Лабораторная работа 2.

Характеристики линейных систем во временной и частотной областях.

Цель работы - исследование характеристик линейных систем во временной и частотной областях путем моделирования в среде пакета MATLAB.

Общие сведения.

Линейная система с постоянными параметрами (ЛПП-система) преобразует входную последовательность x(n) в выходную y(n). Алгоритм преобразования во временной области может быть описан с помощью разностного уравнения N-го порядка с постоянными коэффициентами для $n \ge 0$:

$$y(n) = \sum_{i=0}^{N-1} b_i \cdot x(n-i) - \sum_{i=1}^{N-1} a_i \cdot y(n-i)$$

Связь между отсчетами входной и выходной последовательности ЛПП-системы можно представить в виде соотношения свертки:

$$y(n) = \sum_{i=0}^{N-1} h(i) \cdot x(n-i) = \sum_{i=0}^{N-1} h(n-i) \cdot x(i)$$

где h(n) - импульсная характеристика системы, представляющая собой реакцию ЛПП-системы на единичный импульс $u_0(n)$, $\{u_0(0)=1, u_0(i)=0 \text{ при } i\neq 0\}$. Для физически реализуемых систем всегда h(n)=0 при n<0; для устойчивых систем, кроме того, всегда ограничена сумма вида $\sum |h(n)|$ или при увеличении n уменьшается |h(n)|.

Импульсная характеристика ЛПП-системы является одной из основных характеристик, описывающих ее поведение во временной области. Она может быть получена путем решения разностного уравнения при нулевых начальных условиях или путем моделирования.

Частотная характеристика ЛПП-системы представляет собой дискретное преобразование Фурье (ДПФ) от импульсной характеристики h(n), имеющей в общем случае бесконечное число отсчетов $-\infty < n < \infty$. Если ограничить размер импульсной характеристики N отсчетами, то выражение для частотной характеристики примет вид:

$$H(e^{j\omega}) = \sum_{n=0}^{N-1} h(n)e^{-j\omega n}$$

Частотная характеристика ЛПП-системы представляет собой периодическую комплексную функцию безразмерной частоты ω с периодом 2π . Для привязки частотной характеристики к реальным частотам необходимо учитывать частоту дискретизации импульсной характеристики f_s или интервал дискретизации Δt . При этом $f_s = 1/\Delta t$. Безразмерная частота $\omega = 2\pi f / f_s$ или с учетом дискретности частоты $\omega_k = 2\pi f_k / f_s$ Период частотной характеристики будет $2\pi f_s$. Отсчеты частотной характеристики следуют с интервалом по частоте $\Delta f = f_s / N$, частота k-того отсчета $f_k = k\Delta f = k f_s / N$, k = 0..N-1. С учетом всего этого флрмула для частотной характеристики примет вид:

$$H_k = \sum_{n=0}^{N-1} h(n)e^{-j2\pi nk/N}$$

Периодичность частотной характеристики позволяет ограничиться рассмотрением ее в пределах одного периода изменения независимой переменной f от 0 до f_s .

Свойства симметрии частотной характеристики, как ДПФ от действительной последовательности: для k=0..N/2-1,:

 $abs(H_k)=abs(H_{N-k});$ $real(H_k)=real(H_{N-k});$ $imag(H_k)=-imag(H_{N-k})..$

позволяют ограничиться рассмотрением H_k в пределах k=0..N/2-1 или f от 0 до $f_s/2$.

Спектр выходной последовательности ЛПП-системы Y_k =ДПФ[y(n)] связан со спектром входной последовательности X_k =ДПФ[x(n)] отображением свертки в частотной области: Y_k = H_k - X_k .

Выходная последовательность y(n) во временной области может быть получена из ее спектра y(n)=ОДПФ (Y_k) =ОДПФ $(H_k\cdot X_k)$, т.е. свертке последовательностей h(n), x(n) во временной области соответствует произведение спектров H_k , X_k в частотной области. Отметим, что в приведенных соотношениях все последовательности имеют одинаковую длину N.

