INTERNATIONAL STANDARD

ISO 28801

First edition 2011-03-15

Double sampling plans by attributes with minimal sample sizes, indexed by producer's risk quality (PRQ) and consumer's risk quality (CRQ)

Plans d'échantillonnage double par attributs, avec taille d'échantillon minimale, indexés par la qualité du risque du fournisseur (QRF) et la qualité du risque du client (QRC)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

COPYRIGHT PROTECTED DOCUMENT

© ISO 2011

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

Contents Page Forewordiv Introduction......v 1 Scope......1 2 Terms, definitions, abbreviations and symbols......1 3 Choosing and operating a sampling plan.....4 4 Operating characteristics5 5 Average sample sizes5 Actual producer's and consumer's risks6 6 7 Average outgoing quality (AOQ)......6 8 Examples7 9 Tables and figures......7

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of tehnical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 28801 was prepared by Technical Committee ISO/TC 69, *Applications of statistical methods*, Subcommittee SC 5, *Acceptance sampling*.

Introduction

ISO 2859-1 provides double sampling plans for sampling by attributes. Those plans are indexed by acceptance quality limit (AQL) and are thus designed for a continuing series of lots. For each preferred range of lot sizes, i.e. for each sample size code letter, the first and second sample sizes of the double sampling plans in ISO 2859-1 are constant and equal across AQLs, while the acceptance numbers increase with the AQL.

As production processes and quality levels have improved during the latter half of the twentieth century, there has been a shift of interest towards sampling plans with smaller acceptance and rejection numbers than most of the plans in ISO 2859-1.

Moreover, in some industries, in an effort to focus on customers' more specific requirements, there has also been a trend towards shorter production runs. Sometimes these production runs are too short for the switching rules of AQL-indexed plans (such as those of ISO 2859-1) to operate effectively.

In order to address an evolving market need, this International Standard has been developed to provide double sampling plans by attributes indexed by producer's risk quality (PRQ) and consumer's risk quality (CRQ) and having the smallest possible acceptance and rejection numbers. No constraint has been placed on the relative sizes of the first and second sample sizes; instead, the first and second sample sizes have been derived to minimize the expected total amount of sampling subject to the nominal producer's risk, α , and consumer's risk, β , not being exceeded. The combinations (α , β) of nominal risks provided in this International Standard are (5 %, 5 %), (5 %, 10 %) and (10 %, 10 %).

Thus, the double sampling plans provided in this International Standard are of the following kind. In the case of sampling for nonconforming items, a lot is acceptable if no nonconforming items are found in the first random sample, and not acceptable if the sample contains two or more nonconforming items. If the first random sample contains precisely one nonconforming item, a second, smaller random sample is taken; if no nonconforming items are found in the second sample, then the lot is acceptable, otherwise it is not acceptable. For each pair of nominal producer's and consumer's risk, up to 17 preferred nominal values of CRQ and up to 17 preferred nominal values of PRQ are provided.

Similar plans are provided for nonconformities.

The double sampling sample sizes are minimal among sampling plans for acceptance inspection of isolated lots or for short series of lots. However, because the ISO 28801 plans do not rely on the protection of switching rules, the sample sizes are necessarily larger than those used for lot-by-lot inspection, such as those of ISO 2859-1, for similar producer's and consumer's quality levels, where these exist. This is illustrated by the following two examples, both for nonconforming items with nominal maximum producer's and consumer's risks or 5 % and 10 % respectively.

EXAMPLE 1

Source	Realized producer's risk	Realized consumer's risk	Producer's risk quality (PRQ)	Consumer's risk quality (CRQ)	Sample sizes
ISO 2859-1, code letter E, AQL = 1 %	5 %	10 %	0,394 %	20,6 %	8,8
ISO 28801, Tables 2 and 14	0,266 %	9,639 %	0,4 %	20 %	12,9

ISO 28801:2011(E)

EXAMPLE 2

Source	Realized producer's risk	Realized consumer's risk	Producer's risk quality (PRQ)	Consumer's risk quality (CRQ)	Sample sizes
ISO 2859-1, code letter F, AQL = 0,65 %	5 %	10 %	0,256 %	10,9 %	13,13
ISO 28801, Tables 2 and 14	0,435 %	9,920 %	0,25 %	10 %	26,16

A compensating feature of the ISO 28801 plans is that many of the realized producer's risks are much smaller than their nominal values.

Double sampling plans by attributes with minimal sample sizes, indexed by producer's risk quality (PRQ) and consumer's risk quality (CRQ)

1 Scope

This International Standard provides double sampling plans by attributes for the acceptance inspection of lots of discrete items. The plans are indexed by the producer's risk quality (PRQ) and the consumer's risk quality (CRQ) where the nominal producer's and consumer's risks are respectively either (5 %, 5 %), (5 %, 10 %) or (10 %, 10 %). Plans are provided for inspection for percent nonconforming and for inspection for nonconformities per 100 items. The lot is accepted if there are no nonconforming items (nonconformities) in the first random sample, and rejected if it contains two or more nonconforming items (nonconformities). If precisely one nonconforming item is found in the first sample, a second random sample is drawn; the lot is then accepted if the second sample contains no nonconforming items (nonconformities) and rejected otherwise.

The objective of this International Standard is to provide procedures that enable lot disposition to be determined quickly and economically if quality is particularly good or bad. For intermediate quality, a second sample is drawn in order to be able to discriminate more reliably between acceptable and unacceptable lots. The two sample sizes are chosen to minimize the maximum expected sample size with respect to incoming quality subject to the nominal risks not being exceeded.

Similarly, the plans may be used to test the hypothesis that a lot or process quality level is equal to the PRQ (i.e. acceptable) against the alternative hypothesis that the quality level is equal to the CRQ (i.e. unacceptable).

The plans are preferable to single sampling plans where the cost of inspection is high, where the delay and uncertainty caused by the possible requirement for second samples is inconsequential and where a relatively large ratio of the consumer's risk quality to the producer's risk quality can be tolerated.

The plans are suitable for isolated lots or for short series of lots, where the sum of the two sample sizes is no larger than about 10 % of the size of the lot. The plans are also suitable for continuing series of lots when lots that fail to satisfy the acceptance criteria are 100 % inspected and all nonconforming items replaced by conforming items; however, for continuing series of lots, consideration should also be given to using double sampling plans from ISO 2859-1.

The statistical theory underlying the plans, tables and figures is provided in Annex A.

2 Terms, definitions, abbreviations and symbols

2.1 Terms, definitions and abbreviations

The words "accepted", "accepted", etc., refer only to the use of the sampling plans contained in this International Standard and do not imply an agreement to accept any product. Determination of acceptability by the customer shall be as described in contractual documents.

For the purposes of this document, the following terms and definitions apply.

© ISO 2011 – All rights reserved

2.1.1

consumer's risk

CR

(acceptance sampling) probability of acceptance when the **quality level** (2.1.5) of the process has a value stated by the acceptance sampling plan as unsatisfactory

[ISO 3534-2:2006; 4.6.2]

2.1.2

consumer's risk quality

CRQ

(acceptance sampling) **quality level** (2.1.5) of a lot or process which, in the acceptance sampling plan, corresponds to a specified **consumer's risk** (2.1.1)

[ISO 3534-2:2006; 4.6.9]

2.1.3

producer's risk

PR

(acceptance sampling) probability of non-acceptance when the **quality level** (2.1.5) of the process has a value stated by the plan as acceptable

[ISO 3534-2:2006; 4.6.4]

2.1.4

producer's risk quality

PRQ

(acceptance sampling) **quality level** (2.1.5) of a lot or process which, in the acceptance sampling plan, corresponds to a specified **producer's risk** (2.1.3)

[ISO 3534-2:2006; 4.6.10]

2.1.5

quality level

(acceptance sampling) quality expressed as a rate of nonconforming units or rate of number of **nonconformities** (2.1.9)

[ISO 3534-2:2006; 4.6.16]

NOTE Rate (or fraction) can be expressed in the unit 1 or in percentage. Rate of nonconforming units can be read as a numerical value or a percentage of nonconforming units. Rate of number of nonconformities can be read as a number of nonconformities per unit or per 100 units.

2.1.6

average sample size

ASSI

(acceptance sampling) average number of units in sample inspected per lot in reaching decisions to accept or not to accept when using a given acceptance sampling plan

NOTE ASSI is dependent on the actual **quality level** (2.1.5) of the submitted lots.

[ISO 3534-2:2006; 4.7.3]

2.1.7

average outgoing quality

AOQ

(acceptance sampling) expected average quality level (2.1.5) of outgoing product for a given value of incoming product quality

[ISO 3534-2:2006; 4.7.1]

2.1.8

average outgoing quality limit

AOQL

(acceptance sampling) maximum **AOQ** (2.1.7) over all possible values of incoming product **quality level** (2.1.5) for a given acceptance sampling plan and rectification of all non-accepted lots unless specified otherwise

[ISO 3534-2:2006; 4.7.2]

2.1.9

nonconformity

non-fulfilment of a requirement

[ISO 9000:2005, 3.6.2; ISO 3534-2:2006; 3.1.11]

NOTE See notes to **defect** (2.1.11).

2.1.10

nonconforming item

item with one or more **nonconformities** (2.1.9)

[ISO 3534-2:2006; 1.2.12]

2.1.11

defect

non-fulfilment of a requirement related to an intended or specified use

[ISO 3534-2:2006; 3.1.12]

NOTE 1 The distinction between the concepts defect and **nonconformity** (2.1.9) is important as it has legal connotations, particularly those associated with product liability issues. Consequently, the term "defect" should be used with extreme caution.

NOTE 2 The intended use by the customer can be affected by the nature of the information, such as operating or maintenance instructions, provided by the customer.

2.2 Symbols

- α producer's risk
- β consumer's risk
- *m* size of the second sample in a double sampling plan
- *n* size of the first sample in a double sampling plan

3 Choosing and operating a sampling plan

3.1 Choosing a plan

The appropriate table from among Tables 1 to 6 shall be selected in accordance with whether inspection is for nonconforming items or nonconformities and the values of the nominal producer's and consumer's risks. The selected table shall be entered with the PRQ and CRQ to obtain the sample sizes n and m of the double sampling plan.

When the table indicates by asterisks that no double sampling plan with the prescribed acceptance and rejection numbers is available with the required properties, consideration should be given to decreasing the PRQ or increasing the CRQ, or both.

3.2 Operating a plan for nonconforming items

3.2.1 Acceptance sampling

A random sample of size n shall be drawn and inspected, where n is the first sample size given by the plan. If no nonconforming items are found in this first sample, the lot shall be accepted. If the number of nonconforming items found in this first sample is greater than or equal to two, the lot shall not be accepted.

If one nonconforming item is found in the first random sample, a second random sample of size m shall be drawn and inspected, where m is the second sample size given by the plan. If no further nonconforming items are found in this second sample, the lot shall be accepted. If one or more nonconforming items are found in this second sample, the lot shall not be accepted.

3.2.2 Hypothesis testing

The double sampling plan may alternatively be used for hypothesis testing when it is required to test the null hypothesis that the quality level is less than or equal to the PRQ against the alternative hypothesis that the quality level is greater than or equal to the CRQ. A first random sample of size n shall be drawn and inspected, where n is the first sample size given by the plan. If no nonconforming items are found in this first sample, the null hypothesis shall be accepted. If the number of nonconforming items found in this first sample is greater than or equal to two, the alternative hypothesis shall be accepted.

If one nonconforming item is found in the first random sample, a second random sample of size m shall be drawn and inspected, where m is the second sample size given by the plan. If no further nonconforming items are found in this second sample, the null hypothesis shall be accepted. If one or more nonconforming items are found in this second sample, the alternative hypothesis shall be accepted.

3.3 Operating a plan for nonconformities

3.3.1 Acceptance sampling

In order to determine the acceptability of a lot in a nonconformities-per-hundred-items inspection, the procedure specified in 3.2.1 for nonconforming inspection shall be used, except that the term "nonconforming items" shall be replaced by "nonconformities".

3.3.2 Hypothesis testing

In order to carry out a hypothesis test in a nonconformities-per-hundred-items inspection, the procedure specified in 3.2.2 for nonconforming inspection shall be used, except that the term "nonconforming items" shall be replaced by "nonconformities".

3.4 Notation

A notation used to describe such plans is (n, 0, 2; m, 1, 2). This indicates that the acceptance and rejection numbers for the first sample of size n are 0 and 2, and that the acceptance and rejection numbers for the first and second samples combined are 1 and 2, where the second sample is of size m.

4 Operating characteristics

The operating characteristic curves, shown in Figures 1 to 6, indicate the probability that a lot will be accepted under the various sampling plans for a range of quality levels.

The curves are based on the assumption that the sum of the two sample sizes is no more than about 10 % of the lot size. If the sum of the two sample sizes exceeds 10 % of the lot size, then the probabilities of accepting the lot are higher than those shown by the curves at all quality levels, so the producer's risk is reduced and the consumer's risk is increased.

NOTE A formula for the operating characteristic curves is provided in A.1.3 for nonconforming items and in A.2.3 for nonconformities.

5 Average sample sizes

5.1 Curtailed inspection

Under curtailed inspection, inspection is stopped as soon as the inspection results are sufficient to establish whether or not the lot is acceptable or, in the case of hypothesis testing, as soon as it is clear which hypothesis will be accepted. In the case of the double sampling plans in this International Standard, inspection would cease as soon as two nonconforming items (nonconformities) were found in the first sample or as soon as one nonconforming item (nonconformity) was found in the second sample. The operating characteristic curves are unaffected by curtailment, but the average sample size is reduced. The reduction is small at good quality levels but substantial at very poor quality levels. The disadvantage of curtailment is that it results in less precise estimates of the lot or process quality level; this matters more in the case of a continuing series of lots.

5.2 Average sample size (ASSI) for uncurtailed inspection

Average sample size curves for uncurtailed inspection for the double sampling plans of this International Standard are shown in Figures 7 to 12. These curves show the average sample sizes that may be expected to occur under the various sampling plans for a range of levels of process quality. For all the plans, the ASSI

- begins at the value n for perfect quality (because only the whole of the first sample is inspected),
- rises to a maximum where the process quality level p is equal to 1/n, i.e. 100/n % nonconforming or 100/n nonconformities per 100 items,
- falls more gradually to the value n as the process quality level p worsens beyond 1/n (again because ultimately only the whole of the first sample is inspected).

NOTE A formula for the average sample size for uncurtailed inspection is provided in A.1.4.1 for nonconforming items and in A.2.4.1 for nonconformities. Formulae for the corresponding maximum ASSI are given in A.1.5 and A.2.5.

The average sample sizes of the double sampling plans at the PRQ and CRQ for uncurtailed inspection are given in Tables 7 to 12. Also given are the maximum average sample sizes.

EXAMPLE Suppose that it is required to carry out a test of whether the quality level in a large lot is no more than 0,25 % nonconforming. It has been agreed that the probability of acceptance should be at least 95 % if the lot has a quality level of 0,25 % nonconforming, but no more than 5 % if the quality is as bad as 5 % nonconforming.

© ISO 2011 – All rights reserved

Thus the PRQ is 0,25 % and the CRQ is 5 %, with producer's and consumer's risks both equal to 5 %. Table 1 shows that the appropriate plan has an initial sample of size n = 66 and a second sample size, if required, of m = 39. Table 7 shows for this sampling plan that the ASSI is 71,5 at the PRQ and 70,6 at the CRQ, with a maximum of 80,5.

5.3 Average sample size (ASSI) for curtailed inspection

Average sample size curves for curtailed inspection for the double sampling plans of this International Standard are shown in Figures 19 to 24. As in the case of uncurtailed inspection, for all the plans the ASSI begins at the value n for perfect quality and rises to a maximum. For plans for nonconforming items the ASSI then falls to the value 2 as quality worsens, because at least two nonconforming items are required for non-acceptance; for plans for nonconformities the ASSI falls to the value 1 as quality worsens because, at a quality level of an infinite number of nonconformities per 100 items, the first item will be certain to have more than one nonconformity.

NOTE Formulae for the average sample sizes under curtailed inspection are provided in A.1.4.2 for nonconforming items and in A.2.4.2 for nonconformities.

The average sample sizes of the double sampling plans at the PRQ and CRQ for curtailed inspection are given in Tables 25 to 30. Also given are the maximum average sample sizes.

EXAMPLE Consider again the plan for the example in 5.2, but suppose that this time it is used with curtailment. The relevant ASSIs are then given in Table 25. It can be seen that effect of curtailment is to reduce the ASSI at the PRQ from 71,5 to 69,1, at the CRQ from 70,6 to 38,2 and at the maximum from 80,5 to 73,7.

It is typical of curtailment that it leads to increasing reductions in the ASSI as the quality level worsens.

6 Actual producer's and consumer's risks

Because the sample sizes m and n are necessarily integers, the actual producer's and consumer's risks will in general be less than their nominal values. These actual risks are presented in Tables 13 to 18. Note that, whereas the consumer's risks are typically close to their nominal values, the producer's risks are in some cases much smaller.

EXAMPLE For the data in the example of 5.2, Table 13 shows that the actual producer's risk is 2,510 % (i.e. about half of its nominal value) and the actual consumer's risk is 4,978 % (i.e. just below its nominal value).

7 Average outgoing quality (AOQ)

For a continuing series of lots with rectification of all lots that fail to meet the acceptance criteria, it is of interest to know the long-term AOQ at different levels of incoming quality. Tables 19 to 24 present the values of the AOQ at the PRQ and at the CRQ, together with the maximum over all levels of incoming quality. This maximum is called the average outgoing quality limit (AOQL). AOQ curves for the plans of this International Standard are presented in Figures 13 to 18.

NOTE It is only by means of high (and generally uneconomical) average levels of inspection that good average outgoing quality levels are achieved at poor incoming quality levels.

EXAMPLE For the data in the example of 5.2, Table 19 shows that the average outgoing quality is 0,244 % at the PRQ and 0,249 % at the CRQ with a maximum of 0,869 %. The AOQ curve for this example is shown in Figure 13.

8 Examples

8.1 Example of sampling plan for nonconforming items

A retailer intends to purchase a single production lot of ten thousand low-energy light bulbs from an accredited supplier. The supplier demonstrates by in-house records that only one bulb in 1 000 will fail on first use. The retailer customarily audits such supplies by means of a product sampling plan agreed with the supplier on the basis that

- a) the cost of sampling is factored into the contract price, and
- b) if the lot is not accepted, the supplier pays for the 100 % test and the associated cost of replacing the nonconforming light bulbs.

The agreed sampling plan is a double sampling plan with nominal producer's and consumer's risks of 5 %, a PRQ of 0,1 % and a CRQ of 2,5 %. Entering Table 1 with these parameters yields the sample sizes n = 133 and m = 80. A random sample of 133 light bulbs is drawn from the lot and tested. One light bulb in the sample immediately fails, so a second random sample of 80 bulbs is drawn from the lot and tested. None of these light bulbs fail, so the lot is accepted.

8.2 Example of sampling plan for nonconformities

2 000 metres of 17 cm wide weatherboarding is to be supplied to a builder for use in a prestigious barn conversion. The owner of the barn has specifically requested that the weatherboarding be knot-free. From past experience the builder decides that, on the basis of the lengths required, he can manage to comply with this if the supplied weatherboarding contains knots at a rate of no more than 4 per 100 metres length on average. The supplier claims that his premium weatherboarding is virtually knot-free and so he is prepared to use a PRQ of 1 knot per 500 metres. Both supplier and builder decide to limit their risk to 5 %.

Table 4 is therefore used, and entered with a PRQ of 0.2% and a CRQ of 4%, yielding a double sampling plan with first sample size n equal to 84 and second sample size m equal to 51. 84 one-metre lengths of weatherboarding are selected at random from the consignment and checked for knots. Two are found, so the consignment is rejected without a second sample being necessary, and the supplier agrees to carry out 100% inspection on-site, replacing any lengths of weatherboarding found to have knots.

9 Tables and figures

The numbering scheme and location of the tables and figures of this International Standard are given below:

	Nonc	conforming i	tems	No	onconformiti	es
Contents	$\alpha \leqslant 5 \%$, $\beta \leqslant 5 \%$	$\alpha \leqslant 5 \%$, $\beta \leqslant 10 \%$	$\alpha \leqslant 10 \%,$ $\beta \leqslant 10 \%$	$\alpha \leqslant 5 \%$, $\beta \leqslant 5 \%$	$\alpha \leqslant 5 \%$, $\beta \leqslant 10 \%$	$\alpha \leqslant 10 \%$, $\beta \leqslant 10 \%$
Sample sizes of the plans	Table 1	Table 2	Table 3	Table 4	Table 5	Table 6
Sample sizes of the plans	Page 8	Page 9	Page 10	Page 11	Page 12	Page 13
Average sample sizes at the	Table 7	Table 8	Table 9	Table 10	Table 11	Table 12
PRQ, maximum and CRQ, uncurtailed inspection	Page 14	Page 15	Page 16	Page 17	Page 18	Page 19
Actual risks	Table 13	Table 14	Table 15	Table 16	Table 17	Table 18
Actual risks	Page 20	Page 21	Page 22	Page 23	Page 24	Page 25
Average outgoing qualities	Table 19	Table 20	Table 21	Table 22	Table 23	Table 24
Average outgoing qualities	Page 26	Page 27	Page 28	Page 29	Page 30	Page 31

ISO 28801:2011(E)

	Nonc	onforming i	tems	No	onconformiti	es
Contents	$\alpha \leqslant 5 \%$, $\beta \leqslant 5 \%$	$\alpha \leqslant 5 \%$, $\beta \leqslant 10 \%$	$\alpha \leqslant 10 \%$, $\beta \leqslant 10 \%$	$\alpha \leqslant 5 \%$, $\beta \leqslant 5 \%$	$\alpha \leqslant 5 \%$, $\beta \leqslant 10 \%$	$\alpha \le 10 \%$, $\beta \le 10 \%$
Average sample sizes at the PRQ, maximum and CRQ, curtailed inspection	Table 25	Table 26	Table 27	Table 28	Table 29	Table 30
	Page 32	Page 33	Page 34	Page 35	Page 36	Page 37
Operating characteristic curves	Figure 1	Figure 2	Figure 3	Figure 4	Figure 5	Figure 6
	Page 38	Page 39	Page 40	Page 41	Page 42	Page 43
Average sample size curves for uncurtailed inspection	Figure 7	Figure 8	Figure 9	Figure 10	Figure 11	Figure 12
	Page 44	Page 45	Page 46	Page 47	Page 48	Page 49
Average outgoing quality curves	Figure 13	Figure 14	Figure 15	Figure 16	Figure 17	Figure 18
	Page 50	Page 51	Page 52	Page 53	Page 54	Page 55
Average sample size curves for curtailed inspection	Figure 19	Figure 20	Figure 21	Figure 22	Figure 23	Figure 24
	Page 56	Page 57	Page 58	Page 59	Page 60	Page 61

Table 1 — Sample sizes n and m for double sampling plans of the form (n, 0, 2; m, 1, 2) for nonconforming items: $\alpha \leqslant 5$ % and $\beta \leqslant 5$ %

PRQ	Sample						Consu	mer's r	isk qua	lity (%)	1				
(%)	sizes	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
0.1	n	210	169	133	105	84	66	52	41	33	26	20	15	12	9
0,1	m	122	94	80	64	46	39	31	23	17	14	11	10	7	6
0,125	n	*	169	133	105	84	66	52	41	33	26	20	15	12	9
0,125	m	*	94	80	64	46	39	31	23	17	14	11	10	7	6
0,16	n	*	*	133	105	84	66	52	41	33	26	20	15	12	9
0,10	m	*	*	80	64	46	39	31	23	17	14	11	10	7	6
0,2	n	*	*	*	105	84	66	52	41	33	26	20	15	12	9
0,2	m	*	*	*	64	46	39	31	23	17	14	11	10	7	6
0,25	n	*	*	*	*	84	66	52	41	33	26	20	15	12	9
0,25	m	*	*	*	*	46	39	31	23	17	14	11	10	7	6
0,315	n	*	*	*	*	*	66	52	41	33	26	20	15	12	9
0,313	m	*	*	*	*	*	39	31	23	17	14	11	10	7	6
0,4	n	*	*	*	*	*	*	52	41	33	26	20	15	12	9
0,4	m	*	*	*	*	*	*	31	23	17	14	11	10	7	6
0,5	n	*	*	*	*	*	*	*	41	33	26	20	15	12	9
0,5	m	*	*	*	*	*	*	*	23	17	14	11	10	7	6
0,63	n	*	*	*	*	*	*	*	*	33	26	20	15	12	9
0,03	m	*	*	*	*	*	*	*	*	17	14	11	10	7	6
0,8	n	*	*	*	*	*	*	*	*	*	26	20	15	12	9
0,0	m	*	*	*	*	*	*	*	*	*	14	11	10	7	6
1,0	n	*	*	*	*	*	*	*	*	*	*	20	15	12	9
1,0	m	*	*	*	*	*	*	*	*	*	*	11	10	7	6
1,25	n	*	*	*	*	*	*	*	*	*	*	21	15	12	9
1,20	m	*	*	*	*	*	*	*	*	*	*	9	10	7	6
1,6	n	*	*	*	*	*	*	*	*	*	*	*	17	12	9
1,0	m	*	*	*	*	*	*	*	*	*	*	*	6	7	6
2,0	n	*	*	*	*	*	*	*	*	*	*	*	*	12	9
2,0	m	*	*	*	*	*	*	*	*	*	*	*	*	7	6
2,5	n	*	*	*	*	*	*	*	*	*	*	*	*	*	9
2,0	m	*	*	*	*	*	*	*	*	*	*	*	*	*	6

NOTE Cells containing asterisks indicate that no double sampling plan of the form (n, 0, 2; m, 1, 2) for nonconforming items exists with $\alpha \le 5$ % and $\beta \le 5$ % for that combination of producer's risk quality and consumer's risk quality; consider decreasing the PRQ or increasing the CRQ, or both.

