Introduction to Machine Learning - CS725
Instructor: Prof. Ganesh Ramakrishnan
Lecture 10 - Optimization Foundations Applied to Regression
Formulations

### Building on questions on Least Squares Linear Regression

- Is there a probabilistic interpretation?
  - Gaussian Error, Maximum Likelihood Estimate
- Addressing overfitting
  - Bayesian and Maximum Aposteriori Estimates, Regularization, Support Vector Regression
- 4 How to minimize the resultant and more complex error functions?
  - Level Curves and Surfaces, Gradient Vector, Directional Derivative, Gradient Descent Algorithm, Convexity, Necessary and Sufficient Conditions for Optimality

### Constrained convex problems

- **Q.** How to solve such constrained problems?
- **A.** Canonical example:

Minimize 
$$f(\mathbf{w})$$
 s.t.  $g_1(\mathbf{w}) \le 0$  (1)



#### Constrained Convex Problems

• If  $\mathbf{w}^*$  is on the boundary of  $g_1$ , i.e., if  $g_1(\mathbf{w}^*) = 0$ ,

$$abla f(\mathbf{w}^*) = -\lambda \nabla g_1(\mathbf{w}^*)$$
 for some  $\lambda \geq 0$ 

- Intuition: If the above didn't hold, then we would have  $\nabla f(\mathbf{w}^*) = \lambda_1 \nabla g_1(\mathbf{w}^*) + \lambda_2 \nabla_{\perp} g_1(\mathbf{w}^*)$ , where, by moving in direction  $\pm \nabla_{\perp} g_1(\mathbf{w}^*)$  (or  $-\nabla g_1(\mathbf{w}^*)$ ), we remain on boundary  $g_1(\mathbf{w}^*) = 0$ , (or within  $g_1(\mathbf{w}^*) \leq 0$ ) while decreasing the value of f, which is not possible at the point of optimality.
- Thus, at the point of optimality<sup>2</sup>, for some  $\lambda \geq 0$ ,

Either 
$$g_1(\mathbf{w}^*) < 0$$
 &  $\nabla f(\mathbf{w}^*) = 0$  (2)

$$Or \ g_1(\mathbf{w}^*) = 0 \quad \& \quad \nabla f(\mathbf{w}^*) = -\lambda \nabla g_1(\mathbf{w}^*) \tag{3}$$

 $<sup>{}^1</sup>abla_\perp g_1(\mathbf{w}^*)$  is the direction orthogonal to  $abla g_1(\mathbf{w}^*)$ 

<sup>&</sup>lt;sup>2</sup>Section 4.4, pg-72: cs725/notes/BasicsOfConvexOptimization.pdf ( ) ( ) ( ) ( )

# Explaining the Figure



Figure 2: Two conditions under which a minimum can occur: a) When the minimum is on the constraint function boundary, in which case the gradients are in opposite directions; b) When point of minimum is inside the constraint space (shown in yellow shade), in which case  $\nabla f(\mathbf{w}^*) = \mathbf{0}$ .

### More Explanation and Lagrange Function

- The first condition occurs when minima lies on the boundary of function g. In this case, gradient vectors corresponding to the functions f and g, at  $\mathbf{w}^*$ , point in opposite directions barring multiplication by a real constant.
- Second condition represents the case that point of minimum lies inside the constraint space. This space is shown shaded in Figure 1. Clearly, for this case,  $\nabla f(\mathbf{w}) = \mathbf{0}$ .
- An Alternative Representation:  $\nabla L(\mathbf{w}, \lambda) = 0$  for some  $\lambda \geq 0$  where

$$L(\mathbf{w}, \lambda) = f(\mathbf{w}) + \lambda \mathbf{g}(\mathbf{w}); \lambda \in \mathbb{R}$$

is called the lagrange function which has objective function augmented by weighted sum of constraint functions



### Duality and KKT conditions

For a convex objective and constraint function, the minima,  $\mathbf{w}^*$ , can satisfy one of the following two conditions:

$$\mathbf{0} \ \ g(\mathbf{w}^*) = \mathbf{0} \ \ \mathrm{and} \ \ \nabla f(\mathbf{w}^*) = -\lambda \nabla \mathbf{g}(\mathbf{w}^*)$$

### Duality and KKT conditions

- Here, we wish to penalize higher magnitude coefficients, hence, we wish  $g(\mathbf{w})$  to be negative while minimizing the lagrangian. In order to maintain such direction, we must have  $\lambda \geq 0$ . Also, for solution  $\mathbf{w}$  to be feasible,  $\nabla g(\mathbf{w}) \leq \mathbf{0}$ .
- Due to complementary slackness condition, we further have  $\lambda g(\mathbf{w}) = \mathbf{0}$ , which roughly suggests that the lagrange multiplier is zero unless constraint is active at the minimum point. As  $\mathbf{w}$  minimizes the lagrangian  $L(\mathbf{w}, \lambda)$ , gradient must vanish at this point and hence we have  $\nabla f(\mathbf{w}) + \lambda \nabla \mathbf{g}(\mathbf{w}) = \mathbf{0}$

# KKT Conditions, Duality, SVR Dual

 The general optimization problem we consider with (convex) inequality and (linear) equality constraints is:

```
\min_{\mathbf{w}} f(\mathbf{w})
```

