

Business recommendations to Data Science Science Lead

Project Recell: Paul-Yvann Djamen

10-07-2022

Contents / Agenda

- Executive Summary
- Business Problem Overview and Solution Approach
- EDA Results
- Data Preprocessing
- Model Performance Summary
- Appendix

Executive Summary and recommendation

- 1. The model is able to explain ~84% of the variation in the data and within 4.6% of the used-price on the test data, which implies our model does well for prediction and inference
- 2. If the weight of a device increases by one unit, then its used price increases by 0.0017 units, all other variables held constant
- 3. If the ram increases by one unit, then its used price increases by 0.0207 units, all other variables held constant
- 4. If the number of years since the device was model was made increases by one unit, then its used price decreases by 0.0292 units, all other variables held constant
- 5. The rating for anime released for TV will be 0.5598 units less than those released as DVD specials
- 6. As the used price increase with an increase in weight of the device for customers who like to use their devices for entertainment, Recell can improve its marketing activities to generate more profit by improving its prediction
- 7. Since most devices main camera have higher mp than selfie cameras, unlike what the data set suggests, the company can target customers who with age groups and geographical locations who use their devices to take pictures of the world around them as oppose to focusing on occupation.

Business Problem Overview and Solution Approach

Problem Overview

The new IDC (International Data Corporation) forecast predicts that the used phone market would be worth \$52.7bn by 2023 with a compound annual growth rate (CAGR) of 13.6% from 2018 to 2023. The rising potential of this under-the-radar market fuels the need for Machine Learning solutions to develop a dynamic pricing strategy for used and refurbished devices. ReCell, a startup aiming to be competitive in the market of used/refurbished cell phones and tablets is looking to hire a team of data scientists to predict prices of used devices

Solution approach

The data science team at Recell will analyze market data provided with several attributes and build a linear regression model to predict the price of a used phone/tablet and identify factors that significantly influence it by performing a number of tests and exploratory data analysis.

Results will be interpreted with key findings and business recommendations presented to the data science lead on which variables the company should focus on for prediction

EDA Results

Univariate Analysis

The response variable normalized_used_price is close to normally distributed with the mean and median price close to each other. Its range isn't high with a few outliers on both tails

Weight variable has a mean of 182g with a maximum of about 885g. The distribution of the weight variable is slightly right skewed since the mean is greater than the median

EDA Results

• Univariate Analysis: brand_name on the left and screen_size on the right

- We notice outliers and missing values in the screen-size variable pushing the mean to the right of the median
- The others category in brand_name has the highest count followed by Samsung while Alcaltel has the least count

EDA Results

• Bivariate Analysis: Correlation map

- Weight and screen_size are the most highly correlated with a value of 0.83.
- Battery and screen_size are relatively highly correlated with a value of 0.81
- Battery and weight are moderately to highly correlated with a value of 0.70

EDA Results: Bivariate Analysis

- Lenovo has the highest median of all brands in the category of frequent travelers with devices which need heavier batteries while Micromax have the smallest.
- 4g and 5g network both have higher medians indicating most phone and tablet users have accessibility to use 4g and 5g networks. 5g has users do have the lowest range of all users since the technology was very new in 2021

EDA Results: Bivariate Analysis

- Pattern of the line plot shows price of used devices increasing from 2013 to 2020
- The growth is rapid and appears to slow down around 2020

Data Preprocessing

Duplicate value check

brand_name	0
os	0
screen_size	0
4g	0
5g	0
main_camera_mp	179
selfie camera mp	2
int_memory	0
ram	0
battery	6
weight	7
release_year	0
days used	0
normalized used price	0
normalized new price	0
dtype: int64	

Out[217]:	brand_name	0
	OS _	0
	screen_size	0
	4g	0
	5g	0
	main_camera_mp	0
	selfie_camera_mp	0
	int_memory	0
	ram	0
	battery	0
	weight	0
	release_year	0
	days_used	0
	normalized_used_price	0
	normalized_new_price	0
	dtype: int64	

 Missing and duplicated were imputed in respective columns with median by grouping the data on release_year and brand_name

Feature Engineering

Outlier check

- As expected, there are many outliers in the dataset.
- Imputing 179 missing values that were imputed in the main camera would certainly inflate corresponding values of those in the selfie camera leading to more outliers.
- Although outliers are observable, they
 do not appear to be influential data
 points but rather represent the natural
 variation in the dataset
- There was no need to treat outliers since data imputation

