Relazioni di Laboratorio di Fisica Computazionale

Carlo Sana

8giugno2012

Indice

1	Inte	egrazione numerica 2
	1.1	Metodi deterministici
		1.1.1 Newton-Cotes
		1.1.2 Newton-Cotes:2°ordine
		1.1.3 Quadrature gaussiane
		1.1.4 Utilizzo
	1.2	Metodi Monte Carlo
2	Osc	illatore armonico 16
	2.1	Integrali di cammino
	2.2	Algoritmo Metropolis
		2.2.1 Analisi risultati: binning e cluster Jackknife
3	Equ	nazioni differenziali 21
	3.1^{-}	Runge-Kutta IV
	3.2	Equazione di Schrödinger
		3.2.1 Cenni teorici
		3.2.2 Buca di potenziale sferico
		3.2.3 Effetto tunnel
		3.2.4 Diffrazione da doppia fenditura
		3.2.5 Equazione del calore

Capitolo 1

Integrazione numerica

Si vuole calcolare il valore dell'integrale definito di una funzione reale di variabile reale in una dimensione:

$$I = \int_{x_{min}}^{x_{max}} f(x) \, dx$$

I metodo di integrazione numerica implementati si suddividono in metodi deterministici e metodi Monte Carlo.

1.1 Metodi deterministici

Le prime routine di integrazione deterministica sono un'implementazione delle formule di Newton-Cotes (al primo e secondo ordine) e del metodo delle quadrature gaussiane. Per aumentare la precisione del calcolo, il dominio di integrazione viene suddiviso in sottointervalli. La larghezza di ogni intervallo è uniforme ed è possibile scegliere il numero di intervalli in cui si vuole dividere il dominio di integrazione prima di chiamare le funzioni. Per ottenere la stima dell'integrale è necessario sommare le stime degli integrali ottenute per i sottointervalli.

Nel nostro caso n sarà il numero di sottointervalli. Definiamo così in modo naturale una partizione dell'insieme di integrazione:

$$h = \frac{x_{max} - x_{min}}{n}$$
 \Longrightarrow $a_i = x_{min} + ih$ per $i = 0, 1, ..., n$

Nel caso gli estremi di integrazione sono scambiati, ossia $x_{min} > x_{max}$, l'integrazione avviene comunque correttamente, visto che in questo caso h sarà negativo.

1.1.1 Newton-Cotes

Le formule di Newton-Cotes si ottengono interpolando la funzione integranda con polinomi di Lagrange. Il polinomio di Lagrange j-esimo di grado n è definito come:

$$l_j^n(x) = \prod_{i=0, i \neq j}^n \frac{x - x_i}{x_j - x_i}$$

Come si può vedere è un polinomio di grado n, definito in base alla partizione scelta per l'intervallo, con la proprietà:

$$l_i^n(x_i) = \delta_{ij}$$

E' ora immediato costruire un polinomio P(x) tale che $P(x_i) = f(x_i) \ \forall \ 0 < i < n$. Questo polinomio è il seguente:

$$P(x) = \sum_{i=0}^{n} f(x_i) l_i^n(x)$$

La stima dell'integrale diventa così:

$$I = \int_{x_{min}}^{x_{max}} P(x) dx = \int_{x_{min}}^{x_{max}} \sum_{i=0}^{n} f(x_i) l_i^n(x) = \sum_{i=0}^{n} f(x_i) \omega_i$$

Si dimostra inoltre che, con un cambio di variabile:

$$\omega_j = \int_{x_{min}}^{x_{max}} l_i^n(x) dx = \int_0^n \prod_{i=0}^n \frac{z-i}{j-i} dz$$

indipendente dall'intervallo di integrazione.

Questa è ovviamente una stima dell'integrale e si dimostra che l'errore, utilizzando n+1 punti è uguale a :

$$E_n = \frac{1}{(n+1)!} \int_{x_{min}}^{x_{max}} f^{n+1}(\xi) \prod_{i=0}^{n} (x - x_i) dx$$

dove ξ è un punto interno all'intervallo. L'errore è facilmente sovrastimabile, valutando il massimo della derivata n+1-esima all'interno dell'intervallo. L'errore sulla stima dell'integrale, però, non viene calcolato dalla routine d'integrazione. Ciò deriva dal fatto che esso è stimabile analiticamente, essendo necessario solo calcolare la derivata dell'integranda e valutarne il massimo nell'intervallo.

Newton-Cotes:1° ordine

Questo metodo consiste nell'approssimare la funzione fra due punti a_i e a_{i+1} con un segmento. L'area si ottiene calcolando l'area del trapezio sotteso da questo segmento, oppure applicando le formule di Newton-Cotes, ponendo n = 1:

$$\omega_0 = \frac{1}{2} \qquad \omega_1 = \frac{1}{2}$$

In questo caso la stima analitica dell'errore diventa:

$$|E_1(f)| = \frac{h^3}{12} f''(\xi) \le \frac{h^3}{12} \max [f''(x), x \in [x_{min}, x_{max}]]$$

Questa formula vale nel caso venga considerato un solo intervallo. Nel nostro caso, l'intervallo è stato suddiviso in n sottointervalli. Una buona sovrastima dell'errore è dunque:

$$|E_1(f)| \le \frac{h^2}{12} (x_{max} - x_{min}) \max [f''(x), x \in [x_{min}, x_{max}]]$$

1.1.2 Newton-Cotes:2° ordine

In questo caso, l'approssimazione viene fatta con polinomi di grado 2, ossia parabole. I pesi ω_i valgono:

$$\omega_0 = \frac{1}{6}$$
 $\omega_1 = \frac{2}{3}$ $\omega_2 = \frac{1}{6}$

La stima dell'errore si può scrivere come:

$$|E_2(f)| = \frac{h^5}{90} f^4(\xi) \le \frac{h^5}{90} \max [f^4(x), x \in [x_{min}, x_{max}]]$$

Come nel caso precedente, nel caso di n sottointervalli, la sovrastima corretta diviene:

$$|E_2(f)| \le \frac{h^4}{90} (x_{max} - x_{min}) \max [f^4(x), x \in [x_{min}, x_{max}]]$$

1.1.3 Quadrature gaussiane

Nel caso delle quadrature gaussiane, i punti della partizione non vengono più scelti equidistanti, ma vengono scelti in maniera più opportuna: sono gli zeri del polinomio ortogonale scelto.