Table 2 — Sample sizes n and m for double sampling plans of the form (n, 0, 2; m, 1, 2) for nonconforming items: $\alpha \leqslant 5$ % and $\beta \leqslant 10$ %

PRQ	Sample							Cons	umer'	s risk	quali	t y (%)						
(%)	sizes	0,8	1,0	1,25	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
0.4	n	336	269	216	168	133	106	84	66	53	42	33	26	20	15	12	9	7
0,1	m	214	170	133	105	87	70	55	43	33	26	20	16	14	12	9	8	6
0,125	n	*	269	216	168	133	106	84	66	53	42	33	26	20	15	12	9	7
0,125	m	*	170	133	105	87	70	55	43	33	26	20	16	14	12	9	8	6
0,160	n	*	*	216	168	133	106	84	66	53	42	33	26	20	15	12	9	7
0,100	m	*	*	133	105	87	70	55	43	33	26	20	16	14	12	9	8	6
0,2	n	*	*	*	168	133	106	84	66	53	42	33	26	20	15	12	9	7
0,2	m	*	*	*	105	87	70	55	43	33	26	20	16	14	12	9	8	6
0,25	n	*	*	*	*	133	106	84	66	53	42	33	26	20	15	12	9	7
0,23	m	*	*	*	*	87	70	55	43	33	26	20	16	14	12	9	8	6
0,315	n	*	*	*	*	*	106	84	66	53	42	33	26	20	15	12	9	7
0,515	m	*	*	*	*	*	70	55	43	33	26	20	16	14	12	9	8	6
0,4	n	*	*	*	*	*	*	84	66	53	42	33	26	20	15	12	9	7
0,4	m	*	*	*	*	*	*	55	43	33	26	20	16	14	12	9	8	6
0,5	n	*	*	*	*	*	*	*	66	53	42	33	26	20	15	12	9	7
0,5	m	*	*	*	*	*	*	*	43	33	26	20	16	14	12	9	8	6
0,63	n	*	*	*	*	*	*	*	*	53	42	33	26	20	15	12	9	7
0,03	m	*	*	*	*	*	*	*	*	33	26	20	16	14	12	9	8	6
0,8	n	*	*	*	*	*	*	*	*	*	42	33	26	20	15	12	9	7
0,0	m	*	*	*	*	*	*	*	*	*	26	20	16	14	12	9	8	6
1,0	n	*	*	*	*	*	*	*	*	*	*	33	26	20	15	12	9	7
1,0	m	*	*	*	*	*	*	*	*	*	*	20	16	14	12	9	8	6
1,25	n	*	*	*	*	*	*	*	*	*	*	*	26	20	15	12	9	7
1,20	m	*	*	*	*	*	*	*	*	*	*	*	16	14	12	9	8	6
1,6	n	*	*	*	*	*	*	*	*	*	*	*	*	20	15	12	9	7
1,0	m	*	*	*	*	*	*	*	*	*	*	*	*	14	12	9	8	6
2,0	n	*	*	*	*	*	*	*	*	*	*	*	*	*	15	12	9	7
2,0	m	*	*	*	*	*	*	*	*	*	*	*	*	*	12	9	8	6
2,5	n	*	*	*	*	*	*	*	*	*	*	*	*	*	*	12	9	7
2,0	m	*	*	*	*	*	*	*	*	*	*	*	*	*	*	9	8	6
3,15	n	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	9	7
3,13	m	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	8	6

NOTE Cells containing asterisks indicate that no double sampling plan of the form (n, 0, 2; m, 1, 2) for nonconforming items exists with $\alpha \le 5$ % and $\beta \le 10$ % for that combination of producer's risk quality and consumer's risk quality; consider decreasing the PRQ or increasing the CRQ, or both.

Table 3 — Sample sizes n and m for double sampling plans of the form (n, 0, 2; m, 1, 2) for nonconforming items: $\alpha \le 10$ % and $\beta \le 10$ %

PRQ	Sample							Cons	umer'	s risk	qualit	t y (%)						
(%)	sizes	0,8	1,0	1,25	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
0.4	n	336	269	216	168	133	106	84	66	53	42	33	26	20	15	12	9	7
0,1	m	214	170	133	105	87	70	55	43	33	26	20	16	14	12	9	8	6
0,125	n	*	269	216	168	133	106	84	66	53	42	33	26	20	15	12	9	7
0,125	m	*	170	133	105	87	70	55	43	33	26	20	16	14	12	9	8	6
0,160	n	*	*	216	168	133	106	84	66	53	42	33	26	20	15	12	9	7
0,100	m	*	*	133	105	87	70	55	43	33	26	20	16	14	12	9	8	6
0,2	n	*	*	*	168	133	106	84	66	53	42	33	26	20	15	12	9	7
0,2	m	*	*	*	105	87	70	55	43	33	26	20	16	14	12	9	8	6
0,25	n	*	*	*	*	133	106	84	66	53	42	33	26	20	15	12	9	7
0,20	m	*	*	*	*	87	70	55	43	33	26	20	16	14	12	9	8	6
0,315	n	*	*	*	*	*	106	84	66	53	42	33	26	20	15	12	9	7
	m	*	*	*	*	*	70	55	43	33	26	20	16	14	12	9	8	6
0,4	n	*	*	*	*	*	*	84	66	53	42	33	26	20	15	12	9	7
	m	*	*	*	*	*	*	55	43	33	26	20	16	14	12	9	8	6
0,5	n	*	*	*	*	*	*	*	66	53	42	33	26	20	15	12	9	7
	m	*	*	*	*	*	*	*	43	33	26	20	16	14	12	9	8	6
0,63	n	*	*	*	*	*	*	*	*	53	42	33	26	20	15	12	9	7
	m	*	*	*	*	*	*	*	*	33	26	20	16	14	12	9	8	6
0,8	n	*	*	*	*	*	*	*	*	*	42	33	26	20	15	12	9	7
	m	*	*	*	*	*	*	*	*	*	26	20	16	14	12	9	8	6
1,0	n	*	*	*	*	*	*	*	*	*	*	33	26	20	15	12	9	7
	m	*	*	*	*	*	*	*	*	*	*	20	16	14	12	9	8	6
1,25	n	*	*	*	*	*	*	*	*	*	*	*	26	20	15	12	9	7
	m	*	*	*	*	*	*	*	*	*	*	*	16	14	12	9	8	6
1,6	n	*	*	*	*	*	*	*	*	*	*	*	*	20	15	12	9	7
	m	*	*	*	*	*	*	*	*	*	*	*	*	14	12	9	8	6
2,0	n	*	*	*	*	*	*	*	*	*	*	*	*	*	15	12	9	7
	m	*	*	*	*	*	*	*	*	*	*	*	*	*	12	9	8	6
2,5	n	*	*	*	*	*	*	*	*	*	*	*	*	*	*	12	9	7
	m	*	*	*	*	*	*	*	*	*	*	*	*	*	*	9	8	6
3,15	n	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	9	7
	m	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	8	6

NOTE Cells containing asterisks indicate that no double sampling plan of the form (n, 0, 2; m, 1, 2) for nonconforming items exists with $\alpha \le 10$ % and $\beta \le 10$ % for that combination of producer's risk quality and consumer's risk quality; consider decreasing the PRQ or increasing the CRQ, or both.

Table 4 — Sample sizes n and m for double sampling plans of the form (n, 0, 2; m, 1, 2) for nonconformities: $\alpha \leqslant 5$ % and $\beta \leqslant 5$ %

PRQ	Sample						Consu	mer's ri	isk qua	lity (%)					
(%)	sizes	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
0.4	n	213	169	136	108	84	69	55	43	35	27	21	17	14	11
0,1	m	119	99	77	61	51	36	28	23	17	16	13	10	7	6
0,125	n	*	169	136	108	84	69	55	43	35	27	21	17	14	11
0,125	m	*	99	77	61	51	36	28	23	17	16	13	10	7	6
0,160	n	*	*	136	108	84	69	55	43	35	27	21	17	14	11
0,100	m	*	*	77	61	51	36	28	23	17	16	13	10	7	6
0,2	n	*	*	*	108	84	69	55	43	35	27	21	17	14	11
0,2	m	*	*	*	61	51	36	28	23	17	16	13	10	7	6
0,25	n	*	*	*	*	84	69	55	43	35	27	21	17	14	11
0,25	m	*	*	*	*	51	36	28	23	17	16	13	10	7	6
0,315	n	*	*	*	*	*	69	55	43	35	27	21	17	14	11
0,313	m	*	*	*	*	*	36	28	23	17	16	13	10	7	6
0,4	n	*	*	*	*	*	*	55	43	35	27	21	17	14	11
0,4	m	*	*	*	*	*	*	28	23	17	16	13	10	7	6
0,5	n	*	*	*	*	*	*	*	43	35	27	21	17	14	11
0,5	m	*	*	*	*	*	*	*	23	17	16	13	10	7	6
0,63	n	*	*	*	*	*	*	*	*	35	27	21	17	14	11
0,00	m	*	*	*	*	*	*	*	*	17	16	13	10	7	6
0,8	n	*	*	*	*	*	*	*	*	*	27	21	17	14	11
0,0	m	*	*	*	*	*	*	*	*	*	16	13	10	7	6
1,0	n	*	*	*	*	*	*	*	*	*	*	21	17	14	11
1,0	m	*	*	*	*	*	*	*	*	*	*	13	10	7	6
1,25	n	*	*	*	*	*	*	*	*	*	*	*	17	14	11
1,20	m	*	*	*	*	*	*	*	*	*	*	*	10	7	6
1,6	n	*	*	*	*	*	*	*	*	*	*	*	*	14	11
1,0	m	*	*	*	*	*	*	*	*	*	*	*	*	7	6
2,0	n	*	*	*	*	*	*	*	*	*	*	*	*	*	11
2,0	m	*	*	*	*	*	*	*	*	*	*	*	*	*	6

NOTE Cells containing asterisks indicate that no double sampling plan of the form (n, 0, 2; m, 1, 2) for nonconformities exists with $\alpha \le 5$ % and $\beta \le 5$ % for that combination of producer's risk quality and consumer's risk quality; consider decreasing the PRQ or increasing the CRQ, or both.

Table 5 — Sample sizes n and m for double sampling plans of the form (n, 0, 2; m, 1, 2) for nonconformities: $\alpha \le 5$ % and $\beta \le 10$ %

PRQ	Sample						(Consu	ner's ı	risk qu	ality (%)					
(%)	sizes	1,0	1,25	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
0,1	n	269	216	168	136	109	86	69	55	43	34	28	22	17	14	11	9
0,1	m	174	137	109	83	66	54	39	32	27	21	15	13	11	8	7	5
0,125	n	*	*	168	136	109	86	69	55	43	34	28	22	17	14	11	9
0,123	m			109	83	66	54	39	32	27	21	15	13	11	8	7	5
0,160	n	*	*	*	136	109	86	69	55	43	34	28	22	17	14	11	9
0,100	m				83	66	54	39	32	27	21	15	13	11	8	7	5
0,2	n	*	*	*	*	109	86	69	55	43	34	28	22	17	14	11	9
0,2	m				*	66	54	39	32	27	21	15	13	11	8	7	5
0,25	n	*	*	*	*	*	86	69	55	43	34	28	22	17	14	11	9
0,23	m				*	*	54	39	32	27	21	15	13	11	8	7	5
0,315	n	*	*	*	*	*	*	69	55	43	34	28	22	17	14	11	9
0,010	m				*	*	*	39	32	27	21	15	13	11	8	7	5
0,4	n	*	*	*	*	*	*	*	55	43	34	28	22	17	14	11	9
0,4	m				*	*	*	*	32	27	21	15	13	11	8	7	5
0,5	n	*	*	*	*	*	*	*	*	43	34	28	22	17	14	11	9
0,0	m				*	*	*	*	*	27	21	15	13	11	8	7	5
0,63	n	*	*	*	*	*	*	*	*	*	34	28	22	17	14	11	9
0,00	m				*	*	*	*	*	*	21	15	13	11	8	7	5
0,8	n	*	*	*	*	*	*	*	*	*	*	28	22	17	14	11	9
0,0	m				*	*	*	*	*	*	*	15	13	11	8	7	5
1,0	n	*	*	*	*	*	*	*	*	*	*	*	22	17	14	11	9
1,0	m				*	*	*	*	*	*	*	*	13	11	8	7	5
1,25	n	*	*	*	*	*	*	*	*	*	*	*	*	17	14	11	9
.,20	m				*	*	*	*	*	*	*	*	*	11	8	7	5
1,6	n	*	*	*	*	*	*	*	*	*	*	*	*	*	14	11	9
.,0	m				*	*	*	*	*	*	*	*	*	*	8	7	5
2,0	n	*	*	*	*	*	*	*	*	*	*	*	*	*	*	11	9
_,0	m				*	*	*	*	*	*	*	*	*	*	*	7	5

NOTE Cells containing asterisks indicate that no double sampling plan of the form (n, 0, 2; m, 1, 2) for nonconformities exists with $\alpha \le 5$ % and $\beta \le 10$ % for that combination of producer's risk quality and consumer's risk quality; consider decreasing the PRQ or increasing the CRQ, or both.

Table 6 — Sample sizes n and m for double sampling plans of the form (n, 0, 2; m, 1, 2) for nonconformities: $\alpha \le 10$ % and $\beta \le 10$ %

PRQ	Sample							Cons	umer'	s risk	quali	ty (%)						
(%)	sizes	0,8	1,0	1,25	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
0.4	n	336	269	216	168	136	109	86	69	55	43	34	28	22	17	14	11	9
0,1	m	218	174	137	109	83	66	54	39	32	27	21	15	13	11	8	7	5
0.105	n	*	269	216	168	136	109	86	69	55	43	34	28	22	17	14	11	9
0,125	m	*	174	137	109	83	66	54	39	32	27	21	15	13	11	8	7	5
0,160	n	*	*	216	168	136	109	86	69	55	43	34	28	22	17	14	11	9
0,100	m	*	*	137	109	83	66	54	39	32	27	21	15	13	11	8	7	5
0,2	n	*	*	*	168	136	109	86	69	55	43	34	28	22	17	14	11	9
0,2	m	*	*	*	109	83	66	54	39	32	27	21	15	13	11	8	7	5
0,25	n	*	*	*	*	136	109	86	69	55	43	34	28	22	17	14	11	9
0,20	m	*	*	*	*	83	66	54	39	32	27	21	15	13	11	8	7	5
0,315	n	*	*	*	*	*	109	86	69	55	43	34	28	22	17	14	11	9
0,010	m	*	*	*	*	*	66	54	39	32	27	21	15	13	11	8	7	5
0,4	n	*	*	*	*	*	*	86	69	55	43	34	28	22	17	14	11	9
	m	*	*	*	*	*	*	54	39	32	27	21	15	13	11	8	7	5
0,5	n	*	*	*	*	*	*	*	69	55	43	34	28	22	17	14	11	9
	m	*	*	*	*	*	*	*	39	32	27	21	15	13	11	8	7	5
0,63	n	*	*	*	*	*	*	*	*	55	43	34	28	22	17	14	11	9
	m	*	*	*	*	*	*	*	*	32	27	21	15	13	11	8	7	5
0,8	n	*	*	*	*	*	*	*	*	*	43	34	28	22	17	14	11	9
	m	*	*	*	*	*	*	*	*	*	27	21	15	13	11	8	7	5
1,0	n	*	*	*	*	*	*	*	*	*	*	34	28	22	17	14	11	9
	m	*	*	*	*	*	*	*	*	*	*	21	15	13	11	8	7	5
1,25	n	*	*	*	*	*	*	*	*	*	*	*	28	22	17	14	11	9
	m	*	*	*	*	*	*	*	*	*	*	*	15	13	11	8	7	5
1,6	n	*	*	*	*	*	*	*	*	*	*	*	*	22	17	14	11	9
	m	*	*	*	*	*	*	*	*	*	*	*	*	13	11	8	7	5
2,0	n	*	*	*	*	*	*	*	*	*	*	*	*	*	17	14	11	9
	m	*	*	*	*	*	*	*	*	*	*	*	*	*	11	8	7	5
2,5	n	*	*	*	*	*	*	*	*	*	*	*	*	*	*	14	11	9
	m	*	*	*	*	*	*	*	*	*	*	*	*	*	*	8	7	5
3,15	n	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	11	9
	m	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	7	5
4,0	n	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	9
	m	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	5

NOTE Cells containing asterisks indicate that no double sampling plan of the form (n, 0, 2; m, 1, 2) for nonconformities exists with $\alpha \le 10$ % and $\beta \le 10$ % for that combination of producer's risk quality and consumer's risk quality; consider decreasing the PRQ or increasing the CRQ, or both.

Table 7 — Average sample sizes (ASSIs) for plans for nonconforming items: uncurtailed inspection with $\alpha \leqslant 5$ % and $\beta \leqslant 5$ %

PRQ	ASSIs						Consu	mer's r	isk qua	lity (%)					
(%)	at:	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
	PRQ	231	182	142	111	87,6	68,4	53,5	41,9	33,5	26,4	20,2	15,1	12,1	9,1
0,1	max.	255	204	163	129	101	80,5	63,5	49,6	39,4	31,3	24,2	18,8	14,7	11,3
	CRQ	224	180	142	113	89,2	70,6	55,7	43,7	34,9	27,6	21,3	16,3	12,9	9,8
	PRQ	*	185	144	112	88,4	69,0	53,9	42,1	33,7	26,4	20,3	15,2	12,1	9,1
0,125	max.	*	204	163	129	101	80,5	63,5	49,6	39,4	31,3	24,2	18,8	14,7	11,3
	CRQ	*	180	142	113	89,2	70,6	55,7	43,7	34,9	27,6	21,3	16,3	12,9	9,8
	PRQ	*	*	147	114	89,4	69,7	54,4	42,4	33,9	26,6	20,3	15,2	12,1	9,1
0,160	max.	*	*	163	129	101	80,5	63,5	49,6	39,4	31,3	24,2	18,8	14,7	11,3
	CRQ	*	*	142	113	89,2	70,6	55,7	43,7	34,9	27,6	21,3	16,3	12,9	9,8
	PRQ	*	*	*	116	90,5	70,5	54,9	42,7	34,1	26,7	20,4	15,3	12,2	9,1
0,2	max.	*	*	*	129	101	80,5	63,5	49,6	39,4	31,3	24,2	18,8	14,7	11,3
	CRQ	*	*	*	113	89,2	70,6	55,7	43,7	34,9	27,6	21,3	16,3	12,9	9,8
	PRQ	*	*	*	*	91,8	71,5	55,5	43,1	34,3	26,9	20,5	15,4	12,2	9,1
0,25	max.	*	*	*	*	101	80,5	63,5	49,6	39,4	31,3	24,2	18,8	14,7	11,3
	CRQ	*	*	*	*	89,2	70,6	55,7	43,7	34,9	27,6	21,3	16,3	12,9	9,8
	PRQ	*	*	*	*	*	72,6	56,3	43,6	34,6	27,1	20,7	15,5	12,3	9,2
0,315	max.	*	*	*	*	*	80,5	63,5	49,6	39,4	31,3	24,2	18,8	14,7	11,3
	CRQ	*	*	*	*	*	70,6	55,7	43,7	34,9	27,6	21,3	16,3	12,9	9,8
	PRQ	*	*	*	*	*	*	57,3	44,2	35,0	27,3	20,8	15,6	12,3	9,2
0,4	max.	*	*	*	*	*	*	63,5	49,6	39,4	31,3	24,2	18,8	14,7	11,3
	CRQ	*	*	*	*	*	*	55,7	43,7	34,9	27,6	21,3	16,3	12,9	9,8
	PRQ	*	*	*	*	*	*	*	44,9	35,4	27,6	21,0	15,7	12,4	9,3
0,5	max.	*	*	*	*	*	*	*	49,6	39,4	31,3	24,2	18,8	14,7	11,3
	CRQ	*	*	*	*	*	*	*	43,7	34,9	27,6	21,3	16,3	12,9	9,8
	PRQ	*	*	*	*	*	*	*	*	35,9	28,0	21,2	15,9	12,5	9,3
0,63	max.	*	*	*	*	*	*	*	*	39,4	31,3	24,2	18,8	14,7	11,3
	CRQ	*	*	*	*	*	*	*	*	34,9	27,6	21,3	16,3	12,9	9,8
	PRQ	*	*	*	*	*	*	*	*	*	28,4	21,5	16,1	12,6	9,4
0,8	max.	*	*	*	*	*	*	*	*	*	31,3	24,2	18,8	14,7	11,3
	CRQ	*	*	*	*	*	*	*	*	*	27,6	21,3	16,3	12,9	9,8
	PRQ	*	*	*	*	*	*	*	*	*	*	21,8	16,3	12,75	9,5
1,0	max.	*	*	*	*	*	*	*	*	*	*	24,2	18,8	14,7	11,3
	CRQ	*	*	*	*	*	*		*	*	*	21,3	16,3	12,9	9,8
4.05	PRQ	*	*	*	*	*	*	*	*	*	*	22,8	16,6	12,9	9,6
1,25	max.	*	*	*	*	*	*	*	*	*	*	24,4 21,9	18,8 16,3	14,7 12,9	11,3 9,8
	CRQ PRQ	*	*	*	*	*	*	*	*	*	*	*	18,3	13,1	9,8
1,6	max.	*	*	*	*	*	*	*	*	*	*	*	19,3	14,7	11,3
1,0	CRQ	*	*	*	*	*	*	*	*	*	*	*	17,6	12,9	9,8
	PRQ	*	*	*	*	*	*	*	*	*	*	*	*	13,3	9,9
2,0	max.	*	*	*	*	*	*	*	*	*	*	*	*	14,7	11,3
· ·	CRQ	*	*	*	*	*	*	*	*	*	*	*	*	12,9	9,8
	PRQ	*	*	*	*	*	*	*	*	*	*	*	*	*	10,1
2,5	max.	*	*	*	*	*	*	*	*	*	*	*	*	*	11,3
	CRQ	*	*	*	*	*	*	*	*	*	*	*	*	*	9,8

NOTE Cells containing asterisks indicate that a double sampling plan of the form (n, 0, 2; m, 1, 2) with $\alpha \le 5$ % and $\beta \le 5$ % does not exist for that combination of producer's risk quality and consumer's risk quality; consider decreasing the PRQ or increasing the CRQ or both.

