

# ICM-42688-P Datasheet

# High Precision 6-Axis MEMS MotionTracking<sup>™</sup> Device

#### **ICM-42688-P HIGHLIGHTS**

The ICM-42688-P is a 6-axis MEMS MotionTracking device that combines a 3-axis gyroscope and a 3-axis accelerometer. It has a configurable host interface that supports I3C<sup>SM</sup>, I<sup>2</sup>C and SPI serial communication, features a 2 kB FIFO and 2 programmable interrupts with ultralow-power wake-on-motion support to minimize system power consumption.

ICM-42688-P supports highly accurate external clock input, that helps to reduce system level sensitivity error, improve orientation measurement from gyroscope data, reduce ODR sensitivity to temperature and device to device variation.

The device includes industry first 20-bits data format support in FIFO for high-data resolution. This FIFO format encapsulates 19-bits of gyroscope data and 18-bits of accelerometer data.

Other industry-leading features include InvenSense on-chip APEX Motion Processing engine for gesture recognition, activity classification, and pedometer, along with programmable digital filters, and an embedded temperature sensor.

The device supports a VDD operating range of 1.71V to 3.6V, and a separate digital IO supply, VDDIO from 1.71V to 3.6V.

#### **ICM-42688-P FEATURES**

- Gyroscope Noise: 2.8 mdps/√Hz & Accelerometer Noise: 70 µg/√Hz
  - Low-Noise mode 6-axis current consumption of 0.88 mA
- User selectable Gyro Full-scale range (dps):
   ± 15.6/31.2/62.5/125/250/500/1000/2000
- User selectable Accelerometer Full-scale range (g): ± 2/4/8/16
- User-programmable digital filters for gyro, accel, and temp sensor
- APEX Motion Functions:
  - o Pedometer, Tilt Detection, Tap Detection
  - Wake on Motion, Raise to Wake/Sleep,
     Significant Motion Detection
- Host interface: 12.5 MHz I3C<sup>SM</sup>, 1 MHz I<sup>2</sup>C, 24 MHz SPI

#### **APPLICATIONS**

- AR/VR Controllers
- Head Mounted Displays
- Wearables
- Sports
- Robotics
- IoT Applications

## **BLOCK DIAGRAM**



#### **ORDERING INFORMATION**

| PART         | TEMP RANGE     | PACKAGE        |
|--------------|----------------|----------------|
| ICM 42600 D+ | -40°C to +85°C | 2.5x3mm 14-Pin |
| ICM-42688-P† | -40 C to +85 C | LGA            |

<sup>†</sup>Denotes RoHS and Green-Compliant Package

## TDK-INVENSENSE SENSORS FOR SMARTPHONE, MOBILE & IOT APPLICATIONS

| Parameter                            | ICM-40607<br>Sensorhub | ICM-42605<br>Sensorhub | ICM-42686-P<br>Handheld Action | ICM-42688-P<br>HMD & Robotics |
|--------------------------------------|------------------------|------------------------|--------------------------------|-------------------------------|
| GYRO Noise (mdps/rt-Hz)              | 7                      | 3.8                    | 5.3                            | 2.8                           |
| GYRO Offset Temp Stability (mdps/°C) | ±30                    | ±20                    | ±10                            | ±5                            |
| GYRO Range & Resolution              | ±2000dps; 16-bits      | ±2000dps; 16-bits      | ±4000dps; 16/19-bits           | ±2000dps; 16/19-bits          |
| ACCEL Noise (μg/rt-Hz)               | 110                    | 70                     | 70                             | AXY: 65; AZ: 70               |
| ACCEL Range & Resolution             | ±16g; 16-bits          | ±16g; 16-bits          | ±32g; 16/18-bits               | ±16g; 16/18-bits              |
| ODR & Sample Synch                   | 8kHz; No RTC           | 8kHz; No RTC           | 32kHz; RTC                     | 32kHz; RTC                    |

Document Number: DS-000347 Revision: 1.7 Rev. Date: 12/01/2022



## **TABLE OF CONTENTS**

|     | ICM-      | 42688-P Highlights                                                     | 1  |
|-----|-----------|------------------------------------------------------------------------|----|
|     | Block     | Diagram                                                                | 1  |
|     | ICM-      | 42688-P Features                                                       | 1  |
|     | Appli     | cations                                                                | 1  |
|     | Orde      | ring Information                                                       | 1  |
|     | TDK-      | Invensense Sensors for Smartphone, Mobile & IoT Applications           | 1  |
| Tab | e of Figu | ures                                                                   | 8  |
| Tab | e of Tab  | les                                                                    | 8  |
| 1   | Intro     | duction                                                                | 9  |
|     | 1.1       | Purpose and Scope                                                      | 9  |
|     | 1.2       | Product Overview                                                       | 9  |
|     | 1.3       | Applications                                                           | 9  |
| 2   | Featu     | ıres                                                                   | 10 |
|     | 2.1       | Gyroscope Features                                                     | 10 |
|     | 2.2       | Accelerometer Features                                                 | 10 |
|     | 2.3       | Motion Features                                                        | 10 |
|     | 2.4       | Additional Features                                                    | 10 |
| 3   | Elect     | rical Characteristics                                                  | 11 |
|     | 3.1       | Gyroscope Specifications                                               | 11 |
|     | 3.2       | Accelerometer Specifications                                           | 12 |
|     | 3.3       | Electrical Specifications                                              | 13 |
|     | 3.4       | I <sup>2</sup> C Timing Characterization                               | 15 |
|     | 3.5       | SPI Timing Characterization – 4-Wire SPI Mode                          | 16 |
|     | 3.6       | SPI Timing Characterization – 3-Wire SPI Mode                          | 17 |
|     | 3.7       | RTC (CLKIN) Timing Characterization                                    | 18 |
|     | 3.8       | Absolute Maximum Ratings                                               | 19 |
| 4   | Appli     | cations Information                                                    | 20 |
|     | 4.1       | Pin Out Diagram and Signal Description                                 | 20 |
|     | 4.2       | Typical Operating Circuit                                              | 21 |
|     | 4.3       | Bill of Materials for External Components                              | 22 |
|     | 4.4       | System Block Diagram                                                   | 23 |
|     | 4.5       | Overview                                                               | 23 |
|     | 4.6       | Three-Axis MEMS Gyroscope with 16-bit ADCs and Signal Conditioning     | 23 |
|     | 4.7       | Three-Axis MEMS Accelerometer with 16-bit ADCs and Signal Conditioning | 23 |
|     | 4.8       | I3C <sup>SM</sup> , I <sup>2</sup> C and SPI Host Interface            | 23 |
|     | 4.9       | Self-Test                                                              | 23 |
|     | 4.10      | Clocking                                                               | 24 |

|    | 4.11   | Sensor Data Registers                                          | 24 |
|----|--------|----------------------------------------------------------------|----|
|    | 4.12   | Interrupts                                                     | 24 |
|    | 4.13   | Digital-Output Temperature Sensor                              | 25 |
|    | 4.14   | Bias and LDOs                                                  | 25 |
|    | 4.15   | Charge Pump                                                    | 25 |
|    | 4.16   | Standard Power Modes                                           | 25 |
| 5  | Signa  | ll Path                                                        | 26 |
|    | 5.1    | Summary of Parameters Used to Configure the Signal Path        | 26 |
|    | 5.2    | Notch Filter                                                   | 26 |
|    | 5.3    | Anti-Alias Filter                                              | 28 |
|    | 5.4    | User Programmable Offset                                       | 30 |
|    | 5.5    | UI Filter Block                                                | 30 |
|    | 5.6    | UI Path ODR And FSR Selection                                  | 34 |
| 6  | FIFO.  |                                                                | 37 |
|    | 6.1    | Packet Structure                                               | 37 |
|    | 6.2    | FIFO Header                                                    | 39 |
|    | 6.3    | Maximum FIFO Storage                                           | 40 |
|    | 6.4    | FIFO Configuration Registers                                   | 40 |
| 7  | Progr  | rammable Interrupts                                            | 42 |
| 8  | APEX   | Motion Functions                                               | 43 |
|    | 8.1    | APEX ODR Support                                               | 43 |
|    | 8.2    | DMP Power Save Mode                                            | 44 |
|    | 8.3    | Pedometer Programming                                          | 44 |
|    | 8.4    | Tilt Detection Programming                                     | 45 |
|    | 8.5    | Raise to Wake/Sleep Programming                                | 45 |
|    | 8.6    | Tap Detection Programming                                      | 46 |
|    | 8.7    | Wake on Motion Programming                                     | 47 |
|    | 8.8    | Significant Motion Detection Programming                       | 47 |
| 9  | Digita | al Interface                                                   | 49 |
|    | 9.1    | I3C <sup>SM</sup> , I <sup>2</sup> C and SPI Serial Interfaces | 49 |
|    | 9.2    | I3C <sup>SM</sup> Interface                                    | 49 |
|    | 9.3    | I <sup>2</sup> C Interface                                     | 49 |
|    | 9.4    | I <sup>2</sup> C Communications Protocol                       | 49 |
|    | 9.5    | I <sup>2</sup> C Terms                                         | 51 |
|    | 9.6    | SPI Interface                                                  | 53 |
| 10 | Asser  | mbly                                                           | 54 |
|    | 10.1   | Orientation of Axes                                            | 54 |
|    | 10.2   | Package Dimensions                                             | 55 |
| 11 | Part l | Number Package Marking                                         | 57 |
| 12 | Use N  | Notes                                                          | 58 |

|    | 12.1    | Accelerometer Mode Transitions                                       | 58 |
|----|---------|----------------------------------------------------------------------|----|
|    | 12.2    | Accelerometer Low Power (LP) Mode Averaging Filter Setting           | 58 |
|    | 12.3    | Settings for I <sup>2</sup> C, I3C <sup>SM</sup> , and SPI Operation | 58 |
|    | 12.4    | Notch Filter and Anti-Alias Filter Operation                         | 58 |
|    | 12.5    | External Clock Input Effect on ODR                                   | 58 |
|    | 12.6    | INT_ASYNC_RESET Configuration                                        | 59 |
|    | 12.7    | FIFO Timestamp Interval Scaling                                      | 59 |
|    | 12.8    | Supplementary Information for FIFO_HOLD_LAST_DATA_EN                 | 59 |
|    | 12.9    | Register Values Modification                                         | 60 |
| 13 | Registe | r Map                                                                | 61 |
|    | 13.1    | User Bank 0 Register Map                                             | 61 |
|    | 13.2    | User Bank 1 Register Map                                             | 62 |
|    | 13.3    | User Bank 2 Register Map                                             | 63 |
|    | 13.4    | User Bank 4 Register Map                                             | 63 |
| 14 | User Ba | nk 0 Register Map – Descriptions                                     | 64 |
|    | 14.1    | DEVICE_CONFIG                                                        | 64 |
|    | 14.2    | DRIVE_CONFIG                                                         | 64 |
|    | 14.3    | INT_CONFIG                                                           | 65 |
|    | 14.4    | FIFO_CONFIG                                                          | 65 |
|    | 14.5    | TEMP_DATA1                                                           | 65 |
|    | 14.6    | TEMP_DATA0                                                           | 66 |
|    | 14.7    | ACCEL_DATA_X1                                                        | 66 |
|    | 14.8    | ACCEL_DATA_X0                                                        | 66 |
|    | 14.9    | ACCEL_DATA_Y1                                                        | 66 |
|    | 14.10   | ACCEL_DATA_Y0                                                        | 67 |
|    | 14.11   | ACCEL_DATA_Z1                                                        | 67 |
|    | 14.12   | ACCEL_DATA_Z0                                                        | 67 |
|    | 14.13   | GYRO_DATA_X1                                                         | 67 |
|    | 14.14   | GYRO_DATA_X0                                                         | 67 |
|    | 14.15   | GYRO_DATA_Y1                                                         | 68 |
|    | 14.16   | GYRO_DATA_Y0                                                         | 68 |
|    | 14.17   | GYRO_DATA_Z1                                                         | 68 |
|    | 14.18   | GYRO_DATA_ZO                                                         | 68 |
|    | 14.19   | TMST_FSYNCH                                                          | 68 |
|    | 14.20   | TMST_FSYNCL                                                          | 69 |
|    | 14.21   | INT_STATUS                                                           | 69 |
|    | 14.22   | FIFO_COUNTH                                                          | 69 |
|    | 14.23   | FIFO_COUNTL                                                          | 70 |
|    | 14.24   | FIFO_DATA                                                            | 70 |
|    | 14.25   | APEX DATAO                                                           | 70 |

| 14.26    | APEX_DATA1                       | 0'         |
|----------|----------------------------------|------------|
| 14.27    | APEX_DATA2                       | 1'         |
| 14.28    | APEX_DATA3                       | 1'         |
| 14.29    | APEX_DATA4                       | '2         |
| 14.30    | APEX_DATA5                       | '2         |
| 14.31    | INT_STATUS2                      | <b>'</b> 3 |
| 14.32    | INT_STATUS3                      | '3         |
| 14.33    | SIGNAL_PATH_RESET7               | '3         |
| 14.34    | INTF_CONFIG07                    | <b>'</b> 4 |
| 14.35    | INTF_CONFIG17                    | <b>'</b> 5 |
| 14.36    | PWR_MGMT0                        | '6         |
| 14.37    | GYRO_CONFIGO                     | 7          |
| 14.38    | ACCEL_CONFIG07                   | '8         |
| 14.39    | GYRO_CONFIG1                     | 9          |
| 14.40    | GYRO_ACCEL_CONFIG0               | 30         |
| 14.41    | ACCEL_CONFIG1                    | 31         |
| 14.42    | TMST_CONFIG                      | 31         |
| 14.43    | APEX_CONFIG0                     | 32         |
| 14.44    | SMD_CONFIG                       | 32         |
| 14.45    | FIFO_CONFIG1                     | 3          |
| 14.46    | FIFO_CONFIG2                     | 3          |
| 14.47    | FIFO_CONFIG3                     | 3          |
| 14.48    | FSYNC_CONFIG                     | 34         |
| 14.49    | INT_CONFIG0                      | 34         |
| 14.50    | INT_CONFIG1                      | 35         |
| 14.51    | INT_SOURCE0                      | 35         |
| 14.52    | INT_SOURCE1                      | 36         |
| 14.53    | INT_SOURCE3                      | 36         |
| 14.54    | INT_SOURCE4                      | 37         |
| 14.55    | FIFO_LOST_PKT0                   | 37         |
| 14.56    | FIFO_LOST_PKT1                   | 37         |
| 14.57    | SELF_TEST_CONFIG                 | 38         |
| 14.58    | WHO_AM_I                         | 88         |
| 14.59    | REG_BANK_SEL                     | 38         |
| User Bar | nk 1 Register Map – Descriptions | 39         |
| 15.1     | SENSOR_CONFIGO                   | 39         |
| 15.2     | GYRO_CONFIG_STATIC2              | 39         |
| 15.3     | GYRO_CONFIG_STATIC3              | 39         |
| 15.4     | GYRO_CONFIG_STATIC4              | Ю          |
| 15.5     | GYRO_CONFIG_STATIC59             | 90         |

15

|    | 15.6    | GYRO_CONFIG_STATIC6              | 90  |
|----|---------|----------------------------------|-----|
|    | 15.7    | GYRO_CONFIG_STATIC7              | 90  |
|    | 15.8    | GYRO_CONFIG_STATIC8              | 91  |
|    | 15.9    | GYRO_CONFIG_STATIC9              | 91  |
|    | 15.10   | GYRO_CONFIG_STATIC10             | 91  |
|    | 15.11   | XG_ST_DATA                       | 92  |
|    | 15.12   | YG_ST_DATA                       | 92  |
|    | 15.13   | ZG_ST_DATA                       | 92  |
|    | 15.14   | TMSTVAL0                         | 92  |
|    | 15.15   | TMSTVAL1                         | 93  |
|    | 15.16   | TMSTVAL2                         | 93  |
|    | 15.17   | INTF_CONFIG4                     | 93  |
|    | 15.18   | INTF_CONFIG5                     | 94  |
|    | 15.19   | INTF_CONFIG6                     | 94  |
| 16 | User Ba | nk 2 Register Map – Descriptions | 95  |
|    | 16.1    | ACCEL_CONFIG_STATIC2             | 95  |
|    | 16.2    | ACCEL_CONFIG_STATIC3             | 95  |
|    | 16.3    | ACCEL_CONFIG_STATIC4             | 95  |
|    | 16.4    | XA_ST_DATA                       | 95  |
|    | 16.5    | YA_ST_DATA                       | 96  |
|    | 16.6    | ZA_ST_DATA                       | 96  |
| 17 | User Ba | nk 4 Register Map – Descriptions | 97  |
|    | 17.1    | APEX_CONFIG1                     | 97  |
|    | 17.2    | APEX_CONFIG2                     | 98  |
|    | 17.3    | APEX_CONFIG3                     | 99  |
|    | 17.4    | APEX_CONFIG4                     | 100 |
|    | 17.5    | APEX_CONFIG5                     | 100 |
|    | 17.6    | APEX_CONFIG6                     | 101 |
|    | 17.7    | APEX_CONFIG7                     | 101 |
|    | 17.8    | APEX_CONFIG8                     | 101 |
|    | 17.9    | APEX_CONFIG9                     | 102 |
|    | 17.10   | ACCEL_WOM_X_THR                  | 102 |
|    | 17.11   | ACCEL_WOM_Y_THR                  | 102 |
|    | 17.12   | ACCEL_WOM_Z_THR                  | 102 |
|    | 17.13   | INT_SOURCE6                      | 103 |
|    | 17.14   | INT_SOURCE7                      | 103 |
|    | 17.15   | INT_SOURCE8                      | 104 |
|    | 17.16   | INT_SOURCE9                      | 104 |
|    | 17.17   | INT_SOURCE10                     | 105 |
|    | 17.18   | OFFSET USERO                     | 105 |



|    | 17.19   | OFFSET_USER1     | 105 |
|----|---------|------------------|-----|
|    | 17.20   | OFFSET_USER2     | 106 |
|    | 17.21   | OFFSET_USER3     | 106 |
|    | 17.22   | OFFSET_USER4     | 106 |
|    | 17.23   | OFFSET_USER5     | 106 |
|    | 17.24   | OFFSET_USER6     | 107 |
|    | 17.25   | OFFSET_USER7     | 107 |
|    | 17.26   | OFFSET_USER8     | 107 |
| 18 | Referen | ce               | 108 |
| 19 | Docume  | nt Information   | 109 |
|    | 19.1    | Revision History | 109 |



## **TABLE OF FIGURES**

| Figure 1. I <sup>2</sup> C Bus Timing Diagram                               | 15 |
|-----------------------------------------------------------------------------|----|
| Figure 2. 4-Wire SPI Bus Timing Diagram                                     |    |
| Figure 3. 3-Wire SPI Bus Timing Diagram                                     | 17 |
| Figure 4. RTC Timing Diagram                                                | 18 |
| Figure 5. Pin Out Diagram for ICM-42688-P 2.5x3.0x0.91 mm LGA               | 20 |
| Figure 6. ICM-42688-P Application Schematic (I3CSM / I2C Interface to Host) | 21 |
| Figure 7. ICM-42688-P Application Schematic (SPI Interface to Host)         |    |
| Figure 8. ICM-42688-P System Block Diagram                                  |    |
| Figure 9. ICM-42688-P Signal Path                                           |    |
| Figure 10. FIFO Packet Structure                                            | 37 |
| Figure 11. Maximum FIFO Storage                                             | 40 |
| Figure 12. START and STOP Conditions                                        | 50 |
| Figure 13. Acknowledge on the I <sup>2</sup> C Bus                          | 50 |
| Figure 14. Complete I <sup>2</sup> C Data Transfer                          | 51 |
| Figure 15. Typical SPI Master/Slave Configuration                           |    |
| Figure 16. Orientation of Axes of Sensitivity and Polarity of Rotation      | 54 |
|                                                                             |    |
| TABLE OF TABLES                                                             |    |
| Table 1. Gyroscope Specifications                                           | 11 |
| Table 2. Accelerometer Specifications                                       | 12 |
| Table 3. D.C. Electrical Characteristics                                    |    |
| Table 4. A.C. Electrical Characteristics                                    | 14 |
| Table 5. I <sup>2</sup> C Timing Characteristics                            | 15 |
| Table 6. 4-Wire SPI Timing Characteristics (24-MHz Operation)               | 16 |
| Table 7. 3-Wire SPI Timing Characteristics (24-MHz Operation)               | 17 |
| Table 8. RTC Timing Characteristics                                         | 18 |
| Table 9. Absolute Maximum Ratings                                           | 19 |
| Table 10. Signal Descriptions                                               | 20 |
| Table 11. Bill of Materials                                                 |    |
| Table 12. Standard Power Modes for ICM-42688-P                              | 25 |
| Table 13. I <sup>2</sup> C Terms                                            | 52 |



## 1 INTRODUCTION

### 1.1 PURPOSE AND SCOPE

This document is a product specification, providing a description, specifications, and design related information on the ICM-42688-P Single-Interface MotionTracking device. The device is housed in a small 2.5x3x0.91 mm 14-pin LGA package.

#### 1.2 PRODUCT OVERVIEW

The ICM-42688-P is a 6-axis MotionTracking device that combines a 3-axis gyroscope, and a 3-axis accelerometer in a small 2.5x3x0.91 mm (14-pin LGA) package. It also features a 2K-byte FIFO that can lower the traffic on the serial bus interface, and reduce power consumption by allowing the system processor to burst read sensor data and then go into a low-power mode. ICM-42688-P, with its 6-axis integration, enables manufacturers to eliminate the costly and complex selection, qualification, and system level integration of discrete devices, guaranteeing optimal motion performance for consumers.

The gyroscope supports eight programmable full-scale range settings from  $\pm 15.625$ dps to  $\pm 2000$ dps, and the accelerometer supports four programmable full-scale range settings from  $\pm 2g$  to  $\pm 16g$ .

ICM-42688-P also supports external clock input for highly accurate 31kHz to 50kHz clock, that helps to reduce system level sensitivity error, improve orientation measurement from gyroscope data, reduce ODR sensitivity to temperature and device to device variation.

The device includes industry first 20-bits data format support in FIFO for high-data resolution. This FIFO format encapsulates 19-bits of gyroscope data and 18-bits of accelerometer data for high precision applications. Other industry-leading features include on-chip 16-bit ADCs, programmable digital filters, an embedded temperature sensor, and programmable interrupts. The device features I3CSM, I<sup>2</sup>C and SPI serial interfaces, a VDD operating range of 1.71 V to 3.6 V, and a separate VDDIO operating range of 1.71 V to 3.6 V.

The host interface can be configured to support I3C<sup>SM</sup> slave, I<sup>2</sup>C slave, or SPI slave modes. The I3C<sup>SM</sup> interface supports speeds up to 12.5MHz (data rates up to 12.5Mbps in SDR mode, 25Mbps in DDR mode), the I<sup>2</sup>C interface supports speeds up to 1 MHz, and the SPI interface supports speeds up to 24 MHz.

By leveraging its patented and volume-proven CMOS-MEMS fabrication platform, which integrates MEMS wafers with companion CMOS electronics through wafer-level bonding, InvenSense has driven the package size down to a footprint and thickness of 2.5x3x0.91 mm (14-pin LGA), to provide a very small yet high performance low cost package. The device provides high robustness by supporting 20,000*q* shock reliability.

#### 1.3 APPLICATIONS

- AR/VR Controllers
- Head Mounted Displays
- Wearables
- Sports
- Robotics

Page 9 of 110



## 2 FEATURES

#### 2.1 GYROSCOPE FEATURES

The triple-axis MEMS gyroscope in the ICM-42688-P includes a wide range of features:

- Digital-output X-, Y-, and Z-axis angular rate sensors (gyroscopes) with programmable full-scale range of ±15.625, ±31.25, ±62.5, ±125, ±250, ±500, ±1000, and ±2000 degrees/sec
- Low Noise (LN) power mode support
- Digitally-programmable low-pass filters
- Factory calibrated sensitivity scale factor
- Self-test

## 2.2 ACCELEROMETER FEATURES

The triple-axis MEMS accelerometer in ICM-42688-P includes a wide range of features:

- Digital-output X-, Y-, and Z-axis accelerometer with programmable full-scale range of ±2q, ±4q ±8q and ±16q
- Low Noise (LN) and Low Power (LP) power modes support
- User-programmable interrupts
- Wake-on-motion interrupt for low power operation of applications processor
- Self-test

#### 2.3 MOTION FEATURES

ICM-42688-P includes the following motion features, also known as APEX (Advanced Pedometer and Event Detection – neXt gen)

- Pedometer: Tracks Step Count, also issues Step Detect interrupt
- Tilt Detection: Issues an interrupt when the Tilt angle exceeds 35° for more than a programmable time
- Raise to Wake/Sleep: Gesture detection for wake and sleep events. Interrupt is issued when either of these two events are detected
- Tap Detection: Issues an interrupt when a tap is detected, along with the tap count
- Wake on Motion: Detects motion when accelerometer data exceeds a programmable threshold
- Significant Motion Detection: Detects Significant Motion if Wake on Motion events are detected during a programmable time window

#### 2.4 ADDITIONAL FEATURES

ICM-42688-P includes the following additional features:

- External clock input supports highly accurate clock input from 31kHz to 50kHz, helps to reduce system level sensitivity error, improve orientation measurement from gyroscope data, reduce ODR sensitivity to temperature and device to device variation
- 2K byte FIFO buffer enables the applications processor to read the data in bursts
- 20-bits data format support in FIFO for high-data resolution
- User-programmable digital filters for gyroscope, accelerometer, and temperature sensor
- 12.5MHz I3C<sup>SM</sup> (data rates up to 12.5Mbps in SDR mode, 25Mbps in DDR mode) / 1 MHz I<sup>2</sup>C / 24 MHz SPI slave host interface
- Digital-output temperature sensor
- Smallest and thinnest LGA package for portable devices: 2.5x3x0.91 mm (14-pin LGA)
- 20,000 q shock tolerant
- MEMS structure hermetically sealed and bonded at wafer level
- RoHS and Green compliant

Page 10 of 110



## 3 ELECTRICAL CHARACTERISTICS

## 3.1 GYROSCOPE SPECIFICATIONS

Typical Operating Circuit of section 4.2, VDD = 1.8 V, VDDIO = 1.8 V, T<sub>A</sub>=25°C, unless otherwise noted.

| PARAMETER                                              | CONDITIONS                                | MIN  | TYP     | MAX                | UNITS     | NOTES |
|--------------------------------------------------------|-------------------------------------------|------|---------|--------------------|-----------|-------|
|                                                        | GYROSCOPE SENSITIVITY                     |      |         |                    |           |       |
|                                                        | GYRO_FS_SEL=0                             |      | ±2000   |                    | º/s       | 2     |
|                                                        | GYRO_FS_SEL =1                            |      | ±1000   |                    | º/s       | 2     |
|                                                        | GYRO_FS_SEL =2                            |      | ±500    |                    | º/s       | 2     |
| E. II Carla Banca                                      | GYRO_FS_SEL =3                            |      | ±250    |                    | º/s       | 2     |
| Full-Scale Range                                       | GYRO_FS_SEL =4                            |      | ±125    |                    | º/s       | 2     |
|                                                        | GYRO_FS_SEL =5                            |      | ±62.5   |                    | º/s       | 2     |
|                                                        | GYRO_FS_SEL =6                            |      | ±31.25  |                    | º/s       | 2     |
|                                                        | GYRO_FS_SEL =7                            |      | ±15.625 |                    | º/s       | 2     |
| Gyroscope ADC Word Length                              | Output in two's complement format         |      | 16      |                    | bits      | 2, 5  |
|                                                        | GYRO_FS_SEL=0                             |      | 16.4    |                    | LSB/(º/s) | 2     |
|                                                        | GYRO_FS_SEL =1                            |      | 32.8    |                    | LSB/(º/s) | 2     |
|                                                        | GYRO_FS_SEL =2                            |      | 65.5    |                    | LSB/(º/s) | 2     |
| 6 6 . 5 .                                              | GYRO_FS_SEL =3                            |      | 131     |                    | LSB/(º/s) | 2     |
| Sensitivity Scale Factor                               | GYRO_FS_SEL =4                            |      | 262     |                    | LSB/(º/s) | 2     |
|                                                        | GYRO_FS_SEL =5                            |      | 524.3   |                    | LSB/(º/s) | 2     |
|                                                        | GYRO_FS_SEL =6                            |      | 1048.6  |                    | LSB/(º/s) | 2     |
|                                                        | GYRO_FS_SEL =7                            |      | 2097.2  |                    | LSB/(º/s) | 2     |
| Sensitivity Scale Factor Initial Tolerance             | Component and Board-level, 25°C           |      | ±0.5    |                    | %         | 1     |
| Sensitivity Scale Factor Variation Over<br>Temperature | 0°C to +70°C                              |      | ±0.005  |                    | %/°C      | 3     |
| Nonlinearity                                           | Best fit straight line; 25°C              |      | ±0.1    |                    | %         | 3     |
| Cross-Axis Sensitivity                                 | Board-level                               |      | ±1.25   |                    | %         | 3     |
|                                                        | ZERO-RATE OUTPUT (ZRO)                    |      |         |                    |           |       |
| Initial ZRO Tolerance                                  | Board-level, 25°C                         |      | ±0.5    |                    | º/s       | 3     |
| ZRO Variation vs. Temperature                          | 0°C to +70°C                              |      | ±0.005  |                    | º/s/ºC    | 3     |
|                                                        | OTHER PARAMETERS                          |      |         |                    |           |       |
| Rate Noise Spectral Density                            | @ 10 Hz                                   |      | 0.0028  |                    | º/s /√Hz  | 1     |
| Total RMS Noise                                        | Bandwidth = 100 Hz                        |      | 0.028   |                    | º/s-rms   | 4     |
| Gyroscope Mechanical Frequencies                       |                                           | 25   | 27      | 29                 | KHz       | 1     |
| Low Pass Filter Passages                               | ODR < 1kHz                                | 5    |         | 500                | Hz        | 2     |
| Low Pass Filter Response                               | ODR ≥ 1kHz                                | 42   |         | 3979               | Hz        | 2     |
| Gyroscope Start-Up Time                                | Time from gyro enable to gyro drive ready |      | 30      |                    | ms        | 3     |
| Output Data Rate                                       |                                           | 12.5 |         | <mark>32000</mark> | Hz        | 2     |

**Table 1. Gyroscope Specifications** 

- Tested in production.
- Guaranteed by design.
- B. Derived from validation or characterization of parts, not tested in production.
- 4. Calculated from Rate Noise Spectral Density.
- 5. 20-bits data format supported in FIFO, see section 6.1.



## 3.2 **ACCELEROMETER SPECIFICATIONS**

Typical Operating Circuit of section 4.2, VDD = 1.8 V, VDDIO = 1.8 V, T<sub>A</sub>=25°C, unless otherwise noted.

| PARAMETER                                  | CONI                            | DITIONS             | MIN    | TYP    | MAX                | UNITS           | NOTES |
|--------------------------------------------|---------------------------------|---------------------|--------|--------|--------------------|-----------------|-------|
|                                            | ACCE                            | LEROMETER SENSITIVI | TY     |        |                    |                 |       |
|                                            | ACCEL_FS_SEL =0                 |                     |        | ±16    |                    | g               | 2     |
| Full Scale Pange                           | ACCEL_FS_SEL =1                 |                     |        | ±8     |                    | g               | 2     |
| Full-Scale Range                           | ACCEL_FS_SEL =2                 |                     |        | ±4     |                    | g               | 2     |
|                                            | ACCEL_FS_SEL =3                 |                     |        | ±2     |                    | g               | 2     |
| ADC Word Length                            | Output in two's comple          | ement format        |        | 16     |                    | bits            | 2, 5  |
|                                            | ACCEL_FS_SEL =0                 |                     |        | 2,048  |                    | LSB/g           | 2     |
| Court to Cook South                        | ACCEL_FS_SEL =1                 |                     |        | 4,096  |                    | LSB/g           | 2     |
| Sensitivity Scale Factor                   | ACCEL_FS_SEL =2                 |                     |        | 8,192  |                    | LSB/g           | 2     |
|                                            | ACCEL_FS_SEL =3                 | ACCEL_FS_SEL =3     |        | 16,384 |                    | LSB/g           | 2     |
| Sensitivity Scale Factor Initial Tolerance | Component and Board-level, 25°C |                     |        | ±0.5   |                    | %               | 1     |
| Sensitivity Change vs. Temperature         | -40°C to +85°C                  |                     |        | ±0.005 |                    | %/°C            | 3     |
| Nonlinearity                               | Best Fit Straight Line, ±2g     |                     |        | ±0.1   |                    | %               | 3     |
| Cross-Axis Sensitivity                     | Board-level                     |                     |        | ±1     |                    | %               | 3     |
|                                            |                                 | ZERO-G OUTPUT       |        |        |                    |                 |       |
| Initial Tolerance                          | Board-level, all axes           |                     |        | ±20    |                    | m <i>g</i>      | 3     |
| Zero-G Level Change vs. Temperature        | Temperature -40°C to +85°C      |                     |        | ±0.15  |                    | m <i>g/</i> ºC  | 3     |
|                                            |                                 | OTHER PARAMETERS    |        |        |                    |                 |       |
| Daniel Caratari Daniel                     | 0.40.11                         | X and Y-axis        |        | 65     |                    | μ <i>g/</i> √Hz | 1     |
| Power Spectral Density                     | @ 10 Hz                         | Z-axis              |        | 70     |                    | μ <i>g/</i> √Hz | 1     |
| DMC Maine                                  | Develocidate 400 He             | X and Y-axis        |        | 0.65   |                    | mg-rms          | 4     |
| RMS Noise                                  | Bandwidth = 100 Hz              | Z-axis              |        | 0.70   |                    | mg-rms          | 4     |
| Law Dana Filhan Danasana                   | ODR < 1kHz                      | •                   | 5      |        | 500                | Hz              | 2     |
| Low-Pass Filter Response                   | ODR ≥ 1kHz                      | ODR ≥ 1kHz          |        |        | 3979               | Hz              | 2     |
| Accelerometer Startup Time                 | From sleep mode to va           | lid data            |        | 10     |                    | ms              | 3     |
| Output Data Rate                           |                                 |                     | 1.5625 |        | <mark>32000</mark> | Hz              | 2     |

**Table 2. Accelerometer Specifications** 

- 1. Tested in production.
- 2. Guaranteed by design.
- Derived from validation or characterization of parts, not tested in production.
- Calculated from Power Spectral Density.
- 5. 20-bits data format supported in FIFO, see section 6.1.



## 3.3 ELECTRICAL SPECIFICATIONS

### 3.3.1 D.C. Electrical Characteristics

Typical Operating Circuit of section 4.2, VDD = 1.8 V, VDDIO = 1.8 V, T<sub>A</sub>=25°C, unless otherwise noted.

| PARAMETER CONDITIONS        |                                                                              |      | TYP  | MAX | UNITS | NOTES |
|-----------------------------|------------------------------------------------------------------------------|------|------|-----|-------|-------|
|                             | SUPPLY VOLTAGES                                                              |      |      |     |       |       |
| VDD                         |                                                                              | 1.71 | 1.8  | 3.6 | V     | 1     |
| VDDIO                       |                                                                              | 1.71 | 1.8  | 3.6 | V     | 1     |
|                             | SUPPLY CURRENTS                                                              |      |      |     |       |       |
|                             | 6-Axis Gyroscope + Accelerometer                                             |      | 0.88 |     | mA    | 2     |
| Low-Noise Mode              | 3-Axis Accelerometer                                                         |      | 0.28 |     | mA    | 2     |
|                             | 3-Axis Gyroscope                                                             |      | 0.73 |     | mA    | 2     |
| Full-Chip Sleep Mode        | At 25ºC                                                                      |      | 7.5  |     | μΑ    | 2     |
| TEMPERATURE RANGE           |                                                                              |      |      |     |       |       |
| Specified Temperature Range | Performance parameters are not applicable beyond Specified Temperature Range | -40  |      | +85 | °C    | 1     |

**Table 3. D.C. Electrical Characteristics** 

- 1. Guaranteed by design.
- 2. Derived from validation or characterization of parts, not tested in production.



