K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELECTRONIC CIRCUITS

Low and High-frequency response of single-stage amplifier

Numerical 1: For the network shown in figure 1 determine:

a.
$$r_{\pi}$$
 b. Z_i c. $A_{V_{mid}} = \frac{V_{out}}{V_{in}}$ d. $A_{V_{smid}} = \frac{V_{out}}{V_s}$ e. f_{LCC1} , f_{LCC2} f. f_L

Figure 1: Circuit 1

Solution:

DC ANALYSIS:

f=0, thus $X_C=\infty$, so we replace each capacitor with short circuit.

Figure 2: DC Equivalent Circuit

Applying KVL to the Base - emitter loop;

$$V_{CC} - I_B R_B - V_{BE} - I_E R_E = 0$$

But,
$$I_E = (\beta + 1)I_B$$
 and $V_B E = 0.7V$

$$V_{CC} - I_B R_B - V_{BE} - (\beta + 1) I_B R_E = 0$$

:
$$V_{CC} - V_{BE} = I_B R_B + (\beta + 1) I_B R_E = I_B (R_B + (\beta + 1) R_E)$$

$$I_B = \frac{V_{CC} - V_{BE}}{R_B + (\beta + 1)R_E} = \frac{20 - 0.7}{470k + (101)(0.91 \times 10^3)} = \frac{19.3}{56190} = \mathbf{34.34}\mu\mathbf{A}$$

$$I_{BQ} = \mathbf{34.343} \mu \mathbf{A}$$

Now,
$$I_C = \beta I_B = 100 \times 34.34 \times 10^{-6}$$

$$I_{CQ} = 3.435 \mathrm{mA}$$

Small Signal parameters:

$$r_{\pi} = \frac{\beta V_T}{I_{CQ}} = \frac{100 \times 26 mV}{3.435 mA} = \textbf{756.914} \boldsymbol{\Omega}$$

$$g_m = \frac{I_{CQ}}{V_T} = \frac{3.435mA}{26mV} = 132.115\text{mA/V}$$

AC (mid frequency) equivalent circuit:

Figure 3: AC (mid frequency) equivalent circuit

$$Z_i = R_B \mid\mid r_{\pi} = 470k \mid\mid 756.914 = 755.696\Omega$$
1

 $A_{V_{mid}}$ (Mid frequency gain):

$$A_{Vmid} = \frac{V_{out}}{V_s} = \frac{V_{out}}{V_{in}} \times \frac{V_{in}}{V_s}$$

$$\frac{V_{out}}{V_{in}} = \frac{-g_m V_{\pi}(R_C \mid\mid R_L)}{V_{\pi}} \quad \text{(As } V_{in} = V_{\pi})$$

$$\frac{V_{out}}{V_{in}} = -g_m(R_C \mid\mid R_L) = -(132.115 \times 10^{-3})(3k \mid\mid 4.7k) = -241.925 \qquad \dots \dots 2$$

$$A_{V_{mid}}$$
 with R_{sig} :

$$A_{V_{s(mid)}} = \frac{V_{out}}{V_s} = \frac{V_{out}}{V_{in}} \times \frac{V_{in}}{V_s}$$

Here,
$$\frac{V_{out}}{V_{in}} = -241.925$$

$$V_{in} = \frac{(Z_i)V_s}{R_{sig} + Z_i} = \frac{(R_B \mid\mid r_\pi) \times V_s}{R_{sig} + (R_B \mid\mid r_\pi)} \quad \text{(As } Z_i = R_B \mid\mid r_\pi)$$

$$\frac{V_{in}}{V_s} = \frac{R_B \parallel r_{\pi}}{R_{sig} + (R_B \parallel r_{\pi})} = \frac{470k \parallel 756.914}{0.6k + (470k \parallel 756.914)} = \frac{755.696}{0.6k + 755.696} = \mathbf{0.5574}$$

$$A_{V_{s(mid)}} = \frac{V_{out}}{V_{in}} \times \frac{V_{in}}{V_{s}} = -241.925 \times 0.5574 = -\textbf{134.8}$$

$$A_{V_{s(mid)}}(indB) = 20log_{10}(134.8) = \mathbf{42.5dB}$$

Low frequency equivalent circuit:

