Data Analysis Report

Analyzed by: Kanaga Manikandan Gopal Type of Analysis: Multiple Linear Regression Dataset: Annual sales data of a sample company

Overview of the Dataset:

The dataset is containing the data about the Annual Sales, Ad Budget, Price, Customer Visits, Competitor Price and Region.

Objective:

The goal is to explore the relationship between the response variable (Annual Sales) and the predictor variables (Ad Budget, Price, Customer Visits, Competitor Price and Region). With the Predicted outcomes and the assumptions for Linear Regression, the interpretations must be made.

Section 1: Data Visualization

- 1. Use appropriate plots to explore the relationships between the response variable and each of the predictors.
- 2. Interpretations on each graph.

Charts & Interpretations:

1. Ad Budget vs Annual Sales

Interpretation:

Increase in Ad Budget, increase in Annual Sales.

2. Price vs Annual Sales

Interpretation:

Increase in Price, slight decrease in Annual Sales.

3. Customer Visits vs Annual Sales

Interpretation:

Increase in Customer Visits, slight increase in Annual Sales.

4. Competitor Price vs Annual Sales

Interpretation:

Increase in Competitor Price, minor decrease in Annual Sales.

5. Region vs Annual Sales

Interpretations:

- a. The median sales for all regions moving around 250, showing a relatively consistent central tendency.
- b. The South region has significant outliers, with sales above 350 and dropping below 150. Similarly, the West region has extreme values above 400 and below 100.
- c. The East and North regions show a narrower distribution, with fewer outliers and a more concentrated sales range.
- d. The highest sales are achieved in the East and West regions, peaking close to 400.

Section 2: Estimation and Interpretation of Regression Models

- 1. Fit a multiple linear regression model with all five predictors adequately, performing the necessary transformations.
 - a. Provide the estimated regression equation.
 - b. Interpret all the coefficients of the predictor variables.
- 2. Discuss how the inclusion of the categorical variable affects the interpretation of the intercept.

Summary Output of the Whole Regression Model:

SUMMARY OUTPUT								
Regression	Statistics							
Multiple R	0.902567343							
R Square	0.814627809			Whole Regre	ssion Model			
Adjusted R Square	0.8139764							
Standard Error	19.84024759							
Observations	2000							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	7	3445864.185	492266.3121	1250.564054	0			
Residual	1992	784121.7656	393.6354245					
Total	1999	4229985.95						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	38.62915269	6.56689376	5.882408656	4.73103E-09	25.75045225	51.50785313	25.75045225	51.50785313
AdBudget	0.802006584	0.008980594	89.30440437	0	0.784394242	0.819618925	0.784394242	0.819618925
Price	-1.460722138	0.088445199	-16.51556169	1.58358E-57	-1.634176935	-1.287267342	-1.634176935	-1.287267342
CustomerVisits	0.656700992	0.036520981	17.98147195	4.1257E-67	0.585077666	0.728324318	0.585077666	0.728324318
CompetitorPrice	-0.389754271	0.110696781	-3.520917828	0.000439725	-0.606847883	-0.172660659	-0.606847883	-0.172660659
North	7.575518647	1.264965013	5.988717926	2.50278E-09	5.094725434	10.05631186	5.094725434	10.05631186
South	-3.514140139	1.262485864	-2.783508504	0.005428216	-5.990071356	-1.038208923	-5.990071356	-1.038208923
East	0.587346811	1.255107972	0.467965166	0.639860694	-1.874115212	3.048808833	-1.874115212	3.048808833

Estimated Regression Equation:

Interpretations of the Coefficients:

- **Intercept (38.63)** represents the expected value of the annual sales when all predictor variables are set to zero.
- AdBudget (0.802) represents a strong positive impact, meaning that increasing the advertising budget significantly boosts the annual sales.
- **Price (-1.461)** represents a negative impact, meaning that increasing the price leads to lower Annual Sales.
- **CustomerVisits (0.657)** shows a strong positive effect on annual sales which means more customer visits lead to higher sales.
- **CompetitorPrice (-0.390)** shows a negative but relatively small impact; higher competitor prices reduce the annual sales but not as strongly as other variables.
- North (7.576) represents that locations in the North region tend to perform better.
- South (-3.514) represents a Negative impact, showing worse performance in the South.
- East (0.587, p-value 0.64) represents an insignificant effect, meaning that the East region does not strongly impact the annual sales.

