T.D. 3

Logique séquentielle

Exercice 1

Après avoir rappelé les tables de vérité des bascules D et JK synchronisées sur front montant, donnez le chronogramme des sorties **Q** de chacune des bascules câblées ci-dessous en fonction d'une entrée d'horloge **H**.

Exercice 2

1. Donnez la table de vérité du montage ci-dessous :

2. Quelle fonction reconnaissez-vous?

Exercice 3

On dispose de bascules JK synchronisées sur front montant. Chaque bascule possède des entrées asynchrones prioritaires actives à l'état bas : *set* et *reset*.

- 1. Réalisez un compteur asynchrone modulo 16.
- 2. Modifiez le montage pour en faire un compteur asynchrone modulo 12.
- 3. En partant de zéro, tracez son chronogramme sur un cycle complet.
- 4. Ajoutez un interrupteur automatique de remise à zéro à l'allumage.
- 5. Ajoutez un interrupteur manuel de remise à zéro.
- 6. Que suffit-il de faire pour remplacer les bascules JK par des bascules D?

Exercice 4

On désire réaliser un compteur/décompteur asynchrone modulo 10 avec une possibilité de chargement parallèle du nombre $N = \mathbf{dcba}$ ($0 \le N \le 9$).

Ce compteur/décompteur comportera deux entrées de commande X et Y.

X = 0: Chargement parallèle de N (quelque soit Y).

X = 1: Compteur si Y = 0 et décompteur si Y = 1.

Vous avez à votre disposition quatre bascules JK et toutes les portes logiques nécessaires. Les bascules sont synchronisées sur front descendant et possèdent des entrées de forçage (*set* et *reset*) actives à l'état bas.

- 1. Dessinez le schéma de connexion des bascules, de façon à obtenir un compteur si Y = 0 et un décompteur si Y = 1 (sans tenir compte du modulo pour l'instant).
- 2. Quelles valeurs sur la sortie (du compteur et du décompteur) doit-on détecter pour réaliser le modulo 10.

Pour la suite, on posera : $M = \overline{Q_b \cdot Q_d}$

3. Complétez la table de vérité ci-dessous pour les entrées *set* et *reset* des quatre bascules en fonction de **X** et de **Y**.

	X	Y	$\overline{\mathbf{R}}_{\mathbf{a}}$	\overline{S}_a	$\overline{\mathbf{R}}_{b}$	$\overline{\mathbf{S}}_{\mathbf{b}}$	$\overline{\mathbf{R}}_{\mathbf{c}}$	$\overline{\mathbf{S}}_{\mathbf{c}}$	$\overline{\mathbf{R}}_{d}$	$\overline{\mathbf{S}}_{\mathbf{d}}$
Chg //	0	X								
Cpt	1	0								
Décpt	1	1								

4. En déduire les équations de chacune des entrées *set* et *reset*.

Exercice 5

Soit le montage ci-dessous :

1. Remplissez le chronogramme suivant si l'entrée E vaut zéro :

2. Que réalise ce montage?

Exercice 6

1. Remplissez la table des transitions d'une bascule JK.

$\mathbf{Q}_{(t)}$	Q _(t+1)	J	K

Dans un premier temps, on désire réaliser un compteur synchrone modulo 7 à l'aide de bascules JK synchronisées sur front montant.

2. À l'aide de la table des transitions, remplissez le tableau ci-dessous :

\mathbf{Q}_2	\mathbf{Q}_1	Q_0	J_2	K ₂	J_1	K ₁	J_0	\mathbf{K}_{0}

- 3. Donnez les équations des entrées J_0 , K_0 , J_1 , K_1 , J_2 et K_2 .
- 4. Dessinez le schéma de câblage.

On désire maintenant réaliser un compteur synchrone, modulo 8 en code Gray, à l'aide de bascules JK synchronisées sur front descendant.

5. Remplissez le tableau ci-dessous :

\mathbb{Q}_2	\mathbf{Q}_1	Q_0	J_2	K ₂	J_1	K ₁	J_0	\mathbf{K}_{0}

6. Donnez les équations des entrées J_0 , K_0 , J_1 , K_1 , J_2 et K_2 .