IBM NALAIYA THIRAN 2022-23 PROJECT REPORT

Team ID	PNT2022TMID22305
Project Name	Signs with Smart Connectivity
	for Better Road Safety
Date	19/11/2022

Team Lead HEMANTH KUMAR R

Team Member 1 DAYANIDHI S

Team Member 2 SARAVANAN S

Team Member 3 KISHORE K S

SIGNS WITH SMART CONNECTIVITY FOR BETTER ROAD SAFETY TEAM ID - PNT2022TMID22305

1. INTRODUCTION

1.1 PROJECT OVERVIEW

The goal of this project is to replace the static signboards with smart connected sign boards to get the speed limitations from a web app using weather API and update it automatically based on the weather conditions, set diversions through API and warn drivers for school zones and hospital zones

1.2 PURPOSE

• To replace the static signboards, smart connected sign boards are used.

- These smart connected sign boards get the speed limitations from a web app using weather API and update automatically.
 - Based on the weather changes the speed may increase or decrease.
 - Traffic diversion signs are remotely controlled using APIs.
- •"DO NOT HONK" message displayed at School and Hospital Zones which can we set using buttons.

2. LITERATURE SURVEY

2.1 EXISTING PROBLEM

- Static sign board cannot update automaticaly based on weather condition which leads to accidents.
- School zone are shown for the drivers should watch out for children, reduce speed, and obey any signals from a crossing guard.
- School zone are shown for the drivers should watch out for children, reduce speed, and obey any signals from a crossing guard.
- Damage in static sign board such as pain deterioration, folded sheet and pole bent can lead to many accidents.

2.2 REFERENCES

- Andrzej Czyżewski in his paper titled "Development of Intelligent Road Signs with V2X Interface for Adaptive Traffic Controlling", IEEE 2019, developed IOT based intelligent road signs capable of interacting with both the vehicles and other neighbouring sign boards using LORA. These sign boards were capable of communicating with one another and changing the speed limit based on traffic and weather.
- Muhammed O. Sayin, ChungWei Lin, Eunsuk Kang, Shinichi Shiraishi & Tamer
 Basar in their paper titled "Reliable Smart Road Signs", IEEE 2019, proposed a g
 ame theoretical adversarial intervention detection mechanism for reliable smart r
 oad signs. A future trend in intelligent transportation systems is "smart road sign"
 that incorporate smart codes (e.g., visible at infrared) on their surface to
 pr
 ovide more detailed information to smart vehicles.
- L.F.P. Oliveira, L.T. Manera, P.D.G. Luz in their paper titled "Smart Traffic Light Controller System", IEEE 2019, developed smart traffic lights capable of traffic accident detection enabling the enhancement of traffic light management systems, blocking and creating alternative routes to not only avoid the traffic jams, but also avoid newaccidents.

• Dariusz Grabowski & Andrzej Czyzewski in their paper titled "System for monitoring road slippery based on CCTV cameras and convolutional neural networ ks", Springer Publications 2020, made use of Convolutional Neural Networks to identify slippery roads using CCTV cameras

2.3 PROBLEM STATEMENT DEFINITION

To replace the static signboards with smart connected sign boards to get the speed limitations from a web app using weather API and update it automatically based on the weather conditions, set diversions through API and warn drivers for school zones and hospital zones.

3. IDEATION AND PROPOSED SOLUTION

3.1 EMPATHY MAP CANVAS

3.2 IDEATION & BRAINSTORMING

 $\frac{https://github.com/IBM-EPBL/IBM-Project-21705-}{1659788943/blob/main/Project%20Design%20%26%20Planning/Ideation%20Phase/IDEATION.pdf}$

Brainstorm & idea prioritization
Signs With Smart Connectivity for Better Road Safety

Signs With S

Step-1: Team Gathering, Collaboration and Select the Problem Statement

Step-2: Brainstorm, Idea Listing and Grouping

Step-3: Idea Prioritization

3.3 PROPOSED SOLUTION

https://github.com/IBM-EPBL/IBM-Project-21705-1659788943/blob/main/Project%20Design%20%26%20Planning/Project%20Design%20Phase%20-%20I/Proposed%20Solution.pdf

- Use a ESP32 to drive a display as a replacement for static sign boards.
- Configure IBM cloud server such that upon making a single http request with unique id, usual speed limit & hospital/school zone info, it returns processes the data at cloud and returns only the message to be displayed at the sign board display.
- Another http end point is configured to set the direction to be displayed. Upon accessing this http end point, the direction is set remotely for a display using it's unique id.

