"Mean Value Coordinates for Closed Triangular Meshes"

Scott Schaefer, Tao Ju, Joe Warren (Rice University)
Presented in SIGGRAPH'2005

Outline

- Abstract
- Preliminaries
- Previous work
- Mean value Interpolation
- 3D Mean value coordinates for closed triangular meshes
- Applications
- Questions

Abstract

- Search for a function that can interpolate a set of values at the vertices of a finesh smoothly into its interior
- Mean value coordinates have been used as an interpolant for closed 2D polygons.

Abstract

- This paper generalizes the mean value coordinates to closed triangular meshes
- Interesting applications to surface deformation and volumetric textures

Mean Value Theorem

Wikipedia :

For any function that is continuous on [a, b] and differentiable on (a, b) there exists some c in the interval (a, b) such that the **secant** joining the endpoints of the interval [a, b] is parallel to the **tangent** at c.

Harmonic functions and Mean Value property

A harmonic function is twice continuously differentiable function f: U->R which satisfies the laplace's equation

$$\frac{\partial^2 f}{\partial x_1^2} + \frac{\partial^2 f}{\partial x_2^2} + \dots + \frac{\partial^2 f}{\partial x_n^2} = 0$$

everywhere on U. This is also often written as

$$abla^2 f = 0$$
 or $\Delta f = 0$.

Harmonic functions and Mean Value property

- They attain there maxima/minima only at the boundaries.
- Let B(x,r) be a ball with center x and radius r, contained totally in U,

Harmonic functions and Mean Value property

$$\qquad \qquad \text{Then,} \qquad u(x) = \frac{1}{\omega_n r^{n-1}} \oint_{\partial B(x,r)} u \, dS = \frac{n}{\omega_n r^n} \int_{B(x,r)} u \, dV$$

where ω_n is the surface area of the unit sphere in n dimensions.

Barycentric Coordinates (Mobius, 1827)

■ Given v find weights w_i such that

$$v = \frac{\sum_{i} w_{i} p_{i}}{\sum_{i} w_{i}}$$

 $\frac{w_i}{\sum_j w_j}$ are barycentric coordinates

Boundary Value Interpolation

Given p_i compute w_i such that

$$\mathbf{v} = \frac{\sum_{i} \mathbf{w}_{i} \mathbf{p}_{i}}{\sum_{i} \mathbf{w}_{i}}$$

Boundary Value Interpolation

Given p_i , compute w_i such that

$$\mathbf{v} = \frac{\sum_{i} \mathbf{w}_{i} \mathbf{p}_{i}}{\sum_{i} \mathbf{w}_{i}}$$

Given values f_i at p_i , construct a function

$$\hat{f}[v] = \frac{\sum_{i} w_{i} f_{i}}{\sum_{i} w_{i}}$$

Interpolates values at vertices

Linear on boundary

Boundary Value Interpolation

Given p_i , compute w_i such that

$$\mathbf{v} = \frac{\sum_{i} \mathbf{w}_{i} \mathbf{p}_{i}}{\sum_{i} \mathbf{w}_{i}}$$

Given values f_i at p_i , construct a function

$$\hat{f}[v] = \frac{\sum_{i} w_{i} f_{i}}{\sum_{i} w_{i}}$$

Interpolates values at vertices

Linear on boundary

Smooth on interior

Previous work: Wachpress's solution (1975)

Star-shaped polygon.

weights
$$\lambda_1, \ldots, \lambda_k \geq 0$$

$$\sum_{i=1}^{k} \lambda_i v_i = v_0, \quad \sum_{i=1}^{k} \lambda_i = 1$$

$$\lambda_i = \frac{w_i}{\sum_{i=1}^k w_i}, \qquad w_i = \frac{A(v_{i-1}, v_i, v_{i+1})}{A(v_{i-1}, v_i, v_0)A(v_i, v_{i+1}, v_0)} = \frac{\cot \gamma_{i-1} + \cot \beta_i}{||v_i - v_0||^2}$$

