

16TH EUROPEAN CONFERENCE ON COMPUTER VISION WWW.ECCV2020.EU

How to track your dragon: A Multi-Attentional Framework for real-time RGB-D Object Pose Tracking

Isidoros Marougkas

Petros Koutras

Nikos Kardaris

Georgia Chalvatzaki

Georgios Retsinas

TECHNISCHE UNIVERSITÄT DARMSTADT

Petros Maragos

Problem Definition/Pose Space:

Previous Camera Pose:

Problem Definition/Pose Space:

Classical definition of the Pose Space:

$$\mathscr{C} = \left\{ \mathbb{P} \mid \mathbb{P} = \left[\frac{R \, | \mathbf{t}}{\mathbf{0}^T | 1} \right], \mathbf{t} \in \mathbb{R}^3, R \in SO(3) \right\}$$

Previous Camera Pose:

neglects the objects' symmetries.

Brégier et al.[2]: augmented it to account for this discrepancy:

$$\mathscr{C} = \left\{ \mathbb{P} \mid \mathbb{P} = \left[\begin{array}{c|c} R \cdot G & \mathbf{t} \\ \hline \mathbf{0}^T & 1 \end{array} \right], \mathbf{t} \in \mathbb{R}^3, R \in SO(3), G \in SO(3) \right\}.$$

For asymmetrical objects: G=I

Motivation: Applications

Augmented Reality:

Robotic Grasping & Manipulation:

Autonomous Driving:

Challenges:

- Appearance change due to pose variation
- Modelling of sensor noise
- Illumination conditions
- Pose Ambiguities
 - Rotation Representation
 - Object Symmetries
 - Continuous (Rotational)
 - Discrete(Reflective)

- Motion blur
- Object size & texture
- Background Clutter Color Noise
- Occlusions
 - Static

Dynamic

Pose drift accumulated over time

'Hard Interaction' scenario:

Qualitative Results: re-iterate every time the tracker fails irrecoverably

Garon et al.[8]

Foreground Attention:

Occlusion Attention:

Contributions:

- Spatial Attention mechanism for Background Clutter and Occlusion Handling
 - Supervision: extracted by fully exploiting the synthetic nature of our training data
 - Provides intuitive understanding of the tracker's region of interest

Contributions:

- Spatial Attention mechanism for Background Clutter and Occlusion Handling
 - Supervision: extracted by fully exploiting the synthetic nature of our training data
 - Provides intuitive understanding of the tracker's region of interest
- Multi-Task Pose Tracking Loss function that:
 - Respects the geometry
 - of the Object's 3D model and
 - of the Pose Space

Contributions:

- Spatial Attention mechanism for Background Clutter and Occlusion Handling
 - Supervision: extracted by fully exploiting the synthetic nature of our training data
 - o Provides intuitive understanding of the tracker's region of interest
- Multi-Task Pose Tracking Loss function that:
 - Respects the geometry
 - of the Object's 3D model and
 - of the Pose Space
- SoA real-time performance in the hardest scenarios of Garon et al.[8]
 - 34.03% drop in <u>Translation error</u> & 40.01% drop in <u>Rotation error</u>

Baseline Architecture of Garon et al.[8]

(training mode):

Garon, M., Laurendeau, D., Lalonde, J.F.; A framework for evaluating 6-dof objecttrackers, In: Proc. European Conf. on Computer Vision (ECCV), pp. 582-597(2018)

Baseline Architecture of Garon et al.[8]

(inference mode):

Garon, M., Laurendeau, D., Lalonde, J.F.; A framework for evaluating 6-dof objecttrackers, In: Proc. European Conf. on Computer Vision (ECCV), pp. 582-597(2018)

Our Architecture:

'<u>Dense'</u> — Residual connections:

Observed stream

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). pp.770–778 (2016)

Our Architecture:

Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained imagefeatures and synthetic images for deep learning. In: Proc. European Conf. on Com-puter Vision (ECCV). pp. 0–0 (2018)

Spatial Attention maps

(Only Occlusion Handling):

Spatial Attention maps

(Hierarchical connection):

Spatial Attention maps

(Parallel connection):

Our Overall Architecture:

- 20,000 training sample pairs
- Inference time: 40fps (real-time)

Training data preprocessing: Pose sampling: Golden spiral approach[21]

- Augmentation: SUN3D[37] background, Occluder (Partial & Total), Gaussian Color & Depth Noise, Blur, Depth Holes, Color Jitter, Gamma Correction, Kinect Sensor noise modelling (Nguyen et al.[28])
- **Examples of Completely Augmented samples:**

