

(12)特許協力条約に基づいて公開された国際出願

(19)世界知的所有権機関
国際事務局

(43)国際公開日
2005年7月28日 (28.07.2005)

PCT

(10)国際公開番号
WO 2005/068058 A1

- (51)国際特許分類⁷: B01D 71/70,
53/22, B01J 20/26, 20/28, C01B 3/00
- (21)国際出願番号: PCT/JP2005/000001
- (22)国際出願日: 2005年1月4日 (04.01.2005)
- (25)国際出願の言語: 日本語
- (26)国際公開の言語: 日本語
- (30)優先権データ:
特願2004-038997 2004年1月15日 (15.01.2004) JP
- (71)出願人(米国を除く全ての指定国について): 株式会社エス・エフ・シー(SFC CO., LTD.) [JP/JP]; 〒2310021 神奈川県横浜市中区日本大通11番地 Kanagawa (JP).
- (72)発明者; よび
- (75)発明者/出願人(米国についてのみ): 池田伸一(IKEDA, Shinichi) [JP/JP]; 〒3058561 茨城県つくば市東1丁目1番1独立行政法人産業技術総合研究所つくばセンター内 Ibaraki (JP). 梅山規男(UMEYAMA, Norio) [JP/JP]; 〒3058561 茨城県つくば市東1丁目1番1独立行政法人産業技術総合研究所つくばセンター内 Ibaraki (JP). 小笠原有美(OGASAWARA, Ariyoshi) [JP/JP]; 〒2310021 神奈川県横浜市中区日本大通11番地 株式会社エス・エフ・シー内 Kanagawa (JP). 安部日出夫(ABE, Hideo) [JP/JP]; 〒2120022 神奈川県川崎市幸区神明町2-61-2 株式会社エス・エフ・シー テクノセンター内 Kanagawa (JP). 田中康仁(TANAKA,
- (74)代理人: 平木祐輔, 外(HIRAKI, Yusuke et al.); 〒1050001 東京都港区虎ノ門4丁目3番20号 神谷町MTビル19階 Tokyo (JP).
- (81)指定国(表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84)指定国(表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ヨーラシア(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ(AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

— 國際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイドスノート」を参照。

(54) Title: HYDROGEN OR HELIUM PERMEATION MEMBRANE AND STORAGE MEMBRANE AND PROCESS FOR PRODUCING THE SAME

(54)発明の名称: 水素又はヘリウムの透過膜、貯蔵膜及びその形成方法

A1

(a)

(b)

(57) Abstract: A silicon resin comprising at least phenylheptamethylcyclotetrasiloxane and/or 2,6-cis-diphenylhexamethylcyclotetrasiloxane is provided as a hydrogen permeation membrane capable of selective hydrogen permeation and capable of molding to arbitrary shape and is subjected to a firing step conducted at a thermal treatment temperature of 200 to 500°C, thereby obtaining a coating resisting 300°C or higher heat and further obtaining a hydrogen or helium permeation membrane excelling in water resistance. Similarly, a silicon resin comprising at least phenylheptamethylcyclotetrasiloxane and/or 2,6-cis-diphenylhexamethylcyclotetrasiloxane is

provided as a hydrogen or helium storage membrane capable of selective hydrogen storage and capable of molding to arbitrary shape and is subjected to a firing step conducted at a thermal treatment temperature of 200 to 500°C, thereby obtaining a coating resisting 300°C or higher heat and further obtaining a hydrogen or helium storage membrane excelling in water resistance.

(続葉有)

WO 2005/068058

(57) 要約:

水素を選択的に透過し、任意の形状に成形加工することができる水素透過膜として少なくともフェニルヘプタメチルシクロテトラシロキサン及び／または2, 6-シス-ジフェニルヘキサメチルシクロテトラシロキサンを含むシリコンレジンシを用いることにより、熱処理温度200°C～500°Cの焼成工程で300°C以上の耐熱性皮膜が得られ、かつ耐水性に優れた水素或いはヘリウム透過膜が得られる。また、同様にして水素を選択的に貯蔵し、任意の形状に成形加工することができる水素或いはヘリウム貯蔵膜として少なくともフェニルヘプタメチルシクロテトラシロキサン及び／または2, 6-シス-ジフェニルヘキサメチルシクロテトラシロキサンを含むシリコンレジンを用いることにより、熱処理温度200°C～500°Cの焼成工程で300°C以上の耐熱性皮膜が得られ、かつ耐水性に優れた水素或いはヘリウム貯蔵膜を得る。

明 細 書

水素又はヘリウムの透過膜、貯蔵膜及びその形成方法

技術分野

[0001] 本発明は、主に電解コンデンサや燃料電池、水素精製時や太陽電池システムに用いられる水素透過膜、および水素自動車用燃料タンク、ケミカルヒートポンプ等のエネルギーの貯蔵・輸送等に使用される水素貯蔵膜、およびその形成方法に関するものである。

背景技術

[0002] 水素の製造方法としては、水、アンモニア、メタノールの分解、炭化水素ガスの水蒸気改質など、複数の方法が知られている。例えば、炭化水素ガスと水蒸気とを高温で改質する場合は、水素だけでなく、一酸化炭素COや二酸化炭素CO₂、反応しなかった水蒸気H₂OやメタンCH₄などの炭化水素が発生する。

従って、上記一酸化炭素COや二酸化炭素CO₂、水蒸気H₂O、メタンCH₄などのガスに対して高い選択性を持つ水素透過膜或いは水素貯蔵膜があれば、効率良く水素の精製や貯蔵が可能となる。水素ガスを他のガスと分離するためのガス分離膜に要求される性能は、ガスの透過性が大きいこと、水素ガスと他のガス(メタンなど)の分離性が優れていること、ピンホールなどの欠陥のない膜が容易に作成可能であること、使用する環境で性能が安定しており長期使用に耐えること、耐圧性が良くモジュール化が可能であり、耐熱性、耐薬品性に優れていることである。従来、水素を選択的に透過させる膜として、パラジウム膜が広く知られている。しかしながら、パラジウムは非常に高価であり、また、パラジウム膜は薄膜であるため耐圧性がなく、また耐薬品性にも問題がある。また、薄膜で使用しなければならないため、任意の形状に成形したりすることが困難であった。

