뉴럴네트워크(NN:Neural Network)의 파라미터와 히든레이어에 대한 작업전 필수 이해

▶선형회귀에서 w와 b갯수

x값(특징)의 갯수에 맞추어서 w값의 갯수도 결정됨. b는 무조건 1개임(또는 생략가능)

예) 나이,성별,자녀수,지역에 따르는 보험계약금예측

보험계약금예측값=나이*w1+성별*w2+자녀수*w3+지역*w4 + b임

나이	성별	자녀수	지역	이미발생한데이터 보험계약금
25	1	2	1	50
20	0	0	2	30
8	1	1	5	40
15	1	0	2	50
35	0	3	1	20
40	0	5	4	80

0.3	0.2	0.5	0.1	0.1
나이	성별	자녀수	지역	나이*w1+성별*w2+자녀수*w3+ 지역*w4+b
25	1	2	1	8.8
20	0	0	2	6.2
8	1	1	5	3.6
15	1	0	2	4.9
35	0	3	1	12.1
40	0	5	4	14.9

w4

b

w2

w3

새로운데이터 예측할!			예측할보험계약금	
54	1	0	5	오차가 가장 작은 w와 b를 찾아서 새로운 데이터에
"				54*최적화w1+1*최적화w2+0*최적화w3+5*최적화w4+b 로 계산함

파라미터 (Parameter)

- 파라미터는 모델 내부에서 결정되는 변수입니다.
- d
- weight coefficient (가중치 계수)
- bias (편향)
- weight coefficient, bias와 같은 파라미터들은 모델 내부에서 데이터를 통해 구해집니다.

좌측의 예제(보험금)으로는 w값4개 b값1개여서 파라미터는 5개가 생성됨

개요(히든레이어와 파라미터)

```
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
x=np.array([1,2,3,4,5,6])
y=np.array([10,98,8,2,3,4])
#w값 바꾸지 않기 위해 사용함,검증용이며 실제에서는 seed 하지 않음.
tf.random.set seed(1234)
input layer = tf.keras.layers.lnputLayer(input shape=(1,))
hidden_layer1 = tf.keras.layers.Dense(units=4, activation='relu')
hidden_layer2 = tf.keras.layers.Dense(units=2, activation='relu')
output layer= tf.keras.layers.Dense(units=1)
# activation이 없으면 활성화함수 wx+b가 되어있는 것임.
model = keras.Sequential([
  input_layer, <
                         0번레이어
  hidden layer1,
                          1번레이어
  hidden layer2, -
  output layer
                          2번레이어
  ])
model.compile(#optimizer='adam',
        loss='mse'.
       metrics=['accuracy'])
print(model.fit(x, y))
print(model.predict(x))
print(model.evaluate(x,y))
```

```
model = keras.Sequential([
0번레이어 - tf.keras.layers.Dense(units=4,input_shape=(1,),activation='relu'),
1번레이어 - tf.keras.layers.Dense(units=2, activation='relu'),
2번레이어 - tf.keras.layers.Dense(units=1)])
```

input값의 x변수의 갯수에 따라 w값의 갯수가결정됨

x=[1,2,3,4,5,6] 은 x값은 1개이며 w값 1개, b값이 1개여야함. x=[[1,2,],[2,3],[3,4],[4,8],[5,2],[6,4]]

하면 x값은 2개이며 w값도 2개, b값이 1개여야함

1 model.summary()			
Model: "sequential_10"			
Layer (type)	Output Shape	Param #	
dense_22 (Dense)	(None, 4)		0번레이어
dense_23 (Dense)	(None, 2)		1번레이어
dense_24 (Dense)	(None, 1)		2번레이어
Total params: 21 Trainable params: 21 Non-trainable params: 0			