We short circuit the AC source V_s

Figure 4: Small signal low frequency equivalent circuit

Low frequency AC equivalent circuit due to C_{C1} alone:

We short circuit other two capacitors C_E and C_{C2} and also short AC source V_s

Figure 5: Small signal low frequency equivalent circuit for $\mathcal{C}_{\mathcal{C}_1}$

$$f_{LCC1} = \frac{1}{2\pi (R_i + R_{sig})C_{C1}}$$
 (Where, $C_{C1} = 1\mu F$)
Here, $R_i = Z_i = R_B \mid\mid r_{\pi}$
 $R_i = 755.696\Omega$ (from 1)
 $\therefore f_{LCC1} = \frac{1}{2\pi (0.6k + 755.696)(1 \times 10^{-6})} =$ **117.4Hz**

Low frequency AC equivalent circuit due to \mathcal{C}_{C2} alone:

We short the other capacitors C_E and C_C 1 and also the AC source V_s

Figure 6: Small signal low frequency equivalent circuit for C_{C_2}

$$f_{LCC2} = rac{1}{2\pi(R_{eq}C_{C2})}$$
 (Here $C_{C2} = 1\mu F$)
Here, $R_{eq} = R_C + R_L = 3k + 4.7k = 7.7\mathbf{k}$
 $f_{LCC2} = rac{1}{2\pi(7.7 \times 10^3 \times 1 \times 10^{-6})} = \mathbf{20.66Hz}$

Low frequency AC equivalent circuit due to C_E alone:

We short circuit other two capacitors C_{C1} and C_{C2} and also short AC source V_s

Figure 7: Small signal low frequency equivalent circuit for C_E

$$\begin{split} f_{LCE} &= \frac{1}{2\pi (R_{eq1})C_E} \quad \text{(where, } C_E = 20\mu F) \\ \text{Here, } R_{eq1} &= R_E \ || \ \left(\frac{R_{sig} \ || \ R_B + r_\pi}{\beta}\right) = 0.91k \ || \ \left(\frac{(0.6k \ || \ 470k) + 765.914}{100}\right) \\ &= 0.91k \ || \ 13.6514 = \textbf{13.449}\Omega \\ f_{LCE} &= \frac{1}{2\pi (13.449 \times 6.8 \times 10^{-6})} = \textbf{1.74kHz} \end{split}$$

Since, $f_{LCE} = 1.75kHz$ is largest as compared to f_{LCC1} , f_{LCC2} , it is the lower cut-off frequency of the amplifier

$$f_L = \mathbf{1.74kHz}$$

SIMULATED RESULTS:

Above circuit is simulated in LTspice and the result is as follows:

Figure 8: Circuit Schematic

Figure 9: Low frequency response of C_{C1}

Figure 10: Low frequency response of C_{C2}

Figure 11: Low frequency response of \mathcal{C}_E

Figure 12: Low frequency response of the circuit

Comparison between Theoretical and Simulated values:-

Parameters	Simulated	Theoretical
I_{CQ}	$3.435 \mathrm{mA}$	$3.41 \mathrm{mA}$
Lower cur-off frequency due to C_{C1}	117.4Hz	118.31Hz
Lower cut-off frequency due to C_{C2}	20.66Hz	20.345 Hz
Lower cut-off frequency due to C_E	$1.74 \mathrm{kHz}$	1.78kHz
overall cut-off frequency	$1.74 \mathrm{kHz}$	1.86kHz
Mid band voltage gain (in dB)	42.5	42.44

Table 1: Numerical 1

Numerical 2: For the network shown in figure 13 the parameters are $k_p = 1mA/V^2$, $V_{TP} = -1.5V$ and $\lambda = 0$

- a. Determine quiescent and small signal parameters of the transistor
- b. Find lower cut-off frequency

Figure 13: Circuit 2

Solution:

The above circuit is a common gate amplifier employing pmosfet.

