

A PyTorch-based End-to-End
Predict-then-Optimize Library

Presented by Bo Tang Feb 26, 2024

Authors

Bo Tang

PhD Candidate
Department of Mechanical &
Industrial Engineering,
University of Toronto

Elias B. Khalil

Assistant Professor
Department of Mechanical &
Industrial Engineering, University
of Toronto

SCALE AI Research Chair
Data-Driven Algorithms for
Modern Supply Chains

Linear Objective Function

Use appropriate algorithm (MILP, MIQCP, CP, custom algorithms...) to obtain optimal solution $\boldsymbol{w}^*(\boldsymbol{c})$

$$\min_{\mathbf{w}} \{ \mathbf{c}_1^{\mathsf{T}} \mathbf{w} : \mathbf{w} \in \mathbf{S} \}$$

$$\min_{\mathbf{w}} \{ \mathbf{c}_2^{\mathsf{T}} \mathbf{w} : \mathbf{w} \in \mathbf{S} \}$$

$$\min_{\mathbf{w}} \{ \mathbf{c}_3^{\mathsf{T}} \mathbf{w} : \mathbf{w} \in \mathbf{S} \}$$

$$\vdots$$

Observed Feature Vector

 \pmb{x}_1

 \boldsymbol{x}_2

 \boldsymbol{x}_3

•

Observed Feature Vector

 \boldsymbol{x}_3

Examples

❖ Vehicle Routing

Energy Scheduling

Portfolio Optimization

Examples

Energy Scheduling

Portfolio Optimization

Examples

❖ Vehicle Routing

Energy Scheduling

Portfolio Optimization

Observed Features: Distance, Time, Weather, Financial Factors...

End-to-End Predict-then-Optimize

dataset \mathcal{D} with data points (x, c)

Prediction model $g(x, \theta)$ with parameters θ

optimization solver $\mathbf{w}^*(\hat{\mathbf{c}}) = \underset{\mathbf{w} \in S}{\operatorname{argmin}} \hat{\mathbf{c}}^{\mathsf{T}} \mathbf{w}$

loss function $l(\cdot)$ to measure decision error

End-to-End Predict-then-Optimize

dataset \mathcal{D} with data points (x, c)

Prediction model $g(x, \theta)$ with parameters θ

optimization solver $w^*(\hat{c}) = \underset{w \in S}{\operatorname{argmin}} \hat{c}^{\mathsf{T}} w$

loss function $l(\cdot)$ to measure decision error

Optimal solution if Optimal value with you optimize with \hat{c} true cost c

e.g.
$$l_{\text{Regret}}(\hat{\boldsymbol{c}},\boldsymbol{c}) = \boldsymbol{c}^{\mathsf{T}}\boldsymbol{w}^{*}(\hat{\boldsymbol{c}}) - \boldsymbol{c}^{\mathsf{T}}\boldsymbol{w}^{*}(\boldsymbol{c})$$

$$l_{\text{Square}}(\hat{c}, c) = \frac{1}{2} ||w^*(c) - w^*(\hat{c})||_2^2$$

Ind-to-End Predict-then-Optimize

10: end for

Algorithm 1 End-to-end Learning

Require: coefficient matrix A, right-hand side b, data \mathcal{D} 1: Initialize predictor parameters θ for predictor $g(x;\theta)$ 2: for epochs do

3: for each batch of training data (x,c) do

4: Sample batch of the cost vectors c with the corresponding features c5: Predict cost using predictor c := c =

Uwo-Stage Predict-then-Optimize

Dataset \mathcal{D} with data points (x, c)

Prediction model $g(x; \theta)$ with parameters θ

Loss function $l(\cdot)$ to measure prediction error

First Stage: Prediction

Uwo-Stage Predict-then-Optimize

Dataset \mathcal{D} with data points (x, c)

Prediction model $g(x; \theta)$ with parameters θ

Loss function $l(\cdot)$ to measure prediction error

$$\frac{\hat{c} = g(x; \theta)}{\longleftarrow}$$

First Stage: Prediction

e.g.
$$l_{\text{MSE}}(\hat{\boldsymbol{c}}, \boldsymbol{c}) = \frac{1}{2} \|\boldsymbol{c} - \hat{\boldsymbol{c}}\|_2^2$$
 $l_{\text{MAE}}(\hat{\boldsymbol{c}}, \boldsymbol{c}) = \|\boldsymbol{c} - \hat{\boldsymbol{c}}\|_1$

