Alinhamento múltiplo de sequências

Alinhamento múltiplo de sequências. O que é?

- Um alinhamento múltiplo de sequências é simplesmente uma extensão do alinhamento de pares de sequências para um conjunto igual ou superior a 3
- É o estabelecimento de correspondências entre resíduos de diferentes sequências
- A determinação do **alinhamento múltiplo óptimo** de um conjunto de sequências não é um problema trivial e só pode ser resolvido para um pequeno número de sequências
- A geração de alinhamentos múltiplos é normalmente feita com recurso a métodos heurísticos que não garantem a solução óptima

Exemplo de alinhamento múltiplo

Alinhamento de membros da família das proteínas ribossomais L10P de diversos organismos

Importância do alinhamento múltiplo de sequências

- Os alinhamentos múltiplos de sequências são uma ferramenta central para a inferência da função das proteínas por comparação das suas sequências
- Os alinhamentos múltiplos são o ponto de partida para a previsão da estrutura secundária e identificação dos resíduos importantes para a especificidade
- Os alinhamentos múltiplos são a base dos métodos de pesquisa de sequências mais sensíveis de que dispomos (ex.: PSI-Blast)
- Os alinhamentos múltiplos são ainda o ponto de partida para a construção de árvores filogenéticas e determinação das relações evolutivas entre organismos
- Os alinhamentos múltiplos são uma forma conveniente de anotar as características estruturais e funcionais comuns a uma família de proteinas.

O alinhamento múltiplo aumenta a precisão do alinhamento simples

Comparação da precisão de alinhaments de pares de sequências quando produzidos de forma isolada ou fazendo parte de um alinhamento múltiplo.

Pode ver-se que na maior dos casos a precisão obtida com o alinhamento múltiplo é superior (valores acima da diagonal).

(A precisão é avaliada através da comparação com alinhamentos **estruturais**)

Alinhamento múltiplo: métodos

Os métodos para a produção de alinhamentos de 3 ou mais sequências podem ser divididas em várias categorias:

- Extensão dos métodos óptimos para N sequências: o algoritmo de N-W pode ser estendido para 3 ou mais sequências, mas exige o uso de matrizes multi-dimensionais e torna-se muito pesado computacionalmente (exp.: MSA)
- Métodos progressivos (ou hierárquicos): baseiam-se na aplicação sucessiva de métodos óptimos a todos os pares de sequências, depois a pares de pares, etc., através de uma estrutura em árvore. São os métodos mais usados. (Exp: Clustalw, t-coffee)
- **Métodos iterativos:** geral um alinhamento global inicial de todas as sequências, que é refinado em passos sucessivos (SAGA, DIALIGN)
- **Métodos de segmentos:** comparação de "janelas" de comprimento fixo nas várias sequências (p.exp.: MACAW)

Programação dinâmica a N dimensões

A extensão directo dos algoritmos de Needleman-Wunsch ou Smith-Waterman para N sequências torna-se impraticável computacionalmente: o alinhamento óptimo é agora um caminho num cubo a N dimensões.

Se tivermos N sequências de comprimento L, a matriz terá L^N células

Exemplo: 10 sequências de comprimento 200 - 20010 = 1022 células!

Matriz para o alinhamento múltiplo de 3 sequências (a seta vermelha representa o caminho óptimo na matriz)

Algoritmo de Carrillo-Lipman-Gupta

Este método é uma simplificação que reduz o espaço de busca e permite encontrar um alinhamento *próximo* do óptimo.

O método começa por definir intervalos para o alinhamento de cada par de sequências, e usa este intervalos para definir um volume de busca dentro do hipercubo.

Implementado no programa **MSA** - demasiado pesado para ser usado com mais de 25-30 sequências com ~100 aminoácidos.

Não existem servidores de acesso livre para este programa.

Cálculo do *score* num alinhamento múltiplo: o método SP (sum of pairs)

Sequence 1 2 3 4 5	Column A Column BNNNNNNNNNNNNNNN	N N N								
N N N	N N C	N C C								
Column A	Column B	Column C								
No. of N-N matched pairs (e	ach scores 6):									
10	6	4								
No. of N-C matched pairs (each scores -3):										
0	4	6								
BLOSUM62 score :										
60	24	6								

Métodos de alinhamento progressivo

Os métodos de alinhamento progressivo usam o algoritmo de programação dinâmica calcular distâncias entre pares de sequênicas. As distâncias são usadas para construir uma árvore que serve de guia para criação do alinhamento múltiplo.

Software para alinhamento múltiplo progressivo

• CLUSTALW:

Um dos softwares mais usados, existe também como um programa que pode ser instalado e executado no PC.

