Generated on 2023-07-10 01:36:24 by gEcon version 1.2.2 (2023-07-10)

Model name: SW_03

1 CONSUMER

1.1 Optimisation problem

$$\max_{C_t, K_t, I_t, B_t, z_t} U_t = \beta E_t \left[U_{t+1} \right] + \epsilon_t^{b} \left((1 - \sigma^c)^{-1} \left(C_t - H_t \right)^{1 - \sigma^c} - \omega \epsilon_t^{L} \left(1 + \sigma^l \right)^{-1} L_t^{s1 + \sigma^l} \right)$$
(1.1)

s.t. :

$$C_t + I_t + B_t R_t^{-1} = D \dot{w}_t - T_t + B_{t-1} \pi_t^{-1} + L_t W_t + K_{t-1} r_t^k z_t - \psi^{-1} r_{ss}^k K_{t-1} \left(-1 + e^{\psi(-1+z_t)} \right) \quad (\lambda_t)$$

$$(1.2)$$

$$K_{t} = K_{t-1} (1 - \tau) + I_{t} \left(1 - 0.5 \varphi \left(-1 + I_{t-1}^{-1} \epsilon_{t}^{I} I_{t} \right)^{2} \right) \quad (q_{t})$$

$$(1.3)$$

1.2 Identities

$$H_t = hC_{t-1} \tag{1.4}$$

$$Q_t = \lambda_t^{-1} q_t \tag{1.5}$$

1.3 First order conditions

$$-\lambda_t + \epsilon_t^{\mathrm{b}} (C_t - H_t)^{-\sigma^{\mathrm{c}}} = 0 \quad (C_t)$$

$$\tag{1.6}$$

$$-q_t + \beta \left((1 - \tau) \operatorname{E}_t \left[q_{t+1} \right] + \operatorname{E}_t \left[\lambda_{t+1} \left(r_{t+1}^{k} z_{t+1} - \psi^{-1} r_{ss}^{k} \left(-1 + e^{\psi(-1 + z_{t+1})} \right) \right) \right] \right) = 0 \quad (K_t)$$

$$-\lambda_{t} + q_{t} \left(1 - 0.5\varphi \left(-1 + I_{t-1}^{-1} \epsilon_{t}^{I} I_{t}\right)^{2} - \varphi I_{t-1}^{-1} \epsilon_{t}^{I} I_{t} \left(-1 + I_{t-1}^{-1} \epsilon_{t}^{I} I_{t}\right)\right) + \beta \varphi I_{t}^{-2} \mathcal{E}_{t} \left[\epsilon_{t+1}^{I} q_{t+1} I_{t+1}^{2} \left(-1 + I_{t}^{-1} \epsilon_{t+1}^{I} I_{t+1}\right)\right] = 0 \quad (I_{t})$$

$$(1.8)$$

$$\beta E_t \left[\lambda_{t+1} \pi_{t+1}^{-1} \right] - \lambda_t R_t^{-1} = 0 \quad (B_t)$$
(1.9)

$$\lambda_t \left(K_{t-1} r_t^k - r_{ss}^k K_{t-1} e^{\psi(-1+z_t)} \right) = 0 \quad (z_t)$$
(1.10)

2 PREFERENCE SHOCKS

$$\log \epsilon_t^{\rm b} = \eta_t^{\rm b} + \rho^{\rm b} \log \epsilon_{t-1}^{\rm b} \tag{2.1}$$

$$\log \epsilon_t^{\mathcal{L}} = -\eta_t^{\mathcal{L}} + \rho^{\mathcal{L}} \log \epsilon_{t-1}^{\mathcal{L}} \tag{2.2}$$

3 INVESTMENT COST SHOCKS

3.1 Identities

$$\log \epsilon_t^{\mathrm{I}} = \eta_t^{\mathrm{I}} + \rho^{\mathrm{I}} \log \epsilon_{t-1}^{\mathrm{I}} \tag{3.1}$$

4 WAGE SETTING PROBLEM

4.1 Identities

$$f_t^1 = \beta \xi^{\mathbf{w}} \mathbf{E}_t \left[f_{t+1}^1 \left(w_t^{\star - 1} w_{t+1}^{\star} \right)^{\lambda^{\mathbf{w} - 1}} \left(\pi_{t+1}^{-1} \pi_t^{\gamma^{\mathbf{w}}} \right)^{-\lambda^{\mathbf{w} - 1}} \right] + \lambda_t w_t^{\star} L_t \left(1 + \lambda^{\mathbf{w}} \right)^{-1} \pi_t^{\star^{\mathbf{w}} - \lambda^{\mathbf{w} - 1} (1 + \lambda^{\mathbf{w}})}$$

$$(4.1)$$

$$f_t^2 = \beta \xi^{\mathbf{w}} \mathbf{E}_t \left[f_{t+1}^2 \left(w_t^{\star - 1} w_{t+1}^{\star} \right)^{\lambda^{\mathbf{w} - 1} (1 + \lambda^{\mathbf{w}}) \left(1 + \sigma^1 \right)} \left(\pi_{t+1}^{- 1} \pi_t^{\gamma^{\mathbf{w}}} \right)^{-\lambda^{\mathbf{w} - 1} (1 + \lambda^{\mathbf{w}}) \left(1 + \sigma^1 \right)} \right] + \omega \epsilon_t^{\mathbf{b}} \epsilon_t^{\mathbf{L}} \left(L_t \pi_t^{\star^{\mathbf{w}} - \lambda^{\mathbf{w} - 1} (1 + \lambda^{\mathbf{w}})} \right)^{1 + \sigma^1}$$
(4.2)

$$f_t^1 = \eta_t^{\mathbf{w}} + f_t^2 \tag{4.3}$$

$$\pi_t^{\star^{\mathbf{w}}} = w_t^{\star} W_t^{-1} \tag{4.4}$$

5 WAGE EVOLUTION

5.1 Identities

$$1 = (1 - \xi^{\mathbf{w}}) \pi_t^{\star^{\mathbf{w} - \lambda^{\mathbf{w} - 1}}} + \xi^{\mathbf{w}} (W_{t-1} W_t^{-1})^{-\lambda^{\mathbf{w} - 1}} (\pi_t^{-1} \pi_{t-1} \gamma^{\mathbf{w}})^{-\lambda^{\mathbf{w} - 1}}$$

$$(5.1)$$

6 LABOUR AGGREGATION

$$\nu_t^{\mathbf{w}} = (1 - \xi^{\mathbf{w}}) \pi_t^{\star^{\mathbf{w}} - \lambda^{\mathbf{w}^{-1}}(1 + \lambda^{\mathbf{w}})} + \xi^{\mathbf{w}} \nu_{t-1}^{\mathbf{w}} \left(W_{t-1} \pi_t^{-1} W_t^{-1} \pi_{t-1} \gamma^{\mathbf{w}} \right)^{-\lambda^{\mathbf{w}^{-1}}(1 + \lambda^{\mathbf{w}})}$$

$$(6.1)$$

$$L_t = \nu_t^{\mathrm{w}^{-1}} L_t^{\mathrm{s}} \tag{6.2}$$

7 CONSUMER FLEXIBLE

7.1 Optimisation problem

$$\max_{C_t^f, K_t^f, I_t^f, B_t^f, z_t^f, L_t^{s^f}} U_t^f = \beta E_t \left[U_{t+1}^f \right] + \epsilon_t^b \left((1 - \sigma^c)^{-1} \left(C_t^f - H_t^f \right)^{1 - \sigma^c} - \omega \epsilon_t^L \left(1 + \sigma^l \right)^{-1} L_t^{s^f} \right)$$
(7.1)

s.t.:

$$C_t^{f} + I_t^{f} + B_t^{f} R_t^{f-1} = B_{t-1}^{f} + D \dot{w}_t^{f} + \Pi_t^{\text{ws}^f} - T_t^{f} + L_t^{\text{s}^f} W_t^{\text{disutil}^f} + K_{t-1}^{f} r_t^{\text{k}^f} z_t^{f} - \psi^{-1} r_{\text{ss}}^{\text{k}^f} K_{t-1}^{f} \left(-1 + e^{\psi \left(-1 + z_t^f \right)} \right) \quad \left(\lambda_t^f \right)$$
(7.2)

$$K_t^{f} = K_{t-1}^{f} (1 - \tau) + I_t^{f} \left(1 - 0.5\varphi \left(-1 + I_{t-1}^{f-1} \epsilon_t^{I} I_t^{f} \right)^2 \right) \quad (q_t^{f})$$

$$(7.3)$$

7.2 Identities

$$H_t^{\mathbf{f}} = hC_{t-1}^{\mathbf{f}} \tag{7.4}$$

$$Q_t^{\mathbf{f}} = \lambda_t^{\mathbf{f}^{-1}} q_t^{\mathbf{f}} \tag{7.5}$$

7.3 First order conditions

$$-\lambda_t^{\mathrm{f}} + \epsilon_t^{\mathrm{b}} \left(C_t^{\mathrm{f}} - H_t^{\mathrm{f}} \right)^{-\sigma^c} = 0 \quad \left(C_t^{\mathrm{f}} \right) \tag{7.6}$$

$$-q_{t}^{f} + \beta \left((1 - \tau) E_{t} \left[q_{t+1}^{f} \right] + E_{t} \left[\lambda_{t+1}^{f} \left(r_{t+1}^{k^{f}} z_{t+1}^{f} - \psi^{-1} r_{ss}^{k^{f}} \left(-1 + e^{\psi \left(-1 + z_{t+1}^{f} \right)} \right) \right) \right] \right) = 0 \quad (K_{t}^{f})$$

$$(7.7)$$

$$-\lambda_{t}^{f} + q_{t}^{f} \left(1 - 0.5\varphi \left(-1 + I_{t-1}^{f}^{-1} \epsilon_{t}^{I} I_{t}^{f} \right)^{2} - \varphi I_{t-1}^{f}^{-1} \epsilon_{t}^{I} I_{t}^{f} \left(-1 + I_{t-1}^{f}^{-1} \epsilon_{t}^{I} I_{t}^{f} \right) \right) + \beta \varphi I_{t}^{f-2} E_{t} \left[\epsilon_{t+1}^{I} q_{t+1}^{f} I_{t+1}^{f}^{2} \left(-1 + I_{t}^{f-1} \epsilon_{t+1}^{I} I_{t+1}^{f} \right) \right] = 0 \quad \left(I_{t}^{f} \right)$$

$$(7.8)$$

$$\beta \mathbf{E}_t \left[\lambda_{t+1}^{\mathbf{f}} \right] - \lambda_t^{\mathbf{f}} R_t^{\mathbf{f}^{-1}} = 0 \quad \left(B_t^{\mathbf{f}} \right) \tag{7.9}$$

$$\lambda_t^{f} \left(K_{t-1}^{f} r_t^{k^f} - r_{ss}^{k^f} K_{t-1}^{f} e^{\psi(-1+z_t^f)} \right) = 0 \quad (z_t^f)$$
 (7.10)

$$\lambda_t^{\mathbf{f}} W_t^{\mathbf{disutil}^{\mathbf{f}}} - \omega \epsilon_t^{\mathbf{b}} \epsilon_t^{\mathbf{L}} L_t^{\mathbf{s}^{\mathbf{f}} \sigma^{\mathbf{l}}} = 0 \quad \left(L_t^{\mathbf{s}^{\mathbf{f}}} \right)$$
 (7.11)

