Chalmers tekniska högskola Tentamen

MVE275 Linjär algebra AT

Del 1: Godkäntdelen

1. (a) Vi projicerar $\begin{bmatrix} 3 \\ 5 \end{bmatrix}$ på vektorn $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ och får $\frac{3 \cdot 1 + 5 \cdot 1}{1 + 1}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix} = \frac{8}{2}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \end{bmatrix}$. Avståndet mellan punkten och linjen blir då $\left\| \begin{bmatrix} 3 \\ 5 \end{bmatrix} - \begin{bmatrix} 4 \\ 4 \end{bmatrix} \right\| = \left\| \begin{bmatrix} -1 \\ 1 \end{bmatrix} \right\| = \sqrt{1 + 1} = \sqrt{2}$.

(b)

$$\left[\begin{array}{cc} A & I \\ 0 & B \end{array}\right] \left[\begin{array}{cc} X & Y \\ 0 & I \end{array}\right] = \left[\begin{array}{cc} AX & AY + I \\ 0 & B \end{array}\right].$$

Vi får alltså matrisekvationerna

$$AX = B \iff X = A^{-1}B$$
 och $AY + I = A \iff Y + A^{-1} = I \iff Y = I + A^{-1}.$

(c)

$$A \sim \left[\begin{array}{ccc} 1 & 5/4 & 9/4 \\ 6 & 5 & 1 \end{array} \right] \sim \left[\begin{array}{ccc} 1 & 5/4 & 9/4 \\ 0 & -10/4 & -50/4 \end{array} \right] \sim \left[\begin{array}{ccc} 1 & 5/4 & 9/4 \\ 0 & 1 & 5 \end{array} \right] \sim \left[\begin{array}{ccc} 1 & 0 & -4 \\ 0 & 1 & 5 \end{array} \right].$$

Lösningen till A**x** = **0** ges av $x_1 = 4x_3$ och $x_2 = -5x_3$, alltså **x** = $\begin{bmatrix} 4 \\ -5 \\ 1 \end{bmatrix} t$. Vi får alltså

$$\operatorname{Col} A = \operatorname{span} \left\{ \begin{bmatrix} 4 \\ 6 \end{bmatrix}, \begin{bmatrix} 5 \\ 5 \end{bmatrix} \right\}, \qquad \operatorname{Nul} A = \operatorname{span} \left\{ \begin{bmatrix} 4 \\ -5 \\ 1 \end{bmatrix} \right\}.$$

- (d) Triangelns area är hälften av arean av parallelogrammet som spänns upp av (3,1) och (2,-6). Så triangelarean är $\frac{1}{2} \left| \det \left(\begin{bmatrix} 3 & 2 \\ 1 & -6 \end{bmatrix} \right) \right| = \frac{1}{2} |-18-2| = 20/2 = 10.$
- (e) Ekvationssystemet har en icke-trivial lösning om det A = 0. Vi har alltså det $\begin{pmatrix} 1 & -1 \\ 7 & a \end{pmatrix} = a + 7$, vilket är noll om a = -7.

(f)

$$\begin{bmatrix} 0 & 2 & 4 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0 & 1 & 0 \\ 1 & 0 & -1 & 0 & 0 & 1 \end{bmatrix} \sim_{\text{I} \to \frac{1}{2}\text{I}} \begin{bmatrix} 1 & 2 & 0 & 0 & 1 & 0 \\ 0 & 1 & 2 & 1/2 & 0 & 0 \\ 1 & 0 & -1 & 0 & 0 & 1 \end{bmatrix} \sim_{\text{III} \to \text{III} - \text{I}} \begin{bmatrix} 1 & 2 & 0 & 0 & 1 & 0 \\ 0 & 1 & 2 & 1/2 & 0 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$

$$\sim_{\text{III} \to \text{III} + 2\text{II}} \begin{bmatrix} 1 & 2 & 0 & 0 & 1 & 0 \\ 0 & 1 & 2 & 1/2 & 0 & 0 \\ 0 & 1 & 2 & 1/2 & 0 & 0 \\ 0 & 0 & 3 & 1 & -1 & 1 \end{bmatrix} \sim_{\text{III} \to \frac{1}{3}\text{III}} \begin{bmatrix} 1 & 2 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1/6 & 2/3 & -2/3 \\ 0 & 0 & 1 & 1/3 & -1/3 & 1/3 \end{bmatrix}$$

$$\sim_{\text{I} \to \text{I} - 2\text{III}} \begin{bmatrix} 1 & 0 & 0 & 1/3 & -1/3 & 4/3 \\ 0 & 1 & 0 & -1/6 & 2/3 & -2/3 \\ 0 & 0 & 1 & 1/3 & -1/3 & 1/3 \end{bmatrix} .$$

