Perform One-Way Anova

Aniket Roy and Krutik Shah

01/10/2020

```
data1 <- read.csv('One-Way(Rp).csv')</pre>
data1
##
      CBA CS BDA
## 1
       44 55
               70
               75
## 2
       54 63
       78 58
##
               65
## 4
       46 45
               50
## 5
       43 76
               73
## 6
       50 78
               85
## 7
       45 48
               75
## 8
       76 76
               65
## 9
       58 53
               73
      70 76
## 10
               80
```

Performing One-Way Anova

One-way ANOVA (Analysis of Variance) is used to examine the differences between means of more than two independent samples. It is used when we have a categorical independent variable (treatment) (with more than two categories) and a normally distributed interval or ratio dependent variable.

H0:There is no difference between means of all three groups.

Ha:Difference among maens is significant.

To Check Normality of data

```
result <- shapiro.test(data1$CBA)
result

##
## Shapiro-Wilk normality test
##
## data: data1$CBA
## W = 0.8535, p-value = 0.06392</pre>
```

```
result <- shapiro.test(data1$CS)</pre>
result
##
##
    Shapiro-Wilk normality test
##
## data: data1$CS
## W = 0.87468, p-value = 0.1133
result <- shapiro.test(data1$BDA)</pre>
result
##
##
    Shapiro-Wilk normality test
##
## data: data1$BDA
## W = 0.92825, p-value = 0.4309
```

As we can see that p-value of CBA,CS and BDA is as follows 0.06392,0.1133 and 0.4309.From this value we can say that all values are more than 0.05 so here We accept NULL Hypothesis.

```
qqnorm(data1$CBA)
qqline(data1$CBA, distribution=qnorm)
```

Normal Q-Q Plot


```
qqnorm(data1$CS)
qqline(data1$CS, distribution=qnorm)
```

Normal Q-Q Plot

qqnorm(data1\$BDA)
qqline(data1\$BDA, distribution=qnorm)

Normal Q-Q Plot

Testing Homogeneity of Variances

Bartlett's test is used to test if k samples have equal variances. Equal variances across samples is called homogeneity of variances.Before applying ANOVA we have to check the assumption about the homogeneity of variances.

```
result <- data.frame(data1$CBA,data1$CS,data1$BDA)
res.var <- bartlett.test(list(data1$CBA,data1$CS,data1$BDA))
res.var

##
## Bartlett test of homogeneity of variances
##
## data: list(data1$CBA, data1$CS, data1$BDA)
## Bartlett's K-squared = 1.082, df = 2, p-value = 0.5822</pre>
```

As p value is greater than 0.05 . We fail to reject the null hypothesis H0 at 5% level of significance. We conclude that the variances are equal across samples.

Homogeneity of variance is an assumption underlying both t tests and F tests (analyses of variance, ANOVAs) in which the population variances (i.e., the distribution, or "spread," of scores around the mean) of two or more samples are considered equal.

One Way Anova

```
st_result <- stack(result)
res <- oneway.test(values~ind, data = st_result)
res

##
## One-way analysis of means (not assuming equal variances)
##
## data: values and ind
## F = 4.0126, num df = 2.000, denom df = 17.547, p-value = 0.03673
Since p-value which 0.03673 is very less than 0.05 we Accept the Null Hypothesis.</pre>
```

Pair-wise Comparison

```
res.anova <- aov(values~ind, data = st_result)
summary(res.anova)
              Df Sum Sq Mean Sq F value Pr(>F)
##
## ind
               2
                   1086
                          543.2 3.707 0.0378 *
              27
                          146.6
## Residuals
                   3957
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
TK <- TukeyHSD(res.anova)
ΤK
     Tukey multiple comparisons of means
##
##
      95% family-wise confidence level
## Fit: aov(formula = values ~ ind, data = st_result)
##
## $ind
                      diff
                                 lwr
                                          upr
                                                  p adj
## data1.CS-data1.CBA 6.4 -7.023333 19.82333 0.4737245
## data1.BDA-data1.CBA 14.7 1.276667 28.12333 0.0297128
## data1.BDA-data1.CS 8.3 -5.123333 21.72333 0.2917773
plot(TK)
```


Linear Model

```
model1 <- lm(values ~ ind,data=st_result)</pre>
anova (model1)
## Analysis of Variance Table
## Response: values
             Df Sum Sq Mean Sq F value Pr(>F)
              2 1086.5 543.23 3.7068 0.03781 *
## Residuals 27 3956.9 146.55
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
tk1 <- TukeyHSD(aov(model1))</pre>
tk1
     Tukey multiple comparisons of means
##
       95% family-wise confidence level
##
## Fit: aov(formula = model1)
## $ind
```

```
## data1.CS-data1.CBA 6.4 -7.023333 19.82333 0.4737245
## data1.BDA-data1.CBA 14.7 1.276667 28.12333 0.0297128
## data1.BDA-data1.CS 8.3 -5.123333 21.72333 0.2917773
```

plot(tk1)

