SỞ GD&ĐT VĨNH PHÚC

ĐỀ CHÍNH THỨC

KỲ THI CHỌN HSG LỚP 12 THPT NĂM HỌC 2017-2018 ĐỀ THI MÔN: TOÁN

Thời gian làm bài: 180 phút, không kể thời gian giao đề.

Câu 1 (1.0 điểm). Cho hàm số $y = \frac{1}{4}x^4 - 2x^2 + 1$ có đồ thị là (C). Tính diện tích tam giác có các đỉnh là các điểm cực trị của đồ thị (C).

Câu 2 (1.0 điểm). Cho hàm số $y = \frac{x+1}{x+2}$ có đồ thị (C) và đường thẳng d: y = -2x + m - 1 (m) là tham số thực). Chứng minh rằng với mọi m, đường thẳng d luôn cắt (C) tại hai điểm phân biệt A, B. Gọi k_1, k_2 lần lượt là hệ số góc của tiếp tuyến với (C) tại A và B. Xác định m để biểu thức $P = (3k_1 + 1)^2 + (3k_2 + 1)^2$ đạt giá trị nhỏ nhất.

Câu 3 (1.0 điểm). Cường độ động đất M được cho bởi công thức $M = \log A - \log A_0$ trong đó A là biên độ rung chấn tối đa, A_0 là biên độ chuẩn (hằng số). Một trận động đất ở Xan Phranxixcô có cường độ 8 độ richter, trong cùng năm đó một trận động đất khác ở gần đó đo được cường độ là 6 độ richter. Hỏi trận động đất ở Xan Phranxixcô có biên độ rung chấn tối đa gấp bao nhiều lần biên độ rung chấn tối đa của trận động đất kia?

Câu 4 (1.0 điểm). Cho hàm số $f(x) = e^{\sqrt{1 + \frac{1}{x^2} + \frac{1}{(x+1)^2}}}$ (x > 0). Tính f(1).f(2).f(3)...f(2017).

Câu 5 (1.0 điểm). Giải phương trình: $\sin 3x + 2\cos^2 x = 1$.

Câu 6 (1.0 điểm). Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, $AC = 2\sqrt{3}a$, BD = 2a; hai mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt phẳng (ABCD). Biết khoảng cách từ điểm C đến mặt phẳng (SAB) bằng $\frac{a\sqrt{3}}{2}$. Tính thể tích khối chóp S.ABC theo a.

Câu 7 (1.0 điểm). Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh $2a\sqrt{2}$ và tam giác SAB là tam giác cân tại đỉnh S. Góc giữa đường thẳng SA và mặt phẳng đáy bằng 45° , góc giữa mặt phẳng (SAB) và mặt phẳng đáy bằng 60° . Tính theo a khoảng cách từ C đến mặt phẳng (SAD).

Câu 8 (1.0 điểm). Trong không gian cho 2n điểm phân biệt $(n > 4, n \in \mathbb{N})$, trong đó không có ba điểm nào thẳng hàng và trong 2n điểm đó có đúng n điểm cùng nằm trên một mặt phẳng. Tìm tất cả các giá trị của n sao cho từ 2n điểm đã cho tạo ra đúng 505 mặt phẳng phân biệt.

Câu 9 (1.0 điểm). Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d: mx + 4y = 0 và đường tròn $(C): x^2 + y^2 - 2x - 2my + m^2 - 24 = 0$ có tâm I. Tìm m để đường thẳng d cắt đường tròn (C) tại hai điểm phân biệt A, B sao cho diện tích tam giác IAB bằng 12.

Câu 10 (1.0 điểm). Cho a,b là hai số thực dương thoả mãn: $2(a^2 + b^2) + ab = (a+b)(ab+2)$. Tìm giá trị nhỏ nhất của biểu thức: $T = 4\left(\frac{a^3}{b^3} + \frac{b^3}{a^3}\right) - 9\left(\frac{a^2}{b^2} + \frac{b^2}{a^2}\right)$.

