

Contents ***

- Observation
- Models
- Order of Growth
- Theory of Algorithms

The challenge

Q. Will my program be able to solve a large practical input?

Why is my program so slow?

Why does it run out of memory?

ROBERT SEDGEWICK | KEVIN WAYNE

hhttp://balps4.cs.princeton.eddu

order-of-growth classifications

theory of algorithms

Scientific method applied to analysis of algorithms

- A framework for predicting performance and comparing algorithms.
- Scientific method.
 - Observe some feature of the natural world.
 - Hypothesize a model that is consistent with the observations.
 - Predict events using the hypothesis.
 - Verify the predictions by making further observations.
 - Validate by repeating until the hypothesis and observations agree.
- Principles.
 - Experiments must be reproducible.
 - Hypotheses must be falsifiable.
- Feature of the natural world. Computer itself.

Example: 3-Sum

З-S∪м. Given N distinct integers, how many triples sum to exactly zero?

% more 8ints.txt
8
30 -40 -20 -10 40 0 10 5
% java ThreeSum 8ints.txt
4

	a[i]	a[j]	a[k]	sum
1	30	-40	10	0
2	30	-20	-10	0
3	-40	40	0	0
4	-10	0	10	0

Context. Deeply related to problems in computational geometry.

3-Sum: brute-force algorithm


```
int find3NumbersforSum(int A[], int arr size, int sum)
    int i,j,k count=0;
    for ( i = 0; i < arr size - 2; i++) {
        for (j = i + 1; j < arr_size - 1; j++) {
                                                                     check each triple
              for (k = j + 1; k < arr_size; k++)
                 if (A[i] + A[j] + A[k] == sum) count++:
                                                                      for simplicity, ignore
                                                                      integer overflow
    return count;
```

Measuring the running time

% java ThreeSum 1Kints.txt

A. Manual.

70

% java ThreeSum 2Kints.txt

tick tick

528

% java ThreeSum 4Kints.txt

tick tick

Empirical analysis

Run the program for various input sizes and measure running time.

N	time (seconds) †
250	0
500	0
1,000	0.1
2,000	0.8
4,000	6.4
8,000	51.1
16,000	?

Data analysis

Standard plot. Plot running time T(N) vs. input size N.

Data analysis

 \bullet Log-log plot. Plot running time T(N) vs. input size N using log-log scale.

eqn of straight line :-y=bx+c

$$\lg(T(N)) = b \lg N + c$$

$$b = 2.999$$

$$c = -33.2103$$

$$T(N) = a N^b$$
, where $a = 2^c$

power law

 \diamond Regression. Fit straight line through data points: $a N^b$.

 \clubsuit Hypothesis. The running time is about $1.006 \times 10^{-10} \times N^{2.999}$ seconds.

Prediction and validation

 \clubsuit Hypothesis. The running time is about $1.006 \times 10^{-10} \times N^{2.99}$ seconds.

"order of growth" of running time is about N³ [stay tuned]

Predictions.

- 51.0 seconds for N = 8,000.
- \bullet 408.1 seconds for N = 16,000.

Observations.

N	time (seconds) [†]
8,000	51.1
8,000	51
8,000	51.1
16,000	410.8

validates hypothesis!

Experimental algorithmics

- System independent effects.
- Algorithm.
- Input data.
- System dependent effects.
 - Hardware: CPU, memory, cache, ...
 - Software: compiler, interpreter, garbage collector, ...
 - System: operating system, network, other apps, ...

determines exponent in power law

determines constant in power law

Bad news. Difficult to get precise measurements.

Good news. Much easier and cheaper than other sciences.

e.g., can run huge number of experiments

mathematical models

order-of-growth classifications theory of algorithms

memory

Robert Sedgewick | Kevin Wayne

Algorithms

hit pollbaiges d. cs. prince tom eddu

wathematical models for running

- time
- Total running time: sum of cost × frequency for all operations.
 - Need to analyze program to determine set of operations.
 - Cost depends on machine, compiler.
 - Frequency depends on algorithm, input data.

In principle, accurate mathematical models are available.

Cost of basic operations

Challenge. How to estimate constants.

operation	example	nanoseconds †
integer add	a + b	2.1
integer multiply	a * b	2.4
integer divide	a/b	5.4
floating-point add	a + b	4.6
floating-point multiply	a * b	4.2
floating-point divide	a/b	13.5
sine	Math.sin(theta)	91.3
arctangent	Math.atan2(y, x)	129

[†] Running OS X on Macbook Pro 2.2GHz with 2GB RAM

Example: 1-Sum

 \diamond Q. How many instructions as a function of input size N?

operation	frequency
variable declaration	2
assignment statement	2
less than compare	<i>N</i> + 1
equal to compare	N
array access	N
Increment (i++ plus count++)	<i>N</i> to 2 <i>N</i>

