Crowd Physics: Studies of Collaborative Opportunities in Spatiotemporal Networks of People

Eric Horvitz

Joint work with John Krumm and Adam Sadilek

Motivation: Generalized Task Markets

Motivation: Generalized Task Markets

Ideal assemblies of human & machine intelligence

Workflows & Routing

Translate languages via networks of people & machines

D. Shahaf, & E. Horvitz. Generalized Task Markets, AAAI 2010.

Translate languages via networks of people & machines Learn competencies & availabilities of crowdworkers

Translate languages via networks of people & machines Learn competencies & availabilities of crowdworkers

Translate languages via networks of people & machines Learn competencies & availabilities of crowdworkers

Crowd Physics Studies

Capture real-world data on location and mobility

Digital experimentation via parameter sweeps

Seek insights on shaping "fabric" of collaboration

Preferences, incentives and links to collaborative fabric

Implications & directions

Canonical Crowd Physics Problem

Shaped Contact Graphs

Actively "shaped" routing graph: set proximity δ , dwell time τ

Studies

Locations via GPS-coded tweets Sweep through $\delta_{\! \prime} \tau$

Contact Graphs from Tweets

Shaped Contact Graphs

Actively "shaped" routing graph: set proximity δ , dwell time τ

A. Sadilek, J. Krumm, E. Horvitz. Crowdphysics: Planned & Opportunistic Crowdsourcing for Physical Tasks.

Contact Graphs from Tweets

Shaped Contact Graphs

Actively "shaped" routing graph: set proximity δ , dwell time τ

A. Sadilek, J. Krumm, E. Horvitz. Crowdphysics: Planned & Opportunistic Crowdsourcing for Physical Tasks.

Contact Graphs from Tweets

Shaped contact graphs: Experiments with design

Actively "shaped" routing graph: set proximity δ , dwell time τ

21 days

Cities: 60x60 km

 δ =100 meters

 τ =30 minutes

Dataset	Days	Users	Tweets	Edges in G
NYC	21	47,713	544,606	740,489
SEA	21	10,424	125,620	140,075
US	2	371,481	3,434,898	3,931,884

A. Sadilek, J. Krumm, E. Horvitz. Crowdphysics: Planned & Opportunistic Crowdsourcing for Physical Tasks.

Canonical Task: Routing Physical Objects

Synchronization & sequencing of effort

Local vs. centralized plans

Canonical task: Route packages

- Coverage & reachability
- Efficiency (delivery time)
- Optimality of routing heuristics
- Robustness to graph ablation
- Locale sensitivity

Video

Video

Results on Contact Graphs

Random infinite graphs

Static, homogeneous networks, repeat lattice structure

Studies: Properties of finite, real-world contact graphs

Leverage for task coordination

Properties of Constructed Graphs

Lévy flight: random walk w/ heavy-tailed probability distribution.

Frequent short-hops, rare long jumps (Mandelbrot)

$$P(x) \propto x^{-\beta} \beta = 2.2$$

Small-world phenomenon?

Graph diameter O(log n)

Shortest path discoverable?

Studies of Routing in Contact Graphs

Global: Dijkstra, Floyd-Warshall

Assume: Complete, static knowledge

Real-time: Uncertainty about future locations

Local opportunistic routing

Use heuristics based on historical data

Routing Studies

60 x 60 km bounding box around Seattle, 6 months 450 x 450 m cells, start & destination ($c_{i,}$ c_{j})

Test: Final 35 hours

Train: Rest of 6 mos.

Local policy:

- > For each location ℓ , consider statistics of proximity to ℓ .
- > Keep package or handoff based on historical proximity

Global: Dijkstra

Phase Transition in Reachability

Distribution of Shortest Paths

Delivery Times Across US

Studies of Robustness

Local vs. Global Planning

Understanding & Shaping Collaborative Systems

Studies of crowd physics for sensing & acting in world Design, optimization of collaborative substrate

Rich area, multiple directions for enhancing collaboration

Opportunities include new approaches to epidemiology, e.g., where reachability & efficiency are minimized

