Суперкомпьютерное моделирование и технологии

Отчет

Численное интегрирование многомерных функций методом Монте-Карло

Лазарев Владимир Александрович

8 вариант

Оглавление

Математическая постановка задачи	3
Численный метод решения задачи	3
Нахождение точного значения интеграла аналитически	4
Программная реализация	5
Результаты запусков программ на различных кластерах	6
Время запусков на различных кластерах	8
Ускорение на различных кластерах	9
Выволы	9

Математическая постановка задачи

Функция f(x, y, z) — непрерывна в ограниченной замкнутой области $G \subset \mathbb{R}^3$. Требуется вычислить определенный интеграл:

$$I = \iiint_G f(x, y, z) dx dy dz$$

В полученном варианте используется следующая функция и область: $f(x, y, z) = x^2 y^2 z^2$, где область $G = \{(x, y, z) : |x| + |y| \le I$, $-2 \le z \le 2\}$.

Численный метод решения задачи

Пусть область G ограничена параллелепипедом П:

$$\Pi = \begin{cases} Xmin \leq X \leq Xmax \\ Ymin \leq Y \leq Ymax \\ Zmin \leq Z \leq Zmax \end{cases}$$

Рассмотрим функцию $F(x,y,z) = \begin{cases} f(x,y,z), (x,y,z) \in G \\ 0, else \ case \end{cases}$ и перепишем интеграл:

$$I = \iiint_G f(x, y, z) dx dy dz = \iiint_{\Pi} F(x, y, z) dx dy dz$$

Пусть $p_1(x_1, y_1, z_1)$, $p_2(x_2, y_2, z_2)$, ... — случайные точки, равномерно распределенные в Π . Возьмем n таких точек. В качестве приближенного значения интеграла предлагается использовать выражение:

$$I \approx |\Pi| * \frac{1}{n} \sum_{i=1}^{n} F(Pi)$$

 Γ де $|\Pi|$ – объем параллелепипеда Π , рассчитанного по формуле:

$$|\Pi| = (Xmax - Xmin) * (Ymax - Ymin) * (Zmax - Zmin)$$

Нахождение точного значения интеграла аналитически

Проанализировав ограниченную область, можно установить границы параллелепипеда: $-1 \le x \le 1, -1 \le y \le 1, -2 \le z \le 2$ и область для функции:

$$\begin{cases} 0 \le x \le 1, x - 1 \le y \le 1 - x, -2 \le z \le 2 \\ -1 \le x \le 0, -x - 1 \le y \le x + 1, -2 \le z \le 2 \end{cases}$$

Посчитаем аналитически тройной интеграл:

$$I = \int_{G} f(x, y, z) dx dy dz = \int_{0}^{1} \int_{x-1}^{1-x} \int_{-2}^{2} x^{2} y^{2} z^{2} dx dy dz + \int_{-1}^{0} \int_{-x-1}^{x+1} \int_{-2}^{2} x^{2} y^{2} z^{2} dx dy dz$$

$$\int_{0}^{1} \int_{x-1}^{1-x} \int_{-2}^{2} x^{2} y^{2} z^{2} dx dy dz + \int_{-1}^{0} \int_{-x-1}^{x+1} \int_{-2}^{2} x^{2} y^{2} z^{2} dx dy dz$$

$$= \frac{16}{3} \int_{0}^{1} \int_{x-1}^{1-x} x^{2} y^{2} dx dy + \frac{16}{3} \int_{-1}^{0} \int_{-x-1}^{x+1} x^{2} y^{2} dx dy$$

$$= \frac{16}{9} \int_{0}^{1} x^{2} (1-x)^{3} - x^{2} (x-1)^{3} dx$$

$$+ \frac{16}{9} \int_{0}^{1} x^{2} (x+1)^{3} - x^{2} (-x-1)^{3} dx = \frac{8}{135} + \frac{8}{135}$$

$$= \frac{16}{135}$$

Программная реализация

Реализована параллельная МРІ-программа, принимающая аргумент -eps = < value > - необходимая точность решения (если не передавать аргумент, то по умолчанию точность установится в 10^{-4}).

При запуске программы идет проверка введенного аргумента точности, и в случае некорректного ввода, программа выведет сообщение, никаких вычислений произведено не будет).

В качестве параллельной реализации используется классическая парадигма, т.е. независимая генерация точек МРІ-процессами. Все процессы высчитывают свою часть суммы, затем вычисляется общая сумма при помощи МРІ_Reduce и итоговый интеграл.

Полученное значение интеграла сравнивается с ранее аналитически рассчитанным эталоном. В случае достижения требуемой точности процессам передается флаг об окончании выполнения вычислений. Иначе, наступает следующая итерация цикла.

Результаты запусков программ на различных кластерах

Таблица 1. Результаты расчетов на Blue Gene/P

Точность є	Число	Время	Ускорение	Ошибка
	MPI-	работы		
	процессов	программы		
		(c)		
1.0 * 10-4	1	0.0285908	1	4.19977e-05
	4	0.033704	0.848291	4.90635e-05
	16	0.0105698	2.70495184	6.99499e-05
	64	0.0054323	5.26311139	4.65182e-05
2.0 * 10 ⁻⁵	1	2.51958	1	1.44311e-05
	4	0.0436065	57.7799181	1.10327e-05
	16	0.0366541	68.739377	1.26013e-05
	64	0.0197201	127.767101	1.50121e-05
0.8 * 10-5	1	3.07022	1	6.68338e-06
	4	3.46266	0.88666516	5.30369e-06
	16	0.196495	15.6249268	5.8681e-06
	64	0.0467732	65.6405805	3.81295e-06

Таблица 2. Результаты расчетов на Polus

Точность є	Число	Время	Ускорение	Ошибка
	MPI-	работы		
	процессов	программы		
		(c)		
3.0 * 10-5	1	0.004416	1	1.63389e-05
	4	0.004561	0.96820873	1.30654e-05
	16	0.004793	0.92134363	1.78315e-05
	64	-	-	-
5.0 * 10-6	1	1.42757	1	4.40235e-06
	4	1.3841	1.03140669	4.1574e-06
	16	0.0352944	40.4474931	3.5356e-06
	64	-	-	-
1.5 * 10-6	1	1.69038	1	1.22898e-06
	4	1.9209	0.87999375	1.38187e-06
	16	0.0549338	30.7712192	9.04449e-07
	64	-	-	-

Запуски производились при N=5000 (кол-во генерируемых точек каждым из процессов). Время работы и ошибка были усреднены по 50-ти запускам.

Время запусков на различных кластерах

График 1. Время работы на Blue Gene/P от количества процессов.

График 2. Время работы на Polus от количества процессов.

Ускорение на различных кластерах

График 3. Ускорение на Blue Gene/P от количества процессов.

График 4. Ускорение на Polus от количества процессов.

Выводы

Как следует из приведенных выше таблица, парадигма с независимой генерацией точек отлично подходит для решения

задачи численного программирования. Однако, при небольшой требуемой точности эффект от ускорения получился не таким явным. Также в среднем при увеличении количество MPI-процессов уменьшается ошибка в расчетах. При замерах на Polus использование 64 процессов было невозможно в силу технических проблем на кластере.