1)
$$\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot Cos\theta$$

2) $\vec{a} \times \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot Sin\theta \hat{\eta}$
3) $\vec{a} \times \vec{b} = -(\vec{b} \times \vec{a})$
4) $\vec{a} \times (\vec{b} + \vec{c}) = (\vec{a} \times \vec{b}) + (\vec{a} \times \vec{c})$

6)
$$VTP = \vec{a} \times (\vec{b} \times \vec{c}) = \vec{b}(a \cdot c) - c(a \cdot b)$$

$$\overline{A_i} = \frac{3}{R_{ij}} R_{ij} A_j$$

9)
$$dT = \left(\frac{\partial T}{\partial x}\right) dx + \left(\frac{\partial T}{\partial y}\right) dy + \left(\frac{\partial T}{\partial z}\right) dz$$

-Del Operator Operation > ₹ T = Gradient ₹. A = Divergence > Scalar ₹ X A = Curl -> Curl of a gradient is zero. Laplacian of a Scalar -> $\Delta \nabla^2 T = \partial^2 T + \partial^2 T + \partial^2 T$ $\partial x^2 \qquad \partial y^2 \qquad \partial z^2$ = 7.(7) → line Integrals > (v. dl if line or shape is closed then & v.dl 2022/1/11 10:57 - Sur face Integrals -SV.Za da,= dxdy

daa= dxdy

daa= dxdx

daa= dxdx

is Constant Closed surface:-∮7.då -> Volume Integrals > ST. dt dT = Infitesimal volume element dt = dr dy da

> Fundamental Hearem -- Gradient 7 (f). dl = f(b) - f(a) The second 6(of).dl = 0 Divergence ((A.A). dt = fA. da Curl ((VXA).da = fA.dl Stokes theorem Curvilinear Coordinates > 1) Spherical polar > (r, 0, 0) 2 = r Sino Cosp y = r Sino Sino z = R RCOSO

A = Az R + Aoô + Aoô

 $\hat{z} = \sin\theta \cos\phi \hat{x} + \sin\theta \sin\phi \hat{y} + \cos\phi \hat{z}$ $\hat{\theta} = \cos\theta \cos\phi \hat{x} + \cos\theta \sin\phi \hat{y} - \sin\theta \hat{z}$ $\hat{\phi} = -\sin\phi \hat{x} + \cos\phi \hat{y}$

 $\overline{R} = RSino Cosp 2 + RSino Sino 9 + ROOSO 2$

 $\hat{x} = \frac{\partial \vec{x}}{\partial x}, \hat{\theta} = \frac{\partial \vec{x}}{\partial \theta}, \hat{\theta} = \frac{\partial \vec{x}}{\partial \theta}$ $\frac{\partial \vec{x}}{\partial x} = \frac{\partial \vec{x}}{\partial \theta}, \hat{\theta} = \frac{\partial \vec{x}}{\partial \theta}$ $\frac{\partial \vec{x}}{\partial x} = \frac{\partial \vec{x}}{\partial \theta}, \hat{\theta} = \frac{\partial \vec{x}}{\partial \theta}$

 $dl_0 = dr$ $dl_0 = rd0$ $dl_{\phi} = rSin\theta d\phi$

-> Infinitesimal displacement ->

di = drî + rdo ê + rsinodo

> Inf. Volume >

dt = dlr dlo dlp

= r2 Sino dr do do

-> Cylindrical co-ordinates > $z = s \cos \phi$ $y = s \sin \phi$ z = z $\hat{\phi} = \frac{\cos \phi \hat{x} + \sin \phi \hat{y}}{2}$ $\hat{\phi} = -\sin \phi \hat{x} + \cos \phi \hat{y}$ $\hat{x} = \hat{x}$ \rightarrow Inf. dis. \Rightarrow $dl_s = ds$, $dl_{\phi} = sd\phi$ $dl_{\chi} = d\chi$ dl = ds 3 + sd \$ \$ + dz 2 dT = sdsdødz

Electrostatics

 $F = k09 \hat{x}$ k = 1 k^2 $4\pi \epsilon$

F= Q.E

-> Continuous Charge distribution

 $F(x) = K \int \frac{1}{3^2} \hat{x} dq$

dg > 1dl' > oda' > pdī'

