Lecture 24: Linear Regression Part I

Chapter 7.1-7.2

Questions for Today

Say we have the height/weight of 50 individuals and we display the scatterplot/bivariate plot of the seemingly linear relationship:

Questions:

- ▶ What is the "best" fitting line through these points?
- ▶ What do we mean by "best"?

Regression

There are many types of regression, all in order to estimate the relationship between variables.

Example of Non-Linear Relationship

At first as you plant more corn plants, you have higher yield, but past a certain point plants fight for limited resources and they die.

Modeling x and y Linearly	
	5/21
	5/21

Framework

Fitted Value

Here $\hat{y} = 100 + 0.99x$. Thus for x = 73, $\hat{y} = 173.22$:

Residuals

7/21

Residual Plot

Residual plots: take previous plot and flatten the red line by subtracting \widehat{y} from y.

Correlation Coefficient

The correlation coefficient R is a value between [-1,1] that measures the strength of the linear relationship between x and y.

10 / 21

height (inches)

Best Fitting Line Consider ANY point x_i for $i=1,\ldots,50$ (in blue).

Now consider this point's deviation from the regression line

Best Fitting Line

Do this for another point x_i ...

Best Fitting Line

Do this for another point x_i ...

Best Fitting Line

The regression line minimizes the sum of the squared arrow lengths.

16/21

Least Squares	
	17 / 21
Conditions for Simple Linear Regression	

Behavior of Residuals: 3 Examples

Sample data + regression on top, residual plots on bottom.

- ▶ Plots 1 and 3 are roughly linear.
- ► Plots 1 and 3 have roughly constant variability, but the 3rd plot has higher variability

10 / 21

Finding the Least Squares Line

 How to interpret regression line parameter estimates Categorical Variable for x: male vs female, new vs used, et Inference for linear regression 	c.
	21 / 21

Next Time