Samlefil for alle data til prøveeksamen

Filen 1A/Oppgave1AFigur_A.png

Figure 1: Figur fra filen 1A/Oppgave1AFigur_A.png

$Filen~1A/Oppgave1AFigur_B.png$

Figure 2: Figur fra filen 1A/Oppgave1AFigur_B.png

$Filen~1A/Oppgave1AFigur_C.png$

Figure 3: Figur fra filen 1A/Oppgave1AFigur_C.png

$Filen~1A/Oppgave1AFigur_D.png$

Figure 4: Figur fra filen 1A/Oppgave1AFigur_D.png

$Filen~1A/Oppgave1AFigur_E.png$

Figure 5: Figur fra filen 1A/Oppgave1AFigur_E.png

Filen 1B.txt Luminositeten øker med en faktor 7.50e+09.

Filen 1C.png

Figure 6: Figur fra filen 1C.png

Filen 1E.png

Figure 7: Figur fra filen 1E.png

Filen 1G.txt

STJERNE A) stjerna fusjonerer helium i kjernen

STJERNE B) radiusen er en hundredel av solens radius og gassen i stjerna er elektrondegenerert

STJERNE C) massen til stjerna er 5 solmasser og den fusjonerer hydrogen i kjernen

STJERNE D) Stjerna har en overflatetemperatur på 10000K. Luminositeten er betydelig mindre enn solas luminositet.

STJERNE E) stjerna består hovedsakelig av karbon og oksygen og få andre grunnstoffer

Filen 1H.png

Filen 1J.txt

Kjernen i stjerne A har massetet
thet 7.650e+06 kg/m3̂ og temperatur 38 millioner K.

Kjernen i stjerne B har massetet
thet 5.234e+06 kg/m3̂ og temperatur 28 millioner K.

Kjernen i stjerne C har massetet
thet 1.771e+06 kg/m3̂ og temperatur 17 millioner K.

Kjernen i stjerne D har massetet
thet 7.081e+06 kg/m3̂ og temperatur 17 millioner K.

Kjernen i stjerne E har massetet
thet 2.383e+06 kg/m3̂ og temperatur 20 millioner K.

Filen 1K/1K.txt

Påstand 1: denne stjerna er nærmest oss

Påstand 2: den tilsynelatende størrelseklassen (magnitude) med UV filter er betydelig større enn den tilsynelatende størrelseklassen i blått filter

Påstand 3: den absolutte størrelseklassen (magnitude) med UV filter er betydelig mindre enn den absolutte størrelseklassen i blått filter

Påstand 4: denne har den største tilsynelatende bolometriske størrelseklassen (altså den vanlige størrelseklassen tatt over alle bølgelengder, uten filter)

$Filen~1K/1K_Figur_A_.png$

Figure 9: Figur fra filen $1\mathrm{K}/1\mathrm{K}$ _Figur_A_.png

$Filen \ 1K/1K_Figur_B_.png$

Figure 10: Figur fra filen $1K/1K_Figur_B_pg$

$Filen~1K/1K_Figur_C_.png$

Figure 11: Figur fra filen $1K/1K_Figur_C_png$

$Filen~1K/1K_Figur_D_.png$

Figure 12: Figur fra filen 1K/1K-Figur-D_.png

$Filen \ 1L/1L_Figure_A.png$

Figure 13: Figur fra filen 1L/1L-Figure_A.png

$Filen \ 1L/1L_Figure_B.png$

Figure 14: Figur fra filen 1L/1L-Figure-B.png

$Filen \ 1L/1L_Figure_C.png$

Figure 15: Figur fra filen 1L/1L-Figure_C.png

$Filen \ 1L/1L_Figure_D.png$

Figure 16: Figur fra filen 1L/1L-Figure_D.png

Bølgelgende (cm)

Filen 1L/1L_Figure_E.png

Figure 17: Figur fra filen 1L/1L-Figure-E.png

Filen 1N.txt

Kjernen i stjerne A har massetet
thet 6.460e+04 kg/m3̂ og temperatur 35.69 millioner K.

Kjernen i stjerne B har massetet
thet 2.104e+05 kg/m3̂ og temperatur 27.73 millioner K.

Kjernen i stjerne C har massetet
thet $3.500\mathrm{e}{+05~\mathrm{kg/m}}\hat{3}$ og temperatur 21.08

millioner K.

Kjernen i stjerne D har massetet
thet 1.320e+05 kg/m3̂ og temperatur 29.39 millioner K.

Kjernen i stjerne E har massetet
thet 1.736e+05 kg/m3̂ og temperatur 25.58 millioner K.

Filen~1O/1O.png

1.27e+13

0.00e+00 | 100

200

300

400

500

600

Bølgelgende (nm)

800

900

700

1000 1100

Figure 18: Figur fra filen 10/10.png

$Filen~1O/1O_Figur_0_.png$

Figure 19: Figur fra filen $1O/1O_Figur_O_png$

$Filen\ 1O/1O_Figur_1_.png$

Figure 20: Figur fra filen $1O/1O_Figur_1..png$

Observasjon er gjort 44.05 dager etter første observasjon.

0.93

0.88

0.88

0.73

0.68

0.2864

0.2874

0.2884

0.2894

0.2904

0.2914

0.2924

0.2934

Bølgelengde (nm) minus 656nm

$Filen~1O/1O_Figur_2_.png$

Figure 21: Figur fra filen $1O/1O_Figur_2_png$

$Filen~1O/1O_Figur_3_.png$

Figure 22: Figur fra filen $1O/1O_F$ igur_3_.png

Observasjon er gjort 132.15 dager etter første observasjon.

0.93

0.88

0.88

0.73

0.68

0.2887

0.2897

0.2907

0.2917

0.2927

0.2937

0.2947

0.2957

Bølgelengde (nm) minus 656nm

$Filen~1O/1O_Figur_4_.png$

Figure 23: Figur fra filen $1O/1O_F$ igur_4_.png

Filen 2A.png

Figure 24: Figur fra filen 2A.png

$Filen~2B/2B_Figur_1.png$

Figure 25: Figur fra filen $2B/2B_Figur_1.png$

$Filen~2B/2B_Figur_2.png$

Figure 26: Figur fra filen 2B/2B-Figur-2.png

$Filen~2C/2C_Figur_1.png$

0.00

5.13

Figure 27: Figur fra filen $2C/2C_Figur_1.png$

Vinkelforflytning 3.03 buesekunder i løpet av et millisekund.

46.14

41.01

35.89

30.76

20.51

10.25

5.13

10.25 15.38 20.51 25.63 30.76 35.89

x-posisjon (10⁻⁶ buesekunder)

41.01 46.14

Filen 2C/2C_Figur_2.png

Figure 28: Figur fra filen 2C/2C_Figur_2.png

Filen 3A.txt

Din destinasjon er Tønsberg som ligger i en avstand av 150 km fra Kristiansand. Du og toget som går i motsatt retning kjører begge med farta 99.56680 km/t.

Filen 3E.txt

Tog1 veier 109600.00000 kg og tog2 veier 71500.00000 kg.

Filen 4A.png

Figure 29: Figur fra filen 4A.png

Filen 4C.txt

Hastigheten til Helium-partikkelen i x-retning er 480 km/s.

Filen 4E.txt

Massen til gassklumpene er 10800000.00 kg.

Hastigheten til G1 i x-retning er 45600.00 km/s.

Hastigheten til G2 i x-retning er 49740.00 km/s.

Filen 4G.txt

Massen til stjerna er 39.60 solmasser og radien er 1.16 solradier.