HR Analytics

Problem Statement

A large company named XYZ, employs, at any given point of time, around 4000 employees. However, every year, around 15% of its employees leave the company and need to be replaced with the talent pool available in the job market. The management believes that this level of attrition (employees leaving, either on their own or because they got fired) is bad for the company, because of the following reasons -

The former employees' projects get delayed, which makes it difficult to meet timelines, resulting in a reputation loss among consumers and partners A sizeable department has to be maintained, for the purposes of recruiting new talent More often than not, the new employees have to be trained for the job and/or given time to acclimatise themselves to the company Hence, the management has contracted an HR analytics firm to understand what factors they should focus on, in order to curb attrition. In other words, they want to know what changes they should make to their workplace, in order to get most of their employees to stay. Also, they want to know which of these variables is most important and needs to be addressed right away.

Since you are one of the star analysts at the firm, this project has been given to you.

Goal of the case study You are required to model the probability of attrition. The results thus obtained will be used by the management to understand what changes they should make to their workplace, in order to get most of their employees to stay.

In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]:

```
# Load Dataset

df = pd.read_csv('dataset_ass7.csv')
df.head()
```

Out[2]:

tment	DistanceFromHome	Education	EducationField	EmployeeCount	EmployeeID	Gender	
Sales	6	2	Life Sciences	1	1	Female	
arch & pment	10	1	Life Sciences	1	2	Female	
arch & pment	17	4	Other	1	3	Male	
arch & pment	2	5	Life Sciences	1	4	Male	
arch & pment	10	1	Medical	1	5	Male	

In [3]:

df.columns

Out[3]:

In [4]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4410 entries, 0 to 4409
Data columns (total 24 columns):

#	Column	Non-Null Count	Dtype
0	Age	4410 non-null	 int64
1	Attrition	4410 non-null	object
2	BusinessTravel	4410 non-null	object
3	Department	4410 non-null	object
4	DistanceFromHome	4410 non-null	int64
5	Education	4410 non-null	int64
6	EducationField	4410 non-null	object
7	EmployeeCount	4410 non-null	int64
8	EmployeeID	4410 non-null	int64
9	Gender	4410 non-null	object
10	JobLevel	4410 non-null	int64
11	JobRole	4410 non-null	object
12	MaritalStatus	4410 non-null	object
13	MonthlyIncome	4410 non-null	int64
14	NumCompaniesWorked	4391 non-null	float64
15	Over18	4410 non-null	object
16	PercentSalaryHike	4410 non-null	int64
17	StandardHours	4410 non-null	int64
18	StockOptionLevel	4410 non-null	int64
19	TotalWorkingYears	4401 non-null	float64
20	TrainingTimesLastYear	4410 non-null	int64
21	YearsAtCompany	4410 non-null	int64
22	YearsSinceLastPromotion	4410 non-null	int64
23	YearsWithCurrManager	4410 non-null	int64
	C7 1 (4/6) 1 1 (4/4)	1	

dtypes: float64(2), int64(14), object(8)

memory usage: 827.0+ KB

In [5]:

df.isnull().any()

Out[5]:

Age	False
Attrition	False
BusinessTravel	False
Department	False
DistanceFromHome	False
Education	False
EducationField	False
EmployeeCount	False
EmployeeID	False
Gender	False
JobLevel	False
JobRole	False
MaritalStatus	False
MonthlyIncome	False
NumCompaniesWorked	True
Over18	False
PercentSalaryHike	False
StandardHours	False
StockOptionLevel	False
TotalWorkingYears	True
TrainingTimesLastYear	False
YearsAtCompany	False
YearsSinceLastPromotion	False
YearsWithCurrManager	False
dtype: bool	

In [7]:

```
df.fillna(0,inplace =True)
df.isnull().any() # no null values
```

Out[7]:

Age	False
Attrition	False
BusinessTravel	False
Department	False
DistanceFromHome	False
Education	False
EducationField	False
EmployeeCount	False
EmployeeID	False
Gender	False
JobLevel	False
JobRole	False
MaritalStatus	False
MonthlyIncome	False
NumCompaniesWorked	False
Over18	False
PercentSalaryHike	False
StandardHours	False
StockOptionLevel	False
TotalWorkingYears	False
TrainingTimesLastYear	False
YearsAtCompany	False
YearsSinceLastPromotion	False
YearsWithCurrManager	False
dtype: bool	

In [8]:

df.drop(['EmployeeCount','EmployeeID','StandardHours', 'Over18'],axis=1,inplace=True) # rem
df.head() # unnecessary features removed

Out[8]:

	Age	Attrition	BusinessTravel	Department	DistanceFromHome	Education	EducationField
0	51	No	Travel_Rarely	Sales	6	2	Life Sciences
1	31	Yes	Travel_Frequently	Research & Development	10	1	Life Sciences
2	32	No	Travel_Frequently	Research & Development	17	4	Other
3	38	No	Non-Travel	Research & Development	2	5	Life Sciences
4	32	No	Travel_Rarely	Research & Development	10	1	Medical
4							>

Univariate Analysis

In [13]:

Out[13]:

	count	mean	std	min	25%	50%	75°
Age	4410.0	36.923810	9.133301	18.0	30.0	36.0	43.
DistanceFromHome	4410.0	9.192517	8.105026	1.0	2.0	7.0	14.
Education	4410.0	2.912925	1.023933	1.0	2.0	3.0	4.
MonthlyIncome	4410.0	65029.312925	47068.888559	10090.0	29110.0	49190.0	83800.
NumCompaniesWorked	4410.0	2.683220	2.499737	0.0	1.0	2.0	4.
PercentSalaryHike	4410.0	15.209524	3.659108	11.0	12.0	14.0	18.
TotalWorkingYears	4410.0	11.256916	7.790928	0.0	6.0	10.0	15.
TrainingTimesLastYear	4410.0	2.799320	1.288978	0.0	2.0	3.0	3.
YearsAtCompany	4410.0	7.008163	6.125135	0.0	3.0	5.0	9.
YearsSinceLastPromotion	4410.0	2.187755	3.221699	0.0	0.0	1.0	3.
YearsWithCurrManager	4410.0	4.123129	3.567327	0.0	2.0	3.0	7.
1							>

In [100]:

get median of continuous variables
df[['Age','DistanceFromHome','Education','MonthlyIncome', 'NumCompaniesWorked', 'PercentSal
 'TrainingTimesLastYear', 'YearsAtCompany','YearsSinceLastPromotion', 'YearsWithCurrManage

Out[100]:

Age	36.0
DistanceFromHome	7.0
Education	3.0
MonthlyIncome	49190.0
NumCompaniesWorked	2.0
PercentSalaryHike	14.0
TotalWorkingYears	10.0
TrainingTimesLastYear	3.0
YearsAtCompany	5.0
YearsSinceLastPromotion	1.0
YearsWithCurrManager	3.0
dtype: float64	

In [102]:

Mode

df[['Age','DistanceFromHome','Education','MonthlyIncome', 'NumCompaniesWorked', 'PercentSal
 'TrainingTimesLastYear', 'YearsAtCompany','YearsSinceLastPromotion', 'YearsWithCurrManage

Out[102]:

	0
Age	35.0
DistanceFromHome	2.0
Education	3.0
MonthlyIncome	23420.0
NumCompaniesWorked	1.0
PercentSalaryHike	11.0
TotalWorkingYears	10.0
TrainingTimesLastYear	2.0
YearsAtCompany	5.0
YearsSinceLastPromotion	0.0
YearsWithCurrManager	2.0

In [30]:

Variance

Out[30]:

Age	8.341719e+01
DistanceFromHome	6.569144e+01
Education	1.048438e+00
MonthlyIncome	2.215480e+09
NumCompaniesWorked	6.248686e+00
PercentSalaryHike	1.338907e+01
TotalWorkingYears	6.069855e+01
TrainingTimesLastYear	1.661465e+00
YearsAtCompany	3.751728e+01
YearsSinceLastPromotion	1.037935e+01
YearsWithCurrManager	1.272582e+01
dtype: float64	