E' fondamentale l'uso di polinomi ortogonali in un certo intervallo [a,b] con il peso $\omega(x)$:

$$\int_{a}^{b} \omega(x) P_n(x) P_m(x) = \delta_{m,n}$$

Si può dimostrare che la stima dell'integrale è:

$$I = \int_a^b f(x) = \sum_{i=0}^n \omega_i f(x_i)$$

dove ω_i , nel caso dei polinomi di Legendre, sono gli stessi pesi definiti per i polinomi di Lagrange costruiti sull'insieme degli zeri del polinomio di Legendre considerato. Considerando che un polinomio ortogonale di grado n in [a,b] ha n zeri in [a,b], anche i polinomi di lagrange saranno di grado n. Inoltre x_i sono gli zeri del polinomio ortogonale considerato. Gli zeri del polinomio sono stati inseriti manualmente, lasciando però al calcolatore il compito di calcolarne il valore in virgole mobile, per aumentarne la precisione. All'interno dell'algoritmo, è necessario effettuare un cambio di variabile in modo da mappare l'intervallo di integrazione nell'intervallo in cui il polinomio è ortogonale. Nel nostro caso tale intervallo è [-1,1], dato che è stato usato un polinomio di Legendre. Tale cambio di variabile è:

$$x' = 2\frac{x - x_{min}}{x_{max} - x_{min}} - 1$$
 $dx' = 2\frac{dx}{x_{max} - x_{min}}$

1.1.4 Utilizzo

Il programma "integral" si occupa di utilizzare le librerie appena discusse per stimare il valore dell'integrale di una funzione, confrontando i tre metodi discussi sopra. Per testare le routine ho utilizzato come funzioni da integrare:

$$f_1(x) = log(1+x)$$
 \Rightarrow primitiva $-x + log(1+x) + xlog(1+x)$
 $f_2(x) = x^9 - x^7 + 3$ \Rightarrow primitiva $\frac{x^{10}}{10} - \frac{x^8}{8} + 3x$

In questo modo si è potuto confrontare i tre metodi di integrazione con il valore vero dell'integrale, valutandone lo scostamento dal valore vero e confrontandolo con la stima dell'errore calcolata analiticamente. È riportata nella tabella seguente una serie di risultati ottenuti variando il numero di intervalli, ma mantenendo costanti gli estremi di integrazione. In questo caso l'intervallo di integrazione è stato [1,2]. La prima tabella si riferisce alla funzione integranda di tipo logaritmico, la seconda a quella di tipo polinomiale. La stima analitica dell'errore è stata calcolata valutando il massimo della derivata in tutto l'intervallo di integrazione. Questa risulta essere una sovrastima della stima dell'errore. Tali valori sono stati calcolati con Wolfram Mathematica e risultano essere:

funzione	$\operatorname{Max} f'$	$\operatorname{Max} f^4$
$f_1 \text{ (Log)}$	0.5	-0.0740742
f_2 (Poly)	1856	90048

Newton-Cotes I: Logaritmo

Log	Log		
Numero intervalli	Newton-Cotes I	Stima analitica errore	
10	1.388645 e - 04	4.166667e-04	
20	3.472070 e-05	1.041667e-04	
40	8.680460 e-06	2.604167e-05	
80	2.170133e-06	6.510417e-06	
160	5.425343e-07	1.627604 e-06	
320	1.356337e-07	4.069010 e-07	
640	3.390842e-08	1.017253e-07	
1280	8.477104e-09	2.543132e-08	
2560	2.119278e-09	6.357829 e-09	
5120	5.298200 e-10	1.589457e-09	
10240	1.324560 e-10	3.973643e-10	

20480	3.310918e-11	9.934107e-11
40960	8.281043 e-12	2.483527e-11
81920	2.071121e-12	6.208817e-12

Figura 1.1: Errori per Newton-Cotes I: Logaritmo

Da questo confronto si nota come l'errore scala come previsto analiticamente e rimane sempre inferiore alla stima fatta analiticamente.

Newton-Cotes II: Logaritmo

Log		
Numero intervalli	Newton-Cotes II	Stima analitica errore
10	-6.101824e-09	-8.230467e-08
20	-3.816787e-10	-5.144042e-09
40	-2.386025e -11	-3.215026e-10
80	-1.491696e-12	-2.009391e-11

160	-9.336976e-14	-1.255870e-12
320	-6.217249e-15	-7.849185e-14
640	-2.220446e-16	-4.905740e -15
1280	-1.443290e-15	-3.066088e-16
2560	-6.661338e-16	-1.916305e-17
5120	-2.664535e-15	-1.197691e-18
10240	1.443290e-15	-7.485566e-20
20480	2.220446e-15	-4.678479e-21
40960	2.220446e-15	-2.924049e-22
81920	-3.108624e-15	-1.827531e-23

in questo caso invece l'errore scala correttamente fino a quando raggiunge il valore di $10^{-15}/10^{-16}$. A quel punto smette di diminuire all'aumentare degli intervalli considerati ed inizia ad oscillare, cambiando anche di segno.

