

About Dataset

This dataset contains a comprehensive list of the most famous songs of 2023 as listed on Spotify. The dataset offers a wealth of features beyond what is typically available in similar datasets. It provides insights into each song's attributes, popularity, and presence on various music platforms. The dataset includes information such as track name, artist(s) name, release date, Spotify playlists and charts, streaming statistics, Apple Music presence, Deezer presence, Shazam charts, and various audio features.

Field	Description
track_name	Name of the song
artist(s)_name	Name of the artist(s) of the song
artist_count	Number of artists contributing to the song
released_year	Year when the song was released
released_month	Month when the song was released
released_day	Day of the month when the song was released
in_spotify_playlists	Number of Spotify playlists the song is included in
in_spotify_charts	Presence and rank of the song on Spotify charts
streams	Total number of streams on Spotify
in_apple_playlists	Number of Apple Music playlists the song is included in
in_apple_charts	Presence and rank of the song on Apple Music charts
in_deezer_playlists	Number of Deezer playlists the song is included in
in_deezer_charts	Presence and rank of the song on Deezer charts
in_shazam_charts	Presence and rank of the song on Shazam charts
bpm	Beats per minute, a measure of song tempo
key	Key of the song
mode	Mode of the song (major or minor)
danceability_%	Percentage indicating how suitable the song is for dancing
valence_%	Positivity of the song's musical content
energy_%	Perceived energy level of the song
acousticness_%	Amount of acoustic sound in the song

Field	Description
instrumentalness_%	Amount of instrumental content in the song
liveness_%	Presence of live performance elements
speechiness_%	Amount of spoken words in the song

Objective/Aim

- Content Analysis
- Playlist Popularity Analysis
- Chart Performance Analysis
- Genre and Mood Analysis
- User Engagement Trends
- Recommendation System Insights

Team Members

Noora Hussain

Roll No: 3402

Arun Krishna

Roll No: 3406

Muhammed Efas

Roll No: 3411

Shyam Kiran

Roll No: 3414

Ashwin Venugopal

Roll No: 3424

Aasim Mohammed

Roll No: 3488

Source of Data

kaggle

Importing the Necessary Library

```
In []: import numpy as np
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
import pandas as pd
import seaborn as sns
```

```
In [ ]: df_org=pd.read_csv("spt.csv",encoding= 'unicode-escape')
In [ ]: df_org.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 953 entries, 0 to 952
       Data columns (total 24 columns):
            Column
                                 Non-Null Count
       #
                                                 Dtype
        0
           track_name
                                 953 non-null
                                                 object
        1
           artist(s)_name
                                 953 non-null
                                                 object
           artist_count
        2
                                 953 non-null
                                                 int64
                                                 int64
        3
           released_year
                                 953 non-null
                                                 int64
        4
            released_month
                                 953 non-null
        5
            released_day
                                 953 non-null
                                                 int64
        6
            in_spotify_playlists 953 non-null
                                                 int64
        7
            in_spotify_charts
                                 953 non-null
                                                 int64
        8
            streams
                                 953 non-null
                                                 object
        9
            in_apple_playlists
                                 953 non-null
                                                 int64
        10 in apple charts
                                 953 non-null
                                                 int64
        11 in_deezer_playlists
                                 953 non-null
                                                 object
        12 in_deezer_charts
                                 953 non-null
                                                 int64
        13 in_shazam_charts
                                 903 non-null
                                                 object
        14 bpm
                                 953 non-null
                                                 int64
        15 key
                                 858 non-null
                                                 object
        16 mode
                                 953 non-null
                                                 object
        17 danceability_%
                                 953 non-null
                                                 int64
        18 valence_%
                                 953 non-null
                                                 int64
        19 energy %
                                953 non-null
                                                 int64
        20 acousticness %
                                 953 non-null
                                                 int64
        21 instrumentalness_%
                                 953 non-null
                                                 int64
                                 953 non-null
        22 liveness %
                                                 int64
        23 speechiness_%
                                 953 non-null
                                                 int64
       dtypes: int64(17), object(7)
       memory usage: 178.8+ KB
In [ ]: df_org.shape
Out[]: (953, 24)
```

Dimension of the Dataset is 953 x 24

Descriptive Statistics of the Dataframe

Quick overview of the distribution of the numerical data in the dataframe. This helps us in understanding key statistical measures for each colum

```
In [ ]: df_org.describe()
```

Out[]:		artist_count	released_year	released_month	released_day	in_spotify_playlists	in_spotify_
	count	953.000000	953.000000	953.000000	953.000000	953.000000	953.(
2	mean	1.556139	2018.238195	6.033578	13.930745	5200.124869	12.0
	std	0.893044	11.116218	3.566435	9.201949	7897.608990	19.
	min	1.000000	1930.000000	1.000000	1.000000	31.000000	0.0
	25%	1.000000	2020.000000	3.000000	6.000000	875.000000	0.0
	50%	1.000000	2022.000000	6.000000	13.000000	2224.000000	3.0
	75%	2.000000	2022.000000	9.000000	22.000000	5542.000000	16.0
	max	8.000000	2023.000000	12.000000	31.000000	52898.000000	147.0

Cleaning Data

Finding number of NULL values in each column and corresponding percentage.

```
In []: df_null = pd.DataFrame(columns=['Total Null Values', 'Null Percentage'])

def check_null(df):
    df['Total Null Values'] = df_org.isnull().sum()
    df['Null Percentage'] = (df_org.isnull().sum() / len(df_org)) * 100
    return df

check_null(df_null)
```

Out[]:	Total Null Values	Null Percentage
track_name		0.00000
artist		0.00000
artist_coun	0	0.00000
released_yea	0	0.00000
released_montl	0	0.00000
released_da	0	0.00000
in_spotify_playlist	0	0.00000
in_spotify_chart	0	0.00000
stream	0	0.00000
in_apple_playlist	0	0.00000
in_apple_chart	0	0.00000
in_deezer_playlist	0	0.00000
in_deezer_chart	0	0.00000
in_shazam_chart	50	5.24659
bpn	0	0.00000
ke	95	9.96852
mode	0	0.00000
danceability_%	0	0.00000
valence_%	0	0.00000
energy_%	0	0.00000
acousticness_%	0	0.00000
instrumentalness_%	0	0.00000
liveness_%	0	0.00000
speechiness_%	0	0.00000

• The columns *in_shazam_charts* and *key* have NULL values.

