数值分析第四次作业

肖涵薄 31360164

2019年3月27日

计算题目部分

1

$$l_2 = \frac{x-1}{-2} \frac{x-2}{-3} = \frac{(x-1)(x-2)}{6}$$

$$l_3 = \frac{x-1}{1} \frac{x+1}{3} = \frac{(x-1)(x+1)}{3}$$

$$\implies L = -\frac{(x-1)(x-2)}{2} + \frac{4(x-1)(x+1)}{3}$$

2

 $e^0=1,\quad e^{0.5}=1.65,\quad e^1-1.\ R_2\left(x\right)=rac{f^{(2)}(\xi)}{6}\omega_3\left(x
ight)\leq rac{e}{6}\omega_3\left(x
ight).$ 取 $x=rac{3-\sqrt{3}}{6}$ 时 $\omega_3\left(x
ight)$ 最大为 0.48. 则 $R_2\left(x
ight)<0.22$

数值实验部分 2

数值实验部分

1

需求解的方程组为

$$L_h u^h = h^2 f^h, \ h = 0.1$$

此时 N = 1/h = 10. 取初始 u = 0.

	是否收敛	迭代次数	与精确解误差 (两者之差的无穷范数)
Jacobi	是	217	0.0082
Seidel	是	15	0.9759
SOR 1.2	是	25	0.9759
SOR 1.3	是	32	0.9759
SOR 1.9	是	309	0.9759
SOR 0.9	是	12	0.9759

 $\mathbf{2}$

N	h	迭代次数	与真值误差
3	0.3333333333333333	20	0.0724662490584273
4	0.25000000000000000	38	0.0530272790515429
5	0.2000000000000000	59	0.0303503805496695
6	0.166666666666666	84	0.0231571309052523
7	0.142857142857143	111	0.0161068074513148
8	0.12500000000000000	144	0.0129394175506303
9	0.1111111111111111	178	0.00989279695986134

3

第一题中, 所有迭代方法均收敛, Jacobi 迭代法收敛较慢, 这是因为 Jacobi 矩阵谱半径 $\rho_J=0.9511$, 接近 1. 而 Seidel 方法的谱半径 $\rho_S=0.5$. 收敛速度之比为 ln (0.9511) /ln $(0.5)=0.07\approx$

3

15/217. 在 SOR 方法中, $\omega=0.9$ 处收敛最快.

第二题中,所取的几种情况 Jacobi 迭代法均收敛,且随着 h 减小迭代次数增加. 这是因为当 $h=\frac{\sqrt{2}}{\pi}\approx 0.45$ 时谱半径为 0,收敛的最快,随着 h 减小,谱半径增大,收敛变慢,但谱半径总是小于 1 的,因此总是收敛.

3