Преобразование Лапласа. Оргинал и изображение

Laplas almashtirishlari. Asl va tasvir.

№	Original $f(t)$	Tasvir $F(t)$	№	Original $f(t)$	Tasvir $F(t)$
1	1	1/p	6	$e^{\alpha t} \cdot \cos \beta t$	$\frac{p-\alpha}{(p-\alpha)^2+\beta^2}$
2	$\frac{t^n}{n!}$	$\frac{1}{p^{n+1}}$	7	$e^{\alpha t} \cdot \sin \beta t$	$\frac{\beta}{(p-\alpha)^2+\beta^2}$
3	$e^{\alpha t}$	$\frac{1}{p-\alpha}$	8	$\frac{t^n}{n!} \cdot e^{\alpha t}$	$\frac{1}{(p-\alpha)^{n+1}}$
4	cos βt	$\frac{p}{p^2 + \beta^2}$	9	$t \cdot \cos \beta t$	$\frac{p^2 - \beta^2}{\left(p^2 + \beta^2\right)^2}$
5	sin βt	$\frac{\beta}{p^2 + \beta^2}$	10	$t \cdot \sin \beta t$	$\frac{2p\beta}{\left(p^2+\beta^2\right)^2}$

1. Berilgan funksiyaning tasvirini toping

1. Найти изображение функции

1.
$$f(t) = 11t$$

$$2. \quad f(t) = 2\sin t + 3\cos t$$

3.
$$f(t) = t + 2e^{-t}$$

4.
$$f(t) = 2 \sin t + 3 \sin t$$

$$5. \quad f(t) = t + 2e^t$$

6.
$$f(t) = e^{at}$$

7.
$$f(t) = \sin 4t$$

8.
$$f(t) = \cos \omega t$$

$$9. \quad f(t) = \sin 2t$$

$$10. \quad f(t) = \sin^2 t$$

11.
$$f(t) = \sin mt \cos nt$$

$$12. \quad f(t) = \cos^2 t$$

13.
$$f(t) = \sin mt \sin nt 1$$
.

14.
$$f(t) = \cos t$$

15.
$$f(t) = \sin 3t$$

16.
$$f(t) = \cos 6t$$

$$17. \quad f(t) = e^{3t}$$

18.
$$f(t) = sh t$$

$$19. \quad f(t) = ch \, 3t$$

20.
$$f(t) = e^{-3t} \sin t$$
.

