

Politecnico di Milano – V Facoltà di Ingegneria

075274 e 070644 - Sistemi distribuiti (con laboratorio) Prof. G. Cugola

Appello del 1 Settembre 2010

Rules:

- You are not allowed to use books, notes, or other material.
- You can answer in Italian or English.
- Total time for the test: 2 hours.
- 1. Implement in Java an Executor. At creation time it takes a Runnable as a parameter and, after being started (see below), it invokes the run method repeatedly. The Executor provides four methods. A method start to start invoking the run method of the Runnable passed at creation time, a method suspend to suspend running (after the current cycle of run has completed), a method continue to continue after suspending, and a method stop to finally halt execution (again, after the current cycle of run has completed).
- 2. Describe the REST architectural style and its "CREST" variation.
- 3. Describe how scalar clocks can be used to guarantee mutual exclusion in accessing a resource.
- 4. Si consideri il sistema in figura sul quale è in corso un distributed snapshot. Si supponga che ogni processo operi sommando il valore dei messaggi ricevuti al valore intero S che rappresenta il proprio stato. Il processo A ha dato inizio allo snapshot mandando un token (già consumato) al processo B.

Assumendo che non vi siano altre operazioni nel sistema oltre quelle necessarie a completare lo snapshot e che i canali uscenti da B siano molto più veloce di tutti gli altri canali, si mostri lo stato (stato locale e messaggi per ogni link) registrato da ogni nodo a fine snapshot.

- 5. Describe pessimistic timestamp ordering to control concurrency in distributed transactions (i.e., to guarantee serializability).
- 6. Consider the following processes (A, B, C), running concurrently and acting on variables x, y, z. Assume the following initial values: x = 0; y = 0; z = null.

Process A	Process B	Process C
x = 1;	y=1;	Print z;
if (y==0) {	if (x==0) {	Print x;
z = A';	z = B';	Print y;
}	}	

Complete the following table, showing which sets of values represent a valid output for process C when using a sequential, causal, or FIFO consistency model.

Motivate your answers.

Z	X	y	Seq	Causal	FIFO
A	0	0			
В	0	0			
A	0	1			
В	0	1			
A	1	0			
В	1	0			
A	1	1			
В	1	1			

7.

Consider the protocol shown in Figure above:

- 1. Describe the general aim of the protocol and briefly explain the meaning of each message.
- 2. Why does Alice need to contact Bob before starting the communication with the KDC?
- 3. Why does message 4 contains both R_{A1} and B?