DDS 2

Les ptits devoirs du soir

Xavier Pessoles

Exercice 192 - Mouvement TT - *

B2-12

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$ et $\overrightarrow{BC} = \mu(t) \overrightarrow{j_0}$.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\lambda = 10 \,\mathrm{mm}$ et $\mu = 10 \,\mathrm{mm}$.

Question 3 Retracer le schéma cinématique pour $\lambda = 20 \,\mathrm{mm}$ et $\mu = 10 \,\mathrm{mm}$.

Corrigé voir 192.

Exercice 191 - Mouvement TT - *

C2-05

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$ et $\overrightarrow{BC} = \mu(t)\overrightarrow{j_0}$.

Question 1 Quel est le mouvement de 2 par rapport à 0.

Question 2 Donner l'équation du mouvement du point C dans le mouvement de 2 par rapport à 0.

On souhaite que le point C réalise un cercle de centre A et de rayon R = 10 cm à la vitesse $v = 0.01 \text{ m s}^{-1}$.

Question 3 Donner la relation liant $\theta(t)$, v et R.

Par ailleurs la vitesse du point C est donnée par $\overrightarrow{V(C,2/0)} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{AC}\right]_{\mathcal{R}_0} = R \dot{\theta} \overrightarrow{e_{\theta}}.$

Question 4 *Donner les expressions de* $\lambda(t)$ *et* $\mu(t)$ permettant la réalisation de cette trajectoire en fonction de v, R et du temps.

Question 5 *En utilisant Python, tracer* $\lambda(t)$, $\mu(t)$ et la trajectoire générée.

Indications:

2. $x_C(t) = \lambda(t)$ et $y_C(t) = \mu(t)$. 3. $\theta(t) = \frac{\nu}{R}t$.

4. $\lambda(t) = R \cos\left(\frac{v}{R}t\right), \mu(t) = R \sin\left(\frac{v}{R}t\right)$

Corrigé voir 191.

Exercice 190 - Mouvement TT - *

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$ et

Question 1 Déterminer $\overrightarrow{V(C,2/0)}$ par dérivation vectorielle ou par composition.

Question 2 Donner le torseur cinématique $\{\mathcal{V}(2/0)\}$ au point C.

Question 3 *Déterminer* $\Gamma(C,2/0)$.

Indications:
1.
$$V(C, 2/0) = \dot{\lambda}(t)\overrightarrow{i_0} + \dot{\mu}(t)\overrightarrow{j_0}$$
.
2. $\{\mathcal{V}(2/0)\} = \begin{cases} \overrightarrow{0} \\ \dot{\lambda}(t)\overrightarrow{i_0} + \dot{\mu}(t)\overrightarrow{j_0} \end{cases} \}_{\forall P}$
3. $\overrightarrow{\Gamma(C, 2/0)} = \ddot{\lambda}(t)\overrightarrow{i_0} + \ddot{\mu}(t)\overrightarrow{j_0}$.

Corrigé voir 190.

Exercice 189 - Mouvement TT - *

B2-14

B2-15

C1-05 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$ et $\overrightarrow{BC} = \mu(t)\overrightarrow{j_0}$. $G_1 = B$ désigne le centre d'inertie de 1,et m_1 sa masse. $G_2 = C$ désigne le centre d'inertie de 2 et m_2 sa masse.

Un vérin électrique positionné entre $\mathbf{0}$ et $\mathbf{1}$ permet de maintenir $\mathbf{1}$ en équilibre. Un vérin électrique positionné entre $\mathbf{1}$ et $\mathbf{2}$ permet de maintenir $\mathbf{2}$ en équilibre.

L'accélération de la pesanteur est donnée par $\overline{g} = -g \overrightarrow{j_0}$.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Donner le torseur de chacune des actions mécaniques.

Question 3 Simplifier les torseurs dans l'hypothèse des problèmes plans.

Question 4 Proposer une démarche permettant de déterminer les efforts que doivent développer chacun des vérins pour maintenir le mécanisme en équilibre.

Corrigé voir 189.

Exercice 188 – La Seine Musicale*

B2-07 Pas de corrigé pour cet exercice.

Soit le schéma-blocs suivant.

Question 1 En considérant que la perturbation $C_{pert}(p)$ est nulle, déterminer $H_f(p) = \frac{\Omega_m(p)}{\Omega_c(p)}$ sous forme canonique.

Question 2 Exprimer la fonction de transfert $H_r(p) = \frac{\Omega_m(p)}{C_{pert}(p)} \ en \ la \ mettant \ sous \ la \ forme : H_r(p) = \\ -\frac{\alpha \left(1+\tau p\right)}{1+\gamma p+\delta \, p^2}. \ Exprimer \ \alpha, \ \tau, \ \gamma \ et \ \delta \ en \ fonction \ des \ différents \ paramètres \ de \ l'étude.$

Question 3 Exprimer $X_{ch}(p)$ en fonction de $\Omega_m(p)$ et $C_{pert}(p)$.

