Ø	First change I to CNF and standardize apart Variables (Given
	First change I to CNF and standardize apart variables
	2. Roman (Marcho)
	= -Man(x) V Person(x)
	11 Pulo- (Caesar)
	5. ¬Roman (x) v Loyal (x, Caesar) v Hate (x, Caesar)
	6. Loyal (X2) + (X2)
	7. ¬Person (X3) V ¬Ruler (y) V ¬Tryassasin (X3,y) V TLOYAR (X3))
	8. Try assasin (Marcus, Caesar)
	Next regate what is to be prover, convert to CNF Next regate what is to be prover, convert to CNF And standardize apart variables ¬∃x Hate(x, Cusar) = ∀x ¬Hate(x,
	and standardize apart variables "=x Hate(x, Cusar)
	and standardize aparl various Cusai) = VX = Hate(x, Caesar) Caesar
	Perform resolution Perform resolution (x5, Caesar) 5,9 {x,/x4} = x5
	10. Troman (15) 11. Loyal (Marcus, Caesar) 2,10, {x5/Marcus}
	12. Terson (Marcus) V 7 Ruler (Caesar) V 7 Try assasin (Marious, Gassar)
	12. 7 Person (Marcus) V 7 Ruler (Caesar) V 7 Try assasin (Marcus, Gaesar) 7,11, {X3/Marcus, y Caesar}
	continued on next page

13. Person (Marcus) 1,3, {x/Marcus}

14. 7 Ruler (Caesar) v 7 Tryassasin (Marcus, Caesar) 12,13

15. 7 Tryassasin (Marcus, Caesar) 4,14

16. [] 8,15

line 13 could have been

13a. 7 Man (Marcus) V 7 Ruler (Caesar)

V 7 Try assassin (Marcus, Caesar)

3,12 {x/marcus}

14. 7 Ruler (Caesar) V 7 Try assasin (Marcus, Caesar) 1,13a

Backtrack to: node Xq

(could have considered)

b, c, or d as first

decision node;

the tree would look

the same but the

unit propagation

would be different)

The numbers give the order of unit values

The check marks say clause is true

The X shows the clause that is false

(Single scan through the clauses so some

clauses are not marked with a V even

though they are true with the valuation on the branch)

H. Far the 3x3 board labelled: $a_{11} \ a_{12} \ a_{23}$ $a_{31} \ a_{32} \ a_{33}$

 $\begin{array}{c} 3 \\ \text{rows} \end{array} \left(\begin{array}{c} \left(a_{11} \vee a_{12} \vee a_{13} \right) \wedge \neg \left(a_{11} \wedge a_{12} \right) \wedge \neg \left(a_{21} \wedge a_{23} \right) \wedge \neg \left(a_{22} \wedge a_{23} \right) \wedge \\ \left(a_{21} \vee a_{22} \vee a_{23} \right) \wedge \neg \left(a_{21} \wedge a_{22} \right) \wedge \neg \left(a_{21} \wedge a_{23} \right) \wedge \neg \left(a_{22} \wedge a_{23} \right) \wedge \\ \left(a_{31} \vee a_{32} \vee a_{33} \right) \wedge \neg \left(a_{31} \wedge a_{32} \right) \wedge \neg \left(a_{31} \wedge a_{33} \right) \wedge \neg \left(a_{32} \wedge a_{33} \right) \wedge \\ \left(a_{11} \vee a_{21} \vee a_{31} \right) \wedge \neg \left(a_{11} \wedge a_{21} \right) \wedge \neg \left(a_{11} \wedge a_{31} \right) \wedge \neg \left(a_{21} \wedge a_{32} \right) \wedge \\ \left(a_{12} \vee a_{12} \vee a_{32} \right) \wedge \neg \left(a_{12} \wedge a_{22} \right) \wedge \neg \left(a_{12} \wedge a_{32} \right) \wedge \neg \left(a_{23} \wedge a_{33} \right) \wedge \\ \left(a_{13} \vee a_{23} \vee a_{33} \right) \wedge \neg \left(a_{13} \wedge a_{23} \right) \wedge \neg \left(a_{13} \wedge a_{23} \right) \wedge \neg \left(a_{22} \wedge a_{13} \right) \wedge \neg \left(a_{31} \wedge a_{21} \right) \wedge \\ \left(a_{21} \wedge a_{32} \right) \wedge \neg \left(a_{31} \wedge a_{22} \right) \wedge \neg \left(a_{31} \wedge a_{22} \right) \wedge \neg \left(a_{22} \wedge a_{33} \right) \wedge \neg \left(a_{21} \wedge a_{23} \right) \wedge \neg \left(a_{21} \wedge a_{22} \right) \wedge \neg \left(a_{21} \wedge a_{22} \right) \wedge \neg \left(a_{21} \wedge a_{22} \right) \wedge \neg \left(a_{21} \wedge a_{23} \right) \wedge \neg \left(a_{21} \wedge a_{22} \right) \wedge \neg \left(a_{21} \wedge$

Give this CNF to the Mini Sat solver using the Python wrapper satisfy and the answer is "false"