Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 30 min.
Facultad Informática Universidad Murcia	Producto Escalar y Espacio Ortogonal	Clase: 60 min.

1. Resumen

Vídeo: https://youtu.be/U12NROXuCo0

Nota 1. A lo largo de este tema y en todos aquellos que tratemos el producto escalar o los conceptos asociados, trabajaremos exclusivamente sobre el cuerpo de los números reales.

Definición 2. Sean u y v dos vectores de \mathbb{R}^n . Llamaremos **producto escalar** de u y v y lo denotaremos $u \cdot v$ ó $\langle u, v \rangle$ al número real $u^{\top}v$.

Es decir, si
$$u = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$$
 y $v = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$, entonces $u \cdot v = u^{\top}v = \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = u_1v_1 + u_2v_2 + \cdots + u_nv_n$.

Proposición 3. El producto escalar cumple las siguientes propiedades

- 1. $(au + bv) \cdot w = a(u \cdot w) + b(v \cdot w)$ para todo $u, v, w \in \mathbb{R}^n$, $a, b \in \mathbb{R}$.
- 2. $w \cdot (au + bv) = a(w \cdot u) + b(w \cdot v)$ para todo $u, v, w \in \mathbb{R}^n$, $a, b \in \mathbb{R}$.
- 3. $u \cdot v = v \cdot u$ para todo $u, v \in \mathbb{R}^n$.
- 4. $u \cdot u \ge 0$ para todo $u \in \mathbb{R}^n$.
- 5. $u \cdot u = 0$ si y solo si u = 0.

Demostración. Las propiedades (1) y (2) son consecuencia de las propiedades del producto de matrices. Para ver la propiedad (3), únicamente tenemos que poner la definición y notar que el producto de números reales es conmutativo:

$$u \cdot v = u_1 v_1 + u_2 v_2 + \dots + u_n v_n = v_1 u_1 + v_2 u_2 + \dots + v_n u_n = v \cdot u.$$

La propiedad (4) es consecuencia de que el cuadrado de un número real siempre es positivo o 0, por lo tanto, $u_1^2 + \cdots + u_n^2 \ge 0$. Para que ese valor sea 0, la única posibilidad es que u_i^2 sea 0 para todo i, porque si para alguno de los índices fuera positivo, la suma nunca podría ser 0 ya que los otros términos no podrían nunca restar valor a la suma total.

Definición 4. Vamos a definir el concepto de vectores y espacios ortogonales del siguiente modo:

- 1. Dados dos vectores u y v en \mathbb{R}^n , diremos que son vectores ortogonales y lo denotaremos $u \perp v$, si $u \cdot v = 0$.
- 2. Un vector $u \in \mathbb{R}^n$ diremos que es **ortogonal a un espacio** $V \leq \mathbb{R}^n$, y lo denotaremos $u \perp V$, si $u \cdot v = 0$ para todo $v \in V$.
- 3. Dos espacios $U, V \leq \mathbb{R}^n$ diremos que son espacios ortogonales y lo denotaremos $U \perp V$, si $u \cdot v = 0$ para todo $u \in U$ y $v \in V$.

Proposición 5. Sean U = C(B) y V = C(B') dos espacios vectoriales contenidos en \mathbb{R}^n dados en términos de conjuntos generadores B y B'. Entonces U y V son espacios ortogonales si y solo si $B^{\top}B' = 0$.

Demostración. Si $U \perp V$, entonces como las columnas de B son vectores de U y las de B' son vectores de V, tenemos que $u^{\top}v = u \cdot v = 0$ para toda columna u de B y toda columna v de B', eso prueba que $B^{\top}B' = 0$. Recíprocamente, supongamos que $B^{\top}B' = 0$, y tomemos vectores $u \in U = C(B)$ y $v \in V = C(B')$. El vector u lo podremos escribir como combinación lineal de las columnas de B, es decir, u = Bx y el vector v como B'y para ciertos vectores de parámetros x e y. Entonces $u \cdot v = (Bx)^{\top}B'y = x^{\top}B^{\top}B'y = 0$ porque $B^{\top}B' = 0$.

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
-	Álgebra y Matemática Discreta	Previo: 30 min.
Facultad Informática Universidad Murcia	Producto Escalar y Espacio Ortogonal	Clase: 60 min.

Proposición 6. Sean U y V dos espacios ortogonales, entonces $U \cap V = 0$.

