2. [9 marks]

(APP SAT:CF04)

A wedding photographer is quoting the following price for producing a wedding album for the newlyweds:

A fixed minimum cost of \$150, with 80 photos in a hard-backed album. Further photos may also be added in lots of 10 photos at \$0.70 per photo, up to a maximum of 200 photos.

He wants to set up a table below, showing:

- the type of album where T_1 is the basic album, with 80 photos at a cost of \$150
- the number of photos in each of the possible album sizes
- the cost in dollars of each of the different albums.
- (a) Complete each of the blank cells of the table.

[3]

Туре	T_1	T_2	T_3	T_4	T_5	T_n
Number of pictures	80					200
\$ cost of album	\$150					

(b) Write a rule that will calculate the number of pictures in album type = T_n .

[3]

(c) Write a rule that will calculate the cost of album type = c_n .

[3]

7. (APP 2017:CA16)

(a) (i) Decrease of 7.5% each year (ii) 20

(b)

(c) The rate of increase is slowing over time. It appears to be approaching a steady state.

(d) Stable population of 267 crocodiles

8. (APP 2018:CA9)

(a) 10%

(b) $M_1 = 50$, $M_5 = 47.249$, $\Rightarrow 48$ mealworms

(c) Her statement is true. The long term steady state solution for this recursive formula is 42.

(d) (i) c = 45 (ii) 27 (steady state solution)

(e)
$$30 = 0.8(30 - 10) + k$$

 $k = 14$

9. (APP 2019:CF6)

(a) $T_{n+1} = 0.5T_n + 20$; $T_1 = 32$

(b) $T_2 = 36, T_3 = 38, T_4 = 39, T_5 = 39.5$

Turtle population approaches a steady state of 40

$$x = 0.5x + 20 \Rightarrow x = 40$$

$$0.5x = 20$$

$$x = 40$$

Turtle population approaches a steady state of 40

(c) $80 = 0.5 \times 80 + k$

$$80 = 40 + k$$

$$k = 40$$

40 turtles are required each year.

10. (APP 2019:CA7)

(a) a = 84, d = -6

$$T_n = 84 + (n-1)(-6)$$

$$T_n = 90 - 6n$$

(b) $T_7 = 90 - 6(7) \Rightarrow T_7 = 48$

(c) $S_8 = 84 + 78 + 72 + 66 + 60 + 54 + 48 + 72$

 $S_8 = 504$

504 L

(d) $T_{15} = 0$, $S_{15} = 630$

Capacity of the tank is 630 L

Chapter 5: The Arithmetic Sequence

1. (2CDMAT 2010S:CA16)

- (a) $T_{n+1} = T_n + 4$, $T_1 = 18$
- (b) Linear
- (c) $n = 10 \Rightarrow T_{10} = 54$
- (d) $T_{17} = 82 \Rightarrow$ Friday of week 3

2. (2CDMAT 2012:CF01f)

$$T_1 = T_2 + 4 = T_3 + 4 + 4 = 23$$

3. (FM2 2013:M103)

(a) (i) 150 (ii) Arithmetic

(b) a = 100, b = 50

4. (2CDMAT 2014:CA17)

(a) 20 decreases totalling 80 mm. Hence, each rung decreases by 4 mm.

(b) $T_{n+1} = T_n - 4$, $T_1 = 400$

(c)
$$L = 400 - 4(n-1)$$

5. (APP 2016S:CF01)

(a) (i) $T_4 = 43 + 12 = 55$ (ii) $T_1 = 43 - 12 - 12 = 19$

(b) (i) $u_5 = 2u_4 - u_3 = 58 - 22 = 36$ (ii) $u_n = u_{n-1} + 7$, $u_1 = 8$

6. (FM2 2015:M101)

- (a) 2150 200 = 150
- (b) 2600 kg
- (c) 20 200 kg
- (d) Week 6
- (e) $C_n + 150$

7. (APP 2017:CF1)

(a)

(b) (i) $T_n = 8 - 3(n - 1) = -3n + 11$

(ii) -500 = 8 - 3(n - 1)

 $n = 170.3 \Rightarrow 171$ st term

Chapter 6: The Geometric Sequence

1. (FM2 2013:M102)

(a)
$$8 \times 1.2^{(5-1)} = 16.6$$

(b) 9th Year
$$(T_8 = 28.7, T_9 = 34.4, T_{10} = 41.3)$$

(c) $S_{10} \approx 208$

2. (2ABMAT 2013:CA19)

(a)

1981	1982
3	4
12 079	12 684
	1981 3 12 079

(b) n = 36

P = 96 513 (accept 96 514, 96 510, 96 500)

