Project explore

April 26, 2018

```
In [2]: #NYPD_Motor_Vehicle_Collisions
In [3]: #Basic libraries
        import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        import scipy.io as scio
        from scipy.cluster.hierarchy import dendrogram, linkage
        import scipy
        #EDA and Preprocesing
        from sklearn.preprocessing import StandardScaler, PolynomialFeatures, Normalizer
        from sklearn.pipeline import make_pipeline
        from sklearn.manifold import TSNE
        from sklearn.model_selection import KFold, train_test_split, GridSearchCV, cross_val_s
        #Supervised models
            #Regression
        from sklearn.linear_model import LinearRegression
        from sklearn.svm import LinearSVR, SVR
        from sklearn.ensemble import RandomForestRegressor
            \#Classification
        from sklearn.linear_model import LogisticRegression
        from sklearn.svm import LinearSVC, SVC
        from sklearn.neighbors import KNeighborsClassifier, NearestCentroid, KDTree
        from sklearn.ensemble import RandomForestClassifier, IsolationForest
        from sklearn.tree import DecisionTreeClassifier
        from sklearn.neural_network import MLPClassifier
        from sklearn.metrics import make_scorer, roc_auc_score, f1_score, normalized_mutual_in
        from sklearn.metrics import zero_one_loss, classification_report, recall_score, precis
```

```
#Unsupervised Models
        from sklearn.cluster import KMeans, AgglomerativeClustering, DBSCAN
        from sklearn.covariance import EllipticEnvelope
        from sklearn.svm import OneClassSVM
        from sklearn.ensemble import IsolationForest
            #Dimensionality Reduction
        from sklearn.decomposition import PCA, NMF, TruncatedSVD, LatentDirichletAllocation
        #IMBLEARN
        from imblearn.under_sampling import RandomUnderSampler
        from imblearn.over_sampling import RandomOverSampler, SMOTE
        #Text
        from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
        import warnings
        from scipy.stats import zscore
       path = '\srinidhi\Documents\Courses\Spring_2018\EDA\Project'
        from datetime import datetime
        from astral import Astral
0.1 1. Collisions data from the NYC open data website:
In [4]: df= pd.read_csv("NYPD_Motor_Vehicle_Collisions.csv")
/Users/srinidhi/anaconda/lib/python3.6/site-packages/IPython/core/interactiveshell.py:2717: Dt
  interactivity=interactivity, compiler=compiler, result=result)
0.2 2. Weather data for NYC(JFK Airport) from the NOAA website
In [11]: df_weather= pd.read_csv("jfk_weather_info.csv")
In [13]: #identifier_cols(df)
Out[13]: [('DATE', 'Date/Time saved as string'),
          ('TIME', 'Date/Time saved as string'),
          ('BOROUGH', 'String/Object'),
          ('ZIP CODE', 'String/Object'),
          ('LATITUDE', 'Real Value'),
          ('LONGITUDE', 'Real Value'),
```

('LOCATION', 'String/Object'),

```
('ON STREET NAME', 'String/Object'),
('CROSS STREET NAME', 'String/Object'),
('OFF STREET NAME', 'String/Object'),
('NUMBER OF PERSONS INJURED', 'Integer'),
('NUMBER OF PERSONS KILLED', 'Integer'),
('NUMBER OF PEDESTRIANS INJURED', 'Integer'),
('NUMBER OF PEDESTRIANS KILLED', 'Integer'),
('NUMBER OF CYCLIST INJURED', 'Integer'),
('NUMBER OF CYCLIST KILLED', 'Integer'),
('NUMBER OF MOTORIST INJURED', 'Integer'),
('NUMBER OF MOTORIST KILLED', 'Integer'),
('CONTRIBUTING FACTOR VEHICLE 1', 'String/Object'),
('CONTRIBUTING FACTOR VEHICLE 2', 'String/Object'),
('CONTRIBUTING FACTOR VEHICLE 3', 'String/Object'),
('CONTRIBUTING FACTOR VEHICLE 4', 'String/Object'),
('CONTRIBUTING FACTOR VEHICLE 5', 'String/Object'),
('UNIQUE KEY', 'Integer'),
('VEHICLE TYPE CODE 1', 'String/Object'),
('VEHICLE TYPE CODE 2', 'String/Object'),
('VEHICLE TYPE CODE 3', 'String/Object'),
('VEHICLE TYPE CODE 4', 'String/Object'),
('VEHICLE TYPE CODE 5', 'String/Object')]
```

