Lecture 7

Students evaluation for the "Manifolds" course: http://evaluation.tu-darmstadt.de/evasys/online.php?pswd=Y5DJH

Chapter 6 Submanifolds

- 6.1 Definition
- 6.2 Characterizations
- 6.3 Tangent bundle to a submanifold
- 6.4 Whitney's theorems

6.1 Definition

Question: what's a good definition of a submanifold?

Definition

Let N be a smooth n-manifold and let $M\subseteq N$ be a subset. M is a **smooth submanifold** of N if $\forall x\in M$, there exists a smooth chart $(U\ni x,\varphi)$ on N s.t. $\varphi(U\cap M)=\varphi(U)\cap \mathbb{R}^m$.

(Roughly speaking, $M \subseteq N$ locally looks like $\mathbb{R}^m \subseteq \mathbb{R}^n$.)

Fact. If M is a smooth submanifold of N, then M is a topo. submanifold of N, and the restriction of the charts (U, φ) as in the definition defines a smooth structure on M.

Proposition (characterization of smooth submanifolds)

Let N be a smooth manifold and let $M \subseteq N$ be a subset. TFAE:

- (i) M is a smooth submanifold of N.
- (ii) M is a smooth manifold, and the inclusion $\iota \colon M \to N$ is a smooth embedding.

Proof.

- (i) \Rightarrow (ii): easy by def. of the smooth structure of M.
- (ii) \Rightarrow (i): Follows from the constant rank theorem.

Extension of the definition.

Definition (embedded and immersed submanifolds)

Let N be a smooth manifold.

- An embedded submanifold is a smooth manifold M equipped with a smooth embedding ι: M → N.
- An immersed submanifold is a smooth manifold M equipped with a smooth immersion ι: M

 N.

Example. Show that the boundary of the unit square $[0,1] \times [0,1]$ is an embedded submanifold of \mathbb{R}^2 , but not a smooth submanifold.

Example. Show that the figure "8" in the plane is not an embedded submanifold, but it can be realized as an immersed submanifold.

Examples. See **Chapter 3** for examples of submanifolds, **Chapter 5** for examples of immersed and embedded submanifolds.

Exercise. Show that an embedded submanifold $M \hookrightarrow N$ is properly embedded iff it is a closed subset of N.

6.2 Characterizations

Let us take $N = \mathbb{R}^n$ first.

Theorem

Let $M \subseteq \mathbb{R}^n$ be a subset. The following are equivalent:

- (i) M is a smooth submanifold of dim m.
- (ii) M is locally an embedding of \mathbb{R}^m : $\forall x \in M \ \exists U \ni x \subseteq \mathbb{R}^n$ and a smooth embed. $f: V \subseteq \mathbb{R}^m \to \mathbb{R}^n$ s.t. $f(V) = U \cap M$. f is called a **local parametrization** of M.
- (iii) M is locally a fiber (level set) of a submersion: $\forall x \in M \ \exists U \ni x \subseteq \mathbb{R}^n \ \text{and} \ h \colon U \to \mathbb{R}^{n-m} \ \text{s.t.} \ U \cap M = F^{-1}(0).$
- (iv) M is locally the graph of a smooth function: $\forall x \in M \ \exists U \ni x \subseteq \mathbb{R}^n$ and a smooth function $g \colon V \subseteq \mathbb{R}^m \to \mathbb{R}^{n-m}$ such that $M \cap U$ is the graph of g, possibly after permuting coordinates.

Let $M \subseteq \mathbb{R}^n$ be a subset. The following are equivalent:

- (i) M is a smooth submanifold of dim m.
- (ii) M is locally an embedding of $\mathbb{R}^m \to \mathbb{R}^n$.
- (iii) M is locally a fiber (level set) of a submersion $\mathbb{R}^n \to \mathbb{R}^{n-m}$.
- (iv) M is locally the graph of a smooth function $\mathbb{R}^m \to \mathbb{R}^{n-m}$.

Proof. Essentially, it all follows from the constant rank theorem.

