Chemistry 1A, Fall 2012

Midterm Exam #2 October 17, 2012

(90 min, closed book)

Name:	
SID:	
GSI Name:	Discussion Day/Time:

• The test consists of 5 short answer questions and 22 multiple choice questions.

• Put your written answers in the boxes provided. Answers outside the boxes may not be considered in grading.

• Write your name on every page of the exam.

Question	Page	Points	Score
Multiple Choice (1-22)	2-7	88	
Titration Short Answer		6	5
Soda (1) Short Answer		4	
Soda (2) Short Answer	2	4	
Ocean Acidification Short Answer		4	>
Indicators Short Answer		4	
Total		110	

Useful Equations and Constants:

 $pH = -\log[H^{+}]$ $pX = -\log X$ $X = 10^{-pX}$ $K_{w} = 1 \times 10^{-14} \text{ at } 25^{\circ}\text{C}$ PV = nRT $K_{w} = K_{a} K_{b}$ $pH = pK_{a} + \log \frac{[A^{-}]}{[HA]}$ $R = 0.0821 \text{ L atm mol}^{-1} \text{ K}^{-1}$

Strong acids and bases:

 $T(K) = T(^{\circ}C) + 273$

HCl LiOH HNO₃ NaOH H₂SO₄ KOH HClO₄ HBr HI

I AM NOT PRESENTLY AT LIBERTY TO DIVULGE THAT INFORMATION, AS IT MIGHT COMPROMISE OUR AGENTS IN THE FIELD.

WEAK BASES

The equilibrium constants for several weak bases are given in the table and will be referred to in Questions 1 through 9.

Name	Formula	K _b	pK _b
ammonia	NH_3	2×10^{-5}	4.7
sodium azide	NaN_3	4.0×10^{-10}	9.4
sodium nitrite	NaNO ₂	2.5×10^{-11}	10.6
chloramine	NH ₂ Cl	10^{-14}	14
sodium nitrate	NaNO ₃	10^{-16}	16

- 1. Which reaction best describes what happens when NaNO₂ is dissolved in water?
 - A) $NaNO_2(aq) + H_2O(1) \implies Na^+(aq) + NO_2^-(aq)$
 - B) $NO_2^-(aq) + H_2O(1) \iff NO_3^-(aq) + 2H^+(aq)$
 - C) $NaNO_2(aq) + H^+(1) \Leftrightarrow HNO_2(aq) + Na^+(aq)$
 - D) $NO_2^-(aq) + H_2O(1) \Leftrightarrow HNO_2(aq) + OH^-(aq)$
- 2. Which solution is the most basic?
 - A) 0.10 M NaN_3
- 3) $0.10 \text{ M NaNO}_2 \text{ C}$
 - 0.10 M NH_3
- D) 0.10 M NH₄Cl
- 3. Which statement best explains the difference in K_b between NH₃ and NH₂Cl?
 - A) NH₂Cl has fewer H atoms so it is more basic.
 - B) The hydrogen bonding is stronger in NH₂Cl so it is more basic.
 - C) Cl withdraws electron density from the N atom making NH₂Cl more basic.
 - D) Cl withdraws electron density from the N atom making NH₂Cl less basic.
- 4. Two resonance forms of hydrazoic acid, HN₃, are shown below. Which statement best explains why HN₃ is an acid?

- A) HN₃ is an acid because there are two resonance structures.
- B) HN₃ is an acid because the negative charge can spread out on the N₃⁻anion.
- C) HN₃ is an acid because there is a negative charge on the N atom next to the H atom.
- D) HN_3 is an acid because it does not attract H^+ to form H_2N_3 .
- 5. You are given a mixture of 0.10 M NaNO₃ and 0.10 M NH₄Cl. The solution is:
 - A) acidic
- B) basic
- C) neutral
- D) none of these

Name	GSI

- 6. What is the pH of 0.10 M NaNO₂? $[K_b (NO_2^-) = 2.5 \times 10^{-11}]$
 - A) 2.2
- B) 5.3
- C) 5.8
- D) 8.2
- E) 10.4
- 7. What is the pH of 100 mL of 0.10 M NaNO₂ solution after adding 50 mL of 0.10 M HCl?
 - A) 3.4
- B) 5.8
- C) 8.1
- D) 8.2
- E) 10.6
- 8. What is the pH of 100 mL of 0.10 M NaNO₂ solution after adding 100 mL of 0.10 M HCl? $[K_a (HNO_2) = 4.0 \times 10^{-4}]$
 - A) 1.0
- B) 1.3
- C) 2.2
- D) 2.3
- E) 6.1

SHORT ANSWER: The graph for the titration of 100 mL of 0.10 M NaOH solution with 0.10 M HCl solution is shown below.

