第三章 时序电路的分析与设计

3.1 时序电路基础 从版上 名称为到文3.1.1 时序电路概述 讲9个为外
3.1.2 时序电路的双稳态元件 后面 11.7 下京、
3.2. 同步时序电路的分析与设计 3.2.1 同步时序电路的分析 3-4节 3.2.1 同步时序电路的设计 尼龙 次 次 次 次 次 次 次 次 次 次
3 同步时序电路的设计员。全人 XX 13-公-:1617年107 3 异步时序电路的分析与设计 组后·几个 29 年 20 元 10 17
MS/
3.2 脉冲异步时序电路的分析步骤 分析与设计发现 3.3 脉冲异步时序电路的设计步骤 分析与设计发现 天关 3.4 常用MSI时序逻辑器件及其应用 4.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1
3.41 计数器 核心(从一开始) 家外和3安梯校计
3.4.2 寄存器 163 169

第三章 时序电路的分析与设计 Sequential Logic Circuit Analysis & Design

- 3.1 时序电路基础
 - 3.1.1 时序电路概述 Summarization

数字逻辑电路可分为两大类:

组合逻辑电路时序逻辑电路

- 组合电路是指它的输出仅由当前输入决定。
- 时序电路是指它的输出不仅取决于当前输入,而且 也取决于过去的输入序列,即过去输入序列不同, 则在同一当前输入的情况下,输出也可能不同。

3.1.1.1 时序电路的一般形式 Structure

3.1.1.1 时序电路的一般形式 Structure

Z₁~Z_m: 为外部状态;

y_{1~y_r:为内部状态,即时序电路的状态,简称"状态"。}

时序电路的变化规律

状态变化的描述:现态——某一时刻输入变化前的电路状态;

次态——当输入变化后的电路状态(即电路将 要进入的状态);

3.1.1.2 时序电路的分类 * 护饰(引发原因)

1、按照引起状态发生变化的原因可分为:

同步时序电路:其状态的改变受同一个时钟脉冲的控制,且与时钟脉冲同步。即电路在统一时钟控制CLK(或CP)下,同步改变状态。 *そ*る 统っCLY.

异步时序电路:无统一的时钟脉冲使整个系统的工作同步,输入直接引起状态改变。

3.1.1.2 时序电路的分类

几几 商的价

2、按输入信号x的特性可分为: 脉冲输入和电子输入。

在同步时序电路中,输入信号 x 相对时钟脉冲 \overline{CP} 的变化速度而言,如果输入信号 x 在两个时钟脉冲之间信号完成 $0\rightarrow 1\rightarrow 0$ (或 $1\rightarrow 0\rightarrow 1$) 两次变化则为脉冲输入,否则为电平输入。

在异步时序电路中,输入信号x按照电路研究的目的区分: 如果研究的是输入信号 x 完成 $0 \rightarrow 1 \rightarrow 0$ (或 $1 \rightarrow 0 \rightarrow 1$)两次变化对电路的影响,则为脉冲输入,否则为电平输入。

即: 脉冲输入: 在两个时钟脉冲之间信号完成 $0\rightarrow 1\rightarrow 0$ (或 $1\rightarrow 0\rightarrow 1$) 两次变化后对电路的影响; **后其代之计 有**角 后分

电平输入: 信号完成 $0 \rightarrow 1$ (或 $1 \rightarrow 0$) 一次变化对电路的影响。

3.1.1.2 时序电路的分类

3、按输出特性可分为: Mealy型和Moore型。

3.1.1.3 时序电路的描述方法

1、次态方程 Characteristic Equation 表达

次态
$$y^{n+1} = Q_a$$
(激励 Y)
激励 $Y = G(输入x, 现态y)$

次态 $y^{n+1} = Q(输入x, 现态y)$

2、次态真值表

真值

将输入x及现态y列在真值表左边,次态yn+1列在右边。

3、次态卡诺图

卡港

次态方程用卡诺图的形式表示出来,既次态卡诺图。

4、状态表 State-table 包新描述工具(真值变形)有关

无外部输出的状态表 Mealy 型状态表 Moore 型状态表

yX	0 ,/	1
y ₀	\mathbf{y}_1	5 y ₃
$\mathbf{y_1}$	$\mathbf{y_2}$	y_0
$\mathbf{y_2}$	y ₃	y_1
y_3	\mathbf{y}_0	y_2