- (i) \Rightarrow (ii): Let φ be a chart as in the def. of a submanifold. Take $(\varphi_{|_M})^{-1}$.
- (i) \Rightarrow (iii): Write $\varphi = (\varphi^1, \dots, \varphi^n)$. Take $h \coloneqq (\varphi^{m+1}, \dots, \varphi^n)$.
- (iii) \Rightarrow (ii), (ii) \Rightarrow (iii), and (ii) \Rightarrow (i): Constant rank theorem.
- (iv) \Rightarrow (iii): Easy (take "h(x, y) = y g(x)")
- (iii) ⇒ (iv): Implicit function theorem.

Exercise: Write the details. Good exercise of differential calculus! (Reference for proof using only the inverse function theorem: [Lafontaine: Chap. 1].)

6.2 Characterizations

Remark. Same theorem "in charts" for $N = \mathbb{R}^n$.

Corollary

If $f: M \to N$ is a smooth submersion, then for any $y \in N$, $f^{-1}(y) \subseteq M$ is a smooth submanifold of M of codim. dim N.

Proof. Using charts at $x \in M$ and $y = f(x) \in N$, reduce to open sets of \mathbb{R}^m and \mathbb{R}^n and apply the previous theorem.

Remark. $f^{-1}(y)$ is called a *fiber* of f. It can be empty, it can be disconnected.

Definition

The subset (or a connected component of) $f^{-1}(y) \subseteq M$ is a *level set* of f. $f^{-1}(y)$ is called a *regular level set* if f is a submersion at all points of $f^{-1}(y)$.

More generally, we have:

Corollary

Let $f:M\to N$ be a smooth map. Any regular level set of f is a smooth (properly embedded) submanifold.

The previous corollary is often applied when $N = \mathbb{R}$:

Corollary

Let $f:M\to\mathbb{R}$ be a smooth function. Any regular level sets of f is a smooth **hypersurface** [(connected) submanifold of codimension 1].

Examples of submanifolds defined by submersions.

Conics. Let P(x,y) be a polynomial function of degree 2 in two variables. The set $C\subseteq\mathbb{R}^2$ defined by P=0 is called a *conic*. If the gradient of P never vanishes (on C), then C is called a regular conic, and is a smooth curve in \mathbb{R}^2 .

Quadrics. Let P(x,y,z) be a polynomial function of degree 2 in three var. The set $C\subseteq\mathbb{R}^3$ defined by P=0 is called a *quadric*. If the gradient of P never vanishes (on C), then C is called a regular quadric, and is a smooth surface in \mathbb{R}^3 .

Go to en.wikipedia.org/wiki/Quadric to see pictures of quadrics.

Projective hypersurfaces. Let $P(x_1,\ldots,x_{m+1})$ be a homogeneous pol. Assume that the gradient of P does not vanish on $\mathbb{R}^{m+1}-\{0\}$. Exercise: The equation P=0 defines a smooth submanifold of $\mathbb{R}P^m$.

Examples of submanifolds defined by submersions.

Special linear group. $SL(n, \mathbb{R})$ is a smooth hypersurface in $M(n, \mathbb{R})$:

Consider the determinant function $\det\colon \operatorname{M}(n,\mathbb{R}) \to \mathbb{R}$.

It follows that $SL(n, \mathbb{R})$ is a smooth submanifold of $GL(n, \mathbb{R})$, so it's a matrix Lie group.

Orthogonal group. $O(n, \mathbb{R})$ is a smooth submanifold of $M(n, \mathbb{R})$:

Consider the map $M(n, \mathbb{R}) \to M(n, \mathbb{R})$, $M \mapsto {}^t\!MM$.

It follows that $O(n, \mathbb{R})$ is a matrix Lie group.

Examples of submanifolds defined by (local) parametrizations .

Smooth immersed curves. Let $\gamma: I \to M$ s.t. γ' does not vanish.

Spherical coordinates. (θ, φ) define local parametrizations on S^2 .

6.3 Tangent bundle to a submanifold

Proposition

If $M \subseteq N$ is a smooth submanifold, then $TM \subseteq TM$ is a smooth subbundle.

Proof. The differential of the inclusion $\iota \colon M \to N$ is a smooth injective bundle homomorphism $TM \to TN$.

Remark. Similar statement for immersed and embedded submanifolds.

Example (Submanifolds of \mathbb{R}^n)

If $M \subseteq \mathbb{R}^n$ is a smooth submanifold, then $\forall x \in M$, $T_x M$ is a vector subspace of \mathbb{R}^n .