Sketch the graph for the titration of 100 mL of 0.10 M NaNO₂ with 0.10 M HCl.

- Specify the value of the initial pH
- Specify the value of the pH halfway to the equivalence point
- Specify the value of the pH at the equivalence point.

- 9. What is/are the dominant species in the solution besides water at the equivalence point?
 - A) HNO₂
- B) NO_2^-
- C) $[HNO_2] = [NO_2^-]$
- D) $[HNO_2] = [H^+]$

CARBONATED BEVERAGES

In order to make carbonated water, soda makers dissolve carbon dioxide gas, CO2 (g), in water.

$$CO_2(g) \leftrightarrows CO_2(aq)$$

$$K_{H} = \frac{[CO_{2}]}{p_{CO_{2}}} = 0.033 \text{ M/atm at } 25^{\circ}\text{C}$$

- 10. What is the equilibrium concentration of CO₂ in water at 25°C if the partial pressure of CO₂ (g) above the water is 2.0 atm?
 - A) 0.0156 M
- B) 0.033 M
- C) 0.066 M
- D) 30.3 M

Name GSI	
Name GSI	

- 11. What is the equilibrium concentration of CO₂ in water at 25°C if there is a gas pressure of 1.0 atm above the water, and it consists of the equimolar mixture of CO₂ and N₂?
 - A) 0.0156 M
- B) 0.033 M
- C) 0.066 M
- D) 30.3 M

The data in the graph below show the solubility of CO_2 (g) in water as a function of gas pressure at three temperatures. Use the data to answer the questions below.

- 12. What is the equilibrium constant, K_H, for the dissolution of CO₂ in water at 5°C if the CO₂ pressure is 1.4 atm?
 - A) 0.064 M/atm
- B) 0.09 M/atm
- C) 1.4 M/atm
- D) 15.6 M/atm
- 13. Which of the following conditions would be most optimal for making carbonated water?
 - A) High pressure CO₂, high temperature
- B) Low pressure CO₂, high temperature
- C) High pressure CO₂, low temperature
- D) Low pressure CO₂, low temperature

SHORT ANSWER: You open a bottle of soda that was equilibrated at 2.0 atm CO_2 (g) at 5°C. After the bottle is opened to the atmosphere where the partial pressure of CO_2 (g) is 3.9 x 10^{-4} atm and the temperature is 25°C, you find that the concentration of CO_2 (aq) is 0.06 M. Explain this observation.

SHORT ANSWER: Suppose you have a 2 liter container with 1 atm CO₂ (g) at 25°C. You inject 1.0 L of a 0.033 M CO₂ solution. The solution takes up half the volume. Explain why the concentration of CO₂ in the solution increases when equilibrium is reached.

OCEAN ACIDIFICATION

Dissolved CO₂ reacts with water to produce HCO₃⁻ and CO₃²⁻ according to the equations below.

$$CO_2(aq) + H_2O(l) + H^+(aq) + HCO_3^-(aq)$$

$$K_{a1} = 4.5 \times 10^{-7}$$

$$HCO_3^-(aq) \iff H^+(aq) + CO_3^{2-}(aq)$$

$$K_{a1} = 4.5 \times 10^{-7}$$

 $K_{a2} = 4.7 \times 10^{-11}$

14. In view of the equilibria above, what is the conjugate acid of HCO₃⁻(aq)?

- A) H_2O
- B) CO_2
- H^{+} C)
- D) CO₃²⁻

15. What volume of 0.010 M NaOH must be added to a 100 mL solution that is a mixture of 0.010 M NaHCO₃ and 0.010 M Na₂CO₃ in order to completely eliminate its buffering properties?

- A) 50 mL
- B) 100 mL
- C) 150 mL
- D) 200 mL
- E) 250 mL

Use the equations above and the data in the graph to answer questions below about the acidity of the ocean.

