7/26/22, 11:43 AM Untitled5

```
In [1]: #load dependencies
        import pandas as pd
        import numpy as np
        from sklearn.model selection import train test split
        from sklearn.linear model import LogisticRegression
In [2]: dataset = pd.read csv('logisticregressioncsv.csv')
In [3]: #preprocess your data
        y=dataset['PumpActivity']#target variable
        features = ['PumpDevice', 'PumpDeviceAge']
        x=dataset[features]
In [4]: #split and train the dataset
        x_train,x_test,y_train,y_test = train_test_split(x,y)
In [5]: #Let the model predict results
        log = LogisticRegression()
        log.fit(x_train,y_train)
        y_pred = log.predict(x)
        y_prob =log.predict_proba(x)[:,1]
In [6]: #Lets add the columns back to the dataframe
        dataset['predictions'] = y_pred
        dataset['probabilities'] = y_prob
        #results of model predict and probability results
In [7]:
        dataset
Out[7]:
```

	PumpActivity	PumpDevice	PumpDeviceAge	predictions	probabilities
0	0	0	0	0	0.007381
1	1	4	1	1	0.640374
2	0	4	0	1	0.590299
3	0	4	0	1	0.590299
4	1	4	2	1	0.687568
995	0	0	0	0	0.007381
996	1	4	0	1	0.590299
997	0	0	0	0	0.007381
998	1	4	0	1	0.590299
999	0	0	0	0	0.007381

1000 rows × 5 columns