Lista de exercicios 2 Prof. Me. Marcus Guimaraes

1073/B - Introdução à Estatística Econômica Ciências Econômicas

1) Suponha um espaço amostral S constituido de 4 elementos: $S=\{a_1,a_2,a_3,a_4\}$. Qual das funções define um espaço de probabilidade em S. Justifique sua resposta.

a)
$$P(a_1) = \frac{1}{2}, P(a_2) = \frac{1}{3}, P(a_3) = \frac{1}{4}, P(a_4) = \frac{1}{5}$$

b)
$$P(a_1) = \frac{1}{2}, P(a_2) = \frac{1}{4}, P(a_3) = -\frac{1}{4}, P(a_4) = \frac{1}{2}$$

c)
$$P(a_1) = \frac{1}{2}, P(a_2) = \frac{1}{4}, P(a_3) = \frac{1}{8}, P(a_4) = \frac{1}{8}$$

d)
$$P(a_1) = \frac{1}{2}, P(a_2) = \frac{1}{4}, P(a_3) = \frac{1}{4}, P(a_4) = 0$$

2) Sejam S= $\{a_1,a_2,a_3,a_4\}$ e P uma função de probabilidade em S:

a) Encontre
$$P(a_1)$$
 se $P(a_2) = \frac{1}{3}, P(a_3) = \frac{1}{6}, P(a_4) = \frac{1}{9}$

b) Encontre
$$P(a_1)$$
 e $P(a_2)$, se $P(a_3) = P(a_4) = \frac{1}{4}$ e $P(a_1) = 2P(a_2)$

- 3) Seja um dado viciado de modo que a probabilidade de aparecer um numero seja proporcional ao numero do dado. Por exemplo, o 6 é duas vezes mais provavel de aparecer que o 3. Sejam $A = \{\text{numero par}\}, B = \{\text{Numero impar}\}\$ faça:
- a) Descreva o espaço de probabilidade, ou seja, encontre a probabilidade de cada ponto amostral
- b) Encontre P(A) e P(B)
- 4) Duas cartas são retiradas aleatoriamente de um baralho comum de 52 cartas. Encontre a probabilidade p de que ambas sejam de espadas.
- 5) Um ponto p qualquer dentro de um circulo c é selecionado aleatóriamente. Encontre a probabilidade desse ponto estar dentro do semi-circulo menor ou igual que a metade do raio do circulo c. Justifique sua resposta.

6) Sejam
$$A \in B$$
 eventos com $P(A \cup B) = \frac{3}{4}$, $P(A^c) = \frac{2}{3} \in P(A \cap B) = \frac{1}{4}$ encontre:

- a) P(A)
- b) P(B)

- 7) Lança-se um par de dados não viciados. Ache a probabilidade p da soma ser igual ou maior que 10 se:
- a) ocorrer 5 no primeiro dado
- b) ocorrer 5 em pelo menos um dos dados
- 8) Um homem recebe 5 cartas, uma após a outra, de um baralho comum com 52 cartas. Qual a probabilidade p de todas serem de copas.
- 9) Uma urna contém 7 bolas vermelhas e 3 bolas brancas. Três bolas são retiradas uma após a outra. Encontre a proabilidade p das duas primeiras serem vermelhas e a terceira ser branca.
- 10) Em certo colégio, 25% dos estudantes foram reprevados em matemática, 15% em química e 10% em matemática e química ao mesmo tempo. Um estudante é selecionado aleatoriamente.
- a) Se ele foi reprovado em quimica, qual a probabilidade de ele ter sido reprovado em matematica?
- b) Se ele for reprovado em matematica, qual a probabilidade de ter sido reprovado em quimica?
- c) Qual é a probabilidade de ele ter sido reprovado em matemática ou quimica?
- 11) Sejam A e B eventos com $P(A)=\frac{3}{8}, P(B)=\frac{5}{8}$ e $P(A\cup B)=\frac{3}{4}$. Encontre a P(A|B) e P(B|A).
- 12) Três máquinas, A, B e C produzem respectivamente, 60%, 30% e 10% do total de peças de uma fábrica. As porcentagens de produção defeituosa destas maquinas são respectivamente, 2%, 3% e 4%. Uma peça é selecionada aleatoriamente e é defeituosa. Encontre a probabilidade da pela ter sido produzida pela maquina C.
- 13) Num certo colégio, 4% dos homens e 1% das mulheres tem mais do que 1,60m de altura. Além disso, 60% dos estudantes são mulheres. Se um estudante é selecionado aleatoriamente e tem mais do que 1,60m de altura, qual a probabilidade de que o estudante seja mulher.
- 14) A probabilidade de um homem (evento H) gostar de um filme é de 70% e a probabilidade de sua namorada (evento N) gostar do filme é de 60%. Se a probabilidade do homem gostar do filme e a namorada não gostar é de 28%, qual é a probabilidade de que o homem goste do filme dado que a namorada não irá gostar? Justifique se esses eventos são dependentes ou não.

