DOI: 10.14258/jcprm.20250114483

УДК 615.322:547.913

КОМПОНЕНТНЫЙ СОСТАВ И АНТИМИКРОБНАЯ АКТИВНОСТЬ ФРАКЦИИ ЛЕТУЧИХ ВЕЩЕСТВ *PRUNUS CERASUS* L. (ROSACEAE), КУЛЬТИВИРУЕМОЙ В УЗБЕКИСТАНЕ

 $^{\circ}$ А.А. Ибрагимов^{1*}, И.Р. Мамажонова¹, Х.М. Бобакулов², Ф. Эшбоев², Ш.С. Азимова²

Ферганский государственный университет, ул. Мураббийлар, 19,
 Фергана, 150100, Республика Узбекистан, alijon.ibragimov.48@mail.ru
 Институт химии растительных веществ им. акад. С.Ю. Юнусова АН РУз, ул. Мирзо Улугбека, 77, Ташкент, 100170, Республика Узбекистан

Изучен компонентный состав эфирных масел, выделенных методом гидродистилляции из листьев и цветочных лепестков Prunus cerasus, культивируемых в Ташлакском и Алтыарыкском районах Ферганской области. Методом хромато-масс-спектрального анализа (ГХ-МС) эфирного масла из цветков Ташлакских образцов идентифицировано 47 соединений (образец №1), а в листьях – 59 веществ (образец №2), что составляет 91.63 и 93,07% от общего количества масла. В эфирном масле из цветков Алтыарыкских образцов идентифицировано 33 соединения (образец №3), в листьях – 57 соединений (образец №4), что составляет 88.05 и 79.44% от цельного масла. В составе эфирного масла образца №1 преобладающими компонентами являются 4-этенил-2-метоксифенол (27.75%), 4-винилфенол (17.86%), фурфурол (9.23%), 5-метилфурфурол (7.69%), 2-ацетилпиррол (4.52%), фурфуриловый спирт (2.15%), а также нонановая кислота (1.86%). В образце №2 преобладают герниарин (7-метоксикумарин) (38.06%), кумарин (28.53%), эвгенол (4.74%) и гексадекановая кислота (2.53%). В образце №3 преобладающими компонентами являются 4-этенил-2-метоксифенол (17.90%), 4-винилфенол (16.59%), изомерные сиреневые спирты D,С и В (9.05, 8.79 и 1.42% соответственно), трикозан (4.25%), нонановая кислота (3.88%), нонанол (1.97%), а также эстрагол (3.86%). Образец №4 преимущественно содержит герниарин (29.39%), кумарин (10.04%), эвгенол (6.56%), дигидрокумарин (5.04%), гексадекановую кислоту (4.13%), терпинолен (3.52%) и фитол (3.41%). Обсуждены наблюдаемые существенные различия между изученными образцами, а также с родственными образцами из других мест произрастания. Экспериментально определена антимикробная активность образцов растения, несколько уступающая контролю по величине действия.

Ключевые слова: Prunus cerasus, эфирное масло, ГХ-МС анализ, антимикробная активность.

Для цитирования: Ибрагимов А.А., Мамажонова И.Р., Бобакулов Х.М., Эшбоев Ф., Азимова Ш.С. Компонентный состав и антимикробная активность фракции летучих веществ *Prunus cerasus* L. (Rosaceae), культивируемой в Узбекистане // Химия растительного сырья. 2025. №1. С. 177–187. https://doi.org/10.14258/jcprm.20250114483.

Введение

Вишня — группа древесных и кустарниковых растений в основном листопадных видов рода *Prunus* семейства розовых (*Rosaceae*), иногда выделяемая в особый род *Cerasus* (*Cerasus vulgaris* — Вишня обыкновенная); произрастает и культивируется на большей части территории Европы, Северной Африки, Западной и Центральной Азии, Америке. Известно около 600 коммерческих сортов [1, 2]. По данным Продовольственной и сельскохозяйственной организации Объединенных Наций (ФАО) в ТОП-10 стран-лидеров по урожаю вишни в 2021 г. на четвертом месте был Узбекистан [3].

Prunus cerasus *Linn. Rosaceae* – в научной литературе позиционируется не только как пищевое, но также и как лекарственное растение. Это растение, особенно плоды, издавна используются для лечения ряда заболеваний мочевыделительной системы, таких как инфекции мочевыводящих путей, нефролитиаз, цистолитиаз и дизурия. Кроме этого, сообщалось об использовании продуктов из вишни для ухода за кожей [4]. В результате фармакологических исследований показано наличие у плодов вишни ценных лечебных свойств, в частности противораковой активности [5].

^{*} Автор, с которым следует вести переписку.

В обзоре [6] авторами обобщены литературные данные по химическим компонентам и лечебным свойствам вишни. Указывается на большое содержание различных флавоноидов [7], эссенциальных элементов, алкалоида мелатонина и его влияние на сон [8], витаминов, а также амигдалина [9–11]. Изучен также жирнокислотный состав масла вишни и другие органические кислоты. Приведены данные по белкам и углеводам. В работе [12] авторы исследовали влияние отдельных компонентов из ряда полифенолов на антиоксидантную активность и выявили три типа взаимодействия: синергическое, аддитивное и отрицательное, то есть могут как усиливать, так и уменьшать антиоксидантное действие.

Изучены иммуномоделирующая активность различных экстрактов плодов вишни [13, 14], антидиабетическое действие [15, 16], антибактериальные свойства десерта, приготовленного из вишни [17]. Имеются сведения по антиоксидантной, антимикробной [18–21] активности.

Химический состав фракции эфирного масла и гидрозолей из свежих цветков вишни [22] видов Cerasus subhirtella (Miq.) и Cerasus serrulata (Lindl) из Восточного Китая был, как отмечают авторы, впервые проанализирован с помощью газовой хроматографии и газовой хроматомасс-спектрометрии. Основными компонентами эфирных масел из C. subhirtella и C. serrulata были бензальдегид (31.2 и 42.1% соответственно), трикозан (23.1 и 27.7% соответственно) и пентакозан (23.2 и 19.0% соответственно). Основными компонентами летучих гидрозолей из C. subhirtella и C. serrulata были бензальдегид (67.5 и 64.3% соответственно) и манделонитрил (12.5 и 12.4% соответственно). Бензальдегид был ключевым компонентом эфирных масел, в то время как бензальдегид, а также манделонитрил были основными соединениями гидрозолей.