In [11]: #shudhi_stats(df) - function defined and removed

Out[11]:	Feature	count	# Unique	# Missing	#Outliers	\
0	DATE	1245254	2114	0		
1	TIME	1245254	1440	0		
2	BOROUGH	1245254	5	356613		
3	ZIP CODE	1245254	417	356711		
4	LATITUDE	1245254	121221	217065	0	
5	LONGITUDE	1245254	107278	217065	0	
6	LOCATION	1245254	156597	217065		
7	ON STREET NAME	1245254	10404	244953		
8	CROSS STREET NAME	1245254	16564	317016		
9	OFF STREET NAME	1245254	99018	1048226		
10	NUMBER OF PERSONS INJURED	1245254	25	0	0	
11	NUMBER OF PERSONS KILLED	1245254	7	0	0	
12	NUMBER OF PEDESTRIANS INJURED	1245254	13	0	0	
13	NUMBER OF PEDESTRIANS KILLED	1245254	4	0	0	
14	NUMBER OF CYCLIST INJURED	1245254	5	0	0	
15	NUMBER OF CYCLIST KILLED	1245254	3	0	0	
16	NUMBER OF MOTORIST INJURED	1245254	25	0	0	
17	NUMBER OF MOTORIST KILLED	1245254	6	0	0	
18	CONTRIBUTING FACTOR VEHICLE 1	1245254	48	6759		
19	CONTRIBUTING FACTOR VEHICLE 2	1245254	48	176082		
20	CONTRIBUTING FACTOR VEHICLE 3	1245254	43	1164932		
21	CONTRIBUTING FACTOR VEHICLE 4	1245254	42	1227984		

```
CONTRIBUTING FACTOR VEHICLE 5 1245254
                                                     32
                                                           1240976
23
                        UNIQUE KEY 1245254
                                                1245254
                                                                            0
                                                                  0
24
              VEHICLE TYPE CODE 1 1245254
                                                    274
                                                             10077
25
              VEHICLE TYPE CODE 2 1245254
                                                    268
                                                            206205
26
              VEHICLE TYPE CODE 3 1245254
                                                     60
                                                           1167357
27
              VEHICLE TYPE CODE 4
                                    1245254
                                                     37
                                                           1228605
              VEHICLE TYPE CODE 5
28
                                    1245254
                                                     19
                                                           1241099
                       median
           mean
                                   min
                                                 max
0
1
2
3
4
          40.71
                        40.72
                                            41.1262
5
         -73.92
                       -73.93 -201.36
6
7
8
9
10
           0.26
                            0
                                     0
                                                  43
11
              0
                            0
                                     0
                                                   8
12
           0.05
                            0
                                     0
                                                  27
13
              0
                            0
                                     0
                                                   8
14
           0.02
                            0
                                     0
                                                   4
15
              0
                            0
                                     0
                                                   2
16
           0.19
                            0
                                     0
                                                  43
                                     0
17
              0
                            0
                                                   5
18
19
20
21
22
    2.40149e+06 3.25875e+06
                                    22 3.88248e+06
23
24
25
26
27
28
```

0.2.1 Add frequently used values as features

T '7 . W' 71 D' 1. C II	00000
Failure to Yield Right-of-Way	29209
Backing Unsafely	19757
Passing or Lane Usage Improper	16573
Unsafe Lane Changing	13960
Other Vehicular	12220
Turning Improperly	11685
Traffic Control Disregarded	7718
Driver Inexperience	7332
Reaction to Other Uninvolved Vehicle	5884
Unsafe Speed	5682
Fatigued/Drowsy	5650
Pavement Slippery	5054
Alcohol Involvement	4675
View Obstructed/Limited	3163
Oversized Vehicle	2979
Lost Consciousness	2703
Pedestrian/Bicyclist/Other Pedestrian Error/Confusion	2365
Aggressive Driving/Road Rage	1761
Outside Car Distraction	1693
Passenger Distraction	1663
Prescription Medication	1583
Brakes Defective	1430
Fell Asleep	1258
Glare	1167
Physical Disability	1009
Obstruction/Debris	973
Failure to Keep Right	696
Illness	620
Steering Failure	534
Tire Failure/Inadequate	510
Pavement Defective	504
Animals Action	396
Driverless/Runaway Vehicle	388
Other Electronic Device	272
Drugs (Illegal)	243
Accelerator Defective	235
Lane Marking Improper/Inadequate	222
Traffic Control Device Improper/Non-Working	205
Cell Phone (hand-held)	143
Other Lighting Defects	40
Cell Phone (hands-free)	36
Tow Hitch Defective	34
Headlights Defective	20
Shoulders Defective/Improper	19
Windshield Inadequate	19
Name: CONTRIBUTING FACTOR VEHICLE 1, dtype: int64	

