5.1. Redes de aprendizaje supervisado basadas en la cuantificación vectorial

Curso de doctoramiento "Técnicas de Computación Flexíbeis"

Learning Vector Quantization (LVQ)

- Versión supervisada de SOM (SOM para clasificación)
- LVQ usa todos los datos para situar todos los prototipos.
- Pista: modificar los prototipos de modo que se sitúen cerca de sus clases.
 - ☐ Seleccionar un ejemplo de entrenamiento:
 - ☐ Si el prototipo más cercano pertenece a la misma clase que el ejemplo, acerca el prototipo al ejemplo.
 - ☐ Si el prototipo más cercano pertenece a otra clase, aleja el prototipo del exemplo.

Learning Vector Quantization (LVQ)

- □ Red mono-capa de propagación directa
- □ Entrenamiento híbrido supervisado no supervisado.
- □ Entrenamiento en diferido.
- □ Transforma patrones multi-dimensionales a una representación bi-dimensional en la que no se conserva la topología (a diferencia de SOM).

Ejemplo de red LVQ

Entrenamiento en LVQ

- 1. Seleccionar aleatoriamente N ejemplos de entrenamiento como prototipos iniciales para cada clase k: \mathbf{m}_{kl} , ..., \mathbf{m}_{kN}
- Seleccionar aleatoriamente un ejemplo de entrenamiento \mathbf{x}_i . Sea \mathbf{m}_{kj} el prototipo más cercano a \mathbf{x}_i .
 - a. Si \mathbf{x}_i pertenece a la clase k, acercar el prototipo \mathbf{m}_i al ejemplo de entrenamiento \mathbf{x}_i :

$$\overrightarrow{m}_{ki}(t+1) = \overrightarrow{m}_{ki}(t) + \alpha \left(\overrightarrow{x}_i - \overrightarrow{m}_{ki}(t)\right)$$

d. Se \mathbf{x}_i no pertenece a la clase k, alejar el prototipo \mathbf{m}_i del ejemplo de entrenamiento \mathbf{x}_i :

$$\overrightarrow{m}_{ki}(t+1) = \overrightarrow{m}_{ki}(t) - \alpha \left(\overrightarrow{x}_i - \overrightarrow{m}_{ki}(t)\right)$$

3. Repetir el paso 2, reduciendo la velocidad de aprendizaje $\alpha(t)$ hasta 0 en cada iteración.

Entrenamiento / Procesamiento en LVQ

- □ Condición de terminación del entrenamiento:
 - □ Alcanzar un n° determinado de iteraciones.
 - □O un valor bajo en la velocidad de aprendizaje.

- □ Procesamiento:
 - □ Para cada patrón, selecciona la neurona con un vector de pesos más similar, y asigna el patrón a la clase asociada a dicha neurona.

LVQ: SOM en problemas de clasificación

- □ Cada neurona representa una clase y define su frontera.
- ☐ Cada patrón de entrada se asigna a la clase de su neurona más cercana.
- Entrenamiento en dos etapas:
 - 1) Etapa no supervisada (SOM convencional).
 - 2) Etapa supervisada de ajuste fino de los pesos de las neuronas para mejorar la clasificación incorrecta
- ☐ La actualización de pesos es una versión incremental del aprendizaje por minimización del error (regla delta).

Aprendizaje

□ Método LVQ-1

$$\mathbf{m}_{j}(t+1) \leftarrow \mathbf{m}_{j}(t) + \alpha(t)[\mathbf{x}(t) - \mathbf{m}_{j}(t)]$$
 {**Premio** $\mathbf{a} \ \mathbf{m}_{j}(t)$ }

$$\mathbf{m}_{i}(t+1) \leftarrow \mathbf{m}_{i}(t) - \alpha(t)[\mathbf{x}(t) - \mathbf{m}_{i}(t)]$$
 {Castigo a $\mathbf{m}_{i}(t)$ }

- •**Premio**: Si la clase de $\mathbf{m}_c(t)$, coincide con la de $\mathbf{x}(t)$
- •Castigo: En otro caso, $\mathbf{m}_{c}(t)$ se aleja de $\mathbf{x}(t)$.

LQV-1

- ☐ Tiende a mover los prototipos hacia prototipos de aprendizaje de su misma clase y a alejarlos de los de otra clase
- \square Recomendable fijar un valor peqeño para $\alpha(0)$, bastante menor que 0.1 (0.02 ó 0.03).
- \square Número de prototipos r:

$$50N_p < r < 200N_p$$

• El valor de r no es muy importante si el conjunto inicial es de buena calidad (previamente editado).

LVQ-1 Optimizado (OLVQ-1)

•Cada prototipo tiene su propia velocidad de aprendizaje:

$$\alpha_{i}(t) = \frac{\alpha_{i}(t-1)}{1 \pm \alpha_{i}(t-1)}$$

- •Signo positivo si Clase ($\mathbf{m}_i(t)$) = Clase ($\mathbf{x}(t)$). Los prototipos situados en los centros de los agrupamientos reducen pronto su velocidad de aprendizaje, y luego no se modifican mucho.
- •Negativo si Clase $(\mathbf{m}_i(t)) \neq$ Clase $(\mathbf{x}(t))$: Los prototipos de las fronteras aumentan su velocidad de aprendizaje para acercarse a los centros de los agrupamientos.

