

Programme de la spécialité Systèmes Numériques - Instrumentation

Programme de la spécialité s tion	Systèmes	Numérique	s - Instrun	nenta-
Copyright © 2021 Polytech Annecy-Chambéry				

Table des matières

Glossaire	
Semestre 5	
1. UE501 : Passerelle vers le milieu professionnel	2
1.1. LANG500a - Soutien Anglais	2
1.2. LANG501a - Anglais	3
1.3. SHES501a - Sport	4
1.4. SHES505 - Simulation de gestion d'entreprise	5
2. UE502 : Sciences et outils de l'Ingénieur	
2.1. DDRS501 - Développement Durable	
2.2. EASI501a - Electricité	
2.3. INFO501a - Numération et Algorithmique	
2.4. INFO502a - Bases de données	
2.5. MATH500a - Soutien Mathématiques	
2.6. MATH501a - Mathématiques	
3. UE503 : Sciences de l'Ingénieur	
3.1. EASI541a - Automatisation	
3.2. PHYS541a - Propriétés des matériaux	
3.3. PHYS542a - Electromagnétisme appliqué à la transmission de l'information	
3.4. PROJ541a - Découverte expérimentale de la spécialité SNI	
Semestre 6	
1. UE601 : Passerelle vers le milieu professionnel	
1.1. LANG600a - Soutien : Anglais	
1.2. LANG601a - Anglais	
1.3. PROJ601a - Stage Découverte du milieu professionnel	
1.4. SHES601a - Gestion financière	
1.5. SHES602a - Initiation au droit	
2. UE602 : Sciences appliquées et apprentissage par projet	
2.1. MATH641a - Mathématiques	
2.2. PACI641 - Matériaux actifs et intelligents pour l'instrumentation	
2.3. PACI642 - Optique appliquée et transmission optique	
2.4. PROJ641a - Apprentissage par Projet	
3. UE603 : Traitement de l'information et programmation	
3.1. EASI641a - Signaux et systèmes	
3.2. EASI642a - Signal et image : opérateurs de base	
3.3. INFO641a - Conception et programmation orientée objet	
3.4. INFO642a - Bases de données et technologies web	
3.5. MATH642a - Mathématiques spécialisées	
Semestre 7	
1. UE701 : Passerelle vers le milieu professionnel	
1.1. LANG700a - Soutien : Anglais	
1.2. LANG701a - Anglais (Niveau TOEIC non atteint)	
1.3. LANG702a - Langues vivantes (Niveau TOEIC atteint)	
1.4. SHES703a - Ressources et dynamique professionnelles	
1.5. SHES704a - Créativité et Management de l'innovation	
2. UE702 : Electronique, automatique et apprentissage par projet	
2.1. EASI744a - Automatique - Stabilité et commande de systèmes	
2.2. PACI741 - Electronique d'instrumentation : notions essentielles pour l'ingénieur	. 40
2.3. PACI742 - Systèmes d'acquisition de données - Programmation graphique	
2.4. PROJ741a - Apprentissage par Projet	. 42
3. UE703 : Signaux et systèmes numériques	. 43
3.1. EASI741a - Signaux aléatoires	. 43
3.2. INFO741a - Systèmes embarqués	. 44
3.3. INFO742a - Méthodes de développement logiciel et qualité	. 45
3.4. INFO743a - Réseaux et systèmes répartis	. 46
3.5. MATH741a - Probabilités - Statistiques	

Semestre 8	. 49
1. UE801 : Passerelle vers le milieu professionnel	50
1.1. LANG800 - Soutien : Anglais	. 50
1.2. LANG801a - Anglais (Niveau TOEIC non atteint)	. 50
1.3. LANG802a - Langues vivantes (Niveau TOEIC atteint)	. 51
1.4. SHES802a - Système de Management Intégré QSE (Qualité Sécurité Environnement)	. 52
1.5. SHES803a - Théorie des organisations	53
2. UE802 : Stage	54
2.1. PROJ801 - Stage Assistant ingénieur	54
3. UE803 : Mesures, instrumentation et pilotage de systèmes	
3.1. EASI843a - Automatisation décentralisée	. 55
3.2. PACI841 - Physique expérimentale, mesures, capteurs et instrumentation	56
4. UE804 : Data science et apprentissage par projet	
4.1. EASI842a - Analyse d'image et vision par ordinateur	
4.2. EASI844a - Modèles des systèmes à évènements discrets et applications	59
4.3. INFO841 - Sécurité des systèmes cyber-physiques	
4.4. PROJ841a - Apprentissage par projet	61
Semestre 9	. 62
1. UE901 : Passerelle vers le milieu professionnel	62
1.1. LANG901a - Anglais (Niveau TOEIC non atteint)	. 63
1.2. LANG902a - Langues (Niveau TOEIC atteint)	. 64
1.3. PROJ901a - Projet Recherche et Développement	64
1.4. SHES901a - Techniques de management	65
2. UE902 : Automatique et apprentissage par projet	
2.1. EASI943a - Approche d'état en automatique : représentation, commande et observation	. 66
2.2. PROJ943a - Apprentissage par projet	
3. UE903 : Data science et objets communicants	. 69
3.1. EASI941a - Systèmes communicants, capteurs communicants	69
3.2. EASI942a - Imagerie 3D : acquisition, reconstruction, applications	70
3.3. INFO941a - Systèmes embarqués et programmation concurrente	71
3.4. INFO942a - Apprentissage automatique et fouille de données	72
3.5. INFO943 - Internet des objets	. 73
3.6. PROJ942a - Projet technique traitement de l'information	. 74
Semestre 10	76
1. UE001 : Stage Ingénieur	. 76
1.1. PROJ001 - Stage Ingénieur	76

Glossaire

Spécialité

SNI Systèmes Numériques - Instrumentation

Disciplines

DDRS Développement Durable et Responsabilité Sociétale

EASI Électronique-Électrotechnique, Automatique, Signal, Images

INFO Informatique, Génie Informatique

LANG Langues vivantes MATH Mathématiques

PACI Physique Appliquée, Capteurs, Instrumentation

PHYS Physique

PROJ Projets et stages

SHES Sciences Humaines, Économiques et Sociales

Termes généraux

CC Contrôle continu

ET Épreuve terminale

TC Tronc commun

TD Travaux dirigés

TP Travaux pratiques

UE Unité d'enseignement

Niveaux pour les objectifs d'apprentissage

Notion : l'èlève-ingénieur a des connaissances de base et est capable de les

restituer ou d'en parler

A Application : l'élève-ingénieur sait appliquer les connaissances et les sa-

voir-faire dans des situations courantes

Maîtrise : l'élève-ingénieur est capable d'utiliser les différents concepts et de

traiter des cas complexes ou inhabituels

E Expertise : l'élève-ingénieur matrîse les différents concepts et est capable d'en

utiliser ou d'en proposer de nouveaux

Semestre 5

UE	ECTS	Module	Intitulé	Cours (h)	TD (h)	TP (h)	Pondé- ration	Evaluation
UE501 : Passerelle vers le mi- lieu pro- fessionnel	6	LANG500a	Soutien Anglais		12			
		LANG501a	Anglais		40.5		3	CC
		SHES501a	Sport		21		1.5	CC
		SHES505	Simulation de gestion d'entreprise		19.5		1.5	CC
UE502 : Sciences et outils de l'Ingénieur	12	DDRS501	Développe- ment Durable	11.5	9		1.5	CC(50%) + CT(50%)
		EASI501a	Electricité	13.5	15	12	3	CC(70%) TP(30%)
		INFO501a	Numération et Algorithmique	12	10.5	16	3	CT(70%) + TP(30%)
		INFO502a	Bases de données	6	4.5	12	1.5	CT(70%) TP(30%)
		MATH500a	Soutien Ma- thématiques		21			CC
		MATH501a	Mathématiques	21	19.5		3	CC
UE503 : Sciences de l'Ingénieur	12	EASI541a	Automatisation	7.5	12	20	3	CC (70%) + TP (30%)
		PHYS541a	Propriétés des matériaux	20	12	8	3	CC(20%) CT(60%) TP(20%)
		PHYS542a	Electromagné- tisme appliqué à la transmission de l'information	17	15	8	3	CT(70%) TP(30%)
		PROJ541a	Découverte ex- périmentale de la spécialité SNI			40	3	TP

1. UE501 : Passerelle vers le milieu professionnel

1.1. LANG500a - Soutien Anglais

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
	12			

Langue(s) utilisée(s) pour les enseignements

• Anglais

Pré-requis

Score inférieur à 600 au Toeic du début d'année.

Descriptif

Reprise de toutes les bases et renforcement des points de langues . 12h de cours par semestre en groupe de 15 étudiants.

1.2. LANG501a - Anglais

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
	40.5		3	CC

Langue(s) utilisée(s) pour les enseignements

• Anglais

Pré-requis

Niveau B1 du CECR

Descriptif

Ce cours prépare les étudiants au test du TOEIC ("Test of English for International communication") et plus exactement à l'obtention d'un score minimal de 785 points (sur 990).

Dans le but de travailler les 4 compétences, ce cours est aussi une introduction à la prise de parole en public au moyen de présentations données par des étudiants en groupes ou en individuel, sur des sujets illustrés par des articles de presse ou des supports vidéos (VTD : Video, Talk and Debate et aussi production écrite). Selon le site (Annecy ou Chambéry certains seront vus à des moments différents du semestre, de l'année voire même des trois années de formation).

Les étudiants sont évalués tout au long de chaque semestre. L'évaluation terminale consiste en une épreuve de 1h, 1h30 ou 2h selon le semestre et selon le site (Annecy ou Le Bourget), et compte coefficient 2 dans le contrôle continu total.

Plan du Cours

- 1. Oral
 - 1.1. Éléments de phonologie
 - 1.2. Éléments grammaticaux(temps, questionnement, adjectifs.....)
 - 1.3. Réinvestissement des structures et du vocabulaire
 - 1.4. Communication orale interactive
 - 1.5. Introduction et entraînement au TOEIC (Partie listening)
- 2. Écrit
 - 2.1. Révision d'éléments grammaticaux (temps, questionnement, adjectifs....)
 - 2.2. Traduction (thème/version)
 - 2.3. Compréhension de texte en langue authentique
 - 2.4. Curriculum vitae (en S5, S6 au plus tard S7)
 - 2.5. Lettre de candidature / motivation (en s5, s6 au plus tard S7)
 - 2.6. Introduction et entraînement au TOEIC (Partie reading)

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
auto-vérifier sa maîtrise des structures de la langue et à en poursuivre l'apprentissage mé- thodique, en visant une inter-activité opération- nelle des 4 compétences de communication	Maîtrise	de faire des révisions grammaticales sur : les réflexes corrects des structures courantes ; le groupe verbal et les temps (sauf l'expression du conditionnel) ; le groupe nominal et tous ses éléments constitutifs; les liens logiques (mots de liaison)
		d'améliorer ses connaissances grammaticales et lexicales (anglais général et vocabulaire spéci-

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
		fique au TOEIC) en classe et en autonomie, en les validant par des tests d'évaluation réguliers
comprendre des documents sonores et s'exprimer oralement	Maîtrise	d'écouter régulièrement les nouvelles sur des sites anglophones d'information (CNN, BBC, Skynews) et sera en mesure de restituer l'essentiel oralement de façon succincte, en in- ter-activité avec le groupe-classe
		de travailler sur des supports audio et vidéo va- riés et de prendre la parole pour réagir sponta- nément en inter-activité avec la classe
		de pratiquer des exercices de TOEIC (4 parties de compréhension orale) + tests entiers
		de prendre la parole en mode préparé et en in- ter-activité spontanée via des exposés indivi- duels (auto-présentation et/ou compte-rendus d'articles, type « colles ») et des exposés par deux (sujets variés)
		de travailler sur les conversations télépho- niques (compréhension /production)
comprendre des documents écrits et s'exprimer à l'écrit	Maîtrise	de pratiquer des exercices de TOEIC (3 parties écrites)
		de lire des documents variés (articles généraux et scientifiques) et de rédiger quelques lignes pour en rendre compte et donner son avis
		d'écrire des emails (à caractère personnel et professionnel) / de commencer à rédiger CVs et lettres de motivation

- Documents distribués par les intervenants
- Différents sites internet dont la liste est fournie en début d'année

1.3. SHES501a - Sport

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
	21		1.5	CC

Langue(s) utilisée(s) pour les enseignements

• Français

Descriptif

Ce cours s'appuie sur la pratique des activités physiques et sportives et s'articule autour de deux axes prioritaires.

D'une part, il s'agit de permettre aux élèves d'acquérir des savoir-faire liés aux activités sportives et de mettre en avant leurs savoir-être, qualités requises pour leur insertion et leur réussite professionnelle. Cet axe s'appuiera sur le travail effectué autour des valeurs véhiculées par les différentes activités sportives et leurs modes de pratique diversifiés.

D'autre part, il s'agit de permettre aux élèves-ingénieurs d'acquérir des compétences collectives dans la réalisation d'un projet et la gestion de groupe mais également de développer leurs capacités individuelles d'adaptation et de régulation. Cet axe se traduira par l'organisation collective et la mise en place d'un évènement sportif sur une séance.

Objectifs d'apprentissage

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
travailler en équipe afin de préparer, mettre en place et réguler un évènement sportif dans un cadre contraint	Maîtrise	de concevoir une fiche de projet collectif en in- tégrant les différents paramètres organisation- nels.
		d'expliquer et de faire appliquer à un groupe un ensemble de règles collectives de fonctionne- ment
		d'adapter et de réguler le fonctionnement de son activité en s'adaptant aux contraintes spa- tiales matérielles et humaines et en répondant rapidement aux problèmes rencontrés
s'engager dans une nouvelle activité physique de manière intense, lucide, raisonnée et critique	Maîtrise	de développer une motricité adaptative en s'engageant pleinement dans l'activité tout en respectant les règles, les autres et sa propre in- tégrité physique
		d'intégrer et d'appliquer rapidement des règles de fonctionnement complexes et nouvelles
		de développer un regard critique et constructif afin de pouvoir juger objectivement sa presta- tion et celle des autres

1.4. SHES505 - Simulation de gestion d'entreprise

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
	19.5		1.5	CC

Langue(s) utilisée(s) pour les enseignements

• Français

Pré-requis

Aucun

Descriptif

Les jeux d'entreprise, également appelés serious game ou simulation de gestion d'entreprise, sont des outils pédagogiques pour apprendre autrement. Il s'agit d'une simulation qui vise à monter la complexité des entreprises tout en reposant sur un modèle simplifié. Dans un jeu d'entreprise le temps est accéléré et les participants jouent sur une période condensée (deux journées dans le cas présent) plusieurs années de la vie d'une entreprise. Cette simulation d'entreprise est réalisée à l'aide d'un programme informatique. Ce programme intègre un algorithme afin de calculer les performances de chaque équipes concurrentes (chaque équipe représentant une entreprise du marché) à la fin de chaque décision.

Plan du Cours

- 1. Analyser le contexte général pour mieux communiquer,
- 2. Connaître les principaux outils de communication, médias/hors médias,
- 3. Comprendre le processus d'élaboration d'une stratégie de communication,
- 4. Donner une formation globale, concrète et efficace en matière de gestion des entreprises,
- Sensibiliser à l'interdépendance des fonctions de l'entreprise à travers la prise de décisions et l'analyse de résultats.

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
concevoir les bases d'une stratégie d'entreprise et appréhender les interactions entre fonctions	Application	

- Sophie Delerm, Jean-Pierre Helfer et Jacques Orsoni. « Les bases du marketing », Vuibert, 2006 (Partie 2, Chapitres 1 et 2 et Partie 3, Chapitre 2).
- Jacques Lendrevie, Julien Levy, « Mercator, Théorie Et Nouvelles Pratique Du Marketing (9e Edition), Dunod, Paris, 2009 (Chapitre 15)
- Jean Barreau, Jacqueline Delahaye, « Gestion financière DECF Epreuve 4 », Dunod, 2006 (Chapitres 7 et 8)
- Christian Goujet, Christian Raulet & Christiane Raulet, « Comptabilité de gestion », Dunod, Paris, 2007. (Chapitres 1, 17 et 18)
- Maurice Pillet, Chantal Martin-Bonnefous, Pascal Bonnefous, Alain Courtois, « Gestion de production : les fondamentaux et les bonnes pratiques », Eyrolles, 2011. (Lire : Chapitres 4, 6 et 8)

Outils numériques

· Serious game : OgPlay

2. UE502 : Sciences et outils de l'Ingénieur

2.1. DDR\$501 - Développement Durable

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
11.5	9		1.5	CC(50%) + CT(50%)

Descriptif

Ce cours vise à sensibiliser les élèves ingénieurs à la problématique du développement durable et à son intégration dans les entreprises et de leur permettre de prendre en main cet aspect dans leur vie professionnelle.

Plan du Cours

- 1. Introduction au développement durable (3h. C)
 - 1.1. Etat des lieux de la planète
 - 1.2. Historique du développement durable
 - 1.3. Concept du développement durable
- 2. Bilan carbone (3h C, 4,5h TD)
 - 2.1. Changement climatique Gaz à effet de serre
 - 2.2. Situation énergétique mondiale
 - 2.3. Méthode bilan carbone
 - 2.4. exercices d'application et études de cas
- 3. Analyse du cycle de vie des produits, écoconception
- 4. Gestion des déchets
 - 4.1. Approche globale de la production et du traitement

Objectifs d'apprentissage

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
mettre en œuvre une politique de développe- ment durable dans son entreprise et réaliser le Bilan Carbone et/ou l'ACV d'un produit.	Application	de comprendre les grands enjeux du DD.
		d'analyser des données, d'émettre des hypo- thèses (simplificatrices ou par manque de don- nées) afin de réaliser un BC ou une ACV pour le compte d'une entreprise.

Bibliographie

- Bertrand Barré, Bernadette Mérenne-Schoumaker, Atlas des énergies mondiales. Ed. Autrement, 2011, ISBN 978-2-7467-1486-1 Cote BU Savoie 333.70 BAR
- Yvette Veyret Paul Arnould, Atlas des développements durables. Ed. Autrement, 2008, ISBN 978-2-7467-1187-7. Côte Savoie BU 338.9 ATL
- Comité de Prospective en énergie de l'Académie des Sciences. La recherche scientifique face aux défis de l'énergie.Ed. EDP Sciences, 2012. ISBN 978-2-7598-0826-7 Côte BU Savoie 333.79 COM
- Bernard Wiesenfeld. L'énergie en 2050, nouveaux défis et faux espoirs. Ed. EDP Sciences, 2005, ISBN 2-86883-818-9 Côte BU Savoie 333.79 WIE

- Louis Boisgibault, L'énergie solaire après Fukushima : la nouvelle donne. Ed. Medicilline, 2011, ISBN 978-2-9152-2037-7 Côte BU Savoie 621.47 BOI 1
- G. Thomas Farmer, John Cook. Climate change science: a modern synthesis. Ed. Springer, 2013, ISBN 978-94-007-5756-1 Côte BU Savoie 551.6 FAR
- B. Mérenne-Schoumaker. Géographie de l'énergie, acteurs, lieux et enjeux. Ed. Belin, 2011, ISBN : 978-2-7011-5897-6 Côte BU Savoie 333.79 MER

2.2. EASI501a - Electricité

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
13.5	15	12	3	CC(70%) TP(30%)

Langue(s) utilisée(s) pour les enseignements

Français

Pré-requis

• Connaissances scientifiques et technologiques du premier cycle universitaire

Descriptif

Bases de l'électricité, étude des régimes transitoires, continus et sinusoïdaux

Plan du Cours

- 1. Lois d'étude des circuits (4,5h cours)
 - 1.1. Lois de Kirchhoff, théorème de superposition, théorème de Millman
 - 1.2. Générateur de Thévenin, de Norton
 - 1.3. Dipôles
 - 1.4. Adaptation d'impédances
 - 1.5. Régime permanent, régime transitoire
- 2. Energie électrique (6h cours)
 - 2.1. Conversion électromécanique
 - 2.2. Systèmes de distribution monophasé et triphasé
 - 2.3. Puissances active, réactive et apparente en monophasé et triphasé
 - 2.4. Protection électrique

Intitulés TP

- 1. Circuit RC en régime transitoire
- 2. Mesure de puissances en triphasé
- 3. Machine à courant continu

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
calculer et mesurer les grandeurs électriques courants et tensions dans un circuit linéaire, en régime continu, transitoire, sinusoïdal mono- phasé ou triphasé.	Maîtrise	de donner les lois de comportement courant-tension pour les dipôles de base (résistance, condensateur, bobine) d'appliquer les lois de Kirchhoff dans un circuit électrique d'établir et de résoudre les équations différentielles correspondant à l'étude d'un circuit électrique linéaire en régime transitoire de simplifier un circuit électrique en donnant la source de tension ou la source de courant équivalente entre deux points de ce circuit d'utiliser les nombres complexes pour la représentation de grandeurs électriques en régime sinusoïdal (courants, tensions, impédances)
calculer et mesurer les puissances et énergies consommées dans un circuit linéaire, en régime continu, transitoire, sinusoïdal monophasé ou triphasé	Maîtrise	de quantifier les énergies échangées et/ou sto- ckées dans un circuit linéaire en régime transi- toire de calculer et mesurer les puissances ac- tives, réactives et apparentes en régime sinusoï- dal monophasé et triphasé équilibré de savoir

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
		comment relever le facteur de puissance d'une installation électrique
expliquer le principe de fonctionnement d'un moteur à courant continu	Application	de calculer la vitesse de rotation et/ou le couple moteur en régime permanent de quantifier les énergies mises en jeu
décrire l'architecture générale du réseau de production, distribution et consommation d'électricité en France	Application	d'expliquer le choix du régime sinusoïdal triphasé pour la production et le transport d'électricité de décrire les principales sources d'énergies électriques, les moyens de transport de l'électricité, ainsi que les principaux postes de consommation
établir si une installation électrique simple (domestique ou petite entreprise) présente un risque électrique	Application	de décrire le principe de fonctionnement des dispositifs de protection des biens contre le risque électrique de décrire le principe de fonc- tionnement des dispositifs de protection des personnes contre le risque électrique (régime de neutre TT)

- Electricité générale : Analyse et synthèse des circuits, cours et exercices corrigés de Tahar Neffati, édition Dunod
- Chiffres clés de l'énergie Édition 2018: http://www.statistiques.developpement-durable.gouv.fr/chiffres-cles-lenergie-edition-2018

2.3. INFO501a - Numération et Algorithmique

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
12	10.5	16	3	CT(70%) + TP(30%)

Langue(s) utilisée(s) pour les enseignements

• Français

Pré-requis

Aucun

Descriptif

Ce cours vise d'une part à acquérir les connaissances de base sur la représentation des informations dans les ordinateurs et d'autre part à acquérir les bases de l'algorithmique et de la programmation avec une initiation à l'utilisation d'un langage objet. L'objectif est d'être capable d'utiliser l'outil informatique pour la résolution des problèmes rencontrés dans l'activité d'ingénierie.

