Dr. Avinash Kumar Singh AI Consultant and Coach, Robaita

Discussion Points

- Loss Functions
 - Binary Cross Entropy, Categorical Cross Entropy, Sparse Categorical Cross Entropy, Focal Loss, Triplet Loss
- Normalization Techniques
 - Batch and Layer Normalization
- Recurrent Neural Network
 - RNN, Long Short-Term Memory(LSTM), Bi-LSTM
- USE Cases
 - Class Imbalance
 - Batch and Layer Normalization
 - Text Generation

Binary Cross Entropy

Used for: Binary classification (2 classes — e.g., Apple vs. Orange)

True Label (y)	Predicted Probability (\hat{y})
1	0.9
0	0.2

$$BCE = -\left[y \cdot \log(\hat{y}) + (1 - y) \cdot \log(1 - \hat{y})\right]$$

Case 1: y = 1, $\hat{y} = 0.9$

$$BCE = -[1 \cdot \log(0.9) + 0 \cdot \log(0.1)] = -\log(0.9) \approx 0.105$$

 \times Case 2: y = 0, \hat{y} = 0.2

Robotics and Artificial Intelligence Training Academy

$$BCE = -[0 \cdot \log(0.2) + 1 \cdot \log(1 - 0.2)] = -\log(0.8) \approx 0.223$$

model.compile(loss='binary crossentropy', optimizer='adam')

Categorical Cross Entropy

Used for: Multi-class classification (labels are one-hot encoded)

Scenario: MNIST digit recognition (10 classes: 0–9)

Suppose the true label is digit 3 and it's one-hot encoded as:

$$ext{CCE} = -\sum_{i=1}^C y_i \cdot \log(\hat{y}_i)$$

Only the log probability of the true class (index 3) is used because the rest are multiplied by 0:

$$CCE = -\log(0.80) \approx 0.223$$

Robotics and Artificial Intelligence Training Academy

Categorical crossentropy: true labels are one-hot encoded
model.compile(loss='categorical_crossentropy', optimizer='adam')

Sparse Categorical Cross Entropy

Used for: Multi-class classification, but true labels are not one-hot encoded — just a single integer (e.g., 3)

Scenario: MNIST digit recognition (10 classes: 0–9)

Here the classes are represented in actual number

$$SCCE = -\log(\hat{y}_{true\ class\ index})$$

$$SCCE = -\log(0.80) \approx 0.223$$

Sparse categorical crossentropy: true labels are integers model.compile(loss='sparse categorical crossentropy', optimizer='adam')

Robotics and Artificial Intelligence Training Academy

Focal Loss

Purpose:

- Designed to focus training on hard examples and down-weight easy ones
- Useful in imbalanced classification tasks (e.g., rare disease detection, fraud detection)

Robotics and Artificial Intelligence Training Academy

		•	$lpha_t$ = class balancing factor
rameter	Purpose		

Parameter	Purpose
γ (gamma)	Focuses on hard misclassified cases
α (alpha)	Balances minority/majority classes

Let's Generalize the BCE	$p_t = \begin{cases} \hat{y} \\ 1 - \hat{y} \end{cases}$	if y = 1 $if y = 0$
	$\mathrm{BCE}(p_t) = -$	$-\log(p_t)$

Focal Loss

$$\mathrm{FL}(p_t) = -\alpha_t \cdot (1 - p_t)^{\gamma} \cdot \log(p_t)$$

Where:

$$ullet \quad p_t = \hat{y}$$
 if $y = 1$, else $p_t = 1 - \hat{y}$

For Multiclass

•
$$\alpha_t = \alpha$$
 if $y = 1$, else $1 - \alpha$

$$\mathrm{FL}_i = -lpha_i (1 - \hat{y}_i)^{\gamma} \cdot y_i \cdot \log(\hat{y}_i)$$

• $\gamma \geq 0$ is the focusing parameter

- Minority class (fraud = 1): lpha = 0.25
- Majority class (legit = 0): $1-\alpha=0.75$

Example 1: Fraud case (y = 1, α = 0.25), $\hat{y} = 0.2$, $p_t = 0.2$, $\gamma = 2$

$$FL = -0.25 \cdot (1 - 0.2)^2 \cdot \log(0.2) = -0.25 \cdot 0.64 \cdot (-1.609) = 0.257$$

Example 2: Legit case (y = 0, α = 0.75), $\hat{y} = 0.2$, $p_t = 0.8$

$$FL = -0.75 \cdot (1 - 0.8)^2 \cdot \log(0.8) = -0.75 \cdot 0.04 \cdot (-0.223) \approx 0.0067$$

