

Advanced features!

4

New features

Model building

- tf.experimental.numpy
- Keras Preprocessing layers
- TF Recommenders library

Performance and debugging

- New features in tf.data: Service and Snapshot
- Improvements in the TensorFlow Profiler

tf.experimental.numpy

Accelerate NumPy using TensorFlow

NumPy works with TensorFlow

You can now:

- Run a subset of full NumPy spec on CPU / GPU / TPU
- Differentiate through NumPy code
- Combine NumPy code with TensorFlow APIs (tf.linalg, tf.signal, tf.data, tf.keras, tf.distribute)
- Compile NumPy code using `tf.function` and vectorize it using `tf.vectorized_map`

Visit tensorflow.org/guide/tf_numpy to learn more

```
# Available in TensorFlow Nightly
import tensorflow.experimental.numpy as tnp
x = tnp.random.randn(100, 100).clip(-2, 2)
print(x.data.device)
/job:localhost/replica:0/task:0/device:GPU:0
```

```
# Available in TensorFlow Nightly
# `pip install tf-nightly`
import tensorflow.experimental.numpy as tnp

# Write NumPy Code, accelerated by TensorFlow on GPUs
x = tnp.random.randn(100, 100).clip(-2, 2)
print(x.data.device)
```

/job:localhost/replica:0/task:0/device:GPU:0

```
# Note that TensorFlow ND Arrays can be passed to APIs expecting NumPy arrays.
# This works since ND Array class implements `__array__` interface defined by NumPy.
# The code below demonstrates matplotlib plotting on ND Array.
```

import matplotlib.pyplot as plt
plt.hist(x.ravel())

Performance example

TensorFlow runtime provides highly optimized kernels for different devices. However, NumPy has a lower dispatch latency (~1us). TensorFlow thus runs faster for workloads not dominated by dispatch latency.

Learn more in the guide: <u>tensorflow.org/guide/tf_numpy</u>

```
dataset = tf.data.Dataset.from_tensor_slices(tnp.random.randn(1000, 1024)).map(
   lambda z: z.clip(-1, 1)).batch(100)
# Compute gradients through NumPy code
def grad(x, wt):
  with tf.GradientTape() as tape:
   tape.watch(wt)
    output = tnp.dot(x, wt)
    output = 1 / 1 + tnp.exp(-output)
  return tape.gradient(tnp.sum(output), wt) # Also see tape.batch_jacobian
wt = tnp.random.randn(1024, 1024)
for inputs in dataset:
  gradients = grad(inputs, wt)
```

```
dataset = tf.data.Dataset.from_tensor_slices(tnp.random.randn(1000, 1024)).map(
    lambda z: z.clip(-1, 1)).batch(100)
# Compute gradients through NumPy code
def grad(x, wt):
  with tf.GradientTape() as tape:
    tape.watch(wt)
    output = tnp.dot(x, wt)
    output = tf.math.sigmoid(output) # Interleave with TensorFlow APIs
  return tape.gradient(tnp.sum(output), wt)
def per_example_grad(x, wt):
  return tf.map_fn(lambda y: grad(y, wt), x) # Interleave with TensorFlow APIs
wt = tnp.random.randn(1024, 1024)
for inputs in dataset:
  per_example_gradients = per_example_grad(inputs, wt)
```

```
dataset = tf.data.Dataset.from_tensor_slices(tnp.random.randn(1000, 1024)).map(
    lambda z: z.clip(-1, 1)).batch(100)
                                                              10<sup>2</sup>
# Compute gradients through NumPy code
def grad(x, wt):
                                                                                  Iterative
                                                                                  Compiled & vectorized
  with tf.GradientTape() as tape:
    tape.watch(wt)
                                                              100
    output = tnp.dot(x, wt)
    output = tf.math.sigmoid(output)
                                                                      100
                                                                                         500
                                                                            input size
  return tape.gradient(tnp.sum(output), wt)
# Speedup NumPy code with compilation and vectorization
@tf.function # Compilation
def per_example_grad(x, wt):
  return tf.vectorized_map(lambda y: grad(y, wt), x) # Auto-vectorization
wt = tnp.random.randn(1024, 1024)
for inputs in dataset:
  per_example_gradients = per_example_grad(inputs, wt)
```


TensorFlow NumPy: Future Directions

- In-place mutation of ND arrays
- Support for more ops
- Fast operation dispatch using TFRT
- Lower-level APIs for distribution
- Key NumPy library support (e.g. Trax, scikit-learn)

Learn more at tensorflow.org/quide/tf_numpy

Keras preprocessing layers

Build end-to-end models

Writing preprocessing logic is time consuming

- When building a model to classifies text, you need to write preprocessing logic for standardization, tokenization, and vectorization.
- To deploy that model, you need to ensure that text is preprocessed in exactly the same way.
- This can result in code duplication for complex logic, that's difficult to maintain.