x변수1개일때 w1개,b1개필요 x변수2개일때 w2개,b1개필요

x1 수면시간)	y (스트레스)
1	10
2	98
3	8
4	2
5	3
6	4

x1 (수면시간)	x2 (용돈)	y (스트레 스)
1	2	10
2	3	98
3	4	8
4	8	2
5	2	3
6	4	4

- ▶0번레이어는 tf.keras.layers.Dense(units=4,input shape=(1,),activation='relu'),
- → input_shape는 1개여서 w값이1개, b값이 1개임, 0번레이어의 출력유닛은 4개임.
 - 유닛1개당 wx+b를 계산함. w,b의 2개 파라미터 필요
- 유닛4개*2파라미터=총8개의 파라미터 생성됨 계산된 결과값은 relu함수에 의해 계산결과를 다시 재 조정함.
- ▶ 1번레이어는 tf.keras.layers.Dense(units=2, activation='relu'),
- → 0번레이어의 유닛갯수가 input값이 됨. 0번레이어 유닛수는 4, x변수가 4개라는 뜻 1번레이어 출력유닛은 2개임
- 유닛1개당 w값4개+바이어스1개의 5개의 파라미터 필요
- 유닛2개*5개파라미터=총 10개의 파라미터 생성됨 계산된 결과는 relu학수에 의해 다시 재조정함
- ▶ 2번레이어는 tf.keras.layers.Dense(units=1)])
- → 1번레이어의 유닛갯수가 input값이 됨. 1번레이어의 유닛수는 2, x변수가2개라는뜻 2번레이어의 출력유닛은 1개임
 - 유닛1개당 w값2개+바이어스1개 3개의 파라미터 피머
 - 유닛1개*3개파라미터=총3개의 파라미터 생성됨
 - activation이 없음으로 wx+b값으로만 계산됨

model.summary 에 대한 해석 [0번레이어] 첫번째레이어.

[input값] x=np.array([1,2,3,4,5,6])

	유닛1	유닛2	유닛3	유닛4
W	0.08334005	-0.29660565	0.17884266	-0.56124383
b	0	0	0	0
x값	w*x+b	w*x+b	w*x+b	w*x+b
1	0.08334005	-0.29660565	0.17884266	-0.56124383
2	0.1666801	-0.5932113	0.35768532	-1.12248766
3	0.25002015	-0.88981695	0.53652798	-1.68373149
4	0.3333602	-1.1864226	0.71537064	-2.24497532
5	0.41670025	-1.48302825	0.8942133	-2.80621915
6	0.5000403	-1.7796339	1.07305596	-3.36746298

활성화함수 **relu**는 0보다작은값은 0으로, 0보다크거가같은값은 그값 그대로 나오는 함수임

$$f = \begin{cases} (x < 0) & f(x) = 0 \\ (x \ge 0) & f(x) = x \end{cases}$$

x값	w*x+b	w*x+b	w*x+b	w*x+b
1	0.08334005	0	0.17884266	0
2	0.1666801	0	0.35768532	0
3	0.25002015	0	0.53652798	0
4	0.3333602	0	0.71537064	0
5	0.41670025	0	0.8942133	0
6	0.5000403	0	1.07305596	0

검정테두리 layer[0] 에서 출력물

```
model = keras.Sequential([
    tf.keras.layers.Dense(units=4,input_shape=(1,),activation='relu'),
    tf.keras.layers.Dense(units=2, activation='relu'),
    tf.keras.layers.Dense(units=1) ])
```

```
1 modelvalue=model.weights
  2 modelvalue
[<tf.Variable 'dense 19/kernel:0' shape=(1, 4) dtype=float32.</pre>
array([[ 0.08334005, -0.29660565, 0.17884266, -0.56124383]], W값4개
        dtype=float32)>,
<tf.Variable 'dense_19/bias:0' shape=(4,) dtype=float32, numpy=array([0., 0., 0., 0.], b값4개 32)>,
 <tf.Variable 'dense_20/kernel:0' shape=(4, 2) dtype=float32, numpy=
 array([[-0.34927058, -0.7225988],
         [ 0.2960987 , -0.39196324],
         [-0.32647347, -0.73963904]
         [ 0.41159463, 0.43719316]], dtype=float32)>,
 <tf.Variable 'dense_20/bias:0' shape=(2,) dtype=float32, numpy=array([0., 0.], dtype=float32)>,
 <tf.Variable 'dense_21/kernel:0' shape=(2, 1) dtype=float32, numpy=
 array([[ 0.2757995 ],
         [-0.55681044]], dtype=float32)>,
 <tf.Variable 'dense_21/bias:0' shape=(1,) dtype=float32, numpy=array([0.00316228], dtype=float32)>]
  model.summary()
                       Output Shape
                                          Param #
                                                    param갯수 8개
 dense_20 (Dense)
 frainable params: 21
 Non-trainable params: O
 8 intermediate_layer_model = tf.keras.Model(inputs=model.input, outputs=model.layers[0]].output)
 9 intermediate_output = intermediate_layer_model(x)
11 print('#n======= Outputs of Hidden Layer =======')
 2 print(intermediate_output)
                                                                                layer0 출력물
 [0.41670024 0.
```

