

Classification

WEEK 3

11/22/2017 0

Outline

Classification overview

Evaluation on classification models/results

Basic classification models

Ensemble models

Statistical Classification

Identifying to which of a set of categories a new observation belongs, on the basis of a training set of data containing observations whose category membership is known.

Classification Types (binary vs. multiclass)

Multi-class could be treated as multiple binary classes, focus on binary first

Classification Algorithms

Algorithm have their own pros and cons.

Main one:

Complexity vs. **Generality**

11/22/2017 4

Model Evaluation - General

Know which one works better, for the specific question.

Hold-out

Randomly divide dataset into:

1) training

2) validation

3) test

Cross-Validation

If data is limited

Model Evaluation – Scikit Learn Functions

	<pre>metrics.accuracy_score(y_true, y_pred[,])</pre>	Accuracy classification score.
	<pre>metrics.auc(x, y[, reorder])</pre>	Compute Area Under the Curve (AUC) using the trapezoidal rule
	<pre>metrics.average_precision_score(y_true, y_score)</pre>	Compute average precision (AP) from prediction scores
	<pre>metrics.brier_score_loss(y_true, y_prob[,])</pre>	Compute the Brier score.
	<pre>metrics.classification_report(y_true, y_pred)</pre>	Build a text report showing the main classification metrics
	<pre>metrics.confusion_matrix(y_true, y_pred[,])</pre>	Compute confusion matrix to evaluate the accuracy of a classification
	metrics.f1_score(y_true, y_pred[, labels,])	Compute the F1 score, also known as balanced F-score or F-measure
	metrics.fbeta_score(y_true, y_pred, beta[,])	Compute the F-beta score
	<pre>metrics.hamming_loss(y_true, y_pred[, classes])</pre>	Compute the average Hamming loss.
	<pre>metrics.hinge_loss(y_true, pred_decision[,])</pre>	Average hinge loss (non-regularized)
	<pre>metrics.jaccard_similarity_score(y_true, y_pred)</pre>	Jaccard similarity coefficient score
	metrics.log_loss(y_true, y_pred[, eps,])	Log loss, aka logistic loss or cross-entropy loss.
	<pre>metrics.matthews_corrcoef(y_true, y_pred)</pre>	Compute the Matthews correlation coefficient (MCC) for binary classes
	<pre>metrics.precision_recall_curve(y_true,)</pre>	Compute precision-recall pairs for different probability thresholds
	metrics.precision_recall_fscore_support()	Compute precision, recall, F-measure and support for each class
	<pre>metrics.precision_score(y_true, y_pred[,])</pre>	Compute the precision
	metrics.recall_score(y_true, y_pred[,])	Compute the recall
	metrics.roc_auc_score(y_true, y_score[,])	Compute Area Under the Curve (AUC) from prediction scores
	metrics.roc_curve(y_true, y_score[,])	Compute Receiver operating characteristic (ROC)
	metrics.zero_one_loss(y_true, y_pred[,])	Zero-one classification loss.
201	metrics.brier_score_loss(y_true, y_prob[,])	Compute the Brier score.

Model Evaluation – Confusion Matrix

Г	Confusion Matrix		Target			
			Positive	Negative		
Model	Model	Positive	а	b	Positive Predictive Value	a/(a+b)
	wouei	Negative	С	d	Negative Predictive Value	d/(c+d)
Г			Sensitivity	Specificity	A coursey - (o. d) //o. b. o. d)	
			a/(a+c)	d/(b+d)	Accuracy = (a+d)/(a+b+c+d)	

How many selected items are relevant?

Spam email: 1000 emails, 10 spam; a spam filter find out 15 "spams", 3 out of 15 are real spams

Q: what is the sensitivity (recall), precision, and total accuracy?

Model Evaluation – ROC Curve

Model: Logistic Regression

Non-linear transformation over linear combination

$$F(x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x)}}$$

Starting with vanilla binary classification (show case cross validation)

Interpreting the coefficient

Log odds ratio

If beta = 1, then:

$$x -> x + 1$$

log odds ratio change 1

odds ratio change: 2.718

$$P(x+1) / (1-P(x+1)) = 2.718 * P(x) / (1-P(x))$$

$$P(x) = F(x) = \frac{1}{1 + \exp[-(\beta_0 + \beta_1 x)]}$$

$$\frac{1 - P(x)}{P(x)} = 1 + \exp[-(\beta_0 + \beta_1 x)]$$

$$\frac{1 - P(x)}{P(x)} = \exp[-(\beta_0 + \beta_1 x)]$$

$$\beta_0 + \beta_1 x = \log \left[\frac{P(x)}{1 - P(x)}\right]$$

$$\frac{P(x)}{1 - P(x)} : odds$$

Model: Logistic Regression

Incorporating L1 and L2 terms, look at the behavior given C.

$$\min_{w,c} \frac{1}{2} w^T w + C \sum_{i=1}^n \log(\exp(-y_i(X_i^T w + c)) + 1).$$

$$\min_{w,c} ||w||_1 + C \sum_{i=1}^n \log(\exp(-y_i(X_i^T w + c)) + 1).$$

$$\begin{split} \min_{w} \frac{1}{2n_{samples}} ||Xw - y||_{2}^{2} + \alpha ||w||_{1} \\ \min_{w} ||Xw - y||_{2}^{2} + \alpha ||w||_{2}^{2} \\ \min_{w} \frac{1}{2n_{samples}} ||Xw - y||_{2}^{2} + \alpha \rho ||w||_{1} + \frac{\alpha (1 - \rho)}{2} ||w||_{2}^{2} \end{split}$$

Model: Decision Tree

Naturally non-linear

Decision Tree Model for Car Mileage Prediction

How decision tree works?

