

asic Definitions Convex/Concave/Affine

affine $f(\theta x + (1 - \theta)y) = \theta f(x) + (1 - \theta)f(y), \ \forall x, \ y, \ \theta \in [0, 1]$

convex	$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y), \ \forall x, \ y, \ \theta \in [0, 1]$
concave	$f(\theta x + (1 - \theta)y) \ge \theta f(x) + (1 - \theta)f(y), \ \forall x, \ y, \ \theta \in [0, 1]$

2. Standard Convex Optimization (CP)

minimize
$$f_0(x)$$
 subject to $f_i(x) \leq 0, \quad i=1,\ldots,m$ $Ax=b$

Least-squares
$$\|Ax-b\|_2^2$$

```
4. Linear programming (LP)
    minimize c^T x
```

```
subject to a_i^T x \leq b_i, \quad i = 1, \dots, m
5. Quadratic program (QP)
```


Only difference from QP is convex quadratic inequality constraints

Feasibility problem (Optimisation View) minimize 0 subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$

Local optimization vs global optimization

$h_i(x) = 0, \quad i = 1, \dots, p$ Nonlinear programming Nonconvex problems

2: Supporting Hyperplane Theorem (for every boundary point)

. Affine set

Convex Sets

2. Convex set

3. Convex combination of
$$x_1$$
 x_2 : any point x of the form

convex combination of
$$x_1,\dots,x_k$$
: any point x of the form
$$x=\theta_1x_1+\theta_2x_2+\dots+\theta_kx_k$$
 with $\theta_1+\dots+\theta_k=1,\ \theta_i\geq 0$

- 6. Hyperplane & Halfspace 7. Ellipsoid
- ellipsoid: set of the form

$$\{x \mid (x - x_c)^T P^{-1} (x - x_c) \le 1\}$$

with $P \in \mathbf{S}_{++}^n$ (i.e., P symmetric positive definite)

norm ball with center x_c and radius r: $\{x \mid ||x - x_c|| \le r\}$ 9. Polyhedra

8. Norm balls

Set Operations (Preserve Convexity)

- The intersection of convex sets
- 2. Affine function
- Perspective function

Theorem for Convex Sets:

Convex Functions

Definition $f: \mathbf{R}^n \to \mathbf{R}$ is convex if $\operatorname{\mathbf{dom}} f$ is a convex set and

$$f(\theta x + (1-\theta)y) \leq \theta f(x) + (1-\theta)f(y)$$
 for all $x,y \in \operatorname{dom} f$, $0 \leq \theta \leq 1$
$$(y,f(y))$$
 Common Convex Functions

- \circ exp(x) logistic(x)
 - max(X) o norm(X, k=1,2,...)
 - o <u>others ..</u> **Common Concave Functions**
 - \circ log(x) entropy(x)
 - o min(X) o <u>others ..</u>
- 4. Epigraph $ext{epi } f = \{(x, t) \in \mathbf{R}^{n+1} \mid x \in \text{dom } f, \ f(x) \le t\}$

f is convex if and only if epi f is a convex set Rules for Convex Functions:

- 1: Any locally optimal point is globally optimal 2: first-order approximation of f(x) is global
- underestimator for all x 2: $\nabla^2 f(x) \succeq 0$ for all $x \in \operatorname{dom} f$
- 3: -f(x) is concave if f(x) is convex

Nonnegative weighted sum

f(Ax + b) is convex if f is convex

Pointwise maximum

2. Composition with affine function

- scaling, translation, projection

4. Pointwise supremum (or least upper bound) 1: Separating Hyperplane Theorem (for 2 disjoint convex sets)

onvex Functions (Composition Rules) $f(\exp_1, \exp_2, \dots, \exp_n)$ is convex if f is a convex function and for each \exp_i one of

the following conditions holds:

- *f* is increasing in argument *i* and expr_i is convex. • f is decreasing in argument i and expr. is concave. • expr. is affine or constant. $f(\exp_1, \exp_2, \dots, \exp_n)$ is concave if f is a concave function and for each \exp_i one of the following conditions holds:
- *f* is increasing in argument *i* and expr, is concave. • f is decreasing in argument i and expr. is convex. expr. is affine or constant.