In [32]:

Out[32]:

Age	0.413005
DistanceFromHome	0.957466
Education	-0.289484
MonthlyIncome	1.368884
NumCompaniesWorked	1.029836
PercentSalaryHike	0.820569
TotalWorkingYears	1.113489
TrainingTimesLastYear	0.552748
YearsAtCompany	1.763328
YearsSinceLastPromotion	1.982939
YearsWithCurrManager	0.832884
dtype: float64	

In [33]:

Out[33]:

Age	-0.405951
DistanceFromHome	-0.227045
Education	-0.560569
MonthlyIncome	1.000232
NumCompaniesWorked	0.015084
PercentSalaryHike	-0.302638
TotalWorkingYears	0.909606
TrainingTimesLastYear	0.491149
YearsAtCompany	3.923864
YearsSinceLastPromotion	3.601761
YearsWithCurrManager	0.167949
dtype: float64	

From above Description we have to see the continuous features that can be causes to Attrition i.e 'Age','DistanceFromHome','MonthlyIncome', 'PercentSalaryHike', 'TotalWorkingYears', 'YearsAtCompany','YearsSinceLastPromotion', 'YearsWithCurrManager'

from these features all of them showing positive Skewness

Age, DistanceFromHome, PercentSalaryHike are leptokurtic and all other are platykurtic.

First let's check Attrition rate %

In [142]:

```
plt.pie(df['Attrition'].value_counts(), explode= (0,0.2),
autopct='%1.0f%%', shadow=True, labels= ['Attrition No', 'Attrition Yes'])
```

Out[142]:

Let's check outliers through box plot

In [112]:

```
plt.boxplot(df.Age, patch_artist= True, labels = ['Age'])
```

Out[112]:

In [81]:

```
plt.boxplot(df.DistanceFromHome, patch_artist= True, labels = ['DistanceFromHome'])
```

Out[81]:


```
In [82]:
```

'medians': [<matplotlib.lines.Line2D at 0xf6de308>],
'fliers': [<matplotlib.lines.Line2D at 0xeb8f7c8>],

'boxes': [<matplotlib.patches.PathPatch at 0xf8e0bc8>],

<matplotlib.lines.Line2D at 0xf5d3fc8>],

'means': []}

In [83]:

plt.boxplot(df.PercentSalaryHike, patch_artist= True, labels = ['PercentSalaryHike'])

Out[83]:

In [84]:

```
plt.boxplot(df.TotalWorkingYears, patch_artist= True, labels = ['TotalWorkingYears'])
```

Out[84]:

In [85]:

```
plt.boxplot(df.YearsAtCompany, patch_artist= True, labels = ['YearsAtCompany'])
```

Out[85]:

In [95]:

plt.boxplot(df.YearsSinceLastPromotion,patch_artist= True, labels = ['YearsSinceLastPromoti

Out[95]:

'means': []}

'fliers': [<matplotlib.lines.Line2D at 0x1402c788>],

From above boxplots we can see that Age, DistanceFromHome, PercentSalaryHike don't have Outliers others have outliers

IQR of Age is 30 to 43 years (13 years)

In [109]:

sns.distplot(df.Age)

Out[109]:

<matplotlib.axes._subplots.AxesSubplot at 0x129237c8>

In [113]:

sns.distplot(df.DistanceFromHome)

Out[113]:

<matplotlib.axes._subplots.AxesSubplot at 0x145cd648>

In [115]:

sns.distplot(df.MonthlyIncome)

Out[115]:

<matplotlib.axes._subplots.AxesSubplot at 0x1476d8c8>

In [116]:

sns.distplot(df.PercentSalaryHike)

Out[116]:

<matplotlib.axes._subplots.AxesSubplot at 0x14790448>

In [117]:

sns.distplot(df.TotalWorkingYears)

Out[117]:

<matplotlib.axes._subplots.AxesSubplot at 0x1580bf88>

In [118]:

sns.distplot(df.YearsAtCompany)

