Digitális képfeldolgozás

Digitalizálás 1.: Diszkretizálás

v 1.1

. . .

- A diszkretizálás ötlete
- Diszkretizált mennyiségek
 - Irány szerinti diszkretizálás
 - Hullámhossz szerinti diszkretizálás
 - Az idő szerinti diszkretizálás
 - A diszkretizált értékek tárolása
- Összegzés

A valóság képei

Valódi képek: a fizikai változók folytonosan változnak.

Az intenzitás folytonosan függ a következőktől:

- irány (Θ, φ)
- hullámhossz (λ)
- idő (t)

A valóság képei

Valódi képek: a fizikai változók folytonosan változnak.

Az intenzitás folytonosan függ a következőktől:

- irány (Θ, φ)
- hullámhossz (λ)
- idő (t)

Teljeskörű vizuális információ:

$$I(\Theta, \varphi, \lambda, t)$$

A gyakorlatban ez kezelhetetlen!

A diszkretizálás ötlete

Használjunk egy véges számú irány, hullámhossz és időpont adatot, és ezekre jegyezzük meg az intenzitást.

Az emberi látás is diszkretizál:

- Hullámhossz: 3-féle csap ⇒ 3 színkomponens észlelése.
- Irány: érzékelősejtek változó sűrűsége ⇒ véges, irányfüggő felbontóképesség, középen 60 vonal/fok felbontással
- Idő: állóképek sorozatának észlelése ⇒ 10–20 kép/s észlelése (nem fix képráta!)

A diszkretizálás ötlete

Használjunk egy véges számú irány, hullámhossz és időpont adatot, és ezekre jegyezzük meg az intenzitást.

Az emberi látás is diszkretizál:

- Hullámhossz: 3-féle csap ⇒ 3 színkomponens észlelése.
- Irány: érzékelősejtek változó sűrűsége ⇒ véges, irányfüggő felbontóképesség, középen 60 vonal/fok felbontással
- Idő: állóképek sorozatának észlelése ⇒ 10–20 kép/s észlelése (nem fix képráta!)

Emberi agy: begyűjti a vizuális információt, de kitölti a réseket \Rightarrow az agyban folytonos modell keletkezik.

(Az agyunkbeli modell különbözik a valóságtól!)

Ókori diszkretizált képek: mozaikok

Az irány szerinti digitalizálás

Pixelek:

- a nézőpont elé képzelünk egy négyzetrácsot
- az egyes cellák irányából érkező fényt 1 adattal jellemezzük

Az irány szerinti digitalizálás

Pixelek:

- a nézőpont elé képzelünk egy négyzetrácsot
- az egyes cellák irányából érkező fényt 1 adattal jellemezzük

Megjegyzés:

Az emberi szem érzékelői kb. háromszöghálón helyezkednek el. Hardveresen egyszerűbb a négyzethálós elrendezés.

Mit teszünk egy cellán belül?

A valós kép egy cellán (pixel) belül is változik. Egyetlen értéket sokféleképp rendelhetünk hozzá:

- cella közepénél vett érték
- cella átlagos értéke
- a cella egy részének átlaga

A színkép

A fény elektromágneses hullám

A színkép

A fény elektromágneses hullám

Tiszta színek: csak egy hullámhosszat tartalmaznak

Kevert színek: több hullámhossz keveréke A tiszta színek igen ritkák a gyakorlatban.

A színkép

Pontatlan definíció:

A $\phi(\lambda)$ színkép megadja a fény intenzitását λ hullámhosszon.

Pontosabb: spektrális energia-eloszlás (SPD). A teljesítmény egységnyi hullámhosszra, térszögre és felületre vonatkoztatva.

Színes tárgyak: hullámhossz-függő visszaverés ⇒ a mindennapokban igen sokféle színkép fordul elő.

A színkép diszkretizálása

Hogyan redukáljuk a folytonos $\phi(\lambda)$ függvényt néhány számra?

A színkép diszkretizálása

Hogyan redukáljuk a folytonos $\phi(\lambda)$ függvényt néhány számra?

Használjuk $\phi(\lambda)$ súlyozott átlagait.

$$C_i = \int V_i(\lambda)\phi(\lambda)d\lambda, \qquad i = 1, \dots, N_c$$

 $V_i(\lambda)$: "spektrális érzékenységi függvény"

 C_i : az i. színcsatorna értéke.

 C_i a színkép azon részét jellemzi, ahol $V_i > 0$.

Spectral sensitivity of human cells

Emberi látás: $N_c=3$, csúcsok vörös, zöld és kék tartományban \Rightarrow az RGB a legelterjedtebb színrendszer.

A színkép diszkretizálása

Hogyan redukáljuk a folytonos $\phi(\lambda)$ függvényt néhány számra?

