Exercise 9

陈志杰 524531910034

Problem 1.

Solution. (a), (d). \Box

Problem 2.

Solution. (a), (c), (d), (e). \Box

Problem 3.

Proof.

- (a) For every $a, b \in \mathbb{N}$, a + b = b + a.
 - For every $a, b \in \mathbb{N}$, $\mathfrak{I}_1(f)(a, b) = \mathfrak{I}_1(f)(b, a)$.
 - For every $a, b \in \mathbb{N}$, $\mathfrak{I}_1(R)(\mathfrak{I}_1(f)(a,b), \mathfrak{I}_1(f)(b,a)) = \mathbf{T}$.
 - For every $a, b \in \mathbb{N}$, $\mathfrak{I}_1[x \mapsto a, y \mapsto b](R)(\mathfrak{I}_1[x \mapsto a, y \mapsto b](f)(a, b), \mathfrak{I}_1[x \mapsto a, y \mapsto b](f)(b, a)) = \mathbf{T}$.
 - For every $a, b \in \mathbb{N}$, $\mathfrak{I}'_1(R)(\mathfrak{I}'_1(f)([\![x]\!]_{\mathfrak{I}'_1}, [\![y]\!]_{\mathfrak{I}'_1}), \mathfrak{I}'_1(f)([\![y]\!]_{\mathfrak{I}'_1}, [\![x]\!]_{\mathfrak{I}'_1})) = \mathbf{T}$, where $\mathfrak{I}'_1 = \mathfrak{I}_1[x \mapsto a, y \mapsto b]$.
 - For every $a, b \in \mathbb{N}$, $[R(f(x, y), f(y, x))]_{\mathfrak{I}_1[x \mapsto a, y \mapsto b]} = \mathbf{T}$.
 - For every $a \in \mathbb{N}$, $[\![\forall y R(f(x,y), f(y,x))]\!]_{\mathfrak{I}_1[x\mapsto a]} = \mathbf{T}$.
 - $\llbracket \forall x \forall y R(f(x,y), f(y,x)) \rrbracket_{\mathfrak{I}_1} = \mathbf{T}.$
- (b) For every $a, b \in \mathbb{N}$, a * b = b * a.
 - For every $a, b \in \mathbb{N}$, $\mathfrak{I}_2(f)(a, b) = \mathfrak{I}_2(f)(b, a)$.
 - For every $a, b \in \mathbb{N}$, $\mathfrak{I}_2(R)(\mathfrak{I}_2(f)(a,b), \mathfrak{I}_2(f)(b,a)) = \mathbf{T}$.
 - For every $a, b \in \mathbb{N}$, $\mathfrak{I}_2[x \mapsto a, y \mapsto b](R)(\mathfrak{I}_2[x \mapsto a, y \mapsto b](f)(a, b), \mathfrak{I}_2[x \mapsto a, y \mapsto b](f)(b, a)) = \mathbf{T}$.
 - For every $a, b \in \mathbb{N}$, $\mathfrak{I}'_{2}(R)(\mathfrak{I}'_{2}(f)(\llbracket x \rrbracket_{\mathfrak{I}'_{2}}, \llbracket y \rrbracket_{\mathfrak{I}'_{2}}), \mathfrak{I}'_{2}(f)(\llbracket y \rrbracket_{\mathfrak{I}'_{2}}, \llbracket x \rrbracket_{\mathfrak{I}'_{2}})) = \mathbf{T}$, where $\mathfrak{I}'_{2} = \mathfrak{I}_{2}[x \mapsto a, y \mapsto b]$.
 - For every $a, b \in \mathbb{N}$, $[R(f(x, y), f(y, x))]_{\mathfrak{I}_2[x \mapsto a, y \mapsto b]} = \mathbf{T}$.
 - For every $a \in \mathbb{N}$, $[\![\forall y R(f(x,y), f(y,x))]\!]_{\mathfrak{I}_2[x \mapsto a]} = \mathbf{T}$.
 - $[\forall x \forall y R(f(x,y), f(y,x))]_{\mathfrak{I}_2} = \mathbf{T}.$
- (c) For every $a, b \in \{\mathbf{T}, \mathbf{F}\}, [\![\wedge]\!](a, b) = [\![\wedge]\!](b, a)$.
 - For every $a, b \in \{\mathbf{T}, \mathbf{F}\}, \, \mathfrak{I}_3(f)(a, b) = \mathfrak{I}_3(f)(b, a).$
 - For every $a, b \in \{\mathbf{T}, \mathbf{F}\}, \, \mathfrak{I}_3(R)(\mathfrak{I}_3(f)(a, b), \mathfrak{I}_3(f)(b, a)) = \mathbf{T}.$
 - For every $a, b \in \{\mathbf{T}, \mathbf{F}\}$, $\mathfrak{I}_3[x \mapsto a, y \mapsto b](R)(\mathfrak{I}_3[x \mapsto a, y \mapsto b](f)(a, b), \mathfrak{I}_3[x \mapsto a, y \mapsto b](f)(b, a)) = \mathbf{T}$.
 - For every $a, b \in \{\mathbf{T}, \mathbf{F}\}, \ \mathfrak{I}_3'(R)(\mathfrak{I}_3'(f)([\![x]\!]_{\mathfrak{I}_3'}, [\![y]\!]_{\mathfrak{I}_3'}), \mathfrak{I}_3'(f)([\![y]\!]_{\mathfrak{I}_3'}, [\![x]\!]_{\mathfrak{I}_3'})) = \mathbf{T},$ where $\mathfrak{I}_3' = \mathfrak{I}_3[x \mapsto a, y \mapsto b].$

