Nom:

EXAMEN FINAL PROBABILITAT I ESTADÍSTICA GENER 2014

PROBLEMA 1

"Especifiqueu les probabilitats que heu de calcular i justifiqueu formalment els passos."

Tenim una moneda trucada de manera que la probabilitat de cara és 1/3 i la probabilitat de creu és 2/3.

- A. Tirem la moneda 4 vegades seguides; obtingueu de manera raonada les següents quantitats:
 - 1. Probabilitat que surtin 4 cares.
 - 2. Probabilitat que surtin 3 cares i una creu.
 - 3. Probabilitat que surtin primer 2 cares seguides i després 2 creus seguides.
 - 4. Probabilitat que a la quarta tirada surti cara quan a la primera ja ha sortit cara.
 - 5. Probabilitat que surtin més cares que creus.
 - 6. Nombre esperat de cares i nombre esperat de creus.
 - 7. Variabilitat del nombre de cares
- B. Tirem la moneda 150 vegades i surten 55 cares i 95 creus. Raoneu si la probabilitat de cara és 1/2 plantejant i resolent una metodologia estadística.
- C. Indiqueu raonadament, detallant-ne una metodologia estadística, dos trucatges diferents que qualificaríem de no contradictoris amb la mateixa observació de l'apartat B (de 150 tirades, 55 cares i 95 creus).

Nota: els apartats A.1 a A.7 valen 1 punt cadascun; els apartats B i C valen 1.5 punts cadascun.

NOM:__

(Contesteu cada pregunta en el seu lloc. Expliciteu i justifiqueu els càlculs.)
Problema 2 (B3-B4). Un estudi sobre fotografies digitals ha conclòs que la mida de les fotos es distribueix aleatòriament amb esperança 1 MB, però la distribució i la variabilitat difereixen segons el tipus de la càmera emprada per a obtenir la imatge.
1 Per un primer tipus de càmera (A) en que la mida de les fotografies segueix una distribució exponencial, definiu la variable Y "mida d'una fotografia en la càmera A" : i calculeu:
1.1 (0,5 punts) la probabilitat que la mida d'una fotografia estigui entre 0.5 i 1.5 MB
1.2 (0,5 punts) la probabilitat que la mida d'una fotografia sigui superior a 2 MB
2 Per un segon tipus de càmera (B) en que la mida de les fotografies segueix una distribució uniforme amb σ=0.5 MB 2.1 (0,5 punts) Definiu la variable X "mida d'una fotografia en la càmera B" indicant-ne els paràmetres, l'esperança i la variància
2.2 (0,5 punts) Calculeu la probabilitat que la mida d'una fotografia estigui entre 0.5 i 1.5 MB
2.3 (0,5 punts) Calculeu la probabilitat que la mida d'una fotografia sigui superior a 2 MB
3 (0,5 punts) Dibuixeu aproximadament les distribucions dels dos casos anteriors i comenteu les característiques més destacades de la distribució de la mida de les fotografies en cada cas.
 4 En un cas de càmera B es fan <i>n</i> fotografies independents i es guarden juntes en el que anomenem bloc.
4.1 (1 punt) Definiu la variable S "mida total de les n fotografies". Indiqueu i justifiqueu el model de probabilitat i els seus paràmetres
4.2 (1 punt) Quin valor màxim pot tenir n per tal que amb una seguretat del 95% un bloc no ocupi més de 40 MB?

NOM:

(Contesteu cada pregunta en el seu lloc. Expliciteu i justifiqueu els càlculs.)

qt(0.975,49)=2.0096	qt(0.975,48)=2.0106	qt(0.975,98)=1.9845	pt(0.975,49) = 0.83283	pt(0.975,48) = 0.83278	pt(0.975,98)=0.83402
qt(0.95,49) = 1.6766	qt(0.95,48) = 1.6772	qt(0.95,98) = 1.6606	pt(0.95,49) = 0.82661	pt(0.95,48) = 0.82656	pt(0.95,98) = 0.82778
qt(0.90,49) = 1.2991	qt(0.90,48) = 1.2994	qt(0.90,98) = 1.2902	pt(0.90,49) = 0.81374	pt(0.90,48) = 0.81369	pt(0.90,98) = 0.81484

Problema 3 (B5-B6). Desitgem comparar els temps de les aplicacions media.io (**M**) i audio.online (**A**) per convertir de .mp3 a .wma. Per això, hem seleccionat a l'atzar 50 cançons a l'atzar del *Top 500 Rock and Roll songs* i hem recollit el temps **Y** de conversió per cada cançó amb cada aplicació executades amb ordre aleatori. A més a més, hem recollit el pes (**P**) en MB de cada arxiu original. La taula mostra la seva descriptiva i la del seus logaritmes naturals, així com de les diferències respectives (anomenades D i DL).

N=50	Mit- jana	Desv. Est
Р	4.106	0.727
Y_M	8.152	4.277
Y_A	6.566	4.648
$Y_M - Y_A = D$	1.586	4.338
Log(P)=LP	1.396	0.189
$Log(Y_M)$	1.953	0.565
$Log(Y_A)$	1.730	0.523
$Log Y_M$ - $Log Y_A = DL$	0.223	0.549

^{1) 1} punt Es tracta de dues mostres independents o aparellades? Raoneu la resposta.

3) ^{1 punt} Veient els Q-Q plots adjunts, digueu si les variables s'acosten al model Normal i quines s'acosten més.

4) ^{2 punts} Contrasteu la H_0 de que la esperança poblacional de (μ_{DL}) de DL (on $DL=log(Y_M)-log(Y_A)=log(Y_M/Y_A)$) sigui 0 (=log(1)) enfront de la H_1 de que tenen temps diferents. <u>Indiqueu</u>: hipòtesi, premisses, estadístic, distribució i punt crític, càlculs, resultats i interpretació.

²⁾ ^{1 punt} Mirant la descriptiva de la variable temps (positiva) Y_A, valoreu si el model Normal pot servir per representar-la.

5) $^{1 \text{ punt}}$ Trobeu l' $^{1}\text{C}_{95\%}$ del rati de rendiment $^{1}\text{C}_{95\%}$. Interpreteu.

6) ^{3 punts} La taula de la dreta reprodueix els coeficients de la recta de regressió de la resposta Y_A en funció del Pes. <u>Interpreteu</u> els resultats de la regressió, <u>calculeu</u> els valors X, Y i Z, i <u>trobeu</u> la predicció puntual i per interval del temps Y_A per convertir un arxiu de 5 MB de pes.

```
> summary(lm(YA~P)) Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -6.0899 3.3695 -1.807 0.076978 . P 3.0825 XXXXXX YYYYY 0.000391 Residual standard error: 4.115 on ZZ degrees of freedom
```

Residual standard error: 4.115 on ZZ degrees of freedom Multiple R-squared: 0.2325, Adjusted R-squared: 0.2165 F-statistic: 14.54 on 1 and 48 DF, p-value: 0.0003913

7) 1 punt La taula de la dreta reprodueix els coeficients de la recta de regressió de la resposta $log(Y_M)-log(Y_A) = log(Y_M/Y_A)$ en funció de Log(Pes). Interpreteu aquest nous resultats i feu una interpretació conjunta de les preguntes 4 a 7.

F-statistic: 0.1662 on 1 and 48 DF, p-value: 0.6853