Trabajo Práctico 9 - Espacios vectoriales con producto interno

Santiago

- 1. Determinar en cada caso si $(V, \langle \cdot, \cdot \rangle)$ es un espacio vectorial con producto interno
 - (a) $V = \mathbb{R}^2$; $\langle (x_1, y_1), (x_2, y_2) \rangle = x_1 x_2 x_1 y_2 y_1 x_2 + 3y_1 y_2$

Hay que verificar las tres condiciones del producto interno

i.
$$\langle \alpha u + v, w \rangle = \alpha \langle u, w \rangle + \langle v, w \rangle$$

Suponiendo (1) $u = (x_1, y_1), v = (x_2, y_2), w = (x_3, y_3)/u, v, w \in \mathbb{R}^2, \alpha \in \mathbb{R}$

$$\langle \alpha u + v, w \rangle = \langle \alpha(x_1, y_1) + (x_2, y_2), (x_3, y_3) \rangle$$
 (1)
$$= \langle (\alpha x_1 + x_2, \alpha y_1 + y_2), (x_3, y_3) \rangle$$
 Prod y suma vec
$$= (\alpha x_1 + x_2)x_3 - (\alpha x_1 + x_2)y_3 - (\alpha y_1 + y_2)x_3 + 3(\alpha y_1 + y_2)y_3$$
 Def P.I
$$= \alpha x_1 x_3 + x_2 x_3 - \alpha x_1 y_3 - x_2 y_3 - \alpha y_1 x_3 - y_2 x_3 + 3\alpha y_1 y_3 + 3y_2 y_3$$
 Distributividad
$$= \alpha x_1 x_3 - \alpha x_1 y_3 - \alpha y_1 x_3 + 3\alpha y_1 y_3 + x_2 x_3 - x_2 y_3 - y_2 x_3 + 3y_2 y_3$$
 Commutatividad
$$= \alpha (x_1 x_3 - x_1 y_3 - y_1 x_3 + 3y_1 y_3) + x_2 x_3 - x_2 y_3 - y_2 x_3 + 3y_2 y_3$$
 Factor común
$$= \alpha \langle (x_1, y_1), (x_3, y_3) \rangle + \langle (x_2, y_2), (x_3, y_3) \rangle$$
 Def P.I
$$= \alpha \langle u, w \rangle + \langle v, w \rangle$$
 (1)

ii. $\langle u, v \rangle = \overline{\langle v, u \rangle}$ Como el conjugado no tiene sentido en \mathbb{R}^2 , la condición se convierte en $\langle u, v \rangle = \langle v, u \rangle$

$$\langle u, v \rangle = \langle (x_1, y_1), (x_2, y_2) \rangle$$
 (1)

$$= x_1 x_2 - x_1 y_2 - y_1 x_2 + 3y_1 y_2$$
 Def P.I

$$= x_2 x_1 - y_2 x_1 - x_2 y_1 + 3y_2 y_1$$
 Conmutatividad producto

$$= x_2 x_1 - x_2 y_1 - y_2 x_1 + 3y_2 y_1$$
 Conmutatividad suma

$$= \langle (x_2, y_2), (x_1, y_1) \rangle$$
 Def P.I

$$= \langle v, u \rangle$$
 (1)

iii. $\langle u, u \rangle > 0 \ \forall u \neq 0$

$$\langle u, u \rangle = \langle (x_1, y_1), (x_1, y_1) \rangle$$
 (1)
 $= x_1^2 - x_1 y_1 - x_1 y_1 + 3y_1^2$ Def P.I
 $= x_1^2 - 2x_1 y_1 + 3y_1^2$ Completando cuadrados
 $= (x_1 - y_1)^2 + 2y_1^2$ Completando cuadrados
 $> 0 \ \forall (x_1, y_1) = u \neq 0$

Como se cumplen las tres condiciones, se puede decir que V es un espacio vectorial con producto interno.

- (b) $V = \mathbb{R}^{2x^2}$; $\langle A, B \rangle = a_{11}b_{11} + a_{12}b_{12} + a_{21}b_{21} + a_{22}b_{22}$
- (c) $V = \mathbb{C}^2; T \in L(\mathbb{C}^2, \mathbb{C}); \langle (x_1, y_1), (x_2, y_2) \rangle = T(x_1, y_1) \overline{T(x_2, y_2)}.$
- (d) $V = \mathbb{C}[x]; \langle p, q \rangle = \int_0^1 p(t) \overline{q(t)} dt$
- 2. Sean V y W dos K-EV y sea $\langle \cdot, \cdot \rangle$ un producto interno sobre W. Probar que si $T \in L(V, W)$ es un monomorfismo de espacios vectoriales, entonces $\langle \cdot, \cdot \rangle_T$ dado por

$$\langle v_1, v_2 \rangle_T = \langle Tv_1, Tv_2 \rangle$$
 para $v_1, v_2 \in V$

- 3. (a) Consideremos el operador rotación en \mathbb{R}^2 dado por $R_{\frac{\pi}{2}}$. Probar que para todo $x \in \mathbb{R}^2$, la norma de x con respecto al producto interno usual de \mathbb{R}^2 , coincide con la norma de x con respecto al producto $\langle \cdot, \cdot \rangle_{R_{\frac{\pi}{2}}}$ definido en el ejercicio anterior.
 - (b) Probar que si $(V, \langle \cdot, \cdot \rangle)$ es un espacio con producto interno y $T \in L(V)$ es una isometría, entonces

$$\langle v, v \rangle = \langle v, v \rangle_T$$
 para todo $v \in V$

Comparar con el ejercicio 8 del TP 2.