

Quality Function

- * V(s, a) = Value of state/action pair
- * Q(s, a) = Quality of state/action pair (not just the value)
- * Q(s, a) = $\mathbb{E}(R(s', s, a) + \gamma V(s'))$ -> expected future value given my current state s, taking action a and ending up in state s' the immediate reward R for taking a + discounted value of the s'
- * $Q(s,a) = \sum_{s'} P(s'|s,a)(R(s',s,a) + \gamma V(s'))$ same thing written as summation of probabilities of ending in state s'

Value/Policy Iteration vs Reinforcement Learning

- * in value iteration/policy iteration we were given both the reward function and the transition function
- * $V(s) = \max_a Q(s, a)$ state value is simply value of taking action that yielding maximum value for the given state
- * $\pi(s,a) = argmax_a Q(s,a)$ optimum policy that takes action yielding max value in each state
- * in RL we need to discover the reward and transition functions through exploration

Bellman's Equation

$$* V(s) = \max_{\pi} \mathbb{E}(r_0 + \gamma V(s'))$$

Temporal Pifference Learning

- * $V(s_k) = \mathbb{E}(r_k + \gamma V(s_{k+1}))$ -> expected value for each state (Bellman optimality condition)
- * to iteratively update the state value we do:

 weight

$$V^{new}(s_k) = V^{old}(s_k) + \alpha(r_k + \gamma V^{old}(s_{k+1}) - V^{old}(s_k))$$

new info from the current step

TD Target Estimate

This is TD(0) - just going 1 step into the future, but it could also be n-steps TD(N)

Q-Learning

* Q-Learning is just TD learning on a Q function!!!

TD Error

$$Q^{new}(s_k, a_k) = Q^{old}(s_k, a_k) + \alpha(r_k + \gamma \max_{a} Q(s_{k+1}, a) - Q^{old}(s_k, a_k))$$

TD Target Estimate

* What happens to the Qnew if I experience higher/lower reward than expected by Qold?

Q-Learning Target Estimate

$$r_k + \gamma \max Q(s_{k+1}, a)$$

- * I'k comes from the current step BUT not necessarily by following optimal policy => exploration vs exploitation
- * $Q(s_{k+1},a)$ we are maximizing over action i.e. using the action yielding max value for s_{k+1} i.e. following current optimal policy
- * Off policy because it is not using current policy to take steps allows to learn by imitation or from experience replay

State-Action-Reward-State-Action

$$Q^{new}(s_k, a_k) = Q^{old}(s_k, a_k) + \alpha(r_k + \gamma Q^{old}(s_{k+1}, a_{k+1}) - Q^{old}(s_k, a_k))$$

- * I'k is coming from the current policy => On Policy algo
- * always doing what you think is the best thing