Quadrature gaussiane: Logaritmo

Log	
Numero intervalli	quadratura gaussiana
10	2.220446e-16
20	2.220446e-16
40	2.220446e-16
80	2.220446e-16
160	5.551115e-16
320	1.221245e-15
640	-3.330669e-16
1280	1.332268e-15
2560	-6.661338e-16
5120	-2.775558e-15
10240	-1.443290e-15
20480	-2.220446e-15
40960	-2.109424e-15
81920	2.997602e-15

Newton-Cotes I: Polinomio

Figura 1.2: Errori per Newton-Cotes I: Polinomio

Poly		
Numero intervalli	Newton-Cotes I	Stima analitica errore
10	1.541035e+00	1.546667e + 00
20	3.860018e-01	3.866667e-01
40	9.654698 e-02	9.666667e-02
80	2.413966e-02	2.416667e-02
160	6.035096e-03	6.041667e-03
320	1.508785 e-03	1.510417e-03
640	3.771970e-04	3.776042e-04
1280	9.429930 e-05	9.440104 e-05
2560	2.357483e-05	2.360026e-05
5120	5.893707e-06	5.900065e-06
10240	1.473427e-06	1.475016e-06
20480	3.683565e-07	3.687541e-07
40960	9.208941e-08	9.218852e-08

81920 2.302234e-08 2.304713e-08

in questo caso l'andamento è simile al caso della funzione logaritmica interpolata con il metodo dei trapezi. Si può notare che in questo caso la differenza fra l'errore stimato e l'errore di integrazione è molto piccola. In ogni caso l'errore stimato è sempre maggiore dell'errore di integrazione.

Newton-Cotes II: Polinomio

Figura 1.3: Errori per Newton-Cotes II: Polinomio

Poly		
Numero intervalli	Newton-Cotes II	Stima analitica errore
10	9.908609e-04	1.000533e-01
20	6.203492 e-05	6.253333e-03

40	3.878841e-06	3.908333e-04
80	2.424535e-07	2.442708e-05
160	1.515373e-08	1.526693e-06
320	9.471250e-10	9.541829 e-08
640	5.921663e-11	5.963643e-09
1280	3.652190e-12	3.727277e-10
2560	1.847411e-13	2.329548e-11
5120	4.263256e-14	1.455968e-12
10240	-1.705303e -13	9.099798e-14
20480	4.263256e-14	5.687374e-15
40960	-3.552714e-13	3.554608e-16
81920	4.263256e-14	2.221630e-17

anche in questo caso l'andamento è simile alla funzione logaritmica, anche se l'errore inizia ad oscillare ad un valore di $10^{-13}/10^{-14}$.

Quadrature gaussiane: Polinomio

Poly	
Numero intervalli	quadratura gaussiana
10	0.000000e+00
20	0.000000e+00
40	1.421085e-14
80	1.421085e-14
160	2.842171e-14
320	0.000000e+00
640	2.842171e-14
1280	-2.842171e-14
2560	2.842171e-14
5120	-2.842171e-14
10240	1.705303e-13
20480	-4.263256e-14
40960	3.552714e-13
81920	-2.842171e-14

Dall'analisi di questi dati è possibile trarre alcune conclusioni riguardo i diversi metodi di integrazione deterministica utilizzati. È banale notare come la precisione dell'integrazione con le formule di Newton-Cotes al II° ordine sia molto maggiore di quelle al I° ordine,

al prezzo di un costo computazionale ovviamente maggiore. Inoltre, si nota come l'errore scali nella maniera prevista fino a quando diventa troppo "piccolo" e inizia ad oscillare attorno a zero. Questo può essere dovuto alla precisione con cui sono salvati i numeri nel calcolatore, nonostante siano state usate variabili di tipo double in tutto il codice. In ogni caso, si può notare come gli errori abbiano un andamento asintotico in accordo con la previsione teorica prima che si facciano sentire gli errori di approssimazione del calcolatore.

1.2 Metodi Monte Carlo

restituisce il valore dell'integrale è:

Per metodi Monte Carlo si intendono algoritmi basati sulla generazione di dati in modo non deterministico. Generalmente vengono utilizzate sequenze di numeri casuali o pseudocasuali che verranno analizzate e manipolate opportunamente all'interno dell'algoritmo in modo da ottenere una risposta statisticamente significativa al problema. Il metodo più generale per l'integrazione Monte Carlo consiste nell'utilizzare un generatore di numeri pseudocasuali con distribuzione di probabilità piatta. La formula che

$$I = \int_{x_{min}}^{x_{max}} f(x) dx \simeq \frac{1}{n} \sum_{i} f(x_i) + o\left(\frac{1}{\sqrt{n}}\right)$$

dove gli x_i sono estratti tra x_{min} e x_{max} . n indica il numero di numeri pseudocasuali estratti

Questo metodo ha lo svantaggio di ritornare valori poco precisi nel caso la funzione integranda sia estremamente piccata intorno a un punto e zero nel resto dell'intervallo. Questo deriva dal fatto che il generatore estrae numeri in maniera "cieca", senza tenere conto della funzione.

È possibile migliorare questo aspetto, attraverso il metodo del campionamento di importanza. Esso consiste nel generare numeri secondo una distribuzione di probabilità nota e il più possibile simile alla funzione integranda.

$$I = \int_{x_{min}}^{x_{max}} f(x) dx = \int \frac{f(x)}{g(x)} (g(x)dx) \simeq \frac{1}{n} \sum_{i} \frac{f(x_i)}{g(x_i)}$$

Data la natura probabilistica dell'algoritmo, è necessario utilizzare un approccio statistico per ottenere un errore associato al valore dell'integrale. Abbiamo quindi:

$$\sigma^2 = \langle f(x)^2 \rangle - \langle f(x) \rangle^2 = \int (f(x) - I)^2 dx$$

Nel caso utilizziamo il metodo campionamento di importanza:

$$\sigma^2 = \langle \left(\frac{f(x)}{g(x)}\right)^2 \rangle - \langle \frac{f(x)}{g(x)} \rangle^2 = \int \left(\frac{f(x)}{g(x)} - I\right)^2 dx$$

si deduce così che nel caso $g(x) \simeq \frac{f(x)}{I}$ la varianza tende a zero. La difficoltà risiede, però, nel riuscire a creare un generatore di numeri *pseudocasuali* secondo una distribuzione di probabilità a piacere.

