Database Systems Relational Algebra

Prof. Dr. Agnès Voisard Muhammed-Ugur Karagülle

Institute of Computer Science, Databases and Information Systems Group

Fraunhofer FOKUS

2025

Notes

Introduction Operations Examples Limits of the relational algebra Questions

Notes

Introduction Operations Examples Limits of the relational algebra Questions

- 1 Introduction
- 2 Operations
- 3 Examples
- 4 Limits of the relational algebra
- **5** Questions

Collection of operations for manipulating relations.

The result of each operation is a new relation.

2 groups of operations:

- Set operations:
 - ► Union (U)
 - ▶ Intersection (∩)
 - ▶ Difference (\)
 - Cartesian product (x)
- Operations developed specifically for relational databases:
 - ▶ Projection (π)
 - ▶ Selection (σ)
 - ▶ Join (⋈)

Introduction Operations Examples Limits of the relational algebra Questions

Reference relations:

Relation R1

A	В	С
a	b	c
d	a	f
c	b	d

Relation R2

D	Е	F
b	g	a
d	a	f

Reference relations (cont'd)

Introduction Operations Examples Limits of the relational algebra Questions

HOBBY

Age	HobbyName
24	Fly fishing
25	Singing
29	Tennis
29	Jogging
31	Dancing
24	Singing
	24 25 29 29 31

Unary operation.

Elimination of some attributes of a relation.

$$\Pi_{< \textit{Attribute}-\textit{List}>}(\textit{Relation})$$

$$\Pi_{X}\!(r) = \{\; t[X] \mid t \in r \;\}, \, X \subseteq R.$$

Examples of projection

Introduction Operations Examples Limits of the relational algebra Questions

Example:

$$\Pi_{A,C}(R1)$$

A	C
a	С
d	f
c	d

Example:

 $\Pi_{PersonName,Age}$ (HOBBY). Duplicate elimination.

r croomvanic, Age (
PersonName	Age	
Jane	24	
Melony	25	
Brian	29	
Brian	29	
Charlie	31	
Steve	24	

Get the tuples of R that satisfy a certain condition C. $\sigma_{< C>}(R)$.

Condition: logical formula made up of clauses of the form:

$$A_i \theta A_j$$
 HobbyName="Singing" $A_i \theta k$

where A_i , A_j are attributes of R, k constant value from the domain of A_i , $\theta \in \{=, <, <, >, >, \neq\}$.

Clauses connected by the Boolean operators "and" (\land), "or" (\lor). The negation "not" (\neg) can also be used.

$$Cond = (A_i = k),$$

$$\sigma_{A_i = k}(r) = \{t \in r \mid t[A_i] = k\}.$$

Examples of selections

Introduction Operations Examples Limits of the relational algebra Questions

Example:

$$\sigma_{B=b}(R1)$$
.

A	В	C
a	b	c
c	b	d

Examples of selections (cont'd)

Introduction Operations Examples Limits of the relational algebra Questions

Example:

Select the *people who are singing*: in the HOBBY database: ^oHobbyName="Singing"</sup> (HOBBY).

PersonName	Age	HobbyName
Melony Steve	25 24	Singing Singing

Examples of selections (cont'd)

Introduction Operations Examples Limits of the relational algebra Questions

Example:

Who are the 24 year-old people who are singing?:

 $\sigma_{Age=24 \land HobbyName="Singing''}$ (HOBBY).

PersonName	Age	HobbyName
Steve	24	Singing

Selection is commutative.

$$\sigma_{< cond1>}(\sigma_{< cond2>}(R)) = \sigma_{< cond2>}(\sigma_{< cond1>}(R))$$

Operations Examples Limits of the relational algebra Questions

Cascade of selections \equiv selection with conjunctive condition ("and").

$$\sigma_{<\mathit{cond1}>}(\sigma_{<\mathit{cond2}>}(...\sigma_{<\mathit{condn}>})) \ (\mathsf{R}) = \sigma_{<\mathit{cond1}>\wedge\mathit{cond2}\wedge...\wedge\mathit{condn}>} \ (\mathsf{R}).$$

Operations Examples Limits of the relational algebra Questions

Several operations one after the other:

- 1 One operation at a time and store the intermediate result, or
- 2 Single relational algebra expression by nesting the operations.

Sequences of operations and renaming (cont'd)

Introduction Operations Examples Limits of the relational algebra Questions

Example:

Name of the people who sing?

