Дніпропетровський Національний університет Кафедра обчислювальної математики та математичної кібернетики

Чисельні методи в інформатиці

Завдання до лабораторної роботи № 5

Методи розв'язання задачі Коші

Тема: Методи розв'язання задачі Коші.

Mema: Познайомитись з методами Ейлера, Рунге-Кутта різного порядку точності та їх програмною реалізацією.

Постановка завдання:

Задано звичайне диференціальне рівняння

$$y'(x) = f(x, y(x)), \quad x \in [a, b], \tag{1}$$

і початкова умова:

$$y(x_0) = y_0, x_0 \in [a, b],$$
 (2)

де f(x, y) – відома функція, y(x) – шукана функція.

- 1. Знайти наближений розв'язок задачі Коші (1), (2) на відрізку [a,b] наступними методами: 1) методом Ейлера; 2) методом Ейлера-Коші; 3) методом Ейлера з уточненням ($\varepsilon = 10^{-4}$). Для цього розробити програму розв'язання задачі Коші кожним з вказаних методів.
- 2. Знайти наближений розв'язок задачі (1), (2) на відрізку [a,b] методом Рунге-Кутта. Для цього розробити програму розв'язання задачі Коші одним з методів Рунге-Кутта, вказаним в індивідуальному варіанті завдання. В точку x = b треба прийти з точністю $\varepsilon_1 = 10^{-6}$. Розроблена програма повинна давати чисельний розв'язок задачі Коші в двох варіантах:
 - а) з автоматичним вибором кроку h_i , $i = \overline{0,N}$ при заданій на кожному кроці точності $\varepsilon > 0$;
 - b) з сталим кроком інтегрування $h = \frac{b-a}{N}$, де N кількість кроків, одержаних в пункті a).
- 3. Знайти наближений розв'язок задачі (1), (2) на відрізку [a,b] за допомогою екстраполяційного методу Адамса 4-го порядку точності (N=10). Початок таблиці значень наближеного розв'язку знайти методом Рунге Кутта, який реалізовано у пункті 1.
- 4. Роздрукувати у вигляді порівняльної таблиці значення наближених розв'язків, одержаних методами Рунге-Кутта з автоматичним вибором кроку та зі сталим кроком інтегрування і за допомогою екстраполяційного методу Адамса, а також обчислене значення точного розв'язку.
 - 5. Побудувати та порівняти між собою графіки одержаних розв'язків.

Література

- 1. Балашова С.Д. Чисельні методи: Ч.1. Методи розв'язування задач аналізу та алгебри: Навч. Посібник. К.: НМК ВО, 1992. 280 с.
- 2. Крылов В.И., Бобков В.В., Монастырный П.И. Вычислительные методы: Т.1. М.: Наука, 1976. 304 с.

Методичні вказівки

При інтегруванні з автоматичним вибором кроку слід дотримуватись таких рекомендацій:

- 1. У вузлі x_0 взяти $h=h_0$, де h_0 заданий початковий крок.
- 2. Методом Рунге-Кутта k –го порядку точності обчислити наближені розв'язки \widetilde{y} та \widetilde{y} в одній і тій же точці $x_0 + h$ з кроком h та h/2 відповідно. Зауважимо, що для обчислення \widetilde{y} треба зробити два кроки по h/2 кожний.
- 3. Абсолютну похибку δ наближеного розв'язку \widetilde{y} (як більш точного) обчислити за формулою $\delta = \left| \frac{\widetilde{y} \widetilde{y}}{2^k 1} \right|$, де k порядок точності методу Рунге-Кутта.
- 4. Якщо $\delta \ge \varepsilon$, то крок h зменшити вдвічі і обчислення повторити, починаючи з точки \mathbf{x}_0 (тобто перейти на п.2).
- 5. Якщо $\delta < \varepsilon$, то вважати, що значення шуканої функції y(x) в точці $x_1 = x_0 + h$, одержане з заданною похибкою ε , ε $y(x_1) \approx \widetilde{y} + \frac{\widetilde{y} y}{2^k 1}$.
- 6. Розв'язок в наступному вузлі x_2 знаходимо аналогічно, вважаючи початковим вузол x_1 . При цьому початковий крок для вузла x_2 вибираємо по кроку h, з яким було одержано розв'язок в вузлі x_1 , в залежності від похибки δ . Якщо $\delta < \frac{\mathcal{E}}{2^{k+1}}$, то попередній крок збільшується вдвічі, в протилежному випадку крок не змінюється.
- 7. Аналогічно знаходяться розв'язки в наступних вузлах.
- 8. При підході до точки x=b слід проявляти обережність, бо при значеннях x>b права частина f(x,y(x)) диференціального рівняння (1) може бути невизначеною. Тому, після того, як знайдено значення y_k в черговому вузлі x_k і визначено крок h_k , з яким буде обчислюватись розв'язок в вузлі x_k+h_k , потрібно обчислити значення $\Delta_k=b-x_k$. (При достатньо малому значенні h_0 буде $\Delta_0>0$). Якщо $\Delta_k<\varepsilon_1$, де ε_1 задана точність виходу в точку b, то можна вважати $x_k\approx b$ і на цьому процес інтегрування закінчити. Якщо $\Delta_k\geq \varepsilon_1$, інтегрування продовжується. При $h_k\leq \Delta_k$ черговий вузол не виходить за точку b, тому інтегрування продовжується за прийнятим алгоритмом. При $h_k>\Delta_k$ слід прийняти $h_k=\Delta_k$.