 The general optimization problem we consider with (convex) inequality and (linear) equality constraints is:

$$\min_{\mathbf{w}} f(\mathbf{w})$$

subject to 
$$g_i(\mathbf{w}) \leq 0$$
;  $1 \leq i \leq m$ 

$$h_j(\mathbf{w}) = 0; 1 \le j \le p$$

• Here,  $\mathbf{w} \in \mathbb{R}^n$  and the domain is the intersection of all functions. Lagrangian is:

$$L(\mathbf{w}, \lambda, \mu) = f(\mathbf{w}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{w}) + \sum_{i=1}^{p} \mu_i h_i(\mathbf{w})$$

• Here,  $\mathbf{w} \in \mathbb{R}^n$  and the domain is the intersection of all functions. Lagrangian is:

$$L(\mathbf{w}, \lambda, \mu) = f(\mathbf{w}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{w}) + \sum_{j=1}^{p} \mu_j h_j(\mathbf{w})$$

- KKT **necessary** conditions for all differentiable functions (i.e.  $f, g_i, h_j$ ) with optimality points  $\hat{\mathbf{w}}$  and  $(\hat{\lambda}, \hat{\mu})$  are:
  - $\nabla f(\hat{\mathbf{w}}) + \sum_{i=1}^{m} \hat{\lambda}_i \nabla g_i(\hat{\mathbf{w}}) + \sum_{j=1}^{p} \hat{\mu}_j \nabla h_j(\hat{\mathbf{w}}) = 0$
  - $g_i(\hat{\mathbf{w}}) \leq 0$ ;  $1 \leq i \leq m$
  - $\hat{\lambda}_i \geq 0$ ;  $1 \leq i \leq m$
  - $\hat{\lambda}_i g_i(\hat{\mathbf{w}}) = 0; 1 \leq i \leq m$
  - $h_j(\hat{\mathbf{w}}) = 0; 1 \le j \le p$

ullet Here,  $oldsymbol{w} \in \mathbb{R}^n$  and the domain is the intersection of all functions. Lagrangian is:

$$L(\mathbf{w}, \lambda, \mu) = f(\mathbf{w}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{w}) + \sum_{j=1}^{p} \mu_j h_j(\mathbf{w})$$

- KKT **necessary** conditions for all differentiable functions (i.e.  $f, g_i, h_j$ ) with optimality points  $\hat{\mathbf{w}}$  and  $(\hat{\lambda}, \hat{\mu})$  are:
  - $\nabla f(\hat{\mathbf{w}}) + \sum_{i=1}^{m} \hat{\lambda}_i \nabla g_i(\hat{\mathbf{w}}) + \sum_{j=1}^{p} \hat{\mu}_j \nabla h_j(\hat{\mathbf{w}}) = 0$
  - $g_i(\hat{\mathbf{w}}) \leq 0; 1 \leq i \leq m$
  - $\hat{\lambda}_i \geq 0$ ;  $1 \leq i \leq m$
  - $\hat{\lambda}_i g_i(\hat{\mathbf{w}}) = 0; 1 \leq i \leq m$
  - $h_j(\hat{\mathbf{w}}) = 0; 1 \le j \le p$
- When f and  $g_i, \forall i \in [1, m]$  are convex and  $h_j, \forall j \in [1, p]$  are affine, KKT conditions are also **sufficient** for optimality at  $\hat{\mathbf{w}}$  and  $(\hat{\lambda}, \hat{\mu})$



### Lagrangian Duality and KKT conditions

• With  $\mathbf{w} \in \mathbb{R}^n$  and  $\lambda \in \mathbb{R}^m, \mu \in \mathbb{R}^p$ , Lagrangian is:

$$L(\mathbf{w}, \lambda, \mu) = f(\mathbf{w}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{w}) + \sum_{j=1}^{p} \mu_j h_j(\mathbf{w})$$

ullet Lagrange dual function is minimum of Lagrangian over ullet.

### Lagrangian Duality and KKT conditions

• With  $\mathbf{w} \in \mathbb{R}^n$  and  $\lambda \in \mathbb{R}^m, \mu \in \mathbb{R}^p$ , Lagrangian is:

$$L(\mathbf{w}, \lambda, \mu) = f(\mathbf{w}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{w}) + \sum_{j=1}^{p} \mu_j h_j(\mathbf{w})$$

Lagrange dual function is minimum of Lagrangian over w.

$$L^*(\lambda,\mu) = \min_{\mathbf{w}} L(\mathbf{w},\lambda,\mu)$$

• The Dual Optimization Problem is to maximize Lagrange dual function  $L^*(\lambda,\mu)$  over  $(\lambda,\mu)$ 

### Lagrangian Duality and KKT conditions

• With  $\mathbf{w} \in \mathbb{R}^n$  and  $\lambda \in \mathbb{R}^m, \mu \in \mathbb{R}^p$ , Lagrangian is:

$$L(\mathbf{w}, \lambda, \mu) = f(\mathbf{w}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{w}) + \sum_{j=1}^{p} \mu_j h_j(\mathbf{w})$$

Lagrange dual function is minimum of Lagrangian over w.

$$L^*(\lambda,\mu) = \min_{\mathbf{w}} L(\mathbf{w},\lambda,\mu)$$

• The Dual Optimization Problem is to maximize Lagrange dual function  $L^*(\lambda, \mu)$  over  $(\lambda, \mu)$ 

$$\operatorname*{argmax}_{\lambda,\mu} L^*(\lambda,\mu) = \operatorname*{argmax}_{\lambda,\mu} \min_{\mathbf{w}} L(\mathbf{w},\lambda,\mu)$$



### Extra: Lagrangian Duality and KKT conditions

- The dual function yields lower bound for minimizer of the primal formulation.
- Max of dual function  $L^*(\lambda,\mu)$  over  $(\lambda,\mu)$  is also therefore a lower bound

