FREQUENCY OF VORTEX SHEDDING

Fixed cylinder

Strouhal law
$$f_{Vortex} = \frac{T_{Solid}}{T_{Vortex}} = SU_R$$

LOCK-IN OF THE FREQUENCY OF VORTEX SHEDDING

Cylinder free to move

LOCK-IN OF THE FREQUENCY OF VORTEX SHEDDING

BASIC MODEL OF VIV

Resonance curve

BASIC MODEL OF VIV

Resonance curve

IMPROVED MODEL OF VIV

$$\ddot{F} + (SU_R)^2 F = A\ddot{Y}$$

VORTEX-INDUCED VIBRATION

$$\ddot{F} + (SU_R)^2 F = A\ddot{Y} \qquad \ddot{Y} + Y = \frac{1}{2}MU_R^2 C_l F$$

COUPLED MODEL OF VIV

$$\ddot{F} + (SU_R)^2 F = A\ddot{Y}$$

$$\ddot{Y} + Y = \frac{1}{2}MU_R^2C_lF$$

$$\begin{bmatrix} Y \\ F \end{bmatrix} = \begin{bmatrix} Y_0 \\ F_0 \end{bmatrix} e^{i\omega t}$$

$$\omega_1(U_R)$$
 $\omega_2(U_R)$

COUPLED MODEL OF VORTEX-INDUCED VIBRATION

COUPLED MODEL OF VORTEX-INDUCED VIBRATION

TIME SCALES

COUPLED-MODE INSTABILITIES

Solid mode 1

FLOW COUPLING

Solid mode 2

Solid mode

Fluid mode

MODE COUPLING BETWEEN FLUID AND SOLID

Stable coupled mode

Solid mode

Sloshing mode

Unstable coupled mode with lock-in

Solid mode

Unstable hydrodynamic mode