8 FLEXIBLE MONOPOLISTIC WORKER

8.1 Optimisation problem

$$\max_{W_t^{i}, L_t^{i^{*^{t}}}} \Pi_t^{\text{ws}^{f}} = L_t^{i^{*^{f}}} \left(-W_t^{\text{disutil}^{f}} + W_t^{i^{f}} \right)$$
(8.1)

s.t.

$$L_t^{i^{\star^f}} = L_t^f \left(W_t^{i^f} W_t^{f^{-1}} \right)^{\lambda^{w^{-1}} (-1 - \lambda^w)} \quad \left(\lambda_t^{\text{FLEXIBLE}^{\text{MONOPOLISTICWORKER}^1}} \right)$$
(8.2)

8.2 Identities

$$L_t^{i^{\star^f}} = L_t^{i^f} \tag{8.3}$$

8.3 First order conditions

$$L_t^{\mathbf{i}^{\star^{\mathrm{f}}}} + \lambda^{\mathrm{w}-1} \lambda_t^{\mathrm{FLEXIBLE^{MONOPOLISTIC WORKER^{1}}} L_t^{\mathrm{f}} W_t^{\mathrm{f}^{-1}} \left(-1 - \lambda^{\mathrm{w}}\right) \left(W_t^{\mathbf{i}^{\mathrm{f}}} W_t^{\mathrm{f}^{-1}}\right)^{-1 + \lambda^{\mathrm{w}-1} \left(-1 - \lambda^{\mathrm{w}}\right)} = 0 \quad \left(W_t^{\mathbf{i}^{\mathrm{f}}}\right)$$

$$(8.4)$$

$$-\lambda_t^{\text{FLEXIBLE}^{\text{MONOPOLISTIC}^{\text{WORKER}^1}} - W_t^{\text{disutil}^f} + W_t^{\text{i}^f} = 0 \quad \left(L_t^{\text{i}^{\star^f}}\right)$$
(8.5)

8.4 First order conditions after reduction

$$L_t^{i^{*f}} + \lambda^{w-1} L_t^f W_t^{f-1} \left(-1 - \lambda^w \right) \left(-W_t^{\text{disutil}^f} + W_t^{i^f} \right) \left(W_t^{i^f} W_t^{f-1} \right)^{-1 + \lambda^{w-1} \left(-1 - \lambda^w \right)} = 0 \quad \left(W_t^{i^f} \right)$$
(8.6)

9 LABOUR AGGREGATION FLEXIBLE

$$L_t^{\mathrm{s}^{\mathrm{f}}} = L_t^{\mathrm{i}^{\mathrm{f}}} \tag{9.1}$$

$$L_t^{\mathbf{f}} = L_t^{\mathbf{s}^{\mathbf{f}}} \tag{9.2}$$

10 FIRM

10.1 Optimisation problem

$$\max_{K_t^{jd}, L_t^{jd}} t c_t^{j} = -r_t^{k} K_t^{j^d} - L_t^{j^d} W_t$$
(10.1)

s.t.

$$Y_t^{\mathbf{j}} = -\Phi + \epsilon_t^{\mathbf{a}} K_t^{\mathbf{j}^{\mathbf{d}} \alpha} L_t^{\mathbf{j}^{\mathbf{d}} 1 - \alpha} \quad (mc_t)$$

$$(10.2)$$

10.2 First order conditions

$$-r_t^{\mathbf{k}} + \alpha \epsilon_t^{\mathbf{a}} m c_t K_t^{\mathbf{j}^{\mathbf{d}} - 1 + \alpha} L_t^{\mathbf{j}^{\mathbf{d}} - 1 - \alpha} = 0 \quad \left(K_t^{\mathbf{j}^{\mathbf{d}}} \right)$$

$$(10.3)$$

$$-W_t + \epsilon_t^{\mathbf{a}} m c_t \left(1 - \alpha\right) K_t^{\mathbf{j}^{\mathbf{d}} \alpha} L_t^{\mathbf{j}^{\mathbf{d}} - \alpha} = 0 \quad \left(L_t^{\mathbf{j}^{\mathbf{d}}}\right)$$

$$\tag{10.4}$$

11 TECHNOLOGY

σ 11.1 Identities

$$\log \epsilon_t^{\mathbf{a}} = \eta_t^{\mathbf{a}} + \rho^{\mathbf{a}} \log \epsilon_{t-1}^{\mathbf{a}} \tag{11.1}$$

12 PRICE SETTING PROBLEM

12.1 Identities

$$g_t^1 = \eta_t^P + g_t^2 (1 + \lambda^P)$$
 (12.1)

$$g_t^1 = \lambda_t \pi_t^* Y_t + \beta \xi^{\mathrm{p}} \pi_t^* \mathcal{E}_t \left[g_{t+1}^1 \pi_{t+1}^{*-1} \left(\pi_{t+1}^{-1} \pi_t^{\gamma^{\mathrm{p}}} \right)^{-\lambda^{\mathrm{p}-1}} \right]$$
 (12.2)

$$g_t^2 = \beta \xi^{p} E_t \left[g_{t+1}^2 \left(\pi_{t+1}^{-1} \pi_t^{\gamma^{p}} \right)^{-\lambda^{p-1} (1+\lambda^{p})} \right] + \lambda_t m c_t Y_t$$
(12.3)

13 PRICE EVOLUTION

$$1 = \xi^{p} \left(\pi_{t}^{-1} \pi_{t-1} \gamma^{p} \right)^{-\lambda^{p-1}} + (1 - \xi^{p}) \pi_{t}^{\star - \lambda^{p-1}}$$
(13.1)

14 FACTOR DEMAND AGGREGATION

14.1 Identities

$$K_t^{\mathbf{d}} = K_t^{\mathbf{j}^{\mathbf{d}}} \tag{14.1}$$

$$L_t^{\mathbf{d}} = L_t^{\mathbf{j}^{\mathbf{d}}} \tag{14.2}$$

15 PRODUCT AGGREGATION

15.1 Identities

$$Y_t^{\mathbf{s}} = Y_t^{\mathbf{j}} \tag{15.1}$$

$$\nu_t^{\mathrm{p}} = (1 - \xi^{\mathrm{p}}) \, \pi_t^{\star - \lambda^{\mathrm{p} - 1}(1 + \lambda^{\mathrm{p}})} + \xi^{\mathrm{p}} \nu_{t-1}^{\mathrm{p}} \left(\pi_t^{-1} \pi_{t-1} \gamma^{\mathrm{p}} \right)^{-\lambda^{\mathrm{p} - 1}(1 + \lambda^{\mathrm{p}})}$$
(15.2)

$$\nu_t^{\mathrm{p}} Y_t = Y_t^{\mathrm{s}} \tag{15.3}$$

16 FIRM FLEXIBLE

16.1 Optimisation problem

$$\max_{K_t^{jdf}, L_t^{jdf}} t c_t^{jf} = -r_t^{kf} K_t^{jdf} - L_t^{jdf} W_t^f$$
(16.1)

s t

$$Y_t^{jf} = -\Phi + \epsilon_t^{a} K_t^{j^{df} \alpha} L_t^{j^{df} 1 - \alpha} \qquad (mc_t^f)$$

$$(16.2)$$

16.2 First order conditions

$$-r_t^{\mathbf{k}^{\mathbf{f}}} + \alpha \epsilon_t^{\mathbf{a}} m c_t^{\mathbf{f}} K_t^{\mathbf{j}^{\mathbf{d}^{\mathbf{f}}} - 1 + \alpha} L_t^{\mathbf{j}^{\mathbf{d}^{\mathbf{f}}} 1 - \alpha} = 0 \quad \left(K_t^{\mathbf{j}^{\mathbf{d}^{\mathbf{f}}}} \right)$$

$$(16.3)$$

$$-W_t^{\mathrm{f}} + \epsilon_t^{\mathrm{a}} m c_t^{\mathrm{f}} \left(1 - \alpha\right) K_t^{\mathrm{j}^{\mathrm{d}^{\mathrm{f}}}} L_t^{\mathrm{j}^{\mathrm{d}^{\mathrm{f}}} - \alpha} = 0 \quad \left(L_t^{\mathrm{j}^{\mathrm{d}^{\mathrm{f}}}}\right)$$

$$(16.4)$$

17 PRICE SETTING PROBLEM FLEXIBLE

17.1 Optimisation problem

$$\max_{Y_t^{\text{f}}, p_t^{\text{jf}}} \Pi_t^{\text{ps}^{\text{f}}} = Y_t^{\text{j}^{\text{f}}} \left(-mc_t^{\text{f}} + P_t^{\text{j}^{\text{f}}} \right) \tag{17.1}$$

s.t.

$$Y_t^{\text{jf}} = Y_t^{\text{f}} \left(P_t^{\text{f}-1} P_t^{\text{jf}} \right)^{-\lambda^{\text{p}-1}(1+\lambda^{\text{p}})} \quad \left(\lambda_t^{\text{PRICE}^{\text{SETTING}^{\text{PROBLEM}^{\text{FLEXIBLE}^1}}} \right)$$
(17.2)

