Técnicas de Identificação

- Várias técnicas (de uso não exclusivo) são usadas para identificar classes:
 - 1. Categorias de Conceitos
 - 2. Análise Textual de Abbott (Abbot Textual Analysis)
 - 3. Análise de Casos de Uso
 - Categorização BCE
 - 4. Padrões de Análise (Analisys Patterns)
 - 5. Identificação Dirigida a Responsabilidades

Categorias de Conceitos

- Estratégia: usar uma lista de conceitos comuns.
 - Conceitos concretos. Por exemplo, edifícios, carros, salas de aula, etc.
 - Papéis desempenhados por seres humanos. Por exemplo, professores, alunos, empregados, clientes, etc.
 - Eventos, ou seja, ocorrências em uma data e em uma hora particulares.
 Por exemplo, reuniões, pedidos, aterrisagens, aulas, etc.
 - Lugares: áreas reservadas para pessoas ou coisas. Por exemplo: escritórios, filiais, locais de pouso, salas de aula, etc.
 - Organizações: coleções de pessoas ou de recursos. Por exemplo: departamentos, projetos, campanhas, turmas, etc.
 - Conceitos abstratos: princípios ou idéias não tangíveis. Por exemplo: reservas, vendas, inscrições, etc.

Análise Textual de Abbott

- Estratégia: identificar termos da narrativa de casos de uso e documento de requisitos que podem sugerir classes, atributos, operações.
- Neste técnica, são utilizadas diversas fontes de informação sobre o sistema: documento e requisitos, modelos do negócio, glossários, conhecimento sobre o domínio, etc.
- Para cada um desses documentos, os nomes (substantivos e adjetivos) que aparecem no mesmo são destacados. (São também consideradas locuções equivalentes a substantivos.)
- Após isso, os sinônimos são removidos (permanecem os nomes mais significativos para o domínio do negócio em questão).

Análise Textual de Abbott (cont.)

- Cada termo remanescente se encaixa em uma das situações a seguir:
 - O termo se torna uma classe (ou seja, são classes candidatas);
 - O termo se torna um atributo;
 - O termo não tem relevância alguma com ao SSOO.
- Abbott também preconiza o uso de sua técnica na identificação de <u>operações</u> e de <u>associações</u>.
 - Para isso, ele sugere que destaquemos os verbos no texto.
 - Verbos de ação (e.g., calcular, confirmar, cancelar, comprar, fechar, estimar, depositar, sacar, etc.) são operações em potencial.
 - Verbos com sentido de "ter" são potenciais agregações ou composições.
 - Verbos com sentido de "ser" são generalizações em potencial.
 - Demais verbos são associações em potencial.

Análise Textual de Abbott (cont.)

- A ATA é de aplicação bastante simples.
- No entanto, uma desvantagem é que seu resultado (as classes candidatas identificadas) depende de os documentos utilizados como fonte serem completos.
 - Dependendo do <u>estilo</u> que foi utilizado para escrever esse documento, essa técnica pode levar à identificação de diversas classes candidatas que não gerarão classes.
 - A análise do texto de um documento <u>pode não deixar explícita uma</u> <u>classe importante</u> para o sistema.
 - Em linguagem natural, as <u>variações lingüísticas</u> e as <u>formas de</u> expressar uma mesma idéia são bastante numerosas.

Análise de Casos de Uso

- Essa técnica é também chamada de <u>identificação dirigida por</u> <u>casos de uso</u>, e é um caso particular da ATA.
- Técnica preconizada pelo Processo Unificado.
- Nesta técnica, o MCU é utilizado como ponto de partida.
 - Premissa: um caso de uso corresponde a um <u>comportamento específico</u> do SSOO. Esse comportamento somente pode ser produzido por objetos que compõem o sistema.
 - Em outras palavras, a realização de um caso de uso é responsabilidade de um conjunto de objetos que devem colaborar para produzir o resultado daquele caso de uso.
 - Com base nisso, o modelador aplica a técnica de análise dos casos de uso para identificar as classes necessárias à produção do comportamento que está documentado na descrição do caso de uso.

Análise de Casos de Uso

- Procedimento de aplicação:
 - O modelador estuda a descrição textual de cada caso de uso para identificar classes candidatas.
 - Para cada caso de uso, se texto (fluxos principal, alternativos e de exceção, pós-condições e pré-condições, etc.) é analisado.
 - Na análise de certo caso de uso, o modelador tenta identificar classes que possam fornecer o comportamento do mesmo.
 - Na medida em que os casos de uso são analisados um a um, as classes do SSOO são identificadas.
 - Quando todos os casos de uso tiverem sido analisados, todas as classes (ou pelo menos a grande maioria delas) terão sido identificadas.
- Na aplicação deste procedimento, podemos utilizar as categorização BCE...

