Georgia State University CSC 4520/6520

Homework 1

Please submit your assignment by 11:59 pm on February 18th, including:

1-A program file, adequately commented for clarity.

2-A work report in PDF format, encompassing program codes and showcasing the output images.

Problem 1. (30 points)

Develop a program in either Python or Java to replicate the processes outlined in Figure 3.41 using **2 different lowpass filters**, maintaining the same order of execution.

Display the resulting images with consistent formatting.

Input Image: HW Image1.tiff from Icollege

FIGURE 3.41 (a) A 2566 × 2758 Hubble Telescope image of the *Hickson Compact Group*. (b) Result of lowpass filtering with a Gaussian kernel. (c) Result of thresholding the filtered image (intensities were scaled to the range [0, 1]). The Hickson Compact Group contains dwarf galaxies that have come together, setting off thousands of new star clusters. (Original image courtesy of NASA.)

Problem 2.(40 points)

Develop a program in either Python or Java to replicate the processes outlined in Figure 3.57, maintaining the same order of execution. Display the resulting images with consistent formatting.

Input Image: HW Image2.tiff from Icollege

Problem 3. (30 points)

Develop a program in either Python or Java to replicate the processes outlined in Figure 4.49 using <u>Butterworth low-pass filter in the frequency domain with D₀ values set to 140 and 120, maintaining the same order of execution.</u>

Display the resulting images with consistent formatting.

Input Image: HW_Image3.tiff from Icollege

FIGURE 4.49 (a) Original 785×732 image. (b) Result of filtering using a GLPF with $D_0 = 150$. (c) Result of filtering using a GLPF with $D_0 = 130$. Note the reduction in fine skin lines in the magnified sections in (b) and (c).