Отчёт по лабораторной работе №4

дисциплина: Архитектура компьютера

Курушин Георгий Романович

Содержание

1	1 Цель работы	5
2	2 Задание	6
3	В Теоретическое введение	7
4	4 Выполнение лабораторной работы	10
	4.1 Программа Hello world!	10
	4.2 Транслятор NASM	11
	4.3 Расширенный синтаксис командной строки NASM	12
	4.4 Компоновщик LD	13
	4.5 Запуск исполняемого файла	14
	4.6 Задания для самостоятельной работы	14
5	5 Выводы	17
6	5 Список литературы	18

Список иллюстраций

4.1	Создание рабочей директроии	10
4.2	Создание .asm файла	11
4.3	Редактирование файла	11
4.4	Компиляция программы	12
4.5	Возможности синтаксиса NASM	12
4.6	Отправка файла компоновщику	13
4.7	Создание исполняемого файла	13
4.8	Запуск программы	14
4.9	Создание копии	14
4.10	Редактирование копии	15
4.11	Проверка работоспособности скомпонованной программы	15
4.12	Отправка файлов в локальный репозиторий	16
4.13	Загрузка изменений	16

Список таблиц

1 Цель работы

Цель данной лабораторной работы - освоить процедуры компиляции и сборки программ, написанных на ассемблере NASM.

2 Задание

- 1. Создание программы Hello world!
- 2. Работа с транслятором NASM
- 3. Работа с расширенным синтаксисом командной строки NASM
- 4. Работа с компоновщиком LD
- 5. Запуск исполняемого файла
- 6. Выполнение заданий для самостоятельной работы.

3 Теоретическое введение

Основными функциональными элементами любой ЭВМ являются центральный процессор, память и периферийные устройства. Взаимодействие этих устройств осуществляется через общую шину, к которой они подключены. Физически шина представляет собой большое количество проводников, соединяющих устройства друг с другом. В современных компьютерах проводники выполнены в виде электропроводящих дорожек на материнской плате. Основной задачей процессора является обработка информации, а также организация координации всех узлов компьютера. В состав центрального процессора входят следующие устройства: - арифметико-логическое устройство (АЛУ) — выполняет логические и арифметические действия, необходимые для обработки информации, хранящейся в памяти; - устройство управления (УУ) обеспечивает управление и контроль всех устройств компьютера; - регистры сверхбыстрая оперативная память небольшого объёма, входящая в состав процессора, для временного хранения промежуточных результатов выполнения инструкций; регистры процессора делятся на два типа: регистры общего назначения и специальные регистры. Для того, чтобы писать программы на ассемблере, необходимо знать, какие регистры процессора существуют и как их можно использовать. Большинство команд в программах написанных на ассемблере используют регистры в каче- стве операндов. Практически все команды представляют собой преобразование данных хранящихся в регистрах процессора, это например пересылка данных между регистрами или между регистрами и памятью, преобразование (арифметические или логические

операции) данных хранящихся в регистрах. Доступ к регистрам осуществляется не по адресам, как к основной памяти, а по именам. Каждый регистр процессора архитектуры х86 имеет свое название, состоящее из 2 или 3 букв латинского алфавита. В качестве примера приведем названия основных регистров общего назначения (именно эти регистры чаще всего используются при написании программ): - RAX, RCX, RDX, RBX, RSI, RDI — 64-битные - EAX, ECX, EDX, EBX, ESI, EDI — 32-битные - AX, CX, DX, BX, SI, DI — 16-битные - AH, AL, CH, CL, DH, DL, BH, BL — 8-битные

Другим важным узлом ЭВМ является оперативное запоминающее устройство (ОЗУ). ОЗУ — это быстродействующее энергозависимое запоминающее устройство, которое напрямую взаимодействует с узлами процессора, предназначенное для хранения программ и данных, с которыми процессор непосредственно работает в текущий момент. ОЗУ состоит из одинаковых пронумерованных ячеек памяти. Номер ячейки памяти — это адрес хранящихся в ней данных. Периферийные устройства в составе ЭВМ: - устройства внешней памяти, которые предназначены для долговременного хранения больших объёмов данных. - устройства ввода-вывода, которые обеспечивают взаимодействие ЦП с внешней средой.

В основе вычислительного процесса ЭВМ лежит принцип программного управления. Это означает, что компьютер решает поставленную задачу как последовательность действий, записанных в виде программы.

Коды команд представляют собой многоразрядные двоичные комбинации из 0 и 1. В коде машинной команды можно выделить две части: операционную и адресную. В операционной части хранится код команды, которую необходимо выполнить. В адресной части хранятся данные или адреса данных, которые участвуют в выполнении данной операции. При выполнении каждой команды процессор выполняет определённую последовательность стандартных действий, которая называется командным циклом процессора. Он заключается в следующем: 1. формирование адреса в памяти очередной команды; 2. считывание кода команды из памяти и её дешифрация; 3. выполнение команды; 4. переход к

следующей команде.

