IN THE CLAIMS:

Kindly rewrite Claims 1-14 as follows:

1.	(Currently Amended) A method for operating a combined-cycle power
stați	on, the combined-cycle power station comprising including at least one gas turbo
grou	p-(1), at least one heat recovery steam generator, (7) and at least one steam turbo
grou	p-(13), with the gas turbo group (1) comprising including at least one compressor-(2)
at le	ast one combustion chamber, (3) and at least one gas turbine (4), the heat recovery
stear	m generator (7) having at least one pressure stage, and the steam turbo group (13)
com	prising-including at least one steam turbine (14, 15), and a supplemental firing being
arrai	nged in the gas turbo group exhaust gas path downstream of the gas turbine, the
meth	nod comprising-the steps of:
	compressing air in the compressor,;
	supplying the compressed air to the combustion chamber,:
	using the compressed air as combustion air thus producing a hot gas-;
·	passing said hot gas through the gas turbine;
	passing the exhaust gas through the heat recovery steam generator;
	producing steam in the heat recovery steam generator, and;
	supplying said steam to the steam turbo group, the method further comprising the
step	of ;
	immediately, rapidly, and temporarily remaining increasing maintaining an
incre	ase in the power output of the combined cycle power station, in including:
<u>-</u>	increasing the firing rate of the gas turbo group, in-including increasing
	the fuel supply to the gas turbo group thus increasing the power output of
	the gas turbo group;
	taking the supplemental firing into operation thus increasing the steam
	production, and
-	subsequently reducing the power output of the gas turbo group to the same
	extend extent as the increased steam production becomes available as
	steam turbo group shaft power.
2.	(Currently Amended) The method as claimed in claim 1, further
comp	orising the step of :
	reducing the firing rate of the gas turbo group essentially to an original level such

that the temporarily remaining maintaining an increase of the power output is solely effected by the supplemental firing.

- 3. (Currently Amended) The method as claimed in claim 1, further comprising the step of:
 ______increasing the power output of the combined cycle power station by between 5% through and 15% of the combined cycle power station nominal rated power.
- 4. (Currently Amended) The method as claimed in claim 3, wherein the the power increase is in the range of 5% through to 10 % of the combined cycle power station nominal rated power.
- 5. (Currently Amended) The method as claimed in claim 3, the method further comprising the step of:

 _____increasing the power within 5 through to 30 seconds.
- 6. (Currently Amended) The method as claimed in claim 5, the method wherein the power is increased within less than 10 seconds.
- 7. (Currently Amended) The method as claimed in claim 3, wherein the power increase is maintained during for between 5 through and 50 minutes.
- 8. (Currently Amended) The method as claimed in claim 7, wherein the duration of the temporary power increase is <u>between 15 through and 30 minutes</u>.
- 9. (Currently Amended) The method as claimed in claim 1, further comprising the step of having reduced:

 reducing the power output of the gas turbo set to the an original value within 10 seconds through to 5 minutes after the power increase.
- 10. (Currently Amended) The method as claimed in claim 1, further

comprising the step of having reduced:
reducing the power output of the gas turbo set to the an original value within 30
seconds through to 2 minutes after the power increase.
11. (Currently Amended) The method as claimed in claim 1, further
comprising the step of:
triggering the power increase by a decrease of the grid frequency.
12. (Currently Amended) The method as claimed in claim 11, wherein the
triggering grid frequency decrease is in the range from 0.1 Hz through to 3.0 Hz.
13. (Currently Amended) The method as claimed in claim 11, wherein the
triggering grid frequency decrease is in the range from 0.5 Hz through to 1.0 Hz.
14. (Currently Amended) The method as claimed in claim 1, the method
further comprising the step of:
operating the gas turbo group at nominal full load; and
effecting the increase of the gas turbo group power output by overfiring the gas
turbo group.