Virtualization in Networks

Prof. T. Venkatesh Dept of CSE, IIT Guwahati

What is Virtualization?

- Fundamental component of cloud computing and software defined networking
- Allows creation of isolated execution environment for multi-user environments
- Basic idea: ability of a computer program (software and hardware) to emulate an executing environment separate from the one that hosts such programs.
- Layer of indirection to run multiple software instances of a function on single hardware

- Physical components that make up a network are virtualized
- Combine hardware and software network resources, as well as network functionality into a software-based virtual network
- External network virtualization
 - Combine many networks, or parts of networks, into a virtual unit (VLANs)
- Internal network virtualization
 - Provide network switch-like functionality to the VMs on a single system (vSwitch)

Network Virtualization

- Desirable properties of network virtualization :
 - Scalability
 - · Easy to extend resources in need
 - Administrator can dynamically create or delete virtual network connection
 - Resilience
 - Recover from the failures
 - · Virtual network will automatically redirect packets by redundant links
 - Security
 - Increased path isolation and user segmentation
 - Virtual network should work with firewall software
 - Availability
 - Access network resource anytime

4

- External network virtualization in different layers :
 - Layer 2
 - Use some tags in MAC address packet to provide virtualization.
 - Example, VLAN.
 - Layer 3
 - Use some tunnel techniques to form a virtual network.
 - Example, VPN.
 - · Layer 4 or higher
 - Build up some overlay network for some application.
 - Example, P2P.

Network Virtualization

- Internal network virtualization in different layers :
 - Layer 2
 - Implement virtual L2 network devices, such as switch, in hypervisor.
 - Example, Linux TAP driver + Linux bridge.
 - Layer 3
 - Implement virtual L3 network devices, such as router, in hypervisor.
 - Example, Linux TUN driver + Linux bridge + iptables.
 - Laver 4 or higher
 - Layer 4 or higher layers virtualization is usually implemented in guest OS.

Internal Network Virtualization

- Internal network virtualization
 - A single system is configured with virtual machines, combined with hypervisor control programs or pseudo-interfaces such as the VNIC, to create a "network in a box".
 - This solution improves overall efficiency of a single system by isolating applications to separate containers and/or pseudo interfaces.
 - · Virtual machine and virtual switch:
 - The VMs are connected logically to each other so that they can send data to and receive data from each other.
 - Each virtual network is serviced by a single virtual switch.
 - A virtual network can be connected to a physical network by associating one or more network adapters (uplink adapters) with the virtual switch.

Internal Network Virtualization

- Properties of virtual switch
 - A virtual switch works much like a physical Ethernet switch.
 - It detects which VMs are logically connected to each of its virtual ports and uses that information to forward traffic to the correct virtual machines.
- Typical virtual network configuration
 - · Communication network
 - Connect VMs on different hosts
 - Storage network
 - Connect VMs to remote storage system
 - Management network
 - · Individual links for system administration

- Device virtualization
 - Layer 2 solution
 - Divide physical switch into multiple logical switches.

- Layer 3 solution
 - VRF technique

 (Virtual Routing and Forwarding)
 - Emulate isolated routing tables within one physical router.

1

Network Virtualization

- Data path virtualization
 - Hop-to-hop case
 - Consider the virtualization applied on a single hop data-path.
 - Hop-to-cloud case
 - Consider the virtualization tunnels allow multi-hop data-path.

L2 based labeling allows single hop data path virtualization

Priop data patri virtualization

12

- Protocol approach
 - Protocols usually use for data-path virtualization.
 - Three implementations
 - 802.1Q implement hop to hop data-path virtualization
 - MPLS (Multiprotocol Label Switch) implement router and switch layer virtualization
 - **GRE (Generic Routing Encapsulation)** implement virtualization among wide variety of networks with tunneling technique.

