Hidden Markov Models

Jim Glass / MIT 6.806-6.864 / Spring 2021

1

Sequential Labeling

- · Human language is fundamentally sequential in nature
- Many NLP tasks involve converting one sequence into another:
 - Part-of-speech tagging
 - Named entity recognition
 - Machine translation
 - Speech recognition
- A range of ML techniques apply to sequence-to-sequence tasks:
 - Hidden Markov models
 - Conditional random fields
 - Recurrent neural networks

Today's HMM Storyline

- Part-of-speech tagging
 - Dynamic programming
 - Viterbi search
- Hidden Markov models
 - 1. Scoring: Forward-backward algorithm
 - 2. Matching: Viterbi search
 - 3. Training: Baum-Welch parameter estimation

2

Part-of-Speech Tagging

- · POS tagging assigns each word in a sentence a grammatical tag
 - The tag depends on the word and its context (e.g., sentence)
 - POS inventory is language and corpus dependent
 - Typically used for features, or a precursor for other tasks (e.g., parsing)
 - POS tagging also known as word category disambiguation
- An inherent challenge for POS tagging is word category ambiguity

A Probabilistic Formulation for POS Tagging

- Define words $W = \{w_1, \dots, w_n\}$ and corresponding tags $T = \{t_1, \dots, t_n\}$
- Given a word sequence, we infer the "hidden" tag sequence T*

$$T^* = \arg\max_T P(W,T) \quad \text{where } P(W,T) = P\{w_1, \cdots, w_n, t_1, \cdots, t_n\}$$

• Using the chain rule, we can rewrite P(W,T) as

$$P(W,T) = \prod_{i=1}^{n} P(w_i, t_i | w_1, \dots, w_{i-1}, t_1, \dots, t_{i-1})$$

• By making conditional independence assumptions that t_i depends only on t_{i-1} , and w_i depends only on t_i we can rewrite P(W,T) as

$$P(W,T) = \prod_{i=1}^{n} P(w_i | t_i) P(t_i | t_{i-1})$$
Observation probabilities
Transition probabilities

Parameter Estimation and Search

 Observation and transition probabilities can be estimated from annotated data or learned via EM algorithm from unannotated data

		people	can	fish	<>
Observations $\propto \log P(w_i t_i)$	<>	-∞	-∞	-∞	0
	Ν	-1	-3	-2	-∞
	V	-5	-1	-4	-∞

		Ν	V	<>
Transitions	<>	-1	-2	$-\infty$
$\times \log P(t_i t_{i-1})$	N	-4	-1	-2
	V	-2	-3	-1

Search space can be represented as directed acyclic graph (DAG)
 people can fish <>

Weighted finite-state transducers are effective representations for DAGs

7

Dynamic Programming (DP)

- · DP algorithms such as Viterbi search leverage optimal substructure
 - Let $\phi(i,j)$ be the best path between nodes i and j
 - If k is a node in $\phi(i,j)$: $\phi(i,j) = {\phi(i,k), \phi(k,j)}$
 - Let $\varphi(i,j)$ be the cost of $\varphi(i,j)$ (e.g., -logprob) $\varphi(i,j) = \min_{k} (\varphi(i,k) + \varphi(k,j))$

- Solutions to sub-problems need only be computed once
 - Sub-optimal partial paths discarded while staying admissible
- · Can be implemented efficiently:
 - Node k retains only best path cost of all $\varphi(i,k)$
 - Previous best node index needed to recover best path
- Best-first and A* graph search also leverage optimal substructure

Viterbi Search

- Viterbi search arranges search through a fixed-dimension trellis
 - Search advances time-synchronously
 - All partial paths ending at a common node converge at the same moment
 - Per DP, each node retains best score and back pointer to best partial path