DEIXOU DE SER SUPORTADO PELO EBI

CLUSTAL OMEGA:

Nova versão do programa clustalw que usa modelos HMM em vez de matrizes de score. Recomendado para proteínas.

http://www.ebi.ac.uk/Tools/msa/clustalo/

• T-COFFEE:

Mais rigoroso, mas mais lento que CLUSTALW, usa uma combinação de vários métodos, incluindo a geração de alinhamentos de pares suo óptimos com o programa LALIGN. Recomendado para alinhamentos pequenos.

http://www.ebi.ac.uk/Tools/msa/tcoffee/

• MUSCLE:

Recomendado para alinhamentos de DNA/RNA http://www.ebi.ac.uk/Tools/msa/muscle/

CLUSTALW

T-Coffee

Métodos iterativos alinhamento

Os métodos de alinhamento progressivo têm como principal problema a propagação dos erros nos alinhamentos iniciais para o alinhamento final. Os métodos iterativos obviam esta situação através de repetidos passos de alinhamento global, com vista à otimização do score (por exemplo SP).

- **DIALIGN:** pesquisa de alinhamentos locais sem gaps em pares de sequências, pesados para o cálculo e otimização do alinhamento final. http://bibiserv.techfak.uni-bielefeld.de/dialign
- **PRRP/PRRN:** refinamento iterativo de um alinhamento progressivo com construção de árvore e uso de pesos no alinhamento de pares. http://prrn.hgc.jp
- **SAGA:** método iterativo baseado num algoritmo genético. Não está disponível na forma de serviço "on-line". É bastante pesado computacionalmente.

http://www.tcoffee.org/Packages/SAGA_V0.95.tar.gz

Alinhamento iterativo com PRRP/PRRN

Inferências estruturais e funcionais a partir de alinhamentos múltiplos de sequências

Edição interactiva de alinhamentos com Jalview

http://www.jalview.org/

Tools > Multiple Sequence Alignment > Clustal Omega

Service Announcement

The new Job Dispatcher Services beta website is now available at https://www.dev.ebi.ac.uk/Tools/jdispatcher. We'd love to hear your feedback about the new webpages!

Multiple Sequence Alignment

Clustal Omega is a new multiple sequence alignment program that uses seeded guide trees and HMM profile-profile techniques to generate alignments between three or more sequences. For the alignment of two sequences please instead use our pairwise sequence alignment tools.

Important note: This tool can align up to 4000 sequences or a maximum file size of 4 MB.

Tools > Multiple Sequence Alignment > Clustal Omega

Service Announcement

The new Job Dispatcher Services beta website is now available at https://www.dev.ebi.ac.uk/Tools/jdispatcher. We'd love to hear your feedback about the new webpages!

Multiple Sequence Alignment

Clustal Omega is a new multiple sequence alignment program that uses seeded guide trees and HMM profile-profile techniques to generate alignments between three or more sequences. For the alignment of two sequences please instead use our pairwise sequence alignment tools.

Important note: This tool can align up to 4000 sequences or a maximum file size of 4 MB.

EMBL-EBI Hinxton •

Tools > Multiple Sequence Alignment > Clustal Omega

Service Announcement

The new Job Dispatcher Services beta website is now available at https://www.dev.ebi.ac.uk/Tools/jdispatcher. We'd love to hear your feedback about the new webpages!

