左左 之一
笔记
2017年10月31日 14:17
短路电流 I _s
开路电压 U。
内阻R0
额定 U _N I _N P _N
N 结点 b 支路
基尔霍夫电流定律 n-1
电压定律 b- (n-1)
共 b 个
$R_{Y} = \frac{1}{3}R_{\Delta} R_{\Delta} = 3R_{Y}$
c=q/u
t (t)
$u_c = U_0 e^{-\frac{t}{\tau}} + U \left(1 - e^{-\frac{t}{\tau}} \right)$
全响应=零输入+零状态
$ au = RC \qquad au = rac{L}{R}$
相up
线 ul
谐振 $f_0 = \frac{1}{2\pi\sqrt{LC}}$, $f_0 = \frac{1}{2\pi RC}$ $w = \frac{1}{\sqrt{LC}}$
$w = \sqrt{LC}$
经验公式 $r_{be} \approx 200\Omega + \frac{(\beta+1)26mV}{I_E(mA)}$
差分放大电路
$I_{c} pprox I_{E} pprox rac{U_{EE}}{2DF}$
$I_{C} pprox I_{E} pprox \frac{U_{EE}}{2RE}$ $I_{\beta} pprox \frac{I_{C}}{\beta} pprox \frac{U_{EE}}{2\beta R_{E}}$ $U_{CE} pprox U_{CC} - R_{C}I_{C} pprox U_{CC} - \frac{\bigcup_{EE} R_{C}}{2R_{E}}$
$1\beta \sim \overline{\beta} \sim \overline{2\beta R_E}$
$U_{CE} \approx U_{CC} - R_C I_C \approx U_{CC} - \frac{\bigcup_{EE} R_C}{2R}$
$eta R_L'$
$A_d = -rac{eta R_L'}{R_B + r_{be}}$ $r_i = 2(R_{B1} + r_{be})$
$r_i = 2(R_{B1} + r_{be})$
$r_0pprox 2Rc$
交流电磁铁吸合过程中 气隙长度减小 磁路磁阻减小 线圈电感增大 线圈电流减小 磁通最大值基本不变
文测电磁场吸口过往中 际人反顺小 磁焰磁阻顺小 线圈电影恒人 线圈电流减小 磁胆取入阻塞个个变

电磁吸力基本	不变					
AB + AB = A 负反馈 Ri 虫野	B + ĀB̄ 增高 并联减低					
	玉减低 电流增高					
				the safe		
62		第 15	章 基本放大日		表 15. 6. 1	IIII Ed au
25 99 1	STATE OF STREET	and the last	SECTION AND ADDRESS.			四种常见
电路名	3称 固定偏	置放大电路	10 40 10 10 10	分压式偏	置放大电路	EST VIEW
(M)	$R_{\rm B}$	$R_{\rm C}$	$0+U_{\rm CC}$	$R_{\rm B1}$	R_C	o+U _{cc}
电路	R_{s}	$R_{\rm L}$	+] $\dot{U}_{\rm o}$	T U. Rpall	+ R _L	† <i>U</i> _o
32 32 t		21-089	$ \tilde{E}_s$	<u>Q_ I</u>	R _E +	IN A STATE OF THE
2 以2、	$I_{\rm B} = \frac{U_{\rm cc} - U}{R_{\rm B}}$	BE A	I_{B}	$=\frac{V_{\rm B}-U_{\rm BE}}{(1+\bar{\boldsymbol{\beta}})R_{\rm E}}^{\odot}$	$\approx \frac{V_{\rm B}}{\bar{\beta}R_{\rm E}}$	
静态化	$I_{\rm C} \approx \overline{\beta} I_{\rm B}$ $U_{\rm CE} = U_{\rm CC} - \overline{\beta} I_{\rm CC}$	$R_{ m c}I_{ m c}$	STATE OF THE PARTY	$pprox ar{eta}I_{\mathrm{B}}$ $_{\mathrm{CE}}pprox U_{\mathrm{CC}}-(R_{\mathrm{C}}+$		
电压放倍数	A = -B	10.5	A	$r_{\rm be} = -\beta \frac{R_{\rm L}'}{r_{\rm be}}$	Tra con	
输入电	图 $r_{\rm i} = R_{\rm B} // r_{\rm be}$	T Vois	J. 870	$=R_{\rm B1}/\!/R_{\rm B2}/\!/r$	03	

00 × 0 14 10 = 0. 94 110	12-00-11-8.) = 100+(1-
$A_{u} = \frac{(1+\beta) R'_{L}}{r_{be} + (1+\beta) R'_{L}}$	$A_u = -\beta \frac{R_L'}{r_{be} + (1 + \beta) R_E}$
DA E DE - 1 3K	1+ ()+ 1 (x + () + x
$r_{i} = R_{B} // [r_{be} + (1+\beta) R'_{L}]$	$r_{\rm i} = R_{\rm B1} // R_{\rm B2} // [r_{\rm be} + (1+\beta) R_{\rm E}]$
	48 (A) 4 - 36 (A) (B) (B) (B) (B) (B) (B) (B) (B) (B) (B
$r_{\rm o} \approx \frac{r_{\rm be} + R_{\rm S}'}{\beta}$	$r_o \approx R_c$
输入电阻高,输出电阻很低,电压 放大倍数接近1	输入电阻高,电压放大倍数虽有所降低但比较稳定
FE C. HARRY TRANS	
大电路的第三人称形式 2011年	
	0017 11 17 10 50
TO BE SHOULD BE SEEN AND SEEN AS A SECOND SE	2017-11-17 10:58

	平均重 4。			26						
	每管水类的最高反 向电压 Unx	$\sqrt{2} U = 1.41U$	2√2U=2.83U	No.	√2 U = 1, 41 U			-		
	变压器二次电流有效值 /	1.57 <i>L</i> ₀	0.791,		1.11/0	0.59	20-17-17	-20 15:11		
			A CONTRACTOR OF THE PARTY OF							
易错点										
加法电路正向输射极跟随器 输出										
多级放大 内阻										
积分电路负号										