zlg7289A

串行接口 8 位 LED 数码管及 64 键键盘智能控制芯片

zlg7289A 是一片具有串行接口的,可同时驱动 8 位共阴式数码管(或 64 只独立 LED)的智能显示驱动芯片,该芯片同时还可连接多达 64 键的键盘矩阵,单片即可完成 LED 显示、键盘接口的全部功能。

z1g7289A 内部含有译码器,可直接接受 BCD 码或 16 进制码,并同时具有 2 种译码方式 (参看后文),此外,还具有多种控制指令,如消隐、闪烁、左移、右移、段寻址等。

z1g7289A 具有片选信号,可方便地实现多于8位的显示或多于64键的键盘接口。

典型应用

仪器仪表,工业控制器,条形显示器,控制面板

特点

- 串行接口,无需外围元件可直接驱动 LED
- 各位独立控制译码/不译码及消隐和闪烁属性
- (循环) 左移/(循环) 右移指令
- 具有段寻址指令,方便控制独立 LED
- 64 键键盘控制器,内含去抖动电路

电特性 (V_{CC}=5.0V, Fosc=16MHz,T_A=25℃):

符号	参数	测试条件	最小	典型	最大	单位
V _{CC}	电源电压		4.5	5.0	5.5	V
I_{CC}	工作电流	不接 LED		3	5	mA
I_{CC}	工作电流	LED 全亮,I _{SEG} =10mA		60	100	mA
V_{IH}	逻辑输入高电平		2.0		5.5	V
V_{IL}	逻辑输入低电平		0		0.8	V
T_{KEY}	按键响应时间	含去抖动时间	10	18	40	mS
I_{KO}	KEY 引脚输出电流				7	mA
I_{KI}	KEY 引脚吸入电流				10	mA
T1	从 CS 下降沿至 CLK 脉冲时间		25	50	250	uS
T2	传送指令时 CLK 脉冲宽度		5	8	250	uS
T3	字节传送中 CLK 脉冲时间间隔		5	8	250	uS
T4	指令与数据时间间隔		15	25	250	uS
T5	读键盘指令中指令与输出数据		15	25	250	uS
	时间间隔					
T6	输出键盘数据建立时间		5	8		uS
T7	读键盘数据时 CLK 脉冲宽度		5	8	250	uS
T8	读键盘数据完成后 DATA 转为				5	uS
	输入状态时间					

引脚说明:

引脚	名称	说明
1, 2	V _{DD}	正电源
3, 5	NC	悬空
4	V _{SS}	接地
6	/CS	片选输入端,此引脚为低电平时,可向芯片发送指令及读取键盘数据
7	CLK	同步时钟输入端,向芯片发送数据及读取键盘数据时,此引脚电平上
		升沿表示数据有效
8	DATA	串行数据输入/输出端,当芯片接收指令时,此引脚为输入端;当读取
		键盘数据时,此引脚在'读'指令最后一个时钟的下降沿变为输出端
9	/KEY	按键有效输出端,平时为高电平,当检测到有效按键时,此引脚变为
		低电平
10-16	SG-SA	段 g—段 a 驱动输出
17	DP	小数点驱动输出
18-25	DIG0-	数字0—数字7驱动输出
	DIG7	
26	OSC2	振荡器输出端
27	OSC1	振荡器输入端
28	/RESET	复位端

控制指令

zlg7289A的控制指令分为二大类——纯指令和带有数据的指令。

• 纯指令

1. 复位(清除)指令

D7	D6	D5	D4	D3	D2	D1	D0
1	0	1	0	0	1	0	0

当 zlg7289A 收到该指令后,将所有的显示清除,所有设置的字符消隐、闪烁等属性也被一起清除。执行该指令后,芯片所处的状态与系统上电后所处的状态一样。

2. 测试指令

D7	D6	D5	D4	D3	D2	D1	D0
1	0	1	1	1	1	1	1

该指令使所有的 LED 全部点亮,并处于闪烁状态,主要用于测试。

3. 左移指令

		•					
D7	D6	D5	D4	D3	D2	D1	D0
1	0	1	0	0	0	0	1

使所有的显示自右向左(从第1位向第8位)移动一位(包括处于消隐状态的显示位),但对各位所设置的消隐及闪烁属性不变。移动后,最右边一位为空(无显示)。例如,原显示为

