REMARKS ON THE FIBONACCI SERIES MODULO m

S. E. Mamangakis, International Business Machines Corporation Research Center, Yorktown Heights, N. Y.

In a recent paper D. D. Wall [1] was concerned with determining the length of the period of the recurring series obtained by reducing a Fibonacci series modulo m. In this paper we will use the same notation as in [1].

Thus, u_n denotes the Fibonacci series with $u_0 = 0$ and $u_1 = 1$, where u_{n+1} $=u_n+u_{n-1}$. Also, k(m) denotes the length of the period of $u_n \mod m$ and as in [1] we let $m = p^e$, where p is a prime number. In [1] Wall poses a question that has so far remained unanswered: "The most perplexing problem we have met in this study concerns the hypothesis $k(p^2) \neq k(p)$. We have run a test on a digital computer which shows that $k(p^2) \neq k(p)$ for all p up to 10,000; however, we cannot yet prove that $k(p^2) = k(p)$ is impossible." This paper furnishes a proof of the hypothesis $k(p^2) \neq k(p)$ under certain mild conditions.

THEOREM 1. If c and p are relatively prime and cp occurs in u_n , then $k(p^2)$ $\neq k(p)$.

Proof. Let $u_i = cp$ and consider the sequences

(1)
$$u_n$$
, mod p which we will denote by u_n ;

(2)
$$u_n$$
, mod p^2 which we will denote by ${}_2u_n$

which begin, respectively, 0, 1, 1, 2, \cdots , $u_{j-1} = Rp + Q$, $u_j = cp \equiv 0$, u_{j+1} $\equiv Q, \cdots \pmod{p}$ and 0, 1, 1, 2, \cdots , $_2u_{j-1}=Rp+Q$, $_2u_j=cp\equiv cp$, $_2u_{j+1}$ $\equiv (c+R)p+Q$, $\cdots \pmod{p^2}$, where 0 < Q < p. It can be shown by mathematical induction that

$$(3) u_{tj-1} \equiv Q^t, u_{tj} \equiv 0 \pmod{p};$$

(3)
$$u_{tj-1} \equiv Q^{t}, \qquad u_{tj} \equiv 0 \pmod{p};$$

(4) $u_{tj-1} \equiv tRpQ^{t-1} + Q^{t}, \qquad u_{tj} \equiv ctpQ^{t-1} \pmod{p^{2}}.$

To see that (4) holds, we note that for t=1, the formulas hold. Next, assume the formulas hold for $t \le i$, then $2u_{ij-1} = iRpQ^{i-1} + Q^i$ and $2u_{ij} = cipQ^{i-1} \pmod{p^2}$. Now consider the new sequence U_n with $U_0 = iRpQ^{i-1} + Q^i \equiv_2 u_{ij-1}$ and U_1 $= cip Q^{i-1} \equiv_2 u_{ij} \pmod{p^2}$. But, by the well-known formula for a Fibonacci series in [1], $f_n = u_n b + u_{n-1} a$, where $f_1 = a$, $f_2 = b$ and $f_{n+1} = f_n + f_{n-1}$, we have U_j $= u_j(cipQ^{i-1}) + u_{j-1}(iRpQ^{i-1} + Q^i) \text{ or } U_j \equiv (i+1)RpQ^i + Q^{i+1} \equiv_2 u_{(i+1)j-1} \pmod{p^2},$ $U_{j+1} = u_{j+1}(cipQ^{i-1}) + u_j(iRpQ^{i-1} + Q^i)$ or $U_{i+1} \equiv (i+1)cpQ^i$ and $\equiv_2 u_{(i+1)j} \pmod{p^2}$. Hence (4) holds; and (3) is implied by (4).

We will, therefore, obtain in the series $(1) \cdot \cdot \cdot \cdot , u_{ij-1} \equiv Q^i, u_{ij} \equiv 0 \pmod{p}$, and in (2) \cdots , ${}_{2}u_{ij-1} \equiv tRpQ^{i-1} + Q^{i}$, ${}_{2}u_{ij} \equiv ctpQ^{i-1} \pmod{p^{2}}$.

Now series (1) will first repeat when Q belongs to $t \mod p$. (In other words t is the smallest number satisfying $Q^t \equiv 1 \mod p$.) In this case, p^2 does not divide $_{2}u_{tj} \equiv ctpQ^{t-1}$ since t divides p-1, which means series (2) does not repeat with sequence (1). This proves our theorem.

THEOREM 2. Let c and p be relatively prime, $e \leq d$, and $u_j = cp^d$ be the first multiple of p to occur in u_n . Then $k(p^e) = k(p)$ if and only if u_{j-1} has the same order mod p and mod p^e .

Proof. Since u_j is the first multiple of p to occur in u_n , the period of $u_n \mod p$ will be jt where u_{j-1} belongs to $t \mod p$. But u_j is also the first multiple of p^e to occur in u_n and so its period is equal to js where u_{j-1} belongs to $s \mod p^e$. Therefore if $k(p) = k(p^e)$ we have $k(p) = jt = js = k(p^e)$ which implies t = s. Conversely, under the same hypotheses, if u_{j-1} has the same order mod p and mod p^e it is obvious that $k(p^e) = k(p)$.

Remarks. In [2] Kraitchik has a table of u_n in their prime factorization for odd n up to n=129, with a few missing entries, and none of the u_n listed satisfy the hypothesis of Theorem 2 for $1 < e \le d$ in this paper. Furthermore, I have computed all of the u_n up to n=50 using Lehmer's prime and factor tables plus the tables in [2] as a check and, again, none of the u_n satisfy the hypothesis of our Theorem 2 for $1 < e \le d$. Could it be that the mild conditions of Theorem 1 are strong enough to apply to all prime numbers? That is to say, one would like to make Theorem 1 read: If c and p are relatively prime, then cp occurs in u_n and $k(p^2) \ne k(p)$.

References

- 1. D. D. Wall, Fibonacci series modulo m, this Monthly, vol. 67, 1960, pp. 525-532.
- 2. M. Kraitchik, Recherches sur la Théorie des Nombres, vol. 1, Paris, 1924, pp. 77-80.

NOTE ON THE DISTRIBUTIVE LAWS (Supplement)

Tôru Saitô, Tokyo Gakugei University, Japan

J. L. Kelley [1] defines a ring to be a system which we called a c-ring in [2]. Then he defines a field to be a system which is a ring (in his sense) such that the set of all nonzero elements forms a multiplicative commutative group. In this supplementary note, we show that the definition of a field in Kelley's sense coincides with that in the ordinary sense.

We use terminologies and results in [2] freely.

We define a w-division ring (c-division ring) to be a w-ring (c-ring) F such that F has at least two elements and $F - \{0\}$ forms a multiplicative group. When the multiplicative group is commutative, it is called a w-field (c-field). Hence a field in Kelley's sense is a c-field in our definition.

THEOREM 1. If a w-division ring F contains an element which is neither zero nor the defining element, then F is a division ring (in the ordinary sense).

Proof. It suffices to show that F is a ring. By [2] Lemma 3, we have, in F, $e^2 = e$, where e is the defining element of F. If e were not 0, e would be an idempotent element of the multiplicative group $F^* = F - \{0\}$, and so e would be the identity element of F^* . Then for any $x \in F^*$, we have, using [2] Lemma 3 again,