Scenario	True Label (y)	Prediction (\hat{y})	p_t
Easy Example	1	0.95	0.95
Hard Example	1	0.2	0.2

	Case 1: γ = 0 (Focal Loss behaves like BCE)										
$\mathrm{FL}(p_t) = -\log(p_t)$											
	Example	p_t	FL (γ=0)								
	Easy (0.95)	0.95	0.051								
	Hard (0.2)	0.2	1.609								

\blacksquare Case 2: γ = 2 (Focal Loss focuses on hard examples)

$$FL(p_t) = -(1 - p_t)^2 \cdot \log(p_t)$$

Example	p_t	$(1-p_t)^2$	FL (γ=2)
Easy (0.95)	0.95	0.0025	0.00013 Suppressed
Hard (0.2)	0.2	0.64	1.030 🔽 Still significant

tf.keras.losses.BinaryFocalCrossentropy

tf.keras.losses.CategoricalFocalCrossentropy

Triplet Loss

Triplet Loss helps a model learn embeddings such that:

- Similar items are closer together in embedding space
- Dissimilar items are farther apart

We want to map images of the same person to nearby points in embedding space and different persons to distant points.

$$\mathcal{L} = \max \left(\|f(A) - f(P)\|^2 - \|f(A) - f(N)\|^2 + lpha, 0
ight)$$

- f(x): the embedding (output) of sample x
- | · | : L2 norm (Euclidean distance)
- α : margin (a small buffer, e.g., 0.2) that forces a **minimum distance gap**

Term	Description
Anchor (A)	A sample image (e.g., Person A)
Positive (P)	Same identity as anchor (Person A again)
Negative (N)	Different identity (Person B)

- Anchor: f(A) = [1, 1, 1]
- Positive: f(P) = [1.2, 1.1, 0.9]
- Negative: f(N) = [3, 3, 3]
- Margin $\alpha = 0.5$

Robotics and Artificial Intelligence Training Academy

Step 1: Compute distances

- $||A P||^2 = (0.2^2 + 0.1^2 + 0.1^2) = 0.06$
- $||A N||^2 = (2^2 + 2^2 + 2^2) = 12$

Step 2: Plug into formula

$$\mathcal{L} = \max(0.06 - 12 + 0.5, 0) = \max(-11.44, 0) = 0$$

Optimizers

1. Gradient Descent

$$\theta := \theta - \eta \cdot \nabla_{\theta} J(\theta)$$

- Batch-based: Uses full dataset to compute gradient.
- **Pros**: Stable convergence.
- Cons: Computationally expensive for large datasets.
- Motivation for SGD: Reduce computation per step.

4. Adagrad

- q_t : Gradient at time step t
- G_t : Accumulated sum of squares of past gradients (per parameter)

$$egin{aligned} g_t &=
abla_ heta J(heta) \ G_t &= G_{t-1} + g_t^2 \ heta &:= heta - rac{\eta}{\sqrt{G_t + \epsilon}} \cdot g_t \end{aligned}$$

- Per-parameter adaptive learning rates.
- Pros: Good for sparse data (e.g., NLP).
- Cons: Learning rate shrinks too much over time.
- Motivation for RMSProp: Fix Adagrad's decaying learning rate.

2. Stochastic Gradient Descent

$$\theta := \theta - \eta \cdot
abla_{ heta} J(\theta; x^{(i)}, y^{(i)})$$

- Mini-batch variant used in practice.
- Pros: Fast, memory efficient.
- Cons: Noisy updates, slower convergence, may get stuck in local minima.
- Motivation for Momentum: Smooth out noisy updates.

3. Momentum $v_t = \gamma v_{t-1} + \eta \nabla_{\theta} J(\theta)$

$$v_t = \gamma v_{t-1} + \eta \nabla_{\theta} J(\theta)$$

- γ : momentum term (typically 0.9).
- Pros: Accelerates in right direction, reduces oscillations.
- · Cons: May overshoot.

5. RMSProp

$$E[g^2]_t = \beta E[g^2]_{t-1} + (1-\beta)g_t^2$$

- $E[g^2]_t = eta E[g^2]_{t-1} + (1-eta)g_t^2$ \cdot $E[g^2]_t$: Exponential moving average of squared gradients $heta:= heta-rac{\eta}{\sqrt{E[g^2]_t+\epsilon}}\cdot g_t$
- **Exponential moving average** of squared gradients.
- Pros: Works well in RNNs, balances updates.
- Cons: No momentum term.
- Motivation for Adam: Combine Momentum + RMSProp.

