Họ tên: Phạm Đức Duy MSSV: 19521432

Môn học: Mạng neural và thuật giải di truyền

Lớp học: CS410.N11.KHCL

BÁO CÁO KẾT QUẢ CHẠY THỰC NGHIỆM THUẬT TOÁN **DE** (DIFFERENTIAL EVOLUTION) VÀ **CEM** (CROSS-ENTROPY METHOD) TỐI ƯU HÓA CÁC HÀM MUC TIÊU

A. BẢNG KẾT QUẢ

Hàm Sphere:

Popsize N / λ	<u>DE</u>	<u>CEM</u>
32	$0 (\pm 0)$	$0 (\pm 0)$
64	$0 \ (\pm \ 0)$	$0 (\pm 0)$
128	$0 (\pm 0)$	0 (± 0)
256	$0 (\pm 0)$	0 (± 0)
512	$0 \ (\pm \ 0)$	$0 (\pm 0)$
1024	$0 (\pm 0)$	$0 (\pm 0)$

<u>Bảng kết quả 1:</u> Bảng kết quả **giá trị hàm mục tiêu (objective value**) với số biến **d=2** khi chạy thuật toán DE và CEM.

Popsize N/ λ	<u>DE</u>	<u>CEM</u>
32	$0 \ (\pm \ 0)$	0 (± 0)
64	$0 (\pm 0)$	0 (± 0)
128	$0 \ (\pm \ 0)$	0 (± 0)
256	$0 \ (\pm \ 0)$	0 (± 0)
512	$0 \ (\pm \ 0)$	0 (± 0)
1024	$0 (\pm 0)$	0 (± 0)

<u>Bảng kết quả 2:</u> Bảng kết quả **giá trị hàm mục tiêu (objective value**) với số biến **d=10** khi chạy thuật toán DE và CEM.

Hàm Zakharov:

Popsize N / λ	<u>DE</u>	<u>CEM</u>
32	$0 (\pm 0)$	$0 (\pm 0)$
64	$0 \ (\pm \ 0)$	$0 (\pm 0)$
128	$0 (\pm 0)$	$0 (\pm 0)$
256	$0 (\pm 0)$	$0 (\pm 0)$
512	$0 (\pm 0)$	$0 (\pm 0)$
1024	$0 (\pm 0)$	$0 (\pm 0)$

<u>Bảng kết quả 1:</u> Bảng kết quả **giá trị hàm mục tiêu (objective value)** với số biến **d=2** khi chạy thuật toán DE và CEM.

Popsize N / λ	<u>DE</u>	<u>CEM</u>
32	$0 (\pm 0)$	$0 (\pm 0)$
64	$0 (\pm 0)$	$0 (\pm 0)$
128	$0 (\pm 0)$	$0 (\pm 0)$
256	$0 (\pm 0)$	$0 (\pm 0)$
512	$0 (\pm 0)$	$0 (\pm 0)$
1024	$0.012~(\pm~0.005)$	$0 (\pm 0)$

<u>Bảng kết quả 2:</u> Bảng kết quả **giá trị hàm mục tiêu (objective value)** với số biến **d=10** khi chạy thuật toán DE và CEM.

Hàm Rosenbrock:

Popsize N / λ	<u>DE</u>	<u>CEM</u>
32	$0 (\pm 0)$	$0.017 (\pm 0.016)$
64	$0 \ (\pm \ 0)$	$0.003 (\pm 0.002)$
128	$0 (\pm 0)$	$0 \ (\pm \ 0)$
256	$0 (\pm 0)$	$0 \ (\pm \ 0)$
512	$0 (\pm 0)$	$0 (\pm 0)$
1024	$0 (\pm 0)$	$0 (\pm 0)$

<u>Bảng kết quả 1:</u> Bảng kết quả **giá trị hàm mục tiêu (objective value)** với số biến **d=2** khi chạy thuật toán DE và CEM.

Popsize N/\(\lambda\)	<u>DE</u>	<u>CEM</u>
32	$0 \ (\pm \ 0)$	3.090 (± 1.869)
64	$0 (\pm 0)$	1.118 (± 1.234)
128	$0 (\pm 0)$	1.368 (± 1.653)
256	$0 (\pm 0)$	$1.148 (\pm 1.576)$
512	$0 \ (\pm \ 0)$	$0.237 (\pm 0.063)$
1024	$0.411 (\pm 0.041)$	$0.949(\pm 1.632)$

<u>Bảng kết quả 2:</u> Bảng kết quả **giá trị hàm mục tiêu (objective value)** với số biến **d=10** khi chạy thuật toán DE và CEM.