Авторами [23] изучен состав летучих веществ цветков черешни методом ультразвуковой и микроволновой экстракции. В черешне идентифицировали свыше 150 компонентов. Показана полезность для здоровья цветков черешни и обсуждена роль отдельных компонентов смеси. Высказано мнение, что альдегиды и кетоны привлекают насекомых для опыления и отпугивают растительноядных. Исследовались также фенольные соединения Cerasus serrulata [24] и черешни [25].

Материалы и методы

Экстракция эфирного масла. Для анализа использовали четыре образца цветочных лепестков и листьев вишни из двух мест произрастания, собранных в 2023 году в стадии цветения в Ташлакском районе (образцы №1 и №2 соответственно) и Алтыарыкском районе (№3 и №4 соответственно). Масло выделяли методом гидродистилляции из воздушно-сухого сырья в течение 3 ч с использованием стеклянной колбы и насадки Клевенжера. После отделения сушили над безводным сульфатом натрия и хранили в запаянных ампулах в темноте при +4 °C до начала проведения анализа. Полученные образцы представляют собой бледно-желтую подвижную жидкость со специфическим запахом.

Условия ГХ-МС анализа эфирного масла: качественный и количественный состав эфирного масла исследовали на хромато-масс-спектрометре Agilent 5975С inert MSD/7890AGC. Разделение компонентов эфирного масла проводили на кварцевой капиллярной колонке Agilent HP-INNOWax (30 м × 250 μm × 0.25 μm) в температурном режиме: 60 °C (2 мин), 4 °С/мин до 220°С (10 мин), 1 °С/мин до 240 °С (20 мин). Объем вносимой пробы составлял 1.0 μl, скорость потока подвижной фазы (H₂) – 1.1 мл/мин. Температура испарителя – 220 °C, температура источников ионов – 230 °С. Ионизацию молекул осуществляли методом электронного удара (70 эВ). EI-MS спектры были получены в диапазоне *m/z* 45–550 а.е.м. Компоненты идентифицировали на основании сравнения характеристик масс-спектров с данными электронных библиотек W9N11.L (Wiley Registry of Mass Spectral Data-9thEd., NIST Mass Spectral Library, 2011) и сравнения индексов удерживания (RI) соединений, определенных по отношению к времени удерживания смеси *н*-алканов (С9–С34). Количественное содержание компонентов эфирных масел вычисляли из площадей хроматографических пиков [26, 27]. Результаты исследования компонентов эфирного масла листьев и цветочных лепестков методом хромато-масс-спектрометрии представлены в таблицах 1–4.

Антимикробная активность. Образцы летучих веществ, полученные экстрагированием цветочных лепестков №1 и №3, тестировали на антимикробную активность методом диффузионно-дискового агара [28, 29]. Антимикробную активность оценивали с использованием следующих пяти микроорганизмов: грамотрицательные бактерии Escherichia coli РКМУз-221 и Pseudomonas aeruginosa ATCC 27879; грамположительные бактерии Bacillus subtilis РКМУз-5 и Staphylococcus aureus ATCC 25923; дрожжи Candida albicans РКМУз-247. Стерильный питательный агар (28 г агара/л дистиллированной воды) засевали бактериальными

клетками (200 µl бактериальных клеток в 2 мл 0.9% суспензии NaCl и 25 мл среды) и разливали в чашки Петри до получения твердой среды. *Candida albicans* (1×10⁶ колониеобразующих единиц на мл) инокулировали на стерильный агар Мюллера-Хинтона. Образцы по 2 мг на диск наносили на стерильные бумажные диски. Ампициллин/сульбактам (10 µg + 10 µg/диск), гентамицин (10 µg/диск) и флуконазол (25 µg/диск) использовали в качестве положительных контрольных опытов, а растворители – в качестве отрицательных. Растворителям давали испариться в токе воздуха. Диски наносили на поверхность инокулированных чашек с агаром. Чашки выдерживали в течение 2 ч в холодильнике для диффузии веществ в агар. Чашки с бактериями инкубировали 24 ч при 37 °C, а чашки с *Candida albicans* 48 ч при 28 °C. Диаметр зоны ингибирования измеряли и записывали по истечении времени инкубации. Среднюю зону ингибирования рассчитывали для трех повторов в независимых анализах.

Обсуждение результатов

В таблицах 1 и 3 представлены результаты по цветочным лепесткам из двух районов Ферганской области, а в таблицах 2 и 4 – по листьям. Анализ полученных данных показывает, что в образце №1 преобладающими компонентами являются 4-этенил-2-метоксифенол 27.75%, 4-винилфенол 17.86%, фурфурол 9.23%, 5-метилфурфурол 7.69%, 2-ацетилпиррол 4,52%, эйкозан 2.46%.

В образце №3 основными по количеству являются следующие соединения (табл. 3): 4-этенил-2-метоксифенол 17.90%, 4-винилфенол 16.59%, сиреневый спирт D 9.05%, сиреневый спирт С 8.79%, трикозан 4.25%, нонановая кислота 3.88%, эстрагол 3.86%, нонаналь 1.97%, эйкозан 1.80%, сантен 1.78%. Сравнение состава преобладающих компонентов цветковых лепестков из двух соседних регионов показывает, что два главных компонента — 4-этенил-2-метоксифенол и 4-винилфенол являются одинаковыми, хотя и несколько отличаются по количественному содержанию. Третий и четвертый компоненты также являются родственными веществами — производными фурана, но они значительно отличаются по структуре. В обоих образцах обнаруживается эйкозан. В целом следует отметить, что в цветочных лепестках исследуемых образцов вишни преобладают фенолы, альдегиды и спирты.