Out[118]:

<matplotlib.axes._subplots.AxesSubplot at 0x1580be48>

In [119]:

sns.distplot(df.YearsSinceLastPromotion)

Out[119]:

<matplotlib.axes._subplots.AxesSubplot at 0x15a1b888>

In [121]:

sns.distplot(df.YearsWithCurrManager)

Out[121]:

<matplotlib.axes._subplots.AxesSubplot at 0x16947a88>

From above distplots we can see Distribution & Skewness of individual variables

Let's see data distribution with Categorical Features

Categorical features which can have dependency on Attrition are: BusinessTravel, Department, Gender, JobLevel, JobRole, MaritalStatus

```
In [123]:
```

```
df.columns
```

Out[123]:

In [129]:

```
sns.countplot('Attrition', data= df, hue= 'BusinessTravel')
```

Out[129]:

<matplotlib.axes._subplots.AxesSubplot at 0x16dd1508>

In [135]:

```
sns.countplot('Attrition', data= df, hue= 'Department')
```

Out[135]:

<matplotlib.axes._subplots.AxesSubplot at 0x16dfe808>

In [136]:

```
sns.countplot('Attrition', data= df, hue= 'Gender')
```

Out[136]:

<matplotlib.axes._subplots.AxesSubplot at 0x170f3fc8>

In [137]:

```
sns.countplot('Attrition', data= df, hue= 'JobLevel')
```

Out[137]:

<matplotlib.axes._subplots.AxesSubplot at 0x17169ec8>

In [138]:

```
sns.countplot('Attrition', data= df, hue= 'JobRole')
```

Out[138]:

<matplotlib.axes._subplots.AxesSubplot at 0x171cc788>

In [139]:

```
sns.countplot('Attrition', data= df, hue= 'MaritalStatus')
```

Out[139]:

<matplotlib.axes._subplots.AxesSubplot at 0x17253108>

From above plots we can make some conclusions:

- 1. The employee who Rarely travels have high attrition rate
- 2. Research & Development Department has high Attrition rate
- 3. Male Employees have high Attrition rate as compared to Female Employees
- 4. Job level 1 & 2 has high Attrition rate
- 5. Research & Development, Sales Executives & Laboratory Technitions has high Attrition rate
- 6. Single employees has high Attrition rate than married and Divorced Employees

```
In [143]:
```

```
#Convert all the Categorical data into numerical data
# get unique values from each categorical feature
print(df['BusinessTravel'].unique())
print(df['EducationField'].unique())
print(df['Gender'].unique())
print(df['Department'].unique())
print(df['JobRole'].unique())
print(df['MaritalStatus'].unique())
['Travel_Rarely' 'Travel_Frequently' 'Non-Travel']
['Life Sciences' 'Other' 'Medical' 'Marketing' 'Technical Degree'
 'Human Resources']
['Female' 'Male']
['Sales' 'Research & Development' 'Human Resources']
['Healthcare Representative' 'Research Scientist' 'Sales Executive'
 'Human Resources' 'Research Director' 'Laboratory Technician'
 'Manufacturing Director' 'Sales Representative' 'Manager']
['Married' 'Single' 'Divorced']
```

In [145]:

```
# sklearn used to convert data to numerical
from sklearn.preprocessing import LabelEncoder
cat_x = LabelEncoder()

df['BusinessTravel'] = cat_x.fit_transform(df['BusinessTravel'])
df['Department'] = cat_x.fit_transform(df['Department'])
df['EducationField'] = cat_x.fit_transform(df['EducationField'])
df['Gender'] = cat_x.fit_transform(df['Gender'])
df['JobRole'] = cat_x.fit_transform(df['JobRole'])
df['MaritalStatus'] = cat_x.fit_transform(df['MaritalStatus'])
df['Attrition'] = cat_x.fit_transform(df['Attrition'])
```

In [146]:

```
# checking categorical values again it's changed to numerical
# No = 0, Yes = 1
df.head()
```

Out[146]:

	Age	Attrition	BusinessTravel	Department	DistanceFromHome	Education	EducationField	(
0	51	0	2	2	6	2	1	_
1	31	1	1	1	10	1	1	
2	32	0	1	1	17	4	4	
3	38	0	0	1	2	5	1	
4	32	0	2	1	10	1	3	
4							1	•

Correlations of all independent features with dependent feature Attrition

In [150]:

```
# Correlation of all columns with Attrition
sns.heatmap(df.corr().iloc[:, 1:2].drop('Attrition', axis= 0), annot = True)
```

Out[150]:

<matplotlib.axes._subplots.AxesSubplot at 0x178e7a88>

In [151]:

```
# Function to check Accepting or Rejecting Null Hypothesis
def check(Attrition, b, c):
    print('\nNull Hypothesis: There is no Significant Correlation between Attrition and', b
   print('Alternate Hypothesis: There is Significant Correlation between Attrition and', b
   from scipy.stats import pearsonr
   stats, p = pearsonr(df.Attrition, c)
   print('\nCorrelation:', stats, 'P Value:', p,'\n')
   if p < 0.05:
        print('P-Value < 0.05 hence Null Hypothesis is rejected, Accepting Alternate Hypoth
        if stats > 0:
            print('There is Positive Correlation between Attrition and', b)
        else:
            print('There is Negative Correlation between Attrition and', b)
   else:
        print("P-Value >= 0.05 hence Null hypothesis is Accepted")
        print('There is no Significant Correlation between Attrition and', b)
```

Correlation & P - Value of relationship with Attrition and other features

In [152]:

```
check('Attrition', 'Age', df.Age)
check('Attrition', 'BusinessTravel', df.BusinessTravel)
check('Attrition', 'DistanceFromHome', df.DistanceFromHome)
check('Attrition', 'Education', df.Education)
check('Attrition', 'EducationField', df.EducationField)
check('Attrition', 'Gender', df.Gender)
check('Attrition', 'JobLevel', df.JobLevel)
check('Attrition', 'JobRole', df.JobRole)
check('Attrition', 'MaritalStatus', df.MaritalStatus)
check('Attrition', 'MonthlyIncome', df.MonthlyIncome)
check('Attrition', 'NumCompaniesWorked', df.NumCompaniesWorked)
check('Attrition', 'PercentSalaryHike', df.PercentSalaryHike)
check('Attrition', 'StockOptionLevel', df.StockOptionLevel)
check('Attrition', 'TotalWorkingYears', df.TotalWorkingYears)
check('Attrition', 'TrainingTimesLastYear', df.TrainingTimesLastYear)
check('Attrition', 'YearsAtCompany', df.YearsAtCompany)
check('Attrition', 'YearsSinceLastPromotion', df.YearsSinceLastPromotion)
check('Attrition', 'YearsWithCurrManager', df.YearsWithCurrManager)
Null Hypothesis: There is no Significant Correlation between Attrition and
DistanceFromHome
Alternate Hypothesis: There is Significant Correlation between Attrition a
nd DistanceFromHome
Correlation: -0.009730141010179674 P Value: 0.5182860428050771
P-Value >= 0.05 hence Null hypothesis is Accepted
There is no Significant Correlation between Attrition and DistanceFromHome
Null Hypothesis: There is no Significant Correlation between Attrition and
Education
Alternate Hypothesis: There is Significant Correlation between Attrition a
nd Education
Correlation: -0.015111167710968713 P Value: 0.3157293177118575
```

From above calculations we can have some conclusion based on correlation & P value

Features don't have relationship with Attrition : BusinessTravel, DistanceFromHome, Education, Gender, JobLevel, JobRole, StockOptionLevel

Features have relationship with Attrition and have Positive Correlation: MaritalStatus, NumCompaniesWorked, PercentSalaryHike,

Features have relationship with Attrition and have Negative Correlation: Age, EducationField, MonthlyIncome, TotalWorkingYears, TrainingTimesLastYear, YearsAtCompany, YearsSinceLastPromotion, YearsWithCurrManager

Statistical tests:

As we seen in distplots none of features Normally Distributed so we can perform only Non-Parametric tests.

