Introduction to Integer Programming

Dr. Goutam Sen
Assistant Professor
Industrial and Systems Engineering
Indian Institute of Technology, Kharagpur

References

- Hamdy. A. Taha (2002) Operations Research: An Introduction, 8th edition, Prentice Hall of India.
- F. Hillier and G. Lieberman (2005) Introduction to Operations Research, 8th edition, McGraw-Hill.
- G. L. Nemhauser and L. A. Wolsey, Integer and Combinatorial Optimization, Wiley, 1999.

Some Definitions

- Integer linear Programming(ILP)
- Mixed Integer Program(MIP)
- Binary Integer Program(BIP)

An Example: Capital Budgeting

	Expenditure(million \$)/yr			
Project	1	2	3	Returns (million \$)
1	5	1	8	20
2	4	7	10	40
3	3	9	2	20
4	7	4	1	15
5	8	6	10	30
Available funds(million \$)	25	25	25	

Formulation

Decision variable x_i :

$$x_j = \begin{cases} 1, & \text{if project } j \text{ is selected} \\ 0, & \text{if project } j \text{ is not selected} \end{cases}$$

The ILP Model is:

Maximize $z=20x_1+40x_2+20x_3+15x_4+30x_5$ Subject to:

$$5x_1 + 4x_2 + 3x_3 + 7x_4 + 8x_5 \le 25$$

$$x_1 + 7x_2 + 9x_3 + 4x_4 + 6x_5 \le 25$$

$$8x_1 + 10x_2 + 2x_3 + x_4 + 10x_5 \le 25$$

$$x_1$$
, x_2 , x_3 , x_4 , x_5 ={0,1}

The Optimal Integer solution is:

$$x_1=x_2=x_3=x_4=1$$
, $x_5=0$, z=95 (million \$)

Relaxed LP solution:

 x_1 =0.5789, x_2 = x_3 = x_4 =1, x_5 =0.7368, z=108.68(million\$) Why rounding does not work?

Assignment: Write a concise formulation for the project selection problem.

Set Covering Problem

Formulation

Decision variable:

$$x_j = \begin{cases} 1, a \text{ telephone is installed in location } j \\ 0, otherwise \end{cases}$$

The ILP Model is:

Maximize z =
$$x_1+x_2+x_3+x_4+x_5+x_6+x_7+x_8$$

Subject to:

$v_{\perp} + v_{\perp} > 1$	(Stroot A)	$x_1 + x_6 \ge 1$	(Street G)
$x_1 + x_2 \ge 1$		$x_4 + x_7 \ge 1$	(Street H)
$x_2 + x_3 \ge 1$		$x_2 + x_4 \ge 1$	
$x_4+x_5 \ge 1$			
$x_7 + x_8 \ge 1$	(Street D)	$x_5 + x_8 \ge 1$	
$x_6 + x_7 \ge 1$	(Street E)	$x_3 + x_5 \ge 1$	(Street K)
$x_2 + x_6 \ge 1$	(Street F)	$x_j = (0,1), j=1$.,2,8

Optimum solution of problem requires installing four telephones at intersections 1,2,5 and 7.

Assignment: Write a concise formulation for this set covering problem

Either-Or Constraints

• Either
$$3x_1 + 2x_2 \le 18$$

Or $x_1 + 4x_2 \le 16$

These two above inequalities are equivalent to:

$$3x_1 + 2x_2 \le 18 + My$$

 $x_1 + 4x_2 \le 16 + M(1-y)$

where, y is an auxiliary variable must be 0 or 1.

Assignment:

 $y=\min(u_1,u_2)$, Write a formulation to find y.

How to represent either-or variables?

0-1 Knapsack Problem

- What is knapsack problem?
- Cost and Profit of each item are given.
- Capacity or Budget constraint(s)
- To select items to maximize total profit

$$\max \left\{ \sum_{j=1}^{n} c_j x_j : \sum_{j=1}^{n} a_j x_j \le b, x \in B^n \right\}$$

- Multi-dimensional knapsack problem
- Why Knapsack constraint is so important?

Assignment Problem

Objective function:

Minimize
$$\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$

Subject to:

$$\sum_{j=1}^{n} x_{ij} = 1 \quad \text{for i=1,....,m}$$

$$\sum_{i=1}^{m} x_{ij} \leq 1 \quad \text{for j=1,....,n}$$

$$x_{ij} = \{0,1\}$$

- Can you solve this problem without using any solver?
- Special characteristic of the formulation totally unimodular

Traveling Salesman Problem

Decision variable:

 x_{ij} =1 if j immediately follows i on the tour, x_{ij} =0 otherwise

Objective function:

Minimize $\sum_{(i,j)\in A} c_{ij} x_{ij}$

Subject to:

$$\sum_{\{i:(i,j)\in A\}} x_{ij} = 1 \quad \text{for } j \in V$$

$$\sum_{\{j:(i,j)\in A\}} x_{ij} = 1 \quad \text{for } i \in V$$

$$\sum_{\{(i,j)\in A: i\in U, j\in U\}} x_{ij} \le |U| -1 \text{ for } 2 \le |U| \le |V| -2$$