Section 3: Prediction of Annual Sales for a sample input

For a new predictor observed:

AdBudget = 200, Price = 20, CustomerVisits = 150, CompetitorPrice = 21, Region = "East" Compute:

- a. The point prediction for Annual Sales
- b. A 95% confidence interval for the expected value of sales
- c. A 95% prediction interval for a new observation

Summary Output of the Scenario Regression Model:

SUMMARY OUTPUT	Г									
Regression	Statistics									
Multiple R	0.898372076								Given S	cenario
R Square	0.807072386				Scenario Reg	ression Model			AdBudget	200
Adjusted R Square	0.806588616								Price	20
Standard Error	20.23038192								CustomerVisits	150
Observations	2000								CompetitorPrice	21
									Region (East)	1
ANOVA										
	df	SS	MS	F	Significance F					
Regression	5	3413904.855	682780.971	1668.296526	0					
Residual	1994	816081.0953	409.2683527							
Total	1999	4229985.95								
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%		
Intercept	260.7298042	0.894989905	291.321503	0	258.9745908	262.4850176	258.9745908	262.4850176		
AdBudget1	0.80225747	0.009156918	87.61216905	0	0.78429934	0.820215601	0.78429934	0.820215601		
Price2	-1.436942686	0.090105447	-15.94734548	5.59012E-54	-1.613653378	-1.260231993	-1.613653378	-1.260231993		
CustomerVisits	0.664560108	0.037211538	17.85898001	2.71901E-66	0.591582537	0.737537678	0.591582537	0.737537678		
CompetitorPrice1	-0.430063636	0.112781039	-3.813261881	0.000141312	-0.651244667	-0.208882606	-0.651244667	-0.208882606		
East1	-0.77032001	1.03755647	-0.742436708	0.457910233	-2.805128446	1.264488426	-2.805128446	1.264488426		

Point Prediction of the Annual Sales:

- Y cap = 38.62915269 + 0.802006584*200 + (-1.460722138)*20 + 0.656700992*150 + (-0.389754271)*21 + 0.587346811*1 + 7.575518647*0 + (-3.514140139)*0
- Y cap = **260.7236825**

Confidence Value -> t (alpha/2)	1.961155595	T.INV.2T(0.05,2000-7-1), where degree_of_freedom = n-k-1
Standard Deviation from Scenario Regression Model (SD)	0.894989905	
Standard Error from Whole Regression Model (SE)	19.84024759	
Margin of Error	38.94938116	Conf. Value* SQRT(SD^2 + SE^2)

A 95% confidence interval for the expected value of sales:

Lower Confidence Interval	258.9684681	Point Prediction - Conf. Value * SD
Upper Confidence Interval	262.478897	Point Prediction + Conf. Value * SD

A 95% prediction interval for a new observation:

Lower Prediction Interval	221.7743014	Point Prediction - Conf. Value * SQRT(SD^2 + SE^2)
Upper Prediction Interval	299.6730637	Point Prediction + Conf. Value * SQRT(SD^2 + SE^2)

Section 4: Goodness-of-Fit

Report and interpret:

- a. R-squared
- b. Adjusted R-squared
- c. RMSE or standard error of the regression

Regression Statistics of the Whole Regression Model

Regression Statistics			
Multiple R	0.902567343		
R Square	0.814627809		
Adjusted R Square	0.8139764		
Standard Error	19.84024759		
Observations	2000		

Interpretations:

1. R Square

- a. There is 81.4 percent variation in the output which is explained by the input variables.
- b. The rest of the precent in variation is due to the underlying hidden factors and couldn't be explained by the model.

2. Adjusted R Square

- a. There is a small difference between R² (0.81463) and Adjusted R² (0.81398).
- b. Most of the predictor variables are contributing significantly to predict the response variable which means that most predictors are relevant.
- c. No strong signs of overfitting.

3. Standard Error or RMSE

The actual value is about 19.84 units far from the model's predicted value.

Section 5: Tests of Significance

Conduct:

- a. An overall F-test for model significance
- b. t-tests for each predictor.

Interpret the results and state which predictors are statistically significant at the 5% level.

F-test data:

ANOVA					
	df	SS	MS	F	Significance F
Regression	7	3445864.185	492266.3121	1250.564054	0
Residual	1992	784121.7656	393.6354245		
Total	1999	4229985.95			

Interpretations:

- This test is to check if at least one predictor variable is statistically significant to predict the dependent variable in the model.
- Since p value (Significance F) < 0.05, the expected condition becomes true.

t-test Data:

	Coefficie nts	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	38.62915 269	6.566893 76	5.882408 656	4.73103E -09	25.75045 225	51.50785 313	25.75045 225	51.50785 313
AdBudget	0.802006 584	0.008980 594	89.30440 437	0	0.784394 242	0.819618 925	0.784394 242	0.819618 925
Price	- 1.460722 138	0.088445 199	- 16.51556 169	1.58358E -57	- 1.634176 935	- 1.287267 342	- 1.634176 935	- 1.287267 342
CustomerVi sits	0.656700 992	0.036520 981	17.98147 195	4.1257E- 67	0.585077 666	0.728324 318	0.585077 666	0.728324 318

Competitor	-	0.110696	-	0.000439	-	-	-	-
Price	0.389754 271	781	3.520917 828	725	0.606847 883	0.172660 659	0.606847 883	0.172660 659
North	7.575518 647	1.264965 013	5.988717 926	2.50278E -09	5.094725 434	10.05631 186	5.094725 434	10.05631 186
South	- 3.514140 139	1.262485 864	- 2.783508 504	0.005428 216	- 5.990071 356	- 1.038208 923	- 5.990071 356	- 1.038208 923
East	0.587346 811	1.255107 972	0.467965 166	0.639860 694	- 1.874115 212	3.048808 833	- 1.874115 212	3.048808 833

Interpretation:

This test is to find how each predictor is helpful for predicting the response variable.

