Reinforcement learning

Introduction to reinforcement learning and deep reinforcement learning

Markov Decision Process (MDP)

Reinforcement learning

Reinforcement learning is a framework for learning how to interact with the environment from experience.

Most of the time, RL is a semisupervised learning because **reward** is time-delayed

Time

 $\begin{array}{c|c} & & & \\ \hline t & & \\ \hline R_t & & \\ \hline S_t & & \\ \hline \end{array}$

Environment is modelled as probabilistic (Markov Decision Process, MDP)

Exploration | Exploitation

Source: https://www.youtube.com/watch?v=0MNVhXEX9to

Key concepts

Model: predict what the environment will do next.

$$p(s',r|s,a) = P(S_t = s', R_t = r|S_{t-1} = s, A_{t-1} = a)$$

Value function: prediction of expected rewards.

$$\vartheta_{\pi}(s) = \mathbb{E}[R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \cdots | S_t = s]$$

Discount rate

The value of a state s given a policy π is my expectation of how much reward I will get in the future if I start in that state and enact that policy.

Policy: how the agent pick its actions.

Deterministic

 $\alpha = \pi(s)$

Stochastic

 $\alpha \sim \pi(a|s)$

Policy learning | Value learning

Q-learning

$$Q^{\pi}(s, a) = \text{quality of state/action pair}$$

 $Q(s, a) = Q^{old}(s_{t,}a_{t}) + \alpha(r_{t} + \max_{a} Q(S_{t+1}, a) - Q^{old}(s_{t}, a_{t}))$

Given a state **s** and an action **a**, and assuming that I will do the best thing I can in the future, what is the quality of being in that state and taking that action.

Source: https://www.youtube.com/watch?v=K67RJH3V7Yw&list=PLMsTLcO6ettgmyLVrcPvFLYi2Rs-R4JOE&index=4

RL Algorithms

Hindsight Experience Replay

Save all behaviors and code reward for different goal. https://www.youtube.com/watch?v=0Ey02HT_1Ho

Deep reinforcement learning

Source: https://www.youtube.com/watch?v=IUiKAD6cuTA

Examples

Hide and seek

https://www.youtube.com/watch?v=Lu56xVlZ40M

Flexible muscle-based locomotion for bipedal creatures

https://vimeo.com/79098420

Atari video games

https://www.youtube.com/watch?v=TmPfTpjtdgg&t=43s

AlphaGo Move 37

https://www.youtube.com/watch?v=JNrXgpSEEIE

Cart-Pole

https://www.youtube.com/watch?v=XiigTGKZfks

Markov Decision Process

Markov decision process

Markov property

$$P(R_{n+1} | R_1, R_2 ... R_n) = P(R_{n+1} | R_n)$$

Almost all reinforcement learning problems can be modeled as MDP.

S	a	s'	p(s' s, a)	r(s, a, s')
S1	A0	S1	0.8	1
S1	A0	S2	0.2	1
S1	A1	S2	1.0	1
S2	A0	S1	1.0	1
S2	A1	S2	0.5	1
S2	A0	S1	1.0	1

The dynamic function

$$p(s',r|s,a) = P(S_t = s',R_t = r|S_{t-1} = s,A_{t-1} = a)$$

The probability of going from state *s* to state *s'*, getting the reward *r*, only depend on state *s* and the action *a* initiated by the agent.

$$p(s'|s,a) = P(S_t = s'|S_{t-1} = s, A_{t-1} = a) = \sum_{r \in \mathcal{R}} p(s',r|s,a)$$

A corollary of this is that the probability of going from state s to state s, only depend on state s and the action a initiated by the agent, considering all the possible rewards r.

The reward function

$$r(s,a) = \mathbb{E}[R_t \mid S_{t-1} = s, A_{t-1} = a] = \sum_{r \in \mathcal{R}} r \sum_{s' \in S} p(s', r \mid s, a)$$

The reward value that we can expect when making action *a* while in state *s* is the weighted sum of possible rewards and their probabilities.

$$r(s, a, s') = \mathbb{E}[R_t | S_{t-1} = s, A_{t-1} = a, S_t = s'] = \sum_{r \in \mathcal{R}} r \frac{p(s', r | s, a)}{p(s' | s, a)}$$

The reward value that we can expect when making action a while in state s and going to state s' is the weighted sum of possible rewards by the ratio of their probabilities.

