CENG 114 BİLGİSAYAR BİLİMLERİ İÇİN AYRIK YAPILAR Prof. Dr. Tufan TURACI tturaci@pau.edu.tr

Pamukkale Üniversitesi

Hafta 6

- Mühendislik Fakültesi
- Bilgisayar Mühendisliği Bölümü

Ders İçereği

- Boolean Fonksiyonlar (Soru Çözümü)
- Algoritma Analizi
 - --- Yürütme Zamanı
 - --- Karmaşıklık

Algoritma ve Algoritma Analizi

Bir algoritma, bir problemi çözmek ya da bir işlevi hesaplamak için izlenecek sonlu, açıkça belirtilen talimat dizisidir.

Bir algoritma genel olarak

- Bir (birkaç) girdi alır.
- Sınırlı bir süre içerisinde komutlar bir çıktı üretmektedir.

Etkili bir talimat, temelde kalem ve kağıt kullanarak gerçekleştirmenin mümkün olduğu kadar basit bir işlemdir.

Algoritmaları İfade Etmek

Algoritmalar şu şekilde gösterilebilir:

doğal diller

- ayrıntılı ve belirsizdir.
- nadiren karmaşık veya teknik algoritmalar için kullanılır.

■ Pseudocode(sözde kod), akış diyagramları:

- --- algoritmaları ifade etmek için yapısal yöntemlerdir.
- -- doğal dilde ifadelerde belirsizliklerden kaçınır.
- --- belirli bir uygulama dilinden bağımsızdır.

■ Programlama dilleri:

- --- algoritmaları bir bilgisayar tarafından yürütülebilecek biçimde ifade etmeyi amaçlar.
- --- algoritmaları belgelemek için kullanılabilir.

Örnek:

Problem: Sıralanmamış bir listede en büyük elemanı bulmak

Fikir: Her elemana bir kere bakmak.

Doğal Dil:

- Listedeki ilk elemanın en büyük olduğunu varsay.
- Listenin sonuna kadar daha büyük bir sayı var mı diye arat.
- Liste tarama işlemi bittiğinde en son not edilen en büyük elemandır.

Örnek:

Sözde Kod:

```
Algorithm LargestNumber

Input: A non-empty list of numbers L.

Output: The largest number in the list L.

largest \leftarrow L_0

for each item in the list L_{i \ge 1}, do

if the item > largest, then

largest \leftarrow the item

return largest
```


CENG 114-Bilgisayar Bilimleri için Ayrık Yapılar

Algoritmanın Özellikleri

- **■** Effectiveness (Etkinlik)
 - Talimatlar basit olmalı.
 - kalem ve kağıtla yapılabilir.
- Definiteness (Kesinlik)
 - Talimatlar net
 - Anlamı tek olmalıdır.
- Correctness (Doğruluk)
 - Algoritma doğru cevabı verir (Olası tüm durumlar için)
- **■** Finiteness (Sonluluk)
 - Algoritma makul sürede durmalı ve bir çıktı üretmelidir.

Algoritma Tasarım Süreci

Algoritmaların Analizi

- Bir algoritmanın complexity'sini (karmaşıklığı) çalışma
 - Algoritma ne kadar iyi?
 - Diğer algoritmalarla karşılaştırma işlemi nasıl yapılacak?
 - En iyi yazılabilecek algoritma bu mudur?
- Karmaşıklık
 - Alan Karmaşıklığı
 - Bit sayısı
 - Eleman sayısı
 - Zaman Karmaşıklığı
 - Toplamda çalıştırılacak işlem sayısı
 - Modele göre değişir
 - RAM

Algoritmaların Run-Time (Çalışma Zamanı) Analizi

■ Algoritma karmaşıklığı, problemin boyutunu gösteren parametre n' nin bir fonksiyonu olarak hesaplanabilmektedir.

■ Zaman karmaşıklığı, T (n), algoritmanın en önemli işlemi olan - temel işlem olarak adlandırılan – işlemin çalıştırılma sayısı olarak hesaplanabilir.

■ Space (Alan) karmaşıklığı, S (n), genellikle algoritmanın yürütülmesi sırasında kullanılan bellek alanının büyüklüğü olarak hesaplanır.

