

Materia:

DISEÑO ELECTRÓNICO BASADO EN SISTEMAS EMBEBIDOS

Alumno:

Posadas Pérez Isaac Sayeg Paniagua Rico Juan Julian García Azzúa Jorge Roberto

Grado y grupo:

8°G

Profesor:

Garcia Ruiz Alejandro Humberto

Tarea 2:

Sistemas embebidos

Sistemas Embebidos

Definición y Concepto

Un **sistema embebido** es un sistema de computación especializado que se encuentra integrado dentro de un dispositivo mayor para desempeñar una función específica. A diferencia de las computadoras de propósito general, estos sistemas están diseñados para realizar tareas concretas con un alto grado de eficiencia y confiabilidad.

Los sistemas embebidos están presentes en una amplia gama de dispositivos, desde electrodomésticos hasta automóviles y equipos médicos. Por ejemplo, un sistema de control de inyección electrónica en un motor de automóvil o el firmware de un teléfono inteligente son aplicaciones comunes de esta tecnología.

Estructura y Componentes

Un sistema embebido se compone de diferentes elementos esenciales que le permiten operar de manera eficiente dentro de su dispositivo anfitrión.

Procesador

El procesador es el cerebro del sistema embebido y se encarga de ejecutar el código del software. Puede tratarse de un microcontrolador (que integra memoria y periféricos en un solo chip) o de un microprocesador (que necesita componentes externos para operar).

Los **microcontroladores ARM Cortex**, **PIC y AVR** son ampliamente utilizados en sistemas embebidos por su bajo consumo de energía y capacidad de respuesta en tiempo real.

Memoria

La memoria de un sistema embebido almacena tanto el software como los datos de funcionamiento. Se pueden encontrar distintos tipos de memoria en estos sistemas:

- ROM (Read-Only Memory): Contiene el firmware del sistema.
- RAM (Random Access Memory): Almacena temporalmente datos mientras el sistema está en funcionamiento.
- Memoria Flash: Permite actualizaciones del software y almacenamiento de datos a largo plazo.

Interfaces de Entrada y Salida

Para interactuar con su entorno, un sistema embebido cuenta con distintos tipos de interfaces:

- **Dispositivos de entrada:** Sensores de temperatura, micrófonos, acelerómetros, cámaras, entre otros.
- **Dispositivos de salida:** Pantallas, luces LED, motores, parlantes, etc.

Software y Firmware

El software que opera un sistema embebido se conoce como **firmware**, ya que está integrado de forma permanente en el hardware del dispositivo. Se programa en lenguajes como **C**, **C++** y **ensamblador** y puede ejecutarse sobre sistemas operativos embebidos como **FreeRTOS**, **VxWorks o versiones reducidas de Linux**.

Fuente de Alimentación

Dependiendo del tipo de sistema embebido, la alimentación puede provenir de **baterías, fuentes de corriente alterna o sistemas de recolección de energía**. La eficiencia energética es un factor clave en estos dispositivos, ya que muchos de ellos operan de manera continua sin posibilidad de recarga frecuente.

Clasificación de los Sistemas Embebidos

Existen diversos tipos de sistemas embebidos según sus características y aplicaciones.

Sistemas Embebidos en Tiempo Real

Estos sistemas están diseñados para ejecutar tareas en un tiempo determinado, garantizando respuestas precisas y predecibles.

• Tiempo real estricto (Hard Real-Time): En estos sistemas, fallar en cumplir los tiempos de respuesta puede ocasionar fallos críticos en la operación. Son

comunes en aplicaciones donde la seguridad y precisión son esenciales, como sistemas de control en aeronaves, robots quirúrgicos o centrales nucleares.

 Tiempo real flexible (Soft Real-Time): En estos sistemas, los tiempos de respuesta pueden ser variables sin generar fallos críticos. Son utilizados en aplicaciones como la transmisión de video en streaming, videojuegos en línea o sistemas de comunicaciones donde un pequeño retraso no afecta significativamente la funcionalidad del sistema.

Sistemas Embebidos Autónomos

Son sistemas diseñados para operar sin intervención humana después de haber sido configurados. Una vez en funcionamiento, estos sistemas toman decisiones basadas en sensores y programación interna.

