

Algorithmical Geometry: Delaunay Triangulation

Markus Pawellek

January 15, 2022

Outline

Introduction

Mathematical Preliminaries

Geometric Primitives

Data Structure

Algorithm

Implementation

Applications

Conclusions

 $^{{\}rm "https://upload.wikimedia.org/wikipedia/commons/b/b8/Approx-3 tori.svg, December 29, 2021 and {\rm "https://upload.wikipedia/commons/b/b8/Approx-3 tori.svg, December 29, 2021 and {\rm https://upload.wikipedia/commons/b/b8/Approx-3 tori.svg, December 29, 2021 and {\rm https://upload.wikipedia/commons/b/b8/Approx-3 tori.svg, December 29, 2021 and {\rm https://upload.wikipedia/commons/b/b8/Approx-2021 and {\rm https://upload.wikipedia/commons/b/b8/Approx-2021 and {\rm https://upload.wikipedia/commons/b/b8/Approx-2021 and {\rm https://upload.wikipedia/commons/b/b8/Approx-2021 and {\rm ht$

Educational Problems:

Many Resources

- Many Resources
- Duality to Voronoi Diagrams

- Many Resources
- Duality to Voronoi Diagrams
- Multiple Algorithm Types: Incremental, Sweepline, Divide-and-Conquer

- Many Resources
- Duality to Voronoi Diagrams
- Multiple Algorithm Types: Incremental, Sweepline, Divide-and-Conquer
- Varying Data Structures

1980 Lee and Schachter, "Two Algorithms for Constructing a Delaunay Triangulation"

- 1980 Lee and Schachter, "Two Algorithms for Constructing a Delaunay Triangulation"
- 1985 Guibas and Stolfi, "Primitives for the Manipulation of General Subdivisions and the Computation of Voronoi Diagrams"

- 1980 Lee and Schachter, "Two Algorithms for Constructing a Delaunay Triangulation"
- 1985 Guibas and Stolfi, "Primitives for the Manipulation of General Subdivisions and the Computation of Voronoi Diagrams"
- 1987 Dwyer, "A Faster Divide-and-Conquer Algorithm for Constructing Delaunay Triangulations"

- 1980 Lee and Schachter, "Two Algorithms for Constructing a Delaunay Triangulation"
- 1985 Guibas and Stolfi, "Primitives for the Manipulation of General Subdivisions and the Computation of Voronoi Diagrams"
- 1987 Dwyer, "A Faster Divide-and-Conquer Algorithm for Constructing Delaunay Triangulations"
- 1996 Shewchuk, "Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator"

- 1980 Lee and Schachter, "Two Algorithms for Constructing a Delaunay Triangulation"
- 1985 Guibas and Stolfi, "Primitives for the Manipulation of General Subdivisions and the Computation of Voronoi Diagrams"
- 1987 Dwyer, "A Faster Divide-and-Conquer Algorithm for Constructing Delaunay Triangulations"
- 1996 Shewchuk, "Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator"
- 2014 Fuetterling, Lojewski, and Pfreundt, "High-Performance Delaunay Triangulation for Many-Core Computers"

- 1980 Lee and Schachter, "Two Algorithms for Constructing a Delaunay Triangulation"
- 1985 Guibas and Stolfi, "Primitives for the Manipulation of General Subdivisions and the Computation of Voronoi Diagrams"
- 1987 Dwyer, "A Faster Divide-and-Conquer Algorithm for Constructing Delaunay Triangulations"
- 1996 Shewchuk, "Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator"
- 2014 Fuetterling, Lojewski, and Pfreundt, "High-Performance Delaunay Triangulation for Many-Core Computers"

Mathematical Preliminaries

Mathematical Preliminaries: Triangle and Circumcircle

Triangle

 $A,B,C\in\mathbb{R}^2$ affinely independent define vertices of a triangle.

Mathematical Preliminaries: Triangle and Circumcircle

Triangle

 $A,B,C\in\mathbb{R}^2$ affinely independent define vertices of a triangle.

Circumcircle

Circle that intersects with all vertices of the triangle.

