Univerzita Tomáše Bati ve Zlíně

Ústav elektrotechniky a měření

Úvod do číslicové techniky

Přednáška č. 9

Milan Adámek

<u>adamek@ft.utb.cz</u> **U5 A711** +420576035251

Základní pojmy

- *Informace* kvantitativní ohodnocení nehomogenit v rozložení hmoty, polí a energie v prostoru a v čase
- *Číslicová technika* zabývá se zpracováním číslicově kódovaných informací
- *Dvojková soustava* každý číselný kód lze převézt na dvojkový kód (binární), soustava používá pro dva různé stavy různé symboly:
 - matematika používá číslice 0, 1
 - logika používá výrazy PRAVDA, NEPRAVDA
 - elektronika používá stavů SEPNUTO, ROZEPNUTO

Základní pojmy

- *Booleova algebra* definuje funkce logických proměnných a odvozuje vztahy mezi nimi. Jednotkou informace je 1 bit
- *pravdivostní tabulky* obsahují vstupní a výstupní hodnoty logických funkcí nebo logických obvodů, reprezentované logickými hodnotami 0,1

Soustava	používané číslice
desítková	0, 1, 2, 3, 4, 5, 6, 7, 8, 9
dvojková	0, 1

logická	úroveň
hodnota	napětí
0	L (např. 0 V) H (např. 5 V)

Booleova algebra

matematické základy této disciplíny položil George Boole (1815 – 1864 v Dublinu). Aplikacemi do elektrotechniky se zabýval americký ing. Claudie Elwood Shannon – zakladatel matematické teorie informace

• BA – zabývá se log. funkcemi, úpravou logických výrazů a

logických rovnic

• zákony v BA:

jméno pravidla	příklad
Komutativní zákon o záměně pořadí	$a \wedge b = b \wedge a$ $a \vee b = b \vee a$
Asociativní zákony o sdružování do skupin	$a \wedge b \wedge c = (a \wedge b) \wedge c$ $= a \wedge (b \wedge c)$ $= (a \wedge c) \wedge b$ $a \vee b \vee c = (a \vee b) \vee c$ $= a \vee (b \vee c)$ $= (a \vee c) \vee b$
 distributivní zákon distributivní zákon 	$(a \wedge b) \vee (a \wedge c) = a \wedge (b \vee c)$ $(a \vee b) \wedge (a \vee c) = a \vee (b \wedge c)$
de Morganovy zákony	$\overline{a \wedge b} = \overline{a} \vee \overline{b}$ $\overline{a \vee b} = \overline{a} \wedge \overline{b}$

De Morganovy zákony

- A. de Morgan anglický matematik (1806 1871)
 - 1. De Morganův zákon převádí pomocí negace konjunkci AND na disjunkci OR invertovaných vstupů

De Morganovy zákony

2. De Morganův zákon - převádí pomocí negace disjunkci OR na konjunkci AND invertovaných vstupů

Základní logické funkce

Funkce	Negace NOT-INVERT	Součet OR	Součin AND	Neg. součet NOR	Neg. součin NAND
Symbol	A————Y	A Y	A-DY B-DY	A B Y	A-D-Y B-D-Y
	- 1 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	1	- & & -		- 8
Funkce	$Y = \overline{A}$	Y = A + B	$Y = A \cdot B$	$Y = \overline{A} + \overline{B}$	$Y = \overline{A} \cdot \overline{B}$
Pravd. tabulka	A Y L H H L	A B Y L L L L H H H L H H H H	A B Y L L L L H L H L L H H H H	A B Y L L H L H L H L H L L	A B Y L L H L H H H L H H L H

Základní logické funkce

Tabulka 1: Základn	í logické obvody AND	a OR		
releové zapojení	bezkontaktní obvod	logická funkce	pravdivostní tabulka	početní pravidla
zapojení AND ia b K1	$ \begin{array}{c c} E1 & e_1 \\ E2 & & \times \\ E2 & e_2 \\ E1 & e_2 \\ E2 & e_n \\ E1 & \times \\ E2 & \times \\ E1 & \times \\ E2 & \times \\ E3 & \times \\ E4 & \times \\ E5 & \times \\ E6 & \times \\ E7 & \times \\ E8 & \times \\ E8 & \times \\ E9 & \times \\ E9 & \times \\ E1 & \times \\ E1 & \times \\ E1 & \times \\ E2 & \times \\ E3 & \times \\ E4 & \times \\ E5 & \times \\ E6 & \times \\ E7 & \times \\ E8 & \times \\ E8 & \times \\ E9 & \times \\ E$	bezkontaktní	b a x _{K1} e ₂ e ₁ x 0 0 0 0 1 0 1 0 0 1 1 1	$0 \wedge 0 = 0$ $0 \wedge 1 = 0$ $1 \wedge 0 = 0$ $1 \wedge 1 = 1$
zapojení OR a b K1	$ \begin{array}{c c} E1 & \frac{e_1}{e_2} & \geqslant 1 \\ E2 & \frac{e_1}{e_2} & \geqslant 1 \end{array} $ $ \begin{array}{c c} E1 & \frac{e_1}{e_2} & \geqslant 1 \\ E2 & \frac{e_n}{e_n} & \geqslant 1 \end{array} $ $ \begin{array}{c c} X & X $	$X_{K1} = a \lor b$	b a X _{K1} e ₂ e ₁ x 0 0 0 0 1 1 1 0 1 1 1 1	$0 \wedge 0 = 0$ $0 \wedge 1 = 1$ $1 \wedge 0 = 1$ $1 \wedge 1 = 1$