Uwo-Stage Predict-then-Optimize

Dataset \mathcal{D} with data points (x, c)

Prediction model $g(x; \theta)$ with parameters θ

Loss function $l(\cdot)$ to measure prediction error

→

Second Stage: Optimization

$$\hat{\boldsymbol{c}} = g(\boldsymbol{x}; \boldsymbol{\theta})$$

Optimization solver

$$\mathbf{w}^*(\hat{\mathbf{c}}) = \underset{\mathbf{w} \in S}{\operatorname{argmin}} \hat{\mathbf{c}}^T \mathbf{w}$$

For example:

$$\max_{w_1, w_2} c_1 w_1 + c_2 w_2$$
s. t. $w_1 + w_2 \le 1$

$$w_1, w_2 \ge 0$$

```
Assume the true cost is c=(0,1), the optimal solution is w^*(c)=(0,1) If the prediction \hat{c}=(1,0), the solution w^*(\hat{c})= and l_{\rm MSE}(\hat{c},c)=; If the prediction \hat{c}=(0,3), the solution w^*(\hat{c})= and l_{\rm MSE}(\hat{c},c)=
```

For example:

$$\max_{w_1, w_2} c_1 w_1 + c_2 w_2$$
s. t. $w_1 + w_2 \le 1$

$$w_1, w_2 \ge 0$$

Assume the true cost is c=(0,1), the optimal solution is $w^*(c)=(0,1)$ If the prediction $\hat{c}=(1,0)$, the solution $w^*(\hat{c})=(1,0)$ and $l_{\rm MSE}(\hat{c},c)=1$; If the prediction $\hat{c}=(0,3)$, the solution $w^*(\hat{c})=(0,1)$ and $l_{\rm MSE}(\hat{c},c)=2$

For example:

$$\max_{w_1, w_2} c_1 w_1 + c_2 w_2$$
s.t. $w_1 + w_2 \le 1$

$$w_1, w_2 \ge 0$$

Assume the true cost is c=(0,1), the optimal solution is $w^*(c)=(0,1)$ If the prediction $\hat{c}=(1,0)$, the solution $w^*(\hat{c})=(1,0)$ and $l_{\rm MSE}(\hat{c},c)=1$; If the prediction $\hat{c}=(0,3)$, the solution $w^*(\hat{c})=(0,1)$ and $l_{\rm MSE}(\hat{c},c)=2$

Prediction error such as $l_{\text{MSE}}(\hat{c},c)$ cannot measure the quality of decision.

For example:

 m_{w_1} s.t

All models are wrong but some are useful

Assume the true cost is c = (0,1), the lift the prediction $\hat{c} = (1,0)$, the solution the prediction $\hat{c} = (0,3)$, the solution

Prediction error such as $l_{ ext{MSE}}(\widehat{c},c)$ c

George E.P. Box

uecision.

Imitation Learning and Parametric Optimization

Directly predict: $\widehat{w}^* = g(x, \theta)$

Let $\widehat{\boldsymbol{w}}^*$ close to the true optimal \boldsymbol{w}^*

Reduce objective function $f(\widehat{\boldsymbol{w}}^*)$

Imitation Learning and Parametric Optimization

Directly predict: $\widehat{w}^* = g(x, \theta)$

Let $\widehat{\boldsymbol{w}}^*$ close to the true optimal \boldsymbol{w}^*

Reduce objective function $f(\widehat{\boldsymbol{w}}^*)$

Efficiency

Avoid the major bottleneck in computational efficiency: optimizing

Imitation Learning and Parametric Optimization

Directly predict: $\widehat{w}^* = g(x, \theta)$

Let $\widehat{\boldsymbol{w}}^*$ close to the true optimal \boldsymbol{w}^*

Reduce objective function $f(\widehat{\pmb{w}}^*)$

Efficiency

Avoid the major bottleneck in computational efficiency: optimizing

Feasibility

Prediction often faces feasibility issues

Algorithm 1 End-to-end Learning

Chain Rule:

$$\frac{\partial l(\cdot)}{\partial \boldsymbol{\theta}} =$$

Algorithm 1 End-to-end Learning

Chain Rule:

$$\frac{\partial l(\cdot)}{\partial \boldsymbol{\theta}} = \frac{\partial l(\cdot)}{\partial \hat{\boldsymbol{c}}} \frac{\partial \hat{\boldsymbol{c}}}{\partial \boldsymbol{\theta}}$$

