Performance Analysis of Java Message-Passing Libraries on Fast Ethernet, Myrinet and SCI Clusters

Guillermo L. Taboada, Juan Touriño and Ramon Doallo {taboada,juan,doallo}@udc.es

Dept. of Electronics and Systems University of A Coruña, Spain

IEEE Cluster 2003 – Hong Kong, DECEMBER 2003

Overview

- Our analysis combines:
 - □ State of the Art in Java Message-Passing Libraries
 - Modeling Message-Passing Primitives
 - Performance Analysis on Fast Ethernet, Myrinet and SCI clusters
- Results:
 - Evaluation of the most outstanding Java Message-Passing Libraries and performance implications

Outline

- Introduction
- Java Message-Passing Libraries
- Modeling Message-Passing Primitives
- Experimental Conditions
- Experimental Results
- Analysis of Performance Results
- Conclusions

Introduction

- Related work: Papers by Stankovic and Zhang [1] and by Getov, Gray and Sunderam [2]. Both works evaluate out-of-date libraries and do not derive performance analytical models
- Main contributions:
 - Survey of the state of the art in Java messagepassing libraries
 - An updated performance evaluation of these libraries on Fast Ethernet, Myrinet and SCI clusters
 - □ Their performance analytical models

Java Message-Passing Libraries

- Two main types of implementations of Message-Passing for Java:
 - □ Java wrapper provides efficient MPI communication through calling native methods using JNI. The major drawback is lack of portability
 - □ Pure Java provides a portable message-passing implementation since the whole library is developed in Java, although the communication is less efficient

Java Message-Passing Libraries

■ Taxonomy of Existing Libraries:

Java Message-Passing Libraries

- Selected Java Message-Passing libraries:
 - □ mpiJava the most active Java wrapper project
 - □ CCJ pure Java implementation of the Manta Team (Netherlands)
 - □ JMPI pure Java implementation of the Univ. of Massachusetts

Modeling Message-Passing Primitives

Point-to-point communications:

$$T(n) = t_s + t_b n$$
$$Bw(n) = n/T(n)$$

Collective communications:

$$T(n,p) = t_s(p) + t_b(p) n$$

$$Bw(n,p) = n/T(n,p)$$

T: message latency

n: message size (bytes)

t_s: startup time

t_b: transfer time (per byte)

p: processors.

Experimental Conditions

- JVM:
 - □ IBM JVM 1.4 JITC
 - □ Sun JVM Sun 1.4.1 HotSpot
- Libraries
 - ☐ MPICH 1.2.4, MPICH-GM and SCI-MPICH
 - □ ScaMPI
 - □ mpiJava 1.2.5 over native libraries
 - □ CCJ 0.1
 - JMPI

Send metrics on Fast Ethernet:

Library	Anai	Analytical Model		Experimental Results	
Ziorary	$t_s \{\mu s\}$	t _b {ns/B}	T(16B){µs}	$Bw(1MB)\{MB/s\}$	
MPICH	69	90.3	72	11.061	
mpiJava	101	100.7	105	9.923	
CCJ	800	138.2	800	7.217	
JMPI	4750	154.4	4750	6.281	

Library	Analytical Model		Experimental Results	
Liviary	$t_s(p) \{\mu s\}$	$t_b(p) \{ns/B\}$	T(16B,8)	Bw(1MB,8)
MPICH	7+117 [lp]	-0.3+90.4 [lp]	364	3.686
<i>mpiJava</i>				

■ Broadcast metrics on SCI (lp=log₂p):

Library	Analytical Model		Experime	Experimental Results	
Liviury	$t_s(p) \{\mu s\}$	$t_b(p) \{ns/B\}$	T(16B,8)	Bw(1MB,8)	
ScaMPI	6∫lp]	-0.105+4.128 [lp]	18	81.71	
mpiJava	33+7 [lp]	-0.197+4.458 [lp]	48	76.71	
CCJ	-800+1400 [lp]	-4.242+93.01 [lp]	3400	3.63	
JMPI	-2800+2900p	-89.71+95.52p	20600	1.45	

■ Broadcast metrics on Fast Ethernet, Myrinet and SCI:

Library	A n a ly t	tical Model	Experimental Results	
Liviury	$t_s(p) \{ \mu s \}$	t _b (p) { ns/B }	T(16B,8)	Bw(1MB,8)
MPICH	7+117 [lp]	-0.3+90.4 [1p]	364	3.686
m p i J a v a	19+124 [lp]	10.1+90.5 「lp	406	3.546
CCJ	-430+1430 [1p]	6.4+130.4 [lp]	3800	2.506
JM P I	-9302+7151p	-123.2+175.7p	41600	0.752

