1 Rappels de la classe de seconde.

1.1 Variations de fonctions.

Définition 1

Une fonction est **croissante** (respectivement **décroissante**) sur un intervalle si les images de nombres dans cet intervalle sont rangées dans le même ordre (respectivement l'ordre inverse) que ces nombres.

Exemple 1

La fonction carré $\mathbb{R} \to \mathbb{R}$, $x \mapsto x^2$ est décroissante sur $]-\infty;0]$. Par exemple, $(-2)^2=4>1=(-1)^2$. Pour exhiber les variations d'une fonction, on construit souvent un tableau.

x	-∞	0
x^2	+∞	0

Définition 2

Le **minimum** (respectivement le **maximum**) d'une fonction sur un intervalle est la plus petite (respectivement la plus grande) valeur atteinte par cette fonction sur cet intervalle.

On appelle extremum, un minimum ou un maximum.

Exemple 2

D'après le tableau de variations précédent, 0 est le minimum de la fonction $f:]-\infty;0] \to \mathbb{R}, x \mapsto x^2$. Il est atteint pour x=0 et f(x) ne possède pas de maximum.

2 Intersection d'une parabole avec l'axe des abscisses.

Proposition 1 (Positions de paraboles)

Il n'y a que deux possibilités pour une parabole $\mathcal{P}: y = a(x-\alpha)^2 + \beta$ de couper l'axe des abscisses en deux points :

- Soit elle admet un minimum strictement négatif (cas a > 0 et $\beta < 0$).
- Soit elle admet un maximum strictement positif.(cas a < 0 et $\beta > 0$)

La parabole est tangente à l'axe des abscisses si et seulement si son extremum est nul ($\beta = 0$).

2.1 Racines d'un trinôme.

Définition 3

Soit $f(x) = ax^2 + bx + c$ un trinôme du second degré et son graphe $\mathcal{P} : y = f(x)$.

- Si \mathcal{P} coupe l'axe des abscisses en deux points $A_1(x_1,0)$ et $A_2(x_2,0)$, on dit que x_1 et x_2 sont les deux **racines** du trinôme du second degré f(x).
- Si une parabole $\mathcal{P}: y = ax^2 + bx + c$ coupe l'axe des abscisses en un seul point $A_0(x_0, 0)$, on dit que x_0 est la **racine double** du trinôme du second degré f(x).

Autrement dit, x est une racine de f(x) si et seulement si f(x) = 0.

Exemple 3

Soit $f(x) = 3(x+1)(x-2) = 3x^2 - 3x - 6$. -1 et 2 sont les deux racines de f(x).

En effet, $f(-1) = 3(-1+1)(-1-2) = 3 \times 0 \times -3 = 0$ et $f(2) = 3(2+1)(2-2) = 3 \times 3 \times 0 = 0$.

Soit $g(x) = 2(x-3)^2 = 2(x^2-6x+9) = 2x^2-12x+18$. 3 est racine double. En effet, $g(3) = 2 \times 0^2 = 0$ et pour tout $x \neq 3, x-3 \neq 0$ par suite $(x-3)^2 \neq 0$ et en définitive $g(x) = 2(x-3)^2 \neq 0$.

Proposition 2 (Reformulation de la proposition de la position d'une parabole)

- Un trinôme du second degré admet deux racines si et seulement si a et β sont de signes contraires ou encore si et seulement si $a\beta < 0$.
- Un trinôme du second degré admet une racine double si et seulement si $\beta = 0$.

2.2 Calcul des racines et factorisation.

Définition 4 (Discriminant)

Soit f(x) un trinôme du second degré dont la forme développée réduite est $f(x) = ax^2 + bx + c$. On appelle **discriminant** de ce trinôme le nombre $\Delta = b^2 - 4ac$.

On admet que $\beta = -\frac{\Delta}{4a}$.

Exemple 4

Soit $h(x) = x^2 - 4x + 3$, $\Delta = 4^2 - 4 \times 3 = 4 = 2^2 > 0$.

— Soit $i(x) = 2x^2 - 4x + 2$, $\Delta = 4^2 - 4 \times 2 \times 2 = 0$.

Soit $j(x) = -3x^2 + 12x - 15$, $\Delta = 12^2 - 4(-3)(-15) = 144 - 180 < 0$

Théorème 1 (Central)

Soit $f(x) = ax^2 + bx + c$ un trinôme du second degré sous forme développée réduite.

f(x) admet deux racines x_1, x_2 si et seulement si son discriminant est strictement positif.

Dans ce cas, on a:

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} \qquad \qquad x_2 = \frac{-b + \sqrt{\Delta}}{2a}$$

Et le trinôme peut se factoriser en $f(x) = a(x - x_1)(x - x_2)$.

— f(x) admet une racine double x_0 si et seulement si son discriminant est nul.

Dans ce cas, on a:

$$x_0 = -\frac{b}{2a} (= \alpha)$$

Et le trinôme peut se factoriser en $f(x) = a(x - x_0)^2$.

-f(x) ne possède pas de racine si et seulement si son discriminant est strictement négatif.

Dans ce cas f(x) ne peut pas se factoriser en un produit de termes de degré 1.

Exemple 5

On reprend les exemples précédents :

— Pour h(x), $x_1 = \frac{4+2}{2\times 1} = 3$ et $x_2 = \frac{4-2}{2\times 1} = 1$. On vérifie bien $(x-1)(x-3) = x^2 - x - 3x + 3 = h(x)$

— Pour i(x), $x_0 = -\frac{-4}{2 \times 2} = 1$. On vérifie bien $2(x-1)^2 = 2(x^2 - 2x + 1) = 2x^2 - 4x + 2 = i(x)$.

— Pour j(x). Pour tout réél x, $-3(x-2)^2 - 3 = -3x^2 + 12x - 12 - 3 = <math>j(x) < 0$