Generatori di numeri pseudocasuali

Nel nostro caso ci occuperemo di calcolare il valore dei momenti gaussiani attraverso la tecnica esposta precedentemente.

Nel programma "importanza" sono confrontate tre diverse distribuzioni di probabilità per calcolare il secondo e il quarto momento gaussiano:

$$P_{flat}(x) = 1$$
 per $x_{min} < x < x_{max}$
 $P_{root}(x) = \frac{2}{\sqrt{\pi}} e^{-x} \sqrt{x}$
 $P_{gauss}(x) = \frac{2}{\sqrt{\pi}} e^{-x^2}$

La prima distribuzione è generata dalle funzioni in ranlxd.h ed è stata assunta come corretta. Questa assunzione è necessaria visto che le altre due distribuzioni saranno generate a partire da essa. La distribuzione $P_{gauss}(x)$ è generate con il seguente cambio di variabile, a partire da due variabili casuali "piatte":

$$\hat{x_1}, \hat{x_2} \qquad 0 \le x_1, x_2 \le 1$$

$$y_1^2 = -\log(1 - x_2)\sin^2\left(\frac{\pi}{2}x_1\right)$$
$$y_2^2 = -\log(1 - x_2)\cos^2\left(\frac{\pi}{2}x_1\right)$$

La distribuzione $P_{root}(x)$ invece si ottiene con il seguente cambio di variabile:

$$\hat{x_1}$$
 $P(x_1) = \frac{2}{\pi}e^{-x_1^2}$
 $\hat{x_2}$ $P(x_2) = e^{-x_2}$

$$y_1 = x_1^2 + x_2$$
$$y_2 = x_2$$

A questo punto la distribuzione di probabilità ottenuta è:

$$P(y_1, y_2) = \frac{2}{\sqrt{\pi}} e^{-(y_1^2 + y_1)} \frac{1}{2\sqrt{y_1 - y_2}}$$

La distribuzione ricercata si ottiene integrando sulla seconda variabile. Ciò equivale ad utilizzare esclusivamente la prima variabile y_1 come variabile casuale.

Confronto tra le distribuzioni

Le diverse distribuzioni sono state confrontate nel calcolare il secondo e il quarto momento gaussiano:

$$\mu_2(x) = \int_{-\infty}^{+\infty} x^2 \frac{1}{\sqrt{\pi}} e^{-x^2} = \frac{1}{2}$$

$$\mu_4(x) = \int_{-\infty}^{+\infty} x^4 \frac{1}{\sqrt{\pi}} e^{-x^2} = \frac{3}{4}$$

Si può prevedere che la distribuzione P_{root} fornisca un errore minore, dato che è più simile alle funzioni integrande.

Figura 1.4: Confronto tra il valore dell'integrale con le diverse distribuzioni.

Valore μ_2	0.5			
N	P_{flat}	P_{gauss}	P_{root}	
1000	0.402414	0.509921	0.520847	
2000	0.478750	0.500909	0.503343	
4000	0.559025	0.516745	0.493403	
8000	0.529128	0.508603	0.496762	
16000	0.528902	0.497904	0.500056	
32000	0.527839	0.500956	0.501474	
10				

Valore μ_2	0.75		
N	P_{flat}	P_{gauss}	P_{root}
1000	0.819771	0.639290	0.761542
2000	0.734319	0.679399	0.735870
4000	0.710013	0.771816	0.742201
8000	0.824491	0.719916	0.741778
16000	0.788585	0.748977	0.748735
32000	0.718003	0.743117	0.751811

Da questo grafico si nota come l'utilizzo di distribuzioni non piatte porti a una significativa diminuizione dell'errore. Inoltre, come ci aspettavamo, la distribuzione P_{root} è quella che fornisce una stima migliore dell'integrale, a parità di numeri estratti. È necessario controllare che l'algoritmo fornisca risultati con l'andamento asintotico atteso analiticamente come verifica della sua correttezza. Si può dimostrare che l'errore di integrazione è asintotico a $\frac{1}{\sqrt{n}}$. In ordinata è stato quindi posto:

$$\frac{\sigma}{I} \simeq \frac{A}{\sqrt{n}} \longrightarrow y = \frac{\sigma}{I} \sqrt{n} \simeq A$$

Per questo motivo ci aspettiamo che nel grafico i punti siano allineati all'incirca su rette orizzontali. Il valore dell'ordinata indica, dunque, il coefficiente dell'andamento asintotico dell'errore. Da ciò possiamo dedurre che la distribuzione P_{root} , avendo come valore di A minore, è quella che fornisce un valore dell'integrale più preciso.

Figura 1.5: Andamento asintotico del "rumore".

Capitolo 2

Oscillatore armonico

Si è risolto l'oscillatore armonico quantistico monodimensionale attraverso l'utilizzo degli integrali di cammino sul reticolo. È stato scelto un approccio non-determnistico attraverso l'integrazione Monte Carlo.

Il tempo è stato discretizzato in N istanti e, ponendo T come istante finale e 0 come istante iniziale, abbiamo il passo reticolare temporale $a=\frac{T}{N}$.

