

武汉大学研究生课程报告

课程名称:		现代测量数据处理理论	
教师姓名:		袁修孝	
学生姓名:		叶小川	
学生学号:		2022282140108	
学院	ក់: -	测 绘 学 院	
专 1	k: _	资源与环境	

二零二二年十二月

现代测量数据处理理论误差处理实践报告

1 概述

模拟的立体像对(f为100.5mm,摄影比例尺为1:25500,像点坐标量测中误差为+2.8um), 控制点三维坐标没有误差,查找存在粗差的点位并且估计粗差的大小。

2 算法原理

根据数据的特性和参考本课程的学习,拟采用连续相对定向法。

2.1 相对定向法思想

(1) 相对定向元素

相对定向(relative orientation)是指恢复象对在摄影时候的相对关系,也就是解算立体像对相对方位元素的工作,恢复两光束间相对方位的工作,使得同名光线对对相交^[1]。

(2) 共面条件方程式

一个立体模型实现正确相对定向示意图如图 1 所示,图中的 m_1, m_2 表示模型点M 在左右两幅影像上的构像。

图 1 共面条件

 S_1m_1 , S_2m_2 表示一堆同名光线,它们与空间基线 S_1S_2 共面,这个平面可以用三个矢量的混合积表示:

$$B \cdot (R_1 \times R_2) = 0 \tag{1}$$

用坐标的形式表示为三阶行列式(2),即为共面条件方程式。

$$F = \begin{vmatrix} B_{x} & B_{y} & B_{z} \\ X_{1} & Y_{1} & Z_{1} \\ X_{2} & Y_{2} & Z_{2} \end{vmatrix} = 0$$
 (2)

2.2 连续像对相对定向

(1) 解算公式

连续像对相对定向通常假定左方影像是水平的或其他方位元素是已知的,可以把(2) 展开到一次项:

$$F = F_0 + \frac{\partial F}{\partial \varphi} d\varphi + \frac{\partial F}{\partial \omega} d\omega + \frac{\partial F}{\partial \kappa} d\kappa + \frac{\partial F}{\partial \mu} b_{\gamma} \cdot d\mu + \frac{\partial F}{\partial \nu} b_z \cdot d\nu = 0$$
(3)

其中 F_0 是用相对定向元素的近似值求出的, $d\varphi$ 等为相对定向待定参数的改正数。五个偏导数用微小旋转矩阵式表示之后可以表示为:

$$\begin{cases} Y_{1} = Y_{2} \\ Z_{1} = Z_{2} \\ X_{1} = X_{2} + \frac{B_{x}}{N'} \end{cases}$$
 (4)

其中,N'是投影系数,可以得到:

$$q = -\frac{X_2 Y_2}{Z_2} N' d\varphi - \left(Z_2 + \frac{Y_2^2}{Z_2} \right) N' d\omega + X_2 N' d\kappa + B_x d\mu - \frac{Y_2}{Z_2} B_x dv$$
 (5)

(2) 解算过程

式 (5) 中有 5 个未知数,因此至少需要量测 5 对同名像对的像点坐标,有多余观测值的时候将 q 视为观测值,可以得到误差公式:

$$v_{q} = -\frac{X_{2}Y_{2}}{Z_{2}}N'd\varphi - \left(Z_{2} + \frac{Y_{2}^{2}}{Z_{2}}\right)N'd\omega + X_{2}N'd\kappa + B_{x}d\mu - \frac{Y_{2}}{Z_{2}}B_{x}dv - q$$
 (6)

3 算法实现

采用 C++实现,引入 Eigen 库

3.1 数据读取及输入

从 dat 文件中读取相点坐标内方位元素等

3.2 解算法方程

进行法方程的计算

3.3 解算改正值和估值

改正值:

$$\hat{X} = (A^T P A)^{-1} A^T P L \tag{7}$$

3.4 判断改正值是否小于限差

如果大于限差,改正未知数重新进行步骤 3.2,如果小于限差则直接输出结果[2]。

4 实验结果

序号	点号	粗差
1	81	91. 2321
2	173	85. 8973
3	218	42. 5821
4	220	19. 1123
5	330	49. 3823
6	452	65. 2122

	T	
7	452	57. 7907
8	502	39. 1256
9	646	39. 9684
10	821	82. 8093
11	821	73. 9074
12	874	38. 2345
13	874	33. 5068
14	1078	98. 5957
15	1078	96. 5401
16	1130	96. 6933
17	1130	85. 8116
18	1219	37. 6434
19	1252	85. 3634
20	1276	41. 3306
21	1340	52. 9206
22	1340	47. 3532
23	1465	49.8600
24	1505	64. 0391
25	1505	57. 8403
26	1832	67. 0305
27	1832	54. 3366
28	2020	46. 9942
29	2316	31. 5946
30	2666	28. 1936
31	2767	43.8523
32	2844	62. 7248
33	2906	66. 0814
34	3077	42.8454
35	3107	32. 2633
36	3389	35. 4155
37	3451	85. 2323
38	3519	41. 5982
39	3567	81. 7237
40	3567	75. 6976
41	3808	18. 8321
42	3878	93. 8189
43	4017	58. 6753
44	4017	59. 7175
45	4543	56. 9016
46	4553	95.0568
47	4976	42.6973
48	4986	99.0518
49	4986	95. 2892
L	<u> </u>	

50	5161	24. 3412
51	5211	100. 4265
52	5732	56 . 3565
53	5732	47. 7061
54	5757	34. 7886
55	5777	42. 3411
56	5918	35. 0516
57	5947	89. 6993
58	5947	44. 5863
59	6133	35. 3394
60	6412	82. 3587
61	6463	36. 8845
62	6463	33. 2242
63	6527	27. 6581
64	6612	75. 2141
65	6612	69. 4206
66	6658	60. 5126
67	6737	20. 6287
68	6737	52. 4738
69	6894	40. 3166
70	6945	64. 3839
71	6959	34. 2321
72	7042	81.6566
73	7042	79. 4758
74	7053	28. 2556
75	7053	21. 2022
76	7065	84. 6224
77	7089	42. 9935
78	7243	57. 5833
79	7260	64. 7359
80	7362	83. 7944
81	8492	73. 8698
82	8937	71. 9389
83	9127	76. 9858
84	9300	66. 2336
85	10691	58. 6051
86	10936	96. 7471
87	11394	81. 1660
88	12426	62. 2529
89	13496	63. 4422
	1	

5 实验总结

针对于3 张影像,选取了相对定向方法进行计算,该方法易于理解,可以较为方便进行计算,算得有误差的点位,实践了课程所学。其次在查找资料的过程中发现光束法平差针对这个场景也比较适用,但是程序实现有一定难度,涉及到最小二乘多项式的计算,平差结果一直不理想,故只提交了相对定向方法的结果,后续还会继续进行改进。

参考文献

- [1] 张军, 赵淑湘. 摄影测量与遥感技术[M]. Beijing Book Co. Inc., 2015.
- [2] 广义测量平差[M]. 武汉大学出版社, 2009[2022-12-11].