7. Quadratische Formen

Vereinbarung: In diesem Paragraphen sei A stets eine reelle und symmetrische $(n \times n)$ -Matrix, $(A = A^{\top})$. Also: $A = (a_{jk})$, dann $a_{jk} = a_{kj}$ (k, j = 1, ..., n)

Definition

 $Q_A: \mathbb{R}^n \to \mathbb{R}$ durch $Q_A(x) := x(Ax^T)$. Q_A heißt die zu A gehörende **quadratische Form**. Für $x = (x_1, \dots, x_n)$:

$$Q_A(x) = \sum_{i,k=1}^n a_{jk} x_j x_k$$

Beispiel

Sei $f \in C^2(D, \mathbb{R}), x_0 \in D, h \in \mathbb{R}^n, S[x_0, x_0 + h] \subseteq D.$

$$H_f(x_0) := \begin{pmatrix} f_{x_1x_1}(x_0) & \cdots & f_{x_1x_n}(x_0) \\ f_{x_2x_1}(x_0) & \cdots & f_{x_2x_n}(x_0) \\ \vdots & & & \vdots \\ f_{x_nx_1}(x_0) & \cdots & f_{x_nx_n}(x_0) \end{pmatrix}$$

heißt die **Hesse-Matrix** von f in x_0 . 4.1 $\Longrightarrow H_f(x_0)$ ist symmetrisch. Aus 6.7 folgt:

$$f(x_0 + h) = f(x_0) + \operatorname{grad} f(x_0) \cdot h + \frac{1}{2}Q_B(h) \text{ mit } B = H_f(x_0 + \eta h)$$

Definition

A heißt positiv definit (pd) $:\iff Q_A(x)>0 \ \forall x\in\mathbb{R}^n\setminus\{0\}$ A heißt negativ definit (nd) $:\iff Q_A(x)<0 \ \forall x\in\mathbb{R}^n\setminus\{0\}$ A heißt indefinit (id) $:\iff \exists u,v\in\mathbb{R}^n:Q_A(u)>0,Q_A(v)<0$

Beispiele:

(1)
$$(n=2), A = \binom{a\ b}{b\ c}$$

 $Q_A(x,y) := ax^2 + 2bxy + cy^2 \ \big((x,y) \in \mathbb{R}^2\big).$ Nachrechnen:

$$aQa(x,y) = (ax+by)^2 + (\det A)y^2 \ \forall (x,y) \in \mathbb{R}^2$$

Übung:

A ist positiv definit $\iff a > 0, \det A > 0$ A ist negativ definit $\iff a < 0, \det A > 0$ A ist indefinit $\iff \det A < 0$

(2)
$$(n=3)$$
, $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix}$
 $Q_A(x,y,z) = (x+z)^2 \ \forall \ (x,y,z) \in \mathbb{R}^3$. $Q_A(0,1,0) = 0$. A ist weder pd, noch id, noch nd.

7. Quadratische Formen

(3) ohne Beweis (\rightarrow Lineare Algebra). A symmetrisch \implies alle **Eigenwerte** (EW) von A sind $\in \mathbb{R}$.

A ist positiv definit \iff Alle Eigenwerte von A sind > 0

A ist negativ definit \iff Alle Eigenwerte von A sind < 0

A ist indefinit $\iff \exists$ Eigenwerte λ, μ von A mit $\lambda > 0, \mu < 0$

Satz 7.1 (Regeln zu definiten Matrizen und quadratischen Formen)

- (1) A ist positiv definit \iff -A ist negativ definit
- (2) $Q_A(\alpha x) = \alpha^2 Q_A(x) \ \forall x \in \mathbb{R}^n \ \forall \alpha \in \mathbb{R}$
- (2) A ist positiv definit $\iff \exists c > 0 : Q_A(x) \ge c ||x||^2 \ \forall x \in \mathbb{R}^n$

(3) A ist negativ definit $\iff \exists c > 0 : Q_A(x) \le -c||x||^2 \ \forall x \in \mathbb{R}^n$