DC equivalent circuit:

Figure 14: DC Equivalent Circuit

Applying KVL to the Source - Gate loop;

$$V_{SS} - I_S R_1 - V_{SG} = 0$$

But, $I_D = I_S$

$$V_{SS} - I_D R_1 - V_{SG} = 0$$

$$\therefore I_D = \frac{V_{SS} - V_{SG}}{R_1} = \frac{5 - V_{SG}}{1.2 \times 10^3} \qquad \dots \dots 1$$

Also we know that for pmosfet in saturation region,

$$I_D = k_p (V_{SG} + V_{TP})^2$$

here, $k_p = 1mA/V^2$ and $V_{TP} = -1.5V$

$$I_D = 1 \times 10^{-3} (V_{GS} - 1.5)^2$$
2

From 1 and 2, we get;

$$\frac{5 - V_{SG}}{1.2 \times 10^3} = 1 \times 10^{-3} (V_{GS} - 1.5)^2$$

$$5 - V_{SG} = 1.2(V_{SG}^2 - 3V_{SG} + 2.25)$$

$$1.2V_{SG}^2 - 3.6V_{SG} + 2.7 + V_{SG} - 5 = 0$$

$$1.2V_{SG}^2 - 2.6V_{SG} - 2.3 = 0$$

On solving we get, $V_{SG} = 2.841V$ or -0.6748V

$$V_{GS} = -V_{SG}$$

$$V_{GS} = 0.67V \text{ or } -2.841V$$

But as $|V_{GS}| > V_{TP}$

$$\therefore V_{GSQ} = -2.841V$$

So,
$$V_{SGQ} = 2.841V$$

From 1;

$$I_D = \frac{5 - 2.841}{1.2 \times 10^3} = 1.799$$
mA

Small Signal parameters:

$$g_m = 2k_p(V_{SG} + V_{TP})$$

here,
$$V_{TP} = -1.5$$

$$g_m = 2 \times 1 \times 10^{-3} (2.841 - 1.5) = 2.682 \text{mA/V}^2$$

Figure 15: AC (mid frequency) equivalent circuit

 A_V (mid frequency gain):

$$A_V = \frac{V_{out}}{V_{in}} = g_m(R_D \parallel R_L) = 2.682 \times 10^{-3} (1.2k \parallel 50k) = 3.143$$

 A_{VS} (mid band gain with R_S):

$$A_{VS} = \frac{V_{out}}{V_{in}} \times \frac{V_{in}}{V_S}$$

$$\frac{V_{out}}{V_{in}} = A_V = 3.143$$

$$rac{V_{in}}{V_S} = rac{rac{1}{g_m} \parallel R_1}{\left(rac{1}{g_m} \parallel R_1
ight) + R_S}$$

$$\frac{1}{g_m} \parallel R_1 = \frac{1}{2.682 \times 10^{-3}} \parallel 1.2k = 372.856 \parallel 1.2k = 284.46$$

$$\frac{V_{in}}{V_S} = \frac{284.46}{284.46 + 200} = \mathbf{0.5871}$$

$$A_{VS(mid)} = 3.143 \times 0.5871 = \mathbf{1.845}$$

$$A_{VS(mid)}(indB) = 20log(1.845) = \mathbf{5.322dB}$$

Figure 16: AC low frequency equivalent circuit

Low frequency AC equivalent circuit due to C_{C1} alone:

We short circuit C_{C2} and also short AC source V_S

Figure 17: Small signal low frequency equivalent circuit for $\mathcal{C}_{\mathcal{C}_1}$

$$\begin{split} f_{LCC1} &= \frac{1}{2\pi R_{eq}C_{C1}} \\ \text{Here, } R_{eq} &= R_S + R_1 \ || \ \frac{1}{g_m} = 200 + (1.2k \ || \ \frac{1}{2.68 \times 10^{-3}}) = \textbf{484.63} \\ f_{LCC1} &= \frac{1}{2\pi 484.63 \times 4.7 \times 10^{-6}} = \textbf{69.87Hz} \end{split}$$

Low frequency AC equivalent circuit due to C_{C2} alone:

We short C_{C1} and also the AC source V_s

Figure 18: Small signal low frequency equivalent circuit for C_{C_2}

$$f_{LCC2} = \frac{1}{2\pi R_{eq} C_{C2}}$$

Here, $R_{eq2} = R_L + R_D = 50k + 1.2k = 51.2k$

$$f_{LCC2} = rac{1}{2\pi(51.2 imes 10^3 imes 1 imes 10^{-6})} = \mathbf{3.108Hz}$$

Since, f_{LCC1} = is greater than f_{LCC2} we choose the lower cut- off frequency of the circuit as 69.87Hz

$$f_L = \mathbf{69.87Hz}$$

SIMULATED RESULTS:

Above circuit is simulated in LTspice and the result is as follows:

.model PMOS1 pmos(vto=-1.5 Kp=2e-3 lambda=0)

Figure 19: Circuit Schematic

Figure 20: Low frequency response of C_{C1}

Figure 21: Low frequency response of C_{C2}

Figure 22: Low frequency response of the circuit

Comparison between Theoretical and Simulated values:-

Parameters	Simulated	Theoretical
I_{CQ}	1.799mA	1.798mA
V_{SGQ}	2.841V	2.84125V
Lower cur-off frequency due to C_{C1}	69.87Hz	70.17Hz
Lower cut-off frequency due to C_{C2}	3.108Hz	3.108Hz
Lower cut-off frequency f_L	69.87Hz	70.17Hz
Mid band voltage gain (in dB)	5.322dB	5.3dB

Table 2: Numerical 2

Numerical 3: For the network shown in figure 23 determine:

a.
$$r_{\pi}$$
 b. Z_i c. $A_{V(mid)}=\frac{V_{out}}{V_{\pi}}$ d. $A_{VS(mid)}=\frac{V_{out}}{V_S}$ e. f_{LCE} , f_{LCC1} , f_{LCC2} f. Lower cut-off frequency g. Higher cut-off frequency where, $C_{wi}=7pF$, $C_{bc}=6pF$, $C_{wo}=11pF$, $C_{be}=2pF$, $C_{ce}=10pF$

Figure 23: Circuit 3

Solution:

DC ANALYSIS:

f=0, thus $X_C=\infty$, So we replace each capacitor with short circuit,

Figure 24: DC Equivalent Circuit

Applying KVL to the Base - emitter loop;

$$V_{CC} - I_B R_B - V_{BE} - I_E R_E = 0$$

But,
$$I_E = (\beta + 1)I_B$$
 and $V_{BE} = 0.7$

$$V_{CC} - I_B R_B - V_{BE} - (\beta + 1) I_B R_E = 0$$

$$V_{CC} - V_{BE} = I_B R_B + (\beta + 1) I_B R_E = I_B (R_B + (\beta + 1) R_E)$$

$$I_B = \frac{V_{CC} - V_{BE}}{R_B + (\beta + 1)R_E} = \frac{20 - 0.7}{470k + (101)(0.91 \times 10^3)} = \frac{19.3}{561910} = \mathbf{34.34}\mu\mathbf{A}$$

Now,
$$I_C = \beta I_B = 100 \times 34.34 \times 10^{-6} = \mathbf{3.434mA}$$

Small Signal Parameters:

$$r_{\pi} = rac{eta V_T}{I_{CQ}} = rac{100 imes 26 mV}{3.435 mA} = \mathbf{756.914} \mathbf{\Omega}$$

$$g_m = \frac{I_{CQ}}{V_T} = \frac{3.435mA}{26mV} = 132.115\text{mA/V}$$

AC (mid frequency) equivalent circuit:

Figure 25: AC (mid frequency) equivalent circuit

$$Z_i = R_B \mid\mid r_{\pi} = 470k \mid\mid 756.914 = 755.696\Omega$$
1

....2

 $A_{V_{mid}}$ (Mid frequency gain):

$$A_{Vmid} = \frac{V_{out}}{V_S} = \frac{V_{out}}{V_{in}} \times \frac{V_{in}}{V_S}$$

$$\frac{V_{out}}{V_{in}} = \frac{-g_m V_{\pi}(R_C \parallel R_L)}{V_{\pi}} \quad (\text{As } V_{in} = V_{\pi})$$

$$\frac{V_{out}}{V_{in}} = -g_m (R_C \parallel R_L) = -(132.115 \times 10^{-3})(3k \parallel 4.7k) = -241.925$$

 $A_{V_{mid}}$ with R_{sig} :

$$A_{V_{s(mid)}} = \frac{V_{out}}{V_S} = \frac{V_{out}}{V_{in}} \times \frac{V_{in}}{V_S}$$

Here,
$$\frac{V_{out}}{V_{in}} = -241.925$$

$$V_{in} = \frac{(Z_i)V_S}{R_{sig} + Z_i} = \frac{(R_B \parallel r_\pi) \times V_S}{R_{sig} + (R_B \parallel r_\pi)}$$
 (As $Z_i = R_B \parallel r_\pi$)

$$\frac{V_{in}}{V_S} = \frac{R_B \parallel r_{\pi}}{R_{sig} + (R_B \parallel r_{\pi})} = \frac{470k \parallel 756.914}{0.6k + (470k \parallel 756.914)} = \frac{755.696}{0.6k + 755.696} = \mathbf{0.5574}$$

$$A_{V_{s(mid)}} = rac{V_{out}}{V_{in}} imes rac{V_{in}}{V_{S}} = -241.925 imes 0.5574 = -{f 134.8}$$

$$A_{V_{s(mid)}}(indB) = 20log(134.8) = 42.5dB$$

Low frequency equivalent circuit:

We short circuit the AC source V_S

Figure 26: AC low frequency equivalent circuit

Low frequency AC equivalent circuit due to C_{C1} alone:

We short circuit C_{C2} and also short AC source V_S

Figure 27: Small signal low frequency equivalent circuit for C_{C_1}

$$f_{LCC1} = \frac{1}{2\pi(R_i + R_{sig})C_{C1}} \quad \text{(Where, } C_{C1} = 1\mu F\text{)}$$
Here, $R_i = Z_i = R_B \mid\mid r_{\pi}$

$$R_i = 755.696\Omega \text{ (from 1)}$$

$$\therefore f_{LCC1} = \frac{1}{2\pi(0.6k + 755.696)(1 \times 10^{-6})} = 117.4\text{Hz}$$

Low frequency AC equivalent circuit due to C_{C2} alone:

We short the other capacitors C_E and C_{C1} and also the AC source V_S

Figure 28: Small signal low frequency equivalent circuit for $\mathcal{C}_{\mathcal{C}_2}$

$$f_{LCC2} = \frac{1}{2\pi (R_{eq}C_{C2})}$$
 (Here $C_{C2} = 1\mu F$)
Here, $R_{eq} = R_C + R_L = 3k + 4.7k = \mathbf{7.7k}$
 $f_{LCC2} = \frac{1}{2\pi (7.7 \times 10^3 \times 1 \times 10^{-6})} = \mathbf{20.66Hz}$

Low frequency AC equivalent circuit due to C_E alone:

We short circuit other two capacitors C_{C1} and C_{C2} and also short AC source V_S

