

计算机组成原理 Principle of Computer Organization

>第七章 外围设备

Peripheral Equipments

北京邮电大学计算机学院

戴志涛

本章內容

- 》概述
- ≥显示设备
- ➢辅助存储器
 - □硬盘

外部设备概述

- ▶主机: CPU+内存
- 外部设备(外围设备,外设): 主机以外的大部分 硬设备
- > 外围设备的功能:
 - □ 在计算机和其他机器之间,以及计算机与用户之间建立 联系
- > 外围设备的作用:
 - □ 利用各种手段(如光、电、磁、机械等方式)将外部信息转换成二进制代码表示形式的电信号,或将二进制代码表示形式的电信号,或将二进制代码表示形式的电信号转换成外界可以接受的信息形式

外围设备的分类

- 按照设备功能分类:
- ▶输入设备
- ▶输出设备
- ➤辅助存储 设备
- ▶过程控制 设备
- ▶数据通信 设备

显示设备

显示设备的分类

- >按显示设备所用显示器件分类:
 - □LED显示器
 - □数码管显示器
 - □阴极射线管(CRT)显示器
 - □液晶显示器(LCD)
 - □等离子显示器

显示设备的分类

- >按显示信息的方式分类:
 - □字符显示器
 - □图形显示器:显示字符和用计算机生成的图(主 观图像)
 - 区形: 无亮暗层次变换的线条图, 一般由计 算机生成
 - □图像显示器:显示由摄像机等外设生成的数字图像(客观图像)
 - 図 * : 最初就具有亮暗层次的图, 多来自客 观世界

像素(pixel)

Pixel

每个像素均由三种颜色(G) 每色(R) 绿(G) 蓝(B) 的小的成人 (dot)构成

显示器的分类

- >按照分辨率不同分类:
 - □高分辨率显示器
 - □低分辨率显示器

- □分辨率
 - 风显示设备所能显示的像素的数量
 - ☑象素越密。分辨率越高。 图象越清晰
 - ☑刷新存储器应具有与显示像素数相对应的存储空间,以便存储每个像素信息

显示设备的分类

- ▶按照显示的颜色数或灰度级数分类:
 □灰度级:
 - **网**所显示像素点的亮暗或颜色的差别
 - ☑ 灰度级越多。图象层次越清楚逼真
 - 一次度级取决于显示器本身的性能和每个像素 对应刷新存储器单元的位数
 - □例:
 - »用4位表示一个像素的-灰度, 有16级 灰度或颜色
 - »用8位表示一个象素的灰度, 有256级 灰度或颜色

显示设备的分类

- >按照显示的颜色数或灰度级数分类:
 - □字符显示器的灰度级: 两级
 - □图像显示器的灰度级为2⁴级、2⁸级、2¹⁶级、2²⁴级、2³²级等
 - □单色(黑白)显示器
 - ☑只用"0"和"1"两级灰度就能表示字符有 天的显示器
 - □多灰度级黑白显示器
 - —具有多种灰度级的黑白显示器
 - □彩色显示器
 - **丛具有多种颜色的显示器**

图像显示器的灰度级

True color

256 color

刷新存储器

- ▶专门用于存储显示信息的存储器,也称为 "帧存储器"或"视频存储器"、"显存" (VRAM)
- ➢显存的容量<u>制约</u>图像的分辨率和灰度等级 (或色彩数量)
 - □分辨率越高,灰度级越多,刷新存储器的容量要 求也越大
 - □例:分辨率为512*512,256级灰度的图象, 其刷新存储器的容量为:
 - 512*512*8bit=256KByte
- 显存的存取周期必须满足刷新频率的要求

显示适配器

显存的带宽

- 【例4】工作时显示适配器的几个功能部分要争用刷存的带宽。假定总带宽的50%用于刷新屏幕,保留50%带宽用于其他非刷新功能。
- ① 若显示器的工作方式:分辨率为 1024×768,颜色深度为3B,帧频(刷新速率)为72Hz,计算刷存总带宽应为多少。
- ② 为达到这样高的刷存带宽,应采取何种技术措施?

