计算机设计与实践 汇编语言程序设计

2024 · 夏

实验目的

- ◆ 熟练掌握RISC-V汇编语言, 熟悉并理解RISC-V指令系统
- ◆ 了解程序在单周期RISC-V CPU中的运行过程
- ◆ 进一步熟悉RARS、Logisim等汇编和模拟仿真工具的使用

实验工具 — RARS

1. ☐ TheThirdOne / rars

汇编IDE: 编辑器+汇编器+模拟器

.text存储在指令存储器,.data存储在数据存储器如果汇编代码没有定义.data,则不会生成.data段

实验工具 — Logisim

2. Logisim

戳工具

可直接查看组件的值可显示连线当前的值

编辑工具

允许用户重新安排现有组件修改组件属性并添加连线

Ctrl + R: 电路复位

Ctrl + T: 时钟单步

Ctrl + K: 时钟连续

RISC-V_SoC电路

实验内容 — 题目1: 基本输入输出

- ◆ 在Logisim运行示例程序Exercise1.asm (Exercise1A.asm for miniLA)
 - 阅读该程序源码,分析程序功能
 - 学习汇编程序如何访问I/O接口及外设
 - 根据实验指导书,运行程序,熟悉实验过程及各工具的使用

实验内容 — 题目2: 简易计算器设计

- ◆ 运用miniRV的指令,编写汇编程序实现8位简易计算器
 - · 后续实现CPU后,本程序需要下板演示,故不要使用不实现的指令
 - 输入:操作符、操作数A、操作数B (从<u>拨码开关</u>输入)
 - 输出:运算结果 (显示在<u>数码管</u>DK7~DK0)

拨码开关	SW[23:21]	SW[20:16]	SW[15:8]	SW[7:0]
输入功能	操作符	保留	操作数A	操作数B

- · A、B均为无符号小数: 高4位整数、低4位表示0~9的小数
 - 例:输入A为10110101 (11.5),输入B为00100111 (2.7),则A+B=14.2

实验内容 — 题目2: 简易计算器设计

• 计算器功能:

SW[23:21]	运算类型	数码管显示内容	
000	无	32'h0000_0000	
001	A + B	高4位显示整数部分,低4位显示小数部分	
010	A - B	高4位显示整数部分,低4位显示小数部分	
011	$A \times 2^{B}$	高4位显示整数部分,低4位显示小数部分	
100	A ÷ 2 ^B	高4位显示整数部分,低4位显示小数部分	
101	生成随机数	以{A, B, A, B} 为种子显示32位随机数, 每隔约1s更新一次	

>可通过移位 实现

LFSR

实验原理 — LFSR

- 线性反馈移位寄存器
 - 移位寄存器的基础上添加反馈输入,常用于生成随机数、白噪声
 - 初值称为种子
 - · a_i 表示 bit_i 对应的反馈回路是否存在

实验原理 — LFSR

- 线性反馈移位寄存器
 - 5位的LFSR: $\{a_4, a_3, a_2, a_1, a_0\} = 5$ b 10100

对于32位的LFSR, a₃₁、a₂₁、a₁、a₀为1, 其余为0

验收&提交

- 课堂验收
 - 课上检查题目2功能是否正确
- ・提交内容
 - 题目1: 不需提交
 - 题目2: .asm源文件 (!!!写注释!!!)、汇编生成的.hex机器码
- 将上述文件打包成.zip, 以"学号_姓名.zip"命名提交到作业系统
 - ◆ 注意: **如有雷同,双方均0分!**
- 数据通路表、控制信号表DDL: July 12th 23:00

开始实验

1920

哈 T 大