Recursive input standarization: Welford's algorithm[34]
Leopardi, P.C.: Distributing points on the sphere: partitions, separation, quadra-ture and energy. Ph.D. thesis, University of New South Wales, Sydney, Australia(2007)

Nguyen, C.V., Izadi, S., Lovell, D.: Modeling kinect sensor noise for improved3d reconstruction and tracking. In: 2012 Second International Conference on 3DImaging, Modeling, Processing, Visualization & Transmission. pp. 524-530. IEEE(2012)

Xiao, J., Owens, A., Torralba, A.: Sun3d: A database of big spaces reconstructed using sfm and object labels. In: Proc. IEEE Int. Conf. on Computer Vision (ICCV).pp. 1625–1632 (2013) Welford, B.: Note on a method for calculating corrected sums of squares and prod-ucts. Technometrics 4(3), 419–420 (1962) Garon, M., Lalonde, J.F.: Deep 6-dof tracking. IEEE transactions on visualization and computer graphics 23(11), 2410–2418 (2017)

Geodesic Rotational Loss

Garon et al.[8]: $L(\hat{\mathbf{p}}, \mathbf{p_{GT}}) = MSE(\hat{\mathbf{p}}, \mathbf{p}_{GT}) \text{ with } \hat{\mathbf{p}}, \mathbf{p}_{GT} \in [-1, 1]^6.$

Riemannian metric

Geodesic Rotational Loss

Garon et al.[8]:

$$L(\hat{\mathbf{p}}, \mathbf{p_{GT}}) = MSE(\hat{\mathbf{p}}, \mathbf{p}_{GT}) \text{ with } \hat{\mathbf{p}}, \mathbf{p}_{GT} \in [-1, 1]^6.$$

Riemannian metric

Translation → Euclidean space

Geodesic Rotational Loss

Garon et al.[8]:

$$L(\mathbf{\hat{p}}, \mathbf{p_{GT}}) = MSE(\mathbf{\hat{p}}, \mathbf{p}_{GT}) \text{ with } \mathbf{\hat{p}}, \mathbf{p}_{GT} \in [-1, 1]^6.$$

with
$$\hat{\mathbf{p}}, \mathbf{p}_{GT} \in [-1, 1]^6$$
.

Riemannian metric

Translation → Euclidean space

Geodesic (Riemannian) Rotational Loss function:

$$L_{Rot}(\Delta \hat{R}, \Delta R_{GT}) = d_{Rot}^{(Geod)}(\Delta \hat{R}, \Delta R_{GT}) = \arccos\left(\frac{\operatorname{Tr}\left(\Delta \hat{R}^T \Delta R_{GT}\right) - 1}{2}\right)$$

Luca Ballan.Institute of Visual ComputingMetrics on SO(3) and Inverse Kinematics.http://lucaballan.altervista.org/pdfs/IK.pdf Garon, M., Laurendeau, D., Lalonde, J.F.: A framework for evaluating 6-dof objecttrackers. In: Proc. European Conf. on Computer Vision (ECCV). pp. 582–597(2018) Kris Hauser Robotic Systems Book of Duke University http://motion.pratt.duke.edu/RoboticSystems/3DRotations.html

...+6D Continuous Rotation Representation (Zhou et al.[39])

$$\Delta \mathbf{R_x} = N(\Delta \mathbf{r_x})$$

$$\Delta \mathbf{R_y} = N[\Delta \mathbf{r_y} - (\Delta \mathbf{R_x^T} \cdot \mathbf{r_y}) \cdot \Delta \mathbf{R_x})]$$

$$\Delta \mathbf{R_z} = \Delta \mathbf{R_x} \times \Delta \mathbf{R_y}$$

where $\Delta \mathbf{R}_{\mathbf{x}/\mathbf{y}/\mathbf{z}} \in \mathbb{R}^3$, $N(\cdot) = \frac{(\cdot)}{\|(\cdot)\|}$ is the normalization function.

...+6D Continuous Rotation Representation (Zhou et al.[39])

$$\begin{split} & \Delta \mathbf{R_x} = N(\Delta \mathbf{r_x}) \\ & \Delta \mathbf{R_y} = N[\Delta \mathbf{r_y} - (\Delta \mathbf{R_x^T} \cdot \mathbf{r_y}) \cdot \Delta \mathbf{R_x})] \\ & \Delta \mathbf{R_z} = \Delta \mathbf{R_x} \times \Delta \mathbf{R_y} \end{split}$$

where
$$\Delta \mathbf{R}_{\mathbf{x}/\mathbf{y}/\mathbf{z}} \in \mathbb{R}^3$$
, $N(\cdot) = \frac{(\cdot)}{\|(\cdot)\|}$ is the normalization function.

