MACHINE LEARNING

Uma introdução prática

7. TensorFlow

Redes neurais artificiais na prática

O que é TensorFlow?

- Biblioteca open source da Google
- Cálculos numéricos computacionais pesados
- Back-end em C/C++
- Front API para Python, JS, Julia*, Go, Swift**, Java
- Baseado em dataflow graphs

Vantagens em relação ao Keras

- Velocidade levemente maior (se você sabe o que está fazendo)
- Mais flexibilidade/controle experimentação
- Funcionalidades operações avançadas
- Filas e threads computação de alto desempenho
- Debugger especializado

Keras: modelos de rápida implementação sem propósito científico/de pesquisa.

Vantagens em relação ao PyTorch

- Comunidade maior
- TensorBoard

Estruturas de dados

- Grafo onde nó representa uma operação computacional a ser feita e os arcos, o fluxo de inputs e outputs
- Tensor estrutura de dados que contém valores primitivos e estão em um array n-dimensional
- Session conexão entre o cliente (Python, aqui) e o runtime (C++). Permite a execução de grafos alocando recursos e mantendo valores de resultados intermediários e variáveis

- Uso comum: primeiro se constrói o grafo, depois o executa através de uma session
- No nosso caso: interactive sessions
- Depois de construir o grafo: loop interno
- Inputs são alimentados através de nodos do tipo "Placeholder"

Main Graph

HANDS ON!

Entendendo TensorFlow e implementando uma rede neural

Grafo sem input

```
[1] import tensorflow as tf

a = tf.constant([3])
b = tf.constant([4])

s = tf.add(a, b)

print(s)
Tensor("Add:0", shape=(1,), dtype=int32)
```

Grafo sem input

```
[4] session = tf.Session()
    resultado = session.run(s)
    print(resultado)
    session.close()
[7]
```

.close() automático

```
[5] with tf.Session() as session:
    resultado = session.run(s)
    print(resultado)
[7]
```

Tensors

```
[6] matriz = tf.constant([[4,1,1],[3,2,2],[1,1,1]])
    with tf.Session() as session:
        resultado = session.run(matriz)
        print(resultado)

C→ [[4 1 1]
        [3 2 2]
        [1 1 1]]
```

Variables

Rodando o grafo

```
[8] # Finalmente podemos iniciar uma session e executar o grafo
with tf.Session() as session:
    session.run(initOp)
    print(session.run(estado))
    for i in range(3):
        session.run(update)
        print(session.run(estado))
```

Placeholders

```
# você precisará de placeholders
# Um placeholder pode ser pensado simplesmente como uma variable
# que não vai de fato receber seu dado até um ponto mais adiante
# Para criar um placeholder, é necessário especificar um tipo de dado
# bem como sua precisão (32 bits, 64 bits, etc)
# Por exemplo
a = tf.placeholder(tf.float32)
b = a^{*}2
# Agora, para rodar o grafo precisamos passar um valor para o placeholder
# Isso é feito através do argumento feed dict, no qual você deve passar
# um dicionário com o nome do placeholder e o dado que ele passará a segurar
with tf.Session() as s:
 resultado = s.run(b, feed dict={a:3.5})
print(resultado)
```

Placeholders

```
[10] # A beleza da coisa é que podemos passar qualquer tipo de tensor como
     # input para o placeholder e a operação será executada
     dicio = {a: [
         [2,3,4,5],
         [1,1,1,1],
         [3.2,4.5,1.4,2],
         [5,5,5,5]
     11
     with tf.Session() as s:
       resultado = s.run(b, feed dict=dicio)
     print(resultado)
    [[ 4. 6. 8. 10. ]
 Гэ
      [6.4 9. 2.8 4.]
      [10. 10. 10. 10. ]]
```

