Inteligência Artificial, Otimização Combinatória: Uma Apresentação

Claudio Cesar de Sá¹

¹Departamento de Ciência da Computação – DCC Centro de Ciências Tecnológicas – CCT Universidade do Estado de Santa Catarina – UDESC

II Seminário de Engenharia de Software – SEMESO CEAVI–UDESC

1 de Outubro de 2015 – Ibirama – SC

Agenda

- Um sobrevôo na IA
- ② O que é complexidade computacional?
- 3 Um sobrevôo em otimização
- Um exemplo: modelagem, código e resultados
- Tendências

Caos + Complexidade + ... = Inteligência

Figura: Comportamento inteligente, complexo ou caótico?

Caos

Figura: Caos: indefinição de tempo, espaço sob o domínio dos reais

Caos no Cotidiano

- Crescimento das cidades
- Mudanças ambientais (em parte previsível)
- Desastres ecológicos Katrina
- Poluição, lixo, ..., etc
- Comunicação Social

Caos no Cotidiano

- Crescimento das cidades
- Mudanças ambientais (em parte previsível)
- Desastres ecológicos Katrina
- Poluição, lixo, ..., etc
- Comunicação Social
- Há uma aleatoriedade embutida nestes eventos!

Caos no Cotidiano

- Crescimento das cidades
- Mudanças ambientais (em parte previsível)
- Desastres ecológicos Katrina
- Poluição, lixo, ..., etc
- Comunicação Social
- Há uma aleatoriedade embutida nestes eventos!
- Embora computáveis, longe de serem postos em prática!

Complexo

Figura: Precisamos de uma máquina que calcule sobre outra máquina!

Origens da Inteligência Artificial

Histórico

- Sim, foi logo após a morte de Alan Turing (1954)
- Motivação: máquinas que apresentassem comportamentos inteligentes. Exemplo: jogo de xadrez
- Máquinas que provassem teoremas (verdades matemáticas)
- Usassem um senso-comum de um ser humano (a lógica matemática)
- Logo, há um *mix* de áreas: psicologia, matemática, lógica (há lugares tratado apenas pela filosofia), ..., e computação!
- Há uma complexidade nisto tudo!

Motivações aos Toys-Problem

Figura: Problemas que usassem uma habilidade de pensar do ser humano, reproduzir este conhecimento em uma máquina!

Principais Áreas da IA

- Lógica: visa automatizar a cognição humana
- Redes Neurais: reproduz o comportamento neurônios
- Aprendizagem de Máquinas: adquire um conhecimento e exibe o que foi aprendido
- Raciocínio Incerto: visa inferir uma valoração ao conhecimento
- Agentes: estabeleceu paradigmas de autonomia e inteligência
- Robótica: tudo embarcado em um hardware que faça algo
- Ferramentas: como implementar tudo isto. Linguagens de programação: LISP (1960) e PROLOG (197X)
- Sim ... mas há muito mais!

Principais Áreas da IA

Figura: Observe o sentido das setas !

Figura: Teoria publicada em 1986 ... Sojourner (a esquerda) 1996

Figura: Carro da Google – Sucesso de Marketing

Figura: Dava-se um fato ou a resposta, a idéia era encontrar a pergunta certa!

Figura: Impulsão bélica: os drones!

Outros Sucessos da IA

- Mineração de Dados: aprendizagem a partir de dados Exemplos: Google, Facebook, etc.
- Reconhecimento de Padrões: imagens, voz, movimentos
- Sistemas de Segurança: Biometria

Computação Natural ⊃ IA

Figura: Computação Inspirada em Seres Biológicos (sua evolução Darwiniana)

Computação via Colônia de Formigas

Aplicação 1: TSP, um problema difícil

Aplicação 2: encontrar um ponto de maior ganho!

Figura: Computação Inspirada em Seres Biológicos (a evolução Darwiniana)

Onde a IA se encontra com a Otimização Combinatória (OC)?

IA ⇔ OC:

- Ambas as áreas abordam problemas complexos!
- IA: diversas direções e muitos paradigmas
- Otimização Combinatória (OC): usa modelos como a IA, rígidos, espaços definidos ...
- A área de Otimização tem uma divisão: Discreta ou Combinatória e Contínua ou Numérica (não é o foco – funções deriváveis)
- Atacar problemas difíceis! Contudo, o que é difícil?
- Aqui: complexo ≈ difícil
- Vamos definir uma medida de complexo

Definindo uma Medida Complexidade

- Na área de CC tem uma medida clássica
- Classificar os problemas em polinomiais e exponenciais
- Assim, os problemas exponenciais são os mais intrigantes ...
- O que é isto?

