# Discrete Mathematics, Section 001, Fall 2016 Lecture 17: Symmetry and Permutation

Zsolt Pajor-Gyulai

zsolt@cims.nyu.edu

Courant Institute of Mathematical Sciences

November 9, 2016



# Outline

- Permutations
- 2 Transpositions
- Groups

# **Definitions**

#### Permutation

Let A be a set. A **permutation** on A is a bijection from A to itself

For example,

$$f = \{(1,2), (2,4), (3,1), (4,3), (5,5)\}$$

is a permutation. In the earlier notation,

$$f = \left[ \begin{array}{rrrr} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 1 & 3 & 5 \end{array} \right]$$

The set of all permutations on the set  $\{1, 2, ..., n\}$  is denoted by  $S_n$ .

Traditional notation for permutations:  $\pi, \sigma, \tau \in S_n$ .

# The symmetric group

The pair  $(S_n, \circ)$  is called the **symmetric group on** n **elements**.

The identity

$$\iota := \mathrm{id}_{\{1,2,\ldots,n\}}$$

is a permutation and therefore it's in  $S_n$ .

- $\forall \pi, \sigma \in S_n, \pi \circ \sigma \in S_n$ .
- $\bullet \ \forall \pi, \sigma, \tau \in \mathcal{S}_n, \, \pi \circ (\sigma \circ \tau) = (\pi \circ \sigma) \circ \tau$
- $\forall \pi \in S_n, \pi \circ \iota = \iota \circ \pi = \pi.$
- $\forall \pi \in S_n, \pi^{-1} \in S_n \text{ and } \pi \circ \pi^{-1} = \pi^{-1} \circ \pi = \iota$ .

Therefore  $\circ$  is an associative operation on  $S_n$  with identity  $\iota$  and inverse elements being the inverses in the function sense.

Note also:  $|S_n| = n!$ 



# Cycle notation

We have seen two representations for a permutation so far, for example in  $S_5$ ,

$$\pi = \{(1,2), (2,4), (3,1), (4,3), (5,5)\}$$

$$\pi = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 1 & 3 & 5 \end{bmatrix}$$

Note that the top row is not necessary and we could just write [2, 4, 1, 3, 5]. However, for large n, this gets hard to decipher.

Alternatively, we can keep records of 'trajectories' or **cycles**:

$$1 \quad \rightarrow \quad 2 \quad \rightarrow \quad 4 \quad \rightarrow \quad 3 \quad \rightarrow \quad 1, \qquad \qquad 5 \quad -$$

and encode the information as

Permutations

As another example, consider

In the cycle notations,

$$\pi = (1, 2, 7)(3, 5)(4, 6, 8)(9)$$

Practice this on Problem 1 on the Worksheet.

#### Theorem

Every permutation of a finite set can be expressed as a collection of pairwise disjoint cycles.

Let  $\pi \in S_n$  and consider the sequence

$$1, \pi(1), \pi^{(2)}(1), \pi^{(3)}(1), \dots$$

where e.g.  $\pi^{(2)}(i) = (\pi \circ \pi)(i)$ .

- This is a sequence in {1,...,n} and must repeat itself eventually.
- Let k be the first repeat, i.e

$$\pi^{(k)}(1) \in \{1, \pi(1), \pi^{(2)}(1), \dots \pi^{(k-1)}(1)\}$$

and k is the smallest such number. FTSC assume that  $\pi^{(k)}(1) \neq 1$ , then

$$\pi^{(k)}(1) = \pi^{(j)}(1)$$
 for some  $1 < j < k$ .

#### Theorem

Every permutation of a finite set can be expressed as a collection of pairwise disjoint cycles.

[...]

• FTSC assume that  $\pi^{(k)}(1) \neq 1$ , then

$$\pi^{(k)}(1) = \pi^{(j)}(1)$$
 for some  $1 < j < k$ .

• Because this is the first repeat,  $\pi^{(k-1)}(1) \neq \pi^{(j-1)}(1)$ , but then applying  $\pi$  gives

$$\pi^{(k)}(1) \neq \pi^{(j)}(1)$$

as  $\pi$  is one-to-one.  $\Rightarrow \Leftarrow$ 

This proves  $\pi^{(k)}(1) = 1$ . If the cycle starting at element 1 does not include all the elements of  $\{1, 2, \dots n\}$ , then we can restart with an element left out and build a new cycle. That all the resulting cycles are disjoint is Problem 2 on the Worksheet.

Q: Are there multiple cycle representations for the same permutations?

$$\pi = (1, 2, 7)(3, 5)(4, 6, 8)(9) = (5, 3)(6, 8, 4)(9)(7, 1, 2)$$

However.

Permutations

- (1, 2, 7) and (7, 1, 2) are the same cycles!
- The order in which we list the disjoint cycles does not matter!

#### Theorem

Every permutation of a finite set can be expressed as a collection of pairwise disjoint cycles. This representation is unique up to rearranging the cycles and the cyclic order of the elements within cycles.