[0003] 有機材料として既に市販されているものとしては、例えば、(製品名:セルロースアセテート セファレックス社、製品名:ポリスルホン モンサント社、製品名:ポリイミド 宇部興産社、製品名:ポリアミド デュポン社)等が知られている。

これらはいずれもガラス転移温度の高いガラス状高分子であり、メタンに対する水素

の透過選択率は40～200と報告されている(例えば、非特許文献1参照。)。上記したモンサント社の非対称ポリスルホン中空糸複合膜からなるプリズムセパレーターについて、透過速度の大きなガスから並べると、水蒸気>水素>ヘリウム>硫化水素>二酸化炭素>酸素>アルゴン>一酸化炭素>窒素>メタン、となっている。主なガス分子を小さい方から並べると、ヘリウム<水蒸気<水素<二酸化炭素<酸素<窒素<メタンとなる。従って、分子の大きさだけで、分離膜の透過の大小が決まるわけではなく、分離膜材料の性質によって、透過速度は異なる。

- [0004] また本発明の材料であるシリコンレジンを水素透過膜に使用するという技術も公開されている(例えば、特許文献1参照。)。この文献は、実際はシリコンレジンなどの水素透過機能を持つ膜を、膜厚500ミクロン以下で多孔質支持体に形成する技術であり、パラジウム膜と同様、任意の形状に成形するのが極めて困難で、モジュール化、耐圧性もよくない。
- [0005] 水素貯蔵方法に関しては既存の技術である高圧水素ガスボンベや液化水素ボンベ、水素吸蔵合金、炭素系材料、有機物系材料等を、現状では水素貯蔵媒体として用いている。例えば高圧水素ガスボンベについては、燃料電池を搭載した自動車用に700気圧の高圧ボンベの開発が進められている。水素吸蔵合金ではランタンとニッケルの合金である LaNi_5 などが、精力的に研究されている。水素の貯蔵・輸送技術の利用の最も好適な例として燃料電池自動車における水素燃料タンクへの適用が挙げられる。燃料電池自動車のような移動媒体においては、電池に安定かつ安全に水素を供給することが要求されているが、高圧ボンベについては、爆発等の危険性があり、水素吸蔵合金については、合金の単位質量あたりの水素吸蔵量が少ないなど、実用化に向けて改善しなければならない点がある。

非特許文献1:「化学工学会編、科学工学の進歩25:「分離工学」」(1995年) 権書店発行

特許文献1:特開2001-198431号公報

発明の開示

発明が解決しようとする課題

- [0006] 上記従来の水素透過膜、水素貯蔵膜及びその形成方法には、それぞれ以下に記すような問題を有している。パラジウム膜の水素透過機構は、水素の解離を伴う溶解

拡散機構であり、透過速度を実用化レベルまで上げるために、300°C以上、数十気圧で水素ガスを供給するか、膜厚を数十ミクロン程度に薄くせねばならない。また、パラジウム膜は水素と共存した状態では一種の固溶体をつくり、透過速度を大きくするために温度を400°C程度まで上げて使用することになる。つまり、水素透過の機能を実現するたびに、加熱と冷却が繰り返され、水素濃度の異なる2相への2相分離と再固溶の繰り返しによる内部歪みの蓄積で、膜が破断しやすくなる。例えばメッキ、蒸着、スペッタリング、圧延などで作成したパラジウムあるいはその合金の薄膜にはピンホールが生じやすい。これを避けるためにパラジウムに25%程度の銀や金を添加することが多い。パラジウム自体が極めて高価であること、パラジウム薄膜を耐熱性多孔質支持体表面に作成しなければならないことも、大きな課題である。

[0007] また、水素、水蒸気、ヘリウム分子はほとんど同じ大きさを持っており、例えば、炭化水素を水蒸気で改質したときの、水素ガス分離膜に関しては、水蒸気に比べて水素の透過率が十分大きい必要があり、実用に耐えうる水素透過の選択性を持ち、加工、成形が容易で、耐圧性が良く十分な強度を持っていることが必要である。

水素貯蔵材料については、現状の水素吸蔵合金に関しては、高価であること、合金であるが故の重さ(単位重量当たりの吸蔵量が小さい)、吸蔵-放出の繰り返しによる劣化(合金の微粉化や構造変化)、希少金属を含む場合にはその資源確保など、克服すべき課題が多い。

[0008] 本発明の目的は、上記の従来技術の欠点を解消しようとするものであり、実質的に水素と親和性のある高価な金属を含まず、耐圧性と耐熱性と耐薬品性と機械強度に優れ、水素を良く透過し、(1)水素より水蒸気を透過しにくい(2)メタンを透過しにくい、あるいは(3)アンモニアガスを透過しにくい水素あるいはヘリウム透過膜を提供することにある。これにより、水蒸気と炭化水素の改質反応から得られる水素分離膜、リチウム電池などの2次電池における外装フィルム、電解コンデンサや燃料電池、や太陽電池システムに用いられる水素透過膜に応用が可能である。

また、ベーキング温度と膜厚およびアエロジル等の含有物でも透過率の制御でき、安価で製造方法も容易、かつ数 μm の薄膜から数mmの厚膜まで膜厚の自由度が高く、チューブ状、シート状、バルク、纖維状(糸状)と任意の形状に加工可能である

水素透過膜を提供することにある。

[0009] また、本発明のもうひとつの目的は、上記既知の問題がなく、常温、常圧程度の条件で効率良く水素貯蔵が可能かつ、安全に取り扱うことが可能な水素貯蔵膜を提供することにある。これにより電気自動車の電源である燃料電池の水素貯蔵タンク等への適用を高めることである。

課題を解決するための手段

[0010] 本発明者らは上記した問題点を解決するために銳意研究を重ねた結果、水素を選択的に透過し、任意の形状に成形加工することができる水素透過膜として少なくともフェニルヘプタメチルシクロテトラシロキサン及び／または2, 6-シスジフェニルヘキサメチルシクロテトラシロキサンを含むシリコンレジンを用いることにより、熱処理温度200°C～500°Cの焼成工程で300°C以上の耐熱性皮膜が得られ、かつ耐水性に優れた水素透過膜が得られることを知見して本発明に到達した。