### Extra: Lagrangian Duality and KKT conditions

- The dual function yields lower bound for minimizer of the primal formulation.
- Max of dual function  $L^*(\lambda,\mu)$  over  $(\lambda,\mu)$  is also therefore a lower bound

$$\max_{\lambda,\mu} \, L^*(\lambda,\mu) = \max_{\lambda,\mu} \, \min_{\mathbf{w}} \, L(\mathbf{w},\lambda,\mu) \leq L(\mathbf{w},\lambda,\mu)$$

- **Duality Gap:** The gap between primal and dual solutions. In the KKT conditions,  $\hat{\mathbf{w}}$  correspond to primal optimal and  $(\hat{\lambda}, \hat{\mu})$  to dual optimal points  $\Rightarrow$  Duality gap is  $f(\hat{\mathbf{w}}) L^*(\hat{\lambda}, \hat{\mu})$
- Duality gap characterizes suboptimality of the solution and can be approximated by  $f(\mathbf{w}) L^*(\lambda, \mu)$  for any feasible  $\mathbf{w}$  and corresponding  $\lambda$  and  $\mu$

### Extra: Lagrangian Duality and KKT conditions

- The dual function yields lower bound for minimizer of the primal formulation.
- ullet Max of dual function  $L^*(\lambda,\mu)$  over  $(\lambda,\mu)$  is also therefore a lower bound

$$\max_{\lambda,\mu} \, L^*(\lambda,\mu) = \max_{\lambda,\mu} \, \min_{\mathbf{w}} \, L(\mathbf{w},\lambda,\mu) \leq L(\mathbf{w},\lambda,\mu)$$

- **Duality Gap:** The gap between primal and dual solutions. In the KKT conditions,  $\hat{\mathbf{w}}$  correspond to primal optimal and  $(\hat{\lambda}, \hat{\mu})$  to dual optimal points  $\Rightarrow$  Duality gap is  $f(\hat{\mathbf{w}}) L^*(\hat{\lambda}, \hat{\mu})$
- Duality gap characterizes suboptimality of the solution and can be approximated by  $f(\mathbf{w}) L^*(\lambda, \mu)$  for any feasible  $\mathbf{w}$  and corresponding  $\lambda$  and  $\mu$
- When functions f and  $g_i, \forall i \in [1, m]$  are convex and  $h_j, \forall j \in [1, p]$  are affine, Karush-Kuhn-Tucker (KKT) conditions are both necessary and sufficient for points to be both primal and dual optimal with zero duality gap.



# Support Vector Regression and its Dual

Instructor: Prof. Ganesh Ramakrishnan

#### KKT and Dual for SVR

$$\begin{aligned} & \min_{\mathbf{w}, b, \xi_i, \xi_i^*} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_i (\xi_i + \xi_i^*) \\ & \text{s.t. } \forall i, \\ & y_i - \mathbf{w}^\top \phi(\mathbf{x}_i) - b \leq \epsilon + \xi_i, \\ & b + \mathbf{w}^\top \phi(\mathbf{x}_i) - y_i \leq \epsilon + \xi_i^*, \\ & \xi_i, \xi_i^* \geq 0 \end{aligned}$$

- Let's consider the lagrange multipliers  $\alpha_i$ ,  $\alpha_i^*$ ,  $\mu_i$  and  $\mu_i^*$  corresponding to the above-mentioned constraints.
- The Lagrange Function is

#### KKT and Dual for SVR

$$\begin{aligned} & \min_{\mathbf{w}, b, \xi_i, \xi_i^*} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_i (\xi_i + \xi_i^*) \\ & \text{s.t. } \forall i, \\ & y_i - \mathbf{w}^\top \phi(\mathbf{x}_i) - b \leq \epsilon + \xi_i, \\ & b + \mathbf{w}^\top \phi(\mathbf{x}_i) - y_i \leq \epsilon + \xi_i^*, \\ & \xi_i, \xi_i^* \geq 0 \end{aligned}$$

- Let's consider the lagrange multipliers  $\alpha_i$ ,  $\alpha_i^*$ ,  $\mu_i$  and  $\mu_i^*$  corresponding to the above-mentioned constraints.
- The Lagrange Function is  $L(\mathbf{w}, \alpha, \alpha^*, \mu, \mu^*) = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i} (\xi_i + \xi_i^*) + \sum_{i=1}^{m} \alpha_i \left( y_i \mathbf{w}^\top \phi(\mathbf{x}_i) b \epsilon \xi_i \right) + \sum_{i=1}^{m} \alpha_i^* \left( b + \mathbf{w}^\top \phi(\mathbf{x}_i) y_i \epsilon \xi_i^* \right) \sum_{i=1}^{m} \mu_i \xi_i \sum_{i=1}^{m} \mu_i^* \xi_i^*$

$$L(\mathbf{w}, \alpha, \alpha^*, \mu, \mu^*) = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i} (\xi_i + \xi_i^*) + \sum_{i=1}^{m} \alpha_i \left( y_i - \mathbf{w}^\top \phi(\mathbf{x}_i) - b - \epsilon - \xi_i \right) + \sum_{i=1}^{m} \alpha_i^* \left( b + \mathbf{w}^\top \phi(\mathbf{x}_i) - y_i - \epsilon - \xi_i^* \right) - \sum_{i=1}^{m} \mu_i \xi_i - \sum_{i=1}^{m} \mu_i^* \xi_i^*$$

$$\bullet \text{ Differentiating the Lagrangian w.r.t. } \mathbf{w}.$$

$$L(\mathbf{w}, \alpha, \alpha^*, \mu, \mu^*) = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i} (\xi_i + \xi_i^*) + \sum_{i=1}^{m} \alpha_i \left( y_i - \mathbf{w}^\top \phi(\mathbf{x}_i) - b - \epsilon - \xi_i \right) + \sum_{i=1}^{m} \alpha_i^* \left( b + \mathbf{w}^\top \phi(\mathbf{x}_i) - y_i - \epsilon - \xi_i^* \right) - \sum_{i=1}^{m} \mu_i \xi_i - \sum_{i=1}^{m} \mu_i^* \xi_i^*$$

