

HOW TO REPRESENT A SOLUTION

KNAPSACK PROBLEM

HOW TO REPRESENT A KNAPSACK SOLUTION

- A vector where each position represents an object to be placed in the knapsack.
- The value of each element is $x_i = \begin{cases} 1, & \text{the object is placed in the knapsack,} \\ 0, & \text{otherwise.} \end{cases}$

i	1	2	3	4	5
$\overline{x_i}$	1	0	0	1	0

PARALLEL MACHINE PROBLEM

HOW TO REPRESENT A PARALLEL MACHINE SOLUTION

- ▶ Establishes a solution structure *job*:
 - ▶ *job* . *index* represents the index of the job.
 - ▶ job . makespan represents the makespan of the job.

• 1	Index	8
job =	Makespan	10

HOW TO REPRESENT A PARALLEL MACHINE SOLUTION

- ▶ Ensure the problem definition:
 - ▶ Each job must be performed on only one machine
 - ▶ Each machine must perform only one job at a time
- Example: a problem with 2 machines and 5 jobs

ullet For each machine, the solution should be represented as a vector of structures job, ordered in the processing sequence.

VEHICLE ROUTING PROBLEM

HOW TO REPRESENT A VEHICLE ROUTING SOLUTION

- Establishes a solution structure *location*:
 - ▶ *location* . *index* represents the index of the pace to be visited.
 - ▶ *location* . *instant* represents the instant when the location was visited.

HOW TO REPRESENT A PARALLEL MACHINE SOLUTION

- ▶ Ensure the problem definition:
 - ▶ Each location must be visted
- ▶ Example: a problem with 2 machines and 5 jobs

▶ The solution should be represented as a vector of structures *location*, ordered in the sequence visited by the vehicle.