2.1 Integrali di cammino

Nel formalismo del *path integral* sul reticolo è fondamentale introdurre il concetto di azione. Nel nostro caso sarà importante la definizione di azione euclidea:

$$S_E = a \sum_{i=0}^{n-1} \mathcal{L}_E(x_i, x_{i+1})$$

dove

$$\mathcal{L}_E(x_i, x_{i+1}) = \frac{m}{2} \left(\frac{x_{i+1} - x_i}{a} \right)^2 + \frac{1}{2} V(x_i) + \frac{1}{2} V(x_{i+1})$$

Si ricava un equivalente alla funzione di partizione classica definita come:

$$Z_a(0,T) = \left(\frac{m}{2\pi a}\right)^{N/2} \int \prod_{i=1}^{N-1} dx_i \ e^{-S_E}$$

e il correlatore fra due operatori di posizione è uguale a:

$$C(|l-k|) = \langle x_l | x_k \rangle = \frac{\int \prod_{i=1}^{N-1} dx_i | x_l | x_k | e^{-S_E}}{Z_a}$$

Si dimostra che:

$$C(|l-k|) = \langle x_l \, x_k \rangle = 2|\langle \tilde{E}_0 | \hat{x} | \tilde{E}_1 \rangle|^2 \exp\left(-\frac{Na}{2} \left(\tilde{E}_1 - \tilde{E}_0\right) x\right) \cosh\left[a\left(\frac{N}{2} - |l-k|\right) \left(\tilde{E}_0 - \tilde{E}_1\right)\right]$$

$$\langle \tilde{E}_0 | \hat{x} | \tilde{E}_1 \rangle = \frac{1}{\sqrt{2m\bar{\omega}}}$$

dove è stato posto

$$\bar{\omega}^2 = \omega^2 \left(1 + \frac{a^2 \omega^2}{4} \right) \qquad a\tilde{\omega} = \ln \left(1 + a\bar{\omega} + \frac{a^2 \omega^2}{2} \right) \qquad \tilde{E}_n = \tilde{\omega} \left(n + \frac{1}{2} \right)$$

Nel nostro caso, si è posto N = 32, ma l'algoritmo è indipendente da N.

Ciò che viene calcolato dall'algoritmo sono i valor medi $\langle x_l | x_k \rangle$ per ogni valore di |l-k| e i relativi errori. Da essi siamo in grado di estrarre il valore di $\langle E_0 | \hat{x} | E_1 \rangle$ e $\tilde{E}_1 - \tilde{E}_0$. Gli errori sulle grandezze secondarie sono stati calcolati con il metodo cluster jackknife.

2.2 Algoritmo Metropolis

Per calcolare $\langle x_l | x_k \rangle$ con un metodo Monte Carlo è necessario riuscire ad estrarre numeri casuali secondo la $pdf \ e^{-S_E}$. L'algoritmo Metropolis-Hastings permette di estrarre numeri casuali secondo una pdf qualsiasi a partire da un generatore "piatto".

Più in generale esso permette, dato uno spazio di configurazioni S e una pdf P(s): $S \to \mathbb{R}$, di estrarre configurazioni del sistema compatibili con la pdf voluta. Ciò è particolarmente utile in quanto non è sempre possibile trovare un cambio di coordinate che permette di ottenere la distribuzione voluta a partire da una distribuzione piatta, come è stato fatto nell'integrazione Monte Carlo discussa in 1.2.

L'algoritmo si basa sul metodo del rigetto. Poniamo di avere uno stato s nello spazio delle configurazioni. A questo punto:

- si estrae una nuova configurazione del sistema s' con il generatore di numeri random "piatto".
- si calcola il rapporto $\frac{P(s')}{P(s)}$.
- si accetta il nuovo stato estratto s' con probabilità pari a $min\left[1, \frac{P(s')}{P(s)}\right]$.

Si dimostra che gli stati del sistema vengono estratti con la pdf da noi cercata, a patto di attendere che il sistema si termalizzi. Questo è dovuto al fatto che la pdf di estrazione delle configurazioni approssima la distribuzione P solo in regime asintotico.

Implementazione dell'algoritmo Metropolis all'oscillatore armonico

Nel caso dell'oscillatore armonico la pdf ricercata è e^{-S_E} , opportunamente normalizzata. Inoltre, lo spazio delle configurazioni coincide con \mathbb{R}^N , dove N è il numero di coordinate. D'ora in poi per $\hat{e_i}$ si intenderà l'i-esimo vettore della base canonica in \mathbb{R}^N . In questo caso, grazie alla presenza dell'esponenziale nella pdf, il rapporto $\frac{P(s')}{P(s)}$ si semplifica ulteriormente, e l'algoritmo diventa:

- si estrae una nuova configurazione del sistema $\vec{x'}$: esso corrisponde a $\vec{x} + \left(\delta \ rand() \frac{\delta}{2}\right) \hat{e_i}$. rand() è un numero casuale fra 0 e 1, δ è un parametro per regolare la traslazione (in questo caso è uguale a 2). È importante notare che viene cambiata una coordinata alla volta per ogni passo del Metropolis.
- si calcola $\Delta S_E = S_E(\vec{x}') S_E(\vec{x})$

Dato che ad ogni passo del Metropolis viene modificata solo una coordinata, è possibile valutare ΔS_E in una forma più efficiente come costo computazionale.

$$\Delta S_E = a[\mathcal{L}(x_{i-1}, x_i') + \mathcal{L}(x_i', x_{i+1}) - \mathcal{L}(x_{i-1}, x_i) - \mathcal{L}(x_i, x_{i+1})]$$

Inizializzazione e termalizzazione dell'algoritmo

Prima che l'algoritmo Metropolis riesca a generare configurazioni del sistema con la pdf voluta, è necessario che entri in regime asintotico. È possibile stimare il tempo di termalizzazione dell'algoritmo graficando l'andamento dell'azione euclidea S_E in funzione del tempo markoviano.

In questo caso si è scelto di inizializzare il la configurazione di partenza in modo che tutte le variabili fossero inizializzate a zero: ossia è stato fatta una *cold start*.

Figura 2.1: Andamento dell'azione euclidea in funzione del numero di sweeps.

Come si vede nel grafico, l'azione parte da zero e cresce velocemente. Dopo circa cento sweeps si può vedere come l'algoritmo sia già in un regime asintotico. All'interno del programma è stato scelto come tempo di termalizzazione 200. Gli sweeps di termalizzazione non sono stati utilizzati per calcolare alcune grandezza.