Robotics and Artificial Intelligence Training Academy

6. Adam (Adaptive Moment Estimation)

$$m_t = eta_1 m_{t-1} + (1-eta_1) g_t \ v_t = eta_2 v_{t-1} + (1-eta_2) g_t^2 \ \hat{m}_t = rac{m_t}{1-eta_1^t} \quad \hat{v}_t = rac{v_t}{1-eta_2^t} \ heta := heta - rac{\eta}{\sqrt{\hat{v}_t} + \epsilon} \cdot \hat{m}_t$$

- m_t : First moment estimate (mean of gradients)
- v_t : Second moment estimate (variance of gradients)
- β_1 : Decay rate for mean (typically 0.9)
- β_2 : Decay rate for variance (typically 0.999)
- \hat{m}_t, \hat{v}_t : Bias-corrected moment estimates
- q_t: Current gradient
- Combines first moment (mean) and second moment (variance).
- Pros: Works well out of the box, fast convergence.
- Cons: Sometimes generalizes worse than SGD; more hyperparameters.

Optimizers

Optimizer	Key Features	Best For	TensorFlow API Name			
Gradient Descent (GD)	Full batch update, simple but slow	Small datasets	"GradientDescent"			
SGD	Per-sample or mini-batch, fast	General DL tasks	"SGD"			
Momentum	Adds velocity term to SGD	ConvNets, image classification	"SGD(momentum=0.9)"			
NAG	Lookahead version of momentum	Faster convergence in deep nets	"SGD(nesterov=True)"			
Adagrad	Adaptive learning rate, good for sparse data	NLP, sparse inputs	"Adagrad"			
RMSProp	Fixes Adagrad's decay issue	RNNs, time-series data	"RMSprop"			
Adam	Combines momentum + adaptive LR	Most deep learning tasks	"Adam"			
AdamW	Adam with decoupled weight decay		"AdamW" (from tf.keras.optimizers.experimental)			

Robotics and Artificial Intelligence Training Academy

Covariate Shift

Occurs when the input data distribution changes between training and testing (or between different layers during training), but the function that maps inputs to outputs remains the same.

- External Covariate Shift: When training data and test data come from different distributions.
- <u>Internal Covariate Shift:</u> When the distribution of inputs to each layer changes during training, due to updates in the previous layers' weights.

Problem	Explanation
Slower Convergence	Each layer has to adapt continuously to the changing distribution of inputs.
Gradient Instability	The gradients can become too small (vanishing) or too large (exploding), especially in deep networks.
× Poor Generalization	If test data has a different distribution than training data, the model may perform poorly.
Unstable Learning	The model may oscillate, diverge, or fail to learn altogether.

Robotics and Artificial Intelligence Training Academy

Batch Normalization

Normalization is a technique to standardize or scale the inputs to a neural network so that they have similar distributions.

To normalize the inputs of each layer in a neural network across the mini-batch. This helps reduce internal covariate shift (i.e., changes in the distribution of inputs to layers during training).

Robotics and Artificial Intelligence Training Academy

Example Neural Network

- Batch size = 32
- Input = 784
- Hidden Layer 1 = 64 neurons
- Hidden Layer 2 = 32 neurons
- Output Layer = 10 neurons

Step-by-Step Batch Normalization at Hidden Layer 1

Step 1: Compute Pre-activation Output

After linear transformation (dot product):

$$Z^{(1)} = XW^{(1)} + b^{(1)}$$

- X: shape = (32, 784)
- $W^{(1)}$: shape = (784, 64)
- $Z^{(1)}$: shape = (32, 64) o Each row is one sample, each column is a neuron's output before activation

Batch Normalization

Step 4: Normalize Each Element

$$\hat{Z}^{(1)}[i,j] = rac{Z^{(1)}[i,j] - \mu[j]}{\sqrt{\sigma^2[j] + \epsilon}}$$

- Normalized Output $\hat{Z}^{(1)}$: shape = (32, 64) (same shape as original $Z^{(1)}$)
 - Step 5: Scale and Shift (Learnable Parameters)

$$Y^{(1)}[i,j] = \gamma[j] \cdot \hat{Z}^{(1)}[i,j] + \beta[j]$$

- γ : shape = (64,)
- β : shape = (64.)
- Output after scale/shift $Y^{(1)}$: shape = (32, 64)
- Step 6: Apply Activation Function (e.g., ReLU)

Robotics and Artificial Intelligence Training Academy

$$A^{(1)} = \operatorname{ReLU}(Y^{(1)})$$

• Activated Output $A^{(1)}$: shape = (32, 64)

Step 2: Compute Mean per Feature (Neuron)

$$\mu = rac{1}{32} \sum_{i=1}^{32} Z^{(1)}[i,:]$$

Mean μ : shape = (64,)

(1 mean value per neuron, across the 32 samples)

Step 3: Compute Variance per Feature

$$\sigma^2 = rac{1}{32} \sum_{i=1}^{32} (Z^{(1)}[i,:] - \mu)^2$$

• Variance σ^2 : shape = (64,) (1 variance value per neuron)

After batch normalization, each feature is forced to have:

- Mean ≈ 0
- Variance ≈ 1

This is good for training stability but can limit the model's expressiveness. Some features might naturally need higher variance or a shifted mean.

