ĐỀ THI CUỐI KÌ GIẢI TÍCH 2/FINAL EXAM ON CALCULUS 2 HP/Course ID: MI1124(E), Thời gian/Duration: 90 phút/Minutes

Q1. Given $u = x \left(\sin(\frac{\pi y}{2}) + \arctan z \right)$. Evaluate the directional derivative $\frac{\partial u}{\partial x} \left(\frac{\partial u}{\partial y} + \frac{\partial u}{\partial y} \right) = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial u}{\partial y} \right) = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial u}{\partial y} \right) = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial u}{\partial y} \right) = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial u}{\partial y} \right) = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial u}{\partial y} \right) = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial u}{\partial y} \right) = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial u}{\partial y} \right) = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial u}{\partial y} \right) = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial u}{\partial y} \right) = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial u}{\partial y} \right) = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial u}{\partial y} \right) = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial u}{\partial y} \right) = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial u}{\partial y} \right) = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial u}{\partial y} \right) = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial u}{\partial y} \right) = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial u}{\partial y} \right) = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial u}{\partial y} \right) = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial u}{\partial y} \right) = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial u}{\partial y} \right) = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial u}{\partial y} \right) = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial u}{\partial y} \right) = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial u}{\partial y} \right) = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial u}{\partial y} \right) = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial u}{\partial y} \right) = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial u}{\partial y} \right) = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial u}{\partial y} \right) = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial u}{\partial y} \right) = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial u}{\partial y} \right) = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial u}{\partial y} \right) = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial u}{\partial y} \right) = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial u}{\partial y} \right) = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial u}{\partial y} \right) = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial u}{\partial y} \right) = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial u}{\partial y} \right) = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial u}{\partial y} \right) = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial u}{\partial y} \right) = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial u}{\partial y} \right) = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial u}{\partial y} \right) = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial u}{\partial y} \right) = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial u}{\partial y} \right) = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial u}{\partial y} \right) = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial u}{\partial y} \right) = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial u}{\partial y} \right) = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial u}{\partial y} \right) = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial u}{\partial y} \right) = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac$

$$\overrightarrow{\partial AB}(A)$$
, $\overrightarrow{\sigma}$ do/where $A(2;1;1)$, $B(1;3;-1)$.

Q2. Find the tangent line and the normal plane of the curve

(C):
$$\begin{cases} x^2 + y^2 = 1 \\ z = x + y \end{cases}$$
 at the point $A\left(\frac{1}{\sqrt{2}}; \frac{1}{\sqrt{2}}; \sqrt{2}\right)$.

Q3. Find the area of the domain bounded by

$$x^2 + y^2 = 2x, y = x, y = x\sqrt{3}.$$

Q4. Evaluate $\iiint\limits_{\Omega} xzdxdydz$, where Ω is determined by the inequalities

$$0 \le y \le 1$$
, $y^2 \le x \le 1$, $x + y \le z \le \sqrt{x + y}$.

Q5. Evaluate $\iiint\limits_{\Omega} \sqrt{x^2 + y^2} dx dy dz$, where V is bounded by the surfaces $z = 2 - \sqrt{x^2 + y^2}$, $x^2 + y^2 = 1$ and the Oxy plane.

Q6. Evaluate $\int_{\mathcal{C}} xydx + (x+y)dy$, where $\mathcal{C}: y = 2x^2 + 1$ from A(-1;3) to B(0;1).

Q7. Find the area of the part of the cone $z = \sqrt{x^2 + y^2}$ that contained in the cylinder $x^2 + y^2 = 2y$.

Q8. Let \mathcal{C} be the right part of the circle $x^2 + y^2 = 2x$ from A(1; -1) to B(1; 1). Evaluate $I = \int_{\mathcal{C}} (e^x \sin(2y) + 3x^2y^2 - y^2) dx + (2e^x \cos(2y) + 2x^3y) dy.$

Q9. Find the flux of the vector field $\overrightarrow{F} = x^3 \overrightarrow{i} + yz^4 \overrightarrow{k}$ across the surface $(S): x^2 + y^2 + z^2 = 1$, with the inward direction.

Q10. Evaluate $I = \int_{C} \frac{x^2 + y^2 + x}{\sqrt{x^2 + y^2}} dx + \frac{xy + \sqrt{x^2 + y^2}}{\sqrt{x^2 + y^2}} dy$, where $C : \frac{x^2}{4} + \frac{y^2}{9} = 1$, conterclockwise.

ĐỀ THI CUỐI KÌ GIẢI TÍCH 2/FINAL EXAM ON CALCULUS 2 HP/Course ID: MI1124(E), Thời gian/Duration: 90 phút/Minutes

Q1. Given $u = x \left(\cos(\frac{\pi y}{2}) + \arctan z\right)$. Evaluate the directional derivative $\frac{\partial u}{\partial AB}(A)$, $v\acute{o}i/where A(1;1;0)$, B(0;3;-2).

Q2. Find the tangent line and the normal plane of the curve

(C):
$$\begin{cases} x^2 + y^2 = 1 \\ z = x - y \end{cases}$$
 at the point $A\left(\frac{1}{\sqrt{2}}; \frac{1}{\sqrt{2}}; 0\right)$.

Q3. Find the area of the domain bounded by

$$x^2 + y^2 = 2y$$
, $y = x$, $y = x\sqrt{3}$.

Q4. Evaluate $\iiint\limits_{\Omega} yzdxdydz$, where Ω is determined by the inequalities

$$0 \le x \le 1$$
, $x \le y \le 1$, $x + y \le z \le \sqrt{x + y}$.

Q5. Evaluate $\iiint_{\Omega} \sqrt{x^2 + y^2} dx dy dz$, where V is bounded by the surfaces $z = 1 + \sqrt{x^2 + y^2}$, $x^2 + y^2 = 1$ and the Oxy plane.

Q6. Evaluate $\int_{\mathcal{C}} (x+y)dx + xydy$, where $\mathcal{C}: y = x^2 - 1$ from A(-1;0) to B(0;-1).

Q7. Find the area of the part of the cone $z = -\sqrt{x^2 + y^2}$ that contained in the cylinder $x^2 + y^2 = 2y$.

Q8. Let \mathcal{C} be the upper part of the circle $x^2 + y^2 = 2x$ from A(2;0) to B(0;0). Evaluate

$$\hat{I} = \int_{\mathcal{C}} (e^x \sin(2y) + 3x^2y^2 - y^2) dx + (2e^x \cos(2y) + 2x^3y) dy.$$

Q9. Find the flux of the vector field $\overrightarrow{F} = y^3 \overrightarrow{j} + xz^3 \overrightarrow{k}$ across the surface $(S): x^2 + y^2 + z^2 = 1$, with the inward direction.

Q10. Evaluate
$$I = \int_C \frac{x^2 + y^2 + x}{\sqrt{x^2 + y^2}} dx + \frac{xy + \sqrt{x^2 + y^2}}{\sqrt{x^2 + y^2}} dy$$
, where $C : \frac{x^2}{4} + \frac{y^2}{9} = 1$, clockwise.