if
$$A = \begin{bmatrix} 2 & 3 & 4 & -1 \\ 5 & 2 & 0 & -1 \\ -4 & 5 & 12 & -1 \end{bmatrix}$$

Investigate for what values of λ and μ , do the system of equations x+y+z=6[CO1]

$$x + 2y + 3z = 10$$
$$x + 2\lambda + \lambda z = \mu$$

have (i) no solution (ii) unique solution.

Find the eigen value & eigen vector of $\begin{bmatrix}
8 & -6 & 2 \\
-6 & 7 & -4 \\
2 & -4 & 3
\end{bmatrix}$ [CO1]

e) If $N = \begin{bmatrix} 0 & 1+2i \\ -1+2i & 0 \end{bmatrix}$, obtain the matrix $(I-N)(I+N)^{-1}$ and show that it is Unitary [CO1]

f) State Cayley Hamilton theorem and verify for the matrix [CO11

$$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$

2.) Attempt any four parts of the following [4x5]

a) Trace the curve $y^2(2a-x)=x^3$ [CO2]

b) State and prove Cauchy's mean value theorem. [CO2]

c) If $y^{1/m} + y^{-1/m} = 2x$, then prove that [CO2]

$$(x^2 - 1)y_{n+2} + (2n+1)xy_{n+1} + (n^2 - m^2)y_n = 0$$

Find the envelope of the family of straight lines $y = mx + \frac{a}{m}$, the parameter being m. [CO2]

Pind the evaluate of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ [CO2]

e) Show that the function f(x) is defined by

$$f(x) = \begin{cases} x^2, & x \neq 1 \\ 2, & x = 1 \end{cases}$$
 is discontinuous at $x = 1$ [CO2]

Verify Rolle's theorem for following function the $f(x) = 2x^3 + x^2 - 4x - 2$ [CO2]

3.) Attempt any four parts of the following [4x5]

a) If
$$x^x y^y z^z = c$$
 show that $\frac{\partial^2 z}{\partial x \partial y} = -(x \log ex)^{-1}$ [CO3]

b) Verify Euler's theorem for the following function [CO3] $f(x) = \sin^{-1}\left(\frac{x}{y}\right) + \tan^{-1}\left(\frac{y}{x}\right)$

- c) Expand eaxsinby in power of x and y as for as the terms of third [CO3] degree.
- d) If u, v, ware the roots of the cubic $(\lambda x)^3 + (\lambda y)^3 + (\lambda z)^3 = 0$ in λ then find $\frac{\partial(u,v,w)}{\partial(x,y,z)}$ [CO3]

- e) If the kinetic energy T is given by $T = \frac{1}{2}mv^2$, find approximately, the change in T as the mass m changes from 49 to 49.5 and the velocity changes from 1600 to 1590. [CO3]
- f) In a plane triangle ABC. Find the maximum values of [CO3]

4.) Attempt any two parts of the following

[2x10]

- a) (i) Evaluate $\int_{0.1}^{2e^{x}} dxdy$ by changing the order of integration [CO4]
- (ii) Evaluate $\iiint \frac{dxdydz}{(x+y+z)^2}$, the integral being taken throughout the volume bounded by the planes x=0, y=0, z=0 and x+y+z=1 [CO4]
 - b) Find the double integration, the area lying inside the circle $r = a \sin \theta$ and outside the cardioids $r = a(1 \cos \theta)$. [CO4]
 - c) Find the mass of a lamina in the form of the cardiod $r = a(1 + \cos \theta)$ whose density at any point varies as the square of its distance from the initial line. [CO4]

5.) Attempt any two parts of the following

[2x10]

- (i) Find the directional derivative of $\phi = (x^2 + y^2 + z^2)^{-1/2}$ at the point p(3,1,2) in the direction of the vector yzi + zxj + xyk. [CO5]
- (ii) Find $\overrightarrow{div F}$ and $\overrightarrow{curl F}$ of the vector \overrightarrow{F} , $\overrightarrow{F} = xyzi + 3x^2yj + (xz^2 y^2z)k$ at the point (2,-1,1). [CO5]
 - b) (i) Determine the work done by the forces

$$\vec{F} = (2y+3)\hat{\imath} + xz\hat{\jmath} + (yz-x)\hat{k}$$

when it moves a particle from the point (0,0,0) to the point (2,1,1) along the curve $x = 2t^2$, y = t, $z = t^3$. [CO5]

