Econ 139: Lecture 10

Xiaoshuang Zheng Denghuan Ye Juan Sebastian Rozo Vasquez Robert Rasmussen February 28, 2019

CONTENT

- 1.Investment in risky assets
- 2.Example of logarithm utility function
- 3. Risk Aversion and Savings Behavior

1.Investment in risky assets

$$\max_{a} E[u(w_{0}(1+r_{f})+a(\tilde{r}-r_{f}))$$

$$F.O.C \quad E[u'(w_{0}(1+r_{f})+a^{*}(\tilde{r}-r_{f}))(\tilde{r}-r_{f})]=0$$

$$S.O.C \quad E[u''(w_{0}(1+r_{f})+a(\tilde{r}-r_{f}))(\tilde{r}-r_{f})^{2}]<0$$

$$Let \quad g(a)=E[u(w_{0}(1+r_{f})+a(\tilde{r}-r_{f}))]$$

$$g'(a)=E[u'(w_{0}(1+r_{f})+a^{*}(\tilde{r}-r_{f}))(\tilde{r}-r_{f})]$$

$$g''(a)=E[u''(w_{0}(1+r_{f})+a(\tilde{r}-r_{f}))(\tilde{r}-r_{f})^{2}]<0$$

$$\Rightarrow$$

$$g'(a^{*})=0 \text{ and } g'(a) \text{ strictly decrease}$$

$$g'(0)=E[u'(w_{0}(1+r_{f}))(\tilde{r}-r_{f})]=u'(w_{0}(1+r_{f}))(E[\tilde{r}]-r_{f})$$

$$g'(a) \text{ has the same sign as } E[\tilde{r}]-r_{f}$$

Theorem:

Let
$$a^* = \arg\max_a E[u(\tilde{w}_1)]$$
 and assume $u' > 0$, $u'' < 0$
(1) $a^* > 0$ iff $E[\tilde{r}] > r_f$
(2) $a^* = 0$ iff $E[\tilde{r}] = r_f$
(3) $a^* < 0$ iff $E[\tilde{r}] < r_f$

(2) WTS:
$$a^* = 0$$
 iff $E[\tilde{r}] = r_f$
(\Rightarrow) Suppose $a^* = 0$
know $g'(a^*) = 0$ and $a^* = 0$ (by supposition)
which implies $g'(0) = 0$, further implies $E[\tilde{r}] - r_f = 0$

$$(\Leftarrow)SupposeE[\tilde{r}] = r_f$$

$$E[]-r_f = 0 \text{ implies } g'(0) = 0$$

since g'(a) strictly decrease and $g'(a^*) = 0$, this implies $a^* = 0$

(1) WTS: $a^* > 0$ iff $E[\tilde{r}] > r_f$

$$(\Rightarrow)$$
 Suppose $a^* > 0$

know $g'(a^*) = 0$ and $a^* > 0$ (by supposition)

which implies g'(0) > 0, further implies $E[\tilde{r}] - r_f > 0$

$$(\Leftarrow)SupposeE[\tilde{r}] > r_f$$

$$E[]-r_f > 0$$
 implies $g'(0) > 0$

since g'(a) strictly decrease and $g'(a^*) = 0$, this implies $a^* > 0$

(3) Likewise, $a^* < 0 iff E[\tilde{r}] < r_f$

2.Example of logarithm utility function

Example:

Suppose $u(w)=\ln(w)$, so that $u'(w)=\frac{1}{w}$,

Stock with two possible returns:

$$\tilde{r} = \begin{cases} r_G & w.p. & \pi \\ r_B & w.p. & 1 - \pi \end{cases} \quad (r_G > r_f > r_B)$$

$$E[\tilde{r}] = \pi r_G + (1 - \pi)r_B > r_f$$

Then we know:

$$W_1^G(a) = w_0(1+r_f) + a(r_G - r_f)$$

$$W_1^B(a) = w_0(1 + r_f) + a(r_B - r_f)$$

Now we need to solve:

$$\max_{a} \ \pi \ln(W_{1}^{G}(a)) + (1-\pi) \ln(W_{1}^{B}(a))$$

FOC:

$$\frac{\pi(r_G - r_f)}{W_1^G(a^*)} + \frac{(1 - \pi)(r_B - r_f)}{W_1^B(a^*)} = 0$$

After some simplifications, we get:

$$a^* = W_0 \left[\frac{(1+r_f)(E[\tilde{r}] - r_f)}{(r_G - r_f)(r_f - r_B)} \right] > 0$$

Observations:

- (i) a^* increases proportionally with w_0 .
- (ii) $\frac{a^*}{W_0}$ increases as $E[\tilde{r} r_f]$ increases.
- (iii) $\frac{a^*}{W_0}$ decreaces as r_f and r_B move away from r_f while maintaining $E[\tilde{r}]$.