Corrigé voir 188.

Exercice 187 - Mouvement RR *

B2-12

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec $R = 20 \,\text{mm}$ et $\overrightarrow{BC} = L \overrightarrow{i_2}$ avec $L = 15 \,\text{mm}$.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta = \frac{\pi}{4}$ rad et $\varphi = \pi$ rad.

Question 3 Retracer le schéma cinématique pour $\theta=\frac{\pi}{4}$ rad et $\varphi=-\frac{\pi}{4}$ rad.

Corrigé voir 187.

3

Exercice 186 - Mouvement RR *

B2-14

B2-15

C1-05 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec $R = 20 \, \text{mm}$ et $\overrightarrow{BC} = L \overrightarrow{i_2}$ avec $L = 15 \, \text{mm}$. De plus :

- G_1 désigne le centre d'inertie de 1 et $\overrightarrow{AG_1} = \frac{1}{2}R\overrightarrow{i_1}$, on note m_1 la masse de 1;
- G_2 désigne le centre d'inertie de **2** et $\overrightarrow{BG_2} = \frac{1}{2}L\overrightarrow{i_2}$, on note m_2 la masse de **2**.

Un moteur électrique positionné entre **0** et **1** permet de maintenir **1** en équilibre. Un moteur électrique positionné entre **1** et **2** permet de maintenir **2** en équilibre.

L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Donner le torseur de chacune des actions mécaniques.

Question 3 Simplifier les torseurs dans l'hypothèse des problèmes plans.

Question 4 Proposer une démarche permettant de déterminer les couples que doivent développer chacun des moteurs pour maintenir le mécanisme en équilibre.

Corrigé voir 186.

Exercice 185 – Machine de rééducation SysReeduc *

B2-07 Pas de corrigé pour cet exercice.

On propose une modélisation par schéma-blocs dans la figure suivante.

Le moteur à courant continu est régi par les équations suivantes : $u_m(t) = e(t) + Ri(t)$, $e(t) = k_e \omega_m(t)$ et $C_{M1}(t) = k_t i(t)$.

Une étude dynamique a mené à l'équation suivante :

$$(M+m) r \rho_1 \dot{\omega}_m(t) = \frac{C_{M1}(t)}{\rho_1 r} - F_p(t)$$

avec : M la masse du chariot et m la masse du support de pied, $\rho_1=\frac{1}{10}$ le rapport de réduction du réducteur, r=46,1 mm le rayon de la poulie du transmetteur pouliecourroie, $C_{M1}(t)$ le couple délivré par le moteur et $F_p(t)$ l'effort délivré par le patient sur le support 3.

Le codeur incrémental possède 500 fentes équiréparties. Deux émetteurs-récepteurs positionnés en quadrature permettent de mesurer l'information.

Question 1 À partir des équations proposées, déterminer les fonctions de transfert K_1 , K_2 , $H_3(p)$, $H_4(p)$, K_5 , K_6 , K_7 , K_8 et K_9 .

Question 2 Montrer que le schéma-blocs peut être mis sous la forme suivante. On exprimera A, B et D en fonction des paramètres du système r, ρ_1 , k_t , k_e , R, M, m et K_8 .

Corrigé voir 185.

Exercice 184 - Mouvement RT *

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta = \frac{\pi}{4} rad et \lambda(t) = 20 \text{ mm}.$

Question 3 Retracer le schéma cinématique pour $\theta = \frac{-\pi}{4} rad et \lambda(t) = -20 \text{ mm}.$

Corrigé voir 184.

Exercice 183 - Quille pendulaire* **B2-07**

Le comportement d'un vérin est défini par le modèle continu ci-dessous.

• $q(t) = S \frac{\mathrm{d}x(t)}{\mathrm{d}t} + \frac{V}{2B} \frac{\mathrm{d}\sigma(t)}{\mathrm{d}t}$ (a);

 $\frac{\mathrm{d}^{2}x(t)}{\mathrm{d}t^{2}} = S\sigma(t) - kx(t) - \lambda \frac{\mathrm{d}x(t)}{\mathrm{d}t} - f_{R}(t) \text{ (b)}.$

- $\mathcal{L}(q(t)) = Q(p)$: débit d'alimentation du vérin $[m^3s^{-1}];$
- $\mathcal{L}(\sigma(t)) = \Sigma(p)$: différence de pression entre les deux chambres du vérin [Pa];
- $\mathcal{L}(x(t)) = X(p)$: position de la tige du vérin [m];
- $\mathcal{L}(f_R(t)) = F_R(p)$: composante selon l'axe de la tige du vérin de la résultante du torseur d'inter-effort de la liaison pivot entre tige et quille [N].