- 15) Se for de 70% a probabilidade de uma pessoa entrevistada ser contra o aumento de impostos. Assumindo a independencia dos eventos, qual é a probabilidade de entrevistar quatro pessoas e as três primeiras pessoas serem contra o aumento e a quarta ser a favor do aumento de impostos?
- 16) Verifique se a correspondencia dada por

$$f(x) = \frac{x+3}{15} \quad para \quad x = 1, 2 \quad e \quad 3$$

pode ser uma distribuição de probabilidade de alguma variavel aleatória. Justique sua resposta.

17) (Bernoulli)

Uma urna tem 30 bolas brancas e 20 verdes. Retira-se uma bola dessa urna. Seja X: numero de bolas verdes. Calcular E(X) e determinar P(X).

18) (Binomial)

A probabilidade de que uma pessoa fazendo compras aproveite uma promoção é de 30%. Determine as probabilidades de que dentre seis pessoas fazendo compras haja 0, 1, 2 ou 3 pessoas aproveitando a promoção.

19) (Binomial)

Um inspetor de qualidade extrai uma amostra de 10 tubos aleatoriamente de uma carga muito grande de tubos que se sabe que contém 20% de tubos defeituosos.

- a) Qual é a probabilidade de que não mais do que 2 dos tubos extraídos sejam defeituosos?
- b) Calcule o valor esperado de tubos defeituosos

20) (Poisson)

Dados que um banco recebe em média 6 cheques sem cobertura por dia, qual é a probabilidade de receber quatro cheques sem cobertura em um dia qualquer?

21) (Geometrica)

Um pesquisador está realizando um experimentos químico independentes e sabe que a probabilidade de que cada experimento apresente uma reação positiva é 30%. Qual é a probabilidade de que menos de 5 reações negativas ocorram antes da primeira positiva?

22) (Binomial)

Um sistema de segurança consiste em 4 alarmes (idênticos) de pressão alta, com probabilidade de sucesso p = 0.8 (cada um).

- a) Assumindo a independencia dos eventos, qual a probabilidade de se ter exatamente 3 alarmes soando quando a pressão atingir o valor limite?
- b) Calcule a quantidade esperada de alarmes que deverão soar.

23) (Binomial)

Numa empresa, de cada 100 peças vendidas, 30 são para o interior do estado, Na venda de 6 peças, qual a probabilidade de que 4 peças sejam para o interior do estado?

- 24) Seja X a variável aleatória que segue o modelo hipergeométrico com parâmetros N = 10, M = 5 e n = 4. Determine a probabilidade $P(X \le 1)$.
- 25) (Normal)

Os salários dos operários de uma empresa tem distribuição normal em torno da média de R\$1.500,00,com desvio padrão de R\$200,00. Qual a probabilidade de um funcionário:

- a) Ganhar R\$ 1.400,00
- b) Ganhar acima de R\$ 1.650,00
- c) Ganhar abaixo de R\$ 1.400,00
- 26) Se a quantidade de radiação cósmica a que uma pessoa está exposta enquanto atravessar o territótio nacional de avião é uma variavel aleatoria de distribuição normal com $\mu=4,35$ mrem e $\sigma=0,59$ mrem, encontre a probabilidade de que essa pessoa esteja exposta a:
- a) mais de 5,00m
rem de radiação cósmica b) alguma quantidade entre 3,00 a
 $4,\!00\mathrm{mrem}$
- 27) Suponha que a espessura média de arruelas produzidas em uma fábrica tenha distribuição normal com média 11,15mm e desvio padrão 2.238mm. Qual a porcentagem de arruelas que tem espessura entre 8,70mm e 14,70mm?
- 28) A ocorrência de panes em qualquer ponto de uma rede telefônica de 7 km foi modelada por uma distribuição Uniforme no intervalo de [0,7]km. Qual é a probabilidade de que uma pane venha a ocorrer nos primeiros 800 metros? E qual a probabilidade de que ocorra nos 3 km centrais da rede?

29) (Poisson)

Suponhamos que em uma indústria farmacêutica 0,001% de um determinado medicamento sai da linha de produção somente com o excipiente, ou seja, sem nenhum princípio ativo. Qual a probabilidade de que em uma amostra de 4 mil medicamentos, 2 ou mais deles esteja somente com o excipiente.

30) (Normal)

A concentração de um poluente em água liberada por uma fábrica tem distribuição N(8,

- 1.5). Qual a probabilidade, de que num dado dia, a concentração do poluente exceda o limite regulatório de 10 ppm?
- 31) (Poisson)

Suponha que 300 erros de impressão sejam distribuidos aleatóriamente em um livro de 500 paginas. Encontre a probabilidade p de cada página conter:

a) exatamente 2 erros

b) 2 ou mais erros

32) (Hipergeometrica)

Na Mega-Sena, um apostador escolhe 7 dezenas dentre 60. Qual a probabilidade dele acertar as 6 dezenas corretas?

Entrada da tabela para Z é a probabilidade abaixo de Z.

TABELA A		Probabilidades da normal padrão (Continuação)											
Z	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09			
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359			
0,1	0,5398	0,5438	0.5478	0.5517	0,5557	0,5596	0,5636	0,5675	0.5714	0,5753			
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141			
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517			
