CS2842 Computer Systems – Lecture IV

Data Formats

Dr. Sapumal Ahangama Department of Computer Science and Engineering

DATA FORMATS

Computers

Process and store all forms of data in binary format

Human communication

Includes language, images and sounds

DATA FORMATS

- Specifications for converting data into computer usable form
- Define the different ways human data may be represented, stored and processed by a computer
- The data must have the ability to be moved between computers
 - Metadata: information that describes or interprets the meaning of the data

DATA FORMATS

Proprietary formats

Individual programs can store and process data in any format that they want

Standard data representations

- to be used as interfaces between different programs,
- between a program and the I/O devices used by the program,
- between interconnected hardware,
- between systems that share data

COMMON DATA REPRESENTATIONS

Type of Data	Standard(s)						
Alphanumeric	Unicode, ASCII, EDCDIC						
Image (bitmapped)	GIF (graphical image format)TIF (tagged image file format)PNG (portable network graphics)						
Image (object)	PostScript, SWF (Macromedia Flash), SVG						
Outline graphics and fonts	PostScript, TrueType						
Sound	WAV, AVI, MP3, MIDI, WMA						
Page description	PDF (Adobe Portable Document Format), HTML, XML						
Video	Quicktime, MPEG-2, RealVideo, WMV						

ALPHANUMERIC DATA

- Much of the data that will be used in a computer are originally provided in human-readable form,
 - Letters of the alphabet, numbers, and punctuation,
 - English or some other language
- Alphanumeric data are a combination of alphabetical and numerical characters
- Since alphanumeric data must be stored and processed within the computer in binary form, each character must be translated to a binary representation

ALPHANUMERIC DATA

- ▶ Three alphanumeric codes are in common use,
 - ASCII (American Standard Code for Information Interchange)
 - ▶ EBCDIC (Extended Binary Coded Decimal Interchange Code)
 - Unicode
- Nearly every system today uses Unicode or ASCII

ASCII

- ▶ Each character represented with a 7 bit code
 - ▶ 128 characters
- Consists of,
 - digits 0 to 9,
 - lowercase letters a to z,
 - uppercase letters A to Z,
 - punctuation symbols,
 - ▶ 33 non-printing control codes
- Extended to 8 bit code Latin-I

ASCII

MSD LSD	0	1	2	3	4	5	6	7	
0	NUL	DLE	SP	0	@	Р		р	
1	SOH	DC1	!	1	Α	Q	а	w \	
2	STX	DC2	"	2	В	R	b	r	
3	ETX	DC3	#	3	С	S	С	s	\
4	EOT	DC4	\$	4	D	Т	d	t	\
5	ENQ	NAK	%	5	E	U	е	u	†
6	ACJ	SYN	&	6	F	V	f	v	74 ₁₆
7	BEL	ETB	6	7	G	W	g	w	111 0100
8	BS	CAN	1	8	Н	Х	h	x	
9	HT	EM)	9	-	Υ	i	у	
A	LF	SUB	*	:	J	Z	j	z	
В	VT	ESC	+	;	K]	k	{	
С	FF	FS	,	<	L	١	I	- 1	
D	CR	GS	-	=	М]	m	}	
E	so	RS		>	N	^	n	~	
F	SI	US	1	?	0	_	o	DEL	

UNICODE

- ASCII and EBCDIC have limitations
 - ▶ 8-bit word limit the number of possible characters
 - Other major languages?
 - Omitted characters [,], ^, {, }, ~
- ▶ These issues led to a 16 bit standard Unicode or UTF-16
 - ▶ 65,536 characters
 - 49,000 are defined to represent the world's most used characters
 - ▶ 6,400 16-bit codes are reserved for private use
 - ▶ Each character can be stored in 2 bytes

UNICODE

	Sinhala ^{[1][2]} Official Unicode Consortium code chart ▶ (PDF)															
	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
U+0D8x			ಂ	ಃ		약	ආ	क्र	क्र	9	ඊ	උ	උීඉ	25a	25aa	ල
U+0D9x	පෟ	එ	ಲ್	ඓ	ඔ	ඕ	ඖ				ක	ඛ	ග	ස	ඬ	ത
U+0DAx	ච	ඡ	ජ	ඣ	ඤ	ඥ	ඡ	ට	ඨ	ඩ	යි	€	ඬ	ත	ථ	ę
U+0DBx	వి	න		ę	ප	ඵ	බ	භ	ම	@	ය	S		C		
U+0DCx	ව	ശ	ෂ	සි	හ	e	ო				්					ാ
U+0DDx	ા	ા	8	8	9		្ធ		a	ෙ	ේ	ෙ	ො	ෝ	ෙඉ	ුග
U+0DEx							4	<u></u>	ത	താ	ඡ	ද	ഒ	7	Q	෯
U+0DFx			aa	୍ଷ	MM											

