

Introduction to Automatic Design Optimization for Analog Circuits

Prof. Chien-Nan Liu Institute of Electronics National Chiao-Tung Univ.

Tel: (03)5712121 ext:31211 E-mail: jimmyliu@nctu.edu.tw http://mseda.ee.nctu.edu.tw/jimmyliu

Outline

- Motivation
- Knowledge-Based Design Automation
- Simulation-Based Optimization
- Pareto-Front-Based Optimization
- Equation-Based Optimization
- Simulation-Equation-Based Optimization
- Bias-Driven Optimization

Many "Mixed-Signal" in the World

% Digital Chips with Analog Content

[Source: IBS 2003]

3

The Mixed-Signal Design Problem

Commercial Mixed Signal ASIC

Why This Happens ??

Courtesy: R. A. Rutenbar, CMU

5

Typical AMS Design Flow

Manual designing analog circuits is not easy !!

Synthesis Tool for Analog Circuits Gain(dB): 40 (40) Start Folded Current Mirror Power(uA): 280 (280) (0.77 u/0.7u)*6 C Telesopio Run Spice M2 M3 H L (0.74 u/0.7u)*18 Read File HM1 (2.04 u/0.7u)*20 Spec. (0.73 u/0.5 u)*6 Net list(.sp) Fast !! layout End

Industrial Results

Toshiba result:

Courtesy: R. A. Rutenbar, CMU

Porting a data converter from 0.18um to 0.14um

Analog Synthesis is the Trend ...

Figure DESN5 Logical/Circuit/Physical Design Potential Solutions

Source: ITRS Roadmap 2007 Edition, SIA

Synthesis = Automation + Optimization

Optimize for performance

Minimize power, area, ...

Optimize for yield

Accounting for PVT variations

Generate proper specs

Design proper

Design proper device sizing/biasing Optimize for centering, yield

Focus for automation / optimization

10

9

Courtesy: R. A. Rutenbar, CMU

circuit topology

Existing Approaches

- Automatic circuit sizing are often classified into 4 types:
 - Knowledge-based optimization
 - Require codifying extensive circuit knowledge
 - Simulation-based optimization
 - Require costly circuit simulation
 - Pareto-front-based optimization
 - Require a lot of simulations to build the tradeoff curves
 - Analytical equations-based optimization
 - Rough equations limit the accuracy of final solutions

11

Comparisons of Diff. Approaches

(1) Knowledge-Based

Evaluation Engine

Industrial simulator

Outline

- Motivation
- Knowledge-Based Design Automation
- Simulation-Based Optimization
- Pareto-Front-Based Optimization
- Equation-Based Optimization
- Simulation-Equation-Based Optimization
- Bias-Driven Optimization

13

Knowledge-Based Optimization

- Develop a step-by-step design flow based on designers' experience
 - For specific circuits only
- Typically fast to provide a rough design solution
 - May still require manual adjustment on the final circuit to meet design specifications
- Optimality cannot be guaranteed
 - Quality depends on cases (often over-design)
 - Workable, but may not the best

Example: Two-Stage OPA

Basic Op-Amp Equations

Small-signal equivalent circuit

- $R_A = r_{ds2} // r_{ds4}$ $R_B = r_{ds6} // r_{ds7}$
- $\omega_{p1} \cong \frac{1}{g_{m6}R_AR_BC_C}$ $\omega_u \cong A_0\omega_{p1} = \frac{g_{m1}}{C_m}$

15

Design Procedure (1/3)

- Decide the bias point first
- Determine the device sizes from the given specifications
- Optimality cannot be guaranteed
 - Depend on the initial design
- Manual adjustment loops still exist

$$\begin{split} I_5 &= SR(C_C + C_L) \\ V_{eff\,3} &= V_{DD} - V_{CM\,(Max)} + V_{TN} \\ V_{eff\,5} &= V_{CM\,(Min)} - V_{SS} - V_{TN} - V_{eff\,1,2} \\ V_{eff\,1,2} &= SR/\omega_u \end{split}$$

Source: J. Mahattanakul, J. Chutichatuporn, "Design Procedure for Two-Stage CMOS Opamp With Flexible Noise-Power Balancing Scheme," IEEE Trans. Circuits and Systems, vol. 52, no 8, 2005, pp. 1508–1514.