17.2 First order conditions

$$-\lambda_t^{\text{PRICE}^{\text{SETTINGPROBLEMFLEXIBLE}^1}} - mc_t^{\text{f}} + P_t^{\text{jf}} = 0 \quad \left(Y_t^{\text{jf}}\right)$$
(17.3)

$$Y_t^{\mathbf{j}^{\mathbf{f}}} - \lambda^{\mathbf{p}-1} \lambda_t^{\mathbf{PRICE}^{\mathbf{SETTING}^{\mathbf{PROBLEM}^{\mathbf{FLEXIBLE}^1}}} P_t^{\mathbf{f}-1} Y_t^{\mathbf{f}} \left(1 + \lambda^{\mathbf{p}}\right) \left(P_t^{\mathbf{f}-1} P_t^{\mathbf{j}^{\mathbf{f}}}\right)^{-1 - \lambda^{\mathbf{p}-1} (1 + \lambda^{\mathbf{p}})} = 0 \quad \left(P_t^{\mathbf{j}^{\mathbf{f}}}\right)$$

$$(17.4)$$

17.3 First order conditions after reduction

$$Y_t^{j^f} - \lambda^{p-1} P_t^{f-1} Y_t^f (1 + \lambda^p) \left(-mc_t^f + P_t^{j^f} \right) \left(P_t^{f-1} P_t^{j^f} \right)^{-1 - \lambda^{p-1} (1 + \lambda^p)} = 0 \quad \left(P_t^{j^f} \right)$$
(17.5)

18 FACTOR DEMAND AGGREGATION FLEXIBLE

18.1 Identities

$$K_t^{\mathbf{d}^{\mathbf{f}}} = K_t^{\mathbf{j}^{\mathbf{d}^{\mathbf{f}}}} \tag{18.1}$$

$$L_t^{\mathbf{d^f}} = L_t^{\mathbf{j^{\mathbf{d^f}}}} \tag{18.2}$$

19 PRODUCT AGGREGATION FLEXIBLE

$$Y_t^{\mathrm{s}^{\mathrm{f}}} = Y_t^{\mathrm{j}^{\mathrm{f}}} \tag{19.1}$$

$$Y_t^{\mathbf{f}} = Y_t^{\mathbf{s}^{\mathbf{f}}} \tag{19.2}$$

20 PRICE EVOLUTION FLEXIBLE

20.1 Identities

$$P_t^{\mathbf{f}} = 1 \tag{20.1}$$

21 GOVERNMENT

21.1 Identities

$$G_t = G^{\text{bar}} \epsilon_t^{G} \tag{21.1}$$

$$G_t + B_{t-1}\pi_t^{-1} = T_t + B_t R_t^{-1}$$
(21.2)

22 GOVERNMENT SPENDING SHOCK

22.1 Identities

$$\log \epsilon_t^{G} = \eta_t^{G} + \rho^{G} \log \epsilon_{t-1}^{G} \tag{22.1}$$

23 GOVERNMENT FLEXIBLE

23.1 Identities

$$G_t^{\rm f} = G^{\rm bar} \epsilon_t^{\rm G} \tag{23.1}$$

$$B_{t-1}^{f} + G_{t}^{f} = T_{t}^{f} + B_{t}^{f} R_{t}^{f-1}$$
(23.2)

24 MONETARY POLICY AUTHORITY

$$abbr^{\pi} + \log\left(R_{ss}^{-1}R_{t}\right) = \eta_{t}^{R} + r^{\Delta^{\pi}}\left(-\log\left(\pi_{ss}^{-1}\pi_{t-1}\right) + \log\left(\pi_{ss}^{-1}\pi_{t}\right)\right) + r^{\Delta^{y}}\left(-\log\left(Y_{ss}^{-1}Y_{t-1}\right) + \log\left(Y_{ss}^{-1}Y_{t}\right)\right) + \log\left(Y_{ss}^{-1}Y_{t-1}^{f}\right) - \log\left(Y_{ss}^{f-1}Y_{t}^{f}\right)\right) + \rho\log\left(R_{ss}^{-1}R_{t-1}\right) + (1-\rho)\left(\log\left(X_{ss}^{f-1}X_{t-1}\right) + \log\left(X_{ss}^{f-1}X_{t-1}\right)\right) + \rho\log\left(X_{ss}^{f-1}X_{t-1}\right) + \log\left(X_{ss}^{f-1}X_{t-1}\right) + \log\left(X_{ss}^{f-1}X$$

$$\log \pi_t^{\text{obj}} = \eta_t^{\pi} + \rho^{\pi^{\text{bar}}} \log \pi_{t-1}^{\text{obj}} + \log \omega k h r^{\pi^{\text{obj}}} \left(1 - \rho^{\pi^{\text{bar}}} \right) \tag{24.2}$$

25 EQUILIBRIUM

25.1 Identities

$$K_t^{\mathbf{d}} = K_{t-1} z_t \tag{25.1}$$

$$L_t = L_t^{\mathrm{d}} \tag{25.2}$$

$$B_t = 0 (25.3)$$

$$D\dot{w}_t = Y_t - L_t^{\mathrm{d}} W_t - r_t^{\mathrm{k}} K_t^{\mathrm{d}} \tag{25.4}$$

26 EQUILIBRIUM FLEXIBLE

26.1 Identities

$$K_t^{\mathrm{df}} = K_{t-1}^{\mathrm{f}} z_t^{\mathrm{f}} \tag{26.1}$$

$$L_t^{\mathbf{f}} = L_t^{\mathbf{d}^{\mathbf{f}}} \tag{26.2}$$

$$B_t^{\mathbf{f}} = 0 \tag{26.3}$$

$$D\dot{w}_{t}^{f} = Y_{t}^{f} - L_{t}^{d^{f}} W_{t}^{f} - r_{t}^{k^{f}} K_{t}^{d^{f}}$$
(26.4)

27 Equilibrium relationships (after reduction)

$$-q_{t} + \beta \left((1 - \tau) \operatorname{E}_{t} \left[q_{t+1} \right] + \operatorname{E}_{t} \left[\epsilon_{t+1}^{b} \left(r_{t+1}^{k} z_{t+1} - \psi^{-1} r_{ss}^{k} \left(-1 + e^{\psi(-1 + z_{t+1})} \right) \right) \left(C_{t+1} - hC_{t} \right)^{-\sigma^{c}} \right] \right) = 0$$

$$(27.1)$$

$$-q_{t}^{f} + \beta \left((1 - \tau) E_{t} \left[q_{t+1}^{f} \right] + E_{t} \left[e_{t+1}^{b} \left(r_{t+1}^{k^{f}} z_{t+1}^{f} - \psi^{-1} r_{ss}^{k^{f}} \left(-1 + e^{\psi \left(-1 + z_{t+1}^{f} \right)} \right) \right) \left(C_{t+1}^{f} - h C_{t}^{f} \right)^{-\sigma^{c}} \right] \right) = 0$$

$$(27.2)$$

$$-r_t^{k} + \alpha \epsilon_t^{a} m c_t L_t^{1-\alpha} (K_{t-1} z_t)^{-1+\alpha} = 0$$
(27.3)

$$-r_t^{k^f} + \alpha \epsilon_t^a m c_t^f L_t^{f^{1-\alpha}} (K_{t-1}^f z_t^f)^{-1+\alpha} = 0$$
 (27.4)

$$-G_t + T_t = 0 (27.5)$$

$$-G_t + G^{\text{bar}} \epsilon_t^{G} = 0 \tag{27.6}$$

$$-G_t^{\mathbf{f}} + T_t^{\mathbf{f}} = 0 \tag{27.7}$$

$$-G_t^{f} + G^{bar} \epsilon_t^{G} = 0 \tag{27.8}$$

$$-L_t + \nu_t^{\text{w}-1} L_t^{\text{s}} = 0 (27.9)$$

$$-L_t^{sf} + L_t^f \left(W_t^{if} W_t^{f-1}\right)^{\lambda^{w-1}(-1-\lambda^w)} = 0$$
(27.10)

9

$$\begin{split} L_t^{s'} - L_t^{f} &= 0 & (27.11) \\ L_t^{s'} + \lambda^{\mathsf{w}-1} L_t^{\mathsf{I}} W_t^{f-1} &(-1 - \lambda^{\mathsf{w}}) \left(-W_t^{\mathsf{disutil'}} + W_t^{\mathsf{f'}} \right) \left(W_t^{\mathsf{f'}} W_t^{f-1} \right)^{-1 + \lambda^{\mathsf{w}-1} (-1 - \lambda^{\mathsf{w}})} &= 0 \\ \Pi_t^{\mathsf{ws'}} - L_t^{\mathsf{f'}} \left(-W_t^{\mathsf{disutil'}} + W_t^{\mathsf{f'}} \right) &= 0 \\ \Pi_t^{\mathsf{ps'}} - Y_t^{\mathsf{f'}} \left(-mc_t^{\mathsf{f'}} + P_t^{\mathsf{f'}} \right) P_t^{\mathsf{f'}} h^{\mathsf{p}-1} (1 + \lambda^{\mathsf{w}}) &= 0 \\ (27.13) \\ \Pi_t^{\mathsf{ps'}} - Y_t^{\mathsf{f'}} \left(-mc_t^{\mathsf{f'}} + P_t^{\mathsf{f'}} \right) P_t^{\mathsf{f'}} h^{\mathsf{p}-1} (1 + \lambda^{\mathsf{w}}) &= 0 \\ (27.14) \\ -Q_t + c_t^{\mathsf{h}-1} q_t (C_t - hC_{t-1})^{\sigma'} &= 0 \\ Q_t + c_t^{\mathsf{h}-1} q_t \left(C_t^{\mathsf{f'}} - hC_{t-1}^{\mathsf{f'}} \right)^{\sigma'} &= 0 \\ Q_t^{\mathsf{f'}} + c_t^{\mathsf{h}-1} q_t^{\mathsf{f'}} \left(C_t^{\mathsf{f'}} - hC_{t-1}^{\mathsf{f'}} \right)^{\sigma'} &= 0 \\ Q_t^{\mathsf{f'}} + c_t^{\mathsf{h}-1} q_t^{\mathsf{f'}} \left(-\alpha \right) L_t^{\mathsf{f}-\alpha} \left(K_{t-1}^{\mathsf{f'}} z_t^{\mathsf{f'}} \right)^{\alpha} &= 0 \\ Q_t^{\mathsf{f'}} + c_t^{\mathsf{h}-1} q_t^{\mathsf{f'}} \left(-\alpha \right) L_t^{\mathsf{f'}-\alpha} \left(K_{t-1}^{\mathsf{f'}} z_t^{\mathsf{f'}} \right)^{\alpha} &= 0 \\ Q_t^{\mathsf{f'}} + c_t^{\mathsf{h}-1} q_t^{\mathsf{f'}} \left(-\alpha \right) L_t^{\mathsf{f'}-\alpha} \left(K_{t-1}^{\mathsf{f'}} z_t^{\mathsf{f'}} \right)^{\alpha} &= 0 \\ Q_t^{\mathsf{f'}} + c_t^{\mathsf{h}-1} q_t^{\mathsf{f'}} \left(-\alpha \right) L_t^{\mathsf{f'}-\alpha} \left(K_{t-1}^{\mathsf{f'}} z_t^{\mathsf{f'}} \right)^{\alpha} &= 0 \\ Q_t^{\mathsf{f'}} + Q_t^{\mathsf{f'}} + Q_t^{\mathsf{f'}} \left(-\alpha \right) L_t^{\mathsf{f'}-\alpha} \left(K_{t-1}^{\mathsf{f'}} z_t^{\mathsf{f'}} \right)^{\alpha} &= 0 \\ Q_t^{\mathsf{f'}} + Q_t^{\mathsf{f'}} + Q_t^{\mathsf{f'}} \left(-\alpha \right) L_t^{\mathsf{f'}-\alpha} \left(K_{t-1}^{\mathsf{f'}} z_t^{\mathsf{f'}} \right)^{\alpha} &= 0 \\ Q_t^{\mathsf{f'}} + Q_t^{\mathsf{f'}} + Q_t^{\mathsf{f'}} + Q_t^{\mathsf{f'}} \right)^{\alpha} + Q_t^{\mathsf{h}} Q_t^{\mathsf{f'}} + Q$$

