Azure data factory project.

In this document you will find a project utilizing Azure Data Factory to extract, transform, and load data from a source and file within blob storage into a SQL database. This project involved setting up data pipelines to schedule data movement and transformation activities in data flow and databricks, as well as integrating with other Azure services such as Azure Data Lake Storage and Azure Data Lake. Through the use of Azure Data Factory, I was able to efficiently process and move data.

Contents

Αz	ure	e da	ta factory project	1
	1.	In	troduction	4
	1.1	1	Project overview:	4
2.		Solu	tion Architecture	5
3.		Data	ingestion	5
	3.1	1	Data ingestion with Azure blob storage	6
		Step	1 - Copy activity overview	6
		Step	2 - Linked service	7
		Step	3 - Blob data set (source)	8
		Step	9 4 - Data Lake data set (sink)	9
		Step	5 - Creating an ingestion pipeline	10
		Step	6 - Trigger (ingestion) pipeline	11
	3.2	2	Data ingestion from HTTP	12
		Step	0 - Overview copy activity from HTTP	12
		Step	1 - Created linked services	12
		Step	1 - Create data set (http - source)	13
		Step	2 - Create data set (DL sink)	14
		Step	3 - Create pipeline for data ingestion	15
		Step	4 - Create trigger for pipeline	16
		Step	6 - Ecdc file list data set	16
4.		Data	a transformation	17
	4.1	1	Data flow	17
		Step	0 – Overview transformation in data flow	17
		(1) S	step 1 - Create transformations with data flow	18
		(1) S	step 2 - Create data set for processed data	18
		(1) S	step 3 – Create pipeline	19
		(2) S	tep 4 - Create transformations with data flow	20
		Step	5 - Create data set for processed data (daily)	20
		Step	6 - Create data set for processed data (weekly)	21
		Step	7 - Create pipeline	21
	4.2	2	Databricks	23
		Step	0 - Databricks overview	23
		Step	1 – Mount cluster 1 / 2	23
		Step	1 – Mount cluster 2 / 2	24
		Step	2 – transform data 1 / 2	.25

	Step 2 – transform data 2 / 2	26
	Step 4 – Create pipeline	27
5.	Load into database	27
	Step 1 – Create SQL script	28
	Step 2 – Create linked service	29
	Step 3 - Create sink dataset	30
	Step 4 – Create pipeline	31
	Step 5 – Create pipeline hospital admission data	32
	Step 6 - Create pipeline testing data	33
6.	Data orchestration – Making pipelines production ready	34
	Step 1 – Build pipeline	34
	Step 2 – Create trigger	35
7.	Data reporting	36
	Step 0 – Reporting overview in Power BI	36
	Step 1 – Create report 1 / 2	36
	Step 1 – Create report 2 / 2	37
8.	CI / CD	38
	Step 0 – CI / CD overview	38
	Step 0 – Git configuration within DevOps option 1	39
	Step 0 – Git configuration within DevOps option 2	39
	Step 1 – Create git repo	40
	Step 2 – Create Tools for azure (DEV)	41
	Step 2 – Create Tools for azure (TEST)	41
	Step 2 – Create Tools for azure (PROD)	42
	Step 3 - Create release pipeline option 1	42
	Step 4 – Create build pipeline option 2 – 1 / 2	43
	Step 5 – Create release pipeline option 2	44

1. Introduction

In this project we will be building a data platform for reporting and prediction of the covid-19 outbreak.

- Data sources: European Center for Disease prevention and Control (Eurostat)
- Data flows: azure data factory
- Data transformation: HDInsight and databricks
- Ingestion of transformed data: Data Lake
- Necessary data for reporting the data trends: SQL Data warehouse
- We will orchestrate all of these pipelines using Azure data factory.