og-concave a positive function f is log-concave if $\log f$ is concave:

- $f(\theta x + (1 \theta)y) \ge f(x)^{\theta} f(y)^{1-\theta}$ for $0 \le \theta \le 1$
- Most common probability densities are log-concave.

ome Interesting Convex Problems

1. Regularized approximation (e.g. L2 norm) minimize $||Ax - b||_2^2 + \delta ||x||_2^2$ can be solved as a least-squares problem minimize $\left\| \begin{bmatrix} A \\ \sqrt{\delta}I \end{bmatrix} x - \begin{bmatrix} b \\ 0 \end{bmatrix} \right\|_2^2$

solution $x^* = (A^T A + \delta I)^{-1} A^T b$ 2. Penalty function approximation minimize $\phi(r_1) + \cdots + \phi(r_m)$

> subject to r = Ax - b $(A \in \mathbf{R}^{m \times n}, \phi : \mathbf{R} \to \mathbf{R})$ is a convex penalty function)

> > maximize (over x) $\log p_x(y)$

Example penalty: Square(), Norm(), log-barrier(), Huber() Maximum likelihood estimation (MLE)

- y is observed value
- $l(x) = \log p_x(y)$ is called log-likelihood function 4. Support vector classifier

• trade-off curve between inverse of margin 2/ || a || and classification error

- minimize $||a||_2 + \gamma (\mathbf{1}^T u + \mathbf{1}^T v)$ subject to $a^T x_i + b \ge 1 - u_i, \quad i = 1, \dots, N$
- if f_1, \ldots, f_m are convex, then $f(x) = \max\{f_1(x), \ldots, f_m(x)\}$ is convex $a^T y_i + b \le -1 + v_i, \quad i = 1, \dots, M$ $u \succ 0, \quad v \succ 0$
- 5. Examples (convex): $f(x) = -\sum_{i=1}^{n} \log(b_i a_i^T x),$

unction Operations (Preserve Convexity

2. Lagrangian

The Primal Problem

standard form problem (not necessarily convex)

variable $x \in \mathbb{R}^n$, domain \mathcal{D} , optimal value p^*

• weighted sum of objective and constraint functions

• λ_i is Lagrange multiplier associated with $f_i(x) < 0$

 \bullet ν_i is Lagrange multiplier associated with $h_i(x) = 0$

Dual Function (or greatest lower bound)

Lagrange dual function: $g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$,

 $g(\lambda, \nu) = \inf_{x \in \mathcal{D}} L(x, \lambda, \nu)$

a is concave, can be $-\infty$ for some λ . ν

4. Dual Lower Bound

minimize $f_0(x)$

Lagrangian: $L: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$, with $\operatorname{dom} L = \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^p$,

 $L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$

subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$

 $h_i(x) = 0, \quad i = 1, \dots, p$

differentiable f_i , h_i):

- 2. dual constraints: $\lambda \succ 0$
- 4. gradient of Lagrangian with respect to x vanishes:
- $\nabla f_0(x) + \sum_{i=1}^{n} \lambda_i \nabla f_i(x) + \sum_{i=1}^{n} \nu_i \nabla h_i(x) = 0$

$$i=1$$
 $i=1$ e Primal Problem is Convex, x, λ , ν which satisfy KKT are optimal:

given a starting point $x \in \operatorname{dom} f$.

1. $\Delta x := -\nabla f(x)$.

- 3. Update. $x := x + t\Delta x$. until stopping criterion is satisfied.

