(19) Organisation Mondiale de la Propriété Intellectuelle

Bureau international

(10) Numéro de publication internationale WO 2004/000994 A2

(51) Classification internationale des brevets⁷:

C12N

PASTEUR, Nicole [FR/FR]; 65, avenue du Major de Flandre, F-34090 Montpellier (FR).

- (21) Numéro de la demande internationale : PCT/FR2003/001876
- (22) Date de dépôt international: 19 juin 2003 (19.06.2003)
- (25) Langue de dépôt :

français

(26) Langue de publication :

français

(30) Données relatives à la priorité : 02/07622 20 juin 2002 (20.06.2002) FR

5 novembre 2002 (05.11.2002)

- (71) Déposants (pour tous les États désignés sauf US) : CENTRE NATIONAL DE LA RECHERCHE SCIEN-TIFIQUE [FR/FR]; 3, rue Michel-Ange, F-75794 Paris Cedex 16 (FR). UNIVERSITE DE MONTPELLIER 2 [FR/FR]; 2, place Eugène Bataillon, F-34095 Montpellier
- (72) Inventeurs; et

Cedex 5 (FR).

02/13799

(75) Inventeurs/Déposants (pour US seulement): WEILL, Mylène [FR/FR]; 11, rue Belmont, F-34090 Montpellier (FR). FORT, Philippe [FR/FR]; 47, avenue Jean Jaurès, F-34170 Castelnau le Lez (FR). RAYMOND, Michel [FR/FR]; 8, rue St Sépulcre, F-34000 Montpellier (FR).

- (74) Mandataire : CABINET ORES; 36, rue de St Pétersbourg, F-75008 Paris (FR).
- (81) États désignés (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) États désignés (régional): brevet ARIPO (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Publiée:

 sans rapport de recherche internationale, sera republiée dès réception de ce rapport

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

- (54) Title: NOVEL ACETYLCHOLINESTERASE GENE RESPONSIBLE FOR INSECTICIDE RESISTANCE AND APPLICATIONS THEREOF
- (54) Titre: NOUVEAU GENE DE L'ACETYLCHOLINESTERASE RESPONSABLE DE LA RESISTANCE AUX INSECTI-CIDES ET SES APPLICATIONS
- (57) Abstract: The invention relates to a novel acetylcholinesterase gene (ace-1) responsible for resistance to organophosphorus and/or carbamates in mosquitoes, which is non-homologous to the D. melanogaster acetylcholinesterase gene (ace-2), products of the ace-1 gene (cDNA, protein AchE1) and the applications thereof, particularly for the screening of novel insecticides and the genetic detection of resistance to organophosphorus and/or carbamates in mosquito populations.
- (57) Abrégé: Nouveau gène de l'acétylcholinestérase (ace-1) responsable de la résistance aux organophosphorés et/ou aux carbamates chez les moustiques, non-homologue au gène de l'acétylcholinestérase de D. melanogaster (ace-2), produits du gène ace-1 (ADNc, protéine AchE1) et leurs applications, notamment pour le criblage de nouveaux insecticides et la détection génétique de la résistance aux organophosphorés et/ou aux carbamates dans les populations de moustiques.

2004/000994

10

20

NOUVEAU GENE DE L'ACETYLCHOLINESTERASE RESPONSABLE DE LA RESISTANCE AUX INSECTICIDES ET SES APPLICATIONS

La présente invention est relative à un nouveau gène de l'acétylcholinestérase responsable de la résistance aux insecticides, notamment chez les moustiques, aux produits de ce gène (ADNc, protéine) et à leurs applications, notamment pour le criblage de nouveaux insecticides et la détection génétique de la résistance aux organophosphorés et/ou aux carbamates dans les populations de moustiques.

L'acétylcholinestérase (AChE, E.C. 3.1.1.7) est une enzyme essentielle qui hydrolyse l'acétylcholine dans les synapses, mettant ainsi fin aux transmissions cholinergiques au niveau des jonctions neuronales ou neuromusculaires. L'inhibition de l'AChE empêche la désactivation du signal synaptique, conduisant ainsi à une perte de contrôle de la transmission cholinergique. La biologie de l'acétylcholinestérase a été très étudiée chez les invertébrés, et en particulier les insectes, car cette enzyme est la cible des principales classes de pesticides utilisés, les organophosphorés et les carbamates. Cependant, l'utilisation massive de pesticides au cours des dernières décennies a provoqué l'émergence d'espèces résistantes. Parmi les mécanismes de résistance, la sélection de mutations rendant l'AChE insensible aux insecticides a été observée dans de nombreux cas (Pour une revue, voir Fournier et al., Comp. Biochem. Physiol., 1994, 108, 19-31).

Afin de déterminer avec précision, la nature de l'AChE cible des insecticides, ainsi que les mutations responsables de la résistance à ces derniers, les gènes codant pour des AChE (gènes ace) ont été isolés chez différentes espèces d'arthropodes (insectes et arachnides).

Le premier gène ace a été identifié chez la drosophile (Drosophila melanogaster), par génétique inverse (Hall et al., EMBO J., 1986, 5, 2949-2954). La preuve que ce gène était impliqué dans la résistance aux insecticides a été fournie par la mise en évidence de substitutions d'acides aminés dans l'AChE de drosophiles résistantes, conférant l'insensibilité aux insecticides cholinergiques (Mutéro et al., P.N.A.S., 1994, 91, 5922-5926). Les études chez D. melanogaster semblaient donc indiquer la présence d'un seul gène ace chez les insectes, codant pour l'AChE cible des insecticides cholinergiques.

25

30

Toutefois, à l'exception du gène ace de deux autres insectes, Musca domestica (Williamson et al., 1992, In Multidisciplinary approaches to cholinesterase functions, Eds Schafferman A. & Velan B., Plenum Press, New-York, pp 83-86; Walsh et al., Biochem. J., 2001, 359, 175-181; Kozaki et al., Insect. Biochem. Mol. Biol., 2001, 31, 991-997) et Bactrocera oleae (Vontas et al., Insect Molecular Biology, 2002, 11, 329-339), l'étude des gènes ace isolés chez d'autres insectes ou bien chez des arachnides, par homologie avec celui de la drosophile, indiquent qu'ils ne sont pas impliqués dans la résistance aux insecticides.

En effet, aucune mutation dans la séquence en acides aminés de l'AChE codée par le gène ace d'Aphis gossypii, de Nephotettix cincticeps et de Boophilus microplus n'est observée entre les individus résistants et sensibles (Menozzi et al., Thèse de Doctorat de l'université Paul Sabatier, Toulouse, 2000; Tomita et al., Insect Biochem. Mol. Biol., 200, 30, 325-333; Baxter et al., Insect Biochem. Mol. Biol., 1998, 28, 581-589; Hernandez et al., J. Med. Entomol., 1999, 36, 764-770), et une ségrégation indépendante est observée entre le gène ace de Culex pipiens et C. tritaeniorynchus et la résistance aux insecticides (Malcolm et al., Insect. Mol. Biol., 1998, 7, 107-120; Mori et al., Insect Mol. Biol., 2001, 10, 197-203).

En ce qui concerne les autres gènes ace isolés chez d'autres insectes, leur rôle dans la résistance aux insecticides n'a pas été étudié (Lucilia cuprina: Chen et al., Insect. Biochem. Mol. Biol., 2001, 31, 805-816; Schizaphis graminum: Gao et al., Insect. Biochem. Mol. Biol., 2001, 31, 1095-1104) ou aucune forme d'AChE insensible aux insecticides n'a été décrite (Aedes aegypti, Anopheles gambiae et Anopheles stephensi: Anthony et al., FEBS letters, 1995, 368, 461-465; Malcolm et al., In Molecular Insect Science, Eds Hageborn et al., Plenum Press, New-York, pp 57-65).

Deux hypothèses ont été émises pour expliquer la différence dans la résistance aux insecticides, observée entre *Drosophila melanogaster* ou *Musca domestica* et les autres insectes ou les arachnides qui ont été étudiés : la présence d'un "gène modificateur" responsable de modifications post-transcriptionnelles ou post-traductionnelles de l'AChE, conduisant à des formes d'AChE possédant des activités catalytiques différentes, et la présence d'un deuxième gène *ace*.

15

20

25

30

Toutefois, aucune étude n'a permis de vérifier ces hypothèses et par conséquent de déterminer la nature du gène et celle de la cible (AChE) impliqués dans la résistance aux insecticides chez les insectes autres que *Drosophila melanogaster* et *Musca domestica* ou bien chez les arachnides :

- La mise en évidence, chez *C. pipiens*, de deux formes d'AChE possédant des activités catalytiques distinctes supporte les deux hypothèses et l'analyse biochimique de ces AChE n'a pas permis de déterminer la nature de l'AChE impliquée dans la résistance aux insecticides (Bourguet et al., J. Neurochemistry, 1996, 67, 2115-2123). En effet, la description d'une activité AChE1 insensible au propoxur dans des extraits d'insectes par Bourguet et al. (Pesticide Biochemistry and Physiology, 1996, 55, 2, 122-128) ne fournit aucune donnée sur l'existence effective d'AChE1 chez *Culex pipiens*, ni sur la séparation de l'activité AChE1, de l'activité AChE2, dans le contexte des deux hypothèses précitées, à la lumière de l'article postérieur des mêmes Auteurs (Bourguet D. et al., Neurochemistry Internat., 1997, 31, 1, 65-72), dans lequel l'existence d'un deuxième gène chez de nombreux moustiques n'a pas pu être mis en évidence.

- Un deuxième gène ace a été isolé chez les arachnides; toutefois ce gène n'est pas impliqué dans la résistance aux insecticides (Hernandez et al., Baxter et al., précités).

- Un deuxième gène *ace* n'a pu être isolé chez les insectes malgré de nombreuses tentatives dans différentes espèces (Menozzi et al., Tomita et al., Mori et al., précités; Severson et al., J. Hered., 1997, 88, 520-524).

Il ressort de ce qui précède que la nature du gène et de la cible (AChE), impliqués dans la résistance aux organophosphorés et/ou aux carbamates, n'a pas été identifiée chez la plupart des insectes et chez les arachnides, notamment chez ceux où ils ont été recherchés; on peut citer les plus importants dans les domaines de la santé humaine ou animale et de l'agriculture comme les vecteurs de pathogènes et les nuisibles, notamment de nombreux moustiques comme Culex pipiens, Aedes aegypti, Anopheles gambiae, Anopheles albimanus, Anopheles stephensi, et des ravageurs des cultures comme Aphis gossypii, Nephotettix cincticeps et Leptinotarsa decemlineata.

10

15

20

25

30

Les Inventeurs ont identifié un nouveau locus du gène ace dans le génome d'Anopheles gambiae et de 15 espèces différentes de moustiques et ils ont montré que ce nouveau locus, non-homologue au locus précédemment décrit chez D. melanogaster, était impliqué dans la résistance aux insecticides chez les moustiques.

Les Inventeurs ont également montré que la résistance aux insecticides, au moins chez les moustiques des espèces *Culex pipiens* et *Anopheles gambiae*, était liée à une unique mutation dans la séquence de l'acétylcholinestérase codée par ce nouveau gène, située au voisinage du site catalytique de l'enzyme.

Ce nouveau gène représente un outil de diagnostic pour la détection génétique de la résistance aux insecticides (organophosphorés, carbamates) dans les populations de moustiques. L'AChE codée par ce gène représente une cible pour le criblage de nouvelles molécules actives sur les populations de moustiques résistants aux insecticides actuellement utilisés.

La présente invention a, en conséquence, pour objet une protéine, caractérisée en ce qu'elle comprend une région catalytique centrale qui présente une séquence en acides aminés sélectionnée dans le groupe constitué par la séquence SEQ ID NO: 1 et les séquences présentant au moins 60 % d'identité ou 70 % de similarité avec la séquence SEQ ID NO: 1, à l'exclusion de la séquence NCBI AAK0973 correspondant à l'acétylcholinestérase de *Schizaphis graminum*.

La protéine selon l'invention représente une nouvelle acétylcholinestérase d'insecte, dénommée ci-après AchE1, responsable de la résistance aux organophosphorés et/ou aux carbamates, au moins chez les moustiques, notamment chez C. pipiens; le locus codant pour ladite AchE1 est dénommée ci-après ace-1; ace-2 représente le second locus ace, qui n'est pas impliqué dans la résistance aux insecticides chez les moustiques. L'unique gène ace présent dans Drosophila melanogaster, qui est homologue à ace-2, est donc également dénommé ace-2.

Conformément à l'invention, ladite région catalytique centrale contient le domaine catalytique de l'AChE et correspond à celle située entre les positions 70 et 593 de la séquence de l'AChE1 d'Anopheles gambiae (SEQ ID NO: 3, 643 acides aminés); elle correspond à celle située respectivement entre les positions 100 et 629 de la séquence d'AChE1 de Schizaphis graminum (NCBI AAK0973), 60 et 582 de la séquence de l'AChE1 de Culex pipiens (SEQ ID NO: 7), 34 et 593 de la séquence

10

15

20

25

30

d'AChE2 d'Anopheles gambiae (figure 1, SEQ ID NO: 53), et 41 et 601 de la séquence d'AChE2 de Drosophila melanogaster (NCBI AAF54915). Cette région centrale qui contient le domaine catalytique est conservée chez les vertébrés et les invertébrés alors que les extrémités N- et C-terminales présentent une forte variabilité entre les différentes espèces.

Conformément à l'invention, l'identité d'une séquence par rapport à une séquence de référence (SEQ ID NO: 1) s'apprécie en fonction du pourcentage de résidus d'acides aminés qui sont identiques, lorsque les séquences correspondant à la région catalytique telle que définie ci-dessus sont alignées, de manière à obtenir le maximum de correspondance entre elles.

Une protéine ayant une séquence en acides aminés ayant au moins X % d'identité avec la séquence de référence SEQ ID NO: 1 est définie, dans la présente invention comme une protéine dont la séquence correspondant à la région catalytique centrale telle que définie ci-dessus peut inclure jusqu'à 100-X altérations pour 100 acides aminés de la séquence SEQ ID NO: 1. Au sens de la présente invention, le terme altération inclut les délétions, les substitutions ou les insertions consécutives ou dispersées d'acides aminés dans la séquence de référence. Cette définition s'applique, par analogie, aux molécules d'acide nucléique.

La similarité d'une séquence par rapport à la séquence de référence SEQ ID NO 1 s'apprécie en fonction du pourcentage de résidus d'acides aminés qui sont identiques ou qui différent par des substitutions conservatives, lorsque les séquences correspondant à la région catalytique centrale telle que définie ci-dessus sont alignées de manière à obtenir le maximum de correspondance entre elles. Au sens de la présente invention, on entend par substitution conservative, la substitution d'un acide aminé par un autre qui présente des propriétés chimiques similaires (taille, charge ou polarité), qui généralement ne modifie pas les propriétés fonctionnelles de la protéine.

Une protéine ayant une séquence en acides aminés ayant au moins X % de similarité avec la séquence SEQ ID NO: 1 est définie, dans la présente invention comme une protéine dont la séquence correspondant à la région catalytique centrale telle que définie ci-dessus peut inclure jusqu'à 100-X altérations non-conservatives pour 100 acides aminés de la séquence de référence. Au sens de la présente

15

6

invention, le terme altérations non-conservatives inclut les délétions, les substitutions non-conservatives ou les insertions consécutives ou dispersées d'acides aminés dans la séquence SEQ ID NO: 1.

La comparaison de l'AChE1 selon l'invention avec les AChE d'insecte disponibles sur les bases de données, par alignement des séquences correspondant à la région centrale telle que définie ci-dessus, à l'aide du logiciel BLAST (http://www.ncbi.nlm.nih.gov/gorf/bl2.html, paramètres par défaut, filtre inactivé) montre que :

- les séquences d'AChE1 et d'AChE2 d'insecte présentent 36-39%
 d'identité (53-57% similarité) entre elles.
 - les séquences d'AChE1 d'insecte présentent 65-97% d'identité (79-98% similarité) entre elles,
 - les séquences d'AChE2 d'insecte présentent 58-99% d'identité (73-99% similarité) entre elles,

En outre, l'analyse phylogénétique des AChE des différentes espèces animales montre que les séquences protéiques d'AChE1 forment un groupe autonome significatif (bootstrap 795/1000), et que les AChE1 d'insecte forment un sous-groupe distinct significatif (bootstrap 856/1000).

L'AChE1 selon l'invention comprend des motifs caractéristiques des 20 AChE (figure 1) situés aux positions suivantes, respectivement dans la séquence SEQ ID NO: 3 et dans la séquence de référence de Torpedo californica (SWISSPROT P04058): un motif canonique du type FGESAG autour de la sérine en position 266 (200), qui est caractéristique du site actif des AchE, un site de liaison à la choline (résidu Tryptophane en position 151 (84)), trois résidus de la triade catalytique (rési-25 dus sérine, acide glutamique et histidine, respectivement en positions 266 (200), 392 (327) et 506 (440)), six résidus cystéine potentiellement impliqués dans des ponts disulfures conservés ($C_{134(67)}$ - $C_{161(94)}$; $C_{320(254)}$ - $C_{333(265)}$; $C_{468(402)}$ - $C_{589(521)}$), des résidus aromatiques bordant la gorge du site actif (10 résidus) et un résidu phénylalanine en position 355 (290) mais pas en position 353 (288), qui distingue les AChE d'invertébrés de celles de vertébrés. Elle possède également un peptide C-terminal hydrophobe correspondant à un signal d'addition d'un glycolipide, indiquant le clivage posttraductionnel d'un fragment C-terminal et l'addition d'une résidu d'ancrage glycolipi-

20

25

7

dique comme chez *Drosophila*; le résidu cystéine dans la séquence C-terminale précédant le site potentiel de clivage du peptide hydrophobe pourrait être impliqué dans une liaison disulfure intermoléculaire, liant les deux sous-unités catalytiques du dimère d'AChE.

L'AChE1 selon l'invention se distingue de l'AChE de *Drosophila* (AChE2) par l'absence d'une insertion hydrophile de 31 acides aminés entre les résidus situés aux positions 174 et 175 de la séquence SEQ ID NO: 3 (figure 1); cette insertion hydrophile pourrait être caractéristique de l'AChE2, au moins chez les diptères.

L'invention englobe les AChE1 d'insecte sensibles ou résistantes aux organophosphorés et/ou aux carbamates.

Au sens de la présente invention, les séquences d'AChE1 incluent aussi bien les séquences primaires, que les séquences secondaires et les séquences tertiaires desdites AChE1.

Au sens de la présente invention on entend par "AChE sensible", une
15 AChE dont l'activité acétylcholinestérase est inhibée en présence d'organophosphorés
ou de carbamates.

Au sens de la présente invention on entend par "AChE résistante", une AChE dont l'activité n'est pas inhibée par des concentrations en organophosphorés ou en carbamates qui inhibent 100 % de l'activité de "l'AChE sensible" correspondante issue d'un individu de la même espèce ; cette "AChE résistante" diffère de la précédente par la présence d'une ou plusieurs mutations dans sa séquence en acides aminés (substitutions d'acides aminés) qui modifient sa sensibilité aux inhibiteurs de l'acétylcholinestérase ; parmi ces mutations on peut citer les suivantes F78S, I129V, G227A, F288Y, les acides aminés étant numérotés en référence à la séquence de l'AChE de Torpedo californica (SWISSPROT P04058).

L'activité acétylcholinestérase et les paramètres catalytiques des AChE sont mesurés par les techniques enzymatique classiques telles que celles décrites dans Bourguet et al., précité.

Les protéines selon l'invention incluent toute protéine naturelle, synthétique, semi-synthétique ou recombinante de n'importe quel organisme procaryote ou eucaryote, comprenant ou consistant en une séquence d'acides aminés d'une protéine AChE1 telle que définie ci-dessus. Elles incluent notamment les protéines

30

naturelles isolées chez n'importe quelle espèce d'insecte, ainsi que les protéines recombinantes produites dans un système d'expression approprié.

Selon un mode de réalisation avantageux de ladite AChE1, elle correspond à celle d'un insecte qui appartient à l'ordre des diptères (*Diptera*); de manière préférée, ledit insecte est choisi dans la famille des *Culicidae*, parmi les genres *Culex*, *Aedes et Anopheles*.

Selon une disposition avantageuse de ce mode de réalisation, ladite AChE1 est constituée par les séquences SEQ ID NO: 3, SEQ ID NO: 5 et SEQ ID NO: 126 d'Anopheles gambiae et la séquence SEQ ID NO: 7 de Culex pipiens (souche S-LAB), sensibles aux organophosphorés et/ou aux carbamates.

Selon une autre disposition avantageuse de ce mode de réalisation, ladite région centrale catalytique de l'AChE1 comprend une séquence sélectionnée dans le groupe constitué par les séquences SEQ ID NO: 8 à 21 représentant un fragment d'environ 91 acides aminés (fragment K, figure 1), correspondant à celui situé entre les positions 445 et 535 de la séquence SEQ ID NO: 3.

Selon un autre mode de réalisation avantageux de l'invention, ladite AChE1 est une acétylcholinestérase résistante aux insecticides de la classe des organophosphorés et des carbamates incluant une mutation de la glycine située en position 119, en sérine (mutation ou substitution de type G119S); ladite position étant indiquée en référence à la séquence de l'AChE de *Torpedo californica* (SWISSPROT P04058).

En effet, les Inventeurs ont montré que le résidu en position 119 est proche des résidus du site catalytique (sérine 200 et histidine 440) et que le remplacement de la glycine de l'AChE1 des moustiques sensibles par une sérine, dans l'AChE1 des moustiques résistants, réduit l'espace du site catalytique et empêche l'insecticide d'interagir avec la sérine catalytique (S200), du fait de l'encombrement stérique des liaisons de Van der Waals de la chaîne latérale de la sérine en position 119. Le rôle de la mutation G119S dans la résistance aux insecticides a été confirmé par l'analyse de l'activité acétylcholinestérase des protéines AChE1 recombinantes produites à partir de l'ADNc de *Culex pipiens* sensibles (souche S-LAB possédant une AChE1 incluant une glycine en position 119) ou résistants (souche SR dont l'AchE1 diffère de la précédente uniquement par la présence d'une sérine en position 119) aux insecticides ; 90 %

15

20

25

de l'activité de l'AChE1 de la souche sensible est inhibée en présence de 10⁻³ M de propoxur alors que l'AChE1 de la souche résistante conserve 75 % de son activité en présence de concentrations 100 fois plus élevées de cet insecticide (10⁻¹ M de propoxur).

Selon une disposition avantageuse de ce mode de réalisation de ladite AChE1 résistante, elle correspond à celle d'un insecte (résistant aux insecticides) qui appartient à l'ordre des diptères (Diptera); de manière préférée, ledit insecte est choisi dans la famille des Culicidae, parmi les genres Culex, Aedes et Anopheles.

De préférence, ladite AChE1 résistante présente une séquence sélec-10 tionnée dans le groupe constitué par :

- la séquence SEQ ID NO: 57, correspondant à la séquence complète de la souche SR de C. pipiens, résistante aux insecticides,

- la séquence SEQ ID NO: 122, correspondant à la séquence complète de l'AChE1 de la souche YAO d'An. gambiae (isolée en Côte d'ivoire), résistante aux insecticides, et

- les séquences comprenant un fragment de séquence SEQ ID NO: 90, 93, 94, 95, 97 à 101, 113 et 116 représentant un fragment peptidique d'environ 150 acides aminés codé par le troisième exon codant du gène *ace-1* d'un insecte résistant tel que défini ci-dessus, contenant la substitution de type G119S, en référence à la séquence de l'AChE de *Torpedo californica* (SWISSPROT P04058).

Selon encore un autre mode de réalisation avantageux de l'invention, ladite AChE1 est une acétylcholinestérase sensible aux insecticides de la classe des organophosphorés et des carbamates comprenant une séquence sélectionnée dans le groupe constitué par les SEQ ID NO: 91, 92, 96, 102 à 112, 114, 115 et 117 à 119, représentant un fragment d'environ 150 acides aminés du troisième exon codant du gène ace-1 issu d'un insecte tel que défini ci-dessus, sensible aux insecticides, ledit fragment incluant une glycine en position 119 en référence à la séquence de l'AChE de Torpedo californica (SWISSPROT P04058).

La présente invention a également pour objet un peptide, caractérisé en ce qu'il est constitué par un fragment d'au moins 7 acides aminés de la protéine AChE1, telle que définie ci-dessus ; ces fragments sont particulièrement utiles pour la production d'anticorps reconnaissant spécifiquement la protéine AChE1.

15

20

25

30

La présente invention a également pour objet des anticorps, caractérisés en ce qu'ils sont dirigés contre la protéine AChE1 ou un fragment de celle-ci, tels que définis ci-dessus.

Conformément à l'invention, lesdits anticorps sont soit des anticorps monoclonaux, soit des anticorps polyclonaux.

Ces anticorps peuvent être obtenus par les méthodes classiques, connues en elles-mêmes, comprenant notamment l'immunisation d'un animal avec une protéine ou un peptide conforme à l'invention, afin de lui faire produire des anti-corps dirigés contre ladite protéine ou ledit peptide.

La présente invention a également pour objet une molécule d'acide nucléique isolée, caractérisée en ce qu'elle présente une séquence sélectionnée dans le groupe constitué par :

- les séquences codant pour une protéine AChE1 telle que définie cidessus (ADNc et fragment d'ADN génomique correspondants au gène ace-1), et
 - les séquences complémentaires des précédentes, sens ou anti-sens.
- les fragments d'au moins 8 pb, de préférence de 15 pb à 500 pb des séquences précédentes.

L'invention englobe, les séquences des allèles du gène ace-1 issues de n'importe quel insecte, ainsi que les séquences des mutants naturels (allèles sensibles et résistants) ou artificiels du gène ace-1 codant pour une protéine AChE1 sensible ou résistante, telle que définie ci-dessus.

Selon un mode de réalisation avantageux de l'invention, ladite séquence codant pour une protéine AChE1 est sélectionnée dans le groupe constitué par :

a) les séquences SEQ ID NO: 2, SEQ ID NO :4, SEQ ID NO: 125, SEQ ID NO: 6, SEQ ID NO: 56 et SEQ ID NO: 121 qui correspondent à l'ADNc de la protéine AChE1 de séquence en acides aminés, respectivement SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 126, SEQ ID NO: 7, SEQ ID NO: 57 et SEQ ID NO: 122, telles que définie ci-dessus, b) les séquences SEQ ID NO: 22, SEQ ID NO: 23 et SEQ ID NO: 127 qui correspondent au gène ace-1 d'Anopheles gambiae codant les AChE1 telles que définies ci-dessus, lequel gène présente une organisation exon-intron comprenant au moins 9 exons (Tableau I), et

10

15

20

c) les séquences comprenant la séquence SEQ ID NO: 120 qui correspond à la séquence quasi-complète du gène ace-1 d'Anopheles gambiae codant l'AChE1 résistante de séquence SEQ ID NO: 122, telle que définie ci-dessus.

Tableau I: Organisation Intron-Exon du gène ace-1

	Site 5'		Site 3'	
	Position	Séquence	Position	Séquence
Intron1	301	AGCAA/gtaat	1255	cgcag/CCATT
Intron2	1413	CAATG/gtgag	5338	tgtag/CGCTC
Intron3	5696	CGCAG/gtcgg	7634	ttcag/ACGCA
Intron4	7769	CTCGG/gtaag	7855	ggcag/ACGCG
Intron5	8393	CTACG/gtagg	8472	gtcag/CTGGG
Intron6	8670	CTAAG/gtacg	8756	tccag/AGCAC
Intron7	9464	ACCGG/gtaag	9530	tacag/CAATC
Intron8	9703	TACCT/gtaag	9810	aacag/CGAAC

Conformément à la présente invention, le troisième exon codant du gène ace-1 correspond à celui qui est situé entre l'intron 4 et l'intron 5 dans la séquence d'An. gambiae (Tableau I), c'est à dire entre les positions 7854 et 8393 de la séquence **SEQ ID NO: 127.**

Selon un autre mode de réalisation avantageux de l'invention, ledit fragment est sélectionné dans le groupe constitué par les amorces de séquence SEO ID NO: 39 à 50, 54, 55, 58, 59, 123, 124, 128 et 129 et les fragments de séquences SEQ ID NO: 24 à 38 et 60 à 89.

Les molécules d'acide nucléique selon l'invention sont obtenues par les méthodes classiques, connues en elles-mêmes, en suivant les protocoles standards tels que ceux décrits dans Current Protocols in Molecular Biology (Frederick M. AUSUBEL, 2000, Wiley and son Inc, Library of Congress, USA). Par exemple, elles peuvent être obtenues par amplification d'une séquence nucléique par PCR ou RT-PCR, par criblage de banques d'ADN génomique par hybridation avec une sonde homologue, ou bien par synthèse chimique totale ou partielle.

Les molécules d'acides nucléiques telles que définies ci-dessus peuvent être utilisées comme sondes ou comme amorces pour isoler le gène ace-1 d'autres espèces ou des allèles de ce gène, notamment par criblage d'une banque d'ADN génomique ou d'ADNc, ainsi que pour détecter/amplifier des molécules d'acide nucléique (ARNm ou ADN génomique) codant une protéine AChE1 telle que définie ci-dessus.

10

25

30

Ces différentes molécules d'acides nucléiques permettent de mettre en évidence le gène ace-1, des variants alléliques de ce gène, une altération fonctionnelle de ce gène ace-1 (changement substantiel de la sensibilité aux insecticides) résultant d'une mutation (insertion, délétion ou substitution) d'un ou plusieurs nucléotides au niveau dudit gène.

La présente invention a également pour objet une méthode de détection d'insectes porteurs d'une résistance aux insecticides de la classe des organophosphorés et des carbamates, caractérisée en ce qu'elle comprend :

- la préparation d'un échantillon d'acides nucléiques à partir d'insectes à tester, et
 - la détection par tout moyen approprié de la présence, dans ledit échantillon d'acides nucléiques, d'une mutation dans le gène *ace-1* tel que défini cidessus.

Ladite détection est réalisée par les techniques classiques qui sont connues en elles mêmes, par exemple : (i) par amplification d'une région dudit gène ace-1 susceptible de contenir une mutation, puis détection de ladite mutation par séquençage ou par digestion par une enzyme de restriction appropriée, du produit de PCR obtenu, ou bien (ii) par hybridation avec une sonde marquée spécifique d'une région dudit gène ace-1 susceptible de contenir une mutation, puis détection directe des mésappariements et/ou digestion par une enzyme de restriction appropriée.

Selon un premier mode de mise en œuvre avantageux dudit procédé, un fragment d'environ 320 pb (fragment K) est amplifié à l'aide des amorces SEQ ID NO: 39 et SEQ ID NO: 40. Par exemple, chez les moustiques on obtient un fragment de séquence SEQ ID NO: 24 à 38 qui présente des mutations entre les moustiques sensibles et résistants aux insecticides. Par exemple, chez C. pipiens on observe 3 substitutions dans la séquence des individus résistants dont l'une introduit un site EcoRI. L'analyse du profil de restriction après amplification PCR du fragment K et digestion des produits obtenus par EcoRI (analyse RFLP), permet de détecter rapidement le génotype ace-I dans une population de C. pipiens; la présence d'un seul fragment correspond aux homozygotes résistants (RR), la présence de 2 fragments d'environ 106 pb et 214 pb correspond aux individus homozygotes sensibles (SS) et la pré-

15

20

25

sence de 3 fragments de 106 pb, 214 pb et 320 pb correspond aux individus hétérozygotes résistants (RS).

Selon un second mode de mise en oeuvre avantageux dudit procédé, la mutation G119S dans le troisième exon codant du gène ace-1 qui est responsable de la résistance aux insecticides de la classe des organophosphorés et des carbamates chez les moustiques est détectée selon l'une des alternatives suivantes, respectivement chez les moustiques des espèces C. pipiens et An. gambiae:

- chez les moustiques de l'espèce Culex pipiens, un fragment de 520 pb du troisième exon codant est amplifié à partir de l'ADN génomique, par PCR à l'aide du couple d'amorces Ex3dir et Ex3rev (SEQ ID NO: 58 et 59); le fragment PCR est digéré par Alu I et le produit de digestion est séparé par électrophorèse en gel d'agarose, puis le profil de restriction ainsi obtenu est analysé : la présence d'un fragment de 520 pb correspond aux individus homozygotes sensibles SS, la présence de deux fragments (357 pb et 163 pb) correspond aux individus homozygotes résistants RR et la présence de 3 fragments (520 pb, 357 pb et 163 pb) correspond aux individus hétérozygotes résistants RS,

- chez les moustiques de l'espèce Anopheles gambiae, un fragment de 541 pb du troisième exon codant est amplifié à partir de l'ADN génomique, par PCR à l'aide du couple d'amorces Ex3AGdir et Ex3AGrev (SEQ ID NO: 123 et 124); le fragment PCR est digéré par Alu I et le produit de digestion est séparé par électrophorèse en gel d'agarose, puis le profil de restriction ainsi obtenu est analysé : la présence de deux fragments (403 pb et 138 pb) correspond aux individus homozygotes sensibles SS, la présence de 3 fragments (253 pb, 150 pb et 138 pb) correspond aux individus homozygotes résistants RR et la présence de 4 fragments (403 pb, 253 pb, 150 pb et 138 pb) correspond aux individus hétérozygotes résistants RS; étant donné que les fragments de 150 pb et 138 pb co-migrent, les individus homozygotes et hétérozygotes résistants sont détectés respectivement par la présence de 2 bandes (253 pb et environ 150 pb) et de 3 bandes (403 pb, 253 pb et environ 150 pb),

- chez les moustiques de l'espèce Culex pipiens, Anopheles gambiae ou Anopheles albimanus, un fragment de 194 pb contenant le codon 119 du troisième exon codant est amplifié à partir de l'ADN génomique par PCR à l'aide du couple d'amorces Moustdirl et Moustrevl (SEQ ID NO:128 et 129); le fragment PCR est

WO 2004/000994

10

15

20

25

30

digéré par Alu I et le produit de digestion est séparé par électrophorèse en gel d'agarose, puis le profil de restriction ainsi obtenu est analysé: la présence de deux fragments (74 pb et 120 pb) correspond aux individus homozygotes résistants RR, la présence d'un seul fragment (pas de digestion) correspond aux individus homozygotes sensibles SS et la présence de trois fragments (194 pb, 74 pb et 120 pb) correspond aux individus hétérozygotes résistants RS.

La présente invention a également pour objet un réactif de détection d'insectes porteurs d'une résistance aux organophosphorés et/ou aux carbamates, caractérisé en ce qu'il est sélectionné dans le groupe constitué par : les molécules d'acide nucléique et leurs fragments tels que définis ci-dessus (sondes, amorces) et les anticorps tels que définis ci-dessus.

La présente invention a également pour objet un vecteur recombinant, caractérisé en ce qu'il comprend un insert sélectionné dans le groupe constitué par les molécules d'acides nucléiques codant une protéine AChE1 et leurs fragments tels que définis ci-dessus.

De préférence, ledit vecteur recombinant est un vecteur d'expression dans lequel ladite molécule d'acide nucléique ou l'un de ses fragments sont placés sous le contrôle d'éléments régulateurs de la transcription et de la traduction appropriés.

Ces vecteurs sont construits et introduits dans des cellules hôtes par les méthodes classiques d'ADN recombinant et de génie génétique, qui sont connues en elles-mêmes. De nombreux vecteurs dans lesquels on peut insérer une molécule d'acide nucléique d'intérêt afin de l'introduire et de la maintenir dans une cellule hôte eucaryote ou procaryote, sont connus en eux-mêmes; le choix d'un vecteur approprié dépend de l'utilisation envisagée pour ce vecteur (par exemple réplication de la séquence d'intérêt, expression de cette séquence, maintien de la séquence sous forme extrachromosomique ou bien intégration dans le matériel chromosomique de l'hôte), ainsi que de la nature de la cellule hôte. Par exemple, on peut utiliser des vecteurs viraux comme les baculovirus ou non-viraux comme des plasmides. Pour exprimer l'AChE1, l'ADNc d'ace-1 peut être placé sous le contrôle d'un promoteur constitutif comme le promoteur de l'actine 5C, dans un vecteur approprié et ledit vecteur recombinant est introduit dans des cellules d'insecte telles que des cellules de drosophile (cellules de Schneider S2).

15

20

25

La présente invention a également pour objet des cellules procaryotes ou eucaryotes, modifiées par un vecteur recombinant tel que défini ci-dessus ; de préférence ces cellules sont des cellules d'insectes.

Les vecteurs recombinants et les cellules modifiées telles que défi-5 nies ci-dessus, sont utiles notamment pour la production des protéines et des peptides AChEl selon l'invention.

La présente invention a également pour objet un animal invertébré transgénique, caractérisé en ce qu'il contient des cellules modifiées par au moins une molécule d'acide nucléique telle que définie ci-dessus ; de préférence ledit animal est un insecte.

Les animaux transgéniques et les cellules modifiées telles que définis ci-dessus, sont utiles notamment pour le criblage de substances insecticides et pour la lutte biologique contre les vecteurs de pathogènes et les insectes nuisibles.

La présente invention a également pour objet une méthode de criblage d'une substance insecticide, caractérisée en ce qu'elle comprend :

- a) la mise en contact de la substance à tester avec une protéine AChE1 sélectionnée parmi : une protéine AChE1 isolée selon l'invention, un extrait de cellules modifiées ou un échantillon biologique d'un animal transgénique contenant ladite protéine AChE1, tels que définis ci-dessus, en présence d'acétylcholine ou de l'un de ses dérivés,
- b) la mesure par tout moyen approprié, de l'activité acétylcholinestérase du mélange obtenu en a), et
 - c) la sélection des substances capables d'inhiber ladite activité.

La présente invention a également pour objet une méthode de criblage d'une substance insecticide, caractérisée en ce qu'elle comprend :

- la mise en contact d'un animal transgénique tel que défini ci-dessus, avec la substance à tester, et
 - la mesure de la survie de l'animal.

Avantageusement, lesdites méthodes de criblage mettent en œuvre des AChE1 résistantes aux organophosphorés ou aux carbamates ou bien des cellules ou des animaux transgéniques les contenant.

15

20

La présente invention a également pour objet un réactif de criblage de substances insecticides, caractérisé en ce qu'il est sélectionné dans le groupe constitué par les protéines AChE1, les vecteurs recombinants, les cellules modifiées et les animaux transgéniques tels que définis ci-dessus.

16

Des substances insecticides capables d'inhiber l'activité acétylcholinestérase des protéines AChE1 résistantes aux insecticides de la classe des organophosphorés et des carbamates couramment utilisés ont des applications :en santé humaine et animale, pour lutter contre les vecteurs de pathogènes (par exemple Aedes aegypti, vecteur d'arboviroses comme la dengue et la fièvre jaune, Culex 10 pipiens vecteur du virus West-Nile, Anopheles gambiae vecteur africain de l'agent du paludisme, etc) et dans le domaine de l'agriculture, pour lutter contre les insectes nuisibles qui dévastent les récoltes (par exemple le doryphore (Leptinotarsa decemlineata) qui s'attaque aux pommes-de-terre, les pucerons ravageurs comme Aphis gossypii et Myzus persicae, etc.).

L'invention a en outre pour objet une trousse de détection et/ou de criblage pour la mise en œuvre des méthodes telles que définies ci-dessus, caractérisée en ce qu'elle inclut au moins un réactif tel que défini ci-dessus.

La présente invention a également pour objet une méthode de criblage d'inhibiteurs d'une AChE1 telle que définie ci-dessus, caractérisée en ce qu'elle comprend:

- (a) l'identification de molécules (peptides ou autres structures chimiques) présentant une probabilité de liaison significative à ladite AChE1;
 - (b) l'isolement des inhibiteurs potentiels identifiés à l'étape (a);
- (c) la mise en contact de la substance isolée à l'étape (b) avec une AChE1 telle que définie ci-dessus, un extrait de cellules modifiées, un échantillon 25 biologique d'un animal transgénique tels que définis ci-dessus ou un extrait d'insecte sensible ou résistant aux insecticides précités, en présence d'acétylcholine ou de l'un de ses dérivés;
- (d) la mesure par tout moyen approprié, de l'activité acétylcholinestérase du mélange obtenu en (c); et 30
 - . (e) la vérification que les molécules isolées en (b) inhibent l'activité AChE1.

15

20

25

30

La structure 3D de l'acétylcholinestérase du poisson torpille a permis de modéliser la structure 3D de l'AChE1 de C. pipiens. La mutation G247S [correspondant à une substitution G119S chez la protéine de torpille] entraîne une réduction de l'espace du site catalytique due à l'encombrement de la chaîne latérale de la sérine.

La modélisation de la structure de l'AChE1 de C. pipiens ou d'An. gambiae permet ainsi le criblage d'inhibiteurs de l'AChE1 par criblage virtuel ("Docking"). Le procédé selon l'invention comporte une étape (étape (a)) de simulation informatique visant à identifier des structures peptidiques ou chimiques présentant une probabilité de liaison significative à une protéine cible. Différents programmes informatiques permettent ainsi de simuler et d'estimer les probabilités d'interactions. On peut notamment citer les algorithmes élaborés pour la recherche d'interactions potentielles décrits dans Schneider et al. (Drug Discovery Today, 2002, 7, 1, 64-71). De manière plus précise, les outils les plus couramment utilisés jusqu'à présent sont FlexX (Tripos, StLouis, Missouri, USA), DOCK (UCSF, San Francisco, California, USA) et GOLD (Cambridge Crystallographic Data Centre, Cambridge, Royaume-Uni).

Il est ainsi possible d'isoler des inhibiteurs potentiels de la forme d'AChE1 résistante sans disposer biochimiquement de la protéine, puis de tester directement la capacité d'inhibition de chaque candidat sur l'activité AChE1 d'un extrait d'insectes sensibles ou résistants (étape (c) du procédé). Cette approche peut donc s'affranchir totalement de la purification et/ou de la production de protéine cible.

Au sens de la présente invention, la significativité d'une probabilité de liaison ne peut être définie de manière absolue : cela peut dépendre du type d'acides aminés impliqués dans l'interaction, ainsi que des logiciels utilisés pour la modélisation. De manière plus précise, les méthodes les plus couramment utilisées sélectionnent, pour un site donné d'une molécule cible, les composés présentant l'énergie de liaison la plus faible. En général, le calcul de l'énergie prend en compte les liaisons «hydrogène », les interactions de van der Waals, électrostatiques et hydrophobes, ainsi que les pénalités d'entropie. Il est donc *a priori* impossible de donner une limite de significativité en valeur absolue au-delà de laquelle un ligand potentiel sera accepté ou rejeté, puisque l'énergie dépendra des atomes engagés dans la liaison. Cependant, trois critères de sélection peuvent être appliqués :

15

20

25

30

- 1. une sélection arbitraire des composés de moindre énergie de liaison. En général, la limite est fixée entre 1 % et 5 % du nombre de composés testés.
- 2. une estimation de l'affinité de la liaison, en fonction des calculs d'énergie. Une valeur acceptable comme base de départ pourrait être comprise entre 1 et 300 micromolaires. A titre d'exemple, l'onchidal, un inhibiteur d'AChE, présente une affinité apparente de 300 μM (Abramson et al., *Mol. Pharmacol.*, 1989, 36, 349).
- 3. une sélection statistique des composés, en estimant la probabilité qu'un score identique ou supérieur pour un composé soit obtenu au hasard. En général, le composé est accepté lorsque la probabilité estimée est ≤ 0,05.

Outre les dispositions qui précèdent, l'invention comprend encore d'autres dispositions qui ressortiront de la description qui va suivre, qui se réfère à des exemples de mise en œuvre du gène ace-1 et de ses produits (ADNc, protéine) selon la présente invention ainsi qu'au tableau résumant les séquences de la Demande et aux dessins annexés dans lesquels :

- la figure 1 illustre l'alignement des séquences en acides aminés des protéines AChE1 d'Anopheles gambiae, Schizaphis graminum, An. stephensi, Aedes aegypti, Drosophila melanogaster, Lucilia cuprina, Musca domestica et Culex pipiens. Par convention, les acides aminés sont numérotés en référence à la séquence de l'AChE du poisson torpille (Torpedo californica; SWISSPROT P04058). Les séquences N- et C- terminales ne sont pas représentées en raison de leur variabilité. Les acides aminés conservés entre AChE1 et AChE2 sont indiqués en gris. Les acides aminés spécifiques d'AChE2 sont indiqués en noir. Les 3 résidus représentant la triade catalytique (S200, E327 et H440) sont encadrés. Le site de liaison à la choline (W84) est souligné. Les cercles représentent la position des 14 résidus aromatiques bordant la gorge du site actif dans l'AChE de Torpedo, dont 10 sont présents dans toutes les AChE1 et AChE2 (cercles pleins), les autres n'étant pas conservés (cercles vides). Trois liaisons disulfures intramoléculaires entre des résidus cystéines sont indiquées. La flèche horizontale indique la position du fragment K (amplifié à l'aide des amorces PdirAGSG et PrevAGSG). La région hypervariable d'AChE2 qui est absente dans AChE1 est entourée.

- la figure 2 illustre la détection génétique des moustiques résistants aux organophosphorés et/ou aux carbamates par PCR-RFLP :

15

20

25

30

. la figure 2 A représente la comparaison de la séquence en acides aminés du fragment K de différentes espèces de moustiques: Cx Pip (Culex pipiens), Ae alb (Aedes albopictus), Ae aeg (Aedes aegypti), An alb (Anopheles albimanus), An gamb (Anopheles gambiae), An fun (Anopheles funestus), An nil (Anopheles nili), An sac (Anopheles sacharovi), An pse (Anopheles pseudopunctipennis). Les acides aminés variants sont grisés. Les séquences suivantes sont identiques: An. darlingi et An. albimanus; An. sundaicus, An. gambiae et An. arbiensis; An. moucheti, An. funestus et An. minimus; An. stephensi et An. saccharovi.

19

. la figure 2B illustre la comparaison des séquences nucléotidiques correspondant au fragment K des souches sensibles (S-LAB) et résistantes (SR). Les nucléotides variants sont grisés ($t \rightarrow c$ en position 3; a \rightarrow g en position 84: le site. *EcoRI* (gaattc) situé autour de cette position, utilisé pour l'analyse PCR-RFLP, est présent uniquement dans la souche S-LAB; $c \rightarrow t$ en position 173). La figure 2C illustre les profils de restriction obtenus après électrophorèse en gel d'agarose des produits de digestion par *EcoRI*, du fragment K amplifié par PCR. La souche homozygote sensible S-LAB présente un profil caractérisé par 2 bandes (214 pb et 106 pb), la souche homozygote résistante présente un profil caractérisé par une seul bande de 320 pb et les moustiques résistants issus du croisement en retour présentent un profil hétérozygote caractérisé par 3 bandes (320 pb, 214 pb et 106 pb).

- la figure 3 illustre l'arbre phylogénétique des protéines AChE. L'analyse phylogénétique a été réalisée à partir de 47 séquences de protéines AChE de 35 espèces différentes provenant de la base de données **ESTHER** (http://www.ensam.inra.fr/cgi-bin/ace/index). Les séquences ont été alignées et un arbre a été construit comme décrit à l'exemple 1. Seuls les nœuds correspondant à des valeurs de "bootstrap" > 50% (c'est à dire des scores supérieurs à 500) sont indiqués. L'échelle représente une divergence de 10 %. Agam: An. gambiae ; Aeg: Aedes aegypti; Aste: Anopheles stephensi; Cp: Culex pipiens; Dme1: Drosophila melanogaster: Lcup: Lucilia cuprina: Mdom: Musca domestica: Ldec: Leptinotarsa decemlineata; Amel: Apis mellifera: Ncin: Nephotettix cincticeps; Sgra: Schizaphis graminum; Rapp: Rhipicephalus appendiculatus; Bmic: Boophilus microplus; Bdec: Boophilus decoloratus; Hsap: Homo sapiens; Btau: Bos taurus; Fcat: Felix catus; Ocun: Oryctolagus cuniculus; Rnor: Rattus norvegicus; Mmus: Mus musculus;

10

15

20

25

.30

Ggal: Gallus gallus; Drer: Danio reno; Eele: Electrophorus electricus; Tamr: Torpedo marmorata; Tcal: Torpedo californica; Bfas: Bungarus fasciatus; Mglu: Myxine glutinosa; Bflo: Branchiostoma floridae; Blan: Branchiostoma lanceolatum; Cint: Ciona intestinalis; Csav: Ciona savignyi; Cele: Caenorhabditis elegans; Cbrig: Caenorhabditis briggsae; Dviv: Dictyocaulus viviparus; Lopa: Loligo opalescens.