Таблица 1. Компоненты эфирого масла цветочных лепестков из района Ташлак (образец №1)

No	Соединение	RI*	RT**	%
1	2	3	4	5
1	Гептаналь	767	3.020	0.34
2	Октаналь	885	4.715	0.09
3	Диацетоновый спирт	658	6.002	0.15
4	Нональ	936	7.024	1.23
5	Фурфурол	509	8.299	9.23
6	Октадекан	1884	9.185	0.22
7	2-Ацетилфуран	677	9.372	0.89
8	Бензальдегид	760	9.858	0.57
9	Сиреневый альдегид	1036	10.524	0.23
10	α-Оцимен	1019	10.983	0.42
11	5-Метилфурфурол	612	11.190	7.69
12	Циклопент-4-ен-1,3-дион	507	11.319	1.68
13	γ-Бутиролактон	471	12.342	0.12
14	<i>o</i> -Мент-1-ен-9-аль	1069	12.413	1.77
15	2-Фенилацетальдегид	854	12.846	0.06
16	Фурфуриловый спирт	531	13.499	2.15
17	Эстрагол	1020	13.803	0.14
18	4-Метоксистирол	911	14.056	0.38
19	1-Метилl-3-проп-1ен-2-илциклогексен	1082	14.813	0.21
20	2Н-Фуран-5-он	456	15.556	0.12
21	Дамасценон	1379	17.678	0.19
22	Гексановая кислота	649	18.448	0.14
23	Фенилметанол	731	18.940	0.05
24	2-Фенилэтанол	899	19.774	0.62
25	о-Крезол	751	20.990	0.23
26	2-Ацетилпиррол	645	21.158	4.52
27	Метил 2-фуроат	624	21.682	0.13
28	1Н-пиррол-2-карбальдегид	500	22.297	0.14

Окончание таблицы 1

1	2	3	4	5		
29	3,4-Диметоксистирол	1065	23.164	0.16		
30	Октановая кислота	843	23.694	0.16		
31	Валенцен	1512	24.457	1.43		
32	Эвгенол	1058	25.751	0.22		
33	6,10,14-Триметилпентадекан-2-он	1851	25.919	0.95		
34	Нонановая кислота	941	26.152	1.86		
35	4-Этил-2-метоксифенол	930	26.411	27.75		
36	α-Гуржунен	1502	27.071	1.04		
37	2,4,6-Триметилфенол	994	27.239	0.24		
38	α-Селинен	1593	27.278	0.21		
39	4-Аллилфенол	995	29.522	0.08		
40	3,4,5-Триметилфенол	965	30.163	0.43		
41	Эйкозан	2052	30.454	2.46		
42	4-Винилфенол	845	30.622	17.86		
43	Бензойная кислота	720	31.165	0.98		
44	Додекановая кислота	1236	32.964	0.09		
45	Пентакозан	2560	34.529	0.73		
46	Гексадекановая кислота	1630	40.913	0.89		
47	Линолевая кислота	1881	46.955	0.38		
Суми	Сумма					

Примечание. RI* – Индекс Ковача, RT** – Время удержания.

Таблица 2. Компоненты эфирого масла листьев из района Ташлак (образец №2)

No	Compounds	RI*	RT**	%
1	2	3	4	5
1	2-метилтетрагидрофуран-3-он	500	4.023	0.11
2	2,5-диметилпиразин	672	5.330	0.07
3	уис-3-гексен-1-ол	646	6.552	0.06
4	2-этил-5-метилпиразин	744	6.662	0.11
5	Фурфураль	508	8.338	0.20
6	2-ацетилфуран	677	9.385	0.07
7	Пиррол	474	9.457	0.10
8	2(3Н)-Фуранон	667	9.651	0.10
9	бензальдегид	760	9.858	0.17
10	Линалоол	1019	10.977	1.91
11	5-метилфурфураль	610	11.229	0.28
12	ү-терпинен	1075	12.232	0.06
13	γ-бутиролактон	472	12.303	0.43
14	фенилацетальдегид	852	12.898	0.17
15	Ацетофенон	843	13.163	0.16
16	Фурфуриловый спирт	531	13.499	0.22
17	4-Метоксистирол	912	14.049	0.05
18	α-Терпинеол	1083	14.800	0.56
19	Этанол	1088	17.426	0.13
20	Циклотен	673	17.827	0.05
21	Гексановая кислота	649	18.442	0.16
22	Гваякол	748	18.480	0.15
23	2-(4-метилфенил)пропан-2-ол	1046	18.532	0.20
24	Гераниол	1040	18.687	0.48
25	бензиловый спирт	732	18.914	0.23
26	2-фенилэтанол	899	19.768	0.22
27	β-Ионон	1362	20.712	0.39
28	2-Ацетилпиррол	645	21.152	1.14
29	транс-2-гексеновая кислота	636	21.365	0.25
31	1Н-пиррол-2-карбальдегид	501	22.277	0.15
32	Октановая кислота	843	23.688	0.11
33	1-метилпиррол-2-карбальдегид	615	24.393	0.11
34	2-гидрокси-4-метоксибензальдегид	882	25.175	0.18
35	Евгенол	1055	25.745	4.74
36	Нонановая кислота	939	26.146	0.16

Окончание таблицы 2

1	2	3	4	5		
37	2-метокси-4-винилфенол	928	26.430	0.36		
38	Мегастигматриенон А	1321	26.592	0.29		
39	Фенилацетальдегид	808	26.915	0.31		
40	Дигидрокумарин	972	27.756	2.27		
41	Декановая кислота	1039	28.513	0.09		
42	4,4,7-триметил-6,7-дигидро-5Н-1-бензофуран-2-он	1110	29.186	0.74		
43	4-аллилфенол	995	29.516	0.14		
44	Трикозан	2354	30.421	0.37		
45	<i>n</i> -толуолальдегид	843	30.648	0.56		
46	Индол	819	31.185	0.11		
47	Кумарин	905	31.482	28.53		
48	Тетракозан	2457	32.517	0.11		
49	Лауриновая кислота	1236	32.951	0.08		
50	Пентакозан	2561	34.516	0.25		
51	Пинан	1096	35.907	2.61		
52	Тетрадекановая кислота	1466	37.065	0.06		
53	Гептакозан	2733	38.326	0.13		
54	Герниарин	1039	40.745	38.06		
55	Гексадекановая кислота	1630	40.907	2.53		
56	Нонакозан	2976	41.910	0.28		
57	Октадекановая кислота	1828	45.034	0.09		
58	Линолевая кислота	1882	46.936	0.41		
59	Линоленовая кислота	1851	48.999	0.90		
	Сумма					

Примечание. RI* – Индекс Ковача, RT** – Время удержания.