The affine space through $x \in M$ with underlying vector space $T_x M$ is called the **affine tangent space** to $M \subseteq \mathbb{R}^n$.

6.4 Whitney's theorems

6.4 Whitney's theorems

First we need the existence of *smooth* bump functions and partitions of unity:

Theorem

Let M be a smooth manifold.

- $\forall K$ (compact) $\subseteq U$ (open) in M, \exists a smooth bump function f for K supp. in U. (f is a smooth function $M \to \mathbb{R}$ and is a bump function f for K supported in U.)
- For any open cover (U_i)_{i∈I}, there exists a smooth partition of unity (ρ_i)_{i∈I} subordinate to (U_i)_{i∈I}.

Proof.

- First prove that for any $p \in U$, there exists a compact neighborhood $K_p \subseteq U$ and a smooth bump function f_p for K_p supported in U (use a chart). Then extract a finite subcover from all the K_p and cook up a smooth bump function out of the f_p . Details: [Lafontaine, Cor. 3.5].
- By paracompactness, let $(V_i)_{i \in I}$ be a locally finite refinement of $(U_i)_{i \in I}$. WLOG, we can assume $\overline{V_i}$ is compact and $\subseteq U_i$. Then let f_i be a smooth bump function for $\overline{V_i}$ supported in U_i , and put $\rho_i = \frac{f_i}{\sum_{j \in I} f_j}$. Details: [Lafontaine, Prop. 6.14].

Theorem (Whitney's theorem, easiest version)

Any smooth manifold M admits a smooth embedding into \mathbb{R}^N for some $N \in \mathbb{N}$.

Proof. Same as in Chapter 1, using a smooth partition of unity.

Remark. Does not mean that abstract manifolds are a useless concept!

Theorem (Whitney's theorem, easy version)

In the previous theorem, one can take N=2m+1 (where $m:=\dim M$). If one only wants an immersion, one can take N=2m.

Proof sketch. By the previous theorem, we can assume M is a submanifold of \mathbb{R}^N . Using Sard's theorem, one can show that \exists a hyperplane $H \subseteq \mathbb{R}^N$ s.t. the orthogonal projection of M to H is an immersion if N > 2m and an embedding if N > 2m + 1. Conclude by induction. *Details:* [Lafontaine, Cor 3.8] (or [Lee, Lemma 6.14].)

Remark. Holds if *M* is noncompact, holds if *M* has boundary.

Theorem (Whitney's theorem, strong version)

In the previous theorem, one can take N=2m (where $m:=\dim M$). If one only wants an immersion, one can take N=2m-1 (for m>1).

Proof: we admit it. Very hard!

Example. Every surface can be embedded in \mathbb{R}^4 and immersed in \mathbb{R}^3 .

Remark. Even the strong Whitney theorem is not sharp in all dimensions. For instance, every 3-manifold can be embedded in \mathbb{R}^5 . The sharp bound is only known in certain dimensions.

Whitney approximation theorems.

For us, these will be off topic, but let us give a brief mention. For details, refer to [Lee, end of Chap. 6: "The Whitney approx. theorems"].

Theorem (Whitney approximation theorems)

Let M be a smooth manifold.

- $\forall f: M \to \mathbb{R}^n$ continuous and $\forall \varepsilon: M \to \mathbb{R}_{>0}$ continuous, $\exists \tilde{f}: M \to \mathbb{R}^n$ smooth s.t. $|\tilde{f} f| < \varepsilon$.
- $\forall f: M \to N$ continuous where N is a smooth manifold, $\exists \tilde{f}: M \to N$ smooth s.t. \tilde{f} and f are homotopic.

Chapter 7 Vector fields

- 7.1 Definition and examples
- 7.2 Vector fields as derivations
- 7.3 Pushforward of a vector field
- 7.4 Vector fields in local coordinates

7.1 Definition

7.1 Definition

Definition

Let $\pi\colon E\to B$ be a fiber bundle. A **section of** E is a map $s\colon B\to E$ s.t. $\pi\circ s=\mathrm{id}_B$. The space of sections of E is denoted $\Gamma(E)$.

Remarks.

- $s: B \to E$ is a section $\Leftrightarrow \forall x \in B \ s(x) \in E_x$, where $E_x: \pi^{-1}(x)$ is the fiber over x.
- Henceforth, we only consider smooth fiber bundles and smooth sections.