9

Hidden Markov Model Notation

- Underlying HMM states $s = \{s_1, ..., s_N\}$
 - State at time t, q_t ∈ s
- Set of emitted observations $\mathbf{w} = \{w_1, \dots, w_V\}$
 - Observation at time t, o_t ∈ w
- $A = \{a_{ij}\}$: state transition probabilities

$$- a_{ij} = P(q_{t+1} = s_j | q_t = s_i) \quad 1 \le i, j \le N$$

- $\mathbf{B} = \{b_i(k)\}$: observation probabilities
 - $b_j(k) = P(o_t = w_k | q_t = s_j) \equiv b_j(o_t) \quad 1 \le j \le N, 1 \le k \le V$
- $\pi = {\pi_i}$: initial state distribution

$$- \pi_i = P(q_1 = s_i) \quad 1 \le i \le N$$

• A HMM is typically written as: $\lambda = \{A, B, \pi\}$

11

POS Example with HMM Notation

- 4 states (s₁=<>, s₂=N, s₃=V, s₄=<>)
- V word observations $(w_{<>}, w_{can}, w_{fish}, w_{people}, ...)$
- 5 input observations (<>, people, can, fish, <>) $o_1=w_{<>}$ $o_2=w_{people}$ $o_3=w_{can}$ $o_4=w_{fish}$ $o_5=w_{<>}$

 o_1 o_2 o_3 o_4 o_5 <> people can fish <>

$$q_1=s_1$$
 $q_2=s_2$ $q_3=s_2$ $q_4=s_2$ $q_5=s_4$

 (s_1)

$$q_1 = s_1$$
 $q_2 = s_3$ $q_3 = s_3$ $q_4 = s_3$ $q_5 = s_4$

Three Fundamental HMM Problems

- 1. Score: Given observation sequence $\mathbf{0} = \{o_1, ..., o_T\}$, and HMM $\lambda = \{A, B, \pi\}$, how do we compute the probability $P(\mathbf{0}|\lambda)$?
 - Forward-Backward algorithm
- 2. Match: Given $\mathbf{0} = \{o_1, ..., o_T\}$, how do we choose the optimum underlying state sequence $\mathbf{0} = \{q_1, ..., q_T\}$?
 - Viterbi algorithm
- 3. Train: How to learn ML parameter estimates for $\lambda = \{A, B, \pi\}$?
 - Baum-Welch Estimation

13

The Forward Algorithm

- Goal: compute $P(\boldsymbol{o}|\lambda) = \sum_{\forall \boldsymbol{Q}} P(\boldsymbol{o}, \boldsymbol{Q}|\lambda)$ (brute force: $O(TN^T)$)
- Recursion: define *forward* variable: $\alpha_t(i) = P(o_1, ..., o_t, q_t = s_i | \lambda)$ (i.e., probability of seeing observations up to time t, and state s_i at time t)
 - 1. For t = 1, $\alpha_1(i) = \pi_i \ b_i(o_1)$ $1 \le i \le N$
 - 2. For t > 1, consider all ways of getting to current state at t

$$\alpha_t(j) = \left[\sum_{i=1}^{N} \alpha_{t-1}(i) a_{ij} \right] b_j(o_t) \quad 1 < t \le T \quad 1 \le j \le N$$

- 3. Finally: $P(\boldsymbol{o}|\lambda) = \sum_{i=1}^{N} \alpha_{T}(i)$
- Computation is on the order of $O(TN^2)$

15

The Backward Algorithm

- Define *backward* variable: $\beta_t(i) = P(o_{t+1}, ..., o_T | q_t = s_i, \lambda)$ (i.e., state s_i at time t, probability of seeing remaining observations)
 - 1. For t = T, $\beta_T(i) = 1$ $1 \le i \le N$
 - 2. For t < T, consider all ways of getting to current state at t

$$\beta_t(i) = \sum_{j=1}^{N} a_{ij} b_j(o_{t+1}) \beta_{t+1}(j) \quad 1 \le t < T \quad 1 \le i \le N$$

- 3. Finally: $P(\mathbf{0}|\lambda) = \sum_{i=1}^{N} \pi_i b_i(o_1) \beta_1(i)$
- Either forward or backward algorithm can be used to compute $P(\mathbf{0}|\lambda)$, but both are needed to learn model parameters

$$\alpha_t(i)\beta_t(i) = P(\mathbf{0}, q_t = s_i|\lambda)$$

HMM Outline

- 1. Score: Given observation sequence $\mathbf{0} = \{o_1, \dots, o_T\}$, and HMM $\lambda = \{A, B, \pi\}$, how do we compute the probability $P(\mathbf{0}|\lambda)$?
 - Forward-Backward algorithm
- 2. Match: Given $\mathbf{0} = \{o_1, \dots, o_T\}$, how do we choose the optimum underlying state sequence $\mathbf{Q} = \{q_1, ..., q_T\}$?
 - Viterbi algorithm
- 3. Train: How to learn ML parameter estimates for $\lambda = \{A, B, \pi\}$?
 - Baum-Welch Estimation