(27.31)

 $-\eta_t^{\rm L} - \log \epsilon_t^{\rm L} + \rho^{\rm L} \log \epsilon_{t-1}^{\rm L} = 0$

$$\eta_t^{\mathrm{I}} - \log \epsilon_t^{\mathrm{I}} + \rho^{\mathrm{I}} \log \epsilon_{t-1}^{\mathrm{I}} = 0 \tag{27.32}$$

$$\eta_t^{\mathbf{w}} - f_t^1 + f_t^2 = 0 (27.33)$$

$$\eta_t^{\mathbf{a}} - \log \epsilon_t^{\mathbf{a}} + \rho^{\mathbf{a}} \log \epsilon_{t-1}^{\mathbf{a}} = 0 \tag{27.34}$$

$$\eta_t^{\rm p} - g_t^1 + g_t^2 (1 + \lambda^{\rm p}) = 0 \tag{27.35}$$

$$\eta_t^{G} - \log \epsilon_t^{G} + \rho^{G} \log \epsilon_{t-1}^{G} = 0 \tag{27.36}$$

$$-f_t^1 + \beta \xi^{\mathbf{w}} \mathbf{E}_t \left[f_{t+1}^1 \left(w_t^{\star - 1} w_{t+1}^{\star} \right)^{\lambda^{\mathbf{w} - 1}} \left(\pi_{t+1}^{- 1} \pi_t^{\gamma^{\mathbf{w}}} \right)^{-\lambda^{\mathbf{w} - 1}} \right] + \epsilon_t^{\mathbf{b}} w_t^{\star} L_t \left(1 + \lambda^{\mathbf{w}} \right)^{-1} \left(C_t - h C_{t-1} \right)^{-\sigma^{\mathbf{c}}} \left(w_t^{\star} W_t^{-1} \right)^{-\lambda^{\mathbf{w} - 1} (1 + \lambda^{\mathbf{w}})} = 0$$
 (27.37)

$$-f_t^2 + \beta \xi^{\mathbf{w}} \mathbf{E}_t \left[f_{t+1}^2 \left(w_t^{\star - 1} w_{t+1}^{\star} \right)^{\lambda^{\mathbf{w}^{-1}} (1 + \lambda^{\mathbf{w}}) \left(1 + \sigma^1 \right)} \left(\pi_{t+1}^{-1} \pi_t \gamma^{\mathbf{w}} \right)^{-\lambda^{\mathbf{w}^{-1}} (1 + \lambda^{\mathbf{w}}) \left(1 + \sigma^1 \right)} \right] + \omega \epsilon_t^{\mathbf{b}} \epsilon_t^{\mathbf{L}} \left(L_t \left(w_t^{\star} W_t^{-1} \right)^{-\lambda^{\mathbf{w}^{-1}} (1 + \lambda^{\mathbf{w}})} \right)^{1 + \sigma^1} = 0$$
 (27.38)

$$-g_t^1 + \beta \xi^p \pi_t^* E_t \left[g_{t+1}^1 \pi_{t+1}^{\star^{-1}} \left(\pi_{t+1}^{-1} \pi_t^{\gamma^p} \right)^{-\lambda^{p-1}} \right] + \epsilon_t^b \pi_t^* Y_t (C_t - hC_{t-1})^{-\sigma^c} = 0$$
 (27.39)

$$-g_t^2 + \beta \xi^{\mathrm{p}} \mathbf{E}_t \left[g_{t+1}^2 \left(\pi_{t+1}^{-1} \pi_t^{\gamma^{\mathrm{p}}} \right)^{-\lambda^{\mathrm{p}-1}(1+\lambda^{\mathrm{p}})} \right] + \epsilon_t^{\mathrm{b}} m c_t Y_t (C_t - h C_{t-1})^{-\sigma^{\mathrm{c}}} = 0$$
 (27.40)

$$-\nu_t^{\mathbf{w}} + (1 - \xi^{\mathbf{w}}) \left(w_t^{\star} W_t^{-1} \right)^{-\lambda^{\mathbf{w}-1} (1 + \lambda^{\mathbf{w}})} + \xi^{\mathbf{w}} \nu_{t-1}^{\mathbf{w}} \left(W_{t-1} \pi_t^{-1} W_t^{-1} \pi_{t-1}^{\gamma^{\mathbf{w}}} \right)^{-\lambda^{\mathbf{w}-1} (1 + \lambda^{\mathbf{w}})} = 0$$
 (27.41)

$$-\nu_t^{\mathbf{p}} + (1 - \xi^{\mathbf{p}}) \pi_t^{\star - \lambda^{\mathbf{p} - 1}(1 + \lambda^{\mathbf{p}})} + \xi^{\mathbf{p}} \nu_{t-1}^{\mathbf{p}} \left(\pi_t^{-1} \pi_{t-1} \gamma^{\mathbf{p}} \right)^{-\lambda^{\mathbf{p} - 1}(1 + \lambda^{\mathbf{p}})} = 0$$
(27.42)

$$-K_t + K_{t-1}(1-\tau) + I_t \left(1 - 0.5\varphi \left(-1 + I_{t-1}^{-1} \epsilon_t^{\mathrm{I}} I_t\right)^2\right) = 0$$
(27.43)

$$-K_t^{f} + K_{t-1}^{f} (1 - \tau) + I_t^{f} \left(1 - 0.5\varphi \left(-1 + I_{t-1}^{f} {}^{-1}\epsilon_t^{I} I_t^{f} \right)^2 \right) = 0$$
 (27.44)

$$U_{t} - \beta E_{t} \left[U_{t+1} \right] - \epsilon_{t}^{b} \left(\left(1 - \sigma^{c} \right)^{-1} \left(C_{t} - h C_{t-1} \right)^{1 - \sigma^{c}} - \omega \epsilon_{t}^{L} \left(1 + \sigma^{l} \right)^{-1} L_{t}^{s + \sigma^{l}} \right) = 0$$
(27.45)

$$U_{t}^{f} - \beta E_{t} \left[U_{t+1}^{f} \right] - \epsilon_{t}^{b} \left((1 - \sigma^{c})^{-1} \left(C_{t}^{f} - h C_{t-1}^{f} \right)^{1 - \sigma^{c}} - \omega \epsilon_{t}^{L} \left(1 + \sigma^{l} \right)^{-1} L_{t}^{s^{f} 1 + \sigma^{l}} \right) = 0$$
(27.46)

$$-\epsilon_{t}^{b}(C_{t} - hC_{t-1})^{-\sigma^{c}} + q_{t}\left(1 - 0.5\varphi\left(-1 + I_{t-1}^{-1}\epsilon_{t}^{I}I_{t}\right)^{2} - \varphi I_{t-1}^{-1}\epsilon_{t}^{I}I_{t}\left(-1 + I_{t-1}^{-1}\epsilon_{t}^{I}I_{t}\right)\right) + \beta\varphi I_{t}^{-2}E_{t}\left[\epsilon_{t+1}^{I}q_{t+1}I_{t+1}^{2}\left(-1 + I_{t}^{-1}\epsilon_{t+1}^{I}I_{t+1}\right)\right] = 0$$
 (27.47)

$$-\epsilon_{t}^{b}\left(C_{t}^{f}-hC_{t-1}^{f}\right)^{-\sigma^{c}}+q_{t}^{f}\left(1-0.5\varphi\left(-1+I_{t-1}^{f}^{-1}\epsilon_{t}^{I}I_{t}^{f}\right)^{2}-\varphi I_{t-1}^{f}^{-1}\epsilon_{t}^{I}I_{t}^{f}\left(-1+I_{t-1}^{f}^{-1}\epsilon_{t}^{I}I_{t}^{f}\right)\right)+\beta\varphi I_{t}^{f-2}E_{t}\left[\epsilon_{t+1}^{I}q_{t+1}^{f}I_{t+1}^{f}^{2}\left(-1+I_{t}^{f-1}\epsilon_{t+1}^{I}I_{t+1}^{f}\right)\right]=0$$
 (27.48)

$$\eta_t^{\pi} - \log \pi_t^{\text{obj}} + \rho^{\pi^{\text{bar}}} \log \pi_{t-1}^{\text{obj}} + \log \operatorname{add} r^{\pi^{\text{obj}}} \left(1 - \rho^{\pi^{\text{bar}}} \right) = 0 \tag{27.49}$$

$$-C_t - I_t - T_t + Y_t - \psi^{-1} r_{ss}^k K_{t-1} \left(-1 + e^{\psi(-1+z_t)} \right) = 0$$
(27.50)

$$-abbr^{\pi} + \eta_{t}^{R} - \log\left(R_{ss}^{-1}R_{t}\right) + r^{\Delta^{\pi}}\left(-\log\left(\pi_{ss}^{-1}\pi_{t-1}\right) + \log\left(\pi_{ss}^{-1}\pi_{t}\right)\right) + r^{\Delta^{y}}\left(-\log\left(Y_{ss}^{-1}Y_{t-1}\right) + \log\left(Y_{ss}^{-1}Y_{t}\right)\right) + \log\left(Y_{ss}^{-1}Y_{t-1}\right) - \log\left(Y_{ss}^{-1}Y_{t-1}\right)\right) + \rho\log\left(R_{ss}^{-1}R_{t-1}\right) + (1-\rho)\left(\log\left(X_{ss}^{-1}X_{t-1}\right) + \log\left(X_{ss}^{-1}X_{t-1}\right)\right) + \rho\log\left(X_{ss}^{-1}X_{t-1}\right)\right) + \rho\log\left(X_{ss}^{-1}X_{t-1}\right) + \rho\log\left(X_{ss}^{-1}X_{t-1}\right$$

$$-C_t^{f} - I_t^{f} + \Pi_t^{ws^f} - T_t^{f} + Y_t^{f} + L_t^{s^f} W_t^{disutil^f} - L_t^{f} W_t^{f} - \psi^{-1} r_{ss}^{k^f} K_{t-1}^{f} \left(-1 + e^{\psi(-1 + z_t^f)} \right) = 0$$
(27.52)

$$\epsilon_t^{\rm b} \left(K_{t-1} r_t^{\rm k} - r_{\rm ss}^{\rm k} K_{t-1} e^{\psi(-1+z_t)} \right) \left(C_t - h C_{t-1} \right)^{-\sigma^{\rm c}} = 0 \tag{27.53}$$

$$\epsilon_t^{\rm b} \left(K_{t-1}^{\rm f} r_t^{\rm k^f} - r_{\rm ss}^{\rm k^f} K_{t-1}^{\rm f} e^{\psi \left(-1 + z_t^{\rm f} \right)} \right) \left(C_t^{\rm f} - h C_{t-1}^{\rm f} \right)^{-\sigma^{\rm c}} = 0 \tag{27.54}$$