Name	Plot	Equation	Derivative	
Identity		f(x) = x	f'(x) = 1	
Binary step		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x \neq 0 \\ ? & \text{for } x = 0 \end{cases}$	
Logistic (a.k.a Soft step)		$f(x) = \frac{1}{1 + e^{-x}}$	f'(x) = f(x)(1 - f(x))	
TanH		$f(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1$	$f'(x) = 1 - f(x)^2$	
ArcTan		$f(x) = \tan^{-1}(x)$	$f'(x) = \frac{1}{x^2 + 1}$	
Rectified Linear Unit (ReLU)		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$	
Parameteric Rectified Linear Unit (PReLU) ^[2]		$f(x) = \begin{cases} \alpha x & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$	
Exponential Linear Unit (ELU) ^[3]		$f(x) = \begin{cases} \alpha(e^x - 1) & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} f(x) + \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$	
SoftPlus		$f(x) = \log_e(1 + e^x)$	$f'(x) = \frac{1}{1 + e^{-x}}$	

8. PyTorch

Redes neurais artificiais na prática

O que é PyTorch?

- Biblioteca open source desenvolvida pelo Facebook
- Python e C++
- Também baseada em datalfow graphs

Diferenças do TensorFlow

- Modelos podem ser definidos dinamicamente
- Mais indicado para fins de pesquisa em que não há intenção de desenvolver para produção
- Pythonico curva de aprendizado menor

Carregando dados

```
#importações necessárias
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
# tamanho do pacote de dados que será carregado para a rede de uma vez
BATCH SIZE = 32
# função que serausada para transformar os dados em tensors
transform = transforms.Compose(
    [transforms.ToTensor()])
# download do dataset de treino (e transformação em tensors)
trainset = torchvision.datasets.MNIST(root='./data', train=True,
                                        download=True, transform=transform)
# estrutura do pytorch que facilita carregar os dados para a rede neural em batches
# mais tarde usada como iterador
trainloader = torch.utils.data.DataLoader(trainset, batch size=BATCH SIZE,
                                          shuffle=True, num workers=2)
# download, transformação em tensor e criação do dataloader do dataset de teste
testset = torchvision.datasets.MNIST(root='./data', train=False,
                                       download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch size=BATCH SIZE,
                                         shuffle=False, num workers=2)
```

Definição da rede

```
class Net(nn.Module):
   def init (self):
       super(Net, self). init ()
       #laver 0: 28x28 -> 500
       self.d0 = nn.Linear(784, 500)
       #layer 1: 500 -> 256
       self.d1 = nn.Linear(500, 256)
       #layer 2 (output): 256 -> 10
       self.d2 = nn.Linear(256, 10)
   def forward(self, x):
       #funçã que define como será o feedforward, não é chamada diretamente
       x = x.flatten(start dim = 1)
       #input passa pelo primeiro layer
       x = self.d0(x)
       x = F.relu(x) #função de ativação
       #input passa pelo segundo layer
       x = self.dl(x)
       x = F.relu(x)
       #layer de output
        logits = self.d2(x)
       out = F.softmax(logits, dim=1) #usando a função de ativação softmax
        return out
```

Definições

```
learning rate = 0.001
num epochs = 5
#define se as operacoes serao executadas pela cpu ou gpu
device = torch.device("cuda:0" if torch.cuda.is available() else "cpu")
#instancia o modelo
model = Net()
model = model.to(device)
# função de erro
criterion = nn.CrossEntropyLoss()
# define o otimizador
optimizer = torch.optim.Adam(model.parameters(), lr=learning rate)
# computa a acuracia
def get accuracy(logit, target, batch size):
        Obtain accuracy for training round '''
    corrects = (torch.max(logit, 1)[1].view(target.size()).data == target.data).sum()
    accuracy = 100.0 * corrects/batch size
    return accuracy.item()
```

Usando o modelo e realizando o backpropagation

```
for epoch in range(num epochs):
   train running loss = 0.0
   train acc = 0.0
   model = model.train()
   #define que a modelo está em modo treinamento
   ## training step
   for i, (images, labels) in enumerate(trainloader):
       #manda ou para a cpu ou gpu
       images = images.to(device)
       labels = labels.to(device)
       #carrega o batch para a rede e recebe o output
       logits = model(images)
       #computa o erro
       loss = criterion(logits, labels)
       #realiza o backpropagation
       optimizer.zero grad()
       loss.backward()
       # update dos parametros
       optimizer.step()
       # computa a loss e a acuracia
       train running loss += loss.detach().item()
       train acc += get accuracy(logits, labels, BATCH SIZE)
   #define que o modelo está no modo evaluation
   model.eval()
   print('Epoch: %d | Loss: %.4f | Train Accuracy: %.2f' \
         %(epoch, train running loss / i, train acc/i))
```

