Методы современной прикладной статистики 9. Регрессионный анализ II.

Родионов Игорь Владимирович vecsell@gmail.com

Весна, 2018

Проверка предположений Гаусса-Маркова

Напомним, мы предполагали, что в рамках гауссовской линейной модели выполнены предположения

- $\mathbf{1} \mathbf{E} \varepsilon = \mathbf{0},$
- $D\varepsilon = \sigma^2 I_n,$
- $\{\varepsilon_i\}_{i=1}^n$ независимы в совокупности,
- $oldsymbol{4}$ $arepsilon_i$ имеют нормальное распределение,

Если хотя бы одно из этих предположений нарушено, то оценки коэффициентов регрессии $\{\beta_j\}$ могут оказаться смещенными и неустойчивыми, а доверительные интервалы для откликов на новых объектах будут иметь заниженные уровни доверия. Обсудим методы проверки этих предположений.

Кросс-валидация

Предположение $E\varepsilon=0$ относится к выбору оптимальной модели в линейной регрессии, что мы обсуждали ранее.

Проверить предсказательную силу модели можно с помощью LOO-метода (leave-one-out): пусть \hat{Y}_i – предсказание отклика на объекте x_i , полученное с помощью обучения модели по всем объектам, кроме x_i . Качество оценивается с помощью функции

$$LOO = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2.$$

Но при большом количестве объектов LOO работает крайне медленно, в этом случае используется метод k-fold CV.

Кросс-валидация по блокам отличается от LOO тем, что мы разбиваем данные на k блоков (обычно $k \approx 10$) и получаем предсказание на объектах i-того блока с помощью модели, обученной по всем блокам, кроме *i*-того.

Проверка гомоскедастичности

Перейдем к проверке условия гомоскедастичности $D\varepsilon = \sigma^2 I_n$. Если условие не выполнено, то такая ситуация называется гетероскедастичностью.

Оценивать ошибки ε_i мы будем с помощью **остатков** $e_i = Y_i - \widehat{Y}_i$, где $\widehat{Y}_i = (X(X^TX)^{-1}X^TY)_i - i$ -тая координата оценки отклика.

Заметим, что если $E\varepsilon=0$, то

$$Ee = E(Y - \widehat{Y}) = E(Y - X\widehat{\beta}) = X\beta - X\beta = 0.$$

Анализ остатков

Далее, можем представить вектор остатков в виде e=(I-H)Y, где $H=X(X^TX)^{-1}X^T$. Поскольку $H^2=H$ и $H^T=H$, то

$$Var[e] = Var[(I-H)Y] = (I-H)Var[Y](I-H)^T = \sigma^2(I-H).$$

Т.е. $De_i = \sigma^2(1-h_{ii})$, где $H = \|h_{ij}\|$. Чтобы унифицировать все остатки по распределению, перейдем к нормированным остаткам $\tilde{e}_i = \frac{e_i}{\sqrt{De_i}} = \frac{e_i}{\sigma\sqrt{1-h_{ii}}}$.

Но σ^2 неизвестно, поэтому заменим σ^2 на её оценку $\frac{1}{n-k}RSS$, тем самым переходя к рассмотрению стьюдентизированных остатков

$$d_i = \frac{e_i}{\sqrt{\frac{RSS}{n-k}}\sqrt{1-h_{ii}}}.$$

Анализ остатков

Заметим, что $\sum_i h_{ii} = tr(H) = k$, действительно,

$$tr(H) = tr(X(X^TX)^{-1}X^T) = tr((X^TX)^{-1}X^TX) = tr(I_k) = k.$$

Поэтому если k много меньше n, то можно считать $h_{ii}\approx 0$ и перейти к рассмотрению стандартизированных остатков

$$\tilde{\varepsilon}_i = \frac{e_i}{\sqrt{\frac{RSS}{n-k}}}.$$

Хотя стандартизированные остатки являются зависимыми, при больших n их поведение схоже с поведением вектора независимых N(0,1) случайных величин (при условии, что $\varepsilon \sim N(0,\sigma^2 I_n)$).

Строится график $\widetilde{\varepsilon}_i$ от \widehat{y}_i, x_{ij} при фиксированном j или просто от i.

Стр. 7 из 36

Родионов И.В. МСПС, Регрессия

Возможно, в данных имеются выбросы.

В данных имеется тренд (не учтен признак времени).