1.1 Project overview:

Our build data lake:

Data Lake to be built with the following data, to aid Data Scientists to predict the spread of the virus/mortality

- Confirmed cases
- Mortality
- Hospitalization/ ICU Cases
- Testing Numbers
- Country's population by age group

Our build data warehouse:

Data Warehouse to be built with the following data

- Confirmed cases
- Mortality
- Hospitalization/ ICU Cases
- Testing Numbers

The data sources:

ECDC website:

- Confirmed cases
- Mortality
- Hospitalization / ICU Cases
- Testing Numbers

Eurostat Website:

• Population by age

2. Solution Architecture

3. Data ingestion

Overview

Worked with:

- Copy Activity
- Linked Services
- Datasets
- Validation Activity
- If Condition Activity
- Get Metadata Activity
- Web Activity
- Delete Activity
- Trigger

3.1 Data ingestion with Azure blob storage

Step 1 - Copy activity overview

Step 2 - Linked service

Step 3 - Blob data set (source)

Step 4 - Data Lake data set (sink)

Step 5 - Creating an ingestion pipeline

Step 6 - Trigger (ingestion) pipeline

3.2 Data ingestion from HTTP

Step 0 - Overview copy activity from HTTP

Step 1 - Created linked services

Step 1 - Create data set (http - source)

Step 2 - Create data set (DL sink)

Step 3 - Create pipeline for data ingestion

Step 4 - Create trigger for pipeline

Step 6 - Ecdc file list data set

4. Data transformation

4.1 Data flow

Step 0 – Overview transformation in data flow

(1) Steps taken:

- Source Transformation
- Filter Transformation
- Select Transformation
- Pivot Transformation
- Lookup Transformation
- Sink Transformation
- Create Pipeline

(2) Steps taken:

- Source Transformation
- Select Transformation
- Lookup Transformation
- Pivot Transformation
- Sink Transformation
- Conditional Split Transformation
- Derived Column Transformation
- Aggregate Transformation
- Sort Transformation
- Join Transformation
- Select Transformation
- Create Pipeline

(1) Step 1 - Create transformations with data flow

(1) Step 2 - Create data set for processed data

(1) Step 3 – Create pipeline

19

(2) Step 4 - Create transformations with data flow

Step 5 - Create data set for processed data (daily)

Step 6 - Create data set for processed data (weekly)

4.2 Databricks

Step 0 - Databricks overview

Steps taken:

- Create Databricks Service
- Create Databricks Cluster
- Mount Storage Accounts
- Transformation requirements
- Creating Pipeline

Step 1 – Mount cluster 1 / 2

Step 1 – Mount cluster 2 / 2

Step 2 – transform data 1 / 2

Step 2 – transform data 2 / 2

Step 3 – Create linked service

Step 4 – Create pipeline

5. Load into database

Step 0 - Overview SQL database

Steps taken:

- Copy Cases & Deaths data
- Copy Hospital Admissions data
- Copy testing data

Step 1 – Create SQL script

```
CREATE SCHEMA covid_reporting
CREATE TABLE covid_reporting.cases_and_deaths
                              VARCHAR(100),
    country
    country_code_2_digit VARCHAR(2),
  country_code_3_digit VARCHAR(3),
   population BIGINT,
cases_count BIGINT,
deaths_count BIGINT,
reported_date DATE,
                              DATE,
VARCHAR(500)
    source
CREATE TABLE covid_reporting.hospital_admissions_daily
                              VARCHAR(100),
 country country_code_2_digit VARCHAR(2),
 country_code_3_digit VARCHAR(3),
  population
                      BIGINT
DATE,
    reported_date
    hospital_occupancy_count BIGINT,
    icu_occupancy_count BIGINT,
source VARCHAR(500)
CREATE TABLE covid_reporting.testing
                              VARCHAR(100),
  country_code_2_digit
  country_code_3_digit VARCHAR(3),
 year_week
week_start_date
week_end_date
new_cases
    tests_done
                              VARCHAR (500)
    testing_data_source
```

Step 2 – Create linked service

Step 3 - Create sink dataset

Step 4 – Create pipeline

Step 5 – Create pipeline hospital admission data

Step 6 - Create pipeline testing data

6. Data orchestration – Making pipelines production ready

Step 1 – Build pipeline

Step 2 – Create trigger

Edit trigger

7. Data reporting

Step 0 – Reporting overview in Power BI

Step 1 – Create report 1 / 2

Covid-19 Cases EU/EEA & UK

8. CI / CD

Step 0 – CI / CD overview

Step 0 – Git configuration within DevOps option 1

Step 0 – Git configuration within DevOps option 2

Step 1 – Create git repo

Step 2 – Create Tools for azure (DEV)

Step 2 – Create Tools for azure (TEST)

Step 2 – Create Tools for azure (PROD)

Step 3 - Create release pipeline option 1

Step 5 – Create release pipeline option 2