Library	Analy	tical Model	Experimental Results	
Liviary	$t_s(p) \{ \mu s \}$	t _b (p) { ns/B }	T(16B,8)	Bw(1MB,8)
MPICH-GM	3+8	0.012+5.741 [lp]	28	57.77
m piJava	20+17 [1p]	0.036+5.263 [lp]	101	62.78
CCJ	-800+1600 [lp]	-10.64+40.69 [lp]	4000	8.72
JM P I	-8617+5356p	-61.57+66.7p	32400	1.80

Library	Analy	tical Model	Experimental Results	
Biorwry	$t_s(p) \{\mu s\}$	$t_b(p)$ {ns/B}	T(16B,8)	Bw(1MB,8)
ScaMPI	6 [lp]	-0.105+4.128 [lp]	18	81.71
mpi Java	33+7 [lp]	-0.197+4.458 [lp]	48	76.71
CCJ	-800+1400 [lp]	-4.242+93.01 [lp]	3400	3.63
JMPI	-2800+2900p	-89.71+95.52p	20600	1.45

12/12/2003 CLUSTER 2003 21

■ Collective metrics on Myrinet (several design issues):

Library	Broadcast A	Analytical Model	Experimental Results	
Liviury	$t_s(p) \{ \mu s \}$	t _b (p) { ns/B }	T(16B,8)	Bw(1MB,8)
MPICH-GM	3+8 [1p]	0.012+5.741 [lp]	28	57.77
m p i J a v a	20+17 [1p]	0.036+5.263 [lp]	101	62.78
CCJ	-800+1600 [1p]	-10.64+40.69 [1p]	4000	8.72
JM P I	-8617+5356p	-61.57+66.7p	32400	1.80

Library	Scatter Analytical Model		Experimental Results	
Library	$t_s(p) \{ \mu s \}$	t _b (p) {ns/B}	T(16B,8)	Bw(1MB,8)
M P I C H - G M	-7+9p	4.321+0.414 [lp]	65	190.26
m p i J a v a	42+10p	7.223-0.358 [1p]	131	167.95
CCJ	217+604p	19.11+10.38	5000	18.26
JM P I	-8287+6438p	46.04+11.66 [lp]	40400	9.23

Library	Allgather Analytical Model		Experimental Results	
Library	$t_s(p) \{ \mu s \}$	$t_b(p) \{ns/B\}$	T(16B,8)	Bw(1MB,8)
MPICH-GM	-10+15p	5.308+1.098 [1p]	104	116.48
mpiJava	30+17p	8.560+0.483 [1p]	173	100.63
CCJ	817+944p	13.60+20.79p	9400	5.25
JMPI	-8296+7506p	-31.16+41.36p	42400	2.85

12/12/2003 CLUSTER 2003 22

Fast Ethernet: measured and estimated metrics on 16 processors

Myrinet: measured and estimated metrics on 2 and 16 processors

■ SCI: measured and estimated metrics on 2 and 8 processors

■ SCI: measured and estimated metrics on 8 processors

■ SCI: measured and estimated metrics on 8 processors

Performance Issues

- Design issues. Study of equivalences:
 - □ Broadcast = Scatter + Allgather
 - □ Allgather = Gather + Broadcast
 - □ Allreduce = Reduce + Broadcast
 - □ Reducescatter = Reduce + Scatter

Conclusions

- Native and wrapper libraries obtain good results in low latency networks
- Pure Java libraries need IP emulation to work on low latency clusters. The startup is about 15% better on IP over SCI whereas the transfer time is three times faster on IP over Myrinet than over SCI
- Performance results achieved from IP emulation are similar of those achieved on a Fast Ethernet cluster

Future Work

- Research efforts should concentrate on minimizing RMI overhead to consolidate and enhance the use of pure Java message-passing codes
- This is the topic of our future work, the optimization of RMI protocol, specially on low latency networks (Myrinet and SCI)

References

- [1] Stankovic, N., Zhang, K. An Evaluation of Java Implementations of Message-Passing. Software-Practice and Experience 30(7) (2000) 741-763
- [2] W. Getov, P. Gray, V. Sunderam. MPI and Java-MPI: Contrasts and Comparisons of Low-Level Communications Performance. In Proc. of Supercomputing Conference, SC'99, Portland, OR (1999)

Contact

- Guillermo L. Taboada taboada@udc.es
- Computer Architecture Group
 Department of Electronics and Systems
 University of A Coruña
- http://www.des.udc.es/~gltaboada

Performance Analysis of Java Message-Passing Libraries on Fast Ethernet, Myrinet and SCI Clusters

Guillermo L. Taboada, Juan Touriño and Ramon Doallo {taboada,juan,doallo}@udc.es

Dept. of Electronics and Systems University of A Coruña, Spain

IEEE Cluster 2003 – Hong Kong, DECEMBER 2003