- la figure 4 illustre le cladogramme des protéines AChE1 et AChE2. Les séquences des protéines AChE1 et AChE2 ont été traitées comme à la figure 1. La séquence Bmic a été ajoutée comme séquence externe pour définir l'origine de l'arbre. Les cadres marqués d'une astérisque représentent les protéines codées par un gène qui ségrège avec la résistance aux insecticides. Les cadres vides représentent les protéines codées par un gène qui ne ségrègue pas avec la résistance aux insecticides. L'échelle correspond à une divergence de 10 %.

- la figure 5 illustre la comparaison des séquences en acides aminés de la protéine AChE1 de C. pipiens, entre une souche sensible (S-LAB) et une souche résistante (SR) aux insecticides. L'unique mutation glycine 247(119) → sérine 247(119) (indiquée en grisée) est responsable de la résistance aux insecticides chez les moustiques de l'espèce C. pipiens; elle correspond à la substitution de la glycine située en position 247 de la séquence de l'AChE1 de C. pipiens (ou en position 119, en référence à la séquence de l'AChE du poisson torpille), par une sérine.

les figures 6A et 6B illustrent la comparaison des séquences nucléotidiques codant pour la protéine AChE1 de C. pipiens, entre une souche sensible (S-LAB) et une souche résistante (SR) aux insecticides ; toutes les mutations sont silencieuses à l'exception de la mutation en position 739 (G \rightarrow A) qui entraîne, d'une part la substitution du codon glycine (GGC) en position 247 de la séquence de la protéine AchE1 de la souche sensible (S-LAB) par un codon sérine (AGC) responsable de la résistance aux insecticides dans la souche SR, et d'autre part, l'apparition d'un site $Alu\ I$ (AGCT) dans la séquence de la souche résistante, utile pour la détection de la mutation. La mutation (G \rightarrow A) en position 739 de la séquence nucléotidique et la mutation glycine \rightarrow sérine en position 247 de la séquence en acides aminés sont indiquées en grisé. Les séquences des amorces utilisées pour détecter la mutation en position 739 (amorce Ex3dir et Ex3rev), ainsi que le site $Alu\ I$ sont indiqués en gras et soulignés.

15

20

25

30

- la figure 7 (A, B et C) illustre la structure tridimensionnelle de l'AchE1 de C. pipiens, obtenue par modélisation moléculaire à partir de la structure de l'AchE du poisson torpille :

La figure 7A illustre (i) la structure globale des deux protéines et (ii) et l'encombrement stérique des liaisons de Van der Waals de la sérine 200 et de l'histidine 440 du site catalytique de l'enzyme, ainsi que celui de l'acide aminé en position 119 qui est muté dans les cas de résistance ; le résidu en position 119 est proche des résidu S₂₀₀ et H₄₄₀ du site catalytique.

Les figures 7B et 7C illustrent la comparaison de l'encombrement stérique des liaisons de Van der Waals des acides aminés glycine (figure 7C) et sérine (figure 7B) en position 119, de respectivement la souche sensible et résistante. L'encombrement de la chaîne latérale de la Sérine en position 119 dans la souche résistante, réduit l'espace du site catalytique ce qui empêche vraisemblablement l'insecticide d'interagir avec la sérine catalytique (S₂₀₀).

- la figure 8 illustre la détection par PCR-RFLP de la mutation glycine → sérine dans le troisième exon codant du gène *ace-1*, chez des moustiques de l'espèce *C. pipiens*: 1 bande (520 pb) est détectée chez les individus homozygotes sensibles SS, 2 bandes (357 pb et 163 pb) sont détectées chez les individus homozygotes résistants RR et 3 bandes (520 pb, 357 pb et 163 pb) sont détectées chez les individus hétérozygotes résistants RS.

- les figures 9A et 9B illustrent la comparaison des séquences du gène ace-1 d'An. gambiae, entre une souche sensible (KISUMU) et une souche résistante (YAO) aux insecticides ; toutes les mutations sont silencieuses à l'exception de deux mutations : la première correspond au remplacement de la valine (CGT) en position 33 de la séquence de l'AChE1 de la souche sensible (SEQ ID NO: 5) par une alanine (CGC) dans la souche résistante et la seconde est la même mutation glycine (GGC)→ sérine (AGC) que celle trouvée chez Culex pipiens. La mutation glycine (GGC)→ sérine (AGC) entraîne l'apparition d'un second site Alu I (AGCT) dans la séquence du troisième exon codant de la souche résistante, utile pour la détection de la mutation. Les séquences codantes du gène ace-1 sont indiquées en gras et les mutations sont indiquées en grisé. Les séquences des amorces Ex3AGdir et Ex3Agrev

20

25

utilisées pour détecter la mutation glycine (GGC) -> sérine (AGC), ainsi que les sites Alu I du troisième exon codant sont indiqués en gras et soulignés.

- la figure 10 illustre la quantification de l'activité acétylcholinestérase des protéines recombinantes AChE1 de *Culex pipiens*, sensibles (S-LAB, barres blanches) et résistantes (SR, barres grisées), produites en cellules d'insecte S2, par comparaison avec celle de broyats de *C. pipiens* de souche S-LAB (barres blanches hachurées) et de souche SR (barres grisées hachurées). L'activité acétylcholinestérase des extraits cellulaires et des broyats de moustiques a été mesurée en l'absence (C) et en présence de 10⁻⁴M et 10⁻²M de propoxur. L'unique mutation glycine₂₄₇₍₁₁₉₎ >sérine₂₄₇₍₁₁₉₎ rend l'acétylcholinestérase insensible à l'insecticide.

- la figure 11 illustre la détection par PCR-RFLP de la mutation glycine → sérine dans le troisième exon codant du gène ace-1, chez des moustiques de l'espèce Culex pipiens, Anopheles gambiae et Anopheles albimanus : 1 bande (194 pb) est détectée chez les individus homozygotes sensibles SS, 2 bandes (74 pb et 120 pb) sont détectées chez les individus homozygotes résistants RR et 3 bandes (194 pb, 74 pb et 120 pb) sont détectées chez les individus hétérozygotes résistants SS.

- la figure 12 illustre la quantification de l'activité acétylcholinestérase des protéines AChE1 de respectivement *Culex pipiens, Anopheles gambiae* et *Anopheles albimanus* sensibles (SS, barres grisées) et résistantes (RS, bandes noires et RR, bandes blanches).

- la figure 13 représente l'alignement des séquences nucléotidiques du fragment de 194 pb d'Anopheles gambiae, de Culex pipiens et d'Anopheles albimanus, sensibles (S) ou résistants (R). Fond grisé clair : séquences correspondant aux amorces Moustdir1 et Moustrev1. Fond grisé : site Alu I. Fond grisé foncé : Guanine du codon Gly des individus sensibles.

- la figure 14 représente les séquences nucléotidiques du fragment de 194 pb d'Anopheles albimanus sensible (S) et résistant (R). Le codon spécifiant Gly (GGC) et Ser (AGC) est en gras. Le site Alu I est souligné.

23 ..

Tableau II: Liste des séquences

	Numéro Séquence		
	d'identification		
	SEQ ID NO: 1	fragment de la région centrale de la protéine AChE1 Anopheles	
5		gambiae (positions 70 à 593 de la SEQ ID NO: 3).	
	SEQ ID NO:2	ADNc AChE1 Anopheles gambiae	
	SEQ ID NO: 3	Protéine AChE1 Anopheles gambiae	
	SEQ ID NO: 4	ADNc AChE1 Anopheles gambiae (souche KISUMU)	
	SEQ ID NO: 5	Protéine AChE1 Anopheles gambiae (souche KISUMU)	
10	SEQ ID NO: 6	ADNc AChE1 Culex pipiens souche S-LAB (séquence complète)	
	SEQ ID NO: 7	Protéine AChE1 Culex pipiens souche S-LAB (séquence complète)	
	SEQ ID NO: 8	fragment peptidique K AChE1 Culex pipiens	
	SEQ ID NO: 9	fragment peptidique K AChE1 Aedes aegypti	
	SEQ ID NO: 10	fragment peptidique K AChE1 Aedes albopictus	
15	SEQ ID NO: 11	fragment peptidique K peptidique AChE1 Anopheles darlingi	
	SEQ ID NO: 12	fragment peptidique K AChE1 An. sundaicus	
	SEQ ID NO: 13	fragment peptidique K AChE1 An. minimus	
	SEQ ID NO: 14	fragment peptidique K AChE1 An. moucheti	
	SEQ ID NO: 15	fragment peptidique K AChE1 An. arabiensis	
20	SEQ ID NO: 16	fragment peptidique K AChE1 An. funestus	
	SEQ ID NO: 17	fragment peptidique K AChE1 An. pseudopunctipennis	
	SEQ ID NO: 18	fragment peptidique K AChE1 An. sacharovi	
	SEQ ID NO: 19	fragment peptidique K AChE1 An. stephensi	
	SEQ ID NO: 20	fragment peptidique K AChE1 An. albimanus	
25	SEQ ID NO: 21	fragment peptidique K AChE1 An. nili	
23	SEQ ID NO: 22	gène ace-1 An. gambiae	
	SEQ ID NO: 23	gène ace-1 An. gambiae KISUMU	
	SEQ ID NO: 24	fragment nucléotidique K AChE1 C. pipiens (souche S-LAB)	
	SEQ ID NO: 25	fragment nucléotidique K AChE1 C. pipiens (souche SR)	
30	SEQ ID NO: 26	fragment nucléotidique K AChE1 Aedes aegypti	
50	SEQ ID NO: 27	fragment nucléotidique K AChE1 Aedes albopictus (AJ 438598)	
	SEQ ID NO: 28	fragment nucléotidique K AChE1 Anopheles darlingi (AJ 438599)	
	SEQ ID NO: 29	fragment nucléotidique K AChE1 An. sundaicus (AJ 438600)	
	SEQ ID NO: 30	fragment nucléotidique K AChE1 An. minimus (AJ 438601)	
35	SEQ ID NO: 31	fragment nucléotidique K AChE1 An. moucheti (AJ 438602)	
33	SEQ ID NO: 32	fragment nucléotidique K AChE1 An. arabiensis (AJ 438603)	
	SEQ ID NO: 33	fragment nucléotidique K AChE1 An. funestus (AJ 438604)	
	SEQ ID NO: 34	fragment nucléotidique K AChE1 An. pseudopunctipennis (AJ 538605)	
	SEQ ID NO: 35	fragment nucléotidique K AChE1 An. sacharovi (AJ 538606)	
40	SEQ ID NO: 36	fragment nucléotidique K AChE1 An. stephensi (AJ 538607)	
40	SEQ ID NO: 37	fragment nucléotidique K AChE1 An. albimanus (AJ 538608)	
	SEQ ID NO: 38	fragment nucléotidique K AChE1 An. nili(AJ 538609)	
	SEQ ID NO: 39	amorce PkdirAGSG	
	SEQ ID NO: 40	amorce PkrevAGSG	
45	SEQ ID NO: 41	amorce PbdirAGSG	
43	SEQ ID NO: 42	amorce PhrevAGSG	
	SEQ ID NO: 42	amorce culex-bdir1	
	0L& 10 110. 40	amoroc odiex-bull I	

	SEQ ID NO: 44	amorce culex-krev1
	SEQ ID NO: 45	amorce AG1-Adir
	SEQ ID NO: 46	amorce AG1-Arev
	SEQ ID NO: 47	amorce AG1-Bdir
5	SEQ ID NO: 48	amorce AG1-Brev
	SEQ ID NO: 49	amorce AG1-Cdir
	SEQ ID NO: 50	amorce AG1-Crev
	SEQ ID NO: 51	Protéine AChE1 Ciona intestinalis
	SEQ ID NO: 52	Protéine AChE1 Ciona savignyi
10	SEQ ID NO: 53	Protéine AChE2 Anopheles gambiae
10	SEQ ID NO: 54	Amorce culex-5'dir
	SEQ ID NO :55	Amorce culex-3'dir
	SEQ ID NO: 56	ADNc AChE1 C. pipiens souche SR (séquence codante complète)
	SEQ ID NO: 57	Protéine AChE1 C. pipiens souche SR (séquence complète)
15	SEQ ID NO: 58	Amorce Ex3dir
	SEQ ID NO: 59	Amorce Ex3rev
	SEQ ID NO: 60	Fragment nucléotidique du troisième exon codant souche Espro -P*-R****
	SEQ ID NO: 61	Fragment nucléotidique du troisième exon codant souche Pro-R-Q**-S
	SEQ ID NO: 62	Fragment nucléotidique du troisième exon codant souche S-LAB-Q-S*****
20	SEQ ID NO: 63	Fragment nucléotidique du troisième exon codant souche Padova-P-R
	SEQ ID NO: 64	Fragment nucléotidique du troisième exon codant souche Praias-P-R
	SEQ ID NO: 65	Fragment nucléotidique du troisième exon codant souche Supercar-Q-R
	SEQ ID NO: 66	Fragment nucléotidique du troisième exon codant souche BrugesA-P-S
0.5	SEQ ID NO: 67	Fragment nucléotidique du troisième exon codant souche BQ-Q-R
25	SEQ ID NO: 68	Fragment nucléotidique du troisième exon codant souche DJI-Q-R
	SEQ ID NO: 69	Fragment nucléotidique du troisième exon codant souche Harare-Q-R
	SEQ ID NO: 70	Fragment nucléotidique du troisième exon codant souche Martinique-Q-R
	SEQ ID NO: 71 SEQ ID NO: 72	Fragment nucléotidique du troisième exon codant souche Barriol-P-R Fragment nucléotidique du troisième exon codant souche Bleuet-P-S
30	SEQ ID NO: 72	Fragment nucléotidique du troisième exon codant souche BrugesB-P-S
30	SEQ ID NO: 74	Fragment nucléotidique du troisième exon codant souche Brugesb-P-S
	SEQ ID NO: 75	Fragment nucléotidique du troisième exon codant souche l'iectricité l'estragment nucléotidique du troisième exon codant souche Ling-Q-S
	SEQ ID NO: 76	Fragment nucléotidique du troisième exon codant souche Mao-Q-S
	SEQ ID NO: 77	Fragment nucléotidique du troisième exon codant souche TemR-Q-S
35	SEQ ID NO: 78	Fragment nucléotidique du troisième exon codant souche Uppsala-T***-S
<i>JJ</i>	SEQ ID NO: 79	Fragment nucléotidique du troisième exon codant souche Trans-Q-S
	SEQ ID NO: 80	Fragment nucléotidique troisième exon codant souche BEQ-Q-S
	SEQ ID NO: 81	Fragment nucléotidique troisième exon codant souche BSQ-Q-S
	SEQ ID NO: 82	Fragment nucléotidique troisième exon codant souche Brazza-Q-S
40	SEQ ID NO: 83	Fragment nucléotidique du troisième exon codant souche Bouaké-Q-R
-10	SEQ ID NO: 84	Fragment nucléotidique du troisième exon codant souche Thai-Q-S
	SEQ ID NO: 85	Fragment nucléotidique du troisième exon codant souche Madurai-Q-S
	SEQ ID NO: 86	Fragment nucléotidique du troisième exon codant souche Maddiai-Q-C
	SEQ ID NO: 87	Fragment nucléotidique du troisième exon codant souche Brésil Q-S
45	SEQ ID NO: 88	Fragment nucléotidique du troisième exon codant souche Moorea Q-S
	SEQ ID NO: 89	Fragment nucléotidique du troisième exon codant souche Killcare P-S
	SEQ ID NO: 90	(1)
	SEQ ID NO: 91	(1)
	SEQ ID NO: 92	(1)
50	SEQ ID NO: 93	(1)

	SEQ ID NO: 94	(1) (1)
	SEQ ID NO: 95	
	SEQ ID NO: 96	(1)
	SEQ ID NO: 97	(1)
5	SEQ ID NO: 98	(1)
	SEQ ID NO: 99	(1)
	SEQ ID NO: 100	(1)
	SEQ ID NO: 101	(1)
	SEQ ID NO: 102	(1)
10	SEQ ID NO: 103	(1)
	SEQ ID NO: 104	(1)
	SEQ ID NO: 105	(1)
	SEQ ID NO: 106	(1)
	SEQ ID NO: 107	(1)
15	SEQ ID NO: 108	(1)
	SEQ ID NO: 109	(1)
	SEQ ID NO: 110	(1)
	SEQ ID NO: 111	(1)
	SEQ ID NO: 112	(1)
20	SEQ ID NO: 113	(1)
	SEQ ID NO: 114	(1)
	SEQ ID NO: 115	(1)
	SEQ ID NO: 116	(1)
	SEQ ID NO: 117	(1)
25	SEQ ID NO: 118	(1)
	SEQ ID NO: 119	(1)
	SEQ ID NO: 120	gène ace-1 An. gambiae souche YAO
	SEQ ID NO: 121	ADNc AChE1 An. gambiae souche YAO (séquence codante complète)
	SEQ ID NO: 122	protéine AChE1 An. gambiae souche YAO (séquence complète)
30	SEQ ID NO: 123	amorce Ex3 AG dir
	SEQ ID NO: 124	amorce Ex3 AG rev
	SEQ ID NO: 125	ADNc AChE1 An. gambiae souche KISUMU (séquence complète)
	SEQ ID NO: 126	protéine AChE1 An. gambiae souche KISUMU (séquence complète)
	SEQ ID NO: 127	gène ace-1 d'An. gambiae (incluant 2 exons 5'non-codants)
35	SEQ ID NO:128	amorce Moustdir1
	SEQ ID NO:129	amorce Moustrev1
	45 01	

- * P = Culex pipiens pipiens (sous-espèce pipiens)
- ** Q = Culex pipiens quinquefasciatus (sous espèce quinquefasciatus)
- *** T = Culex torrentium
- 40 **** R = résistant
 - ***** S = sensible
 - (1) fragments peptidiques du troisième exon codant correspondants aux fragments nucléotidiques SEQ ID NO:60 à 89
- Les séquences nucléotidiques (SEQ ID NO:27 à 38) et les séquences peptidiques correspondantes (SEQ ID NO:10 à 21) ont été soumises le 8 mars 2002 à différentes banques de séquences, mais n'ont été rendues accessibles que le 30

10

15

20

25

30

novembre 2002 dans la base de séquences EMBL et le 11 janvier 2003 dans la base de séquences GENBANK.

EXEMPLE 1 : Matériels et méthodes

a) Souches et croisements

Cinq souches de *C. pipiens* ont été utilisées: S-LAB, une souche standard sensible aux insecticides (Georghiou et al., 1966, Bull. Wld. Hlth Org., 35, 691-708), SA1, SA4 et EDIT qui possèdent une seule AChE sensible aux insecticides, et SR qui est homozygote pour une AChE insensible aux insecticides (Berticat et al., Genet. Res., 2002, 79, 41-47). Les souches possédant une AChE sensible et insensible sont dénommées respectivement S et R.

b) Nomenclature des gènes ace et numérotation des séquences d'acides aminés

ace-1 représente le locus codant pour une AChE cholinergique responsable de la résistance aux organophosphorés et/ou aux carbamates chez C. pipiens (AChE1), précédemment dénommé Ace.1 (Raymond et al., Genetica, 2001, 112/113, 287-296). ace-2 représente le second locus ace, qui n'est pas impliqué dans la résistance aux insecticides chez C. pipiens (précédemment dénommé Ace.2), dont la fonction est inconnue chez C. pipiens. L'unique gène ace présent dans Drosophila melanogaster, qui est homologue à ace-2, est donc dénommé de même.

Dans les analyses qui suivent, les positions des résidus d'acides aminés sont indiquées en référence à la séquence de l'AChE du poisson torpille [Torpedo californica; GENBANK P04058], selon la nomenclature recommandée par Massoulié et al., 1992, In Multidisciplinary approaches to cholinesterase functions, eds, Schafferman, A. & Velan, B. (Plenum Press New York), p 285-288].

c) Analyse de la transmission du gène ace-1

Les femelles étant indiquées en premier, des croisements F1 (S X R) et des croisements en retour (F1 X S-LAB et S-LAB X F1) ont été obtenus par croisement en masse d'adultes. Quelques larves issues des croisements en retour ont été traitées avec une dose de carbamate (propoxur, 4mg/L) qui tue 100 % des larves sensibles. La liaison entre *ace-1* et la résistance au propoxur a été étudiée par RFLP chez les larves survivantes, à partir d'un produit PCR de 320 pb permettant d'identifier les allèles S et R. Les expériences ont été réalisées de façon indépendante, avec S = SA1, S = SA4 et S = EDIT.

25

30

d) Analyse des séquences et assemblage des gènes

Toutes les analyses de séquences ont été effectuées à partir des séquences brutes d'Anopheles gambiae disponibles sur le serveur INFOBIOGEN outils disponibles sur le site (http://www.infobiogen.fr) et des (http://www.ncbi.nlm.nih.gov/blast/blast). Les séquences génomiques codant une AChE ont été identifiées à l'aide des logiciels TBLASTN et BLAST (Altschul et al., J. Biol. Mol., 1990, 215, 403-410). Les séquences génomiques identifiées ont été assemblées à l'aide du logiciel ABI Prism Auto-Assembler (v2.1, PERKIN ELMER). Les séquences ont été vérifiées et corrigées à l'aide du logiciel Ensembl Trace Server (http: // trace.ensembl.org/). Deux concaténations de respectivement 5195 et 6975 paires de 10 bases, codant respectivement pour AChE1 et AChE2 ont été assemblées à partir de respectivement 64 et 74 séquences indépendantes (redondance moyenne de 10,5 et 6,5). Les exons et les séquences protéiques ont été identifiés à l'aide d'une combinailogiciels FGENESH (http://www.sanger.uk) les entre (http://www.ncbi.nlm.nih.gov). Les séquences génomiques d'AChE d'ascidies ont été 15 assemblées à partir de séquences brutes déposées dans les bases de données du NCBI **Joint** Institute (Ciona (Ciona savignyi) et du Doe http://www.jgi.doe.gov/programs/ciona/ciona mainage.html). Les recherches dans les bases de données de Drosophila ont été effectuées à l'aide de Flybase (http://www.fruitfly.org/). 20

e) Comparaisons de séquences

Les séquences des protéines AChE1 et AChE2 d'Anopheles gambiae déduites des séquences génomiques et les séquences peptidiques déduites de fragments PCR de C. pipiens et A. aegypti ont été alignées avec celles des AChE connues, à l'aide du logiciel ClustalW, en utilisant une matrice BLOSUM et des paramètres par défaut (Thompson et al., N.A.R., 1994, 22, 4673-4680).

Un arbre phylogénétique a été construit en utilisant l'algorithme du plus proche voisin (neighbour-joining algorithm) de la version DDBJ de Clustal W (http://hypernig.nig.ac.jp/homology/ex clustalw-e.shtml). L'analyse Bootstrap (1000 comptages et 111 valeurs d'entrée) a été utilisée pour évaluer les degrés de confiance pour la topologie de l'arbre. La construction des arbres a été réalisée à l'aide du logiciel Treeview (v1.6.6).

20

30

f) Numéros d'accession

Les numéros des séquences (numéros d'accession dans les bases de données ou les numéros d'identification dans la liste de séquences) ayant servi à l'analyse génétique sont les suivants.

- <u>Craniata</u>: Homo sapiens: NP_00046; Bos taurus: P23795; Felix catus: O6763; Oryctolagus cuniculus: Q29499; Rattus norvegicus: P36136; Mus musculus: P21836; Gallus gallus: CAC37792; Danio reno: Q9DDE3; Electrophorus electricus: 6730113; Torpedo marmorata: P07692; Torpedo californica: P04058; Bungarus fasciatus: Q92035; Myxine glutinosa: Q92081.
- <u>- Cephalocordés</u>: Branchiostoma floridae: O76998 et 076999;
 Branchiostoma lanceolatum: Q95000 et Q95001.
 - <u>- Urocordés</u> : Ciona intestinalis : SEQ ID NO : 51 ; Ciona savignyi : SEQ ID NO : 52.
- Nématodes: Caenorhabditis elegans (1 à 4): P38433, O61371,
 O61459 et 061372; Caenorhabditis briggsae (1 à 4) Q27459, O61378Q9NDG9 et
 Q9NDG8; Dictyocaulus viviparus: Q9GPLO.
 - Insectes: Anopheles gambiae (1 et 2): SEQ ID NO:3 et SEQ ID NO: 53 (BM 629847 et BM 627478); Aedes aegypti (1 et 2): SEQ ID NO: 9 et AAB3500; An. stephensi: P56161; Culex pipiens: SEQ ID NO: 7 (ace-1) et Esther data base pour ace-2; Drosophila melanogaster: P07140; Lucilia cuprina: P91954; Musca domestica: AAK69132.1; Leptinotarsa decemlineata: Q27677; Apis mellifera: AAG43568; Nephotettix cincticeps: AF145235_1; Schizaphis graminum: Q9BMJ1.
- Arachnides: Rhipicephalus appendiculatus: O62563; Boophilus
 microplus (1 et 2): O45210 et 061864; Boophilus decoloratus: O61987;
 Mollusques: Loligo opalescens: O97110.

g) Clonage du fragment K et génotypage d'ace-1 chez Culex pipiens

L'ADN de moustique a été extrait comme décrit dans Rogers et al., [Plant Molecular Biology manual, 1988, eds. Gelvin, S.B.1 Schilperoot, R.A. (Kluwer Academic Publishers, Boston), VolA6, p1-10]. Les oligonucléotides PkdirAGSG (5'-ATMGWGTTYGAGTACACSGAYTGG-3', SEQ ID NO: 39) et PkrevAGSG (5'-GGCAAARTTKGWCCAGTATCKCAT-3', SEQ ID NO: 40) amplifient un fragment

10

15

20

30

de 320 pb (fragment K) à partir de l'ADN génomique de plusieurs moustiques. 30 cycles d'amplification PCR ont été réalisés dans les conditions suivantes : 94°C pendant 30s, 50°C pendant 30s à et 72°C pendant 30s. Les séquences ont été déterminées directement sur les produits PCR sur un séquenceur ABI prism 310, à l'aide du kit Big Dye Terminator.

Le génotypage d'ace-1 chez Culex est réalisé dans les conditions suivantes: Les fragments K obtenus comme décrit précédemment sont digérés par EcoRI et le produit de digestion est séparé par électrophorèse sur un gel d'agarose à 2%. Les profils de restriction montrent: 1 bande (320 pb) chez les moustiques homozygotes résistants RR, 2 bandes (106 pb et 214 pb) chez les moustiques homozygotes SS et 3 bandes (103 pb, 214 pb et 320 pb) chez les moustiques hétérozygotes RS.

h) Clonage de l'ADNc d'ace-1 chez les individus sensibles et résistants

L'ADNc du gène ace-1 de Culex pipiens a été obtenu à partir de l'ARN extrait d'individus de la souche sensible de référence S-LAB et de la souche résistante SR, au tout premier stade de développement larvaire L1. La transcription inverse a été réalisée avec un oligonucléotide 18T et la SuperScriptIIRNaseH (IN VITROGEN), selon les conditions recommandées par le fabricant.

- souche S-LAB

Deux fragments d'ADNc ont été amplifiés par PCR à l'aide d'oligonucléotides dégénérés obtenus à partir de l'alignement des séquences des gènes ace-1 d'Anopheles gambiae et de Schizaphis graminum:

- un fragment b (193pb) a été amplifié à l'aide du couple d'amorces PbdirAGSG (5'GGYGCKACMATGTGGAAYCC3', SEQ ID NO: 41) et PbrevAGSG (5'ACCAMRATCACGTTYTCYTCCGAC3', SEQ ID NO: 42).
- 25 un fragment k (320pb) a été amplifié à l'aide du couple d'amorces PkdirAGSG (5'ATMGWGTTYGAGTACACSGAYTGG3', SEQ ID NO: 39) et PkrevAGSG (5'GGCAAARTTKGWCCAGTATCKCAT3', SEQ ID NO: 40).

Les fragments b et k ainsi obtenus ont ensuite été clonés et séquencés, selon les techniques classiques connues en elles-mêmes de l'Homme du métier, telles que décrites dans Current Protocols in Molecular Biology (Frederick M. AUSUBEL, 2000, Wiley and son Inc, Library of Congress, USA).

Un fragment d'ADNc de plus grande taille a été amplifié par PCR, à l'aide d'amorces spécifiques de Culex pipiens déduites des séquences des fragments b et k précédemment obtenues. A savoir :

- un fragment CulexA (1127 pb) a été amplifié par PCR à l'aide du couple d'amorces amorces: culex-bdir1 (5'TACATCAACGTGGTCGTGCCACG3', SEQ ID NO: 43) et culex-krev1 (5'GTCACGGTTGCTGTTCGGG3', SEQ ID NO: 44). Le fragment Culex A de 1127 pb ainsi obtenu a ensuite été cloné et séquencé, comme ci-dessus.

Les extrémités des ADNc ont été amplifiées par la technique RACE (Rapid Amplification of cDNA Ends), à l'aide d'un kit commercial (du kit Gene Racer (IN VITROGEN) selon les conditions indiquées dans le manuel d'utilisation. Ensuite elles ont été clonées puis séquencées, comme ci-dessus.

- souche SR

10

15

La séquence complète de l'ADNc du gène ace-1 de la souche résistante SR a été amplifiée par PCR à l'aide des amorces culex-5'dir (5'-CCACACGCCAGAAGAAAAGA-3', SEQ ID NO: 54) et culex-3'dir (5'-AAAAACGGGAACGGGAAAG-3, SEQ ID NO: 55) et le fragment de 2497 pb ainsi obtenu a été cloné et séquencé, comme ci-dessus.

i) Clonage du gène ace-1 chez les individus sensibles et résistants

L'ADN génomique de la souche KISUMU (souche sensible de réfé-20 rence de l'Afrique de l'Ouest) et de la souche YAO (souche résistante isolée en Côte d'ivoire) d'A.gambiae a été extrait à partir d'individus homozygotes comme décrit dans Rogers et al., [Plant Molecular Biology manual, 1988, eds. Gelvin, S.B.1 Schilperoot, R.A. (Kluwer Academic Publishers, Boston), VolA6, p1-10].

3 fragments chevauchants (A, B et C) ont été amplifiés dans les conditions suivantes : 94°C pendant 30s, 50°C pendant 30s à et 72°C pendant 30s (30 cycles), à l'aide d'amorces synthétisées à partir de la séquence du gène ace-1. A savoir :

le fragment A (1130pb) a été amplifié à l'aide du couple d'amorces
 AG1-Adir (5'CGACGCCACCTTCACA3', SEQ ID NO: 45) et AG1-Arev
 30 (5'GATGGCCCGCTGGAACAGAT3', SEQ ID NO: 46),

- le fragment B (1167pb) a été amplifié à l'aide du couple d'amorces AG1-Bdir (5'GGGTGCGGGACAACATTCAC3', SEQ ID NO: 47) et AG1-Brev (5'CCCCGACCGACGAAGGA3', SEQ ID NO: 48), et

- le fragment C (876pb) a été amplifié à l'aide du couple d'amorces 5 AG1-Cdir (5'AGATGGTGGGCGACTATCAC3', SEQ ID NO: 49) et AG1-Crev (5'CTCGTCCGCCACCACTTGTT3', SEQ ID NO: 50).

Les séquences des fragments A, B et C ont été déterminées directement sur les produits PCR, à l'aide d'oligonucléotides internes, inclus dans ces fragments, en utilisant le kit *Big Dye Terminator* et un séquenceur ABI prism 310.

j) <u>détection de la mutation du troisième exon codant responsable de la résistance aux</u> insecticides chez les moustiques des espèces C. pipiens et An. gambiae

L'ADN de moustique a été extrait comme décrit dans Rogers et al., précité, puis un fragment du troisième exon codant a été amplifié par PCR, séquencé et la mutation dans la séquence codante du troisième exon codant a été détectée par PCR-RFLP, selon le principe tel que décrit ci-dessus pour le fragment K.

- C. pipiens

Un fragment de 520 pb du troisième exon codant a été amplifié à partir de l'ADN génomique de plusieurs moustiques, par PCR à l'aide du couple d'amorces :

- 20 Ex3dir 5'-CGACTCGGACCCACTGGT-3' (SEQ ID NO: 58) et
 - Ex3rev 5'-GTTCTGATCAAACAGCCCCGC-3' (SEQ ID NO: 59).

Le fragment ainsi obtenu a été digéré par Alu I et le produit de digestion séparé par électrophorèse sur un gel d'agarose à 2%. Les profils de restriction attendus sont les suivants : 1 fragment (520 pb) chez les individus homozygotes sensibles SS, 2 fragments (357 pb et 163 pb) chez les individus homozygotes résistants RR et 3 fragments (520 pb, 357 pb et 163 pb) chez les individus hétérozygotes résistants RS.

- An. gambiae

25

Un fragment de 541 pb du troisième exon codant a été amplifié à 30 partir de l'ADN génomique de plusieurs individus, par PCR à l'aide du couple d'amorces:

Ex3AGdir 5'- GATCGTGGACACCGTGTTCG -3' (SEQ ID NO: 123) et

WO 2004/000994 CT/FR2003/001876

Ex3AGrev 5'- AGGATGGCCCGCTGGAACAG -3' (SEQ ID NO: 124).

Le fragment ainsi obtenu a été digéré par Alu I et le produit de séparé par électrophorèse sur un gel d'agarose à 2%. Les profils de restriction attendus sont les suivants : 2 fragments (403 pb et 138 pb) chez les individus homozygotes sensibles SS, 3 fragments (253 pb, 150 pb et 138 pb) chez les individus homozygotes résistants RR et 4 fragments (403 pb, 253 pb, 150 pb et 138 pb) chez les individus hétérozygotes résistants RS; étant donné que les fragments de 150 pb et 138 pb comigrent, les individus homozygotes et hétérozygotes résistants sont détectés respectivement par la présence de 2 bandes (253 pb et environ 150 pb) et de 3 bandes (403 pb, 253 pb et environ 150 pb) en gel d'agarose.

- C. pipiens, An. gambiae et An. albimanus

10

20

25

Un fragment de 174 pb du troisième exon codant a été amplifié à partir de l'ADN génomique de plusieurs moustiques, par PCR à l'aide du couple d'amorces:

- Moustdir1: 5' CCGGGNGCSACYATGTGGAA 3' (SEQ ID NO:128), et
 - Moustrev1 : 5' ACGATMACGTTCTCYTCCGA 3' (SEQ ID NO:129).

Le fragment ainsi obtenu a été digéré par Alu I et le produit de digestion séparé par électrophorèse sur un gel d'agarose à 2 %. Les profils de restriction attendus sont les suivants : 1 fragment (194 pb) chez les individus homozygotes sensibles SS, 2 fragments (74 pb et 120 pb) chez les individus homozygotes résistants RR et 3 fragments (194 pb, 74 pb et 120 pb) chez les individus hétérozygotes résistants RS.

Les résultats sont illustrés à la figure 11.

La figure 12 montre que l'on obtient avec des moustiques An. albimanus résistants par test biochimique classique, les mêmes caractéristiques d'inhibition par le propoxur que pour les moustiques An. gambiae et C. pipiens.

L'application du test diagnostique, également dénommé "G119S", à 30 l'aide de l'amplimère Moustdir1 et Moustrev1 révèle la présence d'un site AluI associé à la résistance (Figure 11). Le séquençage des fragments amplifiés d'An. albimanus

25

confirme la substitution du codon Gly GGC chez les individus SS en codon Ser AGC chez les individus RR (figures 13 et 14).

k) Mesure de l'activité acétylcholinestérase

Les ADNc codant les AchE1 de respectivement la souche S-LAB et la souche SR ont été clonées dans le vecteur d'expression eucaryote pAc5.1/V5-His (INVITROGEN), selon les techniques classiques d'ADN recombinant en suivant les protocoles standards tels que ceux décrits dans Current Protocols in Molecular Biology, précité. Des cellules de drosophile (cellules de Schneider S2) ont été transfectées par les vecteurs recombinants ainsi obtenus, à l'aide du réactif Fugen® (ROCHE), en suivant les instructions du fabricant. 24 heures après la transfection, les cellules ont été récoltées par centrifugation puis lysées dans du tampon phosphate 0.25M contenant 1% Triton X-100. L'activité acétylcholinestérase des extraits cellulaires obtenus a été mesurée, en présence ou en l'absence d'insecticide (propoxur), par la méthode telle que décrite dans Bourguet et al., Biochemical Genetics, 1996, 34, 351-362.

EXEMPLE 2 : Mise en évidence de 2 gènes ace chez Anopheles gambiae

Des gènes homologues des gènes d'acétylcholinestérases humaines et de drosophiles ont été recherchés à partir de fragments de séquences déposées dans les bases de données, en utilisant le logiciel TBLASTN. Deux groupes de fragments distincts codant pour une AChE très similaire à celle de la drosophile ont été identifiés. Deux gènes de respectivement 6975 pb (ace-1) et 5195 pb (ace-2) ont été reconstruits à partir de fragments chevauchants de chaque groupe. L'analyse des gènes à l'aide des logiciels FGENESH et BLASTX montre que les gènes ace-1 et ace-2 sont constitués respectivement d'au moins 7 et 8 exons codant pour des protéines d'environ 534 et 569 acides aminés, dénommées respectivement AChE1 et AChE2. Toutefois, cette analyse n'a pas permis de déterminer avec certitude la séquence des extrémités 5' et 3' de l'ADNc et les séquences NH2 et COOH des protéines correspondantes, qui ne sont pas conservées entre les différentes AChE.

L'analyse des séquences en acides aminés confirme que les protéines

30 AChE1 et d'AChE2 sont très homologues à l'AChE de *Drosophila* (BLASTP : P < e⁻¹⁸⁰) et contiennent un motif canonique FGESAG autour de la sérine en position 200, en référence à la séquence de l'Ache de *Torpedo* (S₂₀₀ figure 1), qui est caractéristique

15

20

25

30

du site actif des AchE. En outre d'autres motifs caractéristiques des AChE ont également été retrouvés dans les deux séquences (AChE1 et AChE2): le site de liaison à la choline (résidu Tryptophane en position 84, W84), les trois résidus de la triade catalytique (résidus sérine, acide glutamique et histidine, respectivement en positions 200, 327 et 440 : S₂₀₀, E₃₂₇ et H₄₄₀), les six résidus cystéine potentiellement impliqués dans des ponts disulfures conservés (C₆₇-C₉₄; C₂₅₄-C₂₆₅; C₄₀₂-C₅₂₁), et des résidus aromatiques bordant la gorge du site actif (10 et 11 résidus, respectivement pour AChE1 et AChE2).

Dans les deux séquences, on observe la présence d'un résidu phénylalanine en position 290 (F290) mais pas en position 288 ; cette caractéristique commune aux AChE d'invertébrés est responsable d'une plus large spécificité de substrat des AChE d'invertébrés, par rapport à celles de vertébrés.

L'analyse des séquences C-terminales des AChE de diptère montre la présence d'un peptide hydrophobe correspondant à un signal d'addition d'un glycolipide, indiquant le clivage post-traductionnel d'un fragment C-terminal et l'addition d'une résidu d'ancrage glycolipidique comme chez *Drosophila* et d'autres espèces de moustiques. Dans toutes les séquences on observe également la présence d'un résidu cystéine dans la séquence C-terminale précédant le site potentiel de clivage du peptide hydrophobe. Ce résidu cystéine pourrait être impliqué dans une liaison disulfure intermoléculaire, liant les deux sous-unités catalytiques du dimère d'AChE.

Les protéines AChE1 et AChE2 d'An. gambiae présentent 53 % de similarité entre elles et montrent respectivement : 76 % et 55 % de similarité avec l'AChE de Schizaphis graminum (numéro d'accession NCBI AAK09373 ou GENBANK 12958609), 53 % et 98 % de similarité avec l'AChE d'An. stephensi (GENBANK 2494391), 54 % et 95 % de similarité avec l'AChE d'Aedes aegypti (GENBANK 2133626), 52 % et 83 % de similarité avec l'AChE de Drosophila (GENBANK 17136862).

La différence majeure entre AChE1 et AChE2 réside dans une insertion de 31 acides aminés dans la séquence d'AChE2 (figure 1). Cette séquence, dénommée "insertion hydrophilique" dans l'AChE de *Drosophila*, est absente dans les AChEs de vertébrés et de nématodes et pourrait être caractéristique de l'AChE2, au moins chez les diptères.

15

20

25

30

Ces résultats démontrent la présence de deux gènes ace dans le génome d'Anopheles gambiae, l'un codant pour AChE1 qui est apparentée à l'AChE de Schizaphis graminum, et l'autre pour AChE2 qui est apparentée à l'AChE de Drosophila et aux AChEs connues de moustiques. La présence d'autres gènes ace chez An. gambiae est très improbable dans la mesure où des recherches complémentaires dans les bases de données du génome d'An gambiae, en utilisant des paramètres moins stringents, ont détecté uniquement des séquences codant pour des alpha-estérases (EC 3.1.1) et des carboxylestérases (EC 3.1.1.1).

EXEMPLE 3: Mise en évidence d'un unique gène ace chez Drosophila melanogaster

La présence d'un gène homologue du gène ace-1 a été recherchée dans le génome de Drosophila. Les recherches TBLASTN ont permis de détecter le gène ace précédemment identifié, homologue du gène ace-2 d'Anopheles gambiae mais n'ont pas permis de détecter d'autres séquences homologues du gène ace-1. Des recherches à l'aide de paramètres moins stringents ont permis de détecter uniquement des alpha et des carboxylestérases. Ces résultats démontrent que le génome de la drosophile contient un unique gène ace (ace-2).

EXEMPLE 4 : Mise en évidence d'au moins deux gènes ace chez les autres espèces de moustiques

La présence du gène ace-1 dans le génome d'autres espèces de moustiques a été analysée par PCR à l'aide d'oligonucléotides dégénérés (PdirAGSG et PrevAGSG, SEQ ID NO: 39 et 40) permettant d'amplifier un fragment exonique (fragment K, d'environ 320 pb figure 1), correspondant à des séquences conservées entre les séquences d'AChE1 d'An. gambiae et Schizaphis graminum mais divergentes entre les séquences d'AChE1 et AChE2 d'An. gambiae.

La séquence des produits PCR obtenus à partir de l'ADN génomique de différentes espèces de moustiques, montre un pourcentage d'identité très élevé entre les séquences d'Anopheles, Culex et Aedes. En outre, la plupart des substitutions sont silencieuses puisque les séquences en acides aminés déduites de ces séquences nucléotidiques ne diffèrent entre elles que par 5 à 6 acides aminés (Figure 2A). Le fragment K a également été amplifié par RT-PCR à partir de l'ARNm de C. pipiens, indiquant que le gène ace-1 est exprimé sous forme d'ARNm; ce résultat est en

15

20

25

30

accord avec l'existence, chez C. pipiens, de deux AChEs possédant des propriétés catalytiques distinctes.

EXEMPLE 5: Analyse de la liaison entre le gène ace-1 et la résistance aux insecticides

Afin d'analyser la liaison entre le gène ace-1 et la résistance aux insecticides, le fragment K amplifié à partir de l'ADN génomique de C. pipiens résistants (souche R), a été séquencé. La comparaison des séquences du fragment K entre les souches S et R montre des différences au niveau de 3 nucléotides (substitutions silencieuses, Figure 2B). L'une de ces substitutions affecte un site EcoRI, ce qui permet de différencier facilement le locus ace-1 des souches S et R par PCR-RFLP: les profils de restriction montrent 1 bande (320 pb) chez les individus homozygotes résistants, 2 bandes (106 pb et 214 pb) chez les moustiques homozygotes SS et 3 bandes (103 pb, 214 pb et 320 pb) chez les moustiques hétérozygotes RS (figure 2C).

La liaison entre le gène ace-1 et la résistance au propoxur a été étudiée, en triple, de la façon suivante : des larves de croisement en retour (S x R) x S ont été traitées par une dose létale pour les individus sensibles et le génotype d'ace-1 a été analysé chez les survivants, par PCR-RFLP.

Les résultats montrent que l'exposition au propoxur tue 50 % des larves dans tous les croisements en retour, c'est à dire tous les individus sensibles. Toutes les larves survivantes (100 pour chaque croisement en retour, 300 au total) montrent un profil hétérozygote en RFLP, indiquant qu'elles possèdent toutes une copie du gène *ace-1* de la souche R.

Ces résultats démontrent que le gène ace-1 est lié de façon très étroite avec la résistance aux insecticides (moins de 1 % de recombinaison avec un degré de confiance de 0,05).

EXEMPLE 6: Analyse de la phylogénie des gènes ace-1 et ace-2.

Des arbres phylogénénétiques ont été construits à partir des séquences des régions conservées des AChE d'An gambiae (SEQ ID NO: 1 et fragment 34-393 de la séquence SEQ ID NO: 53, figure 1), des fragments K de C. pipiens et Aedes aegypti (SEQ ID NO: 8 et 9) et de 33 séquences d'AChE disponibles dans GENBANK, à l'aide de la méthode du plus proche voisin (neighbour-joining method), comme décrit dans le matériels et méthodes.

10

15

La figure 3 illustre l'hétérogénéité du nombre de gènes ace au cours de l'évolution du règne animal. Chez les cordés, les céphalocordés possèdent au moins deux gènes ace alors que les urocordés n'en possèdent qu'un seul, comme déduit de l'analyse de leur génome. Chez les arthropodes, les diptères possèdent, soit un seul gène ace (Drosophila du sous-ordre des brachycères) ou deux gènes ace (moustiques du sous-ordre des nématocères). La topologie de l'arbre montre que ces deux gènes ace se sont dupliqués très précocement au cours de l'évolution, probablement avant la séparation entre les protostomes et les deutérostomes. Ces résultats sont supportés par le fait que les AChE de mollusques, de nématodes et d'arthropodes se ramifient à partir des séquences des cordés (craniatia, céphalocordés et urocordés). Les résultats montrent que les arthropodes et les nématodes possèdent une AChE apparentée.

Ces résultats indiquent que les gènes ace-1 et ace-2 identifiés chez les insectes proviennent d'un événement de duplication très ancien et que l'absence du gène ace-1, au moins chez certaines espèces du sous-ordre des brachycères (Drosophila) résulte de la perte d'un gène ace plutôt que d'une duplication récente du gène ace chez les nématocères. Ces résultats suggèrent également que les extrapolations faites à partir d'études chez D. melanogaster sont à considérer avec réserve dans la mesure où la situation de Drosophila n'est ni représentative des diptères ni de l'ensemble de la classe des insectes.

20 EXEMPLE 7 : Détermination de la séquence d'ADNc du gène ace-1

L'ADNc d'ace-1 a été cloné à partir de deux souches d'Anopheles gambiae (souche KISUMU sensible et souche YAO résistante) et de deux souches de Culex pipiens (souche S-LAB sensible et souche SR résistante), comme décrit dans le matériels et méthodes.

La séquence complète de l'ADNc de la souche KISUMU correspond à la séquence SEQ ID NO: 125 qui code pour une protéine de 737 acides aminés (SEQ ID NO: 126). La séquence complète de l'ADNc et de la protéine AChE1 de la souche YAO correspondent respectivement aux séquences SEQ ID NO: 121 et SEQ ID NO: 122.

Les séquences SEQ ID NO :4 et SEQ ID NO :5 correspondent à la séquence quasi-complète (à l'exception du premier exon codant du gène ace-1), respectivement de l'ADNc et de la protéine AChE1 de la souche KISUMU.

15

25

La séquence complète de l'ADNc des souches S-LAB et SR de C. pipiens correspond respectivement aux séquences SEQ ID NO: 6 et SEQ ID NO: 56 qui codent pour une protéine de 702 acides aminés (SEQ ID NO: 7 et SEQ ID NO: 57, respectivement pour la souche S-LAB et la souche SR).

38

5 EXEMPLE 8 : Détermination de la séquence du gène ace-1

La séquence du gène ace-1 a été déterminée à partir de l'ADN génomique de deux souches d'Anopheles gambiae, la souche sensible de référence de l'Afrique de l'Ouest (souche KISUMU) et une souche résistante de Côte d'ivoire (souche YAO), comme décrit dans le matériels et méthodes.

La séquence complète d'An. gambiae correspond à la séquence SEQ ID NO: 127 qui présente une organisation intron-exon comprenant au moins 9 exons et incluant deux exons 5' non-codants (Tableau I)

La séquence quasi-complète (à l'exception des deux premiers exons 5' non-codants) du gène *ace-1* de la souche KISUMU correspond à la séquence SEQ ID NO: 23.

La séquence quasi- complète (à l'exception des deux premiers exons 5' non-codants et du premier exon codant) du gène *ace-1* de la souche YAO correspond à la séquence SEQ ID NO: 120.