Гетероскедастичность данных.

В пространство признаков стоит добавить признак $(x_j)^2$.

Критерий Голдфелда-Квандта

Итак, проверим гипотезу гомоскедастичности $H_0: \varepsilon \sim N(0, \sigma^2 I_n)$ (но критерий устойчив и к небольшому отклонению от нормальности распределения ε).

Упорядочим наблюдения по возможному возрастанию дисперсий ошибок и отбросим r центральных наблюдений. Построим 2 регрессионных модели: по первым (n-r)/2 наблюдениям и по последним (n-r)/2, вычислим по ним RSS_1 и RSS_2 соответственно. Если H_0 верна, то

$$F = \frac{RSS_2}{RSS_1} \sim F_{\frac{n-k}{2}-k,\frac{n-k}{2}-k}$$

Гипотезу H_0 следует отвергать, если $F>u_{1-\alpha},$ где $u_{1-\alpha}$ – квантиль данного распределения Фишера.

4 D > 4 D > 4 E > 4 E > E 990

Родионов И.В. МСПС, Регрессия Стр. 12 из 36

Критерий Уайта

Рассмотрим вспомогательную модель

$$e_i^2 = \alpha_0 + \sum_{j=1}^k \alpha_j x_{ij} + \sum_{j=1}^k \gamma_j x_{ij}^2 + \nu_i,$$

где e_i – обычные остатки в линейной регрессии. Проверим гипотезу $H_0: \alpha_i = \gamma_i = 0 \ \forall j$.

Обозначим через \widetilde{R}^2 коэффициент детерминации вспомогательной модели. При верной гипотезе H_0 и достаточно большом n

$$n\widetilde{R}^2\approx\chi_{2k}^2.$$

Если во введенной модели сразу полагать $\gamma_j=0\ \forall j,$ то мы получим **критерий Бройша-Пагана**, и тогда при верной гипотезе $H_0':\alpha_j=0\ \forall j$ выполнено $n\widetilde{R}^2\approx\chi_k^2$

Родионов И.В. МСПС, Регрессия Стр. 13 из 36

Гетероскедастичность

Гетероскедастичность может быть следствием недоопределенности модели, тогда следует её доопределить с помощью рассмотренных методов.

От гетероскедастичности можно избавиться с помощью взвешенного МНК, давая разным объектам подходящие веса, если соотношения между дисперсиями известны заранее (или они явно определяются по графикам остатков).

Последствия гетероскедастичности:

- 1) нарушаются предположения критериев Стьюдента и Фишера и методов построения доверительных интервалов для σ^2 , β и отклика на новом объекте (независимо от объёма выборки);
- 2) однако МНК-оценки β и R^2 остаются несмещёнными и состоятельными.

Устойчивая оценка дисперсии Уайта

Если от гетероскедастичности избавиться не удаётся, для оценки значимости признаков (и не только) можно использовать критерии, основанные на оценке HCE (White heteroscedasticity-consistent estimator, HC0) матрицы ковариаций вектора $\widehat{\beta}$

$$\widehat{\Omega} = (X^T X)^{-1} (X^T \{e_1^2, \dots, e_n^2\} X) (X^T X)^{-1}.$$

Если $\sqrt{n}(\widehat{\beta}-\beta)\stackrel{d}{\to} N(0,\Omega)$ при $n\to +\infty,$ то $n\widehat{\Omega}$ является состоятельной оценкой $\Omega.$

Также вместо e_i^2 в выражение для оценки $\widehat{\Omega}$ можно подставлять $\frac{ne_i^2}{n-k}$, $\frac{e_i^2}{1-h_{ii}}$ или $\frac{e_i^2}{(1-h_{ii})^2}$ (поправки Маккиннона-Уайта), что будет увеличивать мощность наших критериев.

Стр. 15 из 36

Проверка остатков на нормальность и независимость

Проверка остатков на нормальность, как правило, проводится не очень точными методами, такими, как визуальный анализ гистограммы и QQ-plot, и критериями типа Харке-Бера, потому что стандартизированные остатки зависимы.

Проверить остатки на независимость, по сути, невозможно. Если вдруг кажется, что остатки образуют временной ряд, то можно проверить остатки на наличие тренда (критериями случайности) и автокоррелированность (например, критерием Дарбина-Уотсона), что мы обсудим в лекции про временные ряды.