(ii) Prove that $\operatorname{curl}(\overrightarrow{a} \times \overrightarrow{b}) = (b \cdot \nabla)a - b\operatorname{diva} - (a \cdot \nabla)b + a\operatorname{divb}$

[CO5]

OR

(ii) Evaluate $\iint (\nabla \times \overrightarrow{A}) \cdot \hat{n} ds$ where S is the surface of the cone $z = 2 - \sqrt{x^2 + y^2}$

Above the xy-plane and $\overrightarrow{A} = (x-2)i + (x^2 + yz)j - 3xy^2k$

[CO5]

c) Verify stokes theorem for $\overrightarrow{F} = (x^2 + y^2)i - 2xyj$ taken round the rectangle bounded by the lines $x = \pm a, y = 0, y = b$ [CO5]

		(Rol	l No. to l	e fille	ed by	candida	nte)		
21	00	4	30	2	0	0	0	2	4

B. TECH. FIRST SEMESTER THEORY EXAMINATION, 2021-22 **KAS-103T**

ENGINEERING MATHEMATICS-I Time: 03 Hours Max. Marks: 100

Note:

• Attempt all questions. All questions carry equal marks.

Attempt any TWO parts of the following:

a. (i) If $N = \begin{bmatrix} 0 & 1+2i \\ -1+2i & 0 \end{bmatrix}$ is a matrix, then prove that $(I-N)(I+N)^{-1}$ is unitary matrix, where I is identity matrix.

(ii)Reduce the matrix AB into Echelon form by using elementary transformations and hence find its rank, where

$$A = \begin{bmatrix} 2 & 1 & -3 & -6 \\ 3 & -3 & 1 & 2 \\ 1 & 1 & 1 & 2 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 & -1 & 4 \\ 2 & 4 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ -1 & -2 & 6 & 7 \end{bmatrix}$$

b. (i) Apply elementary transformations to find the inverse of the following matrix:

$$\begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$$

(ii) Apply elementary transformations to test the consistency of the following system and solve them(if consistent)

CO₂

CO₃

$$x + 2y + z = 3$$
; $2x + 3y + 2z = 5$; $3x - 5y + 5z = 2$; $3x + 9y - z = 4$

c. Verify Cayley-Hamilton theorem for the matrix and hence find A^{-2} .

$$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$

2. Attempt any FOUR parts of the following: 4×5

Determine the values of a, b, c so that the following function is continuous for all values of x

$$f(x) = \begin{cases} \frac{\sin(a+1)x + \sin x}{x}, & x < 0 \\ c, & x = 0 \\ \frac{\sqrt{x + bx^2} - \sqrt{x}}{bx^{3/2}}, & x > 0 \end{cases}$$

b Find y_n if $y = \sin^4 x \cos^4 x$.

c. If $y = \tan^{-1} \left(\frac{a+x}{a-x} \right)$, prove that $(x^2 + a^2)y_{n+2} + 2(n+1)xy_{n+1} + n(n+1)y_n = 0$.

d. Determine the values of constants a, b if Rolle's theorem holds good for the function $f(x) = x^3 + ax^2 + bx$, $1 \le x \le 2$ at the point $x = \frac{4}{3}$.

e. Find the envelope of the circles described on the lines joining the centre of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ to any point on it as diameter.

f Trace the curve $y^2(a-x)=x^3$.

3. Attempt any *FOUR* parts of the following: 4

a. Verify Euler's theorem for the following function

$$f(x) = \sin^{-1}\left(\frac{x}{y}\right) + \tan^{-1}\left(\frac{y}{x}\right)$$

Also evaluate $x^2 \frac{\partial^2 f}{\partial x^2} + 2xy \frac{\partial^2 f}{\partial x \partial y} + y^2 \frac{\partial^2 f}{\partial y^2}$.

