CHAPTER 6:

DIMENSIONALITY REDUCTION

Stella Grasshof

Overview: Dimensionality Reduction

- 1) Intro
- 2) Subset Selection
- 3) Principal Component Analysis (PCA)
 - Feature Embedding
 - SVD and Factorization
 - Factor Analysis (FA)
- 4) Canonical Correlation Analysis (CCA)
- 5) Linear Discriminant Analysis (LDA)
- 6) Multidimensional Scaling (MDS)
- 7) Isomap
- 8) LLE (Locally Linear Embedding)
- 9) Laplacian Eigenmaps

Feature Extraction

Why Reduce Dimensionality?

- Reduces time complexity: Less computation
- Reduces space complexity: Fewer parameters
- Saves the cost of observing the feature
- Simpler models are more robust on small datasets
- More interpretable, simpler explanation
- Data visualization (structure, groups, outliers, etc) if plotted in 2 or 3 dimensions

Recap: Parametric Classification

Result without preprocessing by z-normalization

Recap: Parametric Classification

Result with preprocessing by z-normalization

Feature Selection vs. Extraction

Feature selection:

- □ Choosing K<D important features</p>
- \square ignoring the remaining D-K
 - ⇒ Subset selection algorithms

Feature extraction:

□ Project the original x_d , d = 1,...,D to K < D new dimensions z_k , k = 1,...,K

Subset Selection

- □ Forward search: Add the "best" feature at each step
 - \square Initialize set of features F as empty set \varnothing
 - At each iteration:
 - Find best new feature: $d = \operatorname{argmin}_i \operatorname{Err}(F \cup x_i)$
 - Add x_d to F if $Err(F \cup x_d) < Err(F)$

Problems:

costly, greedy, no guarantee of "best" subset

- □ Backward search:
 - Start with all features and remove one at a time
- Floating search:

not one-by-one, instead: add K, remove M

Iris Dataset

Image credit: Sebastian Raschka

Source:

https://github.com/ChildMindInstitute/pattern-classification-tutorials/blob/master/machine learning/supervised intro/introduction to supervised machine learning.md

Iris Data: Select 1 of 4

Selection Criteria: max accuracy of nearest mean classifier

Iris Data: Select 2 of 4

Selection Criteria: max accuracy of nearest mean classifier

No third feature will be added, because accuracy does not increase

10

Subset Selection

When is it sensible?

- independent features
- Requires some prior knowledge, hence supervised

When is it not sensible?

- e.g. if features are single pixels of an image,
 because pixels of one image are correlated
- => Now: get new features by Feature Extraction

Feature Extraction

Consider high-dimensional data is given, we want:

- Compact representation of the data
- Extract most relevant information

[1] MNIST, wikpedia.org, Josef Steppan [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)]

[2] MathWorks, https://se.mathworks.com/help/stats/visualize-high-dimensional-data-using-t-sne.html

Short Revisit: Multivariate Data

- oxdot Random variable $x \in \mathbb{R}^D$
- \square Expectation value $\ \mathrm{E}[m{x}] = m{\mu} = \left[\mu_1, \dots, \mu_D\right]^\mathrm{T} \in \mathbb{R}^D$

Covariance matrix
$$\Sigma \equiv \left(\begin{array}{cccc} \sigma_1^2 & \sigma_{12} & \dots & \sigma_{1D} \\ \sigma_{21} & \sigma_2^2 & \dots & \sigma_{2D} \\ \vdots & & & \\ \sigma_{D1} & \sigma_{D2} & \dots & \sigma_D^2 \end{array}\right) \in \mathbb{R}^{D \times D}$$

$$\mathbf{\Sigma} \equiv \mathrm{Cov}(\mathbf{x}) = \mathrm{E}[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^T]$$

 \square Data matrix $\mathbf{X} \in \mathbb{R}^{N \times D}$ with N samples

$$\mathbf{X} = \left(\begin{array}{ccc} X_1^1 & X_2^1 & \dots & X_D^1 \\ X_1^2 & X_2^2 & \dots & X_D^2 \\ & \vdots & & & \\ X_1^N & X_2^N & \dots & X_D^N \end{array} \right) \quad \boldsymbol{M} = \left(\begin{array}{c} \widehat{\boldsymbol{\mu}}^{\mathrm{T}} \\ \vdots \\ \widehat{\boldsymbol{\mu}}^{\mathrm{T}} \end{array} \right) \in \mathbb{R}^{N \times D}$$

$$\vdots \\ X_1^N & X_2^N & \dots & X_D^N \end{array} \right) \quad \widehat{\boldsymbol{\Sigma}} = \frac{1}{N} (\boldsymbol{X} - \boldsymbol{M})^{\mathrm{T}} (\boldsymbol{X} - \boldsymbol{M})$$