The project team shall fill in the following information in the proposed solution template.

S.No.	Parameter	Description
1.	Problem Statement (Problem to	In present the road signs and the speed
	be solved)	limits are Static. In some cases the
		road signs can change automatically.
		To control the heavy traffic, Accident,
		Injuries etc. And it used to change the
		directions, speed limits, emergency
		limits.
2.	Idea / Solution description	Iot based application for better road
		safety.Now we are using static
		signboards it can be replaced by smart
		sign boards. Iot it connects to open
		weather map where it collects the dates
		and speed limits from web app by
		weather API.
3.	Novelty / Uniqueness	Sign according to scenario diversion
		signs also displayed.Weather
		monitoring.
4.	Social Impact / Customer	To avoid accidents, road safety is
	Satisfaction	must.The purpose of making signs
		with smart connectivity road safety is

3.4 PROBLEM SOLUTION FIT

- The display replaces the static signs
- Processing requirement of microcontroller is reduced since all the processing is done in the cloud servers.
- Direction can be remotely set by the concerned authorities without needing to personally attend the site.

4. REQUIREMENT ANALYSIS

4.1 FUNCTIONAL REQUIREMENTS

https://github.com/IBM-EPBL/IBM-Project-21705-1659788943/blob/main/Project%20Design%20%26%20Planning/Project%20Design%20Phase%20-%20II/Solution%20Requirements.pdf

Functional Requirements:

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User Understanding	The signs should be large, clear, and readable in order for the driver to understand them. They can also include illustrations to help the driver understand them. The methods and measures used to prevent road users from being killed or seriously injured are referred to as road traffic safety.
FR-2	User convenience	Passive traffic safety measures sought to avoid influencing driver behaviour while providing maximum comfort to vehicles. The display should be large enough to show all of the signs correctly, even from a distance.
FR-3	User Guidance	Provides complete information about the system's processes to the user. Defines the product's features and functions. Focus on user requirements, which includes explaining the significance of selecting our product. A user manual is included. Tour of the client application
FR-4	User need	Road safety education is just as important as any other learnable skill. Our goal is to provide road safety information to drivers in order to encourage safer driving habits among current and future drivers and to reduce the number of people killed and injured on our roads each year.
FR-5	User visibility	Visibility refers to a driver's ability to see traffic and environmental surroundings on the road while also allowing other drivers to understand the driver in question.

4.2 NON-FUNCTIONAL REQUIREMENTS

https://github.com/IBM-EPBL/IBM-Project-21705-1659788943/blob/main/Project%20Design%20%26%20Planning/Project%20Design%20Phase%20-%20II/Solution%20Requirements.pdf

Non-functional Requirements:

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	The user should read the provided user manual and guide to fully utilise all of the features. The software should be understood, used, and learned by its intended users.
NFR-2	Security	It should have a good security system so that nobody else is able to hack into it and display their own directions.
NFR-3	Reliability	The system that collects information from the surrounding environment and processes it in real time so that drivers can be comfortable that the signs are providing the best results possible.
NFR-4	Performance	A performance review looks at the current state of road safety, helping the government in trying to identify a most important security aspects and suggesting actions to be taken.
NFR-5	Availability	It should be available 24 hours a day, seven days a week to benefit the customer.
NFR-6	Scalability	More features, such as alarms, and many more sensors for the preacquisition of vehicles and death situations, can be added in the future.

5. PROJECT DESIGN

5.1 DATA FLOW DIAGRAMS

https://github.com/IBM-EPBL/IBM-Project-21705-1659788943/blob/main/Project%20Design%20%26%20Planning/Project%20Design%20Phase%20%20II/Data%20Flow%20Diagrams%20And%20User%20Stories.pdf

5.2 SOLUTION & TECHNICAL ARCHITECTURE

https://github.com/IBM-EPBL/IBM-Project-21705-1659788943/blob/main/Project Design %26 Planning/Project Design Phase - I/SOLUTION ARCHITECTURE.pdf

Solution Architecture Diagram:

Architecture:

5.3 USER STORIES

https://github.com/IBM-EPBL/IBM-Project-21705-1659788943/blob/main/Project

Design %26 Planning/Project Design Phase - II/Data Flow Diagrams And User Stories.pdf

User Stories

Use the below template to list all the user stories for the product.