Categorização BCE

- Na categorização BCE, os objetos de um SSOO são agrupados de acordo com o tipo de responsabilidade a eles atribuída.
 - objetos de entidade: usualmente objetos do domínio do problema
 - objetos de fronteira: atores interagem com esses objetos
 - objetos de controle: servem como intermediários entre objetos de fronteira e de entidade, definindo o comportamento de um caso de uso específico.
- Categorização proposta por Ivar Jacobson em1992.
 - Possui correspondência (mas não equivalência!) com o framework
 model-view-controller (MVC)
 - Ligação entre análise (o que; problema) e projeto (como; solução)
- Estereótipos na UML: «boundary», «entity», «control»

Objetos de Entidade

- Repositório para *informações* e as *regras de negócio* manipuladas pelo sistema.
 - Representam conceitos do domínio do negócio.
- Características
 - Normalmente armazenam informações <u>persistentes</u>.
 - Várias instâncias da mesma entidade existindo no sistema.
 - Participam de vários casos de uso e têm ciclo de vida longo.
- Exemplo:
 - Um objeto *Pedido* participa dos casos de uso *Realizar Pedido* e *Atualizar Estoque*. Este objeto pode <u>existir</u> por diversos anos ou mesmo tanto quanto o próprio sistema.

Θ

Objetos de Fronteira

- Realizam a comunicação do sistema com os atores.
 - traduzem os eventos gerados por um ator em eventos relevantes ao sistema → eventos de sistema.
 - também são responsáveis por apresentar os resultados de uma interação dos objetos em algo inteligível pelo ator.
- Existem para que o sistema se comunique com o mundo exterior.
 - Por consequência, são altamente dependentes do ambiente.
- Há dois tipos principais de objetos de fronteira:
 - Os que se comunicam com o usuário (atores humanos): relatórios, páginas HTML, interfaces gráfica desktop, etc.
 - Os que se comunicam com atores não-humanos (outros sistemas ou dispositivos): protocolos de comunicação.

Objetos de Controle

- São a "ponte de comunicação" entre objetos de fronteira e objetos de entidade.
- Responsáveis por <u>controlar a lógica de execução</u> correspondente <u>a um caso de uso</u>.
- Decidem o que o sistema deve fazer quando um evento de sistema ocorre.
 - Eles realizam o controle do processamento
 - Agem como *gerentes* (coordenadores, controladores) dos outros objetos para a realização de um caso de uso.
- Traduzem <u>eventos de sistema</u> em operações que devem ser realizadas pelos demais objetos.

Importância da Categorização BCE

- A categorização BCE parte do princípio de que cada objeto em um SSOO é especialista em realizar um de três tipos de tarefa, a saber:
 - se comunicar com atores (**fronteira**),
 - manter as informações (entidade) ou
 - coordenar a realização de um caso de uso (**controle**).
- A categorização BCE é uma "receita de bolo" para identificar objetos participantes da realização de um caso de uso.
- A importância dessa categorização está relacionada à capacidade de <u>adaptação a eventuais mudanças</u>.
 - Se cada objeto tem atribuições específicas dentro do sistema, mudanças podem ser menos complexas e mais localizadas.
 - Uma modificação em uma parte do sistema tem menos possibilidades de resultar em mudanças em outras partes.

Visões de Classes Participantes

- Uma Visão de Classes Participantes (VCP) é um diagrama das classes cujos objetos participam da realização de determinado caso de uso.
 - É uma recomendação do UP (Unified Process). UP: "definir uma VCP por caso de uso"
 - Termo original: *View Of Participating Classes* (VOPC).
- Em uma VCP, são representados objetos de fronteira, de entidade e de controle <u>para um caso de uso particular</u>.
- Uma VCP é definida através da utilização da categorização BCE previamente descrita...vide próximo slide.

Estrutura de uma VCP

• Uma VCP representa a estrutura das classes que participam da realização de um caso de uso em particular.

Construção de uma VCP

- Para cada caso de uso:
 - Adicione uma fronteira para cada elemento de interface gráfica principal, tais com uma tela (formulário) ou relatório.
 - Adicione uma fronteira para cada ator não-humano (por exemplo, outro sistema).
 - Adicione um ou mais controladores para gerenciar o processo de realização do caso de uso.
 - Adicione uma entidade para cada conceito do negócio.
 - Esses objetos são originários do modelo conceitual.
- Os estereótipos gráficos definidos pela UML podem ser utilizados.

VCP (exemplo) – Realizar Inscrição

Regras Estruturais em uma VCP

- Durante a fase de análise, use as regras a seguir para definir a VCP para um caso de uso.
 - Atores somente podem interagir com objetos de fronteira.
 - Objetos de fronteira somente podem interagir com controladores e atores.
 - Objetos de entidade somente podem interagir (receber requisições) com controladores.
 - Controladores somente podem interagir com objetos de fronteira e objetos de entidade, e com (eventuais) outros controladores.