

DSI-SRI-MCW

Présenté par: Mme. BENAZZOU Salma

6 points | Exercice 1:

1,5

1

On considère la matrice :

$$A = \begin{pmatrix} 7 & 2 \\ -4 & 1 \end{pmatrix}.$$

- 0.5 | 1.a- Calculer les valeurs propres λ_1 et λ_2 de A telles que $\lambda_1 < \lambda_2$.
- b- Déterminer la base $B = (u_1, u_2)$ de vecteurs propres de A , avec :

$$u_1(1, \bullet)$$
 et $u_2(\bullet, 1)$

- 2. En déduire qu'il existe une matrice inversible P et une matrice diagonale D telles que $A = PDP^{-1}$, calculer P^{-1} .
- 1,5 3. Exprimer, pour tout entier naturel n , A n sous forme de tableau matriciel.
 - 4. Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles définies par :

$$\begin{cases} u_0 = 1 \\ v_0 = 1 \end{cases} \text{ et pour tout entier naturel } n, \begin{cases} u_{n+1} = 7 \ u_n + 2 \ v_n \\ v_{n+1} = -4 \ u_n + v_n \end{cases}$$

- 0,5 a- On note $X_n = \begin{bmatrix} u_n \\ v_n \end{bmatrix}$. Exprimer X_{n+1} en fonction de A et de X_n .
 - b- En déduire l'expression, pour tout entier naturel $\mathcal H$, de $\mathcal U_{\mathcal H}$ et de $\mathcal V_{\mathcal H}$ en fonction de $\mathcal H$.

1-a-Calculer les valeurs propres de A

On a A=
$$\begin{pmatrix} 7 & 2 \\ -4 & 1 \end{pmatrix}$$

P(λ)=Det(A- λ I)= $\begin{vmatrix} 7 - \lambda & 2 \\ -4 & 1 - \lambda \end{vmatrix}$ =(7 - λ)(1 - λ)-2× (-4)
= 7-7 λ - λ + λ ²+8= λ ²-8 λ +15
 Δ =(-8)²-4.(15)=4=2²
 λ 1= $\frac{8-2}{2}$ =3 et λ 2= $\frac{8+2}{2}$ =5
Alors les valeurs propres sont 3 e et 5

Si
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Alors Det $A = ad-bc$

b-Déterminer la base B=(u1,u2) de vecteurs propres tel que u1=(1, .) et u2=(.,1)

	a Beterminer in success (ar, az) de vecteurs propres ter que ar (1,1) et az (1,1)		
	u1=(1, x)	u2=(y ,1)	
	On a u1 est vecteur propre associé à la valeur propre λ1	On a u2 est vecteur propre associé à la valeur propre λ2	
	donc A $u1 = \lambda 1 u1$	$donc A u2 = \lambda 2 u2$	
	Alors $\binom{7}{-4} \binom{2}{1} \binom{1}{x} = 3 \binom{1}{x}$	Alors $\begin{pmatrix} 7 & 2 \\ -4 & 1 \end{pmatrix} \begin{pmatrix} y \\ 1 \end{pmatrix} = 5 \begin{pmatrix} y \\ 1 \end{pmatrix}$	
	$\begin{pmatrix} 1 \\ x \end{pmatrix} = 3 \begin{pmatrix} 1 \\ x \end{pmatrix}$	$\begin{pmatrix} y \\ 1 \end{pmatrix} = 5 \begin{pmatrix} y \\ 1 \end{pmatrix}$	
	$\begin{pmatrix} 7 & 2 \\ -4 & 1 \end{pmatrix} = 3 \begin{pmatrix} 1 \\ \chi \end{pmatrix}$	$\begin{pmatrix} 1 & -1 \\ -4 & 1 \end{pmatrix} = 5 \begin{pmatrix} 1 \\ 1 \end{pmatrix}$	
	Donc $\binom{7+2x}{-4+x} = \binom{3}{3x}$	$Donc \binom{7y+2}{-4y+1} = \binom{5y}{5}$	
	Alors $\begin{cases} 7 + 2x = 3 \\ -4 + x = 3x \end{cases}$ Donc $\begin{cases} 2x = 3 - 7 = -4 \\ -4 + x = 3x \end{cases}$	Alors $\begin{cases} 7y + 2 = 5y \\ -4y + 1 = 5 \end{cases}$ Donc $\begin{cases} 7y + 2 = 5y \\ -4y = 4 \end{cases}$	
	Alors $\begin{cases} x = -2 \\ -4 + (-2) = 3(-2)(verifiée) \end{cases}$	Alors $\begin{cases} 7(-1) + 2 = 5(-1)(V \acute{e}rifi\acute{e}e) \\ y = -1 \end{cases}$	
	Alors $u1=(1, -2)$	Alors $u2=(-1, 1)$	
6			