Таблица 3. Компоненты эфирого масла цветочных лепестков из района Алтыарык (образец №3)

No	Соединение	RI*	RT**	%
1	2	3	4	5
1	Нонаналь	936	7.018	1.97
2	Фурфураль	508	8.344	0.73
3	(2R,2'R,5'S)-Сиреневый альдегид	1025	10.828	0.31
4	Терпинолен	1020	10.970	1.01
5	5-метилфурфураль	611	11.216	1.71
6	<i>n</i> -Мент-1-ен-9-аль	1069	12.400	1.51
7	Сантен	966	12.484	1.78
8	Фурфуриловый спирт	531	13.499	1.12
9	Терпинолен	1083	14.800	0.39
10	Сиреневый спирт D	1071	15.136	9.05
11	Сиреневый спирт С	1054	15.602	8.79
12	Сиреневый спирт В	1008	16.895	1.42
13	Гексановая кислота	650	18.435	0.62
14	Грандлюр II	1040	18.687	0.34
15	2-фенилэтанол	899	19.761	1.53
16	Камфен	1078	20.317	0.73
17	Эстрагол	1045	21.152	3.86
18	1Н-пиррол-2-карбальдегид	500	22.277	0.41
19	Каларен	1513	24.438	0.29
20	Нонановая кислота	941	26.139	3.88
21	4-этенил-2-метоксифенол	930	26.404	17.90
22	Декановая кислота	1039	28.507	0.52
23	Трикозан	2353	30.441	4.25
24	4-Винилфенол	845	30.615	16.59
25	Индол	819	31.178	0.26
26	Тетракозан	2458	32.504	0.57
27	3-Гидрокси-4-метоксибензальдегид	896	33.817	0.25
28	Эйкозан	2061	34.516	1.80
29	4-Тетрадецен	1482	36.450	0.48
30	Тетралекановая кислота	1466	37.065	0.31
31	1-Гексадецен	1633	38.326	0.89

Окончание таблицы 3

1	2	3	4	5
32	Гексадекановая кислота	1631	40.894	1.57
33	Линолевая кислота	1882	46.923	1.21
Сумма				

Примечание. RI* – Индекс Ковача, RT** – Время удержания.

Таблица 4. Компоненты эфирого масла листьев из района Алтыарык (образец №4)

№	Соединение	RI*	RT**	%
1	2	3	4	5
1	Цис-3-гексен-1-ол	646	6.539	0.06
2	Фурфураль	508	8.350	0.11
3	Ацетоксиацетон	505	8.480	0.23
4	Оксид линалила	1000	8.738	0.13
5	Бензальдегид	760	9.858	0.18
6	Терпинолен	1020	10.964	3.52
7	5-метилфурфураль	610	11.229	0.28
8	γ-бутиролактон	473	12.290	0.43
9	Сафраналь	1047	13.040	0.18
10	Фурфуриловый спирт	532	13.480	0.36
11	α-Терпинеол	1083	14.787	0.99
12	Метил салицилат	828	16.339	0.10
13	1-фурфурилпиррол	978	17.678	0.10
14	Г-фурфурмлийррол Циклотен	674	17.807	0.15
15	1-Ацетилпирролидин	658	18.228	0.13
16	Г-Ацетилпирролидин Гваякол	748	18.467	0.28
17		1041		0.27
	Нерол		18.668	
18	Бензиловый спирт	732	18.901	0.57
19	2-Фенилэтанол	800	19.748	0.43
20	β-Ионон	1363	20.692	0.51
21	2-Ацетилпиррол	645	21.139	1.43
22	Фенол	609	22.064	0.20
23	1Н-пиррол-2-карбальдегид	502	22.251	0.38
24	Октановая кислота	844	23.668	0.25
25	1-метилпиррол-2-карбальдегид	616	24.373	0.11
26	2-гидрокси-4-метоксибензальдегид	884	25.149	0.47
27	Эвгенол	1059	25.725	6.56
28	Нонановая кислота	942	26.133	0.35
29	4-этенил-2-метоксифенол	930	26.417	0.45
30	Фенилацетальдегид	809	26.896	0.61
31	3,5-дигидрокси-6-метил-2,3-дигидропиран-4-он	678	27.607	0.06
32	Дигидрокумарин	973	27.737	5.04
33	Деканоиновая кислота	1040	28.487	0.16
34	4,4,7а-триметил-6,7-дигидро-5Н-1-бензофуран-2-он	1110	29.166	1.34
35	4-Аллилфенол	996	29.496	0.33
36	Изохавибетол	1087	29.677	0.23
37	Трикозан	2355	30.395	0.45
38	Индол	820	31.165	0.19
39	Кумарин	908	31.417	10.04
40	3-метоксифенол	701	31.586	0.71
41	Гексатриаконтан	3658	32.491	0.16
42	2-(2-метоксифенил)этанол	949	32.685	0.10
43	Лауриновая кислота	1238	32.931	0.21
44	2-метил-6-метилен-1,7-октадиен-3-он	1007	33.591	0.15
45	Ванилин	897	33.791	0.20
46	Нонадекан	1962	34.503	0.26
47	Фитол	2097	35.881	3.41
48	Адамантанацетамид	1285	36.334	0.25
49	Тетрадекановая кислота	1467	37.039	0.13
50	Гептакозан	2734	38.300	0.17
51	Герниарин	1043	40.674	29.39
52	Гениарин Гексадекановая кислота	1631	40.888	4.13

Окончание	таблины	1
OKURTURUE	пиолицы	7

1	2	3	4	5
53	1-гексадецен	1677	41.897	0.46
54	1-пентадецен	1559	42.233	0.17
55	Октадекановая кислота	1830	44.995	0.27
56	Олеиновая кислота	1806	45.571	0.18
57	Линолевая кислота	1883	46.890	0.74
Сумма				

Примечание. RI* – Индекс Ковача, RT** – Время удержания.