## 3.3.2 A.C. Electrical Characteristics

Typical Operating Circuit of section 4.2, VDD = 1.8 V, VDDIO = 1.8 V,  $T_A$ =25°C, unless otherwise noted.

| PARAMETER                                                                                 | CONDITIONS                                                 | MIN                  | ТҮР                | MAX         | UNITS           | NOTES |
|-------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------|--------------------|-------------|-----------------|-------|
|                                                                                           | SUPPLII                                                    | ES .                 |                    |             |                 |       |
| Supply Ramp Time                                                                          | Monotonic ramp. Ramp rate is 10% to 90% of the final value | 0.01                 |                    | 3           | ms              | 1     |
| Power Supply Noise                                                                        |                                                            |                      | 10                 |             | mV<br>peak-peak | 1     |
|                                                                                           | TEMPERATURE                                                | SENSOR               | 1                  |             |                 |       |
| Operating Range                                                                           | Ambient                                                    | -40                  |                    | 85          | °C              | 1     |
| 25°C Output                                                                               |                                                            |                      | 0                  |             | LSB             | 3     |
| ADC Resolution                                                                            | Output in two's complement format                          |                      | 16                 |             | bits            | 2     |
| ODR                                                                                       | With Filter                                                | 25                   |                    | 8000        | Hz              | 2     |
| Room Temperature Offset                                                                   | 25°C                                                       | -5                   |                    | 5           | °C              | 3     |
| Stabilization Time                                                                        |                                                            | -                    |                    | 14000       | μs              | 2     |
| Sensitivity                                                                               | Untrimmed                                                  |                      | 132.48             |             | LSB/°C          | 1     |
| Sensitivity for FIFO data                                                                 |                                                            |                      | 2.07               |             | LSB/°C          | 1     |
| <u> </u>                                                                                  | POWER-ON                                                   | RESET                | II.                | •           |                 |       |
| Start-up time for register read/write                                                     | From power-up                                              |                      |                    | 1           | ms              | 1     |
|                                                                                           | I <sup>2</sup> C ADDR                                      | ESS                  |                    |             |                 |       |
| I <sup>2</sup> C ADDRESS                                                                  | AP_AD0 = 0<br>AP_AD0 = 1                                   |                      | 1101000<br>1101001 |             |                 |       |
|                                                                                           | DIGITAL INPUTS (FSYN                                       | IC, SCLK, SDI, CS)   |                    |             |                 |       |
| V <sub>IH</sub> , High Level Input Voltage                                                |                                                            | 0.7*VDDIO            |                    |             | V               |       |
| V <sub>IL</sub> , Low Level Input Voltage                                                 |                                                            |                      |                    | 0.3*VDDIO   | V               | 1     |
| C <sub>I</sub> , Input Capacitance                                                        |                                                            |                      | < 10               | 0.5 155.0   | pF              |       |
| ciji input dapaditanoc                                                                    |                                                            |                      | <b>\10</b>         |             | рі              |       |
| V 1811 10 1 1V 1                                                                          | DIGITAL OUTPUT (SE                                         |                      | ı                  |             |                 |       |
| V <sub>OH</sub> , High Level Output Voltage                                               | $R_{LOAD}=1 M\Omega;$                                      | 0.9*VDDIO            |                    |             | V               |       |
| V <sub>OL1</sub> , LOW-Level Output Voltage                                               | $R_{LOAD}=1 M\Omega;$                                      |                      |                    | 0.1*VDDIO   | V               |       |
| V <sub>OL.INT</sub> , INT Low-Level Output Voltage                                        | OPEN=1, 0.3 mA sink<br>Current                             |                      |                    | 0.1         | V               | 1     |
| Output Leakage Current                                                                    | OPEN=1                                                     |                      | 100                |             | nA              |       |
| t <sub>INT</sub> , INT Pulse Width                                                        | int tpulse duration= 0 , 1 (100us, 8us ) ;                 | 8                    |                    | 100         | μs              |       |
| Entry                                                                                     | I <sup>2</sup> C I/O (SCL                                  |                      |                    | 100         | μ3              |       |
| V <sub>II</sub> , LOW-Level Input Voltage                                                 | i c iyo (see,                                              | -0.5 V               |                    | 0.3*VDDIO   | V               |       |
| V <sub>IH</sub> , HIGH-Level Input Voltage                                                |                                                            | 0.7*VDDIO            |                    | VDDIO +     | V               |       |
| V <sub>hys</sub> , Hysteresis                                                             |                                                            |                      | 0.1*VDDIO          | 0.5 V       | V               |       |
| <u> </u>                                                                                  | 2 4 1                                                      |                      | 0.1 VDDIO          | <del></del> | V               | 4     |
| V <sub>OL</sub> , LOW-Level Output Voltage                                                | 3 mA sink current                                          | 0                    |                    | 0.4         | <u> </u>        | 1     |
| I <sub>OL</sub> , LOW-Level Output Current                                                | V <sub>OL</sub> =0.4 V<br>V <sub>OL</sub> =0.6 V           |                      | 3<br>6             |             | mA<br>mA        |       |
| Output Leakage Current                                                                    |                                                            |                      | 100                |             | nA              |       |
| $t_{\text{of}}\text{, Output Fall Time from }V_{\text{IHmax}}\text{ to }V_{\text{ILmax}}$ | C <sub>b</sub> bus capacitance in pf                       | 20+0.1C <sub>b</sub> |                    | 300         | ns              |       |
|                                                                                           | INTERNAL CLOC                                              | K SOURCE             |                    |             |                 |       |
| Clask Fragues av Initial Talana                                                           | CLKSEL=`2b00 or gyro inactive; 25°C                        | -3                   |                    | +3          | %               | 1     |
| Clock Frequency Initial Tolerance                                                         | CLK_SEL=`2b01 and gyro active; 25°C                        | -1.5                 |                    | +1.5        | %               | 1     |
|                                                                                           | CLK_SEL=`2b00 or gyro inactive; -40°C to +85°C             |                      |                    | ±3 % 1      |                 |       |
| Frequency Variation over Temperature                                                      | uency Variation over Temperature                           |                      | %                  | 1           |                 |       |
|                                                                                           | EXTERNAL CLOC                                              | K SOURCE             | 1                  |             |                 |       |
| Clock Frequency                                                                           |                                                            | 31                   | 32                 | 50          | kHz             | 1     |

**Table 4. A.C. Electrical Characteristics** 

#### Notes:

- 1. Based on characterization. Not tested in production.
- 2. Guaranteed by design.
- 3. Production tested.

Page 14 of 110



## 3.4 I<sup>2</sup>C TIMING CHARACTERIZATION

Typical Operating Circuit of section 4.2, VDD = 1.8 V, VDDIO = 1.8 V, T<sub>A</sub>=25°C, unless otherwise noted.

| Parameters                                                        | Conditions                                | Min  | Typical | Max  | Units | Notes |
|-------------------------------------------------------------------|-------------------------------------------|------|---------|------|-------|-------|
| I <sup>2</sup> C TIMING                                           | I <sup>2</sup> C FAST-MODE PLUS           |      |         |      |       |       |
| f <sub>SCL</sub> , SCL Clock Frequency                            |                                           |      |         | 1    | MHz   | 1     |
| t <sub>HD.STA</sub> , (Repeated) START Condition Hold Time        |                                           | 0.26 |         |      | μs    | 1     |
| t <sub>LOW</sub> , SCL Low Period                                 |                                           | 0.5  |         |      | μs    | 1     |
| t <sub>HIGH</sub> , SCL High Period                               |                                           | 0.26 |         |      | μs    | 1     |
| t <sub>SU.STA</sub> , Repeated START Condition Setup Time         |                                           | 0.26 |         |      | μs    | 1     |
| t <sub>HD.DAT</sub> , SDA Data Hold Time                          |                                           | 0    |         |      | μs    | 1     |
| t <sub>SU.DAT</sub> , SDA Data Setup Time                         |                                           | 50   |         |      | ns    | 1     |
| t <sub>r</sub> , SDA and SCL Rise Time                            | C <sub>b</sub> bus cap. from 10 to 400 pF |      |         | 120  | ns    | 1     |
| t <sub>f</sub> , SDA and SCL Fall Time                            | C <sub>b</sub> bus cap. from 10 to 400 pF |      |         | 120  | ns    | 1     |
| t <sub>SU.STO</sub> , STOP Condition Setup Time                   |                                           | 0.5  |         |      | μs    | 1     |
| t <sub>BUF</sub> , Bus Free Time Between STOP and START Condition |                                           | 0.5  |         |      | μs    | 1     |
| C <sub>b</sub> , Capacitive Load for each Bus Line                |                                           |      | < 400   |      | pF    | 1     |
| t <sub>VD.DAT</sub> , Data Valid Time                             |                                           |      |         | 0.45 | μs    | 1     |
| t <sub>VD.ACK</sub> , Data Valid Acknowledge Time                 |                                           |      |         | 0.45 | μs    | 1     |

Table 5. I<sup>2</sup>C Timing Characteristics

#### Notes:

1. Based on characterization of 5 parts over temperature and voltage as mounted on evaluation board or in sockets



Figure 1. I<sup>2</sup>C Bus Timing Diagram



### 3.5 SPI TIMING CHARACTERIZATION – 4-WIRE SPI MODE

Typical Operating Circuit of section 4.2, VDD = 1.8 V, VDDIO = 1.8 V, T<sub>A</sub>=25°C, unless otherwise noted.

| PARAMETERS                                     | CONDITIONS                | MIN | TYP | MAX  | UNITS | NOTES |
|------------------------------------------------|---------------------------|-----|-----|------|-------|-------|
| SPI TIMING                                     |                           |     |     |      |       |       |
| f <sub>SPC</sub> , SCLK Clock Frequency        | Default                   |     |     | 24   | MHz   | 1     |
| t <sub>LOW</sub> , SCLK Low Period             |                           | 17  |     |      | ns    | 1     |
| t <sub>HIGH</sub> , SCLK High Period           |                           | 17  |     |      | ns    | 1     |
| t <sub>SU.CS</sub> , CS Setup Time             |                           | 39  |     |      | ns    | 1     |
| t <sub>HD.CS</sub> , CS Hold Time              |                           | 18  |     |      | ns    | 1     |
| t <sub>SU.SDI</sub> , SDI Setup Time           |                           | 13  |     |      | ns    | 1     |
| t <sub>HD.SDI</sub> , SDI Hold Time            |                           | 8   |     |      | ns    | 1     |
| t <sub>VD.SDO</sub> , SDO Valid Time           | C <sub>load</sub> = 20 pF |     |     | 21.5 | ns    | 1     |
| t <sub>HD.SDO</sub> , SDO Hold Time            | C <sub>load</sub> = 20 pF | 3.5 |     |      | ns    | 1     |
| t <sub>DIS.SDO</sub> , SDO Output Disable Time |                           |     |     | 28   | ns    | 1     |
| t <sub>Fall</sub> , SCLK Fall Time             |                           |     |     | 16   | ns    | 2     |
| t <sub>Rise</sub> , SCLK Rise Time             |                           |     |     | 16   | ns    | 2     |

Table 6. 4-Wire SPI Timing Characteristics (24-MHz Operation)

- 1. Based on characterization of 5 parts over temperature and voltage as mounted on evaluation board or in sockets
- 2. Based on design and device characterization



Figure 2. 4-Wire SPI Bus Timing Diagram



### 3.6 SPI TIMING CHARACTERIZATION – 3-WIRE SPI MODE

Typical Operating Circuit of section 4.2, VDD = 1.8 V, VDDIO = 1.8 V, T<sub>A</sub>=25°C, unless otherwise noted.

| PARAMETERS                                       | CONDITIONS                | MIN | TYP | MAX  | UNITS | NOTES |
|--------------------------------------------------|---------------------------|-----|-----|------|-------|-------|
| SPI TIMING                                       |                           |     |     |      |       |       |
| f <sub>SPC</sub> , SCLK Clock Frequency          | Default                   |     |     | 24   | MHz   | 1     |
| t <sub>LOW</sub> , SCLK Low Period               |                           | 17  |     |      | ns    | 1     |
| t <sub>HIGH</sub> , SCLK High Period             |                           | 17  |     |      | ns    | 1     |
| t <sub>SU.CS</sub> , CS Setup Time               |                           | 39  |     |      | ns    | 1     |
| t <sub>HD.CS</sub> , CS Hold Time                |                           | 5   |     |      | ns    | 1     |
| t <sub>SU.SDIO</sub> , SDIO Input Setup Time     |                           | 13  |     |      | ns    | 1     |
| t <sub>HD.SDIO</sub> , SDIO Input Hold Time      |                           | 8   |     |      | ns    | 1     |
| t <sub>VD.SDIO</sub> , SDIO Output Valid Time    | C <sub>load</sub> = 20 pF |     |     | 18.5 | ns    | 1     |
| t <sub>HD.SDIO</sub> , SDIO Output Hold Time     | C <sub>load</sub> = 20 pF | 3.5 |     |      | ns    | 1     |
| t <sub>DIS.SDIO</sub> , SDIO Output Disable Time |                           |     |     | 28   | ns    | 1     |
| t <sub>Fall</sub> , SCLK Fall Time               |                           |     |     | 16   | ns    | 2     |
| t <sub>Rise</sub> , SCLK Rise Time               |                           |     |     | 16   | ns    | 2     |

Table 7. 3-Wire SPI Timing Characteristics (24-MHz Operation)

- 1. Based on characterization of 5 parts over temperature and voltage as mounted on evaluation board or in sockets
- 2. Based on design and device characterization



Figure 3. 3-Wire SPI Bus Timing Diagram



## 3.7 RTC (CLKIN) TIMING CHARACTERIZATION

Typical Operating Circuit of section 4.2, VDD = 1.8 V, VDDIO = 1.8 V, T<sub>A</sub>=25°C, unless otherwise noted.

| PARAMETERS                                   | CONDITIONS | MIN | TYP | MAX | UNITS | NOTES |
|----------------------------------------------|------------|-----|-----|-----|-------|-------|
| RTC (CLKIN) TIMING                           |            |     |     |     |       |       |
| F <sub>RTC</sub> , RTC Clock Frequency       | Default    | 31  | 32  | 50  | kHz   |       |
| t <sub>HIGHRTC</sub> , RTC Clock High Period |            | 1   |     |     | μs    |       |
| t <sub>RiseRTC</sub> , RTC Clock Rise Time   |            | 5   |     | 500 | ns    |       |
| t <sub>FalirtC</sub> , RTC Clock Fall Time   |            | 5   |     | 500 | ns    |       |

**Table 8. RTC Timing Characteristics** 



Figure 4. RTC Timing Diagram



### 3.8 ABSOLUTE MAXIMUM RATINGS

Stress above those listed as "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to the absolute maximum ratings conditions for extended periods may affect device reliability.

| Parameter                                | Rating                              |
|------------------------------------------|-------------------------------------|
| Supply Voltage, VDD                      | -0.5 V to +4 V                      |
| Supply Voltage, VDDIO                    | -0.5 V to +4 V                      |
| Input Voltage Level (FSYNC, SCL, SDA)    | -0.5 V to VDDIO + 0.5 V             |
| Acceleration (Any Axis, unpowered)       | 20,000g for 0.2 ms                  |
| Operating Temperature Range              | -40°C to +85°C                      |
| Storage Temperature Range                | -40°C to +125°C                     |
| Electrostatic Discharge (ESD) Protection | 2 kV (HBM);<br>500 V (CDM)          |
| Latch-up                                 | JEDEC Class II (2),125°C<br>±100 mA |

**Table 9. Absolute Maximum Ratings** 



## **4** APPLICATIONS INFORMATION

## 4.1 PIN OUT DIAGRAM AND SIGNAL DESCRIPTION

| Pin Number | Pin Name                     | Pin Description                                                                                                                                            |
|------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1          | AP_SDO / AP_AD0              | AP_SDO: AP SPI serial data output (4-wire mode); AP_ADO: AP I3C <sup>SM</sup> / I <sup>2</sup> C slave address LSB                                         |
| 2          | RESV                         | No Connect or Connect to GND                                                                                                                               |
| 3          | RESV                         | No Connect or Connect to GND                                                                                                                               |
| 4          | INT1 / INT                   | INT1: Interrupt 1 (Note: INT1 can be push-pull or open drain) INT: All interrupts mapped to pin 4                                                          |
| 5          | VDDIO                        | IO power supply voltage                                                                                                                                    |
| 6          | GND                          | Power supply ground                                                                                                                                        |
| 7          | RESV                         | Connect to GND                                                                                                                                             |
| 8          | VDD                          | Power supply voltage                                                                                                                                       |
| 9          | INT2 / FSYNC / CLKIN         | INT2: Interrupt 2 (Note: INT2 can be push-pull or open drain) FSYNC: Frame sync input; Connect to GND if FSYNC not used CLKIN: External clock input        |
| 10         | RESV                         | No Connect or Connect to GND                                                                                                                               |
| 11         | RESV                         | No Connect or Connect to GND                                                                                                                               |
| 12         | AP_CS                        | AP SPI Chip select (AP SPI interface); Connect to VDDIO if using AP I3C <sup>SM</sup> / I <sup>2</sup> C interface                                         |
| 13         | AP_SCL / AP_SCLK             | AP_SCL: AP I3C <sup>SM</sup> / I <sup>2</sup> C serial clock; AP_SCLK: AP SPI serial clock                                                                 |
| 14         | AP_SDA / AP_SDIO /<br>AP_SDI | AP_SDA: AP I3C <sup>SM</sup> / I <sup>2</sup> C serial data; AP_SDIO: AP SPI serial data I/O (3-wire mode); AP_SDI: AP SPI serial data input (4-wire mode) |

**Table 10. Signal Descriptions** 



Figure 5. Pin Out Diagram for ICM-42688-P 2.5x3.0x0.91 mm LGA

## 4.2 TYPICAL OPERATING CIRCUIT



Figure 6. ICM-42688-P Application Schematic (I3CSM / I<sup>2</sup>C Interface to Host)

Note:  $I^2C$  lines are open drain and pull-up resistors (e.g. 10  $k\Omega$ ) are required.



Figure 7. ICM-42688-P Application Schematic (SPI Interface to Host)



## 4.3 BILL OF MATERIALS FOR EXTERNAL COMPONENTS

| Component               | Label | Specification   | Quantity |
|-------------------------|-------|-----------------|----------|
| VDD Burness Connections | C1    | X7R, 0.1μF ±10% | 1        |
| VDD Bypass Capacitors   | C2    | X7R, 2.2μF ±10% | 1        |
| VDDIO Bypass Capacitor  | С3    | X7R, 10nF ±10%  | 1        |

**Table 11. Bill of Materials** 

Document Number: DS-000347 Revision: 1.7



#### 4.4 SYSTEM BLOCK DIAGRAM



Figure 8. ICM-42688-P System Block Diagram

Note: The above block diagram is an example. Please refer to the pin-out (section 4.1) for other configuration options.

#### 4.5 **OVERVIEW**

The ICM-42688-P is comprised of the following key blocks and functions:

- Three-axis MEMS rate gyroscope sensor with 16-bit ADCs and signal conditioning
  - o 20-bits data format support in FIFO for high-data resolution (see section 6 for details)
- Three-axis MEMS accelerometer sensor with 16-bit ADCs and signal conditioning
  - 20-bits data format support in FIFO for high-data resolution (see section 6 for details)
- I3C<sup>SM</sup>, I<sup>2</sup>C and SPI serial communications interfaces
- Self-Test
- Clocking
- Sensor Data Registers
- FIFO
- Interrupts
- Digital-Output Temperature Sensor
- Bias and LDOs
- Charge Pump
- Standard Power Modes

#### 4.6 THREE-AXIS MEMS GYROSCOPE WITH 16-BIT ADCS AND SIGNAL CONDITIONING

The ICM-42688-P includes a vibratory MEMS rate gyroscope, which detects rotation about the X-, Y-, and Z- Axes. When the gyroscope is rotated about any of the sense axes, the Coriolis Effect causes a vibration that is detected by a capacitive pickoff. The resulting signal is amplified, demodulated, and filtered to produce a voltage that is proportional to the angular rate. This voltage is digitized using on-chip Analog-to-Digital Converters (ADCs) to sample each axis. The full-scale range of the gyro sensors may be digitally programmed to ±15.625, ±31.25, ±62.5, ±125, ±250, ±500, ±1000, and ±2000 degrees per second (dps).

#### 4.7 THREE-AXIS MEMS ACCELEROMETER WITH 16-BIT ADCS AND SIGNAL CONDITIONING

The ICM-42688-P includes a 3-Axis MEMS accelerometer. Acceleration along a particular axis induces displacement of a proof mass in the MEMS structure, and capacitive sensors detect the displacement. The ICM-42688-P architecture reduces the accelerometers' susceptibility to fabrication variations as well as to thermal drift. When the device is placed on a flat surface, it will measure 0g on the X- and Y-axes and +1g on the Z-axis. The accelerometers' scale factor is calibrated at the factory and is nominally independent of supply voltage. The full-scale range of the digital output can be adjusted to ±2g, ±4g, ±8g and ±16g.

## 4.8 I3CSM, I2C AND SPI HOST INTERFACE

The ICM-42688-P communicates to the application processor using an I3 $C^{SM}$ , I<sup>2</sup>C, or SPI serial interface. The ICM-42688-P always acts as a slave when communicating to the application processor.

## 4.9 SELF-TEST

Self-test allows for the testing of the mechanical and electrical portions of the sensors. The self-test for each measurement axis can be activated by means of the gyroscope and accelerometer self-test registers.



When the self-test is activated, the electronics cause the sensors to be actuated and produce an output signal. The output signal is used to observe the self-test response.

The self-test response is defined as follows:

Self-test response = Sensor output with self-test enabled - Sensor output with self-test disabled

When the value of the self-test response is within the specified min/max limits of the product specification, the part has passed self-test. When the self-test response exceeds the min/max values, the part is deemed to have failed self-test.

#### 4.10 CLOCKING

The ICM-42688-P has a flexible clocking scheme, allowing external or internal clock sources to be used for the internal synchronous circuitry. This synchronous circuitry includes the signal conditioning and ADCs, and various control circuits and registers.

The CLKIN pin on ICM-42688-P provides the ability to input an external clock. A highly accurate external clock may be used rather than the internal clocks sources, if greater clock accuracy is desired. External clock input supports highly accurate clock input from 31kHz to 50kHz, resulting in improvement of the following:

- a) ODR uncertainty due to process, temperature, operating mode (PLL vs. RCOSC), and design limitations. This uncertainty can be as high as ±8% in RCOSC mode and ±1% in PLL mode. The CLKIN, assuming a 50ppm or better 32.768kHz source, will improve the ODR accuracy from ±80,000ppm to ±50ppm in RCOSC mode, or from ±10,000ppm to ±50ppm in PLL mode.
- b) System level sensitivity error. Any clock uncertainty directly impacts gyroscope sensitivity at the system level. Sophisticated systems can estimate ODR inaccuracy to some extent, but not to the extent improved by using CLKIN.
- c) System-level clock/sensor synchronization. When using CLKIN, the accelerometer and gyroscope are on the same clock as the host. There is no need to continually re-synchronize the sensor data as the sensor sample points and period are known to be in exact alignment with the common system clock.
- d) CLKIN helps EIS (Electronic Image Stabilization) performance by providing:
  - Very accurate gyroscope sample points for use during integration to find true angular displacement.
  - o Automatic time alignment between the motion sensor and the host and potentially the camera system.
- e) Other applications that benefit from CLKIN include navigation, gaming, robotics.

Allowable internal sources for generating the internal clock are:

- a) An internal relaxation oscillator
- b) Auto-select between internal relaxation oscillator and gyroscope MEMS oscillator to use the best available source

For internal sources, the only setting supporting specified performance in all modes is option b). It is recommended that option b) be used when using internal clock source.

## 4.11 SENSOR DATA REGISTERS

The sensor data registers contain the latest gyroscope, accelerometer, and temperature measurement data. They are read-only registers, and are accessed via the serial interface. Data from these registers may be read anytime.

#### 4.12 INTERRUPTS

Interrupt functionality is configured via the Interrupt Configuration register. Items that are configurable include the interrupt pins configuration, the interrupt latching and clearing method, and triggers for the interrupt. Items that can trigger an interrupt are (1) Clock generator locked to new reference oscillator (used when switching clock sources); (2) new data is available to be read (from the FIFO and Data registers); (3) accelerometer event interrupts; (4) FIFO watermark; (5) FIFO overflow. The interrupt status can be read from the Interrupt Status register.

Page 24 of 110



#### 4.13 DIGITAL-OUTPUT TEMPERATURE SENSOR

An on-chip temperature sensor and ADC are used to measure the ICM-42688-P die temperature. The readings from the ADC can be read from the FIFO or the Sensor Data registers.

Temperature sensor register data TEMP DATA is updated with new data at max(Accelerometer ODR, Gyroscope ODR).

Temperature data value from the sensor data registers can be converted to degrees centigrade by using the following formula:

Temperature in Degrees Centigrade = (TEMP\_DATA / 132.48) + 25

Temperature data stored in FIFO is an 8-bit quantity, FIFO\_TEMP\_DATA. It can be converted to degrees centigrade by using the following formula:

Temperature in Degrees Centigrade = (FIFO TEMP DATA / 2.07) + 25

#### 4.14 BIAS AND LDOS

The bias and LDO section generates the internal supply and the reference voltages and currents required by the ICM-42688-P.

#### 4.15 CHARGE PUMP

An on-chip charge pump generates the high voltage required for the MEMS oscillator.

#### 4.16 STANDARD POWER MODES

The following table lists the user-accessible power modes for ICM-42688-P.

| Mode | Name                         | Gyro     | Accel       |
|------|------------------------------|----------|-------------|
| 1    | Sleep Mode                   | Off      | Off         |
| 2    | Standby Mode                 | Drive On | Off         |
| 3    | Accelerometer Low-Power Mode | Off      | Duty-Cycled |
| 4    | Accelerometer Low-Noise Mode | Off      | On          |
| 5    | Gyroscope Low-Noise Mode     | On       | Off         |
| 6    | 6-Axis Low-Noise Mode        | On       | On          |

Table 12. Standard Power Modes for ICM-42688-P

Page 25 of 110



## 5 SIGNAL PATH

The following figure shows a block diagram of the signal path for ICM-42688-P.



Figure 9. ICM-42688-P Signal Path

The signal path starts with ADCs for the gyroscope and accelerometer. Other components of the signal path are described below in further detail.

### 5.1 SUMMARY OF PARAMETERS USED TO CONFIGURE THE SIGNAL PATH

The following table shows the parameters that can control the signal path.

| Parameter Name          | Description                                                                                             |
|-------------------------|---------------------------------------------------------------------------------------------------------|
| GYRO_AAF_DIS            | Disables the Gyroscope Anti Alias Filter (AAF)                                                          |
| GYRO AAF DELT           | Three parameters required to program the gyroscope AAF. This is a 2 <sup>nd</sup> order filter with     |
| GYRO_AAF_DELTSQR        | programmable low pass filter. This is a user programmable filter which can be used to select            |
| GYRO_AAF_BITSHIFT       | the desired BW. This filter allows trading off RMS noise vs. latency for a given ODR.                   |
| ACCEL_AAF_DIS           | Disables the Accelerometer Anti Alias Filter                                                            |
| ACCEL_AAF_DEL           | Three parameters required to program the accelerometer AAF. This is a 2 <sup>nd</sup> order filter with |
| ACCEL_AAF_DELTSQR       | programmable low pass filter. This is a user programmable filter which can be used to select            |
| ACCEL_AAF_BITSHIFT      | the desired BW. This filter allows trading off RMS noise vs. latency for a given ODR.                   |
| GYRO_NF_DIS             | Disables the gyro Notch Filter                                                                          |
|                         | Factory trimmed parameters, designed to position a Notch at or near the sense peak                      |
| GYRO_X/Y/Z_NF_COSWZ     | frequency of Gyro. This allows the user to suppress only sense peak contribution to noise,              |
| GYRO_X/Y/Z_NF_COSWZ_SEL | while still maintaining a low latency high BW/ODR interface from the Sensor. This filter is             |
|                         | available only in Gyro, and the parameters for X, Y, and Z are chosen independently.                    |
| GYRO NF BW SEL          | Factory trimmed parameter to cancel noise created by sense peak from Gyro. This parameter               |
|                         | is common to all three axes                                                                             |

## 5.2 NOTCH FILTER

The Notch Filter is supported only for the gyroscope signal path. The following steps can be used to program the notch filter. Note that the notch filter is specific to each axis in the gyroscope, so the X, Y and Z axis can be programmed independently.

### Frequency of Notch Filter (each axis)

To operate the Notch filter, two parameters NF\_COSWZ, and NF\_COSWZ\_SEL must be programmed for each gyroscope axis.

Parameters NF\_COSWZ are defined for each axis of the gyroscope as GYRO\_X\_NF\_COSWZ (register bank 1, register 0x0Fh & register 0x12h), GYRO\_Y\_NF\_COSWZ (register bank 1, register 0x10h & register 0x12h), GYRO\_Z\_NF\_COSWZ (register bank 1, register 0x11h & register 0x12h). Note that the parameters have 9-bit values across two different registers.



Parameters NF COSWZ SEL are defined for each axis of the gyroscope as GYRO X NF COSWZ SEL (register bank 1, register 0x12h, bit 3), GYRO Y NF COSWZ SEL (register bank 1, register 0x12h, bit 4), GYRO Z NF COSWZ SEL (register bank 1, register 0x12h, bit 5).

Each value must be calculated using the steps described below, and programmed into the corresponding register locations mentioned above.

fdesired is the desired frequency of the Notch Filter in kHz. The lower bound for fdesired is 1kHz, and the upper bound is 3kHz. Operating the notch filter outside this range is not supported.

```
Step1: COSWZ = cos(2*pi*fdesired/32)
Step2:
   If abs(COSWZ)≤0.875
         NF_COSWZ = \frac{round}{COSWZ*256}
         NF COSWZ SEL = 0
   else
         NF_COSWZ_SEL = 1
         if COSWZ > 0.875
               NF COSWZ = round [8*(1-COSWZ)*256]
         else if COSWZ < -0.875
               NF COSWZ = round [-8*(1+COSWZ)*256]
         end
   End
```

### Bandwidth of Notch Filter (common to all axes)

The notch filter allows the user to control the width of the notch from eight possible values using a 3-bit parameter GYRO NF BW SEL in register bank 1, register 0x13h, bits 6:4. This parameter is common to all three axes.

| GYRO_NF_BW_SEL | Notch Filter Bandwidth (Hz) |
|----------------|-----------------------------|
| 0              | 1449                        |
| 1              | 680                         |
| 2              | 329                         |
| 3              | 162                         |
| 4              | 80                          |
| 5              | 40                          |
| 6              | 20                          |
| 7              | 10                          |

The notch filter can be selected or bypassed by using the parameter GYRO\_NF\_DIS in register bank 1, register 0x0Bh, bit 0 as shown below.

| GYRO_NF_DIS | Function             |
|-------------|----------------------|
| 0           | Enable notch filter  |
| 1           | Disable notch filter |

Page 27 of 110

#### 5.3 ANTI-ALIAS FILTER

Anti-alias filters for gyroscope and accelerometer can be independently programmed to have bandwidths ranging from 42 Hz to 3979 Hz. To program the anti-alias filter for a required bandwidth, use the table below to map the bandwidth to register values as shown:

- a. Register bank 2, register 0x03h, bits 6:1, ACCEL\_AAF\_DELT: Code from 1 to 63 that allows programming the bandwidth for accelerometer anti-alias filter
- b. Register bank 2, register 0x04h, bits 7:0 and Bank 2, register 0x05h, bits 3:0, ACCEL\_AAF\_DELTSQR: Square of the delt value for accelerometer
- c. Register bank 2, register 0x05h, bits 7:4, ACCEL\_AAF\_BITSHIFT: Bitshift value for accelerometer used in hardware implementation
- d. Register bank 1, register 0x0Ch, bits 5:0, GYRO\_AAF\_DELT: Code from 1 to 63 that allows programming the bandwidth for gyroscope anti-alias filter
- e. Register bank 1, register 0x0Dh, bits 7:0 and Bank 1, register 0x0Eh, bits 3:0, GYRO\_AAF\_DELTSQR: Square of the delt value for gyroscope
- f. Register bank 1, register 0x0Eh, bits 7:4, GYRO\_AAF\_BITSHIFT: Bitshift value for gyroscope used in hardware implementation

| 3dB Bandwidth (Hz) | ACCEL_AAF_DELT; GYRO_AAF_DELT | ACCEL_AAF_DELTSQR; GYRO_AAF_DELTSQR | ACCEL_AAF_BITSHIFT; GYRO_AAF_BITSHIFT |
|--------------------|-------------------------------|-------------------------------------|---------------------------------------|
| 42                 | 1                             | 1                                   | 15                                    |
| 84                 | 2                             | 4                                   | 13                                    |
| 126                | 3                             | 9                                   | 12                                    |
| 170                | 4                             | 16                                  | 11                                    |
| 213                | 5                             | 25                                  | 10                                    |
| 258                | 6                             | 36                                  | 10                                    |
| 303                | 7                             | 49                                  | 9                                     |
| 348                | 8                             | 64                                  | 9                                     |
| 394                | 9                             | 81                                  | 9                                     |
| 441                | 10                            | 100                                 | 8                                     |
| 488                | 11                            | 122                                 | 8                                     |
| 536                | 12                            | 144                                 | 8                                     |
| 585                | 13                            | 170                                 | 8                                     |
| 634                | 14                            | 196                                 | 7                                     |
| 684                | 15                            | 224                                 | 7                                     |
| 734                | 16                            | 256                                 | 7                                     |
| 785                | 17                            | 288                                 | 7                                     |
| 837                | 18                            | 324                                 | 7                                     |
| 890                | 19                            | 360                                 | 6                                     |
| 943                | 20                            | 400                                 | 6                                     |
| 997                | 21                            | 440                                 | 6                                     |
| 1051               | 22                            | 488                                 | 6                                     |
| 1107               | 23                            | 528                                 | 6                                     |
| 1163               | 24                            | 576                                 | 6                                     |
| 1220               | 25                            | 624                                 | 6                                     |
| 1277               | 26                            | 680                                 | 6                                     |
| 1336               | 27                            | 736                                 | 5                                     |

Page 28 of 110



| 1395 | 28 | 784  | 5 |
|------|----|------|---|
| 1454 | 29 | 848  | 5 |
| 1515 | 30 | 896  | 5 |
| 1577 | 31 | 960  | 5 |
| 1639 | 32 | 1024 | 5 |
| 1702 | 33 | 1088 | 5 |
| 1766 | 34 | 1152 | 5 |
| 1830 | 35 | 1232 | 5 |
| 1896 | 36 | 1296 | 5 |
| 1962 | 37 | 1376 | 4 |
| 2029 | 38 | 1440 | 4 |
| 2097 | 39 | 1536 | 4 |
| 2166 | 40 | 1600 | 4 |
| 2235 | 41 | 1696 | 4 |
| 2306 | 42 | 1760 | 4 |
| 2377 | 43 | 1856 | 4 |
| 2449 | 44 | 1952 | 4 |
| 2522 | 45 | 2016 | 4 |
| 2596 | 46 | 2112 | 4 |
| 2671 | 47 | 2208 | 4 |
| 2746 | 48 | 2304 | 4 |
| 2823 | 49 | 2400 | 4 |
| 2900 | 50 | 2496 | 4 |
| 2978 | 51 | 2592 | 4 |
| 3057 | 52 | 2720 | 4 |
| 3137 | 53 | 2816 | 3 |
| 3217 | 54 | 2944 | 3 |
| 3299 | 55 | 3008 | 3 |
| 3381 | 56 | 3136 | 3 |
| 3464 | 57 | 3264 | 3 |
| 3548 | 58 | 3392 | 3 |
| 3633 | 59 | 3456 | 3 |
| 3718 | 60 | 3584 | 3 |
| 3805 | 61 | 3712 | 3 |
| 3892 | 62 | 3840 | 3 |
| 3979 | 63 | 3968 | 3 |
|      |    |      |   |

The anti-alias filter can be selected or bypassed for the gyroscope by using the parameter GYRO\_AAF\_DIS in register bank 1, register 0x0Bh, bit 1 as shown below.

| GYRO_AAF_DIS | Function                               |
|--------------|----------------------------------------|
| 0            | Enable gyroscope anti-aliasing filter  |
| 1            | Disable gyroscope anti-aliasing filter |



The anti-alias filter can be selected or bypassed for the accelerometer by using the parameter ACCEL\_AAF\_DIS in register bank 2, register 0x03h, bit 0 as shown below.

| ACCEL_AAF_DIS | Function                                   |
|---------------|--------------------------------------------|
| 0             | Enable accelerometer anti-aliasing filter  |
| 1             | Disable accelerometer anti-aliasing filter |

## 5.4 USER PROGRAMMABLE OFFSET

Gyroscope and accelerometer offsets can be programmed by the user by using registers OFFSET\_USER0, through OFFSET\_USER8, in bank 0, registers 0x77h through 0x7Fh (bank 4) as shown below.

| Register Address | Register Name | Bits | Function                                                                                       |
|------------------|---------------|------|------------------------------------------------------------------------------------------------|
| 0x77h            | OFFSET_USER0  | 7:0  | Lower bits of X-gyro offset programmed by user.  Max value is ±64 dps, resolution is 1/32 dps. |
| 0x78h            | OFFSET LISERA | 3:0  | Upper bits of X-gyro offset programmed by user.  Max value is ±64 dps, resolution is 1/32 dps. |
| UX7811           | OFFSET_USER1  | 7:4  | Upper bits of Y-gyro offset programmed by user.  Max value is ±64 dps, resolution is 1/32 dps. |
| 0x79h            | OFFSET_USER2  | 7:0  | Lower bits of Y-gyro offset programmed by user.  Max value is ±64 dps, resolution is 1/32 dps. |
| 0x7Ah            | OFFSET_USER3  | 7:0  | Lower bits of Z-gyro offset programmed by user.  Max value is ±64 dps, resolution is 1/32 dps. |
| 0705             | OFFCET LICEDA | 3:0  | Upper bits of Z-gyro offset programmed by user.  Max value is ±64 dps, resolution is 1/32 dps. |
| 0x7Bh            | OFFSET_USER4  | 7:4  | Upper bits of X-accel offset programmed by user.  Max value is ±1 g, resolution is 0.5 g.      |
| 0x7Ch            | OFFSET_USER5  | 7:0  | Lower bits of X-accel offset programmed by user.  Max value is ±1 g, resolution is 0.5 g.      |
| 0x7Dh            | OFFSET_USER6  | 7:0  | Lower bits of Y-accel offset programmed by user.  Max value is ±1 g, resolution is 0.5 g.      |
|                  |               | 3:0  | Upper bits of Y-accel offset programmed by user.  Max value is ±1 g, resolution is 0.5 g.      |
| 0x7Eh            | OFFSET_USER7  | 7:4  | Upper bits of Z-accel offset programmed by user.  Max value is ±1 g, resolution is 0.5 g.      |
| 0x7Fh            | OFFSET_USER8  | 7:0  | Lower bits of Z-accel offset programmed by user.  Max value is ±1 g, resolution is 0.5 g.      |

## 5.5 UI FILTER BLOCK

The UI filter block can be programmed to select filter order and bandwidth independently for gyroscope and accelerometer.

