МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №2 по дисциплине «Организация ЭВМ и Систем» Тема: Изучение режима адресации и формирования исполнительного адреса.

Студентка гр. 0383	Рудкова Ю.В
Преподаватель:	Ефремов М.А.

Санкт-Петербург

Цель работы.

Лабораторная работа 2 предназначена для изучения режимов адресации, использует готовую программу lr2_comp.asm на Ассемблере, которая в автоматическом режиме выполняться не должна, так как не имеет самостоятельного функционального назначения, а только тестирует режимы адресации. Поэтому ее выполнение должно производиться под управлением отладчика в пошаговом режиме.В программу введен ряд ошибок, которые необходимо объяснить в отчете по работе, а соответствующие команды закомментировать для прохождения трансляции. Необходимо составить протокол выполнения программы в пошаговом режиме отладчика по типу таблицы 1 предыдущей лабораторной работы и подписать его у преподавателя.На защите студенты должны уметь объяснить результат выполнения каждой команды с учетом используемого вида адресации. Результаты, полученные с помощью отладчика, не являются объяснением, а только должны подтверждать ваши объяснения.

Задание.

Порядок выполнения работы:

- 1. Получить у преподавателя вариант набора значений исходных данных (массивов) vec1, vec2 и matr из файла lr2.dat, приведенного в каталоге Задания и занести свои данные вместо значений, указанных в приведенной ниже программе.
- 2. Протранслировать программу с созданием файла диагностических сообщений; объяснить обнаруженные ошибки и закомментировать соответствующие операторы в тексте программы.
- 3. Снова протранслировать программу и скомпоновать загрузочный модуль.
- 4. Выполнить программу в пошаговом режиме под управлением отладчика с фиксацией содержимого используемых регистров и ячеек памяти до и после выполнения команды.
- 5. Результаты прогона программы под управлением отладчика должны быть подписаны преподавателем и представлены в отчете.

Выполнение работы.

Заменив исходные данные, согласно моему варианту (вариант№2) и протранслировав программу, выявились следующие ошибки:

- mov mem3,[bx] lb2_comp.asm(46): error A2052: Improper operand type Неподходящий тип операндов. Нельзя читать из памяти и писать в память одной командой
- mov cx,vec2[di] lb2_comp.asm(53): warning A4031: Operand types must match

Несоответствие типов операндов. Размер элементов массива 'vec2' 1 байт, а 'cx' - 2 байта

• mov cx,matr[bx][di] lb2_comp.asm(57): warning A4031: Operand types must match

Несоответствие типов операндов. Размер элементов массива 'vec2' 1 байт, а 'cx' - 2 байта

• mov ax,matr[bx*4][di] lb2_comp.asm(58): error A2055: Illegal register value

Незаконное использование регистра.

• mov ax,matr[bp+bx] lb2_comp.asm(78): error A2046: Multiple base registers

Слишком много регистров. Нельзя использовать более двух регистров

• mov ax,matr[bp+di+si] lb2_comp.asm(79): error A2047: Multiple index registers

Слишком много индексных регистров. Нельзя использовать более одного индексного регистра

Текст изначальной программы содержится в приложении A, а текст исправленной программы содержится в приложении Б

Строки, содержащие ошибки, были закомментированы в файле lbfixed.asm.

Прогнав программу через отладчик фиксируем изменения

регистров(табл. 1)

Начальное содержимое сегментных регистров: (AX)=0000, (BX)=0000, (CX)=00B0, (DX)=0000, (SI)=0000, (DI)=0000, (BP)=0000, (SP)=0018, (CS)=1A0A, (DS)=19F5, (ES)=19F5, (SS)=1A05.

Таблица 1. Протокол выполнения программы lbfixed.asm.

Адрес команды	Символи ческий код команды	16-ричн ый код команды	Содержимое регис памяти До выполнения	После выполнения
0000	push ds	1E	(AX)=0000 (DX)=0000 (CX)=00B0 (BX)=0000 (DI)=0000 (DS)=19F5 (CS)=1A0A (ES)=19F5 (SP)=0018 (IP)=0000 Stack +0 0000	(AX)=0000 (DX)=0000 (CX)=00B0 (BX)=0000 (DI)=0000 (DS)=19F5 (CS)=1A0A (ES)=19F5 (SP)=0016 (IP)=0001 Stack +0 19F5
0001	sub ax, ax	2BC0	(AX)=0000 (DX)=0000 (CX)=00B0 (BX)=0000 (DI)=0000 (DS)=19F5 (CS)=1A0A (ES)=19F5 (SP)=0016 (IP)=0001 Stack +0 19F5	(AX)=0000 (DX)=0000 (CX)=00B0 (BX)=0000 (DI)=0000 (DS)=19F5 (CS)=1A0A (ES)=19F5 (SP)=0016 (IP)=0003 Stack +0 19F5
0003	push ax	50	(AX)=0000 (DX)=0000	(AX)=0000 (DX)=0000