17

Design Procedure (2/3)

Develop those steps based on designers' knowledge

Step 1
$$C_C = \frac{16kT}{3\omega_u S_n(f)} \left[1 + \frac{SR}{\omega_u (V_{HR}^{\text{CM}^+} + V_{tn})} \right]$$

Step 2
$$I_{D7} = SR(C_c + C_L)$$

Step 3
$$L_6 = \sqrt{\frac{3\mu_p V_{HR}^{\text{out}+} C_c}{2\omega_u (C_c + C_L) \tan(\phi_M)}}$$

Step 4
$$W_6 = \frac{2SR(C_c + C_L)}{\mu_p C_{ox} (V_{HR}^{\text{out}+})^2} L_6$$

Step 5
$$I_{D5} = C_c SR$$

Design Procedure (3/3)

Step 6
$$(W/L)_{1,2} = \frac{\omega_u^2 C_c}{\mu_n C_{ox} SR}$$

Step 7
$$(W/L)_{5.8} = \frac{2SRC_c}{\mu_n C_{ox} (V_{HR}^{CM^-} - V_{tn} - SR/\omega_u)^2}$$

Step 8
$$(W/L)_7 = \left(\frac{C_c + C_L}{C_c}\right)(W/L)_{5,8}$$

Step 9
$$(W/L)_{3,4} = \frac{(W/L)_6}{2(W/L)_7} (W/L)_{5,8}$$

Step 10
$$(W/L)_9 = \frac{2C_c SR}{\mu_p C_{ox} V_{HR}^{\text{out}+} (V_{DD} - V_{HR}^{\text{out}+} - 2|V_{tp}|) }$$

Source: J. Mahattanakul, J. Chutichatuporn, "Design Procedure for Two-Stage CMOS Opamp With Flexible Noise-Power Balancing Scheme," IEEE Trans. Circuits and Systems, vol. 52, no 8, 2005, pp. 1508–1514.

19

Experimental Results

- The results can meet all specifications
 - Over-design or not ??

Specification	Result	
Gain (dB)	85.1	
Gain-Bandwidth (MHz)	≥5	6
Slew Rate (V/μs)	≥5	5.2
Phase Margin (degree)	>65	65
Power (μW)	min	207

GB=Gain-Bandwidth, SR=Slew Rate, PM=Phase Margin

Outline

- Motivation
- Knowledge-Based Design Automation
- Simulation-Based Optimization
- Pareto-Front-Based Optimization
- Equation-Based Optimization
- Simulation-Equation-Based Optimization
- Bias-Driven Optimization

21

Simulation-Based Optimization

- Given an initial sizing, check the circuit performance by simulations and adjust the device sizes accordingly
 - simulation → sizing → simulation → sizing ...
- Non-deterministic optimization approaches are often adopted to search for an optimal circuit
 - Simulated annealing (SA), genetic algorithm (GA), ...
- Accurate but time-consuming
 - The optimization results are the same with the simulation results
 - Hundreds of simulations may be required → long simulation time

Improve Simulation-Based Approach

 Typical solutions to improve the efficiency of simulation-based approaches:

- Less search:
 - Fewer samples require less simulation time
 - Wider search often yields better solutions
- Parallel circuit evaluation:
 - Use faster simulator, but often has some limitations
- Parallel circuit search:
 - Multiple points are searched in parallel and synchronized in some manner --> require special optimization algorithm

Source: M. Krasnicki, R. Phelps, R. A. Rutenbar, L. R. Carley, "MAELSTROM: Efficient Simulation-Based Synthesis for Custom Analog Cells," DAC'99, pp. 945-950, 1999.

23

Parallel Recombinative SA (PRSA)

- Distribute works in parallel
- Each CPU creates a standard annealing optimization
 - Schedule is truncated to 1/N
- Regard each annealer as one element of the population in GA

Allow them to exchange results

Source: M. Krasnicki, R. Phelps, R. A. Rutenbar, L. R. Carley, "MAELSTROM: Efficient Simulation-Based Synthesis for Custom Analog Cells," DAC'99, pp. 945-950, 1999.