• Differentiating the Lagrangian w.r.t. w,

$$\mathbf{w} - \alpha_i \phi(\mathbf{x}_i) + \alpha_i^* \phi(\mathbf{x}_i) = 0$$
 i.e.,  $\mathbf{w} = \sum_{i=1}^m (\alpha_i - \alpha_i^*) \phi(\mathbf{x}_i)$ 

ullet Differentiating the Lagrangian w.r.t.  $\dot{\xi}_{i}$ 

$$L(\mathbf{w}, \alpha, \alpha^*, \mu, \mu^*) = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i} (\xi_i + \xi_i^*) + \sum_{i=1}^{m} \alpha_i \left( y_i - \mathbf{w}^\top \phi(\mathbf{x}_i) - b - \epsilon - \xi_i \right) + \sum_{i=1}^{m} \alpha_i^* \left( b + \mathbf{w}^\top \phi(\mathbf{x}_i) - y_i - \epsilon - \xi_i^* \right) - \sum_{i=1}^{m} \mu_i \xi_i - \sum_{i=1}^{m} \mu_i^* \xi_i^*$$

• Differentiating the Lagrangian w.r.t. w,

$$\mathbf{w} - \alpha_i \phi(\mathbf{x}_i) + \alpha_i^* \phi(\mathbf{x}_i) = 0$$
 i.e.,  $\mathbf{w} = \sum_{i=1}^m (\alpha_i - \alpha_i^*) \phi(\mathbf{x}_i)$ 

• Differentiating the Lagrangian w.r.t.  $\xi_i$ ,

$$C - \alpha_i - \mu_i = 0$$
 i.e.,  $\alpha_i + \mu_i = C$ 

• Differentiating the Lagrangian w.r.t  $\xi_i^*$ ,

$$L(\mathbf{w}, \alpha, \alpha^*, \mu, \mu^*) = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i} (\xi_i + \xi_i^*) + \sum_{i=1}^{m} \alpha_i \left( y_i - \mathbf{w}^\top \phi(\mathbf{x}_i) - b - \epsilon - \xi_i \right) + \sum_{i=1}^{m} \alpha_i^* \left( b + \mathbf{w}^\top \phi(\mathbf{x}_i) - y_i - \epsilon - \xi_i^* \right) - \sum_{i=1}^{m} \mu_i \xi_i - \sum_{i=1}^{m} \mu_i^* \xi_i^*$$

• Differentiating the Lagrangian w.r.t. w,

$$\mathbf{w} - \alpha_i \phi(\mathbf{x}_i) + \alpha_i^* \phi(\mathbf{x}_i) = 0$$
 i.e.,  $\mathbf{w} = \sum_{i=1}^m (\alpha_i - \alpha_i^*) \phi(\mathbf{x}_i)$ 

• Differentiating the Lagrangian w.r.t.  $\xi_i$ ,  $C - \alpha_i - \mu_i = 0$  i.e.,  $\alpha_i + \mu_i = C$ 

- Differentiating the Lagrangian w.r.t  $\xi_i^*$ ,  $\alpha_i^* + \mu_i^* = C$
- Differentiating the Lagrangian w.r.t b,

$$L(\mathbf{w}, \alpha, \alpha^*, \mu, \mu^*) = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i} (\xi_i + \xi_i^*) + \sum_{i=1}^{m} \alpha_i \left( y_i - \mathbf{w}^\top \phi(\mathbf{x}_i) - b - \epsilon - \xi_i \right) + \sum_{i=1}^{m} \alpha_i^* \left( b + \mathbf{w}^\top \phi(\mathbf{x}_i) - y_i - \epsilon - \xi_i^* \right) - \sum_{i=1}^{m} \mu_i \xi_i - \sum_{i=1}^{m} \mu_i^* \xi_i^*$$

• Differentiating the Lagrangian w.r.t. w,

$$\mathbf{w} - \alpha_i \phi(\mathbf{x}_i) + \alpha_i^* \phi(\mathbf{x}_i) = 0$$
 i.e.,  $\mathbf{w} = \sum_{i=1}^m (\alpha_i - \alpha_i^*) \phi(\mathbf{x}_i)$ 

• Differentiating the Lagrangian w.r.t.  $\xi_i$ ,

$$C - \alpha_i - \mu_i = 0$$
 i.e.,  $\alpha_i + \mu_i = C$ 

- Differentiating the Lagrangian w.r.t  $\xi_i^*$ ,  $\alpha_i^* + \mu_i^* = C$
- Differentiating the Lagrangian w.r.t b,  $\sum_{i}(\alpha_{i}^{*}-\alpha_{i})=0$
- Complimentary slackness:



$$L(\mathbf{w}, \alpha, \alpha^*, \mu, \mu^*) = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i} (\xi_i + \xi_i^*) + \sum_{i=1}^{m} \alpha_i \left( y_i - \mathbf{w}^\top \phi(\mathbf{x}_i) - b - \epsilon - \xi_i \right) + \sum_{i=1}^{m} \alpha_i^* \left( b + \mathbf{w}^\top \phi(\mathbf{x}_i) - y_i - \epsilon - \xi_i^* \right) - \sum_{i=1}^{m} \mu_i \xi_i - \sum_{i=1}^{m} \mu_i^* \xi_i^*$$