Goals and return

$$G_t = R_{t+1} + R_{t+2} + R_{t+3} + \dots + R_T$$

The return is the sum of rewards. An agent tries to maximize the expected return.

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

This works well for *episodic task* that have a finite number of states. For *continuing tasks*, we use a **discounting factor**.

$$G_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \cdots$$

$$= R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + \cdots)$$

$$= R_{t+1} + \gamma G_{t+1}$$

Returns at successive time steps are related to each other in a way that is important for the theory and algorithms of reinforcement learning.

Consistency condition

Value function

Value functions estimate how good it is for the agent to be in a given state.

Value functions are defined with respect to particular ways of acting, called policies.

 $\pi(a \mid s)$ is the probability of performing action a in state s.

$$\vartheta_{\pi}(s) = \mathbb{E}_{\pi}[G_t \mid S_t = s] = \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s\right]$$

The value function of a state s under a policy π , denoted $\theta_{\pi}(s)$, is the expected return when starting in s and following π thereafter.

Action-value function

$$q_{\pi}(s,a) = \mathbb{E}_{\pi}[G_t \mid S_t = s, A_t = a]$$

$$= \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s, A_t = a \right]$$

The value function of taking action a in state s under a policy π , denoted $q_{\pi}(s, a)$, is the expected return when starting from s, taking action a, and following π thereafter.

Bellman expectation equation

$$\vartheta_{\pi}(s) = \mathbb{E}_{\pi}[G_t \mid S_t = s]$$
$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1} \mid S_t = s]$$

$$= \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s',r \mid s,a) [r + \gamma \mathbb{E}_{\pi}[G_{t+1} | S_{t+1} = s']]$$

$$= \sum_{a} \pi(a|s) \sum_{s',r} p(s',r \mid s,a) [r + \gamma \vartheta_{\pi}(s')]$$

The Bellman equation averages over all the possibilities, weighting each by its probability of occurring.

Optimal policies and optimal value functions

Optimal state-value function

$$\vartheta_*(s) = \max_{\pi} \vartheta_{\pi}(s)$$

There is always at least one policy that is better than or equal to all other policies. This is an optimal policy, we denote by π_* .

Optimal policies also share the same optimal action-value function, denoted q_*

$$q_*(s,a) = max_{\pi} \ q_{\pi}(s,a)$$

We can write q_* in term of θ_*

$$q_*(s, a) = \mathbb{E}[R_{t+1} + \gamma \theta_*(S_{t+1}) | S_t = s, A_t = a]$$

Bellman optimality equation

$$\vartheta_*(s) = \max_{a \in A(s)} q_{\pi*}(s, a)$$

$$= max_{a \in A} q_{\pi*}(s, a)$$

$$= max_a \mathbb{E}_{\pi^*}[G_t \mid S_t = s, A_t = a]$$

The Bellman equation averages over all the possibilities, weighting each by its probability of occurring.

The value of a state under an optimal policy must equal the expected return for the best action from that state.

$$= max_a \mathbb{E}_{\pi^*}[R_{t+1} + \gamma G_{t+1} \mid S_t = s, A_t = a]$$

$$= max_a \mathbb{E}_{\pi^*}[R_{t+1} + \gamma \vartheta_*(S_{t+1}) \mid S_t = s, A_t = a]$$

$$= \max_{a} \sum_{s',r} p(s',r \mid s,a)[r + \gamma \vartheta_*(s')]$$

The Bellman optimality equation is actually a system of equations, one for each state, so if there are *n* states, then there are *n* equations in *n* unknowns.

Bellman optimality equation

The Bellman optimality equation for q_* is

$$q_*(s,a) = \mathbb{E}_{\pi^*}[R_{t+1} + \gamma \max_{a'} q_*(S_{t+1}, a') \mid S_t = s, A_t = a]$$

$$= \max_a \sum_{s',r} p(s',r \mid s,a)[r + \gamma \max_{a'} q_*(s',a)]$$

Dynamic programming

Iterative policy evaluation

Iterative Policy Evaluation, for estimating $V \approx v_{\pi}$

Input π , the policy to be evaluated

Algorithm parameter: a small threshold $\theta > 0$ determining accuracy of estimation Initialize V(s), for all $s \in S^+$, arbitrarily except that V(terminal) = 0