Finding rows with null value in *in_shazam_charts* column

```
In [ ]: df_org[df_org['in_shazam_charts'].isnull()][['track_name', 'in_shazam_charts']]
```

Out[]: track_name in_shazam_charts 14 As It Was NaN 54 Another Love NaN 55 **Blinding Lights** NaN 71 NaN **Heat Waves** Sweater Weather 73 NaN 86 Someone You Loved NaN NaN 127 Watermelon Sugar NaN 158 Ghost Under The Influence 159 NaN 180 Night Changes NaN 243 Unstoppable NaN 274 Shivers NaN

320

392

395

403

410

429

434

440

441

442

443

444

446

449

500

501

504

506

507

513

518

519

520

529

531

Gangsta's Paradise

One Kiss (with Dua Lipa)

INDUSTRY BABY (feat. Jack Harlow)

All I Want for Christmas Is You

Rockin' Around The Christmas Tree

Calm Down

Space Song

Bad Habits

Woman

Payphone

Last Christmas

Jingle Bell Rock

Santa Tell Me

Snowman

ýýýabcdefu

Out of Time

We Don't Talk About Bruno

MONTERO (Call Me By Your Name)

Sacrifice

Pepas

good 4 u

MONEY

Need To Know

love nwantiti (ah ah ah)

Happier Than Ever

NaN

NaN

NaN

NaN NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

	track_name	in_shazam_charts
532	Moth To A Flame (with The Weeknd)	NaN
533	traitor	NaN
534	Toxic	NaN
535	drivers license	NaN
549	Love Nwantiti - Remix	NaN
554	Peaches (feat. Daniel Caesar & Giveon)	NaN
560	Life Goes On	NaN
566	Dynamite	NaN
584	Mood (feat. lann Dior)	NaN
620	Dance Monkey	NaN
625	Arcade	NaN
727	Somebody That I Used To Know	NaN
927	I Really Want to Stay at Your House	NaN

Filling NULL values of *in_shazam_charts* with mean of *in_spotify_charts*, *in_deezer_charts*, *in_apple_charts*

```
In []: # Function to calculate the mean of non-null values in a row
def row_mean(row):
    non_null_values = row.dropna()
    if non_null_values.empty:
        return np.nan
    return int(non_null_values.mean())

# Applying the function to each row and filling null values in 'in_shazam_charts'
df_org['in_shazam_charts'] = df_org.apply(lambda row: row_mean(row[['in_spotify_charts print('Number of NULL values in \'in_shazam_charts\':', df_org['in_shazam_charts'].isn
Number of NULL values in 'in_shazam_charts': 0
```

Finding rows with NULL values in key column

```
In [ ]: df_org[df_org['key'].isnull()][['track_name', 'key']]
```

Out[]:		track_name	key
	12	Flowers	NaN
	17	What Was I Made For? [From The Motion Picture	NaN
	22	I Wanna Be Yours	NaN
	35	Los del Espacio	NaN
	44	Barbie World (with Aqua) [From Barbie The Album]	NaN
	899	Hold Me Closer	NaN
	901	After LIKE	NaN
	903	B.O.T.A. (Baddest Of Them All) - Edit	NaN
	938	Labyrinth	NaN
	940	Sweet Nothing	NaN

95 rows × 2 columns

For the null values in the *key* column, the key of the song can be converted into integers using the standard Pitch Class Notation. The null values for the *key* column will have a value of -1.

Tonal Counterparts	Pitch Class
-1	NULL
0	С
1	C#
2	D
3	D#
4	E
5	F
6	F#
7	G
8	G#
9	Α
10	A#
11	В

Checking if there are still any NULL values present in any column

Out[]:

	Total Null Values	Null Percentage
track_name	0	0.0
artists	0	0.0
artist_count	0	0.0
released_year	0	0.0
released_month	0	0.0
released_day	0	0.0
in_spotify_playlists	0	0.0
in_spotify_charts	0	0.0
streams	0	0.0
in_apple_playlists	0	0.0
in_apple_charts	0	0.0
in_deezer_playlists	0	0.0
in_deezer_charts	0	0.0
in_shazam_charts	0	0.0
bpm	0	0.0
key	0	0.0
mode	0	0.0
danceability_%	0	0.0
valence_%	0	0.0
energy_%	0	0.0
acousticness_%	0	0.0
instrumentalness_%	0	0.0
liveness_%	0	0.0
speechiness_%	0	0.0

In *in_deezer_playlist* (object type), there are comma values for integers greater than 999. Convert the entire column to integer

953 non-null object dtypes: object(1) memory usage: 7.6+ KB

Replacing commas with blank space using regex and converting to integer

While analysing the data, we found discrepancy in streams column. It should be in int64 data type, while it is currently in object data type.

Checking the particular track with discrepancy

1 rows × 24 columns

1 rows × 24 columns

Change the stream value of the particular song which is Invalid

Change the datatype of streams from object to int

```
In []: df_org['streams']=df_org['streams'].astype('int64')
df_org['streams'].info()
```

```
<class 'pandas.core.series.Series'>
RangeIndex: 953 entries, 0 to 952
Series name: streams
Non-Null Count Dtype
-----
953 non-null int64
dtypes: int64(1)
memory usage: 7.6 KB
```

Checking track names to check for discrepancy

```
In [ ]: unique_track = df_org['track_name'].unique()
        unique_track.sort()
        print(unique track[:20])
        print(unique_track[-20:])
       ["'Till I Collapse" '(It Goes Like) Nanana - Edit'
        '10 Things I Hate About You' '10:35' '2 Be Loved (Am I Ready)' '2055'
        '212' '25k jacket (feat. Lil Baby)' '295' '505' '69'
        'A Holly Jolly Christmas - Single Version' 'A Tale By Quincy'
        'A Tu Merced' 'A Veces (feat. Feid)' 'ALIEN SUPERSTAR' 'AM Remix'
        'AMARGURA' 'AMERICA HAS A PROBLEM (feat. Kendrick Lamar)' 'AMG']
       ['jealousy, jealousy' 'love nwantiti (ah ah ah)' 'lovely - Bonus Track'
        'on the street (with J. Cole)' 'positions' 'psychofreak (feat. WILLOW)'
        'pushin P (feat. Young Thug)' 'sentaDONA (Remix) s2'
        "she's all i wanna be" 'this is what falling in love feels like'
        'thought i was playing' 'traitor' 'un x100to' 'vampire'
        'we fell in love in october' 'you broke me first' 'ýýý98 Braves'
        'ýýýabcdefu' 'ýýýýýýýýýýýýý 'ýýýýýýýýýýýýýýýýýýýí]
```

