DEMULTIPLEXERS

Experiment No. 08

Aim: Implementation of Demultiplexure using gates and TTL ICs

Demultiplexers: The word "demultiplexure" means 'one into many'. Demultiplexing is the process of taking information from one input and transmitting the same over one of several outputs. The demultiplexure (Data-Distributor) has one input signal D, m select signals $(S_m, S_{m-1}, \ldots, S_1, S_0)$, and n output signals $(Y_0, Y_1, \ldots, Y_{n-1}, Y_{n-2})$. The select inputs determine to which output the data input will be connected. Its block diagram is shown in Fig.1, below.

Fig.1. Block Diagram of n-to-1 DMUX.

Activity 1. 1-to-2 line Demultiplexer

A 1-to-2 DMUX has one data input line, one select line, and two output lines. Its logic symbol is shown in Fig.2, below.

Fig.2. Block Diagram of 1-to-2 DMUX

Logic Diagram:

Fig.3. Logic Diagram

Procedure

Step.1. Construct the circuit shown in Fig.3.

Apply the data input signal (D), select input signal (S), and record the outputs (Yo and Y1).

Observations: Truth-Table

Select Inputs	Data Input		Outputs .
S	D(0/1)	Y_0	Y_1
O.	D(0/1)	€	4.7
0 '	D(0/1)		,
1	D(0/1)		, la.i el_
1	D(0/1)		

Activity 2. Implementation of 1-to-2 line DMUX with Enable / Disable input

Fig.4.Logic Diagram of 1-to-2 line DMUX with enable/disable input

Connect an extra Enable signal 'E' to the 1-to-2 DMUX, as shown in Fig.4.

Observations:	Truth-Tab	le			
Enable Input	Select Inputs	Data Input	Outputs		
E	S	D(0/1)	Y ₀	Y ₁	
1	0	D(0/1)			
0	0	D(0/1)			
1	1	D(0/1)			
0	1	D(0/1)			

Write:

- 1. When Enable Input is HIGH, the Output of the DMUX is.....(Enabled / Disabled).
- $2. When \ Enable \ Input \ is \ LOW, the \ Output \ of \ the \ DMUX \ is \ \ (Enabled/Disabled).$

Activity 3. 1-to-4 Demultiplexer

A 1-to-4 DMUX has a single data input (D), two select inputs (S1 and S2), and four outputs (Y_0, Y_1, Y_2, Y_3) . Its logic symbol is shown in Fig.4, below.

1-to-4 Demultiplexer Using IC 74139

The logic symbol of IC 74139 (Dual 1-to-4 Decoder / Demultiplexer) is shown in Fig.6, below.

Procedure:

- Step.1. Choose any DMUX (say DMUX1) to perform the experiment.
- Step.2. Make the proper connections of the Data Input, Select Input, and Outputs.
- Step. 3. Apply the Data Signal, and Select Signals.
- Step.4. Observe and record the outputs.

Data Input	Truth-Table Select Inputs		Outputs				
D	S ₁	So	Y ₀	Y ₁	Y ₂	Y_3	
D(0/1)	0	0					
D(0/1)	0	1	,				
D(0/1)	1	0					
D(0/1)	1	0					