eGaN® FET DATASHEET EPC2052

EPC2052 – Enhancement Mode Power Transistor

 V_{DS} , 100 V $R_{DS(on)}$, 13.5 m Ω I_{D} , 8.2 A

Revised September 26, 2022

Gallium Nitride's exceptionally high electron mobility and low temperature coefficient allows very low $R_{DS(on)}$, while its lateral device structure and majority carrier diode provide exceptionally low Q_G and zero Q_{RR} . The end result is a device that can handle tasks where very high switching frequency, and low on-time are beneficial as well as those where on-state losses dominate.

	Maximum Ratings				
	PARAMETER	VALUE	UNIT		
\ \ \	Drain-to-Source Voltage (Continuous)	100	V		
V _{DS}	Drain-to-Source Voltage (up to 10,000 5 ms pulses at 150°C)	120			
	Continuous (T _A = 25°C)	8.2	Α		
I _D	Pulsed (25°C, $T_{PULSE} = 300 \mu s$)	74			
V	Gate-to-Source Voltage	6			
V _{GS}	Gate-to-Source Voltage	-4	V		
TJ	Operating Temperature -40 to 150		°C		
T _{STG}	Storage Temperature	-40 to 150			

	Thermal Characteristics				
	PARAMETER	TYP	UNIT		
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	2			
R _{OJB} Thermal Resistance, Junction-to-Board 15 °C/		°C/W			
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (Note 1)	74			

Note 1: $R_{\theta,A}$ is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board. See https://epc-co.com/epc/documents/product-training/Appnote_Thermal_Performance_of_eGaN_FETs.pdf for details.

	Static Characteristics ($T_j = 25^{\circ}$ C unless otherwise stated)						
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
BV _{DSS}	Drain-to-Source Voltage	$V_{GS} = 0 \text{ V, I}_{D} = 0.2 \text{ mA}$	100			V	
I _{DSS}	Drain-Source Leakage	$V_{DS} = 80 \text{ V}, \ V_{GS} = 0 \text{ V}, T_{J}$ = 25°C		0.02	0.15	mA	
	Gate-to-Source Forward Leakage	$V_{GS} = 5 \text{ V, T}_{J} = 25^{\circ}\text{C}$		0.01	1.8	mA	
I _{GSS}		$V_{GS} = 5 \text{ V}, T_J = 125^{\circ}\text{C}$		0.2	4	mA	
	Gate-to-Source Reverse Leakage#	$V_{GS} = -4 \text{ V}, T_J = 25^{\circ}\text{C}$		0.01	0.18	mA	
V _{GS(TH)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 3 \text{ mA}$	0.8	1.4	2.5	V	
R _{DS(on)}	Drain-Source On Resistance	$V_{GS} = 5 \text{ V}, I_D = 11 \text{ A}$		10	13.5	mΩ	
V _{SD}	Source-Drain Forward Voltage#	$I_S = 0.5 \text{ A}, V_{GS} = 0 \text{ V}$		2.0		V	

[#] Defined by design. Not subject to production test.

Die Size: 1.5 x 1.5 mm

EPC2052 eGaN® FETs are supplied in passivated die form with solder bumps.

Applications

- 48 V Servers
- · Lidar/Pulsed Power
- · Isolated Power Supplies
- Point of Load Converters
- Class D Audio
- · LED Lighting
- Low Inductance Motor Drive

Benefits

- Higher Switching Frequency Lower switching losses and lower drive power
- Higher Efficiency Lower conduction and switching losses, zero reverse recovery losses
- Ultra Small Footprint Higher power density

Scan QR code or click link below for more information including reliability reports, device models, demo boards!

https://l.ead.me/EPC2052

EPC2052 eGaN® FET DATASHEET

	Dynamic Characteristics [#] (T ₁ = 25°C unless otherwise stated)					
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
C _{ISS}	Input Capacitance			441	584	
C_{RSS}	Reverse Transfer Capacitance	$V_{DS} = 50 \text{ V}$, $V_{GS} = 0 \text{ V}$		3.2		
Coss	Output Capacitance			195	293	pF
C _{OSS(ER)}	Effective Output Capacitance, Energy Related (Note 2)	V 0+- F0VVV 0V		227		
C _{OSS(TR)}	Effective Output Capacitance, Time Related (Note 3)	$V_{DS} = 0 \text{ to } 50 \text{ V}, V_{GS} = 0 \text{ V}$		274		
R_{G}	Gate Resistance			0.7		Ω
Q _G	Total Gate Charge	$V_{DS} = 50 \text{ V}, V_{GS} = 5 \text{ V}, I_{D} = 11 \text{ A}$		3.5	4.5	
Q _{GS}	Gate to Source Charge			1.5		
Q_{GD}	Gate to Drain Charge	$V_{DS} = 50 \text{ V}, I_D = 11 \text{ A}$		0.5		
Q _{G(TH)}	Gate Charge at Threshold			1.0		nC
Qoss	Output Charge	$V_{GS} = 0 \text{ V}, V_{DS} = 50 \text{ V}$		13	20	
Q _{RR}	Source-Drain Recovery Charge			0		