# Calculations with permutations

### Inverting:

$$\pi = (1, 2, 7, 9, 8)(5, 6, 3)(4) \in S_9$$

Tracing it backwards:

$$\pi^{-1} = (8, 9, 7, 2, 1)(3, 6, 5)(4) \in S_9$$

• Compositions: If  $\pi, \sigma \in S_9$  are

$$\pi = (1,3,5)(4,6)(2,7,8,9), \qquad \sigma = (1,4,7,9)(2,3)(5)(6,8)$$

Then we can read off e.g.  $\pi(1) = 3$  and  $\sigma(3) = 2$  and therefore  $\sigma \circ \pi(1) = 2$ . Proceding similarly,

$$\sigma \circ \pi = (1, 2, 9, 3, 5, 4, 8, 1)(7, 6)$$

Practice this in Problem 4 on WS.

Permutations

| Symmetry        | 1               | 2 | 3 | 4 | Cycle        |
|-----------------|-----------------|---|---|---|--------------|
| name            | go to positions |   |   |   | form         |
| I               | 1               | 2 | 3 | 4 | (1)(2)(3)(4) |
| $R_{90}$        | 2               | 3 | 4 | 1 | (1, 2, 3, 4) |
| $R_{180}$       | 3               | 4 | 1 | 2 | (1,3)(2,4)   |
| $R_{270}$       | 4               | 1 | 2 | 3 | (1,4,3,2)    |
| $F_H$           | 2               | 1 | 4 | 3 | (1,2)(3,4)   |
| $F_V$           | 4               | 3 | 2 | 1 | (1,4)(2,3)   |
| $F_{/}$         | 3               | 2 | 1 | 4 | (1,3)(2)(4)  |
| $F_{\setminus}$ | 1               | 4 | 3 | 2 | (1)(2,4)(3)  |

Note that in this language, we can compute

$$R_{90} \circ F_H' = '(1,2,3,4) \circ (1,2)(3,4) = (13)(2)(4)' = 'F_I'$$

Also note that not all elements of  $S_4$  are used. We call the set of symmetries of the square with the composition operation as the dihedral group of index 4 and denote it by  $(D_4, \circ)$ .

# Outline

- Permutations
- 2 Transpositions
- Groups

# The simplest permutations

The simplest possible permutation is the one that doesn't do anything:

$$\iota = (1)(2)\dots(n) \in \mathcal{S}_n$$

The next symplest are called **transpositions**, which is the exchange of exactly two elements. For example,

$$\tau = (1)(2)(3,6)(4)(5)(7)(8)(9) \in S_9$$

### Transposition

A permutation  $\tau \in S_n$  is called a **transposition** provided

- $\exists i, j \in \{1, 2, \dots, n\}$  with  $i \neq j$  so that  $\tau(i) = j$  and  $\tau(j) = i$ ,
- $\forall k \in \{1, 2, ..., n\}$  with  $k \neq i$  and  $k \neq j$ , we have  $\tau(k) = k$ .

Since the vast majority of cycles in a transposition are singletons, we are not going to write them and just say

$$\tau = (3,6)$$

# Writing permutations as compositions of transpositions

## Occion

$$(1,2,3,4,5) = (1,5) \circ (1,4) \circ (1,3) \circ (1,2).$$

In general,

$$(a_1, a_2, \ldots, a_n) = (a_1, a_n) \circ (a_1, a_{n-1}) \circ (a_1, a_2)$$

### Any permutation:

$$(1,2,3,4,5)(6,7,8)(9)(10,11) =$$

$$= [(1,5) \circ (1,4) \circ (1,3) \circ (1,2)] \circ [(6,8) \circ (6,7)] \circ (10,11)$$

In general, put together the decomposition of the cycles.

Do Problem 4 on the WS!

#### Theorem

Let  $\pi$  be any permutation on a finite set. Then  $\pi$  can be expressed as the composition of transpositions defined on that set.

However, there might be other ways to do this than what our algorithm provides:

$$(1,2,3,4) = (1,4) \circ (1,3) \circ (1,2) =$$
  
=  $(1,2) \circ (2,3) \circ (3,4) =$   
=  $(1,2) \circ (1,4) \circ (2,3) \circ (1,4) \circ (3,4)$ 

But note that all three versions have an odd number of transpositions!

#### Theorem

Let  $\pi \in S_n$ . Let  $\pi$  be decomposed into transpositions as

$$\pi = \tau_1 \circ \tau_2 \circ \cdots \circ \tau_a, \qquad \pi = \sigma_1 \circ \sigma_2 \circ \cdots \circ \sigma_b$$

Then a and b are either both odd or both even.

# Even and odd permutations

#### Theorem

Let  $\pi \in S_n$ . Let  $\pi$  be decomposed into transpositions as

$$\pi = \tau_1 \circ \tau_2 \circ \cdots \circ \tau_a, \qquad \pi = \sigma_1 \circ \sigma_2 \circ \cdots \circ \sigma_b$$

Then a and b are either both odd or both even.

We are going to use the following auxiliary result:

#### Lemma

If the identity permutation is written as a composition of transpositions, then that composition must use an even number of transpositions. That is, if

$$\iota = \tau_1 \circ \tau_2 \circ \cdots \circ \tau_a,$$

where the  $\tau$ -s are transpositions, then a must be even.