Gyroscope filter order can be selected by programming the parameter GYRO\_UI\_FILT\_ORD in register bank 0, register 0x51h, bits 3:2, as shown below.

Page 30 of 110

| GYRO_UI_FILT_ORD | Filter Order          |
|------------------|-----------------------|
| 00               | 1 <sup>st</sup> order |
| 01               | 2 <sup>nd</sup> order |
| 10               | 3 <sup>rd</sup> order |
| 11               | Reserved              |

Accelerometer filter order can be selected by programming the parameter ACCEL\_UI\_FILT\_ORD in register bank 0, register 0x53h, bits 4:3, as shown below.

| ACCEL_UI_FILT_ORD | Filter Order          |
|-------------------|-----------------------|
| 00                | 1 <sup>st</sup> order |
| 01                | 2 <sup>nd</sup> order |
| 10                | 3 <sup>rd</sup> order |
| 11                | Reserved              |

Gyroscope and accelerometer filter 3dB bandwidth can be selected by programming the parameter GYRO UI FILT BW in register bank 0, register 0x52h, bits 3:0, and the parameter ACCEL\_UI\_FILT\_BW in register bank 0, register 0x52h, bits 7:4, as shown below. The values shown in bold correspond to low noise and the values shown in italics correspond to low latency. User can select the appropriate setting based on the application requirements for power and latency. Corresponding Noise Bandwidth (NBW) and Group Delay values are also shown.

## 1st Order Filter 3dB Bandwidth, Noise Bandwidth (NBW), Group Delay

|                |         | 3dB Ban | 3dB Bandwidth (Hz) for GYRO/ACCEL_UI_FILT_ORD=0 (1st order filter) |       |       |         |         |      |      |       |        |  |  |
|----------------|---------|---------|--------------------------------------------------------------------|-------|-------|---------|---------|------|------|-------|--------|--|--|
|                |         |         |                                                                    |       | GYRO, | /ACCEL_ | UI_FILT | _BW  |      |       |        |  |  |
| GYRO/ACCEL_ODR | ODR(Hz) | 0       | 1                                                                  | 2     | 3     | 4       | 5       | 6    | 7    | 14    | 15     |  |  |
| 1              | 32000   |         | 8400.0                                                             |       |       |         |         |      |      |       |        |  |  |
| 2              | 16000   |         |                                                                    |       |       | 419     | 4.1     |      |      |       |        |  |  |
| 3              | 8000    |         | 2096.3                                                             |       |       |         |         |      |      |       |        |  |  |
| 4              | 4000    |         |                                                                    |       |       | 104     | 8.1     |      |      |       |        |  |  |
| 5              | 2000    |         |                                                                    |       |       | 524     | 1.0     |      |      |       |        |  |  |
| 6              | 1000    | 498.3   | 227.2                                                              | 188.9 | 111.0 | 92.4    | 59.6    | 48.8 | 23.9 | 262.0 | 2096.3 |  |  |
| 15             | 500     | 249.1   | 113.6                                                              | 94.4  | 55.5  | 46.2    | 29.8    | 24.4 | 11.9 | 131.0 | 1048.1 |  |  |
| 7              | 200     | 99.6    | 90.9                                                               | 75.5  | 44.4  | 37.0    | 23.8    | 19.5 | 9.6  | 104.8 | 419.2  |  |  |
| 8              | 100     | 49.8    | 90.9                                                               | 75.5  | 44.4  | 37.0    | 23.8    | 19.5 | 9.6  | 104.8 | 209.6  |  |  |
| 9              | 50      | 24.9    | 90.9                                                               | 75.5  | 44.4  | 37.0    | 23.8    | 19.5 | 9.6  | 104.8 | 104.8  |  |  |
| 10             | 25      | 12.5    | 90.9                                                               | 75.5  | 44.4  | 37.0    | 23.8    | 19.5 | 9.6  | 104.8 | 52.4   |  |  |
| 11             | 12.5    | 12.5    | 90.9                                                               | 75.5  | 44.4  | 37.0    | 23.8    | 19.5 | 9.6  | 104.8 | 52.4   |  |  |

|                | NBW Bandwidth (Hz) for GYRO/ACCEL_UI_FILT_ORD=0 (1st order filter) |   |                       |   |   |      |     |   |   |    |    |
|----------------|--------------------------------------------------------------------|---|-----------------------|---|---|------|-----|---|---|----|----|
|                |                                                                    |   | GYRO/ACCEL_UI_FILT_BW |   |   |      |     |   |   |    |    |
| GYRO/ACCEL_ODR | ODR(Hz)                                                            | 0 | 1                     | 2 | 3 | 4    | 5   | 6 | 7 | 14 | 15 |
| 1              | 32000                                                              |   |                       |   |   | 8831 | 1.7 |   |   |    |    |
| 2              | 16000                                                              |   | 4410.6                |   |   |      |     |   |   |    |    |
| 3              | 8000                                                               |   | 2204.6                |   |   |      |     |   |   |    |    |

Page 31 of 110



| 4  | 4000 | 1102.2 |       |       |       |       |      |      |      |       |        |  |
|----|------|--------|-------|-------|-------|-------|------|------|------|-------|--------|--|
| 5  | 2000 |        | 551.1 |       |       |       |      |      |      |       |        |  |
| 6  | 1000 | 551.1  | 230.8 | 196.3 | 126.5 | 108.9 | 75.8 | 64.1 | 34.1 | 275.6 | 2204.6 |  |
| 15 | 500  | 280.5  | 115.4 | 98.2  | 63.3  | 54.5  | 37.9 | 32.1 | 17.1 | 137.8 | 1102.2 |  |
| 7  | 200  | 112.2  | 92.4  | 78.5  | 50.6  | 43.6  | 30.3 | 25.7 | 13.7 | 110.3 | 440.9  |  |
| 8  | 100  | 56.1   | 92.4  | 78.5  | 50.6  | 43.6  | 30.3 | 25.7 | 13.7 | 110.3 | 220.5  |  |
| 9  | 50   | 28.1   | 92.4  | 78.5  | 50.6  | 43.6  | 30.3 | 25.7 | 13.7 | 110.3 | 110.3  |  |
| 10 | 25   | 14.1   | 92.4  | 78.5  | 50.6  | 43.6  | 30.3 | 25.7 | 13.7 | 110.3 | 55.2   |  |
| 11 | 12.5 | 14.1   | 92.4  | 78.5  | 50.6  | 43.6  | 30.3 | 25.7 | 13.7 | 110.3 | 55.2   |  |

|                | Group   | Delay @ | DC (ms | ) for G\ | /RO/AC | CEL_U  | I_FILT_OR | D=0 (1st | order filte | er) |     |  |
|----------------|---------|---------|--------|----------|--------|--------|-----------|----------|-------------|-----|-----|--|
|                |         |         |        |          | GYR    | RO/ACC | EL_UI_FIL | T_BW     |             |     |     |  |
| GYRO/ACCEL_ODR | ODR(Hz) | 0       | 1      | 2        | 3      | 4      | 5         | 6        | 7           | 14  | 15  |  |
| 1              | 32000   |         | 0.1    |          |        |        |           |          |             |     |     |  |
| 2              | 16000   |         |        |          |        |        | 0.1       |          |             |     |     |  |
| 3              | 8000    |         | 0.2    |          |        |        |           |          |             |     |     |  |
| 4              | 4000    |         | 0.4    |          |        |        |           |          |             |     |     |  |
| 5              | 2000    |         |        |          |        |        | 0.8       |          |             |     |     |  |
| 6              | 1000    | 0.6     | 1.8    | 2.0      | 2.8    | 3.1    | 4.1       | 4.7      | 8.1         | 1.5 | 0.2 |  |
| 15             | 500     | 1.1     | 3.6    | 4.0      | 5.5    | 6.1    | 8.1       | 9.3      | 16.2        | 3.0 | 0.4 |  |
| 7              | 200     | 2.7     | 4.4    | 5.0      | 6.8    | 7.6    | 10.2      | 11.7     | 20.3        | 3.8 | 1.0 |  |
| 8              | 100     | 5.3     | 4.4    | 5.0      | 6.8    | 7.6    | 10.2      | 11.7     | 20.3        | 3.8 | 1.9 |  |
| 9              | 50      | 10.5    | 4.4    | 5.0      | 6.8    | 7.6    | 10.2      | 11.7     | 20.3        | 3.8 | 3.8 |  |
| 10             | 25      | 21.0    | 4.4    | 5.0      | 6.8    | 7.6    | 10.2      | 11.7     | 20.3        | 3.8 | 7.5 |  |
| 11             | 12.5    | 21.0    | 4.4    | 5.0      | 6.8    | 7.6    | 10.2      | 11.7     | 20.3        | 3.8 | 7.5 |  |

## 2<sup>nd</sup> Order Filter 3dB Bandwidth, Noise Bandwidth (NBW), Group Delay

|                |         | 3dB Ban | 3dB Bandwidth (Hz) for GYRO/ACCEL_UI_FILT_ORD=1 (2nd order filter) |       |       |      |      |      |      |       |        |  |
|----------------|---------|---------|--------------------------------------------------------------------|-------|-------|------|------|------|------|-------|--------|--|
|                |         |         | GYRO/ACCEL_UI_FILT_BW                                              |       |       |      |      |      |      |       |        |  |
| GYRO/ACCEL_ODR | ODR(Hz) | 0       | 1                                                                  | 2     | 3     | 4    | 5    | 6    | 7    | 14    | 15     |  |
| 1              | 32000   |         | 8400.0                                                             |       |       |      |      |      |      |       |        |  |
| 2              | 16000   |         |                                                                    |       |       | 4194 | 1.1  |      |      |       |        |  |
| 3              | 8000    |         | 2096.3                                                             |       |       |      |      |      |      |       |        |  |
| 4              | 4000    |         | 1048.1                                                             |       |       |      |      |      |      |       |        |  |
| 5              | 2000    |         |                                                                    |       |       | 524  | .0   |      |      |       |        |  |
| 6              | 1000    | 493.3   | 230.7                                                              | 191.6 | 117.5 | 97.1 | 59.6 | 48.0 | 21.3 | 262.0 | 2096.3 |  |
| 15             | 500     | 246.7   | 115.3                                                              | 95.8  | 58.8  | 48.5 | 29.8 | 24.0 | 10.6 | 131.0 | 1048.1 |  |
| 7              | 200     | 98.7    | 92.3                                                               | 76.6  | 47.0  | 38.8 | 23.8 | 19.2 | 8.5  | 104.8 | 419.2  |  |
| 8              | 100     | 49.3    | 92.3                                                               | 76.6  | 47.0  | 38.8 | 23.8 | 19.2 | 8.5  | 104.8 | 209.6  |  |
| 9              | 50      | 24.7    | 92.3                                                               | 76.6  | 47.0  | 38.8 | 23.8 | 19.2 | 8.5  | 104.8 | 104.8  |  |
| 10             | 25      | 12.3    | 92.3                                                               | 76.6  | 47.0  | 38.8 | 23.8 | 19.2 | 8.5  | 104.8 | 52.4   |  |
| 11             | 12.5    | 12.3    | 92.3                                                               | 76.6  | 47.0  | 38.8 | 23.8 | 19.2 | 8.5  | 104.8 | 52.4   |  |

|                |         | NBW Bandwidth (Hz) for GYRO/ACCEL_UI_FILT_ORD=1 (2nd order filter) |                       |       |       |       |      |      |      |       |        |
|----------------|---------|--------------------------------------------------------------------|-----------------------|-------|-------|-------|------|------|------|-------|--------|
|                |         |                                                                    | GYRO/ACCEL_UI_FILT_BW |       |       |       |      |      |      |       |        |
| GYRO/ACCEL_ODR | ODR(Hz) | 0                                                                  | 1                     | 2     | 3     | 4     | 5    | 6    | 7    | 14    | 15     |
| 1              | 32000   |                                                                    |                       |       |       | 8831  | 1.7  |      |      |       |        |
| 2              | 16000   |                                                                    |                       |       |       | 4410  | 0.6  |      |      |       |        |
| 3              | 8000    |                                                                    | 2204.6                |       |       |       |      |      |      |       |        |
| 4              | 4000    |                                                                    | 1102.2                |       |       |       |      |      |      |       |        |
| 5              | 2000    |                                                                    | 551.1                 |       |       |       |      |      |      |       |        |
| 6              | 1000    | 551.1                                                              | 223.7                 | 189.9 | 122.7 | 102.8 | 64.7 | 52.5 | 23.7 | 275.6 | 2204.6 |
| 15             | 500     | 259.6                                                              | 111.9                 | 95.0  | 61.4  | 51.4  | 32.4 | 26.3 | 11.9 | 137.8 | 1102.2 |
| 7              | 200     | 103.9                                                              | 89.5                  | 76.0  | 49.1  | 41.2  | 25.9 | 21.0 | 9.5  | 110.3 | 440.9  |
| 8              | 100     | 52.0                                                               | 89.5                  | 76.0  | 49.1  | 41.2  | 25.9 | 21.0 | 9.5  | 110.3 | 220.5  |
| 9              | 50      | 26.0                                                               | 89.5                  | 76.0  | 49.1  | 41.2  | 25.9 | 21.0 | 9.5  | 110.3 | 110.3  |
| 10             | 25      | 13.0                                                               | 89.5                  | 76.0  | 49.1  | 41.2  | 25.9 | 21.0 | 9.5  | 110.3 | 55.2   |
| 11             | 12.5    | 13.0                                                               | 89.5                  | 76.0  | 49.1  | 41.2  | 25.9 | 21.0 | 9.5  | 110.3 | 55.2   |

|                | Group   | Group Delay @DC (ms) for GYRO/ACCEL_UI_FILT_ORD=1 (2nd order filter) |                       |     |     |     |      |      |      |     |     |
|----------------|---------|----------------------------------------------------------------------|-----------------------|-----|-----|-----|------|------|------|-----|-----|
|                |         |                                                                      | GYRO/ACCEL_UI_FILT_BW |     |     |     |      |      |      |     |     |
| GYRO/ACCEL_ODR | ODR(Hz) | 0                                                                    | 1                     | 2   | 3   | 4   | 5    | 6    | 7    | 14  | 15  |
| 1              | 32000   |                                                                      | 0.1                   |     |     |     |      |      |      |     |     |
| 2              | 16000   |                                                                      |                       |     |     |     | 0.1  |      |      |     |     |
| 3              | 8000    |                                                                      | 0.2                   |     |     |     |      |      |      |     |     |
| 4              | 4000    | 0.4                                                                  |                       |     |     |     |      |      |      |     |     |
| 5              | 2000    |                                                                      |                       |     |     |     | 0.8  |      |      |     |     |
| 6              | 1000    | 0.7                                                                  | 2.1                   | 2.4 | 3.2 | 3.7 | 5.2  | 6.1  | 12.0 | 1.5 | 0.2 |
| 15             | 500     | 1.3                                                                  | 4.1                   | 4.7 | 6.4 | 7.3 | 10.4 | 12.2 | 24.0 | 3.0 | 0.4 |
| 7              | 200     | 3.3                                                                  | 5.1                   | 5.8 | 8.0 | 9.1 | 12.9 | 15.3 | 30.0 | 3.8 | 1.0 |
| 8              | 100     | 6.5                                                                  | 5.1                   | 5.8 | 8.0 | 9.1 | 12.9 | 15.3 | 30.0 | 3.8 | 1.9 |
| 9              | 50      | 12.9                                                                 | 5.1                   | 5.8 | 8.0 | 9.1 | 12.9 | 15.3 | 30.0 | 3.8 | 3.8 |
| 10             | 25      | 25.7                                                                 | 5.1                   | 5.8 | 8.0 | 9.1 | 12.9 | 15.3 | 30.0 | 3.8 | 7.5 |
| 11             | 12.5    | 25.7                                                                 | 5.1                   | 5.8 | 8.0 | 9.1 | 12.9 | 15.3 | 30.0 | 3.8 | 7.5 |

# 3<sup>rd</sup> Order Filter 3dB Bandwidth, Noise Bandwidth (NBW), Group Delay

|                |         | 3dB Bandwidth (Hz) for GYRO/ACCEL_UI_FILT_ORD=2 (3rd order filter) |                       |       |       |      |      |      |      |       |        |
|----------------|---------|--------------------------------------------------------------------|-----------------------|-------|-------|------|------|------|------|-------|--------|
|                |         |                                                                    | GYRO/ACCEL UI FILT BW |       |       |      |      |      |      |       |        |
| GYRO/ACCEL_ODR | ODR(Hz) | 0                                                                  | 1                     | 2     | 3     | 4    | 5    | 6    | 7    | 14    | 15     |
| 1              | 32000   |                                                                    | 8400.0                |       |       |      |      |      |      |       |        |
| 2              | 16000   |                                                                    | 4194.1                |       |       |      |      |      |      |       |        |
| 3              | 8000    |                                                                    | 2096.3                |       |       |      |      |      |      |       |        |
| 4              | 4000    |                                                                    |                       |       |       | 104  | 8.1  |      |      |       |        |
| 5              | 2000    |                                                                    |                       |       |       | 524  | 1.0  |      |      |       |        |
| 6              | 1000    | 492.9                                                              | 234.7                 | 195.8 | 118.9 | 97.9 | 60.8 | 46.8 | 25.2 | 262.0 | 2096.3 |
| 15             | 500     | 246.4                                                              | 117.4                 | 97.9  | 59.5  | 48.9 | 30.4 | 23.4 | 12.6 | 131.0 | 1048.1 |
| 7              | 200     | 98.6                                                               | 93.9                  | 78.3  | 47.6  | 39.2 | 24.3 | 18.7 | 10.1 | 104.8 | 419.2  |

| 8  | 100  | 49.3 | 93.9 | 78.3 | 47.6 | 39.2 | 24.3 | 18.7 | 10.1 | 104.8 | 209.6 |
|----|------|------|------|------|------|------|------|------|------|-------|-------|
| 9  | 50   | 24.6 | 93.9 | 78.3 | 47.6 | 39.2 | 24.3 | 18.7 | 10.1 | 104.8 | 104.8 |
| 10 | 25   | 12.3 | 93.9 | 78.3 | 47.6 | 39.2 | 24.3 | 18.7 | 10.1 | 104.8 | 52.4  |
| 11 | 12.5 | 12.3 | 93.9 | 78.3 | 47.6 | 39.2 | 24.3 | 18.7 | 10.1 | 104.8 | 52.4  |

|                |         | NBW Bandwidth (Hz) for GYRO/ACCEL_UI_FILT_ORD=2 (3rd order filter) |                       |       |       |       |      |      |      |       |        |
|----------------|---------|--------------------------------------------------------------------|-----------------------|-------|-------|-------|------|------|------|-------|--------|
|                |         |                                                                    | GYRO/ACCEL_UI_FILT_BW |       |       |       |      |      |      |       |        |
| GYRO/ACCEL_ODR | ODR(Hz) | 0                                                                  | 1                     | 2     | 3     | 4     | 5    | 6    | 7    | 14    | 15     |
| 1              | 32000   |                                                                    | 8831.7                |       |       |       |      |      |      |       |        |
| 2              | 16000   |                                                                    |                       |       |       | 4410  | 0.6  |      |      |       |        |
| 3              | 8000    |                                                                    | 2204.6                |       |       |       |      |      |      |       |        |
| 4              | 4000    |                                                                    | 1102.2                |       |       |       |      |      |      |       |        |
| 5              | 2000    |                                                                    | 551.1                 |       |       |       |      |      |      |       |        |
| 6              | 1000    | 551.1                                                              | 221.3                 | 188.5 | 120.1 | 100.0 | 62.9 | 48.6 | 26.4 | 275.6 | 2204.6 |
| 15             | 500     | 252.0                                                              | 110.7                 | 94.3  | 60.1  | 50.0  | 31.5 | 24.3 | 13.2 | 137.8 | 1102.2 |
| 7              | 200     | 100.8                                                              | 88.6                  | 75.4  | 48.1  | 40.0  | 25.2 | 19.5 | 10.6 | 110.3 | 440.9  |
| 8              | 100     | 50.4                                                               | 88.6                  | 75.4  | 48.1  | 40.0  | 25.2 | 19.5 | 10.6 | 110.3 | 220.5  |
| 9              | 50      | 25.2                                                               | 88.6                  | 75.4  | 48.1  | 40.0  | 25.2 | 19.5 | 10.6 | 110.3 | 110.3  |
| 10             | 25      | 12.6                                                               | 88.6                  | 75.4  | 48.1  | 40.0  | 25.2 | 19.5 | 10.6 | 110.3 | 55.2   |
| 11             | 12.5    | 12.6                                                               | 88.6                  | 75.4  | 48.1  | 40.0  | 25.2 | 19.5 | 10.6 | 110.3 | 55.2   |

|                | Group Delay @DC (ms) for GYRO/ACCEL_UI_FILT_ORD=2 (3rd order filter) |      |                       |     |     |      |      |      |      |     |     |
|----------------|----------------------------------------------------------------------|------|-----------------------|-----|-----|------|------|------|------|-----|-----|
|                |                                                                      |      | GYRO/ACCEL_UI_FILT_BW |     |     |      |      |      |      |     |     |
| GYRO/ACCEL_ODR | ODR(Hz)                                                              | 0    | 1                     | 2   | 3   | 4    | 5    | 6    | 7    | 14  | 15  |
| 1              | 32000                                                                |      | 0.1                   |     |     |      |      |      |      |     |     |
| 2              | 16000                                                                |      | 0.1                   |     |     |      |      |      |      |     |     |
| 3              | 8000                                                                 |      | 0.2                   |     |     |      |      |      |      |     |     |
| 4              | 4000                                                                 | 0.4  |                       |     |     |      |      |      |      |     |     |
| 5              | 2000                                                                 | 0.8  |                       |     |     |      |      |      |      |     |     |
| 6              | 1000                                                                 | 0.8  | 2.3                   | 2.7 | 4.0 | 4.6  | 6.6  | 8.2  | 14.1 | 1.5 | 0.2 |
| 15             | 500                                                                  | 1.6  | 4.6                   | 5.4 | 7.9 | 9.2  | 13.2 | 16.3 | 28.1 | 3.0 | 0.4 |
| 7              | 200                                                                  | 4.0  | 5.8                   | 6.8 | 9.8 | 11.4 | 16.5 | 20.4 | 35.2 | 3.8 | 1.0 |
| 8              | 100                                                                  | 8.0  | 5.8                   | 6.8 | 9.8 | 11.4 | 16.5 | 20.4 | 35.2 | 3.8 | 1.9 |
| 9              | 50                                                                   | 15.9 | 5.8                   | 6.8 | 9.8 | 11.4 | 16.5 | 20.4 | 35.2 | 3.8 | 3.8 |
| 10             | 25                                                                   | 31.8 | 5.8                   | 6.8 | 9.8 | 11.4 | 16.5 | 20.4 | 35.2 | 3.8 | 7.5 |
| 11             | 12.5                                                                 | 31.8 | 5.8                   | 6.8 | 9.8 | 11.4 | 16.5 | 20.4 | 35.2 | 3.8 | 7.5 |

## 5.6 UI PATH ODR AND FSR SELECTION

Gyroscope ODR can be selected by programming the parameter GYRO\_ODR in register bank 0, register 0x4Fh, bits 3:0 as shown below.

| GYRO_ODR | Gyroscope ODR Value |
|----------|---------------------|
| 0000     | Reserved            |
| 0001     | 32kHz               |

| 0010 | 16kHz          |
|------|----------------|
| 0011 | 8kHz           |
| 0100 | 4kHz           |
| 0101 | 2kHz           |
| 0110 | 1kHz (default) |
| 0111 | 200Hz          |
| 1000 | 100Hz          |
| 1001 | 50Hz           |
| 1010 | 25Hz           |
| 1011 | 12.5Hz         |
| 1100 | Reserved       |
| 1101 | Reserved       |
| 1110 | Reserved       |
| 1111 | 500Hz          |

Gyroscope FSR can be selected by programming the parameter GYRO\_UI\_FS\_SEL in register bank 0, register 0x4Fh, bits 7:5 as shown below.

| GYRO_UI_FS_SEL | Gyroscope FSR Value |
|----------------|---------------------|
| 000            | 2000dps             |
| 001            | 1000dps             |
| 010            | 500dps              |
| 011            | 250dps              |
| 100            | 125dps              |
| 101            | 62.5dps             |
| 110            | 31.25dps            |
| 111            | 15.625dps           |

Accelerometer ODR can be selected by programming the parameter ACCEL\_ODR in register bank 0, register 0x50h, bits 3:0 as shown below.

| ACCEL_ODR | Accelerometer ODR Value  |
|-----------|--------------------------|
| 0000      | Reserved                 |
| 0001      | 32kHz (LN mode)          |
| 0010      | 16kHz (LN mode)          |
| 0011      | 8kHz (LN mode)           |
| 0100      | 4kHz (LN mode)           |
| 0101      | 2kHz (LN mode)           |
| 0110      | 1kHz (LN mode) (default) |
| 0111      | 200Hz (LP or LN mode)    |
| 1000      | 100Hz (LP or LN mode)    |
| 1001      | 50Hz (LP or LN mode)     |
| 1010      | 25Hz (LP or LN mode)     |

| 1011 | 12.5Hz (LP or LN mode) |
|------|------------------------|
| 1100 | 6.25Hz (LP mode)       |
| 1101 | 3.125Hz (LP mode)      |
| 1110 | 1.5625Hz (LP mode)     |
| 1111 | 500Hz (LP or LN mode)  |

Accelerometer FSR can be selected by programming the parameter ACCEL\_UI\_FS\_SEL in register bank 0, register 0x50h, bits 7:5 as shown below.

| ACCEL_UI_FS_SEL | Accelerometer FSR Value |
|-----------------|-------------------------|
| 000             | 16g                     |
| 001             | 8g                      |
| 010             | 4g                      |
| 011             | 2g                      |
| 100             | Reserved                |
| 101             | Reserved                |
| 110             | Reserved                |
| 111             | Reserved                |



# **FIFO**

The ICM-42688-P contains a 2K byte FIFO register that is accessible via the serial interface. The FIFO configuration register determines which data is written into the FIFO. Possible choices include gyroscope data, accelerometer data, temperature readings, and FSYNC input. A FIFO counter keeps track of how many bytes of valid data are contained in the FIFO.

#### **PACKET STRUCTURE** 6.1

The following figure shows the FIFO packet structures supported in ICM-42688-P. Base data format for gyroscope and accelerometer is 16-bits per element. 20-bits data format support is included in one of the packet structures. When 20-bits data format is used, gyroscope data consists of 19-bits of actual data and the LSB is always set to 0, accelerometer data consists of 18-bits of actual data and the two lowest order bits are always set to 0. When 20-bits data format is used, the only FSR settings that are operational are ±2000dps for gyroscope and ±16g for accelerometer, even if the FSR selection register settings are configured for other FSR values. The corresponding sensitivity scale factor values are 131 LSB/dps for gyroscope and 8192 LSB/g for accelerometer.



|                                         | Packet 3                        |
|-----------------------------------------|---------------------------------|
|                                         | TimeStamp<br>(2 bytes)          |
|                                         | Temperature Data<br>(1 byte)    |
| emperature Data<br>(1 byte)<br>Packet 2 | Gyroscope Data<br>(6 bytes)     |
| Gyroscope Data<br>(6 bytes)             | Accelerometer Data<br>(6 bytes) |
| Header<br>(1 byte)                      | Header<br>(1 byte)              |
|                                         |                                 |

| Header<br>(1 byte)             | Header<br>(1 byte)             |   |
|--------------------------------|--------------------------------|---|
| ccelerometer Data<br>(6 bytes) | Accelerometer Dat<br>(6 bytes) | a |
| Gyroscope Data<br>(6 bytes)    | Gyroscope Data<br>(6 bytes)    |   |
| emperature Data<br>(1 byte)    | Temperature Data<br>(2 bytes)  | a |
| TimeStamp<br>(2 bytes)         | TimeStamp<br>(2 bytes)         |   |
| Packet 3                       | 20-bit Extension<br>(3 bytes)  |   |
|                                | Packet 4                       |   |

Figure 10. FIFO Packet Structure

The rest of this sub-section describes how individual data is packaged in the different FIFO packet structures.

Document Number: DS-000347 Revision: 1.7

Page 37 of 110

Packet 1: Individual data is packaged in Packet 1 as shown below.

| Byte | Content          |  |  |  |
|------|------------------|--|--|--|
| 0x00 | FIFO Header      |  |  |  |
| 0x01 | Accel X [15:8]   |  |  |  |
| 0x02 | Accel X [7:0]    |  |  |  |
| 0x03 | Accel Y [15:8]   |  |  |  |
| 0x04 | Accel Y [7:0]    |  |  |  |
| 0x05 | Accel Z [15:8]   |  |  |  |
| 0x06 | Accel Z [7:0]    |  |  |  |
| 0x07 | Temperature[7:0] |  |  |  |

Packet 2: Individual data is packaged in Packet 2 as shown below.

| Byte | Content          |  |  |  |
|------|------------------|--|--|--|
| 0x00 | FIFO Header      |  |  |  |
| 0x01 | Gyro X [15:8]    |  |  |  |
| 0x02 | Gyro X [7:0]     |  |  |  |
| 0x03 | Gyro Y [15:8]    |  |  |  |
| 0x04 | Gyro Y [7:0]     |  |  |  |
| 0x05 | Gyro Z [15:8]    |  |  |  |
| 0x06 | Gyro Z [7:0]     |  |  |  |
| 0x07 | Temperature[7:0] |  |  |  |

Packet 3: Individual data is packaged in Packet 3 as shown below.

| Byte | Content          |  |  |
|------|------------------|--|--|
| 0x00 | FIFO Header      |  |  |
| 0x01 | Accel X [15:8]   |  |  |
| 0x02 | Accel X [7:0]    |  |  |
| 0x03 | Accel Y [15:8]   |  |  |
| 0x04 | Accel Y [7:0]    |  |  |
| 0x05 | Accel Z [15:8]   |  |  |
| 0x06 | Accel Z [7:0]    |  |  |
| 0x07 | Gyro X [15:8]    |  |  |
| 0x08 | Gyro X [7:0]     |  |  |
| 0x09 | Gyro Y [15:8]    |  |  |
| 0x0A | Gyro Y [7:0]     |  |  |
| 0x0B | Gyro Z [15:8]    |  |  |
| 0x0C | Gyro Z [7:0]     |  |  |
| 0x0D | Temperature[7:0] |  |  |
| 0x0E | TimeStamp[15:8]  |  |  |
| 0x0F | TimeStamp[7:0]   |  |  |

Packet 4: Individual data is packaged in Packet 4 as shown below.

| Byte | Content                    |          |  |
|------|----------------------------|----------|--|
| 0x00 | FIFO Header                |          |  |
| 0x01 | Accel X [19:12]            |          |  |
| 0x02 | Accel X                    | ([11:4]  |  |
| 0x03 | Accel Y                    | [19:12]  |  |
| 0x04 | Accel Y                    | ' [11:4] |  |
| 0x05 | Accel Z                    | [19:12]  |  |
| 0x06 | Accel Z                    | ː [11:4] |  |
| 0x07 | Gyro X                     | [19:12]  |  |
| 0x08 | Gyro X                     | [11:4]   |  |
| 0x09 | Gyro Y [19:12]             |          |  |
| 0x0A | Gyro Y [11:4]              |          |  |
| 0x0B | Gyro Z [19:12]             |          |  |
| 0x0C | Gyro Z [11:4]              |          |  |
| 0x0D | Temperature[15:8]          |          |  |
| 0x0E | Temperature[7:0]           |          |  |
| 0x0F | TimeStamp[15:8]            |          |  |
| 0x10 | TimeStamp[7:0]             |          |  |
| 0x11 | Accel X [3:0] Gyro X [3:0] |          |  |
| 0x12 | Accel Y [3:0] Gyro Y [3:0] |          |  |
| 0x13 | Accel Z [3:0] Gyro Z [3:0] |          |  |

### 6.2 FIFO HEADER

The following table shows the structure of the 1byte FIFO header.  $\label{eq:fifteen}$ 

| Bit Field | Item                   | Description                                                                           |
|-----------|------------------------|---------------------------------------------------------------------------------------|
| 7         | LIEADED MCC            | 1: FIFO is empty                                                                      |
| 7         | HEADER_MSG             | 0: Packet contains sensor data                                                        |
|           |                        | 1: Packet is sized so that accel data have location in the packet, FIFO_ACCEL_EN      |
| 6         | HEADER_ACCEL           | must be 1                                                                             |
|           |                        | 0: Packet does not contain accel sample                                               |
|           |                        | 1: Packet is sized so that gyro data have location in the packet, FIFO_GYRO_EN must   |
| 5         | HEADER_GYRO            | be 1                                                                                  |
|           |                        | 0: Packet does not contain gyro sample                                                |
| 4         | HEADER 20              | 1 : Packet has a new and valid sample of extended 20-bit data for gyro and/or accel   |
| 4         | HEADER_20              | 0 : Packet does not contain a new and valid extended 20-bit data                      |
|           |                        | 00: Packet does not contain timestamp or FSYNC time data                              |
|           |                        | 01: Reserved                                                                          |
| 3:2       | HEADER_TIMESTAMP_FSYNC | 10: Packet contains ODR Timestamp                                                     |
|           |                        | 11: Packet contains FSYNC time, and this packet is flagged as first ODR after FSYNC   |
|           |                        | (only if FIFO_TMST_FSYNC_EN is 1)                                                     |
|           |                        | 1: The ODR for accel is different for this accel data packet compared to the previous |
| 1         | HEADER_ODR_ACCEL       | accel packet                                                                          |
|           |                        | 0: The ODR for accel is the same as the previous packet with accel                    |
|           |                        | 1: The ODR for gyro is different for this gyro data packet compared to the previous   |
| 0         | HEADER_ODR_GYRO        | gyro packet                                                                           |
|           |                        | 0: The ODR for gyro is the same as the previous packet with gyro                      |

Note at least HEADER\_ACCEL or HEADER\_GYRO must be set for a sensor data packet to be set.