Dependent variable is Attrition and that is Categorical so in Non-Parametric we can perform below Tests:

- 1. Mann-Whitney Test 1 Dependent categorical variable and other continuous varibles
- 2. CHI Square test Only for Categorical Variables
- 1. Mann-Whitney Test:

For Mann-Whitney Test we need to separate data as Attrition Yes & Attrition No

```
In [157]:
```

```
# attrition = Yes and no seprate
att_yes = df[df['Attrition']== 1]
att_no = df[df['Attrition']== 0]
```

In [158]:

```
att_yes.head()
```

Out[158]:

	Age	Attrition	BusinessTravel	Department	DistanceFromHome	Education	EducationField
1	31	1	1	1	10	1	1
6	28	1	2	1	11	2	3
13	47	1	0	1	1	1	3
28	44	1	1	1	1	2	3
30	26	1	2	1	4	3	3
4							>

```
In [159]:
```

```
att_no.head()
```

Out[159]:

	Age	Attrition	BusinessTravel	Department	DistanceFromHome	Education	EducationField
0	51	0	2	2	6	2	1
2	32	0	1	1	17	4	4
3	38	0	0	1	2	5	1
4	32	0	2	1	10	1	3
5	46	0	2	1	8	3	1
4							•

Continuous Variables we should check with Attrition as per above correlation results: Age, Monthlylncome, TotalWorkingYears, TrainingTimesLastYear, YearsAtCompany, YearsSinceLastPromotion, YearsWithCurrManager, NumCompaniesWorked, PercentSalaryHike

In [160]:

In [161]:

```
# importing scipy module
from scipy.stats import mannwhitneyu
```

```
In [166]:
stats, p = mannwhitneyu(att yes.Age, att no.Age)
manwhitney(stats, p, 'Age')
stats, p = mannwhitneyu(att_yes.MonthlyIncome, att_no.MonthlyIncome)
manwhitney(stats, p, 'MonthlyIncome')
stats, p = mannwhitneyu(att_yes.NumCompaniesWorked, att_no.NumCompaniesWorked)
manwhitney(stats, p, 'NumCompaniesWorked')
stats, p = mannwhitneyu(att_yes.PercentSalaryHike, att_no.PercentSalaryHike)
manwhitney(stats, p, 'PercentSalaryHike')
stats, p = mannwhitneyu(att_yes.TotalWorkingYears, att_no.TotalWorkingYears)
manwhitney(stats, p, 'TotalWorkingYears')
stats, p = mannwhitneyu(att_yes.TrainingTimesLastYear, att_no.TrainingTimesLastYear)
manwhitney(stats, p, 'TrainingTimesLastYear')
stats, p = mannwhitneyu(att_yes.YearsAtCompany, att_no.YearsAtCompany)
manwhitney(stats, p, 'YearsAtCompany')
stats, p = mannwhitneyu(att_yes.YearsSinceLastPromotion, att_no.YearsSinceLastPromotion)
manwhitney(stats, p, 'YearsSinceLastPromotion')
stats, p = mannwhitneyu(att_yes.YearsWithCurrManager, att_no.YearsWithCurrManager)
manwhitney(stats, p, 'YearsWithCurrManager')
HO = There is no significant difference between Attrition_yes with Age and A
ttrition No with Age
H1 = There is significant difference between Attrition_yes with Age and Attr
ition_No with Age
```

961731.0 P Value: 2.9951588479067175e-30 P-Value < 0.05 hence H0 rejected, Accepting H1 Hypothesis ______ H0 = There is no significant difference between Attrition_yes with MonthlyIn come and Attrition_No with MonthlyIncome H1 = There is significant difference between Attrition yes with MonthlyIncom e and Attrition_No with MonthlyIncome 1264900.5 P Value: 0.053577283839938566 P-Value >= 0.05 hence H0 Accepted

HO = There is no significant difference between Attrition_yes with NumCompan iesWorked and Attrition_No with NumCompaniesWorked H1 = There is significant difference between Attrition_yes with NumCompanies

