

OpenBioML PyTorch Lightning workshop (2/2)

Adrian Wälchli, Research Engineer Luca Antiga, CTO

OpenBioML PyTorch Lightning workshop

Session 1: Thu 23 Feb, 3pm ET

Session 2: Thu 2 Mar, 3pm ET

https://harvard.zoom.us/j/97375262666

OpenBioML PyTorch Lightning workshop

Session 1

- Intro to PyTorch Lightning + Fabric
- Hands-on: raw PyTorch -> Fabric -> PyTorch Lightning Trainer
- A look into OpenFold

By the end of Session 1 we saw how to build a model with PyTorch Lightning and Fabric and train it. Distributed. On a SLURM cluster.

OpenBioML PyTorch Lightning workshop

Session 2

- Intro to core distributed concepts and what's new in PyTorch 2.0
- Hands-on: how to debug and optimize performance, single node and distributed,
 running benchmarks
- More on OpenFold

By the end of Session 2 you will know how to make sure you are setting up your training correctly and verify you are leveraging your hardware the best.

Join us here

discord

discord.gg/MWAEvnC5fU

forums

lightning.ai/forums

twitter

@LightningAl

https://linktr.ee/lightningai

PyTorch Lightning

You do the science, we do the engineering

33 million+

780+
CONTRIBUTORS

13,000+ PROJECTS USING LIGHTNING 6,000+ SLACK MEMBERS ♣

10,000+ ORGANIZATIONS BUILD WITH LIGHTNING

https://lightning.ai

Scale your models, without the boilerplate

Lightning's open-source ecosystem is designed for researchers and developers who require flexibility and performance at scale.

O pip install lightning

Build AI without the boilerplate

Lightning simplifies your deep learning code by taking care of engineering boilerplate, so you can focus on the problems that matter to you.

Unlock deep learning at scale

Work seamlessly with distributed computing environments like multi-GPU and TPU clusters and scale projects to large models and data.

Create with the community

Join over 100,000 users and companies using Lightning to create their Al future. Tap into cuttingedge research and take it to production.

Intro: Scaling out and going fast

PyTorch Lightning

Organized PyTorch

LightningModule

```
import lightning as L
from torch import n, optim
encoder = nn.Sequential(nn.Linear(28 * 28, 64), nn.ReLU(), nn.Linear(64, 3))
decoder = nn.Sequential(nn.Linear(3, 64), n.ReLU(), nn. Linear (64, 28 * 28))
class LitAutoEncoder(L.LightningModule):
    def _init__(self, encoder, decoder):
        super()._init__()
        self.encoder = encoder
        self.decoder = decoder
    def training_step(self, batch, batch_idx):
        X, y = batch
        X = x. view(x.size(0), -1)
        z = self.encoder(x)
        x_{hat} = self.decoder(z)
        loss = nn. functional.mse_loss(x_hat, x)
        self.log("train_loss", loss) return loss
    def configure_optimizers( self):
        optimizer = optim.Adam(self.parameters(), lr=le-3)
        return optimizer
autoencoder = LitAutoEncoder(encoder, decoder)
dataset = MIST(os.getcwd(), download=True, transform=ToTensor())
train_loader = utils.data.DataLoader (dataset)
trainer = L.Trainer(limit_train_batches=100, max_epochs=1)
trainer.fit(model=autoencoder, train_dataloaders=train_loader)
```

PyTorch Lightning

Accelerators

GPU, TPU, HPU, IPU, MPS

Strategies

DDP, FSDP, DeepSpeed, Colossal AI

Precision

Callbacks

```
# train on 4 GPUs
trainer = Trainer(
     devices=4,
     accelerator="qpu"
# train 1B+ parameter models with Deepspeed/fsdp
trainer = Trainer(
    devices=4.
    accelerator="qpu",
    strategy="deepspeed_stage_2",
    precision=16
# 20+ helpful flags for rapid idea iteration
trainer = Trainer(
    max_epochs=10,
    min_epochs=5,
    overfit batches=1
# access the latest state of the art techniques
trainer = Trainer(callbacks=[StochasticWeightAveraging(...)])
```


