Instructions

Please make a copy of this file before continuing. You can click on the "Copy to Drive" button above. It looks like this:

→ 1 Setup

We first need to install networkprocessing. This is the same file that was included in the zip folder for week 8 (in case you want to load this in your local Jupyter Notebook rather than on Google Colab).

```
!pip install -q git+https://github.com/gei1002/networkprocessing.git

Preparing metadata (setup.py) ... done
Preparing metadata (setup.py) ... done
Building wheel for networkprocessing (setup.py) ... done
Building wheel for statistics (setup.py) ... done
```

2 Loading data

Feth the sample data. This is the list of people involved in the creative roles of the Harry Potter films. The following instructions will create a Harry Potter folder.

```
!wget -q https://github.com/gei1002/sampledata/raw/main/harrypotter.zip
!unzip -q harrypotter.zip
```

3 Loading modules

```
import pandas as pd
import seaborn as sns
import networkprocessing as np
```

→ 4 Exercise instrucitons

This is the same as what you saw in the videos for week 8.

▼ 4 1

Load the Network Information spreadsheet into a dataframe called df and display it (there are only two rows, so you don't need to use head(), you can merely write the name of your dataframe df).

```
np.make_network("harrypotter")
df = pd.read_excel("harrypotter_analysis/networkInfo.xlsx",index_col=0)
df
```

Processing harrypotter/recent.txt Processing harrypotter/older.txt

	nodes	edges	avg path length	avg degree	avg weighted degree	diameter	radius	d
network_id								
recent	6	13	1.133333	4.333333	12.000000	2	1	0.8

4.2

Write a few sentences describing the differences between the older and newer networks in the Harry Potter films.

The older network has a lower avg weighted degree and density as compared to the recent network but has a higher avg path length

4.3

Load the node information spreadsheet into a new dataframe called df2. You will use this dataframe for instructions 4-9.

```
df2 = pd.read_excel("harrypotter_analysis/nodeInfo.xlsx",index_col=0)
```

4.4

Draw a barplot that compares the "degree" for the two networks (older and newer).

```
ax = sns.barplot(data=df2, x="network",y="degree")
```


2 of 5

4.5

Which node has the lowest "closeness"? Use sort_values() to find the answer. Write your answer in a new cell using markdown (the answer should be only one node).

df2.sort values(by="closeness",ascending=True).head(1)

	label	degree	weighted_degree	betweenness	normalized_betweenness	ec
11	Mike Newell	2	2	0.0	0.0	

4.6

Draw a histogram for the degrees of the "older" network. Hint: you need to select only a portion of df2.

```
older = df2["network"] == "older"
ax = sns.histplot(data=df2.loc[older],x="degree")
```


4.7

Upload your completed Jupyter Notebeook (with the .ipynb extension) it to Canvas.

4.8

Choose one of the networks ("older" or "newer") and use Gephi to change the look and feel of the network.

4.9

Save an image of your completed network and upload it to Canvas.

4.10

You have until the end of week 10 to submit these files.

4.11

If you are done and have no questions, you can leave.