

SUSY Models: Non-Prompt Decays

Tambe E. Norbert

University of Minnesota, Email: norbert@physics.umn.edu

October 8, 2014

Outline

- Outline
- 2 Introduction
- 3 SUSY Models
- MLSP Production
- 5 NLSP Decay
- NLSP Decay Channels
- NLSP Paramter Space
- 8 MC Production
- Sensitivity Study

Introduction

- Non-prompt decay of SUSY particles occur in the following SUSY breaking models:
 - Minimal Gauge Mediating SUSY Breaking (GMSB)
 - General Gauge Mediating SUSY Breaking (GGM)
 - Pure General Gauge Mediating SUSY Breaking (PGGM)
- These models predict the existence of a Next-to-lightest sparticle (NLSP) decaying to a lightest sparticle (LSP).
- The LSP can be (non)stable depending on R-Parity conserving(violation) RPC(RPV).
- In RPC, NLSP decays to Gravitino(\tilde{G})) and SM-partner(γ , $Z(\ell^+\ell^-)$, Higgs).
- Focus: Scenario where NLSP could be any SUSY particle decaying to a photon i.e $NLSP \rightarrow \gamma + \tilde{G}$

NLSP SUSY Models

SUSY models are defined by a set of parameters.

- GMSB
 - $\Lambda = \frac{\langle F_S \rangle}{M_{\rm m}}$: An effective visible SUSY breaking scale,
 - M_{m} : The messenger scale,
 - N₅: Parametrization of the SU(5) messenger fields,
 - $sgn(\mu)$: The sign of the Higssino mass term
 - $\tan \beta = \frac{\langle H_u^0 \rangle}{\langle H_d^0 \rangle}$: At electroweak scale,
 - c_{grav} : The gravitino mass scaling factor.
- GGM
 - M1: The Bino(B⁰) mass,
 - M2: The Wino(W^0) mass,
 - M3: The Gluino (\tilde{g}) mass,
 - μ : SUSY higgs and Higgsino mass parameters,
 - cτ_{NLSP}: NLSP lifetime.
 - PGGM : M_{mess} , Λ_G , Λ_S

NLSP Production

Strong Production:

$$pp o \tilde{q}\tilde{q}, \tilde{q}\tilde{q}^*, \tilde{c}$$

Weak Production:

$$pp o ilde{\chi}_2^0 ilde{\chi}_3^0, ilde{\chi}_2^{\pm} ilde{\chi}_1^0, ilde{\chi}_2^{\pm}$$

NLSP Decay

Cascade Decays				
Particle	Mass	Decay		
ğ	$M_{ ilde{g}}$	$ec{ ilde{g}} ightarrow j ilde{ ilde{q}}^*$		
q	$M_{\widetilde{q}}$	$ ilde{m{q}} ightarrow ilde{\chi}_1^0 m{j}, ilde{m{g}} m{j}$		
$ ilde{\chi}^0_2$	M _{wino}	$ ilde{\chi}_2^0 ightarrow ilde{\chi}_1^0 h^{(*)}/Z^{(*)}$		
$ ilde{\chi}_1^{\pm}$	M _{wino}	$ ilde{\chi}_1^{\pm} ightarrow ilde{\chi}_1^0 W^{\pm(*)}$		

NLSP Type and Decay Modes				
NLSP Type	Decay Mode	Final states(+ MET)		
Bino-Like	$ ilde{\chi}_1^0 o \gamma + ilde{G}$	$\gamma\gamma, \gamma + jets$		
Wino-Like	$\tilde{\chi}_1^0 \rightarrow \gamma + \tilde{G}$	$\ell\gamma, \gamma\gamma, \gamma + jets, \ell + jets$		
Z-rich higgsino	$ ilde{\chi}_1^0 o Z/Z^* + ilde{G} $	$Z(\ell\ell)$ or $Z(\ell'\ell')$ + jets		

NLSP Decay Length

The probability for a NLSP produced with energy E_{NLSP} in the lab frame to decay before travelling a distance x is given as:

$$\mathcal{P}(x) = 1 - \exp\left(-\frac{x}{L}\right) \tag{6}$$

Theory/kinematics

$$c\tau_{NLSP} = 9.9 \times 10^{-8} \frac{1}{k_{1\gamma}}$$

$$(\beta\gamma)_{NLSP} = \frac{|p|}{m_{NLSP}}$$

NLSP Parameter Space

- In GMSB, NLSP decay length is determined by:
 - Fundamental SUSY breaking scale is related to the gravitino mass through ${\rm F}={\rm m}_{3/2}\times\sqrt{3}{\rm M}_p$
 - The m_{NLSP} which can be related to F through $M_i=rac{lpha_i}{4\pi}N_5\Lambda, i=1,2,3$
 - From $m_{3/2} = \frac{\langle \mathrm{F} \rangle}{\lambda \, \langle F_S \rangle} \times \frac{\Lambda M_m}{\sqrt{3} M_p} = C_{grav} \frac{\Lambda M_m}{\sqrt{3} M_p}$, Thus, for NLSP to be long-lived $C_{grav} \gg 1$ implying $m_{\tilde{G}} \gg eV$
 - In MC production, NLSP is long-lived when $C_{grav}\gg 1$ is used and $m_{\tilde{G}}\approx 0$
- For GGM, Is there such a parameter as C_{grav} to change NLSP inherent $c\tau_{NLSP}$?
- 3 For PGGM, at least the way $c\tau_{NLSP}$ is expressed, the NLSP lifetime depends on model input parameters: M_{mess} , Λ_G , Λ_S

MC Production

- MC production of signal samples for GMSB/GGM/PGGM must span parameter grid space for which:
 - NLSP is long lived(reasonable $c\tau_{NLSP}$),
 - NLSP is boosted,
 - NLSP is massive enough.
 - NLSP decays with enough MET.
 - Consistent with SUSY cross section limits.
- Tentative Parameter space to scan

NLSP Parameter Space				
NLSP Mass	C ⊤ _{NLSP}	Parent Mass	NJets	
M1,M2	$C_{grav}, \Lambda_S, \Lambda_G$	M3, <i>M</i> _{q̃}	Pt _{jets}	

③ Prelimanary studies using SLHE files from Yevgeny Kats(GGM) and Khoze et al(PGGM), however, these SLHE do not allow decay $N\widetilde{LSP} \rightarrow \gamma + \widetilde{G}$. I used information from GMSB to produce MC samples.

Sensitivity Study

Figure : $c\tau_{\chi_1^0}$ [mm]

Figure : $Boost_{\chi_1^0}$

