SPŠ a VOŠ technická	LABORATORNÍ	Třída: L4A		
Brno, Sokolská 1	Jméno a příjmení:	Poř. Číslo:		
Název úlohy: F	Číslo úlohy:			
Zkoušený předr	Skupina:			
Datum měření:	2.3.2023	Datum odevzdání: 3.3.2023	Klasifikace:	

Teorie

Pro dolní i horní propust (RC filtr) platí:

$$f_m = \frac{1}{2\pi RC} \tag{1}$$

Kde f_m je mezní frekvence, R je odpor rezistoru a C je kapacita kondenzátoru.

Zadání

Zapojte horní (1b) a dolní (1a) propust dle schémat.

Obrázek 1: Schémata zapojení

Použijte destičky s odpory a kondenzátory. Posílejte sinusový signál z generátoru funkcí a měřte amplitudu na osciloskopu. Změřte *R*1, *R*2, *C*1, *C*1 a vypočítejte mezní frekvenci. Měření proveď te pro frekvence z tabulky

Vypracování

R1 = 1,0 kΩ, R2 = 5,0 kΩ, C1 = 1,0 μF, C2 = 0,9 μF. Tudíž dle vzorce (1) $f_{m1} = \frac{1}{2\pi \cdot 1,0 \text{k}\Omega \cdot 1,0 \text{μF}} = 159,2 \text{ Hz a}$ $f_{m2} = \frac{1}{2\pi \cdot 5,0 \text{k}\Omega \cdot 0,9 \text{μF}} = 35,4 \text{ Hz}$

Tabulka 1: Tabulka měřených hodnoty

Frekvence [Hz]	Dolni propust [V]	Horni propust [V]	Dolni propust 2 [V]	Horni propust 2 [V]
4,7	13,84	2,48	14	0,2
10	13,12	4,8	14	0,24
22	10,96	8,64	14	0,4
47	7,28	11,92	14	0,56
100	4,08	13,36	14	1,04
220	2	13,84	13,92	2,16
470	1,04	14	13,36	4,2
1 000	0,24	14	11,44	7,6
2 200	0,24	14	7,92	11
4 700	0,24	14	4,4	12,72
10 000	0,24	14	2,16	12,64
22 000	0,24	14	1,12	13,36
47 000	0,24	14	0,64	13,52

Obrázek 2: Naměřené hodnoty amplitudy, čára ukazuje mezní frekvenci

Závěr

Po měření jsme vypočetli mezní frekvenci zjistili jsme že měření odpovídá očekávání.

Použité pomůcky:							
Přístroj – pomůcka	Тур	Rozsah (pouze analogové)	Poznámka				
Osciloskop							
Generátor funkcí			Oscilátor				