# PyTAIL: Interactive and Incremental Learning of NLP Models with Human in the Loop for Online Data

Shubhanshu Mishra\* (shubhanshu.com) - @TheShubhanshu

Jana Diesner (University of Illinois at Urbana-Champaign) - @janadiesner

\*The work presented here was done during my PhD at UIUC

ArXiv: https://arxiv.org/abs/2211.13786

Dataset: <a href="https://doi.org/10.5281/zenodo.7236430">https://doi.org/10.5281/zenodo.7236430</a>
Code: <a href="https://github.com/socialmediaie/pytail">https://github.com/socialmediaie/pytail</a>

Video: <a href="https://www.youtube.com/watch?v=AwDu64gN8t4">https://www.youtube.com/watch?v=AwDu64gN8t4</a>



### **Problem Formulation**

Given a large unlabeled corpus, can we:

- label it efficiently using fewer human annotations?
- allow efficient human-in-the-loop injection of rules during the annotation process?
- update models efficiently to work with new data?

This setting is needed for social media data, where:

- Data is available in streaming mode, and
- Model should adapt to new data

### Proposal

Given a large unlabeled corpus, can we:

- label it efficiently using fewer human annotations? Active Learning
- allow efficient human-in-the-loop injection of rules during the annotation process?
   Data and Rule suggestion interface
- update models efficiently to work with new data? Vonline Learning

### Scope: Classification Tasks for Social Media

### Input

I know this tweet is late but I just want to say I absolutely fucking hated this season of @GameOfThrones what a waste of time.



### Output

#### abusive



#### sentiment



### uncertainity



### PyTAIL Benchmark of Active Learning on Social Media Text Classification

- Tasks for Social Media Text Classification: Abusive, Sentiment, Uncertainty
- 10 tasks, 200K social media posts
- To be released at: <a href="https://doi.org/10.5281/zenodo.7236430">https://doi.org/10.5281/zenodo.7236430</a>
- Derived from Social Media IE Multi Task Benchmark https://doi.org/10.5281/zenodo.5867160

### **Data Stats**

| data       | split | tokens               | tweets              | vocab               |  |
|------------|-------|----------------------|---------------------|---------------------|--|
| Airline    | dev   | 20079                | 981                 | 3273                |  |
|            | test  | 50777                | 2452                | 5630                |  |
|            | train | 182040               | 8825                | 11697               |  |
| Clarin     | dev   | 80672                | 4934                | 15387               |  |
|            | test  | 205126               | 12334               | 31373               |  |
|            | train | 732743               | 44399               | 84279               |  |
| GOP        | dev   | 16339                | 803                 | 3610                |  |
|            | test  | 41226                | 2006                | 6541                |  |
|            | train | 148358               | 7221                | 14342               |  |
| Healthcare | dev   | 15797                | 724                 | 3304                |  |
|            | test  | 16022                | 717                 | 3471                |  |
|            | train | 14923                | 690                 | 3511                |  |
| Obama      | dev   | 3472                 | 209                 | 1118                |  |
|            | test  | 8816                 | 522                 | 2043                |  |
|            | train | 31074                | 1877                | 4349                |  |
| SemEval    | dev   | 105108               | 4583                | 14468               |  |
|            | test  | <mark>5282</mark> 34 | <mark>2</mark> 3103 | <mark>4</mark> 3812 |  |
|            | train | <mark>2</mark> 81468 | 12245               | 29673               |  |

| data      | split | tokens | tweets | vocab  |
|-----------|-------|--------|--------|--------|
| Founta    | dev   | 102534 | 4663   | 22529  |
|           | test  | 256569 | 11657  | 44540  |
|           | train | 922028 | 41961  | 118349 |
| WaseemSRW | dev   | 25588  | 1464   | 5907   |
|           | test  | 64893  | 3659   | 10646  |
|           | train | 234550 | 13172  | 23042  |

#### **Abusive content identification**

| data   | split | tokens        | tv | veets | vocab |
|--------|-------|---------------|----|-------|-------|
| Riloff | dev   | 2126          |    | 145   | 1002  |
|        | test  | 5576          |    | 362   | 1986  |
|        | train | 19652         |    | 1301  | 5090  |
| Swamy  | dev   | 1597          |    | 73    | 738   |
|        | test  | 3909          |    | 183   | 1259  |
|        | train | <b>140</b> 26 |    | 655   | 2921  |

**Sentiment classification** 

**Uncertainty indicator classification** 

https://doi.org/10.5281/zenodo.5867160 and https://shubhanshu.com/phd\_thesis/

## SAIL: Sentiment Analysis with Incremental Human-in-the-Loop Learning and Lexical Resource Customization

- SAIL was written in Java and serves as a precursor for PyTAIL
- SAIL was written specifically for Sentiment Classification tasks and supports active online learning via SGD based updates.

