	Homework 6	
	Chapter 4.1	
In [93]: In [48]:	<pre>import numpy as np import math def forward_diff(f_1,f_0,h):</pre>	
In [49]:	<pre>f_prime = (f_1-f_0)/h return f_prime def back_diff(f_1,f_0,h): f_prime = (f_0-f_1)/h return f_prime # Exercise 1.</pre>	
	<pre># Exercise 1. # (a) x=[0.5,0.6,0.7] f_x = [0.4794,0.5646,0.6442] fprime = [forward_diff(f_x[1],f_x[0],0.1),forward_diff(f_x[2],f_x[1], part_a = np.round(fprime,4) print(f"f'(x) = {part_a}") f'(x) = [0.852 0.796 0.796]</pre>	0.1),back_diff(f_x[1],f_x[2],0.1)]
In [50]:	<pre>x=[0.0,0.2,0.4] f_x = [0.00000,0.74140,1.3718] fprime = [forward_diff(f_x[1],f_x[0],0.2),forward_diff(f_x[2],f_x[1], part_b = np.round(fprime,4) print(f"f'(x) = {part_b}")</pre>	0.2),back_diff(f_x[1],f_x[2],0.2)]
In [51]:	<pre>f'(x) = [3.707 3.152 3.152] # Exercise 3 # (a) x=[0.5,0.6,0.7] f_x = [0.4794,0.5646,0.6442] for i in range(len(x)): print(f'Actual error at x = {x[i]}: {np.abs(np.cos(x[i])-part_a[i])} Actual error at x = 0.5: 0.02558. Actual error at x = 0.6: 0.02934.</pre>]):.5f}.')
	Actual error at x = 0.7: 0.03116. Error bound:	$\left rac{h}{2}f^{(2)}(\xi) ight \leq 0.05 \left(\max_{\xi \in [aa+h]} -\sin(\xi) ight).$
	For $x=0.7$ we take $\xi=0.7$	$egin{align} &\max_{eta \in [aa+h]} -\sin(\xi) \ \end{pmatrix} = 0.05 imes 0.5646 = 0.02823. \ &\max_{eta \in [aa+h]} -\sin(\xi) \ \end{pmatrix} = 0.05 imes 0.6442 = 0.03221. \end{aligned}$
In [52]:		
	Actual error at x = 0.4: -0.26018. Error bound: We know $f''(x) = e^x - 4$. So	$\left rac{h}{2}f^{(2)}(\xi) ight \leq 0.05\left(\max_{\xi\in[aa+h]} e^x-4 ight)$
	Since e^x is increasing on $[0.0,0.2]$ and $[0.2,0.4]$, we take $\xi=0.0$ to maximize	$0.1 \left(\max_{\xi \in [aa+h]} e^x - 4 ight) = 0.1 imes 3 = 0.3.$
	The bound associated with $x=0.2$ and $x=0.4$ will remain the same thus we take $\xi=0.1$ ($\sum_{x \in [aa+h]}^\infty e^x-4 igg) = 0.1 imes 0.5646 = 0.02823.$
	For $x=0.7$ we take $\xi=0.7$ $0.1 \left(_{\xi}\right)$	$\max_{x \in [aa+h]} e^x - 4 igg) = 0.1 imes 2.77859 = 0.277859.$
In [53]:	<pre># Exercise 5 # (a) def three_endpoint(f_x0,f_x1,f_x2,h): f_prime = (1/(2*h))*(-3*(f_x0)+4*f_x1 -f_x2) return f_prime def three_midpoint(f_x0,f_x1,h): f_prime = (1/(2*h))*((f_x1)-(f_x0)) return f_prime 5a = [three_endpoint(9_025013_11_02318_13_46374_0_1)_three_midpoint(9_025013_11_02318_13_1_02318_13_46374_0_1)_three_midpoint(9_025013_11_02318_13_1_02318_13_1_02318_13_1_02318_13_1_02318_13_1_02318_13_1_02318_13_1_02318_13_1_02318_13_1_02318_1_02318_13_1_02318_13_1_02318_1</pre>	9.025013,13.46374,0.1),three_midpoint(11.02318,16.44465,0.1),three_endpoint(16.44465,13.46374 ,11.02318,
		3.023010,13.40074,0.1), timec_mruporme(11.02310,10.44400,0.1), timec_emuporme(10.44400,10.40074 ,11.02010,
In [54]:	_5b = [three_endpoint(3.6887983,3.6905701,3.6688192,0.1),	
	<pre>x=[1.1,1.2,1.3,1.4] for i in range(len(x)): print(f'Actual error at x = {x[i]}: {np.abs((2*np.exp(2*x[i]))5} Actual error at x = 1.1: 0.28032</pre>	a[i]):.5f}')
