Quantitative Data Analysis II

SOC 781

Today we're going to...

- Review linear regression
 - assumptions and diagnostics

Regression

- Whether outcome associated with another (or set of other) variable(s)
 - simple vs. (multiple regression)
- How outcome associated with other variables
 - strength and direction
 - net of other variables (holding all else constant)
- Different types of regression models
 - specify form of association

•
$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + ... + \beta_k X_k + \varepsilon$$

- The outcome Y is a function of a
 - dependent variable
- combination of other variables X^s and
 - independent variable and controls
 - all "independent variables," but
 - IV is the key interest hypothesized to "cause" Y
- an error term ε
 - what's not explained by the X^s

•
$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + ... + \beta_k X_k + \varepsilon$$

- β_0 is the intercept (or constant)
 - the value of Y when all $X^S = 0$
- Recall our age-happiness example
 - added the constant to the hap. coef.
 value at age 18 to compute a reference line because there was no age 0

$$\beta_1 \times X_1 + \beta_0$$

abline(h=(0.0009603*18)+2.14151

•
$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + ... + \beta_k X_k + \varepsilon$$

• *X^s* are independent variables

- β^s are regression coefficients
 - average estimated Δ in Y given a one unit Δ in X
 - holding all other *X*^s constant
- What is the predicted value of happiness at age 50?

reg hap ag	re					
hap	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
age cons	.0009603 2.14151	.0001481 .0073021	6.49 293.27	0.000	.0006701 2.127198	.0012506 2.155822

•
$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + ... + \beta_k X_k + \varepsilon$$

- We just interpreted a simple linear regression model
 - not yet held other X^s constant
- What would model look like if added education groups?
 - less than high school; high school; greater than high school
- Why might we not want to combine the edu. categories in one variable?
 - e.g., LHS=0, HS=1, GHS=2

- $Hap = \beta_0 + \beta(Age) + \beta(LTHS) + \beta(GTHS) + \varepsilon$
 - HS = reference group

M2
reg hap age lhs ghs if nmiss==(
hap Coef.
age .0016144 lhs0933821 ghs .0648564 _cons 2.10264

- Why is age coef. different between models?
- What does constant reflect in M1? What about M2?
- Does LHS or GHS have a greater impact on happiness?
- Why can't we compare age vs. edu. coef. strength?
- If we plotted age patterns by edu. what would they look like?

- Why are lines parallel?
- Wouldn't you expect happiness to follow a different pattern across age by education?
- To see whether age slopes differ by education need interaction terms

reg hap age lhs agelhs ghs ageghs if nmiss==0

hap	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
age	.0016754	.0002699	6.21	0.000	.0011464	.0022043
lhs	1503634	.0203191	-7.40	0.000	190189	1105378
agelhs	.0010849	.0003889	2.79	0.005	.0003226	.0018472
ghs	.1058946	.017075	6.20	0.000	.0724276	.1393616
ageghs	0009485	.0003588	-2.64	0.008	0016518	0002453
_cons	2.099889	.0130507	160.90	0.000	2.07431	2.125469

 Note the slopes are no longer parallel

- Interaction terms
 - Age * LHS
 - Age * GHS
- To see if age had a different effect on happiness at different levels of education

- More on this next week
 - Later factor notation

OLS assumptions

1. Linearity

2. Mean independence

3. Constant error variance

4. Uncorrelated errors

5. Normal distribution of errors

Examples

- A lot of problems with happiness
 - violates almost every assumption because ordinal measure
- Domsat = satfam + satfrnd + sathlt + sathob + satres
 - (1) not satisfied to (7) very satisfied
 - summed and recoded to create satisfaction index
 - (1) not satisfied with any domain to (31) very satisfied with all domains

```
/*domain satisfaction index: 5 items 1-7 very great deal to none: reverse code*/
gen satfamily=8-satfam
replace satfamily=. if satfamily>7
gen satfriends=8-satfrnd
replace satfriends=. if satfriends>7
gen sathealth=8-sathealt
replace sathealth=. if sathealth>7
gen sathobbies=8-sathobby
replace sathobbies=. if sathobbies>7
gen satresidence=8-satcity
replace satresidence=. if satresidence>7
/*sum all 5 to create index*/
gen domsat=satfamily + satfriends + sathealth + sathobbies + satresidence
/*subtract 4 so range=1 to 31*/
replace domsat=domsat - 4
```

. sum domsat if nmiss==0

Variable	Obs	Mean	Std. Dev.	Min	Max
domsat	23,549	23.48677	4.752527	1	31

.

