Кратные, поверхностные и криволинейные интегралы, Формулы Грина, Стокса и Остроградского

1. Кратные интегралы

1.1. двойной интеграл

 (ξ_i, η_i) – произвольная точка данной области.

Пусть λ – наибольший из диаметров областей (P_i).

 $\underline{\mathrm{Def}}$: Конечный предел I интегральной суммы σ при $\lambda \rightarrow 0$ называется двойным интегралом функции f(x,y) в области Р

и обозначается

Двойной интеграл является прямым обобщением понятия простого интеграла на случай функции двух переменных. Физический смысл – объем цилиндрического бруса.

Условие существования двойного интеграла

- 1. Для существования двойного интеграла необходимо и достаточно, чтобы $\lim_{z \to 0} S = C$, где S и s верхняя и нижняя суммы Дарбу соответственно.
- Всякая непрерывная в области Р функция f(x,y) интегрируема.
- Если ограниченная функция имеет f(x,y) имеет разрывы лишь на конечном числе кривых с площадью 0, то она интегрируема.

Свойства двойного интеграла

Далее всюду предполагается интегрируемость функций f и g на (P).

- 1. Существование и величина двойного интеграла не зависят от значений, принимаемых подынтегральной функцией вдоль конечного числа кривых с площадью 0.
- Пусть (Р) = (Р') + (Р''), тогда
- Signal AT SHE
- Если $f(x,y) \le g(x,y)$ на (P), то **Г**
- **Г Г Г С** (если f интегрируема, то |f| также интегрируема).
- Если $m \le f(x,y) \le M$, то **мет** установ или найдется такое число μ , $m \le \mu \le M$, что $\iint dP \mu P$.

Условия существования и свойства легко переносятся на случай многократных интегралов.

1.2. тройной интеграл

 $\underline{\text{Def}}$: Интегральной суммой функции f(x,y,z) в области V называется

 $(V_i), (\xi_i, \eta_i, \zeta_i)$ – произвольная точка данной области.

Пусть λ – наибольший из диаметров областей (V_i).

 $\underline{\mathrm{Def}}$: Конечный предел I интегральной суммы σ при $\lambda \rightarrow 0$ называется тройным интегралом функции f(x,y,z) в области

V и обозначается

Физический смысл – масса тела объема (V), если f(x,y,z) считать функцией плотности в точке.

1.3. п-кратный интеграл

Def: Для простейшей n-мерной области – n-мерного прямоугольного параллелепипеда $[a_1,b_1;a_2,b_2;...;a_n,b_n]$ объемом называется произведение его измерений $(a_1 - b_1)(a_2 - b_2)...(a_n - b_n)$.

Рассматриваются только те тела, для которых п-мерный объем существует (он заведомо существует для тел, ограниченных гладкими или кусочно-гладкими поверхностями). Простейшие п-мерные области: п-мерный симплекс $(x_1 \ge 0,...,x_n \ge 0; x_1 + ... + x_n \le h)$ и n-мерная сфера $(x_1^2 + ... + x_n^2 \le r^2)$.

<u>Def</u>: Аналогично рассмотренным выше случаям строится интегральная сумма функции $f(x_1,...,x_n)$ в n-мерной области (V), предел которой при стремлении κ нулю шага разбиения λ будет называться n-кратным интегралом

2. Поверхностные интегралы

2.1. первого рода

 $\underline{\mathrm{Def}}$: Пусть в точках некоторой двусторонней гладкой (или кусочно-гладкой) поверхности (S), ограниченной кусочно-гладким контуром, определена функция f(x,y,z). Интегральной суммой функции f(x,y,z) в области S называется

Пусть λ – наибольший из диаметров поверхностей (S_i).

 $\underline{\mathrm{Def}}$: Конечный предел I интегральной суммы σ при $\lambda{\to}0$ называется поверхностным интегралом первого типа

Пусть задана гладкая поверхность S: $r=r(u,v)=\{x=x(u,v), y=y(u,v), z=z(u,v); (u,v)\in D\}$

D - квадрируемая (т.е. поверхность, имеющая площадь) плоская область. E,G и F - коэффициенты первой

квадратичной формы поверхности S. $E = \left(\frac{\partial r}{\partial u}\right)^2$, $F = \left(\frac{\partial r}{\partial u}\right)^2$, $E = \left(\frac{\partial r}{\partial v}\right)^2$. Пусть на множестве точек r(u,v)

поверхности S задана функция

 $\Phi(r(u,v)) = \Phi(x(u,v), y(u,v), z(u,v)).$

 $\underline{\text{Def 1:}}$ Поверхностный интеграл первого рода $\int_{S} \mathbf{flex} \mathbf{y} \mathbf{z} \mathbf{d} \mathbf{x}$ сводится к обыкновенному двойному следующим

