Agrégation Externe

Exponentielle de matrice, groupes à un paramètre Notations et rappels

On désigne par $\mathbb Z$ l'anneau des entiers, par $\mathbb R$ le corps des nombres réels, par $\mathbb C$ celui des nombres complexes.

Si n est un entier ≥ 1 , $\mathcal{M}_n(\mathbb{R})$ désigne l'ensemble des matrices réelles de taille n, $\mathcal{M}_n(\mathbb{C})$ celui des matrices complexes de taille n, $GL_n(\mathbb{R})$ le groupe des matrices réelles de taille n inversibles, $GL_n(\mathbb{C})$ le groupe des matrices réelles de taille n inversibles, $SL_n(\mathbb{R})$ le groupe des matrices réelles de taille n de déterminant 1.

Si A est une matrice réelle ou complexe, on note Tr(A) sa trace, $\det(A)$ son déterminant et tA sa matrice transposée.

Si A est une matrice complexe, on note A^* sa matrice adjointe.

On désigne par I la matrice identité et aussi, par abus de notation, l'application linéaire identité. On munit \mathbb{R}^n de la structure euclidienne standard :

Si
$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n$$
, alors $||x|| = \left(\sum_{i=1}^n x_i^2\right)^{1/2}$

et \mathbb{C}^n de la structure hermitienne standard :

Si
$$z = \begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix} \in \mathbb{C}^n$$
, alors $||z|| = \left(\sum_{i=1}^n |z_i|^2\right)^{1/2}$

Les espaces $\mathcal{M}_n(\mathbb{R})$ et $\mathcal{M}_n(\mathbb{C})$ sont alors munis des normes matricielles associées :

pour $M \in \mathcal{M}_n(\mathbb{K})$, $||M|| = \sup_{\|x\|=1} ||M(x)||$ où $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} , et dans le membre de droite, $\|\cdot\|$ désigne la norme euclidienne ou hermitienne selon le cas.

On considérera dans certaines questions \mathbb{R}^n muni de sa structure d'espace affine. Si $\varphi : \mathbb{R}^n \to \mathbb{R}^n$ est une application affine, on désigne sa partie linéaire par A_{φ} , et par M_{φ} la matrice de A_{φ} dans la base canonique de \mathbb{R}^n .

On désigne par $GA_n(\mathbb{R})$ le groupe des applications affines bijectives de \mathbb{R}^n , et $SA_n(\mathbb{R})$ son sous-groupe des applications affines dont la partie linéaire est de déterminant 1.

La première partie rassemble divers résultats préliminaires utilisés dans les autres parties. Les différentes questions de cette partie, à part les questions $\mathbf{I.1.}$ et $\mathbf{I.2.}$ sont indépendantes. La partie \mathbf{V} est indépendante des parties \mathbf{II} , \mathbf{III} et \mathbf{IV} .

Partie I

1. Soient $A \in \mathcal{M}_n(\mathbb{C})$ et $F : \mathbb{R} \to GL_n(\mathbb{C})$ une application de classe \mathcal{C}^1 telle que :

$$\forall t \in \mathbb{R}, \ F'(t) = AF(t) \ \text{et} \ F(0) = I$$

Démontrer que :

$$\forall t \in \mathbb{R}, \ F(t) = \exp(tA)$$

(on pourra dériver la fonction $t \mapsto \exp(-tA) F(t)$).

2. Soient A, B dans $\mathcal{M}_n(\mathbb{C})$ telles que AB = BA. Démontrer que $\exp(A + B) = \exp(A) \exp(B)$ (on pourra utiliser la question **I.1.**).