3. Risk Aversion and Savings Behavior

Consider two investors, 1 and 2, both looking to invest to optimize their utilities. Assume the following situational constraints:

- (i) Suppose for all wealth levels, $R_A^1(W) > R_A^2(W)$. Investor 1 is more risk averse always. Following from this assumption we know that $\alpha_1^*(W) < \alpha_2^*(W)$
- (ii) Suppose for all wealth levels that $R_R^1(W) > R_R^2(W)$. Following from this assumption we know that $\alpha_1^*(W) < \alpha_2^*(W)$

We can Test this by generalizing u(W) to

$$\frac{W^{1-\gamma}}{1\gamma}$$

$$\gamma > 0, \gamma \neq 1$$

In this case we can rewrite

$$R_A(W) = -\frac{-\gamma W^{-\gamma - 1}}{W^{-\gamma}} = \gamma W^{-1} = \frac{\gamma}{W} = R_A$$
$$R_R(W) = \frac{\gamma}{W} * W = \gamma$$

This means that γ is the constant relevant risk aversion. Now let's examine the implications on the safe and risky assets as the previous example.

$$\max_{\alpha} \pi \frac{[W_1^g(\alpha)]^{1-\gamma}}{1-\gamma} + (1-\pi) \frac{[W_1^b(\alpha)]^{1-\gamma}}{1-\gamma}$$

This has the First Order Condition:

$$\frac{\pi(r_g - r_f)}{W_1^g(\alpha^*)^{\gamma}} + \frac{(1 - \pi)(r_b - r_f)}{W_1^g(\alpha^*)^{\gamma}} = 0$$

We can solve for α^* by plugging in, but the end solution is:

$$\frac{\alpha^*}{W_0} = \frac{(1+r_f)[(\pi(r_g-r_f))^{\frac{1}{\gamma}} - ((1-\pi)(r_b-r_f))^{\frac{1}{\gamma}}]}{(r_g-r_f)[(1-\pi)(r_f-r_b)]^{\frac{1}{\gamma}} + (r_f-r_b) - [\pi(r_g-r_f)]^{\frac{1}{\gamma}}}$$

We will look at examples setting $r_f = 0.05$, $r_g = 0.4$, $r_b = -0.1$, $\pi = 0.5$ and $\mathbb{E}[\tilde{r}] = 0.1$. As γ increases, there is more risk aversion and thus $\frac{\alpha^*}{W_0}$ decreases. See the following table of example results for varying γ :

		0 0 1				
γ	0.5	1	2	3	5	10
$\frac{\alpha^*}{W_0}$	1.2	0.6	0.3	0.2	0.1	0.06

Theorem

Let
$$a^*(\omega) = arg \ max \ E[\ u(\omega_1)\]$$

(i) If
$$R^1_A(\omega) < 0$$
, then $\frac{d}{d\omega_0} (a^*(\omega_0)) > 0$

(i) If
$$R^{1}_{A}(\omega) < 0$$
, then $\frac{d}{d\omega^{0}}(a^{*}(\omega_{0})) > 0$
(ii) If $R^{1}_{A}(\omega) = 0$, then $\frac{d}{d\omega^{0}}(a^{*}(\omega_{0})) = 0$

(iii) If
$$R^1_A(\omega) > 0$$
, then $\frac{d}{d\omega_0} (a^*(\omega_0)) < 0$

Case I: declining absolute risk aversion (DARA)

Utility functions in this case:

$$0 \quad U(\omega) = \frac{\omega^{1-\gamma}}{1-\gamma}, \gamma > 0, \gamma \neq 0$$

$$\circ$$
 $U(\omega) = Ln(\omega)$

We think this is the "normal" case.

Case II: constant absolute risk aversion (CARA)

- Amount invested in risky asset is unaffected by wealth.
- Utility function in this case:

o
$$U(\omega) = -e^{-\gamma * \omega}$$

Therefore, $R_A(\omega) = \gamma$

$$\max_{a} E[-e^{-\gamma * \widetilde{\omega}_{1}(a^{*})}] \text{ where } \widetilde{\omega}_{1}(a^{*}) = \omega_{0}(1 + r_{f}) + a(\tilde{r} - r_{f})$$

FOC:
$$E[\gamma e^{-\gamma * \widetilde{\omega}_1(a^*)} * (\tilde{r} - r_f)] = 0$$

$$\begin{split} \frac{\partial a^*}{\partial \omega_0} &= -\frac{E\left[-\gamma^2(\tilde{r}-r_f)(1+r_f)e^{-\gamma*\tilde{\omega}_1(a^*)}\right]}{E\left[-\gamma^2(\tilde{r}-r_f)^2e^{-\gamma*\tilde{\omega}_1(a^*)}\right]} \\ \frac{\partial a^*}{\partial \omega_0} &= -\frac{\gamma(1+r_f)E\left[-\gamma(\tilde{r}-r_f)e^{-\gamma*\tilde{\omega}_1(a^*)}\right]}{E\left[-\gamma^2(\tilde{r}-r_f)^2e^{-\gamma*\tilde{\omega}_1(a^*)}\right]} \\ \frac{\partial a^*}{\partial \omega_0} &= -\frac{\gamma(1+r_f)E\left[-\gamma e^{-\gamma*\tilde{\omega}_1(a^*)}*(\tilde{r}-r_f)\right]}{E\left[-\gamma^2(\tilde{r}-r_f)^2e^{-\gamma*\tilde{\omega}_1(a^*)}\right]} \\ \frac{\partial a^*}{\partial \omega_0} &= -\frac{\gamma(1+r_f)*FOC}{E\left[-\gamma^2(\tilde{r}-r_f)^2e^{-\gamma*\tilde{\omega}_1(a^*)}\right]} \\ \frac{\partial a^*}{\partial \omega_0} &= -\frac{\gamma(1+r_f)*0}{E\left[-\gamma^2(\tilde{r}-r_f)^2e^{-\gamma*\tilde{\omega}_1(a^*)}\right]} \\ \frac{\partial a^*}{\partial \omega_0} &= 0 \end{split}$$

Implicit Function Theorem

If
$$f(x,y) = 0$$

then, $\frac{dx}{dy} = -\frac{f_y}{f_x}$