

Family Name
Given Name
Student No
Signature

THE UNIVERSITY OF NEW SOUTH WALES

School of Electrical Engineering & Telecommunications

MID-SEMESTER EXAMINATION

Semester 2, 2017

ELEC1111 Electrical and Telecommunications Engineering

TIME ALLOWED: 1 hour TOTAL MARKS: 100 TOTAL NUMBER OF QUESTIONS: 4

THIS EXAM CONTRIBUTES 20% TO THE TOTAL COURSE ASSESSMENT

Reading Time: 5 minutes.

This paper contains 6 pages.

Candidates must **ATTEMPT ALL** questions.

Answer each question in a separate answer booklet.

Marks for each question are indicated beside the question.

This paper **MAY NOT** be retained by the candidate.

Print your name, student ID and question number on the front page of each answer book.

Authorised examination materials:

Candidates should use their own UNSW-approved electronic calculators.

This is a closed book examination.

Assumptions made in answering the questions should be stated explicitly.

All answers must be written in ink. Except where they are expressly required, pencils **may only be used** for drawing, sketching or graphical work.

For the **numerical solutions**, you can use either **fraction** form or **floating-point** form (maximum **2 digits** after decimal point is enough)

QUESTION 1 [20 marks]

- (i) For the circuit shown in Figure 1,
 - a. (15 marks) Calculate the equivalent resistance $R_{\rm eq}$ as seen from terminals a-b.
 - b. (5 marks) Find the current i through the network using the result of part (a).

Figure 1

QUESTION 2 [40 marks]

- (i) [24 marks] For the circuit shown in Figure 2,
 - a. **(10 marks)** Apply nodal analysis to obtain the node voltage at nodes v_1 and v_2 , and show that $v_1=20~\rm V$ and $v_2=12~\rm V$
 - b. **(12 marks)** Calculate all the powers absorbed/supplied by resistors and sources and specify which element supplies power and which element absorbs power.
 - c. (2 marks) Verify the law of conservation of energy for this circuit.

Figure 2

- (ii) [16 marks] For the circuit shown in Figure 3,
 - a. **(10 marks)** Apply mesh analysis to obtain the mesh currents i_1 , i_2 and i_3 , and show that $i_1=25$ A and $i_2=12.5$ A
 - b. (2 marks) Find the voltage v across 4- Ω resistor.
 - c. **(4 marks)** Calculate the power of the 50-V voltage source and explain whether it supplies or absorbs power.

Figure 3

QUESTION 3 [20 marks]

- (i) [10 marks] For the circuit shown in Figure 4,
 - a. **(6 marks)** Use source transformation to obtain Thevenin equivalent circuit from terminals *a-b* and draw the Thevenin equivalent circuit.
 - b. **(4 marks)** Determine the value of load resistance R_L for maximum power transfer, and then calculate the maximum power that can be delivered to R_L .

Figure 4

(ii) [10 marks] Find the equivalent resistance $R_{\rm eq}$ in the circuit given in Figure 5.

Figure 5

QUESTION 4 [20 marks]

- (i) In the circuit shown in Figure 6, the switch has been closed for a long time before it is opened at t = 0. The voltage source is given a step function.
 - **a.** (4 marks) Find the initial voltage $v(0^-)$ across the capacitor under steady-state condition.
 - **b.** (2 marks) Calculate the initial energy $w_c(0)$ stored in the capacitor.
 - **c.** (4 marks) Find the final voltage $v(\infty)$ across the capacitor under steady-state condition.
 - **d.** (4 marks) Derive an expression for the voltage of the capacitor v(t) for all time (i.e., for both t < 0 and t > 0).
 - **e.** (2 marks) Sketch the obtained voltage v(t) in part (d) as a function of time.
 - **f.** (4 marks) Derive an expression for the current i(t) through the 5- Ω resistor for all time (i.e., for both t < 0 and t > 0).

Figure 6

END OF PAPER

This page is intentionally left blank