1

- 3. Soit $A \in \mathcal{M}_n(\mathbb{C})$. Démontrer que det $(\exp(A)) = e^{\operatorname{Tr}(A)}$.
- 4. Soit $A \in \mathcal{M}_n(\mathbb{R})$. Démontrer que sa norme, lorsqu'on la voit comme élément de $\mathcal{M}_n(\mathbb{C})$ est égale à sa norme comme élément de $\mathcal{M}_n(\mathbb{R})$. (On pourra observer, en le justifiant, que si $z \in \mathbb{C}^n$ est écrit sous la forme z = x + iy avec x, y dans \mathbb{R}^n , alors $\|z\|^2 = \|x\|^2 + \|y\|^2$).
- 5. Démontrer que l'application :

$$\tau: GA_n(\mathbb{R}) \to GL_{n+1}(\mathbb{R})$$

$$\varphi \mapsto \begin{pmatrix} M_{\varphi} & \varphi(0) \\ 0 & 1 \end{pmatrix}$$

définit un morphisme injectif de groupes.

- 6. Soit $\varphi : \mathbb{R}^n \to \mathbb{R}^n$ une application affine. Démontrer que φ possède un unique point fixe si, et seulement si, l'application linéaire $A_{\varphi} I$ est bijective.
- 7. Soit $A \in \mathcal{M}_n(\mathbb{C})$ non nulle avec $\operatorname{Tr}(A) = 0$.
 - (a) Démontrer qu'il existe $x \in \mathbb{C}^n$ tel que x et Ax sont linéairement indépendants.
 - (b) Démontrer qu'il existe $P \in GL_n(\mathbb{C})$ telle que $P^{-1}AP$ soit une matrice dont tous les termes diagonaux sont nuls (on pourra procéder par récurrence sur n).
 - (c) On suppose que $A \in \mathcal{M}_n(\mathbb{R})$. Démontrer qu'il existe une matrice P comme dans **I.7.b.** ci dessus avec $P \in SL_n(\mathbb{R})$.
 - (d) On considère le cas n=2. Soit $B \in \mathcal{M}_2(\mathbb{R})$ avec $\operatorname{Tr}(B)=0$. Démontrer qu'il existe $Q \in SL_2(\mathbb{R})$ telle que $Q^{-1}AQ$ soit égale à une matrice de l'une des formes suivantes :

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
, $\begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & \alpha \\ \alpha & 0 \end{pmatrix}$ ou $\begin{pmatrix} 0 & \alpha \\ -\alpha & 0 \end{pmatrix}$

où $\alpha \in \mathbb{R}$.

Partie II

On considère la boule ouverte :

$$B = \{ M \in \mathcal{M}_n(\mathbb{R}) \mid ||M - I|| < 1 \}$$

- 1. Soit $g \in B$ et $\lambda \in \mathbb{C}$ une valeur propre complexe de g. Démontrer que $|\lambda 1| < 1$. En déduire que B est contenu dans $GL_n(\mathbb{R})$.
- 2. Soit $G \subset GL_n(\mathbb{R})$ un sous-groupe de $GL_n(\mathbb{R})$ contenu dans la boule ouverte B et $g \in G$.
 - (a) Démontrer que g possède une unique valeur propre complexe égale à 1 (on pourra considérer les puissances g^k , pour $k \in \mathbb{Z}$, de g).
 - (b) Démontrer qu'il existe une matrice nilpotente $N \in \mathcal{M}_n(\mathbb{R})$ telle que g = I + N.
 - (c) Démontrer que g = I.

Partie III

On appelle sous groupe à un paramètre de $GL_n(\mathbb{R})$ une application continue $\varphi: \mathbb{R} \to GL_n(\mathbb{R})$ telle que :

$$\forall (s,t) \in \mathbb{R}^2, \ \varphi(s+t) = \varphi(s)\varphi(t)$$

Soit $\varphi : \mathbb{R} \to GL_n(\mathbb{R})$ une telle application.

- 1. Que vaut $\varphi(0)$?
- 2. On suppose que φ est de classe \mathcal{C}^1 . Démontrer que :

$$\forall t \in \mathbb{R}, \ \varphi'(t) = \varphi'(0) \varphi(t)$$

En déduire la forme des sous groupes à un paramètre de $GL_n(\mathbb{R})$ qui sont de classe \mathcal{C}^1 .

