Očuvanje energije

Duje Jerić- Miloš

25. ožujka 2025.

▶ Dvije kugle se sudare na horzontalnom stolu. Je li energija očuvana? Što to znači?

- Dvije kugle se sudare na horzontalnom stolu. Je li energija očuvana? Što to znači?
- Jedna kugla se giba te ima

- Dvije kugle se sudare na horzontalnom stolu. Je li energija očuvana? Što to znači?
- Jedna kugla se giba te ima kinetičku energiju.

- ▶ Dvije kugle se sudare na horzontalnom stolu. Je li energija očuvana? Što to znači?
- Jedna kugla se giba te ima kinetičku energiju.
- ightharpoonup Sudari se s drugom kuglom koja miruje \implies prva uspori, a druga ubrza.

- Dvije kugle se sudare na horzontalnom stolu. Je li energija očuvana? Što to znači?
- Jedna kugla se giba te ima kinetičku energiju.
- Sudari se s drugom kuglom koja miruje prva uspori, a druga ubrza.
- Ako je zbroj kinetičkih energija isti na početku i na kraju energija dviju kugli je očuvana.

Ako čujemo sudar dviju kugli, je li njihova energija može biti očuvana?

- Ako čujemo sudar dviju kugli, je li njihova energija može biti očuvana?
- Prva kugla ne gurne samo drugu kuglu, gurne i **zrak**.

- Ako čujemo sudar dviju kugli, je li njihova energija može biti očuvana?
- Prva kugla ne gurne samo drugu kuglu, gurne i **zrak**.
- Dio energije sudara odlazi na **zvuk**.

- Ako čujemo sudar dviju kugli, je li njihova energija može biti očuvana?
- Prva kugla ne gurne samo drugu kuglu, gurne i **zrak**.
- Dio energije sudara odlazi na **zvuk**.
- Sudar može "prodrmati" atome dviju kugli ⇒ one se zagriju

- Ako čujemo sudar dviju kugli, je li njihova energija može biti očuvana?
- Prva kugla ne gurne samo drugu kuglu, gurne i zrak.
- Dio energije sudara odlazi na **zvuk**.
- Sudar može "prodrmati" atome dviju kugli ⇒ one se zagriju
- Dio energije odlazi na toplinu.
- Ako promatramo širi sustav (npr. cijelu prostoriju u sa zrakom kojoj se dvije kugle nalaze), energija je očuvana

- Ako čujemo sudar dviju kugli, je li njihova energija može biti očuvana?
- Prva kugla ne gurne samo drugu kuglu, gurne i zrak.
- Dio energije sudara odlazi na **zvuk**.
- Sudar može "prodrmati" atome dviju kugli ⇒ one se zagriju
- Dio energije odlazi na toplinu.
- Ako promatramo širi sustav (npr. cijelu prostoriju u sa zrakom kojoj se dvije kugle nalaze), energija je očuvana?

- Ako čujemo sudar dviju kugli, je li njihova energija može biti očuvana? NE!
- Prva kugla ne gurne samo drugu kuglu, gurne i zrak.
- Dio energije sudara odlazi na **zvuk**.
- Sudar može "prodrmati" atome dviju kugli ⇒ one se zagriju
- Dio energije odlazi na toplinu.
- Ako promatramo širi sustav (npr. cijelu prostoriju u sa zrakom kojoj se dvije kugle nalaze), energija je očuvana?
- Ne baš! Snažni sudar čuje netko i van prostorije. Prostorija mora biti izolirana.

▶ Svemir je SVE, stoga ga nemamo od čega izolirati.

- ▶ Svemir je SVE, stoga ga nemamo od čega izolirati.
- Energija svemira je očuvana

- ▶ Svemir je SVE, stoga ga nemamo od čega izolirati.
- Energija svemira je očuvana?
- Za *statični* svemir ovo vrijedi.

- ▶ Svemir je SVE, stoga ga nemamo od čega izolirati.
- ► Energija svemira je očuvana?
- Za statični svemir ovo vrijedi.
- Kozmologija nas uči da svemir nije statičan širi se!