(c) n = 12, P = 21 291

Year = 1978 + 12 = 1990

3. (2ABMAT 2014:CA16d)

2017	2018
4	5
3062.61	3276.99

(ii) Start with 2500 and multiply each term by 1.07 to get

the next term.

the next term.
(iii)
$$n = 12$$
, $Value = 5262.13

4. (APP 2016S:CA09)

(a)
$$T_{n+1} = \frac{2}{3} T_n$$
, $T_1 = 60$

(b) $T_4 = 17.78$ cm

(c) Sum of the first seven downward movements (169.47) plus the sum of the last six upward movements (169.74 –

Total distance travelled is 278.94 cm (278.93 cm if using full capacity)

5. (APP 2016:CA7)

- (a) \$11 050, \$9393, \$7984
- (b) 15% per annum
- (c) $T_n = 13\ 000(0.85)^n$
- (d) $T_8 = 13\ 000(0.85)^8 = 3542
- (e) $6500 = 13\ 000(0.85)^n$ $n = 4.265 \Rightarrow end of the 5th year$

(a)
$$\frac{54}{36} = \frac{2}{3}$$

$$T_n = \frac{2}{3} T_{n-1}; T_0 = 54$$

(b)
$$T_n = 54 \left(\frac{2}{3}\right)^n$$

(c)
$$T_5 = 54\left(\frac{2}{3}\right)^5$$

$$T_5 = 2(3^3) \times \frac{32}{3^5}$$

$$T_5 = 2 \times \frac{32}{9}$$

$$T_5 = \frac{64}{9}$$

7. (APP 2019:CA10)

(a)
$$r = \frac{30256}{22579} \approx 1.34$$

(b)
$$a = 15$$
, $r = 1.34$

$$T_n = 15(1.34)^{n-1}$$

OR

$$T_n = 11.19(1.34)^n$$

(c) After 33 years $(T_{34}) = 234719$

: In 2025 there will be over 200 000 shops.

(d) $T_{20} = 3900$

Daily wages = $3900 \times 12 \times 114.80$

Daily wages = \$5 372 640

Chapter 7: Exponential Equations

- 1. (2ABMAT 2011:CF06)
- (a) 32 (refer to axes below)
- (b) x = 2.66 (refer to axes below)

2. (2CDMAT 2012:CF02c,d)

(a) (2, q) belong to $y = 3^x$

 $q = 3^2 = 9$

(b)
$$2^6 = 64$$
 $2^7 = 128$ $\therefore x = 6$

3. (2ABMAT 2014:CF04)

Equation	Graph
$y = 2^x$	В
$y = 3^x$	A

(b) $x \approx 2.5$

(c)

Creelman Exam Questions: Mathematics Applications ATAR Course Units 3 and 4, 2020

4. (2ABMAT 2014:CA19)

(a)

4	$2^0 + 2^1 + 2^2 + 2^3$	15
5	$2^0 + 2^1 + 2^2 + 2^3 + 2^4$	31
6	$2^0 + 2^1 + 2^2 + 2^3 + 2^4 + 2^5$	63

(b) The numbers in the last column increase by the next higher power of 2, i.e. +2, +4, +8, +16, ...

- (d) The value of *n* is 10, so the sum is $2^{10} 1 = 1023$
- 5. (APP 2016S:CF04)

(a) (i) 50

(ii) First exceeds in the 10th month

3	$50 \times 1.15 \times 1.15 \times 1.15$	76
4	$50 \times 1.15 \times 1.15 \times 1.15 \times 1.15$	87

- c) 15% per month
- d) All other aspects being fair (size of lake, food supply) he population will increase exponentially.

The rule has a positive ratio (r value) or the graph has an ncreasingly positive slope.

- 6. (APP 2017:CA10)
- a) $P = 400(1.35)^t$ and $P = 540(1.35)^{t-1}$
- b) 984
- c) $400(1.35)^t = 1800$

 $t = 5.012 \Rightarrow 6th week$

- d) $400(1.35)^8 = 4413$
- $413(1.2)^7 = 15812$
- . 15 weeks
- e) $400(r)^{15} = 15812$
- $= 1.2778 \Rightarrow 27.78\%$
- f) 15812 250d = 0
- $= 63.248 \Rightarrow 9 \text{ weeks}$

Chapter 8: Finance

- . (APP 2016S:CA16)
- a) $A = $20\ 000$
- r = 8.5%

c)
$$V = 20\ 000 \left(1 + \frac{8.5}{400}\right)^4 = $21\ 754.96$$

d) $i_e = (1 + 8.5 \div 100 \div 12)^{12} - 1 = 0.08839$ $i_e = 8.84\%$

(APP 2016S:CA17)

