

南开大学

网络空间安全学院

网络技术与应用课程报告

第一次实验报告

学号: 2112536

姓名: 焦心雨

年级: 2021 级

专业:信息安全、法学

第1节 实验内容说明

- (一) 仿真环境下的共享式以太网组网
- 1. 学习虚拟仿真软件的基本使用方法;
- 2. 在仿真环境下进行单集线器共享式以太网组网,测试网络的连通性;
- 3. 在仿真环境下进行多集线器共享式以太网组网,测试网络的连通性;
- 4. 在仿真环境的"模拟"方式中观察数据包在共享式以太网中的传递过程,并进行分析。
- (二) 仿真环境下的交换式以太网组网和 VLAN 配置
- 1. 在仿真环境下进行单交换机以太网组网,测试网络的连通性;
- 2. 在仿真环境下利用终端方式对交换机进行配置;
- 3. 在单台交换机中划分 VLAN,测试同一 VLAN 中主机的连通性和不同 VLAN 中主机的连通性,并对现象进行分析;
- 4. 在仿真环境下组建多集线器、多交换机混合式网络。划分跨越交换机的 VLAN,测试同一 VLAN 中主机的连通性和不同 VLAN 中主机的连通性,并对现象进行分析;
- 5. 在仿真环境的"模拟"方式中观察数据包在混合式以太网、虚拟局域网中的传递过程,并进行分析;
- 6. 学习仿真环境提供的简化配置方式。

第2节 实验准备

(一) 仿真环境下的共享式以太网组网

1. 单集线器以太网组网

IP 地址:

PC0: 192.168.1.2 PC1: 192.168.1.3

子网掩码自动设为 255. 255. 0. 0

2. 多集线器以太网组网

IP 地址:

PCO: 192.168.0.1

PC1: 192.168.0.2

PC2: 192.168.0.3

PC3: 192.168.0.4

PC4: 192.168.0.5

子网掩码自动设为 255. 255. 0. 0

(二)仿真环境下的交换式以太网组网和 VLAN 配置

1. 单交换机以太网组网

IP 地址:

PC0: 192.168.0.1 PC1: 192.168.0.2 PC2: 192.168.0.3

子网掩码自动设为 255. 255. 0. 0

交换机设置:

2. 多集线器、多交换机混合式网络

IP 地址:

PCO: 192.168.0.1

PC1: 192.168.0.2

PC2: 192.168.0.3

PC3: 192.168.0.4

PC4: 192.168.0.5

PC5: 192.168.0.6

PC6: 192.168.0.7

PC7: 192.168.0.8

PC8: 192.168.0.9

交换机设置:

Switch0:

Switch1:

第3节 实验过程

(一) 仿真环境下的共享式以太网组网

- 1. 在仿真环境下进行单集线器共享式以太网组网,测试网络的连通性;
- (1) 配置仿真图: 选择两台 PC 和一个通用的集线器,如下图所示;

- (2) 配置 PC 机的 ip 地址 198. 162. 1. 2 和 198. 162. 1. 3, 子网掩码自动设为 255. 255. 0. 0
- (3) 测试是否可 ping 通,如下图所示;

- 2. 在仿真环境下进行多集线器共享式以太网组网,测试网络的连通性;
- (1) 配置仿真图:

配置 PC 机的 ip 地址:

PCO: 192.168.0.1; PC1: 192.168.0.2; PC2: 192.168.0.3; PC3: 192.168.0.4; PC4: 192.168.0.5。 子网掩码自动设为 255.255.0.0

(2) 测试是否可 ping 通,以 PCO 和 PC4 进行展示,发现互 ping 成功;

3. 在仿真环境的"模拟"方式中观察数据包在共享式以太网中的传递过程,并进行分析 点击 Cisco Packet Tracer 右下角的 Simualation, 点击 PCO,命令行中输入 ping 192. 168. 0. 5,尝试从 PCO 向 PC4 发送数据。发现这次 ping 包会停下来,PCO 的 CMD 中不会 立即显示 ICMP 信息,而是由 Cisco Packet Tracer 去模拟这个瞬间的过程。

选择关心的分组类型:

具体过程如下所示:

① PCO 发送 ping 包

Edit ACL Filters

② ping 包到达第一个集线器 Hub0,目的地址仍是 PC4,是由于集线器没有过滤的功能,所以它将把收到的数据帧"广播"到所有端口;

③ 数据包会被从集线器 Hub0 传送到 PC1, PC2 和集线器 Hub1, 但是由于 PC1 和 PC2 的接受机制检测到数据帧的目的地址与自己的 Mac 地址不符, 因此拒绝接受, 显示'X';

④ 接下来数据包会从 Hub1 发送到 PC3 和 PC4,同样的,PC3 拒接数据包;

⑤ PC4 接受来自 PC0 的数据包后发送数据包到 Hb1;

⑥ Hb1 向 Hb0 和 PC3 发送数据包, PC3 拒收;

⑦ Hb0 向 PC0、PC1、PC2 发送数据包。PC1 和 PC2 拒收; PC0 处显示打勾符号,表示此次发送数据已完成。

(二) 仿真环境下的交换式以太网组网和 VLAN 配置

- 1. 在仿真环境下进行单交换机以太网组网,测试网络的连通性
- (1) 配置仿真图:选择三台 PC 和一个交换机,如下图所示

(2) 配置 PC 机的 ip 地址:

PC0: 192.168.0.1 PC1: 192.168.0.2 PC3: 192.168.0.3

子网掩码自动设为 255. 255. 0. 0

(3) 测试是否可 ping 通

```
Physical Config Desktop Programming Attributes

Command Prompt

Cisco Facket Tracer PC Command Line 1.0

C:\>ping 192.168.0.3

Pinging 192.168.0.3 with 32 bytes of data:

Reply from 192.168.0.3: bytes=32 time<lms TTL=128

Ping statistics for 192.168.0.3:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 0ms, Average = 0ms

C:\>
```


图 15 单交换机以太网组网测试连通性

- 2. 在仿真环境下利用终端方式对交换机进行配置
- (1) 增加一台主机 PC3,使用串口线将该主机的 RS-232 串行口与交换机的 Console(控制)端口进行连接。

(2) 单击 PC3,在弹出的页面中选择 Desktop-Terminal 启动终端控制程序。控制终端串行口 设置为 9600 波特,8 个数据位,1 个停止位,如下如所示:

(3) 使用 show mac-address-table、config terminal、show vlan 等命令显示和配置交换机。

在单台交换机中划分 VLAN,测试同一 VLAN 中主机的连通性和不同 VLAN 中主机的连通 性,并对现象进行分析

active

active

MTU Parent RingNo BridgeNo Stp BrdgMode Transl

ieee -

ibm -

(1) 在交换机 Switch0 的 CLI 中输入以下命令设置 VLAN

1500 1500

1500

1005 trnet-default

VLAN Type SAID

1 enet 100001 1002 fddi 101002 1003 tr 101003 1004 fdnet 101004

1005 trnet 101005

--More--

Trans2

```
Switch>enable
Switch#configure t
Enter configuration commands, one per line. End with {\tt CNTL/Z.}
Switch (config) #vlan 1
Switch (config-vlan) #exit
Switch (config) #vlan 2
Switch (config-vlan) #exit
Switch(config) #interface Fa0/1
Switch (config-if) #switchport access vlan 1
Switch(config-if) #exit
Switch(config) #interface Fa0/2
Switch(config-if) #switchport access vlan 2
Switch (config-if) #exit
Switch(config) #interface Fa0/3
Switch(config-if) #switchport access vlan 1
Switch (config-if) #exit
Switch (config) #exit
Switch#
%SYS-5-CONFIG I: Configured from console by console
```

由上述 VLAN 配置知, Fa0/1 和 Fa0/3 接口为 VLAN 1, Fa0/2 接口为 VLAN 2。因此主机 PC0 和 PC2 在同一 VLAN 即 VLAN 1中, 主机 PC1 在不同 VLAN 即 VLAN 2中。

