### BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

#### -----

## ĐÁP ÁN ĐỀ THI HỌC KỲ 2 NĂM 2016 (ĐỀ SỐ 01)

MÔN THI: LÝ THỦYẾT ĐIỀU KHIỂN TỤ ĐỘNG

Bài 1 (5đ):

## a) (2 điểm)

- i. (1.5 đ) Sử dụng tiêu chuẩn Nyquist để xác định  $k_1$  giúp hệ ổn định:
  - i. (1đ) Xác định đồ thị Nyquist có dạng như sau:



ii. (0.5đ) Sử dụng Nyquist kết luận  $0 < k_1 < 2$ 

#### ii. (0.5 đ)

Do hệ ổn định nên tồn tại giới hạn

$$\lim_{t\to\infty} \left(u\left(t\right) - y\left(t\right)\right) = \lim_{s\to0} s\left(U\left(s\right) - Y\left(s\right)\right) = \lim_{s\to0} sU\left(s\right) \left(1 - \frac{k_2k_1G\left(s\right)}{1 + k_1G\left(s\right)}\right);$$
 Lại có  $u\left(t\right) = 1\left(t\right)$  và  $\lim_{s\to0} G\left(s\right) = +\infty$  nên  $\lim_{t\to\infty} \left(u\left(t\right) - y\left(t\right)\right) = 1 - k_2$ 

Từ đó dẫn đến để sai lệch tĩnh bằng 0 thì  $k_2 = 1$ ;

# b) (1 điểm)

i. (0.5đ) Ta có đa thức đặc tính của hàm truyền hệ kín được xác định như sau:

$$A(s) = T_2^2 s^3 + 2T_2 s^2 + s + k_1 k = 4s^3 + 4s^2 + s + 0.5k_1$$

ii. (0.5đ) Bảng Routh được xác định như sau:

| 4          | 1          |
|------------|------------|
| 4          | $0.5k_{1}$ |
| $4-2k_1$   |            |
| 4          |            |
| $0.5k_{1}$ |            |

và kết luận:  $0 < k_1 < 2$ 

# c) (2 điểm)

i. (1 điểm) Đối tượng có hàm truyền 
$$G(s) = \frac{k}{s(1+T_0s)^2}$$

Áp dụng các công thức của phương pháp tối ưu đối xứng (ứng với a=4):

$$T_I = T_1 + 4T_2, \; k_p = \frac{T_I}{8kT_2^2}, \; T_D = \frac{4T_1T_2}{T_I}, \; T = 4T_2 \; \text{v\'oi} \; \; k = 0.5, \; T_1 = T_2 = 2 \; \; \text{d\~an}$$

đến 
$$T_I = 10, \ k_p = \frac{5}{8}, \ T_D = 1.6, \ T = 8$$

ii. (1 điểm) Độ dự trữ ổn định của hệ kín không phụ thuộc  $R_2(s)$ . Khi đối tượng là tích phân quán tính bậc 2:

$$G(s) = \frac{k}{s(1 + T_1 s)(1 + T_2 s)}$$

thì mục đích của phương pháp tối ưu đối xứng luôn là tạo ra hệ hở có hàm truyền:

$$\begin{split} G_h\left(s\right) &= R_1\left(s\right)G\left(s\right) = k_p\left(1 + \frac{1}{T_Is} + T_Ds\right) \cdot \frac{k}{s(1 + T_1s)(1 + T_2s)} \\ &= \frac{k_p(1 + T_As)(1 + T_Bs)}{T_Is} \cdot \frac{k}{s(1 + T_1s)(1 + T_2s)} = \frac{k_pk(1 + T_Bs)}{T_Is^2(1 + T_2s)} \end{split}$$

nếu chọn  $T_A=T_1$  trong đó  $T_A+T_B=T_I$ ,  $T_AT_B=T_IT_D$ ,  $T_B=4T_2>T_2$ , tức là để hệ hở có đồ thị Bode như ở hình dưới.