Experimental Results

- Simulation time is reduced by parallel search
 - From hours to minutes
 - Still a long computation time for such small circuits

Custom OPA Design

Folded Cascode OPA

	Manual	Auto-Synthesis:		Auto-Synthesis:
Attribute	Design	Spec. Result	Attribute	Spec. Result
CLoad (pF)	1.25	1.25	CLoad (pF)	1
Vdd (V)	5	5	Vdd (V)	5
DC Gain (dB)	71.2	≥71: 110	DC Gain (dB)	≥ 70: 71.4
UGF (MHz)	47.8	≥48: 70	UGF (MHz)	≥10: 24.3
Phase Margin (deg)	77.4	≥77: 84	Phase Margin (deg)	≥60: 69
PSRR - Vss (dB)	92.6	≥93: 131	PSRR - Vss (dB)	≥ 40: 111
PSRR - Vdd (dB)	72.3	≥72: 108	PSRR - Vdd (dB)	≥ 40: 132
Output Swing (V)	± 1.4	± 1.4: ± 1.45	Output Swing (V)	± 1.35: ± 1.37
Settling Time (ns)	-	↓ : 29	Settling Time (ns)	≤ 100 : 50
Active Area (10 ³ µ ²)	68.7	↓ : 23	Active Area (10 ³ µ ²)	≤68 : 11
Circuits Evaluated		70,000	Circuits Evaluated	60,000
CPU Time (minutes)		219	CPU (minutes)	152

Source: M. Krasnicki, R. Phelps, R. A. Rutenbar, L. R. Carley, "MAELSTROM: Efficient Simulation-Based Synthesis for Custom Analog Cells," DAC'99, pp. 945-950, 1999.

25

Search Space Reduction

- Simulated annealing (SA)
 is used in this work to
 search the optimal solution
- Determine the bias point first in this work
 - Make sure the transistors work in proper modes
 - Reduce unnecessary search space
- Transistor sizes can be calculated from bias point
 - One-to-one mapping

Bias-Point Space

Transistor-Size Space

Source: C.-W. Lin, P.-D. Sue, Y.-T. Shyu, S.-J Chang, "A Bias-Driven Approach for Automated Design of Operational Amplifiers," VLSI-DAT, 2009, pp. 118-121.

Operation Region Constraints

- All transistors are operated in saturation region
 - $V_{GS} V_{T} > 0$
- The variables can be limited by the following equations

$$\begin{split} V_{B1} &\leq V_{DD} - \mid V_{TP} \mid -\Delta V \\ V_{B1} &\geq V_{D3} - \mid V_{TP} \mid +\Delta V \\ V_{B1} &\geq V_{D11} - \mid V_{TP} \mid +\Delta V \\ V_{D3} &\leq V_{B1} + \mid V_{TP} \mid -\Delta V \\ V_{D3} &\geq V_{ICM} + \mid V_{TP} \mid +\Delta V \\ &\vdots \\ &\vdots \end{split}$$

27

SA-Based Optimization Flow

Source: C.-W. Lin, P.-D. Sue, Y.-T. Shyu, S.-J Chang, "A Bias-Driven Approach for Automated Design of Operational Amplifiers," VLSI-DAT 2009. Save design results

Experimental Results

- Target circuit: two-stage OPA (11 transistors)
- The final results meet all specifications
 - No modeling error in this approach
- Design time is relatively longer than other approaches
 - Contains 450 sizing + layout iterations
 - Each iteration requires a circuit simulation

Performance	Spec.	0.13 um	0.18 um	0.25 um
DC Gain (dB)	> 60	61.2	64.6	62.6
UGF (MHz)	> 450	461.4	463.7	457.6
PM (degree)	> 65	65.8	67.6	65.0
SR (V/us)	> 500	500.4	511.8	698.8
Power (mW)	minimum	1.00	1.18	2.79
Time (min.)		44	57	26

29

Outline

- Motivation
- Knowledge-Based Design Automation
- Simulation-Based Optimization
- Pareto-Front-Based Optimization
- Equation-Based Optimization
- Simulation-Equation-Based Optimization
- Bias-Driven Optimization

What is Pareto Front?

