DLCV HW1 Report

tags: DLCV

Course	Student ID	Name	Date
2022 Fall NTU DLCV	R10943109	Shiuan-Yun Ding	2022-10-20

HackMD Link: https://hackmd.io/@mirkat1206/rJBCyY-Gi

Problem 1: Image Classification

Input	Output	Training Dataset	Validation Dataset	# of Classes
32x32 RGB Imag	e Classification Label	22500 Images	2500 Images	50

(2%) Network Architecture

Network Architecture of Model A

Input Size: 3 x 32 x 32Output Size: 50 x 1 x 1

Input Size: 3 x 32 x 32Output Size: 50 x 1 x 1

(1%) Accuracy

	Model A	Model B	Simple Baseline	Strong Baseline
Train Set	65.53%	94.40%	Х	Х
Validation Set	49.04%	80.24%	75.00%	86.00%

(4%) Implementation Details of Model A

- Architecture : see the section above.
- Basic Settings

Optimizer	Loss Function	Batch Size	Epochs
SGD	Cross Entropy Loss	64	30

• Optimizer Settings

Optimizer	Learning Rate	Momentum	Weight Decay
SGD	0.01	0.9	0.00001

• Data Augmentation

```
transform=transforms.Compose([
    transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5, hue=0.5),
    transforms.RandomHorizontalFlip(),
    transforms.RandomRotation((-30, 30), expand=False),
    transforms.ToTensor(),
    transforms.Normalize(mean, std),
])
```

• Visualization of a Train Set Batch

Accuracy Curve

(4%) Implementation Details of Model B

- Architecture : see the section above.
- Basic Settings

Pre-trained Model	Optimizer	Loss Function	Batch Size
ResNet50	Adam	Cross Entropy Loss	64

• Parameters

Pre-trained Parameters		Fine-tuned Parameters	
	ResNet50_Weights.IMAGENET1K_V1	Parameters of the last two layers	

• Optimizer Settings

Optimizer	Learning Rate	Betas
Adam	0.0002	(0.9, 0.999)

- Data Augmentation
 - o Same as Model A
- Accuracy Curve

Differences Discusstion

- The architeture of ResNet50 is much deeper and more complicated than the architechture of my model A.
- Initializing ResNet50 with pretrained parameters results in an initial accuracy of 67.44% on validation set. Compared with my model A with random initial parameters, initial accuracy only achieves 7.32% on validation set.
- My model A starts overfitting after 30 epochs with accuracy of around 50% on validation set. On the other hand, the initial accuracy of ResNet50 on validation set starts above 67%, and stops improving at 78%.

(7%) Principal Component Analysis (PCA)

PCA Discusstion

• All the colors(classes) are messed up together even after 30 epochs, which indicates my model A cannot distinguish different classes accurately.

(7%) t-distributed Stochastic Neighbor Embedding (t-SNE)

t-SNE Discusstion

- At 0-th epoch, all colors(classes) are spread across the canvas equally and randomly.
- At 5-th epoch, some dots are getting together with the same color dots. For example, purplr color dots on the upper-right side, and navy color dots on the upper-left side.
- At 30-th epoch, some group isolately with the same color, such as red, purple, and cyan. But in the middle, every colors still mess up, which means the accuracy of classification task will be terrible.

Problem 2: Semantic segmentation

Input	Output	Training Dataset	Validation Dataset	# of Classes
512x512 RGB Image	512x512 Label Image	2000 Images	256 Images	7

(10%) Network Architecture

(5%) Network Architecture of Model A

• VGG16FCN32

Input Size: 3 x 224 x 224Output Size: 3 x 512 x 512

UPSAMPLING (fcn32): Sequential((0): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): ReLU() (2): Dropout(p=0.5, inplace=False) (3): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (4): ReLU() (5): Dropout(p=0.5, inplace=False) (6): ConvTranspose2d(512, 7, kernel_size=(4, 4), stride=(4, 4)) (7): Upsample(size=(512, 512), mode=bilinear))

• mloU Curve

(5%) Network Architecture of Model B

VGG16FCN8

Input Size: 3 x 224 x 224Output Size: 3 x 512 x 512


```
Upsampling Layers

(allupsample): Sequential(
  (0): ConvTranspose2d(256, 7, kernel_size=(8, 8), stride=(8, 8))
  (1): Upsample(size=(512, 512), mode=bilinear)
)
```

• mloU Curve

(3%) mloU

class	VGG16FCN32	VGG16FCN8	Simple Baseline	Strong Baseline
#0	0.73199	0.76444	Х	Х
#1	0.88839	0.89563	Х	Х
#2	0.37572	0.45892	Х	Х
#3	0.79303	0.80901	Х	Х
#4	0.73959	0.76431	Х	Х
#5	0.70920	0.73841	Х	Х
mean_iou	0.706319	0.738451	0.69	0.73

(7%) Predicted Segmentation Mask

0013

• Model A: VGG16FCN32

• Model B : VGG16FCN8

0062

• Model A: VGG16FCN32

• Model B: VGG16FCN8

0104

• Model A: VGG16FCN32

• Model B : VGG16FCN8

Epoch 0	Epoch 10	Epoch 128 (Best)	Golden Mask
' '	' '	' '	