[#] Defined by design. Not subject to production test.

Figure 1: Typical Output Characteristics at 25°C

Figure 2: Typical Transfer Characteristics

Figure 3: Typical $\mathbf{R}_{\mathrm{DS(on)}}$ vs. \mathbf{V}_{GS} for Various Currents

Figure 4: Typical $\mathbf{R}_{\mathrm{DS(on)}}$ vs. \mathbf{V}_{GS} for Various Temperatures

All measurements were done with substrate connected to source.

Note 2: $C_{OSS(ER)}$ is a fixed capacitance that gives the same stored energy as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS}.

Note 3: $C_{OSS(TR)}$ is a fixed capacitance that gives the same charging time as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS}.

eGaN® FET DATASHEET **EPC2052**

Figure 6: Typical Output Charge and Coss Stored Energy

Figure 7: Typical Gate Charge

Figure 8: Typical Reverse Drain-Source Characteristics

Figure 9: Typical Normalized On-State Resistance vs. Temp.

Negative gate drive voltage increases the reverse drain-source voltage. EPC recommends 0 V for OFF

eGaN® FET DATASHEET EPC2052

Figure 11: Typical Transient Thermal Response Curves

eGaN® FET DATASHEET **EPC2052**

Figure 12: Safe Operating Area

 $T_J = Max Rated$, $T_C = +25$ °C, Single Pulse

TAPE AND REEL CONFIGURATION

	EPC2052 (note 1)		
Dimension (mm)	target	min	max
а	8.00	7.90	8.30
b	1.75	1.65	1.85
c (see note)	3.50	3.45	3.55
d	4.00	3.90	4.10
е	4.00	3.90	4.10
f (see note)	2.00	1.95	2.05
g	1.5	1.5	1.6

Note 1: MSL 1 (moisture sensitivity level 1) classified according to IPC/JEDEC industry standard. Note 2: Pocket position is relative to the sprocket hole measured as true position of the pocket, not the pocket hole.

(face side down)

Part		Laser Markings			
Number	Part # Marking Line 1	Lot_Date Code Marking line 2	Lot_Date Code Marking Line 3		
EPC2052	2052	YYYY	ZZZZ		

eGaN® FET DATASHEET **EPC2052**

DIE OUTLINE

Solder Bump View

DIM	MICROMETERS				
DIM	MIN	Nominal	MAX		
A	1470	1500	1530		
В	1470	1500	1530		
C		450			
d		500			
е	238	264	290		

Pad 1 is Gate;

Pads 2, 3, 7, 8, 9 are Source;

Pads 4, 5, 6 are Drain.

RECOMMENDED LAND PATTERN

Side View

(units in μ m)

DIM	MICROMETERS
A	1500
В	1500
C	450
d	500
e	230

Pad 1 is Gate;

Pads 2, 3, 7, 8, 9 are Source;

Pads 4, 5, 6 are Drain.

RECOMMENDED STENCIL DRAWING

(measurements in µm)

Additional assembly resources available at https://epc-co.com/epc/design-support

DIM	MICROMETERS
A	1500
В	1500
c	450
d	500
f	300
q	250

Pad 1 is Gate;

Pads 2, 3, 7, 8, 9 are Source;

Pads 4, 5, 6 are Drain.

Recommended stencil should be 4 mil (100 μm) thick, must be laser cut, opening per drawing. The corner has a radius of R60. Intended for use with SAC305 Type 4 solder, reference 88.5% metals content.

Efficient Power Conversion Corporation (EPC) reserves the right to make changes without further notice to any products herein to improve reliability, function or design. EPC does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

eGaN® is a registered trademark of Efficient Power Conversion Corporation.

EPC Patent Listing: https://epc-co.com/epc/about-epc/patents

Information subject to change without notice.