また、同様にして水素を選択的に貯蔵し、任意の形状に成形加工することができる水素貯蔵膜として少なくともフェニルヘプタメチルシクロテトラシロキサン及び2, 6-シスジフェニルヘキサメチルシクロテトラシロキサンを含むシリコンレジンを用いることにより、熱処理温度200°C～500°Cの焼成工程で300°C以上の耐熱性皮膜が得られ、かつ耐水性に優れた水素貯蔵膜が得られることを知見して本発明に到達した。

[0011] すなわち、本発明は、以下に関するものである。

- 1) 少なくともフェニルヘプタメチルシクロテトラシロキサン及び／または2, 6-シスジフェニルヘキサメチルシクロテトラシロキサンを含むシリコンレジンから成ることを特徴とする水素或いはヘリウムの透過膜。
- 2) 少なくともフェニルヘプタメチルシクロテトラシロキサン及び／または2, 6-シスジフェニルヘキサメチルシクロテトラシロキサンを含むシリコンレジンに金属または酸化物系の微粒子を含有して成ることを特徴とする請求項1記載の水素又はヘリウムの透過膜。
- 3) 前記金属または酸化物系の微粒子はAl、Ti、Si、Ag等の微粒子または超微粒子、アルミナ、チタン酸化物及び SiO_2 等の微粒子からなるフィラー及び超微粒子シリカ等、から成ることを特徴とする請求項2記載の水素又はヘリウムの透過膜。

- 4) 前記水素透過膜は230°C以下の温度で任意の粘度に調整した前駆体の後、20°C～500°Cの温度で熱硬化することを特徴とする請求項1乃至請求項3記載の水素又はヘリウムの透過膜。
- 5) 前記前駆体および前記水素透過膜は、少なくとも一回は、前記水素透過膜が硬化する温度以下で真空加熱処理をして成ることを特徴とする請求項4記載の水素又はヘリウムの透過膜。
- 6) 少なくともフェニルヘプタメチルシクロテトラシロキサン及び／または2, 6-シス-ジフェニルヘキサメチルシクロテトラシロキサンを含むシリコンレジン、少なくともフェニルヘプタメチルシクロテトラシロキサン及び2, 6-シス-ジフェニルヘキサメチルシクロテトラシロキサンを含むシリコンレジンに金属または酸化物系の微粒子を含有させた後、230°C以下の温度で任意の粘度の前駆体を形成する工程と200°C～500°Cの温度で熱硬化させる工程を行うから成ることを特徴とする水素又はヘリウムの透過膜の形成方法。
- 7) 前記金属または酸化物系の微粒子はAl、Ti、Si、Ag等の微粒子または超微粒子、アルミナ、チタン酸化物及び SiO_2 等の微粒子からなるフィラー及び超微粒子シリカ等、から成ることを特徴とする請求項6記載の水素又はヘリウムの透過膜の形成方法。
- 8) 前記前駆体、および前記水素或いはヘリウムの透過膜を形成する工程において、少なくとも一回は、前記水素或いはヘリウムの透過膜が硬化する温度以下で真空加熱処理を行うことを特徴とする請求項7記載の水素又はヘリウムの透過膜の形成方法。
- 9) 少なくともフェニルヘプタメチルシクロテトラシロキサン及び／または2, 6-シス-ジフェニルヘキサメチルシクロテトラシロキサンを含むシリコンレジンから成ることを特徴とする水素又はヘリウムの貯蔵膜。
- 10) 少なくともフェニルヘプタメチルシクロテトラシロキサン及び／または2, 6-シス-ジフェニルヘキサメチルシクロテトラシロキサンを含むシリコンレジンに金属または酸化物系の微粒子を含有して成ることを特徴とする請求項9記載の水素又はヘリウムの貯蔵膜。

- 11) 前記金属または酸化物系の微粒子はAl、Ti、Si、Ag等の微粒子または超微粒子、アルミナ、チタン酸化物及び SiO_2 等の微粒子からなるフィラー及び超微粒子シリカ等から成ることを特徴とする請求項10記載の水素又はヘリウムの貯蔵膜。
- 12) 前記水素貯蔵膜は230°C以下の温度で任意の粘度に調整した前駆体の後、200°C～500°Cの温度で熱硬化されることを特徴とする請求項10乃至請求項11記載の水素又はヘリウムの貯蔵膜。
- 13) 前記前駆体および前記水素又はヘリウムの貯蔵膜は、少なくとも一回は、前記水素或いはヘリウムの貯蔵膜が硬化する温度以下で真空加熱処理をして成ることを特徴とする請求項10記載の水素又はヘリウムの貯蔵膜。
- 14) 少なくともフェニルヘプタメチルシクロテトラシロキサン及び／または2, 6-シス-ジフェニルヘキサメチルシクロテトラシロキサンを含むシリコンレジン、少なくともフェニルヘプタメチルシクロテトラシロキサン及び／または2, 6-シス-ジフェニルヘキサメチルシクロテトラシロキサンを含むシリコンレジンに金属または酸化物系微粒子を含有させたシリコンレジンを230°C以下の温度で任意の粘度の前駆体を形成する工程と200°C～500°Cの温度で熱硬化させる工程を行うから成ること特徴とする水素又はヘリウムの貯蔵膜の形成方法。
- 15) 前記金属または酸化物系の微粒子は、Al、Ti、Si、Ag等の微粒子または超微粒子、アルミナ、チタン酸化物及び SiO_2 等の微粒子からなるフィラー及び超微粒子シリカ等から成ることを特徴とする請求項10記載の水素又はヘリウムの貯蔵膜の形成方法。
- 16) 前記前駆体、および前記水素又はヘリウムの貯蔵膜を形成する工程において、少なくとも一回は、前記水素或いはヘリウムの貯蔵膜が硬化する温度以下で真空加熱処理を行うことを特徴とする請求項15記載の水素又はヘリウムの貯蔵膜の形成方法。

発明の効果

[0012] 以上の説明から明らかなように、本発明によれば、少なくともフェニルヘプタメチルシクロテトラシロキサン及び／または2, 6-シス-ジフェニルヘキサメチルシクロテトラシロキサンを含むシリコンレジンから成る前駆体を用いることにより、1 μm以下～数mm

