BottleNet++: An End-to-End Approach for Feature Compression in Device-Edge Co-Inference Systems

J. Shao and J. Zhang, "BottleNet++: An End-to-End Approach for Feature Compression in Device-Edge Co-Inference Systems," *2020 IEEE International Conference on Communications Workshops (ICC Workshops)*, 2020, pp. 1-6. (cited by 50)

Advisor: Dr. Chih-Yu Wang

Presenter: Shao-Heng Chen

Date: April 06, 2022

Outline

- 1. Overview
- 2. BottleNet++ architecture
- 3. Network components and training strategy
- 4. Evaluations
- 5. Conclusions and future works

Overview

- 1. Challenges for co-inference?
 - Network splitting, and feature compression
- 2. Why BottleNet++?
 - Feature compression and transmission vs. Feature coding
 - Fault-tolerance property and JSCC [1]
 vs. Source coding
- 3. How to model the wireless channel?
 - As a non-trainable layer [2]
- [1] K. Choi, K. Tatwawadi, A. Grover, T. Weissman and S. Ermon, "Neural joint source-channel coding", *International Conference on Machine Learning*, pp. 1182-1192, 2019. (cited by 44)
- [2] E. Bourtsoulatze, D. B. Kurka and D. Gündüz, "Deep joint sourcechannel coding for wireless image transmission", *IEEE Transactions on Cognitive Communications and Networking*, 2019. (cited by 150)

BottleNet++ Architecture

- End-to-end architecture
- Encoder + Channel model + Decoder

Encoder

- Feature Compression, Joint Source-Channel Coding (JSCC)
- Compress C channels to C' channels
- (1) A conv. layer
- (2) A batch normalization layer
- (3) A Sigmoid activation layer

 $feature\ tensor\ (channel, width, height)\ size = (C, W, H)$

 $kernel size = 2 \times 2$

C filters with stride size $\left(\left[\frac{W}{W'}\right], \left[\frac{H}{H'}\right]\right) = (2, 2)$

Channel Model

(1)AWGN channel [2]

$$-f(x) = x + n, n \sim N(0, \sigma^2)$$

(2)Binary Erasure Channel [1]

- Bit Erasure Rate p model the deep fades and burst errors
- Network converges when p is not too large
- $-quantizer \tilde{X} = round(X \cdot (2^n 1)) / (2^n 1)$

[1] K. Choi, K. Tatwawadi, A. Grover, T. Weissman and S. Ermon, "Neural joint source-channel coding", *International Conference on Machine Learning*, pp. 1182-1192, 2019. (cited by 44)

[2] E. Bourtsoulatze, D. B. Kurka and D. Gündüz, "Deep joint sourcechannel coding for wireless image transmission", *IEEE Transactions on Cognitive Communications and Networking*, 2019. (cited by 150)

Decoder

- Restore the bitstream to feature tensor
- Recover C' channels to C channels
- (1) A deconv. layer
- (2) A batch normalization layer
- (3) A ReLU activation layer

 $feature\ tensor\ (channel, width, height)\ size = (C', W', H')$

 $kernel\ size = 2 \times 2$

C filters with stride size $\left(\left[\frac{W}{W'}\right], \left[\frac{H}{H'}\right]\right) = (2, 2)$

Training Strategy

- Direct training may cause slow convergence
 - (1) Train the DNN
 - (2) Train the encoder/decoder
 - (3) Fine-tuning whole network
- Model the wireless channel as a non-trainable layer [3]
- Only need to retrain the JSCC module for different channel conditions

Experimental settings

- Image classification on CIFAR-100, 100 class of 60000 32 x 32 color images
- Main branch: VGG16, ResNet50
- AWGN channel with $PSNR(dB) = 10log_{10} \left(\frac{1}{\sigma^2}\right)(dB) = 20 dB$
- BEC with Bit Erasure Rate (BER) = p = 0.01
- Note.
 - (1) Not all layers can be use as a splitting point
 - (2) FC layer, Conv. layer can be regarded as one

- On-device Computational vs. Communication Overhead in BEC

 $Fig.\,2.\,On-device\,Computation\,vs.\,Communication\,Overhead\,in\,BEC\,with\,(a)\,ResNet50\,and\,(b)\,VGG16$

- Minimum On-device Comp. with Comm. Overhead less than raw data

On-device Computation (FLOPs)	BottleNet++ (ours)	BottleNet	JPEG	Quan.+Huffman
ResNet50 (BEC)	$6.8 imes10^8$	1.1×10^{9}	1.2×10^9	1.3×10^9
ResNet50 (AWGN)	$3.4 imes10^8$	1.1×10^{9}	1.3×10^9	1.3×10^9
VGG16 (BEC)	$9.6 imes10^7$	1.9×10^{8}	1.9×10^{8}	1.9×10^{8}
VGG16 (AWGN)	$9.6 imes 10^7$	1.9×10^{8}	1.9×10^{8}	1.9×10^8

- $-256 \times$ bit compression ratio, 32KB Float \rightarrow 128 Bytes Integer
- 64× bandwidth reduction, 2048-symbol → 32-symbol

- On-device Computational vs. Transmission Latency in AWGN channel

 $Fig.\,2.\,On-device\,Computation\,vs.Transmission\,Latency\,in\,BEC\,with\,(c)\,ResNet\,50\,and\,(d)\,VGG\,16$

- Accuracy degradation for testing generalization ability

- CSI (BER, PSNR) known or unknown

	training	testing
Case 1	O	O
Case 2	O	X
Case 3	X	X

Fig. 3. Accuracy degradation over the (a) AWGN channel

- Accuracy degradation for testing generalization ability

Fig. 3. Accuracy degradation over the (b) BEC

- CSI (BER, PSNR) known or unknown

	training	testing
Case 1	O	O
Case 2	O	X
Case 3	X	X

Conclusions and Future Works

- Useful insights
 - (1) Model the wireless channel as a non-trainable seems reasonable
 - (2) Not all layers can be use as a splitting point
- Ideas
 - (1) Maybe first test on DL_CFAR, before jump into YOLO_CFAR
 - (2) Need to figure out the reasonable setting for CFAR case