Data Preparation for modeling


```
brand name
                                              main_camera_mp \
       Honor
              Android
       Honor
              Android
                                    yes
                                                        13.0
                                                        13.0
       Honor
              Android
                                                        13.0
              Android
                             25.50
                                    yes
       Honor
              Android
                                                        13.0
       Honor
   selfie_camera_mp int_memory ram
                                               weight days_used
                5.0
                           64.0
                                3.0
                                       3020.0
                                                146.0
                                                              127
1
                                                             325
               16.0
                                8.0
                                       4300.0
                                                213.0
2
                8.0
                                8.0
                                       4200.0
                                                             162
3
                8.0
                                6.0
                                       7250.0
                                                480.0
                                                             345
                8.0
                           64.0 3.0
                                       5000.0
                                                185.0
                                                             293
   normalized new price years since release
               4.715100
1
               5.519018
2
               5.884631
               5.630961
               4.947837
     4.307572
     5.162097
     5.111084
     5.135387
     4.389995
Name: normalized_used_price, dtype: float64
```

- The table below with Out[222] shows the dummy variables generated using one hot encoding
- The second table shows the list of independent variables
 with column titles on the top while the only dependent
 variable is the normalized_used_price with its column title
 in the bottom

Out[222]:

rice		brand_name_Spice	brand_name_Vivo	brand_name_XOLO	brand_name_Xiaomi	brand_name_ZTE	os_Others	os_Windows	os_iOS	4g_yes	5g_yes
100	i.e.	0	0	0	0	0	0	0	0	1	0
018	1853	0	0	0	0	0	0	0	0	1	1
631		0	0	0	0	0	0	0	0	1	1
961		0	0	0	0	0	0	0	0	1	1
837	inc.	0	0	0	0	0	0	0	0	1	0

Data modeling

brand_name_Micromax

brand name Motorola

brand name OnePlus

brand name Others

brand_name_Nokia

brand name Oppo

brand_name_Microsoft

brand_name_Panasonic

-0.0337

-0.0112

0.0952

0.0719

0.0709

0.0124

0.0563

-0.0080

OLS Regression Results

Df Model: 48 Covariance Type: nonrobust coef std err [0.025 screen size 0.003 main_camera_mp 0.0208 0.002 13.848 0.018 selfie camera mp 0.0135 0.001 11.997 0.000 0.011 0.016 int memory 0.0001 6.97e-05 1.651 0.099 -2.16e-05 0.000 0.0230 0.005 4.451 0.000 0.013 0.033 battery -1.689e-05 7.27e-06 -2.321 0.020 -3.12e-05 -2.62e-06 weight 0.0010 7.480 0.000 0.001 days_used 4.216e-05 3.09e-05 1.366 0.172 -1.84e-05 0.000 normalized_new_price 0.4311 0.012 35.147 0.000 0.455 vears since release -0.0237 0.005 -5.193 0.000 -0.033 -0.015 brand_name_Alcatel 0.0154 0.048 0.323 0.747 -0.078 0.109 brand_name_Apple -0.0038 0.147 -0.026 0.980 -0.292 0.285 brand_name_Asus 0.0151 0.048 0.314 0.753 -0.079 0.109 brand name BlackBerry -0.0300 0.070 -0.427 0.669 -0.168 0.108 brand_name_Celkon -0.0468 0.066 -0.707 -0.177 0.083 brand_name_Coolpad 0.0209 0.073 0.287 0.774 -0.122 0.164 brand name Gionee 0.0448 0.058 0.775 -0.068 0.158 brand name Google -0.0326 -0.385 -0.199 0.133 brand_name_HTC -0.0130 0.048 -0.270 0.787 -0.108 0.081 brand name Honor 0.0317 0.049 0.644 0.520 -0.065 0.128 brand name Huawei -0.0020 0.044 -0.046 0.964 -0.089 0.085 brand_name_Infinix 0.1633 0.093 1.752 0.080 -0.019 0.346 0.0943 0.226 brand_name_Karbonn 0.067 1.405 0.160 -0.037 brand name LG -0.0132 0.045 -0.291 0.771 -0.102 0.076 brand name Lava 0.0332 0.062 0.533 0.594 -0.089 0.155 brand_name_Lenovo 0.0454 0.045 1.004 0.316 -0.043 0.134 brand_name_Meizu -0.0129 0.097 0.056 -0.230 0.818 -0.123

0.048

0.088

0.050

0.052

0.077

0.048

0.042

0.056

-0.784

-0.226

1.078

1.387

0.916

0.261

1.008

-0.190

0.281

0.849

0.314

Proprietary content. © Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.