$$D = \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix} \text{ ou } D = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$$

- On dit qu'un endomorphisme f de Rⁿ ou une matrice A est diagonalisable s'il existe une base de Rⁿ dans laquelle la matrice de f est diagonale.
- Les colonnes de la matrice de passage sont exactement les vecteurs propres
- Les éléments de la diagonale de D sont les valeurs propres

2-En déduire qu'il existe une matrice inversible P et une matrice diagonale D tel que A=PD P^{-1} . Calculer P^{-1}

La matrice A admet 2 valeurs propres distincts dans R² donc A et diagonalisable et on a

$$P = \begin{pmatrix} 1 & -1 \\ -2 & 1 \end{pmatrix} D = \begin{pmatrix} 3 & 0 \\ 0 & 5 \end{pmatrix}$$
Tel que A=PD P^{-1} ou D= P^{-1} AP

Si A=PD
$$P^{-1}$$

Alors P^{-1} AP = P^{-1} PD P^{-1} P
 P^{-1} AP = D (Car P^{-1} P=I)
Calcul de P^{-1} : méthode de déterminant
 $P^{-1} = \frac{1}{\det p} \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix}$ et det P= 1-2 = -1
 $P^{-1} = \begin{pmatrix} -1 & -1 \\ -2 & -1 \end{pmatrix}$

Soit
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 une matrice carrée de taille 2×2. Si $det(A)$ =ad-bc≠0 alors A est inversible et

on a : A⁻¹=
$$\frac{1}{ad-bc}\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

- On dit qu'un endomorphisme f de Rⁿ ou une matrice A est diagonalisable s'il existe une base de Rⁿ dans laquelle la matrice de f est diagonale.
- Les colonnes de la matrice de passage sont exactement les vecteurs propres
- Les éléments de la diagonale de D sont les valeurs propres

3 – Calculer A^n

On a A=PD
$$P^{-1}$$

$$A^{n} = P D^{n} P^{-1}$$

$$D^{n} = \begin{pmatrix} 3^{n} & 0 \\ 0 & 5^{n} \end{pmatrix}$$

$$\begin{pmatrix} 3^{n} & 0 \\ 0 & 5^{n} \end{pmatrix}$$

$$P D^{n} = \begin{pmatrix} 1 & -1 \\ -2 & 1 \end{pmatrix} \qquad \begin{pmatrix} 3^{n} & -5^{n} \\ -2.3^{n} & 5^{n} \end{pmatrix}$$

$$\begin{pmatrix} -1 & -1 \\ -2 & -1 \end{pmatrix}$$

$$P D^{n} P^{-1} = \begin{pmatrix} 3^{n} & -5^{n} \\ -2.3^{n} & 5^{n} \end{pmatrix}$$

$$\begin{pmatrix} -3^n + 2.5^n & -3^n + 5^n \\ 2.3^n - 2.5^n & 2.3^n - 5^n \end{pmatrix}$$

4 –a-Exprimer X_{n+1} en fonction de A et de X_n

Le système est :
$$\begin{cases} U_{n+1} = 7Un + 2Vn \\ V_{n+1} = -4Un + Vn \end{cases}$$
Avec $Xn = \begin{pmatrix} Un \\ Vn \end{pmatrix}$ et $X0 = \begin{pmatrix} U0 \\ V0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

