Principal Component Analysis

Objective

Perform **PCA** on the given data

Suppose that the researcher wanted to determine the underlying benefits that consumers seek from the purchase of a toothpaste. A sample of 30 participants was interviewed using street interviewing. The participants were asked to indicate their degree of agreement with the following statements using a seven-point scale (1 = strongly disagree, 7 = strongly agree):

About Data Variables

V1: It is important to buy a toothpaste that prevents cavities.

V2: I like a toothpaste that gives shiny teeth.

V3: A toothpaste should strengthen your gums.

V4: I prefer a toothpaste that freshens breath.

V5: Prevention of tooth decay should be an important benefit offered by a toothpaste.

V6: The most important consideration in buying a toothpaste is attractive teeth.

Commands:

- 1. Select **ANALYZE** from the SPSS menu bar.
- 2. Click **Dimension Reduction**
- 3. Click on **Factor** enter all eight variables into the Variables box Next,
- 4. Click on **Descriptives** and check the boxes next to Coefficients, Significance levels, Anti-image, and KMO and Bartlett's test of sphericity.
- 5. Select **Reproduced**, which requests the reproduced correlation matrix that we will use for assessing the goodness-of-fit of the factor solution.
- 6. Select **Initial solution** and **Univariate descriptives** in the upper part of the dialog box to display useful summary statistics of your data.
- 7. Click **Continue** Extraction and choose Principal components in the Method drop-down menu. Under Extract, you can determine the rule for factor extraction.
- 8. Select **Unrotated factor** solution and **Scree plot**.
- 9. Click on **Continue** Under Rotation, you can choose between several orthogonal and oblique rotation methods. Select the Varimax procedure and click on Continue.
- 10. Click on **Continue**.
- 11. Click OK

Descriptive Analysis of Variables

	Descriptive Statistics						
	Mean	Std. Deviation	Analysis N				
V1	3.93	1.982	30				
V2	3.90	1.373	30				
V3	4.10	2.057	30				
V 4	4.10	1.373	30				
V5	3.50	1.907	30				
V6	4.17	1.392	30				

- There are **30** observations in each variable without any missing observation.
- Mean of variable V1 is 3.93 and Standard Deviation is 1.982
- Mean of variable **V2** is **3.90** and Standard Deviation is **1.373**
- Mean of variable **V3** is **4.10** and Standard Deviation is **2.057**
- Mean of variable **V4** is **4.10** and Standard Deviation is **1.373**
- Mean of variable **V5** is **3.50** and Standard Deviation is **1.907**
- Mean of variable V6 is 4.17 and Standard Deviation is 1.392

Correlation Matrix							
		V1	V2	V3	V4	V5	V6
	V1	1.000	053	.873	086	858	.004
	V2	053	1.000	155	.572	.020	.640
	V3	.873	155	1.000	248	778	018
Correlation	V4	086	.572	248	1.000	007	.640
	V5	858	.020	778	007	1.000	136
	V6	.004	.640	018	.640	136	1.000

- The correlation between V1 and V2 is -0.053, V1 and V3 is 0.873, V1 and V4 is -0.086, V1 and V5 is -0.858 & V1 and V6 is -0.004
- The correlation between V2 and V1 is -0.053, V2 and V3 is -0.155, V2 and V4 is -0.572, V2 and V5 is 0.20 & V2 and V6 is 0.640
- The correlation between V3 and V1 is 0.873, V3 and V2 is -0.155, V3 and V4 is -0.284, V3 and V5 is -0.778 & V3 and V6 is -0.018
- The correlation between V4 and V1 is -0.086, V4 and V2 is 0.572, V4 and V3 is -0.248, V4 and V5 is -0.007 & V4 and V6 is 0.640
- The correlation between V5 and V1 is -0.858, V5 and V2 is 0.20, V5 and V3 is -0.778, V5 and V4 is -0.007 & V5 and V6 is -0.136
- The correlation between V6 and V1 is 0.004, V6 and V2 is 0.640, V6 and V3 is -0.018, V6 and V4 is 0.640 & V6 and V5 is -0.136

KMO and Bartlett's Test				
Kaiser-Meyer-Olkin Measure of Sampling Adequacy660				
	Approx. Chi-Square	111.314		
Bartlett's Test of Sphericity	df	15		
	Sig.	.000		

The null hypothesis, that the population correlation matrix is an identity matrix, is rejected by Bartlett's test of sphericity.

