PH126 Logic I Fast Lecture 4

Lecturer: s.butterfill@warwick.ac.uk

Truth table for →

Assuming that the rules of Fitch are such that it is impossible to prove an argument which is not logically valid, the truth-table for \rightarrow is fixed if we accept \rightarrow Elim and \rightarrow Intro.

How do the rules of proof for \rightarrow fix its truth table?

Α	В	$A \rightarrow B$
Т	Т	
Т	F	
F	T	
F	F	

'If' and →

What does ∃ mean?

We give the meaning of \exists by specifying what it takes for a sentence containing \exists to be true:

- 1. Give every object a name.
- 2. For each name in turn, create a new sentence like this: delete the quantifier and replace all instances of the variable it binds with that name
- 3. If ANY OF the new sentences are true, so is the original.

∃ and ∧ work together

Some object is F and G: $\exists x (F(x) \land G(x))$

Some square is blue: $\exists x (Square(x) \land Blue(x))$

\forall and \rightarrow work together

All my things are broken:

 $\forall x (Belongs(a,x) \rightarrow Broken(x))$

All squares are blue:

 $\forall x (Square(x) \rightarrow Blue(x))$

Substitution of logical equivalents

Two sentences are *logically equivalent* when each is a logical consequence of the other.

 $\phi \neq \psi$ means ϕ and ψ are logically equivalent.

Terminology: let $\chi[\psi/\phi]$ be the result of replacing ϕ with ψ

E.g. $(Q \neg \neg \lor P) [P / \neg \neg P] = Q \lor P$

Theorem: If $\varphi = \psi$ then $\chi = \chi[\psi/\varphi]$

How to determine the truth of sentences involving \forall

- 1. Give every object a name.
- 2. For each name in turn, create a new sentence like this: delete the quantifier and replace all instances of the variable it binds with that name
- 3. If ALL of the new sentences are true, so is the original.

Scope

Underlining shows the scope of the quantifiers

"All squares are blue" $\forall x \ (Square(x) \rightarrow Blue(x))$

"If everything is square, everything is blue" $\forall x \text{ Square}(x) \rightarrow \forall x \text{ Blue}(x)$

Multiple quantifers

Quantifiers bind variables

Read §9.2 of Barwise & Etchemendy

Proof example: ∃Elim

Invalid use of ∃Elim

Two objects are broken

 $\exists x \exists y (Broken(x) \land Broken(y) \land \neg(x=y))$

To translate sentences involving number into FOL, use identity.

∀Intro

∀Intro Example proof

Why is this proof incorrect?

Existential Elimination

where c does not occur outside the subproof where it is introduced.

Intuitve summary of quantifier rules ∀Elim

If it's true of everything it's true of Baudrillard

∃Intro

If it's true of Baudrillard it's true of something

∃Elim

If it's true of something and Q follows no matter which something it is, then Q

∀Intro

If it's true of an arbitrary thing, then it's true of everything.

Exercises 05

For your fifth seminar Only for fast groups

9.12–13 9.18–19 (trans.) 10.20, *10.24–7 10.28–9 13.2–3, 13.8–9 (quantifier proofs) 13.11, 13.13, 13.15 NEVER USE TAUT CON.