Tablo Metodu

■ Tablo Metodu, bir algoritmanın karmaşıklığını hesaplamak için kullanılır

Örnek: Bir dizinin elemanlarını toplama

Kaç işlem yapılır? T(n)=3n+4 (Yürütme zamanı)

Tablo Metodu

■ Örnek:

Matris Toplama

a, b, c 'nin mxn boyutunda matrisler olduğunu varsayalım.

	işlem	toplam
for (i=0; i <m; i++)="" td="" {<=""><td>1+m+1+m</td><td>2m+2</td></m;>	1+m+1+m	2m+2
for (j=0; j <n; j++)="" td="" {<=""><td>m(1+n+1+n)</td><td>2mn+2m</td></n;>	m(1+n+1+n)	2mn+2m
c[i,j] = a[i,j] + b[i,j] } }	mn	mn
		3mn+4m+2

Eğer m=n ise $T(n) = 3n^2 + 4n + 2$ (Yürütme zamanı)

Asimptotik Notasyon Ve Temel Verimlilik Sınıfları (Büyüme Sırası) Order of growth

■ En önemlisi : $n\rightarrow\infty$ 'a giderken algoritmanın performansı hangi sınırlarda bunu anlayabilmektir.

■ Örnek:

- İki katı kadar hızlı bir bilgisayarda algoritma ne kadar hızlanıyor?
- Girdi boyutu iki katına çıktığında algoritma ne kadar yavaşlıyor?

$n \to \infty$ giderken bazı önemli fonksiyonların değerleri

Tablo: Algoritma an	ıalizi için bazı önei	mli fonksiyonların	değerleri
---------------------	-----------------------	--------------------	-----------

n	$\log_2 n$	n	$n \log_2 n$	n^2	n^3	2^n	n!
10	3.3	10^{1}	$3.3 \cdot 10^{1}$	10^{2}	10^{3}	10^{3}	$3.6 \cdot 10^6$
10^{2}	6.6	10^{2}	$6.6 \cdot 10^2$	10^{4}	10^{6}	$1.3 \cdot 10^{30}$	$9.3 \cdot 10^{157}$
10^{3}	10	10^{3}	$1.0 \cdot 10^4$	10^{6}	10^{9}		
10^{4}	13	10^{4}	$1.3 \cdot 10^5$	10^{8}	10^{12}		
10^{5}	17	10^{5}	$1.7 \cdot 10^6$	10^{10}	10^{15}		
10 ⁶	20	10^{6}	$2.0 \cdot 10^7$	10^{12}	10^{18}		

CENG 114-Bilgisayar Bilimleri için Ayrık Yapılar

Örnek:

- \blacksquare 2^100'ü hesaplamak saniyede 10¹² işlem yapan bir bilgisayar için 4x10¹⁰ yıl alacaktır.
- Bu, 100! Değerini hesaplamak için gereken süreden kısadır. Fakat, 100!i hesaplamak ise dünya gezegeninin tahmini yaşından 4,5 milyar (4.5 .109) yıl daha uzundur.
- 2ⁿ ve n! fonksiyonlarının büyüme sıraları arasında muazzam bir fark vardır.

Asimptotik Büyüme Dereceleri

```
Asimbotile Analiz
n -> 00 iken T(n)'nin bügimesi nebifi
 Asimblike Notosyon
  Búsik O Búsik Teta
(Big O) (Big Omega) (Theta)
O Notasyons (DS+ Simr)
1 Notasyans (Alt Since)
O Notosypou (SIKI SIMIT, Ortolona durum)
  Kısaltmalar ve Anlamları
                                bin \Theta(n^2) algoritmessadon daha hielidir.
```

Asimptotik Büyüme Dereceleri

Fonksiyonların büyüme hızlarını karşılaştırmak için kullanılan, sabit çarpanları ve küçük girdi boyutlarını yok sayan bir yöntem.

- lacktriangledown O(g(n)): g(n) fonksiyonundan daha hızlı büyümeyen f(n) fonksiyonlarını kapsar.
- ullet $\Theta(g(n))$: g(n) fonksiyonları ile aynı derecede büyüyen f(n) fonksiyonlarını gösterir.
- \blacksquare $\Omega(g(n))$: en az g(n) fonksiyonları kadar hızda büyüyen f(n) fonksiyonlarını belirtmek için kullanılır.

Big-oh

Big-omega

Big-theta

Asimtotik Notasyonların Grafik Üzerinde Gösterimi

Big O Formal Tanımı

Tanım: $f(n) \in O(g(n))$ ise, f(n) fonksiyonunun büyüme derecesi, g(n)'in büyüme sabit bir sayı ile çarpımının büyüme derecesinden küçüktür.

$$f(n) \le c g(n)$$
, $\forall n \ge n_0$

Eşitsizliğini sağlayan pozitif bir sabit c ve pozitif bir tamsayı n_0 vardır.