Fabric

3 Your code

1 Fabric object

dataloader

2 Setup model, optimizer,

```
import lightning as L
def train(fabric, model, optimizer, dataloader):
    # Training loop
   model.train()
   for epoch in range(num_epochs):
        for i, batch in enumerate(dataloader):
            . . .
def main():
    # (Optional) Parse command line options
   args = parse_args()
    # Configure Fabric
    fabric = L.Fabric(..., strategy="deepspeed")
    # Instantiate objects
   model = \dots
   optimizer = ...
   train dataloader = ...
    # Set up objects
   model, optimizer = fabric.setup(model, optimizer)
   train_dataloader = fabric.setup_dataloaders(train_dataloader)
   # Run training loop
   train(fabric, model, optimizer, train_dataloader)
if __name__ == "__main__":
   main()
```



```
fabric = Fabric(accelerator="gpu", strategy="ddp", devices=8, num_nodes=4)
```

```
trainer = Trainer(accelerator="gpu", strategy="ddp", devices=8, num_nodes=4)
```

```
fabric = Fabric(accelerator="gpu", strategy="ddp", devices=8, num_nodes=4)
```

```
trainer = Trainer(accelerator="gpu", strategy="ddp", devices=8, num_nodes=4)
```



```
fabric = Fabric(accelerator="gpu", strategy="ddp", devices=8, num_nodes=4)

trainer = Trainer(accelerator="gpu", strategy="ddp", devices=8, num_nodes=4)
```



```
fabric = Fabric(accelerator="gpu", strategy="ddp", devices=8, num_nodes=4)

trainer = Trainer(accelerator="gpu", strategy="ddp", devices=8, num_nodes=4)
```


Think one process per accelerator

Under the hood

MASTER_PORT: free port on machine with NODE_RANK 0

MASTER_ADDR: address of NODE_RANK 0 node

WORLD_SIZE: the total number of GPUs/processes

NODE_RANK: id of the node in the cluster

MASTER_PORT=23456
MASTER_ADDR="10.10.10.25"
WORLD_SIZE=32

Under the hood

WORLD_SIZE: the total number of GPUs/processes

NODE_RANK: id of the node

LOCAL_RANK: id of the process in each node

GLOBAL_RANK: unique id of the process

Under the hood

WORLD_SIZE: the total number of GPUs/processes

NODE_RANK: id of the node

LOCAL_RANK: id of the process in each node

GLOBAL_RANK: unique id of the process

MASTER PORT=23456 MASTER_ADDR="10.10.10.25" WORLD SIZE=32 GLOBAL_RANK 16 24 25 10 18 19 26 27 11 12 13 20 21 28 29 14 15 22 23 30 31 NODE_RANK=0 NODE_RANK=1 NODE_RANK=2 NODE_RANK=3 10.10.10.25 10.10.10.26 10.10.10.27 10.10.10.28

In Lightning / Fabric

```
from lightning.fabric import Fabric

# Devices and num nodes determine how many processes there are fabric = Fabric(devices=8, num_nodes=4) fabric.launch()
```

```
# The total number of processes running across all devices and nodes
fabric.world_ size # 4 * 8 = 32
# The global index of the current process across all devices and nodes
fabric.global_rank # -> {0, 1, 2, 3, 4, ..., 31}
# The index of the current process among the processes running on the
local node
fabric.local_rank # -> {0, 1, 2, 3, 4, 5, 6, 7}
# The index of the current node
fabric.node_rank \# -> \{0, 1, 2, 3\}
# Do something only on rank 0
if fabric.global_rank == 0:
```


Gradient accumulation

Activation/Gradient checkpointing

Mixed precision

automatically restored at computation time

Mixed precision

Sebastian Rashka, https://lightning.ai/pages/courses/deep-learning-fundamentals/

Offloading

GPU

Distribute model parameters across machines in contiguous blocks

data

Naive model parallelism

https://siboehm.com/articles/22/pipeline-parallel-training

Pipeline parallelism

Interleaved pipeline parallelism

Bubble gets better as more nodes participate

Tensor parallelism

https://sebastianraschka.com/blog/2023/pytorch-faster.html

Column-wise

Row-wise

Combining parallelism: 2D, 3D, 4D

E.g. Sharded Data Parallel + Tensor Parallel in separate parallel dimensions:

- Data Parallel across hosts
- Tensor Parallel within each host

Other example: Megatron-LM

Wanchao Liang, Two Dimensional Parallelism Using Distributed Tensors

DDP

DDP - sharded DDP that shards **model parameters**, optimizer state and gradients across DDP ranks. It can optionally offload to CPU.

trainer = Trainer(accelerator="gpu", strategy="ddp", devices=8, num_nodes=4)

DeepSpeed

- DeepSpeed ZeRO Stage 1 Shard optimizer states, remains at speed parity with DDP whilst providing memory improvement
- DeepSpeed ZeRO Stage 2 Shard optimizer states and gradients, remains at speed parity with DDP whilst providing even more memory improvement
- DeepSpeed ZeRO Stage 2 Offload Offload optimizer states and gradients to CPU. Increases distributed communication volume and GPU-CPU device transfer, but provides significant memory improvement
- DeepSpeed ZeRO Stage 3 Shard optimizer states, gradients, parameters and optionally activations.
 Increases distributed communication volume, but provides even more memory improvement
- DeepSpeed ZeRO Stage 3 Offload Offload optimizer states, gradients, parameters and optionally activations to CPU. Increases distributed communication volume and GPU-CPU device transfer, but even more significant memory improvement.
- DeepSpeed Activation Checkpointing Free activations after forward pass. Increases computation, but provides memory improvement for all stages.

