Applied Point Pattern Analysis

Antonio Páez
School of Geography and Earth Sciences
McMaster University

Theory: Spatial pricing

- Market areas
- Type of pattern
- Developing testable hypotheses

Point pattern analysis

- Identifying patterns
- Nearest neighbor analysis
 - Exploratory technique
 - Point-event nearest neighbor (F-hat)
 - Event-event nearest neighbor (G-hat)
- Moving windows

Example: fast food in Toronto

Fast food in Toronto

Fast food in Toronto (F)

Fast food in Toronto (F)

Fast food in Toronto (G)

Fast food in Toronto (G)

Fast Food in Toronto

- Pattern?
- Relationship to theory?
- Discussion

Distribution of Population

Weighted F function

"Points" now have an attribute of interest

Weighted F function (Population)

Distribution of Employment

Weighted F function (Employment)

Weighted F function (Pop/Emp)

Kolmogorov-Smirnov 2-sample distribution test H₀: X1 and X2 have same continuous distribution (reject)

Measuring Spatial Concentration

Moving windows

Fast food – 1500 m concentration

Population – 1500 m concentration

Employment – 1500 m concentration

Moving windows ratio of proportions

Are two levels of concentration proportional?

Ratio of proportions – Food/Pop

Ratio of proportions – Food/Emp

Summary + Discussion

- Spatial pricing theory: Market area patterns
- Testable hypotheses
- Point pattern analysis techniques
 - Nearest neighbor analysis
 - Moving windows
- What does the evidence indicate?
- What is the theory good for?