------Hết------

Thí sinh không được sử dụng tài liệu, máy tính cầm tay. Cán bộ coi thi không giải thích gì thêm Họ và tên thí sinh:....; Số báo danh:.....;

SỞ GD&ĐT VĨNH PHÚC

ĐÁP ÁN VÀ HƯỚNG DẪN CHẨM ĐỀ THI CHỌN HSG LỚP 12 THPT NĂM HỌC 2017-2018 Môn: TOÁN - THPT

(Gồm 06 trang)

Lưu ý

- Đáp án chỉ trình bày một cách giải bao gồm các ý bắt buộc phải có trong bài làm của học sinh. Khi chấm nếu học sinh bỏ qua bước nào thì không cho điểm bước đó.
- Nếu học sinh giải cách khác, giám khảo căn cứ các ý trong đáp án để cho điểm.
- Trong bài làm, nếu ở một bước nào đó bị sai thì các phần sau có sử dụng kết quả sai đó không được điểm.
- Trong lời giải câu 6, 7 nếu học sinh không vẽ hình thì không cho điểm.
- Điểm toàn bài tính đến 0,25 và không làm tròn.

Câu	Nội dung trình bày	Điểm			
	Câu 1 (1.0 điểm). Cho hàm số $y = \frac{1}{4}x^4 - 2x^2 + 1$ có đồ thị là (C). Tính diện tích tam				
	giác có các đỉnh là các điểm cực trị của đồ thị (C).				
	Ta có $y' = x^3 - 4x$; $y'=0 \Leftrightarrow \begin{bmatrix} x=0\\ x=2\\ x=-2 \end{bmatrix}$	0.25			
1	Suy ra 3 điểm cực trị là $A(-2;-3)$; $B(0;1)$; $C(2;-3)$				
	Các điểm cực trị tạo thành tam giác ABC cân tại B	0.25			
	Gọi H là trung điểm của $AC \Rightarrow H(0; -3)$ và $BH \perp AC$				
	Ta có $\overrightarrow{BH}(0;-4) \Rightarrow BH = 4$; $\overrightarrow{AC}(4;0) \Rightarrow AC = 4$	0.25			
	Vậy diện tích cần tìm: $S = \frac{1}{2}.BH.AC = \frac{1}{2}.4.4 = 8$ (đư dt)	0.25			
	Câu 2 (1.0 điểm). Cho hàm số $y = \frac{x+1}{x+2}$ có đồ thị (C) và đường thẳng				
	d: y = -2x + m - 1 (m là tham số thực). Chứng minh rằng với mọi m, đường thẳng				
	d luôn cắt (C) tại 2 điểm phân biệt A , B . Gọi k_1,k_2 lần lượt là hệ số góc của tiếp				
	tuyến với (C) tại A và B . Xác định m để biểu thức $P = (3k_1 + 1)^2 + (3k_2 + 1)^2$ đạt				
	$gi\acute{a}$ tri $nh\emph{o}$ $nh\acute{a}t$. Hoành độ giao điểm của (C) và d là nghiệm của phương trình:				
	4	0.25			
2	$\frac{x+1}{x+2} = -2x + m - 1 \ (1)$				
	$(1) \Leftrightarrow x+1 = (-2x+m-1)(x+2)$ (vì $x = -2$ không là nghiệm của pt (1))				
	$\Leftrightarrow 2x^2 + (6-m)x + 3 - 2m = 0$ (2).	0.25			

