Exercises for Chapter 0

0.1.1

Given $v \in [0^{\circ}, 90^{\circ}]$.

- a) Show that $\sin v = \sin(180^{\circ} v)$.
- b) Show that $\cos v = -\cos(180^{\circ} v)$

0.1.2

Find the area of $\triangle ABC$ when

- a) $\angle A = 60^{\circ}$, AB = 5 and AC = 7.
- b) $\angle B = 18^{\circ}$, AB = 4 and BC = 3. $\left(\sin 18^{\circ} = \frac{\sqrt{5}-1}{4}\right)$
- c) $\angle A = 75^{\circ}$, $\angle B = 60^{\circ}$, $AC = \sqrt{6}$ and $BC = \sqrt{3} + 1$

0.1.3

- a) Prove the area theorem.
- b) Prove the sine theorem.

0.1.4

- a) Show that $\cos 45^{\circ} = \frac{\sqrt{2}}{2}$.
- b) Show that $\sin 30^{\circ} = \frac{1}{2}$.
- c) Show that $\cos 30^{\circ} = \frac{\sqrt{3}}{2}$.

0.1.5 (1TV23D1)

A right triangle has sides 6, 8, and 10. See the figure to the right.

Show that

$$(\sin u)^2 + (\cos u)^2 = 1$$

0.1.6 (1TH22D1)

Given the triangle to the right. Show that

$$\frac{\sin u}{\cos u} = \tan u$$

0.1.7

Show that $\tan v = \frac{\sin v}{\cos v}$.

0.2.1 (1TH21D1)

Given the triangle above. Determine the length of side BC.

0.2.2

Given a triangle with sides a, b, and c and an inscribed circle with radius r. Explain why the area of the triangle is given as

$$\frac{1}{2}(a+b+c)r$$

0.2.3

Let a = BC, b = AC, c = AB and DM = r.

- a) Show that $r = \frac{ac}{a+b+c}$.
- b) Show that 2r = a + c b.
- c) Use the expressions from tasks a) and b) to find b^2 expressed by a and c. What is this formula called?

0.2.4

Explain why, from Rule ??, it follows that two angles spanning the same arc are equal in size.

0.2.5

- a) Show that Thales' theorem¹ follows from Rule ??.
- b) Given a right-angled triangle $\triangle ABC$ with hypotenuse AB. Which of \Rightarrow , \Leftarrow and \Leftrightarrow should replace ??? below to describe the *inverse* case of Thales' theorem.

 $C = 90^{\circ}$??? AB is a diameter in the circumscribed circle of $\triangle ABC$

¹See MB.

0.2.6

The red line is tangent to the circle. Show that $\angle BAC = \angle EBC$.

(1TH21D1)

A triangle has a perimeter of 12, and one side of the triangle is 2. Determine the area of the triangle.

Ponder 2

(1TV21D1)

Sort the values in ascending order.

$$\sin 60^{\circ}$$
 $\left(\frac{3}{4}\right)^{-1}$ $\sin 160^{\circ}$ $\lg 1$

Ponder 3

An equilateral triangle has sides of length 2.

Use the triangle to show that

$$\cos 60^{\circ} = \frac{1}{2}$$

Ponder 4

Which of the two triangles has the larger area?

Remember to argue why your answer is correct.

Ponder 5

Show that

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

5

Ponder 6

Show that $\sin 18^{\circ} = \frac{1}{4}(\sqrt{5} - 1)$. (Hint: See figure.)

Ponder 7

Prove the cosine theorem.

Show that

$$\cos(u+v) = \cos u \cos v - \sin u \sin v$$

It is sufficient to examine the case where $v, u \in [0^{\circ}, 90^{\circ}]$.

Ponder 9

Prove the converse case of Thales theorem (see Exercise 0.2.5).

Ponder 10

Show that

Ponder 11

Show that

 $AP \cdot PB = DP \cdot PC$

Note: This result is often called the chord theorem.

Let r be the radius of the semicircle. Express the area of the blue area in terms of v and r.

Ponder 13

Let r be the radius of the circumscribed circle to $\triangle ABC$. Show that

$$r = \frac{abc}{4A_{\triangle ABC}}$$

Ponder 14

E is the midpoint of the square. Find the value of v.

Show that

