

Customer Segmentation For An Online Retail

Zhaoqi Fan

Outline

Problem Identification

- Data Wrangling
- Exploratory Data Analysis
- Clustering
- Conclusion & Recommendation

Problem Identification

Two-year transnational data has been collected for a UK-based and registered non-store online retail. The manager is interested in targeting customers for making business development strategies.

Data source:

 the dataset was scraped from <u>Kaggle</u> and <u>UCI Machine Learning Repository</u>

Constrains:

 The data is mainly from the UK. The scarce data from other countries may bring noise into the analysis.

Column	Non-Null	Count	Туре
Customer ID	809561	non-null	float64
Invoice	1044848	non-null	object
InvoiceDate	1044848	non-null	object
Price	1044848	non-null	float64
Quantity	1044848	non-null	int64
StockCode	1044848	non-null	object
Description	1040573	non-null	object
Country	1044848	non-null	object

Problem Identification

How many groups we can segment the customers by using numerical features?

Data Wrangling

- Missing data: 235287 rows containing missing customer ID are dropped.
- Duplicates: 11676 duplicated rows are dropped.

	Customer ID	Invoice	InvoiceDate	Price	Quantity	StockCode	Description	Country
255587	12346	C514024	2010-06-30 11:22:00	12.94	-1	М	manual	United Kingdom
255589	12346	C514024	2010-06-30 11:22:00	12.94	-1	М	manual	United Kingdom
485600	12356	534804	2010-11-24 12:24:00	1.95	1	22629	spaceboy lunch box	Portugal
485615	12356	534804	2010-11-24 12:24:00	1.95	1	22629	spaceboy lunch box	Portugal

Data Wrangling

Categorical feature

- The stock code and description are not considered.
- Most of data are collected from the UK.

Data Wrangling

Numerical feature statistics

- The distribution is extremely skewed.
- It suggests a transformation in modeling.

Exploratory Data Analysis

Price vs quantity

no clear correlation between price and quantity.

Exploratory Data Analysis

Revenue Analysis

Monthly revenue

- Seasonality
- Oct. Nov.
- Jan. Jun.

Monthly revenue growth rate

Exploratory Data Analysis

Revenue Analysis

Monthly revenue per customer

Seasonality

Monthly revenue per order

• Recency (R) calculation and clustering

Clustors

To calculate recency, we need to find out the most recent purchase date of each customer and see how many days they are inactive.

Olusiels									
	0	673.0	621.983655	65.012623	516.0	568.0	618.0	674.00	738.0
	1	1133.0	409.353045	49.093665	310.0	378.0	407.0	441.00	515.0
	2	968.0	209.136364	52.880052	123.0	164.0	205.0	254.25	309.0
	3	3165.0	35.881201	31.345800	0.0	9.0	27.0	57.00	122.0

• Frequency (F) calculation and clustering

To create frequency clusters, we need to find the total number of orders for each customer.

		count	mean	std	min	25%	50%	75%	max
Clusters									
	0	5515.0	79.655485	85.588707	1.0	19.00	46.0	110.00	385.0
	1	408.0	689.620098	306.629750	387.0	465.75	589.0	821.25	2077.0
	2	14.0	3790.714286	1445.820844	2352.0	2728.00	3244.0	4463.75	6660.0
	3	2.0	12040.000000	845.699710	11442.0	11741.00	12040.0	12339.00	12638.0

Monetary (M) calculation and clustering

To create monetary clusters, we need to use the revenue.

	count	mean	std	min	25%	50%	75%	max
Clusters								
0	5858.0	1821.652251	2830.594995	-25111.09	317.0125	800.135	2052.270	21535.90
1	71.0	41740.448493	22088.363188	21893.53	25539.2050	33480.820	52250.470	111739.36
2	8.0	195182.235000	62923.301710	124961.98	142827.5300	179256.230	239982.390	296063.44
3	2.0	546861.340000	33261.270611	523342.07	535101.7050	546861.340	558620.975	570380.61

RFM calculation and clustering

RMF values are calculated by adding up recency, frequency, and monetary scores.

	Recency	Frequency	Revenue
RFM value			
0	621.494815	23.662222	275.126803
1	408.922872	49.085106	748.954301
2	209.935857	64.652997	1168.003012
3	39.865217	114.338768	2105.548216
4	20.097765	633.480447	9776.187405
5	14.553191	974.808511	32971.483468
6	4.384615	2747.000000	103344.460769
7	2.400000	5155.000000	231052.704000
8	0.500000	7663.500000	394549.990000

Segmentation:

- 0 to 2: Low Value: good candidates for improving retention
- 3 to 4: Mid Value: good candidates for improving retention and increasing frequency
- 5+: High Value: good candidates for increasing frequency

• RFM + Price + Quantity

Scaling

 Distribution of features after transformation

Silhouette analysis

Clusters	Silhouette score
2	0.485
3	0.392
4	0.350
5	0.374

Silhouette analysis

Silhouette analysis for KMeans clustering on sample data with n_clusters = 2

• Silhouette analysis

Silhouette analysis for KMeans clustering on sample data with n_clusters = 3

Summary and conclusion

- The revenue analysis and customer analysis reveal the seasonality associated with sales and customer retention rates.
- The Elbow method and silhouette analysis are used to determine the best clusters of KMeans algorithm.
- Two or three clusters of customers are recommended. With various business
 plans or more information about customers, corresponding strategies may be
 developed for either two or three clusters

Recommendations & Future Work

- Using natural language processing tools to interpret the stock code and description features, which may reveal customers' preference for goods and further split subsets for customer segmentation.
- Collecting and importing more data into the modeling. For example, the cost of goods can be used to estimate profit. High revenue doesn't mean high profit. It is critical for a business to identify which goods have the highest profit and which group of customers contribute the highest profits.