			(CX)=00B0 (BX)=0000 (DI)=0000 (DS)=19F5 (CS)=1A0A (ES)=19F5 (SP)=0016 (IP)=0003 Stack +0 19F5	(CX)=00B0 (BX)=0000 (DI)=0000 (DS)=19F5 (CS)=1A0A (ES)=19F5 (SP)=0014 (IP)=0004 Stack +0 0000 Stack +2 19F5
0004	mov ax, 1A07	B8071A	(AX)=0000 (DX)=0000 (CX)=00B0 (BX)=0000 (DI)=0000 (DS)=19F5 (CS)=1A0A (ES)=19F5 (SP)=0014 (IP)=0004 Stack +0 0000 Stack +2 19F5	(AX)=1A07 (DX)=0000 (CX)=00B0 (BX)=0000 (DI)=0000 (DS)=19F5 (CS)=1A0A (ES)=19F5 (SP)=0014 (IP)=0007 Stack +0 0000 Stack +2 19F5
0007	mov ds, ax	8ED8	(AX)=1A07 (DX)=0000 (CX)=00B0 (BX)=0000 (DI)=0000 (DS)=19F5 (CS)=1A0A (ES)=19F5 (SP)=0014 (IP)=0007 Stack +0 0000 Stack +2 19F5	(AX)=1A07 (DX)=0000 (CX)=00B0 (BX)=0000 (DI)=0000 (DS)=1A07 (CS)=1A0A (ES)=19F5 (SP)=0014 (IP)=0009 Stack +0 0000 Stack +2 19F5
0009	mov ax, 01F4	B8F401	(AX)=1A07 (DX)=0000 (CX)=00B0 (BX)=0000 (DI)=0000 (DS)=1A07 (CS)=1A0A	(AX)=01F4 (DX)=0000 (CX)=00B0 (BX)=0000 (DI)=0000 (DS)=1A07 (CS)=1A0A

			(ES)=19F5 (SP)=0014 (IP)=0009 Stack +0 0000 Stack +2 19F5	(ES)=19F5 (SP)=0014 (IP)=000C Stack +0 0000 Stack +2 19F5
000C	mov cx, ax	8BC8	(AX)=01F4 (DX)=0000 (CX)=00B0 (BX)=0000 (DI)=0000 (DS)=1A07 (CS)=1A0A (ES)=19F5 (SP)=0014 (IP)=000C Stack +0 0000 Stack +2 19F5	(AX)=01F4 (DX)=0000 (CX)=01F4 (BX)=0000 (DI)=0000 (DS)=1A07 (CS)=1A0A (ES)=19F5 (SP)=0014 (IP)=000E Stack +0 0000 Stack +2 19F5
000E	mov bl, 24	B324	(AX)=01F4 (DX)=0000 (CX)=01F4 (BX)=0000 (DI)=0000 (DS)=1A07 (CS)=1A0A (ES)=19F5 (SP)=0014 (IP)=000E Stack +0 0000 Stack +2 19F5	(AX)=01F4 (DX)=0000 (CX)=01F4 (BX)=0024 (DI)=0000 (DS)=1A07 (CS)=1A0A (ES)=19F5 (SP)=0014 (IP)=0010 Stack +0 0000 Stack +2 19F5
0010	mov bh, CE	B7CE	(AX)=01F4 (DX)=0000 (CX)=01F4 (BX)=0024 (DI)=0000 (DS)=1A07 (CS)=1A0A (ES)=19F5 (SP)=0014 (IP)=0010 Stack +0 0000 Stack +2 19F5	(AX)=01F4 (DX)=0000 (CX)=01F4 (BX)=CE24 (DI)=0000 (DS)=1A07 (CS)=1A0A (ES)=19F5 (SP)=0014 (IP)=0012 Stack +0 0000 Stack +2 19F5

0012	mov[0002], FFCE	C706020 0CEFF	(AX)=01F4 (DX)=0000 (CX)=01F4 (BX)=CE24 (DI)=0000 (DS)=1A07 (CS)=1A0A (ES)=19F5 (SP)=0014 (IP)=0012 Stack +0 0000 Stack +2 19F5	(AX)=01F4 (DX)=0000 (CX)=01F4 (BX)=CE24 (DI)=0000 (DS)=1A07 (CS)=1A0A (ES)=19F5 (SP)=0014 (IP)=0018 Stack +0 0000 Stack +2 19F5
0018	mov bx, 0006	BB0600	(AX)=01F4 (DX)=0000 (CX)=01F4 (BX)=CE24 (DI)=0000 (DS)=1A07 (CS)=1A0A (ES)=19F5 (SP)=0014 (IP)=0018 Stack +0 0000 Stack +2 19F5	(AX)=01F4 (DX)=0000 (CX)=01F4 (BX)=0006 (DI)=0000 (DS)=1A07 (CS)=1A0A (ES)=19F5 (SP)=0014 (IP)=001B Stack +0 0000 Stack +2 19F5
001B	mov[0000], ax	A30000	(AX)=01F4 (DX)=0000 (CX)=01F4 (BX)=0006 (DI)=0000 (DS)=1A07 (CS)=1A0A (ES)=19F5 (SP)=0014 (IP)=001B Stack +0 0000 Stack +2 19F5	(AX)=01F4 (DX)=0000 (CX)=01F4 (BX)=0006 (DI)=0000 (DS)=1A07 (CS)=1A0A (ES)=19F5 (SP)=0014 (IP)=001E Stack +0 0000 Stack +2 19F5
001E	mov al, [bx]	8A07	(AX)=01F4 (DX)=0000 (CX)=01F4 (BX)=0006 (DI)=0000	(AX)=0105 (DX)=0000 (CX)=01F4 (BX)=0006 (DI)=0000