Table 8 — Average sample sizes (ASSIs) for plans for nonconforming items: uncurtailed inspection with $\, \alpha \leqslant 5 \,$ % and $\, \beta \leqslant 10 \,$ %

PRQ	ASSIs						Co	nsume	r's risk	qualit	y (%)					
(%)	at:	1,25	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
	PRQ	239	183	143	113	88,3	68,7	54,7	43,0	33,6	26,4	20,3	15,2	12,1	9,1	7,0
0,1	max.	265	207	165	132	104	81,9	65,3	51,7	40,5	32,0	25,3	19,6	15,5	12,1	9,4
	CRQ	240	187	149	119	94,2	74,0	59,1	46,8	36,7	29,0	22,8	17,5	13,9	10,8	8,4
	PRQ	*	186	145	114	89,2	69,3	55,0	43,3	33,8	26,5	20,3	15,2	12,1	9,1	7,1
0,125	max.	*	207	165	132	104	81,9	65,3	51,7	40,5	32,0	25,3	19,6	15,5	12,1	9,4
	CRQ	*	187	149	119	94,2	74,0	59,1	46,8	36,7	29,0	22,8	17,5	13,9	10,8	8,4
	PRQ	*	*	148	116	90,5	70,1	55,6	43,6	34,0	26,6	20,4	15,3	12,2	9,1	7,1
0,160	max.	*	*	165	132	104	81,9	65,3	51,7	40,5	32,0	25,3	19,6	15,5	12,1	9,4
	CRQ	*	*	149	119	94,2	74,0	59,1	46,8	36,7	29,0	22,8	17,5	13,9	10,8	8,4
0.0	PRQ	*	*	*	118	91,8	71,0	56,2	44,0	34,2	26,8	20,5	15,4	12,2	9,1	7,1
0,2	max.	*	*	*	132	104	81,9	65,3	51,7	40,5	32,0	25,3	19,6	15,5	12,1	9,4
	CRQ	*	*	*	119	94,2	74,0	59,1	46,8	36,7	29,0	22,8	17,5	13,9	10,8	8,4
0.25	PRQ	*	*	*	*	93,4 104	72,0	56,8	44,5	34,5	27,0	20,7	15,4	12,3	9,2	7,1
0,25	max. CRQ	*	*	*	*	94,2	81,9 74,0	65,3 59,1	51,7 46,8	40,5 36,7	32,0 29,0	25,3 22,8	19,6 17,5	15,5 13,9	12,1 10,8	9,4 8,4
	PRQ	*	*	*	*	94,∠	73,3	57,7	45,0	34,9	27,2	20,8	15,5	12,3	9,2	7,1
0,315	max.	*	*	*	*	*	81,9	65,3	51,7	40,5	32,0	25,3	19,6	15,5	12,1	9,4
0,313	CRQ	*	*	*	*	*	74,0	59,1	46,8	36,7	29,0	22,8	17,5	13,9	10,8	8,4
	PRQ	*	*	*	*	*	*	58,7	45,7	35,3	27,5	21,0	15,7	12,4	9,3	7,2
0,4	max.	*	*	*	*	*	*	65,3	51,7	40,5	32,0	25,3	19,6	15,5	12,1	9,4
0,1	CRQ	*	*	*	*	*	*	59,1	46,8	36,7	29,0	22,8	17,5	13,9	10,8	8,4
	PRQ	*	*	*	*	*	*	*	46,4	35,8	27,8	21,3	15,8	12,5	9,3	7,2
0,5	max.	*	*	*	*	*	*	*	51,7	40,5	32,0	25,3	19,6	15,5	12,1	9,4
, ,	CRQ	*	*	*	*	*	*	*	46,8	36,7	29,0	22,8	17,5	13,9	10,8	8,4
	PRQ	*	*	*	*	*	*	*	*	36,4	28,2	21,6	16,0	12,6	9,4	7,3
0,63	max.	*	*	*	*	*	*	*	*	40,5	32,0	25,3	19,6	15,5	12,1	9,4
	CRQ	*	*	*	*	*	*	*	*	36,7	29,0	22,8	17,5	13,9	10,8	8,4
	PRQ	*	*	*	*	*	*	*	*	*	28,7	21,9	16,3	12,8	9,5	7,3
0,8	max.	*	*	*	*	*	*	*	*	*	32,0	25,3	19,6	15,5	12,1	9,4
	CRQ	*	*	*	*	*	*	*	*	*	29,0	22,8	17,5	13,9	10,8	8,4
	PRQ	*	*	*	*	*	*	*	*	*	*	22,3	16,6	13,0	9,7	7,4
1,0	max.	*	*	*	*	*	*	*	*	*	*	25,3	19,6	15,5	12,1	9,4
	CRQ	*	*	*	*	*	*	*	*	*	*	22,8	17,5	13,9	10,8	8,4
	PRQ	*	*	*	*	*	*	*	*	*	*	*	16,9	13,2	9,8	7,5
1,25	max.	*	*	*	*	*	*	*	*	*	*	*	19,6	15,5	12,1	9,4
	CRQ		*	*	*	*		*	*	*	*	*	17,5	13,9	10,8	8,4
4.0	PRQ	*	*	*	*	*	*	*	*	*	*	*	*	13,4	10,0	7,6
1,6	max.	*	*	*	*	*	*	*	*	*	*	*	*	15,5	12,1	9,4
	CRQ	*	*	*	*	*	*	*	*	*	*	*	*	13,9 17,2	10,8	8,4
2,0	PRQ	*	*	*	*	*	*	*	*	*	*	*	*	17,2	10,2 12,1	7,7 9,4
۷,0	max. CRQ	*	*	*	*	*	*	*	*	*	*	*	*	17,4	10,8	8,4
	PRQ	*	*	*	*	*	*	*	*	*	*	*	*	*	*	7,9
2,5	max.	*	*	*	*	*	*	*	*	*	*	*	*	*	*	9,4
2,0	CRQ	*	*	*	*	*	*	*	*	*	*	*	*	*	*	8,4
	PRQ	*	*	*	*	*	*	*	*	*	*	*	*	*	*	8,8
3,15	max.	*	*	*	*	*	*	*	*	*	*	*	*	*	*	9,6
٥, . ٠	CRQ	*	*	*	*	*	*	*	*	*	*	*	*	*	*	8,7
	J. 14				l	l	l			l		l			l	-,.

NOTE Cells containing asterisks indicate that a double sampling plan of the form (n, 0, 2; m, 1, 2) with $\alpha \le 5$ % and $\beta \le 10$ % does not exist for that combination of producer's risk quality and consumer's risk quality; consider decreasing the PRQ or increasing the CRQ, or both.

Table 9 — Average sample sizes (ASSIs) for plans for nonconforming items: uncurtailed inspection with $\, \alpha \leqslant$ 10 % and $\, \beta \leqslant$ 10 %

(%) att 0,8 1,0 1,25 1,6 2,0 2,5 3,15 4,0 5,0 6,3 8,0 10,0 12,5 16,0 20,0 25,0 31,5 1,0	PRQ	ASSIs							Cons	umer'	s risk	qualit	y (%)						
PRQ ABP			0,8	1,0	1,25	1,6	2,0	2,5						10,0	12,5	16,0	20,0	25.0	31,5
0.1		PRQ																	
CRQ	0.1																		
PRO	0, 1																		
Name																			
CRQ PRQ Series	0 125		*																
0,16	0,123		*																
0.16			*																
CRQ FRQ	0.16		*	*															
PRQ	0,10		*	*															
O			*	*															
CRQ	0.2		*																
PRQ	0,2		*	*															
0.25			*	*															
CRQ	0.05																		
0,315	0,25																		
0.315																			
CRQ *	0.045																		
0.4 PRQ	0,315												-						
0.4																			
CRQ *	0.4										-		-						
0,5 max. * * * * * * * * * * * * * * * * * * *	0,4								-										
0,5																			
CRQ * * * * * * * * * * * * * * * * * * *													-						
0,63 max. * * * * * * * * * * * * * * * * * * *	0,5																		
0,63 max. * * * * * * * * * * * * * * * * * * *																			
CRQ * * * * * * * * * * * * * * * * * * *													-						
0,8	0,63		*																
0,8 max.																			
CRQ * * * * * * * * * * * * * * * * * * *													-						
PRQ * * * * * * * * * * * * * * * * * * *	0,8																		
1,0 max.																			
CRQ * * * * * * * * * * * * * * * * * * *																			
1,25	1,0																		
1,25 max.			*																
CRQ * * * * * * * * * * * * * * * * * * *			*													-			
PRQ	1,25															-			
1,6 max.						*				**									
CRQ * * * * * * * * * * * * * * * * * * *			*	*	*	*	*	*	*	*	*	*	*	*					
2,0 PRQ	1,6		*	*	*	*	*	*	*	*	*	*	*	*					
2,0 max. * * * * * * * * * * * * * * * * * * *																			
CRQ * * * * * * * * * * * * * * * * * * *																			
PRQ	2,0		*			*													
2,5 max. * * * * * * * * * * * * * * * * * * *			*			*													
CRQ * * * * * * * * * * * * * * * * * * *			*																
3,15 PRQ * * * * * * * * * * * * * * * * * * *	2,5		*																
3,15 max.																			
CRQ * * * * * * * * * * * * * * * * * * *																			
PRQ * * * * * * * * * * * * * * * * * * *	3,15																		
4,0 max. * * * * * * * * *																			
CRQ * * * * * * * * *	4,0																		
<u> </u>		CRQ	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	8,4

NOTE Cells containing asterisks indicate that a double sampling plan of the form (n, 0, 2; m, 1, 2) with $\alpha \le 10$ % and $\beta \le 10$ % does not exist for that combination of producer's risk quality and consumer's risk quality; consider decreasing the PRQ or increasing the CRQ, or both.

Table 10 — Average sample sizes (ASSIs) for plans for nonconformities: uncurtailed inspection with $\alpha \leqslant 5$ % and $\beta \leqslant 5$ %

PRQ	ASSIs						Consu	mer's r	isk qua	lity (%)					
(%)	at:	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
	PRQ	233	183	145	114	87,9	71,3	56,5	43,9	35,6	27,4	21,3	17,2	14,1	11,1
0,1	max.	257	205	164	130	103	82,2	65,3	51,5	41,3	32,9	25, 8	20,7	16,6	13,2
	CRQ	226	180	145	115	90,0	72,9	58,0	45,5	36,8	28,8	22,5	18,1	14,7	11,7
	PRQ	*	186	147	115	88,8	71,8	56,8	44,2	35,7	27,5	21,3	17,2	14,1	11,1
0,125	max.	*	205	164	130	103	82,2	65,3	51,5	41,3	32,9	25,8	20,7	16,6	13,2
	CRQ	*	180	145	115	90,0	72,9	58,0	45,5	36,8	28,8	22,5	18,1	14,7	11,7
	PRQ	*	*	149	117	90,0	72,6	57,3	44,5	35,9	27,7	21,4	17,3	14,2	11,1
0,160	max.	*	*	164	130	103	82,2	65,3	51,5	41,3	32,9	25,8	20,7	16,6	13,2
	CRQ	*	*	145	115	90,0	72,9	58,0	45,5	36,8	28,8	22,5	18,1	14,7	11,7
	PRQ	*	*	*	119	91,2	73,3	57,8	44,8	36,1	27,8	21,5	17,3	14,2	11,1
0,2	max.	*	*	*	130	103	82,2	65,3	51,5	41,3	32,9	25,8	20,7	16,6	13,2
	CRQ	*	*	*	115	90,0	72,9	58,0	45,5	36,8	28,8	22,5	18,1	14,7	11,7
	PRQ	*	*	*	*	92,7	74,2	58,4	45,2	36,4	28,0	21,6	17,4	14,2	11,2
0,25	max.	*	*	*	*	103	82,2	65,3	51,5	41,3	32,9	25,8	20,7	16,6	13,2
	CRQ	*	*	*	*	90,0	72,9	58,0	45,5	36,8	28,8	22,5	18,1	14,7	11,7
	PRQ	*	*	*	*	*	75,3	59,1	45,7	36,7	28,2	21,8	17,5	14,3	11,2
0,315	max.	*	*	*	*	*	82,2	65,3	51,5	41,3	32,9	25,8	20,7	16,6	13,2
	CRQ	*	*	*	*	*	72,9	58,0	45,5	36,8	28,8	22,5	18,1	14,7	11,7
	PRQ	*	*	*	*	*	*	59,9	46,3	37,1	28,6	22,0	17,6	14,4	11,3
0,4	max.	*	*	*	*	*	*	65,3	51,5	41,3	32,9	25,8	20,7	16,6	13,2
	CRQ	*	*	*	*	*	*	58,0	45,5	36,8	28,8	22,5	18,1	14,7	11,7
	PRQ	*	*	*	*	*	*	*	47,0	37,5	28,9	22,2	17,8	14,5	11,3
0,5	max.	*	*	*	*	*	*	*	51,5	41,3	32,9	25,8	20,7	16,6	13,2
	CRQ				*	*		*	45,5	36,8	28,8	22,5	18,1	14,7	11,7
0.00	PRQ	*	*	*	*	*	*	*	*	38,0	29,3	22,5	18,0	14,6	11,4
0,63	max.	*	*	*	*	*	*	*	*	41,3	32,9	25,8	20,7	16,6	13,2
	CRQ	*	*	*	*	*	*	*	*	36,8	28,8	22,5	18,1	14,7	11,7
0.0	PRQ	*	*	*	*	*	*	*	*	*	29,8	22,8	18,2	14,7	11,5
0,8	max. CRQ	*	*	*	*	*	*	*	*	*	32,9	25,8 22,5	20,7 18,1	16,6 14,7	13,2 11,7
		*	*	*	*	*	*	*	*	*	28,8				
1,0	PRQ	*	*	*	*	*	*	*	*	*	*	23,2 25,8	18,4 20,7	14,9 16,6	11,6 13,2
1,0	max. CRQ	*	*	*	*	*	*	*	*	*	*	22,5	18,1	14,7	11,7
	PRQ	*	*	*	*	*	*	*	*	*	*	*	18,7	15,0	11,7
1,25	max.	*	*	*	*	*	*	*	*	*	*	*	20,7	16,6	13,2
1,20	CRQ	*	*	*	*	*	*	*	*	*	*	*	18,1	14,7	11,7
	PRQ	*	*	*	*	*	*	*	*	*	*	*	*	15,3	11,9
1,6	max.	*	*	*	*	*	*	*	*	*	*	*	*	16,6	13,2
.,0	CRQ	*	*	*	*	*	*	*	*	*	*	*	*	14,7	11,7
	PRQ	*	*	*	*	*	*	*	*	*	*	*	*	*	12,1
2,0	max.	*	*	*	*	*	*	*	*	*	*	*	*	*	13,2
_,,	CRQ	*	*	*	*	*	*	*	*	*	*	*	*	*	11,7
	٥.٠٠				<u> </u>				<u> </u>						, ,

NOTE Cells containing asterisks indicate that a double sampling plan of the form (n, 0, 2; m, 1, 2) with $\alpha \le 5$ % and $\beta \le 5$ % does not exist for that combination of producer's risk quality and consumer's risk quality; consider decreasing the PRQ or increasing the CRQ, or both.

Table 11 — Average sample sizes (ASSIs) for plans for nonconformities: uncurtailed inspection with $~\alpha \leqslant 5~\%$ and $~\beta \leqslant 10~\%$

PRQ	ASSIs						Coi	nsume	r's risk	quality	y (%)					
(%)	at:	1,25	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
	PRQ	240	183	146	115	90,3	71,5	56,7	44,1	34,7	28,4	22,3	17,2	14,1	11,1	9,0
0,1	max.	266	208	167	133	106	83,3	66,8	52,9	41,7	33,5	26,8	21,0	16,9	13,6	10,8
	CRQ	241	188	151	121	95,7	75,8	60,6	47,9	37,8	30,6	24,3	19,0	15,4	12,2	9,8
	PRQ	*	187	148	117	91,2	72,1	57,1	44,4	34,9	28,5	22,3	17,2	14,1	11,1	9,1
0,125	max.	*	208	167	133	106	83,3	66,8	52,9	41,7	33,5	26,8	21,0	16,9	13,6	10,8
	CRQ	*	188	151	121	95,7	75,8	60,6	47,9	37,8	30,6	24,3	19,0	15,4	12,2	9,8
	PRQ	*	*	151	119	92,5	72,9	57,6	44,7	35,1	28,6	22,4	17,3	14,2	11,1	9,1
0,160	max.	*	*	167	133	106	83,3	66,8	52,9	41,7	33,5	26,8	21,0	16,9	13,6	10,8
	CRQ	*	*	151	121	95,7	75,8	60,6	47,9	37,8	30,6	24,3	19,0	15,4	12,2	9,8
	PRQ	*	*	*	121	93,8	73,7	58,2	45,1	35,3	28,8	22,5	17,4	14,2	11,2	9,1
0,2	max.	*	*	*	133	106	83,3	66,8	52,9	41,7	33,5	26,8	21,0	16,9	13,6	10,8
	CRQ	*	*	*	121	95,7	75,8	60,6	47,9	37,8	30,6	24,3	19,0	15,4	12,2	9,8
	PRQ	*	*	*	*	95,4	74,7	58,8	45,6	35,6	29,0	22,7	17,4	14,3	11,2	9,1
0,25	max.	*	*	*	*	106	83,3	66,8	52,9	41,7	33,5	26,8	21,0	16,9	13,6	10,8
	CRQ	*	*	*	*	95,7	75,8	60,6	47,9	37,8	30,6	24,3	19,0	15,4	12,2	9,8
	PRQ	*	*	*	*	*	75,8	59,7	46,2	36,0	29,2	22,8	17,6	14,3	11,2	9,1
0,315	max.	*	*	*	*	*	83,3	66,8	52,9	41,7	33,5	26,8	21,0	16,9	13,6	10,8
	CRQ	*	*	*	*	*	75,8	60,6	47,9	37,8	30,6	24,3	19,0	15,4	12,2	9,8
	PRQ	*	*	*	*	*	*	60,6	46,9	36,5	29,5	23,0	17,7	14,4	11,3	9,2
0,4	max.	*	*	*	*	*	*	66,8	52,9	41,7	33,5	26,8	21,0	16,9	13,6	10,8
	CRQ	*	*	*	*	*	*	60,6	47,9	37,8	30,6	24,3	19,0	15,4	12,2	9,8
	PRQ	*	*	*	*	*	*	*	47,7	37,0	29,8	23,3	17,9	14,5	11,4	9,2
0,5	max.	*	*	*	*	*	*	*	52,9	41,7	33,5	26,8	21,0	16,9	13,6	10,8
	CRQ	*	*	*	*	*	*	*	47,9	37,8	30,6	24,3	19,0	15,4	12,2	9,8
	PRQ	*	*	*	*	*	*	*	*	37,6	30,2	23,6	18,1	14,6	11,5	9,3
0,63	max.	*	*	*	*	*	*	*	*	41,7	33,5	26,8	21,0	16,9	13,6	10,8
	CRQ	*	*	*	*	*	*	*	*	37,8	30,6	24,3	19,0	15,4	12,2	9,8
	PRQ	*	*	*	*	*	*	*	*	*	30,7	23,9	18,3	14,8	11,6	9,3
0,8	max.	*	*	*	*	*	*	*	*	*	33,5	26,8	21,0	16,9	13,6	10,8
	CRQ	*		*	*	*	*	*	*	*	30,6	24,3	19,0	15,4	12,2	9,8
	PRQ	*	*	*	*	*	*	*	*	*	*	24,3	18,6	15,0	11,7	9,4
1,0	max.	*	*	*	*	*	*	*	*	*	*	26,8	21,0	16,9	13,6	10,8
	CRQ	*				*	*	*			*	24,3	19,0	15,4	12,2	9,8
	PRQ	*	*	*	*	*	*	*	*	*	*	*	18,9	15,2	11,8	9,5
1,25	max.	*	*	*	*	*	*	*	*	*	*	*	21,0	16,9	13,6	10,8
	CRQ	,	*	*	*	*	*	*	*	*	*	*	19,0	15,4	12,2	9,8
4.0	PRQ	*	*	*	*	*	*	*	*	*	*	*	, *	15,4	12,0	9,6
1,6	max.	*	*	*	*	*	*	*	*	*	*	*	*	16,9	13,6	10,8
	CRQ	*	*	*	*	*	*	*	*	*	*	*	*	15,4	12,2	9,8
2.0	PRQ	*	*	*	*	*	*	*	*	*	*	*	*	*	12,2	9,8
2,0	max.	*	*	*	*	*	*	*	*	*	*	*	*	*	13,6	10,8
ļ	CRQ	*	*	*	*	*	*	*	*	*	*	*	*		12,2	9,8

NOTE Cells containing asterisks indicate that a double sampling plan of the form (n, 0, 2; m, 1, 2) with $\alpha \le 5$ % and $\beta \le 10$ % does not exist for that combination of producer's risk quality and consumer's risk quality; consider decreasing the PRQ or increasing the CRQ, or both.

Table 12 — Average sample sizes (ASSIs) for plans for nonconformities: uncurtailed inspection with $\alpha \leqslant$ 10 % and $\beta \leqslant$ 10 %

PRQ	ASSIs						Con	sumer'	s risk	qual	ity (%)						
(%)	at:	0,8	1,0	1,25	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
	PRQ	388	305	240	183	146	115	90,3	71,5	56,7	44,1	34,7	28,4	22,3	17,2	14,1	11,1	9,0
0,1	max.	416	333	266	208	167	133	106	83,3	66,8	52,9	41,7	33,5	26,8	21,0	16,9	13,6	10,8
	CRQ	376	301	241	188	151	121	95,7	75,8	60,6	47,9	37,8	30,6	24,3	19,0	15,4	12,2	9,8
	PRQ	*	311	244	187	148	117	91,2	72,1	57,1	44,4	34,9	28,5	22,3	17,2	14,1	11,1	9,1
0,125	max.	*	333	266	208	167	133	106	83,3	66,8	52,9	41,7	33,5	26,8	21,0	16,9	13,6	10,8
	CRQ	*	301	241	188	151	121	95,7	75,8	60,6	47,9	37,8	30,6	24,3	19,0	15,4	12,2	9,8
	PRQ	*	*	250	190	151	119	92,5		57,6				22,4		14,2	11,1	9,1
0,160	max.	*	*	266	208	167	133	106			52,9					16,9	13,6	10,8
	CRQ	*	*	241	188	151	121	95,7			47,9					15,4	12,2	9,8
	PRQ	*	*	*	194	153	121	93,8	73,7					22,5		14,2	11,2	9,1
0,2	max.	*	*	*	208	167	133	106			52,9						13,6	
	CRQ	*	*	*	188	151	121	95,7			47,9					15,4		9,8
	PRQ	*	*	*	*	156	123	95,4			45,6				17,4		-	9,1
0,25	max.	*	*	*	*	167	133	106			52,9					16,9		
	CRQ	*	*	*	*	151	121	95,7			47,9						12,2	9,8
	PRQ	*	*	*	*	*	125	97,2						22,8		14,3	-	9,1
0,315	max.	*	*	*	*	*	133	106		-	52,9	-	-					
	CRQ	*	*	*	*	*	121	95,7			47,9					15,4		9,8
	PRQ	*	*	*	*	*	*	99,2			46,9					14,4	11,3	9,2
0,4	max.	*	*	*	*	*	*	106			52,9							10,8
	CRQ	*	*	*	*	*	*	95,7			47,9							
	PRQ	*	*	*	*	*	*	*		61,7				23,3		14,5	-	9,2
0,5	max.	*	*	*	*	*	*	*			52,9							10,8
	CRQ	*	*	*	*	*	*	*	75,8		47,9							9,8
	PRQ	*	*	*	*	*	*	*	*		48,6					14,6	-	9,3
0,63	max.	*	*	*	*	*	*	*	*		52,9						13,6	
	CRQ	*	*	*	*	*	*	*	*	60,6	_			24,3		15,4		9,8
	PRQ	*	*	*	*	*	*	*	*	*	49,6	38,4	-	23,9		14,8	-	9,3
0,8	max.	*	*	*	*	*	*	*	*	*				26,8		16,9		,
	CRQ	*	*	*	*	*	*	*	*	*	47,9			24,3		15,4		9,8
4.0	PRQ	*	*	*	*	*	*	*	*	*	*			24,3				9,4
1,0	max.	*		*	*	*	*	*	*	*	*			26,8				
	CRQ	*	*	*	*	*	*	*	*	*	*	37,8		24,3				9,8
1.25	PRQ	*	*	*	*	*	*	*	*	*	*	*	-	24,7	18,9	15,2	11,8	9,5 10,8
1,25	max. CRQ	*	*	*	*	*	*	*	*	*	*	*		26,8 24,3				
	PRQ	*	*	*	*	*	*	*	*	*	*	*		25,2				
1,6		*	*	*	*	*	*	*	*	*	*	*	*					10,8
1,0	max. CRQ	*	*	*	*	*	*	*	*	*	*	*	*		19,0		12,2	
	PRQ	*	*	*	*	*	*	*	*	*	*	*	*	*	19,7			9,75
2,0	max.	*	*	*	*	*	*	*	*	*	*	*	*	*	21,0		13,6	
2,0	CRQ	*	*	*	*	*	*	*	*	*	*	*	*	*	19,0		12,2	
	PRQ	*	*	*	*	*	*	*	*	*	*	*	*	*	*		12,5	
2,5	max.	*	*	*	*	*	*	*	*	*	*	*	*	*	*			10,8
2,5	CRQ	*	*	*	*	*	*	*	*	*	*	*	*	*	*		12,2	
	PRQ	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	12,7	10,1
3,15	max.	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*		10,1
5, 15	CRQ	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	12,2	
	PRQ	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	10,3
4,0	max.	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	10,8
.,0	CRQ	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	9,8
	٥. ١٨						<u> </u>	l	l		l				l	l		٥,٥

NOTE Cells containing asterisks indicate that a double sampling plan of the form (n, 0, 2; m, 1, 2) with $\alpha \le 10$ % and $\beta \le 10$ % does not exist for that combination of producer's risk quality and consumer's risk quality; consider decreasing the PRQ or increasing the CRQ, or both.