$$21. \quad f(t) = e^{2t} \cos t$$

$$22. \quad f(t) = t^3$$

$$23. \quad f(t) = t^2$$

24.
$$f(t) = t^2$$

25.
$$f(t) = \cos 2t$$

$$26. \qquad f(t) = \sin 5t$$

2. Найти изображение функции

2. Berilgan funksiyaning tasvirini toping

1.
$$f(t) = e^t \cos t$$

$$2. \quad f(t) = \sin^4 t$$

3.
$$f(t) = \cos 2t \sin 3t$$

$$4. f(t) = \cos^3 t$$

$$5. f(t) = \sin^3 t$$

6.
$$f(t) = t \sin \omega t$$

$$7. f(t) = \cos^4 t$$

8.
$$f(t) = t \cos \omega t$$

9.
$$f(t) = te^t$$

$$10. \quad f(t) = t^2 \cos t$$

11.
$$f(t) = t(e^t \operatorname{ch} t)$$

12.
$$f(t) = (t+1)\sin 2t$$

13.
$$f(t) = t \operatorname{sh} t$$

$$14. \quad f(t) = \int_0^t \sin \tau \, d\tau$$

15.
$$f(t) = \int_0^t (\tau + 1) \cos \omega \tau \, d\tau$$

16.
$$f(t) = \int_0^t \cosh \omega \tau \, d\tau$$

27.
$$f(t) = e^{-5}t$$

28.
$$f(t) = sh 5t$$

29.
$$f(t) = \cos 3t$$

30.
$$f(t) = \sin 4t$$

17.
$$f(t) = \int_0^t \tau^2 e^{-\tau} d\tau$$

$$18. \quad f(t) = \frac{e^{t-1}}{t}$$

19.
$$f(t) = \frac{1 - e^{-t}}{t}$$

$$20. \quad f(t) = \frac{\sin^2 t}{t}$$

$$21. \quad f(t) = \frac{1 - \cos t}{t}$$

$$22. \quad f(t) = \frac{\cos t - \cos 2t}{t}$$

$$23. \quad f(t) = \frac{e^{t}-1-t}{t}$$

$$24. \quad f(t) = \frac{e^t - e^{-t}}{t}$$

$$25. \quad f(t) = e^{2t} \sin t$$

26.
$$f(t) = e^t \cos nt$$

27.
$$f(t) = e^{-t}t^3$$

28.
$$f(t) = e^{-t} \sinh t$$

29.
$$f(t) = te^t \cos t$$

30.
$$f(t) = e^{3t} \sin^2 t$$

Asl va tasvirning asosiy xossalari.

Основные свойства оргинала и изображения

No:	Tasviri: $F(p) = \int_0^{+\infty} e^{-pt} f(t) dt$	Asli: $f(t)$
1.	$\frac{1}{p}$	1

	1	
2.	$\frac{1}{p-lpha}$	$e^{lpha t}$
3.	$\frac{\alpha}{p^2 + \alpha^2}$	sin αt
4.	$\frac{p}{p^2 + \alpha^2}$	$\cos \alpha t$
5.	$\frac{\alpha}{p^2 - \alpha^2}$	sh αt
6.	$\frac{p}{p^2-\alpha^2}$	$\chlpha t$
7.	$\frac{\beta}{(p-\alpha)^2+\beta^2}$	$e^{\alpha t}\sin\beta t$
8.	$\frac{p-\alpha}{(p-\alpha)^2+\beta^2}$	$e^{\alpha t}\cos \beta t$
9.	$\frac{n!}{p^{n+1}}$	t^n
10.	$\frac{2\alpha p}{(p^2 + \alpha^2)^2}$	$t \sin \alpha t$
11.	$\frac{p^2 - \alpha^2}{(p^2 + \alpha^2)^2}$	$t\cos \alpha t$
12.	$\frac{1}{(p^2+\alpha^2)^2}$	$\frac{1}{2\alpha^3}(\sin\alpha t - \alpha t\cos\alpha t)$
13.	$\frac{1}{(p-\alpha)^2}$	te ^{αt}
14.	$\frac{n!}{(p-\alpha)^{n+1}}$	$t^n e^{lpha t}$
15.	$\frac{\pi}{2}$ – arctg $\frac{p}{\alpha}$	$\frac{\sin \alpha t}{t}$

16.	$\alpha F_1(p) + \beta F_2(p)$	$\alpha f_1(t) + \beta f_2(t)$
17.	$\frac{1}{\alpha}F\left(\frac{p}{\alpha}\right)$	$f(\alpha t)$
18.	$F(p-\alpha)$	$e^{\alpha t}f(t)$
19.	$e^{-p\tau}F(p)$	$f(t-\tau)$ (bu yerda $\tau > 0$)
20.	pF(p) - f(0)	f'(t)
21.	-F'(p)	tf(t)
22.	$(-1)^n \frac{d^n}{dp^n} F(p)$	$t^n f(t)$
23.	$\frac{F(p)}{p}$	$\int_0^t f(\tau)d\tau$
24.	$\int_{p}^{+\infty} F(q) dq$	$\frac{f(t)}{t}$
25.	$F_1(p) \cdot F_2(p)$	$\int_0^t f_1(\tau) f_2(t-\tau) d\tau$