While analysing the dataset, we found that certain track names contains special characters. So we decided to replace it.

```
In []: #Checking rows with special characters
    characters_to_replace = ['ý', 'ï', 'Å', '½', 'Ã', '½', 'Ã', '-']

def contains_special_character(cell):
    return any(char in cell for char in characters_to_replace)

rows_with_special_characters = df_org[df_org.astype(str).apply(lambda row: any(contain))

print("Number of rows with special characters: ", rows_with_special_characters.shape[0]
    print("Rows with special characters:")
    rows_with_special_characters
```

Number of rows with special characters: 109 Rows with special characters:

0		г	7	
11	111		- 1	=
\cup	uч	L		=

	track_name	artists	artist_count	released_year	released_month	released_day in
21	l Can See You (Taylor���s Version) (From	Taylor Swift	1	2023	7	7
26	Calm Down (with Selena Gomez)	R��ma, Selena G	2	2022	3	25
36	Fr��gil (feat. Grupo Front	Yahritza Y Su Esencia, Grupo Frontera	2	2023	4	7
60	Ji2½;ïZ	dennis, MC Kevin o Chris	2	2023	5	4
63	BESO	Rauw Alejandro, ROSAL�	2	2023	3	24
887	ALIEN SUPERSTAR	Beyoncï;	1	2022	7	29
913	XQ Te Pones Asï;	Yandel, Feid	2	2022	9	13
915	Sin Se�ï	Ovy On The Drums, Quevedo	2	2022	7	22
918	THE LONELIEST	M��ne	1	2022	10	7
929	Bamba (feat. Aitch & BIA)	Luciano, Aitch, Bï;½	3	2022	9	22

109 rows × 24 columns

• There are 109 rows with such special characters.

Changing the track name where there are special characters

```
In []: for char in characters_to_replace:
    df_org['track_name'] = df_org['track_name'].str.replace(char, '')

df_org.head(5)
```

Out[]:	tı	rack_name	artists	artist_count	released_year	released_month	released_day	in_spotify_pla
	0	Seven (feat. Latto) (Explicit Ver.)	Latto, Jung Kook	2	2023	7	14	
	1	LALA	Myke Towers	1	2023	3	23	
	2	vampire	Olivia Rodrigo	1	2023	6	30	
	3	Cruel Summer	Taylor Swift	1	2019	8	23	
	4 V	VHERE SHE GOES	Bad Bunny	1	2023	5	18	

5 rows × 24 columns

While changing the track name, we came across songs whose track name is entirely special characters

```
In [ ]: #Checking rows where track_name is empty or NULL

null_track_name_rows = df_org[df_org['track_name'].isnull() | (df_org['track_name'] == print("Rows with NULL or empty track name:")
null_track_name_rows
```

Rows with NULL or empty track name:

Out[]:		track_name artists	artist_count	released_year	released_month	released_day	in_spotify
	174	YOASOBI	1	2023	4	12	
	374	Fujii Kaze		2020	5	20	

2 rows × 24 columns

We change the track name by cross-referencing the artist and released date on the Internet

```
In [ ]: #Replacing the track name with original
          df_org.loc[374, 'track_name'] = 'Shinunoga E-Wa'
df_org.loc[174, 'track_name'] = 'Run Into The Night'
          df_org.loc[[374, 174]]
Out[]:
                track_name
                                 artists artist_count released_year released_month released_day in_spotify
                  Shinunoga
                                    Fujii
          374
                                                     1
                                                                  2020
                                                                                        5
                                                                                                       20
                       E-Wa
                                   Kaze
                Run Into The
                               YOASOBI
                                                                  2023
                                                                                                       12
                       Night
```

2 rows × 24 columns

Checking artists with special characters

```
In []: total_artists_with_special_characters = 0

for char in characters_to_replace:
    char_present = df_org['artists'].str.contains(char)
    values_with_char = df_org['artists'][char_present]
    if not values_with_char.empty:
        total_artists_with_special_characters += len(values_with_char)

print('Total number of artists with special characters: ', total_artists_with_special_
```

Total number of artists with special characters: 136

Replacing special characters in artist name with

[]:		track_name	artists	artist_count	released_year	released_month	released_day	in_spotify_pl
	0	Seven (feat. Latto) (Explicit Ver.)	Latto, Jung Kook	2	2023	7	14	
	1	LALA	Myke Towers	1	2023	3	23	
	2	vampire	Olivia Rodrigo	1	2023	6	30	
	3	Cruel Summer	Taylor Swift	1	2019	8	23	
	4	WHERE SHE GOES	Bad Bunny	1	2023	5	18	

5 rows × 24 columns

While trying to split the artists from *artists* column, we encountered an error. On further analysing it, we found that the artists attribute of the song 'Nobody Like U - From "Turning Red"' contains unwanted characters

```
In [ ]: with pd.option_context('display.max_colwidth', None):
    print(df_org.loc[df_org['track_name'] == "Nobody Like U - From \"Turning Red\""][[
```

artists

Out

759 Jordan Fisher, Josh Levi, Finneas O'Connell, 4*TOWN (From Disney and Pixar####### #s Turning Red), Topher Ngo, Grayson Vill

Fixing the artists of that track

```
In [ ]: df_org.loc[df_org['track_name'] == "Nobody Like U - From \"Turning Red\"", 'artists']=
    df_org.loc[df_org['track_name'] == "Nobody Like U - From \"Turning Red\""]
```

Out[]:		track_name	artists	artist_count	released_year	released_month	released_day	in_spoti
	759	"Turning	Jordan Fisher, Josh Levi, Finneas O'Connell, 4	6	2022	2	25	

1 rows × 24 columns

Dealing with Duplicate Elements

Finding duplicate tracks by checking $track\ name\ \&\ artist.$ For duplicate tracks, we decided to keep the row with higher number of streams