Example: 2-Sum

\diamond Q. How many instructions as a function of input size N?

operation	frequency	
variable declaration	<i>N</i> + 2	
assignment statement	<i>N</i> + 2	
less than compare	$\frac{1}{2}(N+1)(N+2)$	
equal to compare	½ N (N – 1)	
array access	N (N – 1)	
increment	½ N(N−1) to N(N−1)	

$$0 + 1 + 2 + \dots + (N - 1) = \frac{1}{2}N(N - 1)$$
$$= \binom{N}{2}$$

- tedious to count exactly

Simplification 2: tilde notation

- Estimate running time (or memory) as a function of input size N.
- Ignore lower order terms.
 - when N is large, terms are negligible
 - when N is small, we don't care

Ex 1.
$$\frac{1}{6}N^3 + 20N + 16$$
 ~ $\frac{1}{6}N^3$

Ex 2.
$$\frac{1}{6}N^3 + 100N^{4/3} + 56 \sim \frac{1}{6}N^3$$

Ex 3.
$$\frac{1}{6}N^3 - \frac{1}{2}N^2 + \frac{1}{3}N \sim \frac{1}{6}N^3$$

discard lower-order terms

(e.g., N = 1000: 166.67 million vs. 166.17 million)

Leading-term approximation

Technical definition. $f(N) \sim g(N)$ means

$$\lim_{N \to \infty} \frac{f(N)}{g(N)} = 1$$

Simplification 2: tilde notation

- Estimate running time (or memory) as a function of input size N.
- Ignore lower order terms.
 - when *N* is large, terms are negligible
 - when N is small, we don't care

operation	frequency	tilde notation
variable declaration	N+2	$\sim N$
assignment statement	N+2	$\sim N$
less than compare	$\frac{1}{2}(N+1)(N+2)$	$\sim \frac{1}{2} N^2$
equal to compare	½ N (N – 1)	$\sim \frac{1}{2} N^2$
array access	N(N-1)	$\sim N^2$
increment	½ N (N − 1) to N (N − 1)	$\sim \frac{1}{2} N^2$ to $\sim N^2$

Example: 2-Sum

Q. Approximately how many array accesses as a function of input size N?

```
int i,j,count = 0;

for (i = 0; i < N; i++)

for (j = i+1; j < N; j++) "inner loop"

if (a[i] + a[j] == 0)

count++;

0+1+2+...+(N-1) = \frac{1}{2}N(N-1)
= \binom{N}{2}
```

- $A. \sim N^2$ array accesses.
- Bottom line. Use cost model and tilde notation to simplify counts.

Example: 3-Sum

Q. Approximately how many array accesses as a function of input size N?

```
int i,j,k,count = 0;

for ( i = 0; i < N; i++) {

for ( j = i+1; j < N; j++) {

for ( k = j+1; k < N; k++) {

if (a[i] + a[j] + a[k] == 0) 	"inner loop"

count++;
```

$$\begin{pmatrix} N \\ 3 \end{pmatrix} = \frac{N(N-1)(N-2)}{3!} \\
\sim \frac{1}{6}N^3$$

- ❖ A. $\sim \frac{1}{2} N^3$ array accesses.
- Bottom line. Use cost model and tilde notation to simplify counts.

3-SUM APPROXIMATE RUNNING TIME

Q. How long will it take to run?

```
A 1 \longrightarrow int i,j,k,count = 0;

for (i = 0; i < N; i++) {

B N \longrightarrow for (j = i+1; j < N; j++) {

C \simN<sup>2</sup>/2 \longrightarrow for (k = j+1; k < N; k++) {

D \simn<sup>3</sup>/6 \longrightarrow if (a[i] + a[j] + a[k] == 0) "inner loop"

E input dependent Count++;
```

- Only count instructions that execute most frequently the inner loop (D)
- So, including all the variable init and add ops
 - Total Time $T(N) := (T_1 * A) + (T_2 * B) + (T_3 * C) + (T_4 * D) + (x * E)$
 - Note that E is execution dependent how many of N's add up to 0

Order of Growth

- ❖ T(n) of 3sum function is ~N³/6
- Order of Growth of function is N³

❖ Note that this reflects what we saw with the power law aN³ where a is some machine dependent factor

observations

mathematical models

theory of algorithms

order-of-growth classifications

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

hittip://balgasd.cs.princetron.eduu

Common order-of-growth classifications

- ❖ Definition. If $f(N) \sim c \ g(N)$ for some constant c > 0, then the order of growth of f(N) is g(N).
 - Ignores leading coefficient.
 - Ignores lower-order terms.
- \bullet Ex. The order of growth of the running time of this code is N^3 .

```
int i,j,k,count = 0;

for (i = 0; i < N; i++) {

for (j = i+1; j < N; j++) {

for (k = j+1; k < N; k++) {

if (a[i] + a[j] + a[k] == 0)

count++;
```

Typical usage. With running times.

