Estimation theory – Report 2

Marta Frankowska, 208581 Agnieszka Szkutek, 208619

November 16, 2017

Contents

T	Exe	ercise I																				J
	1.1	Part 1																	 			2
	1.2	Part 2																	 			2
	1.3	Part 3																				
	1.4	Part 4																				
	1.5	Part 5																				
	1.6	Part 6								•									 			4
2	Exe	ercise 2	2																			4
	2.1	Part 1																	 			4
	2.2	Part 2																	 			5
	2.3	Part 3																	 			Ę
		Part 4																				
3	Exe	ercise 3	3																			7
	3.1	Part 1																				7
	3.2	Part 2	an	d	3.														 			8
	3.3	Part 4																				(

1 Exercise 1

We have data file with 100 rows and 4 columns. We take the first column as a column vector y and the remaining 3 columns as a matrix X, where y depends on X. We assume that the model for our data is as follows

$$y = X\alpha + u. (1)$$

We will use regression model function in R to compute the parameters and compare them with the results we obtain manually.

```
data <- read.table('data_lab_2.csv', sep = ",", dec = ",", header = FALSE)
attach(data)

N <- 100
K <- 3</pre>
```

```
X <- as.matrix(data[, -1])</pre>
y <- as.matrix(data[, 1])
# linear regression model using lm()
model <- lm(V1 ~ . - 1, data)
summary(model)
##
## Call:
## lm(formula = V1 ~. - 1, data = data)
##
## Residuals:
                    Median
   Min
                 1Q
                                  3Q
                                          Max
## -2.68919 -0.47894 0.08483 0.47957 2.06775
##
## Coefficients:
     Estimate Std. Error t value Pr(>|t|)
## V2 2.05860 0.06862 30.00
                                 <2e-16 ***
              0.06720 15.99
                                  <2e-16 ***
## V3 1.07476
## V4 0.88974
              0.07506 11.85
                                 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.8956 on 97 degrees of freedom
## Multiple R-squared: 0.9951, Adjusted R-squared: 0.9949
## F-statistic: 6517 on 3 and 97 DF, p-value: < 2.2e-16
```

1.1 Part 1

We want to express the loss function

$$L = \sum_{n=1}^{N} u_n^2$$

as a function of y, X and α . From (1) we have $u = y - X\alpha$. Then

$$L = \sum_{n=1}^{N} u_n^2 = u'u = (y - X\alpha)'(y - X\alpha) = (y' - \alpha'X')(y - X\alpha) = y'y - y'X\alpha - \alpha'X'y + \alpha'X'X\alpha = y'y - 2y'X\alpha + \alpha'X'X\alpha.$$

1.2 Part 2

Next we will use the following equalities

$$\frac{\partial A\beta}{\partial \beta'} = A$$
 and $\frac{\partial \beta' A\beta}{\partial \beta'} = \beta'(A + A')$

to calculate the first derivative of L with respect to α' .

$$\frac{\partial L(\alpha)}{\partial \alpha'} = 0 - 2y'X + \alpha'(X'X + X'X) = -2y'X + 2\alpha'X'X.$$

1.3 Part 3

Now, to minimize the L function, we will solve the first order condition equation $\frac{\partial L(\alpha)}{\partial \alpha'} = 0$.

$$\frac{\partial L(\alpha)}{\partial \alpha'} = 0$$

$$-2y'X + 2\alpha'X'X = 0$$

$$\alpha'X'X = y'X / \cdot (X'X)^{-1}$$

$$\alpha' = y'X(X'X)^{-1}$$

$$\alpha = (X'X)^{-1}X'y$$

So $\hat{\alpha} = (X'X)^{-1}X'y$ is the LS estimator of the model parameter.

The first vector is the theoretical estimator of α and the second is the estimator obtained with R's linear regression model:

	theoretical	using lm()
alpha_1	2.05859906656869	2.05859906656869
$alpha_{-}2$	1.07475575539487	1.07475575539487
$alpha_3$	0.889740635967315	0.889740635967315

Table 1: Estimator of alpha

1.4 Part 4

We are using unbiased estimator for the variance of residuals

$$\hat{\sigma}^2 = \frac{u'u}{N - K},$$

where in our case N = 100 and K = 3.

theoretical	using lm()
0.80202	0.80210

Table 2: Variance of residuals

The first row is the theoretical estimator of σ^2 and the second is the squared residual standard error obtained with R's linear regression model function.