La forme matricielle associé au système est :

$$\begin{pmatrix} U_{n+1} \\ V_{n+1} \end{pmatrix} = \begin{pmatrix} 7 & 2 \\ -4 & 1 \end{pmatrix} \begin{pmatrix} Un \\ Vn \end{pmatrix}$$

Alors Xn+1 = A. Xn

Tout d'abord montrer que $Xn = A^n Xo$ (Démonstration par récurrence)

- Pour n=0 on a X0= A^0 Xo (c'est vrai par A^0 =I)
- Supposons que $Xn = A^n Xo$ et montrons que $Xn + 1 = A^{n+1} Xo$

D'après la question précédente on a X_{n+1} =A. Xn

Et d'après l'hypothèse de récurrence, on a $Xn = A^n Xo$

Alors
$$X_{n+1}$$
=A. A^n Xo = A^{n+1} Xo

Alors pour tout entier n on a $Xn = A^n Xo$

Donc
$$\binom{Un}{Vn} = \begin{pmatrix} -3^n + 2.5^n & -3^n + 5^n \\ 2.3^n - 2.5^n & 2.3^n - 5^n \end{pmatrix} \binom{1}{1} = \begin{pmatrix} -3^n + 2.5^n + (-3^n) + 5^n \\ 2.3^n - 2.5^n + 2.3^n - 5^n \end{pmatrix} = \begin{pmatrix} -2.3^n + 3.5^n \\ 4.3^n - 3.5^n \end{pmatrix}$$

Donc Un = $-2.3^n + 3.5^n$ et Vn= $4.3^n - 3.5^n$

- -Montrer que $Xn = A^n Xo$
- -Trouver Xn

National 2014:

Exercice 2:

Considérons la série numérique $\sum_{n\geq 2} u_n$ avec, pour tout entier naturel n:

$$u_n = \frac{\left(-1\right)^n}{\sqrt{n^\alpha + \left(-1\right)^n}} \text{ et } \alpha > 0$$

- 1. a- Donner un équivalent simple de U_n lorsque n tend vers +∞.
 - b- Montrer que $\sum_{n\geq 2} u_n$ est absolument convergente si et seulement si $\alpha > 2$.
 - 2. Supposons que $\alpha = 1$.
 - a- Montrer qu'au voisinage de $+\infty$, on a : $u_n = \frac{(-1)^n}{n^2} \frac{1}{2n^2} + o\left(\frac{1}{\frac{3}{n^2}}\right)$.
 - b- Établir que $\sum_{n\geq 2} \frac{\left(-1\right)^n}{n^{\frac{1}{2}}}$ est une série convergente. (justifier votre réponse)
- 0,5 c- Quelle est la nature de la série numérique $\sum_{n\geq 2} \frac{1}{n^{\frac{3}{2}}}$ (justifier votre réponse).
 - d- En déduire la nature de la série numérique $\sum_{n\geq 2} u_n$.
 - 3. Étudier la convergence de la série numérique : $\sum_{n\geq 2} \frac{(-1)^n}{\sqrt{n^2 + (-1)^n}}$

National 2014:

1-a-Donner un équivalent simple de Un au voisinage de +∞

On a
$$U_n = \frac{(-1)^n}{\sqrt{n^{\alpha} + (-1)^n}}$$

Au voisinage de $+\infty$ on a : $n^{\alpha} + (-1)^n \sim n^{\alpha}$ donc $\sqrt{n^{\alpha} + (-1)^n} \sim \sqrt{n^{\alpha}}$ C'est-à-dire $\frac{1}{\sqrt{n^{\alpha}+(-1)^n}} \sim \frac{1}{\sqrt{n^{\alpha}}}$ par la suite $\frac{(-1)^n}{\sqrt{n^{\alpha}+(-1)^n}} \sim \frac{(-1)^n}{\sqrt{n^{\alpha}}}$

b-Montrons que $\sum_{n\geq 2} Un$ absolument convergente $\Leftrightarrow \alpha > 2$

