问题 (1): 在本系列问题中, 我们将研究循环群的结构. 这里, 为了避免歧义, 我们统一循环群的定义: 称一个群 G 是循环群当且仅当存在 $g \in G$, 使得任取 $g' \in G$, 都存在 $n \in \mathbb{Z}$ 使得 $g' = g^n$.

问题 (1.1): 对群 G, 请证明 下列条件等价:

- (1) G 是循环群.
- (2) 存在满同态 $\phi: \mathbb{Z} \to G$.

证明. 当 (1) 成立, 则存在 $g \in G$, 使得 $G = \{g^n : n \in \mathbb{Z}\}$. 此时, 考虑映射 $\phi : \mathbb{Z} \to G$, $n \mapsto g^n$, 则 ϕ 是满同态. 反之, 当 (2) 成立, 若 $\phi : \mathbb{Z} \to G$ 是满同态, 则任取 $g \in G$, 存在 $n \in \mathbb{Z}$, 使得 $g = \phi(n) = \phi(1)^n$, 故而 G 是循环群.

问题 (1.2):请证明: 对整数加法群 \mathbb{Z} , 若 H 是 \mathbb{Z} 的子群, 则存在 $n \in \mathbb{Z}$, 使得 $H = n\mathbb{Z}$.

证明. 当 H=0, 则 H=0Z. 否则, 注意到当 $n\in H$, 则 $-n\in H$, 因此 H 中存在正整数. 由正整数的良序性, 我们可以找到 $n\in H$, 使得 n 是 H 中的最小正整数. 此时, 任取 $h\in H$, 考虑带余出发, 则 h=kn+r, 其中 $0\le r< h$. 有 $r=h-kn\in H$, 故由 n 的最小性, 一定有 r=0, 即 h=kn, 故 $H\subset n$ Z. 显然 nZ $\subset H$, 故 H=nZ.

问题 (1.3):请证明 如下事实成立:

- (1) 若 G 是无限循环群, 则 $G \cong \mathbb{Z}$.
- (2) 若 G 是有限循环群, |G| = n, 则 $G \cong \mathbb{Z}/n\mathbb{Z}$.

证明. 由 (1.1), 若 G 是循环群, 则存在同构 $G \cong \mathbb{Z}/\mathrm{Ker}(\phi)$. 由 (1.2), 则 $\mathrm{Ker}(\phi) = n\mathbb{Z}$. 当 n = 0, 则 $G \cong \mathbb{Z}$. 当 $n \neq 0$, 则 $G \cong \mathbb{Z}/n\mathbb{Z}$. 本问题从上述事实中容易得出.

问题 (1.4):请证明: 若 G 是循环群, 则 G 的子群和商群也是循环群.

证明. 若 G' 是 G 的商群,则存在自然的满同态 $G \to G'$,进而对满同态 $\phi: \mathbb{Z} \to G$,有 $\mathbb{Z} \to G \to G'$ 也是满同态,故 G' 也是循环群. 若 H 是 G 的子群,当 G 是无限循环群,则由 (1.2) 和 (1.3) 知 H 也是循环群. 若 G 是有限循环群,不妨设 $G = \mathbb{Z}/n\mathbb{Z}$,记 $\pi: \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ 是典范投影,则 $\pi^{-1}(H)$ 是 \mathbb{Z} 的子群,因而 $\pi^{-1}(H) = m\mathbb{Z}$,由 $n\mathbb{Z} \subset m\mathbb{Z}$,则 m 整除 n,记 n = md.则此时 $H = \pi(\pi^{-1}(H)) = m\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}/d\mathbb{Z}$,故 H 也是循环群.(考虑映射 $t_m: \mathbb{Z} \to m\mathbb{Z}, x \mapsto mx$,则 $t_m(d\mathbb{Z}) = n\mathbb{Z}$ m因此 t_m 诱导同构 $\mathbb{Z}/d\mathbb{Z} = m\mathbb{Z}/n\mathbb{Z}$)

问题 (2): 在本系列问题中, 我们将研究交换群范畴中的内射对象 (injective objective). 问题 (2.1): 对于交换群 A, 若对于任意交换群 G, H 是 G 的子群, 以及态射 $\phi: H \to A$, 都存在态射 $\widetilde{\phi}: G \to A$, 使得 $\widetilde{\phi}|_{H} = \phi$, 则我们称 A 是内射的. <u>请证明</u>: 若 A 是内射的, 则 A 满足如下性质:

对任意的 $a \in A$ 以及 $n \in \mathbb{Z}$, 都存在 $a' \in A$, 使得 $(a')^n = a$.

