

Xyba Project

Analisis 2 Pembahasan UTS SP Juli 2017

- 1. This document is version: 0.9.3

 Version should be at least 0.9 if you want to share this document to other people
- 2. You may not share this document if version is less than 1.0 unless you have my permission to do so
- 3. This document is created by Xyba, Student of Mathematics University of Indonesia Batch 2016
- 4. Should there be any mistakes or feedbacks you'd like to give, please contact me
- 5. Last Updated: 01/08/2018

Thank you for your cooperation >v<

Soal

- 1. Misalkan $f,g:[0,1]\to\mathbb{R}$ fungsi-fungsi kontinu pada [0,1] yang memenuhi: $\sup\{f(x)\colon x\in[0,1]\}=\sup\{g(x)\colon x\in[0,1]\}$ Buktikan terdapat $c\in[0,1]$ sedemikian sehingga f(c)=g(c).
- 2. Diketahui f kontinu pada $A \subseteq \mathbb{R}$ dan $|f(x)| \ge M > 0$ untuk semua $x \in A$. Apakah 1/f kontinu seragam pada A? Jelaskan!
- 3. Misalkan I = [a, b] dan $f: I \to \mathbb{R}$ kontinu pada I. Jika f mempunyai maksimum absolute di sebuah titik dalam c pada I, buktikan f tidak injektif pada I.
- 4. Misalkan $f: I \to \mathbb{R}$ terturunkan pada interval I. Buktikan bahwa f tidak naik pada I jika dan hanya jika $f'(x) \le 0$ untuk setiap $x \in I$.
- 5. Berikan contoh sebuah fungsi kontinu seragam pada [a, b] yang terturunkan pada (a, b) tetapi turunannya tidak terbatas pada (a, b). Jelaskan!

<u>Jawaban</u>

1. Misalkan $f, g: [0,1] \to \mathbb{R}$ fungsi-fungsi kontinu pada [0,1] yang memenuhi:

$$\sup\{f(x): x \in [0,1]\} = \sup\{g(x): x \in [0,1]\}$$

Buktikan terdapat $c \in [0,1]$ sedemikian sehingga f(c) = g(c).

Jawab:

Misal:
$$\exists x_1 \in [0,1] \ni f(x_1) \ge f(x), \forall x \in [0,1] \dots$$
 (1), artinya $f(x_1) = \sup\{f(x) : x \in [0,1]\}$. $\exists x_2 \in [0,1] \ni g(x_2) \ge g(x), \forall x \in [0,1] \dots$ **(2)**, artinya $g(x_2) = \sup\{g(x) : x \in [0,1]\}$. Apabila $x_1 = x_2$ maka kita bisa pilih $c = x_1 = x_2$ sehingga $\exists c \in [0,1] \ni f(c) = g(c)$.

Apabila $x_1 \neq x_2$,

WLOG misal $x_1 < x_2 \operatorname{dan} I := [x_1, x_2]$.

Berdasarkan (1), maka $f(x_1) \ge f(x), \forall x \in I$.

Berdasarkan (2), maka $g(x_2) \ge g(x), \forall x \in I$.

Definisikan $h(x) := f(x) - g(x), \forall x \in I$.

$$f(x_1) = g(x_2) > g(x_1)$$

$$g(x_2) = f(x_1) > f(x_2)$$

Sehingga kita peroleh
$$f(x_1) > g(x_1) \Leftrightarrow f(x_1) - g(x_1) = h(x_1) > 0$$
 dan $g(x_2) < f(x_2) \Leftrightarrow f(x_2) - g(x_2) = h(x_2) < 0$

Artinya $h(x_2) < 0 < h(x_1)$ dengan $x_1, x_2 \in I = [x_1, x_2]$.

Berdasarkan Teorema Lokasi Akar 5.3.5, maka $\exists c \in I \ni h(c) = f(c) - g(c) = 0$.

Karena $I \subseteq [0,1]$, artinya $\exists c \in [0,1] \ni f(c) = g(c)$.

∴ Terbukti bahwa terdapat $c \in [0,1]$ sedemikian sehingga f(c) = g(c).

2. Diketahui f kontinu pada $A \subseteq \mathbb{R}$ dan $|f(x)| \ge M > 0$ untuk semua $x \in A$. Apakah 1/f kontinu seragam pada A? Jelaskan!

Jawab:

1) Akan ditunjukkan f kontinu seragam pada $A \subseteq \mathbb{R}$.

