SEDMÉ CVIČENÍ

1. Která z dvojic vektorů tvoří bázi $V_2(\mathbb{R})$?

a)
$$A = ([1, 2]^T, [-3, 2]^T);$$
 b) $A = ([1, 2]^T, [-2, -4]^T).$

Najděte vektor \overline{u} , který má v této bázi souřadnice $[\overline{u}]_A = [2, -1]^T$. Vektor také načrtněte spolu s bázovými vektory.

Výsledky: a) A je báze, b) A není báze, $\overline{u} = [5, 2]^T$.

2. Jsou dány dvě báze $V_2(\mathbb{R})$:

$$A = ([1, 0, 1]^T, [1, 1, 0]^T, [0, 0, 1]^T), B = ([2, 2, 0]^T, [0, 0, 1]^T, [1, 0, 1]^T).$$

Určete souřadnice vektoru $\overline{u} = [2, 4, -1]^T$ v obou bázích: Nejprve v bázi A. Pak s A porovnejte bázi B a souřadnice \overline{u} v B určete pokud možno bez velkých výpočtů.

Výsledky: $[\overline{u}]_A = [-2,4,1]^T, [\overline{u}]_B = [2,1,-2]^T.$

3. Jsou dány tři báze $V_2(\mathbb{R})$: standardní, $A = ([1,1]^T, [-1,1]^T), B = ([2,1/2]^T, [0,1]^T).$

Najděte obě matice přechodu mezi bázemi A a B.

Dále k zadaným vektorům určete jejich souřadnice ve zbývajících dvou bázích:

- a) $[\overline{u}]_A = [1, 2]^T, \overline{u} = ?, [\overline{u}]_B = ?$
- b) $[\overline{v}]_B = [3, 0]^T, \overline{v} = ?, [\overline{v}]_A = ?$
- c) $\overline{w} = [0, 1]^T, [\overline{w}]_A = ?, [\overline{w}]_B = ?$

Výsledky: matice přechodu od A k B je $\begin{pmatrix} 5/4 & 1/2 \\ -3/4 & 1/2 \end{pmatrix}$; v opačném směru je $\begin{pmatrix} 1/2 & -1/2 \\ 3/4 & 5/4 \end{pmatrix}$. a) $\overline{u} = \begin{bmatrix} -1, 3 \end{bmatrix}^T, \begin{bmatrix} \overline{u} \end{bmatrix}_B = \begin{bmatrix} -1/2, 13/4 \end{bmatrix}^T$, b) $\overline{v} = \begin{bmatrix} 6, 3/2 \end{bmatrix}^T, \begin{bmatrix} \overline{v} \end{bmatrix}_A = \begin{bmatrix} 15/4, -9/4 \end{bmatrix}^T$, c) $\begin{bmatrix} \overline{w} \end{bmatrix}_A = \begin{bmatrix} 1/2, 1/2 \end{bmatrix}^T, \begin{bmatrix} \overline{w} \end{bmatrix}_B = \begin{bmatrix} 0, 1 \end{bmatrix}^T$.

4. Nechť $\overline{v}_1, \overline{v}_2, \overline{v}_3$ jsou vektory prostoru $V_3(\mathbb{R})$ a lineární transformace $f: \mathbb{R}^3 \to \mathbb{R}^3$ je určena následovně:

$$f(\overline{v}_1) = [1, -1, 2]^T, f(\overline{v}_2) = [0, 3, 2]^T, f(\overline{v}_3) = [-3, 1, 2]^T.$$

Určete $f(2\overline{v}_1 - 3\overline{v}_2 + 4\overline{v}_3)$.

 $\label{eq:Vysledky:} \mathbf{V} \mathbf{\acute{y}} \mathbf{sledky} \mathbf{:} [-10, -7, 6]^T.$

5. Transformace $f: \mathbb{R}^2 \to \mathbb{R}^3$ je dána následovně: $[x,y]^T \mapsto [x,y,x+y]^T$. Zjistěte jestli je f lineární transformace. Svoje tvrzení zdůvodněte.

Výsledky: f je lineární transformace, v důkaze je nutné ověřit všechny vlastnosti z definice lineární transformace

- 6. Nechť transformace $f_1:\mathbb{R}^2\to\mathbb{R}^3, f_2:\mathbb{R}^3\to\mathbb{R}^3, f_3:\mathbb{R}^3\to\mathbb{R}^2$ jsou dány předpisy
 - $f_1([x,y]^T) = [-2y, 3x, x 2y]^T$,
 - $f_2([x, y, z]^T) = [y, z, x]^T$,
 - $f_3([x,y,z]^T) = [x+z,y-z]^T$.
 - a) Dokažte, že transformace f_1, f_2, f_3 jsou lineární.

1

- b) Sestavte matice těchto zobrazení (vzhledem ke standardní bázi).
- c) Pro vektor $\overline{a} = [1, 2]^T$ počítejte postupně tyto vektory: $\overline{b} = f_1(\overline{a}), \overline{c} = f_2(\overline{b}), \overline{d} = f_3(\overline{c}).$
- d) Určete předpis pro transformaci $f_3 \circ f_2 \circ f_1$ a vypočtěte \overline{d} znovu pomocí něj.
- e) Určete předpis pro transformaci $f_1 \circ f_2 \circ f_3$

Výsledky: a) v důkazech je nutné ověřit všechny vlastnosti z definice lineární transformace,

b)
$$\begin{pmatrix} 0 & -2 \\ 3 & 0 \\ 1 & -2 \end{pmatrix}$$
; $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$; $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \end{pmatrix}$ c) $\overline{b} = [-4, 3, -3]^T$, $\overline{c} = [3, -3, -4]^T$, $\overline{d} = [-1, 1]^T$, d) $f_3 \circ f_2 \circ f_1([x, y]) = [3x - 2y, x]^T$, e) nelze.