Les constantes sont les suivantes :

- *S* : section du vérin [m²];
- k: raideur mécanique du vérin $[N m^{-1}]$;
- *V* : volume d'huile de référence [m³];
- B : coefficient de compressibilité de l'huile $[N m^{-2}];$
- *M* : masse équivalente à l'ensemble des éléments mobiles ramenés sur la tige du vérin [kg];
- λ : coefficient de frottement visqueux [N m⁻¹s].

Question 1 Donner les expressions des fonctions de transfert A_1 , A_2 , A_3 et A_4 en fonction de la variable complexe p et des constantes.

Le schéma-blocs de la figure précédente peut se mettre sous la forme suivante.

Question 2 Donner les expressions des fonctions de transfert H_1 et H_2 en fonction de A_1 , A_2 , A_3 et A_4 , puis de la variable p et des constantes.

Question 3

Pour ce vérin non perturbé $(F_R = 0)$, donner sa fonction de transfert X(p)/Q(p) en fonction de la variable p et des constantes.

Corrigé voir 185.

Exercice 182 - Mouvement T - *

C2-05

B2-13

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$.

Question 1 Quel est le mouvement de 1 par rapport à 0.

Question 2 Donner l'équation paramétrique de la trajectoire du point B, point appartenant à 1 par rapport à 0.

Indications: 2. $x_B(t) = \lambda(t)$.

Corrigé voir 182.

Exercice 181 - Mouvement T - *

B2-13

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$.

Question 1 Donner le torseur cinématique $\{\mathcal{V}(1/0)\}$ au point B.

Question 2 *Déterminer* $\Gamma(B, 1/0)$.

Indications:
1.
$$\{\mathcal{V}(1/0)\} = \left\{\begin{array}{c} \overrightarrow{0} \\ \dot{\lambda}(t)\overrightarrow{i_0} \end{array}\right\}_{\forall P}$$
.
2. $\Gamma(B, 1/0) = \ddot{\lambda}(t)\overrightarrow{i_0}$.

Corrigé voir 181.

Exercice 180 - Fonctions de transfert*

B2-07

Pas de corrigé pour cet exercice.

Soit le schéma-blocs suivant.

Question 1 Déterminer la fonction de transfert en boucle ouverte. Mettre l'expression sous forme canonique et exprimer les paramètres caractéristiques.

Question 2 Déterminer la fonction de transfert en boucle fermée. Mettre l'expression sous forme canonique et exprimer les paramètres caractéristiques.

Soit le schéma-blocs suivant.

Question 3 Déterminer la fonction de transfert en boucle ouverte. Mettre l'expression sous forme canonique et exprimer les paramétrés caractéristiques.

Question 4 Déterminer la fonction de transfert en boucle fermée. Mettre l'expression sous forme canonique et exprimer les paramétrés caractéristiques. Corrigé voir 180.

Exercice 179 - Calcul de FTBO*

B2-07

Pas de corrigé pour cet exercice.

Question 1 Déterminer la FTBO dans la cas suivant.

Question 2 Déterminer la FTBO dans la cas suivant.

Question 3 Déterminer la FTBO dans la cas suivant.

Question 4 Déterminer la FTBO dans la cas suivant.

Corrigé voir 179.

Exercice 178 – Pompe à palettes ** B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AO} = e \overrightarrow{i_0}$ et $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_1}$. De plus e = 10 mm et R = 20 mm. Le contact entre $\mathbf{0}$ et $\mathbf{2}$ en B est maintenu en permanence (notamment par effet centrifuge lors de la rotation de la pompe).

Question 1 *Tracer le graphe des liaisons.*

Question 2 Retracer le schéma cinématique pour $\theta(t) = 0$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = \pi$ rad.

Question 4 En déduire la course de la pièce 2.

Corrigé voir 177.

Exercice 177 - Pompe à palettes ** B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AO} = e \overrightarrow{i_0}$ et $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$. De plus e = 10 mm et R = 20 mm. Le contact entre $\mathbf{0}$ et $\mathbf{2}$ en B est maintenu en permanence (notamment par effet centrifuge lors de la rotation de la pompe).

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = 0$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = \pi$ rad.

Question 4 En déduire la course de la pièce 2.

Corrigé voir 177.

Exercice 176 - Mouvement R *

C2-05

B2-13

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec $R = 20 \, \mathrm{mm}$.

Question 1 Quel est le mouvement de 1 par rapport à $\mathbf{0}$.

Question 2 *Quelle est la trajectoire du point B appartenant à 1 par rapport à 0.*

Question 3 Donner l'équation paramétrique de la trajectoire du point B, point appartenant à 1 par rapport à **0**.

Indications:

- 1. .
- 2.
- 3. $x_B(t) = R \cos \theta(t)$ et $y_B(t) = R \sin \theta(t)$.

Corrigé voir 175.

Exercice 175 - Mouvement R *

B2-13

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec $R = 20 \,\mathrm{mm}$.

Question 1 Déterminer $\overrightarrow{V(B, 1/0)}$ par dérivation vectorielle.

Question 2 Déterminer $\overrightarrow{V(B,1/0)}$ par une autre méthode.