In []:	-	<pre>duplicate = df_org.sort_values(by='streams', ascending=False)[df_org.sort_values(by='s duplicate</pre>						
Out[]:		track_name	artists	artist_count	released_year	released_month	released_day	in_spoti
	764	About Damn Time	Lizzo	1	2022	4	14	
	873	SNAP	Rosa Linn	1	2022	3	19	
	482	SPIT IN MY FACE!	ThxSoMch	1	2022	10	31	
	512	Take My Breath	The Weeknd	1	2021	8	6	

4 rows × 24 columns

Drop duplicate rows from the data

```
In [ ]: df_org.drop(duplicate.index, axis=0, inplace=True)
    df_org.shape
```

Out[]: (949, 24)

Resetting the index

```
In [ ]: df_org.reset_index(drop=True, inplace=True)
    df_org
```

Out[]:		track_name	artists	artist_count	released_year	released_month	released_day	in_spotify_
	0	Seven (feat. Latto) (Explicit Ver.)	Latto, Jung Kook	2	2023	7	14	
	1	LALA	Myke Towers	1	2023	3	23	
	2	vampire	Olivia Rodrigo	1	2023	6	30	
	3	Cruel Summer	Taylor Swift	1	2019	8	23	
	4	WHERE SHE GOES	Bad Bunny	1	2023	5	18	
	944	My Mind & Me	Selena Gomez	1	2022	11	3	
	945	Bigger Than The Whole Sky	Taylor Swift	1	2022	10	21	
	946	A Veces (feat. Feid)	Feid, Paulo Londra	2	2022	11	3	
	947	En La De Ella	Feid, Sech, Jhayco	3	2022	10	20	
	948	Alone	Burna Boy	1	2022	11	4	

949 rows × 24 columns

Exporting the cleaned data to CSV and Making a copy of DataFrame to perform further analysis

```
In [ ]: df_org.to_csv('cleaned_data.csv')
df_copy = df_org.copy()
```

At this stage, the pre-processing is complete. Now we move on to identifying outliers and other analysis.

Identifying Outliers

Removing columns with object type for correlation matrix

```
In [ ]: columns_to_drop = ['track_name', 'artists', 'mode']
  out_check = df_copy.drop(columns=columns_to_drop)
  columns = out_check.columns
```

Box plots of Playlist Presence, Chart Presence and Audio Features

```
In [ ]: # Plot 1: Playlist presence
        plt.figure(figsize=(12, 6))
        plt.suptitle('Playlist Presence', fontsize=16)
        for i, column in enumerate(['in_spotify_playlists', 'in_apple_playlists', 'in_deezer_p
            plt.subplot(1, 3, i)
            plt.boxplot(out_check[column])
            plt.title(f'Box Plot of {column}')
            plt.ylabel('Count')
        plt.tight_layout()
        plt.show()
        # Plot 2: Chart presence
        plt.figure(figsize=(12, 6))
        plt.suptitle('Chart Presence', fontsize=16)
        for i, column in enumerate(['in_spotify_charts', 'in_apple_charts', 'in_deezer_charts']
            plt.subplot(1, 4, i)
            plt.boxplot(out_check[column])
            plt.title(f'Box Plot of {column}')
            plt.ylabel('Count')
        plt.tight_layout()
        plt.show()
        # Plot 3: Audio features
        plt.figure(figsize=(20, 7))
        plt.suptitle('Audio Features', fontsize=16)
        audio_features = ['danceability_%', 'valence_%', 'energy_%', 'acousticness_%', 'instru
        # Use Seaborn's boxplot function to display multiple box plots
        sns.boxplot(data=out_check[audio_features], palette='mako')
        plt.tight_layout()
        plt.show()
```


Chart Presence

Correlation Analysis to find High Correlation

```
In []: columns_to_keep = df_copy.columns.difference(['track_name','artists','mode'])
    df_selected = df_copy[columns_to_keep]

df_selected.corr()
```

	acousticness_%	artist_count	bpm	danceability_%	energy_%	in_app
acousticness_%	1.000000	-0.103223	-0.015914	-0.236012	-0.577502	-
artist_count	-0.103223	1.000000	-0.036736	0.207960	0.137882	-
bpm	-0.015914	-0.036736	1.000000	-0.146076	0.026973	
danceability_%	-0.236012	0.207960	-0.146076	1.000000	0.197616	-
energy_%	-0.577502	0.137882	0.026973	0.197616	1.000000	
in_apple_charts	-0.077860	-0.089804	0.034603	-0.025897	0.104120	
in_apple_playlists	-0.062320	-0.051329	0.027462	-0.028197	0.051658	
in_deezer_charts	-0.028517	-0.002622	0.031301	0.067460	0.093434	
in_deezer_playlists	-0.064188	-0.072244	-0.034531	-0.071539	0.065069	
in_shazam_charts	-0.078044	-0.074165	0.039972	-0.003990	0.111432	
in_spotify_charts	-0.057024	-0.020151	0.036597	0.030664	0.082617	
in_spotify_playlists	-0.065251	-0.102662	-0.017714	-0.107425	0.033533	
instrumentalness_%	0.044117	-0.049324	-0.004560	-0.089819	-0.037390	
key	-0.018074	-0.000318	0.024242	0.028541	-0.005228	-
liveness_%	-0.048060	0.044970	-0.002786	-0.077736	0.116342	
released_day	-0.004992	-0.016583	-0.034405	0.049327	0.052256	
released_month	0.055019	0.038237	-0.039978	-0.046850	-0.083468	
released_year	-0.123366	0.088508	-0.006323	0.187294	0.095054	-
speechiness_%	-0.023848	0.119011	0.040275	0.185581	-0.004306	
streams	-0.004561	-0.136456	-0.002054	-0.104962	-0.026083	
valence_%	-0.082006	0.128441	0.041316	0.408211	0.358206	

21 rows × 21 columns

Out[]:

```
In []: correlation_matrix = df_selected.corr()
    high_correlation_matrix = correlation_matrix[(correlation_matrix.abs() > 0.7) & (correlation_matrix.abs() > 0.7) & (correlation_matrix.abs() < 1)
    indices = [(i, j) for i in range(correlation_matrix.shape[0]) for j in range(cor
```


