Coagulation Disorders

Basic Definitions

• <u>Ecchymosis</u>

- o Bruise
- Most common complication during blood collection
- o Leakage of small amount of fluid around tissue
- Prevented by direct pressure

Syncope

- o Fainting
- o 2nd most common complication

Hematoma

- o Leakage of large amount of fluid around puncture site
- Swelling

Petechiae

- Small red spots
- o Pinpoint size
- o Indicate small amount of blood escape into epithelium

• <u>Purpura</u>

- o Purple skin discoloration
- o 1 cm or greater in diameter
- o seen with mucocutaneous bleeding

• Telangiectasia

- o Permanent dilation of small blood vessels
- o Focused red lesions in skin or mucous membrane
- o fragile
- o Telangiectasis
- o Cherry-red hemangiomas
- o Louis-Bar

• Angioma

- o tumor made up of blood vessels or lymph vessels
- o 2-6 mm
- o usually seen on trunk

• <u>Hematur</u>ia

- o Blood in urine
- Epistaxis
 - o Nose bleed

Hemorrhagic Coagulation Disorders

- Bleeding from multiple sites, recurring and spontaneous, or bleeding which requires intervention is evidence of a disorder or primary or secondary hemostasis
- Soft Tissue Hemorrhage: acquired or congenital plasma procoagulant deficiencies
 - Anatomic bleeding
 - o Most are internal with few visible signs
- <u>Hemarthroses</u>: joint bleeds
 - Swelling and acute pain
 - o Can cause permanent cartilage damage
- Mucocutaneous hemorrhage:
 - o Purpura
 - o Petechiae
 - Ecchymoses
 - o Menorrhagia
 - o Bleeding from gums
 - o Epistaxis
 - o Tends to be associated with:
 - thrombocytopenia
 - qualitative platelet disorders
 - vWD
 - scurvy
 - telangiectasia

Acquired Hemorrhagic Disorders

- Most are secondary to chronic disease
- 1. Trauma-Induced Coagulopathy
 - Accounts for most instances of fatal hemorrhage
 - Triggered by the combination of injury-related acute inflammation, hypothermia, acidosis and hypoperfusion (systemic shock)
 - A. Massive Transfusion
 - a. Massive hemorrhage defined as:
 - i. Blood loss exceeding total blood volume within 24 hours
 - ii. Loss of 50% of blood volume within a 3-hour period
 - iii. Blood loss exceeding 150mL/min
 - iv. Blood loss that necessitates plasma and platelet transfusion
 - B. Plasma donation
 - a. New term is FP-24, moving away from previous term of FFP
 - C. Platelet Concentration
 - a. Usually only when platelet count fall bellows 50,000/uL
 - D. Concentrates

2. Liver Disease

- Produces nearly all plasma coagulation factors and regulatory proteins
- Causes of suppression
 - o Hepatitis
 - o Cirrhosis
 - Obstructive jaundice
 - o Disorder of bilirubin metabolism
- Suppression of hepatocytes which will reduce concentrations or function of plasma coagulation factors to less than hemostatic levels (<40 units/dL)
- Affects production of vitamin K dependent factors (II, VII, IX, X, C, S, Z)
 - VII first to show decreased activity
 - ½ life = 6 hours
- Declining factor V is specific marker of liver disease
 - o Differentiates vitamin K deficiency from liver disease (FV is not Vit. K Dependent)
- Decrease of fibrinogen < 100 mg/dL is a mark of liver failure
- Dysfibrinogenemia is seen in moderate liver disease
 - o Prolonged PT and RT
- vWF, VIII, XIII can be normal or elevated
- Thrombocytopenia occurs in 1/3 of the cases of liver disease
- Alcohol toxicity suppresses platelet production
- DIC in Liver Disease
 - Significant complication of liver disease
 - o Decreased production of AT, protein C, or protein S and release of procoagulants
 - Liver does not clear these procoagulants
 - Acute
 - PT, PTT, TT prolonged
 - Fibrinogen < 100 mg/dL
 - Increased FDPs
 - Chronic and compensated
 - Abnormal D-dimer
- Laboratory Testing
 - o Factor V and VII assays
 - Differentiate vitamin K deficiency and liver disease
 - Confirmation of systemic fibrinolysis
 - Plasminogen deficiency
 - Increased D-dimer / FDPs
 - Reptilase time
 - Confirms dysfibrinogenemia (significantly prolonged)
- 3. Renal Failure and Hemorrhage
 - Chronic renal failure associations
 - Platelet dysfunction
 - Mucocutaneous bleeding
 - Acute GI bleeding
 - Decreased PLT adhesion/aggregation
 - Decreased RBC mass and thrombocytopenia