Plan du Cours

- 1. Historique de l'informatique et Ingénierie
- 2. Architecture des machines, représentation des données
- 3. Initiation à la programmation
 - 3.1. Programmer en Python
 - 3.2. Notion d'objet
 - 3.3. (La récursivité)

Intitulés TP

Ce module comporte 4 séances de TP

- Séance 1 : Initiation à la manipulation d'objets en python illustrée sur la reconnaissance de chiffres dans des images par corrélation
- Séance 2, 3 et 4 : ces 3 séances correspondent à un seul sujet au choix :
 - Réprésentation visuelle d'informations issues de capteurs sous la forme d'émoticone colorées, souriantes ou grimaçantes à l'aide du module *Pygame*
 - Représentation visuelle d'objets 3D à l'aide des modules Pygame et PyOpenGL

Objectifs d'apprentissage

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
Solutionner un problème en utilisant l'outil informatique	Application	de comprendre les conséquences de la repré- sentation de données sur ordinateur et de choi- sir la plus pertinente
		de concevoir des algorithmes en utilisant la programmation objet
		d'implanter ces algorithmes sur un ordinateur

Bibliographie

- · A. Cazes, J. Delacroix, Architecture des machines et des systèmes informatiques, Dunod, 2005.
- T. Cormen, C. Leiserson, R. Rivest, Introduction à l'algorithmique, Dunod, 2002.
- G. Swinnen, Apprendre à programmer avec Python 3 (http://inforef.be/swi/python.htm)

Outils numériques

• Ce module s'appuie sur le langage python. Les développements demandés en td et en tp se font dans l'environnement Annaconda / Spyder, avec des modules spécifiques (scikit-image, Pygame et PyOpenGL).

2.4. INFO502a - Bases de données

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
6	4.5	12	1.5	CT(70%) TP(30%)

Langue(s) utilisée(s) pour les enseignements

Français

Pré-requis

Aucun

Descriptif

Ce cours vise à acquérir les connaissances de base afin de modéliser, concevoir et manipuler une base de données. L'application de ce cours se fait sur des problèmes généraux et d'autres métiers.

Plan du Cours

- 1. Introduction aux Bases de Données (30min CM)
- 2. Modélisation Entité/Association (1h CM)
- 3. Modélisation et algèbre relationnel (3h CM)
- 4. Introduction au langage SQL (1.5h CM)

Objectifs d'apprentissage

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
manipuler tous les concepts nécessaires à la gestion d'une base de données	Maîtrise	de concevoir une base de données
		de gérer une base de données
		d'utiliser une base de données

Bibliographie

J. Akoka, I. Comyn-Wattiau, Conception des bases de données relationnelles, Vuibert Informatique, 2001

2.5. MATH500a - Soutien Mathématiques

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
	21			CC

Pré-requis

• Bases solides de mathématiques niveau lycée

Descriptif

Cet enseignement vise à renforcer les bases en mathématiques .

Plan du Cours

- 1. Géométrie plane et géométrie dans l'espace
- 2. Nombres complexes, polynômes, fractions rationnelles: décomposition en éléments simples sur R
- 3. Systèmes linéaires, matrices, déterminants
- 4. Calcul différentiel des fonctions d'une variable réelle, applications : formule de Taylor, développements limités, équivalents
- 5. Calcul intégral basique (dont changement de variable), définition et exemples d'intégrales généralisées
- 6. Equations différentielles de base : cas linéaire du premier ordre, variation de la constante, second ordre linéaires à coefficients constants.

Objectifs d'apprentissage

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
savoir manipuler, appliquer et utiliser les ou- tils de géométrie plane et de géométrie dans l'espace	Maîtrise	
savoir manipuler, appliquer et utiliser les outils fondamentaux de l'algèbre	Maîtrise	d'utiliser les nombres complexes, de résoudre des équations avec les nombres complexes, de faire le lien entre géométrie plane et nombres complexes
		d'effectuer la division euclidienne de poly- nômes, d'utiliser les propriétés des racines de polynômes et d'effectuer la décomposition en éléments simples d'une fraction rationnelle.
		d'effectuer des calculs sur les matrices, de cal- culer des déterminants notamment en utilisant les propriétés des déterminants, de résoudre un système linéaire et d'utiliser les liens entre ma- trices et systèmes linéaires
savoir manipuler, appliquer et utiliser les outils fondamentaux de l'analyse	Application	de savoir dériver, d'écrire la formule de Tay- lor et de calculer un développement limité pour une fonction d'une variable réelle
		de calculer une intégrale simple, d'utiliser intégration par parties et changement de va- riable pour une intégrale, d'étudier la conver- gence d'une intégrale généralisée dans des cas simples.
		de résoudre une équation différentielle linéaire du premier ordre, d'utiliser éventuellement pour cela un changement de variable ou de fonction donné, de résoudre une équation diffé- rentielle linéaire du second ordre à coefficients constants.

Bibliographie

- J-P. Truc, Précis de Mathématiques, Nathan, 1997
- G Chauvat, A. Chollet, Y.Bouteiller, Mathématiques, Ediscience, 2005
- S Ferrigno, D Marx, A Muller-Gueudin, Mathématiques pour les sciences de l'ingénieur, Dunod, 2013

Lien vers un site contenant des cours, des exercices corrigés, des qcm et des liens vers des sites interessants http://ead-polytech.univ-savoie.fr/course/view.php?id=778&ifyeditingon=1

2.6. MATH501a - Mathématiques

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
21	19.5		3	CC

Pré-requis

• Remise à niveau Mathématiques ou sinon bases solides de BAC+2

Descriptif

Cet enseignement vise à donner les bases de l'analyse nécessaires pour les sciences de l'ingénieur.

Plan du Cours

- Calcul différentiel: fonctions de plusieurs variables, différentiation, exemples d'équations aux dérivées partielles
- 2. Courbes et surfaces, mouvements ponctuels
- 3. Intégrales multiples
- 4. Analyse vectorielle: opérateurs différentiels, potentiels scalaires, potentiels vecteurs, intégrales curvilignes, intégrales de surface

Objectifs d'apprentissage

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
Savoir identifier et caractériser une courbe ou une surface classique, déterminer une équation d'une tangente pour une courbe, d'un plan tangent pour une surface.	Application	déterminer une équation d'une courbe ou d'une surface classique et identifier une courbe ou une surface d'après son équation.
		de travailler sur des paramétrages de courbes et surfaces .
		d'obtenir une équation de tangente à une courbe ou de plan tangent à une surface
savoir calculer et donner du sens à une intégrale double et une intégrale triple.	Maîtrise	de calculer une intégrale double en coordon- nées cartésiennes ou en coordonnées polaires
		de calculer une intégrale triple en coordonnées cartésiennes, cylindriques ou sphériques.
savoir calculer et manipuler,les outils usuelles de l'analyse vectorielle.	Maîtrise	de calculer, manipuler, interpréter et utiliser les opérateurs gradient, divergence, rotationnel et laplacien.
		d'identifier et déterminer un potentiel vecteur, un potentiel scalaire.
		de calculer et interpréter une dérivée direction- nelle
		de calculer et interpréter une intégrale curviligne, une intégrale de surface.
		de calculer le flux d'une fonction vectorielle à travers une surface.

Bibliographie

Livres:

- J-P. Truc, Précis de Mathématiques, Nathan, 1997 (pour MATH 500)
- J. Stewart, Analyse, Concepts et contextes, vol 2,De Boeck,2001
- B. Dacorogna, Analyse avancée pour ingénieurs, Presses polytechniques et universitaires romandes, 2002
- E. Azoulay, J. Avignant, G. Auliac. Les mathématiques en Licence (2ème année tome1) Ediscience, 2003
- F. Cottet-Emard, Analyse 2, De Boeck, 2006

Sites: https://fr.wikiversity.org/wiki/Facult%C3%A9:Math%C3%A9matiques

http://uel.unisciel.fr/

Livres complémentaires

- P.Pilibossian, J-P. Lecoutre, Analyse, 1998
- P. Pilibossian, J-P. Lecoutre, Algèbre, 1998

• P. Thuillier, J.C. Belloc, Mathématiques (2 tomes) ,2004

3. UE503 : Sciences de l'Ingénieur

3.1. EASI541a - Automatisation

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
7.5	12	20	3	CC (70%) + TP (30%)

Langue(s) utilisée(s) pour les enseignements

• Français

Pré-requis

Notions d'algèbre de Boole

Descriptif

Des lignes de production à la gestion énergétique de l'habitat, nombreux et variés sont les systèmes automatisés. Cet enseignement aborde les éléments de base nécessaires à la modélisation, l'analyse, la commande et la mise en oeuvre des systèmes automatisés.

Plan du Cours

- 1. Les systèmes combinatoires
 - 1.1. Ecritures canoniques et simplifications
- 2. Les systèmes séquentiels
 - 2.1. Le modèle Graphe d'états
 - 2.2. Synthèse d'un modèle pour une solution câblée
 - 2.3. Solution programmée
- 3. Le Grafcet : un outil de spécification et de modélisation des systèmes séquentiels
 - 3.1. Principes généraux : concepts, éléments graphiques, interprétation
 - 3.2. Structures élémentaires : séquence, choix, parallélisme, synchronisation
 - 3.3. Structuration horizontale et verticale : structures dérivées, ressources
 - 3.4. Algorithme d'interprétation
- 4. Modes de marche d'un système (GEMMA) et interface homme-machine (IHM)
- 5. Conduite de projets d'automatisation : la démarche en V

Intitulés TP

- 1. TP1 (4h): Cible matérielle et atelier logiciel
 - 1.1. Configuration matérielle
 - 1.2. Architecture réseau
 - 1.3. Organisation logicielle, application multi-tâches
- 2. TP2, 3, 4 et 5 (16h): Commande centralisée de systèmes
 - 2.1. Implémentation de modes de fonctionnement
 - 2.2. Tests élémentaires et finaux

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
expliquer la structure d'un système automati- sé : du capteur au dialogue opérateur	Maîtrise	de comprendre l'organisation d'un système in- dustriel
		d'acquérir la notion de système
		de différencier systèmes automatisés et sys- tèmes mécatroniques
organiser la solution de commande d'un auto- matisme centralisé : modes de marche et hié- rarchisation	Maîtrise	de réfléchir et de décider à propos des différents modes de marche.
		de faire une hiérarchisation verticale
modéliser les spécifications fonctionnelles d'un système automatisé à partir de la description de son cahier des charges	Maîtrise	de suivre une démarche d'analyse

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
		de proposer des solutions combinatoires et séquentielles
		de mettre en œuvre une solution Grafcet

3.2. PHYS541a - Propriétés des matériaux

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
20	12	8	3	CC(20%)
				CT(60%) TP(20%)

Langue(s) utilisée(s) pour les enseignements

• Français

Pré-requis

Bases de physique

Descriptif

Le cours débute par des notions générales sur la structure des matériaux afin d'aborder ensuite les modèles décrivant leurs propriétés électriques, thermiques et mécaniques. Il apporte également des notions sur les transferts de chaleur entre les matériaux.

Plan du Cours

- 1. Structure des matériaux
 - 1.1. Liaisons atomiques
 - 1.2. Structure cristalline
 - 1.3. Notions de diffraction
 - 1.4. Matériaux amorphes
- 2. Propriétés électriques
 - 2.1. Porteurs de charge et conduction électrique
 - 2.2. Niveaux et bandes d'énergie
 - 2.3. Conducteurs électriques et applications
 - 2.4. Isolants électriques et applications
 - 2.5. Semi-conducteurs et application
 - 2.6. Classification des matériaux
- 3. Propriétés et transferts thermiques
 - 3.1. Propriétés thermiques des matériaux
 - 3.2. Introduction aux transferts de chaleur
 - 3.3. Transferts de chaleur par conduction
 - 3.4. Transferts de chaleur par convection
 - 3.5. Transferts de chaleur par rayonnement
 - 3.6. Analogie électrique, résistances thermiques et réseaux électriques analogues
- 4. Propriétés mécaniques
 - 4.1. Contrainte et déformation (métaux, céramiques et verres, polymères)
 - 4.2. Déformation élastique
 - 4.3. Déformation plastique
 - 4.4. Dureté

Intitulés TP

- Convection, conduction, rayonnement : expérimentation et modélisation
- CaRine Logiciel pour la cristallographie
- Choix de matériaux

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
décrire la structure interne des matériaux cris-	Notion	de citer les différents types de liaisons ato-
tallins ou amorphes et associer certaines pro-		miques et de préciser comment ils condi-
priétés des matériaux à leur constitution	13	tionnent les propriétés physiques des matériaux

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
		telles que température de fusion, rigidité, ex- pansion thermique, conductivité électrique
		de définir ce qu'est une structure cristalline et de nommer les différents systèmes et réseaux cristallins (réseaux de Bravais) et d'expliquer leur description par les indices de Miller
		de décrire le principe de la diffraction des rayons X par un réseau périodique et de calculer les angles de diffraction ou un paramètre de maille par application de la loi de Bragg
		d'expliquer ce qui distingue les matériaux amorphes des matériaux cristallins en terme de structure microscopique
distinguer les différentes classes de matériaux en fonction de leurs propriétés électriques en vue de leur utilisation dans un système instru- menté (par exemple capteur ou actionneur)	Application	de décrire le lien entre les liaisons atomiques dans un matériau, sa structure et ses propriétés électriques
		d'expliquer la différence entre matériaux métal- liques, isolants et semi-conducteurs du point de vue des propriétés électriques
		de discuter de l'influence de la température sur les propriétés électriques des matériaux
distinguer les différentes classes de matériaux en fonction de leurs propriétés thermiques en vue de leur utilisation dans un système instru- menté et à modéliser un transfert de chaleur entre matériaux dans une configuration simple.	Application	de distinguer les matériaux du point de vue de leurs propriétés thermiques (isolants ou conducteurs thermiques) et énumérer quelques exemples de chaque cas
		d'expliquer l'origine des échanges de chaleur par conduction, convection et rayonnement
		de schématiser des échanges de chaleur entre matériaux dans des configurations simples et d'employer les lois des transferts de chaleur pour calculer des flux de chaleur ou des distri- butions de température dans ces configurations
reconnaître et comparer le comportement mé- canique des différentes classes de matériaux en vue de leur mise en œuvre dans des systèmes instrumentés	Notion	d'interpréter une courbe contrainte-déformation et d'en déduire les caractéristiques mécaniques de base du matériau
		de différencier les comportements élastiques et plastiques d'un matériau

- James F. Schackelford, Introduction to materials science for engineers, Pearson Prentice Hall, 2000
- Cours de Physique des Semiconducteurs, Bernard Gréhant, Eyrolles (1990)
- Dissemination of IT for the Promotion of Materials Science (DoITPoMS) / University of Cambridge.

Outils numériques

Comsol Multiphysics

CaRine Crystallography

3.3. PHYS542a - Electromagnétisme appliqué à la transmission de l'information

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
17	15	8	3	CT(70%) TP(30%)

Langue(s) utilisée(s) pour les enseignements

• Français avec documents en anglais

Pré-requis

Bases de physique générale

Outil mathématique : intégrales, dérivées, systèmes de coordonnées, opérateurs, analyse vectorielle, opérations sur les nombres complexes

Descriptif

Le cours décrit les principes fondamentaux qui expliquent et régissent l'existence de champs électriques et magnétiques. Ces principes permettent de comprendre la propagation des ondes électromagnétiques et leur utilisation pour transporter des informations (fibres optiques, lignes bifilaires, guide d'ondes, etc...).

Plan du Cours

- 1. Électrostatique
- 2. Magnétostatique
- 3. Équations de Maxwell
- 4. Ondes électromagnétiques
- 5. Propagation guidée : Lignes de transmission, câble coaxial, guide d'ondes
- 6. Propagation guidée: Notions préliminaires sur les fibres optiques
- 7. Propagation libre et application : antennes, RFID

Intitulés TP

- 1. Optique micro-ondes
- 2. Magnétostatique
- 3. Fibres optiques

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
expliquer l'origine d'un champ électrique, d'un champ magnétique, et d'une onde électromagnétique.		de donner l'expression d'un champ électrique en fonction d'une répartition de charge, et d'un champ magnétique en fonction d'une réparti- tion basique de courant, et réciproquement.
		d'utiliser le théorème de Gauss et le théorème d'Ampère, et la loi de Biot et Savart
		de déterminer les informations essentielles contenues dans l'expression d'une onde élec- tromagnétique (direction de propagation, pola- risation, plan de polarisation, phase, indice de réfraction du milieu de propagation).
décrire les phénomènes physiques qui per- mettent la propagation d'ondes électromagné- tiques et leur utilisation pour la transmission de l'information.	Application	de maitriser les principes de fonctionnement des lignes de transmission, des guides d'ondes et des antennes.
		d'utiliser la connaissance acquise sur les principes de fonctionnement et sur les paramètres caractéristiques de la transmission guidée pour faire un choix pertinent entre les différentes technologies.

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
		de résoudre des calculs simples permettant de caractériser les différents moyens de transmis- sion de l'information guidée.

Maxime Nicolas, Ondes et électromagnétisme, Dunod, 2009

3.4. PROJ541a - Découverte expérimentale de la spécialité SNI

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
		40	3	TP

Langue(s) utilisée(s) pour les enseignements

Français

Pré-requis

Aucun prérequis n'est nécessaire pour ce module.

Descriptif

Ce module vise une découverte expérimentale de différents aspects de la spécialité. Il est composé de 5 séances pratiques de 8h00 chacune durant lesquelles les étudiants travaillent en équipe de 3 ou 4.

Les 5 thèmes abordés concernent :

- l'informatique et la robotique de service ;
- l'analyse d'images et la vision par ordinateur ;
- l'acquisition et l'exploitation de données issues de capteurs ;
- l'automatique et les asservissements ;
- le pilotage des moteurs d'un système embarqué.

Intitulés TP

Le module est composé de 5 séances pratiques de 8h00 chacune durant lesquelles les étudiants travaillent en équipe de 3 ou 4.

Les 5 thèmes abordés sont :

Découverte de la robotique de service (Flavien VERNIER)

A travers la programmation graphique de robots humanoïdes, le travail consiste à développer des comportements afin que les robots intéragissent avec l'humain.

A la suite d'une première partie de découverte des robots et de leur programmation, un projet propre par trinôme est développé afin de mettre en pratique les concepts vus dans la première partie.

La séance se termine par le développement d'un comportement imposé.

Analyse d'images et vision par ordinateur (Emmanuel TROUVE et Yajing YAN)

Les images sont de plus en plus utilisées dans de nombreux domaines : véhicules autonomes, robotique, imagerie médicale, observation de la terre, contrôle qualité, systèmes de surveillance, . . . etc. Prises sous des angles différents, les images permettent une reconstruction 3D des scènes observées, alors que les séries temporelles (timelapse) permettent de détecter les changements ou mesurer les mouvements.

L'objectif de ce thème est de découvrir le potentiel des images comme sources d'informations. A partir de trois séries d'images acquises sur un parking, il s'agit de découvrir la structure de ces données et les outils de base du traitement d'images permettant de les manipuler. Ces séries d'images sont ensuite utilisées pour découvrir la vision stéréo, la détection de changement ou la mesure de trajectoires de véhicules.

Une balance pour l'évaluation de la posture et de l'équilibre (Stéphane MARTEAU et Alexandre BASCOP)

Tout le monde dispose, ou peut facilement disposer, chez soi d'un pèse-personne. Sa fonction principale est d'indiquer la masse d'une personne en position debout. Mais comment cela fonctionne? Sur quel(s) principe(s)? Est-il possible de s'en servir dans le cadre de la stabilométrie pour observer comment le sujet se "débrouille" pour se stabiliser debout?

Un statokinésigramme offre une représentation claire et efficace de la mesure de stabilité d'une personne. Il affiche le déplacement du centre de pression des pieds dans le plan de la balance.

Essayons ! Il s'agit notamment de capter/mesurer, récupérer les informations et tracer les résultats.

Modélisation et commande d'un robot LEGO MINDSTORMS EV3 suiveur de cible (Pascal MOUILLE)

Ce thème se situe dans le domaine de l'automatique. L'objectif du travail proposé est de réaliser l'asservissement de position d'un robot LEGO MINDSTORMS EV3 par rapport à une cible mouvante à l'aide des logiciels MATLAB et SIMULINK.

