PRÁCTICA 3 grupo L1A

Bloques jerárquicos y modulaciones lineales en GNURADIO

Autores CESAR JAVIER VEGA RAYO

JOSE DAVID FLOREZ RAMOS

Grupo de laboratorio: L1A

Subgrupo de clase 05

INFORME DE RESULTADOS

DESARROLLO DEL OBJETIVO 1. PRESENTE A CONTINUACIÓN LOS RESULTADOS DEL OBJETIVO 1.

Flujo grama utilizado para la creación de un bloque jerárquico, para realizar el posterior análisis de potencia del espectro de la señal.

QT GUI calculopotenciacomunicaciones longitud FFT: 1.024k

Bloque jerárquico.

Con ayuda de este bloque se pretende determinar el comportamiento de la potencia de las sinusoidales puras en ganancia en dbs y dbms.

DESARROLLO DEL OBJETIVO 2. PRESENTE A CONTINUACIÓN LOS RESULTADOS DEL OBJETIVO 2.

Tabulando los datos observados tenemos:

	200	Practica			
Amplitud	1,5	2,5	3,5	4,5	8,5
Potencia(w)	1,255	3,125	6,125	10,125	36,1249
Potencias(dBW)	0,5115	4,9485	7,871	10,053	15,57
Potencia[dBm]	30,5115	34,9485	37,871	40,05	45,578

Analítica					
Amplitud	1,5	2,5	3,5	4,5	8,5
Potencia(w)	1,26	3,1	6,12	10,12	36,12
Potencias(dBW)	0,5	4,9	7,9	10	15,5
Potencia[dBm]	30,5	34,9	37,9	40	45,6

PUNTO B

SEÑAL CONSTANTE

Practica				
Amplitud	1,5	2,5	3,5	
Potencia(w)	2,2499	12,2499	30,2498	
Potencias(dBW)	3,5218	10,8813	14,8072	
Potencia[dBm]	33,5218	40,8813	44,8072	

Cálculo de la potencia:

$$P = \lim_{t \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} |A|^2 dt$$

• Donde
$$T = \frac{1}{f}$$
; $f = 1kHz$

Analítica				
Amplitud	1,5	2,5	3,5	
Potencia(w)	2,2	12,25	30,2	
Potencias(dBW)	3,51	10,89	14,8	
Potencia[dBm]	33.52	40.9	44.8	

Practica					
Amplitud	1,5	2,5	3,5		
Potencia(w)	1,1249	6,1249	15,1249		
Potencias(dBW)	0,5115	7,871	11,7969		
Potencia[dBm]	30,5115	37,871	41,7969		

Cálculo de la potencia:

$$P = \frac{|A|^2}{2}$$

Analítica					
Amplitud	1,5	2,5	3,5		
Potencia(w)	1,12	6,12	15,12		
Potencias(dBW)	0,5115	7,9	11,8		
Potencia[dBm]	30,5	37,9	41,8		

Practica					
Amplitud	1,5	2,5	3,5		
Potencia(w)	0,7514	4,0912	10,1029		
Potencias(dBW)	-1,2409	6,1186	10,0444		
Potencia[dBm]	28,759	36,1185	40,0444		

Cálculo de la potencia:

$$P = Valor eficaz^2$$

• Donde: Valor eficaz =
$$\frac{A}{\sqrt{3}}$$

Analítica					
Amplitud	1,5	2,5	3,5		
Potencia(w)	0,75	4	10,1		
Potencias(dBW)	-1,24	6,12	10		
Potencia[dBm]	28,6	36,12	40		

PUNTO C

Suma de los códigos freq. Señal A:(2+1+7+4+2+8+7+2+1+7+4+2+4+1)=52khz

DESARROLLO DEL OBJETIVO 3. PRESENTE A CONTINUACIÓN LOS RESULTADOS DEL OBJETIVO 3.

Para K<1:

Ac[1+KaAm]=28.8mV

Ac[1-KaAm]=14.4mV

Sumando:

2Ac=43.2mV

Ac=21.6mV

2KaAmAc=14.4mV

KaAm=(14.4mV)/2Ac = 0.33 Experimental

Para K>1:

Ac[1+KaAm]=44.8mV

Ac[1-KaAm]=-12.4mV

Sumando:

2Ac=32.4mV

Ac=16.2mV

2KaAmAc=57.2mV

KaAm = (57.2mV)/2Ac = 0.56 Experimental

Para K=1:

Ac[1+KaAm]=38mV

Ac[1-KaAm]=4.40mV

Sumando:

2Ac=42.4mV

Ac=21.2mV

2KaAmAc=33.6mV

KaAm=(33.6mV)/2Ac = 0.79 Experimental