Package 'sirad'

October 14, 2022

, -	
Type Package	
Title Functions for Calculating Daily Solar Radiation and Evapotranspiration	
Version 2.3-3	
Date 2016-10-17	
Author Jedrzej S. Bojanowski	
Maintainer Jedrzej S. Bojanowski < jedrzej . bojanowski@gmail.com>	
Description Calculating daily global solar radiation at horizontal surface using several well-known models (i.e. Angstrom-Prescott, Supit-Van Kappel, Hargreaves, Bristow and Campbell, and Mahmood-Hubbard), and model calibration based on ground-truth data, and (3) model auto-calibration. The FAO Penmann-Monteith equation to calculate evapotranspiration is also included	d
<pre>URL http://sirad.r-forge.r-project.org/,</pre>	
http://mars.jrc.ec.europa.eu/mars/Projects/Solar-Radiation-in-MCYFS,	
http://jbojanowski.pl	
Imports stats, zoo, raster	
License GPL-2	
LazyLoad yes	
LazyData yes	
Depends R (>= 3.0.0)	
NeedsCompilation no	
Repository CRAN	
Date/Publication 2016-10-18 01:01:16	
R topics documented:	
sirad-package	2 3 5 6

2 sirad-package

ex		33
	wind2	. 32
	sucal	
	su	. 29
	rns	
	rnl	. 26
	radians	. 26
	psychC	. 25
	modeval	. 23
	mh	
	Metdata	. 21
	hauto	. 20
	hacal	. 18
	ha	. 17
	extrat	
	et0	. 15
	es	. 14
	deltaVP	. 13
	degrees	. 13
	dayOfYear	. 12
	cstRead	. 11
	cst	. 10
	bccal	. 9
	bcauto	. 7

sirad-package

Functions for calculating daily solar radiation and evapotranspiration

Description

Calculates daily solar radiation at horizontal surface using several well-known models (Bristow-Campbell, Hargreaves, Supit-Van Kappel, Mahmood-Hubbard, Angrstrom-Prescott). It also includes functions for model calibration based on groud-truth data as well as a function for autocalibration. The FAO Penmann-Monteith equation to calculate evapotranspiration is also included.

Details

Package: sirad
Type: Package
Version: 2.3-3
Date: 2016-10-17
License: GPL-2
LazyLoad: yes

ap 3

Author(s)

```
Jedrzej S. Bojanowski
```

Maintainer: Jedrzej S. Bojanowski < jedrzej.bojanowski@gmail.com>

Examples

```
require(zoo)
data(Metdata)
A <- 0.21
B <- 0.57
sunshine <- Metdata$meteo$SUNSHINE
days <- Metdata$meteo$DAY
lat <- Metdata$LATITUDE
lon <- Metdata$LONGITUDE
plot(zoo(ap(days=days,lat=lat,lon=lon,extraT=NULL, A=A,B=B,SSD=sunshine),order.by=days))</pre>
```

ар

Angstrom-Prescott solar radiation model

Description

Angstrom-Prescott model is used to calculate daily global irradiance for a horizontal surface based on sunshine duration.

Usage

```
ap(days, lat, lon, extraT=NULL, A=NA, B=NA, SSD)
```

Arguments

days	Vector of class 'Date' of length n.
lat	Latitude in decimal degrees.
lon	Longitude in decimal degrees.
extraT	Optional. Vector of length n of extraterrestrial solar radiation [MJm-2]. If 'NULL' then it is calculated by the function. Providing extraterrestrial solar radiation speeds up the computation
A	Angstrom-Prescott model 'A' coefficient. If 'NA' then A is derived from the map of interpolated coefficients estimated from Meteosat solar radiation data. See details.
В	Angstrom-Prescott model 'B' coefficient. If 'NA' then B is derived from the map of interpolated coefficients estimated from Meteosat solar radiation data. See details.
SSD	Vector of length n containing sunshine duration [in hours].

4 ap

Details

Model proposed by Angstrom (1924) and modified by Prescott (1940) assumed linear relationship between: (1) a proportion of bright sunshine hours and astronomical day length and (2) proportion of incoming daily global solar radiation and daily extra-terrestrial radiation. This linear relationship is described by empirical model coefficients: A - intercept, B - slope. Both astronomical day length and daily extra-terrestrial radiation are calculated within this function based on location and time. Model coefficients A and B (if not provided) are derived from interpolated Meteosat-based coefficients from Bojanowski et al. 2013.

Value

Vector of length n of daily solar radiation [MJm-2].

Note

SSD input can contain NA's, but length of vectors 'SSD' and 'days' has to be the identical.

Author(s)

Jedrzej S. Bojanowski

References

Bojanowski, J.S., Vrieling, A., Skidmore, A.K., 2013. Calibration of solar radiation models for Europe using Meteosat Second Generation and weather station data. Agricultural and Forest Meteorology 176:1-9.

Angstrom, A., 1924. Solar and terrestrial radiation. Quarterly Journal of the Royal Meteorological Society, 50:121-125.

Prescott, J.A., 1940. Evaporation from a water surface in relation to solar radiation. Transactions of the Royal Society of South Australia, 64:114-118.