Le travail se décompose en 5 étapes :

- 1. Construction du robot, choix des actionneurs et des capteurs.
- 2. Modélisation mathématique de la cinématique du robot et des mesures.
- 3. Prise en main des logiciels MATLAB et SIMULINK ; commande en boucle ouverte du robot et identification de paramètres.
- 4. Compréhension des principes de base d'un asservissement et synthèse d'une structure de commande en boucle fermée du robot. Simulation.
- 5. Mise en oeuvre à l'aide des logiciels MATLAB et SIMULINK. Evaluation des performances de l'asservissement.

Pilotage des moteurs d'un robot à 2 roues motrices (François LEPLUS)

L'objectif de ce thème est de piloter le déplacement d'un robot à 2 roues motrices pour qu'il effectue un parcours donné. Pour cela, il est nécessaire de caractériser avec précision les 2 motoréducteurs du robot. Chaque motoréducteur est aliménté par un variateur de vitesse. Les 2 variateurs sont pilotés par une carte ARDUINO UNO.

Le travail se décompose en 4 étapes :

- 1. Caractérisation des motoréducteurs.
- 2. Réalisation de la tension U variable : hacheur 4 cadrants avec circuit L298.
- 3. Déplacements élémentaires du robot.
- 4. Réalisation d'un parcours.

Objectifs d'apprentissage

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
réaliser la modélisation et l'analyse d'un pro- cédé simple en vue de son asservissement ; à réaliser la synthèse et la mise en oeuvre d'une structure de commande en boucle fermée élé- mentaire	Notion	de comprendre et de réaliser un asservissement élémentaire d'un procédé simple, en utilisant notamment les outils logiciels Matlab et Simu- link
concevoir et implémenter un comportement simple d'un robot humanoïde en interaction avec son environnement	Notion	de développer graphiquement une chaîne de traitement prenant en compte les capteurs et ac- tionneurs d'un robot humanoïde.
découvrir la structure d'images et réaliser des traitements de base (histogramme, extraire une bande,)	Application	de charger une image, d'extraire les attributs d'image et de réaliser des opérations simples (histogramme, colorbar,)
réaliser une détection de changement ou une mesure de déplacement à partir d'une série d'images avec des méthodes classiques, analy- ser et exploiter les résultats avec des méthodes statistiques	Application	d'expliquer certaines utilités des images, d'effectuer un traitement simple de détection de changement ou mesure de déplacement et d'interpréter les résultats obtenus.
observer l'architecture d'un système et le mo- déliser. Réaliser des mesures et les mettre en forme.	Notion	de mettre en oeuvre un système d'acquisition simple de mesures et de réfléchir à l'exploitation des données récoltées

Outils numériques

LOGICIELS

- CHOREGRAPHE
- ENVI (ENvironment Visualizing Images)
- LABVIEW et SCILAB

• MATLAB et SIMULINK

MATERIELS

- Robots Nao et Pepper
- Robots LEGO EV3
- Cartes ARDUINO UNO

Semestre 6

UE	ECTS	Module	Intitulé	Cours (h)	TD (h)	TP (h)	Pondé- ration	Evaluation
UE601 : Passerelle vers le mi- lieu pro- fessionnel	6	LANG600a	Soutien : Anglais		12			
		LANG601a	Anglais		40.5		3	CC
		PROJ601a	Stage Décou- verte du milieu professionnel					Quitus diplôme
		SHES601a	Gestion financière	10.5	9		1.5	CT
		SHES602a	Initiation au droit	15	4.5		1.5	CT
UE602 : Sciences appliquées et appren- tissage par projet	12	MATH641a	Mathématiques	18	18		3	CC(50%) CT(50%)
		PACI641	Matériaux ac- tifs et intel- ligents pour l'instrumentation	21	15		3	CT
		PACI642	Optique appliquée et transmission optique	14.5	13.5	8	3	CT(70%) + TP(30%)
		PROJ641a	Apprentis- sage par Projet			24	3	CC (Rapport, soutenance, pratique)
UE603 : Traite- ment de l'information et program- mation	12	EASI641a	Signaux et systèmes	12	12	12	2.5	CT(70%) + TP(30%)
		EASI642a	Signal et image : opérateurs de base	13.5	13.5	9	2.5	CT(70%) + TP(30%)
		INFO641a	Conception et programmation orientée objet	9	9	20	2.5	CC(20%) CT(50%) TP(30%)
		INFO642a	Bases de don- nées et tech- nologies web	8.5	7.5	20	2.5	CC(70%) + TP(30%)
		MATH642a	Mathématiques spécialisées	18	18		2	CT

1. UE601 : Passerelle vers le milieu professionnel

1.1. LANG600a - Soutien: Anglais

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
	12			

Langue(s) utilisée(s) pour les enseignements

• Anglais

Pré-requis

Soutien de S6 (12h en présentiel et 12h en autonomie)

Descriptif

Reprise de toutes les bases et renforcement des points de langues vus en s5. 12h de cours par semestre en groupe de 15 étudiants.

1.2. LANG601a - Anglais

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
	40.5		3	CC

Langue(s) utilisée(s) pour les enseignements

• Anglais

Pré-requis

Programme de S5 (LANG501)

Descriptif

Ce cours prépare les étudiants au test du TOEIC ("Test of English for International communication") et plus exactement à l'obtention d'un score minimal de 785 points (sur 990).

Les étudiants sont évalués tout au long de chaque semestre. L'évaluation terminale consiste en une épreuve de 1h, 1h30 ou 2h selon le semestre et selon le site (Annecy ou Le Bourget), et compte coefficient 2 dans le contrôle continu total.

Les étudiants sont évalués tout au long de chaque semestre. L'évaluation terminale consiste en une épreuve de 1h, 1h30 ou 2h selon le semestre et selon le site (Annecy ou Le Bourget), et compte coefficient 2 dans le contrôle continu total.

Plan du Cours

- 1. Révision de points de grammaire importants pour le Toeic
 - 1.1. Le nom
 - 1.2. Les pronoms
 - 1.3. Les mots de liaisons....
- 2. Compréhension orale
 - 2.1. Dialogues enregistrés en anglais américain, britannique, néo-zélandais....
 - 2.2. Videos en anglais américain, britannique, australien....
- 3. Compréhension écrite
 - 3.1. Extraits de presse
 - 3.2. Textes divers

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
auto-vérifier sa maîtrise des structures de la langue et à en poursuivre l'apprentissage méthodique, en visant une inter-activité opérationnelle des 4 compétences de communication.	Maîtrise	de faire des révisions grammaticales sur : les réflexes corrects des structures courantes ; le groupe verbal et les temps (sauf l'expression du conditionnel) ; le groupe nominal et tous ses éléments constitutifs; les liens logiques (mots de liaison)
		d'améliorer ses connaissances grammaticales et lexicales (anglais général et vocabulaire spéci-

Niveau	A l'issue de ce cours l'élève sera capable :
	fique au TOEIC) en classe et en autonomie, en les validant par des tests d'évaluation réguliers
Maîtrise	de travailler sur les conversations télépho- niques (compréhension /production)
	de travailler sur des supports audio et vidéo va- riés et prendre la parole pour réagir spontané- ment en inter-activité avec la classe
	de pratiquer des exercices de TOEIC (4 parties de compréhension orale) + tests entiers
	de prendre la parole en mode préparé et en in- ter-activité spontanée via des exposés indivi- duels (auto-présentation et/ou compte-rendus d'articles, type « colles ») et des exposés par deux (sujets variés)
	d'écouter régulièrement les nouvelles sur des sites anglophones d'information (CNN, BBC, Skynews) et sera en mesure de restituer l'essentiel oralement de façon succincte, en in- ter-activité avec le groupe-classe
Maîtrise	de pratiquer des exercices de TOEIC (3 parties écrites)
	de lire des documents variés (articles généraux et scientifiques) et de rédiger quelques lignes pour en rendre compte et donner son avis.
	d'écrire des emails (à caractère personnel et professionnel) /de commencer à rédiger CVs et lettres de motivation
	Maîtrise

1.3. PROJ601a - Stage Découverte du milieu professionnel

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
				Quitus diplôme

Descriptif

Au cours de sa 3ème année, l'élève ingénieur aura l'obligation d'effectuer soit un stage en entreprise (stage ouvrier ou technicien) soit un stage de mobilité à l'étranger (travail pour une œuvre humanitaire ou emploi dans un pays étranger, etc.).

Les objectifs du stage ouvrier sont :

- vivre une expérience en situation d'ouvrier,
- s'intégrer et participer à une organisation professionnelle,
- identifier les missions des employés (ingénieurs, techniciens, ouvriers ...),
- découvrir des méthodes et des pratiques professionnelles (style de management, qualité, sécurité, environnement, ...).
- tirer des conclusions de son stage, pour sa propre formation, dans l'optique d'une éventuelle future intégration dans cette entreprise en tant qu'ingénieur.

Les objectifs du stage de mobilité à l'étranger :

- vivre une expérience à l'international,
- s'intégrer et découvrir un pays étranger (hors canton de Genève et Monaco),
- améliorer son niveau en langue

Objectifs d'apprentissage

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
murir son projet professionnel	Application	d'identifier ses motivations, ses valeurs et ses compétences professionnelles
		de décrire l'organisation d'une entreprise

1.4. SHES601a - Gestion financière

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
10.5	9		1.5	CT

Langue(s) utilisée(s) pour les enseignements

Français

Descriptif

L'objectif de ce cours est d'acquérir les notions de base en gestion financière.

Plan du Cours

- 1. L'entreprise et son environnement: notions générales, milieu économique... (1 cours + 1 TD)
- 2. La comptabilité générale: écriture comptable, comptabilité analytique, impôts et taxes (1 cours + 1 TD)
- 3. Le diagnostic économique: caractéristiques et structure, moyens financiers, humains et matériels, investissement et financement (2 cours + 2 TD)
- 4. Le diagnostic financier : bilan, compte de résultat, ratios... (3 cours + 2 TD)

Objectifs d'apprentissage

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
décrire les paramètres essentiels en gestion fi- nancière	Notion	de comprendre les principales notions en comptabilité générale: écriture comptable, comptabilité analytique, impôts et taxes
		d'expliquer le diagnostic économique: carac- téristiques et structure, moyens financiers, hu- mains et matériels, investissement et finance- ment
		de comprendre les outils de diagnostic financier : bilan, compte de résultat, ratios

1.5. SHES602a - Initiation au droit

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
15	4.5		1.5	CT

Langue(s) utilisée(s) pour les enseignements

• Français

Descriptif

L'objectif de ce cours est d'acquérir les notions de base en droit.

Plan du Cours

- 1. Les Institutions judiciaires, les Principes Fondamentaux et les Acteurs de la Justice (2 cours + 1 TD)
- 2. La Procédure Pénale et de Droit Pénal (1 cours + 1 TD)
- 3. Le Contrat, la Responsabilité Contractuelle et le Droit de la Famille (2 cours + 1 TD)
- 4. Le Droit du Travail (4 cours)

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
appréhender les bases du droit du travail	Notion	d'identifier les principes du Droit du Travail

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
		de connaître les Institutions judiciaires, les Principes Fondamentaux et les Acteurs de la Justice
		d'appréhender le Contrat, la Responsabilité Contractuelle et le Droit de la Famille

2. UE602 : Sciences appliquées et apprentissage par projet 2.1. MATH641a - Mathématiques

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
18	18		3	CC(50%) CT(50%)

Langue(s) utilisée(s) pour les enseignements

• Français

Pré-requis

Algèbre linéaire de base (espaces vectoriels, opérations matricielles), analyse élémentaire.

Descriptif

Ce cours est divisé en trois parties :

- Algèbre linéaire (espaces vectoriels, applications linéaires, réduction des endomorphismes)
- Espaces euclidiens et hermitiens.
- Suites et séries de fonctions.

Plan du Cours

- 1. Algèbre linéaire
 - 1.1. Espaces vectoriels
 - 1.2. Applications linéaires
 - 1.3. Déterminants
- 2. Espace euclidiens et hermitiens
 - 2.1. Produit scalaire
 - 2.2. Bases orthonormées
 - 2.3. Projections orthogonales
 - 2.4. Produit hermitien
- 3. Réductions des endomorphismes
 - 3.1. Diagonalisation et trigonalisation
 - 3.2. Applications (puissances de matrice, suites et systèmes différentiels)
- 4. Suites et séries de fonctions
 - 4.1. Suites de fonctions
 - 4.2. Séries de fonctions
 - 4.3. Séries entiéres, application aux équations différentielles
 - 4.4. Séries de Fourier

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
utiliser les différentes réductions possibles de matrices	Application	de trouver des valeurs propres
		de construire une base de sous-espaces propres Trouver des valeurs propres
		de calculer des puissances de matrices
		de résoudre des systèmes différentiels linéaires du premier ordre
comprendre les structures algébriques et eucli- diennes d'un espace vectoriel	Maîtrise	de construire une base orthonormée avec différents produits scalaires

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
		de déterminer une projection orthogonale et faire le lien avec les approximations au sens des moindres carrés.
utiliser les suites et séries de fonctions	Application	de reconnaitre les différents types de convergence.
		de résoudre des équations différentielles en utilisant les séries entières
		de décomposer un signal en série de Fourier

2.2. PACI641 - Matériaux actifs et intelligents pour l'instrumentation

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
21	15		3	CT

Langue(s) utilisée(s) pour les enseignements

• Français avec documents en anglais

Pré-requis

Bases de physique générale

Electromagnétisme.

Outil mathématique : intégrales, dérivées, systèmes de coordonnées, opérateurs, analyse vectorielle, calcul matriciel

Descriptif

Ce cours décrit des matériaux à propriétés spécifiques, utilisés dans des capteurs, actionneurs et dispositifs mécatroniques : explication des phénomènes physiques mis en oeuvre dans ces matériaux, description des modèles de comportement permettant de rendre compte de leurs propriétés, applications.

Plan du Cours

- 1. Propriétés diélectriques : polarisation, rigidité et permittivité diélectrique, pyro- et ferroélectricité
- 2. Matériaux piézoélectriques
- 3. Matériaux piézorésisitifs et électrostrictifs
- 4. Propriétés magnétiques des matériaux : aimantation, perméabilité magnétique, para-, dia- et ferromagnétisme
- 5. Matériaux magnétorésistifs et magnétostrictifs
- 6. Biréfringence et modulation électro-optique

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
identifier les classes de matériaux actifs mis en œuvre dans différentes applications de type mesure et transduction.	Maîtrise	d'utiliser et d'appliquer les grandeurs propres aux propriétés diélectriques, piézorésistives et électrostrictives dans un capteur ou un trans- ducteur
		d'utiliser et d'appliquer les grandeurs propres aux propriétés magnétiques, magnétorésis- tives et magnétostrictives dans un capteur ou un transducteur
		d'expliquer le principe d'aimantation
expliquer le comportement des différentes classes de matériaux vis-à-vis de sollicitations électriques, magnétiques et électromagnétiques	Maîtrise	de définir les notions de moment dipolaire per- manent et induit propre aux matériaux diélec- triques et à l'origine des phénomènes piézo- électriques, ferroélectriques et pyroélectriques
		de distinguer les courants de conduction en piézorésistivité des courants de polarisation pour les diélectriques

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
		de décrire l'utilisation de l'effet électro-optique pour la transmission d'un signal (modulation d'amplitude)

David Jiles, Introduction to magnetism and magnetic materials, Ed Chapmann and Hall, 1994

Yuhuan Xu, Ferroelectric Materials and their applications, Ed North-Hollland, Elsevier, 1991

2.3. PACI642 - Optique appliquée et transmission optique

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
14.5	13.5	8	3	CT(70%) + TP(30%)

Langue(s) utilisée(s) pour les enseignements

• Français

Pré-requis

PHYS542 : Electromagnétisme appliqué à la transmission de l'information

Descriptif

Ce cours donne les bases de l'optique géométrique et ondulatoire nécessaires à la compréhension des systèmes utilisant des transmissions optiques. Le formalisme matriciel et la simulation numérique sont mises à profit pour donner au futur ingénieur des méthodes fiables permettant de décrire rapidement et simplement le fonctionnement d'un système optique.

Plan du Cours

- 1. Optique Géométrique (propagation de la lumière, généralités sur les instruments optiques, traitement matriciel)
- 2. Optique Ondulatoire (Propagation d'une impulsion, la nature "ondulatoire" de la lumière, photométrie, polarisation : traitement matriciel, applications des phénomènes d'interférences et de diffraction)
- 3. La microscopie optique
- 4. Optique guidée et transmission optique

Intitulés TP

- 1. Les instruments optiques, approche matricielle
- 2. Interférences diffraction
- 3. Le guide optique plan

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
décrire l'état de polarisation d'une onde lu- mineuse et d'expliquer les phénomènes d'interférences et de diffraction	Maîtrise	de décrire la prorogation d'une onde lumineuse en notation complexe et d'utiliser le formalisme matriciel pour calculer l'action d'un polariseur ou d'une lame à retard sur un état de polarisa- tion quelconque.
		de modéliser les phénomènes d'interférences et de diffraction, et de connaitre les applications courantes de ces phénomènes
décrire le fonctionnement d'un système op- tique géométrique en se basant sur ses éléments équivalents	Maîtrise	de prévoir et décrire le fonctionnement de tout système optique géométrique
		de manipuler les notions d'objets, d'images, de grandissement et de grossissement
		de remplacer le système par ses éléments équivalents

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
décrire la propagation et le confinement de la lumière dans une structure de type guide plan ou de type fibre optique	Application	de calculer l'ouverture numérique d'une fibre optique
		d'évaluer dans une structure plane le nombre de modes guidés

- Optique, Eugene Hecht, Pearson, 2005
- Manuel d'optique, G Chartier, Hermes, 1997
- Introduction to matrix methods in optics, A Gerrard and JM Burch, Wiley 1994

2.4. PROJ641a - Apprentissage par Projet

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
		24	3	CC (Rapport, soutenance, pratique)

Langue(s) utilisée(s) pour les enseignements

• Français

Descriptif

L'Apprentissage par Problèmes et par Projet (APP) dans la spécialité IAI consiste d'une part à développer chez les élèves ingénieurs les compétences acquises dans la formation académique et d'autre part à acquérir des compétences supplémentaires dans des thèmes d'avenir:

- Bâtiment Intelligent (BI) et Objets Connectés (OC)
- Gestion des énergies renouvelables (GER) : photovoltaïque, éolienne, hydrolienne
- Imagerie pour l'environnement (IE)
- Robotique de service (RS) : traitements informatiques
- Santé (S)

Ces thèmes sont le fil conducteur des activités d'APP qui s'étalent sur 3 à 5 semestres à raison d'un module par semestre (module de 36h aux semestres 6, 7 et 9; module de 60h au semestre 8). Le travail est effectué par équipe (entre 4 et 7 élèves ingénieurs) sur l'ensemble des semestres.

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
travailler en équipe, organiser, participer et faire progresser un projet d'équipe tout en acquérant de nouvelles connaissances et de nouvelles compétences.	Application	d'organiser un travail en tâches
		de répartir les tâches entre les membres de l'équipe
		d'organiser et animer une réunion de travail
		de se positionner par rapport à l'équipe en termes de compétences
		d'évoluer en acquérant ou en développant des compétences nouvelles
s'approprier les connaissances et les concepts de base liés à un domaine particulier en rapport avec la formation IAI	Application	de faire une recherche bibliographique dans un domaine nouveau
		d'inventorier les connaissances et concepts utiles à un projet et identifier ceux qu'il est né- cessaire d'acquérir

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
		de chercher à l'extérieur des informations et des expériences pouvant contribuer à l'avancement du projet
		d'aborder la modélisation du système, du pro- cédé ou de l'application à réaliser

Outils numériques

Logiciels spécialisés divers (Labview, Matlab, ETS4, Choregraphe, AndroidStudio, ...).

Plates-formes collaboratives (Moodle, Github, Trello, ...).

Systèmes d'exploitation Windows, Linux, Android et virtualisation.

3. UE603 : Traitement de l'information et programmation

3.1. EASI641a - Signaux et systèmes

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
12	12	12	2.5	CT(70%) + TP(30%)

Langue(s) utilisée(s) pour les enseignements

• Français

Pré-requis

Notions de base sur les équations différentielles et sur les équations récurrentes.

Notions et opérations de base sur les nombres complexes.

Descriptif

A l'issue de ce module, l'étudiant doit être capable de représenter le comportement d'un système dynamique linéaire, en temps continu ou en temps échantillonné, à l'aide d'une fonction de transfert, et d'analyser les principales caractéristiques d'un système lorsque l'on dispose d'un modèle sous forme de fonction de transfert (analyse temporelle, analyse fréquentielle). Le cas particulier d'excitations sinusoïdales est traité via la représentation graphique de Bode (gain et phase).