On a
$$Un \sim \frac{(-1)^n}{\sqrt{n^{\alpha}}}$$

En passant à la valeur absolue $|Un| \sim \frac{1}{\sqrt{n^{\alpha}}}$

 $\sum_{n\geq 2} Un \ absolument \ convergente \Leftrightarrow \sum_{n\geq 2} |Un| \ convergente$

 $\Leftrightarrow \sum_{n \geq 0} \frac{1}{\sqrt{n^{\alpha}}}$ convergente (D'aprés le critére d'equivalence)

 $\Leftrightarrow \sum_{\substack{n \ge 2 \\ \frac{\alpha}{2}}} \frac{1}{n^{\frac{\alpha}{2}}} convergente$ $\Leftrightarrow \frac{\alpha}{2} > 1 \text{ (Serie de Riemann)} \Leftrightarrow \alpha > 2$

 $n\sqrt{n}=$ n. $n^{\frac{1}{2}}=n^{1+\frac{1}{2}}=n^{\frac{3}{2}}$

 $(-1)^n$. $(-1)^n = (-1)^{2n} = 1$

2-a Pour
$$\alpha = 1$$
 on a : $U_n = \frac{(-1)^n}{\sqrt{n + (-1)^n}}$

Montrons qu'au voisinage de
$$+\infty$$
 on $a: U_n = \frac{(-1)^n}{n^{\frac{1}{2}}} - \frac{1}{2n^{\frac{3}{2}}} + o(\frac{1}{n^{\frac{3}{2}}})$

On a
$$U_n = \frac{(-1)^n}{\sqrt{n + (-1)^n}} = \frac{(-1)^n}{\sqrt{n(1 + \frac{(-1)^n}{n})}} = \frac{(-1)^n}{\sqrt{n}} \cdot \frac{1}{\sqrt{1 + \frac{(-1)^n}{n}}}$$

On pose
$$x = \frac{(-1)^n}{n}$$
 (lorsque n tend vers $+\infty$ alors x tend vers 0)

$$\frac{1}{\sqrt{1+\frac{(-1)^n}{n}}} = \frac{1}{\sqrt{1+x}}$$

On a
$$(1+x)^{\alpha} = 1 + \propto x + o(x)$$
 et pour $\alpha = 1/2$ on a $\sqrt{1+x} = 1 + \frac{1}{2}x + o(x)$

$$\frac{1}{\sqrt{1+x}} = \frac{1}{1+\frac{1}{2}x + o(x)} = \frac{1}{1+U} \text{ avec } U = \frac{1}{2}x + o(x)$$

Or
$$\frac{1}{1+U} = 1 - U + o(U)$$
 donc $\frac{1}{\sqrt{1+x}} = \frac{1}{1+\frac{1}{2}x + o(x)} = 1 - \frac{1}{2}x + o(x)$

Donc
$$\frac{1}{\sqrt{1+\frac{(-1)^n}{n}}} = 1 - \frac{(-1)^n}{2n} + o\left(\frac{(-1)^n}{n}\right)$$
 alors $U_n = \frac{(-1)^n}{\sqrt{n}} \cdot \frac{1}{\sqrt{1+\frac{(-1)^n}{n}}} = \frac{(-1)^n}{\sqrt{n}} \left(1 - \frac{(-1)^n}{2n} + o\left(\frac{(-1)^n}{n}\right)\right)$

D'où le résultat:
$$U_n = \frac{(-1)^n}{\sqrt{n}} - \frac{1}{2n\sqrt{n}} + o\left(\frac{1}{n\sqrt{n}}\right) = \frac{(-1)^n}{n^{\frac{1}{2}}} - \frac{1}{2n^{\frac{3}{2}}} + o\left(\frac{1}{n^{\frac{3}{2}}}\right)$$