Problema da Satisfatibilidade

Fórmulas Lógicas

Seja uma fórmula $\varphi_1(x)$ sobre o domínio $\{0,1\}$, temos a sua interpretação dada Tabela Verdade abaixo:

$$egin{array}{c|ccc} x & \varphi_1(x) \\ \hline 1 & {f 1} \\ 0 & {f 0} \\ \hline \end{array}$$

Árvore semântica

Figura: Representando as validades da função $\varphi_1(x)$

Fórmulas Lógicas

Seja uma fórmula $\varphi_2(x,y) = (\sim x \land y) \lor (x \land \sim y)$ sobre o domínio $\{0,1\}$, temos a sua interpretação dada Tabela Verdade abaixo:

											$\varphi_2(x,y)$
1	1	0	1	0	1	0	1	0	0	1	0
1	0	0	1	0	0	1	1	1	1	0	1
0	1	1	0	1	1	1	0	0	0	1	1
0	0	1	0	0	0	0	0	0	1	0	0

Sua árvore semântica é dada por:

Figura: Representando as validades da função $\varphi_2(x,y)$

Fórmulas Lógicas

Seja uma fórmula $\varphi_3(x,y,z)=(\sim x\vee y)\wedge(\sim y\vee z)$ sobre o domínio $\{0,1\}$, temos a sua interpretação dada Tabela Verdade abaixo:

X	у	Z	(¬	X	\vee	<i>y</i>)	\wedge	(¬	y	\vee	z)	$\varphi_3(x,y,z)$
1	1	1	0	1	1	1	1	0	1	1	1	1
1	1	0	0	1	1	1	0	0	1	0	0	0
1	0	1	0	1	0	0	0	1	0	1	1	0
1	0	0	0	1	0	0	0	1	0	1	0	0
0	1	1	1	0	1	1	1	0	1	1	1	1
0	1	0	1	0	1	1	0	0	1	0	0	0
0	0	1	1	0	1	0	1	1	0	1	1	1
0	0	0	1	0	1	0	1	1	0	1	0	1

Sua árvore semântica é dada por:

Figura: Representando as validades da função $\varphi_3(x,y,z)$

O que temos em comum entre $\varphi_1(x)$, $\varphi_2(x,y)$ $\varphi_3(x,y,z)$?

- Claro, o mesmo domínio: $\{0,1\}$
- O número de linhas cresceu
- Sim, o número de linhas cresceu e exponencialmente: 2ⁿ onde é o número de variáveis
- Quanto a base 2 veio tamanho do domínio: $\{0,1\}$
- E quando este número de variáveis e domínio forem maiores?
- Isto mesmo, temos $|D|^n$, uma exponencial!
- Logo, problemas que tenham uma ordem maior ou igual a $2^{O(n)}$ são exponenciais, consequentemente, difíceis!

Classe de Problemas e o interesse da IA

Figura: Problemas e suas complexidades

Introdução à Otimização

Classes de Problemas

Problemas de otimização são geralmente divididos em dois tipos: otimização combinatorial (discreta) e otimização numérica (contínua)

Combinatorial Problemas definidos em um espaço de estados finito (ou infinito mas enumerável)

Numérica Definidos em subespaços infinitos e não enumeráveis, como os números reais e complexos

Elementos de uma Otimização

Min ou Max

Sujeito a

$$h_k(x) = 0$$
 $k = 1, ..., K$
 $g_j(x) \ge 0$ $j = 1, ..., J$
 $x_i^{(U)} \ge x_i \ge x_i^{(L)}$ $i = 1, ..., N$

$$k = 1, ..., K$$

$$j = 1, ..., J$$

Tipos de Variáveis:

- Contínua
- Combinatória/Discreta
- Mista

Mínimo/Máximo: Local x Global

Otimização Combinatorial - Exemplo

Figura: Atribuição ou designação de trabalhos

Otimização Numérica - Exemplo

Minimizar a função $f(x) = (x-1)^2 + 3$.

As técnicas:

Combinatória:

- Busca Local
- Métodos Gulosos: busca tipo subida a encosta (hill-climbing), recozimento simulado (simulated annealing), busca tabu,
- Programação Dinâmica
- Programação por Restrições
- Redes de Fluxo
-

Numérica:

- Descida do Gradiente
- Gauss-Newton
- Lavemberg-Marquardt
-

Um Problema Difícil (NP): Cabo de Guerra

Critério de escolha do times: por peso

Figura: O mais pesado tem mais força!