Finding Optimal State Sequences: Viterbi Algorithm

- The Viterbi Algorithm chooses the state sequence which maximizes $P(\boldsymbol{Q}|\boldsymbol{O},\lambda)$ (or $P(\boldsymbol{Q},\boldsymbol{O}|\lambda)$)
- Define $\delta_t(i)$ as the highest probability along a single path to state s_i at time t, which accounts for the first t observations

$$\delta_t(i) = \max_{q_1 \dots q_{t-1}} P(q_1 \dots q_{t-1}, q_t = s_i, o_1 \dots o_t | \lambda)$$

By induction (due to DP optimal substructure):

$$\delta_{t+1}(j) = \left[\max_{i} \delta_{t}(i) a_{ij}\right] b_{j}(o_{t+1})$$

- Note similarity to the forward algorithm (except max instead of sum)
- To retrieve the best state sequence, we also keep track of the state sequence which gave the best path to state s_i at time t
 - This is done in a separate array $\psi_t(i)$ (i.e., pointer to best prior index)

19

The Viterbi Algorithm

1. Initialization: $\delta_1(i) = \pi_i b_i(o_1) \qquad 1 \le i \le N$ $\psi_1(i) = 0$

2. Recursion:

$$\begin{split} \delta_{t+1}(j) &= \max_{i} \left[\delta_t(i) a_{ij} \right] b_j(o_{t+1}) \qquad 1 \leq t < T \quad 1 \leq j \leq N \\ \psi_{t+1}(j) &= \arg \max_{i} \left[\delta_t(i) a_{ij} \right] \end{split}$$

3. Termination:

$$P^* = \max_{i} \delta_T(i)$$
$$q_T^* = \arg\max_{i} \delta_T(i)$$

4. Path (state-sequence) backtracking

$$q_t^* = \psi_{t+1}(q_{t+1}^*) \qquad 1 \le t < T$$

21

The Viterbi Backtrace

- The Viterbi backtrace begins after the forward recursion completes
 - The backtrace is typically a fraction of the overall computation

HMM Outline

- 1. Score: Given observation sequence $\mathbf{0} = \{o_1, ..., o_T\}$, and HMM $\lambda = \{A, B, \pi\}$, how do we compute the probability $P(\mathbf{0}|\lambda)$?
 - Forward-Backward algorithm
- 2. Match: Given $\mathbf{0} = \{o_1, ..., o_T\}$, how do we choose the optimum underlying state sequence $\mathbf{0} = \{q_1, ..., q_T\}$?
 - Viterbi algorithm
- 3. Train: How to learn ML parameter estimates for $\lambda = \{A, B, \pi\}$?
 - Baum-Welch Estimation

23

Baum-Welch Estimation

- Baum-Welch estimation uses EM to determine HMM parameters
- Define $\xi_t(i,j)$ as the probability of being in state s_i at time t and state s_j at time t+1, given the model and observation sequence

$$\xi_t(i,j) = P(q_t = s_i, q_{t+1} = s_j | \mathbf{0}, \lambda) = \frac{\alpha_t(i) a_{ij} b_j(o_{t+1}) \beta_{t+1}(j)}{P(\mathbf{0}|\lambda)}$$

• Use $\gamma_t(i)$ (probability of being in state i at time t given observations)

$$\gamma_t(i) = P(q_t = s_i | \boldsymbol{o}, \lambda) = \frac{\alpha_t(i)\beta_t(i)}{P(\boldsymbol{o}|\lambda)}$$
 $\gamma_t(i) = \sum_{i=1}^{N} \xi_t(i, j)$

Baum-Welch parameter estimates are based on expected values

$$\widehat{E}(s_i \to s_j) = \sum_{t=1}^{T-1} \xi_t(i,j) \qquad \widehat{E}(s_j, w_k) = \sum_{\substack{t=1 \ o_t = w_k}}^T \gamma_t(j)$$

Baum-Welch Estimation Formulas

Initialization

$$\hat{\pi}_i = \hat{E}(q_1 = s_i) = \gamma_1(i)$$

Expected number of times in state s_i at t = 1

Transition

$$\hat{a}_{ij} = \frac{\hat{E}(s_i \to s_j)}{\hat{E}(s_i \to s_*)} = \frac{\sum_{t=1}^{T-1} \xi_t(i, j)}{\sum_{t=1}^{T-1} \gamma_t(i)}$$