Misal
$$A := [a, b] \subseteq \mathbb{R}$$

Karena f kontinu pada A dan karena A adalah himpunan tertutup terbatas, maka berdasarkan Teorema Kontinuitas Seragam 5.4.3, maka f kontinu seragam pada A.

Apabila A := (a, b), maka berdasarkan Teorema Ekstensi Kontinuitas 5.4.8, karena f kontinu seragam di [a, b] maka f juga kontinu seragam di (a, b).

Karena f kontinu seragam di (a, b) dan di [a, b], maka f juga kontinu seragam di:

$$(a,b) \cup \{b\} = (a,b]$$
 dan $(a,b) \cup \{a\} = [a,b)$

Artinya, untuk sembarang $A \subseteq \mathbb{R}$, f kontinu seragam pada A.

2) Akan ditentukan apakah 1/f kontinu seragam pada A. Karena $|f(x)| \ge M > 0, \forall x \in A$ maka kita akan punya:

$$\frac{1}{|f(x)|} \le \frac{1}{M}, \forall x \in A \dots (1)$$

Karena f kontinu seragam pada A maka berdasarkan Definisi 5.4.1.:

$$\forall \varepsilon > 0, \exists \delta > 0 \ni \forall x, u \in A, |x - u| < \delta \Rightarrow |f(x) - f(u)| < \varepsilon. M^2$$

Perhatikan $\forall \varepsilon > 0, \exists \delta > 0 \ni \forall x, u \in A, |x - u| < \delta$, maka berlaku:

$$\left| \frac{1}{f(x)} - \frac{1}{f(u)} \right| = \left| \frac{f(u) - f(x)}{f(x)f(u)} \right|$$

$$= \frac{1}{|f(x)||f(u)|} |f(x) - f(u)|$$

$$\leq \frac{1}{M^2} |f(x) - f(u)|$$

$$< \frac{1}{M^2} (\varepsilon \cdot M^2)$$

$$= \varepsilon$$

Artinya,
$$\forall \varepsilon > 0, \exists \delta > 0 \ni \forall x, u \in A, |x - u| < \delta \Rightarrow \left| \frac{1}{f(x)} - \frac{1}{f(u)} \right| < \varepsilon.$$

Berdasarkan Definisi 5.4.1, maka kita simpulkan bahwa 1/f kontinu seragam pada A.

 $\therefore 1/f$ kontinu seragam pada A.

3. Misalkan I = [a, b] dan $f: I \to \mathbb{R}$ kontinu pada I. Jika f mempunyai maksimum absolute di sebuah titik dalam c pada I, buktikan f tidak injektif pada I.

Jawab:

Akan dibuktikan f tidak injektif pada I dengan kontradiksi.

Misal f injektif pada I. Artinya, $\forall x, y \in I$, $f(x) = f(y) \Rightarrow x = y$.

Misal
$$a \le x_1 < c$$
 dan $c < x_2 \le b$
Karena f injektif, maka $f(x_1) < f(c)$ dan $f(x_2) < f(c)$ dengan $f(x_1) \ne f(x_2)$.

WLOG misal
$$f(x_1) < f(x_2) < f(c)$$
, maka berdasarkan Intermediate Value Theorem 5.3.7, $\exists \xi \in (x_1, c) \ni f(\xi) = f(x_2)$

Karena $x_1 < \xi < c$ menghasilkan nilai yang sama dengan $x_2 > c$, artinya ini kontradiksi dengan hipotesis bahwa f injektif. Maka haruslah f tidak injektif.

Untuk $f(x_2) < f(x_1) < f(c)$ akan serupa.

 \therefore Terbukti bahwa f tidak injektif pada I.

4. Misalkan $f: I \to \mathbb{R}$ terturunkan pada interval I. Buktikan bahwa f tidak naik pada I jika dan hanya jika $f'(x) \le 0$ untuk setiap $x \in I$.

Jawab:

Akan dibuktikan Teorema 6.2.7 yang membenarkan pernyataan tersebut.

 \Rightarrow : Misal f tidak naik pada I.

Artinya $\forall x_1, x_2 \in I, x_1 < x_2 \Rightarrow f(x_1) \geq f(x_2).$

Akan dibuktikan $f'(x) \leq 0, \forall x \in I$.

Ambil sembarang $c \in I$.

