Appendices

Spearman ρ²

Fig. 1: Dotplot of the Spearman multiple ρ^2 of each factor in the bounty question solving-likelihood model. The larger the ρ^2 value, the more likely the factor has a non-linear relationship with the response variable. By observing the rough clustering of the factors according to their ρ^2 , we clustered the factors into four groups according to the Spearman multiple ρ^2 values. We assigned the first, second, and third groups of factors (categorized by the ρ^2 value) which are highlighted by red rectangle, black rectangle and green rectangle, 5, 4, and 3 degrees of freedom, respectively.

This appendix will be available online Zhou (2019). We included it as supplementary material for the convenience of the anonymous reviewers.

Spearman ρ^2

Fig. 2: Dotplot of the Spearman multiple ρ^2 of each factor in the bounty question solving-time model. The larger the ρ^2 value, the more likely the factor has a non-linear relationship with the response variable. By observing the rough clustering of the factors according to their ρ^2 , we clustered the factors into four groups according to the Spearman multiple ρ^2 values. We assign the first and second groups of factors (categorized by the ρ^2 value) which are highlighted by red rectangle and black rectangle, 5 and 4 degrees of freedom, respectively.

Fig. 3: The frequency of the number of bounty questions that were won by a hunter.

In this appendix, we present the dotplots of the Spearman multiple ρ^2 of each factor for the bounty question solving-likelihood model (Figure 2) and the bounty question solving-time model (Figure 2).

We also show the Wald χ^2 value and the statistical significance (p-value) of all factors in the model for solving-likelihood of bounty questions 1 and the model for solving-time of bounty questions 2.

We also present the results of the analysis on hunters. Figure 3 shows the frequency of a hunter winning bounty question. We found that 67.3% of the hunters only solved 1 bounty question and 1.9% of the hunters solved more than 10 bounty questions. This finding indicates that most hunters in Stack Overflow are one-shot hunters. Figure 4 shows the total bounty amount that was won by a hunter. We found that the total earning of 48.3% of the hunters was no more than 50 reputation points and only 6.2% of the hunters earned more than 500 reputation points.

References

Zhou, J. (2019). Supplementary material for our paper. https://github.com/SAILResearch/wip-18-jiayuan-SO-bounty-SupportMaterials/blob/master/appendix.pdf.

Table 1: The result of our logistic regression model that is for understanding the relationship between the studied factors and the bounty question solving-likelihood. Factors are ordered by their variable importance (i.e., their Wald's χ^2 value).

Factors		Overall	NL
	D.F.		
Q_answer_num	χ^2	1 1348.604 ***	
•	$_{\mathrm{D.F.}}^{\chi}$	9	
B_value	χ^2	597.668 ***	
	D.F.	4	3
T_solving_likelihood_normal_min	χ^2	473.843 ***	7.921 ***
~	D.F.	1	1.021
B_days_before_bounty	χ^2	382.611 ***	
-	D.F.	2	3
$T_{answerer_num_sum}$	χ^2	359.326 ***	108.199 ***
	D.F.	3	2
$T_solving_likelihood_normal_max$	χ^2	349.808 ***	54.763 ***
	D.F.	4	3
B_solved_likelihood_median	χ^2	164.312 ***	128.110 ***
	D.F.	3	2
B_solved_likelihood_min	χ^2	106.017 ***	104.622 ***
	D.F.	1	
T_age_min	χ^2	64.624 ***	
	D.F.	1	
Q_codesnippet_num	χ^2	50.250 ***	
B_solved_likelihood_max	D.F.	3	2
	χ^2	44.900 ***	41.039 ***
Q_body_len	D.F.	1	
	χ^2	29.932 ***	
T.	D.F.	1	
T_age_max	χ^2	21.996 ***	
Q_url_num	D.F.	1	
	χ^2	17.373 ***	
IIl	D.F.	1	
U_asker_answer_num	χ^2	12.798 ***	
U_asker_question_num	D.F.	1	
C_asker_question_num	χ^2	8.061 **	
U_backer_reputation	D.F.	1	
C_backer_reputation	χ^2	7.130 **	
T_answerer_num_min	D.F.	1	
1_answerer_mum_mm	χ^2	6.216 *	
Q_favorite_num	D.F.	1	
Z_iavorite_num	χ^2	5.167 *	
Q_score	D.F.	1	
Q _D0010	χ^2	2.645	
T_age_sum	D.F.	1	
	χ^2	1.514	
Q_code_proportion	D.F.	1 500	
-V	χ^2	1.508	

P-value of the χ^2 test: '***' < 0.001; '**' < 0.01; '*' < 0.05

Table 2: The result of our logistic regression model that is for understanding relationship between the studied factors and solving-time. Factors are ordered by their variable importance (i.e., Wald's χ^2 value).

Factors		Overall	NL
Q_answer_num	D.F. χ^2	1 2032.150 ***	
U_answerer_answer_num	D.F. χ^2	3 581.880 ***	2 361.452 ***
T_solving_likelihood_normal_min	D.F. χ^2	3 391.171 ***	2 76.639 ***
T_age_max	D.F. χ^2	1 317.732 ***	
T_solving_likelihood_normal_max	D.F. χ^2	1 243.640 ***	
B_days_before_bounty	D.F. χ^2	1 173.308 ***	
Q_code_proportion	D.F. χ^2	1 144.062 ***	
Q_favorite_num	D.F. χ^2	1 74.265 ***	
Q_body_len	D.F. χ^2	2 58.913 ***	
T_age_sum	D.F. χ^2	1 45.573 ***	
T_answerer_num_sum	D.F. χ^2	1 42.458 ***	
Q_codeSnippet_num	D.F. χ^2	1 15.294 ***	
B_solved_likelihood_max	D.F. χ^2	1 14.696 ***	
B_value	D.F. χ^2	1 11.257 **	
T_age_min	D.F. χ^2	1 10.580 **	
Q_url_num	D.F. χ^2	1 10.191 **	
U_asker_answer_num	D.F. χ^2	1 5.888 *	
T_answerer_num_min	D.F. χ^2	1 5.446 *	
U_answerer_question_score_median	D.F. χ^2	$\frac{1}{2.564}$	
B_solved_likelihood_median	D.F. χ^2	$\frac{1}{2.358}$	
U_asker_question_num	D.F. χ^2	$\frac{1}{1.203}$	
U_backer_reputation	D.F. χ^2	$\frac{1}{0.640}$	
B_solved_likelihood_min	$\overset{\sim}{\mathrm{D.F.}}$ $\overset{\sim}{\chi^2}$	$\frac{1}{0.603}$	
U_answerer_question_num	D.F. χ^2	1 0.11	
U_answerer_answer_score_median	D.F. χ^2	1 0.011	
Q_score	D.F. χ^2	1 0.011	
	λ	~.~	

 $\frac{\text{Q_score}}{\text{P-value of the } \chi^2 } \frac{\chi^2}{\text{test: ``***'}} < 0.001; ``**' < 0.01; ``**' < 0.05}$

Fig. 4: The frequency of total bounty amount that was awarded to a hunter.