# Chapter 26 Limites, continuité

## **Exercice 1 (26.2)**

Pour la fonction h dont on donne une représentation graphique, donner la valeur de chaque quantité, si elle existe. Si elle n'existe pas, expliquer pourquoi.

- 1.  $\lim_{\substack{x \to -3 \\ <}} h(x)$ .
- 2.  $\lim_{\substack{x \to -3 \\ >}} h(x)$ .
- 3.  $\lim_{x \to -3} h(x)$ .
- **4.** h(-3).

- **6.**  $\lim_{x \to 0} h(x)$ . **7.**  $\lim_{x \to 0} h(x)$ .
- 7.  $\lim_{x\to 0} h(x)$ .
- **8.** h(0).

- 11.  $\lim_{\substack{x \to 5 \\ <}} h(x)$ .
- **12.**  $\lim_{\substack{x \to 5 \\ >}} h(x)$ .



## **Exercice 2 (26.2)**

Pour la fonction g dont on donne une représentation graphique, donner la valeur de chaque quantité, si elle existe. Si elle n'existe pas, expliquer pourquoi.

- 1.  $\lim_{\substack{t \to 0 \\ <}} g(t)$ .
- 2.  $\lim_{\substack{t \to 0 \\ >}} g(t)$ .
- 3.  $\lim_{t\to 0} g(t)$ .

- 4.  $\lim_{\substack{t \to 2 \\ <}} g(t)$ . 5.  $\lim_{\substack{t \to 2 \\ >}} g(t)$ .
- **6.**  $\lim_{t\to 2} g(t)$ .



## **Exercice 3 (26.2)**

Deviner la valeur de la limite (si elle existe) en évaluant la fonction au points donnés (à  $10^{-6}$  près).

$$\lim_{x \to 0} \frac{e^x - 1 - x}{x^2}$$

avec

$$x = \pm 1, \pm 0.5, \pm 0.1, \pm 0.05, \pm 0.01.$$

## **Exercice 4 (26.2)**

Deviner la valeur de la limite (si elle existe) en évaluant la fonction au points donnés (à  $10^{-6}$  près).

$$\lim_{\substack{x \to 0 \\ >}} x \ln\left(x + x^2\right)$$

avec

$$x = 1, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001.$$

## **Exercice 5 (26.2)**

À l'aide de la courbe représentative de f, déterminer un réel  $\delta > 0$  tel que

si  $|x - 5| \le \delta$  alors  $|f(x) - 3| \le 0.6$ .



## **Exercice 6 (26.2)**

Illustrer la définition de la limite

$$\lim_{x \to 1} \left( 4 + x - 3x^3 \right) = 2$$

en déterminant une valeur de  $\delta$  correspondante à  $\epsilon = 1$  et  $\epsilon = 0.1$ .

## **Exercice 7 (26.2)**

Démontrer les affirmations suivantes en utilisant la définition (en  $\epsilon, \delta$ ) de la limite.

1. 
$$\lim_{x \to 1} (2x + 3) = 5$$
.

2. 
$$\lim_{x \to -3} (1 - 4x) = 13$$
.

3. 
$$\lim_{x \to -2} \left( \frac{1}{2} x + 3 \right) = 2.$$

**4.** 
$$\lim_{x \to 4} (7 - 3x) = -5$$
.

## **Exercice 8 (26.2)**

1. Montrer, en revenant à la définition de la limite, que

$$\lim_{x \to 0} \sqrt{x+1} = 1.$$

2. Montrer de même que

$$\lim_{x \to +\infty} \frac{x+1}{x-2} = 1.$$

#### **Exercice 9 (26.2)**

En utilisant la définition de la limite d'une fonction, montrer

1. 
$$\lim_{x \to 4} \sqrt{2x + 1} = 3$$
.

$$2. \lim_{x \to +\infty} \frac{1-x}{x+3} = -1.$$

3. 
$$\lim_{x \to -\infty} \frac{x^2 + x}{x^2 + 1} = 1$$
.

## **Exercice 10 (26.2)**

Soit f une fonction définie sur un intervalle  $]\alpha, \beta[$  contenant le point a, continue en a avec f(a) > 0. Montrer qu'il existe  $\eta > 0$  tel que pour tout  $x \in ]a - \eta, a + \eta[$ , on ait f(x) > 0.

#### **Exercice 11 (26.3)**

Soit  $f : \mathbb{R} \to \mathbb{R}$  une fonction T-périodique avec T > 0.

On suppose que f a une limite en  $+\infty$ ; montrer que f est constante.

