

Universität Ulm

Abgabe: Freitag, den 08.05. um 12 Uhr Dr. Gerhard Baur Dr. Jan-Willem Liebezeit Marcus Müller Sommersemester 2020 Punktzahl: 10

Übungen Analysis 1: Blatt 2

5. Es seien \mathcal{A} eine Menge von Teilmengen von X und $B \subset Y$. Außerdem sei $f: X \to Y$ eine Abbildung. (4) Man zeige die folgenden Aussagen:

(a)
$$\left(\bigcup_{A \in \mathcal{A}} A\right)^c = \bigcap_{A \in \mathcal{A}} A^c$$
.

(b)
$$f\left(\bigcap_{A\in\mathcal{A}}A\right)\subseteq\bigcap_{A\in\mathcal{A}}f(A).$$

(c) Im Allgemeinen gilt
$$\bigcap_{A \in \mathcal{A}} f(A) \not\subseteq f\left(\bigcap_{A \in \mathcal{A}} A\right)$$
.

(d)
$$f^{-1}(B^c) = (f^{-1}(B))^c$$

6. Es seien X, Y zwei nichtleere Mengen. Wir betrachten die Funktion $f: X \to Y$. Zeigen Sie, dass f (2) genau dann injektiv ist, falls für alle $A, B \subset X$ gilt, dass

$$f(A \cap B) = f(A) \cap f(B).$$

- 7. Betrachten Sie die Funktion $f: \mathbb{R} \setminus \{-1\} \to \mathbb{R}$, $f(x) = \frac{x}{1+x}$. Ist diese Funktion injektiv beziehungsweise surjektiv? Falls nicht, wie müssen Definitions- und Bildbereich angepasst werden, damit f bijektiv wird?
- **8.** Untersuchen die, ob die folgenden Relationen auch Äquivalenzrelationen sind. Geben Sie im Fall (3) einer Äquivalenzrelation alle zugehörigen Äquivalenzklassen an.
 - (a) Es sei $M \neq \emptyset$ und $X = \mathcal{P}(M)$. Für $A, B \in X$ gelte $A \sim B$, genau dann, wenn $A \cap B = \emptyset$ ist.
 - (b) Wir betrachten $M = \mathbb{R}$. Für zwei Zahlen $x, y \in \mathbb{R}$ gelte $x \sim y$ genau dann, wenn $x y \in \mathbb{Z}$.
 - (c) Es sei $M \subset \mathbb{N}$ und für $A, B \subset M$ sei $A \sim B$ genau dann, wenn A und B genau gleich viele Elemente enthalten.