Для полегшення аналізу одержаних результатів і побудови графіків розв'язків, результати доцільно розташувати у вигляді таблиці, що складається з чотирьох стовпців. В кожному рядку надрукувати значення x_k , $y(x_k)$, $\tilde{y}(x_k)$, $y(x_k) - \tilde{y}(x_k)$,

де $y(x_k)$ – значення точного розв'язку задачі Коші у вузлі x_k ,

 $\widetilde{y}(x_k)$ – значення наближеного розв'язку задачі в тому ж вузлі.

При цьому зручно, щоб перша частина таблиці відносилась до наближеного розв'язку, одержаного з автоматичним вибором кроку, а друга частина — до наближеного розв'язку, одержаного зі сталим кроком, третя — до наближеного розв'язку, одержаного за допомогою методу Адамса. Значення точного розв'язку доцільно одержати для кожного з цих наборів вузлів.

Варіанти завдань

Наближений розв'язок задачі шукати на відрізку [0,1]

$$1. \begin{cases} y' + \sqrt{xy} = x, \\ y(0) = 0, \end{cases}$$

$$2. \begin{cases} y' + x\sqrt{y} = 1, \\ y(0) = 1, \end{cases}$$

3.
$$\begin{cases} y' + \sin xy = 1, \\ y(0) = 2, \end{cases}$$
 4.
$$\begin{cases} y' + \sqrt{y} = x, \\ y(0) = 0, \end{cases}$$

$$4. \begin{cases} y' + \sqrt{y} = x, \\ y(0) = 0, \end{cases}$$

5.
$$\begin{cases} y' + \sqrt{x+y} = 1, \\ y(0) = 0, \end{cases}$$

5.
$$\begin{cases} y' + \sqrt{x+y} = 1, \\ y(0) = 0, \end{cases}$$
 6.
$$\begin{cases} y' + \sqrt{x^2 + y^2} = 1, \\ y(0) = 0, \end{cases}$$

$$7. \begin{cases} y' + \frac{x}{y} = x, \\ y(0) = 1, \end{cases}$$

8.
$$\begin{cases} y' + \frac{x}{1+y} = 1, \\ y(0) = 0, \end{cases}$$

$$9. \begin{cases} y' + \frac{\sqrt{y}}{1+x} = 1, \\ y(0) = 0, \end{cases}$$

9.
$$\begin{cases} y' + \frac{\sqrt{y}}{1+x} = 1, \\ y(0) = 0, \end{cases} 10. \begin{cases} y' + \frac{1+x}{y} = 1, \\ y(0) = 1, \end{cases}$$

11.
$$\begin{cases} y' + y^2 \sqrt{x} = 1, \\ y(0) = 0, \end{cases}$$

11.
$$\begin{cases} y' + y^2 \sqrt{x} = 1, \\ y(0) = 0, \end{cases}$$
12.
$$\begin{cases} y' + \frac{1}{x^2 + y^2} = x, \\ y(0) = 1; \end{cases}$$
13.
$$\begin{cases} y' + \sin^2 xy = 1, \\ y(0) = 2, \end{cases}$$
14.
$$\begin{cases} y' + \sqrt{y + 1} = x, \\ y(0) = 0, \end{cases}$$