			(DS)=1A07 (CS)=1A0A (ES)=19F5 (SP)=0014 (IP)=001E Stack +0 0000 Stack +2 19F5	(DS)=1A07 (CS)=1A0A (ES)=19F5 (SP)=0014 (IP)=0020 Stack +0 0000 Stack +2 19F5
0020	mov al, [bx+3]	8A4703	(AX)=0105 (DX)=0000 (CX)=01F4 (BX)=0006 (DI)=0000 (DS)=1A07 (CS)=1A0A (ES)=19F5 (SP)=0014 (IP)=0020 Stack +0 0000 Stack +2 19F5	(AX)=0108 (DX)=0000 (CX)=01F4 (BX)=0006 (DI)=0000 (DS)=1A07 (CS)=1A0A (ES)=19F5 (SP)=0014 (IP)=0023 Stack +0 0000 Stack +2 19F5
0023	mov cx, [bx+03]	8B4F03	(AX)=0108 (DX)=0000 (CX)=01F4 (BX)=0006 (DI)=0000 (DS)=1A07 (CS)=1A0A (ES)=19F5 (SP)=0014 (IP)=0023 Stack +0 0000 Stack +2 19F5	(AX)=0108 (DX)=0000 (CX)=0C08 (BX)=0006 (DI)=0000 (DS)=1A07 (CS)=1A0A (ES)=19F5 (SP)=0014 (IP)=0026 Stack +0 0000 Stack +2 19F5
0026	mov di, 0002	DF0200	(AX)=0108 (DX)=0000 (CX)=0C08 (BX)=0006 (DI)=0000 (DS)=1A07 (CS)=1A0A (ES)=19F5 (SP)=0014 (IP)=0026	(AX)=0108 (DX)=0000 (CX)=0C08 (BX)=0006 (DI)=0002 (DS)=1A07 (CS)=1A0A (ES)=19F5 (SP)=0014 (IP)=0029

			Stack +0 0000 Stack +2 19F5	Stack +0 0000 Stack +2 19F5
0029	mov al, [000E+di]	8A850E0 0	(AX)=0108 (DX)=0000 (CX)=0C08 (BX)=0006 (DI)=0002 (DS)=1A07 (CS)=1A0A (ES)=19F5 (SP)=0014 (IP)=0029 Stack +0 0000 Stack +2 19F5	(AX)=0114 (DX)=0000 (CX)=0C08 (BX)=0006 (DI)=0002 (DS)=1A07 (CS)=1A0A (ES)=19F5 (SP)=0014 (IP)=002D Stack +0 0000 Stack +2 19F5
002D	mov bx, 0003	BB0300	(AX)=0114 (DX)=0000 (CX)=0C08 (BX)=0006 (DI)=0002 (DS)=1A07 (CS)=1A0A (ES)=19F5 (SP)=0014 (IP)=002D Stack +0 0000 Stack +2 19F5	(AX)=0114 (DX)=0000 (CX)=0C08 (BX)=0003 (DI)=0002 (DS)=1A07 (CS)=1A0A (ES)=19F5 (SP)=0014 (IP)=0030 Stack +0 0000 Stack +2 19F5
0030	mov al,[0016+bx+ di]	8A81160 0	(AX)=0114 (DX)=0000 (CX)=0C08 (BX)=0003 (DI)=0002 (DS)=1A07 (CS)=1A0A (ES)=19F5 (SP)=0014 (IP)=0030 Stack +0 0000 Stack +2 19F5	(AX)=0103 (DX)=0000 (CX)=0C08 (BX)=0003 (DI)=0002 (DS)=1A07 (CS)=1A0A (ES)=19F5 (SP)=0014 (IP)=0034 Stack +0 0000 Stack +2 19F5
0034	mov ax, 1A07	B8071A	(AX)=0103 (DX)=0000	(AX)=1A07 (DX)=0000

				
			(CX)=0C08 (BX)=0003 (DI)=0002 (DS)=1A07 (CS)=1A0A (ES)=19F5 (SP)=0014 (IP)=0034 Stack +0 0000 Stack +2 19F5	(CX)=0C08 (BX)=0003 (DI)=0002 (DS)=1A07 (CS)=1A0A (ES)=19F5 (SP)=0014 (IP)=0037 Stack +0 0000 Stack +2 19F5
0037	mov es, ax	8ECO	(AX)=1A07 (DX)=0000 (CX)=0C08 (BX)=0003 (DI)=0002 (DS)=1A07 (CS)=1A0A (ES)=19F5 (SP)=0014 (IP)=0037 Stack +0 0000 Stack +2 19F5	(AX)=1A07 (DX)=0000 (CX)=0C08 (BX)=0003 (DI)=0002 (DS)=1A07 (CS)=1A0A (ES)=1A07 (SP)=0014 (IP)=0039 Stack +0 0000 Stack +2 19F5
0039	mov ax, es:[bx]	268B07	(AX)=1A07 (DX)=0000 (CX)=0C08 (BX)=0003 (DI)=0002 (DS)=1A07 (CS)=1A0A (ES)=1A07 (SP)=0014 (IP)=0039 Stack +0 0000 Stack +2 19F5	(AX)=00FF (DX)=0000 (CX)=0C08 (BX)=0003 (DI)=0002 (DS)=1A07 (CS)=1A0A (ES)=1A07 (SP)=0014 (IP)=003C Stack +0 0000 Stack +2 19F5
003C	mov ax, 0000	B80000	(AX)=00FF (DX)=0000 (CX)=0C08 (BX)=0003 (DI)=0002 (DS)=1A07 (CS)=1A0A	(AX)=0000 (DX)=0000 (CX)=0C08 (BX)=0003 (DI)=0002 (DS)=1A07 (CS)=1A0A