See Also

'apcal' to calibrate the model

```
require(zoo)
#A <- 0.21
#B <- 0.57
sunshine <- Metdata$meteo$SUNSHINE
days <- Metdata$meteo$DAY
lat <- Metdata$LATITUDE
lon <- Metdata$LONGITUDE
plot(zoo(ap(days,lat,lon, extraT=NULL,A=NA,B=NA,sunshine),order.by=days))</pre>
```

apcal 5

apcal Calibrate Angstrom-Prescott model	
---	--

Description

Function estimates Angstrom-Prescott model coefficients 'A' and 'B' based on reference data

Usage

```
apcal(lat, days, rad_mea,extraT=NULL, DL=NULL, SSD)
```

Arguments

lat	Latitude in decimal degrees.
days	Vector of class 'Date' of length n.
rad_mea	Vector of length n containing reference (e.g. measured) solar radiation [MJm-2].
extraT	Optional. Vector of length n of extraterrestrial solar radiation [MJm-2]. If 'NULL' then it is calculated by the function. Providing extraterrestrial solar radiation speeds up the computation
DL	Optional. Vector of length n of day length [h]. If 'NULL' then it is calculated by the function. Providing day length speeds up the computation
SSD	Vector of length n containing sunshine duration [in hours].

Details

Function estimates Angstrom-Prescott model coefficients 'A' and 'B' based on reference (e.g. measured) solar radiation data. It performs a linear regression in which 'rad_mea' is dependent variable and a proporsion of 'SSD' and astronomical day length is an independent variable.

Value

Vector containing:

APa Angstom-Prescott 'A' coefficient
APb Angstom-Prescott 'B' coefficient

APr2 Coefficient of determination of performed linear regression

Author(s)

Jedrzej S. Bojanowski

References

Angstrom, A., 1924. Solar and terrestrial radiation. Quarterly Journal of the Royal Meteorological Society, 50:121-125.

Prescott, J.A., 1940. Evaporation from a water surface in relation to solar radiation. Transactions of the Royal Society of South Australia, 64:114-118.

6 bc

See Also

'ap' to use Angstrom-Prescott model

Examples

```
## Calibrate the model based on measured data
data(Metdata)
sunshine <- Metdata$meteo$SUNSHINE
days <- Metdata$meteo$DAY
lat <- Metdata$LATITUDE
rad_mea <- Metdata$meteo$RAD_MEA
apcal(lat=lat,days=days,rad_mea,extraT=NULL,DL=NULL,SSD=sunshine)</pre>
```

bc

Bristow-Campbell model

Description

'bc' calculates daily solar radiation based on daily temperature range using Bristow-Campbell model.

Usage

```
bc(days, lat, BCb,extraT=NULL, Tmax, Tmin, BCc = 2, tal)
```

Arguments

days	Vector of class 'Date' of length n.
lat	Latitude in decimal degrees.
BCb	Bristow-Campbell model coefficient 'B'.
extraT	Optional. Vector of length n of extraterrestrial solar radiation [MJm-2]. If 'NULL' then it is calculated by the function. Providing extraterrestrial solar radiation speeds up the computation
Tmax	Vector of length n containing daily maximum temperature [C].
Tmin	Vector of length n containing daily minumum temperature [C].
BCc	Bristow-Campbell model coefficient 'C' usually equaled to 2.
tal	Clear sky transmissivity.

Details

Bristow and Campbell proposed a method for estimating solar radiation from air temperature measurements. They developed an empirical relationship to express the daily total atmospheric transmittance as a function of daily range in air temperature.

bcauto 7

Value

Vector of length n of daily solar radiation [MJm-2].

Note

'Tmax', 'Tmin' can contain NA's, but length of vectors 'Tmax', 'Tmin' and 'days' has to be the same

Author(s)

Jedrzej S. Bojanowski

References

Bristow, K.L., Campbell, G.S. 1984. On the relationship between incoming solar radiation and daily maximum and minimum temperature. Agriculture and Forest Meteorology, 31:159-166.

See Also

'bccal' to calibrate model using reference data, 'bcauto' to perform auto-calibration, and 'ha' to use Hargreaves model to calculate solar radiation based on temperature range.

Examples

```
require(zoo)
data(Metdata)
B <- 0.11
tmax <- Metdata$meteo$TEMP_MAX
tmin <- Metdata$meteo$TEMP_MIN
days <- Metdata$meteo$DAY
lat <- Metdata$LATITUDE
plot(zoo(bc(days, lat, BCb=B,extraT=NULL, tmax, tmin, BCc=2, tal=0.76),order.by=days))</pre>
```

bcauto

Auto-calibrate Bristow-Campbell model

Description

Function estimates Bristow-Campbell model coefficient 'B' based on auto-calibration procedure

Usage

```
bcauto(lat,lon,days,extraT=NULL,Tmax,Tmin,tal,BCc=2,
BCb_guess=0.13,epsilon=0.5,perce=NA,dcoast=NA)
```

8 bcauto

Arguments

Latitude in decimal degrees.
 Longitude in decimal degrees.
 days Vector of class 'Date' of length n.

extraT Optional. Vector of length n of extraterrestrial solar radiation [MJm-2]. If

'NULL' then it is calculated by the function. Providing extraterrestrial solar

radiation speeds up the computation

Tmax Vector of length n containing daily maximum temperature [C].

Tmin Vector of length n containing daily minumum temperature [C].

tal Clear sky transmissivity.

BCc Bristow-Campbell model coefficient 'C' usually equaled to 2.

BCb_guess Assumption of Bristow-Campbell coefficient. Default set to 0.13.

epsilon A value of which potential radiation is decreased. See "details".

perce Percent of clear days. In 'NA' then perce is estimated based on the Cloud Frac-

tion Cover map.

dcoast Distance to the coast [km].

