

Examen de conception CAO ME621 Calculatrice autorisée - Documents interdits

Etude d'un compresseur de climatisation automobile

Présentation

Autrefois réservé à certains types de véhicules de tourisme, la climatisation a longtemps été considérée comme un accessoire de luxe . (Les constructeurs la destinaient aux automobiles haut de gamme, ou d'exportation vers des régions à climat chaud)

Aujourd'hui les 3/4 des véhicules sont équipés de série, d'un système de climatisation ou d'air conditionné. Celui-ci améliore le confort et la sécurité des véhicules et apporte une meilleure visibilité grâce à l'assèchement de l'air réduisant l'apparition de buée. En outre le dispositif contrôle la température intérieure donne une sensation de "bien-être" aux occupants du véhicule. (Température comprise entre 21°C et 26°C; une hygrométrie de l'air comprise entre 35 et 65%)

Principe

GHP: Gaz Haute Pression GBP: Gaz Basse Pression LHP: Liquide Haute Pression

Le circuit frigorifique a pour rôle de refroidir l'air qui va entrer dans l'habitacle. On utilise le principe de la détente d'un gaz qui va absorber la chaleur du milieu extérieur.

Un fluide à l'état gazeux est comprimé par le compresseur. cela entraîne une forte élévation de sa température. La vapeur à haute pression passe ensuite dans un condenseur traversé par l'air extérieur. Le fluide se transforme alors en liquide toujours en haute pression.

Le passage dans une bouteille déshydratante permet d'absorber les impuretés du liquide et de servir de réservoir. Le liquide arrive au détendeur dont la fonction est de faire chuter la haute pression du liquide dans un échangeur appelé évaporateur. Par cette détente, le liquide se transforme en vapeur basse pression et basse température. Il retourne ensuite au compresseur et le cycle recommence. L'air qui a traversé l'évaporateur a cédé au fluide de l'énergie et s'est donc refroidi au passage.

Le dessin d'ensemble et la nomenclature sont donnés pages suivantes Caractéristiques du compresseur

- Nombre de cylindres : 5

Diamètre des cylindres : 30 mm

- Course des pistons : fonction de l'inclinaison du plateau oscillant. (17°)

Le compresseur fonctionne sur le principe d'une pompe axiale entrainée par le moteur du véhicule, par l'intermédiaire d'une courroie et d'un embrayage électromagnétique. (vitesse de rotation maximale du compresseur : 500 tr/mn)

Puissance mécanique maximale d'entrainement du compresseur : **Pm = 5000 W** Il a pour fonction de refouler le fluide frigorigène de la basse pression (2 bars) à l'état de haute pression (15 bars) vers le condenseur.

1	corps	
2	plateau came	
3	plateau porte bielle	
4	pignon plateau mobile	
5	sphère	
6	pignon fixe	
7	clavette	
8	ressort	
9	couvercle culasse	
10	vis	ISO 4014 - M8 x 40 x 22
11	rondelle	JIS B 1251
12	porte clapet	
13	bouchon	
14	rondelle	JIS B 1251
15	écrou	ISO - 4034 - M5
16	vis	JIS B 1180
17		JIS B 1100
	clapet de refoulement	
18	joint culasse couvercle	
19	culasse	
20	clapet d'admission	
21	joint piston	
22	piston	
23	bielle	
24	butée à rouleaux	
25	joint torique	
26	vis	ISO 4014 - M10 x 45 x 45-N
27	Goupille élastique	
28	butée à rouleaux	
29	couvercle moyeu	
30	douille à aiguilles	SKF - HK 2020
31		B18.22M
	vis	
32	rondelle	B18.6.7M
33	roulement à billes	SKF - 61908
34	ressort conique	
35	bague appui ressort	
36	collerette	
37	Bague anti-extrusion joint	
38	joint torique	
39	bague d'arrêt axial	
40	diaphragme d'embrayage	
41	plateau d'arrêt axial	
42	anneau élastique	B27.7M
43	clavette bateau	
44	rondelle	
45	arbre	+
46	écrou	ISO - 4035 - M12 - N
47		100 - 4000 - 10112 - 10
	rondelle	+
48	moyeu	+
49	joint torique	
50	rivet	
51	rondelle rivet	
52	anneau élastique	DIN 472 - 62 x 2
53	anneau élastique	B27.8M - 3DM1-40
54	disque d'embrayage	
55	poulie	
56	rondelle pour ressort	
57	bobine	
58	porte bobine	
59	joint torique	<u> </u>
60	vis	ISO 4015 - M6 x 25 x 25-S
kep.	ม ย อเ g แสนิงก	Kemarque
Rep.	Désignation	Remarque

COMPRESSEUR A CYLINDREE FIXE

Etude de la transmission

On se place en fonctionnement normal (système débrayé entrainant le plateau oscillant et les pistons)

1) Compléter les classes d'équivalence données ci-après :

```
C_0 = \{1, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 26, 29, 31, 32, 35, 36, 37, 38, 49, 52\}
```

$$C_1 = \{ 2, 27,$$

$$C_2 = \{ 3,$$

$$C_3 = \{ 5 \}$$

$$C_4 = \{ 6,$$

$$C_5 = \{ 22,$$

$$C_6 = \{ 23,$$

- 2) Colorier sur le plan d'ensemble :
- C₁ en bleu
- C₂ en vert
- C₃ en jaune
- C₄ en rouge
- C₅ en violet
- C₆ en orange

3) Réaliser le graphe des liaisons du système en indiquant le nom de chaque liaison , son centre ainsi que son axe principal

Remarque : la liaison engrenage sera modélisée par une liaison ponctuelle ou sphère-plan