			(ES)=1A07 (SP)=0014 (IP)=003C Stack +0 0000 Stack +2 19F5	(ES)=1A07 (SP)=0014 (IP)=003F Stack +0 0000 Stack +2 19F5
003F	mov es, ax	8ECO	(AX)=0000 (DX)=0000 (CX)=0C08 (BX)=0003 (DI)=0002 (DS)=1A07 (CS)=1A0A (ES)=1A07 (SP)=0014 (IP)=003F Stack +0 0000 Stack +2 19F5	(AX)=0000 (DX)=0000 (CX)=0C08 (BX)=0003 (DI)=0002 (DS)=1A07 (CS)=1A0A (ES)=0000 (SP)=0014 (IP)=0041 Stack +0 0000 Stack +2 19F5
0041	push ds	1E	(AX)=0000 (DX)=0000 (CX)=0C08 (BX)=0003 (DI)=0002 (DS)=1A07 (CS)=1A0A (ES)=0000 (SP)=0014 (IP)=0041 Stack +0 0000 Stack +2 19F5 Stack +4 0000	(AX)=0000 (DX)=0000 (CX)=0C08 (BX)=0003 (DI)=0002 (DS)=1A07 (CS)=1A0A (ES)=0000 (SP)=0012 (IP)=0042 Stack +0 1A07 Stack +2 0000 Stack +4 19F5
0042	pop es	07	(AX)=0000 (DX)=0000 (CX)=0C08 (BX)=0003 (DI)=0002 (DS)=1A07 (CS)=1A0A (ES)=0000 (SP)=0012 (IP)=0042 Stack +0 1A07	(AX)=0000 (DX)=0000 (CX)=0C08 (BX)=0003 (DI)=0002 (DS)=1A07 (CS)=1A0A (ES)=1A07 (SP)=0014 (IP)=0043 Stack +0 0000

			Stack +2 0000 Stack +4 19F5	Stack +2 19F5
0043	mov cx, es:[bx-01]	268B4FF F	(AX)=0000 (DX)=0000 (CX)=0C08 (BX)=0003 (DI)=0002 (DS)=1A07 (CS)=1A0A (ES)=1A07 (SP)=0014 (IP)=0043 Stack +0 0000 Stack +2 19F5	(AX)=0000 (DX)=0000 (CX)=FFCE (BX)=0003 (DI)=0002 (DS)=1A07 (CS)=1A0A (ES)=1A07 (SP)=0014 (IP)=0047 Stack +0 0000 Stack +2 19F5
0047	Xchg ax, cx	91	(AX)=0000 (DX)=0000 (CX)=FFCE (BX)=0003 (DI)=0002 (DS)=1A07 (CS)=1A0A (ES)=1A07 (SP)=0014 (IP)=0047 Stack +0 0000 Stack +2 19F5	(AX)=FFCE (DX)=0000 (CX)=0000 (BX)=0003 (DI)=0002 (DS)=1A07 (CS)=1A0A (ES)=1A07 (SP)=0014 (IP)=0048 Stack +0 0000 Stack +2 19F5
00048	mov di, 0002	BF0200	(AX)=FFCE (DX)=0000 (CX)=0000 (BX)=0003 (DI)=0002 (DS)=1A07 (CS)=1A0A (ES)=1A07 (SP)=0014 (IP)=0048 Stack +0 0000 Stack +2 19F5	(AX)=FFCE (DX)=0000 (CX)=0000 (BX)=0003 (DI)=0002 (DS)=1A07 (CS)=1A0A (ES)=1A07 (SP)=0014 (IP)=004B Stack +0 0000 Stack +2 19F5
004B	mov es:[bx+di], ax	268901	(AX)=FFCE (DX)=0000	(AX)=FFCE (DX)=0000