Полученные результаты по содержанию летучих веществ в листьях показывают, что основными компонентами Образца №2 (табл. 2) являются герниарин (38.06%), кумарин (28.53%), эвгенол (4.74%), пинан (2.61%), дигидрокумарин (2.27%), линалоол (1.91%). Основными компонентами летучих веществ Образца №4 (табл. 4) являются герниарин (29.39%), кумарин (10.04%), эвгенол (6.56%), дигидрокумарин (5.04%), гексадекановая кислота (4.13%), терпинолен (3.52%), фитол (3.41). В результате сравнения следует заключить, что среди основных компонентов в обоих образцах присутствуют герниарин, кумарин, эвгенол, дигидрокумарин, хотя и в меньших количествах в регионе Алтыарык. Однако имеются и заметные различия, связанные, возможно, с различиями в почвенно-климатических условиях и влажности.

Следует отметить значительные различия состава летучих веществ цветочных лепестков и листьев. Для цветков характерны вещества с более выраженным запахом из-за содержания в них спиртов, альдегидов, фенолов. В листьях преобладают кумарины и кислоты.

Сравнение состава летучих веществ родственных растений указывает на существенные различия, в особенности в количественном отношении. Так, в цветках черешни основными компонентами являются линейные и ароматические альдегиды [30]. В Cerasus subhirtella (Miq.) Sok. и Cerasus serrulata (Lindl.) наибольшими по содержанию являются бензальдегид и трикозан [22]. В работе [23] авторы для экстракции фракции эфирного масла цветков черешни сорта Брукс и трех других использовали ультразвук и микроволновое излучение. Компоненты идентифицировали методом ГХ МС. В общей сложности 155 летучих органических соединений были идентифицированы и классифицированы по основным компонентам. Наибольшее содержание летучих органических соединений приходится на альдегиды, спирты, кетоны и сложные эфиры. Этанол, иналоол, сиреневый спирт, ацетальдегид, (Е)-2-гексеналь, бензальдегид и диметилсульфид были основными летучими веществами, ответственными за характерный аромат цветков черешни. Можно констатировать, что данные по качественному составу цветков черешни были сходными с полученными нами результатами по вишне; однако относительные различия наблюдаются в количественном содержании.

Антимикробная активность. В результате изучения антимикробной активности эфирного масла цветков из регионов Ташлак (Образец №1) и Алтыарык (Образец №3) следует заключить, что оба образца проявляют близкую между собой активность, но уступающую по силе действия контролю (табл. 5). Первый образец показал слабую антибактериальную активность в отношении грамотрицательных $E.\ coli\ u\ P.\ Aeru-ginosa$ с зоной ингибирования $7.25\pm0.12\ \text{мм}$ и $7.51\pm0.22\ \text{мм}$ соответственно. Второй образец также проявлял слабую антибактериальную активность в отношении $St.\ aureus,\ E.\ coli\ u\ P.\ aeruginosa$ (зоны ингибирования были $7.15\pm0.18\ \text{мм}$, $9.74\pm0.25\ \text{мм}$ и $7.63\pm0.16\ \text{мм}$ соответственно). Исследуемые образцы не проявляли противогрибковой активности в отношении $C.\ albicans$.

Таблица 5. Антимикробная активность образцов эфирного масла, полученных из цветков Prunus cerasus

	Зона торможения (мм, ±SE, p≤0.05)					
Образцы	грамположительные бак-		грамотрицательные бак-		Грибок	
Ооразцы	терии		терии			
	B. subtilis	St. aureus	E. coli	P. aerugines	C. albicans	
Образец №1	HA	HA	7.25±0.12	7.51±0.22	NA	
Образец №3	HA	7.15±0.18	9.74±0.25	7.63±0.16	NA	
Ампициллин/Сульбактам (10 мкг + диск 10 мкг)	31.05±0.36	27.32±0.2	NT	NT	NT	
Гентамицин (10 мкг/диск)	NT	NT	16.85±0.35	20.16±0.24	NT	
Флуконазол (25 мкг/диск)	NT	NT	NT	NT	33.24±0.21	

Примечание. NA – нет активности; NT – не тестировано.

Выводы

Впервые исследована фракция летучих веществ цветочных лепестков и листьев *Prunus cerasus*, произрастающей в Узбекистане, методом ГХ МС. Установлены главные и минорные компоненты смеси, проведен сравнительный анализ по органам и месту проирастания растения. Показано преобладание более пахучих веществ – спиртов, альдегидов, кетонов – в цветах растения. Проведено сравнение полученных данных с литературными по черешне и другим родственным видам и подвидам. Показаны близкие стороны и отличия компонентов летучих веществ. Приведено краткое обобщение материала по лечебным свойствам вишни. Экспериментально установлена антимикробная активность образцов растения, и хотя она уступает контролю по величине действия, но существенно дополняет великолепные лечебные свойства растения.

Финансирование

Данная работа финансировалась за счет средств бюджета Ферганского государственного университета и Института химии растительных веществ имени академика С.Ю. Юнусова Академии наук Республики Узбекистан. Никаких дополнительных грантов на проведение или руководство данным конкретным исследованием получено не было.

Конфликт интересов

Авторы данной работы заявляют, что у них нет конфликта интересов.

Открытый доступ

Эта статья распространяется на условиях международной лицензии Creative Commons Attribution 4.0 (https://creativecommons.org/licenses/by/4.0/), которая разрешает неограниченное использование, распространение и воспроизведение на любом носителе при условии, что вы дадите соответствующие ссылки на автора(ов) и источник и предоставите ссылку на Лицензию Creative Commons и укажете, были ли внесены изменения.

