CS5340: Tutorial 5

Asst. Prof. Harold Soh

TAs: Chen Kaiqi

Course Schedule

Week	Date	Lecture Topic	Tutorial Topic
1	12 Jan	Introduction to Uncertainty Modeling + Probability Basics	Introduction
2	19 Jan	Simple Probabilistic Models	Probability Basics
3	26 Jan	Bayesian networks (Directed graphical models)	More Basic Probability
4	2 Feb	Markov random Fields (Undirected graphical models)	DGM modelling and d-separation
5	9 Feb	Variable elimination and belief propagation	MRF + Sum/Max Product
6	16 Feb	Factor graph and the junction tree algorithm	Quiz 1
-	-	RECESS WEEK	
7	2 Mar	Mixture Models and Expectation Maximization (EM)	Linear Gaussian Models
8	9 Mar	Hidden Markov Models (HMM)	Probabilistic PCA
9	1 6 Mar	Monte-Carlo Inference (Sampling)	Linear Gaussian Dynamical System
10	23 Mar	Variational Inference	MCMC + Sequential VAE
11	30 Mar	Inference and Decision-Making (Special Topic)	Quiz 2
12	6 Apr	Gaussian Processes (Special Topic)	Wellness Day
13	13 Apr	Project Presentations	Closing

Sum-Product Algorithm

• Two phases:

$$m_{ji}(x_i) = \sum_{x_j} \left(\psi^E(x_j) \psi(x_i, x_j) \prod_{k \in \mathcal{N}(j) \setminus i} m_{kj}(x_j) \right)$$

- 1. Messages flow inward from leaves toward the root.
- Initiated once all incoming messages have been received by the root node – messages flow outward from root toward the leaves.

Message-Passing Protocol

A node can send a message to a neighboring node when (and only when) it has received messages from all of its other neighbors.

Sum-Product Algorithm

```
// main steps of the "Sum-Product Algorithm"
Sum-Product(\mathcal{T}, E)
     EVIDENCE(E)
     f = \text{ChooseRoot}(\mathcal{V})
     for e \in \mathcal{N}(f)
          Collect(f, e)
     for e \in \mathcal{N}(f)
          DISTRIBUTE(f, e)
     for i \in \mathcal{V}
          ComputeMarginal(i)
EVIDENCE(E)
                                     // add evidence potentials (convert conditioning into marginalization)
     for i \in E
          \psi^E(x_i) = \psi(x_i)\delta(x_i, \bar{x}_i)
     for i \notin E
          \psi^E(x_i) = \psi(x_i)
                                   // messages flow inward from leaves toward the root
Collect(i, j)
     for k \in \mathcal{N}(i) \setminus i
          Collect(j, k)
     SENDMESSAGE(j, i)
                                    // messages flow outward from root toward the leaves
DISTRIBUTE(i, j)
     SENDMESSAGE(i, j)
     for k \in \mathcal{N}(j) \setminus i
          DISTRIBUTE(j,k)
                                   // intermediate factors (messages)
SENDMESSAGE(i, i)
    m_{ji}(x_i) = \sum_{x_j} (\psi^E(x_j)\psi(x_i, x_j) \prod_{k \in \mathcal{N}(j) \setminus i} m_{kj}(x_j))
Compute Marginal (i) // message to final node
     p(x_i) \propto \psi^E(x_i) \prod m_{ji}(x_i)
                      j \in \mathcal{N}(i)
```

MRT Inference (Again!)

Problem 1.a. Compute $p(x_{12} = 1 | x_1 = 0, x_7 = 0, x_9 = 1, x_{10} = 0)$.