User Type	Functional	User	User Story / Task	Acceptance	Priority	Release
	Requirement	Story		criteria		
	(Epic)	Number				
Customer	Registration	USN-1	As a user, I can register for the	Access my	High	Sprint-1
(Mobile			application by entering my	account /		
user)			email, password, and	dashboard		
			confirming my password.			
Weather	openweathermap	USN-2	As a user, I want to check the	Get the weather	High	Sprint-1
			weather of that location	of that location		
IoT devices	Automation	USN-3	As a user, I want to use IoT	Get the work	High	Sprint-2
			devices for automation	done without		NO.
			purposes	manual effort		
Python code	Random data	USN-4	As a user, I want to give some	Get the data	Medium	Sprint-1
			input to the devices for	workflow		
			performing some action to			
			complete the tasks very easily			
IBM Cloud	Cloud services	USN-5	As a user, I want to deploy	Useful for all	High	Sprint-1
			these application for public	domain users		
			version			
Node-Red	Integration		As a user, I want to integrate	To precise for	Medium	Sprint-3
		USN-6	the applications with	linear workflow		
			hardware			
Web UI	Interaction	USN-7	As a user, I want to interact	To interact with	Medium	Sprint-2
			with the digital products	the users		

6. PROJECT PLANNING AND SCHEDULING PHASE

6.1 SPRINT PLANNING & ESTIMATION

https://github.com/IBM-EPBL/IBM-Project-21705-1659788943/blob/main/Project Design %26 Planning/Project Planning/Project Planning Phase - Sprint Delivery Plan.pdf

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Use the below template to create product backlog and sprint schedule

Sprint	Functional	User Story	User Story / Task	Story Points	Priority	Team Members
	Requirement (Epic)	Number				
Sprint-1	Initializing the	USN-1	Create an account in OpenWeather API	2	High	Dayanidhi S
	Resources					Hemanth Kumar R
						Kishore K S
						Saravanan S
Sprint-1	Code in Software is	USN-2	Write a python script using the inputs given	1	High	Dayanidhi S
	writen		from OpenWeather API			Hemanth Kumar R
						Kishore K S
						Saravanan S
Sprint-2	Sending the software	USN-3	The python code from sprint 1 should be sent	2	Low	Hemanth Kumar R
	to cloud		to cloud so that it is easily accessible			Dayanidhi S
			1			Kishore K S
						Saravanan S
Sprint-3	Initialising the	USN-4	The hardware should be inter-grated for the	2	Medium	Dayanidhi S
	connection between		easy access of the cloud functions			Saravanan S
	hardware and cloud		,			Hamanth Kumar R
	arrai e dila cioda					Kishore K S
Sprint-4	User input-output	USN-5	Rectify all the shortcomings/errors and initiate	1	High	Dayanidhi S

Sprint	Functional	User Story	User Story / Task	Story Points	Priority	Team Members
	Requirement (Epic)	Number				
	optimisation and error identification and rectification		the optimisation for better usage			Hamanth Kumar R Kishore K S Saravanan S

Project Tracker, Velocity & Burn down Chart: (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	02 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	09 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	17 Nov 2022

6.2 SPRINT DELIVERY SCHEDULE

https://github.com/IBM-EPBL/IBM-Project-21705-1659788943/blob/main/Project Design %26 Planning/Project Planning/Project Planning Phase - Sprint Delivery Plan.pdf

7. CODING & SOLUTIONING

7.1 CREATING THE SYSTEM USING NODE-RED

7.2 CONNECTING THE PYTHON SCRIPT

```
A ROUTE - COLUMN TOWN WHO WE'S

Sport of Chron Works We's

Sport of Chron W
```


7.3 CONNECTING IBM WATSON ASSISSTANT

8. TESTING

8.1 TEST CASES

8.2 USER ACCEPTANCE TESTING

Dynamic speed & divertion variations based on the weather and traffic helps user to avoid traffic and have a safe journey home. The users would welcome this idea to be implemented everywhere.