¹ latinsky coniunctio = spojení ² latinsky disjunctio = rozloučení

releové zapojení	bezkontaktní obvod	logická funkce	pravdivostní t	tabulka	početní pravidla
		releová zapojení $x_{K1} = \bar{a}$			
āŢ			a >	κ _{K1}	
	_e 1 x	bezkontaktní	е	X	
	F X	zapojení $x = \bar{e}$	0	1	$\bar{0} = 1$
K1			1	0	ī = 0

Příklad realizace logické funkce

Příklad realizace logické funkce

Početní pravidla pro základní logické operace

Tabulka 2: Početní pravidla pro tři základní logické operace s jednou logickou proměnnou			
$0 \wedge a = 0$	$0 \lor a = a$		
$1 \wedge a = a$	$1 \lor a = 1$		
$a \wedge a = a$	$a \lor a = a$		
$a \wedge a \wedge \wedge a = a$	$a \lor a \lor \lor a = a$		
$a \wedge \bar{a} = 0$	a ∨ <i>ā</i> = 1		
$\bar{\bar{a}} = a$			

Minimalizace logických funkcí

Karnaughovy mapy

- bloky v mapě by měly být co největší, aby jich při vyčerpání všech možností bylo pro pokrytí všech jedniček co nejméně
- logický výraz odpovídající jednomu bloku se nazývá term
- z termu vypadne ta proměnná, které se v rámci řádku nebo sloupce mění

1. Desítková (dekadická) číselná soustava

- základem je číslo 10
- soustava používá deset znaků (číslic, cifer): 0, 1,...8, 9
- hodnotu desítkového čísla lze získat jako součet součinů jednotlivých číslic s příslušnými pozičními váhami

2. Dvojková (binární) číselná soustava

- základem je číslo 2
- soustava používá dva znaky (číslice, cifry): 0, 1
- hodnotu dvojkového čísla lze získat jako součet součinů jednotlivých číslic s příslušnými pozičními váhami

deka- dický	dvo	dvojkový zápis			
zápis	2 ³	2 ²	21	2 ⁰	
0	0	0 0 0	0 0 1	0	
1	0 0 0 0	0	0	0 1 0 1	
1 2 3	0	0	1	0	
3	0	0	1	1	
4	0	1	0	0	
4 5 6	0 0 0	1 1 1	0 0 1 1 1	0 1 0 1	
	0	1	1	0	
7	0	1	1	1	
8	1	0	0	0 1 0	
9	1	0	0 0 1	1	
10	1	0 0 0 0	1	0	
11	1	0	1	1	
12	1	1	0	0	
13	1	1	0	0 1 0	
14	1	1	1	0	
15	1	1	1	1	

3. Osmičková (oktalová) číselná soustava

- základem je číslo 8
- soustava používá osm znaků (číslic, cifer): 0, 1,...,7
- jedna číslice oktalového zápisu nahradí tři číslice binárního zápisu

desít- kový zápis	dvojkový zápis (kód)	oktá- lový zápis (kód)	hexa- deci- mální zápis
10 ¹ 10 ⁰	2 ⁴ 2 ³ 2 ² 2 ¹ 2 ⁰	8 ¹ 8 ⁰	16 ¹ 16 ⁰
0	0 0 0 0	0	0
1	0 0 0 1	1	1
1 2 3	0 0 1 0	2	1 2 3
3	0 0 1 1	3	3
4	0 1 0 0	4	4
5	0 1 0 1	5	5
6	0 1 1 0	6	6
7	0 1 1 1	7	7
8	1 0 0 0	1 0	8
9	1 0 0 1	1 1	9
1 0	1 0 1 0	1 2	Α
1 1	1 0 1 1	1 3	В
1 2	1 1 0 0	1 4	С
1 3	1 1 0 1	1 5	C D E F
1 4	1 1 1 0	1 6	E
1 5	1 1 1 1	1 7	F
1 6	1 0 0 0 0	2 0	1 0
•	•	•	•
•	•	•	•
2 0	1 0 1 0 0	2 4	1 4

4. šestnáctková (hexadecimální) číselná soustava

- základem je číslo16
- soustava používá šestnáct znaků (číslic a písmen, znaků):

 jedna číslice hexadecimálního zápisu nahradí čtyři číslice binárního zápisu

Převody desítkových čísel na dvojková čísla

1. Subatraktivní metoda – odčítá od převáděného čísla postupně nejvyšší možné mocniny 2

Převody desítkových čísel na dvojková čísla

2. Metoda dělení dvěma – dělí převáděné číslo 2 a sepisuje zbytky po dělení na pozice zprava

- Sčítání dvojkových čísel
 - dojde li při sčítání k přetečení přes 1, dochází k přenosu do vyššího řádu (jde o přenos – carry)

	desítkově	dvojkové
sčítanec	93	1011101
sčítanec	10	1010
přenos	10	11000
součet	103	1100111

