Overview

- Formal logic deeply influences alternative approaches to theorizing about the human cognition
 - Despite not being used itself as a framework

Rules

• One such framework that borrows from formal logic

<u>Definition:</u> A rule is an IF-THEN structure that is modelled on logical implication, but defined somewhat differently

- Seems suited to represent knowledge
- They are an attempt to adapt formal logic in a way to retain the powers of formal logic
 - Also addresses its weaknesses as a framework for theories of cognition
- Main strength of using formal logic is the way its symbolization system permits the representation of the content of sentences and links between sentences

```
(\forall x)(Gx\supset Bx) All geese are birds.

(\forall x)(Bx\supset Wx). All birds have wings.

(\forall x)(Gx\supset Wx) All geese have wings.
```

- Problem with using formal logic is that it is specialized solely to representing arguments
 - Language is more general purpose, and by extension so should our cognition
- A rule-based framework borrows heavily from the representational power of formal logic, but modify it in certain ways
 - Meaning of IF-THEN is broadened
 - Application of strategies is limited by search strategies

Rules-Based Systems

- Typically consists of three components
 - Representation of a goal and initial condition
 - Database of rules (Can be thought of as knowledge)
 - Strategy or algorithm to apply the rules in order to achieve the goal

Goal: A state of affairs the problem solver seeks to reach

Initial condition: State of affairs the problem solver starts off at

Both can be represented as a list of propositions that are true in that particular state

Ex: Tower of Hanoi

- In artificial intelligence, a rule is called a production.
 - Thus a rule-based system can also be called a production system

Search

- <u>Definition:</u> The way to determine which rules to combine in what order
- A search through a database of rules is similar to a physical search
 - We know where the goal is, but not exactly where

- Process of searching for a goal is to find a route from where you are to where the goal is
- Could be random, or systematic
- Method for organizing a search is known as a <u>search strategy</u>
 - Constructing a solution to a problem by combining database rules can also be thought of as a search
 - Called a knowledge search by Newell
- The search area of a knowledge search is known as the knowledge space
 - Set a situations connected together through rules of database
 - Each location is a situation that is able to be brought up from the rules
 - Neighbouring locations are states that can be reached by applying a rule

Search Strategies

- Forward Strategy
 - Current state is compared to antecedent conditions (IF part) to determine if there's a match
 - Resembles rule of **modus ponens** of formal logic
 - From a statement p, we can apply the rule p->q to conclude:

$$p \supset q$$
 p
 q

- Backward Strategy
 - Goal is compared to the actions (THEN part) to determine if any rules in the database satisfy the goal
 - If it does, continue the search by using the antecedent part of the rule as a new goal a <u>subgoal</u>
 - Then loop
 - Once we reach a point where antecedent == initial conditions, we're done
 - Analogous to the fallacy of affirming the consequent in formal logic
 - That is, given a statement q and p->q, we can fallaciously conclude:

$$p \supset q$$
 q
 p

- May appear worrying that it is non-valid in formal logic, but forward and backward strategies should not be treated as valid and non-valid arguments in formal logic
- Bidirectional strategy
 - Use both strategies depending on which is more appropriate

Heuristics

- The above strategies could be used in a large number of ways
 - Known as heuristics
- Guides the execution of a search strategy in order to (hopefully) find the most efficient path to a goal

- Depth-first search:
 - Apply the first rule whose antecedent matches initial condition
 - Loop
 - Requires traveling through a given path until a solution is found, or backtracking if none is found
- Breadth-first search:
 - Every rule whose antecedent matches the initial condition is applied, and all are matched in the next loop
- Best-first search:n
 - Every rule whose antecedent matches initial condition is ranked with a function
 - Evaluates how likely that a rule would lead to a solution
 - LT program did this, would determine which rule would reduce the difference between goal and initial state the most

Which strategy to use

- Depends on how the solutions are distributed in the search space
- Ex: Tic Tac Toe
 - Many goal states relative to the total number of states
 - Easy to reach a goal state if we follow an arbitrary initial
 - If not, we can easily find another goal state
 - Best way is to consider the rules in a fixed order
 - Rank the rules in order to determine which one you want to consider first
 - This is a best-first approach
 - For TTT, we don't need to consider context, these rules are simple
- Harder for games like chess
 - Large selection of opening moves computers and humans have learned a sequence of them that compress much of the depth into a smaller set
 - Therefore, we forward chain with breadth-first heuristic
 - Midgame has a much larger midgame, hard to compress, goals are too far ahead
 - Players adopt subgoals to achieve strong positions
 - Therefore, we backward chain from these subgoals
 - Endgame
 - Smaller search space, more goal states
 - Backward chain with depth-first search
- Strategies change with expertise
 - Ranking of rules may change based on context
 - An expert may use best-first more often than novices
 - Suggests that framing theories about intelligence with a rule-based system could be logical
 - Rules seem to be a natural way to capture knowledge
 - Knowledge seems to be central to intelligence

Evaluation of Rules

- What are the strengths and weaknesses of a rule-based system as a framework?
 - Are they a good representation of knowledge?
 - Is "Search" a good procedure to model intelligent thinking?