Список литературы

- 1. Cerasus vulgaris Mill. Plantarium. Plants and lichens of Russia and neighboring countries: open online galleries and plant identification guide. [Электронный ресурс]. URL: https://www.plantarium.ru/page/view/item/9914.html.
- Коваленко Н.Н. Оценка питательных сред на пригодность к культивированию зародышей вишни обыкновенной (Cerasus vulgaris Mill.) // Плодоводство и виноградарство Юга России. 2019. №59(5). С. 49–64. https://doi.org/10.30679/2219-5335-2019-5-59-49-64.
- 3. ТОП-10 ведущих стран-производителей вишни [Электронный ресурс]. URL: https://agrotime.kz/top-10-vedush-hih-stran-proizvoditelej-vishni-28928/.
- 4. Mauricio E., Rosado C., Lanza D.D. Study the potential applicability of the by-products of the *Prunus cerasus* in promoting health and skin care // Biomed. Biopharm. Res. 2013. Vol. 2. Pp. 266–267.
- 5. Lee B.B., Cha M.R., Kim S.Y., Park E., Park H.R., Lee S.C. Antioxidative and anticancer activity of extracts of cherry (*Prunus serrulata* var. *spontanea*) blossoms // Plant Foods Hum. Nutr. 2007. Vol. 62. Pp. 79–84.
- 6. Imtiyaz A., Shariq S., Roohi Z. A review on sour cherry: A high value Unani medicinal fruit // International Journal of Green Pharmacy. 2017. Vol. 11, no. 1.
- 7. Rastogi R.P., Mehrotra B.N. Compendium of Indian Medicinal Plants. New Delhi, 2005. Vol. 2. 563 p.
- 8. Pigeon W.R., Carr M., Gorman C., Perlis M.L. Effects of a tart cherry juice beverage on the sleep of older adults with insomnia: A pilot study // J. Med. Food. 2010. Vol. 13. Pp. 579–583.
- 9. Rastogi R.P., Mehrotra B.N. Compendium of Indian Medicinal Plants. New Delhi: NISCAIR Press, 2005. Vol. 5. 697 p.
- Dymock W., Warden C.J., Hooper D. Pharmacographia Indica. New Delhi: Srishti Book Distributors, 2005. Vol. 1. Pp. 567–568.
- 11. Chopra N.R., Nayar L.S., Chopra C.I. Glossary of Indian Medicinal Plants. New Delhi, 2009. Pp. 204–205.
- 12. Kirakosyana A., Seymoura E.M., Noon K.R., Llanes D.E., Kaufman P.B., Warber S.L. et al. Interactions of antioxidants isolated from tart cherry (*Prunus cerasus*) fruits // Food Chem. 2010. Vol. 122. Pp. 78–83.
- 13. Ali A.S., Bhatia A., Parvaiz Q., Bhatc H.M., Ahmadd S.F., Khera N. et al. *In vitro* immunomodulatory study of different parts of *Prunus cerasus* L. (Sour cherry) Plant // Asian J. Plant Sci. Res. 2013. Vol. 3. Pp. 35–43.
- 14. Abid S., Khajuria A., Parvaiz Q., Sidiq T., Bhatia A., Singh S., Ahmad S., Randhawa M.K., Satti N.K., Dutt P. Immunomodulatory studies of a bioactive fraction from the fruit of *Prunus cerasus* in BALB/c mice // Int. Immunopharmacol. 2012. Vol. 12, no. 4. Pp. 626–634. https://doi.org/10.1016/j.intimp.2012.02.001.
- 15. Anitha R., Geetha R.V., Lakshmi T., Nallanayagam M. Edible fruits Nature's gift for diabetic patients-a comprehensive review // Int. J. Pharm. Sci. Rev. Res. 2011. Vol. 9. Pp. 170–180.
- Ataie-Jafari A., Hosseini S., Karimi F., Pajouhi M. Effects of sour cherry juice on blood glucose and some cardiovascular risk factors improvements in diabetic women: A pilot study // Nutr. Food Sci. 2008. Vol. 38, no. 4. Pp. 355–360. https://doi.org/10.1108/00346650810891414.

- 17. Haidari F. Jr, Mohammad Shahi M., Keshavarz S.A., Rashidi M.R. Inhibitory effects of tart cherry (*Prunus cerasus*) juice on xanthine oxidoreductase activity and its hypouricemic and antioxidant effects on rats // Malays. J. Nutr. 2009. Vol. 15, no. 1. Pp. 53–64.
- 18. Gianna F., Tiziana B., Alberto B., Davide N. Cherry antioxidants: From farm to table // Molecules. 2010. Vol. 15, no. 10. Pp. 6993–7005. https://doi.org/10.3390/molecules15106993.
- 19. Hanbali L.B., Ghadieh R.M., Hasan H.A., Nakhal Y.K., Haddad J.J. The antimicrobial activity of black sour cherry (*Prunus cerasus L.*) Extracts: Measurement of sensitivity and attenuation of gram-positive and gramnegative bacteria and *C. albicans* in culture // Curr. Nutr. Food Sci. 2015. Vol. 9, no. 3. Pp. 201–216.
- Saric A., Sobocanec S., Balog T., Kusic B., Sverko V., Dragovic-Uzelac V. et al. Improved antioxidant and antiinflammatory potential in mice consuming sour cherry juice (*Prunus cerasus cv. Maraska*) // Plant Foods Hum. Nutr. 2009. Vol. 64. Pp. 231–237.
- 21. Yook H.S., Kim K.H., Park J.E., Shin H.J. Antioxidative and antiviral properties of flowering cherry fruits (Prunus serrulata L. var. spontanea) // Am. J. Chin. Med. 2010. Vol. 38, no. 5. Pp. 937–948. https://doi.org/10.1142/S0192415X10008366.
- 22. Lei G., Wang L., Liu X., Zhang A. Chemical composition of essential oils and hydrosols from fresh flowers of *Cerasus subhirtella* and *Cerasus serrulata* from East China // Natural Product Research. 2014. Vol. 28, no. 21. Pp. 1923–1925. https://doi.org/10.1080/14786419.2014.948437.
- 23. Zhang H., Yan H., Li Q., Lin H., Wen X.T. Identification of VOCs in essential oils extracted using ultrasound- and microwave- assisted methods from sweet cherry flower Huimin // Scientific Reports. 2021. Vol. 11. Article 1167.
- 24. Kurkin V.A., Zapesochnaya G.G., Nikolaichuk V.I., Belchgazi V.I. Phenolic compounds of the flowers of *Cerasus serrulata* // Chem. Nat. Compd. 1989. Vol. 25. Pp. 723–724.
- 25. Usenik V., Fabĉiĉ J., Ŝtampar F. Sugars, organic acids, phenolic composition, and antioxidant activity of sweet cherry (*Prunus avium* L.) // Food Chem. 2008. Vol. 107. Pp. 185–192. https://doi.org/10.1016/j.foodchem.2007.08.004.
- 26. Карабаева Р.Б., Ибрагимов А.А., Назаров О.М. Компонентный состав эфирного масла *Prunus persica var. nectarina* произрастающего в Узбекистане // Химия растительного сырья. 2020. №4. С. 165–170. https://doi.org/10.14258/jcprm.2020046542.
- 27. Saminov Kh., Ibragimov A.A., Nazarov O. Study of volatile components of leaves and flowers of *Punica granatum L.*variety "Kayum" growing in Uzbekistan // Scientific Journal of the Fergana State University. 2023. Vol. 3. P. 147. https://doi.org/10.56292/SJFSU/vol iss3/a147.
- 28. Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk Susceptibility Tests. CLSI document M02. 13th Edition. PA, USA, 2018.
- 29. Mamadalieva N.M., Youssef F.S., Ashour M.L., Akramov D.Kh., Sasmakov S.A., Ramazonov N.Sh., Azimova Sh.S. A comparative study on chemical composition and antimicrobial activity of essential oils from three Phlomis species from Uzbekistan // Nat. Prod. Res. 2019. Pp. 1–6. https://doi.org/10.1080/14786419.2019.1591400.
- 30. Serradilla M.J., Hernández A., López-Corrales M., Ruiz-Moyano S., de Guía Córdoba M., Martín A. Composition of the Cherry (*Prunus avium* L. and *Prunus cerasus* L.; *Rosaceae*) // Nutritional composition of fruit cultivars. Academic Press, 2016. Pp. 128–147. https://doi.org/10.1016/B978-0-12-408117-8.00006-4.