Heatmap of Correlation Matrix

```
In []: plt.figure(figsize=(10, 8))
    plt.imshow(correlation_matrix, cmap='coolwarm_r', interpolation='nearest')
    plt.colorbar()
    plt.title('Correlation Matrix')
    plt.xticks(range(len(correlation_matrix.columns)), correlation_matrix.columns, rotatio
    plt.yticks(range(len(correlation_matrix.columns)), correlation_matrix.columns)
    plt.grid(False)
    plt.show()
```


Queries

Query 1: Density Distribution of Release Date of Songs

```
In []: df_with_datetime = df_copy.copy()
    df_with_datetime['release_date'] = pd.to_datetime(df_with_datetime[['released_year', '
    df_with_datetime[['track_name','release_date']]
```

Out[]:		track_name	release_date
	0	Seven (feat. Latto) (Explicit Ver.)	2023-07-14
	1	LALA	2023-03-23
	2	vampire	2023-06-30
	3	Cruel Summer	2019-08-23
	4	WHERE SHE GOES	2023-05-18
	944	My Mind & Me	2022-11-03
	945	Bigger Than The Whole Sky	2022-10-21
	946	A Veces (feat. Feid)	2022-11-03
	947	En La De Ella	2022-10-20
	948	Alone	2022-11-04

949 rows × 2 columns

```
In []: #Kernel Density Estimate

sns.set(style="whitegrid")

plt.figure(figsize=(10, 6))
sns.kdeplot(df_with_datetime['release_date'], fill=True)

plt.xlabel('Release Date')
plt.ylabel('Density')
plt.title('Density Distribution of Release Date')

plt.show()
```


The above graph gives the distribution of Release Date of Songs which became viral in 2023.

- Newer songs tend to be streamed more, as shown in the graph, but older songs that dates back up to 1930 received a lot of streaming too.
- The older songs that received a lot of streaming could be classic songs, or songs that were brought back to popularity due to some usage in social media.

Splitting the track for multiple artists

```
In []: df_split_artists = df_copy.assign(artists=df_copy['artists'].str.split(',')).explode('
    df_split_artists = df_split_artists.drop_duplicates(subset=['artists', 'track_name'])
    df_split_artists = df_split_artists.apply(lambda x: x.str.strip() if x.dtype == "0" el
    df_split_artists.reset_index(drop=True, inplace=True)
    df_split_artists.to_csv('artist_split.csv')
    df_split_artists
```

\cap		Г	1	_
U	HT.			8

	track_name	artists	artist_count	released_year	released_month	released_day	in_spotify
0	Seven (feat. Latto) (Explicit Ver.)	Latto	2	2023	7	14	
1	Seven (feat. Latto) (Explicit Ver.)	Jung Kook	2	2023	7	14	
2	LALA	Myke Towers	1	2023	3	23	
3	vampire	Olivia Rodrigo	1	2023	6	30	
4	Cruel Summer	Taylor Swift	1	2019	8	23	
		•••					
1472	A Veces (feat. Feid)	Paulo Londra	2	2022	11	3	
1473	En La De Ella	Feid	3	2022	10	20	
1474	En La De Ella	Sech	3	2022	10	20	
1475	En La De Ella	Jhayco	3	2022	10	20	
1476	Alone	Burna Boy	1	2022	11	4	

1477 rows × 24 columns

To get the involvement of each artist in each track separately for the following analysis purposes, we split a track where multiple artists are present into new rows with single artist present in each

Query 2: Most Streamed Artists of 2023

```
In []: artist_streams = df_split_artists.groupby('artists')['streams'].sum()
    artist_streams = artist_streams.sort_values(ascending=False)
    df_artist_streams = pd.DataFrame(artist_streams)
    df_artist_streams
```

```
Out[]:
                           streams
              artists
           Bad Bunny
                      23813527270
         The Weeknd
                      23799104954
          Ed Sheeran
                      15316587718
          Taylor Swift
                      14630378183
         Harry Styles
                      11608645649
               Toian
                         32761689
                         32761689
               Beam
              DJ 900
                          11956641
                 Sog
                         11599388
         Sukriti Kakar
                          1365184
```

699 rows × 1 columns

```
In []: plt.figure(figsize=(10,10))
    data = df_artist_streams.head(10)

colors = sns.color_palette("Spectral", n_colors=10)

plt.barh(data.index, data['streams'], color = colors)

plt.xticks(ha='right')

plt.gca().xaxis.set_major_formatter(ticker.ScalarFormatter(useMathText=True))

plt.ylabel('Artists')
    plt.xlabel('Total Streams')
    plt.title('Top 10 Artists by Total Streams')

plt.show()
```


• Bad Bunny is the most streamed artist of 2023, with 23813527270 (23.8 Billion) streams, followed closely by The Weeknd with 23799104954 (23.7 Billion) streams

Query 3: Artists Present in Most Playlists

```
Out[]:
                       Total_Playlists
               artists
          The Weeknd
                              245924
              Eminem
                              180355
           Ed Sheeran
                              162567
          Taylor Swift
                              142855
           Bad Bunny
                              142461
                                   •••
         Sukriti Kakar
                                 153
             Mahalini
                                 138
                                 115
                Colde
               Shubh
                                  74
           Jack Black
                                  34
```

699 rows × 1 columns

• Even though Bad Bunny is the most streamed artist, The Weeknd is the artist present in most playlists. This indicates that The Weeknd has songs with higher repeat value and cover a wider genre

Query 4: Average Attributes of Songs of Top 15 Artists

```
In [ ]: top_artists = list(df_artist_streams.reset_index().nlargest(15, 'streams')['artists'])
    artists_data = df_split_artists[df_split_artists['artists'].isin(top_artists)].copy()
    artists_data['artists'] = pd.Categorical(artists_data['artists'], categories=top_artistaterage_attributes = artists_data.groupby('artists', observed=False)[['danceability_%']
    average_attributes.sort_index()
```