- With a lot of design samples and their corresponding performances, the "best" points under different requirements form a *trade-off curve* → Pareto Front
- Need a lot of samples to find out the Pareto front
 - Similar to building a database in advance
 - Can be reused for the same circuit with the same technology

31

Pareto-Front-Based Ckt. Sizing

- Given the required performance, choose the corresponding design point at the Pareto Front
 - The corresponding device sizes can be obtained from the database
- The sizing step is fast, but building the database is time-consuming
 - Iteratively generate samples
 - Spend more than 4 hours in

Pareto Front Generation

- Analog design often requires a multi-objective cost func.
 - $F(\overrightarrow{P}) = \sum_{i=1}^{M} \omega_i \cdot P_i(\overrightarrow{D}) / Spec_i$ $\omega_i = \text{weight coefficient of each performance}$ $P_i(D) / Spec_i = i\text{-th}$ performance and its spec.
- Normal-Boundary Intersection (NBI) is a multi-objective searching method
- f*i is the min. value that this performance can achieve
 - The middle point of minimum points is the next sample

Source: G. Stehr et al., "Analog Performance Space Exploration by Normal-Boundary Intersection and by Fourier—Motzkin Elimination", IEEE Trans. on CAD, vol. 26, no. 10, Oct. 2007

33

-

Pareto Front with Diff. Constraints

- This example shows that Pareto fronts do not have to be convex in the presented method
 - Still work under different constraints

Exp. Results of Pareto Generation

- Implement in C++
- Two OPA circuits are used as examples
 - Run time is more than a half hour

Amplifier	# Transistor	# Pareto points	# Simulation	Time (min : sec)
Miller	8	16	3264	31:18
Folded Cascade	22	16	5434	49:30

Source: G. Stehr et al., "Analog Performance Space Exploration by Normal-Boundary Intersection and by Fourier—Motzkin Elimination", IEEE Trans. on CAD, vol. 26, no. 10, Oct. 2007

35

Outline

- Motivation
- Knowledge-Based Design Automation
- Simulation-Based Optimization
- Pareto-Front-Based Optimization
- Equation-Based Optimization
- Simulation-Equation-Based Optimization
- Bias-Driven Optimization

Equation-Based Optimization

- Circuit performances are often represented as nonlinear equations
 - Ex: gain = $[g_{m2}/(g_{ds2}+g_{ds0})]*[g_{m6}/(g_{ds6}+g_{ds7})]$
- Design specifications can be viewed as the constraints for those non-linear equations
 - Solving those non-linear constraints can obtain the feasible solutions that meet all specifications
- Non-linear programming (NLP) solvers can find a feasible solution with minimum (or maximum) cost
- Simplified equations and parameter models often limit the accuracy of equation-based approaches

 The predicted circuit performance is different to real simulation results

37

GP-Based Optimization (1/2)

- Geometric programming (GP) is a special case of non-linear programming with special forms
- In GP problems, any of its local optimal point is also a global optimal point
 - Solving GP problems is efficient in most cases

minimize
$$f_0(x)$$

subject to $f_i(x) \le 1$ $i = 1,...,m$
 $g_j(x) = 1$ $j = 1,...,p$
 $x_k \ge 0$ $k=1,...,n$

• g(x) is in monomial form:

$$\rightarrow g(x) = Cx_1^{a_1}x_2^{a_2}x_3^{a_3}....x_n^{a_n}, C > 0, a_i \in R$$

• f(x) is in posynomial form:

→ a summation of one or more monomial terms.

x1 and x2 are design variables

GP-Based Optimization (2/2)

Circuit equations should be transformed into GP forms, for example: (folded cascode OPA)

$$Gain_{spec} \times \left(\frac{g_{\rm d\ 1}g_{\rm d\ 6}}{g_{\rm m\ 1}g_{\rm m\ 6}} + \frac{g_{\rm d\ 4}g_{\rm d\ 6}}{g_{\rm m\ 1}g_{\rm m\ 6}} + \frac{g_{\rm d\ 8}g_{\rm d\ 10}}{g_{\rm m\ 1}g_{\rm m\ 8}} \right) \leq 1$$

Transistor models should be converted into GPcompatible form also

$$g_d = k_1 I_D^{a_1} L^{b_1} C^{c_1} \qquad g_m = k_2 I_D^{a_2} L^{b_2} W^{c_2}$$

- Curve fitting is often required to build those equations
 - Typical equations are often not in standard GP forms
 - Regression errors may lead to significant prediction error on circuit performance
 - In previous paper, g_d may have up to 65% avg. error

Source: P. Mandal, V. Visvanathan, "CMOS Op-Amp Sizing Using a Geometric Programming Formulation," IEEE Trans. on CAD, vol. 20, no. 1, 2001, pp. 22-38.