28 Steady state relationships (after reduction)

$$-q_{\rm ss} + \beta \left(q_{\rm ss} \left(1 - \tau \right) + \epsilon_{\rm ss}^{\rm b} \left(r_{\rm ss}^{\rm k} z_{\rm ss} - \psi^{-1} r_{\rm ss}^{\rm k} \left(-1 + e^{\psi(-1 + z_{\rm ss})} \right) \right) \left(C_{\rm ss} - h C_{\rm ss} \right)^{-\sigma^{c}} \right) = 0$$
 (28.1)

$$-q_{\rm ss}^{\rm f} + \beta \left(q_{\rm ss}^{\rm f} (1-\tau) + \epsilon_{\rm ss}^{\rm b} \left(r_{\rm ss}^{\rm kf} z_{\rm ss}^{\rm f} - \psi^{-1} r_{\rm ss}^{\rm kf} \left(-1 + e^{\psi \left(-1 + z_{\rm ss}^{\rm f} \right)} \right) \right) \left(C_{\rm ss}^{\rm f} - h C_{\rm ss}^{\rm f} \right)^{-\sigma^{\rm c}} \right) = 0 \tag{28.2}$$

$$-r_{ss}^{k} + \alpha \epsilon_{ss}^{a} m c_{ss} L_{ss}^{1-\alpha} (z_{ss} K_{ss})^{-1+\alpha} = 0$$
(28.3)

$$-r_{\rm ss}^{\rm f} + \alpha \epsilon_{\rm ss}^{\rm a} m c_{\rm ss}^{\rm f} L_{\rm ss}^{\rm f}^{1-\alpha} \left(z_{\rm ss}^{\rm f} K_{\rm ss}^{\rm f} \right)^{-1+\alpha} = 0 \tag{28.4}$$

$$-G_{\rm ss} + T_{\rm ss} = 0 (28.5)$$

$$-G_{\rm ss} + G^{\rm bar} \epsilon_{\rm ss}^{\rm G} = 0 \tag{28.6}$$

$$-G_{\rm ss}^{\rm f} + T_{\rm ss}^{\rm f} = 0 ag{28.7}$$

$$-G_{ss}^{f} + G^{bar} \epsilon_{ss}^{G} = 0 \tag{28.8}$$

$$-L_{ss} + \nu_{ss}^{w-1} L_{ss}^{s} = 0 \tag{28.9}$$

$$-L_{\rm ss}^{\rm f} + L_{\rm ss}^{\rm f} \left(W_{\rm ss}^{\rm i^f} W_{\rm ss}^{\rm f^{-1}}\right)^{\lambda^{\rm w^{-1}}(-1-\lambda^{\rm w})} = 0$$
(28.10)

$$L_{\rm ss}^{\rm sf} - L_{\rm ss}^{\rm f} = 0 (28.11)$$

$$L_{\rm ss}^{\rm sf} + \lambda^{\rm w-1} L_{\rm ss}^{\rm f} W_{\rm ss}^{\rm f-1} \left(-1 - \lambda^{\rm w}\right) \left(-W_{\rm ss}^{\rm disutil^{\rm f}} + W_{\rm ss}^{\rm i^{\rm f}}\right) \left(W_{\rm ss}^{\rm i^{\rm f}} W_{\rm ss}^{\rm f-1}\right)^{-1 + \lambda^{\rm w-1} \left(-1 - \lambda^{\rm w}\right)} = 0 \tag{28.12}$$

$$\Pi_{\rm ss}^{\rm ws^f} - L_{\rm ss}^{\rm sf} \left(-W_{\rm ss}^{\rm disutil^f} + W_{\rm ss}^{\rm if} \right) = 0$$
 (28.13)

$$\Pi_{ss}^{psf} - Y_{ss}^{f} \left(-m_{ss}^{f} + P_{ss}^{jf} \right) P_{ss}^{jf - \lambda^{p-1}(1+\lambda^{p})} = 0$$
(28.14)

$$-Q_{\rm ss} + \epsilon_{\rm ss}^{\rm b} {}^{-1}q_{\rm ss}(C_{\rm ss} - hC_{\rm ss})^{\sigma^{\rm c}} = 0$$
 (28.15)

$$-Q_{\rm ss}^{\rm f} + \epsilon_{\rm ss}^{\rm b} - q_{\rm ss}^{\rm f} \left(C_{\rm ss}^{\rm f} - hC_{\rm ss}^{\rm f}\right)^{\sigma^{\rm c}} = 0 \tag{28.16}$$

$$-W_{ss} + \epsilon_{ss}^{h} m c_{ss} (1 - \alpha) L_{ss}^{-\alpha} (z_{ss} K_{ss})^{\alpha} = 0 \qquad (28.17)$$

$$-W_{ss}^{f} + \epsilon_{ss}^{h} m c_{ss}^{f} (1 - \alpha) L_{ss}^{f}^{f} - \epsilon_{ss}^{f} K_{ss}^{f} \alpha = 0 \qquad (28.18)$$

$$-Y_{ss}^{f} - Y_{ss}^{f} + Y_{ss}^{f} = 0 \qquad (28.19)$$

$$Y_{ss}^{h} - V_{ss}^{f} + Y_{ss}^{f} = 0 \qquad (28.20)$$

$$-Y_{ss}^{h} + Y_{ss}^{f} + N^{p-1} (1+\lambda^{p}) = 0 \qquad (28.21)$$

$$\beta_{ss}^{h} (C_{ss}^{f} - hC_{ss}^{f})^{-\sigma^{c}} - \epsilon_{ss}^{h} R_{ss}^{f-1} (C_{ss}^{f} - hC_{ss}^{f})^{-\sigma^{c}} = 0 \qquad (28.22)$$

$$-\epsilon_{ss}^{h} R_{ss}^{f-1} (C_{ss} - hC_{ss})^{-\sigma^{c}} + \epsilon_{ss}^{h} E_{ss}^{f-1} (C_{ss} - hC_{ss})^{-\sigma^{c}} = 0 \qquad (28.23)$$

$$Y_{ss}^{f} P_{ss}^{f-\lambda^{p-1} (1+\lambda^{p})} - \lambda^{p-1} Y_{ss}^{f} (1 + \lambda^{p}) \left(-m c_{ss}^{f} + P_{ss}^{f} \right) P_{ss}^{f-1} - \lambda^{p-1} (1+\lambda^{p}) = 0 \qquad (28.24)$$

$$\epsilon_{ss}^{h} W_{ss}^{disutif} (C_{ss}^{f} - hC_{ss}^{f})^{-\sigma^{c}} - \omega \epsilon_{ss}^{h} C_{ss}^{f} P_{ss}^{f^{f}} = 0 \qquad (28.25)$$

$$-1 + \xi^{p} \left(\pi_{ss}^{-1} \pi_{ss}^{-p} \right)^{-\lambda^{p-1}} + (1 - \xi^{p}) \pi_{ss}^{r} - \lambda^{p-1} = 0 \qquad (28.26)$$

$$-1 + (1 - \xi^{w}) \left(m_{ss}^{h} W_{ss}^{-1} \right)^{-\lambda^{p-1}} + \xi^{w} 1^{-\lambda^{w-1}} \left(\pi_{ss}^{-1} \pi_{ss}^{-p} \right)^{-\lambda^{w-1}} = 0 \qquad (28.27)$$

$$-\Phi - Y_{ss}^{f} + \epsilon_{ss}^{h} L_{ss}^{h} L_{ss}^{h-1-\alpha} (z_{ss} K_{ss})^{\alpha} = 0 \qquad (28.28)$$

$$-\Phi - Y_{ss}^{f} + \rho^{h} \log \epsilon_{ss}^{h} = 0 \qquad (28.29)$$

$$-\log \epsilon_{ss}^{h} + \rho^{h} \log \epsilon_{ss}^{h} = 0 \qquad (28.30)$$

$$-\log \epsilon_{ss}^{h} + \rho^{h} \log \epsilon_{ss}^{h} = 0 \qquad (28.31)$$

$$-\log \epsilon_{ss}^{h} + \rho^{h} \log \epsilon_{ss}^{h} = 0 \qquad (28.33)$$

$$-\log \epsilon_{ss}^{h} + \rho^{h} \log \epsilon_{ss}^{h} = 0 \qquad (28.34)$$

$$-g_{ss}^{h} + g_{ss}^{h} (1 + \lambda^{p}) = 0 \qquad (28.35)$$

$$-\log \epsilon_{ss}^{h} + \rho^{h} \log \epsilon_{ss}^{h} = 0 \qquad (28.36)$$

$$-f_{ss}^{h} + \beta^{h} G_{ss}^{h} C_{ss}^{h} C_$$

(28.38)

