Processamento de Linguagens (3º ano de Engenharia Informática) Trabalho Prático Nº3

Relatório de Desenvolvimento

Ana Ribeiro (a82474)

Carla Cruz (a80564)

Jéssica Lemos (a82061)

10 de Junho de 2019

Conteúdo

1	Introdução	2
2	Descrição do Problema	3
3	Thesaurus ISO 2788 - Formato do Ficheiro	4
4	Implementação da solução	6
	4.1 Estrutura de Dados	6
	4.2 Gramática Independente de Contexto	7
	4.3 Analisador Léxico	7
	4.4 Analisador Sintático	8
	4.4.1 Carregamento das Estruturas	8
	4.5 Extras	
5	Exemplos de Utilização	11
6	Conclusão	14

Introdução

No terceiro trabalho prático da Unidade Curricular de *Processamento de Linguagens*, o exercício que nos foi atribuído foi o 3, que consiste na realização de uma ferramenta capaz de analisar documentos em formato *Thesaurus* ISO 2788 T(2788). A informação extraída de ficheiros deste formato deve ser colocada de um modo organizado em ficheiros HTML.

Deste modo, pretende-se que seja elaborada uma gramática independente de contexto, bem como o respetivo analisador léxico, utilizando a ferramenta Flex, que permita reconhecer um Thesaurus ISO 2788 T(2788). É ainda necessário desenvolver uma analisador sintático recorrendo à ferramenta Yacc.

Assim, no presente relatório, iremos apresentar as estratégias utilizadas, bem como a linha de pensamento seguida para resolver todos os exercícios propostos. Para além disso, serão explicados alguns pontos extras, que decidimos implementar para enriquecer o projeto desenvolvido.

Estrutura do Relatório

Inicialmente, no capítulo 2 é apresentada uma descrição detalhada do enunciado proposto para a realização deste projeto, bem como os objetivos deste.

De seguida, no capítulo 3 é explicada de que forma é que os documentos de texto Thesaurus ISO 2788 são apresentados.

No capítulo 4 explicamos detalhadamente a implementação da solução de forma a dar resposta ao que fora proposto no enunciado. Para além disto, apresentamos e especificamos algumas funcionalidades extra, que consideramos relevantes no âmbito do trabalho.

No capítulo 5, apresentamos os exemplos de utilização da ferramenta desenvolvida.

Por fim, no capítulo 6 elaboramos uma análise crítica ao trabalho realizado.

Descrição do Problema

Neste projeto pretende-se implementar um programa capaz de processar ficheiros do formato *Thesaurus*. Dado que este tipo de ficheiros contém um conjunto de metadados e de conceitos, será necessário armazenar a informação em estruturas apropriadas de modo a ser possível apresentá-las posteriormente.

Desta forma, é expectável que sejam realizadas as seguintes tarefas ao longo do projeto:

- Armazenar a informação numa estrutura de dados em memória
- Escrever uma GIC para o formato T2788
- Escrever um parser/analisador-léxico para reconhecer um Thesaurus
- Recolhida a informação, criar uma página HTML para cada conceito e hiperligações de acordo com as relacões conceptuais.

Thesaurus ISO 2788 - Formato do Ficheiro

O documento de texto *Thesaurus* é utilizado na representação de ontologias. Desta forma, contém metadados (indicação das línguas, relações entre conceitos, inversas das relações, etc) e um conjunto de conceitos. Apresentamos assim um exemplo de um documento Thesaurus.

```
%language PT EN
%baselang EN
%inv NT BT

animal
PT animal
NT cat, dog, cow, fish, ant, camel
BT Life being

cat
PT gato
BT animal
SN animal que tem sete vidas e meia
```

Os metadados são inicializadas com o símbolo '%', definindo relações e propriedades matemática.

- \Rightarrow language: Indica a linguagem utilizada, podendo ser multi-linguístico, contendo assim o ficheiro diversas linguagens.
- ⇒ baselanguage: Indica a língua base do ficheiro, o que nos permite obter a informação sobre a linguagem em que o Thesaurus se encontra escrito.
- ⇒ inv: Permite definir as relações inversas existentes no ficheiro.

