

*Cond
B2*
oxide layer. Gusev *et al.* propose that it is possible to deposit aluminum oxide on hydrogen-terminated silicon without forming an interfacial layer using NRP, medium energy ion scattering (MEIS), and high-resolution transmission electron microscopy (TEM).--

In the Claims:

Please replace Claim 1 with the following amended claim:

1. (Amended) A non-crystalline oxide represented by the formula (I):

wherein:
A is an element selected from Group IIIA of the periodic table;
B is an element selected from Group VB of the periodic table;
O is oxygen;
M is an element selected from either Group IIIB or Group IVB of the periodic table; and
n ranges from about 0.5 to about 2.5, m ranges from about 1.5 to about 3.5, and
 $0 < x < 1$.

Please replace Claim 4 with the following amended claim:

4. (Amended) A method of forming a non-crystalline oxide represented by the formula (I):

wherein A is an element selected from Group IIIA of the periodic table, B is an element selected from Group VB of the periodic table, O is oxygen, M is an element selected from either Group IIIB or Group IVB of the periodic table, n ranges from about 0.5 to about 2.5, m ranges from about 1.5 to about 3.5, and $0 < x < 1$, said method comprising:

delivering a gaseous source comprising element A, a gaseous source comprising element B, a gaseous source comprising element M, and a gaseous source comprising oxygen on a substrate such that the gaseous source comprising element A, the gaseous source comprising

Cond B4
element B, the gaseous source comprising element M, and the gaseous source comprising oxygen react to form the non-crystalline oxide.

B5
Please replace Claim 11 with the following amended claim:

11. (Amended) A field effect transistor comprising:
an integrated circuit substrate having a first surface;
source and drain regions in said substrate at said first surface in a
spaced apart relationship; and
a gate insulating layer on said substrate at said first surface between said spaced apart
source and drain regions, said gate insulating layer comprising a non-crystalline oxide
represented by the formula (I):

wherein:

A is an element selected from Group IIIA of the periodic table;
B is an element selected from Group VB of the periodic table;
O is oxygen;
M is an element selected from either Group IIIB or Group IVB of the periodic table;
n ranges from about 0.5 to about 2.5;
m ranges from about 1.5 to about 3.5; and
 $0 < x < 1.$

B6
MB D3
Please replace Claim 24 with the following amended claim:

24. (Amended) A non-crystalline oxide represented by the formula (II):

wherein:

Al is aluminum;