Question 3 Donner le torseur cinématique $\{\mathcal{V}(1/0)\}$ au point B.

Question 4 Déterminer $\Gamma(B, 1/0)$.

Indications:

- 1. $\overrightarrow{V(B,1/0)} = R\dot{\theta}\overrightarrow{j_1}$
- 2. $\overrightarrow{V(B,1/0)} = R \dot{\theta} \overrightarrow{j_1}$
- 3. $\{\mathcal{V}(1/0)\} = \left\{\begin{array}{c} \sigma \kappa_0 \\ p \dot{\theta} \end{array}\right\}$.
- 4. $\overrightarrow{\Gamma(R,1/0)} = R \overrightarrow{\theta} \overrightarrow{i_1} R \overrightarrow{\theta}^2 \overrightarrow{i_1}$

Corrigé voir 175.

Exercice 174 - Suspension automobile **

B2-14

C1-05 Pas de corrigé pour cet exercice.

On s'intéresse à la liaison entre l'axe de la toue et le châssis du véhicule. Les notations adoptées seront les suivantes : F_C^a (respectivement F_C^r , F_C^x) désignera la composante suivant \overrightarrow{a} (respectivement \overrightarrow{r} , \overrightarrow{x}) de l'effort extérieur exercé en C. On procédera de même pour le point D.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 *Peut-on résoudre complètement le système? Pourquoi?*

Corrigé voir 174.

Exercice 173 - Suspension automobile ** C2-07 Pas de corrigé pour cet exercice.

On s'intéresse à la liaison entre l'axe de la toue et le châssis du véhicule. Les notations adoptées seront les suivantes : F_C^a (respectivement F_C^r , F_C^x) désignera la composante suivant \overrightarrow{a} (respectivement \overrightarrow{r} , \overrightarrow{x}) de l'effort

extérieur exercé en ${\cal C}.$ On procédera de même pour le point ${\cal D}.$

Question 1 En isolant l'ensemble {pneumatique + jante + axe de roue}, écrire les équations issues du principe fondamental de la statique appliqué au point C, en projection sur les axes de la base $(\overrightarrow{a}, \overrightarrow{r}, \overrightarrow{x})$ en fonction des composantes F_{sol}^a et F_{sol}^r et des dimensions d_0 , d_3 et d_4 .

Question 2 Résoudre littéralement le système.

Corrigé voir 173.

Exercice 192 - Mouvement TT - * B2-12

Question 1 *Tracer le graphe* des liaisons.

schéma cinématique pour $\lambda = 10 \, \text{mm}$ $et \mu = 10 \,\mathrm{mm}$.

schéma cinématique pour $\lambda = 20 \, \text{mm}$ $et \mu = 10 \,\mathrm{mm}$.

Exercice 191 - Mouvement TT - *

C2-05 B2-13

Question 1 Quel est le mouvement de 2 par rapport à 0.

Le point C a un mouvement quelconque dans le plan $(A, \overline{i_0}, \overline{j_0})$.

Question 2 Donner l'équation du mouvement du point C dans le mouvement de 2 par rapport à 0.

On a
$$\overrightarrow{AC} = \lambda(t) \overrightarrow{i_0} + \mu(t) \overrightarrow{j_0}$$
 et donc, on a directement
$$\begin{cases} x_C(t) = \lambda(t) \\ y_C(t) = \mu(t) \\ z_C(t) = 0 \end{cases}$$
 dans le repère $(A; \overrightarrow{i_0}, \overrightarrow{j_0}, \overrightarrow{k_0})$.

On souhaite que le point C réalise un cercle de centre A et de rayon R = 10 cm à la vitesse v = 0.01 m s⁻¹.

Question 3 Donner la relation liant $\theta(t)$, v et R.

Par ailleurs la vitesse du point C est donnée par $V(C,2/0) = \frac{d}{dt} \left[\overrightarrow{AC} \right]_{\mathcal{R}_0} = R \dot{\theta} \overrightarrow{e_{\theta}}$.

On a $v = R\dot{\theta}(t)$. Par intégration, $\theta(t) = \frac{v}{R}t$ (avec $\theta(t) = 0$ rad pour t = 0 s).

Question 4 Donner les expressions de $\lambda(t)$ et $\mu(t)$ permettant la réalisation de cette trajectoire en fonction de v, R et du temps.