Especificando o problema do Cabo de Guerra

Que seja feita a divisão:

Joao ₁	Pedro ₂	Manoel ₃	 Zecan
45	39	79	 42

- Divisão por peso
- Respeitar critérios como: $|N_A N_B| \le 1$
- Todos devem brincar
- Bem, esta simples <u>restrição</u> ($|N_A N_B| \le 1$), de nosso cotidiano tornou um simples problema em mais uma questão combinatória. Um arranjo da ordem de $\frac{n!}{(n/2)!}$. Casualmente, nada trivial para grandes valores!

Estratégia de Modelagem

Variável de Decisão: análogo a árvore do SAT

Nomes (n_i) :	n_1	<i>n</i> ₂	<i>n</i> ₃	 n _n
Peso (p_i) :	45	39	79	 42
Binária (x_i) :	0/1	0/1	0/1	 0/1

- Assim $N_A \approx N/2$, $N_B \approx N/2$ e $|N_A N_B| \le 1$
- $x_i = 0$: n_i fica para o time A
- $x_i = 1$: n_i fica para o time B
- Logo a soma:

$$\sum_{i=1}^n x_i p_i$$

é o peso total do time $B(P_B)$

Modelagem das Restrições

- Falta encontrar peso total do time $A(P_A)$, dado por:
- $P_A = P_{total} P_B$
- ou

$$P_A = \sum_{i=1}^n p_i - \sum_{i=1}^n x_i p_i$$

• Finalmente, aplicar uma minimização na diferença: $|P_A - P_B|$

Uma Estratégia de Implementação

Figura: Se $x_i = 0$, então n_i segue para o time A, caso $x_i = 1$, então n_i vai para o time BQual a técnica usada?

◆□▶◆□▶◆□▶◆□▶ □ 900

Implementação em Minizinc

```
int: n; %% total de pessoas
var int: NA; %% Quantos em cada lado
var int: NB; %% Lado B
%%% quantidade de pessoas (n) e seu peso vetor : ARQ EXTERNO
array[1..n] of int : peso;
%% var de decisao BINARIA
array[1..n] of var 0..1 : x_decision;
var int: PESO_TOTAL;
var int: PA;
var int: PB;
%%% ilustrando uma função em MINIZINC
function var int: metade( int: n) = n div 2 ;
```

```
%% quantos em cada lado
constraint
  NA = metade(n)
  NB = (n - NA):
constraint
   PESO TOTAL = sum( i in 1..n ) (peso[i]);
constraint
  NB = sum( i in 1..n ) ( x_decision[i] );
constraint
  PB = sum(i in 1..n) (x decision[i]*peso[i]);
constraint
  PA = (PESO TOTAL - PB);
% minimizar a diferenca entre os PESOS
solve minimize abs(PA-PB):
```

Resultados e Análise

Números aleatórios de 1 a 150

Usando um solver médio do Minizinc (G12 lazyfd) padrão:

n	tempo	P_A	P_B	
5	40msec	276	278	
10	46msec	518	519	
25	98msec	1198	1197	
50	411msec	2290	2291	
75	2s 485msec	3133	3133	
100	470msec	4142	4142	
125	7s 2msec	4992	4992	
150	605msec	5823	5823	
175	642msec	6777	6778	
200	> 10min	_	_	

Referência: cpu 4-core, 4 G ram, SO: Linux-Debian

Reflexões

■ Enfim, este problema é uma variação de clássicos NPs, mais especificamente o *sub-set-sum*

Leia-se: Problema da Mochila

■ Implemente este problema usando Programação Dinâmica (PD)

Finalizando estes exponenciais

Figura: O limite dos NPs

Empurrando o muro dos exponenciais

Figura: Empurrando o limite dos NPs

Conclusões:

- A área computação evolucionária tem apresentado resultados expressivos, são resultados quase-ótimos, mas magnetudes acima das demais técnicas;
- O hardware com IA embarcada sempre foi um paradigma da construção de uma inteligência
- Os rápidos, baratos e velozes, agora formam um sociedade de agentes inteligentes
- Os problemas solucionados com a combinatória tem sido colocados em prática há muitos anos, e ao que parece, devem continuar,

Perguntas, Referências e Contactos

- http://www.joinville.udesc.br/coca/
- https://github.com/claudiosa
- Email: claudio.sa@udesc.br
- Thank you so much!