7. Najděte jádro a obraz transformace $f: \mathbb{R}^2 \to \mathbb{R}^3$, která je dáno předpisem $f([x,y]^T) = [0,x,y]^T$. Ukažte, že f je lineární transformace.

Výsledky: Ker $f = \{[0,0]^T\}$, Im $f = \{[0,t,s]^T; t,s \in \mathbb{R}\}$, v důkaze je nutné ověřit všechny vlastnosti z definice lineární transformace

- 8. Najděte bázi a dimenzi jádra a obrazu transformace $f: \mathbb{R}^3 \to \mathbb{R}^2$, která je dána předpisem $f([x,y,z]^T) = [x-y+2z,3x-2y+4z]^T$. Výsledky: Ker $f = \{[0,2t,t]^T; t \in \mathbb{R}\}$, dim Ker f = 1, báze je např. [0,2,1], dim Im f = 2, báze je např. ([0,1],[1,0]).
- 9. Najděte bázi a dimenzi jádra a obrazu transformace $f: \mathbb{R}^2 \to \mathbb{R}^3$, která je dána předpisem $f([x,y]^T) = [x-2y,x+y,y]^T$.

Dále určete, pro kterou hodnotu $a \in \mathbb{R}$ leží vektor $v = [1, a, 1]^T$ v oboru hodnot (obrazu) transformace f, a najděte všechny vektory, které se na něj zobrazí.

Výsledky: Ker $f = \{[0,0]^T\}$, dim Ker f = 0, dim Im f = 2, báze je např. $\left([-2,1,1]^T,[1,1,0]^T\right)$, a = 4, vzor je $[3,1]^T$.

10. Pro následující transformace najděte jejich jádro.

*U každé transformace rozhodněte, jestli je injektivní a jestli je surjektivní.

(a)
$$f: \mathbb{R}^2 \to \mathbb{R}^2; f([x, y]^T) = [y, x]^T,$$

(b)
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
; $f([x, y]^T) = [0, 2x + 3y]^T$,

(c)
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
; $f([x,y]^T) = [x+y, x-y]^T$,

(d)
$$f: \mathbb{R}^2 \to \mathbb{R}^3; f([x,y]^T) = [x, y, x + y]^T,$$

(e)
$$f: \mathbb{R}^2 \to \mathbb{R}^3$$
; $f([x,y]^T) = [x-2y, -x+2y, 2x-4y]^T$,

(f)
$$f: \mathbb{R}^3 \to \mathbb{R}^2$$
; $f([x, y, z]^T) = [x + y - z, x - y + 3z]^T$.

Výsledky: a) $\{[0,0]^T\}$, b) $\{[-\frac{3}{2}t,t]^T;t\in\mathbb{R}\}$,c) $\{[0,0]^T\}$, d) $\{[0,0,0]^T\}$, e) $\{[2t,t]^T;t\in\mathbb{R}\}$, f) $\{[-t,2t,t]^T;t\in\mathbb{R}\}$.

11. Lineární transformace $f: \mathbb{R}^3 \to \mathbb{R}^2$ je dána následovně:

$$f([1,2,1]^T) = [1,2]^T, f([1,1,3]^T) = [0,3]^T, f([2,3,-1]^T) = [1,1]^T.$$

Pozn. Matice zobrazení je $\begin{pmatrix} -1 & 1 & 0 \\ 0 & 3/5 & 4/5 \end{pmatrix}$.

12. Lineární transformace $f: \mathbb{R}^3 \to \mathbb{R}^2$ je dána následovně:

$$f([1,2,1]^T) = [1,2]^T, f([1,1,3]^T) = [0,3]^T, f([2,3,-1]^T) = [1,a]^T.$$

Určete $a \in \mathbb{R}$ tak, aby $f([0,0,1]^T) = [0,4]^T$.

Výsledky: a = -15.

13. Nechť $\overline{v}_1=[1,1]^T,\overline{v}_2=[1,0]^T$ jsou vektory báze prostoru $V_2(\mathbb{R})$ (ověřte). Transformace $f:\mathbb{R}^2\to\mathbb{R}^3$ je dána obrazy $\overline{v}_1,\overline{v}_2$ následovně:

$$f(\overline{v}_1) = [-1, 2, 0]^T, f(\overline{v}_2) = [0, -3, 5]^T.$$

Najděte matici transformace f vzhledem k jednotkové bázi a následně určete $f([2,-3]^T)$.

Výsledky:
$$\begin{pmatrix} 0 & -1 \\ -3 & 5 \\ 5 & -5 \end{pmatrix}$$
, $f([2, -3]^T) = [3, -21, 25]^T$.

14. Nechť $\overline{v}_1 = [1,1,1]^T, \overline{v}_2 = [1,1,0]^T, \overline{v}_3 = [1,0,0]^T$ jsou vektory báze prostoru $V_3(\mathbb{R})$ (ověřte). Transformace $f: \mathbb{R}^3 \to \mathbb{R}^3$ je dána obrazy $\overline{v}_1, \overline{v}_2, \overline{v}_3$ následovně:

$$f(\overline{v}_1) = [2, -1, 4]^T, f(\overline{v}_2) = [3, 0, 1]^T, f(\overline{v}_3) = [-1, 5, 1]^T.$$

Najděte matici transformace f vzhledem k jednotkové bázi a následně určete $f([2,4,-1]^T)$.

Výsledky:
$$\begin{pmatrix} -1 & 4 & -1 \\ 5 & -5 & -1 \\ 1 & 0 & 3 \end{pmatrix}$$
, $f([2, 4, -1]^T) = [15, -9, -1]^T$.