EXEMPLE 9: Identification de mutation(s) dans la séquence en acides aminés de la protéine AChE1, responsable(s) de la résistance aux insecticides chez les moustiques des espèces Culex pipiens et Anopheles gambiae.

La séquence nucléotidique codant la protéine AChE1 (ADNc) a été déterminée à partir de deux souches d'*Anopheles gambiae* (souche KISUMU sensible et souche YAO résistante) et de deux souches de *Culex pipiens* (souche S-LAB sensible et souche SR résistante), comme décrit à l'exemple 7.

Les séquences en acides aminés de la protéine AChE1 des souches sensibles et résistantes, déduites des séquences précédentes, ont ensuite été alignées (figures 5, 6 et 9).

La comparaison des séquences en acides aminés de la protéine 30 AChE1 de C. pipiens (figure 5 et 6) montre qu'il existe une seule mutation non-silencieuse entre la souche sensible (S-LAB, SEQ ID NO: 7) et la souche résistante aux insecticides (souche SR, SEQ ID NO: 57), située dans la région codée par le troisième

20

25

30

exon codant du gène ace-1: la glycine (GGC) en position 247 (ou en position 119, en référence à la séquence de l'AChE du poisson torpille) de la souche sensible est remplacée par une sérine (AGC) dans la souche résistante ($G_{247(119)} \rightarrow S_{247(119)}$).

La localisation de l'acide aminé en position 247 dans la structure de l'acétylcholinestérase de C. pipiens et l'effet de la substitution glycine \rightarrow sérine sur cette structure ont été analysées par modélisation moléculaire à partir de la structure de l'acétylcholinestérase du poisson torpille. Les résultats sont illustrés dans la figure 7 (A, B et C). La figure 7A montre que l'acide aminé en position 119 est proche des résidus du site catalytique (S_{200} et H_{440}). La figure 7C montre que, par comparaison avec la glycine de la souche sensible (figure 7B), l'encombrement de la chaîne latérale de la sérine de la souche résistante, réduit l'espace du site catalytique ce qui empêche vraisemblablement l'insecticide d'interagir avec la sérine catalytique (S_{200}).

La comparaison des séquences en acides aminés de la protéine AChE1 d'An. gambiae montre qu'il existe deux mutations non-silencieuses entre la souche sensible (KISUMU, SEQ ID NO: 5) et la souche résistante aux insecticides (souche YAO, SEQ ID NO: 122) : la première correspond au remplacement de la valine (CGT) en position 33 de la séquence de la souche sensible (SEQ ID NO: 5) par une alanine (CGC) dans la souche résistante et la seconde est la même mutation glycine \rightarrow sérine que celle trouvée chez Culex pipiens.

Etant donnée la position externe de la valine dans la structure de l'acétylcholinestérase, cette mutation n'est certainement pas impliquée dans la résistance chez *Anopheles gambiae* et seule la sérine doit être responsable de la résistance aux insecticides, à la fois chez *Anopheles gambiae* et *Culex pipiens*.

EXEMPLE 10: Détection de la mutation dans le troisième exon codant du gène ace-1 responsable de la résistance aux insecticides chez les moustiques des espèces Culex pipiens et Anopheles gambiae.

Le profil de restriction du troisième exon codant du gène ace-1 contenant la mutation glycine \rightarrow sérine, a été vérifié dans de nombreuses populations et souches de moustiques des espèces C. pipiens et An. gambiae, sensibles et résistantes aux insecticides de la classe des organophosphorés et des carbamates, par PCR-RFLP selon le protocole tel que décrit à l'exemple 1.

De manière plus précise :

- chez C. pipiens, la mutation glycine (GGC)→ sérine (AGC) introduit un site Alu I (AGCT) unique dans la séquence de la souche résistante, qui est mis en évidence à partir d'un produit PCR de 520 pb, amplifié à l'aide des amorces Ex3dir et Ex3rey, comme illustré dans la figure 6.
- chez An. gambiae, la mutation glycine (GGC) → sérine (AGC) introduit un deuxième site Alu I (AGCT) dans la séquence de la souche résistante, qui est mis en évidence à partir d'un produit PCR de 541 pb, amplifié à l'aide des amorces Ex3AGdir et Ex3AGrev, comme illustré dans la figure 9.
- Les résultats de PCR-RFLP ont ensuite été vérifiés par séquençage du fragment PCR de 520 pb ou 541 pb du troisième exon codant.

- Espèce C. pipiens

Les populations et souches de *Culex pipiens*, résistants (R) ou sensibles (S) qui ont été analysées sont présentées dans le Tableau III ci-dessous :

10

10

Tableau III: Souches et populations de l'espèce C. pipiens analysées

Classification	Nom	R/S*	Pays	Reference
С. р.	ВО	R	Burkina-Faso	Isolée par les inventeurs
quinque	HARARE	R		Isolée par les inventeurs
fasciatus	SUPERCAR	R		(F. Chandre, Thèse de Doctorat, Université Paris XII, 1998).
	DJI	R	•	Isolée par les inventeurs
	MARTINIQUE	R	Martinique	Bourguet et al., Biochem. Genet., 1996, 34, 351-362
	RECIFE	R	Brésil	Isolée en 1995 par AB. Failloux, Institut Pasteur, Paris (France)
	PRO-R	S	Etats-Unis	Georghiou et al., Bull. Wid Hith Org., 1966, 35, 691-708.
	S-LAB	S	Etats-Unis	Georghiou et al., Bull. Wid Hith Org., 1966, 35, 691-708.
	TEM-R	S	Etats-Unis	Georghiou et al., J. Econ. Entomol., 1978, 71, 201-205.
	TRANS-P	S	Etats-Unis	Priester et al., J. Econ. Entomol., 1978, 71, 197-200
	LING	S	Chine	Weill, et al., J. American Mosquito Control Assoc;, 2001, 17, 238-244
ļ	THAI	S	Thailande	Guillemaud et al., Heredity, 1996, 77, 535-543.
	MAO	S		Qiao et al., Biochem. Genet., 1998, 36, 417-426.
	MADURAI	S		Nielsen-Leroux, et al., J. Med. Entomol., 2002, 39, 729-735
	BSQ	_		Isolée en 1991 par A. J. Cornel (Sth Afr. Inst. Med. Res., South Africa)
	BED			Isolée en 1991 par A. J. Comel (Sth Afr. Inst. Med. Res., South Africa
	BOUAKE	S		Magnin et al., J. Med. Entomol., 1988, 25, 99-104
	BRAZZA	S	_	Beyssat-Arnaouty, Thèse de Doctorat, Université de Montpellier II (1989).
	BRESIL	S		Isolée par les inventeurs
	MOOREA	3	Polynėsie	N. Pasteur, et al., Genet. Res., 1995, 66, 139-146
C. p. pipiens	ESPRO	R	Tunisie	H. Ben Cheikh et al., J. Am. Mosquito Control Assoc., 1993, 9, 335-337
	PRAIAS	R		Bourguet et al., J. Econ. Entomol., 1996, 89, 1060-1066
	PADOVA	R	_	Bourguet et al., Genetics, 1997, 147, 1225-1234.
	BARRIOL	R		Chevillon et al., Evolution, 1995, 49, 997-1007.
	BRUGES-A	S		Raymond et al., Genet. Res., 1996, 67, 19 -26.
	BRUGES-A	S	beigique	raymond et al., Conet. Nest, 1990, 07, 19-20.
	BRUGES-B		Belgique	Raymond et al., Genet. Res., 1996, 67, 19 -26.
	KILLCARE	S	.	Guillemaud et al., Proc. R. Soc. Lond. B, 1997, 264, 245-251.
	BLEUET	S		Rioux et al., C. R. Séances Soc. Biol. Fil., 1961, 155, 343-344
	HETEREN	S		Isolée par les inventeurs
		ا ٍ ا		
C. torrentium	UPPSALA	S	Suède	M. Raymond, Ent. Tidskr., 1995, 116, 65-66.

^{*} R/S résistant ou sensible aux insecticides de la classe des organophosphorés et des carbamates

L'analyse par PCR-RFLP de l'ensemble des moustiques du Tableau III montre qu'il existe une corrélation parfaite entre la résistance aux insecticides et le profil de restriction par PCR-RFLP, à savoir : 1 bande (520 pb) est détectée chez les individus homozygotes sensibles SS, 2 bandes (357 pb et 163 pb) sont détectées chez les individus homozygotes résistants RR et 3 bandes (520 pb, 357 pb et 163 pb) sont détectées chez les individus hétérozygotes résistants RS (figure 8).

10

CT/FR2003/001876

Ces résultats ont été confirmés par le séquençage du produit PCR de 520 pb pour l'ensemble des moustiques du Tableau III analysés par PCR-RFLP. L'alignement des séquences obtenues (SEQ ID NO: 60 à 89), illustré dans le Tableau IV ci-dessous montre que chez les moustiques de l'espèce C. pipiens, la mutation glycine → sérine, située en position 739 en référence à la séquence de l'ADNc du gène ace-1 de la souche sensible de référence (souche S-LAB), qui est responsable de la résistance aux insecticides, provient de deux groupes de mutations indépendantes, respectivement chez C. pipiens pipiens et C. pipiens quiquefasciatus.

Tableau IV: Analyse de l'origine de la mutation glycine → sérine responsable de la résistance aux insecticides chez les moustiques de l'espèce C. pipiens

		P	eo:	it	io															à								'A	DN	c (du
																				AB											
		4	4	4	4	5	5	5	5	5	6	6	6	6	6	6	6	7	7	7	7	7	7	7	7	7	7	7	7	8	8
15		5	5	7	9	1	2	6	7	9	0	5	6	8	8	9	9	1	3	3	4	4	5	6	7	7	8	9	9	1	4
		0	3	1	8	3	8	4	3	7	3	1	0	1	4	1	6	4	2	9	1	7	6	3	4	7	0	0	8	3	6
	Souches de C. pipiens	-	_	_	-	-	-	-			-												-								
	C. pipiens quiquefascia	2																													
	BO(R) *	T	С	Α	T	С	G	G	G	G	С	G	G	G	С	С	С	С	С	A	С	С	Т	С	С	С	С	G	G	A	T
20	Harare (R)	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	Supercar (R)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	DJI (R)	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	Martinique (R)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	Recife (R)	_		_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
25	Recite (R)		_	_			_																								
23	ProR(S)*		_	_	_				_											G										_	~
	• •		_		_								_	_	_					G								_			_
	S-Lab (S)		_		_															G											_
	TemR (S)	_	_	-																_											_
20	Trans (S)	-	_	_																G								A	_	_	
30	Ling (S	-	-	С	_															G					_			_	_	-	_
	Thai (S)	-	_	С	_												_	_		G								-	-	_	G
	Mao (S)	-	_	-	-												-	-		G						-		-	-	-	-
	Madurai (S)		_	-	_															G								-	-	-	G
	BSQ (S)	-	_	_	_															G	-	-	-	-	-	-	-	~	-	-	G
35	BE (S)	_	T	-	-	-	-	-	Α	-	-	-	_	-	_	-	-		-	G		_	_	-	_	-	_	_	-	_	_
	Boualse (S)	_	T	-	С	_	_	_	_	_	_	_	-	_	_	_	-	-	-	G	-	-	-	_	_	_	-	-	-	-	-
																								•							
	Brazza (S)	_	Т	С	С	_	_	_	_	_	_	_	_	_	_	_	_	_	_	G	_	_	_	-	_	_	_	_	_		G
40	Bresil(S)	_	Т	_	C	_	_	_	_	_	_	_	_	_	_	_	_	_	_	G	_	т	_	_	_	_	_	_	_	_	G
	Moorea (S)		T		_	_			_											G			_	_	_	_	_	_	_	_	G
	Moorea (b)		•																	_											_
	C.pipiens pipiens	s																													
	Espro (R)																			A											
45	Praias (R)	Α	T	-	С	-	-		A		_	С	-	-	-	Α	G	Т	T	A	-	-	-	T	_	Т	Т	-	-	G	_
	Padova (R)	Α	Т	_	C	_	_	_	A	_	_	С	_	_	_	Α	G	Т	Т	A	_	_	_	T	-	Т	T	_	_	G	_
	Barriol (R)	Α	Т	_	С	-	_	_	Α	_	_	С	_	_	_	Α	G	Т	Т	A	_	_	_	Т	_	Т	Т	_	_	G	-
	BrugeA (S)											-				-	-			G						_	_			-	
50	BrugesB (S)	Α	T	-	С	-	-	-	Α	-	_	С	_	-	-	Α	G	T	T	G	_	-	_	T	-	Т	Т	_	_	G	_
	Killcare (S)	Α	T	_	С	_	_	-	Α	_	Α	С	_	_	_	A	G	T	T	G	-	_	-	T	-	T	T	_	_	G	_
	Bleuet (S)	Α	T	_	С	_	_	_	A	_	_	c	_	-	_	Α	G	Т	T	G	_	_	_	Т	_	т	т	_	_	G	_
	Heteren (S)											_					_			G				_			_			_	
	*(R) résistant aux insect	-			_							_					_	_		_				_			-			_	
55	` '																														
22	*(S) sensible aux insecti	CIC	CS																												

- An. gambiae

10

20

25

Des souches sensibles KISUMU (souche sensible de référence de l'Afrique de l'est) et VK-PER (souche de référence KDR de l'Afrique de l'ouest) ainsi que des populations sensibles de la région de Yaoundé ont été testées par le test PCR-RFLP comme décrit ci-dessus.

Les résultats du test PCR-RFLP, montrent qu'il existe pour l'ensemble des moustiques An. gambiae analysés, une corrélation parfaite entre la résistance aux insecticides et le profil de restriction par PCR-RFLP, à savoir : 2 bandes (403 pb et 138 pb) sont détectées chez les individus homozygotes sensibles SS, 2 bandes (253 pb et environ 150 pb) ou 3 bandes (403 pb, 253 pb et environ 150 pb) sont détectées chez les individus résistants, respectivement chez les individus homozygotes (RR) et hétérozygotes (RS).

15 <u>EXEMPLE 11</u>: Analyse de l'activité acétylcholinestérase des protéines AChE1 sensibles et résistantes aux insecticides.

Les AchE1 recombinantes de respectivement la souche S-LAB et la souche SR ont été exprimées dans des cellules d'insecte et l'activité acétylcholinestérase a été mesurée à partir des extraits cellulaires comme décrit à l'exemple 1.

Les résultats illustrés dans la figure 10 montrent que l'unique mutation glycine₂₄₇₍₁₁₉₎->sérine₂₄₇₍₁₁₉₎ rend l'acétylcholinestérase insensible à l'insecticide.

Ainsi que cela ressort de ce qui précède, l'invention ne se limite nullement à ceux de ses modes de mise en œuvre, de réalisation et d'application qui viennent d'être décrits de façon plus explicite; elle en embrasse au contraire toutes les variantes qui peuvent venir à l'esprit du technicien en la matière, sans s'écarter du cadre, ni de la portée, de la présente invention.

20

25

REVENDICATIONS

- 1°) Acétylcholinestérase d'insecte, caractérisée en ce qu'elle comprend une région catalytique centrale qui présente une séquence en acides aminés sélectionnée dans le groupe constitué par la séquence SEQ ID NO: 1 et les séquences présentant au moins 60 % d'identité ou 70 % de similarité avec la séquence SEQ ID NO: 1, à l'exclusion de l'acétylcholinestérase de séquence NCBI AAK0973.
- 2°) Acétylcholinestérase d'insecte selon la revendication 1, caractérisée en ce qu'elle inclut une mutation de la glycine située en position 119, en sérine, en référence à la séquence de l'acétylcholinestérase de *Torpedo californica* (SWISSPROT P04058).
- 3°) Acétylcholinestérase selon la revendication 1 ou la revendication 2, caractérisée en ce qu'elle correspond à celle d'un insecte de la famille des *Culicidae*, choisi parmi les genres *Culex*, *Aedes et Anopheles*.
- 4°) Acétylcholinestérase selon la revendication 3, caractérisée en ce qu'elle est sensible aux insecticides de la classe des organophosphorés et des carbamates et en ce qu'elle présente une séquence sélectionnée dans le groupe constitué par :
 - les séquences SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO: 126 d'Anopheles gambiae,
 - la séquence SEQ ID NO: 7 de Culex pipiens (souche S-LAB), et
 - les séquences comprenant une région catalytique centrale telle que définie à la revendication 1,

lesquelles séquences présentent une glycine en position 119, en référence à la séquence de l'acétylcholinestérase de *Torpedo californica* (SWISSPROT P04058), incluse dans un fragment de séquence SEQ ID NO :91, 92, 96, 102 à 112, 114, 115 et 117 à 119.

- 5°) Acétylcholinestérase selon la revendication 3, caractérisée en ce que ladite région catalytique centrale comprend une séquence sélectionnée dans le groupe constitué par les séquences SEQ ID NO: 8 à 21.
- 30 6°) Acétylcholinestérase selon la revendication 2 ou la revendication 3, caractérisée en ce qu'elle est résistante aux insecticides et en ce qu'elle présente une séquence sélectionnée dans le groupe constitué par les séquences SEQ ID NO: 57,

SEQ ID NO: 122 et les séquences comprenant un fragment de séquence SEQ ID NO: 90, 93, 94, 95, 97 à 101, 113 et 116 représentant un fragment peptidique d'environ 150 acides aminés codé par le troisième exon codant du gène ace-1 d'un insecte résistant tel que défini ci-dessus, contenant la substitution de type G119S, en référence à la séquence de l'AChE de Torpedo californica (SWISSPROT P04058).

- 7°) Acétylcholinestérase selon la revendication 3, caractérisée en ce que ladite région catalytique centrale comprend une séquence sélectionnée dans le groupe constitué par les séquences SEQ ID NO: 90, 93, 94, 95, 97 à 101, 113 et 116.
- 8°) Peptide, caractérisé en ce qu'il est constitué par un fragment d'au 10 moins 7 acides aminés de l'acétylcholinestérase selon l'une quelconque des revendications 1 à 7.
 - 9°) Molécule d'acide nucléique isolée, caractérisée en ce qu'elle présente une séquence sélectionnée dans le groupe constitué par :
- les séquences codant pour une acétylcholinestérase selon l'une 15 quelconque des revendications 1 à 7 (ADNc et fragment d'ADN génomique correspondant au gène ace-1),
 - les séquences complémentaires des séquences précédentes, sens ou anti-sens, et
- les fragments d'au moins 8 pb, de préférence de 15 pb à 500 pb des 20 séquences précédentes.
 - 10°) Molécule d'acide nucléique selon la revendication 9, caractérisée en ce qu'elle est sélectionnée dans le groupe constitué par :
 - a) les séquences SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 125, SEQ ID NO: 6, SEQ ID NO: 56 et SEQ ID NO: 121 qui correspondent à l'ADNc de la protéine AChE1 de séquence en acides aminés, respectivement SEO ID NO: 3, SEO ID NO: 5, SEQ ID NO: 126, SEQ ID NO: 7, SEQ ID NO: 57 et SEQ ID NO: 122, telles que définie ci-dessus,
 - b) les séquences SEQ ID NO: 22, SEQ ID NO: 23 et SEO ID NO: 127 qui correspondent au gène ace-1 d'Anopheles gambiae codant les AChE1 telles que définies à la revendication 4, et
 - c) les séquences comprenant la séquence SEQ ID NO: 120 qui correspond à la séquence quasi-complète du gène ace-1 d'Anopheles gambiae codant

l'AChE1 résistante de séquence SEQ ID NO: 122, telle que définie à la revendication 5.

- 11°) Molécule d'acide nucléique selon la revendication 9, caractérisée en ce qu'elle est sélectionnée dans le groupe constitué par les amorces de séquence SEQ ID NO: 39 à 50, 54, 55, 58, 59, 123, 124, 128 et 129 et les fragments de séquences SEQ ID NO: 24 à 38 et 60 à 89.
- 12°) Méthode de détection d'insectes porteurs d'une résistance aux insecticides de la classe des organophosphorés et des carbamates, caractérisée en ce qu'elle comprend :
- la préparation d'un échantillon d'acides nucléiques à partir d'insectes à tester, et
 - la détection par tout moyen approprié, de la présence dans ledit échantillon d'acides nucléiques, d'une mutation dans le gène *ace-1* tel que défini à la revendication 9 ou à la revendication 10.
- 13°) Méthode selon la revendication 12, caractérisée en ce que ladite détection comprend :
 - l'amplification d'un fragment d'environ 320 pb à l'aide du couple d'amorces SEQ ID NO: 39 et 40,
- la digestion dudit fragment à l'aide d'une enzyme de restriction 20 appropriée, et
 - l'analyse du profil de restriction obtenu.
 - 14°) Méthode selon la revendication 13, caractérisée en ce que ladite enzyme de restriction est *EcoRI*.
- 15°) Méthode selon la revendication 12, caractérisée en ce que ladite 25 détection comprend :
 - l'amplification d'un fragment d'environ 520 pb à l'aide du couple d'amorces SEQ ID NO: 58 et 59,
 - la digestion dudit fragment à l'aide d'une enzyme de restriction appropriée, et
 - l'analyse du profil de restriction obtenu.

30

16°) Méthode selon la revendication 12, caractérisée en ce que ladite détection comprend:

10

15

20

25

- l'amplification d'un fragment d'environ 541 pb à l'aide du couple d'amorces SEQ ID NO: 123 et 124,
- la digestion dudit fragment à l'aide d'une enzyme de restriction appropriée, et
 - l'analyse du profil de restriction obtenu.
- 17°) Méthode selon la revendication 12, caractérisée en ce que ladite détection comprend :
- l'amplification d'un fragment d'environ 194 pb à l'aide du couple d'amorces SEQ ID NO:128 et 129,
- la digestion dudit fragment à l'aide d'une enzyme de restriction appropriée, et
 - l'analyse du profil de restriction obtenu.
- 18°) Méthode selon l'une quelconque des revendications 15 à 17, caractérisée en ce que ladite enzyme de restriction est Alu I.
- 19°) Vecteur recombinant, caractérisé en ce qu'il comprend un insert sélectionné dans le groupe constitué par les molécules d'acides nucléiques selon l'une quelconque des revendications 9 à 11.
- 20°) Cellules, caractérisées en ce qu'elles sont modifiées par un vecteur recombinant selon la revendication 19.
- 21°) Anticorps, caractérisés en ce qu'ils sont dirigés contre l'acétylcholinestérase selon l'une quelconque des revendications 1 à 7 ou le peptide selon la revendication 8.
- 22°) Réactif de détection d'insectes porteurs d'une résistance aux insecticides de la classe des organophosphorés et des carbamates, caractérisé en ce qu'il est sélectionné dans le groupe constitué par les molécules d'acides nucléiques et leurs fragments selon l'une quelconque des revendications 9 à 11 et les anticorps selon la revendication 21.
- 23°) Animal invertébré transgénique, caractérisé en ce qu'il contient des cellules transformées par au moins une molécule d'acide nucléique selon la revendication 9 ou la revendication 10.
- 24°) Méthode de criblage d'une substance insecticide, caractérisée en ce qu'elle comprend :

20

25

30

- a) la mise en contact de la substance à tester avec une acétylcholinestérase selon l'une quelconque des revendications 1 à 7, un extrait de cellules modifiées telles que définies à la revendication 20 ou un échantillon biologique d'un animal transgénique tel que défini à la revendication 23, en présence d'acétylcholine ou de l'un de ses dérivés,
- b) la mesure par tout moyen approprié, de l'activité acétylcholinestérase du mélange obtenu en a), et
 - c) la sélection des substances capables d'inhiber ladite activité.
- 25°) Méthode de criblage de substances insecticides, caractérisée en 10 ce qu'elle comprend :
 - la mise en contact d'une substance à tester avec un animal transgénique selon la revendication 23, et
 - la mesure de la survie de l'animal.
 - 26°) Réactif de criblage de substances insecticides, caractérisé en ce qu'il est sélectionné dans le groupe constitué par les acétylcholinestérases selon l'une quelconque des revendications 1 à 7, les vecteurs recombinants selon la revendication 18, les cellules modifiées selon la revendication 20 et les animaux transgéniques selon la revendication 23.
 - 27°) Trousse de détection et/ou de criblage, caractérisée en ce qu'elle inclut au moins un réactif selon la revendication 22 ou la revendication 26.
 - 28°) Méthode de criblage d'inhibiteurs d'une AChE1 selon l'une quelconque des revendications 1 à 7, caractérisée en ce qu'elle comprend :
 - (a) l'identification de molécules présentant une probabilité de liaison significative à ladite AChE1;
 - (b) l'isolement des inhibiteurs potentiels identifiés à l'étape (a);
 - (c) la mise en contact de la substance isolée à l'étape (b) avec une AChE1 selon l'une quelconque des revendications 1 à 7, un extrait de cellules modifiées tel que défini à la revendication 20, un échantillon biologique d'un animal transgénique tel que défini à la revendication 23 ou un extrait d'insecte sensible ou résistant aux insecticides de la classe des organophosphorés et des carbamates, en présence d'acétylcholine ou de l'un de ses dérivés;

- (d) la mesure par tout moyen approprié, de l'activité acétylcholinestérase du mélange obtenu en (c); et
- (e) la vérification que les molécules isolées en (b) inhibent l'activité AChE1.

Ae alb Ae aeg An alb An gam An fun An nil An sac An pse Cx Pip	TEPENPUSUR TEPDUPUSUR TEPDUPUSUR TEPDUPUSUR TEPDUPUSUR TEPDUPUSUR	DALDKMVGDY DALDKMVGDY DALDKMVGDY DALDKMVGDY DALDKMVGDY DALDKMVGDY DALDKMVGDY	HFTCNVNEFA HFTCNVNEFA HFTCNVNEFA HFTCNVNEFA HFTCNVNEFA	QRYAEEGNNV QRYAEEGNNV QRYAEEGNNV QRYAEEGNNV QRYAEEGNNV	YMYLYTHRSK YMYLYTHRSK YMYLYTHRSK YMYLYTHRSK YMYLYTHRSK YMYLYTHRSK	GNPWPRWTGV GNPWPRWTGV GNPWPRWTGV GNPWPRWTGV GNPWPRWTGV	MHGDEINYVF MHGDEINYVF MHGDEINYVF MHGDEINYVF MHGDEINYVF	Geplingtigy Geplingtigy Geplingslgy Geplingslgy Geplingslgy
Ae alb Ae aeg An alb An gam An fun An nil An sac An pse Cx Pip	61 MODEKOFSRI MEDEKOFSRI TEDEKOFSRI TEDEKOFSRI TEDEKOFSRI TEDEKOFSRI TEDEKOFSRI TEDEKOFSRI TEDEKOFSRI TEDEKOFSRI	(I (I (I (I (I K I K I						
B								
Ace1-SLA	B AT G	• AACCGGACAACC	20 CCGAACAGCAAC CCGAACAGCAAC	• CCGTGACGCGCT	40 GGACAAGATGG CGACAAGATGG	• 60 STCGGGGATTAT STCGGGGATTAT	CACTTCACCTG	80 CAACGTGAA CAACGTGAA
Acel-SLA Acel-SR	Eco	RI • TTCGCCCAGCGG	100	•	L20 	• 140	O ACAGAAGCAAAG	160 GAAATCCCT
Acel-SLA Acel-SR	B GGCC	GAGGTGGAC GG	180 GCGTGATGCAC GCGTGATGCAC		200 CAACTACGTGT CAACTACGTGT	• 22 PTGGCGAACCG PTGGCGAACCG	CTGAACTCGGC	240 CCTCGGCTAC CCTCGGCTAC
Ace1-SLA Ace1-SR	B CAGC	• ;ACGACGAGAAG ;ACGACGAGAAG	260 GACTTTAGCCG GACTTTAGCCG	GAAAATT GAAAATT		·		
C			S-LAB	SR	Croisem	ent en	retour	
						220 hm		
				A STATE OF THE STA		- 320 bp		
					An entropy to the	- 214 bp	,	
					ALCONO.	- 106 br)	

FIGURE 2

FIGURE 3

4/14

FIGURE 4

SR S-LAB	1 MEIRGLITRL MEIRGLITRL	LGPCHLRHLI LGPCHLRHLI	LCSLGLYSIL LCSLGLYSIL	VQSVHCRHHD VQSVHCRHHD	IGSSVAHQLG IGSSVAHQLG	SKYSQSSSLS SKYSQSSSLS	SSSQSSSSLA SSSQSSSSLA	80 EEATLNKDSD EEATLNKDSD
SR S-LAB	81 AFFTPYIGHG AFFTPYIGHG	DSVRIVDAEL DSVRIVDAEL	GTLEREHIHS GTLEREHIHS	TTTRRRGLTR TTTRRRGLTR	RESSSDATDS RESSSDATDS	DPLVITTDKG DPLVITTDKG	KIRGTTLEAP KIRGTTLEAP	160 SGKKVDAWMG SGKKVDAWMG
SR S-LAB	161 IPYAQPPLGP IPYAQPPLGP	LRFRHPRPAE LRFRHPRPAE	RWTGVLNATK RWTGVLNATK	PPNSCVQIVD PPNSCVQIVD	TVFGDFPGAT TVFGDFPGAT	MWNPNTPLSE MWNPNTPLSE	DCTAINAAAb DCTAINAAAb	240 RPRPKNAAVM RPRPKNAAVM
SR S-LAB	241 LWIFGGSFYS LWIFGGGFYS	GTATLDVYDH GTATLDVYDH	RTLASEENVI RTLASEENVI	VVSLQYRVAS VVSLQYRVAS	LGFLFLGTPE LGFLFLGTPE	APGNAGLFDQ APGNAGLFDQ	NLALRWVRDN NLALRWVRDN	320 IHRFGGDPSR IHRFGGDPSR
SR S-LAB	321 VTLFGESAGA VTLFGESAGA	VSVSLHLLSA VSVSLHLLSA	LSRDLFQRAI LSRDLFQRAI	LQSGSPTAPW LQSGSPTAPW	ALVSREEATL ALVSREEATL	RALRLAEAVN RALRLAEAVN	CPHDATKLSD CPHDATKLSD	400 AVECLRTKDP AVECLRTKDP
SR S-LAB	401 NELVDNEWGT NELVDNEWGT	LGICEFPFVP LGICEFPFVP	VVDGAFLDET VVDGAFLDET	PQRSLASGRF PQRSLASGRF	KKTDILTGSN KKTDILTGSN	TEEGYYFIIY TEEGYYFIIY	YLTELLRKEE YLTELLRKEE	480 GVTVTREEFL GVTVTREEFL
SR S-LAB	481 QAVRELNPYV QAVRELNPYV	NGAARQAIVF NGAARQAIVF	EYTDWIEPDN EYTDWIEPDN	PNSNRDALDK PNSNRDALDK	MVGDYHFTCN MVGDYHFTCN	VNEFAQRYAE VNEFAQRYAE	EGNNVFMYLY EGNNVFMYLY	560 THRSKGNPWP THRSKGNPWP
SR S-LAB	561 RWTGVMHGDE RWTGVMHGDE	INYVFGEPLN INYVFGEPLN	SALGYQDDEK SALGYQDDEK	DFSRKIMRYW DFSRKIMRYW	SNFAKTGNPN SNFAKTGNPN	PSTPSVDLPE PSTPSVDLPE	WPKHTAHGRH WPKHTAHGRH	640 YLELGLNTTF YLELGLNTTF
SR S-LAB	641 VGRGPRLRQC VGRGPRLRQC	AFWKKYLPQL AFWKKYLPQL	VAATSNLQVT VAATSNLQVT	PAPSVPCESS PAPSVPCESS	STSYRSTLLL STSYRSTLLL	IVTLLLVTRF IVTLLLVTRF	702 KI KI	·

Figure 5

	1 M E I R G L I T R L L G P C H L R H L I L C S L G L Y ATGGAGATCCGAGGCCTAATAACCCGATTACTGGGTCCATGTCACCTGCGACATCTGATACTGTGCAGTTTGGGGCTGTA
SR S-LAB	S I L V Q S V H C R H H D I G S S V A H Q L G S K Y S CTCCATCCTCGTGCAGTCGATCGCAGCATCATGACATCGGTAGTTCGGTGGCACACCAGCTAGGATCGAAATACT
SR S-LAB	Q S S L S S S Q S S S L A E E A T L N K D S D CACAATCATCCTCGTCATCCTCGCAATCGTCATCGTCGTTAGCTGAAGAGGCCACGCTGAATAAAGATTCAGAT
SR S-LAB	320 A F F T P Y I G H G D S V R I V D A E L G T L E R E H GCATTTTTTACACCATATATAGGTCACGGAGATTCTGTTCGAATTGTAGATGCCGAATTAGGTACATTAGAGCGCGAGCA
SR S-LAB	I H S T T T R R R G L T R R E S S S D A T D S D P L V TATCCATAGCACTGGCCCGGCGGCGTGGCCTGGCCCGGAGGGAG
SR	Amorce Ex3dir 480 I T T D K G K I R G T T L E A P S G K K V D A W M G
S-LAB SR	ITCATAACGACGGACAAGGGCAAAATCCGTGGAACGACACTGGAAGCGCCTAGTGGAAGAAGAAGGTGGACGCATGGATGG
S-LAB SR	ATTCCGTACGCGCAGCCCCCGCTGGGTCCGCTCCGGTTTCGACATCCGCGACCCGCCGAAAGATGGACCGGTGTGCTGAA
S-LAB SR	A T K P P N S C V Q I V D T V F G D F P G A T M W N P CGCGACCAAACCGCCCCAACTCCTGCGTCCAGATCGTGGACACCGTGTTCGGTGACTTCCCGGGGGCCACCATGTGGAACC
S-LAB SR	N T P L S E D C L Y I N V V V P R P R P K N A A V M CGAACACCCCTCTCGGAGGACTGTCTGTACATCAACGTGGTCGTGCCACGGCCCAAGAATGCCGCCGTCATG
S-LAB SR	L W I F G G G F Y S G T A T L D V Y D H R T L A S E E CTGTGGATCTTCGGGGGTGCTTCTACTCCGGGACTGCCACGCTGGACGTGTACGACCATCGGACGCTGGCCTCGGAGGA TTTT
S-LAB SR	880 N V I V V S L Q Y R V A S L G F L F L G T P E A P G N GAACGTGATCGTAGTTTCGCTGCAGTACCGTGTCGCAAGTCTTGGGTTTCTCTTCCTGGGCACACCGGAGGCACCCGGTA
S-LAB SR	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
S-LAB SR	Amorce Ex3rev 1040 V T L F G E S A G A V S V S L H L L S A L S R D L F Q GTCACACTGTTCGGCGAGAGCGCCGGAGCGGTCTCGGTTTCGCTGCACCTGTTCGCGGGACCTGTTCCA

S-LAB SR	R A I L Q S G S P T A P W A L V S R E E A T L R A L R GCGGGCCATCCTCCAGAGTGGCTCCCCGACGCCCCGTGGGCGCTGGTTTCGCGCGAAGAAGCTACGCTTAGAGCTCTTC
S-LAB SR	L A E A V N C P H D A T K L S D A V E C L R T K D P GTCTGGCCGAGGCGTCAACTGTCCGCACGATGCGACCAAGCTGAGCGATGCCGTCGAATGCCTGCGAACCAAGGATCCG
S-LAB	1280 N E L V D N E W G T L G I C E F P F V P V V D G A F L AACGAGCTGGTCGACAACGAGTGGGGCACGCTGGGGATCTGCGAGTTTCCGTTCCGTTGTGGACGGAGCCTTCCT TTT
S-LAB SR	D E T P Q R S L A S G R F K K T D I L T G S N T E E G CGATGAGACACCGCAGCGTTCGTTGGCCAGCGGCGCTTCAAGAAAACGGACATCCTGACCGGCAGCAACACCGAGGAGGTT
S-LAB SR	Y Y F I I Y Y L T E L L R K E E G V T V T R E E F L GTTACTACTTTATCATTTACTATCTAACCGAACTGCTCAGGAAAGAGGGAGG
S-LAB	Q A V R E L N P Y V N G A A R Q A I V F E Y T D W I E CAGGCCGTCCGGGAGTTGAATCCGTACGTGAACGGTGCCGCCCGGCAGGCCATCGTGTTCGAGTACACGGACTGGATTGA
S-LAB	1 600 P D N P N S N R D A L D K M V G D Y H F T C N V N E F ACCGGACAACCCGAACAGCAACCGTGACGCGCTGGACAAGATGGTCGGGGATTATCACTTCACCTGCAACGTGAACGAAT
	1680 A Q R Y A E E G N N V F M Y L Y T H R S K G N P W P TCGCCCAGCGGTACGCCGAGGAGGCAACAACGTGTTCATGTACCTGTACACGCACAGAAGCAAAGGAAATCCCTGGCCG
SR S-LAB	TOTAL TRANSPORT TO THE TRANSPORT OF THE TRANSPORT TO THE TRANSPORT OF THE TRANSPORT OF THE TRANSPORT TO THE TRANSPORT OF THE
SR S-LAB	DEKDFSRKIMRYWSNFAKTGNPNPSTP CGACGAGAAGGACTTTAGCCGGAAAATTATGCGATACTGGTCCAACTTTGCCAAGACTGGCAATCCCAACCCGAGTACGC
SR	1920 S V D L P E W P K H T A H G R H Y L E L G L N T T F
S-LAB SR	CGAGCGTGGACCTGCCCGAATGGCCCAAGCACACCGCCCACGGACGACACTATCTGGAGCTGGACTGAACACGACCTTC 2000 V G R G P R L R Q C A F W K K Y L P Q L V A A T S N L
S-LAB SR	GTGGGACGGGGCCCACGATTGCGGCAGTGCGCTTTCTGGAAGAAATATTTGCCGCAACTAGTAGCAGCTACCTCTAACCT
S-LAB SR	Q V T P A P S V P C E S S S T S Y R S T L L L I V T L CCAAGTAACTCCCGCGCCCTAGCGTACCTTGCGAAAGCAGCTCAACATCTTATCGATCCACTCTACTTCTAATAGTCACAC 2109
S-LAB SR	L L V T R F K I * TACTTTTAGTAACGCGGTTCAAGATTTAA

Figure 8

	10/14
KISUMU YAO	1 80 GAATGCGCATTGTTGCGATAGATTTCCTTGGTTGTTGTTGTTGTTGTTTCTTTTGACATGTTTGTT
KISUMU YAO	160 AFFTPYIGHGES TTTTCTTTCTCTCTCTCTCTCTCTGTGGTTCCAACATTTCAGACGCATTTTTTACACCATATATAGGTCACGGTGAGT
	240 V R I I D A E L G T L E H V H S G A T P R R R G L T CCGTACGAATTATAGATGCCGAGTTGGGCACGCTCGAGCATGTCCACAGTGGAGCAACGCCGCGGCGACGCGGTCTGACG
KISUMU YAO	R R E S N S D AGGCGCGAGTCCAACTCGGGTAAGTACGCGATTGGAAGTGGGGGGACGTTTACCCTGCCGTGTACTACAATGCACTTTACA
KISUMU YAO	A N D N D P L V V N T D K G R I R G I CCCCACGCACGCACCGCAGACGAACGATCCGCTGGTGGTCAACACGGATAAGGGGCGCATCCGCGGCAT
KISUMU YAO	T V D A P S G K K V D V W L G I P Y A Q P P V G P L R TACGGTCGATGCGCCAGCGGCAAGAAGGTGGACGTGTGGCTCGGCATTCCCTACGCCCAGCCGCCGGTCGGGCCGTTAC
	FRHPRPAEKWTGVLNTTTPPNSCVQI GGTTCCGTCATCCGCGGCCGAAAAGTGGACCGGCGTGCTGAACACGCCACCACCGCCCAACAGCTGCAGATC
KISUMU YAO 720 KISUMU YAO	<u>A</u> 3
KISUMU YAO	A T L D V Y D H R A L A S E E N V I V V S L Q Y R V CCGCCACCCTGGACGTGTACGACCACCGGCGCTTGCGTCGAGGAGAACGTGATCGTGGTGTCGCTGCAGTACCGCGTG
KISUMU YAO	
KISUMU YAO	960 GTAGGTGTCTTTGCATGGGTGAATGAGGGTATAGTATTCTAACGAGGTGCTCTTCTCCCATCACTTCTTGGGAGTCAGCG-TTC-TA-T
KISUMU YAO	W V R D N I H R F G G D P S R V T L F G E S A G A V S TGGGTGCGGGACAACATTCACCGGTTCGGTGGTGATCCGTCGCGTGTGACACTGTTCGGCGAGAGTGCCGGTGCCGTCTC
KISUMU YAO	
KISUMU YAO	Amorce Ex3AGrev 1200 W A L V S R E E A T L R CGTGGGCATTGGTATCGCGCGAGGAAGCCACGCTAAGGTACGTGCCAGCTGCTTTCCCCAAACCACCAACCCGCGAC A

	11/14	
KISUMU	1280 A L R L A E A V G C P H AGCTCACACACCCTCTTTTCCTTCGCTCTTTTCTCGCTCCAGAGCACTGCGGTTGGCCGAGGCGGTCGGCTGCCCGCAC	
YAO KISUMU YAO	136 E P S K L S D A V E C L R G K D P H V L V N N E W G T GAACCGAGCAAGCTGAGCGATGCGGTCGAGTGTCTGCGCGCGAAGGATCCGCACGTGCTGGTCAACAACGAGTGGGGCAC	0
	L G I C E F P F V P V V D G A F L D E T P Q R S L A GCTCGGCATTGCGAGTTCCCGTTCGTGCCGGTGGTCGACGGTGCGTTCCTGGACGACGCCGCAGCGTTCGCTCGC	S A
KISUMU YAO	152 GRFKKTEILTGSNTEEGYYFIIYYLT GCGGGCGCTTCAAGAAGACGGAGATCCTCACCGGCAGCAACACGGAGGAGGGCTACTACTTCATCATCTACCTGAC	
	160 E L L R K E E G V T V T R E E F L Q A V R E L N P Y V GAGCTGCTGCGCAAGGAGGAGGCGTGACCCGTACGC	,
	168 N G A A R Q A I V F E Y T D W T E P D N P N S N R D GAACGGGCCGGCCGGCAGCGATCGTGTTCGAGTACACCGACCG	A
KISUMU YAO	176 L D K M V G D Y H F T C N V N E F A Q R Y A E E G N CGCTGGACAAGATGGTGGGCGACTATCACTTCACCTGCAACGTGAACGAGTTCGCGCAGCGGTACGCCGAGGAGGGCA	
KISUMU	184 N V Y M Y L Y T H R S K G N P W P R W T G V M H G D AACGTCTACATGTATCTGTACACGCACCGCAGCAAAGGCAACCCGTGGCCGCGCTGGACGGCGTGATGCACGGCGAC	E
YAO KISUMU	19 INYVFGEPLNPTLGYTEDEKDFSRKI GATCAACTACGTGTTCGGCGAACCGCTCAACCCCACCCTCGGCTACACCGAGGACGAAAGACTTTAGCCGGAAGAT	20 M CA
YAO KISUMU	R Y W S N F A K T G TGCGATACTGGTCTAACTTTGCCAAAACCGGGTAAGTGTGTGT	T
YAO KISUMU	208 N P N P N T A S S E F P E W P K H AACGCCTTCTCTCTCAACAGCAATCCAAATCCCAACACGGCCAGCAGCGAATTCCCCGAGTGGCCCAAGCAA-AGCGTCTT	T CA
YAO KISUMU	216 A H G R H Y L E L G L N T S F V G R G P R L R Q C A CCGCCCACGGACGCACTATCTGGAGCTGGGCCTCAACACGTCCTTCGTCGGTCG	50
YAO KISUMU	F W K K Y L P Q L V A A T S TTCTGGAAGAAGTACCTTCCCCAGCTAGTTGCAGCTACCTGTAAGTCTCGT-GCAGCGCTTGAAATCCTCTCCCGCAT	CC
YAO KISUMU	A-GAC-CTG- 232 N L P TCAACAGGGTCCAGGTTGCAATAACAAATGTATCTCTCTC	20 G : AG
YAO KISUMU	CTA-A	00
YAO	L T A T V R F I Q * CTTACGGCGACCGTCAGATTCATACAATAATTACTACCCCATCCAT	 80 SA
YAO	ACAAATTTTCCTAACCAATTCCCAACCCCCTTTAGAGCAGAACCGAGGGAGAGATAGGACT	· -

Figure 10

13/14

FIGURE 11

Test d'inhibition par le propoxur

FIGURE 12

An gam S An gam S C pip S C pip R An alb S An alb R	CCGGGCGCGACCATGTGGAACCCGAACACGCCCCTGTCCGAGGACTGTCTGT
An gamphibb samphibb	ACCGGGCGTTGCGTCGGAGAACGTGATCGT ACCGGGCGCTTGCGTCGGAGAACGTGATCGT T A G C C C C C C C C C C C C C C C C C C

FIGURE 13

CCGGGGGCGACTATGTGGAACCCAAATACGCCACTCTCGGAGGACTGCCTGTACATCAACGTGGTGGCGCCGAGGCCACGGCCCA AGAATGCTGCCGTCATGCTGTGGATCTTCGGCGGTGGCTTCTACTCCGGTACGGCCACACTGGACGTGTACGATCACCGGGCGCT CGCCTCGGAAGAGAACGTTATCGT

>An. albi. "R" CCGGGGGCGACTATGTGGAACCCAAATACGCCACTCTCGGAGGACTGCCTGTACATCAACGTGGTGGCGCCGAGGCCACAGGCCCAAGAATGCTGCCGTTACGTCGTGCGCCGAGGCCACACGGCCCAAGAATGCTGCCGTTACGATCACCGGGCGCTTTCTACTCCGGTACGGCCACACTGGACGTTACGATCACCGGGCGCT CGCCTCGGAAGAGAACGTTATCGT

FIGURE 14

LISTE DE SEQUENCES

<110> CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
 UNIVERSITE DE MONTPELLIER 2
 WEILL Mylène
 FORT Philippe
 RAYMOND Michel
 PASTEUR Nicole

<120> Nouveau gène de l'acétylcholinesérase responsable de la résistance aux insecticides et ses applications

<130> F644FR92

<140>

<141>

<150> FR0207622 <151> 2002-06-20

<150> FR0213799 <151> 2002-11-05

<160> 129

<170> PatentIn Ver. 2.1

<210> 1

<211> 524

<212> PRT

<213> Anopheles gambiae

<400> 1

Asp Pro Leu Val Val Asn Thr Asp Lys Gly Arg Ile Arg Gly Ile Thr
1 5 10 15

Val Asp Ala Pro Ser Gly Lys Lys Val Asp Val Trp Leu Gly Ile Pro 20 25 30

Tyr Ala Gln Pro Pro Val Gly Pro Leu Arg Phe Arg His Pro Arg Pro 35 40 45

Ala Glu Lys Trp Thr Gly Val Leu Asn Thr Thr Thr Pro Pro Asn Ser 50 55 60

Cys Val Gln Ile Val Asp Thr Val Phe Gly Asp Phe Pro Gly Ala Thr 65 70 75 80

Met Trp Asn Pro Asn Thr Pro Leu Ser Glu Asp Cys Leu Tyr Ile Asn 85 90 95

Val Val Ala Pro Arg Pro Arg Pro Lys Asn Ala Ala Val Met Leu Trp
100 105 110

Ile Phe Gly Gly Phe Tyr Ser Gly Thr Ala Thr Leu Asp Val Tyr
115 120 125

Asp His Arg Ala Leu Ala Ser Glu Glu Asn Val Ile Val Val Ser Leu 135 Gln Tyr Arg Val Ala Ser Leu Gly Phe Leu Phe Leu Gly Thr Pro Glu 155 Ala Pro Gly Asn Ala Gly Leu Phe Asp Gln Asn Leu Ala Leu Arg Trp Val Arg Asp Asn Ile His Arg Phe Gly Gly Asp Pro Ser Arg Val Thr Leu Phe Gly Glu Ser Ala Gly Ala Val Ser Val Ser Leu His Leu Leu Ser Ala Leu Ser Arg Asp Leu Phe Gln Arg Ala Ile Leu Gln Ser Gly Ser Pro Thr Ala Pro Trp Ala Leu Val Ser Arg Glu Glu Ala Thr Leu Arg Ala Leu Arg Leu Ala Glu Ala Val Gly Cys Pro His Glu Pro Ser Lys Leu Ser Asp Ala Val Glu Cys Leu Arg Gly Lys Asp Pro His Val Leu Val Asn Asn Glu Trp Gly Thr Leu Gly Ile Cys Glu Phe Pro Phe Val Pro Val Val Asp Gly Ala Phe Leu Asp Glu Thr Pro Gln Arg Ser Leu Ala Ser Gly Arg Phe Lys Lys Thr Glu Ile Leu Thr Gly Ser Asn 315 Thr Glu Glu Gly Tyr Tyr Phe Ile Ile Tyr Tyr Leu Thr Glu Leu Leu Arg Lys Glu Glu Gly Val Thr Val Thr Arg Glu Glu Phe Leu Gln Ala Val Arg Glu Leu Asn Pro Tyr Val Asn Gly Ala Ala Arg Gln Ala Ile Val Phe Glu Tyr Thr Asp Trp Thr Glu Pro Asp Asn Pro Asn Ser Asn Arg Asp Ala Leu Asp Lys Met Val Gly Asp Tyr His Phe Thr Cys Asn Val Asn Glu Phe Ala Gln Arg Tyr Ala Glu Glu Gly Asn Asn Val Tyr Met Tyr Leu Tyr Thr His Arg Ser Lys Gly Asn Pro Trp Pro Arg Trp 425