1 2 3 4	5 6	7	8
---------	-----	---	---

其中第 2 位 '2' 和第 4 位 '4' 为闪烁显示,执行了左移指令后,显示变为 2 3 4 5 6 7 8

第二位'3'和第四位'5'为闪烁显示。

4. 右移指令

D7	D6	D5	D4	D3	D2	D1	D0
1	0	1	0	0	0	0	0

与左移指令类似,但所做移动为自左向右(从第8位向第1位)移动,移动后,最左边一位为空。

5. 循环左移指令

D7	D6	D5	D4	D3	D2	D1	D0
1	0	1	0	0	0	1	1

与左移指令类似,不同之处在于移动后原最左边一位(第 8 位)的内容显示于最右位 (第 1 位)。在上例中,执行完循环左移指令后的显示为

2	3	4	5	6	7	8	1

第二位'3'和第四位'5'为闪烁显示。

6. 循环右移指令

D7	D6	D5	D4	D3	D2	D1	D0
1	0	1	0	0	0	1	0

与循环左移指令类似,但移动方向相反。

• 带有数据的指令

1. 下载数据且按方式 0 译码

D7	D6	D5	D4	D3	D2	D1	D0
1	0	0	0	0	a_2	\mathbf{a}_1	\mathbf{a}_0

D7	D6	D5	D4	D3	D2	D1	D0
DP	X	X	X	d_3	d_2	d_1	d_0

X=无影响

命令由二个字节组成,前半部分为指令,其中 a_2 , a_1 , a_0 为位地址,具体分配如下(显示位编号请参阅典型应用电路图):

a_2	a_1	\mathbf{a}_0	显示位
0	0	0	1
0	0	1	2
0	1	0	3
0	1	1	4
1	0	0	5
1	0	1	6
1	1	0	7
1	1	1	8

 d_0 — d_3 为数据,收到此指令时,zlg7289A 按以下规则(译码方式 0)进行译码,如下表:

d ₀ —d ₃ (十六进制)	d_3	d_2	d_1	d_0	7 段显示
00H	0	0	0	0	0
01H	0	0	0	1	1
02H	0	0	1	0	2
03H	0	0	1	1	3
04H	0	1	0	0	4
05H	0	1	0	1	5
06H	0	1	1	0	6
07H	0	1	1	1	7
08H	1	0	0	0	8
09H	1	0	0	1	9
0AH	1	0	1	0	-
0BH	1	0	1	1	E
0CH	1	1	0	0	Н
0DH	1	1	0	1	L
0EH	1	1	1	0	P
0FH	1	1	1	1	空 (无显示)

小数点的显示由 DP 位控制, DP=1 时, 小数点显示, DP=0 时, 小数点不显示。

2. 下载数据且按方式1译码

D7	D6	D5	D4	D3	D2	D1	D0
1	1	0	0	1	a_2	a_1	a_0

D7	D6	D5	D4	D3	D2	D1	D0
DP	X	X	X	d_3	d_2	d_1	d_0

X=无影响

此指令与上一条指令基本相同,所不同的是译码方式,该指令的译码按下表进行:

d ₀ —d ₃ (十六进制)	d_3	d_2	d_1	d_0	7 段显示
H00	0	0	0	0	0
01H	0	0	0	1	1
02H	0	0	1	0	2
03H	0	0	1	1	3
04H	0	1	0	0	4
05H	0	1	0	1	5
06H	0	1	1	0	6
07H	0	1	1	1	7
08H	1	0	0	0	8
09H	1	0	0	1	9
0AH	1	0	1	0	A
0BH	1	0	1	1	В
0CH	1	1	0	0	С
0DH	1	1	0	1	D
0EH	1	1	1	0	Е
0FH	1	1	1	1	F

