численное интегрирование

ЗАДАНИЕ 3

 $3a\partial aниe$. Вычислить интеграл по формуле Симпсона при n = 8; оценить погрешность результата, составив таблицу конечных разностей.

$$x_i = x_0 + i \cdot h$$
 $(i = 1, 2, 3, ..., n)$

				1	1
№ 1.	$\int_{1,2}^{2} \frac{\lg(x+2)}{x} dx;$	№ 11.	$\int_{0,18}^{0,98} \frac{\sin x}{x+1} dx$	№ 21.	$\int_{1,3}^{2,1} \frac{\sin(x^2 - 1)}{2\sqrt{x}} dx.$
№ 2.	$\int_{1,6}^{2,4} (x+1)\sin x dx;$	№ 12.	$\int_{0,2}^{1,8} \sqrt{x+1}\cos(x^2)dx$	№ 22.	$\int_{0,2}^{1,0} (x+1)\cos(x^2)dx.$
	$\int_{0,2}^{1} \frac{t g(x^2)}{x^2 + 1} dx;$	№ 13.	$\int_{1,4}^{3} x^2 \lg x dx.$	№ 23.	$\int_{0,8}^{1,2} \frac{\sin(x^2 - 0,4)}{x + 2} dx.$
№ 4.	$\int_{0,6}^{1,4} \frac{\cos x}{x+1} dx;$	№ 14.	$\int_{1,4}^{2,2} \frac{\lg(x^2+2)}{x+1} dx.$	№ 24.	$\int_{0,15}^{0,63} \sqrt{x+1} \lg(x+3) dx$
№ 5.	$\int_{0,4}^{1,2} \sqrt{x} \cos(x^2) dx;$		$\int_{0,4}^{1,2} \frac{\cos(x^2)}{x+1} dx.$		$\int_{1.2}^{2.8} \frac{\lg(1+x^2)}{2x-1} dx.$
<u>№</u> 6.	$\int_{0,8}^{1,2} \frac{\sin(2x)}{x^2} dx;$		$\int_{0,8}^{1,6} (x^2 + 1)\sin(x - 0.5)dx$	x. 26.	$\int_{0,6}^{0,72} (\sqrt{x} + 1)t g 2x dx$
<u>№</u> 7.	$\int_{0,8}^{1,6} \frac{\lg(x^2+1)}{x} dx$	№ 17.	$\int_{0,6}^{1,4} x^2 \cos x dx.$	№ 27.	$\int_{0,8}^{1,2} \frac{\cos x}{x^2 + 1} dx.$
<u>№</u> 8.	$\int_{0,4}^{1,2} \frac{\cos x}{x+2} dx$	№ 18.	$\int_{1,2}^{2} \frac{\lg(x^2+3)}{2x} dx.$	№ 28.	$\int_{1,2}^{2,8} \left(\frac{x}{2} + 1\right) \sin\frac{x}{2} dx.$
<u>№</u> 9.	$\int_{0,4}^{1,2} (2x+0.5)\sin x dx$	№ 19.	$\int_{2,5}^{3,3} \frac{\lg(x^2 + 0.8)}{x - 1} dx.$	№ 29.	$\int_{0,8}^{1,6} \frac{\lg(x^2+1)}{x+1} dx.$
№ 10.	$\int_{0,4}^{0,8} \frac{tg(x^2+0.5)}{1+2x^2} dx$	№ 20.	$\int_{0,5}^{1,2} \frac{t g(x^2)}{x+1} dx.$	№ 30.	$\int_{1.6}^{3,2} \frac{x}{2} \lg\left(\frac{x^2}{2}\right) dx.$

Образец выполнения задания

$$I = \int_{1.2}^{1.6} \frac{\sin(2x - 2.1)}{x^2 + 1} dx.$$

Согласно условию n=8, поэтому h=(b-a)/n=(1,6-1,2)/8=0,05.

Вычислительная формула имеет вид

$$I = \frac{h}{3} (y_0 + 4y_1 + 2y_2 + 4y_3 + 2y_4 + 4y_5 + 2y_6 + 4y_7 + y_8),$$

где
$$y_i = y(x_i) = \frac{\sin(2x_i - 2.1)}{x_i^2 + 1}$$
, $x_i = 1.2 + ih$ $(i = 0.1,, 8)$.

Вычисление значений функции, а также сложение значений

функции, имеющих одинаковые коэффициенты в формуле, производим в таблице I.