Domain satisfaction index

- Skewed?
 - Right or left?

- How many inflection points?
 - What should reg include?

Domain satisfaction index

reg domsat a	ge if nmiss==0					
Source	SS	df	MS	Number of	f obs =	23,549
				F(1, 235	17) =	0.01
Model	.26910782	1	.26910782	Prob > F	=	0.9131
Residual	531866.86	23,547	22.5874574	R-squared	i =	0.0000
				Adj R-sq	uared =	-0.0000
Total	531867.13	23,548	22.5865097	Root MSE	=	4.7526
domsat	Coef.	Std. Err.	t I	?> t [9	95% Conf.	Interval]
age	0001925	.0017637	-0.11	.913(0036496	.0032645
cons	23.49537	.0846016	_		3.32954	23.66119
reg domsat ag	e age2 if nmis	s==0	MS	Number	of obs	= 23,549
_			MS	Number		= 23,549 = 39.29
_	SS	df		F(2, 23	546)	-
Source	SS 1768.95676	df	884.47837	F(2, 23	546) F	= 39.29
Source	SS 1768.95676	df 2	884.47837	F(2, 23	546) F ed	= 39.29 = 0.0000
Source	1768.95676 530098.173	df 2 23,546	884.47837 22.513300	F(2, 23 Prob > R-squar Adj R-s	546) F ed quared	= 39.29 = 0.0000 = 0.0033
Source Model Residual	1768.95676 530098.173	df 2 23,546	884.47837 22.513300	F(2, 23 Prob > R-squar Adj R-s	546) F ed quared	= 39.29 = 0.0000 = 0.0033 = 0.0032
Source Model Residual	55 1768.95676 530098.173 531867.13	df 2 23,546	884.47837 22.513300 22.586509	F(2, 23 Prob > R-squar Adj R-s Root MS	546) F ed quared E	= 39.29 = 0.0000 = 0.0033 = 0.0032
Source Model Residual Total	SS 1768.95676 530098.173 531867.13	23,546 23,548	884.47837 22.513300 22.586509	F(2, 23 Prob > R-squar Adj R-s Root MS	546) F ed quared E	= 39.29 = 0.0000 = 0.0033 = 0.0032 = 4.7448
Source Model Residual Total domsat	SS 1768.95676 530098.173 531867.13 Coef.	23,546 23,548 Std. Err	884.47837 22.513300 22.586509	F(2, 23 Prob > R-squar Adj R-s Root MS P> t	546) F ed quared E [95% Conf	= 39.29 = 0.0000 = 0.0033 = 0.0032 = 4.7448

OLS assumptions: linearity

Y is a linear function of Xs plus a random error term

- Diagnosis: examine the residuals (deviations from the fitted line to the observed values) against the explanatory variable
 - residual plot and smoothing line

OLS assumptions: linearity

reg domsat ag	e c.age#c.age	female nonv	white if	nmiss==0		
domsat	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
age	.0872315	.0100797	8.65	0.000	.0674746	.1069885
c.age#c.age	0009242	.0001019	-9.07	0.000	001124	0007244
female	.1904473	.0618171	3.08	0.002	.0692817	.3116129
nonwhite	-1.865783	.0844855	-22.08	0.000	-2.03138	-1.700186
_cons	21.90364	.2282358	95.97	0.000	21.45629	22.351

- Does the smooth line approximate the regression line?
- Is the entire pattern uniform?

acprplot age, lowess

We can do better

OLS assumptions: linearity

- If y is entirely positive: log transformation
 - adjusts for skewed DV (see also sktest)

gen domsatlog=ln(domsat)
reg domsatlog age c.age#c.age female nonwhite if nmiss==0

domsatlog	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
age	.0041634	.0005183	8.03	0.000	.0031475	.0051793
c.age#c.age	0000459	5.24e-06	-8.76	0.000	0000562	0000356
female	.0099845	.0031786	3.14	0.002	.0037542	.0162149
nonwhite	094928	.0043442	-21.85	0.000	103443	086413
_cons	3.059741	.0117359	260.72	0.000	3.036738	3.082744

- The residuals are more uniform, and the smoothed line is a little closer
 - Trade off: interpretation of log scale

OLS assumptions: mean independence

Error term mean is zero, and not dependent on value of Xs

- Violated if...
- 1. Measurement error: systematic misreporting
- 2. Omitted Xs
- 3. Reverse causation: Y has causal effect on X
- Diagnosis: theory, previous literature, sensitivity analyses
 - strive for parsimony vs. kitchen sink

