

超小封装、低功耗、单通道电容式触摸检测芯片

概述

BH7812 是一款内置稳压模块、超小封装的低功耗单通道电容式触摸感应检测芯片,可以替代传统的机械式开关。BH7812 可在有介质(如玻璃、亚克力、塑料、陶瓷等)隔离保护的情况下实现触摸功能,安全性高。内置高精度稳压、上电复位、硬件去抖、环境自适应算法等多种有效措施,大大提高自身抗干扰性能。

BH7812 可通过外部引脚配置成多种工作模式,可广泛应用于灯光控制、电子玩具、消费电子、家用电器等产品中。

BH7812 采用环保的 DFN1x1-4L 封装规格,有效的 节省 PCB 布线空间,非常适合入耳式蓝牙耳机等应用。

应用范围

- ◆ 各种消费类产品
- ◆ 取代按钮按键

特点

◆ 工作电压: 2.4V~5.5V

◆ 静态电流: 低功耗模式 1.8µA@3V

快速模式: 2.8µA@3V

- ◆ 内置高精度稳压模块
- ◆ 上电 0.5 秒快速初始化,在此期间内不要触摸检测点, 此时所有功能被禁止
- ◆ 可由外部电容 (0~50pF) 调整灵敏度
- ◆ 环境自适应功能,可快速应对触摸上电等类似应用场景
- ◆ 芯片内置去抖动电路,有效防止由外部噪声干扰导致的 误动作
- ◆ 最大 16 秒开启时间
- ◆ 自动校准功能

在快速模式下,当 Key 没有被触摸时或 Key 被触摸之后 IC 重新校正时间约为 4.0 秒。 在低功耗模式下,当 Key 没有被触摸时其校正时间同样约为 4.0sec,当 Key 被触摸之后, 其重新校正时间必需是 Key 被释放之后约 16 秒。

管脚定义

典型应用电路

BH7812C, BH7812E

BH7812 Preliminary Datasheet Rev1.6 Shanghai Chiprise Microelectronic Co.,LTD

超小封装、低功耗、单通道电容式触摸检测芯片

订购信息

产品型号	功能简介	产品封装	丝印信息	包装信息
BH7812C	低功耗模式,CMOS 输出	DFN1x1-4L	2C	10000PCS/Reel Tape
BH7812D	低功耗模式,开漏输出	DFN1x1-4L	2D	10000PCS/Reel Tape
BH7812E	快速模式,CMOS 输出	DFN1x1-4L	2E	10000PCS/Reel Tape
BH7812F	快速模式,开漏输出	DFN1x1-4L	2F	10000PCS/Reel Tape

管脚功能描述

序号	管脚名称	I/O 类型	描述	
1	I	I/O	触摸信号输入端口	
2	0	ОС	触摸信号输出,CMOS IO 输出,高电平有效(BH7812C,BH7812E)	
2	Q	OD	触摸信号输出,NMOS 开漏输出,低电平有效(BH7812D,BH7812F)	
3	VSS	Р	电源地	
4	VDD	Р	电源输入	
	EP_PAD		接VSS	

极限参数

参数	符号	范围	单位
工作电压	V_{DD}	-0.3~6.0	V
输入/输出电压	V _I /V _O	-0.5 ~ VDD+0.5	V
工作温度	T _{OPT}	-40 ~ 85	℃
储藏温度	T_{STG}	-40 ~ 125	℃
焊接温度	T _{SOLDERING}	260/10S	℃
功耗	Pt	0.3	W
ESD(HBM)	V_{ESD}	8000	V

电气参数表 (若无特别说明, VDD=3.0V, 环境温度=25℃, 芯片输出无负载)

