Задача 9-5

Фреоны

Соединения группы фреонов, первое из которых было получено в 1928 г, раньше широко использовались в холодильных установках и при производстве аэрозолей. Фреоны представляют собой насыщенные углеводороды, в которых один или несколько атомов водорода замещены атомами галогена. Обычно в качестве основы фреона выступают метан или этан, а для замещения используют атомы фтора или хлора. Все описанные в этой задаче фреоны – именно такие и содержат как минимум один атом фтора.

No	Название	Брутто-формула	$\Lambda_{\rm обр} {\rm H}^{\rm oa}$, кДж/моль	$\omega(C)^{6}$, %
1	R-134	$C_2F_4H_2$	-879	23.55
2	R-12	?	-503	9.94
3	?	?	-482	?
4	R-113	?	-717	12.82
5	R-11	CCl ₃ F	?	8.74
6	R-125	?	?	?
7	?	?	-686	?
8	R-142	?	?	?

а Энтальпия образования вещества в газовой фазе;

1. Установите брутто-формулы фреонов 2, 3, 4 и 6, если дополнительно известно, что плотность соединения 3, состоящего из четырёх элементов, почти втрое выше плотности воздуха, а плотности паров 2 и 6 приблизительно равны. Термохимия фреонов подробно изучалась по причине их негативного влияния на озоновый слой Земли. Известны энтальпии образования газообразных атомов:

Атом	C	Н	F	C1
$\Delta_{ m ofp} H^{ m o}$ / кДж/моль	717	218	79	121

- **2.** Установите средние энергии связей С–H, С–F, С–Cl и С–С в молекулах фреонов, считая эти величины одинаковыми во всех фреонах.
- 3. Вычислите энтальпии образования фреонов 5 и 6.
- **4.** Используя термохимические данные, установите формулу фреона **7**, учитывая, что он содержит один атом углерода.

Для наименования фреонов была создана специальная номенклатура. Название фреона состоит из буквы R (от английского refrigerant — хладагент), дефиса и ряда цифр, связанных с числом атомов углерода, водорода и фтора в соединении (но не обязательно равных им). Число атомов хлора устанавливается по остаточному принципу. Если на месте числа в названии должен стоять ноль, его не пишут.

- **5.** Сформулируйте правила номенклатуры фреонов, объяснив связь цифр a, b и c в номенклатурном названии фреона R-abc с числом атомов углерода, водорода и фтора.
- **6.** Приведите названия фреонов **3** и **7** в соответствии с R-*abc*-номенклатурой и установите формулу фреона **8** по его названию.

Для фреонов, имеющих в составе два и более атома углерода, возможна изомерия, обусловленная различным взаимным расположением атомов галогена в молекуле.

7. Определите, какие из зашифрованных выше фреонов имеют изомеры. (Учитывайте только структурные изомеры). Изобразите структурные формулы этих изомеров.

Указание: во всех вопросах, требующих численного ответа, обязательно приведите расчёты. Ответ без расчётов оценивается в 0 баллов.

б Массовая доля углерода, рассчитанная с использованием точных атомных масс.

Решение задачи 9-5 (автор: Болматенков Д. Н.)

- **1.** Рассчитаем молярные массы фреонов **2** и **4** в расчёте на n атомов углерода (n=1,2) по массовой доле углерода:
- M(2) = 12.011 n/0.0994 = 120.8 n г/моль.
- M(4) = 12.011 n/0.1282 = 93.7 n г/моль.

Молярные массы остатков за вычетом 12n составят 108.8n и 81.7n, соответственно.

Большая величина молярной массы вещества 2 позволяет предположить наличие атомов хлора в соединении. Перебор возможных вариантов показывает, что сумму 108.8 г/моль дают два атома хлора и два атома фтора. Тогда $2 - \text{CF}_2\text{Cl}_2$.

Величина молярной массы **4** также указывает на наличие хлора. Однако сумма 81.7*n* не может быть получена комбинацией атомов фтора, хлора и водорода общим числом **4.** Тогда соединение **4** должно содержать 2 атома углерода и иметь молярную массу 163.4, что, вероятно, соответствует нечётному числу атомов хлора. Лучший возможный вариант – C₂F₃Cl₃.

Молярная масса **3** близка к 3.29 = 87 г/моль, но несколько ниже. Молекула содержит как минимум 1 атом фтора, 1 атом водорода, 1 атом углерода и 1 атом хлора. Остаток соответствует атому фтора. Тогда **3** – CHF₂Cl.

Молярная масса соединения **6** близка к молярной массе вещества **2**, то есть к 121 г/моль. Близкую молярную массу имеет CHCl₃, не содержащий, однако, атомов фтора. Перебор других возможных вариантов даёт C₂HF₅, имеющий молярную массу 120 г/моль.