Short Revisit: Correlation

absolute values of scaled covariance matrix: $|\widehat{m{\Sigma}}|$, $\widehat{m{\Sigma}}=\widehat{m{\Sigma}}^{
m T}$

- Find a low-dimensional space such that:
 when x is projected there,
 "information loss" is minimized
- Find direction of maximum variance
- new directions must be uncorrelated, i.e.
 covariance matrix is diagonal

Idea:

rotate original data

Why would rotating the data tell me more?

- □ Before rotating the data, we must center the data
- Where is the direction of maximum variance?

$$\mathbf{X} \in \mathbb{R}^{N \times D}$$

 $\mathbf{E}[\mathbf{x}] = \boldsymbol{\mu} = [\mu_1, \dots, \mu_D]^{\mathrm{T}} \in \mathbb{R}^D$

- 1. Subtract mean $m{X}-m{M}, \quad m{M}=(\widehat{m{\mu}},\dots,\widehat{m{\mu}})^{\mathrm{T}}\in\mathbb{R}^{N imes D}$
- 2. Compute covariance matrix $\widehat{\boldsymbol{\Sigma}} = \frac{1}{N}(\boldsymbol{X} \boldsymbol{M})^{\mathrm{T}}(\boldsymbol{X} \boldsymbol{M})$
- 3. Compute eigenvectors of covariance matrix

$$\widehat{\Sigma} w_k = \lambda_k w_k, \ k = 1, ..., D, \ \lambda_i \ge \lambda_j, \ i > j$$

$$m{w}_i^{\mathrm{T}} m{w}_j = egin{cases} 1 &, i = j \ 0 &, i
eq j \end{cases}$$

$$[oldsymbol{w}_1,\ldots,oldsymbol{w}_D]=oldsymbol{W}^{ ext{T}}$$

 $oldsymbol{w}_k$ are principal components

$$[\boldsymbol{w}_1,\ldots,\boldsymbol{w}_K] = \boldsymbol{W}_K^{\mathrm{T}}$$

- 4. New variables $oldsymbol{z}_n = oldsymbol{W}^{\mathrm{T}}(oldsymbol{x}_n \widehat{oldsymbol{\mu}})$
- 5. Reconstrution $\widehat{m{x}}_n = m{W}_K m{z}_n + \widehat{m{\mu}}$

 Consider 2D data shall be mapped to 1D

$$\boldsymbol{x}_n \in \mathbb{R}^2 \; \mapsto \; \boldsymbol{z}_n \in \mathbb{R}^1$$

Covariance of mean centerd data

$$\widehat{\Sigma} = \frac{1}{N} (\mathbf{X} - \mathbf{M})^T (\mathbf{X} - \mathbf{M})$$

3. Eigenvectors

$$\widehat{\boldsymbol{\Sigma}} \boldsymbol{w}_k = \lambda_k \boldsymbol{w}_k, \ k = 1, 2$$

leads to

$$lacksquare$$
 Reduction $z_n = oldsymbol{w}_1^{
m T}(oldsymbol{x}_n - \widehat{oldsymbol{\mu}}) \in \mathbb{R}^1$

lacktriangle Reconstruction $\widehat{m{x}}_n = m{w}_1 z_n + \widehat{m{\mu}} \in \mathbb{R}^2$

Matrix Factorization

$$X = FG$$

 $[N \times D] = [N \times K][K \times D]$
 $X_{ti} = F_t^T G_i = \sum_{j=1}^k F_{tj} G_{ji}$

=> K can change, without X changing size

$$z = \mathbf{W}^{\mathsf{T}}(\mathbf{x} - \mathbf{m})$$

where the columns of \mathbf{W} are the eigenvectors of \sum and \mathbf{m} is sample mean

Centers the data at the origin and rotates the axes

Eigenfaces (Turk 1991), 40 images, each 256x256

Source: Jean-Luc Nagel

https://www.researchgate.net/figure/1-Example-of-eigenfaces-Example-obtained-from-the-X2MVTS-database-cf-Subsection_fig3_33682412