Figure 29: Small signal low frequency equivalent circuit for C_E

$$\begin{split} f_{LCE} &= \frac{1}{2\pi (R_{eq1})C_E} \quad \text{(where, } C_E = 20\mu F) \\ \text{Here, } R_{eq1} &= R_E \ || \ \left(\frac{R_{sig} \ || \ R_B + r_\pi}{\beta}\right) = 0.91k \ || \ \left(\frac{(0.6k \ || \ 470k) + 765.914}{100}\right) \\ &= 0.91k \ || \ 13.6514 = \textbf{13.449} \boldsymbol{\Omega} \\ f_{LCE} &= \frac{1}{2\pi (13.449 \times 6.8 \times 10^{-6})} = \textbf{1.74kHz} \end{split}$$

Since, $f_{LCE} = 1.75kHz$ is largest as compared to f_{LCC1} , f_{LCC2} , it is the lower cut-off frequency of the amplifier

$$f_L=\mathbf{1.74kHz}$$

High frequency equivalent circuit:

Here we short circuit capacitors C_{C1} , C_{C2} , C_{CE} Here, $C_i = C_{wi} + C_{mi} + C_{be}$

Figure 30: High frequency equivalent circuit

$$C_{mi} = C_{bc}(1 - A_{V(mid)})$$

Here $A_{V(Mid)} = -134.8$

$$\therefore C_{mi} = 6 \times 10^{-12} (1 - (-134.8)) = 814.8 \text{pF}$$

$$C_i = 814.8pF + 7pF + 20pF = 841.8pF$$

Also,
$$C_o = C_{wo} + C_{mo} + C_{cb} + C_{ce}$$

$$C_{mo} = C_{bc} \left(1 - \frac{1}{A_{V(mid)}} \right) = 4 \times 10^{-12} \left(1 - \frac{1}{-134.8} \right) = 4.0296 \text{pF}$$

$$C_o = 4.0296pF + 11pF + 10pF = 25.0296pF$$

$$f_{Hi} = \frac{1}{2\pi R_{eq}C_i}$$

Here,
$$R_{eq} = R_{sig} \mid\mid R_B \mid\mid r_{\pi} = 0.6k \mid\mid 470k \mid\mid 756.914 = 334.45\Omega$$

$$f_{Hi} = \frac{1}{2\pi(334.45 \times 841.8 \times 10^{-12})} =$$
565.3kHz

Also,
$$f_{Ho} = \frac{1}{2\pi (R_{eq2})C_o}$$

Here,
$$R_{eq2} = R_C \mid\mid R_L = 3k \mid\mid 4.7K = 1831.16\Omega$$

$$f_{Ho} = \frac{1}{2\pi(181.16)(25.0296)} = 3.472$$
MHz

Since f_{Hi} is lowest among f_{Ho} and f_{Hi} , we select higher cut-off frequency as $f_H = f_{Hi}$ $f_H = 565.3kHZ$

SIMULATED RESULTS:

Above circuit is simulated in LTspice and the result is as follows:

.model NPN1 npn(bf=100 cje=20pF cjc=6pF)
.ac dec 10 10 10MEG

Figure 31: Circuit Schematic

Figure 32: Low frequency response of C_{C1}

Figure 33: Low frequency response of C_{C2}

Figure 34: Low frequency response of C_E

Figure 35: Low frequency response of the circuit

Figure 36: High frequency response of the circuit

Comparison between Theoretical and Simulated values:-

Parameters	Simulated	Theoretical
I_{CQ}	$3.435 \mathrm{mA}$	3.41mA
Lower cur-off frequency due to C_{C1}	117.4Hz	118.31Hz
Lower cut-off frequency due to C_{C2}	20.66Hz	20.345Hz
Lower cut-off frequency due to C_{CE}	1.74kHz	1.78kHz
Overall cut-off frequency f_L	1.74kHz	1.86Hz
Mid band voltage gain (in dB)	42.5dB	42.44dB
Overall cut-off frequency f_H	565.3kHz	581.983kHz

Table 3: Numerical 1