2.2. второго рода

Рассмотрим двустороннюю поверхность (S), гладкую или кусочно-гладкую, и фиксируем какую-либо из двух ее сторон (это равносильно выбору на поверхности определенной ориентации). Предположим, что поверхность задана явным уравнением z=z(x,y) на области (D). Тогда выбор возможен между верхней и нижней сторонами поверхности. В первом случае замкнутой кривой на поверхности приписывается направление против часовой стрелки, если смотреть сверху, в втором – обратное направление. Направление обхода контура проецируемой фигуры определяет направление обхода контура проекции. Направление это совпадает с вращением против часовой стрелки (т.е. отвечает ориентации самой плоскости ху), если фиксирована была верхняя сторона поверхности (S) – тогда площадь проекции берем со знаком плюс. В случае нижней стороны вращение будет обратным – площадь проекции берется со знаком минус.

(Si), снабженная знаком по указанному выше правилу. Пусть λ – наибольший из диаметров поверхностей (S_i).

 $\underline{\mathrm{Def}}$: Конечный предел I интегральной суммы σ при $\lambda{ o}0$ называется поверхностным интегралом второго типа от

f(x,y,z)dxdy, распространенным на выбранную сторонцу поверхности S, и обозначается (dxd

говорит о площади проекции элемента поверхности на плоскость ху). Если вместо плоскости ху проекцировать элементы поверхности на плоскость уz или zx, то получим два других поверхностных интеграла второго типа:

∫ f(x,y,z)dy или ∫ f(x,y,z)dz. Часто использую соединение интегралов всех этих видов:

, где P,Q,R – функции от (x,y,z), определенные в точках поверхности (S).

NB!!! Во всех случаях поверхность (S) предполагается двусторонней и интеграл распростроняется на определенную ее сторону.

3. Криволинейные интегралы

Аналогичны поверхностным интегралам, только рассматривается не поверхность, а кривая.

3.1. первого рода

<u>Def</u> : Интегральной суммой функции f(x,y) в области P называется σ_i , где σ_i – длина дуги кривой (K).

 $\lambda = \max(\sigma_i)$.

 $\underline{\mathrm{Def}}$: Конечный предел I интегральной суммы σ при $\lambda{\to}0$ называется криволинейным интегралом первого типа функции f(x,y) на кривой (K) и обозначается $I = \int f(x,y) dx$, где s говорит о длине дуги ds кривой (K). Аналогично можно распростронить это понятие на пространственную кривую: $I = \int f(x,y) dx$.

Пусть в трехмерном пространстве задана спрямляемая ориентированная кривая γ , $r(s) = \{x(s), y(s), z(s); 0 \le s \le S\}$ - ee представление, где за параметр взята переменная длина дуги s, A = r(0) и B = r(S) - начальная и конечная точки этой кривой.

Криволинейный интеграл первого рода от функции F по кривой АВ можно свести к обыкновенному:

3.2. второго рода

Сумма строится так же, только значение в точке умножается не на длину дуги, а на длину ее проекции. Как и в случае с поверхностным интегралом, определяем направление кривой.

Def : Конечный предел I интегральной суммы σ при $\lambda \rightarrow 0$ называется криволинейным интегралом второго типа

функции f(x,y)dx, взятым по кривой или пути (AB), и обозначается $I = \int_{(AB)} f(x,y)dy$.

Важно направление кривой: $\int_{AB}^{AB} f(x,y,z)dz$. Интеграл для пространственной кривой: $\int_{AB}^{AB} f(x,y,z)dz$.

Интеграл общего вида: **РАВАК**

4. Формула Грина

Связывает двойной и криволинейный интегралы.

Пусть G - плоская область и ее граница $\,$ L является кусочно-гладким контуром. Пусть в замкнутой области $\,$ $\,$ заданы функции P(x,y), Q(x,y), непрерывные на G вместе со своими частными производными. Тогда справедлива формула

5. Формула Стокса

Пусть S простая гладкая двусторонняя поверхность, ограниченная кусочно-гладким контуром L. Формула Стокса:

нормали, отвечающей выбранной стороне поверхности.

Полагая $\vec{a} = (P,QR)$, эту формулу можно переписать так: $\int_{L} \vec{a} \cdot \vec{b} \cdot \vec{c}$, т.е. циркуляция векторного поля по

контуру L равна потоку вихря этого поля через поверхность S, ограниченную контуром L.

6. Формула Остроградского

т.е. интеграл по области от дивергенции векторного поля равен потоку этого поля через поверхность, ограничивающую данную область.

NB! Формулы Грина, Стокса и Остроградского объединены одной идеей: они выражают интеграл, распространенный на некоторый геометрический образ, через интеграл, взятый по границе этого образа. При этом формула Грина относится к случаю двумерного пространства, формула Стокса – к случаю двумерного «кривого» пространства, а формула Остроградского – к случаю трехмерного пространства.

На основную формулу интегрального исчисления образования образован