# Clase nº37

#### Cálculo II

Universidad de Valparaíso Profesor: Juan Vivanco

1 de Diciembre 2021

### Objetivo de la clase

- ▶ Determinar la convergencia de series de funciones.
- Calcular radio e intervalo de convergencia de series de potencias.

#### Definición 35

Para cada  $n \in \mathbb{N}$  sea  $f_n : [a,b] \to \mathbb{R}$  una función real. Diremos que la sucesión de funciones  $\{f_n\}$  **converge uniformemente** a la función  $f : [a,b] \to \mathbb{R}$ , si para cada  $\epsilon > 0$ , Existe  $N_0 \in \mathbb{N}$ ,  $N_0 = N_0(\epsilon)$ , tal que

$$|f_n(x) - f(x)| < \epsilon$$
 para cada  $n \ge N_0$  y  $x \in [a, b]$ .

# Ejemplo 41

Consideremos la sucesión de funciones  $\{f_n\}$ , donde  $f_n: \mathbb{R}^+ \to \mathbb{R}$  está dada por  $f_n(x) = \frac{x}{1+nx}$ . Sea  $f: \mathbb{R}^+ \to \mathbb{R}$ , tal que f(x) = 0. Mostrar que  $\{f_n\}$  converge uniformemente a f.



#### Observación

La convergencia uniforme implica la convergencia puntual. El recíproco **no** siempre es cierto.

### Ejemplo 42

La sucesión de funciones  $\{f_n\}$ , donde

$$f_n: [0,1] \rightarrow \mathbb{R}$$
 $x \mapsto x^n$ 

es puntualmente convergente a

$$f: [0,1] \rightarrow \mathbb{R}$$

$$x \mapsto f(x) = \begin{cases} 0 & si & 0 \le x < 1 \\ 1 & si & x = 1 \end{cases}$$

Pero,  $\{f_n\}$  no converge uniformemente a f.

#### Observación

Sea  $S_n:[a,b]\to\mathbb{R}$  la sucesión de sumas parciales asociada a la serie de funciones de término general  $f_n$ . Esta sucesión está dada por:

$$S_n(x) = \sum_{j=1}^n f_j(x).$$

Para cada n se tiene que  $s_n$  es una función de [a, b] en  $\mathbb{R}$ .

#### Definición 36

Diremos que la serie de funciones de término general  $f_n$  converge

- **puntualmente** a la función S(x) si la sucesión de sumas parciales converge puntualmente a S(x).
- **uniformemente** a la función S(x) si la sucesión de sus sumas parciales converge uniformemente a S(x).

En ambos casos escribiremos

$$\sum_{n=1}^{\infty} f_n(x) = \lim_{n \to +\infty} S_n = S(x),$$

especificando en palabras el tipo de convergencia.

#### Criterio de Cauchy

La serie  $\sum f_n$  es uniformemente convergente si y solo si para cada

$$\epsilon > 0$$
 existe  $N(\epsilon)$  tal que  $\left| \sum_{j=n+1}^{n+p} f_j(x) \right| < \epsilon$  para cada  $n \geq N(\epsilon)$ ,

cada  $p \in \mathbb{N}$  y cada  $x \in [a, b]$ .

#### Criterio de Weierstrass

Si existe una serie numérica  $\sum_{n=1}^{\infty} M_n$  convergente, tal que

$$|f_n(x)| \leq M_n, \quad \text{para todo} \quad x \in [a,b], \quad n \in \mathbb{N},$$

entonces la serie de funciones  $\sum_{n=1}^{\infty} f_n$  es uniformemente y absolutamente convergente.

# Ejemplo 43

La serie

$$\sum_{n=1}^{+\infty} \frac{1}{n^2 + x^2}$$

converge absoluta y uniformemente en [2,10].

# Ejemplo 44

La serie

$$\sum_{n=1}^{+\infty} \frac{x^n}{n^3}$$

es uniformemente convergente para  $|x| \le 1$ .

# Series de términos positivos

## Ejercicio propuesto

1. Sea  $\{f_n\}$  una sucesión de funciones tal que

$$f_n(x) = \frac{1}{n+x}$$
, Si  $x \in [1,2]n \ge 1$ .

Estudie si esta sucesión de funciones converge puntualmente o uniformemente.

2. Sea la serie

$$\sum_{n=1}^{+\infty} \frac{1}{n^2 + x^2}$$

Estudie si esta sucesión de funciones converge puntualmente o uniformemente para  $x \in [a, b]$ .

### Bibliografía

|   | Autor             | Título                       | Editorial       | Año  |
|---|-------------------|------------------------------|-----------------|------|
| 1 | Stewart, James    | Cálculo de varias variables: | México: Cengage | 2021 |
|   |                   | trascendentes tempranas      | Learning        |      |
| 2 | Burgos Román,     | Cálculo infinitesimal        | Madrid: McGraw- | 1994 |
|   | Juan de           | de una variable              | Hill            |      |
| 3 | Zill Dennis G.    | Ecuaciones Diferenciales     | Thomson         | 2007 |
|   |                   | con Aplicaciones             | THOMSON         | 2001 |
| 4 | Thomas, George B. | Cálculo una variable         | México: Pearson | 2015 |

Puede encontrar bibliografía complementaria en el programa.