Package 'sparseLDA'

October 14, 2022

Version 0.1-9	
Date 2016-09-22	
Title Sparse Discriminant Analysis	
Author Line Clemmensen < lhc@imm.dtu.dk>, contributions by Max Kuhn	
Maintainer Max Kuhn <mxkuhn@gmail.com></mxkuhn@gmail.com>	
Imports elasticnet, MASS, mda	
Depends R (>= 2.10)	
Description Performs sparse linear discriminant analysis for Gaussians and mixture of Gaussian models.	
License GPL (>= 2)	
<pre>URL http://www.imm.dtu.dk/~lhc, https://github.com/topepo/sparselda NeedsCompilation no</pre>	
Repository CRAN	
Date/Publication 2016-09-22 17:10:01	
R topics documented:	
normalize	
normalizetest	
predict.sda	
sda	
smda	
Index	1

2 normalize

	-	٠	
norma	1	1	70

Normalize training data

Description

Normalize a vector or matrix to zero mean and unit length columns

Usage

```
normalize(X)
```

Arguments

Χ

a matrix with the training data with observations down the rows and variables in the columns.

Details

The function can e.g. be used for the training data in sda or smda.

Value

Returns a list with the following attributes:

 $\begin{array}{lll} \text{Xc} & & \text{The normalized data.} \\ \text{mx} & & \text{Mean of columns of } X. \\ \text{vx} & & \text{Length of columns of } X. \end{array}$

Id Logical vector indicating which variables are included in X. If some of the

columns have zero length they are omitted.

Author(s)

Line Clemmensen

References

Clemmensen, L., Hastie, T. and Ersboell, K. (2008) "Sparse discriminant analysis", Technical report, IMM, Technical University of Denmark

See Also

```
normalizetest, sda, smda
```

normalizetest 3

Examples

```
## Data
X<-matrix(sample(seq(3),12,replace=TRUE),nrow=3)
## Normalize data
Nm<-normalize(X)
print(Nm$Xc)
## See if any variables have been removed
which(!Nm$Id)</pre>
```

normalizetest

Normalize test data

Description

Normalize test data using output from the normalize() of the training data

Usage

```
normalizetest(Xtst,Xn)
```

Arguments

Xtst a matrix with the test data with observations down the rows and variables in the

columns.

Xn List with the output from normalize(Xtr) of the training data.

Details

The function can e.g. be used to normalize the testing data in sda or smda.

Value

Returns the normalized test data

Xtst The normalized data.

Author(s)

Line Clemmensen

References

Clemmensen, L., Hastie, T. and Ersboell, K. (2007) "Sparse discriminant analysis", Technical report, IMM, Technical University of Denmark

4 penicilliumYES

See Also

```
normalize, sda, smda
```

Examples

```
## Data
Xtr<-matrix(sample(seq(3),12,replace=TRUE),nrow=3)
Xtst<-matrix(sample(seq(3),12,replace=TRUE),nrow=3)
## Normalize training data
Nm<-normalize(Xtr)
## Normalize test data
Xtst<-normalizetest(Xtst,Nm)</pre>
```

penicilliumYES

Data set of three species of Penicillium fungi

Description

The data set penicilliumYES has 36 rows and 3754 columns. The variables are 1st order statistics from multi-spectral images of three species of *Penicillium* fungi: *Melanoconidium*, *Polonicum*, and *Venetum*. These are the data used in the Clemmensen et al "Sparse Discriminant Analysis" paper.

Usage

```
data(penicilliumYES)
```

Format

This data set contains the following matrices:

- **X** A matrix with 36 columns and 3754 rows. The training and test data. The first 12 rows are *P. Melanoconidium* species, rows 13-24 are *P. Polonicum* species, and the last 12 rows are *P. Venetum* species. The samples are ordered so that each pair of three is from the same isolate.
- Y A matrix of dummy variables for the training data.
- **Z** Z matrix of probabilities for the subcalsses of the training data.

Details

The X matrix is not normalized.

Source

```
http://www.imm.dtu.dk/~lhc
```

predict.sda 5

References

Clemmensen, Hansen, Frisvad, Ersboell (2007) "A method for comparison of growth media in objective identification of Penicillium based on multi-spectral imaging" *Journal of Microbiological Methods*

predict.sda

Predict method for Sparse Discriminant Methods

Description

Prediction functions for link{sda} and link{smda}.

Usage

```
## S3 method for class 'sda'
predict(object, newdata = NULL, ...)
## S3 method for class 'smda'
predict(object, newdata = NULL, ...)
```

Arguments

```
object an object of class link{sda} or link{smda}

newdata a matrix or data frame of predictors

... arguments passed to link[MASS]{predict.lda}
```

Details

The current implementation for mixture discriminant models current predicts the subclass probabilities.

Value

A list with components:

6 sda

sda	Sparse discriminar	it analysis
-----	--------------------	-------------

Description

Performs sparse linear discriminant analysis. Using an alternating minimization algorithm to minimize the SDA criterion.

Usage

```
sda(x, ...)
## Default S3 method:
sda(x, y, lambda = 1e-6, stop = -p, maxIte = 100,
    Q = K-1, trace = FALSE, tol = 1e-6, ...)
```

Arguments

Х	A matrix of the training data with observations down the rows and variables in the columns.
у	A matrix initializing the dummy variables representing the groups.
lambda	The weight on the L2-norm for elastic net regression. Default: 1e-6.
stop	If STOP is negative, its absolute value corresponds to the desired number of variables. If STOP is positive, it corresponds to an upper bound on the L1-norm of the b coefficients. There is a one to one correspondence between stop and t. The default is -p (-the number of variables).
maxIte	Maximum number of iterations. Default: 100.
Q	Number of components. Maximum and default is K-1 (the number of classes less one).
trace	If TRUE, prints out its progress. Default: FALSE.
tol	Tolerance for the stopping criterion (change in RSS). Default is 1e-6.
	additional arguments

Details

The function finds sparse directions for linear classification.