特别地, 我们称满足如上性质的交换群是可除的.

证明. 当 A 是内射的, 对 $a \in A$ 及 $n \in \mathbb{Z}$, 我们考虑映射 $\phi : n\mathbb{Z} \to A, nx \mapsto a^x$, 则 ϕ 是 群同态. 由内射性质, 则存在态射 $\widetilde{\phi} : \mathbb{Z} \to A$, 使得 $\widetilde{\phi}|_{n\mathbb{Z}} = \phi$. 进而 $a = \phi(n) = \widetilde{\phi}(1)^n$, 故 而 A 是可除的.

问题 (2.2): 对于可除的交换群 A, 以及交换群 G 和 G 的子群 H, 若 G/H 是循环群, 请证明: 对于态射 $\phi: H \to A$, 存在态射 $\widetilde{\phi}: G \to A$, 使得 $\widetilde{\phi}|_{H} = \phi$.

证明. 取 $g \in G$, 使得 gH 构成 G/H 的生成元. 记 n 是最小的使得 $g^nH = H$, 即 $g^n \in H$ 的正整数. 由 A 可除, 则存在 $a \in A$, 使得 $\phi(g^n) = a^n$. 此时, 我们考虑由 $\widetilde{\phi}(g^kh) = a^k\phi(h)$ 定义的映射. 我们首先证明这个映射是良定的, 若 $g^kh = g^{k'}h'$, 则 $g^{k-k'} = h'h^{-1} \in H$. 由 n 的最小性, 同理 (1.2) 的证明, 则 k - k' = tn, 其中 $t \in \mathbb{Z}$. 故而此时 $a^k\phi(h) = a^{k'}a^{tn}\phi(h) = a^{k'}\phi(g^n)^t\phi(h) = a^{k'}\phi(g^{k-k'}h) = a^{k'}\phi(h')$, 因此 $\widetilde{\phi}$ 是良定的. 不难看出 $\widetilde{\phi}$ 就是我们所需的态射.

问题 (2.3):请证明: 若交换群 A 是可除的, 则 A 是内射的.

提示: 利用 Zorn 引理.(对偏序集 S, 对 $s_0 \in S$, 若任取 $s \in S$, 每当 $s \geq s_0$, 都有 $s = s_0$, 则称 s_0 是 S 中的一个极大元. 对全序集合 I, 考虑保序的 $f: I \to S$, 即当 $i \leq j$, 总有 $f(i) \leq f(j)$, 则我们称 f 为 S 中的一个链. Zorn 引理的陈述如下: 若 S 中的每一条链都存在上界, 即对链 $f: I \to S$, 都存在 $s \in S$ 使得 $f(i) \leq s$ 对所有 $i \in I$ 成立, 则 S 中存在极大元.)

证明. 对交换群 G, G 的子群 H, 以及态射 $\phi: H \to G$, 我们考虑由二元对 (N,f) 构成的偏序集, 其中 N 是 G 的子群, $f: N \to G$ 是态射, 满足 $H \subset N$ 且 $f|_H = \phi$. 其中 $(N,f) \le (N',f')$ 当且仅当 $N \subset N'$ 且 $f'|_N = f$. 此时, 若 $\{(N_\lambda,f_\lambda)\}_{\lambda\in\Lambda}$ 是一个链, 记 $N = \bigcup_{\lambda\in\Lambda} N_\lambda$, 不难验证 N 是 G 的子群. 对 $n_\lambda \in N_\lambda$, 定义 $f(n_\lambda) = f_\lambda(n_\lambda)$. 不难验证 $f: N \to A$ 是良定的群同态, 且 (N,f) 是 $\{(N_\lambda,f_\lambda)\}_{\lambda\in\Lambda}$ 的上界. 因而由 Zorn 引理, 则存在极大的 (N,f). 若此时 $N \ne G$, 取 $g \in G - N$, 记 M 是由 N 和 g 生成的子群, 则 M/N 是循环群. 由 (2.2), 则 f 可延拓到 M 上, 与 (N,f) 的极大性矛盾, 因而 N = G, 而 f 即为我们所求的 ϕ .