3. 下载数据但不译码

D7	D6	D5	D4	D3	D2	D1	D0
1	0	0	1	0	\mathbf{a}_2	a_1	a_0

D7	D6	D5	D4	D3	D2	D1	D0
DP	A	В	C	D	Е	F	G

其中, \mathbf{a}_2 , \mathbf{a}_1 , \mathbf{a}_0 为位地址(参见'下载数据且译码'指令),A-G 和 DP 为显示数据,分别对应 7 段 LED 数码管的各段。数码管各段的定义见下图。当相应的数据位为'1'时,该段点亮,否则不亮。

4. 闪烁控制

l	D7	D6	D5	D4	D3	D2	D1	D0	D7	D6
	1	0	0	0	1	0	0	0	d_8	d_7

D7	D6	D5	D4	D3	D2	D1	D0
d_8	d_7	d_6	d_5	d_4	d_3	d_2	d_1

此命令控制各个数码管的消隐属性。 $d_1 - d_8$ 分别对应数码管 1-8,0=闪烁,1=不闪烁。 开机后,缺省的状态为各位均不闪烁。

5. 消隐控制

D7	D6	D5	D4	D3	D2	D1	D0
1	0	0	1	1	0	0	0

D7	D6	D5	D4	D3	D2	D1	D0
d_8	d_7	d_6	d_5	d_4	d_3	d_2	d_1

此命令控制各个数码管的消隐属性。 d_1 — d_8 分别对应数码管 1—8,1=显示,0=消隐。 当某一位被赋予了消隐属性后,zlg7289A 在扫描时将跳过该位,因此在这种情况下无论对该位写入何值,均不会被显示,但写入的值将被保留,在将该位重新设为显示状态后,最后一次写入的数据将被显示出来。当无需用到全部 8 个数码管显示的时候,将不用的位设为消隐属性,可以提高显示的亮度。

注意:至少应有一位保持显示状态,如果消隐控制指令中 d_1 — d_8 全部为 0,该指令将不被接受,zlg7289A 保持原来的消隐状态不变。

6. 段点亮指令

D7	D6	D5	D4	D3	D2	D1	D0
1	1	1	0	0	0	0	0

D7	D6	D5	D4	D3	D2	D1	D0
X	X	d_5	d_4	d_3	d_2	d_1	d_0

此为段寻址指令,作用为点亮数码管中某一指定的段,或 LED 矩阵中某一指定的 LED。指令中,X=无影响; d_0 一 d_5 段地址,范围从 00H—3FH,具体分配为:

第 1 个数码管的 G 段地址为 00H, F 段为 01H,A 段为 06H,小数点 DP 为 07H, 第 2 个数码管的 G 段为 08H,F 段为 09H,... ...,依此类推直至第 8 个数码管的小数点 DP 地址为 3FH。

7. 段关闭指令

D7	D6	D5	D4	D3	D2	D1	D0
1	1	0	0	0	0	0	0

D7	D6	D5	D4	D3	D2	D1	D0
X	X	d_5	d_4	d_3	d_2	d_1	d_0

段寻址命令,作用为关闭(熄灭)数码管中的某一段,指令结构与'段点亮指令'相同,请参阅上文。

8. 读键盘数据指令

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	0	1	0	1

D7	D6	D5	D4	D3	D2	D1	D0
d_7	d_6	d_5	d_4	d_3	d_2	d_1	d_0

该指令从 zlg7289A 读出当前的按键代码。与其它指令不同,此命令的前一个字节 0001010B 为微控制器传送到 zlg7289A 的指令,而后一个字节 d_0 — d_7 则为 zlg7289A 返回的 按键代码,其范围是 0——3FH(无键按下时为 0xFF),各键键盘代码的定义,请参阅图 2。