5. Lagrange dual problem (or <u>The Dual Problem</u>)

lower bound property: if $\lambda \succeq 0$, then $g(\lambda, \nu) \leq p^*$

 $=\inf_{x\in\mathcal{D}}\left(f_0(x)+\sum_{i=1}^m\lambda_if_i(x)+\sum_{i=1}^p
u_ih_i(x)
ight)$

subject to $\lambda \succ 0$

- finds best lower bound on p^* , obtained from Lagrange dual function ullet a convex optimization problem; optimal value denoted d^\star
- 6. Duality weak duality $(d^* \le p^*)$
- strong duality (d* = p*) usually holds for convex problems
- An example primal problem minimize $c^T x$

subject to $Ax \prec b$ dual function

 $g(\lambda) = \inf_x \left((c + A^T \lambda)^T x - b^T \lambda \right) = \left\{ egin{array}{ll} -b^T \lambda & A^T \lambda + c = 0 \ -\infty & ext{otherwise} \end{array}
ight.$

subject to $A^T \lambda + c = 0$, $\lambda \succ 0$ Reformulating the primal problem can be useful when the dual is difficult

to derive, or uninteresting. (e.g. new variables / transform objectives)

Optimal Verification (KKT conditions) the following four conditions are called KKT conditions (for a problem with

1. primal constraints: $f_i(x) \leq 0$, $i = 1, \ldots, m$, $h_i(x) = 0$, $i = 1, \ldots, p$

3. complementary slackness: $\lambda_i f_i(x) = 0, i = 1, \dots, m$

If The Primal Problem is Convex, x,
$$\lambda$$
, v which satisfy KKT are optimal:

Unconstrained Minimization Solvers 1. Descent Methods (or Gradient Descent)

- 2. Line search. Choose step size t via exact or backtracking line search
- \circ Δx is the step, or search direction; t is the step size o stopping criterion usually of the form $/\!\!/ \nabla f(x) /\!\!/ \le \varepsilon$ very simple, but could be very slow
- Newton's Method given a starting point $x \in \operatorname{dom} f$, tolerance $\epsilon > 0$.
- 1. Compute the Newton step and decrement. $\Delta x_{
 m nt} := abla^2 f(x)^{-1}
 abla f(x); \quad \lambda^2 :=
 abla f(x)^T
 abla^2 f(x)^{-1}
 abla f(x).$ 2. Stopping criterion. quit if $\lambda^2/2 < \epsilon$.
- 3. Line search. Choose step size t by backtracking line search. 4. Update. $x := x + t\Delta x_{\rm nt}$.
- Why Newton's Method is Fast? • $x + \Delta x_{\rm nt}$ solves linearized optimality condition

 $\nabla f(x+v) \approx \nabla \widehat{f}(x+v) = \nabla f(x) + \nabla^2 f(x)v = 0$

 $(x + \Delta x_{
m nt}, f'(x + \Delta x_{
m nt}))$ f(x,f'(x)) $(x + \Delta x_{
m nt}, f(x + \Delta x_{
m nt}))$ o If the second order approximation is correct, the optimal

- solution could be found in 1 step with 1 as the step size. o In most cases, converges in 5-20 steps.
- 4. Hessian Matrix Inverses
 - The mostly costly operation in each step and typically follow a Cholesky Factorization approach (complexity: n³)

Equality Constrained Minimization Solvers 1. The Problem

 f convex, twice continuously differentiable 2. Newton's Method (with a feasible starting point)

given starting point $x \in \operatorname{dom} f$ with Ax = b, tolerance $\epsilon > 0$.

minimize f(x)

