Statistics and probability exam task

Artem Moskovets, SMD-2 Report Bug · Request Feature

About the project

This project aims to discover correlations and patterns from the survey, and get evaluation for statistics and probability course

Prerequirements

Packages from requirementns.txt should be installed.

Built with

- Pandasi pandas
- Matplotlib matpletlib
- Scipy SciPy

Predictions

Three predictions were made in this project:

- 1. Responders with non-binary gender disagree more with statement, that changing gender is pathological, comparing with male and female responders. (Columns A02 and B11)
- 2. Responders with non-binary gender more often wondered about their gender-identity, comparing with male and female responders. (Columns A02 and B12)
- 3. Responders with non-binary gender more often were assigned as wrong gender, comparing with male and female responders. (Columns A02 and B13)

First view of the data

Before visualising, I decided to see most important metrics just with a text:

```
amount of males in the survey: 75
amount of females in the survey: 120
amount of non-binary in the survey: 21

mean in the B11 column for males = 2.587
mean in the B11 column for females = 1.925
mean in the B11 column for non-binary = 1.571

mean in the B12 column for males = 2.387
mean in the B12 column for females = 2.625
mean in the B12 column for non-binary = 5.333
```

```
mean in the B13 column for males = 1.293 mean in the B13 column for females = 1.433 mean in the B13 column for non-binary = 4.19
```

Even here we can see that my assumptions were right

Visualising the data

To visualise the data, I decided to use boxplots:

Prove the predictions

To prove these predistions, I used Kruskal–Wallis H test:

```
B11: KruskalResult(statistic=15.317488299926785, pvalue=0.00047189967404393635)
B12: KruskalResult(statistic=26.517104443076377, pvalue=1.745355633681029e-06)
B13: KruskalResult(statistic=51.69910168479064, pvalue=5.938581341979491e-12)
```

In each case we can see large discrepancy among rank sums, which represents high H-score, and tiny p-value, that corresponds to tiny influence of random in our samples.

Conclusions

So, all three predictions are true, according to the Kruskal-Wallis H test.

Thank you for attention!