In [6]: df['DATE']=df['date_time'].dt.date

```
In [7]: df['Day of week'] = df['date_time'].dt.dayofweek
In [8]: df['weekend'] = np.where(df['Day of week']>=5, 1, 0)
In [9]: df['hour'] = df['date_time'].dt.hour
In [10]: df['hour'].value_counts()
Out[10]: 16
               92966
         17
               90190
         14
               85191
         18
               79134
         15
               77561
               73908
         13
         8
               70330
         12
               69913
         9
               69406
         11
               66126
               64330
         10
               64001
         20
               53431
         21
               44029
         22
               39636
         7
               35066
         0
               33745
         23
               32189
         6
               25628
         1
               19525
               16322
         5
         4
               14940
         2
               14909
         3
               12778
         Name: hour, dtype: int64
In [59]: df['DATE'].min()
Out[59]: '01/01/2013'
In [12]: df_weather['DATE'] = pd.to_datetime(df.l/_weather['DATE']).dt.date
        AttributeError
                                                   Traceback (most recent call last)
        <ipython-input-12-24d9c2339d30> in <module>()
    ----> 1 df_weather['DATE'] = pd.to_datetime(df.l/_weather['DATE']).dt.date
```

0.2.2 Data Sanity Check

In [17]: shudhi_stats(df_weather)

Out[17]:	Feature	count	# Unique	# Missing	#Outliers	mean	${\tt median}$	min	max
0	DATE	1826	1826	0					
1	${\tt AWND_m_s}$	1826	106	0	0	5.05	4.8	0.9	12.9
2	PRCP	1826	130	0	0	2.84	0	0	118.9
3	SNOW	1826	39	0	0	2.53	0	0	770
4	SNWD	1826	21	0	0	8.6	0	0	710
5	TAVG	1826	363	90	0	13.5	14.1	-13.1	30.8
6	TMAX	1826	89	0	0	17.13	17.8	-8.2	37.8
7	TMIN	1826	96	0	0	9.01	8.9	-17.1	27.8
8	WT01	1826	1	1324	0	1	1	1	1
9	WT02	1826	1	1742	0	1	1	1	1
10	WT03	1826	1	1751	0	1	1	1	1
11	WTO4	1826	1	1808	0	1	1	1	1
12	WT06	1826	1	1819	0	1	1	1	1
13	WT08	1826	1	1710	0	1	1	1	1
14	WT09	1826	1	1816	0	1	1	1	1
15	WT13	1826	1	1797	0	1	1	1	1
16	WT14	1826	1	1815	0	1	1	1	1
17	WT15	1826	1	1825	0	1	1	1	1
18	WT16	1826	1	1795	0	1	1	1	1
19	WT18	1826	1	1799	0	1	1	1	1
20	WT22	1826	1	1824	0	1	1	1	1

```
In []: df_final = df.merge(df_weather, on='DATE', how='left')
In []: df_final['TAVG'] = (df_final['TMAX'] + df_final['TMIN'])/2
In []: # Creating weather fields:

    df_final['hot'] = np.where(df_final['TMAX'] > 25, 1, 0)
    df_final['fog'] = np.where((df_final['WT01'] ==1.0) | (df_final['WT02'] ==1.0) | (df_final['rain'] = np.where((df_final['WT15'] ==1.0) | (df_final['WT16'] ==1.0) , 1, 0)
```

In [19]: shudhi_stats(df_final)