Zhou, Y., Barnes, C., Lu, J., Yang, J., Li, H.: On the continuity of rotation rep-resentations in neural networks. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). pp. 5745–5753 (2019)

...+Rotational Anisotropy Weighting (Brégier et al.[2]):

Inertia Tensor

$$\Lambda = \sqrt{\frac{1}{S} \sum_{i} \sigma_{\mathbf{a}_{i}, \mathbf{b}_{i}, \mathbf{c}_{i}}}$$

Garon et al.[8]:

$$\mathbf{p} \in \mathbb{R}^6$$

+

MSE

36.38 ± 36.31
46.55 ± 40.88
37.69 ± 35.39
14.90 ± 21.76
9.99 ± 13.76

Garon et al.[8]:

$$\mathbf{p} \in \mathbb{R}^6$$

MSE

$$R \in SO(3)$$
 \longrightarrow L_{Geod}

36.38 ± 36.31
46.55 ± 40.88
37.69 ± 35.39
14.90 ± 21.76
9.99 ± 13.76

Garon et al.[8]:

$$\mathbf{p} \in \mathbb{R}^6$$
 +

Ours:

$$\mathbf{t} \in \mathbb{R}^3$$
 $\mathbf{r} \in \mathbb{R}^6$
 $R \in SO(3)$
 L_{Geod}

D	
Garon et al. [8]	36.38 ± 36.31
Rotational MSE	46.55 ± 40.88
Geod.	37.69 ± 35.39
Geod.+[39]	14.90 ± 21.76
Geod.+[39]+ $\Lambda_{(G.S.)}$	9.99 ± 13.76

Garon et al.[8]:

$$\mathbf{p} \in \mathbb{R}^6$$
 +

Ours:

$$\mathbf{t} \in \mathbb{R}^3$$
 $\mathbf{r} \in \mathbb{R}^6$
 $R \in SO(3)$
 L_{Geod}

- PL	
Garon et al. [8]	36.38 ± 36.31
Rotational MSE	46.55 ± 40.88
Geod.	37.69 ± 35.39
Geod.+[39]	14.90 ± 21.76
Geod.+[39]+ $\Lambda_{(G.S.)}$	9.99 ± 13.76

Garon et al.[8]:

$$\mathbf{p} \in \mathbb{R}^6$$

MSE

Rotational Error(degrees)

Gramm-Schmidt
Orthonormalization

Garon et al. [8]	36.38 ± 36.31
Rotational MSE	46.55 ± 40.88
Geod.	37.69 ± 35.39
Geod.+[39]	14.90 ± 21.76
Geod.+[39]+ $\Lambda_{(G.S.)}$	9.99 ± 13.76

...+ MultiTask weighting (Kendall et al.[20]) ——— Pose Tracking

$$\mathbf{v} = [v_1, v_2]$$

$$\mathbf{v} = [v_1, v_2]$$

$$L_{Track}(\Delta \hat{\mathbb{P}}, \Delta \mathbb{P}) = e^{(-v_1)} \cdot MSE[(\Delta \hat{\mathbf{t}}, \Delta \mathbf{t})] + v_1 + v_2 + v_3$$

$$+ e^{(-v_2)} \cdot arcos \left(\frac{\operatorname{Tr} \left((\Delta \hat{R} \cdot \hat{G}^* \cdot \Lambda_{(G.S.)})^T \cdot (\Delta R \cdot \Lambda_{(G.S.)}) \right) - 1}{2} \right)$$

Local Optima problem: Weight warm-up by first minimizing a LogCosh loss

Overall Loss function: $\mathbf{s} = [s_1, s_2, s_3]$

$$\mathbf{s} = [s_1, s_2, s_3]$$

$$Loss = e^{(-s_1)} \cdot L_{Track} + e^{(-s_2)} \cdot L_{Unoccl} + e^{(-s_3)} \cdot L_{Foregr} + s_1 + s_2 + s_3$$

Continuous Rotational Symmetries:

Continuous Rotational Symmetries:

Overall Loss function (Symmetries' Handling incorporated):

Our Architecture (Symmetries' Handling incorporated):

Continuous Rotational Symmetries:

