PROGRAMACIÓN FUNCIONAL

Técnicas Formales: Inducción/Recursión

Técnicas Formales

- ◆ Inducción/Recursión
 - Definición inductiva de conjuntos
 - Demostración por inducción estructural
 - Definición de funciones recursivas
 - Ejemplos

Otros conjuntos

- Los tipos definidos hasta ahora, ¿son suficientes para la tarea de programar?
 - por ejemplo, si estuvieramos programando un intérprete para un lenguaje de programación, ¿cómo representaríamos un programa?
- ❖¿Cómo definimos conjuntos nuevos? ¿Y si necesitamos que tengan infinitos elementos? ¿Cómo probamos propiedades de estos conjuntos?

Inducción/Recursión

- → Para solucionar los tres problemas, usaremos INDUCCIÓN
- La inducción es un mecanismo que nos permite:
 - Definir conjuntos infinitos
 - Probar propiedades sobre sus elementos
 - → Definir funciones recursivas sobre ellos, con garantía de terminación

Inducción estructural

- Supongamos que quiero definir el conjunto
 ☼ de todas las cadenas formadas por letras
 S, y terminadas en Z. ¿Cómo lo hago?
- → Def: sea \(\text{\text{\text{el menor conjunto que satisface}} \) las siguientes condiciones
 - $\mathbf{Z} \in \mathbb{N}$
 - si $e \in \mathbb{N}$, entonces $Se \in \mathbb{N}$

Inducción estructural

- ◆ Una definición inductiva de un conjunto ℜ consiste en dar condiciones de dos tipos:
 - reglas base
 - que afirman que algún elemento simple pertenece a R
 - reglas inductivas
 - que afirman que un elemento compuesto pertenece a \Re siempre que sus partes pertenezcan a \Re

y pedir que R sea el menor conjunto (en sentido de la inclusión) que satisfaga todas las reglas dadas.

Inducción estructural

- → ¿Qué propiedades tiene un conjunto definido por inducción estructural?
 - Tiene infinitos elementos.
 - → Todos sus elementos, o bien satisfacen una regla base, o bien satisfacen una regla inductiva.
 - Todos sus elementos son finitos.
 - ➤ El orden basado en "es parte de" es bien fundado (o sea, toda cadena descendente es finita).
 (Ej.: Z es parte de SZ, SZ es parte de SSZ, etc.)

Ejemplo

- ◆ Sea *BE* definido inductivamente como:
 - **→** \top \top \in BE
 - **→ FF** ∈ **BE**
 - \bullet si $e_1, e_2 \in BE$, entonces $(e_1 \&\& e_2) \in BE$
 - si $e \in BE$, entonces (~e) $\in BE$
- → ¿Qué elementos tiene BE?

- → ¿Cómo demostramos la siguiente propiedad de los elementos de BE?
 - $P(x) \equiv x$ tiene tantos caracteres '(' como ')'.
- → TT y FF no tienen paréntesis, entonces, P(TT) y P(FF) se cumplen trivialmente
- → Pero ¿cómo ver que P((~e)) se cumple?
 - \bullet ¡Debemos asumir que P(e) se cumple!

- ❖ Sea S un conjunto inductivo, y sea P una propiedad sobre los elementos de S. Si se cumple que:
 - → para cada elemento $z \in S$ tal que z cumple con una regla base, P(z) es verdadero, y
 - → para cada elemento $y \in S$ construído en una regla inductiva utilizando los elementos $y_1, ..., y_n$, si P $(y_1), ..., P(y_n)$ son verdaderos entonces P(y) lo es,

entonces P(x) se cumple para todos los $x \in S$.

