TERMODINÁMICA

Nombre	Grupo
10111016	Orupo

Problema – 1 (5 puntos)

No está permitido el empleo de calculadoras programables ni la consulta de libros, apuntes o formularios. Los teléfonos móviles y relojes "smartwatch" deberán permanecer apagados y fuera del alcance del alumno.

Una incineradora de residuos emplea un ciclo de Rankine para generar energía eléctrica. Dicho ciclo es regenerativo, entrando el vapor a la turbina a 450°C y 60 bar. La turbina tiene una extracción para un calentador abierto. A la salida de la turbina el vapor se dirige al condensador, que opera a 10 kPa y del que sale el agua como líquido saturado. El calentador abierto recibe el vapor de extracción a 5 bar, saliendo el agua de alimentación del mismo como líquido saturado.

El rendimiento isentrópico de la turbina es del 80%, definido entre su entrada y su salida, siendo la línea de expansión una recta en el diagrama de Mollier. Las bombas se consideran adiabáticas con rendimiento isentrópico 100%. Se desprecian las pérdidas de presión en intercambiadores y conductos.

El aporte de calor a la caldera se asume procedente de un foco térmico a 1500°C y que el calor cedido en el condensador se dirige al ambiente a 25°C. La potencia neta producida por la central es de 35 MW. Tómese el estado muerto a 25°C y 1 bar.

Se pide:

- a) Esquema de la planta
- b) Potencia térmica aportada en la caldera
- c) Máximo trabajo útil que se podría obtener del calor cedido en el condensador, tomando éste en los tubos por los que se condensa el vapor
- d) Eficiencia exergética de la planta (considerando el calor para la caldera tomado del foco caliente y el cedido en el condensador en el ambiente)

Tablas del agua saturada (líquido – vapor)

Tablas dei agua saturada (ilquido vapor)								
р	Т	Vf	Vg	h _f	hg	Sf	Sg	
[bar]	[°C]	[m³/kg]	[m³/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg-K]	[kJ/kg-K]	
0,1	45,81	0,00101028	14,67	191,80	2583,9	0,649191	8,14881	
0,25	64,96	0,00101985	6,203	271,96	2617,4	0,893187	7,83018	
0,5	81,32	0,00102993	3,240	340,54	2645,2	1,09120	7,59304	
1	99,61	0,00104316	1,694	417,51	2675,0	1,30276	7,35891	
2,5	127,41	0,00106722	0,7187	535,35	2716,5	1,60723	7,05250	
5	151,83	0,00109255	0,3748	640,09	2748,1	1,86038	6,82069	
10	179,88	0,00112723	0,1944	762,51	2777,1	2,13806	6,58502	
15	198,29	0,00115385	0,1317	844,54	2791,0	2,31431	6,44299	
20	212,38	0,00117672	0,09959	908,47	2798,3	2,44670	6,33902	
25	223,95	0,00119738	0,07995	961,86	2801,9	2,55417	6,25579	
30	233,85	0,00121661	0,06667	1008,28	2803,2	2,64543	6,18561	
35	242,56	0,00123486	0,05706	1049,71	2802,7	2,72525	6,12436	
40	250,35	0,00125241	0,04978	1087,39	2800,8	2,79657	6,06961	
45	257,44	0,00126947	0,04406	1122,13	2798,0	2,86128	6,01975	
50	263,94	0,00128618	0,03945	1154,50	2794,2	2,92073	5,97370	
55	269,96	0,00130266	0,03564	1184,93	2789,7	2,97588	5,93070	
60	275,59	0,00131900	0,03245	1213,75	2784,6	3,02747	5,89015	

Nota: Redondear la entalpía a la cincuentena más próxima.

$$h_1 = 3300 \text{ KJ/Ky}$$
 $0.8 = \frac{3300 - h_3}{3300 - 2100} \rightarrow h_3 = 2340 \text{ KJ}$
 $h_{3S} = 2100 \text{ KJ/Ky}$

 $h_4 = 191.8 + 0.00101028 (\Gamma - 0.1) 100 = 192.3 kJ/kg$ $h_5 = 191.8 + 0.00101028 (\Gamma - 0.1) 100 = 192.3 kJ/kg$ $h_6 = 640.09$; $v_6 = 0.0010925 m^3/kg$ $h_7 = 640.09 + 0.00109255 (60 - 5)100 = 646.1 kJ/kg$

Coluntodor

dhz + (1-d) hr = h6 -> d = 0,1685

Turbine

W+ = h, - & h2 - (1-x) h3 = 874,07 KJ/ky

Bounba condentador

WBOON = (1-4) (h5-44)= 0,4116 K-J/Kg

Bomba de dimentación

WBAC = ha-h6 = 6.01 KJ/Kg

Wrete = in (874,07-0,4116-6,01) = 35000

L= w= 40,34 Kg/1

0 col = vi (h, -h=) = 107,07 MW

$$\frac{1}{2} \frac{1}{1} \frac{1}{1} = \frac{1}{1} \frac{1}{1} = \frac{1}{1} \frac{1}{1} \frac{1}{1} = \frac{1}{1} \frac{1}{1} \frac{1}{1} = \frac{1}{1} \frac{1}{1} \frac{1}{1} = \frac{1}{1} \frac{1}{$$