1.5 Part 5

We assume that the residuals are uncorrelated and homoscedastic. The variance-covariance matrix of LS estimator is

$$\hat{\Sigma}_{\hat{\alpha}} = \hat{\sigma}^2 (X'X)^{-1},$$

where $\hat{\sigma}^2$ is the estimator of variance of the residuals.

We can calculate the variance-covariance matrix using R

```
##
                         V3
             V2
      0.004708172 -0.002019469 -0.002544603
## V3 -0.002019469
                0.004516371 -0.002430459
## V4 -0.002544603 -0.002430459
                            0.005633808
##
             V2
                         VЗ
                                    V4
      0.004708172 -0.002019469 -0.002544603
## V2
## V4 -0.002544603 -0.002430459 0.005633808
```

The first result is the theoretical estimator of Σ and the second is the one obtained with R's linear regression model function.

Variance-covariance matrix for $\sqrt{N\hat{\alpha}}$ is equal to

$$\hat{\Sigma}_{\sqrt{N}\hat{\alpha}} = N\hat{\sigma}^2 (X'X)^{-1},$$

and we can calculate it in R

```
## V2 V3 V4

## V2 0.4708172 -0.2019469 -0.2544603

## V3 -0.2019469 0.4516371 -0.2430459

## V4 -0.2544603 -0.2430459 0.5633808
```

1.6 Part 6

The t-statistic tests the hypothesis H_0 : $\alpha_i = 0$, H_1 : $\alpha_i \neq 0$. The t-ratio is the ratio of the sample regression coefficient to its standard error. So

$$t_{\hat{\alpha_i}} = \frac{\hat{\alpha_i}}{\sqrt{Var\hat{\alpha_i}}}$$
 and $t_{\hat{\alpha_i}} \sim t(N-K) = t(100-3) = t(97)$.

	theoretical	using lm()
t.alpha1.hat	30.0016825108455	30.0016825108456
t.alpha 2.hat	15.9924488168616	15.9924488168616
t.alpha3.hat	11.8539317172235	11.8539317172235

Table 3: t-ratios of the parameters

2 Exercise 2

In this exercise we assume that $\alpha_1 + \alpha_2 + \alpha_3 = 0$ and $\alpha_2 - \alpha_3 = 0$.

2.1 Part 1

We know that the restriction matrix R satisfies equation $R\alpha = r$. In this case

$$R \cdot \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \Rightarrow \quad R = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \end{bmatrix}$$

Rank of the restriction matrix is rank(R) = 2, because there are two linearly independent vectors in matrix R, [1, 1, 1] and [0, 1, -1].

2.2 Part 2

To express vector α and the loss function L as functions of α_3 , we will first express α_1 and α_2 as functions of α_3 .

$$\begin{cases} \alpha_1 + \alpha_2 + \alpha_3 = 0 \\ \alpha_2 - \alpha_3 = 0 \end{cases} \Leftrightarrow \begin{cases} \alpha_1 = -\alpha_2 - \alpha_3 \\ \alpha_2 = \alpha_3 \end{cases} \Leftrightarrow \begin{cases} \alpha_1 = -2\alpha_3 \\ \alpha_2 = \alpha_3 \end{cases}$$

So

$$\alpha = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} = \begin{bmatrix} -2\alpha_3 \\ \alpha_3 \\ \alpha_3 \end{bmatrix} = \alpha_3 \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$$

and

$$L(\alpha_3) = y'y - 2y'X\alpha + \alpha'X'X\alpha = y'y - 2y'X\alpha_3 \begin{bmatrix} -2\\1\\1 \end{bmatrix} + \alpha_3 \begin{bmatrix} -2&1&1 \end{bmatrix} X'X\alpha_3 \begin{bmatrix} -2\\1\\1 \end{bmatrix} = y'y - 2\alpha_3y'X \begin{bmatrix} -2\\1\\1 \end{bmatrix} + \alpha_3^2 \begin{bmatrix} -2&1&1 \end{bmatrix} X'X \begin{bmatrix} -2\\1\\1 \end{bmatrix}$$

2.3 Part 3

Estimator of α_3 is equal to

$$\hat{\alpha}_3 = \arg\min_{\alpha_3} L(\alpha_3)$$

We can calculate

$$\frac{\partial L(\alpha_3)}{\partial \alpha_3} = 0 - 2y'X \begin{bmatrix} -2\\1\\1 \end{bmatrix} + 2\alpha_3 \begin{bmatrix} -2&1&1 \end{bmatrix} X'X \begin{bmatrix} -2\\1\\1 \end{bmatrix}$$