- Hemostasis Activation Syndromes
 - o Deposits fibrin into renal microvasculature which reduces glomerular filtration
 - DIC
 - HUS
 - TTP
 - Cause thrombocytopenia → bleeding
 - PT and PTT are expected to be normal
 - Bleeding time may be prolonged
- Nephrotic Syndrome
 - o Increased glomerular permeability
 - Associations
 - Amyloidosis
 - Diabetic glomerulosclerosis
 - SLE
 - Glomerulonephritis
 - Renal vein thrombosis
 - o LMW proteins and procoagulants found in urine
 - o Coagulation factors II, VII, IX, X, XII, antithrombin and protein C been found in the urine

4. Vitamin K Deficiency

- γ-carboxylation cycle is interrupted
- Causes
 - Biliary duct obstruction
 - Fat malabsorption
 - Chronic diarrhea
 - o Broad spectrum antibiotics that disrupt gut flora
- Hemorrhagic Disease of Newborn
 - o Breast feeding prolongs deficiency
- Antagonists
 - Warfarin
 - o Coumadin
 - o Disrupt vitamin K epoxide reductase and quinone reductase reactions → release of dysfunctional *des-gamma-carboxyl prothrombin* (VII, IX, X, C, S)
 - These inactive forms are called PIVKA factors
 - Proteins Induced by Vit. K Antagonists
- Lab Findings
 - Prolonged PT
 - o PTT can be normal or prolonged
 - Mixing study yields normal results
 - o Decreased factor VII (followed by IX, X and II)

5. Acquired Anti-VIII Inhibitor and Hemophilia

- Anti-VIII is most common acquired autoantibody
 - o Highest risk when > 60 years of age or women 2-5 months pregnant
- Lab findings in acquired hemophilia
 - o Prolonged PTT w/likely normal PT, TT

- Mixing study
 - Corrects on initial
 - Can be prolonged with incubation at 37 C
 - IgG isotype (time and temp dependent)
- Type I kinetics: linear in vitro neutralization over 1-2 hours
 - o complete inactivation
- Type II kinetics: early rapid loss with residual activity
 - o Intermediate equilibrium
- Quantified by Bethesda titer
- Treated with DDAVP or rFVIIIa

6. Acquired vWD

- Manifests w/moderate to severe mucocutaneous bleeding and no family history of bleeding
- Associations
 - Hypothyroidism
 - o Lymphoproliferative or myeloproliferative disorders
 - o Wilms tumor (nephroblastoma)
 - o Congenital heart disease
 - o HUS
 - o Pesticide exposure
- Prolonged PTT is severe (↓VWF and FVIII)
- Diminished ristocetin cofactor/VWF activity/VWF antigen

Congenital Hemorrhagic Disorders

- 1. vWD
 - mucocutaneous bleeding disorder
 - caused by quantitative or qualitative abnormality of vWF
 - vWF basics
 - Main function is platelet adhesion to subendothelial collagen in high shear stress
 - Synthesized in ER and stored in weibel-palade bodies of endothelial cells and platelet α -granules
 - o abnormality causes \downarrow platelet adhesion impaired primary hemostasis
 - most prevalent congenital bleeding disorder!
 - normal plasma level 0.5 1 mg/dL
 - o levels are normally lowest in O and highest in AB blood types
 - Domain A
 - o binding site for GP Ib/V/IX and supports collagen receptor site
 - Domain C
 - o provides a site that binds platelet receptor GPIIb/IIIa
 - Domain D
 - o binds factor VIII
- 2. Hemophilia A (classic)
 - Congenital single factor deficiency marked by anatomic soft tissue bleeding
 - 85% of all hemophiliacs
 - Factor VIII deficiency
 - Factor VIII deteriorates ~5% per hour at RT in vitro