Tzy = Ty dodo que el punh 3 s vopor himedo - Tzy= 45,81°C

() con = vi (1-d) (h3-hu) = 72056, 45 KW

 $A_{0con} = 72.0565 \left(1 - \frac{298}{318,81}\right) = \frac{4,7MW}{6,53\%}$

El woor ce dido en el wudenhoder tiens baja exemple. La étimencia exemplifica se puede colcular de vouis forms:

$$\int (07,07) = 1 - \frac{298}{1773} = 83,19\%$$

Tombieis:

Sign =
$$\frac{dSu}{dz} = \frac{-\dot{Q}\omega d}{Tc} + \frac{\dot{Q}\omega n}{To} =$$

$$= \frac{-107.07}{1773} + \frac{72.05645}{298} = 0.181414 \frac{MW}{K}$$

TERMODINÁMICA

Nombre	Grupo

Problema – 2 (5 puntos)

No está permitido el empleo de calculadoras programables ni la consulta de libros, apuntes o formularios. Los teléfonos móviles y relojes "smartwatch" deberán permanecer apagados y fuera del alcance del alumno.

Un compresor de simple etapa y doble efecto refrigerado por agua ($\rho = 1000 \text{ kg/m}^3$; C = 4,18 kJ/kg-K) aspira un caudal de aire (R = 287 J/kg-K); $\gamma = 1,4$), en condiciones de la entrada (25 °C y 1 bar) de 3000 dm^3 /min. El espacio perjudicial es del 1,5% y las pérdidas de presión a la entrada y la salida son de 5 kPa y 15 kPa, respectivamente. El diámetro del vástago es de 43 mm, y la carrera de 150 mm. El régimen de giro es de 680 rpm, y la presión de salida de 7,2 barg. El proceso de compresión se asume internamente reversible, con un exponente politrópico de 1,25. El rendimiento mecánico es del 82%. El agua de refrigeración entra al compresor a 45°C y sale a 60°C.

Se pide:

- a) Diámetro del pistón
- b) Potencia de accionamiento

Se quiere aprovechar el calor retirado por el agua de refrigeración como fuente para una bomba de calor. Dicha bomba ha de suministrar calor a un foco a 100°C.

Se pide:

c) Mínimo trabajo consumido por dicha bomba de calor

Formulario:

$\begin{aligned} & \text{COMPRESORES} \\ & \eta_{vi} \!=\! 1 \!-\! \alpha \!\cdot\! \left[\left(\frac{p_2}{p_1} \right)^{\! 1/n} -\! 1 \right] \\ & w_i^{ad} \!=\! C_p \cdot T_l \cdot\! \left[\left(\frac{p_2}{p_1} \right)^{\! \frac{n-1}{n}} -\! 1 \right] \\ & w_i^{ref} \!=\! R \cdot T_l \cdot\! \left(\frac{n}{n-1} \right) \cdot\! \left[\left(\frac{p_2}{p_1} \right)^{\! \frac{n-1}{n}} -\! 1 \right] \end{aligned}$

$$Q_{vi} = 1 - \alpha \left[\left(\frac{P_z}{P_i} \right)^{1/n} - 1 \right] = 0,9296$$

$$1.9796 = \frac{\frac{3000}{60} \times \frac{100}{0.287 \times 298}}{\frac{95}{0.287 \times 298} \times V_{+} \times \frac{680}{60}}$$

$$L = 49954 cm^{3} = \frac{70^{2}}{4} L + \left(\frac{70^{2}}{4} - \frac{70^{2}}{4}\right) L =$$

$$= \frac{700^{2}}{4} L \left(1 + 1 - \left(\frac{Dv}{D} \right)^{2} \right) \longrightarrow D = 148.75 \text{ mm}$$

$$W_{i} = \dot{w} R T_{1} \left(\frac{n}{n-1}\right) \left[\left(\frac{P_{2}}{P_{i}}\right)^{\frac{n-1}{n}} - 1\right] =$$

Ts = Tz (proceso isentidpico en la (shule)

$$Volumber Volumber V$$

$$0 = 7.85 \times 10^{-7} \times 1.005 (25 - 187.27) + 16,6 =$$

Pare que la potenció de accionaniento de eno bombs red minime el Cor debe rer el de Comt:

$$T_W = \frac{60 - 4r}{L\left(\frac{60 + 273}{4r + 273}\right)} = 32r, 44 K$$

$$7.8431 = \frac{\dot{N} + \dot{\alpha}o}{\dot{N}} = 1 + \frac{7.06}{\dot{N}}$$