Язык ассемблера (assembly language, сокращённо asm) — машинноориентированный язык низкого уровня. NASM — это открытый проект ассемблера, версии которого доступны под различные операционные системы и который позволяет получать объектные файлы для этих систем. В NASM используется Intel-синтаксис и поддерживаются инструкции x86-64.

4 Выполнение лабораторной работы

4.1 Программа Hello world!

В домашней директории создаю каталог, в котором буду хранить файлы для текущей лабораторной работы. (рис. -fig. 4.1)

Рис. 4.1: Создание рабочей директроии

Создаю в нем файл hello.asm, в котором буду писать программу на языке ассемблера. (рис. -fig. 4.2)

```
hxxdrich17@fedora: $ mkdir -p ~/work/arch-pc/lab04

hxxdrich17@fedora: $ mkdir -p ~/work/arch-pc/lab04
hxxdrich17@fedora: $ cd ~/work/arch-pc/lab04
hxxdrich17@fedora: ~/work/arch-pc/lab04$ touch hello.asm
hxxdrich17@fedora: ~/work/arch-pc/lab04$ mousepad hello.asm
hxxdrich17@fedora: ~/work/arch-pc/lab04$ mousepad hello.asm
```

Рис. 4.2: Создание .asm файла

С помощью редактора пишу программу в созданном файле. (рис. -fig. 4.3)

```
*~/work/arch-pc/lab04/hello.asm - Mousepad
Файл Правка Поиск Просмотр Документ Помощь
SECTION .data
                    db "Hello, world!",0xa
       hello:
                helloLen: equ $ - hello
SECTION .text
       global _start
_start:
       mov eax, 4
       mov ebx, 1
       mov ecx, hello
mov edx, helloLen
       int 0x80
       mov eax, 1
       mov ebx, 0
        int 0x80
```

Рис. 4.3: Редактирование файла

4.2 Транслятор NASM

Компилирую с помощью NASM свою программу. (рис. -fig. 4.4)

Рис. 4.4: Компиляция программы

4.3 Расширенный синтаксис командной строки NASM

Выполняю команду, указанную на (рис. -fig. 4.5), она скомпилировала исходный файл hello.asm в obj.o, расшиерние .o говорит о том, что файл - объектный, помимо него флаги -g -l подготвоят файл отладки и листинга соответственно.

Рис. 4.5: Возможности синтаксиса NASM

4.4 Компоновщик LD

Затем мне необходимо передать объектный файл компоновщику, делаю это с помощью команды ld. (рис. -fig. 4.6)

```
hxxdrich17@fedora:-/work/arch-pc/lab04$ nasm -f elf hello.asm
hxxdrich17@fedora:-/work/arch-pc/lab04$ ls
hello.asm hello.o
hxxdrich17@fedora:-/work/arch-pc/lab04$ nasm -o obj.o -f elf -g -l list.lst hello.asm
hxxdrich17@fedora:-/work/arch-pc/lab04$ ls
hello.asm hello.o list.lst obj.o
hxxdrich17@fedora:-/work/arch-pc/lab04$ ls
hello.asm hello.o list.lst obj.o
hxxdrich17@fedora:-/work/arch-pc/lab04$ ls
hello.asm hello.o list.lst obj.o
hxxdrich17@fedora:-/work/arch-pc/lab04$ ls
hello hello.asm hello.o list.lst obj.o
hxxdrich17@fedora:-/work/arch-pc/lab04$
hxxdrich17@fedora:-/work/arch-pc/lab04$
```

Рис. 4.6: Отправка файла компоновщику

Выполняю следующую команду ..., результатом исполнения команды будет созданный файл main, скомпонованный из объектного файла obj.o. (рис. -fig. 4.7)

Рис. 4.7: Создание исполняемого файла

4.5 Запуск исполняемого файла

Запускаю исполняемый файл из текущего каталога. (рис. -fig. 4.8)

```
hxxdrich17@fedora:~/work/arch-pc/lab04$ nasm -f elf hello.asm
hxxdrich17@fedora:~/work/arch-pc/lab04$ ls
hello.asm hello.o
hxxdrich17@fedora:~/work/arch-pc/lab04$ nasm -o obj.o -f elf -g -l list.lst hello.asm
hxxdrich17@fedora:~/work/arch-pc/lab04$ ls
hello.asm hello.o list.lst obj.o
hxxdrich17@fedora:~/work/arch-pc/lab04$ ld -m elf_1386 hello.o -o hello
hxxdrich17@fedora:~/work/arch-pc/lab04$ ld -m elf_1386 obj.o -o main
hxxdrich17@fedora:~/work/arch-pc/lab04$ ld -m elf_1386 obj.o -o main
hxxdrich17@fedora:~/work/arch-pc/lab04$ ld -m elf_1386 obj.o -o main
hxxdrich17@fedora:~/work/arch-pc/lab04$ ld -m elf_1386 obj.o hxxdrich17@fedora:~/work/arch-pc/lab04$ ls
hello hello.asm hello.o list.lst main obj.o
hxxdrich17@fedora:~/work/arch-pc/lab04$ ./hello
Hello, world!
hxxdrich17@fedora:~/work/arch-pc/lab04$
```