The approximate **chi-square statistic** is **111.314** with **15** degrees of freedom, which is significant at the **0.05** level.

The value of the KMO statistic (0.660) is also large (>0.5).

Thus, factor analysis may be considered an appropriate technique for analyzing the correlation matrix of Table

	Anti-image Matrices							
		V1	V2	V3	V4	V5	V6	
	V1	.141	048	106	051	.104	.073	
	V2	048	.520	.044	093	049	219	
Anti-image	V3	106	.044	.186	.114	.025	073	
Covariance	V4	051	093	.114	.457	.025	206	
	V5	.104	049	.025	.025	.237	.067	
	V6	.073	219	073	206	.067	.413	
	V1	.621a	179	657	203	.570	.303	
	V2	179	.697 ^a	.140	192	139	474	
Anti-image	V3	657	.140	.679 ^a	.390	.118	265	
Correlation	V4	203	192	.390	.637 ^a	.074	474	
	V5	.570	139	.118	.074	.769ª	.213	
	V6	.303	474	265	474	.213	.561ª	

a. Measures of Sampling Adequacy(MSA)

Communalities					
	Initial	Extraction			
V1	1.000	.926			
V2	1.000	.723			
V3	1.000	.894			
V4	1.000	.739			
V5	1.000	.878			
V6	V6 1.000 .790				
Extraction Method : Principal Component Analysis.					

- The Communalities of **V1** after extraction is **0.926** which is initially **1.00**
- The Communalities of **V2** after extraction is **0.723** which is initially **1.00**
- The Communalities of **V3** after extraction is **0.894** which is initially **1.00**
- The Communalities of V4 after extraction is 0.739 which is initially 1.00
- The Communalities of V5 after extraction is 0.878 which is initially 1.00
- The Communalities of V6 after extraction is 0.990 which is initially 1.00

The commonalities for the variances under 'Extraction' are different from those under 'Initial' because all of the variances associated with the variables are not explained unless all the factors are retained.

	Total Variance Explained								
Com	In	nitial Eigenv	values	Extrac	tion Sums o Loadings	-	Rotat	ion Sums of Loadings	-
pone nt	Total	% of Variance	Cumulativ e %	Total	% of Variance	Cumulativ e %	Total	% of Variance	Cumulativ e %
1	2.731	45.520	45.520	2.731	45.520	45.520	2.688	44.802	44.802
2	2.218	36.969	82.488	2.218	36.969	82.488	2.261	37.687	82.488
3	0.442	7.360	89.848						
4	0.341	5.688	95.536						
5	0.183	3.044	98.580						
6	0.085	1.420	100.000						
Pr	Extraction Method: Principal Component Analysis.								

The section labelled 'Initial eigenvalues' gives the eigenvalues.

The eigenvalues for the factors are, as expected, in decreasing order of magnitude as we go from factor 1 to factor 6. The eigenvalue for a factor indicates the total variance attributed to that factor. The total variance accounted for by all the six factors is 6.00, which is equal to the number of variables.

- Factor 1 accounts for a variance of 2.731, which is (2.731/6) or 45.52% of the total variance
- Factor 2 accounts for a variance of **2.218**, which is **(2.218/6)** or **36.97%** of the total variance and cumulative **82.488**
- Factor 2 accounts for a variance of **0.442**, which is **(0.442/6)** or **7.360%** of the total variance and cumulative **89.848**

Several considerations are involved in determining the number of factors that should be used in the analysis. In Table, we see that the eigenvalue greater than **1.0** (default option) results in two factors being extracted. Our a priori knowledge tells us that toothpaste is bought for two major reasons.

The "Extraction Sums od Squared Loadings" of first two factors is 82.488%

The "Rotation Sums od Squared Loadings" of first two factors is 82.488%

Scree Plot

From the scree plot, a distinct break occurs at three factors. Finally, from the cumulative percentage of variance accounted for, we see that the first two factors account for **82.49%** of the variance and that the gain achieved in going to three factors is marginal. Furthermore, split-half reliability also indicates that two factors are appropriate. Thus, two factors appear to be reasonable in this situation.