- --- O notasyonu ilk olarak alman Matematikçi Bochmann tarafından 1894 yılında tanımlanmıştır.
- --- Algoritmanın en kötü durum analizini yapmak için kullanılan notasyondur.

Örnek:

$$T(n)=3n+8=O(n)$$
 dir. $(3n+8\in O(n))$ $3n+8<=c*n$ $n>=1$ için $3n+8<=3n+8n<=11n$ (c=11, $n_0=1$) $n>=4$ için $3n+8<=5n$ (c=5, $n_0=4$) Diğer c ve n_0 değerleri bulunabilir.

Örnek:

$$T(n)=3n+8= O(n^2) \text{ dir.}$$
 $(3n+8 \in O(n^2))$
 $3n+8 <= c*n^2$
 $n>=5 \text{ için } 3n+8 <= c*n^2 \text{ } (c=1, n_0 =5)$
 $n>=3 \text{ için } 3n+8 <= c*n^2 \text{ } (c=2, n_0 =3)$
Diğer c ve n_0 değerleri bulunabilir.

Örnek:

- $f(x) = x^2 + 2x + 1$ is $e(x^2)$ dir.
- Eğer x>1 ise $x< x^2$ dir ve, eğer x>1 ise $1< x^2$ dir.
- Çünkü:

$$0 \le x^2 + 2x + 1 \le x^2 + 2x^2 + x^2 = 4x^2$$

x>1 olduğu her değer için

■ Böylece, c = 4 ve $n_0 = 1$ alınırsa $f(x) \in O(x^2)$ elde edilir.

Grafiği

Örnek:

Anxim ve Britist Limite Corpus Somethin your bur old yorking ve Zomen
Learner William Resoptoymiz

promise motors (intorneyin, o, c); 163230, EDE 030, EDGOD C520,4 The standard of the major of the standard of the standard of the major of the major of the major of the standard of the stand C [VICE]:= Crespolar -> N.L

CENG 114-Bilgisayar Bilimleri için Ayrık Yapılar

$$T(m,n) = 2n+2+(2r+2)-n+n.r+(2m+2).r.n+n.r+rn$$

$$= 3mnr+6nr+6n+2$$

$$T(n) = 3n^{3}+6n^{2}+(4n+2)$$

$$T(n) = 3n^{3}+6n^{2}+(4n+2)$$

$$T(n) = 3n^{3}+6n^{2}+(4n+2)$$

Önemli Teoremler

Teol Ego
$$f(n) = O(g(n)) = 0 c. f(n) = O(g(n))$$

 $f(n) = O(g(n)) = 3 E, m And , f(n) < 101. g(n)$
 $= (1 c. f(n)) < E. 1cl. f(n) = 0(g(n)) > 0(g(n)) > 0$

$$\frac{1}{100!} = \frac{1}{100!} em: Ela tru) = O(214)) " HM = O(614)) =) (fr)(r)= 0((9.0)(1)) ispoti f(n)=0(s(n)) =) 3k, m, 2 4n2m, 16(n)/2 E(s(n)) h(n) = O(e(n)) =) 28, m2; 4n3m2, |h(n) < 1 |e(n)| M = wox Ewvins } =) Auguston; (f(n).n(n)) < (f(n)). | h(n)) < k. (s(n)). + (le(n)) = =>(f.n)(n) -0((9.e)(n))

CENG 114-Bilgisayar Bilimleri için Ayrık Yapılar

Çalışma Sorusu:

$$\frac{100^{n}e^{-1}}{E^{n}r} p(n) = a_{k}n^{k} + a_{k+1}n^{k-1} + \dots + a_{2}n^{2} + a_{1}n + a_{0}$$

$$=) p(n) = O(n^{k}) \cdot \lambda w.$$

$$Kanit ??$$

Bazı Önemli Fonksiyonların Büyüme Dereceleri

■ Tüm logaritmik fonksiyonlar log_a n aynı asimptotik sınıfa sahiptir.

 $O(\log n)$ logaritmanın tabanı a > 1 önemli değil.