#### 6.3 MAXIMUM FIFO STORAGE

The maximum number of packets that can be stored in FIFO is a variable quantity depending on the use case. As shown in the figure below, the physical FIFO size is 2048 bytes. A number of bytes equal to the packet size selected (see section 6.1) is reserved to prevent reading a packet during write operation. Additionally, a read cache 2 packets wide is available.

When there is no serial interface operation, the read cache is not available for storing packets, being fed by the serial interface clock.

When serial interface operation happens, depending on the operation length and the packet size chosen, either 1 or 2 of the packet entries in read cache may become available for storing packets. In that case the total storage available is up to the maximum number of packets that can be accommodated in 2048 (2040 in case of 20 bytes packets) bytes + 1 packet size, depending on the packet size used.

Due to the non-deterministic nature of system operation, driver memory allocation should always be the largest size of 2080 bytes.



Figure 11. Maximum FIFO Storage

#### 6.4 FIFO CONFIGURATION REGISTERS

The following control bits in bank 0, register 0x5Fh determine what data is placed into the FIFO. The values of these bits may change while the FIFO is being filled without corruption of the FIFO.

| BIT | NAME                 | FUNCTION                                                                   |
|-----|----------------------|----------------------------------------------------------------------------|
|     |                      | 0: Default setting; Sensor data have regular resolution                    |
| 4   | FIFO_HIRES_EN        | 1: Sensor data in FIFO will have extended resolution enabling the 20 Bytes |
|     |                      | packet with priority on other setting below                                |
|     |                      | 0: FIFO will only contain ODR timestamp information                        |
| 3   | 3 FIFO_TMST_FSYNC_EN | 1: FIFO can also contain FSYNC time and FSYNC flag for one ODR after an    |
|     |                      | FSYNC event                                                                |
| 1   | FIFO CYPO FN         | 0: Default setting; Gyroscope data not placed into FIFO                    |
| 1   | FIFO_GYRO_EN         | 1: Enables gyroscope data packets of 6-bytes to be placed in FIFO          |
| 0   | FIFO ACCEL EN        | 0: Default setting; Accelerometer data not placed into FIFO                |
| 0   | FIFO_ACCEL_EN        | 1: Enables accelerometer data packets of 6-bytes to be placed in FIFO      |

Configuration register settings above impact FIFO header and FIFO packet size as follows:



| FIFO_HIRES_EN | FIFO_ACCEL_EN | FIFO_GYRO_EN   | FIFO_TMST_<br>FSYNC_EN | Header         | Packet size    |
|---------------|---------------|----------------|------------------------|----------------|----------------|
| 1             | X             | X              | 0                      | 8'b_0111_10xx  | 20 Bytes       |
| 1             | Х             | Х              | 1                      | 8'b_0111_11xx  | 20 Bytes       |
| 0             | <u>1</u>      | <mark>1</mark> | 0                      | 8'b_0110_10xx  | 16 Bytes       |
| 0             | 1             | 1              | 1                      | 8'b_0110_11xx  | 16 Bytes       |
| 0             | 1             | 0              | Х                      | 8'b_0100_00xx  | 8 Bytes        |
| 0             | 0             | 1              | Х                      | 8'b_0010_00xx  | 8 Bytes        |
| 0             | 0             | 0              | Х                      | No FIFO writes | No FIFO writes |



### 7 PROGRAMMABLE INTERRUPTS

The ICM-42688-P has a programmable interrupt system that can generate an interrupt signal on the INT pins. Status flags indicate the source of an interrupt. Interrupt sources may be enabled and disabled individually. There are two interrupt outputs. Any interrupt may be mapped to either interrupt pin as explained in the register section. The following configuration options are available for the interrupts

- INT1 and INT2 can be push-pull or open drain
- Level or pulse mode
- · Active high or active low

Additionally, ICM-42688-P includes In-band Interrupt (IBI) support for the I3C<sup>SM</sup> interface.

Page 42 of 110

Revision: 1.7



### 8 APEX MOTION FUNCTIONS

The APEX (Advanced Pedometer and Event Detection – neXt gen) features ICM-42688-P consist of:

- Pedometer: Tracks Step count and issues a Step Detect Interrupt
- Tilt Detection: Issues an interrupt when the Tilt angle exceeds 35 degrees for more than a programmable time.
- Raise to Wake/Sleep: Gesture detection for wake and sleep events. Interrupt is issued when either of these two events are detected.
- Tap Detection: Issues an interrupt when Tap is detected, along with a register containing the Tap Count.
- Wake on Motion (WoM): Detects motion when accelerometer samples exceed a programmable threshold. This motion event can be used to enable chip operation from sleep mode.
- Significant Motion Detector (SMD): Detects motion if WoM events are detected during a programmable time window (2s or 4s).

#### 8.1 APEX ODR SUPPORT

APEX algorithms are designed to work with the accelerometer, for a variety of ODR settings. However, there is a minimum ODR required for each algorithm. The following table shows the relationship between the available accelerometer ODRs and the operation of the APEX algorithms. In order to allow more flexible operation where we can control the ODR of the APEX algorithms independent of the accelerometer ODR, we allow for an additional selection determined by the field DMP\_ODR. The tables below shows how DMP\_ODR should be configured in relation to the accelerometer ODR and the expected performance.

| Accel ODR | DMP_ODR  | Tap Detection | Pedometer | Tilt Detection | Raise to Wake/Sleep |
|-----------|----------|---------------|-----------|----------------|---------------------|
| < 25Hz    | X        | Disabled      | Disabled  | Disabled       | Disabled            |
| ≥ 25Hz    | 0 (25Hz) | Disabled      | Low Power | Low Power      | Enabled             |
| ≥ 50Hz    | 2 (50Hz) | Disabled      | Normal    | Normal         | Enabled             |

| Accel ODR | Tap Detection    |
|-----------|------------------|
| 200Hz     | Low Power        |
| 500Hz     | Normal           |
| 1kHz      | High Performance |
| > 1kHz    | Disabled         |

If the accelerometer ODR is set below the minimum DMP ODR (25 Hz), the APEX features cannot be enabled.

When the accelerometer ODR needs to be set differently from the DMP ODR, only the integer multiple of DMP ODR for accelerometer sensor ODR is suitable to use with DMP. For example, when the accelerometer ODR is set as 200 Hz, the APEX features can be enabled with choices of 25 Hz, or 50 Hz, depending on the DMP. ODR register setting.

DMP ODR should not be changed on the fly. The following sequence should be followed for changing the DMP ODR:



- 1. Disable Pedometer, and Tilt Detection if they are enabled
- 2. Change DMP ODR
- 3. Set DMP INIT EN for one cycle (Register 0x4Bh in Bank 0)
- 4. Unset DMP INIT EN (Register 0x4Bh in Bank 0)
- 5. Enable APEX features of interest

#### 8.2 DMP POWER SAVE MODE

DMP Power Save Mode can be enabled or disabled by DMP POWER SAVE (Register 0x56h in Bank 0). When the DMP Power Save Mode is enabled, APEX features are enabled only when WOM is detected. WOM must be explicitly enabled for the DMP to work in this mode. When WOM is not detected the APEX features are on pause. If the user does not want to use DMP Power Save Mode they may set DMP POWER SAVE = 0, and use APEX functions without WOM detection.

#### PEDOMETER PROGRAMMING 8.3

- Pedometer configuration parameters
  - 1. LOW\_ENERGY\_AMP\_TH\_SEL (Register 0x40h in Bank 4)
  - 2. PED AMP TH SEL (Register 0x41h in Bank 4)
  - 3. PED\_STEP\_CNT\_TH\_SEL (Register 0x41h in Bank 4)
  - 4. PED HI EN TH SEL (Register 0x42h in Bank 4)
  - 5. PED\_SB\_TIMER\_TH\_SEL (Register 0x42h in Bank 4)
  - 6. PED\_STEP\_DET\_TH\_SEL (Register 0x42h in Bank 4)
  - 7. SENSITIVITY MODE (Register 0x48h in Bank 4)
  - 8. There are 2 ODR and 2 sensitivity modes

| Accel ODR (DMP_ODR) | normal           | slow walk               |
|---------------------|------------------|-------------------------|
| 25 Hz (0)           | low power        | low power and slow walk |
| 50 Hz (2)           | high performance | slow walk               |

- Initialize Sensor in a typical configuration
  - 1. Set accelerometer ODR to 50 Hz (Register 0x50h in Bank 0)
  - 2. Set accelerometer to Low Power mode (Register 0x4Eh in Bank 0) ACCEL\_MODE = 2 and (Register 0x4Eh in Bank 0), ACCEL\_LP\_CLK\_SEL = 0, for low power mode
  - 3. Set DMP ODR = 50 Hz and turn on Pedometer feature (Register 0x56h in Bank 0)
  - 4. Wait 1 millisecond
- Initialize APEX hardware
  - 1. Set DMP\_MEM\_RESET\_EN to 1 (Register 0x4Bh in Bank 0)
  - 2. Wait 1 millisecond
  - 3. Set LOW ENERGY AMP TH SEL to 10 (Register 0x40h in Bank 4)
  - 4. Set PED AMP TH SEL to 8 (Register 0x41h in Bank 4)
  - 5. Set PED\_STEP\_CNT\_TH\_SEL to 5 (Register 0x41h in Bank 4)
  - 6. Set PED HI EN TH SEL to 1 (Register 0x42h in Bank 4)
  - 7. Set PED SB TIMER TH SEL to 4 (Register 0x42h in Bank 4)
  - 8. Set PED STEP DET TH SEL to 2 (Register 0x42h in Bank 4)
  - 9. Set SENSITIVITY\_MODE to 0 (Register 0x48h in Bank 4)
  - 10. Set DMP\_INIT\_EN to 1 (Register 0x4Bh in Bank 0)
  - 11. Wait 50 milliseconds
  - 12. Enable STEP detection, source for INT1 by setting bit 5 in register INT SOURCE6 (Register 0x4Dh in Bank 4) to 1. Or if INT2 is selected for STEP detection, enable STEP detection source by setting bit 5 in register INT SOURCE7 (Register 0x4Eh in Bank 4) to 1.
  - 13. Turn on Pedometer feature by setting PED\_ENABLE to 1 (Register 0x56h in Bank 0)

Page 44 of 110



- Output registers
  - 1. Read interrupt register (Register 0x38h in Bank 0) for STEP DET INT
  - 2. If the step count is equal to or greater than 65535 (uint16), the STEP\_CNT\_OVF\_INT (Register 0x38h in Bank 0) will be set to 1. Example:
    - Take 1 step =>output step count = 65533 (real step count is 65533)
    - Take 1 step => output step count = 65534 (real step count is 65534)
    - Take 1 step => output step count = 0 and interrupt is fired (real step count is 65535+0=65535)
    - Take 1 step => output step count = 1 (real step count is 65535+1=65536)
  - 3. Read the step count in STEP CNT (Register 0x31h and 0x32h in Bank 0)
  - 4. Read the step cadence in STEP CADENCE (Register 0x33h in Bank 0)
  - 5. Read the activity class in ACTIVITY CLASS (Register 0x34h in Bank 0)

#### 8.4 TILT DETECTION PROGRAMMING

- Tilt Detection configuration parameters
  - 1. TILT\_WAIT\_TIME (Register 0x43h in Bank 4)

This parameter configures how long of a delay after tilt is detected before interrupt is triggered Default is 2 (4 s).

Range is 0 = 0 s, 1 = 2 s, 2 = 4 s, 3 = 6 s

For example, setting TILT\_WAIT\_TIME = 2 is equivalent to 4 seconds for all ODRs

- Initialize Sensor in a typical configuration
  - 1. Set accelerometer ODR (Register 0x50h in Bank 0)

ACCEL\_ODR = 9 for 50 Hz or 10 for 25 Hz

- Set Accel to Low Power mode (Register 0x4Eh in Bank 0)
   ACCEL MODE = 2 and (Register 0x4Dh in Bank 0), ACCEL LP CLK SEL = 0, for low power mode
- Set DMP ODR (Register 0x56h in Bank 0) DMP\_ODR = 0 for 25 Hz, 2 for 50 Hz
- 4. Wait 1 millisecond
- Initialize APEX hardware
  - 1. Set DMP\_MEM\_RESET\_EN to 1 (Register 0x4Bh in Bank 0)
  - 2. Wait 1 millisecond
  - 3. Set TILT\_WAIT\_TIME (Register 0x43h in Bank 4) if default value does not meet needs
  - 4. Wait 1 millisecond
  - 5. Set DMP\_INIT\_EN to 1 (Register 0x4Bh in Bank 0)
  - 6. Enable Tilt Detection, source for INT1 by setting bit 3 in register INT\_SOURCE6 (Register 0x4Dh in Bank 4) to 1. Or if INT2 is selected for Tilt Detection, enable Tilt Detection source by setting bit 3 in register INT\_SOURCE7 (Register 0x4Eh in Bank 4) to 1.
  - 7. Wait 50 milliseconds
  - 8. Turn on Tilt Detection feature by setting TILT ENABLE to 1 (Register 0x56h in Bank 0)
- Output registers
  - 1. Read interrupt register (Register 0x38h in Bank 0) for TILT\_DET\_INT

### 8.5 RAISE TO WAKE/SLEEP PROGRAMMING

- Raise to Wake/Sleep configuration parameters
  - 1. SLEEP\_TIME\_OUT (Register 0x43h in Bank 4)
  - 2. MOUNTING\_MATRIX (Register 0x44h in Bank 4)
  - 3. SLEEP\_GESTURE\_DELAY (Register 0x45h in Bank 4)
- Initialize Sensor in a typical configuration
  - 1. Set accelerometer ODR (Register 0x50h in Bank 0) ACCEL\_ODR = 10 for 25 Hz



- Set Accel to Low Power mode (Register 0x4Eh in Bank 0)
   ACCEL\_MODE = 2 and (Register 0x4Dh in Bank 0), ACCEL\_LP\_CLK\_SEL = 0, for low power mode
- 3. Set DMP ODR (Register 0x56h in Bank 0) DMP ODR = 0 for 25 Hz, 2 for 50 Hz
- 4. Wait 1 millisecond
- Initialize APEX hardware
  - 1. Set DMP MEM RESET EN to 1 (Register 0x4Bh in Bank 0)
  - 2. Wait 1 millisecond
  - 3. Set SLEEP TIME OUT (Register 0x43h in Bank 4) if default value does not meet needs
  - 4. Wait 1 millisecond
  - 5. Set MOUNTING MATRIX (Register 0x44h in Bank 4) if default value does not meet needs
  - 6. Wait 1 millisecond
  - 7. Set SLEEP GESTURE DELAY (Register 0x45h in Bank 4) if default value does not meet needs
  - 8. Wait 1 millisecond
  - 9. Set DMP INIT EN to 1 (Register 0x4Bh in Bank 0)
  - 10. Enable Raise to Wake/Sleep, source for INT1 by setting bit 2,1 in register INT\_SOURCE6 (Register 0x4Dh in Bank 4) to 1. Or if INT2 is selected for Raise to Wake/Sleep, enable Raise to Wake/Sleep source by setting bit 2,1 in register INT\_SOURCE7 (Register 0x4Eh in Bank 4) to 1.
  - 11. Wait 50 milliseconds
  - 12. Turn on Raise to Wake/Sleep feature by setting R2W\_EN to 1 (Register 0x56h in Bank 0)
- Output registers
  - 1. Read interrupt register (Register 0x38h in Bank 0) for WAKE INT, SLEEP INT

#### 8.6 TAP DETECTION PROGRAMMING

- Tap Detection configuration parameters
  - 1. TAP\_TMAX (Register 0x47h in Bank 4)
  - 2. TAP\_TMIN (Register 0x47h in Bank 4)
  - 3. TAP\_TAVG (Register 0x47h in Bank 4)
  - 4. TAP\_MIN\_JERK\_THR (Register 0x46h in Bank 4)
  - 5. TAP\_MAX\_PEAK\_TOL (Register 0x46h in Bank 4)
  - 6. TAP ENABLE (Register 0x56h in Bank 0)
- Initialize Sensor in a typical configuration
  - 1. Set accelerometer ODR (Register 0x50h in Bank 0)
    ACCEL\_ODR = 15 for 500 Hz (ODR of 200Hz or 1kHz may also be used)
  - 2. Set power modes and filter configurations as shown below
    - For ODR up to 500Hz, set Accel to Low Power mode (Register 0x4Eh in Bank 0)
       ACCEL\_MODE = 2 and ACCEL\_LP\_CLK\_SEL = 0, (Register 0x4Dh in Bank 0) for low power mode
       Set filter settings as follows: ACCEL\_DEC2\_M2\_ORD = 2 (Register 0x53h in Bank 0); ACCEL\_UI\_FILT\_BW = 4 (Register 0x52h in Bank 0)
      - For ODR of 1kHz, set Accel to Low Noise mode (Register 0x4Eh in Bank 0) ACCEL\_MODE = 1
         Set filter settings as follows: ACCEL\_UI\_FILT\_ORD = 2 (Register 0x53h in Bank 0); ACCEL\_UI\_FILT\_BW = 0 (Register 0x52h in Bank 0)
  - 3. Wait 1 millisecond
- Initialize APEX hardware
  - 1. Set TAP\_TMAX to 2 (Register Ox47h in Bank 4)
  - 2. Set TAP\_TMIN to 3 (Register 0x47h in Bank 4)
  - 3. Set TAP TAVG to 3 (Register 0x47h in Bank 4)
  - 4. Set TAP\_MIN\_JERK\_THR to 17 (Register Ox46h in Bank 4)
  - 5. Set TAP\_MAX\_PEAK\_TOL to 2 (Register 0x46h in Bank 4)



- 6. Wait 1 millisecond
- 7. Enable TAP source for INT1 by setting bit 0 in register INT\_SOURCE6 (Register Ox4Dh in Bank 4) to 1. Or if INT2 is selected for TAP, enable TAP source by setting bit 0 in register INT SOURCE7 (Register Ox4Eh in Bank 4) to 1.
- 8. Wait 50 milliseconds
- 9. Turn on TAP feature by setting TAP\_ENABLE to 1 (Register 0x56h in Bank 0)
- Output registers
  - 1. Read interrupt register (Register 0x38h in Bank 0) for TAP\_DET\_INT
  - 2. Read the tap count in TAP\_NUM (Register 0x35h in Bank 0)
  - 3. Read the tap axis in TAP AXIS (Register 0x35h in Bank 0)
  - 4. Read the polarity of tap pulse in TAP DIR (Register 0x35h in Bank 0)

### 8.7 WAKE ON MOTION PROGRAMMING

- Wake on Motion configuration parameters
  - 1. WOM X TH (Register 0x4Ah in Bank 4)
  - 2. WOM Y TH (Register 0x4Bh in Bank 4)
  - 3. WOM\_Z\_TH (Register 0x4Ch in Bank 4)
  - 4. WOM INT MODE (Register 0x57h in Bank 0)
  - 5. WOM MODE (Register 0x57h in Bank 0)
- Initialize Sensor in a typical configuration
  - 1. Set accelerometer ODR (Register 0x50h in Bank 0) ACCEL ODR = 9 for 50 Hz
  - 2. Set Accel to Low Power mode (Register Ox4Eh in Bank 0)

    ACCEL\_MODE = 2 and (Register Ox4Dh in Bank 0), ACCEL\_LP\_CLK\_SEL = 0, for low power mode
  - 3. Wait 1 millisecond
- Initialize APEX hardware
  - Set WOM\_X\_TH to 98 (Register Ox4Ah in Bank 4)
  - 2. Set WOM\_Y\_TH to 98 (Register 0x4Bh in Bank 4)
  - 3. Set WOM\_Z\_TH to 98 (Register 0x4Ch in Bank 4)
  - 4. Wait 1 millisecond

- WOM 检测阈值:1/256 \* 该值 中断路由 使能WOM
- 5. Enable all 3 axes as WOM sources for INT1 by setting bits 2:0 in register INT\_SOURCE1 (Registe<mark>r 0x66h</mark> in Bank 0) to 1. Or if INT2 is selected for WOM, enable all 3 axes as WOM sources by setting bits 2:0 in register INT\_SOURCE4 (Register 0x69h in Bank 0) to 1.
- 6. Wait 50 milliseconds
- 7. Turn on WOM feature by setting WOM\_INT\_MODE to 0, WOM\_MODE to 1, SMD\_MODE to 1 (Register 0x56h in Bank 0)
- Output registers
  - 1. Read interrupt register (Register 0x7Dh in Bank 0) for WOM X INT
  - 2. Read interrupt register (Register 0x7Dh in Bank 0) for WOM Y INT
  - 3. Read interrupt register (Register 0x7Dh in Bank 0) for WOM\_Z\_INT

#### 8.8 SIGNIFICANT MOTION DETECTION PROGRAMMING

- Significant Motion Detection configuration parameters
  - 1. WOM\_X\_TH (Register 0x4Ah in Bank 4)
  - 2. WOM\_Y\_TH (Register 0x4Bh in Bank 4)
  - 3. WOM\_Z\_TH (Register 0x4Ch in Bank 4)
  - 4. WOM\_INT\_MODE (Register 0x57h in Bank 0)
  - 5. WOM\_MODE (Register 0x57h in Bank 0)
  - 6. SMD\_MODE (Register 0x57h in Bank 0)
- Initialize Sensor in a typical configuration

Page 47 of 110



- 1. Set accelerometer ODR (Register 0x50h in Bank 0) ACCEL ODR = 9 for 50 Hz
- Set Accel to Low Power mode (Register 0x4Eh in Bank 0)
   ACCEL\_MODE = 2 and (Register 0x4Dh in Bank 0), ACCEL\_LP\_CLK\_SEL = 0, for low power mode
- 3. Wait 1 millisecond
- Initialize APEX hardware
  - 1. Set WOM\_X\_TH to 98 (Register 0x4Ah in Bank 4)
  - 2. Set WOM\_Y\_TH to 98 (Register 0x4Bh in Bank 4)
  - 3. Set WOM\_Z\_TH to 98 (Register 0x4Ch in Bank 4)
  - 4. Wait 1 millisecond
  - 5. Enable SMD source for INT1 by setting bit 3 in register INT\_SOURCE1 (Register 0x66h in Bank 0) to 1. Or if INT2 is selected for SMD, enable SMD source by setting bit 3 in register INT\_SOURCE4 (Register 0x69h in Bank 0) to 1.
  - 6. Wait 50 milliseconds
  - 7. Turn on SMD feature by setting WOM\_INT\_MODE to 0, WOM\_MODE to 1, SMD\_MODE to 3 (Register 0x56h in Bank 0)
- Output registers
  - 1. Read interrupt register (Register 0x7Dh in Bank 0) for SMD\_INT

Page 48 of 110



### 9 DIGITAL INTERFACE

### 9.1 I3CSM, I2C AND SPI SERIAL INTERFACES

The internal registers and memory of the ICM-42688-P can be accessed using I3C<sup>SM</sup> at 12.5MHz (data rates up to 12.5Mbps in SDR mode, 25Mbps in DDR mode), I<sup>2</sup>C at 1 MHz or SPI at 24 MHz. SPI operates in 3-wire or 4-wire mode. Pin assignments for serial interfaces are described in Section 4.1.

#### 9.2 I3CSM INTERFACE

 $I3C^{SM}$  is a new 2-wire digital interface comprised of the signals serial data (SDA) and serial clock (SCLK).  $I3C^{SM}$  is intended to improve upon the  $I^2C$  interface, while preserving backward compatibility.

I3C<sup>SM</sup> carries the advantages of I<sup>2</sup>C in simplicity, low pin count, easy board design, and multi-drop (vs. point to point), but provides the higher data rates, simpler pads, and lower power of SPI. I3C<sup>SM</sup> adds higher throughput for a given frequency, in-band interrupts (from slave to master), dynamic addressing.

ICM-42688-P supports the following features of I3C<sup>SM</sup>:

- SDR data rate up to 12.5Mbps
- DDR data rate up to 25Mbps
- Dynamic address allocation
- In-band Interrupt (IBI) support
- Support for asynchronous timing control mode 0
- Error detection (CRC and/or Parity)
- Common Command Code (CCC)

The ICM-42688-P always operates as an I3C<sup>SM</sup> slave device when communicating to the system processor, which thus acts as the I3C<sup>SM</sup> master. I3C<sup>SM</sup> master controls an active pullup resistance on SDA, which it can enable and disable. The pullup resistance may be a board level resistor controlled by a pin, or it may be internal to the I3C<sup>SM</sup> master.

#### 9.3 I<sup>2</sup>C INTERFACE

 $I^2C$  is a two-wire interface comprised of the signals serial data (SDA) and serial clock (SCL). In general, the lines are open-drain and bidirectional. In a generalized  $I^2C$  interface implementation, attached devices can be a master or a slave. The master device puts the slave address on the bus, and the slave device with the matching address acknowledges the master.

The ICM-42688-P always operates as a slave device when communicating to the system processor, which thus acts as the master. SDA and SCL lines typically need pull-up resistors to VDDIO. The maximum bus speed is 1 MHz.

The slave address of the ICM-42688-P is b110100X, which is 7 bits long. The LSB bit of the 7-bit address is determined by the logic level on pin AP\_AD0. This allows two ICM-42688-Ps to be connected to the same I<sup>2</sup>C bus. When used in this configuration, the address of one of the devices should be b1101000 (pin AP\_AD0 is logic low) and the address of the other should be b1101001 (pin AP\_AD0 is logic high).

#### 9.4 I<sup>2</sup>C COMMUNICATIONS PROTOCOL

### START (S) and STOP (P) Conditions

Communication on the I<sup>2</sup>C bus starts when the master puts the START condition (S) on the bus, which is defined as a HIGH-to-LOW transition of the SDA line while SCL line is HIGH (see figure below). The bus is considered to be busy until the master puts a STOP condition (P) on the bus, which is defined as a LOW to HIGH transition on the SDA line while SCL is HIGH (see figure below). Additionally, the bus remains busy if a repeated START (Sr) is generated instead of a STOP condition.



Figure 12. START and STOP Conditions

#### Data Format / Acknowledge

I<sup>2</sup>C data bytes are defined to be 8-bits long. There is no restriction to the number of bytes transmitted per data transfer. Each byte transferred must be followed by an acknowledge (ACK) signal. The clock for the acknowledge signal is generated by the master, while the receiver generates the actual acknowledge signal by pulling down SDA and holding it low during the HIGH portion of the acknowledge clock pulse.

If a slave is busy and cannot transmit or receive another byte of data until some other task has been performed, it can hold SCL LOW, thus forcing the master into a wait state. Normal data transfer resumes when the slave is ready, and releases the clock line (refer to the following figure).



Figure 13. Acknowledge on the I<sup>2</sup>C Bus

#### **Communications**

After beginning communications with the START condition (S), the master sends a 7-bit slave address followed by an 8<sup>th</sup> bit, the read/write bit. The read/write bit indicates whether the master is receiving data from or is writing to the slave device. Then, the master releases the SDA line and waits for the acknowledge signal (ACK) from the slave device. Each byte transferred must be followed by an acknowledge bit. To acknowledge, the slave device pulls the SDA line LOW and keeps it LOW for the high period of the SCL line. Data transmission is always terminated by the master with a STOP condition (P), thus freeing the communications line. However, the master can generate a repeated START condition (Sr), and address another slave without first generating a STOP condition (P). A LOW to HIGH transition on the SDA line while SCL is HIGH defines the stop condition. All SDA changes should take place when SCL is low, with the exception of start and stop conditions.



Figure 14. Complete I<sup>2</sup>C Data Transfer

To write the internal ICM-42688-P registers, the master transmits the start condition (S), followed by the I<sup>2</sup>C address and the write bit (0). At the 9<sup>th</sup> clock cycle (when the clock is high), the ICM-42688-P acknowledges the transfer. Then the master puts the register address (RA) on the bus. After the ICM-42688-P acknowledges the reception of the register address, the master puts the register data onto the bus. This is followed by the ACK signal, and data transfer may be concluded by the stop condition (P). To write multiple bytes after the last ACK signal, the master can continue outputting data rather than transmitting a stop signal. In this case, the ICM-42688-P automatically increments the register address and loads the data to the appropriate register. The following figures show single and two-byte write sequences.

#### Single-Byte Write Sequence

| Master | S | AD+W |     | RA |     | DATA |     | Р |
|--------|---|------|-----|----|-----|------|-----|---|
| Slave  |   |      | ACK |    | ACK |      | ACK |   |

#### Burst Write Sequence

| Master | S | AD+W |     | RA |     | DATA |     | DATA |     | Р |
|--------|---|------|-----|----|-----|------|-----|------|-----|---|
| Slave  |   |      | ACK |    | ACK |      | ACK |      | ACK |   |

To read the internal ICM-42688-P registers, the master sends a start condition, followed by the I<sup>2</sup>C address and a write bit, and then the register address that is going to be read. Upon receiving the ACK signal from the ICM-42688-P, the master transmits a start signal followed by the slave address and read bit. As a result, the ICM-42688-P sends an ACK signal and the data. The communication ends with a not acknowledge (NACK) signal and a stop bit from master. The NACK condition is defined such that the SDA line remains high at the 9<sup>th</sup> clock cycle. The following figures show single and two-byte read sequences.

#### Single-Byte Read Sequence

| Master | S | AD+W |     | RA |     | S | AD+R |     |      | NACK | Р |
|--------|---|------|-----|----|-----|---|------|-----|------|------|---|
| Slave  |   |      | ACK |    | ACK |   |      | ACK | DATA |      |   |

#### **Burst Read Sequence**

| Master | S | AD+W |     | RA |     | S | AD+R |     |      | ACK |      | NACK | Р |
|--------|---|------|-----|----|-----|---|------|-----|------|-----|------|------|---|
| Slave  |   |      | ACK |    | ACK |   |      | ACK | DATA |     | DATA |      |   |

#### 9.5 I<sup>2</sup>C TERMS

| Signal | Description                                                  |
|--------|--------------------------------------------------------------|
| S      | Start Condition: SDA goes from high to low while SCL is high |
| AD     | Slave I <sup>2</sup> C address                               |

| W    | Write bit (0)                                                                              |
|------|--------------------------------------------------------------------------------------------|
| R    | Read bit (1)                                                                               |
| ACK  | Acknowledge: SDA line is low while the SCL line is high at the 9 <sup>th</sup> clock cycle |
| NACK | Not-Acknowledge: SDA line stays high at the 9 <sup>th</sup> clock cycle                    |
| RA   | ICM-42688-P internal register address                                                      |
| DATA | Transmit or received data                                                                  |
| Р    | Stop condition: SDA going from low to high while SCL is high                               |

Table 13. I<sup>2</sup>C Terms



#### 9.6 SPI INTERFACE

The ICM-42688-P supports 3-wire or 4-wire SPI for the host interface. The ICM-42688-P always operates as a Slave device during standard Master-Slave SPI operation.

With respect to the Master, the Serial Clock output (SCLK), the Serial Data Output (SDO), the Serial Data Input (SDI), and the Serial Data IO (SDIO) are shared among the Slave devices. Each SPI slave device requires its own Chip Select (CS) line from the master.

CS goes low (active) at the start of transmission and goes back high (inactive) at the end. Only one CS line is active at a time, ensuring that only one slave is selected at any given time. The CS lines of the non-selected slave devices are held high, causing their SDO lines to remain in a high-impedance (high-z) state so that they do not interfere with any active devices.

#### SPI Operational Features

- 1. Data is delivered MSB first and LSB last
- 2. Data is latched on the rising edge of SCLK
- 3. Data should be transitioned on the falling edge of SCLK
- 4. The maximum frequency of SCLK is 24 MHz
- 5. SPI read operations are completed in 16 or more clock cycles (two or more bytes). The first byte contains the SPI Address, and the following byte(s) contain(s) the SPI data. The first bit of the first byte contains the Read/Write bit and indicates the Read (1) operation. The following 7 bits contain the Register Address. In cases of multiple-byte Reads, data is two or more bytes:

SPI Address format

| MSB |    |    |    |    |    |    | LSB |
|-----|----|----|----|----|----|----|-----|
| R/W | A6 | A5 | A4 | А3 | A2 | A1 | Α0  |

### SPI Data format

| MSB |    |    |    |    |    |    | LSB |
|-----|----|----|----|----|----|----|-----|
| D7  | D6 | D5 | D4 | D3 | D2 | D1 | D0  |

- 6. SPI write operations are completed in 16 clock cycles (two bytes). The first byte contains the SPI Address, and the second byte contains the SPI data. The first bit of the first byte contains the Read/Write bit and indicates the Write (0) operation. The following 7 bits contain the Register Address.
- 7. Supports Single or Burst Reads and Single Writes.



Figure 15. Typical SPI Master/Slave Configuration

Page 53 of 110



## 10 ASSEMBLY

This section provides general guidelines for assembling InvenSense Micro Electro-Mechanical Systems (MEMS) devices packaged in LGA package.

#### 10.1 ORIENTATION OF AXES

The diagram below shows the orientation of the axes of sensitivity and the polarity of rotation. Note the pin 1 identifier (•) in the figure.