	Actual error at x = 1.2: 0.14729 Actual error at x = 1.3: 0.17987 Actual error at x = 1.4: 0.37844 For endpoints we have error $\frac{h^2}{3}f^{(3)}(\xi)$ the bound $\frac{Mh}{3}$ where M is a bound on $ f^{(3)} $ and $ f^{(3)} $ and $ f^{(3)} $ are $ f^{(3)} $ and $ f^{(3)} $ and $ f^{(3)} $ are $ f^{(3)} $ and $ f^{(3)} $ and $ f^{(3)} $ are $ f^{(3)} $ and $ f^{(3)} $ and $ f^{(3)} $ are $ f^{(3)} $ and $ f^{(3)} $ and $ f^{(3)} $ and $ f^{(3)} $ and $ f^{(3)} $ are $ f^{(3)} $ and $ f^{(3)} $ are $ f^{(3)} $ and $ f^{(3)} $ are $ f^{(3)} $ and $ f^{(3)} $ and $ f^{(3)} $ are $ f^{(3)} $ and $ f^{(3)} $ are $ f^{(3)} $ and $ f^{(3)} $ and $ f^{(3)} $ are $ f^{(3)} $ and $ f^{(3)} $ and $ f^{(3)} $ are $ f^{(3)} $ and $ f^{(3)} $ and $ f^{(3)} $ are $ f^{(3)} $ and $ f^{(3)} $ and $ f^{(3)} $ are $ f^{(3)} $ and $ f^{(3)} $ and $ f^{(3)} $ are $ f^{(3)} $ and $ f^{(3)} $ and $ f^{(3)} $ and $ f^{(3)} $ are $ f^{(3)} $ and $ f^{(3)} $ and $ f^{$	and ξ is in between $x=1.1$ and $x=1.3$. $8e^{2x}$ is an increasing function. So we take 1.3 to maximize.
	For $x=1.1$	$rac{Mh}{3} = rac{8e^{2(1.3)}(0.1)^2}{3} = 0.359033.$
	For midpoints we have error $rac{h^2}{6}f^{(3)}(\xi)$, the bound $rac{Mh}{6}$ where M is a bound on $ f^{(3)} $ for $x=1.2$	and ξ is in between $x=1.2$ and $x=1.3$. $8e^{2x}$ is an increasing function. So we take 1.3 to maximize.
	For $x=1.3$, we take $x=1.4$ to maximize	$rac{Mh}{6} = rac{8e^{2(1.3)}{(0.1)^2}}{6} = 0.17951.$
	For the last endpoint we take the endpoint bound with $\left[1.2, 1.4\right]$.	$rac{Mh}{6} = rac{8e^{2(1.4)}(0.1)^2}{6} = 0.219262.$
	For $x=1.4$ we take $x=1.4$ to maximize	$rac{Mh}{3} = rac{8e^{2(1.4)}{(-0.1)^2}}{3} = 0.4385239.$
In [56]:	<pre># Exercise 7 (d) x=[2.0,2.1,2.2,2.3] for i in range(len(x)):</pre>	
	print(f'Actual error at $x = \{x[i]\}$: {np.abs((4*np.log(x[i])/x[i])} Actual error at $x = 2.0$: 0.0025224 Actual error at $x = 2.1$: 0.0014288 Actual error at $x = 2.2$: 0.0020485 Actual error at $x = 2.3$: 0.0043795	+3*np.cos(x[i])5b[i]):.7f}')
	For endpoints we have error $rac{h^2}{3}f^{(3)}(\xi)$ the bound $rac{Mh}{3}$ where M is a bound on $ f^{(3)} $ to maximize. For $x=2.0$	and ξ is in between $x=2.0$ and $x=2.2$. $f^{(3)}(x)=rac{-12}{x^3}+rac{8\ln x}{x^3}-3\cos x$ is an increasing function on $[2.0.2.3]$. So we take 2.3
	$rac{Mh}{3}=\left(rac{\left(rac{1}{3} ight)}{3} ight)$	$\left(rac{-12}{2(2)^3} + rac{8\ln(2.2)}{(2.2)^3} - 3\cos(2.2) ight) \over 3 ight) \cdot \left(0.1 ight)^2 = 0.004103036.$
	For $x=2.1$, we take $x=2.2$ to maximize using midpoint bound: $Mh \qquad \int \left(\frac{1}{2} \right)^{n} dt dt$	$\left(rac{-12}{(2.2)^3} + rac{8 \ln(2.2)}{(2.2)^3} - 3 \cos(2.2) ight) \over 6 ight) \cdot (0.1)^2 = 0.00205152.$
	For $x=2.2$ we take $x=2.3$ to maximize using midpoint bound:	
	$rac{Mh}{6}=\Biggl(rac{\Bigl(}{}$	$\left(rac{-12}{\left(2.3 ight)^3} + rac{8\ln(2.3)}{\left(2.3 ight)^3} - 3\cos(2.3) ight)}{6} \cdot (0.1)^2 = 0.0026003.$
	For endpoint $x=2.3$ we have $x\in[2.1,2.3]$, thus $x=2.3$ to maximize: $\frac{Mh}{3}=\Bigg(\frac{1}{2}$	$\left(rac{-12}{(2.3)^3} + rac{8 \ln(2.3)}{(2.3)^3} - 3 \cos(2.3) ight) \over 3 ight) \cdot \left(0.1 ight)^2 = 0.00520068.$
