axi_lite_spi_master.v

AUTHORS

JAY CONVERTINO

DATES

2025/04/30

INFORMATION

Brief

AXI Lite SPI Master is a core for interfacing with SPI Slave devices.

License MIT

Copyright 2025 Jay Convertino

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

axi_lite_spi_master

```
module axi_lite_spi_master #(
parameter
ADDRESS_WIDTH
=
32,
parameter
BUS_WIDTH
=
4,
parameter
WORD_WIDTH
=
4,
parameter
```

```
CLOCK_SPEED
100000000,
parameter
SELECT_WIDTH
parameter
DEFAULT_RATE_DIV
parameter
DEFAULT_CPOL
parameter
DEFAULT_CPHA
parameter
FIFO_ENABLE
Θ
)
                                                                                  (
input
wire
aclk,
input
wire
arstn,
input
wire
s_axi_awvalid,
input
wire
[ADDRESS_WIDTH-1:0]
s_axi_awaddr,
input
wire
 [ 2:0]
s_axi_awprot,
output
wire
s_axi_awready,
input
wire
s_axi_wvalid,
input
wire
 [(BUS_WIDTH*8)-1:0]
s_axi_wdata,
input
wire
 [ 3:0]
s_axi_wstrb,
output
wire
s_axi_wready,
output
wire
s_axi_bvalid,
output
wire
 [ 1:0]
s_axi_bresp,
```

```
input
wire
s_axi_bready,
input
wire
s_axi_arvalid,
input
wire
 [ADDRESS_WIDTH-1:0]
s_axi_araddr,
input
wire
 [ 2:0]
s_axi_arprot,
output
wire
s_axi_arready,
output
wire
s_axi_rvalid,
output
wire
[(BUS_WIDTH*8)-1:0]
s_axi_rdata,
output
wire
[ 1:0]
s_axi_rresp,
input
wire
s_axi_rready,
output
wire
irq,
output
wire
sclk,
output
wire
mosi,
input
wire
miso,
output
wire
 [SELECT_WIDTH-1:0]
ss_n
```

AXI Lite based SPI Master device. BUS_WIDTH is 4 bytes.

Parameters

ADDRESS_WIDTH Width of the uP address port, max 32 bit.

parameter **BUS_WIDTH**

Width of the uP bus data port, only valid values are 2 or 4.

parameter

WORD_WIDTH Width of each SPI Master word. This will also set the bits used in the TX/RX data registers. Must be less than or equal to BUS_WIDTH. VALID: 1 to 4. parameter

CLOCK_SPEED This is the aclk frequency in Hz, this is the the frequency used for the bus and

is divided by the rate.

SELECT_WIDTH Bit width of the slave select, defaults to 16 to match altera spi ip.

DEFAULT_RATE_DIV Default divider value of the main clock to use for the spi data output clock rate.

parameter 0 is 2 (2^(X+1) X is the DEFAULT_RATE_DIV)

DEFAULT_CPOL Default clock polarity for the core (0 or 1).

parameter

DEFAULT_CPHA Default clock phase for the core (0 or 1).

parameter

FIFO_ENABLE

Enable a 16 word fifo for RX and TX. The chip select will stay asserted between

parameter words.

Ports

aclk Clock for all devices in the core

input wire

arstn Negative reset

input wire

s_axi_awvalid Axi Lite aw valid

input wire

s_axi_awaddr Axi Lite aw addr

input wire [ADDRESS_WIDTH- 1:0]

s_axi_awprot Axi Lite aw prot

input wire [2:

s_axi_awready Axi Lite aw ready

output wire

s_axi_wvalid Axi Lite w valid

input wire

s_axi_wdata Axi Lite w data

input wire [(BUS_WIDTH* 8)- 1:0]

s_axi_wstrb Axi Lite w strb input wire [3:0]

s_axi_wready Axi Lite w ready

output wire

s_axi_bvalid Axi Lite b valid

output wire

s_axi_bresp Axi Lite b resp

output wire [1:0]

s_axi_bready Axi Lite b ready

input wire

s_axi_arvalid Axi Lite ar valid

input wire

s_axi_araddr Axi Lite ar addr

input wire [ADDRESS_WIDTH- 1:0]

s_axi_arprot Axi Lite ar prot

input wire [2:0]

s_axi_arready Axi Lite ar ready

output wire

s_axi_rvalid Axi Lite r valid

output wire

s_axi_rdata Axi Lite r data

output wire [(BUS_WIDTH* 8)- 1:0]

s_axi_rresp Axi Lite r resp

output wire [1:0]

s_axi_rready Axi Lite r ready

input wire

irq Interrupt when data is received

```
output wire
sclk
                                       spi clock, should only drive output pins to devices.
output wire
mosi
                                       transmit for master output
output wire
miso
                                       receive for master input
input wire
                                       slave select output
ss_n
output wire [SELECT_WIDTH- 1:0]
```

up_rreq

```
wire up_rreq
```

uP read bus request

up_rack

```
wire up_rack
```

uP read bus acknowledge

up_raddr

```
wire [ADDRESS_WIDTH-(
BUS_WIDTH
)-1:0] up_raddr
```

uP read bus address

up_rdata

```
wire [31:0] up_rdata
```

uP read bus request

up_wreq

```
wire up_wreq
```

uP write bus request

up_wack

wire up_wack

uP write bus acknowledge

up_waddr

```
wire [ADDRESS_WIDTH-(
BUS_WIDTH

2
)-1:0] up_waddr
```

uP write bus address

up_wdata

```
wire [31:0] up_wdata
```

uP write bus data

INSTANTIANTED MODULES

inst_up_axi

Module instance of up_axi for the AXI Lite bus to the uP bus.

inst_up_spi_master

Module instance of up_spi_master creating a Logic wrapper for spi master axis bus cores to interface with uP bus.