### Theorem

Let  $\pi \in S_n$ . Let  $\pi$  be decomposed into transpositions as

$$\pi = \tau_1 \circ \tau_2 \circ \cdots \circ \tau_a, \qquad \pi = \sigma_1 \circ \sigma_2 \circ \cdots \circ \sigma_b$$

Then a and b are either both odd or both even.

#### Proof.

Note that we can write (HW)  $\pi^{-1}$  as

$$\pi^{-1} = \sigma_b \circ \sigma_{b-1} \circ \cdots \circ \sigma_2 \circ \sigma_1$$

and thus

$$\iota = \pi \circ \pi^{-1} = \tau_1 \circ \cdots \circ \tau_a \circ \sigma_b \circ \cdots \circ \sigma_1.$$

By the lemma, a + b is even and so a and b are either both odd or both even.

#### Definition

Let  $\pi$  be a permutation on a finite set. We call  $\pi$  **even** provided it can be written as the composition of an even number of transpositions. Otherwise, we call it an **odd** permutation.

For example,

$$(1,2,3,4) = (1,4) \circ (1,3) \circ (1,2)$$

is an odd permutation while

$$(1,2,3)=(1,3)\circ(1,2)$$

is even.

#### Definition

Let  $A_n$  be the set of all even permutations in  $S_n$ . Then  $(A_n, \circ)$  is called the alternating group.

# Outline

- Permutations
- 2 Transpositions
- Groups

### Inverses

Permutations

#### Definition

Let \* be an operation on a set A and suppose that it has an identity element  $e \in A$ . Let  $a \in A$ . An element b is an **inverse** of a provided a\*b=b\*a=e.

For example,

- In  $(S_n, \circ)$ ,  $(1,2,3)^{-1} = (1,3,2)$ .
- In  $(\mathbb{Z}, +)$ , the identity element is e = 0 and for any  $a \in \mathbb{Z}$  then (-a) + a = a + (-a) = 0 and so the inverse of a is -a.

Q: Must inverses be unique?

### Inverses

### Q: Must inverses be unique?

| * | е | а | b | С |
|---|---|---|---|---|
| е | е | а | b | С |
| а | а | а | е | е |
| b | b | е | b | е |
| С | С | е | е | С |

• 
$$a * b = b * a = e$$

• 
$$a * c = c * a = e$$

 Therefore b and c are both inverses of a.

• 
$$(a*b)*c = e*c = c \neq a = a*e = a*(b*c)$$

In most of our examples, the inverses were unique, but those were also associative, e.g.

$$\bullet$$
  $(\mathbb{Z},+)$ 

• 
$$(\mathbb{Q} - \{0\}, \cdot)$$

• 
$$(S_n, \circ), (A_n, \circ), (D_{2n}, \circ).$$

# Groups

### Definition

Let \* be an operation defined on a set G. We call a pair (G, \*) a **group**, provided

- The set *G* is closed under \*; that is,  $\forall g, h \in G$ ,  $g * h \in G$ .
- \* is associative.
- **3** There is an identity  $e \in G$ .
- **3** For every element g, there is an inverse element  $h \in G$ .

**Q**: We have seen that the identity element must be unique. Is this structure enough now for the inverse to be unique?

# Uniqueness of inverses in groups

### **Proposition**

Let (G,\*) be a group. Every element  $g \in G$  has a unique inverse.

#### Proof.

We already know that every element has an inverse. For the sake of contradiction, assume that  $g \in G$  has two (or more) distinct inverses  $h, k \in G$ . Then

$$h = h * e = h * (g * k) = (h * g) * k = e * k = k,$$

and therefore h = k giving a contradiction.  $\Rightarrow \Leftarrow$ 



- Therefore we can talk about THE inverse of  $g \in G$ . Notation:
  - The inverse of g is mostly denoted by  $g^{-1}$ .
  - Sometimes for additive groups, (-g) is more appropriate.

# Number groups

- $(\mathbb{Z},+)$ : Integers with addition is a group.
- $(\mathbb{Q}, +)$ : Rationals with addition is a group.
- $(\mathbb{Q}, \cdot)$ : This is not a group, no  $0^{-1}$ .
- $(\mathbb{Q} \{0\}, \cdot)$ : This is a group.
- $(\mathbb{Q}^+, \cdot)$ : Positive rationals with multiplication is a group.

The operation in these groups is all commutative. We have a special names for groups like this.

#### Definition

We call a group (G, \*) **Abelian** provided \* is a commutative operation on G, i.e.

$$g * h = h * g, \quad \forall g, h \in G$$

# More exotic examples

### Permutation groups:

- $(S_n, \circ)$ : permutations with composition is the *symmetric* group. It is not Abelian.
- (A<sub>n</sub>, ∘): set of all even permutations in S<sub>n</sub> is the alternating group. (Problem 2 on WS)

### Symmetry groups:

•  $(D_{2n}, \circ)$ : the symmetries of an *n*-gon is the *dihedral group*.

### An odd example:

• If A is a set  $(2^A, \Delta)$  is a group (Homework).