Dimension problem? $X \leftarrow X - M$

- \square N=40 images 256x256 \Rightarrow D=65,536 \Rightarrow N \ll D
- $oxedsymbol{\square}$ Problem: $oldsymbol{X}^{\mathrm{T}}oldsymbol{X} \in \mathbb{R}^{D imes D}$
 - \square size is [65,536 x 65,536]
 - lacksquare but at most rank 40, because $\min(D,N)\stackrel{\mathrm{here}}{=} N=40$

$$egin{aligned} egin{aligned} extbf{Trick:} & [65,536 imes 65,536] ext{ vs. } [40 imes 40] \ extbf{X}^{ ext{T}} oldsymbol{X} & imes oldsymbol{X} oldsymbol{X}^{ ext{T}} oldsymbol{X} oldsymbol{w}_i & imes oldsymbol{X} oldsymbol{X}^{ ext{T}} oldsymbol{X} oldsymbol{w}_i & imes oldsymbol{X} oldsymbol{W}_i \\ oldsymbol{X} oldsymbol{X}^{ ext{T}} oldsymbol{X} oldsymbol{w}_i & imes oldsymbol{\lambda}_i oldsymbol{w}_i \\ oldsymbol{X} oldsymbol{X}^{ ext{T}} oldsymbol{v}_i & imes oldsymbol{\lambda}_i oldsymbol{v}_i \\ oldsymbol{X} oldsymbol{X}^{ ext{T}} oldsymbol{v}_i & imes oldsymbol{\lambda}_i oldsymbol{v}_i \\ oldsymbol{X} oldsymbol{X}^{ ext{T}} oldsymbol{v}_i & imes oldsymbol{\lambda}_i oldsymbol{v}_i \\ oldsymbol{X} oldsymbol{V}_i & imes oldsymbol{\lambda}_i oldsymbol{v}_i & imes oldsymbol{\lambda}_i oldsymbol{v}_i \\ oldsymbol{X}^{ ext{T}} oldsymbol{v}_i & imes oldsymbol{\lambda}_i oldsymbol{v}_i \\ oldsymbol{X}^{ ext{T}} oldsymbol{v}_i & imes oldsymbol{\lambda}_i oldsymbol{v}_i \\ oldsymbol{v}_i & imes oldsymbol{v}_i & imes oldsymbol{v}_i \\ oldsymbol{X}^{ ext{T}} oldsymbol{v}_i & imes oldsymbol{\lambda}_i oldsymbol{v}_i \\ oldsymbol{v}_i & imes oldsymbol{v}_i \\ oldsymbol{v}_i &$$

- Assume X is mean centered
- \square When **X** is the NxD data matrix,
 - $\square X^TX$ is the DxD matrix (covariance of features, if mean-centered)
 - $\square XX^T$ is the NxN matrix (pairwise similarities of instances)
- \square PCA: eigenvectors of X^TX are D-dim, can be used for projection
- \Box **Feature embedding:** eigenvectors of XX^T are N-dim, give directly the coordinates after projection
- If only pairwise similarities (or distances) between instances: we can use **feature embedding** without needing to represent instances as vectors.

How to choose K?

Proportion of Variance (PoV) explained

$$\frac{\lambda_1 + \ldots + \lambda_K}{\lambda_1 + \ldots + \lambda_D} = \frac{\sum\limits_{i=1}^K \lambda_i}{\sum\limits_{i=1}^D \lambda_i}, \quad K \le D$$

when λ_i are sorted in descending order

- □ Typically, stop at PoV>0.9
- Scree graph plots of PoV vs. k: stop at "elbow"

Properties

- Unsupervised, automatic
- Linear combination of input variables
- Preprocessing is crucial (mean-free)
- □ Extensions:
 - kernel PCA: enables nonlinear data
 - Incremental PCA: PCA on batches

Applications

- □ Dimension Reduction
- Reconstruction

"Dense point-to-point correspondences between 3D faces using parametric remeshing for constructing 3D Morphable Models", Kaiser, et al., 2011

Singular Value Decomposition (SVD)

$$M = U \cdot \Sigma \cdot V^*$$

Singular Value Decomposition (SVD)

- \square X is NxD
- \square Singular value decomposition: $X = VAW^T$
 - \square **V** is NxN contains the eigenvectors of **XX**^T
 - \square W is DxD contains the eigenvectors of X^TX
 - A is NxD contains singular values on its first K diagonal
- $\square X = \mathbf{v}_1 \alpha_1 \mathbf{w}_1^T + ... + \mathbf{v}_K \alpha_K \mathbf{w}_K^T$ where K is the rank of X
- Attention: sign ambiguity!

