1 point	1.	Choose the correct statements about MLP implementation: You can write both passes of a dense layer with NumPy and make it quick even in Python A backward pass of a dense layer needs a 4-d tensor derivative A forward pass of a dense layer can be done with matrix product You shouldn't prefer matrix operations when working with GPU
1 point	2.	How many dimensions will a derivative of a 3-d tensor by a 4-d tensor have? 7
1	3.	Let's play around with matrix derivatives!

A trace Tr(X) of a matrix X is a sum of its diagonal elements.

For example: $Tregin{pmatrix}1&3\\3&1\end{pmatrix}=1+1=2.$ Note that trace is a scalar!

Let's find a matrix notation for $rac{\partial Tr(X^2)}{\partial X}$ for matrix $X=egin{pmatrix} x_{1,1} & x_{1,2} \\ x_{2,1} & x_{2,2} \end{pmatrix}$, where X^2 is a matrix product $X \cdot X$.

Please do this element-wise and figure out a matrix notation for it:

$$\bigcirc X^TX$$

$$\bigcirc$$
 $2X^T$

$$\bigcirc$$
 $2Tr(X^T)$

$$\bigcirc$$
 2X

$$\bigcap Tr(2X)$$