Expected number of transitions from s_i to s_j Expected number of transitions from s_i

Observation

$$\hat{b}_{j}(k) = \frac{\hat{E}(s_{j}, w_{k})}{\hat{E}(s_{j})} = \frac{\sum_{t=1}^{T} \gamma_{t}(j)}{\sum_{t=1}^{T} \gamma_{t}(j)}$$

Expected number of times in state s_j with symbol w_k Expected number of times in state s_i

25

Baum-Welch State Initialization Estimation

 $\hat{\pi}_i = \hat{E}(q_1 = s_i) = \gamma_1(i)$ Expected number of times in state s_i at t = 1

Baum-Welch State Observation Estimation

Baum-Welch Estimation Properties

- If $\lambda = \{A, B, \pi\}$ is the initial model, and $\hat{\lambda} = \{\widehat{A}, \widehat{B}, \widehat{\pi}\}$ is the reestimated model, then it can be proved that either:
 - 1. The initial model, λ , defines a critical point of the likelihood function, in which case $\lambda = \hat{\lambda}$, or
 - 2. $P(\mathbf{0}|\hat{\lambda}) > P(\mathbf{0}|\lambda)$: we have found a new model that is more likely to have generated the observation sequence
- Therefore, we can improve the likelihood $P(\mathbf{0}|\lambda)$ if we iterate the reestimation until some convergence threshold
- The resulting model is called maximum likelihood HMM
 - It is possible to over-fit parameters on a training set: $P(\boldsymbol{o}|\hat{\lambda}) > P(\boldsymbol{o}|\lambda_{true})$

29

Training with a Corpus

- In practice, many observation sequences $o = \{o^1, ..., o^L\}$ used
 - BW estimation formulas modified to add up counts for each sequence
 - Assume that observation sequences are mutually independent

$$P(\boldsymbol{o}|\lambda) = \prod_{l=1}^{L} P(\boldsymbol{o}^{l}|\lambda)$$

- Modifications accumulate expected counts across sequences
 - Forward-backward run on each "sentence" individually, then accumulated across the entire training "corpus"

$$\hat{a}_{ij} = \frac{\hat{E}(s_i \to s_j)}{\hat{E}(s_i \to s_*)} = \frac{\sum_{l=1}^{L} \sum_{t=1}^{T_l-1} \xi_t^l(i,j)}{\sum_{l=1}^{L} \sum_{t=1}^{T_l-1} \gamma_t^l(i)} \qquad \hat{b}_j(k) = \frac{\hat{E}(s_j, w_k)}{\hat{E}(s_j)} = \frac{\sum_{l=1}^{L} \sum_{t=1}^{T_l} \gamma_t^l(j)}{\sum_{l=1}^{L} \sum_{t=1}^{T_l} \gamma_t^l(j)}$$

Practical HMM Issues

- The forward-backward and Viterbi recursions can result in long sequences of probabilities being multiplied that can cause underflow
 - In practice, computations are performed using logprobs (e.g., your pset!)
 - In Viterbi, multiplication of probabilities turns into sums of logprobs
 - In forward-backward both multiplications and additions are involved, so probabilities are scaled at each time frame & scale factor retained
- Often the forward-backward algorithm is not used for training, but is replaced by the simpler Viterbi training
 - A Viterbi "best-path" alignment is computed and then used as the basis for estimating transition probabilities, and observation parameters
 - Parameter estimation remains iterative
- For some HMM tasks, relative (and absolute) thresholds are used to eliminate unlikely hypotheses (not admissible, but practical)

31

Final Thoughts

- · Hidden Markov models are useful for sequential labeling tasks
 - The Viterbi algorithm is an efficient way to find the best label sequence
 - The Forward-Backward and Baum-Welch estimates enable ML training
- The mathematical formulations for HMMs were developed in 1960s
 - Applied to many disciplines with sequential data e.g., speech recognition (1970s), bioinformatics (1980s), NLP (1990s), handwriting, finance, etc.
- HMMs have been surpassed by discriminative methods such as CRFs and RNNs, but remain popular in low-resource scenarios

References

- Readings:
 - Jurafsky & Martin, "Speech and Language Processing," 2020 (HMMs)