3. On revient au cas général et on pose :

$$\forall t \in \mathbb{R}, \ \psi(t) = \int_{0}^{t} \varphi(u) \, du$$

(a) Démontrer que :

$$\forall (s,t) \in \mathbb{R}^2, \ \psi(s+t) = \psi(s) + \varphi(s) \psi(t)$$

- (b) Démontrer qu'il existe un réel r > 0 tel que pour tout $t \in]0, r[\,,\,\psi\,(t)$ est inversible.
- (c) Conclure.
- 4. On suppose dans cette question que φ est à valeurs dans $SL_2(\mathbb{R})$. Soit $x \in \mathbb{R}^2$ un vecteur non nul. Montrer que l'orbite $\{\varphi(t) \mid t \in \mathbb{R}\}$ est soit un point, soit une demi-droite, soit une droite, soit une ellipse, soit un arc d'hyperbole.

Partie IV

On rappelle que $SA_2(\mathbb{R})$ est le groupe des applications affines bijectives de \mathbb{R}^2 dans lui même, dont la partie linéaire est de déterminant 1. L'application τ de la question **I.5.** identifie $SA_2(\mathbb{R})$ à un sous-groupe de $GL_3(\mathbb{R})$.

Soit $\varphi : \mathbb{R} \to SA_2(\mathbb{R})$ un morphisme de groupes. On dit que φ est continu, respectivement de classe \mathcal{C}^1 , si l'application $\tau \circ \varphi$ l'est.

Cette partie étudie les morphismes de groupes continus $\varphi : \mathbb{R} \to SA_2(\mathbb{R})$.

Soit $\varphi : \mathbb{R} \to SA_2(\mathbb{R})$ un tel morphisme.

1. Démontrer que φ est de classe \mathcal{C}^1 .

2.

- (a) Démontrer que, s'il existe $t \in \mathbb{R}$ tel que $\varphi(t)$ possède un unique point fixe M, alors M est point fixe de tous les $\varphi(s)$, pour $s \in \mathbb{R}$.
- (b) Déterminer dans ce cas la nature des orbites $\{\varphi(s) \mid s \in \mathbb{R}\}$ des éléments de \mathbb{R}^2 .
- 3. On suppose que, pour tout réel t, $\varphi(t)$ est une translation. Expliciter la forme de $\varphi(t)$ et déterminer la nature des orbites $\{\varphi(t) \mid t \in \mathbb{R}\}$ des éléments de \mathbb{R}^2 .
- 4. On suppose que l'on n'est dans aucune des situations des questions **IV.2.** ou **IV.3.** ci-dessus. On appelle A(t) la partie linéaire de $\varphi(t)$.
 - (a) Démontrer qu'il existe $P \in SL_2(\mathbb{R})$ telle que pour tout réel $t, P^{-1}AP$ soit égale à $\begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$ ou $\begin{pmatrix} 1 & -t \\ 0 & 1 \end{pmatrix}$.

Ainsi, dans un repère convenable, pour tout réel t, $\varphi(t)$ s'écrit :

$$\forall x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2, \ \varphi(t) \cdot x = \begin{pmatrix} x_1 + \varepsilon t x_2 + u(t) \\ x_2 + v(t) \end{pmatrix}$$

où $\varepsilon = \pm 1$.

(b) Démontrer que :

$$\forall (s,t) \in \mathbb{R}^2, \ v(t+s) = v(t) + v(s)$$

En déduire qu'il existe $\gamma \in \mathbb{R}$ tel que :

$$\forall t \in \mathbb{R}, \ v(t) = \gamma t$$

(c) Démontrer que :

$$\forall (s,t) \in \mathbb{R}^2, \ u(t+s) = u(t) + u(s) + \varepsilon s t \gamma$$

En déduire la forme de u(t).

(d) Déterminer la nature des orbites $\{\varphi(t) \mid t \in \mathbb{R}\}$ des éléments de \mathbb{R}^2 .