- Svemir je SVE, stoga ga nemamo od čega izolirati.
- Energija svemira je očuvana?
- Za statični svemir ovo vrijedi.
- Kozmologija nas uči da svemir nije statičan širi se!
- Npr. energija svemira koji sadrži samo fotone nije očuvana: širenjem valna duljina fotona raste pa njegova energija opada.

Energija je približno očuvana kada gubitke na toplinu, zvuk i sl. možemo zanemariti.

- Energija je približno očuvana kada gubitke na toplinu, zvuk i sl. možemo zanemariti.
- U tom slučaju postoji neki broj (energija kugli) koji je isti štogod te dvije kugle radile.

- Energija je približno očuvana kada gubitke na toplinu, zvuk i sl. možemo zanemariti.
- U tom slučaju postoji neki broj (energija kugli) koji je isti štogod te dvije kugle radile.
- Ovo čini analizu lakšom jer ograničava brzine koje te dvije kugle mogu imati.

- Energija je približno očuvana kada gubitke na toplinu, zvuk i sl. možemo zanemariti.
- U tom slučaju postoji neki broj (energija kugli) koji je isti štogod te dvije kugle radile.
- Ovo čini analizu lakšom jer ograničava brzine koje te dvije kugle mogu imati.
- Čak i ako imamo gubitke, često je lakše prvo proučiti ponašanje jednostavnijeg problema (bez gubitaka), potom uvesti gubitke.

ightharpoonup Podignemo teret od 1kg na visinu od 1m \implies obavili smo

Podignemo teret od 1kg na visinu od 1m ⇒ obavili smo 10J rada.

Podignemo teret od 1kg na visinu od 1m ⇒ obavili smo 10J rada. Dakle, tijelo ima za 10J veću energiju.

- Podignemo teret od 1kg na visinu od 1m ⇒ obavili smo 10J rada. Dakle, tijelo ima za 10J veću energiju.
- ▶ Polako spuštamo teret natrag na početnu visinu ⇒ obavljamo

- Podignemo teret od 1kg na visinu od 1m ⇒ obavili smo 10J rada. Dakle, tijelo ima za 10J veću energiju.
- Polako spuštamo teret natrag na početnu visinu \Longrightarrow obavljamo $-10\mathrm{J}$ rada. Tijelu oduzimamo $10\mathrm{J}$ energije.
- Mijenja li gravitacija tijelu energiju (pustimo da tijelo slobodno pada 1m)?

- Podignemo teret od 1kg na visinu od 1m ⇒ obavili smo 10J rada. Dakle, tijelo ima za 10J veću energiju.
- Polako spuštamo teret natrag na početnu visinu \Longrightarrow obavljamo $-10\mathrm{J}$ rada. Tijelu oduzimamo $10\mathrm{J}$ energije.
- Mijenja li gravitacija tijelu energiju (pustimo da tijelo slobodno pada 1m)?
- NE! Pod "energija tijela" smo uračunali i gravitacijsku potencijalnu energiju mgh. Sila teža umanjuje gravitacijsku potencijalnu energiju, a povećava kinetičku tako da je ukupna energija očuvana.

- Podignemo teret od 1kg na visinu od 1m ⇒ obavili smo 10J rada. Dakle, tijelo ima za 10J veću energiju.
- Polako spuštamo teret natrag na početnu visinu \Longrightarrow obavljamo -10J rada. Tijelu oduzimamo 10J energije.
- Mijenja li gravitacija tijelu energiju (pustimo da tijelo slobodno pada 1m)?
- NE! Pod "energija tijela" smo uračunali i gravitacijsku potencijalnu energiju mgh. Sila teža umanjuje gravitacijsku potencijalnu energiju, a povećava kinetičku tako da je ukupna energija očuvana.
- ► Gravitacija je konzervativna sila.

Koliko smo obavili ukupno rada kada podignemo i spustimo teret?