Component Matrix ^a				
	Comp	onent		
	1	2		
V1	0.928	0.253		
V2	-0.301	0.795		
V3	0.936	0.131		
V4	-0.342	0.789		
V5	-0.869	-0.351		
V6	-0.177	0.871		
Extraction	Method: Principal Com	ponent Analysis		
	a. 2 components extra	acted		

Factor 1 is at least somewhat correlated with five of the six variables (absolute value of factor loading greater than 0.3).

Factor 2 is at least somewhat correlated with four of the six variables.

Moreover, variables 2 and 5 load at least somewhat on both the factors.

Reproduced Correlations							
		V 1	V2	V3	V4	V5	V6
	V 1	.926ª	078	.902	117	895	.057
	V2	078	.723ª	177	.730	018	.746
	V 3	.902	177	.894ª	217	859	051
Reproduced Correlation	V4	117	.730	217	.739ª	.020	.748
	V 5	895	018	859	.020	.878ª	152
	V6	.057	.746	051	.748	152	.790ª
	V 1		.024	029	.031	.038	052
	V2	.024		.022	158	.038	105
D I b	V 3	029	.022		031	.081	.033
Residual ^b	V4	.031	158	031		027	107
	V 5	.038	.038	.081	027		.016
	V6	052	105	.033	107	.016	
Extraction Method: Principal Component A			nalysis.				
a. Reproduced cor	nmunalit	ies					

b. Residuals are computed between observed and reproduced correlations. There are 5 (33.0%) nonredundant residuals with absolute values greater than 0.05.

If there are many large residuals, the factor model does not provide a good fit to the data and the model should be reconsidered. In the upper-right triangle of the 'Reproduced correlation matrix' of Table , we see that only five residuals are larger than **0.05**, indicating an acceptable model fit.

	Comp	onent
	1	2
V1	0.962	-0.027
72	-0.057	0.848
V3	0.934	-0.146
V4	-0.098	0.854
V5	-0.933	-0.084
V6	0.083	0.885
	on Method: Principal Compo Method: Varimax with Kaise	=

From above Table, by comparing the varimax rotated factor matrix with the unrotated matrix (entitled simply 'Factor matrix'), we can see how rotation achieves simplicity and enhances interpretability. Whereas five variables correlated with factor 1 in the unrotated matrix, only variables V1, V3 and V5 correlate highly with factor 1 after rotation. The remaining variables, V2, V4 and V6, correlate highly with factor 2. Furthermore, no variable correlates highly with both the factors. The rotated factor matrix forms the basis

for interpretation of the factors.

In the rotated factor matrix of Table, factor 1 has high coefficients for variables V1 (prevention of cavities) and V3 (strong gums), and a negative coefficient for V5 (prevention of tooth decay is not important). Therefore, this factor may be labelled a health benefit factor. Note that a negative coefficient for a negative variable (V5) leads to a positive interpretation that prevention of tooth decay is important. Factor 2 is highly related with variables V2 (shiny teeth), V4 (fresh breath) and V6 (attractive teeth).

Thus factor 2 may be labelled a social benefit factor. A plot of the factor loadings, given in Figure, confirms this interpretation. Variables V1, V3 and V5 (denoted 1, 3 and 5, respectively) are at the end of the horizontal axis (factor 1), with V5 at the end opposite to V1 and V3, whereas variables V2, V4 and V6 (denoted 2, 4 and 6) are at the end of the vertical axis (factor 2).

One could summarize the data by stating that consumers appear to seek two major kinds of benefits from toothpaste: health benefits and social benefits.

Component Transformation Matrix				
Component 1 2				
1	0.957	-0.290		
2	0.290	0.957		

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization.

Component Plot in Rotated Space

Logistic Regression

Objective:

Perform the **Binary Logistic Regression** of given data.

Commands:

- 1. Click on Analyze
- 2. Click on Regression
- 3. Click on Binary Logistic Regression
- 4. From the pop-up window move Loyalty variable into **Dependent**.
- 5. Move all the independent (Brand, Production and Shopping) variables into **Covariates**.
- 6. Click on Continue.
- 7. Click on **OK**

Case Processing Summary				
Unweig	N	Percent		
	Included in Analysis	30	100.0	
Selected Cases	Missing Cases	0	.0	
	Total	30	100.0	
Unsele	0	.0		
	Total	30	100.0	

There are 30 observations in our dataset without any missing value.