HOBBY-TEMP $\leftarrow \sigma_{HobbyName="Singing"}(HOBBY))$

 $\mathsf{RESULT} \leftarrow \Pi_{\textit{PersonName}}(\mathsf{HOBBY\text{-}TEMP}).$

Example:

 $\Pi_{PersonName}(\sigma_{HobbyName="Singing"}(HOBBY).$

Sequences of operations and renaming (cont'd)

Introduction Operations Examples Limits of the relational algebra Questions

Renaming attributes in intermediate and result relations: list the new attributes.

Example:

```
HOBBY-TEMP \leftarrow \sigma_{\textit{HobbyName}="Singing"}(\textit{HOBBY})
RESULT(Name) \leftarrow \Pi_{\textit{PersonName}}(\textit{HOBBY-TEMP}).
```

Input: 2 relations:

$$R(A_1, ..., A_n)$$
 of arity n
 $S(B_1, ..., B_m)$ of arity m .

Cartesian product of R and S:

$$T = R \times S$$
.

$$R_1 \times R_2 = \{t = t_1 + t_2 \mid t_1 \in R_1, t_2 \in R_2\}.$$

Schema of $T: T(A_1, \ldots, A_n, B_1, \ldots, B_m)$

Value of T: set of possible (n + m)-tuples whose first n components form a tuple in R and last m components form a tuple in S.

Example:

R1 X R2

A	В	С	D	Е	F
a	b	с	b	g	a
a	b	c	d	a	f
d	a	f	b	g	a
d	a	f	d	a	f
с	b	d	b	g	a
c	b	d	d	a	f

Input: 2 relations:

$$R(A_1,\ldots,A_n)$$
 and $S(B_1,\ldots,B_m)$

- Same arity
- Compatible domains

$$T = R \cup S$$
.

Schema of $T: T(A_1, \ldots, A_n)$ or $T(B_1, \ldots, B_m)$ or other attribute names with same domain.

Value of T: $\{t \mid t \in R \text{ or } t \in S\}$,

Union (∪) (cont'd)

Introduction Operations Examples Limits of the relational algebra Questions

Example:

R1 U R2

Input: 2 relations:

$$R(A_1, \dots, A_n)$$
 and $S(B_1, \dots, B_m)$

- Same arity
- Compatible domains

$$T = R - S$$
.

Schema of $T: T(A_1, \ldots, A_n)$ or $T(B_1, \ldots, B_m)$ or other attribute names with same domain.

Value of T: $\{t \mid t \in R \text{ and } t \notin S\}$

Introduction Operations Examples Limits of the relational algebra Questions

Example:

R1 - R2

a	b	c
c	b	d

Input: 2 relations:

$$R(A_1, \dots, A_n)$$
 and $S(B_1, \dots, B_m)$

- Same arity
- Compatible domains

$$T = R \cap S$$

Schema of $T: T(A_1, \ldots, A_n)$ or $T(B_1, \ldots, B_m)$ or other attribute names with same domain.

Value of T: $\{t \mid t \in R \text{ and } t \in S\}$

Intersection (∩) (cont'd)

Introduction Operations Examples Limits of the relational algebra Questions

Example:

 $R1 \cap R2$

Natural join ⋈

Introduction Operations Examples Limits of the relational algebra Questions

Input: 2 relations with at least one attribute in common.

R1		
A	В	C
a	b	С
d	b	с
b	b	f
c	a	d

C	D
c	d
c	e
d	b
	c

A	В	С	D
a	b	С	d
a	b	С	e
d	b	С	d
d	b	c	e
с	a	d	b

$R \bowtie S$:

- 1 Compute $R \times S$ (schema (A,B,C,B,C,D))
- **2** For the attributes A_k common to R and S select the tuples with the same value for $R[A_k]$ and $S[A_k]$ (here B,C).
- **3** For each A_k project out column $S[A_k]$ and keep all other attributes.

- $R(A_1,A_2,\ldots,\underline{A_i},\underline{A_{i+1}})$ and $S(\underline{A_i},A_{i+1},\ldots,\overline{A_{n-1}},A_n)$
- V set of attributes in common.

If
$$U = \{A_1, A_2, \dots, A_i, A_{i+1}, \dots, A_n\}$$

Schema of *T*:
$$T(U) = T(A_1, A_2, ..., A_i, A_{i+1}, ..., A_n)$$
.