-0.128

-0.078

-0.109

-0.030

-0.081

-0.081

-0.091

-0.053

0.060

0.268

0.086

0.174

0.223

0.106

0.075

0.166

Model 1
summary with
statistical
summary,
p_values and
adjusted r
squared values

Data modeling

Out[242]

	feature	VIF
0	const	227.744081
1	screen_size	7.677290
2	main_camera_mp	2.285051
3	selfie_camera_mp	2.812473
4	int_memory	1.364152
5	ram	2.282352
6	battery	4.081780
7	weight	6.396749
8	days_used	2.660269
9	normalized_new_price	3.119430
10	years_since_release	4.899007
11	brand_name_Alcatel	3,405693
12	brand_name_Apple	13.057668
13	brand_name_Asus	3.332038
14	brand_name_BlackBerry	1.632378
15	brand_name_Celkon	1.774721
16	brand_name_Coolpad	1.468006
17	brand_name_Gionee	1.951272
18	brand_name_Google	1.321778
19	brand_name_HTC	3.410361
20	brand_name_Honor	3.340687
21	brand_name_Huawei	5.983852
22	brand_name_Infinix	1.283955
23	brand_name_Karbonn	1,573702
24	brand_name_LG	4.849832
25	brand_name_Lava	1.711360
26	brand_name_Lenovo	4.558941
27	brand_name_Meizu	2.179607
28	brand_name_Micromax	3.363521
29	brand_name_Microsoft	1.869751
30	brand_name_Motorola	3.274558
31	brand_name_Nokia	3.479849
32	brand_name_OnePlus	1.437034

	Grea	-
O	Lear	ning
	POWER	AHEAD

J1	nigila_ligilie_lvovig	J.413043
32	brand_name_OnePlus	1.437034
33	brand_name_Oppo	3.971194
34	brand_name_Others	9.711034
35	brand_name_Panasonic	2.105703
36	brand_name_Realme	1.946812
37	brand_name_Samsung	7.539866
38	brand_name_Sony	2.943161
39	brand_name_Spice	1.688863
40	brand_name_Vivo	3.651437
41	brand_name_XOLO	2.138070
42	brand_name_Xiaomi	3.719689
43	brand_name_ZTE	3.797581
44	os_Others	1.859863
45	os_Windows	1.596034
46	os_iOS	11.784684
47	4g_yes	2.467681
48	5g_yes	1.813900

- Of all numeric variables, only weight and screen_size had moderate to high vifs
- I decided to remove screen_size since it was fairly collinear with weight and checked p-values after dropping screen_size Proprietary content. © Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.

Summary of most important factors

- Both variables do not change the adjusted R squared value by a significant amount.
- Since the adjusted R squared of model 1 is 0.8416, I decided to remove screen_size because it is moderately-highly correlated to weight and appear to carry the same information when predicting price

Out[247]:

	col	Adj. R-squared after_dropping col	RMSE after dropping col
0	screen_size	0.838381	0.234703
1	weight	0.838071	0.234928

Link to Appendix slide on model assumptions

Model Performance

• Overview of model performance

The tables below show the result of the model performance on the training and test set after dropping screen_size variable.

	Tra	aining Pe	erformanc	e			
Out[227]:		RMSE	MAE	R-squared	Adj. R-squared	MAPE	
	0	0.229884	0.180326	0.844886	0.841675	4.326841	
à	Т	est Perf	ormance				
Out[230]	2	RMS	E <mark>MAI</mark>	E R-squared	d Adj. R-squared	d MAPE	
	1	0 0.23835	8 0.18474	9 0.84247	9 0.83465	9 4.501651	1 00

LINK to Appendix slide on model assumptions

Summary of final model

OLS Regression Results

Dep. Variable:	: normalized_used_price		R-squared:		0.839			
Model:		OLS	Adj. R-square	ed:	0.8	338		
Method:	Least	Squares	F-statistic:		895	895.7		
Date:			Prob (F-stati	stic):	0.	0.00 80.645		
Time:			Log-Likelihoo	od:	80.6			
No. Observations:	servations: 2417		AIC:		-131.3			
Df Residuals:		2402	BIC:		-44.	.44		
Df Model:		14						
Covariance Type:	no	nrobust						
	coef	std err	t	P> t	[0.025	0.975]		
const	1.5000	0.048	30.955	0.000	1.405	1.595		
main camera mp	0.0210	0.001		0.000	0.018	0.024		
selfie camera mp	0.0138	0.001		0.000	0.012	0.016		
ram	0.0207	0.005		0.000	0.011	0.030		
weight	0.0017	6e-05	27.672	0.000	0.002	0.002		
normalized new price	e 0.4415	0.011	39.337	0.000	0.419	0.463		
years since release	-0.0292	0.003	-8.589	0.000	-0.036	-0.023		
brand name Karbonn	0.1156	0.055	2.111	0.035	0.008	0.223		
brand_name_Samsung		0.016	-2.270	0.023	-0.070	-0.005		
brand_name_Sony	-0.0670	0.030	-2.197	0.028	-0.127	-0.007		
brand_name_Xiaomi	0.0801	0.026	3.114	0.002	0.030	0.130		
os_Others	-0.1276	0.027	-4.667	0.000	-0.181	-0.074		