(2) 分别测试 PC0 到 PC1 和 PC2 的连通性:

```
C:\>ping 192.168.0.2
Pinging 192.168.0.2 with 32 bytes of data:
Request timed out.
Request timed out.
Request timed out.
Request timed out.
Ping statistics for 192.168.0.2:
    Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
C:\>ping 192.168.0.3
Pinging 192.168.0.3 with 32 bytes of data:
Reply from 192.168.0.3: bytes=32 time<1ms TTL=128
Ping statistics for 192.168.0.3:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = Oms, Maximum = Oms, Average = Oms
```

发现 PCO 到 PC1 可以 ping 通, PCO 到 PC2 ping 不通。原因是 VLAN 是一种逻辑上的隔离技术, PCO 和 PC1 都在 VLAN 1 中, 因此二者是连通的; 而 PC2 和 PCO 在不同 VLAN 中, 因此二者是隔离的。

- 4. 在仿真环境下组建多集线器、多交换机混合式网络
- (1) 将两台交换机,十台 PC,两个集线器放置到工作区。将它们按如下拓扑图连接。其中, PC9 是模拟真实环境下利用控制台配置交换机的主机。将 PC9 的 RS-232 串行口与交换 机的 Console 端口连接,在主机 PC9 的配置界面中选择 Desktop-terminal 启动终端

控制程序。仿真环境的控制终端串行口也需要设置为 9600 波特、8 个数据位、1 个停止位。

(2) 划分跨越交换机的 VLAN:

由上述 VLAN 配置可知:

PCO, PC1, PC3, PC4, PC5, PC7, PC8 属于 VLAN 1;

PC2, PC6属于 VLAN 2。

(3) 测试同一 VLAN 中主机的连通性和不同 VLAN 中主机的连通性,并对现象进行分析:分别测试 PCO 到 PC5 的连通性及 PCO 到 PC6 的连通性

```
:\>ping 192.168.0.6
Pinging 192.168.0.6 with 32 bytes of data:
Reply from 192.168.0.6: bytes=32 time<1ms TTL=128
Ping statistics for 192.168.0.6:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds:
    Minimum = Oms, Maximum = Oms, Average = Oms
C:\>ping 192.168.0.7
Pinging 192.168.0.7 with 32 bytes of data:
Request timed out.
Request timed out.
Request timed out.
Request timed out.
Ping statistics for 192.168.0.7:
    Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
```

发现 PCO 到 PC5 可以 ping 通, PCO 到 PC6 ping 不通。原因是 VLAN 是一种逻辑上的隔离技术, PCO 和 PC5 都在 VLAN 1 中, 因此二者是连通的; 而 PC3 和 PC6 在不同 VLAN 中, 因此二者是隔离的。

- 5. 在仿真环境的"模拟"方式中观察数据包在混合式以太网、虚拟局域网中的传递过程,并进行分析
- (1) 第一次发送数据包
 - ① 己知 PCO 属于 VLAN 1。PCO 产生一个数据包 ICMP,将其发送给交换机 SwitchO。

② Switch0将 ICMP 数据包发送给 PC1 和交换机 Switch1。因为端口 Fa0/2 和端口 Fa0/4 属于 VLAN 1,在同一虚拟网络中可以连通。而 Fa0/3 和 Fa0/5 属于 VLAN 2,在不同 VLAN

中相互隔离,因此 PC0 不会向 PC2 和 PC3, PC4 发送数据包。PC1 拒收数据包。

③ 交换机 Switchl 将数据包发送给 PC5 和集线器 Hub0。PC5 拒收数据包。

④ 集线器将数据包发送给 PC7 和 PC8。PC7 接收数据包, PC8 拒收数据包。

⑤ PC7 将数据包发送给集线器 Hub1。

⑥ 集线器将数据包发送给 PC8 和交换机 Switchl。PC8 拒收数据包。

⑦ 交换机将数据包发送给交换机 Switch0。

⑧ 交换机将数据包发送给 PCO。PCO 成功接收,一次 ICMP 数据包传递结束。

总过程如下:

