Formelsammlung Lineare Systeme und Regelung

Mario Felder, Michi Fallegger

19. Februar 2014

Inhaltsverzeichnis

1 Einleitung						1	
	1.1	Regell	kreis			. 1	
	1.2	Syster	me			. 2	
2	\mathbf{Sys}	steme und Signale 5					
	2.1	Signal	le			. 5	
		2.1.1	Definition			. 5	
		2.1.2	Einheitssprung			. 5	
		2.1.3	Eigenschaften			. 5	
		2.1.4	Operationen			. 6	
	2.2		me				
		2.2.1	Eigenschaften			. 8	
	2.3	Dirac-	-Delta-Funktion			. 8	
		2.3.1	Ausblendefunktion				
		2.3.2	Verallgemeinerte Ableitung			. 9	

Kapitel 1

Einleitung

1.1 Regelkreis

Merkmale:

- $\bullet\,$ Erfassen der Regelgrösse y
- Vergleich von Führungs- und Regelgrösse
- Angleichen der Regelgrösse an die Führungsgrösse in Wirkungskreis

1.2 Systeme

Signale sind rückwirkungsfrei, also eingeprägte Grössen.

Nr.	Bsp	Klassifikation
1	$y(t) = \cos t \cdot x(t)$	statisch
2	$\frac{dy(t)}{dt} = -\cos(y(t)) + x(t)$ $\frac{dy(t)}{dt} = -y(t) + x(t)$	dynamisch
3		zeitkontinierlich
_ 4	$y((k+1)\tau) = -y(k \cdot \tau) + x(k \cdot \tau)$	zeitdiskret
5	$y(t) = \cos(x(t-\tau))$	kausal
6	$y(t) = \cos(x(t+\tau))$	nicht kausal
7	$\frac{\mathrm{d}y(t)}{\mathrm{d}t} = -3y(t) + x(t)$	zeitinvariant
8	$\frac{\frac{dy(t)}{dt} = -\cos t \cdot y(t) + x(t)}{\frac{dy(t)}{dt} = -y(t) + x(t)}$	zeitvariant
9	$\frac{\mathrm{d}y(t)}{\mathrm{d}t} = -y(t) + x(t)$	linear
10	$\frac{dy(t)}{dt} = -y^2(t) + x(t)$	nicht linear
11	$\frac{\mathrm{d}t}{\mathrm{d}y(t)} = -y(t) + x(t)$	endlich-dimensional
_12	$\frac{\partial \tilde{y}(t)}{\partial t} = -\frac{\partial}{\partial x}y(x,t) + x(t)$	unendlich-dimensional
13	$y(t) = t \cdot \cos^2 t \cdot x(t)$	single input / single output
14	$\begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix} = \begin{bmatrix} -3 & \sin(t) \\ t & -1 \end{bmatrix} \cdot \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$	multiple input / multiple output

Kapitel 2

Systeme und Signale

2.1 Signale

2.1.1 Definition

Ein Signal ist eine (reelle) Funktion:

$$u: \mathbb{R} \to \mathbb{R}$$

2.1.2 Einheitssprung

Der Einheitssprung wird in der Technik oft gebraucht und ist folgendermassen definiert:

$$\sigma := \begin{cases} 1 & \text{für alle } t \ge 0 \\ 0 & \text{für alle } t < 0. \end{cases}$$

Eine weitere Bezeichnung lautet H(t), Heaviside-Funktion.

2.1.3 Eigenschaften

Sprungstelle: Ist eine Funktion u(t) in einem Punkt t_0 definiert aber unstetig, so heisst t_0 eine Sprungstelle von u(t).

Wenn die einseitigen Grenzwerte $\lim_{t \nearrow t_0} u(t)$ und $\lim_{t \searrow t_0} u(t)$ existieren und endlich sind, so heisst die Sprungstelle endlich.

Knickstelle: Ist u(t) in t_0 stetig, aber nicht differenzierbar, so wird t_0 Knickstelle genannt.

sprungstetig: Eine Funktion, die bis auf endliche Sprung- und Knickstellen überall differenzierbar ist, wird sprungstetig genannt.

gerade: Eine Funktion u(t) ist gerade, falls ihr Graph achsensymmetrisch zur u-Achse ist:

$$u(-t) = u(t)$$
 für alle t

ungerade: Eine Funktion u(t) ist ungerade, falls ihr Graph punktxymmetrisch zum Ursprung ist:

$$u(-t) = -u(t)$$
 für alle t

kausale Signale: Dies sind Funktionen, die vor einem Zeitpunkt t_0 Null sind. (Bsp. der Einheitssprung)

beschränkt: Ein Signal u(t) heisst beschränkt, falls u dem Betrage nicht beliebig grosse Werte annimmt:

$$|u(t)| \le M_u$$
 für alle t .