- X chromosome abnormality
- Male hemizygotes experience anatomic bleeding
 - o Females are carriers
- All sons of hemophiliac men are normal if non-carrier mom
 - o Daughters are carriers
- 30% arise from spontaneous germline mutations (no family history)
- Rare symptomatic females
 - o True homozygosity or double heterozygosity
 - o Extreme lyonization
 - Disproportional inactivation of X chromosome with normal gene
- Factor VIII inhibitor in about \sim 30% of sever hemophilia cases (3% in moderate cases)
- Clinical manifestations
 - Deep muscle and joint hemorrhage
 - Hematomas
 - Wound oozing
 - o Bleeding into CNS, GI, kidneys
 - o Inflammation with chronic joint bleeds
 - Cranial bleeds → neurological symptoms
- Severity is *inversely* proportional to factor VIII activity
 - o <1% activity: severe</p>
 - o 1-5%: moderate
 - o 5-40%: mild
 - hemorrhage follows significant trauma
- 70% cases treated before 1984 were HIV (+) or died from AIDS
- Lab Findings
 - o Prolonged PTT
 - \circ 90% of female carriers are detected using the ratio of factor VIII activity to vWF antigen (VWF unaffected by \downarrow FVIII)
 - ratio below normal lower limit → carrier
 - o If FVIII level is >30%, no inhibitor is likely
 - o If FVIII level is <30%, mixing study is needed
 - Bethesda Assay (Nijmegen-Bethesda)
 - o If inhibitor is suggested
 - Normal plasma providing 100 units/dL factor activity mixed at increasing dilutions (decreasing conc.) in a series of tubes with full-strength patient plasma
 - The FVIII assays are performed and the results of the dilutions are expressed as titer (BU)
- 3. Hemophilia B-Factor IX deficiency
 - Christmas disease
 - ~14% hemophilia
 - PTT prolonged
 - Inhibitors present in ~3%
- 4. Hemophilia C (Rosenthal Syndrome)
 - Factor IX Deficiency

5. Factor V deficiency

- Prolonged bleeding
- PT and PTT prolonged
- DRVVT prolonged

6. Factor X deficiency

- PT and PTT prolonged DRVVT prolonged

7. Factor XIII deficiency

- Weak clot; dissolves ~2 hours in 5 M urea
- Normal PT, PTT, TT

Vascular Disorders

Hereditary Vascular Disorders

- 1. Telangiectasis/Rendu-Weber-Osler syndrome
 - Thin walled blood vessels with discontinuous endothelium
 - Inadequate smooth muscle and elastin
 - Telangiectasia on face, lips, tongue, nasal mucosa, fingers, toes, trunk
 - Lesions blanch with pressure
 - Manifests at puberty
 - Epistaxis is universal finding
 - Symptoms worsen with age
 - Normal bleeding time
 - Diagnosis: characteristic skin/mucous lesions
- 2. Kasabach-Merritt/hemangioma thrombocytopenia
 - Present at birth
 - Visceral or subcutaneous hemangiomas
 - o May become engorged with blood
 - DIC
 - Microangiopathic hemolytic anemia
- 3. Ehlers-Danlos
 - Hyperextensible skin
 - Hypermobile joints
 - Joint laxity
 - Fragile tissues
 - Bleeding tendency
 - Defects in collagen
 - Structure
 - o Production
 - Cross-linking
 - → inadequate connective tissue
 - (+) tourniquet test and prolonged bleed time

Acquired Vascular Disorders

- 1. Allergic Purpura/Henoch-Schonlein
 - Characterized by skin rash and edema
 - Transient arthralgia
 - Nephritis
 - Abdominal pain
 - Palpable purpura
 - o Feet
 - Elbows
 - Knees
 - o Buttocks

- o Chest
- Children 2-7 years
 - o Predominates in boys
- Sudden onset following upper respiratory infection
- Proteinuria and hematuria
- Elevated WBC and ESR
- Normal hemostasis testing

2. Amyloidosis

- Deposition of abnormal quantities of amyloid in tissues
- Clinical presentation
 - o Purpura
 - o Hemorrhage
 - o Thrombosis

3. Senile purpura

- Elderly males
- Lack of collagen
- Flat dark blotches

4. Drug induced purpura

- Warfarin
- Barbiturates
- Diuretics
- Sulfonamides
- Iodides
- Massive generalize petechial eruptions

