Modeling Nuclear and Intracellular Calcium Dynamics in Rabbit Ventricular Cardiomyocytes

Kyle-David Lim Suico University of Queensland July 9 2014 UCSD PRIME

Research Proposal

Using the Nimrod toolkit, a set of tools that allows for investigating highly complicated parametric systems, my goal is to optimize Excitation-Contraction-Transcription-Coupling Model (Shannon-Bers-Michailova Model) for a ventricular cardiomyocyte in rabbits and run sensitivity analysis in order to elucidate how the model behaves under various stimuli.

The model will be optimized and fitted for 4 kinetic measurements of calcium:

- Systolic (mM)
- Diastolic (mM)
- Time-to-peak (ms)
- Resting time to 50% peak calcium concentration (ms)

Left: Schematic for a ventricular cardiomyocyte.

Right: Experimental calcium vs. simulated data from MATLAB, Both plots show calcium vs. time (non-dimensionalized).

Progress: Experimental Data from 6 Single-Cell Ventricular Cardiomyocytes

Figure A

A1: Graphical representation of these kinetic parameter values including their standard deviations (SD).

A2: Table of experimental kinetic parameter values extracted from cells being paced at 0.5 Hz.

Figure B(a-d): Summary of simulated kinetic parameter values at various stimuli (0.5, 1, and 2 Hz).

Figure A

A2		Average	Std. Dev (SD)	SEM	Coefficient of Variation (CV)	Ba Dia[Ca ²⁺] _i (μM)	B <i>b</i> Sys[Ca ²⁺] _i (μM)
	time-to-peak	809.57085	155.9849908	63.680606	0.192676145	0.08	0.3
(n=6)	rt50%	1150.071367	187.7314391	76.641039	0.1632346	0.04 -	0.2
Cyt (38)	sys	4.7482	2.984686168	1.218493	0.628593186	0.5 Hz 1 Hz 2Hz	0 0.5 Hz 1 Hz 2 Hz
	dia	1.020216667	0.065839538	0.0268789	0.064534858		
						Bc time-to-peak (ms)	Bd RT ₅₀ (ms)
	time-to-peak	905.9146	127.9804683	52.247807	0.141272111	160]	1200
(n=6)	rt50%	1196.6	123.3905048	50.373963	0.103117587	120 -	800 -
Nuc (41)	sys	4.27145	1.82478365	0.7449648	0.427204731	40	400 -
	dia	1.08485	0.11425089	0.0466427	0.105314919	0.5 Hz 1 Hz 2 Hz	0 0.5 Hz 1 Hz 2 Hz
	•	•	•	•	,	∃ Hohendar	ner et al., 2014

- •Consolidated data from the 6 cells paced at 0.5 Hz without uncaging of IP3R (see Figure A):
 - •Found the trends are the same as with our simulated data for 0.5 Hz and no intervention (see Figure B).

Figure B

•Planning on plugging these kinetic parameter values in the MATLAB script and running NIMROD O in order to test the developed objective function.

Progress: Parameter Fitting (Pilot) using Nimrod/O

start	Unfinished bests:					
s1	(0.000268804, 1.86541, 0.9, 54.9542, 0.1375, 0.102938)	132.968				
s2	(0.000259828, 1.86554, 0.9, 55, 0.1375, 0.102938)	132.936				

- Ran a "pilot" experiment looking for several global/ local minima. Results from Nimrod/O (above)
 - O Unfinished bests = combinations of the parameter values that are being varied (see table below for the constraints of the parameter space) K- $_{f\text{-}SERCAnuc}$ (SERCAnuc forward mode), K_ $_{r\text{-}SERCAnuc}$ (SERCAnuc reverse mode), ds_ $_{SERCAnuc}$ (density of SERCA in the nuc), $[B_{tot}]_{nuc}$ (Total nuclei Ca(2+) buffer), k_ $_{on_nuc}$ (Ca2+ on-rate const. for nuclei), and k_ $_{off_nuc}$ (Ca2+ on-rate const. for nuclei).
 - Cost using several iterations (of different parameter combinations) Nimrod/O tries to reduce the cost. See equations to the right in this scenario cost = total difference.

```
parameter Kmf_SERCAnuc float range from 0.2214e-03 to 0.2706e-03 points 2;

parameter Kmr_SERCAnuc float range from 1.53 to 1.87 points 2;

parameter ds_NPC float range from 0.9 to 1.1 points 2;

parameter B_tot_nuc float range from 45 to 55 points 2;

parameter kon_nuc float range from 0.1125 to 0.1375 points 2;

parameter koff nuc float range from 0.1029375 to 0.1258125 points 2;
```

RT50=Resting time to 50% calcium relaxation (ms)

ttp=time-to-peak (ms)

Sys=Systolic Calcium Concentration

Dia=Diastolic Calcium Concentration

Exp=Experimental

Sim=Simulated

σ=standard deviation

$$\begin{split} total_{nuc} &= \frac{1}{\sigma_{Sys_{exp}}^2} \left(Sys_{Exp} - Sys_{Sim} \right)^2 + \frac{1}{\sigma_{Dia_{exp}}^2} \left(Dia_{Exp} - Dia_{Sim} \right)^2 \\ &\quad + \frac{1}{\sigma_{RT50_{exp}}^2} \left(RT50_{Exp} - RT50_{Sim} \right)^2 + \frac{1}{\sigma_{ttp_{exp}}^2} \left(ttp_{Exp} - ttp_{Sim} \right)^2 \\ total_{cyt} &= \frac{1}{\sigma_{Sys_{exp}}^2} \left(Sys_{Exp} - Sys_{Sim} \right)^2 + \frac{1}{\sigma_{Dia_{exp}}^2} \left(Dia_{Exp} - Dia_{Sim} \right)^2 \\ &\quad + \frac{1}{\sigma_{RT50_{exp}}^2} \left(RT50_{Exp} - RT50_{Sim} \right)^2 + \frac{1}{\sigma_{ttp_{exp}}^2} \left(ttp_{Exp} - ttp_{Sim} \right)^2 \end{split}$$

 $total\ difference = total_{nuc} + total_{cvt}$

Future Plans

- Will continue fitting various ranges of parameter values after investigating a feasible range of parameters.
- Consider the addition of a sodium buffering equation in the nucleus in order to correct drift within the model.
- Conduct sensitivity analysis after fitting parameters by perturbing the model with a ± 10 , 30, 50, and 100% in key parameters.

Stradbrooke Island and South Bank

Right: Typical sign on the island warning drivers of local wildlife in the area.

Middle: View of the beach atop by the Manta Lodge Left (top): View of the South Bank from the Cultural Center.

Left (bottom): Dinner with fellow UCSD students at Torba, an Eastern European restaurant in South Bank.

Acknowledgements

University of California, San Diego

- Dr. McCulloch, Department of Bioengineering
- Dr. Sukriti Dewan and Britton Boras
- UCSD PRIME Dr. Gabriele Wienhausen and Ms. Teri Simas

University of Queensland

- Dr. David Abramson, Centre of Research Computing
- Timos Kipouros and Blair Bethwaite
- Minh Dinh, Hoang Nguyen, and Minh Huynh

Funding by:

Revelli Family Scholarship
Prime Alumna Haley-Hunter Zinck
National Science Foundation

R.I.P. Dr. Anushka Michailova

In memory of Dr. Michailova... a mother, mentor, and scientist.