1. Write the following complex signals in polar form, that is, in the form $x(t) = r(t)e^{j\theta(t)}$, $r(t), \theta(t) \in \mathbb{R}$, r(t) > 0 for continuous-time signals and $x[n] = r[n]e^{j\theta[n]}$, $r[n], \theta[n] \in \mathbb{R}$, r[n] > 0 for discrete-time signals.

(a)
$$x(t) = \frac{t}{1+jt}$$

(b)
$$x[n] = nje^{n+j}, n > 0$$

2. Write the following complex signals in rectangular form: x(t) = a(t) + jb(t), a(t), $b(t) \in \mathbb{R}$ for continuous-time signals and x[n] = a[n] + jb[n], a[n], $b[n] \in \mathbb{R}$ for discrete-time signals.

(a)
$$x(t) = e^{(-2+j3)t}$$

(b)
$$x(t) = e^{-j\pi t}u(t) + e^{(2+j\pi)t}u(-t)$$

3. Use the sampling property of the impulse to simplify the following expressions.

(a)
$$x(t) = e^{-t} \cos(10t) \delta(t)$$

(b)
$$x(t) = \sin(2\pi t) \sum_{k=0}^{\infty} \delta(t-k)$$

(c)
$$x[n] = \cos(0.2\pi n) \sum_{k=-\infty}^{0} \delta[n-10k]$$

4. Write the following complex signals in (i) polar form and (ii) rectangular form.

Polar form: $x(t) = r(t)e^{j\theta(t)}$, r(t), $\theta(t) \in \mathbb{R}$ for continuous-time signals and $x[n] = r[n]e^{j\theta[n]}$, r[n], $\theta[n] \in \mathbb{R}$ for discrete-time signals.

Rectangular form: x(t) = a(t) + jb(t), $a(t), b(t) \in \mathbb{R}$ for continuous-time signals and x[n] = a[n] + jb[n], $a[n], b[n] \in \mathbb{R}$ for discrete-time signals.

(a)
$$x_1(t) = j + \frac{t}{1-j}$$

(b)
$$x_2[n] = jn + e^{j2n}$$

5. Given in Figure P2.11 are the parts of a signal x(t) and its odd part $x_o(t)$, for $t \ge 0$ only; that is, x(t) and $x_o(t)$ for t < 0 are not given. Complete the plots of x(t) and $x_e(t)$, and give a plot of the even part, $x_e(t)$, of x(t). Give the equations used for plotting each part of the signals.

Figure P2.11

6. Evaluate the following integrals:

(i)
$$\int_{-\infty}^{\infty} \cos(2t) \delta(t) dt$$

(ii)
$$\int_{-\infty}^{\infty} \sin(2t)\delta(t-\pi/4)dt$$

(iii)
$$\int_{-\infty}^{\infty} \cos[2(t-\pi/4)]\delta(t-\pi/4)dt$$

(iv)
$$\int_{-\infty}^{\infty} \sin[(t-1)]\delta(t-2)dt$$

(v)
$$\int_{-\infty}^{\infty} \sin[(t-1)]\delta(2t-4)dt$$

7. Suppose that the signals $x_1[n]$, $x_2[n]$ and $x_3[n]$ are given by

$$x_1[n] = \cos\left(\frac{2\pi n}{10}\right), \quad x_2[n] = \sin\left(\frac{2\pi n}{25}\right), \text{ and } x_3[n] = e^{j2\pi n/20}.$$

- (a) Determine whether $x_1[n]$ is periodic. If so, determine the number of samples per fundamental period.
- (b) Determine whether $x_2[n]$ is periodic. If so, determine the number of samples per fundamental period.
- (c) Determine whether $x_3[n]$ is periodic. If so, determine the number of samples per fundamental period.
- (d) Determine whether the sum of $x_1[n]$, $x_2[n]$, and $x_3[n]$ is periodic. If so, determine the number of samples per fundamental period.

8. (a) Determine which of the given signals are periodic:

(i)
$$x[n] = \cos(\pi n)$$

(ii)
$$x[n] = -3\sin(0.01\pi n)$$

(iii)
$$x[n] = \cos(3\pi n/2 + \pi)$$

(iv)
$$x[n] = \sin(3.15n)$$

(v)
$$x[n] = 1 + \cos(\pi n/2)$$

(vi)
$$x[n] = \sin(3.15\pi n)$$

(b) For those signals in part (a) that are periodic, determine the number of samples per period.