-> for line charge >

 $E(x) = K \int \frac{\lambda(x')}{\lambda^2} \hat{x} dl'$

> for surface charge >

 $E(r) = \int_{0}^{\infty} \int_{0}^{\infty} \sigma(r') \hat{q}' da'$

 \Rightarrow for vol. charge \Rightarrow $F(x) = k \int \frac{P(x')}{x^2} \hat{x} dt'$

Grams Law- Jon any closed suspaces Jenc = Jenc Fedt Genc Charge V(s) = JE.dl V(b) - V(a) = JE.dl - JE.dl - JE.dl - JE.dl - JE.dl - JE.dl - JE.dl - JE.dl - JE.dl - JE.dl - JE.dl	Jest any closed susfaces Jest any closed = fenc Edat Feda = fed Visi = Jenc Co Visi = Jenc Co Visi = Jenc Co Co Visi = Jenc Co Co Co Co Co Co Co Co Co C
---	---

E= -VV

VXE = 0 (Curl of E)

 $\nabla \cdot E = \frac{P}{E}$ (divergence of E) $\nabla^2 V = -\frac{P}{E}$

v(a) - v(b) = W

W= Eo FE2 dt

-> Conductors ->

> E=0 inside a conductor

-> P=0 inside a conductor

- Conductor is equipotential

> E & Lear to surface just

outside a conductor

-> Capacitor 2 Conductors with charge to. V= V+ -V_ =- [=.dl Capacitance E = Q = V = Q d E A AE. =) C = Q = AE0 [d = sep bet? plates

[A = area of plates Hork done up a capacitor to 0:
The some point the charge

on capacitor plate = +9

デーーマン Vdip (2,0) = Kp. 2 = kt Coso -To get Electric field $E_2 = -3V = 2k p \cos \theta$ Ep = -1 2V = KP Sin 0 $E_{\phi} = -1 \quad \partial V = 0$ RSIND $\partial \phi$

 $\vec{E}_{dip}(x,0) = kp \left(2\cos 0\hat{x} + \sin 0\hat{\theta} \right)$

4

and the same of th

Subject _____ = 0/E + VXB -> Magnetic force do not work.
-> Magnetic force can change disection
but cannot change speed with which
a particles moves Currents. > (VXB)Q= = (IXB) dl. 2022/2/15 15:10 Teacher's Singnature

o for surface current as KE dI E = V Fragil ((VXB) + da = ((KXB) da for volume current " J = dI = gv dalFmag. = (JXB) dT = (CVXB) 8dT - For a closed surface I = 6 J.da = ((V.J) dI $-\frac{d}{dt} \int \frac{g}{dt} dt = -\int \frac{df}{dt} dt$ → V.J = -d8 -> The Continuity

dt Egn

MON TUE WED THU FRI SAT SUN Subject ____ The Biot - Savastis laws + for steady cursent > B(1) = 10 (IXR = 10I (dI'XR) 110 = 4TTX10-7 N/A2 N/Amp.m OIT > unit - for surface current > B(a) = 40 (K(r') x 2 da') for volume current > B(r) = 10 (J(r)) x2 dit

	Subject
	$\overrightarrow{B} = \overrightarrow{\nabla} \times \overrightarrow{A}$ $\overrightarrow{A} = \overrightarrow{A} + \overrightarrow{\nabla} \overrightarrow{A} \rightarrow scalar fn.$
_	$\overrightarrow{a} \overrightarrow{B} = \overrightarrow{\forall} \times \overrightarrow{A'}$
	$\exists \overrightarrow{\nabla}(\overrightarrow{\nabla}.\overrightarrow{A}) - \overrightarrow{\nabla}^2 A = \mu_0 \overrightarrow{J}$
	If 7.7 is 0 then
	$\overrightarrow{\partial}^2 \cdot \overrightarrow{A} = -\mu_0 \overrightarrow{f}$
_	constitute countly
	-) Magnetisation of matter 8-)
_	m= mag. dipole moment per writ vol.
_	writ vol.
	Bound Currents. >
	Cound valume and A
	Bound volume current >
	$\vec{J}_{0} = \vec{\nabla} \times \vec{M}$ 2022/2/15 15:15
	2022/2/13 13:13

