

Our Team

3rd Year at UVA CS & Economics

3rd Year at UVA Statistics & Economics

REED

4th Year at UVA Statistics & Economics

ANGIE

4th Year at UVA Statistics & Economics

The goal of our project is to use machine learning to generate predictions for the average rating left by reviewers after movies have been released in box office. We used a data set from Kaggle* that has information on the genre, title, year produced, production company, budget, revenue, runtime, language, key words, and popularity of movies dating back since the 1920s. The numerical variables of these will be inputs to train our computer. Each movie also has an average review calculated by the reviews left by movie goers. This numerical variable will be the output and the variable we are attempting to predict using machine learning.

^{*}https://www.kaggle.com/tmdb/tmdb-movie-metadata?select=tmdb_5000_movies.csv

Our Data Set

budget	genres	homepage id		keywo	ords o	rigir origir	al_ti	overview	popularity	productio	production	release_date	revenue	runtime	spoke	n_la status	tagline	title	vote_aver v	ote_count
2.37E+08	[{"id": 28,	http://ww	19995	[{"id":	146 e	n Avata	r	In the 22n	150.4376	[{"name":	[{"iso_316	12/10/2009	2.79E+09	162	[{"iso_	_639 Released	Enter the	Avatar	7.2	11800
3E+08	[{"id": 12,	http://disi	285	[{"id":	270 e	n Pirate	s of	Captain Ba	139.0826	[{"name":	[{"iso_316	5/19/2007	9.61E+08	169	[{"iso	639 Released	At the end	Pirates of	6.9	4500
2.45E+08	[{"id": 28,	http://ww	206647	[{"id":	470 e	n Spect	re	A cryptic n	107.3768	[{"name":	[{"iso_316	10/26/2015	8.81E+08	148	[{"iso_	639 Released	A Plan No	Spectre	6.3	4466
2.5E+08	[{"id": 28,	http://ww	49026	[{"id":	849 e	n The D	ark	Following	112.313	[{"name":	[{"iso_316	7/16/2012	1.08E+09	165	[{"iso_	639 Released	The Legen	The Dark I	7.6	9106
2.6E+08	[{"id": 28,	http://mo	49529	[{"id":	818 e	n John	Carte	John Carte	43.927	[{"name":	[{"iso_316	3/7/2012	2.84E+08	132	[{"iso	639 Released	Lost in our	John Carte	6.1	2124
2.58E+08	[{"id": 14,	http://ww	559	[{"id":	851 e	n Spide	r-Ma	The seemi	115.6998	[{"name":	[{"iso_316	5/1/2007	8.91E+08	139	[{"iso_	639 Released	The battle	Spider-Ma	5.9	3576
2.6E+08	[{"id": 16,	http://disi	38757	[{"id":	156 e	n Tang	ed	When the	48.68197	[{"name":	[{"iso_316	11/24/2010	5.92E+08	100	[{"iso_	639 Released	They're ta	Tangled	7.4	3330
2.8E+08	[{"id": 28,	http://ma	99861	[{"id":	882 e	n Aven	gers:	When Ton	134.2792	[{"name":	[{"iso_316	4/22/2015	1.41E+09	141	[{"iso_	639 Released	A New Age	Avengers:	7.3	6767
2.5E+08	[{"id": 12,	http://har	767	[{"id":	616 e	n Harry	Pot	t As Harry b	98.88564	[{"name":	[{"iso_316	7/7/2009	9.34E+08	153	[{"iso_	639 Released	Dark Secre	Harry Pott	7.4	5293
2.5E+08	[{"id": 28,	http://ww	209112	[{"id":	849 e	n Batm	an v	Fearing th	155.7905	[{"name":	[{"iso_316	3/23/2016	8.73E+08	151	[{"iso_	639 Released	Justice or	Batman v	5.7	7004
2.7E+08	[{"id": 12,	http://ww	1452	[{"id":	83, e	n Supe	mar	Superman	57.92562	[{"name":	[{"iso_316	6/28/2006	3.91E+08	154	[{"iso_	639 Released		Superman	5.4	1400
2E+08	[{"id": 12,	http://ww	10764	[{"id":	627 e	n Quan	tum	Quantum	107.9288	[{"name":	[{"iso_316	10/30/2008	5.86E+08	106	[{"iso_	639 Released	For love, f	Quantum	6.1	2965
2E+08	[{"id": 12,	http://disi	58	[{"id":	616 e	n Pirate	s of	Captain Ja	145.8474	[{"name":	[{"iso_316	6/20/2006	1.07E+09	151	[{"iso_	639 Released	Jack is bac	Pirates of	7	5246
2.55E+08	[{"id": 28,	http://disi	57201	[{"id":	155 e	n The L	one	The Texas	49.04696	[{"name":	[{"iso_316	7/3/2013	89289910	149	[{"iso_	639 Released	Never Tak	The Lone I	5.9	2311
