Part 1

1.

What is the most rigorous mathematical definition for probability that you know or have learned?

Any of the definitions for probability (that I remember) are some variation of Kolmogorov's Axioms. Here's one from **Mathematical Statistics: An Introduction to Likelihood based Inference** by Richard J Rossi (2018).

Definition (Kolmogorov's Probability Function). Let Ω be the sample space associated with a chance experiment, and let β be a σ -algebra of events of Ω . A set function P on β satisfying the following three properties is called a probability function or a probability measure.

- 1. $P(\Omega) = 1$
- 2. $P(A) \ge 0$ for every event $A \in \beta$
- 3. If $\{A_i : i \in N\} \subset \beta$ is a collection of disjoint events, then:

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$$

The triple (Ω, β, P) is called a probability space.

Part 2

Exercise 1.4

For events A and B, find formulas for the probabilities of the following events in terms of the quantities P(A), P(B) and $P(A \cap B)$.

\mathbf{A}

Either A or B or both

This is just the union of the two events.

$$P(A \cup B)$$

 \mathbf{B}

Either A or B but not both

We can use the same formula here but we need to be sure to remove the intersection of the two.

$$P(A \cup B) - P(A \cap B)$$

1.11

Show that the intersection of two sigma algebras is a sigma algebra.

For a set to be a sigma algebra, represented by β , it must meet the following requirements:

- 1. $\emptyset \in \beta$
- 2. $A \in \beta \implies A^c \in \beta$
- 3. $\{A_1, A_2, \ldots\} \in \beta \implies \bigcup_{i=1}^{\infty} A_i \in \beta$

Let X, Y both be sigma algebras of S.

1

Because X is a sigma algebra, it follows that $\emptyset \in X$.

Because Y is a sigma algebra, it follows that $\emptyset \in Y$.

Therefore, $\emptyset \in X \cap Y$

2.

Let $A \in X \cap Y$

 $A \in X$, so $A^c \in X$

 $A \in Y$, so $A^c \in Y$

Therefore, $A^c \in X \cap Y$

3.

Let $\{A_1, A_2, \cdots\} \in X \cap Y$

 $\{A_1, A_2, \dots\} \in X$, so $\bigcup_{i=1}^{\infty} A_i \in X$

 $\{A_1, A_2, \dots\} \in Y$, so $\bigcup_{i=1}^{\infty} A_i \in Y$

Therefore, $\{A_1, A_2, \dots\} \in X \cap Y$

Conclusion:

 $X \cap Y$ is a sigma algebra as it fulfills all of the necessary requirements.