4) Compléter le schéma cinématique du système dans le plan x,y (On reprendra les couleurs de chaque classe d'équivalence de la question 2))

5) Compléter le schéma cinématique du système en 3D (On reprendra les couleurs de chaque classe d'équivalence de la question 2))

6) Indiquer le nombre de mobilités utiles (m_u) et ainsi que le nombre de mobilités internes (m_i)

Indiquer le nombre d'inconnues statiques de liaisons Calculer le degré d'hyperstatisme – Conclusion

7) En vous aidant des deux figures ci-dessous, exprimer la course ($x_M - x_m$) d'un piston C_{piston} de ce compresseur en fonction de R, L, β , δ_1 et δ_2

Que devient l'expression de C_{piston} si on fait l'hypothèse que les angles δ_1 et δ_2 sont très faibles ? Calculer C_{piston} en tenant compte de cette hypothèse.

Ecrire l'expression des angles δ_1 et δ_2 en fonction de R, R₁, e, β et en déduire les valeurs de δ_1 et δ_2 Montrer que l'hypothèse précédente est vérifiée, c'est à dire que les angles δ_1 et δ_2 sont très faibles. (Effectuer l'application numérique avec : R = 35 mm ; R₁ = 30 mm ; L = 44 mm ; e = 3 mm ; β =17°)

8) Calculer la cylindrée V_{CP} engendrée par un piston au cours d'un cycle . Application numérique

- 9) Calculer la cylindrée V_C du compresseur . Application numérique
- 10) Sachant que la puissance mécanique maximale d'entrainement du compresseur : $P_m = 5000 \text{ W}$ pour une vitesse de rotation maximale N = 500 tr/mn

Calculer la puissance fluide (P_f) de ce compresseur si l'on considère que celui-ci tourne à la vitesse de rotation maximale. Le rendement volumétrique η_v étant de 94% et le rendement du système de transmission mécanique η_m étant de 91%, en déduire la puissance de compression du fluide (P_f) ainsi que le couple (C_p) exercé sur la poulie dans ces conditions de fonctionnement.

11) On donne ci-après la courbe de la loi d'entrée sortie du compresseur.

15,0 10,0 Position du piston (mm) 5,0 0,0 200 250 300 50 150 400 350 -5,0 -10,0 -15,0 Angle d'entrée θ (degré)

Loi d'entrée sortie du compresseur

Indiquer comment s'appelle ce type de loi

Ecrire l'expression de la relation correspondant à cette courbe en fonction de x_M (position maximale) et de θ

Sur la courbe ci-dessus, représenter les courbes des 4 autres pistons et écrire l'expression de la position des 4 autres pistons en fonction de x_M (position maximale), de θ et d'une constante à déterminer

Piston 1 : x =

Piston 2: x =

Piston 3 : x =

Piston 4: x =

Piston 5 : x =

12) On donne ci-après les courbes de vitesse instantanée et de norme de la vitesse instantanée du piston N°1

Vitesse instantanée du piston 1

Norme de la vitesse instantanée du piston 1

En vous aidant des courbes de vitesse représenter la forme de la courbe du débit refoulé du piston 1 sur 1 tour.

En déduire la forme de la courbe des autres pistons ainsi que la forme de la courbe du débit total refoulé par les 5 pistons

Ecrire les expressions de la vitesse de chaque piston en fonction de V_M (vitesse maximale) , de θ et d'une constante à déterminer

Piston 1: v =

Piston 2 : v =

Piston 3: v =

Piston 4: v =

Piston 5 : v =

Dimensionnement de la liaison arbre (45) / ensemble carter

Torseur des actions transmises en C :

$$\{\mathcal{T}_{C}\} = \begin{cases} \vec{F}_{c} = X_{c} . \vec{x} - Y_{c} . \vec{y} + Z_{c} . \vec{z} \\ \vec{M}_{C} = \vec{0} \end{cases} = \begin{cases} \vec{F}_{c} = 2070 . \vec{x} - 2435 . \vec{y} + 6366 . \vec{z} \\ \vec{M}_{C} = \vec{0} \end{cases} \text{ valeurs en N}$$

 \overrightarrow{EC} = - a. \overrightarrow{x} + h. \overrightarrow{y} avec a = 70 mm et h = 15 mm

Action sur la poulie :

$$\{\mathcal{T}_F\} = \begin{cases} \vec{F}_F = -Y_F \cdot \vec{y} \\ \vec{M}_F = C_F \cdot \vec{x} \end{cases}$$
 avec $Y_F = 2200 \text{ N et } C_F = 95,5 \text{ N.m}$

Remarque : Vu la configuration du chargement du système on considèrera que $Y_E = Y_D$ et $2.Z_E = Z_D$

13) Déterminer les actions en D et en E

Conclusion - Torseurs des actions de liaisons

$$\{\mathcal{T}_D\} = \begin{cases} \overrightarrow{F}_D = \\ \overrightarrow{M}_D = \end{cases}$$

en N et N.m

$$\{\mathcal{T}_E\} = \begin{cases} \overrightarrow{F}_E = \\ \overrightarrow{M}_E = \end{cases}$$

en N et N.m

14) On demande de vérifier la durée de vie des roulements à billes (33) et de la douille à aiguilles (30)

• Rappel : Charge dynamique équivalente :

$$P = F_r$$
 quand $F_a/F_r \le 1,14$

 $P = 0.35 F_r + 0.57 F_a$ quand $F_a/F_r > 1.14$

Douille à aiguilles (30) en D

Roulement à billes (33) en E

Caractéristiques des roulements

