 (part of Unicode standard) is most popular scheme and used on many websites.