

Universally Composable Network Time Protocol

Aanchal Malhotra, Oxana Poburinnaya, Ran Canetti, Kyle Hogan, Mayank Varia, Sharon Goldberg (Boston University)

Network Time Protocol (NTP) gives time to computer systems on the Internet in a query-response fashion.

Why do we care about NTP security?

Most Internet protocols rely on PKI for security, which in turn relies on NTP security

If time goes bad, one can:

- Replay old (potentially compromised) certificates
- Expire valid certificates (potential DoS)
- Similar shenanigans for Certificate Revocation Lists

MACS Project Work on NTP security

- [1], [2] exploits protocol flaws for DoS attacks and IPv4 flaws for timeshifting attacks on NTP clients

- Following work points out naws in carrein protocol, proposes a new unauthenticated NTP protocol & proves its security

Our Proposed Security Model

- shows NTP security when composed with other protocols
- previous security analysis only guarantees NTP security as stand-alone protocol

Universal Composability

- provides protocol security under concurrent composition with itself or other protocols
- useful for NTP as synchronous time is important for many other protocols

Ideal Functionality F_{NTP}

- models NTP behaviour in order to provide necessary security guarantees
- any real world implementation of NTP that realizes this functionality provides the same guarantees.

Challenges Realizing F_{NTP}

- Achieving secure communication channels between NTP clients and servers:
 - TLS needs synchronous time for cert verification
 - But there is no synchronous time without NTP!
- Asymmetric network delay between client & server:
 - can arbitrarily alter the time the client gets from NTP
 - with current design it is impossible to identify asymmetric network delay

C cannot determine from times sent by S₁ and S₂ that one server took longer to receive the query while the other took longer to return it

Having a timeout on the client side limits the delay introduced to the length of the timeout

Impact of Our Work

- Certificate Revocation

- expired certificates should be kept on revocation list for at least as long as Δ that could be introduced in client's time
- prevents a client with slow clock (showing time before the certificate expired) from being unable to tell that it had been revoked

- New NTP Protocol

- unauthenticated secure against off path attackers
- authenticated secure against on path attackers

References:

- 1. A. Malhotra, I. E. Cohen, E. Brakke, and S. Goldberg. Attacking the Network Time Protocol. In *Network and Distributed System Security Symposium* (NDSS), Feb. 2016.
- 2. A. Malhotra, and S. Goldberg. Attacking NTP's Authenticated Broadcast Mode. *SIGCOMM Computer Communication Review*, April 2016.