Table 13 — Actual risks in percent for plans for nonconforming items: $\alpha \leqslant 5$ % and $\beta \leqslant 5$ %

PRQ	Risk						Consu	mer's r	isk qua	lity (%)					
(%)	(%)	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
0.4	α	3,870	2,553	1,701	1,097	0,678	0,442	0,279	0,170	0,106	0,067	0,040	0,025	0,015	0,009
0,1	β	4,994	4,989	5,000	4,999	4,977	4,978	4,970	4,992	4,980	4,885	4,771	4,935	4,859	4,740
0.405	α	*	3,831	2,573	1,670	1,038	0,680	0,431	0,262	0,164	0,104	0,063	0,039	0,023	0,014
0,125	β	*	4,989	5,000	4,999	4,977	4,978	4,970	4,992	4,980	4,885	4,771	4,935	4,859	4,740
0.400	α	*	*	4,028	2,639	1,654	1,089	0,693	0,424	0,265	0,170	0,102	0,064	0,038	0,023
0,160	β	*	*	5,000	4,999	4,977	4,978	4,970	4,992	4,980	4,885	4,771	4,935	4,859	4,740
0.0	α	*	*	*	3,957	2,503	1,659	1,061	0,652	0,410	0,263	0,158	0,099	0,059	0,035
0,2	β	*	*	*	4,999	4,977	4,978	4,970	4,992	4,980	4,885	4,771	4,935	4,859	4,740
0.05	α	*	*	*	*	3,758	2,510	1,617	0,999	0,631	0,405	0,245	0,154	0,091	0,055
0,25	β	*	*	*	*	4,977	4,978	4,970	4,992	4,980	4,885	4,771	4,935	4,859	4,740
0.245	α	*	*	*	*	*	3,823	2,485	1,547	0,982	0,634	0,384	0,242	0,144	0,087
0,315	β	*	*	*	*	*	4,978	4,970	4,992	4,980	4,885	4,771	4,935	4,859	4,740
0,4	α	*	*	*	*	*	*	3,839	2,413	1,543	1,001	0,610	0,385	0,230	0,139
0,4	β	*	*	*	*	*	*	4,970	4,992	4,980	4,885	4,771	4,935	4,859	4,740
0,5	α	*	*	*	*	*	*	*	3,628	2,339	1,527	0,935	0,593	0,355	0,216
0,5	β	*	*	*	*	*	*	*	4,992	4,980	4,885	4,771	4,935	4,859	4,740
0,63	α	*	*	*	*	*	*	*	*	3,571	2,351	1,450	0,924	0,556	0,339
0,03	β	*	*	*	*	*	*	*	*	4,980	4,885	4,771	4,935	4,859	4,740
0,8	α	*	*	*	*	*	*	*	*	*	3,641	2,267	1,455	0,881	0,540
0,0	β	*	*	*	*	*	*	*	*	*	4,885	4,771	4,935	4,859	4,740
1,0	α	*	*	*	*	*	*	*	*	*	*	3,415	2,209	1,347	0,830
1,0	β	*	*	*	*	*	*	*	*	*	*	4,771	4,935	4,859	4,740
1,25	α	*	*	*	*	*	*	*	*	*	*	4,988	3,331	2,050	1,270
1,20	β	*	*	*	*	*	*	*	*	*	*	4,710	4,935	4,859	4,740
1,6	α	*	*	*	*	*	*	*	*	*	*	*	4,907	3,235	2,023
1,0	β	*	*	*	*	*	*	*	*	*	*	*	4,761	4,859	4,740
2,0	α	*	*	*	*	*	*	*	*	*	*	*	*	4,845	3,060
۷,0	β	*	*	*	*	*	*	*	*	*	*	*	*	4,859	4,740
2,5	α	*	*	*	*	*	*	*	*	*	*	*	*	*	4,591
2,5	β	*	*	*	*	*	*	*	*	*	*	*	*	*	4,740

NOTE Cells containing asterisks indicate that no double sampling plan of the form (n, 0, 2; m, 1, 2) for nonconforming items exists with $\alpha \le 5$ % and $\beta \le 5$ % for that combination of producer's risk quality and consumer's risk quality; consider decreasing the PRQ or increasing the CRQ, or both.

Table 14 — Actual risks in percent for plans for nonconforming items: $\alpha \leqslant 5$ % and $\beta \leqslant 10$ %

PRQ	Risk						Con	sumer'	s risk	quality	(%)					
(%)	(%)	1,25	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
	α	4,186	2,674	1,776	1,165	0,774	0,466	0,297	0,187	0,115	0,072	0,046	0,028	0,017	0,011	0,006
0,1	β	9,998	9,998	9,996	9,986	9,992	9,972	9,984	9,884	9,839	9,920	9,970	9,894	9,639	9,764	9,430
0.405	α	*	*	2,684	1,772	1,138	0,716	0,457	0,290	0,178	0,112	0,072	0,044	0,027	0,017	0,010
0,125	β	*	*	9,996	9,986	9,992	9,972	9,984	9,884	9,839	9,920	9,970	9,894	9,639	9,764	9,430
0.400	α	*	*	4,196	2,796	1,810	1,146	0,736	0,468	0,289	0,182	0,117	0,071	0,044	0,027	0,016
0,160	β	*	*	9,996	9,986	9,992	9,972	9,984	9,884	9,839	9,920	9,970	9,894	9,639	9,764	9,430
0,2	α	*	*	*	4,187	2,734	1,744	1,126	0,719	0,446	0,282	0,181	0,111	0,068	0,042	0,025
0,2	β	*	*	*	9,986	9,992	9,972	9,984	9,884	9,839	9,920	9,970	9,894	9,639	9,764	9,430
0,25	α	*	*	*	*	4,097	2,637	1,714	1,101	0,685	0,435	0,279	0,171	0,106	0,066	0,039
0,23	β	*	*	*	*	9,992	9,972	9,984	9,884	9,839	9,920	9,970	9,894	9,639	9,764	9,430
0,315	α	*	*	*	*	*	4,011	2,630	1,701	1,066	0,679	0,438	0,269	0,166	0,104	0,061
0,010	β	*	*	*	*	*	9,972	9,984	9,884	9,839	9,920	9,970	9,894	9,639	9,764	9,430
0,4	α	*	*	*	*	*	*	4,059	2,650	1,672	1,072	0,694	0,429	0,266	0,167	0,098
0,4	β	*	*	*	*	*	*	9,984	9,884	9,839	9,920	9,970	9,894	9,639	9,764	9,430
0,5	α	*	*	*	*	*	*	*	3,975	2,532	1,634	1,064	0,660	0,410	0,258	0,152
0,5	β	*	*	*	*	*	*	*	9,884	9,839	9,920	9,970	9,894	9,639	9,764	9,430
0,63	α	*	*	*	*	*	*	*	*	3,858	2,512	1,646	1,026	0,641	0,405	0,240
0,00	β	*	*	*	*	*	*	*	*	9,839	9,920	9,970	9,894	9,639	9,764	9,430
0,8	α	*	*	*	*	*	*	*	*	*	3,883	2,566	1,612	1,013	0,642	0,382
0,0	β	*	*	*	*	*	*	*	*	*	9,920	9,970	9,894	9,639	9,764	9,430
1,0	α	*	*	*	*	*	*	*	*	*	*	3,855	2,444	1,547	0,985	0,589
1,0	β	*	*	*	*	*	*	*	*	*	*	9,970	9,894	9,639	9,764	9,430
1,25	α	*	*	*	*	*	*	*	*	*	*	*	3,675	2,347	1,504	0,905
1,20	β	*	*	*	*	*	*	*	*	*	*	*	9,894	9,639	9,764	9,430
1,6	α	*	*	*	*	*	*	*	*	*	*	*	*	3,691	2,387	1,447
1,0	β	*	*	*	*	*	*	*	*	*	*	*	*		9,764	
2,0	α	*	*	*	*	*	*	*	*	*	*	*	*		3,597	2,201
,0	β	*	*	*	*	*	*	*	*	*	*	*	*	9,908	9,764	9,430
2,5	α	*	*	*	*	*	*	*	*	*	*	*	*	*	*	3,326
,0	β	*	*	*	*	*	*	*	*	*	*	*	*	*	*	9,430
3,15	α	*	*	*	*	*	*	*	*	*	*	*	*	*	*	4,869
0,10	β	*	*	*	*	*	*	*	*	*	*	*	*	*	*	8,774

NOTE Cells containing asterisks indicate that no double sampling plan of the form (n, 0, 2; m, 1, 2) for nonconforming items exists with $\alpha \leqslant 5$ % and $\beta \leqslant 10$ % for that combination of producer's risk quality and consumer's risk quality; consider decreasing the PRQ or increasing the CRQ, or both.

Table 15 — Actual risks in percent for plans for nonconforming items: $\alpha \leqslant$ 10 % and $\beta \leqslant$ 10 %

PRQ	Risk							Cons	umer'	s risk	qualit	y (%)						
(%)	(%)	0,8	1,0	1,25	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
0,1	α	9,150	6,240	4,186	2,674	1,776	1,165	0,744	0,466	0,297	0,187	0,115	0,072	0,046	0,028	0,017	0,011	0,006
0, 1	β	9,997	9,993	9,998	9,998	9,996	9,986	9,992	9,972	9,984	9,884	9,839	9,920	9,970	9,894	9,639	9,764	9,430
0,125	α	*	9,129	6,204	4,008	2,684	1,772	1,138	0,716	0,457	0,290	0,178	0,112	0,072	0,044	0,027	0,017	0,010
0,123	β	*	9,993	9,998	9,998	9,996	9,986	9,992	9,972	9,984	9,884	9,839	9,920	9,970	9,894	9,639	9,764	9,430
0,160	α	*	*	9,445	6,198	4,196	2,796	1,810	1,146	0,736	0,468	0,289	0,182	0,117	0,071	0,044	0,027	0,016
0,100	β	*	*	9,998	9,998	9,996	9,986	9,992	9,972	9,984	9,884	9,839	9,920	9,970	9,894	9,639	9,764	9,430
0,2	α	*	*	*	9,070	6,218	4,187	2,734	1,744	1,126	0,719	0,446	0,282	0,181	0,111	0,068	0,042	0,025
0,2	β	*	*	*	9,998	9,996	9,986	9,992	9,972	9,984	9,884	9,839	9,920	9,970	9,894	9,639	9,764	9,430
0,25	α	*	*	*	*	9,099	6,205	4,097	2,637	1,714	1,101	0,685	0,435	0,279	0,171	0,106	0,066	0,039
0,20	β	*	*	*	*	9,996	9,986	9,992	9,972	9,984	9,884	9,839	9,920	9,970	9,894	9,639	9,764	9,430
0,315	α	*	*	*	*	*	9,202	6,161	4,011	2,630	1,701	1,066	0,679	0,438	0,269	0,166	0,104	0,061
0,010	β	*	*	*	*	*	9,986	9,992	9,972	9,984	9,884	9,839	9,920	9,970	9,894	9,639	9,764	9,430
0,4	α	*	*	*	*	*	*	9,260	6,119	4,059	2,650	1,672	1,072	0,694	0,429	0,266	0,167	0,098
	β	*	*	*	*	*	*	9,992	9,972	9,984	9,884	9,839	9,920	9,970	9,894	9,639	9,764	9,430
0,5	α	*	*	*	*	*	*	*	8,962	6,024	3,975	2,532	1,634	1,064	0,660	0,410	0,258	0,152
	β	*	*	*	*	*	*	*	9,972	9,984	9,884	9,839	9,920	9,970	9,894	9,639	9,764	9,430
0,63	α	*	*	*	*	*	*	*	*									0,240
	β	*	*	*	*	*	*	*	*	9,984	9,884	9,839	9,920	9,970	9,894	9,639	9,764	9,430
0,8	α	*	*	*	*	*	*	*	*	*	9,018	5,898	3,883	2,566	1,612	1,013	0,642	0,382
	β	*	*	*	*	*	*	*	*	*	9,884	9,839	9,920	9,970	9,894	9,639	9,764	9,430
1,0	α	*	*	*	*	*	*	*	*	*	*		-				'	0,589
	β	*	*	*	*	*	*	*	*	*	*	9,839	9,920	9,970	9,894	9,639	9,764	9,430
1,25	α	*	*	*	*	*	*	*	*	*	*	*						0,905
	β	*	*	*	*	*	*	*	*	*	*	*						9,430
1,6	α	*	*	*	*	*	*	*	*	*	*	*						1,447
	β	*	*	*	*	*	*	*	*	*	*	*	*	9,970	9,894	9,639	9,764	9,430
2,0	α	*	*	*	*	*	*	*	*	*	*	*	*	*				2,201
	β	*	*	*	*	*	*	*	*	*	*	*	*	*	9,894			9,430
2,5	α	*	*	*	*	*	*	*	*	*	*	*	*	*	*			3,326
	β	*	*	*	*	*	*	*	*	*	*	*	*	*	*			9,430
3,15	α	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	'	5,055
-,	β	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	9,764	9,430
4,0	α	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	7,699
	β	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	9,430

NOTE Cells containing asterisks indicate that no double sampling plan of the form (n, 0, 2; m, 1, 2) for nonconforming items exists with $\alpha \le 10$ % and $\beta \le 10$ % for that combination of producer's risk quality and consumer's risk quality; consider decreasing the PRQ or increasing the CRQ, or both.

Table 16 — Actual risks in percent for plans for nonconformities: $\alpha \leqslant 5$ % and $\beta \leqslant 5$ %

PRQ	Risk						Consu	mer's ri	isk qua	lity (%)					
(%)	(%)	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
0.4	α	3,902	2,622	1,725	1,117	0,718	0,455	0,290	0,183	0,117	0,078	0,048	0,031	0,019	0,013
0,1	β	4,992	4,994	4,993	4,989	4,991	4,985	4,984	4,958	4,951	4,985	4,932	4,873	4,856	4,764
0.405	α	*	3,931	2,607	1,699	1,098	0,699	0,447	0,284	0,181	0,120	0,075	0,048	0,030	0,020
0,125	β	*	4,994	4,993	4,989	4,991	4,985	4,984	4,958	4,951	4,985	4,932	4,873	4,856	4,764
0.400	α	*	*	4,080	2,683	1,747	1,120	0,718	0,458	0,293	0,195	0,122	0,078	0,049	0,032
0,160	β	*	*	4,993	4,989	4,991	4,985	4,984	4,958	4,951	4,985	4,932	4,873	4,856	4,764
0.0	α	*	*	*	4,021	2,640	1,704	1,099	0,704	0,452	0,302	0,189	0,122	0,076	0,050
0,2	β	*	*	*	4,989	4,991	4,985	4,984	4,958	4,951	4,985	4,932	4,873	4,856	4,764
0.05	α	*	*	*	*	3,957	2,577	1,673	1,077	0,695	0,465	0,292	0,188	0,118	0,077
0,25	β	*	*	*	*	4,991	4,985	4,984	4,958	4,951	4,985	4,932	4,873	4,856	4,764
0.245	α	*	*	*	*	*	3,921	2,568	1,665	1,080	0,726	0,458	0,296	0,186	0,121
0,315	β	*	*	*	*	*	4,985	4,984	4,958	4,951	4,985	4,932	4,873	4,856	4,764
0.4	α	*	*	*	*	*	*	3,963	2,593	1,693	1,144	0,725	0,470	0,297	0,194
0,4	β	*	*	*	*	*	*	4,984	4,958	4,951	4,985	4,932	4,873	4,856	4,764
0.5	α	*	*	*	*	*	*	*	3,889	2,561	1,740	1,109	0,722	0,458	0,300
0,5	β	*	*	*	*	*	*	*	4,958	4,951	4,985	4,932	4,873	4,856	4,764
0.63	α	*	*	*	*	*	*	*	*	3,898	2,669	1,713	1,122	0,715	0,469
0,63	β	*	*	*	*	*	*	*	*	4,951	4,985	4,932	4,873	4,856	4,764
0,8	α	*	*	*	*	*	*	*	*	*	4,114	2,665	1,758	1,128	0,743
0,6	β	*	*	*	*	*	*	*	*	*	4,985	4,932	4,873	4,856	4,764
1,0	α	*	*	*	*	*	*	*	*	*	*	3,994	2,656	1,716	1,136
1,0	β	*	*	*	*	*	*	*	*	*	*	4,932	4,873	4,856	4,764
1,25	α	*	*	*	*	*	*	*	*	*	*	*	3,981	2,595	1,729
1,23	β	*	*	*	*	*	*	*	*	*	*	*	4,873	4,856	4,764
1,6	α	*	*	*	*	*	*	*	*	*	*	*	*	4,061	2,730
1,0	β	*	*	*	*	*	*	*	*	*	*	*	*	4,856	4,764
2,0	α	*	*	*	*	*	*	*	*	*	*	*	*	*	4,089
2,0	β	*	*	*	*	*	*	*	*	*	*	*	*	*	4,764

NOTE Cells containing asterisks indicate that no double sampling plan of the form (n, 0, 2; m, 1, 2) for nonconformities exists with $\alpha \le 5$ % and $\beta \le 5$ % for that combination of producer's risk quality and consumer's risk quality; consider decreasing the PRQ or increasing the CRQ, or both.

Table 17 — Actual risks in percent for plans for nonconformities: $\alpha \leqslant$ 5 % and $\beta \leqslant$ 10 %

PRQ	Risk						Cons	umer's	s risk d	quality	(%)					
(%)	(%)	1,25	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
0.4	α	4,251	2,729	1,791	1,177	0,764	0,474	0,310	0,200	0,125	0,079	0,052	0,033	0,021	0,014	0,008
0,1	β	9,994	9,998	9,994	9,985	9,953	10,00	9,942	9,953	9,927	9,880	9,855	9,670	9,519	9,448	9,318
0.405	α	*	4,088	2,705	1,790	1,168	0,728	0,477	0,308	0,193	0,123	0,080	0,051	0,032	0,021	0,013
0,125	β	*	9,998	9,994	9,985	9,953	10,00	9,942	9,953	9,927	9,880	9,855	9,670	9,519	9,448	9,318
0.400	α	*	*	4,277	2,823	1,857	1,164	0,767	0,498	0,313	0,199	0,130	0,083	0,053	0,035	0,022
0,160	β	*	*	9,994	9,985	9,953	10,00	9,942	9,953	9,927	9,880	9,855	9,670	9,519	9,448	9,318
0.0	α	*	*	*	4,225	2,803	1,771	1,173	0,764	0,482	0,308	0,202	0,128	0,082	0,054	0,034
0,2	β	*	*	*	9,985	9,953	10,00	9,942	9,953	9,927	9,880	9,855	9,670	9,519	9,448	9,318
0.05	α	*	*	*	*	4,195	2,676	1,784	1,168	0,741	0,474	0,312	0,198	0,127	0,084	0,052
0,25	β	*	*	*	*	9,953	10,00	9,942	9,953	9,927	9,880	9,855	9,670	9,519	9,448	9,318
0.045	α	*	*	*	*	*	4,068	2,735	1,803	1,150	0,740	0,489	0,311	0,199	0,132	0,082
0,315	β	*	*	*	*	*	10,00	9,942	9,953	9,927	9,880	9,855	9,670	9,519	9,448	9,318
0.4	α	*	*	*	*	*	*	4,214	2,803	1,801	1,165	0,774	0,494	0,318	0,210	0,132
0,4	β	*	*	*	*	*	*	9,942	9,953	9,927	9,880	9,855	9,670	9,519	9,448	9,318
0.5	α	*	*	*	*	*	*	*	4,195	2,721	1,773	1,183	0,759	0,490	0,325	0,204
0,5	β	*	*	*	*	*	*	*	9,953	9,927	9,880	9,855	9,670	9,519	9,448	9,318
0.00	α	*	*	*	*	*	*	*	*	4,134	2,718	1,825	1,178	0,764	0,508	0,321
0,63	β	*	*	*	*	*	*	*	*	9,927	9,880	9,855	9,670	9,519	9,448	9,318
0.0	α	*	*	*	*	*	*	*	*	*	4,188	2,836	1,845	1,203	0,804	0,510
0,8	β	*	*	*	*	*	*	*	*	*	9,880	9,855	9,670	9,519	9,448	9,318
1.0	α	*	*	*	*	*	*	*	*	*	*	4,245	2,785	1,829	1,229	0,783
1,0	β	*	*	*	*	*	*	*	*	*	*	9,855	9,670	9,519	9,448	9,318
4.05	α	*	*	*	*	*	*	*	*	*	*	*	4,169	2,762	1,867	1,196
1,25	β	*	*	*	*	*	*	*	*	*	*	*	9,670	9,519	9,448	9,318
1,6	α	*	*	*	*	*	*	*	*	*	*	*	*	4,315	2,942	1,901
1,0	β	*	*	*	*	*	*	*	*	*	*	*	*	9,519	9,448	9,318
2.0	α	*	*	*	*	*	*	*	*	*	*	*	*	*	4,399	2,869
2,0	β	*	*	*	*	*	*	*	*	*	*	*	*	*	9,448	9,318
2.5	α	*	*	*	*	*	*	*	*	*	*	*	*	*	*	4,293
2,5	β	*	*	*	*	*	*	*	*	*	*	*	*	*	*	9,318

NOTE Cells containing asterisks indicate that no double sampling plan of the form (n, 0, 2; m, 1, 2) for nonconformities exists with $\alpha \le 5$ % and $\beta \le 10$ % for that combination of producer's risk quality and consumer's risk quality; consider decreasing the PRQ or increasing the CRQ, or both.

© ISO 2011 – All rights reserved 25

Table 18 — Actual risks in percent for plans for nonconformities: $\alpha \leqslant$ 10 % and $\beta \leqslant$ 10 %

PRQ	Risk							Cons	sumer'	s risk	qualit	y (%)						
(%)	%	0,8	1,0	1,25	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
0.4	α	9,230	6,313	4,251	2,729	1,791	1,177	0,764	0,474	0,310	0,200	0,125	0,079	0,052	0,033	0,021	0,014	0,008
0,1	β	9,998	9,993	9,994	9,998	9,994	9,985	9,953	10,00	9,942	9,953	9,927	9,880	9,855	9,670	9,519	9,448	9,318
0,125	α	*	9,228	6,295	4,088	2,705	1,790	1,168	0,728	0,477	0,308	0,193	0,123	0,080	0,051	0,032	0,021	0,013
0,125	β	*	9,993	9,994	9,998	9,994	9,985	9,953	10,00	9,942	9,953	9,927	9,880	9,855	9,670	9,519	9,448	9,318
0,160	α	*	*	9,574	6,314	4,227	2,823	1,857	1,164	0,767	0,498	0,313	0,199	0,130	0,083	0,053	0,035	0,022
0,100	β	*	*	9,994	9,998	9,994	9,985	9,953	10,00	9,942	9,953	9,927	9,880	9,855	9,670	9,519	9,448	9,318
0,2	α	*	*	*	9,230	6,262	4,225	2,803	1,771	1,173	0,764	0,482	0,308	0,202	0,128	0,082	0,054	0,034
0,2	β	*	*	*	9,998	9,994	9,985	9,953	10,00	9,942	9,953	9,927	9,880	9,855	9,670	9,519	9,448	9,318
0,25	α	*	*	*	*	9,158	6,259	4,195	2,676	1,784	1,168	0,741	0,474	0,312	0,198	0,127	0,084	0,052
0,20	β	*	*	*	*	9,994	9,985	9,953	10,00	9,942	9,953	9,927	9,880	9,855	9,670	9,519	9,448	9,318
0,315	α	*	*	*	*	*	9,276	6,301	4,068	2,735	1,803	1,150	0,740	0,489	0,311	0,199	0,132	0,082
0,515	β	*	*	*	*	*	9,985	9,953	10,00	9,942	9,953	9,927	9,880	9,855	9,670	9,519	9,448	9,318
0,4	α	*	*	*	*	*	*	9,458	6,201	4,214	2,803	1,801	1,165	0,774	0,494	0,318	0,210	0,132
0,4	β	*	*	*	*	*	*	9,953	10,00	9,942	9,953	9,927	9,880	9,855	9,670	9,519	9,448	9,318
0,5	α	*	*	*	*	*	*	*	9,073	6,243	4,195	2,721	1,773	1,183	0,759	0,490	0,325	0,204
0,0	β	*	*	*	*	*	*	*	10,00	9,942	9,953	9,927	9,880	9,855	9,670	9,519	9,448	9,318
0,63	α	*	*	*	*	*	*	*	*	9,255	6,301	4,134	2,718	1,825	1,178	0,764	0,508	0,321
0,00	β	*	*	*	*	*	*	*	*	9,942	9,953	9,927	9,880	9,855	9,670	9,519	9,448	9,318
0,8	α	*	*	*	*	*	*	*	*	*	9,458	6,297	4,188	2,836	1,845	1,203	0,804	0,510
0,0	β	*	*	*	*	*	*	*	*	*	9,953	9,927	9,880	9,855	9,670	9,519	9,448	9,318
1,0	α	*	*	*	*	*	*	*	*	*	*	9,207	6,207	4,245	2,785	1,829	1,229	0,783
1,0	β	*	*	*	*	*	*	*	*	*	*	9,927	9,880	9,855	9,670	9,519	9,448	9,318
1,25	α	*	*	*	*	*	*	*	*	*	*	*	9,084	6,287	4,169	2,762	1,867	1,196
1,20	β	*	*	*	*	*	*	*	*	*	*	*	9,880	9,855	9,670	9,519	9,448	9,318
1,6	α	*	*	*	*	*	*	*	*	*	*	*						1,901
1,0	β	*	*	*	*	*	*	*	*	*	*	*	*	9,855	9,670	9,519	9,448	9,318
2,0	α	*	*	*	*	*	*	*	*	*	*	*	*	*	9,402	6,389	4,399	2,869
,0	β	*	*	*	*	*	*	*	*	*	*	*	*	*	9,670	9,519	9,448	9,318
2,5	α	*	*	*	*	*	*	*	*	*	*	*	*	*				4,293
,5	β	*	*	*	*	*	*	*	*	*	*	*	*	*	*	9,519		9,318
3,15	α	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	9,630	6,446
3, 13	β	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	9,448	9,318
4,0	α	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	9,669
.,0	β	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	9,318

NOTE Cells containing asterisks indicate that no double sampling plan of the form (n, 0, 2; m, 1, 2) for nonconformities exists with $\alpha \le 10$ % and $\beta \le 10$ % for that combination of producer's risk quality and consumer's risk quality; consider decreasing the PRQ or increasing the CRQ, or both.