Out[19]:	Feature	count	# Unique	# Missing	#Outliers	\
0	DATE		2114	0		
1	TIME	1245254	1440	0		
2	BOROUGH	1245254	5	356613		
3	ZIP CODE	1245254	417	356711		
4	LATITUDE	1245254	121221	217065	0	
5	LONGITUDE	1245254	107278	217065	0	
6	LOCATION	1245254	156597	217065		
7	ON STREET NAME	1245254	10404	244953		
8	CROSS STREET NAME	1245254	16564	317016		
9	OFF STREET NAME	1245254	99018	1048226		
10	NUMBER OF PERSONS INJURED	1245254	25	0	0	
11	NUMBER OF PERSONS KILLED	1245254	7	0	0	
12	NUMBER OF PEDESTRIANS INJURED	1245254	13	0	0	
13	NUMBER OF PEDESTRIANS KILLED	1245254	4	0	0	
14	NUMBER OF CYCLIST INJURED	1245254	5	0	0	
15	NUMBER OF CYCLIST KILLED	1245254	3	0	0	
16	NUMBER OF MOTORIST INJURED	1245254	25	0	0	
17	NUMBER OF MOTORIST KILLED	1245254	6	0	0	
18	CONTRIBUTING FACTOR VEHICLE 1	1245254	48	6759		
19	CONTRIBUTING FACTOR VEHICLE 2	1245254	48	176082		
20	CONTRIBUTING FACTOR VEHICLE 3	1245254	43	1164932		
21	CONTRIBUTING FACTOR VEHICLE 4	1245254	42	1227984		
22	CONTRIBUTING FACTOR VEHICLE 5	1245254	32	1240976		
23	UNIQUE KEY	1245254	1245254	0	0	
24	VEHICLE TYPE CODE 1	1245254	274	10077		
25	VEHICLE TYPE CODE 2	1245254	268	206205		
26	VEHICLE TYPE CODE 3	1245254	60	1167357		
27	VEHICLE TYPE CODE 4		37	1228605		
28	VEHICLE TYPE CODE 5	1245254	19	1241099		
29	date_time	1245254	588005	0		
30	Day of week	1245254	7	0	0	
31	weekend	1245254	2	0	0	
32	hour	1245254	24	0	0	
33	AWND_m_s		106	160704	0	
34	PRCP	1245254	130	160704	0	
35	SNOW	1245254	39	160704	0	
36	SNWD	1245254	21	160704	0	
37	TAVG	1245254	363	207252	0	
38	TMAX	1245254	89	160704	0	
39	TMIN	1245254	96	160704	0	
40	WTO1	1245254	1	937834	0	
41	WTO2	1245254	1	1194456	0	
42	WTO3	1245254	1	1197121	0	
43	WTO4	1245254	1	1234957	0	
44	WT06	1245254	1	1241243	0	
45	WT08	1245254	1	1174567	0	
46	WT09	1245254	1	1240478	0	

47 48 49 50 51 52			WT14 12 WT15 12 WT16 12	45254 45254 45254 45254 45254 45254	1 1 1 1 1
	mean	median	min	max	
0 1					
2					
3					
4	40.71				
5 6	-73.92	-73.93	-201.36	0	
7					
8					
9					
10	0.26	0	0	43	
11 12	0 0.05	0	0	8	
13	0.05	0	0	27 8	
14	0.02	0	0	4	
15	0	0	0	2	
16	0.19	0	0	43	
17	0	0	0	5	
18 19					
20					
21					
22					
23	2.40149e+06	3.25875e+06	22	3.88248e+06	
24 25					
26					
27					
28					
29			_		
30	2.91	3	0	6	
31 32	0.25 13.34	14	0	23	
33	5.05	4.8	0.9	12.9	
34	2.99	0	0	118.9	
35	2.48	0	0	770	
36	8.2	14.6	12.1	710	
37 38	13.78 17.49	14.6 18.3	-13.1 -8.2	30.8 37.8	
39	9.34	10.3	-17.1	27.8	

40	1	1	1	1
41	1	1	1	1
42	1	1	1	1
43	1	1	1	1
44	1	1	1	1
45	1	1	1	1
46	1	1	1	1
47	1	1	1	1
48	1	1	1	1
49	1	1	1	1
50	1	1	1	1
51	1	1	1	1
52	1	1	1	1

0.3 Hypothesis:

- 1. Factors possibly affecting accidents:
 - 1. Location
 - 2. Daylight: Yes/No
 - 3. Time of Day: Hour of day, EMorn: 4-8; Morn: 8-12; Aft: 12-16; Eve: 16-20; Night: 20-24; L Night: 0-4
 - 4. Weather: Temp, Rain, Prec, Snow, Fog Extreme weather
 - 5. Day of week
 - 6. Presence of Offices(morn), Pubs(late night)

In [55]: pd.DataFrame.to_csv(df_final)

 ${\tt IOPub}$ data rate exceeded.