Стр. 16 из 36

Преобразование Бокса-Кокса

Если всё же $\{\tilde{\varepsilon}_i\}$ не очень похожи на выборку из N(0,1), то стоит задуматься о применении преобразования Бокса-Кокса к откликам модели.

Пусть все $Y_i > 0$, иначе возьмем $Y_i' = Y_i - \min_i Y_i$. Применим к вектору Y преобразование

$$V(y,\lambda) = \begin{cases} \frac{y^{\lambda}-1}{\lambda \dot{y}}, & \lambda \neq 0, \\ \dot{y} \ln y, & \lambda = 0, \end{cases}$$

где $\dot{y} = (Y_1 \dots Y_n)^{1/n}$ – среднее геометрическое отклика.

Преобразование Бокса-Кокса

Как выбирать оптимальное значени λ ?

- 1) с помощью критериев проверки нормальности;
- 2) методом максимального правдоподобия для нормального распределения;
- 3) методом Бокса-Кокса: пусть $\lambda \in (-a,a)$, для каждого λ из этого интервала (по сетке) строим регрессию отклика $V(Y,\lambda)$ по признакам X и получаем $RSS(\lambda)$, по нему строим график $R^2(\lambda)$ и по графику выбираем оптимальное λ . Если значение $R^2(\lambda)$ не сильно отличается от $R^2(1)$, то выполнять преобразование не имеет смысла.

Мультиколлинеарность

Ситуация, когда матрица X^TX является плохо обратимой, называется мультиколлинеарностью. Эта ситуация возникает, когда столбцы матрицы X близки к линейно зависимым, т.е. есть сильная совместная корреляция между признаками.

Критерием плохой обратимости, или плохой обусловленности, матрицы является ситуация, когда $\lambda_{max}/\lambda_{min}>100$, где λ_{max} и λ_{min} — максимальное и минимальное собственное значение матрицы X^TX соответственно.

Мультиколлинеарность чревата тем, что оценки откликов на новых объектах будут крайне неустойчивыми, поскольку $\widehat{\beta} \sim \mathcal{N}(\beta, \sigma^2(X^TX)^{-1})$ и у некоторых коэффициентов будет очень большая дисперсия.

Мультиколлинеарность

Методы борьбы с мультиколлинеарностью:

- Нормировка данных и их преобразование (например, методом Грама-Шмидта);
- Variance inflation factor (VIF);
- Методы понижения размерности (например, метод главных компонент);
- Ф Регуляризация.

Преобразования данных

Бывает так, что вектор-признак X_j имеет небольшой разброс значений и потому будет коррелировать с константным признаком X_0 . В этой ситуации стоит перейти к нормированным данным

$$z_{ij} = \frac{x_{ij} - \overline{x}_j}{\sqrt{s_j^2}}$$

и центрировать отклик.

Метод ортогонализации Грама-Шмидта

Пусть X представимо в виде X=GR, где R- верхнетреугольная матрица размера $k\times k$, а G- ортогональная $n\times k$ матрица, т.е. $G^TG=I_k$. Таких разложений бесконечно много. Имея одно из них, можем найти псевдообратную матрицу в виде

$$X^{+} = (R^{T}G^{T}GR)^{-1}R^{T}G^{T} = R^{-1}(R^{-1})^{T}R^{T}G^{T} = R^{-1}G^{T}.$$

Обозначим $\overline{v}=v/\|v\|$ для любого вектора v.

Процесс ортогонализации Грама-Шмидта строит ортогональные векторы (g_1, \ldots, g_k) , линейная оболочка которых совпадает с (X_1, \ldots, X_k) .

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ♥9Qペ

Родионов И.В. МСПС, Регрессия Стр. 22 из 36

Метод ортогонализации Грама-Шмидта

Процесс устроен следующим образом:

$$g_1 = X_1,$$

 $g_2 = X_2 - (\overline{g}_1, X_2)\overline{g}_1$
...

$$g_k = X_k - (\overline{g}_1, X_k)\overline{g}_1 - \ldots - (\overline{g}_{k-1}, X_k)\overline{g}_{k-1}.$$

Тогда матрица $G=(\overline{g}_1,\ldots,\overline{g}_k)$ является ортонормированной, а R – верхнетреугольная матрица, для $i\leq j$

$$r_{ij} = \begin{cases} \overline{g}_i^T X_j, & i < j, \\ \|g_j\|, & i = j. \end{cases}$$

Существует также модификация алгоритма (см. лекции Воронцова по линейной регрессии), которая позволяет не только избавиться от мультиколлинеарности, но и произвести отбор признаков.

