Colles semaine 6 : probabilités discrètes (rappels et compléments)

1 Vocabulaire et formules usuels

1.1 Conditionnement

- ▶ Probabilité conditionnelle : interpréter l'énoncé, arbre de probabilités (à bon escient)
- ▶ Formule de conditionnement $\mathbb{P}(A \cap B) = \mathbb{P}(A) \times \mathbb{P}_A(B)$ et retournements
- ▶ Formule des probabilités composées (Exemples en dénombrement : équiprobabilité)

$$\mathbb{P}(A_1 \cap A_2 \cap ... \cap A_n) = \mathbb{P}(A_1) \times \mathbb{P}_{A_1}(A_2) \times ... \times \mathbb{P}_{A_1 \cap ... \cap A_{n-1}}(A_n)$$

Formule de Bayes $\frac{\mathbb{P}_A(B)}{\mathbb{P}_B(A)} = \frac{\mathbb{P}(B)}{\mathbb{P}(A)}$

1.2 La formule des probabilités totales

Système complet d'événements

(principe de la disjonction des cas)

*) deux-à-deux incompatibles :

$$A_i \cap A_j = \emptyset$$
, pour $i \neq j$

 \star) collectivement exhaustifs:

$$A_1 \cup A_2 \cup \ldots \cup A_n = \Omega$$

 Formule des probabilités totales qui décompose E dans le système complet :

Reconnaître une situation Markovienne 1.3

Pour une suite d'expérience consécutives, savoir, le cas échéant :

- Identifier les états possibles
- Identifier les probabilités de transition
- Faire le graphe de transitions
- Faire la mise en équation par la formule des probabilités totales.
 - Chaîne à deux états

2 Répétition d'épreuves de Bernoulli (le processus de Bernoulli)

Description de l'expérience

Épreuve à 2 issues : Échec / Succès \rightsquigarrow v.a. $\epsilon_1 \dots \epsilon_n \dots \hookrightarrow \mathcal{B}(p)$ mutuellement indépendantes

- ightharpoonup Le nombre de succès après n épreuves
 - $X_n = \sum_{k=1}^n \epsilon_k \hookrightarrow \mathcal{B}(n,p)$ (loi binomiale), formule $\mathbb{P}(X_n = k) = \binom{n}{k} p^k q^{n-k}$ et interprétation.
- ▶ Thèmes connexes : coefficients binomiaux, binôme de Newton, espérance, variance
- Le rang d'apparition du premier succès $T=\min\{k\geqslant 1|\epsilon_k=1\}$ de loi $\mathcal{G}(p)$

3 Les questions de cours

1. La formule des probabilités totales

2. Plan d'étude d'une suite arithmético-géométrique

3. Loi de $X \hookrightarrow \mathcal{B}(n,p)$: son expression et calcul de $\sum_{k=0}^{n} \mathbb{P}(X=k)$

4. Développer $(a+b)^n$, pour n=1,2,3,4. Expression de $\binom{n}{0}$, $\binom{n}{1}$, $\binom{n}{2}$, $\binom{n}{3}$

5. La loi géométrique $\mathcal{G}(p)$ et calcul de $\mathbb{E}[T]$.