- Complexity of the formulation
- Possible solution strategy

Choices in Model Formulation

```
\max\{cx:Ax \le b, x \in Z^n\}
is a valid IP formulation if S=\{x \in Z^n:Ax \le b\}
```

Example:

 $S=\{(0000),(1000),(0100),(0010),(0001),(0110),(0101),(0011)\}$

$$S = \{x \in B^4 : 93x_1 + 49x_2 + 37x_3 + 29x_4 \le 111\}$$

$$S = \{x \in B^4 : 2x_1 + x_2 + x_3 + x_4 \le 2\}$$

S={
$$x \in B^4$$
: $2x_1 + x_2 + x_3 + x_4 \le 2$
 $x_1 + x_2 \le 1$
 $x_1 + x_3 \le 1$
 $x_1 + x_4 \le 1$ }

- Which formulation is better and why?
- Why is formulation more important than solution algorithm?

Fixed Charge Problem

Three telephone companies: Vodafone, Airtel and Idea.

Vodafone: flat Rs 16 per month plus Rs.0.25 a minute

Airtel: flat Rs 25 per month plus Rs. 0.21 a minute

Idea: flat Rs. 18 per month plus Rs. 0.22 a minute

Total call time per month = 200 minutes

Problem: how to distribute calls to these three operators to minimize the

monthly telephone bill?

Decision Variables:

 x_1 =Vodafone minutes per month

 x_2 = Airtel minutes per month

 x_3 = Idea minutes per month

 $y_1 = 1$ if $x_1 > 0$, and 0 if $x_1 = 0$

 $y_2=1$ if $x_2 > 0$, and 0 if $x_2=0$

 y_3 =1 if $x_3 > 0$, and 0 if x_3 =0

Link Constraint: $x_j \leq My_j$, j=1,2,3

Formulation

Minimize $z=0.25x_1+0.21x_2+0.22x_3+16y_1+25y_2+18y_3$

Subject to:

$$x_1 + x_2 + x_3 = 200$$

$$x_1 \le 200 \ y_1$$

$$x_2 \le 200 \ y_2$$

$$x_3 \le 200 \ y_3$$

$$x_1, x_2, x_3 \ge 0$$

$$y_1, y_2, y_3 = \{0,1\}$$

Optimum Solution yields x_3 =200, y_3 =1 and all remaining variables are equal to zero.

y variables are called set-up variables, also found in facility location problems. If there is no set-up cost (flat rate), these variables are not needed.

Branch & Bound Algorithm

- You cannot solve an IP directly. Why?
- There are efficient solution algorithms for LP. So, use LP to solve the IP.
- LP relaxation of IP may give non-integer solution
- Add constraints and modify LP solution space to get to the integer solution

IP:

Maximize $z = 5x_1 + 4x_2$

Subject to:

$$x_1 + x_2 \le 5$$

$$10x_1 + 6x_2 \le 45$$

 x_1 , x_2 nonnegative integer

On solving the LP1 ($x_1, x_2 \ge 0$), the optimum solution found is $x_1 = 3.75, x_2 = 1.25$, and z=23.75 (upper bound to the IP, but no lower bound has been found at this stage)

Because the optimum LP1 solution does not satisfy the integer requirements, the B&B algorithm modifies the solution space to reach the ILP optimum. How?

Source: Taha(2002)

Illustration of B&B Algorithm

- First, select one of the integer variable whose optimum value at LP1 is not integer.
- On selecting x_1 (=3.75) ,the region $3 < x_1 < 4$ of the LP1 solution space contains no integer values of x_1 , and thus can be eliminated. This is equivalent to replace the original LP1 with two new LPs.

```
LP2 : LP1 + (x_1 \le 3)
LP3 : LP1 + (x_1 \ge 4)
```

- Optimal solution of LP2: x_1 =3, x_2 =2, and z=23 (Integer-Feasible to IP); Set lower bound = 23, and remember the incumbent solution: (3,2) Fathom LP2; Why? Fathoming by integer feasibility
- Optimum solution of LP3: x_1 =4, x_2 =0.83, and z=23.33 (fathom by bound)
- Optimal solution to the IP: z=23 (the lower bound from B&B), solution (3,2)

B&B tree

LP2 provide a lower bound on optimum objective value of the original ILP

B&B tree if LP3 is solved before LP2

Summary of the B&B Algorithm (maximization problem)

Step 1: Fathoming/Bounding conditions::

- a) Optimal value of LP is inferior to the current lower bound(LB).
- b) LP yield a feasible integer solution superior to the current incumbent.
- c) LP is infeasible

Two cases:

case1:if LP fathomed and better integer solution found, update the current lower bound.

If all subproblems are fathomed, STOP. Otherwise, repeat step1 for other subproblem.

case2:If LP is not fathomed, go to step 2 for branching.

Step 2: (Branching)Select one of the integer variable x whose optimum value x^* in relaxed LP is not integer. Eliminate region : $[x^*] < x < [x^*] + 1$ by creating two subproblems corresponding to $x \le [x^*]$ and $x \ge [x^*] + 1$

Consider the next LP and go to Step 1.

B&B algorithms for minimization problem

Thank you for your attention