Worked and Attrition No with NumCompaniesWorked

1259144.0 P Value: 0.03266173775282211

P-Value < 0.05 hence H0 rejected, Accepting H1 Hypothesis

HO = There is no significant difference between Attrition yes with PercentSa laryHike and Attrition_No with PercentSalaryHike H1 = There is significant difference between Attrition_yes with PercentSalar yHike and Attrition_No with PercentSalaryHike

1250640.0	Ρ	Value:	0.	.018660129917539733	3
-----------	---	--------	----	---------------------	---

P-Value < 0.05 hence H0 rejected, Accepting H1 Hypothesis H0 = There is no significant difference between Attrition_yes with TotalWork ingYears and Attrition_No with TotalWorkingYears H1 = There is significant difference between Attrition yes with TotalWorking Years and Attrition_No with TotalWorkingYears 907502.5 P Value: 1.0203529765342384e-39 P-Value < 0.05 hence H0 rejected, Accepting H1 Hypothesis ______ _____ H0 = There is no significant difference between Attrition_yes with TrainingT imesLastYear and Attrition_No with TrainingTimesLastYear H1 = There is significant difference between Attrition_yes with TrainingTime sLastYear and Attrition_No with TrainingTimesLastYear 1238940.0 P Value: 0.005167954938699059 P-Value < 0.05 hence H0 rejected, Accepting H1 Hypothesis HØ = There is no significant difference between Attrition yes with YearsAtCo mpany and Attrition_No with YearsAtCompany H1 = There is significant difference between Attrition_yes with YearsAtCompa ny and Attrition_No with YearsAtCompany 923238.0 P Value: 6.047598261692858e-37 P-Value < 0.05 hence H0 rejected, Accepting H1 Hypothesis HO = There is no significant difference between Attrition yes with YearsSinc eLastPromotion and Attrition No with YearsSinceLastPromotion H1 = There is significant difference between Attrition yes with YearsSinceLa stPromotion and Attrition_No with YearsSinceLastPromotion 1209366.0 P Value: 0.0002021180346719736 P-Value < 0.05 hence H0 rejected, Accepting H1 Hypothesis ______ -----HO = There is no significant difference between Attrition yes with YearsWith CurrManager and Attrition No with YearsWithCurrManager H1 = There is significant difference between Attrition yes with YearsWithCur rManager and Attrition_No with YearsWithCurrManager 957253.5 P Value: 1.2365483142169853e-31 P-Value < 0.05 hence H0 rejected, Accepting H1 Hypothesis

From above Mann-Whitney Tests we can have conclusion

There is no significant difference between Attrition Yes Monthly Income & Attrition No Monthly Income

There is significant difference between Attrition Yes & Attrition No with following Variables: Age, TotalWorkingYears, TrainingTimesLastYear, YearsAtCompany, YearsSinceLastPromotion, YearsWithCurrManager, NumCompaniesWorked, PercentSalaryHike

2. CHI Square Test:

For CHI Square test we are checking dependency of Categorical Variables with Attrition

Categorical Variables we should check based on correlation results: BusinessTravel , EducationField , Gender , Department , JobRole , MaritalStatus , JobLevel , StockOptionLevel

In [167]:

In [168]:

```
# impoerting scipy module
from scipy.stats import chi2_contingency
```