Plan du Cours

COURS

- 1. Introduction
 - 1.1. Notion de système et de variables
 - 1.2. Notion de causalité
 - 1.3. Notion de modèle
 - 1.4. Temps continu, temps échantillonné
- 2. Les signaux
 - 2.1. Introduction
 - 2.2. La transformée de Laplace
 - 2.3. La transformée en z
- 3. Fonction de transfert
 - 3.1. Introduction
 - 3.2. Systèmes en temps continu
 - 3.3. Systèmes en temps discret
 - 3.4. Systèmes en temps continu échantillonnés
 - 3.5. Représentation d'un système par schéma bloc
- 4. Analyses temporelle et fréquentielle des systèmes linéaires continus d'ordre 1 et d'ordre 2
 - 4.1. Introduction
 - 4.2. Analyse temporelle
 - 4.3. Analyse fréquentielle
 - 4.4. Les systèmes du 1^{er} ordre
 - 4.5. Les systèmes du 2^{ème} ordre

- 1. Transformée de Laplace et transformée de Laplace inverse
- 2. Fonction de transfert et réponse indicielle
- 3. Systèmes du 1^{er} ordre
- 4. Analyse fréquentielle d'un filtre analogique
- 5. Signaux échantillonnés, transformée en z et transformée en z inverse, fonction de transfert échantillonnée
- 6. Systèmes du 2^{ème} ordre

Intitulés TP

- 1. Systèmes du 1er ordre (analyses statique, indicielle et fréquentielle, modélisation et validation de modèle)
- 2. Systèmes du 2ème ordre (Analyse statique, indicielle et fréquentielle, modélisation et validation de modèle)
- 3. Filtrage analogique (fonction de transfert d'un circuit électronique donné, analyses fréquentielles théorique et expérimentale)

Objectifs d'apprentissage

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
modéliser le comportement d'un système dynamique	Maîtrise	d'associer différents sous-systèmes pour construire un modèle global
		de représenter par une fonction de transfert le comportement dynamique d'un système li- néaire, en temps continu ou en temps échan- tillonné
analyser le comportement temporel et fréquentiel d'un système dynamique	Maîtrise	d'analyser les propriétés d'un système dyna- mique dont on connait un modèle sous la forme d'une fonction de transfert, dans le domaine temporel comme dans le domaine fréquentiel

Bibliographie

Ph. De Larminat, Analyse des systèmes linéaires, Lavoisier Hermès Sciences, 2002

H. Bourlès, Systèmes linéaires : de la modélisation à la commande, Lavoisier Hermès Sciences, 2006

P. Codron, S. Le Ballois, Automatique - Systèmes linéaires et continus - Cours et exercices résolus, Dunod Sciences Sup, 1998

Outils numériques

Logiciels MATLAB et SIMULINK

3.2. EASI642a - Signal et image : opérateurs de base

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
13.5	13.5	9	2.5	CT(70%) + TP(30%)

Langue(s) utilisée(s) pour les enseignements

Français

Pré-requis

- espaces vectoriels, produit scalaire
- convolution, transformée de Fourier, distributions

Descriptif

A partir de la modélisation de signaux analogiques, ce cours vise à donner les notions nécessaires à la pratique du fltrage et de l'analyse de signaux numériques 1D et 2D. Les notions abordées comprennent :

- étude temporelle des signaux déterministes
- étude fréquentielle des signaux déterministes
- filtrage linéaire analogique
- signaux numériques : modélisation et filtrage
- signaux 2D et images : représentation et filtrage

Plan du Cours

1. Espaces vectoriels des signaux déterministes d'énergie finie et de puissance moyenne finie (étude temporelle et fréquentielle, filtrage)

- 2. Signaux numériques : échantillonnage et quantification, aspects fréquentiels
- 3. Filtrage numérique linéaire 1D : approche fréquentielle et convolution circulaire, approche temporelle et filtrage RIF, équation aux différences et filtrage RII,
- 4. Signaux 2D : filtrage et détection de contours dans des images, compression des signaux et des images ; introduction aux signaux sur graphe

Intitulés TP

- Etude temporelle, fonctions de corrélation
- Etude fréquentielle, analyse spectrale
- Filtrage numérique

Objectifs d'apprentissage

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :	
déterminer la modélisation la plus adaptée à un signal réel 1D ou 2D	Maîtrise	de comprendre la multiplicité des représenta- tions d'un même signal physique	
		de changer de système de représentation	
faire l'étude des propriétés temporelles de si- gnaux déterministes (caractérisation au 1er et 2e ordre)	Maîtrise	de choisir l'opérateur de calcul adapté à la classe des signaux	
		de vérifier la validité du calcul effectué	
		d'interpréter le résultat des calculs	
faire l'étude fréquentielle de signaux détermi- nistes	Maîtrise	de choisir l'opérateur de calcul adapté à la classe des signaux	
		d'évaluer les performances de l'opérateur de calcul	
		d'interpréter le résultat des calculs	
réaliser la numérisation d'un signal physique en vue de l'étude de ses propriétés ou de sa trans- mission (sans distorsion ou avec un distorsion contrôlée)	Maîtrise	choisir les paramètres de la numérisation (échantillonnage et quantification) tester la va- lidité de la numérisation effectuée	
		choisir un mode de représentation du signal numérique en vue de sa compression ou de la synthèse d'un signal analogique	
de déterminer les propriétés d'un filtre numérique et effectuer le choix d'architecture adapté	Maîtrise	de déterminer les propriétés temporelles et fréquentielles à partir de l'architecture du filtre	
		de faire la synthèse de filtres en adoptant un compromis performance - complexité de réalisation	

Bibliographie

• Aide-mémoire - Traitement du signal, F. Cottet, Dunod, 2017

Outils numériques

MATLAB : synthèse de signaux, calcul de fonctions de correlation et transformées de Fourier en 1D et 2D Analyse temps-fréquence de signaux sonores

Questionnaires et support de cours accessible sur plateforme Moodle

3.3. INFO641a - Conception et programmation orientée objet

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
9	9	20	2.5	CC(20%) CT(50%) TP(30%)

Langue(s) utilisée(s) pour les enseignements

• Français

Pré-requis

Connaissances de base en informatique.

Descriptif

Ce module est une introduction à l'approche orienté objet. Il aborde des aspects liés à la conception et à la programmation. Pour la partie programmation, le langage Java est utilisé en tant que langage support.

Plan du Cours

- 1. L'approche orienté objet et cycle de vie du logiciel
- 2. Classes et Objets. Communication entre objets. Encapsulation.
- 3. Relations entre classes. Héritage et polymorphisme
- 4. Classes abstraites et interfaces
- 5. Modèle a événements et interfaces graphiques

Objectifs d'apprentissage

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
expliquer les caractéristiques de l'approche orientée objet	Application	d'expliquer la structure d'une application orien- tée objet
		d'expliquer comment les objets communiquent
		d'expliquer ce qu'est l'encapsulation et son intéret
		d'expliquer ce qu'est l'héritage et son lien avec la réutilisation du code.
concevoir et implémenter une application orientée objet de relativement petite taille (10 classes) à partir d'une description de problème.	Maîtrise	de définir un diagramme de classe a partir d'un description de problème
		de créer des instances de classes et les faire communiquer
		de réaliser une application impliquant de l'héritage, des classes abstraites et des inter- faces.
		de mettre en place un mécanisme de communi- cation a base d'événements
		de construire une interface graphique conte- nant plusieurs fenêtres s'échangeant des événe- ments.

3.4. INFO642a - Bases de données et technologies web

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
8.5	7.5	20	2.5	CC(70%) + TP(30%)

Langue(s) utilisée(s) pour les enseignements

• Français

Pré-requis

Avoir des connaissances de base en informatique (INFO501, INFO502)

Descriptif

L'objectif de ce cours est d'aller : (1) vers une conception de qualité d'une base de données relationnelle en prenant notamment en compte des contraintes et des règles de gestion des données et en assurant la cohérence et l'intégrité de la base de données ; (2) concevoir une interface web pour créer et manipuler les données de la base. L'accès à la base de données est réalisé à l'aide d'un serveur web qui génère les pages web de l'application.

Ce cours vise à ce que les étudiants soient capables de :

• concevoir et de mettre en œuvre une application 3 tiers (serveur base de données, client web, serveur web) de taille moyenne,

- concevoir l'organisation des données au travers d'un modèle entité-association et de sa traduction dans une base de données relationnelle normalisée,
- formaliser les contraintes et d'élaborer des traitements sur les données en utilisant les mécanismes de contraintes SQL, les déclencheurs, les fonctions et procédures stockées,
- accéder aux données à travers un serveur web, concevoir des interfaces web pour la représentation et la manipulation des données,
- utiliser les technologies actuelles telles que le SGBD Postgres/Mysql, les langages SQL, PHP, HTML, ...

Plan du Cours

Plan du Cours

- 1. Architectures 3 tiers
- Schémas conceptuels (Entités/Association, UML) d'une BD et traduction en modèle relationnel, normalisation du modèle
- 3. Langage de définition, de manipulation, déclencheur, fonctions/procédures stockées
- 4. Conception d'une interface web dynamique
- 5. Gestion des accès à une BD, interrogation des données, restitution et présentation au client web

Intitulés TP

Les deux premières séances sont une application des concepts vus en cours/TD, les trois autres séances sont dédiées à un mini-projet par équipe APP avec pour objectif la mise en place d'un site web pour l'APP pour chacune des thématiques.

Les travaux pratiques portent sur :

- concevoir et mettre en œuvre une base de données normalisée à partir d'un cahier des charges,
- formaliser les contraintes et règles de gestion en utilisant les mécanismes de contraintes SQL, déclencheurs, fonctions et procédures stockées, gestion des exceptions
- mettre en œuvre une démarche permettant de travailler sur une architecture 3 tiers (identification des différents serveurs, leurs accès et les différents espaces de travail),
- mettre en place des programmes sur les serveurs et les clients web nécessaires au fonctionnement de l'architecture 3 tiers,
- utiliser les principaux langages de développement des applications web (SQL, HTML, PHP...),
- mettre en œuvre l'accès aux données d'une base à partir du client web.

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :	
concevoir et mettre en œuvre une architecture 3 tiers de taille moyenne.	Maîtrise	d'énumérer les types des composants in- tervenants dans une architecture 3 tiers et d'expliquer leurs rôles	
		de mettre en œuvre une démarche projet lui permettant de travailler sur une architecture 3 tiers (identification des différents serveurs, leurs accès et les différents espaces de travail)	
concevoir et mettre en œuvre une base de données normalisée à partir d'un cahier des charges.	Maîtrise	de comprendre une base de données existante et la faire évoluer (établir un schéma concep- tuel, requêtes SQL)	
		de comparer différentes conception d'une base de données par rapport à des critères qualité liés à la redondance, la maintenance de la base, l'intégrité	
		de mettre en oeuvre un processus de normalisa- tion d'une base de données	
formaliser les contraintes et règles de gestion liées à une base de données.	Maîtrise	d'identifier les contraintes et les traitements né- cessaires à la gestion de la base de données	
		d'utiliser les mécanismes de déclencheurs, fonctions et procédures stockées d'un système de gestion de base de données pour automatiser	

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
		des actions sur les données, gérer l'intégrité de la base, sécuriser l'accès aux données
concevoir et réaliser une interface web pour une base de données.	Maîtrise	de mettre en place des programmes sur les serveurs et les clients web nécessaires au fonctionnement de l'architecture 3 tiers
		d'utiliser les principaux langages de développe- ment des applications web (HTML, PHP)
		de mettre en œuvre l'accès aux données d'une base à partir du client web
		de mettre en place une application web complète répartie sur les 3 tiers

Ouvrage de référence de Georges Gardarin ici.

Webographie:

- Principaux types de données MySQL
- Procédures, fonctions et déclencheurs
- Curseurs
- Catalogue Mysql (informations sur un schéma de base de données)
- MySQL sur Wikibooks

Outils numériques

Les outils numériques sont utilisés à plusieurs fins :

- pédagogiques : outils de gestion de projets en équipe (répartition, planification et suivi, espaces documantaires...)
- d'auto-évaluation et d'évaluation : Quizz sur Moodle
- d'organisation du cours : espace dédié su Moodle pour les supports de cours et pour la remise des livrables des étudiants.

3.5. MATH642a - Mathématiques spécialisées

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
18	18		2	CT

Langue(s) utilisée(s) pour les enseignements

Français

Pré-requis

Notions de base sur les fonctions, les suites et séries numériques, l'intégration.

Descriptif

Ce cours apporte des compléments mathématiques indispensables pour la compréhension, la représentation et l'analyse de données. La première partie du cours traite de la théorie des distributions, théorie fondamentale lorsque les données analysées sont associées à des signaux analogiques. Cette partie permet de mieux comprendre et manipuler les mathématiques utilisées en traitement du signal et de l'information, ainsi que d'autres phénomènes physiques qui ne peuvent pas être représentés par des fonctions classiques. La deuxième partie du cours traite des mathématiques nécessaires à l'analyse de données numériques. Elle propose d'une part, l'étude des mathématiques nécessaires à l'analyse des signaux discrets et autres informations numériques (Convolution discrète, Transformée en Z, Transformée de Fourier Discrète...). Elle développe, d'autre part, les techniques et méthodes d'optimisation. Cette partie fournit un ensemble d'outils mathématiques essentiels à la résolution des problèmes d'analyse, d'apprentissage machine et recherche d'informations dans les données.

Plan du Cours

- 1. Complément de calcul intégral
 - 1.1. Intégrales généralisées et intégrales dépendant d'un paramètre
 - 1.2. Produit de convolution des fonctions
 - 1.3. Transformées de Fourier et Transformée de Laplace des fonctions

- 1.4. Espaces fonctionnels, Espaces des fonctions test
- 2. Distributions de Schwartz et Distributions tempérées
 - 2.1. Distributions régulières et singulières (de Schwartz)
 - 2.2. Opérations sur les distributions (translation, changement d'échelle, dérivation, ...)
 - 2.3. Produit de convolution des distributions
 - 2.4. Distributions causales et Transformée Laplace (TL) des distributions
 - 2.5. Distributions tempérées et Transformée de Fourier (TF) des distributions
- 3. Théorie de l'échantillonnage
 - 3.1. Modèle mathématique de l'échantillonnage
 - 3.2. Représentation dans le domaine de Fourier
 - 3.3. Théorème de reconstitution (Shannon) des fonctions échantillonnées
 - 3.4. Transformée de Fourier des fonctions échantillonnées
- 4. Convolution discrete et Transformée en Z
 - 4.1. Convolution discrète
 - 4.2. Transformée en Z
- 5. Introduction à l'optimisation
 - 5.1. Optimisation sans contrainte
 - 5.2. Optimisation sous contraintes d'égalité
 - 5.3. Optimisation sous contraintes d'inégalité

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
utiliser les distributions pour représenter les si- gnaux continus dans le domaine temporel et fréquentiel	Maîtrise	de faire des calculs à l'aide des distributions régulières (associées aux fonctions) et non-régulières (Dirac,) : convolution, Transformée de Laplace, de Fourier
de passer des représentations continues aux re- présentations discrètes des signaux	Maîtrise	de maîtriser les phénomènes de repliement spectrale et les équivalences entre fréquences réelles (analogique) et calculées par Transfor- mée de Fourier Discrète.
		de manipuler les principales transformées dis- crètes utilisées en traitement numérique du si- gnal (TNS)
analyser un problème et proposer une solution idéale	Notion	d'appliquer à un problème d'optimisation les techniques de base : recherche de points cri- tique, calcul de Hessien, descente de gradient, utilisation des multiplicateurs de Lagrange

Semestre 7

UE	ECTS	Module	Intitulé	Cours (h)	TD (h)	TP (h)	Pondé- ration	Evaluation
UE701 : Passerelle vers le mi- lieu pro- fessionnel	6	LANG700a	Soutien : Anglais		6			
		LANG701a	Anglais (Niveau TOEIC non atteint)		40.5		3	CC
		LANG702a	Langues vi- vantes (Niveau TOEIC atteint)		30		3	CC
		SHES703a	Ressources et dynamique pro- fessionnelles		10.5	8	1.5	Oral (50%) + rapport et soutenance stage 3A (50%)
		SHES704a	Créativité et Management de l'innovation	12	13.5		1.5	CC (20%) Rap- port +Soute- nance(80%)
UE702 : Electro- nique, au- tomatique et appren- tissage par projet	12	EASI744a	Automatique - Stabilité et commande de systèmes	7.5	9	20	2.5	CT(50%) + TP(50%)
		PACI741	Electronique d'instrumentation : notions essen- tielles pour l'ingénieur	12	12	12	2.5	CC
		PACI742	Systèmes d'acquisition de données - Programma- tion graphique	4.5		32	2.5	CC
		PROJ741a	Apprentis- sage par Projet			24	4.5	Rapport + soutenance + pratique
UE703 : Signaux et systèmes numériques	12	EASI741a	Signaux aléatoires	12	12	12	2.5	CT(70%) TP(30%)
		INFO741a	Systèmes embarqués	9	3	24	2.5	CT(40%) TP(60%)

UE	ECTS	Module	Intitulé	Cours (h)	TD (h)	TP (h)	Pondé- ration	Evaluation
		INFO742a	Méthodes de dé- veloppement lo- giciel et qualité	12.5	7.5	16	2.5	CC(40%) CT(30%) TP(30%)
		INFO743a	Réseaux et sys- tèmes répartis	12	3	20	2.5	CT(60%) + TP(40%)
		MATH741a	Probabilités - Statistiques	18	18		2	CC(50%) CT(50%)

1. UE701 : Passerelle vers le milieu professionnel

1.1. LANG700a - Soutien: Anglais

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
	6			

Pré-requis

Avoir validé S5 - S6 Score Toeic 635. Score Toeic 735 non atteint.

Descriptif

Reprise de toutes les bases et renforcement des points de langues. 6h de cours + 6 h de travail en autonomie par semestre en groupe de 15 étudiants.

1.2. LANG701a - Anglais (Niveau TOEIC non atteint)

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
	40.5		3	CC

Langue(s) utilisée(s) pour les enseignements

• Anglais

Pré-requis

Programme de S5 et S6.

Descriptif

Ce cours prépare les étudiants au test du TOEIC ("Test of English for International communication") et plus exactement à l'obtention d'un score minimal de 785 points (sur 990).

Dans le but de travailler les 4 compétences, ce cours est aussi une introduction à la prise de parole en public au moyen de présentations données par des étudiants en groupes ou en individuel, sur des sujets illustrés par des articles de presse ou des supports vidéos (VTD: Video, Talk and Debate et aussi production écrite). Selon le site (Annecy ou Chambéry certains seront vus à des moments différents du semestre, de l'année voire même des trois années de formation).

Les étudiants sont évalués tout au long de chaque semestre. L'évaluation terminale consiste en une épreuve de 1h, 1h30 ou 2h selon le semestre et selon le site (Annecy ou Le Bourget), et compte coefficient 2 dans le contrôle continu total.

Plan du Cours

- 1. Révision de points de grammaire importants pour le Toeic:
 - 1.1. Révisions des temps.
 - 1.2. Le conditionnel et les structures en "should" (suggestion/subjonctif).
 - 1.3. Les auxiliaires de modalité et les périphrases de sens voisin.
 - 1.4. Les mots de liaison (révisions).
- 2. Compréhension orale:
 - 2.1. Dialogues enregistrés en anglais américain, britannique, néo-zélandais....
 - 2.2. Videos en anglais américain, britannique, australien.
- 3. Compréhension écrite:
 - 3.1. Extraits de presse
 - 3.2. Textes divers

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
intervenir à l'écrit et à l'oral, en visant toujours l'inter-activité de communication opération- nelle	Maîtrise	de poursuivre des révisions grammaticales sur : le conditionnel ; tous les autres temps ; l'expression de la suggestion et de la modali- té / le passif ; les structures verbales (infinitif/- ing) ;
		d'améliorer ses connaissances grammaticales et lexicales (anglais général, « business » et de sa spécialité scientifique), en classe et en autono- mie, en les validant par des tests réguliers
comprendre des documents sonores et s'exprimer oralement	Notion	de continuer à s'entraîner sur des exercices de TOEIC (4 parties de compréhension orale) + tests entiers
		de travailler sur des supports audio et vidéo va- riés (anglais général, « business » et de spécia- lité) et prendre la parole pour réagir spontané- ment, en inter-activité avec la classe
comprendre des documents écrits et s'exprimer à l'écrit	Maîtrise	de continuer à s'entraîner sur des exercices de TOEIC (3 parties écrites)
		de lire des documents variés (anglais général, « business » et scientifique) et rédigé quelques lignes pour en rendre compte et donner son avis
		de rédiger CVs et lettres de motivation

1.3. LANG702a - Langues vivantes (Niveau TOEIC atteint)

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
	30		3	CC

Pré-requis

- Pour l'anglais Culture Civilisation et Langue (CCL) : élèves ingénieurs ayant réussi le TOEIC.
- Pour la LV2 : cours débutants uniquement pour le chinois et le japonais.

Descriptif

Ce cours est composé de deux parties :

- 15h d'Anglais : Culture, Civilisation et Langue
- 15h d'une seconde langue vivante. Les langues proposées sont :
 - Espagnol, Allemand et Italien pour les 2 sites de l'école (non débutants).
 - Chinois et Japonais sur le site d'Annecy avec des cours débutants possibles.

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
être en autonomie linguistique et culturelle pour communiquer de façon authentique	Maîtrise	d'inter-agir avec des professionnels (de sa spé- cialité) au cours de présentations
		d'écouter régulièrement les nouvelles sur des sites anglophones d'information (CNN, BBC, Skynews) et sera en mesure de restituer l'essentiel oralement de façon succincte, en in- ter-activité avec le groupe-classe
		de faire des recherches (en groupe et indivi- duellement) à visée professionnelle / culturelle à présenter en classe

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
imaginer, être créatif et crédible (dans une langue étrangère) pour convaincre des parte- naires professionnels	Maîtrise	de monter un projet professionnel innovant; simuler les démarches auprès des acteurs économiques et d'apporter de l'aide pour le finaliser (selon les étapes d'un « business plan » crédible : rédaction de emails, entretien téléphonique, recrutement, recherches de financement)
		de le présenter, en démontrant la faisabilité technique et commerciale (« pitch » / sur le modèle de : « Dragons' den »)
comprendre et parler d'autres langues que le français et l'anglais et s'ouvrir à d'autres cultures.	Maîtrise	de travailler sur des supports écrits, audio et vi- déo variés
		d'échanger avec des personnes non franco- phones et non anglophones.

1.4. SHES703a - Ressources et dynamique professionnelles

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
	10.5	8	1.5	Oral (50%) + rap- port et soutenance stage 3A (50%)

Langue(s) utilisée(s) pour les enseignements

• Français

Descriptif

Le but du module est d'amener les élèves vers une meilleure connaissance de soi pour définir un projet professionnel, élaborer une stratégie de recherche ciblée et se présenter efficacement lors d'un entretien.