Algorithm 1 End-to-end Learning

```
Require: coefficient matrix A, right-hand side b, data \mathcal{D}

1: Initialize predictor parameters \theta for predictor g(x;\theta)

2: for epochs do

3: for each batch of training data (x,c) do

4: Sample batch of the cost vectors c with the corresponding features c

5: Predict cost using predictor c := g(x;\theta)

6: Forward pass to compute optimal solution c := argmin_{c} c c^{c} c
```

Chain Rule:

$$\frac{\partial l(\cdot)}{\partial \boldsymbol{\theta}} = \frac{\partial l(\cdot)}{\partial \hat{\boldsymbol{c}}} \left(\frac{\partial \hat{\boldsymbol{c}}}{\partial \boldsymbol{\theta}} \right)$$

Easy:

Gradient of predicted costs to model parameters

Algorithm 1 End-to-end Learning

```
Require: coefficient matrix A, right-hand side b, data \mathcal{D}

1: Initialize predictor parameters \theta for predictor g(x;\theta)

2: for epochs do

3: for each batch of training data (x,c) do

4: Sample batch of the cost vectors c with the corresponding features c

5: Predict cost using predictor c := g(x;\theta)

6: Forward pass to compute optimal solution c := argmin_{c} c c c c

7: Forward pass to compute decision loss c c c c c c

8: Backward pass from loss c c c c c c c c

9: end for

10: end for
```

Chain Rule:

$$\frac{\partial l(\cdot)}{\partial \boldsymbol{\theta}} = \left(\frac{\partial l(\cdot)}{\partial \hat{\boldsymbol{c}}}\right) \frac{\partial \hat{\boldsymbol{c}}}{\partial \boldsymbol{\theta}}$$

Hard:

Decision loss vary with the predicted costs

end for

10: end for

Algorithm 1 End-to-end Learning

```
Require: coefficient matrix A, right-hand side b, data \mathcal{D}

1: Initialize predictor parameters \theta for predictor g(x; \theta)

2: for epochs do

3: for each batch of training data (x, c) do

4: Sample batch of the cost vectors c with the corresponding features c

5: Predict cost using predictor c := g(x; \theta)

6: Forward pass to compute optimal solution c := argmin_{c} c c^{c} c^{c
```

Chain Rule:

$$\frac{\partial l(\cdot)}{\partial \boldsymbol{\theta}} = \left(\frac{\partial l(\cdot)}{\partial \hat{\boldsymbol{c}}}\right) \frac{\partial \hat{\boldsymbol{c}}}{\partial \boldsymbol{\theta}}$$

Hard:

Decision loss vary with the predicted costs

$$l_{\text{Regret}}(\hat{\boldsymbol{c}}, \boldsymbol{c}) = \boldsymbol{c}^{T} \boldsymbol{w}^{*}(\hat{\boldsymbol{c}}) - \boldsymbol{c}^{T} \boldsymbol{w}^{*}(\boldsymbol{c})$$
$$l_{\text{Square}}(\hat{\boldsymbol{c}}, \boldsymbol{c}) = \frac{1}{2} \|\boldsymbol{w}^{*}(\boldsymbol{c}) - \boldsymbol{w}^{*}(\hat{\boldsymbol{c}})\|_{2}^{2}$$

with respect to $w^*(\hat{c})!$

 $w^*(c)$ is a piecewise constant function!

$$\max_{w_1, w_2} c_1 w_1 + c_2 w_2$$
s.t. $w_1 + w_2 \le 1$
 $w_1, w_2 \ge 0$

Is that the end of the story?

Is that the end of the story?