Untuk $x \neq c$,

Misal x < c, maka x - c < 0 dan karena f tidak naik, $f(x) - f(c) \ge 0$ sehingga:

$$\frac{f(x) - f(c)}{x - c} \le 0$$

Misal x > c, maka x - c > 0 dan karena f tidak naik, $f(x) - f(c) \le 0$ sehingga:

$$\frac{f(x) - f(c)}{x - c} \le 0$$

Berdasarkan Teorema 4.2.6, maka kita peroleh

$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c} \le 0$$

Karena f terturunkan pada I, maka f terturunkan pada c, dan berdasarkan Definisi 6.1.1,

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} \le 0$$

Karena berlaku untuk sembarang $c \in I$, maka kita peroleh $f'(x) \le 0, \forall x \in I$.

 \Leftarrow : Misal $f'(x) \le 0, \forall x \in I$.

Akan dibuktikan f tidak naik pada $I \Leftrightarrow \forall x_1, x_2 \in I, x_1 < x_2 \Rightarrow f(x_1) \ge f(x_2)$.

Ambil sembarang $x_1, x_2 \in I$ dengan $x_1 < x_2$.

Karena f terturunkan pada I, maka berdasarkan Teorema 6.1.2, f kontinu pada I.

Karena f kontinu pada $[x_1, x_2] \subseteq I$ dan f terturunkan pada $(x_1, x_2) \subset I$, maka berdasarkan Mean Value Theorem 6.2.4,

$$\exists c \in (x_1, x_2) \ni f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

Karena $f'(x) \le 0, \forall x \in I$, maka kita peroleh:

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \le 0 \Leftrightarrow f(x_2) - f(x_1) \le 0 \Leftrightarrow f(x_1) \ge f(x_2)$$

Artinya, untuk sembarang $x_1, x_2 \in I, x_1 < x_2$ berlaku $f(x_1) \ge f(x_2)$

∴ Terbukti bahwa f tidak naik pada I jika dan hanya jika $f'(x) \le 0$ untuk setiap $x \in I$.

5. Berikan contoh sebuah fungsi kontinu seragam pada [a, b] yang terturunkan pada (a, b) tetapi turunannya tidak terbatas pada (a, b). Jelaskan!

Jawab:

Misal $f(x) := \sqrt{x}$ untuk $x \in A$ dengan A := [0, b], b > 0.

Akan ditunjukkan *f* kontinu seragam pada *A*.

Pilih $\delta = \varepsilon^2$ untuk sembarang $\varepsilon > 0$, maka $\forall x, u \in A, |x - u| < \delta$ akan berlaku:

$$|f(x) - f(u)|^2 = |\sqrt{x} - \sqrt{u}|^2$$

$$\leq |\sqrt{x} + \sqrt{u}||\sqrt{x} - \sqrt{u}|$$

$$= x - u$$

$$< \delta$$

$$= \varepsilon^2$$

Artinya, $|f(x) - f(u)|^2 < \varepsilon^2$.

Karena f monoton naik pada A, maka kita peroleh $|f(x) - f(u)| < \varepsilon$.

Artinya, $\forall \varepsilon > 0$, $\exists \delta = \varepsilon^2 > 0 \ni \forall x, u \in A, |x - u| < \delta \Rightarrow |f(x) - f(u)| < \varepsilon$.

Berdasarkan Definisi 5.4.1, maka kita simpulkan bahwa f kontinu seragam pada \mathbb{R} .

Akan ditunjukkan bahwa f terturunkan pada (0, b).

Ambil sembarang $c \in (0, b)$, perhatikan bahwa:

$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c} = \lim_{x \to c} \frac{\sqrt{x} - \sqrt{c}}{\left(\sqrt{x} + \sqrt{c}\right)\left(\sqrt{x} - \sqrt{c}\right)} = \lim_{x \to c} \frac{1}{\sqrt{x} + \sqrt{c}} = \frac{1}{\sqrt{c} + \sqrt{c}} = \frac{1}{2\sqrt{c}}$$

Karena $c \in (0, b)$, artinya limit ini ada. Berdasarkan Definisi 6.1.1, maka:

$$f'(c) = \frac{1}{2\sqrt{c}}$$

Karena berlaku untuk sembarang $c \in (0, b)$, maka f terturunkan pada (0, b).

Namun, perhatikan bahwa:

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{\sqrt{x}}{x} = \lim_{x \to 0} \frac{1}{\sqrt{x}}$$

Untuk sembarang $V_{\delta}(0)$, $\frac{1}{\sqrt{x}}$ akan menjadi tidak terbatas,

artinya f terturunkan pada (0, b) namun turunannya tidak terbatas pada (0, b).

∴ Contoh sebuah fungsi kontinu seragam pada [a,b] yang terturunkan pada (a,b) tetapi turunannya tidak terbatas pada (a,b) adalah $f(x) := \sqrt{x}$ untuk $x \in [0,b], b > 0$.