## SAIL: Sentiment Analysis with Incremental Human-in-the-Loop Learning and Lexical Resource Customization



Mishra, Shubhanshu, Jana Diesner, Jason Byrne, and Elizabeth Surbeck. 2015. "Sentiment Analysis with Incremental Human-in-the-Loop Learning and Lexical Resource Customization." In *Proceedings of the 26th ACM Conference on Hypertext & Social Media - HT '15*, 323–25. New York, New York, USA: ACM Press. https://doi.org/10.1145/2700171.2791022.

## SAIL: Sentiment Analysis with Incremental Human-in-the-Loop Learning and Lexical Resource Customization



Mishra, Shubhanshu, Jana Diesner, Jason Byrne, and Elizabeth Surbeck. 2015. "Sentiment Analysis with Incremental Human-in-the-Loop Learning and Lexical Resource Customization." In *Proceedings of the 26th ACM Conference on Hypertext & Social Media - HT '15*, 323–25. New York, New York, USA: ACM Press. <a href="https://doi.org/10.1145/2700171.2791022">https://doi.org/10.1145/2700171.2791022</a>.

### PyTAIL Workflow

- Build an easy to use interface which allows users to perform human-in-the-loop annotation of data and incremental training of the model
- Enable injection of custom lexicons and rules for NLP application, with ability to suggest rules
- Support simulation mode to assess performance of active learning techniques
- Support human in the loop interface for interactive annotation and rule building
- Track performance of remaining data during simulation model to measure time to full annotation.
- Support different active learning algorithms
- Support different rule suggestion techniques

### PyTAIL Workflow



Simulation and Human in the loop modes

### **Active Learning**

- Given a model and unlabeled data
- Select samples from the unlabeled data to be annotated, based on selection criterion
- 3. Update model with collected labeled examples
- Repeat steps 2 to 3 till desired accuracy is reached or data exhausted

### PyTAIL - API

```
class PyTAILTrainer:
    def __init__(
        model_fn,
        rules,
        scoring_fn=entropy_scoring,
        selection_fn=select_top,
        simulation=True,
        pass
    def update(suggestions):
        pass
    def select new data(model, unlabled data):
        scores = scoring fn(model, unlabled data)
        new training data, new rules, new lexicons = selection fn(unlabled data, scores)
        if not simulation:
           new_training_data, new_rules, new_lexicons = ask_human(
               new_training_data, new_rules, new_lexicons
        return new_training_data, new_rules, new_lexicons
```

```
def train_single_round(data):
   train data = data[data.train]
   unlabled_data = data[~data.train]
   model = self.model fn(train data, self.lexicon, self.rules)
    if simulation:
       metrics = model.eval(unlabled_data)
   return model, metrics
def train multiple rounds(
   data, seed_indices, per_round_budget, stopping_criteria: Callback
   data[seed indices].train = True
   data[~seed_indices].train = False
    while stopping_criteria():
       model, metrics = self.train_single_round(data)
       suggestions = select_new_data(model, unlabled_data)
   self.update(suggestions)
   return all_metrics, base_metrics, training_indexes
```

### **Evaluation Workflow**

- We evaluated PyTAIL simulation workflow on the PyTAIL benchmark
- Using a logistic regression model, and a continuously updated lexicon from the data
- The goal was the evaluate the performance of different active learning strategies
- We considered, random, entropy based, and min margin for candidate scoring.
- We considered top K and K sampled for candidate selection



### Evaluation on remaining data

- Active learning systems only track performance on held out test set
- However, often goal is to quickly annotate a large unlabeled data
- We should hence track which methods quickly allows us to reach this goal by measuring the performance on the remaining data



Data ordered alphabetically and X and Y axes are not shared.

https://github.com/socialmediaie/SocialMedialE

### **Benchmark Evaluation**

Table 2: Performance of query strategies across datasets using around 10% training dataset.

