c) Usando a definição, demonstre que $\lim_{x\to 2}(x^2)=4.$

Exercícios

1) Nos exercícios abaixo, damos f(x), a e L, bem como $\lim_{x\to a} f(x) = L$. Determine um δ para o ε dado tal que

$$|f(x) - L| < \varepsilon$$
 sempre que $0 < |x - a| < \delta$.

a)
$$\lim_{x \to 1} (2x + 3) = 5;$$
 $\varepsilon = 0,0001$

b)
$$\lim_{x \to -1} (1 - 2x) = 3;$$
 $\varepsilon = 0,0005$

c)
$$\lim_{x \to 3} x^2 = 9;$$
 $\varepsilon = 0,0005$

d)
$$\lim_{x \to -3} \left(\frac{x^2 - 9}{x + 3} \right) = -6;$$
 $\varepsilon = 0,0005$

e)
$$\lim_{x\to 5} \left(\frac{x+1}{2}\right) = 3;$$
 $\varepsilon = 0, 1$

2) Nos exercícios abaixo, demonstre os limites, isto é, para qualquer
$$\varepsilon>0$$
, encontre um δ tal que
$$|f(x)-L|<\varepsilon \text{ sempre que }0<|x-a|<\delta.$$

a)
$$\lim_{x\to 4} (2x-5) = 3$$

b)
$$\lim_{x \to -2} (7 - 2x) = 11$$

c)
$$\lim_{x\to 2} \left(\frac{x^2-4}{x-2}\right) = 4$$

d)
$$\lim_{x \to 1} x^2 = 1$$

e)
$$\lim_{x\to 3} 8 = 8$$

Teorema (da unicidade): Se
$$\lim_{x\to a} f(x) = L_1$$
 e $\lim_{x\to a} f(x) = L_2$ então $L_1 = L_2$.

Teoremas sobre limites de funções

Introduziremos alguns limites que nos auxiliarão no cálculo de limites e que são provados pela definição de limite, embora a prova será omitida.

Teorema 1: Se \underline{m} e \underline{b} forem constantes quaisquer, $\lim_{n \to \infty} (mx + b) = ma + b$

Consequência 1: Se
$$m = 0$$
, então $\lim_{x \to a} b = b$

Consequência 2: Se
$$m = 1$$
 e $b = 0$, então $\lim_{x \to a} x = a$

Exemplos:

a)
$$\lim_{x\to 2} (3x+5) = 3.2 + 5 = 6 + 5 = 11$$

b)
$$\lim_{x\to 5} 7 = 7$$

a)
$$\lim_{x \to -6} x = -6$$

Teorema 2: Se
$$\lim_{x\to a} f(x) = L$$
 e $\lim_{x\to a} g(x) = M$ então $\lim_{x\to a} [f(x) \pm g(x)] = L \pm M$

D.X

$$\lim_{x\to a} [f_1(x) \pm f_2(x) \pm \dots \pm f_n(x)] = L_1 \pm L_2 \pm \dots \pm L_n$$

$$\lim_{x\to a} [f_1(x) \pm f_2(x) \pm \dots \pm f_n(x)] = L_1 \pm L_2 \pm \dots \pm L_n$$
Teorema 3: Se $\lim_{x\to a} f(x) = L$ e $\lim_{x\to a} g(x) = M$ então $\lim_{x\to a} [f(x) \cdot g(x)] = L \cdot M$

Consequência 1: Se $\lim_{x\to a} f_1(x) = L_1$, $\lim_{x\to a} f_2(x) = L_2$, ..., $\lim_{x\to a} f_n(x) = L_n$ então

$$\lim_{x \to a} [f_1(x) \cdot f_2(x) \cdot \dots \cdot f_n(x)] = L_1 \cdot L_2 \cdot \dots \cdot L_n$$

Consequência 2: Se $\lim f(x) = L$ e n for um inteiro positivo qualquer, então

Exemplos:
a)
$$\lim_{x\to 2} |x(2x+1)| = |x|$$
 $\lim_{x\to 2} |x(2x+1)| = |x|$ $\lim_{x\to 2} |x(2x+$

d)
$$\lim_{x \to 7} \left(\frac{x^2 - 49}{x - 7} \right) = \lim_{X \to 7} \frac{(\chi + \gamma) \cdot (\chi - \gamma)}{(\chi - \gamma)} = \lim_{X \to 7} (\chi + \gamma) \stackrel{\text{T.1}}{=} \gamma + \gamma = 14$$

1) Nos Exercícios abaixo, encontre os limites, indicando os teoremas usados:

a)
$$\lim_{x \to 3} (x^2 - 3x + 5)$$

b)
$$\lim_{x\to -2} (2x^3 - 6x^2 + 3x - 2)$$

c)
$$\lim_{x \to 1} \left(\frac{x+3}{2x^2 - 6x + 5} \right)$$

$$d) \lim_{x \to 1} \left(\frac{x^3 - 1}{x - 1} \right)$$

d)
$$\lim_{x \to 1} \left(\frac{x^3 - 1}{x - 1} \right)$$
 e) $\lim_{x \to 3} \left(\frac{\sqrt{x^2 - 4}}{(x - 2)} \right)$

f)
$$\lim_{x\to 0} (5x\sqrt{4+3x^2})$$