Independent Variables	P value	Statistically Significant	Interpretations			
Intercept	4.73103E-09	YES	When all X values = 0 (independent variables), the Annual Sales is 38.63			
Ad Budget	0	YES	Sales increase significantly (very strong), when each unit in Ad Budget increases.			
Price	1.58358E-57	YES	Higher the price, lower the sales (Strong Negative Relationship)			
CustomerVisits	4.1257E-67	YES	More customer visits, more sales (highly significant), as p value < 0.05			
CompetitorPrice	0.000439725	YES	Higher competitor prices slightly reduce our sales, but statistically significant.			
North	2.50278E-09	YES	p < 0.05, the region dummy variable for North contributes meaningfully to the model.			
South	0.005428216	YES	p < 0.05, the region dummy variable for South contributes meaningfully to the model.			
East	0.639860694	NO	p > 0.05, the region dummy variable for East doesn't contribute meaningfully to the model.			

Section 6: Assumption Diagnostics

Evaluate the assumptions of the OLS model:

- Linearity
- Constant variance (Homoscedasticity)
- Normality of residuals
- Independence of errors
- No multicollinearity

Briefly explain how violations of assumptions, if any, might affect your analysis.

Interpretation of Assumptions using Scatter Plots, Histogram and VIF

Predicted Annual Sales vs Residuals Plot:

Assumptions 1 & 2: Linearity and Homoscedasticity **Interpretations:**

- a. There is no unusual pattern identified in Predicted Annual Sales vs Residuals Plot.
- b. We could see that the residuals are randomly scattered around the horizontal axis. So, linearity assumption is fulfilled.
- c. There is no visible cone shape which reflects an increase or a decrease in variance, so homoscedasticity assumption is fulfilled.

Histogram of Residuals:

Assumption 3: Normality of Residuals (Errors) **Interpretations:**

- a. The Errors are normally distributed. The histogram is bell-shaped and symmetric.
- b. So, the normality of residuals (errors) assumption is fulfilled.

Observations vs Residuals Plot:

Assumption 4: Independence of Errors **Interpretations:**

- a. Randomly scattered data in observations vs residuals plot, without any patterns (curves or funnel shapes) or trends. So, no errors are correlated with each other.
- b. This says that Independence of Errors assumption is fulfilled.

Variance Inflation Factor (VIF):

This factor explains how much the variance of a predictor's coefficient is inflated due to correlation with other predictors in a regression model. This inflation in variance is caused by multicollinearity, when predictors are linearly related to each other.

Assumption 5: No Multicollinearity

- To find if there is any multicollinearity occurrence in the dataset, we need to calculate the **Variance Inflation Factor (VIF).**
- We need to create Regression Model, keeping each predictor as dependent variable against all other predictors and fetch the R square value from each regression model.
- We need to calculate VIF using R square value of each regression model.
- Formula: VIF = 1 / (1-R Square)

Calculation Results:

Predictor	R^2	VIF
AdBudget	0.000441788	1.000441984
Price	0.003781088	1.003795439
CustomerVisits	0.001861995	1.001865469
CompetitorPrice	0.00286244	1.002870657
North	0.343120202	1.522348538
South	0.341417996	1.518413796
East	0.34402226	1.524441973

Scale for Multicollinearity:

If VIF = 1	No multicollinearity (Perfect Full Rank)
If VIF < 2	Very Low multicollinearity (Still Acceptable)
If 2 < VIF < 5 Moderate multicollinearity (needs attention)	
If VIF > 5	High multicollinearity (problematic)

Interpretations:

Predictor	R ²	VIF	Interpretation
AdBudget	0.000441788	1.0004	VIF $^{\sim}$ 1. So, no multicollinearity with other predictors.
Price	0.003781088	1.0038	VIF \sim 1. So, no multicollinearity with other predictors.
CustomerVisits	0.001861995	1.0019	VIF \sim 1. So, no multicollinearity with other predictors.
CompetitorPrice	0.00286244	1.0029	VIF \sim 1. So, no multicollinearity with other predictors.
North	0.343120202	1.5223	VIF < 2. Very low multicollinearity.
South	0.341417996	1.5184	VIF < 2. Very low multicollinearity.
East	0.34402226	1.5244	VIF < 2. Very low multicollinearity.

So, no multicollinearity assumption is fulfilled.