• Differentiating the Lagrangian w.r.t. w,

$$\mathbf{w} - \alpha_i \phi(\mathbf{x}_i) + \alpha_i^* \phi(\mathbf{x}_i) = 0$$
 i.e.,  $\mathbf{w} = \sum_{i=1}^m (\alpha_i - \alpha_i^*) \phi(\mathbf{x}_i)$ 

• Differentiating the Lagrangian w.r.t.  $\xi_i$ ,  $C - \alpha_i - \mu_i = 0$  i.e.,  $\alpha_i + \mu_i = C$ 

- Differentiating the Lagrangian w.r.t  $\xi_i^*$ ,  $\alpha_i^* + \mu_i^* = C$
- Differentiating the Lagrangian w.r.t b,  $\sum_{i}(\alpha_{i}^{*}-\alpha_{i})=0$
- Complimentary slackness:

$$\alpha_i(y_i - \mathbf{w}^{\top} \phi(\mathbf{x}_i) - b - \epsilon - \xi_i) = 0 \text{ AND } \mu_i \xi_i = 0 \text{ AND } \alpha_i^* (b + \mathbf{w}^{\top} \phi(\mathbf{x}_i) - y_i - \epsilon - \xi_i^*) = 0 \text{ AND } \mu_i^* \xi_i^* = 0$$



#### Conclusions from the KKT conditions:

$$\alpha_i \in (0, C) \Rightarrow ?$$

$$\alpha_i^* \in (0, C) \Rightarrow ?$$

#### KKT conditions

- Differentiating the Lagrangian w.r.t.  $\mathbf{w}$ ,  $w \alpha_i \phi(\mathbf{x}_i) + \alpha_i^* \phi(\mathbf{x}_i) = 0$ i.e.  $\mathbf{w} = \sum_{i=1}^m (\alpha_i - \alpha_i^*) \phi(\mathbf{x}_i)$
- Differentiating the Lagrangian w.r.t.  $\xi_i$ ,  $C \alpha_i \mu_i = 0$ i.e.  $\alpha_i + \mu_i = C$
- Differentiating the Lagrangian w.r.t  $\xi_i^*$ ,  $\alpha_i^* + \mu_i^* = C$
- Differentiating the Lagrangian w.r.t b,  $\sum_{i}^{m} (\alpha_{i}^{*} \alpha_{i}) = 0$
- Complimentary slackness:

$$\alpha_i(y_i - \mathbf{w}^\top \phi(\mathbf{x}_i) - b - \epsilon - \xi_i) = 0$$
  

$$\mu_i \xi_i = 0$$
  

$$\alpha_i^* (b + \mathbf{w}^\top \phi(\mathbf{x}_i) - y_i - \epsilon - \xi_i^*) = 0$$
  

$$\mu_i^* \xi_i^* = 0$$



#### Conclusions from the KKT conditions:

$$\alpha_i(y_i - \mathbf{w}^{\top}\phi(\mathbf{x}_i) - b - \epsilon - \xi_i) = 0$$

and

$$\alpha_i^*(b + \mathbf{w}^\top \phi(\mathbf{x}_i) - y_i - \epsilon - \xi_i^*) = 0$$

 $\Rightarrow$  ?

#### Conclusions from the KKT conditions:

$$\alpha_i \in (0, C) \Rightarrow ?$$

$$(C - \alpha_i)\xi_i = 0 \Rightarrow ?$$

$$\alpha_i^* \in (0, C) \Rightarrow ?$$

$$(C - \alpha_i^*)\xi_i^* = 0 \Rightarrow ?$$

For Support Vector Regression, since the original objective and the constraints are convex, any  $(\mathbf{w},b,\alpha,\alpha^*,\mu,\mu^*,\xi,\xi^*)$  that satisfy the necessary KKT conditions gives optimality (conditions are also sufficient)

#### Some observations

- $\alpha_i, \alpha_i^* \ge 0$ ,  $\mu_i, \mu_i^* \ge 0$ ,  $\alpha_i + \mu_i = C$  and  $\alpha_i^* + \mu_i^* = C$ Thus,  $\alpha_i, \mu_i, \alpha_i^*, \mu_i^* \in [0, C]$ ,  $\forall i$
- If  $0 < \alpha_i < C$ , then  $0 < \mu_i < C$  (as  $\alpha_i + \mu_i = C$ )
- $\mu_i \xi_i = 0$  and  $\alpha_i (y_i \mathbf{w}^{\top} \phi(\mathbf{x}_i) b \epsilon \xi_i) = 0$  are complementary slackness conditions

So 
$$0 < \alpha_i < C \Rightarrow \xi_i = 0$$
 and  $y_i - \mathbf{w}^{\top} \phi(\mathbf{x}_i) - b = \epsilon + \xi_i = \epsilon$ 

- $\bullet$  All such points lie on the boundary of the  $\epsilon$  band
- Using any point  $\mathbf{x}_j$  (that is with  $\alpha_j \in (0, C)$ ) on margin, we can recover b as:  $b = y_j \mathbf{w}^\top \phi(\mathbf{x}_j) \epsilon$

