МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №5
по дисциплине «Алгоритмы и структуры данных»
Тема: Случайное бинарное дерево поиска.

Студентка гр. 8304	Мельникова О.А.
Преподаватель	Фирсов М.А.

Санкт-Петербург 2019

Цель работы.

Ознакомиться с основными понятиями и реализовать случайное бинарное дерево поиска.

Задание.

Вариант 8

- 1) По заданному файлу, все элементы которого различны, построить структуру данных типа случайное БДП.
- 2) Проверить входит ли в структуру данных элемент Е, и если входит, то удалить его. Предусмотреть возможность повторного выполнения с другим элементом.

Описание алгоритма.

Создание БДП было реализовано с помощью метода makeFromFile, который из входного потока считывает элементы и добавляет их в БДП методом SearchAndInsert.

Добавление элемента происходит в случае его неудачного поиска в узлах дерева. Если дерево изначально пустое, то сразу заполняются поля первого узла. Вставка зависит от значения элемента, если он меньше текущего корня, то продолжается поиск в левом поддереве, если больше, то в правом, если же значение value текущего узла равно искомому элементу, то в этом узле увеличивается count. Структура случайного БДП полностью зависит от того («случайного») порядка, в котором элементы расположены во входной последовательности (во входном файле).

Поиск и удаление элемента аналогичен поиску при удалении. В зависимости от значения элемента происходит поиск либо в левом, либо в правом поддереве. При нахождении элемента происходит его удаление. Проще всего его удалить, если этот элемент находится в листе дерева. Тогда данный лист непосредственно удаляется. Если же удаляемый элемент находится во внутреннем узле b, то в ситуации

когда существует правое поддерево, алгоритм находит минимальный элемент правого поддерева, рекурсивно удаляет его и заменяет им содержимое узла b. Если правого поддерева нет, то находится максимальный элемент левого поддерева, рекурсивно удаляется и содержимое узла b заменяется им. При этом если у найденного минимума или максимума есть поддерево (левое, если максимум и правое, если минимум), то оно не удаляется, а первый его узел встает на место удаленного элемента. Методы, реализующие данный алгоритм: SearchAndDelete, GetAndDeleteMaxValue, GetAndDeleteMinValue.

Вывод дерева происходит в обходе ЛКП, при таком обходе элементы выводятся отсортированными в порядке возрастания.

Описание класса.

1.T value;

Хранит значение.

2.unsigned int count;

Хранит количество повторяющихся элементов.

3.std::unique ptr<BinaryTree<T>> leftLeaf;

Указатель на левое поддерево.

4.std::unique ptr<BinaryTree<T>> rightLeaf;

Указатель на правое поддерево.

5.void makeFromFile(std::ifstream& fin, std::unique ptr<BinaryTree<T>>& tree)

Метод предназначена для создания дерева из входной последовательности элементов.

6.void SearchAndInsert(T& info, std::unique ptr<BinaryTree<T>>& tree)

Метод предназначен для поиска и вставки элемента.

7. void WriteToFile(std::ofstream& fout, std::unique_ptr<BinaryTree<T>>& tree)
Вывод узлов в порядке ЛКП.

8.T GetAndDeleteMinValue(std::unique_ptr<BinaryTree<T>>& tree, unsigned int
& count)

Метод предназначен для нахождения, возврата и удаления минимального элемента.

9.T GetAndDeleteMaxValue(std::unique_ptr<BinaryTree<T>>& tree, unsigned
int & count)

Метод предназначен для нахождения, возврата и удаления максимального элемента.

10. int SearchAndDelete(T& info, std::unique ptr<BinaryTree<T>>& tree)

Метод предназначен для поиска и удаления элемента.

Тестирование.