Qualitative Platelet Disorders

Disorders of Adhesion Receptors

- 1. Bernard Soulier
 - Giant platelets Syndrome
 - Manifested in infancy or childhood
 - Characteristics
 - Ecchymoses
 - Epistaxis
 - o Gingival bleeding
 - Prolonged bleeding
 - o Thrombocytopenia
 - o Decreased platelet survival
 - Inability to adhere to subendothelium
 - GP Ib/IX/V is missing or dysfunctional (Autosomal recessive)
 - Most frequently involves defect in Ib synthesis or expression
 - Contains binding sites for vWF and thrombin
 - In contrast to VWD, this abnormality cannot be corrected by the addition of normal plasma or cryoprecipitate (defect resides in the platelets)
 - No aggregation with ristocetin
 - o Normal response to ADP, EPI, collagen, and arachidonic acid
- 2. Von Willebrand Disease
- 3. Acquired defects of platelet adhesion
 - Myeloproliferative and lymphoproliferative disorders
 - Antiplatelet antibodies
 - Cardiopulmonary bypass surgery
 - Chronic Liver Disease
 - Drug-induced membrane modification

Disorders of Platelet Aggregation

- 1. Glanzmann Thrombasthenia
 - Heterozygotes are normal
 - Homozygotes
 - Severe bleeding problems
 - Neonatal or infancy
 - Manifestations
 - Epistaxis
 - Gingival bleeding
 - o Disabling hemorrhage
 - o Petechiae
 - o Purpura
 - o Menorrhagia
 - GI bleeding
 - Hematuria
 - Deficiency or abnormality of GP IIb/IIIa (no fibrinogen binding)
 - defect in platelet plug formation

- Lab findings
 - Normal platelet count and morphology
 - Markedly prolongs bleeding time
 - Lack of aggregation with all platelet activating agents
 - Ristocetin induced binding to vWF is normal
- 2. Hereditary afibrinogenemia
- 3. Acquired defects of platelet aggregation
 - acquired von Willebrand disease
 - acquired uremia

Disorders of Platelet Secretion

- 1. Storage Pool diseases
 - a. Dense Granule Deficiency
 - Non-albinos
 - Normal levels of granules
 - Defect in ability to package → serotonin accumulation
 - Albinism
 - Easy bruising
 - Mild bleeding
 - Lack of aggregation caused by lack of ADP secretion
 - o Hermansky-Pudlak
 - o Chediak-Higashi
 - o Wiskott Alderich
 - o TAR (Thrombocytopenia with Absent Radii Syndrome)
 - b. Alpha Granule Deficiency
 - i. Gray platelet syndrome
 - Mild bleeding tendency
 - Prolonged bleeding time
 - Moderate thrombocytopenia
 - Fibrosis of marrow
 - Large platelets
 - ATP release in response to thrombin is reduced
- 2. Thromboxane Pathway Disorder
 - Hereditary absence or abnormalities of components of thromboxane pathway
 - Series of phospholipases catalyze the release of arachidonic acid and other compounds from membrane phospholipids
 - o Arichidonic acid is converted to intermediate prostaglandins by cyclooxygenase
 - \circ Those intermediate prostaglandins are converted to thromboxane A_2 by thromboxane synthase
 - Thromboxane A₂ (with other compounds) mobilizes calcium from internal stores into the cytoplasm initiating events leading to secretion and aggregation of platelets
 - Aspirin like defects

- 3. Inherited disorders of receptors and signaling pathways
 - Collagen Receptors defects (GP Ia/IIa or GP VI)
 - ADP Receptors defects (P2X₁, P2Y₁ and P2Y₁₂)
 - Epinephrine Receptor (α₂-adrenergic receptor) defects
 - Scott syndrome
 - o Platelets do not transport phospholipids to outer membrane
 - o Platelet plug is not stabilized due to lack of fibrin
 - Stromorken syndrome
 - o Platelets always in activated state

Thrombocytopenia and Thrombocytosis (Quantitative)

Thrombocytopenia

- Platelet count < 100,000/uL (reference range 150,000 450,000/uL)
- Most common cause of clinically significant bleeding
- Impaired/Decreased Production
 - o Megakaryocyte hypoplasia in BM
 - o Congenital
 - Lack of adequate megakaryocytes or decreased thrombopoiesis
 - Fanconi anemia
 - pancytopenia
 - TAR syndrome
 - Rare autosomal recessive disorder
 - Neonatal thrombocytopenia (platelet count actually increases with age)
 - Hypoplasia of radial bones of forearms
 - Elevated WBC
 - Wiskott-Alderich
 - X linked
 - Bernard-Soulier
 - MYH9-Related Diseases (nonmuscle myosin heavy chain gene) –abnormal platelet size
 - May Hegglin anomaly
 - Autosomal dominant
 - Large platelets and thrombocytopenia (normal platelet activating agent responses)
 - Dohle-bodies in neutrophils
 - More rare: Sebastian syndrome, Fechtner syndrome and Epstein syndrome
 - Amegakaryocytic thrombocytopenia
 - autosomal recessive reflecting BM failure
 - Infants < 20,000 platelets at birth
 - Petichiae
 - Likely develop aplastic anemia before 1 year old
 - Reduced megakaryocyte progenitors and