Figure 16. Orientation of Axes of Sensitivity and Polarity of Rotation



#### 10.2 PACKAGE DIMENSIONS

14 Lead LGA (2.5x3x0.91) mm NiAu pad finish



|                            |         | DIM   | ENSIONS IN MILLIM | IETERS |
|----------------------------|---------|-------|-------------------|--------|
|                            | SYMBOLS | MIN   | NOM               | MAX    |
| Total Thickness            | Α       | 0.85  | 0.91              | 0.97   |
| Substrate Thickness        | A1      |       | 0.105             | REF    |
| Mold Thickness             | A2      |       | 0.8               | REF    |
| Body Size                  | D       |       | 2.5               | BSC    |
| body Size                  | E       |       | 3                 | BSC    |
| Lead Width                 | W       | 0.2   | 0.25              | 0.3    |
| Lead Length                | L       | 0.425 | 0.475             | 0.525  |
| Lead Pitch                 | е       |       | 0.5               | BSC    |
| Lead Count                 | n       |       | 14                |        |
| Edge Pin Center to Center  | D1      |       | 1.5               | BSC    |
| Luge Fill Center to Center | E1      |       | 1                 | BSC    |
| Body Center to Contact Pin | SD      |       | 0.25              | BSC    |
| Package Edge Tolerance     | aaa     |       | 0.1               |        |
| Mold Flatness              | bbb     |       | 0.2               |        |
| Coplanarity                | ddd     |       | 0.08              |        |



## 11 PART NUMBER PACKAGE MARKING

The part number package marking for ICM-42688-P devices is summarized below:

| Part Number | Part Number Package Marking |
|-------------|-----------------------------|
| ICM-42688-P | 1428P                       |





### 12 USE NOTES

#### 12.1 ACCELEROMETER MODE TRANSITIONS

When transitioning from accelerometer Low Power (LP) mode to accelerometer Low Noise (LN) mode, if ODR is 6.25Hz or lower, software should change ODR to a value of 12.5Hz or higher, because accelerometer LN mode does not support ODR values below 12.5Hz.

When transitioning from accelerometer LN mode to accelerometer LP mode, if ODR is greater than 500Hz, software should change ODR to a value of 500Hz or lower, because accelerometer LP mode does not support ODR values above 500Hz.

### 12.2 ACCELEROMETER LOW POWER (LP) MODE AVERAGING FILTER SETTING

Software drivers provided with the device use Averaging Filter setting of 16x. This setting is recommended for meeting Android noise requirements in LP mode, and to minimize accelerometer offset variation when transitioning from LP to Low Noise (LN) mode. 1x averaging filter can be used by following the setting configuration shown in section 14.38.

### 12.3 SETTINGS FOR I<sup>2</sup>C, I3C<sup>SM</sup>, AND SPI OPERATION

Upon bootup the device comes up in SPI mode. The following settings should be used for I<sup>2</sup>C, I3C<sup>SM</sup>, and SPI operation.

**Scenario 1:** INT1/INT2 pins are used for interrupt assertion in I3C<sup>SM</sup> mode.

| Register Field                                                        | I <sup>2</sup> C Driver Setting | I3C <sup>SM</sup> Driver Setting | SPI Driver Setting |
|-----------------------------------------------------------------------|---------------------------------|----------------------------------|--------------------|
| I3C_EN (bit 4, register INTF_CONFIG6, address 0x7C, bank 1)           | 1                               | 1                                | 1                  |
| I3C_SDR_EN (bit 0, register INTF_CONFIG6, address 0x7C, bank 1)       | 0                               | 1                                | 1                  |
| I3C_DDR_EN (bit 1, register INTF_CONFIG6, address 0x7C, bank 1)       | 0                               | 0                                | 1                  |
| I3C_BUS_MODE (bit 6, register INTF_CONFIG4, address 0x7A, bank 1)     | 0                               | 0                                | 0                  |
| I2C_SLEW_RATE (bits 5:3, register DRIVE_CONFIG, address 0x13, bank 0) | 1                               | 0                                | 0                  |
| SPI_SLEW_RATE (bits 2:0, register DRIVE_CONFIG, address 0x13, bank 0) | 1                               | 5                                | 5                  |

**Scenario 2:** IBI is used for interrupt assertion in I3C<sup>SM</sup> mode.

| Register Field                                                        | I <sup>2</sup> C Driver Setting | I3C <sup>SM</sup> Driver Setting | SPI Driver Setting |
|-----------------------------------------------------------------------|---------------------------------|----------------------------------|--------------------|
| I3C_EN (bit 4, register INTF_CONFIG6, address 0x7C, bank 1)           | 1                               | 1                                | 1                  |
| I3C_SDR_EN (bit 0, register INTF_CONFIG6, address 0x7C, bank 1)       | 0                               | 1                                | 1                  |
| I3C_DDR_EN (bit 1, register INTF_CONFIG6, address 0x7C, bank 1)       | 0                               | 1                                | 1                  |
| I3C_BUS_MODE (bit 6, register INTF_CONFIG4, address 0x7A, bank 1)     | 0                               | 0                                | 0                  |
| I2C_SLEW_RATE (bits 5:3, register DRIVE_CONFIG, address 0x13, bank 0) | 1                               | 0                                | 0                  |
| SPI_SLEW_RATE (bits 2:0, register DRIVE_CONFIG, address 0x13, bank 0) | 1                               | 5                                | 5                  |

#### 12.4 NOTCH FILTER AND ANTI-ALIAS FILTER OPERATION

Use of Notch Filter and Anti-Alias Filter is supported only for Low Noise (LN) mode operation. The host is responsible for keeping the UI path in LN mode while Notch Filter and Anti-Alias Filter are turned on.

#### 12.5 EXTERNAL CLOCK INPUT EFFECT ON ODR

ODR values supported by the device scale with external clock frequency, if external clock input is used. The ODR values shown in the datasheet are supported with external clock input frequency of 32kHz. For any other external clock input frequency, these ODR values will scale by a factor of (External clock value in kHz / 32). For example, if an external clock frequency of 32.768kHz is used, instead of ODR value of 500Hz, it will be 500 \* (32.768 / 32) = 512Hz.

Page 58 of 110



#### 12.6 INT ASYNC RESET CONFIGURATION

For register INT\_CONFIG1 (bank 0 register 0x64) bit 4 INT\_ASYNC\_RESET, user should change setting to 0 from default setting of 1, for proper INT1 and INT2 pin operation.

#### 12.7 FIFO TIMESTAMP INTERVAL SCALING

When RTC\_MODE =1 (bank 0 register 0x4D bit2) and register INTF\_CONFIG5 (bank 1 register 0x7B) bit 2:1 (PIN9\_FUNCTION) is set to 10 for CLKIN input;

THEN

If TMST\_RES = 0 (corresponding to timestamp resolution of  $1\mu$ s), timestamp interval reported in FIFO requires scaling by a factor of 32.768/RTC Frequency.

For example when ODR = 1 kHz, RTC Frequency 32 kHz, the true timestamp interval should be  $1000 \mu \text{s}$ . But the value in FIFO toggles between 976 and 977. After scaling  $976.5 * 32.768/32 = 1000 \mu \text{s}$ .

If TMST\_RES = 1 (corresponding to timestamp resolution of 1 RTC clock period), timestamp interval reported in FIFO requires scaling by a factor of RTC clock period.

For example when ODR = 1kHz, RTC Frequency 32kHz, the true timestamp interval should be  $1000\mu s$ . But the value in FIFO is 32. After scaling  $1/32kHz*32 = 1000\mu s$ .

**ELSE** 

If TMST\_RES = 0 (corresponding to timestamp resolution of  $1\mu$ s), timestamp interval reported in FIFO requires scaling by a factor of 32/30.

For example when ODR = 1kHz, the true timestamp interval should be  $1000\mu s$ . But the value in FIFO toggles between 937 and 938. After scaling 937.5 \*  $32/30 = 1000\mu s$ .

If TMST\_RES = 1 (corresponding to timestamp resolution of  $16\mu$ s), timestamp interval reported in FIFO requires scaling by a factor of 16\*32/30.

For example when ODR = 1kHz, the true timestamp interval should be  $1000\mu s$ . But the value in FIFO toggles between 58 and 59. After scaling  $58.5 * 16* 32/30 = 1000\mu s$ .

#### 12.8 SUPPLEMENTARY INFORMATION FOR FIFO HOLD LAST DATA EN

This section contains supplementary information for using register field FIFO\_HOLD\_LAST\_DATA\_EN (bit 7) of register INTF\_CONFIG0 (address 0x4C, bank 0) .

The following table shows the values in FIFO:

| FIFO_HOLD_LAST                                        | _DATA_EN       | 16-bit FIFO<br>Packet                   | 20-bit FIFO Packet                                                                                                                                                                                                         |
|-------------------------------------------------------|----------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 (Insert Invalid code)                               | Valid sample   | All values in:<br>{-32766 to<br>+32767} | Gyro: All Even numbers in {-524256 to +524286}  Example: {-524256, -524254, -524252, -524250+524284, +524286}  Accel: Every Other Even number in {-524256 to +524284}  Example: {-524256, -524252, -524248, -524244        |
|                                                       | Invalid sample | -32768                                  | +524280, +524284}<br>-524288                                                                                                                                                                                               |
| 1 ("copy last valid" mode: No invalid code insertion) | Valid sample   | All values in:<br>{-32768 to<br>+32767} | Gyro: All Even numbers in {-524288 to +524286} Example: {-524288, -524286, -524284, -524282+524284, +524286 } Accel: Every Other Even number in {-524288 to +524284 } Example: {-524288, -524284, -524280+524280, +524284} |
|                                                       | Invalid sample |                                         | Copy last valid sample                                                                                                                                                                                                     |

Page 59 of 110



The following table shows the values in sense registers on reset:

|                                     | FIFO_HOLD_LAST_DATA_EN = 0             | FIFO_HOLD_LAST_DATA_EN = 1        |
|-------------------------------------|----------------------------------------|-----------------------------------|
| Power On Reset till<br>First Sample | Accel/Gyro/Temperature Sensor = -32768 | Accel/Gyro/Temperature Sensor = 0 |

The following table shows the values in sense registers after first sample is received. As shown in table, the combination of FIFO\_HOLD\_LAST\_DATA\_EN and FSYNC Tag determine the range of values read for valid samples and invalid samples.

|                                             |                             |                                                                | F                                                                     | FSYNC Enabled on one Sensor                                            |                                                                    |  |  |  |  |
|---------------------------------------------|-----------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------|--|--|--|--|
| FIFO_HOLD_L#                                | AST_DATA_EN                 | FSYNC tag disabled                                             | Sensor selected                                                       | l for FSYNC Tag                                                        | Other Sensor Not selected for FSYNC tagging                        |  |  |  |  |
|                                             |                             |                                                                | FSYNC tagged                                                          | FSYNC not tagged                                                       |                                                                    |  |  |  |  |
| 0 (Insert<br>Invalid code)                  | Valid sample Invalid sample | All values in:<br>{-32766 to +32767}<br>Registers do not recei | All ODD values in:<br>{-32765 to +32767}<br>ive invalid samples. Regi | All EVEN values in:<br>{-32766 to +32766}<br>sters hold last valid san | All values in:<br>{-32766 to +32767}<br>nple until new one arrives |  |  |  |  |
| 1 ("copy last<br>valid" mode:<br>No invalid | Valid sample                | All values in:<br>{-32768 to +32767}                           | All ODD values in:<br>{-32767 to +32767}                              | All EVEN values in:<br>{-32768 to +32766}                              | All values in:<br>{-32768 to +32767}                               |  |  |  |  |
| code<br>insertion)                          | Invalid<br>sample           | Registers do not rec                                           | eive invalid samples. Reg                                             | gisters hold last valid sa                                             | mple until new one arrives                                         |  |  |  |  |

### 12.9 REGISTER VALUES MODIFICATION

The only register settings that user can modify during sensor operation are for ODR selection, FSR selection, and sensor mode changes (register parameters GYRO\_ODR, ACCEL\_ODR, GYRO\_FS\_SEL, ACCEL\_FS\_SEL, GYRO\_MODE, ACCEL\_MODE). User must not modify any other register values during sensor operation. The following procedure must be used for other register values modification.

- Turn Accel and Gyro Off
- Modify register values
- Turn Accel and/or Gyro On

Page 60 of 110





# 13 REGISTER MAP

This section lists the register map for the ICM-42688-P, for user banks 0, 1, 2, 3, 4.

### 13.1 USER BANK 0 REGISTER MAP

| Addr<br>(Hex) | Addr<br>(Dec.) | Register Name      | Serial<br>I/F | Bit7                           | Bit6                      | Bit5                  | Bit4                   | Bit3                 | Bit2             | Bit1                   | Bit0                  |
|---------------|----------------|--------------------|---------------|--------------------------------|---------------------------|-----------------------|------------------------|----------------------|------------------|------------------------|-----------------------|
| 11            | 17             | DEVICE_CONFIG      | R/W           |                                | -                         |                       | SPI_MODE               |                      | -                |                        | SOFT_RESET_<br>CONFIG |
| 13            | 19             | DRIVE_CONFIG       | R/W           |                                | -                         |                       | I2C_SLEW_RATE          |                      |                  | SPI_SLEW_RATE          |                       |
| 14            | 20             | INT_CONFIG         |               |                                | -                         | INT2_MODE             | INT2_DRIVE_<br>CIRCUIT | INT2_POLARI<br>TY    | INT1_MODE        | INT1_DRIVE_<br>CIRCUIT | INT1_POLARI<br>TY     |
| 16            | 22             | FIFO_CONFIG        | R/W           | FIFO_                          | MODE                      |                       |                        |                      | -                |                        |                       |
| 1D            | 29             | TEMP_DATA1         | SYNCR         |                                |                           |                       | TEMP_D                 | ATA[15:8]            |                  |                        |                       |
| 1E            | 30             | TEMP_DATA0         | SYNCR         |                                |                           |                       | TEMP_D                 | ATA[7:0]             |                  |                        |                       |
| 1F            | 31             | ACCEL_DATA_X1      | SYNCR         |                                |                           |                       | ACCEL_DA               | TA_X[15:8]           |                  |                        |                       |
| 20            | 32             | ACCEL_DATA_X0      | SYNCR         |                                |                           |                       | ACCEL_DA               | ATA_X[7:0]           |                  |                        |                       |
| 21            | 33             | ACCEL_DATA_Y1      | SYNCR         |                                |                           |                       | ACCEL_DA               | TA_Y[15:8]           |                  |                        |                       |
| 22            | 34             | ACCEL_DATA_Y0      | SYNCR         |                                |                           |                       | ACCEL_DA               | ATA_Y[7:0]           |                  |                        |                       |
| 23            | 35             | ACCEL_DATA_Z1      | SYNCR         |                                |                           |                       | ACCEL_DA               | TA_Z[15:8]           |                  |                        |                       |
| 24            | 36             | ACCEL_DATA_Z0      | SYNCR         |                                |                           |                       | ACCEL_DA               | ATA_Z[7:0]           |                  |                        |                       |
| 25            | 37             | GYRO_DATA_X1       | SYNCR         |                                |                           |                       | GYRO _DA               | TA_X[15:8]           |                  |                        |                       |
| 26            | 38             | GYRO _DATA_X0      | SYNCR         |                                |                           |                       | GYRO _DA               | ATA_X[7:0]           |                  |                        |                       |
| 27            | 39             | GYRO _DATA_Y1      | SYNCR         |                                |                           |                       | GYRO _DA               | TA_Y[15:8]           |                  |                        |                       |
| 28            | 40             | GYRO _DATA_Y0      | SYNCR         |                                |                           |                       | GYRO _DA               | ATA_Y[7:0]           |                  |                        |                       |
| 29            | 41             | GYRO _DATA_Z1      | SYNCR         |                                |                           |                       | GYRO_DA                | TA_Z[15:8]           |                  |                        |                       |
| 2A            | 42             | GYRO _DATA_Z0      | SYNCR         |                                | GYRO_DATA_Z[7:0]          |                       |                        |                      |                  |                        |                       |
| 2B            | 43             | TMST_FSYNCH        | SYNCR         |                                |                           |                       | TMST_FSYNC             | C_DATA[15:8]         |                  |                        |                       |
| 2C            | 44             | TMST_FSYNCL        | SYNCR         |                                | TMST_FSYNC_DATA[7:0]      |                       |                        |                      |                  |                        |                       |
| 2D            | 45             | INT_STATUS         | R/C           | 1                              | UI_FSYNC_IN<br>T          | PLL_RDY_INT           | RESET_DONE<br>_INT     | DATA_RDY_I<br>NT     | FIFO_THS_IN<br>T | FIFO_FULL_I<br>NT      | AGC_RDY_IN<br>T       |
| 2E            | 46             | FIFO_COUNTH        | R             |                                |                           |                       | FIFO_CO                | UNT[15:8]            |                  |                        |                       |
| 2F            | 47             | FIFO_COUNTL        | R             |                                |                           |                       | FIFO_CC                | OUNT[7:0]            |                  |                        |                       |
| 30            | 48             | FIFO_DATA          | R             |                                |                           |                       | FIFO_                  | _DATA                |                  |                        |                       |
| 31            | 49             | APEX_DATA0         | SYNCR         |                                |                           |                       | STEP_C                 | CNT[7:0]             |                  |                        |                       |
| 32            | 50             | APEX_DATA1         | SYNCR         |                                |                           |                       | STEP_C                 | NT[15:8]             |                  |                        |                       |
| 33            | 51             | APEX_DATA2         | R             |                                |                           |                       | STEP_C                 | ADENCE               |                  |                        |                       |
| 34            | 52             | APEX_DATA3         | R             |                                |                           | -                     |                        |                      | DMP_IDLE         | ACTIVIT                | Y_CLASS               |
| 35            | 53             | APEX_DATA4         | R             |                                | -                         |                       | TAP_                   | NUM                  | TAP_             | _AXIS                  | TAP_DIR               |
| 36            | 54             | APEX_DATA5         | R             |                                | -                         |                       |                        | DOUBLE_T             | AP_TIMING        |                        |                       |
| 37            | 55             | INT_STATUS2        | R/C           |                                |                           | -                     |                        | SMD_INT              | WOM_Z_INT        | WOM_Y_INT              | WOM_X_INT             |
| 38            | 56             | INT_STATUS3        | R/C           |                                | -                         | STEP_DET_IN<br>T      | STEP_CNT_O<br>VF_INT   | TILT_DET_IN<br>T     | WAKE_INT         | SLEEP_INT              | TAP_DET_INT           |
| 4B            | 75             | SIGNAL_PATH_RESET  | w/c           | -                              | DMP_INIT_E<br>N           | DMP_MEM_<br>RESET_EN  | -                      | ABORT_AND<br>_RESET  | TMST_STROB<br>E  | FIFO_FLUSH             | -                     |
| 4C            | 76             | INTF_CONFIG0       | R/W           | FIFO_HOLD_L<br>AST_DATA_E<br>N | FIFO_COUNT<br>_REC        | FIFO_COUNT<br>_ENDIAN | SENSOR_DAT<br>A_ENDIAN |                      | -                | UI_SIF                 | S_CFG                 |
| 4D            | 77             | INTF_CONFIG1       | R/W           | -                              |                           |                       |                        | ACCEL_LP_CL<br>K_SEL | RTC_MODE         | CLF                    | (SEL                  |
| 4E            | 78             | PWR_MGMT0          | R/W           |                                | - TEMP_DIS IDLE GYRO_MODE |                       |                        | MODE                 | ACCEL            | _MODE                  |                       |
| 4F            | 79             | GYRO_CONFIG0       | R/W           |                                | GYRO_FS_SEL               |                       | -                      |                      | GYRC             | _ODR                   |                       |
| 50            | 80             | ACCEL_CONFIG0      | R/W           |                                | ACCEL_FS_SEL              |                       | -                      |                      | ACCE             | L_ODR                  |                       |
| 51            | 81             | GYRO_CONFIG1       | R/W           |                                | TEMP_FILT_BW              |                       | -                      | GYRO_UI              | _FILT_ORD        | GYRO_DEC               | 2_M2_ORD              |
| 52            | 82             | GYRO_ACCEL_CONFIG0 | R/W           |                                | ACCEL_U                   | I_FILT_BW             |                        |                      | GYRO_UI          | _FILT_BW               |                       |
| 53            | 83             | ACCEL_CONFIG1      | R/W           |                                | -                         |                       | ACCEL UI               | FILT_ORD             | ACCEL_DEC        | C2_M2_ORD              | -                     |



| Addr<br>(Hex) | Addr<br>(Dec.) | Register Name    | Serial<br>I/F | Bit7                    | Bit6                                                         | Bit5                | Bit4                   | Bit3                   | Bit2                 | Bit1                            | Bit0                   |
|---------------|----------------|------------------|---------------|-------------------------|--------------------------------------------------------------|---------------------|------------------------|------------------------|----------------------|---------------------------------|------------------------|
| 54            | 84             | TMST_CONFIG      | R/W           |                         | -                                                            |                     | TMST_TO_RE<br>GS_EN    | TMST_RES               | TMST_DELTA<br>_EN    | TMST_FSYNC<br>_EN               | TMST_EN                |
| 56            | 86             | APEX_CONFIG0     | R/W           | DMP_POWE<br>R_SAVE      | TAP_ENABLE                                                   | PED_ENABLE          | TILT_ENABLE            | R2W_EN                 | -                    | DMP                             | _ODR                   |
| 57            | 87             | SMD_CONFIG       | R/W           |                         |                                                              | -                   |                        | WOM_INT_<br>MODE       | WOM_MODE             | SMD_                            | MODE                   |
| 5F            | 95             | FIFO_CONFIG1     | R/W           | -                       | FIFO_RESUM<br>E_PARTIAL_R<br>D                               | FIFO_WM_G<br>T_TH   | FIFO_HIRES_<br>EN      | FIFO_TMST_F<br>SYNC_EN | FIFO_TEMP_<br>EN     | FIFO_GYRO_<br>EN                | FIFO_ACCEL_<br>EN      |
| 60            | 96             | FIFO_CONFIG2     | R/W           |                         |                                                              |                     | FIFO_V                 | VM[7:0]                |                      |                                 |                        |
| 61            | 97             | FIFO_CONFIG3     | R/W           |                         |                                                              |                     |                        |                        | FIFO_W               | M[11:8]                         |                        |
| 62            | 98             | FSYNC_CONFIG     | R/W           | -                       | FSYNC_UI_SEL                                                 |                     |                        |                        | -                    | FSYNC_UI_FL<br>AG_CLEAR_S<br>EL | FSYNC_POLA<br>RITY     |
| 63            | 99             | INT_CONFIG0      | R/W           |                         | -                                                            | UI_DRDY_            | INT_CLEAR              | FIFO_THS_              | INT_CLEAR            | FIFO_FULL                       | INT_CLEAR              |
| 64            | 100            | INT_CONFIG1      | R/W           | -                       | INT_TPULSE_ INT_TDEASSE INT_ASYNC_ DURATION RT_DISABLE RESET |                     |                        | -                      |                      |                                 |                        |
| 65            | 101            | INT_SOURCE0      | R/W           | -                       | UI_FSYNC_IN<br>T1_EN                                         | PLL_RDY_INT<br>1_EN | RESET_DONE<br>_INT1_EN | UI_DRDY_INT<br>1_EN    | FIFO_THS_IN<br>T1_EN | FIFO_FULL_I<br>NT1_EN           | UI_AGC_RDY<br>_INT1_EN |
| 66            | 102            | INT_SOURCE1      | R/W           | -                       | I3C_PROTOC<br>OL_ERROR_I<br>NT1_EN                           |                     | -                      | SMD_INT1_E<br>N        | WOM_Z_INT<br>1_EN    | WOM_Y_INT<br>1_EN               | WOM_X_INT<br>1_EN      |
| 68            | 104            | INT_SOURCE3      | R/W           | -                       | UI_FSYNC_IN<br>T2_EN                                         | PLL_RDY_INT<br>2_EN | RESET_DONE<br>_INT2_EN | UI_DRDY_INT<br>2_EN    | FIFO_THS_IN<br>T2_EN | FIFO_FULL_I<br>NT2_EN           | UI_AGC_RDY<br>_INT2_EN |
| 69            | 105            | INT_SOURCE4      | R/W           | -                       | I3C_PROTOC<br>OL_ERROR_I<br>NT2_EN                           |                     | -                      | SMD_INT2_E<br>N        | WOM_Z_INT<br>2_EN    | WOM_Y_INT<br>2_EN               | WOM_X_INT<br>2_EN      |
| 6C            | 108            | FIFO_LOST_PKT0   | R             | FIFO_LOST_PKT_CNT[15:8] |                                                              |                     |                        |                        |                      |                                 |                        |
| 6D            | 109            | FIFO_LOST_PKT1   | R             |                         |                                                              |                     | FIFO_LOST_F            | PKT_CNT[7:0]           |                      |                                 |                        |
| 70            | 112            | SELF_TEST_CONFIG | R/W           |                         | ACCEL_ST_P<br>OWER                                           | EN_AZ_ST            | EN_AY_ST               | EN_AX_ST               | EN_GZ_ST             | EN_GY_ST                        | EN_GX_ST               |
| 75            | 117            | WHO_AM_I         | R             | WHOAMI                  |                                                              |                     |                        |                        |                      |                                 |                        |
| 76            | 118            | REG_BANK_SEL     | R/W           |                         | ·                                                            | -                   | ·                      |                        |                      | BANK_SEL                        |                        |

### 13.2 USER BANK 1 REGISTER MAP

| Addr<br>(Hex) | Addr<br>(Dec.) | Register Name        | Serial<br>I/F | Bit7                         | Bit6                 | Bit5                           | Bit4                           | Bit3                           | Bit2                   | Bit1                   | Bit0                   |
|---------------|----------------|----------------------|---------------|------------------------------|----------------------|--------------------------------|--------------------------------|--------------------------------|------------------------|------------------------|------------------------|
| 03            | 03             | SENSOR_CONFIG0       | R/W           |                              | -                    |                                | YG_DISABLE                     | XG_DISABLE                     | ZA_DISABLE             | YA_DISABLE             | XA_DISABLE             |
| ОВ            | 11             | GYRO_CONFIG_STATIC2  | R/W           |                              |                      |                                | -                              |                                |                        | GYRO_AAF_D<br>IS       | GYRO_NF_DI<br>S        |
| OC            | 12             | GYRO_CONFIG_STATIC3  | R/W           |                              | -                    |                                |                                | GYRO_A                         | AF_DELT                |                        |                        |
| 0D            | 13             | GYRO_CONFIG_STATIC4  | R/W           |                              |                      |                                | GYRO_AAF_I                     | DELTSQR[7:0]                   |                        |                        |                        |
| OE            | 14             | GYRO_CONFIG_STATIC5  | R/W           |                              | GYRO_AA              | F_BITSHIFT                     |                                |                                | GYRO_AAF_D             | ELTSQR[11:8]           |                        |
| OF            | 15             | GYRO_CONFIG_STATIC6  | R/W           |                              |                      |                                | GYRO_X_NF                      | _COSWZ[7:0]                    |                        |                        |                        |
| 10            | 16             | GYRO_CONFIG_STATIC7  | R/W           |                              |                      |                                | GYRO_Y_NF                      | _COSWZ[7:0]                    |                        |                        |                        |
| 11            | 17             | GYRO_CONFIG_STATIC8  | R/W           |                              | GYRO_Z_NF_COSWZ[7:0] |                                |                                |                                |                        |                        |                        |
| 12            | 18             | GYRO_CONFIG_STATIC9  | R/W           | _                            |                      | GYRO_Z_NF_<br>COSWZ_SEL[<br>0] | GYRO_Y_NF_<br>COSWZ_SEL[<br>0] | GYRO_X_NF_<br>COSWZ_SEL[<br>0] | GYRO_Z_NF_<br>COSWZ[8] | GYRO_Y_NF_<br>COSWZ[8] | GYRO_X_NF_<br>COSWZ[8] |
| 13            | 19             | GYRO_CONFIG_STATIC10 | R/W           | -                            |                      | GYRO_NF_BW_SEI                 | _                              |                                |                        | -                      |                        |
| 5F            | 95             | XG_ST_DATA           | R/W           |                              |                      |                                | XG_ST                          | _DATA                          |                        |                        |                        |
| 60            | 96             | YG_ST_DATA           | R/W           |                              |                      |                                | YG_ST                          | _DATA                          |                        |                        |                        |
| 61            | 97             | ZG_ST_DATA           | R/W           |                              |                      |                                | ZG_ST                          | _DATA                          |                        |                        |                        |
| 62            | 98             | TMSTVAL0             | R             |                              |                      |                                | TMST_V                         | ALUE[7:0]                      |                        |                        |                        |
| 63            | 99             | TMSTVAL1             | R             |                              |                      |                                | TMST_VA                        | LUE[15:8]                      |                        |                        |                        |
| 64            | 100            | TMSTVAL2             | R             |                              |                      | -                              |                                |                                | TMST_VA                | LUE[19:16]             |                        |
| 7A            | 122            | INTF_CONFIG4         | R/W           | _ I3C_BUS_MO SPI_AP_4WIR _ E |                      |                                | -                              |                                |                        |                        |                        |
| 7B            | 123            | INTF_CONFIG5         | R/W           |                              |                      | -                              |                                |                                | PIN9_FL                | JNCTION                | -                      |
| 7C            | 124            | INTF_CONFIG6         | R/W           | ASYNCTIME0<br>_DIS           |                      | -                              | I3C_EN                         | I3C_IBI_BYTE<br>_EN            | I3C_IBI_EN             | I3C_DDR_EN             | I3C_SDR_EN             |



#### 13.3 USER BANK 2 REGISTER MAP

| Addr<br>(Hex) | Addr<br>(Dec.) | Register Name        | Serial<br>I/F | Bit7                   | Bit6                                       | Bit5 | Bit4  | Bit3 | Bit2              | Bit1 | Bit0 |
|---------------|----------------|----------------------|---------------|------------------------|--------------------------------------------|------|-------|------|-------------------|------|------|
| 03            | 03             | ACCEL_CONFIG_STATIC2 | R/W           |                        |                                            |      |       |      | ACCEL_AAF_<br>DIS |      |      |
| 04            | 04             | ACCEL_CONFIG_STATIC3 | R/W           | ACCEL_AAF_DELTSQR[7:0] |                                            |      |       |      |                   |      |      |
| 05            | 05             | ACCEL_CONFIG_STATIC4 | R/W           |                        | ACCEL_AAF_BITSHIFT ACCEL_AAF_DELTSQR[11:8] |      |       |      |                   |      |      |
| 3B            | 59             | XA_ST_DATA           | R/W           | XA_ST_DATA             |                                            |      |       |      |                   |      |      |
| 3C            | 60             | YA_ST_DATA           | R/W           | YA_ST_DATA             |                                            |      |       |      |                   |      |      |
| 3D            | 61             | ZA_ST_DATA           | R/W           |                        | •                                          |      | ZA_ST | DATA | •                 |      |      |

#### 13.4 USER BANK 4 REGISTER MAP

| Addr<br>(Hex) | Addr<br>(Dec.) | Register Name   | Serial<br>I/F | Bit7                              | Bit6                               | Bit5                 | Bit4                     | Bit3                 | Bit2                 | Bit1                  | Bit0                 |  |
|---------------|----------------|-----------------|---------------|-----------------------------------|------------------------------------|----------------------|--------------------------|----------------------|----------------------|-----------------------|----------------------|--|
| 40            | 64             | APEX_CONFIG1    | R/W           |                                   | LOW_ENERGY_AMP_TH_SEL DMP_POWER_SA |                      |                          |                      |                      |                       |                      |  |
| 41            | 65             | APEX_CONFIG2    | R/W           |                                   | PED_AN                             | IP_TH_SEL            |                          |                      | PED_STEP_            | CNT_TH_SEL            | NT_TH_SEL            |  |
| 42            | 66             | APEX_CONFIG3    | R/W           | PE                                | D_STEP_DET_TH_                     | SEL                  | PE                       | D_SB_TIMER_TH_       | SEL                  | PED_HI_E              | N_TH_SEL             |  |
| 43            | 67             | APEX_CONFIG4    | R/W           | TILT_WAIT                         | _TIME_SEL                          |                      | SLEEP_TIME_OUT           |                      |                      | -                     |                      |  |
| 44            | 68             | APEX_CONFIG5    | R/W           |                                   |                                    | -                    |                          |                      | 1                    | MOUNTING_MATRI        | X                    |  |
| 45            | 69             | APEX_CONFIG6    | R/W           |                                   |                                    | -                    |                          |                      | SL                   | EEP_GESTURE_DEL       | .AY                  |  |
| 46            | 70             | APEX_CONFIG7    | R/W           |                                   |                                    | TAP_MIN              | _JERK_THR                |                      |                      | TAP_MAX               | _PEAK_TOL            |  |
| 47            | 71             | APEX_CONFIG8    | R/W           | -                                 | TAP                                | TMAX                 | TAP_                     | TAVG                 |                      | TAP_TMIN              |                      |  |
| 48            | 72             | APEX_CONFIG9    | R/W           |                                   |                                    |                      | -                        |                      |                      |                       | SENSITIVITY_<br>MODE |  |
| 4A            | 74             | ACCEL_WOM_X_THR | R/W           |                                   |                                    |                      | WOM                      | _X_TH                |                      |                       |                      |  |
| 4B            | 75             | ACCEL_WOM_Y_THR | R/W           |                                   |                                    |                      | WOM                      | _Y_TH                |                      |                       |                      |  |
| 4C            | 76             | ACCEL_WOM_Z_THR | R/W           |                                   |                                    |                      | WOM                      | _Z_TH                |                      |                       |                      |  |
| 4D            | 77             | INT_SOURCE6     | R/W           |                                   | -                                  | STEP_DET_IN<br>T1_EN | STEP_CNT_O<br>FL_INT1_EN | TILT_DET_IN<br>T1_EN | WAKE_DET_I<br>NT1_EN | SLEEP_DET_I<br>NT1_EN | TAP_DET_INT<br>1_EN  |  |
| 4E            | 78             | INT_SOURCE7     | R/W           |                                   | -                                  |                      | STEP_CNT_O<br>FL_INT2_EN | TILT_DET_IN<br>T2_EN | WAKE_DET_I<br>NT2_EN | SLEEP_DET_I<br>NT2_EN | TAP_DET_INT<br>2_EN  |  |
| 4F            | 79             | INT_SOURCE8     | R/W           |                                   | -                                  | FSYNC_IBI_E<br>N     | PLL_RDY_IBI_<br>EN       | UI_DRDY_IBI<br>_EN   | FIFO_THS_IBI<br>_EN  | FIFO_FULL_IB<br>I_EN  | AGC_RDY_IBI<br>_EN   |  |
| 50            | 80             | INT_SOURCE9     | R/W           | I3C_PROTOC<br>OL_ERROR_I<br>BI_EN |                                    | -                    | SMD_IBI_EN               | WOM_Z_IBI_<br>EN     | WOM_Y_IBI_<br>EN     | WOM_X_IBI_<br>EN      | -                    |  |
| 51            | 81             | INT_SOURCE10    | R/W           |                                   | -                                  | STEP_DET_IB<br>I_EN  | STEP_CNT_O<br>FL_IBI_EN  | TILT_DET_IBI<br>_EN  | WAKE_DET_I<br>BI_EN  | SLEEP_DET_I<br>BI_EN  | TAP_DET_IBI<br>_EN   |  |
| 77            | 119            | OFFSET_USER0    | R/W           |                                   |                                    | •                    | GYRO_X_O                 | FFUSER[7:0]          |                      |                       |                      |  |
| 78            | 120            | OFFSET_USER1    | R/W           |                                   | GYRO_Y_O                           | FFUSER[11:8]         |                          |                      | GYRO_X_OF            | FUSER[11:8]           |                      |  |
| 79            | 121            | OFFSET_USER2    | R/W           |                                   |                                    |                      | GYRO_Y_O                 | FFUSER[7:0]          |                      |                       |                      |  |
| 7A            | 122            | OFFSET_USER3    | R/W           |                                   |                                    |                      | GYRO_Z_O                 | FFUSER[7:0]          |                      |                       |                      |  |
| 7B            | 123            | OFFSET_USER4    | R/W           |                                   | ACCEL_X_O                          | FFUSER[11:8]         |                          |                      | GYRO_Z_OF            | FUSER[11:8]           |                      |  |
| 7C            | 124            | OFFSET_USER5    | R/W           |                                   |                                    |                      | ACCEL_X_O                | FFUSER[7:0]          |                      |                       |                      |  |
| 7D            | 125            | OFFSET_USER6    | R/W           |                                   |                                    |                      | ACCEL_Y_O                | FFUSER[7:0]          |                      |                       |                      |  |
| 7E            | 126            | OFFSET_USER7    | R/W           |                                   | ACCEL_Z_O                          | FFUSER[11:8]         |                          |                      | ACCEL_Y_O            | FUSER[11:8]           |                      |  |
| 7F            | 127            | OFFSET_USER8    | R/W           |                                   |                                    |                      | ACCEL_Z_O                | FFUSER[7:0]          |                      |                       |                      |  |

Detailed register descriptions are provided in the sections that follow. Please note the following regarding Clock Domain for each register:

• Clock Domain: SCLK\_UI means that the register is controlled from the UI interface

Register fields marked as Reserved must not be modified by the user. The Reset Value of the register can be used to determine the default value of reserved register fields, and unless otherwise noted this default value must be maintained even if the values of other register fields are modified by the user.