Definition

Let M be a smooth manifold. A (smooth) *vector field* on M is a section of TM. The space of vector fields on M is denoted $\Gamma(TM)$.

Remarks

- A vector field on M is a smooth map $X: M \to TM$ s.t. $\forall p \in M, X(p) \in T_pM$.
- We write X_p (or $X_{|_p}$) instead of X_p .

7.1 Definition and examples

Examples.

Example 1. Let $F: U \subseteq \mathbb{R}^m \to \mathbb{R}^m$ be a smooth function.

Define $X: U \to TU$ by $X_p = F(p) \in \mathbb{R}^m \approx T_pU$. Then X is a vector field on U.

Remark. In fact, a vector field is always of this form, when looking at it in a chart.

For instance, take $F \colon \mathbb{R}^2 \to \mathbb{R}^2$ defined by:

- (a) F(x, y) = (1, 2)
- (b) $F(x,y) = (-x, -y)/\sqrt{x^2 + y^2}$
- (c) $F(x, y) = (\cos y, \sin x)$
- (d) F(x, y) = (x, -y)

7.1 Definition and examples

Examples.

7.1 Definition and examples

Examples.

Example. Two vector fields on the sphere:

- $X_{(x,y,z)} = (-y, x, 0)$ $Y_{(x,y,z)} = (xz, yz, -x^2 y^2)$

Definition and examples

Examples.

Example: Coordinate vector fields.

Let (x^1,\ldots,x^m) be local coordinates on $U\subseteq M$. Then $\frac{\partial}{\partial x^1},\ldots,\frac{\partial}{\partial x^m}$ are vector fields on U, called **coordinate vector fields**.

7.2 Vector fields as derivations

7.2 Vector fields as derivations

Let *X* be a vector field on a smooth manifold *M*. Let $f: M \to \mathbb{R}$ be a smooth function.

For every $p \in M$, we can define $\mathrm{d}f_p(X_p) \in \mathbb{R}$.

The function $df(X): p \mapsto df_p(X_p)$ is a smooth function $M \to \mathbb{R}$.

Recall that a tangent vector $X_p \in \mathrm{T}_p M$ can also be seen as derivation on $C^\infty(M,\mathbb{R})$.

With this point of view, the function $\mathrm{d}f(X)$ is alternatively denoted $\frac{\partial}{\partial X}f$ or X(f) or $X\cdot f$.

Definition

A *derivation* on $A := C^{\infty}(M, \mathbb{R})$ is a \mathbb{R} -linear map $D: A \to A$ s.t. $\forall f, g \in A$:

$$D(fg) = f D(g) + D(f) g$$
 (Leibniz rule)

Proposition

We have a linear isomorphism:

$$\Gamma(\mathrm{T} M) \to \{ \text{Derivations on } C^\infty(M,\mathbb{R}) \}$$

$$X \mapsto \frac{\partial}{\partial X}$$

7.3 Pushforward of a vector field

Let X be a vector field on a smooth manifold M.

Let $f: M \to N$ be a smooth function.

For every $p \in M$, we can define $\mathrm{d} f_p(X_p) \in \mathrm{T}_{f(p)} \in \mathrm{T}_{f(p)} N$. We have a smooth map $\mathrm{d} f(X) \colon M \to \mathrm{T} N$.

If f is a diffeo, consider $Y: N \to TN$ defined by $Y = df(X) \circ f^{-1}$.

Proposition

Y is a smooth vector field on *N*, called **pushforward** of *X* by *f* and denoted f_*X .

Proposition

Let $f: M \to N$ be a diffeo. The pushforward map

$$f_* : \Gamma(TM) \to \Gamma(TN)$$

 $X \mapsto f_*(X)$

is a linear isomorphism, whose inverse is $(f^{-1})_*$.

As a map on derivations, the pushforward map is:

$$f_* \colon \{ \text{Derivations on } C^\infty(M,\mathbb{R}) \} \to \{ \text{Derivations on } C^\infty(N,\mathbb{R}) \}$$

$$D \mapsto D \circ f^{-1}$$

Proof: Exercise (easy).

7.4 Vector fields in local coordinates

7.4 Vector fields in local coordinates