The notebook server will temporarily stop sending output to the client in order to avoid crashing it.

To change this limit, set the config variable

`--NotebookApp.iopub_data_rate_limit`.

plt.show()

In [171]: df_final[(df_final['hour']<5)]['CONTRIBUTING FACTOR VEHICLE 1'].value_counts()</pre>

Out[171]:	Unspecified	44662
	Driver Inattention/Distraction	13355
	Alcohol Involvement	4205
	Failure to Yield Right-of-Way	2922
	Other Vehicular	2722
	Fatigued/Drowsy	2511
	Traffic Control Disregarded	2334
	Backing Unsafely	2194
	Following Too Closely	2189
	Turning Improperly	2033
	Pavement Slippery	1540
	Driver Inexperience	1325
	Passing or Lane Usage Improper	1232
	Unsafe Speed	1212
	Lost Consciousness	1174
	Prescription Medication	1050
	Unsafe Lane Changing	977
	Physical Disability	961
	Outside Car Distraction	933
	Reaction to Other Uninvolved Vehicle	669
	Failure to Keep Right	522
	Passenger Distraction	509
	Aggressive Driving/Road Rage	476

```
Fell Asleep
                                                                      405
          View Obstructed/Limited
          Obstruction/Debris
                                                                      300
          Oversized Vehicle
                                                                      292
          Illness
                                                                      286
          Brakes Defective
                                                                      279
          Other Electronic Device
                                                                      250
          Tire Failure/Inadequate
                                                                      241
          Steering Failure
                                                                      219
          Pavement Defective
                                                                      203
          Pedestrian/Bicyclist/Other Pedestrian Error/Confusion
                                                                      174
          Animals Action
                                                                      159
          Drugs (Illegal)
                                                                      111
          Traffic Control Device Improper/Non-Working
                                                                       57
          Lane Marking Improper/Inadequate
                                                                       45
          Driverless/Runaway Vehicle
                                                                       41
          Accelerator Defective
                                                                       30
          Glare
                                                                       29
          Cell Phone (hand-held)
                                                                       23
          Cell Phone (hands-free)
                                                                       21
          Other Lighting Defects
                                                                       18
          Tow Hitch Defective
                                                                        10
          Headlights Defective
                                                                       10
          Shoulders Defective/Improper
                                                                        8
          Windshield Inadequate
                                                                        6
          Name: CONTRIBUTING FACTOR VEHICLE 1, dtype: int64
In [204]: df_final.columns
Out[204]: Index(['DATE', 'TIME', 'BOROUGH', 'ZIP CODE', 'LATITUDE', 'LONGITUDE',
                 'LOCATION', 'ON STREET NAME', 'CROSS STREET NAME', 'OFF STREET NAME',
                 'NUMBER OF PERSONS INJURED', 'NUMBER OF PERSONS KILLED',
                 'NUMBER OF PEDESTRIANS INJURED', 'NUMBER OF PEDESTRIANS KILLED',
                 'NUMBER OF CYCLIST INJURED', 'NUMBER OF CYCLIST KILLED',
                 'NUMBER OF MOTORIST INJURED', 'NUMBER OF MOTORIST KILLED',
                 'CONTRIBUTING FACTOR VEHICLE 1', 'CONTRIBUTING FACTOR VEHICLE 2',
                 'CONTRIBUTING FACTOR VEHICLE 3', 'CONTRIBUTING FACTOR VEHICLE 4',
                 'CONTRIBUTING FACTOR VEHICLE 5', 'UNIQUE KEY', 'VEHICLE TYPE CODE 1',
                 'VEHICLE TYPE CODE 2', 'VEHICLE TYPE CODE 3', 'VEHICLE TYPE CODE 4',
                 'VEHICLE TYPE CODE 5', 'date_time', 'Day of week', 'weekend', 'hour',
                 'AWND_m_s', 'PRCP', 'SNOW', 'SNWD', 'TAVG', 'TMAX', 'TMIN', 'WT01',
                 'WTO2', 'WTO3', 'WTO4', 'WTO6', 'WTO8', 'WT09', 'WT13', 'WT14', 'WT15',
                 'WT16', 'WT18', 'WT22', 'hot', 'fog', 'rain'],
```