# 14 USER BANK O REGISTER MAP – DESCRIPTIONS

This section describes the function and contents of each register within USR Bank 0.

**Note:** The device powers up in sleep mode.

### 14.1 DEVICE\_CONFIG

Name: DEVICE\_CONFIG Address: 17 (11h) Serial IF: R/W Reset value: 0x00 Clock Domain: SCLK\_UI

| 0.00. | Domaini Socia_Oi  |                                                                                   |
|-------|-------------------|-----------------------------------------------------------------------------------|
| BIT   | NAME              | FUNCTION                                                                          |
| 7:5   | -                 | Reserved                                                                          |
|       |                   | SPI mode selection                                                                |
| 4     | SPI_MODE          | 0: Mode 0 and Mode 3 (default)                                                    |
|       |                   | 1: Mode 1 and Mode 2                                                              |
| 3:1   | -                 | Reserved                                                                          |
| 0     | SOFT_RESET_CONFIG | Software reset configuration                                                      |
|       |                   | 0: Normal (default)                                                               |
|       |                   | 1: Enable reset                                                                   |
|       |                   | After writing 1 to this bitfield, wait 1ms for soft reset to be effective, before |
|       |                   | attempting any other register access                                              |

### 14.2 DRIVE\_CONFIG

Name: DRIVE\_CONFIG Address: 19 (13h) Serial IF: R/W Reset value: 0x05 Clock Domain: SCLK\_UI

| BIT | NAME          | FUNCTION                                                                                                                                                                                                                                  |
|-----|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:6 | -             | Reserved                                                                                                                                                                                                                                  |
| 5:3 | I2C_SLEW_RATE | Controls slew rate for output pin 14 in I <sup>2</sup> C mode only 000: 20ns-60ns 001: 12ns-36ns 010: 6ns-18ns 011: 4ns-12ns 100: 2ns-6ns 101: < 2ns 110: Reserved                                                                        |
| 2:0 | SPI_SLEW_RATE | 111: Reserved  Controls slew rate for output pin 14 in SPI or I3C <sup>SM</sup> mode, and for all other output pins  000: 20ns-60ns  001: 12ns-36ns  010: 6ns-18ns  011: 4ns-12ns  100: 2ns-6ns  101: < 2ns  110: Reserved  111: Reserved |



### 14.3 INT\_CONFIG

Name: INT\_CONFIG Address: 20 (14h) Serial IF: R/W Reset value: 0x00 Clock Domain: SCLK\_UI

| BIT | NAME               | FUNCTION                |
|-----|--------------------|-------------------------|
| 7:6 | -                  | Reserved                |
|     |                    | INT2 interrupt mode     |
| 5   | INT2_MODE          | 0: Pulsed mode          |
|     |                    | 1: Latched mode         |
|     |                    | INT2 drive circuit      |
| 4   | INT2_DRIVE_CIRCUIT | 0: Open drain           |
|     |                    | 1: Push pull            |
|     |                    | INT2 interrupt polarity |
| 3   | INT2_POLARITY      | 0: Active low (default) |
|     |                    | 1: Active high          |
|     |                    | INT1 interrupt mode     |
| 2   | INT1_MODE          | 0: Pulsed mode          |
|     |                    | 1: Latched mode         |
|     |                    | INT1 drive circuit      |
| 1   | INT1_DRIVE_CIRCUIT | 0: Open drain           |
|     |                    | 1: Push pull            |
|     |                    | INT1 interrupt polarity |
| 0   | INT1_POLARITY      | 0: Active low (default) |
|     |                    | 1: Active high          |

## 14.4 FIFO\_CONFIG

Name: FIFO\_CONFIG Address: 22 (16h) Serial IF: R/W Reset value: 0x00 Clock Domain: SCLK\_UI

| BIT | NAME      | FUNCTION                  |
|-----|-----------|---------------------------|
| 7:6 | FIFO_MODE | 00: Bypass Mode (default) |
|     |           | 01: Stream-to-FIFO Mode   |
|     |           | 10: STOP-on-FULL Mode     |
|     |           | 11: STOP-on-FULL Mode     |
| 5:0 | -         | Reserved                  |

## 14.5 TEMP\_DATA1

Name: TEMP\_DATA1 Address: 29 (1Dh) Serial IF: SYNCR Reset value: 0x80 Clock Domain: SCLK UI

| Clock Domain: SCLK_UI |                 |                                |
|-----------------------|-----------------|--------------------------------|
| BIT                   | NAME            | FUNCTION                       |
| 7:0                   | TEMP_DATA[15:8] | Upper byte of temperature data |



### 14.6 TEMP\_DATA0

| Name   | Name: TEMP_DATA0      |                                |  |
|--------|-----------------------|--------------------------------|--|
| Addre  | Address: 30 (1Eh)     |                                |  |
| Serial | Serial IF: SYNCR      |                                |  |
| Reset  | Reset value: 0x00     |                                |  |
| Clock  | Clock Domain: SCLK_UI |                                |  |
| BIT    | NAME                  | FUNCTION                       |  |
| 7:0    | TEMP_DATA[7:0]        | Lower byte of temperature data |  |

Temperature sensor register data TEMP\_DATA is updated with new data at max(Accelerometer ODR, Gyroscope ODR).

Temperature data value from the sensor data registers can be converted to degrees centigrade by using the following formula:

Temperature in Degrees Centigrade = (TEMP\_DATA / 132.48) + 25

Temperature data stored in FIFO is an 8-bit quantity, FIFO\_TEMP\_DATA. It can be converted to degrees centigrade by using the following formula:

Temperature in Degrees Centigrade = (FIFO\_TEMP\_DATA / 2.07) + 25

#### 14.7 ACCEL\_DATA\_X1

| Name   | Name: ACCEL_DATA_X1   |                                 |  |
|--------|-----------------------|---------------------------------|--|
| Addre  | Address: 31 (1Fh)     |                                 |  |
| Serial | Serial IF: SYNCR      |                                 |  |
| Reset  | Reset value: 0x80     |                                 |  |
| Clock  | Clock Domain: SCLK_UI |                                 |  |
| BIT    | NAME                  | FUNCTION                        |  |
| 7:0    | ACCEL_DATA_X[15:8]    | Upper byte of Accel X-axis data |  |

#### 14.8 ACCEL\_DATA\_X0

Name: ACCEL\_DATA\_X0
Address: 32 (20h)
Serial IF: SYNCR
Reset value: 0x00
Clock Domain: SCLK\_UI

BIT NAME FUNCTION

7:0 ACCEL\_DATA\_X[7:0] Lower byte of Accel X-axis data

### 14.9 ACCEL\_DATA\_Y1

Name: ACCEL\_DATA\_Y1
Address: 33 (21h)
Serial IF: SYNCR
Reset value: 0x80
Clock Domain: SCLK\_UI

BIT NAME FUNCTION

7:0 ACCEL\_DATA\_Y[15:8] Upper byte of Accel Y-axis data



### 14.10 ACCEL\_DATA\_Y0

| Name   | Name: ACCEL_DATA_Y0   |                                 |  |  |
|--------|-----------------------|---------------------------------|--|--|
| Addre  | Address: 34 (22h)     |                                 |  |  |
| Serial | Serial IF: SYNCR      |                                 |  |  |
| Reset  | Reset value: 0x00     |                                 |  |  |
| Clock  | Clock Domain: SCLK_UI |                                 |  |  |
| BIT    | NAME                  | FUNCTION                        |  |  |
| 7:0    | ACCEL DATA Y[7:0]     | Lower byte of Accel Y-axis data |  |  |

### 14.11 ACCEL\_DATA\_Z1

| Name   | : ACCEL_DATA_Z1       |                                 |  |
|--------|-----------------------|---------------------------------|--|
| Addre  | Address: 35 (23h)     |                                 |  |
| Serial | Serial IF: SYNCR      |                                 |  |
| Reset  | Reset value: 0x80     |                                 |  |
| Clock  | Clock Domain: SCLK_UI |                                 |  |
| BIT    | NAME                  | FUNCTION                        |  |
| 7:0    | ACCEL_DATA_Z[15:8]    | Upper byte of Accel Z-axis data |  |

### 14.12 ACCEL\_DATA\_Z0

|        | Name: ACCEL_DATA_Z0 Address: 36 (24h) |                                 |  |
|--------|---------------------------------------|---------------------------------|--|
| Serial | Serial IF: SYNCR                      |                                 |  |
| Reset  | Reset value: 0x00                     |                                 |  |
| Clock  | Clock Domain: SCLK_UI                 |                                 |  |
| BIT    | NAME                                  | FUNCTION                        |  |
| 7:0    | ACCEL_DATA_Z[7:0]                     | Lower byte of Accel Z-axis data |  |

### 14.13 GYRO\_DATA\_X1

 Name: GYRO\_DATA\_X1

 Address: 37 (25h)

 Serial IF: SYNCR

 Reset value: 0x80

 Clock Domain: SCLK\_UI

 BIT NAME
 FUNCTION

 7:0 GYRO\_DATA\_X[15:8]
 Upper byte of Gyro X-axis data

### 14.14 **GYRO\_DATA\_X0**

Name: GYRO\_DATA\_X0
Address: 38 (26h)
Serial IF: SYNCR
Reset value: 0x00
Clock Domain: SCLK\_UI

BIT NAME FUNCTION

7:0 GYRO\_DATA\_X[7:0] Lower byte of Gyro X-axis data



### 14.15 GYRO\_DATA\_Y1

| Name   | Name: GYRO_DATA_Y1    |                                |  |
|--------|-----------------------|--------------------------------|--|
| Addre  | Address: 39 (27h)     |                                |  |
| Serial | Serial IF: SYNCR      |                                |  |
| Reset  | Reset value: 0x80     |                                |  |
| Clock  | Clock Domain: SCLK_UI |                                |  |
| BIT    | NAME                  | FUNCTION                       |  |
| 7:0    | GYRO DATA Y[15:8]     | Upper byte of Gyro Y-axis data |  |

## 14.16 **GYRO\_DATA\_Y0**

| Name   | :: GYRO_DATA_Y0       |                                |  |
|--------|-----------------------|--------------------------------|--|
| Addre  | Address: 40 (28h)     |                                |  |
| Serial | IF: SYNCR             |                                |  |
| Reset  | Reset value: 0x00     |                                |  |
| Clock  | Clock Domain: SCLK_UI |                                |  |
| BIT    | NAME                  | FUNCTION                       |  |
| 7:0    | GYRO_DATA_Y[7:0]      | Lower byte of Gyro Y-axis data |  |

### 14.17 **GYRO\_DATA\_Z1**

| Name   | Name: GYRO_DATA_Z1    |                                |  |
|--------|-----------------------|--------------------------------|--|
| Addre  | Address: 41 (29h)     |                                |  |
| Serial | Serial IF: SYNCR      |                                |  |
| Reset  | Reset value: 0x80     |                                |  |
| Clock  | Clock Domain: SCLK_UI |                                |  |
| BIT    | NAME                  | FUNCTION                       |  |
| 7:0    | GYRO_DATA_Z[15:8]     | Upper byte of Gyro Z-axis data |  |

## 14.18 **GYRO\_DATA\_Z0**

Name: GYRO\_DATA\_Z0 Address: 42 (2Ah) Serial IF: SYNCR Reset value: 0x00 Clock Domain: SCLK UI BIT NAME **FUNCTION** GYRO\_DATA\_Z[7:0] Lower byte of Gyro Z-axis data

### 14.19 TMST\_FSYNCH

Name: TMST\_FSYNCH Address: 43 (2Bh) Serial IF: SYNCR Reset value: 0x00 Clock Domain: SCLK\_UI BIT NAME **FUNCTION** Stores the upper byte of the time delta from the rising edge of FSYNC to 7:0 the latest ODR until the UI Interface reads the FSYNC tag in the status

TMST\_FSYNC\_DATA\_UI[15:8] register



### 14.20 TMST\_FSYNCL

Name: TMST\_FSYNCL Address: 44 (2Ch) Serial IF: SYNCR Reset value: 0x00 Clock Domain: SCLK\_UI

| BIT | NAME                    | FUNCTION                                                                                                                                                  |
|-----|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:0 | TMST_FSYNC_DATA_UI[7:0] | Stores the lower byte of the time delta from the rising edge of FSYNC to the latest ODR until the UI Interface reads the FSYNC tag in the status register |

## 14.21 INT\_STATUS

Name: INT\_STATUS Address: 45 (2Dh) Serial IF: R/C Reset value: 0x10 Clock Domain: SCLK UI

| CIUCK | Domain. Scik_oi |                                                                                                                                          |
|-------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------|
| BIT   | NAME            | FUNCTION                                                                                                                                 |
| 7     | -               | Reserved                                                                                                                                 |
| 6     | UI_FSYNC_INT    | This bit automatically sets to 1 when a UI FSYNC interrupt is generated. The bit clears to 0 after the register has been read.           |
| 5     | PLL_RDY_INT     | This bit automatically sets to 1 when a PLL Ready interrupt is generated. The bit clears to 0 after the register has been read.          |
| 4     | RESET_DONE_INT  | This bit automatically sets to 1 when software reset is complete. The bit clears to 0 after the register has been read.                  |
| 3     | DATA_RDY_INT    | This bit automatically sets to 1 when a <u>Data Ready interrupt</u> is generated. The bit clears to 0 after the register has been read.  |
| 2     | FIFO_THS_INT    | This bit automatically sets to 1 when the FIFO buffer reaches the threshold value. The bit clears to 0 after the register has been read. |
| 1     | FIFO_FULL_INT   | This bit automatically sets to 1 when the FIFO buffer is full. The bit clears to 0 after the register has been read.                     |
| 0     | AGC_RDY_INT     | This bit automatically sets to 1 when an AGC Ready interrupt is generated.  The bit clears to 0 after the register has been read.        |

# 14.22 FIFO\_COUNTH

Name: FIFO\_COUNTH Address: 46 (2Eh) Serial IF: R

Reset value: 0x00 Clock Domain: SCLK\_UI

| BIT | NAME             | FUNCTION                                                                    |
|-----|------------------|-----------------------------------------------------------------------------|
|     | FIFO_COUNT[15:8] | High Bits, count indicates the number of records or bytes available in FIFO |
| 7:0 |                  | according to FIFO_COUNT_REC setting.                                        |
| 7.0 |                  | Reading this byte latches the data for both FIFO_COUNTH, and                |
|     |                  | FIFO_COUNTL.                                                                |



## 14.23 FIFO\_COUNTL

Name: FIFO\_COUNTL

Address: 47 (2Fh)

Serial IF: R

Reset value: 0x00

Clock Domain: SCLK\_UI

BIT NAME FUNCTION

Low Bits, count indicates the number of records or bytes available in FIFO according to FIFO\_COUNT\_REC setting.

Note: Must read FIFO\_COUNTH to latch new data for both FIFO\_COUNTH and FIFO COUNTL.

### 14.24 FIFO DATA

Name: FIFO\_DATA
Address: 48 (30h)
Serial IF: R
Reset value: 0xFF
Clock Domain: SCLK\_UI

BIT NAME FUNCTION

7:0 FIFO\_DATA FIFO data port

### **14.25 APEX DATA0**

Name: APEX\_DATA0
Address: 49 (31h)
Serial IF: SYNCR
Reset value: 0x00
Clock Domain: SCLK\_UI

BIT NAME FUNCTION

7:0 STEP\_CNT[7:0] Pedometer Output: Lower byte of Step Count measured by pedometer

### 14.26 **APEX\_DATA1**

Name: APEX\_DATA1
Address: 50 (32h)
Serial IF: SYNCR
Reset value: 0x00
Clock Domain: SCLK\_UI

BIT NAME FUNCTION

7:0 STEP\_CNT[15:8] Pedometer Output: Upper byte of Step Count measured by pedometer



## 14.27 **APEX\_DATA2**

Name: APEX\_DATA2 Address: 51 (33h) Serial IF: R Reset value: 0x00 Clock Domain: SCLK\_UI

| BIT | NAME         | FUNCTION                                                                                                                                     |
|-----|--------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 7:0 | STEP_CADENCE | Pedometer Output: Walk/run cadency in number of samples. Format is u6.2. e.g. At 50Hz ODR and 2Hz walk frequency, the cadency is 25 samples. |
|     |              | The register will output 100.                                                                                                                |

## 14.28 APEX\_DATA3

Name: APEX\_DATA3 Address: 52 (34h) Serial IF: R

Reset value: 0x04 Clock Domain: SCLK UI

| CIUCK | Clock Dollialli. Scen_of |                                     |  |
|-------|--------------------------|-------------------------------------|--|
| BIT   | NAME                     | FUNCTION                            |  |
| 7:3   | -                        | Reserved                            |  |
| 2     | DMP_IDLE                 | 0: Indicates DMP is running         |  |
|       |                          | 1: Indicates DMP is idle            |  |
|       | ACTIVITY_CLASS           | Pedometer Output: Detected activity |  |
|       |                          | 00: Unknown                         |  |
| 1:0   |                          | 01: Walk                            |  |
|       |                          | 10: Run                             |  |
|       |                          | 11: Reserved                        |  |



## 14.29 **APEX\_DATA4**

Name: APEX\_DATA4 Address: 53 (35h) Serial IF: R Reset value: 0x00 Clock Domain: SCLK\_UI

| CIOCIC | clock Berlain Seek_Of |                                                                             |  |  |  |
|--------|-----------------------|-----------------------------------------------------------------------------|--|--|--|
| BIT    | NAME                  | FUNCTION                                                                    |  |  |  |
| 7:5    | -                     | Reserved                                                                    |  |  |  |
| 4:3    | TAP_NUM               | Tap Detection Output: Number of taps in the current Tap event               |  |  |  |
|        |                       | 00: No tap                                                                  |  |  |  |
|        |                       | 01: Single tap                                                              |  |  |  |
|        |                       | 10: Double tap                                                              |  |  |  |
|        |                       | 11: Reserved                                                                |  |  |  |
| 2:1    | TAP_AXIS              | Tap Detection Output: Represents the accelerometer axis on which tap        |  |  |  |
|        |                       | energy is concentrated                                                      |  |  |  |
|        |                       | 00: X-axis                                                                  |  |  |  |
|        |                       | 01: Y-axis                                                                  |  |  |  |
|        |                       | 10: Z-axis                                                                  |  |  |  |
|        |                       | 11: Reserved                                                                |  |  |  |
| 0      | TAP_DIR               | Tap Detection Output: Polarity of tap pulse                                 |  |  |  |
|        |                       | 0: Current accelerometer value – Previous accelerometer value is a positive |  |  |  |
|        |                       | value                                                                       |  |  |  |
|        |                       | 1: Current accelerometer value – Previous accelerometer value is a negative |  |  |  |
|        |                       | value or zero                                                               |  |  |  |

# 14.30 **APEX\_DATA5**

Name: APEX\_DATA5 Address: 54 (36h) Serial IF: R

Reset value: 0x00 Clock Domain: SCLK UI

| BIT | NAME              | FUNCTION                                                                                                                                                                                                                                |
|-----|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:6 | -                 | Reserved                                                                                                                                                                                                                                |
| 5:0 | DOUBLE_TAP_TIMING | DOUBLE_TAP_TIMING measures the time interval between the two taps when double tap is detected. It counts every 16 accelerometer samples as one unit between the 2 tap pulses. Therefore, the value is related to the accelerometer ODR. |
|     |                   | Time in seconds = DOUBLE_TAP_TIMING * 16 / ODR                                                                                                                                                                                          |
|     |                   | For example, if the accelerometer ODR is 500 Hz, and the                                                                                                                                                                                |
|     |                   | DOUBLE_TAP_TIMING register reading is 6, the time interval value is 6*16/500 = 0.192 seconds.                                                                                                                                           |



# 14.31 INT\_STATUS2

Name: INT\_STATUS2 Address: 55 (37h) Serial IF: R/C Reset value: 0x00 Clock Domain: SCLK\_UI

| BIT | NAME      | FUNCTION                                               |
|-----|-----------|--------------------------------------------------------|
| 7:4 | -         | Reserved                                               |
| 3   | SMD_INT   | Significant Motion Detection Interrupt, clears on read |
| 2   | WOM_Z_INT | Wake on Motion Interrupt on Z-axis, clears on read     |
| 1   | WOM_Y_INT | Wake on Motion Interrupt on Y-axis, clears on read     |
| 0   | WOM_X_INT | Wake on Motion Interrupt on X-axis, clears on read     |

# 14.32 INT\_STATUS3

Name: INT\_STATUS3 Address: 56 (38h) Serial IF: R/C Reset value: 0x00 Clock Domain: SCLK\_UI

| BIT | NAME             | FUNCTION                                      |
|-----|------------------|-----------------------------------------------|
| 7:6 | -                | Reserved                                      |
| 5   | STEP_DET_INT     | Step Detection Interrupt, clears on read      |
| 4   | STEP_CNT_OVF_INT | Step Count Overflow Interrupt, clears on read |
| 3   | TILT_DET_INT     | Tilt Detection Interrupt, clears on read      |
| 2   | WAKE_INT         | Wake Event Interrupt, clears on read          |
| 1   | SLEEP_INT        | Sleep Event Interrupt, clears on read         |
| 0   | TAP_DET_INT      | Tap Detection Interrupt, clears on read       |

#### 14.33 **SIGNAL\_PATH\_RESET**

Name: SIGNAL\_PATH\_RESET

Address: 75 (4Bh)
Serial IF: W/C
Reset value: 0x00
Clock Domain: SCLK\_UI

| BIT | NAME             | FUNCTION                                                                                                                 |
|-----|------------------|--------------------------------------------------------------------------------------------------------------------------|
| 7   | -                | Reserved                                                                                                                 |
| 6   | DMP_INIT_EN      | When this bit is set to 1, the DMP is enabled                                                                            |
| 5   | DMP_MEM_RESET_EN | When this bit is set to 1, the DMP memory is reset                                                                       |
| 4   | -                | Reserved                                                                                                                 |
| 3   | ABORT_AND_RESET  | When this bit is set to 1, the signal path is reset by restarting the ODR counter and signal path controls               |
| 2   | TMST_STROBE      | When this bit is set to 1, the time stamp counter is latched into the time stamp register. This is a write on clear bit. |
| 1   | FIFO_FLUSH       | When set to 1, FIFO will get flushed.                                                                                    |
| 0   | -                | Reserved                                                                                                                 |



# 14.34 INTF\_CONFIGO

Name: INTF\_CONFIGO Address: 76 (4Ch) Serial IF: R/W Reset value: 0x30 Clock Domain: SCLK UI

|     | Domain: SCLK_UI       |                                                                                                                                 |
|-----|-----------------------|---------------------------------------------------------------------------------------------------------------------------------|
| BIT | NAME                  | FUNCTION                                                                                                                        |
|     |                       | This bit selects the treatment of invalid samples. See <b>Invalid Data</b>                                                      |
|     |                       | <b>Generation</b> note below this register description.                                                                         |
|     |                       | Catting this his to O.                                                                                                          |
|     |                       | Setting this bit to 0:                                                                                                          |
|     |                       | In order to signal an invalid sample, and to differentiate it from a valid                                                      |
|     |                       | sample based on values only:                                                                                                    |
|     |                       | ,                                                                                                                               |
|     |                       | Sense Registers:                                                                                                                |
|     |                       | Do not receive invalid samples. They hold the last valid                                                                        |
|     |                       | sample. Repeated reading before new sample received will yield copies                                                           |
|     |                       | of the last valid sample.                                                                                                       |
|     |                       | Valid samples of values -32768, -32767 are replaced with -32766                                                                 |
|     |                       | FSYNC Tagging can modify the least significant bit and further limit                                                            |
|     |                       | values (see section 12.8).                                                                                                      |
|     |                       | 5150                                                                                                                            |
|     |                       | FIFO:                                                                                                                           |
|     |                       | <ul> <li>16-bit FIFO packet: Same as Sense Registers, except:</li> <li>FSYNC tagging is not applied to data in FIFO.</li> </ul> |
|     |                       | <ul> <li>FSYNC tagging is not applied to data in FIFO.</li> <li>20-bit FIFO packet:</li> </ul>                                  |
|     |                       | o Invalid samples are indicated with the value -524288                                                                          |
|     |                       | <ul> <li>Valid samples in {-524288 to -524258} are replaced by -524256</li> </ul>                                               |
| _   | FIFO_HOLD_LAST_DATA_E | <ul> <li>Valid Gyro samples: All Even numbers in { -524256 to</li> </ul>                                                        |
| 7   | N                     | +524286}                                                                                                                        |
|     |                       | <ul> <li>Valid Accel samples: All numbers divisible by 4 in {-524256 to</li> </ul>                                              |
|     |                       | +524284}                                                                                                                        |
|     |                       | <ul> <li>FSYNC tagging is not applied to data in FIFO.</li> </ul>                                                               |
|     |                       | Setting this bit to 1:                                                                                                          |
|     |                       | Sense registers:                                                                                                                |
|     |                       | Do not receive invalid samples. They hold the last valid                                                                        |
|     |                       | sample. Repeated reading before new sample received will yield copies                                                           |
|     |                       | of the last valid sample.                                                                                                       |
|     |                       | FSYNC Tagging can modify the least significant bit and further limit                                                            |
|     |                       | values (see section 12.8).                                                                                                      |
|     |                       | FIFO:                                                                                                                           |
|     |                       | Invalid sample will get copy of last valid sample                                                                               |
|     |                       | 16-bit FIFO packet: Same as Sense Registers, except:                                                                            |
|     |                       | <ul> <li>FSYNC tagging is not applied to data in FIFO.</li> </ul>                                                               |
|     |                       | 20-bit FIFO packet:                                                                                                             |
|     |                       | <ul> <li>Valid Gyro samples: All Even numbers in {-524288 to</li> </ul>                                                         |
|     |                       | +524286}                                                                                                                        |
|     |                       | o - Valid Accel samples: All numbers divisible by 4 in {-524288 to                                                              |
|     |                       | +524284}                                                                                                                        |
|     |                       | <ul> <li>FSYNC tagging is not applied to data in FIFO.</li> </ul>                                                               |



| 6   | FIFO_COUNT_REC     | 0: FIFO count is reported in bytes 1: FIFO count is reported in records (1 record = 16 bytes for header + gyro + accel + temp sensor data + time stamp, or 8 bytes for header + gyro/accel + temp sensor data, or 20 bytes for header + gyro + accel + temp sensor data + time stamp + 20-bit extension data) |
|-----|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5   | FIFO_COUNT_ENDIAN  | 0: FIFO count is reported in Little Endian format 1: FIFO count is reported in Big Endian format (default)                                                                                                                                                                                                    |
| 4   | SENSOR_DATA_ENDIAN | 0: Sensor data is reported in Little Endian format 1: Sensor data is reported in Big Endian format (default)                                                                                                                                                                                                  |
| 3:2 | -                  | Reserved                                                                                                                                                                                                                                                                                                      |
| 1:0 | UI_SIFS_CFG        | 0x: Reserved<br>10: Disable SPI<br>11: Disable I2C                                                                                                                                                                                                                                                            |

Invalid Data Generation: FIFO/Sense Registers may contain invalid data under the following conditions:

- a) From power on reset to first ODR sample of any sensor (accel, gyro, temp sensor)
- b) When any sensor is disabled (accel, gyro, temp sensor)
- c) When accel and gyro are enabled with different ODRs. In this case, the sensor with lower ODR will generate invalid samples when it has no new data.

Invalid data can take special values or can hold last valid sample received. For -32768 to be used as a flag for invalid accel/gyro samples, the valid accel/gyro sample range is limited in such case as well. Bit 7 of INTF\_CONFIGO controls what values invalid (and valid) samples can take as shown above.

#### 14.35 INTF\_CONFIG1

Name: INTF\_CONFIG1 Address: 77 (4Dh) Serial IF: R/W Reset value: 0x91 Clock Domain: SCLK\_UI

| BIT | NAME             | FUNCTION                                                           |
|-----|------------------|--------------------------------------------------------------------|
| 7:4 | -                | Reserved                                                           |
| 3   | ACCEL_LP_CLK_SEL | 0: Accelerometer LP mode uses Wake Up oscillator clock             |
| 3   |                  | 1: Accelerometer LP mode uses RC oscillator clock                  |
| 2   | RTC_MODE         | 0: No input RTC clock is required                                  |
| 2   |                  | 1: RTC clock input is required                                     |
|     | CLKSEL           | 00: Always select internal RC oscillator                           |
| 1:0 |                  | 01: Select PLL when available, else select RC oscillator (default) |
| 1.0 |                  | 10: Reserved                                                       |
|     |                  | 11: Disable all clocks                                             |



# 14.36 **PWR\_MGMT0**

Name: PWR\_MGMT0 Address: 78 (4Eh) Serial IF: R/W Reset value: 0x00 Clock Domain: SCLK UI

| CIUCK | OCK DOMAIN: SCLK_UI |                                                                                 |
|-------|---------------------|---------------------------------------------------------------------------------|
| BIT   | NAME                | FUNCTION                                                                        |
| 7:6   | -                   | Reserved                                                                        |
| 5     | TEMP_DIS            | 0: Temperature sensor is enabled (default)                                      |
| 5     |                     | 1: Temperature sensor is disabled                                               |
|       |                     | If this bit is set to 1, the RC oscillator is powered on even if Accel and Gyro |
| 4     | IDLE                | are powered off.                                                                |
| 4     | IDLE                | Nominally this bit is set to 0, so when Accel and Gyro are powered off,         |
|       |                     | the chip will go to OFF state, since the RC oscillator will also be powered off |
|       |                     | 00: Turns gyroscope off (default)                                               |
|       |                     | 01: Places gyroscope in Standby Mode                                            |
|       |                     | 10: Reserved                                                                    |
| 3:2   | GYRO_MODE           | 11: Places gyroscope in Low Noise (LN) Mode                                     |
| 3.2   | GINO_IVIODE         |                                                                                 |
|       |                     | Gyroscope needs to be kept ON for a minimum of 45ms. When transitioning         |
|       |                     | from OFF to any of the other modes, do not issue any register writes for        |
|       |                     | 200μs.                                                                          |
|       |                     | 00: Turns accelerometer off (default)                                           |
|       |                     | 01: Turns accelerometer off                                                     |
|       |                     | 10: Places accelerometer in Low Power (LP) Mode                                 |
| 1:0   | ACCEL_MODE          | 11: Places accelerometer in Low Noise (LN) Mode                                 |
|       |                     |                                                                                 |
|       |                     | When transitioning from OFF to any of the other modes, do not issue any         |
|       |                     | register writes for 200μs.                                                      |



# 14.37 **GYRO\_CONFIGO**

Name: GYRO\_CONFIGO Address: 79 (4Fh) Serial IF: R/W Reset value: 0x06 Clock Domain: SCLK UI

|     | lock Domain: SCLK_UI |                                                     |  |
|-----|----------------------|-----------------------------------------------------|--|
| BIT | NAME                 | FUNCTION                                            |  |
|     |                      | Full scale select for gyroscope UI interface output |  |
|     |                      | 000: ±2000dps (default)                             |  |
|     |                      | 001: ±1000dps                                       |  |
|     |                      | 010: ±500dps                                        |  |
| 7:5 | GYRO_FS_SEL          | 011: ±250dps                                        |  |
|     |                      | 100: ±125dps                                        |  |
|     |                      | 101: ±62.5dps                                       |  |
|     |                      | 110: ±31.25dps                                      |  |
|     |                      | 111: ±15.625dps                                     |  |
| 4   | -                    | Reserved                                            |  |
|     |                      | Gyroscope ODR selection for UI interface output     |  |
|     |                      | 0000: Reserved                                      |  |
|     |                      | 0001: 32kHz                                         |  |
|     | GYRO_ODR             | 0010: 16kHz                                         |  |
|     |                      | 0011: 8kHz                                          |  |
|     |                      | 0100: 4kHz                                          |  |
|     |                      | 0101: 2kHz                                          |  |
|     |                      | 0110: 1kHz (default)                                |  |
| 3:0 |                      | 0111: 200Hz                                         |  |
|     |                      | 1000: 100Hz                                         |  |
|     |                      | 1001: 50Hz                                          |  |
|     |                      | 1010: 25Hz                                          |  |
|     |                      | 1011: 12.5Hz                                        |  |
|     |                      | 1100: Reserved                                      |  |
|     |                      | 1101: Reserved                                      |  |
|     |                      | 1110: Reserved                                      |  |
|     |                      | 1111: 500Hz                                         |  |



# 14.38 ACCEL\_CONFIGO

Name: ACCEL\_CONFIGO Address: 80 (50h) Serial IF: R/W Reset value: 0x06 Clock Domain: SCLK\_UI

| CIOCK | ck Domain: SCLK_UI |                                                         |  |
|-------|--------------------|---------------------------------------------------------|--|
| BIT   | NAME               | FUNCTION                                                |  |
| 1     |                    | Full scale select for accelerometer UI interface output |  |
|       |                    | 000: ±16g (default)                                     |  |
|       |                    | 001: ±8g                                                |  |
|       |                    | 010: ±4g                                                |  |
| 7:5   | ACCEL_FS_SEL       | 011: ±2g                                                |  |
|       |                    | 100: Reserved                                           |  |
|       |                    | 101: Reserved                                           |  |
|       |                    | 110: Reserved                                           |  |
|       |                    | 111: Reserved                                           |  |
| 4     | -                  | Reserved                                                |  |
|       |                    | Accelerometer ODR selection for UI interface output     |  |
|       |                    | 0000: Reserved                                          |  |
|       |                    | 0001: 32kHz (LN mode)                                   |  |
|       | ACCEL_ODR          | 0010: 16kHz (LN mode)                                   |  |
|       |                    | 0011: 8kHz (LN mode)                                    |  |
|       |                    | 0100: 4kHz (LN mode)                                    |  |
|       |                    | 0101: 2kHz (LN mode)                                    |  |
|       |                    | 0110: 1kHz (LN mode) (default)                          |  |
| 3:0   |                    | 0111: 200Hz (LP or LN mode)                             |  |
|       |                    | 1000: 100Hz (LP or LN mode)                             |  |
|       |                    | 1001: 50Hz (LP or LN mode)                              |  |
|       |                    | 1010: 25Hz (LP or LN mode)                              |  |
|       |                    | 1011: 12.5Hz (LP or LN mode)                            |  |
|       |                    | 1100: 6.25Hz (LP mode)                                  |  |
|       |                    | 1101: 3.125Hz (LP mode)                                 |  |
|       |                    | 1110: 1.5625Hz (LP mode)                                |  |
|       |                    | 1111: 500Hz (LP or LN mode)                             |  |