Si n est pair

$$U_n = \frac{(-1)^n}{\sqrt{n + (-1)^n}} = \frac{1}{\sqrt{n+1}}$$

Je pose $x = \frac{1}{n}$ (lorsque n tend vers $+\infty$, x tend vers 0)

$$U_n = \frac{1}{\sqrt{n+1}} = \frac{1}{\sqrt{\frac{1}{x}+1}} = \frac{1}{\sqrt{\frac{1+x}{x}}} = \frac{\sqrt{x}}{\sqrt{1+x}} = \sqrt{x} \times \frac{1}{\sqrt{1+x}}$$

$$\sqrt{1+x} = 1 + \frac{1}{2}x + o(x)$$

$$\frac{1}{\sqrt{1+x}} = \frac{1}{1 + \frac{1}{2}x + o(x)} = \frac{1}{1+U} \text{ avec } U = \frac{1}{2}x + o(x)$$

$$Or \frac{1}{1+U} = 1 - U + o(U)$$

donc
$$\frac{1}{\sqrt{1+x}} = \frac{1}{1+\frac{1}{2}x+o(x)} = 1 - \frac{1}{2}x + o(x)$$

$$\sqrt{x} \times \frac{1}{\sqrt{1+x}} = \sqrt{x} \times (1 - \frac{1}{2}x + o(x)) = \sqrt{x} - \frac{1}{2}x\sqrt{x} + o(x\sqrt{x})$$

Donc
$$U_n = \frac{1}{n^{\frac{1}{2}}} - \frac{1}{2n^{\frac{3}{2}}} + o(\frac{1}{n^{\frac{3}{2}}})$$

Si n est impair

$$U_n = \frac{(-1)^n}{\sqrt{n + (-1)^n}} = \frac{-1}{\sqrt{n - 1}}$$

Je pose $x = \frac{1}{n}$ (lorsque n tend vers $+\infty$, x tend vers 0)

$$U_n = \frac{-1}{\sqrt{n-1}} = \frac{-1}{\sqrt{\frac{1}{x}-1}} = \frac{-1}{\sqrt{\frac{1-x}{x}}} = \frac{-\sqrt{x}}{\sqrt{1-x}} = -\sqrt{x} \times \frac{1}{\sqrt{1-x}}$$

$$\sqrt{1-x} = 1 - \frac{1}{2}x + o(x)$$

$$\frac{1}{\sqrt{1-x}} = \frac{1}{1 - \frac{1}{2}x + o(x)} = \frac{1}{1+U} \text{ avec } U = -\frac{1}{2}x + o(x)$$

Or
$$\frac{1}{1+U} = 1 - U + o(U)$$

donc
$$\frac{1}{\sqrt{1-x}} = \frac{1}{1-\frac{1}{2}x + o(x)} = 1 + \frac{1}{2}x + o(x)$$

$$-\sqrt{x} \times \frac{1}{\sqrt{1-x}} = -\sqrt{x} \times (1 + \frac{1}{2}x + o(x)) = -\sqrt{x} - \frac{1}{2}x\sqrt{x} + o(x)$$

$$o(x\sqrt{x})$$

Donc
$$U_n = \frac{-1}{n^{\frac{1}{2}}} - \frac{1}{2n^{\frac{3}{2}}} + o(\frac{1}{n^{\frac{3}{2}}})$$

National 2014:

2-b-La nature de
$$\sum_{n\geq 2} \frac{(-1)^n}{n^{\frac{1}{2}}}$$

Je pose Un=
$$\frac{(-1)^n}{\sqrt{n}} = (-1)^n \times \frac{1}{\sqrt{n}}$$
 et Vn= $\frac{1}{\sqrt{n}}$. On a $\lim_{n \to \infty} Vn = \lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0$

- On a Vn+1= $\frac{1}{\sqrt{n+1}}$ or n+1>n donc $\sqrt{n+1} > \sqrt{n}$ (car x $\rightarrow \sqrt{x}$ est croissante)
- Donc $\frac{1}{\sqrt{n+1}} < \frac{1}{\sqrt{n}}$ c'est-à-dire Vn+1<Vn donc (Vn) est décroissante