 Omnibus:
 246.183
 Durbin-Watson:
 1.902

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 483.879

 Skew:
 -0.658
 Prob(JB):
 8.45e-106

 Kurtosis:
 4.753
 Cond. No.
 2.39e+03

0.045

0.015

0.031

-0.0900

-0.0673

0.0502

Notes:

os iOS

4g yes

5g yes

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

-1.994

3.326

[2] The condition number is large, 2.39e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Link to Appendix slide on model assumptions

0.046

0.001

0.028

-0.179

-0.127

0.021

-0.002

-0.007

0.080

Summary of final model

Training and Testing performance on the final model

Tr	rai	ining	Perform	nance					
81]:		RMSE	MA	E R-squa	ared Adj. F	≀-squared	MA	PE	
0)	0.23403	0.18275	51 0.83	3924	0.838235	4.3954	107	
0+[20	21		t Perfor	rmance					
Out[28	3]		Perfor	omance MAE	R-squared	Adj. R-sq	juared	MAPE	

final model

OLS Regression Results

Dep. Variable:	normalized used price	R-squared:	0.839
Model:	OLS	Adj. R-squared:	0.838
Method:	Least Squares	F-statistic:	895.7
Date:	Fri, 07 Oct 2022	Prob (F-statistic):	0.00
Time:	18:26:55	Log-Likelihood:	80.645
No. Observations:	2417	AIC:	-131.3
Df Residuals:	2402	BIC:	-44.44
Df Model:	14		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const	1.5000	0.048	30.955	0.000	1.405	1.595
main camera mp	0.0210	0.001	14.714	0.000	0.018	0.024
selfie camera mp	0.0138	0.001	12.858	0.000	0.012	0.016
ram	0.0207	0.005	4.151	0.000	0.011	0.030
weight	0.0017	6e-05	27.672	0.000	0.002	0.002
normalized new price	0.4415	0.011	39.337	0.000	0.419	0.463
years since release	-0.0292	0.003	-8.589	0.000	-0.036	-0.023
brand name Karbonn	0.1156	0.055	2.111	0.035	0.008	0.223
brand name Samsung	-0.0374	0.016	-2.270	0.023	-0.070	-0.005
brand name Sony	-0.0670	0.030	-2.197	0.028	-0.127	-0.007
brand name Xiaomi	0.0801	0.026	3.114	0.002	0.030	0.130
os Others	-0.1276	0.027	-4.667	0.000	-0.181	-0.074
os iOS	-0.0900	0.045	-1.994	0.046	-0.179	-0.002
4g yes	0.0502	0.015	3.326	0.001	0.021	0.080
5g yes	-0.0673	0.031	-2.194	0.028	-0.127	-0.007

 Omnibus:
 246.183
 Durbin-Watson:
 1.902

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 483.879

 Skew:
 -0.658
 Prob(JB):
 8.45e-106

 Kurtosis:
 4.753
 Cond. No.
 2.39e+03

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.39e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Link to Appendix slide on model assumptions

Linear Regression assumptions

Out[272]: [('F statistic', 1.0087504199106763), ('p-value', 0.4401970650667071)]

Link to Appendix slide on model assumptions

Linear Regression assumptions

- No proper pattern noticeable on the normal plot of residuals vs fitted values so independence can be assumed
- The Residuals plot is bell-shaped although not centered and the q-q plot does not seem to capture the tails which is expected by the number of outliers we noticed in the dataset. The p value of the Shapiro test is less than 0.05 which means strictly speaking residuals are not normal. However, we can approximate near normality since the outliers in the data set inflate the values making selfie camera mp much higher than main camera mp which isn't common. Assumption of normality have been violated, but the outliers in the dataset and imputation allows us to assume normality
- P value of the goldfeldquandt test is greater than 0.05 which means the assumption of constant variance or homoscedasticity is valid

Appendix

olsmodel_final = sm.OLS(y_train,x_train_final).fit() ## the code to fit the final model :

print(olsmodel_final.summary())

Proprietary content. © Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.

Happy Learning!

