ZADANIA Z ALGEBRY I LOGIKI

Zestaw 1

RACHUNEK ZDAŃ

- 1. Sprawdzić, że poniższe wyrażenia są tautologiami:
- (a) $p \Rightarrow p$,
- (b) $p \lor \sim p$,
- (c) $\sim (p \land \sim p)$,
- (d) $(p \Rightarrow q) \Leftrightarrow (\sim q \Rightarrow \sim p)$,
- (e) $(p \Rightarrow q) \Leftrightarrow (\sim p \lor q)$,
- (f) $(\sim p \Rightarrow q) \Leftrightarrow (p \land \sim q)$,
- (g) $(p \lor q) \Leftrightarrow (q \lor p)$,
- (h) $(p \land q) \Leftrightarrow (q \land p)$,
- (i) $(p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$,
- (j) $(p \wedge q) \wedge r \Leftrightarrow p \wedge (q \wedge r)$,
- (k) $(p \lor q) \land r \Leftrightarrow (p \land r) \lor (q \land r)$,
- (1) $(p \land q) \lor r \Leftrightarrow (p \lor r) \land (q \lor r)$,
- (m) $\sim (p \lor q) \Leftrightarrow \sim p \land \sim q$,
- (n) $\sim (p \land q) \Leftrightarrow \sim p \lor \sim q$.
- 2. Sprawdzić, czy następujące wyrażenia są tautologiami:
- (a) $[(p \Rightarrow q) \Rightarrow r] \Leftrightarrow [p \Rightarrow (q \Rightarrow r)],$
- (b) $[(p \Leftrightarrow q) \Leftrightarrow r] \Leftrightarrow [p \Leftrightarrow (q \Leftrightarrow r)],$
- (c) $[p \lor (q \lor r)] \Leftrightarrow [(p \lor q) \lor r]$.
- **3.** Wykazać, że jeśli Φ jest tautologią to zdania $\Phi \wedge p \Leftrightarrow p$ i $\sim \Phi \vee p \Leftrightarrow p$ są prawdziwe.
- **4.** Zapisać prawa przemienności, łączności, rozdzielności dla spójników \vee , \wedge , $\stackrel{\vee}{\rightarrow}$, \Rightarrow jako wyrażenia logiczne i sprawdzić czy są tautologiami.
- **5.** Zapisać zaprzeczenia spójników logicznych \vee , \wedge , $\stackrel{\vee}{\rightarrow}$, \Longrightarrow , \iff jako tautologie rachunku zdań.
- 6. Zdefiniować alternatywę za pomocą koniunkcji i negacji.
- 7. Zdefiniować alternatywę za pomocą implikacji i negacji.
- 8. Udowodnić, że nie można zdefiniować implikacji za pomocą alternatywy i koniunkcji.

9. Rozważmy wyrażenie:

$$(\dots \underbrace{((p \Rightarrow p) \Rightarrow p) \dots) \Rightarrow p}_{n}$$

Dla jakich n to wyrażenie jest tautologią?

- **10.** Używając spójników logicznych \sim, \vee, \wedge , wyznaczyć wyrażenie zależne od zmiennych p,q,r,s, które przyjmuje wartość 1 tylko w przypadku gdy p ma wartość 1, q wartość 0, r wartość 1 i s wartość 1.
- **11.** Używając spójników logicznych \sim , \vee , \wedge , wyznaczyć wyrażenie zależne od zmiennych p,q,r,s, które przyjmuje wartość 1 tylko w przypadku gdy p ma wartość 1, q wartość 0, r wartość 1 i s wartość 1 lub gdy p ma wartość 0, q wartość 1 i s wartość 1 .
- **12.** Używając spójników logicznych \sim, \vee, \wedge , wyznaczyć wyrażenie zależne od zmiennych p,q,r,s, które przyjmuje wartość 0 tylko w przypadku gdy p ma wartość 1, q wartość 1, r wartość 0 i s wartość 1.
- 13. Używając spójników logicznych \sim , \vee , \wedge , wyznaczyć wyrażenie zależne od zmiennych p,q,r,s, które przyjmuje wartość 0 tylko w przypadku gdy p ma wartość 1, q wartość 1, r wartość 1 i s wartość 0 lub gdy p ma wartość 1, q wartość 0 i s wartość 1 .
- 14. Używając różnych tautologii, uprościć wyrażenia:
- (a) $(\sim p \land q \land \sim r) \lor (\sim p \land q \land r) \lor (\sim p \land \sim q \land \sim r)$,
- (b) $(p \land q \land r) \lor (\sim p \land \sim q \land r) \lor (\sim p \land \sim q \land \sim r) \lor (\sim p \land q \land \sim r)$.
- **15.** Znaleźć formułę w możliwie najkrótszej formie zapisaną przy pomocy spójników \sim , \vee , \wedge równoważną formule:
- (a) $\sim p \Rightarrow \sim \sim q$,
- (b) $(p \land q) \lor \sim (\sim p \Rightarrow q)$,
- (c) $(p \land q \land s) \lor (p \land \sim q \land \sim r) \lor (p \land q \land \sim s) \lor (p \land r \Rightarrow q)$.

16. Przeanalizować rozumowanie:

Jeśli jestem geniuszem lub będę się uczył, zdam egzamin. Jeśli zdam egzamin, zostanę dopuszczony do następnych wykładów. A więc nie będę sie uczył.

17. Przeanalizować zdanie:

Jeżeli figura A jest czworokątem i A ma wszystkie kąty równe, to z faktu, iż A jest czworokątem, wynika iż A ma wszystkie boki równe.

18. Udowodnić następujące twierdzenie:

Jeśli prawdziwe są wynikania $p_1 \Rightarrow q_1, \ldots, p_n \Rightarrow q_n$ oraz zdania $(p_1 \vee \ldots \vee p_n)$ $i \sim (q_i \wedge q_j)$ dla $i \neq j$ to prawdziwe są też wynikania $q_1 \Rightarrow p_1, \ldots, q_n \Rightarrow p_n$. Mówimy wtedy, że zdania $p_1, \ldots, p_n, q_1, \ldots, q_n$ tworzą zamknięty układ twierdzeń. Podać przykłady takich układów.