Barycentric coordinates for arbitrary polygons in the plane

$$A_i(v), \qquad -B_i(v), \qquad A_{i-1}(v)$$

$$A_i(v)(v_{i-1}-v) - B_i(v)(v_i-v) + A_{i-1}(v)(v_{i+1}-v) = 0$$
 (Coxeter, 1969)

define

$$w_i(v) = b_{i-1}(v)A_{i-2}(v) - b_i(v)B_i(v) + b_{i+1}(v)A_{i+1}(v)$$

weight functions $b_i: \mathbb{R}^2 \to \mathbb{R}$ can be chosen arbitrarily

$$b_i(v) = \frac{||v_i - v||}{A_{i-1}(v)A_i(v)} \qquad \text{guarantee} \ \sum_{i=1}^n w_i(v) \ \neq \ 0 \ \text{for any} \ v \ \in \ {\rm I\!R}^2$$

$$\frac{w_i(v)}{2} = \frac{\tan(\alpha_{i-1}(v)/2) + \tan(\alpha_i(v)/2)}{r_i(v)} \tag{Hormann 2004}$$

Floater: Mean Value Coordinates

$$\lambda_i = \frac{w_i}{\sum_{j=1}^k w_j}, \qquad w_i = \frac{\tan(\alpha_{i-1}/2) + \tan(\alpha_i/2)}{||v_i - v_0||}$$

- These weights were derived by application of mean value theorem for harmonic functions.
- They depend smoothly on the vertices

convex polygons [Wachspress 1975]

closed polygons [Floater 2003, Hormann 2004]

convex polygons [Wachspress 1975]

closed polygons [Floater 2003, Hormann 2004]

convex polygons [Wachspress 1975]

closed polygons [Floater 2003, Hormann 2004]

convex polygons [Wachspress 1975]

closed polygons [Floater 2003, Hormann 2004]

convex polygons [Wachspress 1975]

3D convex polyhedra [Warren 1996, Warren et al 2004]

closed polygons [Floater 2003, Hormann 2004]

3D closed triangle meshes [Floater et al (to appear in CAGD)]

Continuous Barycentric Coordinates

Discrete

$$\hat{f}[v] = \frac{\sum_{i} w_{i} f_{i}}{\sum_{i} w_{i}}$$

Continuous

$$\hat{f}[v] = \frac{\int_{x} w[x,v] f[x] dx}{\int_{x} w[x,v] dx}$$

Continuous Barycentric Coordinates

Discrete

$$\hat{f}[v] = \frac{\sum_{i} w_i f_i}{\sum_{i} w_i}$$

Continuous

$$\hat{f}[v] = \frac{\int_{x} w[x, v] f[x] dx}{\int_{x} w[x, v] dx}$$

$$\hat{f}[v] = \frac{\int_{x} \frac{f[x]}{|p[x] - v|} dS_{v}}{\int_{x} \frac{1}{|p[x] - v|} dS_{v}}$$

- Continuous form of mean value coordinates
- Consider evaluation of the numerator

Project the function f[x] onto the boundary of this circle

$$\hat{f}[v] = \frac{\int_{x} \frac{f[x]}{|p[x] - v|} dS_{v}}{\int_{x} \frac{1}{|p[x] - v|} dS_{v}}$$

 Integrate the projected function divided by (p[x]-v) over the circle S_v and then normalize.

$$\hat{f}[v] = \frac{\int_{x} \frac{f[x]}{|p[x] - v|} dS_{v}}{\int_{x} \frac{1}{|p[x] - v|} dS_{v}}$$

Generates smooth function Interpolates boundary

Reproduces linear functions

$$\hat{f}[v] = \frac{\int_{x} \frac{f[x]}{|p[x] - v|} dS_{v}}{\int_{x} \frac{1}{|p[x] - v|} dS_{v}}$$