-) 8% per annum
- $T_7 = (1.08)^7 T_0 = 1.713824$
- $T_7 = $3599.03 \text{ (Accept $3599)}$

- (c) $r^3 \times 2100 = 3599.03 \Rightarrow r = 1.1967$ Interest Rate = 19.67% per annum
- 3. (APP 2016:CA12)
- (a) 1.5%
- (b) A = \$219.91 B = \$14380.32
- (c) 44 months
- (d) $43 \times 500 + 460.89 = 21960.89
- (e) $\frac{1.5}{100} \times 16\ 000 = \240 . Thomas will never repay the loan as his repayments only cover the interest, not the principle
- 4. (APP 2016:CA13)
- (a) (i) \$6039.75

(ii) 5000
$$\left(1 - \frac{0.065}{12}\right)^x = 10\ 000$$

 $x = 128.31 \Rightarrow 129 months$

(b)
$$i_{effective(B)} = \left(1 - \frac{5.5}{365}\right)^{365} - 1$$

 $i_{effective(B)} = 5.55\% \text{ (2 d.p.)}$

Option A will pay more interest due to the higher effective interest rate.

- 5. (APP 2017:CF4)
- (a) Quarterly. Lowest rate to minimise interest
- (c) $\frac{5.127}{100} \times 3000 + 3000 = 51.27 \times 3 + 3000 = 3153.81
- ⇒ \$3153.81
- (6) (APP 2017:CA14)
- (a) (i) $T_{n+1} = 1.0015T_n 420$; $T_u = 14999$ (ii) $T_{12} = 10189.43
 - (b) $T_n = 1.0027T_{n-1} 420$; $T_0 = 10109.43$

Value after two years = \$5408.99

- (c) $12 + 25.13 = 37.13 \Rightarrow 38$ months
- (d) 420 367.236 = \$52.77
- (e) 37(420) 52.76 + 1200 = \$16792.77
- 7. (APP 2018:CA8)
- (a) (i) \$4573.20; \$4610.24
- (ii) $A_{n+1} = \left(1 + \frac{0.0324}{4}\right) A_n$; $A_0 = 45\ 000$
- (b) $A_{16} = 5120

$$5120 = 4500 \left(1 + \frac{R}{365}\right)^{(4 \times 365)}$$

 $R = 0.0323 \text{ (4 d.p.)} \Rightarrow \text{annual interest rate of 3.23\%}$

Anthony
$$i_{effective} = \left(1 + \frac{0.0324}{4}\right)^4 = 1.03279579$$

Bryan
$$i_{effective} = \left(1 + \frac{0.0323}{365}\right)^{365} = 1.03282583$$

Due to the increase in the compounding period, the required interest rate reduces but Bryan has a higher effective interest rate.

8. (APP 2018:CA14)

(a) (i)
$$A_n = \left(1 + \frac{0.225}{12}\right) A_{n-1} - 1000; A_0 = 43\,000$$

 $A_{36} = $33\ 164.78$

- (ii) 89 36 = 53 additional months
- (b) $48\ 000r^3 = 27\ 150$

 $r = 0.827 \Rightarrow 17.3\%$ average rate of depreciation

(c) Option A - 60 mor is \$76 985.76 Option B - 72 months

576 078.56 Option A will pay of cost an extra \$907.20 Option B will cost less, I

- 9. (APP 2018:CA16)
- (a) Account B i_{effective} =
- (b) If it is compounde (c) Option C. Highest
- (d) $\frac{125}{25\,000} \times 100 \times 12 =$
- (e) c = 1.005, d = 250
- (f) (i) $A_{24} = 34536.98$
- 35 000 34 536.98 = \$4
- (ii) \$268.21 required to increase of \$18.21 each
- 10. (APP 2019:CA9)
- (a) $T_{n+1} = T_n \left(1 + \frac{0.026}{12} \right)$

 $T_{24} = 27\ 059.30$ The amount at the

- (b) (i) $\frac{20}{100}$ × (280 000 -
- (ii) 62 months
- (c) \$868.22
- 11. (APP 2019:CA13)
- (a) $T_{n-1} = T_n + \frac{0.0365}{12}$
- (b) $T_{12} = 6784.32$

 $3600 \times 2 - 6784.32$ He does not double

(c) $T_{36} = 13511.92$ Total payments = Total interest = \$1

(d) $T_{24} = 10086.83$

$$T_{n-1} = T_n + \frac{0.0365}{12}$$

 $T_{12} = 11925.56$ Reduction = \$135

Chapter 9: Ann

- 1. (FM2 2014:M402) (a) 3.75%
- (b) \$20 000
- (c) (i) 750 × 1.03 = \$7'
- (ii) $x \times 1.03^{10} = 750 $x = 558.07 \approx 558
- 2. (FM2 2015:M403)
- (a) (i) 460 = 0.0368xx = \$12500
- (ii) It will last forever
- (b) 34 scholarships of

(c) Option A – 60 months to repay, total paid for the vehicle

Option B - 72 months to repay, total paid for the vehicle is

Option A will pay off the loan 12 months faster, but will cost an extra \$907.20

Option B will cost less, but will take an extra 12 months to repay.