此指令的前半段, zlg7289A 的 DATA 引脚处于高阻输入状态,以接受来自微处理器的指令;在指令的后半段, DATA 引脚从输入状态转为输出状态,输出键盘代码的值。故微处理器连接到 DATA 引脚的 I/O 口应有一从输出态到输入态的转换过程,详情请参阅本文

'串行接口'一节的内容。

当 zlg7289A 检测到有效的按键时, KEY 引脚从高电平变为低电平,并一直保持到按键结束。在此期间,如果 zlg7289A 接收到'读键盘数据指令',则输出当前按键的键盘代码;如果在收到'读键盘指令'时没有有效按键,zlg7289A 将输出 FFH(11111111B)。

串行接口

zlg7289A 采用串行方式与微处理器通讯,串行数据从 DATA 引脚送入芯片,并由 CLK 端同步。当片选信号变为低电平后,DATA 引脚上的数据在 CLK 引脚的上升沿被写入zlg7289A 的缓冲寄存器。

zlg7289A 的指令结构有三种类型: 1.不带数据的纯指令,指令的宽度为 8 个 BIT,即 微处理器需发送 8 个 CLK 脉冲。2.带有数据的指令,宽度为 16 个 BIT,即微处理器需发送 16 个 CLK 脉冲。3.读取键盘数据指令,宽度为 16 个 BIT,前 8 个为微处理器发送到 zlg7289A 的指令,后 8 个 BIT 为 zlg7289A 返回的键盘代码。执行此指令时,zlg7289A 的 DATA 端在第 9 个 CLK 脉冲的上升沿变为输出状态,并与第 16 个脉冲的下降沿恢复为输入状态,等待接收下一个指令。

串行接口的时序如下图:

应用 zlg7289A 的典型应用图如下所示。

zlg7289A 应连接共阴式数码管,应用中,无需用到的数码管和键盘可以不连接,省去数码管和对数码管设置消隐属性均不会影响键盘的使用。

如果不用键盘,则典型电路中连接到键盘的 8 只 10K 电阻和 8 只 100K 下拉电阻均可以省去。如果使用了键盘,则电路中的 8 只 10K 电阻和 8 只 100K 下拉电阻均不得省略。除非不接数码管,否则串入 DP 及 SA-SG 连线的 8 只电阻均不能省去。

实际应用中,8只下拉电阻和8只键盘连接位选线 DIG0-DIG7的8只电阻(位选电阻),应遵从一定的比例关系,下拉电阻应大于位选电阻的5倍而小于其50倍,典型值为10倍。下拉电阻的取值范围是10K-100K,位选电阻的取值范围是1K-10K。在不影响显示的前提下,下拉电阻应尽可能的取较小的值,这样可以提高键盘部分的抗干扰能力。

因为采用循环扫描的工作方式,如果采用普通的数码管,亮度有可能不够,采用高亮或超高亮的型号,可以解决这个问题。数码管的尺寸,也不宜选的过大,一般字符高度不超过 1 英寸,如使用大型的数码管,应使用适当的驱动电路。

zlg7289A 需要一外接晶体振荡电路供系统工作。其典型值分别为 F=16MHz, C=15P, 如果芯片无法正常工作,请首先检查此振荡电路。在印刷电路板布线时,所有元件,尤其是振荡电路的元件应尽量靠近 zlg7289A,并尽量使电路联线最短。

zlg7289A 的 RESET 复位端在一般应用情况下,可以直接和 VCC 相连,在需要较高可靠性的情况下,可以连接一外部复位电路,或直接由 MCU 控制。在上电或 RESET 端由低电平变为高电平后,zlg7289A 大约要经过 18-25MS 的时间才会进入正常工作状态。

