第11节 主析取范式

一、主析取范式

❖ 小项: 是 n 个命题变元的合取式, 其中每个变元 必出现且仅出现一次(以本身或否定形式), 称这个合 取式为小项。

例如,含有两个变元的小项: $P \land Q \lor P \land \neg Q \lor \neg P \land Q \lor \neg P \land \neg Q$

❖ 若有n个变元,则有2n个小项。

小项编码:

- ❖ 含有 n 个变元的小项的角标用 n 位二进制码表示。
- ❖ 变元按字母次序排列。
- ❖ 用 1 表示变元本身, 0 表示变元的否定形式。

例:
$$m_{00} \Leftrightarrow \neg P \land \neg Q$$
, $m_{01} \Leftrightarrow \neg P \land Q$, $m_{10} \Leftrightarrow P \land \neg Q$, $m_{11} \Leftrightarrow P \land Q$
$$m_{101} \Leftrightarrow P \land \neg Q \land R, m_{100} \Leftrightarrow P \land \neg Q \land \neg R$$

			m_{oo}	m ₀₁	m ₁₀	m ₁₁
	Р	Q	¬P∧¬Q	¬P∧Q	P∧¬Q	P∧Q
00	F	F	T	F	F	F
01	F	Т	F	Т	F	F
10	Т	F	F	F	Т	F
11	T	Т	F	F	F	Т

- 1. 每个小项当且仅当其赋值与编码相同时,其真值为 T; 而其余 2ⁿ-1 组赋值均使该小项的真值为 F。
- 2. 全体小项的析取式为永真式,记为: $\sum m_i \leftrightarrow m_0 \lor m_1 \lor ... \lor m_2^n_{-1} \leftrightarrow T$

主析取范式定义: 若一个命题公式的析取范式为 $A_1 \lor A_2 \lor ... \lor A_n (n \ge 1)$,其中每个 A_i (i=1,2,...,n) 都是小项,则称之为该命题公式的主析取范式。

主析取范式的求法:

- (1) 先写出给定公式的析取范式 $A_1 \vee A_2 \vee ... \vee A_n$ 。
- (2) 为使每个 A_i 都变成小项,对缺少变元的项 A_i 要补全变元,比如缺变元 R,就用 "∧(R∨¬R)"的形式补 R。
- (3) 用分配律等公式加以整理。

例:求P→Q的主析取范式。

解: P→Q ⇔¬P∨Q ---去掉其它连结词

⇔(¬P∧(Q∨¬Q))∨((P∨¬P)∧Q) ---补变元

 $\Leftrightarrow (\neg P \land Q) \lor (\neg P \land \neg Q) \lor (P \land Q) \lor (\neg P \land Q)$

--- 用分配律展开

 $\Leftrightarrow (\neg P \land Q) \lor (\neg P \land \neg Q) \lor (P \land Q)$

求主析取范式的真值表法:

- (1) 列出给定公式的真值表。
- (2) 找出该公式真值表中每个为"T"行的赋值 所对应的小项。
- (3)用"\"联结上述小项,即可。

例: $\bar{X} P \rightarrow Q$ 和 $P \leftrightarrow Q$ 的主析取范式

Р	Q	$P \rightarrow Q$	P↔Q
0	0	Т	Т
0	1	Т	F
1	0	F	F
1	1	Т	Т

$$\begin{array}{c} P \rightarrow Q \Leftrightarrow m_{00} \vee m_{01} \vee m_{11} \\ \Leftrightarrow (\neg P \wedge \neg Q) \vee (\neg P \wedge Q) \vee (P \wedge Q) \\ P \leftrightarrow Q \Leftrightarrow m_{00} \vee m_{11} \Leftrightarrow (\neg P \wedge \neg Q) \vee (P \wedge Q) \end{array}$$

定理 在真值表中,一个使公式的真值为 T 的赋值所对应的小项的析取,即为此公式的主析取范式。

思考题:永真公式的主析取范式是什么样的?