$$\mathbf{v}_k \mathbf{a}_k \mathbf{w}_k^T = (-\mathbf{v}_k) \mathbf{a}_k (-\mathbf{w}_k)^T$$

Independent Component Analysis (ICA)

- □ PCA gives uncorrelated components (features)
- □ ICA gives independent components
 - lacksquare Given: mixture of signals x=As
 - **Goal:** find the original source signals assume they are independent
 - e.g. Cocktail party problem, source separation
 - problem: no unique solution
 - Preprocessing usually: PCA and Whitening

Independent Component Analysis (ICA)

https://team.inria.fr/parietal/research/statistical-and-machine-learning-methodsfor-large-scale-data/faster-independent-component-analysis-for-real-data/

33

Factor Analysis (FA)

□ Find a small number of **factors** z, which when combined generate x :

$$x_d - \mu_d = v_{d1}z_1 + v_{d2}z_2 \dots + v_{dK}z_K + \epsilon_d, \ d = 1, \dots, D$$

- \square v_{ii} are the **factor loadings**
- $z_{i,j} = 1,...,K$ are the **latent factors** with

$$E[z_i] = 0$$
, $Var(z_i) = 1$, $Cov(z_i, z_j) = 0$, $i \neq j$
 $Cov(\boldsymbol{z}) = \boldsymbol{I}$

 $oxedsymbol{\square}$ ϵ_i are the noise sources

$$E[\epsilon_i] = \Psi_i,$$

$$Cov(\epsilon_i, \epsilon_j) = 0,$$

$$Cov(\epsilon_i, z_j) = 0, i \neq j$$

$$Cov(\epsilon) = \Psi$$

$$\Psi = \operatorname{diag}(\psi_1, \dots, \psi_D)$$

$$= \begin{pmatrix} \psi_1 & 0 & \dots & 0 \\ 0 & \ddots & 0 & 0 \\ \vdots & & \ddots & 0 \\ 0 & \dots & 0 & \psi_D \end{pmatrix}$$

PCA vs. FA

PCA is a linear combination of variables

PCA

From
$$x$$
 to z $z = \mathbf{W}^T(x - \mu)$

□ Factor Analysis is a measurement model of a latent variable.

Factor Analysis (FA)

In FA, factors z_i are stretched, rotated and translated to generate \mathbf{x}

Consider data given for T frames:

- □ Video (image sequence) per person, e.g. dimension
 □ D=Tx100x100x3 (width x height x RGB)
- Audio per person, dimensionE=Tx1

Problem:

Length T is the same, but dimension per frame differ

Goal:

Reduce the data to a joint dimension

x and y may be two different views or modalities CCA does a joint mapping

image from:

"Generalized Canonical Time Warping", Zhou et al., 2013

- $\square X = \{x_k, y_k\}$: two sets of variables x and y
- \square We want to find two projections w and v
 - when x is projected along w
 - and y is projected along v
- the correlation is maximized:

$$\rho = \operatorname{Corr}(\boldsymbol{w}^T \boldsymbol{x}, \boldsymbol{v}^T \boldsymbol{y}) = \frac{\operatorname{Cov}(\boldsymbol{w}^T \boldsymbol{x}, \boldsymbol{v}^T \boldsymbol{y})}{\sqrt{\operatorname{Var}(\boldsymbol{w}^T \boldsymbol{x})} \sqrt{\operatorname{Var}(\boldsymbol{v}^T \boldsymbol{y})}}$$

$$= \frac{\boldsymbol{w}^T \operatorname{Cov}(\boldsymbol{x}, \boldsymbol{y}) \boldsymbol{v}}{\sqrt{\boldsymbol{w}^T \operatorname{Var}(\boldsymbol{x}) \boldsymbol{w}} \sqrt{\boldsymbol{v}^T \operatorname{Var}(\boldsymbol{y}) \boldsymbol{v}}} = \frac{\boldsymbol{w}^T \mathbf{S}_{xy} \boldsymbol{v}}{\sqrt{\boldsymbol{w}^T \mathbf{S}_{xx} \boldsymbol{w}} \sqrt{\boldsymbol{v}^T \mathbf{S}_{yy} \boldsymbol{v}}}$$

https://en.wikipedia.org/wiki/Canonical correlation

Summary: unsupervised

- All previously presented methods are unsupervised:
 no class information is required or used
 - □ PCA, FA, ICA: linear
- □ Now: Linear Discriminant Analysis (LDA)
 - Uses class labels = supervised