Overall Loss function (Symmetries' Handling incorporated):

Optimal symmetry parameter selection out of a batch

$$Loss^{(Symm)} = Loss + e^{(-s_4)} \left(\frac{1}{B} \sum_{b=1}^{B} \frac{1}{\xi_b}\right) + s_4$$
, with

Continuous Rotational Symmetries:

Optimal symmetry parameter selection out of a batch

$$Loss^{(Symm)} = Loss + e^{(-s_4)} \left(\frac{1}{B} \sum_{b=1}^{B} \frac{1}{\xi_b}\right) + s_4$$
, with

$$\xi_b = \frac{1}{B_2(B_2 - 1)} \sum_{j=1}^{B_2} \sum_{k \neq j} d_{Rot}^{(Geod)}(\hat{G}_k, \hat{G}_j)$$

Adversarial penalty that encourages the **symmetry parameters** of the batch to be **as uniform as possible** by maximizing the rotational distances between them

Continuous Rotational Symmetries:

Overall Loss function (Symmetries' Handling incorporated):

Optimal symmetry parameter selection out of a batch

$$Loss^{(Symm)} = Loss + e^{(-s_4)} \left(\frac{1}{B} \sum_{b=1}^{B} \frac{1}{\xi_b} \right) + s_4$$
, with

$$\xi_b = \frac{1}{B_2(B_2 - 1)} \sum_{j=1}^{B_2} \sum_{k \neq j} d_{Rot}^{(Geod)}(\hat{G}_k, \hat{G}_j)$$

Adversarial penalty that encourages the symmetry parameters of the batch to be as uniform as possible by maximizing the rotational distances between them

(Discrete) Reflective Symmetries:

Object Symmetries: Cases

Continuous Rotational Symmetries:

(Discrete) Reflective Symmetries:

Overall Loss function (Symmetries' Handling incorporated):

Optimal symmetry parameter selection out of a batch

$$Loss^{(Symm)} = Loss + e^{(-s_4)} \left(\frac{1}{B} \sum_{b=1}^{B} \frac{1}{\xi_b}\right) + s_4$$
, with

$$\xi_b = \frac{1}{B_2(B_2 - 1)} \sum_{j=1}^{B_2} \sum_{k \neq j} d_{Rot}^{(Geod)}(\hat{G}_k, \hat{G}_j)$$

Adversarial penalty that encourages the **symmetry** parameters of the batch to be as uniform as possible by maximizing the distances between all of them

Frame no 127

Prediction no 127

Prediction no 126

Continuous Rotational Symmetries:

(Discrete) Reflective Symmetries:

Overall Loss function (Symmetries' Handling incorporated):

Optimal symmetry parameter selection out of a batch

$$Loss^{(Symm)} = Loss + e^{(-s_4)} \left(\frac{1}{B} \sum_{b=1}^{B} \frac{1}{\xi_b}\right) + s_4$$
, with

$$\xi_b = \frac{1}{B_2(B_2 - 1)} \sum_{j=1}^{B_2} \sum_{k \neq j} d_{Rot}^{(Geod)}(\hat{G}_k, \hat{G}_j)$$

Adversarial penalty that encourages the **symmetry** parameters of the batch to be as uniform as possible by maximizing the distances between all of them

Prediction no 127

Prediction no 126

Heuristic Algorithm:

for every Rotation estimation $\hat{R}(t)$

do

$$\begin{array}{c|c} & \text{if } d_{Rot}\big(\hat{R}(t),\hat{R}(t-1)\big) \geq \\ & \left[\frac{360^{o}}{N_{DiscrSymm}} - th\right] \text{ then} \\ & \left[\hat{R}(t-1) \rightarrow \hat{R}(t)\right] \\ & \text{else} \\ & \left[\hat{R}(t) \text{ is a valid estimation} \right] \\ & \text{end} \\ \end{array}$$

Dataset & Evaluation Metrics:

Attributes

Scenaria:

- 75% Horizontal Static Occlusion
- 75% Vertical Static Occlusion
- Translation Only
- Rotation Only
- Full Interaction
- Hard Interaction

Object Size Symmetry

Object	Attributes						
	Size	Symmetry	Shape	Texture	Distinctive parts		
Dragon	Medium	No	Complex	Rich	Yes		
Cookie Jar	Medium	Rotoreflective	Simple	Poor and Repetitive	No		
Dog	Medium	No	Complex	Almost None	Yes		
Lego	Small	No	Complex	Rich and Repetitive	No		
Watering Can	Big	No	Simple	Poor	Yes		

3D Translational Error: (mm)

$$\delta_{\mathbf{t}}(\hat{\mathbf{t}}, \mathbf{t}_{GT}) = \|\hat{\mathbf{t}} - \mathbf{t}_{GT}\|_{2}$$

When
$$\delta_{\mathbf{t}}(\hat{\mathbf{t}}, \mathbf{t}_{GT}) > 3cm \text{ or } \delta_{R}(\hat{R}, R_{GT}) > 20^{o}$$

for more than 7 consecutive frames.