- En la definición previa,
 - cada caso donde se prueba que P(z) es verdadero para un elemento base z, se llama $caso\ base$.
 - cada caso donde se prueba que P(y) es verdadero asumiendo que $P(y_1)$, ..., $P(y_n)$ lo son, se llama *caso inductivo*; además, P(y) es la *tesis inductiva*, y $P(y_1) \land ... \land P(y_n)$ es la *hipótesis inductiva*.
- ▶ Decimos que la propiedad "P(x) se cumple para todos los $x \in S$ " se demostró por *inducción estructural*.

- **Ej.:** mostrar que para todo e ∈ BE, P(e) se cumple, siendo P(x) ≡ x tiene tantos caracteres '(' como ')'.
- **Dem**: por inducción en la estructura de *BE*
 - ◆ Casos base: TT y FF

 Trivialmente, pues ambos tienen cero de cada uno
 - → Casos inductivos: $(e_1 \&\& e_2)$ y (~e) Asumiendo que $P(e_1)$, $P(e_2)$ y P(e) son verdaderos, entonces es fácil ver que $P((e_1 \&\& e_2))$ y $P((\sim e))$ también lo son.
 - \bullet Habiendo mostrado todos los casos, concluimos que P(e) es verdadera para todo elemento de BE.

Recursión

- → ¿Cómo definimos funciones sobre los elementos de BE?
- ¡Utilizando el valor de la misma función en los casos anteriores!
- ♦ ¿Y esto funciona?
- ❖ Sí, pues el orden "es parte de" es bien fundado, y por lo tanto nunca hay reducciones infinitas.

Recursión

◆ Ejemplo:

```
nleftp :: BE -> Int

nleftp TT = 0

nleftp FF = 0

nleftp (e_1 \&\& e_2) = 1+ nleftp e_1 + nleftp e_2

nleftp (\sim e) = 1 + nleftp e_2
```

(**Atención:** esta sintaxis no es correcta, pues **BE** no se puede definir así en Haskell; la misma sirve sólo a los efectos del ejemplo.)

Funciones recursivas

- ❖ Sea S un conjunto inductivo, y T uno cualquiera. Una definición recursiva de una función f :: S -> T es una definición que posee la siguiente forma:
 - → por cada elemento base x, el valor de (f x) se da directamente usando valores previamente definidos
 - → por cada elemento inductivo y, con partes inductivas y1, ..., yn, el valor de (f y) se da usando valores previamente definidos y los valores (f y1), ..., (f yn).

Ejemplo: LISTAS

→ Dado un tipo cualquiera a, definimos inductivamente al conjunto [a] con las siguientes reglas:

- → [] :: [a]
- → si x :: a y xs :: [a] entonces x:xs :: [a]
- → ¿Qué elementos tiene [Bool]?
- → ¿Y [Int]?

Ejemplo: LISTAS

→ Definir por recursión una función len que cuente los elementos de una lista.

Observaciones

- Hay una ecuación por cada caso de la definición de [a]
- ◆ Los paréntesis son necesarios; si no dice (len x):xs
- La función len está definida para toda lista (siempre termina y da un valor definido). Esta propiedad está garantizada por la construcción de len, y por la naturaleza inductiva de las listas.
- ❖ Se pueden demostrar propiedades de len por inducción estructural en la lista argumento.

Ejemplo: LISTAS

- → Propiedad: demostrar que para toda lista xs, su longitud es mayor o igual que cero.
- → Dem.: por inducción en la estructura de xs
 - Caso base: xs = []
 len [] = 0 por def. de len, por lo tanto, len [] ≥ 0
 - Caso inductivo: xs = x:xs'
 Asumimos len xs' ≥ 0, por hipótesis inductiva.
 len (x:xs') = (por def. de len)
 1 + len xs' ≥ (por HI y aritmética)

Conclusiones

- **→** Este tema cubre:
 - cómo definir conjuntos infinitos con características útiles (conjuntos inductivos).
 - cómo demostrar propiedades sobre los elementos de los conjuntos inductivos.
 - ◆ cómo definir funciones recursivas sobre conjuntos inductivos, garantizando su terminación en todos los casos.