Plan du Cours

- 1. Préparation à la soutenance de stage (2 TD)
- 2. Présentation des objectifs du stage (1TD)
- 3. Ressources et dynamique personnelles et professionnelles (4TD)

Intitulés TP

Simulations d'entretien avec des professionnels

Objectifs d'apprentissage

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
définir son projet de stage 4ème année et mener une recherche efficace	Application	d'identifier ses valeurs, ses motivations et ses compétences personnelles et professionnelles
		de comprendre les attendus du stage de 4ème année
		de définir son projet selon les attendus du stage et ses ressources (personnalité et compétences)
		de convaincre en entretien

1.5. SHES704a - Créativité et Management de l'innovation

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
12	13.5		1.5	CC (20%) Rapport
				+Soutenance(80%)

Langue(s) utilisée(s) pour les enseignements

• Français

Descriptif

L'objectif de ce cours est de permettre aux étudiants de connaître les grandes orientations stratégiques des entreprises. A travers une mise en application des notions abordées en cours magistral, les étudiants auront à gérer un projet innovation, à analyser le secteur, l'offre, la demande et à élaborer un business model.

Ce cours a, en outre, pour vocation de développer des capacités entrepreneuriales chez les étudiants et, de leur donner les clés de compréhension de l'élaboration d'un projet innovant (contraintes temporelles, financières etc...).

Plan du Cours

- 1. Innovation ou invention? La créativité au démarrage
 - 1.1. Le processus de créativité
 - 1.2. Les outils de la créativité
 - 1.3. De l'idée aux Best-seller et produits cultes
- 2. Le management de l'innovation
 - 2.1. Favoriser l'innovation dans l'entreprise
 - 2.2. S'organiser pour innover
 - 2.3. L'innovation et le crowdfunding
- 3. La valeur de l'innovation Business ou GRD : quel outil?
 - 3.1. La proposition de valeur de l'innovation
 - 3.2. Le business Canvas
 - 3.3. Le GRP
- 4. Quand l'innovation se confronte au marché
 - 4.1. L'étude de marché ou de non-marché
 - 4.2. les outils quantitatifs
 - 4.3. les outils qualitatifs
- 5. L'écosystème de l'innovation
 - 5.1. Le PESTEL comme outil d'analyse de l'environnement de l'innovation
 - 5.2. Le SWOT comme outils d'évaluation de l'innovation
- 6. Valoriser l'innovation
 - 6.1. Le rôle de la communication (faire aimer, faire connaître, faire savoir)
 - 6.2. L'innovation et les réseaux sociaux
- 7. L'entreprenariat et la création d'entreprise
 - 7.1. L'accompagnement à l'entreprenariat
 - 7.2. La posture entreprenariale
 - 7.3. Faut-il protéger l'idée?

Objectifs d'apprentissage

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
assurer le management de l'innovation	Application	

2. UE702 : Electronique, automatique et apprentissage par projet 2.1. EASI744a - Automatique - Stabilité et commande de systèmes

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
7.5	9	20	2.5	CT(50%) + TP(50%)

Langue(s) utilisée(s) pour les enseignements

• Français

Pré-requis

Module EASI641 (Signaux et systèmes)

Descriptif

Etude de la stabilité et de la commande des systèmes dynamiques linéaires continus.

Plan du Cours

COURS

- 1. Introduction : notions de stabilité et de système bouclé
 - 1.1. Notion de stabilité d'un système

- 1.2. Notion de système bouclé (commande en boucle fermée)
- 2. Stabilité des systèmes dynamiques linéaires
 - 2.1. Introduction
 - 2.2. Rappels sur les systèmes linéaires
 - 2.3. Condition de stabilité
 - 2.4. Critère de Routh
 - 2.5. Stabilité des systèmes bouclés
- 3. Les correcteurs standards
 - 3.1. Introduction
 - 3.2. Le correcteur PID
 - 3.3. Les principales actions
 - 3.4. Les correcteurs standards
- 4. Réglage de correcteurs par la méthode du modèle
 - 4.1. Le problème
 - 4.2. Procédé d'ordre 1
 - 4.3. Procédés d'ordre 2

TRAVAUX DIRIGES

- 1. Stabilité Méthodes algébriques
- 2. Synthèse de correcteurs P et PI pour un procédé d'ordre 1
- 3. Asservissement en vitesse et en position d'un moteur
- 4. Asservissement de position d'un motoréducteur piloté par un variateur de vitesse

Intitulés TP

Modélisation et asservissement d'un robot LEGO suiveur de ligne

Les séances de travaux pratiques (20h) sont organisées sous la forme d'un mini projet.

Matériels et logiciels utilisés : Robot LEGO EV3, Maltab, Simulink.

Les principales étapes du projet sont :

- 1. Modélisation
 - 1.1. Modélisation des actionneurs (variateur de vitesse, moteur avec encodeur)
 - 1.2. Validation du modèle
 - 1.3. Etude et modélisation du capteur de luminosité
 - 1.4. Modélisation de la cinématique du robot
- 2. Mise en oeuvre d'un asservissement
 - 2.1. Choix et réglage du correcteur (P, PI)
 - 2.2. Mise en oeuvre et évaluation des performances de l'asservissement
- 3. Simulation de l'asservissement et justification des performances de l'asservissement et des limites du modèle

Objectifs d'apprentissage

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
analyser la stabilité d'un système décrit par une fonction de transfert en temps continu	Maîtrise	d'utiliser des méthodes type critère de ROUTH pour déterminer si un système en boucle ou- verte ou en boucle fermée est stable ou non.
		de préciser le domaine de stabilité d'une struc- ture bouclée (réglages des paramètres).
expliquer les avantages apportés par une com- mande en boucle fermée	Maîtrise	d'expliquer les avantages et les inconvénients de structures de commande.
déterminer des réglages satisfaisants de correc- teurs standards, en temps continu	Maîtrise	de proposer des réglages de correcteurs P, PI ou PID par la méthode du modèle.

Bibliographie

- H. Bourlès, Systèmes linéaires : de la modélisation à la commande, Lavoisier Hermès Sciences, 2006
- P. Codron, S. Le Ballois, Automatique Systèmes linéaires et continus Cours et exercices résolus Dunod Sciences Sup, 1998
- Ph. De Larminat, Commande des systèmes linéaires, Lavoisier Hermès Sciences, 2002

Outils numériques

Logiciels MATLAB et SIMULINK

Robots LEGO EV3

2.2. PACI741 - Electronique d'instrumentation : notions essentielles pour l'ingénieur

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
12	12	12	2.5	CC

Langue(s) utilisée(s) pour les enseignements

- Français
- Anglais

Pré-requis

- Bases de l'électronique analogique : circuits avec des éléments actifs et passifs, éléments sur les transistors, amplificateurs, filtres.
- Bases de l'électronique numérique : bases de la logique numérique, portes logiques, bascules, commutateurs et éléments de mémoires

Descriptif

Ce module traite des blocs électroniques de base nécessaires pour comprendre les éléments essentiels d'un système d'acquisition de données;

Le système est souvent somposé d'une ou plusieurs cartes électroniques comprenant une partie analogique et une partie numérique munie ou non d'un microcontrôleur. Les éléments suivants seront abordés d'une manière plus au moins approfondie : Interfaçage du capteur à l'électronique analogique, amplification bas bruit, amplification de mise en forme du signal, échantillonneur-bloqueur, conversion analogique numérique, conversion numérique analogique, notion de FPGA et enfin les protocoles et circuits de transmission des données numériques

Plan du Cours

- 1. Interface of the sensor to the front end electronics (2 hours lectures + 2 hours exercises)
- 2. Low noise amplification (2 hours lectures + 2 hours exercices)
- 3. Shapers, sample and hold circuits (2 hours lectures + 2 hours exercices)
- 4. Analog-to-digital conversion (ADC), digital-to-analog conversion (DAC) (2 hours lectures + 2 hours exercices)
- 5. FPGA, notions (2 hours lectures + 2 hours exercices)
- 6. Protocols and the of data transmission. (2 hours lectures + 2 hours exercices)

Intitulés TP

- Amplification and amplificators 4 hours
- Sample and hold followed with an ADC and the sotorage of the data 4 hours
- · A data acquidsition system with a microcontroler 4 hours

Objectifs d'apprentissage

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
comprendre et pouvoir proposer et réaliser un système d'acquisition de données pour une ap- plication spécifique en instrumentation	-	
		d'identifier les paramètres essentiels pour le choix des composants (circuits) à utiliser ou à réaliser ou à faire réaliser le cas échéant.

2.3. PACI742 - Systèmes d'acquisition de données - Programmation graphique

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
4.5		32	2.5	CC

Langue(s) utilisée(s) pour les enseignements

• Français

Pré-requis

Avoir suivi les modules EASI501 et PACI741 ou posséder les connaissances équivalentes.

Descriptif

Programmer des systèmes numériques d'acquisition/génération de données avec un langage graphique (LabVIEW).

Plan du Cours

- 1. Convertisseurs Numérique/Analogique et Analogique/Numérique (Rappels)
 - 1.1. Convertisseurs Numérique/Analogique : Structures, principes de fonctionnement et performances
 - 1.2. Convertisseurs Analogique/Numérique :
 - 1.2.1A équilibre de tension : Structures, principes et performances
 - 1.2.2A équilibre de charge : Structures, principes et performances
 - 1.2.3Convertisseurs Sigma/Delta
- 2. Système numérique d'acquisition/génération : architectures, performances et programmation

Intitulés TP

Les Travaux Pratiques sont regroupés en 3 grandes parties :

- TP1 et TP2 : Présentation et prise en main du Langage de programmation graphique LabVIEW (8h)
- TP3 à TP5 : TP-cours sur les fondamentaux de l'acquisition/génération, cas d'une programmation sous LabVIEW (12h)
- TP6 à TP8 : Micro-projet de programmation d'un système numérique d'acquisition/génération sous LabVIEW (12h)

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
comprendre les différents constituants de la chaîne d'acquisition d'un signal analogique ou numérique	Maîtrise	de connaître les fonctions de base d'électronique numérique
		de connaître les différents types de convertis- seurs
		de dimensionner les grandeurs caractéristiques du pré-conditionnement avant acquisition (am- plification, filtrage et quantification)
mettre en œuvre les différentes possibilités of- fertes par un dispositif d'acquisition associé à un calculateur	Application	de connaître les contraintes matérielles de l'acquisition/génération (référence de masse, niveau de tension)
		de définir la nature des signaux en entrée et/ou en sortie (analogique, numérique, compteur)
		de choisir et mettre en œuvre différents modes d'acquisition/génération (à la demande, en nombre fini, en continu)
		de choisir et mettre en œuvre différents modes de déclenchement et de cadencement
concevoir, à partir de la description d'un besoin en instrumentation, l'application logiciel ex- ploitant le matériel d'acquisition/génération mis en œuvre	Maîtrise	de choisir et mettre en œuvre le(s) mode(s) d'acquisition/génération répondant à un pro- blème posé
		de choisir et mettre en œuvre le(s) mode(s) de déclenchement et de cadencement répondant à un problème posé

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
		de choisir et mettre en œuvre la forme de pré- sentation des données à post-traiter

Bibliographie

- Francis COTTET, LabVIEW: Programmation et Applications, DUNOD
- Francis COTTET, Traitement des signaux et acquisition de données, DUNOD
- Ronald J. TOCCI, Circuits numériques Théorie et Applications, DUNOD/GOULET
- Site de NI: www.ni.com

Outils numériques

Site de National Instrument, avec les tutoriaux et vidéo en ligne : www.ni.com

Matériel d'acquisition/génération numérique National Instrument.

Plateforme LabVIEW de développement logiciel.

2.4. PROJ741a - Apprentissage par Projet

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
		24	4.5	Rapport + soute-
				nance + pratique

Langue(s) utilisée(s) pour les enseignements

• Français

Pré-requis

De préférence avoir suivi le module d'APP du même thème au semestre 6.

Descriptif

L'Apprentissage par Problèmes et par Projet (APP) dans la spécialité IAI consiste d'une part à développer chez les élèves ingénieurs les compétences acquises dans la formation académique et d'autre part à acquérir des compétences supplémentaires dans des thèmes d'avenir:

- Bâtiment Intelligent (BI) et Objets Connectés (OC)
- Gestion des énergies renouvelables (GER) : photovoltaïque, éolienne, hydrolienne
- Imagerie pour l'environnement (IE)
- Robotique de service (RS) : traitements informatiques
- Santé (S)

Ces thèmes sont le fil conducteur des activités d'APP qui s'étalent sur 3 à 5 semestres à raison d'un module par semestre (module de 36h aux semestres 6, 7 et 9; module de 60h au semestre 8). Le travail est effectué par équipe (entre 4 et 7 élèves ingénieurs) sur l'ensemble des semestres.

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
organiser, planifier et suivre la réalisation d'un projet d'équipe tout en acquérant de nouvelles connaissances et de nouvelles compétences.	Maîtrise	d'organiser un travail en tâches et les répartir entre les membres de l'équipe [
		d'organiser et animer une réunion de travail, prendre des notes et rédiger un compte-rendu
		d'échanger et confronter ses idées pour faire avancer un projet [
		d'acquérir et développer des compétences nou- velles
participer à la conception d'un système ou d'une application répondant à une probléma- tique dans un domaine spécifique en s'appuyant sur les compétences acquises au semestre pré-	Maîtrise	d'appliquer une approche ingénieur dans la conception d'un système instrumenté ou une application robotique

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
cédent et en acquérant de nouvelles compé-		
tences.		

Outils numériques

Logiciels spécialisés divers (Labview, Matlab, ETS4, Choregraphe, AndroidStudio, ...).

Plates-formes collaboratives (Moodle, Github, Trello, ...).

Systèmes d'exploitation Windows, Linux, Android et virtualisation.

3. UE703 : Signaux et systèmes numériques

3.1. EASI741a - Signaux aléatoires

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
12	12	12	2.5	CT(70%) TP(30%)

Pré-requis

- MATH642 Mathématiques Spécialisés
- EASI642 Bases du traitement d'image

Descriptif

A l'issue de ce module les étudiants seront capables

- définir les propriétés d'un processus aléatoire ainsi que le théorème de l'ergodicité
- expliquer les estimateurs des propriétés statistiques d'un processus aléatoire en numérique (autocorrélation, densité spectrale, ...)
- illustrer par quelques applications en filtrage optimal, détection, estimation, ...

Plan du Cours

- 1. Signaux aléatoires
 - 1.1. Variables aléatoires,
 - 1.2. Signaux aléatoire,
 - 1.3. Propriétés statistiques : lois, indépendance, stationnarité,
 - 1.4. Propriétés temporelles : ergodisme, Représentation fréquentielle des signaux aléatoires stationnaires au sens large,
 - 1.5. Opération linéaire sur signaux aléatoires
- 2. Estimation:
 - 2.1. Définitions générales relatives à l'estimation,
 - 2.2. Estimation de la fonction d'autocorrélation,
 - 2.3. Estimation de la DSP
- 3. Filtrage Adaptatif
 - 3.1. Introduction,
 - 3.2. Filtre de Wiener,
 - 3.3. Moindres carrés exacts et pondérés,
 - 3.4. Moindres carrés récursifs (RLS),
 - 3.5. Filtrage adaptatif par algorithme du gradient (LMS)

Intitulés TP

- TP1 : Fonction d'autocorrélation
- TP2 : Densité spectrale de puissance. Analyse spectrale classique
- TP3: Filtrage adaptatif

Ces TPs se déroulent sur MATLAB.

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
extraire de l'information et de la connaissance par traitement de données	Notion	d'expliquer les définitions liées à un processus aléatoire

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
		d'interpréter en terme de traitement de signal le théorème de l'ergodicité
		d'appliquer les différents estimateurs de la fonction d'autocorrélation et de la densité spec- trale
		de prévoir le comportement de ses estimateurs en fonction des différents paramètres
prendre des décisions à partir de mesures, d'observations sur l'environnement, de mo- dèles et de critères	Notion	d'identifier à partir d'un cahier de charges le traitement adapté aux signaux rencontrés
		d'utiliser un programme de moindres carrés récursifs, de LMS,

Bibliographie

- Méthodes et techniques de traitement de signal. Jacques Max et Jean Louis Lacoume 5ème édition Dunod
- Filtrage adaptatif : théorie et algorithmes. François Michaud et Maurice Bellanger Hermès

Outils numériques

MATLAB.

3.2. INFO741a - Systèmes embarqués

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
9	3	24	2.5	CT(40%) TP(60%)

Pré-requis

INFO501: Numération et Algorithmique

Descriptif

Cet enseignement a pour objectif de présenter les caractéristiques des systèmes embarqués. Les aspects matériels et logiciels sont abordés dans une approche système. Les notions importantes liées à la gestion des systèmes embarqués sont abordées et mises en pratique dans un mini-projet (Entrées-Sorties, interruptions, partage du temps CPU, programmation multi-threads, fonctionnalités d'un noyau de système d'exploitation, ...).

Plan du Cours

- 1. Architecture générale d'un système embarqué
 - 1.1. Caractéristiques : aspects techniques et fonctionnels
 - 1.2. Contraintes des systèmes embarqués
- 2. Système d'exploitation (OS):
 - 2.1. Comprendre le rôle d'un Système d'exploitation
 - 2.2. Connaître les spécificités d'un système d'exploitation dédié à un système embarqué
 - 2.3. Savoir déterminer la nécessité de mise en œuvre d'un système d'exploitation temps réel (notion de criticité)
- 3. Système embarqué avec OS
 - 3.1. Du logiciel embarqué simple à l'application embarquée s'appuyant sur un système d'exploitation
- 4. Entrées/Sorties
 - 4.1. Comprendre le rôle d'un pilote de périphérique et être capable de l'exploiter dans une application
 - 4.2. Comprendre et mettre en œuvre la gestion d'un circuit d'interface d'E/S
 - 4.3. Comprendre le mécanisme d'interruptions et savoir le mettre en œuvre

Intitulés TP

Organisée sous la forme de 2 mini-projets, la mise en application des connaissances enseignées dans ce module a pour but bien évidemment d'appuyer les concepts vus en cours mais également d'apporter des notions complémentaires (environnement de développement, cross-compilation, programmation de système embarqué, gestion des entrées-sorties, modules noyau, ...).

Différents supports seront utilisés dans ces TP-projets (arduino, Raspberry Pi avec linux embarqué)

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
spécifier, analyser, concevoir et mettre en œuvre des systèmes informatiques, en particu- lier des systèmes embarqués et des systèmes communicants	Application	de proposer une solution technologique pour réaliser un système embarqué
		de proposer et justifier une solution d'implémentation du logiciel embarqué (avec ou sans OS)
		de spécifier, concevoir et réaliser une applica- tion logicielle embarquée simple utilisant des échanges avec l'extérieur (gestion d'Entrées/ Sorties, mise en œuvre des interruptions, mé- moires partagées,)
		de déterminer la criticité du traitement logiciel (notion de temps réel, d'ordonnancement, de gestion des priorités et de multitâche)

Bibliographie

Les supports seront sur la plateforme EAD. Certains sont sur la page web suivante : https://www.listic.univ-smb.fr/en/presentation-en/members/lecturers/guillaume-ginolhac-en/teaching/

Outils numériques

Arduino, Raspberry Pi avec linux embarqué

3.3. INFO742a - Méthodes de développement logiciel et qualité

ion	Evaluation	Pondération	TP (h) Pon		Cours (h)
/	CC(40%)	2.5	16	7.5	12.5
	CC(40% CT(30%) TP	2.5	16	7.5	12.5

Langue(s) utilisée(s) pour les enseignements

• Français

Pré-requis

Conception et programmation d'applications (INFO641, INFO642)

Descriptif

Ce module constitue une introduction au génie logiciel, en abordant tout particulièrement des aspects liés à la qualité et tests du logiciel. Dans ce contexte les étudiants se familiarisent avec les différentes facettes de la qualité du logiciel, des pratiques et principes de conceptions menant a des logiciels maintenables et fiables.

Plan du Cours

- 1. Introduction au génie logiciel et outils de modélisation UML
- 2. Conception pour la qualité et la maintenance
- 3. Qualité et test du logiciel

Intitulés TP

4 séances de TP sont prévues.

La première est dédiée à l'appropriation des différents outils de modélisation UML (modèle statique et modèle dynamique). Un travail individuel est demandé pour cette séance.

Les trois séances suivantes sont dédiées à un mini projet qui implique un travail en équipe.

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
intégrer la dimension qualité dans le dévelop- pement de logiciels	Maîtrise	de citer les différents attributs qui constituent la qualité d'un système informatique de citer les différents attributs qui constituent la qua-

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
		lité d'un système informatique de citer les dif- férents attributs qui constituent la qualité d'un système informatique de citer les différents at- tributs qui constituent la qualité d'un système informatique de citer les différents attributs qui constituent la qualité d'un système informa- tique de citer les différents attributs qui consti- tuent la qualité d'un système informatique
		de citer des éléments historiques liés à la crise du logiciel et l'avènement du génie logiciel
concevoir des logiciels en s'assurant des pro- priétés fonctionnelles et non fonctionnelles en particulier la maintenabilité et la réutilisabilité	Maîtrise	de citer les différentes formes de maintenance
		d'expliquer le rôle de la maintenance dans le développement du logiciel
		d'expliquer les différents principes de concep- tion
		de faire des choix argumentés de conception par rapport à des caractéristiques visées pour le logiciel
concevoir un dispositif de test, intégrant la construction des jeux de test et l'analyse des ré- sultats	Maîtrise	de réaliser des jeux de tests appropriés et faire une analyse des résultats de tests
		de citer les différentes méthodes de test
		de faire le choix de la méthode appropriée par rapport aux propriétés et la phase dans le cycle de développement

Outils numériques

Les outils numériques sont utilisés à plusieurs fins :

- pédagogiques : outils de gestion de projets en équipe (répartition, planification et suivi, espaces documantaires...)
- d'auto-évaluation et d'évaluation : plusieurs Quizz sur Moodle
- d'organisation du cours : espace dédié su Moodle pour les supports de cours et pour la remise des livrables des étudiants.

