Course: CSC707, Automata, Computability and Computational Theory Homework 2: Complexity Theory, polynomial time reduction, P vs NP,

NP-hard and NP-complete problems.

Submission: Use Wolfware File Format: LaTeX and PDF

Due Date: 2:00 A.M. (EST), Thursday, February 11, 2010

1. Provide any feedback/questions you may have on this homework (optional).

2. Using LaTeX is required.

1. Let \sum denote $\{0,1\}$. Let \propto denote polynomial-time reducibility. A set $L \subseteq \sum^*$ is P-complete if $L \in P$ and $M \propto L$ for all M, where $M \subseteq \sum^*$ and $M \in P$.

- (a) Show that \emptyset and \sum^* are not P-complete.
- (b) Show that if $L \in P$ and $\emptyset \neq L \neq \sum^*$, then L is P-complete.
- 2. Show that the Vertex Cover remains NP-complete even when all the vertices in the graph are restricted to have even degree.

Vertex Cover is defined as follows:

INSTANCE: A graph G = (V, E) and a positive integer $k \leq |V|$. QUESTION: Is there a subset $V' \subseteq V$ such that $|V'| \leq k$, and for each edge $\{u, v\} \in E$ at least one of u and v belongs to V'?

3. Show that the Set Cover problem is NP-complete using the reduction from Vertex Cover.

Set Cover problem is defined as follows:

INSTANCE: A set X of n elements, a family F of subsets of X, and a positive integer k.

QUESTION: Is there a set k or fewer subsets from F whose union is X? For example, if $X = \{1, 2, 3, 4\}$ and $F = \{\{1, 2\}, \{2, 3\}, \{4\}, \{2, 4\}\}$, a solution does NOT exist for k = 2 but does exist for k = 3 (e.g., $\{\{1, 2\}, \{2, 3\}, \{4\}\}$).

4. The Independent Set problem is defined as follows.

Set Cover problem is defined as follows:

INSTANCE: A graph G = (V, E) and a positive integer $k \leq |V|$.

QUESTION: Does G contain an indepenent set of size k or more, i.e., a subset $V' \subseteq V$ and $|V'| \ge k$ such that no two vertices in V' are joined by an edge in E?

Suppose you are given a graph, G = (V, E), and an integer k as input with |V| = n. And suppose you are given an algorithm, D, that solves the decision version of the Independent Set problem in time T(n, k).

- (a) Use D to find the size of the maximum independent set, and state the time complexity involved.
- (b) Use D in a self-reduction to solve the search version of the independent set problem, and state the time complexity involved.