Vector Calculus

10.1 Three-Dimensional Coordinate Systems; 10.2 Vectors: 10.3 The Dot Product: 10.4 The Cross Product

Def: We use the following notation.

- We use x, y, z-coordinates in \mathbb{R}^3 , or space.
- Given a point P in space, P(x, y, z) means that P has coordinates P=(1,2,3) -> P(1,2,3) (x,y,z).
- Given two points P_1, P_2 in space, we let $|P_1P_2|$ denote the distance between P_1, P_2 .
- The book uses bold letters to denote vectors. We will continue to use arrows, such as \vec{v} .

0

 $\vec{0}$ will denote the zero vector.

• If $\vec{v} \in \mathbf{R}^2$ has components v_1, v_2 , then we write $\vec{v} = \langle v_1, v_2 \rangle$. Similarly for $\vec{v} \in \mathbf{R}^3$, we write $\vec{v} = \langle v_1, v_2, v_3 \rangle$.

• Given points $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$, we denote the vector

$$\vec{AB} = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle.$$

$$= \vec{A} - \vec{b}$$
• If $\vec{v} \in \mathbf{R}^2$ or $\vec{v} \in \mathbf{R}^3$, then we denote the length of \vec{v} by $|\vec{v}|$.

121=121

• The standard basis vectors in \mathbb{R}^3 shall be denoted by

$$\vec{i} = <1,0,0>$$
 $\vec{j} = <0,1,0>$ $\vec{k} = <0,0,1>$ \vec{e}_{3}

Def: The dot product between \vec{v}, \vec{w} in R^3 is

 $\vec{V} \cdot \vec{w} = V_1 W_1 + V_2 W_2 + V_3 W_3$ We similarly define the dot product between \vec{v}, \vec{w} in R^2.

Thm: If theta is the angle between \vec{v}, \vec{w} (in R^2 or R^3), then $\vec{v} = \vec{v} \cdot \vec{w} \cdot \vec{v} \cdot$

In particular, $\sqrt[3]{\iota}$ if and only if $\sqrt[3]{\bullet}$ $\sqrt[4]{\bullet}$ =0.

Def: Suppose \overrightarrow{x} is a nonzero vector in R^2 or R^3. The vector/orthogonal projection of \overrightarrow{x} onto \overrightarrow{v} is

$$proj_{\vec{V}}\vec{X} = \frac{\vec{X} \cdot \vec{V}}{|\vec{V}|} \frac{\vec{V}}{|\vec{V}|} - \frac{\vec{X} \cdot \vec{V}}{|\vec{V}|^2} \vec{V}$$

Thm: p=proj x is the unique vector so that

 \vec{p}, \vec{v} are co-linear $(\vec{x} - \vec{p}) \perp \vec{v}$

Def: Suppose \vec{v}, \vec{w} are in R^3. We define the <u>cross product</u> between \vec{v}, \vec{w} *in that order* to be the vector given by computing the symbolic determinant

$$\vec{\nabla} \times \vec{W} = \begin{bmatrix} \vec{\zeta} & \vec{J} & \vec{K} \\ V_1 & V_2 & V_3 \\ W_1 & W_2 & W_3 \end{bmatrix}$$

$$\begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} \times \begin{bmatrix} 5 \\ 6 \\ 7 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} \times \begin{bmatrix} 5 \\ 6 \\ 7 \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \\ 1 \\ 6 \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \\ -12 \\ 5 \\ 6 \end{bmatrix} = \begin{bmatrix} -3 \\ 6 \\ -3 \end{bmatrix}$$

Thm: $\vec{\nabla}_{x}\vec{w}$ is the unique vector so that

 $|\vec{\nabla} \times \vec{w}|$ is the area of the parallelogram formed by $\vec{\nabla}, \vec{w}$.

 $\vec{v}, \vec{w}, \vec{v}_x \vec{w}$ in that order satisfy the <u>right-hand rule</u>.

