武汉大学 2018—2019 学年第二学期

大学物理 D1 期末考试 A 卷

学	院	学 号	姓名	
		· · ·	· · · ·	_

一、选择题(每小题3分,共8小题、24分)

- 1. (3 分) 一个做直线运动的物体的加速度为 $a = -kv^2t$, 其中k 为大于零的常量。若其初速 度为 v_o ,则速度v与时间t的关系为[
- (A) $v = \frac{1}{2}kt^2 + v_0$ (B) $\frac{1}{v} = \frac{kt^2}{2} + \frac{1}{v_0}$
- (C) $v = -\frac{1}{2}kt^2 + v_0$ (D) $\frac{1}{v} = -\frac{kt^2}{2} + \frac{1}{v_0}$
- 2. (3 分) 如图所示, 一束自然光自空气射向一块平板玻璃, 设入射角等于布儒斯特角 i_R, 7
- 则出射光4「
- (A) 是自然光
- (B) 是线偏振光目光矢量的振动方向垂直于入射面
- (C) 是线偏振光且光矢量的振动方向平行于入射面
- (D) 是部分偏振光

- 3.(3 %) 有两个金属球,一个是半径为2R的空心球,另一个是半径为R的实心球,两球间 的距离r >> R。空心球原来带有电量+2Q,实心球原来带有电量+2Q。若用导线将它们连 接起来,那么电荷是怎样分配的?[
- (A) 不发生变化

- (B) 均带+ $\frac{Q}{2}$
- (C) 空心球带电+Q, 实心球不带电
- (D) 空心球带电 $+\frac{8Q}{3}$, 实心球带电 $+\frac{4Q}{3}$
- 4. (3分)单色平行光垂直照射在薄膜上,经上下两表面反 射的两束光发生干涉,如图所示。若薄膜的厚度为e,且 $n_1 > n_2 > n_3$, 礼为入射光在 n_1 中的波长,则两束反射光在 相遇点的相位差为「

- (A) $4\pi n_2 e / (n_1 \lambda_1)$
- (B) $4\pi n_1 e / (n_2 \lambda_1) + \pi$
- (C) $4\pi n_2 e / (n_1 \lambda_1) + \pi$ (D) $4\pi n_1 e / (n_2 \lambda_1)$

6.(3分) 如题所示的静电场中有 M.N 两点, 其场强分别为 \vec{E}_M 与 \vec{E}_N , 电势分别为 V_M 与 V_N ,由图可知 [

(B)
$$E_M > E_N$$
, $V_M < V_N$

(C)
$$E_M < E_N$$
, $V_M > V_N$ (D) $E_M < E_N$, $V_M < V_N$

(D)
$$E_M < E_N$$
, $V_M < V_N$

- (A) 19.2pm
- (B) 20.4pm (C) 21.6pm (D) 22.9pm

- (A) A 点比 B 点电势高 (B) A 点与 B 点电势相等
- (C) A 点比B 点电势低 (D) 有恒定电流从A 点流向B 点

二、填空题(共30分)

1. (4 分) 如图所示,在Oxy 平面内有一载有恒定电流为I 的任 意形状的导线 ab, 电流由 a 流向 b, 置于均匀外磁场 B中,则 该导线所受安培力的大小_____,方向____

2. (3分)一质点同时参与了两个同方向的简谐运动,它们的振

动方程分别为 $x_1 = 0.05\cos\left(\omega t + \frac{1}{3}\pi\right)$ (SI)和 $x_2 = 0.05\cos\left(\omega t - \frac{1}{6}\pi\right)$ (SI),则其合成运动的运动

3.(3 分)水平恒力F作用于质量为m的物体上,使其由静止开始在光滑水平面上运动了t秒, 则 F 在这段时间内对物体做的功为

4. $(4\, \mathcal{O})$ 如图所示,劲度系数为k 的弹簧,一端固定在墙上,另一端连接一质量为M 的容器,容器可在光滑的水平面上运动,当弹簧未变形时,容器位于O 点处。今使容器自O 点左边 l_0 处从静止开始运动,每经过O 点一次,就从上方滴管中滴入一质量为m 的油滴,则第n 滴油滴落入容器M 的瞬间,容器的速率为

; 当容器中滴入了n滴油滴后,M 容器的振动周期为

5. $(4\, \mathcal{G})$ 在如图所示的双缝干涉实验中,真空中波长为 λ 的单色光垂直照射双缝 S_1 和 S_2 ,通过空气后在屏幕 E 上形成干涉条纹,若 P 点处为第三级明条纹,则 S_1 和 S_2 到 P 点的光程差为______。现将整个装置放于某种透明液体中,P 点为第四级明条纹,则该液体的折射率 n

6. (4分)静电场环路定理的数学表达式为 , 它表明静电场是

7. $(4 \, f)$ 在光电效应实验中,测得某金属的遏止电势差 $|U_0|$ 与入射光频率 ν 的关系曲线如图所示,由此可知该金属的红限频率 ν_0 =______eV。

8. (4 分) 当大量的氢原子处于 *n* = 4 的激发态时,可发出的 光谱线共有______条,其中属于巴耳末线系的谱线有_____条。

三、计算题(共46分)

- 1. $(10 \, \text{分})$ 一波长为 $\lambda = 0.8 \text{m}$ 、周期为T = 0.5 s 、振幅为A = 0.2 m 的平面简谐横波沿x 轴正方向传播,在t = 0 时,x = 0.2 m 处的质点恰好位于波谷处,求:
- (1) 该波传播的速度;
- (2) 写出波动方程;
- (3) 距离原点 O 为 $3\lambda/4$ 处质点的振动方程;
- 2.(10 分)质量为 $M=2.0~{\rm kg}$ 、半径为 $R=0.2~{\rm m}$ 的定滑轮绕通过其中心的水平固定光滑轴,以初角速度 $\omega_0=30~{\rm rad/s}$ 作顺时针方向的转动,定滑轮对该轴的转动惯量为 $I=\frac{1}{2}MR^2$ 。一根不可伸长的轻绳,一端固定在定滑轮上,另一端系有一质量为 $m=5.0~{\rm kg}$ 的物体,如图所示。求:

- (1) 定滑轮的角加速度大小和方向;
- (2) 角速度变化到 $\omega = 0$ 时, 定滑轮转过的角度;
- (3) 定滑轮从原来以 $-\omega_0$ (顺时针)作转动,到以 $+\omega_0$ (逆时针)作转动这一过程所用的时间t。
- 3. $(8\, f)$ 如图所示为两条穿过y 轴且垂直于x-y 平面的平行长直导线的正视图,两条导线皆通有电流I,但方向相反,它们到x 轴的距离皆为a。

- (1) 推导出x轴上P点处的磁感强度 $\bar{B}(x)$ 的表达式;
- (2) 求P点在x轴上何处时,该点的B取得最大值。

4.(10分)两个同心的带电球面、半径分别为 R_1 = 10cm , R_2 = 40cm , 其电势分别为 V_1 = 40V , V_2 = -20V 。 试求:

- (1) 电势为零的球面半径 R_0 ;
- (2) 电势为零的球面上的电场强度。
- 5. $(8\,
 m eta)$ 一衍射光栅,每厘米 200 条透光缝,每条透光缝宽为 $a=2\times 10^{-3}{
 m cm}$,在光栅后放一焦距 $f=1{
 m m}$ 的凸透镜,现以 $\lambda=600{
 m nm}$ 的单色平行光垂直照射光栅,求:
- (1) 透光缝 a 的单缝衍射中央明条纹宽度为多少?
- (2) 在该宽度内,有几个光栅衍射的主极大?