@ show the red-black tree that results after each of the integer keys 21,32,64,75, and 15 are inserted introduct order, into an initially empty red-black tree. Clearly show the tree that results after each insertion (indicating the color of each node), and make clear any rotation that must be performed.

Q2 a) consider a 0-1 knapsack problem with 5 items and with max weight 11. The benefits and weight values are shown below. Find the optimal solution afterwards DP. Show all teable values. Be sure to state both the value of maximum benefit as well as item selected. Explain how you determine the items selected (you can also use column for keepitem/selected items).

			رەس	w,	w ₂	w,	. 1	ws 51	61	ω2 7	81	9	10	W()	selected items
Item	value	Lot	0	1	2	3	4	-	Salar -	to be the little	0	0	0	0	and the same
0	O	0	0	0	0	O	0	0	O	0	0			and the second	A O
1	1	4/3	0	1	(I)	1	1	1	1	1	1	1	1	1	3 704
	-	7	0	1	6	17	(F)	7	7	7	1	7	7	7	
2	6	2	0	1	-	4->					-	100	125	126	
		913	0	1	16	17	7	18	19	24	25	25	25	25	
3	18	5	0		1	-	-		163	100	28	29	29	40	
/1	2. 6	01	6	11	6	17	17	18	22	23	20	45	23	70	
4	22	6	0	1	1			-	1	100	120	34	35	(35)	1
5	28	7	0	1	16	17	17	18	22	28	29	139	1	1	-1-4

elected Them L 2 3 4 5
$$\omega + = 11 - 7 = 4$$
 $1 + 0 + 0 + 1 = 11 - 7 = 4$
 $2 - 1 = 1 = 1$

value 1

Prenious Guestion

a Run max heapify out i on the following heap. All nodes of the Hap should maintain Heap property after the heapification is completed.

$$i = \lfloor \frac{n}{2} \rfloor = \lfloor \frac{10}{2} \rfloor = 5$$

At i=5, > no change since 7 is greater than 1

At i=4 > no change since 14 is greater than 288

At i=3 > no change since 10 is greater than 983

At i=2 > 4 is ten than the Church 14, 30 is will be replaced by maps church, 14, 14

At i = 1, no heapification, already maintain heap property

Db Chiren on efficient circular array based queue q capable of holding to objects, show the steps and the final contents of the array afterthe following code is executed.

for (int k=1) K = 6; k++) {q, enquee (k)

	0	1	2	3	4	5	6
9.	1	12	13	4	5	6	
	1	1	To be		1		

for (in+ k=1; k < 3; k++) {

9. dequeuels;

q. enqueue (q. dequeue);

12=1	12	3	4	5	6	
				THE CASE OF THE PARTY	100000	

14 5 6 3

Maximum benefit over the set of all items is 35 and \$1,2,53 are the set of stems that gives us maximum benefit (35)

- Q what is the running time of 0-1 knapsack problem using DP wed in #a above? Explain your answer in good details.
- > Running time of 0-1 knopsack used in #a above is

 O(nw), where n = number of items

 w = the limit/coperty of the weight.

Size = logbw w = 2 size Since, size = number of bits to represent w and b = base.

:.
$$T(n) = O(n\omega) = O(n \cdot 2^{s/2e})$$

 $\Rightarrow O(n \cdot \omega)$

ma had at it have the in the sit	
DIUKSTRA (G, W, S)	
1. Initiaurze-Single-Source (G,S)	
$s \leftarrow \emptyset$	1 at love which
0 - V[G]	- V (stakes v time to assign in is
while \$ 7 \$	- (9+ loop to each
do U - Extract -min(a)	- VLOgV [Liegv to 8
s ← s ∪ { u }	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7. for each vertex UC Ads[4]	V(DE)000), VDE x 26 0(26) = 0(6)
do Relax (u,v,w)	E logU
-) Everytime it enters to line 7, we get at neighbour	smaller number of vertices
> Hence It accounts for DE	37.
: H takes V(DG) (1)	
≥ RE = O(E)	
so, total running whome is	
0 (V log V + = 10gV)	
= o(LV+E) logv)	The state of the same of the s
2 O(Glogv)	English of the State of the sta

101>1". This will cause the doop to run 1V1-1 times instead of Ivitmes. will the algorithm work? Expedin your answer,

> Yes this will word until there is no negative weight cycle present in the graph. When there is negative weight in graph. Hen, the algorithm does not work.

B consider the following graph. Find the minimum spenning Tree using Prims augonithm. Elesby show all the steps.

minimum spanning tree

$$\frac{1}{1} \frac{d}{d} = \frac{f}{g} \frac{g}{g}$$

$$\frac{1}{1} \frac{d}{d} = \frac{$$

lb) suppose the line 4 in the pseudocode is charged to "while 101>1", this will cause the doop to run 1V1-1 times instead of 1v1 times. Will the algorithm work? Explain your answer,

> Yes this will word until there is no negative weight cycle present in the graph. When there is negative weight in graph. Hen, the augmithm does not work.

- 9 9. An independent set in a graph, no two of which are adjacent, That is it is a set 3 of vertices such that for every two vertices in S, these is no edge connecting the two. The size of an independent set is the number of vertices at contains. Assume that independent set problem is in Np.
 - > We have to show that the solution for 3-CNF is solution of Independent set and the solution for independent set is solution of 3 CNF as well.

- graph? Explain your answer, will you be able to deal with negetile weight?
 - >> Yes, BF shortest path algorithm can be used for undirect graph because undirected graph is directed graph with 2 ways on each edge.

Crenerally BE can be used in graph with negative weight but cannot be used with negative cycle.

BF algorithm can handle negative weight in an undirected graph as long as there is no negative weight cycles. If there is negative weight cycle in the graph La cycle where the sum of edge weight is negative, the algorithm will not work correctly because it will keep reducing the distance values along the cycle indefinitely,

- 9 Suppose that A and B, and that A & B B. Crock one answer for each statement below. Also briefly Justify your answer.
 - All NP complet, NP, P

 True false

 NP herd .90, ... B is not able to reduce A?
 - 2. If A is Exp-Complete Hen B is > A reduced to B and 1th solution is Exp-Complete means B is Exp-Complete means B is Exp-Complete means B is
 - 3 Does A & p B vimplies B & p A in => For example, NP problem L

 general

 True false)

 Can be reduced to NP complete

 1 but NP complete problem

 Cannot be reduced to NP prob

In graph theory, a dominating set for a graph & = (V, E).

Is a subset D of V such that every tertex not in D is adjacent
to at least one member of D. An example of a Dominating
set is the set of the 3 nodes shown as hold for the graph G
shown below.

Example Dominating set example

二月被一次通用一个少少的一个人

well A de was a series of the

In figure 1, the retrices 2 and 3 are clearly members of a dominating set as every vertical that is not in dominating set {2,3} is adjacent to eather 2 or 3.