Partie V

- 1. Dans chacun des cas suivants, démontrer que G est connexe par arcs (pour le cas (c), on pourra diagonaliser l'élément considéré et s'inspirer de cette situation pour le cas $G = SO_n(\mathbb{R})$.
 - (a) $G = SL_n(\mathbb{R})$.
 - (b) $G = SO_n(\mathbb{R})$.
 - (c) $G = SU_n(\mathbb{C})$.
- 2. Si G est l'un des groupes de la question précédente, on considère l'ensemble :

$$\mathcal{G} = \{X \in \mathcal{M}_n(\mathbb{K}) \mid \forall t \in \mathbb{R}, \exp(tX) \in G\}$$

avec $\mathbb{K} = \mathbb{R}$ dans les cas (a) et (b) et $\mathbb{K} = \mathbb{C}$ dans le cas (c).

Démontrer que :

- (a) si $G = SL_n(\mathbb{R})$, alors $\mathcal{G} = \{X \in \mathcal{M}_n(\mathbb{R}) \mid \text{Tr}(X) = 0\}$;
- (b) si $G = SO_n(\mathbb{R})$, alors $\mathcal{G} = \{X \in \mathcal{M}_n(\mathbb{R}) \mid {}^tX = -X\}$;
- (c) si $G = SU_n(\mathbb{C})$, alors $\mathcal{G} = \{X \in \mathcal{M}_n(\mathbb{C}) \mid X^* = -X \text{ et } \operatorname{Tr}(X) = 0\}$. On observe que, dans chacun des cas, \mathcal{G} est un \mathbb{R} -espace vectoriel.
- 3. L'application exponentielle envoie \mathcal{G} dans G.

Démontrer dans chacun des cas (b) et (c) ci-dessus, que cette application est surjective (pour $G = SU_n(\mathbb{C})$, on pourra diagonaliser l'élément considéré et s'inspirer de cette situation pour le cas $G = SO_n(\mathbb{R})$.

Dans les questions V.4. et V.5. on suppose que G est l'un des groupes de la question V.1.

4.

(a) Soient $g \in G$ et $X \in \mathcal{G}$. Démontrer que $gXg^{-1} \in \mathcal{G}$ et que l'application :

$$\begin{array}{ccc} G \times \mathcal{G} & \to & \mathcal{G} \\ (g, X) & \mapsto & gXg^{-1} \end{array}$$

définit une action de G sur \mathcal{G} par automorphismes linéaires.

(b) Soient X, Y dans \mathcal{G} . Démontrer que $XY - YX \in \mathcal{G}$ (on pourra considérer $\exp(tX) Y \exp(-tX)$.

Dans ce qui suit, on note [X,Y] = XY - YX et on note $f_X : \mathcal{G} \to \mathcal{G}$ l'application linéaire donnée par $f_X(Y) = [X,Y]$.

5. Démontrer que :

$$\forall (X,Y) \in \mathcal{G}^2, \ \forall t \in \mathbb{R}, \ \exp(tf_X)(Y) = \exp(tX)Y \exp(-tX)$$

- 6. On considère dans cette question $G = SU_2(\mathbb{C})$.
 - (a) Démontrer que \mathcal{G} est un \mathbb{R} -espace vectoriel de dimension 3 dont les matrices $A = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ et $C = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$ forment une base.
 - (b) Exprimer les éléments [A, B], [B, C], [C, A] en fonction de A, B et C.
 - (c) Soit X = xA + yB + zC avec x, y, z dans \mathbb{R} , un élément de \mathcal{G} . Déterminer la matrice de l'application linéaire f_X dans la base (A, B, C).
 - (d) Démontrer que l'application $X \mapsto \det(X)$ détermine une forme quadratique définie positive sur \mathcal{G} .
 - (e) Démontrer que l'action de G sur \mathcal{G} introduite en $\mathbf{V.4.a.}$ détermine un morphisme de groupes surjectif de $SU_2(\mathbb{C})$ sur $SO_3(\mathbb{R})$.
 - (f) Ce morphisme est-il injectif?
 - (g) Les groupes $SU_2(\mathbb{C})$ et $SO_3(\mathbb{R})$ sont-ils isomorphes?