Common order-or-growth classifications

- Good news. The set of functions
 - 1, $\log N$, N, $N \log N$, N^2 , N^3 , and 2^N
- suffices to describe the order of growth of most common algorithms.

Common order-of-growth classifications

order of growth	name	typical code framework	description	example	T(2N) / T(N)
1	constant	a = b + c;	statement	add two numbers	1
$\log N$	logarithmic	while (N > 1) { N = N / 2; }	divide in half	binary search	~ 1
N	linear	for (int i = 0; i < N; i++) { }	loop	find the maximum	2
$N \log N$	linearithmic	[see mergesort lecture]	divide and conquer	mergesort	~ 2
N ²	quadratic	for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) { }	double loop	check all pairs	4
N ³	cubic	for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) for (int k = 0; k < N; k++) $\{ \}$	triple loop	check all triples	8
2^N	exponential	[see combinatorial search lecture]	exhaustive search	check all subsets	T(N)

Practical implications of order-of-growth

growth	problem size solvable in minutes					
rate	1970s	1980s	1990s	2000s		
1	any	any	any	any		
log N	any	any	any	any		
N	millions	tens of millions	hundreds of millions	billions		
N log N	hundreds of thousands	millions	millions	hundreds of millions		
N ²	hundreds	thousand	thousands	tens of thousands		
N ³	hundred	hundreds	thousand	thousands		
2 ^N	20	20s	20s	30		

Practical implications of order-of-growth

growth	problem size solvable in minutes			time to process millions of inputs				
rate	1970s	1980s	1990s	2000s	1970s	1980s	1990s	2000s
1	any	any	any	any	instant	instant	instant	instant
log N	any	any	any	any	instant	instant	instant	instant
N	millions	tens of millions	hundreds of millions	billions	minutes	seconds	second	instant
N log N	hundreds of thousands	millions	millions	hundreds of millions	hour	minutes	tens of seconds	seconds
N ²	hundreds	thousand	thousands	tens of thousands	decades	years	months	weeks
N ³	hundred	hundreds	thousand	thousands	never	never	never	millennia

Practical implications of order-of-growth

growth		de a sui usi a u	effect on a program that runs for a few seconds		
rate	name	description	time for 100x more data	size for 100x faster computer	
1	constant	independent of input size	-	-	
log N	logarithmic	nearly independent of input size	-	-	
N	linear	optimal for N inputs	a few minutes	100x	
N log N	linearithmic	nearly optimal for N inputs	a few minutes	100x	
N ²	quadratic	not practical for large problems	several hours	10x	
N ³	cubic	not practical for medium problems	several weeks	4-5x	
2 ^N	exponential	useful only for tiny problems	forever	1x	

observations

mathematical models

theory of algorithms

order-of-growth classifications

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

hittip://balgasd.cs.princetron.eduu

Types of analyses

- Best case. Lower bound on cost.
 - Determined by "easiest" input.
 - Provides a goal for all inputs.
- Worst case. Upper bound on cost.
 - Determined by "most difficult" input.
 - Provides a guarantee for all inputs.
- Average case. Expected cost for random input.
 - Need a model for "random" input.
 - Provides a way to predict performance.

Ex 1. Array accesses for brute-force 3-Sum.

Best: $\sim \frac{1}{2} N^3$

Average: $\sim \frac{1}{2}N^3$

Worst: $\sim \frac{1}{2} N^3$

Ex 2. Compares for binary search.

this course

Best: ~ 1

Average: $\sim \lg N$

Worst: $\sim \lg N$

Theory of algorithms

- Goals.
- Establish "difficulty" of a problem.
- Develop "optimal" algorithms.
- Approach.
 - Suppress details in analysis: analyze "to within a constant factor."
 - Eliminate variability in input model: focus on the worst case.
- Upper bound. Performance guarantee of algorithm for any input.
- Lower bound. Proof that no algorithm can do better.
- Optimal algorithm. Lower bound = upper bound (to within a constant factor).

theory of algorithms

notation	provides	example	shorthand for	used to
Big Theta	asymptotic order of growth	$\Theta(N^2)$	$\frac{1}{2} N^2$ $10 N^2$ $5 N^2 + 22 N$ $\log N + 3N$:	classify algorithms
Big Oh	$\Theta(N^2)$ and smaller	$O(N^2)$	$ \begin{array}{c} 10 N^2 \\ 100 N \\ 22 N \log N + 3 \\ N \\ \vdots \end{array} $	develop upper bounds
Big Omega	$\Theta(N^2)$ and larger	$\Omega(N^2)$	$ \frac{1/2}{N^2} $ $ N^5 $ $ N^3 + 22 N \log $ $ N+3 N $:	develop lower bounds