问题 (2.4):请证明: \mathbb{Q} 和 \mathbb{Q}/\mathbb{Z} 是内射的.

证明. 显然 \mathbb{Q} 和 \mathbb{Q}/\mathbb{Z} 是可除的, 故而由 (2.3) 得到.

问题 (2.5):<u>请证明</u>: 若 $\{A_i\}_{i\in I}$ 是一族内射的交换群, 则其乘积 $\prod_{i\in I} A_i$ 也是内射的. 这里 $\prod_{i\in I} A_i$ 中的元素是映射 $f:I\to \bigsqcup_{i\in I} A_i$, 其中 $f(i)\in A_i$ (当 $a_i=f(i)$, 通常用 $(a_i)_{i\in I}$ 表示 f), 其上的运算是 $(a_i)_{i\in I}(a_i')_{i\in I}=(a_ia_i')_{i\in I}$.

证明. 容易验证, 可除群的乘积也是可除的, 因而由 (2.3) 得到.

问题 (2.6):<u>请证明</u>: 若 G 是交换群,则存在内射的交换群 A,使得 G 可以嵌入 A,即存在单态射 $\phi: G \to A$.

证明. 对 $g \in G$, 记 H 是 g 生成的子群. 若 g 是有限阶的, 记 g 的阶为 n, 则 $g \mapsto \frac{1}{n}$ 唯一确定了群同态 $H \to \mathbb{Q}/\mathbb{Z}$, 其可以提升为态射 $\phi_g : G \to \mathbb{Q}/\mathbb{Z}$, 满足 $\phi_g(g) \neq 0$. 而当 g 不是有限阶的, 则任取非零的 $r \in \mathbb{Q}/\mathbb{Z}$, 都有 $g \mapsto r$ 唯一确定了群同态 $H \to \mathbb{Q}/\mathbb{Z}$, 进而我们也可以得到态射 $\phi_g : G \to \mathbb{Q}/\mathbb{Z}$. 此时,我们考虑 $\prod_{g \in G} \phi_g : G \to \prod_{g \in G} \mathbb{Q}/\mathbb{Z}$, $x \mapsto (\phi_g(x))_{g \in G}$. 此时 $\ker(\prod_{g \in G} \phi_g) = \bigcap_{g \in G} \ker(\phi_g) = 0$, 故 $\prod_{g \in G} \phi_g$ 是单态射. 而由 (2.5),我们知道 $\prod_{g \in G} \mathbb{Q}/\mathbb{Z}$ 是内射的,故而得证.

提示: 你可以首先证明, 任取 $g \in G$, 存在态射 $\phi_g : G \to \mathbb{Q}/\mathbb{Z}$, 使得 $\phi_g(g) \neq 0$.

问题 (3): 本系列问题中, 我们将介绍 GL_n 的 Bruhat 分解以及一些相关的事实.

问题 (3.1): 记 $T_n(K)$ 是 $GL_n(K)$ 中所有对角矩阵的集合 (即只有主对角线元素非零的矩阵的集合). <u>请证明</u>: 存在态射 $\phi: B_n(K) \to T_n(K)$, 使得 $\phi|_{T_n(K)} = Id$ 且 $Ker(\phi) = U_n(K)$.

证明. 对具有如下形式的矩阵:

$$b = \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ 0 & b_{22} & \cdots & b_{2n} \\ \vdots & & \cdots & \vdots \\ 0 & 0 & \cdots & b_{nn} \end{pmatrix},$$

我们定义 $\phi(b) = \operatorname{diag}(b_{11}, b_{22}, \dots, b_{nn})$, 则不难验证 ϕ 满足所需的性质.