3.4. INFO743a - Réseaux et systèmes répartis

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
12	3	20	2.5	CT(60%) + TP(40%)

Langue(s) utilisée(s) pour les enseignements

• Français avec documents en anglais

Descriptif

Ce cours donne les concepts fondamentaux nécessaires à la compréhension des réseaux informatique et aux déploiement des applications et systèmes réparties. Le cours débutera par une introduction à l'architecture de l'Internet et aux notions de protocoles applicatifs (HTTP, SMTP, SSH,...). Il présentera ensuite les protocoles de transport (TCP, UDP) ainsi que la structure de l'adressage IP. L'interface sockets sera présentée ainsi que la notion de middleware. L'algorithmique répartie sera introduite par des examples concrets d'applications. Ceci fournira les bases essentielles au déploiement d'applications en réseau et réparties.

Plan du Cours

- 1. Introduction à l'architecture d'Internet (1,5h cours)
- 2. Protocoles applicatifs (1,5 h cours)

- 3. Protocoles de transport: TCP, UDP (1,5 h cours)
- 4. Adressage IP (1,5 h cours)
- 5. Programmation Socket (1,5 h cours)
- 6. Middlewares (1,5 h cours)
- 7. Algorithmique répartie (1,5 h cours)
- 8. Etude de cas (1,5 h cours)

Liste des TD

- TD 1 (protocoles, encapsulation, architecture IP)
- TD2 (middlewares, systèmes répartis)

Intitulés TP

- Mise en place d'un réseau IP (4 h de TP)
- Routage IP (4 h de TP)
- Capture de trames et observation in vivo (4 h de TP)
- Développement d'applications réseaux (serveur de tchat) (4h de TP)
- Algorithmique répartie et middlewares (4h de TP)

Objectifs d'apprentissage

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
comprendre l'architecture de l'Internet et des réseaux IP	Maîtrise	de déployer un réseau local simple et définir un adressage IP
comprendre l'architecture des applications ré- seau	Maîtrise	de développer des applications réseaux et des algorithmes répartis simples en utilisant les so- ckets ou du middleware
comprendre et mettre en place des protocoles applicatifs rétroactifs	Maîtrise	d'implanter des applications client-serveur et Pair à Pair

Bibliographie

- James Kurose, Keith W. Ross, Analyse structurée des réseaux Des applications de l'Internet aux infrastructures de télécommunication (2e éd.), Pearson Education, 2003
- · A. S. Tanenbaum, M. Van Steen, Distributed Systems: Principles and Paradigms (2nd ed.), 2007, Prentice Hall

3.5. MATH741a - Probabilités - Statistiques

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
18	18		2	CC(50%) CT(50%)

Langue(s) utilisée(s) pour les enseignements

• Français

Pré-requis

Séries numériques, intégrales généralisées.

Descriptif

Ce cours traite les principales notions de probabilité et statistiques utiles en sciences de l'ingénieur afin de savoir les utiliser pour modéliser des situations concrètes.

Plan du Cours

- 1. Probabilités
 - 1.1. Définitions, dénombrement, lois de probabilités, probabilité conditionnelle et indépendance.
 - 1.2. Variables aléatoires discrètes et lois usuelles discrètes
 - 1.3. Variables aléatoires continues et principales lois continues
 - 1.4. Vecteurs aléatoires et suites de variabes aléatoires
 - 1.5. Lois conjointes et marginales
 - 1.6. Convergence des suites de variables aléatoires
 - 1.7. Approximations par les lois classiques
- 2. Statistiques
 - 2.1. Satistique descriptive

- 2.2. Séries statistiques doubles, différents types de régression
- 2.3. Estimations : définitions, estimation par intervalles de confiance

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
modéliser une situation aléatoire à l'aide de probabilités	Maîtrise	de manipuler les variables discrètes ou conti- nues
		de connaitre et utiliser les lois classiques
		de trouver la loi d'une variable aléatoire et d'une somme de variables aléatoires
maitriser les statistiques	Application	d'utiliser les probabilités pour déterminer les lois des échantillons
		d'utiliser des approximations (par la loi nor- male, la loi de Poisson)
		de déterminer des modèles (régressions)

Outils numériques

- Fonctions statistiques de la calculatrice
- Tableur

Semestre 8

UE	ECTS	Module	Intitulé	Cours (h)	TD (h)	TP (h)	Pondé- ration	Evaluation
UE801 : Passerelle vers le mi- lieu pro- fessionnel	12	LANG800	Soutien : Anglais		6			
		LANG801a	Anglais (Niveau TOEIC non atteint)		40.5		3	CC
		LANG802a	Langues vivantes (Niveau TOEIC atteint)		30		3	CC
		SHES802a	Système de Ma- nagement Inté- gré QSE (Qua- lité Sécurité En- vironnement)	9	10.5		1.5	CC
		SHES803a	Théorie des organisations	13.5	6		1.5	CC
UE802 : Stage	6	PROJ801	Stage Assis- tant ingénieur				6	Soutenance, rapport écrit, évaluation entreprise
UE803 : Mesures, instrumen- tation et pi- lotage de systèmes	7	EASI843a	Automatisation décentralisée			24	2	TP
		PACI841	Physique expérimentale, mesures, capteurs et instrumentation	15	13.5	64	5	CC(25%) TP(50%) Projet(25%)
UE804 : Da- ta science et appren- tissage par projet	11	EASI842a	Analyse d'image et vision par ordinateur	15	13.5	12	2	CT(70%) + TP(30%)
		EASI844a	Modèles des sys- tèmes à évène- ments discrets et applications	9	19.5	12	1.5	CC(70%) TP(30%)
		INFO841	Sécurité des systèmes cy- ber-physiques	7.5	4.5	12	2	CT(50%) TP(50%)

UE	ECTS	Module	Intitulé	Cours (h)	TD (h)	TP (h)	Pondé- ration	Evaluation
		PROJ841a	Apprentis- sage par projet			40	5.5	Rapport + soutenance + pratique

1. UE801 : Passerelle vers le milieu professionnel

1.1. LANG800 - Soutien : Anglais

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
	6			

Langue(s) utilisée(s) pour les enseignements

· Anglais

Pré-requis

Avoir validé S5 - S6 Score Toeic 635. Score Toeic 735 non atteint.

Descriptif

Reprise de toutes les bases et renforcement des points de langues. 6h de cours + 6 h de travail en autonomie par semestre en groupe de 15 étudiants.

1.2. LANG801a - Anglais (Niveau TOEIC non atteint)

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
	40.5		3	CC

Langue(s) utilisée(s) pour les enseignements

• Français

Pré-requis

Programme de S7

Descriptif

Ce cours prépare les étudiants au test du TOEIC ("Test of English for International communication") et plus exactement à l'obtention d'un score minimal de 785 points (sur 990).

Le test Toeic se déroulera à la fin de ce semestre sur chacun des sites à des dates très proches. (Des sessions de "rattrapage" auront lieu s9).

Les étudiants sont évalués tout au long de chaque semestre. L'évaluation terminale consiste en une épreuve de 1h, 1h30 ou 2h selon le semestre et selon le site (Annecy ou Le Bourget), et compte coefficient 2 dans le contrôle continu total.

Plan du Cours

- 1. Révision de points de grammaire importants pour le Toeic
 - 1.1. Révisions de tous les temps vus ou revus en S5, S6 et S7.
 - 1.2. Le passif.
 - 1.3. les structures causatives.
 - 1.4. BV / BVing ou to BV.
 - 1.5. Les mots de liaison.
- 2. Compréhension orale
 - 2.1. Dialogues enregistrés en anglais américain, britannique, néo-zélandais....
 - 2.2. Videos en anglais américain, britannique, australien....
- 3. Compréhension écrite
 - 3.1. Extraits de presse
 - 3.2. Textes divers

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
intervenir à l'écrit et à l'oral, en visant toujours l'inter-activité de communication opérationnelle		de poursuivre des révisions grammaticales sur : le conditionnel ; tous les autres temps ; l'expression de la suggestion et de la modalité / le passif ; les structures verbales (infinitif/ -ing)
		d'améliorer ses connaissances grammaticales et lexicales (anglais général, « business » et de sa spécialité scientifique), en classe et en autono- mie, en les validant par des tests réguliers
comprendre des documents sonores et s'exprimer oralement	Maîtrise	de continuer à s'entraîner sur des exercices de TOEIC (4 parties de compréhension orale) + tests entiers
		de travailler sur des supports audio et vidéo va- riés (anglais général, « business » et de spécia- lité) et pris la parole pour réagir spontanément, en inter-activité avec la classe
		de prendre la parole en mode préparé et en inter-activité spontanée via des exposés à caractère scientifique et sur des thématiques ou problèmes liés au monde de l'entreprise (entretien d'embauche, négociations, discussion sur un projet technique/ professionnel/ inégalité salariale; mobilité internationaleetc)
comprendre des documents écrits et s'exprimer à l'écrit	Maîtrise	de s'entraîner sur des exercices de TOEIC (3 parties écrites)
		de lire des documents variés (anglais général, « business » et scientifique) et rédigé quelques lignes pour en rendre compte et donner son avis
		de rédiger CVs et lettres de motivation

1.3. LANG802a - Langues vivantes (Niveau TOEIC atteint)

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
	30		3	CC

Pré-requis

- Pour l'anglais Civilisation : élèves ingénieurs ayant réussi le TOEIC.
- Pour la LV2 : cours débutants uniquement pour le chinois et le japonais

Descriptif

Ce cours est composé de deux parties :

- 15h d'Anglais : Culture, Civilisation et Langue. Réactualisation et validation des acquis et utilisation de l'anglais en toute situation de communication.
- 15h d'une seconde langue vivante. Les langues proposées sont :
 - Espagnol, Allemand et Italien pour les 2 sites de l'école (non débutants).
 - Chinois et Japonais sur le site d'Annecy avec des cours débutants possibles

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
être en autonomie linguistique et culturelle		d'inter-agir avec des professionnels (de sa spé-
pour communiquer de façon authentique		cialité) au cours de présentations

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
		d'écouter régulièrement les nouvelles sur des sites anglophones d'information (CNN, BBC, Skynews) et sera en mesure de restituer l'essentiel oralement de façon succincte, en in- ter-activité avec le groupe-classe
		de faire des recherches (en groupe et indivi- duellement) à visée professionnelle / culturelle à présenter en classe
imaginer, être créatif et crédible (dans une langue étrangère) pour convaincre des parte- naires professionnels	Maîtrise	de monter un projet (professionnel) innovant; simulé les démarches auprès des acteurs économiques capables d'apporter de l'aide pour le finaliser (selon les étapes d'un « business plan » crédible : rédaction de emails, entretien téléphonique, recrutement, recherches de financement)
		de présenter un projet, en en démontrant la fai- sabilité technique et commerciale (« pitch » / sur le modèle de : « Dragons' den »)
comprendre et parler d'autres langues que le français et l'anglais et s'ouvrir à d'autres cultures.	Maîtrise	de travailler sur des supports écrits, audio et vi- déo variés
		d'échanger avec des personnes non franco- phones et non anglophones.

1.4. SHES802a - Système de Management Intégré QSE (Qualité Sécurité Environnement)

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
9	10.5		1.5	CC

Langue(s) utilisée(s) pour les enseignements

• Français

Pré-requis

Aucun pré-requis nécessaire.

Descriptif

Les élèves doivent avoir pris conscience que les systèmes de management de la qualité, de l'environnement et de la santé et sécurité au travail sont aujourd'hui incontournables dans l'entreprise. Il leur faut donc avoir une connaissance suffisante de ces systèmes afin de les prendre en compte et de les intégrer dans leur métier d'ingénieur.

Plan du Cours

- 1. Management de la Qualité :
 - 1.1. Introduction au management de la qualité ;
 - $1.2. \ \ Norme: définition \ et \ historique \ de \ la \ qualité, principe \ de \ la \ certification \ ;$
 - 1.3. Amélioration Continue : Kaizen, 5S, Lean, Six Sigma ;
 - 1.4. Démarche Processus;
 - 1.5. TD: Modélisation informatique d'un processus, bpm, édition Web.
- 2. Management de l'Environnement :
 - 2.1. L'environnement, le développement durable, le Bilan Carbone ;
 - 2.2. Qu'est-ce qu'un SME?
 - 2.3. Les référentiels, les enjeux ;
 - 2.4. La norme ISO 14001;
 - 2.5. Le référentiel EMAS;
 - 2.6. Mettre en place un SME;
 - 2.7. TD: Audit du SME d'une entreprise, proposition d'éco-cartes.

- 3. Santé et Sécurité au Travail :
 - 3.1. Généralités et enjeux ;
 - 3.2. Parties prenantes;
 - 3.3. Législation et référentiel de système de management SST;
 - 3.4. SST et RSE.

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
citer et décrire les systèmes de management de la qualité	Application	de participer activement à une démarche quali- té
		de faire partie d'un workshop à l'occasion d'un événement Kaizen
		de repérer et de modéliser un processus dont il serait le pilote
citer et décrire les systèmes de management en- vironnementaux	Application	de participer activement à une certification en- vironnementale
		de repérer et de modéliser un processus dont il serait le pilote
		de construire des éco-cartes dans le cadre du référentiel EMAS
décrire la législation et le système de management de la santé et de la sécurité au travail	Application	de prendre en compte les impératifs liés à la santé et à la sécurité au travail imposés par la législation
		de prendre conscience de la notion de bien- être au travail en s'inscrivant dans une politique RSE pro-active

1.5. SHES803a - Théorie des organisations

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
13.5	6		1.5	CC

Langue(s) utilisée(s) pour les enseignements

• Français

Descriptif

Le contenu du cours de théorie des organisations est volontairement descriptif et suit une chronologie très claire. L'idée est de retracer les prémisses dans la gestion des organisations dès la fin du XIXième siècle jusqu'à nos jours. Pour cela le cours s'appuie sur les principales théories, recherches et avancées managériales effectuées au fur et a mesure du développement des entreprises.

Ce module se divise en trois grandes parties thématiques :

- Les fondements de la gestion des organisations (approche classique et école des relations humaines);
- Le concept de structure organisationnelle avec entre autres les travaux de Mintzberg qui mettent en évidence les opportunités et les contraintes en termes de conception, de coordination et d'agencement d'une entreprise;
- Le comportement organisationnel avec les notions de performance, de diversité, de conflits, de négociation, de stress...

Ce cours est un enseignement de base dans le domaine de la gestion. Il permet d'avoir un aperçu global du management des entreprises et d'en comprendre les tenants et les aboutissants.

Plan du Cours

- 1. Les prémisses de la gestion des organisations.
 - 1.1. L'ecole classique (Taylor, Ford, Weber, Fayol)
 - 1.2. L'ecole des relations humaines (Mayo...)
 - 1.3. Les théories de la motivation (Maslow, Lewin...)
- 2. Les structures organisationnelles

- 2.1. Les différents types de structure
- 2.2. L'impératif de la coordination
- 2.3. Vers un modèle de réseau
- 3. Le comportement organisationnel
 - 3.1. La diversité
 - 3.2. Les équipes / groupes
 - 3.3. Les conflits et négociations
 - 3.4. La dynamique du stress

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :	
retracer les prémisses dans la gestion des or- ganisations et décrire les principales théories et recherches sur le fonctionnement des entre- prises	Application	de connaître les grands courants de pensée	
		de comprendre l'évolution des premières ré- flexions de management	
décrire la notion de structure organisationnelle	Application	de connaître les différentes formes organisa- tionnelles	
		de comprendre l'adéquation entre structure et coordination	
décrire la thématique du comportement organi- sationnel (conflits, négociation, stress)	Application	d'identifier et de reconnaître les diverses me- sures de performance, la notion de diversité, la problématique des conflits, de la négociation, du stress	

2. UE802 : Stage

2.1. PROJ801 - Stage Assistant ingénieur

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
			6	Soutenance, rapport écrit,
				évaluation entreprise

Langue(s) utilisée(s) pour les enseignements

• Français

Pré-requis

Enseignements du S5 au S8

Descriptif

Le stage de 4ème année est un stage d'application en milieu professionnel en tant que technicien ou assistant ingénieur. L'élève-ingénieur sera chargé d'une étude spécifique, de la mise au point ou de l'adaptation de techniques ou méthodes nouvelles. Ce stage sera réalisé au sein d'une entreprise ou d'un organisme dont l'activité est représentative de la spécialité choisie à l'école.

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
s'intégrer et participer à une organisation pro- fessionnelle	Application	de découvrir des méthodes et des pratiques pro- fessionnelles
		de respecter la politique RSE de l'entreprise
		de participer au développement de l'entreprise
collaborer à l'avancement d'un projet	Application	de mettre en œuvre ses connaissances théo- riques et pratiques
		de mettre en œuvre les bases du management opérationnel

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
		de travailler en équipe et communiquer effica-
		cement avec un public varié

3. UE803 : Mesures, instrumentation et pilotage de systèmes 3.1. EASI843a - Automatisation décentralisée

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
		24	2	TP

Pré-requis

- EASI541: Automatisation
- INFO743 : Réseaux et systèmes répartis
- ou posséder les connaissances équivalentes

Descriptif

Depuis que les automatismes sont mis en oeuvre à partir de calculateurs, leurs architectures ont fortement évolué pour passer de centralisées à décentralisées. Cet enseignement aborde les éléments de base nécessaires à l'analyse, la modélisation et la mise en oeuvre de ces automatismes décentralisés.

Intitulés TP

24h TP autour d'un projet d'automatisation décentralisée.

- automatisation centralisée et automatisation décentralisée
- · concept support du projet (drive-by-wire) et cahier des charges
- prise en main de la communication entre calculateurs (API) sur Ethernet : configuration réseaux, services client/ serveur et producteur/consommateur
- à partir de l'analyse du cahier des charges : répartition des fonctionnalités sur les différents calculateurs, caractérisation des flux de données qui en découlent, et choix des services réseaux pour assurer ces flux
- projet : mise en oeuvre, tests et validation
- bilan

Objectifs d'apprentissage

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
comprendre les caractéristiques d'une applica- tion d'automatisation décentralisée	Application	de comprendre les avantages/inconvénients de la décentralisation
		de comprendre les étapes propres à la décen- tralisation dans la démarche de développement d'une application décentralisée
concevoir et implémenter une application logi- cielle d'automatisation décentralisée de com- plexité modeste à partir de la description d'un cahier des charges fonctionnel	Application	de proposer une architecture de communication
		de proposer une répartition des fonctionnalités, de définir les flux et choisir les modes de co- opération associés
		de choisir les services réseaux correspondant
		de programmer, tester et valider l'application

Outils numériques

Suite logiciel Unity-Pro et Vijeo-Designer (Schneider Electric)

3.2. PACI841 - Physique expérimentale, mesures, capteurs et instrumentation

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
15	13.5	64	5	CC(25%) TP(50%)
				Projet(25%)

Langue(s) utilisée(s) pour les enseignements

• Français

Pré-requis

Avoir suivi les modules et assimilé les connaissances de EASI501, PHYS541, PHYS542, PACI641, PACI642 et PACI741.

Descriptif

L'objectif de cet enseignement est de savoir choisir un capteur pour une application donnée. Pour cela, le module aborde des notions de métrologie, décrit les principes de fonctionnement des principaux types de capteurs et de l'électronique de conditionnement associée, ainsi que les phénomènes physiques mis en jeu. Le module est constitué de Cours, Travaux Dirigés, TP et Projets qui permettent d'approfondir et de mettre en application les connaissances abordées dans ces domaines au cours de la formation.

