MATEMÁTICA DISCRETA

Ano Letivo 2023/24 (Versão: 12 de Maio de 2024)

Departamento de Matemática, Universidade de Aveiro https://elearning.ua.pt/

CAPÍTULO V ELEMENTOS DE TEORIA DOS GRAFOS

PARTE I
CONCEITOS BÁSICOS

Fazer um passeio ...

Será possível cruzar as sete pontes de Königsberg numa caminhada contínua sem passar duas vezes por uma delas? Veremos neste capítulo porque a resposta é «Não» ...

Leonhard Euler (1707 – 1783), matemático suíço.

ÍNDICE (6)

1. Conceitos fundamentais de teoria dos grafos

2. Grafos simples

3. Vizinhança e grau

4. Isomorfismos de grafos e subgrafos

Definição (grafo não orientado)

Designa-se por grafo (não orientado) um terno $G = (V, E, \psi)$ onde

- V é um conjunto (os elementos de V chamamos vértices),
- E é um conjunto (os elementos de E chamamos arestas, tipicamente E é disjunto de V).
- ψ é uma função (a função de incidência do grafo)

$$\psi \colon \mathsf{E} \longrightarrow \{\mathsf{A} \subseteq \mathsf{V} \mid \mathsf{1} \leq |\mathsf{A}| \leq \mathsf{2}\}.$$

Se $\psi(a) = \{u, v\}$, $u \in v$ dizem-se os pontos extremos da aresta a.

$$V = \{1,2,3\}, \quad E = \{a,b,c,d\},$$

$$\psi(a) = \{1,3\}, \ \psi(b) = \{1,2\}, \ \psi(c) = \{3\},$$

$$\psi(d) = \{1,2\} = \{2,1\}.$$

Definição (grafo orientado)

Designa-se por grafo orientado (ou digrafo) um terno $\overrightarrow{G} = (V, E, \psi)$ onde

- · V é um conjunto (os elementos de V chamamos vértices),
- *E* é um conjunto (os elementos de *E* chamamos arcos, tipicamente *E* é disjunto de *V*),
- ψ é uma função (a função de incidência do grafo)

$$\psi \colon \mathsf{E} \longrightarrow \mathsf{V} \times \mathsf{V}.$$

Se $\psi(a) = (u, v)$, u diz-se cauda de a e v cabeça de a.

$$V = \{1,2,3\}, \quad E = \{a,b,c,d\},$$
 $\psi(a) = (3,1), \quad \psi(b) = (1,2), \quad \psi(c) = (3,3),$ $\psi(d) = (1,2).$

Grafos orientados vs. não-orientados

A cada grafo orientado $\overrightarrow{G}=(V,E,\psi)$ podemos associar um grafo não orientado $G=(V,E,\widehat{\psi})$ onde

$$\widehat{\psi}(a) = \{u, v\}$$
 precisamente quando $\psi(a) = (u, v)$ ou $\psi(a) = (v, u)$

(ou seja, esquecemos a direção dos arcos).

Desde modo, vários conceitos de grafos aplicam-se igualmente aos digrafos.

Consideremos um grafo $G = (V, E, \psi)$ respetivamente um digrafo $\overrightarrow{G} = (V, E, \psi)$.

- Uma aresta (um arco) com os pontos extremos iguais diz-se lacete.
- Arestas com os mesmos vértices extremos designam-se por arestas paralelas, e arcos com a mesma cauda e a mesma cabeça designam-se por arcos paralelos.
- G (respetivamente \overrightarrow{G}) diz-se **simples** quando não contém arestas (arcos) paralelas(os) nem lacetes.
- Uma aresta (um arco) diz-se incidente nos seus vértices extremos.
- Os vértices *u* e *v* dizem-se **adjacentes** se existe uma aresta (um arco) com pontos extremos *u* e *v*.
- Arestas (arcos) incidentes num mesmo vértice dizem-se adjacentes.

Um grafo $G = (V, E, \psi)$ respetivamente digrafo $\overrightarrow{G} = (V, E, \psi)$ diz-se **finito** quando os conjuntos V e E são finitos.

Nota

No que se segue, consideremos tipicamente grafos finitos.

Definição

Seja $G = (V, E, \psi)$ um grafo finito.

- ordem de G: $\nu(G) = |V|$ (o número de vértices).
- **dimensão de** *G*: $\epsilon(G) = |E|$ (o número de arestas).

(E da forma igual para digrafos.)