O ficheiro também contém relações sendo estas representadas pela sua abreviatura e após esta deverá ser indicada a lista de conceitos, separados por vírgulas. Podem ser definidas novas relações no inicio do ficheiro ou utilizar as previamente existentes.

- \Rightarrow NT: Representa os termos específicos relativamente ao termo base.
- ⇒ BT: Representa o termo genérico do termo corrente.

 \Rightarrow ${\bf SN}:$ Representa a definição do termo.

Assim, os conceitos estão separados por uma linha em branco (LB), sendo a primeira linha o termo base e as restantes todas as relações existentes.

O carater '#' representa o inicio de uma comentário que irá até ao final da linha.

Implementação da solução

4.1 Estrutura de Dados

Para a implementação das estruturas optamos por recorrer à biblioteca *Glib*. Tendo em conta as diferentes informações que devemos armazenar definimos várias estruturas. Para guardar os conceitos optamos por criar uma estrutura *Conceito* que contém o nome do conceito, uma *hash table* que irá armazenar todas as relações associadas e o nome do ficheiro HTML que será criado.

```
typedef struct conceito{
    char* nome;
    GHashTable* relacoes;
    FILE* f;
} *Conceito;
```

Criamos a estrutura *Relacoes* que armazena o tipo da relação (NT, BT, PT, EN, ES,...) e os seus termos que serão guardados numa lista ligada.

```
typedef struct relacoes{
    char* tipo;
    GSList* termos;
} *Relacoes;
```

A estrutura principal será a *Thesaurus*, que irá suportar toda a informação do ficheiro do tipo Thesaurus. Esta contém uma *hash table* para os conceitos, línguas e para as relacões inversas. Para além disso, armazenamos a língua base.

```
typedef struct thesaurus{
    GHashTable* conceitos;
    GHashTable* linguas;
    char* lingua;
    GHashTable* inv;
} *Thesaurus;
```

4.2 Gramática Independente de Contexto

Nesta secção é apresentada e explicada a gramática independente de contexto desenvolvida para o formato T2788. De modo a evitar conflitos e erros de interpretação, utilizamos na definição da *GIC* recursividade à esquerda.

O Thesaurus é constituído por metadados e um conjunto de conceitos como já foi referido anteriormente.

O símbolo terminal LB representa a linha em branco, que separa os metadados dos conceitos.

Thesaurus : Metadados LB Conceitos

O Metadados é uma lista de Meta. Cada Meta é iniciado pelo símbolo terminal '%', seguido do nome da diretiva e de uma lista de Ids, que representam as instruções correspondentes.

Metadados : Metadados Meta

| Meta

Meta: '%' TERMO Ids

Ids: Ids ID

Conceitos também representa uma lista de *Conceito*, separados por linhas em branco daí a utilização mais uma vez do símbolo terminal LB. Cada conceito possui em primeiro lugar o nome, neste caso representado pelo símbolo terminal TERMO, sendo que de seguida podem surgir um conjunto de relações. Relacoes representa um lista, constituída pelo nome da relação e os termos associados. Assim, os termos surgem como uma lista, sendo que os elementos se encontram separados vírgula, surgindo o símbolo terminal ','.

Conceitos: Conceitos LB Conceito

| Conceito

Conceito: TERMO Relacoes

Relacoes: Relacoes ID Termos

| ID Termos

Termos : Termos ',' TERMO

| TERMO

4.3 Analisador Léxico

Para procedermos à análise léxica dos documentos no formato Thesaurus utilizamos a ferramenta *Flex*. Este deverá transformar o texto original de modo a ser interpretado pela GIC anteriormente criada. Assim, os termos de relações ou conceitos deverão ser transformados em *tokens* TERMO e os tipos das relações em *tokens* ID.