Surrogate Losses / Gradients!

Derivative of Implicit Functions

OptNet:

- Solve the partial derivative matrix linear equations to calculate the solution and gradients for both forward and backward pass.
- Add a quadratic term to the linear objective function to obtain the nonzero gradient.

Karush-Kuhn-Tucker conditions

Given general problem

$$\min_{x \in \mathbb{R}^n} \ f(x)$$
subject to $h_i(x) \leq 0, \ i = 1, \dots m$
 $\ell_j(x) = 0, \ j = 1, \dots r$

The Karush-Kuhn-Tucker conditions or KKT conditions are:

•
$$0 \in \partial f(x) + \sum_{i=1}^{m} u_i \partial h_i(x) + \sum_{j=1}^{r} v_j \partial \ell_j(x)$$
 (stationarity)

- $u_i \cdot h_i(x) = 0$ for all i (complementary slackness)
- $h_i(x) \le 0, \ \ell_j(x) = 0$ for all i, j (primal feasibility)
- $u_i \ge 0$ for all i (dual feasibility)

- Amos, B., & Kolter, J. Z. (2017, July). Optnet: Differentiable optimization as a layer in neural networks. In International Conference on Machine Learning (pp. 136-145). PMLR.
- Wilder, B., Dilkina, B., & Tambe, M. (2019, July). Melding the data-decisions pipeline: Decision-focused learning for combinatorial optimization. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 33, No. 01, pp. 1658-1665).

Smart "predict, then optimize"

A convex upper bound of $l_{\text{Regr}et}(\hat{\boldsymbol{c}}, \boldsymbol{c})$:

Smart "predict, then optimize"

A convex upper bound of $l_{\text{Regret}}(\hat{\boldsymbol{c}}, \boldsymbol{c})$:

$$l_{\text{SPO+}}(\hat{\boldsymbol{c}}, \boldsymbol{c}) = -\min_{\boldsymbol{w} \in \boldsymbol{W}} (2\hat{\boldsymbol{c}} - \boldsymbol{c})^{\mathsf{T}} \boldsymbol{w} + 2\hat{\boldsymbol{c}}^{\mathsf{T}} \boldsymbol{w}^*(\boldsymbol{c}) - \boldsymbol{c}^{\mathsf{T}} \boldsymbol{w}^*(\boldsymbol{c})$$

Smart "predict, then optimize"

A convex upper bound of $l_{\text{Regret}}(\hat{c}, c)$:

$$l_{\text{SPO+}}(\hat{\boldsymbol{c}},\boldsymbol{c}) = -\min_{\boldsymbol{w} \in \boldsymbol{W}} (2\hat{\boldsymbol{c}} - \boldsymbol{c})^{\top} \boldsymbol{w} + 2\hat{\boldsymbol{c}}^{\top} \boldsymbol{w}^{*}(\boldsymbol{c}) - \boldsymbol{c}^{\top} \boldsymbol{w}^{*}(\boldsymbol{c})$$

Computational overhead: We need to solve an optimization problem $\min_{w \in W} (2\hat{c} - c)^{\top} w$ per iteration.

Smart "predict, then optimize"

A convex upper bound of $l_{\text{Regret}}(\hat{\boldsymbol{c}}, \boldsymbol{c})$:

$$l_{\text{SPO+}}(\hat{\boldsymbol{c}}, \boldsymbol{c}) = -\min_{\boldsymbol{w} \in \boldsymbol{W}} (2\hat{\boldsymbol{c}} - \boldsymbol{c})^{\mathsf{T}} \boldsymbol{w} + 2\hat{\boldsymbol{c}}^{\mathsf{T}} \boldsymbol{w}^*(\boldsymbol{c}) - \boldsymbol{c}^{\mathsf{T}} \boldsymbol{w}^*(\boldsymbol{c})$$

The subgradient of $l_{\text{SPO+}}(\hat{\boldsymbol{c}}, \boldsymbol{c})$:

$$2\mathbf{w}^*(\mathbf{c}) - 2\mathbf{w}^*(2\hat{\mathbf{c}} - \mathbf{c}) \in \frac{\partial l_{\text{SPO+}}(\hat{\mathbf{c}}, \mathbf{c})}{\partial \hat{\mathbf{c}}}$$

Use random perturbation to deal with the cost vector \hat{c} .

