PRIMITIVE ROOTS AND DISCRETE LOGARITHMS

PROPOSITION: Let p be a prime. Let p(x) be a polynomial of degree d with coefficients in \mathbb{Z}_p . Then p(x) has at most d roots in \mathbb{Z}_p .

DEFINITION: Let n be a positive integer. An element $x \in \mathbb{Z}_n^{\times}$ is a **primitive root** if the order of x in \mathbb{Z}_n^{\times} equals $\phi(n)$ (the cardinality of \mathbb{Z}_n^{\times}).

THEOREM: Let p be a prime number. Then there exists a primitive root in \mathbb{Z}_p^{\times} .

- (1) Warmup with primitive roots:
 - (a) Check that [2] is a primitive root in \mathbb{Z}_5 .
 - (b) Check that [3] is a primitive root in \mathbb{Z}_4 .
 - (c) Find a primitive root in \mathbb{Z}_7 .
 - (d) Show that there is no primitive root in \mathbb{Z}_8 .
- (2) Suppose that x = [a] is a primitive root in \mathbb{Z}_p .
 - (a) Show that if $0 \le m \le n < p-1$, and $x^m = x^n$, then m = n.
 - (b) Show that every element of \mathbb{Z}_p^{\times} can be written as x^n for a unique integer n with $0 \le n < p-1$.

If [a] is a primitive root in \mathbb{Z}_p , then every nonzero element of \mathbb{Z}_p can be written as $[a]^m$ for a unique nonnegative integer m . We call the function

$$\mathbb{Z}_p^{\times} \to \mathbb{Z}_{p-1} \quad [b] \mapsto [m] \text{ such that } [b] = [a]^m$$

the **discrete logarithm** or **index** of \mathbb{Z}_p^{\times} with base [a].

(3) Let p be a prime and [a] a primitive root in \mathbb{Z}_p . Show that the corresponding discrete logarithm function $I: \mathbb{Z}_p^{\times} \to \mathbb{Z}_{p-1}$ satisfies the property

$$I(xy) = I(x) + I(y) \quad \text{and} \quad I(x^n) = [n]I(x)$$

for $x, y \in \mathbb{Z}_p^{\times}$ and $n \in \mathbb{N}$.

- (4) (a) Verify that [2] is a primitive root in \mathbb{Z}_{11} and compute the corresponding discrete logarithm.
 - (b) Use this function to find a square root of [3] in \mathbb{Z}_{11} .

PROPOSITION: Let n be a positive integer. Then $\sum_{d\mid n} \varphi(d) = n$.

THEOREM: Let p be a prime. Suppose that there are n distinct solutions to $x^n = 1$ in \mathbb{Z}_p . Then \mathbb{Z}_p^{\times} has exactly $\varphi(n)$ elements of order n.

- (5) Explain how the theorem above implies that there exists a primitive root in \mathbb{Z}_p .
- (6) Proof of Theorem (using the Proposition): Fix a prime number p. We will use the following LEMMA: If G is a group, $g \in G$, and n a positive integer such that $g^n = 1$, then the order of g divides n.

¹Hint: x^m has an inverse.

- (a) We proceed by strong induction on n. What does that mean concretely here? Complete the case n=1.
- (b) Suppose that $x^n = 1$ but the order of x in \mathbb{Z}_p^{\times} is not n. What does the Lemma say about the order of x? Rephrase this in terms of x satisfying an equation.
- (c) Suppose that d is a divisor of n, and write n = de. Note that

$$x^{n} - 1 = (x^{d} - 1)(x^{d(e-1)} + x^{d(e-2)} + \dots + x^{d} + 1).$$

In particular, every solution of $x^n - 1$ is a root of $x^d - 1$ or of $x^{d(e-1)} + x^{d(e-2)} + \cdots + x^d + 1$. Can $x^d - 1$ have more than d roots in \mathbb{Z}_p ? Can $x^d - 1$ have less than d roots in \mathbb{Z}_p if $x^n - 1$ has n roots?

- (d) Apply the induction hypothesis to show that the number of solutions to $x^n = 1$ of order less than n is $\sum_{d\,|\,n,d\neq n} \varphi(d)$. (e) Apply the Proposition to conclude the proof of the Theorem.
- (7) Proof of Proposition:
 - (a) Explain the following formula:

$$n = \sum_{d \mid n} \#\{a \mid 1 \le a \le n \text{ and } \gcd(a, n) = d\}.$$

(b) Explain² why

$$\#\{a \mid 1 \le a \le n \text{ and } \gcd(a,n) = d\} = \varphi(n/d).$$

(c) Finally, explain³ why

$$\sum_{d \mid n} \varphi(n/d) = \sum_{d \mid n} \varphi(d)$$

and complete the proof.

(8) Let p, q be distinct odd primes. Show that there is no primitive root of \mathbb{Z}_{pq} : i.e., there is no element of order $\varphi(pq)$ in \mathbb{Z}_{pq}^{\times} .

²Hint: You proved that if gcd(a, n) = d, then gcd(a/d, n/d) = 1; also, if gcd(b, n/d) = 1, then gcd(bd, n) = d.

³Hint: As d ranges through all the divisors of n, so does n/d.