

Dr. Nick Feamster Professor

Software Defined Networking

In this course, you will learn about software defined networking and how it is changing the way communications networks are managed, maintained, and secured.

Network Functions Virtualization

Overview

Applications

Problems in NFV

One Architecture: Slick

Benefits

- Reduced Capex
- Reduced time to market
- Elastic scaling
- Targeted services
- Vendor neutrality

New Use Cases

Virtualized services for enterprises

Virtual CDNs

Virtualized mobile core networks

Integrate production/testing

Functional Elements, not Middleboxes

- WAN Optimizer = Caching+ Deduplication + Compression+ Encryption+ Forward Error Correction+ Rate Limiter
- Application Firewall = IP Defragmenter + Application Detection Engine+ Logger+ Blocker
- Snort = IP Defragmenter + Preprocessing + Misuse Detection Engine + Logger

Orchestration and Customizability

- Enable network operators to implement modular network functions (elements) without worrying about "how" and "where" to install network functions.
- Add custom middlebox functions inside network data plane
 - Log flow information for all TCP packets from specific port number.
 - Perform f(x) on single byte in each packet of a flow space at fixed offset of packet header

Slick Approach

- Small functional units
 ("elements") that can be
 reused and composed to
 create more complex
 functions
- Programming Abstraction to add functions inside the network
- Runtime System to support the abstraction

Programming Slick Network Functions

Bilal Anwer (Georgia Institute of Technology), Theophilus Benson (Duke University), Nick Feamster (Princeton University), and Dave Levin (University of Maryland)

Programming Abstraction

Slick Application

```
class HttpLogger(Application):
     def __init__(self, controller, ad):
         Application.__init__(self, controller, ad)
3
4
     def init(self):
5
         parameters = [{"file_name":"/tmp/http_log_mach"}]
6
         flow = self.make_wildcard_flow()
         flow['tp_dst'] = 80
         flow['nw_proto'] = 6
         ed flow space = lem(flow Element ger"], parameters)
10
         if(self.check elems installed(ed)):
11
            self.installed = True
12
```

Slick Elements

Basic functional unit in Slick environment

Inspired by Click elements

Uniform interface to write functions

 Specification file to describe element properties to Slick Controller

Inflation-Aware Placement

Runtime: Steering

Steering Overlay Graph

 Separately maintained for each flow space to element mapping

Steering Overlay Graph

 Different Path for each source destination pair

Future Work

- Better algorithms for placement and steering
- High speed data plane implementation
 - Isolation, Speed, Instantiation, Migration
- Policy conflicts
 - One flow space dictated by two policies
- Verification of Slick System properties

Conclusion

 NFV: New approach for deploying middlebox functions on virtual appliances in the network

 Slick-based approach for NFV can result in evolvable data plane designs