Linear Discriminant Analysis (LDA)

Find a low-dimensional space, such that classes are well-separated by:

- Maximize distance between the means of projected classes
- Minimize variance for each projected class

Linear Discriminant Analysis (LDA)

Find w that maximizes

$$J(\mathbf{w}) = \frac{(m_1 - m_2)^2}{s_1^2 + s_2^2}$$

$$N_k = \sum_{n=1}^N \mathbb{1}\{\boldsymbol{x}_n \in C_k\}$$

$$m_k = rac{1}{N_k} \sum_{n=1}^N oldsymbol{w}^{ ext{T}} oldsymbol{x}_n \mathbb{1} \{ oldsymbol{x}_n \in C_k \}$$

$$s_k^2 = \sum_{n=1}^N (\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n - m_k)^2 \mathbb{1} \{ \boldsymbol{x}_n \in C_k \}$$

Linear Discriminant Analysis (LDA)

- Maximizebetween-class scatter
- Minimizewithin-class scatter

Fisher's Linear Discriminant:

$$J(\mathbf{w}) = \frac{\mathbf{w}^T \mathbf{S}_B \mathbf{w}}{\mathbf{w}^T \mathbf{S}_W \mathbf{w}} = \frac{\left| \mathbf{w}^T (\mathbf{m}_1 - \mathbf{m}_2) \right|^2}{\mathbf{w}^T \mathbf{S}_W \mathbf{w}}$$

$$\mathbf{w} = \mathbf{c} \cdot \mathbf{S}_{W}^{-1} (\mathbf{m}_{1} - \mathbf{m}_{2})$$

LDA with K>2 Classes

□ Within-class scatter:

$$\mathbf{S}_{w} = \sum_{i=1}^{K} \mathbf{S}_{i} \qquad \mathbf{S}_{i} = \sum_{t} r_{i}^{t} \left(\mathbf{x}^{t} - \mathbf{m}_{i} \right) \left(\mathbf{x}^{t} - \mathbf{m}_{i} \right)^{T}$$

□ Between-class scatter:

$$\mathbf{S}_{B} = \sum_{i=1}^{K} N_{i} (\mathbf{m}_{i} - \mathbf{m}) (\mathbf{m}_{i} - \mathbf{m})^{T} \qquad \mathbf{m} = \frac{1}{K} \sum_{i=1}^{K} \mathbf{m}_{i}$$

The largest eigenvectors of $\mathbf{S}_{W}^{-1}\mathbf{S}_{B}$, maximum rank of K-1

PCA vs LDA

Multidimensional Scaling (MDS)

Given: distances between 3D points on a sphere, e.g. cities **Goal:** projection to 2D where output preserves distances

Multidimensional Scaling (MDS)

- □ Given pairwise distances between N points $\mathbf{x_i} \in \mathbb{R}^D$ d_{ij} : dist $(\mathbf{x_i}, \mathbf{x_i})$ i,j = 1,...,N
- □ Find $\mathbf{z_i} \in \mathbb{R}^M$, M < D of lower dimension $\boldsymbol{\delta_{ij}}$: dist $(\mathbf{z_i}, \mathbf{z_j})$ i,j = 1,...,N
- $_{\square}$ such that distances are preserved: $d_{ij} pprox oldsymbol{\delta}_{ij}$
 - - => Solve by eigenvalue problem on $\mathbf{B}=\mathbf{X}\mathbf{X}^{\mathsf{T}}$
 - □ Find regression function g with parameters ϑ : $z = g(x \mid \vartheta) = W^T x$
- □ Comparable to PCA

Geodesic vs. Euclidean distance

Isomap

Given: $\boldsymbol{x}_k \in \mathbb{R}^D, \ k=1,\ldots,N$

Idea: approximate geodesic distance by local Euclidean distances

somap

- For each point get nearest 1) neighbors by either:
 - (a) "K nearest" or
 - (b) "inside radius R"
- Build neighbor graph: 2) x_i, x_i are connected if (a) or (b)
- Compute shortest path between 3) pairs of points x_i, x_j e.g. by Dijkstra, distances as d_{ij}
- Apply MDS (Multidimensional Scaling) on the distances

$$d_{ij} \in \mathbf{D} \in \mathbb{R}^{N \times N}$$

$$oldsymbol{x}_k \in \mathbb{R}^D, \ k = 1, \dots, N$$
 $w_{ij} = \left\| oldsymbol{x}_i - oldsymbol{x}_j
ight\|_2$

https://commons.wikimedia.org/ wiki/File:Dijkstra Animation.gif Ibmua

Matlab source from http://web.mit.edu/cocosci/isomap/isomap.html

Locally Linear Embedding (LLE)