Alltså

$$A^{-1} = \begin{bmatrix} 1/3 & -1/3 & 4/3 \\ -1/6 & 2/3 & -2/3 \\ 1/3 & -1/3 & 1/3 \end{bmatrix}.$$

- 2. (a) En vektor $\mathbf{v} \neq \mathbf{0}$ är egenvektor till en $n \times n$ matris A om det existerar ett tal λ så att $A\mathbf{v} = \lambda \mathbf{v}$.
 - (b) Egenvärdena ges av lösningarna till $det(A \lambda I_n) = 0$.

$$\begin{split} \det\left(\left[\begin{array}{ccc} 1-\lambda & 1 & 3 \\ 1 & 3-\lambda & 1 \\ 3 & 1 & 1-\lambda \end{array}\right]\right) \\ &= (1-\lambda) \det\left(\left[\begin{array}{ccc} 3-\lambda & 1 \\ 1 & 1-\lambda \end{array}\right]\right) - \det\left(\left[\begin{array}{ccc} 1 & 1 \\ 3 & 1-\lambda \end{array}\right]\right) + 3 \det\left(\left[\begin{array}{ccc} 1 & 3-\lambda \\ 3 & 1 \end{array}\right]\right) \\ &= (1-\lambda)((3-\lambda)(1-\lambda)-3) - (1-\lambda-3) + 3(1-3(3-\lambda)) \\ &= (1-\lambda)(3-4\lambda+\lambda^2-1) + \lambda + 2 + 9\lambda - 24 \\ &= -\lambda^3 + 5\lambda^2 + 4\lambda - 20. \end{split}$$

Genom att testa olika rötter hittar vi $\lambda_1 = 2$:

$$-8 + 5 \cdot 4 + 4 \cdot 2 - 20 = 0.$$

Vi bryter ut $(\lambda - 2)$:

$$-\lambda^{3} + 5\lambda^{2} + 4\lambda - 20 = (\lambda - 2)(-\lambda^{2} + 3\lambda + 10).$$

Den ekvationen har lösningar

$$\lambda_{2,3} = \frac{3}{2} \pm \sqrt{\frac{9}{4} + 10} = \frac{3}{2} \pm \sqrt{\frac{49}{4}} = \frac{3}{2} \pm \frac{7}{2}$$

alltså $\lambda_2 = 10/2 = 5$ och $\lambda_3 = -4/2 = -2$.

Egenvärdena är alltså

$$\lambda_1 = 2, \qquad \lambda_2 = 5, \qquad \lambda_3 = -2.$$

- (c) Vi vet enligt sats att det finns tre egenvektorer som är vinkelrätta mot varann.
- (d) Vi räknar ut de normaliserade egenvektorerna.

Egenvektor till $\lambda_1 = 2$: Lösning av $(A - 2I_3)\mathbf{v} = \mathbf{0}$:

$$\begin{bmatrix} -1 & 1 & 3 \\ 1 & 1 & 1 \\ 3 & 1 & -1 \end{bmatrix} \sim_{\substack{\mathbf{I} \to \mathbf{I} + \mathbf{II} \\ \mathbf{III} \to \mathbf{III} = 3\mathbf{II} \\ \mathbf{I} \leftrightarrow \mathbf{I}}} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 4 \\ 0 & -2 & -4 \end{bmatrix} \sim_{\substack{\mathbf{III} \to \mathbf{III} + \mathbf{II} \\ \mathbf{II} \to \mathbf{II} : 2}} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix} \sim_{\mathbf{I} \to \mathbf{I} - \mathbf{II}} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}.$$

Vi får alltså $\mathbf{v}_1 = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$.

Egenvektor till $\lambda_2 = 5$: Lösning av $(A - 5 I_3)\mathbf{v} = \mathbf{0}$:

$$\begin{bmatrix} -4 & 1 & 3 \\ 1 & -2 & 1 \\ 3 & 1 & -4 \end{bmatrix} \sim_{\substack{\mathrm{I} \to \mathrm{II} + 4\mathrm{II} \\ \mathrm{III} \to \mathrm{III} - 3\mathrm{II}}} \begin{bmatrix} 0 & -7 & 7 \\ 1 & -2 & 1 \\ 0 & 7 & -7 \end{bmatrix} \sim_{\substack{\mathrm{III} \to \mathrm{III} + \mathrm{I} \\ \mathrm{II} \leftrightarrow \mathrm{I} : 7}} \begin{bmatrix} 1 & -2 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} \sim_{\mathrm{I} \to \mathrm{I} + 2\mathrm{II}} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}.$$

Vi får alltså $\mathbf{v}_2 = \frac{1}{\sqrt{3}} \begin{bmatrix} 1\\1\\1 \end{bmatrix}$.