Generates smooth function
Interpolates boundary
Reproduces linear functions

$$\hat{f}[v] = \frac{\int_{x} \frac{f[x]}{|p[x] - v|} dS_{v}}{\int_{x} \frac{1}{|p[x] - v|} dS_{v}}$$

Generates smooth function
Interpolates boundary
Reproduces linear functions

Relation to Discrete Coordinates

MV coordinates → closed-form solution of continuous interpolant for piecewise linear shapes

Discrete

Continuous

Relation to Discrete Coordinates

MV coordinates →closed-form solution of continuous interpolant for piecewise linear shapes

Discrete

Continuous

Find weigths w_i which allow us to represent any v as a weighted combination of the vertices of a closed triangular mesh and satisfy mean value interpolation

$$v = \frac{\sum_{i} w_{i} p_{i}}{\sum_{w}} \longrightarrow \sum_{i} w_{i}(p_{i} - v) = 0$$

- Given a triangular mesh and a vertex v in its interior
- Consider a unit sphere centered at vertex v

- Project the mesh onto the surface of the sphere
- Planar triangles -> spherical triangles

Define m as the mean vector = integral of unit normal over spherical triangle

3D Mean Value Coordinates

Given m, represent it as a weighted combination of the vertex v to the vertices p_k of the triangle

$$m = \sum_{k=1}^{3} w_k (p_k - v)$$

3D Mean Value Coordinates

$$m = \sum_{k=1}^{3} w_k (p_k - v)$$

Stokes' Theorem $\sum_{j} m_{j} = 0$

$$\sum_{i} w_{i}(p_{i} - \mathbf{v}) = \mathbf{0}$$

Given spherical triangle, compute mean vector m (integral of unit normal)

Given spherical triangle, compute mean vector m (integral of unit normal)

v.

Given spherical triangle, compute mean vector m (integral of unit normal)

Build wedge with face normals n_k

Given spherical triangle, compute mean vector m (integral of unit normal)

Build wedge with face normals n_k

Apply Stokes' Theorem,

$$\sum_{k=1}^{3} \frac{1}{2} \theta_k n_k + m = 0$$

Interpolant Computation

Compute mean vector

$$\sum_{k=1}^{3} \frac{1}{2} \theta_k n_k + m = 0$$

Interpolant Computation

Compute mean vector

$$\sum_{k=1}^{3} \frac{1}{2} \theta_k n_k + m = 0$$

Calculate weights

$$w_k = \frac{n_k \cdot m}{n_k \cdot (p_k - v)}$$

Interpolant Computation

Compute mean vector

$$\sum_{k=1}^{3} \frac{1}{2} \theta_k n_k + m = 0$$

Calculate weights

$$w_k = \frac{n_k \cdot m}{n_k \cdot (p_k - v)}$$

Sum over all triangles

$$\hat{f}[v] = \frac{\sum_{j} \sum_{k=1}^{3} w_{k}^{j} f_{k}^{j}}{\sum_{j} \sum_{k=1}^{3} w_{k}^{j}}$$

Implementation Considerations

Special cases

v on boundary

Numerical stability

- Small spherical triangles
- Large meshes

Pseudo-code provided in paper

Applications Boundary Value Problems

Applications Solid Textures

Control Mesh	Surface	Computing Weights	Deformation
216 triangles	30,000 triangles	1.9 seconds	0.03 seconds

Control Mesh	Surface	Computing Weights	Deformation
216 triangles	30,000 triangles	1.9 seconds	0.03 seconds

Real-time!

Control Mesh	Surface	Computing Weights	Deformation
98 triangles	96,966 triangles	3.3 seconds	0.09 seconds

Summary

Integral formulation for closed surfaces
Closed-form solution for triangle meshes

- Numerically stable evaluation

Applications

- Boundary Value Interpolation
- Surface Deformation

Thank You

Questions?