	Ta có $\Delta = (6-m)^2 - 8(3-2m) = m^2 + 4m + 12 > 0 \ \forall m \in \mathbb{R}.$	
	Phương trình (2) luôn có 2 nghiệm phân biệt khác 2, hay d luôn cắt (C) tại 2 điểm phân biệt A , B .	
	Gọi x_1, x_2 là hoành độ của $A, B \Rightarrow x_1, x_2$ là các nghiệm của pt (2). Theo định lý Viét	
	ta có: $\begin{cases} x_1 + x_2 = \frac{m-6}{2} \\ x_1 x_2 = \frac{3-2m}{2} \end{cases}$. Mặt khác ta có $\begin{cases} k_1 = \frac{1}{(x_1 + 2)^2} \\ k_2 = \frac{1}{(x_2 + 2)^2} \end{cases}$	
	$\Rightarrow k_1 k_2 = \frac{1}{(x_1 + 2)^2 (x_2 + 2)^2} = \frac{1}{(x_1 x_2 + 2x_1 + 2x_2 + 4)^2} = \frac{1}{\left(\frac{3 - 2m}{2} + m - 6 + 4\right)^2} = 4.$	0.25
	Khi đó $P = (3k_1 + 1)^2 + (3k_2 + 1)^2 = 9k_1^2 + 9k_2^2 + 2(3k_1 + 3k_2) + 2$ (*)	
	Ta có $k_1, k_2 > 0$. Theo bất đẳng thức Côsi: $9k_1^2 + 9k_2^2 \ge 2\sqrt{81k_1^2k_2^2} = 18k_1k_2 = 72$	
	$va \ 2(3k_1 + 3k_2) \ge 4\sqrt{9k_1k_2} = 12\sqrt{4} = 24$	
	$V_{ay} VT(*) \ge 72 + 24 + 2 = 98$	0.25
	Dấu bằng xảy ra	0.23
	$\Leftrightarrow k_1 = k_2 \Leftrightarrow x_1 + 2 = -(x_2 + 2) \Leftrightarrow x_1 + x_2 = -4 \Leftrightarrow \frac{m - 6}{2} = -4 \Leftrightarrow m = -2 \text{ (Do } x_1 \neq x_2 \text{)}$	
	V ây: $P_{\min} = 98 \iff m = -2$.	
	Câu 3 (1.0 điểm). Cường độ động đất M được cho bởi công thức $M = \log A - \log A_0$ trong đó A là biên độ rung chấn tối đa, A_0 là biên độ chuẩn (hằng số). Một trận động đất ở Xan Phranxixcô có cường độ 8 độ richter, trong cùng năm đó một trận động đất khác ở gần đó đo được cường độ là 6 độ richter. Hỏi trận động đất ở Xan Phranxixcô có biên độ rung chấn tối đa gấp bao nhiều lần biên độ rung chấn tối đa trận đồng đất kiểa?	
	trận động đất kia? Gọi M_1 , A_1 lần lượt là cường độ và biên độ của trận động đất ở Xan Phranxixcô	0.25
	Gọi M_2 , A_2 lần lượt là cường độ và biên độ của trận động đất còn lại	
3	khi đó ta có $M_1 = \log A_1 - \log A_0$, $M_2 = \log A_2 - \log A_0$	
	Từ đó ta có $\frac{A_1}{A_0} = 10^{M_1}$; $\frac{A_2}{A_0} = 10^{M_2}$	0.25
	Lập tỉ số $\frac{A_1}{A_2} = \frac{10^{M_1}}{10^{M_2}} = 10^{M_1 - M_2} = 10^2 = 100$	0.25
	\Rightarrow $A_{\rm l}$ = 100. $A_{\rm 2}$. Vậy cường độ trận động đất ở Xan Phranxix cô có biên độ gấp 100 lần trận động đất còn lại.	0.25

