

LINEAR PROGRAMMING

max $3x_1 + 2x_2$ function x_1, x_2 Subject to $2x_1 + x_2 \le 6x_16^{23}$ $2x_1 + 8x_2 \le 28$

2, 2, 0 2, 20 2, x, x, ER

• beasible region = beasible solution

solution space (any pt. in beasible region)

· optimal solution.

	2x1 + x2 = 6 x (8 (15) SN+16 xpm+ 8 x2 = 48
	$7x_1 + 8x_2 = 28 \times 100$ $7x_1 + 8x_2 = 28$
	9 x1 = 20 E x ; x
	E-≥ 300 9
	$\lambda_{29} = 6 - 2\lambda_{10} = 6 - 20 = 54 - 20 = 34$
	(5) problem in added constraint of XEZ
	(primmayora 1200+11)
n constraci	$\frac{max}{x} Z = c^{T} x \qquad C : n \times 1$
	subject to ever non Ax & bropping you's: nx1
	λ h o A : m x n
	6; m x 1
(1)	for minimization problem
	$ \frac{min}{x} \mathbf{Z} \cdot \mathbf{c}^{T} x = \frac{max}{x} - \mathbf{c}^{T} x $
(2)	
•	$n \cdot < 3$ and $n \cdot > -3$
	$x \cdot \langle 3 \rangle$ and $x_i \rangle -3$ $3 \cdot \epsilon \rangle \qquad x_i \cdot \gamma_i - 3 + \epsilon \rangle \qquad q \times 1 \cdot q$

Quant of one of the constraint is |xi| = 3

 $2\omega_{c} = +3 \times 1$ or $2\omega_{c} = -3$

25-1XF 267-3

x; ≤ -3

linear programming problems,

@ problem with added constraint of XEZ

(integer programming)

convex polygon d > 1 non-convex polygon

min Z • ct x m cx - C c