Hàm Michalewicz:

Popsize N / \(\lambda\)	<u>DE</u>	<u>CEM</u>
32	$-1.8013~(\pm 0)$	$-1.798 \ (\pm 0.005)$
64	-1.8013 (± 0)	-1.8 (± 0.001)
128	$-1.8013~(\pm 0)$	-1.8 (± 0)
256	$-1.8013~(\pm 0)$	-1.801 (± 0)
512	$-1.8013~(\pm 0)$	-1.8012 (± 0)
1024	-1.8013 (± 0)	$-1.8013~(\pm 0)$

<u>Bảng kết quả 1:</u> Bảng kết quả **giá trị hàm mục tiêu (objective value)** với số biến **d=2** khi chạy thuật toán DE và CEM.

Popsize N / λ	<u>DE</u>	<u>CEM</u>
32	-9.639 (± 0.027)	-7.786 (± 0.638)
64	-9.651 (± 0.017)	$-8.463 (\pm 0.336)$
128	$-9.66015 (\pm 0)$	$-8.686 (\pm 0.254)$
256	-9.66015 (± 0)	-8.686 (± 0.539)
512	-9.66015 (± 0)	$-8.928 (\pm 0.41)$
1024	$-9.289 (\pm 0.071)$	$-8.943 (\pm 0.203)$

<u>Bảng kết quả 2:</u> Bảng kết quả **giá trị hàm mục tiêu (objective value)** với số biến **d=10** khi chạy thuật toán DE và CEM.

Hàm Ackley:

Popsize N / λ	<u>DE</u>	<u>CEM</u>
32	$0 (\pm 0)$	7.288 (± 9.007)
64	$0 \ (\pm \ 0)$	5.886 (± 8.967)
128	$0 \ (\pm \ 0)$	5.556 (± 8.513)
256	$0 (\pm 0)$	3.852 (± 7.697)
512	$0 (\pm 0)$	1.934 (± 5.791)
1024	$0 (\pm 0)$	1.965 (± 5.873)

<u>Bảng kết quả 1:</u> Bảng kết quả **giá trị hàm mục tiêu (objective value)** với số biến **d=2** khi chạy thuật toán DE và CEM.

Popsize N / λ	<u>DE</u>	<u>CEM</u>
32	1.986 (± 5.957)	18.849 (± 1.387)
64	$0 \ (\pm \ 0)$	18.814 (± 1.041)
128	$0 \ (\pm \ 0)$	$18.851 (\pm 0.948)$
256	$0 (\pm 0)$	18.475 (± 1.308)
512	$0 (\pm 0)$	18.014 (± 1.809)
1024	$0.001 (\pm 0)$	$18.833 (\pm 0.915)$

<u>Bảng kết quả 2:</u> Bảng kết quả **giá trị hàm mục tiêu (objective value)** với số biến **d=10** khi chạy thuật toán DE và CEM.

B. ĐÔ THỊ

 $\underline{\textbf{D}}$ $\hat{\textbf{o}}$ thị 1: $\hat{\textbf{D}}$ $\hat{\textbf{o}}$ thị hàm Sphere với số biến d=2

 $\underline{D\hat{o}}$ thị 2: $\underline{D\hat{o}}$ thị hàm **Sphere** với số biến d=10

 $\underline{\textbf{D}}$ $\hat{\textbf{o}}$ thị 3: $\underline{\textbf{D}}$ $\hat{\textbf{o}}$ thị hàm $\underline{\textbf{Z}}$ $\underline{\textbf{a}}$ $\underline{\textbf{k}}$ $\underline{\textbf{h}}$ $\underline{\textbf{arov}}$ với số biến $\underline{\textbf{d}}=\mathbf{2}$

 $\underline{\textbf{Dô}}$ thị 4: $\underline{\textbf{Dô}}$ thị hàm $\underline{\textbf{Zakharov}}$ với số biến $\underline{\textbf{d}} = \underline{\textbf{10}}$

 $\underline{\partial}\hat{o}$ thị 5: $\partial\hat{o}$ thị hàm Rosenbrock với số biến d=2

 $\underline{\textbf{\textit{P}}}$ ồ thị 6: $\underline{\textbf{\textit{P}}}$ ờ thị hàm **Rosenbrock** với số biến d=10

 $\underline{\textbf{Dô}}$ thị 7: $\underline{\textbf{Dô}}$ thị hàm **Michalewicz** với số biến d=2

 $\underline{D}\hat{o}$ thị 8: $\underline{D}\hat{o}$ thị hàm Michalewicz với số biến d=10

 $\underline{\textbf{Dô}}$ thị 9: $\underline{\textbf{Dô}}$ thị hàm $\underline{\textbf{Ackley}}$ với số biến $\underline{\textbf{d}}=2$

 $\underline{\textbf{D}}$ $\hat{\textbf{O}}$ thị $\hat{\textbf{D}}$ $\hat{\textbf{O}}$ thị hàm $\hat{\textbf{A}}$ ckley với số biến $\hat{\textbf{O}}$ = $\hat{\textbf{O}}$

C. NHẬN XÉT

 Thuật toán DE nhìn chung cho ra kết quả tốt hơn CEM ở mọi kích thước vấn đề và kích thước quần thể. DE cũng hội tụ nhanh hơn so với CEM.