yX	0	1
$\mathbf{y_0}$	y ₁ /0	$y_3/1$
\mathbf{y}_1	$y_2/0$	$y_0/0$
\mathbf{y}_2	y ₃ /0	y ₁ /0
y ₃	y ₀ /1	$y_2/0$

yX	0	1	Z
$\mathbf{y_0}$	$\mathbf{y_1}$	y_3	0
\mathbf{y}_1	\mathbf{y}_2	$\mathbf{y_0}$	0
\mathbf{y}_{2}	y_3	\mathbf{y}_1	0
y ₃	$\mathbf{y_0}$	\mathbf{y}_2	1

yn+1(次态)

yn+1/z(次态/输出)

yⁿ⁺¹(次态)

Mealy 型电路的读表(或图)的次序是:

现态 $y \rightarrow 输入x \rightarrow 输出z \rightarrow 次态y^{n+1}$

次是送来的控 划信号.

Moore 型电路的读表(或图)的次序是:

现态 $y \rightarrow 输出<math>z \rightarrow 输入x \rightarrow 次态y^{n+1}$

可分析一步一步

5、状态图 State-diagrams

a. Mealy 型状态图 计多则表状 国间始病 可以排 现本表/ 图选-十结分

Mealy 型状态表

yX	0	1
$\mathbf{y_0}$	y ₁ /0	y ₃ /1
y ₁	$y_2/0$	$y_0/0$
\mathbf{y}_2	y ₃ /0	y ₁ /0
y ₃	y ₀ /1	$y_2/0$

yn+1/z(炊态/輸出) 4个O· 出し 计数器可述

5、状态图 State-diagrams

Moore 型状态表

yX	0	1	Z
$\mathbf{y_0}$	\mathbf{y}_1	y ₃	0
\mathbf{y}_1	\mathbf{y}_2	y 0	0
y_2	y ₃	\mathbf{y}_1	0
y ₃	y ₀	y ₂	1

yn+1(次态)

b. Moore 型状态图

5、状态图 State-diagrams

a. Mealy 型状态图

b. Moore 型状态图

Mealy 型电路的读表(或图)的次序是:

现态 $y \rightarrow 输入x \rightarrow 输出z \rightarrow 次态y^{n+1}$

Moore 型电路的读表(或图)的次序是:

现态 $y \rightarrow 输出<math>z \rightarrow 输入x \rightarrow 次态y^{n+1}$

- 时序电路和组合电路的区别
- 时序电路的变化规律(输入、输出、激励/ 控制、状态——研究状态的现态、次态转 变)
- 时序电路的分类(3种分法)
 - 同步、异步; 脉冲输入、电平输入; Mealy、 Moore
- 时序电路的描述方法
 - 次态表达式,次态真值表,次态卡诺图
 - 状态表
 - 状态图
 - 注意对Mealy型、Moore型电路的状态表及状态 图的写法、读法

3.1.2 时序电路的双稳态元件 Bistable Element

双稳态元件是构成存储电路的基本模块,通常指锁存器或触发器。双稳态元件的特点是:

- (1) 有两个稳定状态,分别表示存储数码 0 或 1。
- (2) 在一定的触发信号作用下,它可从一个稳态翻转到另一个稳态。**有时钟**沿

作用:每个双稳态元件可保存一位二进制数,对应一个 状态变量。

每个双稳态元件有两个互反的输出端 Q 和 /Q,

分别被称为: $1 \, \text{态} \, (Q = 1, /Q = 0)$

0 态 (Q = 0, /Q = 1) 保持 或改

触发器或锁存器翻转前的状态称为现态 Qn(Q),

翻转后的状态称为次态 Qn+1。

3.1.2.1 S-R 锁存器(Set-Reset Latch)

右图(a)中,电路有两个稳态: Vinl

$$V_{out1} = V_{in2} = 1$$

$$V_{out2} = V_{in1} = 0$$

及

$$V_{out1} = V_{in2} = 0$$

$$V_{out2} = V_{in1} = 1$$

Vin1 Vout1 Q 互际常3 Vin2 Vout2 /Q

程序はおりない。(a) 一对非门组成的双稳态电路 を原始とは150 名位 _________。在

由于图(a)电路的两

个稳态Q、/Q不能由外部

控制,为此增加两个输入进入场。

端: S(置位)、 R(复位)

则得到S-R锁存器,如图

(b).

·对或非门组成的S-R锁存器

根据组合电路的分析方法可得到功能表如右表。

S	R	Q /Q
0	0	保持不变
0	1	0 1
1	0	1 0
1	1	0 0

g. 功能表

S=R=0 > 维持.

由功能表得到的典型操作时序图如下图所示。

S-R 锁存器(S-R Latch)的逻辑符号如下图所示。

说明:图(b)的表示方法较好;

图(a)的表示方法不太好,但可以使用;

图(c)的表示方法完全错了,因为它的低有效输出

端出现了两次非,因而导致含义错。

3.1.2.2 /S-/R 锁存器(/S-/R Latch)

/S-/R 锁存器是由与非门构成的具有低有效置位及复位输入端的电路。

/S一/R锁存器与S一R锁存器的主要区别是:

- (1)/S 及/R 都是低有效,因此当/S=/R=1时,电路输出保持不变。
- (2)当/S及/R同时有效时,前者的输出Q及/Q都变为1;而后者是当S及R同时有效时,输出Q及/Q都变为0。这两种情况的输出都不满足Q与/Q的互补关系,这是不允许的。

a. 电路图

/S	/R	Q	Qn+1
0	0	0	d
0	0	1	d
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

b. 次态真值表

c. 简化的次态真值表

/S	/R	Q ⁿ⁺¹
0	0	d
0	1	1
1	0	0
1	1	Q

d.	功能表	

/S	/R	Q	/Q
0	0	1	1
0	1	1	0
1	0	0	1
1	1	保持	不变

Q/S/F	00	01	11	10
0	d	1	0	0
1	d	1	1	0

e. 卡诺图

f. 次态方程 $Q^{n+1} = /S + /RQ$ 约束条件 $\overline{/S} \cdot \overline{/R} = 0$ *价 价*

3.1.2.3 带使能端的S-R 锁存器 S-R latch with enable

利用使能输入端信号C进行控制,即当使能信号C有效时,输入才影响输出。如电路图所示: (S) (R) > 不动 维持

3.1.2.3 带使能端的S-R 锁存器

d. 逻辑符号

c. 次态方程:

S	R	C	Q /Q
0	0	1	保持不变
0	1	1	0 1
1	0	1	1 0
1	1	1	1 1
d	d	0	保持不变

没抓

维粹

 $\mathbf{Q}^{n+1} = \mathbf{S} + \mathbf{R} \bullet \mathbf{Q}$

约束条件 $S \cdot R = 0$

b. 功能表

带使能端的S-R 锁存器的工作过程

3.1.2.4 D 锁存器 D Latch

S-R 锁存器由于能够独立地控制置位端及复位端, 因此,它可应用在根据某些条件置位而在某些条件下复 合的场所,但这需要置位复位二根输入线。在实际工作 中经常需要简单地锁存一位二进制,这时应用D锁存器更 方便些。

