Samlefil for alle data til prøveeksamen

Filen 1A.txt

Perioden P er 271.6 millioner år

Filen 1B/Oppgave1B_Figur_A.png

Figure 1: Figur fra filen 1B/Oppgave1B_Figur_A.png

$Filen~1B/Oppgave1B_Figur_B.png$

Figure 2: Figur fra filen 1B/Oppgave1B_Figur_B.png

$Filen~1B/Oppgave1B_Figur_C.png$

Figure 3: Figur fra filen 1B/Oppgave1B_Figur_C.png

$Filen~1B/Oppgave1B_Figur_D.png$

Figure 4: Figur fra filen 1B/Oppgave1B_Figur_D.png

Filen 1B/Oppgave1B_Figur_E.png

Figure 5: Figur fra filen 1B/Oppgave1B_Figur_E.png

Filen 1D.txt

Stjerna A: Tilsynelatende visuell størrelseklasse m
-V = 10.32, tilsynelatende blå størrelseklass $m_B=11.78$

Stjerna B: Tilsynelatende visuell størrelseklasse m
_V = 2.32, tilsynelatende blå størrelseklass $m_B=4.78$

Stjerna C: Tilsynelatende visuell størrelseklasse m $_{\text{-}}\mathrm{V}=2.32,$ tilsynelatende

blå størrelseklass m_B = 3.78

Stjerna D: Tilsynelatende visuell størrelseklasse m_V = 10.32, tilsynelatende blå størrelseklass $m_B = 12.78$

Filen 1E.txt

For stjerne 1 sin bane om massesenteret er elliptisiteten e=0.93 og store halvakse a=30.35 AU.

For stjerne 2 sin bane om massesenteret er elliptisiteten e=0.93 og store halvakse a=17.05 AU.

Filen 1F.txt

Ved bølgelengden 737.64 nm finner du størst fluks

$Filen~1G/Oppgave1G_Figur_A.png$

Figure 6: Figur fra filen 1G/Oppgave1G_Figur_A.png

$Filen~1G/Oppgave1G_Figur_B.png$

Figure 7: Figur fra filen 1G/Oppgave1G_Figur_B.png

$Filen \ 1G/Oppgave1G_Figur_C.png$

Figure 8: Figur fra filen 1G/Oppgave1G_Figur_C.png

$Filen~1G/Oppgave1G_Figur_D.png$

Figure 9: Figur fra filen 1G/Oppgave1G_Figur_D.png

Filen 1G/Oppgave1G_Figur_E.png

6.60 - 6.40 - 6.20 - 6.30 - 5.80 - 5.40 - 5.40 -

40

Observasjonstid (dager)

50

60

70

80

Figure 10: Figur fra filen 1G/Oppgave1G_Figur_E.png

Filen 1I.txt

ò

10

20

Gass-sky A har masse på 21.20 solmasser, temperatur på 34.00 Kelvin og tetthet 1.24e-21 kg per kubikkmeter

30

Gass-sky B har masse på 21.80 solmasser, temperatur på 43.80 Kelvin og tetthet 2.36e-21 kg per kubikkmeter

Gass-sky C har masse på 21.60 solmasser, temperatur på 52.90 Kelvin og

tetthet 3.10e-21 kg per kubikkmeter

Gass-sky D har masse på 17.80 solmasser, temperatur på 73.20 Kelvin og tetthet 1.18e-22 kg per kubikkmeter

Gass-sky E har masse på 13.90 solmasser, temperatur på 13.40 Kelvin og tetthet 9.19e-21 kg per kubikkmeter

Filen 1J.txt

STJERNE A) kjernen består av karbon og oksygen og er degenerert

STJERNE B) stjernas energi kommer fra Planck-stråling alene

STJERNE C) stjernas energi kommer hovedsaklig fra hydrogenfusjon i skall

STJERNE D) stjerna har et degenerert heliumskall

STJERNE E) stjerna har en degenerert heliumkjerne

Filen 1L.txt

Stjerne A har spektralklasse G6 og visuell tilsynelatende størrelseklasse m $_{-}\mathrm{V}$ = 8.37

Stjerne B har spektralklasse M4 og visuell tilsynelatende størrelseklasse m_V = 9.86

Stjerne C har spektralklasse F2 og visuell tilsynelatende størrelseklasse m $_{-}\mathrm{V}$ = 6.39

Stjerne D har spektralklasse M7 og visuell tilsynelatende størrelseklasse m $_{\text{-}}\mathrm{V}$ = 9.51

Stjerne E har spektralklasse M1 og visuell tilsynelatende størrelseklasse m_V = 1.34

Filen 1P.txt

Partiklene har hastighetskomponent langs synsretningen som er Gaussisk fordelt med gjennomsnittsverdi på 100 m/s i retning mot deg

$Filen~2A/Oppgave 2A_Figur 1.png$

i

ź

3

5

x-posisjon (buesekunder)

9

10

Figure 11: Figur fra filen 2A/Oppgave2A_Figur1.png

$Filen~2A/Oppgave 2A_Figur 2.png$

Figure 12: Figur fra filen 2A/Oppgave2A_Figur2.png

$Filen\ 2B/Oppgave 2B_Figur\ 4.png$

Figure 13: Figur fra filen 2B/Oppgave2B_Figur 4.png

4.png

Filen 2B/Oppgave2B_Figur3.png

Figur 3 10 9 8 y-posisjon (buesekunder) 7 6 5 3 2 1 i ż ġ ż 5 10 x-posisjon (buesekunder)

Figure 14: Figur fra filen 2B/Oppgave2B_Figur3.png

Filen 2C.txt

Avstand til solen er 0.1890000000000000133227 AU.

Tangensiell hastighet er 78385.01818484028626699 m/s.

Filen 2D.txt

Kometens avstand fra jorda i punkt 1 er r1=2.192 AU.

Kometens avstand fra jorda i punkt 2 er r2=6.615 AU.

Kometens tilsynelatende størrelseklasse i punkt 1 er m1=15.846.

Filen 3A.txt

Romskipets hastighet langs x-aksen er 0.9524 ganger lyshastigheten.

Tiden mellom utsendelse av strålene er 0.00038 sekunder målt i bakkesystemet.

Filen 3B.txt

Avstanden mellom de to romskipene ved første utsendelse er D=250.0 km.

Romskip2 sin hastighet langs x-aksen er 0.9915 ganger lyshastigheten.

Filen 3E.txt

Bølgelengden målt i romskipet som sender ut er 592.50 nm.

Filen 4A.txt

Stjernas masse er 2.95 solmasser.

Stjernas radius er 0.58 solradier.

Filen 4C.png

Figure 15: Figur fra filen 4C.png

Filen 4D.txt

Kun hvis du ikke fikk til forrige oppgave, skal du bruke denne temperaturen her: 26.01 millioner K

Filen 4G.txt

Massen til det sorte hullet er 2.29 solmasser.

r-koordinaten til det innerste romskipet er r $=6.93~\mathrm{km}.$

r-koordinaten til det innerste romskipet er
r $=12.68~\mathrm{km}.$