Characterization of real numbers (corrections)

Textbook Reading: [JL] Sections 0.3, 1.1 and 1.2

Exercises

1. Exercise 1.1.1 Let F be an ordered field and $x, y, z \in F$. We use the fact that < is compatible with + and . in the field F:

$$\begin{cases} z > y \implies z + (-y) > y + (-y) = 0 \implies z - y > 0 \\ \text{and} \qquad \implies (-x) \cdot (z - y) > 0 \\ x < 0 \implies x - x < -x \implies 0 < -x \end{cases}$$

hence, by operations properties in the field F,

$$x.(y-z) = x.y - x.z > 0$$

and by compatibility, adding x.y in both sides, we obtain

$$x.y - x.z + x.z > x.z,$$

thus x.y > x.z.

2. Exercise 1.1.2 Let S be an ordered set and $A \subset S$ a finite subset, say $A = \{x_1, x_2, ..., x_n\}$, that is $|A| = n \ge 1$. Let us show that in a first step that A is upper bounded and that $\max A \in A$.

Proof by induction:

base case : if n = 1, then $A = \{x_1\}$ and we have $\max A = x_1 \in A$.

Induction step: Let P(n) the property that for every finite (non empty) subset $A = \{x_1, x_2, ..., x_n\} \subset S$, of size n, there exists $j \in \{1, 2, ..., n\}$ such that $\max A = x_j \in A$. Then P(n+1) is the property that for every finite (non empty) subset $B = \{y_1, y_2, ..., y_n, y_{n+1}\} \subset S$, of size n+1, there exists $i \in \{1, 2, ..., n, n+1\}$ such that $\max B = y_i \in B$.

Assume P(n) true and let $B = \{y_1, y_2, ..., y_n, y_{n+1}\} \subset S$. Then, $B = B' \cup \{y_{n+1}\}$ where $B' = \{y_1, y_2, ..., y_n\} \subset S$ and |B'| = n, so there exists $j \in \{1, 2, ..., n\}$ such that $\max B' = y_j \in B'$. Since S is ordered, then one has: either $(i): y_j \leq y_{n+1}$ or $(ii): y_{n+1} \leq y_j$. Hence,

case (i) $\forall y \in B' : y \leq \max B' = y_j \leq y_{n+1}$ thus $\forall y \in B' \cup \{y_{n+1}\} : y \leq y_{n+1}$ which implies that $y_{n+1} = \max B \in B$.

case (ii) $\forall y \in B' \cup \{y_{n+1}\} = B : y \leqslant y_i$ which implies that $y_i = \max B \in B$.

In both cases, max B exists and belongs to B. Thus P(n+1) is true.

Conclusion step: It follows by induction that P(n) is true for all $n \ge 1$.

The proof of lower bound and existence of a minimum is similar and let to the reader.

3. Exercise 1.1.5 S an ordered set. $A \subset S$ and b is an upper bound for A such that $b \in A$. Let us show that $b = \sup A$.

Proof Since $b \in A$ then $b \leq \sup A$, but b is an upper bound for A and $\sup A$ is the least upper bound for A, then $\sup A \leq b$. Henceforth,

$$\sup A \leqslant b \leqslant \sup A \implies b = \sup A.$$

4. Exercise 1.1.6 S an ordered set. $\emptyset \neq A \subset S$ such that A is bounded above. Assume $\sup A$ exists and $\sup A \notin A$. Let us show that A contains a countably infinite subset.

Proof $A \neq \emptyset$ implies that there exists $x_1 \in A$. Thus $x_1 < \sup A$ since $\sup A \notin A$. If one assume that $A = \{x_1\}$ then $\sup A = x_1$ which is in contradiction with $x_1 < \sup A$, i.e., $\{x_1\} \subseteq A$ (this means that $\{x_1\}$ is a **proper** subset of A), hence there exists $x_2 \neq x_1$ such that $\{x_1, x_2\} \subset A$. But, by the same argument $\sup A \notin A$ we conclude that $x_2 < \sup A$ and that $\{x_1, x_2\} \subseteq A$ because if-not then either x_1 or x_2 is equal $\sup A$ which leads to a contradiction, hence, following the same arguments, we can can find, for all $n \geqslant 1$, a subset $B_n = \{x_1, x_2, ..., x_n\} \subseteq A$. This means that A contains a countably infinite subset $B = \{x_1, x_2, ..., x_n, ...\}$, which ends the proof.

Remark: To be more rigorous, the statement " $\forall n \ge 1$, there exists a finite subset $B_n = \{x_1, x_2, ..., x_n\} \subsetneq A$ " must be proved by induction. This is an easy exercise left to the reader.