2.2.1 Analisi risultati: binning e cluster Jackknife

Data la natura dell'algoritmo Metropolis, durante l'analisi dati è necessario considerare che le diverse configurazioni estratte non sono scorrelate l'una dall'altra. Per tenere conto di questo fenomeno, è stato necessario dividere l'insieme delle configurazioni in intervalli tali che la loro "lunghezza" in tempo markoviano sia molto maggiore del tempo di decorrelazione τ_{corr} . Esso viene ricavato da una stima approssimativa della funzione di autocorrelazione così definita:

$$\Gamma(t) = \frac{\sum_{i=0}^{t} \langle O(t_i)O(t_i+t) \rangle - \langle O(t_i) \rangle \langle O(t_i+t) \rangle}{\sum_{i=0}^{t} \langle O(t_i)^2 \rangle - \langle O(t_i) \rangle^2} \simeq \exp\left(-\frac{t}{\tau_{corr}}\right)$$

Dal grafico si può stimare τ_{corr} approssimativamente: esso risulta essere circa 4 – 5. La

Figura 2.2: Funzione di autocorellazione per ogni valore di |l-k|

larghezza degli intervalli è stata scelta pari a cento.

Per ogni intervallo è stata calcolata la media e la varianza del correlatore per ogni valore di |l-k|. In questo modo esse risultano essere scorrelate fra gli intervalli ed è così possibile utilizzare la tecnica del cluster jackknife per calcolare gli errori sulle grandezze derivate.

Definiamo a_i come il valore della grandezza primaria nell'intervallo i. Indicando con \bar{a} la media tra tutti gli a_i , definiamo a_i clusterized come:

$$a^i = \bar{a} + \frac{1}{N_{bin} - 1} \left(\bar{a} - a_i \right)$$

Si può vedere come il valore medio degli a^i (clusterized) sia uguale al valor medio degli a_i .

L'utilità del cluster Jackknife si palesa nel calcolo della varianza di grandezze che sono funzione degli a_i precedentemente definiti.

Di nuovo, per una funzione f = f(a), definiamo $\bar{f} = f(\bar{a})$ e $f^i = f(a^i)$. Grazie a queste definizioni si può dimostrare:

$$\sigma_f^2 \simeq \frac{N_{bin} - 1}{N_{bin}} \sum_i (f^i - \bar{f})^2$$

nel limite in cui $N_{bin} \to \infty$. Inoltre, è possibile calcolare la varianza di un'altra funzione secondaria, dipendente da f(a). Nel programma, abbiamo considerato dapprima a = C(|l-k|) e $f(a) = \Delta E$. In seguito, per calcolare l'elemento di matrice $W_{01} = \langle \tilde{E}_0 | \hat{x} | \tilde{E}_1 \rangle$, abbiamo posto $a = \Delta E$ e $f(a) = W_{01}$. Con questo metodo è stato possibile, dunque, calcolare le incertezze anche sulle grandezze che ci eravamo posti l'obiettivo di misurare con questa simulazione numerica. Come ulteriore test dell'algoritmo, sono state eseguite circa 4000 simulazioni. Così facendo è stato possibile avere un'idea della distribuzione di ΔE , $\sigma_{\Delta E}$, W_{01} , $\sigma_{W_{01}}$

Capitolo 3

Equazioni differenziali

La maggior parte delle equazioni differenziali è difficilmente risolubile, in alcuni casi è possibile trovare la soluzione come sviluppo in serie di potenze o in serie di Fourier, ma raramente si è in grado di conoscere la formula analitica della soluzione. Questo vale per equazioni differenziali ordinarie (ODE) e la situazione è addirittura peggiore per equazioni differenziali alle derivate parziali (PDE).

In questo capitolo ci si occuperà della soluzione numerica di equazioni differenziali ordinarie, a partire da condizioni iniziali note.

Storicamente il primo metodo studiato è quello di Eulero, che si rivela essere poco preciso, ma soprattutto facilmente migliorabile con il metodo Runge-Kutta IV.

3.1 Runge-Kutta IV

Questo metodo di soluzione numeri prevede che si discretizzi il tempo con un passo $h.\grave{\rm E}$ possibile dimostrare che l'errore, inteso come scostamento tra la soluzione esatta dell'equazione e la soluzione numerica ad un dato istante temporale n, ha un andamento asintotico pari a h^5n . L'algoritmo permette di calcolare la soluzione al tempo t_{n+1} a partire dall'istante t_n . Da ciò deriva la necessità di avere come condizione iniziale il valore della soluzione ad un dato istante per poterla evolvere nel tempo.

$$y_{n+1} = y_n + \frac{1}{6} \left(k_1 + 2k_2 + 2k_3 + k_4 \right) \tag{3.1}$$

$$t_{n+1} = t_n + h \tag{3.2}$$

dove y_{n+1} è l'approssimazione di $y(t_{n+1})$, e

$$k_1 = hf(t_n, y_n), (3.3)$$

$$k_2 = hf(t_n + \frac{1}{2}h, y_n + \frac{1}{2}k_1),$$
 (3.4)

$$k_3 = hf(t_n + \frac{1}{2}h, y_n + \frac{1}{2}k_2),$$
 (3.5)

$$k_4 = hf(t_n + h, y_n + k_3).$$
 (3.6)

L'implementazione di questo metodo di risoluzione delle equazioni differenziali ordinarie è valida per sistemi di equazioni differenziali di ordine 2: ossia riconducibili a un

sistema di 2 equazioni differenziali.

$$\begin{cases} \dot{x_1} = f_1(x_1, x_2, t) \\ \dot{x_2} = f_2(x_1, x_2, t) \end{cases}$$

Nel nostro caso è stata risolta un'equazione newtoniana, ossia della forma

$$\ddot{x} = f(x,t) \Longleftrightarrow \begin{cases} \dot{x_1} = x_2 \\ \dot{x_2} = f(x,t) \end{cases}$$

Sono state risolte le equazioni del pendolo smorzato, con una forzante sinusoidale e l'oscillatore di van der Pol.

