Richard (Han) Hu

□ (647) 995-9055 | ☑ rhklite2012@hotmail.com | 🏔 rhklite.github.io | 🖸 rhklite

Experiences

Autonomous System and Biomechatronics Lab

Sep. 2018 - Aug. 2021

Researcher, Master Thesis

- Deep Learning Led the development and published a novel sim-to-real transfer pipeline for rough terrain navigation in Pytorch
- Sim-to-Real Researched, designed, and implemented a high fidelity Gazebo simulator and domain randomization
- Development Developed a decentralized software and hardware robot architecture using ROS, C++, and Python
- Localization Implemented LiDAR and visual SLAM on a mobile robot for real time pose estimation
- Control Designed and optimized a cascade PID controller for global position and wheel control in rough terrain
- Analysis Led real-world navigation, comparison, and ablation experiments to demonstrate that the pipeline achieved 87% real world success rate given a 90% simulation success rate; up to 72% increase against existing methods
- Hardware Enhanced a robot with auxilliary computing units and sensors with components designed using SolidWorks

Huawei Noah's Ark Lab

May. 2020 - Jan 2021

Support Researcher, Autonomous Driving Division

- Path Planning Developed, published, and patented a Delaunay Triangulation based spatial constraint generation algorithm for mapless autonomous vehicle navigation in a dynamic environment
- Development Implemented a Python based path planning simulator and the algorithm's modules for fast development iterations
- · Algorithms Implemented Hybrid A* and Funnel algorithm for path planning in triangulation mesh
- Simulation Engaged in CARLA simulator development by automating map generation process from real-world datasets

MIE443 Mechatronics Systems: Design & Integration

Jan. 2018 - Apr. 2020

Head Teaching Assistent

- Lecture Lectured 4th year engineering students on ROS based robot navigation and SLAM methods
- Mentorship Guided students on ROS based autonomous robot algorithm development, vision sensor, and OpenCV

Water and Energy Research Laboratory

Jan. 2018 - Sep. 2018

Researcher, Pico-Scale Hydro Turbine Design

- Mechanical Designed and published a variable guide vane for pico-scale hydro turbine using SolidWorks
- · Analysis Evaluated the guide vane failure mode with fluid pressure test, mechanical stress test, and finite element analysis
- Development Prototyped the turbine and an experiment pipeline using Arduino, SLA 3D printing and machining techniques

Conavi Medical May. 2016 - Aug. 2017

Mechanical Engineer Intern, Novasight Hybrid System

- Analysis Investigated potential design hazards and risks of catheter rotary assembly
- Manufacturing Streamlined an efficient assembly and calibration work instruction for intravascular catheter
- Organization Established an inventory system with full traceability for FDA 510k submission validation
- Management Directed technical design reviews with senior leadership, accelerated the exit of the project phase
- Mechanical Designed imaging and rotary assembly for a intravascular catheter using MATLAB and SolidWorks

Multiphase Flow and Spray Systems Lab

Jun. 2015 - Sep. 2015

Researcher

- Development Developed Arduino based camera to fluid pipeline synchronization system to speed up data collection by 85%
- Analysis Classified 13 novel air-fluid impingement shatter pattern using statistical analysis

Projects

aUToronto - SAE AutoDrive Challenge (Winner 2018-19)

Sep. 2018 - Oct. 2019

Planning and Control Team Member, University of Toronto Team

- Collaboration Aim to develop a level 4 autonomous vehicle using ROS and C++ in a team of 30+ students
- Localization Implemented real-time kinematics GPS using NovAtel's SPAN for centermeter level localization
- Mapping Automated the semantic map layer's lane to centerline association process using Python, QGIS, and Open Street Map

Developer, Course Project

- Collaboration Data-driven accident prediction using Scikit-learn in Python; within a team of 5 students
- Data Engineering Data collection, visualization, feature engineering, and negative sampling
- Machine Learning Trained and benchmarked 3 supervised learning models: Random Forest, SVM, and MLP Network

Autonomous Turtlebot Jan. 2018 - Sep. 2018

Developer, Course Project

- Path Planning Developed robot coverage and exploration algorithm using ROS and C++
- Computer Vision Object detection and identification using OpenCV library
- Control Implemented person-following and emotional model for human-robot interaction

Autonomous Maze Navigation Rover Design

Sep. 2017 - Dec. 2017

Developer, Course Project

- Development Designed the software and hardware architecture for autonomous payload pick-up and delivery robot in a maze
- Path Planning Designed and implemented localization, collision avoidance, and path planning algorithm in MATLAB and Arduino

Open Architecture Quadcopter Design

Sep. 2017 - Apr. 2018

Mechanical Designer

- Mechanical Designed mechanical features of quadcopter using SolidWorks and prototyped using 3D printer
- Analysis Evaluated failure mode of designed components using ANSYS Explicit Dynamics Analysis

Publications

A Sim-to-Real Pipeline for Deep Reinforcement Learning Autonomous Navigation in Cluttered Rough Terrain (RAL, IROS2021)

Hu. H, Kaicheng Zhang, Aaron Hao Tan, Michael Ruan, Christopher Agia, and Goldie Nejat

- Proposed a pipeline to transfer challenging rough terrain navigation policy from simulation to the real-world using high fidelity simulation, abstract observation space, and domain randomization
- The pipeline acheived a 87% real world navigation success rate given a 90% simulation success rate
- The pipline has up to 72% increase in navigation success along with a faster travel time and shorter distance against existing methods

Spatial Constraint Generation for Motion Planning in Dynamic Environments (IROS2021, Huawei Patent)

Hu. H, Peyman Yadmellat

- · Proposed to generate spatial constraint using triangulation mesh for long-term mapless path planning in a dynamic environment
- · Overcame the static triangulation mesh assumption and the object masking issue that existing methods have
- Achieved up to 18% increase in navigation success rate and up to 28% increase in valid plans compared to existing methods

Optimization and System Identification of a Variable Pico-Scale Hydro Turbine for Pressure Regulation (ASME2021)

Yu. SM, Ko. Y, Hu. H, Seo. J, and Bilton. AM

· Engaged in the design and prototyping of the turbine and its experiment rig using SolidWorks, machining, and 3D printing

Education

University of Toronto

Toronto, Canada

Master of Applied Science, Mechanical Engineering

Sep. 2018 - Aug. 2021

• Specialization Deep Reinforcement Learning, Machine Learning, Mobile Robotics; GPA (4.00/4.00)

University of Toronto

Toronto, Canada

Bachelor of Applied Science, Mechanical Engineering

Sep. 2013 - Apr. 2018

• Specialization Robotics and Mechatronics Minor; Dean's Honor List for all terms; GPA (3.81/4.00)

Honors & Awards

2019-20	MIE Teaching Assistant Award, University of Toronto	Toronto, Ontario
2013-18	Dean's Honor List, University of Toronto	Toronto, Ontario
2018	Best Undergraduate Poster Presentation, CFD Society of Canada Conference	Winnipeg, Manitoba
2015	University of Toronto Excellence Award, University of Toronto	Toronto, Ontario
2015	Shell Canada Limited Engineering Scholarship, University of Toronto	Toronto, Ontario
2015	Best Innovation Award and Best Prototype Award , U of T Engineering Competition Junior Design	Toronto, Ontario