WO 2004/000994 3 Thr Gly Val Met His Gly Asp Glu Ile Asn Tyr Val Phe Gly Glu Pro Leu Asn Pro Thr Leu Gly Tyr Thr Glu Asp Glu Lys Asp Phe Ser Arg 455 Lys Ile Met Arg Tyr Trp Ser Asn Phe Ala Lys Thr Gly Asn Pro Asn 470 475 Pro Asn Thr Ala Ser Ser Glu Phe Pro Glu Trp Pro Lys His Thr Ala 485 490 His Gly Arg His Tyr Leu Glu Leu Gly Leu Asn Thr Ser Phe Val Gly 505 Arg Gly Pro Arg Leu Arg Gln Cys Ala Phe Trp Lys <210> 2 <211> 1932 <212> ADN <213> Anopheles gambiae <220> <221> CDS <222> (1)..(1932)

<400> 2 atg ttt gtg tgt tgt ttt ttc ttt ctc tct ctc tct ttc tgt ggt tcc Met Phe Val Cys Cys Phe Phe Phe Leu Ser Leu Ser Phe Cys Gly Ser 10 aac att tca gac gca ttt ttt aca cca tat ata ggt cac ggt gag tcc 96 Asn Ile Ser Asp Ala Phe Phe Thr Pro Tyr Ile Gly His Gly Glu Ser 20 25 gta cga att ata gat gcc gag ttg ggc acg ctc gag cat gtc cac agt 144 Val Arg Ile Ile Asp Ala Glu Leu Gly Thr Leu Glu His Val His Ser 35 40 gga gca acg ccg cgg cga cgc ggc ctg acg agg cgc gag tca aac tcg 192 Gly Ala Thr Pro Arg Arg Gly Leu Thr Arg Arg Glu Ser Asn Ser 50 gac gcg aac gac aac gat ccg ctg gtg gtc aac acg gat aag ggg cgc 240 Asp Ala Asn Asp Asn Asp Pro Leu Val Val Asn Thr Asp Lys Gly Arg 65 atc cgc ggc att acg gtc gat gcg ccc agc ggc aag aag gtg gac gtg 288 Ile Arg Gly Ile Thr Val Asp Ala Pro Ser Gly Lys Lys Val Asp Val tgg ctc ggc att ccc tac gcc cag ccg ccg gtc ggg ccg cta cgg ttc 336 Trp Leu Gly Ile Pro Tyr Ala Gln Pro Pro Val Gly Pro Leu Arg Phe

				•												
									4							
cgt Arg	cat His	ccg Pro 115	cgg Arg	ccg Pro	gcc Ala	gaa Glu	aag Lys 120	tgg Trp	acc Thr	ggc Gly	gtg Val	ctg Leu 125	aac Asn	acg Thr	acc Thr	384
aca	ccg Pro 130	ccc Pro	aac Asn	agc Ser	tgc Cys	gtg Val 135	cag Gln	atc Ile	gtg Val	gac Asp	acc Thr 140	gtg Val	ttc Phe	Gly	gac Asp	432
ttc Phe 145	ccg Pro	ggc Gly	gcg Ala	acc Thr	atg Met 150	tgg Trp	aac Asn	ccg Pro	aac Asn	acg Thr 155	ccc Pro	ctg Leu	tcc Ser	gag Glu	gac Asp 160	480
tgt Cys	ctg Leu	tac Tyr	att Ile	aac Asn 165	gtg Val	gtg Val	gca Ala	ccg Pro	cga Arg 170	ccc Pro	cgg Arg	ccc Pro	aag Lys	aat Asn 175	gcg Ala	528
gcc Ala	gtc Val	atg Met	ctg Leu 180	tgg Trp	atc Ile	ttc Phe	ggc Gly	ggc Gly 185	ggc Gly	ttc Phe	tac Tyr	tcc Ser	ggc Gly 190	acc Thr	gcc Ala	576
acc Thr	ctg Leu	gac Asp 195	gtg Val	tac Tyr	gac Asp	cac His	cgg Arg 200	gcg Ala	ctt Leu	gcg Ala	tcg Ser	gag Glu 205	gag Glu	aac Asn	gtg Val	624
										agt Ser						672
ctc Leu 225	Gly	acc Thr	ccg Pro	gaa Glu	gcg Ala 230	ccg Pro	Gly	aat Asn	gcg Ala	gga Gly 235	ctg Leu	ttc Phe	gat Asp	cag Gln	aac Asn 240	720
ctt Leu	gcg Ala	cta Leu	cgc Arg	tgg Trp 245	gtg Val	cgg Arg	gac Asp	aac Asn	att Ile 250	cac His	cgg Arg	ttc Phe	ggt Gly	ggc Gly 255	gat Asp	768
ccg Pro	tcg Ser	cgt Arg	gtg Val 260	aca Thr	ctg Leu	ttc Phe	ggc Gly	gag Glu 265	agt Ser	gcc Ala	ggt Gly	gcc Ala	gtc Val 270	tcg Ser	gtg Val	816
tcg Ser	ctg Leu	cat His 275	ctg Leu	ctg Leu	tcc Ser	gcc Ala	ctt Leu 280	tcc Ser	cgc Arg	gat Asp	ctg Leu	ttc Phe 285	cag Gln	cgg Arg	gcc Ala	864
atc Ile	ctg Leu 290	cag Gln	agc Ser	ggc Gly	tcg Ser	ccg Pro 295	acg Thr	gca Ala	ccg Pro	tgg Trp	gca Ala 300	ttg Leu	gta Val	tcg Ser	cgc Arg	912
gag Glu 305	gaa Glu	gcc Ala	aca Thr	Leu	aga Arg 310	Ala	ctg Leu	cgg Arg	Leu	gcc Ala	gag Glu	gcg Ala	gtc Val	Gly ggc	tgc Cys 320	960

310

325

ccg cac gaa ccg agc aag ctg agc gat gcg gtc gag tgc ctg cgc ggc Pro His Glu Pro Ser Lys Leu Ser Asp Ala Val Glu Cys Leu Arg Gly

aag Lys	gac Asp	ccg Pro	Cac His 340	gtg Val	ctg Leu	gtc Val	aac Asn	aac Asn 345	Glu	tgg Trp	ggc	acg Thr	ctc Leu 350	Gly	att Ile	1056
tgc Cys	gag Glu	ttc Phe 355	Pro	ttc Phe	gtg Val	ccg Pro	gtg Val 360	gtc Val	gac Asp	ggt Gly	gcg Ala	ttc Phe 365	ctg Leu	gac Asp	gag Glu	1104
acg Thr	ccg Pro 370	cag Gln	cgt Arg	tcg Ser	ctc Leu	gcc Ala 375	agc Ser	GJ A GGG	cgc Arg	ttc Phe	aag Lys 380	aag Lys	acg Thr	gag Glu	atc Ile	1152
ctc Leu 385	acc Thr	ggc	agc Ser	aac Asn	acg Thr 390	gag Glu	gag Glu	ggc	tac Tyr	tac Tyr 395	ttc Phe	atc Ile	atc Ile	tac Tyr	tac Tyr 400	1200
ctg Leu	acc Thr	gag Glu	ctg Leu	ctg Leu 405	cgc Arg	aag Lys	gag Glu	gag Glu	ggc Gly 410	gtg Val	acc Thr	gtg Val	acg Thr	cgc Arg 415	gag Glu	1248
gag Glu	ttc Phe	ctg Leu	cag Gln 420	gcg Ala	gtg Val	cgc Arg	gag Glu	ctc Leu 425	aac Asn	ccg Pro	tac Tyr	gtg Val	aac Asn 430	Gly	gcg Ala	1296
gcc Ala	cgg Arg	cag Gln 435	gcg Ala	atc Ile	gtg Val	ttc Phe	gag Glu 440	tac Tyr	acc Thr	gac Asp	tgg Trp	acc Thr 445	gag Glu	ccg Pro	gac Asp	1344
aac Asn	ccg Pro 450	aac Asn	agc Ser	aac Asn	cgg Arg	gac Asp 455	gcg Ala	ctg Leu	gac Asp	aag Lys	atg Met 460	gtg Val	Gly ggc	gac Asp	tat Tyr	1392
cac His 465	ttc Phe	acc Thr	tgc Cys	aac Asn	gtg Val 470	aac Asn	gag Glu	ttc Phe	gcg Ala	cag Gln 475	cgg Arg	tac Tyr	gcc Ala	gag Glu	gag Glu 480	1440
ggc Gly	aac Asn	aac Asn	gtc Val	tac Tyr 485	atg Met	tat Tyr	ctg Leu	tac Tyr	acg Thr 490	cac His	cgc Arg	agc Ser	aaa Lys	ggc Gly 495	aac Asn	1488
ccg Pro	tgg Trp	ccg Pro	cgc Arg 500	tgg Trp	acg Thr	ggc Gly	Val	atg Met 505	cac His	Gly ggc	gac Asp	gag Glu	atc Ile 510	aac Asn	tac Tyr	1536
gtg Val	Phe	ggc Gly 515	gaa Glu	ccg Pro	ctc Leu	aac Asn	ccc Pro 520	acc Thr	ctc Leu	ggc Gly	tac Tyr	acc Thr 525	gag Glu	gac Asp	gag Glu	1584
Lys	gac Asp 530	ttt Phe	agc Ser	cgg Arg	aag Lys	atc Ile 535	atg Met	cga Arg	tac Tyr	Trp	tcc Ser 540	aac Asn	ttt Phe	gcc Ala	aaa Lys	1632
acc Thr 545	Gly ggg	aat Asn	cca Pro	Asn	ccc Pro 550	aac Asn	acg Thr	gcc Ala	Ser	agc Ser 555	gaa Glu	ttc Phe	ccc Pro	gag Glu	tgg Trp 560	1680

			acc Thr													1728
			gtc Val 580													1776
			ctt Leu													1824
			cct Pro													1872
cct Pro 625	gat Asp	ctg Leu	atc Ile	gtg Val	ctg Leu 630	ctg Leu	gtg Val	tcg Ser	ctg Leu	ctt Leu 635	acg Thr	gcg Ala	acc Thr	gtc Val	aga Arg 640	1920
	ata Ile		taa													1932
<21:	0> 3 1> 64 2> Pi 3> Ar	RT	eles	gamb	oiae											٠
				-												
	0> 3 Phe	Val	Cys			Phe	Phe	Leu	Ser 10	Leu	Ser	Phe	Суз	Gly 15	Ser	
Met 1	Phe		Cys Asp 20	Cys 5	Phe				10				_	15		
Met 1 Asn	Phe	Ser	Asp	Cys 5 Ala	Phe Phe	Phe	Thr	Pro 25	10 Tyr	Ile	Gly	His	Gly 30	15 Glu	Ser	
Met 1 Asn Val	Phe Ile Arg	Ser Ile 35	Asp 20	Cys 5 Ala Asp	Phe Phe Ala	Phe Glu	Thr Leu 40	Pro 25 Gly	10 Tyr Thr	Ile Leu	Gly Glu	His His 45	Gly 30 Val	15 Glu His	Ser Ser	
Met 1 Asn Val Gly	Phe Ile Arg Ala 50	Ser Ile 35 Thr	Asp 20 Ile	Cys 5 Ala Asp	Phe Phe Ala Arg	Phe Glu Arg 55	Thr Leu 40 Gly	Pro 25 Gly Leu	10 Tyr Thr Thr	Ile Leu Arg	Gly Glu Arg 60	His 45 Glu	Gly 30 Val	15 Glu His Asn	Ser Ser Ser	
Met 1 Asn Val Gly Asp 65	Phe Ile Arg Ala 50 Ala	Ser Ile 35 Thr	Asp 20 Ile Pro	Cys 5 Ala Asp Arg	Phe Phe Ala Arg Asp 70	Phe Glu Arg 55 Pro	Thr Leu 40 Gly Leu	Pro 25 Gly Leu Val	10 Tyr Thr Thr Val	Ile Leu Arg Asn 75	Gly Glu Arg 60 Thr	His 45 Glu Asp	Gly 30 Val Ser	15 Glu His Asn Gly	Ser Ser Ser Arg 80	
Met 1 Asn Val Gly Asp 65 Ile	Phe Ile Arg Ala 50 Ala Arg	Ser Ile 35 Thr Asn	Asp 20 Ile Pro	Cys 5 Ala Asp Arg Asn Thr	Phe Phe Ala Arg Asp 70 Val	Phe Glu Arg 55 Pro	Thr Leu 40 Gly Leu Ala	Pro 25 Gly Leu Val	10 Tyr Thr Thr Val Ser 90	Ile Leu Arg Asn 75	Gly Glu Arg 60 Thr	His 45 Glu Asp	Gly 30 Val Ser Lys	15 Glu His Asn Gly Asp 95	Ser Ser Arg 80 Val	
Met 1 Asn Val Gly Asp 65 Ile	Phe Ile Arg Ala 50 Ala Arg Leu	Ser Ile 35 Thr Asn Gly	Asp 20 Ile Pro Asp Ile	Cys 5 Ala Asp Arg Asn Thr 85	Phe Phe Ala Arg Asp 70 Val	Phe Glu Arg 55 Pro Asp	Thr Leu 40 Gly Leu Ala Gln	Pro 25 Gly Leu Val Pro Pro 105	Thr Thr Val Ser 90 Pro	Ile Leu Arg Asn 75 Gly Val	Gly Glu Arg 60 Thr Lys	His 45 Glu Asp Lys	Gly 30 Val Ser Lys Val Leu 110	15 Glu His Asn Gly Asp 95 Arg	Ser Ser Arg 80 Val	

Phe 145	Pro	Gly	Ala	Thr	Met 150	Trp	Asn	Pro	Asn	Thr 155	Pro	Leu	Ser	Glu	Asp 160
Cys	Leu	Tyr	Ile	Asn 165	Val	Val	Ala	Pro	Arg 170	Pro	Arg	Pro	Lys	Asn 175	Ala
Ala	Val	Met	Leu 180	Trp	Ile	Phe	Gly	Gly 185	Gly	Phe	Tyr	Ser	Gly 190	Thr	Ala
Thr	Leu	Asp 195	Val	Tyr	Asp	His	Arg 200	Ala	Leu	Ala	Ser	Glu 205	Glu	Asn	Val
Ile	Val 210	Val	Ser	Leu	Gln	Tyr 215	Arg	Val	Ala	Ser	Leu 220	Gly	Phe	Leu	Phe
Leu 225	Gly	Thr	Pro	Glu	Ala 230	Pro	Gly	Asn	Ala	Gly 235	Leu	Phe	Asp	Gln	Asn 240
Leu	Ala	Leu	Arg	Trp 245	Val	Arg	Asp	Asn	Ile 250	His	Arg	Phe	Gly	Gly 255	Asp
Pro	Ser	Arg	Val 260	Thr	Leu	Phe	Gly	Glu 265	Ser	Ala	Gly	Ala	Val 270	Ser	Val
Ser	Leu	His 275	Leu	Leu	Ser	Ala	Leu 280	Ser	Arg	Asp	Leu	Phe 285	Gln	Arg	Ala
Ile	Leu 290	Gln	Ser	Gly	Ser	Pro 295	Thr	Ala	Pro	Trp	Ala 300	Leu	Val	Ser	Arg
Glu 305	Glu	Ala	Thr	Leu	Arg 310	Ala	Leu	Arg	Leu	Ala 315	Glu	Ala	Val	Gly	Cys 320
Pro	His	Glu	Pro	Ser 325	Lys	Leu	Ser	Asp	Ala 330	Val	Glu	Cys	Leu	Arg 335	Gly
Lys	Asp	Pro	His 340	Val	Leu	Val	Asn	Asn 345	Glu	Trp	Gly	Thr	Leu 350	Gly	Ile
Cys	Glu	Phe 355	Pro	Phe	Val	Pro	Val 360	Val	Asp	Gly	Ala	Phe 365	Leu	Asp	Glu
Thr	Pro 370	Gln	Arg	Ser	Leu	Ala 375	Ser	Gly	Arg	Phe	Lys 380	Lys	Thr	Glu	Ile
Leu 385	Thr	Gly	Ser	Asn	Thr 390	Glu	Glu	Gly	Tyr	Tyr 395	Phe	Ile	Ile	Tyr	Tyr 400
Leu	Thr	Glu	Leu	Leu 405	Arg	Lys	Glu	Glu	Gly 410	Val	Thr	Val	Thr	Arg 415	Glu
Glu	Phe	Leu	Gln 420	Ala	Val	Arg	Glu	Leu 425	Asn	Pro	Tyr	Val	Asn 430	Gly	Ala
Ala	Arg	Gln 435	Ala	Ile	Val	Phe	Glu 440	Tyr	Thr	Asp	Trp	Thr 445	Glu	Pro	Asp

Asn Pro Asn Ser Asn Arg Asp Ala Leu Asp Lys Met Val Gly Asp Tyr His Phe Thr Cys Asn Val Asn Glu Phe Ala Gln Arg Tyr Ala Glu Glu 475 Gly Asn Asn Val Tyr Met Tyr Leu Tyr Thr His Arg Ser Lys Gly Asn 485 490 Pro Trp Pro Arg Trp Thr Gly Val Met His Gly Asp Glu Ile Asn Tyr 505 Val Phe Gly Glu Pro Leu Asn Pro Thr Leu Gly Tyr Thr Glu Asp Glu 520 Lys Asp Phe Ser Arg Lys Ile Met Arg Tyr Trp Ser Asn Phe Ala Lys 535 Thr Gly Asn Pro Asn Pro Asn Thr Ala Ser Ser Glu Phe Pro Glu Trp 550 555 Pro Lys His Thr Ala His Gly Arg His Tyr Leu Glu Leu Gly Leu Asn 565 570 Thr Ser Phe Val Gly Arg Gly Pro Arg Leu Arg Gln Cys Ala Phe Trp 580 585 Lys Lys Tyr Leu Pro Gln Leu Val Ala Ala Thr Ser Asn Leu Pro Gly 600 Pro Ala Pro Pro Ser Glu Pro Cys Glu Ser Ser Ala Phe Phe Tyr Arg 610 615 Pro Asp Leu Ile Val Leu Leu Val Ser Leu Leu Thr Ala Thr Val Arg 635 630

Phe Ile Gln

<210> 4
<211> 1932
<212> ADN
<213> Anopheles gambiae souche KISUMU
<220>
<221> CDS
<222> (1).. (1932)
<400> 4
atg ttt gtg tgt tgt ttt ttc ttt ctc tg

atg ttt gtg tgt tgt ttt ttc ttt ctc tct ctc tct ctc tgt ggt tcc
Met Phe Val Cys Cys Phe Phe Phe Leu Ser Leu Ser Leu Cys Gly Ser

1 10 15

CT/FR2003/001876

					ttt Phe											96
					gcc Ala											144
					cga Arg											192
					gat Asp 70											240
					gtc Val											288
					tac Tyr											336
					gcc Ala											384
					tgc Cys											432
	-		-		atg Met 150			_		_		_			-	480
					gtg Val											528
gcc Ala	gtc Val	atg Met	ctg Leu 180	tgg Trp	atc Ile	ttc Phe	ggc Gly	ggc Gly 185	ggc Gly	ttc Phe	tac Tyr	tcc Ser	ggc Gly 190	acc Thr	gcc Ala	576
acc Thr	ctg Leu	gac Asp 195	gtg Val	tac Tyr	gac Asp	cac His	cgg Arg 200	gcg Ala	ctt Leu	gcg Ala	tcg Ser	gag Glu 205	gag Glu	aac Asn	gtg Val	624
					cag Gln											672
ctc Leu 225	ggc	acc Thr	ccg Pro	gaa Glu	gcg Ala 230	ccg Pro	ggc Gly	aat Asn	gcg Ala	gga Gly 235	ctg Leu	ttc Phe	gat Asp	cag Gln	aac Asn 240	720

CT/FR2003/001876

	cta Leu							768
	cgt Arg							816
	cat His 275							864
	cag Gln							912
	gcc Ala							960
	gaa Glu							1008
	ccg Pro							1056
	ttc Phe 355							1104
	cag Gln							1152
	ggc Gly							1200
	gag Glu							1248
	ctg Leu							1296
	cag Gln 435							1344
	aac Asn							1392

														gag Glu		1440
														ggc Gly 495		1488
														aac Asn		1536
														gac Asp		1584
aaa Lys	gac Asp 530	ttt Phe	agc Ser	cgg Arg	aag Lys	atc Ile 535	atg Met	cga Arg	tac Tyr	tgg Trp	tct Ser 540	aac Asn	ttt Phe	gcc Ala	aaa Lys	1632
														gag Glu		1680
														ctc Leu 575		1728
														ttc Phe		1776
														cca Pro		1824
														tac Tyr		1872
														gtc Val		1920
	ata Ile		taa													1932
<21:	0> 5 1> 64 2> Pi 3> Ar	RT	eles	gaml	oiae	soud	che I	KISUN	٩U							
	0> 5 Phe	Val	Cys	Cys 5	Phe	Phe	Phe	Leu	Ser 10	Leu	Ser	Leu	Cys	Gly 15	Ser	

Asn Ile Ser Asp Ala Phe Phe Thr Pro Tyr Ile Gly His Gly Glu Ser Val Arg Ile Ile Asp Ala Glu Leu Gly Thr Leu Glu His Val His Ser Gly Ala Thr Pro Arg Arg Gly Leu Thr Arg Arg Glu Ser Asn Ser Asp Ala Asn Asp Asn Asp Pro Leu Val Val Asn Thr Asp Lys Gly Arg Ile Arg Gly Ile Thr Val Asp Ala Pro Ser Gly Lys Lys Val Asp Val Trp Leu Gly Ile Pro Tyr Ala Gln Pro Pro Val Gly Pro Leu Arg Phe 105 Arg His Pro Arg Pro Ala Glu Lys Trp Thr Gly Val Leu Asn Thr Thr 120 Thr Pro Pro Asn Ser Cys Val Gln Ile Val Asp Thr Val Phe Gly Asp 135 Phe Pro Gly Ala Thr Met Trp Asn Pro Asn Thr Pro Leu Ser Glu Asp 150 155 Cys Leu Tyr Ile Asn Val Val Ala Pro Arg Pro Arg Pro Lys Asn Ala 165 Ala Val Met Leu Trp Ile Phe Gly Gly Phe Tyr Ser Gly Thr Ala 185 Thr Leu Asp Val Tyr Asp His Arg Ala Leu Ala Ser Glu Glu Asn Val 205 Ile Val Val Ser Leu Gln Tyr Arg Val Ala Ser Leu Gly Phe Leu Phe 215 Leu Gly Thr Pro Glu Ala Pro Gly Asn Ala Gly Leu Phe Asp Gln Asn 235 Leu Ala Leu Arg Trp Val Arg Asp Asn Ile His Arg Phe Gly Gly Asp 250 Pro Ser Arg Val Thr Leu Phe Gly Glu Ser Ala Gly Ala Val Ser Val 265 Ser Leu His Leu Leu Ser Ala Leu Ser Arg Asp Leu Phe Gln Arg Ala 280 Ile Leu Gln Ser Gly Ser Pro Thr Ala Pro Trp Ala Leu Val Ser Arg 295 Glu Glu Ala Thr Leu Arg Ala Leu Arg Leu Ala Glu Ala Val Gly Cys 310

Pro His Glu Pro Ser Lys Leu Ser Asp Ala Val Glu Cys Leu Arg Gly 325 Lys Asp Pro His Val Leu Val Asn Asn Glu Trp Gly Thr Leu Gly Ile Cys Glu Phe Pro Phe Val Pro Val Val Asp Gly Ala Phe Leu Asp Glu 360 Thr Pro Gln Arg Ser Leu Ala Ser Gly Arg Phe Lys Lys Thr Glu Ile Leu Thr Gly Ser Asn Thr Glu Glu Gly Tyr Tyr Phe Ile Ile Tyr Tyr 390 Leu Thr Glu Leu Leu Arg Lys Glu Glu Gly Val Thr Val Thr Arg Glu Glu Phe Leu Gln Ala Val Arg Glu Leu Asn Pro Tyr Val Asn Gly Ala 420 425 Ala Arg Gln Ala Ile Val Phe Glu Tyr Thr Asp Trp Thr Glu Pro Asp Asn Pro Asn Ser Asn Arg Asp Ala Leu Asp Lys Met Val Gly Asp Tyr 450 His Phe Thr Cys Asn Val Asn Glu Phe Ala Gln Arg Tyr Ala Glu Glu Gly Asn Asn Val Tyr Met Tyr Leu Tyr Thr His Arg Ser Lys Gly Asn Pro Trp Pro Arg Trp Thr Gly Val Met His Gly Asp Glu Ile Asn Tyr Val Phe Gly Glu Pro Leu Asn Pro Thr Leu Gly Tyr Thr Glu Asp Glu 515 Lys Asp Phe Ser Arg Lys Ile Met Arg Tyr Trp Ser Asn Phe Ala Lys 535 Thr Gly Asn Pro Asn Pro Asn Thr Ala Ser Ser Glu Phe Pro Glu Trp 545 555 Pro Lys His Thr Ala His Gly Arg His Tyr Leu Glu Leu Gly Leu Asn Thr Ser Phe Val Gly Arg Gly Pro Arg Leu Arg Gln Cys Ala Phe Trp 580 Lys Lys Tyr Leu Pro Gln Leu Val Ala Ala Thr Ser Asn Leu Pro Gly 595 Pro Ala Pro Pro Ser Glu Pro Cys Glu Ser Ser Ala Phe Phe Tyr Arg 610 620

Pro Asp Leu Ile Val Leu Leu Val Ser Leu Leu Thr Ala Thr Val Arg 635 625

Phe Ile Gln

<210> 6 <211> 3297 <212> ADN <213> Culex pipiens souche S-LAB

ccaqaqcaqa ccacqaacct cgtcggaaga gctgatgccg ttgtgacatt cgctccgatt 60 gtgtaagcaa ataaggttag gacacaccgt attcacgaac tctgacacca agctgtcata 120 gccgtcactg acgagaagaa aaagaaacaa gagtcgacaa cacactcaca gtctcacgcc 180 qccaqaqaqc acaccaaqaq tcacattgag aaaaccacac gccagaagaa aagaagagtt 240 gttcaagaag gaagctaata ccacacaca acacactcac acacaccggg agaaaccgca 300 cagcaggcgg cgctgtgaaa ttcacacgtt cggtcggtga agtggtggaa ggaactcggc 360 gtcggagtag caattagtga attacaaaca aagggaaata agggaaggag tcaagagtca 420 accagtggaa ccagtggtgc agtgagtgat ttttttgtgt tgttgctgca gaaaggaacg 480 cgcgacgage acactettgt gaaateggtg teateategt taaatgetet egacegteaa 540 cttatagcta tcatatgcga tctctccaag ccatggagat ccgaggccta ataacccgat 600 tactgggtcc atgtcacctg cgacatctga tactgtgcag tttgggggctg tactccatcc 660 tcgtgaagtc ggtccattgc cggcatcatg acatcggtag ttcggtggca caccagctag 720 gatcgaaata ctcacaatca tcctcgttat cgtcatcctc gcaatcgtca tcgtcgttag 780 ctgaagaggc cacgctgaat aaagattcag atgcattttt tacaccatat ataggtcacg 840 gagattetgt tegaattgta gatgeegaat taggtacatt agagegegag cacatecata 900 gcactacgac ccggcggcgt ggcctgacgc ggagggagtc cagctccgat gccaccgact 960 cggacccact ggtcataacg acggacaagg gcaaaatccg tggaacgaca ctggaagcgc 1020 ctagtggaaa gaaggtggac gcatggatgg gcattccgta cgcgcagccc ccgctgggtc 1080 cgctccggtt tcgacatccg cgaccggccg aaagatggac cggtgtgctg aacgcgacca 1140 aaccgcccaa ctcctgcgtc cagatcgtgg acaccgtgtt cggtgacttc ccgggggcca 1200 ccatgtggaa cccgaacaca ccgctctcgg aggactgtct gtacatcaac gtggtcgtgc 1260 cacggcccag gcccaagaat gccgccgtca tgctgtggat cttcgggggt ggcttctact 1320 ccgggactgc cacgctggac gtgtacgacc atcggacgct ggcctcggag gagaacgtga 1380 tegtagttte getgeagtae egtgtegeaa gtettgggtt tetetteete ggeacacegg 1440 aggcaccegg taacgegggg ctgtttgatc agaacctggc actgagatgg gtccgcgaca 1500 acatccaccg gttcggcggt gacccctcgc gggtcacact gttcggcgag agcgccggag 1560 eggteteggt ttegetgeac etgetgtegg egetetegeg ggacetgtte eagegggeea 1620 tectecagag tggeteceeg acggeecegt gggegetggt ttegegegaa gaagetaege 1680 ttagagetet tegtetggee gaggeegtea actgteegea egatgegaee aagetgageg 1740 atgccgtcga atgcctgcga accaaggatc cgaacgagct ggtcgacaac gagtggggca 1800 cgctggggat ctgcgagttt ccgttcgttc cggttgtgga cggagccttc ctcgatgaga 1860 caccgcagcg ttcgttggcc agcgggcgct tcaagaaaac ggacatcctg accggcagca 1920 acaccgagga gggttactac tttatcattt actatctaac cgagctgctc aggaaagagg 1980 aaggggtcac ggtaacacgc gaggagttcc tacaggccgt ccgggagttg aatccgtacg 2040 tgaacggtgc cgcccggcag gccatcgtgt tcgagtacac ggactggatt gaaccggaca 2100 acccgaacag caaccgtgac gcgctggaca agatggtcgg ggattatcac ttcacctgca 2160 acqtqaacqa attcgcccag cggtacgccg aggagggcaa caacgtgttc atgtacctgt 2220 acacqcacag aagcaaagga aatccctggc cgaggtggac cggcgtgatg cacggcgacg 2280 agatcaacta cgtgtttggc gaaccgctga actcggccct cggctaccag gacgacgaga 2340 aggactttag ccggaaaatt atgcgatact ggtccaactt tgccaagact ggcaatccca 2400 accogagtac geogagegtg gacetgeecg aatggeecaa geacacegee caeggaegae 2460 actatetgga getgggaetg aacacgaeet tegtgggaeg gggeecaega ttgeggeagt 2520 gegetttetg gaagaaatat ttgeegeaac tagtageage tacetetaac etceaagtaa 2580 ctcccgcgcc tagcgtacct tgcgaaagca gctcaacatc ttatcgatcc actctacttc 2640 taatagtcac actactttta gtaacgeggt tcaagattta aatcegtgtt ttettteeeg 2700 ttcccgtttt tccgttaaag cttctttagg tcaggtgaaa acatcaacaa gcagcatcaa 2760 ttctactact aatactatta ctactattaa ctgaaatgga acaataagat tacctttttc 2820 ttctaaattt gttcaactgc taattaaatt ctaaataggt gaatgcatct tgctctgcaa 2880 acgaacgatc ggacaattat gttgtattgt tttttcttt gtaataatat tctgtaaaca 2940 gaggtgatat cattaatatt ttactaacca tacaataaac aaaatatttc ctgttataaa 3000 ttgtgatgaa tatttcgctt taactacacc attgaaggtt acttaagttg aaataacaaa 3060 aattttatat aaacaactaa caaataaaac agctgctaga gacaactaga cattaaatcg 3120 aaaaaaaacgt tatttgaaa aagagcgatt tatgcactag cggaggtgaa tcccttataa 3180 tcttgaaaag agaggaggaa tcgaacgaga agaagaagaa aatattatga tacaataaaa 3240 ccaacatcta attctaacaa tcaactgttt acttactaa aaaaaaaaa aaaaaaa 3297

<210> 7

<211> 702

<212> PRT

<213> Culex pipiens souche S-LAB

<400> 7

Met Glu Ile Arg Gly Leu Ile Thr Arg Leu Leu Gly Pro Cys His Leu
1 5 10 15

Arg His Leu Ile Leu Cys Ser Leu Gly Leu Tyr Ser Ile Leu Val Lys
20 25 30 .

Ser Val His Cys Arg His His Asp Ile Gly Ser Ser Val Ala His Gln 35 40 45

Leu Gly Ser Lys Tyr Ser Gln Ser Ser Ser Leu Ser Ser Ser Gln
50 55 60

Ser Ser Ser Ser Leu Ala Glu Glu Ala Thr Leu Asn Lys Asp Ser Asp 65 70 75 80

Ala Phe Phe Thr Pro Tyr Ile Gly His Gly Asp Ser Val Arg Ile Val 85 90 95

Asp Ala Glu Leu Gly Thr Leu Glu Arg Glu His Ile His Ser Thr Thr 100 105 110

Thr Arg Arg Arg Gly Leu Thr Arg Arg Glu Ser Ser Ser Asp Ala Thr 115 120 125

Asp Ser Asp Pro Leu Val Ile Thr Thr Asp Lys Gly Lys Ile Arg Gly 130 135 140

Thr Thr Leu Glu Ala Pro Ser Gly Lys Lys Val Asp Ala Trp Met Gly 145 150 155 160

Ile Pro Tyr Ala Gln Pro Pro Leu Gly Pro Leu Arg Phe Arg His Pro 165 170 175

Arg Pro Ala Glu Arg Trp Thr Gly Val Leu Asn Ala Thr Lys Pro Pro 180 185 190

Asn Ser Cys Val Gln Ile Val Asp Thr Val Phe Gly Asp Phe Pro Gly 195 200 205

Ala Thr Met Trp Asn Pro Asn Thr Pro Leu Ser Glu Asp Cys Leu Tyr Ile Asn Val Val Pro Arg Pro Arg Pro Lys Asn Ala Ala Val Met Leu Trp Ile Phe Gly Gly Phe Tyr Ser Gly Thr Ala Thr Leu Asp Val Tyr Asp His Arg Thr Leu Ala Ser Glu Glu Asn Val Ile Val Val 265 Ser Leu Gln Tyr Arg Val Ala Ser Leu Gly Phe Leu Phe Leu Gly Thr 280 Pro Glu Ala Pro Gly Asn Ala Gly Leu Phe Asp Gln Asn Leu Ala Leu 295 Arg Trp Val Arg Asp Asn Ile His Arg Phe Gly Gly Asp Pro Ser Arg 310 315 Val Thr Leu Phe Gly Glu Ser Ala Gly Ala Val Ser Val Ser Leu His 325 330 Leu Leu Ser Ala Leu Ser Arg Asp Leu Phe Gln Arg Ala Ile Leu Gln 345 Ser Gly Ser Pro Thr Ala Pro Trp Ala Leu Val Ser Arg Glu Glu Ala 360 Thr Leu Arg Ala Leu Arg Leu Ala Glu Ala Val Asn Cys Pro His Asp 375 Ala Thr Lys Leu Ser Asp Ala Val Glu Cys Leu Arg Thr Lys Asp Pro 390 395 Asn Glu Leu Val Asp Asn Glu Trp Gly Thr Leu Gly Ile Cys Glu Phe 405 410 Pro Phe Val Pro Val Val Asp Gly Ala Phe Leu Asp Glu Thr Pro Gln 420 425 Arg Ser Leu Ala Ser Gly Arg Phe Lys Lys Thr Asp Ile Leu Thr Gly 440 Ser Asn Thr Glu Glu Gly Tyr Tyr Phe Ile Ile Tyr Tyr Leu Thr Glu 455 Leu Leu Arg Lys Glu Glu Gly Val Thr Val Thr Arg Glu Glu Phe Leu 470 475 Gln Ala Val Arg Glu Leu Asn Pro Tyr Val Asn Gly Ala Ala Arg Gln 485 Ala Ile Val Phe Glu Tyr Thr Asp Trp Ile Glu Pro Asp Asn Pro Asn 500 505

 Ser
 Ass
 Arg
 Ass
 Ala
 Leu
 Ass
 Lys
 Met
 Val
 Gly
 Ass
 Fyr
 His
 Phe
 Thr

 Cys
 Ass
 Val
 Ass
 Glu
 Phe
 Ala
 Glu
 Arg
 Tyr
 Ala
 Glu
 Glu
 Gly
 Ass
 Ass

 Val
 Phe
 Met
 Tyr
 Thr
 His
 Arg
 Ser
 Lys
 Gly
 Ass
 Pro
 Trp
 Pro
 560

 Arg
 Trp
 Thr
 Gly
 Val
 Met
 His
 Gly
 Asp
 Glu
 Ine
 Asn
 Pro
 Trp
 Pro
 560

 Arg
 Trp
 Thr
 Gly
 Met
 His
 Gly
 Asp
 Glu
 Lys
 Asp
 Phe
 Ser
 Glu
 Lys
 Asp
 Phe
 Asp
 Glu
 Lys
 Asp
 Phe
 Asp
 Glu
 Lys
 His
 Asp
 Leu
 Ru
 Glu

<210> 8

<211> 91

<212> PRT

<213> Culex pipiens

<400> 8

Ile Glu Pro Asp Asn Pro Asn Ser Asn Arg Asp Ala Leu Asp Lys Met
1 5 10 15

Val Gly Asp Tyr His Phe Thr Cys Asn Val Asn Glu Phe Ala Gln Arg
20 25 30

Tyr Ala Glu Glu Gly Asn Asn Val Phe Met Tyr Leu Tyr Thr His Arg 35 40 45

Ser Lys Gly Asn Pro Trp Pro Arg Trp Thr Gly Val Met His Gly Asp 50 55 60

Glu Ile Asn Tyr Val Phe Gly Glu Pro Leu Asn Ser Ala Leu Gly Tyr
65 70 75 80

Gln Asp Asp Glu Lys Asp Phe Ser Arg Lys Ile 85 90

<210> 9

<211> 91

<212> PRT

<213> Aedes aegypti

<400> 9

Thr Glu Pro Glu Asn Pro Asn Ser Asn Arg Asp Ala Leu Asp Lys Met 1 5 10 15

Val Gly Asp Tyr His Phe Thr Cys Asn Val Asn Glu Phe Ala Gln Arg
20 25 30

Tyr Ala Glu Glu Gly Asn Asn Val Tyr Met Tyr Leu Tyr Thr His Arg 35 40 45

Ser Lys Gly Asn Pro Trp Pro Arg Trp Thr Gly Val Met His Gly Asp 50 55 60

Glu Ile Asn Tyr Val Phe Gly Glu Pro Leu Asn Ser Asp Leu Gly Tyr
65 70 75 80

Met Glu Asp Glu Lys Asp Phe Ser Arg Lys Ile 85 90

<210> 10

<211> 91

<212> PRT

<213> Aedes albopictus

<400> 10

Thr Glu Pro Glu Asn Pro Asn Ser Asn Arg Asp Ala Leu Asp Lys Met
1 5 10 15

Val Gly Asp Tyr His Phe Thr Cys Asn Val Asn Glu Phe Ala Gln Arg 20 25 30

Tyr Ala Glu Glu Gly Asn Asn Val Tyr Met Tyr Leu Tyr Thr His Arg 35 40 45

Ser Lys Gly Asn Pro Trp Pro Arg Trp Thr Gly Val Met His Gly Asp 50 55 60

Glu Ile Asn Tyr Val Phe Gly Glu Pro Leu Asn Ser Asp Leu Gly Tyr
65 70 75 80

Met Asp Asp Glu Lys Asp Phe Ser Arg Lys Ile 85 90 <210> 11

<211> 91

<212> PRT

<213> Anopheles darlingi

<400> 11

Thr Glu Pro Asp Asn Pro Asn Ser Asn Arg Asp Ala Leu Asp Lys Met

1 5 10 15

Val Gly Asp Tyr His Phe Thr Cys Asn Val Asn Glu Phe Ala Gln Arg
20 25 30

Tyr Ala Glu Glu Gly Asn Asn Val Tyr Met Tyr Leu Tyr Thr His Arg
35 40 45

Ser Lys Gly Asn Pro Trp Pro Arg Trp Thr Gly Val Met His Gly Asp 50 55 60

Glu Ile Asn Tyr Val Phe Gly Glu Pro Leu Asn Pro Thr Leu Gly Tyr 65 70 75 80

Thr Asp Asp Glu Lys Gly Phe Ser Arg Lys Ile 85 90

<210> 12

<211> 91

<212> PRT

<213> Anopheles sundaicus

<400> 12

Thr Glu Pro Asp Asn Pro Asn Ser Asn Arg Asp Ala Leu Asp Lys Met

1 5 10 15

Val Gly Asp Tyr His Phe Thr Cys Asn Val Asn Glu Phe Ala Gln Arg
20 25 30

Tyr Ala Glu Glu Gly Asn Asn Val Tyr Met Tyr Leu Tyr Thr His Arg 35 40 45

Ser Lys Gly Asn Pro Trp Pro Arg Trp Thr Gly Val Met His Gly Asp 50 55 60

Glu Ile Asn Tyr Val Phe Gly Glu Pro Leu Asn Pro Thr Leu Gly Tyr
65 70 75 80

Thr Glu Asp Glu Lys Asp Phe Ser Arg Lys Ile 85 90

<210> 1.3

<211> 91

<212> PRT

<213> Anopheles minimus

<400> 13

Thr Glu Pro Asp Asn Pro Asn Ser Asn Arg Asp Ala Leu Asp Lys Met
1 5 10 15

Val Gly Asp Tyr His Phe Thr Cys Asn Val Asn Glu Phe Ala Gln Arg
20 25 30

Tyr Ala Glu Glu Gly Asn Asn Val Tyr Met Tyr Leu Tyr Thr His Arg
35 40 45

Ser Lys Gly Asn Pro Trp Pro Arg Trp Thr Gly Val Met His Gly Asp 50 60

Glu Ile Asn Tyr Val Phe Gly Glu Pro Leu Asn Pro Ser Leu Gly Tyr

65 70 75 80

Thr Glu Asp Glu Lys Asp Phe Ser Arg Lys Ile 85 90

<210> 14

<211> 91

<212> PRT

<213> Anopheles moucheti

<400> 14

Thr Glu Pro Asp Asn Pro Asn Ser Asn Arg Asp Ala Leu Asp Lys Met
1 5 10 15

Val Gly Asp Tyr His Phe Thr Cys Asn Val Asn Glu Phe Ala Gln Arg
20 25 30

Tyr Ala Glu Glu Gly Asn Asn Val Tyr Met Tyr Leu Tyr Thr His Arg 35 40 45

Ser Lys Gly Asn Pro Trp Pro Arg Trp Thr Gly Val Met His Gly Asp 50 55 60

Glu Ile Asn Tyr Val Phe Gly Glu Pro Leu Asn Pro Ser Leu Gly Tyr
65 70 75 80

Thr Glu Asp Glu Lys Asp Phe Ser Arg Lys Ile 85 90

<210> 15

<211> 91

<212> PRT

<213> Anopheles arabiensis

<400> 15

Thr Glu Pro Asp Asn Pro Asn Ser Asn Arg Asp Ala Leu Asp Lys Met

1 5 10 15

Val Gly Asp Tyr His Phe Thr Cys Asn Val Asn Glu Phe Ala Gln Arg
20 25 30

Tyr Ala Glu Glu Gly Asn Asn Val Tyr Met Tyr Leu Tyr Thr His Arg
35 40 45

Ser Lys Gly Asn Pro Trp Pro Arg Trp Thr Gly Val Met His Gly Asp
50 55 60

Glu Ile Asn Tyr Val Phe Gly Glu Pro Leu Asn Pro Thr Leu Gly Tyr
65 70 75 80

Thr Glu Asp Glu Lys Asp Phe Ser Arg Lys Ile 85 90

<210> 16

<211> 91

<212> PRT

<213> Anopheles funestus

<400> 16

Thr Glu Pro Asp Asn Pro Asn Ser Asn Arg Asp Ala Leu Asp Lys Met

1 5 10 15

Val Gly Asp Tyr His Phe Thr Cys Asn Val Asn Glu Phe Ala Gln Arg
20 25 30

Tyr Ala Glu Glu Gly Asn Asn Val Tyr Met Tyr Leu Tyr Thr His Arg 35 40 45

Ser Lys Gly Asn Pro Trp Pro Arg Trp Thr Gly Val Met His Gly Asp 50 55 60

Glu Ile Asn Tyr Val Phe Gly Glu Pro Leu Asn Pro Ser Leu Gly Tyr
65 70 75 80

Thr Glu Asp Glu Lys Asp Phe Ser Arg Lys Ile 85 90

<210> 17

<211> 91

<212> PRT

<213> Anopheles pseudopunctipennis

<400> 17

Thr Glu Pro Asp Asn Pro Asn Ser Asn Arg Asp Ala Leu Asp Lys Met

1 5 10 15

Val Gly Asp Tyr His Phe Thr Cys Asn Val Asn Glu Phe Ala Gln Arg 20 25 30

Tyr Ala Glu Glu Gly Asn Asn Val Tyr Met Tyr Leu Tyr Thr His Arg 35 40 45

Ser Lys Gly Asn Pro Trp Pro Arg Trp Thr Gly Val Met His Gly Asp 50 55 60

Glu Ile Asn Tyr Val Phe Gly Glu Pro Leu Asn Pro Gly Leu Gly Tyr
65 70 75 80

Thr Glu Asp Glu Lys Asp Phe Ser Arg Lys Ile 85 90

<210> 18

<211> 91

<212> PRT

<213> Anopheles sacharovi

<400> 18

Thr Glu Pro Asp Asn Pro Asn Ser Asn Arg Asp Ala Leu Asp Lys Met
1 5 10 15

Val Gly Asp Tyr His Phe Thr Cys Asn Val Asn Glu Phe Ala Gln Arg
20 25 30

Tyr Ala Glu Gly Asn Asn Val Tyr Met Tyr Leu Tyr Thr His Arg
35 40 45

Ser Lys Gly Asn Pro Trp Pro Arg Trp Thr Gly Val Met His Gly Asp 50 55 60

Glu Ile Asn Tyr Val Phe Gly Glu Pro Leu Asn Pro Ser Leu Gly Tyr 65 70 75 80

Thr Asp Asp Glu Lys Asp Phe Ser Arg Lys Ile 85 90

<210> 19

<211> 91

<212> PRT

<213> Anopheles stephensi

<400> 19

Thr Glu Pro Asp Asn Pro Asn Ser Asn Arg Asp Ala Leu Asp Lys Met
1 5 10 15

Val Gly Asp Tyr His Phe Thr Cys Asn Val Asn Glu Phe Ala Gln Arg
20 25 30

Tyr Ala Glu Glu Gly Asn Asn Val Tyr Met Tyr Leu Tyr Thr His Arg 35 40 45

Ser Lys Gly Asn Pro Trp Pro Arg Trp Thr Gly Val Met His Gly Asp 50 55 60

Glu Ile Asn Tyr Val Phe Gly Glu Pro Leu Asn Pro Ser Leu Gly Tyr
65 70 75 80

Thr Asp Asp Glu Lys Asp Phe Ser Arg Lys Ile 85

<210> 20

<211> 91

<212> PRT

<213> Anopheles albimanus

<400> 20

Thr Glu Pro Asp Asn Pro Asn Ser Asn Arg Asp Ala Leu Asp Lys Met

Val Gly Asp Tyr His Phe Thr Cys Asn Val Asn Glu Phe Ala Gln Arg 25

Tyr Ala Glu Glu Gly Asn Asn Val Tyr Met Tyr Leu Tyr Thr His Arg 40

Ser Lys Gly Asn Pro Trp Pro Arg Trp Thr Gly Val Met His Gly Asp 55

Glu Ile Asn Tyr Val Phe Gly Glu Pro Leu Asn Pro Thr Leu Gly Tyr

Thr Asp Asp Glu Lys Gly Phe Ser Arg Lys Ile 85

<210> 21

<211> 91

<212> PRT

<213> Anopheles nili

<400> 21

Thr Glu Pro Asp Asn Pro Asn Ser Asn Arg Asp Ala Leu Asp Lys Met

Val Gly Asp Tyr His Phe Thr Cys Asn Val Asn Glu Phe Ala Gln Arg

Tyr Ala Glu Glu Gly Asn Asn Val Tyr Met Tyr Leu Tyr Thr His Arg 40

Ser Lys Gly Asn Pro Trp Pro Arg Trp Thr Gly Val Met His Gly Asp

Glu Ile Asn Tyr Val Phe Gly Glu Pro Leu Asn Pro Ser Leu Gly Tyr

Thr Glu Asp Glu Lys Asp Phe Ser Arg Lys Met 85

<210> 22 <211> 4209 <212> ADN <213> Anopheles gambiae

<400> 22

tggtaattac aattcccaag tttgcgtatg acaatgttaa atgttaagac gctcaaatgc 60 aaccaataga gtataattac taaggcgggc agtagaaacc aaaatatctt aaataatgtc 120 aagcaaaaca aaaagaacaa ttccgttcac tgctcaaaga aagccctaac taactaccta 180 accttttcat cgatgaccct gtactgacat ggtaagatat tctttatcct ttaactcttc 240 tgcaccctac gcactcaatg caacacacge actactatta ctgctactac tctcgcactc 300 acgagcacct acttgcactc aagccggcac tcaatgtact agcgaaacac gtcgcatcta 360 agcactcaca aggaagcaca catttgcaaa tagcacctac cggaacagct ttgaatgtgc 420 cagcacagca ttgaacaggt tcgcgccttt actcctgtgc tctgttttct cgatcggaat 480 gttcgaaagt tgaaaagcgc atttttcat ctctcttttt ctattcttct tcgtattttt 540 atccctctct cgtcgtgttt tttctaaaca ttaccatact tcttccgcta cgaactcgcc 600 aagaaccaga acgcagcgtg cgtgcggtgc ttgcggtgtg tgtgtgtgtg tgtgtattcc 660 acggctgcga gaagcaagat cggagaacag gcatcattcc cctttcacag acaattgcac 720 ttttgtacta gaacagaaaa cgagacagca taatttccaa cagcctcatt cactcatacc 780 aggeteaeae egaettttaa eegaaacatg taetacagaa acaaaaacaa acaatatgga 840 gagtgetege getgataeta agttaatatg aagagattae tggegaggte ategateeca 900 tecegacate ategetecag getecagace taccaagteg cetaccatta cetacecace 960 accgaccact actcacacag cattatcact teegeegeeg tegeegeege egeegaegee 1020 geogaegeea ceacetteae acegeeetge caaaatgaat gegeattgtt gegatagatt 1080 gaattteett ggttgttgtt gttgttggtt ttettttgae atgtttgtgt gttgtttttt 1140 ctttctctct ctctcttct gtggttccaa catttcagac gcatttttta caccatatat 1200 aggtcacggt gagtccgtac gaattataga tgccgagttg ggcacgctcg agcatgtcca 1260 cagtggagca acgccgcggc gacgcggcct gacgaggcgc gagtcaaact cgggtaagta 1320 cgcgattgga agtgggggga cgtttaccct accgtgtact actacaacgc actttacccc 1380 cacgcacacg caccggcaga cgcgaacgac aacgatccgc tggtggtcaa cacggataag 1440 gggcgcatcc gcggcattac ggtcgatgcg cccagcggca agaaggtgga cgtgtggctc 1500 ggcattccct acgcccagcc gccggtcggg ccgctacggt tccgtcatcc gcggccggcc 1560 gaaaagtgga ceggegtget gaacacgace acacegeeca acagetgegt geagategtg 1620 gacaccgtgt teggegaett eeegggegeg accatgtgga accegaaeae geeeetgtee 1680 qaqqactqtc tqtacattaa cqtqqtqqca ccqcqacccc qqcccaaqaa tqcqqccqtc 1740 atgctgtgga tcttcggcgg cggcttctac tccggcaccg ccaccctgga cgtgtacgac 1800 caccgggcgc ttgcgtcgga ggagaacgtg atcgtggtgt cgctgcagta ccgcgtggcc 1860 agtetggget teetgtttet eggeaceeeg gaagegeegg geaatgeggg actgttegat 1920 cagaaccttg cgctacggta ggtgtctttg catgtgtgaa tgagggtata gtattctaac 1980 gaggtgetet tetteceate acttettggg agteagetgg gtgegggaea acatteaceg 2040 gttcggtggc gatccgtcgc gtgtgacact gttcggcgag agtgccggtg ccgtctcggt 2100 gtegetgeat etgetgteeg ecettteeeg egatetgtte eagegggeea teetgeagag 2160 cggctcgccg acggcaccgt gggcattggt atcgcgcgag gaagccacac taaggtacgt 2220 gccagctgct gctttcccca aaccaccaac ccgcaacagc tcacacaacc ctcttttccg 2280 tegetetttt etegeteeag ageaetgegg ttggeegagg eggteggetg eeegeaegaa 2340 ccgagcaagc tgagcgatgc ggtcgagtgc ctgcgcggca aggacccgca cgtgctggtc 2400 aacaacgagt ggggcacget cggcatttgc gagttcccgt tcgtgccggt ggtcgacggt 2460 gcgttcctgg acgagacgcc gcagcgttcg ctcgccagcg ggcgcttcaa gaagacggag 2520 atecteaceg geageaacae ggaggaggge tactaettea teatetaeta eetgaeegag 2580 ctgctgcgca aggaggaggg cgtgaccgtg acgcgcgagg agttcctgca ggcggtgcgc 2640 gageteaace egtaegtgaa eggggeggee eggeaggega tegtgttega gtaeacegae 2700 tggaccgagc cggacaaccc gaacagcaac cgggacgcgc tggacaagat ggtgggcgac 2760 tatcacttca cctgcaacgt gaacgagttc gcgcagcggt acgccgagga gggcaacaac 2820 gtctacatgt atctgtacac gcaccgcagc aaaggcaacc cgtggccgcg ctggacgggc 2880 gtgatgcacg gcgacgagat caactacgtg ttcggcgaac cgctcaaccc caccctcggc 2940