 TPO (TPO receptor function is lost)
 - Neonatal Thrombocytopenia
 - Many types
 - Causes:
 - o TORCH (toxoplasmosis, other (*Treponema pallidum*, varicella-zoster virus, parvovirus B19), rubella, cytomegalovirus [CMV], herpes)
 - Drug exposure in utero (sulfonamides)
 - o Decrease or absence of megakaryocytes in neonates
 - Acquired
 - Drugs
 - Chemotherapeutic agents
 - Ethanol ingestion (months to years of excessive use)
 - Interferon therapy

- o Ineffective thrombosis
 - Megaloblastic anemias
 - Thrombocytopenia caused by impaired DNA synthesis
 - Deformed megakaryocytes in BM
 - Large platelets in PB that have shortened survival time and abnormal function
- Viruses
- Bacteria
- Malignancy

Increased Platelet Destruction

- o Immunologic responses
 - ITP
 - Idiopathic; no etiology
 - Acute
 - o Children 2-5 years
 - o Abrupt bruising, petechiae, mucosal bleeding
 - o 1-3 weeks after infection (upper respiratory or GI virus)
 - o self-limited
 - o 3-4% considered severe with <10,000 platelets
 - o binding of antibodies from previous infections to platelets
 - Chronic
 - o Most prevalent in women 20-50 years
 - o Mucocutaneous bleeding, menorrhagia, epistaxis, ecchymoses
 - Caused by autoantibodies attached to platelets → shortened platelet lifespan
 - o Increased platelet volume
 - Both chronic and acute will show abnormal platelet function test results
 - Drug induced
 - Quinidine/quinine/sulfonamide derivatives
 - Abrupt onset of bleeding symptoms
 - o Drug combines with antibody and binds platelets by Fab regions
 - Fc regions of immunoglobulin still available to bind to Fc receptors of phagocytic cells
 - o Platelet count drops rapidly and often may be <10,000/uL
 - Hapten- dependent
 - o Drug combines with a carrier molecule (usually plasma protein) to then act as a complete antigen
 - o Penicillin and penicillin derivatives
 - Platelet count rapidly declines and can be as low as <1,000/uL
 - Drug induced autoantibodies
 - Drugs stimulate formation of autoantibody that binds platelet in absence of drug
 - HIT (Heparin-induced thrombocytopenia)
 - Binding of therapeutic heparin to platelet factor 4 (PF4) or binding of PF4 to the platelet membrane causes conformational change in PF4
 - This creates exposed necepitopes
 - The Fab portion of an IgG binds to the PF4 necepitope
 - The Fc portion of the IgG binds with the platelet FcγIIa receptor, leading to platelet activation and aggregation