Table 19 — Average outgoing qualities (AOQs) in percent for plans for nonconforming items: $\alpha\leqslant 5$ % and $\beta\leqslant 5$ %

PRQ (%) at: 1,6 2,0 2,5 3,15 4,0 5,0 6,3 8,0 10,0 12,5 16,0 20	00 0,100 45 4,684 37 1,215 25 0,125 45 4,684 37 1,215 60 0,160 45 4,684 37 1,215 00 0,200 45 4,684 37 1,215 60 0,250 45 4,684	31,5 0,100 5,986 1,493 0,125 5,986 1,493 0,160 5,986 1,493 0,200 5,986 1,493 0,250
0,1 AOQL 0,275 0,345 0,431 0,543 0,696 0,869 1,099 1,412 1,786 2,237 2,883 3,6 CRQ 0,080 0,100 0,125 0,157 0,199 0,249 0,313 0,399 0,498 0,611 0,763 0,9 PRQ * 0,120 0,122 0,123 0,124 0,124 0,125 0,124 0,124 0,125 0,125 0,157 0,199 0,249 0,312 0,399 0,498 0,611 0,763 0,99 0,16	45 4,684 37 1,215 25 0,125 4,684 37 1,215 60 0,160 45 4,684 37 1,215 90 0,200 45 4,684 37 1,215 90 0,250 45 4,684	5,986 1,493 0,125 5,986 1,493 0,160 5,986 1,493 0,200 5,986 1,493
CRQ 0,080 0,100 0,125 0,157 0,199 0,249 0,313 0,399 0,498 0,611 0,763 0,99 PRQ * 0,120 0,122 0,123 0,124 0,124 0,124 0,125 0,157 0,199 0,249 0,312 0,399 0,498 0,611 0,763 0,9 PRQ * * 0,125 0,157 0,199 0,249 0,313 0,399 0,498 0,611 0,763 0,9 O,2 AOQL	37 1,215 25 0,125 45 4,684 37 1,215 30 0,160 45 4,684 37 1,215 00 0,200 45 4,684 37 1,215 50 0,250 45 4,684	1,493 0,125 5,986 1,493 0,160 5,986 1,493 0,200 5,986 1,493
PRQ	25 0,125 4,684 37 1,215 60 0,160 45 4,684 37 1,215 00 0,200 45 4,684 37 1,215 50 0,250 45 4,684	0,125 5,986 1,493 0,160 5,986 1,493 0,200 5,986 1,493
0,125 AOQL * 0,345 0,431 0,543 0,696 0,869 1,099 1,412 1,786 2,237 2,883 3,6 CRQ * 0,100 0,125 0,157 0,199 0,249 0,312 0,399 0,498 0,611 0,763 0,9 PRQ * * 0,154 0,156 0,157 0,158 0,159 0,160 <td>45 4,684 37 1,215 60 0,160 45 4,684 37 1,215 70 0,200 45 4,684 37 1,215 60 0,250 45 4,684</td> <td>5,986 1,493 0,160 5,986 1,493 0,200 5,986 1,493</td>	45 4,684 37 1,215 60 0,160 45 4,684 37 1,215 70 0,200 45 4,684 37 1,215 60 0,250 45 4,684	5,986 1,493 0,160 5,986 1,493 0,200 5,986 1,493
CRQ * 0,100 0,125 0,157 0,199 0,249 0,312 0,399 0,498 0,611 0,763 0,99 PRQ * * 0,154 0,156 0,157 0,158 0,159 0,159 0,160 0,190 0,1412	37 1,215 50 0,160 45 4,684 37 1,215 50 0,200 45 4,684 37 1,215 50 0,250 45 4,684	1,493 0,160 5,986 1,493 0,200 5,986 1,493
PRQ	60 0,160 45 4,684 37 1,215 00 0,200 45 4,684 37 1,215 50 0,250 45 4,684	0,160 5,986 1,493 0,200 5,986 1,493
0,160 AOQL * * 0,134 0,136 0,137 0,138 0,139 0,139 0,160	45 4,684 37 1,215 00 0,200 45 4,684 37 1,215 50 0,250 45 4,684	5,986 1,493 0,200 5,986 1,493
0,160 AOQL * * 0,431 0,543 0,696 0,869 1,099 1,412 1,786 2,237 2,883 3,6	45 4,684 37 1,215 00 0,200 45 4,684 37 1,215 50 0,250 45 4,684	5,986 1,493 0,200 5,986 1,493
CRQ * * 0,125 0,157 0,199 0,249 0,313 0,399 0,498 0,611 0,763 0,99 PRQ * * * 0,192 0,195 0,197 0,198 0,199 0,199 0,199 0,200 0,2 0,2 AOQL * * * 0,543 0,696 0,869 1,099 1,412 1,786 2,237 2,883 3,6 CRQ * * * 0,157 0,199 0,249 0,313 0,399 0,498 0,611 0,763 0,9 PRQ * * * * 0,241 0,249 0,313 0,399 0,498 0,611 0,763 0,9 0,25 AOQL * * * * 0,696 0,869 1,099 1,412 1,786 2,237 2,883 3,6 CRQ * * * * 0,696 0,869 1,099 1,4	37 1,215 00 0,200 45 4,684 37 1,215 50 0,250 45 4,684	1,493 0,200 5,986 1,493
0,2 AOQL * * * 0,192 0,193 0,197 0,198 0,199 0,199 0,199 0,200 0,2	00 0,200 45 4,684 37 1,215 50 0,250 45 4,684	5,986 1,493
0,2 AOQL * * * 0,543 0,696 0,869 1,099 1,412 1,786 2,237 2,883 3,6 CRQ * * * 0,157 0,199 0,249 0,313 0,399 0,498 0,611 0,763 0,9 PRQ * * * * 0,241 0,244 0,246 0,248 0,249 0,249 0,249 0,249 0,25 AOQL * * * * 0,696 0,869 1,099 1,412 1,786 2,237 2,883 3,6 CRQ * * * * 0,696 0,869 1,099 1,412 1,786 2,237 2,883 3,6 CRQ * * * * 0,696 0,869 1,099 1,412 1,786 2,237 2,883 3,6 CRQ * * * * 0,199 0,249 0,313 0,399 0,498 0,611 0,763 0,9 PRQ * * *	45 4,684 37 1,215 50 0,250 45 4,684	5,986 1,493
CRQ * * * 0,157 0,199 0,249 0,313 0,399 0,498 0,611 0,763 0,99 PRQ * * * * 0,241 0,244 0,246 0,248 0,248 0,249 0,249 0,249 0,25 AOQL * * * * 0,696 0,869 1,099 1,412 1,786 2,237 2,883 3,6 CRQ * * * * 0,199 0,249 0,313 0,399 0,498 0,611 0,763 0,9 PRQ * * * * 0,199 0,249 0,313 0,399 0,498 0,611 0,763 0,9	37 1,215 50 0,250 45 4,684	1,493
PRQ	0,250 50 4,684	
0,25 AOQL * * * * 0,696 0,869 1,099 1,412 1,786 2,237 2,883 3,6 CRQ * * * * 0,199 0,249 0,313 0,399 0,498 0,611 0,763 0,9 PRQ * * * * 0,303 0,307 0,310 0,312 0,313 0,314 0,3	4,684	
CRQ * * * * 0,199 0,249 0,313 0,399 0,498 0,611 0,763 0,9 PRQ * * * * * 0,303 0,307 0,310 0,312 0,313 0,314 0,3		5,986
PRQ * * * * * 0,303 0,307 0,310 0,312 0,313 0,314 0,3)	1,493
		0,315
		5,986
CRQ * * * * * * 0,249 0,313 0,399 0,498 0,611 0,763 0,9		1,493
PRQ * * * * * * 0,385 0,390 0,394 0,396 0,398 0,3		0,399
0,4 AOQL * * * * * * 1,099 1,412 1,786 2,237 2,883 3,6		5,986
CRQ * * * * * * 0,313 0,399 0,498 0,611 0,763 0,9		1,493
PRQ * * * * * * * 0,482 0,488 0,492 0,495 0,4		0,499
0,5 AOQL * * * * * * * 1,412 1,786 2,237 2,883 3,6		5,986
CRQ * * * * * * * 0,399 0,498 0,611 0,763 0,9		1,493
PRQ * * * * * * * * 0,608 0,615 0,621 0,6		0,628
0,63 AOQL * * * * * * * * 1,786 2,237 2,883 3,6		5,986
CRQ * * * * * * * * 0,498 0,611 0,763 0,9		1,493
PRQ * * * * * * * * * * 0,771 0,782 0,7		0,796
0,8 AOQL * * * * * * * * * * 2,237 2,883 3,6		5,986
CRQ * * * * * * * * * * * 0,611 0,763 0,9	-	1,493
PRQ * * * * * * * * * * 0,966 0,9		0,992
1,0 AOQL * * * * * * * * * * * 2,883 3,6		5,986
CRQ * * * * * * * * * * * 0,763 0,9		1,493
PRQ * * * * * * * * * * 1,188 1,2		
1,25 AOQL * * * * * * * * * * * 2,908 3,6		5,986
CRQ * * * * * * * * * * * 0,754 0,9		1,493
PRQ * * * * * * * * * * * 1,5		1,568
1,6 AOQL * * * * * * * * * * * * 3,7		5,986
CRQ * * * * * * * * * * * 0,9		1,493
PRQ * * * * * * * * * * * * *	1,903	1,939
2,0 AOQL * * * * * * * * * * * * * *	4,684	5,986
2,0 1,0 QE	1,215	1,493
PRQ * * * * * * * * * * * * * *	*	2,385
2,5 AOQL * * * * * * * * * * * * * *	*	5,986
CRQ * * * * * * * * * * * * * * *	*	1,493

NOTE Cells containing asterisks indicate that a double sampling plan of the form (n, 0, 2; m, 1, 2) with $\alpha \le 5$ % and $\beta \le 5$ % does not exist for that combination of producer's risk quality and consumer's risk quality; consider decreasing the PRQ or increasing the CRQ, or both.

Table 20 — Average outgoing qualities (AOQs) in percent for plans for nonconforming items: $\alpha \leqslant$ 5 % and $\beta \leqslant$ 10 %

PRQ	AOQs						Con	sumer	's risk	quality	(%)					
(%)	at:	1,25	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
	PRQ	0,096	0,097	0,098	0,099	0,099	0,100	0,100	0,100	0,100	0,100		0,100	0,100	0,100	0,100
0,1	AOQL	0,264	0,338		0,527	0,666	0,848	1,067	1,346	1,718	2,166	-	3,477	4,396	5,551	7,131
0, 1	CRQ	0,125	0,160		0,250	0,315	0,399		0,623	0,787	0,992	-	1,583	1,928	2,441	
	PRQ	*	0,120	0,122	0,123	0,124	0,124	0,124	0,125	0,125	0,125	0,125	0,125	0,125	0,125	0,125
0,125	AOQL	*	0,338	0,122	0,123	0,666	0,124	1,067	1,346	1,718		2,716	3,477	4,396	5,551	7,131
0,120	CRQ	*	0,160		0,250	0,315	0,399		0,623	0,787	0,992	-	1,583	1,928	2,441	2,970
	PRQ	*	*	0,153	0,156	0,157	0,158	0,159	0,159	0,160	0,160		0,160	0,160	0,160	0,160
0,160	AOQL	*	*	0,422	0,527	0,666	0,848	· '	1,346	1,718	2,166		3,477	4,396	5,551	7,131
0,100	CRQ	*	*	0,200	0,250	0,315	0,399		0,623		0,992		1,583		2,441	
	PRQ	*	*	*	0,192	0,195	0,197	0,198	0,199	0,199	0,199		0,200	0,200	0,200	0,200
0,2	AOQL	*	*	*	0,527	0,666	0,848	1,067	1,346	1,718	2,166	-	3,477	4,396	5,551	7,131
0,_	CRQ	*	*	*	0,250	0,315	0,399		0,623		0,992	-	1,583	1,928	2,441	2,970
	PRQ	*	*	*	*	0,240	0,243	0,246	0,247	0,248	0,249		0,250	0,250	0,250	0,250
0,25	AOQL	*	*	*	*	0,666	0,848	1,067	1,346		2,166	-	1	4,396	5,551	7,131
-,	CRQ	*	*	*	*	0,315	0,399		0,623			1,246	1		2,441	2,970
	PRQ	*	*	*	*	*	0,302	0,307	0,310	0,312	0,313		0,314	0,314	0,315	
0,315	AOQL	*	*	*	*	*	0,848	1,067	1,346					4,396	5,551	7,131
-,	CRQ	*	*	*	*	*	0,399	0,499	0,623			1,246		1,928	2,441	2,970
	PRQ	*	*	*	*	*	*	0,384	0,389	0,393	0,396		0,398	0,399	0,399	0,400
0,4	AOQL	*	*	*	*	*	*	1,067	1,346	1,718	2,166	-	3,477	4,396	5,551	7,131
,	CRQ	*	*	*	*	*	*	0,499	0,623	0,787	0,992	1,246	1,583	1,928	2,441	2,970
	PRQ	*	*	*	*	*	*	*	0,480	0,487	0,492		0,497	0,498	0,499	0,499
0,5	AOQL	*	*	*	*	*	*	*	1,346	1,718	2,166	-	3,477	4,396	5,551	7,131
,	CRQ	*	*	*	*	*	*	*	0,623	0,787	0,992	-	1,583	1,928	2,441	2,970
	PRQ	*	*	*	*	*	*	*	*	0,606	0,614	0,620	0,624	0,626	0,627	0,628
0,63	AOQL	*	*	*	*	*	*	*	*	1,718	2,166	2,716	3,477	4,396	5,551	7,131
	CRQ	*	*	*	*	*	*	*	*	0,787	0,992	1,246	1,583	1,928	2,441	2,970
	PRQ	*	*	*	*	*	*	*	*	*	0,769	0,779	0,787	0,792	0,795	0,797
0,8	AOQL	*	*	*	*	*	*	*	*	*	2,166	2,716	3,477	4,396	5,551	7,131
	CRQ	*	*	*	*	*	*	*	*	*	0,992	1,246	1,583	1,928	2,441	2,970
	PRQ	*	*	*	*	*	*	*	*	*	*	0,961	0,976	0,985	0,990	0,994
1,0	AOQL	*	*	*	*	*	*	*	*	*	*	2,716	3,477	4,396	5,551	7,131
	CRQ	*	*	*	*	*	*	*	*	*	*	1,246	1,583	1,928	2,441	2,970
	PRQ	*	*	*	*	*	*	*	*	*	*	*	1,204	1,221	1,231	1,239
1,25	AOQL	*	*	*	*	*	*	*	*	*	*	*	3,477	4,396	5,551	7,131
	CRQ	*	*	*	*	*	*	*	*	*	*	*	1,583	1,928	2,441	2,970
	PRQ	*	*	*	*	*	*	*	*	*	*	*	*	1,541	1,562	1,577
1,6	AOQL	*	*	*	*	*	*	*	*	*	*	*	*	4,396	5,551	7,131
	CRQ	*	*	*	*	*	*	*	*	*	*	*	*	1,928	2,441	2,970
	PRQ	*	*	*	*	*	*	*	*	*	*	*	*	1,901	1,928	1,956
2,0	AOQL	*	*	*	*	*	*	*	*	*	*	*	*	4,591	5,551	7,131
	CRQ	*	*	*	*	*	*	*	*	*	*	*	*	1,982	2,441	2,970
	PRQ	*	*	*	*	*	*	*	*	*	*	*	*	*	*	2,417
2,5	AOQL	*	*	*	*	*	*	*	*	*	*	*	*	*	*	7,131
	CRQ	*	*	*	*	*	*	*	*	*	*	*	*	*	*	2,970
	PRQ	*	*	*	*	*	*	*	*	*	*	*	*	*	*	2,997
3,15	AOQL	*	*	*	*	*	*	*	*	*	*	*	*	*	*	7,191
	CRQ	*	*	*	*	*	*	*	*	*	*	*	*	*	*	2,764

NOTE Cells containing asterisks indicate that a double sampling plan of the form (n, 0, 2; m, 1, 2) with $\alpha \le 5$ % and $\beta \le 10$ % does not exist for that combination of producer's risk quality and consumer's risk quality; consider decreasing the PRQ or increasing the CRQ, or both.

Table 21 — Average outgoing qualities (AOQs) in percent for plans for nonconforming items: $\alpha \leqslant$ 10 % and $\beta \leqslant$ 10 %

PRQ	AOQs	Consumer's risk quality (%)																
(%)	at:	0,8	1,0	1,25	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
	PRQ	0,091	0,094	0,096	0,097	0,098	0,099	0,099	0,100	0,100	0,100	0,100	0,100	0,100	0,100	0,100	0,100	0,100
0,1	AOQL	0,168	0,211	0,264	0,338	0,422	0,527	0,666	0,848	1,067	1,346	1,718	2,166	2,716	3,477	4,396	5,551	7,131
	CRQ	0,080																2,970
0,125	PRQ	*																0,125
	AOQL	*																7,131
	CRQ	*	0,100															2,970
0.40	PRQ	*	*															0,160
0,16	AOQL CRQ	*																7,131 2,970
-	PRQ	*	*															0,200
0,2	AOQL	*	*															7,131
	CRQ	*	*															2,970
-	PRQ	*	*	*														0.250
0,25	AOQL	*	*	*														7,131
,	CRQ	*	*	*														2,970
	PRQ	*	*	*	*	*	0,286	0,296	0,302	0,307	0,310	0,312	0,313	0,314	0,314	0,314	0,315	0,315
0,315	AOQL	*	*	*	*													7,131
	CRQ	*	*	*	*		0,250											2,970
	PRQ	*	*	*	*	*	*											0,400
0,4	AOQL	*	*	*	*	*												7,131
	CRQ	*	*	*	*	*	*											2,970
	PRQ	*	*	*	*	*	*											0,499
	AOQL CRQ	*	*	*	*	*	*											7,131
	PRQ	*	*	*	*	*	*	*										2,970 0,628
0,63	AOQL	*	*	*	*	*	*	*	*									7,131
	CRQ	*	*	*	*	*	*	*	*									2,970
	PRQ	*	*	*	*	*	*	*	*									0,797
0,8	AOQL	*	*	*	*	*	*	*	*	*	-	-			-		-	7,131
,	CRQ	*	*	*	*	*	*	*	*	*								2,970
	PRQ	*	*	*	*	*	*	*	*	*	*	0,913	0,942	0,961	0,976	0,985	0,990	0,994
1,0	AOQL	*	*	*	*	*	*	*	*	*								7,131
	CRQ	*	*	*	*	*	*	*	*	*		0,787						2,970
	PRQ	*	*	*	*	*	*	*	*	*	*	*						1,239
1,25	AOQL	*	*	*	*	*	*	*	*	*	*		,	,	,	,	,	7,131
	CRQ	*	*	*	*	*	*	*	*	*	*	*						2,970
4.0	PRQ	*	*	*	*	*	*	*	*	*	*	*	*					1,577
2,0	AOQL CRQ	*	*	*	*	*	*	*	*	*	*	*	*					7,131 2,970
	PRQ	*	*	*	*	*	*	*	*	*	*	*	*	*				1,956
	AOQL	*	*	*	*	*	*	*	*	*	*	*	*					7,131
	CRQ	*	*	*	*	*	*	*	*	*	*	*	*	*				2,970
2,5	PRQ	*	*	*	*	*	*	*	*	*	*	*	*	*	*			2,417
	AOQL	*	*	*	*	*	*	*	*	*	*	*	*	*	*			7,131
,	CRQ	*	*	*	*	*	*	*	*	*	*	*	*	*	*			2,970
3,15	PRQ	*	*	*	*	*	*	*	*	*	*	*	*	*	*			2,991
	AOQL	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	5,551	7,131
	CRQ	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*		2,970
	PRQ	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	3,692
4,0	AOQL	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	7,131
	CRQ	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	2,970

NOTE Cells containing asterisks indicate that a double sampling plan of the form (n, 0, 2; m, 1, 2) with $\alpha \le 10$ % and $\beta \le 10$ % does not exist for that combination of producer's risk quality and consumer's risk quality; consider decreasing the PRQ or increasing the CRQ, or both.

Table 22 — Average outgoing qualities (AOQs) in percent for plans for nonconformities: $\alpha\leqslant 5$ % and $\beta\leqslant 5$ %

PRQ	AOQs at:		Consumer's risk quality (%)													
(%)		1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5	
	PRQ	0,096	0,097	0,098	0,099	0,099	0,100	0,100	0,100	0,100	0,100	0,100	0,100	0,100	0,100	
0,1	AOQL	0,274	0,342	0,428	0,540	0,682	0,861	1,086	1,373	1,725	2,134	2,715	3,395	4,285	5,343	
	CRQ	0,080	0,100	0,125	0,157	0,200	0,249	0,314	0,397	0,495	0,623	0,789	0,975	1,214	1,501	
0,125	PRQ	*	0,120	0,122	0,123	0,124	0,124	0,124	0,125	0,125	0,125	0,125	0,125	0,125	0,125	
	AOQL	*	0,342	0,428	0,540	0,682	0,861	1,086	1,373	1,725	2,134	2,715	3,395	4,285	5,343	
	CRQ	*	0,100	0,125	0,157	0,200	0,249	0,314	0,397	0,495	0,623	0,789	0,975	1,214	1,501	
0,160	PRQ	*	*	0,153	0,156	0,157	0,158	0,159	0,159	0,160	0,160	0,160	0,160	0,160	0,160	
	AOQL	*	*	0,428	0,540	0,682	0,861	1,086	1,373	1,725	2,134	2,715	3,395	4,285	5,343	
	CRQ	*	*	0,125	0,157	0,200	0,249	0,314	0,397	0,495	0,623	0,789	0,975	1,214	1,501	
	PRQ	*	*	*	0,192	0,195	0,197	0,198	0,199	0,199	0,199	0,200	0,200	0,200	0,200	
0,2	AOQL	*	*	*	0,540	0,682	0,861	1,086	1,373	1,725	2,134	2,715	3,395	4,285	5,343	
	CRQ	*	*	*	0,157	0,200	0,249	0,314	0,397	0,495	0,623	0,789	0,975	1,214	1,501	
	PRQ	*	*	*	*	0,240	0,244	0,246	0,247	0,248	0,249	0,249	0,250	0,250	0,250	
0,25	AOQL	*	*	*	*	0,682	0,861	1,086	1,373	1,725	2,134	2,715	3,395	4,285	5,343	
	CRQ	*	*	*	*	0,200	0,249	0,314	0,397	0,495	0,623	0,789	0,975	1,214	1,501	
0,315	PRQ	*	*	*	*	*	0,303	0,307	0,310	0,312	0,313	0,314	0,314	0,314	0,315	
	AOQL	*	*	*	*	*	0,861	1,086	1,373	1,725	2,134	2,715	3,395	4,285	5,343	
	CRQ	*	*	*	*	*	0,249	0,314	0,397	0,495	0,623	0,789	0,975	1,214	1,501	
	PRQ	*	*	*	*	*	*	0,384	0,390	0,393	0,395	0,397	0,398	0,399	0,399	
0,4	AOQL	*	*	*	*	*	*	1,086	1,373	1,725	2,134	2,715	3,395	4,285	5,343	
	CRQ	*	*	*	*	*	*	0,314	0,397	0,495	0,623	0,789	0,975	1,214	1,501	
	PRQ	*	*	*	*	*	*	*	0,481	0,487	0,491	0,494	0,496	0,498	0,499	
0,5	AOQL	*	*	*	*	*	*	*	1,373	1,725	2,134	2,715	3,395	4,285	5,343	
	CRQ	*	*	*	*	*	*	*	0,397	0,495	0,623	0,789	0,975	1,214	1,501	
	PRQ	*	*	*	*	*	*	*	*	0,605	0,613	0,619	0,623	0,625	0,627	
0,63	AOQL	*	*	*	*	*	*	*	*	1,725	2,134	2,715	3,395	4,285	5,343	
	CRQ	*	*	*	*	*	*	*	*	0,495	0,623	0,789	0,975	1,214	1,501	
	PRQ	*	*	*	*	*	*	*	*	*	0,767	0,779	0,786	0,791	0,794	
0,8	AOQL	*	*	*	*	*	*	*	*	*	2,134	2,715	3,395	4,285	5,343	
	CRQ	*	*	*	*	*	*	*	*	*	0,623	0,789	0,975	1,214	1,501	
1,0	PRQ	*	*	*	*	*	*	*	*	*	*	0,960	0,973	0,983	0,989	
	AOQL	*	*	*	*	*	*	*	*	*	*	2,715	3,395	4,285	5,343	
	CRQ	*	*	*	*	*	*	*	*	*	*	0,789	0,975	1,214	1,501	
1,25	PRQ	*	*	*	*	*	*	*	*	*	*	*	1,200	1,218	1,228	
	AOQL	*	*	*	*	*	*	*	*	*	*	*	3,395	4,285	5,343	
	CRQ	*	*	*	*	*	*	*	*	*	*	*	0,975	1,214	1,501	
4.0	PRQ	*	*	*	*	*	*	*	*	*	*	*	*	1,535	1,556	
1,6	AOQL	*	*	*	*	*	*	*	*	*	*	*	*	4,285	5,343	
	CRQ	*	*	*	*	*		*	*	*	*	*	*	1,214	1,501	
0.0	PRQ	*	*	*	*	*	*	*	_ *	*	*	*	*	*	1,918	
2,0	AOQL		*	*		*	*	*		*	*				5,343	
	CRQ	*	~	*	*	~	*	*	^	*	*	~	*	*	1,501	

NOTE Cells containing asterisks indicate that a double sampling plan of the form (n, 0, 2; m, 1, 2) with $\alpha \le 5$ % and $\beta \le 5$ % does not exist for that combination of producer's risk quality and consumer's risk quality; consider decreasing the PRQ or increasing the CRQ, or both.