	i	ı	T	
004E	mov bp, sp	8BEC	(CX)=0000 (BX)=0003 (DI)=0002 (DS)=1A07 (CS)=1A0A (ES)=1A07 (SP)=0014 (IP)=004B Stack +0 0000 Stack +2 19F5 (AX)=FFCE	(CX)=0000 (BX)=0003 (DI)=0002 (DS)=1A07 (CS)=1A0A (ES)=1A07 (SP)=0014 (IP)=004E Stack +0 0000 Stack +2 19F5 (AX)=FFCE
			(DX)=0000 (CX)=0000 (BX)=0003 (DI)=0002 (DS)=1A07 (CS)=1A0A (ES)=1A07 (SP)=0014 (IP)=004E Stack +0 0000 Stack +2 19F5	(DX)=0000 (CX)=0000 (BX)=0003 (DI)=0002 (DS)=1A07 (CS)=1A0A (ES)=1A07 (SP)=0014 (BP)=0014 (IP)=0050 Stack +0 0000 Stack +2 19F5
0050	push[0000]	FF36000 0	(AX)=FFCE (DX)=0000 (CX)=0000 (BX)=0003 (DI)=0002 (DS)=1A07 (CS)=1A0A (ES)=1A07 (SP)=0014 (BP)=0014 (IP)=0050 Stack +0 0000 Stack +2 19F5	(AX)=FFCE (DX)=0000 (CX)=0000 (BX)=0003 (DI)=0002 (DS)=1A07 (CS)=1A0A (ES)=1A07 (SP)=0012 (BP)=0014 (IP)=0054 Stack +0 01F4 Stack +2 0000 Stack +4 19F5
0054	push[0002]	FF36020 0	(AX)=FFCE (DX)=0000 (CX)=0000 (BX)=0003	(AX)=FFCE (DX)=0000 (CX)=0000 (BX)=0003

			(DI)=0002 (DS)=1A07 (CS)=1A0A (ES)=1A07 (SP)=0012 (BP)=0014 (IP)=0054 Stack +0 01F4 Stack +2 0000 Stack +4 19F5	(DI)=0002 (DS)=1A07 (CS)=1A0A (ES)=1A07 (SP)=0010 (BP)=0014 (IP)=0058 Stack +0 FFCE Stack +2 01F4 Stack +4 0000 Stack +6 19F5
0058	mov bp, sp	8BEC	(AX)=FFCE (DX)=0000 (CX)=0000 (BX)=0003 (DI)=0002 (DS)=1A07 (CS)=1A0A (ES)=1A07 (SP)=0010 (BP)=0014 (IP)=0058 Stack +0 FFCE Stack +2 01F4 Stack +4 0000 Stack +6 19F5	(AX)=FFCE (DX)=0000 (CX)=0000 (BX)=0003 (DI)=0002 (DS)=1A07 (CS)=1A0A (ES)=1A07 (SP)=0010 (BP)=0010 (IP)=005A Stack +0 FFCE Stack +2 01F4 Stack +4 0000 Stack +6 19F5
005A	mov dx, [bp+02]	8B5602	(AX)=FFCE (DX)=0000 (CX)=0000 (BX)=0003 (DI)=0002 (DS)=1A07 (CS)=1A0A (ES)=1A07 (SP)=0010 (BP)=0010 (IP)=005A Stack +0 FFCE Stack +2 01F4 Stack +4 0000 Stack +6 19F5	(AX)=FFCE (DX)=01F4 (CX)=0000 (BX)=0003 (DI)=0002 (DS)=1A07 (CS)=1A0A (ES)=1A07 (SP)=0010 (BP)=0010 (IP)=005D Stack +0 FFCE Stack +2 01F4 Stack +4 0000 Stack +6 19F5

005D	ret far 0002	CA0200	(AX)=FFCE (DX)=01F4 (CX)=0000 (BX)=0003 (DI)=0002 (DS)=1A07 (CS)=1A0A (ES)=1A07 (SP)=0010 (BP)=0010	(AX)=FFCE (DX)=01F4 (CX)=0000 (BX)=0003 (DI)=0002 (DS)=1A07 (CS)=01F4 (ES)=1A07 (SP)=0016 (BP)=0010
			(SP) = 0010	(SP)=0016
			(IP)=005D Stack +0 FFCE Stack +2 01F4	(IP)=FFCE Stack +0 19F5 Stack +2 0000
			Stack +4 0000 Stack +6 19F5	Stack +4 0000 Stack +6 0000

Выводы.

В ходе лабораторной работы я смогла распознать ошибки, разобраться в сути каждой из них, также создала файл, где данные ошибки закомментированы.

Приложение А

Исходный код программы

lb comp.asm
EOL EQU '\$'
ind EQU 2
n1 EQU 500
n2 EQU -50
; Стек программы
AStack SEGMENT STACK
DW 12 DUP(?)
AStack ENDS
; Данные программы DATA SEGMENT
; Директивы описания данных mem1 DW 0
mem2 DW 0
mem3 DW 0
vec1 DB 5,6,7,8,12,11,10,9
vec2 DB -20,-30,20,30,-40,-50,40,50
matr DB -5,-6,-7,-8,4,3,2,1,-1,-2,-3,-4,8,7,6,5 DATA ENDS
; Код программы CODE SEGMENT
ASSUME CS:CODE, DS:DATA, SS:AStack
; Головная процедура Main PROC FAR
push DS
sub AX,AX
push AX
mov AX,DATA
mov DS,AX
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ СМЕЩЕНИЙ
; Регистровая адресация
mov ax,n1
mov cx,ax
mov bl,EOL
mov bh,n2
; Прямая адресация
mov mem2,n2
mov bx,OFFSET vec1