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0.6808	0,6844	0,6879			
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224			
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0.7422	0,7454	0.7486	0,7517	0,7549			
0.7	0,7580	0.7611	0,7642	0,7673	0,7704	0.7734	0,7764	0,7794	0,7823	0,7852			
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133			
0.9	0.8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0.8389			
1,0	0.8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0.8621			
1,1	0.8643	0.8665	0,8686	0,8708	0.8729	0,8749	0.8770	0.8790	0,8810	0,8830			
1,2	0,8849	0,8869	0.8888	0,8907	0,8925	0.8944	0.8962	0,8980	0,8997	0,9015			
1,3	0.9032	0,9049	0,9066	0,9082	0,9099	0,9115	0.9131	0,9147	0,9162	0,9177			
1,4	0,9192	0,9207	0.9222	0,9236	0,9251	0,9265	0,9279	0,9292	0.9306	0,9319			
1,5	0,9332	0.9345	0,9357	0,9370	0,9382	0,9394	0.9406	0.9418	0.9429	0,9441			
1,6	0.9452	0.9463	0.9474	0.9484	0.9495	0,9505	0.9515	0,9525	0,9535	0,9545			
1,7	0,9554	0,9564	0.9573	0.9582	0,9591	0,9599	0.9608	0,9616	0,9625	0,9633			
1,8	0,9641	0,9649	0,9656	0.9664	0.9671	0,9678	0.9686	0,9693	0.9699	0,9706			
1,9	0,9713	0.9719	0,9726	0.9732	0.9738	0,9744	0.9750	0,9756	0,9761	0,9767			
2,0	0,9772	0.9778	0.9783	0.9788	0,9793	0.9798	0,9803	0,9808	0.9812	0,9817			
2.1	0,9821	0.9826	0,9830	0.9834	0.9838	0,9842	0.9846	0,9850	0,9854	0,9857			
2,2	0,9861	0.9864	0.9868	0.9871	0.9875	0.9878	0,9881	0,9884	0,9887	0,9890			
2.3	0,9893	0,9896	0.9898	0.9901	0.9904	0.9906	0.9909	0,9911	0,9913	0,9916			
2,4	0,9918	0.9920	0,9922	0.9925	0.9927	0.9929	0.9931	0.9932	0,9934	0,9936			
2,5	0,9938	0.9940	0,9941	0,9943	0.9945	0.9946	0.9948	0.9949	0,9951	0,9952			
2.6	0.9953	0,9955	0.9956	0.9957	0,9959	0.9960	0.9961	0.9962	0.9963	0.9964			
2,7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0,9973	0.9974			
2,8	0.9974	0.9975	0.9976	0.9977	0,9977	0.9978	0.9979	0.9979	0,9980	0.9981			
2.9	0.9981	0.9982	0,9982	0,9983	0.9984	0.9984	0.9985	0.9985	0,9986	0,9986			
3.0	0.9987	0.9987	0.9987	0,9988	0,9988	0,9989	0.9989	0.9989	0,9990	0,9990			
3.1	0.9990	0.9991	0.9991	0,9991	0,9992	0,9992	0.9992	0.9992	0,9993	0,9993			
3,2	0,9993	0.9993	0,9994	0,9994	0,9994	0,9994	0.9994	0,9995	0.9995	0,9995			
3,3	0.9995	0,9995	0.9995	0,9996	0.9996	0.9996	0.9996	0.9996	0.9996	0,9997			
3,4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0,9997	0.9997	0.9998			

