CSC 411

Computer Organization (Fall 2024) Lecture 7: Floating Point (part 1)

Prof. Marco Alvarez, University of Rhode Island

Fractional binary numbers

- Used to represent fractional numbers
- Binary point
 - separates the integer and fractional parts (similar to the decimal point)
 - bits to the right of binary point represent fractional powers of 2

$$\sum_{k=-i}^{i} b_k 2^k$$

1 1 0 1 . 1 0 1 =

Practice

Convert fractional binary numbers to decimal

$$1.10 =$$
 $11.001 =$
 $100.01 =$
 $11.111 =$
 $0.010 =$

Practice

- Convert a decimal to a fractional binary number
 - 349.84375

101011101.110110

Normalized scientific notation

- Represents binary numbers in the form $1.xxx... \times 2^k$
 - always has a single 1 to the left of the binary point
 - · exponent adjusts to maintain this form
 - · analogous to decimal scientific notation
- Forms the basis of the IEEE 754 standard
- Examples
 - 101.11 => normalized 1.0111×2^2
 - 0.00101 => normalized 1.01×2^{-3}
 - 1000.101 => normalized 1.000101×2^3

Practice

- Convert to normalized scientific notation
 - single non-zero digit to the left of the binary point

Observations

- Not all decimal fractions have exact binary equivalents
 - . can only represent numbers of the form $\frac{x}{2^k}$
 - e.g., $\frac{1}{3} = 0.33333...$ is represented as 0.01010101...
 - requires an infinite series of 0s and 1s
 - large repeating decimals can only be approximated within a certain degree of accuracy
- ▶ 0.111111... represents a number just below 1.0

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^i} + \dots = 1.0 - \varepsilon$$

IEEE standard 754

- Defines a common format for representing real numbers in computers
 - · developed in response to divergence of representations
 - first standardized in 1985 and revised in 2008
 - supported by major CPUs (almost universally adopted)
 - provides different precision levels (half, single, double, quadruple) for various needs
- Standardizes the following layout :
 - more exp bits leads to a wider range of numbers
- more fraction bits leads to higher precision

sign exp fraction

Precision

- Single-precision (32 bits)
 - · good balance of performance and range

- Double-precision (64 bits)
 - · higher precision for demanding calculations

Precision

Format	Smallest positive value (*)	Largest positive value (*)	Precision (**)
single	~1.401·10 ⁻⁴⁵	~3.403·10+38	6-9 digits
double	~4.941·10 ⁻³²⁴	~1.798·10+308	15-17 digits

(*) Smallest/largest negative values are the same as their positive counterparts, but negative.

(**) Precision refers to to the number of significant digits that can be represented in a number.

Floating point encoding/decoding

► sign bit S

 $(-1)^s M2^E$

- 0 for positive, 1 for negative
- exponent E
 - magnitude of the number, the term $2^{\it E}$ scales the mantissa
- mantissa M
 - a.k.a. significand, it captures the significant digits of the number
 - scaled by the exponent, normally in range [1.0,2.0)

Normalized and denormalized numbers

- Normalized values
 - · represent a wide range of values with maximum precision
- exp != 000...000 and exp != 111...111
- Denormalized values
- used for very small numbers providing more range, they have lower precision compared to normalized number
- **exp** == 000...000
- Special numbers
 - e.g., NaN, infinity
 - exp == 111...111

sign exp fraction

Normalized values

 $(-1)^s M2^E$

- ► E = exp bias
 - exp is the unsigned integer represented by the bits in the exp field
 - bias is $2^{k-1} 1$, where k is the length in bits of the exp field
 - single precision (bias = $2^{8-1} 1 = 127$)
 - double precision (bias = $2^{11-1} 1 = 1023$)
- ► M = 1.bb...bb
 - · bb...bb are the bits in the fraction field
 - M is the decimal that corresponds to 1.bb...bb
 - note that M has an implied leading 1

sign ex

fraction

Practice (encoding)

 $(-1)^{s}M2^{E}$

- ► Assume a float F = 2024.0
 - · convert to fractional binary
 - 11111101000
 - make it form 1.xxx
 - 1.1111101000 x 2¹⁰
 - · write M and frac
 - M = 1.1111101000
 - write exp using E = exp bias
 - exp = E + bias = 10 + 127 = 137 = 10001001
 - final binary sequence
 - 0 10001001 111110100000000000000000

0x44FD0000

Practice (encoding)

 $(-1)^{s}M2^{E}$

- ► Assume a float F = 0.5
 - convert to fractional binary
 - 0.
 - make it form 1.xxx
 - 1.0 x 2⁻¹
 - · write M and frac
 - M = 1.0
 - write exp using E = exp bias
 - $\exp = E + \text{bias} = -1 + 127 = 126 = 01111110$
 - final binary sequence

0x3F000000

Practice (decoding)

 $(-1)^{s}M2^{E}$

- ► Assume a float F = 0x43CDA000
 - · write the binary
 - divide into s, exp, frac
 - 0 10000111 1001101101000000000000
 - calculate M
 - M = 1.1001101101000000000000 = 1.6064453125
 - calculate E
 - E = exp bias = 135 127 = 8
 - write final number
 - $(-1)^0 * 1.6064453125 * 2^8 = 411.25$