Results for job clustalo-I20231113-121354-0410-67345595-p1m

Alignments	Result	Summary	Guide Tre	e Phylogenetic Tree	Results Viewe	ers Submission Details
Download A	Alignment	File Sho	ow Colors			
CLUSTAL 0(1.2.	4) multipl	le sequence	alignment			
sp P51588 TRYP sp P35031 TRY1					-MLRFIAVFAL	10
sp P07477 TRY1						7
sp P35030 TRY3		MCGPDDRCF	PARWPGPGRAVKC	ELHPLLGGRTWRAAR (50	
sp P07146 TRY2						7
sp P00762 TRY1 sp P00763 TRY2					-MSALLIL	7
sp P00760 TRY1		MKTFIFL				7
sp P00761 TRYP					(9
sp P51588 TRYP				VNGVDTTIEAHPYQVPLQNAALSH		
sp P35031 TRY1 sp P07477 TRY1		LLIGAAFATEDDKIVGGYECKAYSQTHQVSLNSGYHFCGGSLVNENWVVS				58
sp P35030 TRY3		TFVAAALAAPFDDDDKIVGGYNCEENSVPYQVSLNSGYHFCGGSLINEQWVVSA DADGCEALGTVAVPFDDDDKIVGGYTCEENSLPYQVSLNSGSHFCGGSLISEQWVVSA				
sp P07146 TRY2		ALVGAAVAFPVDDDDKIVGGYTCRESSVPYQVSLNAGYHFCGGSLINDQWVVSA				
sp P00762 TRY1		ALVGAAVAFPLEDDDKIVGGYTCPEHSVPYQVSLNSGYHFCGGSLINDQWVVS				51
sp P00763 TRY2		ALVGAAVAFPVDDDDKIVGGYTCQENSVPYQVSLNSGYHFCGGSLINDQWVVS ALLGAAVAFPVDDDDKIVGGYTCGANTVPYQVSLNSGYHFCGGSLINSQWVVS				51 51
sp P00760 TRY1 sp P00761 TRYP				VGGYTCAANSIPYQVSLNSGSH		16 16
sp P51588 TRYP	SARBU	AHCMOSYTA		NEGGELVSVKAFKFHEGYNPK		123
sp P35031 TRY1				KVTEGSEQFISSSRVIRHPNYSSY		
sp P07477 TRY1		GHCYKS	-RIQVRLGEHNI	EVLEGNEQFINAAKIIRHPQYDRK	TLNNDIMLIKLSSRA :	117
sp P35030 TRY3 sp P07146 TRY2				KVLEGNEQFINAAKIIRHPKYNRD NVLEGNEQFVDSAKIIRHPNYNSW		
sp P00762 TRY1				NVLEGDEQFINAAKIIKHPNYSSW		
sp P00763 TRY2	RAT	AHCYKS	-RIQVRLGEHNI	NVLEGNEQFVNAAKIIKHPNFDRK	TLNNDIMLIKLSSPV :	117
sp P00760 TRY1				NVVEGNEQFISASKSIVHPSYNSN		117
sp P00761 TRYP	PIG	AHCYKS	-RIQVRLGEHNI	DVLEGNEQFINAAKIITHPNFNGN	TLDNDIMLIKLSSPA :	102
sp P51588 TRYP				AVVTGWGTKCFLTCVSLPKTLQEV		
sp P35031 TRY1		TLNTYVQPVALPTSCAPAGTMCTVSGWGNTMS-STAD-SNKLQCLNIPILSYSDCN VINARVSTISLPTAPPATGTKCLISGWGNTAS-SGADYPDELQCLDAPVLSQAKCE				
sp P07477 TRY1 sp P35030 TRY3						
sp P07146 TRY2		VINARVSTISLPTTPPAAGTECLISGWGNTLS-FGADYPDELKCLDAPVLTQAECK TLNARVASVPLPSSCAPAGTQCLISGWGNTLS-NGVNNPDLLQCVDAPVLPQADCE				173
sp P00762 TRY1		KLNARVAPVALPSACAPAGTQCLISGWGNTLS-NGVNNPDLLQCVDAPVLSQADCE				173
sp P00763 TRY2		KLNARVATVALPSSCAPAGTQCLISGWGNTLS-SGVNEPDLLQCLDAPLLPQADCE				
sp P00760 TRY1 sp P00761 TRYP		SLNSRVASISLPTSCASAGTQCLISGWGNTKS-SGTSYPDVLKCLKAPILSDSSCK TLNSRVATVSLPRSCAAAGTECLISGWGNTKS-SGSSYPSLLQCLKAPVLSDSSCK				
approuvoz (Tree		+1 1 1				.50
sp P51588 TRYP	_SARBU	KYGSQIQDI	MVCAYAL KKD	ACQGDSGGPLVANNQLVGIVSWGS	GCARVGYPGVFCDVP :	241
sp P35031 TRY1				SCQGDSGGPVVCNGELQGVVSWGY		
sp P07477 TRY1				SCQGDSGGPVVCNGQLQGVVSWGD SCQRDSGGPVVCNGQLQGVVSWGH		
sp P35030 TRY3 sp P07146 TRY2				SCQGDSGGPVVCNGELQGIVSWGY		
sp P00762 TRY1		AYPGEITS5	MICVGFLEGGKD	SCQGDSGGPVVCNGQLQGIVSWGY	GCALPDNPGVYTKVC :	233
sp P00763 TRY2				SCQGDSGGPVVCNGELQGIVSWGY		
sp P00760 TRY1 sp P00761 TRYP				SCQGDSGGPVVCSGKLQGIV5WGS SCQGDSGGPVVCNGQLQGIV5WGY		
spiroovoziikir		* . * .	*.*. * **	:** *****:*: *:****	*** . ***; .*	210
sp P51588 TRYP	SARBU	SVRSWIEKT	AKEL-	254		
sp P35031 TRY1		IFNDWLTS1		242		
sp P07477 TRY1		NYVKWIKNI		304		
sp P35030 TRY3 sp P07146 TRY2		NYVDWIKDT		304 246		
sp P00762 TRY1		NEVGWIQDI		246		
sp P00763 TRY2		NYVDWIQDI		246		
sp P00760 TRY1	BOVIN	NYVSWIKQT	IASN-	246		
sp P00761 TRYP	PIG	NYVNWIQQ		231		
		*: .				

STEP 3 - Submit your job

☐ Be notified by email (Tick this box if you want to be notified by email when the results are available)

Submit

Protocolo de alinhamentos múltiplos

- 1. Encontrar as sequências a alinhar, através de pesquisas em bases de dados ou por outra via
- 2. Definir as regiões de cada sequência a incluir no alinhamento (não tentar alinhar regiões demasiado diferentes!)
- 3. Avaliar o grau de semelhança das sequências através dos alinhamentos de pares
- 4. Começar por alinhar as sequências mais semelhantes, adicionar em seguida as mais distantes
- 5. Inspeccionar o alinhamento obtido, procurando problemas: regiões com demasiados gaps, baixa conservação, conflito com outras fontes de informação (p.exp. localização do centro activo). Corrigir manualmente com um editor de alinhamento (p.exp. Seaview ou Jalview)
- 6. Remover as sequências que "destroem" o alinhamento, re-alinhar as restantes
- 7. Usar os resíduos-chave conservados no sub-alinhamento como guia para a adição de novas sequências