COL202: Discrete Mathematical Structures. I semester, 2017-18. Amitabha Bagchi Tutorial Sheet 5: Partial orders 2 September 2017

Important: The boxed question is to be submitted at the beginning of class on a plain sheet of paper with your name, entry number and the tutorial sheet number clearly written at the top of the sheet.

Problem 1

Suppose we have a set S and a partially ordered set (T, \leq_T) , let \mathcal{F} be the set of functions $f: S \to T$, i.e., all the functions from S to T. We define a relation, \leq , on \mathcal{F} as follows: $f \leq g$ if $f(x) \leq_T g(x)$ for all $x \in S$. Show that \leq is a partial order on \mathcal{F} .

Problem 2

Two partially ordered sets (S, \leq_S) and (T, \leq_T) are said to be *isomorphic* if there exists a bijection $f: S \to T$ such that $x \leq_S y$ if and only if $f(x) \leq_T f(y)$ for all $x, y \in S$. The function f is called an *isomorphism*.

Also a function $f: S \to T$ is said to be *increasing* iff $x \preceq_S y$ implies $f(x) \preceq_T f(y)$. A function $f: S \to T$ is said to be *strictly* increasing iff $x \preceq_S y$ implies $f(x) \preceq_T f(y)$ and $f(x) \neq f(y)$ (this could also be denoted $f(x) \prec_T f(y)$).

With these definitions in hand attempt the following problems.

Problem 2.1

Suppose (S, \preceq_S) and (T, \preceq_T) are isomorphic and $f: S \to T$ is an isomorphism between them. Show that f and f^{-1} are both strictly increasing functions.

Problem 2.2

Suppose that (S, \preceq) is a partially ordered set. Show that there exists an $S \subseteq 2^S$ such that (S, \preceq) is isomorphic to the partial order (S, \subseteq) . (Is it clear that (S, \subseteq) is a partial order? Prove this first.)

Problem 2.3 *

Given a positive integer k let us consider the set $S = \{0,1\}^k$ of all the vectors with k coordinates where each coordinate takes value either 0 or 1. Given two vectors $x, y \in S$ we say that $x \leq y$ if $x_i \leq y_i$ for all $1 \leq i \leq k$ where x_i is the ith coordinate of x. Prove $x_i = 1$ is a partial order on $x_i = 1$.

Given a function $f: S \to \mathbb{R}$ we define

$$\bar{f} = \frac{1}{2^k} \sum_{x \in S} f(x).$$

Now, suppose f and g are increasing functions from (S, \preceq) to (\mathbb{R}, \leq) (the real numbers partially ordered by the usual less than equal to relation), show that

$$\overline{fg} \geq \bar{f}\bar{g},$$

where the function fg at $x \in S$ is defined as f(x)g(x).

Hint: Use induction on k. Note that this is an exploratory challenge problem so try to attempt it yourself and do not ask for your TA to help you.

Problem 3

Some basic properties of lattices.

Problem 3.1

Show Prop 4.2.2 of [Gallier08], i.e., show that if X is a lattice then the following identities hold for all $a, b, c \in X$

- L1. $a \lor b = b \lor a$ and also $a \land b = b \land a$.
- L2. $(a \lor b) \lor c = a \lor (b \lor c)$ and also $(a \land b) \land c = a \land (b \land c)$.
- L3. $a \lor a = a$ and also $a \land a = a$.
- L4. $(a \lor b) \land a = a$ and also $(a \land b) \lor a = a$.

Problem 3.2

A lattice is called distributive if, apart from the properties mention in Problem 3.1, we also have that

$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c).$$

Give three examples of distributive lattices. Construct a non-distributive lattice.