COMP 3311 DATABASE MANAGEMENT SYSTEMS

LECTURE 23 EXERCISES
RECOVERY SYSTEM

Consider the log corresponding to a schedule of three <u>serially executing</u> transactions T_1 , T_2 and T_3 where a system failure occurs at the point indicated. Assume that we use the <u>immediate update protocol</u>.

(a) Which transactions are undone?

Undo: T_3

(b) Which transactions are redone?

Redo: T_1 T_2

Log File

 $< T_1 \text{ start}>$ $< T_1, B, 15, 12>$ $< T_1 \text{ commit}>$ $< T_2 \text{ start}>$ $< T_2, B, 12, 18>$ $< T_2, D, 25, 26>$ $< T_2 \text{ commit}>$

 $< T_3$ start>

 $\leftarrow \text{system failure}$

Scan the log and

 $< T_3$, D, 20, 25>

undo **if** < T_i start> **but no** < T_i commit> redo **if** < T_i start> **and** < T_i commit>

Consider the log corresponding to a schedule of three <u>concurrently</u> <u>executing</u> transactions T_1 , T_2 and T_3 where a system crash occurs at the point indicated. Assume that we use the <u>immediate update protocol</u> with checkpointing.

(a) Which transactions are undone?

Undo: T₂

(b) Which transactions are redone?

Redo: T_3 T_1

Scan the log backward and

if find $<T_i$ commit> add to redo-list if find $<T_i$ start> add to undo-list if not in redo-list for every T_i in <checkpoint, $\{T_i, ...\}>$ if T_i not in redo-list add to undo-list

Log File

<*T*₁ start> $< T_1, A, 2, 5 >$ <T₁, B, 1, 2> $< T_2$ start> $< T_1, C, 2, 8 >$ $< T_2$, B, 2, 5> $\langle checkpoint, \{T_1, T_2\} \rangle$ <T₁ commit> $< T_2$, B, 5, 6> $< T_3$ start> $< T_3$, A, 5, 3> $< T_3$ commit> $< T_2$, C, 8, 2> $< T_2$, A, 3, 5>

 \leftarrow add T_2 to undo-list

 \leftarrow add to redo-list

√ on redo-list

← add to redo-list

← system failure

Consider the log corresponding to a schedule of four <u>serially executing</u> transactions T_1 , T_2 , T_3 and T_4 where a system crash occurs at the point indicated. Assume that we use the <u>immediate update protocol</u> with checkpointing.

(a) Which transactions are undone?

Undo T_4

(b) Which transactions are redone?

Redo: T_1 T_2 T_3

Log File

 $< T_1 \text{ start}>$ $< T_1, A, 1, 2>$ $< T_1, B, 5, 12>$ < checkpoint> $< T_1 \text{ commit}>$ $< T_2 \text{ start}>$ $< T_2, B, 12, 18>$ $< T_2 \text{ commit}>$ $< T_3 \text{ start}>$ $< T_3, D, 25, 26>$ $< T_3 \text{ commit}>$ $< T_4 \text{ start}>$ $< T_4, A, 20, 25>$

Scan log backward to first $<T_i$ start> <u>before</u> the checkpoint. Scan log forward and

undo if $< T_i$ start> but no $< T_i$ commit> redo if $< T_i$ start> and $< T_i$ commit>

Consider the log corresponding to a schedule of three *concurrently* <u>executing</u> transactions T_1 , T_2 and T_3 where a system crash occurs at the point indicated. Assume that we use the *immediate update protocol* with checkpointing.

- (a) Which transactions are undone?
 - Undo: T_1 T_3
- (b) Which transactions are redone?

Redo: T_2

COMP 3311

Log File

 $< T_3 \text{ start}>$

< T₃, B, 15, 12>

 $< T_2$ start>

 $< T_2$, B, 12, 18>

<checkpoint $\{T_2, T_3\}>$

<*T*₂ commit>

 $< T_1$ start>

 $< T_1$, D, 20, 25>

 $< T_1$, D, 25, 26>

 \leftarrow add T_3 to undo-list

← add to redo-list

← add to redo-list

← system failure

Scan the log backward and

if find <T_i commit> add to redo-list if find <*T_i* start> add to undo-list if not in redo-list for every T_i in <checkpoint, $\{T_i, ...\}$ > if T_i not in redo-list add to undo-list