

Lily Tso

Meet the Team!

The CubeSat Launch Initiative

- Since 2010 Nasa CubeSat Launch Initiative has provided grants towards educational institutions, non-profits, and other research focused teams/groups
- CubeSats are small satellites usually placed in Low Earth Orbit, that are measured in CubeSat Units of 10cm by 10cm by 10cm per unit.
- Our teams mission has been to develop and prove out novel cube sat concepts that are feasible for proposing

CubeSat Concept Design Process

Designs Down Selected From

Space Debris
Removal With
Expanding
Foam

Prototyping
Parallel
Manipulator for
Space

- Currently only theoretical hence a novel opportunity
- May be analogous tests + back-ofenvelope calculations to prove concept
- Novel application of developed technology
- Well documented on earth

Menstrual Cup Usable in Zero Gravity

- 3D printed Molds cast with Silicon
- Necessary for Long Duration Missions
- Test systems have many dependencies (fluids, mechanical, etc)

- Can provide new
 Data that is not
 observed
- Difficult to prototype actual data collection

Space Debris Removal Via Expanding Foam

- Top Level Concept
 - Expanding foam offers a lightweight, cost-effective solution to capture debris, reducing risks of further fragmentation
 - This concept leverages the foam's ability to expand and harden, allowing debris to be slowed and captured
 - This foam-based solution allows scalable missions to mitigate space debris in low earth orbit

- Risks to Prove Out
 - Foam stability under extreme conditions
 - Preventing foam fragments from becoming space debris
 - Reliable foam expansion in microgravity
 - Confirming effectiveness of both small and large debris

Space Debris Removal Via Expanding Foam -Proof of Concept (Theoretical Research)

- Foam debris removal relies on the extremely minimal atmosphere found in low earth orbit.
- By increasing the area of the debris greater drag can be incurred, thus slowly changing the orbit of the craft.
- The force exerted by the drag effectively acts as propulsion in the direction opposite the crafts velocity, thus changing its orbit.

The drag equation:

$$F_D=rac{1}{2}
ho v^2 C_D A$$

 F_D = drag

ρ = density of flui

v = speed of the object relative to the fluid

 C_D = drag coefficient

A = cross sectional area

Space Debris Removal Via Expanding Foam -Proof of Concept

To prove that foam changes the aerodynamic properties of an object shaving cream was added to a paper airplane and the flight distances were observed.

The results showed a 27.5% decrease in flight distance thus proving that increased area imparted by the foam affects drag.

Test Flight	Trial 1 (ft)	Trial 2 (ft)	Trial 3 (ft)	Average
Control	11	11.25	9.3	10.52
Shaving Cream Added	7.5	7	8.25	7.60

Menstrual Cup Usable in Zero Gravity

- Top Level Concept
- Current solutions for menstruation in space is taking hormonal birth control causing amenorrhea or using disposable period products
- As longer spaceflight is more focused on, nonconsumable solutions need to be focused on
- Current research done concurrently by CNES, ESA, and ETH Zurich
 - Currently focusing on passive solutions instead of active solutions

- Risks to Prove Out
- Active solutions
- Leaking
- Note: No human-in-the-loop testing will be conducted, only focusing on the fluid mechanics

Menstrual Cup Syringe First Test

- Menstrual Cup filled with water and corn starch mixture to increase viscosity
- With incision, no leaks were found
- After syringe was added, there was leakage

Menstrual Cup Usable in Zero Gravity - Proof of Concept

Menstrual Cup with Opening for Syringe

- Menstrual Cup filled with water now does not leak even with inserted syringe
- Allows for now a "plug" to be used when the syringe is not in place preventing leakage
- Currently can only draw Fluid when enough filled liquid is inside of the cup and essentially sealed to the bottom of the container

Menstrual Cup Usable in Zero Gravity - Next Steps

Successes:

- Opening is able to seal ensuring access via syringe only to draw out fluid
- Sub millimeter features were maintained through the cast
- Test Methodology works as intended and captures desired data
- Does the Menstrual Cup even have to be a cup?
 - Can we take advantages of small openings or slits to draw in fluid outside of the cup
 - Bio-Inspired Potentially from Heart Valves
- Based on the Understanding gained from the first proof of concept maybe not
 - Creating more openings in the "Cup" would allow for suction and capillary action of fluid up towards the syringe

Next Steps:

- Drawing fluid inverted currently has a low success rate, but the failures were due to not being able to draw up enough fluid or fluid that was outside of the cup
- But this does show where the design needs to iterate towards

Potential New Design with Openings

Tri-Fold Heart Valve

Next Steps For Our Team

- Additional Proof of Concepts
 - Menstrual Cup
 - Create a version with small "valve" and see if fluid can be drawn from outside of the menstrual cup as well
 - Create proposal for a more advanced test set up for further proof of concepts
 - Foam Space Debris Capture
 - Continue to Validate Analytical Results and determine supply chain availability of potential foam option
 - Research if any other analogous tests can be used like the foam on paper airplane to further eliminate risk and improve on understanding

Thank You for Watching!