2.25E+08	[{"id": 28,	http://ww	49521	[{"id":	83, e	n Man	of St	A young b	99.39801	[{"name":	[{"iso_316	6/12/2013	6.63E+08	143	[{"iso_	639 Released	You will be	Man of Ste	6.5	6359
2.25E+08	[{"id": 12,	"name": "/	2454	[{"id":	818 e	n The C	hror	One year a	53.9786	[{"name":	[{"iso_316	5/15/2008	4.2E+08	150	[{"iso_	639 Released	Hope has	The Chron	6.3	1630
2.2E+08	[{"id": 878	http://ma	24428	[{"id":	242 e	n The A	veng	When an I	144.4486	[{"name":	[{"iso_316	4/25/2012	1.52E+09	143	[{"iso_	639 Released	Some asse	The Aveng	7.4	11776
3.8E+08	[{"id": 12,	http://disi	1865	[{"id":	658 e	n Pirate	s of	Captain Ja	135.4139	[{"name":	[{"iso_316	5/14/2011	1.05E+09	136	[{"iso_	639 Released	Live Forev	Pirates of	6.4	4948
2.25E+08	[{"id": 28,	http://ww	41154	[{"id":	437 e	n Men	in Bla	Agents J (\	52.03518	[{"name":	[{"iso_316	5/23/2012	6.24E+08	106	[{"iso_	639 Released	They are b	Men in Bla	6.2	4160
2.5E+08	[{"id": 28,	http://ww	122917	[{"id":	417 e	n The F	lobb	i Immediate	120.9657	[{"name":	[{"iso_316	12/10/2014	9.56E+08	144	[{"iso_	639 Released	Witness th	The Hobbi	7.1	4760
2.15E+08	[{"id": 28,	http://ww	1930	[{"id":	187 e	n The A	maz	Peter Park	89.86628	[{"name":	[{"iso_316	6/27/2012	7.52E+08	136	[{"iso_	639 Released	The untole	The Amaz	6.5	6586
2E+08	[{"id": 28,	http://ww	20662	[{"id":	414 e	n Robin	Hoo	When solo	37.6683	[{"name":	[{"iso_316	5/12/2010	3.11E+08	140	[{"iso_	639 Released	Rise and r	Robin Hoc	6.2	1398
2.5E+08	[{"id": 12,	http://ww	57158	[{"id":	603 e	n The F	lobb	The Dwar	94.37056	[{"name":	[{"iso_316	12/11/2013	9.58E+08	161	[{"iso_	639 Released	Beyond da	The Hobbi	7.6	4524
1.8E+08	[{"id": 12,	http://ww	2268	[{"id":	392 e	n The G	iolde	After over	42.99091	[{"name":	[{"iso_316	12/4/2007	3.72E+08	113	[{"iso_	639 Released	There are	The Golde	5.8	1303
2.07E+08	[{"id": 12,	"name": "/	254	[{"id":	774 e	n King I	ong	In 1933 Ne	61.22601	[{"name":	[{"iso_316	12/14/2005	5.5E+08	187	[{"iso_	639 Released	The eighth	King Kong	6.6	2337
2E+08	[{"id": 18,	http://ww	597	[{"id":	258 e	n Titan	С	84 years la	100.0259	[{"name":	[{"iso_316	11/18/1997	1.85E+09	194	[{"iso_	639 Released	Nothing o	Titanic	7.5	7562
2.5E+08	[{"id": 12,	http://ma	271110	[{"id":	393 e	n Capta	in A	Following	198.3724	[{"name":	[{"iso_316	4/27/2016	1.15E+09	147	[{"iso_	639 Released	Divided W	Captain A	7.1	7241
2.09E+08	[{"id": 53,	"name": "1	44833	[{"id":	172 e	n Battle	ship	When mai	64.92838	[{"name":	[{"iso_316	4/11/2012	3.03E+08	131	[{"iso_	639 Released	The Battle	Battleship	5.5	2114
			135397	[{"id":	129 e	n Juras	sic W	Twenty-tw	418.7086	[{"name":	[{"iso_316	6/9/2015	1.51E+09	124	[{"iso_	639 Released	The park i	Jurassic W	6.5	8662
2E+08	[{"id": 28,	http://ww	37724	[{"id":	470 e	n Skyfa	II	When Bor	93.00499	[{"name":	[{"iso_316	10/25/2012	1.11E+09	143	[{"iso_	639 Released	Think on y	Skyfall	6.9	7604
2E+08	[{"id": 28,	http://ww	558	[{"id":	851 e	n Spide	r-Ma	Peter Park	35.14959	[{"name":	[{"iso_316	6/25/2004	7.84E+08	127	[{"iso_	639 Released	There's a	Spider-Ma	6.7	4321

Our Variables

Variables We chose to use the numerical variables from the data set for our machine learning and two categorical variables

These variables are encoded because they are categorical

Our Measurement: Average Rating

Output variable was a continuous average rating for linear machine learning. We created another variable rounding each float to an int. This created 10 categorical variables better fit for categorical machine learning.

