

$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	0	0	0	0
$\tau_{1^-}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	0	0	0	0
$\sigma_{1^{ ext{-}}}^{\#1}{}_{lpha}$	0	0	0	$\frac{1}{k^2 r_3}$	0	0	0
$\tau_1^{\#1}{}_+\alpha\beta$	$-\frac{i\sqrt{2}}{kr_3+k^3r_3}$	$\frac{i(3k^2r_3+2t_2)}{k(1+k^2)^2r_3t_2}$	$\frac{3k^2r_3+2t_2}{(1+k^2)^2r_3t_2}$	0	0	0	0
$\sigma_{1}^{\#2}$	$-\frac{\sqrt{2}}{k^2 r_3 + k^4 r_3}$	$\frac{3k^2r_3+2t_2}{(k+k^3)^2r_3t_2}$	$-\frac{i(3k^2r_3+2t_2)}{k(1+k^2)^2r_3t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{1}{k^2 r_3}$	$-\frac{\sqrt{2}}{k^2 r_3 + k^4 r_3}$	$\frac{i\sqrt{2}}{kr_3+k^3r_3}$	0	0	0	0
,	$\sigma_{1}^{\#1} + \alpha^{eta}$	$\sigma_{1+}^{#2} + \alpha \beta$	$ au_1^{\#1} \dagger^{lphaeta}$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_1^{\#1} +^{\alpha}$	$\tau_1^{\#2} + ^{\alpha}$

I							
$f_{1^-}^{\#2}$	0	0	0	0	0	0	0
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1^{-}}^{\#2}{}_{\alpha}$	0	0	0	0	0	0	0
$\omega_{1^{^{-}}\alpha}^{\#1}$	0	0	0	$k^2 r_3$	0	0	0
$f_1^{\#1}_{\alpha\beta}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<u>i kt2</u> 3	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_1^{\#_2^2}$	$\frac{\sqrt{2} t_2}{3}$	2 7 3	$-\frac{1}{3}\bar{l}kt_2$	0	0	0	0
$\omega_1^{\#1}{}_+\alpha\beta$	$k^2 r_3 + \frac{2t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_2$	0	0	0	0
	$\omega_{1}^{\#1} + ^{lphaeta}$	$\omega_1^{\#2} + \alpha \beta$	$f_1^{#1} + \alpha \beta$	$\omega_{1^{\bar{-}}}^{\#1} \dagger^{\alpha}$	$\omega_{1}^{\#2} \dagger^{lpha}$	$f_{1}^{\#1} \dagger^{\alpha}$	$f_1^{\#2} + \alpha$

Source constraints				
#				
1				
1				
3				
3				
თ				
თ				
5				
5				
5				
29				

$\omega_{0}^{"}$ -	0	0	0	$k^2 r_2 + t$		
r_0^+	0	0	0	0		
1 ₀ +	0	0	0	0	<i>"</i> •	σ .
ω_0^{\pm}	$6 k^2 r_3$	0	0	0	$\sigma_{2}^{#1} + c$ $\tau_{2}^{#1} + c$	
•	$\omega_0^{\#1}\dagger$	$f_{0}^{\#1}$ †	$f_0^{\#2} \uparrow$	$\omega_{0}^{\#1}$ †	$\sigma_{2}^{\#1} \dagger^{\alpha \mu}$	³ X

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_2^{\#1}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1} + \alpha \beta$	0	0	0
$I_{2}^{\#1} + \alpha \beta$	0	0	0
$\frac{1}{2}$ † $\frac{\alpha\beta\chi}{2}$	0	0	0

(No massless particles)