# KKT Conditions, Duality, SVR Dual

#### KKT conditions for SVR

$$L(\mathbf{w}, \alpha, \alpha^*, \mu, \mu^*) = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i} (\xi_i + \xi_i^*) + \sum_{i=1}^{m} \alpha_i \left( y_i - \mathbf{w}^\top \phi(\mathbf{x}_i) - b - \epsilon - \xi_i \right) + \sum_{i=1}^{m} \alpha_i^* \left( b + \mathbf{w}^\top \phi(\mathbf{x}_i) - y_i - \epsilon - \xi_i^* \right) - \sum_{i=1}^{m} \mu_i \xi_i - \sum_{i=1}^{m} \mu_i^* \xi_i^*$$

• Differentiating the Lagrangian w.r.t. w,

$$\mathbf{w} - \alpha_i \phi(\mathbf{x}_i) + \alpha_i^* \phi(\mathbf{x}_i) = 0$$
 i.e.,  $\mathbf{w} = \sum_{i=1}^m (\alpha_i - \alpha_i^*) \phi(\mathbf{x}_i)$ 

• Differentiating the Lagrangian w.r.t.  $\xi_i$ ,  $C - \alpha_i - \mu_i = 0$  i.e.,  $\alpha_i + \mu_i = C$ 

- Differentiating the Lagrangian w.r.t  $\xi_i^*$ ,  $\alpha_i^* + \mu_i^* = C$
- Differentiating the Lagrangian w.r.t b,  $\sum_{i}(\alpha_{i}^{*}-\alpha_{i})=0$
- Complimentary slackness:

$$\alpha_i(y_i - \mathbf{w}^{\top} \phi(\mathbf{x}_i) - b - \epsilon - \xi_i) = 0 \text{ AND } \mu_i \xi_i = 0 \text{ AND } \alpha_i^* (b + \mathbf{w}^{\top} \phi(\mathbf{x}_i) - y_i - \epsilon - \xi_i^*) = 0 \text{ AND } \mu_i^* \xi_i^* = 0$$



For Support Vector Regression, since the original objective and the constraints are convex, any  $(\mathbf{w},b,\alpha,\alpha^*,\mu,\mu^*,\xi,\xi^*)$  that satisfy the necessary KKT conditions gives optimality (conditions are also sufficient)

#### Some observations

- $\alpha_i, \alpha_i^* \ge 0$ ,  $\mu_i, \mu_i^* \ge 0$ ,  $\alpha_i + \mu_i = C$  and  $\alpha_i^* + \mu_i^* = C$ Thus,  $\alpha_i, \mu_i, \alpha_i^*, \mu_i^* \in [0, C]$ ,  $\forall i$
- If  $0 < \alpha_i < C$ , then  $0 < \mu_i < C$  (as  $\alpha_i + \mu_i = C$ )
- $\mu_i \xi_i = 0$  and  $\alpha_i (y_i \mathbf{w}^{\top} \phi(\mathbf{x}_i) b \epsilon \xi_i) = 0$  are complementary slackness conditions

So 
$$0 < \alpha_i < C \Rightarrow \xi_i = 0$$
 and  $y_i - \mathbf{w}^{\top} \phi(\mathbf{x}_i) - b = \epsilon + \xi_i = \epsilon$ 

- $\bullet$  All such points lie on the boundary of the  $\epsilon$  band
- Using any point  $\mathbf{x}_j$  (that is with  $\alpha_j \in (0, C)$ ) on margin, we can recover b as:  $b = y_j \mathbf{w}^\top \phi(\mathbf{x}_j) \epsilon$

# Support Vector Regression Dual Objective

## Weak Duality

- $L^*(\alpha, \alpha^*, \mu, \mu^*) = \min_{\mathbf{w}, b, \xi, \xi^*} L(\mathbf{w}, b, \xi, \xi^*, \alpha, \alpha^*, \mu, \mu^*)$
- By weak duality theorem, we have:  $\min_{\mathbf{w},b,\xi,\xi^*} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^m (\xi_i + \xi_i^*) \ge L^*(\alpha,\alpha^*,\mu,\mu^*)$  s.t.  $y_i \mathbf{w}^\top \phi(\mathbf{x}_i) b \le \epsilon \xi_i$ , and  $\mathbf{w}^\top \phi(\mathbf{x}_i) + b y_i \le \epsilon \xi_i^*, \text{ and}$   $\xi_i, \xi^* > 0, \ \forall i = 1, \dots, n$
- The above is true for any  $\alpha_i, \alpha_i^* \geq 0$  and  $\mu_i, \mu_i^* \geq 0$
- Thus,

## Weak Duality

- $L^*(\alpha, \alpha^*, \mu, \mu^*) = \min_{\mathbf{w}, b, \xi, \xi^*} L(\mathbf{w}, b, \xi, \xi^*, \alpha, \alpha^*, \mu, \mu^*)$
- By weak duality theorem, we have:  $\min_{\mathbf{w},b,\xi,\xi^*} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^m (\xi_i + \xi_i^*) \ge L^*(\alpha,\alpha^*,\mu,\mu^*)$

s.t. 
$$y_i - \mathbf{w}^{\top} \phi(\mathbf{x}_i) - b \leq \epsilon - \xi_i$$
, and  $\mathbf{w}^{\top} \phi(\mathbf{x}_i) + b - y_i \leq \epsilon - \xi_i^*$ , and  $\xi_i, \xi^* \geq 0$ ,  $\forall i = 1, \dots, n$ 

- The above is true for any  $\alpha_i, \alpha_i^* \geq 0$  and  $\mu_i, \mu_i^* \geq 0$
- Thus,

$$\min_{\mathbf{w},b,\xi,\xi^*} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^m (\xi_i + \xi_i^*) \ge \max_{\alpha,\alpha^*,\mu,\mu^*} L^*(\alpha,\alpha^*,\mu,\mu^*)$$

s.t. 
$$y_i - \mathbf{w}^{\top} \phi(\mathbf{x}_i) - b \leq \epsilon - \xi_i$$
, and  $\mathbf{w}^{\top} \phi(\mathbf{x}_i) + b - y_i \leq \epsilon - \xi_i^*$ , and  $\xi_i, \xi^* \geq 0$ ,  $\forall i = 1, \dots, n$ 