Sum-Product approach:

Problem 1.a. Compute $p(x_{12} = 1 | x_1 = 0, x_7 = 0, x_9 = 1, x_{10} = 0)$.

$$m_{ji}(x_i) = \sum_{x_j} \left(\psi^E(x_j) \psi(x_i, x_j) \prod_{k \in \mathcal{N}(j) \setminus i} m_{kj}(x_j) \right)$$
$$p(x_f \mid \bar{x}_E) \propto \psi^E(x_f) \prod_{e \in \mathcal{N}(f)} m_{ef}(x_f)$$

x_i	$\psi(x_i)$
0	10
1	2

П			
	x_i	x_j	$\psi(x_i,x_j)$
	0	0	20
	0	1	5
	1	0	5
	1	1	20

$$m_{i\to j}(x_j) = \sum_{x_i \in \{0,1\}} \left(\psi^E(x_i) \psi(x_i, x_j) \prod_{x_k \in \text{neighbors}(\mathbf{x}_i) \setminus \mathbf{x}_j} m_k \to (x_i) \right)$$

 $\psi^E(x_i) = \delta(x_i = \hat{x}_i)\psi(x_i)$ if $x_i \in E$ and $\psi^E(x_i) = \psi(x_i)$ otherwise

Compute the message from x_{10} to x_{12} :

$m_{x_{10}\to x_{12}}$		
$x_{12} = 0$ $x_{12} = 1$	$\begin{array}{ c c c }\hline 10 \times 20 + 0 \times 5 \\ 10 \times 5 + 0 \times 20 \\\hline \end{array}$	200 50

$$\tilde{p}(x_{12} = \hat{x}_{12} | x_1 = 0, x_7 = 0, x_9 = 1, x_{10} = 0) = \psi(x_{12} = \hat{x}_{12}) \times m_{x_{10} \to x_{12}}(x_{12} = \hat{x}_{12})$$

$ ilde{p}$		
$x_{12} = 0$ $x_{12} = 1$	$\begin{array}{ c c c }\hline 10 \times 200 \\ 2 \times 50 \end{array}$	2000

$$p(x_{12} = 1 | x_1 = 0, x_7 = 0, x_9 = 1, x_{10} = 0) = \frac{100}{2000 + 100} = \frac{1}{21} = 0.0476$$

Problem 1.b. Compute $p(x_1 = 1 | x_3 = 0, x_4 = 1, x_6 = 0)$.

x_i	$\psi(x_i)$
0	10
1	2

x_i	x_j	$\psi(x_i,x_j)$
0	0	20
0	1	5
1	0	5
1	1	20

$$p(x_1|x_3, x_4, x_6) = p(x_1|x_4) = \frac{p(x_1, x_4)}{\sum_{x_1} p(x_1, x_4)}$$

$$= \frac{\sum_{x_2} \psi(x_1, x_2) \psi(x_2) \psi(x_2, x_4) \psi(x_1) \psi(x_4) m(x_4)}{\sum_{x_1} \sum_{x_2} \psi(x_1, x_2) \psi(x_2) \psi(x_2, x_4) \psi(x_1) \psi(x_4) m(x_4)}$$

$$= \frac{\sum_{x_2} \psi(x_1, x_2) \psi(x_2) \psi(x_2, x_4) \psi(x_1)}{\sum_{x_1} \sum_{x_2} \psi(x_1, x_2) \psi(x_2) \psi(x_2, x_4) \psi(x_1)}$$

$$= \frac{\sum_{x_2} \psi(x_1 = 1, x_2) \psi(x_2) \psi(x_2, x_4 = 1) \psi(x_1 = 1)}{\sum_{x_1} \sum_{x_2} \psi(x_1, x_2) \psi(x_2) \psi(x_2, x_4 = 1) \psi(x_1)}$$

$$= \frac{5 \times 10 \times 5 \times 2 + 20 \times 2 \times 20 \times 2}{20 \times 10 \times 5 \times 10 + 5 \times 2 \times 20 \times 10 + 5 \times 10 \times 5 \times 2 + 20 \times 2 \times 20 \times 2}$$

$$=\frac{7}{47}=0.1489$$

Sum-Product approach:

Problem 1.b. Compute $p(x_1 = 1 | x_3 = 0, x_4 = 1, x_6 = 0)$.

$$m_{ji}(x_i) = \sum_{x_j} \left(\psi^E(x_j) \psi(x_i, x_j) \prod_{k \in \mathcal{N}(j) \setminus i} m_{kj}(x_j) \right)$$
$$p(x_f \mid \bar{x}_E) \propto \psi^E(x_f) \prod_{e \in \mathcal{N}(f)} m_{ef}(x_f)$$

x_i	$\psi(x_i)$
0	10
1	2

x_i	x_j	$\psi(x_i,x_j)$
0	0	20
0	1	5
1	0	5
1	1	20

Compute the message from x_4 to x_2 :

