

Université de Montpellier - Faculté des Sciences

Année Universitaire 2023-2024

HA8401H : Calcul Différentiel et Intégral en Plusieurs Variables Chapitre 3 : Topologie de \mathbb{R}^n

Philippe Castillon (1)

Normes et topologie

Exercice 1. Équivalence des normes usuelles. Démontrer que les normes $\|\cdot\|_1$, $\|\cdot\|_2$ et $\|\cdot\|_\infty$ de \mathbb{R}^n sont équivalentes.

Exercice 2. Une norme plus exotique. Soit $a,b\in\mathbb{R}$ deux réels fixés avec $a\neq 0$. Si $(x,y)\in\mathbb{R}^2$, on pose

$$N_{a,b}(x,y) = \max\{|bx + y|, |(a+b)x + y|\}.$$

- 1. Montrer que l'application $N_{a,b}: \mathbb{R}^2 \to \mathbb{R}$ définie bien une norme sur \mathbb{R}^2 .
- 2. Dessiner la boule unité dans le cas où (a,b)=(1,0). Indication : montrer que $N_{1,0}(x,y) \leq 1$ si et seulement si $-1 \leq y \leq 1$ et $-1 \leq x+y \leq 1$.

Exercice 3. Convexité et inégalité triangulaire. Soient $a \in \mathbb{R}^n$ et r > 0. Montrer que la boule $B_r(a)$ est un convexe de \mathbb{R}^n .

Rappel: une partie $A \subset \mathbb{R}^n$ est convexe si pour tout $x, y \in A$ on a $\{(1-t)x + ty \mid t \in [0,1]\} \subset A$.

Exercice 4. Inégalités de Hölder et de Minkowski, norme $\|\cdot\|_p$. Soit $p,q\in[1,+\infty[$ tel que $\frac{1}{p}+\frac{1}{q}=1.$

- 1. Montrer que pour $x, y \in \mathbb{R}_+$ on a $xy \leq \frac{x^p}{p} + \frac{y^q}{q}$. On pourra étudier la fonction $x \mapsto \frac{x^p}{p} + \frac{y^q}{q} yx$.
- 2. En déduire que pour tout $(a_1, \dots, a_n), (b_1, \dots, b_n) \in \mathbb{R}^n$ on a

$$\left| \sum_{k=1}^{n} a_k b_k \right| \le \left(\sum_{k=1}^{n} |a_k|^p \right)^{1/p} \left(\sum_{k=1}^{n} |b_k|^q \right)^{1/q}$$

On pourra noter $A = \left(\sum_{k=1}^{n} |a_k|^p\right)^{1/p}$, $B = \left(\sum_{k=1}^{n} |b_k|^q\right)^{1/q}$, et considérer la somme $\left|\sum_{k=1}^{n} \frac{a_k}{A} \frac{b_k}{B}\right|$

3. En déduire que pour tout $(a_1, \dots, a_n), (b_1, \dots, b_n) \in \mathbb{R}^n$ on a

$$\left(\sum_{k=1}^{n} |a_k + b_k|^p\right)^{1/p} \le \left(\sum_{k=1}^{n} |a_k|^p\right)^{1/p} + \left(\sum_{k=1}^{n} |b_k|^p\right)^{1/p}.$$

On pourra écrire $\sum_{k=1}^{n} |a_k + b_k|^p = \sum_{k=1}^{n} |a_k + b_k| |a_k + b_k|^{p-1}$, et utiliser l'inégalité triangulaire.

4. Pour
$$x=(x_1,\cdots,x_n)\in\mathbb{R}^n$$
, on définit $\|x\|_p=\left(\sum_{k=1}^n|x_k|^p\right)^{1/p}$. Montrer que $\|\cdot\|_p$ est une norme sur \mathbb{R}^n et que $\lim_{p\to+\infty}\|x\|_p=\|x\|_\infty$. On pourra considérer la limite du quotient $\frac{\|x\|_p}{\|x\|_\infty}$

^{1.} Département de Mathématiques, CC 051, Université Montpellier II, Pl. Eugène Bataillon, 34095 Montpellier cedex 5. Mèl : philippe.castillon@umontpellier.fr

Exercice 5. Intersection ou union d'ouverts. Montrer qu'une intersection finie d'ouverts de \mathbb{R}^n est un ouvert de \mathbb{R}^n . Montrer qu'une intersection infinie d'ouvert de \mathbb{R}^n n'est pas nécessairement un ouvert. Qu'en est-il pour un union (finie ou infinie) d'ouverts? Qu'en est-il pour les parties fermées de \mathbb{R}^n ?

Exercice 6. Dessiner et déterminer la nature (ouvert ou fermé) du domaine de définition des fonctions de deux variables suivantes :

1.
$$f(x,y) = \frac{\ln(xy)}{x-y}$$
.