1.Purpose of Document

The purpose of this document is to briefly explain the test coverage and open issues of the web UI which provides "Signs with smart connectivity for better road safety "at the time of the release to User Acceptance Testing (UAT).

2.Defect Analysis

Section	Total Cases	Not Tested	Fail	Pass
Print Engine	10	0	0	12
Client Application	22	0	0	22
Security	4	0	0	4

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	8	3	2	2	15
Duplicate	3	0	3	0	6
External	4	2	0	2	8
Fixed	5	1	3	8	17
Not Reproduced	0	0	0	0	0
Skipped	1	0	3	1	5
Won't Fix	0	2	1	1	4
Totals	21	8	12	14	55

Test Case Analysis

This report shows the number of test cases that have passed, failed, and untested

Outsource Shipping	5	0	0	5
Exception Reporting	7	0	0	7
Final Report Output	4	0	0	4
Version Control	3	0	0	3

9. RESULTS

9.1 PERFORMANCE METRICS

10. ADVANTAGES & DISADVANTAGES

ADVANTAGES

- Lower battery consumption since processing is done mostly by Node RED servers in the cloud.
 - Cheaper and low requirement micro controllers can be used since processing requirements are reduced.
 - Longer lasting systems.
 - o Dynamic Sign updation.
 - School/Hospital Zone alerts

DISADVANTAGES

- The size of the display determines the requirement of the micro controller
- Dependent on OpenWeatherAPI and hence the speed reduction is same for a large area in the scale of cities.

11. CONCLUSION

Our project is capable of serving as a replacement for static signs for a comparatively lower cost and can be implemented in the very near future. This will help reduce a lot of accidents and maintain a more peaceful traffic atmosphere in the country.

12. Appendix

import wiotp.sdk.device #importing library files for connecting with CLOUD,sdk=software development kit

```
import requests  #for API request
import json  #converting it to json(key:values)
import sys

myConfig = {
  "identity": {
      "orgId": "c0mbt9",
      "typeId": "Smartsigns", #configuration wit CLOUD,finding identity
      "deviceId":"SS"
    },
    "auth": {
      "token": "Hrtme!0y*FQT-s@HKf" #authenticating with cloud device
    }
}
```

#TRAFFIC AND FATAL SITUATION ALERT MESSAGE DISPLAYING IN WEB UI WHEN THE

```
client = wiotp.sdk.device.DeviceClient(config=myConfig, logHandlers=None)
#initialising device client with above myconfig detail
client.connect()
ALERT=""
NOTIFY=""
def myCommandCallback(cmd):
  print("Message received from IBM IoT Platform: %s" %
cmd.data['command'])
  m=cmd.data['command']
   #THIS IF COMDITION BLOCK IS FOR TRAFFIC AND FATAL
SITUATION ALERT MESSAGE DISPLAYING IN WEB UI WHEN THE
MESSAGE WAS RECEIVED FROM THE ROAD SAFETY OFFICE
  ALERT=""
  NOTIFY=""
  if(m=="TRAFFIC"):
   ALERT="TRAFFIC - PLEASE WAIT OR PREFER ANOTHER
ROUTE"
   print("*****///PLEASE WAIT OR PREFER ANOTHER
ROUTE///*****")
  elif(m=="ACCIDENT"):
    ALERT="ACCIDENT - TAKE DIVERSION"
   print("*****///TAKE DIVERSION///*****")
  elif(m=="MESSAGE"):
   ALERT="HAVE A NICE DAY!"
   print("HAVE A NICE DAY!")
   #THE BELOW CONDITION BLOCK IS TO DISPLAY HOSPITAL
SCHOOL, AND RESTAURANT REGIONED AREA AND SPEED
```