OLVQ-1

- Para evitar un crecimiento de α_c se establece un valor máximo: $(\alpha_c)_{m\acute{a}x} = 0.3$
- \square Se desestabiliza para valores altos de r:
 - Para evitarlo, se usa $30N_p < r < 50N_p$ (usualmente, $r = 40N_p$).
 - ☐ En este caso, converge rápidamente.
- □ El aprendizaje termina cuando no hay clasificaciones incorrectas durante un nº prefijado de iteraciones.

LVQ-2.1

- El patrón \mathbf{x} modifica dos prototipos (\mathbf{m}_i , el más cercano de la misma clase que \mathbf{x} y \mathbf{m}_i , el más cercano a \mathbf{x} de distinta clase).
- Esta modificación sólo se realiza si \mathbf{x} se encuentra en una ventana en torno al punto medio de \mathbf{m}_i y \mathbf{m}_j . Esto ocurre si:

$$\min\left(\frac{||m_i - x||}{||m_j - x||}, \frac{||m_j - x||}{||m_i - x||}\right) > s = \frac{1 - w}{1 + w}$$

• Donde w es el ancho relativo de la ventana, usualmente w = 0.3, s = 0.54.

$$\mathbf{m}_{i}(t+1) = \mathbf{m}_{i}(t) + \alpha(t)(\mathbf{x} - \mathbf{m}_{i}(t))$$
 Premia a $\mathbf{m}_{i}(t)$

$$\mathbf{m}_{j}(t+1) = \mathbf{m}_{j}(t) - \alpha(t)(\mathbf{x} - \mathbf{m}_{j}(t))$$
 Castiga a $\mathbf{m}_{j}(t)$

LVQ-2.1

- Estrategia inestable para valores de *r* elevados:
 - Aleja los prototipos
 - No aproxima las funciones de densidad.
- Solución:
 - Usar $\alpha(0)$ bajo (0.02) para evitar la inestabilidad.
 - Usar r bajo: $30N_p < r < 200N_p$

LVQ-3

Persiste la idea de ventana.

Modifica los dos patrones más cercanos:

- 3. Si \mathbf{m}_i y \mathbf{m}_j son de la distinta clase LVQ2.1
- 4. Si \mathbf{m}_i y \mathbf{m}_i son de misma clase, se premia a ambos:

$$\mathbf{m}_{i}(t+1) = \mathbf{m}_{i}(t) + \mathcal{E}\alpha(t)(\mathbf{x} - \mathbf{m}_{i}(t))$$

$$\mathbf{m}_{i}(t+1) = \mathbf{m}_{i}(t) - \mathcal{E}\alpha(t)(\mathbf{x} - \mathbf{m}_{i}(t))$$

 $0.1 < \varepsilon < 0.5 \rightarrow$ Factor de estabilización: Tanto más bajo cuanto más pequeño sea el valor de w (más estrecha la ventana)

LVQ-3

Persiste la idea de ventana.

Modifica los dos patrones más cercanos:

- 3. Si \mathbf{m}_i y \mathbf{m}_j son de la distinta clase LVQ2.1
- 4. Si \mathbf{m}_i y \mathbf{m}_j son de misma clase, se premia a ambos:

$$\mathbf{m}_{i}(t+1) \longleftarrow \mathbf{m}_{i}(t) + \mathcal{E}\alpha(t)[\mathbf{x}(t) - \mathbf{m}_{i}(t)]$$

$$\mathbf{m}_{j}(t+1) \longleftarrow m_{j}(t) + \mathcal{E}\alpha(t)[\mathbf{x}(t) - \mathbf{m}_{j}(t)]$$

 $0.1 < \varepsilon < 0.5 \rightarrow$ Factor de estabilización: Tanto más bajo cuanto más pequeño sea el valor de w (más estrecha la ventana)

Comparación entre variantes de LVQ

Las distintas estrategias (LVQ1, OLVQ1, LVQ2.1 y LVQ3) proporcionan resultados similares, con ligeras variaciones entre problemas.

□ LVQ1 requiere menos parámetros, por lo tanto es la más recomendable.

Ventajas de LVQ

- ☐ Entrenamiento rápido.
- □ Posibilidad de actualización incremental.
- □ Robustez, capacidad de generalización.
- □ Capaz de generar conjuntos pequeños de prototipos representativos.

Inconvenientes de LVQ

- □ Basado en medidas de distancia
- □ Muy dependiente de:
 - ☐ Inicialización de los prototipos.
 - Parámetros (velocidad de aprendizaje η y n° de épocas de entrenamiento).
 - Patrones de entrenamiento seleccionados.
- ☐ El nº ideal de prototipos *r* es difícil de determinar.