Data Synchronizer

Introduction: -

Clock Domain Crossing (CDC) in digital domain is defined as the process of passing a signal or vector (multi bit signal) from one clock domain to another clock domain which introduce many issues as metastability, data incoherence and data loss. There are many techniques to synchronize asynchronous signals to avoid CDC issues as: -

• **Synchronized MUX-Select Synchronization Scheme**: Used to synchronize multiple bits.

Block Interface

Parameter Description

parameter Name	Description	
NUM_STAGES	Number of Flip Flop Stages	
BUS_WIDTH	Width of synchronized bus	

Ports Description

Signal Name	Description	Width
Unsync_bus	Unsynchronized bus	Parameterized (default = 8)
bus_enable	Source domain enable signal	1
CLK	Destination domain clock	1
RST	Destination domain Active Low Asynchronous Reset	1
sync_bus	Synchronized bit/bus	Parameterized (default = 8)
enable_pulse	destination domain enable signal	1

Block Diagram

Hint: Number of stages is parameterized.

Required

- 1. Write a Verilog Code to capture the above block diagram.
- 2. Write a testbench to your data synchronizer.