Mathematical Preliminaries: Point Set

Point Set

 $\mathcal{V} \subset \mathbb{R}^2$ finite, $\#\mathcal{V} \geq 3$, affinely span \mathbb{R}^2

Mathematical Preliminaries: Triangulation

Point Set

 $\mathcal{V} \subset \mathbb{R}^2$ finite, $\#\mathcal{V} \geq 3$, affinely span \mathbb{R}^2

Triangulation

Planar straight-line graph over \mathcal{V} such that its edges form a maximal subset of non-crossing edges.

Mathematical Preliminaries: Delaunay Triangulation

Point Set

 $\mathcal{V} \subset \mathbb{R}^2$ finite, $\#\mathcal{V} \geq 3$, affinely span \mathbb{R}^2

Triangulation

Planar straight-line graph over \mathcal{V} such that its edges form a maximal subset of non-crossing edges.

Delaunay Triangulation

Circumcircle of any triangle contains no other points of V.

Mathematical Preliminaries: Delaunay Triangulation

Point Set

 $\mathcal{V} \subset \mathbb{R}^2$ finite, $\#\mathcal{V} \geq 3$, affinely span \mathbb{R}^2

Triangulation

Planar straight-line graph over \mathcal{V} such that its edges form a maximal subset of non-crossing edges.

Delaunay Triangulation

Circumcircle of any triangle contains no other points of V.

Mathematical Preliminaries: Delaunay Triangulation

Point Set

 $\mathcal{V} \subset \mathbb{R}^2$ finite, $\#\mathcal{V} \geq 3$, affinely span \mathbb{R}^2

Triangulation

Planar straight-line graph over \mathcal{V} such that its edges form a maximal subset of non-crossing edges.

Delaunay Triangulation

Circumcircle of any triangle contains no other points of V.

Optimality: maximization of the minimum angle of all angles

- ▶ Optimality: maximization of the minimum angle of all angles
- Convex hull is contained

- Optimality: maximization of the minimum angle of all angles
- Convex hull is contained
- Voronoi diagram is the dual

Mathematical Preliminaries: Properties of Delaunay Triangulation

- Duality to Voronoi Diagram (also useful for proofs)
- always exists -> proof
- If no points are cocircular, unique -> proof
- optimality: maximization of the minimum angle of all angles -> proof, reason why delaunay is good
- boundary is convex hull

Geometric Primitives

Counterclockwise Order

$$0 < \begin{vmatrix} A_x & A_y & 1 \\ B_x & B_y & 1 \\ C_x & C_y & 1 \end{vmatrix}$$

Counterclockwise Order
$$\iff$$
 C is left of \overline{AB}

$$0 < \begin{vmatrix} A_x & A_y & 1 \\ B_x & B_y & 1 \\ C_x & C_y & 1 \end{vmatrix} = \begin{vmatrix} B_x - A_x & B_y - A_y \\ C_x - A_x & C_y - A_y \end{vmatrix}$$

Counterclockwise Order
$$\iff$$
 C is left of \overline{AB}

$$0 < \begin{vmatrix} A_x & A_y & 1 \\ B_x & B_y & 1 \\ C_x & C_y & 1 \end{vmatrix} = \begin{vmatrix} B_x - A_x & B_y - A_y \\ C_x - A_x & C_y - A_y \end{vmatrix} = \det \left(B - A - C - A \right)$$

Geometric Primitives: Inside Circumcircle

Geometric Primitives: Inside Circumcircle

$$0 < \begin{vmatrix} A_x & A_y & A_x^2 + A_y^2 & 1 \\ B_x & B_y & B_x^2 + B_y^2 & 1 \\ C_x & C_y & C_x^2 + C_y^2 & 1 \\ D_x & D_y & D_x^2 + D_y^2 & 1 \end{vmatrix}$$

Data Structure

Edge-Based List-Like Data Structure:

Directed edges for vertices

- Directed edges for vertices
- Pointer to ccw. next directed edge with same origin vertex

- Directed edges for vertices
- Pointer to ccw. next directed edge with same origin vertex
- Directed dual edges for adjacent faces