Table 23 — Average outgoing qualities (AOQs) in percent for plans for nonconformities: $\alpha \leqslant$ 5 % and $\beta \leqslant$ 10 %

PRQ	AOQs						Con	sumer	's risk	quality	(%)					
(%)	at:	1,25	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
	PRQ	0,096	0,097	0,098	0,099	0,099	0,100	0,100	0,100	0,100	0,100	0,100	0,100	0,100	0,100	0,100
0,1	AOQL	0,262	0,335	0,421	0,526	0,661	0,845	1,052	1,321	1,678	2,108	2,621	3,317	4,152	5,147	6,502
	CRQ	0,125	0,160	0,200	0,250	0,314	0,400	0,497	0,627	0,794	0,988	1,232	1,547	1,904	2,362	2,935
	PRQ	*	0,120	0,122	0,123	0,124	0,124	0,124	0,125	0,125	0,125	0,125	0,125	0,125	0,125	0,125
0,125	AOQL	*	0,335	0,421	0,526	0,661	0,845	1,052	1,321	1,678	2,108	2,621	3,317	4,152	5,147	6,502
	CRQ	*	0,160	0,200	0,250	0,314	0,400	0,497	0,627	0,794	0,988	1,232	1,547	1,904	2,362	2,935
	PRQ	*	*	0,153	0,155	0,157	0,158	0,159	0,159	0,159	0,160	0,160	0,160	0,160	0,160	0,160
0,160	AOQL	*	*	0,421	0,526	0,661	0,845	1,052	1,321	1,678	2,108	2,621	3,317	4,152	5,147	6,502
	CRQ	*	*	0,200	0,250	0,314	0,400	0,497	0,627	0,794	0,988	1,232	1,547	1,904	2,362	2,935
	PRQ	*	*	*	0,192	0,194	0,196	0,198	0,198	0,199	0,199	0,200	0,200	0,200	0,200	0,200
0,2	AOQL	*	*	*	0,526	0,661	0,845	1,052	1,321	1,678	2,108	2,621	3,317	4,152	5,147	6,502
	CRQ	*	*	*	0,250	0,314	0,400	0,497	0,627	0,794	0,988	1,232	1,547	1,904	2,362	2,935
	PRQ	*	*	*	*	0,240	0,243	0,246	0,247	0,248	0,249	0,249	0,250	0,250	0,250	0,250
0,25	AOQL	*	*	*	*	0,661	0,845	1,052	1,321	1,678	2,108	2,621	3,317	4,152	5,147	6,502
	CRQ	*	*	*	*	0,314	0,400	0,497	0,627	0,794	0,988	1,232	1,547	1,904	2,362	2,935
	PRQ	*	*	*	*	*	0,302	0,306	0,309	0,311	0,313	0,313	0,314	0,314	0,315	0,315
0,315	AOQL	*	*	*	*	*	0,845	1,052	1,321	1,678	2,108	2,621	3,317	4,152	5,147	6,502
	CRQ	*	*	*	*	*	0,400	0,497	0,627	0,794	0,988	1,232	1,547	1,904	2,362	2,935
	PRQ	*	*	*	*	*	*	0,383	0,389	0,393	0,395	0,397	0,398	0,399	0,399	0,399
0,4	AOQL	*	*	*	*	*	*	1,052	1,321	1,678	2,108	2,621	3,317	4,152	5,147	6,502
	CRQ	*	*	*	*	*	*	0,497	0,627	0,794	0,988	1,232	1,547	1,904	2,362	2,935
	PRQ	*	*	*	*	*	*	*	0,479	0,486	0,491	0,494	0,496	0,498	0,498	0,499
0,5	AOQL	*	*	*	*	*	*	*	1,321	1,678	2,108	2,621	3,317	4,152	5,147	6,502
	CRQ	*	*	*	*	*	*	*	0,627	0,794	0,988	1,232	1,547	1,904	2,362	2,935
	PRQ	*	*	*	*	*	*	*	*	0,604	0,613	0,619	0,623	0,625	0,627	0,628
0,63	AOQL	*	*	*	*	*	*	*	*	1,678	2,108	2,621	3,317	4,152	5,147	6,502
	CRQ	*	*	*	*	*	*	*	*	0,794	0,988	1,232	1,547	1,904	2,362	2,935
	PRQ	*	*	*	*	*	*	*	*	*	0,766	0,777	0,785	0,790	0,794	0,796
0,8	AOQL	*	*	*	*	*	*	*	*	*	2,108	2,621	3,317	4,152	5,147	6,502
	CRQ	*	*	*	*	*	*	*	*	*	0,988	1,232	1,547	1,904	2,362	2,935
	PRQ	*	*	*	*	*	*	*	*	*	*	0,958	0,972	0,982	0,988	0,992
1,0	AOQL	*	*	*	*	*	*	*	*	*	*	2,621	3,317	4,152	5,147	6,502
	CRQ	*	*	*	*	*	*	*	*	*	*	1,232	1,547	1,904	2,362	2,935
	PRQ	*	*	*	*	*	*	*	*	*	*	*	1,198	1,215	1,227	1,235
1,25	AOQL	*	*	*	*	*	*	*	*	*	*	*	3,317	4,152	5,147	6,502
	CRQ	*	*	*	*	*	*	*	*	*	*	*	1,547	1,904	2,362	2,935
	PRQ	*	*	*	*	*	*	*	*	*	*	*	*	1,531	1,553	1,570
1,6	AOQL	*	*	*	*	*	*	*	*	*	*	*	*	4,152	5,147	6,502
	CRQ	*	*	*	*	*	*	*	*	*	*	*	*	1,904	2,362	2,935
	PRQ	*	*	*	*	*	*	*	*	*	*	*	*	*	1,912	1,943
2,0	AOQL	*	*	*	*	*	*	*	*	*	*	*	*	*		6,502
	CRQ	*	*	*	*	*	*	*	*	*	*	*	*	*	2,362	2,935
	PRQ	*	*	*	*	*	*	*	*	*	*	*	*	*	*	2,393
2,5	AOQL	*	*	*	*	*	*	*	*	*	*	*	*	*	*	6,502
	CRQ	*	*	*	*	*	*	*	*	*	*	*	*	*	*	2,935

NOTE Cells containing asterisks indicate that a double sampling plan of the form (n, 0, 2; m, 1, 2) with $\alpha \le 5$ % and $\beta \le 10$ % does not exist for that combination of producer's risk quality and consumer's risk quality; consider decreasing the PRQ or increasing the CRQ, or both.

Table 24 — Average outgoing qualities (AOQs) in percent for plans for nonconformities: $\alpha\leqslant$ 10 % and $\beta\leqslant$ 10 %

PRQ	AOQs							Cons	umer'	s risk	qualit	y (%)						
(%)	at:	0,8	1,0	1,25	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5		20,0	25,0	31,5
		0,091																
0,1	AOQL																	
		0,080																
0.405	PRQ														0,125			
0,125															3,317			
	CRQ														1,547			
0.160	PRQ AOQL	*													0,160 3,317			
0,100	CRQ	*													1,547			
	PRQ	*	*	*											0,200			
0,2	AOQL	*	*	*											3,317			
0,2	CRQ	*	*	*											1,547			
	PRQ	*	*	*											0,250			
0,25	AOQL	*	*	*											3,317			
-,	CRQ	*	*	*											1,547			
	PRQ	*	*	*	*	*									0,314			
0,315		*	*	*	*	*									3,317			
	CRQ	*	*	*	*	*	0,250	0,314	0,400	0,497	0,627	0,794	0,988	1,232	1,547	1,904	2,362	2,935
	PRQ	*	*	*	*	*	*	0,362	0,375	0,383	0,389	0,393	0,395	0,397	0,398	0,399	0,399	0,399
0,4	AOQL	*	*	*	*	*	*	0,661	0,845	1,052	1,321	1,678	2,108	2,621	3,317	4,152	5,147	6,502
	CRQ	*	*	*	*	*	*	0,314	0,400	0,497	0,627	0,794	0,988	1,232	1,547	1,904	2,362	2,935
	PRQ	*	*	*	*	*	*	*							0,496			
0,5	AOQL	*	*	*	*	*	*	*							3,317			
	CRQ	*	*	*	*	*	*	*	0,400						1,547			
	PRQ	*	*	*	*	*	*	*	*						0,623			
0,63	AOQL	*	*	*	*	*	*	*	*						3,317			
	CRQ	*	*	*	*	*	*	*							1,547			
	PRQ	*	*	*	*	*	*	*	*	*					0,785			
0,8	AOQL	*	*	*	*	*	*	*	*						3,317			
	CRQ	-	*	*		*	*	*	*	*					1,547			
1.0	PRQ AOQL	*	*	*	*	*	*	*	*	*					0,972			
1,0	CRQ	*	*	*	*	*	*	*	*	*					3,317 1,547			
	PRQ	*	*	*	*	*	*	*	*	*	*	*			1,198	•		
1,25	AOQL	*	*	*	*	*	*	*	*	*	*	*			3,317			
1,20	CRQ	*	*	*	*	*	*	*	*	*	*	*			1,547			
	PRQ	*	*	*	*	*	*	*	*	*	*	*	*		1,497			
1,6	AOQL	*	*	*	*	*	*	*	*	*	*	*	*		3,317			
.,0	CRQ	*	*	*	*	*	*	*	*	*	*	*	*		1,547			
	PRQ	*	*	*	*	*	*	*	*	*	*	*	*	*				1,943
2,0	AOQL	*	*	*	*	*	*	*	*	*	*	*	*	*				6,502
, -	CRQ	*	*	*	*	*	*	*	*	*	*	*	*	*				2,935
	PRQ	*	*	*	*	*	*	*	*	*	*	*	*	*		2,267	2,337	2,393
2,5	AOQL	*	*	*	*	*	*	*	*	*	*	*	*	*	*	4,152	5,147	6,502
	CRQ	*	*	*	*	*	*	*	*	*	*	*	*	*	*	1,904	2,362	2,935
	PRQ	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	2,847	2,947
3,15	AOQL	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*		6,502
	CRQ	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*		2,935
	PRQ	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	3,613
4,0	AOQL	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	6,502
	CRQ	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	2,935

NOTE Cells containing asterisks indicate that a double sampling plan of the form (n, 0, 2; m, 1, 2) with $\alpha \le 10$ % and $\beta \le 10$ % does not exist for that combination of producer's risk quality and consumer's risk quality; consider decreasing the PRQ or increasing the CRQ, or both.

Table 25 — Average sample sizes (ASSIs) for plans for nonconforming items: curtailed inspection with $\alpha \leqslant 5$ % and $\beta \leqslant 5$ %

PRQ	ASSIs						Consu	mer's ri	isk qua	lity (%)					
(%)	at:	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
	PRQ	223	175	137	106	83,4	65,9	51,8	40,1	31,7	24,5	18,3	15,1	11,1	9,1
0,1	max.	233	186	149	118	92,4	73,7	58,2	45,5	36,0	28,6	21,9	17,3	13,5	10,5
	CRQ	119	95,5	76,3	60,6	47,8	38,2	30,3	23,9	19,1	15,3	11,9	9,6	7,6	6,1
	PRQ	*	178	139	108	84,3	66,5	52,2	40,4	31,8	24,6	18,4	15,2	11,1	9,1
0,125	max.	*	186	149	118	92,4	73,7	58,2	45,5	36,0	28,6	21,9	17,3	13,5	10,5
	CRQ	*	95,5	76,3	60,6	47,8	38,2	30,3	23,9	19,1	15,3	11,9	9,6	7,6	6,1
	PRQ	*	*	141	110	85,5	67,3	52,7	40,7	32,1	24,8	18,5	15,2	11,2	9,1
0,160	max.	*	*	149	118	92,4	73,7	58,2	45,5	36,0	28,6	21,9	17,3	13,5	10,5
	CRQ	*	*	76,3	60,6	47,8	38,2	30,3	23,9	19,1	15,3	11,9	9,6	7,6	6,1
	PRQ	*	*	*	112	86,7	68,2	53,2	41,1	32,3	24,9	18,6	15,3	11,2	9,1
0,2	max.	*	*	*	118	92,4	73,7	58,2	45,5	36,0	28,6	21,9	17,3	13,5	10,5
,	CRQ	*	*	*	60,6	47,8	38,2	30,3	23,9	19,1	15,3	11,9	9,6	7,6	6,1
	PRQ	*	*	*	*	88,0	69,1	53,9	41,5	32,6	25,1	18,8	15,4	11,3	9,1
0,25	max.	*	*	*	*	92,4	73,7	58,2	45,5	36,0	28,6	21,9	17,3	13,5	10,5
,	CRQ	*	*	*	*	47,8	38,2	30,3	23,9	19,1	15,3	11,9	9,6	7,6	6,1
	PRQ	*	*	*	*	*	70,2	54,7	42,0	32,9	25,4	18,9	15,4	11,4	9,2
0,315	max.	*	*	*	*	*	73,7	58,2	45,5	36,0	28,6	21,9	17,3	13,5	10,5
-,-	CRQ	*	*	*	*	*	38,2	30,03	23,9	19,1	15,3	11,9	9,6	7,6	6,1
	PRQ	*	*	*	*	*	*	55,5	42,7	33,4	25,7	19,2	15,6	11,5	9,2
0,4	max.	*	*	*	*	*	*	58,2	45,5	36,0	28,6	21,9	17,3	13,5	10,5
,	CRQ	*	*	*	*	*	*	30,3	23,9	19,1	15,3	11,9	9,6	7,6	6,1
	PRQ	*	*	*	*	*	*	*	43,3	33,8	26,1	19,4	15,7	11,6	9,3
0,5	max.	*	*	*	*	*	*	*	45,5	36,0	28,6	21,9	17,3	13,5	10,5
-,-	CRQ	*	*	*	*	*	*	*	23,9	19,1	15,3	11,9	9,6	7,6	6,1
	PRQ	*	*	*	*	*	*	*	*	34,3	26,5	19,7	15,8	11,7	9,3
0,63	max.	*	*	*	*	*	*	*	*	36,0	28,6	21,9	17,3	13,5	10,5
,,,,	CRQ	*	*	*	*	*	*	*	*	19,1	15,3	11,9	9,6	7,6	6,1
	PRQ	*	*	*	*	*	*	*	*	*	27,0	20,1	16,0	11,8	9,4
0,8	max.	*	*	*	*	*	*	*	*	*	28,6	21,9	17,3	13,5	10,5
, ,	CRQ	*	*	*	*	*	*	*	*	*	15,3	11,9	9,6	7,6	6,1
	PRQ	*	*	*	*	*	*	*	*	*	*	20,4	16,2	12,0	9,5
1,0	max.	*	*	*	*	*	*	*	*	*	*	21,9	17,3	13,5	10,5
,,,	CRQ	*	*	*	*	*	*	*	*	*	*	11,9	9,6	7,6	6,1
	PRQ	*	*	*	*	*	*	*	*	*	*	22,6	16,4	12,2	9,6
1,25	max.	*	*	*	*	*	*	*	*	*	*	22,9	17,3	13,5	10,5
, -	CRQ	*	*	*	*	*	*	*	*	*	*	12,0	9,6	7,6	6,1
	PRQ	*	*	*	*	*	*	*	*	*	*	*	18,1	12,5	9,7
1,6	max.	*	*	*	*	*	*	*	*	*	*	*	18,3	13,5	10,5
,-	CRQ	*	*	*	*	*	*	*	*	*	*	*	9,6	7,6	6,1
	PRQ	*	*	*	*	*	*	*	*	*	*	*	*	13,2	9,8
2,0	max.	*	*	*	*	*	*	*	*	*	*	*	*	13,6	10,5
_,0	CRQ	*	*	*	*	*	*	*	*	*	*	*	*	7,7	6,1
	PRQ	*	*	*	*	*	*	*	*	*	*	*	*	*	10,0
2,5	max.	*	*	*	*	*	*	*	*	*	*	*	*	*	10,5
_,0		*	*	*	*	*	*	*	*	*	*	*	*	*	6,1
2,0	CRQ	*			*	*								*	

NOTE Cells containing asterisks indicate that a double sampling plan of the form (n, 0, 2; m, 1, 2) with $\alpha \le 5$ % and $\beta \le 5$ % does not exist for that combination of producer's risk quality and consumer's risk quality; consider decreasing the PRQ or increasing the CRQ or both.

Table 26 — Average sample sizes (ASSIs) for plans for nonconforming items: curtailed inspection with $\, \alpha \leqslant 5 \, \% \,$ and $\, \beta \leqslant 10 \, \% \,$

PRQ	ASSIs						Con	sumer	's risk	quality	/ (%)					
(%)	at:	1,25	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
•	PRQ	226	172	136	106	82,6	64,4	51,1	39,5	30,9	24,5	19,3	14,2	11,1	9,1	7,0
0,1	max.	239	187	149	119	94,2	74,0	58,9	46,6	36,4	29,0	23,0	17,7	13,9	10,9	8,5
٠,٠	CRQ	145	113	90,9	72,7	57,6	45,4	36,4	28,8	22,7	18,2	14,6	11,3	9,1	7,3	5,8
	PRQ	*	175	138	108	83,8	65,2	51,6	39,8	31,1	24,7	19,4	14,3	11,2	9,1	7,1
0,125	max.	*	187	149	119	94,2	74,0	58,9	46,6	36,4	29,0	23,0	17,7	13,9	10,9	8,5
,	CRQ	*	113	90,9	72,7	57,6	45,4	36,4	28,8	22,7	18,2	14,6	11,3	9,1	7,3	5,8
	PRQ	*	*	141	110	85,3	66,1	52,2	40,3	31,3	24,8	19,5	14,4	11,2	9,1	7,1
0,160	max.	*	*	149	119	94,2	74,0	58,9	46,6	36,4	29,0	23,0	17,7	13,9	10,9	8,5
	CRQ	*	*	90,9	72,7	57,6	45,4	36,4	28,8	22,7	18,2	14,6	11,3	9,1	7,3	5,8
	PRQ	*	*	*	112	86,9	67,2	52,9	40,7	31,6	25,0	19,6	14,5	11,3	9,1	7,1
0,2	max.	*	*	*	119	94,2	74,0	58,9	46,6	36,4	29,0	23,0	17,7	13,9	10,9	8,5
	CRQ	*	*	*	72,7	57,6	45,4	36,4	28,8	22,7	18,2	14,6	11,3	9,1	7,3	5,8
	PRQ	*	*	*	*	88,5	68,3	53,7	41,3	32,0	25,3	19,8	14,6	11,3	9,2	7,1
0,25	max.	*	*	*	*	94,2	74,0	58,9	46,6	36,4	29,0	23,0	17,7	13,9	10,9	8,5
	CRQ	*	*	*	*	57,6	45,4	36,4	28,8	22,7	18,2	14,6	11,3	9,1	7,3	5,8
	PRQ	*	*	*	*	*	69,6	54,6	42,0	32,4	25,5	20,0	14,7	11,4	9,2	7,1
0,315	max.	*	*	*	*	*	74,0	58,9	46,6	36,4	29,0	23,0	17,7	13,9	10,9	8,5
	CRQ	*	*	*	*	*	45,4	36,4	28,8	22,7	18,2	14,6	11,3	9,1	7,3	5,8
	PRQ	*	*	*	*	*	*	55,7	42,8	33,0	25,9	20,2	14,9	11,5	9,3	7,2
0,4	max.	*	*	*	*	*	*	58,9	46,6	36,4	29,0	23,0	17,7	13,9	10,9	8,5
	CRQ	*	*	*	*	*	*	36,4	28,8	22,7	18,2	14,6	11,3	9,1	7,3	5,8
	PRQ	*	*	*	*	*	*	*	43,7	33,5	26,3	20,5	15,1	11,7	9,3	7,2
0,5	max.	*	*	*	*	*	*	*	46,6	36,4	29,0	23,0	17,7	13,9	10,9	8,5
	CRQ	*	*	*	*	*	*	*	28,8	22,7	18,2	14,6	11,3	9,1	7,3	5,8
0.00	PRQ	*	*	*	*	*	*	*	*	34,2	26,7	20,8	15,3	11,8	9,4	7,2
0,63	max.	*	*	*	*	*	*	*	*	36,4	29,0	23,0	17,7	13,9	10,9	8,5
	CRQ	*	*	*	*	*	*	*	*	22,7	18,2	14,6	11,3	9,1	7,3	5,8
0.0	PRQ	*	*	*	*	*	*	*	*	*	27,2 29,0	21,2 23,0	15,6 17,7	12,0 13,9	9,5	7,3
0,8	max. CRQ	*	*	*	*	*	*	*	*	*	29,0 18,2	23,0 14,6	11,7	9,1	10,9 7,3	8,5 5,8
	PRQ	*	*	*	*	*	*	*	*	*	10,Z *	21,5	15,9	12,2	9,6	7,4
1,0	max.	*	*	*	*	*	*	*	*	*	*	23,0	17,7	13,9	10,9	8,5
1,0	CRQ	*	*	*	*	*	*	*	*	*	*	14,6	11,7	9,1	7,3	5,8
	PRQ	*	*	*	*	*	*	*	*	*	*	*	16,2	12,4	9,8	7,5
1,25	max.	*	*	*	*	*	*	*	*	*	*	*	17,7	13,9	10,9	8,5
.,_0	CRQ	*	*	*	*	*	*	*	*	*	*	*	11,3	9,1	7,3	5,8
	PRQ	*	*	*	*	*	*	*	*	*	*	*	*	12,7	9,9	7,6
1,6	max.	*	*	*	*	*	*	*	*	*	*	*	*	13,9	10,9	8,5
,-	CRQ	*	*	*	*	*	*	*	*	*	*	*	*	9,1	7,3	5,8
	PRQ	*	*	*	*	*	*	*	*	*	*	*	*	17,0	10,1	7,7
2,0	max.	*	*	*	*	*	*	*	*	*	*	*	*	17,0	10,9	8,5
	CRQ	*	*	*	*	*	*	*	*	*	*	*	*	9,4	7,3	5,8
	PRQ	*	*	*	*	*	*	*	*	*	*	*	*	*	*	7,8
2,5	max.	*	*	*	*	*	*	*	*	*	*	*	*	*	*	8,5
	CRQ	*	*	*	*	*	*	*	*	*	*	*	*	*	*	5,8
	PRQ	*	*	*	*	*	*	*	*	*	*	*	*	*	*	8,7
2.45	max.	*	*	*	*	*	*	*	*	*	*	*	*	*	*	9,0
3,15	CRQ						*						*			5,9

NOTE Cells containing asterisks indicate that a double sampling plan of the form (n, 0, 2; m, 1, 2) with $\alpha \le 5$ % and $\beta \le 10$ % does not exist for that combination of producer's risk quality and consumer's risk quality; consider decreasing the PRQ or increasing the CRQ, or both.

