海南大学信息学院信息安全系专业课程《安全协议》 NSPK 协议验证实验报告

姓名:学院:成绩:任课教师:

计算机类课程实验报告

姓	名		主讲教师		专	业	信息安全	班级	
学	号				实验	日期	2013-10-9		
课程名称		安全协议		小组成员					

一、实验名称

NSPK(Needham-Schroeder Public-Key Protocol)的验证

二、实验目的

- 1. 加深对 CCITT X.509 (3)协议的理解。
- 2. 掌握软件分析安全协议的基本方法,认识安全协议的基本描述规则,构建完备的知识体系。

三、实验内容及要求

分析 CCITT X.509 (3)协议,并使用 Scyther 协议验证软件对其进行安全验证,完成详尽的报告。

- 1. 建立对 CCITT X.509 (3)协议的认识,在此基础上分析其破解途径。
- 2. 学会使用软件验证安全协议的方法,即协议的代码描述、攻击方法的分析。
- 3. 深入总结实验,进一步发觉安全协议更深层次的知识。

四、实验材料、工具、或软件

Windows XP; Python2.6; Scyther1.1; wxPython2.8-win32-unicode-2.8.12.0-py26

五、实验步骤

本次实验共分四步执行:

第一步: 查阅相关资料,系统地认识 Needham-Schroeder 公钥协议:

第二步: 思考该协议的验证流程, 推敲其攻击破解的方法;

第三步:分析协议的代码描述,并做出详细的解释;

第四步:透过 Scyther 生成的攻击图,分析其具体的攻击流程。

下面按照这四个步骤开始实验并详细叙述。

一、 认识 NS 协议

 $1.I \rightarrow R: \{N_I, I\}KP_R$

 $2.R \rightarrow I : \{N_I, N_R\}KPi$

 $3.I \rightarrow R: \{N_R\}KP_R$

在 Needham-Schroeder 协议中,默认协议双方都从可信服务器中获取了对方的公

钥;

- 1: I 作为协议的发起者,向 R 发送随机数 N_i 及具有新鲜性的随机数 I(也称临时值,nonce)作为挑战,并用 R 的公钥加密;
- 2: 响应者 R 接收并对 I 作出挑战,用 I 的公钥加密已经解密的 N_i 及随机数 N_R 发送给 I;
 - 3: 最后, $I \cap B$ 发送用 R 公钥加密的 N_R 。

经过这样一次协议的运行,主体 A 和 B 就建立了一个他们之间的共享秘密 N_R ,这个共享秘密可以为他们进行秘密通信确认双方身份时使用。

二、NS 公钥协议攻击

协议的目的是建立协议的发起者 I 与响应者 R 之间的相互认证,并且确保他们在相互通讯,而不会在与某个冒充者通讯。但在 I 与 R 建立认证的过程中,很可能出现入侵者 A,它一方面监听 I 发往 R 的消息,并且截获消息 1,然后 A 可以破坏消息 1,对消息进行篡改,扰乱 I 和 R 的通信。

 $1.1.I \rightarrow A: \{N_I, I\}KP_A$

 $2.1.A(I) \rightarrow R: \{N_I, I\}KP_R$

 $2.2.R \rightarrow A(I): \{N_I, N_R\}KP_I$

 $1.2.A \rightarrow I : \{N_I, N_R\}KP_I$

 $1.3.I \rightarrow A: \{N_R\}KP_A$

 $2.3.A(I) \rightarrow R: \{N_R\}KP_R$

主体 I、主体 R 和攻击者 A,其中 I 作为 NS 公钥协议的发起者,A 作为响应者并假冒 I 和 R 进行通信和欺骗,从而实现对 NS 公钥协议的攻击。协议采用公开密钥系统, N_I 、 N_R 是 I 和 R 发布的具有新鲜性的随机数(也称临时值,nonce)。攻击过程如下:

首先主体 I 向 A 发送包含 N_I 和自己身份的消息 1.1,并用 A 的公钥 PK_A 加密消息 1.1; A 收到消息并马上对消息进行解密,而后假冒 I 向 R 发送 N_I 和 I 身份(让 R 误 认为是和 I 进行通信)的消息 1',并用 R 的公钥 PK_R 进行加密; R 接到消息,并向假 冒 I 的 A 发送用 I 的公钥加密的消息 N_I 、 N_R ; 而后 A 接到消息 2' 并立即向 I 发送; 对 协议攻击最后一步,I 向 A 发送 I、R 之间用于通信的共享秘密 N_B 。 这样 A 就能得到 I 和 R 之间的共享秘密 N_R ,从而实现以后对 I 和 R 通信内容的监听。