3D Rotational Error: (degrees)

$$\delta_R(\hat{R}, R_{GT}) = \arccos\left(\frac{\operatorname{Tr}(\hat{R}^T \cdot R_{GT}) - 1}{2}\right)$$

where $Tr(\cdot)$ denotes the matrix trace.

Grey intervals: high occlusions

Green intervals: rapid motion

Garon, M., Laurendeau, D., Lalonde, J.F.: A framework for evaluating 6-dof objecttrackers. In: Proc. European Conf. on Computer Vision (ECCV). pp. 582–597(2018)

 Our tracker is generally on par or better with SoA across all objects and scenaria

Approach	75% Hor	izontal Occlusion	75% Vertical Occlusion			
	Translational Error(mm) Rotational Error(degree	s) Fails	Translational Error(mm	i) Rotational (degrees)) Fails
Garon et al.[8] ("Dragon")	16.02 ± 8.42	18.35 ± 11.71	13	18.20 ± 11.81	14.66 ± 12.98	13
Ours("Dragon")	12.68 ± 11.49	13.00 ± 9.14	10	$\boldsymbol{12.87 \pm 10.49}$	13.14 ± 8.85	8
Garon et al.[8]("Cookie Jar")	21.27 ± 9.74	21.90 ± 13.97	17	20.77 ± 6.88	24.86 ± 13.64	20
Ours("Cookie Jar")	9.51 ± 4.17	15.48 ± 9.50	15	20.97 ± 7.32	16.14 ± 10.06	15
Ours+Symm.("Cookie Jar")	6.37 ± 2.14	$\textbf{7.22} \pm \textbf{3.97}$	11	19.01 ± 7.53	13.00 ± 7.49	14
Garon et al.[8]("Dog")	37.96 ± 23.39	47.94 ± 31.55	21	32.84 ± 34.07	22.44 ± 13.60	21
Ours("Dog")	$\textbf{24.43} \pm \textbf{18.92}$	17.24 ± 12.41	25	36.53 ± 22.39	$\textbf{12.67} \pm \textbf{7.95}$	20
Garon et al.[8]("Lego")	68.25 ± 46.97	40.04 ± 47.37	28	40.04 ± 47.37	35.30 ± 31.32	20
Ours("Lego")	72.04 ± 34.10	18.41 ± 13.84	28	$\textbf{12.92} \pm \textbf{5.73}$	12.92 ± 9.02	20
Garon et al.[8]("Watering Can")	21.59 ± 11.32	23.99 ± 16.95	14	32.76 ± 24.12	26.74 ± 19.05	18
Ours("Watering Can")	$\textbf{20.71} \pm \textbf{10.24}$	17.00 ± 18.99	13	17.66 ± 17.95	13.46 ± 10.43	12
Approach	Transla	tion Interaction	Rotation Interaction			
V	Translational Error(mm) Rotational Error(degree	s) Fails	Translational Error(mm	i) Rotational (degrees)) Fails
Garon et al.[8] ("Dragon")	41.60 ± 39.92	11.55 ± 15.58	15	23.86 ± 17.44	27.21 ± 22.40	15
Ours("Dragon")	11.05 ± 8.20	3.55 ± 2.27	1	$\boldsymbol{9.37 \pm 6.07}$	$\textbf{7.86} \pm \textbf{6.69}$	2
Garon et al.[8]("Cookie Jar")	20.43 ± 25.44	17.19 ± 12.99	16	10.75 ± 5.89	23.53 ± 18.85	19
Ours("Cookie Jar")	8.64 ± 8.23	8.31 ± 5.97	5	10.87 ± 8.14	20.55 ± 18.06	16
Ours+Symm.("Cookie Jar")	8.09 ± 7.67	5.83 ± 5.50	3	9.98 ± 10.63	13.84 ± 11.87	16
Garon et al.[8]("Dog")	58.87 ± 71.86	16.42 ± 13.51	20	11.16 ± 10.28	20.00 ± 21.31	17
Ours("Dog")	21.64 ± 22.78	9.27 ± 8.03	14	10.68 ± 7.53	20.07 ± 19.29	17
Garon et al.[8]("Lego")	27.90 ± 23.53	11.89 ± 18.50	29	16.42 ± 10.90	17.83 ± 15.90	32
Ours("Lego")	22.66 ± 24.58	9.08 ± 7.60	12	10.13 ± 6.79	$\textbf{7.22} \pm \textbf{4.55}$	4
Garon et al.[8]("Watering Can")	24.95 ± 42.91	13.26 ± 11.34	16	13.14 ± 8.99	22.19 ± 25.93	15
Ours("Watering Can")	24.30 ± 21.51	$\textbf{8.79} \pm \textbf{6.35}$	16	12.22 ± 9.46	$\textbf{18.66} \pm \textbf{15.51}$	15
Apporach	Full	Interaction	Hard Interaction			
	Translational Error(mm) Rotational Error(degree	Translational Error(mm) Rotational(degrees) Fails			
Garon et al.[8] ("Dragon")	35.23 ± 31.97	34.98 ± 29.46	18	34.38 ± 24.65	36.38 ± 36.31	17
Ours("Dragon")	10.31 ± 8.66	6.40 ± 4.52	1	11.63 ± 8.79	8.31 ± 6.76	2
Garon et al.[8]("Cookie Jar")	13.06 ± 9.35	31.78 ± 23.78	24	15.78 ± 10.43	24.29 ± 20.84	15
Ours("Cookie Jar")	17.03 ± 11.94	22.24 ± 20.86	21	15.29 ± 16.06	16.73 ± 14.79	11
Ours+Symm.("Cookie Jar")	14.63 ± 11.19	15.71 ± 13.80	21	14.96 ± 9.06	15.00 ± 13.20	8
Garon et al.[8]("Dog")	37.73 ± 42.32	20.77 ± 19.66	23	23.95 ± 38.86	24.38 ± 26.39	20
Ours("Dog")	24.88 ± 35.85	28.52 ± 25.38	20	19.32 ± 15.97	19.72 ± 20.17	19
Garon et al.[8]("Lego")	30.96 ± 31.44	22.10 ± 20.20	20	30.71 ± 42.62	36.38 ± 34.99	20
Ours("Lego")	$\textbf{23.58} \pm \textbf{27.73}$	11.80 ± 12.28	13	16.47 ± 12.95	14.29 ± 11.68	11
Garon et al.[8]("Watering Can")	33.76 ± 37.62	40.16 ± 35.90	26	28.31 ± 19.49	23.04 ± 24.27	28
Ours("Watering Can")	19.82 ± 19.98	28.76 ± 30.27	26	18.03 ± 14.99	19.57 ± 17.47	23

