Группа	
Студент	
Дата	

Лабораторная работа № 5

ХИМИЧЕСКОЕ РАВНОВЕСИЕ

Цель работы:

Опыт 1. Влияние изменения концентраций компонентов на смещение положения химического равновесия

Реагенты: FeCl₃, NH₄NCS

Уравнение реакции: $FeCl_{3(p)} + 3NH_4NCS_{(p)} \leftrightarrows Fe(NCS)_{3(p)} + 3NH_4Cl_{(p)}$

или, точнее, в ионном виде:

$$\operatorname{Fe}^{3+}_{(p)} + n\operatorname{NCS}^{-}_{(p)} \leftrightarrows \left[\operatorname{Fe}(\operatorname{NCS})_n\right]^z_{(p)}$$

желтый красный

где n = 1;2;3;6, а z = 2+; 1+; 0; 3-, соответственно.

Добавляемые вещества: $FeCl_3$ (реагент), NH_4NCS (реагент), NH_4Cl (продукт реакции).

Таблица 1. Результаты наблюдений и выводы

Исходные данные		Наблюдения	Выводы				
		Изменение	Изменение (увеличение,			Смещение	
No		(ослабление,	уменьшение) равновесной концентрации			(вправо,	
ячейк	Добавляемое	усиление)				влево)	
И	вещество	интенсивности					положения
		красной окраски	FeCl ₃	NH ₄ NCS	Fe(NCS) ₃	NH ₄ Cl	равновесия
		раствора					в системе
	Первоначально установившееся равновес					есие в сис-	
1 Эталон Красная теме $FeCl_3 + 3NH_4NCS \leftrightarrows Fe(N)$				CS) ₃ +3NH ₄ Cl			
			с равновесными концентрациями компонентов				
2	FeCl ₃						
3	NH ₄ NCS						
4	NH ₄ Cl						

Выводы:

1. (Сформулировать условия химического равновесия, используя кинетическое и термодинамическое выражения закона действующих масс. Написать выражение константы равновесия K_C)

^{2. (}Указать, как согласуются полученные результаты с принципом Ле Шателье – Брауна и законом действующих масс)

Реагенты: K₂Cr₂O₇, K₂CrO₄, NaOH, H₂SO₄

Таблица 2. Результаты наблюдений и выводы

	Исходные данные			
№	Исходный раствор		Добавляемый	Изменение окраски раствора
п/п	Состав	Окраска	водный	
			раствор	
1	$K_2Cr_2O_7$ K_2CrO_4		NaOH	
2	K ₂ CrO ₄		H_2SO_4	
	Наблюдения			
No		Наблюдения	[Выводы
№ п/п		Наблюдения Уравнение	[Выводы Смещение (вправо, влево)
	про			
	про	Уравнение		Смещение (вправо, влево)
	про	Уравнение		Смещение (вправо, влево) положения равновесия

Выводы: (Объяснить причину изменения первоначальной окраски раствора при добавлении кислоты (щелочи) и ее возвращении при восстановлении первоначальной среды. Указать, какой из ионов (${\rm Cr}_2{\rm O}_7^{2-}$ и ${\rm CrO}_4^{2-}$) более устойчив в кислотной среде, а какой в щелочной).

Опыт 3. Влияние изменения температуры на смещение положения равновесия реакции образования йодокрахмала

Реагенты: I_2 (водный раствор), $(C_6H_{10}O_5)_n$ (раствор крахмала)

Уравнение реакции:

$$(C_6H_{10}O_5)_n + mI_2 \leftrightarrows (C_6H_{10}O_5)_n \cdot mI_2$$
 темно-синий

Таблица 3. Результаты наблюдений и выводы

	Исходные д	Наблюдения				
No	Исследуемый образец раствора		Появление или исчезновение			
пробирки Вид		Температура, <i>t</i> °C	окраски р	раствора		
1	Эталон	$t_{\text{комн}} = 25 ^{\circ}\text{C}$	Раствор темно-синей окраск			
2	После нагревания	<i>t</i> ≈100 °C				
2	После охлаждения	<i>t</i> ≈ 10 °C				
Выводы						
Смещение (вправо, влево) положения равновесия			Тепловой эффект реакции			
реакции: $(C_6H_{10}O_5)_n + mI_2 \leftrightarrows (C_6H_{10}O_5)_n \cdot mI_2$ п		$\leftrightarrows (C_6 H_{10} O_5)_n \cdot m I_2$ при	$(\Delta_r H \gtrless 0)$			
нагревании		охлаждении	прямой	обратной		

Выводы: 1. (Объяснить причину исчезновения темно-синей окраски при нагревании раствора и ее появление вновь при его охлаждении. Указать, какая из особенностей истинного химического равновесия при этом проявляется)

2. (Сделать выводы о направлении смещения положения равновесия реакции образования йодокрахмала при нагревании и охлаждении раствора. Указать, как они согласуются с принципом Ле Шателье – Брауна. Отметить, какая из реакций (прямая или обратная) является эндотермической (Δ_r H > 0)).