про внимание

Figure 3: Attention visualization examples. The inflected form is generated from top to bottom.

Kak parboana ZNU cosaka makaponn

Kak parbrana ZNN cosaka ect makaponn brep brep

Kox posonoer AHN colarce et marapour U(cosava, V(ect V(Maraporion, *oureuc) konterec) *ourierce) piet pret pred

colare et marepour U(cosava, V(ect, U(kakapenis, xourevec) xourevec)

KOK POSOTORT AHN

KOK posonoer AHN colarce et marapour

U(cobava, V(RCT, V(Makapenion, KONTEUCY KONTELEC) rowiek co)

V (cobava, vouTeuci)? V(whom, wow ten ()=

Score (chabo, Obere). en (chobo, e) Macrobbus choles

pere bourno ca ake.

lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

Name	Alignment score function	Citation
Content-base attention	$ ext{score}(m{s}_t,m{h}_i) = ext{cosine}[m{s}_t,m{h}_i]$	Graves2014
Additive(*)	$\mathrm{score}(oldsymbol{s}_t, oldsymbol{h}_i) = \mathbf{v}_a^ op anh(\mathbf{W}_a[oldsymbol{s}_t; oldsymbol{h}_i])$	Bahdanau2015
Location-Base	$lpha_{t,i} = ext{softmax}(\mathbf{W}_a s_t)$ Note: This simplifies the softmax alignment to only depend on the target position.	Luong2015
General	$ ext{score}(m{s}_t, m{h}_i) = m{s}_t^ op \mathbf{W}_a m{h}_i$ where $m{W}_a$ is a trainable weight matrix in the attention layer.	Luong2015
Dot-Product	$\mathrm{score}(oldsymbol{s}_t, oldsymbol{h}_i) = oldsymbol{s}_t^ op oldsymbol{h}_i$	Luong2015
Scaled Dot- Product(^)	$\operatorname{score}(s_t, h_i) = \frac{s_i^T h_i}{\sqrt{n}}$ Note: very similar to the dot-product attention except for a scaling factor; where n is the dimension of the source hidden state.	Vaswani2017

Escore (chabo, osche). emb (chobo, e)

perebauro cosal

Figure 3: Attention visualization examples. The inflected form is generated from top to bottom.

Пример гифок про то, как вычислять атеншн скор

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Две задачки

Задачка 1: https://gist.github.com/oserikov/13c706f7c8265b8d52d2f59e9a4d914d

Задачка 2: https://gist.github.com/oserikov/1b582a473aafdfe382487f0165f572ee