Noliko smo obavili ukupno rada kada podignemo i spustimo teret? 10J + (-10J) = 0J.

- Noliko smo obavili ukupno rada kada podignemo i spustimo teret? 10J + (-10J) = 0J.
- Jesmo li se umorili?

- Noliko smo obavili ukupno rada kada podignemo i spustimo teret? 10J + (-10J) = 0J.
- Jesmo li se umorili?
- Držimo uteg od 100kg nepomično u rukama. Obavljamo li rad na tom teretu? Umaramo li se? Trošimo li energiju?

- Noliko smo obavili ukupno rada kada podignemo i spustimo teret? 10J + (-10J) = 0J.
- ▶ Jesmo li se umorili?
- Držimo uteg od 100kg nepomično u rukama. Obavljamo li rad na tom teretu? Umaramo li se? Trošimo li energiju?
- Naši mišići troše energiju (obavljaju rad) čak i kada nešto držimo nepomično u ruci (teret jest nepomičan, ali mišična vlakna, stanice nisu).

Zakon očuvanja energije

Promotrimo kugu koja slobodno pada s visine h_1 na visinu h_2 i pritom ubrza s v_1 na v_2 .

Zakon očuvanja energije

- Promotrimo kugu koja slobodno pada s visine h_1 na visinu h_2 i pritom ubrza s v_1 na v_2 .
- Kako je gravitacija jedina sila koja djeluje, njen rad (pozitivni) je $W = mg \cdot (h_1 h_2) = mhh_1 mgh_2$.

- Promotrimo kugu koja slobodno pada s visine h_1 na visinu h_2 i pritom ubrza s v_1 na v_2 .
- Nako je gravitacija jedina sila koja djeluje, njen rad (pozitivni) je $W = mg \cdot (h_1 h_2) = mhh_1 mgh_2$.
- Rad rezultantne sile jednak je promjeni kinetičke energije, stoga: $W = \frac{1}{2}mv_2^2 \frac{1}{2}mv_1^2$.

- Promotrimo kugu koja slobodno pada s visine h_1 na visinu h_2 i pritom ubrza s v_1 na v_2 .
- Kako je gravitacija jedina sila koja djeluje, njen rad (pozitivni) je $W = mg \cdot (h_1 h_2) = mhh_1 mgh_2$.
- Rad rezultantne sile jednak je promjeni kinetičke energije, stoga: $W = \frac{1}{2}mv_2^2 \frac{1}{2}mv_1^2$.
- Dakle:

$$mhh_1 - mgh_2 = \frac{1}{2}mv_2^2 - \frac{1}{2}mv_1^2$$

- Promotrimo kugu koja slobodno pada s visine h_1 na visinu h_2 i pritom ubrza s v_1 na v_2 .
- Kako je gravitacija jedina sila koja djeluje, njen rad (pozitivni) je $W = mg \cdot (h_1 h_2) = mhh_1 mgh_2$.
- Rad rezultantne sile jednak je promjeni kinetičke energije, stoga: $W = \frac{1}{2}mv_2^2 \frac{1}{2}mv_1^2$.
- Dakle:

$$mhh_1 - mgh_2 = \frac{1}{2}mv_2^2 - \frac{1}{2}mv_1^2$$

Prebacimo li 1-ce na lijevu stranu, a 2-ce na desnu:

$$mgh_1 + \frac{1}{2}mv_1^2 = mgh_2 + \frac{1}{2}mv_2^2$$

- Promotrimo kugu koja slobodno pada s visine h_1 na visinu h_2 i pritom ubrza s v_1 na v_2 .
- Nako je gravitacija jedina sila koja djeluje, njen rad (pozitivni) je $W = mg \cdot (h_1 h_2) = mhh_1 mgh_2$.
- Rad rezultantne sile jednak je promjeni kinetičke energije, stoga: $W = \frac{1}{2}mv_2^2 \frac{1}{2}mv_1^2$.
- Dakle:

$$mhh_1 - mgh_2 = \frac{1}{2}mv_2^2 - \frac{1}{2}mv_1^2$$

▶ Prebacimo li 1-ce na lijevu stranu, a 2-ce na desnu:

$$mgh_1 + \frac{1}{2}mv_1^2 = mgh_2 + \frac{1}{2}mv_2^2$$

 Energija je očuvana: potencijalna energija mgh se pretvara u kinetičku (slično i za druge konzervativne sile)

Što ako pri padu djeluje i otpor zraka?