Fact: Suppose $\vec{u}, \vec{v}, \vec{w}$ are in R³.

 $\vec{w} \times \vec{v} = -(\vec{v} \times \vec{w})$ (anti-commutative law) $|\vec{u} \cdot (\vec{v} \times \vec{w})|$ is the volume of the <u>parallelpiped formed by $\vec{u}, \vec{v}, \vec{w}$.</u>

10.5 Equations of Lines and Planes

Fact: The line ell in space through $P(x_0, y_0, z_0)$ in the direction of $\sqrt[3]{-}$ =<a,b,c>=/0 is given by the point-direction parameterization

Ex: Suppose ell is the line through A(2,4,-3),B(3,-1,1). Give a point-direction parameterization for ell. At what point does ell pass through the horizontal xy-plane?

Sol: ell is the line in the direction of

$$\widehat{AB} = (3-2, -1-4, 1-1-3) = (1, -5, 4)$$

$$\Rightarrow (3+1) = (2, 4, -3) + (1, -5, 4) = (1, -5, 4)$$

$$\Rightarrow (3+1) = (2, 4, -3) + (1, -5, 4) = (1, -5, 4)$$

$$\Rightarrow (3+1) = (2, 4, -3) + (1, -5, 4)$$

$$\Rightarrow (3+2, -1-4, 1-1-3) = (1, -5, 4)$$

$$\Rightarrow (3+2, 4, -3) + (2, 4, -3) + (2, 4, -3)$$

$$\Rightarrow (3+2, 4, -3) + (2, 4, -3) + (2, 4, -3)$$

To see where ell crosses the xy-plane, we set

$$-3 + 4t = 0 \Rightarrow t = \frac{3}{4}$$

$$\Rightarrow 2(\frac{3}{4}) = (2,4,-3) + \frac{3}{4}(3,-5,4)$$

ell crosses the xy-plane at P(2+3/4,4-15/4,0).

Ex: Consider the lines given by point-direction parameterizations

$$\ell_1(+) = \langle 1, -2, 4 \rangle + \ell \langle 1, 3, -1 \rangle$$
 for the IR
 $\ell_2(+) = \langle 0, 3, -3 \rangle + 6 \langle 2, 1, 4 \rangle$ for se IR

Show that ell₁,ell₂ are <u>skew</u>: not parallel and do not intersect.

Sol: Since the direction vectors of ell, and ell, are <1,3,-1> and <2,1,4> respectively, which are not co-linear, then ell, and ell, are not parallel.

Now we check that ell, and ell, do not intersect. The two lines intersect if and only if there are t,s in R so that

$$\langle 1,-2,47+6 \langle 1,3,-17 = \langle 0,3,-37+6 \langle 2,1,47 \rangle$$

$$\Leftrightarrow$$
 $(1,-5,7) = +(-1,-3,1) + 5(2,1,4)$

Consider
$$\langle -1, -3, 1 \rangle \times \langle 2, 1, 4 \rangle = \begin{vmatrix} \vec{t} & \vec{j} & \vec{k} \\ -1 & -3 & 1 \\ 2 & 1 & 4 \end{vmatrix} = \langle -13, 6, 5 \rangle$$

If ell, ell, intersect, then there are t,s in R so that

$$(-13,6,5) \cdot (1,-5,7) = (-13,65) \cdot (+(-1,-3,1) + 5(2,1,4))$$

$$-(3-30+35) = 0$$

$$+0$$

This means there is no t,s in R so that $ell_1(t)=ell_2(s)$, and so the two lines do not intersect.

We conclude that ell, ell, are skew.

Fact: To describe a plane in space, we need a point in the plane and a <u>normal direction</u>. If $P(x_0, y_0, z_0)$ is a point in space and $\vec{n} = \langle a, b, c \rangle = /\vec{0}$, then the plane P through P with normal in the direction of \vec{n} is given by the <u>implicit/vector</u> equation

$$P: \vec{n} \cdot (\langle x_1 y_1 z_2 \rangle - \langle x_3 y_3 z_3 \rangle) = 0$$

We also say that \mathcal{P} is given by the scalar equation

or by the linear equation

$$P: ax+by+cz+d=0$$

$$-ax_0-by_0-cz_0$$

Ex: Find a linear equation for the plane ρ through the points P(1,3,2),Q(3,-1,6),R(5,2,0).