#### **Exercice 12 (26.4)**

1. Démontrer à l'aide du théorème d'existence de limite par encadrement

$$\lim_{x \to +\infty} \frac{\lfloor x \rfloor}{2x} = \frac{1}{2}.$$

2. Calculer, si possible

(a) 
$$\lim_{\substack{x \to 0 \\ >}} \frac{\lfloor x \rfloor}{2x}$$
;

(c) 
$$\lim_{x \to 2} \frac{\lfloor x \rfloor}{2x}$$
;  
(d)  $\lim_{x \to 2} \frac{\lfloor x \rfloor}{2x}$ .

(b) 
$$\lim_{x \to 0} \frac{\lfloor x \rfloor}{2x}$$
;

(d) 
$$\lim_{x \to 2} \frac{\lfloor x \rfloor}{2x}$$

#### **Exercice 13 (26.4)**

On pose, pour tout  $x \in [0, +\infty[$ ,

$$f(x) = \sum_{k=0}^{\lfloor x \rfloor} \frac{1}{2^k}.$$

- **1.** Préciser la valeur f(x) pour  $x \in [n, n+1[, n \in \mathbb{N}.$
- 2. Vérifier que f est croissante et majorée sur  $[0, +\infty[$ .
- **3.** Montrer que f a une limite finie en  $+\infty$ .
- **4.** En appliquant la définition, montrer que  $\lim_{x \to +\infty} f(x) = 2$ .

#### **Exercice 14 (26.4)**

Montrer

$$\lim_{x \to +\infty} \arctan x = \frac{\pi}{2}.$$

#### **Exercice 15 (26.5)**

Trouver

$$\lim_{x \to +\infty} \frac{(x^x)^x}{x^{(x^x)}}.$$

## Dans les exercices suivants

Rechercher les asymptotes du graphe de chacune des fonctions f suivantes. Esquisser l'allure du graphe au voisinage des asymptotes.

Exercice 16 (26.5)

$$f(x) = \frac{1}{(x-2)^2} \; ;$$

Exercice 17 (26.5)

$$f(x) = \frac{x}{x^2 - 4x + 3} \; ;$$

Exercice 18 (26.5)

$$f(x) = \frac{2x^2}{x^2 - 9} \; ;$$

**Exercice 19 (26.5)** 

$$f(x) = \frac{x+3}{\sqrt{x^2+9}} \; ;$$

**Exercice 20 (26.5)** 

$$f(x) = \tan x + x \; ;$$

Exercice 21 (26.5)

$$f(x) = \frac{\sin x}{x} \; ;$$

**Exercice 22 (26.5)** 

$$f(x) = |x| \sin \frac{1}{x} \; ;$$

Exercice 23 (26.5)

$$f(x) = \frac{\sqrt{x^2 + x^4}}{x} \; ;$$

**Exercice 24 (26.5)** 

$$f(x) = \frac{x}{\sqrt{1 - x^2}}.$$

#### **Exercice 25 (26.5)**

Calculer la limite suivante, si elle existe :

$$\lim_{x \to +\infty} \sin(x) \frac{\sqrt{1+x} - \sqrt{1-x}}{x}.$$

#### Exercice 26 (26.5)

Calculer la limite suivante, si elle existe :

$$\lim_{x \to 0} \frac{\left\lfloor \frac{1}{x} \right\rfloor + x}{\left\lfloor \frac{1}{x} \right\rfloor - x}.$$

#### Exercice 27 (26.5)

Calculer la limite suivante, si elle existe :

$$\lim_{x \to +\infty} \frac{x + \sqrt{x} - \sqrt{x^2 + 1}}{3 + \cos(x)}.$$

## Exercice 28 (26.5)

Soit  $f: ]0, +\infty[ \to \mathbb{R}$  telle que

- la fonction f est croissante,
- la fonction  $g: ]0, +\infty[ \to \mathbb{R}, x \mapsto f(x)/x$  est décroissante.

Montrer que f est continue.

#### Exercice 29 (26.6)

On considère la fonction f définie sur  $\mathbb{R}$  par

$$f(x) = \begin{cases} x+1 & : x > 0 \\ 1 & : x = 0 \\ e^x & : x < 0 \end{cases}$$

- **1.** Montrer que f est continue en tout point  $a \in \mathbb{R}$ .
- 2. Dans sa copie, Bob affirme

« La fonction  $x \mapsto 1$  est continue en 0, donc f est continue en 0. »

Expliquer l'erreur de raisonnement de Bob.