 Similar to Isomap, but faster, because it uses sparse matrix computations

Idea:

- represent each point by a weighted sum of its neighbors, i.e. search W
- Estimate lower dimensional
 representations Z using the
 neighbor weights W

Source:

https://www.researchgate.net/figure/Overview-of-the-steps-involved-in-locally-linear-embedding_fig9_230595014

Locally Linear Embedding (LLE)

Goal: $\boldsymbol{x}_i \in \mathbb{R}^D \leadsto \boldsymbol{z}_i \in \mathbb{R}^E, \ E < D$

- 1) For each point $\boldsymbol{x}_i \in \mathbb{R}^D$ get K nearest neighbors $\boldsymbol{x}_{i,k} \in \mathbb{R}^D, \ k=1,\ldots,K$
- 2) Estimate weights to reconstruct $oldsymbol{x}_i$ by its neighbors

$$f(\mathbf{W}) = \sum_{i=1}^{N} \left\| \mathbf{x}_i - \sum_{j=1}^{N} \mathbf{w}_{ij} \mathbf{x}_j \right\|_2^2 \qquad \sum_{k=1}^{K} w_{ik} = 1 \quad w_{ii} = 0$$

 $w_{ij}=0$ if $oldsymbol{x}_i$ is not a neighbor of $oldsymbol{x}_i$

3) Given the weights estimate new coordinates $z_i \in \mathbb{R}^E$ called: embedded coordinates $E[z_i] = 0, \operatorname{Cov}(z) = I$

$$g(\mathbf{Z})\mathbf{W}) = \sum_{i=1}^{N} \left\| \mathbf{z}_i - \sum_{j=1}^{N} w_{ij} \mathbf{z}_j \right\|_2^2$$

Locally Linear Embedding (LLE)

z space

LLE on Optdigits

Matlab source from http://www.cs.toronto.edu/~roweis/lle/code.html

Laplacian Eigenmaps

$$\boldsymbol{x}_i \in \mathbb{R}^D \leadsto \boldsymbol{z}_i \in \mathbb{R}^E, \ E < D$$

For each point get nearest neighbors and connect them

2) Define weights of connections as similarity values

$$w_{ij} = w_{ji} = egin{cases} \exp\left[-rac{\|m{x}_i - m{x}_j\|_2^2}{2s}
ight]$$
, if points are connected , else

3) Graph Laplacian:

with diagonal matrix $m{D}$ elements: $d_{ii} = \sum_j w_{ij} \min m{z}^{\mathrm{T}} m{L} m{z}, \quad \|m{z}\| = 1$

$$L = D - W$$

$$\boldsymbol{L}\boldsymbol{z}_k = \lambda_k \boldsymbol{z}_k$$

- solve eigenvalue problem
- keep smallest EV

Laplacian Eigenmaps on Iris

Spectral clustering (chapter 7)

Additionally...

https://scikit-learn.org/stable/modules/manifold.html

Manifold Learning with 1000 points, 10 neighbors

Overview

Method	supervised	local	nonlinear	Diff. dim.
PCA	×	×	×	×
LDA	\checkmark	×	×	×
MDS	×	×	(✓)	×
CCA	×	×	×	\checkmark
Isomap	×	✓	✓	×
LLE	×	\checkmark	✓	×
Laplacian Eigenmaps	×	✓	✓	×

- Supervised: uses class labels
- Local: uses local information
- Nonlinear: can handle nonlinear data
- Diff. dim. = different dimensions for each input

Summary

- Feature Selection: selects dimensions from data
- □ Feature Extraction: creates new features
- Factorization Methods for dimensionality reduction:
 - with(out) class information (supervised)
 - □ (non)linear
 - □ local / global
- NOT discussed:
 - Number of parameters
 - runtime

Additional Sources

- □ LLE
 https://cs.nyu.edu/~roweis/lle/algorithm.html
- "13 ways to look at the correlation coefficient", https://www.stat.berkeley.edu/~rabbee/correlation.pdf