别都来 11/00 ⇒ 豆豆可解蝶玉

D锁存器小结

e. 逻辑符号

4	D	Q	Q n+1
4	0	0	0
-	0	1	0
4	1	0	1
4	1	1	1

D	Q n+1
0	0
1	1

b. 次态真值表

c. 简化的次态真值表

d. 次态方程 な偽革シ Qn+1 = D 正説で120

3.1.2 双稳态元件

锁存器 Latch

3.1.2.4 D锁存器

C低保持, C高跟随

触发器 Flip-Flop

边沿触发D触发器:器件在控制信号的有效边 C沿(前沿或后沿)时接收数据,改变电路状态。

3.1.2.5 边沿触发D触发器 Edge-triggered D Flip-flop

- D 触发器包括:
- ①一个带使能控制的SR锁存器 (由门1,门2,门3和门4组成)
- ② 两个信号接收门(门5和门6)

- D 是数据输入端;
- a、b、c三条线是内部反馈线。

D 触发器的工作过程:初态 Q=0

D 触发器的工作过程(2):

a反馈线被称为置0阻塞线

D 触发器的工作过程(3): c反馈线被称为置0维持线 **CLK** D 3 CLK 保 置 保 置 持 号门

——: 0电平,——:1电平₃₃

D触发器的功能分析

河夜成后沿角在发.

a反馈线被称为置0阻塞线

b反馈线被称为置1维持线

c反馈线被称为置0维持线

C低保持, C高反馈, 前沿触发

D触发器的状态改变只发生在 CLK脉冲的上升沿。

因此D触发器被称为

边沿触发的维持-阻塞D触发器。

新/后

D触发器建立保持时间

时钟高电平最小时间: 从时钟变高到5、6 门输出稳定的时间,三级与非门延时。

fmax: 建立时间+时钟高电平最小时间, 五级与非门延时。

完整的D触发器:

/PR是强制置1端 /CLR是强制置0端 一般在系统初始化时使用

D触发器小结

D	CLK	Q	/Q
0	\longleftarrow	0	1
1		1	0
d	0	保持	不变
d	1	保持	不变

a. 后沿触发D触发器

b. 功能表

D	Qn+1
0	0
1	1

c. 次态真值表

QD	0	1
0	0	1
1	0	1

d. 次态方程

$$\mathbf{O}^{\mathbf{n+1}} = \mathbf{D}$$

3.1.2.6 主从S-R 触发器 无反馈型 Master/slave S-R Flip-flop

主从触发器由主触发器和从触发器两部分构成。 主从触发器是在脉冲下降沿改变输出: 即:

- ① 在触发脉冲C作用时间(C为高电平期间), S、R 状态的变化将记入主触发器;

a. 用两个带使能端 S-R 锁存器构成的触发器

主从S-R 触发器的特性:

此外,主从触发器虽然是在触发信号的下降沿改变输出,但它并不是后沿触发的边沿触发器,因此在逻辑符号中控制输入端 C上即没有动态输入限定符号,也没有逻辑非符号(延迟输出符号""已表示了下降沿改变输出的特性)。

S	R C	\mathbf{Q} / \mathbf{Q}
d	d 0	保持不变
0	0 1	保持不变
0	1	0 1
1	0 \	1 0
1	1 1	不确定

c. 功能表

d. 逻辑符号

主从S-R触发器的次态真值表即次态方程于带使能端的 S-R 锁存器相同。

主从S-R 触发器工作过程时序图: a. 电路图 R CLK $\mathbf{Q}_{\mathbf{M}}$

e. 时序图

3.1.2.7 主从J-K 触发器 「有反馈の & R 触发 Master/slave J-K Flip-flop

J-K 触发器利用输出Q及/Q不会同时为1或0这一特性,将输入端J、K先分别同/Q及Q"相与"后再输入到主触发器的S、R输入端,见图(a)。

主从J-K触发器的特性:

J	K	C	Q /Q
d	d	0	保持不变
0	0	几	保持不变
0	1	几	0 1
1	0	几	1 0
1	1	几	变反

b. 功能表

J	K	Q n+1
0	0	Q
0	1	0
1	0	1
1	1	$\overline{\mathbf{Q}}$

d. 简化的次态真值表

Q JK	JK.	O(1/2	0 10	置	007
0	0	0	1	1	
1	1	0	0	1	d.

