TD 21. Analyse asymptotique.

Exercice 1. Attention aux idées fausses On pose $f(x) = x^3 \sin \frac{1}{x^2}$ pour tout $x \in \mathbb{R}^*$.

- a) Montrer que $f(x) = o(x^2)$. Qu'est-ce que cela signifie en termes de DL? Qu'en déduire?
- b) Montrer que, pourtant, f n'est pas deux fois dérivable en 0, et que f' n'admet pas de DL à l'ordre 1 en 0.

Exercice 2. Soit f une fonction de classe C^2 sur un intervalle I, et $a \in I$. Calculer, si cette limite existe :

$$\lim_{h \to 0} \frac{f(a+h) + f(a-h) - 2f(a)}{h^2}.$$

Exercice 3. Déterminer les DL des fonctions f suivantes à l'ordre et au point demandés.

a)
$$\frac{e^x-1-\sin x}{\cos x+1} \text{ en } 0 \text{ à l'ordre } 2 \quad \text{b)} \qquad \frac{e^x-1-\sin x}{\cos x-1} \text{ en } 0 \text{ à l'ordre } 2$$

c)
$$\frac{x\sqrt{x}-1}{x^2-1}$$
 en 1 à l'ordre 2 d) $\exp\left(\frac{1}{1+x}\right)$ en 0 à l'ordre 2

e)
$$\int_{x}^{x^{2}} \frac{dt}{\sqrt{1+t^{4}}} \text{ en } 0 \text{ à l'ordre } 10 \quad \text{ f)} \quad \operatorname{Arctan}\left(\frac{1+x}{2+x}\right) \text{ en } 0 \text{ à l'ordre } 2$$

Exercice 4. En utilisant le lien entre tan' et tan, retrouver le DL à l'ordre 3 en 0 de tan.

Exercice 5. Soit
$$f:]-1,+\infty[\rightarrow J$$

- a) Montrer que f réalise une bijection de $]-1,+\infty[$ sur un intervalle J à préciser. Montrer que f et f^{-1} sont de classe \mathcal{C}^{∞} sur leurs ensembles de définition.
- b) Déterminer le DL_3 en 0 de f^{-1} .

Exercice 6. Déterminer un équivalent simple de :

a)
$$u_n = -\sqrt{n} + \cos\left(\frac{1}{n}\right) + \frac{1}{n} + \ln(n^2)$$
 d) $u_n = n(\sqrt{n^2 + 1} - \sqrt{n^2 - 1})$

b)
$$u_n = \ln(n+1) - \ln(n+2)$$
 e) $u_n = \sqrt[3]{8n^3 + 1} - 2n$

c)
$$u_n = n^{\frac{1}{n}} - 1$$
 f) $u_n = \ln(n^2 - 3n + 2)$

Exercice 7. Donner un équivalent simple des fonctions suivantes, au voisinage du point donné :

a)
$$\frac{x^3 + 1 - \cos x}{(x^2 - 2x)\tan(3x)}$$
, $x = 0$ e) $\sqrt{x + \sqrt{x}} - \sqrt{x}$, $x = +\infty$

b)
$$\frac{\sin(x \ln x)}{x}$$
, $x = 0$ f) $x \ln(1+x) - (x+1) \ln x$, $x = +\infty$

c)
$$\frac{e^x - e^{-x}}{x}$$
, $x = 0$ et $x = +\infty$ g) $\frac{\sqrt{1 + \tan^2 x} - 1}{\text{Arcsin } x}$, $x = 0$

d)
$$\frac{\ln \cos(3x)}{\sin^3(2x)}$$
, $x = 0$ h) $x(2 + \cos x) - 3\sin x$, $x = 0$

Exercice 8. Dans chacun des cas suivants, calculer la limite de (u_n) :

a)
$$u_n = \left(1 + \frac{t}{n}\right)^n$$
, où $t > 0$

b)
$$u_n = \frac{e^{\frac{1}{n}} - 1}{\sqrt{n^2 + n} - \sqrt{n^2 + n + 2}}$$

c)
$$u_n = n \left(\cos \frac{1}{n} - \ln(e + \frac{1}{n})\right)$$

c)
$$u_n = n \left(\cos \frac{1}{n} - \ln(e + \frac{1}{n})\right)$$

d) $u_n = \frac{\ln\left(\cos(\frac{a}{n})\right)}{\ln\left(\cos(\frac{b}{n})\right)}$, (a et b non nuls)

Exercice 9. Calculer la limite de f au point donné :

a)
$$\ln x \cdot \ln(1 + \ln(1 + x)), x = 0$$

b)
$$\frac{\ln(\sin^2 x)}{(\frac{\pi}{2} - x)^2}$$
, $x = \frac{\pi}{2}$

c)
$$\frac{1}{x^2}(e^{\cos x - 1} - 1), \ x = 0$$

d)
$$\frac{\sqrt{x} - \sqrt{e}}{\ln(x) - 1}, \ x = e$$

e)
$$(\sin x)^{\ln(x-\frac{\pi}{2})}$$
, $x = \frac{\pi}{2}^+$

f)
$$\left(\frac{1}{\operatorname{ch} x}\right)^{\frac{1}{\sin^2 x}}$$
, $x = 0$

Exercice 10. On pose, pour tout $x \in]-1, +\infty[\setminus \{0\}, f(x) = \frac{1}{\ln(1+x)} - \frac{1}{x}]$.

Montrer que l'on peut prolonger f en une fonction de classe \mathcal{C}^1 sur $]-1,+\infty[$

"Revisions" : applications déjà vues des DL

Exercice 11. On pose, pour tout $x \in]-1,0[\cup]0,+\infty[$, $f(x)=\frac{\ln(1+x)-x}{x^2}$. Montrer que f se prolonge en une fonction dérivable sur $]-1,+\infty[$, et déterminer la position relative

de la courbe de f par rapport à sa tangente au point d'abscisse 0.

Exercice 12. On pose $f: x \mapsto \frac{2x^2 - 1}{x} - x^2 \ln\left(\frac{x + 1}{x}\right)$.

Déterminer le domaine de définition de f.

Montrer que la courbe de f admet des asymptotes en $-\infty$ et en $+\infty$, et étudier la position de la courbe par rapport à ces asymptotes.