Alors d'après le critère spécial des séries alternées $\sum_{n\geq 2} \frac{(-1)^n}{\sqrt{n}}$ est convergente

c-La nature de
$$\sum_{n\geq 2} \frac{1}{\frac{3}{n^2}}$$

C'est une série de Riemann avec $\alpha = \frac{3}{2} > 1$ alors elle est convergente

d- La nature de $\sum_{n\geq 2} Un$

On a :
$$U_n = \frac{(-1)^n}{n^{\frac{1}{2}}} - \frac{1}{2n^{\frac{3}{2}}} + o(\frac{1}{\frac{3}{n^2}})$$

$$\sum_{n\geq 2} \frac{(-1)^n}{\sqrt{n}} \text{ est convergente}$$

$$\sum_{n\geq 2} \frac{1}{2n^{\frac{3}{2}}} \text{ est convergente}$$

$$\sum_{n\geq 2} \frac{(-1)^n}{\sqrt{n}}$$
 est convergente

$$\sum_{n\geq 2} \frac{1}{2n^{\frac{3}{2}}}$$
 est convergente

$$0\left(\frac{1}{\frac{3}{n^2}}\right) \text{ est une suite négligeable devant } \frac{1}{n^{\frac{3}{2}}} \text{ donc elle converge (Vn= 0}\left(\frac{1}{\frac{3}{n^2}}\right) \text{ donc lim} \frac{Vn}{\frac{1}{\frac{3}{n^2}}} = 0\right)$$

alors $\sum_{n\geq 2} Un$ est convergente

4- La convergence de la série
$$\sum_{n\geq 2} \frac{(-1)^n}{\sqrt{n^2+(-1)^n}}$$

Je pose Un=
$$\frac{(-1)^n}{\sqrt{n^2+(-1)^n}}$$
= $(-1)^n \times \frac{1}{\sqrt{n^2+(-1)^n}}$ et Vn= $\frac{1}{\sqrt{n^2+(-1)^n}}$. On a $\lim_{n \to \infty} Vn = \lim_{n \to \infty} \frac{1}{\sqrt{n^2+(-1)^n}} = 0$

n pair

$V_n = \frac{1}{\sqrt{n^2+1}}$ et $V_n + 1 = \frac{1}{\sqrt{(n+1)^2+1}}$

- or n+1>n donc (n+1)²>n² (car x $\rightarrow x^2$ est croissante)
- $(n+1)^2 + 1 > n^2 + 1$
- donc $\sqrt{(n+1)^2 + 1} > \sqrt{n^2 + 1}$ (car $x \to \sqrt{x}$ est croissante)

Donc Vn+1<Vn donc (Vn) est décroissante Alors d'après le critère spécial des séries alternées $\sum_{n\geq 2} \frac{(-1)^n}{\sqrt{n^2+1}}$ est convergente

n impair

$$V_n = \frac{1}{\sqrt{n^2 - 1}}$$
 et $V_n + 1 = \frac{1}{\sqrt{(n+1)^2 - 1}}$

- or n+1>n donc (n+1)²>n² (car x $\rightarrow x^2$ est croissante)
- $(n+1)^2 1 > n^2 1$
- donc $\sqrt{(n+1)^2 1} > \sqrt{n^2 1}$ (car $x \to \sqrt{x}$ est croissante)

Donc Vn+1<Vn donc (Vn) est décroissante Alors d'après le critère spécial des séries alternées $\sum_{n\geq 2} \frac{(-1)^n}{\sqrt{n^2-1}}$ est convergente

National 2014

3 points	Exercice 3:	
1+1	Montrer que les intégrales suivantes so	nt convergentes, calculer leurs valeurs :
	$A = \int_0^{+\infty} x e^{-\frac{x}{2}} dx$	
	$B = \int_0^{+\infty} \frac{1}{(x+1)\sqrt{x}} dx$	(On peut poser : $t = \sqrt{x}$)
1	2. Déterminer la nature de l'intégrale suiva	ante: $C = \int_0^1 \frac{\sqrt{x}}{\ln(x+1)} dx$.