Table 27 — Average sample sizes (ASSIs) for plans for nonconforming items: curtailed inspection with $\alpha \leqslant$ 10 % and $\beta \leqslant$ 10 %

PRQ	ASSIs							Cons	umer'	s risk	qualit	y (%)						
(%)	at:	0,8	1,0	1,25	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
	PRQ	367	288	226	172	136	106	82,6	64,4	51,1	39,5	30,9	24,5	19,3	14,2	11,1	9,1	7,0
0,1	max.	374	299	239	187	149	119	94,2	74,0	58,9	46,6	36,4	29,0	23,0	17,7	13,9	10,9	8,5
	CRQ PRQ	227	182 293	145 230	113 175	90,9 138	72,7 108	57,6 83,8	45,4 65,2	36,4 51,6	28,8 39,8	22,7 31,1	18,2 24,7	14,6 19,4	11,3 14,3	9,1 11,2	7,3 9,1	5,8 7,1
0,125	max.	*	293	239	187	149	119	94,2	74,0	58,9	46,6	36,4	29,0	23,0	17,7	13,9	10,9	8,5
0,120	CRQ	*	182	145	113	90,9	72,7	57,6	45,4	36,4	28,8	22,7	18,2	14,6	11,3	9,1	7,3	5,8
	PRQ	*	*	236	179	141	110	85,3	66,1	52,2	40,3	31,3	24,8	19,5	14,4	11,2	9,1	7,1
0,16	max.	*	*	240	187	149	119	94,2	74,0	58,9	46,6	36,4	29,0	23,0	17,7	13,9	10,9	8,5
	CRQ	*	*	146	113	90,9	72,7	57,6	45,4	36,4	28,8	22,7	18,2	14,6	11,3	9,1	7,3	5,8
	PRQ	*	*	*	183	144	112	86,9	67,2	52,9	40,7	31,6	25,0	19,6	14,5	11,3	9,1	7,1
0,2	max.	*	*	*	187	149	119	94,2	74,0	58,9	46,6	36,4	29,0	23,0	17,7	13,9	10,9	8,5
	CRQ PRQ	*	*	*	114	90,9 146	72,7 114	57,6 88,5	45,4 68,3	36,4 53,7	28,8 41,3	22,7 32,0	18,2 25,3	14,6 19,8	11,3 14,6	9,1 11,3	7,3 9,2	5,8 7,1
0,25	max.	*	*	*	*	149	119	94,2	74,0	58,9	46,6	36,4	29,0	23,0	17,7	13,9	10,9	8,5
0,20	CRQ	*	*	*	*	90,9	72,7	57,6	45,4	36,4	28,8	22,7	18,2	14,6	11,3	9,1	7,3	5,8
	PRQ	*	*	*	*	*	117	90,3	69,6	54,6	42,0	32,4	25,5	20,0	14,7	11,4	9,2	7,1
0,315	max.	*	*	*	*	*	119	94,2	74,0	58,9	46,6	36,4	29,0	23,0	17,7	13,9	10,9	8,5
	CRQ	*	*	*	*	*	72,7	57,6	45,4	36,4	28,8	22,7	18,2	14,6	11,3	9,1	7,3	5,8
	PRQ	*	*	*	*	*	*	92,6	71,0	55,7	42,8	33,0	25,9	20,2	14,9	11,5	9,3	7,2
0,4	max.	*	*	*	*	*	*	94,4	74,0	58,9	46,6	36,4	29,0	23,0	17,7	13,9	10,9	8,5
	CRQ PRQ	*	*	*	*	*	*	57,8 *	45,4 72,3	36,4 56,7	28,8 43,7	22,7 33,5	18,2 26,3	14,6 20,5	11,3 15,1	9,1 11,7	7,3 9,3	5,8 7,2
0,5	max.	*	*	*	*	*	*	*	74,0	58,9	46,6	36,4	29,0	23,0	17,7	13,9	10,9	8,5
0,0	CRQ	*	*	*	*	*	*	*	45,4	36,4	28,8	22,7	18,2	14,6	11,3	9,1	7,3	5,8
	PRQ	*	*	*	*	*	*	*	*	57,7	44,6	34,2	26,7	20,8	15,3	11,8	9,4	7,2
0,63	max.	*	*	*	*	*	*	*	*	58,9	46,6	36,4	29,0	23,0	17,7	13,9	10,9	8,5
	CRQ	*	*	*	*	*	*	*	*	36,4	28,8	22,7	18,2	14,6	11,3	9,1	7,3	5,8
	PRQ	*	*	*	*	*	*	*	*	*	45,7	34,9	27,2	21,2	15,6	12,0	9,5	7,3
0,8	max.	*	*	*	*	*	*	*	*	*	46,7	36,4	29,0	23,0	17,7	13,9	10,9	8,5
	CRQ PRQ	*	*	*	*	*	*	*	*	*	28,9	22,7	18,2	14,6	11,3	9,1	7,3	5,8
1,0	max.	*	*	*	*	*	*	*	*	*	*	35,5 36,4	27,7 29,0	21,5 23,0	15,9 17,7	12,2 13,9	9,6 10,9	7,4 8,5
1,0	CRQ	*	*	*	*	*	*	*	*	*	*	22,7	18,2	14,6	11,3	9,1	7,3	5,8
	PRQ	*	*	*	*	*	*	*	*	*	*	*	28,2	21,9	16,2	12,4	9,8	7,5
1,25	max.	*	*	*	*	*	*	*	*	*	*	*	29,0	23,0	17,7	13,9	10,9	8,5
	CRQ	*	*	*	*	*	*	*	*	*	*	*	18,2	14,6	11,3	9,1	7,3	5,8
	PRQ	*	*	*	*	*	*	*	*	*	*	*	*	22,4			9,9	7,6
1,6	max.	*	*	*	*	*	*	*	*	*	*	*	*	23,0	17,7		10,9	8,5
	CRQ	*	*	*	*	*	*	*	*	*	*	*	*	14,6	11,3	9,1	7,3	5,8
2,0	PRQ max.	*	*	*	*	*	*	*	*	*	*	*	*	*	17,0 17,7	13,0 13,9	10,1 10,9	7,7 8,5
2,0	CRQ	*	*	*	*	*	*	*	*	*	*	*	*	*	11,3	9,1	7,3	5,8
	PRQ	*	*	*	*	*	*	*	*	*	*	*	*	*	*	13,3	10,3	7,8
2,5	max.	*	*	*	*	*	*	*	*	*	*	*	*	*	*	13,9	10,9	8,5
	CRQ	*	*	*	*	*	*	*	*	*	*	*	*	*	*	9,1	7,3	5,8
	PRQ	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	10,5	8,0
3,15	max.	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	10,9	8,5
	CRQ	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	7,3	5,8
4.0	PRQ	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	8,1
4,0	max. CRQ	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	8,5 5,8
	CINC															<u> </u>	L	٥,٥

NOTE Cells containing asterisks indicate that a double sampling plan of the form (n, 0, 2; m, 1, 2) with $\alpha \le 10$ % and $\beta \le 10$ % does not exist for that combination of producer's risk quality and consumer's risk quality; consider decreasing the PRQ or increasing the CRQ, or both.

Table 28 — Average sample sizes (ASSIs) for plans for nonconformities: curtailed inspection with $\alpha \leqslant 5$ % and $\beta \leqslant 5$ %

PRQ	ASSIs						Consu	mer's r	isk qua	lity (%)					
(%)	at:	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
	PRQ	231	182	144	114	87,7	71,2	56,4	43,9	35,6	27,4	21,3	17,2	14,1	11,1
0,1	max.	238	190	152	121	94,6	76,4	60,7	47,7	38,4	30,3	23,7	19,1	15,4	12,2
	CRQ	119	95,0	75,9	60,0	47,1	37,6	29,6	23,2	18,4	14,5	11,2	8,8	6,9	5,3
	PRQ	*	184	146	115	88,5	71,7	56,7	44,1	35,7	27,5	21,3	17,2	14,1	11,1
0,125	max.	*	190	152	121	94,6	76,4	60,7	47,7	38,4	30,3	23,7	19,1	15,4	12,2
	CRQ	*	95,0	75,9	60,0	47,1	37,6	29,6	23,2	18,4	14,5	11,2	8,8	6,9	5,3
	PRQ	*	*	148	116	89,5	72,3	57,1	44,4	35,9	27,6	21,4	17,3	14,2	11,1
0,160	max.	*	*	152	121	94,6	76,4	60,7	47,7	38,4	30,3	23,7	19,1	15,4	12,2
	CRQ	*	*	75,9	60,0	47,1	37,6	29,6	23,2	18,4	14,5	11,2	8,8	6,9	5,3
	PRQ	*	*	*	117	90,5	73,0	57,6	44,7	36,1	27,8	21,5	17,3	14,2	11,1
0,2	max.	*	*	*	121	94,6	76,4	60,7	47,7	38,4	30,3	23,7	19,1	15,4	12,2
	CRQ	*	*	*	60,0	47,1	37,6	29,6	23,2	18,4	14,5	11,2	8,8	6,9	5,3
	PRQ	*	*	*	*	91,6	73,7	58,1	45,1	36,3	28,0	21,6	17,4	14,2	11,2
0,25	max.	*	*	*	*	94,6	76,4	60,7	47,7	38,4	30,3	23,7	19,1	15,4	12,2
	CRQ	*	*	*	*	47,1	37,6	29,6	23,2	18,4	14,5	11,2	8,8	6,9	5,3
	PRQ	*	*	*	*	*	74,5	58,7	45,5	36,6	28,2	21,8	17,5	14,3	11,2
0,315	max.	*	*	*	*	*	76,4	60,7	47,7	38,4	30,3	23,7	19,1	15,4	12,2
	CRQ	*	*	*	*	*	37,6	29,6	23,2	18,4	14,5	11,2	8,8	6,9	5,3
	PRQ	*	*	*	*	*	*	59,3	46,0	36,9	28,5	22,0	17,6	14,4	11,2
0,4	max.	*	*	*	*	*	*	60,7	47,7	38,4	30,3	23,7	19,1	15,4	12,2
	CRQ	*	*	*	*	*	*	29,6	23,2	18,4	14,5	11,2	8,8	6,9	5,3
	PRQ	*	*	*	*	*	*	*	46,5	37,2	28,7	22,2	17,7	14,4	11,3
0,5	max.	*	*	*	*	*	*	*	47,7	38,4	30,3	23,7	19,1	15,4	12,2
	CRQ								23,2	18,4	14,5	11,2	8,8	6,9	5,3
0.00	PRQ	*	*	*	*	*	*	*	*	37,6	29,1	22,4	17,9	14,5	11,4
0,63	max.	*	*	*	*	*	*	*	*	38,4	30,3	23,7	19,1	15,4	12,2
	CRQ	*	*	*	*	*	*	*	*	18,4	14,5	11,2	8,8	6,9	5,3
0.0	PRQ	*	*	*	*	*	*	*	*	*	29,4	22,7	18,1	14,7	11,5
0,8	max.	*	*	*	*	*	*	*	*	*	30,3	23,7	19,1	15,4	12,2
	CRQ	*	*	*	*	*	*	*	*	*	14,5	11,2	8,8 18,3	6,9 14,8	5,3
1,0	PRQ	*	*	*	*	*	*	*	*	*	*	22,9 23,7			11,6 12,2
1,0	max. CRQ	*	*	*	*	*	*	*	*	*	*	11,2	19,1 8,8	15,4 6,9	5,3
	PRQ	*	*	*	*	*	*	*	*	*	*	*	18,5	14,9	11,7
1,25	max.	*	*	*	*	*	*	*	*	*	*	*	19,1	15,4	12,2
1,20	CRQ	*	*	*	*	*	*	*	*	*	*	*	8,8	6,9	5,3
	PRQ	*	*	*	*	*	*	*	*	*	*	*	*	15,1	11,8
1,6	max.	*	*	*	*	*	*	*	*	*	*	*	*	15,1	12,2
1,0	CRQ	*	*	*	*	*	*	*	*	*	*	*	*	6,9	5,3
	PRQ	*	*	*	*	*	*	*	*	*	*	*	*	*	11,9
2,0	max.	*	*	*	*	*	*	*	*	*	*	*	*	*	12,2
2,0	CRQ	*	*	*	*	*	*	*	*	*	*	*	*	*	5,3
	UING														5,5

NOTE Cells containing asterisks indicate that a double sampling plan of the form (n, 0, 2; m, 1, 2) with $\alpha \le 5$ % and $\beta \le 5$ % does not exist for that combination of producer's risk quality and consumer's risk quality; consider decreasing the PRQ or increasing the CRQ, or both.

Table 29 — Average sample sizes (ASSIs) for plans for nonconformities: curtailed inspection with $\, \alpha \leqslant 5 \, \% \,$ and $\, \beta \leqslant 10 \, \% \,$

PRQ 237 182 145 115 90,0 71,4 56,6 44,1 34,7 28,4 22,3 17,2 14,7 14,0 10,8 8,5 14,0 14,0 14,0 14,0 15,0 14,0 15,0 14,0 15,0 14,0 15,0 14,0 15,0 14,0 15,0 14,0	1 11,1 9,0 6 12,5 10,0 5 6,7 5,2 1 11,1 9,1 6 12,5 10,0 5 6,7 5,2 2 11,1 9,1 6 12,5 10,0 5 6,7 5,2 2 11,1 9,1 6 12,5 10,0 5 6,7 5,2 3 11,2 9,1 6 12,5 10,0
0,1 max. 245 191 153 123 97,2 77,1 61,6 48,6 38,4 31,1 24,7 19,3 15,6 CRQ 146 114 91,0 72,7 57,5 45,2 36,0 28,4 22,2 17,7 14,0 10,8 8,9 PRQ 184 147 116 90,9 71,9 57,0 44,3 34,8 28,5 22,3 17,2 14,7 0,125 max. 191 153 123 97,2 77,1 61,6 48,6 38,4 31,1 24,7 19,3 15,6 CRQ 114 91,0 72,7 57,5 45,2 36,0 28,4 22,2 17,7 14,0 10,8 8,9 0,160 max. * 153 123 97,2 77,1 61,6 48,6 38,4 31,1 24,7 19,3 15,6 CRQ * 91,0 72,7 57,5 <td< th=""><th>6 12,5 10,0 5 6,7 5,2 1 11,1 9,1 6 12,5 10,0 5 6,7 5,2 2 11,1 9,1 6 12,5 10,0 5 6,7 5,2 2 11,1 9,1 6 12,5 10,0 5 6,7 5,2 3 11,2 9,1 6 12,5 10,0</th></td<>	6 12,5 10,0 5 6,7 5,2 1 11,1 9,1 6 12,5 10,0 5 6,7 5,2 2 11,1 9,1 6 12,5 10,0 5 6,7 5,2 2 11,1 9,1 6 12,5 10,0 5 6,7 5,2 3 11,2 9,1 6 12,5 10,0
CRQ 146 114 91,0 72,7 57,5 45,2 36,0 28,4 22,2 17,7 14,0 10,8 8,9 PRQ 184 147 116 90,9 71,9 57,0 44,3 34,8 28,5 22,3 17,2 14,7 0,125 max. 191 153 123 97,2 77,1 61,6 48,6 38,4 31,1 24,7 19,3 15,6 CRQ 114 91,0 72,7 57,5 45,2 36,0 28,4 22,2 17,7 14,0 10,8 8,9 PRQ * 149 118 92,0 72,6 57,4 44,7 35,0 28,6 22,4 17,3 14,2 0,160 max. * 153 123 97,2 77,1 61,6 48,6 38,4 31,1 24,7 19,3 15,6 CRQ * * 119 93,0 73,3 58,0 45,0	5 6,7 5,2 1 11,1 9,1 6 12,5 10,0 5 6,7 5,2 2 11,1 9,1 6 12,5 10,0 5 6,7 5,2 2 11,1 9,1 6 12,5 10,0 5 6,7 5,2 3 11,2 9,1 6 12,5 10,0
PRQ	1 11,1 9,1 6 12,5 10,0 5 6,7 5,2 2 11,1 9,1 6 12,5 10,0 5 6,7 5,2 2 11,1 9,1 6 12,5 10,0 5 6,7 5,2 3 11,2 9,1 6 12,5 10,0 6 12,5 10,0
0,125 max. 191 153 123 97,2 77,1 61,6 48,6 38,4 31,1 24,7 19,3 15,6 CRQ 114 91,0 72,7 57,5 45,2 36,0 28,4 22,2 17,7 14,0 10,8 8,5 PRQ * 149 118 92,0 72,6 57,4 44,7 35,0 28,6 22,4 17,3 14,2 0,160 max. * 153 123 97,2 77,1 61,6 48,6 38,4 31,1 24,7 19,3 15,6 CRQ * 91,0 72,7 57,5 45,2 36,0 28,4 22,2 17,7 14,0 10,8 8,9 PRQ * * 119 93,0 73,3 58,0 45,0 35,3 28,8 22,5 17,4 14,2 0,2 max. * * 123 97,2 77,1 61,6 48,6	6 12,5 10,0 5 6,7 5,2 2 11,1 9,1 6 12,5 10,0 5 6,7 5,2 2 11,1 9,1 6 12,5 10,0 5 6,7 5,2 3 11,2 9,1 6 12,5 10,0
CRQ 114 91,0 72,7 57,5 45,2 36,0 28,4 22,2 17,7 14,0 10,8 8,9 14,2 0,160 max. CRQ * 119,0 72,7 57,5 45,2 36,0 28,4 22,2 17,7 14,0 10,8 8,9 1,0 160 max. CRQ * 119,0 72,7 57,5 45,2 36,0 28,4 22,2 17,7 14,0 10,8 8,9 1,0 10,2 max. * 123 97,2 77,1 61,6 48,6 38,4 31,1 24,7 19,3 15,6 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0	5 6,7 5,2 2 11,1 9,1 6 12,5 10,0 5 6,7 5,2 2 11,1 9,1 6 12,5 10,0 5 6,7 5,2 3 11,2 9,1 6 12,5 10,0
PRQ	2 11,1 9,1 6 12,5 10,0 5 6,7 5,2 2 11,1 9,1 6 12,5 10,0 5 6,7 5,2 3 11,2 9,1 6 12,5 10,0
0,160 max.	6 12,5 10,0 5 6,7 5,2 2 11,1 9,1 6 12,5 10,0 5 6,7 5,2 3 11,2 9,1 6 12,5 10,0
CRQ * 91,0 72,7 57,5 45,2 36,0 28,4 22,2 17,7 14,0 10,8 8,8 PRQ * 119 93,0 73,3 58,0 45,0 35,3 28,8 22,5 17,4 14,2 0,2 max. * 123 97,2 77,1 61,6 48,6 38,4 31,1 24,7 19,3 15,6 CRQ * 72,7 57,5 45,2 36,0 28,4 22,2 17,7 14,0 10,8 8,8 PRQ * * 99,0 72,7 73,1 58,5 45,4 35,6 28,9 22,7 17,4 14,3 15,6 28,9 22,7 17,4 14,3 15,6 28,9 22,7 17,4 14,3 15,6 28,9 22,7 17,4 14,3 15,6 28,9 22,7 17,4 14,3 15,6 28,9 22,7 17,4 14,3 15,6 28,9 22,7 17,4 14,3 15,6 28,9 22,7 17,4 14,3 15,6 28,9 22,7 17,4 14,3 15,6 28,9 22,7 17,4 14,3 15,6 28,9 22,7 17,4 14,3 15,6 28,9 22,7 17,4 14,3 15,6 28,9 22,7 17,4 14,3 15,6 28,9 22,7 17,4 14,3 15,6 28,9 22,7 17,4 14,3 15,6 28,9 22,7 17,4 14,3 15,6 28,9 22,7 17,4 14,3 15,6 28,9 22,7 17,4 14,3 15,6 28,9 22,7 17,5 14,3 15,6 28,9 22,7 17,7 14,0 10,8 8,5 28,9 22,7 17,7 14,0 10,8 8,5 28,9 22,7 17,7 14,0 10,8 8,5 28,9 22,7 17,7 14,0 10,8 8,5 28,9 22,7 17,7 14,0 10,8 8,5 28,9 22,7 17,7 14,0 10,8 8,5 28,9 22,7 17,7 14,0 10,8 8,5 28,9 22,7 17,7 14,0 10,8 8,5 28,9 22,7 17,7 14,0 10,8 8,5 28,9 22,7 17,7 14,0 10,8 8,5 28,9 22,7 17,7 14,0 10,8 8,5 28,9 22,7 17,7 14,0 10,8 8,5 28,9 22,7 17,7 14,0 10,8 8,5 28,9 22,7 17,7 14,0 10,8 8,5 28,9 22,7 17,7 14,0 10,8 8,5 28,9 22,7 17,7 14,0 10,8 8,5 28,9 22,7 17,7 14,0 10,8 8,5 28,9 28,9 28,9 28,9 28,9 28,9 28,9 28,9	5 6,7 5,2 2 11,1 9,1 6 12,5 10,0 5 6,7 5,2 3 11,2 9,1 6 12,5 10,0
PRQ	2 11,1 9,1 6 12,5 10,0 5 6,7 5,2 3 11,2 9,1 6 12,5 10,0
0,2 max.	6 12,5 10,0 5 6,7 5,2 3 11,2 9,1 6 12,5 10,0
CRQ * * 72,7 57,5 45,2 36,0 28,4 22,2 17,7 14,0 10,8 8,9 PRQ * * * 94,2 74,1 58,5 45,4 35,6 28,9 22,7 17,4 14,5 CRQ * * * * 97,2 77,1 61,6 48,6 38,4 31,1 24,7 19,3 15,6 CRQ * * * * 57,5 45,2 36,0 28,4 22,2 17,7 14,0 10,8 8,9 PRQ * * * * 74,9 59,2 45,9 35,9 29,1 22,8 17,5 14,5 14,5 14,5 14,5 14,5 14,5 14,5 14	5 6,7 5,2 3 11,2 9,1 6 12,5 10,0
PRQ	3 11,2 9,1 6 12,5 10,0
0,25 max. * * * 97,2 77,1 61,6 48,6 38,4 31,1 24,7 19,3 15,6 CRQ * * * * 57,5 45,2 36,0 28,4 22,2 17,7 14,0 10,8 8,9 PRQ * * * * 74,9 59,2 45,9 35,9 29,1 22,8 17,5 14,3	6 12,5 10,0
CRQ * * * 57,5 45,2 36,0 28,4 22,2 17,7 14,0 10,8 8,5 PRQ * * * * 74,9 59,2 45,9 35,9 29,1 22,8 17,5 14,5	
PRQ * * * * 74,9 59,2 45,9 35,9 29,1 22,8 17,5 14,3	5 6,7 5,2
I 0.315 max	
CRQ 45,2 30,0 20,4 22,2 17,7 14,0 10,0 0,5	
PRQ	
0,4 IIIax.	
30,0 20,4 22,2 17,7 14,0 10,0 8,3	
FRQ	
0,5 1118X.	
20,4 22,2 11,1 14,0 10,0 0,5	
FNQ	
0,63 max.	
PRQ	
CRQ	
PRQ * * * * * * * * * 24,0 18,4 14,5	
1,0 max.	
CRQ	
PRQ * * * * * * * * * * * 18,7 15,7	
1,25 max.	
CRQ	
PRQ * * * * * * * * * * * * 15,7	
1,6 max.	
CRQ	
PRQ * * * * * * * * * * * * * *	
2,0 max.	
CRQ * * * * * * * * *	
PRQ * * * * * * * * * * * * * *	* 9,8
2,5 max.	
CRQ	

NOTE Cells containing asterisks indicate that a double sampling plan of the form (n, 0, 2; m, 1, 2) with $\alpha \le 5$ % and $\beta \le 10$ % does not exist for that combination of producer's risk quality and consumer's risk quality; consider decreasing the PRQ or increasing the CRQ, or both.

Table 30 — Average sample sizes (ASSIs) for plans for nonconformities: curtailed inspection with $\alpha \leqslant$ 10 % and $\beta \leqslant$ 10 %

PRQ	ASSIs							Cons	sumer	's risk	qualit	t y (%)						
(%)	at:	0,8	1,0	1,25	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
	PRQ	378	299	237	182	145	115	90,0	71,4	56,6	44,1	34,7	28,4	22,3	17,2	14,1	11,1	9,0
0,1	max.	381	305	245	191	153	123	97,2	77,1	61,6	48,6	38,4	31,1	24,7	19,3	15,6	12,5	10,0
	CRQ PRQ	228	183 302	146 240	114 184	91,0 147	72,7 116	57,5 90,9	45,2 71,9	36,0 57,0	28,4 44,3	22,2 34,8	17,7 28,5	14,0 22,3	10,8 17,2	8,5 14,1	6,7 11,1	5,2 9,1
0,125	max.	*	302	240 245	191	153	123	90,9	77,1	61,6	44,3 48,6	38,4	31,1	24,7	17,2	1 4 , 1 15,6	12,5	10,0
0,120	CRQ	*	183	146	114	91,0	72,7	57,5	45,2	36,0	28,4	22,2	17,7	14,0	10,8	8,5	6,7	5,2
	PRQ	*	*	242	187	149	118	92,0	72,6	57,4	44,7	35,0	28,6	22,4	17,3	14,2	11,1	9,1
0,160	max.	*	*	245	191	153	123	97,2	77,1	61,6	48,6	38,4	31,1	24,7	19,3	15,6	12,5	10,0
	CRQ	*	*	146	114	91,0	72,7	57,5	45,2	36,0	28,4	22,2	17,7	14,0	10,8	8,5	6,7	5,2
	PRQ	*	*	*	189	150	119	93,0	73,3	58,0	45,0	35,3	28,8	22,5	17,4	14,2	11,1	9,1
0,2	max.	*	*	*	191	153	123	97,2	77,1	61,6	48,6	38,4	31,1	24,7	19,3	15,6	12,5	10,0
	CRQ	*	*	*	114	91,0	72,7	57,5	45,2	36,0	28,4	22,2	17,7	14,0	10,8	8,5	6,7	5,2
0.05	PRQ	*	*	*	*	152	120	94,2	74,1	58,5	45,4	35,6	28,9	22,7	17,4	14,3	11,2	9,1
0,25	max. CRQ	*	*	*	*	153 91,0	123 72,7	97,2 57,5	77,1 45,2	61,6	48,6 28,4	38,4 22,2	31,1	24,7 14,0	19,3	15,6 8,5	12,5 6,7	10,0
	PRQ	*	*	*	*	*	122	95,3	74,9	36,0 59,2	45,9	35,9	17,7 29,1	22,8	10,8 17,5	14,3	11,2	5,2 9,1
0,315	max.	*	*	*	*	*	123	97,2	77,1	61,6	48,6	38,4	31,1	24,7	19,3	15,6	12,5	10,0
0,010	CRQ	*	*	*	*	*	72,7	57,5	45,2	36,0	28,4	22,2	17,7	14,0	10,8	8,5	6,7	5,2
	PRQ	*	*	*	*	*	*	96,4	75,8	59,9	46,5	36,3	29,4	23,0	17,7	14,4	11,3	9,2
0,4	max.	*	*	*	*	*	*	97,2	77,1	61,6	48,6	38,4	31,1	24,7	19,3	15,6	12,5	10,0
	CRQ	*	*	*	*	*	*	57,5	45,2	36,0	28,4	22,2	17,7	14,0	10,8	8,5	6,7	5,2
	PRQ	*	*	*	*	*	*	*	76,5	60,6	47,1	36,7	29,7	23,2	17,8	14,5	11,4	9,2
0,5	max.	*	*	*	*	*	*	*	77,1	61,6	48,6	38,4	31,1	24,7	19,3	15,6	12,5	10,0
	CRQ	*	*	*	*	*	*	*	45,2	36,0	28,4	22,2	17,7	14,0	10,8	8,5	6,7	5,2
0.00	PRQ	*	*	*	*	*	*	*	*	61,2	47,7	37,2	30,0	23,4	18,0	14,6	11,4	9,3
0,63	max. CRQ	*	*	*	*	*	*	*	*	61,6	48,6 28,4	38,4	31,1	24,7	19,3	15,6 8,5	12,5 6,7	10,0
	PRQ	*	*	*	*	*	*	*	*	36,0	48,2	22,2 37,6	17,7 30,3	14,0 23,7	10,8 18,2	14,8	11,5	5,2 9,3
0,8	max.	*	*	*	*	*	*	*	*	*	48,6	38,4	31,1	24,7	19,3	15,6	12,5	10,0
0,0	CRQ	*	*	*	*	*	*	*	*	*	28,4	22,2	17,7	14,0	10,8	8,5	6,7	5,2
	PRQ	*	*	*	*	*	*	*	*	*	*	38,0	30,6	24,0	18,4	14,9	11,6	9,4
1,0	max.	*	*	*	*	*	*	*	*	*	*	38,4	31,1	24,7	19,3	15,6	12,5	10,0
	CRQ	*	*	*	*	*	*	*	*	*	*	22,2	17,7	14,0	10,8	8,5	6,7	5,2
	PRQ	*	*	*	*	*	*	*	*	*	*	*	30,9	24,3	18,7	15,1	11,8	9,5
1,25	max.	*	*	*	*	*	*	*	*	*	*	*	31,1	24,7	19,3	15,6	12,5	10,0
	CRQ	*	*	*	*	*	*	*	*	*	*	*	17,7	14,0	10,8	8,5	6,7	5,2
4.0	PRQ	*	*	*	*	*	*	*	*	*	*	*	*	24,5	18,9		11,9	9,6
1,6	max. CRQ	*	*	*	*	*	*	*	*	*	*	*	*	24,7 14,0	19,3 10,8	8,5	12,5 6,7	10,0
—	PRQ	*	*	*	*	*	*	*	*	*	*	*	*	14,0	19,1		12,1	5,2 9,7
2,0	max.	*	*	*	*	*	*	*	*	*	*	*	*	*	19,1		12,1	10,0
	CRQ	*	*	*	*	*	*	*	*	*	*	*	*	*	10,8	8,5	6,7	5,2
	PRQ	*	*	*	*	*	*	*	*	*	*	*	*	*	*	15,6	12,2	9,8
2,5	max.	*	*	*	*	*	*	*	*	*	*	*	*	*	*	15,6	12,5	10,0
	CRQ	*	*	*	*	*	*	*	*	*	*	*	*	*	*	8,5	6,7	5,2
	PRQ	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	12,4	9,9
3,15	max.	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	12,5	10,0
	CRQ	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	6,7	5,2
, _	PRQ	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	10,0
4,0	max.	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	10,0
	CRQ	n	•	•	·	Î	Î	Ŷ	Ŷ	•	•	Ŷ	Ŷ	Î	•	Î	•	5,2

NOTE Cells containing asterisks indicate that a double sampling plan of the form (n, 0, 2; m, 1, 2) with $\alpha \le 10 \%$ and $\beta \le 10 \%$ does not exist for that combination of producer's risk quality and consumer's risk quality; consider decreasing the PRQ or increasing the CRQ, or both.

