File de priorité et tas

Quentin Fortier

September 26, 2022

File de priorité (FP)

Une **file de priorité max** (FP max) est une structure de données possédant les opérations :

- extraire maximum : supprime et renvoie le maximum
- ajouter élément
- tester si la FP est vide
- (mettre à jour un élément)

Une FP max est utilisée lorsque l'on a souvent besoin de trouver le maximum.

On définit une FP min en remplaçant maximum par minimum.

Exercice

Donner des implémentations possibles de FP.

File de priorité max

Implémentation avec liste triée en décroissant :

- \bullet extraire maximum : en O(1)
- **2** ajouter élément : en O(n)
- **3** mettre à jour : en O(n)

File de priorité max

Implémentation avec arbre binaire de recherche (ABR) équilibré (par exemple AVL ou ARN) :

- **①** extraire maximum : en $O(\log(n))$ (sommet tout à droite)
- 2 ajouter élément : en $O(\log(n))$
- **3** mettre à jour : en $O(\log(n))$

C'est une bonne implémentation mais il y a plus efficace en pratique...

L'implémentation de FP la plus utilisée est un tas binaire max :

- un arbre binaire...
- ② ... presque complet : tous les niveaux sont complets, sauf éventuellement le dernier niveau ...
- Ou dont chaque sommet est supérieur à ses éventuels fils.

À ne pas confondre avec un ABR !

La racine contient le maximum. (le minimum est une feuille).

Le dernier niveau est rempli de gauche à droite.

On considère un arbre binaire à n sommets et de hauteur h.

S'il est complet :

$$n = \sum_{k=0}^{h} 2^k$$

$$n = 2^{h+1} - 1$$

Un arbre presque complet a son nombre de sommets n compris entre un arbre complet de hauteur h-1 et un arbre complet de hauteur h:

$$2^{h} - 1 < n \le 2^{h+1} - 1$$

$$\implies 2^{h} \le n < 2^{h+1}$$

$$\implies h \le \log_{2}(n) < h + 1$$

$$\implies h \le \log_{2}(n) \le h + 1$$

$$\mathsf{Donc}\, \boxed{h = \mathsf{O}(\log(n))}.$$

Représentation des tas max

On peut représenter efficacement un arbre binaire a presque complet (donc aussi un tas max) par un tableau a tel que :

- 1 a. (0) est la racine de a.
- ② a.(i) a pour fils a.(2*i + 1) et a.(2*i + 2), si ceux-ci sont définis.

Le père de a.(j) est donc a.((j - 1)/2) (si $j \neq 0$)

Ainsi, on accède au père et au fils d'un sommet en O(1).

Représentation des tas max

C'est le parcours en largeur du tas !

Représentation des tas max

On peut utiliser des fonctions utilitaires de manipulation de tas :

```
type 'a heap = { a : 'a array; mutable n : int }

let pred i = (i - 1)/2
let g i = 2*i + 1
let d i = 2*i + 2
let swap h i j =
let tmp = h.a.(i) in
h.a.(i) <- h.a.(j);
h.a.(j) <- tmp
```

n est le nombre d'éléments du tas (les indices de a après n sont ignorés).

Les feuilles sont d'indices $\left\lfloor \frac{n}{2} \right\rfloor$ à n-1.

Opérations de tas max

On utilise deux fonctions auxiliaires pour implémenter les opérations sur un tas max heap et un indice i de heap a :

- up heap i : suppose que heap est un tas max sauf heap.a.(i) qui peut être supérieur à son père.
 Fait monter heap.a.(i) de façon à obtenir un tas max.
- down heap i : suppose que heap est un tas max sauf heap.a.(i) qui peut être inférieur à un fils. Fait descendre heap.a.(i) de façon à obtenir un tas max.