Começamos por definir algumas expressões regulares:

MINUSCULAS $[(\acute{a})(\grave{a})(\grave{a})(\acute{e})(\acute{e})(\acute{1})(\acute{o})(\acute{o})(\acute{u})(\varsigma)a-z0-9]$ MAIUSCULAS $[(\acute{A})(\grave{A})(\acute{A})(\acute{E})(\acute{E})(\acute{1})(\acute{0})(\acute{0})(\acute{0})A-Z]$ Estas foram utilizadas para apanhar os termos e as relações, sendo necessário guardar o seu valor em cada token. Para além disso, foi necessário adaptar o mesmo para o caso dos comentários que começam com o símbolo "#". Neste caso, poderão ser ignoradas as linhas. Os simbolos "%"e ","já estão presentes no texto original enquanto que para as linhas em branco optamos pelo símbolo terminal LB.

4.4 Analisador Sintático

Tendo a GIC já sido escrita e o analisador léxico já preparado para a conversão de texto, é possível guardar nos tokens os valores relevantes, utilizando o Yacc como ferramenta de análise sintática.

Após a análise léxica do ficheiro de texto, é necessário garantir que se encontra de acordo com as regras da gramática previamente definida e ainda processar e tratar os dados fornecidos de modo a dar resposta ao pretendido, sendo estas as principais funcionalidades do nosso analisador sintático. Assim, sempre que é encontrado, por exemplo, um conceito ou uma relação, estes são adicionados à nossa estrutura de dados. Desta forma, após armazenar toda a informação relevante, esta será apresentada em ficheiro HTML de forma a visualização ser mais simples.

4.4.1 Carregamento das Estruturas

Foi necessário guardar a informação presente nos *tokens* analisados e introduzir esta nas estruturas criadas para depois serem percorridas de modo a obter a informação pretendida. Serão apresentadas de seguida as ações elaboradas através da ferramenta *Yacc* bem como a forma que é realizado o carregamento das estruturas.

\Rightarrow Yacc

Foi utilizada uma lista ligada para o armazenamento da informação dos metadados, de forma a guardar os tokens ID que constituem os termos dos metadados. A função adicionaMeta, que insere um termo na lista ligada, permite adicionar o metadado do tipo que é determinado pelo valor do token TERMO à estrutura.

Para guardar as seguintes informações o racícionio é semelhante. Assim, para a adição do conceito, armazenamos os termos de cada relação numa lista ligada recorrendo à *adicionaTermo* e por sua vez, através da *adicionaRelacao* acrescentamos cada relação à *HashTable* de relações. Tendo todas as relações existentes obtidas, é possível adicionar o conceito ao *Thesaurus* através da *adicionaConceito*.

```
Conceitos
            : Conceitos LB Conceito {}
            | Conceito {}
Conceito
            : TERMO Relacoes {
                addConceito(th,$1,relacoes);
            }
            : Relacoes ID Termos {
Relacoes
                addRelacao(relacoes,$2,termos);
            }
            | ID Termos {
                relacoes=g_hash_table_new(g_str_hash,g_str_equal);
                addRelacao(relacoes, $1, termos);
            }
Termos
            : Termos ',' TERMO {
                addTermo($3,termos);
            }
            | TERMO {
                termos=g_slist_alloc();
                addTermo($1,termos);
            }
```

⇒ Métodos Utilizados

Com referido em cima, de modo a carregar a informação nas estruturas utilizamos quatro métodos, nomeadamente, adicionaMeta, adicionaRelacao, adicionaTermo e adicionaConceito.

- adicionaMeta: Adiciona os metadados existentes à respetiva estrutura.
- adicionaRelacao: Cria a estrutura Relacoes e adiciona a relação na HashTable de relações. Na eventulidade de esta já existir, concatenamos os termos com os que já estão armazenados.
- adiciona Termo: Adiciona o termo à lista de termos.
- adicionaConceito: Cria o Conceito e introduz a informação respetiva que é recebida como argumento da função. Após a inserção deste ainda é criado o ficheiro HTML com o nome deste conceito para mais tarde ser introduzida toda a informação respetiva sobre este, abrindo-o em modo de escrita e guardando ainda o ficheiro na estrutura.

