Entrega Curvas. GDIF

Mario Calvarro Marines

Enunciado

Dadas dos curvas $\alpha, \beta: I \to \mathbb{R}^3$, siendo β regular, decimos que β es una *evoluta* de α si $\alpha(t)$ está sobre la recta afín tangente a β en $\beta(t)$ y, además, $\alpha'(t)$ y $\beta'(t)$ son ortogonales. Se pide:

- 1. Probar que si $\alpha: I \to \mathbb{R}^3$ es una curva regular con $\kappa, \kappa' \neq 0$ en todo punto (aquí κ denota la función curvatura de α), la curva β definida por los centros de curvatura de α es una evoluta suya si y solo si α es una curva plana. En este caso, pruébese además que β es la única evoluta plana de α .
- 2. Si α es una curva plana regular con $\kappa, \kappa' \neq 0$ en todo punto, probar que todas las evolutas de α tienen su traza contenida en un cilindro perpendicular al plano que contiene a α y cuya base es la única evoluta plana de α .
- 3. En las condiciones del ejercicio anterior, probar que todas las evolutas de α son hélices generalizadas.

Apartado 1

Supongamos en primer lugar que α es una curva plana parametrizada por longitud de arco. Recordemos¹ que la curva definida por los centros de curvatura de α tiene la siguiente expresión:

$$\beta(s) = \alpha(s) + \frac{1}{\kappa(s)}\mathbf{n}(s).$$

Ya que α es una curva plana, sabemos que su torsión es nula, es decir, $\mathbf{n}'_{\alpha}(s) = -\kappa(s)\alpha'(s)$. Si derivamos ahora la definición de β tenemos que:

$$\beta'(s) = \alpha'(s) + \frac{\mathbf{n}_{\alpha}'(s) \cdot \kappa(s) - \kappa'(s) \cdot \mathbf{n}_{\alpha}(s)}{\kappa^{2}(s)}$$

$$= \alpha'(s) - \frac{\kappa'(s) \cdot \mathbf{n}_{\alpha}(s)}{\kappa^{2}(s)} + \frac{1}{\kappa(s)} (-\kappa(s) \alpha'(s)) = \boxed{-\frac{\kappa'(s)}{\kappa^{2}(s)} \mathbf{n}_{\alpha}(s)}$$

Con esta última expresión, y sabiendo que $\frac{-\kappa'(s)}{\kappa^2(s)}$ es un escalar y que $\mathbf{n}_{\alpha}(s)$ es perpendicular a α' , tenemos que $\alpha'(s)$ y $\beta'(s)$ son ortogonales. Ahora, despejando α en la definición de β , vemos que

$$\alpha(s) = \beta(s) - \frac{1}{\kappa(s)} \mathbf{n}(s) = \beta(s) + \frac{\kappa(s)}{\kappa'(s)} \beta'(s)$$

y, por tanto, $\alpha(s)$ se encuentra en la recta tangente a $\beta(s)$. Esto² nos indica que α es la *involuta* de β con lo que queda demostrada esta primera implicación.

¹Definición 6.9 [1]

 $^{^2}$ Definición 7.1 [1]

Antes de ver la implicación recíproca, veamos la unicidad de esta evoluta plana. Sea pues γ una evoluta cualquiera de α . Tendremos entonces que $\alpha(s) = \gamma(s) + f(s)\gamma'(s)$ siendo $\alpha'(s)$ y $\gamma'(s)$ ortogonales. Como ambas curvas son planas el hecho de que sus tangentes sean perpendiculares en todo momento, nos indica que pertenecen al mismo plano. Además, tenemos que $\gamma'(s)$ es proporcional a $\mathbf{n}_{\alpha}(s)$. En definitiva,

$$\alpha(s) = \gamma(s) + g(s) \mathbf{n}_{\alpha}(s),$$

luego $\gamma(s) = \alpha(s) - g(s) \mathbf{n}_{\alpha}(s)$ y

$$\gamma'(s) = \alpha'(s) - g'(s) \mathbf{n}_{\alpha}(s) - g(s) \mathbf{n}'_{\alpha}(s)$$
$$= \mathbf{t}_{\alpha}(s) - g'(s) \mathbf{n}_{\alpha}(s) + g(s) \kappa_{\alpha}(s) \mathbf{t}_{\alpha}(s)$$

Ahora, haciendo el producto escalar por $\mathbf{t}_{\alpha}(s)$ sobre esta expresión, tenemos que $0 = 1 + g(s) \kappa_{\alpha}(s)$, debido a que $\mathbf{t}_{\alpha}(s)$ es perpendicular a $\gamma'(s)$ y a $\mathbf{n}_{\alpha}(s)$. Con esto obtenemos que $g(s) = -\frac{1}{\kappa_{\alpha}}(s)$ y sustituyendo en la anterior expresión de $\gamma(s)$ tenemos que:

$$\gamma(s) = \alpha(s) + \frac{1}{\kappa_{\alpha}(s)} \mathbf{n}_{\alpha}(s)$$

Es decir, la curva formada por los centros de curvatura de α .

