1

ASSIGNEMNT-1 PROBABILITY

Katherapaka Nikhil EE22BTECH11028*

Question 12.13.3.9

Let E_1 and E_2 be two independent events such that $\Pr(E_1) = p_1$ and $\Pr(E_2) = p_2$ Describe in words the events whose probabilities are: i) p_1p_2 (ii) $(1 - p_1)p_2$ (iii) $1 - (1 - p_1)(1 - p_2)$ (iv) $p_1 + p_2 - 2p_1p_2$

Solution:

$$Pr(E1) = p_1$$
 $Pr(E_2) = p_2$ (1)
 $(i) p_1 p_2 = Pr(E_1) Pr(E_2)$ (2)
 $= Pr(E_1 E_2)$ (3)

So, E_1 and E_2 occur simultaneously.

$$(ii)(1 - p_1)(p_2) = \Pr(\overline{E_1})\Pr(E_2)$$

$$= \Pr(\overline{E_1}E_2)$$
(5)

So, E_1 does not occur but E_2 occurs.

$$(iii)1 - (1 - p_1)(1 - p_2) = 1 - \Pr\left(\overline{E_1}\right)\Pr\left(\overline{E_2}\right) \quad (6)$$
$$= 1 - \Pr\left(\overline{E_1}\ \overline{E_2}\right) \quad (7)$$
$$= \Pr\left(E_1 + E_2\right) \quad (8)$$

So, either E_1 or E_2 or both E_1 and E_2 occurs.

$$(iv)p_{1} + p_{2} - 2p_{1}p_{2} = Pr(E_{1}) + Pr(E_{2}) - 2Pr(E_{1})Pr(E_{2})$$

$$= Pr(E_{1}) + Pr(E_{2}) - 2Pr(E_{1}E_{2})$$

$$= Pr(E_{1} + E_{2}) - Pr(E_{1}E_{2})$$

$$(11)$$

So, either E_1 or E_2 occurs but not both