- Aynı derece k'ye sahip olan tüm polinomlar aynı asimptotik sınıfa sahiptir. :
- $a_k n^k + a_{k-1} n^{k-1} + ... + a_0 \in O(n^k)$
- lacktriangle Üstel fonksiyonlar a^n , a değerine göre farklı büyüme sınıfına aittir.
- order $\log n$ < order n^{α} (α >0) < order a^n < order n! < order n^n

Temel Asimptotik Verimlilik Sınıfları

1	sabit	
log n	logaritmik	
n	lineer	
$n \log n$	<i>n</i> -log- <i>n</i> or linerritmetik	
n^2	quadratic	
n^3	kübik	
2 ⁿ	üstel	
n!	faktoriyel	

Ω - Formal Tanımı

■ Tanım: $f(n) \in \Omega(g(n))$ ise, f(n) fonksiyonunun büyüme derecesi, g(n)'in sabit bir sayı ile çarpımının büyüme derecesinden büyük veya eşittir.

$$f(n) \ge c g(n), \forall n \ge n_0$$

Eşitsizliğini sağlayan pozitif bir sabit c ve pozitif bir tamsayı n_0 vardır.

Örn:
$$T(n)=3n+5 \in \Omega(n)$$

$$3n+5 >= 3n$$
, tüm $n>=1$ için sağlanır (c=3, $n_0=1$)

Track:
$$n = \Omega(1gn)$$
 'dir.

$$f(n) \qquad g(n)$$

$$c.g(n) \leq f(n)$$

$$1.1gn \leq n$$

$$n=2icin \qquad 1 \leq 2 \quad L$$

$$c=1 \quad ve \quad \forall n \geq no \quad i \neq in \quad , \quad c. \quad gn \leq f(n)$$

$$O(1gn) \quad dir.$$

$$n=\Omega(1gn) \quad dir.$$

Çalışma Sorusu:
$$n^3 = \Omega(n^2)$$
 ?

Formal Tanımı

■ Tanım: $f(n) \in \Theta(g(n))$ ise, f(n) fonksiyonunun büyüme derecesi, g(n) fonksiyonun bir sabit katından yüksek aynı zamanda g(n) fonksiyonun bir sabit katından da düşük olmaktadır.

$$c_1 g(n) \le f(n) \le c_2 g(n), \forall n \ge n_0$$

Eşitsizliğini sağlayan pozitif sabit c_1 , c_2 sayıları ve pozitif bir tamsayı n_0 vardır.

 $\Theta(g(n)) = O(g(n)) \cap \Lambda(g(n))$ 'bir.

Hemaltten, nem de jetten sinitidir.

2 N2+ N-3 = ⊖(N2) gir

W)

O notosyonnde kücüle terinler ihmel edilir

Örnek: $\frac{1}{2}n^2 - 2n \in \Theta(n^2)$ olduğunu gösteriniz.