问题 (3.2): 记 $w = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, <u>请证明</u>: $\mathrm{GL}_2(K)$ 关于 $\mathrm{B}_2(K) - \mathrm{B}_2(K)$ 的双陪集分解是:

$$\operatorname{GL}_2(K) = \operatorname{B}_2(K) \sqcup \operatorname{B}_2(K) w \operatorname{B}_2(K).$$

证明. 只需证明, 对 $g \in GL_2(K)$, 若 $g \notin B_2(K)$, 则 $g \in B_2(K)wB_2(K)$. 我们记 $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, 由 $g \notin B_2(K)$, 则 $c \neq 0$. 此时, 我们有:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & -\frac{d}{c} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} a & b - \frac{ad}{c} \\ c & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} b - \frac{ad}{c} & a \\ 0 & c \end{pmatrix} \in \mathcal{B}_2(K),$$

故 $g \in B_2(K)wB_2(K)$. □

问题 (3.3): 记 $G = GL_2(K)$, $B = B_2(K)$, 进一步地, 记 $N_G(B) = \{g \in G : gBg^{-1} = B\}$, 请证明: $N_G(B) = B$.

证明. 显然 $B \subset N_G(B)$. 只需证明, 若 $g \in BwB$, 则 $g \notin N_G(B)$. 若 $g = b_1wb_2 \in N_G(B)$, 则 $b_1wb_2Bb_2^{-1}wb_1^{-1} = B$, 即 $w(b_2Bb_2^{-1})w = b_1^{-1}Bb_1$, 由 $b_1, b_2 \in B$, 则 wBw = B. 然而, 注意到:

$$w\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} w = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \notin B,$$

故而 $wBw \neq B$, 进而矛盾.

问题 (3.4): 记 $U = U_2(K)$, 请证明 如下事实:

- (1) $U \times B \to BwB$, $(u, b) \mapsto uwb$ 是双射.
- (2) $B \times U \to BwB, (b, u) \mapsto bwu$ 是双射.

证明. 由对称性, 我们只证明 $U \times B \to BwB$, $(u,b) \mapsto uwb$ 是双射. 我们记 ϕ 是 (3.1) 中的映射, 则对 $b \in B$, 有 $b\phi(b)^{-1} \in \text{Ker}(\phi) = U$. 因此对 $b_1wb_2 \in BwB$, 有 $b_1wb_2 = (b_1\phi(b_1)^{-1})w(w\phi(b_1)w)b_2$. 由 $\phi(b_1) \in T_2(K)$, 则 $w\phi(b_1)w \in T_2(K) \subset B$, 故 $(w\phi(b_1)w)b_2 \in B$, 因此 $U \times B \to BwB$, $(u,b) \mapsto uwb$ 是满射. 下面我们证明它是单射, 若 uwb = u'wb', 则 $w(u'^{-1}u)w = b'b^{-1} \in B$, 由:

$$w\begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} w = \begin{pmatrix} 1 & 0 \\ n & 1 \end{pmatrix},$$

因此 $w(u'^{-1}u)w \in B$ 当且仅当上式中 n=0, 即 $u'^{-1}u=I_2$, 进而 u'=u, 故 $b'b^{-1}=w(u^{-1}u)w=I_2$, 即 b'=b. 故而得证.

问题 (3.5):请证明: $N_G(U) = B$.

证明. 由 (3.1), 则 $U = \text{Ker}(\phi)$ 在 B 中正规, 因而 $B \subset N_G(U)$. 由 (3.5), 则只需证明若 $g \in BwU$, 则 $g \notin N_G(U)$. 对 g = bwu, 若 $g \in N_G(U)$, 则 $bw(uUu^{-1})wb^{-1} = U$, 进而 $wUw = b^{-1}Ub \subset B$. 同理 (3.3) 中的论述, 则 $wUw \subset B$ 不成立, 故得证.

问题 (3.6): 如果你熟悉线性代数的话, 对 $\sigma \in S_n$, 记 $w_{\sigma} = (\delta_{i\sigma(j)})$, <u>请证明</u>: $\mathrm{GL}_n(K) = \bigcup_{\sigma \in S_n} \mathrm{B}_n(K) w_{\sigma} \mathrm{B}_n(K)$.