13

Virtual LANs (VLANs): motivation

Q: what happens as LAN sizes scale, users change point of attachment?

single broadcast domain:

- scaling: all layer-2 broadcast traffic (ARP, DHCP, unknown MAC) must cross entire LAN
- efficiency, security, privacy, efficiency issues

administrative issues:

 CS user moves office to EE - physically attached to EE switch, but wants to remain logically attached to CS switch

Port-based VLANs

Virtual Local Area Network (VLAN)

switch(es) supporting VLAN capabilities can be configured to define multiple *virtual* LANS over single physical LAN infrastructure.

port-based VLAN: switch ports grouped (by switch management software) so that single physical switch

... operates as multiple virtual switches

Port-based VLANs

- traffic isolation: frames to/from ports
 1-8 can only reach ports
 - can also define VLAN based on MAC addresses of endpoints, rather than switch port
- dynamic membership: ports can be dynamically assigned among VLANs
- forwarding between VLANS: done via routing (just as with separate switches)
 - in practice vendors sell combined switches plus routers

VLANs spanning multiple switches

trunk port: carries frames between VLANS defined over multiple physical switches

- frames forwarded within VLAN between switches can't be vanilla 802.1 frames (must carry VLAN ID info)
- 802.1q protocol adds/removed additional header fields for frames forwarded between trunk ports

802.1Q VLAN frame format type data (payload) CRC preamble 802.1 Ethernet frame type dest. address CRC' preamble data (payload) 802.1Q frame Q Tag 2-byte Tag Protocol Identifier Recomputed CRC (value: 81-00) Tag Control Information (12 bit VLAN ID field, 3 bit priority field like IP TOS)

Q-in-Q Encapsulation

- Use the existing Ethernet header (802.1ad) but forward according to ingress port and VLAN id, not MAC address
- Add tags if required (label stacking)
- Provider inserts a service VLAN tag, VLAN translation changes VLANs using a table
- Forwarding decision based on single or multiple VLAN ids with link-local scope
- · Replace flooding and learning bridges with switched VLAN traffic

VC Switching-in a Nutshell

"source-to-dest path behaves much like telephone circuit"

- performance-wise
- o network actions along source-to-dest path
- call setup, teardown for each call before data can flow
- each packet carries VC identifier (not destination host address)
- every router on source-dest path maintains "state" for each passing connection
- link, router resources (bandwidth, buffers) may be allocated to VC

A VC consists of:

- Path from source to destination
- VC numbers, one number for each link along path
- 3. Entries in forwarding tables in routers along path
- VC numbers are configured as a part of forwarding table
 - Signaling protocol used to configure VC paths

Virtual Circuits

- Each wire carries many "virtual" circuits.
 - · Forwarding based on virtual circuit (VC) identifier
 - IP header: src, dst, etc.
 - Virtual circuit header: just "VC"
 - A path through the network is determined for each VC when the VC is established
 - · Use statistical multiplexing for efficiency
- Can support wide range of quality of service.
 - No guarantees: best effort service
 - Weak guarantees: delay < 300 msec, ...
 - Strong guarantees: e.g. equivalent of physical circuit

Similarities with packet switching

- "Store and forward" communication based on an address.
 - Address is either the destination address or a VC identifier
- Must have buffer space to temporarily store packets.
 - E.g. multiple packets for some destination arrive simultaneously
- Multiplexing on a link is similar to time sharing.
 - · No reservations: multiplexing is statistical, i.e. packets are interleaved without a fixed pattern
 - Reservations: some flows are guaranteed to get a certain number of "slots"

Differences from packet switching

- · Circuit switching:
 - Uses short connection identifiers to forward packets
 - Switches know about the connections so they can more easily implement features such as quality of service
 - Virtual circuits form basis for traffic engineering: VC identifies long-lived stream of data that can be scheduled
- Packet switching:
 - Use full destination addresses for forwarding packets
 - · Can send data right away: no need to establish a connection first
 - Switches are stateless: easier to recover from failures
 - · Adding QoS is hard
 - Traffic engineering is hard: too many packets!

VC setup: Permanent VCs and Switched VCs

- Permanent vs. Switched virtual circuits (PVCs, SVCs)
- Main difference is: static vs. dynamic.
- PVCs last "a long time"
 - E.g., connect two bank locations with a direct link (really expensive!) or setup a PVC that looks like a circuit
 - · Administratively configured
- SVCs is temporary
 - Setup is more like a phone call
 - SVCs dynamically set up on a "per-call" basis

Multi-Protocol Label Switching (MPLS)

- A forwarding scheme designed to speed up IP packet forwarding (RFC 3031)
- Idea: use a fixed length label in the packet header to decide packet forwarding
- Label carried in an MPLS header between the link layer header and network layer header
 - Existing routers could act as MPLS switches just by examining the MPLS label-- no radical re-design
- MPLS tunnels used for VPNs, traffic engineering, reduced core routing table sizes
- Support any network layer protocol and link layer protocol