- **V** Role of y and β:
- γ (gamma): scales the normalized output
- β (beta): shifts the normalized output

LayerNormalization

Layer Normalization normalizes across the features of a single sample, instead of across the batch. So, instead of computing the mean and variance columnwise (per neuron across samples like in BatchNorm), it computes them row-wise (across all features in a layer for a single sample).

Step 1: Pre-activation Output

After linear transformation:

$$Z^{(1)} = XW^{(1)} + b^{(1)} \Rightarrow \text{shape: } (32,64)$$

- Each row corresponds to 1 sample
- Each row has 64 neuron outputs (features)
- Step 2: Compute Mean for Each Sample

(1 mean per sample, shared across all 64 features)

For each row $i \in \{1,...,32\}$:

$$\sigma^{2(i)} = rac{1}{64} \sum_{j=1}^{64} (Z^{(1)}[i,j] - \mu^{(i)})^2$$

• Variance σ^2 : shape = (32, 1)

Step 5: Apply Scale and Shift (Per Feature)

$$Y^{(1)}[i,j] = \gamma_j \cdot \hat{Z}^{(1)}[i,j] + eta_j$$

- γ : shape = (64,)
- β : shape = (64,)
- Output after scale/shift: shape = (32, 64)

Step 4: Normalize Features per Sample

$$\hat{Z}^{(1)}[i,j] = rac{Z^{(1)}[i,j] - \mu^{(i)}}{\sqrt{\sigma^{2(i)} + \epsilon}}$$

 $\mu^{(i)} = rac{1}{64} \sum_{i=1}^{64} Z^{(1)}[i,j]$

Normalized Output $\hat{Z}^{(1)}$: shape = (32, 64)

(same shape as original pre-activation)

Step 6: Apply Activation (e.g., ReLU)

$$A^{(1)}=\mathrm{ReLU}(Y^{(1)})$$

Activated Output: shape = (32, 64)

Why Do We Need RNNs?

Why Do We Need RNNs?

- Cannot capture temporal dependencies (e.g., sentence structure, time-series).
- Struggles with sequential patterns like speech, music, or stock prices.
- Requires fixed-size input/output no flexibility for variable-length sequences.

The Need for RNNs:

- We need a model that can remember past inputs and learn from context.
- Ideal for tasks where sequence and timing matter enter Recurrent Neural Networks (RNNs).

Robotics and Artificial Intelligence Training Academy

A Recurrent Neural Network (RNN) is a type of neural network where connections form a cycle, allowing information to persist across time steps.

- Takes input at each time step, maintains a hidden state (memory).
- Learns dependencies in ordered data.
- Shares parameters across time \rightarrow efficient for sequence modeling.

Language Modeling & Text Generation (e.g., GPT, LSTMs) 🦫 Speech Recognition (e.g., Siri, Google Assistant) Time Series Forecasting (e.g., stock prediction, IoT sensors) Video Frame Analysis (e.g., activity recognition) Chatbots & Machine Translation (sequence-to-sequence models)

Robotics and Artificial Intelligence Training Academy

Recurrent Neural Network: Example

x_1	x_2	w_{13}	w_{23}	θ_3	y_3	w_{14}	w_{24}	θ_4	y_4	w_{35}	w_{45}	θ_5	y_d	<i>y</i> ₅	E	w_{13}	$w_{23}{}'$	θ_4	$w_{14}{}'$	$w_{24}{}'$	θ_4	w_{35}'	w_{45}'	θ_5
1	1	0.5	0.4	0.8		0.9	1.0	-0.1		-1.2	1.1	0.3	0											
0	1												1											
1	0												1											
0	0												0											