Таблица І

i	x_i	$2x_i - 2,1$	$\sin(2x_i-2,1)$	$x_i^2 + 1$	y_0, y_8	y_1, y_3, y_5, y_7	y_2, y_4, y_6
0	1,20	0,30	0,29552	2,44	0,1211		
1	1,25	0,40	0,38942	2,5625		0,1520	
2	1,30	0,50	0,4794	2,69			0,1782
3	1,35	0,60	0,5646	2,8225		0,2000	
4	1,40	0,70	0,6442	2,96			0,2176
5	1,45	0,80	0,7174	3,1024		0,2312	
6	1,50	0,90	0,7833	3,25			0,2410
7	1,55	1,00	0,8415	3,4025		0,2473	
8	1,60	1,10	0,8912	3,56	0,2503		
Σ					0,3713	0,8305	0,6368

Следовательно,

$$I \approx \frac{0.05}{3} (0.3713 + 4.0.8305 + 2.0.6368) = \frac{0.05}{3} \cdot 4.9670 \approx 0.88278$$

Для оценки точности полученного результата составим таблицу конечных разностей функций до разностей четвертого порядка (таблица II).

Таблица II.

i	y_i	Δy_i	$\Delta^2 y_i$	$\Delta^3 y_i$	$\Delta^4 y_i$
0	0,1211	0,0309	-0,0047	0,0003	-0,0001
1	0,1520	0,0262	-0,0044	0,0002	0,0000
2	0,1782	0,0218	-0,0042	0,0002	0,0000
3	0,2000	0,0176	-0,0040	0,0002	0,0001
4	0,2176	0,0136	-0,0038	0,0003	-0,0001
5	0,2312	0,0098	-0,0035	0,0002	
6	0,2410	0,0063	-0,0033		
7	0,2473	0,0030			
8	0,2503				

Так как $\max \left| \Delta^4 y_i \right| = 0,0001$, то остаточный член формулы

$$R_{ocm} < \frac{(b-a)\cdot \max\left|\Delta^4 y_i\right|}{180} \approx \frac{0.4\cdot 0.0001}{180} \approx 0.0000003.$$

Вычисления производились с четырьмя значащими цифрами, а потому величина остаточного члена на погрешность не влияет.

Погрешность вычислений можно оценить из соотношения

$$\Delta I = (b - a) \max |\Delta^4 y| \le 0.4 \times 0.0001 < 0.00005$$

Значит, полученные четыре десятичных знака верны.

ЗАДАНИЕ 4

Задание. Вычислить интеграл по формуле Гаусса, применяя для оценки точности двойной пересчет (при n_1 =4 и n_2 =5).

Образец выполнения задания

$$I = \int_{1.6}^{2.7} \frac{x + 0.8}{\sqrt{x^2 + 1.2}} dx.$$

Формула Гаусса имеет вид

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{2} [W_{1}f(x_{1}) + W_{2}f(x_{2}) + \dots + W_{n}f(x_{n})],$$

где
$$x_i = \frac{b+a}{2} + \frac{b-a}{2} \xi_i (i = 1, 2, ..., n).$$

В данном примере
$$x_i = \frac{2,7+1,6}{2} + \frac{2,7-1,6}{2} \xi_i = 2,15+0,55\xi_i$$
, а значения C_i

и t_i берем из таблицы квадратурных коэффициентов Гаусса.

Вычисления удобно располагать в таблице. При n=4 имеем:

w_i	ξ_i	$x_i = 2,15 + 0,55\xi_i$	$f(x_i) = \frac{x_i + 0.8}{\sqrt{x_i^2 + 1.2}}$	$w_i \cdot f(x_i)$
0,34785	-0,86114	1,6764	1,2366	0,43015

0,65215	-0,33998	1,9630	1,2291	0,80155
0,65215	0,33998	2,3370	1,2154	0,79264
0,34785	0,86114	2,6236	1,2042	0,41887
				$\Sigma = 2,44321$

Следовательно, $I \approx 0.55 \cdot 2.44321 = 1.3438$.

При n=5 имеем:

w_i	ξ_i	$x_i = 2,15 + 0,55\xi_i$	$f(x_i) = \frac{x_i + 0.8}{\sqrt{x_i^2 + 1.2}}$	$w_i \cdot f(x_i)$
0,23693	-0,90618	1,6516	1,2370	0,2903
0,47863	-0,538469	1,8538	1,2324	0,58988
0,56889	0	2,1500	1,2225	0,69549
0,47863	0,538469	2,4462	1,2111	0,57968
0,23693	0,90618	2,6484	1,2032	0,28508
				$\Sigma = 2,44043$

Значит, $I \approx 0.55 \cdot 2.44043 = 1.3422...$

Более точный результат даёт большее число узлов.

Ответ. Интеграл равен $I \approx 1,3422$.