Módulo 1: Introducción a Machine Learning y Deep Learning 🧠

Duración Estimada: 3 Horas

1. Machine Learning (ML): Conceptos Básicos y Funcionamiento

El Machine Learning (Aprendizaje Automático) es una rama de la Inteligencia Artificial (IA) que permite a los sistemas aprender de los datos, identificar patrones y tomar decisiones con una mínima intervención humana.

Conceptos Clave:

- **Datos:** El combustible del ML. Un algoritmo se entrena con grandes conjuntos de datos (ejemplos etiquetados, transacciones, imágenes, etc.).
- **Modelo:** Es la salida del proceso de entrenamiento. Es la estructura matemática que ha aprendido a mapear las entradas (datos) con las salidas (predicciones o clasificaciones).
- Entrenamiento: El proceso donde el algoritmo ajusta sus parámetros internos utilizando los datos para minimizar el error entre la predicción y el resultado real.

¿Cómo Funciona?

- 1. Recolección de Datos: Se obtienen y preparan datos históricos.
- 2. Elección del Modelo: Se selecciona un algoritmo (ej. regresión lineal, árboles de decisión, Random Forest).
- 3. Entrenamiento: El algoritmo "aprende" de los datos.
- 4. **Evaluación:** Se prueba el modelo con datos nuevos para ver su precisión.
- 5. **Despliegue:** Se utiliza el modelo para hacer predicciones en el mundo real.

Ejemplo Práctico: Detección de Spam 💿

- Datos: Miles de correos electrónicos clasificados manualmente como "Spam" o "No Spam" (Ham).
- Modelo ML: Un clasificador bayesiano o un clasificador de Vectores de Soporte (Support Vector Machine).
- Aprendizaje: El modelo identifica patrones en los correos *spam* (palabras como "oferta", "gratis", signos de exclamación excesivos).
- Resultado: El modelo puede predecir si un nuevo correo es spam antes de que llegue a tu bandeja de entrada.

2. Deep Learning (DL): Diferencias e Impacto

El Deep Learning (Aprendizaje Profundo) es un subcampo específico de Machine Learning.

Característica	Machine Learning (Tradicional)	Deep Learning
Arquitectura	Redes con 1-2 capas.	Redes Neuronales Profundas (con múltiples capas ocultas, de ahí el "Deep").
Ingeniería de Características	Requiere que un humano extraiga manualmente características importantes de los datos (ej. contar palabras en un texto).	Las redes aprenden y extraen automáticamente las características directamente de los datos brutos.

Datos Requeridos	Funciona bien con conjuntos de datos pequeños a medianos.	Requiere enormes cantidades de datos para un rendimiento óptimo.
Hardware	Puede ejecutarse en CPUs estándar.	Requiere GPUs (Unidades de Procesamiento Gráfico) o TPUs (Unidades de Procesamiento Tensorial) para el entrenamiento.

Impacto en la IA Moderna: 🚀

El DL es responsable de los avances más impresionantes en IA de la última década, debido a su capacidad para manejar datos no estructurados (imágenes, audio, texto).

Ejemplo Práctico: Reconocimiento Facial 📷

- ML Tradicional: Necesitaría que un programador defina características como "bordes de la nariz", "distancia entre ojos".
- Deep Learning (Redes Convolucionales CNN): La red aprende por sí misma, a través de sus múltiples capas, a detectar características jerárquicas:
 - 1. Capas Bajas: Detectan líneas y bordes simples.
 - 2. Capas Intermedias: Detectan formas (ojos, nariz, boca).
 - 3. Capas Altas: Ensamblan las formas para reconocer la cara completa de una persona.

3. Tipos de Aprendizaje (Paradigmas)

El ML se clasifica principalmente según la naturaleza de los datos de entrenamiento y la retroalimentación que recibe el modelo.