All decision tree models are heuristic (may not be globally optimal)

Three steps:

- 1. which feature to split?
- 2. how to split on the selected features?
- 3. when to stop?

How to measure GOOD or NOT for a split?

11/1/2016

Three metrics for split

Classification

Gini impurity

$$H(X_m) = \sum_{k} p_{mk} (1 - p_{mk})$$
 $p_{mk} = 1/N_m \sum_{x_i \in R_m} I(y_i = k)$

Information gain

$$H(X_m) = -\sum_{k} p_{mk} \log(p_{mk})$$

Regression

Mean square error

$$c_m = \frac{1}{N_m} \sum_{i \in N_m} y_i$$

$$H(X_m) = \frac{1}{N_m} \sum_{i \in N_m} (y_i - c_m)^2$$

Example: Gini impurity

Feature value (X1)	Class (Y)
1	Α
2	В
3	Α
4	В
5	В
6	Α

If split at 3.5, there will be two nodes

Before split:

$$P(A) = 0.50, P(B) = 0.50$$

After split:

```
Node 1: A, B, A. P(A) = 0.67, P(B) = 0.33
Node 2: B, B, A. P(A) = 0.33, P(B) = 0.67
```

Gini impurity (gain)

Before: (all nodes) P(A) * (1-P(A)) + P(B) * (1-P(B)) = 0.5*0.5+0.5*0.5=0.5

After: (% node 1) P(A) * (1-P(A)) + P(B) * (1-P(B)) + (% node 2) P(A) * (1-P(A)) + P(B) * (1-P(B)) =

0.5 * (0.67 * 0.33 + 0.33 * 0.67) + 0.5 * (0.33 * 0.67 + 0.67 * 0.33) = 0.4422

Example: Information gain

Feature value (X1)	Class (Y)
1	Α
2	В
3	Α
4	В
5	В
6	Α

If split at 3.5, there will be two nodes

Before split:

$$P(A) = 0.50, P(B) = 0.50$$

After split:

```
Node 1: A, B, A. P(A) = 0.67, P(B) = 0.33
Node 2: B, B, A. P(A) = 0.33, P(B) = 0.67
```

Information gain

```
Before: -P(A) * log(P(A)) - P(B) * log(P(B)) = -0.5 * log(0.5) - 0.5 * log(0.5) = 0.693
```

After:
$$(\% \text{ node 1}) - P(A) * log(P(A)) - P(B) * log(P(B)) + (\% \text{ node 2}) - P(A) * log(P(A)) - P(B) * log(P(B)) = 0.5 * (0.67 * log(P(B)) + ($$

$$0.5 * (-0.67 * \log(0.67) - 0.33 * \log(0.33) - 0.67 * \log(0.67) - 0.33 * \log(0.33)) = 0.634$$

Example: where to split? (use Gini)

X1	Υ
1	Α
2	В
3	Α
4	В
5	В
6	Α

Split can happen on: 1.5, 2.5, 3.5, 4.5, 5.5.

Before split: P(A) = 0.50, P(B) = 0.50

	Node 1 & 2		Gini 1 & 2	Total Gain
1.5	PA=1.0,PB =0.0, N=1	PA=0.4,PB =0.6, N=5	1/6 * 0 + 5/6 * 0.48 = 0.40	0.5 - 0.4 = 0.1
2.5	PA=0.5,PB =0.5, N=2	PA=0.5,PB =0.5, N=4	•	0.5 - 0.5 = 0
3.5	PA=2/3,PB =1/3, N=3		3/6 * 0.44 + 3/6 * 0.44 = 0.44	0.5 - 0.44 = 0.06
4.5	PA=0.5,PB =0.5, N=4	PA=0.5,PB =0.5, N=2	4/6 * 0.5 + 2/6 * 0.5 = 0.5	0.5 - 0.5 = 0
5.5	PA=0.4,PB =0.6, N=5	PA=1.0,PB =0.0, N=1	5/6 * 0.48 + 1/6 * 0 = 0.40	0.5 - 0.4 = 0.1

Example: where to split? (use Gini)

X1	Υ
2	В
3	Α
4	В
5	В
6	Α

Split can happen on: 2.5, 3.5, 4.5, 5.5. Before split: P(A) = 0.40, P(B) = 0.60 => Gini = 0.48

	Node 1 & 2		Gini 1 & 2	Total Gain
2.5	PA=0.0,PB =1.0, N=1	PA=0.5,PB =0.5, N=4	1/5 * 0.0 + 4/5 * 0.5 = 0.4	0.48 - 0.4= 0.08
3.5	•	PA=1/3,PB =2/3, N=3	2/5 * 0.5 + 3/5 * 0.44 = 0.464	0.48 - 0.464 = 0.016
4.5	, ,	PA=0.5,PB =0.5, N=2	3/5 * 0.44 + 2/5 * 0.5 = 0.464	0.48 - 0.464 = 0.016
5.5	• •	PA=1.0,PB =0.0, N=1	4/5 * 0.375 + 1/5 * 0 = 0.3	0.48 - 0.3 = 0.18

Example: where to split? (use Gini)

Split can happen on: 2.5, 3.5, 4.5.

Before split: P(A) = 0.25, P(B) = 0.75 => Gini = 0.375

	Node 1 & 2		Gini 1 & 2	Total Gain
2.5	•	PA=1/3,PB =2/3, N=3	,	0.375 - 0.33= 0.045
3.5		PA=0.0,PB =1.0, N=2	2/4 * 0.5 + 2/4 * 0.0= 0.25	0.375 - 0.25= 0.125
4.5	• •	PA=0.0,PB =1.0, N=1	-,	0.375 - 0.33= 0.045

Example: decision tree result

Feature value (X1)	Class (Y)
1	Α
2	В
3	Α
4	В
5	В
6	Α