Details

The auto-calibration method bases on the assumption that on the clear-sky days model should not overpredict potential values. To define those clear-sky days, we estimate daily solar radiation using Bristow and Campbell model with default values of B = 0.13 and tal = 0.72 and we select those days for which estimated daily solar radiation is the closest to the potential values (extraterrestrial*tal). The number of clear-sky days is estimated based on the mean Cloud Fraction Cover map. Next, based on selected clear-sky days, we perform a non-linear least squares regression to derive B coefficient treating potential values decreased by 'epsilon' as a reference solar radiation values. The analysis of auto-calibration results showed clear correlation between optimal 'epsilon' and distance to the coast. We proposed simplified method in which 'epsilon' is equal to 0.1 MJm-2 or to 0.5 MJm-2 when distance to the coast is smaller or bigger than 15 km respectively.

Value

BCb Bristow-Campbell 'B' coefficient

Author(s)

Jedrzej S. Bojanowski

References

Bojanowski, J.S., Donatelli, M., Skidmore, A.K., Vrieling, A., 2013. An auto-calibration procedure for empirical solar radiation models Environmental Modelling and Software 49, 118-128.

See Also

'bc' to use Bristow-Campbell model, and 'bccal' to perform calibration based on reference data.

bccal 9

Examples

```
data(Metdata)
tmax <- Metdata$meteo$TEMP_MAX
tmin <- Metdata$meteo$TEMP_MIN
days <- Metdata$meteo$DAY
lat <- Metdata$LATITUDE
lon <- Metdata$LONGITUDE
rad_mea <- Metdata$meteo$RAD_MEA
dcoast <- Metdata$DCOAST</pre>
bcauto(lat,lon,days,extraT=NULL,tmax,tmin,perce=NA,dcoast)
```

bccal

Calibrate Bristow-Campbell model

Description

Function estimates Bristow-Campbell model coefficient 'B' based on reference data

Usage

```
bccal(lat, days, rad_mea,extraT=NULL,BCc=2,Tmax, Tmin, tal)
```

Arguments

lat	Latitude in decimal degrees.
days	Vector of class 'Date' of length n.
rad_mea	Vector of length n containing reference (e.g. measured) solar radiation [MJm-2].
extraT	Optional. Vector of length n of extraterrestrial solar radiation [MJm-2]. If 'NULL' then it is calculated by the function. Providing extraterrestrial solar radiation speeds up the computation
BCc	Bristow-Campbell model coefficient 'C' usually equaled to 2.
Tmax	Vector of length n containing daily maximum temperature [C].
Tmin	Vector of length n containing daily minumum temperature [C].
tal	Clear sky transmissivity.

Details

Function estimates Bristow-Campbell model coefficient 'B' based on reference (e.g. measured) solar radiation data. It performs a non-linear least squeres regression.

Value

BCb Bristow-Campbell 'B' coefficient

10 cst

Author(s)

Jedrzej S. Bojanowski

References

Bristow, K.L., and G.S. Campbell. 1984. On the relationship between incoming solar radiation and daily maximum and minimum temperature. Agriculture and Forest Meteorology, 31:159-166.

See Also

'bc', and 'bcauto' to perform auto-calibration

Examples

```
data(Metdata)
tmax <- Metdata$meteo$TEMP_MAX
tmin <- Metdata$meteo$TEMP_MIN
days <- Metdata$meteo$DAY
lat <- Metdata$LATITUDE
rad_mea <- Metdata$meteo$RAD_MEA
bccal(lat,days,rad_mea,extraT=NULL,BCc=2,tmax,tmin, tal=0.76)</pre>
```

cst

Estimate clear sky transmissivity

Description

Function estimates a clear sky transmissivity based on reference data (e.g. measured)

Usage

```
cst(RefRad, days, lat, extraT=NULL, perce = 3, sepYear = FALSE, stat='median')
```

Arguments

RefRad	Vector of length n of reference solar radiation data [MJm-2]
days	Vector of class 'Date' of length n.
lat	Latitude in radians
extraT	Optional. Vector of length n of extraterrestrial solar radiation [MJm-2]. If 'NULL' then it is calculated by the function. Providing extraterrestrial solar radiation speeds up the computation
perce	Percent of days to be chosen as clear days
sepYear	Logical value. If 'TRUE' percent of days given by 'perce' of every single year are taken for calculation. If 'FALSE' percent of days given by 'perce' of all years are taken for calculation

cstRead 11

stat

Method used to estimate final value of the clear sky transmissivity from the values derived from selected clear-sky days. Default is 'median' which is more conservative, while alternative 'max' is sensitive to outliers. If 'max' is used the value of 'perce' is not important. If 'stat' is numeric then (instead of 'median' or 'max') 'quantile' is used. 'Stat' is sent as quantile's 'probs' parameter. See 'quantile for details

Value

Numeric. Clear sky transmissivity.

Author(s)

Jedrzej S. Bojanowski

See Also

cstRead

Examples

```
data(Metdata)
ref <- Metdata$meteo$RAD_MEA
i <- dayOfYear(Metdata$meteo$DAY)
latr <- radians(Metdata$LATITUDE)
cst(ref,i,latr)</pre>
```

cstRead

Read values of clear sky transmissivity

Description

Read values of clear sky transmissivity map for a given locations (in lat/lon)

Usage

```
cstRead(lat,lon)
```

Arguments

Latitude in decimal degrees.Longitude in decimal degrees.

Value

Clear sky transmissivity

12 dayOfYear

Author(s)

Jedrzej S. Bojanowski

See Also

'cst'

Examples

```
cstRead(50,16)
```

dayOfYear

Convert 'Date' to number of day in a year

Description

Function gives a day number of the year (julian day of the year) based on the date in class 'Date'.