程度の所望の膜厚を有し、耐圧性、300°C以上の耐熱性、耐薬品性に優れ良好な水素或いはヘリウム透過膜を容易に形成できる。

また、本発明によれば、230°C以下の温度で任意の粘度に調整したペースト状にした前駆体にした後、200°C～500°Cの温度で熱硬化され、少なくとも一回は、前記水素透過膜が硬化する温度以下で真空加熱処理を行った後任意の形状に成形することによって、ひび割れ、反り、層間剥離などが少ない水素或いはヘリウム透過膜を、簡便に作製することができる。

さらに本発明によれば、温度と時間で粘度を適宜選択・設定することによって、任意の性能を有した水素或いはヘリウム透過膜を形成することができる。

本発明の透過膜は、水、一酸化炭素、二酸化炭素、メタンまたはアンモニア等の水素製造プロセスで副産物として発生するガスの存在下で水素のガスを選択性良く透過することができる。しかも、耐熱性と耐薬品性にも優れており、300°C以上の高温の用途にも使用することができる。

また、本発明の水素又はヘリウム貯蔵膜は常温、常圧程度の条件でも効率良く水素貯蔵が可能である。そのため、電気自動車の電源である燃料電池の水素燃料タンク等への適用が高められることとなり、その有益性は極めて大きい。

図面の簡単な説明

[0013] [図1]本発明の水素透過膜の一例を示す断面図(a)及び平面図(b)である。

[図2]本発明の水素貯蔵膜の一例を示す断面図(a)及び平面図(b)である。

[図3]前駆体を脱泡するための真空装置の概略平面図である。

[図4]水素透過、水素貯蔵 の有無の測定装置の概略側面図である。

[図5]水素透過、水素貯蔵 の有無の測定装置の概略側面図である。

発明を実施するための最良の形態

[0014] 以下、本発明を詳細に説明する。

(水素又はヘリウム透過膜)

本発明で使用する水素又はヘリウム透過膜は、原料としてフェニルヘプタメチルシクロテトラシロキサン及び／または2, 6-シスジフェニルヘキサメチルシクロテトラシロキサンおよびシリコンレジンを用いる。これを原液もしくはトルエン、キシレン等の有機

溶媒に溶解し、使用する膜厚およびコーティング方法に合わせて粘度を調整し前駆体を作成する。また、原料としてフェニルヘプタメチルシクロテトラシロキサン、2, 6—シス—ジフェニルヘキサメチルシクロテトラシロキサンおよびシリコンレジンの原液もしくはトルエン、キシレン等の有機溶媒に溶解した溶液に超微粉末シリカやアルミナやチタン等の酸化物微粒子や SiO_2 の微粒子からなるフィラーを加えた後、粘度を調整し前駆体を作成する。

数 μm 以下の膜厚の場合は粘度を数cps～100cpsの状態に、数 μm 以上の膜厚の場合はさらに60～150°Cで2～5時間加熱し、溶媒を蒸発させながら縮合反応させ、さらに真空チャンバー中で真空排気しながら100Pa～1Pa範囲の減圧下で脱泡処理し、反応生成物の粘度を100cps～10000cpsに調整し、ペースト状にした前駆体する。

粘度調整した前駆体を任意の型にディスペンサー、スプレーおよびスクリーン印刷等の公知の方法により注型し、大気中で350°Cに加熱して水素或いはヘリウム透過膜を硬化させる。上記脱泡処理の際の真空中度は、数Pa程度が好ましいが、減圧であれば数千Paでも10～3Pa以下の高真空中度でもよい。また、前駆体を形成する温度、脱泡する温度は安全性の面から120°C前後が好ましいが、水素又はヘリウム透過膜が硬化しない温度であればよい。硬化させる温度は350°C～450°Cが好ましいが200°C～500°Cの範囲で硬化する温度であればよい。

また、シリコンレジン中には、超微粒末シリカ(例えば、商品名:エアロジル デグサ社製品)、 TiO_2 、 SiO_2 、 Al_2O_3 等の微粉末金属酸化物が配合されるが、これらの金属酸化物に何ら限定されるものではない。さらに、In、Ti、Ag及びRu等の金属やその合金も有効であり、その粒子径も使用用途に合わせて適宜選択することができる。

[0015] (水素又はヘリウム貯蔵膜)

本発明で使用する水素又はヘリウム貯蔵膜は、原料としてフェニルヘプタメチルシクロテトラシロキサン及び／または2, 6—シス—ジフェニルヘキサメチルシクロテトラシロキサンおよびシリコンレジンを用いる。これを原液もしくはトルエン、キシレン等の有機溶媒に溶解し、使用する膜厚およびコーティング方法に合わせて粘度を調整し前駆体を作成する。また、原料としてフェニルヘプタメチルシクロテトラシロキサン、2, 6—

シスージフェニルヘキサメチルシクロテトラシロキサンおよびシリコンレジンの原液もしくはトルエン、キシレン等の有機溶媒に溶解した溶液に超微粉末シリカやアルミナやチタン等の酸化物微粒子や SiO_2 の微粒子からなるフィラーを加えた後、粘度を調整し前駆体を作成する。

数 μm 以下の膜厚の場合は数cps～100cpsの状態に、数 μm 以上の膜厚の場合はさらに60～150°Cで2～5時間加熱し、溶媒を蒸発させながら縮合反応させ、さらに真空チャンバー中で真空排気しながら100Pa～1Pa範囲の減圧下で脱泡処理し、反応生成物の粘度を100cps～10000cpsに調整し、ペースト状にした前駆体する。

粘度調整した前駆体を任意の型にディスペンサー等のスプレー等の方法により注型し、大気中で300°Cに加熱して水素又はヘリウム貯蔵膜を硬化させる。上記脱泡処理の際の真空中度は、数Pa程度が好ましいが、減圧であれば数千Paでも10～3Pa以下の高真空中度でもよい。また、前駆体を形成する温度、脱泡する温度は安全性の面から120°C前後が好ましいが、水素貯蔵膜が硬化しない温度であればよい。硬化させる温度は350°C～450°Cが好ましいが200°C～500°Cの範囲で硬化する温度であればよい。

