第二十讲 可对角化的条件

一、可对角化的概念

二、几个引理

三、可对角化的条件

四、对角化的一般方法

一、可对角化的概念

定义1: 设 \checkmark 是 n 维线性空间V的一个线性变换,如果存在V的一组基,使 \checkmark 在这组基下的矩阵为对角矩阵,则称线性变换 \checkmark 可对角化.

定义2: 矩阵A是数域 P上的一个 n 级方阵. 如果存在一个P 上的n 级可逆矩阵X ,使 $X^{-1}AX$ 为对角矩阵,则称矩阵A可对角化.

二、几个引理

1. 设 $\checkmark \in L(V)$, λ 是 \checkmark 的特征值,则 $\dim V_{\lambda} \leq \lambda_0$ 的代数重数

即几何重数不超过代数重数. 证明

2. (Th. 8) 设 \checkmark 为 n 维线性空间 V 的一个线性变换, 如果 $\xi_1,\xi_2,\dots\xi_k$ 分别是 \checkmark 的属于互不相同的特征值 $\lambda_1, \lambda_2, \dots \lambda_k$ 的特征向量,则 $\xi_1, \xi_2, \dots \xi_k$ 线性无关.

3. (Th. 9) 设义为线性空间V的一个线性变换, λ_1, λ_2, L λ_k 是义的不同特征值,而 $\xi_{i1}, \xi_{i2}, \dots \xi_{ir_i}$ 是属于特征值 λ_i 的线性无关的特征向量, $i=1,2,\dots,k$,则向量 $\xi_{11},\dots,\xi_{1r_1},\dots,\xi_{k1},\dots,\xi_{kr_k}$ 线性无关.

证明.

三、可对角化的条件

1. (Th. 7) 设 \checkmark 为 n 维线性空间 V的一个线性变换,

则 \checkmark 可对角化 \Leftrightarrow \checkmark 有n个线性无关的特征向量.

2. (Cor. 1) 设 为 n 维线性空间 V 的一个线性变换,

若 \checkmark 在域 P 中有 n个不同的特征值. 则 \checkmark 可对角化.

3. (Cor. 2) 在复数域C上的线性空间中,

如果线性变换》的特征多项式没有重根,则》可 对角化. 证明.

- 4. $\mathscr{A} \in L(V)$,可对角化 $\Leftrightarrow \sum_{i=1}^{t} \operatorname{dim} V_{\lambda_i} = n$. (n=dimV,而 $\lambda_1, \lambda_2, \dots, \lambda_t$ 是 \mathscr{A} 的全部特征值)
- 5. $A \in L(V)$ 可对角化 $\Leftrightarrow \dim V_{\lambda_i} = \lambda_i$ 的重shu

6. 设 ≥ 为 n维线性空间 V 的一个线性变换,

岩✓在某组基下的矩阵为对角矩阵

$$D = \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \lambda_n \end{pmatrix}$$

$$f_{\mathscr{A}}(\lambda) = (\lambda - \lambda_1)(\lambda - \lambda_2)\cdots(\lambda - \lambda_n).$$

2)对角矩阵D主对角线上元素除排列次序外是唯一确定的,它们就是如的全部特征根(重根按重数计算).

三、对角化的一般方法

设义为维线性空间V的一个线性变换, $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ 为V的一组基,义在这组基下的矩阵为A.

步骤:

- 1° 求出矩阵A的全部特征值 $\lambda_1, \lambda_2, \dots, \lambda_k$.
- 2° 对每一个特征值 λ_i ,求出齐次线性方程组 $(\lambda_i E A)X = 0$, i = 1.2...k.

的一个基础解系(此即 \checkmark 的属于 λ_i 的全部线性无关的特征向量在基 $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ 下的坐标).

- 3° 若全部基础解系所含向量个数之和等于n ,则
- \checkmark 有n个线性无关的特征向量 $\eta_1,\eta_2,\dots,\eta_n$,从而 \checkmark

(或矩阵A) 可对角化. 以这些解向量为列, 作一个

n阶方阵T,则T可逆, $T^{-1}AT$ 是对角矩阵. 而且

T就是基 $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ 到基 $\eta_1, \eta_2, \dots, \eta_n$ 的过渡矩阵.

例1. 设复数域上线性空间V的线性变换》在某组基

 $\varepsilon_1, \varepsilon_2, \varepsilon_3$ 下的矩阵为

$$A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

问》是否可对角化.在可对角化的情况下,写出基变换的过渡矩阵.

解: A的特征多项式为

$$\left|\lambda E - A\right| = \begin{vmatrix} \lambda & 0 & -1 \\ 0 & \lambda - 1 & 0 \\ -1 & 0 & \lambda \end{vmatrix} = (\lambda - 1)^2 (\lambda + 1)$$

得A的特征值是1、1、一1.