Suy ra, tại giao điểm của đồ thị Nyquist  $G_h(j\omega)$  với đường tròn đơn vị có:

$$\omega_c = \frac{1}{\sqrt{T_B T_2}} \, .$$

Áp dụng vào bài toán cụ thể đã cho với  $T_B=8,\ T_1=T_2=2$  được  $\omega_c=\frac{1}{4}$ . Vậy độ dự trữ ổn định  $\Delta \varphi$  của hệ là:

$$\Delta \varphi = -\pi - \varphi_c = -\pi - \mathrm{arc}G_h(j\omega_c) = \arctan(\omega_c T_2) - \arctan(\omega_c T_B)$$

$$\Delta \varphi = \arctan\left(\frac{1}{2}\right) - \arctan(2)$$

Bài 2

a) (2 điểm) Ký hiệu

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix}, \ \underline{b} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \ \underline{c} = \begin{pmatrix} a \\ 0 \\ 1 \end{pmatrix} \Rightarrow \begin{cases} \frac{d\underline{x}}{dt} = A\underline{x} + B\underline{u} \\ y = \underline{c}^T\underline{x} \end{cases}$$

i. (0.5đ)

Đa thức đặc tính của ma trận A sẽ là:

 $\det(sI - A) = (s - 1)(s^2 - 3s + 1)$  có ít nhất 1 nghiệm nằm bên phải trục ảo là 1 nên hệ không ổn định;

ii. **(0.5đ)** Do 
$$\det(\underline{b}, A\underline{b}, A^2\underline{b}) = \det\begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 5 \\ 0 & 1 & 3 \end{pmatrix} = 0 \implies H\hat{e}$$
 **Không điều khiển được**

iii. (1đ) Lại có 
$$N = \begin{pmatrix} \underline{c}^T \\ \underline{c}^T A \\ \underline{c}^T A^2 \end{pmatrix} = \begin{pmatrix} a & 0 & 1 \\ a & 1 & a+1 \\ a & a+3 & 2a+2 \end{pmatrix} \Rightarrow \det(N) = -a(a^2 + a - 1)$$

Để hệ quan sát được thì  $\det(N) \neq 0 \Leftrightarrow \alpha \neq 0; \frac{-1 \pm \sqrt{5}}{2}$ 

## b) (1.5 điểm)

- i. **(0.5đ)** Bộ điều khiển phản hồi trạng thái là  $u = \omega R\underline{x}$  với  $R = \begin{pmatrix} r_1 & r_2 & r_3 \end{pmatrix}$  cần xác định để  $(A \underline{b}R)$  nhận các giá trị riêng là -2;
- ii. (1đ) Tiếp tục viết hệ 3 phương trình với 3 ẩn rồi chứng minh hệ vô nghiệm theo cách:
  - i. Cách 1: Biến đổi hệ phương trình;
  - ii. Cách 2: Nếu có nghiệm thì sẽ là duy nhất nhưng tính theo Ackermann  $R = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} M^{-1} \Phi_R(A)$  không được do không tồn tại ma trận nghịch đảo nên vô nghiệm;
- iii. **Chú ý:** Nếu đi từ nhận xét hệ không diều khiển được (và kết luận luôn) nên không tồn tại bộ điều khiển thì **chỉ cho 1 điểm** vì điều này không hiển nhiên...

## c) (1 điểm)

- i. **(0.5đ)** Khâu quan sát có nhiệm vụ tìm  $\underline{\hat{x}}$  là nghiệm của phương trình vi phân  $\frac{d\underline{\hat{x}}}{dt} = A\underline{\hat{x}} + \underline{b}u + L\left(y \underline{c}^T\underline{\hat{x}}\right).$
- ii. **(0.5 điểm)** Xác định L để  $\left(A L\underline{c}^T\right)$  nhận các giá trị riêng là -2 theo công thức Ackermann:

$$L = \Phi_L(A)N^{-1} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 9 & 37 & 1 \end{bmatrix}^T$$

d) (0.5đ) Do không tồn tại bộ điều khiển nên không có Hàm truyền hệ kín

#### BỘ GIÁO DỤC VÀ ĐÀO TẠO

### TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

# ĐÁP ÁN ĐỀ THI HỌC KỲ 2 NĂM 2016 (ĐỀ SỐ 02)

MÔN THI: LÝ THỦYẾT ĐIỀU KHIỂN TỤ ĐỘNG

Bài 1 (5đ):