In [60]:	# Exercise 22 # We will use 3-point formula: # $R = 0.142$, $L = 0.98$, $h = 0.01$ t_0=np.round(three_endpoint(3.10,3.12,3.14,0.01),5) # $t = 1.00$ t_1=np.round(three_midpoint(3.10,3.14,.01)) # $t = 1.01$ t_2=np.round(three_midpoint(3.12,3.18,.01)) # $t = 1.02$ t_3=np.round(three_midpoint(3.14,3.24,.01)) # $t = 1.03$	
In [65]:	t_4=np.round(three_endpoint(3.24,3.18,3.14,-0.01),5) # t = 1.04 t_list = [t_0,t_1,t_2,t_3,t_4] t_list	
Out[65]:	[2.0, 2.0, 3.0, 5.0, 7.0] L = 0.98 R = 0.142	
	<pre>t = [1.00,1.01,1.02,1.03,1.04] i=[3.10,3.12,3.14,3.18,3.24] for j in range(len(t_list)): print(f"E({t[j]}) = {np.round(L*t_list[j]+ R*i[j],5)}.") E(1.0) = 2.4002. E(1.01) = 2.40304. E(1.02) = 3.38588.</pre>	
	E(1.03) = 5.35156. E(1.04) = 7.32008. Problem 29 We have	$e(h)=rac{arepsilon}{h}+rac{h^2}{6}M,$
	where \boldsymbol{M} is the bound for the third derivative of a function. Taking the derivative gives	
	If $e'(h)=0$, then $h=\sqrt[3]{3arepsilon/M}.$ So, $e'(h)<0$ if $h<\sqrt[3]{3arepsilon/M}$ and $e'(h)>0$ if $h>$	$e'(h)=-arepsilon/h^2+hM/3.$ $\sqrt[3]{3arepsilon/M}$ Hence $e(h)$ has a minimum at $h=\sqrt[3]{3arepsilon/M}.$
In [101	<pre># Exercise 1 (a) def trap(f,a,b,N=10): x = np.linspace(a,b,N+1) y = f(x) y_right = y[1:] y_left = y[:-1] dx = (b - a)/N T = (dx/2) * np.sum(y_right + y_left) return T</pre>	
	<pre>def f(x): return x ** 4 print(f"The integral approximation is: {trap(f,0.5,1,1)}.") The integral approximation is: 0.265625.</pre>	
In [102	<pre># Exercise 1 (d) def f(x): return x**2 * np.exp(-x) print(f"The integral approximation is: {trap(f,1,1.5,1)}.")</pre>	
In [104	The integral approximation is: 0.21748057537635235. # Exercise 1 (g) def f(x): return x * np.sin(x)	
	print(f"The integral approximation is: {trap(f,0,math.pi/4,1)}.") The integral approximation is: 0.21808950623871498. Exercise 3 (d)	$\int_0^1 x^2 e^{-x} dx = -e^{-x} ig(x^2 + 2x + 2 ig)_0^1 \ = 0.160602794.$
	True error: $ 0.160602794-0.21748057537635235 =0.0568777813764.$ $f''(x)=e^{-x}(2-4x+x^2)$ We have error $\frac{h^3}{12}f''(\xi)$, where $x_0<\xi< x_1$, so $ f''(\xi) $ is maximized at $x=0$.	Then
		Then $rac{h^3}{12} f''(\xi) \leq 2 \cdot rac{1^3}{12} pprox .166666666667.$
	Exercise 3 (g)	$egin{aligned} \int_{0}^{rac{\pi}{4}}x\sin xdx &= \left[-x\cos x + \sin x ight]_{0}^{rac{\pi}{4}} \ &= 0.152027958. \end{aligned}$
	True error: $ 0.152027958-0.218089 pprox 0.066061$ $f''(x)=2\cos(x)-x\sin(x)$	
	$ f^{\prime\prime}(x) $ is maximized at at $x=0$, so	$rac{h^3}{12} f''(\xi) \leq 2 \cdot rac{(\pi/4)^3}{12} pprox 0.0807455.$
In [113	<pre># Exercise 5 (a) def simpsons(f,a,b,n): if n % 2 == 1: raise ValueError("n must be an even integer.") dx = (b-a)/n x = np.linspace(a,b,n+1) y = f(x) S = dx/3 * np.sum(y[0:-1:2] + 4*y[1::2] + y[2::2]) return S def f(x):</pre>	
	return x**4 print(f"The integral approximation is: {simpsons(f,0.5,1,2)}.") The integral approximation is: 0.19401041666666666.	
In [114	<pre># Exercise 5 (d) def f(x): return x**2 * np.exp(-x) print(f"The integral approximation is: {simpsons(f,0,1,2)}.")</pre>	
	<pre>print(f"The integral approximation is: {simpsons(f,0,1,2)}.") The integral approximation is: 0.1624016834806793.</pre>	