НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО Факультет ПИиКТ

Отчёт по лабораторной работе на тему: Решение нелинейных уравнений Метод Ньютона

Выполнил студент

Агнистова Алина Юрьевна

Группа № Р3225

Преподаватель: Перл Ольга Вячеславовна

Описание метода и расчётные формулы

Метод Ньютона – метод решения нелинейных уравнений, заключающийся в выделении из уравнений системы линейных частей, что позволяет свести задачу к решению СЛАУ (системы линейных алгебраических уравнений).

Решение нелинейного уравнения методом Ньютона производится в несколько этапов:

- 1. Определение уравнений
- 2. Нахождение частных производных по формулам:

$$\frac{\partial F_n(x,y)}{\partial x}$$
 и $\frac{\partial F_n(x,y)}{\partial y}$, $n=1,2$

3. Построение матрицы якобиан:

$$J = \begin{bmatrix} \frac{\partial F_1(x, y)}{\partial x} & \frac{\partial F_1(x, y)}{\partial y} \\ \frac{\partial F_2(x, y)}{\partial x} & \frac{\partial F_2(x, y)}{\partial y} \end{bmatrix}$$

4. Формирование СЛАУ, согласно формуле:

$$J\Delta x = -F(x,y)$$
, где J — матрица якобиан, Δx — вектор дельт, $F(x,y)$ — вектор значений функций в точке (x,y)

5. Подстановка значений начального приближения и решение СЛАУ:

$$\begin{bmatrix} \frac{\partial F_1(x,y)}{\partial x} & \frac{\partial F_1(x,y)}{\partial y} \\ \frac{\partial F_2(x,y)}{\partial x} & \frac{\partial F_2(x,y)}{\partial y} \end{bmatrix} \begin{bmatrix} \Delta x_0 \\ \Delta y_0 \end{bmatrix} = \begin{bmatrix} F_1(x_0,y_0) \\ F_2(x_0,y_0) \end{bmatrix}$$

6. Нахождение второго приближения:

$$x_1 = x_0 + \Delta x_0$$

$$y_1 = y_0 + \Delta y_0$$

Далее итерация завершается, и мы используем второе приближение для всех предыдущих шагов. На каждой итерации увеличивается порядок приближения (на следующей итерации используем третье приближение и так далее). Вычисления останавливаются, если достигнута необходимая точность или превышено количество итераций. После остановки алгоритмы мы будем иметь решение системы нелинейных уравнений в виде x_n, y_n , где n — количество итераций.

На этапе решения СЛАУ могут быть выбраны различные методы, в своём коде я использовала метод Гаусса, его описание и расчётные формулы:

Метод Гаусса — метод решения СЛАУ (систем линейных алгебраических уравнений), заключающийся в последовательном исключении неизвестных из уравнения с помощью элементарных преобразований строк (приведение матрицы к треугольному виду).

Прямой ход метода Гаусса — поочерёдное преобразование уравнений системы для избавления от переменных неизвестных. На этом этапе матрица системы будет приведена к треугольному виду.

Обратный ход метода Гаусса – последовательное вычисление искомых неизвестных от последнего уравнения к первому.

Метод Гаусса применим только в случае совместности системы.

СЛАУ может иметь:

- единственное решение;
- бесконечно много решений;
- 0 решений.

СЛАУ считается совместной, когда она имеет единственное решение. По теореме Кронекера-Капелли СЛАУ совместна тогда и только тогда, когда ранг матрицы коэффициентов A системы равен рангу расширенной матрицы \overline{A} .

$$r(A) = r(\bar{A}) = n$$

Ранг матрицы – число ненулевых строк ступенчатой матрицы.

Прямой ход в методе реализуется согласно формулам:

$$d_{jk}^k = rac{a_{jk}^k}{a_{kk}^k}$$
, $j=k+1,\ldots,n$, где $a_{jk}^k - j$ — й элемент матрицы a в строке k , $a_{kk}^k - k$ — й элемент матрицы a в строке k

$$a_{jj}^{k+1}=a_{jj}^k-d_{jk}^k*a_{kj}^k, j=k+1,\dots,n; j>k$$
 $b^{k+1}{}_j=b_j^k-d_{jk}^k*b_k^k,$ где b_j^k и b_k^k- свободные члены системы

Формулы применяются последовательно и пошагово преобразуют матрицу системы к треугольному виду.

Обратный ход реализуется по формуле:

$$x_k = rac{b_k - \sum_{j=k+1}^n a_{kj} x_j}{a_{kk}}$$
, где $\sum_{j=k+1}^n a_{kj} x_j$

- сумма произведений элементов строки матрицы

на уже найденные значения неизвестных

Таким образом на этом этапе будут вычислены все неизвестные.

