北京工业大学 2010—2011 学年第一学期 概率论与数理统计课程期末考试试卷(工类)

学号	姓名	得分
子写	灶石	1年7万

题号	_	二. 1	二. 2	二. 3	二. 4	二. 5
得分						

一. 填空题(每空3分,共30分)

- 2. 若 X 为 [0,1] 区间上均匀分布,记 $A = \{0.1 \le X \le 0.3\}$, Y 表示对 X 进行 25 次独立 观测时事件 A 发生的次数。则 E(Y) = , Var(Y) = 。
- - **注** 1: $\Phi(x)$ 为正态分布 N(0,1) 的分布函数, $\Phi(1) = 0.8413$ 。
- 4. 设随机变量 X 的数学期望 E(X) = 7,方差 Var(X) = 5,用切比雪夫不等式估计得 $P\{2 < X < 12\} \ge ______.$
- 5. 若 $X_1, X_2, \Lambda, X_n (n > 2)$ 为抽自正态总体 $N(\mu, \sigma^2)$ 的随机样本,记

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, \quad S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2.$$

则 $\sqrt{n}(\overline{X}-\mu)/\sigma$ ~______, $\sqrt{n}(\overline{X}-\mu)/\sqrt{S^2}$ ~______, $(n-1)S^2/\sigma^2$ ~。。

6. 设 X_1, X_2, Λ , X_{100} 是抽自正态总体 $N(\mu, 1)$ 的简单样本,则 μ 的置信系数为 0. 95 的置信区间为[________]。

注 2: Z_a 为正态分布 N(0,1) 的右a 分位点, 0 < a < 1, $Z_{0.025} = 1.96$, $Z_{0.05} = 1.645$ 。

- 二. 计算题(每题 14 分, 共 70 分, 做题时须写出解题过程, 否则不能得分)
- 1. 有型号相同的产品两箱,第一箱装 12 件产品,其中两件为次品;第二箱装 8 件,其中一件为次品。先从第一箱中随机抽取两件放入第二箱,再从第二箱中随机抽取一件。
 - (1). 求从第二箱中取出次品的概率;
 - (2). 若从第二箱中取出了次品,求从第一箱中未取到次品的概率。
- 2. 设随机变量 X 有概率密度函数 $f(x) = \begin{cases} 1+x, & x \in (-1,0], \\ 1-x, & x \in (0,1], \\ 0, & 其他, \end{cases}$
 - (1). 求Y的概率密度函数 $f_{y}(y)$;
 - (2). 求Y的期望E(Y)与方差Var(Y)。
- 3. 设二维随机向量(X,Y)的联合概率密度函数为

$$f(x,y) = \begin{cases} c \cdot e^{-y}, & 0 \le x \le y < \infty, \\ 0, & 其他. \end{cases}$$

- (1). 求常数c;
- (2). 求X和Y的边缘概率密度 $f_X(x)$ 和 $f_Y(y)$;
- (3). 求P(X+Y<1)。
 - 4. 若 $X_1, X_2, \Lambda, X_n (n > 2)$ 为抽自总体 X 的随机样本,总体 X 有概率密度函数

$$f(x;\theta) = \begin{cases} \theta e^{-\theta x}, & x \ge 0, \\ 0, & x < 0, \end{cases}$$

其中 $\theta > 0$ 常数。求: (1). θ 的矩估计 $\hat{\theta}$; (2). θ 的极大似然估计 θ

- 5. 设一批 1000 克包装袋装食盐的重量服从正态分布 $N(\mu, \sigma^2)$, 其中 μ 和 σ 为未知常数, $\sigma > 0$ 。为检查包装质量,从生产线上随机抽取食盐 10 袋,并称其重量,得样本均值 $\bar{x} = 998.4$ g,样本方差 $s^2 = 5.76$ g^2 。对检验水平 $\alpha = 0.05$,做检验:
 - (1). $H_0: \mu = 1000$, $H_1: \mu \neq 1000$; (2). $H_0: \sigma^2 = 4.0$, $H_1: \sigma^2 \neq 4.0$.

附 t 分布与 χ^2 分布表

$t_9(0.025) = 2.2622$	$t_9(0.05) = 1.8331$	$t_{10}(0.025) = 2.2281$	$t_{10}(0.05) = 1.8125$
$\chi_9^2(0.025) = 19.023$	$\chi_9^2(0.05) = 16.919$	$\chi_9^2(0.975) = 2.700$	$\chi_9^2(0.95) = 3.325$
$\chi_{10}^2(0.025) = 20.483$	$\chi_{10}^2(0.05) = 18.307$	$\chi_{10}^2(0.975) = 3.247$	$\chi_{10}^2(0.95) = 3.940$