FIT9137 Introduction to Computer Architecture and Networks

Week 4: Computer I/O Operations and Managing Processes Safi Uddin

www.shutterstock.com • 548025055

Assignment 1

Assignment 1 released!

See Assessments section on Moodle

Due in Week 5

Activity A:

Different types of Input/Output (I/O)
Mechanisms

I/O in Computer Systems

- I/O vs Processing
- Management of I/O is important

I/O in Computer Systems

- Varying devices in I/O
- requires different mode of operation.

CPU and I/O Interactions

- Who are involved?
 - CPU (OS), I/O Device, I/O Device Controller,
- I/O controller has registers for storage (small).

CPU and I/O Interactions:

Memory-mapped I/O

- Device-controller registers are mapped into the address space of the CPU.
- MARIE address space F00 FFF -> Graphics Display
- Use standard MARIE instructions: "Store F00"

- MARIE address space F00 FFF -> Graphics Display
- Sequence of MARIE instructions to generate graphics display.

CPU and I/O Interactions:

Port-mapped I/O

- Use of special I/O instructions that triggers the transfer to an I/O port address.
- MARIE "Input" command: accepts input (keyboard) and stores it in register IN, then transfers the data to AC.

 MARIE "Output" command: copies data from AC and stores it in the output register OUT, which is linked to Output log i.e. text display.

Determine when to perform I/O?

Determine when to perform I/O?

(i) Programmed I/O (or Polling I/O)(iii) Interrupt-Driven I/O(i) Direct Memory Access (DMA)

Determine when to perform I/O?

Determine when to perform I/O? Programmed I/O (or Polling I/O)

Determine when to perform I/O?

Programmed I/O (or Polling I/O)

Determine when to perform I/O? Programmed I/O (or Polling I/O)

- Let the CPU do all the work. Simple.
- CPU is full time busy until all the I/O is done.

Determine when to perform I/O? Programmed I/O (or Polling I/O)

• An example: transfer string "ABCDEFGH" to a printer.

Determine when to perform I/O? Interrupt Driven I/O

Determine when to perform I/O?

Interrupt Driven I/O

Determine when to perform I/O? Interrupt Driven I/O

- Allow the CPU do something else the I/O is getting ready.
- Invokes the OS (scheduler) to allow other processes to use CPU.

Determine when to perform I/O? Interrupt Driven I/O

 The OS (scheduler) switches the CPU between the print process and other processes.

Determine when to perform I/O? I/O Using Direct Memory Access (DMA)

Determine when to perform I/O?

I/O Using Direct Memory Access (DMA)

Determine when to perform I/O? I/O Using Direct Memory Access (DMA)

- A programmed I/O with the DMA controller doing all the work (not CPU).
- Reduces the number of interrupts.

Determine when to perform I/O? I/O Using Direct Memory Access (DMA)

- DMA controller is managing the transfer.
- DMA sends characters to printer without CPU being used.

Activity B:

Process Management -Round Robin Scheduling

rocesses						
		7%	^ 62%	1%	0%	
Name	Status	CPU	Memory	Disk	Network	
Settings	Suspended	0%	0 MB	0 MB/s	0 Mbps	
System interrupts		0.1%	0 MB	0 MB/s	0 Mbps	
Credential Guard & VBS Key Is		0%	0.1 MB	0 MB/s	0 Mbps	
Windows Hello Security Process		0%	0.1 MB	0 MB/s	0 Mbps	
Windows Start-Up Application		0%	0.1 MB	0 MB/s	0 Mbps	
Windows Session Manager		0%	0.1 MB	0 MB/s	0 Mbps	
Usermode Font Driver Host		0%	0.1 MB	0 MB/s	0 Mbps	
>		0%	0.1 MB	0 MB/s	0 Mbps	
Intel HD Graphics Drivers for		0%	0.1 MB	0 MB/s	0 Mbps	
LenovoVantage-(SmartDisplay	Efficiency	\$ 0%	0.1 MB	0 MB/s	0 Mbps	
Microsoft OneDriveFile Co-Au		0%	0.1 MB	0 MB/s	0 Mbps	
McAfee Neo Component Host		0%	0.1 MB	0 MB/s	0 Mbps	
> Intel(R) Dynamic Application L		0%	0.1 MB	0 MB/s	0 Mbps	
Windows Driver Foundation		0%	0.1 MB	0 MB/s	0 Mbps	
System		0.1%	0.1 MB	0.2 MB/s	0 Mbps	
User OOBE Broker		0%	0.1 MB	0 MB/s	0 Mbps	
WMI Performance Reverse Ad		0%	0.1 MB	0 MB/s	0 Mbps	
Windows Wireless LAN 802.1		0%	0.1 MB	0 MB/s	0 Mbps	
Intel(R) Dynamic Tuning Service		0%	0.1 MR	0 MR/s	0 Mhns	

- Each process move through different stages.
- Ready -> Running -> Waiting->Ready

- Process switching.
- Context Switching.

Use of Process Control Block (PCB).

 Queuing to help CPU tp pick a process for the next CPU time.

CPU time slices and allocated processes.

Process Management Round-Robin Scheduling

- Round Robin scheduler
- Time quantum is 50 milliseconds.
- Given: (i) start time and (ii) time to finish processes are given
- Unused time is given to the next process immediately.
- Ignore context-switching time.

Label	Arrival time	Processing time	
Process 1	0	95ms	
Process 4	15 ms	65ms	
Process 5	75ms	35ms	
Process 3	175ms	145ms	
Process 2	ocess 2 201ms 10ms		

Process Management Round-Robin Scheduling

- Answer the following questions:
 - Which process starts first?
 - Which process finishes last? When does it finish?
 - Which process finishes second last?
 - Show all the steps of the Round Robin algorithm using a queue.

Label	Arrival time	Processing time	
Process 1	0	95ms	
Process 4	15 ms	65ms	
Process 5	75ms	35ms	
Process 3	175ms	145ms	
Process 2	201ms	10ms	

Process Management Round-Robin Scheduling

- Answer the following questions:
 - Which process starts first?
 - Which process finishes last? When does it finish?
 - Which process finishes second last?
 - Show all the steps of the Round Robin algorithm using a queue.

Time Slice	Process having CPU	Remaining Time (end of time slice)	Processes in the queue (added at time)
1 (0-50)			
2 (50-100)			

Follow the Workshop Acitivties Steps & Answer the Questions

End of the Workshop Tasks

Have a nice week ahead.
See You all Next Week