[|23; 5; 14; 3; -2; 7; 2; 2; -8; 11; -4; 5; ... |]

[|23; 5; 14; 3; 11; 7; 2; 2; -8; -2; -4; 5; ... |]

[|23; 11; 14; 3; 5; 7; 2; 2; -8; -2; -4; 5; ... |]

```
let rec up heap i =
   let p = pred i in
   if i <> 0 && heap.a.(p) < heap.a.(i) then (
       swap heap i p;
       up heap p
   )</pre>
```

```
\underline{\mathsf{Complexit\acute{e}}} : \mathsf{O}(h) = \mathsf{O}(\log(n)).
```



```
let rec down heap i =
  let get j = (if j < heap.n then heap.a.(j) else min_int), j in
  let m, j = max (get (2*i + 1)) (get (2*i + 2)) in
  if heap.a.(i) < m then (
    swap heap i j;
    down heap j
)</pre>
```

Complexité:

down

```
let rec down heap i =
  let get j = (if j < heap.n then heap.a.(j) else min_int), j in
  let m, j = max (get (2*i + 1)) (get (2*i + 2)) in
  if heap.a.(i) < m then (
    swap heap i j;
    down heap j
)</pre>
```

Complexité : $O(h) = O(\log(n))$.

Pour ajouter un élément (tant qu'il reste de la place dans le tableau) :

- l'ajouter en tant que feuille la plus à droite (dernier indice du tableau)
- 2 le faire remonter.

Code pour ajouter un élément :

```
let add heap e =
  heap.a.(heap.n) <- e;
  up heap heap.n;
  heap.n <- heap.n + 1</pre>
```

 $\underline{\mathsf{Complexit\acute{e}}} : \mathsf{O}(h) = \mathsf{O}(\log(n)).$

Conversion d'un tableau quelconque en tas :

```
let array_to_heap a = Make_heap().

let heap = { a=a; n=0 } in

Array.iter (add heap) a;
heap
```

Correction:

« au début de la boucle, les i premiers éléments de tas.t forment un tas » est un **invariant de boucle**.

Conversion d'un tableau quelconque (de taille n) en tas :

```
let array_to_heap a =
   let heap = { a=a; n=0 } in
   Array.iter (add heap) a;
   heap
```

Complexité:

 $\overline{\text{add est en }} \, \mathsf{O} \big(\log(n) \big) \, \mathsf{donc array_to_tas} \, \mathsf{est en } \, \mathsf{O} \big(n \log(n) \big).$

Plus précisément : add heap a.(i) est en O(p), où p est la profondeur de l'élément rajouté.

Conversion d'un tableau quelconque (de taille n) en tas :

```
let array_to_heap a =
   let heap = { a=a; n=0 } in
   Array.iter (add heap) a;
   heap
```

Complexité plus précise :

Dans le pire des cas, chaque élément ajouté à une profondeur p est remonté en racine : p échanges.

Le nombre de swaps est donc, dans le pire cas :

$$\sum_{p=0}^{h} p2^{p} = \dots = \Theta(h2^{h}) = \Theta(\log(n)n)$$

On a construit le tas en partant de la racine jusqu'aux feuilles. \longrightarrow les 2^h feuilles demandent chacune h swaps...

Il est plus intelligent de construire le tas en partant des feuilles : initialement seules les feuilles vérifient la condition de tas, puis les sommets de profondeur $\geq h-1$, puis ceux de profondeur $\geq h-2...$

$$[\mid 2;\ 11;\ 1;\ 3;\ 0;\ 3;\ 2;\ 5;\ -8;\ -2;\ 5;\ 4\ \mid]$$

$$[\mid 2;\ 11;\ 1;\ 3;\ 0;\ \ 4;\ 2;\ 5;\ -8;\ -2;\ 5;\ 3\ \ \mid]$$

[| 2; 11; 1; 3; <mark>0; 4; 2; 5; -8; -2; 5; 3</mark> |]

[| 2; 11; 4; 5; 5; <mark>1;</mark> 2; 3; -8; -2; 0; 3 |]

[| 2; 11; 4; 5; 5; 3; 2; 3; -8; -2; 0; 1 |]

[| <mark>2;</mark> 11; 4; 5; 5; 3; 2; 3; -8; -2; 0; 1 |]

Code pour cette 2ème méthode :

```
let array_to_heap a =
   let n = Array.length a in
   let heap = { a=a; n=n } in
   for i = n/2 - 1 downto 0 do
        down heap i;
   done;
   heap
```

Correction:

« au début de la boucle, les éléments après i dans heap.a vérifient la condition de tas » est un **invariant de boucle**.

Complexité:

 $\overline{\mbox{Un sommet}}$ à la profondeur p est descendu en faisant au plus h-p swaps.