2.1.4 Operationen

Vertärkung / Amplifizierung

Multiplikation mit einer Konstanten:

$$u(t) \to A \cdot u(t)$$

Überlagerung

Addition zweier Signale:

$$(u_1(t), u_2(t)) \to a_1(t) + u_2(t)$$

Zeitliche Verschiebung

Ein Signal wird um die Zeit t_0 verzögert, indem t durch $t-t_0$ ersetzt wird:

$$u(t) \rightarrow u(t-t_0)$$

Zeitliche Reskalierung

Ein Signal wird um den Faktor α zeitlich reskaliert (verlangsamt, gestreckt), indem t durch t/α ersetzt wird:

$$u(t) \to u\left(\frac{t}{\alpha}\right)$$

Allgemein gilt

Jedes sprungstetige Signal u(t) lässt sich mit Hilfe von verschobenen Einheitssprüngen in folgender Form schreiben:

$$u(t) = u_s(t) + A_0 \cdot \sigma(t - t_0) + A_1 \cdot \sigma(t - t_1) + \dots$$

Dabei sind:

- $u_s(t)$ ein stetiges Signal (ohne Sprünge, aber evtl. Knickstellen),
- die Zeiten t_0, t_1, \dots die Sprungstellen von u(t),
- die Zahlen A_0, A_1, \dots die Sprunghöhen zu den Zeiten t_0, t_1, \dots

2.2 Systeme

Ein System ist eine Zuordnungsvorschrift, die eine Funktion u(t) (Eingangssignal) in eine andere Funktion v(t) (Ausganssignal) überführt.

$$\mathcal{H}\left\{u(t)\right\} = v(t)$$

2.2.1 Eigenschaften

Linear

Ein System ist linear, wenn die folgenden beiden Eigenschaften gelten:

 Das System antwortet auf ein amplifiziertes Eingangssignal mit der Verstärkung des Ausgangssignals um den gleichen Faktor:

$$\mathcal{H}\left\{A \cdot u(t)\right\} = A \cdot \mathcal{H}\left\{u(t)\right\} = A \cdot v(t)$$

für jedes Eingangssignal u(t) und jede Konstante $A \in \mathbb{R}$

• Das Syastem antwortet auf eine Überlagerung zweier Signale mit der Überlagerung der beiden Ausgangssignale

$$\mathcal{H}\left\{u_1(t) + u_2(t)\right\} = \mathcal{H}\left\{u_1(t)\right\} + \mathcal{H}\left\{u_2(t)\right\} = v_1(t) + v_2(t)$$

für zwei beliebige Eingangssignale $u_1(t), u_2(t)$.

Zusammengefasst:

$$\mathcal{H}\left\{A_1 \cdot u_1(t) + A_2 \cdot u_2(t)\right\} = A_1 \cdot v_1(t) + A_2 \cdot v_2(t)$$

Zeitinvariant

Ein System ist zeitinvariant, wenn es auf ein Signal immer gleich regiert, egal zu welcher Zeit man das System mit einem Signal stimuliert:

$$\mathcal{H}\left\{u(t-t_0)\right\} = v(t-t_0)$$

2.3 Dirac-Delta-Funktion

Die Dirca-Delta-Funktion ist definiert als Ableitung des Einheitssprungs:

$$\delta(t) = \frac{\mathrm{d}\sigma}{\mathrm{d}t}$$

Sie hat Punktweise folgende Werte:

$$\delta(t) = \begin{cases} 0 & \text{für } t \neq 0 \\ \infty & \text{für } t = 0. \end{cases}$$

Es sollte jedoch nur unter dem Integral gerechnet werden:

$$\int_{-\infty}^{\infty} \delta(t) dt = 1$$

2.3.1 Ausblendefunktion

Ist die Funktion u(t) an der Stelle t_0 stetig, so gilt:

$$\int_{-\infty}^{\infty} u(t) \cdot \delta(t - t_0) dt = u(t_0)$$

oder:

$$u(t) \cdot \delta(t - t_0) = u(t_0) \cdot \delta(t - t_0)$$

2.3.2 Verallgemeinerte Ableitung

Es ist definiert:

$$\frac{\mathrm{d}}{\mathrm{d}t}(A \cdot \sigma(t - t_0)) := A \cdot \delta(t - t_0)$$