

Annals of Pure and Applied Logic 109 (2001) 65-69

ANNALS OF PURE AND APPLIED LOGIC

www.elsevier.com/locate/apal

A note on the notion of truth in fuzzy logic

Petr Hájek^{a, *}, John Shepherdson^b

^aInstitute of Computer Science, Academy of Sciences, 18207 Prague, Czech Republic ^bUniversity of Bristol, UK

Dedicated to Petr Vopěnka on the occasion of his 65th birthday

Abstract

In fuzzy predicate logic, assignment of truth values may be partial, i.e. the truth value of a formula in an interpretation may be undefined (due to lack of some infinite suprema or infima in the underlying structure of truth values). A logic is *supersound* if each provable formula φ is true (has truth value 1) in each interpretation in which the truth value of φ is defined. It is shown that among the logics given by continuous *t*-norms, Gödel logic is the only one that is supersound; all others are (sound but) not supersound. This supports the view that the usual restriction of semantics to *safe* interpretations (in which the truth assignments is total) is very natural. © 2001 Elsevier Science B.V. All rights reserved.

MSC: 03B50; 03B52

Keywords: Many-valued logic; Fuzzy logic

1. Introduction

Fuzzy logic can be understood as a logic with a comparative notion of truth. Initiated by L. Zadeh, it remained for a long time ignored by most mathematical logicians (S. Gottwald and G. Takeuti being good counterexamples). The book [2] is an attempt to elaborate systems of fuzzy logic in the style of classical logic, stressing axiomatization, completeness, complexity, etc. The basic notion is a continuous t-norm * on the real interval [0,1] as a truth function of conjunction & and its residuum \Rightarrow as the corresponding truth function of implication \rightarrow ; [0,1] with its standard lattice operations min, max and the operations *, \Rightarrow is a t-algebra [0,1] $_*$ It follows from the results of [2] and [1] that t-algebras generate the variety of BL-algebras, i.e. that the class of BL-algebras (as defined in [2]) is exactly the variety of all algebras L (with arbitrary

^{*} Corresponding author.

E-mail address: hajek@cs.cas.cz (P. Hájek).

¹ Recall that min and max are definable from * and \Rightarrow , see below.

domain) such that each identity valid in each t-algebra is valid in \mathbf{L} . (Recall that a BL-algebra is a particular residuated lattice, i.e. an algebra $\mathbf{L} = (L, \cap, \cup, *. \Rightarrow, 0, 1)$ such that $(L, \cap, \cup, 0, 1)$ is a lattice with the top 1 and bottom 0, (L, *, 1) is a commutative semigroup with a unit element 1 and the following hold for each $x, y, z, \in L$:

$$z \le x \Rightarrow y \text{ iff } x * z \le y,$$

 $x \cap y = x * (x \Rightarrow y),$
 $(x \Rightarrow y) \cup (y \Rightarrow x) = 1.$

It can be shown that the class of all BL-algebras is a variety.)

Each BL-algebra L determines corresponding interpretations of propositional calculus and predicate calculus. If $\mathscr I$ is a predicate language (consisting only of some predicates, no function symbols and no constants are necessary) then an L interpretation of $\mathscr I$ is a structure

$$\mathbf{M} = (M, (r_P)_{P_{\text{predicate}}}),$$

where $M \neq \emptyset$, $r_P : M^{\operatorname{ar}(P)} \to \mathbf{L}_{\operatorname{ar}(P)}$ is the arity of P; if ar (P) = 0 r_P is just an element of \mathbf{L} . The Tarski-style definition of truth degree $\|\varphi\|_{\mathbf{M},e}^{\mathbf{L}}$ of a formula φ in \mathbf{M} under evaluation e of object variables, w.r.t. truth functions of \mathbf{L} reads as follows:

$$||P(x_{1}, ..., x_{n})||_{\mathbf{M}, e}^{\mathbf{L}} = r_{P}(e(x_{1}), ..., e(x_{n}));$$

$$||\varphi \& \psi||_{\mathbf{M}, e}^{\mathbf{L}} = ||\varphi||_{\mathbf{M}, e}^{\mathbf{L}} * ||\varphi||_{\mathbf{M}, e}^{\mathbf{L}}$$