Iterative GP Approach (1/2)

- One method to solve the accuracy issue is using iterative approaching
- Solve convex programming to obtain the device sizes based on an initial point
 - Determine the approximate DC operating point first
 - May have prediction error due to inaccurate model
- Revise the GP models according to the errors and solve the equations again
 - Converged after several iterations

Source: P. Mandal, V. Visvanathan, "CMOS Op-Amp Sizing Using a Geometric Programming Formulation," IEEE Trans. on CAD, vol. 20, no. 1, 2001, pp. 22-38. 40

39

Iterative GP Approach (2/2)

- May not meet the spec. still after converged
 - Especially for the short channel transistors
 - Prediction accuracy is limited by modeling errors
- Manual adjustments are still required for the final circuits
 - Optimality cannot be reserved
 - Not convenient

Specifica	Result	
Gain(dB)	≥60	58
GB(MHz)	≥10	9
Swing(V)	≥3	4.8
SR(V/us)	≥20	17.3
PM(degree)	≥60	62.3
Power(μW)	min	280
CPU time(s)		49.9

Source: P. Mandal, V. Visvanathan, "CMOS Op-Amp Sizing Using a Geometric Programming Formulation," IEEE Trans. on CAD, vol. 20, no. 1, 2001, pp. 22-38.

41

Nonlinear Parameters

- Some transistor parameters (ex: g_m, g_{ds}, ...) exhibit very different behaviors in different operation regions
 - Accurate curve fitting is not easy

strong inversion

Source: G. Wei and R. Hornsey, "A power optimization method for CMOS Op-Amps using sub-space based geometric programming," DATE, 2010, pp. 508-513.

Sub-Space Modeling

- Use a piece-wise model to improve accuracy
 - Not necessary to be linear in each piece

TABLE I. SUB-SPACE MAP FOR ALL PARAMETERS BUT 1/gm

L V _{gs} (V)	0.5~1μm	1~2µm	2~5μm	5~10μm	10~21μm	
0.4~0.5	mod1	mod4	mod7	m	od10	
0.5~0.6	mod2	mod5	mod8	m	od11	
0.6~0.7	mod3	mod6	mod9	m	od12	
0.7~0.8	st1	st9	st17	st25	st33	
0.8~1.0	st2	st10	st18	st26	st34	
1.0~1.2	st3	st11	st19	st27	st35	
1.2~1.4	st4	st12	st20	st28	st36	
1.4~1.5	st5	st13	st21	st29	st37	
1.5~1.6	st6	st14	st22	st30	st38	
1.6~1.7	st7	st15	st23	st31	st39	
1.7~1.8	st8	st16	st24	st32	st40	

mod #: model in moderate inversion region; st #: model in strong inversion region

Experimental Results

• Sub-space based PWL (PWL_{sub}) modeling approach significantly improve the accuracy of g_m and g_{ds}

TABLE II. Comparison of Mean Relative Error (%) for Different Models

model					_	-				_
$\mathrm{PWL}_{\mathrm{sub}}$	2.15	0.47	3.37	9.36	3.42	4.19	4.96	2.03	4.32	2.24
PWL [7]		1.70	9.40			3.10				
GAP [8]	13.00		7.21		0.28	4.32		0.18		

 The relative errors (RE) between the predicted results and HSPICE results are reduced (but still not accurate enough)

Performance	Spec.	Predic.	HSPICE	RE	
$A_{ m V}$	≥ 40dB	76.7dB	80dB	4.1%	Not most
GBW	≥ 10MHz	10MHz	9.04MHz	10.1%	Not meet the spec
SR	≥ 5.7V/µs	6.52V/μs	6.16V/µs	5.8%	the spee
PM	≥ 70°	70°	65°	7.7%	
I _{static}	minimum	15.89μΑ	16.75uA	5.1%	4

- Motivation
- Knowledge-Based Design Automation
- Simulation-Based Optimization
- Pareto-Front-Based Optimization
- Equation-Based Optimization
- Simulation-Equation-Based Optimization
- Bias-Driven Optimization

Simulation-Equation Based Method

- Take advantage of both simulation and equation based methods
- Iterative simulation-equation-based (ISE) method
 - Use simulation results to correct performance equations
- Two-phase simulation-equation-based method
 - Phase 1: Do global search by equation-based search
 - Phase 2: Do local search by simulation-based search

