

Generating an InSAR DEM using ASF software tools

Rüdiger Gens

Outline

- AKDEM production system
- SAR interferometric processing chain
 - general setup
 - examples

AKDEM production system

- driver program runs processing chain from data ingest until geocoded digital elevation model
- allows STF, RAW and SLC data
- runs from configuration file
- allows definition of default values

Configuration file

AKDEM project: Configuration file

[General]
reference dem = /3dsar2/tlogan/dem/alaska_dem.img
base name = 57_23592_3919
log file = 1
quiet = 1
processors = 8
data type = STF
lat begin = 63.500
lat end = 64.500
coregistration = AUTOMATIC

maximum offset = 3 default values = /3dsar2/tlogan/default_values2

status = new

[Master image]
path = /3dsar2/akdem/tracks/57_tape1
data file = e2_3919.000
metadata file = e2_3919.000.par

[Slave image]
path = /3dsar2/akdem/tracks/57_other
data file = e1_23592.000
metadata file = e1_23592.000.par

Default values

```
reference dem = /3dsar2/tlogan/dem/alaska_fixed.img
log = 1
quiet = 1
processors = 8
data type = STF
coregistration = AUTOMATIC
maximum offset = 3
precise master = /3dsar2/tlogan/PRC/ERS2
precise slave = /3dsar2/tlogan/PRC/ERS1
minimum coherence = 0.3
phase unwrapping = snaphu_v2
projection file = /3dsar2/tlogan/albers.proj
projection key = albers
pixel spacing = 20
```


Data ingest

64.5°

- ingest of STF data
- can handle precision state vectors for ERS data
- allows latitude constraint

Average Doppler

- getting both images into the same geometry
- works fine for ERS imagery
- Radarsat imagery requires zero Doppler processing (currently under development)

Co-registration

- initial offset estimated from state vectors (pixels)
- fine co-registration for sub-pixel accuracy
- baseline estimate as side product
 Bn = -61.829628
 Bp = 19.505440
- exit condition with maximum offset (default 3 pixels)

Interferogram

- single-look interferogram
- color-coded multilooked interferogram

Coherence image

- exit condition with minimum coherence level (default value: 0.3)
- statistics
 - maximum: 0.975
 - average: 0.747

Offset matching

- improves geolocation by refining shifts in time and range
- iterative process
- matches real and simulated amplitude (derived from reference DEM) until no offset can be measured

Offset matching

simulated amplitude

Simulated phase / seeds points

- derived from reference DEM
- simulated phase
 - used for removal of topographic phase (optional)
- seed points
 - equally distributed
 - selection criteria: minimum slope in reference DEM
 - potential seed points: 10000
 - final number of seed points: 2321

Seed point distribution

X XXX X XXX XX X XXXXX XXX XXXXX XXXX XX X XXXXXX X XX XX XXXXXXXX X XX XXXXXXX XXXXXXXXXXXXX XXXXXXXXXXX XXX XXXXXXXXX XXXXXXXXXXXXXX XXXXXXXXXXXXXX XX XXXXXX XXXX XX XXXXXX XXXXX

Phase unwrapping

- multilooking of interferogram
- unwrapping with
 - snaphu (minimum cost flow algorithm)
 - escher (branch cut algorithm)
- unwrapped phase related to height

Phase unwrapping

wrapped phase

unwrapped phase

Baseline refinement

- information used
 - unwrapped phase
 - baseline estimate
 - seed points
- iterative process

Bn: -61.829628, Δ: 5.643837, Bp: 19.505440, Δ: -2.099306

Bn: -61.527863, Δ: 5.565868, Bp: 19.777119, Δ: -2.117374

Bn: -61.549664, Δ: 5.693950, Bp: 19.776737, Δ: -2.112025

Bn: -61.550213, Δ: 5.695910, Bp: 19.776741, Δ: -2.111963

Bn: -61.550186, Δ: 5.695967, Bp: 19.776741, Δ: -2.111965

Elevation

Ground range elevation

Elevation error

- estimate base on
 - initial height error estimate
 - baseline induced height
 - baseline
 - "flat earth" look deviation
 - coherence

Geocoding

- final product
- map projected
 - **UTM**
 - **Albers**
 - polar stereo

Problems?

Talk to Rick!

Questions