3. Найти оргинала по его изображению

3. Quyidagi formulalarning aslini toping:.

1.
$$F(p) = \frac{1}{p^2 + 4p + 5}$$

3.
$$F(p) = \frac{1}{7-p+p^2}$$

2.
$$F(p) = \frac{1}{p^2 + 4p + 3}$$

4.
$$F(p) = \frac{1}{p(p^2 - 5p + 4)}$$

5.
$$F(p) = \frac{1}{(p-1)(p^2-4)}$$

6.
$$F(p) = \frac{1}{p+2p^2+p^3}$$

7.
$$F(p) = \frac{p+3}{p(p^2-4p+3)}$$

8.
$$F(p) = \frac{1}{(p^2+1)^2}$$

9.
$$F(p) = \frac{p}{(p^2+1)^2}$$

10.
$$F(p) = \frac{e^{-2p}}{p^2}$$

11.
$$F(p) = \frac{2e^{-p}}{p^3}$$

12.
$$F(p) = \frac{1}{p^2(p^2+1)}$$

13.
$$F(p) = \frac{p}{p^3 + 1}$$

22.
$$F(p) = \frac{p+3}{p^2 + 2p + 10}$$

23.
$$F(p) = \frac{p}{n^2 - 2n + 10}$$

24.
$$F(p) = \frac{1}{p^3 - 8}$$

25.
$$F(p) = \frac{p}{(p-1)^3(p+2)^2}$$

29.
$$F(p) = \frac{1}{p(p^2+1)(p^2+4)}$$

14.
$$F(p) = \frac{2p+3}{p^3+4p^2+5p}$$

15.
$$F(p) = \frac{p^2 + 2p - 1}{p^3 + 3p^2 + 3p + 1}$$

16.
$$F(p) = \frac{p+2}{(p+1)(p-2)(p^2+4)}$$

17.
$$F(p) = \frac{2p^3 + p^2 + 2p + 2}{p^5 + 2p^4 + 2p^3}$$

18.
$$F(p) = \frac{e^{-p}}{p(p-1)}$$

19.
$$F(p) = \frac{e^{-3p}}{(p+1)^2}$$

20.
$$F(p) = \frac{e^{-p}}{p^2 - 1} + \frac{pe^{-2p}}{p^2 - 4}$$

21.
$$F(p) = \frac{1}{p^2 + 1} (e^{-2p} + 2e^{-3p} + 3e^{-4p})$$

26.
$$F(p) = \frac{p+1}{p(p-1)(p-2)(p-3)}$$

27.
$$F(p) = \frac{p+3}{p(p^2-4p+3)}$$

28.
$$F(p) = \frac{1}{(p-1)(p^2-4)}$$

$$F(p) = \frac{1}{p(p^4 - 5p^2 + 4)}$$

Differensial tenglama va differensial tenglamalar sistemalarini

yehichning operatsion xisob usuli.

- 4. Koshi masalasini yeching

1)
$$x'' + 3x' = e^t$$
, $x(0) = 0$, $x'(0) = -1$.

2)
$$x'' - 2x' = e^{2t}$$
, $x(0) = x'(0) = 0$.

3)
$$x'' + 2x' - 3x = e^{-t}$$
, $x(0) = 0$, $x'(0) = 1$.

4)
$$x''' + x' = 1$$
, $x(0) = x'(0) = x''(0) = 0$.

5)
$$x'' + 2x' = t \sin t$$
, $x(0) = x'(0) = 0$.

6)
$$x'' + 2x' + x = \sin t$$
, $x(0) = 0$, $x'(0) = -1$.

7)
$$x''' - x'' = \sin t$$
, $x(0) = x'(0) = x''(0) = 0$.

8)
$$x'' - 2x' + x = e^t$$
, $x(0) = 0$, $x'(0) = 1$.

9)
$$x'' + 2x' + 5x = 0$$
, $x(0) = -1$, $x'(0) = 2$.

10)
$$x'' - 2x' + 2x = 1$$
, $x(0) = x'(0) = 0$.

11)
$$x'' + x' = \cos t$$
, $x(0) = 2$, $x'(0) = 0$.

12)
$$x'' + 2x' + x = t^2$$
, $x(0) = 1$, $x'(0) = 0$.

13)
$$x''' + x'' = \sin t$$
, $x(0) = x'(0) = 1$, $x''(0) = 0$.

14)
$$x'' + x = \cos t$$
, $x(0) = -1$, $x'(0) = 1$.

15)
$$x''' + x'' = t$$
, $x(0) = -3$, $x'(0) = 1$, $x''(0) = 0$.

16)
$$x'' + 2x' + 5x = 3$$
, $x(0) = 1$, $x'(0) = 0$.

17)
$$x''' + x' = e^t$$
, $x(0) = 0$, $x'(0) = 2$, $x''(0) = 0$.

18)
$$x''' + x'' = \cos t$$
, $x(0) = -2$, $x'(0) = x''(0) = 0$.

19)
$$x^{IV} - x'' = 1$$
, $x(0) = x'(0) = x''(0) = x'''(0) = 0$.

