CSC369 Week 5 Notes

Hyungmo Gu

September 11, 2020

1 Memory Management

- Physical Memory vs Virtual Memory [1]
 - Physical Memory
 - * Is RAM :)!!
 - \ast Is the first memory used when computer requires memory such as loading application or OS
 - Virtual Memory
 - * Is stored on hard drive
 - * Is used when RAM is filled
 - * Is slower than RAM

Refernces:

- 1) Tech Walla: What Is the Difference Between Virtual Memory & Physical Memory?, link
- Memory Management
 - Is the process of controlling and coordinating computer memory
 - Assings portions known as **blocks** to various programs ^[1]

Refernces:

- 1) Guru 99: Memory Management in OS: Contiguous, Swapping, Fragmentation & Physical Memory?, link
- Fixed Partitioning

- Is the oldest and simplest technique to put more than one processes in the main memory. $^{\left[1\right]}$
- Divides memory into regions with fixed boundaries.
 - * Can be of equal size
 - * Or unequal size
- Advantages: [1]
 - * Is easy to implement
 - * Requires lesser indirect computational power
- Disadvantages: [1]
 - * Creates a gap if process is smaller than partition (Internal Fragmentation)
 - * Programmer must deal with programs larger than partition

../images//week_5_notes_1_1.png

Refernces:

1) Chegg Study: Fixed Partitions, link

- Dynamic Partitioning
 - Allevates problems caused by fixed partitioning [1]
 - A partition of exact the right size is created for a process
 - OS may move processes around to create larger chunks of space
 - * I.e. moving process 3 right beneath process 1
 - * Is called **compaction**
 - * Processes must be relocatable

../images//week_5_notes_1_2.png

- Advantages ^[1]
 - $* \ \operatorname{No} \ \mathbf{internal} \ \mathbf{fragmentation}$
 - \cdot There will be no unused space left in the partition

../images//week_5_notes_1_3.png

- * No restriction on degree of multiprogramming [1]
 - · More processes in memory due to absence of internal fragmentation
 - · Processes can be loaded until RAM is empty
- * No limitation on the size of process
 - · Process size not limited to the size of partition
- Disadvantages
 - * As processes come and go 'holes' are created
 - · Is called external fragmentation

Refernces:

- 1) GeeksForGeeks: Variable (or dynamic) Partitioning in Operating System, link
- Paging
 - Solves internal fragmentation and external fragmentation
 - Stores and retrieves data from **secondary storage** for use in **main memory** [1]
 - * Secondary storage \rightarrow Hard Drive
 - * Main memory \rightarrow RAM
 - Is an important part of **virtual memory** management in modern OS $^{[1]}$
 - Partitions memory into equal, fixed-size chunks
 - * Are called **page frames** or **frames**
 - Divide processes' memory into chunks of the same size
 - * These are called **pages**

../images//week_5_notes_1_4.png

Figure 1: Oh moe.. :)

Refernces:

1) Wikipedia: Paging, link

2) JavaTPoint: Paging with Example, link

- Translation Lookaside Buffer (TLBS)
 - Is a memory cache that is used to reduce the time taken to access a user memory location $^{\left[1\right]}$
 - Stores the recent translations of virtual memory to physical memory [1]
 - Resides in between the different levels of multi-level cache, i.e. L1, L2, L3 cache [1]

References:

1) Wikipedia: Translation Lookaside Buffer, link