Usage

```
dayOfYear(dat)
```

Arguments

dat

Date in class 'Date'.

Value

Numeric number of day in a year.

Author(s)

Jedrzej S. Bojanowski

```
dayOfYear(as.Date("2009-01-11"))
```

degrees 13

degrees

Convert radians to degrees

Description

Converts radians to degrees

Usage

```
degrees(radians)
```

Arguments

radians

numeric

Value

Degrees.

Author(s)

Jedrzej S. Bojanowski

See Also

'radians'

Examples

degrees(0.95)

deltaVP

Slope of saturation vapour pressure curve

Description

'deltaVP' estimates the slope of saturation vapour pressure curve

Usage

```
deltaVP(Tmax,Tmin)
```

Arguments

Tmax Vector of length n containing daily maximum temperature [C].

Tmin Vector of length n containing daily minumum temperature [C].

14 es

Value

Slope of saturation vapour pressure curve [kPaC-1]

Author(s)

Jedrzej S. Bojanowski

References

Allen, R.G., L.S. Pereira, D. Raes, and M. Smith. 1998. Crop Evapotranspiration: Guidelines for computing crop water requirements. Irrigation and Drainage Paper 56, Food and Agriculture Organization of the United Nations, Rome, pp. 300.

Examples

```
deltaVP(Tmax=17,Tmin=16)
```

es

Mean saturation vapour pressure

Description

'es' calculates mean saturation vapour pressure based on air temperature.

Usage

```
es(Tmax, Tmin)
```

Arguments

Tmax Vector of length n containing daily maximum temperature [C].

Tmin Vector of length n containing daily minumum temperature [C].

Value

Vector of length n of mean saturation vapour pressure [kPa]

Author(s)

Jedrzej S. Bojanowski

References

Allen, R.G., L.S. Pereira, D. Raes, and M. Smith. 1998. Crop Evapotranspiration: Guidelines for computing crop water requirements. Irrigation and Drainage Paper 56, Food and Agriculture Organization of the United Nations, Rome, pp. 300.

et0 15

Examples

```
es(Tmax=25.1,Tmin=19.1)
```

et0

FAO Penman-Monteith evapotranspiration equation

Description

'et0' estimates evapotranspiration based on FAO Penman-Monteith equation

Usage

```
et0(Tmax,Tmin, vap_pres,sol_rad,tal,z,uz,meah=10,extraT=NA,days=NA,lat=NA)
```

Arguments

Tmax	Vector of length n containing daily maximum temperature [C].
Tmin	Vector of length n containing daily minumum temperature [C].
vap_pres	Vector of length n of mean daily vapour pressure [kPa].
sol_rad	Vector of length n of daily solar radiation [MJm-2d-1].
tal	Clear sky transmissivity [0-1].
z	Altitude above the sea level [m].
uz	Wind speed measured at heith 'meah' [ms-1].
meah	The height (above the ground level) of the wind speed measurement [m].
extraT	Optional. Vector of length n of extraterrestrial solar radiation [MJm-2d-1]. If 'NA' then it is calculated by the function. Providing extraterrestrial solar radiation speeds up the computation.
days	Required only if extraT=NA. Vector of class 'Date' of length n.
lat	Required only if extraT=NA. Latitude in decimal degrees.

Value

Vector of length n of daily reference evapotranspiration. [mmd-1]

Author(s)

Jedrzej S. Bojanowski

References

Allen, R.G., L.S. Pereira, D. Raes, and M. Smith. 1998. Crop Evapotranspiration: Guidelines for computing crop water requirements. Irrigation and Drainage Paper 56, Food and Agriculture Organization of the United Nations, Rome, pp. 300.

16 extrat

Examples

```
data(Metdata)
tmax <- Metdata$meteo$TEMP_MAX
tmin <- Metdata$meteo$TEMP_MIN
vpres <- Metdata$meteo$VAP_PRES
days <- Metdata$meteo$DAY
lat <- Metdata$LATITUDE
rad_mea <- Metdata$meteo$RAD_MEA
z <- Metdata$ALTITUDE
wind <- Metdata$meteo$WIND_10

tal <- cst(rad_mea,dayOfYear(Metdata$meteo$DAY),radians(Metdata$LATITUDE))

et0(Tmax=tmax,Tmin=tmin, vap_pres=vpres,sol_rad=rad_mea,tal=tal,z=Metdata$ALTITUDE,
uz=wind,meah=10,extraT=NA,days=days,lat=lat)</pre>
```

extrat

Calculate extraterrestrial solar radiation

Description

'extrat' calculates hourly and daily extraterrestrial solar radiation for a given time and location.

Usage

```
extrat(i, lat)
```

Arguments

i day number in the year (julian day)

latitude in radians

Details

Solar radiation outside of the earth's atmosphere is called extraterrestrial solar radiation. It can be calculated based on solar geometry.

Value

List of 3 elements:

 ${\tt ExtraTerrestrialSolarRadiationDaily}$

daily sum of extraterrestrial radiation [MJm-2]

 ${\it Terrestrial Solar Radiation Hourly}$

vector of length 24 of hourly sums of extraterrestrial radiation [MJm-2]

DayLength day length in hours

ha 17

Author(s)

Jedrzej S. Bojanowski

Examples

extraterrestrial radiation and daylength for 1 January and latitude 55 degrees
extrat(dayOfYear("2011-01-01"), radians(55))

ha

Hargreaves solar radiation model

Description

'ha()' calculates daily solar radiation based on daily temperature range using Hargreaves model.

