Data Structure and Algorithm Analysis(H)

Southern University of Science and Technology Mengxuan Wu 12212006

Work Sheet 10

Mengxuan Wu

Question 10.1

Step 1

0

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Question 10.2

$n \mid 0$	1	2	3	4	5	6	7	8	9	10	11	12
$Fib(n) \mid 1$	1	2	3	5	8	13	21	34	55	89	144	233

Therefore, the minimum number of nodes that an AVL tree with height 10 can have is Fib(12) - 1 = 232.