$$||\varphi \to \psi||_{\mathbf{M}, e}^{\mathbf{L}} = ||\varphi||_{\mathbf{M}, e}^{\mathbf{L}} \Rightarrow ||\psi||_{\mathbf{M}, e}^{\mathbf{L}}$$

$$||\bar{0}||_{\mathbf{M}, e}^{\mathbf{L}} = 0, ||\bar{1}||_{\mathbf{M}, e}^{\mathbf{L}} = 1$$

$$||(\forall x)\varphi||_{\mathbf{M}, e}^{\mathbf{L}} = \inf e_{x} ||\varphi||_{\mathbf{M}, e}^{\mathbf{L}}$$

$$||(\exists x)\varphi||_{\mathbf{M}, e}^{\mathbf{L}} = \sup e_{x} ||\varphi||_{\mathbf{M}, e}^{\mathbf{L}},$$

where e_x runs over all evaluations differing from e at most in the value for the argument x.

Note the following defined connectives: $\neg \varphi$ stands for $\varphi \to \overline{0}$, $\varphi \wedge \psi$ stands for $\varphi \& (\varphi \to \psi)$, and $\varphi \lor \psi$ stands for $(\varphi \to \psi) \to \psi) \wedge ((\psi \to \varphi) \to \varphi)$. The truth function of \wedge, \vee are \wedge, \cup , respectively.

Needless to say, for each t-algebra, $\mathbf{L} = [0,1]_*, \|\varphi\|_{\mathbf{M},e}^{\mathbf{L}}$ is defined for each φ, \mathbf{M}, e since the ordering of [0,1] is complete. But in general one has to deal with algebras whose ordering is not complete. An \mathbf{L} -interpretation \mathbf{M} is safe if all values $\|\varphi\|_{\mathbf{M}}^{\mathbf{L}}, e$ are defined (for all φ, e).

In [2] one can find an axiom system $BL\forall$ for the predicate logic over BL-algebras. The system is *sound* in the following sense: If $BL\forall \vdash \varphi$ then φ is true in all safe **L**-interpretations **L** being any BL-chain). And the converse is also valid: this is completeness. More than that: $BL\forall$ proves φ iff φ is true in all safe **L**-interpretations for all BL-chains (linearly ordered BL-algebras).

There are important subvarieties of the variety of BL-algebras, notably MV-algebras, G-algebras and Π -algebras corresponding to logics stronger than BL \forall namely Łukasiewicz logic Ł \forall , Gödel logic G \forall and product logic $\Pi\forall$. Each of these varieties is generated by a particular continuous t-norm (t-algebra), namely Łukasiewicz, Gödel and product t-norm. More generally, each continuous t-norm generates a variety $\mathscr{V}(*)$ of BL-algebras: A BL-algebra L belongs to $\mathscr{V}(*)$ iff each identity (in the language of BL-algebras) valid in $[0,1]_*$ is valid in L. This gives a corresponding logic $\mathscr{C}(*)\forall$. Its axioms are those of BL \forall plus all axioms given by identities valid in $\mathscr{V}(*)$ —or a sufficient subset of them. (For example, $L\forall$ is axiomatized by BL \forall plus the schema of $\neg\neg\varphi\to\varphi$ of double negation; $G\forall$ is axiomatized by BL \forall plus the axiom schema $\varphi\to(\varphi\&\varphi)$ of idempotence of conjunction; $\Pi\forall$ is axiomatized by BL \forall plus two additional schemas, see [2].) Each logic $\mathscr{C}(*)\forall$ is sound and complete in the above sense, i.e. the following are equivalent:

- (i) $\mathscr{C}(*)\forall$ proves φ ;
- (ii) for each linearly ordered $\mathbf{L} \in \mathscr{V}(*)$ and each safe \mathbf{L} -interpretation \mathbf{M}, φ is true in \mathbf{M}

(This follows from the strong completeness of BL \forall , see [2].)

A logic is *supersound* if each provable formula φ is true in each L-interpretation (L being any chain from the given variety) in which the truth value of φ is defined.

It was proved in [4] that $\mathbb{L}\forall$, $\Pi\forall$ are not supersound whereas $G\forall$ is. Here we show that Gödel logic is the only logic $\mathscr{C}(*)\forall$ given by a continuous *t*-norm which is supersound; the result also implies that $BL\forall$ is not supersound. But, let us stress again, all the logics in question are sound and complete with respect to safe interpretations; safe interpretations appear to be the natural semantics for fuzzy predicate calculi.