Usage

```
ha(days, lat, lon, extraT=NULL, A=NA, B=NA, Tmax, Tmin)
```

Arguments

days	Vector of class 'Date' of length n.
lat	Latitude in decimal degrees.
lon	Longitude in decimal degrees.
extraT	Optional. Vector of length n of extraterrestrial solar radiation [MJm-2]. If 'NULL' then it is calculated by the function. Providing extraterrestrial solar radiation speeds up the computation
A	Hargreaves model coefficient 'A'. If 'NA' then A is derived from the map of interpolated coefficients estimated from Meteosat solar radiation data. See details.
В	Hargreaves model coefficient 'B'. If 'NA' then B is derived from the map of interpolated coefficients estimated from Meteosat solar radiation data. See details.
Tmax	Vector of length n containing daily maximum temperature [C].
Tmin	Vector of length n containing daily minumum temperature [C].

Details

Hargreaves proposed a method for estimating solar radiation from air temperature measurements. Model coefficients A and B (if not provided) are derived from interpolated Meteosat-based coefficients from Bojanowski et al. 2013.

Value

Vector of length n of daily solar radiation [MJm-2].

18 hacal

Note

'Tmax', 'Tmin' can contain NA's, but length of vectors 'Tmax', 'Tmin' and 'days' has to be the same

Author(s)

Jedrzej S. Bojanowski

References

Bojanowski, J.S., Vrieling, A., Skidmore, A.K., 2013. Calibration of solar radiation models for Europe using Meteosat Second Generation and weather station data. Agricultural and Forest Meteorology 176:1-9.

Hargreaves, G.H., Samini, Z.A.. 1892. Estimating potential evapotranspiration. J. Irrig. Darin. Eng., ASCE 108 (3), 225-230.

See Also

'hacal' to calibrate model using reference data, 'bc' to use Bristow-Campbell model to calculate solar radiation based on temperature range.

Examples

```
require(zoo)
data(Metdata)
tmax <- Metdata$meteo$TEMP_MAX
tmin <- Metdata$meteo$TEMP_MIN
days <- Metdata$meteo$DAY
lat <- Metdata$LATITUDE
lon <- Metdata$LONGITUDE
plot(zoo(ha(days, lat, lon, extraT=NULL, A=NA, B=NA, Tmax=tmax, Tmin=tmin),order.by=days))</pre>
```

hacal

Calibrate Hargreaves model

Description

Function estimates Hargreaves model coefficients 'A' and 'B' based on reference data

Usage

```
hacal(lat, days, rad_mea, extraT=NULL,tmax, tmin)
```

hacal 19

Arguments

Latitude in decimal degrees.

days

Vector of class 'Date' of length n.

rad_mea

Vector of length n containing reference (e.g. measured) solar radiation [MJm-2].

extraT

Optional. Vector of length n of extraterrestrial solar radiation [MJm-2]. If 'NULL' then it is calculated by the function. Providing extraterrestrial solar

radiation speeds up the computation

Vector of length n containing daily maximum temperature [C].

tmax Vector of length n containing daily maximum temperature [C].
tmin Vector of length n containing daily minumum temperature [C].

Details

Function estimates Hargreaves model coefficients 'A' and 'B' based on reference (e.g. measured) solar radiation data. It performs a linear regression.

Value

Vector of length 3 containing:

Ha Hargreaves 'A' coefficient
Hb Hargreaves 'B' coefficient

Hr2 Coefficient of determination of performed linear regression

Author(s)

Jedrzej S. Bojanowski

References

Hargreaves, G.H., Samini, Z.A. 1892. Estimating potential evapotranspiration. J. Irrig. Darin. Eng., ASCE 108 (3), 225-230.

See Also

'ha'

```
data(Metdata)
tmax <- Metdata$meteo$TEMP_MAX
tmin <- Metdata$meteo$TEMP_MIN
days <- Metdata$meteo$DAY
lat <- Metdata$LATITUDE
rad_mea <- Metdata$meteo$RAD_MEA
hacal(lat=lat,days=days,rad_mea,extraT=NULL,tmax=tmax, tmin=tmin)</pre>
```

20 hauto

hauto	Auto-calibrate Hargreaves model	

Description

Function estimates Hargreaves model coefficients 'A' and 'B' based on autocalibration procedure

Usage

```
hauto(lat, lon, days,extraT = NULL, Tmax, Tmin, tal,
Ha_guess = 0.16, Hb_guess = 0.1, epsilon=0.5, perce = NA)
```

Arguments

lat	Latitude in decimal degrees.
lon	Longitude in decimal degrees.
days	Vector of class 'Date' of length n.
extraT	Optional. Vector of length n of extraterrestrial solar radiation [MJm-2]. If 'NULL' then it is calculated by the function. Providing extraterrestrial solar radiation speeds up the computation
Tmax	Vector of length n containing daily maximum temperature [C].
Tmin	Vector of length n containing daily minumum temperature [C].
tal	Clear sky transmissivity.
Ha_guess	Assumption of Hargreaves Ha coefficient. Default set to 0.16.
Hb_guess	Assumption of Hargreaves Hb coefficient. Default set to 0.1.
epsilon	A value of which potential radiation is decreased. See "details".
perce	Percent of clear days. Default set to 1.