- X incoming quality in percent nonconforming items
- Y probability of acceptance

Figure 1 — Operating characteristic curves for plans for nonconforming items: $\alpha \leqslant$ 5 % and $\beta \leqslant$ 5 %

© ISO 2011 – All rights reserved

- X incoming quality in percent nonconforming items
- Y probability of acceptance

Figure 2 — Operating characteristic curves for plans for nonconforming items: $\alpha \leqslant$ 5 % and $\beta \leqslant$ 10 %

- X incoming quality in nonconformities per 100 items
- Y probability of acceptance

Figure 3 — Operating characteristic curves for plans for nonconforming items: $\alpha\leqslant$ 10 % and $\beta\leqslant$ 10 %

- X incoming quality in nonconformities per 100 items
- Y probability of acceptance

Figure 4 — Operating characteristic curves for plans for nonconformities: $\alpha \leqslant$ 5 % and $\beta \leqslant$ 5 %

- X incoming quality in nonconformities per 100 items
- Y probability of acceptance

Figure 5 — Operating characteristic curves for plans for nonconformities: $\alpha\leqslant$ 5 % and $\beta\leqslant$ 10 %

- X incoming quality in nonconformities per 100 items
- Y probability of acceptance

Figure 6 — Operating characteristic curves for plans for nonconformities: $\alpha\leqslant$ 10 % and $\beta\leqslant$ 10 %

- X incoming quality in percent nonconforming items
- Y average sample size

Figure 7 — Average sample size curves for plans for nonconforming items: uncurtailed inspection with $\, \alpha \leqslant 5 \, \% \,$ and $\, \beta \leqslant 5 \, \% \,$

- X incoming quality in percent nonconforming items
- Y average sample size

Figure 8 — Average sample size curves for plans for nonconforming items: uncurtailed inspection with $\, \alpha \leqslant 5 \, \% \,$ and $\, \beta \leqslant 10 \, \% \,$

- X incoming quality in percent nonconforming items
- Y average sample size

Figure 9 — Average sample size curves for plans for nonconforming items: uncurtailed inspection with $\, \alpha \leqslant$ 10 % and $\, \beta \leqslant$ 10 %

- X incoming quality in nonconformities per 100 items
- Y average sample size

Figure 10 — Average sample size curves for plans for nonconformities: uncurtailed inspection with $\alpha \leqslant 5$ % and $\beta \leqslant 5$ %

- X incoming quality in nonconformities per 100 items
- Y average sample size

Figure 11 — Average sample size curves for plans for nonconformities: uncurtailed inspection with $\, \alpha \leqslant 5 \, \% \,$ and $\, \beta \leqslant 10 \, \% \,$

- X incoming quality in nonconformities per 100 items
- Y average sample size

Figure 12 — Average sample size curves for plans for nonconformities: uncurtailed inspection with $\alpha \leqslant 10$ % and $\beta \leqslant 10$ %

- X incoming quality in percent nonconforming items
- Y average outgoing quality in percent nonconforming items

Figure 13 — Average outgoing quality for plans for nonconforming items: α , $\beta \le 5$ %

- X incoming quality in percent nonconforming items
- Y average outgoing quality in percent nonconforming items

Figure 14 — Average outgoing quality curves for plans for nonconforming items: $\alpha \leqslant$ 5 % and $\beta \leqslant$ 10 %

X incoming quality in percent nonconforming items

2

1

Y average outgoing quality in percent nonconforming items

10

15

20

Figure 15 — Average outgoing quality curves for plans for nonconforming items: $\alpha \leqslant$ 10 % and $\beta \leqslant$ 10 %

25

b)

30

35

40

45

50 X

- X incoming quality in nonconformities per 100 items
- Y average outgoing quality in nonconformities per 100 items

Figure 16 — Average outgoing quality curves for plans for nonconformities: $\alpha\leqslant 5$ % and $\beta\leqslant 5$ %

- X incoming quality in nonconformities per 100 items
- Y average outgoing quality in nonconformities per 100 items

Figure 17 — Average outgoing quality curves for plans for nonconformities: $\alpha \leqslant$ 5 % and $\beta \leqslant$ 10 %

- X incoming quality in nonconformities per 100 items
- Y average outgoing quality in nonconformities per 100 items

Figure 18 — Average outgoing quality curves for plans for nonconformities:

 $\alpha \leqslant$ 10 % and $\beta \leqslant$ 10 %

- X incoming quality in percent nonconforming items
- Y average sample size

Figure 19 — Average sample size curves for plans for nonconforming items: curtailed inspection with $\alpha \leqslant 5$ % and $\beta \leqslant 5$ %

X incoming quality in percent nonconforming items

Y average sample size

Figure 20 — Average sample size curves for plans for nonconforming items: curtailed inspection with $\, \alpha \leqslant 5 \, \% \,$ and $\, \beta \leqslant 10 \, \% \,$

- X incoming quality in percent nonconforming items
- Y average sample size

Figure 21 — Average sample size curves for plans for nonconforming items: curtailed inspection with $\alpha \leqslant$ 10 % and $\beta \leqslant$ 10 %

- X incoming quality in nonconformities per 100 items
- Y average sample size

Figure 22 — Average sample size curves for plans for nonconformities: curtailed inspection with $\, \alpha \leqslant 5 \, \% \,$ and $\, \beta \leqslant 5 \, \% \,$

- X incoming quality in nonconformities per 100 items
- Y average sample size

Figure 23 — Average sample size curves for plans for nonconformities: curtailed inspection with $\,\alpha\leqslant 5\,$ % and $\,\beta\leqslant$ 10 %

- X incoming quality in nonconformities per 100 items
- Y average sample size

Figure 24 — Average sample size curves for plans for nonconformities: curtailed inspection with $\alpha \leqslant$ 10 % and $\beta \leqslant$ 10 %

Annex A

(informative)

Statistical theory underlying the plans, tables and figures

A.1 Sampling for percent nonconforming items

A.1.1 Symbols

α	producer's risk, equal to $1-P_a(n, m, p_1)$
α_0	nominal producer's risk
β	consumer's risk, equal to $P_a(n, m, p_2)$
β_0	nominal consumer's risk
d	number of nonconforming items (nonconformities) in the first sample
n^*	average sample size
n_{max}^*	maximum average sample size with respect to p
p	process quality level, as the fraction of nonconforming items in the process from which the lot was generated
<i>p</i> ₁	producer's risk quality (PRQ)
<i>p</i> ₂	consumer's risk quality (CRQ)
P(d, n, p)	probability of \emph{d} nonconforming items being found in a sample of size \emph{n} when the process fraction nonconforming is \emph{p}
$P_{a}(n,m,p)$	probability of acceptance when the first sample size is n , the second sample size is m and the process fraction nonconforming is p
q	fraction of conforming items in the process from which the lot was generated, i.e. $q = 1 - p$
r	number of nonconforming items (nonconformities) in the second sample

A.1.2 Operation of a plan

The sample sizes n and m are determined from Table 1, 2 or 3, depending on whether the producer's and consumer's risks are to be controlled to not exceed 5% and 5%, 5% and 10% or 10% and 10%, respectively. A random sample of size n is drawn from the lot, and the number, d, of nonconforming items in the sample is determined. The lot is accepted if d = 0 and not accepted if d = 2 or more. If d = 1, a second random sample of size m is drawn and the number, r, of nonconforming items in the sample determined. If r = 0 the lot is accepted, otherwise it is not accepted.

© ISO 2011 – All rights reserved 63

A.1.3 Operating characteristic

The lot is accepted if either

- no nonconforming items are found in the first sample, or
- one nonconforming item is found in the first sample, but none in the second sample.

Hence, the probability that the lot is accepted is

$$P_{\mathbf{a}}(n, m, p) = P(0, n, p) + P(1, n, p)P(0, m, p)$$

$$= (1-p)^{n} + np(1-p)^{n-1}(1-p)^{m}$$

$$= (1-p)^{n} \left[1 + np(1-p)^{m-1} \right]$$

A.1.4 Average sample size

A.1.4.1 Uncurtailed inspection

A second sample is only ever required if one nonconforming item is found in the first sample. Denoting the average sample size by n^* , it follows, if the whole of any sample is inspected, that

$$n^* = n + mP(1, n, p)$$

= $n + nmp(1 - p)^{n-1}$

As p increases from zero to one, the average sample size under uncurtailed inspection at first increases from the value n and then falls back to the value n.

A.1.4.2 Curtailed inspection

If inspection is terminated as soon as a second nonconforming item is found in the first sample, or as soon as a nonconforming item is found in the second sample whenever precisely one nonconforming item has been found in the first sample, then the average sample size at fraction nonconforming p is

$$n^* = \sum_{i=1}^n i.P(\text{second nonconforming item found at } i\text{th unit}) + n.P(\text{no nonconforming items found in first } n \text{ units})$$

+ P (1 nonconforming item in first n units) $\sum_{j=1}^{m} P$ (first nonconforming item in second sample occurs at jth unit) + (n+m)P (no nonconforming items found in second sample)

$$= \sum_{i=1}^{n} i(i-1)p^{2}q^{i-2} + nq^{n} + nq^{n-1}p\left(\sum_{j=1}^{m} (n+j)q^{j-1}p + (n+m)q^{m}\right)$$

This can be simplified using the following results concerning a geometric series:

$$\sum_{i=1}^{m} q^{i} = \frac{q(1-q^{m})}{1-q}$$

$$\sum_{i=1}^{m} iq^{i-1} = \frac{\partial}{\partial q} \sum_{i=1}^{m} q^{i} = \frac{\partial}{\partial q} \left[\frac{q(1-q^{m})}{1-q} \right]$$

$$= \frac{(1-q)\left[1-(m+1)q^{m}\right]+q(1-q^{m})}{(1-q)^{2}}$$

$$= \frac{1-q-(m+1)q^{m}+(m+1)q^{m+1}+q-q^{m+1}}{(1-q)^{2}}$$

$$= \frac{1-(m+1)q^{m}+mq^{m+1}}{(1-q)^{2}}$$

$$\begin{split} \sum_{i=1}^{n} i(i-1)q^{i-2} &= \frac{\partial}{\partial q} \sum_{i=1}^{n} iq^{i-1} \\ &= \frac{\partial}{\partial q} \left[\frac{1 - (n+1)q^n + nq^{n+1}}{(1-q)^2} \right] \\ &= \left[1 - (n+1)q^n + nq^{n+1} \right] 2(1-q)^{-3} + (1-q)^{-2} \left[-(n+1)nq^{n-1} + n(n+1)q^n \right] \\ &= (1-q)^{-3} \left[2 - 2(n+1)q^n + 2nq^{n+1} - n(n+1)q^{n-1} + 2n(n+1)q^n - n(n+1)q^{n+1} \right] \\ &= (1-q)^{-3} \left[2 - n(n+1)q^{n-1} + 2(n^2-1)q^n - n(n-1)q^{n+1} \right] \end{split}$$

Hence,

$$n^* = \sum_{i=1}^n i(i-1)p^2 q^{i-2} + nq^n + nq^{n-1}p \left[\sum_{j=1}^m (n+j)q^{j-1}p + (n+m)q^m \right]$$

$$= \frac{1}{p} \left[2 - n(n+1)q^{n-1} + 2(n^2 - 1)q^n - n(n-1)q^{n+1} \right] + nq^n + nq^{n-1}p \left[n + \frac{1 - (m+1)q^m + mq^{m+1}}{p} + mq^m \right]$$

$$= \frac{2(1-q^n)}{1-q} - nq^{m+n-1}$$

after simplification.

As p increases from zero to one, i.e. as q decreases from one to zero, the average sample size under curtailed inspection at first increases from the value n and then falls back to the value 2.

A.1.5 Maximum average sample size without curtailment

Differentiating the average sample size n^* with respect to p gives

$$\frac{dn^*}{dp} = -nmp(n-1)(1-p)^{n-2} + nm(1-p)^{n-1}$$
$$= -nm(1-p)^{n-2} [p(n-1) - (1-p)]$$
$$= nm(1-p)^{n-2} (1-np)$$

which is equal to zero when p = 1/n. Differentiating n^* a second time,

$$\frac{d^2 n^*}{dp^2} = -nm(1-np)(n-2)(1-p)^{n-3} - nm(1-p)^{n-2}n$$

$$= -nm(1-p)^{n-3} \left[(n-2)(1-np) + n(1-p) \right]$$

$$= -nm(n-1)(1-1/n)^{n-3}$$

when p = 1/n, which is less than zero. Thus n^* reaches a maximum at p = 1/n. This maximum is

$$n_{\text{max}}^* = n + nm \frac{1}{n} (1 - 1/n)^{n-1}$$
$$= n + m(1 - 1/n)^{n-1}$$

The plans for nonconforming items provided in this International Standard minimize n_{\max}^* with respect to n and m subject to the producer's and consumer's risks α and β not exceeding their nominal values α_0 and β_0 respectively, i.e. subject to

$$\alpha = 1 - P_{\mathbf{a}}(n, m, p_1) = 1 - (1 - p_1)^n \left[1 + np_1(1 - p_1)^{m-1} \right] \le \alpha_0$$

and

$$\beta = P_{a}(n, m, p_{2}) = (1 - p_{2})^{n} \left[1 + np_{2}(1 - p_{2})^{m-1} \right] \le \beta_{0}$$

A.1.6 Average outgoing quality limit (AOQL)

If all lots that fail the acceptability criteria are 100 % inspected with all nonconforming items being replaced by conforming items, the average outgoing quality (AOQ) is approximately

$$pP_{a}(n,m,p) = p(1-p)^{n} \left[1 + np(1-p)^{m-1} \right]$$

The AOQL is the maximum of the AOQ with respect to p.

A.2 Sampling for nonconformities per 100 items

A.2.1 Modified notation

p process quality, as the average number of nonconformities per item in the process from which the lot was generated

P(d,n,p) probability of d nonconforming items being found in a sample of size n when the process average number of nonconformities per item is p

 $P_{a}(n,m,p)$ probability of acceptance when the first sample size is n, the second sample size is m and the process average number of nonconformities per item is p

A.2.2 Operation of a plan

The sample sizes n and m are determined from Table 4, 5 or 6, depending on whether the producer's and consumer's risks are to be controlled to not exceed 5% and 5%, 5% and 10% or 10% and 10% respectively. A random sample of size n is drawn from the lot, and the number, d, of nonconformities in the sample is determined. The lot is accepted if d = 0 and not accepted if d = 2 or more. If d = 1, a second random

sample of size m is drawn and the number, r, of nonconformities in this sample is determined. If r = 0 the lot is accepted, otherwise it is not accepted.

A.2.3 Operating characteristic

The lot is accepted if either

- no nonconformities are found in the first sample, or
- one nonconformity is found in the first sample, but none in the second sample.

Hence, the probability that the lot is accepted is

$$P_{a}(n,m,p) = P(0,n,p) + P(1,n,p)P(0,m,p)$$

= exp(-np) + exp(-np)np exp(-mp)
= exp(-np) + np exp[-(n+m)p]

A.2.4 Average sample size

A.2.4.1 Uncurtailed inspection

A second sample is only ever required if one nonconformity is found in the first sample. Denoting the average sample size by n^* , it follows that

$$n^* = n + mP(1, n, p)$$
$$= n + m \exp(-np)np$$
$$= n + nmp \exp(-np)$$

As p increases from zero to infinity, the average sample size under uncurtailed inspection at first increases from the value n and then falls back to the value n.

A.2.4.2 Curtailed inspection

The average sample size under curtailment is

$$n^* = \sum_{i=1}^n i.P \big(\text{second nonconformity found at } i \text{th unit} \big) + n.P \big(\text{no nonconformities found in first } n \text{ units} \big)$$

$$+ P \text{ (one nonconformity in first } n \text{ units} \big) \left(\sum_{j=1}^m P \text{ (first nonconformity in second sample occurs at } j \text{th unit} \right) + (n+m)P \text{ (no nonconformities found in second sample)} \big)$$

$$= \sum_{i=1}^n i \exp(-(i-1)p).(i-1)p.\exp(-p).p + n\exp(-np)$$

$$+ \exp(-np)np \left(\sum_{j=1}^m (n+j)\exp(-(j-1)p)\exp(-p)p + (n+m)\exp(-mp) \right)$$

$$= p^2 \sum_{i=1}^n i^2 \exp(-ip) - p^2 \sum_{i=1}^n i\exp(-ip) + n\exp(-np)$$

$$+ np\exp(-np) \left(np \sum_{j=1}^m \exp(-jp) + p \sum_{j=1}^m j\exp(-jp) + (n+m)\exp(-mp) \right)$$

ISO 28801:2011(E)

This can be expressed in a closed form by using the following results:

$$\begin{split} &\sum_{i=1}^{n} \exp(-ip) = \exp(-p).\frac{1-\exp(-np)}{1-\exp(-p)} = \frac{1-\exp(-np)}{\exp(p)-1} \\ &\sum_{i=1}^{n} i \exp(-ip) = -\frac{\partial}{\partial p} \left(\frac{1-\exp(-np)}{\exp(p)-1} \right) \\ &= -\frac{(\exp(p)-1).n\exp(-np)-(1-\exp(-np)).\exp(p)}{(\exp(p)-1)^2} \\ &= -\frac{n\exp\left(-(n-1)p\right)-n\exp(-np)-\exp(p)+\exp(-(n-1)p)}{(\exp(p)-1)^2} \\ &= -\frac{(n+1)\exp\left(-(n-1)p\right)-n\exp(-np)-\exp(p)}{(\exp(p)-1)^2} \\ &= -\frac{(n+1)\exp\left(-(n-1)p\right)-n\exp(-(n+2)p)-\exp(-p)}{(1-\exp(-p))^2} \\ &= -\frac{(n+1)\exp\left(-(n+1)p\right)-n\exp(-(n+2)p)-\exp(-p)}{(1-\exp(-p))^2} \\ &= -\frac{(n+1)\exp\left(-(n+1)p\right)-n\exp(-(n+2)p)-\exp(-p)}{(1-\exp(-p))^2} \\ &= \left[(n+1)\exp\left(-(n+1)p\right)-n\exp(-(n+2)p)-\exp(-(n+2)p)-\exp(-p) \right] \\ &= \left[(n+1)\exp\left(-(n+1)p\right)-n\exp(-(n+2)p)-\exp(-(n+2)p)+\exp(-p) \right] \\ &= \left[(n+1)\exp\left(-(n+1)p\right)-n\exp(-(n+2)p)-\exp(-(n+2)p)+\exp(-(n+2)p)+\exp(-(n+2)p) \right] \\ &= \left((n+1)\exp\left(-(n+1)p\right) - \frac{2}{n} \exp\left(-(n+1)p\right) + \frac{2}{n} \exp\left(-(n+2)p\right) + \exp(-(n+2)p) + \exp(-(n+2)p) + \exp(-(n+2)p) + \exp(-(n+2)p) + \exp(-(n+2)p) + \exp(-(n+2)p) - \frac{2}{n} \exp$$

The resulting closed form expression for the average sample size under curtailed inspection is

$$n^* = \left[1 - \exp(-p)\right]^{-3} \left[2p^2 \exp(-2p) + n\exp(-np) - 3n\exp(-(n+1)p) + \left(3n - (n+2)p^2\right) \exp(-(n+2)p) - n\left(1 - p^2\right) \exp(-(n+3)p) + n(n+m)p\exp(-(n+m)p) - np\left((n+m+1)p + 3(n+m)\right) \exp(-(n+m+1)p) + np\left(3(n+m) + (2n+2m+1)p\right) \exp(-(n+m+2)p) - n(n+m)p(1+p)\exp(-(n+m+3)p)\right]$$

As p increases from zero to infinity, the average sample size under curtailed inspection at first increases from the value n and then falls back to the value 1.

A.2.5 Maximum average sample size without curtailment

Differentiating the average sample size n^* without curtailment with respect to p,

$$\frac{dn^*}{dp} = nm \Big[\exp(-np) - np \exp(-np) \Big]$$
$$= nm(1 - np) \exp(-np)$$

which is equal to zero when p = 1/n. Differentiating n^* a second time,

$$\frac{\partial^2 n^*}{\partial p^2} = -nm \Big[n \exp(-np) + n(1-np) \exp(-np) \Big]$$
$$= -n^2 m(2-np) \exp(-np)$$

which, when p = 1/n, is less than zero. Thus, n^* reaches a maximum at p = 1/n. This maximum is

$$n_{\max}^* = n + \frac{m}{e}$$

The plans for nonconformities provided in this International Standard are those that minimize n^* with respect to n and m subject to the producer's and consumer's risks α and β not exceeding their nominal values α_0 and β_0 respectively, i.e. subject to

$$\alpha = 1 - P_a(n, m, p_1) = 1 - \exp(-np_1) - np_1 \exp[-(n+m)p_1] \le \alpha_0$$

and

$$\beta = P_{\mathsf{a}}(n, m, p_2) = \exp(-np_2) + np_2 \exp\left[-(n+m)p_2\right] \leqslant \beta_0$$

A.2.6 Average outgoing quality limit (AOQL)

If a lot or lots that fail the acceptability criteria are 100 % inspected and all nonconforming items are replaced by conforming items, the average outgoing quality (AOQ) is approximately

$$pP_{\mathbf{a}}(n,m,p) = p\exp(-np)[1 + np\exp(-mp)]$$

The derivative of the AOQ with respect to p is

$$\exp(-np)\{(1-np)+np\lceil 2-(m+n)p\rceil\exp(-mp)\}$$

As this derivative is positive when p = 1/n and negative when p = 1/(n + m), and as n exceeds m for all the plans given in this International Standard, it follows that the maximum AOQ occurs at a value of p in the range $\lceil 1/n, \ 2/(n + m) \rceil$. The maximum can therefore be found by searching over this narrow range.

Bibliography

- [1] ISO 2859-1:1999, Sampling procedures for inspection by attributes Part 1: Sampling schemes indexed by acceptance quality limit (AQL) for lot-by-lot inspection
- [2] ISO 3534-2:2006, Statistics Vocabulary and symbols Part 2: Applied statistics
- [3] ISO 9000:2005, Quality management systems Fundamentals and vocabulary

Price based on 70 pages