Exprimons la trajectoire du point $C: \overrightarrow{AC} = R\overrightarrow{e_r} = R\cos\theta(t)\overrightarrow{i_0} + R\sin\theta(t)\overrightarrow{j_0}$. Par identification $\lambda(t) = R\cos\theta(t)$ et

Au final,
$$\begin{cases} \lambda(t) = R \cos\left(\frac{\nu}{R}t\right) \\ \mu(t) = R \sin\left(\frac{\nu}{R}t\right) \end{cases}$$

Question 5 En utilisant Python, tracer $\lambda(t)$, $\mu(t)$ et la trajectoire générée.

```
import numpy as np
import matplotlib.pyplot as plt
import math as m
R = 0.1 \# m
v = 0.01 \# m.s-1
# Temps pour faire un tour
T = 2*m.pi*R/v
les_t = np.linspace(0,T,200)
les_lambda = R*np.cos(v/R*les_t)
les_mu = R*np.sin(v/R*les_t)
plt.grid()
plt.plot(les_t, les_lambda, label="\$\\\label="\$\\\label="\$")
plt.plot(les_t,les_mu,label="$\\mu(t)$")
```



```
plt.xlabel("Temps ($s$)")
plt.ylabel("Position ($m$)")
plt.legend()
#plt.show()
plt.savefig("03_TT_01_c.pdf")
plt.cla()
plt.grid()
plt.axis("equal")
plt.plot(les_lambda,les_mu,label="Trajectoire de $C$")
plt.legend()
#plt.show()
plt.savefig("03_TT_02_c.pdf")
```


Exercice 190 - Mouvement TT - * **B2-13**

Question 1 Déterminer $\overline{V(C,2/0)}$ par dérivation vectorielle ou par composition.

Par dérivation vectorielle, on a : $\overrightarrow{V(C,2/0)} = \frac{d}{dt} \left[\overrightarrow{AC} \right]_{\Re_0} = \dot{\lambda}(t) \overrightarrow{i_0} + \dot{\mu}(t) \overrightarrow{j_0}$.

Par composition du torseur cinématique, on a : $\overrightarrow{V(C,2/0)} = \overrightarrow{V(C,2/1)} + \overrightarrow{V(C,1/0)} = \frac{d}{dt} \left[\overrightarrow{BC} \right]_{\Re} + \frac{d}{dt} \left[\overrightarrow{AC} \right]_{\Re}$ $=\dot{\lambda}(t)\overrightarrow{i_0} + \dot{\mu}(t)\overrightarrow{j_0}.$

Question 2 Donner le torseur cinématique $\{ \mathcal{V}(2/0) \}$ au point C.

$$\{\mathcal{V}(2/0)\} = \left\{ \begin{array}{c} \overrightarrow{0} \\ \dot{\lambda}(t)\overrightarrow{i_0} + \dot{\mu}(t)\overrightarrow{j_0} \end{array} \right\}_{\forall P}.$$

Question 3 Déterminer $\Gamma(C,2/0)$.

$$\begin{split} \overrightarrow{\Gamma(C,2/0)} &= \frac{\mathrm{d}}{\mathrm{d}\,t} \Big[\overrightarrow{V(C,2/0)} \Big]_{\mathscr{R}_0} = \ddot{\lambda}(t) \,\overrightarrow{i_0} + \ddot{\mu}(t) \,\overrightarrow{j_0} \,. \\ \text{Exercice 189 - Mouvement TT -} \star \end{split}$$

B2-14

B2-15

C1-05 Pas de corrigé pour cet exercice.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 *Donner le torseur de chacune des actions mécaniques.*

Question 3 Simplifier les torseurs dans l'hypothèse des problèmes plans.

Question 4 Proposer une démarche permettant de déterminer les efforts que doivent développer chacun des vérins pour maintenir le mécanisme en équilibre.

Exercice 188 - La Seine Musicale*

B2-07 Pas de corrigé pour cet exercice.

Question 1 En considérant que la perturbation $C_{pert}(p)$ est nulle, déterminer $H_f(p) = \frac{\Omega_m(p)}{\Omega_c(p)}$ sous forme canonique.

Question 2 Exprimer la fonction de transfert $H_r(p) = \frac{\Omega_m(p)}{C_{pert}(p)}$ en la mettant sous la forme : $H_r(p) = -\frac{\alpha(1+\tau p)}{1+\gamma p+\delta p^2}$. Exprimer α , τ , γ et δ en fonction des différents paramètres de l'étude.

Question 3 Exprimer $X_{ch}(p)$ en fonction de $\Omega_m(p)$ et $C_{pert}(p)$.

Exercice 187 - Mouvement RR *

B2-12

Question 1 *Tracer le graphe des liaisons.*

Question 2 Retracer le schéma cinématique pour $\theta = \frac{\pi}{4}$ rad et $\varphi = \pi$ rad.

Question 3 Retracer le schéma cinématique pour $\theta = \frac{\pi}{4}$ rad et $\varphi = -\frac{\pi}{4}$ rad.

Question 4 Retracer le schéma cinématique pour $\theta = \frac{3\pi}{4}$ rad et $\varphi = -\frac{\pi}{4}$ rad.

Exercice 186 - Mouvement RR *

B2-14

B2-15

C1-05 Pas de corrigé pour cet exercice.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 *Donner le torseur de chacune des actions mécaniques.*

Question 3 Simplifier les torseurs dans l'hypothèse des problèmes plans.

Question 4 Proposer une démarche permettant de déterminer les couples que doivent développer chacun des moteurs pour maintenir le mécanisme en équilibre.

