امتحانات شهادة الثانوية العامة فرع الاجتماع والاقتصاد

دورة سنة 2004 العادية

الاسم:	مسابقة في الرياضيات	عدد المسائل: اربع
الرقم:	ً المدة ساعتان	-

ملاحظة: يُسمح بإستعمال آلة حاسبة غير قابلة للبرمجة أو إختزان المعلومات أو رسم البيانات. يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة)

I - (4points).

A - Une usine fabrique un produit .

Le tableau ci-dessous donne la demande Y de ce produit , en milliers d'unités , en fonction du prix X de l'unité exprimé en milliers LL.

Xi	1,5	3	5	8	11
Y_i	12	11	10	9	8

- 1) Calculer les moyennes respectives \overline{X} et \overline{Y} des deux variables X et Y.
- 2) Représenter graphiquement le nuage de points $(X_i\,;\,Y_i)$ et placer le point moyen $G(\,\overline{X}\,;\,\overline{Y}\,)$

dans un repère orthogonal.

- 3) Déterminer une équation de la droite de régression ($D_{\Upsilon/X}$) et $\,$ la tracer dans le repère précédent .
 - 4) On suppose que le modèle précédent reste valable lorsque le prix augmente . Donner une estimation de la demande pour un prix unitaire égal à 14 500 LL.
 - **B** Le tableau ci-dessous donne l'offre Z de ce produit , en milliers d'unités , en fonction du prix X en milliers LL.

X_i	1,5	3	5	8	11
Z_{i}	6	8	8,5	9	10

La droite de régression de Z en X $(d_{Z/X})$ coupe la droite $(D_{Y/X})$ au point L(7,87; 9,1). Donner une interprétation économique aux coordonnées de L .

II- (4points)

Zahi dépose dans une société d'investissement un capital $C_0 = 10~000~000~LL$.

A la fin de chaque année , la société verse dans le compte de Zahi un intérêt de $5\,\%$ et un supplément de $200\,000\,LL$.

On désigne par C_n le montant de ce compte à la fin de la n-ième année .

- 1) Vérifier que $C_1 = 10700000LL$.
- 2) Démontrer que $C_{n+1} = (1,05)C_n + 200\,000$.
- 3) Soit la suite (S_n) définie par $S_n = C_n + 4\,000\,000$; $(n \ge 0)$. a- Démontrer que (S_n) est une suite géométrique de raison 1,05 et calculer S_0 .

- b-Exprimer S_n en fonction de n et en déduire C_n en fonction de n .
- c- Au bout de combien d'années le montant du compte de Zahi , dans cette société , dépassera -t- il pour la première fois 17 000 000 LL ?

III - (4points)

Dans une librairie 200 calculatrices (programmables ou non) sont placées dans deux caisses A et B .

La caisse A contient des calculatrices fabriquées en 2004 et la caisse B contient des calculatrices

fabriquées en 2000.

La répartition des calculatrices est donnée par le tableau suivant :

Type	programmable	non programmable
Caisse		
A	50	40
В	30	80

Un client choisit au hasard une calculatrice de chaque caisse.

- 1) Soit les événements :
 - E: « le client choisit deux calculatrices programmables ».
 - F: « le client choisit une calculatrice programmable et une autre non programmable ».

Démontrer que la probabilité P(E) est égale à $\frac{5}{33}$ et calculer P(F).

2) Les prix des calculatrices sont donnés par le tableau suivant :

Type	programmable	non programmable
Caisse		
A	120 000 LL	36 000 LL
В	100 000 LL	30 000 LL

On désigne par $\, X \,$ la variable aléatoire égale à la somme payée par ce client comme prix de deux

calculatrices choisies.

- a-Trouver les quatre valeurs de X.
- b- Déterminer la loi de probabilité de X.

IV - (8points).

A- Soit f la fonction définie, sur
$$\left[\frac{1}{e}; +\infty \right[$$
, par $f(x) = \frac{4}{1 + \ln x}$.

(C) est la courbe représentative de f dans un repère orthonormé (O; i, j).

- 1) Calculer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to \frac{1}{e}} f(x)$; en déduire les asymptotes de (C).
- 2) Vérifier que f'(x) < 0 et dresser le tableau de variations de f.
- 3) Calculer f(1) et donner f(2) et f(3) avec deux chiffres après la virgule.
- 4) Ecrire une équation de la tangente (d) à (C) au point d'abscisse 1.
- 5) Tracer (d) et (C).
- **B** Une entreprise produit des piles électriques dont le prix unitaire p est

exprimé en milliers de LL; $(0.5 \le p \le 8)$.

La demande f(p) de ce produit , exprimée en milliers d'unités, est donnée par $f(p) = \frac{4}{1 + \ln p}$.

- 1) Calculer le nombre de piles électriques demandées pour un prix unitaire de 1000 LL.
- 2) a-Trouver l'élasticité e (p) de la demande par rapport au prix.
 - b-Calculer e (3) ; donner une interprétation économique de la valeur trouvée . f est elle élastique pour p = 3 ?