Types and λ -calculus

Additional Problem on (Un)Decidability

- 1. For each of the following, is it decidable? Justify your answer.
 - (a) The property of reducing to a numeral, i.e. $\{M \in \Lambda \mid \exists n \in \mathbb{N}. M >^* n\}$.
 - (b) The property of being normal, i.e. $\{M \in \Lambda \mid M \text{ is in normal form}\}$.
 - (c) The set $\{M \in \Lambda \mid M \approx \text{div and } M \text{ normalising} \}$.

Solution -

- (a) No. This set is nontrivial since it contains $\underline{1}$ and it does not contain $\underline{\text{div}}$. It is behavioural too. To see this, suppose M is in the set and $M \approx N$. Then there is some n such that $N \approx M \approx \underline{n}$. Since \underline{n} is a normal form, in fact $N \vartriangleright^* \underline{n}$. Therefore, N is also in the set. Hence, undecidability follows from the Scott-Curry Theorem.
- (b) Yes. The normal forms are terms that do not contain a redex. We can easily write a parser for terms that additionally checks whether or not they contain a redex.
- (c) Yes. We claim that there is no term M that is convertible with $\underline{\operatorname{div}}$ and yet normalising. To see, this, suppose for contradiction that there is some term M that is normalising and convertible with $\underline{\operatorname{div}}$. Since M is normalising, it has some normal form N. Therefore, $M \approx N$ and hence $N \approx \underline{\operatorname{div}}$. Since N is a normal form, it must be that $\underline{\operatorname{div}} \rhd^* N$. Therefore, $\underline{\operatorname{div}}$ has a normal form. However, the only reducts of $\underline{\operatorname{div}}$ are $\underline{\operatorname{div}}$ and $\underline{\operatorname{id}}$ $\underline{\operatorname{div}}$, neither of which are normal forms: contradiction. Hence, the given set is empty, and membership can be decided by the function that returns 0 on every input.