D'où la complexité totale :

$$\sum_{p=0}^{h} (h-p)2^{p} = \dots = \Theta(2^{h}) = \Theta(n)$$

On obtient une complexité linéaire.

On veut supprimer et renvoyer la racine, en conservant la structure de tas.

On peut:

- Remplacer la racine par la dernière feuille.
- 2 Appeler down dessus.

Code pour extraire la racine d'un tas :

```
let rec take_max heap =
   swap heap.a 0 (heap.n - 1);
   heap.n <- heap.n - 1;
   down heap 0;
   heap.a.(heap.n)</pre>
```

Complexité : $O(\log(n))$.

Remarques:

- on met le maximum à la fin
- cette méthode ne permet que de supprimer la racine (maximum), pas un élément quelconque

Mettre à jour un élément

Pour mettre à jour un élément :

- Si on augmente son étiquette : on le monte.
- 2 Sinon: on le descend.

Mettre à jour un élément

```
Pour mettre à jour un élément :
```

```
let update heap i v =
   let p = heap.a.(i);
  heap.a.(i) <- v;
   if v > p then up heap i
   else down heap i
```

 $\underline{\mathsf{Complexit\acute{e}}} : \mathsf{O}(\log(n)).$

Tas max : résumé

Opération	Tas max
ajouter élément	$O(\log(n))$
extraire maximum	$O(\log(n))$
valeur du maximum	O(1)
mettre à jour	$O(\log(n))$
créer à partir d'un tableau de taille n	O(n)

File de priorité

Comparaison des implémentations de files de priorités :

Opération	Liste triée	Tas	ABR équilibré
ajouter	O(n)	$O(\log(n))$	$O(\log(n))$
extraire max	O(1)	$O(\log(n))$	$O(\log(n))$
valeur du max	O(1)	O(1)	$O(\log(n))$
update	O(n)	$O(\log(n))$	$O(\log(n))$
Conversion depuis array	$O(n\log(n))$	O(n)	$O(n\log(n))$

Toute FP avec ajout et extraction du maximum en O(f(n)) donne un algorithme de tri en O(nf(n)): on ajoute un à un les éléments extraits dans une nouvelle liste.

- **1** FP implémenté avec tas \implies tri en $O(n \log(n))$
- **②** FP implémenté avec AVL/ARN \implies tri en $O(n \log(n))$
- **3** ...

Mais avec un tas on peut éviter de créer un nouveau tableau (complexité O(1) en mémoire).

Code pour trier avec un tas :

```
let heap_sort a =
   let heap = array_to_heap a in
   for i = 0 to heap.n - 1 do
        take_max heap
   done
```

 $\frac{\text{Correction}}{n-i}: \text{ ``a au début de la boucle, les éléments de heap d'indices } \\ n-i \text{ `a } n-1 \text{ sont les } i \text{ plus grands éléments triés "}.$

Code pour trier avec un tas :

```
let heap_sort a =
   let heap = array_to_heap a in
   for i = 0 to heap.n - 1 do
        take_max heap
   done
```

 $\underline{\mathsf{Complexit\acute{e}}} : \mathsf{O}\big(n + n\log(n)\big) = \mathsf{O}\big(n\log(n)\big) \text{ (optimal pour un tri)}.$

Code pour trier avec un tas :

```
let heap_sort a =
   let heap = array_to_heap a in
   for i = 0 to heap.n - 1 do
        take_max heap
   done
```

 $\frac{\text{Complexité en mémoire}}{\text{On dit que le tri est } \textbf{en}} \text{ (espace utilisé en plus de l'entrée)} : O(1) \\ \text{On dit que le tri est } \textbf{en} \text{ place} : \text{pas besoin de créer un nouveau tableau}.$

Exercice

Comment trier partiellement un tableau (seulement les k plus grands ou plus petits) ?

Il suffit d'arrêter la boucle au bout de k itérations.

 $\underline{\mathsf{Complexit\acute{e}}} : \mathsf{O}(n+k\log(n)).$

Ceci donne un algorithme linéaire pour trouver le kème plus petit élément d'un tableau, pour $k \leq \frac{n}{\log(n)}$.

File de priorité avec un ABR

Exercice

Écrire des fonctions take_max, add, is_empty implémentant les opérations de FP max avec un ABR.

En déduire un algorithme de tri 'a list -> 'a list.