9. (APP 2018:CA16)

the loan rinciple.

effective

0 189.43

(a) Account B
$$i_{effective} = \left(1 + \frac{0.0430}{365}\right)^{365} = 1.043935251 \therefore 4.39\%$$

(b) If it is compounded annually.

(c) Option C. Highest effective interest rate.

(d)
$$\frac{125}{25\,000} \times 100 \times 12 = 6\%$$

(e)
$$c = 1.005$$
, $d = 250$

(f) (i)
$$A_{24} = 34536.98$$

35 000 - 34 536.98 = \$463.02

(ii) \$268.21 required to reach savings goal increase of \$18.21 each month

10. (APP 2019:CA9)

(a)
$$T_{n+1} = T_n \left(1 + \frac{0.026}{12} \right) + 800; T_0 = 7000$$

The amount at the end of two years is \$27 059.30

(b) (i)
$$\frac{20}{100}$$
 × (280 000 + 22 000) = 60 400

(ii) 62 months

(c) \$868.22

11. (APP 2019:CA13)

(a)
$$T_{n-1} = T_n + \frac{0.0365}{12} T_n + 250; T_0 = 3600$$

(b)
$$T_{12} = 6784.32$$

 $3600 \times 2 - 6784.32 = 415.68$

He does not double his investments in one year (\$415.68 shortfall)

(c) $T_{36} = 13511.92$

Total payments = 3600 + 250(36) = 12600Total interest = \$13 511.92 - \$12 600 = \$911.92

(d) $T_{24} = 10086.83$

$$T_{n-1} = T_n + \frac{0.0365}{12} T_n^* + 120; T_0 = 10 086.83$$

 $T_{12} = 11925.56$

Reduction = \$13 511.92 - \$11 925.56 = \$1 586.36

Chapter 9: Annuities and Perpetuities

1. (FM2 2014:M402)

(a) 3.75%

(b) \$20 000

(c) (i) $750 \times 1.03 = 772.50

(ii) $x \times 1.03^{10} = 750

 $x = 558.07 \approx 558 (nearest dollar)

2. (FM2 2015:M403)

(a) (i) 460 = 0.0368x

x = \$12500

(ii) It will last forever.

(b) 34 scholarships of \$650

3. (APP 2016:CA16)

(a) (i) $A_{n+1} = 1.06A_n - 40\,000$; $A_0 = $500\,000$ (ii) 23 years

(iii) The balance would remain at \$500 000 after each withdrawal.

(b) (i) \$809 531.47 (ii) \$815 197.73

(iii) \$75 900 (nearest dollar)

4. (APP 2017:CA8)

(a) $i_{\text{effective}} = 6.06222\%$

$$\frac{6.0622}{100}$$
 × \$98 974 = \$6000

(b) \$4283.77

5. (APP 2018:CA11)

(a) \$1921.80

(b) (i) $N = 12.92 \Rightarrow 12 \text{ years}$ (ii) 7.03% per annum

6. (APP 2019:CA17)

(a)
$$A = 0.075 \times \frac{101\,000}{12} + 355 = $986.25$$

(b) \$655 539.45

(c) \$5082.39

(d) \$4097.12

Chapter 10: Graphs and Networks

1. (FM2 2010:M502)

(a) 11

(b) (i) Hamiltonian path

(ii)

2. (FM2 2012:M501a)

(a) (i) 70 + 90 = 160 m (ii) 2

(iii) 1180 + 70 = 1250 m (Edge between the odd vertices must be travelled twice)

3. (FM1 2013:M502)

Edges =
$$\frac{4(4-1)}{2}$$
 = 6

4. (FM2 2013:M501)

(a) 3

(b) 1000 m

(c) (i) P4

(ii) Euler Path

(d) E - P5 - P4 - P6 - P3 - P2 - P1

5. (FM1 2014:M501)

A Hamiltonian path.

6. (FM1 2014:M506&07)

(a) 1 (second from the left)

(b) All 4