また、シリコンレジン中には、超微粒末シリカ(例えば、商品名:エアロジル デグサ社製品)、 TiO_2 、 SiO_2 、 Al_2O_3 等の微粉末金属酸化物が配合されるが、これらの金属酸化物に何ら限定されるものではない。さらに、In、Ti、Ag及びRu等の金属やその合金も有効であり、その粒子径も使用用途に合わせて適宜選択することができる。

また、本発明で使用する水素又はヘリウム貯蔵膜は、上記水素貯蔵膜を水素透過しないガラス基板や、金属基板に形成する、もしくは任意の形状に作製した水素透過膜の一部に水素透過しない金属を透過膜状に蒸着やメッキ法により形成し作成することができる。

実施例

[0016] 以下、好ましい実施例を挙げて、本発明を更に詳述するが、本発明はこれら実施例に限定されるものではなく、本発明の目的が達成される範囲内での各要素の置換や設計変更、工程順の変更がなされたものをも包含する。膜厚および膜質は、電子顕

微鏡(日立製作所(株)製、FE-SEM(S-4000))を用いて観察した。膜厚自由度は、水素透過膜、水素貯蔵膜を形成するプロセス方法に対応し、粘性などの要素を変化させることによって、広範囲に膜厚を制御できる場合を○、制御できる範囲が狭い場合を×とした(表1)。

[実施例1]

[0017] フェニルヘプタメチルシクロテトラシロキサン1gとシリコンレジン59gをトルエン40gに溶解した。この液をテフロン(登録商標、以下同様)の型に入れ塗、焼成炉に入れ大気中230°Cで焼成し100mm×100mmの大きさで、厚さ1 μ mの本発明の水素透過膜を得た。

[実施例2]

[0018] フェニルヘプタメチルシクロテトラシロキサン1gとシリコンレジン59gをトルエン40gに溶解し、100°Cに加熱しながらトルエンを蒸発させ、約2時間縮合反応させる。次いで、この前駆体を真空チャンバー中のホットプレート上に移し、ホットプレートを加熱しながら真空排気を行う(図3参照)。真空チャンバーの真空度が100Pa程度、ホットプレートの温度140°Cで10分間、脱泡処理を行う。次いで、ホットプレートを冷却しながら雰囲気を大気に戻し、粘度数百cpsのペースト状の前駆体にした。このペースト状の前駆体をテフロン板上にスクリーン印刷法で100mm×100mmのサイズに塗布した後、焼成炉に入れ大気中で230°Cで焼成した後、シート状物を一度テフロンから剥離した後、再び焼成炉に入れ大気中300°Cで焼成し、厚さ20 μ mのひび割れの少ないシート状水素透過膜を得た。

[実施例3]

[0019] フェニルヘプタメチルシクロテトラシロキサン0. 1gと2, 6-シス-ジフェニルヘキサメチルシクロテトラシロキサン0. 1g及びシリコンレジン59. 8gをトルエン40gに溶解した。この液を実施例1と同様にして厚さ1 μ mの水素透過膜を得た。

[実施例4]

[0020] フェニルヘプタメチルシクロテトラシロキサン0. 1gと2, 6-シス-ジフェニルヘキサメチルシクロテトラシロキサン0. 1g及びシリコンレジン59. 8gをトルエン40gに溶解し、120°Cに加熱しながらトルエンを蒸発させ、約3時間縮合反応させ前駆体を作成する

。次いで、この反応生成物である前駆体を真空チャンバー中のホットプレート上に移し、ホットプレートを加熱しながら真空排気を行う。真空チャンバーの真圧度が1Pa程度、ホットプレートの温度140°Cで60分間、脱泡処理を行う。次いで、ホットプレートを冷却しながら雰囲気を大気に戻し、粘度数百cpsのペースト状の前駆体とした。このペースト状の前駆体を100°Cに再加熱しディスペンサーに入れ、テフロン製の1m mの幅、長さ100mm、深さ20 μ mの型に塗布後、焼成炉に入れ大気中で200°Cで焼成した後、塗布物を一度テフロンから剥離した後、塗布物を再び焼成炉に入れ大気中で450°Cで焼成し、厚さ20 μ mのひび割れのない線状の水素透過膜を得た。

[実施例5]

[0021] フェニルヘプタメチルシクロテトラシロキサン0. 1gと2, 6-シス-ジフェニルヘキサメチルシクロテトラシロキサン0. 1g及びシリコンレジン59. 8gをトルエン40gに溶解し、120°Cに加熱しながらトルエンを蒸発させ、約3時間縮合反応させ前駆体を作成する。次いで、この反応生成物である前駆体を真空チャンバー中のホットプレート上に移し、ホットプレートを加熱しながら真空排気を行う。真空チャンバーの真圧度が1Pa程度、ホットプレートの温度140°Cで60分間、脱泡処理を行う。次いで、ホットプレートを冷却しながら雰囲気を大気に戻し、粘度数百cpsのペースト状の前駆体とした。このペースト状の前駆体を厚さ1mmのテフロンシート上に、べた印刷塗布し、焼成炉に入れ大気中で一度230°Cで上面にテフロンを乗せてフラットに成形したのち、上面と下面のテフロンを外した後、得られたシート状物を450°Cで焼成し、厚さ1mmのひび割れのないシート状水素透過膜を得た。

[実施例6]

[0022] フェニルヘプタメチルシクロテトラシロキサン0. 1gと2, 6-シス-ジフェニルヘキサメチルシクロテトラシロキサン0. 1g及びシリコンレジン59. 8gをトルエン40gに溶解し、この溶液に超微粉末シリカ(商品名:アエロジル デグサ社製品)2gを加えた以外は実施例5と同様にして水素透過膜を得た。

[実施例7]

[0023] フェニルヘプタメチルシクロテトラシロキサン1gとシリコンレジン59gをトルエン40gに溶解した。この溶液を銅板の両面にディッピング法で塗布した後、焼成炉に入れ、

大気中300°Cで焼成し、100mm×100mmの大きさで厚さ1 μ mの水素貯蔵膜を得た。

[実施例8]