Plan du Cours

- 1. Métrologie et Capteurs
 - 1.1. Définitions
 - 1.2. Grandeurs mesurables
 - 1.3. Caractéristiques métrologiques
- 2. Principes physiques des capteurs
 - 2.1. Transducteurs optiques
 - 2.2. Transducteurs thermiques
 - 2.3. Transducteurs magnétiques
 - 2.4. Transducteurs mécaniques
- . Electronique de conditionnement des capteurs
 - 3.1. Capteurs passifs
 - 3.2. Pont de Wheatstone
 - 3.3. Ponts d'impédances
 - 3.4. Capteurs actifs
 - 3.5. Structures des chaînes d'acquisition
 - 3.6. Mode commun réjection
- 4. Etude des capteurs
 - 4.1. Capteurs de grandeurs mécaniques : accélération, vitesse, force, position et déplacement
 - 4.2. Capteurs de grandeurs fluidiques : pression, vitesse, débit
 - 4.3. Capteurs de grandeurs thermiques
 - 4.4. Capteurs optiques
 - 4.5. Microcapteurs

Intitulés TP

Liste des Travaux Pratiques (52h) et Intitulés des mini-projets (12h) :

- Microscope à Force Atomique (AFM)
- Polarisation
- Modulation électro-optique
- Propriétés électriques de matériaux
- Transferts de chaleur
- PZT Céramique : Modélisation-Simulation
- PZT Céramique : Mesures
- Piézorésistivité-Jauges (Capteurs de force)
- Capteurs de grandeurs mécaniques (position, vitesse, accélération)
- Capteurs de déplacement (LVDT)
- Capteurs de déplacement (ultrasons)
- · Capteurs de vitesse

- Capteurs de pression (absolue, relative, différentielle)
- Propriétés magnétiques de matériaux (Projet)
- LVDT-Démodulation synchrone (Projet)
- Mesures statique et dynamique de température (Projet)
- Mise en oeuvre et exploitation d'un capteur 6 axes (Projet)
- Principe d'un capteur communicant-intelligent (Projet)
- Commande et instrumentation d'un bras robotisé (Projet)

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
identifier les classes de matériaux actifs mis en œuvre dans différentes applications.	Application	d'expliquer les mécanismes passifs et actifs permettant de contrôler l'état de polarisation d'une onde optique en vue de la transmission de l'information
		de citer les différences fondamentales entre les propriétés électriques et magnétiques des diffé- rentes classes de matériaux et de comprendre la mesure et les grandeurs d'influence de ces pro- priétés
		d'expliciter comment mettre à profit les pro- priétés de certains matériaux pour concevoir des transducteurs, des capteurs et des action- neurs.
connaître différents principes physiques de transduction	Maîtrise	d'expliquer les principes physiques mis en jeu dans un transducteur mécanique
		d'expliquer les principes physiques mis en jeu dans un transducteur thermique
		d'expliquer les principes physiques mis en jeu dans un transducteur magnétique
		d'expliquer les principes physiques mis en jeu dans un transducteur optique
évaluer les performances du dispositif de mesure incluant le capteur	Maîtrise	de connaître les définitions de la métrologie
		de classer les capteurs en 2 grandes familles actifs ou passifs
		d'identifier les grandeurs d'influence
		de déterminer les erreurs et la précision du dis- positif
		de réaliser l'étalonnage du dispositif
concevoir un capteur et son conditionnement en fonction d'un cahier des charges donné	Maîtrise	de dimensionner un Pont Wheatstone résistif
		de dimensionner un Pont Wheatstone impédant
		de dimensionner les amplificateurs d'instrumentation
		de concevoir un capteur et son conditionne- ment en fonction d'un cahier des charges don- né
présenter rigoureusement un travail effectué	Maîtrise	d'analyser, critiquer et interpréter avec honnê- teté scientifique les résultats de manipulations
		d'anticiper et organiser son travail, travailler de manière collaborative

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
		de rendre compte des résultats du travail effec- tué de façon claire, argumentée et synthétique

Bibliographie

- Georges ASCH, Les capteurs en instrumentation industrielle, DUNOD
- · R. PALLAS-ARENY et J.G. WEBSTER, Sensors and signal conditionning, Wiley Interscience
- P.P.L. REGTIEN, Measurement science for engineers, Kogan page science

Outils numériques

Logiciel de modélisation COMSOL Multiphysics®

4. UE804 : Data science et apprentissage par projet 4.1. EASI842a - Analyse d'image et vision par ordinateur

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
15	13.5	12	2	CT(70%) + TP(30%)

Langue(s) utilisée(s) pour les enseignements

Français

Pré-requis

- MATH642 Mathématiques spécialisées
- EASI642 Signal et image : opérateurs de base
- EASI742 Signaux aléatoires

Descriptif

A travers ce cours, les étudiants approfondissent les connaissances initiales en traitement d'images introduites en EASI642, en s'appuyant sur des éléments de mathématiques spécialisées (MATH642) et les notions de signaux aléatoires (EASI742) acquises dans le cas monodimensionnel. Il comporte deux parties : la première est dédiée aux méthodes d'analyse d'images (segmentation, classification, ...) et la seconde à la technique de corrélation d'images pour objectif de détection d'objets et mesure de mouvement.

Plan du Cours

- 1. Analyse d'images
 - 1.1. Segmentation (région/contours)
 - 1.2. Détection/Classification
 - 1.3. Filtrage morphologique
- 2. Corrélation d'images
 - 2.1. Détection d'objet par la corrélation 2D
 - 2.2. Mesure de mouvement par la corrélation 2D
 - 2.3. Modélisation 3D (optionnel)

1 séance (1.5h) TD sur machine.

Intitulés TP

- Analyse de texture et segmentation d'images
- Classification d'images multi-composantes (supervisées et automatiques)
- Corrélation d'images : application à la mesure de déplacement

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
utiliser des méthodes d'analyse d'images	Maîtrise	d'analyser le contenu radiométrique des images
"haut niveau" (segmentation, classification)		pour en extraire des grandeurs caractéristiques
afin d'extraire de l'information spatio-tempo-		utiles à un processus de reconnaissance, de sui-
relle (régions, objets, changements) dans les		vi, de mesure: attributs de texture, coeffi-
images bidimensionnelles (2D) et les séries		cients d'ondelettes, paramètres statistiques,
d'images (2D+T).		combinaison de canaux renforçant les struc-

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
		tures observées (index de végétation, espaces colorimétriques).
		de détecter et reconnaitre les objets ou les classes présents dans les images par des méthodes de type segmentation (approche contour/région), classification (avec ou sans apprentissage) s'appuyant sur les informations extraites des images ou des informations complémentaires (données exogènes, connaissance experte).
appliquer des méthodes de corrélation 2D pour détecter des objets ou suivre le déplacement d'objets.	Maîtrise	de choisir des outils appropriés de corrélation 2D pour calculer des cartes de déplacement en fonction des natures d'images.
		traiter différent types d'images (appareil photo, webcam, image aérienne ou satellitaire) pour détecter les objets en mouvement et mesurer leur déplacement.

Bibliographie

- Faugeras O., Three-dimensional computer vision: a geometric viewpoint, MIT Press, 1993.
- Kasser M., Egels Y., Digital Photogrammetry, Taylor & Francis, New York und London, 2001.
- Philipp S., Cocquerez J.-P., Analyse d'images. Filtrage et Segmentation, Elsevier-Masson, 1997.
- Correlates Solutions, Digital Image Correlation: Overview of Principles and Software, SEM 2009 Workshop.
- B. Zitova and J. Flusser, Image registration methods: a survey. Image and Vision Computing, No.21, pp.977-1000, 2003.

Outils numériques

• Programmation: Python, Matlab

· Logiciel: ENVI

4.2. EASI844a - Modèles des systèmes à évènements discrets et applications

Cours (h	TD (h)	TP (h)	Pondération	Evaluation
9	19.5	12	1.5	CC(70%) TP(30%)

Langue(s) utilisée(s) pour les enseignements

- Français
- Français avec documents en anglais

Pré-requis

Notions de bases en Algèbre (matrices et graphes), Analyse fonctionnelle de données, Variables et vecteurs aléatoires, Automatisation, Conception et programmation orientée objet, Développement logiciel.

Descriptif

L'objectif de cet enseignement est d'introduire les notions de systèmes à événements discrets, leurs diverses modélisations et l'intérêt de ces modèles (communication, dimensionnement, vérification, simulation, prédiction, supervision, etc.). On s'intéressera, non seulement à diverses modélisations mathématiques d'un tel système, mais aussi à la modélisation de ses entrées afin de pouvoir prédire les futures états et sorties du système en fonction de son état actuel est des entrées disponibles. Les visions analytiques et par apprentissage seront également traitées.

Plan du Cours

- 1. Système à Evénements Discrets, Modélisations, Réseaux de Petri (3h CM, 3h TD)
- 2. Graphes d'événements temporisés, Algèbre Max-Plus, Vérification, Validation et Supervision (3h CM, 3h TD)
- 3. Processus de comptage et markoviens (3h CM, 3h TD)
- 4. Modèles haut niveau Exploration par domaine et apprentissage (6h TD)

5. Modèles haut niveau associés aux systèmes étudiés en 'Apprentissage par Projet et par Problèmes' (4,5h TD)

Intitulés TP

- Travaux Pratiques en Modélisation : du cahier des charges à la conception détaillée, ainsi que la simulation, les vérifications et la supervision.
- Mini-Projet: Application en communications, production, contrôle ou vision par ordinateur.

Objectifs d'apprentissage

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
choisir un type de modèle de SED approprié à partir d'un système donné, et pour une question donnée relative à son fonctionnement attendu.	Maîtrise	de décrire les contraintes du modèle
		de choisir un type de modèle correspondant à ces contraintes parmi ceux étudiés
établir, pour un modèle de système donné et une question donnée relative à son fonctionne- ment attendu, si oui ou non une propriété cible est satisfaite	Maîtrise	de réaliser la vérification de la propriété dans le formalisme adapté (preuve, test, simulation,)
		d'utiliser les méthodes et outils logiciels (s'il y a lieu), adaptés à la vérification à réaliser

4.3. INFO841 - Sécurité des systèmes cyber-physiques

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
7.5	4.5	12	2	CT(50%) TP(50%)

Langue(s) utilisée(s) pour les enseignements

• Français avec documents en anglais

Descriptif

L'objectif de ce cours et d'identifier les vulnérabilités et les risques auxquels les données, système et réseaux informatiques sont exposés. Le cours permettra de choisir et de déployer les contre-mesures appropriées pour augmenter la sécurité des systèmes cyber-physique et de les protéger contre les menaces internes et externes.

Plan du Cours

- 1. Introduction à la securité
- 2. Elements de cryptographie et de sécurité des données
- 3. Securité des systèmes et controle d'accès
- 4. Sécurité des réseaux et virologie
- 5. Sécurité des process cyber-physique
- 6. Cybersecurité et geopolitique

Intitulés TP

- Encryption securité des données, PGP, SSL, HTTPS
- Securité des systèmes, buffer overflow
- · Vers, Virus et Malware
- Projet de sécurité informatique

Objectifs d'apprentissage

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
être sensibilisé à la sécurité informatique	Maîtrise	

Bibliographie

- Solange Ghernaouti (2016) *Cybersécurité, sécurité informatique et réseaux*, paru aux éditions Dunod (5^e#édition)
- Jie Wang, Zachary A. Kissel (2016) *Introduction to Network Security: Theory and Practice*, paru aux éditions Wiley.
- Bryan Burns et coll. (2007) Security Power Tools, publié par O'Reilly Media

4.4. PROJ841a - Apprentissage par projet

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
		40	5.5	Rapport + soute-
				nance + pratique

Langue(s) utilisée(s) pour les enseignements

• Français

Pré-requis

De préférence avoir suivi le module d'APP du même thème au semestre 7.

Descriptif

L'Apprentissage par Problèmes et par Projet (APP) dans la spécialité IAI consiste d'une part à développer chez les élèves ingénieurs les compétences acquises dans la formation académique et d'autre part à acquérir des compétences supplémentaires dans des thèmes d'avenir:

- Bâtiment Intelligent (BI) et Objets Connectés (OC)
- Gestion des énergies renouvelables (GER) : photovoltaïque, éolienne, hydrolienne
- Imagerie pour l'environnement (IE)
- Robotique de service (RS) : traitements informatiques
- Santé (S)

Ces thèmes sont le fil conducteur des activités d'APP qui s'étalent sur 3 à 5 semestres à raison d'un module par semestre (module de 36h aux semestres 6, 7 et 9 ; module de 60h au semestre 8). Le travail est effectué par équipe (entre 4 et 7 élèves ingénieurs) sur l'ensemble des semestres.

Objectifs d'apprentissage

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
participer et contribuer à l'organisation, la pla- nification des tâches d'un travail d'équipe et en assurer le suivi et les ajustements	Maîtrise	d'organiser un travail en tâches, d'identifier et affecter des ressources à ces tâches, d'en pré- voir la durée et d'en définir l'enchaînement
		d'évaluer les compétences des membres de l'équipe et répartir les tâches entre ceux-ci
		d'organiser et animer une réunion de travail en veillant à en respecter les objectifs et en maitri- sant le temps
appréhender les difficultés de mise en appli- cation, analyser les situations et prévoir les solutions permettant d'obtenir un système ou une application fiable répondant au cahier des charges	Maîtrise	de définir un plan d'actions face à une difficulté technique
		de prévoir les cas de blocage et d'élaborer une ou plusieurs solutions pour les résoudre
		de vérifier la ou les solutions retenues et leur robustesse
		d'acquérir de nouvelles compétences par l'autoformation, la consultation d'experts et la veille technologique

Outils numériques

Logiciels spécialisés divers (Labview, Matlab, ETS4, Choregraphe, AndroidStudio, ...).

Plates-formes collaboratives (Moodle, Github, Trello, ...).

Systèmes d'exploitation Windows, Linux, Android et virtualisation.

Semestre 9

UE	ECTS	Module	Intitulé	Cours (h)	TD (h)	TP (h)	Pondé- ration	Evaluation
UE901 : Passerelle vers le mi- lieu pro- fessionnel	10	LANG901a	Anglais (Niveau TOEIC non atteint)		40.5		2.5	CC
		LANG902a	Langues (Niveau TOEIC atteint)		30		2.5	CC
		PROJ901a	Projet Recherche et Développement			40	6	Pratique + Rapport + Soutenance
		SHES901a	Techniques de management	15	7.5		1.5	CC
UE902 : Automa- tique et ap- prentissage par projet	8	EASI943a	Approche d'état en automatique : représentation, commande et observation	25.5	25.5	20	4	CC(20%) CT(50%) TP(30%)
		PROJ943a	Apprentis- sage par projet			24	4	Pratique + rapport + soutenance
UE903 : Da- ta science et objets com- municants	12	EASI941a	Systèmes commu- nicants, capteurs communicants			36	2	ТР
		EASI942a	Imagerie 3D: acquisition, re- construction, applications	13.5	10.5	12	2	CT(70%) + TP(30%)
		INFO941a	Systèmes em- barqués et pro- grammation concurrente	9	3	24	2	CT(40%) TP(60%)
		INFO942a	Apprentissage automatique et fouille de données	12		24	2	CC(30%) CT(30%) TP(40%)
		INFO943	Internet des objets	3	9	24	2	CT(30%) TP(70%)
		PROJ942a	Projet technique traitement de l'information			36	2	Rapport + soutenance

1. UE901 : Passerelle vers le milieu professionnel

1.1. LANG901a - Anglais (Niveau TOEIC non atteint)

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
	40.5		2.5	CC

Langue(s) utilisée(s) pour les enseignements

• Anglais

Pré-requis

Cours de s7 et s8 et score Toeic minimum 735

Descriptif

Ce cours prépare les étudiants à leur entrée dans la vie professionnelle. Conduite ou participation à une réunion : vocabulaire et structures liés à cet aspect tout en continuant un travail sur les 4 compétences mais en insistant sur une mise en situation proche de la réalité("jeux de rôle", acquisition de vocabulaire technique (selon le site) et vocabulaire de l'entreprise...). Mais aussi prise de parole en public au moyen de présentations données par des étudiants en groupes et ou en individuel, sur des sujets illustrés par des articles de presse ou des supports vidéos (VTD : Video, Talk and Debate). Les étudiants sont évalués tout au long de chaque semestre. L'évaluation terminale consiste en une épreuve de 1h, 1h30 ou 2h selon le semestre et selon le site (Annecy ou Le Bourget), et compte coefficient 2 dans le contrôle continu total.

Plan du Cours

- 1. Utilisation des structures, lexiques, notions et fonctions nécessaires à une bonne expression orale et écrite:
 - 1.1. Temps
 - 1.2. Questionnement (dans un cadre professionnel)
 - 1.3. Mots de liaison
- 2. Compréhension orale:
 - 2.1. Dialogues enregistrés en anglais américain, britannique, néo-zélandais....
 - 2.2. Videos en anglais américain, britannique, australien....
- 3. Compréhension écrite:
 - 3.1. Extraits de presse
 - 3.2. Textes divers

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
valider le TOEIC à 785	Notion	de continuer des révisions lexicales et gram- maticales visant plus spécifiquement les points testés au TOEIC
		d'intensifer l'entraînement sur des exercices de TOEIC (7 parties) / test entiers
utiliser l'inter-activité de communication opérationnelle la plus authentique possible	Maîtrise	d'écouter régulièrement les nouvelles sur des sites anglophones d'information (CNN, BBC, Skynews) et sera en mesure de restituer l'essentiel oralement de façon succincte, en in- ter-activité avec le groupe-classe
		de faire des recherches (en groupe et individuellement) pour monter un projet (professionnel / culturel) innovant, en équipe, à présenter en classe, après avoir anticipé et simulé les démarches auprès des acteurs économiques capables d'aider l'équipe à le monter, selon les étapes d'un « business plan » crédible : rédaction de emails, entretien téléphonique, recrutement, recherches de financement
		de présenter le projet collectif, en en démontrant la faisabilité technique et commerciale (« pitch » / sur le modèle de : « Dragons' den »)

Bibliographie

- Documents distribués par les intervenants
- Différents sites internet dont la liste est donnée en début de S5

1.2. LANG902a - Langues (Niveau TOEIC atteint)

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
	30		2.5	CC

Pré-requis

- Pour l'anglais Civilisation : élèves ingénieurs ayant réussi le TOEIC.
- Pour la LV2 : cours débutants uniquement pour le chinois et le japonais

Descriptif

Ce cours est composé de deux parties :

- 15h d'Anglais : Culture, Civilisation et Langue. Réactualisation et validation des acquis et utilisation de l'anglais en toute situation de communication.
- 15h d'une seconde langue vivante. Les langues proposées sont :
 - Espagnol, Allemand et Italien pour les 2 sites de l'école (non débutants).
 - Chinois et Japonais sur le site d'Annecy avec des cours débutants possibles

Objectifs d'apprentissage

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
être en autonomie linguistique et culturelle pour communiquer de façon authentique	Expertise	d'inter-agir avec des professionnels (de sa spé- cialité) au cours de présentations
		d'écouter régulièrement les nouvelles sur des sites anglophones d'information (CNN, BBC, Skynews) et sera en mesure de restituer l'essentiel oralement de façon succincte, en in- ter-activité avec le groupe-classe
		de faire des recherches (en groupe et indivi- duellement) à visée professionnelle / culturelle à présenter en classe
imaginer, être créatif et crédible (dans une langue étrangère) pour convaincre des parte- naires professionnels	Expertise	de monter un projet (professionnel) innovant; simulé les démarches auprès des acteurs économiques capables d'apporter de l'aide pour le finaliser (selon les étapes d'un « business plan » crédible : rédaction de emails, entretien téléphonique, recrutement, recherches de financement)
		de présenter un projet, en en démontrant la fai- sabilité technique et commerciale (« pitch » / sur le modèle de : « Dragons' den »)
comprendre et parler d'autres langues que le français et l'anglais et s'ouvrir à d'autres cultures.	Expertise	de travailler sur des supports écrits, audio et vi- déo variés
		d'échanger avec des personnes non franco- phones et non anglophones.

1.3. PROJ901a - Projet Recherche et Développement

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
		40	6	Pratique + Rap-
				port + Soutenance

Langue(s) utilisée(s) pour les enseignements

• Français

Descriptif

Ce travail consiste en une initiation à la recherche fondamentale ou appliquée. Il est réalisé sur un sujet proposé par le monde industriel ou par un laboratoire de recherche. La première partie du projet porte sur un état de l'art des connaissances et/ou techniques sur le sujet, l'identification de la méthode et/technique qui sera mise en ouvre dans le cadre du projet, et l'élaboration d'un plan d'experience ou de travail permettant de répondre au problème.

La deuxième partie du travail concerne la réalisation de l'étude et l'analyse des résultats

Objectifs d'apprentissage

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
mener un travail de recherche fondamentale ou appliquée	Application	de réaliser un état de l'art des connaissances et des techniques
		de justifier une stratégie de recherche
		de faire une analyse critique de ses résultats
gérer un projet	Application	planifier son travail sur la durée du projet
		respecter les jalon et rendre les livrables attendus

1.4. SHES901a - Techniques de management

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
15	7.5		1.5	CC

Langue(s) utilisée(s) pour les enseignements

• Français

Descriptif

Cet élément constitutif de SHES se décompose en deux enseignements indépendants : Management, Ethique. Le but de ce module est d'appréhender les dimensions humaine et communicationnelle du management et de développer l'assertivité managériale des élèves

Plan du Cours

- 1. Management (12h CM; 7,5h TD):
 - 1.1. Comprendre La dimension humaine du management
 - 1.2. Communiquer La dimension relationnelle du management
- 2. Ethique et management (3h CM)

Intitulés TP

Management:

1. Agir - La dimension stratégique du management (mises en situation)

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
mener une réflexion éthique sur sa pratique professionnelle et sur la posture managériale	Application	de connaître les concepts de RSE, d'éthique et de déontologie
		d'argumenter la place de l'éthique dans l'entreprise et le management
		d'analyser des situations de dilemme pour prendre une décision réfléchie
conduire un projet et des hommes	Application	de concevoir une équipe chargée de la mise en œuvre d'un projet

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
		de comprendre les tâches et les compétences professionnelles impliquées dans la mise en œuvre du projet
		de prendre du recul sur des situations com- plexes et d'arbitrer les besoins conflictuels liés à la conception du projet
développer l'assertivité managériale	Application	d'exprimer ses attentes et ses besoins
		de se positionner en tant que personne et fonction

2. UE902 : Automatique et apprentissage par projet

2.1. EASI943a - Approche d'état en automatique : représentation, commande et observation

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
25.5	25.5	20	4	CC(20%)
				CT(50%) TP(30%)

Langue(s) utilisée(s) pour les enseignements

• Français

Pré-requis

- EASI641 : Signaux et systèmes
- EASI744 : Automatique Stabilité et commande de systèmes

Descriptif

Les objectifs de ce cours sont :

- Construire des modèles de type représentation d'état de systèmes multi-entrées multi-sorties
- Analyser les propriétés de tels systèmes (au moins localement)
- Les simuler à l'aide d'outils tels que Simulink de Matlab
- Construire des observateurs pour obtenir des informations sur des variables d'état
- Mettre en œuvre des outils de prototypage rapide de lois de commande pour les piloter

Plan du Cours

COURS

- 1. Représentation d'état
 - 1.1. Description de systèmes dynamiques continus
 - 1.2. Modèle d'état
 - 1.3. Equation d'évolution
 - 1.4. Association de blocs
 - 1.5. Systèmes échantillonnés
 - 1.6. Passage modèle d'état fonction de transfert
- 2. Analyse d'un modèle d'état (en continu et en échantillonné)
 - 2.1. Stabilité
 - 2.2. Gain statique
 - 2.3. Commandabilité
 - 2.4. Observabilité
 - 2.5. Forme canonique de la représentation d'état
 - 2.6. Pôles d'un système en représentation d'état
 - 2.7. Zéros d'un système en représentation d'état
- 3. Commande par retour d'état
 - 3.1. Principe
 - 3.2. Cas mono-entrée mono-sortie
 - 3.3. Cas multi-entrées multi-sorties
 - 3.4. Commande découplante

- 4. Observateur de Luenberger
 - 4.1. En temps continu
 - 4.2. En temps échantillonné
 - 4.3. Observateur de Luenberger et perturbation additive
- 5. Observateurs étendus
 - 5.1. Perturbation constante
 - 5.2. Perturbation en rampe
 - 5.3. perturbation sinusoïdale
- 6. Commande par retour d'état avec observateur
 - 6.1. Commande par retour d'état
 - 6.2. Le principe de séparation
- 7. Rappels sur les outils d'analyse numérique pour la simulation de systèmes dynamiques
- 8. Principes généraux de prototypage de lois de commande

TRAVAUX DIRIGES

Les séances de travaux dirigés se font majoritairement sur machines (14/17), avec l'utilisation des logiciels Matlab et Simulink. Ces outils sont bien adaptés à ce module : ils facilitent les calculs et permettent de nombreuses simulations.

