

IIC2223 - Teoría de Autómatas y Lenguajes Formales

Ayudantía 10

Franco Bruña y Dante Pinto 26 de Noviembre, 2021

Pregunta 1

1. Demuestre que para todo k, existe una gramática libre de contexto $\mathcal G$ tal que $L=\mathcal L(\mathcal G)$ y $\mathcal G$ no es LL(k).

Sea \mathcal{G} la siguiente gramática:

$$S \to a^k X \mid a^k Y$$
$$X \to b$$
$$Y \to c$$

Dado que $L(\mathcal{G})$ es un lenguaje finito, es claro que será regular, por lo que bastará demostrar que \mathcal{G} o es LL(k).

Sabemos que \mathcal{G} será LL(k) si para todas las derivaciones:

•
$$S \stackrel{*}{\Longrightarrow} u \cdot Y \cdot \beta \stackrel{*}{\Longrightarrow} u \cdot \gamma_1 \cdot \beta \stackrel{*}{\Longrightarrow} u \cdot v_1$$

•
$$S \xrightarrow{*} u \cdot Y \cdot \beta \xrightarrow{lm} u \cdot \gamma_2 \cdot \beta \xrightarrow{*} u \cdot v_2$$

•
$$v_1|_k = v_2|_k$$

Se cumple que $\gamma_1 = \gamma_2$.

Observando nuestra gramática, podemos considerar:

•
$$S \xrightarrow{*}_{lm} \varepsilon \cdot S \cdot \varepsilon \xrightarrow{lm} \varepsilon \cdot a^k X \cdot \varepsilon \xrightarrow{*}_{lm} \varepsilon \cdot a^k b$$

$$\bullet \ S \xrightarrow[lm]{*} \varepsilon \cdot S \cdot \varepsilon \xrightarrow[lm]{} \varepsilon \cdot a^k Y \cdot \varepsilon \xrightarrow[lm]{*} \varepsilon \cdot a^k c$$

Luego $v_1 = a^k b \wedge v_2 = a^k c$, por lo que $v_1|_k = v_2|_k = a^k$, sin embargo, observando los γ , tenemos $\gamma_1 = a^k X \neq a^k Y = \gamma_2$, lo que significa que \mathcal{G} no es LL(k).

Por lo tanto, para todo k, existirá \mathcal{G} tal que $\mathcal{L}(\mathcal{G})$ es regular y \mathcal{G} no es LL(k)

2. Demuestre que para todo lenguaje regular L, existe una gramática libre de contexto \mathcal{G} tal que $L = \mathcal{L}(\mathcal{G})$ y \mathcal{G} es LL(k) para algún k.

Como L es regular, sabemos que existirá un DFA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ tal que $L = \mathcal{L}(\mathcal{A})$, por lo que podemos construir la gramática $\mathcal{G} = (Q, \Sigma, P, q_0)$, con P dado por:

$$P = \{ p \to aq \mid \delta(p, a) = q \}$$
$$\cup \{ p \to \varepsilon \mid p \in F \}$$

Demostramos anteriormente (AY07 - P2) que $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{G})$, por lo que solamente necesitaremos demostrar que \mathcal{G} es LL(k) para algún k.

Tomando dos derivaciones cualquiera de la forma:

•
$$S = q_0 \stackrel{*}{\underset{lm}{\Longrightarrow}} u \cdot q \cdot \varepsilon \stackrel{*}{\underset{lm}{\Longrightarrow}} u \cdot a_1 q_1 \cdot \varepsilon \stackrel{*}{\underset{lm}{\Longrightarrow}} u \cdot v_1$$

•
$$S = q_0 \xrightarrow{*}_{lm} u \cdot q \cdot \varepsilon \Longrightarrow_{lm} u \cdot a_2 q_2 \cdot \varepsilon \xrightarrow{*}_{lm} u \cdot v_2$$

Como \mathcal{G} está hecha en base a un DFA, sabemos que para un par estado, letra (p,a) existirá una única transición dada por $\delta(p,a)=q$, lo que a su vez significa que la gramática tendrá una única producción que a partir de la variable p entregará la letra a y esta siempre producirá aq.

Aplicando esto a las derivaciones anteriores, podemos ver que para k=1, si $v_1|_1=v_2|_1$, entonces $a_1=a_2$, y ya que fueron obtenidos a partir de una misma variable q, necesariamente se cumplirá que $q_1=q_2$, lo que significa que $a_1q_1=a_2q_2 \rightarrow \gamma_1=\gamma_2$ y, por tanto, $\mathcal G$ será LL(1).

Pregunta 2

Considere la gramática

$$\mathcal{G} = \left(\{S', S, B, E, J, L\}, \{;, :=, a, (,), ,\}, \begin{cases} S' & \to & S \\ S & \to & LB \\ B & \to & ;S; L \mid := L \\ E & \to & a \mid L \\ J & \to & ,EJ \mid &) \\ L & \to & (EJ) \end{cases}, S' \right)$$

Para cada variable X de \mathcal{G} , calcule $first_1(X)$ y $follow_1(X)$ usando los algoritmos vistos en clases.

Pregunta 3

Sea $\mathcal{G} = (V, \Sigma, P, S)$. Demuestre que si i^* es el menor número tal que $\mathsf{follow}_k^{i^*}(X) = \mathsf{follow}_k^{i^*+1}(X)$ para todo $X \in V$. Entonces para todo $X \in V$:

$${\tt follow}_k^{i^*}(X) = {\tt follow}_k(X)$$