20)
$$x^{IV} - x'' = \cos t$$
, $x(0) = 0$, $x'(0) = -1$, $x''(0) = x'''(0) = 0$.

21)
$$x'' - x' = te^t$$
, $x(0) = x'(0) = 0$.

22)
$$x'' + 2x' + x = 2\cos^2 t$$
, $x(0) = x'(0) = 0$.

23)
$$x'' - 2x' + x = t - \sin t$$
, $x(0) = x'(0) = 0$.

24)
$$x'' + 4x = 2\cos t \cdot \cos 3t$$
, $x(0) = x'(0) = 0$.

25)
$$x'' - x' = t^2$$
, $x(0) = 0$, $x'(0) = 1$.

26)
$$x''' + x = \frac{1}{2}t^2e^t$$
, $x(0) = x'(0) = x''(0) = 0$.

27)
$$x'' + x = t \cos 2t$$
, $x(0) = x'(0) = 0$.

28)
$$x'' + x' + x = te^t$$
, $x(0) = x'(0) = 0$.

29)
$$x''' + 3x'' + 3x' + x = 1$$
, $x(0) = x'(0) = x''(0) = 0$.

30)
$$x^{IV} + 2x'' + x = t \sin t$$
, $x(0) = x'(0) = x''(0) = x'''(0) = 0$.

5. Quyidagi differensial tenglamalarni operatsion xisob usulida yeching:

1)
$$x'' + x' = t$$
, $x(0) = x'(0) = 0$.

2)
$$x''' + x' = e^t$$
, $x(0) = x'(0) = x''(0) = 0$.

3)
$$x'' - 2x' = t^2 e^t$$
, $x(0) = x'(0) = 0$.

4)
$$x'' + 2x' + 2x = \sin t$$
, $x(0) = x'(0) = 0$.

5)
$$x'' = \operatorname{arctg} t$$
, $x(0) = x'(0) = 0$.

6)
$$x'' + x = \frac{1}{2 + \cos t}$$
, $x(0) = x'(0) = 0$.

Javob: $x = t \sin t - \frac{4}{\sqrt{3}} \sin t \arctan \frac{\operatorname{tg} \frac{t}{2}}{\sqrt{3}} + \cos t \ln(2 + \cos t) - \ln 3 \cos t$.

7)
$$x'' + x' = \frac{1}{4 + tg^2 t}, \quad x(0) = x'(0) = 0.$$

Javob: x

$$= \frac{1}{3} - \frac{9 - \pi\sqrt{3}}{27} \cos t + \frac{\sqrt{3}}{36} \sin t \ln\left(\frac{\sqrt{3}\sin t - 2}{\sqrt{3}\sin t + 2}\right) - \frac{\sqrt{3}}{9} \cos t \arctan(\sqrt{3}\cos t).$$

8)
$$x'' + x = \cos t$$
, $x(0) = x'(0) = 0$.

9)
$$x'' + x' = \frac{1}{1 + \cos^2 t}, \quad x(0) = x'(0) = 0.$$

Javob: $x = \cos t \operatorname{arcth}(\cos t) - \frac{\pi}{4} \cos t - \frac{1}{2\sqrt{2}} \sin t \ln \left| \frac{\sin t - \sqrt{2}}{\sin t + \sqrt{2}} \right|$.

10)
$$x'' - x = \sinh t$$
, $x(0) = x'(0) = 0$.

11)
$$x'' - 2x' + x = \operatorname{ch} t$$
, $x(0) = x'(0) = 0$.

12)
$$x''' + x' = \frac{1}{2 + \sin t}$$
, $x(0) = x'(0) = x''(0) = 0$.

Javob:
$$x = \ln 2 \cos t -$$

$$-\cos t \ln(2+\sin t) - t \sin t + \frac{2}{\sqrt{3}} (2\sin t + 1) \left(\arctan \frac{2 \operatorname{tg} \frac{t}{2} + 1}{\sqrt{3}} - \frac{\pi}{6} \right).$$

13)
$$x'' - x = \text{th } t$$
, $x(0) = x'(0) = 0$.

14)
$$x'' + x' = t$$
, $x(0) = x'(0) = 0$.

15)
$$x''' + x' = e^t$$
, $x(0) = x'(0) = x''(0) = 0$.

16)
$$x'' - 2x' = t^2 e^t$$
, $x(0) = x'(0) = 0$.