mov mem1,ax

```
; Косвенная адресация
mov al,[bx]
mov mem3,[bx]
; Базированная адресация
mov al, [bx]+3
mov cx, 3[bx]
; Индексная адресация
mov di,ind
mov al, vec2[di]
mov cx,vec2[di]
; Адресация с базированием и индексированием
mov bx,3
mov al,matr[bx][di]
mov ex,matr[bx][di]
mov ax,matr[bx*4][di]
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ СЕГМЕНТОВ
; Переопределение сегмента
; ----- вариант 1
mov ax, SEG vec2
mov es, ax
mov ax, es:[bx]
mov ax, 0
; ----- вариант 2
mov es, ax
push ds
pop es
mov cx, es:[bx-1]
xchg cx,ax
; ----- вариант 3
mov di,ind
mov es:[bx+di],ax
; ----- вариант 4
mov bp,sp
mov ax,matr[bp+bx]
mov ax,matr[bp+di+si]
; Использование сегмента стека
push mem1
push mem2
mov bp,sp
mov dx, [bp]+2
ret 2
Main ENDP
CODE ENDS
```

END Main

lb comp.lst

```
Microsoft (R) Macro Assembler Version 5.10
                                                  9/30/21 02:26:47
======
Microsoft (R) Macro Assembler Version 5.10
                                                  9/30/21 00:53:14
                               Page 1-1
= 0024
                          EOL EQU '$'
= 0002
                          ind EQU 2
= 01F4
                          n1 EQU 500
=-0032
                          n2 EQU -50
                   ; Стек программы
0000
                         AStack SEGMENT STACK
0000 000C[
                          DW 12 DUP(?)
      ????
             ]
0018
                         AStack ENDS
                   ; Данные программы
0000
                          DATA SEGMENT
                   ; Директивы описания даннэ
0000 0000
                   mem1 DW 0
0002 0000
                   mem2 DW 0
0004 0000
                   mem3 DW 0
0006 05 06 07 08 0C 0B vec1 DB 5,6,7,8,12,11,10,9
000E EC E2 14 1E D8 CE vec2 DB -20,-30,20,30,-40,-50,40,50
      28 32
0016 FB FA F9 F8 04 03 matr DB -5,-6,-7,-8,4,3,2,1,-1,-2,-3,-4,8,7,6,5
      02 01 FF FE FD FC
      08 07 06 05
0026
                          DATA ENDS
                   ; Код программы
0000
                          CODE SEGMENT
                   ASSUME CS:CODE, DS:DATA, SS:AStack
                   ; Головная процедура
                          Main PROC FAR
0000
0000 1E
                   push DS
0001 2B C0
                         sub AX,AX
0003 50
                   push AX
0004 B8 ---- R
                   mov AX, DATA
0007 8E D8
                          mov DS,AX
                   ; ПРОВЕРКА РЕЖИМОВ АДРЕСАЙ
                   ¦ИИ НА УРОВНЕ СМЕЩЕНИЙ
```

; Регистровая адресация

 0009
 B8 01F4
 mov ax,n1

 000C
 8B C8
 mov cx,ax

 000E
 B3 24
 mov bl,EOL

 0010
 B7 CE
 mov bh,n2

; Прямая адресация

0012 C7 06 0002 R FFCE mov mem2,n2 0018 BB 0006 R mov bx,OFFSET vec1

001B A3 0000 R mov mem1,ax

; Косвенная адресация

001E 8A 07 mov al,[bx] mov mem3,[bx]

lb2_comp.asm(41): error A2052: Improper operand type

; Базированная адресация

7

lb2_comp.asm(43): warning A4001: Extra characters on line

0020 8A 47 03 mov al,[bx]+3 0023 8B 4F 03 mov cx,3[bx]

Microsoft (R) Macro Assembler Version 5.10 9/30/21 02:26:47

lb2_comp_fix.asm(41): error A2052: Improper operand type

; Базированная адресация

7

lb2_comp_fix.asm(43): warning A4001: Extra characters on line

0020 8A 47 03 mov al,[bx]+3 0023 8B 4F 03 mov cx,3[bx]

Microsoft (R) Macro Assembler Version 5.10 9/30/21 00:53:14

Page 1-2

; Индексная адресация

 0026
 BF 0002
 mov di,ind

 0029
 8A 85 000E R
 mov al,vec2[di]

 002D
 8B 8D 000E R
 mov cx,vec2[di]

lb2_comp.asm(49): warning A4031: Operand types must match

lb2 comp fix.asm(49): warning A4031: Operand types must match

; Адресация с базированиеЙ

1/4 и индексированием

0031 BB 0003 mov bx,3

0034 8A 81 0016 R mov al,matr[bx][di] 0038 8B 89 0016 R mov cx,matr[bx][di]

lb2 comp.asm(53): warning A4031: Operand types must match

003C 8B 85 0022 R mov ax,matr[bx*4][di]