 $\mathbb{E}^{\boldsymbol{\xi}}[\boldsymbol{w}^*(\hat{\boldsymbol{c}}+\sigma\boldsymbol{\xi})]$

- Berthet, Q., Blondel, M., Teboul, O., Cuturi, M., Vert, J. P., & Bach, F. (2020). Learning with differentiable pertubed optimizers. Advances in neural information processing systems, 33, 9508-9519.
- Dalle, G., Baty, L., Bouvier, L., & Parmentier, A. (2022). Learning with combinatorial optimization layers: a probabilistic approach. arXiv preprint arXiv:2207.13513.c

Use random perturbation to deal with the cost vector \hat{c} .

The expected value $\mathbb{E}^{\xi}[w^*(\hat{c} + \sigma \xi)]$ repalces $w^*(\hat{c})$, which is the weighted average (convex combination) of the extreme points of feasible region.

- Berthet, Q., Blondel, M., Teboul, O., Cuturi, M., Vert, J. P., & Bach, F. (2020). Learning with differentiable pertubed optimizers. Advances in neural information processing systems, 33, 9508-9519.
- Dalle, G., Baty, L., Bouvier, L., & Parmentier, A. (2022). Learning with combinatorial optimization layers: a probabilistic approach. arXiv preprint arXiv:2207.13513.c

Use random perturbation to deal with the cost vector \hat{c} .

A random perturbation $\xi \sim N(0, 1)$

The expected value $\mathbb{E}^{\xi}[w^*(\hat{c} + \sigma \xi)]$ repalces $w^*(\hat{c})$, which is the weighted average (convex combination) of the extreme points of feasible region.

- Berthet, Q., Blondel, M., Teboul, O., Cuturi, M., Vert, J. P., & Bach, F. (2020). Learning with differentiable pertubed optimizers. Advances in neural information processing systems, 33, 9508-9519.
- Dalle, G., Baty, L., Bouvier, L., & Parmentier, A. (2022). Learning with combinatorial optimization layers: a probabilistic approach. arXiv preprint arXiv:2207.13513.c

Use random perturbation to deal with the cost vector \hat{c} .

The expected value $\mathbb{E}^{\xi}[w^*(\hat{c} + \sigma \xi)]$ repalces $w^*(\hat{c})$, which is the weighted average (convex combination) of the extreme points of feasible region.

How to calculate the expectation?

 $\mathbb{E}^{\boldsymbol{\xi}}[\boldsymbol{w}^*(\hat{\boldsymbol{c}}+\sigma\boldsymbol{\xi})]$

- Berthet, Q., Blondel, M., Teboul, O., Cuturi, M., Vert, J. P., & Bach, F. (2020). Learning with differentiable pertubed optimizers. Advances in neural information processing systems, 33, 9508-9519.
- Dalle, G., Baty, L., Bouvier, L., & Parmentier, A. (2022). Learning with combinatorial optimization layers: a probabilistic approach. arXiv preprint arXiv:2207.13513.c

Use random perturbation to deal with the cost vector \hat{c} .

The expected value $\mathbb{E}^{\xi}[w^*(\hat{c} + \sigma \xi)]$ repalces $w^*(\hat{c})$, which is the weighted average (convex combination) of the extreme points of feasible region.

How to calculate the expectation?

$$\mathbb{E}^{\xi}[\mathbf{w}^*(\hat{\mathbf{c}} + \sigma \xi)] \approx \frac{1}{K} \sum_{\kappa}^{K} \mathbf{w}^*(\hat{\mathbf{c}} + \sigma \xi_{\kappa})$$

Berthet, Q., Blondel, M., Teboul, O., Cuturi, M., Vert, J. P., & Bach, F. (2020). Learning with differentiable pertubed optimizers. Advances in neural information processing systems, 33, 9508-9519.

• Dalle, G., Baty, L., Bouvier, L., & Parmentier, A. (2022). Learning with combinatorial optimization layers: a probabilistic approach. arXiv preprint arXiv:2207.13513.c

Use random perturbation to deal with the cost vector \hat{c} .