2. The results

Theorem. There is a formula φ such that $BL \vdash \varphi$ and for each continuous t-norm * with non-idempotent element, there is an algebra $\mathbf{L} \in \mathscr{V}(*)$ and a (non-safe) interpretation \mathbf{M} such that $\|\varphi\|_{\mathbf{M}}^{\mathbf{L}} < 1$.

The proof will be a generalization of the corresponding proof in [4]. To make the proof more readable we show that there is a theory T with a single axiom (denoted also by T) and a formula φ such that T proves φ over $BL\forall$ and for each non-idempotent * there is an $\mathbf{L} \in \mathscr{V}(*)$ and a (non-safe) \mathbf{L} -interpretation \mathbf{M} in which T is (meaningful and) true and φ is meaningful but not true (its truth value is <1). To get the theorem it suffices to apply the deduction theorem for $BL\forall$ to get a k such that $BL\forall \vdash T^k \to \varphi$ (T^k being T&...&T,k copies); in our \mathbf{M} , ($T^k \to \varphi$) is meaningful but not true ². Before we start the proof we collect some preliminaries.

 $[\]frac{1}{2}$ A diligent reader may show that in this particular case one may take k=1

First recall from [3] that a cut in a BL-chain **L** is a pair $X, Y \subseteq \mathbf{L}$ such that $(x \in X \text{ and } y \in Y)$ implies $(x \le y \text{ and } x * y = x), X \cup Y = \mathbf{L}$, and y is closed under *. Then $X \cap Y$ is either empty or contains a single idempotent. **L** is saturated if all cuts are of the latter kind. Each BL-chain has a saturation resulting by adding some idempotents. From the results of [1] it follows that each saturated BL-chain is an ordered sum of MV-chains, Π -chains and G-chains G.

Lemma 1. (1) Let L be a BL-chain and c an idempotent of L. i.e. c * c = c. Then for each $x \in L$, $c * x = \min(x, c)$.

(2) Let \mathbf{M} be a safe \mathbf{L} -structure; let \mathbf{L}_1 be the saturation of \mathbf{L} . Then \mathbf{M} is a safe \mathbf{L}_1 -structure and $\|\varphi\|_{M,e}^{\mathbf{L}} = \|\varphi\|_{M,e}^{\mathbf{L}}$, for all φ and e.

Proof. See [3]. For (2), the only thing to observe is that fact that if $X \in L$ has a supremum (infimum) u in L the u is the supremum (infimum) of X also in L_1 . This follows easily from the construction of L_1 . \square

Lemma 2. Let L be an MV-chain or a Π – chain.

- (1) If $0 < u \le v < 1$ then u * v < u.
- (2) If 0 < x < f < 1 and $y = (f \Rightarrow x)$ then $f = (y \Rightarrow x)$, x = y * f and x < y < 1.

Proof. Easy by representation by ordered Abelian groups (see [2]).

Definition. Our language has a single unary predicate P and a nullary predicate (propositional constant) C. The theory T has one single axiom

$$(\forall x)(\exists y)(P(x) \rightarrow (C\&P(y)));$$

 φ is the formula $(\exists x)(P(x) \to (C\&P(x)))$.

Lemma 3. T proves φ over BL \forall .

Proof. We show that φ is true in each safe L-model M of T, L being a saturated BL-chain. Observe that $T \vdash (\forall x)(P(x) \to C)$. Let $c = ||C||_{\mathbf{M}}$ and for each $m \in \mathbf{M}$, let $P_m = ||P(m)||_{\mathbf{M}}$. \square

If c is an idempotent, then since $P_m \le c$ for each m, we have $P_m = c * P_m$, thus $\|(\forall x)(P(x)) \equiv (C\&P(x)))\|_{\mathbf{M}} = 1$. Thus let c be non-idempotent and let [u,v] be the component of \mathbf{L} containing c; by the result of [1], mentioned above, [u,v] is an MV-chain or a Π -chain, Recall $P_m \le c$ for all m. If $P_m \le u$ for some m then $P_m * c = P_m$ which makes φ true.

