1

Claim: There is no linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ such that the range and kernel of T are the same

Proof: For some $m \times n$ matrix A, Col $A = \{b|b = Ax \text{ for some } x \in \mathbb{R}^m\}$ (Pg 203), so Col A is equal to the range of A. Therefore the range of T is a subspace of \mathbb{R}^3 that is equal to dim Col A, which is in turn is equal to rank A. The kernel is the null space (Pg 206), so the kernel of T is a subspace of \mathbb{R}^3 that is equal to dim Nul A.

By the Rank Theorem, rank $A + \dim \text{Nul } A = n$, where n is the number of columns of A. The standard matrix of T must be a 3×3 matrix, so n = 3. Because rank A and dim Nul A must be integer values, rank $A \neq \dim \text{Nul } A$, and therefore the range and kernel of T can not be the same subspace of \mathbb{R}^3 .

$\mathbf{2}$

Let $A = \begin{bmatrix} 5 & 5 & 5 \\ 5 & 5 & 5 \\ 5 & 5 & 5 \end{bmatrix}$, and let E_{λ} be the eigenspace of A corresponding to λ .

\mathbf{a}

Claim: $\lambda = 0$ is an eigenvalue of A.

Proof: λ is eigenvalue if the equation $Ax = \lambda x$ has a nontrivial solution. $Ax = 0x \Rightarrow Ax = 0$. This can be written as the augmented matrix $\begin{bmatrix} 5 & 5 & 5 & | & 0 \\ 5 & 5 & 5 & | & 0 \\ 5 & 5 & 5 & | & 0 \end{bmatrix}$ \sim $\begin{bmatrix} 1 & 1 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$. x_2 and x_3 are free variables, so the equation has nontrivial solutions, and thus $\lambda = 0$ is an eigenvalue of A

Claim: $\begin{bmatrix} -1\\1\\0 \end{bmatrix}$ and $\begin{bmatrix} -1\\0\\1 \end{bmatrix}$ are linearly independent eigenvectors in E_0 .

Proof: We can write the reduced augmented matrix from part (a) in parametric vector from as $x_2 \begin{bmatrix} -1\\1\\0 \end{bmatrix} + \frac{1}{1} \begin{bmatrix} -1\\1\\0 \end{bmatrix}$

 $x_3\begin{bmatrix} -1\\0\\1 \end{bmatrix}$, so $\begin{bmatrix} -1\\1\\0 \end{bmatrix}$ and $\begin{bmatrix} -1\\0\\1 \end{bmatrix}$ are eigenvectors in E_0 , and are linearly independent because neither is a scalar

multiple of the other. This can be verified by multiplying $\begin{bmatrix} 5 & 5 & 5 \\ 5 & 5 & 5 \\ 5 & 5 & 5 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 5 & 5 & 5 \\ 5 & 5 & 5 \\ 5 & 5 & 5 \end{bmatrix} \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$, both of

which equal $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$, the corresponding eigenvalue.

3

Claim: For the eigenspace of the matrix $A = \begin{bmatrix} 5 & -2 & 6 & -1 \\ 0 & 3 & h & 0 \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ for $\lambda = 5$ to be two dimensional, h = 6.

Proof: The eigenspace of A is the set of all solutions to the equation $(A - \lambda I)x = 0$

$$A - 5I = \begin{bmatrix} 5 & -2 & 6 & -1 \\ 0 & 3 & h & 0 \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix} - \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 5 \end{bmatrix} = \begin{bmatrix} 0 & -2 & 6 & -1 \\ 0 & -2 & h & 0 \\ 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & -4 \end{bmatrix}.$$
 To solve the equation $(A - 5I)x = 0$, create the augmented matrix
$$\begin{bmatrix} 0 & -2 & 6 & -1 & 0 \\ 0 & -2 & h & 0 & 0 \\ 0 & 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & -4 & 0 \end{bmatrix},$$
 which row reduces to
$$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & -3 & 0 & 0 \\ 0 & 0 & 6 - h & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}.$$
 For an eigenspace to be two dimensional, its basis needs to contain 2 linearly independent vectors. This occurs

eigenspace to be two dimensional, its basis needs to contain 2 linearly independent vectors. This occurs when there are 2 free variables, which can only happen if h = 6

I affirm that I have upheld the highest principles of honesty and integrity in my academic work and have not witnessed a violation of the honor code.