Dependent Variable Encoding				
Original Value Internal Value				
0	0			
1	1			

Here 0 denotes No while 1 denotes the Yes.

Block 0: Beginning Block

Classification Table ^{a,b}						
				Predicte	d	
	Observed		Loy	alty	Percentage	
			0	1	Correct	
	Lovolty	0	0	15	.0	
Step 0	Loyalty	1	0	15	100.0	
Otop 0	Overall Percentage				50.0	

In Beginning the classification is 100% correct.

Variables in the Equation							
B S.E. Wald df Sig. Exp(B)					Exp(B)		
Step 0	Constant	.000	.365	.000	1	1.000	1.000

Variables not in the Equation						
Score df Sig.						
		Brand	13.264	1	.000	
Step 0	Variables	Production	.462	1	.497	
Sieb 0		Shopping	4.727	1	.030	
	Overall Statistics		14.019	3	.003	

Block 1: Method = Enter

Omnibus Tests of Model Coefficients					
Chi-square df Sig.					
	Step	18.117	3	.000	
Step 1	Block	18.117	3	.000	
	Model	18.117	3	.000	

Model Summary						
Step	-2 Log likelihood	Cox & Snell R Square	Nagelkerke R Square			
1	23.471 ^a	.453	.604			

- The value of **Cox & Snell R Square** is **0.45** means that **45%** variability is explained by the explanatory variables.
- The value of **Negalkerke R Square** is **0.604** means that **60%** variability is explained by the explanatory variables.

Classification Table ^a					
			Predicted		
	Observed		Loyalty		Percentage
			0	1	Correct
	Lovolty	0	12	3	80.0
Step 1	Loyalty	1	3	12	80.0
Olop 1	Overall Percentage				80.0

From the above table, we can easily see that the correct classification of 0 is 12 out of 15, which means 80% and the correct classification of 1 is 12 out of 15, which means 80%.

	Variables in the Equation						
		В	S.E.	Wald	df	Sig.	Exp(B)
	Brand	1.274	.479	7.075	1	.008	3.575
2 : 40	Production	.186	.322	.335	1	.563	1.205
Step 1 ^a	Shopping	.590	.491	1.442	1	.230	1.804
	Constant	-8.642	3.346	6.672	1	.010	.000

$$P_{(Loyalty)} = \frac{e^{-8.642 + 1.274 \times Brand + 0.186 \times Production + 0.590 \times Shopping}}{1 + e^{-8.642 + 1.274 \times Brand + 0.186 \times Production + 0.590 \times Shopping}}$$

Here intercept (-8.642) can be interpreted as the value of log odds when the value of all explanatory variables are set to be 0 and slopes shows the average change in log odds associated with one unit increase in x.

Independent variables production and shopping have p-values **0.56** and **0.23** respectively which is far more than level of significance 0.05, so there is no clear evidence of a real association between loyalty and these two independent variables

The diagonal elements of the confusion matrix indicate correct predictions, while the off-diagonals represent incorrect predictions.

Only the Brand variable is significant because the p-value is 0.008.

The Wald Statistics of Brand is 7.075 means it is significant.

The Wald Statistics of Production is 0.335 means it is insignificant.

The Wald Statistics of Shopping is 1.442 means it is insignificant.

Multi-Dimensional Scaling

Objective

Perform **MDS** on the given data.

Commands

- Select **ANALYZE** from the SPSS menu bar.
- Click **SCALE** and then MULTIDIMENSIONAL SCALING (ALSCAL).
- Move 'Aqua-Fresh [var00001]', 'Crest [var00002]', 'Colgate [var00003]', 'Aim [var00004]', 'Gleem [var00005]', 'Plus White [var00006]', 'Ultra-Brite [var00007]', 'Close-Up [var00008]', 'Pepsodent [var00009]' and 'Sensodyne [var00010]' into the VARIABLES box.
- In the **DISTANCES** box check DATA ARE DISTANCES. SHAPE should be SQUARE SYMMETRIC (default).
- Click **MODEL**. In the pop-up window, in the LEVEL OF MEASUREMENT box, check INTERVAL. In the SCALING MODEL box, check EUCLIDEAN DISTANCE. In the CONDITIONALITY box, check MATRIX. Click **CONTINUE**.
- Click **OPTIONS**. In the pop-up window, in the DISPLAY box, check GROUP PLOTS, DATA MATRIX and MODEL AND OPTIONS SUMMARY. Click **CONTINUE**.
- Click **OK**

Case Processing Summary ^a						
	Cases					
Va	Valid Missing Total				tal	
N	Percent	N	Percent	N	Percent	
10	100.0%	0	0.0%	10	100.0%	

There is no missing value in this dataset.

