Part I

Logique mathématique

1 Définitions

On définit les notions suivantes :

- une **proposition** est un énoncé qui est soit vrai, soit faux ;
- Vrai (1) ou Faux (0) sont appelés valeurs de vérité ;

• un **prédicat** est un énoncé contenant une ou plusieures variables et qui se transforme en proposition suivant la valeur de ces variables.

2 est pair pot un prédical vrai 3 est pair Vrai.

2 Quantificateurs – Connecteurs logiques – Ensembles

Lorsqu'on évalue un prédicat, on peut toujours se ramener à la théorie des ensembles, en considérant l'ensemble des éléments qui satisfont le prédicat. Dans l'exemple précédent, le prédicat est vrai sur l'ensemble solution de l'équation x + 6 = 10. De manière moins abstraite, considérer le prédicat "le vêtement est blanc" nous ramène à l'ensemble des vêtements blancs. On rappelle d'abord les quantificateurs.

Juanitification producat

proposition

• Le quantificateur universel "quel que soit" ou "pour tout" noté \forall utilisé pour signifier que tout élément x d'un ensemble E vérifie une propriété P(x), la syntaxe étant :

$$(\forall x \in E) \ (P(x)). \tag{2.1}$$

H = "quelque soit".

E "est un élément de"

C "est une sous-partie de"

2 en nombre entrer ACIN 2 un soas ensemble Ex: les nombres pair I il existe

• Le quantificateur existentiel "il existe" noté \exists pour signifier qu'il existe au moins un élément x de E vérifiant la propriété P(x), la syntaxe étant :

$$(\exists x \in E) \mid (P(x)). \tag{2.2}$$

Il existe un nombre divisible (Nont le reste dans la division est 0) par vous les entiers Vrai car 0 vérifie la proposition.

\in	appartient à	$x \in A$	x est dans A
\forall	pour tout, quelque-soit	$\forall x \in A$	pour tout x dans A
	il existe, pour un certain	$\exists x \in A$	il existe x dans A

En utilisant les quantificateurs, il faudra faire attention à l'ordre d'apparition de ces derniers. Par exemple les assertions suivantes, où f est une fonction à valeurs réelles définie sur un ensemble E:

(1) JHEIR PREIR J(2)

MOTE: Si(1) et voie, alons (2) est voie.

Négation de P:

notée Pou 7P

L'élaboration de nouvelles assertions à partir d'autres se fait en utilisant les connecteurs logiques de négation, de conjonction, de disjonction, d'implication et d'équivalence. Dans ce qui suit, P et Q désignent des assertions.

• La négation de P, notée $\neg P$, ou non P ou \overline{P} , est l'assertion qui est vraie si P est fausse et fausse si P est vraie.

Par exemple la négation de l'assertion : " x est strictement positif " est " x est négatif ou nul " .

• La conjonction de P et Q, notée $P \wedge Q$ (lire P et Q), est l'assertion qui est vraie uniquement si P et Q sont toutes deux vraies (et donc fausse dans les trois autres cas).

ascensem 1 fonctionne ascensem 2 fonctionne

P1 a = asc 1 fonctionne et asc 2 fonctionne

= les 2 fonctionne

Para

VVV

VFF

FVF

• La disjonction de P et Q, notée $P \vee Q$ (lire P ou Q), est l'assertion qui est vraie uniquement si l'une des deux assertions P ou Q est vraie (donc fausse si P et Q sont toutes deux fausses). Il faut remarquer que le "ou" pour "ou bien" est inclusif, c'est-à-dire que P et Q peuvent être toutes deux vrais dans le cas où $P \vee Q$ est vraie.

ascensem 1 fonctionne ascensem 2 fonctionne PVQ = d'asc 1 fonctionne ou le 2 (non exclusif) = au moins un fonctionne.

L'implication, notée $P \to Q$, est l'assertion qui est fausse uniquement si P est vraie et Q fausse (donc vraie dans les trois autres cas). On peut remarquer que si P est fausse, alors $P \to Q$ est vraie indépendamment de la valeur de vérité de Q. L'implication est à la base du raisonnement mathématique. En partant d'une assertion P (ou de plusieurs), une démonstration aboutit à un résultat Q. Si cette démonstration est faite sans erreur, alors $P \to Q$ est vraie et on notera $P \Rightarrow Q$ (ce qui signifie que si P est vraie, alors Q est vraie). Dans ce cas, on dit que P est une condition suffisante et Q une condition nécessaire. On peut remarquer que l'implication est transitive, c'est-à-dire que si P implique Q et Q implique R, alors P implique R.

