## Студент: Бакулевский М. В. ИУ4-52Б

## Семинар №4

**D** – <u>цилиндрическая жесткость</u>

 $\mathbf{E}-\mathbf{M}$ одуль упругости материала платы

μ - коэффициент Пуассона

**р**пп – <u>ПЛОТНОСТЬ МАТЕРИАЛА</u>

## Материал ПП FR4 1,5мм

Определение суммарной массы ПП М:

$$M_{\text{пп}} = \underline{24} \; \Gamma$$

$$M_{\text{эри}} = \underline{18} \; \Gamma$$

$$M = 42 \Gamma$$

Расчет цилиндрической жесткости:

$$f_0 = \left(\frac{1}{2\pi}\right)\left(\frac{1}{a^2}\right)\sqrt{\frac{D}{M}ab}; D = \frac{Eh^3}{12(1-v^2)},$$

где a — длина пластины (совпадает с длиной ячейки), м; b — ширина пластины, м; D — цилиндрическая жесткость,  $H \cdot$  м; E — модуль упругости для материала платы,  $H/\text{M}^2$ ; h — толщина платы, м; v — коэффициент Пуассо-

$$D = \frac{3.02 * 10^{10} * 0.0015^{3}}{12(1 - 0.22)} = 10.89 H * M$$

Расчет коэффициентов закрепления для 4 способов закрепления ПП:

 $K_a$  — коэффициент, зависящий от способа закрепления сторон пластины, определяется по общей формуле:

$$K_{\mathbf{a}} = \left[\alpha + \left[\frac{\beta a^2}{b^2}\right] + \gamma \frac{a^4}{b^4}\right]^{0.5},$$

где k,  $\alpha$ ,  $\beta$ ,  $\gamma$  — коэффициенты, соответствующие заданному способу закрепления сторон  $\Pi\Pi$ .

Условные обозначения способов закрепления сторон платы:

«+++» - защемлённая сторона

«---» - опёртая сторона

№1 (эскиз и значения коэффициентов)



Способ закрепления соответствует ячейке, закрепленной в четырёх точках по углам

Ka = 2.15

№2 (эскиз и значения коэффициентов)

| = ===================================== |    |      |      |  |  |
|-----------------------------------------|----|------|------|--|--|
| Значения коэффициентов                  |    |      |      |  |  |
| k                                       | ·a | β    | γ    |  |  |
| 9,87                                    | 1  | 2,33 | 2,44 |  |  |

Способ закрепления соответствует ячейке без рамки

Ka = 2.63

№3 (эскиз и значения коэффициентов)



Способ закрепления соответствует ячейке без рамки

Ka = 3.29

№4 (эскиз и значения коэффициентов)

| 1                      | +  | + +  | +++ |  |  |
|------------------------|----|------|-----|--|--|
| + + +                  |    |      |     |  |  |
| '                      | +  | +    |     |  |  |
| '                      | ţĻ |      | +   |  |  |
| -                      | _+ |      | +++ |  |  |
| Значения коэффициентов |    |      |     |  |  |
| k                      | α  | β    | γ   |  |  |
| 22,37                  | 1  | 0,61 | 1   |  |  |

Способ закрепления соответствует ячейке каркасной конструкции

$$Ka = 1.74$$

## Расчет собственной частоты колебаний ПП:

Общая формула: 
$$f_0 = (\frac{1}{2\pi})(\frac{1}{a^2})\sqrt{\frac{D}{M}}ab$$

$$f = (\frac{1}{6.28})(\frac{1}{0.01^2})\sqrt{\frac{10.89}{0.042}0.1*0.093} = 24.7$$
Гц

1й способ:

$$f_0 = 24.7$$
 Гц

2й способ:

$$f_0 = 24.7$$
 Гц

3й способ:

$$f_0 = 24.7 \; \Gamma$$
ц

4й способ:

$$f_0 = 24.7 \; \Gamma$$
ц

Рабочий диапазон частот по заданию: 50Гц – 200Гц

Способы закрепления, удовлетворяющие условиям работы: 1, 2, 3, 4.