DeepSpeed

```
trainer = Trainer(accelerator="gpu", devices=8, num_nodes=4, strategy="deepspeed_stage_1")
trainer = Trainer(accelerator="gpu", devices=8, num_nodes=4, strategy="deepspeed_stage_2")
trainer = Trainer(accelerator="gpu", devices=8, num_nodes=4, strategy="deepspeed_stage_2_offload")
trainer = Trainer(accelerator="gpu", devices=8, num_nodes=4, strategy="deepspeed_stage_3")
trainer = Trainer(accelerator="gpu", devices=8, num_nodes=4, strategy="deepspeed_stage_3")
```


DeepSpeed

```
import lightning as L
from lightning.pytorch.strategies import DeepSpeedStrategy
import deepspeed
class MyModel(L.LightningModule):
    def configure_sharded_model(self):
        self.block_1 = nn.Sequential(nn.Linear(32, 32),
nn.ReLU())
        self.block_2 = torch.nn.Linear(32, 2)
    def forward(self, x):
        # Use the DeepSpeed checkpointing function instead of
calling the module directly
        x = deepspeed.checkpointing.checkpoint(self.block_1, x)
        return self.block_2(x)
```

```
model = MyModel()
trainer = L.Trainer(accelerator="gpu", devices=4,
strategy="deepspeed_stage_3_offload", precision=16)
# Enable CPU Activation Checkpointing
trainer = Trainer(
    accelerator="gpu",
    devices=4.
    strategy=DeepSpeedStrategy(
        stage=3.
        offload_optimizer=True, # Enable CPU Offloading
        cpu_checkpointing=True, # Offload activations to CPU
    precision=16,
trainer.fit(model)
```


FSDP (Fully Sharded Data Parallel)

FSDP - sharded DDP that **shards model parameters**, **optimizer state** and **gradients** across DDP ranks.

It optionally **offloads activations** and **optimizer state** to CPU.

```
trainer = Trainer(accelerator="gpu", strategy="fsdp", devices=8, num_nodes=4)
```


ColossalAl

ColossalAI - Zero-DP with dynamic chunk-based memory management and other configurable parallelization strategies.

```
class MyModel(LightningModule):
    def __init__(self):
        super().__init__()
        # don't instantiate layers here
        # move the creation of layers to
`configure_sharded_model`

def configure_sharded_model(self):
    # create all your layers here
    self.layers = nn.Sequential(...)
```

```
from lightning_colossalai import ColossalAIStrategy

model = MyModel()
my_strategy = ColossalAIStrategy(placement_policy="auto")

trainer = Trainer(accelerator="gpu", devices=4, precision=16, strategy=my_strategy)

trainer.fit(model)
```

Monitors the consumption of CUDA memory during the warmup phase and collects CUDA memory usage of all auto-grad operations

Automatically manages the data transmission between GPU and CPU according to collected CUDA memory usage information

Going fast

Eager mode

execute

execute

execute

execute

```
def forward(self, x):
   B, T, C = x.size()
   q, k ,v = self.c_attn(x).split(self.n_embd, dim=2) ——————
   k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
   q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
   v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
   att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
   att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf'))
   att = F.softmax(att, dim=-1)
   att = self.attn_dropout(att)
   y = att @ v
   y = y.transpose(1, 2).contiguous().view(B, T, C)
   y = self.resid_dropout(self.c_proj(y))
```


Going fast: bottleneck

Eager mode

execute

execute

execute

execute

```
def forward(self, x):
   B, T, C = x.size()
   q, k ,v = self.c_attn(x).split(self.n_embd, dim=2)
   k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
   q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
   v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
   att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
   att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf'))
   att = F.softmax(att, dim=-1)
   att = self.attn_dropout(att)
   y = att @ v
   y = y.transpose(1, 2).contiguous().view(B, T, C)
   y = self.resid_dropout(self.c_proj(y))
```