17)
$$x'' + 2x' + 2x = \sin t$$
, $x(0) = x'(0) = 0$.

18)
$$x'' = \operatorname{arctg} t$$
, $x(0) = x'(0) = 0$.

19)
$$x'' + x = \frac{1}{2 + \cos t}$$
, $x(0) = x'(0) = 0$.

Javob: $x = t \sin t - \frac{4}{\sqrt{3}} \sin t \arctan \frac{\operatorname{tg} \frac{t}{2}}{\sqrt{3}} + \cos t \ln(2 + \cos t) - \ln 3 \cos t$.

20)
$$x'' + x' = \frac{1}{4 + tg^2 t}$$
, $x(0) = x'(0) = 0$.

Javob: x

$$= \frac{1}{3} - \frac{9 - \pi\sqrt{3}}{27} \cos t + \frac{\sqrt{3}}{36} \sin t \ln\left(\frac{\sqrt{3}\sin t - 2}{\sqrt{3}\sin t + 2}\right) - \frac{\sqrt{3}}{9} \cos t \arctan(\sqrt{3}\cos t).$$

21)
$$x'' + x = \cos t$$
, $x(0) = x'(0) = 0$.

22)
$$x'' + x' = \frac{1}{1 + \cos^2 t}$$
, $x(0) = x'(0) = 0$.

Javob: $x = \cos t \operatorname{arcth}(\cos t) - \frac{\pi}{4} \cos t - \frac{1}{2\sqrt{2}} \sin t \ln \left| \frac{\sin t - \sqrt{2}}{\sin t + \sqrt{2}} \right|$.

23)
$$x'' - x = \sinh t$$
, $x(0) = x'(0) = 0$.

24)
$$x'' - 2x' + x = \operatorname{ch} t$$
, $x(0) = x'(0) = 0$.

25)
$$x''' + x' = \frac{1}{2 + \sin t}, \quad x(0) = x'(0) = x''(0) = 0.$$

Javob:
$$x = \ln 2 \cos t -$$

$$-\cos t \ln(2+\sin t) - t \sin t + \frac{2}{\sqrt{3}} (2\sin t + 1) \left(\arctan \frac{2 \operatorname{tg} \frac{t}{2} + 1}{\sqrt{3}} - \frac{\pi}{6} \right).$$

26)
$$x'' - x = \text{th } t$$
, $x(0) = x'(0) = 0$.

27)
$$x'' + x' = t$$
, $x(0) = x'(0) = 0$.

28)
$$x''' + x' = e^t$$
, $x(0) = x'(0) = x''(0) = 0$.

29)
$$x'' - 2x' = t^2 e^t$$
, $x(0) = x'(0) = 0$.

30)
$$x'' + 2x' + 2x = \sin t$$
, $x(0) = x'(0) = 0$.

6. Berilgan differensial tenglamalar sistemasini yeching

1)
$$\begin{cases} x' = y - 1, & x(0) = 1; \\ y' = -x + 2, & y(0) = 0; \end{cases}$$

2)
$$\begin{cases} x' = y - 1, & x(0) = 1; \\ y' = -x - 2y, & y(0) = -1; \end{cases}$$

3)
$$\begin{cases} 3x' + 2x + y' = 1, & x(0) = 0; \\ x' + 4y' + 3y = 0, & y(0) = 0; \end{cases}$$

4)
$$\begin{cases} x' = 3x + 4y, & x(0) = 1; \\ y' = 4x - 3y, & y(0) = 1; \end{cases}$$

5)
$$\begin{cases} x' = -y, & x(0) = 1; \\ y' = 2x + 2y, & y(0) = 1; \end{cases}$$

6)
$$\begin{cases} x' = -x + 3y + 1, & x(0) = 1; \\ y' = x + y, & y(0) = 2; \end{cases}$$
7)
$$\begin{cases} x' = x + 4y, & x(0) = 1; \\ y' = 2x - y + 9, & y(0) = 0; \end{cases}$$

7)
$$\begin{cases} x' = x + 4y, & x(0) = 1; \\ y' = 2x - y + 9, & y(0) = 0; \end{cases}$$

8)
$$\begin{cases} x' = 2y + 1, & x(0) = -1; \\ y' = 2x + 3, & y(0) = 0; \end{cases}$$