Használjuk $\phi(\lambda)$ súlyozott átlagait.

$$C_i = \int V_i(\lambda)\phi(\lambda)d\lambda, \qquad i = 1, \dots, N_c$$

 $V_i(\lambda)$: "spektrális érzékenységi függvény"

Ci: az i. színcsatorna értéke.

 C_i a színkép azon részét jellemzi, ahol $V_i > 0$.

Spectral sensitivity of human cells

Emberi látás: $N_c=3$, csúcsok vörös, zöld és kék tartományban \Rightarrow az RGB a legelterjedtebb színrendszer. .

Fontos: $V_i(\lambda)$, sőt akár N_c is más lehet a képfeldolgozásban!

Az idő szerinti diszkretizálás

Ötlet: a képet csak bizonyos időközönként rögzítjük ⇒ képkockák A képkockák az exponálási idő alatti átlagot tárolják.

Az idő szerinti diszkretizálás

Ötlet: a képet csak bizonyos időközönként rögzítjük ⇒ <mark>képkockák</mark>

A képkockák az exponálási idő alatti átlagot tárolják.

Mozgókép: képkockák sorozata.

Jellemzők:

- Képkocka-sebesség, pl.: 25 fps, 30 fps, 60 fps (fps=frames per second)
- Exponálási idő, pl.: 1/60 s, 1/125 s, 1/10000 s

Az idő szerinti diszkretizálás

Ötlet: a képet csak bizonyos időközönként rögzítjük ⇒ <mark>képkockák</mark>

A képkockák az exponálási idő alatti átlagot tárolják.

Mozgókép: képkockák sorozata.

Jellemzők:

- Képkocka-sebesség, pl.: 25 fps, 30 fps, 60 fps (fps=frames per second)
- Exponálási idő, pl.: 1/60 s, 1/125 s, 1/10000 s

Nagy tárolókapacitást igényel!

⇒ Tömörített videó-formátumok : AVI, MP4, MPG, ...

A tömörítés hasznos, de zajforrás lehet és számítási kapacitást igényel.

Digitalizálás

Az összes színcsatorna-értéket tárolnunk kell minden időpontban.

A tárolási pontosság dilemmája:

- ullet nagy pontosság \Rightarrow nagy tárigény
- kis pontosság ⇒ nagy kerekítési hibák

Digitalizálás

Az összes színcsatorna-értéket tárolnunk kell minden időpontban.

A tárolási pontosság dilemmája:

- nagy pontosság ⇒ nagy tárigény
- kis pontosság ⇒ nagy kerekítési hibák

Gyakran használt megoldás: 8 bit/színcsatorna-érték. 255-szintű diszkretizálás.

Az összes színcsatorna-értéket tárolnunk kell minden időpontban.

A tárolási pontosság dilemmája:

- ullet nagy pontosság \Rightarrow nagy tárigény
- kis pontosság ⇒ nagy kerekítési hibák

Gyakran használt megoldás: 8 bit/színcsatorna-érték. 255-szintű diszkretizálás.

8 bit/színcsatorna többnyire elég a mindennapi életben.

A képfeldolgozásban ez komoly hibaforrás lehet.

⇒ a számítások közben nagyobb pontosság szükséges, és ha lehet, a tároláskor is.

Digitalizálás

Az összes színcsatorna-értéket tárolnunk kell minden időpontban.

A tárolási pontosság dilemmája:

- nagy pontosság ⇒ nagy tárigény
- kis pontosság ⇒ nagy kerekítési hibák

Gyakran használt megoldás: 8 bit/színcsatorna-érték. 255-szintű diszkretizálás

8 bit/színcsatorna többnyire elég a mindennapi életben.

A képfeldolgozásban ez komoly hibaforrás lehet.

⇒ a számítások közben nagyobb pontosság szükséges, és ha lehet, a tároláskor is.

High Dynamics Range (HDR) képek 16 vagy 32 bit/csatorna vagy lebegőpontos értékek használata.

A legfontosabb diszkretizációs paraméterek

- A pixel-rács szélessége és magassága: W, H
- A színcsatornák száma: N_c
- Képkocka-sebesség: FPS
- A pixel-értékek típusa

A legfontosabb diszkretizációs paraméterek

- A pixel-rács szélessége és magassága: W, H
- A színcsatornák száma: N_c
- Képkocka-sebesség: FPS
- A pixel-értékek típusa

További paraméterek:

- Vetítési függvény: a pixelek és az irányok közti összefüggés.
 (Nem tirviális! Lencse torzítások, stb.)
- A színcsatornák spektrális érzékenységi függvényei.
- A képkockák expozíciós ideje.
- ...