المستوى الاولى بكالوريا مدة الانجاز: ساعتين

تمرین 1

 $C=5.10^{-2}mo\ell$. L^{-1} من محلول (S) لحمض الكلويدريك تركيزه V=20mL في كأس ،و عند الشروط (C=5.10 $^{-2}mo\ell$. L^{-1} من محلول (S) لحمض الكلويدريك تركيزه على m=135mg على m=135mg من الألومنيوم ، فتتكون أيونات الألومنيوم $M_{2}^{(aq)}$ ويتصاعد غاز ثنائي الهيدروجين ($M_{2}^{(aq)}$).

1 -صُف كيف يمكنك إبراز وجود أيونات الألومنيوم؟ نفس الْوَالُ بالنسبة لغاز ثنائي الهيدروجين .

- 2 ما طبيعة التفاعل الحاصل؟
- 3 أكتب معدلة التفاعل معينا النوع المؤكسد والنوع المختزل.
 - 4 أحسب كميتي المادة البدئيتين للمتفاعلين.
- 5 أنشئ جدول التقدم وحدد المتفاعل المحد والتقدم األقصى .
 - 6 حدد حصيلة المادة عند نهاية التفاعل.
 - 7 أحس بالتركيز المولى لأيونات الألومنيوم في الكأس.
 - 8 ماحجم غاز ثنائي الهيّدروجين المتصاعد ً

 $Vm=24L/mo\ell$ في شروط التجربة ($^{\circ}C$ و $^{\circ}C$) في شروط التجربة $M(Al)=27g/mo\ell$;

تمرین 2

ننجز التركيب التجريبي الممثل جانبه حيث:

m E=20V مولد كهربائي قوته الكهرمحركة m E=20V و مقاومته الداخلية m G

 $_{\cdot}$ r' =2 Ω محرك كهربائي قوته الكهر محركة المضادة $_{\cdot}$ و مقاومته الداخلية $_{\cdot}$

Rh معدلة مقاومتها R قابلة للضبط

 $I=1,2\;A$ نضبط مقاومة المعدلة على القيمة R فيشير الأمبرمتر إلى شدة التيار

- 1- اعط تعريف المستقبل من الناحية الطاقية .
 - 2- اعط تعبير قانون أوم بالنسبة لمستقبل
- Pr = 14,4 W بين مربطي المحرك علما أنه يستهلك قدرة كهربائيق U_{AB}
 - $\tilde{E}' = 9.6 \text{ V}$: بين أن القوة الكهر محركة المضادة للمحرك الكهربائي هي $\tilde{E}' = 9.6 \text{ V}$
 - . حدد القدرة الميكانيكية P_m للمحرك
 - 6- حدد مردود كل من المولد و المحرك .
 - 7- اعط الحصيلة الطاقية للدارة و استنتج قيمة المقاومة R للمعدلة .

تمرین 3

يتكون التركيب الكهربائي الممثل في الشكل المقابل من:

- مولد كهربائي G مقاومته الداخلية g وقوته الكهر محركة G قابلة للضبط
 - $R=10\Omega$ موصل أومي مقاومته
- محلل كهربائي قوته الكهرمحركة المضادة $E'=2,8\ V$ ومقاومته الداخلية $r'=2\ \Omega$.

1- أرسم على ورق ملمتري المميزة الممثلة للمحلل الكهربائي المذكور بالسلم: $1V \rightarrow 1cm$ و $100mA \rightarrow 1cm$)

- 2- عند ضبط القوة الكهرمدركة E للمولد E في القيمة $E_1=3V$ ، لا يمر في المحلل أي تيار كهربائي .
 - أ) بتطبيق قانون بويي ، عبر عن شدة التيار \bar{I} بدلالة r و \bar{R} أحسب \bar{I}
 - ب) أحسب Pth القدرة المبددة في الدارة بمفعول جول .
- $E_{2}=6$ ، يمر في المحلل تيار شدته $E_{3}=6$ في القيمة $E_{2}=6$ ، يمر في المحلل تيار شدته $E_{3}=6$
 - أ) أحسب في هذه الحالة شدة التيار I.
 - ب) أحسب المردود ρ للمولد والمردود ρ للمحلل الكهربائي .