тестирование.		
Входные данные	Выходные данные	
Содержимое файла input.txt:	Считанное дерево:	
1.324	1.324	
2	2 3	
2 3		
45	8	
546	15	
54	45	
54	51	
116	53	
546	54	
546	84	
8	116	
84	123	
564	546	
15	564	
51	1898	
53		
1898	Дерево после удаления заданных	
123	элементов:	
Содержимое файла inputToDelete.txt:	8	
1.324	15	
2 3	51	
	84	
45	564	
546		
54		
54		
116		
546		

546 53 1898 123 Содержимое файла input.txt: Считанное дерево: 1.324 1.324 2 1.654 3 2 45.7 3 54 6 54 8 116 15 546 23 36 45.7
1898 123 Содержимое файла input.txt: 1.324 1.654 2 3 45.7 546.9 54 54 116 546 546 546 546 546 546 546 546 546 546 546 547 7
123 Считанное дерево: 1.324 1.654 1.324 2 1.654 3 2 45.7 3 546.9 5 54 6 54 8 116 15 546 23 36 36 45.7 3
Содержимое файла input.txt: Считанное дерево: 1.324 1.654 1.324 2 1.654 3 2 45.7 3 546.9 5 54 6 54 8 116 15 546 23 36 36
1.324 1.654 1.324 2 1.654 3 2 45.7 3 546.9 5 54 6 54 8 116 15 546 23 36 36 45.7 3
2 1.654 3 2 45.7 3 546.9 5 6 6 8 15 116 23 546 36 45.7 36
3 2 45.7 3 546.9 5 6 8 116 15 546 23 36 45.7
45.7 3 546.9 5 6 8 116 15 546 23 36 36 45.7 3
54 54 116 546 546 546 546
54 54 116 546 546 546 546
54 116 546 546 36 45.7
116 546 546 546
546 546 23 36 45.7
36 45.7
340
143./
18
51
53
15
51
52
1000
102
1110
546.9
123
678
908
345
76
Дерево после удаления заданных
23 элементов:
36
Содержимое файла inputToDelete.txt: 1.654
$\begin{vmatrix} 90 \\ 234 \end{vmatrix}$
$\begin{vmatrix} 234 \end{vmatrix}$
456
68
123
678
008
36 5

345	45.7
343	
	51
	53
	54
	76
	84
	116
	546
	546.9
	564
	807
	1898
Содержимое файла input.txt:	Считанное дерево:
1.324	1.324
Содержимое файла inputToDelete.txt:	
1.324	Дерево после удаления заданных
84	элементов:
564	0
Содержимое файла input.txt:	Считанное дерево:
	0
Содержимое файла inputToDelete.txt:	
1.324	Дерево после удаления заданных
2	элементов:
	0
Содержимое файла input.txt:	Считанное дерево:
116	8
546	116
546	546
8	
Содержимое файла inputToDelete.txt:	Дерево после удаления заданных
	элементов:
84	8
564cd;	116
15	546
51	
53	
1898	
123	
Содержимое файла input.txt:	Считанное дерево:
asdg csjdhfg zsk	0
Содержимое файла inputToDelete.txt:	
5	Параво посла удология за точну у
	Дерево после удаления заданных
saldfgh	элементов:
	0

Вывод.

В результате работы был получен опыт по реализации случайных бинарных деревьев поиска, и создана программа на языке си++, удовлетворяющая требованиям.

Приложение A. Файл main.cpp

```
#include "Tree.h"
int main(int argc, char* argv[]) {
  if(argc \le 2)
    std::cout<<"Не введены аргументы командной строки - название файла для считывания дерева и файла с
содержимым, которое нужно удалить из дерева!\n";
    exit(1);
  else
    std::unique ptr<BinaryTree<double>> tree(new BinaryTree<double>());
    std::ifstream inputFile(argv[1]);
    std::ifstream inputToDeleteFile(argv[2]);
    if (!inputFile.is open())
       std::cout << "ERROR: file isn't open" << std::endl;
       return 0;
    if (!inputToDeleteFile.is open())
       std::cout << "ERROR: file isn't open" << std::endl;
       return 0;
    if (inputFile.eof())
       std::cout << "ERROR: file is empty" << std::endl;
       return 0;
    tree->makeFromFile(inputFile, tree);
    inputFile.close();
    std::ofstream outputFile1("ReadTree.txt");
    tree->WriteToFile(outputFile1, tree);
    outputFile1.close();
    double elem;
    while (inputToDeleteFile >> elem) tree->SearchAndDelete(s, elem, tree);
    std::ofstream outputFile2("TreeAfterDelete.txt");
    tree->WriteToFile(outputFile2, tree);
    outputFile2.close();
    return 0;
}
```