2. Odčítání dvojkových čísel

• je – li na určitém řádovém místě cifra menšence menší než cifra menšitele, dochází k výpůjče jedničky z vyššího řádu a ta je před odčítáním přičtena k cifře menšitele

	desítkově	dvojkově
menšenec	21	10101
menšitel	-12	- 1100
rozdíl	09	1001

- 3. Násobení dvojkových čísel
 - platí stejná pravidla jako pro desítkové soustavy

- 4. Dělení dvojkových čísel
 - platí stejná pravidla jako pro desítkové soustavy

dělenec 1 1 0 1 1 1 : 1 0 1 =
$$\frac{1011}{011}$$
 $-\frac{101}{011}$
 $-\frac{000}{111}$
 $-\frac{101}{0101}$

Kód – je zápis nějakého znaku jiným zápisem. Při kódování znaků představuje kód jednoznačné přiřazení mezi znaky dvou různých abeced nebo znakových sad.

Dvojkové kódy:

- váhové kódy (Aikenův kód, kód BCD)
- neváhové kódy (Grayův kód)
- detekční kódy

1. Kód BCD

- BCD (Binary Coded Decimal = dvojkově desítkový kód) je kód, který převádí (kóduje) jednotlivé číslice, tedy nepřevádí číslo jako celek
- dekadická číslice je vyjádřena čtyřmístným binárním kódem,
 tj. tetrádou binárních znaků
- jde o váhový kód 8-4-2-1

2. Kód Aikenův

- pojmenovaný podle amerického počítačového odborníka Howarda Aikena
- určen pro výpočty s dekadickými čísly v PC
- má různé váhy:
 - váha 2 4 2 1
 - váha 3 3 3 1

stav 1 na vstupu	Aikenův kód			
	3	3	2	1
D0	0	0	0	0
D1	0	0	0	1
D2	0	0	1	0
D3	0	0	1	1
D4	0	1	0	1
D5	1	0	1	0
D6	1	1	0	0
D7	1	1	0	1
D8	1	1	1	0
D9	1	1	1	1

Aikenův kód				
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	
2	4	2	1	

3. Grayův kód

- jde o neváhový kód pozicím nejsou přiřazeny žádné váhy
- je to reflexní kód kódy dvou sousedních znaků se liší o jedničku
- výhoda reflexivity je u kódovacího pravítka nebo kotouče

stav 1	Grayův kód			
IIa	G ₃	G ₂	G_1	G ₀
D0	0	0	0	0
D1	0	0	0	1
D2	0	0	1	1
D3	0	0	1	0
D4	0	1	1	0
D5	0	1	1	1
D6	0	1	0	1
D7	0	1	0	0
D8	1	1	0	0
D9	1	1	0	1
D10	1	1	1	1
D11	1	1	1	0
D12	1	0	1	0
D13	1	0	1	1
D14	1	0	0	1
D15	1	0	0	0

Kódovací pravítko a kotouč

 při nepřesném odečtu (optickým snímačem na hranici dvou kódů dojde jen k chybě o jeden znak)

kotouč

- 4. Detekční (redundantní) kódy
- rozpoznají některé chyby, které vzniknou při přenosu informace
- pro svou činnost vyžadují redundanci (nadbytečnost bitu) - jde o paritní bit
- je li použita **lichá parita,** musí mít paritní bit takovou hodnotu, aby kompletní kód včetně paritního bitu měl lichý počet jedniček
- u **sudé parity** musí být celkově pro znak sudý počet jedniček

stav 1	binární kód				paritní
vstupu	8	4	2	1	bit
D0	0	0	0	0	1
D1	0	0	0	1	0
D2	0	0	1	0	0
D3	0	0	1	1	1
D4	0	1	0	0	0
D5	0	1	0	1	1
D6	0	1	1	0	1
D7	0	1	1	1	0
D8	1	0	0	0	0
D9	1	0	0	1	1
D10	1	0	1	0	1
D11	1	0	1	1	0
D12	1	1	0	0	1
D13	1	1	0	1	0
D14	1	1	1	0	0
D15	1	1	1	1	1

<u>lichá parita</u>

5. Kód k z n

 obecně k bitů z celkových n nabývá hodnoty jedna

desítková číslice	kód 1 z 10	kód 2 z 5
0	0000000001	11000
1	0000000010	00011
2	0000000100	00101
3	0000001000	00110
4	0000010000	01001
5	0000100000	01010
6	0001000000	01100
7	0010000000	10001
8	0100000000	10010
9	1000000000	10100
poziční váhy	9876543210	7 4 2 1 0 pro číslice 1 až 9