- b. Apply method of partial differentiation to find $\frac{du}{dy}$ if $u = x \log(xy)$, where $x^3 + y^3 + 3xy = 1$,
- Find the percentage error in computing the parallel resistance r of three resistances r_1, r_2, r_3 when r_1, r_2, r_3 are in error by 1.5%.
- d. If u = xyz, $v = x^2 + y^2 + z^2$, w = x + y + z, then find $\frac{\partial(x, y, z)}{\partial(u, v, w)}$.
- e. Obtain the Taylor's series expansion of maximum order for the function $f(x, y) = 2x^2 xy + y^2 + 3x 4y + 1$ in powers of (x-1) and (y+1).
- f. Apply Lagrange's multiplier method to determine the greatest value of u = xyz, where x, y and z are positive real numbers for which 4x + 2y + z = 12.
- 4. Attempt any TWO parts of the following: 2×10 CO4
 - a. (i) Evaluate $\iint_D x^2 dx dy$, where D is the region bounded by the ellipse having length of major and minor axis as 2a and 2b respectively.
 - (ii) Apply double integration to find the mass of the triangular plate in the xy-plane which is bounded by the lines x = 0, y = 0 and $\frac{x}{a} + \frac{y}{b} = 1$ having mass density $\rho = x\sqrt{y}$ at any point (x, y).
 - b. Evaluate $\int_{0}^{a} \int_{y}^{a} \frac{x}{x^2 + y^2} dxdy$ by changing the order of integration. Also verify the result by evaluating the integral using polar coordinate.
- c. Use method of triple integration to determine the volume enclosed between the two surfaces $z = 2x^2 + 3y^2$ and $z = 16 2x^2 y^2$.

OF W.

5. Attempt any TWO parts of the following: 2×10 CO5
 a. (i) Find the directional derivative of ∇.u at the point (2,2,1) in the direction of the outer normal to the sphere x²+y²+z²=9 where

$$\mathbf{u} = x^2 z \mathbf{i} + y^2 x \mathbf{j} + z^2 y \mathbf{k}.$$

(ii) Show that the vector field F given by $\mathbf{F} = (x^2 - yz) \mathbf{i} + (y^2 - xz) \mathbf{j} + (z^2 - xy) \mathbf{k}$

is irrotational. Find its scalar potential.

b. (i) Find the work done in moving a particle once around a circle C in the xy-plane, if the circle has centre at the origin and radius a and if the force field is given by

$$\mathbf{F} = (2x - y + z) \mathbf{i} + (x + y - z^2) \mathbf{j} + (3x - 2y + 4z) \mathbf{k}.$$

- (ii) Prove that $\nabla^2 f(r) = f''(r) + \frac{1}{r} f'(r)$. Find f(r) such that $\nabla^2 f(r) = 0$.
- c. Verify Gauss Divergence theorem for the function $\mathbf{F} = 4xz\mathbf{i} y^2\mathbf{j} + yz\mathbf{k}$ and S, the surface of the cube x = 0, x = 1, y = 0, y = 1, z = 0, z = 1.

127 = -1

Bundelkhand Institute of Engineering & Technology, Jhansi Second Class Test, Odd (I) Semester, 2021-22 Mathematics-I (KAS-103T) (For EC, EE & CH)

Max. Marks: 15

Time: 01 Hr

1. Attempt ALL parts of this question.

1000

[CO3]

(a) Apply chain rule of differentiation to find $\frac{\partial f}{\partial r}$ and $\frac{\partial f}{\partial \theta}$ for $f(x,y) = x^2 + y^2$ where $x = r \cos \theta$, $y = r \sin \theta$.

[1.5 Marks]

(b) Determine the value of
$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z}$$
 where $u = \log \sqrt{x^2 + y^2 + z^2}$ [1.0 Mark]

(c) Apply Taylor's series expansion for the function $f(x, y) = e^{2x-y}$ about the point (0, 1) up to the quadratic terms to estimate the value of f(x, y) at (-0.1, 1.1). [2.5 Marks]

OF

Apply Lagrange's multiplier method to determine the greatest value of u = xyz, where x, y and z are positive real numbers for which 4x + 2y + z = 12. [2.5 Marks]

(d) If
$$x + y + z = u$$
, $y + z = uv$, $z = uvw$, then determine $\frac{\partial(u, v, w)}{\partial(x, y, z)}$. (2.5)

(P.T.O)