18.06 10/18/22

Practice Problems

- 1. True or False (give a good reason if true/counterexample or reason if false)
 - 1. If the zero vector is in the column space of a matrix A, then the columns of A are linearly dependent.
 - 2. If the columns of a matrix are dependent, so are the rows.
 - 3. The column space of a 2×2 matrix is the same as its row space.
 - 4. The column space of a 2×2 matrix has the same dimension as its row space.
 - 5. The columns of a matrix are a basis for the column space.
 - 6. A and A^T have the same number of pivots.
 - 7. A and A^T have the same left nullspace.
 - 8. If the row space equals the column space then $A^T = A$.
 - 9. If $A^T = -A$, then the row space of A equals the column space.
- **2.** If w_1, w_2, w_3 are independent vectors in \mathbb{R}^3 , show that the differences

$$v_1 = w_2 - w_3$$

$$v_2 = w_1 - w_3$$

$$v_3 = w_1 - w_2.$$

are dependent. Find the matrix A so that

$$\begin{bmatrix} w_1 & w_2 & w_3 \end{bmatrix} A = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix}.$$

Which matrices above are singular?

- **3.** Construct $A = uv^T + wz^T$ whose column space has basis $\begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}$ and whose row space has basis (1,0),(1,1). Write A as a 3×2 matrix times a 2×2 matrix.
- **4.** If a subspace S is contained in a subspace V, prove that S^{\perp} contains V^{\perp} .