446

0.3.1 Exploring "Unspecified"

dtype='object')

Reason "Unspecified": Same number of injuries either way. "Minor" accidents are not being ignored and time of day is not likely a factor

```
In [230]: plt.subplots(2, 2, figsize=(20, 10))
          plt.subplot(2, 2, 1)
          plt.hist(np.arange(24), weights=pd.DataFrame(df_final[(df_final['CONTRIBUTING FACTOR
          plt.title("Hourly Accidents: Count of Unspecified")
          plt.subplot(2, 2, 2)
          plt.hist(np.arange(24), weights=pd.DataFrame(df_final[(df_final['CONTRIBUTING FACTOR
          plt.title("Hourly Accidents: Sum of Unspecified")
          plt.subplot(2, 2, 3)
          plt.hist(np.arange(24), weights=pd.DataFrame(df_final[(df_final['CONTRIBUTING FACTOR
          plt.title("Hourly Accidents: Sum of not Unspecified")
          plt.subplot(2, 2, 4)
          plt.hist(np.arange(24), weights=pd.DataFrame(df_final[(df_final['CONTRIBUTING FACTOR
          plt.title("Hourly Accidents: Count of not Unspecified")
          plt.show()
                Hourly Accidents: Count of Unspecified
                                                          Hourly Accidents: Sum of Unspecified
```


0.4 Exploratory Data Analysis

0.4.1 Time and Reason Study

- -Alcohol involvement: Peak around 3-4 AM on weekends
- -Deaths in an accident more likely to occur in the night!
- -Serious accidents (more injuries) happen in the night too

-Pedestrians get injured round the clock, but, again, more likely to die in the night

```
In [221]: #Time and Reason for accident
         plt.subplots(5, 2, figsize=(20, 25))
         plt.subplot(5, 2, 1)
         plt.hist(df_final['hour'], bins=24)
         plt.title("Hourly Accidents")
         plt.subplot(5, 2, 2)
         plt.hist(df_final[(df_final['CONTRIBUTING FACTOR VEHICLE 1']=='Unspecified')]['hour']
         plt.title("Hourly Accidents: Unspecified")
          #Study of Alcohol Involvement
         plt.subplot(5, 2, 3)
         plt.hist(df_final['CONTRIBUTING FACTOR VEHICLE 1'] == 'Alcohol Involvement')
         plt.title("Hourly Accidents: Alchol Involvement")
         plt.subplot(5, 2, 4)
         plt.hist(df_final['CONTRIBUTING FACTOR VEHICLE 1'] == 'Alcohol Involvement');
         plt.xticks(np.arange(7), ('Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun'))
         plt.title("Day of Accidents: Alcohol Involvement")
          #Study of Gruesome Accidents
         plt.subplot(5, 2, 5)
         plt.hist(df_final['NUMBER OF PERSONS INJURED']> 6)]['hour'], bins=24)
         plt.title("Hourly Serious Accidents: Incidents")
         plt.subplot(5, 2, 6)
         plt.hist(df_final[(df_final['NUMBER OF PERSONS KILLED']> 0)]['hour'], bins=24)
         plt.title("Hourly Serious Accidents: Deaths")
         plt.subplot(5, 2, 7)
         plt.hist(np.arange(24), bins=24, weights= pd.DataFrame(df_final[(df_final['NUMBER OF
         plt.title("Hourly Serious Accidents: Sum Injuries")
         plt.subplot(5, 2, 8)
         plt.hist(np.arange(24), bins=24, weights= pd.DataFrame(df_final.groupby(['hour'])['N
         plt.title("Hourly Serious Accidents: Sum Deaths")
         plt.subplot(5, 2, 9)
         plt.hist(df_final[(df_final['NUMBER OF PEDESTRIANS INJURED']> 0)]['hour'], bins=24)
         plt.title("Hourly Accidents: Pedestrians")
```

plt.subplot(5, 2, 10)
plt.hist(df_final['NUMBER OF PEDESTRIANS KILLED']> 0)]['hour'], bins=24)
plt.title("Hourly Serious Accidents: Deaths(Pedestrians)")

plt.show()