- For every $a,b \in \{\mathbf{T},\mathbf{F}\},$ $[\![R(f(x,y),f(y,x))]\!]_{\Im_3[x\mapsto a,y\mapsto b]} = \mathbf{T}.$
- For every $a \in \{\mathbf{T}, \mathbf{F}\}$, $[\![\forall y R(f(x, y), f(y, x))]\!]_{\Im[x \mapsto a]} = \mathbf{T}$.
- $[\![\forall x \forall y R(f(x,y), f(y,x))]\!]_{\mathfrak{I}_3} = \mathbf{T}.$
- (d) Let $A = \{0\}$, β be the assignment that maps every variable to 0, $f^{\mathfrak{A}} : A \times A \to A$ be the function $f^{\mathfrak{A}}(x,y) = x$ for every $x,y \in A$, $R^{\mathfrak{A}} : A \times A \to \{\mathbf{T},\mathbf{F}\}$ be the function $R^{\mathfrak{A}}(x,y) = \mathbf{F}$ for every $x,y \in A$. Let \mathfrak{a} be the map that $\mathfrak{a}(f) = f^{\mathfrak{A}}$, $\mathfrak{a}(R) = R^{\mathfrak{A}}$. Let \mathfrak{A} be the structure (A,\mathfrak{a}) and \mathfrak{I} be the interpretation (\mathfrak{A},β) .

Let $\phi = \forall x \forall y R(f(x,y), f(y,x))$. We now prove by contradiction that $\llbracket \phi \rrbracket_{\mathfrak{I}} = \mathbf{F}$. Assume that $\llbracket \phi \rrbracket_{\mathfrak{I}} = \mathbf{T}$, i.e., for every $a,b \in A$, $\llbracket R(f(x,y),f(y,x)) \rrbracket_{\mathfrak{I}[x\mapsto a,y\mapsto b]} = \mathbf{T}$. Let $\mathfrak{I}' = \mathfrak{I}[x\mapsto a,y\mapsto b]$ where a=b=0. Now $\llbracket x \rrbracket_{\mathfrak{I}'} = \llbracket y \rrbracket_{\mathfrak{I}'} = 0$. Then $\mathfrak{I}'(R)(\mathfrak{I}'(f)(0,0),\mathfrak{I}'(f)(0,0)) = \mathbf{T}$, which implies that $R^{\mathfrak{A}}(f^{\mathfrak{A}}(0,0),f^{\mathfrak{A}}(0,0)) = \mathbf{T}$, contradicting the definition of $R^{\mathfrak{A}}$. Thus $\llbracket \phi \rrbracket_{\mathfrak{I}} = \mathbf{F}$, proving that ϕ is not valid.

Problem 4.

Proof. Consider an S-interpretation \mathfrak{I} with domain A such that $[\exists x \forall y (R(x,y))]_{\mathfrak{I}} = \mathbf{T}$.

- There exists $a \in A$ such that $[\![\forall y(R(x,y))]\!]_{\mathfrak{I}[x\mapsto a]} = \mathbf{T}$.
- For every $b \in A$, $[R(x,y)]_{\mathfrak{I}[x \mapsto a,y \mapsto b]} = \mathbf{T}$, of course including b = a.
- $[R(x,y)]_{\mathfrak{I}[x\mapsto a,y\mapsto a]} = \mathbf{T}.$
- $\Im[x\mapsto a,y\mapsto a](R)(\llbracket x\rrbracket_{\Im[x\mapsto a,y\mapsto a]},\llbracket y\rrbracket_{\Im[x\mapsto a,y\mapsto a]})=\mathbf{T}.$
- $\Im(R)(a,a) = \mathbf{T}.$
- $\Im[x \mapsto a](R)(\llbracket x \rrbracket_{\Im[x \mapsto a]}, \llbracket x \rrbracket_{\Im[x \mapsto a]}) = \mathbf{T}.$
- There exists $a \in A$ such that $[R(x,x)]_{\mathfrak{I}[x\mapsto a]} = \mathbf{T}$.
- $[\exists x (R(x,x))]_{\mathfrak{I}} = \mathbf{T}.$

Thus $\exists x \forall y (R(x,y)) \models \exists x (R(x,x))$, as desired.