参数	符号	条件	最小值	典型值	最大值	单位
工作电压	V_{DD}		2.4	3.0	5.5	٧
	I _{DD}	VDD=3.0V,低功耗模式		1.8	2.5	μΑ
静态电流		VDD=4.2V,低功耗模式		3.6	4.2	μΑ
		VDD=3.0V,快速模式		2.8	4.0	μΑ
		VDD=4.2V,快速模式		5.0	6.0	μΑ
内部 LDO 电压	V_{LDO}	VDD=3.0V	2.25	2.30	2.35	V
输出端漏电流	I _{OL}	VDD=3.0V, V _{OL} =0.6V	12	16	20	mA
输出端源电流	Іон	VDD=3.0V, V _{OH} =2.4V	-10	-8	-6	mA
10.000	T _{Rdp}	VDD=3.0V,快速模式			60	ms
响应时间 		VDD=3.0V,低功耗模式			160	ms

功能框图

超小封装、低功耗、单通道电容式触摸检测芯片

功能描述

1. 灵敏度调节

PCB 接线的电极大小与电容之总负载,会影响灵敏度,故灵敏度的调整必须符合 PCB 的实际应用,下面提供一些外 部调整灵敏度的方法:

1-1 调整检测板的尺寸

在其他条件不变的情况下,使用较大的检测板尺寸可以增加灵敏度,反之则会降低灵敏度;但电极尺寸必须在 有效范围内使用。

1-2 调整介质

在其他条件不变的情况下,使用较薄的介质可增加灵敏度,反之则会降低灵敏度;但介质厚度必须在最大限制 值以下。

1-3 调整 Cs 电容值 (参考典型应用电路图)

在其他条件不变的情况下, 若未在触摸 PAD 上对 VSS 接上 Cs 电容时, 灵敏度最高, Cs 的电容在可用范围内 (0~50pF), Cs 电容值越大, 灵敏度越低。

超小封装、低功耗、单通道电容式触摸检测芯片

2. 在低功耗模式下运行,可节省功耗,在此模式下检测到按键触摸后,会自动切换到快速模式下,直到触摸按键释放, 并将保持 10S,返回到低功耗模式。

BH7812C 工作时序图

BH7812D 工作时序图

BH7812E 工作时序图

BH7812F 工作时序图

典型应用电路

超小封装、低功耗、单通道电容式触摸检测芯片

BH7812C,BH7812E

说明:

- 1. 在 PCB 上,从触摸感应盘到 IC 接脚的线尽量短和细。如果 PCB 工艺允许尽量采用 0.1mm 的线宽,且此接线与其它 线不得平行或交叉。
- 2. 电源供应必须稳定,若供应电源之电压发生漂移或快速漂移或移位,可能造成灵敏度异常或误侦测。
- 3. 覆盖在 PCB 上的板材,不得含有金属或导电组件的成份,表面涂料亦同。
- 4. 必须在 VDD 和 VSS 间使用 C1 电容;且应采用与装置 IC 的 VDD 和 VSS 接脚最短距离的布线。
- 5.可利用 Cs 电容调整灵敏度,Cs 电容值越小灵敏度越高,灵敏度调整必须根据实际应用的 PCB 来做调整,Cs 电容值的 范围为 0~50pF。
- 5. 调整灵敏度的电容 (Cs) 必须选用较小的温度系数及较稳定的电容器;如 X7R、NPO,故针对触摸应用,建议选择 NPO 电容器,以降低因温度变化而影响灵敏度。
- 6. 触摸感应盘到触摸 IC 的连线周围 0.2MM 不要走其他信号线。
- 7. 触摸感应盘正对的背面不允许铺地,也不允许有任何大面积的铜箔和其他信号线。
- 8. 触摸点推荐做成边缘圆滑的形状,如圆形或六角形,可以避免尖端放电效应

封装信息 DFN1x1-4L

TOP VIEW

SIDE VIEW

BOTTOM VIEW

CVMDOI	MILLIMETER			
SYMBOL	MIN	NOM	MAX	
A	0.32	0.37	0.41	
A1	0.00	0.02	0.05	
b	0.18 0.23		0.28	
С	0.127REF			
D	0.95	1.00	1.05	
D2	0.43	0.48	0.53	
e	0.65BSE			
Е	0.95	1.00	1.05	
E2	0.43	0.48	0.53	
L	0.20	0.25	0.30	
L1	0.205REF			