MATH 307 Practice Midterm Exam 2

November 2021

 $\bullet\,$ No calculators, cell phones, laptops or notes

• Time allowed: 45 minutes

• 35 total marks				
• Write your name and student number in the space below				
Name:				
Student Number:				

- 1. Short answer questions. Each part is independent of the others.
 - (a) (3 marks) **True** or **False**: If A is diagonalizable, then A^3 is also diagonalizable. Justify your answer.

(b) (3 marks) Let $\lambda_1, \lambda_2 \in \mathbb{R}$ such that $\lambda_1 \neq \lambda_2$, and let $\boldsymbol{v}_1, \boldsymbol{v}_2 \in \mathbb{R}^2$ be linearly independent. How many different 2×2 matrices exist which have eigenvalues λ_1 and λ_2 with corresponding eigenvectors \boldsymbol{v}_1 and \boldsymbol{v}_2 ? Justify your answer.

(c) (3 marks) Find the QR decomposition of A given the thin QR decomposition

$$A = Q_1 R_1 = \begin{bmatrix} 1/\sqrt{2} & -2/3 \\ 0 & 1/3 \\ 1/\sqrt{2} & 2/3 \end{bmatrix} \begin{bmatrix} 2\sqrt{2} & -\sqrt{2} \\ 0 & 3 \end{bmatrix}$$

(d) (3 marks) Suppose A is a 3×3 symmetric matrix with eigenvalues $\lambda_1 = 3$ (multiplicity 2) and $\lambda_2 = -1$. Let $\boldsymbol{v}_1 = (1,2,1)^T$ and $\boldsymbol{v}_2 = (2,3,-1)^T$ be two eigenvectors corresponding to λ_1 . Find an eigenvector \boldsymbol{v}_3 for λ_2 .

2. (6 marks) Find the shortest distance from the point P=(2,-6,-4) to a point on the line given by (x,y,z)=(-4t,5t,-2t).

3. (5 marks) Find the orthogonal projection matrix P that projects a vector in \mathbb{R}^3 onto the plane spanned by the vectors

$$m{u}_1 = egin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} \quad m{u}_2 = egin{bmatrix} 4 \\ 3 \\ 5 \end{bmatrix}.$$

4. (6 marks) Consider the matrix

$$A = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 2 & 2 \\ -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

- (a) (4 marks) Find the singular values of A.
- (b) (2 marks) Compute ||A||.

5. (6 marks) Find the linear function of the form $f(t) = c_0 + c_1 t$ that best fits the data points (-6, 23), (0, -1), (6, -37) using least squares.

 ${\it Extra\ workspace.\ Do\ not\ write\ in\ the\ table\ below.}$

Q1	/12
Q2	/6
Q3	/5
Q4	/6
Q5	/6
Total	/35