

TrenchT2[™] Power MOSFET

IXTH360N055T2 IXTT360N055T2

 $V_{DSS} = 55V$ $I_{D25} = 360A$ $R_{DS(op)} \le 2.4m\Omega$

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode

Symbol	Test Conditions	Maximum F	Ratings
V _{DSS}	T _J = 25°C to 175°C	55	V
V _{DGR}	$T_J = 25^{\circ}\text{C to } 175^{\circ}\text{C}, R_{GS} = 1\text{M}\Omega$	55	V
V _{GSM}	Transient	± 20	V
I _{D25}	T _C = 25°C (Chip Capability)	360	A
LRMS	Lead Current Limit, RMS	160	Α
I _{DM}	$T_{_{\rm C}}$ = 25°C, Pulse Width Limited by $T_{_{\rm JM}}$	900	Α
I _A	T _C = 25°C	180	A
E _{AS}	$T_{c} = 25^{\circ}C$	960	mJ
P_{D}	T _C = 25°C	935	W
T _J		-55 +175	°C
T _{JM}		175	°C
T _{stg}		-55 +175	°C
T,	1.6mm (0.062in.) from Case for 10s	300	°C
Tsold	Plastic Body for 10 seconds	260	°C
M _d	Mounting Torque (TO-247)	1.13 / 10	Nm/lb.in.
Weight	TO-247 TO-268	6 4	g g

Symbol (T _J = 25°C	Test Conditions Unless Otherwise Specified)	Charac Min.	teristic Typ.	Values Max.	
BV _{DSS}	$V_{GS} = 0V, I_D = 250\mu A$	55			V
V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 250\mu A$	2.0		4.0	V
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$			±200	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$			10	μΑ
	$T_J = 150$ °C			300	μΑ
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 100A, Note 1$			2.4	mΩ

TO-268 (IXTT)

G = Gate D = DrainS = Source TAB = Drain

Features

- International Standard Package
- 175°C Operating Temperature
- High Current Handling Capability
- Avalanche Rated
- Fast Intrinsic Diode
- Low R_{DS(on)}

Advantages

- Easy to Mount
- Space Savings
- High Power Density

Applications

- DC/DC Converters and Off-line UPS
- Primary- Side Switch
- High Current Switching Applications

Symbol	Test Conditions			Values
$(1_{J} = 25^{\circ}C, 1_{J})$	Unless Otherwise Specified)	Min.	Тур.	Max.
g_{fs}	$V_{DS} = 10V, I_{D} = 60A, \text{ Note 1}$	65	110	S
C _{iss}			20	nF
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		2650	pF
C _{rss}			480	pF
R_{g_i}	Gate Input Resistance		1.6	Ω
t _{d(on)}	Resistive Switching Times		30	ns
t _r	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 100A$		23	ns
t _{d(off)}	$R_{\rm G} = 2\Omega$ (External)		62	ns
t _f			56	ns
Q _{g(on)}			330	nC
Q _{gs}	$V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_{D} = 0.5 \cdot I_{D25}$		76	nC
Q_{gd}			87	nC
\mathbf{R}_{thJC}				0.16 °C/W
R _{thCH}	TO-247		0.21	°C/W

Source-Drain Diode

Symbol $(T_J = 25^{\circ}C, U)$		Chara ⁄Iin.	cteristic Typ.	Values Max.	
I _s	$V_{GS} = 0V$			360	Α
I _{SM}	Repetitive, Pulse Width Limited by $T_{_{JM}}$			1440	Α
V _{SD}	$I_F = 100A, V_{GS} = 0V, \text{ Note } 1$			1.3	V
t _{rr}	$I_{\rm F} = 150 \text{A}, V_{\rm GS} = 0 \text{V}$		78		ns
I _{RM}	-di/dt = 100A/μs		4.2		Α
Q _{RM}	V _R = 27V		164		nC

Note 1. Pulse test, $t \le 300 \mu s$; duty cycle, $d \le 2\%$.

PRELIMINARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from data gathered during objective characterizations of preliminary engineering lots; but also may yet contain some information supplied during a pre-production design evaluation. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

TO-247 (IXTH) Outline

Terminals: 1 - Gate 2 - Drain 3 - Source Tab - Drain

Dim.	Milli	imeter	Inches		
	Min.	Max.	Min.	Max.	
Α	4.7	5.3	.185	.209	
A,	2.2	2.54	.087	.102	
A ₂	2.2	2.6	.059	.098	
b	1.0	1.4	.040	.055	
b ₁	1.65	2.13	.065	.084	
b ₂	2.87	3.12	.113	.123	
С	.4	.8	.016	.031	
D	20.80	21.46	.819	.845	
Е	15.75	16.26	.610	.640	
е	5.20	5.72	0.205	0.225	
L	19.81	20.32	.780	.800	
L1		4.50		.177	
ØΡ	3.55	3.65	.140	.144	
Q	5.89	6.40	0.232	0.252	
R	4.32	5.49	.170	.216	
s	6.15	BSC	242	BSC	

TO-268 Outline

	INCHES N			METERS
MYZ	MIN	MAX	MIN	MAX
Α	.193	.201	4.90	5.10
A1	.106	.114	2.70	2.90
A2	.001	.010	0.02	0.25
b	.045	.057	1.15	1.45
b b2	.075	.083	1.90	2.10
С	.016	.026	0.40	0.65
C2	.057	.063	1.45	1.60
D	.543	.551	13.80	14.00
D1	.488	.500	12.40	12.70
Ε	.624	.632	15.85	16.05
E1	.524	.535	13.30	13.60
е	.215 BSC		5.45 BSC	
Н	.736	.752	18.70	19.10
L	.094	.106	2.40	2.70
L1	.047	.055	1.20	1.40
L2	.039	.045	1.00	1.15
L3	.010	BSC	0.25 BSC	
L4	.150	.161	3.80	4.10

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 1. Output Characteristics @ 25°C

Fig. 2. Extended Output Characteristics
@ 25°C

Fig. 3. Output Characteristics @ 150°C

Fig. 4. $R_{DS(on)}$ Normalized to $I_D = 180A$ Value vs. Junction Temperature

Fig. 5. $R_{DS(on)}$ Normalized to I_D = 180A Value vs.

Drain Current

Fig. 6. Drain Current vs. Case Temperature

 $\ensuremath{\mathsf{IXYS}}$ Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 13. Resistive Turn-on Rise Time vs. Junction Temperature

Fig. 14. Resistive Turn-on Rise Time vs. Drain Current

Fig. 15. Resistive Turn-on Switching Times vs. Gate Resistance

Fig. 16. Resistive Turn-off
Switching Times vs. Junction Temperature

Fig. 17. Resistive Turn-off Switching Times vs. Drain Current

Fig. 18. Resistive Turn-off Switching Times vs. Gate Resistance

Fig. 19. Maximum Transient Thermal Impedance

