Intelligent Agents

Chapter 2

TB Artificial Intelligence

Slides from AIMA — http://aima.cs.berkeley.edu

Outline

- Agents and environments
- Rationality
- ▶ PEAS (Performance measure, Environment, Actuators, Sensors)
- Environment types
- Agent types

Agents and environments

- ▶ Agents include humans, robots, softbots, thermostats, etc.
- ▶ The agent function maps from percept histories to actions:

$$f: \mathcal{P}^* \to \mathcal{A}$$

► The agent program runs on the physical architecture to produce *f*

Vacuum-cleaner world

- ▶ Percepts: location and contents, e.g., [A, Dirty]
- ► Actions: Left, Right, Suck, NoOp

A vacuum-cleaner agent

Percept sequence	Action
[A, Clean]	Right
[A, Dirty]	Suck
[B, Clean]	Left
[B, Dirty]	Suck
[A, Clean], [A, Clean]	Right
[A, Clean], [A, Dirty]	Suck
:	<u>:</u>

```
function Reflex-Vacuum-Agent( [location, status]) returns an action

if status = Dirty then return Suck
else if location = A then return Right
else if location = B then return Left
```

- ▶ What is the **right** function?
- ► Can it be implemented in a small agent program?

Rationality

- Fixed performance measure evaluates the environment sequence
 - one point per square cleaned up in time T?
 - one point per clean square per time step, minus one per move?
 - \triangleright penalize for > k dirty squares?
- ► A rational agent chooses whichever action maximizes the expected value of the performance measure given the percept sequence to date
- ▶ Rational ≠ omniscient
 - percepts may not supply all relevant information
- ► Rational ≠ clairvoyant
 - action outcomes may not be as expected
 - Hence, rational \neq successful
- ► Rational ⇒ exploration, learning, autonomy

PEAS

To design a rational agent, we must specify the task environment

Consider, e.g., the task of designing an automated taxi:

- ► Performance measure??
- ► Environment??
- ► Actuators??
- ► <u>Sensors</u>??

PEAS

To design a rational agent, we must specify the task environment

Consider, e.g., the task of designing an automated taxi:

- <u>Performance measure??</u> safety, destination, profits, legality, comfort, . . .
- <u>Environment??</u> streets/freeways, traffic, pedestrians, weather, . . .
- <u>Actuators</u>?? steering, accelerator, brake, horn, speaker/display, . . .
- ► <u>Sensors</u>?? video, accelerometers, gauges, engine sensors, keyboard, GPS, ...

Internet shopping agent

- ► Performance measure??
- ► <u>Environment</u>??
- ► <u>Actuators</u>??
- ► Sensors??

Internet shopping agent

- Performance measure?? price, quality, appropriateness, efficiency
- ► Environment?? current and future WWW sites, vendors, shippers
- Actuators?? display to user, follow URL, fill in form
- <u>Sensors</u>?? HTML pages (text, graphics, scripts)

	Solitaire	Backgammon	Internet shopping	Taxi
Observable??				
Deterministic??				
Episodic??				
Static??				
Discrete??				
Single-agent??				

	Solitaire	Backgammon	Internet shopping	Taxi
Observable??	Yes	Yes	No	No
<u>Deterministic</u> ??				
Episodic??				
Static??				
Discrete??				
Single-agent??				

	Solitaire	Backgammon	Internet shopping	Taxi
Observable??	Yes	Yes	No	No
<u>Deterministic</u> ??	Yes	No	Partly	No
Episodic??				
Static??				
Discrete??				
Single-agent??				

	Solitaire	Backgammon	Internet shopping	Taxi
Observable??	Yes	Yes	No	No
<u>Deterministic</u> ??	Yes	No	Partly	No
Episodic??	No	No	No	No
Static??				
Discrete??				
Single-agent??				

	Solitaire	Backgammon	Internet shopping	Taxi
Observable??	Yes	Yes	No	No
Deterministic??	Yes	No	Partly	No
Episodic??	No	No	No	No
Static??	Yes	Semi	Semi	No
Discrete??				
Single-agent??				

	Solitaire	Backgammon	Internet shopping	Taxi
Observable??	Yes	Yes	No	No
Deterministic??	Yes	No	Partly	No
Episodic??	No	No	No	No
Static??	Yes	Semi	Semi	No
Discrete??	Yes	Yes	Yes	No
Single-agent??				

	Solitaire	Backgammon	Internet shopping	Taxi
Observable??	Yes	Yes	No	No
Deterministic??	Yes	No	Partly	No
Episodic??	No	No	No	No
Static??	Yes	Semi	Semi	No
Discrete??	Yes	Yes	Yes	No
Single-agent??	Yes	No	Yes (except auctions)	No

	Solitaire	Backgammon	Internet shopping	Taxi
Observable??	Yes	Yes	No	No
Deterministic??	Yes	No	Partly	No
Episodic??	No	No	No	No
Static??	Yes	Semi	Semi	No
Discrete??	Yes	Yes	Yes	No
Single-agent??	Yes	No	Yes (except auctions)	No

The environment type largely determines the agent design

The real world is (of course) partially observable, stochastic, sequential, dynamic, continuous, multi-agent

Agent types

Four basic types in order of increasing generality:

- simple reflex agents
- reflex agents with state
- goal-based agents
- utility-based agents

All these can be turned into learning agents

Simple reflex agents

Example

```
function Reflex-Vacuum-Agent( [location,status]) returns an action

if status = Dirty then return Suck
else if location = A then return Right
else if location = B then return Left
```

Reflex agents with state

Example

```
function Reflex-Vacuum-Agent([location,status]) returns an action static: last\_A, last\_B, numbers, initially \infty if status = Dirty then . . .
```

Goal-based agents

Utility-based agents

Learning agents

Summary

- Agents interact with environments through actuators and sensors
- ▶ The agent function describes what the agent does in all circumstances
- ► The performance measure evaluates the environment sequence
- ► A perfectly rational agent maximizes expected performance
- Agent programs implement (some) agent functions
- ► PEAS descriptions define task environments
- Environments are categorized along several dimensions: observable? deterministic? episodic? static? discrete? single-agent?
- Several basic agent architectures exist: reflex, reflex with state, goal-based, utility-based