L'algoritmo è stato implementato in due programmi diversi: il primo si limita a stampare su file i valori di x,\dot{x} per ogni istante, mentre il secondo utilizza le librerie openGL per stampare direttamente a schermo la soluzione in tempo reale. Nell'ultimo programma, inoltre è possibile aumentare o diminuire la lunghezza della "scia" per velocizzare l'esecuzione del programma.

Pendolo smorzato con forzante

Figura 3.1: Pendolo smorzato con forzante esterna nel caso di ciclo limite. B=0.5, Q=0.5 $\omega_{ext}=\frac{2}{3}$

Come detto precedentemente, si è risolto questo sistema newtoniano analiticamente non integrabile. L'equazione del moto è la seguente:

$$\ddot{\theta} = -\sin(\theta) - Q\dot{\theta} + B\cos(\omega_{ext}t)$$

Che equivale al sistema newtoniano associato, ponendo $x_1 = \theta$ e $x_2 = \dot{\theta}$.

In questo caso i coefficienti sono i seguenti:

$$B = 0.5$$

$$Q = 0.5$$

$$\omega_{ext} = \frac{2}{3}$$

Questa scelta di coefficienti impedisce al sistema di uscire dall'intervallo $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$ e il sistema dopo un transiente iniziale, si porta sull' orbita del ciclo limite. Diverso è il caso in cui si aumenta il coefficiente della forzante:

$$B = 0.3$$

$$Q = 1.4$$

$$\omega_{ext} = \frac{2}{3}$$

Oscillatore di van der Pol

Un'altro sistema studiato è l'oscillatore di van der Pol.

$$\frac{d^2x}{dt^2} - \mu(1 - x^2)\frac{dx}{dt} + x = 0$$

nella simulazione è stato posto $\mu = 4$.

Figura 3.2: Oscillatore di van der Pol. Si può notare il ciclo limite

3.2 Equazione di Schrödinger

L'equazione di Schrödinger per una particella in un potenziale armonico è un problema molto più complicato dei precedenti già trattati. In primo luogo si ha a che fare con equazioni differenziali alle derivate parziali invece che con equazioni differenziali ordinarie. Inoltre, si passa da un sistema che ha un basso numero di gradi di libertà (nel caso precedente 2) a un sistema che (teoricamente) ha infiniti gradi di libertà. Nella risoluzione di questo problema si è scelto di discretizzare lo spazio (bidimensionale in questo caso) e confinare il problema in una regione finita di spazio.

3.2.1 Cenni teorici

Nel nostro caso si è trattata l'equazione di Schrödinger indipendente dal tempo. L'hamiltoniana è quella "standard" bidimensionale.

$$\mathcal{H} = \frac{\hat{p_x}^2 + \hat{p_y}^2}{2m} + V(x, y) \longrightarrow i \frac{\partial}{\partial t} |\psi(t)\rangle = \mathcal{H} |\psi(t)\rangle$$

È noto che si può ricavare la soluzione dell'equazione come esponenziale dell'hamiltoniana:

$$|\psi(t)\rangle = e^{-i\mathcal{H}t} |\psi(0)\rangle$$

La difficoltà però risiede nel calcolare l'esponenziale dell'hamiltoniana, tenendo presente che gli autovettori dell'hamiltoniana non sono noti.

Algoritmo

L'algoritmo consiste sostanzialmente nel cercare di risolvere l'equazione precedente, approssimando in maniera opportuna l'esponenziale. In questo caso, abbiamo discretizzato lo spazio, creando un reticolo. È naturale ora associare alla funzione d'onda $\langle x,y|\Psi(t)\rangle$ una matrice complessa. Ad ogni entrata della matrice corrisponderà il valore della funzione d'onda in quel punto del reticolo.

Si decide di approssimare l'esponenziale, usandone la definizio di sviluppo in serie, ma fermandosi ad un certo ordine. È possibile scegliere l'ordine a cui fermarsi nello sviluppo, stimando l'autovalore massimo dell'hamiltoniana λ_{max} . Così facendo, infatti si ha che:

$$\left| exp\left(-i\mathcal{H}\delta t \right) - \sum_{i=0}^{n} \frac{\lambda_{max}\delta t)^{n}}{n!} \right| \simeq \frac{\left(\lambda_{max}\delta t \right)^{n+1}}{(n+1)!}$$

in questo modo, si può cercare un compromesso fra l'ordine dello sviluppo in serie e il valore del passo reticolare temporale δt .

Ad ogni passo dell'algoritmo, si calcola l'approssimazione di $exp(-i\mathcal{H}\delta t)$ fino all'ordine desiderato e poi si sostituisce $\psi(t)$ con $\psi(t+\delta t)=exp(-i\mathcal{H}\delta t)\psi(t)$.

Particella libera

In questo caso l'hamiltoniana diventa semplicemente:

$$\mathcal{H} = \frac{\hat{p_x}^2 + \hat{p_y}^2}{2m}$$

Nonostante si conoscano gli autovettori di questa hamiltoniana, si è analizzato questo problema anche per vagliare la correttezza dell'algoritmo. Si è raggiunto un compromesso fra velocità dell'evoluzione della funzione d'onda e precisione dell'evoluzione, arrestando la serie all'ordine 25, con un δt pari a 0.5. Le unità di misura utilizzate nel sistema sono sostanzialmente arbitrarie, e sono state inglobate in una costante unica. Le condizioni al contorno utilizzato sono di periodicità ai bordi.

Si è valutata inoltre l'unitarietà dell'operatore di evoluzione temporale ad ogni passo dell'algoritmo stampando su terminale il valore della norma della matrice. La norma della funzione d'onda è stata inizialmente posta uguale ad uno. L'operatore di evoluzione temporale risulta unitario, nel senso che dopo una decina di minuti di simulazione, la norma della funzione rimane inalterata: la norma differisce dall'unità a meno di fattori pari a $10^{-15/16}$.

(a) $\psi(0)$: il pacchetto è gaussia- (b) Ora ψ non ha più simmetria sfeno e monocromatico, con momento rica. Si può notare lo "spread" del diretto verticalmente verso il basso. pacchetto.