Recordamos:

Um grafo (respetivamente digrafo) diz-se **simples** quando não contém arestas (arcos) paralelas(os) nem lacetes. (Di)Grafos não simples denota-se também por **multi(di)grafo**.

Nota

Num grafo (respetivamente digrafo) simples, cada aresta (arco) a é completamente determinada(o) pelos vértices extremos u e v (cauda u e cabeça v). Neste caso escrevemos da forma mais sugestivo uv em lugar de a.

Com esta notação, o (di)grafo (V, E, ψ) é completamente determinado por (V, E) (ou seja, podemos «dispensar» ψ).

Seja G = (V, E) um grafo simples. O **grafo complementar** de G é o grafo $G^{\mathbb{G}} = (V, E^{\mathbb{G}})$ com o mesmo conjunto de vértices e com

$$uv \in E^{\mathbb{C}} \iff uv \notin E$$
.

Exemplo

G

3^C

Nota

Portanto, $(G^{\complement})^{\complement} = G$.

- Seja $G = (V, E, \psi)$ um grafo e $v \in V$. O conjunto de todos os vértices adjacentes a v designa-se por **vizinhança** de v e denota-se por $\mathcal{N}_G(v)$ (ou simplesmente $\mathcal{N}(v)$).
- Seja $\overrightarrow{G} = (V, E, \psi)$ um digrafo e $v \in V$. A **vizinhança de entrada** de v é o conjunto $\mathcal{N}^-(v)$ de todos os vértices u tal que existe um $e \in E$ com $\psi(e) = (u, v)$, e a **vizinhança de saída** de v é o conjunto $\mathcal{N}^+(v)$ de todos os vértices u tal que existe um $e \in E$ com $\psi(e) = (v, u)$.

$$\mathcal{N}(1) = \{2,3\},\ \mathcal{N}(2) = \{1\},\ \mathcal{N}(3) = \{1,3\}.$$

- Seja $G = (V, E, \psi)$ um grafo e $v \in V$. O conjunto de todos os vértices adjacentes a v designa-se por vizinhança de v e denota-se por $\mathcal{N}_G(v)$ (ou simplesmente $\mathcal{N}(v)$).
- Seja $\overrightarrow{G} = (V, E, \psi)$ um digrafo e $v \in V$. A **vizinhança de entrada** de v é o conjunto $\mathcal{N}^-(v)$ de todos os vértices u tal que existe um $e \in E$ com $\psi(e) = (u, v)$, e a **vizinhança de saída** de v é o conjunto $\mathcal{N}^+(v)$ de todos os vértices u tal que existe um $e \in E$ com $\psi(e) = (v, u)$.

$$\mathcal{N}^{-}(1) = \{3\}, \ \mathcal{N}^{+}(1) = \{2\}, \ \mathcal{N}(1) = \{2,3\}$$

 $\mathcal{N}^{-}(2) = \{1\}, \ \mathcal{N}^{+}(2) = \varnothing, \ \mathcal{N}(2) = \{1\}$
 $\mathcal{N}^{-}(3) = \{3\}, \ \mathcal{N}^{+}(3) = \{1,3\}, \ \mathcal{N}(3) = \{1,3\}$

Seja $G = (V, E, \psi)$ um grafo finito com $V \neq \emptyset$.

- Seja $v \in V$. O grau de v é o número d(v) de arestas incidentes em v (onde cada lacete conta duas vezes).
- O maior grau dos vértices do grafo G denota-se por $\Delta(G)$:

$$\Delta(G) = \max\{d(v) \mid v \in V\}.$$

• O menor grau dos vértices do grafo G denota-se por $\delta(G)$:

$$\delta(G) = \min\{d(v) \mid v \in V\}.$$

Nota

No caso de um digrafo $\overrightarrow{G} = (V, E, \psi)$, consideremos ainda

- o semigrau de entrada: $d^-(v) = |\{e \mid \exists u \in V \ \psi(e) = (u, v)\}|$.
- o semigrau de saida: $d^+(v) = |\{e \mid \exists u \in V \ \psi(e) = (v, u)\}|$.
- **Nota**: $d(v) = d^{-}(v) + d^{+}(v)$.

O Sr. e a Sra. Silva convidaram quatro casais para jantar em casa. Alguns são amigos do Sr. Silva e outros amigos da Sra. Silva. Em casa do casal Silva os convidados que já se conheciam cumprimentaram-se com um aperto de mão e os restantes apenas se saudaram.