显存的带宽

【解】

- ① 刷新所需带宽=分辨率×每个像素点颜色深度×刷新速率=
- 1024×768×3B×72=165888KB/s=162MB/s 刷存总带宽应为162/50%=324MB/s
- ② 为达到这样高的刷存带宽,可采用如下技术措施:
 - □ 使用高速的DRAM芯片组成刷存
 - □ 刷存采用多体交叉结构
 - □ 提高刷存至显示控制器的内部总线宽度
 - □ 刷存采用双端口存储器结构,将刷新端口与更新端口分 开

磁盘存储设备

磁表面存储器的特点

➣优点

- □存储容量大,位价格低
- □记录介质可以重复使用
- □记录信息可以长期保存而不丢失,甚至可 以脱机存档
- □非破坏性读出,读出后不需要再生

➢缺点

- □存取速度较慢
- □机械结构复杂,对工作环境要求较高

硬盘的物理结构

磁盘上信息的分布

- > 磁道:记录面上一系列同心圆
- > 扇区:每个磁道或柱面按等弧度分成的若干段

▶柱面:

- □ 各记录面上相同编号的诸磁 道构成一个圆柱面
- □ 由若干个盘片组成的同心盘 组中,距轴心相同距离的一 组磁道构成的圆柱
- □ 柱面数等于一个记录面上的 磁道数
- □ 存文件时,尽可能将一个文 件存放在同一圆柱面内
- > 磁盘地址格式

驱动器号 磁道号(柱面号) 记录面号(磁头号) 扇区号

数据在磁盘上的记录格式

- >索引:为确定磁道的起始位置引入的标记
- 》每个扇区记录一个 记录块
 - □每个扇区记录定长 的数据
 - □扇标脉冲标志一个 扇区的开始

数据在磁盘上的记录格式

计算机学院

- > 头部空白段、尾部空白段: 用来留出一定的时间作为磁 公 盘控制器的读写准备时间
- ▶ 序标:作为磁盘控制器的同步定时信号
- 校验字:校验磁盘读写的数据是否正确

- 》存储密度(记录密度): 单位长度或单位面积可记录的 二进制信息量
 - □道密度:垂直于磁道的方向 上,单位长度所容纳的磁道 数(道/英寸, TPI: Tracks per inch; 道/厘米)
 - □位密度:沿磁道方向上,单位长度内所记录的二进制位数(位/英寸,BPI: bit per inch; 位/厘米)
 - □面密度: 位密度和道密度的乘积(位/平方英寸; 位/平方厘米)

- > 存储容量: 磁盘能够存储信息的总量
 - □非格式化容量:
 - 磁记录表面可以利用的磁化单元总数
 - □格式化容量
 - 一直 在某种特定的记录格式下所能存储信息的总量
 - 一 写入格式化信息后用户实际可用的存储容量
 - 格式化容量=记录面数 × 每面的磁道数 × 每磁道的扇区数 × 每扇区的字节数

- 平均寻址时间:从读写命令发出,磁头从某一起始位置移动到新的记录位置,到开始读出或写入信息所需的时间
 - □ 寻道时间(定位时间、找道时间): 磁盘接到读/写指令 后到磁头移到指定的磁道上方所需要的平均时间
 - ≥ 平均找道时间TSt: 厂家给定
 - □ 等待时间(寻区时间,潜伏期Latency): 找道完成 (磁头移动到指定磁道)后至指定的读/写扇区移动到磁 头下方所需要的时间:
 - ○平均等待时间TWa:磁盘旋转半周的时间
 - □ 平均寻址时间Tsa: Tsa=Tst+Twa
 - ⊠例: 寻道时间10ms, 磁盘转速7200转/分
 - □ 寻址时间Tsa=Tst+Twa
 = 10+1/2×60/7200×10³=10+4=14 (ms)

- 平均寻址时间:从读写命令发出,磁头从某一起始位置移动到新的记录位置,到开始读出或写入信息所需的时间
 - □ 寻道时间(定位时间、找道时间)
 - □ 等待时间(寻区时间,潜伏期Latency)
 - □ 平均寻址时间Tsa: Tsa=Tst+Twa

- □ 内务操作时间一般很短(一般在0.2ms左右),可忽略 不计
- □ 平均访问时间近似等于: 平均寻道时间+平均潜伏期 = 平均寻址时间

- ➢ 数据传输率(Data Transfer Rate, DTR)
 - □ 外部数据传输率:单位时间内从硬盘缓存向主机传送的数据信息量
 - 与磁盘的接口类型和磁盘缓存大小有关
 - □ 内部数据传输率: 在磁盘存储器盘片上读写数据的速率
 - ☑磁头找到要访问的地址后。每秒钟读/写的字节数
 - ──数据传输率=每个磁道上的字节数/磁盘旋转一周的时间
 - ☑设磁盘旋转速度为N转/秒,每条磁道容量为N字节, 则数据传输率
 - □Dr=nN(字节/秒)=D·v(位/秒)
 - »D: 位密度(位/英寸)
 - »V:磁盘旋转的线速度(英寸/秒)

