# KNN – K Nearest Neighbors

Leonardo De Holanda Bonifácio

github.com/leothi

Ihbonifacio@latam.stefanini.com

## Introdução



Como classificar um novo registro?

- Distância para todos os vizinhos
- Selecionar K
- Classificar

## Introdução



Como classificar um novo registro?

- Distância para todos os vizinhos
- Selecionar K
- Classificar



### K vizinhos mais próximos

- Algoritmo de classificação supervisionado
- Classifica de acordo com os K vizinhos mais próximos ao registro
- Algortimo Lazy: não salva modelo previsão ocorre quando uma nova instância precisa ser classificada

### Cálculo da distância

• Distância euclidiana:

$$D(a,b) = \sqrt{\sum_{i} (a_i - b_i)^2}$$

• Exemplo:

$$5-5=0$$
  $0^2=0$   
 $7-5=2$   $2^2=4$ 

$$0^2 = 0$$

$$a = (5,7,9)$$

$$7 - 5 = 2$$

$$2^2 = 4$$

$$b = (5,5,5)$$

$$9 - 5 = 4$$
  $4^2 = 16$ 

$$0 + 4 + 16 = 20$$
  
 $D(a, b) = \sqrt{20} = 4,47$ 

$$D(a, b) = \sqrt{\sum_{i} (a_i - b_i)^2}$$

### Exemplo Completo – Classificação filme

| Filme                     | Violência | Romance | Ação | Comédia | Classe  |
|---------------------------|-----------|---------|------|---------|---------|
| Anabelle                  | 0,6       | 0       | 0,3  | 0       | Terror  |
| A volta dos que não foram | 0,9       | 0       | 0,5  | 0,1     | Terror  |
| De pernas pro ar 3        | 0,1       | 0,2     | 0,1  | 0,9     | Comédia |
| Gente grande              | 0         | 0,2     | 0,2  | 0,8     | Comédia |

#### Novo

#### **Registro:**

#### Maligno

Violência = 0.8Romance = 0.1Aç $\tilde{a}$ o = 0,5

Comédia = 0

#### Maligno x Anabelle

(0,8;0,1;0,5;0,0)(0,6;0,0;0,3;0,0)

$$0,2^2 + 0,1^2 + 0,2^2 + 0$$
$$0,04 + 0,01 + 0,04 = 0,09$$

$$D=\sqrt{0.09}=0.3$$

#### Maligno x A volta

(0,8;0,1;0,5;0,0)(0,9;0,0;0,5;0,1)

$$0,1^2 + 0,1^2 + 0^2 + 0,1^2$$
  
$$0,01 + 0,01 + 0,01 = 0,03$$

$$D = \sqrt{0,03} = 0,17$$

#### Maligno x Pernas

(0,8;0,1;0,5;0,0)(0,1;0,2;0,1;0,9)

$$0.2^{2} + 0.1^{2} + 0.2^{2} + 0$$
  $0.1^{2} + 0.1^{2} + 0^{2} + 0.1^{2}$   $0.7^{2} + 0.1^{2} + 0.4^{2} + 0.9^{2}$   $0.8^{2} + 0.1^{2} + 0.4^{2} + 0.8^{2}$   $0.04 + 0.01 + 0.04 = 0.09$   $0.01 + 0.01 + 0.01 = 0.03$   $0.49 + 0.01 + 0.16 + 0.8 = 1.46$   $0.64 + 0.01 + 0.16 + 0.64 = 1.45$ 

$$D=\sqrt{1,46}=1,2$$

#### Maligno x Gente Grande

(0,8;0,1;0,5;0,0)(0,0;0,2;0,2;0,8)

$$0.8^{2} + 0.1^{2} + 0.4^{2} + 0.8^{2}$$

$$0.64 + 0.01 + 0.16 + 0.64 = 1.45$$

$$\mathbf{D} = \sqrt{1.45} = 1.2$$

### Resultado

- Ordem das distâncias:
- 1. 0,17 A volta: **Terror**
- 2. 0,3 Anabelle: **Terror**
- 3. 1,2 Pernas: Comédia
- 4. 1,2 Gente: Comédia

**K = 1** 1 Terror: **Terror** 

**K = 2** 2 Terror: **Terror** 

**K = 3** 2 Terror, 1 Comédia: **Terror** 

K = 4 2 Terror, 2 Comédia: **Terror/Comédia** 

### Observações

• Normalização:

| Idade | Renda  | Classe |
|-------|--------|--------|
| 30    | 50000  | Pobre  |
| 60    | 150000 | Rico   |

- Simples, poderoso e rápido
- Relacionamento entre previsores é complexo
- K pequeno prejudicado com ruídos e outliers
- K grande overfitting
- K = 3 ou 5

### Implementação

- Biblioteca em Python: scikit-learn
- Carregamento da base -> Pré-processamento -> Classe e método fit -> Resultados
- Código de exemplo