	Câu 4 (1.0 điểm). Cho hàm số $f(x) = e^{\sqrt{1 + \frac{1}{x^2} + \frac{1}{(x+1)^2}}}$. Tính $f(1).f(2).f(3)f(2017)$				
4	Ta có:				
	$\sqrt{1 + \frac{1}{x^2} + \frac{1}{(x+1)^2}} = \sqrt{\frac{x^2(x+1)^2 + (x+1)^2 + x^2}{x^2(x+1)^2}} = \sqrt{\frac{x^4 + 2x^3 + 3x^2 + 2x + 1}{x^2(x+1)^2}}$ $x^2 + x + 1$ 1 1 1	0.25			
	$= \frac{x^2 + x + 1}{x(x+1)} = 1 + \frac{1}{x(x+1)} = 1 + \frac{1}{x} - \frac{1}{x+1} (do \ x > 0)$				
	Khi đó ta có $f(1).f(2).f(3)f(2017) = e^{\frac{2017+\frac{1}{1.2}+\frac{1}{2.3}++\frac{1}{2017.2018}}$	0.25			
	$=e^{2017+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}++\frac{1}{2017}-\frac{1}{2018}}$	0.25			
	$=e^{\frac{2018-\frac{1}{2018}}{e}}=e^{\frac{2017.2019}{2018}}$	0.25			
	Câu 5 (1.0 điểm). Giải phương trình: $\sin 3x + 2\cos^2 x = 1$				
	Phương trình $\Leftrightarrow \sin 3x = -\cos 2x$	0.25			
5	$\Leftrightarrow \sin 3x = \sin(2x - \frac{\pi}{2})$	0.25			
	$\Leftrightarrow \begin{cases} x = \frac{-\pi}{2} + k2\pi \\ x = \frac{3\pi}{12} + \frac{k2\pi}{2} \end{cases} (k \in \mathbb{Z})$	0.25			
	$x = \frac{3n}{10} + \frac{n2n}{5}$	0.25			
	HS tìm được 1 họ nghiệm đúng thì được 0.25đ				
	Câu 6 (1.0 điểm). Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, $AC = 2\sqrt{3}a$, $BD = 2a$; hai mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt				
	phẳng (ABCD). Biết khoảng cách từ điểm C đến mặt phẳng (SAB) bằng $\frac{a\sqrt{3}}{2}$. Tính				
	thể tích khối chóp S.ABC theo a.				
	Ta có diện tích hình thoi $ABCD$ là: $S_{ABCD} = 2\sqrt{3}a^2 \Rightarrow S_{ABC} = \sqrt{3}a^2$	0.25			
6	Theo giả thiết $SO \perp (ABCD)$.				
	$\text{K\'e } OK \perp AB, OH \perp SK \Rightarrow AB \perp (SOH) \Rightarrow AB \perp OH \Rightarrow OH \perp (SAB)$				
	S D	0.25			
	С				

	$d(C,(SAB)) = 2d(O,(SAB)) = \frac{a\sqrt{3}}{2} \Rightarrow d(O,(SAB)) = OH = \frac{a\sqrt{3}}{4}$	
	Khi đó ta có $\frac{1}{OK^2} = \frac{1}{OA^2} + \frac{1}{OB^2} = \frac{4}{3a^2} \Rightarrow \frac{1}{OS^2} = \frac{1}{OH^2} - \frac{1}{OK^2} = \frac{4}{a^2}$	0.25
	Vậy thể tích khối $S.ABC$ là $V_{S.ABC} = \frac{1}{3}S_{ABC}.SO = \frac{1}{3}.\sqrt{3}a^2.\frac{a}{2} = \frac{a^3\sqrt{3}}{6}$ (đvtt)	0.25
	Câu 7 (1.0 điểm). Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh $2a\sqrt{2}$ và tam giác SAB là tam giác cân tại đỉnh S. Góc giữa đường thẳng SA và mặt phẳng đáy bằng 45° , góc giữa mặt phẳng (SAB) và mặt phẳng đáy bằng 60° . Tính khoảng cách từ C đến (SAD).	
7	Gọi H là hình chiếu vuông góc của S lên mặt đáy, M là trung điểm AB $\Delta SAB \text{ cân tại } S \text{ nên } SM \perp AB \text{ và kết hợp với } SH \perp (ABCD) \text{ suy ra } AB \perp (SMH).$ $\text{Vậy } MH \text{ là trung trực của } AB \text{ , } MH \text{ cắt } CD \text{ tại } N \Rightarrow N \text{ là trung điểm của } CD.$	0.25
	Nên theo giả thiết ta được:	
	$+(\widehat{SA},(\widehat{ABCD})) = \widehat{SAH} = 45^{\circ} \Rightarrow SA = SH\sqrt{2}$	
	$+ \overline{((SAB), (ABCD))} = \overline{(SM, MH)} = \widehat{SMH} = 60^{\circ} \Rightarrow SM = SH.\frac{2}{\sqrt{3}}$	0.25
	Trong tam giác SAM ta có:	
	$SA^{2} = AM^{2} + SM^{2} \Leftrightarrow 2SH^{2} = \frac{4SH^{2}}{3} + 2a^{2} \Leftrightarrow SH = a\sqrt{3}$	0.25
	Từ đó tính được:	0.25
	$d(C,(SAD)) = 2d(H,(SAD)) = 2HP = \frac{2a\sqrt{30}}{5}$	
	Câu 8 (1.0 điểm). Trong không gian cho $2n$ điểm phân biệt $(n > 4, n \in \mathbb{N})$, trong đó	
8	không có ba điểm nào thẳng hàng và trong 2n điểm đó có đúng n điểm cùng nằm trên một mặt phẳng. Tìm tất cả các giá trị của n sao cho từ 2n điểm đã cho tạo ra đúng 505 mặt phẳng phân biệt.	

