

КУРС ОБУЧЕНИЯ ПО БУРОВЫМ РАСТВОРАМ

Системы буровых растворов

Какой буровой раствор самый лучший

И

обеспечит безаварийное бурение ?

Системы буровых растворов

Буровые растворы на водной основе

Состав буровых растворов на водной основе (РВО):

	Глинистые РВО	Безглинистые РВО
Дисперсная среда	Вода	
Структурообразователь	Глина	Биополимер
Утяжелитель	Барит, карбонат кальция, соль	
Регулятор щелочности	Каустическая сода, известь, кальцинированная сода	
Регулятор фильтрации	Полимерная группа	
Специальные реагенты	Ингибитор, гидрофобизатор, детергент, смазывающая добавка, инкапсулятор	

Буровые растворы на углеводородной основе

Состав буровых растворов на углеводородной основе (РУО):

	Эмульсионные	Безводные
Дисперсная среда	Водно-углеводород- ная эмульсия	Углеводородная среда
Структурообразователь	Органофильная глина	
Утяжелитель	Барит, карбонат кальция	
Регулятор щелочности	Известь	
Регуляторы реологии и фильтрации	Полимерная группа	
Специальные реагенты	Эмульгатор, гидрофобизатор, смазывающая добавка	

Буровые растворы для бурения в условиях АВПД

Вскрытие продуктивных пластов в геологически осложненных условиях аномально высокого пластового давления (АВПД), а также при давлении ниже гидростатического (АНПД) влечет за собой снижение проницаемости продуктивного пласта, непосредственно влияющее на дебит скважины при освоении.

В первом случае из-за возможности вызвать проявление скважины утяжеляют раствор и в призабойную зону пласта проникает большое количество фильтрата и утяжелителя, что значительно ухудшает фильтрационную характеристику пористой среды.

Во втором случае применяют обычную промывочную жидкость или даже тех.воду, которая также в большом количестве проникает в пласт и резко снижает естественную проницаемость коллектора.

Буровые растворы для бурения в условиях АВПД

Для снижения аварийности при бурении в условиях АВПД и АНПД применяют:

- 1. Утяжеленные полимерсолевые буровые растворы с малым содержанием твердой фазы или без нее.
- 2. Бурение при депрессии на пласт.
- 3. Пенные и аэрированные системы.
- 4. Облегченные эмульсионные растворы на углеводородной основе и с добавкой микросфер для вскрытия поглощающих интервалов с АНПД.
- 5. Инновационные методы временного блокирования продуктивных горизонтов.

При бурении ННС и ГС на Приобском месторождении возможно возникновение следующих осложнений и аварий:

- 1. Размыв грунта под лежневкой и потери бурового раствора.
- 2. Осыпи и обвалы слабосцементированных пород.
- 3. Сужение ствола скважины.
- 4. Потеря циркуляции и возникновение поглощения.
- 5. Высокий коэффициент трения и подлипание КНБК.
- 6. Дифференциальные прихваты КНБК и ОК.
- 7. ГНВП.

Приобское месторождение является гигантским месторождением по добыче нефти на территории России, особенностью которого является удаленность и труднодоступность, а также затопление месторождения в периоды паводков. Отличительной чертой Приобского является осложнённое геологическое строение, характеризующееся многопластовостью.

Верхние пласты, способные при неправильных технологических операциях привести к осложнениям, достаточно хорошо изучены. Это **Кузнецовская**, **Березовская и Ганькинская** свиты. Характеризуются обвалообразованием и необходимостью перекрытия обсадной колонной (кондуктором). Наиболее проблематичными нижними интервалами являются **Викуловская, Черкашинская и Алымская** свиты. Помимо неустойчивости пород, образующих стенки скважины, Черкашинская свита характеризуется пластовой агрессией, а Алымская свита уязвима к понижению плотности бурового раствора от плотности вскрытия пласта.

Причины осложнений и аварий, не зависящие от бурового раствора:

- 1. Недостаточная очистка ствола скважины при бурении с высокой скоростью проходки.
- 2. Недостаточное количество расхаживаний перед наращиванием.
- 3. Простой с промывкой в песчаниках во время ремонтных работ.
- 4. Ускоренный выход на режим промывки до разрушения структуры бурового раствора, находящегося в скважине.
- 5. Превышение скорости СПО (как при подъеме, так и при спуске).
- 6. Ошибочные данные по пластовому давлению.
- 7. Отсутствие тех.СПО (шаблонирования) в интервале открытого ствола.
- 8. Неквалифицированные действия персонала (буровой бригады).
- 9. Отсутствие или отказ (поломка) бурового оборудования.
- 10. Временной фактор.

Причины осложнений и аварий, зависящие от бурового раствора:

- 1. Несоответствие параметров бурового раствора критически важных для данного интервала.
- 2. Недостаточная выносная способность бурового раствора.
- 3. Недостаточная ингибирующая способность бурового раствора.
- 4. Неквалифицированные действия полевого инженера по буровым растворам.
- 5. Некачественные хим.реагенты.

Область применения РУО

Применение РУО может быть более эффективно, чем РВО, в следующих случаях:

- 1. Бурение скважин с большим отходом.
- 2. Бурение скважин со сложными профилями.
- 3. Бурение в интервалах соленосных толщ и высокопластичных глинистых пород.
- 4. Стабилизация неустойчивых отложений.
- 5. Максимальная продуктивность гидрофобных коллекторов.
- 6. Высокая механическая и коммерческая скорость бурения.
- 7. Снижение объемов приготовления растворов за счет многократного повторного использования РУО.

Преимущества применения РУО

Преимущества использования РУО:

- 1. Плотность от ~920 до 2300 кг/м³.
- 2. Высокая стабильность.
- 3. Высокие смазывающие способности.
- 4. Тонкая фильтрационная корка.
- 5. Низкая фильтрация.
- 6. Практически полное устранение дифференциальных прихватов.
- 7. Высокие ингибирующие способности.
- 8. Высокая устойчивость к загрязнению.
- 9. Низкие требования к оборудованию очистки.
- 10. Отсутствие коррозии инструмента.
- 11. Высокое качество первичного вскрытия.

Ограничения применения РУО

Ограничения применения РУО:

- 1. Наличие проницаемых пластов в интервале бурения и высокие риски возникновения поглощений бурового раствора.
- 2. Для очистки шлама необходимо применение дополнительного очистного оборудования.
- 3. Сложность расчетов гидравлики, давлений и ЭЦП.
- 4. Сложность проведения электрометрических работ.
- 5. Сложность мониторинга поступления газа в буровой раствор.
- 6. Пожароопасность и экологическая вредность.

Отличия РВО от РУО

Практика применения растворов на углеводородной основе имеет ряд принципиальных отличий от применения растворов на водной основе:

- 1. Стоимость бурового раствора.
- 2. Требования к оборудованию буровой.
- 3. Требования к инженерному персоналу сопровождения.
- 4. Время приготовления.
- 5. Повторное использование.
- 6. Контроль (регулирование) и замеры параметров.
- 7. ЭЦП.
- 8. Геофизические исследования.
- 9. Применение буферов при цементировании и замещении.
- 10. Экологический фактор.