上电后,所有的显示均为空。所有显示位的显示属性均为"显示"及"不闪烁"。当有键按下时,KEY 引脚输出低电平,此时如果接收到"读键盘"指令,zlg7289A 将输出所按下键的代码。键盘代码的定义,请参阅图 2,图中代码以 10 进制表示。如果在没有按键的情况下收到"读键盘"指令,zlg7289A 将输出 0FFH(255)。

程序中,尽可能地减少CPU对zlg7289A的访问次数,可以使得程序更有效率。

因为芯片直接驱动 LED 数码管显示,电流较大,且为动态扫描方式,故如果该部分电路电源连线较细较长,可能会引入较大的电源噪声干扰,在电源的正负极并入一47U到220U的电容可以提高电路抗干扰的能力。

注意:如果有2个键同时按下,zlg7289A将只能给出其中一个键的代码,因此zlg7289A

不适于应用在需要2个或2个以上键同时按下的场合。

接口程序实例

下面给出 PHILIPS 公司的 P87LPC764 及 MICROCHIP 公司的 PIC16C54 与 zlg7289A 连接的应用实例。2 个程序所完成的功能相同,均为等待键盘输入,然后将所读到的键盘码转换成 10 进制后,送回 zlg7289A 显示,同时将前面的显示内容左移,并使当前按键值闪烁。

1. P87LPC764 接口程序

硬件连接如图, P87LPC764 所用时钟频率为 6MHz,程序编译通过并经过验证。程序中延时时间以 zlg7289A 外接 12MHz 晶体振荡器为准。

BIT_CNT	DATA	30H
DELAY1	DATA	31H
DECIMAL	DATA	32H
REC_BUF	DATA	20H
SEND BUF	DATA	21H

CS	DII	ru. 1
CLK	BIT	P0.2
DIO	BIT	P0.3
KEY	BIT	P0.4

ORG OOH
AJMP RESET
ORG 80H

RESET:

MOV , #40H

MOV POM1, #00010000B ;设定 P1.4 为输入口,其他为准双向口

MOV POM2, #00000000B

MOV WDCON, #00010101B ;设定看门狗溢出时间为 1 秒

SETB CS

SETB KEY

SETB DIO

MOV DELAY, #25 ; 延时 25MS

RST_DELAY1:

MOV WDRST, #01EH

MOV WDRST, #0E1H

DJNZ DELAY1, RST DELAY1

DJNZ DELAY, RST_DELAY1

MOV SEND BUF, #10100100B ; 初始化命令

CALL SEND

SETB CS

MAIN LP:

MOV WDRST, #01EH ;清除看门狗定时器

MOV WDRST, #0E1H

JB KEY, MAIN LP

MOV SEND BUF, #00010101B ;有键按下, 发送读键盘命令

CALL SEND

CALL RECEIVE ;读键盘

SETB CS

MOV B, #10 ;10 进制转换

MOV A, REC_BUF

DIV AB

MOV DECIMAL, A

MOV SEND BUF, #10100001B ; 左移 2 次.

CALL SEND

SETB CS

MOV SEND_BUF, #10100001B

CALL SEND

SETB CS

MOV SEND_BUF, #10000001B ; 下载数据且译码.

CALL SEND

MOV SEND_BUF, DECIMAL ;发送 10 位数到 z1g7289A 显示

CALL SEND

SETB CS

MOV SEND BUF, #10000000B ; 下栽数据且译码.

CALL SEND

MOV SEND BUF, B ;发送个位数据到 zlg7289A

CALL SEND

SETB CS

MOV SEND_BUF, #10001000B ; 设定刚发送数据显示为闪烁

CALL SEND

MOV SEND BUF, #11111100B

CALL SEND

SETB CS

MAIN LP2:

JNB KEY, MAIN LP2 ;等待键松开.