| task              | dataset    | round | N      | $N_{left}$ | $\%_{used}$ | Full | Rand | $E_{top}$ | $E_{prop}$ | $M_{top}$ | $M_{prop}$ |
|-------------------|------------|-------|--------|------------|-------------|------|------|-----------|------------|-----------|------------|
| Test Dataset      |            |       |        |            |             |      |      |           |            |           |            |
| ABUSIVE           | Founta     | 42    | 41,861 | 37,661     | 0.10        | 0.79 | 0.77 | 0.78      | 0.78       | 0.79      | 0.77       |
|                   | WaseemSRW  | 14    | 13,072 | 11,672     | 0.11        | 0.82 | 0.79 | 0.78      | 0.77       | 0.78      | 0.76       |
| SENTIMENT         | Airline    | 9     | 8,725  | 7,825      | 0.10        | 0.82 | 0.76 | 0.78      | 0.79       | 0.77      | 0.77       |
|                   | Clarin     | 45    | 44,299 | 39,799     | 0.10        | 0.66 | 0.63 | 0.61      | 0.62       | 0.63      | 0.63       |
|                   | GOP        | 8     | 7,121  | 6,321      | 0.11        | 0.67 | 0.63 | 0.64      | 0.63       | 0.62      | 0.64       |
|                   | Healthcare | 1     | 590    | 490        | 0.17        | 0.59 | 0.64 | 0.60      | 0.61       | 0.60      | 0.60       |
|                   | Obama      | 2     | 1,777  | 1,577      | 0.11        | 0.63 | 0.56 | 0.60      | 0.58       | 0.59      | 0.57       |
|                   | SemEval    | 13    | 12,145 | 10,845     | 0.11        | 0.65 | 0.59 | 0.60      | 0.61       | 0.58      | 0.61       |
| UNCERTAINITY      | Riloff     | 2     | 1,201  | 1,001      | 0.17        | 0.78 | 0.77 | 0.76      | 0.77       | 0.76      | 0.79       |
|                   | Swamy      | 1     | 555    | 455        | 0.18        | 0.39 | 0.39 | 0.40      | 0.39       | 0.34      | 0.31       |
| Remaining Dataset |            |       |        |            |             |      |      |           |            |           |            |
| ABUSIVE           | Founta     | 42    | 41,861 | 37,661     | 0.10        | NaN  | 0.77 | 0.80      | 0.78       | 0.81      | 0.78       |
|                   | WaseemSRW  | 14    | 13,072 | 11,672     | 0.11        | NaN  | 0.78 | 0.79      | 0.77       | 0.80      | 0.76       |
| SENTIMENT         | Airline    | 9     | 8,725  | 7,825      | 0.10        | NaN  | 0.75 | 0.79      | 0.79       | 0.80      | 0.78       |
|                   | Clarin     | 45    | 44,299 | 39,799     | 0.10        | NaN  | 0.62 | 0.62      | 0.62       | 0.64      | 0.63       |
|                   | GOP        | 8     | 7,121  | 6,321      | 0.11        | NaN  | 0.62 | 0.64      | 0.62       | 0.63      | 0.63       |
|                   | Healthcare | 1     | 590    | 490        | 0.17        | NaN  | 0.53 | 0.56      | 0.53       | 0.47      | 0.50       |
|                   | Obama      | 2     | 1,777  | 1,577      | 0.11        | NaN  | 0.54 | 0.56      | 0.57       | 0.56      | 0.56       |
|                   | SemEval    | 13    | 12,145 | 10,845     | 0.11        | NaN  | 0.61 | 0.62      | 0.62       | 0.63      | 0.62       |
| UNCERTAINITY      | Riloff     | 2     | 1,201  | 1,001      | 0.17        | NaN  | 0.80 | 0.82      | 0.84       | 0.82      | 0.81       |
|                   | Swamy      | 1     | 555    | 455        | 0.18        | NaN  | 0.37 | 0.40      | 0.40       | 0.33      | 0.36       |

- Our results show that Top K strategies lead to the fastest annotation of a given unlabeled corpora
- Random leads to the slowest annotation of the corpora.
- In terms of generalization capabilities most approaches are similar

### Thank you

- Questions?
- Tweet to us at:
  - Shubhanshu Mishra @TheShubhanshu
  - Jana Diesner @janadiesner @DiesnerLab
- PyTAIL will be released soon at: <a href="https://github.com/socialmediaie/pytail">https://github.com/socialmediaie/pytail</a>
- Previous version of PyTAIL used for our experiments can be found as part of the SocialMedialE tool:
  - https://github.com/socialmediaie/SocialMediaIE/tree/master/SocialMediaIE/active learning
- If you have questions or feature requests open an issue on GitHub at: <a href="https://github.com/socialmediaie/pytail/issues">https://github.com/socialmediaie/pytail/issues</a>

### References

- Mishra, Shubhanshu, Diesner, Jana, Byrne, Jason, & Surbeck, Elizabeth (2015). Sentiment Analysis with Incremental Human-in-the-Loop Learning and Lexical Resource Customization. In Proceedings of the 26th ACM Conference on Hypertext & Social Media HT '15 (pp. 323–325). New York, New York, USA: ACM Press. <a href="https://doi.org/10.1145/2700171.2791022">https://doi.org/10.1145/2700171.2791022</a>
- Shubhanshu Mishra and Jana Diesner. 2022. PyTAIL: Interactive and Incremental Learning of NLP Models with Human in the Loop for Online Data. arXiv:2211.13786 [cs].