Приложение Б.

Файл Tree.h

```
#pragma once
#include <iostream>
#include <string>
#include <memory>
#include <cstdlib>
#include <cstdio>
#include <fstream>
// если элем удалить
template <typename T>
class BinaryTree
{
public:
  T value;
  unsigned int count = 0;
  std::unique ptr<BinaryTree<T>> leftTree;
  std::unique ptr<BinaryTree<T>> rightTree;
  void makeFromFile(std::ifstream& fin, std::unique ptr<BinaryTree<T>>& tree){
    T info;
    while(fin >> info)
       SearchAndInsert(info, tree);
  void SearchAndInsert(T& info, std::unique ptr<BinaryTree<T>>& tree){
    if((tree->count) == 0)
       tree->value = info;
       tree->count = 1;
     }else if ( info < tree->value ) {
       if (!tree->leftTree) tree->leftTree = std::make unique<BinaryTree<T>>();
       SearchAndInsert(info, tree->leftTree);
     }else if(info>(tree->value)){
       if (!tree->rightTree) tree->rightTree = std::make_unique<BinaryTree<T>>();
       SearchAndInsert(info, tree->rightTree);
     }else (tree->count)++;
  }
  void WriteToFile(std::ofstream& fout, std::unique ptr<BinaryTree<T>>& tree) {
    if (tree->leftTree) WriteToFile(fout, tree->leftTree);
    fout << tree->value << std::endl;
    if (tree->rightTree) WriteToFile(fout, tree->rightTree);
  T GetAndDeleteMinValue(std::unique_ptr<BinaryTree<T>>& tree, unsigned int & count) {
    if (tree->leftTree) {
       return GetAndDeleteMinValue(tree->leftTree, count);
     }
    else {
       T result = tree->value;
       count = tree->count;
       if (tree->rightTree)
         tree->value = GetAndDeleteMinValue(tree->rightTree, tree->count);
       else
         tree = NULL;
```

```
return result;
  }
  T GetAndDeleteMaxValue(std::unique ptr<BinaryTree<T>>& tree, unsigned int & count) {
    if (tree->rightTree) {
       return GetAndDeleteMaxValue(tree->rightTree, count);
    else {
       T result = tree->value;
       count = tree->count;
       if (tree->leftTree)
         tree->value = GetAndDeleteMaxValue(tree->leftTree, tree->count);
       else
         tree = NULL;
       return result;
  }
  int SearchAndDelete(int& count, T& info, std::unique_ptr<BinaryTree<T>>& tree){
    if (tree->value != info) {
       if(info < tree->value) {
         if(tree->leftTree != NULL) {
            return SearchAndDelete(count, info, tree->leftTree);
         else return -1;
       } else {
         if(tree->rightTree != NULL) {
            count++;
            return SearchAndDelete(count, info, tree->rightTree);
         else return -1;
     }else{
       if (tree->rightTree) {
         tree->value = GetAndDeleteMinValue(tree->rightTree, tree->count);
       else if (tree->leftTree) {
         tree->value = GetAndDeleteMaxValue(tree->leftTree, tree->count);
       else {
            if(count == 0)
                     tree->value = 0;
                     tree->count = 0;
            }else{
            tree = NULL;
         }
       }
       return 1;
    }
  }
};
```