Поступила в редакцию 20 декабря 2023 г.

После переработки 7 апреля 2024 г.

Принята к публикации 21 ноября 2024 г.

Ibragimov $A.A.^{1*}$, Mamazhonova $I.R.^{l}$, Bobakulov Kh.M. 2 , Eshboyev $F.^{2}$, Azimova Sh.S. 2 COMPONENT COMPOSITION AND ANTIMICROBIAL ACTIVITY OF THE VOLATILE SUBSTANCE FRACTION OF *PRUNUS CERASUS* L. (ROSACEAE), CULTIVATED IN UZBEKISTAN

¹ Fergana State University, Murabbiylar st., 19, Fergana, 150100, Republic of Uzbekistan, alijon.ibragimov.48@mail.ru

The component composition of the essential oil isolated by hydrodistillation from the leaves and flower petals of Prunus cerasus from two places of growth in the Ferghana region: Tashlak and Altiaryk districts has been studied. Chromatographymass spectral analysis of essential oil was used to identify: for Tashlak samples – 48 compounds in flowers (sample 1), which is 92.89% of the total amount of oil, 59 substances (93.07%) in leaves (sample 2); for Altiaryk samples – in flowers (sample 3) 33 compounds (88.05%), 57 compounds (79.44%) in leaves (sample 4). In the composition of the essential oil of sample 1, the predominant components are 4-ethenyl-2-methoxyphenol – 27.75%, 4-vinylphenol – 17.86%, furfural – 9.23%, 5-methylfurfural – 7.69%, 2-acetylpyrrol – 4.52%, furfuryl alcohol – 2.15%, Nonanoic acid – 1.86%. In sample 2, the following predominate: herniarin (7-methoxycoumarin) – 38.06%, coumarin – 28.53%, eugenol – 4.74%, hexadecanoic acid – 2.53%. In sample 3 – the highest content: 4-ethenyl-2-methoxyphenol – 17.90%, 4-vinylphenol – 16.59%, isomeric lilac alcohols: lilac alcohol D – 9.05%, lilac alcohol C – 8.79%, lilac alcohol B – 1.42%, tricosane – 4.25%, nonanoic acid – 3.88%, nonanol – 1.97%, estragole – 3.86%. Sample 4 mainly contains: herniarin – 29.39%, coumarin – 10.04%, eugenol – 6.56%, dihydrocoumarin – 5.04, hexadecanoic acid – 4.13%, terpinolene – 3.52%, phytol – 3.41%. The observed significant differences between the studied samples, as well as with related samples from other habitats, are discussed.

Keywords: Prunus cerasus, essential oil, GC-MS analysis, antimicrobial activity.

For citing: Ibragimov A.A., Mamazhonova I.R., Bobakulov Kh.M., Eshboyev F., Azimova Sh.S. *Khimiya Rastitel'nogo Syr'ya*, 2025, no. 1, pp. 177–187. (in Russ.). https://doi.org/10.14258/jcprm.20250114483.