46

Iterative Method

- Use initial performance evaluation equations to obtain an initial design
- Do simulation to verify the initial design and correct the parameters in the equations
- Use the corrected equations to do the search again until the result is converged
- Advantage:
 - Required number of simulations is greatly reduced
 - Accuracy can be improved with the feedback from simulation
- Disadvantage:
 - The optimality is not guaranteed → only near optimal result
 - Convergence rate depends on the quality of initial parameters

[1] M.H Maghami., F. Inanlou, R. Lotfi, "Simulation-Equation-Based Methodology for Design of CMOS Amplifiers Using Geometric Programming," IEEE Int'l Conf. on Electronics, Circuits and Systems, 2008, pp.360-363.
[2] T. Kahookar Toosi, E. Zhian Tabasy, H. Sarbishaei, R. Lotfi, "ISECAD: An Iterative Simulation-Equation-Based Opamp-Design CAD Tool", ISCAS, 2006.

47

Flow Chart of Iterative Method

Evaluation model

Be correct by simulation result

• Performance = f (design param., convergence param.)

Optimized circuit netlist

Experiment Results (Iterative)

The optimization process has only 7 iterations

Not satisfy spec.

- Finished in 30 seconds (faster than simulation-based method)
- The final result still does not meet spec. completely

 Although the prediction accuracy is already improved, it is still not accurate enough.

GPCAD Performance measure Spec. **Hspice** DC gain (db) > 70 73.2 73.8 Unity gain BW (MHz) > 100 100 92.7 $SR(V/\mu s)$ > 20 62 62 As minimum Power (mW) 0.12 0.12

Source: M.H Maghami., F. Inanlou, R. Lotfi, "Simulation-Equation-Based Methodology for Design of CMOS Amplifiers Using Geometric Programming," IEEE Int'l Conf. on Electronics, Circuits and Systems, 2008, pp.360-363.

49

Two-Phase Method

- Phase 1: use performance evaluation equation to do global search
 - Obtain a rough estimation about the final result
- Phase 2: use simulation tool to do local search around the result in phase 1
 - Obtain optimal result with accurate performance evaluation
- Accuracy is improved a lot, but still requires long time in simulation-based local search

All design parameter space

Experimental Result (2-Phase)

Circuit spec

	Constraint
Gain (dB)	> 45
f_{ndgb} (MHz)	maximize
Biasing Currnet (mA)	< 0.8
Voltage Swing (V)	> 0.4
Output Voltage Tolerance (V)	< 0.1

	Equation	Simulation
	-based	-based
	result	result
	post-routine performance	post-SA per- formance
Gain(dB)	46.97	45.18
Unity-gain bandwidth (MHz)	816.9	888.94 Better!
Phase Margin (°)	60.0	60.0
Voltage Swing (V)	0.928	0.900
Biasing Current (mA)	3.6	3.6
Time (min.)	8	60 Cost long
		time

Source: J. Yuan, N. Farhat, and J. Van der Spiegel, "GBOPCAD: a synthesis tool for high-performance gain-boosted opamp design," IEEE Trans. on Circuits and Systems-I, vol. 52, no. 8, Aug. 2005.

Outline

- Motivation
- Knowledge-Based Design Automation
- Simulation-Based Optimization
- Pareto-Front-Based Optimization
- Equation-Based Optimization
- Simulation-Equation-Based Optimization
- Bias-Driven Optimization

The Range of DC Operating Point

Performance vs. Operating Point

Saturation mode cannot guarantee enough performance

SPEC: Gain ≥ 80dB

Operating Range Reduction

- The relationship between bias points and circuit performance can reduce the feasible operating range
 - Improve searching efficiency !!

Bias-Driven Optimization Flow

Solve internal voltages instead of device sizes

- Some transistor parameters (ex: g_m, g_{ds}, ...) are hard to be modeled accurately → size dependent
- g_m/I_D is independent to the transistor sizes
 - Easier to be modeled

Source: G. Wei and R. Hornsey, "A power optimization method for CMOS Op-Amps using sub-space based geometric programming," DATE, 2010, pp. 508-513.