Tabela III — Distribuição Normal Padrão $Z \sim {\rm N}(0,\,1)$ Corpo da tabela dá a probabilidade p, tal que $p=P(0 < Z < Z_c)$

-							-			U Z _c			
parte in-	Segunda decimal de Z _c												
teira e											teira e		
primeira	191										primeiro		
decimal	0	1	2	2	- · · · ·	-	,	-			decima		
de Z _c			- 2	3	4	, 5	6	7	8	9	de Z _c		
	p = 0												
0,0	00000	00399	00798	01197	01595	01994	02392	02790	03188	03586	0,0		
0,1	03983	04380	04776	05172	05567	05962	06356	06749	07142	07535	- 0,1		
0,2	07926	08317	08706	09095	09483	09871	10257	10642	11026	11409	0,2		
0,3	11791	12172	12552	12930	13307	13683	14058	14431	14803	15173	0,3		
0,4	15542	15910	16276	16640	17003	17364	17724	18082	18439	18793	0,4		
0,5	19146	19497	19847	20194	20540	20884	21226	21566	21904	22240	0,5		
0,6	22575	22907	23237	23565	23891	24215	24537	24857	25175	25490	0,6		
0,7	25804	26115	26424	26730	27035	27337	27637	27935	28230	28524	0,7		
0,8	28814	29103	29389	29673	29955	30234	30511	30785	31057	31327	0,8		
0,9	31594	31859	32121	32381	32639	32894	33147	33398	33646	33891	0,9		
1,0	34134	34375	34614	34850	35083	35314	35543	35769	35993	36214	1,0		
1,1	36433	36650	36864	37076	37286	37493	37698	37900	38100	38298	1,1		
1,2	38493	38686	38877	39065	39251	39435	39617	39796	39973	40147	1,2		
1,3	40320	40490	40658	40824	40988	41149	41309	41466	41621	41774	1,3		
1,4	41924	42073	42220	42364	42507	42647	42786	42922	43056	43189	1,4		
1,5	43319	43448	43574	43699	43822	43943	44062	44179	44295	44408	1,5		
1,6	44520	44630	44738	44845	44950	45053	45154	45254	45352	45449	1,6		
1,7	45543	45637	45728	45818	45907	45994	46080	46164	46246	46327	1,7		
1,8	46407	46485	46562	46638	46712	46784	46856	46926	46995	47062	1,8		
1,9	47128	47193	47257	47320	47381	47441	47500	47558	47615	47670	1,9		
2,0	47725	47778	47831	47882	47932	47982	48030	48077	48124	48169	2,0		
2,1	48214	48257	48300	48341	48382	48422	48461	48500	48537				
2,2	48610	48645	48679	48713	48745	48778	48809			48574	2,1		
2,3	48928	48956	48983	49010	49036			48840	48870	48899	2,2		
2,4	49180	49202	49224			49061	49086	49111	49134	49158	2,3		
2,5	49379	49396		49245	49266	49286	49305	49324	49343	49361	2,4		
2,6	49534		49413	49430	49446	49461	49477	49492	49506	49520	2,5		
2,7	49653	49547	49560	49573	49585	49598	49609	49621	49632	49643	2,6		
		49664	49674	49683	49693	49702	49711	49720	49728	49736	2,7		
2,8	49744	49752	49760	49767	49774	49781	49788	49795	49801	49807	2,8		
2,9	49813	49819	49825	49831	49836	49841	49846	49851	49856	49861	2,9		
3,0	49865	49869	49874	49878	49882	49886	49889	49893	49897	49900	3,0		
3,1	49903	49906	49910	49913	49916	49918	49921	49924	49926	49929	3,1		
3,2	49931	49934	49936	49938	49940	49942	49944	49946	49948	49950	3,2		
3,3	49952	49953	49955	49957	49958	49960	49961	49962	49964	49965	3,3		
3,4	49966	49968	49969	49970	49971	49972	49973	49974	49975	49976	3,4		
3,5	49977	49978	49978	49979	49980	49981	49981	49982	49983	49983	3,5		
3,6	49984	49985	49985	49986	49986	49987	49987	49988	49988	49989	3,6		
3,7	49989	49990	49990	49990	49991	49991	49992	49992	49992	49992	3,7		
3,8	49993	49993	49993	49994	49994	49994	49994	49995	49995	49995	3,8		
3,9	49995	49995	49996	49996	49996	49996	49996	49996	49997	49997	3,9		
4,0	49997	49997	49997	49997	49997	49997	49998	49998	49998	49998	4,0		
4,5	49999	50000	50000	50000	50000	50000	50000	50000	50000	50000	4,5		