Notes

- 1. As of Unicode version 12.0
- 2.^ Grey areas indicate non-assigned code points

UNICODE

2 CLASSES OF CODE

- Printing characters
 - Produced on the screen or printer

Control characters

NUL SOH	(Null) No character; used to fill space (Start of Heading) Indicates start of a header used during transmission (Start of Text) Indicates start of text	DLE	(Data Link Escape) Similar to escape, but used to change meaning of data control characters; used to permit sending of data characters with any bit combination
	during transmission	DC1,DC2, DC3, DC4	(Device Controls) Used for the control of devices or special terminal features
ETX	(End of Text) Similar to above		•
EOT	(End of Transmission)	NAK	(Negative Acknowledgment) Opposite of ACK
ENQ	(Enquiry) A request for response from a remote station; the response is usually an identification	SYN	(Synchronous) Used to synchronize a synchronous transmission system
ACK	(Acknowledge) A character sent by a receiving device as an affirmative	STB	(End of Transmission Block) Indicates end of a block of transmitted data
	response to a query by a sender	CAN	(Cancel) Cancel previous data
BEL	(Bell) Rings a bell	EM	(End of Medium) Indicates the physical
BS	(Backspace)		end of a medium such as tape
HT	(Horizontal Tab)	SUB	(Substitute) Substitute a character for one
LF	,,		sent in error
	(Line Feed)	ESC	(Escape) Provides extensions to the code
VT	(Vertical Tab)		by changing the meaning of a specified
FF	(Form Feed) Moves cursor to the starting		number of contiguous following characters
	position of the next page, form, or screen	FS, GS,	(File, group, record, and united separators)
CR	(Carriage return)	RS, US	Used in optional way by systems to provide
SO	(Shift Out) Shift to an alternative	-,	separations within a data set
	character set until SI is encountered	DEL	(Delete) Delete current character
SI	(Shift In) see above		(20.000, 20.000 00o.it offaractor

KEYBOARD INPUT

Scan code

When a key is struck on the keyboard, the circuitry in the keyboard generates a binary code

KEYBOARD INPUT

- Other alphanumeric inputs:
 - **OCR**
 - Barcode
 - Magnetic Strip Reader
 - ▶ RFID

- Images come in many different shapes, sizes, textures, colors, and shadings
 - Different requirements require different forms for image data
 - Quality of the image
 - Storage space required
 - ▶ Time to transmit
 - ▶ Ease of modification
 - Make it difficult to define a single universal format

- Two distinct categories
 - Bitmap or raster images
 - Characterized by continuous variations in shading, color, shape, and texture
 - JPEG, GIF
 - Graphical objects
 - Made up of graphical shapes such as lines and curves that can be defined geometrically
- The nature of display technology make it much more convenient and cost effective to display and print most images as bitmaps

- Two distinct categories
 - Bitmap or raster images
 - Characterized by continuous variations in shading, color, shape, and texture
 - JPEG, GIF
 - Graphical objects
 - Made up of graphical shapes such as lines and curves that can be defined geometrically
- The nature of display technology make it much more convenient and cost effective to display and print most images as bitmaps

Bitmap image format

- A rectangular image is divided into rows and columns
- The junction of each row and column is a point known as a pixel

Pixel is a set of one or more binary numerical values that define the

visual characteristics

 Preferred when image contains large amount of detail and processing requirements are fairly simple

- Example each point below represented by a 4 bit code corresponding to 1 of 16 shades
- Meta data
- Pixel data
 - Stored from top to bottom one row at a time