Ejemplos de estos sistemas incluyen los **sistemas de riego automatizados**, los **vehículos autónomos** y los **sensores de monitoreo ambiental** que operan de manera continua sin necesidad de ajustes manuales.

Sistemas Embebidos Conectados

Estos sistemas tienen la capacidad de conectarse a redes de comunicación mediante tecnologías como **Wi-Fi, Bluetooth, Ethernet o redes móviles (4G/5G)**. Su interconectividad permite el monitoreo y control remoto, facilitando la interacción con otros dispositivos y plataformas en la nube.

Ejemplos incluyen los **asistentes virtuales** (como Alexa y Google Home), **dispositivos de automatización del hogar** y **sensores industriales inteligentes** que transmiten datos en tiempo real para la toma de decisiones automatizadas.

Sistemas Embebidos Portátiles

Son sistemas diseñados para dispositivos compactos y de bajo consumo de energía. Su principal característica es la eficiencia energética, ya que suelen ser alimentados por baterías recargables o tecnologías de recolección de energía.

Ejemplos incluyen los **relojes inteligentes (smartwatches)**, los **monitores de actividad física**, los **dispositivos médicos portátiles** y los **drones de vigilancia** que requieren hardware ligero y eficiente para su funcionamiento.

Aplicaciones de los Sistemas Embebidos

La versatilidad de los sistemas embebidos permite su uso en una gran variedad de industrias y dispositivos.

Industria Automotriz

Los automóviles modernos dependen en gran medida de los sistemas embebidos para mejorar su eficiencia y seguridad:

- Sistemas de frenos ABS, que previenen el bloqueo de ruedas.
- Control de inyección electrónica, que optimiza el consumo de combustible.
- Sistemas de navegación y entretenimiento basados en GPS y multimedia.

Electrónica de Consumo

Los electrodomésticos inteligentes utilizan sistemas embebidos para ofrecer funciones avanzadas, como control por voz y programación automática. Ejemplos incluyen televisores, refrigeradores y aspiradoras robóticas.

Sector Médico

Los sistemas embebidos son fundamentales en equipos de monitoreo y diagnóstico:

- Marcapasos electrónicos, que regulan la frecuencia cardíaca.
- Monitores de presión arterial y glucosa que registran datos en tiempo real.
- Sistemas de resonancia magnética y ultrasonidos que procesan imágenes médicas.

Automatización Industrial

Las fábricas utilizan estos sistemas para mejorar la eficiencia en la producción. Dispositivos como los **PLC (Controladores Lógicos Programables)** y los sistemas **SCADA** permiten la supervisión y control remoto de procesos industriales.

Dispositivos IoT (Internet de las cosas)

Los sistemas embebidos forman la base del Internet de las cosas, permitiendo la interconexión de dispositivos en la nube. Ejemplos incluyen:

- Sistemas de domótica, como iluminación y termostatos inteligentes.
- Monitores de actividad física que registran datos de salud en tiempo real.

Relevancia y Futuro de los Sistemas Embebidos

Gracias a su capacidad de optimizar el rendimiento de múltiples dispositivos, los sistemas embebidos han revolucionado la industria tecnológica. Su integración con **inteligencia artificial y aprendizaje automático** está ampliando sus capacidades, permitiendo el desarrollo de dispositivos más inteligentes y autónomos.

En el futuro, se espera que los sistemas embebidos evolucionen para consumir menos energía, aumentar su capacidad de procesamiento y mejorar su integración con redes avanzadas como **5G e loT**.

Bibliografía

- Barr, M., & Massa, A. (2006). *Programming Embedded Systems: With C and GNU Development Tools* (2nd ed.). O'Reilly Media.
- Heath, S. (2002). Embedded Systems Design (2nd ed.). Newnes.
- Wolf, W. (2012). Computers as Components: Principles of Embedded Computing System Design (3rd ed.). Elsevier.
- Vahid, F., & Givargis, T. (2011). *Embedded System Design: A Unified Hardware/Software Introduction* (2nd ed.). Wiley.
- Laplante, P. A. (2021). Real-Time Systems Design and Analysis: Tools for the Practitioner (5th ed.). IEEE Press.