model.summary 에 대한 해석 [1번레이어] 두번째레이어

[input값]은

layer[0]에서의 결과인 유닛4개 에 계산된 결과로서 x1,x2,x3,x4 값임

x1	x2	х3	х4
0.08334	0	0.178843	0
0.16668	0	0.357685	0
0.25002	0	0.536528	0
0.33336	0	0.715371	0
0.4167	0	0.894213	0
0.50004	0	1.073056	0

x1의 w1	x2의 w2	x3의 w3	x4의 w4		유닛2	x1의 w1	x2의 w2	x3의 w3
-0.34927058	0.2960987	-0.32647347	0.41159463		W	-0.7225988	-0.39196324	-0.73963904
	0				b			0
w2	w)	v.A	O L 1 0		v.1	v2	w2	x4
XZ	X5	X4	ㅠ굿I의 WX+D		ΧI	XZ	X5	Х4
0	0.17884266	0	-0.087495611		0.08334	0	0.17884266	0
0	0.35768532	0	-0.174991223		0.16668	0	0.35768532	0
0	0.53652798	0	-0.262486834		0.25002	0	0.53652798	0
0	0.71537064	0	-0.349982446		0.33336	0	0.71537064	0
0	0.8942133	0	-0.437478057		0.4167	0	0.8942133	0
0	1.07305596	0	-0.524973668		0.50004	0	1.07305596	0
	-0.34927058 x2 0 0 0 0 0	-0.34927058	-0.34927058	-0.34927058	-0.34927058 0.2960987 -0.32647347 0.41159463 0 x2 x3 x4 保以2 wx+b 0 0.17884266 0 -0.087495611 0 0.35768532 0 -0.174991223 0 0.53652798 0 -0.262486834 0 0.71537064 0 -0.349982446 0 0.8942133 0 -0.437478057	-0.34927058	-0.34927058 0.2960987 -0.32647347 0.41159463 b b b b b b b	x2 x3 x4 Hy19 wx+b x1 x2 x3 0 0.17884266 0 -0.087495611 0.08334 0 0.17884266 0 0.35768532 0 -0.174991223 0.16668 0 0.35768532 0 0.53652798 0 -0.262486834 0.25002 0 0.53652798 0 0.71537064 0 -0.349982446 0.33336 0 0.71537064 0 0.8942133 0 -0.437478057 0.4167 0 0.8942133

W	-0.7225988 -0.39196324		-0.73963904	0.43719316	
b					
x1	x2	x3	x4	유닛2의 wx+b	
0.08334	0	0.17884266	0	-0.192500433	
0.16668	0	0.35768532	0	-0.385000867	
0.25002	0	0.53652798	0	-0.5775013	
0.33336	0	0.71537064	0	-0.770001734	
0.4167	0	0.8942133	0	-0.962502167	
0.50004	0	1.07305596	0	-1.155002601	

계산된집	71 ==>	relu함수 수행후			
유닛1의 wx+b	유닛2의 wx+b,	유닛1의 wx+b	유닛2의 wx+b		
-0.087495611	-0.192500433	0	0		
-0.174991223	-0.385000867	0	0		
-0.262486834	-0.5775013	0	0		
-0.349982446	-0.770001734	0	0		
-0.437478057	-0.962502167	0	0		
-0.524973668	-1.155002601	0	0		

