Amendments to the Claims:

This listing of claims will replace all prior versions, and listings of claims in the application:

Listing of Claims:

- 1 1-49. (Canceled)
 - 50. (Previously presented) A probe nucleic acid having the formula:

$$D-R^{1}-Nu^{1}-R^{2}-O-P-O-NA-O-P-O-R^{3}-Nu^{2}-R^{4}-Q$$

$$CHOL$$

$$CHOL$$

$$CHOL$$

4 wherein,

9

10

13

5 CHOL is a cholesterol derivative;

R¹, R², R³ and R⁴ are linker moieties independently selected from the group consisting of substituted or unsubstituted alkyl and substituted or unsubstituted heteroalkyl;

Nu¹ and Nu² are members independently selected from the group consisting of nucleotide residues and nucleoside residues;

NA is a nucleic acid sequence;

D is a donor of light energy; and

Q is a quencher of light energy,

wherein the CHOL moieties interact to bring D and Q into operative proximity, thereby enabling transfer of energy from D to Q, and

wherein said probe nucleic acid sequence is not hybridized to a target nucleic acid.

1 51. (Previously presented) The probe nucleic acid according to claim 50,

wherein R²-CHOL and R³-CHOL are independently selected and have structures according to

3 the formula:

5 wherein,

9

R¹¹ is a member selected from the group consisting of substituted or unsubstituted alkyl and substituted or unsubstituted heteroalkyl;

8 PEG is polyethylene glycol;

Y³ is an organic functional group adjoining said PEG to said CHOL.

- 1 52. (Previously presented) The probe nucleic acid according to claim 51,
- wherein said PEG has from about 2 to about 20 ethylene glycol subunits.
- 1 53. (Previously presented) The probe nucleic acid according to claim 51 in which R¹¹ is substituted or unsubstituted alkyl.
- 1 54. (Previously presented) The probe nucleic acid according to claim 53,
- $\label{eq:constituted} 2 \qquad \text{wherein R^{11} is C_1-C_6 substituted or unsubstituted alkyl.}$
- 1 55. (Previously presented) The probe nucleic acid according to claim 51,
- 2 wherein Y³-CHOL has the structure:

- 1 56. (Previously presented) The probe nucleic acid according to claim 50, 2 wherein Nu¹ and Nu² are nucleotides having an exocyclic amine group to which -R¹-D and -R⁴Q
- 3 are attached, respectively.
 - 57. (Previously presented) A probe nucleic acid having the formula:

3 wherein,

1

2

5

6

7

8

9

10

11

12

13

14

15

16

17

18

1

2

3

4 NA is a nucleic acid sequence;

Nu¹ and Nu² are members independently selected from the group consisting of nucleotide residues and nucleoside residues;

Y¹ and Y² are linking groups independently selected from the group consisting of substituted or unsubstituted alkyl and substituted or unsubstituted heteroalkyl;

R⁵ and R⁶ are linking groups independently selected from the group consisting of substituted or unsubstituted alkyl and substituted or unsubstituted heteroalkyl;

D is a donor of light energy; and

Q is a quencher of light energy,

wherein each CHOL interacts with the other CHOL to bring D and Q into operative proximity, thereby enabling transfer of energy from D to Q, and wherein said probe nucleic acid sequence is not hybridized to a target nucleic acid.

58. (Previously presented) The probe nucleic acid according to claim 57, wherein Y¹ and Y² are members independently selected from substituted or unsubstituted heteroalkyl.

Appl. No. 09/591,185 Amdt. dated May 1, 2006 Reply to Final Office Action dated November 1, 2005

- 1 59. (Previously presented) The probe nucleic acid according to claim 58,
- 2 wherein Y^1 and Y^2 are polyethylene glycol.
 - 60. (Previously presented) The probe nucleic acid according to claim 59, wherein said polyethylene glycol has from about 2 to about 20 ethylene glycol subunits.
- 1 61. (Previously presented) The probe nucleic acid according to claim 57,
- 2 wherein Y¹-CHOL and Y²-CHOL have the structure:

1 62. (Canceled)

3