Alscal

Alscal Procedure Options

Data Options:-

Number of Rows (Observations/Matrix). 10				
Number of Columns (Variables) 10				
Number of Matrices 1				
Measurement Level Interval				
Data Matrix Shape Symmetric				
Type Dissimilarity				
Approach to Ties Leave Tied				
Conditionality Matrix				
Data Cutoff at 0.000000				

There are 10 rows and 10 columns in our dataset.

Model Options:-

Model Euclid
Maximum Dimensionality 2
Minimum Dimensionality 2
Negative Weights Not Permitted
In our Model we use Euclidian Distance.

Maximum dimensionality of our model is 2 while minimum dimensionality is 2.

Algorithmic Options:-

Maximum Iterations 30
Convergence Criterion
Minimum S-stress
Missing Data Estimated by Ulbounds

Iteration history for the 2 dimensional solution (in squared distances)

Young's S-stress formula 1 is used.					
Iteration	S-stress	Improvement			
1	0.25120				
2	0.22286	0.02834			
3	0.22090	0.00196			
4	0.22063	0.00027			

Iterations stopped because S-stress improvement is less than **0.001000**

For Matrix				
Stre	ss = 0.20170			
RSQ	= 0.77827			

- The value of Stress is **0.20170** which means that our model is good fitted because lesser values of stress indicates the better fits.
- The value of RSQ (R²) is **0.78** implies that our model is good fitted because higher values of R² indicates the better fits.

Configuration derived in 2 dimensions

Stimulus Coordinates					
	Dimension				
Stimulus Number	Stimulus Name	1	2		
1	aquafresh	1.2219	-0.6121		
2	Crest	1.4520	-0.9751		
3	colgate	1.6866	1.2168		
4	aim	0.9772	0.6893		
5	gleem	-0.7324	-0.9835		
6	macleans	-0.4296	-0.3684		
7	ultrabri	-1.2506	-0.5749		
8	closeup	-1.2276	0.7508		
9	pepsoden	-1.4837	1.1048		
10	dentagar	-0.2138	-0.2477		

We can see that the values of **aquafresh**, **crest**, **colgate** and **aim** are positive so these factor are dimension 1 while **colgate** and **pepsodent** are positive so these factors are dimension 2.

Abbreviated Extended			
Name	Name		
aquafres	aquafresh		
dentagar	dentagard		
pepsoden	pepsodent		
ultrabri	ultrabrite		

Derived Stimulus Configuration

- From this perceptual map we can say that **Pepsodent** and **closeup** are similar / closer to each other than others.
- Colgate and aim are similar / closer to each other than others.
- Aquafresh and Crest are similar / closer to each other than others.
- **Dentagard** and **Macleans** are similar & **Macleans** and **Ultrabrite** & **Macleans** and **Gleem** to each other than others.

From Stimulus Co-ordinate table we can infer that Aquafresh, Crest, Colgate and Aim is highly loaded on dimension 1 and Pepsodent, Close-Up, Ultrabright and Gleem is lowly loaded on Dimension 1 which is also evident from the perceptual or spatial map. Whereas, for Dimension 2 Aim, Close-Up, Colgate and Pepsodent is highly loaded. On the other hand, Ultrabrite, Gleem, Crest and Aquafresh is lowly loaded on the Dimension 2.

Disparities and **Distances** are linearly correlated to each other.