2. Запишем реакции атомизации известных фреонов и вычислим их энтальпии, используя закон Гесса. С другой стороны, свяжем энтальпии атомизации с энергиями связи в молекулах (здесь и далее – в кДж/моль):

(1)
$$C_2F_4H_2 = 2C + 4F + 2H$$

$$\Delta_1 H^{\circ} = 717 \cdot 2 + 79 \cdot 4 + 218 \cdot 2 - (-879) = 3065 = E(C-C) + 4E(C-F) + 2E(C-H)$$

(2)
$$CF_2Cl_2 = C + 2F + 2Cl$$

$$\Delta_2 H^\circ = 717 + 79 \cdot 2 + 121 \cdot 2 - (-503) = 1620 = 2E(C-F) + 2E(C-C1)$$

(3)
$$CHF_2Cl = C + 2F + H + Cl$$

$$\Delta_3 H^\circ = 717 + 79 \cdot 2 + 218 + 121 - (-482) = 1696 = 2E(C-F) + E(C-H) + E(C-CI)$$

(4)
$$C_2F_3Cl_3 = 2C + 3F + 3Cl$$

$$\Delta_4 H^\circ = 717 \cdot 2 + 79 \cdot 3 + 121 \cdot 3 - (-717) = 2751 = E(C-C) + 3E(C-F) + 3E(C-C1)$$

Записанные уравнения образуют систему с четырьмя неизвестными, решить которую можно путём последовательных упрощений.

Так,
$$\Delta_4 H^\circ - 1.5 \Delta_2 H^\circ = E(C-C) = 321$$
 кДж/моль.

Из уравнения 1 следует, что E(C-H) = 0.5(2744 - 4E(C-F)), а из уравнения 2 - что E(C-C1) = 0.5(1620 - 2E(C-F)).

Подстановка этих величин в уравнение 3 даёт:

$$2E(C-F) + 0.5(2744 - 4E(C-F)) + 0.5(1620 - 2E(C-F)) = 1696$$

 $E(C-F) = 486$

Тогда E(C-H) = 400 кДж/моль, E(C-C1) = 324 кДж/моль.

3. Проведём обратный расчёт для фреонов 5 и 6:

$$(5)$$
 CFCl₃ = C + F + 3Cl $\Delta_5 H^\circ = 717 + 79 + 121 \cdot 3 - (X) = 1458 = E(C-F) + 3E(C-Cl) = 486 + 3 \cdot 324$ $X = -299$ кДж/моль

(6)
$$C_2HF_5 = 2C + 5F + H$$

$$\Delta_6 H^\circ = 717 \cdot 2 + 79 \cdot 5 + 218 - (Y) = 3151 = E(C-C) + 5E(C-F) + E(C-H) = 321 + 5 \cdot 486 + 400$$

$$Y = -1104 \ кДж/моль$$

4. Энтальпия образования 7 равна —686 кДж/моль. Запишем уравнение реакции атомизации в общем виде:

(7)
$$CH_nCl_mF_k = C + nH + mCl + kF$$

 $\Delta_7 H^\circ = 717 + 218n + 121m + 79k + 686 = 400n + 324m + 486k$
 $1403 = 182n + 203m + 407k$

С учётом того, что (n + m + k) = 4, единственным возможным решением будет n = 1, m = 0 и k = 3, что соответствует формуле $7 - \text{CHF}_3$.

5. Запишем для пяти известных фреонов код и подсчитаем число известных атомов:

Формула	Код	n(C)	n(H)	n(F)
$C_2F_4H_2$	R-134	2	2	4
CF ₂ Cl ₂	R-12	1	0	2
$C_2F_3Cl_3$	R-113	2	0	3
CCl ₃ F	R-11	1	0	1
C ₂ HF ₅	R-125	2	1	5

Хорошо видно, что последняя цифра в названии совпадает с числом атомов фтора. Также легко заметить, что для производных этана код содержит три цифры, а для производных метана — 2. Ноль в названии не пишется, а названия производных этана начинаются с цифры 1. Значит, первая цифра — число атомов углерода минус 1. Вторая цифра, очевидно, связана с числом атомов водорода. Она всегда больше числа атомов водорода на 1. Тогда для номенклатуры R-abc:

$$a = n(C) - 1$$
$$b = n(H) + 1$$
$$c = n(F)$$

- **6.** Фреон **3** имеет формулу CHF₂Cl. Его код будет R-22. Фреон **7** с формулой CHF₃ будет иметь код R-23. Формуле R-142 соответствует вещество состава $C_2H_3F_2Cl$ (атом хлора добавляем по остаточному принципу).
- 7. По два атома углерода содержат фреоны $C_2F_4H_2$, $C_2F_3Cl_3$, C_2HF_5 и $C_2H_3F_2Cl$. Для вещества C_2HF_5 изомерия невозможна. Для $C_2F_4H_2$ и $C_2F_3Cl_3$ возможно по два изомера:

Для $C_2H_3F_2Cl$ возможно 3 изомера:

Система оценивания

1	Брутто-формулы фреонов 2, 3, 4 и 6 по 1.5 балла	6 баллов	
2	2 Энергии связи по 1 баллу за величину		
3	Энтальпии образования 5 и 6 по 1 баллу	2 балла	
4	Формула фреона 7	1 балл	
5	Объяснение значений индексов а, b и с	1.5 балла	
6	Коды фреонов 3 и 7 по 0.5 балла	2 балла	
	Формула фреона 8 – 1 балл		
7	Формулы 7 изомеров по 0.5 балла	3.5 балла	
	Итого 20 баллов		