A. Aprendizaje Supervisado (Supervised Learning) 🥜

- Concepto: El modelo es entrenado con datos que están etiquetados o tienen la "respuesta" correcta conocida.
- Objetivo: Predecir un resultado futuro basado en los ejemplos aprendidos.
- Tipos de Problemas:
 - o Clasificación: Predecir una categoría (ej. ¿Es una imagen de perro o de gato?).
 - o Regresión: Predecir un valor numérico continuo (ej. ¿Cuál será el precio de una casa?).

Ejemplo: Predecir si un cliente comprará un producto (Sí/No) basándose en su edad, ingresos y historial de compras.

B. Aprendizaje No Supervisado (Unsupervised Learning) 🔍

- Concepto: El modelo es entrenado con datos no etiquetados. No hay una "respuesta" correcta predefinida.
- Objetivo: Descubrir patrones, estructuras o relaciones ocultas dentro de los datos por sí mismo.
- Tipos de Problemas:
 - o Clustering (Agrupamiento): Agrupar datos similares.
 - o Reducción de Dimensionalidad: Simplificar datos complejos.

Ejemplo: Segmentación de clientes para marketing. El modelo agrupa a los clientes con comportamientos de compra similares (ej. "Compradores Ocasionales de Lujo", "Compradores Frecuentes de Valor").

C. Aprendizaje por Refuerzo (Reinforcement Learning - RL) 🔀

- Concepto: Un agente aprende a tomar decisiones en un entorno interactivo para maximizar una recompensa acumulada.
- **Funcionamiento:** Aprende mediante prueba y error. El agente recibe una puntuación positiva (recompensa) por acciones correctas y una negativa (castigo) por acciones incorrectas.
- Aplicación: Controlar sistemas complejos donde no existe un conjunto de datos estático.

Ejemplo: Entrenar un **agente para jugar un videojuego** (como ajedrez o *Go*). El agente aprende la mejor estrategia recibiendo una recompensa por ganar y un castigo por perder.

4. Aplicaciones Prácticas: Impacto en la Vida Cotidiana y Negocios

ML y DL no son solo conceptos académicos; están incrustados en casi todos los aspectos de la vida moderna y son motores de transformación empresarial.

En la Vida Cotidiana 🌐

Tecnología	Tipo de Aprendizaje	Aplicación
Asistentes Virtuales	DL / PLN (Procesamiento del Lenguaje Natural)	Siri, Alexa o Google Assistant entienden lo que dices (lenguaje natural).
Recomendaciones	ML (Filtros Colaborativos)	Netflix te sugiere películas que te gustarán; Amazon te

		recomienda productos.
Traducción Automática	DL (Modelos Secuencia a Secuencia)	Google Translate traduce texto en tiempo real con alta precisión.
Conducción Autónoma	DL / Visión por Computadora	Los vehículos identifican peatones, señales de tráfico y otros coches.

En el Mundo de los Negocios ${\Bbb Z}$

Sector	Aplicación ML/DL	Beneficio Clave
Finanzas	Detección de Fraude (ML)	Analiza patrones de transacciones en tiempo real para bloquear actividades sospechosas.
Salud	Diagnóstico por Imagen (DL)	Modelos que analizan radiografías o resonancias magnéticas para detectar tumores con mayor rapidez y precisión que el ojo

		humano.
Logística	Optimización de Rutas (RL)	Los modelos encuentran las rutas de entrega más eficientes, ahorrando combustible y tiempo.
Manufactura	Mantenimiento Predictivo (ML)	Predice cuándo fallará una máquina para repararla antes de que la falla ocurra, evitando costosos paros de producción.

Ejercicio Práctico (30 min)

Instrucción: Utiliza una herramienta de IA conversacional (ChatGPT o similar) y aplícala a tu campo de estudio o industria.

Pregunta para la IA (Ejemplo para la industria de la Moda):

"Actúa como un experto en IA. Explícame de forma sencilla cómo el *Deep Learning* podría ser usado para **predecir las tendencias de color** de la próxima temporada en la industria de la moda, basándose en imágenes de redes sociales y desfiles históricos."

Objetivo:

- 1. Generar una explicación simple y relevante de ML o DL.
- 2. Ver la capacidad de la IA generativa para contextualizar estos conceptos en un sector específico.