## a) (2 điểm)

- i. (1.5 đ) Sử dụng tiêu chuẩn Nyquist để xác định  $k_1$  giúp hệ ổn định:
  - i. (1đ) Xác định đồ thị Nyquist có dạng như sau:



ii. (0.5đ) Sử dụng Nyquist kết luận  $0 < k_1 < 0.2$ 

## ii. (0.5 đ)

Do hệ ổn định nên tồn tại giới hạn

$$\begin{split} & \underset{t \to \infty}{Lim} \left(u\left(t\right) - y\left(t\right)\right) = \underset{s \to 0}{Lim} \, s\left(U\left(s\right) - Y\left(s\right)\right) = \underset{s \to 0}{Lim} \, sU\left(s\right) \left(1 - \frac{k_2 k_1 G\left(s\right)}{1 + k_1 G\left(s\right)}\right); \\ & \text{Lại có } u\left(t\right) = 1\left(t\right) \text{ và } \underset{s \to 0}{Lim} \, G\left(s\right) = +\infty \text{ nên } \underset{t \to \infty}{Lim} \left(u\left(t\right) - y\left(t\right)\right) = 1 - k_2 \end{split}$$

Từ đó dẫn đến để sai lệch tĩnh bằng 0 thì  $k_2 = 1$ ;

# b) (1 điểm)

(0.5đ) Ta có đa thức đặc tính của hàm truyền hệ kín được xác định như sau:

$$A(s) = T_2 s^3 + 2T_2 s^2 + s + k_1 k = s^3 + 2s^2 + s + 10k_1$$

ii. (0.5đ) Bảng Routh được xác định như sau:

| 1           | 1          |
|-------------|------------|
| 2           | $10k_{_1}$ |
| $2-10k_{1}$ |            |
| 2           |            |
| $10k_{_1}$  |            |

và kết luận:  $0 < k_1 < 0.2$ 

# c) (2 điểm)

i. (1 điểm) Đối tượng có hàm truyền 
$$G(s) = \frac{k}{s(1+T_0s)^2}$$

Áp dụng các công thức của phương pháp tối ưu đối xứng (ứng với a=4):

$$T_I = T_1 + 4T_2, \ k_p = \frac{T_I}{8kT_2^2}, \ T_D = \frac{4T_1T_2}{T_I}, \ T = 4T_2 \text{ v\'oi } k = 10, \ T_1 = T_2 = 1 \text{ dẫn}$$

đến 
$$T_I = 5, \ k_p = \frac{1}{16}, \ T_D = 0.8, \ T = 4$$

ii. (1 điểm) Độ dự trữ ổn định của hệ kín không phụ thuộc  $R_2(s)$ . Khi đối tượng là tích phân quán tính bậc 2:

$$G(s) = \frac{k}{s(1 + T_1 s)(1 + T_2 s)}$$

thì mục đích của phương pháp tối ưu đối xứng luôn là tạo ra hệ hở có hàm truyền:

$$\begin{split} G_h\left(s\right) &= R_1\left(s\right)G\left(s\right) = k_p\left(1 + \frac{1}{T_Is} + T_Ds\right) \cdot \frac{k}{s(1 + T_1s)(1 + T_2s)} \\ &= \frac{k_p(1 + T_As)(1 + T_Bs)}{T_Is} \cdot \frac{k}{s(1 + T_1s)(1 + T_2s)} = \frac{k_pk(1 + T_Bs)}{T_Is^2(1 + T_2s)} \end{split}$$

nếu chọn  $T_A=T_1$  trong đó  $T_A+T_B=T_I$ ,  $T_AT_B=T_IT_D$ ,  $T_B=4T_2>T_2$ , tức là để hệ hở có đồ thị Bode như ở hình dưới.