From F.O.C and the above formula we obtain

$$\hat{\alpha}_{3} \begin{bmatrix} -2 & 1 & 1 \end{bmatrix} X'X \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix} = y'X \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$$

$$\hat{\alpha}_{3} = y'X \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix} \left(\begin{bmatrix} -2 & 1 & 1 \end{bmatrix} X'X \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix} \right)^{-1}$$

For data from exercise 1, this estimator is equal to

[1] -0.6334175

Now we can calculate variance of estimator $\hat{\alpha}_3$. Transforming the model as follows, we obtain u.

$$y = X\hat{\alpha} + u$$

$$y = \hat{\alpha}_3 X \begin{bmatrix} -2\\1\\1 \end{bmatrix} + u$$

$$u = y - \hat{\alpha}_3 X \begin{bmatrix} -2\\1\\1 \end{bmatrix}$$

Let $\tilde{X} = X \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$. Using $\hat{\sigma}^2 = \frac{u'u}{N-K}$ we can calculate the variance-covariance matrix of $\hat{\alpha}_3$, namely $\hat{\Sigma}_{\hat{\alpha}_3} = \hat{\sigma}^2 (\tilde{X}'\tilde{X})^{-1}$. The exact value of $\hat{\Sigma}_{\hat{\alpha}_3}$ for our data is equal to

2.4 Part 4

We know that

$$\begin{cases} \hat{\alpha}_1 = -2\hat{\alpha}_3 \\ \hat{\alpha}_2 = \hat{\alpha}_3 \end{cases} \Rightarrow \hat{\alpha} = \begin{bmatrix} \hat{\alpha}_1 \\ \hat{\alpha}_2 \\ \hat{\alpha}_3 \end{bmatrix} = \begin{bmatrix} -2\hat{\alpha}_3 \\ \hat{\alpha}_3 \\ \hat{\alpha}_3 \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix} \hat{\alpha}_3$$

and

$$Var(\hat{\alpha}_1) = Var(-2\hat{\alpha}_3) = 4Var(\hat{\alpha}_3)$$

$$Var(\hat{\alpha}_2) = Var(\hat{\alpha}_3)$$

$$Cov(\hat{\alpha}_2, \hat{\alpha}_1) = Cov(\hat{\alpha}_1, \hat{\alpha}_2) = Cov(-2\hat{\alpha}_3, \hat{\alpha}_3) = -2Cov(\hat{\alpha}_3, \hat{\alpha}_3)) = -2Var(\hat{\alpha}_3)$$

$$Cov(\hat{\alpha}_3, \hat{\alpha}_1) = Cov(\hat{\alpha}_1, \hat{\alpha}_3) = Cov(-2\hat{\alpha}_3, \hat{\alpha}_3) = -2Cov(\hat{\alpha}_3, \hat{\alpha}_3)) = -2Var(\hat{\alpha}_3)$$

$$Cov(\hat{\alpha}_2, \hat{\alpha}_3) = Cov(\hat{\alpha}_3, \hat{\alpha}_2) = Cov(\hat{\alpha}_3, \hat{\alpha}_3) = Var(\hat{\alpha}_3)$$

$$Cov(\hat{\alpha}_2, \hat{\alpha}_3) = Cov(\hat{\alpha}_3, \hat{\alpha}_2) = Cov(\hat{\alpha}_3, \hat{\alpha}_3) = Var(\hat{\alpha}_3)$$

So the variance-covariance matrix of α is as follows

$$\hat{\Sigma}_{\hat{\alpha}} = \begin{bmatrix} Var(\hat{\alpha}_1) & Cov(\hat{\alpha}_1, \hat{\alpha}_2) & Cov(\hat{\alpha}_1, \hat{\alpha}_3) \\ Cov(\hat{\alpha}_2, \hat{\alpha}_1) & Var(\hat{\alpha}_2) & Cov(\hat{\alpha}_2, \hat{\alpha}_3) \\ Cov(\hat{\alpha}_3, \hat{\alpha}_1) & Cov(\hat{\alpha}_3, \hat{\alpha}_2) & Var(\hat{\alpha}_3) \end{bmatrix} = \\ = Var(\hat{\alpha}_3) \begin{bmatrix} 4 & -2 & -2 \\ -2 & 1 & 1 \\ -2 & 1 & 1 \end{bmatrix} = 0.23171 \begin{bmatrix} 4 & -2 & -2 \\ -2 & 1 & 1 \\ -2 & 1 & 1 \end{bmatrix}$$