In [178]:

```
chitable = pd.crosstab(df.Attrition, df.BusinessTravel)
stats, p, dof, expected = chi2_contingency(chitable)
chi2(stats, p, 'BusinessTravel')
chitable = pd.crosstab(df.Attrition, df.EducationField)
stats, p, dof, expected = chi2_contingency(chitable)
chi2(stats, p, 'EducationField')
chitable = pd.crosstab(df.Attrition, df.Gender)
stats, p, dof, expected = chi2_contingency(chitable)
chi2(stats, p, 'Gender')
chitable = pd.crosstab(df.Attrition, df.Department)
stats, p, dof, expected = chi2_contingency(chitable)
chi2(stats, p, 'Department')
chitable = pd.crosstab(df.Attrition, df.JobRole)
stats, p, dof, expected = chi2_contingency(chitable)
chi2(stats, p, 'JobRole')
chitable = pd.crosstab(df.Attrition, df.MaritalStatus)
stats, p, dof, expected = chi2_contingency(chitable)
chi2(stats, p, 'MaritalStatus')
chitable = pd.crosstab(df.Attrition, df.JobLevel)
stats, p, dof, expected = chi2_contingency(chitable)
chi2(stats, p, 'JobLevel')
chitable = pd.crosstab(df.Attrition, df.StockOptionLevel)
stats, p, dof, expected = chi2_contingency(chitable)
chi2(stats, p, 'StockOptionLevel')
Ho= There is no dependency betweem Attrition and BusinessTravel
H1= There is dependency betweem Attrition and BusinessTravel
BusinessTravel
                 0
                     1
Attrition
               414 624 2661
1
                          468
                36 207
72.54724105696552 P Value: 1.764276972983189e-16
P-Value < 0.05 hence H0 rejected, Accepting H1 Hypothesis
Ho= There is no dependency betweem Attrition and EducationField
H1= There is dependency betweem Attrition and EducationField
EducationField
                0
                     1 2
                                3 4
Attrition
a
               48 1515 402 1167 216 351
               33
                    303
                          75
                               225
46.194921001730584 P Value: 8.288917469574179e-09
P-Value < 0.05 hence H0 rejected, Accepting H1 Hypothesis
Ho= There is no dependency betweem Attrition and Gender
H1= There is dependency betweem Attrition and Gender
Gender
```

```
Attrition
0
          1494 2205
1
           270
                 441
1.349904410246582 P Value: 0.24529482862926827
P-Value >= 0.05 hence H0 Accepted
Ho= There is no dependency betweem Attrition and Department
H1= There is dependency betweem Attrition and Department
Department
                   1
                         2
             0
Attrition
           132 2430 1137
1
            57
                453
                       201
29.090274924488266 P Value: 4.820888218170406e-07
P-Value < 0.05 hence H0 rejected, Accepting H1 Hypothesis
Ho= There is no dependency betweem Attrition and JobRole
H1= There is dependency betweem Attrition and JobRole
JobRole
                 1
                      2
                           3
                               4
                                    5
                                         6
                                                   8
Attrition
0
          336
              135 651 264 387 183 717 813
                                                 213
                   126
                          42
                              48
                                   57 159
                21
25.116313674604072 P Value: 0.001485544744815264
P-Value < 0.05 hence H0 rejected, Accepting H1 Hypothesis
_____
Ho= There is no dependency betweem Attrition and MaritalStatus
H1= There is dependency betweem Attrition and MaritalStatus
MaritalStatus
Attrition
              882 1767 1050
0
1
               99
                    252
                          360
138.49102962254608 P Value: 8.45385940605786e-31
P-Value < 0.05 hence H0 rejected, Accepting H1 Hypothesis
Ho= There is no dependency betweem Attrition and JobLevel
H1= There is dependency betweem Attrition and JobLevel
JobLevel
                   2
                        3
                                  5
Attrition
                      558
          1377 1317
                          267
                               180
           252
                 285
                       96
                            51
                                27
```

6.2691759264759925 P Value: 0.1799276801337184

```
P-Value >= 0.05 hence H0 Accepted

Ho= There is no dependency betweem Attrition and StockOptionLevel
H1= There is dependency betweem Attrition and StockOptionLevel

StockOptionLevel 0 1 2 3
Attrition
0 1575 1518 390 216
1 318 270 84 39

3.046265305068262 P Value: 0.38454683657380506

P-Value >= 0.05 hence H0 Accepted
```

From above performed CHI Square tests we can have following conclusions

 $\label{lem:continuous} \textbf{Variables have dependency with Attrition are: Business Travel\ , Education Field\ , Department\ , Job Role\ , \\ \textbf{Marital Status}$

Variables don't have dependency with Attrition are: Gender, JobLevel, StockOptionLevel