MA 1024 D07 Midterm

April 8, 2014

Elissa Ross, WPI

Name: _	5°L	ONOITU	!			
				 	 ·	
Student	Number:					

You have 50 minutes to complete this exam.

Examination rules and instructions:

- closed book
- ullet no calculators or cell phones are permitted

Question	Mark
1	
2	
	, .
4	
5	
6	
Total	/40

Question 1 (5 marks). Describe the domain, and sketch some typical level curves of the surface described by:

$$f(x,y) = y - x^3.$$

domain: R2

Question 2 (5 marks). Find $\partial z/\partial x$ if z = f(x, y) satisfies:

$$x^5 + xy^2 + yz = 5.$$

let
$$F(x, y, z) = x^5 + xy^2 + yz - 5 = 0$$

$$\frac{\partial z}{\partial x} = -\frac{\partial F}{\partial x}$$

$$\frac{\partial F}{\partial x} = 5x^4 + y^2$$

$$50 \quad \frac{\partial z}{\partial x} = \frac{-\left(5x^4 + y^2\right)}{y}$$

Question 3 (10 marks). Find the maximum and minimum values attained by $f(x,y) = xy^2$ on the plane region R, where R is the circular disk $x^2 + y^2 \le 3$.

$$f_{x}(x_{1}y) = y^{2}$$
 so $f_{x} = 0 \iff y = 0$
 $f_{y}(x_{1}y) = 2xy$. and $f_{y} = 0 \iff \text{either } x = 0 \text{ or } y = 0$.
There is a line of critical points on the $x-axis$. (where $y = 0$).
When $y = 0 + (x_{1}x_{2}) = 0$

consider behaviour on boundary: NOW

let
$$y^2 = 3 - x^2$$

$$g(x) = x(3-x^2)$$
 for $-\sqrt{3} \le x \le \sqrt{3}$.

find max/mm of this function

$$g'(x) = 3 - 3x^2$$

$$g'(x) = 0 \iff x = \pm 1$$

when
$$x = 1$$
, $g(x) = 1(2) = 2$
 $x = -1$, $g(x) = -1(2) = -2$.

max occurs at X=1 $(y=\overline{yz})$ min occurs at x=-1 $(y=\overline{yz})$ comparing boxed values, we find

Question 4 (6 marks). Use differentials to approximate the number $(\sqrt{15} + \sqrt{99})^2$. Hint: what square integers are 15 and 99 "close to"?

$$f(x+\Delta x, y+\Delta y) \approx f(x,y) + \frac{3f}{9x} \Delta x + \frac{3f}{9y} \Delta y.$$

$$|x+| f(x,y) = (Jx + Jy)^{2}$$

$$(x,y) = (16,100)$$

$$\Delta x = -1$$

$$\Delta y = -1.$$

$$\frac{2f}{9x} = 2(Jx + Jy) \frac{1}{2} x^{-\frac{1}{2}} = \frac{Jx + Jy}{Jx}$$

$$\frac{3f}{9y} = \frac{Jx + Jy}{Jy}.$$

$$f(15,19) \approx f(16,100) + \frac{3f}{9x}(16,100) \Delta x + \frac{3f}{9y}(16,100) \Delta y$$

$$f(16,100) = (4+10)^{2} = 14^{2}$$

$$5. f(15,91) = 14^{2} + \frac{14}{4}(-1) + \frac{14}{10}(-1)$$

$$= 116 - \frac{140}{40} - \frac{56}{40}$$

$$= 196 - \frac{196}{40}$$

Question 5 (7 marks). Find the directional derivative of f at P in the direction of \mathbf{v} :

$$f(x,y) = x^{3} - x^{2}y + xy^{2} + y^{3}, \ P(1,-1), \ \mathbf{v} = \langle 2,3 \rangle.$$

$$D_{u}^{2} f(x,y) = \nabla f(x,y) \cdot \bar{u}$$

$$\bar{u} = \frac{\bar{v}}{|\bar{v}|} \qquad |\bar{v}| = \sqrt{2^{2} + 3^{2}} = \sqrt{13}$$

$$\bar{u} = \left\langle \frac{2}{\sqrt{13}}, \frac{3}{\sqrt{13}} \right\rangle$$

$$\nabla f(x,y) = \left\langle \frac{3f}{9x}, \frac{2f}{9y} \right\rangle = \left\langle 3x^{2} - 2xy + y^{2}, -x^{2} + 2xy + 3y^{2} \right\rangle$$

$$\nabla f(1,-1) = \left\langle 3 + 2 + 1, -1 - 2 + 3 \right\rangle = \left\langle 6, \delta \right\rangle$$

$$S_{0} \qquad D_{u}^{2} f(x,y) = \left\langle 6, \delta \right\rangle \cdot \left\langle \frac{2}{\sqrt{13}}, \frac{3}{\sqrt{13}} \right\rangle$$

$$= \frac{12}{\sqrt{13}}$$

Question 6 (7 marks). Find and classify the critical points of the following function using the second derivative test.

$$f(x,y) = 3xy - x^3 - y^3.$$

$$f_{x}(x_{1}y) = 3y - 3x^{2}$$
 $f_{y} = 0 \Rightarrow 3y = 3x^{2}$
 $f_{y} = 0 \Rightarrow$

	A	В	c	△	TYPE
(0,0)	0	3	0	-9	Sa ddle
(1,1)	- 6	3	-6	27	local max

This exam has 6 pages (including the cover sheet) and 6 problems, worth a total of 40 marks.