Depois de todos terem chegado o Sr. Silva observou:

se me excluir a mim todos deram um número diferente de apertos de mão.

Quantos apertos de mão deu o Sr. Silva?

É claro que os membros de um mesmo casal não se cumprimentaram um ao outro, pelo que o número de cumprimentos variou entre o e 8.

Por outro lado, uma vez que, excluindo o Sr. Silva, todas as restantes 9 pessoas deram um número diferente de apertos de mão, podemos atribuir a cada uma delas exactamente um índice *j* entre o e 8 que corresponde ao número de apertos de mão que deu.

Utilizando o seguinte grafo:

Portanto:

• O vértice n_0 tem grau $d(n_0) = 0$; portanto, nenhuma aresta pode ter um extremo em n_0 .

Utilizando o seguinte grafo:

Portanto:

 Uma vez que o n₈ deu 8 apertos de mão, ele apertou a mão a toda a gente, com exceção dele(a) próprio(a) e da mulher/do marido ... logo, n_o e n₈ são casados.

Já temos $d(n_0) = 0$, $d(n_8) = 8$ e $d(n_1) = 1$, pelo que não pode haver mais arestas com extremos nestes vértices.

Utilizando o seguinte grafo:

Portanto:

Por sua vez, n₇ só não apertou a mão a ele próprio, a n₀ e n₁ (uma vez que este último só deu um aperto de mão e foi a n₈).
 Logo, n₇ e n₁ são casados e já temos d(n₂) = 2.

Utilizando o seguinte grafo:

Portanto:

• Por sua vez, n_6 só não deu apertos de mão a si próprio, a n_0 , n_1 e n_2 (note-se que este último deu um aperto de mão a n_8 e n_7). Logo, n_2 e n_6 são casados e já temos $d(n_3) = 3$.

Utilizando o seguinte grafo:

Portanto:

• O n_5 apertou a mão de n_8 , n_7 , n_6 , n_4 e ao Sr. Silva e, consequentemente, é casado com n_3 .

Assim, n_4 é a Sra. Silva (que, naturalmente, não deu um aperto de mão ao Sr. Silva) e ficam determinados todos os apertos de mão.

Utilizando o seguinte grafo:

Portanto:

O Sr. Silva apertou a mão a n_8 , n_7 , n_6 e n_5 .

A matriz de incidência

Seja $G=(V,E,\psi)$ um grafo não orientado (finito). A **matriz de incidência** (aresta-vértice) de G é a matriz do tipo $\nu \times \epsilon$ definida por

$$V \times E \longrightarrow \mathbb{R}, \qquad (v,a) \longmapsto egin{cases} \mathsf{o} & \mathsf{se} \ v \notin \psi(a), \\ \mathsf{1} & \mathsf{se} \ \psi(a) = \{u,v\} \ \mathsf{com} \ u \neq v, \\ \mathsf{2} & \mathsf{se} \ \psi(a) = \{v\}. \end{cases}$$

Nota: Para cada $a \in E$, a soma sobre todos os elementos da «coluna a» é 2. Para cada $v \in V$, a soma sobre todos os elementos da «linha v» é o grau de v.

	a	b	С
1	1	1	0
2	0	1	0
3	1	0	2

REPRESENTAÇÃO POR MATRIZES

A matriz de incidência

Seja $\overrightarrow{G} = (V, E, \psi)$ um digrafo sem lacetes (finito). A matriz de incidência (aresta-vértice) de \overrightarrow{G} é a matriz do tipo $\nu \times \epsilon$ definida por

$$V \times E \longrightarrow \mathbb{R}, \quad (v,a) \longmapsto egin{cases} -1 & \text{se existe } u \in V \text{ com } (u,v) = \psi(a), \\ 1 & \text{se existe } u \in V \text{ com } (v,u) = \psi(a), \\ 0 & \text{nos outros casos.} \end{cases}$$

Nota: Para cada $a \in E$, a soma sobre todos os elementos da «coluna a» é o. Para cada $v \in V$, a soma dos valores absolutos dos elementos da «linha v» é igual ao grau de v, $d(v) = d^+(v) + d^-(v)$.

	a	b
1	-1	1
2	0	-1
3	1	0

Teorema

Para todo o grafo não orientado $G = (V, E, \psi)$ finito, a soma dos graus dos vértices é igual ao dobro do número de arestas, ou seja,

$$\sum_{v\in V}d(v)=2|E|.$$

Demonstração.