Exercice 185 - Machine de rééducation SysReeduc *

B2-07 Pas de corrigé pour cet exercice.

Question 1 À partir des équations proposées, déterminer les fonctions de transfert K_1 , K_2 , $H_3(p)$, $H_4(p)$, K_5 , K_6 , K_7 , K_8 et K_9 .

On a:

- $u_m(t) = e(t) + Ri(t) \Rightarrow U_m(p) = E(p) + RI(p) \text{ et } C_{M1}(p) = k_t I(p) \text{ donc } K_2 = \frac{k_t}{R};$
- $u_m(r) C_{(r)}$, \dots $E(p) = k_e \Omega_m(p)$ et donc $K_7 = k_e$; $(M+m)r\rho_1 p\Omega_m(p) = \frac{C_{M1}(p)}{\rho_1 r} F_p(p) \Leftrightarrow (M+m)r^2\rho_1^2 p\Omega_m(p) = C_{M1}(p) \rho_1 r F_p(p)$ et donc $K_9 = \rho_1 r$ et
- $H_4(p)$ permet d'obtenir une position à partir d'une vitesse. Il s'agit donc d'un intégrateur et $H_4(p) = \frac{1}{p}$;
- un codeur incrémental avec 1 émetteur-récepteur permet de détecter les fentes et les « non fentes » donc ici • Un coded incremental avec 1 emetted 1-recepted permet de detecter les terres « non terres » donc les 1000 informations par tour. Avec un second émetteur, on double la résolution soit 2000 informations pour un tour soit K₈ = 2000/2π;
 • en utilisant le réducteur et le poulie courroie, on a directement K₅ = ρ₁ et K₆ = r (à convertir en mètres);
 • enfin, K₁ convertit des mètres en incréments. X_c est la consigne que doit respectée X. Pour avoir un asservissement précis, il faut donc ε = 0 et X = X_c soit ε = 0 = K₁X_C - K₈θ_m = K₁X_C - K₈ X/K₅K₆. Au final, K₁ = K/K₅K₆.

Question 2 Montrer que le schéma-blocs peut être mis sous la forme suivante. On exprimera A, B et D en fonction des paramètres du système r, ρ_1 , k_t , k_e , R, M, m et K_8 .

Exercice 184 - Mouvement RT *

B2-12 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta = \frac{\pi}{4}$ rad et $\lambda(t) = 20$ mm.

Question 3 Retracer le schéma cinématique pour $\theta = \frac{-\pi}{4}$ rad et $\lambda(t) = -20$ mm.

Exercice 183 - Quille pendulaire*

B2-07

Question 1 Donner les expressions des fonctions de transfert A_1 , A_2 , A_3 et A_4 en fonction de la variable complexe p et des constantes.

D'une part, on transforme les équations dans le domaine de Laplace : $Q(p) = SpX(p) + \frac{V}{2R}p\Sigma(p)$ et $Mp^2X(p) = \frac{V}{2R}p\Sigma(p)$ $S\Sigma(p)-kX(p)-\lambda pX(p)-F_R(p)$.

En utilisant le schéma-blocs, on a $\Sigma(p) = A_2 \left(A_1 Q(p) - X(p) \right) = A_1 A_2 Q(p) - A_2 X(p)$. Par ailleurs $\Sigma(p) = \frac{Q(p) - SpX(p)}{\frac{V}{2B}p} = Q(p) \frac{2B}{Vp} - X(p) \frac{S2B}{V}$. On a donc $A_2 = \frac{S2B}{V}$, $A_1 A_2 = \frac{2B}{Vp}$ soit $A_1 = \frac{2B}{Vp} \frac{V}{S2B} = \frac{C}{Vp} \frac{V}{S2B}$

1

On a aussi $X(p) = A_4 \left(-F_R(p) + A_3 \Sigma(p) \right) = -A_4 F_R(p) + A_3 A_4 \Sigma(p)$. Par ailleurs, $X(p) \left(M p^2 + \lambda p + k \right) = S \Sigma(p) - F_R(p) \Leftrightarrow X(p) = \frac{S \Sigma(p)}{M p^2 + \lambda p + k} - \frac{F_R(p)}{M p^2 + \lambda p + k}$. On a donc : $A_4 = \frac{1}{M p^2 + \lambda p + k}$ et $A_3 = S$. Au final, $A_1 = \frac{1}{Sp}$, $A_2 = \frac{S2B}{V}$, $A_3 = S$ et $A_4 = \frac{1}{M p^2 + \lambda p + k}$.

Question 2 Donner les expressions des fonctions de transfert H_1 et H_2 en fonction de A_1 , A_2 , A_3 et A_4 , puis de la variable p et des constantes.

Méthode 1 : Utilisation des relations précédentes On a $X(p) = (H_1Q(p) - F_R(p))H_2(p)$.