- 16. The ocean has a pH \sim 8. What are the major species in solution?
 - $[HCO_3^-] = [H^+] > [CO_3^{2^-}] > [CO_2]$
 - $[HCO_3^-] > [H^+] > [CO_3^{2-}] > [CO_2]$ B)
 - $[HCO_3^-] > [CO_3^{2-}] > [H^+] > [CO_2]$ C)
 - $[HCO_3^-] > [CO_3^{2-}] > [CO_2] > [H^+]$ D)
- 17. About 35% of the CO₂ released by humans into the atmosphere by burning fossil fuels dissolves into the oceans, rivers, and lakes. How does this affect the pH of the ocean?
 - The pH will stay the same because of the HCO_3^{-}/CO_3^{2-} buffer.
 - The pH will stay the same because of the CO₂ / HCO₃⁻ buffer. B)
 - C) The pH will decrease because CO₂ (aq) is an acid.
 - The pH will increase because CO_2 (aq) is a base. D)

The main component of shells of marine organisms is calcium carbonate, CaCO₃ (s).

CaCO₃ (s)
$$\leftrightarrows$$
 Ca²⁺ (aq) + CO₃²⁻ (aq) $K_{sp} = 4.8 \times 10^{-9}$

Use the information on the preceding page to consider the effect of ocean pH on shellfish.

- 18. The concentration of Ca^{2+} (aq) in seawater is about 1.0×10^{-2} M. What concentration of CO₃²⁻ (aq) is necessary to have a saturated solution of CaCO₃?
 - A) $4.8 \times 10^{-11} \,\mathrm{M}$ B) $4.8 \times 10^{-9} \,\mathrm{M}$
- C) $6.9 \times 10^{-5} \text{ M}$
- D) $4.8 \times 10^{-7} \text{ M}$

SHORT ANSWER: As the oceans take up CO₂(g) released by humans, scientists predict negative effects on shellfish. Explain the effect on shellfish on the basis of changes in the ocean acidity, concentration of CO_3^{2-} (aq), and solubility of $CaCO_3(s)$.

Scientists are considering injection of CO₂ (g) into sandstone, CaAl₂Si₂O₈ (s), to remove 19. CO_2 (g) from the atmosphere according to the reaction:

$$CaAl_2Si_2O_8(s) + CO_2(g) + 2H_2O(l) \iff CaCO_3(s) + Al_2Si_2O_5(OH)_4(s)$$

Is this reaction an oxidation-reduction reaction?

- Yes, because CO₂ (g) is converted to CaCO₃ (s). A)
- Yes, because 2H₂O (1) is converted to OH⁻ (s). B)
- No, because the oxidation states of the atoms do not change. C)
- D) No, because oxygen gas is not released.

Name	GSI
------	-----

INDICATORS

A mixture of methyl orange, methyl red, and phenolphthalein are dissolved in an aqueous solution at pH = 8. A small volume of this solution is placed on an anion exchange column. The stationary phase is a polymer with fixed positively charged groups initially ion-paired with Cl^- anions. Anions in the solution exchange with the Cl^- anions, and thus are temporarily retained on the column. Use the data in the table to answer the questions below.

Indicator	ndicator HA color		Ka
methyl orange	red	yellow	3.4 x 10 ⁻⁴
methyl red	yellow	red	7.9 x 10 ⁻⁶
phenolphthalein	colorless	pink	4.0 x 10 ⁻¹⁰

- 20. What colors do you predict for methyl orange and methyl red in a solution in which the pH is set independently at pH = 8? Phenolphthalein is colorless in this solution.
 - A) Methyl orange is yellow and methyl red is red.
 - B) Methyl orange is red and methyl red is red.
 - C) Methyl orange is yellow and methyl red is yellow.
 - D) Methyl orange is red and methyl red is yellow.
- 21. The equilibrium, K_{eq} , between the polymer and the A^- form of an indicator is:

 $polymer^+Cl^- + A^-(aq) \iff polymer^+A^- + Cl^-(aq)$

What happens as a concentrated solution of NaCl (aq) is poured down the column?

- A) There is no change because the system is at equilibrium.
- B) There is no change because Na⁺ (aq) and Cl⁻ (aq) are spectator ions.
- C) The equilibrium shifts to the left and the indicator moves down the column.
- D) The equilibrium shifts to the right and the indicator remains attached to the polymer.
- 22. For the equilibrium, K_{eq} , between the indicators and the polymer shown above, which indicator is most predominantly retained by the stationary phase?

A)	methyl orange	B)	methyl red	C)	phenolphthalein	D)	all three
SHO	ORT ANSWER:	When	a concentrate	ed solutio	n of NaCl (aq) is j	poure	d down the columi
the t	first indicator to i	move	down the colu	mn is ph	enolphthalein. Exp	plain '	why. Frame your
expl	anation in terms	of the	relative positi	ion of the	chemical equilib	ria on	the column.