## Dual objective

- $L^*(\alpha, \alpha^*, \mu, \mu^*) = \min_{\mathbf{w}, b, \xi, \xi^*} L(\mathbf{w}, b, \xi, \xi^*, \alpha, \alpha^*, \mu, \mu^*)$
- Assume: In case of SVR, we have a strictly convex objective and linear constraints
   KKT conditions are necessary and sufficient and strong duality holds:

$$\min_{\mathbf{w},b,\xi,\xi^*} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^m (\xi_i + \xi_i^*) = \max_{\alpha,\alpha^*,\mu,\mu^*} L^*(\alpha,\alpha^*,\mu,\mu^*)$$

s.t. 
$$y_i - \mathbf{w}^{\top} \phi(\mathbf{x}_i) - b \le \epsilon - \xi_i$$
, and  $\mathbf{w}^{\top} \phi(\mathbf{x}_i) + b - y_i \le \epsilon - \xi_i^*$ , and  $\xi_i, \xi^* > 0$ .  $\forall i = 1, \dots, n$ 

- This value is precisely obtained at the  $(\mathbf{w}, b, \xi, \xi^*, \alpha, \alpha^*, \mu, \mu^*)$  that satisfies the necessary (and sufficient) KKT optimality conditions
- Given strong duality, we can equivalently solve

$$\max_{\alpha,\alpha^*,\mu,\mu^*} L^*(\alpha,\alpha^*,\mu,\mu^*)$$



- $L(\alpha, \alpha^*, \mu, \mu^*) = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^m (\xi_i + \xi_i^*) + \sum_{i=1}^m (\alpha_i (y_i \mathbf{w}^\top \phi(\mathbf{x}_i) b \epsilon \xi_i) + \alpha_i^* (\mathbf{w}^\top \phi(\mathbf{x}_i) + b y_i \epsilon \xi_i^*)) \sum_{i=1}^m (\mu_i \xi_i + \mu_i^* \xi_i^*)$
- We obtain  $\mathbf{w}$ , b,  $\xi_i$ ,  $\xi_i^*$  in terms of  $\alpha$ ,  $\alpha^*$ ,  $\mu$  and  $\mu^*$  by using the KKT conditions derived earlier as  $\mathbf{w} = \sum\limits_{i=1}^m (\alpha_i \alpha_i^*) \phi(\mathbf{x}_i)$  and  $\sum\limits_{i=1}^m (\alpha_i \alpha_i^*) = 0$  and  $\alpha_i + \mu_i = C$  and  $\alpha_i^* + \mu_i^* = C$
- Thus, we get:

- $L(\alpha, \alpha^*, \mu, \mu^*) = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^{m} (\xi_i + \xi_i^*) + \sum_{i=1}^{m} (\alpha_i (y_i \mathbf{w}^\top \phi(\mathbf{x}_i) b \epsilon \xi_i) + \alpha_i^* (\mathbf{w}^\top \phi(\mathbf{x}_i) + b y_i \epsilon \xi_i^*)) \sum_{i=1}^{m} (\mu_i \xi_i + \mu_i^* \xi_i^*)$
- We obtain  $\mathbf{w}$ , b,  $\xi_i$ ,  $\xi_i^*$  in terms of  $\alpha$ ,  $\alpha^*$ ,  $\mu$  and  $\mu^*$  by using the KKT conditions derived earlier as  $\mathbf{w} = \sum\limits_{i=1}^m (\alpha_i \alpha_i^*) \phi(\mathbf{x}_i)$  and  $\sum\limits_{i=1}^m (\alpha_i \alpha_i^*) = 0$  and  $\alpha_i + \mu_i = C$  and  $\alpha_i^* + \mu_i^* = C$
- Thus, we get:

$$L(\mathbf{w}, b, \xi, \xi^*, \alpha, \alpha^*, \mu, \mu^*)$$

$$= \frac{1}{2} \sum_{i} \sum_{j} (\alpha_i - \alpha_i^*) (\alpha_j - \alpha_j^*) \phi^{\top}(\mathbf{x}_i) \phi(\mathbf{x}_j) +$$

$$\sum_{i} (\xi_i (C - \alpha_i - \mu_i) + \xi_i^* (C - \alpha_i^* - \mu_i^*)) - b \sum_{i} (\alpha_i - \alpha_i^*) - \epsilon \sum_{i} (\alpha_i + \alpha_i^*) +$$

$$\sum_{i} y_i (\alpha_i - \alpha_i^*) - \sum_{i} \sum_{j} (\alpha_i - \alpha_i^*) (\alpha_j - \alpha_j^*) \phi^{\top}(\mathbf{x}_i) \phi(\mathbf{x}_j)$$

• 
$$L(\alpha, \alpha^*, \mu, \mu^*) = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^{m} (\xi_i + \xi_i^*) + \sum_{i=1}^{m} (\alpha_i (y_i - \mathbf{w}^\top \phi(\mathbf{x}_i) - b - \epsilon - \xi_i) + \alpha_i^* (\mathbf{w}^\top \phi(\mathbf{x}_i) + b - y_i - \epsilon - \xi_i^*)) - \sum_{i=1}^{m} (\mu_i \xi_i + \mu_i^* \xi_i^*)$$