- Directed edges for vertices
- Pointer to ccw. next directed edge with same origin vertex
- Directed dual edges for adjacent faces
- Pointer to ccw. next directed dual edge with same origin face

- Directed edges for vertices
- Pointer to ccw. next directed edge with same origin vertex
- Directed dual edges for adjacent faces
- Pointer to ccw. next directed dual edge with same origin face

Data Structure: Quad-Edge Implementation


```
struct edge {
    size_t next;
    size_t data;
};

struct quad_edge {
    edge data[4];
};

vector<vertex> vertices{};
vector<quad_edge> quad_edges{};
vector<size_t> free_edges{};
```


Data Structure: Quad-Edge Implementation

 $rot(x) = 4 \cdot \left| \frac{x}{4} \right| + (x+1 \mod 4)$

Data Structure: Quad-Edge Functions

Data Structure: Quad-Edge Operations

- edge functions
- create edge
- splice
- connect
- delete edge

Algorithm

Algorithm: Overview

- 1. Sort points by increasing x coordinate
- 1. If number of points is less than four, create an edge or a triangle.
- 2. Separate points into left and right half
- 3. Compute the lower common tangent and make it a cross edge
- 4. Merge Loop to insert crossing edges until upper tangent is reached
- 5. Return left and right convex hull edge
- 1. Remove edges from left partition that fail circle test
- 2. Remove edges from right partition that fail circle test
- 3. Check for upper tangent
- 4. Insert crossing edge by using circle test

Implementation

Implementation

 Geometric Primitives need exact computation and therefore arbitrary precision

Applications

Conclusions

Thank you for Your Attention!

References

(1)D. T. Lee and B. J. Schachter, "Two Algorithms for D. F. Watson, "Computing the n-Dimensional Delaunay (7)Constructing a Delaunay Triangulation". In: International Tessellation with Application to Voronoi Polytopes". In: Journal of Computer and Information Sciences 9 (1980). The Computer Journal 24 (1981), pp. 167–172, pol: pp. 219-242. DOI: 10.1007/BF00977785. 10.1093/cominI/24.2.167. (2)Leonidas Guibas and Jorge Stolfi. "Primitives for the (8) A. Bowyer. "Computing Dirichlet Tessellations". In: The Manipulation of General Subdivisions and the Computer Journal 24 (1981), pp. 162-166. DOI: Computation of Voronoi Diagrams", In: ACM 10.1093/cominI/24.2.162. Transactions on Graphics 4 (April 1985), pp. 74–123, pol: 10.1145/282918.282923. URL: Christoph Burnikel, Delaunay Graphs by Divide and (9)http://scca.sk/~samuelcik/das/auad_edae.pdf (visited Conquer, 1998, URL: https://pure.mpg.de/rest/items/ on 11/07/2020). item 1819432 4/component/file 2599484/content (3) Rex A. Dwyer, "A Faster Divide-and-Conquer Algorithm (visited on 11/07/2020). for Constructing Delaunay Triangulations". In: Algorithmica 2 (November 1987), pp. 137-151, DOI: P. Cignoni, C. Montani, and R. Scopiano, "DeWall: A Fast (10)10.1007/BF01840356. Divide-and-Conquer Delaunay Triangulation Algorithm in $E^{d''}$. In: Computer-Aided Design 30 (1998). (4)Jonathan Richard Shewchuk, "Trianale: Engineering a pp. 333-341, poi: 10.1016/S0010-4485(97)00082-1 2D Quality Mesh Generator and Delaunay Triangulator". In: Applied Computational Geometry: Towards Jyrki Katajainen and Markku Koppinen, "Constructina Geometric Engineering. Ed. by Ming C. Lin and Delaunay Triangulations by Meraina Buckets in Dinesh Manocha, Vol. 1148, Lecture Notes in Computer Quad-Tree Order", In: Fundamenta Informaticae 11 Science, From the First ACM Workshop on Applied

Computational Geometry, Springer-Verlag, May 1996.

(April 1988), pp. 275–288.