Veamos ahora la implicación inversa. Por tanto, supongamos que β , como curva formada por los centros de curvatura de α , es evoluta de α . Al ser evoluta se da³ la siguiente relación:

$$\alpha(s) = \beta(s) + t(s)\beta'(s), \ t: \mathbb{R} \to \mathbb{R}$$

Si sustituimos el valor de $\alpha(s)$ dado por esta fórmula en la igualdad de la curva de centros tenemos lo siguiente:

$$\beta(s) = \alpha(s) + \frac{1}{\kappa(s)} \mathbf{n}_{\alpha}(s)$$
$$= \beta(s) + t(s)\beta'(s) + \frac{1}{\kappa(s)} \mathbf{n}_{\alpha}(s)$$

Es decir, $0 = t(s)\beta'(s) + \frac{1}{\kappa(s)}\mathbf{n}_{\alpha}(s)$. En definitiva, $\beta'(s) = \frac{1}{\kappa(s)t(s)}\mathbf{n}_{\alpha}(s)$. Como es para un punto fijo, la anterior igualdad nos indica que $\beta'(s)$ y $\mathbf{n}_{\alpha}(s)$ son proporcionales. Si calculamos ahora $\beta'(s)$ en base a la fórmula de los centros de curvatura tenemos que:

$$\beta'(s) = \alpha'(s) + \frac{1}{\kappa(s)} \mathbf{n}'_{\alpha}(s) - \frac{\kappa'(s)}{\kappa^{2}(s)} \mathbf{n}_{\alpha}(s)$$

Sin embargo, como $\alpha'(s)$ y $\mathbf{n}'_{\alpha}(s)$ son ambos perpendiculares a $\mathbf{n}_{\alpha}(s)$ (y, por lo tanto, linealmente independientes), no es posible, haciendo una suma de ambos, obtener un vector proporcional a $\mathbf{n}_{\alpha}(s)$, luego, su suma en este caso será 0:

$$0 = \alpha'(s) + \frac{1}{\kappa(s)} \mathbf{n}'_{\alpha}(s)$$
$$\Rightarrow -\alpha'(s) \kappa(s) = \mathbf{n}'_{\alpha}(s)$$

Lo que comparado con la fórmula de Frenet-Serret nos indica que la torsión de α es 0 y, por tanto, es plana.

Apartado 2

Ya que estamos tratando con cilindros generalizados, estos podrán tener como base cualquier tipo de curva. Estos cilindros tienen la siguiente parametrización:

$$\varphi\left(u,v\right) = \gamma\left(u\right) + v\mathbf{v}$$

 $^{^3}$ Definición 7.1 [1]

donde \mathbf{v} es un vector que nos indica la dirección en la que se construye el cilindro y γ , una curva (que será su base). Con esto, para ver que una curva esta contenida en un cilindro será simplemente necesario ver que la proyección de dicha curva a un plano perpendicular al cilindro es igual a la curva γ . En nuestro caso tendremos que, como β es una evoluta de α (parametrizada por la longitud de arco),⁴

$$\beta(s) = \alpha(s) + \frac{1}{\kappa(s)} \mathbf{n}_{\alpha}(s) + \frac{1}{\kappa(s)} \tan\left(\int_{s_0}^{s} \tau(u) du + c\right) \mathbf{b}_{\alpha}(s).$$

Si llamamos ahora $\hat{\beta}$ a la evoluta plana que, por el anterior apartado, cumple que

$$\beta(s) = \alpha(s) + \frac{1}{\kappa(s)} \mathbf{n}_{\alpha}(s).$$

restando ambos puntos

$$\beta(s) - \hat{\beta}(s) = \underbrace{\frac{1}{\kappa(s)} \tan\left(\int_{s_0}^s \tau(u) du + c\right)}_{=\lambda} \mathbf{b}_{\alpha}(s).$$

nos quedamos con que

$$\beta(s) = \hat{\beta}(s) + \lambda \mathbf{b}_{\alpha}(s)$$

lo que finalmente nos indica que β se encuentra en un cilindro con base $\hat{\beta}$. Como esta última curva es plana y se encuentra en el mismo plano que α , tenemos el resultado.

Referencias

[1] Jesús M. Ruiz José M. Rodríguez-Sanjurjo. <u>Introducción a la Geometría Diferencial I: Curvas</u>. Sanz y Torres, 2012.

⁴Teorema 7.5 [1]