Par ailleurs, on a vu que $X(p) = A_4(-F_R(p) + A_3\Sigma(p))$ et $\Sigma(p) = A_2(A_1Q(p) - X(p))$.

On a donc $X(p) = A_4 \left(-F_R(p) + A_3 A_2 \left(A_1 Q(p) - X(p) \right) \right) \Leftrightarrow X(p) (1 + A_2 A_3 A_4) = A_4 \left(-F_R(p) + A_3 A_2 A_1 Q(p) \right)$. On a donc $H_1(p) = A_1 A_2 A_3$ et $H_2 = \frac{A_4}{1 + A_2 A_3 A_4}$

Méthode 2 : Lecture directe du schéma-blocs Revient à utiliser la méthode précédente.

Méthode 3 : Algèbre de schéma-blocs Le schéma-blocs proposé est équivalent au schéma suivant.

On retrouve le même résultat que précédemment.
$$A_1=\frac{1}{Sp}, A_2=\frac{S2B}{V}, A_3=S \text{ et } A_4=\frac{1}{Mp^2+\lambda p+k}.$$

En faisant le calcul on obtient :
$$H_1(p) = \frac{2BS}{pV}$$
 et $H_2 = \frac{\frac{1}{Mp^2 + \lambda p + k}}{1 + \frac{2BS^2}{V} \frac{1}{Mp^2 + \lambda p + k}} = \frac{1}{Mp^2 + \lambda p + k + \frac{2BS^2}{V}}$.

Question 3

Pour ce vérin non perturbé $(F_R = 0)$, donner sa fonction de transfert X(p)/Q(p) en fonction de la variable p et des

Dans ce cas,
$$\frac{X(p)}{Q(p)} = H_1(p)H_2(p)\frac{2BS}{p(MVp^2 + \lambda pV + kV + 2BS^2)}.$$

C2-05

B2-13

Question 1 Quel est le mouvement de 1 par rapport à 0.

1 est en translation de direction $\overrightarrow{i_0}$ par rapport à 0.

Question 2 Donner l'équation paramétrique de la trajectoire du point B, point appartenant à 1 par rapport à 0.

On a
$$\overrightarrow{AB} = \lambda(t) \overrightarrow{i_0}$$
. La trajectoire du point B est donc donnée par
$$\begin{cases} x_B(t) = \lambda(t) \\ y_B(t) = 0 \\ z_B(t) = 0 \end{cases}$$
 dans le repère $\left(A; \overrightarrow{i_0}, \overrightarrow{j_0}, \overrightarrow{z_0}\right)$.

Exercice 181 - Mouvement T - *

B2-13

Question 1 *Donner le torseur cinématique* $\{\mathcal{V}(1/0)\}$ *au point B*.

$$\begin{split} \{\mathcal{V}(1/0)\} &= \left\{ \begin{array}{c} \overrightarrow{0} \\ \dot{\lambda}(t) \, \overrightarrow{i_0} \end{array} \right\}_{\forall P}. \\ \overrightarrow{V(B,1/0)} &= \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{AB} \right]_{\mathcal{R}_0} = \dot{\lambda}(t) \, \overrightarrow{i_0} \, . \end{split}$$

Question 2 *Déterminer* $\Gamma(B, 1/0)$.

$$\overrightarrow{\Gamma(B,1/0)} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{V(B,1/0)} \right]_{\mathscr{R}_0} = \ddot{\lambda}(t) \overrightarrow{i_0} \,.$$
 Exercice 180 – Fonctions de transfert*

Pas de corrigé pour cet exercice.

Question 1 Déterminer la fonction de transfert en boucle ouverte. Mettre l'expression sous forme canonique et exprimer les paramètres caractéristiques.

Question 2 Déterminer la fonction de transfert en boucle fermée. Mettre l'expression sous forme canonique et exprimer les paramètres caractéristiques.

Question 3 Déterminer la fonction de transfert en boucle ouverte. Mettre l'expression sous forme canonique et exprimer les paramétrés caractéristiques.

Question 4 Déterminer la fonction de transfert en boucle fermée. Mettre l'expression sous forme canonique et exprimer les paramétrés caractéristiques.

Exercice 179 - Calcul de FTBO*

B2-07

Pas de corrigé pour cet exercice.

Question 1 Déterminer la FTBO dans la cas suivant.

Question 2 Déterminer la FTBO dans la cas suivant.

Question 3 Déterminer la FTBO dans la cas suivant.

Question 4 Déterminer la FTBO dans la cas suivant.

Exercice 178 - Pompe à palettes **

B2-12 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 *Retracer le schéma cinématique pour* $\theta(t) = 0$ *rad.*

Question 3 *Retracer le schéma cinématique pour* $\theta(t) = \pi$ *rad.*

Question 4 En déduire la course de la pièce 2.

Exercice 177 - Pompe à palettes **

B2-12 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 *Retracer le schéma cinématique pour* $\theta(t) = 0$ *rad.*

Question 3 *Retracer le schéma cinématique pour* $\theta(t) = \pi \ rad$.