- Što ako pri padu djeluje i otpor zraka?
- lacktriangle Onda dio energije odlazi na savladavanje otpora / trenja W_{tr} .

- Što ako pri padu djeluje i otpor zraka?
- ightharpoonup Onda dio energije odlazi na savladavanje otpora / trenja W_{tr} .
- Otpor se odupire gibanju, stoga je rad

- Što ako pri padu djeluje i otpor zraka?
- ▶ Onda dio energije odlazi na savladavanje otpora / trenja W_{tr} .
- Otpor se odupire gibanju, stoga je rad negativan (sila i pomak su suprotni)
- ▶ Rezultantna sila je sada gravitacija + otpor, čiji je rad:

$$mgh_1 - mgh_2 - W_{tr}$$

- Što ako pri padu djeluje i otpor zraka?
- ightharpoonup Onda dio energije odlazi na savladavanje otpora / trenja W_{tr} .
- Otpor se odupire gibanju, stoga je rad negativan (sila i pomak su suprotni)
- ▶ Rezultantna sila je sada gravitacija + otpor, čiji je rad:

$$mgh_1 - mgh_2 - W_{tr}$$

Dakle:

$$mgh_1 - mgh_2 - W_{tr} = \frac{1}{2}mv_2^2 - \frac{1}{2}mv_1^2$$

- Što ako pri padu djeluje i otpor zraka?
- lacktriangle Onda dio energije odlazi na savladavanje otpora / trenja W_{tr} .
- Otpor se odupire gibanju, stoga je rad negativan (sila i pomak su suprotni)
- ▶ Rezultantna sila je sada gravitacija + otpor, čiji je rad:

$$mgh_1 - mgh_2 - W_{tr}$$

Dakle:

$$mgh_1 - mgh_2 - W_{tr} = \frac{1}{2}mv_2^2 - \frac{1}{2}mv_1^2$$

► Ili:

$$mgh_1 + \frac{1}{2}mv_1^2 = mgh_2 + \frac{1}{2}mv_2^2 + W_{tr}$$

Njihalo pretvara gravitacijsku potencijalnu energiju u kintičku i obratno:

Njihalo pretvara gravitacijsku potencijalnu energiju u kintičku i obratno:

▶ (45:42) https://www.youtube.com/watch?v=9gUdDM6LZGo

Njihalo pretvara gravitacijsku potencijalnu energiju u kintičku i obratno:

- ► (45:42) https://www.youtube.com/watch?v=9gUdDM6LZGo
- ▶ Gdje je kinetička energija najveća, a gdje potencijalna?

Njihalo pretvara gravitacijsku potencijalnu energiju u kintičku i obratno:

- ▶ (45:42) https://www.youtube.com/watch?v=9gUdDM6LZGo
- Gdje je kinetička energija najveća, a gdje potencijalna?
- Što se dogodi ako uključimo otpor?

Energija izoliranih sustava je očuvana.

- Energija izoliranih sustava je očuvana.
- Ovo znači da postoji neki broj koji se, štogod sustav radio, ne mijenja.

- Energija izoliranih sustava je očuvana.
- Ovo znači da postoji neki broj koji se, štogod sustav radio, ne mijenja.
- Sustave ne možemo savršeno izolirati.

- Energija izoliranih sustava je očuvana.
- Ovo znači da postoji neki broj koji se, štogod sustav radio, ne mijenja.
- Sustave ne možemo savršeno izolirati.
- Očuvanje energije stoga (kao i svaki drugi zakon) približno opisuje ponašanje prirodnog sustava.