57

g_m/I_D Table Construction

- g_m/I_D value is decided when the three node voltages of a transistor are fixed
 - Can be recorded by a simple look-up table (LUT)
- Real simulation data is used to construct the tables
 - Improve modeling accuracy
- Table construction is a one-time effort
 - Can be used for all transistors with the same technology

NMOS
$$V_G = 0.9$$
, $V_{DD} = 1.8$

Transistor Model

	0	0.1	0.2		1.8
0	0	2.3	2.7		3.9
0.1	Χ	0	3.6		5.5
0.2	Χ	Χ	0		8.8
÷	÷	÷	÷	0	÷
1.8	X	X	X	X	0

58

Performance Constraints

Rewrite the equations with g_m/I_D and g_{ds}/I_D

Gain:

$$\frac{\frac{g_{m2}}{I_{D2}}}{\frac{g_{ds2}}{I_{D2}} + \frac{g_{ds0}}{I_{D0}}} \times \frac{\frac{g_{m6}}{I_{D6}}}{\frac{g_{ds6}}{I_{D6}} + \frac{g_{ds7}}{I_{D7}}} \ge Gain_{spec}$$

Phase margin (PM):

hase margin (PM):
$$\frac{g_{m2}}{I_{D2}} \times (C_C + C_L) < \tan(\frac{\pi}{2} - PM_{SPEC})$$

$$C_C \times \frac{g_{m6}}{I_{D6}} \times 2k$$
Satu

Gain-Bandwidth (GB):

$$\frac{g_{m2}}{I_{D2}} \times I_{SS} \frac{1}{C_C} \ge GB_{spec}$$

59

Objective Function

Objective function

$$\alpha \times \sum_{i=1}^{n} \frac{(\frac{gm_{i}}{I_{Di}}) \times I_{SS}}{(V_{gsi} - V_{T})} + \beta \times ((1+k) \times I_{SS} \times V_{DD})$$

$$cost of area cost of power$$

a: weight of area β : weight of power

- Example
 - Optimize for power

•
$$a=0, \beta=1$$

- Optimize for power and area
 - a=0.5, $\beta=0.5$

Solve NLP Problem

 g_m/I_D model

Specification

▽

Solve by Nonlinear Programming

$$I_{SS}$$
 = 5.25 μ A, k = 10
 V_{B1} = 0.96V, V_{B2} = 0.31V V_{B3} = 0.69V, C_{C} =392fF

Device Sizing Table

- Obtaining MOS size from current equation has large error
 - $I_d = K^*(W/L)^*(V_{qs}-V_t)^2 \rightarrow \text{rough approximation}$
- Use simulation data to construct a lookup table
 - Given an unit-sized transistor, record its (V_{qs} , V_{ds}) vs I_d
 - I_d is proportional to the (W/L) ratio
 → I_x / I₀ = (W/L)_x / (W/L)₀
- Constructing the sizing table is also a one-time effort
 - Can be reused for all transistors with the same technology
 - A fast approach to reduce the equation error

	Ex: NMOS sizing table							
	$V_{qs}(V)$	$V_{ds}(V)$	$I_d(\mu A)$	S _x (μm / μm)				
	1.00	1.60	16.01	2.00 / 1.00				
	1.10	1.60	21.51	2.00 / 1.00				
)	1.20	1.60	27.62	2.00 / 1.00				

Transistor Sizing

Search the sizing table to find the transistors size

Optimize for Power and Area

■ Bias-driven approach can meet all spec at the first time → efficient !!

Specification		SA	GP	Bias-driven	
C _L (pF)	1	1	1	1	
Gain (dB)	≥70	80.5	80.7	81.7	
GB (MHz)	≥40	45.9	38.8	42.3	
SR (MV/s)	≥30	31.5	28.5	36.8	
OSR	≥1	1.28	1.04	1.14	
PM (degree)	≥60	60.2	60.4	60	
Power (μw)	min	160	120.1	113.9	
Area (um^2)	min	55.48	37.69	32.7	
Iteration		226	3	1	
Time (s)		801	14.84	6.01	
speed up ratio		1	53.9	133.3	

Parasitic Capacitance Consideration

- The consideration of C_{gs} , C_{gd} , C_{db} , C_{sb} is necessary to predict bandwidth and phase margin
 - Output capacitance is C_{gd}+C_{db} (=C_{dtot}) when output is at drain terminal