[0024] フェニルヘプタメチルシクロテトラシロキサン1gとシリコンレジン59gをトルエン40gに溶解し、100°Cに加熱しながらトルエンを蒸発させ、約2時間縮合反応させる。次いで、この反応生成物である前駆体を真空チャンバー中のホットプレート上に移し、ホットプレートを加熱しながら真空排気を行う。真空チャンバーの真空度が100Pa程度、ホットプレートの温度140°Cで10分間、脱泡処理を行う。次いで、ホットプレートを冷却しながら雰囲気を大気に戻し、粘度数百cpsのペースト状の前駆体とした。このペースト状の前駆体をSUS板上にスクリーン印刷法で厚さ100mm×100mmのサイズに塗布した後、焼成炉に入れ大気中300°Cで焼成し、厚さ20 μ mのひび割れのない膜が形成されたSUS板状の水素貯蔵膜を得た。

[実施例9]

[0025] フェニルヘプタメチルシクロテトラシロキサン0. 1gと2, 6-シス-ジフェニルヘキサメチルシクロテトラシロキサン0. 1g及びシリコンレジン59. 8gをトルエン40gに溶解した。この液を実施例1と同様にして厚さ1 μ mの水素貯蔵膜を得た。

[実施例10]

[0026] フェニルヘプタメチルシクロテトラシロキサン0. 1gと2, 6-シス-ジフェニルヘキサメチルシクロテトラシロキサン0. 1g及びシリコンレジン59. 8gをトルエン40gに溶解し、120°Cに加熱しながらトルエンを蒸発させ、約3時間縮合反応させ前駆体を作成する。次いで、この反応生成物である前駆体を真空チャンバー中のホットプレート上に移し、ホットプレートを加熱しながら真空排気を行う。真空チャンバーの真空度が1Pa程度、ホットプレートの温度140°Cで60分間、脱泡処理を行う。次いで、ホットプレートを冷却しながら雰囲気を大気に戻し、粘度数百cpsのペースト状の前駆体とした。このペースト状の前駆体を100°Cに再加熱しディスペンサーに入れ、ガラス板上に1m mの幅、長さ100mm、深さ20 μ mの型に塗布後、焼成炉に入れ大気中450°Cで焼成し、厚さ20 μ mのひび割れのない線状の水素貯蔵膜を得た。

[実施例11]

[0027] フェニルヘプタメチルシクロテトラシロキサン0. 1gと2, 6-シス-ジフェニルヘキサメチルシクロテトラシロキサン0. 1g及びシリコンレジン59. 8gをトルエン40gに溶解し、120°Cに加熱しながらトルエンを蒸発させ、約3時間縮合反応させ前駆体を作成する。次いで、この反応生成物である前駆体を真空チャンバー中のホットプレート上に移し、ホットプレートを加熱しながら真空排気を行う。真空チャンバーの真空中が1Pa程度、ホットプレートの温度140°Cで60分間、脱泡処理を行う。次いで、ホットプレートを冷却しながら雰囲気を大気に戻し、粘度数百cpsのペースト状の前駆体にした。このペースト状の前駆体を厚さ1mmのテプロンシート上にべた印刷塗布し、焼成炉に入れ大気中一度230°Cで上面にテフロンを乗せてフラットに成形したのち、上面と下面のテフロンを外した後、シート状物を450°Cで焼成し、厚さ1mmのひび割れのないシート状の膜を作成した。次いで、イオンビームスペッタ蒸着法でシートの片面にのみアルミニウム膜を100nmに形成した水素貯蔵膜を得た。

[実施例12]

[0028] フェニルヘプタメチルシクロテトラシロキサン0. 1gと2, 6-シス-ジフェニルヘキサメチルシクロテトラシロキサン0. 1g及びシリコンレジン59. 8gをトルエン40gに溶解し、この溶液に平均粒径30 μ mのSiO₂のフィラー20gを加えた以外は実施例11と同様にして本発明の水素貯蔵膜を得た。

[0029] [表1]

	膜厚	膜厚範囲	膜質（ひび、クラック等なし）	特性（水素透過/貯蔵の有無）
実施例 1	1 μm	0.1～数 μm	○	○
実施例 2	20 μm	1～数十 μm	○	○
実施例 3	1 μm	0.1～数 μm	○	○
実施例 4	100 μm	数十～数百 μm	○	○
実施例 5	1 mm	0.3mm～2mm	○	○
実施例 6	1 mm	0.3mm～2mm	○	○
実施例 7	1 μm	0.1～数 μm	○	○
実施例 8	20 μm	1～数十 μm	○	○
実施例 9	1 μm	0.1～数 μm	○	○
実施例 10	20 μm	1～数十 μm	○	○
実施例 11	1 mm	0.3mm～2mm	○	○
実施例 12	1 mm	0.3mm～2mm	○	○

[実施例13]

[0030] 本発明を用いて得られた水素透過膜を図1の1に示す水素透過膜を用い、水素透過性を検証した。差圧は10kPaである。サンプルA、B、C、及びステンレス片での結果を表2に示す。本発明の水素透過膜を水素ガスが透過することで、早いもので2秒、遅いものでも60秒以内に50ppm以上の濃度に達したことが分かる。本発明を用いて得られた水素透過膜は、その膜厚や成分を変えることで、透過性を制御できることも検証された。

[0031] [表2]

サンプル名	平均膜厚 (単位 : mm)	成分	図1イでの水素濃度 (単位 : p.p.m.)			透過性
			2秒後	10秒後	60秒後	
サンプルA	0.6	I	520	OVE R	OVE R	◎
サンプルB	1.5	II	20	55	250	○
サンプルC	1.5	III	(5)	(15)	75	△
ステンレス 片	0.1	—	(2)	(5)	(5)	×

*水素センサーの水素濃度に関する注意点

有効検出の濃度:20ppm以上／検出上限越え(OVER):2000ppm以上／応答

時間:20秒以内

[実施例14]

