

Prof Me Eng Marcelo Bianchi Data Scientist | Data Engineer | Data Architect

Aula 8 - Polynomial Regression

Machine Learning

Polynomial Regression

Regressions

Simple Linear Regression

$$y = b_0 + b_1 x_1$$

Multiple Linear Regression

$$y = b_0 + b_1 x_1 + b_2 x_2 + ... + b_n x_n$$

Polynomial Linear Regression

$$y = b_0 + b_1 x_1 + b_2 x_1^2 + ... + b_n x_1^n$$

Simple Linear Regression

Simple Linear Regression

Polinomial Regression

Polinomial Regression

One Question: Why "Linear"?

Polinomial Regression

Polynomial Linear Regression

$$y = b_0 + b_1 x_1 + b_2 x_1^2 + ... + b_n x_1^n$$

DataSet

Δ	А	R	C	U	Ł
1	Position	Level	Salary		
2	Business Analyst	1	45000		
3	Junior Consultant	2	50000		
4	Senior Consultant	3	60000		
5	Manager	4	80000		
6	Country Manager	5	110000		
7	Region Manager	6	150000		
8	Partner	7	200000		
9	Senior Partner	8	300000		
10	C-level	9	500000		
11	CEO	10	1000000		
12					
13					

Our Challenge

- In HR Team, will be necessary to hire a new employee.
- The employee informed a earlier salary in the previous company
- The mission is try to create a bluffing detector, if the new potential employee is lying about the earlier salary
- Our machine learning model needs to find out the correlation between the level and the salary to predict if the employee is bluffing the salary or not.

X_poly Matrix (Column Square)

● ● ● Figure 1

Adjusting the degree = 2,3,4, etc

```
8# Fitting Polynomial Regression to the dataset
9 from sklearn.preprocessing import PolynomialFeatures
0 poly_reg = PolynomialFeatures(degree = 4)
```


- # Polynomial Regression
- # Importing the librariesimport numpy as np
- import matplotlib.pyplot as plt
- import pandas as pd
- # Importing the datasetdataset = pd.read_csv('Position_Salaries.csv')
- X = dataset.iloc[:, 1:2].valuesy = dataset.iloc[:, 2].values
- # Splitting the dataset into the Training set and Test set
- """from sklearn.cross_validation import train_test_split
- X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)"""
- # Feature Scaling"""from sklearn.preprocessing import StandardScaler
- sc_X = StandardScaler()
- X_train = sc_X.fit_transform(X_train)
- X_test = sc_X.transform(X_test)"""

- # Fitting Linear Regression to the dataset from sklearn.linear_model import LinearRegression
- lin_reg = LinearRegression()lin_reg.fit(X, y)
- # Fitting Polynomial Regression to the dataset
 - from sklearn.preprocessing import PolynomialFeatures
- poly_reg = PolynomialFeatures(degree = 4)
- X_poly = poly_reg.fit_transform(X)poly_reg.fit(X_poly, y)
- lin_reg_2 = LinearRegression()
- lin_reg_2.fit(X_poly, y)
- # Visualising the Linear Regression resultsplt.scatter(X, y, color = 'red')
 - plt.plot(X, lin_reg.predict(X), color = 'blue')
 plt.title('Truth or Bluff (Linear Regression)')
 - plt.xlabel('Position level')
- plt.ylabel('Salary')
- plt.show()

```
# Visualising the Polynomial Regression results

plt.scatter(X, y, color = 'red')

plt.plot(X, lin_reg_2.predict(poly_reg.fit_transform(X)), color = 'blue')

plt.title('Truth or Bluff (Polynomial Regression)')

plt.xlabel('Position level')

plt.ylabel('Salary')

plt.show()

# Visualising the Polynomial Regression results (for higher resolution and smoother curve)

X_grid = np.arange(min(X), max(X), 0.1)

X_grid = X_grid.reshape((len(X_grid), 1))
```

plt.title('Truth or Bluff (Polynomial Regression)')

Predicting a new result with Linear Regression

lin reg 2.predict(poly reg.fit transform(6.5))

Predicting a new result with Polynomial Regression

plt.plot(X_grid, lin_reg_2.predict(poly_reg.fit_transform(X_grid)), color = 'blue')

plt.scatter(X, y, color = 'red')

plt.xlabel('Position level')

plt.ylabel('Salary')

lin reg.predict(6.5)

plt.show()

Adjusting the Code

- lin_reg.predict([[6.5]])
- lin_reg_2.predict(poly_reg.fit_transform([[6.5]]))

Muito obrigado!