Theory of algorithms: example 1

- . Goals.
 - Establish "difficulty" of a problem and develop "optimal" algorithms.
 - Ex. 1-Sum = "Is there a 0 in the array?"
- Upper bound. A specific algorithm.
 - Ex. Brute-force algorithm for 1-SUM: Look at every array entry.
 - Running time of the optimal algorithm for 1-SUM is O(N).
- Lower bound. Proof that no algorithm can do better.
 - Ex. Have to examine all N entries (any unexamined one might be 0).
 - Running time of the optimal algorithm for 1-SUM is $\Omega(N)$.
- Optimal algorithm.
 - Lower bound equals upper bound (to within a constant factor).
 - Ex. Brute-force algorithm for 1-SUM is optimal: its running time is $\Theta(N)$.

Theory of algorithms: example 2

- . Goals.
 - Establish "difficulty" of a problem and develop "optimal" algorithms.
 - Ex. 3-Sum.
- Upper bound. A specific algorithm.
 - Ex. Brute-force algorithm for 3-SUM.
 - Running time of the optimal algorithm for 3-SUM is $O(N^3)$.

Theory of algorithms: example 2

- Goals.
- Establish "difficulty" of a problem and develop "optimal" algorithms.
- Ex. 3-Sum.
- •
- Upper bound. A specific algorithm.
- Ex. Improved algorithm for 3-Suм.
- Running time of the optimal algorithm for 3-SUM is $O(N^2 \log N)$.
- •
- Lower bound. Proof that no algorithm can do better.
- Ex. Have to examine all N entries to solve 3-Sum.
- Running time of the optimal algorithm for solving 3-SUM is $\Omega(N)$.
- *
- Open problems.
- Optimal algorithm for 3-Suм?
- Subquadratic algorithm for 3-SUM?
- Quadratic lower bound for 3-SUM?

Algorithm design approach

- Start.
 - Develop an algorithm.
 - Prove a lower bound.

❖ Gap?

- Lower the upper bound (discover a new algorithm).
- Raise the lower bound (more difficult).
- Golden Age of Algorithm Design.
- 1970s-.
- Steadily decreasing upper bounds for many important problems.
- Many known optimal algorithms.

Caveats.

- Overly pessimistic to focus on worst case?
- Need better than "to within a constant factor" to predict performance.

Commonly-used notations in the theory of algorithms

	notation	provides	example	shorthand for	used to
	Tilde	leading term	$\sim 10 N^2$		provide approximate model
	Big Theta	Asymptotic order of growth	$\Theta(N^2)$	$\frac{1}{2}N^{2}$ $10 N^{2}$ $5 N^{2} + 22 N$ $\log N + 3N$	classify algorithms
	Big Oh	$\Theta(N^2)$ and smaller	$\mathrm{O}(N^2)$	$10 N^2$ $100 N$ $22 N \log N + 3$ N	develop upper bounds
	Big Omega	$\Theta(N^2)$ and larger	$\Omega(N^2)$	N^{5} $N^{3} + 22 N \log$ $N + 3 N$	develop lower bounds

big-Oh notation

Big Oh/Big O

- Worst Case performance
- Big Oh is not going to show exact timing of algorithm
- Just how long it takes to run with its worst case data set in terms of the number of items (N) being processed

Big-O Notation Test yourself!

What is the worst-case complexity of the each of the following code fragments?

```
for (i = 0; i < N; i++)
    ...sequence of statements

for (j = 0; j < M; j++) {
    ...sequence of statements }</pre>
```

1

How would the complexity change if the second loop went to N instead of M?

```
for (i = 0; i < N; i++) {
    for (j = 0; j < N; j++) {
        ...sequence of statements
    }

for (k = 0; k < N; k++) {
        ...sequence of statements
}</pre>
```

Give the order of growth (as a function of N) of the running times of each of the following code fragments:

```
int sum = 0;
for (int k = N; k > 0; k = k/2)
  for (int i = 0; i < k; i++)
    sum++;</pre>
```

```
int sum = 0;
for (int i = 1; i < N; i = i* 2)
  for(int j = 0; j < i; j++)
    sum++;</pre>
```

```
int sum = 0;
for (int i = 1; i < N; i *= 2)
  for (int j = 0; j < N; j++)
    sum++;</pre>
```

Give the order of growth (as a function of N) of the running times of each of the following code fragments:

```
void function(int n)
{
  if (n==1)
    return;
  for (int i=1; i<=n; i++) {
    for (int j=1; j<=n; j++) {
      putchar('*');
      break;
    }
  }
}</pre>
```

```
void function(int n)
{
  int count = 0;
  for (int i=0; i<n; i++)
    for (int j=i; j< i*i; j++)
    if (j%i == 0){
     for (int k=0; k<j; k++)
        printf("*");
    }
}</pre>
```