Details

The auto-calibration method bases on the assumption that on the clear-sky days model should not overpredict potential values. To define those clear-sky days, we estimate daily solar radiation using Hargreaves model with default values of A=0.16, B=0.1 and tal=0.72 and we select those days for which estimated daily solar radiation is the closest to the potential values (extra-terrestrial*tal). The number of clear-sky days is estimated based on the mean Cloud Fraction Cover map. Next, based on selected clear-sky days, we perform a non-linear least squares regression to derive A and B coefficients treating potential values decreased by 'epsilon' as a reference solar radiation values. The analysis of auto-calibration results showed clear correlation between optimal 'epsilon' and distance to the coast. We proposed simplified method in which 'epsilon' is equal to 0.1 MJm-2 or to 0.5 MJm-2 when distance to the coast is smaller or bigger than 15 km respectively.

Metdata 21

Value

Vector of length 3 containing:

Ha Hargreaves 'A' coefficient
Hb Hargreaves 'B' coefficient

Hr2 Coefficient of determination of performed linear regression

Author(s)

Jedrzej S. Bojanowski

References

Hargreaves, G.H., Samani, Z.A. 1892. Estimating potential evapotranspiration. J. Irrig. Darin. Eng., ASCE 108 (3), 225-230. Bojanowski, J.S., Donatelli, M., Skidmore, A.K., Vrieling, A., 2013. An auto-calibration procedure for empirical solar radiation models Environmental Modelling and Software 49, 118-128.

See Also

'hacal'

Examples

```
data(Metdata)
Tmax <- Metdata$meteo$TEMP_MAX
Tmin <- Metdata$meteo$TEMP_MIN
days <- Metdata$meteo$DAY
lat <- Metdata$LATITUDE
lon <- Metdata$LONGITUDE
hauto(lat,lon,days,extraT=NULL,Tmax,Tmin,tal=0.76)</pre>
```

Metdata Weather data

Description

This dataset contains two years of daily data of sunshine hours, solar radiation, minimum temperature, maximum temperature, cloud coverage, vapour pressure, and wind speed.

Usage

data(Metdata)

22 mh

Format

NAME chr Name

LATITUDE numeric Latitude (decimal degree)

LONGITUDE numeric Longitude (decimal degree)

DCOAST numeric Distance to the coast (km)

ALTITUDE numeric Altitude above the sea level (m)

DAY Date Date

SUNSHINE numeric Sunshine (hours)
RAD_MEA numeric Solar radiation (MJm-2)

TEMP_MIN numeric Minimum temperature (degrees C)
TEMP_MAX numeric Maximum temperature (degrees C)

CLOUD_DAYTIME_TOTAL numeric Cloud coverage (octas)
VAP_PRES numeric Vapour pressure (kPa)

WIND_10 numeric Wind speed at 10 m height (ms-1)

Examples

data(Metdata)
str(Metdata)

mh

Mahmood-Hubbard solar radiation model

Description

'mh()' calculates daily solar radiation based on daily temperature range using Mahmood-Hubbard model.

Usage

```
mh(days, lat, Tmax, Tmin)
```

Arguments

days Vector of class 'Date' of length n.lat Latitude in decimal degrees.

Tmax Vector of length n containing daily maximum temperature [C].

Tmin Vector of length n containing daily minumum temperature [C].

Details

Mahmood and Hubbard proposed a method for estimating solar radiation from air temperature measurements without a need of calibraing empirical coefficients.

modeval 23

Value

Vector of length n of daily solar radiation [MJm-2].

Author(s)

```
Jedrzej S. Bojanowski
```

References

Mahmood, R., and K.G. Hubbard. 2002. Effect of time of temperature observation and estimation of daily solar radiation for the Northern Great Plains, USA. Agron. J., 94:723-733.

See Also

'bc' and 'ha' to calculate solar radiation based on temperature range using different models.

Examples

```
require(zoo)
data(Metdata)
tmax <- Metdata$meteo$TEMP_MAX
tmin <- Metdata$meteo$TEMP_MIN
days <- Metdata$meteo$DAY
lat <- Metdata$LATITUDE
plot(zoo(mh(days=days, lat=lat, Tmax=tmax, Tmin=tmin),order.by=days))</pre>
```

modeval

Model performance statistics.

Description

Function estimates several statistics comparing modelled and reference (measured) values.

Usage

```
modeval(calculated,measured,
stat=c("N","pearson","MBE","RMBE","MAE","RMAE","RMSE","RRMSE","R2","slope",
"intercept","EF","SD","CRM","MPE","AC","ACu","ACs"),minlength=4)
```

Arguments

calculated Vector of length n of the calculated (modelled) values.

Wector of length n of the reference (measured) values.

Statistics which are going to be calculated. By default all possible.

Minimum number of non-NA data pairs. If below this value, the NA's are pro-

duced.

24 modeval

Details

The two input vectors can include NA's. Only non-NA calculated-mesured pairs are used. See 'na.omit' for details.

Value

List of 13 statistics:

N number of observations

person Pearson's Correlation Coefficient

MBE Mean (Bias) Error

RMBE Relative Mean (Bias) Error

MAE Mean Absolute Error

RMAE Relative Mean Absolute Error

RMSE Root Mean Square Error

RRMSE Relative Root Mean Square Error

R2 Coefficient of determination from linear model

slope Slope from linear model

intercept Intercept from linear model

EF Modelling Efficiency

SD Standard deviation of differences

CRM Coefficient of Residual Mass

MPE Mean Percentage Error
AC Agreement Coefficient

ACu Unsystematic Agreement Coefficient

ACs Systematic Agreement Coefficient

Author(s)

Jedrzej S. Bojanowski

References

Bellocchi, G., Acutis, M., Fila, G., Donatelli, M., 2002. An indicator of solar radiation model performance based on a fuzzy expert system. Agronomy Journal 94, 1222-1233.