Somamos de duas maneiras diferentes as entradas da matriz de incidência de *G*:

- Para cada «linha v», a soma das entradas desta linha é igual ao d(v).
 Portanto, a soma de todas as entradas da matriz de incidência é igual à ∑_{v∈V} d(v).
- Para cada «coluna a», a soma das entradas desta coluna é igual à 2.
 Portanto, a soma de todas as entradas da matriz de incidência é igual à 2|E|.

Teorema

Para todo o grafo não orientado $G = (V, E, \psi)$ finito, a soma dos graus dos vértices é igual ao dobro do número de arestas, ou seja,

$$\sum_{v\in V}d(v)=2|E|.$$

Corolário

O número de vértices de grau ímpar é par.

Teorema

Para todo o digrafo $\overrightarrow{G} = (V, E, \psi)$ finito,

$$\sum_{v\in V}d^+(v)=\sum_{v\in V}d^-(v)=|E|.$$

As matrizes de adjacência

• Seja $G = (V, E, \psi)$ um grafo não orientado (finito). A **matriz de adjacência** de G é a matriz do tipo $\nu \times \nu$ com entrada (u, v) igual a número de arestas entre u e v (cada lacete conta duas vezes).

Nota: Esta matriz é simétrica e a soma sobre os elementos da coluna u (ou linha u) é igual ao grau de u.

• Seja $\overrightarrow{G}=(V,E,\psi)$ um digrafo (finito). A matriz de adjacência de \overrightarrow{G} é a matriz do tipo $\nu\times\nu$ definida por

$$V \times V \longmapsto \mathbb{R}, \quad (u,v) \longmapsto |\{a \in E \mid \psi(a) = (u,v)\}|.$$

	1	2	3
1	0	1	1
2	1	0	0
3	1	0	2

As matrizes de adjacência

• Seja $G = (V, E, \psi)$ um grafo não orientado (finito). A **matriz de adjacência** de G é a matriz do tipo $\nu \times \nu$ com entrada (u, v) igual a número de arestas entre u e v (cada lacete conta duas vezes).

Nota: Esta matriz é simétrica e a soma sobre os elementos da coluna u (ou linha u) é igual ao grau de u.

• Seja $\overrightarrow{G}=(V,E,\psi)$ um digrafo (finito). A matriz de adjacência de \overrightarrow{G} é a matriz do tipo $\nu \times \nu$ definida por

$$V \times V \longmapsto \mathbb{R}, \quad (u, v) \longmapsto |\{a \in E \mid \psi(a) = (u, v)\}|.$$

	1	2	3
1	0	1	0
2	0	0	0
3	1	0	1

Sejam os grafos $G = (V_G, E_G, \psi_G)$ e $H = (V_H, E_H, \psi_H)$. Um **isomorfismo** de G em G en G

$$(\psi_{\mathsf{G}}(e) = \{u, v\}) \iff (\psi_{\mathsf{H}}(h(e)) = \{f(u), f(v)\}).$$

No caso de digrafos, escreve-se (u,v) e (f(u),f(v)) em vez de $\{u,v\}$ e de $\{f(u),f(v)\}$, respetivamente.

Nota

No caso de grafos simples, e denotando as arestas da forma «uv», a função h acima é completamente determinada por f:

$$h(uv) = f(u)f(v).$$

Portanto, um isomorfismo entre grafos simples (V_G, E_G) e (V_H, E_H) é dado por uma função bijetiva $f: V_G \longrightarrow V_H$ tal que, para todos os $u, v \in V_G$:

$$uv \in E_G \implies f(u)f(v) \in E_H.$$

Sejam os grafos $G=(V_G,E_G,\psi_G)$ e $H=(V_H,E_H,\psi_H)$. Um **isomorfismo** de G em H é um par $f\colon V_G\longrightarrow V_H$ e $h\colon E_G\longrightarrow E_H$ de funções bijetivas tais que, para todos os $e\in E_G$ e $u,v\in V_G$,

$$(\psi_{\mathsf{G}}(e) = \{u, v\}) \iff (\psi_{\mathsf{H}}(h(e)) = \{f(u), f(v)\}).$$

No caso de digrafos, escreve-se (u,v) e (f(u),f(v)) em vez de $\{u,v\}$ e de $\{f(u),f(v)\}$, respetivamente.

