

RGB LED HAT

用户手册

产品概述

本产品是采用 WS2812B 智能外控 LED, 共有 4*8 个 LED, 它们构成了 32 个像素点, 且每个点可单独寻址, 在底部有 4 个可选择的电阻, 分别对应的树莓派的 4 个 PWM 管脚, 默认为 P18, 通过此管脚可以控制全部 LED, 模块直接从树莓派上获取电源, 不需要另接电源。

规格

工作电压	5V
产品尺寸	65mm×30.2mm
固定孔尺寸	3.0mm

接口说明

- 1. 若使用在树莓派上,只需将模块直接插入树莓派的接口上即可;
- 2. 若使用在其他主控,建议将底部的 5V,GND,DIN,DOUT 四个焊盘焊上排针,以方便接线。

标识	管脚描述
5V	5V 电源
GND	电源地
DIN	控制信号输入
DOUT	控制信号输出

工作原理

1. 器件介绍

WS2812B 是一个集控制电路与发光电路于一体的智能外控 LED 光源。其外型与一个 5050LED 灯珠相同,每个元件即为一个像素点。像素点内部包含了智能数字接口数据锁存信号 整形放大驱动电路,还包含有高精度的内部振荡器和 12V 高压可编程定电流控制部分,有效保证了像素点光的颜色高度一致。

数据协议采用单线归零码的通讯方式,像素点在上电复位以后,DIN 端接受从控制器传输过来的数据,首先送过来的 24bit 数据被第一个像素点提取后,送到像素点内部的数据锁存器,剩余的数据经过内部整形处理电路整形放大后通过 DO 端口开始转发输出给下一个级联的像素点,每经过一个像素点的传输,信号减少 24bit。像素点采用自动整形转发技术(见:数据传输协议),使得该像素点的级联个数不受信号传送的限制,仅仅受限信号传输速度要求。

2. 时序波形图

数据传输时间(TH+TL=1.25μs±600ns)

ТОН	0 码, 高电平时间	0.4μs	±150ns
T1H	1码, 高电平时间	0.8 μs	±150ns
TOL	0码, 低电平时间	0.85µs	±150ns
T1L	1码, 低电平时间	0.45 μs	±150ns
RES	帧单位,低电平时间	50µs 以上	

3. 数据传输协议

知道了时序的波形定义,那么就可以遵循通信的协议,从而完成数据的传输。

注: 其中 D1 为 MCU 端发送的数据, D2、D3、D4 为级联电路自动整形转发的数据。

4. 24bit 数据结构

G7	G6	G5	G4	G3	G2	G1	G0	R7	R6	R5	R4	R3	R2	R1	R0	В7	В6	B5	В4	В3	В2	B1	В0
																							1

注: 高位先发, 按照 GRB 的顺序发送数据。

操作现象

以上是 WS2812B 的工作原理。如果使用树莓派控制该模块,那么不需理会其工作原理,只需调用库即可。将示例程序复制到树莓派并解压。

1. 安装库

运行如下命令:

sudo apt-get install python-pip

sudo pip install rpi_ws281x

把程序下载到树莓派上,运行:

cd RGB_LED_HAT

sudo python ws2812.py

运行这个示例程序, RGB LED 会有颜色渐变的效果。

如果显示颜色不对,请尝试在/boot/config.txt 文件中添加如下两个语句,重启生效。 由于 RGB LED 采用 DMA 控制,占用树莓派上的音频输出 DMA 通道,因此添加这两个语句会导致耳机接口不能使用。

hdmi_force_hotplug=1

hdmi_force_edid_audio=1

2. 代码分析

```
from rpi_ws281x import Adafruit_NeoPixel, Color
 # LED strip configuration:
                              # Number of LED pixels.
               = 32
= 18
LED COUNT
                              # GPIO pin connected to the pixels (must support PWM!).
LED PIN
LED_FREQ_HZ
               = 800000  # LED signal frequency in hertz (usually 800khz)
= 5  # DMA channel to use for generating signal (try
LED_DMA = 5  # DMA channel to use for generating signal (try 5)
LED_BRIGHTNESS = 10  # Set to 0 for darkest and 255 for brightest
LED INVERT
                  = False
                              # True to invert the signal (when using NPN transistor level shift)
 # Create NeoPixel object with appropriate configuration.
strip = Adafruit_NeoPixel(LED_COUNT, LED_FIN, LED_FREQ_HZ, LED_DMA, LED_INVERT, LED_BRIGHTNESS) # Intialize the library (must be called once before other functions).
while 1:
     strip.begin()
      #order
     for i in range(0,strip.numPixels()):
          strip.setPixelColor(i, Color(0,0,255))
          strip.setPixelColor(i-1, Color(0,0,200))
          strip.setPixelColor(i-2, Color(0,0,150))
          strip.setPixelColor(i-3, Color(0,0,100))
          strip.setPixelColor(i-4, Color(0,0,0))
          strip.show()
          time.sleep(0.1)
```

- 1. from rpi ws281x import Adafruit NeoPixel, Color 导入rpi-ws281x库。
- 2. Adafruit_NeoPixel 创建一个对象 strip,设置 LED 为 32 个,管脚为 18,频率为 800000。

其中 LED_BRIGHTNESS 为 LED 的亮度。

- 3. begin()初始化 RGB LED 函数。
- 4. setPixelColor(pos, color)函数为设置像素点, pos 为 LED 位置。color 为 RGB 颜 色。
- 5. color(r, g, b)函数将 RGB 的值转换为一个 24 位的颜色。
- 6. show() 函数为传输数据,显示 LED 设置的颜色。
- 7. 更多函数可以查看 rpi_ws281x-master /python/neopixel.py 文件。

3. 通过 Bottle 实现 web 网页控制。

Bottle 是一个简单高效、遵循 WSGI 的微型 python Web 框架。通过 Bottle 可以快速实现 web 控制。

安装库:

sudo apt-get install python-bottle

通过 Bottle 实现 web 控制 RGB LED。

cd ~/RGB LED HAT/web-RGB

sudo python main

在浏览器地址栏内输入树莓派 ip 地址,端口号 8000。通过点击调色盘不同的位置,RGB LED 会显示不同的颜色。"static"、"breath"、"flash"分别对应三种显示模式。

注意:此 web-RGB 程序支持手机端浏览器,电脑端浏览器不能控制。

