

planetmath.org

Math for the people, by the people.

direct products of homomorphisms

 ${\bf Canonical\ name} \quad {\bf DirectProductsOfHomomorphisms}$

Date of creation 2013-03-22 18:36:00 Last modified on 2013-03-22 18:36:00

Owner joking (16130) Last modified by joking (16130)

Numerical id 4

Author joking (16130) Entry type Definition Classification msc 20A99

Assume that $\{f_i: G_i \to H_i\}_{i \in I}$ is a family of homomorphisms between groups. Then we can define the Cartesian product (or unrestricted direct product) of this family as a homomorphism

$$\prod_{i \in I} f_i : \prod_{i \in I} G_i \to \prod_{i \in I} H_i$$

such that

$$\left(\prod_{i\in I} f_i\right)(g)(j) = f_j(g(j))$$

for each $g \in \prod_{i \in I} G_i$ and $j \in I$. One can easily show that $\prod_{i \in I} f_i$ is a group homomorphism. Moreover it is clear that

$$\left(\prod_{i\in I} f_i\right) \left(\bigoplus_{i\in I} G_i\right) \subseteq \bigoplus_{i\in I} H_i,$$

so $\prod_{i \in I} f_i$ induces a homomorphism

$$\bigoplus_{i \in I} f_i : \bigoplus_{i \in I} G_i \to \bigoplus_{i \in I} H_i,$$

which is a restriction of $\prod_{i \in I} f_i$ to $\bigoplus_{i \in I} G_i$. This homomorphism is called the direct product (or restricted direct product) of $\{f_i : G_i \to H_i\}_{i \in I}$.