Clustering

Objective

Perform Clustering on the given data

Commands

- 1. Select **ANALYZE** from the SPSS menu bar.
- 2. Click CLASSIFY and then HIERARCHICAL CLUSTER.
- 3. Move 'Fun [v1]', 'Bad for Budget [v2]', 'Eating Out [v3]', 'Best Buys [v4]', 'Don't Care [v5]' and 'Compare Prices [v6]' into the VARIABLES box.
- 4. In the **CLUSTER** box check CASES (default option). In the DISPLAY box check STATISTICS and PLOTS (default options).
- 5. Click **STATISTICS**. In the pop-up window, check AGGLOMERATION SCHEDULE. In the CLUSTER MEMBERSHIP box check RANGE OF SOLUTIONS. Then for MINIMUM NUMBER OF CLUSTERS enter '2', and for MAXIMUM NUMBER OF CLUSTERS enter '4'. Click **CONTINUE**.
- 6. Click **PLOTS**. In the pop-up window, check DENDROGRAM. In the ICICLE box check ALL CLUSTERS (default). In the ORIENTATION box, check VERTICAL. Click **CONTINUE**.
- 7. 7 Click **METHOD**. For CLUSTER METHOD select WARD'S METHOD. In the MEASURE box check INTERVAL and select SQUARED EUCLIDEAN DISTANCE. Click **CONTINUE**.
- 8. Click OK

Case Processing Summary ^{a,b}					
Cases					
Valid		Missing		Total	
N	Percent	N	Percent	N	Percent
20	100.0	0	.0	20	100.0

There is no missing value in our dataset.

a. Squared Euclidean Distance used					
	b. Ward Linkage				

We use **Squared Euclidean Distance** and **Ward Linkage** method to perform clustering.

Ward Linkage

Agglomeration Schedule						
Stage	Cluster Combined		Coefficients	Stage Cluster First Appears		Next Stage
	Cluster 1	Cluster 2		Cluster 1	Cluster 2	
1	14	16	1.000	0	0	6
2	6	7	2.000	0	0	7
3	2	13	3.500	0	0	15
4	5	11	5.000	0	0	11
5	3	8	6.500	0	0	16
6	10	14	8.167	0	1	9
7	6	12	10.500	2	0	10
8	9	20	13.000	0	0	11
9	4	10	15.583	0	6	12
10	1	6	18.500	0	7	13
11	5	9	23.000	4	8	15
12	4	19	27.750	9	0	17
13	1	17	33.100	10	0	14
14	1	15	41.333	13	0	16
15	2	5	51.833	3	11	18
16	1	3	64.500	14	5	19
17	4	18	79.667	12	0	18
18	2	4	172.667	15	17	19
19	1	2	328.600	16	18	0

14, 16, 4, 19, 18, and 2 are similar to each other and they all are in the same cluster.

Table Agglomerative Schedule can be interpreted as at stage 1 observation 6 is clustered with observation 7 in Cluster A (say), now as next stage column suggested go to stage 6 where observation 6 is clustered with observation 12, implies now Cluster A contains three observations 6, 7 and 12. Now at stage 6 the next stage column is 9 so we go to stage 9 where observation 6 is clustered with observation 1, hence observation 1 is also added in Cluster A. Likewise, we move forward till be get all the observation in either of the two clusters which can further be verified by the Cluster membership table and Dendrogram.

Cluster Membership						
Case	4 Clusters	3 Clusters	2 Clusters			
1	1	1	1			
2	2	2	2			
3	1	1	1			
4	3	3	2			
5	2	2	2			
6	1	1	1			
7	1	1	1			
8	1	1	1			
9	2	2	2			
10	3	3	2			
11	2	2	2			
12	1	1	1			
13	2	2	2			
14	3	3	2			
15	1	1	1			
16	3	3	2			
17	1	1	1			
18	4	3	2			
19	3	3	2			
20	2	2	2			

If we have two clusters then **1**, **3**, **6**, **7**, **8**, **12**, **15**, and **17** are 1st cluster and the rest are in 2nd cluster. If we have three clusters then **1**, **3**, **6**, **7**, **8**, **12**, **15**, **17** are in 1st cluster, **2**, **5**, **9**, **11**, **13**, and 20 are in 2nd cluster rest are in 3rd cluster.

From the dendogram we can easily see that there are three clusters of our data:

14, 16, 10, 4, 19, and **18** are in the first cluster.

2, 13, 5, 11, 9, and **20** are in the second cluster

3, 8, 7, 12, 1, 17, and **15** are in third cluster