Nota

- Para cada grafo $G = (V, E, \psi)$, as identidades $id_V : V \longrightarrow V$ e $id_E : E \longrightarrow E$ definem um isomorfismo de G em G.
- Para cada isomorfismo de G em H, as funções $f^{-1}\colon V_H \longrightarrow V_G$ e $h^{-1}\colon E_H \longrightarrow E_G$ definem um isomorfismo de H em G.
- · As compostas de isomorfismos são isomorfismos.

(Di)grafos G e H dizem-se **isomorfos** quando existe um isomorfismo entre eles, e escreve-se $G \simeq H$ neste caso.

Nota

Intuitivamente, grafos isomorfos são «iguais a menos da etiquetação dos vértices e aresta».

(Di)grafos G e H dizem-se **isomorfos** quando existe um isomorfismo entre eles, e escreve-se $G \simeq H$ neste caso.

Nota

Grafos isomorfos têm «as mesmas propriedades».

Mais concretamente, sendo o par $f: V_G \longrightarrow V_H$ e $h: E_G \longrightarrow E_H$ um isomorfismo entre os grafos $G = (V_G, E_G, \psi_G)$ e $H = (V_H, E_H, \psi_H)$ (finitos). Então:

• Os grafos têm a mesma ordem e a mesma dimensão:

$$\nu(G) = \nu(H)$$
 e $\epsilon(G) = \epsilon(H)$.

- G é simples se e só se H é simples.
- · Vértices correspondentes têm o mesmo grau:

para cada
$$v \in V_G$$
, $d_G(v) = d_H(\varphi(v))$.

• Portanto: $\Delta(G) = \Delta(H)$ e $\delta(G) = \delta(H)$.

Representação gráfica de todos os grafos simples não isomorfos, com 5 vértices e 5 arestas:

Sejam $G = (V_G, E_G, \psi_G)$ e $H = (V_H, E_H, \psi_H)$ grafos. O grafo H diz-se **subgrafo** de G quando $V_H \subseteq V_G$, $E_H \subseteq E_G$ e ψ_H é a restrição de ψ_G ao conjunto E_H . Neste caso também se diz que G é um **supergrafo** de H.

Nota

Cada grafo é subgrafo de si próprio. Se H é um subgrafo de G e $H \neq G$, então diz-se que H é um subgrafo próprio de G.

Definição

Um subgrafo $H = (V_H, E_H, \psi_H)$ de $G = (V_G, E_G, \psi_G)$ diz-se abrangente quando $V_H = V_G$.

Considere o seguinte grafo G.

Alguns subgrafos de *G*:

Seja $G = (V, E, \psi)$ um grafo e sejam $\widehat{V} \subseteq V$ e $\widehat{E} \subseteq E$.

- O subgrafo $G[\widehat{V}]$ de G induzido por \widehat{V} é o grafo cujo conjunto de vértices é \widehat{V} e cujo conjunto de arestas é o conjunto das arestas de G com extremos em \widehat{V} .
- O subgrafo G[Ê] de G induzido por Ê é o grafo cujo conjunto de arestas é Ê e cujo conjunto de vértices é constituído pelos vértices extremos das arestas de Ê.

Nota

Tem-se G = G[V] mas em geral $G[E] \neq G$. Por exemplo, para o grafo G

o grafo G[E] é o grafo

De facto, G[E] = G se e só se G não têm vértices isolados.

Seja $G = (V, E, \psi)$ um grafo e sejam $\widehat{V} \subseteq V$ e $\widehat{E} \subseteq E$.

- O subgrafo G[V] de G induzido por V é o grafo cujo conjunto de vértices é V e cujo conjunto de arestas é o conjunto das arestas de G com extremos em V.
- O subgrafo $G[\widehat{E}]$ de G induzido por \widehat{E} é o grafo cujo conjunto de arestas é \widehat{E} e cujo conjunto de vértices é constituído pelos vértices extremos das arestas de \widehat{E} .

Nota

- Por definição, $G[V \widehat{V}]$ é o sugrafo gerado pelo complemento de \widehat{V} , e escrevemos simplesmente $G \widehat{V}$. Ainda mais, se $\widehat{V} = \{v\}$, escreve-se simplesmente G v.
- Denota-se por $G-\widehat{E}$ o subgrafo abrangente cujo conjunto de arestas é $E-\widehat{E}$. Se $\widehat{E}=\{e\}$ escreve-se simplesmente G-e.

Atenção: Em geral $G[E - \widehat{E}]$ e $G - \widehat{E}$ são distintos.