3.sistema-binario.md 1/10/2023

## 3. Sistema binario

#### Sistema binario

Este es el sistema utilizado por la electrónica, donde una serie de interruptores y transistores pueden tener dos estados:

- Tienen corriente o no la tienen.
- El primer caso se representa con un 1 y el segundo con un 0.

El sistema binario utiliza 2 dígitos, y cada dígito tiene distinto valor dependiendo de la posición que ocupe.









Los ordenadores con un sistema binario para:

- Guardar información
- Hacer cálculos
- Enviar y recibir información



Cada dígito tiene distinto valor dependiendo de la posición que ocupe.

| 0 | 0   |  |  |
|---|-----|--|--|
| 1 | 1   |  |  |
| 2 | 10  |  |  |
| 3 | 11  |  |  |
| 4 | 100 |  |  |
| 5 | 101 |  |  |
| 6 | 110 |  |  |

3.sistema-binario.md 1/10/2023

| 0  | 0    |  |  |
|----|------|--|--|
| 7  | 111  |  |  |
| 8  | 1000 |  |  |
| 9  | 1001 |  |  |
| 10 | 1010 |  |  |
| 11 | 1011 |  |  |
| 12 | 1100 |  |  |
| 13 | 1101 |  |  |
| 14 | 1110 |  |  |
| 15 | 1111 |  |  |

### Conversión decimal a binario

Para convertir un número decimal al sistema binario, dividimos entre 2 sucesivamente, sin tomar decimales.

# **Ejemplo** Cálculo del equivalente binario del número decimal $60_{10}$



Al terminar de dividir, cogemos todos los restos, de derecha a izquierda, para conformar el número.

Por tanto, 
$$60_{10} = 111100_2$$

### Conversión binario a decimal

El proceso contrario a dividir varias veces por el mismo número, sería multiplicar por este varias veces, lo que se representa como una potencia.

3.sistema-binario.md 1/10/2023

1º. Construimos una tabla donde haya una columna con cada cifra del número binario:

|  | 1 | 0 | 1 | 0 | 1 | 1 | 1 |
|--|---|---|---|---|---|---|---|
|--|---|---|---|---|---|---|---|

2º. Añadimos una fila con las potencias de dos, empezando de derecha a izquierda:

| 1          | 0                   | 1      | 0     | 1     | 1     | 1     |
|------------|---------------------|--------|-------|-------|-------|-------|
| $2^6 = 64$ | 2 <sup>5</sup> = 32 | 24= 16 | 23= 8 | 22= 4 | 21= 2 | 20= 1 |

Además, te darás cuenta de varias características:

- En el sistema binario necesitamos más digitos que en el sistema decimal. Para representar números grandes harán falta muchos más dígitos.
- Los números pares terminarán en 0, y los impares en 1.

### Dígitos necesarios

Según la cantidad de bits que use, podré representar más o menos valores:

| Nº Bits | Cant. Valores | Número min | Número max |
|---------|---------------|------------|------------|
| 0       | 1             | 0          | 0          |
| 1       | 2             | 0          | 1          |
| 2       | 4             | 0          | 3          |
| 3       | 8             | 0          | 7          |
| 4       | 16            | 0          | 15         |
| 5       | 32            | 0          | 31         |
| 6       | 64            | 0          | 63         |
| 7       | 128           | 0          | 127        |
| 8       | 256           | 0          | 255        |
| 9       | 512           | 0          | 511        |
| 10      | 1024          | 0          | 1023       |