Домашняя Работа №8 по Дискретной Математике Цалапов Александр Михайлович Группа 191-322 Вариант - 27

Преподаватели: Набебин А.А.,

Будылина Е.А.

Московский Политех 2020

Задача 11.27

	T0	T1	S	L	M
F1	-	+	-	+	+
F2	+	-	+	-	-

$$f1 = (x+y&-z) ->z, f2 = -x&y$$

$$f1(x+y\&-z) \rightarrow z = xy'z' \lor x'y'z \lor x'yz \lor xyz' \lor xyz' \lor xyz$$

	, <i>'</i>	,			
N	xyz	ху	x'y'	Z	f
0	000	0	1	0	1
1	001	0	1	1	1
2	010	0	1	0	0
3	011	0	1	1	1
4	100	0	1	0	0
5	101	0	1	1	1
6	110	1	0	0	1
7	111	1	0	1	1

- 1. Функция не сохраняет 0, ибо f(0,0,0) = 1
- 2. Функция сохраняет 1, ибо f(1,1,1) = 1
- 3. Само двойственность. F1 не само двойственна, ибо f(0,0,1) = f(1,1,0)
- 4. Линейность. Вычислим полином Жегалкина = xy'z' V x'y'z V x'yz V xyz' V xyz = x(y+1)(z+1) + (x+1)(y+1)z + (x+1)yz + x(y+1)z + xy(z+1) + xyz =

$$(yz + xy + x + y + z + 1) +$$

 $(yz + z) +$
 $(yz + xy y) +$
 $(xy + x + y) +$
 $xy +$

yz=

(сумма двух одинаковых слагаемых равна 0)

y+1

Функция не линейна

5. f1=1 монотонна

f2=-x&y

Ν	ху	-X	F
0	00	1	0
1	01	1	1
2	10	0	0
3	11	0	0

- 1. Функция сохраняет 0, ибо f(0,0,0) = 0
- 2. Функция не сохраняет 1, ибо f(1,1,1) = 0
- 3. Само двойственность, f2 само двойственна, ибо f(0,1) = f(0,0)
- 4. Линейность. Вычислим полином Жегалкина x'y = (x+1)y = (x+1) = x+1. Функция не линейна
- 5. f2 = 0 не монотонна

Задача 12.27

	T0	T1	S	L	M
F1	+	+	-	-	+
F2	-	+	-	+	+
F3	+	-	+	+	+

Для f1: 0 0 0 1 1 (010) y 1 1 0 1 0 0 1 0 0 1 1 (101) xz 1 1 0 1 1 0 1 1 0 0

1 0 1 1 0 1 0 1 0 0 1 0 0 1 1 (111) xyz

f1 = y+xz+xyz - не L Для f2:

1 1 0 1 0 1 (10) у 1 0 1 0 f2 = y - L Для f3: 0 (x) 0 1 f3 = x - L

N	xyz	F1	xy	F2	Х	F3
0	000	0	00	1	0	0
1	001	0	01	1	1	0
2	010	1	10	1		
3	011	1	11	1		
4	100	0				
5	101	1				
6	110	1				

f1 = 00110111, f2 = 1111, f3 = 00

111

Монотонность:

f1=0011 0111

$$(001)=0 \qquad (011)=1$$

$$(000)=0 \qquad (010)=1 \qquad (110)=1$$

$$(101)=1 \qquad (101)=1$$

(110)=1

(100)=0

(111)=1

Функция возрастает на всех цепочках, следовательно, она монотонная

f2=1111

Функция монотонна

f3=00

функция монотонна