Out[]:	danceability_%	valence_%	energy_%	acousticness_%	instrumentalness_%	liveness_
artists						
Bad Bunny	74 425000	50.700000	69.125000	23.725000	1.575000	19.55000
The Weeknd		43.888889	63.361111	20.722222	1.000000	20.4722
Ed Sheeran	/1 4285 /1	55.642857	63.142857	32.571429	0.000000	17.50000
Taylor Swift	544/368/	34.157895	55.157895	31.473684	0.605263	16.65789
Harry Styles		54.000000	58.882353	42.823529	1.588235	14.2941
Eminem	79.666667	47.222222	74.111111	6.44444	0.000000	22.5555!
Dua Lipa	75.666667	74.222222	80.333333	6.111111	0.000000	15.6666
Justin Bieber	69 1/1/1967	57.857143	63.285714	31.285714	0.000000	21.5714:
Drake	73.684211	30.526316	54.684211	5.526316	0.105263	23.10520
втѕ	68.923077	63.307692	72.307692	11.384615	0.000000	21.69230
Imagine Dragons	որ գասա	58.000000	74.200000	14.600000	0.000000	28.2000(
Doja Cat	79.400000	52.600000	62.000000	19.700000	0.400000	15.5000
Olivia Rodrigo	61.786717	38.428571	50.571429	53.285714	0.000000	20.4285
Bruno Mars	61 66666 /	56.666667	61.166667	29.333333	0.000000	17.6666

```
In []: average_attributes.plot(kind='line', marker='o', figsize=(12, 9))

plt.xlabel('Artists')
plt.ylabel('Average Values')
plt.title('Average Audio Features for Top 15 Artist')
plt.xticks(rotation = 90)
plt.xticks(range(len(average_attributes.index)), average_attributes.index)

plt.show()
```

32.200000

1.000000

12.60000

52.200000 33.800000 53.200000

Coldplay

• The Top 15 Artists follow similar patterns for *instrumentalness*.

Query 5: Most and Least Streamed Songs of 2023

```
In [ ]: top_songs_by_streams = df_copy.nlargest(15, 'streams')
top_songs_by_streams[['track_name', 'artists', 'streams']]
```

	track_name	artists	streams
55	Blinding Lights	The Weeknd	3703895074
179	Shape of You	Ed Sheeran	3562543890
86	Someone You Loved	Lewis Capaldi	2887241814
618	Dance Monkey	Tones and I	2864791672
41	Sunflower - Spider-Man: Into the Spider-Verse	Post Malone, Swae Lee	2808096550
162	One Dance	Drake, WizKid, Kyla	2713922350
84	STAY (with Justin Bieber)	Justin Bieber, The Kid Laroi	2665343922
140	Believer	Imagine Dragons	2594040133
723	Closer	The Chainsmokers, Halsey	2591224264
48	Starboy	The Weeknd, Daft Punk	2565529693
138	Perfect	Ed Sheeran	2559529074
71	Heat Waves	Glass Animals	2557975762
14	As It Was	Harry Styles	2513188493
691	Seo	Shawn Mendes, Camila Cabello	2484812918
324	Say You Won't Let Go	James Arthur	2420461338

Out[]:

Out[]:

In []: bottom_songs_by_streams = df_copy.nsmallest(15, 'streams')
bottom_songs_by_streams[['track_name', 'artists', 'streams']]

	track_name	artists	streams
123	Que Vuelvas	Carin Leon, Grupo Frontera	2762
393	Jhoome Jo Pathaan	Arijit Singh, Vishal Dadlani, Sukriti Kakar, V	1365184
144	QUEMA	Sog, Ryan Castro, Peso Pluma	11599388
142	Gol Bolinha, Gol Quadrado 2	Mc Pedrinho, DJ 900	11956641
68	Overdrive	Post Malone	14780425
58	S91	Karol G	16011326
30	Rush	Troye Sivan	22581161
248	Danger (Spider) (Offset & JID)	Offset, JID	24975653
104	New Jeans	NewJeans	29562220
193	Better Than Revenge (Taylor's Version)	Taylor Swift	30343206
17	What Was I Made For? [From The Motion Picture	Billie Eilish	30546883
150	Mi Bello Angel	Natanael Cano	31873544
575	Phantom Regret by Jim	The Weeknd	31959571
379	Devil Don	Morgan Wallen	32526947
238	Link Up (Metro Boomin & Don Toliver, Wizkid fe	WizKid, Toian, Metro Boomin, Don Toliver, Beam	32761689

```
In []: plt.figure(figsize=(12, 8))
    colors = sns.color_palette("viridis", n_colors=15)

plt.barh(top_songs_by_streams['track_name'], top_songs_by_streams['streams'], color =
    plt.gca().xaxis.set_major_formatter(ticker.ScalarFormatter(useMathText=True))

plt.xlabel('Streams')
    plt.ylabel('Song')
    plt.ylabel('Song')
    plt.title('Top 15 Most Streamed Songs')
    plt.gca().invert_yaxis()
    plt.show()
```


- Blinding Lights by The Weeknd is the most streamed song of 2023 with 3703895074 (3.7 Billion) streams, followed by Shape of You by Ed Sheeran with 3562543890 (3.5 Billion) streams.
- Que Vuelvas by Carin Leon and Grupo Frontera is the least streamed song of 2023 with 2762 streams.

Query 6: Number of Songs Released by Each Artist

```
In [ ]: most_songs_artists = df_split_artists['artists'].value_counts()
    most_songs_artists = pd.DataFrame(most_songs_artists)
    most_songs_artists
```

Out[]:		count
	artists	
	Bad Bunny	40
	Taylor Swift	38
	The Weeknd	36
	Kendrick Lamar	23
	SZA	23
	La Joaqui	1
	Steve Aoki	1
	FIFA Sound	1
	Beach House	1
	Selena Gomez	1

699 rows × 1 columns

```
plt.ylabel('Artists')
plt.title('Number of Songs Released by Each Artist (Top 10)')
plt.show()
```


 Bad Bunny is the artist whose songs became most popular in 2023 with 40 songs, followed by Taylor Swift with 38