tacaccgagg acgagaaaga ctttagccgg aagatcatgc gatactggtc caactttgcc 3000

aaaaccgggt aagtgtgtgt gtcaaacagc agagtgtcga tcgctctaac accaqcqtct 3060 tetetetet acageaatee aaateecaae aeggeeagea gegaatteee egagtggeee 3120 aagcacaccg cccacggacg gcactatctg gagetgggcc tcaacacgtc cttcgtcggt 3180 cggggcccac ggttgaggca gtgtgccttc tggaagaagt accttcccca gctagttgca 3240 gctacctgta agtctcgtgc agcacttgaa accccctccc acatccccat cagggtccag 3300 gttgcaataa taaatttcac tttctctctc tcacgtctct tttccccaaa acagcgaacc 3360 taccagggcc agcaccgcct agtgaaccgt gcgaaagcag cgcattttt taccgacctg 3420 atctgatcgt gctgctggtg tcgctgctta cggcgaccgt cagattcata caataattac 3480 taccccatcc atggcctagt tcgtttaagc tttaagatag tgaggaacaa atttttccca 3540 aacaattttc cccctttag agcagaaccg agggagagat aggactacat agcgaaaagg 3600 gaaaacaagt ggtggcggac gaggagagaa gaagcaaatc gaataatcga agcaacaaca 3660 acaacaacaa aaaaactgca accgggttca ctaaacccag ggggcagctc agtagcaaac 3720 tactacttaa ataactactt tcttatggca aattatggca agagcagtcg tgatgggttc 3780 gateagtate catetgaceg gageagetga acceptiteat gageagetge tgeaatacae 3840 cacgacccgt acacacagta acacactttt tatagcttta cactaacaac cactctcccc 3900 acgetectet teccettece etceacacag acageagege egittgtage aggatetact 3960 acceptgcggt ttggtatggc ggccaacaac actaaacacc acacatctac taaaacacac 4020 cggaacaata aacaaatgtt aaacttacta tatqaatata catctagacg catatatacg 4080 catgaactac tacttcccct cgtggtctga caaaaacaca ttaccttgtc cccccttccc 4140 cctccgggtt gcttaccacc actgaccccc agtatgaatt tgttccataa taacgcttcg 4200 taactcgct 4209

```
<210> 23
<211> 2557
<212> ADN
<213> Anopheles gambiae souche KISUMU
```

<400> 23

aatgaatgcg cattgttgcg atagattgaa tttccttggt tgttgttqtt gttgqttttc 60 ttttgacatg tttgtgtgtt gttttttctt tctctctct tctctctgtg gttccaacat 120 ttcagacgca ttttttacac catatatagg tcacgqtqag tccqtacqaa ttataqatqc 180 cgagttgggc acgctcgagc atgtccacag tggagcaacg ccgcqgcgac gcggtctgac 240 gaggcgcgag tccaactcgg gtaagtacgc gattggaagt ggggggacgt ttaccctqcc 300 gtgtactaca atgcacttta cccccacgca cacgcaccgg cagacgcgaa cgacaacgat 360 ccgctggtgg tcaacacgga taaggggcgc atccgcggca ttacggtcga tgcgcccagc 420 ggcaagaagg tggacgtgtg gctcggcatt ccctacgccc agccgccggt cgggccgtta 480 cggttccgtc atccgcggcc ggccgaaaag tggaccggcg tgctqaacac qaccacaccg 540 cccaacaget gegtgeagat egtggacace gtgtteggeg actteceggg egegaceatg 600 tggaacccga acacgcccct gtccgaggac tgtctgtaca ttaacgtggt ggcaccgcga 660 ccccggccca agaatgcggc cgtcatgctg tggatcttcg gcggcggctt ctactccggc 720 accgccaccc tggacgtgta cgaccaccgg gcgcttgcgt cggaggagaa cgtgatcgtg 780 gtgtcgctgc agtaccgcgt ggccagtctg ggcttcctgt ttctcgqcac cccqqaaqcq 840 ccgggcaatg cgggactgtt cgatcagaac cttgcgctac ggtaggtgtc tttgcatggg 900 tgaatgaggg tatagtattc taacgaggtg ctcttcttcc catcacttct tgggagtcag 960 ctgggtgegg gacaacattc accggttegg tggtgatecg tegegtgtga cactgttegg 1020 cgagagtgcc ggtgccgtct cggtgtcgct gcatctgctg tccgccctgt cccgcgatct 1080 gttccagcgg gccatcctgc agagcggctc gccgacggca ccgtgggcat tggtatcgcg 1140 cgaggaagcc acgctaaggt acgtgccagc tgctgctttc cccaaaccac caacccgcga 1200 cagctcacac aaccetettt teettegete tttteteget ecagageaet geggttggee 1260 gaggcggtcg gctgcccgca cgaaccgagc aagctgagcg atgcggtcga gtgtctgcgc 1320 ggcaaggate egeaegtget ggtcaacaac gagtggggca egeteggeat ttgegagtte 1380 ccgttcgtgc cggtggtcga cggtgcgttc ctggacgaga cgccgcagcg ttcgctcgcc 1440 agcgggcgct tcaagaagac ggagatcctc accggcagca acacggagga gggctactac 1500 ttcatcatct actacctgac cgagctgctg cgcaaggagg agggcgtgac cgtgacgcgc 1560 gaggagttcc tgcaggcggt gcgcgagctc aacccgtacg tgaacggggc ggcccggcag 1620 gcgatcgtgt tcgagtacac cgactggacc gagccggaca acccgaacag caaccgggac 1680

gcgctggaca agatggtggg cggtacgccg aggagggcaa aacccgtggc cgcgctggac gaaccgctca accccacct atgcgatact ggtctaactt cagcagagtg tcgatcgctc ggccagcagc gaattccccg gctgggcct aacacgtcct gaagaagtac cttccccagc cctctcccgc atcctcaaca acgtcttt tccccaaaac gaagcagcg catttttta gcgaccgtca gatcataca taagatagtg aggaacaaat gagggagaga	caacgtctac gggcgtgatg cggctacacc tgccaaaacc taacgccttc agtggcccaa tcgtcggtcg tagttgcagc gggtccaggt agcgaaccta ccgacctgat ataattacta tttcctaac	atgtatctgt cacggcgacg gaggacgaga gggtaagtgt tctcttcaac gcacaccgcc gggcccacgg tacctgtaag tgcaataaca ccagggccag ctgatcgtgc ccccatccat caatttccca	acacgcaccg agatcaacta aagactttag gtgtgtgtgt agcaatccaa cacggacggc ttgaggcagt tctcgtgcag aatgtatctc caccgcccag tgctggtgtc ggcctagttc	cagcaaaggc cgtgttcggc ccggaagatc gtgtgtcaaa atcccaacac actatctgga gtgccttctg cgcttgaaat tctctctct tgaaccgtgc gctgcttacg ttttaagctt	1800 1860 1920 1980 2040 2100 2160 2220 2280 2340 2400 2460
<210> 24 <211> 273 <212> ADN <213> Culex pipiens s	ouche S-LAB				
<pre><400> 24 attgaaccgg acaacccgaa cacttcacct gcaacgtgaa ttcatgtacc tgtacacgca atgcacggcg acgagatcaa caggacgacg agaaggactt</pre>	cgaattcgcc cagaagcaaa ctacgtgttt	cagcggtacg ggaaatccct ggcgaaccgc	ccgaggaggg ggccgaggtg	caacaacgtg gaccggcgtg	120 180
<210> 25 <211> 273 <212> ADN <213> Culex pipiens s	ouche SR				
<400> 25 atcgaaccgg acaacccgaa cacttcacct gcaacgtgaa ttcatgtacc tgtacacgca atgcacggcg acgagatcaa caggacgacg agaaggactt	cgagttcgcc cagaagcaaa ctacgtgttt	cagcggtacg ggaaatccct ggcgaaccgc	ccgaggaggg ggccgaggtg	caacaatgtg gactggcgtg	120 180
<210> 26 <211> 273 <212> ADN <213> Aedes aegypti					
<400> 26 actgaaccgg aaaatcccaa cacttcacgt gtaatgtgaa tacatgtatc tgtacactca atgcatggtg acgagatcaa atggaggatg aaaaagactt	tgagtttgcc tagaagcaaa ttatgtgttc	cagcgatatg ggtaacccct ggtgagcctc	cagaagaagg ggccacggtg	caacaatgtg gaccggtgtg	120 180

<210> 27 <211> 273 **27** ·

<212> ADN <213> Aedes albopictus <400> 27 actgaaccag agaatcccaa cagcaatcgg gatgcgttgg acaaaatggt gggagattat 60 catttcacct gcaacgtgaa cgagtttgcc cagcgatatg cggaagaggg caacaacgtg 120 tacatgtatt tgtacactca cagaagcaaa ggtaaccctt ggccacggtg gaccggggtg 180 atgcatggtg acgagatcaa ctatgtattc ggtgagccgt tgaattccga cctggggtac 240 atggacgatg agaaagattt cagtagaaag ata <210> 28 <211> 273 <212> ADN <213> Anopheles darlingi <400> 28 acagaaccgg acaacccgaa cagtaaccgg gacgcgctgg acaagatggt cggtgattat 60 cacttcacgt gtaacgtcaa tgagtttgcg cagcggtacg ccgaggaggg caacaacgtc 120 tacatgtatc tgtacacgca ccgtagcaaa ggcaacccgt ggccccgctg gaccggggtg 180 atgcatggtg atgagattaa ctacgtgttc ggtgaaccgc tcaacccgac gctcggttac 240 accgacgatg agaagggttt cagccggaag att <210> 29 <211> 273 <212> ADN <213> Anopheles sundaicus <400> 29 accgagccgg acaacccgaa cagcaaccga gacgcgctgg acaagatggt cggcgactat 60 cacttcacct gcaacgtcaa cgagttcgcc cagcggtacg ccgaggaggg caacaacgtc 120 tacatgtatc tgtacacgca ccgaagcaaa ggcaacccgt ggccacgctg gacgggtgtg 180 atgcacggtg acgagattaa ttacgtgttt ggagagccgc ttaaccccac gctcggatac 240 accgaggacg agaaggactt tagccggaag atc 273 <210> 30 <211> 273 <212> ADN <213> Anopheles minimus <400> 30 accgaaccag ataatccgaa cagcaaccgg gacgcactgg acaagatggt gggcgactac 60 catttcacct gtaacgtgaa cgagttcgca cagcggtacg ccgaggaggg caacaatgta 120 tacatgtacc tgtacacgca ccgaagcaaa ggcaacccgt ggccacgctg gaccggcgtt 180 atgcacggtg acgagattaa ctacgtgttc ggggaaccgc tcaacccaag cctcggctac 240 accgaagacg agaaagactt tagccggaag atc <210> 31 <211> 273 <212> ADN <213> Anopheles moucheti <400> 31 accgaaccag ataatccgaa cagcaaccgg gacgcactgg acaagatggt gggcgactac 60 catttcacct gtaacgtgaa cgagttcgca cagcggtacg ccgaggaggg caacaatgta 120

tacatqtacc tqtacacqca ccgaagcaaa ggcaacccgt ggccacgctg gaccgqcqtt 180 atgcacggtg acgagattaa ctacgtgttc ggggaaccgc tcaacccaag cctcggctac 240 accgaagacg agaaagactt tagccggaag atc <210> 32 <211> 273 <212> ADN <213> Anopheles arabiensis <400> 32 accgagccgg acaacccgaa cagcaaccgg gacgcgttgg acaagatggt gggcgactat 60 cacttcacct gcaacgtgaa cgagttcgcg cagcggtacg ccgaggaggg caacaacgtc 120 tacatgtate tgtacacgca cegeageaaa ggeaaceegt ggeegegetg gaegggegtg 180 atgeaeggeg aegagateaa etaegtgtte ggegaaeege teaaeeeeae eeteggetae 240 accgaggacg agaaagactt tagccggaag atc <210> 33 <211> 273 <212> ADN <213> Anopheles funestus <400> 33 accgageegg acaaceegaa cageaacegt gaegegeteg acaaaatggt gggegaetat 60 catttcacct gcaacgtgaa cgagttcgcc cagcggtacg ccgaggaggg caacaatgta 120 tacatgtacc tgtacacgca ccgaagcaaa ggcaacccat ggccacgctg gacgggcgtt 180 atgcacggtg atgagattaa ctatgtgttc ggggaaccgc tcaatcccag cctcggctac 240 accgaggacg agaaagactt tagccggaag atc 273 <210> 34 <211> 273 <212> ADN <213> Anopheles pseudopunctipennis <400> 34 accgagccgg acaacccgaa cagcaaccgg gacgcgctgg acaagatggt gggcgactac 60 cacttcacgt gcaacgtgaa cgagttcgcc cagcgctacg ccgaagaggg caacaacgtg 120 tacatgtate tgtacaegea eegaageaaa ggcaaeeegt ggeegegetg gaeeggegte 180 atgcatgggg acgagattaa ctacgtgttt ggggaaccgc ttaacccggg gctcggctat 240 accgaggacg agaaggactt tagccgcaag atc <210> 35 <211> 273 <212> ADN <213> Anopheles sacharovi <400> 35 accgaqccgg acaacccgaa cagcaaccgg gacgcgctgg acaagatggt cggtgactac 60 cacttcacct gcaacgtgaa cgagttcgcg cagcggtacg ccgaggaggg caacaacgtc 120 tacatgtacc tgtacacgca caggagcaaa ggcaacccat ggccgcgctg gaccggcgtc 180 atgcatggcq acgagatcaa ctacgtgttc ggcgaaccgc tcaatcccag cctaggctac 240 accgatgacg agaaagactt tagccggaag att 273

<210> 36 <211> 273 <212> ADN <213> Anopheles steph	ensi				
<400> 36 accgaaccgg acaatccgaa catttcacgt gcaacgtgaa tacatgtatc tgtacacgca atgcatgggg acgaaattaa accgacgacg agaaagactt	cgagttcgca ccgaagcaaa ctacgtgttc	cagcgatacg ggcaatccgt ggggaaccgc	ccgaggaggg ggccacgctg	caacaatgtg gaccggcgtt	120 180
<210> 37 <211> 273 <212> ADN <213> Anopheles albim	anus				
<pre><400> 37 acggagccgg acaatccgaa cactttacgt gcaacgtcaa tacatgtatc tgtatacgca atgcatggcg atgagatcaa accgacgacg agaagggctt</pre>	cgagttcgcg ccgcagcaaa ctacgtgttt	cageggtaeg ggcaateegt ggtgaaeege	ccgaggaggg ggccccgttg	caacaacgtc gacgggcgtg	120 180
<210> 38 <211> 273 <212> ADN <213> Anopheles nili					
<400> 38 accgagccgg ataacccgaa cacttcacgt gcaacgtgaa tacatgtacc tctacacgca atgcacggtg acgagatcaa accgaggacg agaaggactt	cgagttcgcc ccggagcaaa ctacgtgttc	cageggtaeg ggcaateeet ggggaaeege	ccgaggaggg ggccgcgttg	caacaacgtc gacgggcgtc	120 180
<210> 39 <211> 24 <212> ADN <213> Séquence artifi	cielle				
<400> 39 atmgwgttyg agtacacsga	ytgg				24
<210> 40 <211> 24 <212> ADN <213> Séquence artifi	cielle				
<400> 40 ggcaaarttk gwccagtatc	kcat				24

<210> <211> <212> <213>	20	
<220> <223>	Description de la séquence artificielle:amorce	
<400> ggygc	41 sacma tgtggaaycc	20
<210> <211> <212> <213>	24	
<220> <223>	Description de la séquence artificielle:amorce	
<400> accamı	42 ratca cgttytcytc cgac	24
<210> <211> <212> <213>	23	
<220> <223>	Description de la séquence artificielle:amorce	
<400> tacato	43 caacg tggtcgtgcc acg	23
<210> <211> <212> <213>	19	
<220> <223>	Description de la séquence artificielle:amorce	
<400> gtcace	44 ggttg ctgttcggg	19
<210><211><211><212><213>	16	
<220> <223>	Description de la séquence artificielle:amorce	
<400> cgacg	45 ccacc ttcaca	16

	31	
<210><211><211><212>	20	
	Séquence artificielle	
<220> <223>	Description de la séquence artificielle:amorce	
<400> gatggd	46 eccgc tggaacagat	20
<210> <211> <212>	20	
	Séquence artificielle	
<220> <223>	Description de la séquence artificielle:amorce	
<400> gggtgd	47 eggga caacattcac	20
<210> <211>	17	
<212> <213>	Séquence artificielle	
<220> <223>	Description de la séquence artificielle:amorce	
<400> ccccga	48 accga cgaagga	17
<210><211><211><212><213>	20	
<220>		
<223> <400>	Description de la séquence artificielle:amorce	
	gtggg cgactatcac	20
<210> <211>	20	
<212> <213>	ADN Séquence artificielle	
<220> <223>	Description de la séquence artificielle:amorce	

<400> 50 ctcgtccgcc accacttgtt

20

<210> 51 <211> 58.5 <212> PRT <213> Ciona intestinalis <400> 51 Leu Pro Arg Tyr Gly Ser Val Arg Gly Lys His Val Glu Ser Pro Pro Arg His Gln Arg Ile Ala Ala Phe Leu Gly Ile Pro Phe Ala Ser Pro Pro Val Gly Glu Leu Arg Phe Ala Ala Pro Gln Pro Pro Leu Ser Trp Glu Pro Asp Val Arg Gln Thr Thr Glu Phe Gly Asn Ser Cys Val Gln 55 Ile Asp Asp Glu Val Phe Gly Asn Phe Arg Glu Met Trp Asn Ala Pro Asn Leu Lys Ser Glu Asp Cys Leu Tyr Leu Asn Ile Trp Thr Pro Arg Ile Pro Thr Ser Thr Arg Ser Gln Pro Leu Ala Val Met Val Trp Ile 105 Tyr Gly Gly Ser Phe Tyr Ser Gly Thr Thr Ala Leu Ala Leu Tyr Asp 120 Gly Arg Tyr Leu Ala Ala Gln Gly Gly Val Val Val Ser Ile Asn 135 Tyr Arg Leu Gly Pro Leu Gly Phe Leu Ala Pro Leu Ala Gly Thr Pro 150 Gly Asn Ala Gly Leu Leu Asp Gln Gln Leu Ala Leu Lys Trp Val Arg 170 Asp Asn Ile Arg Ala Phe Gly Gly Asn Pro Asp Asn Val Thr Leu Met 180 Gly Glu Ser Ala Gly Ala Ala Ser Ile Gly Leu His Thr Val Ala Pro 200 Ser Ser Arg Gly Leu Phe Asn Arg Val Ile Phe Gln Ser Gly Asn Gln 210 Met Thr Pro Trp Ser Thr Ile Ser Leu Pro Thr Ser Leu Asn Arg Thr 230 235 Arg Ile Leu Ala Ala Asn Leu Arg Cys Pro Asn Pro Arg Thr Ser Ser

245

Thr Glu Ser Met Asp Leu Trp Asp Arg Ser Phe Lys Ala Tyr Ser Lys 565 570 575

Asp Gly Lys Gln Ser Ser Cys Pro Asn 580 585

<210> 52

<211> 583

<212> PRT

<213> Ciona savignyi

<400> 52

Gly Ser Ile Gln Gly Lys His Val Glu Val Thr Ala His Arg Gln Arg 1 5 10 15

Tyr Gly Arg Val Ala Thr Phe Gln Gly Ile Pro Phe Ala Gln Pro Pro
20 25 30

Val Gly Glu Leu Arg Phe Ala Ala Pro Gln Pro Pro Leu Ser Trp Glu
35 40 45

Pro Asp Val Lys Met Thr Ser Glu Phe Gly Asn Ser Cys Ile Gln Glu 50 55 60

Asp Asp Leu Val Phe Gly Asn Phe Thr Gly Gly Ser Gln Met Trp Asn 65 70 75 80

Ser Pro Asn Ala Lys Ser Glu Asp Cys Leu Tyr Leu Asn Val Trp Thr 85 90 95

Pro Val Arg Ser Arg His Ala Glu Pro Leu Ala Val Leu Val Trp Ile 100 105 110

Tyr Gly Gly Ser Tyr Tyr Ser Gly Thr Ser Ser Leu Ala Leu Tyr Asp 115 120 125

Gly Arg Tyr Leu Ala Ala Thr Gly Gly Val Val Val Ser Leu Asn

130 135 140

Tyr Arg Leu Gly Pro Ile Gly Phe Leu Ala Pro Leu Ala Asp Glu Thr 145 150 155 160

Pro Gly Asn Val Gly Leu Leu Asp Gln Gln Leu Ala Leu Lys Trp Val 165 170 175

Arg Asp Asn Ile Arg Glu Phe Gly Gly Asn Pro Asn Asn Val Thr Val 180 185 190

Met Gly Glu Ser Ala Gly Ala Ala Ser Ile Gly Leu His Thr Ile Ala 195 200 205

Pro Ser Ser Arg Gly Leu Phe Ser Arg Val Ile Leu Gln Ser Gly Asn 210 215 220

Gln Met Thr Pro Trp Ser Thr Ile Ser Leu Glu Thr Ser Leu Asn Arg Thr Arg Thr Leu Ala Ala Asn Leu Asn Cys Pro Lys Pro Arg Thr Ala Ser Glu Ala Asp Ile Leu Ala Cys Leu Arg Thr His Thr Ala Asn Glu Val Phe Ala Gly Ser Trp Ile Thr Lys Glu Ile Phe Asp Phe Pro Phe Val Pro Val His Gly Thr Thr Phe Leu Pro Glu His Pro His Glu Val Thr Arg Arg Gly Asp Gln Ala Glu Val Asp Val Leu Ala Gly Tyr Asn Thr Asn Glu Gly Ser Tyr Phe Thr Ile Tyr Thr Val Pro Gly Tyr Asn Ile Thr Thr Asn Ser Val Leu Asn Arg Arg Gln Tyr Leu Ala Gly Val Asp Leu Ser Gly Leu Lys Thr Asn Thr Met Gly Arg Ser Ala Ala Ala Phe Met Tyr Thr Asp Trp Glu Asn Leu Asp Asn Glu Leu Gln Tyr Arg 375 Asp Ala Val Asn Glu Ile Val Gly Asp Phe His Val Val Cys Pro Thr Val Leu Val Ser Lys Arg His Ser Asn Ser Phe Pro Asn Arg Asn Val Phe Leu Tyr His Leu Ser Tyr Arg Val Ser Thr Asn Pro Trp Pro Ile Trp Met Gly Val Met His Gly Tyr Glu Ile Glu Leu Met Phe Gly Thr Pro Trp Phe Gly Asn Ser Lys Phe Thr Arg Gly Tyr Ser Asp Leu Asp Arg Ser Val Ser Arg Arg Met Val Arg Tyr Trp Thr Asn Phe Ala Lys 470 Phe Gly Asn Pro Asn Gly Leu Arg Asn Gln Asn Gln Glu Leu Val Ser 490 Asp Trp Pro Arg Phe Asn Asp Val Thr Gln Arg Tyr Leu Glu Ile Ala Asp Asp Asp Val Thr Met Ala Pro Phe Pro Asp Ser Phe Arg Cys Ala 520

Phe Trp Gln Lys Tyr Leu Pro Ser Leu Gln Leu Ala Ser Ser Asn Met 530 540

Asp Glu Val Glu Thr Lys Trp Lys Ile Glu Phe His Arg Trp Ser Glu 545 550 555 560

Ser Met Asp Leu Trp Asp Arg Ser Phe Lys Ala Tyr Ser Ser Asp Asp 565 570 575

Lys Gln Asn Ser Cys Pro Asn 580

<210> 53

<211> 645

<212> PRT

<213> Anopheles gambiae

<400> 53

Met Ala Ser Ala Tyr Tyr His Gln Ser Ala Val Gly Val Gly Asn Val 1 5 15

Leu Val Leu Leu Gly Ala Thr Val Ile Cys Pro Ala Tyr Ala Ile 20 25 30

Ile Asp Arg Leu Val Val Gln Thr Ser Ser Gly Pro Ile Arg Gly Arg
35 40 45

Ser Thr Met Val Gln Gly Arg Glu Val His Val Phe Asn Gly Val Pro 50 55 60

Phe Ala Lys Pro Pro Val Asp Ser Leu Arg Phe Lys Lys Pro Val Pro 65 70 75 80

Ala Glu Pro Trp His Gly Val Leu Asp Ala Thr Arg Leu Pro Pro Ser 85 90 95

Cys Ile Gln Glu Arg Tyr Glu Tyr Phe Pro Gly Phe Ala Gly Glu Glu 100 105 110

Met Trp Asn Pro Asn Thr Asn Val Ser Glu Asp Cys Leu Tyr Leu Asn 115 120 125

Ile Trp Val Pro Thr Lys Thr Arg Leu Arg His Gly Arg Gly Leu Asn 130 135 140

Phe Gly Ser Asn Asp Tyr Phe Gln Asp Asp Asp Phe Gln Arg Gln 145 150 155 160

His Gln Ser Lys Gly Gly Leu Ala Met Leu Val Trp Ile Tyr Gly Gly 165 170 175

Gly Phe Met Ser Gly Thr Ser Thr Leu Asp Ile Tyr Asn Ala Glu Ile 180 185 190

Leu Ala Ala Val Gly Asn Val Ile Val Ala Ser Met Gln Tyr Arg Val
195 200 205

Gly Ala Phe Gly Phe Leu Tyr Leu Ala Pro Tyr Ile Asn Gly Tyr Glu Glu Asp Ala Pro Gly Asn Met Gly Met Trp Asp Gln Ala Leu Ala Ile Arg Trp Leu Lys Glu Asn Ala Lys Ala Phe Gly Gly Asp Pro Asp Leu Ile Thr Leu Phe Gly Glu Ser Ala Gly Gly Ser Ser Val Ser Leu His Leu Leu Ser Pro Val Thr Arg Gly Leu Ser Lys Arg Gly Ile Leu Gln Ser Gly Thr Leu Asn Ala Pro Trp Ser His Met Thr Ala Glu Lys Ala Leu Gln Ile Ala Glu Gly Leu Ile Asp Asp Cys Asn Cys Asn Leu Thr Met Leu Lys Glu Ser Pro Ser Thr Val Met Gln Cys Met Arg Asn Val Asp Ala Lys Thr Ile Ser Val Gln Gln Trp Asn Ser Tyr Ser Gly Ile Leu Gly Phe Pro Ser Ala Pro Thr Ile Asp Gly Val Phe Met Thr Ala Asp Pro Met Thr Met Leu Arg Glu Ala Asn Leu Glu Gly Ile Asp Ile Leu Val Gly Ser Asn Arg Asp Glu Gly Thr Tyr Phe Leu Leu Tyr Asp Phe Ile Asp Tyr Phe Glu Lys Asp Ala Ala Thr Ser Leu Pro Arg Asp Lys Phe Leu Glu Ile Met Asn Thr Ile Phe Asn Lys Ala Ser Glu Pro 425 Glu Arg Glu Ala Ile Ile Phe Gln Tyr Thr Gly Trp Glu Ser Gly Asn 440 Asp Gly Tyr Gln Asn Gln His Gln Val Gly Arg Ala Val Gly Asp His 455 Phe Phe Ile Cys Pro Thr Asn Glu Phe Ala Leu Gly Leu Thr Glu Arg 475 470 Gly Ala Ser Val His Tyr Tyr Tyr Phe Thr His Arg Thr Ser Thr Ser 485 490 Leu Trp Gly Glu Trp Met Gly Val Leu His Gly Asp Glu Val Glu Tyr 505

Ile	Phe	Gly 515	Gln	Pro	Met	Asn	Ala 520	Ser	Leu	Gln	Tyr	Arg 525	Gln	Arg	Glu	
Arg	Asp 530	Leu	Ser	Arg	Arg	Met 535	Val	Leu	Ser	Val	Ser 540	Glu	Phe	Ala	Arg	
Thr 545	Gly	Asn	Pro	Ala	Leu 550	Glu	Gly	Glu	His	Trp 555	Pro	Leu	Tyr	Thr	Arg 560	
Glu	Asn	Pro	Ile	Tyr 565	Phe	Ile	Phe	Asn	Ala 570	Glu	Gly	Glu	Asp	Asp 575	Leu	
Arg	Gly	Glu	Lys 580	Tyr	Gly	Arg	Gly	Pro 585	Met	Ala	Thr	Ser	Cys 590	Ala	Phe	
Trp	Asn	Asp 595	Phe	Leu	Pro	Arg	Leu 600	Arg	Ala	Trp	Ser	Val 605	Pro	Leu	Lys	
Asp	Pro 610	Cys	Lys	Leu	Asp	Asp 615	His	Thr	Ser	Ile	Ala 620	Ser	Thr	Ala	Arg	
Ala 625	Ala	Pro	Thr	Val	Ala 630	Leu	Leu	Ile	Ala	Leu 635	Ser	Leu	Ala	Val	Ala 640	
Arg	Leu	Val	Ala	Ala 645												
<21:	0> 5- 1> 20 2> Al 3> So	O DN	nce :	arti:	fici	elle										
<22 <22		escr.	ipti	on d	e la	séq	uenc	e ar	tifi	ciel	le:a	morc	е			
						•										
<40	0> 5	4														
cca	cacg	cca (gaag	aaaa	ga											20
<21	0> 5	5														
<21	1> 1	9														
<21	2> A	DN						-								
<21	3> S	éque	nce	arti	fici	elle										
<22 <22		escr	ipti	on d	e la	séq	uenc	e ar	tifi	ciel	le:a	morc	e			
<40	0> 5	5														
aaa	aacg	gga	acgg	gaaa	g											19
	0> 5															
	1> 2															
	2> A			_												
<21	3> C	ulex	pip	iens	sou	che	SR									

<220> <221> CDS <222> (1)..(2106) <400> 56 atg gag atc cga ggc cta ata acc cga tta ctg ggt cca tgt cac ctq 48 Met Glu Ile Arg Gly Leu Ile Thr Arg Leu Leu Gly Pro Cys His Leu 10 cga cat ctg ata ctg tgc agt ttg ggg ctg tac tcc atc ctc gtg cag 96 Arg His Leu Ile Leu Cys Ser Leu Gly Leu Tyr Ser Ile Leu Val Gln tcg gtc cat tgc cgg cat cat gac atc ggt agt tcg gtg gca cac cag Ser Val His Cys Arg His His Asp Ile Gly Ser Ser Val Ala His Gln cta gga tcg aaa tac tca caa tca tcc tcg tta tcg tca tcc tcg caa 192 Leu Gly Ser Lys Tyr Ser Gln Ser Ser Ser Leu Ser Ser Ser Ser Gln 55 tcg tca tcg tcg tta gct gaa gag gcc acg ctg aat aaa gat tca gat 240 Ser Ser Ser Leu Ala Glu Glu Ala Thr Leu Asn Lys Asp Ser Asp 70 gca ttt ttt aca cca tat ata ggt cac gga gat tct gtt cga att gta 288 Ala Phe Phe Thr Pro Tyr Ile Gly His Gly Asp Ser Val Arg Ile Val gat gcc gaa tta ggt aca tta gag cgc gag cat atc cat agc act acg 336 Asp Ala Glu Leu Gly Thr Leu Glu Arg Glu His Ile His Ser Thr Thr acc egg egg egt gge etg acc egg agg gag tec age tec gat gec acc 384 Thr Arg Arg Arg Gly Leu Thr Arg Arg Glu Ser Ser Ser Asp Ala Thr 120 gac tog gac coa ctg gta ata acg acg gac aag ggc aaa atc cgt gga 432 Asp Ser Asp Pro Leu Val Ile Thr Thr Asp Lys Gly Lys Ile Arg Gly acg aca ctg gaa gcg cca agt gga aag aag gtg gac gca tgg atg ggc 480 Thr Thr Leu Glu Ala Pro Ser Gly Lys Lys Val Asp Ala Trp Met Gly att ccg tac gcg cag ccc ccg ctg ggt ccg ctc cgg ttt cga cat ccg 528 Ile Pro Tyr Ala Gln Pro Pro Leu Gly Pro Leu Arg Phe Arg His Pro cga ccc gcc gaa aga tgg acc ggt gtg ctg aac gcg acc aaa cca ccc 576 Arg Pro Ala Glu Arg Trp Thr Gly Val Leu Asn Ala Thr Lys Pro Pro aac tee tge gte eag ate gtg gae ace gtg tte ggt gae tte eeg gge 624 Asn Ser Cys Val Gln Ile Val Asp Thr Val Phe Gly Asp Phe Pro Gly

													tgt Cys			672
													gct Ala			720
													acg Thr			768
													atc Ile 270			816
													ctg Leu			864
													ctg Leu			912
													ccc Pro			960
gtc Val	aca Thr	ctg Leu	ttc Phe	ggc Gly 325	gag Glu	agc Ser	gcc Ala	gga Gly	gcg Ala 330	gtc Val	tcg Ser	gtt Val	tcg Ser	ctg Leu 335	cac His	1008
ctg Leu	ctg Leu	tcg Ser	gcg Ala 340	ctc Leu	tcg Ser	cgg Arg	gac Asp	ctg Leu 345	ttc Phe	cag Gln	cgg Arg	gcc Ala	atc Ile 350	ctc Leu	cag Gln	1056
agt Ser	ggc Gly	tcc Ser 355	ccg Pro	acg Thr	gcc Ala	cca Pro	tgg Trp 360	gcg Ala	ctg Leu	gtt Val	tcg Ser	cgc Arg 365	gaa Glu	gaa Glu	gct Ala	1104
													ccg Pro			1152
gcg Ala 385	acc Thr	aag Lys	ctg Leu	agc Ser	gat Asp 390	gcc Ala	gtc Val	gaa Glu	tgt Cys	ctg Leu 395	cga Arg	acc Thr	aag Lys	gat Asp	ccg Pro 400	1200
aac Asn	gag Glu	ctg Leu	gtc Val	gac Asp 405	aat Asn	gag Glu	tgg Trp	ggc Gly	acg Thr 410	ctg Leu	Gly	atc Ile	tgc Cys	gag Glu 415	ttt Phe	1248
ccg Pro	ttc Phe	gtt Val	ccg Pro 420	gtt Val	gtg Val	gac Asp	ggt Gly	gcc Ala 425	ttc Phe	ctc Leu	gat Asp	gag Glu	aca Thr 430	ccg Pro	cag Gln	1296

					ggt Gly											1344
_					ggt Gly										-	1392
					gaa Glu 470											1440
					ttg Leu											1488
					tac Tyr											1536
					ctc Leu											1584
					ttc Phe											1632
					tac Tyr 550											1680
					atg Met			_								1728
					gcc Ala											1776
					cga Arg											1824
					ccg Pro											1872
	gcc				cac											1920
625	Āla	His	Gly	Arg	His 630	Tyr	Leu	GIU	Leu	635	ьeu	ASN	THE	Thr	Phe 640	

				gta Val												2016
				tgc Cys												2064
			_	aca Thr				-	-					taa		2109
<211 <212	0> 57 l> 7(2> PI B> Cu)2 RT	pipi	iens	souc	che S	SR									
)> 57 Glu		Arg	Gly 5	Leu	Ile	Thr	Arg	Leu 10	Leu	Gly	Pro	Суз	His 15	Leu	
Arg	His	Leu	Ile 20	Leu	Cys	Ser	Leu	Gly 25	Leu	Tyr	Ser	Ile	Leu 30	Val	Gln	
Ser	Val	His 35	Суз	Arg	His	His	Asp 40	Ile	Gly	Ser	Ser	Val 45	Ala	His	Gln	
Leu	Gly 50	Ser	Lys	Tyr	Ser	Gln 55	Ser	Ser	Ser	Leu	Ser 60	Ser	Ser	Ser	Gln	
Ser 65	Ser	Ser	Ser	Leu	Ala 70	Glu	Glu	Ala	Thr	Leu 75	Asn	Lys	Asp	Ser	Asp 80	
Ala	Phe	Phe	Thr	Pro 85	Tyr	Ile	Gly	His	Gly 90	Asp	Ser	Val	Arg	Ile 95	Val	
Asp	Ala	Glu	Leu 100	Gly	Thr	Leu	Glu	Arg 105	Glu	His	Ile	His	Ser 110	Thr	Thr	
Thr	Arg	Arg 115	Arg	Gly	Leu	Thr	Arg 120	Arg	Glu	Ser	Ser	Ser 125	Asp	Ala	Thr	
Asp	Ser 130	Asp	Pro	Leu	Val	Ile 135	Thr	Thr	Asp	Lys	Gly 140	Lys	Ile	Arg	Gly	
Thr 145	Thr	Leu	Glu	Ala	Pro 150	Ser	Gly	Lys	Lys	Val 155	Asp	Ala	Trp	Met	Gly 160	
Ile	Pro	Tyr	Ala	Gln 165	Pro	Pro	Leu	Gly	Pro 170	Leu	Arg	Phe	Arg	His 175	Pro	
Arg	Pro	Ala	Glu 180	Arg	Trp	Thr	Gly	Val 185	Leu	Asn	Ala	Thr	Lys 190	Pro	Pro	
Asn	Ser	Cys 195	Val	Gln	Ile	Val	Asp 200	Thr	Val	Phe	Gly	Asp 205	Phe	Pro	Gly	

Ala Thr Met Trp Asn Pro Asn Thr Pro Leu Ser Glu Asp Cys Leu Tyr Ile Asn Val Val Pro Arg Pro Arg Pro Lys Asn Ala Ala Val Met Leu Trp Ile Phe Gly Gly Ser Phe Tyr Ser Gly Thr Ala Thr Leu Asp Val Tyr Asp His Arg Thr Leu Ala Ser Glu Glu Asn Val Ile Val Val Ser Leu Gln Tyr Arg Val Ala Ser Leu Gly Phe Leu Phe Leu Gly Thr Pro Glu Ala Pro Gly Asn Ala Gly Leu Phe Asp Gln Asn Leu Ala Leu Arg Trp Val Arg Asp Asn Ile His Arg Phe Gly Gly Asp Pro Ser Arg 315 Val Thr Leu Phe Gly Glu Ser Ala Gly Ala Val Ser Val Ser Leu His Leu Leu Ser Ala Leu Ser Arg Asp Leu Phe Gln Arg Ala Ile Leu Gln 345 Ser Gly Ser Pro Thr Ala Pro Trp Ala Leu Val Ser Arg Glu Glu Ala Thr Leu Arg Ala Leu Arg Leu Ala Glu Ala Val Asn Cys Pro His Asp 375 Ala Thr Lys Leu Ser Asp Ala Val Glu Cys Leu Arg Thr Lys Asp Pro Asn Glu Leu Val Asp Asn Glu Trp Gly Thr Leu Gly Ile Cys Glu Phe 410 Pro Phe Val Pro Val Val Asp Gly Ala Phe Leu Asp Glu Thr Pro Gln Arg Ser Leu Ala Ser Gly Arg Phe Lys Lys Thr Asp Ile Leu Thr Gly Ser Asn Thr Glu Glu Gly Tyr Tyr Phe Ile Ile Tyr Tyr Leu Thr Glu 450 Leu Leu Arg Lys Glu Glu Gly Val Thr Val Thr Arg Glu Glu Phe Leu 475 Gln Ala Val Arg Glu Leu Asn Pro Tyr Val Asn Gly Ala Ala Arg Gln 485 Ala Ile Val Phe Glu Tyr Thr Asp Trp Ile Glu Pro Asp Asn Pro Asn 500 505

Ser Asn Arg Asp Ala Leu Asp Lys Met Val Gly Asp Tyr His Phe Thr 520 Cys Asn Val Asn Glu Phe Ala Gln Arg Tyr Ala Glu Glu Gly Asn Asn Val Phe Met Tyr Leu Tyr Thr His Arg Ser Lys Gly Asn Pro Trp Pro Arg Trp Thr Gly Val Met His Gly Asp Glu Ile Asn Tyr Val Phe Gly Glu Pro Leu Asn Ser Ala Leu Gly Tyr Gln Asp Asp Glu Lys Asp Phe Ser Arg Lys Ile Met Arg Tyr Trp Ser Asn Phe Ala Lys Thr Gly Asn Pro Asn Pro Ser Thr Pro Ser Val Asp Leu Pro Glu Trp Pro Lys His 615 Thr Ala His Gly Arg His Tyr Leu Glu Leu Gly Leu Asn Thr Thr Phe Val Gly Arg Gly Pro Arg Leu Arg Gln Cys Ala Phe Trp Lys Lys Tyr Leu Pro Gln Leu Val Ala Ala Thr Ser Asn Leu Gln Val Thr Pro Ala 660 Pro Ser Val Pro Cys Glu Ser Ser Ser Thr Ser Tyr Arg Ser Thr Leu 680 Leu Leu Ile Val Thr Leu Leu Leu Val Thr Arg Phe Lys Ile 695

<210> 58

<211> 18

<212> ADN

<213> Séquence artificielle

<220>

<223> Description de la séquence artificielle:amorce

<400> 58

cgactcggac ccactggt

18

<210> 59

<211> 21

<212> ADN

<213> Séquence artificielle

<220>

<223> Description de la séquence artificielle:amorce

45 ·

	0> 59 ctgat		aaca	gece	cg c									21
-	_			.	,									
<21:	0> 60 L> 45 2> Al 3> Cu	59 DN	pip:	iens	pip:	iens	sou	che :	Espr	o (R)			
)> L> CI 2> (3		(458))										
ag q		aaa a								gcg (Ala 1				47
										cag Gln				95
										aga Arg				143
										cag Gln				191
										aac Asn		Asn		239
										gtg Val 90				287
										G] À gaa				335
									His	cgg Arg				383
										cgt Arg				431
					aca Thr									459
<21)> 61 L> 46 2> AI	51												
<213	3> Ci	ılex	pipi	iens	quir	nque	fasc:	iatu	s so	uche	Pro	R(S)		