Representational Power

- Recall that a problem with formal logic is that it is highly specialized in representing statements and validity of arguments
 - Natural languages are more flexible, implying that people's thoughts would likewise be flexible
 - Rule-based systems, although similar to formal logic is defined differently to allow greater flexibility
 - 1. $(\forall x)(Bx \supset Fx)$ "All birds fly."
- Ex: 2. IF x is a bird THEN x flies.
 - This logical implication says that all birds without exception must fly
 - A rule however, would say something like "Usually, if something is a bird, it would be able to fly."
 - The implication would be false if there were an exception, like a penguin, but would still hold true for a rule
 - Exceptions are a disaster in formal logic, would result in a contradiction from valid arguments
 - A rule-based system can simply decide to retract one of the conclusions that would lead to a contradiction, perhaps using a heuristic to determine which is more preferable
 - A rule-based system doesn't commit to any rules in its database
- Rules are viewed as **defaults** true unless an exception says otherwise
- Valid arguments in formal logic are monotonic number of conclusions doesn't decrease
 - o In rule-based system, it is non-monotonic conclusions can be retracted
 - o Therefore, in a rule-based system, we are not engaging in deduction
 - We are not solely proceeding with valid arguments
 - The basic form of inference is reasoning instead of deduction
 - Deduction therefore has little to do with rule-based systems

Computational Power

- Explanation
 - Forward and backward chaining in rule-based systems can be used to model explanations

•	Forward chaining works similarly to deductive explanation			
	0	IF_	then	

- The reverse would be like abductive explanation
 - Given _____, assume antecedent

- However, if there are two IFs with different conclusions, then it may be difficult to find the right explanation
 - We can rank each rule, but it's difficult to know this in advance
 - Common in expert systems
- Further limitations w/ expert system explanations:
 - The explanation usually involves how the conclusion was reached a <u>trace</u>
 - However, a trace could be a bad explanation
 - Ex: Given these symptoms, a patient has this disease, but why?

Learning

- A system may be able to learn new rules, similar to how we learn as we progress in life
- Learning of new rules can be facilitated with:
- Inductive Generalization
 - Occurs when two things are frequently conjoined, so that one implies the other
- Chunking (SOAR) or Composition (ACT-R)
 - Chunking refers to putting together a string of separate representations that occur frequently together
 - Rules applied often in succession can be chunked into one rule
- Specialization
 - If a certain rule doesn't yield good results in certain circumstances, make a new rule to deal with the exception

Language

- Language is generative, we have a set of rules that assign structure to a sentence, in order to determine if a sentence if valid or not
- Syntax of words can be modelled by rules
 - Chomsky believed the same to be true of morphology and phonology of words
- Pinker points out that some elements of morphology is better explained with an associationist model
 - Ex: Sing is not singed, but sang
 - We learn this from similar examples, like "Ring"
 - System notes that the problem is similar to another one with a solution, and assumes that their solutions are similar

Limitations

- Although a rule-based system may simulate human expertise in one area well, how can it simulate all facets of human intelligence?
 - Scale up the system
 - Add all the rules in a given expertise together into a database
 - If expertise = rules + search strats

- This approach is currently impossible due to the <u>scaling problem</u>
 - When a rule database gets larger, the conflicts b/w rules also increase
 - Leading to incompatible conclusions or exceptions
- The effort required to manage all these conflicts takes away from actually applying the rules
 - Called thrashing

Psychological Plausibility

- There exist differences between the performance of experts vs novices that the rule-based models emulate well
 - Experts usually apply <u>domain-specific</u> knowledge
 - Performance is usually automatic, quick
 - Acquired through training/repetition
 - Novices use domain-independent knowledge, more broad methods
 - Performance is slower, more tentative
 - More mental effort required
- In humans, an increase in performance with training displays the power law of practice
 - Each training session produces less gain than the previous (Diminishing returns)
 - Can be explained with chunking
 - Adding knowledge through chunking a rule system is easy in the beginning but gets harder as exceptions to the rule become rarer

Philosophical Issues

- Chunking together knowledge, according to Allen Newell is essential to human intelligence
 - No intelligent being can have a plan ready for every problem
 - We must combine knowledge
 - However, we must constrain the search by finding the best strategy in a given scenario
 - This is the classic view on Cognitive Science, where intelligence is having knowledge and having the means of using it

Problems

- Frame problem
 - It is hard for a rule-based system to distinguish between relevant rules and non relevant rules to a given problem