subject to Ax = b

- 1. Compute the Newton step and decrement $\Delta x_{\rm nt}$, $\lambda(x)$. 2. Stopping criterion. quit if $\lambda^2/2 < \epsilon$. 3. Line search. Choose step size t by backtracking line search
- 4. Update, $x := x + t\Delta x_{\rm nt}$.
- 3. Newton's Method (with an infeasible starting point) given starting point $x \in \operatorname{dom} f$, ν , tolerance $\epsilon > 0$, $\alpha \in (0, 1/2)$, $\beta \in (0, 1)$ gtol=1e-08, x_scale=1.0, loss='linear', f_scale=1.0, diff_step=None, tr_solver=None, tr_options={} 1. Compute primal and dual Newton steps $\Delta x_{
 m nt}$, $\Delta
 u_{
 m nt}$
- 2. Backtracking line search on $||r||_2$. while $||r(x + t\Delta x_{\rm nt}, \nu + t\Delta \nu_{\rm nt})||_2 > (1 - \alpha t)||r(x, \nu)||_2$, $t := \beta t$
- 3. Update. $x:=x+t\Delta x_{\rm nt}, \ \nu:=\nu+t\Delta \nu_{\rm nt}.$ until Ax = b and $||r(x, \nu)||_2 \le \epsilon$.
- 4. How to calculate Δx , Δv ? $\left[egin{array}{cc}
 abla^2 f(x) & A^T \ A & 0 \end{array}
 ight] \left[egin{array}{cc} \Delta x_{
 m nt} \ \Delta
 u_{
 m nt} \end{array}
 ight] = - \left[egin{array}{cc}
 abla f(x) + A^T
 u \ Ax - b \end{array}
 ight]$

o not a descent method, f(x) may increase in the next step

Inequality Constrained Minimization Solvers

1. The Problem minimize $f_0(x)$

subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$

2. Approximation via logarithmic barrier minimize $f_0(x) - (1/t) \sum_{i=1}^{m} \log(-f_i(x))$ subject to Ax = b

approximation improves as $t \rightarrow \infty$ 3. Logarithmic barrier function

4. Barrier method (need to tune t^0 and u)

1. Centering step. Compute $x^\star(t)$ by minimizing $tf_0+\phi$, subject to Ax=b

- 5. Primal-dual interior-point methods

prob = cvx.Problem(obj, constraints) prob.solve() # Returns the optimal value. print("status:", prob.status) print("optimal value", prob.value)

minimize(fun, x0, args=(), method=None, jac=None, hess=None, hessp=None, bounds=None, constraints=(), tol=None, callback=None, options=None)

check_finite=True, bounds=- inf, inf, method=None, jac=None, **kwargs)

 fun(): the objective function • X0: initial point Method (popular)

ibrary 1: <u>scipy.optimize</u>

BFGS-B L-BFGS-B SLSQP • jac: Method for computing the gradient vector

• hess: Method for computing the Hessian matrix bounds: Bounds on variables

1. Minimize

• constraints: Array of constraint objects (linear & nonlinear) mostly for SLSOP

options: maxiter & disp Note: parameters are Method dependent.

2. Least Squares least squares(fun, x0, jac='2-point', bounds=- inf, inf, method='trf', ftol=1e-08, xtol=1e-08,

jac_sparsity=None, max_nfev=None, verbose=0, args=(), kwargs={}) fun(): the residual function • loss: the loss function (to reduce the influence of outliers)

• X0: initial point

3. Curve Fit (or general parameter estimation) curve_fit(fun, xdata, ydata, p0=None, sigma=None, absolute_sigma=False,

 fun(): the target function (the independent variable as the first argument and the parameters

to fit as separate remaining arguments) • xdata: input of an (k,M)-shaped array

• ydata: output of length M array • Bounds: parameter bounds

Library 2: <u>CVXPY</u> (focusing convex optimization)

1. Basic Concepts (Objects) cvxpy.Parameter

Cost Function & Constraints

prob.solve()

cvxpv.Problem & cvx.Minimize

import cvxpy as cvx

print("optimal var", x.value, y.value)

Form objective obj = cvx.Minimize(cvx.square(x - y))

4. Increase $t. t := \mu t$.

2. Code Example (TensorFlow style)

x = cvx.Variable()

y = cvx.Variable()

constraints = [x + y == 1, x - y >= 1]

cvxpy.Variable • f_i convex, twice continuously differentiable

Create two scalar optimization variables (CVXPY Variable)

Create two constraints (Python list)

Form and solve problem

given strictly feasible $x, t := t^{(0)} > 0, \mu > 1$, tolerance $\epsilon > 0$.

2. Update. $x := x^*(t)$.

3. Stopping criterion. quit if $m/t < \epsilon$.