Egenvektor till $\lambda_3 = -2$: Lösning av $(A + 2I_3)\mathbf{v} = \mathbf{0}$:

$$\begin{bmatrix} 3 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 3 \end{bmatrix} \sim_{\text{III} \to \text{III} + \text{I}} \begin{bmatrix} 1 & 5 & 1 \\ 3 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix} \sim_{\text{II} \to \text{II} + 3\text{I}} \begin{bmatrix} 1 & 5 & 1 \\ 0 & -14 & 0 \\ 0 & 0 & 0 \end{bmatrix} \sim_{\text{I} \to \text{I} + \frac{5}{14} \text{II}} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Vi får alltså $\mathbf{v}_3 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\0\\-1 \end{bmatrix}$.

Så $A = PDP^T$, där

$$D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & -2 \end{bmatrix}, \qquad P = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 & \sqrt{2} & \sqrt{3} \\ -2 & \sqrt{2} & 0 \\ 1 & \sqrt{2} & -\sqrt{3} \end{bmatrix}.$$

- 3. (a) span $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ är mängden av alla linjärkombinationer av $\mathbf{v}_1, \mathbf{v}_2$ och \mathbf{v}_3 .
 - (b) Sätt $\mathbf{b}_1 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$. Vi fixar en vektor vinkelrätt mot \mathbf{b}_1 genom att räkna

$$\mathbf{b}_2 = \mathbf{v}_2 - \frac{\mathbf{v}_2 \cdot \mathbf{b}_1}{\|\mathbf{b}_1\|^2} \mathbf{b}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} - \frac{2}{3} \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}.$$

En vektor vinkelrätt mot \mathbf{b}_1 och \mathbf{b}_2 är given genom

$$\mathbf{b}_3 = \mathbf{v}_3 - \frac{\mathbf{v}_3 \cdot \mathbf{b}_1}{\|\mathbf{b}_1\|^2} \mathbf{b}_1 - \frac{\mathbf{v}_3 \cdot \mathbf{b}_2}{\|\mathbf{b}_2\|^2} \mathbf{b}_2 = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} - \frac{2}{3} \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} - \frac{5}{6} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}.$$

Efter normaliseringen blir basen

$$\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\} = \left\{ \frac{1}{\sqrt{3}} \begin{bmatrix} 1\\-1\\1 \end{bmatrix}, \frac{1}{\sqrt{6}} \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \frac{1}{\sqrt{2}} \begin{bmatrix} -1\\0\\1 \end{bmatrix} \right\}.$$

(c) Koordinaterna blir

$$\mathbf{v} \cdot \mathbf{u}_1 = \frac{1}{\sqrt{3}}(2+1+3) = \frac{6}{\sqrt{3}}, \quad \mathbf{v} \cdot \mathbf{u}_2 = \frac{1}{\sqrt{6}}(2-2+3) = \frac{3}{\sqrt{6}}, \quad \mathbf{v} \cdot \mathbf{u}_2 = \frac{1}{\sqrt{2}}(-2+3) = \frac{1}{\sqrt{2}}.$$

Koordinatvektorn blir alltså $\begin{bmatrix} 6/\sqrt{3} \\ 3/\sqrt{6} \\ 1/\sqrt{2} \end{bmatrix}$.

4. (a) Vad händer med standardbasvektorerna:

$$\begin{split} \mathbf{e}_1 &\rightarrow \mathbf{e}_1 \rightarrow \mathbf{e}_1 \rightarrow \mathbf{0}, \\ \mathbf{e}_2 &\rightarrow \mathbf{e}_2 \rightarrow -\mathbf{e}_2 \rightarrow -\mathbf{e}_2, \\ \mathbf{e}_3 &\rightarrow -\mathbf{e}_3 \rightarrow \mathbf{e}_3 \rightarrow \mathbf{e}_3. \end{split}$$

Standardmatrisen till T är alltså

$$\begin{bmatrix} T(\mathbf{e}_1) & T(\mathbf{e}_2) & T(\mathbf{e}_3) \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