#### **Exercice 30 (26.6)**

Déterminer l'ensemble de définition des fonctions suivantes et étudier leur continuité.

**1.** 
$$f: x \mapsto \sqrt{x - \lfloor x \rfloor}$$
. **2.**  $g: x \mapsto \lfloor x \rfloor + (x - \lfloor x \rfloor)^2$ .

#### **Exercice 31 (26.6)**

Soit f la fonction réelle à valeurs réelles, strictement croissante définie par

$$f(x) = \begin{cases} x & x < 1 \\ x^2 & 1 \le x \le 4 \\ 8\sqrt{x} & x > 4 \end{cases}$$

- **1.** Tracer le graphe de f.
- **2.** *f* est elle continue ?

## 3. Donner la formule définissant $f^{-1}$ .

#### Dans les exercices suivants

Déterminer si les fonctions suivantes sont prolongeable par continuité en x = -1.

| Exercice 32 (26.6)                          | Exercice 35 (26.6)                  |
|---------------------------------------------|-------------------------------------|
| $f(x) = \frac{x^2 - 1}{x + 1}$              | $f(x) = \frac{x^2 - 6x - 7}{x + 1}$ |
| Exercice 33 (26.6)                          | <b>Exercice 36 (26.6)</b>           |
| $f(x) = \frac{x^2 + 1}{x + 1}$              | $f(x) = \frac{\sin(x+1)}{x+1}$      |
| Exercice 34 (26.6)                          | <b>Exercice 37 (26.6)</b>           |
| $f(x) = \frac{e^{2(x+1)} - 1}{e^{x+1} - 1}$ | $f(x) = \frac{\ln(x^2 + 1)}{x + 1}$ |

#### **Exercice 38 (26.6)**

Montrer que si  $f : \mathbb{R} \to \mathbb{R}$  est continue en 0 et en 1 et vérifie

$$\forall x \in \mathbb{R}, f(x) = f(x^2),$$

alors f est constante.

#### Exercice 39 (26.7)

Un randonneur parcourt 10 km en 2 heures. Montrer qu'il existe un intervalle de temps de durée 1 heure pendant lequel il a parcouru exactement 5 km.

On pourra introduire la fonction  $d:[1,2] \to \mathbb{R}$  qui au temps t associe le nombre de kilomètres parcourus depuis 1 heure.

#### Exercice 40 (26.7)

Montrer qu'une fonction continue  $f:[0,1] \to [0,1]$  admet un point fixe, c'est-à-dire qu'il existe  $c \in [0,1]$  tel que f(c) = c.

#### Exercice 41 (26.7)

Soit f et g deux applications continues sur [a, b] et à valeurs dans  $\mathbb{R}$ . On suppose que

$$f(a) = g(b)$$
 et  $f(b) = g(a)$ .

Montrer qu'il existe  $c \in [a, b]$  tel que f(c) = g(c).

## Exercice 42 (26.7)

Soient f et g deux applications continues sur un intervalle [a,b] et à valeurs réelles. On suppose

$$\forall x \in [a, b], f(x) > g(x).$$

Montrer qu'il existe m > 0 tel que

$$\forall x \in [a, b], f(x) > g(x) + m.$$

## Exercice 43 (26.7)

Soit  $f:[0,1] \to \mathbb{R}$  une fonction continue et injective sur [0,1].

- **1.** Montrer que pour tout  $x \in [0, 1]$ , f(x) est compris entre f(0) et f(1).
- **2.** Montrer que f est strictement monotone.

## Exercice 44 (26.7)

Soit  $f: \mathbb{R} \to \mathbb{R}$  une fonction continue et T-périodique avec T > 0.

Montrer que f est bornée et atteint ses bornes.

## Exercice 45 (26.7)

Soit  $f:[0,+\infty[\to\mathbb{R}]$  continue telle que

$$f(x) \xrightarrow[x \to +\infty]{} \ell \in \mathbb{R}.$$

Montrer que f est bornée.

## Exercice 46 (26.7)

Soit  $f:[0,1] \to \mathbb{R}$  une application continue,  $n \in \mathbb{N}^*$  et  $x_1, \dots, x_n \in [0,1]$ . Montrer qu'il existe  $c \in [0,1]$  tel que

$$f(c) = \frac{1}{n} \sum_{k=1}^{n} f(x_k).$$

## Exercice 47 (26.7)

Quel est l'intervalle image par f de I avec  $I = [0, +\infty[$  et  $f(x) = x \cos x ?$