

Sales Volume Forecasting

Zachary Corbett Victor Dontsov Sara Parveen Set

- * Improve the inventory planning process for the product distributor
- * Create a model that makes predictions about the sales volume for different product categories

- * Meet customer demand and ensure customer satisfaction
- * Avoid having too much inventory which can lead to unnecessary storage costs, handling costs and cash-flow pressures
- * Avoid stockouts which can result in loss of sales and/ or fines
- * Maintain high profitability

Value of model

- * Product distributor whose data was analyzed
- * All product sales planning, supply chain, and procurement professionals

Target Audience

- * The data used for this project comes in the form of CSV files obtained from the product distributor.
- * The CSVs have 5-years worth of data (2018 to 2022) for Purchase, Sales and Product Details.

Data Source

Data Hosting

- * The raw CSV data files are hosted on an S3 Bucket through Amazon AWS.
- * The database schema was stored in the Databricks File System (DBFS) through a Databricks Community Edition Account. This file system is ultimately hosted on AWS without charges for computing.

Data Cleaning

Database Creation

Data Model Description

SARIMAX Model

- * Time Series Analysis for Sales Volume predictions
- * Trained On 4-years (2018-2021)

* Parameters:

- p order of the autoregressive part
- d degree of first differencing involved
- q order of the moving average part
- P, D, Q all previous characteristics with seasonal factors
- s seasonal length in the data

Time Series Analysis Plots Dickey-Fuller: p=0.11034 3000 2000 1000 18-01 18-11 19-09 20-07 21-05 22-03 Date Autocorrelation Partial Autocorrelation 1.0 1.0 0.5 0.5

0.0

-0.5

-1.0

P-Value > 0.05 implies data is not stationary

-0.5

-1.0

Step 1: Identified the stationarity of the time series

3000

Step 2: Suggested the initial parameters

Applied differencing analysis if needed

(0, 1, 2, 1, 0, 0)

(1, 1, 1, 1, 0, 0)

(2, 1, 0, 0, 0, 1)

699.699439

699.699695

700.852337

Step 3: Generated the final parameters for the model

Selected parameters based on AIC Scores

Step 4: Ran the SARIMAX model

Error Analysis

Product Category	Mean Absolute Percentage Error (Attempt 1)	Mean Absolute Percentage Error (Attempt 2)
All categories	14.09%	12.28%
Anti-Fatigue Mat	39.86%	34.19%
Desk Pad	32.62%	37.37%
Entrance Mat	43.63%	42.40%
Polycarbonate Chair Mat	25.91%	21.24%
Porcelain Whiteboard	42.87%	48.14%
PVC Chair Mat	19.99%	20.31%
Recycled Chair Mat	41.50%	41.50%
Steel Whiteboard	31.49%	34.42%
Tempered Glass Chair Mat	41.95%	46.20%
Tempered Glass Whiteboard	44.48%	47.31%

Attempt to Optimize the Model

Visualizations and Dashboards

* Used Databricks Dashboards

* Created filters in the Databricks Notebooks

Historical Dashboard (2018-2022)

2023 Predictions Dashboard Select Product Category TOTAL + ALL CATEGORIES Predicted Sales Quantities Category Anti-Retigue Mar Dook Pad Entrance Mar PVC Chair Mor Short Whiteboard Margin Error Category Anti-Fatigue Mat Dook Pad Projection Whitestone PVC Chair Mar Recycled Chair Mat Street Military Services Mean Absolute Percentage Error Error vs. AIC Scores (Bubble Size = Predicted Sales Quantity) Category Deal Pad Recycled Chair Mat

Predictions Dashboard (2023)

Limitations and Assumptions

- * ETL was processed in Databricks and it was truncating the data to 10,000 rows.
- * The dashboards in Databricks do not have a default option for adding filters to visualizations.
- * The filters on the Databricks dashboards do not carry over to the HTML file.

Challenges

* Sales predictions show a slight decline in sales in the next year for overall sales but stable sales for some categories.

* Sales predictions are helpful but other models using special dimensions of warehouse, and budget constraints could help make more applicable predictions.

* Margin Error increases for further time period. This make it more appropriate for Just-In-Time distributor.

Conclusions