 $-f_{ss}^{2} + \omega \epsilon_{ss}^{b} \epsilon_{ss}^{L} \left(L_{ss} \left(w_{ss}^{\star} W_{ss}^{-1} \right)^{-\lambda^{w-1} (1+\lambda^{w})} \right)^{1+\sigma^{l}} + \beta \xi^{w} f_{ss}^{2} 1^{\lambda^{w-1} (1+\lambda^{w}) \left(1+\sigma^{l} \right)} \left(\pi_{ss}^{-1} \pi_{ss}^{\gamma^{w}} \right)^{-\lambda^{w-1} (1+\lambda^{w}) \left(1+\sigma^{l} \right)} = 0$

$$-g_{ss}^{1} + \beta \xi^{p} g_{ss}^{1} \left(\pi_{ss}^{-1} \pi_{ss}^{\gamma^{p}}\right)^{-\lambda^{p-1}} + \epsilon_{ss}^{b} \pi_{ss}^{\star} Y_{ss} (C_{ss} - hC_{ss})^{-\sigma^{c}} = 0$$

$$-g_{ss}^{2} + \beta \xi^{p} g_{ss}^{2} \left(\pi_{ss}^{-1} \pi_{ss}^{\gamma^{p}}\right)^{-\lambda^{p-1} (1+\lambda^{p})} + \epsilon_{ss}^{b} m c_{ss} Y_{ss} (C_{ss} - hC_{ss})^{-\sigma^{c}} = 0$$

$$-\nu_{ss}^{w} + (1 - \xi^{w}) \left(w_{ss}^{\star} W_{ss}^{-1}\right)^{-\lambda^{w-1} (1+\lambda^{w})} + \xi^{w} \nu_{ss}^{w} \left(\pi_{ss}^{-1} \pi_{ss}^{\gamma^{w}}\right)^{-\lambda^{w-1} (1+\lambda^{w})} = 0$$

$$(28.40)$$

$$-\nu_{\rm ss}^{\rm p} + (1 - \xi^{\rm p}) \,\pi_{\rm ss}^{\star -\lambda^{\rm p-1}(1+\lambda^{\rm p})} + \xi^{\rm p} \nu_{\rm ss}^{\rm p} \left(\pi_{\rm ss}^{-1} \pi_{\rm ss}^{\gamma^{\rm p}}\right)^{-\lambda^{\rm p-1}(1+\lambda^{\rm p})} = 0 \tag{28.42}$$

$$-K_{\rm ss} + I_{\rm ss} \left(1 - 0.5\varphi \left(-1 + \epsilon_{\rm ss}^{\rm I} \right)^2 \right) + K_{\rm ss} \left(1 - \tau \right) = 0 \tag{28.43}$$

$$-K_{\rm ss}^{\rm f} + I_{\rm ss}^{\rm f} \left(1 - 0.5\varphi \left(-1 + \epsilon_{\rm ss}^{\rm I}\right)^{2}\right) + K_{\rm ss}^{\rm f} \left(1 - \tau\right) = 0 \tag{28.44}$$

$$U_{\rm ss} - \beta U_{\rm ss} - \epsilon_{\rm ss}^{\rm b} \left((1 - \sigma^{\rm c})^{-1} \left(C_{\rm ss} - h C_{\rm ss} \right)^{1 - \sigma^{\rm c}} - \omega \epsilon_{\rm ss}^{\rm L} \left(1 + \sigma^{\rm l} \right)^{-1} L_{\rm ss}^{\rm s}^{1 + \sigma^{\rm l}} \right) = 0$$
 (28.45)

$$U_{\rm ss}^{\rm f} - \beta U_{\rm ss}^{\rm f} - \epsilon_{\rm ss}^{\rm b} \left((1 - \sigma^{\rm c})^{-1} \left(C_{\rm ss}^{\rm f} - h C_{\rm ss}^{\rm f} \right)^{1 - \sigma^{\rm c}} - \omega \epsilon_{\rm ss}^{\rm L} \left(1 + \sigma^{\rm l} \right)^{-1} L_{\rm ss}^{\rm sf}^{1 + \sigma^{\rm l}} \right) = 0$$
 (28.46)

$$-\epsilon_{\rm ss}^{\rm b}(C_{\rm ss} - hC_{\rm ss})^{-\sigma^{\rm c}} + q_{\rm ss}\left(1 - 0.5\varphi\left(-1 + \epsilon_{\rm ss}^{\rm I}\right)^2 - \varphi\epsilon_{\rm ss}^{\rm I}\left(-1 + \epsilon_{\rm ss}^{\rm I}\right)\right) + \beta\varphi\epsilon_{\rm ss}^{\rm I}q_{\rm ss}\left(-1 + \epsilon_{\rm ss}^{\rm I}\right) = 0 \tag{28.47}$$

$$-\epsilon_{\rm ss}^{\rm b} \left(C_{\rm ss}^{\rm f} - hC_{\rm ss}^{\rm f}\right)^{-\sigma^{\rm c}} + q_{\rm ss}^{\rm f} \left(1 - 0.5\varphi \left(-1 + \epsilon_{\rm ss}^{\rm I}\right)^2 - \varphi \epsilon_{\rm ss}^{\rm I} \left(-1 + \epsilon_{\rm ss}^{\rm I}\right)\right) + \beta \varphi \epsilon_{\rm ss}^{\rm I} q_{\rm ss}^{\rm f} \left(-1 + \epsilon_{\rm ss}^{\rm I}\right) = 0 \tag{28.48}$$

$$-\log \pi_{\rm ss}^{\rm obj} + \rho^{\pi^{\rm bar}} \log \pi_{\rm ss}^{\rm obj} + \log \operatorname{addr}^{\pi^{\rm obj}} \left(1 - \rho^{\pi^{\rm bar}} \right) = 0 \tag{28.49}$$

$$-C_{ss} - I_{ss} - T_{ss} + Y_{ss} - \psi^{-1} r_{ss}^{k} K_{ss} \left(-1 + e^{\psi(-1 + z_{ss})} \right) = 0$$
(28.50)

$$-a h r^{\pi} + (1 - \rho) \left(\log \pi_{ss}^{obj} - r^{\pi} \log \pi_{ss}^{obj} \right) = 0$$

$$(28.51)$$

$$-C_{\rm ss}^{\rm f} - I_{\rm ss}^{\rm f} + \Pi_{\rm ss}^{\rm ws^{\rm f}} - T_{\rm ss}^{\rm f} + Y_{\rm ss}^{\rm f} + L_{\rm ss}^{\rm f} W_{\rm ss}^{\rm disutil^{\rm f}} - L_{\rm ss}^{\rm f} W_{\rm ss}^{\rm f} - \psi^{-1} r_{\rm ss}^{\rm k^{\rm f}} K_{\rm ss}^{\rm f} \left(-1 + e^{\psi \left(-1 + z_{\rm ss}^{\rm f} \right)} \right) = 0$$
 (28.52)

$$\epsilon_{\rm ss}^{\rm b} \left(r_{\rm ss}^{\rm k} K_{\rm ss} - r_{\rm ss}^{\rm k} K_{\rm ss} e^{\psi(-1+z_{\rm ss})} \right) \left(C_{\rm ss} - h C_{\rm ss} \right)^{-\sigma^{\rm c}} = 0$$
(28.53)

$$\epsilon_{\rm ss}^{\rm b} \left(r_{\rm ss}^{\rm f} K_{\rm ss}^{\rm f} - r_{\rm ss}^{\rm f} K_{\rm ss}^{\rm f} e^{\psi \left(-1 + z_{\rm ss}^{\rm f} \right)} \right) \left(C_{\rm ss}^{\rm f} - h C_{\rm ss}^{\rm f} \right)^{-\sigma^{\rm c}} = 0$$
 (28.54)

29 Calibrating equations

$$-1.408 + Y_{ss}^{s-1} \left(\Phi + Y_{ss}^{s}\right) = 0 \tag{29.1}$$

$$-1 + \pi_{\rm ss}^{\rm obj} = 0$$
 (29.2)

$$-0.6 + C_{ss}^{f} Y_{ss}^{f-1} = 0 (29.3)$$

$$-0.18 + G_{\rm ss}Y_{\rm ss}^{-1} = 0 (29.4)$$

$$\pi_{\rm ss} - \pi_{\rm ss}^{\rm obj} = 0 \tag{29.5}$$

$\alpha = 0.3$	(30.1)
$\beta = 0.99$	(30.2)
$\gamma^{\rm w}=0.763$	(30.3)
$\gamma^{\rm p}=0.469$	(30.4)
h = 0.573	(30.5)
$\lambda^{\mathrm{w}} = 0.5$	(30.6)
$\omega = 1$	(30.7)
$\psi = 0.169$	(30.8)
$r^{\pi} = 1.684$	(30.9)
$r^{\rm Y} = 0.099$	(30.10)
$r^{\Delta^{\pi}} = 0.14$	(30.11)
$r^{\Delta^{y}} = 0.159$	(30.12)
$\rho = 0.961$	(30.13)
$\rho^{\mathrm{b}} = 0.855$	(30.14)
$\rho^{\rm L}=0.889$	(30.15)
$ ho^{ m I}=0.927$	(30.16)
$\rho^{\rm a}=0.823$	(30.17)
$\rho^{\rm G} = 0.949$	(30.18)
$\rho^{\pi^{\text{bar}}} = 0.924$	(30.19)
$\sigma^{\rm c} = 1.353$	(30.20)
$\sigma^{ m l}=2.4$	(30.21)
$\tau = 0.025$	(30.22)
$\varphi = 6.771$	(30.23)
$\xi^{\rm w} = 0.737$	(30.24)
$\xi^{\rm p} = 0.908$	(30.25)

31 Steady-state values

	Steady-state value
ϵ^{G}	1
$\epsilon_{-}^{ m b}$	1
$\epsilon^{ m L}$	1
ϵ^{I}	1
ϵ^{a}	1
f^1	8.7708
f^2	8.7708
g^1	48.8253
g^2	35.7045
$mc_{_{\mathtt{f}}}$	0.7313
mc^{f}	0.7313
$ u^{\mathrm{w}}$	1
$ u^{ m p}$	1
π	1
π^{\star}	1
π^{obj}	1
$q_{_{_{\mathbf{f}}}}$	2.4577
$q^{ m f}_{ m k}$	2.4577
$r^{ m k} \ r^{ m k^f}$	0.0351
$r^{\scriptscriptstyle ext{K}}$	0.0351
w^{\star}	1.1227
$z_{_{\mathbf{f}}}$	1
z^{f}	1
$C \\ C^{\mathrm{f}}$	1.2049
	1.2049
$G \ G^{\mathrm{f}}$	0.3615
	0.3615
$I \ I^{ m f}$	0.4418
K	0.4418 17.6712
$K^{ m f}$	17.6712
L	1.2891
$L^{ m s}$	1.2891
$L^{ m s^f}$	1.2891
$L^{ m f}$	1.2891
$P^{\mathrm{j^f}}$	
P ³	1
$\Pi^{\mathrm{ws}^{\mathrm{f}}}$	0.4824
$\Pi^{\mathrm{ps^f}}$	0.5396
Q	1
$Q^{ m f}$	1
R	1.0101
R^{f}	1.0101
$T \ T^{ m f}$	0.3615
	0.3615
$U \ U^{ m f}$	-427.937 -427.937
W	-427.937 1.1227
$W^{ m disutil^f}$	
	0.7485
$W^{\mathrm{i^f}}$	1.1227
$W^{ m f}$	1.1227
Y	2.0081
Y^{f}	2.0081
$Y^{ m s}$	2.0081
$Y^{\mathrm{s^f}}$	2.0081