Loop:

$$\Delta \leftarrow 0$$

Loop for each $s \in S$:
 $v \leftarrow V(s)$

$$V(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

until $\Delta < \theta$

		Goal
	Hole	
Start		

Frozen Lake

Policy improvement

Interactive demo:

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

Policy Iteration (using iterative policy evaluation) for estimating $\pi \approx \pi_*$

1. Initialization

$$V(s) \in \mathbb{R}$$
 and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in \mathcal{S}$

2. Policy Evaluation

$$\Delta \leftarrow 0$$

Loop for each $s \in S$:

$$v \leftarrow V(s)$$

$$V(s) \leftarrow \sum_{s',r} p(s',r|s,\pi(s)) [r + \gamma V(s')]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

until $\Delta < \theta$ (a small positive number determining the accuracy of estimation)

3. Policy Improvement

$$policy$$
-stable $\leftarrow true$

For each $s \in S$:

$$old\text{-}action \leftarrow \pi(s)$$

$$\pi(s) \leftarrow \operatorname{arg\,max}_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

If $old\text{-}action \neq \pi(s)$, then $policy\text{-}stable \leftarrow false$

If policy-stable, then stop and return $V \approx v_*$ and $\pi \approx \pi_*$; else go to 2

Value iteration

Value iteration effectively combines, in each of its sweeps, one sweep of policy evaluation and one sweep of policy improvement.

Value Iteration, for estimating $\pi \approx \pi_*$

Algorithm parameter: a small threshold $\theta > 0$ determining accuracy of estimation Initialize V(s), for all $s \in S^+$, arbitrarily except that V(terminal) = 0

Loop:

```
 \begin{array}{c|c} & \Delta \leftarrow 0 \\ & \text{Loop for each } s \in \mathbb{S} \text{:} \\ & v \leftarrow V(s) \\ & V(s) \leftarrow \max_{a} \sum_{s',r} p(s',r|s,a) \big[ r + \gamma V(s') \big] \\ & \Delta \leftarrow \max(\Delta,|v-V(s)|) \\ & \text{until } \Delta < \theta \end{array}
```

Output a deterministic policy, $\pi \approx \pi_*$, such that $\pi(s) = \operatorname{argmax}_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$

Monte Carlo Methods

Temporal Difference Learning and and Monte Carlo methods use experience to solve the prediction problem.

Monte Carlo Methods use empirical means instead of expected return.

$$\mu_k = \frac{1}{k} \sum_{j=1}^k x_j = \mu_{k-1} + \frac{1}{k} (x_k - \mu_{k-1})$$

The mean is computed incrementally by adding observed values at each iteration

Greedy at the limit with infinite exploration

- Explore everything
- The policy converges on a greedy policy

Randomly sampling and averaging the return

e.g. Makov Chains Monte Carlo

- 1. Sample episodes using policy π
- 2. Increase a visit counter for each state visited:

$$N(S_t) = N(S_t) + 1$$

3. Update the value function at the end of each episodes using:

$$V(S_t) = V(S_t) + \frac{1}{N(S_t)}(G_t - V(S_t))$$

Temporal Difference Learning

Monte Carlo Methods

Does not need to explore the whole environment

Update the value function towards an estimate of the return

Dynamic Programming

Update the estimate without getting the actual outcome

MC Methods

TD learning

TD target

$$V(S_t) \leftarrow V(S_t) + \alpha [R_{t+1} + \gamma V(S_{t+1}) - V(S_t)]$$

Learning rate

On-policy

Evaluates the policy that is currently being followed

Off-policy

Evaluates policies different from the one being currently followed

Q-learning

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha [R_{t+1} + \gamma \max_a Q(S_{t+1}, a) - Q(S_t, A_t)]$$
Update

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

Algorithm parameters: step size $\alpha \in (0,1]$, small $\varepsilon > 0$

Initialize Q(s, a), for all $s \in S^+, a \in A(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$

Loop for each episode:

Initialize S

Loop for each step of episode:

Choose A from S using policy derived from Q (e.g., ε -greedy)

Take action A, observe R, S'

$$Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_a Q(S', a) - Q(S, A)]$$

 $S \leftarrow S'$

until S is terminal