Sol: We compute
$$\Rightarrow \vec{n} - \vec{p} \times \vec{p} \neq \vec{q}$$

 $\vec{p} \times \vec{p} = \langle 4, -1, -2 \rangle \times \langle 2, -4, 4 \rangle = \begin{vmatrix} \vec{1} & \vec{1} & \vec{k} \\ 4 & -1 & -2 \\ 2 & -4 & 4 \end{vmatrix}$
 $= \langle -12, -(20), -14 \rangle = \langle -12, -20, -14 \rangle$
This gives $\Rightarrow \vec{n} - \vec{p} \times \vec{p} \neq \vec{k} \times \vec{p} \neq$

Ex: Find a point-direction parameterization for the line ell of intersection between the planes given by the linear equations

$$P: x+y+z-1=0 \text{ and } P: x-2y+3z-1=0$$

$$\vec{m}_1 = \langle 1,1,1 \rangle$$

$$\vec{m}_2 = \langle 1,-2,3 \rangle$$

Sol: A direction vector for ell is given by

$$\vec{V} = \vec{\eta}_{1} \times \vec{\eta}_{2} = \langle 1, 1, 1 \rangle \times \langle 1, -2, 3 \rangle$$

$$= \begin{vmatrix} \vec{t} & \vec{j} & \vec{k} \\ 1 & -2 & 3 \end{vmatrix} = \langle 5, -(2), -3 \rangle$$

$$= \langle 5, -2, -3 \rangle$$

Since $\sqrt[3]{-}$ <5,-2,-3>, then ell crosses the horizontal xy-plane somewhere.

This means we can look for a point $P=<p_1,p_2,0>$ which is on both planes P_1,P_2 . This gives

$$P_{1} \Rightarrow P_{1} + P_{2} + \delta - 1 = 0 \qquad P_{1} + P_{2} = 1$$

$$P_{1} - 2P_{2} + \delta - 1 = 0 \qquad P_{1} - 2P_{2} = 1$$

$$P_{1} - 2P_{2} + \delta - 1 = 0 \qquad P_{1} - 2P_{2} = 1$$

$$P_{1} - 2P_{2} + \delta - 1 = 0 \qquad P_{1} - 2P_{2} = 1$$

$$P_{1} - 2P_{2} + \delta - 1 = 0 \qquad P_{1} - 2P_{2} = 1$$

$$P_{1} - 2P_{2} + \delta - 1 = 0 \qquad P_{1} - 2P_{2} = 1$$

$$P_{1} - 2P_{2} = 1$$

$$P_{2} - 2P_{2} = 1$$

$$P_{3} - 2P_{2} = 1$$

$$P_{4} - 2P_{2} = 1$$

$$P_{5} - 2P_{5} = 1$$

We conclude that

10.6 Cylinders and Quadric Surfaces

Def: A <u>quadric surface</u> is a surface in space given by a second-degree equation in x,y,z of the form

$$Ax^{2}+By^{2}+(z^{2}+Dxy+Eyz+Fxz)$$

+6x+Hy+Iz+J=0

Ex: Some familiar quadric surfaces.

- 1. The unit cylinder centered around the z-axis, given by $x^2+y^2-1=0$.
- 2. The unit sphere centered at the origin, given by $x^2+y^2+z^2-1=0$.

We as well have cylinders and spheres of different radii centered elsewhere.

