Student ID:	 March 15, 2019 – 9:00 AM
	Duration: 50 minutes

ENEL 471 - Winter 2019 2nd Midterm Exam

Notes:

- This exam is closed book and closed notes.
- Non-programmable calculators are allowed.
- The exam duration is 50 minutes.
- The exam is composed of 2 Problems and 5 pages. All the problems are independent.
- Please write your name and ID# in each page

Student ID:	 March 15, 2019 – 9:00 A	
Student name: _	Duration: 50 minutes	

Problem 1 [10 pts]

The sinusoidal modulating wave: $m(t) = \frac{1}{10} \cdot \sin(8000\pi t)$ is applied to a phase modulator with phase sensitivity $k_p = 2$ radian per volt. The unmodulated carrier wave has frequency $f_c = 1$

MHz and amplitude $A_c = 1$ volt.

- a- Determine the instantaneous frequency of this PM signal and sketch it versus time. [2pts]
- b- Determine the time domain expression of this PM signal and sketch it versus time. [2pts]
- c- Determine the expression of the frequency spectrum of the resulting PM signal and sketch it. **Show all amplitudes and frequencies of interest**. [2pts]
- d- Construct a phasor diagram of this PM modulated signal. [2pts]
- e- Propose of a block diagram of a system that performs this PM modulation using a FM modulator and another system. [2pts]

Student ID:		March 15, 2019 – 9:00 AM		
Student name: _		Duration: 50 minutes		

Problem 2 [10 pts]

An angle-modulated signal around a carrier frequency fc = 1 MHz, has the form $s(t) = 5\cos(2\pi f_c t + 2\sin(4000\pi t))$

The modulating message has a maximum amplitude $A_m = \max |m(t)| = 2$.

- a. Determine the phase deviation and frequency deviation of s(t). [2pts]
- b. Determine m(t) and k_t if s(t) is a FM signal. [2pts]
- c. Determine m(t) and k_p if s(t) is a PM signal. [2pts]
- d. Determine the 1% bandwidth of s(t). [2pts]
- e. Sketch the frequency spectrum of the modulated signal s(t). Show only the sidebands within the approximate bandwidth calculated in d-. Indicate all the frequencies and amplitudes of interest. (Use the table below). [2pts]

Values of the Bessel Functions $J_n(\beta)$

	$\beta = 1$	β = 2	$\beta = 3$	β = 4
n=0	0.7652	0.2239	-0.2601	-0.3971
n=1	0.4401	0.5767	0.3391	-0.066
n=2	0.1149	0.3528	0.4861	0.3641
n=3	0.0196	0.1289	0.3091	0.4302
n=4	0.0025	0.034	0.132	0.2811
n = 5		0.007	0.043	0.1321
n=6		0.0012	0.0114	0.0491
n=7			0.0025	0.01518
n=8				0.004

 Student ID:
 March 15, 2019 – 9:00 AM

 Student name:
 Duration: 50 minutes

Trigonometric Identities

$$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$$

$$\cos(a-b) = \cos(a)\cos(b) + \sin(a)\sin(b)$$

$$\sin(a+b) = \sin(a)\cos(b) + \cos(a)\sin(b)$$

$$\sin(a-b) = \sin(a)\cos(b) - \cos(a)\sin(b)$$

$$\cos(a)\cos(b) = \frac{1}{2} \left[\cos(a-b) + \cos(a+b)\right]$$

$$\sin(a)\sin(b) = \frac{1}{2} \left[\cos(a-b) - \cos(a+b)\right]$$

$$\sin(a)\cos(b) = \frac{1}{2} \left[\sin(a+b) + \sin(a-b)\right]$$

$$\cos\left(a + \frac{\pi}{2}\right) = -\sin(a)$$

$$\cos\left(a - \frac{\pi}{2}\right) = \sin(a)$$

$$\sin\left(a + \frac{\pi}{2}\right) = \cos(a)$$

$$\sin\left(a - \frac{\pi}{2}\right) = -\cos(a)$$

Taylor series first order approximation of trigonometric functions

If $a \ll 1$ rad Then: $\cos(a) \approx 1$ $\sin(a) \approx a$

Properties of the Bessel Functions of the First Kind

$$J_{n}(\beta) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \exp(j\beta \sin(\theta) - jn\theta) d\theta$$
$$J_{-n}(\beta) = (-1)^{n} J_{n}(\beta)$$