Анализ и прогнозирование цен на жилье в Москве

Процкая Вера, Серов Кирилл, Романовский Илья

332 группа

Введение

Проект посвящён исследованию и построению моделей машинного обучения для прогнозирования стоимости квартир в Москве на основе набора данных Moscow Housing Price Dataset. Мы изучаем влияние различных характеристик жилья, таких как район, площадь, количество комнат, этаж и другие, чтобы выявить ключевые факторы, определяющие цену. В презентации подробно рассматриваются этапы работы — от разведочного анализа данных до создания прогнозных моделей и кластеризации районов по ценам с помощью метода k-means.

Разведочный анализ данных (EDA)

На начальном этапе проекта происходила загрузка и первичный осмотр датасета. Особое внимание уделялось обработке пропусков и выявлению аномальных значений. Так в процессе было убрано 1835 дубликатов, а также исключили 236 подозрительных объектов, которые имели 0 комнат и больше 50 кв. м. площади. Далее анализируется распределение целевой переменной — цена квартир, для удобства цена была переведена в миллионы рублей.

Помимо этого исследовали:

- Корреляция признаков
- Визуализация зависимостей
- Анализ влияния этажа и района

Визуализация ключевых зависимостей

Визуализация ключевых зависимостей

Визуализация ключевых зависимостей

Предобработка данных для моделирования

На подготовительном этапе происходит нормализация числовых признаков для устранения разницы в масштабах, что повышает стабильность и сходимость моделей машинного обучения (особенно важно для линейной регрессии). Также в нашем датасете было 4 категориальных переменных: Apartment type, Region, Renovation и Metro Station.

Первые два являлись "бинарными" признаками. поэтому просто преобразовали в 0 и 1

Для Renovation был использован метод One-hot encoding

Для Metro Station – частотное кодирование

Нормализация признаков

Преобразование числовых характеристик к единому масштабу

Кодирование категорий

Преобразование районов и других категориальных данных в числовые значения

Разделение данных

Создание обучающих и тестовых выборок для оценки моделей

Модели машинного обучения: теория и выбор

Перед практической реализацией представлены теоретические основы используемых моделей.

Случайный лес (Random Forest) применяет ансамблевый подход, улучшая стабильность и точность за счёт усреднения решений множества деревьев. XGBoost, как градиентный бустинг, мощно справляется с нелинейными зависимостями и обладает эффективным механизмом регуляризации для борьбы с переобучением.

Построение и оценка моделей

Модели реализованы и обучены на подготовленном датасете. Для оценки качества используются метрики, такие как среднеквадратичная ошибка (RMSE), коэффициент детерминации (R²) и средняя абсолютная ошибка (MAE).

Сравнение результатов показывает, что модели ансамблей (Random Forest и XGBoost) достигают более высокой точности, особенно на тестовой выборке, демонстрируя устойчивость к шумам и способности улавливать сложные зависимости.

1 — Обучение модели
Использование обучающей выборки для подгонки параметров

2 — Тестирование

Оценка на отдельной тестовой выборке

3 — Сравнение метрик

Анализ RMSE, R², MAE для каждой модели

4 — Интерпретация результатов

Выявление сильных и слабых сторон моделей

Сравнение производительности:

Метод	R ²	МАЕ (млн руб)	RMSE (млн руб)
Linear	0.770	2.88	16.89
Random Forest	0.886	1.55	8.37
XGBoost	0.897	1.45	7.58

Анализ остатков

Кластеризация районов Москвы

Проанализируем стоимость квадратного метра жилья в Москве, используя кластеризацию методом K-means на основе признаков цены за м² и удалённости от центра. Прежде всего очистим наши данные и нормализуем их. Далее с помощью метода локтя определим оптимальное количество кластеров - 3. Визуализация результатов показывает чёткую зависимость

цены за м² от расположения.

1 Нормализация данных

2 Выбор числа кластеров

3 Визуализация на карте

4 Анализ характеристик

Как мы определили оптимальное количество кластеров?

Интерактивная карта Москвы с визуализацией кластеров

Характеристика кластеров и итоговые

визуализации

На основе полученных характеристик кластеров мы можем описать каждый из них:

- 1. **0 кластер:** Средний ценовой сегмент, компромисс между удаленностью от центра и стоимостью квадратного метра, преобладающий тип жилья вторичка
- 2. 1 кластер: Дешевое жилье на окраинах в основном в новостройках, самый популярный кластер
- 3. 2 кластер: Дорогие элитные квартиры в историческом центре города

Выводы

Проект показал комплексный подход к анализу московского рынка жилья— от подробного разведочного анализа и предобработки до построения и сравнения моделей прогнозирования цен. Модель XGBoost показала лучший баланс между точностью и устойчивостью.

Кластеризация районов выявила четкие ценовые зоны с отличительными характеристиками, что позволяет применять результаты для более точного ценообразования и урбанистического планирования. Возможным направлением дальнейшей работы может стать интеграция дополнительных внешних данных и создание интерактивных дашбордов.