Question 4 En déduire la course de la pièce 2.

Exercice 176 - Mouvement R *

C2-05

B2-13

Question 1 Quel est le mouvement de 1 par rapport à 0.

1 est en rotation de centre A et d'axe $\overrightarrow{k_0}$ par rapport à 0.

Question 2 Quelle est la trajectoire du point B appartenant à 1 par rapport à 0.

B est est en rotation par rapport à ${\bf 0}$ (cercle de centre A et de rayon R).

Question 3 Donner l'équation paramétrique de la trajectoire du point B, point appartenant à **1** par rapport à **0**.

On a
$$\overrightarrow{AB} = R\overrightarrow{i_1} = R\cos\theta\overrightarrow{i_0} + R\sin\theta\overrightarrow{j_0}$$
. La trajectoire du point B est donc donnée par
$$\begin{cases} x_B(t) = R\cos\theta(t) \\ y_B(t) = R\sin\theta(t) \\ z_B(t) = 0 \end{cases}$$

dans le repère $(A; \overrightarrow{i_0}, \overrightarrow{j_0}, \overrightarrow{z_0})$.

Exercice 175 - Mouvement R *

B2-13

Question 1 Déterminer $\overrightarrow{V(B,1/0)}$ par dérivation vectorielle.

$$\overrightarrow{V(B,1/0)} = \frac{\mathrm{d}}{\mathrm{d}t} \overrightarrow{[AB]}_{\mathcal{R}_0} = \frac{\mathrm{d}}{\mathrm{d}t} \overrightarrow{[R\ \overrightarrow{i_1}]}_{\mathcal{R}_0}. \text{ Or } \frac{\mathrm{d}}{\mathrm{d}t} \overrightarrow{[i_1]}_{\mathcal{R}_0} = \frac{\mathrm{d}}{\mathrm{d}t} \overrightarrow{[i_1]}_{\mathcal{R}_1} + \overrightarrow{\Omega(1/0)} \wedge \overrightarrow{i_1} = \overrightarrow{0} + \dot{\theta} \overrightarrow{k_0} \wedge \overrightarrow{i_1} = \dot{\theta} \overrightarrow{j_1}.$$
 D'où $\overrightarrow{V(B,1/0)} = R\dot{\theta} \overrightarrow{j_1}$.

Question 2 *Déterminer* $\overrightarrow{V(B,1/0)}$ *par une autre méthode.*

$$\overrightarrow{V(B,1/0)} = \overrightarrow{V(A,1/0)} + \overrightarrow{BA} \wedge \overrightarrow{\Omega(1/0)} = \overrightarrow{0} - R \overrightarrow{i_1} \wedge \theta \overrightarrow{k_0} = R \dot{\theta} \overrightarrow{j_1}.$$

Question 3 *Donner le torseur cinématique* $\{\mathcal{V}(1/0)\}$ *au point B*.

On a directement
$$\{\mathcal{V}(1/0)\} = \left\{\begin{array}{c} \dot{\theta} \overrightarrow{k_0} \\ R \dot{\theta} \overrightarrow{j_1} \end{array}\right\}_{R}$$
.

Question 4 Déterminer $\Gamma(B, 1/0)$.

$$\overrightarrow{\Gamma(B,1/0)} = \frac{\mathrm{d}}{\mathrm{d}\,t} \left[\overrightarrow{V(B,1/0)} \right]_{\mathscr{R}_0} = R\, \ddot{\theta}\, \overrightarrow{j_1} - R\, \dot{\theta}^2\, \overrightarrow{i_1} \, . \, \text{(En effet, } \frac{\mathrm{d}}{\mathrm{d}\,t} \left[\overrightarrow{j_1} \right]_{\mathscr{R}_0} = \frac{\mathrm{d}}{\mathrm{d}\,t} \left[\overrightarrow{j_1} \right]_{\mathscr{R}_1} + \overrightarrow{\Omega(1/0)} \wedge \overrightarrow{j_1} = \overrightarrow{0} + \dot{\theta}\, \overrightarrow{k_0} \wedge \overrightarrow{j_1} = -\dot{\theta}\, \overrightarrow{i_1} \, . \text{)}$$
 Exercice 174 – Suspension automobile

B2-14

C1-05 Pas de corrigé pour cet exercice.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Peut-on résoudre complètement le système? Pourquoi?

Exercice 173 – Suspension automobile **

C2-07 Pas de corrigé pour cet exercice.

Question 1 En isolant l'ensemble {pneumatique + jante + axe de roue}, écrire les équations issues du principe fondamental de la statique appliqué au point C, en projection sur les axes de la base $(\overrightarrow{a}, \overrightarrow{r}, \overrightarrow{x})$ en fonction des composantes F_{sol}^a et F_{sol}^r et des dimensions d_0 , d_3 et d_4 .

Question 2 Résoudre littéralement le système.