Родионов И.В. МСПС, Регрессия Стр. 23 из 36

Variance Inflation Factor

Рассмотрим величину

$$VIF_j = \frac{1}{1 - R_j^2},$$

где R_i^2 – коэффициент детерминации модели

$$X_j = c_0 + c_1 X_1 + c_{j-1} X_{j-1} + \ldots + c_{j+1} X_{j+1} + \ldots + c_k X_k.$$

Логично, что если R_j^2 высок, то признак X_j хорошо объясняется остальными признаками, и его надо удалить. Рекомендуется удалять признак, если $VIF_i > 5$.

Родионов И.В.

Гребневая регрессия

Всё это время мы искали оценки коэффициентов регрессии как точку минимума функционала

$$\widehat{\beta} = \arg\min_{\beta} \sum_{i=1}^{n} \left(y_i - \sum_{j=0}^{k} \beta_j x_{ij} \right)^2 = \arg\min_{\beta} \|Y - X\beta\|^2.$$

Решение $\widehat{\beta}=(X^TX)^{-1}X^TY$ может иметь очень большую норму из-за плохой обустовленности матрицы X^TX , поэтому для большей устойчивости решения можно штрафовать большие значения нормы вектора весов β . Итак, определим для $\tau>0$

$$\widehat{\beta}_{\textit{ridge}} = \arg\min_{\beta} \left(\| \mathbf{Y} - \mathbf{X} \boldsymbol{\beta} \|^2 + \tau \| \boldsymbol{\beta} \|^2 \right).$$

Гребневая регрессия

Оценку весов $\widehat{eta}_{\it ridge}$ легко найти в явном виде,

$$\widehat{\beta}_{ridge} = (X^T X + \tau I_k)^{-1} X^T Y.$$

Добавление "гребня" τI_k к матрице X^TX увеличивает все её собственные значения на τ , но не изменяет её собственных векторов. В результате матрица становится хорошо обусловленной, оставаясь в то же время "похожей" на исходную.

Гребневая регрессия

Недостаток метода в том, что $E\widehat{\beta}_{ridge}=(I_k-\tau W)\beta$, где $W=(X^TX+\tau I_k)^{-1}$, т.е. чем больше λ , тем больше смещение оценки вектора весов. Но зато норма матрицы ковариаций $Var\widehat{\beta}_{ridge}=\sigma^2 WX^TXW$ с ростом τ уменьшается.

Как выбирать оптимальное значение au?

Теорема.
$$\exists \ \tau : E \|\widehat{\beta}_{\textit{ridge}} - \beta\|^2 < E \|\widehat{\beta} - \beta\|^2.$$

Единственная проблема, что на практике такое значение au находить пока не научились, поэтому au выбирается по следующему правилу: фиксируют некое не очень большое M и полагают au таким, что $\frac{\lambda_{max}+ au}{\lambda_{min}+ au}=M$. Ну или берут au от 0.1 до 0.4, если матрица X стандартизирована.

Родионов И.В. МСПС, Регрессия Стр. 27 из 36

Least absolute shrinkage and selection operator

Помимо L_2 -, существует ещё масса регуляризаций, наиболее популярной из которых является L_1 -регуляризация, или LASSO Тибширани.

$$\widehat{\beta}_{lasso} = arg \min_{\beta} (\|Y - X\beta\|^2), \quad \sum_{j=1}^{k} |\beta_j| < \kappa.$$

K сожалению, явной формы оценки $\widehat{eta}_{\mathit{lasso}}$ не существует.

При больших значениях κ решение совпадает с решением по методу наименьших квадратов. Чем меньше κ , тем больше коэффициентов β_j обнулятся (по теореме Куна-Такера) и тем меньше признаков войдут в уравнение регрессии. Т.е. по сути происходит отбор (селекция) признаков, что выгодно отличает LASSO от остальных видов регуляризации.

Проблема выбросов

Не секрет, что при наличии выбросов в данных качество приближения в линейной регрессии может сильно ухудшиться (см. тот же квартет Энскомба). Методы решения этой проблемы:

- 1) удалить выбросы (например, с помощью расстояния Кука);
- 2) воспользоваться методами построения регрессии, которые устойчивы к выбросам (например, робастными регрессионными моделями или методом Тейла).

