

Final project: Speaker recognition system

Howard Kao [hkao@ucdavis.edu]

William Orozco [worozco@ucdavis.edu]

EEC 201 - Winter Quarter 2021

- 1. Description of the project
- 2. Overview of the code
- 3. System Design
 - a. Data Preprocessing
 - b. Feature Extraction
 - c. Clustering and codebook
- 4. Results

Agenda

Overview of the project

Speaker recognition system

Classifications: Identification and verification

Goal: Determining who is speaking.

Phases: Training and testing.

Overview of the code

- Programming platform: matlab.
- CoviDSP1.m, CoviDSP1_noise.m, CoviDSP1_notch.m: Main script, noise added and notch. Loading files, plotting, training and testing.
- **melfb.m**: Mel filter bank.
- mfcc_own.m: Mel Filter Cepstrum Coefficients.
- **Ibg.m**: Calculate the centroids. LBG algorithm.
- normAudio.m: Normalize audio.

System Design

Data preprocessing

Crop quiet regions (below -10 dB), center around 0 and normalize amplitude between -1 and 1

Example: Speaker 10 Speaker 3 Time domain (original) s3.wav Time domain (edited) s3.way Time domain (original) s10.wav Time domain (edited) s10.wav 0.8 0.8 0.15 0.4 0.6 0.6 0.1 0.4 0.2 Amplitude 0.02 Amplitude Amplitude Amplitude -0.2 -0.2-0.05 -0.4-0.6-0.6 -0.1-0.4-0.8 -0.8 -0.150.5 1.5 0.1 0.3 -0.60.2 Time (s) Time (s) 0.5 0.1 Time (s) Time (s) Normalized Original Normalized Original

Feature extraction

Short-Time Fourier Transform

Framing, 256 samples

Overlapping, 100 samples

Hamming Window to minimize the spectral distortion

Mel Frequency wrapping

Filter bank size 20

Drop first DCT coefficient

Clustering and codewords

```
epsilon (splitting parameter) = 0.01
```

error threshold (distortion) = 0.001

distance criteria = euclidean norm (L2).

Linde Buzo Gray (LBG) algorithm

- Pick M clusters
- Decide an error threshold (E) value the largest distance between the data points and the centroid in a cluster.
- Decide the splitting parameter (step size)

Codebook - Data points that represent a speaker.

Clusters - Different areas of similar data points in a codebook.

Centroid - The center of a cluster.

Example of LBG algorithm

Reference: https://www.cnblogs.com/xingshansi/p/6925955.html

Speaker 3

Speaker 10

Clusters K = 8

Speaker 1

Speaker 2

Clusters K = 32

Results

Parameters:

N: Window Size.

M: Overlap

p: Size of the filterbank

K: Clusters

type_signal: Normalized or original signal

$$N = 256$$

$$M = 100$$

$$p = 20$$

$$K = 32$$
Normalized signal

N = 256

M = 100

$$K = 32$$

Test

Training

$$N = 256$$

$$M = 100$$

$$p = 20$$

K = 32

Test

Training

Unnormalized signal

Speaker 8

Indexes 3 and 5

Minimum error of each speaker, normalized signal

Minimum error of each speaker, unnormalized signal

Codebook error below 5%

Accuracy 100% in 8/8 speakers

Speaker	#1	#2	#3	#4	#5	#6	#7	#8
Accuracy	100%	100%	100%	100%	100%	100%	100%	100%

Let's vary the parameters...

$$N = 100$$

$$M = 30$$

$$p = 10$$

Test, normalized signal

Test, unnormalized signal

Speaker 4

Indexes 3 and 5

Accuracy, unnormalized signal. 6/8 speakers recognized.

Speaker	#1	#2	#3	#4	#5	#6	#7	#8
Accuracy	0%	100%	100%	100%	100%	0%	100%	100%

* The normalization step is important

Clusters are close enough to provide false positives.

Accuracy, normalized signal. 8/8 speakers recognized.

Speaker	#1	#2	#3	#4	#5	#6	#7	#8
Accuracy	100%	100%	100%	100%	100%	100%	100%	100%

Let's add some noise...

Generate Gaussian noise using MATLAB function randn()

Speaker	S1	S2	S3	S4	S5	S6	S7	S8
Accuracy	100%	100%	100%	100%	100%	100%	100%	100%

With 0.001 as the variance of the noise (~SNR = 25 dB)

Speaker	S1	S2	S3	S4	S5	S6	S7	S8
Accuracy	100%	100%	100%	100%	100%	100%	100%	100%

With 0.0035 as the variance of the noise (\sim SNR = 15 dB)

Speaker	S1	S2	S3	S4	S5	S6	S7	S8
Accuracy	100%	100%	100%	100%	100%	100%	100%	100%

With 0.006 as the variance of the noise (~SNR = 10 dB)

Speaker	S1	S2	S3	S4	S5	S6	S7	S8
Accuracy	100%	100%	100%	0%	100%	0%	100%	0%

With 0.013 as the variance of the noise (\sim SNR = 5 dB)

Let's remove some frequencies...

Speaker 4

Notch filter centered at 1000 Hz, bandwidth 400 Hz

Irrelevant frequency content was removed

Normalized Frequency ω/π

0.1 0.2

0.9

Spectrogram s6.wav edited

Notch filter centered at 500 Hz, bandwidth 500 Hz

Relevant frequency content was removed.

Speaker 6

Accuracy, normalized signal, notch filter centered at 1KHz, bandwidth 400 Hz. 8/8 speakers.

Speaker	#1	#2	#3	#4	#5	#6	#7	#8
Accuracy	100%	100%	100%	100%	100%	100%	100%	100%

* The location of the frequency content of each speaker is important for recognition purposes

Speaker	#1	#2	#3	#4	#5	#6	#7	#8
Accuracy	100%	0%	100%	100%	100%	0%	100%	100%

Accuracy, notch filter centered at 500 Hz, bandwidth 500 Hz. 6/8 speakers

Thank you