ЛПП-системы в Z-области описывают передаточной функцией H(z)=Y(z)/X(z):

$$H(z) = rac{\displaystyle\sum_{i=0}^{N-1} b_i \cdot Z^{n-i}}{\displaystyle\sum_{i=1}^{N-1} a_i \cdot Z^{n-i}}$$
еобразование от им

которая представляет собой Z-преобразование от импульсной характеристики h(n):

$$H(z) = \sum_{n=0}^{N-1} h(n) \cdot Z^{-n}$$

Очевидна связь между передаточной функцией H(z) и частотной характеристикой H(f):

$$H(f)=H[z=exp(j2\pi f/f_s)].$$

Основные задачи исследования.

В работе предлагается исследовать характеристики линейных систем первого и второго порядков, заданных массивами коэффициентов числителя и знаменателя передаточной функции H(z):

- 1) для системы первого порядка: *B1=[b 0]; A1=[1 a];*
- 2) для системы второго порядка: $B2=[b\ 0\ 0];\ A2=[1\ a_2\ a_3];$

Для каждой из исследуемых систем необходимо получить :

- импульсную характеристику h(n);
- реакцию на единичный скачок *st(n)*;
- реакцию на заданный сигнал x(n);
- частотную характеристику H(k)=ДПФ(h(n));
- спектр входного сигнала X(k)=ДПФ(x(n));
- спектр выходного сигнала $Y(k) = Д \Pi \Phi(y(n))$.

Независимую переменную частотной характеристики $f=k\cdot df$ можно измерять в относительных величинах F=f/fs для любых dt. По результатам исследований необходимо сопоставить характеристики систем для временной и частотной областей.

Рекомендации по составлению программы моделирования.

Для решения линейных разностных уравнений с постоянными коэффициентами в среде пакета MATLAB предусмотрена функция *filter*, обеспечивающая воспроизведение выходной последовательности y(n) по известной входной последовательности x(n) и векторам коэффициентов B,A:y=filter(B,A,x).

Результаты представить в виде графиков:

- во временной области:

clg;

```
subplot(221), plot(x,'g'), title('входной сигнал');
subplot(222), plot(h,'g'), title('импульсная характеристика');
subplot(223), plot(y,'g'), title('выходной сигнал');pause;
```

- в частотной области:

```
subplot(221), plot(abs(X),'g'), title('спектр входного сигнала'); subplot(222), plot(abs(H),'g'), title('частотная характеристика'); subplot(223), plot(abs(Y),'g'), title('спектр выходного сигнала');
```

Порядок выполнения работы.

- 1. Разработать программу, позволяющую формировать характеристики систем во временной и частотной области.
 - получить выходной сигнал с использованием разностного уравнения,
 - получить выходной сигнал с использованием импульсной характеристики,
 - получить выходной сигнал с использованием частотной характеристики.

При этом исходными данными служат: коэффициенты передаточной функции систем первого и второго порядков (b, a, a2, a3); число отсчетов N.

Входной сигнал формируется по данным лабораторной работы 1.

2. Исследовать системы первого и второго порядка с заданными параметрами при различной длине реализации N=(50..200).

Отчет по работе должен содержать программу исследований, графики, выводы по результатами исследований.

Вариант	b	а	a1	a2
1	1.5	-0.8	-1.1	0.6
2	2.5	-0.6	-0.6	0.4
3	4.0	-0.8	-0.8	0.6
4	2.0	-0.6	-0.4	0.4
5	5.0	-0.8	-0.7	0.6

Контрольные вопросы:

- 1. Что такое импульсная и частотная характеристики ЛПП-системы, как они связаны между собой?
- 2. От чего зависит период изменения независимой переменной в частотной характеристике, как можно увеличить разрешающую способность по частоте для частотной характеристики?
 - 3. На что влияет изменение длины последовательности *N*?
- 4. Как можно оценить реальную длину импульсной и частотной характеристик по результатами исследований?