9. Overfitting

Como detectar e evitar

Exemplo em problemas de regressão

Underfitted Good Fit/Robust Overfitted

Técnicas para evitar o overfitting

- Diminuição da complexidade do modelo
- Dropout (para ANNs)
- Early Stopping
- Feature Selection

k-Fold Cross-Validation

A validação cruzada é principalmente utilizada para:

- Estimar um bom número de epochs para o early stopping
- Avaliar a efetividade de certos hiperparâmetros
 - Funções de ativação
 - Número de neurônios
 - Número de camadas, etc
- Avaliar modelo de maneira mais confiável

Como funciona (treino, validação, teste)

E após os k resultados?

- Pegar o modelo com melhor score (caso o treino considerou diferentes modelos)
- Analisar presença de outliers
- Analisar performance média de um mesmo modelo sob a perturbação de dados
- Juntar diferentes modelos treinados num ensemble

HANDS ON!

Implementação da validação cruzada

10. Métricas de classificação

Utilizando métricas mais informativas

Imaginemos um modelo para detecção de doenças

- Label 0: paciente saudável
- Label 1: paciente doente
- Só accuracy é o suficiente para avaliarmos a performance do modelo?
- Quais as consequências de classificar um paciente doente como saudável?

Confusion Matrix

n=165	Predicted: NO	Predicted: YES	
Actual: NO	TN = 50	FP = 10	60
Actual: YES	FN = 5	TP = 100	105
	55	110	

A partir da confusion matrix

- Sensitivity (mesmo que Recall): fração de pessoas com a doença que tiveram o resultado positivo (segundo o modelo)
- Precision: fração de pessoas com resultado positivo (segundo o modelo) que realmente têm a doença
- 1-Specifity: fração de pessoas sem a doença cujo resultado deu positivo (segundo o modelo)

Fórmulas

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

$$F1 = 2 \cdot \frac{precision \cdot recall}{precision + recall}$$

$$Specificity = \frac{IN}{TN + FP}$$

$$Specificity = \frac{TN}{TN + FP} \qquad 1 - Specificity = \frac{FP}{TN + FP}$$

TP = True positive

TN = True negative

FP = False positive

FN = False negative

ROC e AUC

- Curva ROC: Um plot de sensitivity (eixo y) por 1-specificity (eixo x)
- AUC: área abaixo da curva ROC (útil para comparação entre curvas ROC)
- Quanto maior a AUC, melhor a performance do modelo

HANDS ON!

Demo de ROC/AUC em um dataset de pacientes com câncer de mama

11. Projetos de implementação

Dois projetos para exercitar os conceitos aprendidos

from sklearn import datasets as ds

PREDIÇÃO DE CÂNCER DE MAMA

x, y = ds.load_breast_cancer(return_X_y=True)

informações sobre o dataset:

https://scikit-learn.org/stable/datasets/index.html#breast-cancer-dataset

PREDIÇÃO DE PREÇOS DE IMÓVEIS EM BOSTON

x2, y2 = ds.load_boston(return_X_y=True)

informações sobre o dataset:

https://scikit-learn.org/stable/datasets/index.html#boston-dataset

12. What's next?

O que estudar daqui pra frente?

- Aprofundamento teórico em MLPs (como o gradiente é calculado?)
- Convolution neural networks
- Outros algoritmos de machine learning, como SVM,
 Decision Trees/Random Forests, Naive Bayes
- Regressão
- Métodos para evitar overfitting
- Aprendizado não-supervisionado: k-means, k-neararest neighbors
- Seleção de atributos (feature selection)
- Ensemble Classifiers
- Reinforcement learning

3blue1brown

- DeepLearning.ai
- TensorFlow in practice

Towards Data Science

Towards
Data Science

Agradecimentos

- Especialmente à nossa mentora, Rosália
 Schneider
- Às professoras Érika Cota, Mariana Recamonde Mendoza e Renata Galante
- Grant Sanderson do canal 3blue1brown, pelas maravilhosas animações open source
- Ao Clebinho, pelas discussões e opiniões