Value of
$$T$$
: $\Pi_U(\sigma_{\forall A_k \in V, R[A_k] = S[A_k]}(R \times S))$

Input: 2 relations

$$R(A_1,\ldots,A_n)$$

 $S(B_1,\ldots,B_k)$

$$R_{\underset{A_i\theta B_j}{\bowtie}}S$$

- ▶ Tuples in $R \times S$ such that $A_i \theta B_i$ is true
- ▶ $\theta \in \{=, <, \leq, >, \geq, \neq\}$

$$T = R_{\underset{A_i \theta B_i}{\bowtie}} S$$

Schema of $T: T(A_1, ..., A_n, B_1, ..., B_k)$ Value of $T = \sigma_{A_i \theta B_i}(R \times S)$

Join (⊖-join) (cont'd)

Introduction Operations Examples Limits of the relational algebra Questions

Example:

$$R_{\bowtie S > D}$$

9

		D	E
2	3	3	1
2	3	6	2
5	6	6	2
	2	2 3	2 3 6

Join (Equijoin, ⊖ is "=")

Introduction Operations Examples Limits of the relational algebra Questions

Example:

$$R_{\stackrel{\bowtie}{C=D}}$$

R

`	A	В	C
	1	2	3
	4	5	6
	7	8	9

S

Е
1
2

A	В	С	D	Е
1	2	3	3	1
4	5	6	6	2

⊖-join, examples

Introduction Operations Examples Limits of the relational algebra Questions

Example:

 $R \bowtie S$ B = D

Semijoin of $R(A_1, ..., A_n)$ by S:

 $R \propto S$ is the projection of $R \bowtie S$ onto the attributes of R:

$$R \propto S = \prod_{A_1,...,A_n} (R \bowtie S)$$

R1

В	C
b	С
b	c
b	f
a	d
	b b b

R2

В	C	D
b	c	d
b	c	e
a	d	b

 $R1 \bowtie R2$

В	С
b	С
b	с
a	d
	b b

The most expensive operation of the relational algebra.

Comparing all pairs of tuples: $O(n^2)$ time (relations of size n, number of tuples).

One way to compute equijoin or natural joins: sort both relations and merge the lists.

Time O(m + 2nlogn), m number of tuples of the join (max n^2).

=> Avoid doing joins

Transform an algebraic expression into an equivalent one that can be evaluated faster.

=> Query optimization techniques.

Division (quotient) ÷

Introduction Operations Examples Limits of the relational algebra Questions

R of arity m, S of arity n. m > n and $S \neq \emptyset$.

 $T = R \div S$: set of (m - n)-tuples a_1, \ldots, a_{m-n} such that for all n-tuples a_{m-n+1}, \ldots, a_m in S, the tuple a_1, \ldots, a_m is in R.

R

A	В	С	D
a	b	с	d
a	b	e	f
b	С	e	f
e	d	С	d
e	d	e	f
a	b	d	e

S

С	D
c	d
e	f

R - 9

A	В
a	b
e	d

Introduction Operations Examples Limits of the relational algebra Question

Set of relational algebra operations $\{\sigma,\pi,\cup,-,\times\}$ is a **complete set**: any of the other relational algebra operations can be expressed as a sequence of operations from this set.

Join

$$R \bowtie S \equiv \sigma_{cond}(R \times S)$$

Intersection not required:

$$R \cap S \equiv (R \cup S) - ((R - S) \cup (S - R))$$

Introduction Operations Examples Limits of the relational algebra Questions

Relational database schema:

EMPLOYEE(<u>EName</u>, Salary, Dept) **DEPARTMENT**(<u>DName</u>, ManagerName, Location)

Retrieve all employees who work in the sales department. $\sigma_{Dept="sales"}$ (EMPLOYEE)

Give the name of all employees.

Give the name of Miller's manager.

Give the name of the employees who work in Berkeley.

How about the query: "Display all managers of Smith".

Introduction Operations Examples Limits of the relational algebra Questions

Aggregate functions

Mathematical aggregate functions on collections on values (tuples).

- ► SUM
- AVERAGE
- MAXIMUM
- MINIMUM or
- COUNT

Limits of the relational algebra (cont'd)

Introduction Operations Examples Limits of the relational algebra

Recursive closure

Applied to **recursive relationship** between tuples of the same type.

Example:

Employee relation relates an employee (supervisee) to another one.

Recursive operation: Retrieve all supervisees e' of an employee e at all levels.

Relational algebra: Ok at a specific level.

=> Retrieve employees e' step-by-step and take the union.

Problem: Where to stop? (looping mechanism).

Questions

- 1 Welcome to Database Systems
- 2 Introduction to Database Systems
- 3 Entity Relationship Design Diagram (ERM)
- 4 Relational Model
- 5 Relational Algebra
- 6 Structured Query Language (SQL)
- 7 Relational Database Design Functional Dependencies
- 8 Relational Database Design Normalization
- 9 Online Analytical Processing + Embedded SQL
- 10 Data Mining
- 11 Physical Representation Storage and File Structure
- 12 Physical Representation Indexing and Hashing
- 13 Transactions
- 14 Concurrency Control Techniques
- 15 Recovery Techniques
- 16 Query Processing and Optimization