AJMP MAIN_LP

```
;发送一字节到 z1g7289A, 高位在前.
SEND:
     MOV BIT CNT, #8 ; 设发送位数为 8 位.
     CLR CS
     CALL LONG_DELAY ;延时 50 微秒.
SEND_LP:
     MOV
         A, SEND BUF
     RLC
         A
         SEND_BUF, A
     MOV
     MOV
         DIO, C
     NOP
     NOP
     SETB CLK
     CALL SHORT DELAY ;延时 10 微秒.
     CLK CLK
     CALL SHORT_DELAY
                          ;延时 10 微秒.
     DJNZ BIT_CNT, SEND_LP
         DIO
     CLR
     RET
;由 z1g7289A 接收一字节数据, 高位在前.
RECEIVE:
     MOV BIT_CNT, #8
                    ;定义接收8位.
     SETB DAT
     CALL LONG DELAY ; 延时 50 微秒.
RECEIVE_LP:
     SETB CLK
     CALL SHORT_DELAY ;延时 10 微秒.
     MOV C, DIO
                           ;接收数据送 REC BUF 低位.
     MOV
         A, REC_BUF
     RLC
     MOV
         REC_BUF, A
     CLR
         CLK
     CALL SHORT DELAY ;延时 10 微秒.
     DJNZ BIT_CNT, RECEIVE_LP
     CLR
         DIO
     RET
LONG DELAY:
     MOV DELAY, #25
     DJNZ DELAY, $
     RET
```

SHORT_DELAY:

MOV DELAY, #4
DJNZ DELAY, \$
RET

2. PIC16C54 接口程序

硬件连接如图, PIC16C54 所用时钟频率 4MHz。程序使用 MICROCHIP 公司的 MPASM 编译程序编译通过,并经过验证。程序中延时时间以 zlg7289A 外接 12MHz 晶体振荡器为准,如使用不同的 CPU 时钟频率或 zlg7289A 振荡参数,请注意调整延时时间。

