16m left

(BETA) Can't read the text? Switch theme

3. Maximum Median

ALL

(i)

Given

- 1. Two arrays of *n* integers each, *lower bound[i]* and *upper bound[i]*, where *n* is an odd integer and
- 2. An integer max_sum,

generate an array arr such that lower_bound[i] ≤ arr[i] ≤ upper_bound[i] and the sum of elements of the array arr does not exceed max_sum.

Note: lower_bound, upper_bound arrays may not be sorted.

2

1

Find the maximum possible median of an array that can be generated within these conditions.

3

Note: The median of an array that contains an odd number of integers is defined as its middle element when sorted.

Example

Suppose n = 3, $max_sum = 12$, $lower_bound = [1, 3, 6]$, $upper_bound = [2, 5, 6]$

Some of the possible arrays are [1, 3, 6], [2, 4, 6], [1, 5, 6] etc. Return the maximum possible median, 5.

Function Description

Complete the function *getMaxMedian* in the editor below.

getMaxMedian has the following parameters:

int lower_bound[n]: an array of integers int upper bound[n]: an array of integers

long int max_sum: the maximum sum allowed

Returns

int: the maximum possible median of the generated array

Constraints

- $1 \le n \le 10^5$, *n* is odd
- 1 ≤ lower_bound[i] ≤ upper_bound[i] ≤ 10⁹
- $1 \le max \ sum \le 10^{15}$
- ► Input Format For Custom Testing
- **▼** Sample Case 0

Sample Input For Custom Testing