

proof of inverse function theorem

Canonical name ProofOfInverseFunctionTheorem

Date of creation 2013-03-22 13:31:20 Last modified on 2013-03-22 13:31:20

Owner paolini (1187) Last modified by paolini (1187)

Numerical id 6

Author paolini (1187)

Entry type Proof Classification msc 03E20 Since det $Df(a) \neq 0$ the Jacobian matrix Df(a) is invertible: let $A = (Df(a))^{-1}$ be its inverse. Choose r > 0 and $\rho > 0$ such that

$$B = \overline{B_{\rho}(a)} \subset E,$$

$$\|Df(x) - Df(a)\| \le \frac{1}{2n\|A\|} \quad \forall x \in B,$$

$$r \le \frac{\rho}{2\|A\|}.$$

Let $y \in B_r(f(a))$ and consider the mapping

$$T_{u}\colon B\to\mathbb{R}^{n}$$

$$T_y(x) = x + A \cdot (y - f(x)).$$

If $x \in B$ we have

$$||DT_y(x)|| = ||1 - A \cdot Df(x)|| \le ||A|| \cdot ||Df(a) - Df(x)|| \le \frac{1}{2n}.$$

Let us verify that T_y is a contraction mapping. Given $x_1, x_2 \in B$, by the Mean-value Theorem on \mathbb{R}^n we have

$$|T_y(x_1) - T_y(x_2)| \le \sup_{x \in [x_1, x_2]} n ||DT_y(x)|| \cdot |x_1 - x_2| \le \frac{1}{2} |x_1 - x_2|.$$

Also notice that $T_y(B) \subset B$. In fact, given $x \in B$,

$$|T_y(x) - a| \le |T_y(x) - T_y(a)| + |T_y(a) - a| \le \frac{1}{2}|x - a| + |A \cdot (y - f(a))| \le \frac{\rho}{2} + ||A||r \le \rho.$$

So $T_y : B \to B$ is a contraction mapping and hence by the contraction principle there exists one and only one solution to the equation

$$T_y(x) = x,$$

i.e. x is the only point in B such that f(x) = y.

Hence given any $y \in B_r(f(a))$ we can find $x \in B$ which solves f(x) = y. Let us call $g: B_r(f(a)) \to B$ the mapping which gives this solution, i.e.

$$f(g(y)) = y.$$

Let $V = B_r(f(a))$ and U = g(V). Clearly $f: U \to V$ is one to one and the inverse of f is g. We have to prove that U is a neighbourhood of a. However since f is continuous in a we know that there exists a ball $B_{\delta}(a)$ such that $f(B_{\delta}(a)) \subset B_r(y_0)$ and hence we have $B_{\delta}(a) \subset U$.

We now want to study the differentiability of g. Let $y \in V$ be any point, take $w \in \mathbb{R}^n$ and $\epsilon > 0$ so small that $y + \epsilon w \in V$. Let x = g(y) and define $v(\epsilon) = g(y + \epsilon w) - g(y)$.

First of all notice that being

$$|T_y(x+v(\epsilon)) - T_y(x)| \le \frac{1}{2}|v(\epsilon)|$$

we have

$$\frac{1}{2}|v(\epsilon) \geq |v(\epsilon) - \epsilon A \cdot w| \geq |v(\epsilon)| - \epsilon \|A\| \cdot |w|$$

and hence

$$|v(\epsilon)| \le 2\epsilon ||A|| \cdot |w|.$$

On the other hand we know that f is differentiable in x that is we know that for all v it holds

$$f(x+v) - f(x) = Df(x) \cdot v + h(v)$$

with $\lim_{v\to 0} h(v)/|v| = 0$. So we get

$$\frac{|h(v(\epsilon))|}{\epsilon} \le \frac{2||A|| \cdot |w| \cdot |h(v(\epsilon))|}{v(\epsilon)} \to 0 \quad \text{when } \epsilon \to 0.$$

So

$$\lim_{\epsilon \to 0} \frac{g(y+\epsilon) - g(y)}{\epsilon} = \lim_{\epsilon \to 0} \frac{v(\epsilon)}{\epsilon} = \lim_{\epsilon \to 0} Df(x)^{-1} \cdot \frac{\epsilon w - h(v(\epsilon))}{\epsilon} = Df(x)^{-1} \cdot w$$

that is

$$Dg(y) = Df(x)^{-1}.$$