 Output capacitance is C_{gs}+C_{sb} (=C_{stot}) when output is at source terminal

Capacitance Prediction

- The value of capacitance increase with current
 - \rightarrow $C_{\text{stot}}/I_{\text{D}}$ and $C_{\text{dtot}}/I_{\text{D}}$ are almost constant, too
- Similar to g_m/I_D, a table is constructed to predict internal capacitance

66

65

Body Effect Transconductance (g_{mb})

 Body-effect is the variation of the threshold voltage(V_{THN}) with V_{SB}

$$\begin{split} g_{mb} = & \left(\frac{\partial i_{_D}}{\partial v_{_{SB}}} \right)_{V_{_{SB}} = const.}^{I_D = const.} \\ = & \frac{\partial}{\partial v_{_{SB}}} \left[\frac{KP_n}{2} \frac{W}{L} (V_{_{GS}} - V_{_{THN}})^2 \right]_{V_{_{SB}} = const.}^{I_D = const.} \\ = & KP_n \frac{W}{L} (V_{_{GS}} - V_{_{THN}}) \left(-\frac{\partial V_{_{THN}}}{\partial v_{_{_{SB}}}} \right) \end{split}$$

- V_{THN} is considered in the parameter tables
- g_{mb} value is decided by DC voltage V_{SB} , but takes effects only when AC voltage $v_{sb} \neq 0$

Source: R. Jacob Baker, "CMOS circuit Design, Layout, and Simulation", Third edition.

67

Extend Parameter Tables

- C_{stot}/I_D , C_{dtot}/I_D and g_{mb} can also be modeled by the same method for g_m/I_D
- With the same index, the lookup table can be extended to include those non-ideal effects
- Multiplying the value in the table by the real drain current can get the required parameter
 - Simulation is not required in the synthesis flow

V _G	V _D	V s	g _m /I _D	g_{ds}/I_D	C_{dtot}/I_{D}	$C_{\text{stot}}/I_{\text{D}}$	g_{mb}/I_D
:	:	:	:	:	:	:	:
1	0.5	0.1	4.11	0.41	2.24E-10	5.99E-11	1.15
1	0.5	0.2	6.11	0.53	4.33E-10	1.17E-10	1.61
1	0.5	0.3	10.27	0.77	1.18E-9	3.25E-10	2.58
:	:	:	:	:	:	:	:

Accuracy Improvement

		Gain (dB)	Pole1 (kHz)	Pole2 (MHz)	UGBW (MHz)	Pm (°)
Spec		>75			>100	>60
simulation		76.60	16.86	187.40	100.23	61.65
Predict1	value	73.83	х	х	133.55	Х
	Error(%)	3.62	Х	Х	33.24	Х
Predict2	value	73.83	23.34	143.86	95.48	56.41
	Error(%)	3.62	38.42	23.33	4.74	8.50
Predict3	value	75.90	18.36	185.82	100.77	61.54
	Error(%)	0.91	8.90	0.84	0.54	0.18

Predict1: prediction without C_{stot}, C_{dtot} prediction & using rough performance equation

Predict2: prediction with C_{stot}, C_{dtot} prediction & using transfer function

Predict3: including g_{mb} considering in the transfer function

Source: Y.-F. Cheng, "A Bias-Driven OP-Amp Sizing Approach with Improved Prediction of Frequency Response and Channel Length Effect", Master thesis of NCU, 2012.

69

More References ...

Books:

- R. A. Rutenbar, G. G. E. Gielen, and B. Antao, Eds., "Computer-Aided Design of Analog Integrated Circuits and Systems", Hoboken, NJ: Wiley-IEEE, Apr. 2002.
- H. E. Graeb, "Analog Design Centering and Sizing", New York: Springer-Verlag, 2007.

Survey Papers:

- G. G. E. Gielen, R. A. Rutenbar, "Computer-Aided Design of Analog and Mixed-Signal Integrated Circuits", Proceedings of the IEEE, vol. 88, no. 12, pp. 1825-1852, Dec. 2000.
- R. A. Rutenbar, G. G. E. Gielen, J. Roychowdhury, "Hierarchical Modeling, Optimization, and Synthesis for System-Level Analog and RF Designs", Proceedings of the IEEE, vol. 95, no. 3, pp. 640-669, Mar. 2007.

