Esercitazione 2

Geometria e Algebra Lineare GE110 - AA 2022–2023 Esercitatore: Amos Turchet

13, 15 Marzo 2023

Esercizio 1. Discutere quali dei seguenti sottoinsiemi di \mathbb{R}^3 sono sottospazi vettoriali:

- 1. $\{(x,0,0): x \in \mathbb{R}, x \neq 0\};$
- 2. $\{(x, y, z) : x 2y + z = 1\};$
- 3. $\{(t, t, t) : 0 < t < 1\}$;
- 4. $\{(x_1, x_2, x_3) : x_1 + x_2 = 0\}.$

Esercizio 2. Sia $\mathbb{K}[x]$ lo spazio vettoriale dei polinomi a coefficienti in \mathbb{K} . Discutere quali dei seguenti sottoinsiemi sono sottospazi:

- 1. $U = \{p(x) \in \mathbb{K}[x] : p(0) = 1\};$
- 2. $U = \{p(x) \in \mathbb{K}[x] : p(1) = 0\};$
- 3. $U = \{p(x) \in \mathbb{K}[x] : p(0) = p(1) = 0\};$
- 4. $U = \{p(x) \in \mathbb{K}[x] : p(0)p(1) = 0\}.$

Esercizio 3. Siano V_1, V_2 due spazi vettoriali su \mathbb{R} . Sull'insieme $V_1 \times V_2$ si considerino le seguenti operazioni

- $(v_1, v_2) \oplus (w_1, w_2) := (v_1 + w_1, v_2 + w_2)$ per ogni $v_1, w_1 \in V_1$ e $v_2, w_2 \in V_2$ (dove + indica la corrispondente somma negli spazi vettoriali V_1 e V_2);
- $\lambda \odot (v_1, v_2) := (\lambda \cdot v_1, \lambda \cdot v_2)$ per ogni $\lambda \in \mathbb{R}$, $v_1 \in V_1$ e $v_2 \in V_2$ (e · indica la corrispondente moltiplicazione per scalare negli spazi vettoriali V_1 e V_2).

Dimostrare che $(V_1 \times V_2, \oplus, \odot)$ è uno spazio vettoriale su \mathbb{R} .

Esercizio 4. Stabilire quali dei seguenti insiemi di vettori sono lineramente indipendenti, quali sono un sistema di generatori e quali costituiscono una base.

1. in \mathbb{R}^2

$$(a) = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\} \qquad (b) = \left\{ \begin{pmatrix} 2 \\ 0 \end{pmatrix} \right\} \qquad (c) = \left\{ \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\}.$$

2. in \mathbb{R}^3

$$(a) = \left\{ \begin{pmatrix} 1\\1\\3 \end{pmatrix}, \begin{pmatrix} 2\\2\\0 \end{pmatrix}, \begin{pmatrix} 3\\3\\-3 \end{pmatrix} \right\} \qquad (b) = \left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\-1\\0 \end{pmatrix} \right\}$$

Esercizio 5. Si considerino i seguenti sottoinsiemi di $M_{n,n}(\mathbb{K})$:

$$S := \{ A \in M_{n,n}(\mathbb{K}) : A \text{ \'e simmetrica } \}$$
$$A := \{ A \in M_{n,n}(\mathbb{K}) : A \text{ \'e antisimmetrica } \}.$$

- Si dimostri che S e A sono sottospazi vettoriali di $M_{n,n}(\mathbb{K})$;
- Si dimostri che $S + A = M_{n,n}(\mathbb{K});$
- Si discuta se $\mathcal{S} \oplus \mathcal{A} = M_{n,n}(\mathbb{K})$.

Esercizio 6. Sia $A\mathbf{x} = \mathbf{b}$ un sistema lineare a coefficienti in \mathbb{R} , con $A \in M_{m,n}(\mathbb{R})$ e $\mathbf{b} \in \mathbb{R}^{\mathbf{m}}$, e sia $S \subset \mathbb{R}^n$ l'insieme delle sue soluzioni. Si dimostri che S é un sottospazio vettoriale di \mathbb{R}^n se e soltanto se $\mathbf{b} = \mathbf{0}$.