Escores z NEGATIVOS

z	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
-3,50										
e										
menor	0,0001									
-3,4	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	0,000
-3,3	0,0005	0,0005	0,0005	0,0004	0,0004	0,0004	0,0004	0,0004	0,0004	0,000
-3,2	0,0007	0,0007	0,0006	0,0006	0,0006	0,0006	0,0006	0,0005	0,0005	0,000
-3,1	0,0010	0,0009	0,0009	0,0009	0,0008	0,0008	0,0008	0,0008	0,0007	0,000
-3,0	0,0013	0,0013	0,0013	0,0012	0,0012	0,0011	0,0011	0,0011	0,0010	0,001
-2,9	0,0019	0,0018	0,0018	0,0017	0,0016	0,0016	0,0015	0,0015	0,0014	0,001
-2,8	0,0026	0,0025	0,0024	0,0023	0,0023	0,0022	0,0021	0,0021	0,0020	0,001
-2,7	0,0035	0,0034	0,0033	0,0032	0,0031	0,0030	0,0029	0,0028	0,0027	0,002
-2,6	0,0047	0,0045	0,0044	0,0043	0,0041	0,0040	0,0039	0,0038	0,0037	0,003
-2,5	0,0062	0,0060	0,0059	0,0057	0,0055	0,0054	0,0052	0,0051	* 0,0049	0,004
-2,4	0,0082	0,0080	0,0078	0,0075	0,0073	0,0071	0,0069	0,0068	0,0066	0,006
-2,3	0,0107	0,0104	0,0102	0,0099	0,0096	0,0094	0,0091	0,0089	0,0087	0,008
-2,2	0,0139	0,0136	0,0132	0,0129	0,0125	0,0122	0,0119	0,0116	0,0113	0,011
-2,1	0,0179	0,0174	0,0170	0,0166	0,0162	0,0158	0,0154	0.0150	0,0146	0,014
-2,0	0,0228	0,0222	0,0217	0,0212	0,0207	0,0202	0,0197	0,0192	0,0188	0,018
-1,9	0,0287	0,0281	0,0274	0,0268	0,0262	0,0256	0,0250	0,0244	0,0239	0,023
-1,8	0,0359	0,0351	0,0344	0,0336	0,0329	0,0322	0,0314	0,0307	0,0301	0,029
-1,7	0,0446	0,0436	0,0427	0,0418	0,0409	0,0401	0,0392	0,0384	0,0375	0,036
-1,6	0,0548	0,0537	0,0526	0,0516	0,0505	0,0495	0,0485	0,0475	0,0465	0,045
-1,5	0,0668	0,0655	0,0643	0,0630	0,0618	0,0606	0,0594	0,0582	0,0571	0,055
-1,4	0,0808	0,0793	0,0778	0,0764	0,0749	0,0735	0,0721	0,0708	0,0694	0,068
-1,3	0,0968	0,0951	0,0934	0,0918	0,0901	0,0885	0,0869	0,0853	0,0838	0,082
-1,2	0,1151	0,1131	0,1112	0,1093	0,1075	0,1056	0,1038	0,1020	0,1003	0,098
-1,1	0,1357	0,1335	0,1314	0,1292	0,1271	0,1251	0,1230	0,1210	0,1190	0,117
-1,0	0,1587	0,1562	0,1539	0,1515	0,1492	0,1469	0,1446	0,1423	0,1401	0,137
-0.9	0,1841	0,1814	0,1788	0,1762	0,1736	0,1711	0,1685	0,1660	0,1635	0,161
-0.8	0,2119	0,2090	0,2061	0,2033	0,2005	0,1977	0,1949	0,1922	0,1894	0,186
-0,7	0,2420	0,2389	0,2358	0,2327	0,2296	0,2266	0,2236	0,2206	0,2177	0,214
-0,6	0,2743	0,2709	0,2676	0,2643	0,2611	0,2578	0,2546	0,2514	0,2483	0,245
-0,5	0,3085	0,3050	0,3015	0,2981	0,2946	0,2912	0,2877	0,2843	0,2810	0,277
-0,4	0,3446	0,3409	0,3372	0,3336	0,3300	0,3264	0,3228	0,3192	0,3156	0,312
-0,3	0,3821	0,3783	0,3745	0,3707	0,3669	0,3632	0,3594	0,3557	0,3520	0,348
-0,2	0,4207	0,4168	0,4129	0,4090	0,4052	0,4013	0,3974	0,3936	0,3897	0,385
-0,1	0,4602	0,4562	0,4522	0,4483	0,4443	0,4404	0,4364	0,4325	0,4286	0,424
-0,0	0,5000	0,4960	0,4920	0,4880	0,4840	0,4801	0,4761	0,4721	0,4681	0,464

NOTA: Para valores de z abaixo de -3,49, use 0,0001 para a área. *Use esses valores comuns que resultam de interpolação:

Escore z	Área
-1,645	0,0500

-2,575 0,0050

Escore z 1,645

2,575

0,9500

0,9950

Escores z **POSITIVOS**

0,90

0,95

0,99

1,645

1,96

2,575

	0,00	0,01	0,02	0,03	0,04		0,05	0,06	0,07	0,08	0,09
0,0	0,5000	0,5040	0,5080	0,5120	0,5160		0,5199	0,5239	0,5279	0,5319	0,535
0,1	0,5398	0,5438	0,5478	0,5517	0,5557		0,5596	0,5636	0,5675	0,5714	0,575
0,2	0,5793	0,5832	0,5871	0,5910	0,5948		0,5987	0,6026	0,6064	0,6103	0,614
0,3	0,6179	0,6217	0,6255	0,6293	0,6331		0,6368	0,6406	0,6443	0,6480	0,65
0,4	0,6554	0,6591	0,6628	0,6664	0,6700		0,6736	0,6772	0,6808	0,6844	0,687
0,5	0,6915	0,6950	0,6985	0,7019	0,7054		0,7088	0,7123	0,7157	0,7190	0,722
0,6	0,7257	0,7291	0,7324	0,7357	0,7389		0,7422	0,7454	0,7486	0,7517	0,754
0,7	0,7580	0,7611	0,7642	0,7673	0,7704		0,7734	0,7764	0,7794	0,7823	0,785
0,8	0,7881	0,7910	0,7939	0,7967	0,7995		0,8023	0,8051	0,8078	0,8106	0,813
0,9	0,8159	0,8186	0,8212	0,8238	0,8264		0,8289	0,8315	0,8340	0,8365	0,838
1,0	0,8413	0,8438	0,8461	0,8485	0,8508		0,8531	0,8554	0,8577	0,8599	0,862
1,1	0,8643	0,8665	0,8686	0,8708	0,8729		0,8749	0,8770	0,8790	0,8810	0,883
1,2	0,8849	0,8869	0,8888	0,8907	0,8925		0,8944	0,8962	0,8980	0,8997	0,90
1,3	0,9032	0,9049	0,9066	0,9082	0,9099		0,9115	0,9131	0,9147	0,9162	0,917
1,4	0,9192	0,9207	0,9222	0,9236	0,9251		0,9265	0,9279	0,9292	0,9306	0,931
1,5	0,9332	0,9345	0,9357	0,9370	0,9382		0,9394	0,9406	0,9418	0,9429	0,94
1,6	0,9452	0,9463	0,9474	0,9484		非	0,9505	0,9515	0,9525	0,9535	0,95
1,7	0,9554	0,9564	0,9573	0,9582		*	0,9599	0,9608	0,9616	0,9625	0,963
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	Т	0,9678	0,9686	0,9693	0,9699	0,970
1,9	0,9713	0,9719	0,9726	0,9732	0,9738		0,9744	0,9750	0,9756	0,9761	0,976
2,0	0,9772	0,9778	0,9783	0,9788	0,9793	Т	0,9798	0,9803	0,9808	0,5040	0,98
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	de	0,9842	0,9846	0,9850	0,9854	0,985
2,2	0,9861	0,9864	0,9868	0,9871	0,9875	Т	0,9878	0,9881	0,9884	0,5040	0,989
2,3	0,9893	0,9896	0,9898	0,9901	0,9904		0,9906	0,9909	0,9911	0,9913	0,99
2,4	0,9918	0,9920	0,9922	0,9925	0,9927	Т	0,9929	0,9931	0,9932	0,9934	0,993
2,5	0,9938	0,9940	0,9941	0,9943	0,9945	i i	0,9946	0,9948	0,9949		0,995
2,6	0,9953	0,9955	0,9956	0,9957	0,9959	Т	0,9960	0,9961	0,9962		0,996
2,7	0,9965	0,9966	0,9967	0,9968	0,9969	t	0,9970	0,9971	0,9972	0,9973	0,997
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	Т	0,9978	0,9979	0,9979	0,9980	0,998
2,9	0,9981	0,9982	0,9982	0,9983	0,9984	t	0,9984	0,9985	0,9985	0,9986	0,998
3,0	0,9987	0,9987	0,9987	0,9988	0,9988	Т	0,9989	0,9989	0,9989	0,9990	0,999
3,1	0,9990	0,9991	0,9991	0,9991	0,9992	b	0.9992	0.9992	0,9992	0,9993	0,999
3,2	0,9993	0,9993	0,9994	0,9994	0,9994	Т	0,9994	0,9994	0,9995	0,9995	0,999
3,3	0.9995	0,9995	0,9995	0,9996	0,9996	t	0,9996	0,9996	0,9996	0,9996	0,999
3,4	0,9997	0,9997	0,9997	0,9997	0,9997	Т	0,9997	0,9997	0,9997	0,9997	0,999
3,50	0.9999		MINISTER	0,777	0,777			3,777		0,777	0,77
e											
maior											
					E AYOU	-					
	Para valores de es valores com				a a área.					Valores Críti	

Respostas:

2) a)
$$7/18$$
 b) $P(a_1) = 1/6$ $P(a_2) = 1/3$

3) a)
$$1/21$$
 b) $P(A) = 4/7$ $P(B) = 3/7$

6)
$$P(A) = 1/3$$
 $P(B) = 2/3$

9)
$$7/40$$

10) a)
$$2/3$$
 b) $2/5$ c) 30%

11)
$$P(A|B) = 2/5$$
 $P(B|A) = 2/3$

28)
$$P(X \le 8) = 0,1142$$
 $P(2 \le X \le 5) = 0,4285$

32)
$$1,37 \times 10^{-7}$$