# 14.39 **GYRO\_CONFIG1**

Name: GYRO\_CONFIG1 Address: 81 (51h) Serial IF: R/W Reset value: 0x16 Clock Domain: SCLK\_UI

|     | LIOCK DOMAIN: SCLK_UI |                                                         |  |
|-----|-----------------------|---------------------------------------------------------|--|
| BIT | NAME                  | FUNCTION                                                |  |
|     |                       | Sets the bandwidth of the temperature signal DLPF       |  |
|     |                       | 000: DLPF BW = 4000Hz; DLPF Latency = 0.125ms (default) |  |
|     |                       | 001: DLPF BW = 170Hz; DLPF Latency = 1ms                |  |
|     |                       | 010: DLPF BW = 82Hz; DLPF Latency = 2ms                 |  |
| 7:5 | TEMP_FILT_BW          | 011: DLPF BW = 40Hz; DLPF Latency = 4ms                 |  |
|     |                       | 100: DLPF BW = 20Hz; DLPF Latency = 8ms                 |  |
|     |                       | 101: DLPF BW = 10Hz; DLPF Latency = 16ms                |  |
|     |                       | 110: DLPF BW = 5Hz; DLPF Latency = 32ms                 |  |
|     |                       | 111: DLPF BW = 5Hz; DLPF Latency = 32ms                 |  |
| 4   | -                     | Reserved                                                |  |
|     |                       | Selects order of GYRO UI filter                         |  |
|     |                       | 00: 1 <sup>st</sup> Order                               |  |
| 3:2 | GYRO_UI_FILT_ORD      | 01: 2 <sup>nd</sup> Order                               |  |
|     |                       | 10: 3 <sup>rd</sup> Order                               |  |
|     |                       | 11: Reserved                                            |  |
|     |                       | Selects order of GYRO DEC2_M2 Filter                    |  |
|     | GYRO_DEC2_M2_ORD      | 00: Reserved                                            |  |
| 1:0 |                       | 01: Reserved                                            |  |
|     |                       | 10: 3 <sup>rd</sup> Order                               |  |
|     |                       | 11: Reserved                                            |  |



# 14.40 GYRO\_ACCEL\_CONFIGO

Name: GYRO\_ACCEL\_CONFIG0

Address: 82 (52h) Serial IF: R/W Reset value: 0x11 Clock Domain: SCLK UI

| BIT | NAME               | FUNCTION                                                                    |
|-----|--------------------|-----------------------------------------------------------------------------|
|     |                    | LN Mode:                                                                    |
|     |                    | Bandwidth for Accel LPF                                                     |
|     |                    | 0 BW=ODR/2                                                                  |
|     |                    | 1 BW=max(400Hz, ODR)/4 (default)                                            |
|     |                    | 2 BW=max(400Hz, ODR)/5                                                      |
|     |                    | 3 BW=max(400Hz, ODR)/8                                                      |
|     |                    | 4 BW=max(400Hz, ODR)/10                                                     |
|     |                    | 5 BW=max(400Hz, ODR)/16                                                     |
|     |                    | 6 BW=max(400Hz, ODR)/20                                                     |
|     |                    | 7 BW=max(400Hz, ODR)/40                                                     |
| 7.4 | ACCEL LIL FILT DIA | 8 to 13: Reserved                                                           |
| 7:4 | ACCEL_UI_FILT_BW   | 14 Low Latency option: Trivial decimation @ ODR of Dec2 filter output. Dec2 |
|     |                    | runs at max(400Hz, ODR)                                                     |
|     |                    | 15 Low Latency option: Trivial decimation @ ODR of Dec2 filter output. Dec2 |
|     |                    | runs at max(200Hz, 8*ODR)                                                   |
|     |                    | LP Mode:                                                                    |
|     |                    | 0 Reserved                                                                  |
|     |                    | 1 1x AVG filter (default)                                                   |
|     |                    | 2 to 5 Reserved                                                             |
|     |                    | 6 16x AVG filter                                                            |
|     |                    | 7 to 15 Reserved                                                            |
|     |                    | LN Mode:                                                                    |
|     |                    | Bandwidth for Gyro LPF                                                      |
|     |                    | 0 BW=ODR/2                                                                  |
|     |                    | 1 BW=max(400Hz, ODR)/4 (default)                                            |
|     |                    | 2 BW=max(400Hz, ODR)/5                                                      |
|     |                    | 3 BW=max(400Hz, ODR)/8                                                      |
|     |                    | 4 BW=max(400Hz, ODR)/10                                                     |
| 3:0 | GYRO_UI_FILT_BW    | 5 BW=max(400Hz, ODR)/16                                                     |
|     |                    | 6 BW=max(400Hz, ODR)/20                                                     |
|     |                    | 7 BW=max(400Hz, ODR)/40                                                     |
|     |                    | 8 to 13: Reserved                                                           |
|     |                    | 14 Low Latency option: Trivial decimation @ ODR of Dec2 filter output. Dec2 |
|     |                    | runs at max(400Hz, ODR)                                                     |
|     |                    | 15 Low Latency option: Trivial decimation @ ODR of Dec2 filter output. Dec2 |
|     |                    | runs at max(200Hz, 8*ODR)                                                   |



## 14.41 ACCEL CONFIG1

Name: ACCEL\_CONFIG1 Address: 83 (53h) Serial IF: R/W Reset value: 0x0D Clock Domain: SCLK\_UI

| BIT | NAME              | FUNCTION                              |
|-----|-------------------|---------------------------------------|
| 7:5 | -                 | Reserved                              |
|     |                   | Selects order of ACCEL UI filter      |
|     |                   | 00: 1 <sup>st</sup> Order             |
| 4:3 | ACCEL_UI_FILT_ORD | 01: 2 <sup>nd</sup> Order             |
|     |                   | 10: 3 <sup>rd</sup> Order             |
|     |                   | 11: Reserved                          |
|     |                   | Order of Accelerometer DEC2_M2 filter |
|     |                   | 00: Reserved                          |
| 2:1 | ACCEL_DEC2_M2_ORD | 01: Reserved                          |
|     |                   | 10: 3 <sup>rd</sup> order             |
|     |                   | 11: Reserved                          |
| 0   | -                 | Reserved                              |

#### 14.42 TMST\_CONFIG

Name: TMST\_CONFIG Address: 84 (54h) Serial IF: R/W Reset value: 0x23 Clock Domain: SCLK UI

**FUNCTION** BIT NAME 7:5 Reserved 0: TMST VALUE[19:0] read always returns 0s 4 TMST\_TO\_REGS\_EN 1: TMST\_VALUE[19:0] read returns timestamp value Time Stamp resolution: When set to 0 (default), time stamp resolution is  $1 \mu s$ . 3 TMST RES When set to 1: If RTC is disabled, resolution is 16µs. If RTC is enabled, resolution is 1 RTC clock period Time Stamp delta enable: When set to 1, the time stamp field contains the TMST DELTA EN 2 measurement of time since the last occurrence of ODR. Time Stamp register FSYNC enable (default). When set to 1, the contents of the Timestamp feature of FSYNC is enabled. The user also needs to select 1 TMST\_FSYNC\_EN FIFO\_TMST\_FSYNC\_EN in order to propagate the timestamp value to the FIFO. 0: Time Stamp register disable 0 TMST\_EN 1: Time Stamp register enable (default)



# 14.43 **APEX CONFIGO**

Name: APEX\_CONFIGO Address: 86 (56h) Serial IF: R/W Reset value: 0x82 Clock Domain: SCLK UI

| CIOCK | Clock Domain: SCLK_UI |                                                                          |  |
|-------|-----------------------|--------------------------------------------------------------------------|--|
| BIT   | NAME                  | FUNCTION                                                                 |  |
| 7     | DMP_POWER_SAVE        | 0: DMP power save mode not active                                        |  |
|       |                       | 1: DMP power save mode active (default)                                  |  |
|       |                       | 0: Tap Detection not enabled                                             |  |
| 6     | TAP_ENABLE            | 1: Tap Detection enabled when accelerometer ODR is set to one of the ODR |  |
|       |                       | values supported by Tap Detection (200Hz, 500Hz, 1kHz)                   |  |
| 5     | PED_ENABLE            | 0: Pedometer not enabled                                                 |  |
|       |                       | 1: Pedometer enabled                                                     |  |
| 4     | TILT_ENABLE           | 0: Tilt Detection not enabled                                            |  |
| 4     |                       | 1: Tilt Detection enabled                                                |  |
| 3     | R2W_EN                | 0: Raise to Wake/Sleep not enabled                                       |  |
| 3     |                       | 1: Raise to Wake/Sleep enabled                                           |  |
| 2     | -                     | Reserved                                                                 |  |
|       | DMP_ODR               | 00: 25Hz                                                                 |  |
| 1:0   |                       | 01: Reserved                                                             |  |
| 1.0   |                       | 10: 50Hz                                                                 |  |
|       |                       | 11: Reserved                                                             |  |

# 14.44 SMD\_CONFIG

Name: SMD\_CONFIG Address: 87 (57h) Serial IF: R/W Reset value: 0x00 Clock Domain: SCLK\_UI

| BIT | NAME         | FUNCTION                                                                                                                                                                                                         |
|-----|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:4 | -            | Reserved                                                                                                                                                                                                         |
| 3   | WOM_INT_MODE | 0: Set WoM interrupt on the OR of all enabled accelerometer thresholds  1: Set WoM interrupt on the AND of all enabled accelerometer threshold                                                                   |
| 2   | WOM_MODE     | 0: Initial sample is stored. Future samples are compared to initial sample 1: Compare current sample to previous sample                                                                                          |
| 1:0 | SMD_MODE     | 00: SMD disabled 01: Reserved 10: SMD short (1 sec wait) An SMD event is detected when two WOM are detected 1 sec apart 11: SMD long (3 sec wait) An SMD event is detected when two WOM are detected 3 sec apart |



# 14.45 FIFO CONFIG1

Name: FIFO\_CONFIG1 Address: 95 (5Fh) Serial IF: R/W Reset value: 0x00 Clock Domain: SCLK\_UI

| BIT | NAME                   | FUNCTION                                                                 |
|-----|------------------------|--------------------------------------------------------------------------|
| 7   | -                      | Reserved                                                                 |
| 6   | FIFO_RESUME_PARTIAL_RD | 0: Partial FIFO read disabled, requires re-reading of the entire FIFO    |
| 0   |                        | 1: FIFO read can be partial, and resume from last read point             |
| 5   | FIFO_WM_GT_TH          | Trigger FIFO watermark interrupt on every ODR (DMA write) if             |
| 5   |                        | FIFO_COUNT ≥ FIFO_WM_TH                                                  |
| 4   | FIFO_HIRES_EN          | Enable 3 bytes of extended 20-bits accel, gyro data + 1 byte of extended |
| 4   |                        | 16-bit temperature sensor data to be placed into the FIFO                |
| 3   | FIFO_TMST_FSYNC_EN     | Must be set to 1 for all FIFO use cases when FSYNC is used.              |
| 2   | FIFO_TEMP_EN           | Enable temperature sensor packets to go to FIFO                          |
| 1   | FIFO_GYRO_EN           | Enable gyroscope packets to go to FIFO                                   |
| 0   | FIFO_ACCEL_EN          | Enable accelerometer packets to go to FIFO                               |

# 14.46 FIFO\_CONFIG2

Name: FIFO\_CONFIG2 Address: 96 (60h) Serial IF: R/W Reset value: 0x00 Clock Domain: SCLK\_UI

| BIT | NAME         | FUNCTION                                                                |
|-----|--------------|-------------------------------------------------------------------------|
| 7:0 | FIFO_WM[7:0] | Lower bits of FIFO watermark. Generate interrupt when the FIFO reaches  |
|     |              | or exceeds FIFO_WM size in bytes or records according to                |
|     |              | FIFO_COUNT_REC setting. Interrupt only fires once. This register should |
|     |              | be set to non-zero value, before choosing this interrupt source.        |

# 14.47 FIFO\_CONFIG3

Name: FIFO\_CONFIG3 Address: 97 (61h) Serial IF: R/W Reset value: 0x00 Clock Domain: SCLK\_UI

| BIT | NAME          | FUNCTION                                                                                                                                                                                                                                                                 |
|-----|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:4 | -             | Reserved                                                                                                                                                                                                                                                                 |
| 3:0 | FIFO_WM[11:8] | Upper bits of FIFO watermark. Generate interrupt when the FIFO reaches or exceeds FIFO_WM size in bytes or records according to FIFO_COUNT_REC setting. Interrupt only fires once. This register should be set to non-zero value, before choosing this interrupt source. |

Note: Do not set FIFO\_WM to value 0.



# 14.48 FSYNC\_CONFIG

Name: FSYNC\_CONFIG Address: 98 (62h) Serial IF: R/W Reset value: 0x10 Clock Domain: SCLK\_UI

| BIT | NAME                   | FUNCTION                                                                                                                                                                                                                                                                                        |
|-----|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | -                      | Reserved                                                                                                                                                                                                                                                                                        |
| 6:4 | FSYNC_UI_SEL           | 000: Do not tag FSYNC flag 001: Tag FSYNC flag to TEMP_OUT LSB 010: Tag FSYNC flag to GYRO_XOUT LSB 011: Tag FSYNC flag to GYRO_YOUT LSB 100: Tag FSYNC flag to GYRO_ZOUT LSB 101: Tag FSYNC flag to ACCEL_XOUT LSB 110: Tag FSYNC flag to ACCEL_YOUT LSB 111: Tag FSYNC flag to ACCEL_ZOUT LSB |
| 3:2 | -                      | Reserved                                                                                                                                                                                                                                                                                        |
| 1   | FSYNC_UI_FLAG_CLEAR_SE | 0: FSYNC flag is cleared when UI sensor register is updated 1: FSYNC flag is cleared when UI interface reads the sensor register LSB of FSYNC tagged axis                                                                                                                                       |
| 0   | FSYNC_POLARITY         | 0: Start from Rising edge of FSYNC pulse to measure FSYNC interval 1: Start from Falling edge of FSYNC pulse to measure FSYNC interval                                                                                                                                                          |

Please also refer to Section 12.8 for supplementary information on FSYNC tag.

# 14.49 INT\_CONFIGO

Name: INT\_CONFIGO Address: 99 (63h) Serial IF: R/W Reset value: 0x00 Clock Domain: SCLK UI

| CIOCK | Clock Domain: SCLK_UI |                                                           |  |
|-------|-----------------------|-----------------------------------------------------------|--|
| BIT   | NAME                  | FUNCTION                                                  |  |
| 7:6   | -                     | Reserved                                                  |  |
|       |                       | Data Ready Interrupt Clear Option (latched mode)          |  |
|       |                       | 00: Clear on Status Bit Read (default)                    |  |
| 5:4   | UI_DRDY_INT_CLEAR     | 01: Clear on Status Bit Read                              |  |
|       |                       | 10: Clear on Sensor Register Read                         |  |
|       |                       | 11: Clear on Status Bit Read AND on Sensor Register read  |  |
|       |                       | FIFO Threshold Interrupt Clear Option (latched mode)      |  |
|       |                       | 00: Clear on Status Bit Read (default)                    |  |
| 3:2   | FIFO_THS_INT_CLEAR    | 01: Clear on Status Bit Read                              |  |
|       |                       | 10: Clear on FIFO data 1Byte Read                         |  |
|       |                       | 11: Clear on Status Bit Read AND on FIFO data 1 byte read |  |
|       |                       | FIFO Full Interrupt Clear Option (latched mode)           |  |
|       |                       | 00: Clear on Status Bit Read (default)                    |  |
| 1:0   | FIFO_FULL_INT_CLEAR   | 01: Clear on Status Bit Read                              |  |
|       |                       | 10: Clear on FIFO data 1Byte Read                         |  |
|       |                       | 11: Clear on Status Bit Read AND on FIFO data 1 byte read |  |



# 14.50 INT\_CONFIG1

Name: INT\_CONFIG1 Address: 100 (64h) Serial IF: R/W Reset value: 0x10 Clock Domain: SCLK\_UI

| BIT | NAME                  | FUNCTION                                                                                                                                                                                                                  |
|-----|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | -                     | Reserved                                                                                                                                                                                                                  |
| 6   | INT_TPULSE_DURATION   | Interrupt pulse duration  0: Interrupt pulse duration is 100μs. Use only if ODR < 4kHz. (Default)  1: Interrupt pulse duration is 8 μs. Required if ODR ≥ 4kHz, optional for ODR < 4kHz.                                  |
| 5   | INT_TDEASSERT_DISABLE | Interrupt de-assertion duration  0: The interrupt de-assertion duration is set to a minimum of 100µs. Use only if ODR < 4kHz. (Default)  1: Disables de-assert duration. Required if ODR ≥ 4kHz, optional for ODR < 4kHz. |
| 4   | INT_ASYNC_RESET       | User should change setting to 0 from default setting of 1, for proper INT1 and INT2 pin operation                                                                                                                         |
| 3:0 | -                     | Reserved                                                                                                                                                                                                                  |

# 14.51 INT\_SOURCEO

Name: INT\_SOURCE0 Address: 101 (65h) Serial IF: R/W Reset value: 0x10 Clock Domain: SCLK\_UI

| 0.00.0 |                    |                                                |  |
|--------|--------------------|------------------------------------------------|--|
| BIT    | NAME               | FUNCTION                                       |  |
| 7      | -                  | Reserved                                       |  |
| 6      | UI_FSYNC_INT1_EN   | 0: UI FSYNC interrupt not routed to INT1       |  |
| 6      |                    | 1: UI FSYNC interrupt routed to INT1           |  |
| 5      | DI DOVINT1 EN      | 0: PLL ready interrupt not routed to INT1      |  |
| 5      | PLL_RDY_INT1_EN    | 1: PLL ready interrupt routed to INT1          |  |
| 4      | RESET_DONE_INT1_EN | 0: Reset done interrupt not routed to INT1     |  |
| 4      |                    | 1: Reset done interrupt routed to INT1         |  |
| 3      | UI_DRDY_INT1_EN    | 0: UI data ready interrupt not routed to INT1  |  |
| 3      |                    | 1: UI data ready interrupt routed to INT1      |  |
| 2      | FIFO_THS_INT1_EN   | 0: FIFO threshold interrupt not routed to INT1 |  |
|        |                    | 1: FIFO threshold interrupt routed to INT1     |  |
| 1      | FIFO_FULL_INT1_EN  | 0: FIFO full interrupt not routed to INT1      |  |
| 1      |                    | 1: FIFO full interrupt routed to INT1          |  |
| 0      | UI_AGC_RDY_INT1_EN | 0: UI AGC ready interrupt not routed to INT1   |  |
| U      |                    | 1: UI AGC ready interrupt routed to INT1       |  |



# 14.52 INT\_SOURCE1

Name: INT\_SOURCE1 Address: 102 (66h) Serial IF: R/W Reset value: 0x00 Clock Domain: SCLK UI

| BIT | NAME                  | FUNCTION                                                         |  |
|-----|-----------------------|------------------------------------------------------------------|--|
| 7   | -                     | Reserved                                                         |  |
| 6   | I3C_PROTOCOL_ERROR_IN | 0: I3C <sup>SM</sup> protocol error interrupt not routed to INT1 |  |
| 0   | T1_EN                 | 1: I3C <sup>SM</sup> protocol error interrupt routed to INT1     |  |
| 5:4 | -                     | Reserved                                                         |  |
| 3   | SMD_INT1_EN           | 0: SMD interrupt not routed to INT1                              |  |
| 3   |                       | 1: SMD interrupt routed to INT1                                  |  |
| 2   | WOM_Z_INT1_EN         | 0: Z-axis WOM interrupt not routed to INT1                       |  |
|     |                       | 1: Z-axis WOM interrupt routed to INT1                           |  |
| 1   | WOM_Y_INT1_EN         | 0: Y-axis WOM interrupt not routed to INT1                       |  |
| 1   |                       | 1: Y-axis WOM interrupt routed to INT1                           |  |
| 0   | WOM_X_INT1_EN         | 0: X-axis WOM interrupt not routed to INT1                       |  |
|     |                       | 1: X-axis WOM interrupt routed to INT1                           |  |

# 14.53 INT\_SOURCE3

Name: INT\_SOURCE3 Address: 104 (68h) Serial IF: R/W Reset value: 0x00 Clock Domain: SCLK\_UI

| BIT | NAME                | FUNCTION                                       |
|-----|---------------------|------------------------------------------------|
| 7   | -                   | Reserved                                       |
| 6   | LIL ECVALC INITA EN | 0: UI FSYNC interrupt not routed to INT2       |
| 0   | UI_FSYNC_INT2_EN    | 1: UI FSYNC interrupt routed to INT2           |
| 5   | PLL RDY INT2 EN     | 0: PLL ready interrupt not routed to INT2      |
| 3   | PLL_RDY_IN12_EN     | 1: PLL ready interrupt routed to INT2          |
| 4   | RESET_DONE_INT2_EN  | 0: Reset done interrupt not routed to INT2     |
| 4   |                     | 1: Reset done interrupt routed to INT2         |
| 3   | UI_DRDY_INT2_EN     | 0: UI data ready interrupt not routed to INT2  |
| 3   |                     | 1: UI data ready interrupt routed to INT2      |
| 2   | FIFO_THS_INT2_EN    | 0: FIFO threshold interrupt not routed to INT2 |
|     |                     | 1: FIFO threshold interrupt routed to INT2     |
| 1   | FIFO_FULL_INT2_EN   | 0: FIFO full interrupt not routed to INT2      |
| 1   |                     | 1: FIFO full interrupt routed to INT2          |
| 0   | UI_AGC_RDY_INT2_EN  | 0: UI AGC ready interrupt not routed to INT2   |
| U   |                     | 1: UI AGC ready interrupt routed to INT2       |



# 14.54 INT\_SOURCE4

Name: INT\_SOURCE4 Address: 105 (69h) Serial IF: R/W Reset value: 0x00 Clock Domain: SCLK UI

| BIT | NAME                           | FUNCTION                                                                                                                         |  |
|-----|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--|
| 7   | -                              | Reserved                                                                                                                         |  |
| 6   | I3C_PROTOCOL_ERROR_IN<br>T2_EN | 0: I3C <sup>SM</sup> protocol error interrupt not routed to INT2<br>1: I3C <sup>SM</sup> protocol error interrupt routed to INT2 |  |
| 5:4 | -                              | Reserved                                                                                                                         |  |
| 3   | SMD_INT2_EN                    | 0: SMD interrupt not routed to INT2 1: SMD interrupt routed to INT2                                                              |  |
| 2   | WOM_Z_INT2_EN                  | 0: Z-axis WOM interrupt not routed to INT2 1: Z-axis WOM interrupt routed to INT2                                                |  |
| 1   | WOM_Y_INT2_EN                  | 0: Y-axis WOM interrupt not routed to INT2 1: Y-axis WOM interrupt routed to INT2                                                |  |
| 0   | WOM_X_INT2_EN                  | 0: X-axis WOM interrupt not routed to INT2 1: X-axis WOM interrupt routed to INT2                                                |  |

# 14.55 FIFO\_LOST\_PKTO

Name: FIFO\_LOST\_PKT0 Address: 108 (6Ch)

Serial IF: R Reset value: 0x00 Clock Domain: SCLK\_UI

| <del>_</del> |                        |                                              |
|--------------|------------------------|----------------------------------------------|
| BIT          | NAME                   | FUNCTION                                     |
| 7:0          | FIFO_LOST_PKT_CNT[7:0] | Low byte, number of packets lost in the FIFO |

## 14.56 FIFO\_LOST\_PKT1

Name: FIFO\_LOST\_PKT1 Address: 109 (6Dh)

Serial IF: R Reset value: 0x00 Clock Domain: SCLK UI

| ı | BIT | NAME                    | FUNCTION                                      |
|---|-----|-------------------------|-----------------------------------------------|
| - | 7:0 | FIFO LOST PKT CNT[15:8] | High byte, number of packets lost in the FIFO |



## 14.57 SELF\_TEST\_CONFIG

Name: SELF\_TEST\_CONFIG

Address: 112 (70h) Serial IF: R/W Reset value: 0x00 Clock Domain: SCLK UI

| BIT | NAME           | FUNCTION                                                  |
|-----|----------------|-----------------------------------------------------------|
| 7   | -              | Reserved                                                  |
| 6   | ACCEL ST POWER | Set to 1 for accel self-test                              |
| 0   | ACCEL_31_FOWER | Otherwise set to 0; Set to 0 after self-test is completed |
| 5   | EN_AZ_ST       | Enable Z-accel self-test                                  |
| 4   | EN_AY_ST       | Enable Y-accel self-test                                  |
| 3   | EN_AX_ST       | Enable X-accel self-test                                  |
| 2   | EN_GZ_ST       | Enable Z-gyro self-test                                   |
| 1   | EN_GY_ST       | Enable Y-gyro self-test                                   |
| 0   | EN_GX_ST       | Enable X-gyro self-test                                   |

#### 14.58 **WHO\_AM**\_I

Name: WHO\_AM\_I Address: 117 (75h)

Serial IF: R

Reset value: 0x47 Clock Domain: SCLK UI

| Clock Dollialli. SCEK_OI |        |                                                             |
|--------------------------|--------|-------------------------------------------------------------|
| BIT                      | NAME   | FUNCTION                                                    |
| 7:0                      | WHOAMI | Register to indicate to user which device is being accessed |

#### **Description:**

This register is used to verify the identity of the device. The contents of WHOAMI is an 8-bit device ID. The default value of the register is 0x47. This is different from the I<sup>2</sup>C address of the device as seen on the slave I<sup>2</sup>C controller by the applications processor.

#### 14.59 REG BANK SEL

Note: This register is accessible from all register banks

Name: REG\_BANK\_SEL Address: 118 (76h) Serial IF: R/W Reset value: 0x00 Clock Domain: ALL

| Clock Domain: ALL |          |                         |
|-------------------|----------|-------------------------|
| BIT               | NAME     | FUNCTION                |
| 7:3               | -        | Reserved                |
|                   |          | Register bank selection |
|                   |          | 000: Bank 0 (default)   |
|                   |          | 001: Bank 1             |
|                   |          | 010: Bank 2             |
| 2:0               | BANK_SEL | 011: Bank 3             |
|                   |          | 100: Bank 4             |
|                   |          | 101: Reserved           |
|                   |          | 110: Reserved           |
|                   |          | 111: Reserved           |



## 15 USER BANK 1 REGISTER MAP – DESCRIPTIONS

This section describes the function and contents of each register within USR Bank 1.

## 15.1 SENSOR\_CONFIGO

Name: SENSOR\_CONFIG0

Address: 03 (03h) Serial IF: R/W Reset value: 0x80 Clock Domain: SCLK UI

| Clock | k Domain: SCLK_UI |                                |
|-------|-------------------|--------------------------------|
| BIT   | NAME              | FUNCTION                       |
| 7:6   | -                 | Reserved                       |
| 5     | 7C DISABLE        | 0: Z gyroscope is on           |
| 5     | ZG_DISABLE        | 1: Z gyroscope is disabled     |
| 4     | YG DISABLE        | 0: Y gyroscope is on           |
| 4     | TG_DISABLE        | 1: Y gyroscope is disabled     |
| 3     | XG_DISABLE        | 0: X gyroscope is on           |
| 3     |                   | 1: X gyroscope is disabled     |
| 2     | ZA DISABLE        | 0: Z accelerometer is on       |
|       | ZA_DISABLE        | 1: Z accelerometer is disabled |
| 1     | VA DISABLE        | 0: Y accelerometer is on       |
|       | YA_DISABLE        | 1: Y accelerometer is disabled |
| 0     | VA DISABLE        | 0: X accelerometer is on       |
| "     | XA_DISABLE        | 1: X accelerometer is disabled |

## 15.2 **GYRO\_CONFIG\_STATIC2**

Name: GYRO\_CONFIG\_STATIC2

Address: 11 (0Bh) Serial IF: R/W Reset value: 0xA0 Clock Domain: SCLK\_UI

| BIT | NAME         | FUNCTION                                                                                   |
|-----|--------------|--------------------------------------------------------------------------------------------|
| 7:2 | -            | Reserved                                                                                   |
| 1   | GYRO_AAF_DIS | Enable gyroscope anti-aliasing filter (default)     Disable gyroscope anti-aliasing filter |
| 0   | GYRO_NF_DIS  | 0: Enable Notch Filter (default) 1: Disable Notch Filter                                   |

# 15.3 **GYRO\_CONFIG\_STATIC3**

抗混叠滤波器寄存器 与带宽对应关系

Name: GYRO CONFIG STATIC3

Address: 12 (0Ch)
Serial IF: R/W
Reset value: 0x0D
Clock Domain: SCLK\_UI

| BIT | NAME          | FUNCTION                                              |
|-----|---------------|-------------------------------------------------------|
| 7:6 | -             | Reserved                                              |
| 5:0 | GYRO AAF DELT | Controls bandwidth of the gyroscope anti-alias filter |
| 3.0 | GINO_AAI_BLEI | See section 5.2 for details                           |



#### 15.4 **GYRO\_CONFIG\_STATIC4**

Name: GYRO CONFIG STATIC4

Address: 13 (0Dh) Serial IF: R/W Reset value: 0xAA Clock Domain: SCLK UI

| BIT | NAME                  | FUNCTION                                              |
|-----|-----------------------|-------------------------------------------------------|
| 7:0 | CYPO AAE DELTSOR[7:0] | Controls bandwidth of the gyroscope anti-alias filter |
| 7.0 | GYRO_AAF_DELTSQR[7:0] | See section 5.2 for details                           |

## 15.5 **GYRO\_CONFIG\_STATIC5**

Name: GYRO\_CONFIG\_STATIC5

Address: 14 (0Eh) Serial IF: R/W Reset value: 0x80 Clock Domain: SCLK\_UI

|     | _                      |                                                       |
|-----|------------------------|-------------------------------------------------------|
| BIT | NAME                   | FUNCTION                                              |
| 7.4 | CVDO AAE DITSUUET      | Controls bandwidth of the gyroscope anti-alias filter |
| 7:4 | GYRO_AAF_BITSHIFT      | See section 5.2 for details                           |
| 3:0 | GYRO AAF DELTSQR[11:8] | Controls bandwidth of the gyroscope anti-alias filter |
| 3:0 | GTRO_AAF_DELISQR[11:8] | See section 5.2 for details                           |

## 15.6 **GYRO\_CONFIG\_STATIC6**

Name: GYRO\_CONFIG\_STATIC6

Address: 15 (0Fh) Serial IF: R/W

Reset value: 0xXX (Factory trimmed on an individual device basis)

Clock Domain: SCLK\_UI

| BIT | NAME                 | FUNCTION                                                   |
|-----|----------------------|------------------------------------------------------------|
| 7:0 | GYRO X NF COSWZ[7:0] | Used for gyroscope X-axis notch filter frequency selection |
| 7.0 | G1KO_X_NF_CO3WZ[7.0] | See section 5.1 for details                                |

#### 15.7 **GYRO\_CONFIG\_STATIC7**

Name: GYRO\_CONFIG\_STATIC7

Address: 16 (10h) Serial IF: R/W

Reset value: 0xXX (Factory trimmed on an individual device basis)

Clock Domain: SCLK UI

| BIT | NAME                 | FUNCTION                                                                               |
|-----|----------------------|----------------------------------------------------------------------------------------|
| 7:0 | GYRO_Y_NF_COSWZ[7:0] | Used for gyroscope Y-axis notch filter frequency selection See section 5.1 for details |



## 15.8 **GYRO\_CONFIG\_STATIC**8

Name: GYRO\_CONFIG\_STATIC8

Address: 17 (11h) Serial IF: R/W

Reset value: 0xXX (Factory trimmed on an individual device basis)

Clock Domain: SCLK UI

| BIT | NAME                 | FUNCTION                                                                                  |
|-----|----------------------|-------------------------------------------------------------------------------------------|
| 7:0 | GYRO_Z_NF_COSWZ[7:0] | Used for gyroscope Z-axis notch filter frequency selection<br>See section 5.1 for details |

#### 15.9 **GYRO\_CONFIG\_STATIC9**

Name: GYRO\_CONFIG\_STATIC9

Address: 18 (12h) Serial IF: R/W

Reset value: 0xXX (Factory trimmed on an individual device basis)

Clock Domain: SCLK\_UI

| CIOCIC | Clock Dolliam: SCEK_OI |                                                                                           |  |
|--------|------------------------|-------------------------------------------------------------------------------------------|--|
| BIT    | NAME                   | FUNCTION                                                                                  |  |
| 7:6    | -                      | Reserved                                                                                  |  |
| 5      | GYRO_Z_NF_COSWZ_SEL[0] | Used for gyroscope Z-axis notch filter frequency selection<br>See section 5.1 for details |  |
| 4      | GYRO_Y_NF_COSWZ_SEL[0] | Used for gyroscope Y-axis notch filter frequency selection<br>See section 5.1 for details |  |
| 3      | GYRO_X_NF_COSWZ_SEL[0] | Used for gyroscope X-axis notch filter frequency selection<br>See section 5.1 for details |  |
| 2      | GYRO_Z_NF_COSWZ[8]     | Used for gyroscope Z-axis notch filter frequency selection<br>See section 5.1 for details |  |
| 1      | GYRO_Y_NF_COSWZ[8]     | Used for gyroscope Y-axis notch filter frequency selection<br>See section 5.1 for details |  |
| 0      | GYRO_X_NF_COSWZ[8]     | Used for gyroscope X-axis notch filter frequency selection<br>See section 5.1 for details |  |

## 15.10 **GYRO\_CONFIG\_STATIC10**

Name: GYRO\_CONFIG\_STATIC10

Address: 19 (13h) Serial IF: R/W Reset value: 0x11 Clock Domain: SCLK\_UI

| BIT | NAME           | FUNCTION                                                                 |
|-----|----------------|--------------------------------------------------------------------------|
| 7   | -              | Reserved                                                                 |
| 6:4 | GYRO_NF_BW_SEL | Selects bandwidth for gyroscope notch filter See section 5.1 for details |
| 3:0 | -              | Reserved                                                                 |



#### 15.11 XG\_ST\_DATA

Name: XG\_ST\_DATA Address: 95 (5Fh) Serial IF: R/W

Reset value: 0xXX (The value in this register indicates the self-test output generated during manufacturing tests)

Clock Domain: SCLK UI

| BIT | NAME       | FUNCTION              |
|-----|------------|-----------------------|
| 7:0 | XG_ST_DATA | X-gyro self-test data |

#### 15.12 YG\_ST\_DATA

Name: YG\_ST\_DATA Address: 96 (60h) Serial IF: R/W

Reset value: 0xXX (The value in this register indicates the self-test output generated during manufacturing tests)

Clock Domain: SCLK UI

| - | *************************************** |            |                       |
|---|-----------------------------------------|------------|-----------------------|
| В | Ţ                                       | NAME       | FUNCTION              |
| 7 | 0:                                      | YG_ST_DATA | Y-gyro self-test data |

#### 15.13 ZG\_ST\_DATA

Name: ZG\_ST\_DATA Address: 97 (61h) Serial IF: R/W

Reset value: 0xXX (The value in this register indicates the self-test output generated during manufacturing tests)

Clock Domain: SCLK UI

| BIT | NAME       | FUNCTION              |
|-----|------------|-----------------------|
| 7:0 | ZG_ST_DATA | Z-gyro self-test data |

## 15.14 TMSTVALO

Name: TMSTVAL0 Address: 98 (62h) Serial IF: R Reset value: 0x00 Clock Domain: SCLK\_UI

| BIT | NAME             | FUNCTION                                                                                                 |
|-----|------------------|----------------------------------------------------------------------------------------------------------|
| 7.0 | TNACT VALUE[7.0] | When TMST_STROBE is programmed, the current value of the internal                                        |
| 7:0 | TMST_VALUE[7:0]  | counter is latched to this register. Allows the full 20-bit precision of the time stamp to be read back. |



#### 15.15 TMSTVAL1

Name: TMSTVAL1 Address: 99 (63h) Serial IF: R Reset value: 0x00 Clock Domain: SCLK\_UI

| BIT | NAME             | FUNCTION                                                                                                                                            |
|-----|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:0 | TMST_VALUE[15:8] | When TMST_STROBE is programmed, the current value of the internal counter is latched to this register. Allows the full 20-bit precision of the time |
|     |                  | stamp to be read back.                                                                                                                              |

#### 15.16 TMSTVAL2

Name: TMSTVAL2 Address: 100 (64h)

Serial IF: R Reset value: 0x00 Clock Domain: SCLK\_UI

| BIT | NAME              | FUNCTION                                                                                                                                                                   |
|-----|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:4 | -                 | Reserved                                                                                                                                                                   |
| 3:0 | TMST_VALUE[19:16] | When TMST_STROBE is programmed, the current value of the internal counter is latched to this register. Allows the full 20-bit precision of the time stamp to be read back. |

## 15.17 INTF\_CONFIG4

Name: INTF\_CONFIG4 Address: 122 (7Ah) Serial IF: R/W Reset value: 0x83 Clock Domain: SCLK UI

| BIT | NAME         | FUNCTION                                                                  |
|-----|--------------|---------------------------------------------------------------------------|
| 7:2 | -            | Reserved                                                                  |
| 6   | ISC DUC MODE | 0: Device is on a bus with I <sup>2</sup> C and I3C <sup>SM</sup> devices |
| 6   | I3C_BUS_MODE | 1: Device is on a bus with I3C <sup>SM</sup> devices only                 |
| 5:2 | -            | Reserved                                                                  |
| 1   | SPI_AP_4WIRE | 0: AP interface uses 3-wire SPI mode                                      |
| 1   |              | 1: AP interface uses 4-wire SPI mode (default)                            |
| 0   | -            | Reserved                                                                  |



# 15.18 INTF\_CONFIG5

Name: INTF\_CONFIG5 Address: 123 (7Bh) Serial IF: R/W Reset value: 0x00 Clock Domain: SCLK\_UI

| BIT | NAME          | FUNCTION                                              |
|-----|---------------|-------------------------------------------------------|
| 7:3 | -             | Reserved                                              |
|     |               | Selects among the following functionalities for pin 9 |
|     |               | 00: INT2                                              |
| 2:1 | PIN9_FUNCTION | 01: FSYNC                                             |
|     |               | 10: CLKIN                                             |
|     |               | 11: Reserved                                          |
| 0   | -             | Reserved                                              |

# 15.19 INTF\_CONFIG6

Name: INTF\_CONFIG6 Address: 124 (7Ch) Serial IF: R/W Reset value: 0x5F Clock Domain: SCLK UI

| CIOCK    | Clock Domain. SCER_OI |                                                                     |
|----------|-----------------------|---------------------------------------------------------------------|
| BIT      | NAME                  | FUNCTION                                                            |
| 7        | ASYNCTIMEO_DIS        | 0: I3C <sup>SM</sup> Asynchronous Mode 0 timing control is enabled  |
| <b>'</b> |                       | 1: I3C <sup>SM</sup> Asynchronous Mode 0 timing control is disabled |
| 6:5      | -                     | Reserved                                                            |
| 4        | I3C_EN                | 0: I3C <sup>SM</sup> slave not enabled                              |
| 4        |                       | 1: I3C <sup>SM</sup> slave enabled                                  |
| 3        | I3C_IBI_BYTE_EN       | 0: I3C <sup>SM</sup> IBI payload function not enabled               |
| 3        |                       | 1: I3C <sup>SM</sup> IBI payload function enabled                   |
| 2        | I3C_IBI_EN            | 0: I3C <sup>SM</sup> IBI function not enabled                       |
| 2        |                       | 1: I3C <sup>SM</sup> IBI function enabled                           |
| 1        | I3C_DDR_EN            | 0: I3C <sup>SM</sup> DDR mode not enabled                           |
| 1        |                       | 1: I3C <sup>SM</sup> DDR mode enabled                               |
| 0        | I3C_SDR_EN            | 0: I3C <sup>SM</sup> SDR mode not enabled                           |
|          |                       | 1: I3C <sup>SM</sup> SDR mode enabled                               |



#### 16 USER BANK 2 REGISTER MAP – DESCRIPTIONS

This section describes the function and contents of each register within USR Bank 2.

