

Lab Final Quiz Integral Calculus & Differential Equations (MAT120)

Time: 40 minutes, Total Marks: 20

	Name:					
Stu	dent ID: Section:					
	MCQ					
	Marks: 10×1					
1.	Which SymPy function is used to find the numerical value of SymPy expressions? \bigcirc symbols() \bigcirc evalf() \bigcirc subs() \bigcirc solve()					
2.	Which of the following solve the equation: $\sin(2x) - \cos(3x) = 0$ where, $x \in [0, 2\pi]$? \bigcirc sympy.solver() \bigcirc sympy.solveset() \bigcirc sympy.simplify()					
	When Simpson's rule is used to approximate the definite integral, it is necessary that the number of points be — \bigcirc an odd number \bigcirc even number \bigcirc either an even or an odd number \bigcirc a multiple of 3					
	 4. Suppose you need to create a NumPy Array for x in interval [0,1] with step-size, h = 0.1. Which of the following statements generate this? ○ numpy.linspace(0, 1, 0.1) ○ numpy.linspace(0, 1, 0.2) ○ numpy.linspace(0, 1, 10) ○ numpy.linspace(0, 1, 100) 					
5.	5. Which Matplotlib function is used to show the labels of different plots in a graph? O pyplot.show() O pyplot.label() O pyplot.grid() O pyplot.legend()					
6.	6. In trapezoidal method, if the step-size is 0.1 $(h = 0.1)$, order of error of the integral $\int_0^1 x^x dx$ should b $\bigcirc 10^{-1} \bigcirc 10^{-2} \bigcirc 10^{-3} \bigcirc 10^{-4}$					
7.	7. Which one is the correct way to define the dependent variable using sympy for this ODE?					
	$y\frac{dm}{dn} + n^2x = 0$					
	\bigcirc y = sympy.Function('y')(x) \bigcirc m = sympy.Function('m')(x) \bigcirc y = sympy.Function('y')(n) \bigcirc m = sympy.Function('m')(n)					
	8. How many initial conditions are needed in a second-order ordinary differential equation? \bigcirc 1 \bigcirc 2 \bigcirc 3 \bigcirc 4					
9.	Which one is the correct way to use integrate() to solve the integral $\int_0^\infty x^3 e^{-x} dx$? integrate(x*3*exp(-x), (x, oo, 0)) integrate(x**3*exp(-x), (x, 0, oo)) integrate(x*3*exp(-x), (x, 0, oo)) integrate(x**3*exp(-x), (x, oo, 0))					
	Simpson's rule uses —in each sub-interval to approximate the curve. O straight line O parabola O hyperbola O exponential					

Fill in the blanks

11. The following code part tries to solve the linear drag problem: $m\frac{dv}{dt} = mg - qv$. Fill in the gaps with appropriate code parts. (2)

```
import sympy as sp
m, g, q, t = _____
v = _____
dsolve(Eq(m*diff(v), m*g - q*v(t)))
```

12. The following code part tries to solve the ODE $\frac{dv}{dt} = 9.8 - 0.5v^2$ with the initial condition v(0) = 10. (2) Fill in the gaps with appropriate code parts.

Written Part

13. Write down the differential equation and the initial conditions which the following code tries to solve.

(3)

(3)

```
from sympy import *
x = symbols('x')
y = Function('y')(x)
LHS = diff(y,x,2) - 5*diff(y) + 4*y
ode = Eq(LHS, 0)
dsolve(ode, ics = {diff(y).subs(x,0): 10, y.subs(x,1): 0})
```

14. See the table, the function f(x) is continuous on the closed interval [2, 14] and has values as shown the table below. Using three subintervals, what is the approximation of $\int_2^{14} f(x)dx$ found by using the Trapezoid rule?

x	2	6	10	14
f(x)	12	28	34	30