Now we want to calculate the t-ratios for $\hat{\alpha}_i$ (i = 1, 2, 3)

$$t_{\hat{\alpha}_i} = \frac{\hat{\alpha}_i}{\sqrt{Var\hat{\alpha}_i}},$$

where $t_{\hat{\alpha}_i} \sim t(N - K) = t(100 - 3) = t(97)$.

$$t_{\hat{\alpha}_2} = t_{\hat{\alpha}_3} = \frac{\hat{\alpha}_3}{\sqrt{Var(\hat{\alpha}_3)}}$$

$$t_{\hat{\alpha}_1} = \frac{-2\hat{\alpha}_3}{\sqrt{Var(-2\hat{\alpha}_3)}} = \frac{-2\hat{\alpha}_3}{\sqrt{4Var(\hat{\alpha}_3)}} = \frac{-2\hat{\alpha}_3}{2\sqrt{Var(\hat{\alpha}_3)}} = -t_{\hat{\alpha}_3}$$

t.alpha1.hat 1.31588409531758 t.alpha2.hat -1.31588409531758 t.alpha3.hat -1.31588409531758

Table 4: t-ratios of alpha1.hat, alpha2.hat and alpha1.hat

3 Exercise 3

Next, we consider the following model

$$y_n = \alpha_1 X_{1n} + \alpha_2 X_{2n} + \varepsilon_n$$

with $\alpha_1 = \alpha_2 = 1$ and $\varepsilon_n \sim N(0, 1)$.

3.1 Part 1

We will generate samples from above model in two cases:

- a) X_1 and X_2 are independent and $X \sim N(0, I_2)$,
- b) X_1 and X_2 are dependent and $X \sim N(0, \Sigma)$.

We assume that in this exercise

$$\Sigma = \begin{bmatrix} 1 & 0.8 \\ 0.8 & 1 \end{bmatrix}.$$

Model a

Model b

3.2 Part 2 and 3

We have the following models:

$$y_n = \alpha_1 X_{1n} + \alpha_2 X_{2n} + \varepsilon_n$$
$$y_n = \beta X_{1n} + u_n$$

We will use the formula from subsection 1.3 and Monte Carlo method with 1000 repetitions to obtain α_1 and β in those models.

Below we compare the results for different sample sizes.

N	$theoretical_alpha_1$	$alpha_1_{est}$	beta_est
10.00000	1.00000	0.99509	0.99579
100.00000	1.00000	0.99811	1.00073
1000.00000	1.00000	1.00025	0.99946

Table 5: Estimator of alpha1 and beta for model a

N	theoretical_alpha_1	alpha_1_est	beta_est
10.00000	1.00000	0.98538	1.79253
100.00000	1.00000	0.99330	1.79472
1000.00000	1.00000	1.00282	1.80132

Table 6: Estimator of alpha1 and beta for model b

3.3 Part 4

Estimator is consistent if

$$\hat{\theta} \to^P \theta$$
.

From assumptions of the Least Squares method we know that

$$\hat{\alpha_1} \rightarrow^P \alpha_1$$
.

But what about β ? From Econometric analysis by W.H. Greene for

$$y = X_1 \alpha_1 + X_2 \alpha_2 + \varepsilon$$

we have the following normal equations

$$\begin{bmatrix} X_1'X_1 & X_1'X_2 \\ X_2'X_1 & X_2'X_2 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} X_1'y \\ X_2'y \end{bmatrix}$$

By manipulating the first equation we get

$$\alpha_1 X_1' X_1 + X_1' X_2 \alpha_2 = X_1' y \quad \Rightarrow \quad \alpha_1 = \underbrace{(X_1' X_1)^{-1} X_1' y}_{\hat{\beta}} - (X_1' X_1)^{-1} X_1' X_2 \alpha_2$$
$$\alpha_1 = \hat{\beta} - (X_1' X_1)^{-1} X_1' X_2 \alpha_2$$

If $(X_1'X_1)^{-1}X_1'X_2\alpha_2$ is convergent to 0 (with probability), then $\hat{\beta} \to^P \alpha_1$. If X_1' and X_2 are orthogonal, then $X_1'X_2 = 0$, and then $\hat{\beta} \to^P \alpha_1$.

In case (a) X_1 and X_2 are independent, so they are orthogonal, so $\hat{\beta}$ is consistent. In case (b) X_1 and X_2 are dependent, so they are not orthogonal, so $\hat{\beta}$ is not consistent.