Event L	ist			
Vis.	Time(sec)	Last Device	At Device	Туре
	0.000	-	PC0	ICMP
	0.001	PC0	Switch0	ICMP
	0.002	Switch0	PC1	ICMP
	0.002	Switch0	Switch1	ICMP
	0.003	Switch1	PC5	ICMP
	0.003	Switch1	Hub1	ICMP
	0.004	Hub1	PC7	ICMP
	0.004	Hub1	PC8	ICMP
	0.005	PC7	Hub1	ICMP
	0.006	Hub1	Switch1	ICMP
	0.006	Hub1	PC8	ICMP
	0.007	Switch1	Switch0	ICMP
	0.008	Switch0	PC0	ICMP
	0.465	=	Switch0	STP
	0.466	Switch0	PC2	STP
	0.466	Switch0	Hub0	STP
	0.467	Hub0	PC3	STP

(2) 交换机 Switch0 和 Switch1 分别发送 STP 数据包,并广播到每个终端。

			_
0.465	= :	Switch0	STP
0.466	Switch0	PC2	STP
0.466	Switch0	Hub0	STP
0.467	Hub0	PC3	STP
0.467	Hub0	PC4	STP
0.515	750	Switch0	STP
0.516	Switch0	PC0	STP
0.516	Switch0	PC1	STP
0.516	Switch0	Switch1	STP
0.517	Switch1	Hub1	STP
0.517	Switch1	PC5	STP
0.518	Hub1	PC7	STP
0.518	Hub1	PC8	STP
0.928	=====================================	Switch1	STP
0.929	Switch1	PC6	STP

- (3) 之后的 ICMP 数据包传递过程:
 - ① PCO 发送 ICMP 数据包到交换机 SwitchO.

② 交换机 Switch0 将数据包发送给交换机 Switch1.

③ 交换机 Switchl 将数据包发送给集线器 Hubl.

④ 集线器将数据包发送给 PC7 和 PC8. PC8 拒收。

⑤ PC7 将数据包发送给集线器 Hub1.

⑥ Hubl 将数据包发送给 PC8 和交换机 Switchl. PC8 拒收。

⑦ 交换机 Switchl 将数据包发送给交换机 Switch0.

⑧ 交换机 Switch0 将数据包发送给 PC0.

总的过程为:

Vis.	Time(sec)	Last Device	At Device	Туре
	0.517	Switch1	PC5	STP
	0.518	Hub1	PC7	STP
	0.518	Hub1	PC8	STP
	0.928	-	Switch1	STP
	0.929	Switch1	PC6	STP
	1.011	-	PC0	ICMP
	1.012	PC0	Switch0	ICMP
	1.013	Switch0	Switch1	ICMP
	1.014	Switch1	Hub1	ICMP
	1.015	Hub1	PC7	ICMP
	1.015	Hub1	PC8	ICMP
	1.016	PC7	Hub1	ICMP
	1.017	Hub1	Switch1	ICMP
	1.017	Hub1	PC8	ICMP
	1.018	Switch1	Switch0	ICMP
19	1.019	Switch0	PC0	ICMP

可以发现在之后的 PC0 向 PC7 发送数据包的过程中,数据包不再在此过程中被发送给某些 PC,原因在于:交换机利用"端口/MAC 地址映射表"进行信息的交换与转发,

在首次发送数据包的时候,发现接收方在地址映射表中并不存在,因此需要向每个除发送方的端口都发送信息,之后交换机会将相关的对应关系添加到地址映射表。因此在之后的数据包发送时,不需要再通过广播的方式进行信息发送。

6. 学习仿真环境提供的简化配置方式

(1) 利用设备配置界面的 CLI

在工作区中单击需要配置的交换机等网络设备,在弹出的配置界面中选择 CLL 标签,然后就可以像在控制台一样配置该设备。与连接控制终端方式相同,在 CLL 中可运行 show mac-address-table、config terminals 等命令。

(2) 利用设备配置界面的 Config

单击需要配置的网络设备,在弹出的配置页面中选择 Config 标签即可进入。单击 VLAN Database,界面的右侧就会出现 VLAN 配置界面。只要输入 VLAN 号和 VLAN 名,就可以单击 Add 或者 Remove 增加或者删除 VLAN。在单击 Add 或者 Remove 之后,界面的下方还会给出这次操作执行的命令和响应。