Z345545931224763123211124578887887788753222212111111113558ba65434447494a412 111 111 1 111111234848 7700000331147742111 2445677899805431 121 1 f111 24575aaaa999aaaa633211 1111111121 121221447a865 973234312335687531 1 12112234550554322 11 11111121 12123458897644866421121222 11 22111112 4684942 2233230 257775311 2 112111 12222331 1 111111111122221121234445544432 1 1 1 1222111 20344113221211121113665666666778743311 12 22221 1 1111111 1 12 1 121212 1111 1 111 3220221130221 121134554431212 234597541111122111 1 11222211211 1 334545443211 11 111111394622345 272111301137 1222688621 1121 11 1244698421111233322221 123224531 279952 122222211 111579975311 1321 12489+643121 11128+41 12443 2772989411222294333352112 11 269742 1221 2 124948411111 2212211 25897521111222376721111243 71112133122113359731 123344333321221111378531121112121 149693 1 212331223212215aaC4112211 249a412123 201722201271 344a731111211123332221112 24805211 1 1 2 137ba511223445422323211128aaA3211 11117a8212444 4122317322331227-683 122212321 211221122127-5322 11 12247-672121294722221221122759-673412221 22223 121 3222667221134212245533222111 388442 1111 126560 2323443332222212222149572 1231112579573 421222 131131337-682 343122122331221121 169751112111117-672 241243111122132 111 3a-671 1 112 2259-6842 4212311221221126664 1233322213321122127 166631 12221 17e71 247132 1 13112212 4e661 111111 \$1130 13112222 49a72 222222113112 12111128962 11211 27e7111321221 1122111131217e941111211 111359cd 41134113112221 37973112221232221121231 11399521 11321 16472 13212122111211222113498222112 51237212721123212490531 1233333211111111174042 1223322247442132344221112311 11 51451 4 2732137217222124894311111333322212722 69962 11221 1 35946211233212223321 117493 11 41223223221 111125886421 111122233211164x8421111111 1 247x9511 1112222222211164x821 221111 111368aa741111 1112235acca4322122221 4143727727217 11112113235678999ax9975421 11 12 1 1 111134563abbaabaaba7432 1 1 \$2000011 201221122 1 111 230567777642233021111211121 1 1111135677668678753721 11 1 11111 2211 1

- Data value representing a pixel
 - Could be as simple as one bit
 - For color image, might consist of many bytes
 - **▶** RGB
 - Additional bytes for other characteristics such as transparency and color correction.

- File size affected by
 - Resolution
 - Reducing the size of a pixel to improve details
 - Levels: number of bits to represent each pixel
- Image formats
 - GIF (Graphics Interchange Format)
 - JPEG (Joint Photographers Expert Group)
 - PNG (Portable Network Graphic)

OBJECT IMAGES

- Object images are made up of simple elements like straight or curved lines, circles and arcs etc.
 - ▶ Each element can defined mathematically by parameters
 - ▶ Circle requires 3 parameters, Cartesian coordinates + radius
 - Straight line needs the coordinates of its end points

S

OBJECT IMAGES

- Advantages
 - Require less storage space
 - Can be manipulated easily
- Photographs as object images?

VIDEO DATA

- Requires a large amount of data
 - ▶ 1024 × 768 pixel true-color images at a frame rate of 30 frames per second?
 - ▶ 70.8 megabytes of data per second!
 - ▶ 4.25 gigabytes per minute
- How to reduce video size?

AUDIO DATA

Sound is naturally an analog wave that needs to be digitized

Sampling

- ▶ 1000 samples per second = 1 KHz (kilohertz)
- Example : Audio CD sampling rate = 44.1KHz

Sampling rate normally 50KHz

AUDIO DATA

Sampling Rate

- Height of each sample saved as,
 - ▶ 8 bit number for radio quality recordings
 - ▶ 16 bit number for high fidelity recordings
 - 2 x 16 bits for stereo sound

DATA COMPRESSION

- Compression: reducing data so that it requires fewer bytes of storage space
- Compression ratio: the amount of file shrunk
- Lossless Compression
 - Inverse algorithm restores data to exact original form
 - Examples GIF, PCX, TIFF
 - 0 5 5 7 3 2 0 0 0 0 1 4 7 3 2 9 1 0 0 0 0 0 6 6 8 2 7 3 2 7 3 2
 - 0 | 5 5 7 3 2 0 4 | 4 7 3 2 9 | 0 5 6 6 8 2 7 3 2 7 3 2
 - 0 1 5 5 Z 0 3 I 4 Z 9 I 0 5 6 6 8 2 Z Z

DATA COMPRESSION

Lossy Compression

- Trades off data degradation for file size and download speed
- Much higher compression ratios, often 10 to 1
- JPEG

Original Lena Image (12KB size)

Lena Image, Compressed (85% less information, 1.8KB)

Lena Image, Highly Compressed (96% less information, 0.56KB)

▶ MPEG-2?

THANK YOU