Value

Returns a list with the following attributes:

beta The loadings of the sparse discriminative directions.

theta The optimal scores.

rss A vector of the Residual Sum of Squares at each iteration.

varNames Names on included variables

.

sda 7

Author(s)

Line Clemmensen, modified by Trevor Hastie

References

Clemmensen, L., Hastie, T. Witten, D. and Ersboell, K. (2011) "Sparse discriminant analysis", Technometrics, To appear.

See Also

```
normalize, normalizetest, smda
```

Examples

```
## load data
data(penicilliumYES)
X <- penicilliumYES$X</pre>
Y <- penicilliumYES$Y
colnames(Y) <- c("P. Melanoconidium",</pre>
                   "P. Polonicum",
                   "P. Venetum")
## test samples
Iout <-c(3,6,9,12)
Iout<-c(Iout, Iout+12, Iout+24)</pre>
## training data
Xtr<-X[-Iout,]</pre>
k<-3
n<-dim(Xtr)[1]</pre>
## Normalize data
Xc<-normalize(Xtr)</pre>
Xn<-Xc$Xc
p < -dim(Xn)[2]
## Perform SDA with one non-zero loading for each discriminative
## direction with Y as matrix input
out <- sda(Xn, Y,
            lambda = 1e-6,
            stop = -1,
            maxIte = 25,
            trace = TRUE)
## predict training samples
train <- predict(out, Xn)</pre>
## testing
Xtst<-X[Iout,]</pre>
Xtst<-normalizetest(Xtst,Xc)</pre>
```

8 smda

smda

Sparse mixture discriminant analysis

Description

Performs sparse linear discriminant analysis for mixture of gaussians models.

Usage

```
smda(x, ...)
## Default S3 method:
smda(x, y, Z = NULL, Rj = NULL,
    lambda = 1e-6, stop, maxIte = 50, Q=R-1,
    trace = FALSE, tol = 1e-4, ...)
```

Arguments

X	A matrix of the training data with observations down the rows and variables in the columns.
у	A matrix initializing the dummy variables representing the groups.
Z	Am optional matrix initializing the probabilities representing the groups.
Rj	K length vector containing the number of subclasses in each of the K classes.
lambda	The weight on the L2-norm for elastic net regression. Default: 1e-6.
stop	If STOP is negative, its absolute value corresponds to the desired number of variables. If STOP is positive, it corresponds to an upper bound on the L1-norm of the b coefficients. There is a one to one correspondence between stop and t.
maxIte	Maximum number of iterations. Default: 50.
Q	The number of components to include. Maximum and default is R-1 (total number of subclasses less one).
trace	If TRUE, prints out its progress. Default: FALSE.
tol	Tolerance for the stopping criterion (change in RSS). Default: 1e-4
	additional arguments

smda 9

Details

The function finds sparse directions for linear classification of mixture og gaussians models.

Value

Returns a list with the following attributes:

call The call

beta The loadings of the sparse discriminative directions.

theta The optimal scores.

Z Updated subclass probabilities.

Rj a vector of the number of ssubclasses per class

rss A vector of the Residual Sum of Squares at each iteration.

Author(s)

Line Clemmensen

References

Clemmensen, L., Hastie, T., Witten, D. and Ersboell, K. (2007) "Sparse discriminant analysis", Technometrics, To appear.

See Also

```
normalize, normalizetest, sda
```

Examples

```
# load data
data(penicilliumYES)
X <- penicilliumYES$X
Y <- penicilliumYES$Y
Z <- penicilliumYES$Z</pre>
## test samples
Iout \leftarrow c(3, 6, 9, 12)
Iout <- c(Iout, Iout+12, Iout+24)</pre>
## training data
Xtr <- X[-Iout,]</pre>
k <- 3
n \leftarrow dim(Xtr)[1]
Rj < -rep(4, 3)
## Normalize data
Xc <- normalize(Xtr)</pre>
Xn <- Xc$Xc
p \leftarrow dim(Xn)[2]
```

10 smda

```
## perform SMDA with one non-zero loading for each discriminative
## direction
## Not run:
smdaFit <- smda(x = Xn,
                y = Y,
                Z = Z,
                Rj = Rj,
                 lambda = 1e-6,
                 stop = -5,
                maxIte = 10,
                tol = 1e-2)
# testing
Xtst <- X[Iout,]</pre>
Xtst <- normalizetest(Xtst, Xc)</pre>
test <- predict(smdaFit, Xtst)</pre>
## End(Not run)
```

Index

```
* classif
    penicilliumYES, 4
    sda, 6
    smda, 8
* datasets
    penicilliumYES, 4
* multivariate
    normalize, 2
    normalizetest, 3
    penicilliumYES, 4
    predict.sda, 5
    sda, 6
    smda, 8
normalize, 2, 4, 7, 9
normalizetest, 2, 3, 7, 9
penicilliumYES, 4
predict.sda, 5
predict.smda (predict.sda), 5
sda, 2, 4, 6, 9
smda, 2, 4, 7, 8
```