证明. 我们只给出证明的纲要. 对 $g \in GL_n(K)$, 由 g 可逆, 因而 g 的前 n-1 列中恰有 n-1 行线性无关. 利用 $B_n(K)$ 作用, 可以使得 g 的最后一列只有一个元素非零. 此时, 利用归纳, 容易看出 $GL_n(K) = \bigcup_{\sigma \in S_n} B_n(K) w_{\sigma} B_n(K)$, 因此只需证明 $B_n(K) w_{\sigma} B_n(K)$ 两两 不交. 若 $B_n(K) w_{\sigma} B_n(K) \cap B_n(K) w_{\tau} B_n(K) \neq \emptyset$, 则存在 $b, b' \in B_n(K)$, 使得 $b' = w_{\sigma}^{-1} b w_{\tau}$. 记 e_1, \ldots, e_n 是 K^n 的标准基, 则 $b'(e_i) = \sum_{j \leq i} b_{ji} e_j = (w_{\sigma}^{-1} b w_{\tau}) e_i = \sum_{j \leq \tau(i)} b'_{j\tau(i)} e_{\sigma^{-1}(j)}$, 进而 $\sigma^{-1}\tau(i) \leq i$ 对所有 i 成立, 则 $\sigma^{-1}\tau(i) = i$, 即 $\sigma^{-1}\tau = \mathrm{Id}$, 故 $\sigma = \tau$.

问题 (3.7): 对 $\sigma \in S_n$, 请证明 如下事实:

- (1) $U_n(K) \times B_n(K) \to B_n(K) w_{\sigma} B_n(K), (u, b) \mapsto uwb$ 是满射.
- (2) $B_n(K) \times U_n(K) \to B_n(K) w_{\sigma} B_n(K), (b, u) \mapsto bwu$ 是满射.

问题 (3.8): 请证明: $N_{GL_n(K)}(B_n(K)) = B_n(K)$ 且 $N_{GL_n(K)}(U_n(K)) = B_n(K)$.

问题 (4): 本题中, 我们将介绍 GL_n 的极大环面以及一些相关的事实. 为了避免一些不必要的赘述, 本题中我们将总假定 K 是一个具有无限多个元素的域.

问题 (4.1): 记 $G = GL_n(K), T = T_n(K),$ 进一步地, 我们记:

$$C_G(T) = \{g \in G : gt = tg$$
对所有 $t \in T$ 成立 $\}$,

请证明: $C_G(T) = T$.

证明. 对 $t = \operatorname{diag}(t_1, \dots, t_n)$, $g = (g_{ij})$, 则 $tgt^{-1} = (t_i t_j^{-1} g_{ij})$. 因此, 当 t_1, \dots, t_n 各不相同, 则 $tgt^{-1} = g$ 当且仅当对所有 $i \neq g$ 都有 $g_{ij} = 0$, 进而 $C_G(T) = T$.

问题 (4.2): 对 G 的子群 S, 若其满足以下三个条件:

- (1) S 是交换群.
- (2) 任取 $s \in S$, 都有 s 是可对角化. 即存在 $g \in G$, 使得 $gsg^{-1} \in T$.
- (3) 存在 $d \in \mathbb{Z}_{>1}$, 使得存在同构 $S \cong (K^{\times})^d$.

则我们称 $S \in G$ 中的一个 (代数) 环面.请证明: $T \in G$ 中一个极大的环面.

证明. 若 $T' \subset G$ 是环面, 且 $T \subset T'$. 由 T' 交换, 则 $T' \subset C_G(T)$. 由 (4.1), 则 $C_G(T) = T$, 进而 $T' \subset T$, 故 T 是极大的.

说明: 对于代数群 S, 若 $S_{K^{sep}} \cong \mathbb{G}_m^d$, 则称 S 是一个 (代数) 环面. 可以证明, 我们在 (4.2) 中对环面的定义在 K 是代数闭域时, 譬如 $K = \mathbb{C}$ 时, 与一般的环面的定义等价的.

问题 (4.3): 对于 $t \in T$, 若 $t = \operatorname{diag}(\lambda_1, \lambda_1, \dots, \lambda_1, \lambda_2, \dots, \lambda_r)$, 即 t 是对角线元素分别为 $\lambda_1, \dots, \lambda_r$ 的对角矩阵, 其中每个 λ_i 都连续出现 n_i 次, <u>请证明</u>: 对 $g \in G$, 若 gt = tg, 则 g 具有如下的形式:

$$g = \begin{pmatrix} A_1 & 0 & \cdots & 0 \\ 0 & A_2 & \cdots & 0 \\ \vdots & & \cdots & \vdots \\ 0 & 0 & \cdots & A_r \end{pmatrix},$$

其中 $A_i \in GL_{n_i}(K)$.

证明. 与 (4.1) 同理.