【例1】磁盘组有6片磁盘,每片有两个记录面,最上、最下两个面不用。存储区域内径22cm,外径33cm,道密度为40道/cm,内层位密度400位/cm,转速6000转/分。问:

- (1)共有多少柱面?
- (2)盘组总存储容量是多少?
- (3)数据传输率是多少?
- (4)采用定长数据块记录格式,直接寻址的最小单位是什么?寻址命令中如何表示磁盘地址?
- (5)若某文件长度超过一个磁道容量,应将它记录 在同一个存储面上,还是记录在同一个柱面上?

【例1】磁盘组有6片磁盘,每片有两个记录面,最上、最下两个面不用。存储区域内径22cm,外径33cm,道密度为40道/cm,内层位密度400位/cm,转速6000转/分。问:
(1)共有多少柱面?

解:

有效存储区域宽度

=33/2-22/2=5.5(cm)

柱面数=道密度×存储区域宽度

=40×5.5=220道

【例1】磁盘组有6片磁盘,每片有两个记录面,最上、最下两个面不用。存储区域内径 22cm,外径33cm,道密度为40道/cm,内层位密度400位/cm,转速6000转/分。问:

(2)盘组总存储容量是多少?

解:

内层磁道周长=πD=3.14×22=69.08(cm) 每道信息量=位密度×周长 =400位/cm×69.08cm=27632位=3454B 每面信息量=3454B×220=759880B 盘组总容量=

 $759880B \times 10 = 7598800B$

) 北京郵電大学

计算机学院

【例1】磁盘组有6片磁盘,每片有两个记录面,最上、最下两个面不用。存储区域内径 22cm,外径33cm,道密度为40道/cm,内层位密度400位/cm,转速6000转/分。 问:

(3)数据传输率是多少?

解:

r: 磁盘转速, r=6000转/60秒=100转/秒

N: 每条磁道容量, N=3454B

 $Dr=rN=100 \times 3454B=345400B/s$

【例1】磁盘组有6片磁盘,每片有两个记录面,最上、最下两个面不用。存储区域内径22cm,外径33cm,道密度为40道/cm,内层位密度400位/cm,转速6000转/分。问:(4)采用定长数据块记录格式,直接寻址的最小单位是什么?寻址命令中如何表示磁盘地址?

解:

直接寻址的最小单位:一个记录块(一个扇区)活动头磁盘组的编址方式:

 17
 16
 15
 8
 7
 4
 3
 0

 台号
 磁道号(柱面号)
 记录面号(磁头号)
 扇区号

- 【例1】磁盘组有6片磁盘,每片有两个记录面,最上、最下两个面不用。存储区域内径 22cm,外径33cm,道密度为40道/cm, 内层位密度400位/cm,转速6000转/分。 问:
- (5)若某文件长度超过一个磁道容量,应将它记录在同一个存储面上,还是记录在同一个 柱面上?

解:

如果某文件长度超过一个磁道的容量,应将它记录在 同一个柱面上 因为不需要找道,数据读/写速度快

磁盘阵列 (Disk Array)

- ▶由一个硬盘控制器控制多个硬盘的相互连接 、使多个硬盘的读写同步、并减少错误、提 高效率和可靠度的技术
- > RAID
 - □ Redundant Array of Inexpensive Disk
 - **|** 廉价冗余磁盘阵列
 - □ Redundant Array of Independence Disk
 - □磁盘阵列在技术上实现的理论标准

磁盘阵列 (Disk Array)

▶RAID原理

- □由很多廉价、容量较小、稳定性较高、速 度较慢的磁盘组合成一个大型的磁盘阵列
- □通过在多个磁盘上同时存储和读取数据, 大幅提高存储系统的数据吞吐量

磁盘阵列 (Disk Array)

- ▶ RAID实例: RAID Level 0
 - □数据分割技术的实现
 - □将所有硬盘构成一个磁盘阵列,数据被交 叉存储在多个硬盘中
 - 一条带化技术:将一块连续的数据分成很多小部分并分别存储到不同磁盘上
 - □可以同时对多个硬盘做读写操作
 - □价格便宜,硬盘使用效率最佳,但不具备 备份及容错能力

本章内容

- ➢概述
- >显示设备
- ➢辅助存储器
 - □硬盘
 - **PRAID**

▶ P.239 7, 10, 14

计算机组成原理 Principle of Computer Organization

>第七章 外围设备

本章结束