lb2_comp.asm(54): error A2055: Illegal register value

lb2 comp fix.asm(53): warning A4031: Operand types must match

003C 8B 85 0022 R mov ax,matr[bx*4][di] lb2 comp_fix.asm(54): error A2055: Illegal register value ; ПРОВЕРКА РЕЖИМОВ АДРЕСАЙ **!ИИ С УЧЕТОМ СЕГМЕНТОВ** ; Переопределение сегмент ; ----- вариант 1 0040 B8 ---- R mov ax, SEG vec2 0043 8E C0 mov es, ax 0045 26: 8B 07 mov ax, es:[bx] 0048 B8 0000 mov ax, 0 ; ----- вариант 2 004B 8E C0 mov es, ax 004D 1E push ds 004E 07 pop es 004F 26: 8B 4F FF mov cx, es:[bx-1] 0053 91 xchg cx,ax ; ----- вариант 3 0054 BF 0002 mov di,ind 0057 26: 89 01 mov es:[bx+di],ax ; ----- вариант 4 005A 8B EC mov bp.sp 005C 3E: 8B 86 0016 R mov ax,matr[bp+bx] lb2 comp.asm(73): error A2046: Multiple base registers 0061 3E: 8B 83 0016 R mov ax,matr[bp+di+si] lb2 comp.asm(74): error A2047: Multiple index registers lb2 comp fix.asm(73): error A2046: Multiple base registers mov ax,matr[bp+di+si] 0061 3E: 8B 83 0016 R lb2 comp fix.asm(74): error A2047: Multiple index registers ; Использование сегмента э тека 0066 FF 36 0000 R push mem1 006A FF 36 0002 R push mem2 006E 8B EC mov bp,sp 0070 8B 56 02 mov dx,[bp]+2 0073 CA 0002 ret 2 0076 Main ENDP lb2_comp.asm(81): error A2006: Phase error between passes 0076 **CODE ENDS END Main**

9/30/21 02:26:47

lb2_comp_fix.asm(81): error A2006: Phase error between passes 0076 CODE ENDS

END Main

Microsoft (R) Macro Assembler Version 5.10

9/30/21 00:53:14

Symbols-1

Segments and Groups:

Name Length Align Combine Class

Symbols:

Name Type Value Attr

EOL NUMBER 0024

IND NUMBER 0002

MAIN F PROC 0000 CODE Length = 0076

 MATR
 L BYTE
 0016
 DATA

 MEM1
 L WORD
 0000
 DATA

 MEM2
 L WORD
 0002
 DATA

 MEM3
 L WORD
 0004
 DATA

N1 NUMBER 01F4 N2 NUMBER -0032

 VEC1......
 L BYTE 0006 DATA

 VEC2......
 L BYTE 000E DATA

@CPU TEXT 0101h

<<<<< HEAD

@FILENAME TEXT lb2 comp

======

@FILENAME TEXT lb2_comp_fix

>>>>> master

@VERSION TEXT 510

83 Source Lines

83 Total Lines 19 Symbols

47800 + 459460 Bytes symbol space free

47772 + 459488 Bytes symbol space free

3 Warning Errors

5 Severe Errors

Приложение В

Исходный код программы

lb2fixed.asm

EOL EQU '\$'

ind EQU 2

n1 EQU 500

n2 EQU -50

; Стек программы

AStack SEGMENT STACK

DW 12 DUP(?)

AStack ENDS

; Данные программы

DATA SEGMENT

; Директивы описания данных

mem1 DW 0

mem2 DW 0

mem3 DW 0

vec1 DB 5,6,7,8,12,11,10,9

vec2 DB -20,-30,20,30,-40,-50,40,50

matr DB -5,-6,-7,-8,4,3,2,1,-1,-2,-3,-4,8,7,6,5

DATA ENDS

; Код программы

CODE SEGMENT

ASSUME CS:CODE, DS:DATA, SS:AStack

; Головная процедура

Main PROC FAR

push DS

sub AX,AX

push AX

mov AX, DATA

mov DS,AX

; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ СМЕЩЕНИЙ

; Регистровая адресация

mov ax,n1

mov cx,ax

mov bl,EOL

mov bh,n2

; Прямая адресация

mov mem2,n2

mov bx,OFFSET vec1

mov mem1,ax

; Косвенная адресация

mov al,[bx]

;mov mem3,[bx]

; Базированная адресация

```
mov al,[bx]+3
mov cx,3[bx]
; Индексная адресация
mov di,ind
mov al,vec2[di]
;mov cx,vec2[di]
; Адресация с базированием и индексированием
mov bx,3
mov al,matr[bx][di]
;mov cx,matr[bx][di]
;mov ax,matr[bx*4][di]
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ СЕГМЕНТОВ
; Переопределение сегмента
; ----- вариант 1
mov ax, SEG vec2
mov es, ax
mov ax, es:[bx]
mov ax, 0
; ----- вариант 2
mov es, ax
push ds
pop es
mov cx, es:[bx-1]
xchg cx,ax
; ----- вариант 3
mov di,ind
mov es:[bx+di],ax
; ----- вариант 4
mov bp,sp
;mov ax,matr[bp+bx]
;mov ax,matr[bp+di+si]
; Использование сегмента стека
push mem1
push mem2
mov bp,sp
mov dx,[bp]+2
ret 2
Main ENDP
CODE ENDS
END Main
```