问题 (4.4): 对于 $t \in T$, $t = \operatorname{diag}(t_1, \ldots, t_n)$. 当 $\sigma \in S$, 记 $w_{\sigma} = (\delta_{i\sigma(j)})$, <u>请证明</u>: $w_{\sigma}^{-1}tw_{\sigma} = \operatorname{diag}(t_{\sigma(1)}, \ldots, t_{\sigma(n)})$.

证明. 通过直接的计算可以容易地得到.

问题 (4.5): 对 $g \in G$, 记:

$$C_G(g) = \{ g' \in G : g'g = gg' \},$$

请证明: 若 $C_G(g) = G$, 则 $g \in K^{\times}I_n$.

证明. 由 (4.1), 则 $g \in T$. 此时, 任取 $\sigma \in S_n$, 都有 $w_{\sigma}^{-1}tw_{\sigma} = t$. 由 (4.4), 则只能有 $t \in K^{\times}I_n$.

问题 (4.6): 若 $A \in G$ 的交换子群, $a \in A$, <u>请证明</u>: 若 $C_G(a) \neq G$, 且 a 可对角化, 则存在 $g \in G$, 使得 $gAg^{-1} \subset \prod_{i=1}^r A_i$, 其中 $A_i \in GL_{n_i}(K)$ 的交换子群, 且 $n_i < n$.

证明. 取 $g \in G$, 使得 $gag^{-1} \in T$. 取 $\sigma \in S_n$, 用 $w_{\sigma}^{-1}gag^{-1}w_{\sigma}$ 替代 a, 不妨设 $a \in T$ 且具有 (4.3) 中的形式. 此时 $C_G(a) = \prod_{i=1}^r \operatorname{GL}_{n_i}(K)$, 由 A 交换, 则 $A \subset C_G(a) = \prod_{i=1}^r \operatorname{GL}_{n_i}(K)$. 记 π_i 是到第 i 个分量的投影 $\prod_{i=1}^r \operatorname{GL}_{n_i}(K) \to \operatorname{GL}_{n_i}(K)$, 记 $A_i = \pi_i(A)$, 则 A_i 是 $\operatorname{GL}_{n_i}(K)$ 的交换子群, 且 $A \subset \prod_{i=1}^r A_i$.

问题 (4.7):<u>请证明</u>: 若 $A \in G$ 的交换子群, 且 A 中的所有元素都可对角化, 则存在 $g \in G$, 使得 $gAg^{-1} \subset T$.

证明. 若任取 $a \in A$, 都有 $C_G(a) = G$, 则由 (4.5), 有 $A \subset K^{\times}I_n$. 否则, 由 (4.6), 用 gAg^{-1} 替代 A, 不妨设 $A \subset \prod_{i=1}^r A_i$. 由 (4.6) 中的构造, 则 $A_i = p(A_i)$. 对于 $a \in A$, 若 $gag^{-1} \in T$, 记 $a = \operatorname{diag}(a_1, \ldots, a_r)$, 其中 $a_i \in \operatorname{GL}_{n_i}(K)$, 记 $g = (g_{ij})$, 其中 G_{ij} 是 $n_i \times n_j$ 阶的矩阵. 通过直接得计算, 不难证明此时 $g_{ii}a_ig_{ii}^{-1}$ 是 $\operatorname{GL}_{n_i}(A)$ 中的对角矩阵. 也就是说 A_i 中的所有元素在 $\operatorname{GL}_{n_i}(K)$ 中可对角化. 因此, 利用归纳法, 则存在 $g_i \in \operatorname{GL}_{n_i}(K)$, 使得 $g_iA_ig_i^{-1} \subset \operatorname{T}_{n_i}(K)$. 此时令 $g = \operatorname{diag}(g_1, \ldots, g_r)$, 则 $gAg^{-1} \subset \prod_{i=1}^r \operatorname{T}_{n_i}(K) = T$, 故得证,

问题 (4.8):<u>请证明</u>: 若 $S \in G$ 的 (代数) 环面, 则存在 $g \in G$, 使得 $gSg^{-1} \subset T$. 进一步地, 请证明 下列条件等价:

- (1) T' 是 G 的极大 (代数) 环面.
- (2) 存在 $g \in G$, 使得 $T' = gTg^{-1}$.