 $^{^3}$ This shows how the famous characterization of continuous t-norms (Mostert and Shields) generalizes to BL-chains

The remaining case is that $u < P_m \le c$ for all m; put $d = \|(\exists x)P(x)\|_M = \sup_m P_m$. We have $u < d \le c < v$, thus c * d < d (by Lemma 2 (1)). But observe that using properties of quantifiers provable in BL \forall (see [2] 5.1.7, 5.1.14, 5.1.16,5.1.18) our axiom implies $(\forall x)(P(x) \to (C\&(\exists y)P(y)))$, thus $(\exists x)P(x) \to (C\&(\exists y)P(y))$, which gives d = c * d, a contradiction. Lemma 3 is proved.

Lemma 4. For each continuous t-norm * with a non-idempotent element there is a linearly ordered $\mathcal{V}(*)$ -algebra \mathbf{L} and a non-safe \mathbf{L} -model \mathbf{M} of T such that $\|\varphi\|_{\mathbf{M}} < 1$.

Proof. Let F be a non-principal ultrafilter on ω and let $L = [0,1]^{\omega}_*/F$ be the F-ultrapower of the BL-algebra $[0,1]_*$ (on [0,1] given by *). Thus elements of \mathbf{L} are mappings $h: \omega \to [0,1]$, operations are defined coordinatewise and $h_1 = h_2$ iff $\{ih_1(i) = h_2(i)\} \in F$; similarly for <, \leq .

Let b be non-idempotent in * and let u < b < v be the neighbour idempotents of b (thus on [u, v], * is isomorphic either to the Łukasiewicz t-norm or to the product t-norm).

For each $x \in [0, 1]$, let k_x be the constant function on ω with the value x. The mapping associating to $x \in [0, 1]$ the element k_x of \mathbf{L} is the elementary embedding of $[0, 1]_*$ into \mathbf{L} . We use Łoś's theorem without mentioning it. Observe that k_b is non-idempotent in \mathbf{L} and k_u , k_v are its idempotent neighbours; on $[k_u, k_v]$, the operation $*_{\mathbf{L}}$ is isomorphic to the *-operation of $[0, 1]_{\mathbf{L}}^{\omega}/F$ or of $[0, 1]_{\Pi}^{\omega}/F$ and the isomorphism also commutes with the \Rightarrow -operation for the case of first argument greater than the second and the second greater than k_u , e.g. by Lemma 2. Let $f \in [k_u, k_v]$ be an element less than k_v but infinitely close to it (e.g. f(n) = v - (v - u)/(n + 1) for each n; then for each $x \in [u, v], k_x < f$ in $[k_u, k_v]$).

Let $\mathbf{M} = \omega$; we define an **L**-interpretation of P, C with the domain \mathbf{M} . Let $\|C\|_{\mathbf{M}} = f$, let $P_m = \|P(m)\|_{\mathbf{M}}$ be defined as follows: $P_0 = k_b$, $P_{m+1} = (f \Rightarrow P_m)$. $(P_{m+1}]$ is infinitesimally greater than P_m , hence by induction P_m is infinitesimally greater than k_b , and f is infinitesimally close to k_v). Thus we also get $(P_m \Rightarrow (f * P_m)) = f(\text{for } m > 0$ directly from Lemma 2, for m = 0 in a similar way). Clearly, \mathbf{M} is an \mathbf{L} -model of T; and $\|\varphi\|_{\mathbf{M}}^{\mathbf{L}} = f < 1_{\mathbf{L}}$. This completes the proof of the lemma and of the theorem. \square

References

^[1] R. Cignoli, F. Esteva, L. Godo, A. Torrens, Basic fuzzy logic is the logic of continuous *t*-norms and their residua, Soft Computing 4 (2000) 106–112.

^[2] P. Hájek, Metamathematics of Fuzzy Logic, Kluwer Academic Publishers, Dordrecht, 1998.

^[3] P. Hájek, Basic logic and BL-algebras, Soft Comput. 2 (1998) 124-128.

^[4] P. Hájek, J. Paris, J. Shepherdson, Rational Pavelka logic is a conservative extension of Łukasiewicz predicate logic, J. Symbolic Logic 62 (2000) 669–682.