Suy ra, tại giao điểm của đồ thị Nyquist  $G_h(j\omega)$  với đường tròn đơn vị có:

$$\omega_c = \frac{1}{\sqrt{T_B T_2}} \, .$$

Áp dụng vào bài toán cụ thể đã cho với  $T_B=4,\ T_1=T_2=1$  được  $\omega_c=\frac{1}{2}$ . Vậy độ dự trữ ổn định  $\Delta\varphi$  của hệ là:

$$\Delta \varphi = -\pi - \varphi_c = -\pi - \text{arc}G_h(j\omega_c) = \arctan(\omega_c T_2) - \arctan(\omega_c T_B)$$

$$\Delta \varphi = \arctan\left(\frac{1}{2}\right) - \arctan(2)$$

Bài 2

a) (2 điểm) Ký hiệu

$$A = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 2 & 2 \end{pmatrix}, \ \underline{b} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \ \underline{c} = \begin{pmatrix} 1 \\ a \\ 0 \end{pmatrix} \Rightarrow \begin{cases} \frac{d\underline{x}}{dt} = A\underline{x} + B\underline{u} \\ y = \underline{c}^T\underline{x} \end{cases}$$

i. (0.5đ)

Đa thức đặc tính của ma trân A sẽ là:

 $\det(sI - A) = (s - 2)(s^2 - 3s - 2)$  có ít nhất 1 nghiệm nằm bên phải trục ảo là 2 nên hệ không ổn định;

ii. **(0.5đ)** Lại có 
$$Rank(\underline{b}, A\underline{b}, A^2\underline{b}) = Rank\begin{pmatrix} 1 & 3 & 8 \\ 0 & 2 & 6 \\ 1 & 2 & 8 \end{pmatrix} = 3 \Rightarrow$$
 điều khiển được

iii. (1đ) Lại có 
$$N = \begin{pmatrix} \underline{c}^T \\ \underline{c}^T A \\ \underline{c}^T A^2 \end{pmatrix} = \begin{pmatrix} 1 & a & 0 \\ 2 & a & 1+2a \\ 4 & 2+5a & 4+6a \end{pmatrix} \Rightarrow \det(N) = -8a^2 - 9a - 2$$

Để hệ quan sát được thì  $\det(N) \neq 0 \Leftrightarrow \alpha \neq \frac{-9 \pm \sqrt{17}}{16}$ 

b) (1.5 điểm)

i. **(0.5 điểm)** Bộ điều khiển phản hồi trạng thái là  $u = \omega - R\underline{x}$  với  $R = \begin{pmatrix} r_1 & r_2 & r_3 \end{pmatrix}$  cần xác định để  $(A - \underline{b}R)$  nhận các giá trị riêng là -2;

ii. **(1 điểm)** Vận dụng phương pháp Ackermann có được: 
$$R = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} M^{-1} \Phi_R(A) = \begin{bmatrix} -21.33... & 31.1667... & 32.33... \end{bmatrix}$$

c) (1 điểm)

i. **(0.5đ)** Khâu quan sát có nhiệm vụ tìm  $\underline{\hat{x}}$  là nghiệm của phương trình vi phân  $\frac{d\underline{\hat{x}}}{dt} = A\underline{\hat{x}} + \underline{b}u + L\left(y - \underline{c}^T\underline{\hat{x}}\right).$ 

ii. **(0.5 điểm)** Xác định L để  $\left(A-L\underline{c}^T\right)$  nhận các giá trị riêng là -2 theo công thức Ackermann:

$$L = \Phi_L(A)N^{-1} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -3.8947 & 14.8947 & 18.6316 \end{bmatrix}^T$$

d) (0.5đ) Hàm truyền hệ kín có dạng:

i. 
$$G_k(s) = \frac{\det \begin{bmatrix} sI - A & -\underline{b} \\ \underline{c}^T & d \end{bmatrix}}{\det (sI - A + \underline{b}R)} = \frac{s^2 - 7}{\left(s + 2\right)^3}$$