

Universidad Nacional de Rosario Facultad de Ciencias Exactas, Ingeniería y Agrimensura

Análisis de Lenguajes de Programación

Trabajo Práctico I Un Lenguaje Imperativo Simple (LIS)

Román Castellarin Juan Ignacio Suarez

28 de septiembre de 2018

1. Operador Ternario

El operador ternario es una construcción del estilo de if-then-else que a diferencia de éste, es una expresión entera en lugar de un statement. Formalmente,

1.1. Sintaxis Abstracta

(fragmento)

$$intexp ::= ...$$
 $\mid boolexp ? intexp : intexp$

Si la expresión booleana evalúa a verdadero, entonces la expresión completa toma el valor del segundo argumento, si no, del tercero.

Esta sintaxis en Haskell se verá reflejada así, al representarla mediante un constructor:

1.2. Sintaxis Concreta

(fragmento)

2. Parser

(ver código adjunto)

3. Semántica operacional

3.1. Semántica natural para Expresiones

Extendemos la semántica operacional de paso grande para incluir al operador ternario...

$$\frac{\langle b, \sigma \rangle \Downarrow_{intexp} \mathbf{true} \quad \langle e_1, \sigma \rangle \Downarrow_{intexp} v}{\langle b ? e_1 : e_2, \sigma \rangle \Downarrow_{intexp} v} \text{ TerCond-T}$$

$$\frac{\langle b, \sigma \rangle \Downarrow_{intexp} \mathbf{false} \quad \langle e_2, \sigma \rangle \Downarrow_{intexp} v}{\langle b ? e_1 : e_2, \sigma \rangle \Downarrow_{intexp} v} \text{ TerCond-F}$$

3.2. Semántica op. estructural para Comandos

3.2.1. Prueba de que la relación de evaluación a un paso es determinista

Sean $\langle t, \sigma \rangle \rightsquigarrow \langle t_1, \sigma_1 \rangle$ y $\langle t, \sigma \rangle \rightsquigarrow \langle t_2, \sigma_2 \rangle$, que la relación de evaluación de un paso (\rightsquigarrow) sea determinista significa que $\langle t_1, \sigma_1 \rangle = \langle t_2, \sigma_2 \rangle$.

Para demostrar esto haremos inducción sobre la derivación $\langle t, \sigma \rangle \leadsto \langle t_1, \sigma_1 \rangle$. Supondremos que tanto ψ_{intexp} como $\psi_{boolexp}$ son deterministas.

Si la última regla utilizada es Ass, entonces t tiene la forma v := e para alguna e. Por lo tanto,

- Existe un único n tal que $\langle e, \sigma \rangle \downarrow_{intexp} n$. (Por determinismo de \downarrow_{intexp})
- $t_1 = \mathbf{skip}, \ \sigma_1 = [\sigma | v : n].$
- La última regla utilizada en la derivación $\langle t, \sigma \rangle \rightsquigarrow \langle t_2, \sigma_2 \rangle$ no pudo haber sido SEQ_1 , SEQ_2 , IF_1 , IF_2 ni REPEAT por la forma de t. Entonces la última regla utilizada tuvo que haber sido ASS. Finalmente nos queda $t_2 = \mathbf{skip} = t_1$ y $\sigma_2 = [\sigma | v : n] = \sigma_1$.

Si es la última regla utilizada es SEQ_1 , entonces t tiene la forma \mathbf{skip} ; c para alguna c. Por lo tanto,

- $t_1 = c, \, \sigma_1 = \sigma.$
- La última regla utilizada en la derivación $\langle t, \sigma \rangle \rightsquigarrow \langle t_2, \sigma_2 \rangle$ no pudo haber sido ASS, IF_1 , IF_2 ni REPEAT por la forma de t. Para el caso de SEQ_2 , no existe regla de derivación para **skip** al ser forma normal. Por lo tanto la última regla utilizada tuvo que haber sido la única restante, SEQ_1 , finalmente entonces nos queda $t_2 = c = t_1$ y $\sigma_2 = \sigma = \sigma_1$.

Si es la última regla utilizada es SEQ_2 , entonces t tiene la forma c_0 ; c_1 . Por lo tanto,

- $t_1 = c'_0; c_1, \sigma_1 = \sigma'.$
- La última regla utilizada en la derivación $\langle t, \sigma \rangle \leadsto \langle t_2, \sigma_2 \rangle$ no pudo haber sido ASS, IF_1, IF_2 ni REPEAT por la forma de t.

Sabemos por hipótesis inductiva que $\langle c_0, \sigma \rangle \rightsquigarrow \langle c'_0, \sigma' \rangle$ es determinista. Luego c_0 no puede ser **skip**, en consecuencia la última regla utilizada en la derivación $\langle c_0, \sigma \rangle \rightsquigarrow \langle t_2, \sigma_2 \rangle$ no pudo haber sido SEQ_1 . La única opción restante es que sea SEQ_2 , finalmente nos queda $t_2 = c'_0$; $c_1 = t_1$ y $\sigma_2 = \sigma' = \sigma_1$.