Demostración. Sea $u \in U \cap V$. Como $u \in U$ y $u \in V$, el vector u tiene que ser ortogonal a sí mismo, es decir, $u \cdot u = 0$, pero entonces u = 0 por la Proposición 3.

Definición 7. Sea U un subespacio de \mathbb{R}^n . Llamaremos complemento ortogonal de U al conjunto

$$U^{\perp} = \{ v \in \mathbb{R}^n \mid u \cdot v = 0 \text{ para todo } u \in U \}.$$

Proposición 8. El complemento ortogonal tiene las siguientes propiedades:

- 1. $0^{\perp} = \mathbb{R}^n$.
- 2. $\mathbb{R}^{n\perp} = 0$.
- 3. $U \cap U^{\perp} = 0$.
- 4. Si U = C(B), entonces $U^{\perp} = N(B^{\top})$.
- 5. $\dim(U) + \dim(U^{\perp}) = n$.
- 6. $U \oplus U^{\perp} = \mathbb{R}^n$.
- 7. Si V = N(H), entonces $V^{\perp} = C(H^{\top})$.
- 8. $(U^{\perp})^{\perp} = U$.
- 9. $U \leq V$ si y solo si $V^{\perp} \leq U^{\perp}$.
- 10. $(U \cap V)^{\perp} = U^{\perp} + V^{\perp}$.
- 11. $(U+V)^{\perp} = U^{\perp} \cap V^{\perp}$.

Demostración. 1. Todos los vectores multiplicados por 0 dan 0 por lo que $0^{\perp} = \mathbb{R}^n$.

- 2. Sea $u \in (\mathbb{R}^n)^{\perp}$, entonces en particular $u \cdot u = 0$ y por lo tanto u = 0.
- 3. Esto es por la Proposición 6 ya que U y U^{\perp} son espacios ortogonales.
- 4. Para que un vector v sea ortogonal a todos los vectores de U, basta con que lo sea a los vectores de un conjunto generador, o lo que es lo mismo $B^{\top}v = 0$, pero esa es precisamente la definición de que v esté en $N(B^{\top})$.
- 5. Pongamos U en forma paramétrica, U = C(B), entonces $\dim(U) = \operatorname{rango}(B)$, pero $\dim(U^{\perp}) = \dim(N(B^{\top})) = n \operatorname{rango}(B^{\top}) = n \operatorname{rango}(B)$, por lo tanto, $\dim(U + U^{\perp}) = \dim(U) + \dim(U^{\perp}) \dim(U \cap U^{\perp}) = \operatorname{rango}(B) + (n \operatorname{rango}(B)) 0 = n$.
- 6. $U + U^{\perp}$ es un subespacio de dimensión n contenido en \mathbb{R}^n , por lo que tiene que ser todo \mathbb{R}^n .
- 7. Supongamos que $u \in C(H^{\top})$, entonces $u = H^{\top}x$ para algún vector de parámetros x y tomando traspuestas, $u^{\top} = x^{\top}H$. En estas condiciones, para cualquier $v \in N(H)$ se tendrá que $u \cdot v = u^{\top}v = x^{\top}Hv = 0$ porque Hv = 0. Esto prueba que $u \in V^{\perp}$ y por lo tanto $C(H^{\top}) \leq V^{\perp}$. Para demostrar que ambos espacios son iguales, vamos a ver que su dimensión es la misma: Por un lado, la dimensión de $C(H^{\top})$ sabemos que es igual al rango de H, por otro lado, la dimensión de V = N(H) es igual a n menos el rango de H por lo que $\dim(V^{\perp})$ es de nuevo el rango de H.
- 8. Tomando $U = C(B), (U^{\perp})^{\perp} = N(B^{\top})^{\perp} = C((B^{\top})^{\top}) = C(B) = U.$

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 30 min.
Facultad Informática Universidad Murcia	Producto Escalar y Espacio Ortogonal	Clase: 60 min.