RECOMMENDATION

```
if(m=="SCHOOL"):
   NOTIFY="SCHOOL REGION MAINTAIN SPEED LIMIT BELOW
40KM/HR"
   print("SCHOOL REGION MAINTAIN SPEED LIMIT BELOW
40KM/HR")
  elif(m=="HOSPITAL"):
   NOTIFY="HOSPITAL REGION DONT USE HORN"
   print("HOSPITAL REGION DONT USE HORN")
  elif(m=="RESTAURANT"):
   NOTIFY="CROWDED AREA PLEASE MAINTAIN SPEED LIMIT"
   print("CROWDED AREA PLEASE MAINTAIN SPEED LIMIT")
  mydata1=\{\}
  if(m=="TRAFFIC" or m=="ACCIDENT" or m=="MESSAGE"):
   mydata1={"SITUATION":ALERT}
  elif(m=="SCHOOL"or m=="HOSPITAL" or m=="RESTAURANT"):
   mydata1={"CAUTION":NOTIFY}
  client.publishEvent("SS","json",mydata1)
while True:
  print("======"")
  AREA = "Chennai, IN"
  weatherData =
requests.get("https://api.openweathermap.org/data/2.5/weather?q=" + AREA +
"&appid=cd23e4f9eaf0ba585b8598624415b4ae&units=metric")
  a=weatherData.text
 b=json.loads(a)
  temp = b["main"]["temp"]
  humi = b["main"]["humidity"]
  main = b["weather"][0]["main"] #0th index is taken from the object
  description = b["weather"][0]["description"]
IBM NALAIYA THIRAN PROJECT REPORT
                                          TEAM ID - PNT2022TMID22305
```

```
visibility = b["visibility"]
  Windspeed = b["wind"]["speed"]
  TemperatureRecommendation =""
  SpeedRecommendation = ""
  RecommendationForVisibilty = ""
  #print("Temperature(celcius) :",b["main"]["temp"])
  if (temp>33):
    TemperatureRecommendation="Temperature is higher than ideal value"
    #print("Temperature is higher than ideal value")
  elif (temp<19):
    TemperatureRecommendation="Temperature is lower than ideal value"
    #print("Temperature is lower than ideal value")
  else:
    TemperatureRecommendation="Temperature is ideal"
    #print("Temperature is ideal ")
  #print("Humidity :",b["main"]["humidity"])
  #print("WeatherCondition",(b["weather"][0]["main"]))
  if (main == "Rain"):
    rain = b["rain"]["1h"]
    SpeedRecommendation = "30KM/HR, ROAD WILL BE SLIPPERY"
    #print("Rain:",b["rain"]["1h"])
    #print("SPEED RECOMMENDATION: 30KM/HR, ROAD WILL BE
SLIPPERY")
  elif (main == "Drizzle"):
    SpeedRecommendation = "30KM/HR"
IBM NALAIYA THIRAN PROJECT REPORT
                                                 TEAM ID - PNT2022TMID22305
```

```
#print("SPEED RECOMMENDATION: 30KM/HR")
  elif (main == "Mist"):
    SpeedRecommendation = "30KM/HR and switch on the headlight"
    #print("SPEED RECOMMENDATION: 30KM/HR and switch on the
Headlight")
  elif (main == "Thunderstorm"):
    SpeedRecommendation = "30KM/HR and stay away in the open place"
    #print("SPEED RECOMMENDATION: 30KM/HR and stay away in the
open place")
  elif (main == "Clouds"):
    SpeedRecommendation = "MAINTAIN NORMAL SPEED LIMIT UPTO
50 KM/HR"
    #print("SPEED RECOMMENDATION: 30KM/HR and stay away in the
open place")
  #print("Description of weather:",(b["weather"][0]["description"]))
  #print("visibility",(b["visibility"]))
  if (visibility<1000):
    RecommendationForVisibilty = "SPEED RECOMMENDATION:
30KM/HR and SWITCH ON THE HEAD LIGHT"
  else:
    RecommendationForVisibilty = "visibility range is ideal for vechicles"
  #print("SPEED RECOMMENDATION: 30KM/HR and SWITCH ON THE
HEAD LIGHT")
  mydata={"temperature":temp,
"TemperatureRecommendation":TemperatureRecommendation,"humidity":hum
i,"WeatherCondition":main,"SpeedRecommendation":SpeedRecommendation
,"DescriptionOfWeather":description,"visibility":visibility,"RecommendationFo
rVisibilty":RecommendationForVisibilty,"WindSpeed":Windspeed,"LOCATIO
N":AREA}
  print(mydata)
  client.publishEvent("SS","json",mydata)
IBM NALAIYA THIRAN PROJECT REPORT
                                              TEAM ID - PNT2022TMID22305
```

client.commandCallback = myCommandCallback

Github & Demo Link

Github link: https://github.com/IBM-EPBL/IBM-Project-21705-1659788943

Video demo link: https://youtu.be/LMi xMqylTk