	1> C	DS 3)	(458)												
ac a	0> 6 aag Lys 1	ggc a	aaa Lys	atc Ile	cgt Arg 5	gga Gly	acg Thr	aca Thr	ctg Leu	gaa Glu 10	gcg Ala	cct Pro	agt (Ser (gga (Gly :	aag Lys 15	47
aag Lys	gtg Val	gac Asp	gca Ala	tgg Trp 20	atg Met	ggc	att Ile	ccg Pro	tac Tyr 25	gcg Ala	cag Gln	ccc Pro	ccg Pro	ctg Leu 30	ggt Gly	95
ccg Pro	ctc Leu	cgg Arg	ttt Phe 35	cga Arg	cat His	ccg Pro	cga Arg	ccc Pro 40	gcc Ala	gaa Glu	aga Arg	tgg Trp	acc Thr 45	ggt Gly	gtg Val	143
ctg Leu	aac Asn	gcg Ala 50	acc Thr	aaa Lys	ccg Pro	ccc Pro	aac Asn 55	tcc Ser	tgc Cys	gtc Val	cag Gln	atc Ile 60	gtg Val	gac Asp	acc Thr	191
gtg Val	ttc Phe 65	ggt Gly	gac Asp	ttc Phe	ccg Pro	ggg Gly 70	gcc Ala	acc Thr	atg Met	tgg Trp	aac Asn 75	ccg Pro	aac Asn	aca Thr	ccg Pro	239
ctc Leu 80	tcg Ser	gag Glu	gac Asp	tgt Cys	ctg Leu 85	tac Tyr	atc Ile	aac Asn	gtg Val	gtc Val 90	gtg Val	cca Pro	cgg Arg	ccc Pro	agg Arg 95	287
ccc Pro	aag Lys	aat Asn	gcc Ala	gcc Ala 100	gtc Val	atg Met	ctg Leu	tgg Trp	atc Ile 105	ttc Phe	Gly	ggt Gly	ggc Gly	ttc Phe 110	tac Tyr	335
tcc Ser	GJA aaa	act Thr	gcc Ala 115	acg Thr	ctg Leu	gac Asp	gtg Val	tac Tyr 120	gac Asp	cac His	cgg Arg	acg Thr	ctg Leu 125	gcc Ala	tcg Ser	383
gag Glu	gag Glu	aac Asn 130	gtg Val	atc Ile	gta Val	gtt Val	tcg Ser 135	ctg Leu	cag Gln	tac Tyr	cgt Arg	gtc Val 140	gca Ala	agt Ser	ctt Leu	431
GJA aaa	ttt Phe 145	ctc Leu	ttc Phe	ctg Leu	ggc Gly	aca Thr 150	ccg Pro	gag Glu	gca							461
<211 <212	> AD	8 N	pipi	.ens	pipi	.ens	soud	che S	5-LAI	3 (S))					
<220 <221 <222	> CD)s)(446)													

	0> 6															
														aag a Lys 1		47
gtg Val	gac Asp	gca Ala	tgg Trp	atg Met 20	ggc	att Ile	ccg Pro	tac Tyr	gcg Ala 25	cag Gln	ccc Pro	ccg Pro	ctg Leu	ggt Gly 30	ccg Pro	95
ctc Leu	cgg Arg	ttt Phe	cga Arg 35	cat His	ccg Pro	cga Arg	ccc Pro	gcc Ala 40	gaa Glu	aga Arg	tgg Trp	acc Thr	ggt Gly 45	gtg Val	ctg Leu	143
														acc Thr		191
ttc Phe	ggt Gly 65	gac Asp	ttc Phe	ccg Pro	GJ Å aaa	gcc Ala 70	acc Thr	atg Met	tgg Trp	aac Asn	ccg Pro 75	aac Asn	aca Thr	ccg Pro	ctc Leu	239
tcg Ser 80	gag Glu	gac Asp	tgt Cys	ctg Leu	tac Tyr 85	atc Ile	aac Asn	gtg Val	gtc Val	gtg Val 90	cca Pro	cgg Arg	ccc Pro	agg Arg	ccc Pro 95	287
aag Lys	aat Asn	gcc Ala	gcc Ala	gtc Val 100	atg Met	ctg Leu	tgg Trp	atc Ile	ttc Phe 105	GJ A āāā	ggt Gly	ggc Gly	ttc Phe	tac Tyr 110	tcc Ser	335
														tcg Ser		383
gag Glu	aac Asn	gtg Val 130	atc Ile	gta Val	gtt Val	tcg Ser	ctg Leu 135	cag Gln	tac Tyr	cgt Arg	gtc Val	gca Ala 140	agt Ser	ctt Leu	GJ À ààà	431
	ctc Leu 145				ac											448
<21 <21	> 63 1> 45 2> Al 3> Cu	ИС	pipi	iens	pipi	Lens	souc	che E	Padov	ra (F	₹)					
	0> 1> CI 2> (3		(458)													
ag (0> 63 ggc a Gly I 1	aaa a	atc o	egt g Arg (gga a Gly I 5	acg a Thr I	ca c	ctg g Leu G	gaa g Slu <i>P</i>	cg c la E	ca a Pro S	igt o Ser G	ga a Hy I	ag a	iag .ys 15	47
gtg Val	gac Asp	gca Ala	tgg Trp	atg Met 20	ggc Gly	att Ile	ccg Pro	tac Tyr	gcg Ala 25	cag Gln	ccc Pro	ccg Pro	ctg Leu	ggt Gly 30	ccg Pro	95

ctc Leu																143
aac Asn																191
ttc Phe																239
tcg Ser 80																287
aag Lys	aat Asn	gcc Ala	gct Ala	gtc Val 100	atg Met	ctg Leu	tgg Trp	atc Ile	ttt Phe 105	GJA aaa	ggt Gly	agc Ser	ttc Phe	tac Tyr 110	tcc Ser	335
Gly																383
gag Glu	Asn															431
ttt Phe			_			_		_	С							459
<210: <211: <212: <213:	> 46 > AD	53 ON	pipi	lens	pipi	ens	souc	che E	Praia	as (F	₹)					
<220: <221: <222:	> CE		(462)													
<400				2+0	oot.	~~~	200		-t-	~~~	~~~			~~~		40
gac a Asp 1	aag Lys	Gly	Lys	Ile 5	Arg	Gly	Thr	Thr	Leu 10	Glu	Ala	Pro	Ser	Gly 15	aag Lys	48
aag (96
ccg (144
ctg a																192

											aac Asn					240
											gtg Val					288
											ej gaa					336
											cgg Arg					384
											cgt Arg 140					432
				ctg Leu						С						463
<213	> 65 L> 46 2> AI 3> Cu	NC	pipi	Lens	quir	nquef	fasci	iatus	s sou	ıche	Supe	ercai	c (R)	•		
	l> CI		(462)	ı												
<222 <222 <400	L> CI 2> (1 0> 65	L)			cat	gga	асσ	aca	cta	gaa	aca	cca	agt	gga	aaσ	48
<222 <222 <400 gac	L> CI 2> (1 0> 65 aag	l) 5 ggc	aaa	atc							gcg Al a					48
<222 <222 <400 gac Asp 1	l> CI 2> (1 0> 69 aag Lys gtg	ggc Gly	aaa Lys gca	atc Ile 5	Arg atg	Gly	Thr att	Thr	Leu 10 tac	Glu gcg		Pro	Ser	Gly 15 ctg	Lys	48 96
<222 <222 <400 gac Asp 1 aag Lys	l> CI 2> (1 0> 65 aag Lys gtg Val	ggc Gly gac Asp	aaa Lys gca Ala 20	atc Ile 5 tgg Trp	Arg atg Met	ccd Gla ddc	Thr att Ile cga	Thr ccg Pro 25	Leu 10 tac Tyr	Glu gcg Ala gaa	Ala	Pro ccc Pro	ccg Pro 30	Gly 15 ctg Leu	Lys ggt Gly gtg	
<22: <22: <400 gac Asp 1 aag Lys ccg Pro	l> CI 2> (1 0)> 65 aag Lys gtg Val ctc Leu	ggc Gly gac Asp cgg Arg 35	aaa Lys gca Ala 20 ttt Phe	atc Ile 5 tgg Trp cga Arg	Arg atg Met cat His	Gly ggc Gly ccg Pro	Thr att Ile cga Arg 40 aac	Thr ccg Pro 25 ccc Pro	Leu 10 tac Tyr gcc Ala	Glu gcg Ala gaa Glu gtc	Ala cag Gln aga	Pro ccc Pro tgg Trp 45 atc	ccg Pro 30 acc Thr	Gly 15 ctg Leu ggt Gly	ggt Gly gtg Val	96
<22: <22: <400 gac Asp 1 aag Lys ccg Pro ctg Leu	l> CI 2> (1 0)> 65 aag Lys gtg Val ctc Leu aac Asn 50	ggc Gly gac Asp cgg Arg 35 gcg Ala	aaa Lys gca Ala 20 ttt Phe acc Thr	atc Ile 5 tgg Trp cga Arg aaa Lys	Arg atg Met cat His cca Pro	ggc Gly ccg Pro ccc Pro 55	Thr att Ile cga Arg 40 aac Asn	Thr ccg Pro 25 ccc Pro tcc Ser	Leu 10 tac Tyr gcc Ala tgc Cys	gcg Ala gaa Glu gtc Val	Ala cag Gln aga Arg cag Gln	Pro ccc Pro tgg Trp 45 atc Ile ccg	ccg Pro 30 acc Thr gtg Val	Gly 15 ctg Leu ggt Gly gac Asp	ggt Gly gtg Val acc Thr	96

Pro Lys Asn Ala A			ttt ggg ggt Phe Gly Gly	
tcc ggg act gcc a Ser Gly Thr Ala T 115	hr Leu Asp			
gag gag aac gtg a Glu Glu Asn Val I 130				
ggt ttt ctc ttc c Gly Phe Leu Phe I 145				463
<210> 66 <211> 448 <212> ADN <213> Culex pipie	ens pipiens	souche Brug	es A (S)	
<220> <221> CDS <222> (3)(446)				
<400> 66 ag ggc aaa atc cg Gly Lys Ile Ar				
1	5		10	15
gtg gac gca tgg a Val Asp Ala Trp M	ıtg ggc att	ccg tac gcg	10 cag ccc ccg	15 ctg ggt ccg 95
gtg gac gca tgg a	ıtg ggc att	ccg tac gcg	10 cag ccc ccg	15 ctg ggt ccg 95
gtg gac gca tgg a	etg ggc att Met Gly Ile 20 cat ccg cga	ccg tac gcg Pro Tyr Ala 25 ccc gcc gaa	cag ccc ccg Gln Pro Pro	ctg ggt ccg 95 Leu Gly Pro 30 ggt gtg ctg 143
gtg gac gca tgg a Val Asp Ala Trp M ctc cgg ttt cga c Leu Arg Phe Arg H 35 aac gcg acc aaa c Asn Ala Thr Lys E	atg ggc att Met Gly Ile 20 cat ccg cga Mis Pro Arg	ccg tac gcg Pro Tyr Ala 25 ccc gcc gaa Pro Ala Glu 40 tcc tgc gtc Ser Cys Val	cag ccc ccg Gln Pro Pro aga tgg acc Arg Trp Thr cag atc gtg	ctg ggt ccg 95 Leu Gly Pro 30 ggt gtg ctg 143 Gly Val Leu 45 gac acc gtg 191 Asp Thr Val
gtg gac gca tgg a Val Asp Ala Trp M ctc cgg ttt cga c Leu Arg Phe Arg H 35 aac gcg acc aaa c Asn Ala Thr Lys E	atg ggc att Met Gly Ile 20 cat ccg cga Mis Pro Arg cca ccc aac Pro Pro Asn ccg ggg gcc	ccg tac gcg Pro Tyr Ala 25 ccc gcc gaa Pro Ala Glu 40 tcc tgc gtc Ser Cys Val 55	cag ccc ccg Gln Pro Pro aga tgg acc Arg Trp Thr cag atc gtg Gln Ile Val 60 aac ccg aac	ctg ggt ccg 95 Leu Gly Pro 30 ggt gtg ctg 143 Gly Val Leu 45 gac acc gtg 191 Asp Thr Val aca ccc ctc 239
gtg gac gca tgg a Val Asp Ala Trp M ctc cgg ttt cga c Leu Arg Phe Arg H 35 aac gcg acc aaa c Asn Ala Thr Lys E 50 ttc ggt gac ttc c Phe Gly Asp Phe	etg ggc att Met Gly Ile 20 cat ccg cga Mis Pro Arg cca ccc aac Pro Pro Asn ccg ggg gcc Pro Gly Ala 70 ctg tac atc	ccg tac gcg Pro Tyr Ala 25 ccc gcc gaa Pro Ala Glu 40 tcc tgc gtc Ser Cys Val 55 acc atg tgg Thr Met Trp	cag ccc ccg Gln Pro Pro aga tgg acc Arg Trp Thr cag atc gtg Gln Ile Val 60 aac ccg aac Asn Pro Asn 75 gtg cca agg	ctg ggt ccg 95 Leu Gly Pro 30 ggt gtg ctg 143 Gly Val Leu 45 gac acc gtg 191 Asp Thr Val aca ccc ctc 239 Thr Pro Leu ccg agg ccc 287

GJ A aaa	act Thr	gcc Ala	acg Thr 115	ttg Leu	gac Asp	gtg Val	tac Tyr	gat Asp 120	cat His	cgg Arg	acg Thr	ctg Leu	gcc Ala 125	tcg Ser	gag Glu	383
gag Glu	aac Asn	gtg Val 130	atc Ile	gtg Val	gtt Val	tcg Ser	ctg Leu 135	cag Gln	tac Tyr	cgt Arg	gtc Val	gca Ala 140	agt Ser	ctt Leu	ggt Gly	431
				ggc Gly	ac											448
<21:	0> 6' 1> 4' 2> Al 3> Ci	57 ON	pip:	iens	qui	nque	fasc	Latus	3 SOI	ıche	во	(R)				
	L> CI		(456))												
ggc	0> 67 aaa Lys	atc	cgt Arg	gga Gly 5	acg Thr	aca Thr	ctg Leu	gaa Glu	gcg Ala 10	cct Pro	agc Ser	gga Gly	aag Lys	aag Lys 15	gtg Val	48
gac Asp	gca Ala	tgg Trp	atg Met 20	ggc Gly	att	ccg Pro	tac Tyr	gcg Ala 25	cag Gln	cct Pro	ccg Pro	ctg Leu	ggt Gly 30	ccg Pro	ctc Leu	96
cgg Arg	ttt Phe	cga Arg 35	cat His	ccg Pro	cga Arg	ccc Pro	Ala	gaa Glu	aga Arg	tgg Trp	acc Thr	Gly	gtg Val	ctg Leu	aac Asn	144
							40					45				
gcg Ala	acc Thr 50	aaa Lys	ccg Pro	ccc Pro	aac Asn	tcc Ser 55	tgc Cys	gtc Val	cag Gln	atc Ile	gtg Val 60	gac Asp	acc Thr	gtg Val	ttc Phe	192
ggt Gly 65	gac Asp	ttc Phe	ccg Pro	GJA aaa	gcc Ala 70	acc Thr	atg Met	tgg Trp	aac Asn	ccg Pro 75	aac Asn	aca Thr	ccg Pro	ctc Leu	tcg Ser 80	240
gag Glu	gac Asp	tgt Cys	ctg Leu	tac Tyr 85	atc Ile	aac Asn	gtg Val	gtc Val	gtg Val 90	cca Pro	cgg Arg	ccc Pro	agg Arg	ccc Pro 95	aag Lys	288
aat Asn	gcc Ala	gcc Ala	gtc Val 100	atg Met	ctg Leu	tgg Trp	atc Ile	ttc Phe 105	G] À aaa	ggt Gly	agc Ser	ttc Phe	tac Tyr 110	tcc Ser	GJ À āāā	336
act Thr	gcc Ala	acg Thr 115	ctg Leu	gac Asp	gtg Val	tac Tyr	gac Asp 120	cac His	cgg Arg	acg Thr	ctg Leu	gcc Ala 125	tcg Ser	gag Glu	gag Glu	384
aac Asn	gtg Val 130	atc Ile	gta Val	gtt Val	Ser	ctg Leu 135	cag Gln	tac Tyr	cgt Arg	gtc Val	gca Ala 140	agt Ser	ctt Leu	ggt Gly	ttt Phe	432

ctc ttc ctg ggc aca ccg gag gca c Leu Phe Leu Gly Thr Pro Glu Ala 145 150	457
<210> 68 <211> 447 <212> ADN <213> Culex pipiens quinquefasciatus souche DJI (R)	
<220> <221> CDS <222> (1)(444)	
<400> 68 ggc aaa atc cgt gga acg aca ctg gaa gcg cct agc gga aag aag gtg Gly Lys Ile Arg Gly Thr Thr Leu Glu Ala Pro Ser Gly Lys Lys Val 1 5 10 15	48
gac gca tgg atg ggc att ccg tac gcg cag cct ccg ctg ggt ccg ctc Asp Ala Trp Met Gly Ile Pro Tyr Ala Gln Pro Pro Leu Gly Pro Leu 20 25 30	96
cgg ttt cga cat ccg cga ccc gcc gaa aga tgg acc ggt gtg ctg aac Arg Phe Arg His Pro Arg Pro Ala Glu Arg Trp Thr Gly Val Leu Asn 35 40 45	144
gcg acc aaa ccg ccc aac tcc tgc gtc cag atc gtg gac acc gtg ttc Ala Thr Lys Pro Pro Asn Ser Cys Val Gln Ile Val Asp Thr Val Phe 50 55 60	192
ggt gac ttc ccg ggg gcc acc atg tgg aac ccg aac aca ccg ctc tcg Gly Asp Phe Pro Gly Ala Thr Met Trp Asn Pro Asn Thr Pro Leu Ser 65 70 75 80	240
gag gac tgt ctg tac atc aac gtg gtc gtg cca cgg ccc agg ccc aag Glu Asp Cys Leu Tyr Ile Asn Val Val Val Pro Arg Pro Arg Pro Lys 85 90 95	288
aat gcc gcc gtc atg ctg tgg atc ttc ggg ggt agc ttc tac tcc ggg Asn Ala Ala Val Met Leu Trp Ile Phe Gly Gly Ser Phe Tyr Ser Gly 100 105 110	336
act gcc acg ctg gac gtg tac gac cac cgg acg ctg gcc tcg gag gag Thr Ala Thr Leu Asp Val Tyr Asp His Arg Thr Leu Ala Ser Glu Glu 115 120 125	384
aac gtg atc gta gtt tcg ctg cag tac cgt gtc gca agt ctt ggt ttt Asn Val Ile Val Val Ser Leu Gln Tyr Arg Val Ala Ser Leu Gly Phe 130 135 140	432
ctc ttc ctg ggc aca Leu Phe Leu Gly 145	447
<210> 69 <211> 457 <212> ADN	

<213> Ct	ılex	pip:	iens	qui	nque	fasc	latus	s sou	ıche	Hara	are	(R)			
<220> <221> CI <222> (3		(456))												
<400> 69 ggc aaa Gly Lys 1	atc	cgt Arg	gga Gly 5	acg Thr	aca Thr	ctg Leu	gaa Glu	gcg Ala 10	cct Pro	agc Ser	gga Gly	aag Lys	aag Lys 15	gtg Val	48
gac gca Asp Ala															96
cgg ttt Arg Phe															144
gcg acc Ala Thr 50															192
ggt gac Gly Asp 65															240
gag gac Glu Asp															288
aat gcc Asn Ala															336
act gcc Thr Ala															384
aac gtg Asn Val 130	Ile		Val	Ser		Gln		Arg		Ala	Ser				432
ctc ttc Leu Phe 145							С								457
<210> 70 <211> 45 <212> AI <213> Cu	8 00	pipi	Lens	quir	teupr	asci	atus	s sou	ıche	Mart	inic	que ((R)		
<220> <221> Ct <222> (1	_	(456)	ı												
<400> 70 ggc aaa		cgt	gga	acg	aca	ctg	gaa	gcg	cct	agc	gga	aag	aag	gtg	48

Gly I	Lуs	Ile	Arg	Gly 5	Thr	Thr	Leu	Glu	Ala 10	Pro	Ser	Gly	Lys	Lys 15	Val	
gac ç Asp A	gca Ala	tgg Trp	atg Met 20	ggc Gly	att Ile	ccg Pro	tac Tyr	gcg Ala 25	cag Gln	cct Pro	ccg Pro	ctg Leu	ggt Gly 30	ccg Pro	ctc Leu	96
cgg t Arg E																144
gcg a Ala 1																192
ggt g Gly <i>I</i> 65																240
gag (Glu <i>H</i>																288
aat o Asn A																336
act o																384
aac q Asn V																432
ctc t Leu I 145								cc								458
<2103 <2113 <2123 <2133	> 44 > A	17 ON	pip:	iens	pip	Lens	sou	che 1	Barr:	iol	(R)					
<2202 <2212 <2222	> CI		(446)												
<4000 ag gg G.	gc a	aaa a							gaa q Glu A							47
gtg q Val 1																95

ctc cgg ttt cga cat ccg cga ccc qcc qaa aga tgg acc ggt gtg ctg Leu Arg Phe Arg His Pro Arg Pro Ala Glu Arg Trp Thr Gly Val Leu aac gcg acc aaa cca ccc aac tcc tgc gtc cag atc gtg gac acc gtg 191 Asn Ala Thr Lys Pro Pro Asn Ser Cys Val Gln Ile Val Asp Thr Val ttc ggt gac ttc ccg ggg gcc acc atg tgg aac ccg aac aca ccc ctc 239 Phe Gly Asp Phe Pro Gly Ala Thr Met Trp Asn Pro Asn Thr Pro Leu tcg gag gac tgt ctg tac atc aac gtg gtc gtg cca agg ccg agg ccc . 287 Ser Glu Asp Cys Leu Tyr Ile Asn Val Val Val Pro Arg Pro Arg Pro aag aat gcc gct gtc atg ctg tgg atc ttt ggg ggt agc ttc tac tcc 335 Lys Asn Ala Ala Val Met Leu Trp Ile Phe Gly Gly Ser Phe Tyr Ser 100 ggg act gcc acg ttg gac gtg tac gat cat cgg acg ctg gcc tcg gag 383 Gly Thr Ala Thr Leu Asp Val Tyr Asp His Arg Thr Leu Ala Ser Glu 115 120 gag aac gtg atc gtg gtt tcg ctg cag tac cgt gtc gca agt ctt ggt Glu Asn Val Ile Val Val Ser Leu Gln Tyr Arg Val Ala Ser Leu Gly 130 ttt ctc ttc ctg ggc a 447 Phe Leu Phe Leu Gly 145 -<210> 72 <211> 447 <212> ADN <213> Culex pipiens pipiens souche Bleuet (S) <220> <221> CDS <222> (3)..(446) ag ggc aaa atc cgt gga acg aca ctg gaa gcg cca agt gga aag aag 47 Gly Lys Ile Arg Gly Thr Thr Leu Glu Ala Pro Ser Gly Lys Lys 1 gtg gac gca tgg atg ggc att ccg tac gcg cag ccc ccg ctg ggt ccg 95 Val Asp Ala Trp Met Gly Ile Pro Tyr Ala Gln Pro Pro Leu Gly Pro ctc cgg ttt cga cat ccg cga ccc gcc gaa aga tgg acc ggt gtg ctg 143 Leu Arg Phe Arg His Pro Arg Pro Ala Glu Arg Trp Thr Gly Val Leu 35 aac gcg acc aaa cca ccc aac tcc tgc gtc cag atc gtg gac acc gtg 191 Asn Ala Thr Lys Pro Pro Asn Ser Cys Val Gln Ile Val Asp Thr Val

Phe														ccc Pro		239
														agg Arg		287
aag Lys	aat Asn	gcc Ala	gct Ala	gtc Val 100	atg Met	ctg Leu	tgg Trp	atc Ile	ttt Phe 105	Gly ggg	ggt Gly	ggc Gly	ttc Phe	tac Tyr 110	tcc Ser	335
														tcg Ser		383
														ctt Leu		431
	ctc Leu 145			ggc Gly	a											447
<213	0> 73 l> 44 2> Al 3> Ci	18 ON	pipi	lens	pipi	lens	souc	che E	Bruge	es B	(S)					
<220	۱>															
<22	L> CI 2> (3		(446)													
<222 <222 <400 ag (1> CI 2> (3 0> 73 ggc a	3)(3 aaa <i>a</i>	itc o	egt c										ıgg a		47
<222 <222 <400 ag 0	1> CI 2> (3 0> 73 ggc a 31y I 1	3)(Baaa a Lys I gca	itc o le <i>F</i>	gt g Arg (Sly I 5 ggc	hr Tatt	hr Iccg	Leu (Glu <i>F</i> gcg	Ala H 10 cag	ecc	Ser (Sly I		ys 15 ccq	47 95
<22: <22: <400 ag 0 gtg Val	l> CI 2> (3)> 73 ggc a Gly I 1 gac Asp	3)(Baaa a Lys I gca Ala	tgg Trp	atg Met 20	Sly I 5 ggc Gly ccg	hr Tatt Ile cga	ccg Pro	tac Tyr gcc	gcg Ala 25 gaa	Ala F 10 cag Gln aga	ccc Pro	ccg Pro	ctg Leu ggt	ys I ggt Gly	ys 15 ccg Pro	
<22: <22: <400 ag g Val ctc Leu	l> CI 2> (3 0> 73 ggc a Sly I 1 gac Asp cgg Arg	B)(B)	tgg Trp cga Arg 35	atg Met 20 cat His	ggc Gly ccg Pro	hr Tatt Ile cga Arg	ccg Pro ccc Pro	tac Tyr gcc Ala 40	gcg Ala 25 gaa Glu	Ala H 10 cag Gln aga Arg	ccc Pro tgg Trp	ccg Pro acc Thr	ctg Leu ggt Gly 45	ggt Gly 30 gtg	ys 15 ccg Pro ctg Leu	95
<22: <22: <400 ag 0 gtg Val ctc Leu aac Asn	l> CI 2> (3 0> 73 ggc a Gly I 1 gac Asp cgg Arg gcg Ala	gca Ala ttt Phe acc Thr 50	tgg Trp cga Arg 35 aaa Lys	atg Met 20 cat His cca Pro	ggc Gly ccg Pro ccc	thr Tatt Ile cga Arg aac Asn gcc	ccg Pro ccc Pro tcc Ser 55	tac Tyr gcc Ala 40 tgc Cys	gcg Ala 25 gaa Glu gtc Val	Ala F 10 cag Gln aga Arg cag Gln	ccc Pro tgg Trp atc	ccg Pro acc Thr gtg Val 60	ctg Leu ggt Gly 45 gac Asp	ggt Gly 30 gtg Val	ccg Pro ctg Leu gtg Val	95 143

aag aat gcc Lys Asn Ala		Met 1								335
ggg act gcc Gly Thr Ala										383
gag aac gtg Glu Asn Val 130										431
ttt ctc ttc Phe Leu Phe 145										448
<210> 74 <211> 447 <212> ADN <213> Culex	pipiens	pipie	ens soud	che F	leter	ren ((S)			
<220> <221> CDS <222> (3)	(446)									
<400> 74 ag ggc aaa a Gly Lys 1										47
gtg gac gca Val Asp Ala		Gly 1								95
ctc cgg ttt Leu Arg Phe										143
aac gcg acc Asn Ala Thr 50										191
ttc ggt gac Phe Gly Asp 65										239
tcg gag gac Ser Glu Asp		Tyr 1								287
80		85								
-		atg d				ggg				335

gag aac Glu Asn	gtg ato Val Ile 130	gtg Val	gtt Val	tcg Ser	ctg Leu 135	cag Gln	tac Tyr	cgt Arg	gtc Val	gca Ala 140	agt Ser	ctt Leu	ggt Gly	431
ttt ctc Phe Leu 145			a											447
<210> 75 <211> 45 <212> A0 <213> Cu	50 N	iens	quir	nque	fasc:	iatus	S 501	uche	Line	g (S)			
<220> <221> CE <222> (1)												
<400> 75 cag ggc Gln Gly 1	aaa atc	cgt Arg 5	gga Gly	acg Thr	aca Thr	ctg Leu	gaa Glu 10	gcg Ala	cct Pro	agt Ser	gga Gly	aag Lys 15	aag Lys	48
gtg gac Val Asp	gcc tgg Ala Trp 20	atg Met	ggc Gly	att Ile	ccg Pro	tac Tyr 25	gcg Ala	cag Gln	ccc Pro	ccg Pro	ctg Leu 30	ggt Gly	ccg Pro	96
ctc cgg Leu Arg	ttt cga Phe Arg 35	cat His	ccg Pro	cga Arg	ccc Pro 40	gcc Ala	gaa Glu	aga Arg	tgg Trp	acc Thr 45	ggt Gly	gtg Val	ctg Leu	144
aac gcg Asn Ala 50	acc aaa Thr Lys	ccg Pro	ccc Pro	aac Asn 55	tcc Ser	tgc Cys	gtc Val	cag Gln	atc Ile 60	gtg Val	gac Asp	acc Thr	gtg Val	192
ttc ggt Phe Gly 65	gac ttc Asp Phe	ccg Pro	ggg Gly 70	gcc Ala	acc Thr	atg Met	tgg Trp	aac Asn 75	ccg Pro	aac Asn	aca Thr	ccg Pro	ctc Leu 80	240
tcg gag Ser Glu	gac tgt Asp Cys	ctg Leu 85	tac Tyr	atc Ile	aac Asn	gtg Val	gtc Val 90	gtg Val	cca Pro	cgg Arg	ccc Pro	agg Arg 95	ccc Pro	288
aag aat Lys Asn	gcc gcc Ala Ala 100	gtc Val	atg Met	ctg Leu	tgg Trp	atc Ile 105	ttc Phe	Gly ggg	ggt Gly	ggc Gly	ttc Phe 110	tac Tyr	tcc Ser	336
ggg act Gly Thr	gcc acg Ala Thr 115	ctg Leu	gac Asp	gtg Val	tat Tyr 120	gac Asp	cac His	cgg Arg	acg Thr	ctg Leu 125	gcc Ala	tcg Ser	gag Glu	384
gag aac Glu Asn 130	gtg atc Val Ile	gta Val	gtt Val	tcg Ser 135	ctg Leu	cag Gln	tac Tyr	cgt Arg	gtc Val 140	gca Ala	agt Ser	ctt Leu	ggt Gly	432
ttt ctc Phe Leu 145			aca											450

WO 2004/000994

<210> 76 <211> 448 <212> ADN <213> Culex pipiens quinquefasciatus souche Mao (S) <220> <221> CDS <222> (3)..(446) <400> 76 ac ggc aaa atc cgt gga acg aca ctg gaa gcg cct agt gga aag aag 47 Gly Lys Ile Arg Gly Thr Thr Leu Glu Ala Pro Ser Gly Lys Lys gtg gac gca tgg atg ggc att ccg tac gcg cag ccc ccg ctg ggt ccg Val Asp Ala Trp Met Gly Ile Pro Tyr Ala Gln Pro Pro Leu Gly Pro ctc cgg ttt cga cat ccg cga ccc gcc gaa aga tgg acc ggt gtg ctg 143 Leu Arg Phe Arg His Pro Arg Pro Ala Glu Arg Trp Thr Gly Val Leu 191 aac gcg acc aaa ccg ccc aac tcc tgc gtc cag atc gtg gac acc gtg Asn Ala Thr Lys Pro Pro Asn Ser Cys Val Gln Ile Val Asp Thr Val ttc ggt gac ttc ccg ggg gcc acc atg tgg aac ccg aac aca ccg ctc 239 Phe Gly Asp Phe Pro Gly Ala Thr Met Trp Asn Pro Asn Thr Pro Leu 287 teg gag gae tgt etg tae ate aac gtg gte gtg eea egg eee agg eee Ser Glu Asp Cys Leu Tyr Ile Asn Val Val Pro Arg Pro Arg Pro aag aat gcc gcc gtc atg ctg tgg atc ttc ggg ggt ggc ttc tac tcc 335 Lys Asn Ala Ala Val Met Leu Trp Ile Phe Gly Gly Phe Tyr Ser 100 105 383 ggg act gcc acg ctg gac gtg tac gac cac cgg acg ctg gcc tcg gag Gly Thr Ala Thr Leu Asp Val Tyr Asp His Arg Thr Leu Ala Ser Glu 115 gag aac gtg atc gta gtt tcg ctg cag tac cgt gtc gca agt ctt ggt 431 Glu Asn Val Ile Val Val Ser Leu Gln Tyr Arg Val Ala Ser Leu Gly 130 135 140 ttt ctc ttc ctg ggc ac 448 Phe Leu Phe Leu Gly 145 <210> 77 <211> 433 <212> ADN <213> Culex pipiens quinquefasciatus souche TemR (S) <220> <221> CDS <222> (1)..(432)

<40	0> 7	7													
											aag Lys				48
											ggt Gly				96
											gtg Val 45				144
											acc Thr				192
											ccg Pro				240
											agg Arg				288
											tac Tyr				336
											tcg Ser 125				384
											ctt Leu		ctc Leu	t	433
<21 <21	0> 78 1> 44 2> Al 3> Ci	48 ON	tor	rent:	ium :	souci	ne U	ppsa]	la						
	0> 1> Cl 2> (3		(446))											
ag (aaa a									agt (Ser (47
											ccg Pro				95

	cgg Arg															143
aac Asn	gcg Ala	acc Thr 50	aaa Lys	cca Pro	ccc Pro	aac Asn	tcc Ser 55	tgc Cys	gtc Val	cag Gln	atc Ile	gtc Val 60	gac Asp	acc Thr	gtg Val	191
ttc Phe	ggt Gly 65	gac Asp	ttc Phe	ccg Pro	Gly ggg	gcc Ala 70	acc Thr	atg Met	tgg Trp	aac Asn	ccg Pro 75	aac Asn	aca Thr	ccc Pro	ctc Leu	239
	gaa Glu															287
aag Lys	aat Asn	gcc Ala	gcc Ala	gtc Val 100	atg Met	ctg Leu	tgg Trp	atc Ile	ttc Phe 105	GJ À GG À	ggt Gly	gga Gly	ttc Phe	tac Tyr 110	tcc Ser	335
Gly	acc Thr	gcc Ala	acg Thr 115	ctg Leu	gac Asp	gtg Val	tac Tyr	gac Asp 120	cac His	cgg Arg	acg Thr	ctg Leu	gcc Ala 125	tcg Ser	gag Glu	383
gag Glu	aac Asn	gtg Val 130	atc Ile	gtg Val	gtt Val	tcg Ser	ctg Leu 135	cag Gln	tac Tyr	cgt Arg	gtc Val	gca Ala 140	agt Ser	ctt Leu	ggt Gly	431
	ctc Leu 145		_		ac											448
<21:	0> 79 1> 44 2> Ai 3> Cu	18 ON	pipi	lens	quir	nquei	fasci	Latus	s sou	ıche	Tran	ns (S	5)		,	
	0> 1> CI 2> (3	-	(446)													
ag (0> 79 ggc a Gly I	aa a														47
gtg Val	gac Asp	gca Ala	tgg Trp	atg Met 20	ggc Gly	att Ile	ccg Pro	tac Tyr	gcg Ala 25	cag Gln	cct Pro	ccg Pro	ctg Leu	ggt Gly 30	ccg Pro	95
ctc Leu	cgg Arg	ttt Phe	cga Arg 35	cat His	ccg Pro	cga Arg	ccc Pro	gcc Ala 40	gaa Glu	aga Arg	tgg Trp	acc Thr	ggt Gly 45	gtg Val	ctg Leu	143
aac Asn	gcg Ala	acc Thr 50	aaa Lys	cca Pro	ccc Pro	aac Asn	tcc Ser 55	tgc Cys	gtc Val	cag Gln	atc Ile	gtg Val 60	gac Asp	acc Thr	gtg Val	191

Phe Gly Asp Pi 65	tc ccg gene Pro G			_			_			-		239
tcg gag gac to Ser Glu Asp C 80	ys Leu T				Val V							287
aag aat gcc go Lys Asn Ala A				Ile E								335
ggg act gcc ac Gly Thr Ala Th			Tyr 2									383
gag aac gtg at Glu Asn Val II 130		_	_	_		_	_	_	_			431
ttt ctc ttc c Phe Leu Phe Le 145		C										448
<210> 80 <211> 412 <212> ADN. <213> Culex p:	ipiens q	uinquef	asci	atus	souc	che I	BED	(S)				
<220> <221> CDS <222> (1)(4)	11)											
<221> CDS	eg eet ag											48
<221> CDS <222> (1)(4) <400> 80 aca ctg gaa go Thr Leu Glu Al 1 ccg tac gcg ca Pro Tyr Ala G	cg cct aq la Pro Se 5 ag cct co	er Gly	Lys :	Lys V	Val A 10 ctc c	Asp A	Ala ttt	Trp	Met cat	Gly 15 ccg	Ile cga	48 96
<221> CDS <222> (1)(4) <400> 80 aca ctg gaa go Thr Leu Glu Al 1 ccg tac gcg ca Pro Tyr Ala G	cg cct agla Pro Se 5 ag cct co ln Pro Pr 20	er Gly cg ctg ro Leu cc ggt	ggt Gly	ccg c Pro I 25	Val A 10 ctc c Leu A	agg targ i	Ala ttt Phe	Trp cga Arg	Met cat His 30	Gly 15 ccg Pro	Ile cga Arg	
<221> CDS <222> (1)(4) <400> 80 aca ctg gaa gg Thr Leu Glu Al 1 ccg tac gcg ca Pro Tyr Ala G ccc gcc gaa ag Pro Ala Glu Al	eg cct ag la Pro Se ag cct cc ln Pro Pr 20 . ga tgg ac rg Trp Tl	cg ctg ro Leu cc ggt hr Gly	ggt Gly gtg Val:	ccg c Pro I 25 ctg a Leu F	Val A 10 ctc c Leu A aac g Asn A	Asp Acgg targ I	Ala ttt Phe acc Thr	Trp cga Arg aaa Lys 45	Met cat His 30 cca Pro	Gly 15 ccg Pro ccc Pro	cga Arg aac Asn	96
<221> CDS <222> (1)(4) <400> 80 aca ctg gaa go Thr Leu Glu Ai 1 ccg tac gcg ca Pro Tyr Ala Gl ccc gcc gaa ac Pro Ala Glu Ai 35 tcc tgc gtc ca Ser Cys Val Gi	eg cet ag la Pro Se ag cet ce ln Pro Pr 20 . ga tgg ac rg Trp Tl ag atc gg ln Ile Va ac ceg ac sn Pro Ac	cc ggt hr Gly tg gac al Asp 55	ggt Gly gtg Val :	ccg c Pro I 25 ctg a Leu F gtg t	Val A 10 ctc c Leu A aac g Asn A ttc g Phe G	Asp	Ala ttt Phe acc Thr gac Asp 60 gac	Trp cga Arg aaa Lys 45 ttc Phe	Met cat His 30 cca Pro ccg Pro ctg	Gly 15 ccg Pro ccc Pro ggg Gly	cga Arg aac Asn gcc Ala	96 144

tgg atc ttc of Trp Ile Phe			r Gly Thr		
tac gac cac Tyr Asp His 115	cgg acg ctg Arg Thr Leu	gcc tcg ga Ala Ser Gl 120	g gag aac u Glu Asn	gtg atc gta Val Ile Val 125	gtt tcg 384 Val Ser
ctg cag tac Leu Gln Tyr 130					412
<210> 81 <211> 437 <212> ADN <213> Culex	pipiens qui	nquefasciat	us souche	BSQ (S)	
<220> <221> CDS <222> (3)(434)				
<400> 81 ag ggc aaa a Gly Lys I				ct agt gga a ro Ser Gly I	
gtg gac gcc Val Asp Ala					
ctc cgg ttt Leu Arg Phe		Arg Pro Al			
aac gcg acc Asn Ala Thr 50	aaa ccg ccc Lys Pro Pro	aac tcc tc Asn Ser Cy 55	c gtc cag s Val Gln	atc gtg gac Ile Val Asp 60	acc gtg 191 Thr Val
ttc ggt gac Phe Gly Asp 65	ttc ccg ggg Phe Pro Gly	gcc acc at Ala Thr Me 70	g tgg aac t Trp Asn	ccg aac aca Pro Asn Thr 75	ccg ctc 239 Pro Leu
tcg gag gac Ser Glu Asp 80					
aag aat gcc Lys Asn Ala					
ggg act gcc Gly Thr Ala	acg ctg gac Thr Leu Asp 115	gtg tac ga Val Tyr As 12	p His Arg	acg ctg gcc Thr Leu Ala 125	tcg gag 383 Ser Glu
gag aac gtg Glu Asn Val 130	atc gta gtt Ile Val Val	tcg ctg ca Ser Leu Gl 135	ng tac cgt n Tyr Arg	gtc gca agt Val Ala Ser 140	ctt ggg 431 Leu Gly

437 ttt ctc Phe <210> 82 <211> 414 <212> ADN <213> Culex pipiens quinquefasciatus souche Brazza (S) <220> <221> CDS <222> (2)..(412) <400> 82 a ctg gaa gcg cct agt gga aag aag gtg gac gcc tgg atg ggc att ccg 49 Leu Glu Ala Pro Ser Gly Lys Lys Val Asp Ala Trp Met Gly Ile Pro 1 10 tac gcg cag ccc ccg ctg ggt ccg ctc cgg ttt cga cat ccg cga ccc 97 Tyr Ala Gln Pro Pro Leu Gly Pro Leu Arg Phe Arg His Pro Arg Pro 20 25 30 qcc qaa aqa tqq acc qqt qtq ctq aac gcg acc aaa ccg ccc aac tcc 145 Ala Glu Arg Trp Thr Gly Val Leu Asn Ala Thr Lys Pro Pro Asn Ser 35 193 tgc qtc cag atc gtg gac acc gtg ttc ggt gac ttc ccg ggg gcc acc Cys Val Gln Ile Val Asp Thr Val Phe Gly Asp Phe Pro Gly Ala Thr 50 55 atg tgg aac ccg aac aca ccg ctc tcg gag gac tgt ctg tac atc aac 241 Met Trp Asn Pro Asn Thr Pro Leu Ser Glu Asp Cys Leu Tyr Ile Asn 75 65 gtg gtc gtg cca cgg ccc agg ccc aag aat gcc gcc gtc atg ctg tgg 289 Val Val Pro Arg Pro Arg Pro Lys Asn Ala Ala Val Met Leu Trp 95 85 ate tte ggg ggt gge tte tae tee ggg act gee acg etg gae gtg tae 337 Ile Phe Gly Gly Gly Phe Tyr Ser Gly Thr Ala Thr Leu Asp Val Tyr 110 100 385 gac cac cgg acg ctg gcc tcg gag gag aac gtg atc gta gtt tcg ctg Asp His Arg Thr Leu Ala Ser Glu Glu Asn Val Ile Val Val Ser Leu 115 cag tac cgt gtc gca agt ctt ggg ttt ct 414 Gln Tyr Arg Val Ala Ser Leu Gly Phe 130 <210> 83 <211> 437 <212> ADN <213> Culex pipiens quinquefasciatus souche Bouake (R) <220> <221> CDS <222> (3)..(434)

ag		aaa								gcg Ala 10						47
										cag Gln						95
										aga Arg						143
										cag Gln						191
										aac Asn						239
										gtg Val 90						287
										G]A aaa						335
										cgg Arg						383
										cgt Arg						431
ttt Phe	ctc															437
<213	> 84 L> 41 2> Al 3> Ci	N	pipi	iens	quir	nquei	asci	iatus	8 SOI	ıche	Thai	i (s)	l			
	L> CI		(414)	ı												
aca)> 84 ctg Leu	gaa	gcg Ala	cct Pro 5	agt Ser	gga Gly	aag Lys	aag Lys	gtg Val 10	gac Asp	gcc Ala	tgg Trp	atg Met	ggc Gly 15	att Ile	48
ccg Pro	tac Tyr	gcg Ala	cag Gln 20	ccc Pro	ccg Pro	ctg Leu	ggt Gly	ccg Pro 25	ctc Leu	cgg Arg	ttt Phe	cga Arg	cat His 30	ccq	cga Arg	96

ccc gcc gaa aga tgg acc ggt gtg ctg aac gcg acc aaa ccg ccc aac Pro Ala Glu Arg Trp Thr Gly Val Leu Asn Ala Thr Lys Pro Pro Asn 35 40 45	144
tcc tgc gtc cag atc gtg gac acc gtg ttc ggt gac ttc ccg ggg gcc Ser Cys Val Gln Ile Val Asp Thr Val Phe Gly Asp Phe Pro Gly Ala 50 55 60	192
acc atg tgg aac ccg aac aca ccg ctc tcg gag gac tgt ctg tac atc Thr Met Trp Asn Pro Asn Thr Pro Leu Ser Glu Asp Cys Leu Tyr Ile 65 70 75 80	240
aac gtg gtc gtg cca cgg ccc agg ccc aag aat gcc gcc gtc atg ctg Asn Val Val Val Pro Arg Pro Arg Pro Lys Asn Ala Ala Val Met Leu 85 90 95	288
tgg atc ttc ggg ggt ggc ttc tac tcc ggg act gcc acg ctg gac gtg Trp Ile Phe Gly Gly Phe Tyr Ser Gly Thr Ala Thr Leu Asp Val 100 105 110	336
tac gac cac cgg acg ctg gcc tcg gag gag aac gtg atc gta gtt tcg Tyr Asp His Arg Thr Leu Ala Ser Glu Glu Asn Val Ile Val Val Ser 115 120 125	384
ctg cag tac cgt gtc gca agt ctt ggg ttt ct Leu Gln Tyr Arg Val Ala Ser Leu Gly Phe 130 135	416
<210> 85 <211> 426 <212> ADN <213> Culex pipiens quinquefasciatus souche Madurai (S)	
<220> <221> CDS <222> (3)(425)	
<pre><400> 85 ca ctg gaa gcg cct agt gga aag aag gtg gac gca tgg atg ggc att Leu Glu Ala Pro Ser Gly Lys Lys Val Asp Ala Trp Met Gly Ile</pre>	47
ccg tac gcg cag ccc ccg ctg ggt ccg ctc cgg ttt cga cat ccg cga Pro Tyr Ala Gln Pro Pro Leu Gly Pro Leu Arg Phe Arg His Pro Arg 20 25 30	95
ccc gcc gaa aga tgg acc ggt gtg ctg aac gca acc aaa ccg ccc aac Pro Ala Glu Arg Trp Thr Gly Val Leu Asn Ala Thr Lys Pro Pro Asn 35 40 45	143
Pro Ala Glu Arg Trp Thr Gly Val Leu Asn Ala Thr Lys Pro Pro Asn	143

aac gtg gtc gtg cca egg ccc agg ccc agg at gcc gtc gtc atg ctg sta st ctg st sta st ctg st
tac gac cac cgg acg ctg gcc tcg ggg gag aac gtg atc gtg ggc at ccg llu llu llu llu llu llu llu llu llu ll
Tyr Asp His Arg Thr Leu Ala Ser Glu Glu Asn Val Ile Val Val Ser 120 ctg cag tac cgt gtc gca agt ctt ggg ttt ctc ttc ctg ggc a Leu Gln Tyr Arg Val Ala Ser Leu Gly Phe Leu Phe Leu Gly 130 <pre></pre>
Leu Gln Tyr Arg Val Ala Ser Leu Gly Phe Leu Phe Leu Gly 130 <pre></pre>
<pre> <211> 423 <212> ADN <213> Culex pipiens quinquefasciatus souche Recife (R) </pre> <pre> <220> <221> CDS <222> (1)(423) </pre> <pre> <400> 86 ctg gaa gcg cct agc gga aag aag gtg gac gca tgg atg ggc att ccg Leu Glu Ala Pro Ser Gly Lys Lys Val Asp Ala Trp Met Gly Ile Pro</pre>
ctg gaa gcg cct agc gga aag aag gtg gac gca tgg atg ggc att ccg Leu Glu Ala Pro Ser Gly Lys Lys Val Asp Ala Trp Met Gly Ile Pro 15 tac gcg cag cct ccg ctg ggt ccg ctc cgg ttt cga cat ccg cga ccc Tyr Ala Gln Pro 20 gcc gaa aga tgg acc ggt gtg ctg aac gcg acc aaa ccg ccc aac tcc Ala Glu Arg Trp Thr Gly Val Leu Asn Ala Thr Lys Pro Pro Asn Ser 45 tgc gtc cag atc gtg gac acc gtg ttc ggt gac ttc ccg ggt gtg ctg Asn Ala Thr Lys Pro Gly Ala Thr 50 atg tgg aac ccg aac aca ccg ctc tcg gag gac ttc ccg ggg gcc acc acc Met Trp Asn Pro Asn Thr Pro Leu Ser Glu Asp Cys Leu Tyr Ile Asn 65 gtg gtc gtg cca cgg ccc agg ccc aag act gcc aag act gcc gcc gtc ttc ggg gac act gtc tcg gag gac ttc ccg gag gac ttc ccg gag gac ttc ccg gag gac ttc ccg gag gac acc acc gtg Val Val Val Val Pro Arg Pro Arg Pro Arg Pro Lys Asn Ala Ala Ala Val Met Leu Trp 95 atc ttc ggg ggt agc ttc tac tcc ggg act gcc acg ctg gac gtg tac Ile Phe Gly Gly Ser Phe Tyr Ser Gly Thr Ala Thr Leu Asp Val Tyr Ilo Ser Glu Asp His Arg Thr Leu Ala Ser Glu Glu Asn Val Ile Val Val Ser Leu Ser Leu Sala Ser Leu Sala Ser Leu Sala Ser
Tyr Ala Gln Pro 20 Pro Leu Gly Pro Leu Arg Phe Arg His Pro Arg Pro 30 So
Ala Glu Arg Trp Thr Gly Val Leu Asn Ala Thr Lys Pro Pro Asn Ser tgc gtc cag atc gtg gac acc gtg ttc ggt gac ttc ccg ggg gcc acc Cys Val Gln Ile Val Asp Thr Val Phe Gly Asp Phe Pro Gly Ala Thr 50 atg tgg aac ccg aac aca ccg ctc tcg gag gac tgt ctg tac atc aac Met Trp Asn Pro Asn Thr Pro Leu Ser Glu Asp Cys Leu Tyr Ile Asn 65 gtg gtc gtg cca cgg ccc agg ccc aag aat gcc gcc gtc atg ctg tgg Val Val Val Pro Arg Pro Arg Pro Lys Asn Ala Ala Val Met Leu Trp 85 atc ttc ggg ggt agc ttc tac tcc ggg act gcc acg ctg gac gtg tac Ile Phe Gly Gly Ser Phe Tyr Ser Gly Thr Ala Thr Leu Asp Val Tyr 100 gac cac cgg acg ctg gcc tcg gag gag aac gtg atc gta gtt tcg ctg Asp His Arg Thr Leu Ala Ser Glu Glu Asn Val Ile Val Val Ser Leu 192 192 240 240 240 240 240 240 240 2
Cys Val Gln Ile Val Asp Thr Val Phe Gly Asp Phe Pro Gly Ala Thr atg tgg aac ccg aac aca ccg ctc tcg gag gac tgt ctg tac atc aac Met Trp Asn Pro Asn Thr Pro Leu Ser Glu Asp Cys Leu Tyr Ile Asn 65 70 70 75 80 gtg gtc gtg cca cgg ccc agg ccc aag aat gcc gcc gtc atg ctg tgg Val Val Val Pro Arg Pro Arg Pro Lys Asn Ala Ala Val Met Leu Trp 85 90 95 atc ttc ggg ggt agc ttc tac tcc ggg act gcc acg ctg gac gtg tac Ile Phe Gly Gly Ser Phe Tyr Ser Gly Thr Ala Thr Leu Asp Val Tyr 100 105 110 gac cac cgg acg ctg gcc tcg gag gag aac gtg atc gta gtt tcg ctg Asp His Arg Thr Leu Ala Ser Glu Glu Asn Val Ile Val Val Ser Leu
Met Trp Asn Pro Asn Thr Pro Leu Ser Glu Asp Cys Leu Tyr Ile Asn 70 75 80 gtg gtc gtg cca cgg ccc agg ccc aag aat gcc gcc gtc atg ctg tgg Val Val Val Pro Arg Pro Arg Pro Lys Asn Ala Ala Val Met Leu Trp 90 95 atc ttc ggg ggt agc ttc tac tcc ggg act gcc acg ctg gac gtg tac Ile Phe Gly Gly Ser Phe Tyr Ser Gly Thr Ala Thr Leu Asp Val Tyr 100 105 110 gac cac cgg acg ctg gcc tcg gag gag aac gtg atc gta gtt tcg ctg Asp His Arg Thr Leu Ala Ser Glu Glu Asn Val Ile Val Val Ser Leu 384
Val Val Pro Arg Pro Arg Pro Lys Asn Ala Ala Val Met Leu Trp 85 90 95 atc ttc ggg ggt agc ttc tac tcc ggg act gcc acg ctg gac gtg tac Ile Phe Gly Gly Ser Phe Tyr Ser Gly Thr Ala Thr Leu Asp Val Tyr 100 105 110 gac cac cgg acg ctg gcc tcg gag gag aac gtg atc gta gtt tcg ctg Asp His Arg Thr Leu Ala Ser Glu Glu Asn Val Ile Val Val Ser Leu
Ile Phe Gly Gly Ser Phe Tyr Ser Gly Thr Ala Thr Leu Asp Val Tyr 100 105 110 gac cac cgg acg ctg gcc tcg gag gag aac gtg atc gta gtt tcg ctg Asp His Arg Thr Leu Ala Ser Glu Glu Asn Val Ile Val Val Ser Leu
Asp His Arg Thr Leu Ala Ser Glu Glu Asn Val Ile Val Val Ser Leu