Query 7: Top Songs by Playlist

```
In []: N = 10

top_spotify_songs = df_copy.nlargest(N, 'in_spotify_playlists')
top_apple_songs = df_copy.nlargest(N, 'in_apple_playlists')
top_deezer_songs = df_copy.nlargest(N, 'in_deezer_playlists')

print("Top Spotify Songs:")
print(top_spotify_songs[['track_name', 'in_spotify_playlists']].to_string(index=False))

print("\nTop Apple Music Songs:")
print(top_apple_songs[['track_name', 'in_apple_playlists']].to_string(index=False))

print("\nTop Deezer Songs:")
print(top_deezer_songs[['track_name', 'in_deezer_playlists']].to_string(index=False))
```

```
Top Spotify Songs:
                               track_name in_spotify_playlists
                   Get Lucky - Radio Edit
                                                          52898
                          Mr. Brightside
                                                          51979
                 Wake Me Up - Radio Edit
                                                          50887
Smells Like Teen Spirit - Remastered 2021
                                                          49991
                               Take On Me
                                                          44927
                          Blinding Lights
                                                          43899
                                One Dance
                                                          43257
             Somebody That I Used To Know
                                                         42798
        Everybody Wants To Rule The World
                                                         41751
                     Sweet Child O' Mine
                                                          41231
Top Apple Music Songs:
               track_name in_apple_playlists
          Blinding Lights
                                          672
One Kiss (with Dua Lipa)
                                          537
                                         533
             Dance Monkey
          Don't Start Now
                                         532
STAY (with Justin Bieber)
                                         492
                                         453
        Someone You Loved
                                         440
        Watermelon Sugar
                                         437
                One Dance
                                         433
                As It Was
                                         403
Top Deezer Songs:
                             track_name in_deezer_playlists
Smells Like Teen Spirit - Remastered 2021
                                                         12367
                   Get Lucky - Radio Edit
                                                          8215
                            The Scientist
                                                          7827
                                     Numb
                                                          7341
                             Shape of You
                                                          6808
                               In The End
                                                          6808
                                    Creep
                                                          6807
                      Sweet Child O' Mine
                                                          6720
                             Still D.R.E.
                                                          6591
```

• Blinding lights, One Dance, Get Lucky - Radio Edit are the tracks that are in more than 1 platforms playlist

6551

Query 8: Average Audio Features for Top and Lowest 10 Songs by Streams

Can't Hold Us (feat. Ray Dalton)

```
In []: top_100_songs = df_copy.nlargest(100, 'streams')
    lowest_100_songs = df_copy.nsmallest(100, 'streams')

columns_to_average = ['danceability_%', 'valence_%', 'energy_%', 'acousticness_%', 'in
    top_100_average = top_100_songs[columns_to_average].mean()
    lowest_100_average = lowest_100_songs[columns_to_average].mean()

fig, ax = plt.subplots(figsize=(10, 6))

bar_width = 0.35

bar_positions_top = range(len(top_100_average))
bar_positions_lowest = [pos + bar_width for pos in bar_positions_top]

ax.bar(bar_positions_top, top_100_average, width=bar_width, label='Top 100 Songs')
ax.bar(bar_positions_lowest, lowest_100_average, width=bar_width, label='Lowest 100 So
```

```
ax.set_xlabel('Audio Features')
ax.set_ylabel('Average Values')
ax.set_title('Average Audio Features for Top and Lowest 100 Songs by Streams')
ax.set_xticks([pos + bar_width / 2 for pos in bar_positions_top])
ax.set_xticklabels(columns_to_average, rotation=45, ha='right')
ax.legend()
plt.show()
```


• Listeners prefer to stream tracks that consists of more singing than acoustincess, speech and liveness.

Query 9: Distribution of Songs by Mode

Distribution of Songs by Mode

• Most of the songs are compossed on Major mode

Query 10: Mean Valence for Major and Minor Modes

- Assumption: It is commonly believed that songs in major mode are generally more positive.
- Observation: Upon analyzing the graph, we found that songs in the minor mode exhibit a slightly higher level of valence. This contradicts the initial assumption.

Query 11: Single Artist v/s Multiple Artists

• Tracks with only 1 artist seem to be more popular and streamed more

Query 12: Visualisation of Streams and Count

- Most of the songs have stream less than 0.5 Billion
- Songs with streams above 2.5 Billion are very rare

Query 13: Song Properties Throughout The Years

Danceability %

```
In []: plt.subplots(1,1, figsize=(15,3))
    colors = sns.color_palette("rainbow",n_colors=50)
    sns.boxplot(data=df_copy, x='released_year',y='danceability_%', width=0.4,fliersize=2,
    plt.xticks(rotation=45,fontsize=8)
    plt.show
```

Out[]: <function matplotlib.pyplot.show(close=None, block=None)>

- Tracks that are released from the year 2020 to 2023 have almost similar median danceability, and almost similar interquartile range.
- Tracks that are released from 2008 to 2023 have wide range of danceability. It could be due to the majority of the top tracks were released in these years.
- The most danceable track in the top streamed songs was released in 2021.
- The least danceable track in the top streamed songs was released in 1942.

Valence %

```
In [ ]: plt.subplots(1,1, figsize=(15,3))
    colors = sns.color_palette("rainbow",n_colors=50)
    sns.boxplot(data=df_copy, x='released_year',y='valence_%', width=0.4,fliersize=2,palet
    plt.xticks(rotation=45,fontsize=8)
    plt.show
```

Out[]: <function matplotlib.pyplot.show(close=None, block=None)>

• Tracks from 2020 to 2023 shows wide variety of moods in the top streamed songs, long whiskers extending from low valence to high valence, and median values at

- approximately 50%.
- Tracks from 2011 to 2023 has median valence at approximately 40 to 50%, with the exception of 2018. The range is also at the middle of the chart, ranging 20 to 70%, which shows the neutrality of the mood in the top streamed songs.

Acousticness %

```
In []: plt.subplots(1,1, figsize=(15,3))
    colors = sns.color_palette("rainbow",n_colors=50)
    sns.boxplot(data=df_copy, x='released_year',y='acousticness_%', width=0.4,fliersize=2,
    plt.xticks(rotation=45,fontsize=8)
    plt.show
```

Out[]: <function matplotlib.pyplot.show(close=None, block=None)>

- Tracks from 2011 to 2023 contains high variety of songs with different acousticness values, as shown in the long whiskers and long interguartile range.
- Older tracks seem to fall under a small range of acousticness levels.