## 16.1 ACCEL\_CONFIG\_STATIC2

#### 抗混叠滤波器寄存器 与带宽对应关系

Name: ACCEL\_CONFIG\_STATIC2

Address: 03 (03h) Serial IF: R/W Reset value: 0x30 Clock Domain: SCLK UI

| CIOCIN | olock bornami beek_or |                                                                                                    |
|--------|-----------------------|----------------------------------------------------------------------------------------------------|
| BIT    | NAME                  | FUNCTION                                                                                           |
| 7      | -                     | Reserved                                                                                           |
| 6:1    | ACCEL_AAF_DELT        | Controls bandwidth of the accelerometer anti-alias filter<br>See section 5.2 for details           |
| 0      | ACCEL_AAF_DIS         | Enable accelerometer anti-aliasing filter (default)     Disable accelerometer anti-aliasing filter |

#### 16.2 ACCEL\_CONFIG\_STATIC3

Name: ACCEL\_CONFIG\_STATIC3

Address: 04 (04h) Serial IF: R/W Reset value: 0x40 Clock Domain: SCLK UI

| BIT | NAME                   | FUNCTION                                                  |
|-----|------------------------|-----------------------------------------------------------|
| 7:0 | ACCEL_AAF_DELTSQR[7:0] | Controls bandwidth of the accelerometer anti-alias filter |
|     |                        | See section 5.2 for details                               |

#### 16.3 ACCEL\_CONFIG\_STATIC4

Name: ACCEL\_CONFIG\_STATIC4

Address: 05 (05h)
Serial IF: R/W
Reset value: 0x62
Clock Domain: SCLK\_UI

| BIT | NAME                    | FUNCTION                                                  |  |
|-----|-------------------------|-----------------------------------------------------------|--|
| 7:4 | ACCEL_AAF_BITSHIFT      | Controls bandwidth of the accelerometer anti-alias filter |  |
|     |                         | See section 5.2 for details                               |  |
| 3:0 | ACCEL_AAF_DELTSQR[11:8] | Controls bandwidth of the accelerometer anti-alias filter |  |
|     |                         | See section 5.2 for details                               |  |

#### 16.4 XA\_ST\_DATA

Name: XA\_ST\_DATA Address: 59 (3Bh) Serial IF: R/W

Reset value: 0xXX (The value in this register indicates the self-test output generated during manufacturing tests)

Clock Domain: SCLK\_UI

| BIT | NAME       | FUNCTION               |
|-----|------------|------------------------|
| 7:0 | XA_ST_DATA | X-accel self-test data |



# 16.5 YA\_ST\_DATA

Name: YA\_ST\_DATA Address: 60 (3Ch) Serial IF: R/W

Reset value: 0xXX (The value in this register indicates the self-test output generated during manufacturing tests)

Clock Domain: SCLK\_UI

| BIT | NAME       | FUNCTION               |
|-----|------------|------------------------|
| 7:0 | YA_ST_DATA | Y-accel self-test data |

#### 16.6 ZA\_ST\_DATA

Name: ZA\_ST\_DATA Address: 61 (3Dh) Serial IF: R/W

Reset value: 0xXX (The value in this register indicates the self-test output generated during manufacturing tests)

Clock Domain: SCLK UI

| BIT | NAME       | FUNCTION               |
|-----|------------|------------------------|
| 7:0 | ZA_ST_DATA | Z-accel self-test data |



## 17 USER BANK 4 REGISTER MAP – DESCRIPTIONS

This section describes the function and contents of each register within USR Bank 4.

## 17.1 APEX\_CONFIG1

LOW\_ENERGY\_AMP\_TH\_SE、PED\_AMP\_TH\_SEL、PED\_HI\_EN\_TH\_SEL 传感器根据运动强度动态调整阈值,平衡功耗与精度。

Name: APEX\_CONFIG1 Address: 64 (40h) Serial IF: R/W Reset value: 0xA2 Clock Domain: SCLK\_UI

| CIOCK | Domain: SCLK_UI          |                                                                        |
|-------|--------------------------|------------------------------------------------------------------------|
| BIT   | NAME                     | FUNCTION                                                               |
| 7:4   | LOW ENERGY AND THE SEL   | Pedometer Low Energy mode amplitude threshold selection                |
| 7.4   | LOW_ENERGY_AMP_TH_SEL    | Use default value 1010b                                                |
|       |                          | When the DMP is in power save mode, it is awakened by the WOM and will |
|       |                          | wait for a certain duration before going back to sleep. This bitfield  |
|       |                          | configures this duration.                                              |
|       |                          | 0000: 0 seconds                                                        |
|       |                          | 0001: 4 seconds                                                        |
|       |                          | 0010: 8 seconds                                                        |
|       |                          | 0011: 12 seconds                                                       |
|       |                          | 0100: 16 seconds                                                       |
|       | DMP_POWER_SAVE_TIME_S EL | 0101: 20 seconds                                                       |
| 3:0   |                          | 0110: 24 seconds                                                       |
|       |                          | 0111: 28 seconds                                                       |
|       |                          | 1000: 32 seconds                                                       |
|       |                          | 1001: 36 seconds                                                       |
|       |                          | 1010: 40 seconds                                                       |
|       |                          | 1011: 44 seconds                                                       |
|       |                          | 1100: 48 seconds                                                       |
|       |                          | 1101: 52 seconds                                                       |
|       |                          | 1110: 56 seconds                                                       |
|       |                          | 1111: 60 seconds                                                       |



# 17.2 APEX\_CONFIG2

Name: APEX\_CONFIG2 Address: 65 (41h) Serial IF: R/W Reset value: 0x85 Clock Domain: SCLK\_UI

|     | k Domain: SCLK_UI   |                                         |
|-----|---------------------|-----------------------------------------|
| BIT | NAME                | FUNCTION                                |
| 7.4 | PED_AMP_TH_SEL      | Pedometer amplitude threshold selection |
| 7:4 |                     | Use default value 1000b                 |
|     |                     | Pedometer step count detection window   |
|     |                     | Use default value 0101b                 |
|     |                     | 0000: 0 steps                           |
|     |                     | 0001: 1 step                            |
|     |                     | 0010: 2 steps                           |
|     | PED_STEP_CNT_TH_SEL | 0011: 3 steps                           |
|     |                     | 0100: 4 steps                           |
|     |                     | 0101: 5 steps (default)                 |
| 2.0 |                     | 0110: 6 steps                           |
| 3:0 |                     | 0111: 7 steps                           |
|     |                     | 1000: 8 steps                           |
|     |                     | 1001: 9 steps                           |
|     |                     | 1010: 10 steps                          |
|     |                     | 1011: 11 steps                          |
|     |                     | 1100: 12 steps                          |
|     |                     | 1101: 13 steps                          |
|     |                     | 1110: 14 steps                          |
|     |                     | 1111: 15 steps                          |



# 17.3 APEX\_CONFIG3

Name: APEX\_CONFIG3 Address: 66 (42h) Serial IF: R/W Reset value: 0x51 Clock Domain: SCLK\_UI

|     | lock Domain: SCLK_UI |                                                                                                                                                                                                         |
|-----|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BIT | NAME                 | FUNCTION                                                                                                                                                                                                |
| 7:5 | PED_STEP_DET_TH_SEL  | Pedometer step detection threshold selection Use default value 010b 000: 0 steps 001: 1 step 010: 2 steps (default) 011: 3 steps 100: 4 steps 101: 5 steps 111: 7 steps                                 |
| 4:2 | PED_SB_TIMER_TH_SEL  | Pedometer step buffer timer threshold selection Use default value 100b 000: 0 samples 001: 1 sample 010: 2 samples 011: 3 samples 100: 4 samples (default) 101: 5 samples 110: 6 samples 111: 7 samples |
| 1:0 | PED_HI_EN_TH_SEL     | Pedometer high energy threshold selection Use default value 01b                                                                                                                                         |



## 17.4 APEX\_CONFIG4

Name: APEX\_CONFIG4 Address: 67 (43h) Serial IF: R/W Reset value: 0xA4 Clock Domain: SCLK\_UI

| BIT | NAME               | FUNCTION                                                                |
|-----|--------------------|-------------------------------------------------------------------------|
|     | THE WAIT TIME CEL  | Configures duration of delay after tilt is detected before interrupt is |
|     |                    | triggered                                                               |
| 7:6 |                    | 00: 0s                                                                  |
| 7.6 | TILT_WAIT_TIME_SEL | 01: 2s                                                                  |
|     |                    | 10: 4s (default)                                                        |
|     |                    | 11: 6s                                                                  |
|     | SLEEP_TIME_OUT     | Configures the time out for sleep detection, for Raise to Wake/Sleep    |
|     |                    | feature                                                                 |
|     |                    | 000: 1.28sec                                                            |
|     |                    | 001: 2.56sec                                                            |
| 5:3 |                    | 010: 3.84sec                                                            |
| 5.5 |                    | 011: 5.12sec                                                            |
|     |                    | 100: 6.40sec                                                            |
|     |                    | 101: 7.68sec                                                            |
|     |                    | 110: 8.96sec                                                            |
|     |                    | 111: 10.24sec                                                           |
| 2:0 | -                  | Reserved                                                                |

# 17.5 APEX\_CONFIG5

Name: APEX\_CONFIG5 Address: 68 (44h) Serial IF: R/W Reset value: 0x8C Clock Domain: SCLK UI

| BIT | NAME            | FUNCTION                                      |
|-----|-----------------|-----------------------------------------------|
| 7:3 | -               | Reserved                                      |
|     |                 | Defines mounting matrix, chip to device frame |
|     |                 | 000: [1 0 0; 0 1 0; 0 0 1]                    |
|     |                 | 001: [1 0 0; 0 -1 0; 0 0 -1]                  |
|     |                 | 010: [-1 0 0; 0 1 0; 0 0 -1]                  |
| 2:0 | MOUNTING_MATRIX | 011: [-1 0 0; 0 -1 0; 0 0 1]                  |
|     |                 | 100: [ 0 1 0; 1 0 0; 0 0 -1]                  |
|     |                 | 101: [ 0 1 0; -1 0 0; 0 0 1]                  |
|     |                 | 110: [ 0 -1 0; 1 0 0; 0 0 1]                  |
|     |                 | 111: [ 0 -1 0; -1 0 0; 0 0 -1]                |



## 17.6 APEX\_CONFIG6

Name: APEX\_CONFIG6 Address: 69 (45h) Serial IF: R/W Reset value: 0x5C Clock Domain: SCLK\_UI

| CIOCK | bollidini. Seek_of  |                                                         |
|-------|---------------------|---------------------------------------------------------|
| BIT   | NAME                | FUNCTION                                                |
| 7:3   | -                   | Reserved                                                |
|       |                     | Configures detection window for sleep gesture detection |
|       |                     | 000: 0.32sec                                            |
|       |                     | 001: 0.64sec                                            |
|       |                     | 010: 0.96sec                                            |
| 2:0   | SLEEP_GESTURE_DELAY | 011: 1.28sec                                            |
|       |                     | 100: 1.60sec                                            |
|       |                     | 101: 1.92sec                                            |
|       |                     | 110: 2.24sec                                            |
|       |                     | 111: 2.56sec                                            |

## 17.7 APEX\_CONFIG7

Name: APEX\_CONFIG7 Address: 70 (46h) Serial IF: R/W Reset value: 0x45 Clock Domain: SCLK UI

| 0.0 | olock bollidini beek_ol |                                                                |
|-----|-------------------------|----------------------------------------------------------------|
| BIT | NAME                    | FUNCTION                                                       |
| 7:2 | TAP_MIN_JERK_THR        | Tap Detection minimum jerk threshold Use default value 010001b |
| 1:0 | TAP_MAX_PEAK_TOL        | Tap Detection maximum peak tolerance Use default value 01b     |

## 17.8 APEX\_CONFIG8

Name: APEX\_CONFIG8 Address: 71 (47h) Serial IF: R/W Reset value: 0x5B Clock Domain: SCLK UI

| BIT | NAME      | FUNCTION                                          |
|-----|-----------|---------------------------------------------------|
| 7   | -         | Reserved                                          |
| 6:5 | TAP_TMAX  | Tap measurement window (number of samples)        |
| 0.5 |           | Use default value 01b                             |
| 4:3 | TAP_TAVG  | Tap energy measurement window (number of samples) |
| 4.3 |           | Use default v <mark>alue 01b</mark>               |
| 2.0 | TAD TAGIN | Single tap window (number of samples)             |
| 2:0 | TAP_TMIN  | Use default value 011b                            |



#### 17.9 APEX\_CONFIG9

Name: APEX\_CONFIG9 Address: 72 (48h) Serial IF: R/W Reset value: 0x00 Clock Domain: SCLK\_UI

| BIT | NAME             | FUNCTION                                                             |
|-----|------------------|----------------------------------------------------------------------|
| 7:1 | -                | Reserved                                                             |
|     |                  | 0: Low power mode at accelerometer ODR 25Hz; High performance mode   |
|     | SENSITIVITY_MODE | at accelerometer ODR ≥ 50Hz                                          |
| "   |                  | 1: Low power and slow walk mode at accelerometer ODR 25Hz; Slow walk |
|     |                  | mode at accelerometer ODR ≥ 50Hz                                     |

## 17.10 ACCEL\_WOM\_X\_THR

 $Name: ACCEL\_WOM\_X\_THR$ 

Address: 74 (4Ah) Serial IF: R/W Reset value: 0x00 Clock Domain: SCLK\_UI

| BIT | NAME     | FUNCTION                                                                                                                                         |
|-----|----------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:0 | WOM X TH | Threshold value for the Wake on Motion Interrupt for X-axis accelerometer WoM thresholds are expressed in fixed "mg" independent of the selected |
|     |          | Range [0g: 1g]; Resolution 1g/256=~3.9mg                                                                                                         |

## 17.11 ACCEL\_WOM\_Y\_THR

Name: ACCEL\_WOM\_Y\_THR

Address: 75 (4Bh) Serial IF: R/W Reset value: 0x00 Clock Domain: SCLK\_UI

|     | *** - * ******** * * - ' * ' |                                                                           |
|-----|------------------------------|---------------------------------------------------------------------------|
| BIT | NAME                         | FUNCTION                                                                  |
|     |                              | Threshold value for the Wake on Motion Interrupt for Y-axis accelerometer |
| 7:0 | WOM_Y_TH                     | WoM thresholds are expressed in fixed "mg" independent of the selected    |
|     |                              | Range [0g: 1g]; Resolution 1g/256=~3.9mg                                  |

## 17.12 ACCEL\_WOM\_Z\_THR

Name: ACCEL\_WOM\_Z\_THR

Address: 76 (4Ch) Serial IF: R/W Reset value: 0x00 Clock Domain: SCLK\_UI

| BIT | NAME     | FUNCTION                                                                  |
|-----|----------|---------------------------------------------------------------------------|
|     |          | Threshold value for the Wake on Motion Interrupt for Z-axis accelerometer |
| 7:0 | WOM_Z_TH | WoM thresholds are expressed in fixed "mg" independent of the selected    |
|     |          | Range [0g: 1g]; Resolution 1g/256=~3.9mg                                  |



## 17.13 INT\_SOURCE6

Name: INT\_SOURCE6 Address: 77 (4Dh) Serial IF: R/W Reset value: 0x00 Clock Domain: SCLK\_UI

| BIT | NAME                   | FUNCTION                                            |
|-----|------------------------|-----------------------------------------------------|
| 7:6 | -                      | Reserved                                            |
| 5   | STEP_DET_INT1_EN       | 0: Step detect interrupt not routed to INT1         |
| ,   |                        | 1: Step detect interrupt routed to INT1             |
| 4   | STEP CNT OFL INT1 EN   | 0: Step count overflow interrupt not routed to INT1 |
| 4   | STEP_CINI_OFL_INTI_EIN | 1: Step count overflow interrupt routed to INT1     |
| 3   | TILT_DET_INT1_EN       | 0: Tilt detect interrupt not routed to INT1         |
| 3   |                        | 1: Tile detect interrupt routed to INT1             |
| 2   | WAKE_DET_INT1_EN       | 0: Wake detect interrupt not routed to INT1         |
|     |                        | 1: Wake detect interrupt routed to INT1             |
| 1   | CLEED DET INITA EN     | 0: Sleep detect interrupt not routed to INT1        |
|     | SLEEP_DET_INT1_EN      | 1: Sleep detect interrupt routed to INT1            |
| 0   | TAD DET INT1 EN        | 0: Tap detect interrupt not routed to INT1          |
| U   | TAP_DET_INT1_EN        | 1: Tap detect interrupt routed to INT1              |

# 17.14 INT\_SOURCE7

Name: INT\_SOURCE7 Address: 78 (4Eh) Serial IF: R/W Reset value: 0x00 Clock Domain: SCLK UI

| BIT | NAME                 | FUNCTION                                            |
|-----|----------------------|-----------------------------------------------------|
| 7:6 | -                    | Reserved                                            |
| 5   | STEP_DET_INT2_EN     | 0: Step detect interrupt not routed to INT2         |
| ,   |                      | 1: Step detect interrupt routed to INT2             |
| 4   | STEP CNT OFL INT2 EN | 0: Step count overflow interrupt not routed to INT2 |
| 4   | STEP_CNT_OFL_INTZ_EN | 1: Step count overflow interrupt routed to INT2     |
| 3   | TILT_DET_INT2_EN     | 0: Tilt detect interrupt not routed to INT2         |
| 3   |                      | 1: Tile detect interrupt routed to INT2             |
| 2   | WAKE_DET_INT2_EN     | 0: Wake detect interrupt not routed to INT2         |
|     |                      | 1: Wake detect interrupt routed to INT2             |
| 1   | CLEED DET INTO EN    | 0: Sleep detect interrupt not routed to INT2        |
|     | SLEEP_DET_INT2_EN    | 1: Sleep detect interrupt routed to INT2            |
| 0   | TAD DET INTO EN      | 0: Tap detect interrupt not routed to INT2          |
| U   | TAP_DET_INT2_EN      | 1: Tap detect interrupt routed to INT2              |



## 17.15 INT\_SOURCE8

Name: INT\_SOURCE8 Address: 79 (4Fh) Serial IF: R/W Reset value: 0x00 Clock Domain: SCLK\_UI

| BIT | NAME             | FUNCTION                                      |
|-----|------------------|-----------------------------------------------|
| 7:6 | -                | Reserved                                      |
| 5   | FSYNC_IBI_EN     | 0: FSYNC interrupt not routed to IBI          |
|     |                  | 1: FSYNC interrupt routed to IBI              |
| 4   | DII DOV IDI EN   | 0: PLL ready interrupt not routed to IBI      |
| 4   | PLL_RDY_IBI_EN   | 1: PLL ready interrupt routed to IBI          |
| 3   | UI_DRDY_IBI_EN   | 0: UI data ready interrupt not routed to IBI  |
| 3   |                  | 1: UI data ready interrupt routed to IBI      |
| 2   | FIFO_THS_IBI_EN  | 0: FIFO threshold interrupt not routed to IBI |
|     |                  | 1: FIFO threshold interrupt routed to IBI     |
| 1   | FIFO FULL IBI EN | 0: FIFO full interrupt not routed to IBI      |
|     | THO_HOLL_IBI_EN  | 1: FIFO full interrupt routed to IBI          |
| 0   | AGC_RDY_IBI_EN   | 0: AGC ready interrupt not routed to IBI      |
| U   |                  | 1: AGC ready interrupt routed to IBI          |

# 17.16 INT\_SOURCE9

Name: INT\_SOURCE9 Address: 80 (50h) Serial IF: R/W Reset value: 0x00 Clock Domain: SCLK\_UI

| BIT | NAME                   | FUNCTION                                                        |
|-----|------------------------|-----------------------------------------------------------------|
| 7   | I3C_PROTOCOL_ERROR_IBI | 0: I3C <sup>SM</sup> protocol error interrupt not routed to IBI |
| ,   | _EN                    | 1: I3C <sup>SM</sup> protocol error interrupt routed to IBI     |
| 6:5 | -                      | Reserved                                                        |
| 4   | SMD_IBI_EN             | 0: SMD interrupt not routed to IBI                              |
| 4   |                        | 1: SMD interrupt routed to IBI                                  |
| 3   | WOM_Z_IBI_EN           | 0: Z-axis WOM interrupt not routed to IBI                       |
| 3   |                        | 1: Z-axis WOM interrupt routed to IBI                           |
| 2   | WOM Y IBI EN           | 0: Y-axis WOM interrupt not routed to IBI                       |
|     | WOWI_1_IBI_EN          | 1: Y-axis WOM interrupt routed to IBI                           |
| 1   | WOM X IBI EN           | 0: X-axis WOM interrupt not routed to IBI                       |
| 1   | VVOIVI_A_IBI_EIN       | 1: X-axis WOM interrupt routed to IBI                           |
| 0   | -                      | Reserved                                                        |



## 17.17 INT\_SOURCE10

Name: INT\_SOURCE10 Address: 81 (51h) Serial IF: R/W Reset value: 0x00 Clock Domain: SCLK\_UI

| CIOCK | ck bomain. Seek_or  |                                                    |
|-------|---------------------|----------------------------------------------------|
| BIT   | NAME                | FUNCTION                                           |
| 7:6   | -                   | Reserved                                           |
| 5     | STEP_DET_IBI_EN     | 0: Step detect interrupt not routed to IBI         |
|       |                     | 1: Step detect interrupt routed to IBI             |
| 4     | STED CNT OEL IDI EN | 0: Step count overflow interrupt not routed to IBI |
| 4     | STEP_CNT_OFL_IBI_EN | 1: Step count overflow interrupt routed to IBI     |
| 3     | TILT_DET_IBI_EN     | 0: Tilt detect interrupt not routed to IBI         |
| 3     |                     | 1: Tile detect interrupt routed to IBI             |
| 2     | WAKE_DET_IBI_EN     | 0: Wake detect interrupt not routed to IBI         |
|       |                     | 1: Wake detect interrupt routed to IBI             |
| 1     | SLEEP_DET_IBI_EN    | 0: Sleep detect interrupt not routed to IBI        |
|       |                     | 1: Sleep detect interrupt routed to IBI            |
| 0     | TAD DET IDI EN      | 0: Tap detect interrupt not routed to IBI          |
| 0     | TAP_DET_IBI_EN      | 1: Tap detect interrupt routed to IBI              |

# 17.18 OFFSET\_USER0

Name: OFFSET\_USER0 Address: 119 (77h) Serial IF: R/W Reset value: 0x00 Clock Domain: SCLK\_UI

| BIT | NAME                | FUNCTION                                                                                      |
|-----|---------------------|-----------------------------------------------------------------------------------------------|
| 7:0 | GYRO_X_OFFUSER[7:0] | Lower bits of X-gyro offset programmed by user. Max value is ±64 dps, resolution is 1/32 dps. |

#### 17.19 OFFSET\_USER1

Name: OFFSET\_USER1 Address: 120 (78h) Serial IF: R/W Reset value: 0x00 Clock Domain: SCLK\_UI

| BIT | NAME                 | FUNCTION                                                                                      |
|-----|----------------------|-----------------------------------------------------------------------------------------------|
| 7:4 | GYRO_Y_OFFUSER[11:8] | Upper bits of Y-gyro offset programmed by user. Max value is ±64 dps, resolution is 1/32 dps. |
| 3:0 | GYRO_X_OFFUSER[11:8] | Upper bits of X-gyro offset programmed by user. Max value is ±64 dps, resolution is 1/32 dps. |



#### 17.20 OFFSET\_USER2

| Name   | e: OFFSET_USER2     |                                                                                               |
|--------|---------------------|-----------------------------------------------------------------------------------------------|
| Addre  | ress: 121 (79h)     |                                                                                               |
| Serial | Serial IF: R/W      |                                                                                               |
| Reset  | Reset value: 0x00   |                                                                                               |
| Clock  | ock Domain: SCLK_UI |                                                                                               |
| BIT    | NAME                | FUNCTION                                                                                      |
| 7:0    | GYRO_Y_OFFUSER[7:0] | Lower bits of Y-gyro offset programmed by user. Max value is ±64 dps, resolution is 1/32 dps. |

## 17.21 OFFSET\_USER3

| Name   | Name: OFFSET_USER3    |                                                                                                      |  |
|--------|-----------------------|------------------------------------------------------------------------------------------------------|--|
| Addre  | Address: 122 (7Ah)    |                                                                                                      |  |
| Serial | Serial IF: R/W        |                                                                                                      |  |
| Reset  | Reset value: 0x00     |                                                                                                      |  |
| Clock  | Clock Domain: SCLK_UI |                                                                                                      |  |
| BIT    | NAME                  | FUNCTION                                                                                             |  |
| 7:0    | GYRO_Z_OFFUSER[7:0]   | Lower bits of Z-gyro offset programmed by user. Max value is $\pm 64$ dps, resolution is $1/32$ dps. |  |

#### 17.22 OFFSET\_USER4

| _      |                        |                                                                       |  |
|--------|------------------------|-----------------------------------------------------------------------|--|
| Name   | Name: OFFSET_USER4     |                                                                       |  |
| Addre  | Address: 123 (7Bh)     |                                                                       |  |
| Serial | Serial IF: R/W         |                                                                       |  |
| Reset  | Reset value: 0x00      |                                                                       |  |
| Clock  | Clock Domain: SCLK UI  |                                                                       |  |
| BIT    | NAME                   | FUNCTION                                                              |  |
| 7.4    | ACCEL_X_OFFUSER[11:8]  | Upper bits of X-accel offset programmed by user. Max value is ±1g,    |  |
| 7:4    |                        | resolution is 0.5mg.                                                  |  |
| 2.0    | 0 GYRO_Z_OFFUSER[11:8] | Upper bits of Z-gyro offset programmed by user. Max value is ±64 dps, |  |
| 3:0    |                        | resolution is 1/32 dps.                                               |  |

## 17.23 OFFSET\_USER5

Name: OFFSET\_USER5
Address: 124 (7Ch)
Serial IF: R/W
Reset value: 0x00
Clock Domain: SCLK\_UI

BIT NAME FUNCTION

7:0 ACCEL\_X\_OFFUSER[7:0] Lower bits of X-accel offset programmed by user. Max value is ±1g, resolution is 0.5mg.



#### 17.24 OFFSET\_USER6

| Name   | Name: OFFSET_USER6    |                                                                                         |  |
|--------|-----------------------|-----------------------------------------------------------------------------------------|--|
| Addre  | Address: 125 (7Dh)    |                                                                                         |  |
| Serial | Serial IF: R/W        |                                                                                         |  |
| Reset  | Reset value: 0x00     |                                                                                         |  |
| Clock  | Clock Domain: SCLK_UI |                                                                                         |  |
| BIT    | NAME                  | FUNCTION                                                                                |  |
| 7:0    | ACCEL_Y_OFFUSER[7:0]  | Lower bits of Y-accel offset programmed by user. Max value is ±1g, resolution is 0.5mg. |  |

## 17.25 OFFSET\_USER7

| Name: OFFSET_USER7 |                       |                                                                                         |  |
|--------------------|-----------------------|-----------------------------------------------------------------------------------------|--|
| Addre              | Address: 126 (7Eh)    |                                                                                         |  |
| Serial             | Serial IF: R/W        |                                                                                         |  |
| Reset              | Reset value: 0x00     |                                                                                         |  |
| Clock              | Clock Domain: SCLK_UI |                                                                                         |  |
| BIT                | NAME                  | FUNCTION                                                                                |  |
| 7:4                | ACCEL_Z_OFFUSER[11:8] | Upper bits of Z-accel offset programmed by user. Max value is ±1g, resolution is 0.5mg. |  |
| 3:0                | ACCEL_Y_OFFUSER[11:8] | Upper bits of Y-accel offset programmed by user. Max value is ±1g, resolution is 0.5mg. |  |

## 17.26 OFFSET\_USER8

Name: OFFSET\_USER8
Address: 127 (7Fh)
Serial IF: R/W
Reset value: 0x00
Clock Domain: SCLK\_UI

BIT NAME FUNCTION

7:0 ACCEL\_Z\_OFFUSER[7:0] Lower bits of Z-accel offset programmed by user. Max value is ±1g, resolution is 0.5mg.

## 18 REFERENCE

Please refer to "InvenSense MEMS Handling Application Note (AN-IVS-0002A-00)" for the following information:

- Manufacturing Recommendations
  - Assembly Guidelines and Recommendations
  - o PCB Design Guidelines and Recommendations
  - o MEMS Handling Instructions
  - o ESD Considerations
  - Reflow Specification
  - Storage Specifications
  - o Package Marking Specification
  - o Tape & Reel Specification
  - o Reel & Pizza Box Label
  - Packaging
  - o Representative Shipping Carton Label
- Compliance
  - o Environmental Compliance
  - o DRC Compliance
  - o Compliance Declaration Disclaimer



# 19 DOCUMENT INFORMATION

#### 19.1 REVISION HISTORY

| Revision Date | Revision | Description                                                                                                                                                                                                                                                                                                                                                   |
|---------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11/18/2019    | 1.0      | Initial Release                                                                                                                                                                                                                                                                                                                                               |
| 03/02/2020    | 1.1      | Added product overview page (Page 1); Updated Conditions in Tables 1 and 2; Updated SPI timing characteristics specs (Tables 6, 7); Updated SPI interface description (Section 9.6)                                                                                                                                                                           |
| 04/19/2020    | 1.2      | Updated specification notes (Tables 1, 2, 3, 4); Updated absolute maximum ratings (Table 8)                                                                                                                                                                                                                                                                   |
| 08/28/2020    | 1.3      | Updated Internal Clock Source and Notes (Table 4); Added SPI SCLK Fall Time/Rise Time (Tables 6, 7); Updated APEX Hardware Initialization for Pedometer Programming (Section 8.3); Updated I3C <sup>SM</sup> Interface information (Section 9.2); Added Use Note 12.9 (Register Values Modification); Added ASYNCTIMEO_DIS information (Sections 13.2, 15.19) |
| 09/28/2020    | 1.4      | Added Section 3.7 RTC (CLKIN) Timing Characterization                                                                                                                                                                                                                                                                                                         |
| 05/05/2021    | 1.5      | Updated FIFO Timestamp Interval Scaling (Section 12.7); Updated TMST_RES register field description (Section 14.42)                                                                                                                                                                                                                                           |
| 06/20/2021    | 1.6      | Updated FIFO_COUNTH and FIFO_COUNTL description (Section 14.22, 14.23)                                                                                                                                                                                                                                                                                        |
| 12/01/2022    | 1.7      | Updated Figure 5                                                                                                                                                                                                                                                                                                                                              |



This information furnished by InvenSense, Inc. ("InvenSense") is believed to be accurate and reliable. However, no responsibility is assumed by InvenSense for its use, or for any infringements of patents or other rights of third parties that may result from its use. Specifications are subject to change without notice. InvenSense reserves the right to make changes to this product, including its circuits and software, in order to improve its design and/or performance, without prior notice. InvenSense makes no warranties, neither expressed nor implied, regarding the information and specifications contained in this document. InvenSense assumes no responsibility for any claims or damages arising from information contained in this document, or from the use of products and services detailed therein. This includes, but is not limited to, claims or damages based on the infringement of patents, copyrights, mask work and/or other intellectual property rights.

Certain intellectual property owned by InvenSense and described in this document is patent protected. No license is granted by implication or otherwise under any patent or patent rights of InvenSense. This publication supersedes and replaces all information previously supplied. Trademarks that are registered trademarks are the property of their respective companies. InvenSense sensors should not be used or sold in the development, storage, production or utilization of any conventional or mass-destructive weapons or for any other weapons or life threatening applications, as well as in any other life critical applications such as medical equipment, transportation, aerospace and nuclear instruments, undersea equipment, power plant equipment, disaster prevention and crime prevention equipment.

©2022 InvenSense. All rights reserved. InvenSense, MotionTracking, MotionProcessing, MotionProcessor, MotionFusion, MotionApps, DMP, AAR, and the InvenSense logo are trademarks of InvenSense, Inc. The TDK logo is a trademark of TDK Corporation. Other company and product names may be trademarks of the respective companies with which they are associated.