• L'équivalence de P et Q, notée $P \leftrightarrow Q$, est l'assertion qui est vraie uniquement si $P \to Q$ et $Q \to P$ sont toutes deux vraies. Dans le cas où $P \leftrightarrow Q$ est vraie on dit que P est Q sont équivalentes et on note $P \Leftrightarrow Q$ (ce qui signifie que P et Q sont, soit toutes deux vraies, soit toutes deux fausses). Dans ce cas, on dit que Q est une condition nécessaire et suffisante de P.

PG> Q

Diogramme de Venn Un prédicat est byjours sur un certain eventse. On associe ou prédicat l'ensemble des ses viais

On donne alors le tableau des connecteurs logiques suivants.

Connecteur		Négation	Conjonction	Disjonction (non exclusif)	Implication	Équivalence
Notations	P (resp. Q)	Non P	P et Q	P ou Q		
		$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \iff Q$
		\bar{P}				
Diagramme	$x \in A, x \in B$	\bar{A}	$A \cap B$	$A \cup B$	$A \subset B$	A = B

A Course

(Pa) Q

(=> (P=>Q) N

On note que la proposition $P\Rightarrow Q$ ne donne aucune valeur de vérité à la proposition $Q\Rightarrow P.$

On peut également résumer les connecteurs logiques dans une table de vérité, donnant toutes les valeurs de vérité possibles aux propositions utilisées.

P	Q	\overline{P}	$P \wedge Q$	$P \vee Q$	$P \rightarrow Q$	$P \leftrightarrow Q$
V	V	F	V	V	V	V
V	F	F	F	V	F	F
\overline{F}	V	V	F	V	V	F
F	F	V	F	F	V	V

pour nuer une proposition, on change chaque 3 Négation quantifieur pais on me le prédicat &

Il est intéressant de pouvoir formuler la négation d'une proposition. Soient p(x) et q(x) des prédicats

Quantificateurs	Négation	Stratégie
$\forall x, p(x)$	$\exists x, \bar{p}(x)$	Trouver un contre-exemple
$\exists x, p(x)$	$\forall x, \bar{p}(x)$	Tout x contredit $p(x)$
Connecteurs	Négation	Stratégie
p(x) et $q(x)$	$\bar{p}(x)$ ou $\bar{q}(x)$	Contredire l'un des prédicats
p(x) ou $q(x)$	$\bar{p}(x)$ et $\bar{q}(x)$	Contredire les deux prédicats
$p(x) \Rightarrow q(x)$	$p(x)$ et $\bar{q}(x)$	Trouver un élement vérifiant $p(x)$ et contredisant $q(x)$

Exemple (fonction majorie)
P: JMER FREIR

F: YMER FREIR

Proposition 3.1 L'implication $P\Rightarrow Q$ est équivalente à $\bar{Q}\Rightarrow \bar{P}$. Cette équivalence est appelée contraposée.

dois de Morgen asc 2 fontionne asc 1 fontionne Pna: les 2 fonctionnent (pas de dépannem) Pra: au moins 1 en panne de panneur Pha = Pva Pra: au am re fonctionne (escolier) Pra = Pra

4 Bornes inférieures et supérieures

	Exemples introduction
	Ensemble: famille d'obset ayant quelque-chose en commun.
	intuitivement,
	7 Mary Carrier Commence of the
= plus	grand de l'ensemble
1	C'est le supremeum
	minimum (ou borne superieure)
	= pas pet de l'essemple
	minorants
	Don les notions à veau, majorants/minorants/maximum/minimum
	D'où les notions à veair: majorants/minorants/maximum/minimum Supremum (borne superieur)/infimum (borne inférieur)
	Supremum (borne suprimem)/intimum (borne intérieur)

Autre exemple: $\frac{1}{n}$; $n \in \mathbb{N}^{+}$

Dest la borne inférieure (inférieur) de l'ensemble. C'est un minorant. Hois ce n'est pas un minimum car il n'est pas dans l'ensemble. E=1R ou N bien sowent

Ou Z 4 Bornes inférieures et supérieures par ensemble du L.