Ji, L., Gallo, K., 2006. An Agreement Coefficient for image comparison. Photogrammetric Engineering & Remote Sensing 72(7), 823-833.

psychC 25

Examples

```
data(Metdata)
B <- 0.11
tmax <- Metdata$meteo$TEMP_MAX
tmin <- Metdata$meteo$TEMP_MIN
days <- Metdata$meteo$DAY
lat <- Metdata$LATITUDE
solrad_measured <- Metdata$meteo$RAD_MEA
solrad_BC <- bc(days, lat, extraT=NULL, BCb=B, tmax, tmin, BCc=2, tal=0.76)
modeval(solrad_BC,solrad_measured)
modeval(solrad_BC,solrad_measured,stat="EF")</pre>
```

psychC

Psychrometric constant

Description

'psychC' estimates the psychrometric constant.

Usage

```
psychC(Tmax,Tmin,z)
```

Arguments

Tmax Vector of length n containing daily maximum temperature [C].

Tmin Vector of length n containing daily minumum temperature [C].

z Altitude above the sea level [m].

Value

Psychrometric constant [kPaC-1]

Author(s)

Jedrzej S. Bojanowski

References

Allen, R.G., L.S. Pereira, D. Raes, and M. Smith. 1998. Crop Evapotranspiration: Guidelines for computing crop water requirements. Irrigation and Drainage Paper 56, Food and Agriculture Organization of the United Nations, Rome, pp. 300.

```
psychC(17,16,1800)
```

26 ml

radians

Convert degrees to radians

Description

Converts degrees to radians

Usage

```
radians(degrees)
```

Arguments

degrees

numeric

Value

Radians.

Author(s)

Jedrzej S. Bojanowski

See Also

'degrees'

Examples

radians(55)

rnl

Net longwave radiation

Description

'rnl' computes daily net energy flux emitted by the Earth's surface.

Usage

```
rnl(Tmax,Tmin,sol_rad,vap_pres,extraT,tal)
```

rnl 27

Arguments

Tmax	Vector of length n containing daily maximum temperature [C].
Tmin	Vector of length n containing daily minumum temperature [C].
sol_rad	Vector of length n of daily solar radiation [MJm-2d-1].
vap_pres	Vector of length n of mean daily vapour pressure [kPa].
extraT	Vector of length n of extraterrestrial solar radiation [MJm-2d-1].
tal	Clear sky transmissivity.

Details

According to the Stefan-Boltzmann law, the longwave energy emission is proportional to the absolute temperature of the surface raised to the fourth power. This longwave energy is corrected by two factors: humidity ('ea') and cloudiness (estimated based on relation of actual and potential solar radiation. See Allen et al. (1998) for details.

Value

Vector of length n of daily net longwave radiation. [MJm-2d-1]

Author(s)

Jedrzej S. Bojanowski

References

Allen, R.G., L.S. Pereira, D. Raes, and M. Smith. 1998. Crop Evapotranspiration: Guidelines for computing crop water requirements. Irrigation and Drainage Paper 56, Food and Agriculture Organization of the United Nations, Rome, pp. 300.

See Also

See 'ea', 'extrat' and 'cst' to calculate necessary input data.

```
rnl(Tmax=25.1,Tmin=19.1,sol_rad=14.5,vap_pres=2.1,extraT=23.5,tal=0.8)
```

28 rns

rns

Net shortwave radiation

Description

'rns' computes daily the net shortwave radiation. resulting from the balance between incoming and reflected solar radiation.

Usage

```
rns(sol_rad,albedo=0.23)
```

Arguments

sol_rad Vector of length n of daily solar radiation [MJm-2d-1].

albedo Albedo or canopy reflection coefficient, which is 0.23 for the hypothetical grass

reference crop [dimensionless].

Details

Daily net shortwave radiation results from the balance between incoming and reflected solar radiation.

Value

Vector of length n of daily net shortwave radiation. [MJm-2d-1]

Author(s)

Jedrzej S. Bojanowski

References

Allen, R.G., L.S. Pereira, D. Raes, and M. Smith. 1998. Crop Evapotranspiration: Guidelines for computing crop water requirements. Irrigation and Drainage Paper 56, Food and Agriculture Organization of the United Nations, Rome, pp. 300.

```
rns(sol_rad=14.5)
```

su 29

Supit-	Van K	appel	solar	radiat	ion model
--------	-------	-------	-------	--------	-----------

Description

su

'su()' calculates daily solar radiation based on daily cloud coverage and temperature range using Supit-Van Kappel model.

Usage

```
su(days, lat, lon, extraT=NULL, A=NA, B=NA, C=NA, tmax, tmin, CC)
```

Arguments

days	Vector of class 'Date' of length n.
lat	Latitude in decimal degrees.
lon	Longitude in decimal degrees.
extraT	Optional. Vector of length n of extraterrestrial solar radiation [MJm-2]. If 'NULL' then it is calculated by the function. Providing extraterrestrial solar radiation speeds up the computation
A	Supit-Van Kappel model coefficient 'A'. If 'NA' then A is derived from the map of interpolated coefficients estimated from Meteosat solar radiation data. See details.
В	Supit-Van Kappel model coefficient 'B'. If 'NA' then B is derived from the map of interpolated coefficients estimated from Meteosat solar radiation data. See details.
С	Supit-Van Kappel model coefficient 'C'. If 'NA' then C is derived from the map of interpolated coefficients estimated from Meteosat solar radiation data. See details.
tmax	Vector of length n containing daily maximum temperature [C].
tmin	Vector of length n containing daily minumum temperature [C].
СС	Vector of length n containing daily cloud coverage [octas].

