LING530F: Deep Learning for Natural Language Processing (DL-NLP)

Muhammad Abdul-Mageed

muhammad.mageed@ubc.ca

Natural Language Processing Lab

The University of British Columbia

Table of Contents

- Information Theory
 - Calude Shannon
 - Intuition
 - Entropy
 - KL Divergence
 - Cross-Entropy

Many of the current slides are a summary Chapter 3 in Goodfellow et al. (2016). More information can be found therein. Note: The authors credit Pearl (1988) for a lot of the content of the chapter. Other sources used here are credited where approbriate.

Information Theory: Calude Shannon

Figure: Claude Shannon. [From Time]. Check about Claude Shannon, e.g. short documentary [here] & lecture by Robert G. Gallager [here].

Information: A Book

Figure: **Blurb**: A fascinating intellectual journey through the history of communication and information, from the language of Africa's talking drums to the invention of written alphabets; from the electronic transmission of code to the origins of information theory, into the new information age and the current deluge of news, tweets, images, and blogs...

Information Theory

What is information theory?

- Focused on quantifying how much information is present in a signal
- Originally invented to study sending messages from discrete alphabets over a noisy channel
- Communication via radio transmission is an example
- Answers how to design optimal codes
- Tells how to calculate the expected length of messages sampled from specific probability distributions

Information Theory: Basic Intuition

Intuition

- Learning that an **unlikely event** has occurred is **more informative** than learning that a likely event has occurred.
- "The sun rose this morning": not informative enough to send as a message
- "There was a solar eclipse this morning": very informative

Quantifying Information

Goal: Quantify Info. Such That:

- Likely events: have low information content, events guaranteed to happen: no information content
- Less likely events: higher information content.
- Independent events: have additive information. Finding out that a tossed coin has come up as heads twice conveys twice as much information as finding out that a tossed coin has come up as heads once.

Self-Information of Event X=x

- Self-information deals only with a single outcome.
- It is the surprise when a random variable is sampled.

1: Self-Information of Event X=x

$$I(x) = -\log P(x)$$

Example of Self-Information

- When we toss a fair coin, P(x="head"=0.5), $I(x = 0.5) = -\log_2 P(0.5) = 1$ bit of information.
- Note: If we use base e, then the unit of measurement is nats. (Above gives ~ 0.693 nats).
- Try it Python: Base 2: -math.log(0.5,2); Base e: -math.log(0.5).

Shannon Entropy

- Quantify uncertainty in an entire distribution using Shannon entropy.
- SE of a distribution: the expected amount of info. in an event drawn from that distribution. (Denoted H(P)):

2: Shannon entropy

Recall: self info. :
$$I(x) = -\log P(x)$$

$$H(x) = \mathbb{E}_{x \sim P}[I(x)] = -\mathbb{E}_{x \sim P}[\log P(x)]$$

- Gives a **lower bound on the number of bits** (or nats) needed on avg to encode symbols drawn from a distribution P.
- Nearly deterministic distributions: have low entropy;
- Distributions closer to uniform: high entropy

Kullback-Leibler Divergence (KL Divergence) I

KL Divergence

- Measures how one probability distribution is different from a second probability distribution.
- Always greater than or equal to zero
- A smaller KL divergence value means we can expect more similar behavior of the two distributions.

Figure: [From Wikipedia].

KL Divergence II

• With two prob distributions P(x) and Q(x) over the same r.v. x:

3: KL Divergence

$$D_{KL}(P||Q) =$$

$$\mathbb{E}_{x \sim P} \left[\log \frac{P(x)}{Q(x)} \right] = \mathbb{E}_{x \sim P} \left[\log P(x) - \log Q(x) \right].$$

• For discrete variables, it is the extra amount of info. needed to send a message containing symbols drawn from prob distrib P, when we use a code designed to minimize the len of messages drawn from distrib Q.

Properties of KL Divergence

- KL divergence is non-negative.
- KL divergence is **not symmetric** (i.e., $D_{KL}(P||Q) \neq D_{KL}(Q||P)$ (and so it is not a measure of distance).
- The KL divergence is 0 if and only if P and Q are the same distribution in the case of discrete variables, or equal "almost everywhere" in the case of continuous variables.

Cross-Entropy

• Similar to the KL divergence, but lacking the term on the left:

4: Cross-Entropy

$$H(Q, P) = -\mathbb{E}_{x \sim P} \log Q(x).$$

 Minimizing the cross-entropy with respect to Q is equivalent to minimizing the KL divergence, because Q does not participate in the omitted term.