The expected value $\mathbb{E}^{\xi}[w^*(\hat{c} + \sigma \xi)]$ repalces $w^*(\hat{c})$, which is the weighted average (convex combination) of the extreme points of feasible region.

How to calculate the expectation?

$$\mathbb{E}^{\xi}[\mathbf{w}^*(\hat{\mathbf{c}} + \sigma \xi)] \approx \frac{1}{K} \sum_{\kappa}^{K} \mathbf{w}^*(\hat{\mathbf{c}} + \sigma \xi_{\kappa})$$

A non-negativity requirement for \hat{c} : multiplication perturbation

Dalle, G., Baty, L., Bouvier, L., & Parmentier, A. (2022). Learning with combinatorial optimization layers: a probabilistic approach. arXiv preprint arXiv:2207.13513.c

Black-box Method

• **Differentiable Black-box:** Perform continuous interpolation on the piecewise constant loss function to transform it into a piecewise linear function.

- Pogančić, M. V., Paulus, A., Musil, V., Martius, G., & Rolinek, M. (2019, September). Differentiation of blackbox combinatorial solvers. In International Conference on Learning Representations.
- Sahoo, S. S., Paulus, A., Vlastelica, M., Musil, V., Kuleshov, V., & Martius, G. (2022). Backpropagation through combinatorial algorithms: Identity with projection works. arXiv preprint arXiv:2205.15213.

Black-box Method

- **Differentiable Black-box:** Perform continuous interpolation on the piecewise constant loss function to transform it into a piecewise linear function.
- Negative Identity: Replace the solver gradient $\frac{\partial w^*(\hat{c})}{\partial \hat{c}}$ with the negative unit matrix -I.

- Pogančić, M. V., Paulus, A., Musil, V., Martius, G., & Rolinek, M. (2019, September). Differentiation of blackbox combinatorial solvers. In International Conference on Learning Representations.
- Sahoo, S. S., Paulus, A., Vlastelica, M., Musil, V., Kuleshov, V., & Martius, G. (2022). Backpropagation through combinatorial algorithms: Identity with projection works. arXiv preprint arXiv:2205.15213.

PyEPO: A PyTorch-based End-to-End Predict-then-Optimize Library

Contrastive & Ranking Method

During the training process, we can naturally collect a large number of feasible solutions, forming a solution set Γ .

- Mulamba, M., Mandi, J., Diligenti, M., Lombardi, M., Bucarey, V., & Guns, T. (2021). Contrastive losses and solution caching for predict-and-optimize. Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence.
- Mandi, J., Bucarey, V., Mulamba, M., & Guns, T. (2022). Decision-focused learning: through the lens of learning to rank. Proceedings of the 39th International Conference on Machine Learning.

Contrastive & Ranking Method

During the training process, we can naturally collect a large number of feasible solutions, forming a solution set Γ .

Contrastive Method:

Take the subset of suboptimal solutions $\Gamma \setminus w^*(c)$ as **negative samples**, to maximize the difference between the **optimal solution** and the **suboptimal solutions**.

$$l_{NCE}(\hat{\boldsymbol{c}},\boldsymbol{c}) = \frac{1}{|\Gamma| - 1} \sum_{\Gamma \setminus \boldsymbol{w}^*(\boldsymbol{c})}^{\boldsymbol{w}^{\gamma}} (\hat{\boldsymbol{c}}^T \boldsymbol{w}^*(\boldsymbol{c}) - \hat{\boldsymbol{c}}^T \boldsymbol{w}^{\gamma})$$

- Mulamba, M., Mandi, J., Diligenti, M., Lombardi, M., Bucarey, V., & Guns, T. (2021). Contrastive losses and solution caching for predict-and-optimize. Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence.
- Mandi, J., Bucarey, V., Mulamba, M., & Guns, T. (2022). Decision-focused learning: through the lens of learning to rank. Proceedings of the 39th International Conference on Machine Learning.

Contrastive & Ranking Method

During the training process, we can naturally collect a large number of feasible solutions, forming a solution set Γ .