[0032] 本発明を用いて得られた水素透過膜を図1の1に示す水素透過膜を用い、図1の後に記す箇所を変更し、各種ガス(ここで各種ガスとは、酸素、メタン、一酸化炭素、二酸化炭素、水蒸気とする)の透過性評価を行った。図1の変更の箇所は、図5の水素センサー17から、酸素センサー、メタンセンサー、一酸化炭素センサー、二酸化炭素センサー、水蒸気検出器へ順次変え、また同様に、18の混合ガスから、酸素含有ガス、メタン含有ガス、一酸化炭素含有ガス、二酸化炭素含有ガス、露点計へ順次変え、これら各種ガスを透過しないか検証した。全て検出限界以下であった。サンプルA及びステンレス片での結果を表3に示す。

本発明を用いて得られた水素透過膜は、透過の可能性のある各種ガスを透過し難く、水素を選択的に透過することが検証された。

[0033] [表3]

サンプル名	平均膜厚 (単位:mm)	成分	ガス名及びセンサ ー名	図1 16での各種ガス濃度(単位:ppm)			透過性
				2秒後	10秒後	60秒後	
サンプルA ステンレス片	0.6	I	酸素 酸素	<10	<10	<10	×
	0.1	—		<10	<10	<10	×
サンプルA ステンレス片	0.6	I	メタン メタン	<10	<10	<10	×
	0.1	—		<10	<10	<10	×
サンプルA ステンレス片	0.6	I	一酸化炭素 一酸化炭素	<5	<5	<5	×
	0.1	—		<5	<5	<5	×
サンプルA ステンレス片	0.6	I	二酸化炭素 二酸化炭素	<10	<10	<10	×
	0.1	—		<10	<10	<10	×
サンプルA ステンレス片	0.6	I	水蒸気 露点計	<10	<10	<10	×
	0.1	—		<10	<10	<10	×

- * 酸素センサーの有効検出濃度:10ppm以上
- * メタンセンサーの有効検出濃度:10ppm以上
- * 一酸化炭素センサーの有効検出濃度:5ppm以上
- * 二酸化炭素センサーの有効検出濃度:10ppm以上
- * 露点計の有効検出濃度:10ppm以上

[実施例15]

[0034] 図4で示した装置を用いて作成した水素透過膜の水素透過の有無を測定した。

Qマス(4重極型質量分析計)10が取り付けられている真空装置の一部に作成した水素透過膜の大きさに合わせた任意のOリング11に抑えつけ、真空排気する。真空度が10⁻⁴Pa以下になったところでQマスのフィラメントを付け、チャンバー4のガスを測定する。その後、まずドライエアをシート上に微量吹きかけ、Qマス10のH₂(2)、N₂(28)とO₂(32)、Ar(39)のマスが増加しないことを確認する。その後、水素(2)2%を含有した高純度のアルゴンガスを同様に吹きかけ、H₂(2)だけが増加することによ

り水素の透過の有無を確認する。

実施例1、2、3、5、6のシート状のものは水素を透過することを確認した。また、作成したシートは割れたり、ひびが入ったり、耐大気圧で反って破壊されたりすることなく真空排気することが可能であった。上記のことから、本実施例で使用した水素透過膜には、真空排気に支障をきたすようなピンホールが存在しないことが判明した。

[実施例16]

[0035] また、図4の装置で、本発明の水素貯蔵膜の性能を調べた。作成した水素貯蔵膜を上記真空装置にセットし、真空排気をし、真空度が 10^{-4} Pa以下になったところでQマス10のフィラメントを付け、チャンバー4のガスを測定し、水素のバックグラウンドレベル(以下BG)を測定する。その後水素を透過しない袋で覆い、その袋内に水素(2)2%を含有した高純度のアルゴンガスを充填し、水素含有雰囲気に曝す。任意の時間曝した後、前記袋を外し、ドライエアを水素透過膜近傍に吹きかけ水素含有雰囲気ガスを吹き飛ばす。水素貯蔵しないAl板やSUS板等と本発明の水素透過膜と比較し、H₂(2)だけが、BGレベルより増加しているレベル、および水素が検出されていると判断できる時間を測定することにより水素の貯蔵の有無を確認する。

実施例6～11のものは水素を貯蔵していることを確認した。また、シートは割れたり、ひびが入ったり、耐大気圧で反って破壊されたりすることなく、特に数 $10\ \mu\text{m}$ 以上の膜は真空排気することが可能であった。

請求の範囲

- [1] 少なくともフェニルヘプタメチルシクロテトラシロキサン又は2, 6-シス-ジフェニルヘキサメチルシクロテトラシロキサンのいずれか一方を含むシリコンレジンから成ることを特徴とする水素又はヘリウムの透過膜。
- [2] 少なくともフェニルヘプタメチルシクロテトラシロキサン又は2, 6-シス-ジフェニルヘキサメチルシクロテトラシロキサンの少なくとも一方を含むシリコンレジンに、金属又は酸化物系の微粒子を含有して成ることを特徴とする請求項1記載の水素又はヘリウムの透過膜。
- [3] 前記金属または酸化物系の微粒子は、Al、Ti、Si、Agのうちの少なくともいずれかを含む微粒子又は超微粒子、アルミナ、チタン酸化物及び SiO_2 等の微粒子からなるフィラー及び超微粒子シリカ等、から成ることを特徴とする請求項2記載の水素又はヘリウムの透過膜。
- [4] 前記水素透過膜は230°C以下の温度で任意の粘度に調整した前駆体の後、200°C～500°Cの温度で熱硬化することを特徴とする請求項1から3までのいずれか1項に記載の水素又はヘリウムの透過膜。
- [5] 前記前駆体および前記水素透過膜は、少なくとも一回は、前記水素透過膜が硬化する温度以下で真空加熱処理されることを特徴とする請求項4記載の水素又はヘリウムの透過膜。
- [6] 少なくともフェニルヘプタメチルシクロテトラシロキサン又は2, 6-シス-ジフェニルヘキサメチルシクロテトラシロキサンのいずれか一方を含むシリコンレジン、少なくともフェニルヘプタメチルシクロテトラシロキサン又は2, 6-シス-ジフェニルヘキサメチルシクロテトラシロキサンのいずれか一方を含むシリコンレジンに、金属又は酸化物系の微粒子を含有させた後、230°C以下の温度で任意の粘度の前駆体を形成する工程と200°C～500°Cの温度で熱硬化させる工程を有すること特徴とする水素又はヘリウムの透過膜の形成方法。
- [7] 前記金属又は酸化物系の微粒子は、Al、Ti、Si、Agの少なくともいずれかを含む微粒子又は超微粒子、アルミナ、チタン酸化物及び SiO_2 等の微粒子からなるフィラー及び超微粒子シリカ等、から成ることを特徴とする請求項6記載の水素又はヘリウ