0.5 Weather Study

```
In [243]: df_temp= pd.DataFrame(df_final.groupby(['TAVG'])['NUMBER OF PERSONS INJURED', 'NUMBER IN [284]: df_snow= pd.DataFrame(df_final[(df_final['SNOW']>8) & (df_final['SNOW']< 200)].grouply ['AWND_m_s'])['NUMBER OF PERSONS INJURED', 'NUMBER OF P
```

Higher temperature has no effect. Lower temperature tends to increase in Passenger related incidents!

```
In [262]: plt.subplots(3, 2, figsize=(20, 20))
          plt.subplot(3, 2, 1)
          plt.hist(df_weather['TAVG'].dropna())
          plt.title("Temperature and Days")
          plt.subplot(3, 2, 2)
          plt.hist(df_temp['TAVG'], weights=df_temp['NUMBER OF PERSONS INJURED'])
          plt.title("Temperature and Accidents")
          plt.subplot(3, 2, 3)
          plt.hist(df_temp['TAVG'], weights=df_temp['NUMBER OF PERSONS KILLED'])
          plt.title("Temperature and Deaths")
          plt.subplot(3, 2, 4)
          plt.hist(df_temp['TAVG'], weights=df_temp['NUMBER OF PEDESTRIANS INJURED'])
          plt.title("Temperature and Accidents: Pedestrians")
          plt.subplot(3, 2, 5)
          plt.hist(df_temp['TAVG'], weights=df_temp['NUMBER OF PEDESTRIANS KILLED'])
          plt.title("Temperature and Deaths: Pedestrians")
          plt.show()
```


0.5.1 More snow leads to more accidents and more passenger related accidents

```
In [310]: plt.subplots(3, 2, figsize=(20, 20))

    plt.subplot(3, 2, 1)
    plt.hist(df_weather['SNOW'].dropna(), bins=32)
    plt.title("SNOW and Days")
    plt.xlim((0,250))

    plt.subplot(3, 2, 2)
    plt.hist(df_snow['SNOW'], weights=df_snow['NUMBER OF PERSONS INJURED'])
    plt.title("SNOW and Accidents")
    plt.xlim((0,250))
```

```
plt.subplot(3, 2, 3)
      plt.hist(df_snow['SNOW'], weights=df_snow['NUMBER OF PERSONS KILLED'])
      plt.title("SNOW and Deaths")
      plt.xlim((0,250))
      plt.subplot(3, 2, 4)
      plt.hist(df_snow['SNOW'], weights=df_snow['NUMBER OF PEDESTRIANS INJURED'])
      plt.title("SNOW and Accidents: Pedestrians")
      plt.xlim((0,250))
      plt.subplot(3, 2, 5)
      plt.hist(df_snow['SNOW'], weights=df_snow['NUMBER OF PEDESTRIANS KILLED'])
      plt.title("SNOW and Deaths: Pedestrians")
      plt.xlim((0,250))
      plt.show()
                                              1500
1250
                                              1250
                                              1000
1000
                                               750
750
500
                 100
                         150
                                 200
                 SNOW and Deaths
                                                             SNOW and Accidents: Pedestrians
                                               300
                                               200
                                               100
              SNOW and Deaths: Pedestrians
2.00
1.75
                                               0.8
1.50
                                               0.6
1.25
1.00
0.75
                                               0.2
0.25
0.00
```

0.5.2 Wind has no effect

```
In [283]: plt.subplots(3, 2, figsize=(20, 20))
          plt.subplot(3, 2, 1)
          plt.hist(df_weather['AWND_m_s'].dropna())
          plt.title("Wind and Days")
          plt.subplot(3, 2, 2)
          plt.hist(df_wind['AWND_m_s'], weights=df_wind['NUMBER OF PERSONS INJURED'])
          plt.title("Wind and Accidents")
          plt.subplot(3, 2, 3)
          plt.hist(df_wind['AWND_m_s'], weights=df_wind['NUMBER OF PERSONS KILLED'])
          plt.title("Wind and Deaths")
          plt.subplot(3, 2, 4)
          plt.hist(df_wind['AWND_m_s'], weights=df_wind['NUMBER OF PEDESTRIANS INJURED'])
          plt.title("Wind and Accidents: Pedestrians")
          plt.subplot(3, 2, 5)
          plt.hist(df_wind['AWND_m_s'], weights=df_wind['NUMBER OF PEDESTRIANS KILLED'])
          plt.title("Wind and Deaths: Pedestrians")
          plt.show()
```