解齐次线性方程组 $(1 \cdot E - A)X = 0$, 得 $x_1 = x_3$

故其基础解系为: (1,0,1),(0,1,0)

所以,
$$\eta_1 = \varepsilon_1 + \varepsilon_3$$
, $\eta_2 = \varepsilon_2$

是✅的属于特征值1的两个线性无关的特征向量.

再解齐次线性方程组 $(-1 \cdot E - A)X = 0$,得 $\begin{cases} x_1 = -x_3 \\ x_2 = 0 \end{cases}$ 故其基础解系为: (1,0,-1)

所以, $\eta_3 = \varepsilon_1 - \varepsilon_3$

是✅的属于特征值一1的线性无关的特征向量.

 η_1,η_2,η_3 线性无关,故 \checkmark 可对角化,且

✓ 在基 η_1, η_2, η_3 下的矩阵为对角矩阵

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{pmatrix};$$

$$(\eta_1, \eta_2, \eta_3) = (\varepsilon_1, \varepsilon_2, \varepsilon_3) \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & -1 \end{pmatrix}.$$

即基 $\varepsilon_1, \varepsilon_2, \varepsilon_3$ 到 η_1, η_2, η_3 的过渡矩阵为

$$T = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & -1 \end{pmatrix},$$

$$T^{-1}AT = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

例2. 问A是否可对角化? 若可, 求可逆矩阵T, 使

$$T^{-1}AT$$
 为对角矩阵. 这里 $A = \begin{pmatrix} 3 & 2 & -1 \ -2 & -2 & 2 \ 3 & 6 & -1 \end{pmatrix}$

解: A的特征多项式为

$$|\lambda E - A| = \begin{vmatrix} \lambda - 3 & -2 & 1 \\ 2 & \lambda + 2 & -2 \\ -3 & -6 & \lambda + 1 \end{vmatrix}$$
$$= \lambda^3 - 12\lambda + 16 = (\lambda - 2)^2 (\lambda + 4)$$

得A的特征值是2、2、-4.

对于特征值2,求出齐次线性方程组

$$\begin{pmatrix} -1 & -2 & 1 \\ 2 & 4 & -2 \\ -3 & -6 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

的一个基础解系: (-2, 1, 0), (1, 0, 1)

对于特征值一4, 求出齐次方程组

$$\begin{pmatrix} -7 & -2 & 1 \\ 2 & -2 & -2 \\ -3 & -6 & -3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

的一个基础解系: $(\frac{1}{3}, -\frac{2}{3}, 1)$

所以A可对角化.

$$\Rightarrow T = \begin{pmatrix} -2 & 1 & \frac{1}{3} \\ 1 & 0 & -\frac{2}{3} \\ 0 & 1 & 1 \end{pmatrix}$$

例3: 在 $P[x]_n(n>1)$ 中,求微分变换 \mathcal{D} 的特征多

项式.并证明: ②在任何一组基下的矩阵都不可能 是对角矩阵(即②不可对角化).

解: 在 $P[x]_n$ 中取一组基: 1, x, $\frac{x^2}{2!}$, ..., $\frac{x^{n-1}}{(n-1)!}$. 则 \mathcal{D} 在这组基下的矩阵为

$$A = egin{pmatrix} 0 & 1 & 0 & \cdots & 0 \ 0 & 0 & 1 & \cdots & 0 \ \cdots & \cdots & \cdots & \cdots & \cdots \ 0 & 0 & 0 & \cdots & 1 \ 0 & 0 & 0 & \cdots & 0 \end{pmatrix}.$$

于是
$$|\lambda E - A| = \begin{pmatrix} \lambda & -1 & 0 & \cdots & 0 \\ 0 & \lambda & -1 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & -1 \\ 0 & 0 & 0 & \cdots & \lambda \end{pmatrix} = \lambda^n$$

∴ ②的特征值为0(n重).

又由于对应特征值0的齐次线性方程组 -AX = 0的系数矩阵的秩为n-1,从而方程组的基础解系只含有一个向量,它小于 $P[x]_n$ 的维数n(>1). 故 \mathscr{D} 不可对角化 .

Proof:

设
$$\dim V_{\lambda_0} = m, \Leftrightarrow \alpha_1, \alpha_2, \cdots, \alpha_m 为 V_{\lambda_0}$$
的基,

$$\mathscr{A}(\alpha_i) = \lambda_i \alpha_i$$

扩充基: $\alpha_1, \dots, \alpha_m, \alpha_{m+1}, \dots, \alpha_n$ 则

$$eta$$
 允基: $lpha_1, \cdots, lpha_m, lpha_{m+1}, \cdots, lpha_n$ 则 $\mathscr{A}(lpha_1, \cdots, lpha_m, lpha_{m+1}, \cdots, lpha_n) = (lpha_1, \cdots, lpha_m, lpha_{m+1}, \cdots, lpha_n)$ 故

$$f_A(\lambda) = (\lambda - \lambda_0)^m g(\lambda), \quad \therefore m \leq \lambda_0$$
的重数.