Bottleneck on modern hardware

Going fast: bottleneck

Eager mode

execute

execute

execute

execute

```
def forward(self, x):
   B, T, C = x.size()
   q, k ,v = self.c_attn(x).split(self.n_embd, dim=2)
   k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
   q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
   v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
   att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
   att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf'))
   att = F.softmax(att, dim=-1)
   att = self.attn_dropout(att)
   y = att @ v
   y = y.transpose(1, 2).contiguous().view(B, T, C)
   y = self.resid_dropout(self.c_proj(y))
```


Bottleneck on modern hardware

Going fast: compiled mode

```
def forward(self, x):
   B, T, C = x.size()
   q, k ,v = self.c_attn(x).split(self.n_embd, dim=2)
    k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
   q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
   v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
   att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
   att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf'))
   att = F.softmax(att, dim=-1)
   att = self.attn_dropout(att)
   y = att @ v
   y = y.transpose(1, 2).contiguous().view(B, T, C)
   y = self.resid_dropout(self.c_proj(y))
```

Compiled mode

Going fast: PyTorch 2.0

```
model = NanoGPT(config)
model = torch.compile(model)
model(x)

# Works with PyTorch Lightning (+ Fabric)
model = MyLitModule()
model = torch.compile(model)
trainer.fit(model)

Program acquisition
through tracing
bytecode, optimization
Optimized execution,
based on OpenAl Triton
```


Going fast: PyTorch 2.0

```
model = NanoGPT(config)
model = torch.compile(model)
model(x)

# Works with PyTorch Lightning (+ Fabric)
model = MyLitModule()
model = torch.compile(model)
trainer.fit(model)

Program acquisition
through tracing
bytecode, optimization
Optimized execution,
based on OpenAl Triton
```

Status: DDP supported, FSDP support in the works

Demo: Model Parallel

github.com/Lightning-Al/open-bio-ml-workshop

Performance Optimization

Minimize framework overhead

Compile: Use torch.compile whenever possible

Logging: Log often for development, log less for long training runs

Checkpointing: Minimize frequency, checkpoint often only if training is unstable

Validation: Tune frequency based on dataset sizes

Maximize throughput

Compile: Use torch.compile whenever possible

Mixed precision: Speed + memory, prefer bfloat16 if available

Batch Size: Increase until OOM, avoid Malloc retries

Num Workers: Increase if GPU is waiting on data, consumes more CPU memory

Best practices

Avoid unnecessary GPU synchronization

Create tensors directly on the device

```
# Avoid these:
output.item()
output.numpy()
output.cpu()

torch.cuda.empty_cache()
```

```
# bad
t = torch.rand(4, 4).cuda()

# LightningModule:
torch.rand(4, 4, device=self.device)

# Fabric:
torch.rand(4, 4, device=fabric.device)
```


Performance flags

Speed (default)

```
# PyTorch / Fabric
torch.use_deterministic_algorithms(False)
torch.backends.cudnn.benchmark = True

# Trainer
trainer = Trainer(benchmark=True, deterministic=False)
```

Determinism

```
# PyTorch / Fabric
torch.use_deterministic_algorithms(True)
torch.backends.cudnn.benchmark = False
# Trainer
trainer = Trainer(benchmark=False, deterministic=True)
```

Comparing Trainer vs. PyTorch

Run "barebones"

```
# Disable logging, checkpointing, etc.
trainer = Trainer(..., barebones=True)
```

Recommended for comparing implementations and unit testing!

Tensor cores

Perform costly matrix multiplications in lower precision (internal)

Lightning informs you if you have tensor cores

```
# Default
torch.set_float32_matmul_precision("high")

# Lower precision matrix multiplication
torch.set_float32_matmul_precision("highest")
torch.set_float32_matmul_precision("medium")
```

WARNING: You are using a CUDA device ('NVIDIA GeForce RTX 3090') that has Tensor Cores. To properly utilize them, you should set `torch.set_float32_matmul_precision('medium' | 'high')` which will trade-off precision for performance.