2.
$$g(x,y) = \sqrt{\frac{x+y}{x-y}}$$

3.
$$h(x,y) = \ln\left(\frac{x^2 + y^2 - 16}{4 - x^2 - y^2}\right)$$

Exercice 7. (Adhérence) Dessiner l'adhérence des ensembles de \mathbb{R}^2 suivants :

1.
$$A = \{(x, y) \in \mathbb{R}^2 \mid x^2 + 2y^2 < 1\}$$

2.
$$B = \{(t, \cos(1/t)) \in \mathbb{R}^2 | t > 0 \}$$

Limites et continuité

Exercice 8. Étudier la nature des suites $(u_n)_{n\in\mathbb{N}}$ de \mathbb{R}^3 ci-dessous et déterminer des sous-suites convergentes en fonction des paramètres réels a, b et c

1.
$$u_n = \left(\sum_{k=1}^n a^k, \sum_{k=1}^n b^{2k}, \sum_{k=1}^n c^{3k}\right)$$

$$2. \ u_n = \left(a^n, n^b, \frac{\cos(n\frac{\pi}{2})}{n^c}\right)$$

Exercice 9. Donner le domaine de définition et étudier la limite en l'origine des fonctions suivantes :

1.
$$f(x,y) = \frac{x^2 - 3y^2}{x^2 + y^2}$$

3.
$$f(x,y) = \frac{(x^2-y^2)^2}{(x^2+y^2)^{\frac{3}{2}}}$$

2.
$$f(x, y, z) = \frac{|x+y+z|}{\sqrt{x^2+y^2+z^2}}$$

4.
$$f(x,y) = \frac{\cos(xy)-1}{x^2+y^2}$$

Exercice 10. Soit $f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$ définie par $f(x,y) = \frac{x^2y}{x^4 - 2x^2y + 4y^2}$.

- 1. Étudier la limite à l'origine de la restriction de f à la droite d'équation y = ax.
- 2. Calculer la limite à l'origine de de la restriction de f à la parabole d'équation $y=x^2$
- 3. La fonction f admet-elle une limite à l'origine?

Exercice 11. Les fonctions suivantes (à valeurs dans \mathbb{R} ou \mathbb{R}^2) sont-elles prolongeables par continuité en (0,0)?

1.
$$f(x,y) = \frac{xy+y^2}{\sqrt{x^2+y^2}}$$

3.
$$f(x,y) = \frac{\cos x - \sqrt{1+y^2}}{x^2 + y^2}$$

2.
$$f(x,y) = \frac{\ln(1+xy)}{x^2+y^2}$$

4.
$$f(x,y) = \left(\frac{x^2+y^2-1}{x}\sin x, \frac{|x+y|^3}{x^2+y^2}\right)$$
.

Exercice 12. Soit f la fonction définie par la formule $f(x,y) = \frac{\sin(x) - \sin(y)}{x - y}$.

Déterminer le domaine de définition D, son adhérence \bar{D} , et étudier le prolongement par continuité de f en chaque point de $\bar{D} \setminus D$.

2

Pour s'entrainer

Exercice 13. (Ouvert ou fermé) Dessiner et déterminer la nature (ouvert ou fermé) du domaine de définition des fonctions $\mathbb{R}^2 \to \mathbb{R}$ suivantes :

1.
$$f(x,y) = \frac{x^2 - y^2}{\sqrt{x^2 - y}}$$

2.
$$g(x,y) = \frac{\sqrt{x^2 + y^2 - 9}}{x^2 - y^2}$$

3.
$$h(x,y) = \frac{\ln(x-y^2)}{\ln(x+y)}$$

Exercice 14. (Adhérence) Dessiner l'adhérence des ensembles de \mathbb{R}^2 suivants :

1.
$$A = \{(x, y) \in \mathbb{R}^2 \mid x^2 < y \le x\}$$

2.
$$C = \{\frac{t}{t+5} (\cos(t), \sin(t)), t \ge 0\}$$

Exercice 15. Étudier la nature des suites $(u_n)_{n\in\mathbb{N}}$ de \mathbb{R}^3 ci-dessous et déterminer des sous-suites convergentes en fonction des paramètres réels a, b et c

1.
$$u_n = \left(\frac{(-1)^n}{n^a}, \frac{1}{n^b}, c^n\right)$$

2.
$$u_n = \left(\sum_{k=1}^n \frac{1}{k^a}, \sum_{k=1}^n \frac{b^k}{k!}, c\right)$$

Exercice 16. Donner le domaine de définition et étudier la limite en l'origine des fonctions suivantes :

1.
$$f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$$

3.
$$f(x, y, z) = \frac{xyz}{x^2 + y^2 + z^2}$$

4. $f(x, y) = \frac{\ln(1+xy)}{\sqrt{x^2 + y^2}}$

2.
$$f(x,y) = \frac{e^{xy} - 1}{x^2 + y^2}$$

4.
$$f(x,y) = \frac{\ln(1+xy)}{\sqrt{x^2+y^2}}$$

Exercice 17. Soit f la fonction définie par $f(x,y) = \frac{xy}{x+y}$.

- 1. Étudier la limite à l'origine de la restriction de f à la droite d'équation y = ax.
- 2. Calculer la limite à l'origine de de la restriction de f à la parabole d'équation $x + y = x^2$.
- 3. La fonction f admet-elle une limite à l'origine?

Exercice 18. Les fonctions suivantes (à valeurs dans \mathbb{R} ou \mathbb{R}^2) sont-elles prolongeables par continuité en (0,0)?

1.
$$f(x,y) = \frac{\sin(xy)}{x^2 + y^2}$$

3.
$$f(x,y) = (x+y)\sin(\frac{e^{xy}}{x^2+y^2})$$
.

2.
$$f(x,y) = \frac{e^{x^2} - e^{-y^2}}{x^2 + y^2}$$

4.
$$f(x,y) = \left(\frac{x^2y}{x^2+y^2}, \frac{\sin(x^2)+\ln(1+y^2)}{\sqrt{x^2+y^2}}\right)$$
.

Exercice 19. Pour chacune des fonctions f suivantes, déterminer le domaine de définition D, son adhérence \bar{D} , et étudier le prolongement par continuité de f en chaque point de $\bar{D} \setminus D$.

3

1.
$$f(x,y) = \frac{e^{2x} - e^{-2y}}{x+y}$$

$$2. f(x,y) = \frac{\sin(x+y)}{x+y}$$