Keras preprocessing layers

A **user-friendly** way to include preprocessing logic as layers inside your model. Enables you to:

- Save models that take raw images, text, or structured data as input
- Deploy models without needing to re-implement preprocessing logic server-side, i.e. preventing training-serving skew
- Easily run image data augmentation on accelerators

```
train_texts = tf.data.Dataset.from_tensor_slices(["foo", "bar", "baz"])
max_features = 5000  # Maximum vocab size.
sequence_length = 4  # Sequence length to pad the outputs to.
embedding_dims = 2

# Create a text preprocessing layer
vectorize_layer = TextVectorization(
    max_tokens=max_features,
    output_mode='int',
    output_sequence_length=sequence_length)
```

```
# Create a text preprocessing layer
vectorize_layer = TextVectorization(
    max_tokens=max_features,
    output_mode='int', # Outputs integer indices, one integer index per split token
    output_sequence_length=sequence_length)

# Adapt it your vocabulary
# Now that the vocab layer has been created, call `adapt` on the text-only
# dataset to create the vocabulary. You don't have to batch, but for large
# datasets this means we're not keeping spare copies of the dataset.
vectorize_layer.adapt(train_texts)
```

```
vectorize_layer.get_vocabulary()
# ['', '[UNK]', 'foo', 'bar', 'baz'
```

```
vectorize_layer = TextVectorization(
    max_tokens=max_features,
    output_mode='int',
    output_sequence_length=sequence_length)
vectorize_layer.adapt(train_texts)
model = tf.keras.Sequential([
  tf.keras.Input(shape=(1,), dtype=tf.string),
  vectorize_layer,
  layers.Embedding(max_features + 1, 32),
  layers.Dropout(0.2),
  layers.GlobalAveragePooling1D(),
  layers.Dropout(0.2),
  layers.Dense(1)])
```

```
# Create a text preprocessing layer
vectorize_layer = TextVectorization(
    max_tokens=max_features,
    output_mode='int',
    output_sequence_length=sequence_length)
vectorize_layer.adapt(train_texts)
model = tf.keras.Sequential([
  tf.keras.Input(shape=(1,), dtype=tf.string),
  vectorize_layer,
  layers.Embedding(max_features + 1, 32),
  layers.Dropout(0.2),
  layers.GlobalAveragePooling1D(),
  layers.Dropout(0.2),
  layers.Dense(1)])
```

Save a model that accepts raw strings as input
model.save('path/to/location')

```
# Include it inside your model
model = tf.keras.Sequential([
  tf.keras.Input(shape=(1,), dtype=tf.string),
  vectorize_layer,
data_augmentation = tf.keras.Sequential([RandomFlip("horizontal"),
                                         RandomRotation(0.1), RandomZoom(0.1),
# Create a model that includes the augmentation stage
inputs = tf.keras.Input(shape=input_shape)
x = data_augmentation(inputs)
# Rescale image values to [0, 1]
x = Rescaling(1.0/255)(x)
outputs = tf.keras.applications.ResNet50(weights=None,
                                         input_shape=(32, 32, 3), classes=10)(x)
model = tf.keras.Model(inputs, outputs)
```


Out of the box support for common data types

Text

Standardize, tokenize, and vectorize

Images

Resize, normalize, and run data augmentation on the GPU

Structured data

 Support for numeric and categorical attributes. One hot encode, hash, discretize, bucketize, category crossing and more.

API doc: tensorflow.org/api_docs/python/tf/keras/layers/experimental/preprocessing

Learn more

Developer guide and complete examples

- keras.io/quides/preprocessing_layers/
- tensorflow.org/tutorials/images/classification,
- tensorflow.org/tutorials/keras/text_classification
- keras.io/examples/structured_data/structured_data_classification_from_scratch/

TensorFlow Recommenders

Build recommender systems with TensorFlow

TensorFlow Recommenders

- A library of components to build flexible nomination and ranking models.
- Built on TensorFlow 2.0.
- Seamlessly integrates with the TensorFlow ecosystem for training and serving
- Enables you to easily build deep recommendation models that have many advantages over traditional matrix factorization approaches.

