Отчет о выполнении индивидуального задания по теме «Задача классификации в машинном обучении»

Студента(-ки) группы <u>09-813</u> Махмутов Ринат

Задание 1.

I. Создать файлы признаков Харалика для изображений в папках YES и NO при следующих параметрах матрицы а смежности уровней серого

Для получения признаков Харалика использую программу в среде Matlab

FeaturesExtraction

Строим две матрицы смежности с параметрами

```
% Получаем матрицу смежности GLCM для G=128 и d=1 glcm0 = graycomatrix(I, 'NumLevels', 128, 'Offset', [0 1], 'Symmetric', true); glcm1 = graycomatrix(I, 'NumLevels', 128, 'Offset', [-1 1], 'Symmetric', true); glcm2 = graycomatrix(I, 'NumLevels', 128, 'Offset', [-1 0], 'Symmetric', true); glcm3 = graycomatrix(I, 'NumLevels', 128, 'Offset', [-1 -1], 'Symmetric', true);
```

И

```
% Получаем матрицу смежности GLCM для G=128 и d=7 glcm0 = graycomatrix(I, 'NumLevels', 256, 'Offset', [0 6], 'Symmetric', true); glcm1 = graycomatrix(I, 'NumLevels', 256, 'Offset', [-6 6], 'Symmetric', true); glcm2 = graycomatrix(I, 'NumLevels', 256, 'Offset', [-6 0], 'Symmetric', true); glcm3 = graycomatrix(I, 'NumLevels', 256, 'Offset', [-6 -6], 'Symmetric', true);
```

Для папки NO результаты записаны в файл маhmutov_no.xlsx (размер 66 113)

Для папки Yes результаты записаны в файл Mahmutov_yes.xlsx (размер 76 113)

C помощью программы vertcat_file.m объединяю файлы маhmutov_no.xlsx и мahmutov_yes.xlsx в файл 'мahmutov_all.xlsx' (размер 142 113)

В файле 'маhmutov_all.xlsx' записаны требуемые параметры Харалика для каждого изображения.

100008881 (1.321855) (1.081857) (1.081857) (1.081858) (1.081857) (1.081858) (1.081857) (1.081858) (1.081857) (1.081858) (1.081857) (1.081858) (

Задание 2

II. Используя все классификаторы MATLAB провести классификацию признаков Харалика для изображений в папках YES и NO с параметрами из пунктов а) и б) . Использовать три значения параметра кросс-валидации: а) K=3; б) K=4; в) K=5.

Определить по три модели классификации, имеющих наибольшие средние значения точности, чувствительности и специфичности (усреднять для различных значений К).

В окне APPS выбираю вкладку Classification learner.

Результаты классификации

a) K=3

Sort by: Accuracy (Validation) ▼ ↓ ↑	a			
₹ 1.15 KNN	Accuracy (Validation): 90.1%			
Last change: Fine KNN	112/112 features			
1.11 SVM	Accuracy (Validation): 88.7%			
Last change: Cubic SVM	112/112 features			
1.12 SVM	Accuracy (Validation): 88.7%			
Last change: Fine Gaussian SVM	112/112 features			
1.22 Ensemble	Accuracy (Validation): 88.7%			
Last change: Bagged Trees	112/112 features			
	Accuracy (Validation): 87.9%			
Last change: Medium Gaussian SVM	112/112 features			
1.27 Neural Network	Accuracy (Validation): 87.2%			
Last change: Medium Neural Network	112/112 features			
1.30 Neural Network	Accuracy (Validation): 86.5%			
Last change: Trilayered Neural Network	112/112 features			
	Accuracy (Validation): 85.8%			
Last change: Linear SVM	112/112 features			
	Accuracy (Validation): 85.8%			
Last change: Weighted KNN	112/112 features			
1.26 Neural Network	Accuracy (Validation): 85.8%			
Last change: Narrow Neural Network	112/112 features			
1.29 Neural Network	Accuracy (Validation): 85.8%			
Last change: Bilayered Neural Network	112/112 features			
	Accuracy (Validation): 85.1%			
Last change: Quadratic SVM	112/112 features			
1.23 Ensemble	Accuracy (Validation): 85.1%			
Last change: Subspace Discriminant	112/112 features			
	Accuracy (Validation): 84.4%			
Last change: Fine Tree	112/112 features			
	Accuracy (Validation): 84.4%			
Last change: Medium Tree	112/112 features			
	Accuracy (Validation): 84.4%			
Last change: Coarse Tree	112/112 features			

Результаты для К=4

▼ Models	0
Sort by: Accuracy (Validation) ▼ ↓ ↑	
∴ 1.11 SVM	Accuracy (Validation): 93.0%
Last change: Cubic SVM	112/112 features
1.30 Neural Network	Accuracy (Validation): 90.8%
Last change: Trilayered Neural Network	112/112 features
1.20 KNN	Accuracy (Validation): 89.4%
Last change: Weighted KNN	112/112 features
1.23 Ensemble	Accuracy (Validation): 89.4%
Last change: Subspace Discriminant	112/112 features
1.27 Neural Network	Accuracy (Validation): 89.4%
Last change: Medium Neural Network	112/112 features
1.28 Neural Network	Accuracy (Validation): 89.4%
Last change: Wide Neural Network	112/112 features
☆ 1.9 SVM	Accuracy (Validation): 88.7%
Last change: Linear SVM	112/112 features
☆ 1.10 SVM	Accuracy (Validation): 88.7%
Last change: Quadratic SVM	112/112 features
☆ 1.15 KNN	Accuracy (Validation): 88.7%
Last change: Fine KNN	112/112 features
1.22 Ensemble	Accuracy (Validation): 88.7%
Last change: Bagged Trees	112/112 features
1.26 Neural Network	Accuracy (Validation): 88.7%
Last change: Narrow Neural Network	112/112 features
☆ 1.13 SVM	Accuracy (Validation): 87.3%
Last change: Medium Gaussian SVM	112/112 features
1.29 Neural Network	Accuracy (Validation): 87.3%
Last change: Bilayered Neural Network	112/112 features
1.12 SVM	Accuracy (Validation): 86.6%
Last change: Fine Gaussian SVM	112/112 features
	Accuracy (Validation): 83.8%
Last change: Medium KNN	112/112 features
1.8 Naive Bayes	Accuracy (Validation): 83.1%
Last change: Kernel Naive Bayes	112/112 features
Current Model Summary	0

Результат для К=5

Для анализа выбираем модели 11 22 27

К=4

Таблица

	Модель								
	11			22			27		
	Accura	Specificit y, TNR	Sensitivit y, TPR	Accurac y	specificit y	sensitivit y	Accurac y	specificit y	sensitivit y
K=3	88,7	93,9	84	88,7	90,9	86,7	87,2	87,9	86,7
K=4	93,0	90,9	88,0	88,7	87,9	89,5	89,4	87,9	90,8
K=5	91,5	97,0	86,8	93,9	88,2	87	90,1	89,4	90,8
Среднее	91,1	93,9	86,3	89,4	89	87,7	88,9	88,4	89,4