Решения на контролно теория 1 по Дискретни структури, специалност Информационни системи, първи курс, зимен семестър на 2019/2020 г.

Задача 1, Вариант: А

Нека А и В са подмножества на U.

- а) Дефинирайте $A \cup B$ и релацията $A \subseteq B$.
- б) Покажете, че $A \subseteq B$. точно тогава, когато $A \cup B = B$.

Задача 1, Вариант: Б

Нека А и В са подмножества на U.

- а) Дефинирайте $A \cap B$ и релацията $A \subseteq B$.
- б) Покажете, че $A\subseteq B$ точно тогава, когато $A\cap B=\mathrm{A}$

Решение

- a) $A \cap B = \{x \mid x \in A \land x \in B\}.$ $A \cup B = \{x \mid x \in A \lor x \in B\}.$ $A \subseteq B$, ako: $(\forall x)[x \in A \implies x \in B].$
- б) $\mathbf{A} \subseteq \mathbf{B} \leftrightarrow \mathbf{A} \cup \mathbf{B} = \mathbf{B}$

Нека $A\subseteq B$. Ако $x\in A\cup B$, то тогава $x\in A\vee x\in B$. Но $A\subseteq B$, от което следва, че $x\in B$. Значи $A\cup B\subseteq B$. Нека $x\in B$. Но тогава $x\in A\cup B$. Следователно $B\subseteq A\cup B$. Значи заключваме, че $A\cup B=B$. Нека $A\cup B=B$. Щом $x\in A$, то $x\in A\cup B$. Но също и $x\in B$. Тогава $A\subseteq B$.

$\mathbf{A} \subseteq \mathbf{B} \leftrightarrow \mathbf{A} \cap \mathbf{B} = \mathbf{A}$

Нека $A\subseteq B$. Ако $x\in A\cap B$, то тогава $x\in A\wedge x\in B$. Но $x\in A$, от което следва, че $A\cap B\subseteq A$. Но ако $x\in A$, то щом A е подмножетво на B, следва че $x\in B$. Но тогава $x\in A\cap B$. Следователно: $A\subseteq A\cap B$. Но тогава $A=A\cap B$.

Нека $A\cap B=A$. Тогава ако $x\in A$, значи че $x\in A\cap B$. Тоест $x\in A$ и $x\in B$. По-конкретно $x\in B$. Тогава $A\subseteq B$.

Задача 2

 $\mathbb{C}\ k\mathbb{Z}$ означаваме всички цели числа, които се делят на $\mathbb{R}\$ е релация над множеството на реалните числа R, дефинирана чрез:

$$(a,b) \in R \leftrightarrow a - b \in k\mathbb{Z}$$

- а) Докажете, че R е релация на еквивалентност.
- б) Напишете по три различни елемента от класовете на еквивалентност на $\frac{1}{k}$ и $k\pi$.

Решение

Във варианти 1 и 3: k=3. Във вариант 2 и 4: k=5.

Рефлексивност: За всяко число $x \in k\mathbb{Z}$ е изпълнено, че xRx, защото: x - x = 0, което е 0 * k

Сииметричност: След като $x \neq y$ и xRy, то $x-y=k*z.(z \in \mathbb{Z})$. Но тогава $y-x=k*(-z).(-z\in\mathbb{Z}).$ Следователно yRx.

Транзитивност: След като xRy и yRz от тук следва, че $x-y=k*z.(z\in$ \mathbb{Z}) и че $y-z=k*t.(t\in\mathbb{Z})$. Събираме двете равенства и получаваме: x - y + y - z = k * z + k * t. Но това е еквивалентно на x - z = k * (z + t). Следователно xRz. Следователно R е релация на еквивалентност.

 Π ри k=3.

При k = 3.
$$\begin{bmatrix} \frac{1}{3} \end{bmatrix} = \left\{ \frac{1}{3}, 3\frac{1}{3}, 6\frac{1}{3} \dots \right\}, \ [3\pi] = \left\{ 3\pi, 3 + 3\pi, 6 + 3\pi \dots \right\}$$
 При k = 5.
$$\begin{bmatrix} \frac{1}{5} \end{bmatrix} = \left\{ \frac{1}{5}, 5\frac{1}{5}, 10\frac{1}{5} \dots \right\}, \ [5\pi] = \left\{ 5\pi, 5 + 5\pi, 10 + 5\pi \dots \right\}$$

Задача 3

Дефинирайте кога една релация R в множеството на естествените числа N е нестрога частична наредба. Проверете дали R е нестрога частична наредба в \mathbb{N}^+ , където $(a,b) \in R \leftrightarrow \exists k \in \mathbb{N}^+ (b=a*k)$ (Във вариант Б е (a=k*b)). Ако е, посочете минимални и максимални елементи относно R, ако има такива. Ако не е, обяснете защо.

Решение

R е нестрога частична наредба, ако е рефлексивна, транзитивна и антисиметрична. $(a,b) \in R \leftrightarrow \exists k \in \mathbb{N}^+ (b=a*k)$ е еквивалентно на b > а и b се дели на а без остатък.

Релацията е рефлексивна, понеже всяко число се дели на себе си.

Ако $a \neq b$ и $b \geq a$, то $a \geq b$. Т.е релацията е антисиметрична.

Ако $(a,b) \in R$ и $(b,c) \in R$, то значи b се дели на а и с се дели на b. Нека b $=a^*k$, а $c=b^*t$ $(t,k\in\mathbb{N})$. Но тогава $c=a^*(k^*t)(k*t\in\mathbb{N})$. Щом $c\geq b$ и b > a, то c > a, . Тогава $(a, c) \in R$. Следователно R е **транзитивна**.

Елементът a е минимален елемент по отношение на R, ако не съществува

друг елемент b, за който bRa. Това е само числото 1. Аналогично a е максимален по отношение на R, ако не съществува друг елемент b, за който aRb. В R няма максимални елементи, понеже винаги има по-голям елемент спрямо релацията. Във вариант 2 максималният елемент е 1, но няма минимални.

Задача 4

Дефинирайте кога една функция $f: \mathbb{N} \to \mathbb{N}$ е инекция. Проверете дали функцията f(n) = kn + 1 е инекция. Докажете, че множеството на четните/нечетните числа е равномощно с $k\mathbb{N} + 1 = \{kn + 1 | n \in \mathbb{N}\}.$

Решение:

```
Във варианти 1 и 3: k=3. Във вариант 2 и 4: k = 5. f е инекция \leftrightarrow f(a) = f(b) \to a = b f(n) = kn+1. Нека f(x) = f(y). Тогава k*x+1 = k*y+1 \leftrightarrow k*x = k*y \leftrightarrow x = y. Следователно f е инекция.
```

Знаем, че множеството на четните и множеството на нечетните са равномощни с \mathbb{N} . Тогава остава да покажем, че $\{kn+1|n\in\mathbb{N}\}$ е равномощно с \mathbb{N} . Ще използваме функцията : f(n)=kn+1 ($f:\mathbb{N}\to\{kn+1|n\in\mathbb{N}\}$). Показахме, че функцията е инекция. Нека $y\in\{kn+1|n\in\mathbb{N}\}$ Но тогава x=(y-1)/k, което е естествено число (защото y-1 се дели на k) и f(x)=y. Следователно f е сюрекция. Но f е сюрекция и инекция, от което следва, че е бикеция и че двете множества са равномощни.