Si la última regla utilizada es IF_1 , entonces t tiene la forma **if** b **then** c_0 **else** c_1 , para algunas b, c_0, c_1 . Por lo tanto,

- $\langle b, \sigma \rangle \downarrow_{boolexp}$ true (únicamente, por determinismo de $\downarrow_{boolexp}$).
- $t_1 = c_0 \text{ y } \sigma_1 = \sigma.$

■ La última regla utilizada en la derivación $\langle t, \sigma \rangle \leadsto \langle t_2, \sigma_2 \rangle$ no pudo haber sido ASS, SEQ_1 , SEQ_2 ni REPEAT por la forma de t. Tenemos además que $\langle b, \sigma \rangle \Downarrow_{boolexp}$ **true**, entonces IF_2 por su definición queda descartada como opción. La única opción restante es IF_1 , finalmente nos queda $t_2 = c_0 = t_1$ y $\sigma_2 = \sigma = \sigma_1$.

Si la última regla utilizada es IF_2 , la demostración es análoga al caso anterior de IF_1 .

Si la última regla utilizada es REPEAT, entonces t tiene la forma **repeat** c **until** b, para algún par c, b. Por lo tanto,

- $t_1 = c$; if b then skip else repeat c until b y $\sigma_1 = \sigma$.
- La última regla utilizada en la derivación $\langle t, \sigma \rangle \leadsto \langle t_2, \sigma_2 \rangle$ no pudo haber sido ASS, SEQ_1 , SEQ_2 , IF_1 ni IF_2 por la forma de t. Por lo tanto, la última regla utilizada debió haber sido REPEAT. Finalmente entonces nos queda

 $t_2 = c$; if b then skip else repeat c until $b = t_1$ y $\sigma_2 = \sigma = \sigma_1$.

3.2.2. Ejemplo

Vale que

$$\langle x := x+1; \text{ if } x > 0 \text{ then skip else } x := x-1, [\sigma|x:0] \rangle \leadsto^*, \langle \text{skip}, [\sigma|x:1] \rangle$$

Demostración:

Para alivianar la cantidad de texto en el árbol de prueba, definamos:

$$t_1 = \langle x := x+1; \text{ if } x > 0 \text{ then skip else } x := x-1, [\sigma|x:0] \rangle$$

 $t_2 = \langle \text{skip}; \text{ if } x > 0 \text{ then skip else } x := x-1, [\sigma|x:1] \rangle$
 $t_3 = \langle \text{ if } x > 0 \text{ then skip else } x := x-1, [\sigma|x:1] \rangle$
 $t_4 = \langle \text{skip}, [\sigma|x:1] \rangle$

Luego resulta,

$$\frac{\overline{\langle x, [\sigma|x:0]\rangle \Downarrow_{intexp} 0} \text{ VAR } }{\frac{\langle x, [\sigma|x:0]\rangle \Downarrow_{intexp} 1}{\langle x+1, [\sigma|x:0]\rangle \Downarrow_{intexp} 1}} \text{ Plus} }{\frac{\langle x+1, [\sigma|x:0]\rangle \rightsquigarrow \langle \mathbf{skip}, [\sigma|x:1]\rangle}{\langle x:=x+1, [\sigma|x:0]\rangle \rightsquigarrow \langle \mathbf{skip}, [\sigma|x:1]\rangle}} \text{ Ass } }{t_1 \leadsto t_2}$$

Adicionalmente:

$$\frac{1}{t_2 \rightsquigarrow t_3}$$
 SEQ₁

Luego vemos:

$$\frac{\overline{\langle x, [\sigma|x:1]\rangle \Downarrow_{intexp} 1} \text{ Var } \overline{\langle 0, [\sigma|x:1]\rangle \Downarrow_{intexp} 0}}{\frac{\langle x>0, [\sigma|x:1]\rangle \Downarrow_{boolexp} \mathbf{true}}{t_3 \leadsto t_4}} \text{ If}_1$$

Por lo que ya probamos $t_1 \leadsto t_2 \leadsto t_3 \leadsto t_4$.

Recordando que \leadsto^* es la clausura transitiva de \leadsto , tenemos:

$$\frac{\underbrace{t_1 \rightsquigarrow t_2}_{t_1 \rightsquigarrow^* t_2} \quad \underbrace{t_2 \rightsquigarrow t_3}_{t_2 \rightsquigarrow^* t_3}}{\underbrace{t_1 \rightsquigarrow^* t_3}} \quad \underbrace{t_3 \rightsquigarrow t_4}_{t_3 \rightsquigarrow^* t_4}}_{t_1 \rightsquigarrow^* t_4}$$

Que es lo que queríamos demostrar.

4. Bucle while

La instrucción while es similar a aquella de repeat.

El efecto que produce **while** b **do** c es el de ejecutar el comando c mientras la condición b se cumpla, pero primero se evalúa la condición, y solo si esta da verdadera, se ejecutara el .

4.1. Sintaxis Abstracta

(fragmento)

$$comm ::= ...$$

| while boolexp comm

4.2. Semántica op. estructural para Comandos

 $\overline{\langle \mathbf{while}\ b\ \mathbf{do}\ c, \sigma \rangle} \rightsquigarrow \langle \mathbf{if}\ b\ \mathbf{then}\ c; \mathbf{while}\ b\ \mathbf{do}\ c\ \mathbf{else}\ \mathbf{skip}, \sigma \rangle \overset{\mathrm{WHILE}}{}$