'75% Horizontal Occlusion' scenario:

Qualitative Results: re-iterate every time the tracker fails irrecoverably

Foreground Attention:

Garon et al.[8]

'75% Horizontal Occlusion' scenario:

Quantitative Results: re-iterate every 15 frames

Error between ground truth and prediction Translation error (mm) Rotation error (degrees)

'75% Vertical Occlusion' scenario:

Qualitative Results: re-iterate every time the tracker fails irrecoverably

Garon et al.[8]

Foreground Attention:

'75% Vertical Occlusion' scenario:

'Translation-Only Interaction' scenario:

Qualitative Results: re-iterate every time the tracker fails irrecoverably

Garon et al.[8]

Ours

Ours+Symm

Foreground Attention:

Occlusion Attention:

'Translation-Only Interaction' scenario:

'Rotation-Only Interaction' scenario:

Qualitative Results: re-iterate every time the tracker fails irrecoverably

Garon et al.[8]

Ours

Ours+Symm

Foreground Attention:

Occlusion Attention:

'Rotation-Only Interaction' scenario:

'Full Interaction' scenario:

Qualitative Results: re-iterate every time the tracker fails irrecoverably

Foreground Attention: Garon et al.[8] Ours

'Full Interaction' scenario:

'Hard Interaction' scenario:

Qualitative Results: re-iterate every time the tracker fails irrecoverably

Foreground Attention:

Garon et al.[8]

- Unsupervised learning of self-occlusion attention patterns
- Implicit learning of intuitive attentional regions of interest
- Visual tradeoff between the two parallel attention modules

'Hard Interaction' scenario:

Qualitative Results: re-iterate every time the tracker fails irrecoverably

Thank you!