Блок-схема реализованного метода

Код метода

```
def solve by fixed point iterations (system id, number of unknowns,
initial approximations):
    f x = get functions(system id)
    x = initial_approximations
    for in range(1000):
        d = solve linear system(calculate_jacobian(x, f_x,
number of unknowns), [-f(x) \text{ for } f \text{ in } f x])
        x = [x[i] + d[i] for i in range(number of unknowns)]
        if max(abs(d_x) for d_x in d) < 1e-5:
            break
    return x
def calculate jacobian(args, f, number of unknowns):
    h = 1e-5
    jacobian = [[(f[i])([args[j] + h if k == j else args[k] for k in
range(number of unknowns)])
           f[i](args)) / h for j in range(number of unknowns)] for i in
range(number of unknowns)]
    return jacobian
def solve linear system(coeff matrix, const vector):
    n = len(coeff matrix)
    for i in range(n):
        max_row = max(range(i, n), key=lambda r: abs(coeff_matrix[r][i]))
        coeff_matrix[i], coeff_matrix[max_row] = coeff_matrix[max_row],
coeff matrix[i]
        const vector[i], const vector[max row] = const vector[max row],
const vector[i]
        pivot = coeff matrix[i][i]
        for j in range(i + 1, n):
            ratio = coeff_matrix[j][i] / pivot
            coeff_matrix[j][i] = 0
            for m in range(i + 1, n):
                coeff matrix[j][m] -= ratio * coeff matrix[i][m]
            const vector[j] -= ratio * const vector[i]
    solution = [0] * n
    for i in range(n - 1, -1, -1):
        solution[i] = const vector[i]
        for j in range (i + 1, n):
            solution[i] -= coeff matrix[i][j] * solution[j]
        if abs(coeff matrix[i][i]) > 1e-10:
            solution[i] /= coeff matrix[i][i]
        else:
            solution[i] = 0
    return solution
```

Примеры и результаты работы программы

Во всех примерах расчёт невязок не входит в сравнение результатов, так как в нашем случае невязки зависят от написанного программного кода.

Пример 1

Выбранный случай: Сложная система нелинейных уравнений (3 неизвестных)

Входные данные:

4	
3	
1	
1	
1	

Выходные данные:

```
0,7852
0,49661
0,36992
```

```
3
1.0
1.0
1.0
0.7852
0.49661
0.36992
```

Пример 2

Выбранный случай: Простая система нелинейных уравнений

Входные данные:

3	
2	
1	
1	

Выходные данные:

0,92814	
0,33519	

```
3
2
1
0.92814
0.33519

Process finished with exit code 0
```

Пример 3

Выбранный случай: Нулевые начальные приближения

Входные данные:

Выходные данные:

0,0

Пример 4

Выбранный случай: Большие начальные приближения

Входные данные:

Выходные данные:

0,7852 0,49661 0,36992

Пример 5

Выбранный случай: Сложная система уравнений с начальными приближениями разных знаков

Входные данные:

4	
3	
0,8	
-0,8	
0,6	

Выходные данные:

1,13789
-1,82006
-0,41375

Проанализировав результаты запуска реализованного метода, можно сделать вывод, что код справляется с основными крайними ситуациями, однако я не учла в коде вывод сообщений в случае, когда сформированная СЛАУ (система линейных алгебраических уравнений) не имеет решений.

Для оценки метода приведена таблица сравнения метода Ньютона с методом простых итераций:

	Метод Ньютона	Метод простых
		итераций
Основное	Быстрая сходимость	Простота
преимущество	при правильном	реализации.
	начальном	
	приближении.	
Вычислительная	Высокая	Средняя
сложность	(необходимо	(необходимо
	вычисление и	вычисление только
	функции, и	функции на каждом
	производной на	шаге)

	каждом шаге (или	
	Якобиана))	
Применимость	Эффективен для	Эффективен для
	решения сложных	решения систем, где
	систем.	трудно вычисляемые
		производные.
Численная	Высокая	Неустойчивость
стабильность	чувствительность к	метода при
	начальному	некоторых
	приближению,	функциях, меньшая
	метод может быть	чувствительность к
	неустойчив в точках	начальному
	разрыва функции.	приближению.

Таким образом, метод Ньютона будет оптимальным в случаях, когда важна точность и быстрая сходимость и допускается численная нестабильность. В случаях, когда численная стабильность должна быть высокой лучше отдать предпочтение методу простых итераций.

Метод Ньютона — один из часто используемых методов для решения систем нелинейных уравнений. Метод сохраняет эффективность при решении сложных систем и обеспечивает быструю сходимость, однако обладает численной нестабильностью к начальным приближениям, что может привести к неточному результату.

Временная алгоритмическая сложность зависит от выбора метода решения сформированной СЛАУ. В случае решения СЛАУ методом Гаусса временная алгоритмическая сложность составляет $O(n^3)$ из-за действий внутри метода, таких как: прямой и обратный ход метода Гаусса. При прямом ходе используется цикл, в который вложен вложенный цикл, внутри каждого цикла мы проходим по всем элемента матрицы размера n, что даёт нам алгоритмическую сложность $O(n^3)$. Нахождение матрицы Якобиана составляет $O(n^2)$. Таким образом, общая алгоритмическая сложность реализованного программного метода = $O(n^3)$.

Что касается численных ошибок численного метода, то основные ошибки вызваны высокой чувствительность к начальным приближениям.

Вывод

В результате выполнения лабораторной работы была реализовано решение СНАУ методом Ньютона на языке программирования Python. Программа разделяется на несколько основных аспектов: нахождение частных производных и построение матрицы Якоби, формирование СЛАУ и итерационное нахождение приближений. Алгоритмическая сложность метода составила $O(n^3)$.

Метод Гаусса — метод решения СЛАУ, отличающийся высокой эффективностью и точностью для небольших и средних систем, однако возможна численная нестабильность из-за ошибок округления.