Details

Supit and Van Kappel proposed a method for estimating solar radiation from daily cloud coverage and temperature range. Model coefficients A, B and C (if not provided) are derived from interpolated Meteosat-based coefficients from Bojanowski et al. 2013.

Value

Vector of length n of daily solar radiation [MJm-2].

30 sucal

Note

'CC', 'Tmax', 'Tmin' can contain NA's, but length of vectors 'CC', 'Tmax', 'Tmin' and 'days' has to be the identical.

Author(s)

Jedrzej S. Bojanowski

References

Bojanowski, J.S., Vrieling, A., Skidmore, A.K., 2013. Calibration of solar radiation models for Europe using Meteosat Second Generation and weather station data. Agricultural and Forest Meteorology 176:1-9.

Supit, I. 1994. Global radiation. Publication EUR 15745 EN of the Office for Official Publications of the EU, Luxembourg.

Supit, I., Kappel, R.R. van, 1998. A simple method to estimate global radiation. Solar Energy, 63:147-160.

See Also

'sucal' to calibrate the model.

Examples

```
require(zoo)
data(Metdata)
tmax <- Metdata$meteo$TEMP_MAX
tmin <- Metdata$meteo$TEMP_MIN
cc <- Metdata$meteo$CLOUD_DAYTIME_TOTAL
days <- Metdata$meteo$DAY
lat <- Metdata$LATITUDE
lon <- Metdata$LONGITUDE
plot(zoo(su(days=days, lat=lat, lon=lon, extraT=NULL, A=NA, B=NA, C=-NA, tmax=tmax, tmin=tmin, CC=cc),order.by=days))</pre>
```

sucal

Calibrate Supit-Van Kappel model

Description

Function estimates Supit-Van Kappel model coefficients 'A', 'B' and 'C' based on reference data

Usage

```
sucal(days, lat, rad_mea, extraT=NULL, tmax, tmin, cc)
```

sucal 31

Arguments

days	Vector of class 'Date' of length n.
lat	Latitude in decimal degrees.
rad_mea	$\label{prop:containing} \ Vector\ of\ length\ n\ containing\ reference\ (e.g.\ measured)\ solar\ radiation\ [MJm-2].$
extraT	Optional. Vector of length n of extraterrestrial solar radiation [MJm-2]. If 'NULL' then it is calculated by the function. Providing extraterrestrial solar radiation speeds up the computation
tmax	Vector of length n containing daily maximum temperature [C].
tmin	Vector of length n containing daily minumum temperature [C].
СС	Vector of length n containing daily cloud coverage [octas].

Details

Function estimates Supit-Van Kappel model coefficients 'A', 'B' and 'C' based on reference (e.g. measured) solar radiation data. It performs a linear regression.

Value

Vector of length 3:

Sa	Supit-Van Kappel 'A' coefficient
Sb	Supit-Van Kappel 'B' coefficient
Sc	Supit-Van Kappel 'C' coefficient
Sr2	Coefficient of determination of performed linear regression

Author(s)

```
Jedrzej S. Bojanowski
```

References

Supit, I. 1994. Global radiation. Publication EUR 15745 EN of the Office for Official Publications of the EU, Luxembourg.

Supit, I., Kappel, R.R. van, 1998. A simple method to estimate global radiation. Solar Energy, 63:147-160.

See Also

'su'.

```
data(Metdata)
tmax <- Metdata$meteo$TEMP_MAX
tmin <- Metdata$meteo$TEMP_MIN
days <- Metdata$meteo$DAY
lat <- Metdata$LATITUDE</pre>
```

32 wind2

```
rad_mea <- Metdata$meteo$RAD_MEA
CC <- Metdata$meteo$CLOUD_DAYTIME_TOTAL
sucal(lat=lat,days=days,rad_mea, extraT=NULL,tmax=tmax, tmin=tmin,cc=CC)</pre>
```

wind2

Convert wind speed measured at a certain height to the wind speed at 2 meters

Description

'wind2' converts a wind speed measured at a certain height 'z' above the ground level to the wind speed at the standard height (2 meters)

Usage

```
wind2(uz,meah)
```

Arguments

uz Wind speed measured at heith 'z' [ms-1].

meah The height (above the ground level) of the wind speed measurement [m].

Details

Wind speed is slowest at the surface and increases with height. The measurements taken at different heights avove the ground level must be standardized to 2 meters (default in agrometeorology).

Value

Wind speed at standard 2 meters. [ms-1]

Author(s)

Jedrzej S. Bojanowski

References

Allen, R.G., L.S. Pereira, D. Raes, and M. Smith. 1998. Crop Evapotranspiration: Guidelines for computing crop water requirements. Irrigation and Drainage Paper 56, Food and Agriculture Organization of the United Nations, Rome, pp. 300.

```
wind2(uz=5,meah=10)
```

Index

```
* package
     sirad-package, 2
ap, 3
apcal, 5
bc, 6
bcauto, 7
bccal, 9
cst, 10
cstRead, 11
{\tt dayOfYear}, \\ {\tt 12}
degrees, 13
{\tt deltaVP,\, 13}
es, 14
et0, 15
extrat, 16
ha, 17
hacal, 18
hauto, 20
Metdata, 21
mh, 22
modeval, 23
psychC, 25
\textit{radians}, \textcolor{red}{26}
rn1, 26
rns, 28
sirad(sirad-package), 2
sirad-package, 2
su, 29
sucal, 30
wind2, 32
```