References

- 1. Cerasus vulgaris Mill. Plantarium. Plants and lichens of Russia and neighboring countries: open online galleries and plant identification guide. URL: https://www.plantarium.ru/page/view/item/9914.html.
- 2. Kovalenko N.N. *Plodovodstvo i vinogradarstvo Yuga Rossii*, 2019, no. 59(5), pp. 49–64. https://doi.org/10.30679/2219-5335-2019-5-59-49-64. (in Russ.).
- 3. *TOP-10 vedushchikh stran-proizvoditeley vishni* [TOP 10 Leading Cherry Producing Countries]. URL: https://agrotime.kz/top-10-vedushhih-stran-proizvoditelej-vishni-28928/. (in Russ.).
- 4. Mauricio E., Rosado C., Lanza D.D. Biomed. Biopharm. Res., 2013, vol. 2, pp. 266–267.
- 5. Lee B.B., Cha M.R., Kim S.Y., Park E., Park H.R., Lee S.C. Plant Foods Hum. Nutr., 2007, vol. 62, pp. 79–84.
- 6. Imtiyaz A., Shariq S., Roohi Z. International Journal of Green Pharmacy, 2017, vol. 11, no. 1.
- 7. Rastogi R.P., Mehrotra B.N. Compendium of Indian Medicinal Plants. New Delhi, 2005, vol. 2, 563 p.
- 8. Pigeon W.R., Carr M., Gorman C., Perlis M.L. J. Med. Food., 2010, vol. 13, pp. 579–583.
- 9. Rastogi R.P., Mehrotra B.N. Compendium of Indian Medicinal Plants. New Delhi: NISCAIR Press, 2005, vol. 5, 697 p.
- 10. Dymock W., Warden C.J., Hooper D. *Pharmacographia Indica*. New Delhi: Srishti Book Distributors, 2005, vol. 1, pp. 567–568.
- 11. Chopra N.R., Nayar L.S., Chopra C.I. Glossary of Indian Medicinal Plants. New Delhi, 2009, pp. 204-205.
- 12. Kirakosyana A., Seymoura E.M., Noon K.R., Llanes D.E., Kaufman P.B., Warber S.L. et al. Food Chem., 2010, vol. 122, pp. 78–83.
- 13. Ali A.S., Bhatia A., Parvaiz Q., Bhatc H.M., Ahmadd S.F., Khera N. et al. Asian J. Plant Sci. Res., 2013, vol. 3, pp. 35-43.
- 14. Abid S., Khajuria A., Parvaiz Q., Sidiq T., Bhatia A., Singh S., Ahmad S., Randhawa M.K., Satti N.K., Dutt P. *Int. Immunopharmacol.*, 2012, vol. 12, no. 4, pp. 626–634. https://doi.org/10.1016/j.intimp.2012.02.001.
- 15. Anitha R., Geetha R.V., Lakshmi T., Nallanayagam M. Int. J. Pharm. Sci. Rev. Res., 2011, vol. 9, pp. 170-180.
- Ataie-Jafari A., Hosseini S., Karimi F., Pajouhi M. Nutr. Food Sci., 2008, vol. 38, no. 4, pp. 355–360. https://doi.org/10.1108/00346650810891414.
- 17. Haidari F. Jr, Mohammad Shahi M., Keshavarz S.A., Rashidi M.R. Malays. J. Nutr., 2009, vol. 15, no. 1, pp. 53-64.
- 18. Gianna F., Tiziana B., Alberto B., Davide N. *Molecules*, 2010, vol. 15, no. 10, pp. 6993–7005. https://doi.org/10.3390/molecules15106993.
- 19. Hanbali L.B., Ghadieh R.M., Hasan H.A., Nakhal Y.K., Haddad J.J. Curr. Nutr. Food Sci., 2015, vol. 9, no. 3, pp. 201-216.
- 20. Saric A., Sobocanec S., Balog T., Kusic B., Sverko V., Dragovic-Uzelac V. et al. *Plant Foods Hum. Nutr.*, 2009, vol. 64, pp. 231–237.
- 21. Yook H.S., Kim K.H., Park J.E., Shin H.J. *Am. J. Chin. Med.*, 2010, vol. 38, no. 5, pp. 937–948. https://doi.org/10.1142/S0192415X10008366.
- 22. Lei G., Wang L., Liu X., Zhang A. *Natural Product Research*, 2014, vol. 28, no. 21, pp. 1923–1925. https://doi.org/10.1080/14786419.2014.948437.
- 23. Zhang H., Yan H., Li Q., Lin H., Wen X.T. Scientifc Reports, 2021, vol. 11, article 1167.
- 24. Kurkin V.A., Zapesochnaya G.G., Nikolaichuk V.I., Belchgazi V.I. Chem. Nat. Compd., 1989, vol. 25, pp. 723-724.

_

² Institute of Plant Chemistry named after academician S.Yu. Yunusov, Academy of Sciences of the Republic of Uzbekistan, Mirzo Ulugbeka st., 77, Tashkent, 100170, Republic of Uzbekistan

^{*} Corresponding author.

- Usenik V., Fabĉiĉ J., Ŝtampar F. Food Chem., 2008, vol. 107, pp. 185–192. https://doi.org/10.1016/j.food-chem.2007.08.004.
- 26. Karabayeva R.B., Ibragimov A.A., Nazarov O.M. *Khimiya rastitel'nogo syr'ya*, 2020, no. 4, pp. 165–170. https://doi.org/10.14258/jcprm.2020046542. (in Russ.).
- 27. Saminov Kh., Ibragimov A.A., Nazarov O. Scientific Journal of the Fergana State University, 2023, vol. 3, p. 147. https://doi.org/10.56292/SJFSU/vol iss3/a147.
- 28. Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk Susceptibility Tests. CLSI document M02. 13th Edition. PA, USA, 2018.
- 29. Mamadalieva N.M., Youssef F.S., Ashour M.L., Akramov D.Kh., Sasmakov S.A., Ramazonov N.Sh., Azimova Sh.S. *Nat. Prod. Res.*, 2019, pp. 1–6. https://doi.org/10.1080/14786419.2019.1591400.
- Serradilla M.J., Hernández A., López-Corrales M., Ruiz-Moyano S., de Guía Córdoba M., Martín A. Nutritional composition of fruit cultivars. Academic Press, 2016, pp. 128–147. https://doi.org/10.1016/B978-0-12-408117-8.00006-4.

Received December 20, 2023

Revised April 7, 2024

Accepted November 21, 2024

Сведения об авторах

Ибрагимов Алиджан Аминович – доктор химических наук, профессор, профессор кафедры химии, alijon.ibragimov.48@mail.ru

Мамажонова Ирода Рахматовна — докторант кафедры химии, alijon.ibragimov.48@mail.ru

Бобакулов Хайрулла Мамадиевич – кандидат химических наук, заведующий лабораторией, alijon.ibragimov.48@mail.ru

Эшбоев Фарход – начный сотрудник лаборатории биоиспытаний, alijon.ibragimov.48@mail.ru

Азимова Шахноза Садыковна – доктор биологических наук, профессор, заведующая лабораторией биоиспытаний, alijon.ibragimov.48@mail.ru

Information about authors

Ibragimov Alijan Aminovich – Doctor of Chemical Sciences, Professor, Professor of the Department of Chemistry, alijon.ibragimov.48@mail.ru

Mamajonova Iroda Rakhmatovna – Doctoral Student of the Department of Chemistry, alijon.ibragimov.48@mail.ru

Bobakulov Khairulla Mamadievich – Candidate of Chemical

Sciences, Head of the Laboratory, alijon.ibragimov.48@mail.ru

Eshboev Farkhod – Research Associate of the Laboratory of Biotesting, alijon.ibragimov.48@mail.ru

Azimova Shakhnoza Sadykovna – Doctor of Biological Sciences, Professor, Head of the Laboratory of Biotesting, alijon.ibragimov.48@mail.ru