2003-2004 学年第二学期复变函数与积分变换期终试卷 B(01 级)

专业		学号	姓名	成绩
- ,	填空 (10×3 分)			
1. 复	其数 $\left(\frac{-1+i}{i}\right)^3$ 的三分	角表达式为		,
2. u	指数 $y = \frac{1}{z}$ 将 z 平面上的由	数表达式为 由线 $x^2 + y^2 = 1$ 变质	ガル 平面上的曲线見	°
	z $\vec{z} f(z) = 4my^3 + nx^2y$			
4. <i>L</i>	$n(-4+3i) = \underline{\hspace{1cm}}$			0
5. ∫	$\int_{0}^{i} z \sin z dz = \underline{\hspace{1cm}}$			o
6. z	$ \oint_{=3} \frac{e^z}{(z-2)} dz = \underline{\qquad} $			
7. li	$ \underset{\rightarrow \infty}{\text{m}} \left[\frac{1+n}{ni} + e^{\frac{2i}{n}} \right] = \underline{\qquad} $		•	
8. 纫	改数 $\sum_{n=0}^{\infty} \left(\frac{1}{2}i\right)^n (z-$	3)"的收敛圆为_		o
9. <i>f</i>	$f(t) = 4e^t + 3t^3 + $	2 的拉氏变换 F(s)=	o
10. F	$F(s) = \frac{3s^3 + 2s^2 + 1}{s^2(s^2 + 1)}$	2 - 的拉氏逆变换 <i>j</i>	$f(t) = \underline{\hspace{1cm}}$	0
=,	计算 (6×6分)			
1.对				

2. 求
$$(3-i)^{1+i}$$
的值。

3.计算
$$\oint_{C=C_1+C_2} \frac{e^z}{z^3} dz$$
,其中 c_1 : $|z|=2$ 为正向, c_2 : $|z|=3$ 为负向。

4. 计算
$$\int_0^{+\infty} \frac{1-\cos t}{t} e^{-2t} dt$$

5. 求
$$f(t) = \frac{e^{-3t} \sin 2t}{t}$$
的拉氏变换。

6. 求 $F(s) = \frac{2}{3} \ln \frac{s^2 + 1}{s^2}$ 的拉氏逆变换 f(t) 。

三、在复平面上求解析函数 f(z) 使其虚部 $v(x,y) = 3x^2y - y^3 - 2y$ 。(8分)

四、将函数 $f(z) = z \sin z$ 展开为 $(z - \frac{\pi}{3})$ 的泰勒级数,并指出收敛半径。(8分)

六、求 $y'' + 2y' - 3y = e^{-t}$ 满足初始条件 y(0) = 0, y'(0) = 1 的解。(8分)