Information-Theoretic Measures of Aggregation for the Analysis of Complex Systems

Robin Lamarche-Perrin¹, Yves Demazeau², and Jean-Marc Vincent³

Laboratoire d'Informatique de Grenoble ¹Université de Grenoble, ²CNRS, ³Université Joseph Fourier

Notion of Aggregation

Aggregation (or generalization) consists in loosing information in order to generate macroscopic points of view

How to measure and compare aggregations?

What do we Gain?

Shannon Entropy

Measures the quantity of information needed to encode a set of data

$$H = -\sum_{x} p(x) \log_2(p(x))$$

Entropy Gain

Measures the quantity of information reduced by the aggregation

$$G = H_{micro} - H_{macro}$$

High entropy

What do we Lose?

Information Loss

Measures the quantity of information needed to disaggregate a set of data

$$L = \sum_{y} p(y) \log_2 |y|$$

K.-L. Divergence

Measures the quantity of information that differs between two sets of data

$$D = -\sum_{x} p(x) \log_2 \left(\frac{p(y)}{p(x)|y|} \right)$$

High divergence

Low divergence

Which Trade-Off?

Information Criterion

Measures a trade-off between what we gain and what we lose

$$C = G - D$$

Parametric Criterion

$$C_p = pG - (1 - p)D$$

 $p = 0 \rightarrow \text{No aggregation at all}$

 $p = \frac{1}{2} \rightarrow \text{Aggregation iff } G > D$

 $p = \bar{1} \rightarrow \text{Maximal aggregation}$

Territorial Aggregations

The GEOMEDIA Project (in collaboration with the CIST, Paris)

Project: building a platform for the global analysis of media information Data: newspaper articles, demographic data, economic data **Aggregations:** by states, by dates, by actors, by topics, *etc.*

What is the best geographical level for a given analysis?

Which aggregates are the most meaningful for a given analysis?

Processes Aggregations

The TRIVA Software

Project: building tools for the analysis of large-scale distributed systems Data: data flows, communications,

computing powers, internal states

Lamarche-Perrin, Vincent, Demazeau. Informational Measures of Aggregation for Complex Systems Analysis. Reseach Report RR-LIG-026, LIG, France, May 2012.

Clusters level