Tarea N°1 Física Computacional II - 2S-2019

Prof. C. Paredes

August 28, 2019

1 Problema 1

Uno de los extremos de una lámina rectangular de enfriamiento con longitud $H=0.1~\mathrm{m}$ se conecta con una fuente de calor, La cual se encuentra a 500° C. La Lámina transfiere calor tanto por radiación como por convección hacia el ambiente, el cual tiene una temperatura de 20° C. Si tanto la Lámina como el ambiente son cuerpos negros, la temperatura de la lámina satisface la ecuación no lineal de difusión:

$-AkT''(x) + Ph_c(T($	$(x) - T_{\infty}) + F$	$P\sigma(T^4(x) -$	$T_{\infty}^4) = 0$

k	Conductividad térmica	$120 \mathrm{W/k}$
A	Área sección transversal	$1.5 \times 10^{-4} \text{ m}^2$
P	Perímetro de la lámina	$0.106 \mathrm{\ m}$
h_{c}	Coef. de convección	$10~\mathrm{W/m^2~K}$
T_{∞}	Temperatura ambiente	$293~\mathrm{K}$

Condiciones de frontera:

$$T(0) = 500 \, ^{\circ}\text{C}$$
 (1)

$$T'(H) = 0 (2)$$

Determine el perfil de temperatura de la lamina $(T(x) \ v/s \ x)$. (Nakamura)

2 Problema 2

Una lámina metálica de $10 \text{ cm} \times 10 \text{ cm}$ tiene una fuente de calor gaussiana en su centro.

$$S(x,y) = 100 * \exp\left(-\left(\frac{(x-x_0)^2}{2\sigma_X^2} + \frac{(y-y_0)^2}{2\sigma_Y^2}\right)\right) \operatorname{cal}/cm^3 \text{ s}$$

Donde $\sigma_X = \sigma_Y = 1$ y $(\mathbf{x}_{0,\mathbf{y}\,0})$ corresponde a las coordenadas del centro de la lámina.

Las condiciones de borde son:

$$T(x,0) = x(10-x) (3)$$

$$T(0,y) = y(10 - y) \tag{4}$$

$$T(x,10) = 0 \tag{5}$$

$$T(10, y) = 0 \tag{6}$$

(7)

Si la conductividad térmica de la lámina es 1.04cal/cmCs, determine T(x,y).

3 Problema 3 - (10 puntos)

Considere la ecuación de Schrodinger estacionaria y unidimensional:

$$-\frac{\hbar}{2m}\frac{d^2}{dx^2}\psi_n(x) + V(x)\psi_n(x) = E_n\psi_n(x)$$

$$\psi_n(0) = \psi_n(L) = 0$$

El potencial:

$$V(x) = \begin{cases} 50 \exp\left(-\frac{(x/L - 0.5)^2}{0.08}\right), \ 0 < x < L \\ \infty, \ \text{otro} \end{cases}$$

Considere L=1 y determine numéricamente los primeros 5 autovalores y autofunciones.

(Stickler)