검정테두리 layer[1] 에서 출력물

```
model = keras.Sequential([
  tf.keras.layers.Dense(units=4,input_shape=(1,),activation='relu'),
  tf.keras.layers.Dense(units=2, activation='relu'),
  tf.keras.layers.Dense(units=1) ])
```

```
1 modelvalue=model.weights
 2 modelvalue
                                    shape=(1, 4) dtype=float32, numpy=
                                     0.17884266, -0.56124383]],
 array([
            w값
                           w값
 <tf.Variable 'dense_19/bias:0' shape=(4,) dtype=float32, numpy=array([0., 0., 0., 0.], dtype=float32)>,
  <tf Variable 'dense 20/kethel:N' shane=(4 -2) dtyne=float32 numny=
 array([[-0.34927058, -0.7225988]]
         [ 0.2960987 , -0.39196324],
                                        w값 8개
        [-0.32647347, -0.73963904],
        [ 0.41159463, 0.43719316]], dtype=float32)>,
 <tf.Variable 'dense_20/bias:O' shape=(2,) dtype=float32, numpy=array([0., 0.], b값2개 32)>,
 <tr.variable dense_Zi/kernel:U snape=(Z, I) dtype=floatbZ, numpy=</pre>
 array([[ 0.2757995 ]
        [-0.55681044]], dtype=float32)>,
 <tf.Variable 'dense_21/bias:0' shape=(1,) dtype=float32, numpy=array([0.00316228], dtype=float32)>]
   model.summary()
 Layer (type)
                      Output Shape
                                         Param #
                                                   param갯수10개
 Trainable params: 21
 Non-trainable params: (
 intermediate_layer_model = tf.keras.Model(inputs=model.input, outputs=model.layers[1].output)
 intermediate_output = intermediate_layer_model(x)
?print(intermediate_output)
                                                   layer[1]출력물
 ===== Outputs of Hidden Laver ======
[O. O.]], shape=(6, 2), dtype=float32)
```

model.summary 에 대한 해석 [2번레이어] 세번째레이어.

[input값]은

layer[1]에서의 결과인 유닛2개 에서 계산된 결과로서 x1,x2 값임

x1	x2
0	0
0	0
0	0
0	0
0	0
0	0

.빨간색선 param

유닛1	x1의 w1	x2의 w2	
W	0.2758	-0.55681044	
b	0.00316228		

x1	x2	유닛1의 wx+b	relu수행후 결과값
0	0	0.00316228	0.00316228
0	0	0.00316228	0.00316228
0	0	0.00316228	0.00316228
0	0	0.00316228	0.00316228
0	0	0.00316228	0.00316228
0	0	0.00316228	0.00316228

1

검정테두리 layer[2] 에서 출력물

```
tf.keras.layers.Dense(units=1) ])
 1 modelvalue=model.weights
 2 modelvalue
[<tf.Variable 'dense_19/kernel:0' shape=(1, 4) dtype=float32, numpy=
array([[ 0.08334005, -0.29660565, 0.17884266, -0.56124383]],
       dtype=float32)>.
<tf.Variable 'dense_19/bias:0' shape=(4,) dtype=float32, numpy=array([0., 0., <u>0., 0.], dtype=float32)>,</u>
 <tf.Variable 'dense_20/kernel:0' shape=(4, 2) dtype=float32, numpy=
 array([[-0.34927058, -0.7225988],
        [ 0.2960987 , -0.39196324],
        [-0.32647347, -0.73963904],
        [ 0.41159463, 0.43719316]], dtype=float32)>,
 <tf.Variable 'dense_20/bias:0' shape=(2,) dtype=float32, numpy=array([0., 0.], dtype=float32)>,
 array([[ 0.2757995 ],
                                                                           b값1개
        [-0.55681044]], dtype=float32)>,
 <tf.Variable 'dense_21/bias:0' shape=(1,) dtype=float32, numpy=array([0.00316228], dtype=float32)>]
  model.summary()
 Layer (type)
                      Output Shape
                                          Param #
 dense_20 (Dense)
                                                         param갯수 3
Total params: 21
Trainable params: 21
  8 intermediate_layer_model = tf.keras.Model(inputs=model.input, outputs=model.layers[[2]].output)
  9 intermediate_output = intermediate_layer_model(x)
  11 print('\mun====== Outputs of Hidden Layer =======')
                                                     layer[2]출력물
  ====== Outputs of Hidden Layer ======
  [[0.00316228]
  [0.00316228]
  [0.00316228]
  [0.00316228]], shape=(6, 1), dtype=float32)
```

model = keras.Sequential([

tf.keras.layers.Dense(units=4,input_shape=(1,),activation='relu'),

tf.keras.layers.Dense(units=2, activation='relu'),

정리 (param갯수구하는 공식) (input값의 shape갯수+b)*units개수

문제