Beweis

- (1) Klar
- (2) $Q_A(\alpha x) = (\alpha x)(A(\alpha x)) = \alpha^2 x(Ax) = \alpha^2 Q_A(x)$
- (3) " \Leftarrow ": Klar. " \Longrightarrow ": $K := \{x \in \mathbb{R}^n : ||x|| = 1\} = \partial U_1(0)$ ist beschränkt und abgeschlossen. Q_A ist stetig auf K. 3.3 $\Longrightarrow \exists x_0 \in K : Q_A(x_0) \leq Q_A(x) \ \forall x \in K. \ c := Q_A(x_0). \ A$ positiv definit, $x_0 \neq 0 \Longrightarrow Q_A(x_0) = c > 0$. Sei $x \in \mathbb{R}^n \setminus \{0\}; \ z := \frac{1}{||x||}x \Longrightarrow z \in K \Longrightarrow Q_A(z) \geq c \Longrightarrow c \leq Q_A\left(\frac{1}{||x||}x\right) \stackrel{(2)}{=} \frac{1}{||x||}^2 Q_A(x) \Longrightarrow Q_A(x) \geq c||x||^2$

Satz 7.2 (Störung von definiten Matrizen)

- (1) A sei positiv definit (negativ definit). Dann existiert ein $\varepsilon > 0$ mit: Ist $B = (b_{jk})$ eine weitere symmetrische $(n \times n)$ -Matrix und gilt: $(*) |a_{jk} b_{jk}| \le \varepsilon \ (j, k = 1, \ldots, n)$, so ist B positiv definit (negativ definit).
- (2) A sei indefinit. Dann existieren $u, v \in \mathbb{R}^n$ und $\varepsilon > 0$ mit: ist $B = (b_{jk})$ eine weitere symmetrische $(n \times n)$ -Matrix und gilt: $(*) |a_{jk} b_{jk}| \le \varepsilon \ (j, k = 1, \dots, n)$, so ist $Q_B(u) > 0, Q_B(v) < 0$. Insbesondere: B ist indefinit.

Beweis

(1) A sei positiv definit $\stackrel{7.1}{\Longrightarrow} \exists c > 0 : Q_A(x) \ge c ||x||^2 \ \forall x \in \mathbb{R}^n. \ \varepsilon := \frac{c}{2n^2}$. Sei $B = (b_{jk})$ eine symmetrische Matrix mit (*). Für $x = (x_1, \dots, x_n) \in \mathbb{R}^n : Q_A(x) - Q_B(x) \le |Q_A(x)|$

$$Q_{B}(x)| = \left| \sum_{j,k=1}^{m} (a_{jk} - b_{jk}) x_{j} x_{k} \right| \leq \sum_{j,k=1}^{n} \underbrace{|a_{jk} - b_{jk}|}_{\leq \varepsilon} \underbrace{|x||}_{\leq |x||} \underbrace{|x_{k}||}_{\leq |x||} \leq \varepsilon ||x||^{2} n^{2} = \frac{c}{2n^{2}} ||x||^{2} n^{2} = \frac{c}{2} ||x||^{2}$$

(2) A sei indefinit. $\exists u, v \in \mathbb{R}^n : Q_A(u) > 0, Q_A(v) < 0. \ \alpha := \min \left\{ \frac{Q_A(u)}{\|u\|^2}, -\frac{Q_A(v)}{\|v\|^2} \right\} \implies \alpha > 0. \ \varepsilon := \frac{\alpha}{2n^2}$. Sei $B = (b_{jk})$ eine symmetrische Matrix mit (*).

$$Q_A(u) - Q_B(u) \overset{\text{Wie bei (1)}}{\leq} \varepsilon u^2 ||u||^2 = \frac{\alpha}{2n^2} n^2 ||u||^2 = \frac{\alpha}{2} ||u||^2 \leq \frac{1}{2} \frac{Q_A(u)}{||u||^2} ||u||^2 = \frac{1}{2} Q_A(u) \implies Q_B(u) \geq \frac{1}{2} Q_A(u) > 0. \text{ Analog: } Q_B(v) < 0.$$