PREDICTING THE BILLBOARD TOP 100: APPLYING MACHINE LEARNING TO MUSIC STREAMING DATA

DSC288R Group 2

Lindsay Sager Tiffany Tong

AGENDA

- Background
- Literature Survey
- Why Machine Learning
- Dataset Pipeline
- Feature Extraction
- Details on Models Used
- Results and Observations
- Next Steps and Risks
- References

BACKGROUND

Objective of Our Research:

Predict whether a song has reached the Billboard Top 100 based exclusively on its audio features

Value to the Music Industry:

- Tailoring music to audience preferences
- Investment in music rights
- Understanding trends

LITERATURE SURVEY

Related research fields:

- Music Information Retrieval (MIR)
- Hit Song Science (HSS)

What people tried to solve this problem:

- Logistic Regression model
- Decision trees
- Random Forest
- K-Nearest Neighbor
- Support vector machines
- Neural networks

LITERATURE SURVEY (CONT.)

Takeaways from Literature Surveys:

- Importance of data quality
- Models capable of capturing non-linear patterns (i.e. tree-based, neural nets) are more successful

Gaps to address:

- Time-series trends in hit song audio feature composition
- Analysis of feature importance in determining hit song prediction

WHY MACHINE LEARNING

- Machine Learning (ML) algorithms can identify complex patterns in large datasets.
- Song features can be numerous, subtle, and even abstract, such as "danceability" or "energy".

DATASET PIPELINE

Source Data:

- Source of truth for Billboard Top 100
- Billboard data w/ audio features
- 1.2M songs w/ audio features
- 4. 1M songs w/ audio features

7

DATASET OVERVIEW (CONT.)

16,242 hit songs w/ features (1985-2023)

16,242 non-hit songs w/ features (1985-2023)

32,484 songs w/ features (1985-2023)

FEATURE EXTRACTION AND EDA

Correlation of the Features:

- Energy and Loudness are highly positively correlated
- Acousticness is negatively correlated with Energy and loudness

FEATURE EXTRACTION AND EDA

High Priority Features:

- Danceability Top 100 slight peak shift to the right, differentiated trend from non-hits
- Energy Top 100 larger peak shifted right while non-hits are more evenly distributed
- ❖ Valence Top 100 and non-hits essentially have opposite distributions/peaks with hit songs trending to the right. There is a lot of overlap here though

FEATURE EXTRACTION AND EDA (CONT.)

Mid-Priority Features:

- Loudness Top 100 much tighter range compared to non-hits, not primary focus but could be good addition
- Speechiness Top 100 is very tight lower range, non-hits also skew lower but have a bit more distribution, not primary focus but could be good add-on feature
- Acousticness non-hits have strong peak towards upper range
- Instrumentalness Top 100 all at low end, literally no variation. non-hits also favor low end but has an overall wider distribution of values

DETAILS ON MODELS USED

Logistic Regression (LR)

- LR model training:
 - Used all the features in the dataset
- Extracted the coefficients of each feature*
- Feature concentration check:
 - Retrained the model using the 5 features with the highest absolute values of coefficients

	Feature	Coefficient	Absolute_Coefficient
7	instrumentalness	-1.189548	1.189548
3	loudness	0.763486	0.763486
1	energy	-0.512679	0.512679
6	acousticness	-0.427913	0.427913
0	danceability	0.381690	0.381690

^{*} Top 5 features w/ the highest absolute values of coefficients

Random Forest (RF)

- RF model training:
 - Used all the features in the dataset
- Single decision tree plot**
- Feature importance check
- Hyperparameter tuning:
 - Randomized Search with Cross-Validation

** One single decision tree

DETAILS ON MODELS USED (CONT.)

K-Nearest Neighbors (KNN)

- KNN model training:
 - Used all the features in the dataset
- 3D clustering of hit and non-hit songs*
 - Selected three features w/ high importance and low collinearity

^{* 3}D clustering of hit and non-hit songs

XGBoost

- XGBoost model training:
 - Used all the features in the dataset
- Hyperparameter tuning**:
 - Randomized Search with Cross-Validation
- Feature importance check

^{**} Hyperparameter tuning using RandomizedSearchCV

RESULTS AND OBSERVATIONS

Logistic Regression (LR)

- Accuracy
 - Initial model: ~ 72.74%
 - Retrained model: ~ 71.60%
- Performance of initial model
 - Confusion Matrix
 - Precision and Recall

Random Forest (RF)

- Accuracy
 - Initial model: ~ 77.16%
 - Optimized model: ~ 77.25%
- Performance of optimized model
 - Confusion Matrix
 - Precision and Recall

RESULTS AND OBSERVATIONS (CONT.)