			68	
			ctc ttc ctg ggc Leu Phe Leu Gly 140	423
<210> 87 <211> 416 <212> ADN <213> Culex	pipiens qu	inquefasciatu	us souche Brésil (S)	
<220> <221> CDS <222> (3)	(413)			
<400> 87 ca ctg gaa c Leu Glu i	gcg cct agt Ala Pro Ser 5	gga aag aag Gly Lys Lys	gtg gac gca tgg atg ggc a Val Asp Ala Trp Met Gly 1	att 47 Ile 15
ccg tac gcg Pro Tyr Ala	cag ccc cc Gln Pro Pr 20	g ctg ggt ccg o Leu Gly Pro	g ctc cgg ttt cga cat ccg Leu Arg Phe Arg His Pro 25 30	cga 95 Arg
ccc gcc gaa Pro Ala Glu	aga tgg ac Arg Trp Th 35	c ggt gtg ctg r Gly Val Leu 40	g aac gcg acc aaa ccg ccc n Asn Ala Thr Lys Pro Pro) 45	aac 143 Asn
			g ttc ggt gac ttc ccg ggg L Phe Gly Asp Phe Pro Gly 60	
acc atg tgg Thr Met Trp 65	aac ccg aa Asn Pro As	c aca ccg cto n Thr Pro Leu 70	e tog gag gac tgt ctg tac 1 Ser Glu Asp Cys Leu Tyr 75	atc 239 Ile
aac gtg gtc Asn Val Val 80	gtg cca cg Val Pro Ar 8	g Pro Arg Pro	e aag aat gee gee gte atg o Lys Asn Ala Ala Val Met 90	ctg 287 Leu 95
tgg atc ttc Trp Ile Phe	ggg ggt gg Gly Gly Gl 100	c ttc tat tcc y Phe Tyr Ser	ggg act gcc acg ctg gac Gly Thr Ala Thr Leu Asp 105	gtg 335 Val
tac gac cac Tyr Asp His	cgg acg ct Arg Thr Le 115	g gcc tcg gaq u Ala Ser Gli 120	g gag aac gtg atc gta gtt 1 Glu Asn Val Ile Val Val) 125	tcg 383 Ser
	Arg Val Al	a agt ctt ggg a Ser Leu Gly 135		416
<210> 88 <211> 418 <212> ADN <213> Culex	pipiens qu	inquefasciatu	ıs souche Moorea (S)	

<220>

<221> CDS

<222> (1)..(417)

<22	2> (.	L)	(417))												
aca		3 gaa Glu														48
		gcg Ala														96
		gaa Glu 35														144
		gtc Val														192
		tgg Trp														240
		gtc Val														288
tgg Trp	atc Ile	ttc Phe	ggg Gly 100	ggt Gly	ggc Gly	ttc Phe	tac Tyr	tcc Ser 105	ej aaa	act Thr	gcc Ala	acg Thr	ctg Leu 110	gac Asp	gtg Val	336
		cac His 115														384
	_	tac Tyr	_	_	_	_					t					418
<211 <212	0> 89 L> 40 2> AD 3> Cu)2	pipi	ens	pipi	ens	souc	che F	Killo	care	(S)					
	L> CE	os .)((402)													
<400)> 89)														
agt Ser 1	gga Gly	aag Lys	aag Lys	gtg Val 5	gac Asp	gca Ala	tgg Trp	atg Met	ggc Gly 10	att Ile	ccg Pro	tac Tyr	gcg Ala	cag Gln 15	ccc Pro	48
ccg Pro	ctg Leu	ggt Gly	ccg Pro 20	ctc Leu	cgg Arg	ttt Phe	cga Arg	cat His 25	ccg Pro	cga Arg	ccc Pro	gcc Ala	gaa Glu 30	aga Arg	tgg Trp	96

	ggt Gly															144
gtg Val	gac Asp 50	aca Thr	gtg Val	ttc Phe	ggt Gly	gac Asp 55	ttc Phe	ccg Pro	ggg ggg	gcc Ala	acc Thr 60	atg Met	tgg Trp	aac Asn	ccg Pro	192
	aca Thr															240
	ccg Pro															288
	ttc Phe															336
	gcc Ala															384
	agt Ser 130															402
<212 <212	0> 90 1> 15 2> PI 3> Ci	52 RT	pipi	iens	pipi	.ens	soud	che E	Espro	o (R)						
_	0> 9(Lys		Arg	Gly 5	Thr	Thr	Leu	Glu	Ala 10	Pro	Ser	Gly	Lys	Lys 15	Val	
Asp	Ala	Trp	Met 20	Gly	Ile	Pro	Tyr	Ala 25	Gln	Pro	Pro	Leu	Gly 30	Pro	Leu	
Arg	Phe	Arg 35	His	Pro	Arg	Pro	Ala 40	Glu	Arg	Trp	Thr	Gly 45	Val	Leu	Asn	
Ala	Thr 50	Lys	Pro	Pro	Asn	Ser 55	Cys	Val	Gln	Ile	Val 60	Asp	Thr	Val	Phe	
Gly 65	Asp	Phe	Pro	Gly	Ala 70	Thr	Met	Trp	Asn	Pro 75	Asn	Thr	Pro	Leu	Ser 80	
Glu	Asp	Cys	Leu	Tyr 85	Ile	Asn	Val	Val	Val 90	Pro	Arg	Pro	Arg	Pro 95	Lys	
Asn	Ala	Ala	Val 100	Met	Leu	Trp	Ile	Phe 105	Gly	Gly	Ser	Phe	Tyr 110	Ser	Gly	
Thr																

Asn Val Ile Val Val Ser Leu Gln Tyr Arg Val Ala Ser Leu Gly Phe 130 135 140

Leu Phe Leu Gly Thr Pro Glu Ala 145 150

<210> 91

<211> 152

<212> PRT

<213> Culex pipiens quinquefasciatus souche ProR(S)

<400> 91

Lys Gly Lys Ile Arg Gly Thr Thr Leu Glu Ala Pro Ser Gly Lys Lys 1 5 10 15

Val Asp Ala Trp Met Gly Ile Pro Tyr Ala Gln Pro Pro Leu Gly Pro 20 25 30

Leu Arg Phe Arg His Pro Arg Pro Ala Glu Arg Trp Thr Gly Val Leu 35 40 45

Asn Ala Thr Lys Pro Pro Asn Ser Cys Val Gln Ile Val Asp Thr Val 50 55. 60

Phe Gly Asp Phe Pro Gly Ala Thr Met Trp Asn Pro Asn Thr Pro Leu 65 70 75 80

Ser Glu Asp Cys Leu Tyr Ile Asn Val Val Val Pro Arg Pro 85 90 95

Lys Asn Ala Ala Val Met Leu Trp Ile Phe Gly Gly Gly Phe Tyr Ser 100 105 110

Gly Thr Ala Thr Leu Asp Val Tyr Asp His Arg Thr Leu Ala Ser Glu 115 120 125

Glu Asn Val Ile Val Val Ser Leu Gln Tyr Arg Val Ala Ser Leu Gly 130 135 140

Phe Leu Phe Leu Gly Thr Pro Glu 145 150

<210> 92

<211> 148

<212> PRT

<213> Culex pipiens pipiens souche S-LAB (S)

<400> 92

Gly Lys Ile Arg Gly Thr Thr Leu Glu Ala Pro Ser Gly Lys Lys Val 1 5 10 15

Asp Ala Trp Met Gly Ile Pro Tyr Ala Gln Pro Pro Leu Gly Pro Leu 20 25 30

Arg Phe Arg His Pro Arg Pro Ala Glu Arg Trp Thr Gly Val Leu Asn
35 40 45

Ala Thr Lys Pro Pro Asn Ser Cys Val Gln Ile Val Asp Thr Val Phe 50 55 60

Gly Asp Phe Pro Gly Ala Thr Met Trp Asn Pro Asn Thr Pro Leu Ser 65 70 75 80

Glu Asp Cys Leu Tyr Ile Asn Val Val Pro Arg Pro Arg Pro Lys 85 90 95

Asn Ala Ala Val Met Leu Trp Ile Phe Gly Gly Gly Phe Tyr Ser Gly 100 105 110

Thr Ala Thr Leu Asp Val Tyr Asp His Arg Thr Leu Ala Ser Glu Glu
115 120 125

Asn Val Ile Val Val Ser Leu Gln Tyr Arg Val Ala Ser Leu Gly Phe 130 135 140

Leu Phe Leu Gly 145

<210> 93

<211> 152

<212> PRT

<213> Culex pipiens pipiens souche Padova (R)

<400> 93

Gly Lys Ile Arg Gly Thr Thr Leu Glu Ala Pro Ser Gly Lys Lys Val 1 5 10 15

Asp Ala Trp Met Gly Ile Pro Tyr Ala Gln Pro Pro Leu Gly Pro Leu 20 25 30

Arg Phe Arg His Pro Arg Pro Ala Glu Arg Trp Thr Gly Val Leu Asn 35 40 45

Ala Thr Lys Pro Pro Asn Ser Cys Val Gln Ile Val Asp Thr Val Phe 50 55 60

Gly Asp Phe Pro Gly Ala Thr Met Trp Asn Pro Asn Thr Pro Leu Ser

Glu Asp Cys Leu Tyr Ile Asn Val Val Pro Arg Pro Arg Pro Lys
85 90 95

Asn Ala Ala Val Met Leu Trp Ile Phe Gly Gly Ser Phe Tyr Ser Gly
100 105 110

Thr Ala Thr Leu Asp Val Tyr Asp His Arg Thr Leu Ala Ser Glu Glu
115 120 125

Asn Val Ile Val Val Ser Leu Gln Tyr Arg Val Ala Ser Leu Gly Phe 130 135 140

Leu Phe Leu Gly Thr Pro Glu Ala 145 150

<210> 94 <211> 154 <212> PRT <213> Culex pipiens pipiens souche Praias (R) <400> 94 Asp Lys Gly Lys Ile Arg Gly Thr Thr Leu Glu Ala Pro Ser Gly Lys 15 Lys Val Asp Ala Trp Met Gly Ile Pro Tyr Ala Gln Pro Pro Leu Gly Pro Leu Arg Phe Arg His Pro Arg Pro Ala Glu Arg Trp Thr Gly Val 45 Leu Asn Ala Thr Lys Pro Pro Asn Ser Cys Val Gln Ile Val Asp Thr Val Phe Gly Asp Phe Pro Gly Ala Thr Met Trp Asn Pro Asn Thr Pro 75 Leu Ser Glu Asp Cys Leu Tyr Ile Asn Val Val Pro Arg Pro Arg Pro Lys Asn Ala Ala Val Met Leu Trp Ile Phe Gly Gly Ser Phe Tyr Ser Gly Thr Ala Thr Leu Asp Val Tyr Asp His Arg Thr Leu Ala Ser 120 Glu Glu Asn Val Ile Val Val Ser Leu Gln Tyr Arg Val Ala Ser Leu 130 135 140 Gly Phe Leu Phe Leu Gly Thr Pro Glu Ala 150 <210> 95 <211> 154 <212> PRT <213> Culex pipiens quinquefasciatus souche Supercar (R) <400> 95 Asp Lys Gly Lys Ile Arg Gly Thr Thr Leu Glu Ala Pro Ser Gly Lys 15 Lys Val Asp Ala Trp Met Gly Ile Pro Tyr Ala Gln Pro Pro Leu Gly Pro Leu Arg Phe Arg His Pro Arg Pro Ala Glu Arg Trp Thr Gly Val 35 40

Leu Asn Ala Thr Lys Pro Pro Asn Ser Cys Val Gln Ile Val Asp Thr

Val Phe Gly Asp Phe Pro Gly Ala Thr Met Trp Asn Pro Asn Thr Pro

75

70

Leu Ser Glu Asp Cys Leu Tyr Ile Asn Val Val Val Pro Arg Pro Arg 85 90 95

Pro Lys Asn Ala Ala Val Met Leu Trp Ile Phe Gly Gly Ser Phe Tyr 100 105 110

Ser Gly Thr Ala Thr Leu Asp Val Tyr Asp His Arg Thr Leu Ala Ser 115 120 125

Glu Glu Asn Val Ile Val Val Ser Leu Gln Tyr Arg Val Ala Ser Leu 130 135 140

Gly Phe Leu Phe Leu Gly Thr Pro Glu Ala 145 150

<210> 96

<211> 148

<212> PRT

<213> Culex pipiens pipiens souche Bruges A (S)

<400> 96

Gly Lys Ile Arg Gly Thr Thr Leu Glu Ala Pro Ser Gly Lys Lys Val 1 5 10 15

Asp Ala Trp Met Gly Ile Pro Tyr Ala Gln Pro Pro Leu Gly Pro Leu 20 25 30

Arg Phe Arg His Pro Arg Pro Ala Glu Arg Trp Thr Gly Val Leu Asn 35 40 45

Ala Thr Lys Pro Pro Asn Ser Cys Val Gln Ile Val Asp Thr Val Phe 50 55 60

Gly Asp Phe Pro Gly Ala Thr Met Trp Asn Pro Asn Thr Pro Leu Ser
65 70 75 80

Glu Asp Cys Leu Tyr Ile Asn Val Val Val Pro Arg Pro Arg Pro Lys

Asn Ala Ala Val Met Leu Trp Ile Phe Gly Gly Gly Phe Tyr Ser Gly
100 105 110

Thr Ala Thr Leu Asp Val Tyr Asp His Arg Thr Leu Ala Ser Glu Glu
115 120 125

Asn Val Ile Val Val Ser Leu Gln Tyr Arg Val Ala Ser Leu Gly Phe 130 140

Leu Phe Leu Gly 145

<210> 97

<211> 152

<212> PRT

<213> Culex pipiens quinquefasciatus souche BO (R)

<400> 97

Gly Lys Ile Arg Gly Thr Thr Leu Glu Ala Pro Ser Gly Lys Lys Val

Asp Ala Trp Met Gly Ile Pro Tyr Ala Gln Pro Pro Leu Gly Pro Leu

Arg Phe Arg His Pro Arg Pro Ala Glu Arg Trp Thr Gly Val Leu Asn

Ala Thr Lys Pro Pro Asn Ser Cys Val Gln Ile Val Asp Thr Val Phe

Gly Asp Phe Pro Gly Ala Thr Met Trp Asn Pro Asn Thr Pro Leu Ser

Glu Asp Cys Leu Tyr Ile Asn Val Val Pro Arg Pro Arg Pro Lys

Asn Ala Ala Val Met Leu Trp Ile Phe Gly Gly Ser Phe Tyr Ser Gly

Thr Ala Thr Leu Asp Val Tyr Asp His Arg Thr Leu Ala Ser Glu Glu

Asn Val Ile Val Val Ser Leu Gln Tyr Arg Val Ala Ser Leu Gly Phe

Leu Phe Leu Gly Thr Pro Glu Ala

<210> 98

<211> 148

<212> PRT

<213> Culex pipiens quinquefasciatus souche DJI (R)

<400> 98

Gly Lys Ile Arg Gly Thr Thr Leu Glu Ala Pro Ser Gly Lys Lys Val

Asp Ala Trp Met Gly Ile Pro Tyr Ala Gln Pro Pro Leu Gly Pro Leu

Arg Phe Arg His Pro Arg Pro Ala Glu Arg Trp Thr Gly Val Leu Asn

Ala Thr Lys Pro Pro Asn Ser Cys Val Gln Ile Val Asp Thr Val Phe

Gly Asp Phe Pro Gly Ala Thr Met Trp Asn Pro Asn Thr Pro Leu Ser

Glu Asp Cys Leu Tyr Ile Asn Val Val Pro Arg Pro Arg Pro Lys 90

Asn Ala Ala Val Met Leu Trp Ile Phe Gly Gly Ser Phe Tyr Ser Gly 105

CT/FR2003/001876

Thr Ala Thr Leu Asp Val Tyr Asp His Arg Thr Leu Ala Ser Glu Glu 115 120 125

Asn Val Ile Val Val Ser Leu Gln Tyr Arg Val Ala Ser Leu Gly Phe 130 135 140

Leu Phe Leu Gly

<210> 99

<211> 152

<212> PRT

<213> Culex pipiens quinquefasciatus souche Harare (R)

<400> 99

Gly Lys Ile Arg Gly Thr Thr Leu Glu Ala Pro Ser Gly Lys Lys Val 1 5 10 15

Asp Ala Trp Met Gly Ile Pro Tyr Ala Gln Pro Pro Leu Gly Pro Leu 20 25 30

Arg Phe Arg His Pro Arg Pro Ala Glu Arg Trp Thr Gly Val Leu Asn 35 40 45

Ala Thr Lys Pro Pro Asn Ser Cys Val Gln Ile Val Asp Thr Val Phe 50 55 60

Gly Asp Phe Pro Gly Ala Thr Met Trp Asn Pro Asn Thr Pro Leu Ser
65 70 75 80

Glu Asp Cys Leu Tyr Ile Asn Val Val Pro Arg Pro Arg Pro Lys
85 90 95

Asn Ala Ala Val Met Leu Trp Ile Phe Gly Gly Ser Phe Tyr Ser Gly 100 105 110

Thr Ala Thr Leu Asp Val Tyr Asp His Arg Thr Leu Ala Ser Glu Glu 115 120 125

Asn Val Ile Val Val Ser Leu Gln Tyr Arg Val Ala Ser Leu Gly Phe 130 135 140

Leu Phe Leu Gly Thr Pro Glu Ala

<210> 100

<211> 152

<212> PRT

<213> Culex pipiens quinquefasciatus souche Martinique (R)

<400> 100

Gly Lys Ile Arg Gly Thr Thr Leu Glu Ala Pro Ser Gly Lys Lys Val 1 5 10 15

Asp Ala Trp Met Gly Ile Pro Tyr Ala Gln Pro Pro Leu Gly Pro Leu 20 25 30

Arg Phe Arg His Pro Arg Pro Ala Glu Arg Trp Thr Gly Val Leu Asn
35 40 45

Ala Thr Lys Pro Pro Asn Ser Cys Val Gln Ile Val Asp Thr Val Phe 50 55 60

Gly Asp Phe Pro Gly Ala Thr Met Trp Asn Pro Asn Thr Pro Leu Ser 65 70 75 80

Glu Asp Cys Leu Tyr Ile Asn Val Val Pro Arg Pro Arg Pro Lys 85 90 95

Asn Ala Ala Val Met Leu Trp Ile Phe Gly Gly Ser Phe Tyr Ser Gly
100 105 110

Thr Ala Thr Leu Asp Val Tyr Asp His Arg Thr Leu Ala Ser Glu Glu 115 120 125

Asn Val Ile Val Val Ser Leu Gln Tyr Arg Val Ala Ser Leu Gly Phe 130 135 140

Leu Phe Leu Gly Thr Pro Glu Ala 145 150

<210> 101

<211> 148

<212> PRT

<213> Culex pipiens pipiens souche Barriol (R)

<400> 101

Gly Lys Ile Arg Gly Thr Thr Leu Glu Ala Pro Ser Gly Lys Lys Val 1 5 10 15

Asp Ala Trp Met Gly Ile Pro Tyr Ala Gln Pro Pro Leu Gly Pro Leu 20 25 30

Arg Phe Arg His Pro Arg Pro Ala Glu Arg Trp Thr Gly Val Leu Asn 35 40 45

Ala Thr Lys Pro Pro Asn Ser Cys Val Gln Ile Val Asp Thr Val Phe
50 55 60

Gly Asp Phe Pro Glý Ala Thr Met Trp Asn Pro Asn Thr Pro Leu Ser 65 70 75 80

Glu Asp Cys Leu Tyr Ile Asn Val Val Pro Arg Pro Arg Pro Lys
85 90 95

Asn Ala Ala Val Met Leu Trp Ile Phe Gly Gly Ser Phe Tyr Ser Gly
100 105 110

Thr Ala Thr Leu Asp Val Tyr Asp His Arg Thr Leu Ala Ser Glu Glu
115 120 125

Asn Val Ile Val Val Ser Leu Gln Tyr Arg Val Ala Ser Leu Gly Phe 130 135 140

Leu Phe Leu Gly 145 <210> 102 <211> 148 <212> PRT <213> Culex pipiens pipiens souche Bleuet (S) <400> 102 Gly Lys Ile Arg Gly Thr Thr Leu Glu Ala Pro Ser Gly Lys Lys Val Asp Ala Trp Met Gly Ile Pro Tyr Ala Gln Pro Pro Leu Gly Pro Leu Arg Phe Arg His Pro Arg Pro Ala Glu Arg Trp Thr Gly Val Leu Asn Ala Thr Lys Pro Pro Asn Ser Cys Val Gln Ile Val Asp Thr Val Phe Gly Asp Phe Pro Gly Ala Thr Met Trp Asn Pro Asn Thr Pro Leu Ser Glu Asp Cys Leu Tyr Ile Asn Val Val Pro Arg Pro Arg Pro Lys Asn Ala Ala Val Met Leu Trp Ile Phe Gly Gly Gly Phe Tyr Ser Gly 105 Thr Ala Thr Leu Asp Val Tyr Asp His Arg Thr Leu Ala Ser Glu Glu 120 Asn Val Ile Val Val Ser Leu Gln Tyr Arg Val Ala Ser Leu Gly Phe 130 135 140 Leu Phe Leu Gly 145 <210> 103 <211> 148 <212> PRT <213> Culex pipiens pipiens souche Bruges B (S) <400> 103 Gly Lys Ile Arg Gly Thr Thr Leu Glu Ala Pro Ser Gly Lys Lys Val Asp Ala Trp Met Gly Ile Pro Tyr Ala Gln Pro Pro Leu Gly Pro Leu 20 30

Arg Phe Arg His Pro Arg Pro Ala Glu Arg Trp Thr Gly Val Leu Asn

Ala Thr Lys Pro Pro Asn Ser Cys Val Gln Ile Val Asp Thr Val Phe

Gly Asp Phe Pro Gly Ala Thr Met Trp Asn Pro Asn Thr Pro Leu Ser 65 70 75 80

Glu Asp Cys Leu Tyr Ile Asn Val Val Val Pro Arg Pro Arg Pro Lys 85 90 95

Asn Ala Ala Val Met Leu Trp Ile Phe Gly Gly Gly Phe Tyr Ser Gly
100 105 110

Thr Ala Thr Leu Asp Val Tyr Asp His Arg Thr Leu Ala Ser Glu Glu
115 120 125

Asn Val Ile Val Val Ser Leu Gln Tyr Arg Val Ala Ser Leu Gly Phe 130 135 140

Leu Phe Leu Gly 145

<210> 104

<211> 148

<212> PRT

<213> Culex pipiens pipiens souche Heteren (S)

<400> 104

Gly Lys Ile Arg Gly Thr Thr Leu Glu Ala Pro Ser Gly Lys Lys Val 1 5 15

Asp Ala Trp Met Gly Ile Pro Tyr Ala Gln Pro Pro Leu Gly Pro Leu 20 25 30

Arg Phe Arg His Pro Arg Pro Ala Glu Arg Trp Thr Gly Val Leu Asn 35 40 45

Ala Thr Lys Pro Pro Asn Ser Cys Val Gln Ile Val Asp Thr Val Phe 50 55 60

Gly Asp Phe Pro Gly Ala Thr Met Trp Asn Pro Asn Thr Pro Leu Ser 65 70 75 80

Glu Asp Cys Leu Tyr Ile Asn Val Val Pro Arg Pro Arg Pro Lys 85 90 95

Asn Ala Ala Val Met Leu Trp Ile Phe Gly Gly Gly Phe Tyr Ser Gly
100 105 110

Thr Ala Thr Leu Asp Val Tyr Asp His Arg Thr Leu Ala Ser Glu Glu
115 120 125

Asn Val Ile Val Val Ser Leu Gln Tyr Arg Val Ala Ser Leu Gly Phe 130 135 140

Leu Phe Leu Gly

145

<210> 105

<211> 149

<212> PRT

<213> Culex pipiens quinquefasciatus souche Ling (S)

<400> 105

WO 2004/000994

Gln Gly Lys Ile Arg Gly Thr Thr Leu Glu Ala Pro Ser Gly Lys Lys
1 5 10 15

Val Asp Ala Trp Met Gly Ile Pro Tyr Ala Gln Pro Pro Leu Gly Pro
20 25 30

Leu Arg Phe Arg His Pro Arg Pro Ala Glu Arg Trp Thr Gly Val Leu 35 40 45

Asn Ala Thr Lys Pro Pro Asn Ser Cys Val Gln Ile Val Asp Thr Val
50 .55 60

Phe Gly Asp Phe Pro Gly Ala Thr Met Trp Asn Pro Asn Thr Pro Leu 65 70 75 80

Ser Glu Asp Cys Leu Tyr Ile Asn Val Val Val Pro Arg Pro Arg Pro 85 90 95

Lys Asn Ala Ala Val Met Leu Trp Ile Phe Gly Gly Gly Phe Tyr Ser 100 105 110

Gly Thr Ala Thr Leu Asp Val Tyr Asp His Arg Thr Leu Ala Ser Glu 115 120 125

Glu Asn Val Ile Val Val Ser Leu Gln Tyr Arg Val Ala Ser Leu Gly 130 135 140

Phe Leu Phe Leu Gly 145

<210> 106

<211> 148

<212> PRT

<213> Culex pipiens quinquefasciatus souche Mao (S)

<400> 106

Gly Lys Ile Arg Gly Thr Thr Leu Glu Ala Pro Ser Gly Lys Lys Val 1 5 10 15

Asp Ala Trp Met Gly Ile Pro Tyr Ala Gln Pro Pro Leu Gly Pro Leu 20 25 30

Arg Phe Arg His Pro Arg Pro Ala Glu Arg Trp Thr Gly Val Leu Asn
35 40 45

Ala Thr Lys Pro Pro Asn Ser Cys Val Gln Ile Val Asp Thr Val Phe 50 60

Gly Asp Phe Pro Gly Ala Thr Met Trp Asn Pro Asn Thr Pro Leu Ser
65 70 75 80

Glu Asp Cys Leu Tyr Ile Asn Val Val Pro Arg Pro Arg Pro Lys
85 90 95

Asn Ala Ala Val Met Leu Trp Ile Phe Gly Gly Gly Phe Tyr Ser Gly
100 105 110

Thr Ala Thr Leu Asp Val Tyr Asp His Arg Thr Leu Ala Ser Glu Glu
115 120 125

Asn Val Ile Val Val Ser Leu Gln Tyr Arg Val Ala Ser Leu Gly Phe 130 135 140

Leu Phe Leu Gly 145

<210> 107

<211> 144

<212> PRT

<213> Culex pipiens quinquefasciatus souche TemR (S)

<400> 107

Lys Ile Arg Gly Thr Thr Leu Glu Ala Pro Ser Gly Lys Lys Val Asp
1 5 10 15

Ala Trp Met Gly Ile Pro Tyr Ala Gln Pro Pro Leu Gly Pro Leu Arg
20 25 30

Phe Arg His Pro Arg Pro Ala Glu Arg Trp Thr Gly Val Leu Asn Ala 35 40 45

Thr Lys Pro Pro Asn Ser Cys Val Gln Ile Val Asp Thr Val Phe Gly 50 55 60

Asp Phe Pro Gly Ala Thr Met Trp Asn Pro Asn Thr Pro Leu Ser Glu 65 70 75 . 80

Asp Cys Leu Tyr Ile Asn Val Val Pro Arg Pro Arg Pro Lys Asn 85 90 95

Ala Ala Val Met Leu Trp Ile Phe Gly Gly Gly Phe Tyr Ser Gly Thr 100 105 110

Ala Thr Leu Asp Val Tyr Asp His Arg Thr Leu Thr Ser Glu Glu Asn 115 120 125

Val Ile Val Val Ser Leu Gln Tyr Arg Val Ala Ser Leu Gly Phe Leu 130 135 140

<210> 108

<211> 148

<212> PRT

<213> Culex torrentium souche Uppsala

<400> 108

Gly Lys Ile Arg Gly Thr Thr Leu Glu Ala Pro Ser Gly Lys Lys Val

Asp Ala Trp Met Gly Ile Pro Tyr Ala Gln Pro Pro Leu Gly Pro Leu 20 25 30

Arg Phe Arg His Pro Arg Pro Ala Glu Arg Trp Thr Gly Val Leu Asn 35 40 45

Ala Thr Lys Pro Pro Asn Ser Cys Val Gln Ile Val Asp Thr Val Phe 55

Gly Asp Phe Pro Gly Ala Thr Met Trp Asn Pro Asn Thr Pro Leu Ser

Glu Asp Cys Leu Tyr Ile Asn Val Val Pro Arg Pro Arg Pro Lys

Asn Ala Ala Val Met Leu Trp Ile Phe Gly Gly Gly Phe Tyr Ser Gly

Thr Ala Thr Leu Asp Val Tyr Asp His Arg Thr Leu Ala Ser Glu Glu 115

Asn Val Ile Val Val Ser Leu Gln Tyr Arg Val Ala Ser Leu Gly Phe 140

Leu Phe Leu Gly 145

<210> 109

<211> 148

<212> PRT

<213> Culex pipiens quinquefasciatus souche Trans (S)

<400> 109

Gly Lys Ile Arg Gly Thr Thr Leu Glu Ala Pro Ser Gly Lys Lys Val

Asp Ala Trp Met Gly Ile Pro Tyr Ala Gln Pro Pro Leu Gly Pro Leu 20 25

30

Arg Phe Arg His Pro Arg Pro Ala Glu Arg Trp Thr Gly Val Leu Asn

Ala Thr Lys Pro Pro Asn Ser Cys Val Gln Ile Val Asp Thr Val Phe

Gly Asp Phe Pro Gly Ala Thr Met Trp Asn Pro Asn Thr Pro Leu Ser

Glu Asp Cys Leu Tyr Ile Asn Val Val Pro Arg Pro Arg Pro Lys

Asn Ala Ala Val Met Leu Trp Ile Phe Gly Gly Gly Phe Tyr Ser Gly 105

Thr Ala Thr Leu Asp Val Tyr Asp His Arg Thr Leu Thr Ser Glu Glu 115 120

Asn Val Ile Val Val Ser Leu Gln Tyr Arg Val Ala Ser Leu Gly Phe 135

Leu Phe Leu Gly 145

<210> 110 <211> 137 <212> PRT <213> Culex pipiens quinquefasciatus souche BED (S) <400> 110 Thr Leu Glu Ala Pro Ser Gly Lys Lys Val Asp Ala Trp Met Gly Ile Pro Tyr Ala Gln Pro Pro Leu Gly Pro Leu Arg Phe Arg His Pro Arg Pro Ala Glu Arg Trp Thr Gly Val Leu Asn Ala Thr Lys Pro Pro Asn Ser Cys Val Gln Ile Val Asp Thr Val Phe Gly Asp Phe Pro Gly Ala Thr Met Trp Asn Pro Asn Thr Pro Leu Ser Glu Asp Cys Leu Tyr Ile Asn Val Val Pro Arg Pro Arg Pro Lys Asn Ala Ala Val Met Leu Trp Ile Phe Gly Gly Gly Phe Tyr Ser Gly Thr Ala Thr Leu Asp Val Tyr Asp His Arg Thr Leu Ala Ser Glu Glu Asn Val Ile Val Val Ser 120 Leu Gln Tyr Arg Val Ala Ser Leu Gly <210> 111 <211> 144 <212> PRT <213> Culex pipiens quinquefasciatus souche BSQ (S) <400> 111 Gly Lys Ile Arg Gly Thr Thr Leu Glu Ala Pro Ser Gly Lys Lys Val Asp Ala Trp Met Gly Ile Pro Tyr Ala Gln Pro Pro Leu Gly Pro Leu Arg Phe Arg His Pro Arg Pro Ala Glu Arg Trp Thr Gly Val Leu Asn Ala Thr Lys Pro Pro Asn Ser Cys Val Gln Ile Val Asp Thr Val Phe Gly Asp Phe Pro Gly Ala Thr Met Trp Asn Pro Asn Thr Pro Leu Ser Glu Asp Cys Leu Tyr Ile Asn Val Val Val Pro Arg Pro Arg Pro Lys

90

95

Asn Ala Ala Val Met Leu Trp Ile Phe Gly Gly Gly Phe Tyr Ser Gly 100 105 110

Thr Ala Thr Leu Asp Val Tyr Asp His Arg Thr Leu Ala Ser Glu Glu
115 120 125

Asn Val Ile Val Val Ser Leu Gln Tyr Arg Val Ala Ser Leu Gly Phe 130 135 140

<210> 112

<211> 137

<212> PRT

<213> Culex pipiens guinquefasciatus souche Brazza (S)

</p

Leu Glu Ala Pro Ser Gly Lys Lys Val Asp Ala Trp Met Gly Ile Pro
1 5 10 15

Tyr Ala Gln Pro Pro Leu Gly Pro Leu Arg Phe Arg His Pro Arg Pro 20 25 30

Ala Glu Arg Trp Thr Gly Val Leu Asn Ala Thr Lys Pro Pro Asn Ser 35 40 45

Cys Val Gln Ile Val Asp Thr Val Phe Gly Asp Phe Pro Gly Ala Thr 50 55 60

Met Trp Asn Pro Asn Thr Pro Leu Ser Glu Asp Cys Leu Tyr Ile Asn 65 70 75 80

Val Val Val Pro Arg Pro Arg Pro Lys Asn Ala Ala Val Met Leu Trp 85 90 95

Ile Phe Gly Gly Phe Tyr Ser Gly Thr Ala Thr Leu Asp Val Tyr
100 105 110

Asp His Arg Thr Leu Ala Ser Glu Glu Asn Val Ile Val Val Ser Leu 115 120 125

Gln Tyr Arg Val Ala Ser Leu Gly Phe 130 135

<210> 113

<211> 144

<212> PRT

<213> Culex pipiens quinquefasciatus souche Bouake (R)

<400> 113

Gly Lys Ile Arg Gly Thr Thr Leu Glu Ala Pro Ser Gly Lys Lys Val 1 5 10 15

Asp Ala Trp Met Gly Ile Pro Tyr Ala Gln Pro Pro Leu Gly Pro Leu
20 25 30

Arg Phe Arg His Pro Arg Pro Ala Glu Arg Trp Thr Gly Val Leu Asn 35 40 45

- Ala Thr Lys Pro Pro Asn Ser Cys Val Gln Ile Val Asp Thr Val Phe 50 55 60
- Gly Asp Phe Pro Gly Ala Thr Met Trp Asn Pro Asn Thr Pro Leu Ser 65 70 75 80
- Glu Asp Cys Leu Tyr Ile Asn Val Val Pro Arg Pro Arg Pro Lys
 85 90 95
- Asn Ala Ala Val Met Leu Trp Ile Phe Gly Gly Gly Phe Tyr Ser Gly
 100 105 110
- Thr Ala Thr Leu Asp Val Tyr Asp His Arg Thr Leu Ala Ser Glu Glu
 115 120 125
- Asn Val Ile Val Val Ser Leu Gln Tyr Arg Val Ala Ser Leu Gly Phe 130 135 140

<<210> 114

<211> 138

<212> PRT

<213> Culex pipiens quinquefasciatus souche Thai (S)

<400> 114

- Thr Leu Glu Ala Pro Ser Gly Lys Lys Val Asp Ala Trp Met Gly Ile
 1 5 10 15
- Pro Tyr Ala Gln Pro Pro Leu Gly Pro Leu Arg Phe Arg His Pro Arg 20 25 30
- Pro Ala Glu Arg Trp Thr Gly Val Leu Asn Ala Thr Lys Pro Pro Asn 35 40 45
- Ser Cys Val Gln Ile Val Asp Thr Val Phe Gly Asp Phe Pro Gly Ala 50 55 60
- Thr Met Trp Asn Pro Asn Thr Pro Leu Ser Glu Asp Cys Leu Tyr Ile 65 70 75 80
- Asn Val Val Pro Arg Pro Arg Pro Lys Asn Ala Ala Val Met Leu 85 90 95
- Trp Ile Phe Gly Gly Gly Phe Tyr Ser Gly Thr Ala Thr Leu Asp Val 100 105 110
- Tyr Asp His Arg Thr Leu Ala Ser Glu Glu Asn Val Ile Val Val Ser 115 120 125
- Leu Gln Tyr Arg Val Ala Ser Leu Gly Phe 130 135
- <210> 115
- <211> 141
- <212> PRT
- <213> Culex pipiens quinquefasciatus souche Madurai (S)

CT/FR2003/001876

<400> 115

Leu Glu Ala Pro Ser Gly Lys Lys Val Asp Ala Trp Met Gly Ile Pro
1 5 10 15

Tyr Ala Gln Pro Pro Leu Gly Pro Leu Arg Phe Arg His Pro Arg Pro 20 25 30

Ala Glu Arg Trp Thr Gly Val Leu Asn Ala Thr Lys Pro Pro Asn Ser 35 40 45

Cys Val Gln Ile Val Asp Thr Val Phe Gly Asp Phe Pro Gly Ala Thr

Met Trp Asn Pro Asn Thr Pro Leu Ser Glu Asp Cys Leu Tyr Ile Asn 65 70 75 80

Val Val Pro Arg Pro Arg Pro Lys Asn Ala Ala Val Met Leu Trp 85 90 95

Ile Phe Gly Gly Gly Phe Tyr Ser Gly Thr Ala Thr Leu Asp Val Tyr 100 105 110

Asp His Arg Thr Leu Ala Ser Glu Glu Asn Val Ile Val Val Ser Leu 115 120 125

Gln Tyr Arg Val Ala Ser Leu Gly Phe Leu Phe Leu Gly 130 135 140

<210> 116

<211> 141

<212> PRT

<213> Culex pipiens quinquefasciatus souche Recife (R)

<400> 116

Leu Glu Ala Pro Ser Gly Lys Lys Val Asp Ala Trp Met Gly Ile Pro
1 5 10 15

Tyr Ala Gln Pro Pro Leu Gly Pro Leu Arg Phe Arg His Pro Arg Pro 20 25 30

Ala Glu Arg Trp Thr Gly Val Leu Asn Ala Thr Lys Pro Pro Asn Ser 35 40 45

Cys Val Gln Ile Val Asp Thr Val Phe Gly Asp Phe Pro Gly Ala Thr 50 55 60

Met Trp Asn Pro Asn Thr Pro Leu Ser Glu Asp Cys Leu Tyr Ile Asn 65 70 75 80

Val Val Pro Arg Pro Arg Pro Lys Asn Ala Ala Val Met Leu Trp 85 90 95

Ile Phe Gly Gly Ser Phe Tyr Ser Gly Thr Ala Thr Leu Asp Val Tyr 100 105 110 Asp His Arg Thr Leu Ala Ser Glu Glu Asn Val Ile Val Val Ser Leu 125

Gln Tyr Arg Val Ala Ser Leu Gly Phe Leu Phe Leu Gly 140

<210> 117
<211> 137
<212> PRT
<213> Culex pipiens quinquefasciatus souche Brésil (S)

<400> 117
Leu Glu Ala Pro Ser Gly Lys Lys Val Asp Ala Trp Met Gly Ile Pro 1

Tyr Ala Gln Pro Pro Leu Gly Pro Leu Arg Phe Arg His Pro Arg Pro 25

Ala Glu Arg Trp Thr Gly Val Leu Asn Ala Thr Lys Pro Pro Asn Ser 40

Ala Glu Arg Trp Thr Gly Val Leu Asn Ala Thr Lys Pro Pro Asn Ser 40

Cys Val Gln Ile Val Asp Thr Val Phe Gly Asp Phe Pro Gly Ala Thr 50 55 60

Met Trp Asn Pro Asn Thr Pro Leu Ser Glu Asp Cys Leu Tyr Ile Asn 65 70 75 80

Val Val Pro Arg Pro Arg Pro Lys Asn Ala Ala Val Met Leu Trp 85 90 95

Ile Phe Gly Gly Gly Phe Tyr Ser Gly Thr Ala Thr Leu Asp Val Tyr 100 105 110

Asp His Arg Thr Leu Ala Ser Glu Glu Asn Val Ile Val Val Ser Leu 115 120 125

Gln Tyr Arg Val Ala Ser Leu Gly Phe 130 135

<210> 118

<211> 139

<212> PRT

<213> Culex pipiens quinquefasciatus souche Moorea (S)