PIC16C54 zlg7289A

TITLE "zlg7289A TEST" LIST P=16C54

INCLUDE P16C5X.INC

;寄存器定义

BIT-COUNT EQU 0X07

DATA-OUT EQU 0X08

DATA-IN EQU 0X09

TEN EQU 0X0A

TIMER EQU 0X0B

TIMER1 EQU 0X0C

;-----

;I/O 口定义

·-----

 CS
 EQU
 0
 ;CS 连接于 16C54 的 RA0

 CLK
 EQU
 1
 ;CLK 连接于 16C65 的 RA1

 DAT
 EQU
 2
 ;DAT 连接于 16C54 的 RA2

 KEY
 EQU
 3
 ;KEY 连接于 16C54 的 RA3

ORG 1FFH
GOTO RESET
ORG 00H

._____

;延时子程序

· ______,

LONG_DELAY MOVLW D'16' ; 设定延时时间为约 50uS MOVWF TIMER

```
DELAY_LOOP
          DECFSZ
                    TIMER
          GOTO
                    DELAY-LOOP
          RETLW
                    D '3'
SHORT-DELAY MOVLW
                                  ;设定延时时间为 8uS
          MOVWF
                    TIMER
SHORT-LP
          DECFSZ
                    TIMER
          GOTO
                    SHORT-LP
          RETLW
;发送1个字节到zlg7289A,高位在前
SEND
          MOVWF
                    DATA-OUT
                                 : 待发送数据存入 DATA-OUT
                    D '8'
          MOVLW
          MOVWF
                    BIT-COUNT
                                 ;设定位计数器=8
          BCF
                    PORTA, CS
                                ;设 CS 为低电平
                                 : 长延时
          CALL
                    LONG-DELAY
SEND-LOOP
          BCF
                    STATUS, C
          RLF
                    DATA-OUT
                                 ;输出1位
          BCF
                    PORTA, DAT
                    STATUS, C
          BTFSC
          BSF
                    PORTA, DAT
          BSF
                    PORTA, CLK
                                 ;设CLK为高电平
                                : 短延时
                    SHORT-DELAY
          CALL
          BCF
                    PORTA, CLK
                                 ;设CLK为低电平
          CALL
                    SHORT-DELAY
                                ; 检查是否 8 位均发送完毕
          DECFSZ
                    BIT-COUNT
          GOTO
                    SEND-LOOP
                                 ; 未发送完, 发送下一位
          BCF
                    PORTA, DAT
          RETLW
                                 ; 发送完毕, 返回
;从 zlg7289A 接收一个字节,高位在前
                    D '8'
RECEIVE
          MOVLW
                                ;设定位计数器=8
          MOVWF
                    BIT-COUNT
                    В '11111100'
                                 ;设RA2(DATA)口为输入状态
          MOVLW
          TRIS
                    PORTA
          CALL
                    LONG-DELAY
                                : 长延时
                    PORTA, CLK
                                :置 CLK 为高电平
RECEIVE-LOOP BSF
                                 ; 短延时
          CALL
                    SHORT-DELAY
          BSF
                    STATUS, C
          BTFSS
                    PORTA, DAT
                    STATUS, C
          BCF
                    DATA-IN
                                ; 读取一位数据
          RLF
          BCF
                    PORTA, CLK
                                ;置 CLK 为低电平
```

```
CALL
                     SHORT-DELAY
           DECFSZ
                     BIT-COUNT
                                   : 是否己接收8位数据
           GOTO
                     RECEIVE-LOOP
           MOVLW
                     В '11111000'
                                   ; 重新设 RA2(DATA)口为输出态
                     PORTA
           TRIS
           RETIW
; 初始化
RESET
           MOVLW
                     B '11111000'
                                    ; I/0 口初始化
           TRIS
                     PORTA
           MOVLW
                     B '11111001'
           MOVWF
                     PORTA
                     PORTA
           MOVLW
           MOVLW
                     0X19
                                    ; 延时约 25mS
           MOVWF
                     TIMER
START-DELAY MOVLW
                     0XFF
           MOVWF
                     TIMER1
START-DELAY1 DECFSZ
                     TIMER1
           GOTO
                     START-DELAY1
           DECFSZ
                     TIMER
           GOTO
                     START-DELAY
           MOVLW
                     B '10100100'
                                    : 发复位(清除)指令
           CALL
                     SEND
           BSF
                     PORTA, CS
                                    ;恢复 CS 为高电平
; 主程序
MAIN
           BTFSC
                     PORTA, KEY
                                    ; 检测是否有键按下
           GOTO
                     MAIN
           MOVLW
                     B '00010101'
                                    ;有键按下,发送读键盘指令
                                    ; 发送读键盘指令
           CALL
                     SEND
           CALL
                     RECEIVE
                                    ; 从 z1g7289A 读键盘代码
                                    ;设CS为高电平
           BSF
                     PORTA, CS
;16 进制—BCD 码转换
           CLRF
                     TEN
                     D '10'
GET-DEC
           MOVLW
           SUBWF
                     DATA-IN, W
           SKPC
           GOTO
                     ORER
           MOVWF
                     DATA-IN
           INCF
                     TEN
```

	GOTO	GET-DEC	
;; 发送按	建的 BCD 码到 z	z1g7289A	
OVER	MOVLW CALL MOVLW CALL MOVFW CALL MOVFW CALL MOVLW CALL MOVLW CALL	B'10100001' SEND B'10100001' SEND B '100000001' SEND TEN SEND B '100000000' SEND DATA-IN SEND	; 发 2 次左移指令,使当前显示内容 ; 左移,留出空位供显示新数据 ; 左移指令 ; 发送指令到 z1g7289A ; 左移指令 ; 发送指令到 z1g7289A ; 下载数据且译码指令(第 2 位) ; 发送十位数字到 z1g7289A ; 下载数据且译码指令(第 1 位) ; 发送指令到 z1g7289A ; 下载数据且译码指令(第 1 位) ; 发送指令到 z1g7289A
WAIT	BSF BTFSS GOTO GOTO ;	PORTA, CS PORTA, KEY WAIT MAIN	; 等待按键放开
	END		