卡诺图

主从J-K 触发器工作过程时序图:

主从J-K触发器的逻辑符号:

当J=K=0时,触发器处于保持状态; 反转 为 计处 当<math>J=K=1时, $Q^{n+1}=\overline{Q}$ 。触发器具有计数功能。

为使触发器稳定工作,要求触发脉冲的最小宽度需大于主触发器的状态转换稳定时间,即大于4个门的传输时间。

与主从S-R 触发器一样,在触发脉冲后沿到达前一段时间,输入 J、K信号值应持续不变。

为了使触发器预先置于某一初始状态,在电路中还设置了一个直接置位端SD及直接复位端RD,

如右图所示。

f. 逻辑符号

3.1.2.8 边沿触发J-K 触发器 Edge-triggered J-K Flip-flop

JK 触发器常用于同步时序电路中,不过大部分时序电路采用的是 D触发器。这是由于 D触发器只需一个数据输入端,使得设计出的电路更加简单。

边沿触发J-K 触发器(由D触发器构成的等价电路)

其中: D 输入端的逻辑表达式为

$$\mathbf{D} = \mathbf{J} \cdot \mathbf{Q} + \mathbf{K} \cdot \mathbf{Q}$$

而 D 触发器的次态方程为:

$$\mathbf{Q}^{\mathbf{n}+1} = \mathbf{D}$$

因此,有:

$$Q^{n+1} = J \cdot \overline{Q} + \overline{K} \cdot Q$$

边沿触发J-K 触发器的特性: **CLK /Q** 0 d 保持不变 保持不变 >CLK 保持不变 <u>_</u> 看 c. 逻辑符号 0 变反 同俠反 10岁1 b. 功能表 スラカ d. 工作时序图

3.1.2.9 T触发器 T Flip-flop

T触发器是一个计数触发器,其功能为:

当 T=1 时,每来一个计数脉冲CLK,输出就变反一次

a. 逻辑符号

T	Q	Q n+1	
0	0	0	不反
0	1	1	
1	0	1	反
1	1	0	

c. 次态真值表

T CLK	\mathbf{Q} / \mathbf{Q}
d 0	保持不变
d 1	保持不变
0 d	保持不变
1	变反

T	Q^{n+1}
0	Q
1	$\overline{\mathbf{Q}}$

b. 功能表 d. 简化次态真值表

	0	1
0	0	1
e. 次态方程 1	1	0
イン 特別	T	Q

无使能控制的 T 触发器

T触发器的T端实际是一个使能控制端,当T=1时,触发器T才处于计数状态。在一些应用场合无需使能控制,这种T触发器很容易用D触发器及JK触发器构成,下图给出了无使能控制端的T触发器的逻辑符号、电路构成及工作时序图

d. 工作时序图

触发器的激励表 Excitation-tables

次态真值表

S-R锁存器

S	R	Qn+1
0	0	Q
0	1	0
1	0	1
1	1	d

S	R	Q	Qn+1
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	d
1	1	1	d

激励表

S-R锁存器

次态真值表

S	R	Q _{n+1}
0	0	Q
0	1	0
1	0	1
1	1	d

S	R	Q	Qn+1
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	d
1	1	1	d

激励表

$\mathbf{Q} \mathbf{Q}^{n+1}$		S	R
0	0	0	d
0	1	1	d
1	0	d	1
1	1	d	0

触发器的激励表 Excitation-tables

次态真值表

S-R锁存器

S	R	Qn+1
0	0	Q
0	1	0
1	0	1
1	1	d

激励表

$Q Q^{n+1}$	S R
0 0	0 d
0 1	1 d
1 0	d 1
1 1	d 0

/S-/R锁存器

/S	/R	Q^{n+1}
0	0	d
0	1	1
1	0	0
1	1	Q

$Q Q^{n+1}$	S R
0 0	1 d
0 1	0 d
1 0	d 0
1 1	d 1

触发器的激励表(续)

