MATH2017 Problem Set 2: Differentiability on an interval

Submit on Gradescope by 17:00, Monday 6 March 2023

- 1. Prove that, for all $x \in \mathbb{R}$, $|\sin x| \le |x|$.
- 2. Prove that the function $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 4x^7 14x^4 + 30x 17$, is injective.
- 3. Let $f: \mathbb{R} \to \mathbb{R}$ such that $f(x) = 2x^4 + x^4 \sin(1/x)$ if $x \neq 0$, and f(0) = 0.
 - (a) Prove that f attains a minimum at 0. (Hint: no need for calculus!)
 - (b) Prove that f is differentiable (everywhere), and that f'(0) = 0. (Hint: you can reduce the work involved using the Localization Lemma, Lemma 3.23.)
 - (c) Prove that, for all $\varepsilon > 0$, f' takes both positive and negative values on $(-\varepsilon, \varepsilon)$.
- 4. In each of the following cases, either write down a function with the specified properties, or explain why no such function exists.
 - (a) An unbounded function $f:[0,1]\to\mathbb{R}$.
 - (b) An unbounded differentiable function $f:[0,1]\to\mathbb{R}$.
 - (c) A bounded differentiable function $f: \mathbb{R} \to \mathbb{R}$ whose derivative $f': \mathbb{R} \to \mathbb{R}$ is unbounded.
 - (d) A differentiable function $f:(0,1)\to\mathbb{R}$ which is unbounded above but whose derivative is bounded.