Layer 3 (IP) header

MPLS label

Layer 2 header

MPLS capable routers

- a.k.a. label-switched router
- forward packets to outgoing interface based only on label value (don't inspect IP address)
 - MPLS forwarding table distinct from IP forwarding tables
- flexibility: MPLS forwarding decisions can differ from those of IP
 - use destination and source addresses to route flows to same destination differently (traffic engineering)
 - re-route flows quickly if link fails: pre-computed backup paths

MPLS versus IP paths

- IP routing: path to destination determined by destination address alone
- MPLS routing: path to destination can be based on source and destination address
 - flavor of generalized forwarding (MPLS 10 years earlier)
 - fast reroute: precompute backup routes in case of link failure

MPLS signaling

- modify OSPF, IS-IS link-state flooding protocols to carry info used by MPLS routing:
 - e.g., link bandwidth, amount of "reserved" link bandwidth
- entry MPLS router uses RSVP-TE signaling protocol to set up MPLS forwarding at downstream routers

MPLS forwarding tables

Key Ideas

- Packets are switched, not routed, based on labels
- Labels are inserted transparently in the packet header
- Label swapping: Labels only have link-local scope
- Separation of forwarding plane and control plane
- Constraint-based routing: Traffic Engineering, Fast reroute
- Facilitate the virtual private networks (VPNs)
- Provide QoS mapping DiffServ fields onto an MPLS label
- Establish the forwarding table
 - Link state routing protocols
 - Exchange network topology information for path selection: OSPF-TE, IS-IS-TE
 - · Signaling/Label distribution protocols
 - Set up LSPs (Label Switched Path): LDP, RSVP-TE, CR-LDP

Terminology

- LSR Routers that support MPLS are called Label Switch Router
- LER LSR at the edge of the network is called Label Edge Router (Edge LSR)
 - Ingress LER is responsible for adding labels to unlabeled IP packets.
 - Egress LER is responsible for removing the labels.
- Label Switch Path (LSP) the path defined by the labels through LSRs between two LERs.
- Label Forwarding Information Base (LFIB) a forwarding table (mapping) between labels to outgoing interfaces.
- Forward Equivalent Class (FEC) All IP packets follow the same path on the MPLS network and receive the same treatment at each node.

MPLS Operation

- At ingress LSR of an MPLS domain, an MPLS header is inserted to a packet before the packet is forwarded
 - · Label in the MPLS header encodes the packet's FEC
- At subsequent LSRs
 - The label is used as an index into a forwarding table that specifies the next hop and a new label.
 - The old label is replaced with the new label, and the packet is forwarded to the next hop.
- Egress LSR strips the label and forwards the packet to final destination based on the IP packet header

Forwarding Equivalence Class

- Forwarding Equivalence Class (FEC): A subset of packets that are all treated the same way by an LSR
- A packet is assigned to an FEC at the ingress of an MPLS domain
- A packet's FEC can be determined by one or more of the following:
 - Source and/or destination IP address
 - Source and/or destination port number
 - Protocol ID
 - Differentiated services code point
 - Incoming interface
- A particular PHB (scheduling and discard policy) can be defined for a given FEC

33

MPLS Applications

- Traffic Engineering
- Virtual Private Network
- Quality of Service (QoS)
- Faster Restoration

MPLS – Traffic Engineering

- End-to-End forwarding decision determined by ingress node.
- Enables Traffic Engineering

MPLS-based VPN

- One of most popular MPLS applications is the implementation of VPN.
- Using label (instead of IP address) to interconnect multiple sites over a carrier's network. Each site has its own private IP address space.
- Different VPNs may use the same IP address space.

MPLS and QoS

- An important proposed MPLS capability is quality of service (QoS) support.
- QoS mechanisms:
 - Pre-configuration based on physical interface
 - Classification of incoming packets into different classes
 - Classification based on network characteristics (such as congestion, throughput, delay, and loss)
- A label corresponding to the resultant class is applied to the packet.
- Labeled packets are handled by LSRs in their path without needing to be reclassified.
- MPLS enables simple logic to find the state that identifies how the packet should be scheduled.
- The exact use of MPLS for QoS purposes depends a great deal on how QoS is deployed.
- Support various QoS protocols, such as IntServ, DiffServ, and RSVP.