Lecture 18

- Theorem: Let E E Rd. Then the following one equivalent for any E>0.
 - (i) There exists an open set U2E such that m* (UIE) SE. (it, Eig measmalle).
 - (ii) There exists a cloud set F SE such that m*(EIF) SE.
- (iii) If not(E) < 00, then then exists a Compart set K with KSE & m*(E) K) SE.
- (iv) If m*(E) < 00, Hen there exists a finite union $F = \bigcup_{j=1}^{n} Q_j Q_j$ dosed unbes Q_j such that mt (EAF) < E.

Defin het ESR be a messualle set. Then a function f: E -> IRU{±00} is said to be a measurable function, if for all & ER,

{zeffen< x} is measuable.

Theorem;

I) f is measurable \Leftrightarrow for all $Y \in \mathbb{R}$, $\left\{ 2 \in E \middle| f(x) > x \right\} \text{ is measurable}$

② f is measurable \iff for all $x \in \mathbb{R}$, $\left\{ 2 \le E \middle| f(x) \le x \right\} \text{ is missive.}$

4 f.y mesmeble ≥ for all ∠ ∈ R

{3 ∈ E | f(x) ≥ x } y

mesmeble.

Proposition!

① $f: E \rightarrow R$, $E \in \mathbb{R}^d$ measurable. Then f: s measurable $\iff f'(U)$ is measurable for all $U \subseteq IR^d$

Det fri E → R be a sequence of measurable functions defined on a majorable set E ⊆ Kd. Then

sup (fn) (x), inf (fn) (x), lansup fn (n)

liminf (fr) (a) are measurable functions.

3	het {fn} be a segrence of meanrable whom & fn(n) -> far +x CE
f	whom & for a for treE
うたり	fn-sf pointwise. Then f is measurable
4	f, g are meanable functions. They

f, g are meanable functions. Then $f \pm g$, fg and m-comalle, if f, g are finite valued f, g: f, g: f

Examples: - 1 Every Constant function is meanable.

f:Rd->R, farec Ha.

DE very Continuos furtion is omeamable,

(3) $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = x^2 - 2y^2$ meanwable. $g(x,y) = e^2 + xe^3 - xy^2$ muntle.

becan f, g are Continuous.

Defi- A step function is a finite sun $f = \sum_{k=1}^{N} a_k x_k$, where R_k are rectangles. + k=1,...,N. X = the Characteristic function of R. $\chi_k(n) = \begin{cases} 1 & \text{if } n \in R_k \\ 0 & \text{otherwise.} \end{cases}$

 $f(n) = \sum_{k=1}^{N} a_k \times (n)$ when a_k are constants.

A simple function a a finite sun $f = \sum_{k=1}^{N} \alpha_k \chi_{E_k}$ where each E_k is a measurable set of finite measure & α_k are Constants.

Theorem: - Suppose f is a non-negative measurable function on Rd. Then there exists an increasing sequence of non-negative

simple functions { 4 } that converges pointwise $k=1$
to f nouth
$\begin{cases} \varphi(n) \leq \varphi(x) + x \\ k \end{cases}$ $\begin{cases} \psi(n) \leq \varphi(x) + x \\ k \end{cases}$ $\begin{cases} \psi(n) \leq \varphi(x) + x \\ k \end{cases}$ $\begin{cases} \psi(n) \leq \varphi(x) + x \\ k \end{cases}$ $\begin{cases} \psi(n) \leq \varphi(x) + x \\ k \end{cases}$ $\begin{cases} \psi(n) \leq \varphi(x) + x \\ k \end{cases}$ $\begin{cases} \psi(n) \leq \varphi(x) + x \\ k \end{cases}$ $\begin{cases} \psi(n) \leq \varphi(x) + x \\ k \end{cases}$ $\begin{cases} \psi(n) \leq \varphi(x) + x \\ k \end{cases}$ $\begin{cases} \psi(n) \leq \varphi(x) + x \\ k \end{cases}$ $\begin{cases} \psi(n) \leq \varphi(x) + x \\ k \end{cases}$ $\begin{cases} \psi(n) \leq \varphi(x) + x \\ k \end{cases}$
<u> </u>
let Q = the Cube Centered at the origin & of soide length N. in R.
Q, CQ, S
Define $F(n) = \begin{cases} f(n) & \text{if } 2 \in Q_N & \text{if } n \in Q_N \\ N & \text{if } n \in Q_N & \text{f(n)} > N \end{cases}$ O otherwise
$A_{\mathcal{P}} N \rightarrow \infty$, $F_{\mathcal{N}}(x) \rightarrow f(a) \forall x$.
Now range of $f_N(x)$ is $[o,N]$ $(f(x)) o$

$$E_{R,M} = \left\{ \begin{array}{l} x \in \mathcal{B}_N \right\} \stackrel{l}{\underset{M}} \neq F_N^{(1)} \leq \frac{l+1}{M} \right\} \stackrel{diagosat}{\underset{N,M}{\text{diagosat}}}$$

$$for \quad 0 \leq l \leq NM.$$

$$F_NM = \int_{-\infty}^{\infty} \frac{1}{M} \stackrel{diagosat}{\underset{M}{\text{diagosat}}} \stackrel{NM-1}{\underset{M}{\text{diagosat}}} \stackrel{NM-1}{\underset{M}{\text{diagosat}}}$$

Now that $N=M=2^k$. With $k \ge 1$.

Let $\varphi_k = F_{2^k,2^k} + k \ge 1$.

Ulain: $\varphi(x) \longrightarrow f(x)$ of $k \longrightarrow \infty$.