ムの透過膜の形成方法。

- [8] 前記前駆体、および、前記水素又はヘリウムの透過膜を形成する工程において、少なくとも一回は、前記水素又はヘリウムの透過膜が硬化する温度以下で真空加熱処理を行うことを特徴とする請求項7記載の水素又はヘリウムの透過膜の形成方法。
- [9] 少なくともフェニルヘプタメチルシクロテトラシロキサン又は2, 6-シス-ジフェニルヘキサメチルシクロテトラシロキサンのいずれか一方を含むシリコンレジンから成ることを特徴とする水素又はヘリウムの貯蔵膜。
- [10] 少なくともフェニルヘプタメチルシクロテトラシロキサン又は2, 6-シス-ジフェニルヘキサメチルシクロテトラシロキサンのいずれか一方を含むシリコンレジンに、金属又は酸化物系の微粒子を含有して成ることを特徴とする請求項9記載の水素又はヘリウムの貯蔵膜。
- [11] 前記金属または酸化物系の微粒子は、Al、Ti、Si、Agのうち少なくともいずれかを含む微粒子または超微粒子、アルミナ、チタン酸化物及び SiO_2 等の微粒子からなるフィラー及び超微粒子シリカ等から成ることを特徴とする請求項10記載の水素又はヘリウムの貯蔵膜。
- [12] 前記水素貯蔵膜は、230°C以下の温度で任意の粘度に調整した前駆体の後、200°C～500°Cの温度で熱硬化されることを特徴とする請求項10又は11に記載の水素又はヘリウムの貯蔵膜。
- [13] 前記前駆体および前記水素又はヘリウムの貯蔵膜は、少なくとも一回は、前記水素又はヘリウムの貯蔵膜が硬化する温度以下で真空加熱処理をして成ることを特徴とする請求項10に記載の水素又はヘリウムの貯蔵膜。
- [14] 少なくともフェニルヘプタメチルシクロテトラシロキサン又は2, 6-シス-ジフェニルヘキサメチルシクロテトラシロキサンのいずれかを含むシリコンレジン、少なくともフェニルヘプタメチルシクロテトラシロキサン又は2, 6-シス-ジフェニルヘキサメチルシクロテトラシロキサンのいずれかを含むシリコンレジンに、金属または酸化物系微粒子を含有させたシリコンレジンを230°C以下の温度で任意の粘度の前駆体を形成する工程と、200°C～500°Cの温度で熱硬化させる工程と、を有すること特徴とする水素又はヘリウムの貯蔵膜の形成方法。

- [15] 前記金属又は酸化物系の微粒子は、Al、Ti、Si、Agのうちの少なくともいずれかを含む微粒子又は超微粒子、アルミナ、チタン酸化物及び SiO_2 等の微粒子からなるフィラー及び超微粒子シリカ等から成ることを特徴とする請求項10記載の水素又はヘリウムの貯蔵膜の形成方法。
- [16] 前記前駆体、および前記水素又はヘリウムの貯蔵膜を形成する工程において、少なくとも一回は、前記水素又はヘリウムの貯蔵膜が硬化する温度以下で真空加熱処理を行うことを特徴とする請求項15記載の水素又はヘリウムの貯蔵膜の形成方法。

[図1]

[図2]

[図3]

[図4]

[図5]

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2005/000001

A. CLASSIFICATION OF SUBJECT MATTER

Int.Cl⁷ B01D71/70, B01D53/22, B01J20/26, B01J20/28, C01B3/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl⁷ B01D61/00-71/82, B01D53/22, B01J20/20-20/34, C01B3/00-6/34

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Jitsuyo Shinan Koho	1926-1996	Toroku Jitsuyo Shinan Koho	1994-2005
Kokai Jitsuyo Shinan Koho	1971-2005	Jitsuyo Shinan Toroku Koho	1996-2005

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

WPIL

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P, A	JP 2004-182959 A (Kabushiki Kaisha SFC), 02 July, 2004 (02.07.04), Full text; Figs. 1 to 5 & KR 2004057881 A	1-16
A	JP 2001-198431 A (Toray Industries, Inc.), 24 July, 2001 (24.07.01), Full text; Figs. 1 to 7 (Family: none)	1-16
A	JP 57-030528 A (Toyota Central Research And Development Laboratories, Inc.), 18 February, 1982 (18.02.82), Full text; drawings (Family: none)	1-16

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search
01 February, 2005 (01.02.05)

Date of mailing of the international search report
15 February, 2005 (15.02.05)

Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

A. 発明の属する分野の分類（国際特許分類（IPC））

Int. C17 B01D71/70, B01D53/22, B01J20/26, B01J20/28,
C01B 3/00

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

Int. C17 B01D61/00-71/82, B01D53/22, B01J20/20-20/34,
C01B 3/00-6/34

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報	1926-1996
日本国公開実用新案公報	1971-2005
日本国登録実用新案公報	1994-2005
日本国実用新案登録公報	1996-2005

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

WPI L

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
P, A	JP 2004-182959 A (株式会社エス・エフ・シー) 2004. 07. 02, 全文, 図1-図5 & KR 20040 57881 A	1-16
A	JP 2001-198431 A (東レ株式会社) 2001. 0 7. 24, 全文, 図1-図7 (ファミリーなし)	1-16
A	JP 57-030528 A (株式会社豊田中央研究所) 198 2. 02. 18, 全文, 図面 (ファミリーなし)	1-16

 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的技術水準を示すもの

「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの

「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）

「O」口頭による開示、使用、展示等に言及する文献

「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの

「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの

「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの

「&」同一パテントファミリー文献

国際調査を完了した日

01. 02. 2005

国際調査報告の発送日

15. 2. 2005

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号 100-8915

東京都千代田区霞が関三丁目4番3号

特許序審査官（権限のある職員）

金 公 彦

4D 8925

電話番号 03-3581-1101 内線 3421