Two-Tower Recommender Example

26

```
import tensorflow_datasets as tfds
import tensorflow_recommenders as tfrs

# Data on ratings.
ratings = tfds.load("movielens/100k-ratings", split="train")
# Movie features.
movies = tfds.load("movielens/100k-movies", split="train")
```

```
import tensorflow_datasets as tfds
import tensorflow_recommenders as tfrs
# Data on ratings.
ratings = tfds.load("movielens/100k-ratings", split="train")
movies = tfds.load("movielens/100k-movies", split="train")
# The user and movie models can be arbitrary Keras models.
user_model = tf.keras.Sequential([
    tf.keras.layers.Embedding(1000, 32),
    tf.keras.layers.Dense(64, activation="relu")
])
# tfrs.layers.embedding.TPUEmbedding(feature_config=feature_config,
  optimizer='sqd') accelerates embedding lookups for large tables with TPU.
# Spoiler! Supported on TF 2.5.
movie_model = tf.keras.layers.Embedding(1700, 64)
```

```
# Train the model.
model.compile(optimizer=tf.keras.optimizers.Adagrad(0.5))
model.fit(ratings.batch(4096), epochs=3)
```

model.evaluate(ratings.batch(4096))

Deep & Cross Network (DCNv2)

Deep & Cross Network (DCNv2)

$$y = f(x_1, x_2, x_3) = 0.1x_1 + 0.4x_2 + 0.7x_3 + 0.1x_1x_2 + 3.1x_2x_3 + 0.1x_3^2$$

Deep & Cross Network (DCNv2)

Learn more about TensorFlow Recommenders

Visit <u>tensorflow.org/recommenders</u> for tutorials and guides

What's new in tf.data?

Snapshot and service

- Accelerator performance (GPU, TPU) is increasing faster than CPU
- Model complexity is not growing as fast, which means step time is decreasing and more data per step is expected
- Host CPU is unable to keep up with increase in demand

flops

time

Speed up your input pipelines with one line of code

- <u>tf.data.Dataset.prefetch</u> overlaps upstream computation (e.g. CPU data processing)
 with downstream computation (e.g. GPU/TPU training)
- <u>tf.data.Dataset.cache</u> automatically caches your dataset in-memory, or to a file

Learn more with these guides

- Optimize pipeline performance: https://www.tensorflow.org/guide/data_performance
- Using the TF Profiler: https://www.tensorflow.org/quide/data-performance-analysis

New in TF 2.3

New features

- <u>tf.data.snapshot</u> can help you avoid repetitive data processing
- <u>tf.data.service</u> can help you horizontally scale data processing
- New API for efficient saving and loading of arbitrary tf.data datasets

tf.data snapshot

Reuse computation


```
import tensorflow as tf
def preprocess(record):
dataset = tf.data.TFRecordDataset(".../*.tfrecord")
dataset = dataset.map(preprocess, num_parallel_calls=tf.data.AUTOTUNE)
dataset = dataset.shuffle(buffer_size=1024)
dataset = dataset.batch(batch_size=32)
dataset = dataset.prefetch(tf.data.AUTOTUNE)
model = tf.keras.Model(...)
model.fit(dataset)
```

```
import tensorflow as tf
def preprocess(record):
dataset = tf.data.TFRecordDataset(".../*.tfrecord")
dataset = dataset.map(preprocess, num_parallel_calls=tf.data.AUTOTUNE)
dataset = dataset.snapshot("/path/to/snapshot_dir")
dataset = dataset.shuffle(buffer_size=1024)
dataset = dataset.batch(batch_size=32)
dataset = dataset.prefetch(tf.data.AUTOTUNE)
                                                snapshot transformation
model = tf.keras.Model(...)
model.fit(dataset)
```


tf.data service

Scale horizontally


```
import tensorflow as tf
def preprocess(record):
dataset = tf.data.TFRecordDataset(".../*.tfrecord")
dataset = dataset.shuffle(buffer_size=1024)
dataset = dataset.map(preprocess, num_parallel_calls=tf.data.AUTOTUNE)
dataset = dataset.batch(batch_size=32)
dataset = dataset.prefetch(tf.data.AUTOTUNE)
model = tf.keras.Model(...)
model.fit(dataset)
```

```
import tensorflow as tf
def preprocess(record):
dataset = tf.data.TFRecordDataset(".../*.tfrecord")
dataset = dataset.shuffle(buffer_size=1024)
dataset = dataset.map(preprocess, num_parallel_calls=tf.data.AUTOTUNE)
dataset = dataset.batch(batch_size=32)
dataset = dataset.distribute("<master_address>")
dataset = dataset.prefetch(tf.data.AUTOTUNE)
                                               distribute transformation
model = tf.keras.Model(...)
model.fit(dataset)
```


tensorflow.org has API docs for <u>DispatchServer</u> and <u>WorkerServer</u>.

tensorflow/ecosystem/data_service provides a full example of running tf.data service on Google Kubernetes Engine.


```
import tensorflow as tf
def preprocess(record):
dataset = tf.data.TFRecordDataset(".../*.tfrecord")
dataset = dataset.shuffle(buffer_size=1024)
dataset = dataset.map(preprocess, num_parallel_calls=tf.data.AUTOTUNE)
dataset = dataset.batch(batch_size=32, num_parallel_calls=tf.data.AUTOTUNE)
dataset = dataset.distribute("<master_address>")
dataset = dataset.prefetch(tf.data.AUTOTUNE)
                                                  Spoiler! Comes in TF 2.5
model = tf.keras.Model(...)
model.fit(dataset)
```