(b) Vi kollar om $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + x_3\mathbf{v}_3 = \mathbf{0}$ har icke-triviala lösningar:

$$\begin{bmatrix} 1 & 3 & 1 \\ 2 & 6 & 2 \\ 2 & 5 & 1 \\ -1 & 0 & 2 \end{bmatrix} \sim_{\substack{\text{II} \to \text{II} - 2\text{I} \\ \text{III} \to \text{III} - 2\text{I} \\ \text{IV} \to \text{IV} + \text{I}}} \begin{bmatrix} 1 & 3 & 1 \\ 0 & 0 & 0 \\ 0 & -1 & -1 \\ 0 & 3 & 3 \end{bmatrix} \sim_{\substack{\text{IV} \to \text{IV} + 3\text{III} \\ \text{II} \leftrightarrow -\text{III}}} \begin{bmatrix} 1 & 3 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Det finns bara två pivotpositioner och alltså finns det icke-triviala lösningar. Vektorerna är alltså inte linjärt oberoende.

Del 2: Överbetygsdelen

- $\mathbf{5}$. (a) Vi kontrollerar att U uppfyller kriteria för att vara ett underrum:
 - i. Om p(x) = 0 för alla x, så är p(1) = p(-1) = 0, så nollvektorn ligger i U.
 - ii. Tag $p \in U$ och $a \in \mathbb{R}$. Då är $(ap)(1) = a \cdot p(1) = a \cdot 0 = 0$, och samma för (ap)(-1), så $ap \in U$.
 - iii. Tag $p, q \in U$. Då är (p+q)(1) = p(1) + q(1) = 0 + 0 = 0, och samma för (p+q)(-1). Alltså är $p+q \in U$.

Alltså är U ett underrum.

- (b) Sätt $p(x) = ax^3 + bx^2 + cx + d$. Villkoret p(1) = 0 ger a + b + c + d = 0, och villkoret p(-1) = 0 ger -a + b c + d = 0. Fyra variabler och två uppenbart inte ekvivalenta ekvationer ger en tvådimensionella lösningsmängd. Två linjärt oberoende lösningar är $p_1(x) = x^2 1$ och $p_2(x) = x^3 x$, som vi då kan ta som bas för U. För att utvidga detta till en bas för V behöver vi ett polynom som uppfyller $p(1) = p(-1) \neq 0$, t.ex. $p_3(x) = 1$. Då är $\{p_1, p_2, p_3\}$ en bas för V. För att utvidga till en bas för hela \mathbb{P}^3 behöver vi ett polynom som uppfyller $p(1) \neq p(-1)$, t.ex. $p_4(x) = x$. Då är $\{p_1, p_2, p_3, p_4\}$ en bas för \mathbb{P}^3 .
- 6. (a) Falskt: Tag t.ex. $\mathbf{u} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ och $\mathbf{v} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, då är $\|\mathbf{u} \mathbf{v}\| = \left\| \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\| = \sqrt{1^2 + 1^2} = \sqrt{2}, \quad \text{men} \quad \|\mathbf{u}\| \|\mathbf{v}\| = 1 1 = 0.$
 - (b) **Falskt:** Vi skriver ekvationssystemet som $A\mathbf{x} = \mathbf{0}$. Då är A en 7×9 matris, och dimensionssatsen säger att dim Nul A + dim Col A = 9. Eftersom dim Col A kan vara högst 7, så betyder det att dim Nul $A \ge 2$. Men om alla lösningar är multipler av en fix lösning så är dim Nul A = 1. Motsägelse!
 - (c) Sant: Tag t.ex. $A = I_4$, då är det(A) = 1, och

$$\det(2A) = \det\left(\begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix} \right) = 16 = 16 \cdot 1 = 16 \cdot \det A.$$

- 7. (a) Vi har $(A^T)^{-1}A^T=\mathrm{I}_n=(AA^{-1})^T=(A^{-1})^TA^T$. Genom att multiplicera med $(A^T)^{-1}$ från högerleden får vi resultatet.
 - (b) Låt mängden vara given av $B = \{\mathbf{0}, \mathbf{b}_1, \dots, \mathbf{b}_p\}$, då är $a\mathbf{0} + 0\mathbf{b}_1 + \dots + 0\mathbf{b}_n = \mathbf{0}$ en linjärkombination som ger noll men där inte alla koefficienter är lika med noll. Vektorerna är alltså inte linjärt oberoende.