$m_{x_4 \to x_2}$		
$x_2 = 0$ $x_2 = 1$	$\begin{array}{ c c c c }\hline 0 \times 20 + 2 \times 5 \\ 0 \times 5 + 2 \times 20 \\ \end{array}$	10 40

Next, compute the message from x_2 to x_1 :

$m_{x_2 \to x_1}$		
$x_1 = 0$	$ \begin{vmatrix} 10 \times 20 \times 10 + 2 \times 5 \times 40 \\ 10 \times 5 \times 10 + 2 \times 20 \times 40 \end{vmatrix} $	2400
$x_1 = 1$	$10 \times 5 \times 10 + 2 \times 20 \times 40$	2100

$$\tilde{p}(x_1 = \hat{x}_1 | x_3 = 0, x_4 = 1, x_6 = 0) = \psi(x_1 = \hat{x}_1) \times m_{x_2 \to x_1}(x_1 = \hat{x}_1)$$

$$p(x_1 = 1 | x_3 = 0, x_4 = 1, x_6 = 0) = \frac{4200}{24000 + 4200} = \frac{7}{47} = 0.1489$$

Linear Gaussian Model (Gaussian Bayesian Network)

Problem 3.a. We will build our way up towards this model. As a prelude, consider K independent univariate Gaussian random variables x_1, x_2, \ldots, x_K ,

$$p(x_k) = \mathcal{N}(\mu_k, \sigma_k^2)$$

for k = 1, 2, ..., K. Define the random variable x_L ,

$$x_L = b + \sigma_L \epsilon + \sum_{k=1}^K w_k x_k$$

where $\epsilon \sim \mathcal{N}(0, 1)$.

- Draw out the DGM for the model described above.
- 2. Show that $p(x_L|x_1,...,x_K) = \mathcal{N}\left(b + \sum_{k=1}^K w_k x_k, \sigma_L^2\right)$. In other words, x_L is Gaussian distributed with mean $b + \sum_{k=1}^K w_k x_k$ and variance σ_L^2 .
- 3. Define the random variable $\mathbf{x} = (x_1, x_2, \dots, x_K, x_L)$. Show that \mathbf{x} is a multivariate Gaussian random variable. Hint: Consider the definition of the multivariate Gaussian and the properties of Gaussians.

Univariate Normal Distribution

- Also known as the Gaussian distribution.
- Univariate normal distribution describes single continuous variable X, i.e. $x \in \mathbb{R}$.
- Two parameters $\mu \in \mathbb{R}$ (mean) and $\sigma^2 > 0$ (variance).

Carl Friedrich Gauss

$$p(X = a \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp{-\frac{(a-\mu)^2}{2\sigma^2}}, \ a \in \mathbb{R}$$

Or

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp{-\frac{(x-\mu)^2}{2\sigma^2}}$$
$$p(x) = \text{Norm}_x[\mu, \sigma^2]$$

Multivariate Normal Distribution

- Multivariate normal distribution describes a Ddimensional continuous variable X, i.e. $x \in \mathbb{R}^D$.
- *D*-dimensional mean $\mu \in \mathbb{R}^D$, and $D \times D$ symmetric positive definite covariance matrix $\Sigma \in \mathbb{R}^{D \times D}_+$.

$$p(X = a \mid \mu, \Sigma) = \frac{1}{(2\pi)^{D/2} |\Sigma|^{1/2}} \exp\{-0.5(a - \mu)^T \Sigma^{-1} (a - \mu)\}, \quad a \in \mathbb{R}^D$$

Or

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{D/2} |\mathbf{\Sigma}|^{1/2}} \exp\{-0.5(\mathbf{x} - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\}$$
$$p(\mathbf{x}) = \operatorname{Norm}_{\mathbf{x}}[\boldsymbol{\mu}, \mathbf{\Sigma}]$$