9)
$$\begin{cases} x' = 3y, & x(0) = 2; \\ y' = 3x + 1 & y(0) = 0; \end{cases}$$

10)
$$\begin{cases} x' = -2x + y, & x(0) = 0; \\ y' = 3x & y(0) = 1; \end{cases}$$

11)
$$\begin{cases} x' = -2x + y + 2, & x(0) = 1; \\ y' = 3x & y(0) = 0; \end{cases}$$

12)
$$\begin{cases} x' = -3x - 4y + 1, & x(0) = -1; \\ y' = 4x - 2y & y(0) = 0; \end{cases}$$

13)
$$\begin{cases} x' = 2y, & x(0) = 2; \\ y' = 2x, & y(0) = 2; \end{cases}$$

14)
$$\begin{cases} x' = 2x - 2y, & x(0) = 3; \\ y' = -4x, & y(0) = 1; \end{cases}$$

15)
$$\begin{cases} x' = 3x + 5y + 2, & x(0) = 0; \\ y' = 3x + y + 1, & y(0) = 2; \end{cases}$$

15)
$$\begin{cases} x' = 3x + 5y + 2, & x(0) = 0; \\ y' = 3x + y + 1, & y(0) = 2; \end{cases}$$
16)
$$\begin{cases} x' = 2x + 2y + 2, & x(0) = 0; \\ y' = 4y + 1, & y(0) = 1; \end{cases}$$
17)
$$\begin{cases} x' = x + 2y, & x(0) = 0; \\ y' = 2x + y + 1, & y(0) = 5; \end{cases}$$
18)
$$\begin{cases} x' = y + 3, & x(0) = 1; \\ y' = x + 2, & y(0) = 0; \end{cases}$$

17)
$$\begin{cases} x' = x + 2y, & x(0) = 0; \\ y' = 2x + y + 1, & y(0) = 5; \end{cases}$$

18)
$$\begin{cases} x' = y + 3, & x(0) = 1; \\ y' = x + 2, & y(0) = 0; \end{cases}$$

19)
$$\begin{cases} x' = -y - z, & x(0) = -1; \\ y' = -x - z & y(0) = 0; \\ z' = -x - y, & z(0) = 1; \end{cases}$$

20)
$$\begin{cases} x' = y + z, & x(0) = 0; \\ y' = 3x + z & y(0) = 1; \\ z' = 3x + y, & z(0) = 1. \end{cases}$$

21)
$$\begin{cases} x' = 3x + 4y, & x(0) = 1; \\ y' = 4x - 3y, & y(0) = 1; \end{cases}$$

22)
$$\begin{cases} x' = -y, & x(0) = 1; \\ y' = 2x + 2y, & y(0) = 1; \end{cases}$$

22)
$$\begin{cases} x' = -y, & x(0) = 1; \\ y' = 2x + 2y, & y(0) = 1; \end{cases}$$
23)
$$\begin{cases} x' = -x + 3y + 1, & x(0) = 1; \\ y' = x + y, & y(0) = 2; \end{cases}$$

$$\begin{cases} x' = x + 4y, & x(0) = 1; \\ y' = 2x - y + 9, & y(0) = 0; \end{cases}$$

25)
$$\begin{cases} x' = 2y + 1, & x(0) = -1; \\ y' = 2x + 3, & y(0) = 0; \end{cases}$$

26)
$$\begin{cases} x' = 3y, & x(0) = 2; \\ y' = 3x + 1 & y(0) = 0; \end{cases}$$

27)
$$\begin{cases} x' = -2x + y, & x(0) = 0; \\ y' = 3x & y(0) = 1; \end{cases}$$

28)
$$\begin{cases} x' = -2x + y + 2, & x(0) = 1; \\ y' = 3x & y(0) = 0; \end{cases}$$

29)
$$\begin{cases} x' = -3x - 4y + 1, & x(0) = -1; \\ y' = 4x - 2y & y(0) = 0; \end{cases}$$
30)
$$\begin{cases} x' = 2y, & x(0) = 2; \\ y' = 2x, & y(0) = 2; \end{cases}$$

30)
$$\begin{cases} x' = 2y, & x(0) = 2; \\ y' = 2x, & y(0) = 2; \end{cases}$$