32 The solution of the 1st order perturbation

Matrix P												
	$\epsilon_{t-1}^{\mathrm{G}}$	$\epsilon_{t-1}^{\mathrm{b}}$	$\epsilon_{t-1}^{ ext{L}}$	$\epsilon_{t-1}^{\mathrm{I}}$	$\epsilon_{t-1}^{\mathrm{a}}$	ν_{t-1}^{w}	$ u_{t-1}^{\mathrm{p}}$	π_{t-1}	π^{obj}_{t-1}	C_{t-1}	C_{t-1}^{f}	I_{t-1}
$\epsilon_t^{ ext{G}}$	(0.949)	0	0	0	0	0	0	0	0	0	0	0
$\epsilon_t^{ m b}$	0	0.855	0	0	0	0	0	0	0	0	0	0
$\epsilon_t^{ m L}$	0	0	0.889	0	0	0	0	0	0	0	0	0
$\epsilon_{t}^{\mathrm{G}}$ $\epsilon_{t}^{\mathrm{L}}$ $\epsilon_{t}^{\mathrm{L}}$ $\epsilon_{t}^{\mathrm{a}}$ $\epsilon_{t}^{\mathrm{w}}$ ν_{t}^{p}	0	0	0	0.927	0	0	0	0	0	0	0	0
ϵ_t^{a}	0	0	0	0	0.823	0	0	0	0	0	0	0
$ u_t^{\mathrm{w}}$	0	0	0	0	0	0.737	0	0	0	0	0	0
$ u_t^{ m p}$	0	0	0	0	0	0	0.908	0	0	0	0	0
π_t .	0.0024	0.0073	0.0041	-0.0067	-0.0394	0	0.0228	0.4946	0.1645	0.0019	-0.0003	0.003
$\pi_t^{ ext{obj}}$	0	0	0	0	0	0	0	0	0.924	0	0	0
C_t	-0.0324	0.1846	-0.0529	0.0399	0.2119	0	-0.0342	0.144	0.4554	0.5364	0.0163	-0.0377
C_t^{f}	-0.0775	0.0319	-0.1757	0.0293	0.7993	0	0	0	0	0	0.4108	0
I_t	-0.0366	-0.1263	-0.0776	-0.2809	0.2914	0	-0.0118	0.1232	0.7412	-0.023	0.0055	0.8715
$I_t^{ m f}$	-0.0763	-0.288	-0.1823	-0.2646	0.7367	0	0	0	0	0	-0.0965	0
K_t	-0.0009	-0.0032	-0.0019	-0.007	0.0073	0	-0.0003	0.0031	0.0185	-0.0006	0.0001	0.0218
$K_t^{ m f}$	-0.0019	-0.0072	-0.0046	-0.0066	0.0184	0	0	0	0	0	-0.0024	0
R_t	0.008	0.0277	0.0205	-0.0006	-0.1412	0	0.0372	0.0274	0.0918	0.0649	-0.0429	0.035
W_t	0.0058	0.0265	0.0177	-0.0043	0.0069	0	0.0672	0.2413	0.1275	0.0108	0.0007	0.0083
Y_t	0.1797	0.1096	-0.0565	-0.0481	-0.0432	0	0.209	0.1993	0.5734	0.3967	0.0139	0.2124
$Y_t^{ m f}$	0.1324	-0.0545	-0.1792	-0.05	0.7899	0	0	0	0	0	0.2773	0

$\mathbf{Matrix}\ Q$

	$\eta^{ m b}$	$\eta^{ m L}$	η^{I}	η^{w}	$\eta^{ m a}$	$\eta^{ m p}$	$\eta^{ m G}$	$\eta^{ m R}$	η^{π}
ϵ^{G}	(0	0	0	0	0	0	1	0	0
$\epsilon^{ m b}$	1	0	0	0	0	0	0	0	0
$\epsilon^{ m L}$	0	-1	0	0	0	0	0	0	0
ϵ^{I}	0	0	1	0	0	0	0	0	0
ϵ^{a}	0	0	0	0	1	0	0	0	0
$ u^{\mathrm{w}}$	0	0	0	0	0	0	0	0	0
$ u^{ m p}$	0	0	0	0	0	0	0	0	0
π	0.0085	-0.0046	-0.0072	0.0002	-0.0478	0.0019	0.0025	-0.4977	0.178
π^{obj}	0	0	0	0	0	0	0	0	1
C	0.2159	0.0595	0.043	-0.0001	0.2575	-0.0001	-0.0341	-2.3545	0.4928
C^{f}	0.0373	0.1977	0.0316	0	0.9712	0	-0.0816	0	0
I	-0.1477	0.0873	-0.303	-0.0001	0.3541	-0.0006	-0.0386	-3.5517	0.8022
$I^{ m f}$	-0.3369	0.2051	-0.2854	0	0.8952	0	-0.0804	0	0
K	-0.0037	0.0022	-0.0076	0	0.0089	0	-0.001	-0.0888	0.0201
K^{f}	-0.0084	0.0051	-0.0071	0	0.0224	0	-0.002	0	0
R	0.0324	-0.0231	-0.0007	0.0002	-0.1716	0.0002	0.0085	0.4614	0.0993
W	0.031	-0.0199	-0.0046	0.0042	0.0084	-0.002	0.0061	-0.6233	0.1379
Y	0.1282	0.0635	-0.0519	0.001	-0.0525	-0.0007	0.1894	-2.8795	0.6206
Y^{f}	$\setminus -0.0637$	0.2015	-0.054	0	0.9598	0	0.1395	0	0

Matrix R

	$\epsilon_{t-1}^{\mathrm{G}}$	$\epsilon_{t-1}^{\mathrm{b}}$	$\epsilon_{t-1}^{ ext{L}}$	$\epsilon_{t-1}^{\mathrm{I}}$	$\epsilon^{\mathrm{a}}_{t-1}$	$ u_{t-1}^{\mathrm{w}}$	$ u_{t-1}^{ ext{p}}$	π_{t-1}	π_{t-1}^{obj}	C_{t-1}	C_{t-1}^{f}
$f_t^1 \\ f_t^2 \\ g_t^1 \\ g_t^2$	0.1646	0.206	0.0045	-0.2276	-0.7571	0	0.5698	0.1379	-0.6135	0.1277	-0.0153
f_t^2	0.1646	0.206	0.0045	-0.2276	-0.7571	0	0.5698	0.1379	-0.6135	0.1277	-0.0153
g_t^1	0.2158	0.364	0.1053	-0.4043	-0.7294	0	0.6712	0.5495	4.9089	0.1393	-0.0119
g_t^2	0.2158	0.364	0.1053	-0.4043	-0.7294	0	0.6712	0.5495	4.9089	0.1393	-0.0119
mc_t	0.0101	0.0229	0.0111	-0.0047	-0.8567	0	0.0851	0.183	0.1117	0.0207	0.001
mc_t^{f}	0	0	0	0	0	0	0	0	0	0	0
π_t^\star	0.0236	0.0718	0.0402	-0.0656	-0.3884	0	0.2248	0.253	1.6235	0.0191	-0.0031
q_t	0.0648	0.0955	0.0581	0.0073	-0.1656	0	0.1344	-0.0042	-0.5062	0.0056	0.0014
q_{t}^{t}	0.0745	0.1365	0.0808	-0.016	-0.2258	0	0	0	0	0	0.0132
r_t^{k}	0.0199	0.0146	-0.0042	-0.0056	-0.1283	0	0.127	0.0469	0.075	0.0437	0.0016
$q_t^{\mathrm{f}} \ r_t^{\mathrm{k}} \ r_t^{\mathrm{kf}}$	0.0136	-0.0056	-0.0184	-0.0051	0.0811	0	0	0	0	0	0.0285
w_t^{\star}	0.0289	0.1212	0.0786	-0.0349	-0.0841	0	0.3193	0.1656	0.9456	0.0466	0.0018
	0.1178	0.0862	-0.0248	-0.0333	-0.7591	0	0.7515	0.2776	0.444	0.2587	0.0092
$z_t^{ m f} \ z_t^{ m f} \ G_t$	0.0804	-0.0331	-0.1089	-0.0304	0.4799	0	0	0	0	0	0.1685
G_t	0.949	0	0	0	0	0	0	0	0	0	0
G_t^{f}	0.949	0	0	0	0	0	0	0	0	0	0
L_t	0.1319	0.0743	-0.0467	-0.0346	-0.8942	0	0.8113	0.0832	0.3915	0.2916	0.0101
$L_{t_{c}}^{\mathrm{s}}$	0.1319	0.0743	-0.0467	-0.0346	-0.8942	0.737	0.8113	0.0832	0.3915	0.2916	0.0101
$L_t^{\mathrm{s^r}}$	0.0999	-0.0411	-0.1351	-0.0377	-0.5799	0	0	0	0	0	0.2091
$L_{t_{c}}^{\mathrm{f}}$	0.0999	-0.0411	-0.1351	-0.0377	-0.5799	0	0	0	0	0	0.2091
L_t^{ff} L_t^{f} L_t^{f}	0	0	0	0	0	0	0	0	0	0	0
$\Pi_t^{ ext{ws}^ ext{r}}$	0.094	-0.0387	-0.1272	-0.0355	0.561	0	0	0	0	0	0.1969
$\Pi_t^{ ext{ps}^{ ext{f}}}$	0.1324	-0.0545	-0.1792	-0.05	0.7899	0	0	0	0	0	0.2773
Q_t	-0.0378	-0.1746	-0.1096	0.1337	0.5059	0	0.0261	0.4521	0.9367	-0.1103	0.0532
Q_t^{f}	-0.171	-0.6175	-0.476	0.0768	2.307	0	0	0	0	0	-0.5009
$R_t^{ m f}$	0.0733	0.1721	0.2023	0.0509	-1.0618	0	0	0	0	0	0.3294
$T_t \ T_t^{\mathrm{f}}$	0.949	0	0	0	0	0	0	0	0	0	0
$T_t^{ m f}$	0.949	0	0	0	0	0	0	0	0	0	0
U_t	-0.0147	-0.0561	-0.0122	-0.0026	0.0335	-0.0151	-0.0454	0.0017	0.0154	-0.004	0
U_t^{f}	-0.0149	-0.0568	-0.0126	-0.0019	0.0364	0	0	0	0	0	-0.0041
$W_{t}^{ ext{disutil}^{ ext{f}}}$	-0.0058	0.0024	0.0079	0.0022	1.141	0	0	0	0	0	-0.0122
$W_t^{\mathrm{i^f}}$	-0.0058	0.0024	0.0079	0.0022	1.141	0	0	0	0	0	-0.0122
W_t^{f}	-0.0058	0.0024	0.0079	0.0022	1.141	0	0	0	0	0	-0.0122
Y_t^{s}	0.1797	0.1096	-0.0565	-0.0481	-0.0432	0	1.117	0.1993	0.5734	0.3967	0.0139
$Y_t^{\mathrm{s^f}}$	0.1324	-0.0545	-0.1792	-0.05	0.7899	0	0	0	0	0	0.2773