$$f(n) = \frac{1}{2}n^{2} - 2n \qquad g(n) = n^{2} \quad din.$$

$$c_{1}.g(n) \leq f(n) \leq c_{2}.g(n) \quad \forall n \geq n_{0}$$

$$c_{1}.c_{2} \geq 0$$

$$c_{1}.c_{2} \geq 0$$

$$c_{1}.c_{2} \geq 0$$

$$c_{1}.c_{2} \geq 0$$

$$c_{1}.c_{2} \geq 0$$

$$c_{1}.c_{2} \geq 0$$

$$c_{1}.c_{2} \geq 0$$

$$c_{1}.c_{2} \geq 0$$

$$c_{1}.c_{2} \geq 0$$

$$c_{1}.c_{2} \geq 0$$

$$c_{1}.c_{2} \geq 0$$

$$c_{1}.c_{2} \geq 0$$

$$c_{1}.c_{2} \geq 0$$

$$c_{1}.c_{2} \geq 0$$

$$c_{1}.c_{2} \geq 0$$

$$c_{1}.c_{2} \geq 0$$

$$c_{1}.c_{2} \geq 0$$

$$c_{1}.c_{2} \geq 0$$

$$c_{1}.c_{2} \geq 0$$

$$c_{1}.c_{2} \geq 0$$

$$c_{1}.c_{2} \geq 0$$

$$c_{1}.c_{2} \geq 0$$

$$c_{1}.c_{2} \geq 0$$

$$c_{1}.c_{2} \geq 0$$

$$c_{1}.c_{2} \geq 0$$

$$c_{1}.c_{2} \geq 0$$

$$c_{1}.c_{2} \geq 0$$

$$c_{1}.c_{2} \geq 0$$

$$c_{1}.c_{2} \geq 0$$

$$c_{1}.c_{2} \geq 0$$

$$c_{1}.c_{2} \geq 0$$

$$c_{1}.c_{2} \geq 0$$

$$c_{1}.c_{2} \geq 0$$

$$c_{1}.c_{2} \geq 0$$

$$c_{1}.c_{2} \geq 0$$

$$c_{1}.c_{2} \geq 0$$

$$c_{1}.c_{2} \geq 0$$

$$c_{1}.c_{2} \geq 0$$

$$c_{1}.c_{2} \geq 0$$

$$c_{1}.c_{2} \geq 0$$

$$c_{1}.c_{2} \geq 0$$

$$c_{1}.c_{2} \geq 0$$

$$c_{1}.c_{2} \geq 0$$

$$c_{1}.c_{2} \geq 0$$

$$c_{1}.c_{2} \geq 0$$

$$c_{1}.c_{2} \geq 0$$

$$c_{1}.c_{2} \geq 0$$

$$c_{2}.c_{2} \geq 0$$

$$c_{3}.c_{4} \geq 0$$

$$c_{4}.c_{4} \geq 0$$

$$c_{5}.c_{4} \geq 0$$

$$c_{6}.c_{4} \geq 0$$

$$c_{6}.c_{6} \geq 0$$

$$c_{7}.c_{6} \geq 0$$

$$c_{7}.c_{6} \geq 0$$

$$c_{7}.c_{7} \geq 0$$

$$c_{7}.c_{7} \geq 0$$

$$c_{7}.c_{7} \geq 0$$

$$c_{7}.c_{7} \geq 0$$

$$c_{7}.c_{7} \geq 0$$

$$c_{7}.c_{7} \geq 0$$

$$c_{7}.c_{7} \geq 0$$

$$c_{7}.c_{7} \geq 0$$

$$c_{7}.c_{7} \geq 0$$

$$c_{7}.c_{7} \geq 0$$

$$c_{7}.c_{7} \geq 0$$

$$c_{7}.c_{7} \geq 0$$

$$c_{7}.c_{7} \geq 0$$

$$c_{7}.c_{7} \geq 0$$

$$c_{7}.c_{7} \geq 0$$

$$c_{7}.c_{7} \geq 0$$

$$c_{7}.c_{7} \geq 0$$

$$c_{7}.c_{7} \geq 0$$

$$c_{7}.c_{7} \geq 0$$

$$c_{7}.c_{7} \geq 0$$

$$c_{7}.c_{7} \geq 0$$

$$c_{7}.c_{7} \geq 0$$

$$c_{7}.c_{7} \geq 0$$

$$c_{7}.c_{7} \geq 0$$

$$c_{7}.c_{7} \geq 0$$

$$c_{7}.c_{7} \geq 0$$

$$c_{7}.c_{7} \geq 0$$

$$c_{7}.c_{7} \geq 0$$

$$c_{7}.c_{7} \geq 0$$

$$c_{7}.c_{7} \geq 0$$

$$c_{7}.c_{7} \geq 0$$

$$c_{7}.c_{7} \geq 0$$

$$c_{7}.c_{7} \geq 0$$

$$c_{7}.c_{7} \geq 0$$

$$c_{7}.c_{7} \geq 0$$

$$c_{7}.c_{7} \geq 0$$

$$c_{7}.c_{7} \geq 0$$

$$c_{7}.c_{7} \geq 0$$

$$c_{7}.c_{7} \geq 0$$

$$c_{7}.c_{7} \geq 0$$

$$c_{7}.c_{7} \geq 0$$

$$c_{7}.c_{7} \geq 0$$

$$c_{7}.c_{7} \geq 0$$

$$c_{7}.c_{7} \geq 0$$

$$c_{7}.c_{7} \geq 0$$

$$c_{7}.c_{7} \geq 0$$

$$c_{7}.c_{7} \geq 0$$

$$c_{7}.c_{7} \geq 0$$

$$c_{7}.c_{7} \geq 0$$

$$c_{7}.c_{7} \geq 0$$

$$c_{7}.c_{7} \geq 0$$

$$c_{7}.c_{7} \geq 0$$

$$c_{7}.c_{7} \geq 0$$

$$c_{7$$

Bäyleu:
$$C_2 = \frac{1}{2}$$
 >0 $n_0 = 8$ için $C_1 = \frac{1}{4}$ >0

Kaynaklar

- *Discrete Mathematics and Its Applications*, Kennet H. Rosen (Ayrık Matematik ve Uygulamaları, Kennet H. Rosen (Türkçe çeviri), Palme yayıncılık)
- Discrete Mathematics: Elementary and Beyond, L. Lovász, J. Pelikán, K. Vesztergombi, 2003.
- *Introduction to Algorithms*, T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, 2009.
- Introduction To Design And Analysis Of Algorithms, A. Levitin, 2008.