Key takeaways

- Training is increasingly bottlenecked on data preprocessing
- Prefetch and cache speed up your pipeline with one line of code
- Snapshot allows reuse of data preprocessing
- Service enables distributed data preprocessing

Learn more

Developer guides

- https://www.tensorflow.org/guide/data_performance
- https://www.tensorflow.org/guide/data_performance_analysis
- NEW! https://www.tensorflow.org/guide/data_performance_analysis

What's new in tf.distribute?

ParameterServerStrategy is now Experimental MultiWorkerMirroredStrategy is not Experimental anymore

New in TF 2.4

New features

- Introduces experimental support for asynchronous training of models with <u>ParameterServerStrategy</u>
- <u>MultiWorkerMirroredStrategy</u> is now part of the stable API
- Use tf.data API and tf.distribute API to work with tf.distribute.DistributedDataset.

TensorFlow Profiler

Memory Profile Tool

8.98 GiBs

Memory Profile Summary

Memory ID GPU_... ▼ show memory profile for selected device #Allocation 880 #Deallocation 120 Memory Capacity 13.82 GiBs Peak Heap Usage 9.14 GiBs high water mark in lifetime

Peak Memory Usage stack + heap, within profiling window

- Timestamp: 4213.4 ms · Stack Reservation: 0.00 GiBs
- · Heap Allocation: 8.98 GiBs
- · Free Memory: 4.84 GiBs

Fragmentation: 0.19%

Memory Timeline Graph

Tips: Zoom in: left click and drag; Zoom out: right click; Metadata: click on heap data point.

Memory Breakdown Table

Q Operation

Note: Showing active memory allocations at peak usage within the profiling window. To avoid sluggishness, only the allocations with size over 1MiB are shown in the table below.

Op Name	Allocation Size (GiBs)	Requested Size (GiBs)	Occurrences	Region type	Data type	Shape
preallocated/unknown	3.926	3.926	1	persist/dynamic	INVALID	unknown
gradient_tape/bert_span_labeler/transformer_encoder/transformer/layer_6/self_attention/masked_softmax_6/mul_1	0.035	0.018	1	output	half	[4,16,384,384]
gradient_tape/bert_span_labeler/transformer_encoder/transformer/layer_0/self_attention/masked_softmax/mul_1	0.023	0.018	1	output	half	[4,16,384,384]
gradient_tape/bert_span_labeler/transformer_encoder/transformer/layer_1/self_attention/masked_softmax_1/mul_1	0.023	0.018	1	output	half	[4,16,384,384]
gradient_tape/bert_span_labeler/transformer_encoder/transformer/layer_10/self_attention/masked_softmax_10/mul_1	0.023	0.018	1	output	half	[4,16,384,384]
gradient_tape/bert_span_labeler/transformer_encoder/transformer/layer_11/self_attention/masked_softmax_11/mul_1	0.023	0.018	1	output	half	[4,16,384,384]
gradient_tape/bert_span_labeler/transformer_encoder/transformer/layer_12/self_attention/masked_softmax_12/mul_1	0.023	0.018	1	output	half	[4,16,384,384]
gradient_tape/bert_span_labeler/transformer_encoder/transformer/layer_13/self_attention/masked_softmax_13/mul_1	0.023	0.018	1	output	half	[4,16,384,384]
gradient_tape/bert_span_labeler/transformer_encoder/transformer/layer_14/self_attention/masked_softmax_14/mul_1	0.023	0.018	1	output	half	[4,16,384,384]

Python Tracer

More Trace Levels

Address Type:	IP Address	TPU Name	
Profiling Duration (m	illiseconds)		
1000			
Automatically retry N	I times when no trace ev	ent is collected	
3			
Host Trace (TraceMe) Lavel		_
verbose	e) Level		
701000			_
Device Trace Level			
enable			*
Python Trace Level			

- Host Trace Level
 - Control the amount of host trace collected
- Device Trace Level
 - Enable or disable device trace collection
- Python Trace Level
 - Enable or disable python tracer

And that's a wrap

In review

TensorFlow has a **bunch** of new features to help you build new models and get the performance you need.

- tf.experimental.numpy
- Keras preprocessing layers
- TF **Recommenders** library
- New features in tf.data: Service and Snapshot
- Improvements in the TensorFlow Profiler

Thank you!

Learn more

- tensorflow.org/tutorials
- tensorflow.org/guide

Stay up to date

- blog.tensorflow.org
- youtube.com/tensorflow
- twitter.com/tensorflow