9. Las siguientes condiciones son equivalentes:

$$U \leq V \Leftrightarrow C(B) \leq N(H)$$

$$\Leftrightarrow HB = 0$$

$$\Leftrightarrow B^{\top}H^{\top} = 0$$

$$\Leftrightarrow C(H^{\top}) \leq N(B^{\top})$$

$$\Leftrightarrow V^{\perp} \leq U^{\perp}$$

- 10. Como $U \cap V \leq U$ tenemos que $U^{\perp} \leq (U \cap V)^{\perp}$ y por el mismo motivo, $V^{\perp} \leq (U \cap V)^{\perp}$. Esto prueba que $U^{\perp} + V^{\perp} \leq (U \cap V)^{\perp}$. Para completar la demostración, vamos a ver que $(U \cap V)^{\perp}$ es el espacio más pequeño con esta propiedad. Supongamos que W es un subespacio de \mathbb{R}^n tal que $U^{\perp} + V^{\perp} \leq W$, entonces $U^{\perp} \leq W$ y por lo tanto $W^{\perp} \leq U$. Lo mismo pasa con V, es decir, $W^{\perp} \leq V$, pero entonces $W^{\perp} \leq U \cap V$ y por lo tanto $(U \cap V)^{\perp} \leq W$.
- 11. La demostración es dual de la del apartado anterior.

Definición 9. Sea $U \leq \mathbb{R}^n$ y v un vector de \mathbb{R}^n . Como $\mathbb{R}^n = U \oplus U^{\perp}$, el vector v se descompone de forma única como suma de un vector u de U y un u' de U^{\perp} . Llamaremos proyección de v en el espacio U, y la denotaremos, $\operatorname{proy}_U(v)$, al vector u y $\operatorname{proy}_{U^{\perp}}(v) = u'$.

Proposición 10. Sea $U = C(B) \leq \mathbb{R}^n$ con B base $y \in \mathbb{R}^n$, entonces

- 1. La matriz $A = (B^{\top}B)^{-1}B^{\top}$ es una matriz inversa por la izquierda de B.
- 2. $proy_U(v) = BAv$.

Demostración. 1. $AB = (B^{\top}B)^{-1}B^{\top}B = I$.

2. El vector BAv está claramente en U porque es de la forma Bx para el vector de parámetros x = Av. Tenemos que probar que v - BAv está en U^{\perp} , es decir, que $B^{\top}(v - BAv) = 0$, pero eso es cierto porque $B^{\top}(v - B(B^{\top}B)^{-1}B^{\top}v) = B^{\top}v - \underbrace{B^{\top}B(B^{\top}B)^{-1}}_{=I}B^{\top}v = B^{\top}v - B^{\top}v = 0$.

Definición 11. Dada una base B de un espacio vectorial V, diremos que es una base ortogonal si dados dos vectores distintos de la base, siempre son ortogonales. Si B es la matriz de la base, eso es equivalente a decir que $B^{T}B$ es una matriz diagonal.

Teorema 12 (Método de Gram-Schmidt). Todo espacio $V \leq \mathbb{R}^n$ tiene una base ortogonal.

Demostración. Partimos de una base cualquiera del espacio V, por ejemplo, v_1, v_2, \cdots, v_k . El método de Gram-Schmidt nos permite obtener a partir de ésta una base ortogonal w_1, w_2, \cdots, w_k , haciendo las correcciones necesarias en los vectores de forma que obtengamos una nueva base en la cual todos los vectores sean ortogonales entre sí.

- 1. El primer vector w_1 será v_1 .
- 2. El segundo vector será $w_2 = v_2 \alpha w_1$ donde buscaremos el valor de α para conseguir la ortogonalidad. Entonces $w_1 \cdot w_2 = 0$ implica que $w_1 \cdot v_2 \alpha w_1 \cdot w_1 = 0$ y por lo tanto $\alpha = \frac{w_1 \cdot v_2}{w_1 \cdot w_1}$. Sustituyendo obtenemos que

$$w_2 = v_2 - \frac{w_1 \cdot v_2}{w_1 \cdot w_1} w_1.$$

П

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
-	Álgebra y Matemática Discreta	Previo: 30 min.
Facultad Informática Universidad Murcia	Producto Escalar y Espacio Ortogonal	Clase: 60 min.

3. El tercer vector será $w_3=v_3-\lambda w_1-\mu w_2$. Imponiendo las condiciones $w_3\cdot w_1=0$ y $w_3\cdot w_2=0$ obtenemos los valores de λ y μ que nos dan

$$w_3 = v_3 - \frac{w_1 \cdot v_3}{w_1 \cdot w_1} w_1 - \frac{w_2 \cdot v_3}{w_2 \cdot w_2} w_2.$$

4. Procediendo de esa forma, podemos obtener todos los vectores de la base de forma recursiva.

2. Erratas

(No detectadas)

3. Ejercicios