- 1. Représentation d'état de systèmes dynamiques (SISO, MIMO)
- 2. Etude de la stabilité, de la commandabilité et de l'observabilité
- 3. Représentation d'état de sous-systèmes connectés entre-eux
- 4. Commande découplante et stabilisante
- 5. Synthèse d'observateurs et d'observateurs étendus, en temps continu et en temps échantillonné
- 6. Commande par retour d'état avec observateur d'un chariot filoguidé

Intitulés TP

Les 20 heures de TP se font sous la forme d'un mini-projet. D'un point de vue matériel, les élèves-ingénieurs travaillent sur des robots LEGO EV3.

Il s'agit de faire tenir en équilibre un robot de type pendule inversé. La décomposition des tâches à effectuer pendant le projet est la suivante:

- Mise en place du modèle non linéaire du robot EV3 en mode pendule inversé
- Simulation du système (Matlab/Simulink)
- Linéarisation du modèle
- Synthèse d'une commande par retour d'état stabilisante à l'aide de la méthode LQR
- Programamtion du robot pour la mise en oeuvre de la loi de commande

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
construire des modèles de type représentation d'état de systèmes multi-entrées multi-sorties	Maîtrise	de décrire correctement le problème posé
		de distinguer les différentes entrées influentes, en séparant commande et perturbations
		de hiérarchiser les différentes échelles de temps en terme de dynamique
analyser les propriétés de tels systèmes (au moins localement)	Maîtrise	de calculer des matrices de gains statiques
		de déterminer la stabilité du système
		d'évaluer les différents couplages entrées-sor- ties
les simuler à l'aide d'outils tels que Simulink de Matlab	Notion	de poser correctement un problème de simu- lation : horizon, conditions initiales, entrées appliquées, méthode efficace d'analyse numé- rique

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
		d'analyser les résultats obtenus
construire des systèmes de commande par re- tour d'état	Maîtrise	de fixer la dynamique recherchée pour le sys- tème piloté
		de repérer les perturbations dont l'influence est à rejeter
		de déterminer la structure de commande adap- tée aux objectifs fixés
		de paramétrer correctement celle-ci
reconstruire indirectement les valeurs de gran- deurs physiques non accessibles directement à la mesure	Maîtrise	de construire un modèle d'état du système
		d'en analyser les propriétés d'observabilité
		de proposer des structures d'observateurs per- mettant de reconstruire les informations recher- chées
		de paramétrer correctement le type d'observateur choisi

Bibliographie

R. Konn, Automatique - Commande analogique et numérique des systèmes - Méthodes fréquentielle et polynomiale, espace d'état, Editions Ellipses, 2010

Ph. De Larminat, Automatique appliquée, Hermès-Lavoisier, 2009

Y. Granjon, Automatique - 3ème édition, Dunod, 2015

B. d'Andréa-Novel, M. Cohen de Lara, Automatique - Commande linéaire des systèmes dynamiques, Les Presses Ecole des Mines de Paris, 2002

F. Bonnans, P. Rouchon, Commande et optimisation de systèmes dynamiques, Les Editions de l'Ecole Polytechnique, 2005

Outils numériques

Logiciels Matlab et Simulink

2.2. PROJ943a - Apprentissage par projet

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
		24	4	Pratique + rap-
				port + soutenance

Pré-requis

de préférence avoir suivi le module d'APP du même thème au semestre 8.

Descriptif

L'Apprentissage par Problèmes et par Projet (APP) dans la spécialité IAI consiste d'une part à développer chez les élèves ingénieurs les compétences acquises dans la formation académique et d'autre part à acquérir des compétences supplémentaires dans des thèmes d'avenir:

- Bâtiment Intelligent (BI) et Objets Connectés (OC)
- Gestion des énergies renouvelables (GER) : photovoltaïque, éolienne, hydrolienne
- Imagerie pour l'environnement (IE)
- Robotique de service (RS) : traitements informatiques
- Santé (S)

Ces thèmes sont le fil conducteur des activités d'APP qui s'étalent sur 3 à 5 semestres à raison d'un module par semestre (module de 36h aux semestres 6, 7 et 9 ; module de 60h au semestre 8). Le travail est effectué par équipe (entre 4 et 7 élèves ingénieurs) sur l'ensemble des semestres.

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
finaliser le projet en fournissant un démonstra- teur fiable	Maîtrise	de vérifier la qualité et la fiabilité du système ou de l'application réalisé
		de produire une documentation claire et dé- taillée sur le système ou l'application réalisé (documentation technique précise et manuel d'utilisation)
		d'organiser et d'assurer une formation aux utili- sateurs
		de proposer des améliorations et/ou évolution du système ou de l'application réalisé

Outils numériques

Logiciels spécialisés divers (Labview, Matlab, ETS4, Choregraphe, AndroidStudio, ...).

Plates-formes collaboratives (Moodle, Github, Trello, ...).

Systèmes d'exploitation Windows, Linux, Android et virtualisation.

3. UE903 : Data science et objets communicants

3.1. EASI941a - Systèmes communicants, capteurs communicants

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
		36	2	TP

Langue(s) utilisée(s) pour les enseignements

• Français

Pré-requis

- EASI501 : Electricité
- PHYS542 : Electromagnétisme appliqué à la transmission de l'information
- EASI641 : Signaux et systèmes
- INFO501 : Numération et Algorithmique
- PACI741 : Electronique d'instrumentation : notions essentielles pour l'ingénieur
- PACI742 : Systèmes d'acquisition de données Programmation graphique
- INFO741 : Systèmes embarqués
- PACI841 : Physique expérimentale, mesures, capteurs et instrumentation

Descriptif

A l'issue de ce cours les élèves seront capables de concevoir et de réaliser un capteur communicant intégrant un capteur, son conditionnement, une source d'énergie, un module de communication et l'informatique embarquée.

Plan du Cours

Notions spécifiques et apports culturels nécessaires aux choix technologiques en vue de la conception de capteurs communicants.

- Systèmes informatiques embarqués (micro-contrôleurs, FPGA, PSOC, ...)
- Technologies de communications sans fil (WIFI, Zigbee, Bluetooth, ...)
- Capteurs intégrés (analogiques ou numériques)
- Sources d'énergies (batterie, récupération d'énergie ambiante)

Intitulés TP

mini projet : conception et réalisation d'un capteur autonome communicant

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
développer l'architecture matérielle et logi-	Maîtrise	de choisir des composants électroniques et mi-
cielle d'un capteur communicant		cro-informatiques (capteurs, microcontrôleur,

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
		source d'énergie, émetteur/récepteur) adaptés à une application donnée
		de concevoir l'architecture matérielle du sys- tème (conception et réalisation de la carte élec- tronique)
		de concevoir et de réaliser le logiciel embarqué
choisir un mode et un protocole de communication	Maîtrise	d'identifier les caractéristiques nécessaires du système de communication (portée, filaire ou non filaire, débit)
		de choisir le protocole de communication adap- té
		de garantir l'intégrité et la sécurité des données transmises ou échangées
programmer un microcontrôleur basse consommation afin de gérer un capteur, d'assurer un prétraitement de l'information et de piloter un dispositif de communication	Maîtrise	de concevoir et réaliser le logiciel de gestion et d'exploitation du capteur communicant (com- munication uni ou bi-directionnelle, configura- tion, paramétrage, remontée d'information)
		de prendre en compte les contraintes énergé- tiques dans la gestion logicielle du système (mode veille, optimisation des traitements, changements de modes)

3.2. EASI942a - Imagerie 3D: acquisition, reconstruction, applications

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
13.5	10.5	12	2	CT(70%) + TP(30%)

Langue(s) utilisée(s) pour les enseignements

- Français avec documents en anglais
- Anglais

Pré-requis

MATH641, MATH642, EASI642, EASI842 ou connaissances équivalentes ; connaissances de base en physique des matériaux

Descriptif

En s'appuyant essentiellement sur les propriétés des dispositifs à rayons X, ce cours vise à introduire les techniques de reconstruction tomographique et d'analyse de blocs de données 3D. Les applications présentées relèvent de l'imagerie industrielle (caractérisation de matériaux, contrôle non destructif) et de l'imagerie médicale. Ce cours est organisé en trois parties :

- aspects physiques-interactions onde-matière
- reconstruction tomographique
- traitement et analyse en 3D

Ce module comprend des études de cas présentées par des intervenants extérieurs, provenant de la société RX-solutions et de l'ESRF. Une visite de l'entreprise RX-solutions (fabricant d'appareils de tomographie) est organisée.

Supports de cours en anglais. Cours dispensé en anglais sauf si le public est 100% francophone.

Plan du Cours

- 1. which rays for imaging? ultrasounds, TeraHertz, X-rays, neutrons, MRI; optical techniques
- 2. computed tomography: modelization; analytical techniques (Radon transform, Fourier slice theorem), algebraic techniques; practical issues (spatial resolution)
- 3. 3D image processing: visualization, filtering, shape analysis

Intitulés TP

étude qualitative et quantitative d'un dispositif de tomographie

- caractérisation de l'effet des paramètres d'acquisition et de reconstruction sur la qualité de l'image
- caractérisation des effets d'un mauvais reglage mécanique

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
comprendre les méthodes d'investigation de la matière	Maîtrise	de connaître les principales techniques d'analyse surfacique et d'inspection de la ma- tière par réflexion (optique) ou transmission (acoustique, électromagnétique, électronique)
		de connaître les capteurs associés
résoudre un problème inverse dans le cas de la reconstruction 2D et 3D	Maîtrise	de comprendre les propriétés de la transforma- tion de Radon
		de connaître les principes de reconstruction par des techniques algébriques itératives
choisir des opérateurs de traitement et d'analyse dans une bibliothèque	Maîtrise	comprendre les principes de la visualisation d'objets 3D
		de connaître les méthodes de filtrage et de seg- mentation d'images 3D
		de connaître les principales méthodes de carac- térisation géométrique ainsi que les effets de discrétisation spatiale
construire un cahier des charges et préparer la réponse à un appel d'offre	Maîtrise	choix de capteurs
		dimensionnement d'une installation
		estimation des perfomances
		estimation du cout d'installation et d'exploitation d'un dispositif d'imagerie 3D

Bibliographie

- P. Grangeat, Tomography, ISTE/Wiley, 2009
- P. Grangeat, La tomographie fondements mathématiques imagerie microscopique et imagerie industrielle traite IC2. editions Hermes; 2002

Outils numériques

MATLAB : utilisation en cours/TD pour illuster les pricipes de réolution de problèmes inverses linéaires ; utilisation en TP : traitement d'un cas simple d'acquistion en faisceaux aprallèles, simulation de défauts de reglages mécaniques ou de défauts de capteurs

MAPLE: calculs et visualisation

3.3. INFO941a - Systèmes embarqués et programmation concurrente

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
9	3	24	2	CT(40%) TP(60%)

Pré-requis

INFO741 : systèmes embarqués - systèmes d'exploitation

Descriptif

Ce module couvre le fonctionnement des systèmes embarqués fonctionnant avec un système d'exploitation. Il présente aussi les contraintes liées à des problématiques temps-réel et multi-tâche. Finalement, ce cours aborde la mise en œuvre à partir d'un cahier des charges d'un système embarqué temps-réel.

Plan du Cours

1. Fonctionnement systèmes embarqués : architecture circuit programmable, outils de développement

- 2. Traitements temps-réels : contraintes, ordre de priorité (fonctionnement par interruptions), adapter la programmation multi-tâche au temps réel
- Développement d'une application temps-réel sur un système embarqué : utilisation de la plateforme Raspberry-Pi (avec Linux embarqué), développer l'application, test et validation, lien avec traitement du signal / image / vidéo

Intitulés TP

TP 1-6 : Mini-projet sur plateforme Raspberry: développement d'une application temps-réel / multi tâche. Possible de communiquer avec Arduino.

Objectifs d'apprentissage

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
Spécifier, analyser, concevoir et mettre en œuvre des systèmes informatiques, en particu- lier des systèmes embarqués et des systèmes communicants	Maîtrise	de faire de la programmation multi-tâche à partir des objets MUTEX (verrou, sémaphore, variables conditionnelles)
		de réaliser sur Raspberry-Pi opérant avec un OS Linux un système temps réel et multi-tâche complexe avec partir d'un cahier des charges

Bibliographie

- http://www.yolinux.com/TUTORIALS/LinuxTutorialPosixThreads.html
- https://computing.llnl.gov/tutorials/pthreads/index.html

Outils numériques

Plateforme Moodle.

Forum Raspberry: https://www.raspberrypi.org/forums/viewforum.php?f=65

3.4. INFO942a - Apprentissage automatique et fouille de données

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
12		24	2	CC(30%)
				CT(30%) TP(40%)

Langue(s) utilisée(s) pour les enseignements

- Français
- Français avec documents en anglais

Pré-requis

Maîtrise des notions de base en statistiques, analyse numérique, optimisation, informatique, systèmes numériques et modélisation mathématique

Descriptif

Ce module dédié l'apprentissage machine a pour objectif la construction de modèles non-nécessairement analytiques à partir d'un ensemble de données. Il s'agit de découvrir, à travers les données et selon le problème à résoudre (prise de décision, aide à la décision, segmentation, classification, recherche de contenu à partir d'une requête, ...), des fonctionnelles optimales capables de décomposer les données pour en extraire des attributs significatifs et de conduire ainsi à un traitement sophistiqué de l'information numérique. Ces fonctionnelles peuvent être très parcimonieuses (shallow learning) ou organisées en plusieurs couches toutes très complexes (deep learning). Construit à partir de plusieurs disciplines scientifiques (statistiques, analyse numérique, optimisation, informatique, ...) et composante fondamentale de l'intelligence artificielle, l'apprentissage machine est aujourd'hui exploité dans de nombreux domaines d'activités.

Plan du Cours

- 1. Problématique générale
 - 1.1. Les données
 - 1.2. Typologie des problèmes
 - 1.3. Formulation d'un problème d'apprentissage
- 2. Apprentissage non-supervisé
 - 2.1. Modélisation directe des données

- 2.2. Modélisation d'attributs extraits à partir des données
- 2.3. Métriques et mesures de similarité
- 3. Apprentissage supervisé
 - 3.1. Benchmarking des données
 - 3.2. Réseaux non-récurrents
 - 3.3. Réseaux récurrents
- 4. Ouverture sur d'autres approches
 - 4.1. Apprentissage par renforcement
 - 4.2. Sur-apprentissage et problèmes ouverts

Intitulés TP

(i) Travaux pratiques de prise en main des outils d'apprentissage machine et (ii) Mini-Projet (2 sujets au choix).

Objectifs d'apprentissage

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
choisir une méthode appropriée à la résolution d'un problème d'analyse de données ou de re- cherche d'information dans les données, puis argumenter son choix, enfin interpréter et éva- luer les résultats obtenus	Maîtrise	

Outils numériques

Ce module regroupe 4 compétences. Les outils numériques associés à chacune de ces compétences sont les suivants :

- Développement sur tablette : Android Studio
- Analyse d'images : Anaconda /Spyder pour des développements en langage python avec le module opencv
- Communication : machine virtuelle, architecture client/serveur (Apache, ftp, ...), programmation web (php, python, ...)
- Gestion de projets : Trello, Git/Github ou SVN, Espaces collaboratifs

3.5. INFO943 - Internet des objets

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
3	9	24	2	CT(30%) TP(70%)

Langue(s) utilisée(s) pour les enseignements

• Français avec documents en anglais

Descriptif

L'objectif de ce cours est de donner aux étudiants une densibilisation à l'importance de l'IoT. Il présente les concepts fondamentaux de l'Internet des Objets et décrit la chaîne de conception des objets connectés.

Plan du Cours

- 1. Introduction
- 2. Le marché de l'IoT
- 3. Concepts fondamentaux
- 4. Interactions entre le « monde numérique » et le « monde physique »
- 5. Infrastructures pour l'IoT
- 6. Solutions technologiques
- 7. Exemples d'application
- 8. Projet

Intitulés TP

Développement d'un projet IoT sur 24 heures, sur les thèmes :

- Conception et développement d'une application de monitoring d'un parc informatique
- Interface d'un système cyber-physique avec le service IFTTTT

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
comprendre les caractéristiques de l'IoT	Maîtrise	

3.6. PROJ942a - Projet technique traitement de l'information

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
		36	2	Rapport + soutenance

Langue(s) utilisée(s) pour les enseignements

Français

Pré-requis

Ce projet suppose des pré-requis en traitement de l'information (traitement d'images en particulier) et en programmation. Typiquement ces pré-requis correspondent aux modules :

- EASI642 Signal et image : opérateurs de base
- EASI842 Analyse d'images et vision par ordinateur
- INfO501 Numération et Algorithmique
- INFO641 Conception et programmation orientée objet
- INFO743 Réseaux et systèmes répartis
- INFO742 Méthodes de développement logiciel et qualité

Descriptif

L'objectif de ce module est le développement d'une application de traitement de l'information (images) sur support type tablette.

Ce projet mêlera donc plusieurs compétences : celles acquises en traitement de l'information (et plus particulièrement en traitement d'images et vision), celles acquises en conception et programmation et celles acquises en traitement réparti. Les projets seront réalisés par groupes (typiquement 5 étudiants). Ils comporteront quatre aspects :

- la réalisation d'une interface d'acquisition d'image (un visage) sur tablette
- la réalisation d'un programme de traitement d'images réalisant la reconnaissance de visage se basant sur une analyse en composantes principales.
- la réalisation d'une communication entre la tablette et le serveur de traitement
- un travail en mode "gestion de projet" en s'appuyant sur des méthodes (V, agiles...) et outils (planification, espaces collaboratifs, gestion de versions)

Plan du Cours

Ce module de projet comporte d'une part des séances planifiées dans l'emploi du temps (volume de 36h) et encadrées par des tuteurs de projets et d'autre part du travail personnel. L'organisation est la suivante :

- 4 séances de 4h de présentation des connaissances nécessaires (1) programmation sur tablette, 2) analyse d'images, 3) systèmes répartis, 4) gestion de projet informatique)
- 4,5 séances de travail en équipe
- 1/2 séance pour l'évaluation (rapport, présentation orale et démonstration d'équipe et entretiens individuels d'évaluation des compétences acquises)

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
développer une architecture logicielle sur sup- port de type tablette	Application	de développer et implanter un programme in- formatique sur tablette
		d'utiliser une bibliothèque de fonctions dans un programme développé sur un support de type tablette
développer l'architecture d'une chaine de traite- ment de l'information (image)	Maîtrise	choisir ou concevoir les traitements de l'information (images, vidéos,) permettant de répondre à un objectif précis

Semestre 9

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
		concevoir l'architecture logicielle d'une chaine de traitement de l'information
mettre en place une démarche de gestion de projet informatique de petite taille en équipe		mettre en œuvre d'une méthode de gestion de projet informatique et des outils associés
		mettre en œuvre et utiliser un outil de gestion de versions de programmes

Semestre 10

UE	ECTS	Module	Intitulé	Cours (h)	TD (h)	TP (h)	Pondé- ration	Evaluation
UE001 : Stage Ingénieur	30	PROJ001	Stage Ingénieur				30	Soutenance, rapport écrit, évaluation entreprise

1. UE001 : Stage Ingénieur 1.1. PROJ001 - Stage Ingénieur

Cours (h)	TD (h)	TP (h)	Pondération	Evaluation
			30	Soutenance, rapport écrit,
				évaluation entreprise

Langue(s) utilisée(s) pour les enseignements

• Français

Pré-requis

Enseignements du S5 au S9

Descriptif

Ce stage s'effectue en entreprise, dans laquelle l'élève-ingénieur aura une (ou des) mission(s) à réaliser, proche(s) de sa future fonction d'ingénieur, intégrant une démarche de projet avec des aspects techniques, économiques et humains. Ces différents aspects doivent être mis en valeur lors de la restitution écrite et orale du stage même si l'élève ingénieur n'en a pas été l'acteur direct.

Ce cours vise à rendre l'élève apte à :	Niveau	A l'issue de ce cours l'élève sera capable :
s'intégrer et participer à une organisation pro- fessionnelle	Maîtrise	de découvrir des méthodes et des pratiques pro- fesionnelles
		de respecter la politique RSE de l'entreprise
		de participer au développement de l'entreprise
collaborer à l'avancement d'un projet	Maîtrise	de mettre en œuvre ses connaissances théo- riques et pratiques
		de mettre en œuvre les bases du management opérationnel
		de travailler en équipe et communiquer effica- cement avec un public varié