Проблема выбросов

Искажение регрессионной модели при наличии выбросов.

Расстояние Кука

Грубо говоря, это мера воздействия j-того объекта на уравнение регрессии:

$$D_{j} = \frac{\sum_{i=1}^{n} (\widehat{Y}_{i} - \widehat{Y}_{i \setminus j})^{2}}{RSS(k+1)} = \frac{e_{j}^{2}}{RSS(k+1)} \frac{h_{jj}}{(1 - h_{jj})^{2}},$$

где предсказание $\widehat{Y}_{i\setminus j}$ получено по модели, обученной по всем объектам, кроме j-того, а h_{jj} – элемент матрицы $H = X(X^TX)^{-1}X^T$.

Выбирать, какие объекты выбрасывать, можно по методу крутого склона (отсекать те объекты, D_j которых значимо больше остальных) или по тому, превысил ли D_j заранее заданный порог. Варианты порогов: $D_j > 1, \ D_j > 4/n,$ $D_i > 3\overline{D}$. Или по графику зависимости D_i от \widehat{Y}_i .

В рамках регрессионной модели

$$y_i = \beta_0 + \sum_{j=1}^k \beta_j x_{ij} + \varepsilon_i, \ 1 \le i \le n,$$

выбираем

$$\widehat{\beta}_{j} = med \left\{ \frac{y_{i} - y_{k}}{x_{ij} - x_{kj}}, i \neq k \right\}, \ \widehat{\beta}_{0} = med \left\{ y_{i} - \sum_{j=1}^{k} \widehat{\beta}_{j} x_{ij} \right\}.$$

Поскольку используется медиана, данный метод является устойчивым к выбросам. Однако он плохо реагирует на мультиколлинеарность.

Родионов И.В. МСПС, Регрессия Стр. 32 из 36

Робастные регрессионные модели

Ранее для поиска оценки вектора параметров в линейной модели мы использовали метод наименьших квадратов

$$\widehat{eta} = arg\min_{eta} \mathcal{R}(Y - Xeta),$$
 где $\mathcal{R}(x) = \|x\|^2.$

Почему бы не использовать другие функции \mathcal{R} , для которых оценка вектора параметров будет не так сильно зависеть от выбросов, как в случае оценки методом наименьших квадратов? Будем считать, что

$$\mathcal{R}(x) = \sum_{i=1}^{n} \rho(x_i).$$

Требуем, чтобы такие функции $\rho(x)$ были: 1) симметричными, 2) неотрицательными, 3) монотонно неубывающими при x>0.

Родионов И.В. МСПС, Регрессия Стр. 33 из 36

Робастные регрессионные модели

Если ρ дифференцируема, то $\psi=\rho'$ называют функцией влияния. С помощью неё поиск оценки можно проводить, решая систему уравнений

$$\sum_{i=1}^{n} \psi \left(y_i - \sum_{j=1}^{k} x_{ij} \beta_j \right) x_{ij} = 0, \ 1 \le j \le k.$$

Чтобы метод был устойчивым к выбросам, выбирают модели с ограниченной функцией влияния (в МНК функция влияния равна 2x и не ограничена). Проблема в том, что для решения такой системы методы линейной алгебры, как правило, не помогают, и приходится обращаться к численным методам оптимизации, например, методу сопряженных градиентов.

Робастные регрессионные модели

Примеры функций ρ :

- 1) $L_1: \rho(x) = |x|;$
- 2) Хьюбер: $\rho(x) = \frac{x^2}{2}I(|x| \le k) + k(|x| \frac{k}{2})I(|x| > k);$
- 3) $L_p: \rho(x) = |x|^p/p$;
- 4) Коши: $\rho(x) = \frac{c^2}{2} \ln(1 + (\frac{x}{c})^2);$
- 5) Мешалкин: $\rho(x) = 1 \exp(-\frac{x^2}{2\sigma});$
- 6) German-Macclure: $\rho(x) = \frac{x^2}{2(1+x^2)}$;

В моделях L_1 , Коши и Макклура решение не обязательно единственно. Параметр в модели Хьюбера обычно выбирают равным k=1.345, кроме того, оценки методом Хьюбера близки к асимптотически эффективным.

Стр. 35 из 36

Finita!