Energy %

```
In []: plt.subplots(1,1, figsize=(15,3))
    colors = sns.color_palette("rainbow",n_colors=50)
    sns.boxplot(data=df_copy, x='released_year',y='energy_%', width=0.4,fliersize=2,palette
    plt.xticks(rotation=45,fontsize=8)
    plt.show
```

Out[]: <function matplotlib.pyplot.show(close=None, block=None)>

- Top tracks from 2011 to 2023 contains a wide range of tracks from energetic to less energetic, but with median values at the 50 to 60% energy percentage.
- The median values of the most streamed tracks are 50% or more, with the exception of 1958, 1959, and years with single tracks that made it to the most streamed. This shows that listeners prefer to listen to energetic tracks.

Instrumentalness %

```
In []: plt.subplots(1,1, figsize=(15,3))
    colors = sns.color_palette("rainbow",n_colors=50)
    sns.boxplot(data=df_copy, x='released_year',y='instrumentalness_%', width=0.4,fliersize
    plt.xticks(rotation=45,fontsize=8)
    plt.show
```

Out[]: <function matplotlib.pyplot.show(close=None, block=None)>

- The boxplot shows that majority of the most streamed tracks contains less instrumentalness levels, with some tracks that falls under the instrumental category identifies as outliers.
- Tracks released from 1986, 1991, and 2015, however, contains tracks that have considerably high instrumentalness levels, especially in 2015 where the boxplot whiskers reached the highest instrumentalness level.

Liveness %

```
In []: plt.subplots(1,1, figsize=(15,3))
    colors = sns.color_palette("rainbow",n_colors=50)
    sns.boxplot(data=df_copy, x='released_year',y='liveness_%', width=0.4,fliersize=2,pale
    plt.xticks(rotation=45,fontsize=8)
    plt.show
```

Out[]: <function matplotlib.pyplot.show(close=None, block=None)>

- A huge number of top streamed tracks have values of less than 50% liveness, with whiskers and interquartile range falling below 50%.
- Tracks which are performed live fall to the outliers, which means than listeners prefer to listen to recorded tracks.

```
In []: plt.subplots(1,1, figsize=(15,3))
    colors = sns.color_palette("rainbow",n_colors=50)
    sns.boxplot(data=df_copy, x='released_year',y='speechiness_%', width=0.4,fliersize=2,p
    plt.xticks(rotation=45,fontsize=8)
    plt.show
```

Out[]: <function matplotlib.pyplot.show(close=None, block=None)>

• Listeners prefer to listen to tracks with less speechiness or spoken words, as shown in the boxplot, where ticks and interquartile range fall below 30 to 40%, and outliers are rarely be seen above 50%.

Query 14: Most Streamed Key

```
In []: plt.figure(figsize=(12, 8))
    colorsKey = sns.color_palette("icefire", n_colors=11)

    df_plot = df_copy.copy()
    inverse_pitch_mapping = {v: k for k, v in pitch_class_mapping.items()}

    df_plot['key'] = df_plot['key'].map(inverse_pitch_mapping)
    df_key_sum = df_plot.groupby('key')['streams'].sum().reset_index()

    sns.barplot(x='key', y='streams', data=df_key_sum, errorbar=None, palette=colorsKey, h
    plt.xlabel('Key')
    plt.ylabel('Streams')
    plt.title('Streams by Key')
    plt.show()
```


- C# is the most streamed key
- There are no streamed music with the key C
- The amount of streams for other keys have small variations

Query 15: Count of the occurrences of each key in the key column of the DataFrame

```
In []: plt.figure(figsize=(12, 8))
    sns.countplot(x='key', data=df_plot, palette='mako', hue='key', legend=False)

plt.xlabel('Key')
    plt.ylabel('Count')
    plt.title('Count of Keys')

plt.show()
```


C# is the most used key through out the dataset

Conclusion

Our analysis of music streaming data in 2023 reveals some interesting patterns and trends. Here are the key takeaways:

Popularity:

- Newer songs tend to be streamed more, but older classics and songs revived through social media also gain significant traction.
- Bad Bunny reigns supreme as the most streamed artist, while The Weeknd boasts the most playlist appearances, suggesting higher repeatability and genre diversity.
- Blinding Lights by The Weeknd takes the crown as the most streamed song, followed by Shape of You by Ed Sheeran.

Streaming trends:

- Listeners prefer songs with more singing and less speech, acousticness, and liveness.
- Major mode songs dominate, though minor mode exhibits surprisingly high valence, challenging the assumption of their negativity.
- Tracks with only 1 artist are more popular and streamed more.
- Songs with less than 0.5 Billion streams are most common, with those exceeding 2.5 Billion being rare.

Release date and characteristics:

- Songs released between 2020 and 2023 exhibit similar median and interquartile range for danceability.
- Tracks from 2008 to 2023 show a wider range of danceability, possibly due to the concentration of top tracks in this period.
- Tracks from 2020 to 2023 showcase a wider variety of moods, while 2011 to 2023 lean towards neutrality.
- Tracks from both periods exhibit a wide range of acousticness and energy levels, suggesting diversity in preferences.
- Older tracks appear to fall under a smaller range of acousticness levels.
- Listeners generally prefer energetic tracks, with most streamed tracks exceeding 50% energy percentage.
- Top streamed tracks generally have lower instrumentalness levels, with outliers identified as instrumental pieces.
- Tracks from specific years (1986, 1991, 2015) contain tracks with considerably higher instrumentalness levels.
- The majority of top streamed tracks have less than 50% liveness, indicating a preference for recorded music over live performances.
- Listeners favor songs with less speechiness, with most falling below 30-40% and outliers rarely exceeding 50%.

Key and Mode:

- C# emerges as the most streamed key, while C has no streamed tracks.
- Other keys show minimal variations in streaming numbers.
- C# is also the most used key across the entire dataset.

Overall Analysis

Our analysis unveils valuable insights into music streaming preferences in 2023. Listeners seem to favor newer releases but also appreciate classics and social media-driven trends. Singing, major mode, and moderate energy levels resonate well, while instrumentalness, liveness, and speechiness play a smaller role. Specific years present unique trends in danceability, mood, and instrumentalness, suggesting evolving preferences over time. C# reigns supreme as the most streamed key, highlighting its popularity among artists and audiences.

These findings offer valuable information for artists, music platforms, and anyone interested in understanding the current landscape of music streaming. They can be used to inform content creation, recommendation algorithms, and marketing strategies to better cater to listener preferences and drive engagement.