The Evolving Relative Role of Stratospheric Ozone and Greenhouse Gasses in Modifying the Southern Ocean Carbon Sink from 1950 to 2100

Tereza Jarníková, Corinne Le Quéré, Colin Jones, Steven Rumbold

 Historically, ozone depletion increased the SAM index → stronger and more southerly winds, especially in summer

- Historically, ozone depletion increased the SAM index → stronger and more southerly winds, especially in summer
 - Ozone is recovering, but GHG emissions are expected to continue increasing winds, year-round

- 1. How are the Southern Ocean wind patterns projected to change over the coming century under different ozone and SSP scenarios?
 - 2. What are the effects of changing wind patterns on the physical ocean sea state?
 - 3. What are the relative controls on the carbon flux?

Experimental Design

3 ozone scenarios, 2 GHG scenarios

sea surface temperature (SST)

solubility decrease with increasing SST

sea surface temperature (SST) mixed layer depth (MLD)

solubility decrease with increasing SST

MLD deepening brings up high-carbon water and nutrients

sea surface temperature (SST) mixed layer depth (MLD)

overturning (OT)

solubility decrease with increasing SST

MLD deepening brings up high-carbon water and nutrients

enhanced OT brings up high-carbon water and nutrients

Can we learn from the UKESM1 winds? Yes, they perform well against the ERA5 reanalysis

2020

Results: Physical Sea State

Results: Physical Sea State

Results: Physical Sea State

- 1. Both ozone and GHG act to modulate the winds and physical oceanographic conditions
 - 2. Controls shift from ozone to GHG dominance over the course of the 21st century
- 3. Climate feedbacks, especially temperature, are important, but for the CO2 sink are secondary to the atmospheric CO2 effect

RANDOM OTHER SLIDES BEGIN HERE

GHG Effects on Surface DIC change, SSP3

Ok, but what does it mean for the CO₂ sink?

50

20

10

-10

- 1. Both ozone and GHG act to modulate the winds and physical oceanographic conditions
 - 2. Controls shift from ozone to GHG dominance over the course of the 21st century
 - 3. Climate feedbacks, especially temperature, are important, but for the CO2 sink are secondary to the atmospheric CO2 effect

Summary

ımol DIC L⁻¹

-10

40

30

20

10

- 1. Both ozone and GHG act to modulate the winds and physical oceanographic conditions
 - 2. Controls shift from ozone to GHG dominance over the course of the 21st century
 - 3. Climate feedbacks, especially temperature, are important, but for the CO2 sink are secondary to the atmospheric CO2 effect

	FIXED	HISTORIC	1990
SSP 1-2.6	ODS fixed	ODS evolve	ODS fixed
	at 1950 levels	historically	at 1990 levels
	SSP 1-2.6	SSP 1-2.6	SSP 1-2.6
SSP 3-7.0	ODS fixed	ODS evolve	ODS fixed
	at 1950 levels	historically	at 1990 levels
	SSP 3-7.0	SSP 3-7.0	SSP 3-7.0

RANDOM OTHER SLIDES BEGIN HERE

- Both ozone and GHG act to modulate the winds and physical oceanographic conditions
- 2. There is a shift controls from ozone dominance to GHG dominance over the course of the 21st century
- 3. Non-CO2 effects are important, especially the thermal effect, but for the CO2 sink are secondary to the atmospheric CO2 effect

	FIXED	HISTORIC	1990
SSP 1-2.6	ODS fixed	ODS evolve	ODS fixed
	at 1950 levels	historically	at 1990 levels
	SSP 1-2.6	SSP 1-2.6	SSP 1-2.6
SSP 3-7.0	ODS fixed	ODS evolve	ODS fixed
	at 1950 levels	historically	at 1990 levels
	SSP 3-7.0	SSP 3-7.0	SSP 3-7.0

Summary

- Both ozone and GHG act to modulate the winds and physical oceanographic conditions
- 2. There is a shift controls from ozone dominance to GHG dominance over the course of the 21st century
- 3. Non-CO2 effects are important, especially the thermal effect, but for the CO2 sink are secondary to the atmospheric CO2 effect

	FIXED	HISTORIC	1990
SSP 1-2.6	ODS fixed	ODS evolve	ODS fixed
	at 1950 levels	historically	at 1990 levels
	SSP 1-2.6	SSP 1-2.6	SSP 1-2.6
SSP 3-7.0	ODS fixed	ODS evolve	ODS fixed
	at 1950 levels	historically	at 1990 levels
	SSP 3-7.0	SSP 3-7.0	SSP 3-7.0

quantity	Mechanism of change
sea surface temperature (SST)	CO ₂ solubility change with temperature (~4% pCO ₂ / degree)
mixed layer depth (MLD)	Changes in near-surface DIC gradient
overturning (OT)	Changes in delivery of deep DIC to surface

Experimental Design

$\begin{array}{c} \textbf{ozone-depleting} \\ \textbf{substances} \rightarrow \\ \hline \\ \textbf{SSP} \downarrow \end{array}$	FIXED	HISTORIC	1990
SSP 1-2.6	ODS fixed	ODS evolve	ODS fixed
	at 1950 levels	historically	at 1990 levels
	SSP 1-2.6	SSP 1-2.6	SSP 1-2.6
SSP 3-7.0	ODS fixed	ODS evolve	ODS fixed
	at 1950 levels	historically	at 1990 levels
	SSP 3-7.0	SSP 3-7.0	SSP 3-7.0

quantity	expected effect of ozone depletion on quantity	expected effect of atmo. GHG increase on quantity	expected effect of quantity change on CO2 sink (\$\pmu\$: sink decrease)
wind velocity (WINDS)	↑	↑	↓ (↑)
sea surface temperature (SST)	↓ (↑)	↑	↓ (↑)
mixed layer depth (MLD)	↑	\	↓ ↑
overturning (OT)	↑	$\uparrow(\downarrow)$	\

quantity	expected effect of ozone depletion on quantity	expected effect of atmo. GHG increase on quantity	expected effect of quantity change on CO2 sink (\$\pmu\$: sink decrease)
wind velocity (WINDS)	↑	↑	↓ (↑)
sea surface temperature (SST)	↓ (↑)	↑	↓ (↑)
mixed layer depth (MLD)	↑	\	↓ ↑
overturning (OT)	↑	$\uparrow(\downarrow)$	\

A back of the envelope calculation: of non-CO₂ effects the thermal effect is most important, but non-CO₂ effects are dwarfed by the atmospheric carbon signal.

Ozone and GHG Effects on Surface DIC change, SSP3

Ozone and GHG Effects on Surface DIC change, SSP1

