## Chapter 1.6 Practice Problems

## EXPECTED SKILLS:

- Know where the trigonometric and inverse trigonometric functions are continuous.
- Be able to use  $\lim_{x\to 0} \frac{\sin x}{x} = 1$  or  $\lim_{x\to 0} \frac{1-\cos x}{x} = 0$  to help find the limits of functions involving trigonometric expressions, when appropriate.
- Understand the squeeze theorem and be able to use it to compute certain limits.

## PRACTICE PROBLEMS:

Evaluate the following limits. If a limit does not exist, write DNE,  $+\infty$ , or  $-\infty$  (whichever is most appropriate).

$$1. \lim_{x \to \frac{\pi}{4}} \sin(2x)$$

2. 
$$\lim_{\theta \to \pi} (\theta \cos \theta)$$

$$3. \lim_{x \to 0^+} \csc x$$

$$4. \lim_{x \to \frac{\pi}{2}^+} \tan x$$

$$5. \lim_{x \to \frac{\pi}{2}^{-}} \tan x$$

6. 
$$\lim_{x \to \frac{\pi}{4}} \sec x$$

7. 
$$\lim_{x \to 0} \left( \frac{\sin x}{3x} \right)$$

$$8. \lim_{x \to 0} \left( \frac{\sin 3x}{3x} \right)$$

9. 
$$\lim_{x \to 0} \left( \frac{\sin x}{|x|} \right)$$

10. 
$$\lim_{x \to 0} \left( \frac{1 - \cos x}{4x} \right)$$

11. 
$$\lim_{x \to 0^-} \left( \frac{\cos x}{x} \right)$$

12. 
$$\lim_{x \to 0} \left( \frac{\sin 2x}{x} \right)$$

13. 
$$\lim_{x \to 0} \left( \frac{\tan 2x}{x} \right)$$

14. 
$$\lim_{x \to 0} \left( \frac{1 - 3\cos x}{3x} \right)$$

15. 
$$\lim_{x \to \infty} \arccos\left(\frac{-x^2}{x^2 + 3x}\right)$$

16. 
$$\lim_{x \to 0} \left( \frac{3x^2}{1 - \cos^2 x} \right)$$

17. 
$$\lim_{x \to 0} \left( \frac{\tan 5x}{\sin 9x} \right)$$

18. Multiple Choice: Evaluate  $\lim_{x\to 0} \frac{\tan^2 x}{x^2}$ 

(a) 
$$-1$$

(d) 
$$-\infty$$

(e) 
$$+\infty$$

For problems 19-23, evaluate the following limits by first making an appropriate substition. If the limit does not exist, write DNE,  $+\infty$ , or  $-\infty$  (whichever is most appropriate).

19. 
$$\lim_{x\to\infty} \left(e^x \sin\left(e^{-x}\right)\right)$$

$$20. \lim_{x \to 1} \left( \frac{\sin(\ln x^5)}{\ln x} \right)$$

$$21. \lim_{x \to \frac{\pi}{2}^+} e^{\sec x}$$

$$22. \lim_{x \to 0} \sin\left(\frac{1}{x^2}\right)$$

23. 
$$\lim_{x \to 0^+} \tan^{-1} (\ln x)$$

For problem 24-28, determine the value(s) of x where the given function is continuous.

$$24. \ f(x) = \csc x$$

25. 
$$f(x) = e^{\sin x}$$

26. 
$$f(x) = \frac{1}{1 - 2\cos x}$$
 on  $[0, 2\pi]$ 

27. 
$$f(x) = \sin^{-1} x$$

28. 
$$f(x) = \begin{cases} \cos x & \text{if } x < \frac{\pi}{4} \\ \sin x & \text{if } x \ge \frac{\pi}{4} \end{cases}$$

- 29. Find all non-zero value(s) of k so that  $f(x) = \begin{cases} \frac{3\sin(kx)}{x} & \text{if } x > 0 \\ 6k^2 + 5x & \text{if } x \le 0 \end{cases}$  is continuous at x = 0.
- 30. Use the Intermediate Value Theorem to prove that there is at least one solution to  $\cos x = x^2$  in (0,1).
- 31. Let f(x) be a function which satisfies  $5x 6 \le f(x) \le x^2 + 3x 5$  for all  $x \ge 0$ . Compute  $\lim_{x \to 1} f(x)$ .
- 32. The graph of  $f(x) = x^2 e^{\cos(1/x)}$  is shown below on [-0.1, 0.1]:



Make a conjecture about  $\lim_{x\to 0} f(x)$  and then use the Squeeze Theorem to show this is true.

33. Let x be a fixed real number. Compute  $\lim_{h\to 0} \frac{\sin{(x+h)} - \sin{x}}{h}$ . (Hint: The identity  $\sin{(A+B)} = \sin{A}\cos{B} + \cos{A}\sin{B}$  will be useful.)