Рис. 4.8: Запуск программы

4.6 Задания для самостоятельной работы

Создаю копию файла для последующей работы с ней. (рис. -fig. 4.9)

```
hxxdrich17@fedora:~/work/arch-pc/lab04$ nasm -f elf hello.asm hxxdrich17@fedora:~/work/arch-pc/lab04$ ls hello.asm hello.o hxxdrich17@fedora:~/work/arch-pc/lab04$ ls hello.asm hello.o hxxdrich17@fedora:~/work/arch-pc/lab04$ ls hello.asm hello.o list.lst obj.o hxxdrich17@fedora:~/work/arch-pc/lab04$ ld -m elf_1386 hello.o -o hello hxxdrich17@fedora:~/work/arch-pc/lab04$ ls hello hello.asm hello.o list.lst obj.o hxxdrich17@fedora:~/work/arch-pc/lab04$ ls hello hello.asm hello.o list.lst obj.o hxxdrich17@fedora:~/work/arch-pc/lab04$ ls hello hello.asm hello.o list.lst obj.o hxxdrich17@fedora:~/work/arch-pc/lab04$ ls hello hello.asm hello.o list.lst main obj.o hxxdrich17@fedora:~/work/arch-pc/lab04$ . hello hello.asm hello.o list.lst main obj.o hxxdrich17@fedora:~/work/arch-pc/lab04$ cp hello.asm lab4.asm hxxdrich17@fedora:~/work/arch-pc/lab04$ ls hello hello.asm hello.o lab4.asm list.lst main obj.o hxxdrich17@fedora:~/work/arch-pc/lab04$ ls hello hello.asm hello.o lab4.asm list.lst main obj.o hxxdrich17@fedora:~/work/arch-pc/lab04$ ls
```

Рис. 4.9: Создание копии

Редактирую копию файла, заменив текст на свое имя и фамилию. (рис. -fig. 4.10)

```
~/work/arch-pc/lab04/lab4.asm - Mousepad
Файл Правка Поиск Просмотр Документ Помощь
SECTION .data
                db "Kurushin Georgy",0xa
       hello:
              helloLen: equ $ - hello
SECTION .text
       global _start
_start:
       mov eax, 4
       mov ebx, 1
       mov ecx, hello
       mov edx, helloLen
       int 0x80
       mov eax, 1
       mov ebx, 0
       int 0x80
```

Рис. 4.10: Редактирование копии

Транслирую копию файла в объектный файл, компоную и запускаю. (рис. - fig. 4.11)

Рис. 4.11: Проверка работоспособности скомпонованной программы

Убедившись в корректности работы программы, копирую рабочие файлы в свой локальный репозиторий. (рис. -fig. 4.12)

```
hxxdrich17@fedora:-/work/study/2024-2025/Архитектура компьютера/arch-pc/labs/la... Q = - u х hxxdrich17@fedora:-/work/arch-pc/lab94$ cp hello.asm lab4.asm /home/hxxdrich17/work/study/2024-2025/"Архитектура компьютера"/arch-pc/lab94\sd d /home/hxxdrich17/work/study/2024-2025/"Apхитектура компьютера"/arch-pc/lab94\sd d /home/hxxdrich17/work/study/2024-2025/"Apхитектура компьютера"/arch-pc/lab9/lab04
hxxdrich17@fedora:-/work/study/2024-2025/Apхитектура компьютера/arch-pc/labs/lab04\$ ls hello.asm lab4.asm presentation report
hxxdrich17@fedora:-/work/study/2024-2025/Apхитектура компьютера/arch-pc/labs/lab04\$
hxxdrich17@fedora:-/work/study/2024-2025/Apхитектура компьютера/arch-pc/labs/lab04\$
```

Рис. 4.12: Отправка файлов в локальный репозиторий

Загрузка изменений на свой удаленный репозиторий на GitHub. (рис. -fig. 4.13)

Рис. 4.13: Загрузка изменений

5 Выводы

При выполнении данной лабораторной работы я освоил процедуры компиляции и сборки программ, написанных на ассемблере NASM.

6 Список литературы

- 1. Курс на ТУИС
- 2. Лабораторная работа №4
- 3. Программирование на языке ассемблера NASM Столяров А. В.