4.5 Extras

Com o intuito de enriquecer o trabalho e dado que implementamos as funcionalidades base, decidimos acrescentar extras à solução implementada. Assim, criamos uma homepage e uma página de estatísticas do nosso ficheiro Thesaurus e ainda processamos as relações inversas.

\Rightarrow Homepage

A HomePage irá apresentar toda a listagem de conceitos presentes e ainda o número de tipos de relações que esse contém. A partir desta é possível aceder à página das estatísticas bem como à página referente a cada conceito.

⇒ Estatísticas

A página de estatística irá conter toda a informação sobre o nosso ficheiro, desde o número de conceitos ao número de relações inversas. É ainda possível regressar à página inicial.

\Rightarrow Relações Inversas

Para o caso das relações inversas tivemos o cuidado de permitir o acesso à página do conceito associado como inverso a este. Desta forma, foi necessário ter em atenção as relações inversas incompletas, isto é, as relações que apenas se encontram definidas apenas num dos conceitos. Nesta situação, decidimos associar a relação ao conceito que ainda não a possui. Foi ainda fundamental, criar os conceitos que ainda não existem mas que estão presentes em relações inversas.

Exemplos de Utilização

De seguida iremos expor exemplos da utilização da ferramenta desenvolvida, de modo a demonstrar como a mesma funciona.

\Rightarrow Página Inicial

Nesta página HTML é apresentada listagem de todos os conceitos contidos no ficheiro Thesaurus bem como o número do tipo de relações existentes. É ainda possível através da página inicial aceder à página das estatísticas.

Home

Estatísticas

Indice:

Nº Tipo de Relações	Conceitos
4	<u>large intestine</u>
1	<u>skin</u>
1	<u>Régua</u>
1	<u>Serra do Urbião</u>
4	<u>organ</u>
1	doctor
1	Alessandro Piccinini
2	key instrument
1	<u>dentist</u>
1	Barragem do Pocinho
3	<u>animal</u>
1	<u>cuisine</u>
1	<u>kidney</u>
3	<u>tejo river</u>
1	United States of America
1	medical specialist
4	cow
1	<u>plant</u>
2	<u>brain</u>
3	musical instrument

Figura 5.1: Página Principal

⇒ Estatísticas

Neta página irá ser apresentado ao utilizador as estatíticas do ficheiro, nomeadamente, o número de conceitos, número de relações, número de línguas, as multi-linguísticas existentes, a língua base e ainda o número de relações inversas. É possível também regressar à página inicial.

Estatísticas

Número de conceitos: 76 Número de relações: 180 Número de línguas: 3

Multi-linguístico: FR EN PT

Língua base: EN

Número de relações inversas: 22

Home

Figura 5.2: Página com as estatísticas

\Rightarrow Página do Conceito

A página do conceito começa por apresentar o conceito e, caso contenha, a sua definição. De seguida são apresentadas todas as suas relações permitindo ainda aceder aos conceitos existentes em relações inversas. Por fim, é possível regressar à página inicial.

human body

Relações:

PT

• corpo humano

TERMINOLOGIAESPECIFICA

- arm bones
- arm
- digestive tractveinshuman body

- <u>organ</u>

DOMINIO

• <u>human body</u>

HAS

- <u>arm</u> <u>organ</u> <u>skin</u>
- <u>leg</u> <u>head</u>
- muscle

Home

Figura 5.3: Página do conceito human body

Conclusão

A elaboração deste trabalho prático permitiu-nos consolidar a matéria lecionada tanto nas aulas teóricas como práticas relativamente à utilização do *Flex* e do *Yacc*. Assim, foi possível percebermos como é o funcionamento destas ferramentas. Para além disso, foi possível desenvolver as nossas capacidades para escrever gramáticas independentes de contexto.

Em última instância consideramos que os objetivos pretendidos foram atingidos e que foi notória a nossa evolução durante o desenvolvimento do projeto na utilização destas ferramentas o que nos permitiu a realização de alguns extras que achamos relevantes para o exercício em questão.