1-
$$A = \int_0^{+\infty} x e^{-\frac{x}{2}}$$

Méthode 1: définition

- La fonction $x \rightarrow xe^{-\frac{x}{2}}$ est définie sur $[0, +\infty[$
- Soit $t \in [0, +\infty[$
- Calculons $\int_0^t xe^{-\frac{x}{2}}$ (intégration par partie: technique ALPES)

U=x
$$V'= e^{-\frac{x}{2}}$$

$$V = \frac{e^{-\frac{x}{2}}}{-\frac{1}{2}} = -2 e^{-\frac{x}{2}}$$

$$\int_{0}^{t} xe^{-\frac{x}{2}} = \left[-2xe^{-\frac{x}{2}}\right]_{0}^{t} + 2\int_{0}^{t} e^{-\frac{x}{2}} = \left[-2xe^{-\frac{x}{2}} - 4e^{-\frac{x}{2}}\right]_{0}^{t} = -2te^{-\frac{t}{2}} - 4e^{-\frac{t}{2}} + 4$$

$$A = \int_{0}^{+\infty} xe^{-\frac{x}{2}} = \lim_{t \to +\infty} \int_{0}^{t} xe^{-\frac{x}{2}} = \lim_{t \to +\infty} -2te^{-\frac{t}{2}} - 4e^{-\frac{t}{2}} + 4 = 4$$

Alors A est convergente

Méthode 2: Critére de convergence

Je pose $f(x) = xe^{-\frac{x}{2}}$, On sait que $\lim_{x \to +\infty} x^2 f(x) = \lim_{x \to +\infty} x^2 x e^{-\frac{x}{2}} = \lim_{x \to +\infty} x^3 e^{-\frac{x}{2}} = 0$ Alors d'après le **critère de Riemann** $\alpha = 2 > 1$ donc A est convergente

$$\int e^{ax} = \frac{e^{ax}}{a}$$

$$\lim_{x \to -\infty} x^{\infty} e^{x} = 0$$

$$B = \int_0^{+\infty} \frac{1}{(x+1)\sqrt{x}} dx$$

je pose
$$t = \sqrt{x}$$
 donc $x = t^2$ d $x = 2t$ d t $x = 0$ alors $t = 0$ $x = +\infty$ alors $t = +\infty$
$$\int_0^{+\infty} \frac{1}{(x+1)\sqrt{x}} dx = \int_0^{+\infty} \frac{1}{(t^2+1)t} 2t \, dt = 2 \int_0^{+\infty} \frac{1}{(t^2+1)} \, dt$$
Calculons $\int_0^{+\infty} \frac{1}{(t^2+1)} \, dt = \lim_{a \to +\infty} \int_0^a \frac{1}{(t^2+1)} \, dt$
On a $\int_0^{+\infty} \frac{1}{(t^2+1)} \, dt = \lim_{a \to +\infty} \int_0^a \frac{1}{(t^2+1)} \, dt$

$$\int_0^a \frac{1}{(t^2+1)} \, dt = [\arctan t]_0^a = (\arctan a - \arctan 0) = \arctan a$$

$$\int_0^{+\infty} \frac{1}{(t^2+1)} \, dt = \lim_{a \to +\infty} \int_0^a \frac{1}{(t^2+1)} \, dt = \lim_{a \to +\infty} \arctan a = \frac{\pi}{2}$$
Donc $\int_0^{+\infty} \frac{1}{(x+1)\sqrt{x}} \, dx = 2 \int_0^{+\infty} \frac{1}{(t^2+1)} \, dt = 2. \frac{\pi}{2} = \pi$

2- La nature de C= $\int_0^1 \frac{\sqrt{x}}{\ln(1+x)} dx$

On a $x \rightarrow \frac{\sqrt{x}}{\ln(1+x)}$ est définie sur]0,1]

On sait qu'au voisinage de 0 on a $ln(1+x) \sim x$

Alors $\frac{1}{\ln(1+x)} \sim \frac{1}{x}$ donc $\frac{\sqrt{x}}{\ln(1+x)} \sim \frac{\sqrt{x}}{x}$ c'est-à-dire $\frac{\sqrt{x}}{\ln(1+x)} \sim \frac{1}{\sqrt{x}}$

Or $\int_0^1 \frac{1}{\sqrt{x}} dx$ est convergente (car c'est une intégrale de Riemann $\alpha = 1/2 < 1$

Donc d'après le critère d'équivalence l'intégrale C est convergente