Matrix S

	$\eta^{ m b}$	$\eta^{ m L}$	$\eta^{\rm I}$	η^{w}	η^{a}	$\eta^{ m p}$	$\eta^{ m G}$	$\eta^{ m R}$	η^{π}
f^1 f^2	(0.2409)	-0.0051	-0.2456	-0.0239	-0.9199	-0.001	0.1734	3.2101	-0.6639
f^2	0.2409	-0.0051	-0.2456	-0.1379	-0.9199	-0.001	0.1734	3.2101	-0.6639
$g^1 \\ g^2$	0.4258	-0.1185	-0.4361	0.0029	-0.8863	0.0163	0.2274	-14.0411	5.3127
g^2	0.4258	-0.1185	-0.4361	0.0029	-0.8863	-0.0042	0.2274	-14.0411	5.3127
mc	0.0268	-0.0125	-0.0051	0.0031	-1.0409	-0.0015	0.0106	-0.5488	0.1209
mc^{f}	0	0	0	0	0	0	0	0	0
π^{\star}	0.084	-0.0452	-0.0708	0.0016	-0.472	0.0189	0.0249	-4.9118	1.757
q	0.1117	-0.0654	0.0079	0.0003	-0.2013	0.0004	0.0682	1.8211	-0.5478
$q \ q^{ m f}$	0.1596	-0.0909	-0.0172	0	-0.2743	0	0.0785	0	0
r^{k}	0.017	0.0047	-0.0061	0.0005	-0.1559	-0.0003	0.021	-0.375	0.0812
$r^{\mathrm{k^f}}$	-0.0065	0.0207	-0.0055	0	0.0985	0	0.0143	0	0
w^{\star}	0.1418	-0.0884	-0.0377	0.0165	-0.1022	-0.0023	0.0304	-3.7644	1.0233
z	0.1008	0.0279	-0.0359	0.0032	-0.9223	-0.0017	0.1241	-2.2189	0.4805
$z^{ m f}$	-0.0387	0.1224	-0.0328	0	0.5831	0	0.0848	0	0
G	0	0	0	0	0	0	1	0	0
$G^{ m f}$	0	0	0	0	0	0	1	0	0
L	0.0869	0.0525	-0.0373	-0.0004	-1.0865	0	0.1389	-1.9706	0.4237
$L_{_{\mathbf{f}}}^{\mathbf{s}}$	0.0869	0.0525	-0.0373	-0.0004	-1.0865	0	0.1389	-1.9706	0.4237
$L^{\mathrm{s^f}}$	-0.048	0.152	-0.0407	0	-0.7047	0	0.1052	0	0
$L_{{\mathrm{f}}}^{\mathrm{f}}$	-0.048	0.152	-0.0407	0	-0.7047	0	0.1052	0	0
$P^{\mathrm{j^f}}$	0	0	0	0	0	0	0	0	0
$\Pi^{\mathrm{ws}^{\mathrm{f}}}$	-0.0452	0.1431	-0.0383	0	0.6817	0	0.0991	0	0
$\Pi^{\mathrm{ps^f}}$	-0.0637	0.2015	-0.054	0	0.9598	0	0.1395	0	0
$Q_{_{a}}$	-0.2042	0.1233	0.1442	0.0002	0.6147	0	-0.0399	-5.6394	1.0138
$Q_{_{\mathbf{f}}}^{\mathrm{f}}$	-0.7223	0.5354	0.0829	0	2.8032	0	-0.1802	0	0
$R^{ m f}$	0.2013	-0.2275	0.0549	0	-1.2901	0	0.0773	0	0
$T_{_{\mathfrak{c}}}$	0	0	0	0	0	0	1	0	0
$T^{ m f}$	0	0	0	0	0	0	1	0	0
U_{-}	-0.0656	0.0137	-0.0028	0	0.0407	0	-0.0155	-0.0476	0.0167
U^{f}	-0.0664	0.0142	-0.0021	0	0.0442	0	-0.0157	0	0
$W^{ m disutil^f}$	0.0028	-0.0089	0.0024	0	1.3863	0	-0.0061	0	0
$W^{\mathrm{i^f}}$	0.0028	-0.0089	0.0024	0	1.3863	0	-0.0061	0	0
W^{f}	0.0028	-0.0089	0.0024	0	1.3863	0	-0.0061	0	0
$Y^{ m s}$	0.1282	0.0635	-0.0519	0.001	-0.0525	-0.0007	0.1894	-2.8795	0.6206
$Y^{\mathrm{s}^{\mathrm{f}}}$	$\setminus -0.0637$	0.2015	-0.054	0	0.9598	0	0.1395	0	0 /

33 Model statistics

33.1 Basic statistics

	Steady-state value	Std. dev.	Variance	Loglin
\overline{q}	2.4577	0.3662	0.1341	Y
π	1	0.1145	0.0131	Y
$r^{ m k}$	0.0351	0.152	0.0231	Y
z	1	0.8992	0.8086	Y
C	1.2049	0.7154	0.5118	Y
G	0.3615	0.4236	0.1794	Y
I	0.4418	1.8279	3.3412	Y
K	17.6712	0.2275	0.0518	Y
L	1.2891	0.9894	0.9788	Y
Q	1	0.9374	0.8786	Y
R	1.0101	0.2153	0.0464	Y
W	1.1227	0.3847	0.148	Y
T	0.3615	0.4236	0.1794	Y
Y	2.0081	0.9158	0.8387	Y

33.2 Correlation matrix

	π	q	$r^{ m k}$	z	C	G	I	K	L	Q	R	T	W	Y
π	1	0.067	0.676	0.676	0.021	0.015	0.173	0.099	0.466	-0.047	0.594	0.015	0.688	0.292
q		1	-0.205	-0.205	-0.842	0.077	-0.591	0.229	-0.226	-0.91	0.771	0.077	0.23	-0.71
$r^{ m k}$			1	1	0.329	0.05	0.461	-0.058	0.93	0.056	0.33	0.05	0.249	0.664
z				1	0.329	0.05	0.461	-0.058	0.93	0.056	0.33	0.05	0.249	0.664
C					1	-0.032	0.663	-0.325	0.3	0.797	-0.666	-0.032	-0.151	0.857
G						1	-0.013	0.014	0.052	-0.018	0.021	1	0.015	0.078
I							1	0.223	0.465	0.326	-0.23	-0.013	0.078	0.889
K								1	0.048	-0.493	0.426	0.014	0.297	-0.071
L									1	0.002	0.263	0.052	-0.058	0.631
Q										1	-0.822	-0.018	-0.192	0.532
R											1	0.021	0.51	-0.311
T												1	0.015	0.078
W													1	0.04
Y														1

33.3 Autocorrelations

	Lag 1	Lag 2	Lag 3	Lag 4	Lag 5
π	0.881	0.675	0.452	0.245	0.067
q	0.67	0.408	0.204	0.049	-0.064
$r^{ m k}$	0.741	0.516	0.326	0.167	0.037
z	0.741	0.516	0.326	0.167	0.037
C	0.871	0.637	0.384	0.155	-0.034
G	0.713	0.471	0.271	0.109	-0.017
I	0.945	0.818	0.65	0.463	0.276
K	0.98	0.921	0.829	0.71	0.573
L	0.705	0.457	0.253	0.092	-0.032
Q	0.672	0.395	0.179	0.019	-0.096
R	0.771	0.496	0.253	0.062	-0.079
T	0.713	0.471	0.271	0.109	-0.017
W	0.95	0.831	0.669	0.485	0.298
Y	0.905	0.726	0.519	0.314	0.129

33.4 Variance decomposition

	$\mid \;\; \eta^{ m b}$	$\eta^{ m L}$	$\eta^{ m I}$	η^{w}	η^{a}	η^{p}	$\eta^{ m G}$	$\eta^{ m R}$	η^{π}
π	0.003	0.109	0	0	0.214	0	0	0.669	0.004
q	0.016	0.599	0	0	0.149	0	0.006	0.229	0.001
$r^{ m k}$	0.005	0.109	0	0	0.463	0	0.003	0.419	0.001
z	0.005	0.109	0	0	0.463	0	0.003	0.419	0.001
C	0.046	0.427	0	0	0.214	0	0.001	0.31	0.001
G	0	0	0	0	0	0	1	0	0
I	0.012	0.431	0.003	0	0.178	0	0.001	0.374	0.001
K	0.011	0.44	0.003	0	0.164	0	0.001	0.379	0.001
L	0.003	0.256	0	0	0.569	0	0.003	0.167	0
Q	0.01	0.371	0	0	0.254	0	0	0.363	0.001
R	0.011	0.398	0	0	0.491	0	0	0.099	0
T	0	0	0	0	0	0	1	0	0
W	0.011	0.401	0	0	0.012	0	0	0.573	0.002
Y	0.009	0.408	0	0	0.112	0	0.006	0.462	0.001

34 Impulse response functions

Figure 1: Impulse responses (C, Y, K, I, L) to η^a shock Figure 2: Impulse responses (C, Y, K, I, L) to η^R shock