Recurrent Neural Network: Example

Here
$$x_{<1>} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

 $\hat{y}_{<1>}$ represents y_5

$$a_{<1>}$$
 represents $\begin{bmatrix} y_3 \\ y_4 \end{bmatrix}$

Let's keep the weights in a weight matrix,

$$W_{ax} = \begin{bmatrix} w_{13} & w_{14} \\ w_{23} & w_{24} \end{bmatrix}$$

So, the full equation become like

$$a_{<1>} = f(W_{aa} * a_{<0>} + W_{ax} * x_{<1>} + b_a)$$

Here, f is *sigmoid* activation, $a_{\leq 0>}=0$

$$a_{<1>} = sigmoid(\begin{bmatrix} w_{13} & w_{14} \\ w_{23} & w_{24} \end{bmatrix} * \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} -1 \\ -1 \end{bmatrix})$$

Similarly, at the output layer

$$\hat{y}_{<1>} = f(W_{ya} * a_{<1>} + b_y)$$

$$\hat{y}_{<1>} = sigmoid(\begin{bmatrix} w_{35} \\ w_{45} \end{bmatrix} * a_{<1>} + (-1)$$

For the next time stamp

$$a_{<2>} = f(W_{aa} * a_{<1>} + W_{ax} * x_{<2>} + b_a)$$

$$a_{<2>} = sigmoid(W_{aa} * a_{<1>} + \begin{bmatrix} w_{13} & w_{14} \\ w_{23} & w_{24} \end{bmatrix} * \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} -1 \\ -1 \end{bmatrix})$$

Backpropagation Through Time

The loss at the output layer is calculated by

$$L_{< t>}(\hat{y}_{< t>}, y_{< t>}) = -y_{< t>} log \hat{y}_{< t>} - (1 - y_{< t>}) log (1 - \hat{y}_{< t>})$$

Loss through the time stamp

$$L(\hat{y}, y) = \sum_{t} L_{}(\hat{y}_{}, y_{})$$

Types of RNN

One to One

Here there is a single (x_t, y_t) pair. Traditional neural networks employ a one-to-one architecture.

One to Many

In one-to-many networks, a single input at x_t can produce multiple outputs

Many to One

In this case many inputs from different time steps produce a single output.

Many to Many

There are many possibilities for many to many. An example is shown above, where two inputs produce three outputs.

Vanishing Gradient: A problem in RNN

Due to the long-term dependencies the gradient at the initial layers become so small and it doesn't contribute to the significant weight change

Sometimes, its difficult to memorize long dependencies

$$a_{<1>} = f(W_{aa} * a_{<0>} + W_{ax} * x_{<1>} + b_a)$$

$$a_{<2>} = f(W_{aa} * a_{<1>} + W_{ax} * x_{<2>} + b_a)$$

$$a_{<3>} = f(W_{aa} * a_{<2>} + W_{ax} * x_{<3>} + b_a)$$

Expanding the $a_{\leq 3}$

$$a_{<3>}$$

= $f(W_{aa} * (f(W_{aa} * a_{<1>} + W_{ax} * x_{<2>} + b_a))$
+ $W_{ax} * x_{<3>} + b_a)$

Reason: Due to long term dependencies and the deep networks

Wish could have some "memory" to memorize the dependencies

And some control on information flowing

Long Short-Term Memory (LSTM)

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.

LSTM Components: Forget Gate

$$a_{<1>} = tanh(W_{aa} * a_{<0>} + W_{ax} * x_{<1>} + b_a)$$
 Can be further simplified
$$a_{<1>} = tanh(W_a[a_{<0>}, x_{<1>}] + b_a)$$
 where
$$W_a = [W_{aa}|W_{ax}]$$
 Generalized form
$$a_{} = f(W_a[a_{}, x_{}] + b_a)$$
 Forget Gate
$$f_{} = \sigma(W_f[a_{} + x_{}] + b_f)$$

This will help the network learn which data can be forgotten and which data is important to keep

LSTM Components: Update Gate

LSTM Components: Output Gate

LSTM Components: Other Operations

Cell State/MemoryCell

$$\ddot{c}_{< t>} = tanh(W_c[a_{< t-1>} + x_{< t>}] + b_c)$$

$$c_{< t>} = u_{< t>} * \breve{c}_{< t>} + f_{< t>} * \breve{c}_{< t-1>}$$

The network has enough information from the **forget gate** and **update gate**. The next step is to decide and store the information from the new state in the cell state.

activation value

$$a_{< t>} = o_{< t>} * c_{< t-1>}$$

Tanh: To avoid information fading, a function is needed whose second derivative can survive for longer

8 Action Classes

- Reach (1)
- Pick (2)
- Place (3)
- Release (4)
- Carry (5)
- Fine Manipulation (6)
- Screw (7)
- Idle (8)

Dataset is recorded with Xsens Sensor that has 23 marker position. Dataset is record at 240 FPS

Joint Representation

Neural Network Design

Thanks for your time