<400> 118

Thr Leu Glu Ala Pro Ser Gly Lys Lys Val Asp Ala Trp Met Gly Ile
1 5 10 15

Pro Tyr Ala Gln Pro Pro Leu Gly Pro Leu Arg Phe Arg His Pro Arg 20 25 30

Pro Ala Glu Arg Trp Thr Gly Val Leu Asn Ala Thr Lys Pro Pro Asn 35 40 45

Ser Cys Val Gln Ile Val Asp Thr Val Phe Gly Asp Phe Pro Gly Ala 50 55 60 88

Thr Met Trp Asn Pro Asn Thr Pro Leu Ser Glu Asp Cys Leu Tyr Ile Asn Val Val Pro Arg Pro Arg Pro Lys Asn Ala Ala Val Met Leu Trp Ile Phe Gly Gly Gly Phe Tyr Ser Gly Thr Ala Thr Leu Asp Val Tyr Asp His Arg Thr Leu Ala Ser Glu Glu Asn Val Ile Val Val Ser 120 Leu Gln Tyr Arg Val Ala Ser Leu Gly Phe Leu 130 <210> 119 <211> 134 <212> PRT <213> Culex pipiens pipiens souche Killcare (S) <400> 119 Ser Gly Lys Lys Val Asp Ala Trp Met Gly Ile Pro Tyr Ala Gln Pro Pro Leu Gly Pro Leu Arg Phe Arg His Pro Arg Pro Ala Glu Arg Trp 20 Thr Gly Val Leu Asn Ala Thr Lys Pro Pro Asn Ser Cys Val Gln Ile Val Asp Thr Val Phe Gly Asp Phe Pro Gly Ala Thr Met Trp Asn Pro 50 Asn Thr Pro Leu Ser Glu Asp Cys Leu Tyr Ile Asn Val Val Pro Arg Pro Arg Pro Lys Asn Ala Ala Val Met Leu Trp Ile Phe Gly Gly Gly Phe Tyr Ser Gly Thr Ala Thr Leu Asp Val Tyr Asp His Arg Thr Leu Ala Ser Glu Glu Asn Val Ile Val Val Ser Leu Gln Tyr Arg Val 120 Ala Ser Leu Gly Phe Leu 130 <210> 120 <211> 2527 <212> ADN <213> Anopheles gambiae souche YAO <400> 120

gaatgcgcat tgttgcgata gattgaattt ccttggttgt tgttgttgtt ggttttcttt 60 tgacatgttt gtgtgttgtt ttttcttct ctctctct ctttctgtgg ttccaacatt 120 tcagacgcat tttttacacc atatataggt cacggtgagt ccgcacgaat tatagatgcc 180 gagttgggca cgctcgagca tgtacacagt ggagcaacgc cgcggcgacg cggtctgacg 240

aggcgcgagt caaactcggg taagtacgcg attggaagtg gggggacgtt taccctaccg 300 tgtactacaa cgcactttac ccccacgcac acgcaccggc agacgcgaac gacaacgatc 360 cgctggtggt caacacggat aaggggcgca tccgcggcat tacggtcgat gcccccagcg 420 gcaagaaggt ggacgtgtgg ctcggcattc cctacgccca gccgccggtc gggccgctac 480 ggttccgtca tccgcggccg gccgaaaagt ggaccggcgt gctgaacacg accacaccgc 540 ccaacagctg cgtgcagatc gtggacaccg tgttcggcga cttcccgggc gcgaccatgt 600 ggaacccgaa cacgcccctg tccgaggact gtctgtacat taacgtggtg gcaccgcggc 660 cccggcccaa gaatgcggcc gtcatgctgt ggatcttcgg cggcagcttc tactccggca 720 ccgccaccct ggacgtgtac gaccaccggg cgcttgcgtc ggaggagaac gtgatcgtgg 780 tgtcgctgca gtaccgcgtg gccagtctgg gcttcctgtt tctcggcacc ccggaagcgc 840 cgggcaatgc gggactgttc gatcagaacc ttgcgctacg gtaggtgtct ttgcgtgtgt 900 gtctgtagtt atagtattct aacgaggtgc tcttcttccc atcacttctt gggagtcagc 960 tgggtgcggg acaacattca ccggttcggt ggtgatccgt cgcgcgtgac actgttcggc 1020 gagagtgccg gtgccgtctc ggtgtcgctg catctgctgt ccgccctttc ccgcgatctg 1080 ttccagcggg ccatcctgca gagcggctcg ccgacggcac cgtgggcatt ggtatcgcgc 1140 gaggaagcca cgctaaggta cgtgccagct gctgctttcc ccaaaccacc aacccgcaac 1200 ageteacaca accetettt cegtegetet tttetegete cagageactg eggttggeeg 1260 aggcggtcgg ctgcccgcac gaaccgagca agctgagcga tgcggtcgag tgtctgcgcg 1320 gcaaggatcc gcacgtgctg gtcaacaacg agtggggcac gctcggcatt tgcgagttcc 1380 cgttcgtgcc ggtggtcgac ggtgcgttcc tggacgagac gccgcagcgt tcgctcgcca 1440 gcgggcgctt caagaagacg gagatcctca ccggcagcaa cacggaggag ggctactact 1500 tcatcatcta ctacctgacc gagctgctgc gcaaggagga gggcgtgacc gtgacgcgcg 1560 aggagtteet geaggeggtg egegagetea acceptacgt gaacggggeg geeeggeagg 1620 cgatcgtgtt cgagtacacc gactggaccg agccggacaa cccgaacagc aaccgggacg 1680 cgctggacaa gatggtgggc gactatcact tcacctgcaa cgtgaacgag ttcgcgcagc 1740 ggtacgccga ggagggcaac aacgtctaca tgtatctgta cacgcaccgc agcaaaggca 1800 acccgtggcc gcgctggacg ggcgtgatgc acggcgacga gatcaactac gtgttcggcg 1860 aaccgctcaa ccccacctc ggctacaccg aggacgagaa agactttagc cggaagatca 1920 tgcgatactg gtctaacttt gccaaaaccg ggtaagtgtg tgtgtcaaac agcaaagtgc 1980 caatagetet aacaccageg tettetetet tetacageaa tecaaateee aacacageca 2040 gcagcgaatt ccccgagtgg cccaagcaca ccgcccacgg acggcactat ctggagctgg 2100 gcctcaacac gtccttcgtc ggtcggggcc cacggttgag gcagtgtgcc ttctggaaga 2160 agtaccttcc ccagctagtt gcagctacct gtaagtctag ttgctgcacg agaaaccccc 2220 tctcgcgtcc ccatcagggt ccagattaca ataacaaatg tatctctctc tcacgtatct 2280 tttccccaaa acagcgaacc taccagggcc agcaccgccc agtgaaccgt gcgaaagcag 2340 cgcatttttt taccgacctg atctgatcgt gctgctggtg tcgctgctta cggcgaccgt 2400 cagattcata caataattac taccccatcc atggcctagt tcgtttaagc tttaagatag 2460 tgaggaacaa attttccta accaatttcc cccccttta gagcagaacc gagggagaga 2520 taggact

	ccc Pro															144
gcc Ala	gcc Ala 50	atc Ile	gga Gly	tcg Ser	cat His	cag Gln 55	ctg Leu	tcg Ser	gct Ala	gcc Ala	gcc Ala 60	ggt Gly	gtt Val	ggc	ctt Leu	192
	tcc Ser															240
	gtt Val															288
	tcg Ser															336
	gac Asp															384
	ata Ile 130															432
	ccg Pro															480
	gac Asp															528
	att Ile															576
ggc Gly	att Ile	ccc Pro 195	tac Tyr	gcc Ala	cag Gln	ccg Pro	ccg Pro 200	gtc Val	Gly	ccg Pro	cta Leu	cgg Arg 205	ttc Phe	cgt Arg	cat His	624
	cgg Arg 210															672
	aac Asn															720
ggc Gly	gcg Ala	acc Thr	atg Met	tgg Trp 245	aac Asn	ccg Pro	aac Asn	acg Thr	ccc Pro 250	ctg Leu	tcc Ser	gag Glu	gac Asp	tgt Cys 255	ctg Leu	768

		 	gca Ala	_			_		-	-	816
			ggc Gly								864
			cgg Arg								912
			cgc Arg 310								960
			ggc Gly								1008
			gac Asp								1056
			Gly ggc								1104
			ctt Leu								1152
			acg Thr 390								1200
			ctg Leu								1248
	 	 _	agc Ser	_	 	 		 		Ξ	1296
			aac Asn								1344
			gtg Val								1392
			agc Ser 470								1440

ggc Gly	agc Ser	aac Asn	acg Thr	gag Glu 485	gag Glu	ggc Gly	tac Tyr	tac Tyr	ttc Phe 490	atc Ile	atc Ile	tac Tyr	tac Tyr	ctg Leu 495	acc Thr	1488
					gag Glu											1536
					gag Glu											1584
					gag Glu											1632
					gcg Ala 550											1680
					gag Glu											1728
					ctg Leu											1776
					gtg Val											1824
					ccc Pro											1872
					atg Met 630											1920
					aca Thr											1968
					cgg Arg											2016
					cca Pro											2064
					gtt Val											2112

			gaa Glu													2160
			ctg Leu													2208
caa Gln	taa										s.					2214
<212 <212	0> 1; 1> 7; 2> Pi 3> Ai	37 RT	eles	gaml	oiae	soud	che :	YAO								
	0> 12 Glu		Arg	Gly 5	Leu	Leu	Met	Gly	Arg 10	Leu	Arg	Leu	Gly	Arg 15	Arg	
Met	Val	Pro	Leu 20	Gly	Leu	Leu	Gly	Val 25	Thr	Ala	Leu	Leu	Leu 30	Ile	Leu	
Pro	Pro	Ser 35	Ala	Leu	Val	Gln	Gly 40	Arg	His	His	Glu	Leu 45	Asn	Asn	Gly	
Ala	Ala 50	Ile	Gly	Ser	His	Gln 55	Leu	Ser	Ala	Ala	Ala 60	Gly	Val	Gly	Leu	
Ser 65	Ser	Gln	Ser	Ala	Gln 70	Ser	Gly	Ser	Leu	Ala 75	Ser	Gly	Val	Met	Ser 80	
Ser	Val	Pro	Ala	Ala 85	Gly	Ala	Ser	Ser	Ser 90	Ser	Ser	Ser	Ser	Leu 95	Leu	
Ser	Ser	Ser	Ala 100	Glu	Asp	Asp	Val	Ala 105	Arg	Ile	Thr	Leu	Ser 110	Lys	Asp	
Ala	Asp	Ala 115	Phe	Phe	Thr	Pro	Tyr 120	Ile	Gly	His	Gly	Glu 125	Ser	Ala	Arg	
Ile	Ile 130	Asp	Ala	Glu	Leu	Gly 135	Thr	Leu	Glu	His	Val 140	His	Ser	Gly	Ala	
Thr 145	Pro	Arg	Arg	Arg	Gly 150	Leu	Thr	Arg	Arg	Glu 155	Ser	Asn	Ser	Asp	Ala 160	
Asn	Asp	Asn	Asp	Pro 165	Leu	Val	Val	Asn	Thr 170	Asp	Lys	Gly	Arg	Ile 175	Arg	
Gly	Ile	Thr	Val 180	Asp	Ala	Pro	Ser	Gly 185	Lys	Lys	Val	Asp	Val 190	Trp	Leu	
Gly		Pro 195	Tyr	Ala	Gln	Pro	Pro 200	Val	Gly	Pro	Leu	Arg 205	Phe	Arg	His	

Pro Arg Pro Ala Glu Lys Trp Thr Gly Val Leu Asn Thr Thr Pro Pro Asn Ser Cys Val Gln Ile Val Asp Thr Val Phe Gly Asp Phe Pro 235 Gly Ala Thr Met Trp Asn Pro Asn Thr Pro Leu Ser Glu Asp Cys Leu Tyr Ile Asn Val Val Ala Pro Arg Pro Arg Pro Lys Asn Ala Ala Val 260 265 270 Met Leu Trp Ile Phe Gly Gly Ser Phe Tyr Ser Gly Thr Ala Thr Leu Asp Val Tyr Asp His Arg Ala Leu Ala Ser Glu Glu Asn Val Ile Val Val Ser Leu Gln Tyr Arg Val Ala Ser Leu Gly Phe Leu Phe Leu Gly Thr Pro Glu Ala Pro Gly Asn Ala Gly Leu Phe Asp Gln Asn Leu Ala Leu Arg Trp Val Arg Asp Asn Ile His Arg Phe Gly Gly Asp Pro Ser Arg Val Thr Leu Phe Gly Glu Ser Ala Gly Ala Val Ser Val Ser Leu His Leu Leu Ser Ala Leu Ser Arg Asp Leu Phe Gln Arg Ala Ile Leu Gln Ser Gly Ser Pro Thr Ala Pro Trp Ala Leu Val Ser Arg Glu Glu Ala Thr Leu Arg Ala Leu Arg Leu Ala Glu Ala Val Gly Cys Pro His 410 Glu Pro Ser Lys Leu Ser Asp Ala Val Glu Cys Leu Arg Gly Lys Asp 420 430 Pro His Val Leu Val Asn Asn Glu Trp Gly Thr Leu Gly Ile Cys Glu Phe Pro Phe Val Pro Val Val Asp Gly Ala Phe Leu Asp Glu Thr Pro Gln Arg Ser Leu Ala Ser Gly Arg Phe Lys Lys Thr Glu Ile Leu Thr 470 Gly Ser Asn Thr Glu Glu Gly Tyr Tyr Phe Ile Ile Tyr Tyr Leu Thr 485 490 Glu Leu Leu Arg Lys Glu Glu Gly Val Thr Val Thr Arg Glu Glu Phe 500 505

Leu Gln Ala Val Arg Glu Leu Asn Pro Tyr Val Asn Gly Ala Ala Arg 520 Gln Ala Ile Val Phe Glu Tyr Thr Asp Trp Thr Glu Pro Asp Asn Pro Asn Ser Asn Arg Asp Ala Leu Asp Lys Met Val Gly Asp Tyr His Phe Thr Cys Asn Val Asn Glu Phe Ala Gln Arg Tyr Ala Glu Glu Gly Asn Asn Val Tyr Met Tyr Leu Tyr Thr His Arg Ser Lys Gly Asn Pro Trp Pro Arg Trp Thr Gly Val Met His Gly Asp Glu Ile Asn Tyr Val Phe Gly Glu Pro Leu Asn Pro Thr Leu Gly Tyr Thr Glu Asp Glu Lys Asp Phe Ser Arg Lys Ile Met Arg Tyr Trp Ser Asn Phe Ala Lys Thr Gly 630 635 Asn Pro Asn Pro Asn Thr Ala Ser Ser Glu Phe Pro Glu Trp Pro Lys 645 His Thr Ala His Gly Arg His Tyr Leu Glu Leu Gly Leu Asn Thr Ser 665 Phe Val Gly Arg Gly Pro Arg Leu Arg Gln Cys Ala Phe Trp Lys Lys Tyr Leu Pro Gln Leu Val Ala Ala Thr Ser Asn Leu Pro Gly Pro Ala 695 Pro Pro Ser Glu Pro Cys Glu Ser Ser Ala Phe Phe Tyr Arg Pro Asp 705 Leu Ile Val Leu Leu Val Ser Leu Leu Thr Ala Thr Val Arg Phe Ile 730

Gln

<210> 123

<211> 20

<212> ADN

<213> Séquence artificielle

<220>

<223> Description de la séquence artificielle:amorce

<400> 123

gatcgtggac accgtgttcg

<21 <21	0> 1 1> 2 2> A 3> S	0 DN	nce	arti	fici	elle										
<22 <22	-	escr	ipti	on d	e la	séq	uenc	e ar	tifi	ciel.	le:a	morc	е			
	0> 1 atgg		gctg	gaac	ag										•	20
<21 <21	0> 1 1> 2 2> A 3> A	214 DN	eles	gaml	biae	sou	che 1	KISU	MU				-			
	0> 1> C 2> ((221	4)												
atg	0> 1: gag Glu	atc	cga Arg	ggg Gly 5	ctg Leu	ctg Leu	atg Met	ggt Gly	aga Arg 10	cta Leu	cgg Arg	tta Leu	gga Gly	cgg Arg 15	cgg Arg	48
							ggc Gly									96
cca Pro	ccc Pro	tcc Ser 35	gcg Ala	ctg Leu	gtg Val	cag Gln	ggc Gly 40	cgg Arg	cac His	cac His	gag Glu	ctc Leu 45	aac Asn	aat Asn	ggt Gly	144
gcc Ala	gcc Ala 50	atc Ile	gga Gly	tcg Ser	cat His	cag Gln 55	ctg Leu	tcg Ser	gct Ala	gcc Ala	gcc Ala 60	ggt Gly	gtt Val	ggc Gly	ctt Leu	192
tcc Ser 65	tcc Ser	cag Gln	tcc Ser	gcc Ala	cag Gln 70	tcc Ser	gga Gly	tcg Ser	ctc Leu	gca Ala 75	tcc Ser	ggt Gly	gtg Val	atg Met	tca Ser 80	240
tcc Ser	gtt Val	cct Pro	gct Ala	gcc Ala 85	gga Gly	gcg Ala	tca Ser	tcc Ser	tcc Ser 90	tcc Ser	tcg Ser	tcg Ser	tcg Ser	ctg Leu 95	ctg Leu	288
tca Ser	tcg Ser	tca Ser	gcc Ala 100	gag Glu	gac Asp	gac Asp	gtg Val	gcg Ala 105	cgc Arg	att Ile	act Thr	ctc Leu	agc Ser 110	aag Lys	gac Asp	336
gca Ala	gac Asp	gca Ala 115	ttt Phe	ttt Phe	aca Thr	cca Pro	tat Tyr 120	ata Ile	ggt Gly	cac His	ggt Gly	gag Glu 125	tcc Ser	gta Val	cga Arg	384
att Ile	ata Ile 130	gat Asp	gcc Ala	gag Glu	ttg Leu	ggc Gly 135	acg Thr	ctc Leu	gag Glu	cat His	gtc Val 140	cac His	agt Ser	gga Gly	gca Ala	432

acg Thr 145	ccg Pro	cgg Arg	cga Arg	cgc Arg	ggt Gly 150	ctg Leu	acg Thr	agg Arg	cgc Arg	gag Glu 155	tcc Ser	aac Asn	tcg Ser	gac Asp	gcg Ala 160	480
aac Asn	gac Asp	aac Asn	gat Asp	ccg Pro 165	ctg Leu	gtg Val	gtc Val	aac Asn	acg Thr 170	gat Asp	aag Lys	Gly ggg	cgc Arg	atc Ile 175	cgc Arg	528
ggc	att Ile	acg Thr	gtc Val 180	gat Asp	gcg Ala	ccc Pro	agc Ser	ggc Gly 185	aag Lys	aag Lys	gtg Val	gac Asp	gtg Val 190	tgg Trp	ctc Leu	576
							ccg Pro 200									624
							acc Thr									672
							gtg Val									720
							aac Asn									768
tac Tyr	att Ile	aac Asn	gtg Val 260	gtg Val	gca Ala	ccg Pro	cga Arg	ccc Pro 265	cgg Arg	ccc Pro	aag Lys	aat Asn	gcg Ala 270	gcc Ala	gtc Val	816
							ggc Gly 280									864
							ctt Leu									912
gtg Val 305	tcg Ser	ctg Leu	cag Gln	tac Tyr	cgc Arg 310	gtg Val	gcc Ala	agt Ser	ctg Leu	ggc Gly 315	ttc Phe	ctg Leu	ttt Phe	ctc Leu	ggc Gly 320	960
acc Thr	ccg Pro	gaa Glu	gcg Ala	ccg Pro 325	ggc Gly	aat Asn	gcg Ala	gga Gly	ctg Leu 330	ttc Phe	gat Asp	cag Gln	aac Asn	ctt Leu 335	gcg Ala	1008
cta Leu	cgc Arg	tgg Trp	gtg Val 340	cgg Arg	gac Asp	aac Asn	att Ile	cac His 345	cgg Arg	ttc Phe	ggt Gly	ggt Gly	gat Asp 350	ccg Pro	tcg Ser	1056
cgt Arg	gtg Val	aca Thr 355	ctg Leu	ttc Phe	ggc Gly	gag Glu	agt Ser 360	gcc Ala	ggt Gly	gcc Ala	gtc Val	tcg Ser 365	gtg Val	tcg Ser	ctg Leu	1104

cat His	ctg Leu 370	ctg Leu	tcc Ser	gcc Ala	ctg Leu	tcc Ser 375	cgc Arg	gat Asp	ctg Leu	ttc Phe	cag Gln 380	cgg Arg	gcc Ala	atc Ile	ctg Leu	1152
cag Gln 385	agc Ser	Gly	tcg Ser	ccg Pro	acg Thr 390	gca Ala	ccg Pro	tgg Trp	gca Ala	ttg Leu 395	gta Val	tcg Ser	cgc Arg	gag Glu	gaa Glu 400	1200
gcc Ala	acg Thr	cta Leu	aga Arg	gca Ala 405	ctg Leu	cgg Arg	ttg Leu	gcc Ala	gag Glu 410	gcg Ala	gtc Val	ggc Gly	tgc Cys	ccg Pro 415	cac His	1248
gaa Glu	ccg Pro	agc Ser	aag Lys 420	ctg Leu	agc Ser	gat Asp	gcg Ala	gtc Val 425	gag Glu	tgt Cys	ctg Leu	cgc Arg	ggc Gly 430	aag Lys	gat Asp	1296
ccg Pro	cac His	gtg Val 435	ctg Leu	gtc Val	aac Asn	aac Asn	gag Glu 440	tgg Trp	ggc Gly	acg Thr	ctc Leu	ggc Gly 445	att Ile	tgc Cys	gag Glu	1344
ttc Phe	ccg Pro 450	ttc Phe	gtg Val	ccg Pro	gtg Val	gtc Val 455	gac Asp	ggt Gly	gcg Ala	ttc Phe	ctg Leu 460	gac Asp	gag Glu	acg Thr	ccg Pro	1392
cag Gln 465	cgt Arg	tcg Ser	ctc Leu	gcc Ala	agc Ser 470	ggg Gly	cgc Arg	ttc Phe	aag Lys	aag Lys 475	acg Thr	gag Glu	atc Ile	ctc Leu	acc Thr 480	1440
			acg Thr													1488
			cgc Arg 500													1536
ctg Leu	cag Gln	gcg Ala 515	gtg Val	cgc Arg	gag Glu	ctc Leu	aac Asn 520	ccg Pro	tac Tyr	gtg Val	aac Asn	ggg Gly 525	gcg Ala	gcc Ala	cgg Arg	1584
cag Gln	gcg Ala 530	atc Ile	gtg Val	ttc Phe	gag Glu	tac Tyr 535	acc Thr	gac Asp	tgg Trp	acc Thr	gag Glu 540	ccg Pro	gac Asp	aac Asn	ccg Pro	1632
aac Asn 545	agc Ser	aac Asn	cgg Arg	gac Asp	gcg Ala 550	ctg Leu	gac Asp	aag Lys	atg Met	gtg Val 555	ggc Gly	gac Asp	tat Tyr	cac His	ttc Phe 560	1680
acc Thr	tgc Cys	aac Asn	gtg Val	aac Asn 565	gag Glu	ttc Phe	gcg Ala	cag Gln	cgg Arg 570	tac Tyr	gcc Ala	gag Glu	gag Glu	ggc Gly 575	aac Asn	1728
			atg Met 580													1776

ccg Pro	cgc Arg	tgg Trp 595	acg Thr	ggc Gly	gtg Val	atg Met	cac His 600	ggc Gly	gac Asp	gag Glu	atc Ile	aac Asn 605	tac Tyr	gtg Val	ttc Phe	1824
Gly	gaa Glu 610	ccg Pro	ctc Leu	aac Asn	ccc Pro	acc Thr 615	ctc Leu	ggc Gly	tac Tyr	acc Thr	gag Glu 620	gac Asp	gag Glu	aaa Lys	gac Asp	1872
ttt Phe 625	agc Ser	cgg Arg	aag Lys	atc Ile	atg Met 630	cga Arg	tac Tyr	tgg Trp	tct Ser	aac Asn 635	ttt Phe	gcc Ala	aaa Lys	acc Thr	ggc Gly 640	1920
aat Asn	cca Pro	aat Asn	ccc Pro	aac Asn 645	acg Thr	gcc Ala	agc Ser	agc Ser	gaa Glu 650	ttc Phe	ccc Pro	gag Glu	tgg Trp	ccc Pro 655	aag Lys	1968
cac His	acc Thr	gcc Ala	cac His 660	gga Gly	cgg Arg	cac His	tat Tyr	ctg Leu 665	gag Glu	ctg Leu	ggc Gly	ctc Leu	aac Asn 670	acg Thr	tcc Ser	2016
ttc Phe	gtc Val	ggt Gly 675	cgg Arg	ggc Gly	cca Pro	cgg Arg	ttg Leu 680	agg Arg	cag Gln	tgt Cys	gcc Ala	ttc Phe 685	tgg Trp	aag Lys	aag Lys	2064
tac Tyr	ctt Leu 690	ccc Pro	cag Gln	cta Leu	gtt Val	gca Ala 695	gct Ala	acc Thr	tcg Ser	aac Asn	cta Leu 700	cca Pro	GJÀ āāā	cca Pro	gca Ala	2112
ccg Pro 705	ccc Pro	agt Ser	gaa Glu	ccg Pro	tgc Cys 710	gaa Glu	agc Ser	agc Ser	gca Ala	ttt Phe 715	ttt Phe	tac Tyr	cga Arg	cct Pro	gat Asp 720	2160
ctg Leu	atc Ile	gtg Val	ctg Leu	ctg Leu 725	gtg Val	tcg Ser	ctg Leu	ctt Leu	acg Thr 730	gcg Ala	acc Thr	gtc Val	aga Arg	ttc Phe 735	ata Ile	2208
caa Gln	taa															2214
<211 <212	> 12 > 73 > PR > An	37 3 T	les	gamb	oiae											
	> 12 Glu		Arg	Gly 5	Leu	Leu	Met	Gly	Arg 10	Leu	Arg	Leu	Gly	Arg 15	Arg	
Met	Val	Pro	Leu 20	Gly	Leu	Leu	Gly	Val 25	Thr	Ala	Leu	Leu	Leu 30	Ile	Leu	

Pro Pro Ser Ala Leu Val Gln Gly Arg His His Glu Leu Asn Asn Gly

Ala Ala Ile Gly Ser His Gln Leu Ser Ala Ala Ala Gly Val Gly Leu

Ser 65	Ser	Gln	Ser	Ala	Gln 70	Ser	Gly	Ser	Leu	Ala 75	Ser	Gly	Val	Met	Ser 80
Ser	Val	Pro	Ala	Ala 85	Gly	Ala	Ser	Ser	Ser 90	Ser	Ser	Ser	Ser	Leu 95	Leu
Ser	Ser	Ser	Ala 100	Glu	Asp	Asp	Val	Ala 105	Arg	Ile	Thr	Leu	Ser 110	Lys	Asp
Ala	Asp	Ala 115	Phe	Phe	Thr	Pro	Tyr 120	Ile	Gly	His	Gly	Glu 125	Ser	Val	Arg
Ile	Ile 130	Asp	Ala	Glu	Leu	Gly 135	Thr	Leu	Glu	His	Val 140	His	Ser	Gly	Ala
Thr 145	Pro	Arg	Arg	Arg	Gly 150	Leu	Thr	Arg	Arg	Glu 155	Ser	Asn	Ser	Asp	Ala 160
Asn	Asp	Asn	Asp	Pro 165	Leu	Val	Val	Asn	Thr 170	Asp	Lys	Gly	Arg	Ile 175	Arg
Gly	Ile	Thr	Val 180	Asp	Ala	Pro	Ser	Gly 185	Lys	Lys	Val	Asp	Val 190	Trp	Leu
Gly	Ile	Pro 195	Tyr	Ala	Gln	Pro	Pro 200	Val	Gly	Pro	Leu	Arg 205	Phe	Arg	His
Pro	Arg 210	Pro	Ala	Glu	Lys	Trp 215	Thr	Gly	Val	Leu	Asn 220	Thr	Thr	Thr	Pro
Pro 225	Asn	Ser	Суѕ	Val	Gln 230	Ile	Val	Asp	Thr	Val 235	Phe	Gly	Asp	Phe	Pro 240
Gly	Ala	Thr	Met	Trp 245	Asn	Pro	Asn	Thr	Pro 250	Leu	Ser	Glu	Asp	Cys 255	Leu
Tyr	Ile	Asn	Val 260	Val	Ala	Pro	Arg	Pro 265	Arg	Pro	Lys	Asn	Ala 270	Ala	Val
Met	Leu	Trp 275	Ile	Phe	Gly	Gly	Gly 280	Phe	Tyr	Ser	Gly	Thr 285	Ala	Thr	Leu
	290					295					300			Ile	
Val 305	Ser	Leu	Gln	Tyr	Arg 310	Val	Ala	Ser	Leu	Gly 315	Phe	Leu	Phe	Leu	Gly 320
Thr	Pro	Glu	Ala	Pro 325	Gly	Asn	Ala	Gly	Leu 330	Phe	Asp	Gln	Asn	Leu 335	Ala
Leu	Arg	Trp	Val 340	Arg	Asp	Asn	Ile	His 345	Arg	Phe	Gly	Gly	Asp 350	Pro	Ser
Arg	Val	Thr 355	Leu	Phe	Gly	Glu	Ser 360	Ala	Gly	Ala	Val	Ser 365	۷al	Ser	Leu

His	Leu 370	Leu	Ser	Ala	Leu	Ser 375	Arg	Asp	Leu	Phe	Gln 380	Arg	Ala	Ile	Leu
Gln 385	Ser	Gly	Ser	Pro	Thr 390	Ala	Pro	Trp	Ala	Leu 395	Val	Ser	Arg	Glu	Glu 400
Ala	Thr	Leu	Arg	Ala 405	Leu	Arg	Leu	Ala	Glu 410	Ala	Val	Gly	Суѕ	Pro 415	His
Glu	Pro	Ser	Lys 420	Leu	Ser	Asp	Ala	Val 425	Glu	Суз	Leu	Arg	Gly 430	Lys	Asp
Pro	His	Val 435	Leu	Val	Asn	Asn	Glu 440	Trp	Gly	Thr	Leu	Gly 445	Ile	Суз	Glu
Phe	Pro 450	Phe	Val	Pro	Val	Val 455	Asp	Gly	Ala	Phe	Leu 460	Asp	Glu	Thr	Pro
Gln 465	Arg	Ser	Leu	Ala	Ser 470	Gly	Arg	Phe	Lys	Lys 475	Thr	Glu	Ile	Leu	Thr 480
Gly	Ser	Asn	Thr	Glu 485	Glu	Gly	Tyr	Tyr	Phe 490	Ile	Ile	Tyr	Tyr	Leu 495	Thr
Glu	Leu	Leu	Arg 500	Lys	Glu	Glu	Gly	Val 505	Thr	Val	Thr	Arg	Glu 510	Glu	Phe
Leu	Gln	Ala 515	Val	Arg	Glu	Leu	Asn 520	Pro	Tyr	Val	Asn	Gly 525	Ala	Ala	Arg
Gln	Ala 530	Ile	Val	Phe	Glu	Tyr 535	Thr	Asp	Trp	Thr	Glu 540	Pro	Asp	Asn	Pro
Asn 545	Ser	Asn	Arg	Asp	Ala 550	Leu	Asp	Lys	Met	Val 555	Gly	Asp	Tyr	His	Phe 560
Thr	Cys	Asn	Val	Asn 565	Glu	Phe	Ala	Gln	Arg 570	Tyr	Ala	Glu	Glu	Gly 575	Asn
Asn	Val	Tyr	Met 580	Tyr	Leu	Tyr	Thr	His 585	Arg	Ser	Lys	Gly	Asn 590	Pro	Trp
Pro	Arg	Trp 595	Thr	Gly	Val	Met	His 600	Gly	Asp	Glu	Ile	Asn 605	Tyr	Val	Phe
Gly	Glu 610	Pro	Leu	Asn	Pro	Thr 615	Leu	Gly	Tyr	Thr	Glu 620	Asp	Glu	Lys	Asp
Phe 625	Ser	Arg	Lys	Ile	Met 630	Arg	Tyr	Trp	Ser	Asn 635	Phe	Ala	Lys	Thr	Gly 640
Asn	Pro	Asn	Pro	Asn 645	Thr	Ala	Ser	Ser	Glu 650	Phe	Pro	Glu	Trp	Pro 655	Lys
His	Thr	Ala	His 660	Gly	Arg	His	Tyr	Leu 665	Glu	Leu	Gly	Leu	Asn 670	Thr	Ser

102

Phe Val Gly Arg Gly Pro Arg Leu Arg Gln Cys Ala Phe Trp Lys Lys 675 680 685

Tyr Leu Pro Gln Leu Val Ala Ala Thr Ser Asn Leu Pro Gly Pro Ala 690 695 700

Pro Pro Ser Glu Pro Cys Glu Ser Ser Ala Phe Phe Tyr Arg Pro Asp 705 710 715 720

Leu Ile Val Leu Val Ser Leu Leu Thr Ala Thr Val Arg Phe Ile 725 730 735

Gln

<210> 127

<211> 10700

<212> ADN

<213> Anopheles gambiae

<400> 127

cagtgttaaa cgctttccaa ccgcaacatc aatattggcc taaagacggg cccgacagct 60 acattggatg atgccagttc tgaaacgggg gaaaaagtaa aacgaacgtt gcccttcaca 120 ttgacgatgt gtgcgagcag cggcggcaaa tacacggagg gcacataaat tagccacatc 180 aaccgatate egettagega attaagtegt tegeegaget teaaacgtgt geagtgtgtt 240 gccagctttg ctggccgcgg ctgaatacgc ggctggcaaa tgtttgcaaa tccttagcaa 300 gtaattaaat gtaaatcaaa tgagcaaaat cttgtgtttc gctcttgaaa tgtggtgtgc 360 taattggcag ccgatcttat gcgagcgaga tagagagtgc atatatgctg tagacttcat 420 tagtaaaagc agctttgctt tctttacgca tgatacttat cgcttatcgc tctcacaaat 480 aaatgaaata ctcaagacag tgaatgttga tattcaagag atatttacag caaaaagtgg 540 taataatgtt caatacgtgg atgattgtga tacaagcact agaatgttgt tcacaattat 600 tccgggaatc aacattaaac gttcagtatc atgtgacaac cttccaagga cgcttccaat 660 atcacaatcg atggatggat gaacctgcat cgagacctgg gcaaaaaaat gccacccaaa 720 cagetgtatt acetgeacga caeattacta agtaaacact ageegetgte ggeeteecac 780 agcaccette etcacaette tteetteate caetgtttgg ggtagegteg aaatatgtee 840 taagccctcc aggctattat tggatcatta ccgggctcga ccatgaaccg agttggcagg 900 aagtgtgtcg gggtgagtcg gtggggcggc tgatgctctt ccttacgtcc actcccagtc 960 ccaacgaccg agcccaccac tctccccct ccctgcagca ctaatcgggc caccatcatt 1020 atgcattaat aaataactgc ccactttggt ggaataatct ccgttagggg cgcttcgtta 1080 aactaattaa atggcatttg agtggcagcg gcagtgatcg gtttgatcgt gcctcccaca 1140 accgaacctg gaggggggt ctggaaatcg gcaggatact gctgcagcag ccgcgcgtgt 1200 accaccettc ggcattgtgt gcagcatcat gttcaatggg ctttctctcc gcagccattg 1260 tgcgtccagt gtcgtgtcga tataatcgga ttctaccgat aggctcgtta tcttgttacg 1320 cggtgttgtg cggcgtacgt gtgattgaaa gcgatcgagc ggctgtgcgg catagtttgt 1380 tgcgaattcg ctgtaaacat gcttatgcaa tggtgagtgc tactttttc gtagcccaaa 1440 tttaagacaa tecaaagete aetteagteg agagggaaca aacaegeece agegggaaga 1500 aataaatatt agcgtaagtg tttacttatt gattattatt aaaccataga tgaagaaatg 1560 aatatccaat ttatatagcc tttcttccag ccaccttttt tctaatcttt ttgccatttt 1620 tgcatttttt tataatcgga ttagatgaac taaacccgaa attaataaga attccgcttc 1680 ggaagatatt acggcagcca tcattaggag ggagagaaaa cagtaaaaca atttcccgcg 1740 gtcaatgagt acttcagata caccattgaa agctgaaagc tcatcagcga gaacggggct 1800 caaatctacg acgactatga tgataaagct attttctgcc aattctgcaa ctttcgcaaa 1860 aaaggaagaa atgactcaag agcgttgcga caactgtgtg cgaaagagga tgatttcgga 1920 aaaggttgca cacacataca cacacgggca aacacactca gtgcacatgg tggacgtaaa 1980 tgggaatgct atttttatct attagaagca tgaattattg atgaaacatg ctgataatct 2040 ttctcccggc cccggcattg ccccgtttgc agtccggcga gacccgcgcc atctgccatc 2100 cgtccacaca acggcttttt gagggactgc ggataccagt gacagtgtag catgaaatat 2160

ttatcagttc ttataattga gtgtcggtgt gattccgttc ccaaaaaaaa aaaacggtga 2220 agegegaaag aegggaaega agtggateeg tegaaaette egtegaaaea ceacacetea 2280 cctcacacgt tggttggccc agggacgaca gggaatcgcg gtcaccgaac cagcatcqcq 2340 ggaaacattt tgacgtcaca cgtctctgtg atatttgccg tagctgccqg ttqqtttatc 2400 gaagtgtgta tgtggatggc attttccacg ctactttgca tcggacgagc gcaacctgac 2460 gagtecetge ceacacteat actattegeg tgaaaaaegg tagagegaat cetteegttt 2520 tcaattagga ccgtgacatt tgtttcgacg tttcttgtgc gctcgtgtgt gtgtgtgtgt 2580 gtgtgtgtgt agtgcttttt ggaacaggaa aggcaaaaac catgatgcga cqtcqttttg 2640 acaaacgctt cagatgatcg gattgtggtt tgctggaagg attatcttgc aaagcgqttq 2700 aaggattcat agcaatccga gcacaacgcg cttcacggta ttatggccag cgtqqqataa 2760 gtgaaataag tttaaggata gctgaaataa gattgctgat ccagctatac agccgctaga 2820 tgcttcaacg caagaaaaag cacatgctaa cagacttaaa aggacaacac tgcaaagcgt 2880 attgcatact ttgaggcgta ttacttcgaa taacgtgcaa atatattatt actacttatc 2940 attaaccete atattateea etaaattata attataateg ettteteaca aaccegatga 3000 tatcccactt cacggaggta actttattat tctcttttaa acagctctct ttcaccaact 3060 gcaccttata cttagggcga aatcccctaa tcccgcttca tagcgaacca aacgcaacca 3120 aaccaccata aacccgtcgc cctcgtgtgc tctcgattgg tttggggaca gaaatgaaag 3180 catcataaaa tatgaatgaa attgacgtgc cagtgcgaaa aaggtgttaa ttaaataaac 3240 tttcatcttc gtttcttgcc gtttcgagcc gttcgagttg ctttgggtta gcctggctta 3300 gcaagagggc aaggcatatt acgcaccatt ttatgtttac acccattac accagtcgat 3360 ccgcgggccc gacatcggcc gacaccgtct cgtggcacag ttggggttga atgccgqtcg 3420 cagageggat tegatttee gttaagaaac teeeggagta eggttaegga tattgateeg 3480 caaaacaagt cccagctctt agataagccg tcgactcgga acgaatgcag caaaqcaagt 3540 tetettecae etcaagaate ggtggeeggg gtagageata caageagetg gcaaaagtte 3600 tgccagcgag agtaaacagg gaaaacttta ataaggaatt taattaaaag aaaacaacac 3660 ccgggcacac agtgcgcaga accagggcac gattatccca cggcgtggtt gggacggtgg 3720 ggggggaaac ttctgcacgc ctgtcaagcc tgaagagcca acaaacatgg gccggaataa 3780 ttcaactcgc cataaacgga atgccacggc acgggtctgg cagccgaatt attgtcctgt 3840 ccgttccgat cgtaaagtcg ccggaaggag aattatggcc gataaattag gaccaccggg 3900 ttccggcatg gcgcatggac gtgcggagaa ggcgaaggga gggtccttaa atactgatga 3960 cttgeteett ttteggteac attteggate ggtegaaace ggtacgaatg attatgeage 4020 ggcacgaagc ttgggtttcg ttgtgagtgt tgagcgcttc cgaaaagggc atccgtqagc 4080 ttaattcaaa tcactcgtgc gagcagaaag ttaatgctga tgctgaaaat caatcaacgg 4140 tttacattgt aaccaatgtg acttttaaac cggataaaca tttcggcaag acttttggca 4200 ggttttgggt tacttccact gaaagggcaa ggatcacgat gctcgatgtc ctttttgttg 4260 catactatgt tttattgatg tttgtgttat taagacacat ttgcagcatt tagttactga 4320 aaataggcat taaaccactg ttgaaatgta gtccaagtat aaacattaat tcttttaaat 4380 ctctaaagta cctgtaagtc ccaacaatga ctcatcgcat gaaaaaaacct catctgaagc 4440 taagtcggca aacagttcca aacattggaa tgtttcgaga tgtatttata ttccatcgta 4500 atccacactt tcatcccgga gttcttaaaa agacgtacga tccaaacaag cacccttctg 4560 aggcattgaa acattttcga cgcccagtgg tagattagca tttctgcaca ttagtcgctc 4620 aagctgtttt gttggagtat tacgaggaaa gaaagctccg ttccgatgcc caaaccctta 4680 cctgccaggc cacggaagct cccatgcgaa caccgagaac tgccaaataa tgqaacaqcq 4740 gcttttcaag agcacggatt cggcttgtgc ctcatttgaa aagaatctgg tagggaatta 4800 gaaattccgt gatgctgtgt ggcgtgcgct ctaatcctgc ccgagagggt aagaacgatt 4860 ggcctgaaca aaatcagcgc gttttaatcc cgcgctgtaa ttactatcat caccaatccg 4920 tacctcggac gattgccaaa gcgggcgtgt tgtgccgttg tgccgagcca attccatttc 4980 cgccggaacg cacgattgac tatgaatatt aaacttcagc cgtcgaaaaag gaagcaaaaa 5040 aaaaagccaa ccctcatcgc cgcaaaatgg ccaccgagcc ccgtttgccc cgagtcaagc 5100 ttggttcgtg taccggaaga agcgcatggg aaatttgcgt cggatttagc tttaagtttt 5160 cttaaatttt atctgtaagc tctaacgcct tcttctgccg tcctgggtag atgtcgcagt 5220 ccacaacttc tgatatcttt tactcttttc ttcacatttt tccggttctt tctgtagcgc 5340 tetecgeecg tgeegatgga gateegaggg etgetgatgg gtagactacg gttaggaegg 5400 eggatggtte egetgggtet geteggegtg acceette tactaateet gecaccette 5460 gcgctggtgc agggccggca ccacgagctc aacaatggtg ccgccatcgg atcgcatcag 5520 ctgtcqgctg ccgccggtgt tggccttgcc tcccagtccg cccagtccgg atcgctcgca 5580 teeggtgtga tgteateegt teetgetgee ggagegteat ceteeteete gtegtegetg 5640

ctgtcatcgt cagccgagga cgacgtggcg cgcattactc tcagcaagga cgcaggtcgg 5700 ttggatggcg tccgaaatcg gaccatcatt cttacataaa tacagattca cccacacaca 5760 cacaaagaac acagatatac agatccctca ccaacaaaaa aaaaacgggt tccatcgtct 5820 gactccacct gacagaggca aacacgccgg ggtcgaggtg gattggtacg gattggtcat 5880 ttccgttctt cttcatgtgc gtttcttact ctcctgcctt ctcaaacgaa cttcagaacg 5940 aaaaaaaaca cgcgacggag agtaagaagc tgtacagaca ctctagtcct cacacacac 6000 acttgcttac tttgtccgtc cgtttgattc cgctctttct atgtgtgact ttctggcacc 6060 ctttacttcg tcactattca tttcatttcc aataaacttt taatgtgtct ttctttttta 6120 ttctaaatat ctatagtaaa tgttctgtag caagtatctt gtagtagaat tgtatagaag 6180 tagatttttg tatgagtttg catcatccct tcccaatggg gttgactccg tttcaaccaa 6240 cgccaaaagc tatcggcata aagtatggtt ccttgcaaag gcttttatga aacacgaatg 6300 tgttgaaagc ttttgcaaat ggaaatgtta aagcctttaa gttccaatcg ctttttgtat 6360 ccatttagtt tgcatgaaca acaggaaatc aaaatattgg taacgacaat cgctggcggg 6420 cgttcctttc ttgtctaatc aaatcatcta cgattgtaat tacaaacttc caagtttgcg 6480 tatgacaatg ttaaatgtct aagacgctca aatgcaacca atagagtata attactaagg 6540 cgggcagtag aaaccaaaat atcttaaata atgtcaagca aaacaaaaag aacaattccg 6600 ttcactgctc aaagaaagcc ctaactaact acctaacctt ttcatcgatg accetgtact 6660 gacatggtaa gatattettt ateetttaae tettetgeae eetaegeaet caatgeaaca 6720 cacgcactac tattactgct actactctcg cactcacgag cacctacttg cactcaagcc 6780 ggcactcaat gtactagcga aacacgtcgc atctaagcac tcacaaggaa gcacacattt 6840 gcaaatagca cctaccggaa cagctttgaa tgtgccagca cagcattgaa caggttcgcg 6900 cctttactcc tgtgctctgt tttctcgatc ggaatgttcg aaagttgaaa agcgcatttt 6960 ttcatctctc tttttctatt cttcttcgta tttttatccc tctctcgtcg tgttttttct 7020 aaacattacc atacttcttc cgctacgaac tcgccaagaa ccagaacgca gcgtgcgtgc 7080 qqtqcttqcq qtqtqtqtt qtqtqtqtt attccacqqc tqcqaqaaqc aagatcqqaq 7140 aacaggcatc atteccettt cacagacaat tgcacttttg tactagaaca gaaaacgaga 7200 cagcataatt tocaacagco toattoacto ataccaggot cacacogact tttaaccgaa 7260 acatgtacta cagaaacaaa aacaaacaat atggagagtg ctcgcgctga tactaagtta 7320 atatgaagag attactggcg aggtcatcga tcccatcccg acatcatcgc tccaggctcc 7380 agacctacca agtcgcctac cattacctac ccaccaccga ccactactca cacagcatta 7440 teactteege egeegtegee geegeegeeg aegeegeega egeeaceace tteacacege 7500 cctqccaaaa tgaatgcgca ttgttgcgat agattgaatt tccttggttg ttgttgttgt 7560 tggttttctt ttgacatgtt tgtgtgttgt tttttctttc tctctctc tttctgtggt 7620 tccaacattt cagacgcatt ttttacacca tatataggtc acggtgagtc cgtacgaatt 7680 atagatgccg agttgggcac gctcgagcat gtccacagtg gagcaacgcc gcggcgacgc 7740 ggcctgacga ggcgcgagtc aaactcgggt aagtacgcga ttggaagtgg ggggacgttt 7800 accetaccgt gtactactac aacgcacttt acceccacge acacgcaccg gcagacgcga 7860 acgacaacga teegetggtg gteaacacgg ataaggggeg cateegegge attaeggteg 7920 atgcgcccag cggcaagaag gtggacgtgt ggctcggcat tccctacgcc cagccgccgg 7980 tegggeeget aeggtteegt cateegegge eggeegaaaa gtggaeegge gtgetgaaca 8040 cgaccacacc gcccaacagc tgcgtgcaga tcgtggacac cgtgttcggc gacttcccgg 8100 gcgcgaccat gtggaacccg aacacgcccc tgtccgagga ctgtctgtac attaacgtgg 8160 tggcaccgcg accccggccc aagaatgcgg ccgtcatgct gtggatcttc ggcggcggct 8220 tctactccgg caccgccacc ctggacgtgt acgaccaccg ggcgcttgcg tcggaggaga 8280 acgtgatcgt ggtgtcgctg cagtaccgcg tggccagtct gggcttcctg tttctcggca 8340 ccccqqaaqc gccgggcaat gcgggactgt tcgatcagaa ccttgcgcta cggtaggtgt 8400 ctttgcatgt gtgaatgagg gtatagtatt ctaacgaggt gctcttcttc ccatcacttc 8460 ttgggagtca gctgggtgcg ggacaacatt caccggttcg gtggcgatcc gtcgcgtgtg 8520 acactgttcg gcgagagtgc cggtgccgtc tcggtgtcgc tgcatctgct gtccgccctt 8580 tecegegate tgttecageg ggccatectg cagagegget egeegaegge accgtgggea 8640 ttggtatcgc gcgaggaagc cacactaagg tacgtgccag ctgctgcttt ccccaaacca 8700 ccaacccgca acagctcaca caaccctctt ttccgtcgct cttttctcgc tccagagcac 8760 tgcggttggc cgaggcggtc ggctgcccgc acgaaccgag caagctgagc gatgcggtcg 8820 agtgcctgcg cggcaaggac ccgcacgtgc tggtcaacaa cgagtggggc acgctcggca 8880 tttgcgagtt cccgttcgtg ccggtggtcg acggtgcgtt cctggacgag acgccgcagc 8940 gttcgctcgc cagcgggcgc ttcaagaaga cggagatcct caccggcagc aacacggagg 9000 agggctacta cttcatcatc tactacctga ccgagctgct gcgcaaggag gagggcgtga 9060 ccgtgacgcg cgaggagttc ctgcaggcgg tgcgcgagct caacccgtac gtgaacgggg 9120

<400> 129

acgatmacgt tctcytccga

20

cggcccggca ggcgatcgtg ttcgagtaca ccgactggac cgagccggac aacccgaaca 9180 gcaaccggga cgcgctggac aagatggtgg gcgactatca cttcacctgc aacgtgaacg 9240 agttcgcgca gcggtacgcc gaggagggca acaacgtcta catgtatctg tacacgcacc 9300 gcagcaaagg caacccgtgg ccgcgctgga cgggcgtgat gcacggcgac gagatcaact 9360 acgtgttcgg cgaaccgctc aaccccaccc tcggctacac cgaggacgag aaagacttta 9420 gccggaagat catgcgatac tggtccaact ttgccaaaac cgggtaagtg tgtgtgtcaa 9480 acagcagagt gtcgatcgct ctaacaccag cgtcttctct cttctacagc aatccaaatc 9540 ccaacacgge cagcagcgaa ttccccgagt ggcccaagca caccgcccac ggacggcact 9600 atctggagct gggcctcaac acgtccttcg tcggtcgggg cccacggttg aggcagtgtg 9660 ccttctggaa gaagtacctt ccccagctag ttgcagctac ctgtaagtct cgtgcagcac 9720 ttgaaacccc ctcccacatc cccatcaggg tccaggttgc aataataaat ttcactttct 9780 ctctctcacg tctcttttcc ccaaaacagc gaacctacca gggccagcac cgcctagtga 9840 accytycyaa agcaycycat ttttttaccy acctyatcty atcytyctyc tygtytcyct 9900 gettacggcg accgtcagat tcatacaata attactaccc catccatggc ctagttcgtt 9960 taagetttaa gatagtgagg aacaaatttt teecaaacaa tttteeceee tttagageag 10020 aaccgaggga gagataggac tacatagcga aaagggaaaa caagtggtgg cggacgagga 10080 gagaagaagc aaatcgaata atcgaagcaa caacaacaac aacaaaaaa ctgcaaccgg 10140 gttcactaaa cccagggggc agctcagtag caaactacta cttaaataac tactttctta 10200 tggcaaatta tggcaagagc agtcgtgatg ggttcgatca gtatccatct gaccggagca 10260 gctgaaccgt ttcatgggca gttgctgcaa tacaccacga cccgtacaca cagtaacaca 10320 ctttttatag ctttacacta acaaccactc tccccacgct cctcttcccc ttcccctcca 10380 cacagacage agegeegttt gtageaggat etactacegt geggtttggt atggeggeea 10440 acaacactaa acaccacaca tctactaaaa cacaccggaa caataaacaa atgttaaact 10500 tactatatga atatacatct agacgcatat atacgcatga actactactt ccctcgtgtt 10560 ctgacaaaac acattacctt gtccccctc ccctccggt ttgcttacca ccactgcacc 10620 accagtatga atttgttcca taataacgct tcgtaactcg ttaccaggag cacaactggg 10680 10700 tcgttggcgg agtgctgcgc <210> 128 <211> 20 <212> ADN <213> Séquence artificielle <220> <223> Description de la séquence artificielle:amorce <400> 128 20 ccgggngcsa cyatgtggaa <210> 129 <211> 20 <212> ADN <213> Séquence artificielle <220> <223> Description de la séquence artificielle:amorce