Cleaning

Each row represents a different movie. Columns in our final data set include values for:

ID	An Identification number for each movie
Title	The final title of the movie
Budget	Given in USD
Popularity	A variable defined and formulated by IMDB
Revenue	Given in USD
Runtime	Length of the movie in minutes
Year	Year of Release
Genres	17 Columns with binary values denoting whether a movie
	belongs to a given genre
Production Companies	15 Columns with binary values denoting whether the top 15
	production companies were involved in the production of
	the movie
	the movie
	production companies were involved in the production of

7

Problems Faced

Problem 1

A lot of our rows had odd instances of \$0 budgets, or were not even released movies yet. We cleaned these rows and got rid of anything that had yet to be released or had \$0 budget or revenues

Problem 2

We wanted to use two categorical variables: genre and production company. However, a machine cannot understand "horror" or "Disney", so we had to encode these categorical variables to be usable for machine learning.

Problem 3

We wanted to use the date of production data, but it was difficult to see patterns day-to-day. So, we created another column that returned each year the movie was released instead of the day/month/year so we could see trends over years.

Model Decision Tree

```
from sklearn import tree
import numpy as no
import pandas as pd
x train = pd.read csy(r"C:\Users\steph\Downloads\x train.csy")
y_train = pd.read_csv(r"C:\Users\steph\Downloads\y train.csv")
array = []
for i in Y_learn["Ratings"]:
    arrav.append(i)
array = np.array(array)
c = tree.DecisionTreeClassifier()
c.fit(x train, y train)
DecisionTreeClassifier(ccp_alpha=0.0, class_weight=None, criterion='gini',
                       max depth=None, max features=None, max leaf nodes=None,
                       min impurity decrease=0.0, min impurity split=None,
                       min samples leaf=1, min samples split=2,
                       min_weight_fraction_leaf=0.0, presort='deprecated',
                       random state=None, splitter='best')
X test = pd.read csv(r"C:\Users\steph\Downloads\x test.csv")
Y test = pd.read csv(r"C:\Users\steph\Downloads\y test.csv")
array2 = []
for i in Y test["vote average"]:
    array2.append(i)
array2 = np.array(array2)
accu train = np.sum(c.predict(x train)==array)/float(array.size)
accu train
1.0
accu test= np.sum(c.predict(X test)==array2)/float(array2.size)
accu test
0.4803921568627451
```

Model Random Forest Classifier

```
from sklearn import tree
 import numpy as np
 import pandas as pd
 from sklearn.ensemble import RandomForestClassifier
 from sklearn.model selection import train test split
X = np.genfromtxt("Mytest.csv", delimiter=",", skip header=1)
Y = np.genfromtxt("Myanswers.csv", delimiter=",", skip_header=1)
x train, x test, y train, Y test = train test split(X, Y, test size = 0.2, random state=42)
 model = RandomForestClassifier(n estimators=400, max depth = 30, min samples leaf=3)
 model.fit(x train, y train)
 model.score(x train, y train)
 0.8644897959183674
model.score(x_test, Y_test)
 0.6117455138662317
```

10

Final Model Random Forest Regressor

```
[20] from sklearn.ensemble import RandomForestRegressor
     from sklearn.model_selection import train_test_split
     regressor = RandomForestRegressor(n estimators=50, random state = 0)
[21] X = np.genfromtxt("movies_last.csv", delimiter=",", skip_header=1)
[22] Y = np.genfromtxt("ratings last.csv", delimiter=",", skip header=1)
[23] X_tr, X_te, Y_tr, Y_te = train_test_split(X, Y, test_size = 0.2, random_state=42)
[24] regressor.fit(X tr, Y tr)
    RandomForestRegressor(bootstrap=True, ccp alpha=0.0, criterion='mse',
                           max_depth=None, max_features='auto', max_leaf_nodes=None,
                           max_samples=None, min_impurity_decrease=0.0,
                           min impurity split=None, min samples leaf=1,
                           min samples split=2, min weight fraction leaf=0.0,
                           n estimators=50, n jobs=None, oob score=False,
                           random_state=0, verbose=0, warm_start=False)
[25] y pred = regressor.predict(X te)
[26] np.mean((y pred-Y te)**2)
     0.29549911201629325
```

Our Improvements

ONE HOT ENCODE

Instead of doing it by hand, we would try and choose a defining genre for each movie and one hot encode to create an easier way to identify genre for each movie.

FEWER CATEGORIES

We have 10 "bins" for our average rating, but we could use 3 bins for "low", "mid", "high" ratings. This would give better accuracy in our machine learning output.

LINEAR REGRESSION

We would try using our original output variable (in its continuous form) to perform linear regression machine learning. This may produce even better results.