Surface	Equation	Surface	Equation
Ellipsoid	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ All traces are ellipses. If $a = b = c$, the ellipsoid is a sphere.	Cone	$\frac{z^2}{c^2} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$ Horizontal traces are ellipses. Vertical traces in the planes $x = k$ and $y = k$ are hyperbolas if $k \neq 0$ but are pairs of lines if $k = 0$.
Elliptic Paraboloid	$\frac{z}{c} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$ Horizontal traces are ellipses. Vertical traces are parabolas. The variable raised to the first power indicates the axis of the paraboloid.	Hyperboloid of One Sheet	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$ Horizontal traces are ellipses. Vertical traces are hyperbolas. The axis of symmetry corresponds to the variable whose coefficient is negative.
Hyperbolic Paraboloid	$\frac{z}{c} = \frac{x^2}{a^2} - \frac{y^2}{b^2}$ Horizontal traces are hyperbolas. Vertical traces are parabolas. The case where $c < 0$ is illustrated.	Hyperboloid of Two Sheets	$-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ Horizontal traces in $z = k$ are ellipses if $k > c$ or $k < -c$. Vertical traces are hyperbolas. The two minus signs indicate two sheets.

Fact: Consider a quadric surface S given by the equation

To determine the type of S, and to sketch S, it is best to use the <u>level set method</u>: set a variable equal to a constant, and sketch the resulting curve. For example, set z=k and sketch the curve in the plane z=k given by the equation

$$Ax^{2}+Ay^{2}+Dxy+Exy+Fxx+Gx+Hy+Cx^{2}+Ix+J=0$$

This curve is the intersection between S and the plane z=k.

Ex: Use the level set method to determine the type and sketch the quadric surfaces given by the following equations.

1.
$$\chi^2 + \frac{y^2}{9} + \frac{z^2}{4} - 1 = 0$$

Sol: We set $z=0,\pm1,\pm2$.

$$z=0 \Rightarrow \chi^2 + \frac{y^2}{9} = 1 \Rightarrow$$

$$z=\pm 1 \Rightarrow \chi^2 + \frac{y^2}{9} = 1 - \frac{1}{4}$$

 $\Rightarrow \chi^2 + \frac{y^2}{9} = \frac{3}{4}$

$$y=0 \Rightarrow x = \pm \sqrt{\frac{3}{4}}$$

$$x=0 \Rightarrow y^2 = \frac{27}{4}$$

$$\Rightarrow y = \pm \sqrt{\frac{27}{4}}$$

So far, our surface looks like

$$\chi^{2} + \frac{y^{2}}{4} + \frac{2^{2}}{4} - 1 = 0$$

Let's set y=0,±1

$$\frac{A=0}{1} \Rightarrow x_3 + \frac{5}{4} = 1$$

$$y=\pm 1 \implies x^2 + \frac{2^2}{4} = 1 - \frac{1}{4}$$

 $\Rightarrow x^2 + \frac{2^2}{4} = \frac{8}{9}$

$$x = \pm \sqrt{\frac{8}{4}}$$

$$z = \pm \sqrt{\frac{32}{4}}$$

$$| \angle \sqrt{\frac{32}{4}}| \angle 2$$

We conclude that the surface is the ellipsoid

$$2.4x^2+y^2-z=0$$

Sol: First, we set z=0,1,4

$$2=1 \implies \frac{4x^{2}+y^{2}=1}{\frac{x^{2}}{14}+y^{2}=1}$$

$$\Rightarrow \frac{\chi^2}{\sqrt{4}} + \chi^2 = 1$$

$$\Rightarrow \chi^2 + \frac{\eta^2}{\eta} = 1$$

$$\chi = \pm \sqrt{\frac{1}{4}} = \pm \frac{1}{2}$$

So far, we have

Now, let's set y=0,±\

$$y=0 \Rightarrow 4x^2-2=0$$

$$\Rightarrow z=4x^2$$

 $4x^{2}+y^{2}-2=0$

$$y=\pm 1 \Rightarrow 4x^2 + 1 - 2 = 0$$

$$\Rightarrow z = 4x^2 + 1$$

The surface is the elliptic paraboloid