- %-14 days after exposure to heparin, platelet counts rarely dip below 15,000/uL
 - Mild thrombocytopenia is more common
- NAIT
 - Neonatal alloimmune thrombocytopenia
 - Mother lacks platelet specific antigen that fetus inherits from father
 - She makes antibodies to that fetal antigen
 - Scattered petechiae and purpuric hemorrhage soon after birth
- Neonatal autoimmune
 - Passive transplacental transfer of antibodies from mother with ITP or systemic lupus erythematosus
- PTP
 - Post transfusion purpura
 - Plasma from recipient contain alloantibodies to antigens on platelets of transfused product
 - Multiparous middle aged women
- o Nonimmunologic Responses
 - Mechanical damage
 - platelet interaction to nonendothelial surfaces
 - Thrombocytopenia in pregnancy and preclampsia
 - Hemolytic Disease of the Newborn
 - TTP (Thrombotic Thrombocytopenic Purpura)
 - Moschcowitz syndrome
 - Microangiopathic hemolytic anemia
 - o Thrombocytopenia
 - Neurologic abnormalities
 - o Hemolysis usually sever (less than 10 mg/dL Hgb)
 - Directly related to accumulation of ultralarge von Willebrand factor (UL-VWF) multimers in the plasma
 - In normal plasma the UL-VWF multimers are rapidly cleaved into smaller VWF multimers by the VWF-cleaving protease ADAMTS13
 - Treatment: Therapeutic plasma exchange (TPE) with FFP
 - o 1st: some of UL-VWF removed by apheresis
 - o 2nd: plasma supplies the deficient ADAMTS13 protease
 - HUS (Hemolytic Uremic Syndrome)
 - Microangiopathic hemolytic anemia
 - more common than TTP
 - 90% of cases caused by *Shigella dysenteriae* serotypes or entrohemorrhagic *E. coli* OH serotypes (E. coli O157)
 - Toxins enter the bloodstream and attach to renal glomerular capillary endothelial cells
 - o become damaged/swollen and release UL-VWF
 - o can also be caused by certain drugs
 - Cardinal signs of HUS:
 - o Hemolytic anemia, renal failure, and thrombocytopenia
 - o Thrombocytopenia more mild in comparison to TTP

- DIC (Disseminated intravascular coagulation)
 - activation of coagulation cascade (many causes) resulting in a consumptive coagulopathy that entraps platelets in intravascular fibrin clots
 - similar to TTP including MAHA and deposition of thrombi in arterial circulation of most organs
 - DIC = red clots whereas TTP = white clots

Acute DIC

- Severe thrombocytopenia with decreased FV, FVIII and fibrinogen
- D-dimer is positive

Chronic DIC

- clotting factors may be slightly reduced or normal and compensatory thrombocytopoiesis results in lower to normal platelet counts
- D-dimer not usually elevated but can be slightly increased

• Purpura Fulminans

- devastating thrombotic disorder (often acute and fatal)
- mirror symptoms of DIC
- can be presenting feature of acute sepsis from bacterial infection
 - o inflammatory response where coagulation and complement pathways are on overdrive which leads to increased bleeding

Thrombocytosis

- Defined as abnormally high platelet count, typically >450,000/uL
- Reactive thrombocytosis used to describe elevation of platelet count secondary to inflammation
- Marked and persistent elevation in platelet count is hallmark of myeloproliferative disorders
- Reactive Thrombocytosis
 - o Platelet counts between 450,000 to 800,000/uL with no change in platelet function
 - Reactive Thrombocytosis Associated with Hemorrhage or Surgery
 - Platelet count can be low for 2-6 days but rebounds to slightly elevated levels
 - Normal levels by 10-16 days after the blood loss
 - Postsplenectomy Thrombocytosis
 - Platelet count can exceed 1 million/uL
 - Spleen normally sequesters 1/3 of circulating platelets at any given time
 - Thrombocytosis Associated with Iron Deficiency Anemia
 - Believed iron plays a role in regulating thrombopoiesis
 - Platelet count as high as 2 million have been seen in IDA with return to normal when iron treatment is administered
 - Thrombocytosis Associated with Inflammation and Disease
 - Similar to elevation in C-reactive protein, fibrinogen and VWF and other acute phase reactants
 - Kawasaki disease
 - Disorder caused by inflammation of the walls of small and medium-sized arteries throughout the body
 - Exercise-Induced Thrombocytosis
 - Rebound Thrombocytosis
- Thrombocytosis Associated with Myeloproliferative Disorders
 - o Common finding in four chronic myeloproliferative disorders including:
 - Polycythemia vera
 - Chronic myelogenous leukemia (CML)
 - Myelofibrosis with myeloid metaplasia (primary myelofibrosis)
 - Essential thrombocythemia (ET)
 - ET is a chronic myeloproliferative neoplasm
 - Most common cause of thrombocytosis when reactive thrombocytosis can be excluded
 - Platelets of 1 million/uL and proliferation of marrow megakaryocytes
 - Persistent elevation of platelet count is an absolute requirement for diagnosis
 - o ET presents with hemorrhage, platelet dysfunction and thrombosis
 - o Thrombosis in microvasculature or larger vasculature can occur
 - Lab Findings:
 - Platelet size is heterogeneous and platelets may be notable clumped on smears
 - Platelets may look agranular or hypogranular
 - Giant or misshapen platelets is common finding
 - Aggregation usually absent in response to EPI and ADP; Normal