S'_B : a modified version of the S_B statistic that is more robust to low sample sizes

Fernando Racimo

October 2021

In Refoyo-Martinez et al. (2020), we defined the S_B statistic for a specific branch k of an admixture graph as:

$$S_B = \frac{((\mathbf{p} - \bar{p}\mathbf{1})^T \mathbf{b_k})^2}{\bar{p}(1 - \bar{p}) \mathbf{b_k}^T \hat{\mathbf{f}} \mathbf{b_k}}$$
(1)

Here, \mathbf{p} is the vector of sample allele frequencies across populations, $\hat{\mathbf{F}}$ is an estimate of the genome-wide allele frequency covariance matrix, and \bar{p} is the mean allele frequency among populations. The elements of the branch vector $\mathbf{b_k}$ are the ancestry contributions of that branch to each of the populations in the leaves of the graph.

This statistic makes use of the sample allele frequencies \mathbf{p} as an approximation the true population allele frequencies $\mathbf{\check{p}}$, which may be particularly poor if a SNP under study has sequence data from a few individuals in a given population.

Conditional on the population allele frequency for a population j, the sample allele frequency is binomially distributed:

$$p_i | \breve{p_i} \sim Bin(2n_i, \breve{p_i})$$
 (2)

where n_j is the number of diploid individuals for which there is reliable genotype data at a particular SNP of interest in population j. We can approximate the above equation using a Normal distribution:

$$p_j | \breve{p}_j \sim Normal(\breve{p}_j, \breve{q}_j)$$
 (3)

where \check{q}_j is equal to $\frac{\check{p}_j(1-\check{p}_j)}{2n_j}$. Like \check{p}_j , \check{q}_j will also not be known, and here we approximate it as $q_j = \frac{p_j(1-p_j)}{2n_j}$:

$$p_j | \breve{p}_j \sim Normal(\breve{p}_j, q_j)$$
 (4)

Conditional on knowing the population allele frequencies for all populations, the sample allele frequencies for each population are independent of each other. In vector notation:

$$\mathbf{p}|\tilde{\mathbf{p}} \sim MVN(\tilde{\mathbf{p}}, diag(\mathbf{q}))$$
 (5)

The population frequencies are, in turn, assumed to depend on some population-wide ancestral allele frequency e, as in Refoyo-Martinez et al. (2020):

$$\mathbf{\breve{p}} \sim MVN(e\mathbf{1}, \mathbf{e}(\mathbf{1} - \mathbf{e})\mathbf{F}) \tag{6}$$

where **1** is a vector of ones. If we make one further approximation and treat the variance of the conditional distribution as a constant that is not dependent on the mean, we can marginalize the population allele frequencies, and obtain:

$$\mathbf{p} \sim MVN(e\mathbf{1}, diag(\mathbf{q}) + \mathbf{e}(\mathbf{1} - \mathbf{e})\mathbf{F})$$
 (7)

We then mean-center the vector \mathbf{p} :

$$\mathbf{y} = \mathbf{p} - e\mathbf{1} \sim MVN(0, diag(\mathbf{q}) + \mathbf{e}(\mathbf{1} - \mathbf{e})\mathbf{F})$$
(8)

We multiply the mean-centered vector by the branch vector b_k for a branch of interest and obtain:

$$\mathbf{y}^{T}\mathbf{b} \sim Normal(0, \mathbf{b_k}^{T} diag(\mathbf{q}) \mathbf{b_k} + e(1 - e) \mathbf{b_k}^{T} \mathbf{F} \mathbf{b_k})$$
 (9)

Finally, we derive a statistic that follows a chi-squared distribution under neutrality:

$$\frac{((\mathbf{p} - \bar{p}\mathbf{1})^T \mathbf{b_k})^2}{\mathbf{b_k}^T diag(\mathbf{q}) \mathbf{b_k} + e(1 - e) \mathbf{b_k}^T \mathbf{F} \mathbf{b_k}} \sim \chi_1^2$$
(10)

If we use the mean sample frequency across populations \bar{p} as an estimate of the ancestral frequency e, and also use the empirical covariance matrix $\hat{\mathbf{F}}$ as an estimate of the true covariance matrix \mathbf{F} , we can obtain a statistic that penalizes sites in which the number of sampled individuals for a given branch's subtended populations is low:

$$S_B' = \frac{((\mathbf{p} - \bar{p}\mathbf{1})^T \mathbf{b_k})^2}{\mathbf{b_k}^T diag(\mathbf{q}) \mathbf{b_k} + \bar{p}(1 - \bar{p}) \mathbf{b_k}^T \hat{\mathbf{f}} \mathbf{b_k}}$$
(11)