1. Solve the quadratic equation below. Then, choose the intervals that the solutions belong to, with $x_1 \leq x_2$ (if they exist).

$$-10x^2 + 9x + 8 = 0$$

- A. $x_1 \in [-20.5, -17.9]$ and $x_2 \in [20, 21.7]$
- B. $x_1 \in [-2.6, -0.9]$ and $x_2 \in [-1.4, 1.1]$
- C. $x_1 \in [-15.1, -13.1]$ and $x_2 \in [3.9, 7.3]$
- D. $x_1 \in [-0.7, 0.3]$ and $x_2 \in [0.7, 2.3]$
- E. There are no Real solutions.
- 2. Solve the quadratic equation below. Then, choose the intervals that the solutions x_1 and x_2 belong to, with $x_1 \leq x_2$.

$$15x^2 - 38x + 24 = 0$$

- A. $x_1 \in [1.18, 1.28]$ and $x_2 \in [1.19, 1.53]$
- B. $x_1 \in [18, 18.02]$ and $x_2 \in [19.67, 20.4]$
- C. $x_1 \in [0.32, 0.41]$ and $x_2 \in [3.97, 4.38]$
- D. $x_1 \in [0.57, 0.61]$ and $x_2 \in [2.58, 2.84]$
- E. $x_1 \in [0.65, 0.75]$ and $x_2 \in [2.22, 2.5]$
- 3. Graph the equation below.

.

В.

Α.

C.

E. None of the above.

4. Write the equation of the graph presented below in the form $f(x) = ax^2 + bx + c$, assuming a = 1 or a = -1. Then, choose the intervals that a, b, and c belong to.

A.
$$a \in [-6, 0], b \in [-9, -7], and $c \in [-7, -3]$$$

B.
$$a \in [-6, 0], b \in [6, 10], \text{ and } c \in [-7, -3]$$

C.
$$a \in [-6, 0], b \in [6, 10], and c \in [-27, -24]$$

D.
$$a \in [1, 6], b \in [6, 10], and c \in [24, 28]$$

E.
$$a \in [1, 6], b \in [-9, -7], \text{ and } c \in [24, 28]$$

5. Factor the quadratic below. Then, choose the intervals that contain the constants in the form (ax + b)(cx + d); $b \le d$.

$$54x^2 - 15x - 25$$

- A. $a \in [14.9, 21.4], b \in [-10, -2], c \in [1.8, 4.4], and <math>d \in [5, 12]$
- B. $a \in [1.2, 4.8], b \in [-10, -2], c \in [17, 19], and <math>d \in [5, 12]$
- C. $a \in [0.2, 1.7], b \in [-46, -43], c \in [0.4, 2.1], and <math>d \in [28, 31]$
- D. $a \in [4.5, 8.4], b \in [-10, -2], c \in [8.7, 9.5], and <math>d \in [5, 12]$
- E. None of the above.
- 6. Solve the quadratic equation below. Then, choose the intervals that the solutions x_1 and x_2 belong to, with $x_1 \leq x_2$.

$$20x^2 + 61x + 36 = 0$$

- A. $x_1 \in [-5.75, -4.17]$ and $x_2 \in [-0.46, -0.4]$
- B. $x_1 \in [-2.42, -2.3]$ and $x_2 \in [-0.77, -0.75]$
- C. $x_1 \in [-45, -44.45]$ and $x_2 \in [-16.02, -15.93]$
- D. $x_1 \in [-2.26, -1.94]$ and $x_2 \in [-0.86, -0.79]$
- E. $x_1 \in [-9.46, -8.61]$ and $x_2 \in [-0.28, -0.13]$
- 7. Write the equation of the graph presented below in the form $f(x) = ax^2 + bx + c$, assuming a = 1 or a = -1. Then, choose the intervals that a, b, and c belong to.

A. $a \in [-3, 0], b \in [-10, -7], \text{ and } c \in [-21, -15]$

B.
$$a \in [0,3], b \in [-10,-7], \text{ and } c \in [19,21]$$

C.
$$a \in [0, 3], b \in [8, 12], and c \in [19, 21]$$

D.
$$a \in [-3, 0], b \in [8, 12], \text{ and } c \in [-16, -11]$$

E.
$$a \in [-3, 0], b \in [-10, -7], \text{ and } c \in [-16, -11]$$

8. Solve the quadratic equation below. Then, choose the intervals that the solutions belong to, with $x_1 \leq x_2$ (if they exist).

$$15x^2 + 11x - 9 = 0$$

A.
$$x_1 \in [-3.2, -0.5]$$
 and $x_2 \in [-0.45, 0.87]$

B.
$$x_1 \in [-27.7, -24.9]$$
 and $x_2 \in [25.18, 25.87]$

C.
$$x_1 \in [-0.9, 1.2]$$
 and $x_2 \in [0.66, 1.65]$

D.
$$x_1 \in [-19.3, -17.4]$$
 and $x_2 \in [7.04, 7.88]$

- E. There are no Real solutions.
- 9. Factor the quadratic below. Then, choose the intervals that contain the constants in the form (ax + b)(cx + d); $b \le d$.

$$16x^2 + 8x - 15$$

A.
$$a \in [2.63, 4.72], b \in [-10, 3], c \in [3.77, 5.84], and $d \in [4, 8]$$$

B.
$$a \in [6.46, 9.19], b \in [-10, 3], c \in [1.12, 3.12], and $d \in [4, 8]$$$

C.
$$a \in [0.69, 1.04], b \in [-18, -11], c \in [0.84, 1.66], and d \in [15, 22]$$

D.
$$a \in [1.68, 2.6], b \in [-10, 3], c \in [7.22, 8.16], and $d \in [4, 8]$$$

- E. None of the above.
- 10. Graph the equation below.

$$f(x) = (x-4)^2 + 16$$

В.

С.

D.

E. None of the above.

5170-5105 Summer C 2021