OLS assumptions: constant error variance

- Error term variance is not dependent on the Xs' value
 - homoscedasticity: variance of error is same across all levels of X
 - → inefficiency and/or biased standard errors
- Diagnosis: plot residuals against fitted values (rvfplot)
 - values NOT cluster in even width → heteroscedasticity
- Also, Breusch-Pagan test
 - whether variance of residuals is homogenous
 - large chi-square and p-value < 0.05 → heteroscedasticity

OLS assumptions: constant error variance

reg domsat age c.age#c.age female nonwhite if nmiss==0

domsat	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
age	.0872315	.0100797	8.65	0.000	.0674746	.1069885
c.age#c.age	0009242	.0001019	-9.07	0.000	001124	0007244
female nonwhite	.1904473 -1.865783	.0618171 .0844855	3.08 -22.08	0.002	.0692817 -2.03138	.3116129 -1.700186
_cons	21.90364	.2282358	95.97	0.000	21.45629	22.351

estat hettest

```
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: fitted values of domsat

chi2(1) = 138.28
Prob > chi2 = 0.0000
```

- Reject null hypothesis
- note pattern in plot
 - not uniform around fitted line

OLS assumptions: constant error variance

reg domsat age c.age#c.age female nonwhite if nmiss==0

domsat	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
age	.0872315	.0100797	8.65	0.000	.0674746	.1069885
c.age#c.age	0009242	.0001019	-9.07	0.000	001124	0007244
female	.1904473	.0618171	3.08	0.002	.0692817	.3116129
nonwhite	-1.865783	.0844855	-22.08	0.000	-2.03138	-1.700186
_cons	21.90364	.2282358	95.97	0.000	21.45629	22.351

reg domsat age c.age#c.age female nonwhite if nmiss==0, robust

domsat	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
age	.0872315	.0104239	8.37	0.000	.0667999	.1076631
c.age#c.age	0009242	.000107	-8.64	0.000	0011339	0007145
female	.1904473	.062005	3.07	0.002	.0689134	.3119812
nonwhite	-1.865783	.0916303	-20.36	0.000	-2.045385	-1.686182
_cons	21.90364	.2316908	94.54	0.000	21.44951	22.35777

Robust SE

- Not impact coef.
 - compare models
- Also, can use weighted least squares, but
 - have to know weights

Resource link

OLS assumptions: uncorrelated errors

Error term for any obs. is uncorrelated with error term for any other obs.

- Why would we expect error terms for any obs. to be correlated with error term for any other obs.?
 - shared environment and/or repeated observation
 - multilevel modeling, longitudinal design
- Diagnosis: No good way to examine unless your data are clustered

OLS assumptions: normal distribution of errors

- Diagnosis: pnorm (middle range) qnorm (tails)
 - save residuals

- Not a problem if N > 100 and Xs < 5
 - CLT: N increases approximate parameters even if errors not normally distributed

Regression diagnostics

- Multicollinearity
 - if goal is to isolate effect of IV on DV, then don't want variation in IV to map too closely onto variation in other x variables
 - inflates SE
- Variance Inflation Factors (VIFs): test for multicollinearity
 - Can one x be held constant while another varies?
- VIF = 1: provides completely independent information on y
- VIF = 2.5: problematic threshold
- VIF = 10: should probably be dealt with

Multicollinearity: solutions

 Ignore: used for control purposes only and effects will not be reported

- Drop one or more from the model
 - keep whichever is most theoretically meaningful
 - if no difference, then choose largest VIF
- Combine into an index
 - based on previous research, or own theoretical justification

reg domsat age c.age#c.age female nonwhite if nmiss==0
vif

Variable	VIF	1/VIF
age	33.45	0.029894
c.age#c.age	33.46	0.029889
female	1.00	0.996906
nonwhite	1.01	0.994657
Mean VIF	17.23	

Regression diagnostics

- Influential observations (outliers)
 - dispersion of variables
- Thoroughly examine dispersion of all variables
 - range, SD, scatter plot, box plot
- Make sure:
- a) no coding errors
- b) missing values handled properly
- c) run model with and without outliers

Influential observations: solutions

- Ignore: if not substantively influence results
 - observations are distinct, but theoretically expect such cases in this population
- Transform: if substantively influence results, but expected to do so
 - some variables we expect to have outliers
- Exclude: no reason to expect outliers, or such an extreme
 - possibly an error, or due to some random circumstance
- Robust regression techniques
 - places less weight on outliers, and removes extreme cases

Next class we will...

discuss mediation and moderation