	Số cách chọn ra 3 điểm từ $2n$ điểm đã cho là C_{2n}^3 suy ra số mặt phẳng được tạo ra là C_{2n}^3 .	0.25			
	Do trong $2n$ điểm đã cho có n điểm đồng phẳng nên có C_n^3 mặt phẳng trùng nhau	0.25			
	Suy ra số mặt phẳng được tạo thành từ $2n$ điểm đã cho là $C_{2n}^3 - C_n^3 + 1$ Theo bài ra: $C_{2n}^3 - C_n^3 + 1 = 505$	0.25			
	$\Leftrightarrow \frac{2n(2n-1)(2n-2)}{6} - \frac{n(n-1)(n-2)}{6} = 504$ $\Leftrightarrow n(n-1)(8n-4-n+2) = 3024 \Leftrightarrow n(n-1)(7n-2) = 3024$ $\Leftrightarrow 7n^3 - 9n^2 + 2n - 3024 = 0 \Leftrightarrow (n-8)(7n^2 + 47n + 378) = 0 \Leftrightarrow n = 8.$ Vây, $n = 8$	0.25			
	Vậy $n = 8$. Câu 9 (1.0 điểm). Trong mặt phẳng với hệ tọa độ Oxy , cho đường thẳng				
	$d: mx + 4y = 0$ và đường tròn $(C): x^2 + y^2 - 2x - 2my + m^2 - 24 = 0$ có tâm I . Tìm m để đường thẳng d cắt đường tròn (C) tại hai điểm phân biệt A , B sao cho diện tích tam giác IAB bằng 12.				
	Đường tròn (C) có tâm $I(1;m)$, bán kính $R=5$.				
9	d H				
	Gọi H là trung điểm của dây cung AB .				
	Ta có IH là đường cao của tam giác IAB . $IH = d(I,d) = \frac{ m+4m }{\sqrt{m^2+16}} = \frac{ 5m }{\sqrt{m^2+16}}$ Nhận xét: d luôn cắt (C) tại hai điểm phân biệt AB	0.25			
	$AH = \sqrt{IA^2 - IH^2} = \sqrt{25 - \frac{(5m)^2}{m^2 + 16}} = \frac{20}{\sqrt{m^2 + 16}}$	0.25			
	\(\text{in 10}\)				
	Diện tích tam giác IAB là $S_{\Delta IAB} = 12 \Leftrightarrow 2S_{\Delta IAH} = 12$				
	$\Leftrightarrow d(I,d).AH = 12 \Leftrightarrow 25 \mid m \mid = 3(m^2 + 16) \Leftrightarrow \begin{bmatrix} m = \pm 3 \\ m = \pm \frac{16}{3} \end{bmatrix} \text{ (thỏa mãn)}$	0.25			
	Câu 10 (1.0 điểm). Cho $a,b \in \mathbb{R}$; $a,b > 0$ thoả mãn: $2(a^2 + b^2) + ab = (a+b)(ab+2)$.				
	Tìm GTNN của biểu thức: $T = 4\left(\frac{a^3}{b^3} + \frac{b^3}{a^3}\right) - 9\left(\frac{a^2}{b^2} + \frac{b^2}{a^2}\right)$.				