lb2fixed.lst

Microsoft (R) Macro Assembler Version 5.10 9/30/21 02:35:12

Microsoft (R) Macro Assembler Version 5.10 9/30/21 00:53:59

Page 1-1

```
= 0024
                         EOL EQU '$'
= 0002
                         ind EQU 2
= 01F4
                         n1 EQU 500
=-0032
                         n2 EQU -50
                  ; Стек программы
0000
                         AStack SEGMENT STACK
0000 000C[
                         DW 12 DUP(?)
     ????
             ]
0018
                         AStack ENDS
                  ; Данные программы
0000
                         DATA SEGMENT
                  ; Директивы описания даннэ
                   ∢X
0000 0000
                  mem1 DW 0
0002 0000
                  mem2 DW 0
0004 0000
                  mem3 DW 0
0006 05 06 07 08 0C 0B vec1 DB 5,6,7,8,12,11,10,9
     0A 09
000E EC E2 14 1E D8 CE vec2 DB -20,-30,20,30,-40,-50,40,50
0016 FB FA F9 F8 04 03 matr DB -5,-6,-7,-8,4,3,2,1,-1,-2,-3,-4,8,7,6,5
     02 01 FF FE FD FC
     08 07 06 05
0026
                         DATA ENDS
                  ; Код программы
0000
                         CODE SEGMENT
                  ASSUME CS:CODE, DS:DATA, SS:AStack
                  ; Головная процедура
0000
                         Main PROC FAR
0000 1E
                  push DS
0001 2B C0
                         sub AX,AX
0003 50
                  push AX
0004 B8 ---- R
                  mov AX,DATA
0007 8E D8
                         mov DS,AX
                  ; ПРОВЕРКА РЕЖИМОВ АДРЕСАЙ
                  ¦ИИ НА УРОВНЕ СМЕЩЕНИЙ
                  ; Регистровая адресация
0009 B8 01F4
                         mov ax,n1
000C 8B C8
                         mov cx,ax
000E B3 24
                         mov bl,EOL
0010 B7 CE
                         mov bh,n2
                  ; Прямая адресация
0012 C7 06 0002 R FFCE mov mem2,n2
```

0018 BB 0006 R mov bx, OFFSET vec1 001B A3 0000 R mov mem1,ax ; Косвенная адресация 001E 8A 07 mov al,[bx] ;mov mem3,[bx] ; Базированная адресация ;7 0020 8A 47 03 mov al,[bx]+3 0023 8B 4F 03 mov cx,3[bx] Microsoft (R) Macro Assembler Version 5.10 9/30/21 02:35:12 9/30/21 00:53:59 Microsoft (R) Macro Assembler Version 5.10 Page 1-2 ; Индексная адресация 0026 BF 0002 mov di,ind 0029 8A 85 000E R mov al, vec2[di] ;mov cx,vec2[di] ; Адресация с базированиеЙ ¼ и индексированием 002D BB 0003 mov bx,3 0030 8A 81 0016 R mov al,matr[bx][di] ;mov cx,matr[bx][di] ;mov ax,matr[bx*4][di] ; ПРОВЕРКА РЕЖИМОВ АДРЕСАЙ **!ИИ С УЧЕТОМ СЕГМЕНТОВ** ; Переопределение сегмент а ; ----- вариант 1 0034 B8 ---- R mov ax, SEG vec2 0037 8E C0 mov es, ax 0039 26: 8B 07 mov ax, es:[bx] 003C B8 0000 mov ax, 0 ; ----- вариант 2 003F 8E C0 mov es, ax 0041 1E push ds 0042 07 pop es 0043 26: 8B 4F FF mov cx, es:[bx-1] 0047 91 xchg cx,ax ; ----- вариант 3 0048 BF 0002 mov di,ind 004B 26: 89 01 mov es:[bx+di],ax ; ----- вариант 4 004E 8B EC mov bp,sp

;mov ax,matr[bp+bx]

;mov ax,matr[bp+di+si]

; Использование сегмента э

тека

 0050 FF 36 0000 R
 push mem1

 0054 FF 36 0002 R
 push mem2

 0058 8B EC
 mov bp,sp

 005A 8B 56 02
 mov dx,[bp]+2

005D CA 0002 ret 2

0060 Main ENDP 0060 CODE ENDS

END Main

Microsoft (R) Macro Assembler Version 5.10 9/30/21 02:35:12

Microsoft (R) Macro Assembler Version 5.10 9/30/21 00:53:59

Symbols-1

Segments and Groups:

Name Length Align Combine Class

Symbols:

Name Type Value Attr

EOL NUMBER 0024

IND NUMBER 0002

MAIN F PROC 0000 CODE Length = 0060

 MATR
 L BYTE 0016 DATA

 MEM1
 L WORD 0000 DATA

 MEM2
 L WORD 0002 DATA

 MEM3
 L WORD 0004 DATA

N1 NUMBER 01F4 N2 NUMBER -0032

 VEC1......
 L BYTE 0006 DATA

 VEC2......
 L BYTE 000E DATA

@CPU TEXT 0101h

@FILENAME TEXT lb2fixed @VERSION TEXT 510

83 Source Lines83 Total Lines19 Symbols

47800 + 459460 Bytes symbol space free

0 Warning Errors

0 Severe Errors