0.5.3 Precipitation definitely affects accidents and pedestrian involvement

```
In [312]: plt.subplots(3, 2, figsize=(20, 20))

    plt.subplot(3, 2, 1)
    plt.hist(df_weather['PRCP'].dropna())
    plt.title("Precipitation and Days")

    plt.subplot(3, 2, 2)
    plt.hist(df_prcp['PRCP'], weights=df_prcp['NUMBER OF PERSONS INJURED'])
    plt.title("Precipitation and Accidents")

    plt.subplot(3, 2, 3)
    plt.hist(df_prcp['PRCP'], weights=df_prcp['NUMBER OF PERSONS KILLED'])
```

```
plt.title("Precipitation and Deaths")
       plt.subplot(3, 2, 4)
       plt.hist(df_prcp['PRCP'], weights=df_prcp['NUMBER OF PEDESTRIANS INJURED'])
       plt.title("Precipitation and Accidents: Pedestrians")
       plt.subplot(3, 2, 5)
       plt.hist(df_prcp['PRCP'], weights=df_prcp['NUMBER OF PEDESTRIANS KILLED'])
       plt.title("Precipitation and Deaths: Pedestrians")
       plt.show()
                  Precipitation and Days
                                                                      Precipitation and Accidents
                                                    25000
1600
1400
                                                    20000
1200
1000
                                                    15000
800
                                                    10000
600
400
200
                                            120
                                                                  Precipitation and Accidents: Pedestrians
                  Precipitation and Deaths
                                                    6000
120
                                                    5000
100
                                                    4000
                                                    2000
                                                    1000
              Precipitation and Deaths: Pedestrians
                                                     0.4
```

0.5.4 Fog: No corr

In [293]: df_final[df_final['fog']==0][['NUMBER OF PERSONS INJURED', 'NUMBER OF PERSONS KILLED

```
Out [293]:
                  NUMBER OF PERSONS INJURED
                                              NUMBER OF PERSONS KILLED
                              935544.000000
                                                          935544.000000
          count
                                   0.255692
                                                               0.001217
          mean
                                   0.657475
                                                               0.037271
          std
          min
                                   0.000000
                                                               0.000000
          25%
                                   0.000000
                                                               0.000000
          50%
                                   0.000000
                                                               0.000000
          75%
                                    0.000000
                                                               0.000000
                                   43.000000
                                                               8.000000
          max
                  NUMBER OF PEDESTRIANS INJURED
                                                  NUMBER OF PEDESTRIANS KILLED
                                   935544.000000
                                                                  935544.000000
          count
                                        0.051207
                                                                        0.000663
          mean
                                        0.236296
                                                                        0.027071
          std
          min
                                        0.000000
                                                                        0.000000
          25%
                                        0.00000
                                                                        0.000000
          50%
                                        0.000000
                                                                        0.000000
          75%
                                        0.000000
                                                                        0.000000
                                       27.000000
                                                                        8.000000
          max
In [294]: df_final[df_final['fog'] == 1] [['NUMBER OF PERSONS INJURED', 'NUMBER OF PERSONS KILLED
Out [294]:
                  NUMBER OF PERSONS INJURED
                                             NUMBER OF PERSONS KILLED
          count
                              309710.000000
                                                          309710.000000
          mean
                                   0.258093
                                                               0.001075
                                   0.649671
                                                               0.034594
          std
          min
                                   0.000000
                                                               0.000000
          25%
                                   0.000000
                                                               0.000000
          50%
                                   0.000000
                                                               0.000000
          75%
                                    0.00000
                                                               0.000000
          max
                                   32.000000
                                                               3.000000
                  NUMBER OF PEDESTRIANS INJURED
                                                  NUMBER OF PEDESTRIANS KILLED
                                   309710.000000
                                                                  309710.000000
          count
                                        0.055029
                                                                        0.000630
          mean
                                                                        0.025594
          std
                                        0.245677
                                        0.000000
                                                                        0.000000
          min
          25%
                                        0.00000
                                                                        0.000000
          50%
                                        0.000000
                                                                        0.000000
          75%
                                        0.000000
                                                                        0.000000
                                        6.000000
                                                                        2.000000
          max
```