Topic Evolution in Life Sciences Research

Shayan Rizvi

- Objectives
- Data Extraction
- Data Analysis
- Next Steps
- Key Takeaways

Objectives

Use text from biomedical and life science literature to gain insights on research topic trends over time

- Discover underlying themes
- Track changes over time

- Objectives
- Data Extraction
- Data Analysis
- Next Steps
- Key Takeaways

Data Extraction

Raw data (XML files)

biomedical and life sciences journal literature from PubMed Central

Data Frame

- metadata (e.g. publication year, journal title)
- content (article title and abstract)

vocabulary and frequency ordered by publication year

- Objectives
- Data Extraction
- Data Analysis
 - Exploratory Data Analysis
 - Dynamic Topic Modeling
 - Interpretation of Results
- Next Steps
- Key Takeaways

Exploratory Data Analysis

Comprehensive collection:

- 1,669,759 articles
- 8,462 journals
- 1848 2017 (159 unique years)

Explosion of electronic document archives

- A wealth of information!
- But how to process them?

Dynamic Topic Modeling

Probabilistic time series models

Capture evolution of topics in sequentially organized corpus

Assumptions of **static topic model** (e.g. latent Dirichlet allocation (LDA)):

- Words of each document are independently drawn from a mixture of "topics"
- Mixing proportions of topics are randomly drawn for each document
- The topics are shared by all documents (!!)

Assumptions of **dynamic topic model**:

- Data is divided by time slice (e.g. by year)
- Documents of each slice has k-component topics, which are evolved from the topics associated with the previous time slice

Interpretation of Results

Articles from The Journal of Cell Biology

23,896 articles from 1962 through present (2017)

2.2 million words

6,619 words in vocabulary after pruning

Estimated 10-component dynamic topic model:

- cytoskeletal systems
- inter-cell communications
- nucleus, cell replications and cycles
- inter- and intra-cell transport
- neuroscience
- cell signaling
- imaging techniques (esp. microscopy)
- gene transcription and translation
- cell/tissue cultures, cancer research
- mitochondria

"neuroscience"

Interpretation of Results

Articles from The Journal of Experimental Medicine

23,246 articles from its inception through present (1896–2017)

2.5 million words

6,790 words in vocabulary after pruning

Estimated 12-component dynamic topic model:

- infectious disease
- cancer
- inflammation
- immune response & immunization
- organ transplants
- development of immune cells
- mechanism of immune response
- serum composition
- mixed topics (??)
- circulatory system
- genetics
- cardiovascular disease

"infectious disease"

1900: 'bacillus', 'case', 'organism', 'culture', 'pneumococcus'

1910: 'bacillus', 'case', 'organism', 'infection', 'culture'

1920: 'infection', 'bacillus', 'case', 'organism', 'virus'

1930: 'virus', 'infection', 'disease', 'bacillus', 'inoculation'

1940: 'virus', 'mouse', 'infection', 'monkey', 'inoculation'

1950: 'virus', 'mouse', 'infection', 'strain', 'poliomyelitis'

1960: 'mouse', 'virus', 'infection', 'strain', 'infected'

1970: 'virus', 'mouse', 'infection', 'infected', 'strain'

1980: 'virus', 'mouse', 'infected', 'infection', 'strain'

1990: 'virus', 'infection', 'infected', 'hiv', 'mouse'

2000: 'infection', 'virus', 'hiv', 'infected', 'viral'

2010: 'infection', 'virus', 'viral', 'hiv', 'response'

- Objectives
- Data Extraction
- Data Analysis
- Next Steps
- Key Takeaways

Next Steps

- Expanding Scope:
 - Extend analysis to the whole text mining collections from PubMed Central
 - Extend to full text of the articles
- Optimization:
 - Better ways to parse HTML elements to get cleaner text
 - Inspect XML files to extract as much relevant info as possible (less missing information)
 - Further pruning the vocabulary:
 - Domain-specific stop words
 - Domain-specific stemming
 - Domain-specific knowledge is needed to better interpret results/fine-tune models
- Comparison with other topic models
 - e.g. gensim LDA

- Objectives
- Data Extraction
- Data Analysis
- Next Steps
- Key Takeaways

Key Takeaways

- Dynamic topic modeling technique, combined with Natural Language
 Processing, is a powerful tool for organizing and exploring a large collection of text documents
- When applied to biomedical and life science literature, it can aid researchers and curious laypersons alike to discover interesting themes and trends