(c) Lo "spread" aumenta ancora. Si (d) La funzione d'onda inizia a notano gli effetti delle condizioni al intereferire con sè stessa. bordo

Figura 3.3: Evoluzione di un pacchetto gaussiano libero, con periodicità ai bordi.

Muro di potenziale sferico

In questo caso l'hamiltoniana utilizzata è quella completa, fornita all'inizio del capitolo. Anche in questo caso valgono le considerazioni precedenti e sono stati utilizzati gli stessi parametri di prima. In questo caso il potenziale utilizzato è il seguente:

$$V(x,y) = \begin{cases} 1 & \text{se } 0 < r < 10 \\ 0 & \text{altrimenti} \end{cases}$$

dove r è il raggio dal centro della finestra ed è misurato in pixel (o elemeti della matrice).

- (a) Pacchetto d'onda gaussiano distante
- (b) Pacchetto si scontra con la buca

Figura 3.4: Scattering di un pacchetto gaussiano monocromatico con un muro di potenziale sferico.

In questo caso, si intende visualizzare lo scattering del pacchetto d'onda contro questo potenziale sferico. Per questo motivo, è stato necessario utilizzare un griglia più grande, rispetto a prima, che passa da 200x200 a 600x600. Così facendo l'algoritmo diventa più lento di un fattore dieci circa. Questa scelta è stata necessaria per poter valutare l'andamento della funzione d'onda quando si è molto distanti dalla buca, in modo da poter considerarla "all'infinito". Ciò è dovuto anche alle condizioni al bordo utilizzate: utilizzando la periodicità al bordo, la funzione d'onda interferisce poco dopo lo scattering con sè stessa. Inoltre, non è possibile diminuire le dimensioni del pacchetto e della buca, perchè così facendo, gli errori di discretizzazione darebbero problemi.

3.2.2 Buca di potenziale sferico

Il problema è simile al caso precedente, ma ora trattiamo una buca di potenziale invece che un "muro".

$$V(x,y) = \begin{cases} -1 & \text{se } 0 < r < 20 \\ 0 & \text{altrimenti} \end{cases}$$

Inoltre, la griglia è stata ridotta da 600x600 a 500x500, per velocizzare la simulazione.

Figura 3.5: Scattering di un pacchetto gaussiano monocromatico con un muro di potenziale sferico.(continua)

3.2.3 Effetto tunnel

Si studia il fenomeno dell'effetto tunnel analizzando il comportamento del sistema per una barriera di potenziale "orizzontale" di larghezza variabile.

Barriera larga

Si è cercato di studiare quantitativamente il fenomeno dell'effetto tunnel. Qualitativamente, perchè in questo caso non si conosce il valore dell'energia. D'altronde, è possibile studiare come varia la situazione modificando i parametri che entrano in gioco nell'effetto tunnel: l'altezza della barriera di potenziale e la larghezza della stessa. In entrambi i casi è stato fissato il potenziale a 1, come nel caso dello scattering. La larghezza della barriera è stata posta uguale a 20 (nelle unità di misura del problema).

Figura 3.6: Scattering di un pacchetto gaussiano monocromatico con una buca di potenziale sferico.

Figura 3.7: Effetto tunnel contro una barrieri di potenziale larga 20.

Barriera stretta

In questo caso, si è accorciata la larghezza della barriera di potenziale. Ora esso è molto più stretta rispetto alle dimensioni spaziali del pacchetto d'onda. L'altezza della barriera è sempre pari a 1.

Figura 3.8: Effetto tunnel contro una barrieri di potenziale larga 1.

3.2.4 Diffrazione da doppia fenditura

Questa parte mira a simulare l'esperimento della doppia fenditura, di grande importanza storica per lo sviluppo della meccanica quantistica.

Per fare ciò si è inserita una barriera di potenziale molto alta (V=100) con due fenditure larghe 5. La barriera è stata posta orizzontalmente, come la barriera di potenziale nel caso dell'effetto tunnel. A causa del valore di V è stato necessario eseguire molti più calcoli rispetto ai casi precedenti per avere una buona precisione. Infatti in questo caso è stato necessario porre $\delta t=0.1$ (invece che $\delta t=0.5$ nei casi precedenti) e aumentare

l'ordine dello sviluppo in serie fino a 30. Questo è causato proprio dal fatto che gli autovalori dell'hamiltoniana sono molto più elevati, a causa della barriera di potenziale.

3.2.5Equazione del calore

Dopo aver risolto l'equazione di Schrödinger si è deciso di risolvere anche l'equazione del calore, vista la notevole similitudine tra l'equazione di Schrödinger nel caso libero e l'equazione del calore.

Schrödinger libera
$$i\frac{\partial}{\partial t}\psi(x,y,t) = -a \nabla^2\psi(x,y,t)$$
 (3.7)
Equazione del calore $\frac{\partial}{\partial t}\psi(x,y,t) = -k \nabla^2\psi(x,y,t)$ (3.8)

Equazione del calore
$$\frac{\partial}{\partial t}\psi(x,y,t) = -k \nabla^2 \psi(x,y,t)$$
 (3.8)

Come si può vedere l'unica differenza risiede nel fatto che l'equazione di Schrödinger è complessa e ha una "i" insieme alla derivata temporale. Ciò è proprio quello che permette alle soluzioni di avere un carattere ondulatorio, mentre l'equazione del calore produce soluzioni dal carattere diffusivo. Inoltre, proprio per questo motivo, l'equazione del calore risulta molto più stabile rispetto all'equazione di Schrödinger. Infatti, i parametri dell'algoritmo utilizzati questa volta sono:

$$N_{max} = 2$$
 $\delta t = 1$

Per questo motivo, inoltre è stato possibile aumentare la dimensione del reticolo fino a 500x500, mantenendo la stessa velocità di esecuzione.

Figura 3.9: Diffrazione da una doppia fenditura.