根据上述的过程,我们可以发现根据上述攻击可以使R不能确认最后一条消息是否来自L。这是由于L从未详细地声明她欲与R对话,因此R不能得到任何保证A知道R是她的对等实体。

```
协议改进如下:
  1. I \rightarrow R: (N_I, I) K P_R
  2. R \rightarrow I: (N_I, N_R, R) K P_I
  3. I \rightarrow R: (N_I)KP_R
三、分析代码描述
 * Needham-Schroeder protocol
// The protocol description
protocol ns3(I,R)
               //协议的主体 I、R
         //实体 I
   role I
   {
                       // 产生具有新鲜性的随机数
      fresh ni: Nonce:
      var nr: Nonce;
                               //发送{ni,I}作为对 R 的挑战
      send_1(I,R, \{ni,I\}pk(R));
      recv_2(R,I, \{ni,nr\}pk(I));
                               //接受来自 R 的挑战响应{ni,nr}
                               //声明开始运行协议
      claim(I,Running,R,ni,nr);
      send_3(I,R, \{nr\}pk(R));
                               //I 最后发送共享的密钥{nr}给 R
      claim(I,Secret,ni); //声明 I 发送随机数 ni 的保密性
      claim(I,Secret,nr); //声明 I 已获取秘密随机数 nr
      claim(I,Alive)://声明随机数 I 的新鲜性
      claim(I,Weakagree); //声明协议的弱一致性
      claim(I,Commit,R,ni,nr);//声明双方已经提交了协议的认证
      claim(I,Niagree);
      claim(I,Nisynch);
   }
   role R
             //实体 R
      var ni: Nonce;
                        // 产生具有新鲜性的随机数
      fresh nr: Nonce;
      recv 1(I,R, {ni,I}pk(R)); //接受来自协议的发起者 I 的挑战响{ni,I}
      claim(R,Running,I,ni,nr);//声明开始运行协议
      send_2(R,I, {ni,nr}pk(I)); //发送{ni,nr}作为对 I 的挑战响应
      recv_3(I,R, {nr}pk(R));//接收到共享的密钥{nr}
      claim(R,Secret,ni); //声明 R 收到随机数 ni
      claim(R,Secret,nr)://声明收到安全的随机数 Nr
      claim(R,Alive); //声明随机数 I 的新鲜性
```


[Id 1] Protocol ns3, role R, claim type Secret, cost 73

五、实验存在问题和解决办法

参照学长的实验报告完成了本次实验,对协议重新做了一次全面的分析,对 NS 公钥协议有了更深入的了解。实验软件的更新添加了许多内容,即便协议的大体没有改变,其中较为不解的是"弱一致性"的具体含义,在攻击方面通过协议的分析,及软件的攻击流程图分析有了更深入的了解。

六、协议的改进

/*

^{*} Needham-Schroeder-Lowe protocol

```
// The protocol description
    protocol nsl3(I,R)
        role I
            fresh ni: Nonce;
            var nr: Nonce;
            send_1(I,R, \{ni,I\}pk(R));
            recv_2(R,I, {ni,nr,R}pk(I)); //接受到来至 R 挑战响应,响应中包含了 ni,nr,
和R的实体标识R
            claim(I,Running,R,ni,nr);
            send_3(I,R, \{nr\}pk(R));
            claim(I,Secret,ni);
            claim(I,Secret,nr);
            claim(I,Alive);
            claim(I,Weakagree);
            claim(I,Commit,R,ni,nr);
            claim(I,Niagree);
            claim(I,Nisynch);
        }
        role R
            var ni: Nonce;
            fresh nr: Nonce;
            recv_1(I,R, \{ni,I\}pk(R));
            claim(R,Running,I,ni,nr);
            send_2(R,I, {ni,nr,R}pk(I)); //发送{ni,nr,R}作为对 I 的挑战响应(R 为实体 R
的身份标识)
            recv_3(I,R, \{nr\}pk(R));
            claim(R,Secret,ni);
            claim(R,Secret,nr);
            claim(R,Alive);
            claim(R,Weakagree);
            claim(R,Commit,I,ni,nr);
            claim(R,Niagree);
            claim(R,Nisynch);
        }
    改进后的攻击过程:
    1.1.I \rightarrow A: \{N_I, I\}KP_A
```

 $2.1.A(I) \rightarrow R: \{N_I, I\}KP_R$

 $2.2.R \rightarrow A(I): \{N_I, N_R, R\}KP_I$

 $1.2.A \rightarrow I : \{N_I, N_R, R\}KP_I$

 $1.3.I \rightarrow A: \{N_R\}KP_A/I$ 解密 A 发送来的消息,发现身份标识为 R,到此,可认定为 A 想伪造 R 与自己通信,对此不予与回复。

1.3' $1.3.I \rightarrow R: \{N_R\}KP_R // 新的流程$ $2.3.A(I) \rightarrow R: \{N_R\}KP_R // 失效$

Scyther results : verify						
Claim			Sta	tus	Comments	
nsl3	I	nsl3,I2	Secret ni	Ok	Verified	No attacks.
		nsl3,I3	Secret nr	Ok	Verified	No attacks.
		nsl3,I4	Alive	Ok	Verified	No attacks.
		nsl3,I5	Weakagree	Ok	Verified	No attacks.
		nsl3,I6	Commit R,ni,nr	Ok	Verified	No attacks.
		nsl3,I7	Niagree	Ok	Verified	No attacks.
		nsl3,I8	Nisynch	Ok	Verified	No attacks.
	R	nsl3,R2	Secret ni	Ok	Verified	No attacks.
		nsl3,R3	Secret nr	Ok	Verified	No attacks.
		nsl3,R4	Alive	Ok	Verified	No attacks.
		nsl3,R5	Weakagree	Ok	Verified	No attacks.
		nsl3,R6	Commit I,ni,nr	Ok	Verified	No attacks.
		nsl3,R7	Niagree	Ok	Verified	No attacks.
		nsl3,R8	Nisynch	Ok	Verified	No attacks.
Done.						

七、教师评语(或成绩)	
	教师签字:
	年 月 日