次态真值表

JK触发器

J	K	Qn+1
0	0	Q
0	1	0
1	0	1
1	1	Q

J	K	Q	Q^{n+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
_1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

激励表

触发器的激励表(续)

次态真值表

JK触发器

J	K	Q _{n+1}
0	0	Q
0	1	0
1	0	1
1	1	Q

J	K	Q	Q n+1
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

激励表

触发器的激励表(续)

次态真值表へ

JK触发器

J	K	Q _{n+1}
0	0	Q
0	1	0
1	0	1
1	1	\overline{Q}

并亦那么身体激励表

$\mathbf{Q} \mathbf{Q}^{n+1}$	J K
0 0	0 d
0 1	1 d
1 0	d 1
1 1	d 0

D触发器

D	Q	Qn+1
0	0	0
0	1	0
1	0	1
1	1	1

Q	$Q Q^{n+1}$	
0	0	0
0	1	1
1	0	0
1	1	1

触发器的激励表(续)

次态真值表

T 触发器

T	Q	Qn+1
0	0	0
0	1	1
1	0	1
1	1	0

激励表

Q Q^{n+1}	T
0 0	0
0 1	1
1 0	1
1 1	0

触发器的类型转换 Scan Flip-flop (1)

JK触发器转换为D触发器:

$$J = D \quad K = \overline{D}$$

JK触发器转换为T触发器:

$$J = K = T$$

JK触发器转换为无使能控制的T触发器:

$$J = K = 1$$

触发器的类型转换(2)

D 触发器转换为 无使能控制的 T 触发器:

$$D = \overline{Q}$$

$$D = Q \oplus T$$

触发器的类型转换(3)

T触发器转换为D触发器

D	Q	Q n+1	T
0	0	0	
0	1	0	
1	0	1	
1	1	1	

T触发器转换为JK触发器

触发器的类型转换(3)

T触发器转换为D触发器

D	Q	Q n+1	T
0	0	0	0
0	1	0	1
1	0	1	1
1	1	1	0

	J	K	Q	Q n+1	T
	0	0	0	0	
	0	0	1	1	
	0	1	0	0	
	0	1	1	0	
	1	0	0	1	
-	1	0	1	1	
	1	1	0	1	
	1	1	1	0	

由卡诺图可得: $T = D \oplus Q$

触发器的类型转换(3)

T触发器转换为D触发器

D	Q	Q n+1	T	
0	0	0	0	
0	1	0	1	KQ 06
1	0	1	1 7	
1	1	1	0	0

T触发器转换为JK触发器

*	J	K	Q	Q n+1	T
ALC: N	0	0	0	0	0
	0	0		1	0
)	1	0	0	0
	0	1	7	0	1
	1	0	0	1	1
	1	0	1	1	0
1	1	1	0	1	1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1	1	0	

CLK

由卡诺图可得:

$$\mathbf{T} = \mathbf{J} \bullet \overline{\mathbf{Q}} + \mathbf{K} \bullet \mathbf{Q}$$

基本型	与非门构成 /S /R 锁存器	输入信号低有效
(无时钟信号输入)	或非门构成 SR 锁存器	输入信号高有效
带时钟信号的锁存器	与非门构成的SR、D锁存器	输入信号高有效
带时钟的触发器 SR、D、JK、T	上升边沿触发(前沿触发)	输入信号高有效
	下降边沿触发(后沿触发)	输入信号高有效
	主从式触发	输入信号高有效