Find bottlenecks (framework)

Configure profiler

```
# Trainer
trainer = Trainer(profiler="simple", ...)
trainer.fit(...)
```

Output after fit

Action		-1	Mean duration (s)		Total time (s)
[LightningModule]BoringMode	l.prepare_data	1	10.0001		20.00	
run_training_epoch	· · -	1	6.1558	ı	6.1558	
run_training_batch		-	0.0022506	ı	0.015754	
[LightningModule]BoringMode	l.optimizer_step	- 1	0.0017477	- 1	0.012234	
[LightningModule]BoringMode	l.val_dataloader	- 1	0.00024388	- 1	0.00024388	
on_train_batch_start		- 1	0.00014637	- 1	0.0010246	
[LightningModule]BoringMode	l.teardown	- 1	2.15e-06	- 1	2.15e-06	
[LightningModule]BoringMode	l.on_train_start	- 1	1.644e-06	- 1	1.644e-06	
[LightningModule]BoringMode	l.on_train_end	- 1	1.516e-06	- 1	1.516e-06	
[LightningModule]BoringMode	l.on_fit_end	-1	1.426e-06	- 1	1.426e-06	
[LightningModule]BoringMode.	l.setup	-	1.403e-06		1.403e-06	
[LightningModule]BoringMode	l.on_fit_start	- 1	1.226e-06	- 1	1.226e-06	

Find bottlenecks (PyTorch)

Configure profiler

```
# Trainer
trainer = Trainer(profiler="pytorch", ...)
trainer.fit(...)
```

Output after fit

Name	Self CPU %	Self CPU	CPU total %	CPU total	CPU time avg	Self CUDA	Self CUDA %	CUDA total	CU
D	3.48%	47.673ms	39.44%	540.549ms	180.183ms	0.000us	0.00%	113.315ms	
ProfilerStep*									
ol][profile][Strategy]SingleDeviceStrategy.backward	32.14%	440.445ms	32.18%	441.004ms	147.001ms	0.000us	0.00%	3.000us	
utograd::engine::evaluate_function: EmbeddingBackwa	0.00%	57.000us	27.61%	378.372ms	63.062ms	0.000us	0.00%	4.470ms	
EmbeddingBackward0	0.00%	21.000us	27.60%	378.277ms	63.046ms	0.000us	0.00%	2.834ms	
aten::embedding_backward	0.00%	15.000us	27.60%	378.256ms	63.043ms	0.000us	0.00%	2.834ms	
aten::embedding_dense_backward	0.03%	360.000us	27.60%	378.241ms	63.040ms	659.000us	0.11%	2.834ms	
cudaStreamSynchronize	27.51%	377.063ms	27.51%	377.063ms	41.896ms	0.000us	0.00%	0.000us	
[pl][profile]run_training_batch	0.05%	710.000us	26.02%	356.661ms	178.331ms	0.000us	0.00%	117.272ms	
<pre>[pl][profile][LightningModule]LitGPT.optimizer_step</pre>	0.00%	51.000us	25.97%	355.951ms	177.976ms	0.000us	0.00%	117.272ms	
Optimizer.step#AdamW.step	23.54%	322.614ms	25.97%	355.900ms	177.950ms	0.000us	0.00%	117.272ms	
l][profile][Strategy]SingleDeviceStrategy.training	0.02%	224.000us	3.64%	49.858ms	16.619ms	0.000us	0.00%	175.918ms	
[pl][module]gpt.GPT: gpt	0.06%	773.000us	3.62%	49.634ms	16.545ms	0.000us	0.00%	175.918ms	
cudaDeviceSynchronize	3.26%	44.698ms	3.26%	44.698ms	44.698ms	0.000us	0.00%	0.000us	
cudaLaunchKernel	2.01%	27.556ms	2.01%	27.556ms	5.968us	14.669ms	2.55%	14.669ms	
aten::linear	0.11%	1.443ms	1.65%	22.615ms	76.922us	0.000us	0.00%	150.840ms	
aten::to	0.12%	1.584ms	1.33%	18.255ms	14.318us	0.000us	0.00%	56.977ms	
aten::_to_copy	0.27%	3.708ms	1.26%	17.297ms	17.850us	0.000us	0.00%	58.926ms	
aten::mm	0.58%	7.996ms	0.85%	11.625ms	26.361us	209.986ms	36.56%	211.492ms	
autograd::engine::evaluate_function: MmBackward0	0.10%	1.334ms	0.82%	11.205ms	76.224us	0.000us	0.00%	138.901ms	
MmBackward0	0.10%	1.370ms	0.72%	9.871ms	67.150us	0.000us	0.00%	138.901ms	

Self CPU time total: 1.371s Self CUDA time total: 574.402ms

OpenFold Update: Lightning 2.0!

Reach out!

discord

discord.gg/MWAEvnC5fU

forums

lightning.ai/forums

twitter

@LightningAl

https://linktr.ee/lightningai

Thanks

Adrian Wälchli
Akihiro Nitta
Carlos Mocholí
Eden Afek
Ethan Harris
Jirka Borovec
Justus Schock
Thomas Chaton
William Falcon

https://linktr.ee/lightningai

Thanks