13.
$$\begin{cases} y' + \sin^2 xy = 1, \\ y(0) = 2, \end{cases}$$

14.
$$\begin{cases} y' + \sqrt{y+1} = x, \\ y(0) = 0, \end{cases}$$

15.
$$\begin{cases} y' + \sqrt{x^2 + y} = 1\\ y(0) = 0, \end{cases}$$

15.
$$\begin{cases} y' + \sqrt{x^2 + y} = 1, \\ y(0) = 0, \end{cases}$$
 16.
$$\begin{cases} y' + \sqrt{x^2 + y^2 + x} = 1, \\ y(0) = 0, \end{cases}$$

17.
$$\begin{cases} y' + \frac{x^2 - x}{y} = x, & 18. \\ y(0) = 1, & 18. \end{cases} \begin{cases} y' + \frac{x - 2}{1 + y} = 1, \\ y(0) = 0, & 18. \end{cases}$$

18.
$$\begin{cases} y' + \frac{x-2}{1+y} = 1, \\ y(0) = 0, \end{cases}$$

19.
$$\begin{cases} y' + \frac{\sqrt{y^2 - 1}}{1 + x} = 1, \\ y(0) = 0, \end{cases}$$

$$20. \begin{cases} y' + \frac{1+x^2}{y} = 1, \\ y(0) = 1, \end{cases}$$

21.
$$\begin{cases} y' + y^2 \sqrt{x+1} = 1, \\ y(0) = 0, \end{cases}$$

22.
$$\begin{cases} y' + \frac{1}{x^2 + y^2 + 1} = x, \\ y(0) = 1. \end{cases}$$

$$23. \begin{cases} y' + \sqrt{xy + x} = x, \\ y(0) = 0, \end{cases} \qquad 24. \begin{cases} y' + x\sqrt{y^2 + y} = 1, \\ y(0) = 1. \end{cases}$$

$$25. \begin{cases} y' + 2\sqrt[3]{x + y} = 1, \\ y(0) = 0, \end{cases} \qquad 26. \begin{cases} y' + 3\sqrt[3]{x^2 + y^2} = 1, \\ y(0) = 0, \end{cases}$$

$$27. \begin{cases} y' + 4\frac{x^2 + 1}{y + 1} = x, \\ y(0) = 1, \end{cases} \qquad 28. \begin{cases} y' + 5\frac{x - y}{x + y} = x, \\ y(0) = 0, \end{cases}$$

$$29. \begin{cases} y' + 2\frac{\sqrt{y^2 + x}}{y + x^2} = 1, \\ y(0) = 0, \end{cases} \qquad 30. \begin{cases} y' + 2\frac{1 + x}{1 + y} = 1, \\ y(0) = 1, \end{cases}$$

В непарних варіантах застосувати метод 3-го порядку точності

$$y_{n+1} = y_n + \frac{k_1^{(n)} + 4k_2^{(n)} + k_3^{(n)}}{6}, \quad n = \overline{0, N-1}, \text{ де}$$
 $k_1^{(n)} = h \ f(x_n, y_n),$ $k_2^{(n)} = h \ f\left(x_n + \frac{h}{2}, y_n + \frac{k_1^{(n)}}{2}\right),$ $k_3^{(n)} = h \ f(x_n + h, y_n - k_1^{(n)} + 2k_2^{(n)}).$

В парних варіантах –

$$y_{n+1} = y_n + \frac{k_1^{(n)}}{4} + \frac{3k_3^{(n)}}{4}, \quad n = \overline{0, N-1}, \text{ де}$$
 $k_1^{(n)} = h \ f(x_n, y_n),$
 $k_2^{(n)} = h \ f\left(x_n + \frac{h}{3}, y_n + \frac{1}{3}k_1^{(n)}\right),$
 $k_3^{(n)} = h \ f\left(x_n + \frac{2h}{3}, y_n + \frac{2}{3}k_2^{(n)}\right).$