证明. 显然 (2) 可以推出 (1). 反之, 若 T' 是极大的环面, 由 (4.7), 则存在 $g \in G$, 使得 $gT'g^{-1} \subset T$. 由极大性, 则 $gT'g^{-1} = T$, 故得证.

问题 (5): 本节中, 我们将研究可上三角化的矩阵, 以及一些相关的问题.

问题 (5.1): 对 $g \in GL_n(\mathbb{C})$, 若存在 $g' \in GL_n(\mathbb{C})$, 使得 $g'gg'^{-1} \in B_n(\mathbb{C})$, 则称 g 是可上三角化的. <u>请证明</u>: $GL_n(\mathbb{C})$ 中的所有元素都是可三角化的, 即 $GL_n(\mathbb{C}) = \bigcup_{g \in G} gB_n(\mathbb{C})g^{-1}$. **提示:** 在本题中, 你可以直接使用如下线性代数的事实: 对 $g \in GL_n(\mathbb{C})$, 存在 $g' \in GL_n(\mathbb{C})$, 使得 $g'gg'^{-1}$ 具有如下的形式:

$$\begin{pmatrix} \lambda_1 & * \\ 0 & g_{n-1} \end{pmatrix},$$

其中 $\lambda_1 \in \mathbb{C}$, 而 $g_{n-1} \in \mathrm{GL}_{n-1}(\mathbb{C})$. 上述事实的线性代数含义是: 代数闭域上任意矩阵都至少存在一个特征值.

证明. 利用上方提示中的结论, 通过数学归纳法不难得证.

问题 (5.2): 对群 G 及其子群 H, <u>请证明</u>: 对 $g,g' \in G$, 若 gH = g'H, 则 $gHg^{-1} = g'Hg'^{-1}$.

证明. 当 gH=g'H, 则 g'=gh, 其中 $h\in H$. 因而, 此时 $g'Hg'^{-1}=ghHh^{-1}g^{-1}=gHg^{-1}$.

问题 (5.3): 对有限群 G 及其子群 H, <u>请证明</u>: $G \neq \bigcup_{g \in G} gHg^{-1}$.

证明. 取 $g_1, \ldots, g_n \in G$, 使得 g_1H, \ldots, g_nH 是 G/H 中的所有陪集, 则由 (5.2), 有 $\bigcup_{g \in G} gHg^{-1} = \bigcup_{i=1}^n g_iHg_i^{-1}$. 注意到 $|g_iHg_i| = |H| = \frac{|G|}{n}$, 而 $e \in \bigcap_{i=1}^n g_iHg_i^{-1}$, 故 $\bigcap_{i=1}^n g_iHg_i^{-1}$ 非空, 则 $|\bigcup_{i=1}^n g_iHg_i^{-1}| < n|H| = |G|$, 故得证.

问题 (5.4): 对 $g \in GL_2(K)$, 记 $f_g(t) = \det(tI - g)$, <u>请证明</u>: $f_g(t)$ 是只依赖于 g 所在共轭类的多项式. 即对 $g' \in GL_2(K)$, 有 $f_g(t) = f_{g'gg'^{-1}}(t)$.

证明. $f_{g'gg'^{-1}}(t) = \det(tI - g'gg'^{-1}) = \det(g')\det(tI - g)\det(g'^{-1}) = \det(tI - g) = f_g(t)$.

问题 (5.5): 由 (5.3), 则 $\operatorname{GL}_2(\mathbb{F}_p) \neq \bigcup_{g \in \operatorname{GL}_2(\mathbb{F}_p)} g \operatorname{B}_2(\mathbb{F}_p) g^{-1}$. 即 $\operatorname{GL}_2(\mathbb{F}_p)$ 中的矩阵并不是全部都可以上三角化. <u>请具体写出</u> $\operatorname{GL}_2(\mathbb{F}_p)$ 中的一个不可上三角化的元素.

证明. 由 (5.4), 若 $g \in GL_2(\mathbb{F}_p)$ 可上三角化, 则 $f_g(t)$ 在 \mathbb{F}_p 中有两个根. 因此, 取多项式 $f(X) = X^2 + aX + b$, 使得 f(X) 在 \mathbb{F}_p 中没有根, 则矩阵

$$g = \begin{pmatrix} 0 & -b \\ 1 & -a \end{pmatrix}$$

在 $GL_2(\mathbb{F}_p)$ 中不可上三角化.