A Circle and a Hexagon

Dyson

5th November, 2021

This question places a unit circle tangent to a hexagon and a line, and asks for the side length ℓ of the hexagon.

We can begin by drawing some of the radii of this circle. We can observe that the interior angle of the hexagon is 120° and thus find the other angle on the straight line to be 60° .

We can get rid of the hexagon and the circle, because we now only care about the kites and triangles.

We know that the two line segments either side of the 120° angle are ℓ , so this triangle is isosceles. That means the other two angles are 30° .

We can also find the angle opposite 60° to be 120° because we know all the other angles in the kite.

At the top, we know the angle in the isosceles triangle is 30° , so the other angle on this straight line must be 150° . We can also then find its opposite angle to be 30° by angles in a kite again.

We can then split the larger kite into two identical triangles and examine one.

We can use the sine rule to find a and b like so.

$$\frac{1}{\sin 30^{\circ}} = \frac{a}{\sin 60^{\circ}} = \frac{b}{\sin 90^{\circ}}$$

$$\implies a = \frac{\sin 60^{\circ}}{\sin 30^{\circ}} = \sqrt{3}$$

$$\implies b = \frac{\sin 90^{\circ}}{\sin 30^{\circ}} = 2$$

Now, we can examine our diagram once more and see that we have the length ℓ split between two line segments. We can call these two smaller lengths ℓ_1 and ℓ_2 .

Since the two triangles of the larger kite are identical, we know that $\ell_1 = \sqrt{3}$. We can find ℓ_2 by the same process with the other kite.

Again, using the sine rule, we find that

$$\frac{1}{\sin 75^{\circ}} = \frac{\ell_2}{\sin 15^{\circ}}$$

$$\implies \ell_2 = \frac{\sin 15^{\circ}}{\sin 75^{\circ}} = 2 - \sqrt{3}$$

Therefore,

$$\ell = \ell_1 + \ell_2 = \sqrt{3} + 2 - \sqrt{3} = 2$$