EE5609 Assignment 12

Abhishek Thakur

Abstract-This document solves problem based on solution of vector space.

Download all solutions from

https://github.com/abhishekt711/EE5609/tree/ master/Assignment 12

1 Problem

In
$$R^3$$
, let $\alpha_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix}$ and $\alpha_3 = \begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix}$. if

f is a linear functional on \mathbb{R}^3 such that $f(\alpha_1) = 1$, $f(\alpha_2) = -1$, $f(\alpha_3) = 3$,

And if
$$\alpha = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
, find $f(\alpha)$.

2 Solution

Given,
$$\alpha = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
. Let,

$$\mathbf{A} = \begin{pmatrix} \alpha_1 & \alpha_2 & \alpha_3 \end{pmatrix}$$
 (2.0.1)
$$\mathbf{AX} = \alpha$$
 (2.0.2)

$$\mathbf{AX} = \alpha \tag{2.0.2}$$

$$\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 1 & -2 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
 (2.0.3)

 $\mathbf{X} = A^{-1}\alpha$ will give solution of the equation.

$$\begin{pmatrix} 1 & 0 & -1 & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 1 & 0 \\ 1 & -2 & 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_3 \leftarrow R_3 - R_1} (2.0.4)$$

$$\begin{pmatrix} 1 & 0 & -1 & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 1 & 0 \\ 0 & -2 & 1 & -1 & 0 & 1 \end{pmatrix} \xrightarrow{R_3 \leftarrow R_3 + 2R_2} (2.0.5)$$

$$\begin{pmatrix} 1 & 0 & -1 & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 1 & 0 \\ 0 & 0 & -1 & -1 & 2 & 1 \end{pmatrix} \xrightarrow{R_3 \leftarrow R_3/(-1)} (2.0.6)$$

$$\begin{pmatrix} 1 & 0 & -1 & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & -2 & -1 \end{pmatrix} \xrightarrow{R_1 \leftarrow R_1 + R_3} (2.0.7)$$

$$\begin{pmatrix}
1 & 0 & 0 & 2 & -2 & -1 \\
0 & 1 & -1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & -2 & -1
\end{pmatrix}
\xrightarrow{R_2 \leftarrow R_2 + R_3} (2.0.8)$$

$$\begin{pmatrix}
1 & 0 & 0 & 2 & -2 & -1 \\
0 & 1 & 0 & 1 & -1 & -1 \\
0 & 0 & 1 & 1 & -2 & -1
\end{pmatrix}$$
(2.0.9)

Thus,

$$A^{-1} = \begin{pmatrix} 2 & -2 & -1 \\ 1 & -1 & -1 \\ 1 & -2 & -1 \end{pmatrix}$$
 (2.0.10)

$$\mathbf{X} = A^{-1}\alpha = \begin{pmatrix} 2 & -2 & -1 \\ 1 & -1 & -1 \\ 1 & -2 & -1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
 (2.0.11)

Given, f is a linear functional on \mathbb{R}^3 ,

$$\alpha = \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 \tag{2.0.12}$$

$$\implies f(\alpha) = \mathbf{X}^T \begin{pmatrix} f(\alpha_1) \\ f(\alpha_2) \\ f(\alpha_3) \end{pmatrix}$$
 (2.0.13)

Given, $f(\alpha_1) = 1$, $f(\alpha_2) = -1$ and $f(\alpha_3) = 3$.

$$f(\alpha) = \mathbf{X}^T \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix} \tag{2.0.14}$$

$$\implies f(\alpha) = \begin{pmatrix} a \\ b \\ c \end{pmatrix}^{T} \begin{pmatrix} 2 & 1 & 1 \\ -2 & -1 & -2 \\ -1 & -1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix} \quad (2.0.15)$$

$$f(\alpha) = \begin{pmatrix} a \\ b \\ c \end{pmatrix}^T \begin{pmatrix} 4 \\ -7 \\ -3 \end{pmatrix}$$
 (2.0.16)

Hence,

$$f(\alpha) = 4a - 7b - 3c \tag{2.0.17}$$