定理7 设 \checkmark 为n 维线性空间V的一个线性变换,

则 \checkmark 可对角化 \Leftrightarrow \checkmark 有n个线性无关的特征向量.

证:设义在基 $\varepsilon_1, \varepsilon_2, \dots \varepsilon_n$ 下的矩阵为对角矩阵

$$\left(egin{array}{cccc} \lambda_1 & & & & \ & \lambda_2 & & & \ & & \ddots & & \ & & & \lambda_n \end{array}
ight)$$

则有 $\mathscr{N}_i = \lambda_i \varepsilon_i, i = 1, 2, \dots n$

 $∴ \varepsilon_1, \varepsilon_2, ⋯ \varepsilon_n$ 就是✓的n个线性无关的特征向量.

反之,若 \checkmark 有n个线性无关的特征向量 $\eta_1,\eta_2,\dots,\eta_n$,那么就取 $\eta_1,\eta_2,\dots,\eta_n$ 为基,则在这组基下 \checkmark 的矩阵是对角矩阵.

定理8 设∞为n维线性空间V的一个线性变换,

如果 $\xi_1,\xi_2,\dots\xi_k$ 分别是 \checkmark 的属于互不相同的特征值

 $\lambda_1, \lambda_2, \dots \lambda_k$ 的特征向量,则 $\xi_1, \xi_2, \dots \xi_k$ 线性无关.

证:对/作数学归纳法.

当 k=1 时, $: \xi_1 \neq 0$, $: \xi_1$ 线性无关. 命题成立.

假设对于k-1来说,结论成立. 现设 $\lambda_1, \lambda_2, \cdots \lambda_k$ 为 \checkmark 的互不相同的特征值, ξ_i 是属于 λ_i 的特征向量,

即
$$\mathscr{A}\xi_i = \lambda_i \xi_i, \quad i = 1, 2, \dots, n.$$

设
$$a_1\xi_1 + a_2\xi_2 + \dots + a_k\xi_k = 0$$
, $a_i \in P$. ①

以A_k乘①式的两端,得

$$a_1 \lambda_k \xi_1 + a_2 \lambda_k \xi_2 + \cdots + a_k \lambda_k \xi_k = 0.$$
 (2)

又对①式两端施行线性变换∞,得

$$a_1 \lambda_1 \xi_1 + a_2 \lambda_2 \xi_2 + \cdots + a_k \lambda_k \xi_k = 0$$
 (3)

③式减②式得

$$a_1(\lambda_1 - \lambda_k)\xi_1 + a_2(\lambda_2 - \lambda_k)\xi_2 + \dots + a_{k-1}(\lambda_{k-1} - \lambda_k)\xi_{k-1} = 0$$

由归纳假设, $\xi_1,\xi_2,\dots\xi_{k-1}$ 线性无关,所以

$$a_i(\lambda_i - \lambda_k) = 0, i = 1, 2, \dots, k-1$$

但 $\lambda_1, \lambda_2, \dots, \lambda_k$ 互不相同,所以 $a_1 = a_2 = \dots = a_{k-1} = 0$

将之代入①,得 $a_k \xi_k = 0$.

$$Q \quad \xi_k \neq 0, \qquad \therefore \quad a_k = 0$$

故 ξ_1,ξ_2,\dots,ξ_k 线性无关.

证明: 首先, \checkmark 的属于同一特征值 λ_i 的特征向量

的非零线性组合仍是 \checkmark 的属于特征值 λ_i 的一个特征

向量.

设
$$a_{11}\xi_{11} + \dots + a_{1r_1}\xi_{1r_1} + \dots + a_{k1}\xi_{k1} + \dots + a_{kr_k}\xi_{kr_k} = 0$$
, $a_{11},\dots,a_{1r_1},\dots,a_{k1},\dots,a_{kr_k} \in P$

$$\Rightarrow \eta_i = a_{i1}\xi_{i1} + \dots + a_{ir_i}\xi_{ir_i}, i = 1, 2, \dots, k$$

由④有,
$$\eta_1 + \eta_2 + \cdots + \eta_k = 0$$

若有某个 $\eta_i \neq 0$,则 η_i 是 ω 的属于特征值 λ_i 的精征向量. $\pi_i \lambda_1, \lambda_2, \dots \lambda_k$ 是互不相同的,由定理8,必有所有的 $\eta_i = 0$, $i = 1, 2, \dots, k$

而 ξ_{i1} ,…, ξ_{ir_i} 线性无关,所以有

$$a_{i1} = \cdots = a_{ir_i} = 0, i = 1, 2, \cdots, k$$

故 $\xi_{11}, \dots, \xi_{1r_1}, \dots, \xi_{k1}, \dots, \xi_{kr_k}$ 线性无关.