5. Exercise 1.2.7

Proof Direct consequence of the positivity of x, y and the inequality

$$0 \leqslant (\sqrt{x} - \sqrt{y})^2 = x + y - 2\sqrt{xy}.$$

6. Exercise 1.2.9 A, B nonempty and bounded subsets of reals.

$$C = A + B = \{a + b | a \in A \text{ and } b \in B\}.$$

Proof for sup : For all $c = a + b \in C$:

$$a \leqslant \sup A$$
 and $b \leqslant \sup B \implies a + b = c \leqslant \sup A + \sup B$

thus $\sup A + \sup B$ is an upper bound of C, hence $\sup C \leq \sup A + \sup B$ since it is the least one.

Let us show now that $\sup C \geqslant \sup A + \sup B$. We have

$$\begin{aligned} a+b &= c \leqslant \sup C : \forall a \in A \text{ and } \forall b \in B \\ \Longrightarrow a \leqslant \sup C - b : \forall a \in A \text{ and } \forall b \in B \end{aligned}$$

thus, $\forall b \in B$, $\sup C - b$ is an upper bound of A and hence $\sup A \leq \sup C - b$ since it is the least one. Then,

$$\forall b \in B : \sup A + b \leqslant \sup C \implies \forall b \in B : b \leqslant \sup C - \sup A,$$

hencforth, $\sup C - \sup A$ is an upper bound of B which yields $\sup B \leq \sup C - \sup A$, since it is the least one. So, we obtain $\sup A + \sup B \leq \sup C$. Conclusion:

$$\sup C = \sup A + \sup B$$

Proof for inf: Use the same reasoning with lower bounds.

Remark: This exercise can be solved very easily using the definition of sup (or inf) with ε which will be seen in worksheet 3.

7. Let $E = \{x \in \mathbb{R} : x > 0 \text{ and } x^3 < 2\}$. In our proof bellow, we assume that we do not know anything on the cubic root $\sqrt[3]{2}!!$ and also on the continuity of the funcion $x \mapsto x^3$ which implies directly that E is the open interval $(0, \sqrt[3]{2})$ whose supremum is simply equal $\sqrt[3]{2}$.

Proof of (a) By contradiction, assume that E is not bounded above, then

$$\forall M > 0, \exists x \in E / x > M$$

Thus

$$0 < M < x \implies 0 < M^3 < x^3 < 2.$$

We conclude that

$$\forall M > 0: M^3 < 2,$$

which is not true for M=2 for example. We deduce, by contradiction, that E is bounded above.

Proof of (b) Let $r = \sup E$ (which exists by part (a)). Let us prove that r > 0 and $r^3 = 2$.

Since $r = \sup E$ then $\forall x \in E$, $0 < x \le r$ thus r > 0.

Let us show now that $r^3 \leq 2$ and $r^3 \geq 2$ in order to deduce that $r^3 = 2$.

By contradiction, assume that $r^3 < 2$, then we can find an $0 < h \le 1$, such that $r^3 < (r+h)^3 < 2$. In fact, using the identity $a^3 - b^3 = (a-b)(a^2 + ab + b^2)$, we must have

$$0 < (r+h)^3 - r^3 = h\left((r+h)^2 + h(r+h) + h^2\right) < 2 - r^3 \tag{1}$$

Since $1 \in E$ and $r = \sup E$ then $r \ge 1$, thus r + h > 1, then

$$h < r + h < (r + h)^2 < (r + h)^3 \implies$$

$$(r+h)^2 + h(r+h) + h^2 < 3(r+h)^3$$

Hence, inequality (1) holds if we have $3h(r+h)^3 < 2 - r^3$, i.e, $3h(r+1)^3 < 2 - r^3$ since h is expected in (0,1], thus the sufficient condition for inequality (1) is

$$0 < h < \frac{2 - r^3}{3(r+1)^3}$$
 and $h \leqslant 1$.

We can thus choose for example

$$h = \min\left(1, \frac{2 - r^3}{3(r+1)^3}\right)$$

which satisfies $0 < h \leq 1$ and ensures the inequality (1).

In summary, we can find $h \in (0,1]$ such that $r^3 < (r+h)^3 < 2$ which implies that $r+h \in E$ and results in contradiction with $r = \sup E \ge r + h$, because h > 0.

We conclude by contradiction that $r^3 \ge 2$.

Similarly, and by contradiction method, if we assume that $r^3 > 2$ then one can find $h \in (0,1]$ such that $r^3 > (r-h)^3 > 2$ which means that

$$\forall x \in E : x \ge 0 \text{ and } x^3 < 2 < (r - h)^3 < r^3$$

which implies

$$\forall x \in E : x < (r - h) < r$$

hence r-h becomes an upper bound of E but this lead to a contradiction since r is the least upper bound of E. Hence, one must have $r^3 \leq 2$.

Final conclusion: r > 0, $r^3 \le 2$ and $r^3 \ge 2$ then $r^3 = 2$.

Remark: Others proofs are welcomed.