K-Nearest Neighbors (KNN)

- Accuracy
 - ~ 72.52%
- Performance
 - Confusion Matrix
 - Precision and Recall

XGBoost

- Accuracy
 - Initial model: ~ 77.17%
 - Optimized model: ~ 78.08% (Highest)
- Performance of optimized model
 - Confusion Matrix
 - Precision and Recall
 - Learning Curve Plot (see slide 16)

RESULTS AND OBSERVATIONS (CONT.)

Learning Curve of the Optimized XGBoost Model

Limitation:

- A complex model requires a larger amount of data to start generalizing well.
- The training score and the crossvalidation score have a trend to converge if more training data is available, which indicates the model may generalize better with a larger dataset.

NEXT STEPS AND RISKS

Try other models

- Neural Networks
- Unsupervised clustering for feature engineering

Risks:

- Model overfitting
- Computational efficiency

REFERENCES

- 1. Amitansh Joshi, Amit Parolkar, Vedant Das. (2023). Spotify 1Million Tracks [Data set]. Kaggle. https://doi.org/10.34740/KAGGLE/DSV/59878
- 2. T. Li, M. Choi, K. Fu and L. Lin, "Music Sequence Prediction with Mixture Hidden Markov Models," 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 2019, pp. 6128-6132, doi: 10.1109/BigData47090.2019.9005695.
- 3. Dhruvil Dave. (2021). Billboard "The Hot 100" Songs [Data set]. Kaggle. https://doi.org/10.34740/KAGGLE/DS/1211465
- 4. Dimolitsas, Ioannis & Kantarelis, Spyridon & Fouka, Afroditi. (2023). SpotHitPy: A Study For ML-Based Song Hit Prediction Using Spotify.
- 5. Figueroa Rodolfo. (2023). Spotify 1.2M+ Songs [Data set]. Kaggle. Spotify 1.2M+ Songs (kaggle.com)
- 6. D. Herremans, Martens, D., and Sörensen, K., "Dance hit song prediction", Journal of New music Research, vol. 43, no. 3, p. 302, 2014.
- 7. Ioannis Karydis, Aggelos Gkiokas, Vassilis Katsouros. Musical Track Popularity Mining Dataset. 12th IFIP International Conference on Artificial Intelligence Applications and Innovations (AIAI), Sep 2016, Thessaloniki, Greece. pp.562-572, (10.1007/978-3-319-44944-9_50). (hal-01557622)
- 8. Middlebrook, Kai & Sheik, Kian. (2019). Song Hit Prediction: Predicting Billboard Hits Using Spotify Data.
- 9. Miller Sean. (2021) Billboard Hot weekly charts [Data set]. Data World, Kaggle. Billboard Hot weekly charts dataset by kcmillersean | data.world
- 10. Ni, Y., Santos-Rodriguez, R., Mcvicar, R., De Bie, T.: Hit song science once again a science. In: 4th International Workshop on Machine Learning and Music (2011)
- 11. Pachet, F. (2011) Hit Song Science. In Tao, Tzanetakis & Ogihara, editor, Music Data Mining, CRC Press/Chapman Hall
- 12. Pachet, F. and Roy, P. (2008) Hit Song Science is Not Yet a Science. Proceedings of Ismir 2008, pages 355-360, Philadelphia, USA
- 13. A. H. Raza and K. Nanath, "Predicting a Hit Song with Machine Learning: Is there an apriori secret formula?," 2020 International Conference on Data Science, Artificial Intelligence, and Business Analytics (DATABIA), Medan, Indonesia, 2020, pp. 111-116, doi: 10.1109/DATABIA50434.2020.9190613.
- 14. Spotify. Spotify for Developers. Retrieved January 19, 2024, from https://developer.spotify.com/documentation/
- 15. L. -C. Yang, S. -Y. Chou, J. -Y. Liu, Y. -H. Yang and Y. -A. Chen, "Revisiting the problem of audio-based hit song prediction using convolutional neural networks," 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 2017, pp. 621-625, doi: 10.1109/ICASSP.2017.7952230.
- 16. Zhao, M., Harvey, M., Cameron, D., Hopfgartner, F., Gillet, V.J. (2023). An Analysis of Classification Approaches for Hit Song Prediction Using Engineered Metadata Features with Lyrics and Audio Features. In: Sserwanga, I., et al. Information for a Better World: Normality, Virtuality, Physicality, Inclusivity. iConference 2023. Lecture Notes in Computer Science, vol 13971. Springer, Cham. https://doi.org/10.1007/978-3-031-28035-1_21