Contrastive Method:

Take the subset of suboptimal solutions $\Gamma \setminus w^*(c)$ as **negative samples**, to maximize the difference between the **optimal solution** and the **suboptimal solutions**.

$$l_{NCE}(\hat{\boldsymbol{c}}, \boldsymbol{c}) = \frac{1}{|\Gamma| - 1} \sum_{\Gamma \setminus \boldsymbol{w}^*(\boldsymbol{c})}^{\boldsymbol{w}^{\gamma}} (\hat{\boldsymbol{c}}^T \boldsymbol{w}^*(\boldsymbol{c}) - \hat{\boldsymbol{c}}^T \boldsymbol{w}^{\gamma})$$

Ranking Method:

Transform the predict-then-optimize task as Learning to Rank, with the **objective value** (such as $\hat{c}^T w$) as score, in order to correctly rank the subset of feasible solutions Γ .

- Mulamba, M., Mandi, J., Diligenti, M., Lombardi, M., Bucarey, V., & Guns, T. (2021). Contrastive losses and solution caching for predict-and-optimize. Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence.
- Mandi, J., Bucarey, V., Mulamba, M., & Guns, T. (2022). Decision-focused learning: through the lens of learning to rank. Proceedings of the 39th International Conference on Machine Learning.

Software

An open-sourced library to facilitate predict-then-optimize, bridging the gap between optimization and machine learning.

Software

Autograd Function

Algorithms

- SPO+
- DBB
- NID
- DPO
- PFYL
- NCE
- LTR

pyepo.func.perturbedFenchelYoung allows us to set a Fenchel-Young loss for training, which requires parameters:

- optmodel : a PyEPO optimization model
- n_samples : number of Monte-Carlo samples
- sigma: the amplitude of the perturbation for costs
- processes: number of processors for multi-thread, 1 for single-core, 0 for all of the cores
- seed: random state seed for perturbations

```
import pyepo

# init SPO+ loss
spop = pyepo.func.SPOPlus(optmodel, processes=2)
# init PFY loss
pfy = pyepo.func.perturbedFenchelYoung(optmodel, n_samples=3, sigma=1.0, processes=2)
# init NCE loss
nce = pyepo.func.NCE(optmodel, processes=2, solve_ratio=0.05, dataset=dataset_train)
```

Modeling

```
import gurobipy as gp
from gurobipy import GRB
from pyepo.model.grb import optGrbModel
class myOptModel(optGrbModel):
    def getModel(self):
        # ceate a model
        m = gp.Model()
        # varibles
        x = m.addVars(5, name="x", vtype=GRB.BINARY)
        # sense
        m.modelSense = GRB.MAXIMIZE
        # constraints
        m.addConstr(3*x[0]+4*x[1]+3*x[2]+6*x[3]+4*x[4]<=12)
        m.addConstr(4*x[0]+5*x[1]+2*x[2]+3*x[3]+5*x[4]<=10)
        m.addConstr(5*x[0]+4*x[1]+6*x[2]+2*x[3]+3*x[4]<=15)
        return m, x
optmodel = myOptModel()
```

$$\max_{w} \sum_{i=0}^{4} c_i w_i$$
s.t. $3w_0 + 4w_1 + 3w_2 + 6w_3 + 4w_4 \le 12$
 $4w_0 + 5w_1 + 2w_2 + 3w_3 + 5w_4 \le 10$
 $5w_0 + 4w_1 + 6w_2 + 2w_3 + 3w_4 \le 10$
 $w_0, w_1, w_2, w_3, w_4 \in \{0,1\}$

End-to-End Training

```
# set adam optimizer
optimizer = torch.optim.Adam(reg.parameters(), 1r=5e-3)
# train mode
reg.train()
for epoch in range(5):
 # load data
 for i, data in enumerate(loader_train):
      x, c, w, z = data # feat, cost, sol, obj
      # cuda
      if torch.cuda.is_available():
          x, c, w, z = x.cuda(), c.cuda(), w.cuda(), z.cuda()
      # forward pass
      cp = reg(x)
      loss = pfy(cp, w)
      # backward pass
      optimizer.zero_grad()
      loss.backward()
      optimizer.step()
```


Thank You