Definition 4.1 Soit E un ensemble de nombres et A E une partie non vide de E. Un nombre $a \in E$ est maximum (ou plus grand élément) de A dans E si :

- $\alpha \in A$
- · YbEA, b ≤ a.

de plus grand de A.

Ce nombre a est alors noté max (A).

Définition du minimum: Soit ACE. Le minimum a de A verifie:

 \bullet $\alpha \in A$

· YbEA, a ≤ b.

Il est note min (A).

Proposition 4.2 $Si\ A\ possède\ un\ maximum,\ alors\ ce\ maximum\ est\ unique.$ On le note $\max A.$

Démonstration, Soient a1 et a2 des max. de A:

e a1 et a2 sont dans A.

• ¥beA b≤a1 et b∈ a2.

Mais $a_1 \in A$ donc $a_1 \leq a_2$ $a_1 = a_2$ et $a_2 \in A$ donc $a_2 \leq a_1$

Donc le maximum est unique.

Definition 4.3 Soit E un ensemble de nombres et $A \subset E$ une partie non vide de E. Un nombre $M \in E$ est majorant de A dans E si

 $\forall b \in A, \qquad M \ge b.$

Dans ce cas, on dit que A est majorée par M.

Définition du minorant : SiMACE. m est un minorant de A

(=> + b EA, b > m.

(on me suppose plus que Met m sout dans l'ensemble)

Tils ne sout pas unique.

Remarque 4.4 Une partie A d'un ensemble de nombre E peut avoir plusieurs majorants.

Exemple. Soit $A = \{2, 3, 5\} \subset \mathbb{N}$.

5 est le maximum de A. 5-6-8 sont des majorents.

Definition 4.6	On dit que 2	$A \subset E, A \neq \emptyset,$	est bornée d	$lans\ E\ si\ A\ e$	st majorée et r	ninorée dans E	•

Proposition 4.7 Toute partie non vide de N possède un minimum.

 $\frac{a}{b}$ où $a,b \in \mathbb{Z}$ Donc $-\frac{1}{3} \in \Omega$

Exemple. Soit $A = \{x \in \mathbb{Q} : 0 < x \le 1\}$. Alors $A \ne \emptyset$ et A n'a pas de minimum.

Los Jo, 1] na pas de minimum.

Preuve: Supposons que le minimen de 4 est a!

- a>0 er $a\in\mathbb{Q}$ \Longrightarrow $a:=\frac{c}{d}$ $c\in\mathbb{Z}, d\in\mathbb{Z}^*$.
- · YbEA, b>a.

Posono $\frac{\alpha}{2} = \frac{c}{2d}$ avec coo et $2d \in \mathbb{Z}^*$. Donc $\frac{\alpha}{2} \in A$ et $\frac{\alpha}{2} \leq \alpha$.

Ce qui contredit la définition du minimum - D'où l'absurdité. Donc le minimum n'existe pos.

Definition 4.8 Soit E un ensemble de nombres, et soit $A \subset E$, $A \neq \emptyset$.

• On dit que A admet une borne supérieure si A est majorée et si l'ensemble des majorants de A admet un minimum. Dans ce cas, ce minimum est appelé la borne supérieure de A, notée sup A. Sup (A) = minimum des majorents

• On dit que A admet une borne inférieure si A est minorée et si l'ensemble des minorants de A admet un maximum. Dans ce cas, ce maximum est appelé la borne inférieure de A, notée inf A.

inf(A)= maximum des minorants.

Caracherisation:

· Le sup (A) est un majorant :

• $4b \in A$ $5 \leq Sup(A)$.

C'est aussi le plus petit, donc le plus proche:

4870 36EA SupA-5 < 8

a d'inf(A) est un Minorant:

BY UN Minorant:

BY UN Minorant:

Exemple Soit $A = \{x \in \mathbb{Q} : 0 < x\}$. Alors $A \neq \emptyset$ (car $1 \in A$) et inf A = 0.

Démonstration: O est minorant de A. En effet Hx EA x>0. Nontions la proximité de O. Montions que +E>O = BEA: b-0 < E.

Soit E 20. Soit nun entier supérieur à 1 est dans a 103 donc 1 EA. On a done trouvé un élément de A tel que $\frac{1}{n}$ $0 < \xi$. O est bien la borne inférieure de A