Chapitre 4 : Dioptre et miroir sphériques dans les conditions de Gauss

I. Définition

Un dioptre sphérique est une surface sphérique, de centre C, de rayon R, séparant deux milieux transparents d'indices différents. Le dioptre possède le *poli spéculaire* : les écarts locaux à la sphéricité sont petits devant la longueur d'onde. Du fait des conditions de Gauss le dioptre est en fait limité à une calotte sphérique de sommet S et de dimension petite devant le rayon de courbure.

Convention

II. Relation de conjugaison d'un dioptre sphérique

Dans le cadre de l'approximation de Gauss, il y a stigmatisme approché pour tout point de l'axe, c'est-à-dire que tout point A_0 a une image (un point conjugué), et qu'il existe une relation liant la position de A_i à celle de A_0 indépendante de l'inclinaison des rayons lumineux qui passent par A_0 .

dans l'approximation de Gauss on peut écrire :

$$n_i \left(\frac{x}{\overline{A_i S}} - \frac{x}{\overline{CS}} \right) = n_o \left(\frac{x}{\overline{A_o S}} - \frac{x}{\overline{CS}} \right)$$
, c'est-à-dire $\frac{n_o}{\overline{A_o S}} - \frac{n_i}{\overline{A_i S}} = \frac{n_o - n_i}{\overline{CS}}$

Soit, en prenant pour origine le sommet du dioptre :

$$\frac{n_i}{SA_i} - \frac{n_o}{SA_o} = \frac{n_i - n_o}{SC} = \frac{n_i - n_o}{R}$$

 $\frac{n_i}{SA_i} - \frac{n_0}{SA_0} = V$ qui constitue la relation de conjugaison du dioptre ;

Avec
$$V = \frac{n_i - n_0}{R}$$
 est la *vergence du dioptre*

La relation précédente est algébrique, V a une valeur indépendante du sens de propagation de la lumière: $n_i - n_0$ et R changent de signe en même temps. La vergence d'un dioptre est une propriété intrinsèque, elle s'exprime en **dioptrie(s)** (δ) dans le système S.I ($1\delta = 1\text{m}^{-1}$).

1. Signification physique de la vergence

En introduisant V dans les relations de départ on obtient

$$n_i \alpha_i = n_o \alpha_o + (n_i - n_o) \omega$$
, soit

$$n_i \alpha_i = n_o \alpha_o - \frac{n_i - n_o}{\overline{SC}} x$$

$$n_i \alpha_i = n_o \alpha_o - V x$$

Soit un rayon incident parallèle à l'axe $(\alpha_0 = 0)$ et tel que x > 0

V > 0: dioptre convergent, alors $\alpha_i < 0$

V < 0: dioptre divergent, alors $\alpha_i > 0$

2. Foyers – distances focales

Les longueurs focales, ou *focales image* et *objet* sont les longueurs algébriques définies respectivement par les relations ci-dessous :

$$f_i = \frac{n_i}{V} \text{ et } f_0 = -\frac{n_0}{V}$$

3. Foyer image: c'est le conjugué du point objet à l'infini sur l'axe optique

$$\frac{n_i}{\overline{SF_i}} = V \; ; \; \overline{SF_i} = \frac{n_i}{V} = f_i$$

4. Foyer objet : c'est le conjugué du point image à l'infini sur l'axe optique

$$-\frac{n_0}{\overline{SF_0}} = V \; ; \; \overline{SF_0} = -\frac{n_0}{V} = f_0$$

Autres expressions de la relation de conjugaison

En reportant $\overline{SF_i} = \frac{n_i}{V}$ et $\overline{SF_o} = -\frac{n_o}{V}$ dans la relation de conjugaison on obtient immédiatement :

$$\frac{\overline{SF_i}}{\overline{SA_i}} + \frac{\overline{SF_o}}{\overline{SA_o}} = 1$$
ou encore
$$\frac{f_i}{p_i} + \frac{f_o}{p_o} = 1$$
en posant
$$\overline{SA_i} = p_i \text{ et } \overline{SA_o} = p_o$$

on établirait de même :
$$\overline{\overline{F_iA_i}}.\overline{F_oA_o}=\overline{SF_i}.\overline{SF_o}=f_if_o$$
 (Newton)

III. Miroirs sphériques

Avec pour sens positif celui de la lumière à l'entrée la loi de la réflexion $i_2 = -i_1$ peut-être considéré comme un cas particulier de celle de la réfraction $n_0 \sin(i_0) = n_i \sin(i_i)$ où on poserait

ni = -no. Les relations établies pour le dioptre sphérique se transposent alors immédiatement dans le cas du miroir sphérique.