	Ta có $a,b>0$					
	$2(a^{2} + b^{2}) + ab = (a+b)(ab+2)$ $\Leftrightarrow 2(a^{2} + b^{2}) + ab = a^{2}b + ab^{2} + 2(a+b)$					
	$\Leftrightarrow 2\left(\frac{a}{b} + \frac{b}{a}\right) + 1 = (a+b) + 2\left(\frac{1}{a} + \frac{1}{b}\right)$					
	Theo BĐT Côsi ta có: $(a+b)+2\left(\frac{1}{a}+\frac{1}{b}\right) \ge 2\sqrt{(a+b)2\left(\frac{1}{a}+\frac{1}{b}\right)} = 2\sqrt{2\left(\frac{b}{a}+\frac{a}{b}+2\right)}$					
10	Suy ra $2\left(\frac{a}{b} + \frac{b}{a}\right) + 1 \ge 2\sqrt{2\left(\frac{b}{a} + \frac{a}{b} + 2\right)} \Rightarrow \frac{a}{b} + \frac{b}{a} \ge \frac{5}{2} \text{ (do } \frac{a}{b} + \frac{b}{a} > 0\text{)}$					
	và ta có $T = 4\left(\frac{a^3}{b^3} + \frac{b^3}{a^3}\right) - 9\left(\frac{a^2}{b^2} + \frac{b^2}{a^2}\right) = 4\left[\left(\frac{a}{b} + \frac{b}{a}\right)^3 - 3\left(\frac{a}{b} + \frac{b}{a}\right)\right] - 9\left(\frac{a}{b} + \frac{b}{a}\right)^2 + 18$					
	Xét hàm số:					
	_					
	$f(t) = 4t^3 - 9t^2 - 12t + 18, t \ge \frac{5}{2} \Rightarrow f'(t) = 12t^2 - 18t - 12$					
	$f'(t) = 0 \Leftrightarrow \begin{bmatrix} t = -\frac{1}{2} \\ t = 2 \end{bmatrix}$					
	t = 2					
	Ta có bảng biến thiên:					
	$t \sim 5/2 + \infty$					
	f'(t) +					
	+∞					
	f(t) 23					
	$\Rightarrow \min T = f\left(\frac{5}{2}\right) = -\frac{23}{4} \text{ khi } (a;b) \in \{(1;2),(2;1)\}$					
	HS tìm được 1 trong 2 bộ $(1;2)$, $(2;1)$ thì vẫn cho điểm tối đa	0.25				

MA TRẬN ĐỀ MÔN: TOÁN - THPT Thời gian làm bài: 180 phút, không kể thời gian giao đề

STT	Chủ đề	Nội dung	Mức độ				
			Nhận biết	Thông hiểu	Vận dụng thấp	Vận dụng cao	Tổng
1	Úng dụng đạo	Cực trị		Câu 1			Câu 1
	hàm			1 đ			1 đ
		Bài toán tương				Câu 2	Câu 2
		giao				1 đ	1 đ
		Úng dụng đạo				Câu 10	Câu 10
		hàm cm bất đẳng thức				1 đ	1 đ
2	Mũ và lôgarit	Hàm số mũ			Câu 5		Câu 5
					1 đ		1 đ
		Hàm số logarit			Câu 4		Câu 4
					1 đ		1 đ
3	Thể tích khối	Thể tích khối đa		Câu 6			Câu 6
	đa diện	diện		1 đ			1 đ
4	Quan hệ vuông	Khoảng cách				Câu 7	Câu 7
	góc					1 đ	1 đ
5	Tổ hợp xác	Tổ hợp			Câu 8		Câu 8
	suất				1 đ		1 đ
6	Lượng giác	Phương trình		Câu 5			Câu 5
		lượng giác		1 đ			1 đ
7	Phương pháp	Hình tọa độ			Câu 9		Câu 9
	tọa độ trong mặt phẳng				1 đ		1 đ
	Tổng	,		3 Câu	4 Câu	3 Câu	10 Câu
	Tolig			3 đ	4 đ	3 ф	10 đ