- We obtain  $\mathbf{w}$ , b,  $\xi_i$ ,  $\xi_i^*$  in terms of  $\alpha$ ,  $\alpha^*$ ,  $\mu$  and  $\mu^*$  by using the KKT conditions derived earlier as  $\mathbf{w} = \sum\limits_{i=1}^m (\alpha_i \alpha_i^*) \phi(\mathbf{x}_i)$  and  $\sum\limits_{i=1}^m (\alpha_i \alpha_i^*) = 0$  and  $\alpha_i + \mu_i = C$  and  $\alpha_i^* + \mu_i^* = C$
- Thus, we get:

$$L(\mathbf{w}, b, \xi, \xi^*, \alpha, \alpha^*, \mu, \mu^*)$$

$$= \frac{1}{2} \sum_{i} \sum_{j} (\alpha_i - \alpha_i^*) (\alpha_j - \alpha_j^*) \phi^{\top}(\mathbf{x}_i) \phi(\mathbf{x}_j) +$$

$$\sum_{i} (\xi_i (C - \alpha_i - \mu_i) + \xi_i^* (C - \alpha_i^* - \mu_i^*)) - b \sum_{i} (\alpha_i - \alpha_i^*) - \epsilon \sum_{i} (\alpha_i + \alpha_i^*) +$$

$$\sum_{i} y_i (\alpha_i - \alpha_i^*) - \sum_{i} \sum_{j} (\alpha_i - \alpha_i^*) (\alpha_j - \alpha_j^*) \phi^{\top}(\mathbf{x}_i) \phi(\mathbf{x}_j)$$

$$= -\frac{1}{2} \sum_{i} \sum_{j} (\alpha_i - \alpha_i^*) (\alpha_j - \alpha_j^*) \phi^{\top}(\mathbf{x}_i) \phi(\mathbf{x}_j) - \epsilon \sum_{i} (\alpha_i + \alpha_i^*) + \sum_{i} y_i (\alpha_i - \alpha_i^*)$$

# Kernel function: $K(\mathbf{x}_i, \mathbf{x}_j) = \phi^T(\mathbf{x}_i)\phi(\mathbf{x}_j)$

•  $\mathbf{w} = \sum_{i=1}^{m} (\alpha_i - \alpha_i^*) \phi(\mathbf{x}_i) \Rightarrow$  the final decision function  $f(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) + b = \sum_{i=1}^{m} (\alpha_i - \alpha_i^*) \phi^T(\mathbf{x}_i) \phi(\mathbf{x}) + y_j - \sum_{i=1}^{m} (\alpha_i - \alpha_i^*) \phi^T(\mathbf{x}_i) \phi(\mathbf{x}_j) - \epsilon$   $\mathbf{x}_i$  is any point with  $\alpha_i \in (0, C)$ . Recall similarity with

# Kernel function: $K(\mathbf{x}_i, \mathbf{x}_j) = \phi^T(\mathbf{x}_i)\phi(\mathbf{x}_j)$

- $\mathbf{w} = \sum_{i=1}^{m} (\alpha_i \alpha_i^*) \phi(\mathbf{x}_i) \Rightarrow$  the final decision function  $f(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) + b = \sum_{i=1}^{m} (\alpha_i \alpha_i^*) \phi^T(\mathbf{x}_i) \phi(\mathbf{x}) + y_j \sum_{i=1}^{m} (\alpha_i \alpha_i^*) \phi^T(\mathbf{x}_i) \phi(\mathbf{x}_j) \epsilon$   $\mathbf{x}_j$  is any point with  $\alpha_j \in (0, C)$ . Recall similarity with kernelized expression for Ridge Regression
- The dual optimization problem to compute the  $\alpha$ 's for SVR is:

# Kernel function: $K(\mathbf{x}_i, \mathbf{x}_j) = \phi^T(\mathbf{x}_i)\phi(\mathbf{x}_j)$

- $\mathbf{w} = \sum_{i=1}^{m} (\alpha_i \alpha_i^*) \phi(\mathbf{x}_i) \Rightarrow$  the final decision function  $f(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) + b = \sum_{i=1}^{m} (\alpha_i \alpha_i^*) \phi^T(\mathbf{x}_i) \phi(\mathbf{x}) + y_j \sum_{i=1}^{m} (\alpha_i \alpha_i^*) \phi^T(\mathbf{x}_i) \phi(\mathbf{x}_j) \epsilon$   $\mathbf{x}_j$  is any point with  $\alpha_j \in (0, C)$ . Recall similarity with kernelized expression for Ridge Regression
- The dual optimization problem to compute the  $\alpha$ 's for SVR is:

$$max_{\alpha_i,\alpha_i^*} - \frac{1}{2} \sum_{i} \sum_{j} (\alpha_i - \alpha_i^*)(\alpha_j - \alpha_j^*) \phi^{\top}(\mathbf{x}_i) \phi(\mathbf{x}_j)$$
$$-\epsilon \sum_{i} (\alpha_i + \alpha_i^*) + \sum_{i} y_i (\alpha_i - \alpha_i^*)$$

s.t.

• 
$$\sum_{i}(\alpha_i - \alpha_i^*) = 0$$

•  $\alpha_i, \alpha_i^* \in [0, C]$ 

• We notice that the only way these three expressions involve  $\phi$  is through  $\phi^{\top}(\mathbf{x}_i)\phi(\mathbf{x}_i) = K(\mathbf{x}_i,\mathbf{x}_i)$ , for some i,j

## Recap from Quiz 1: Kernelizing Ridge Regression

- Given  $w = (\Phi^T \Phi + \lambda I)^{-1} \Phi^T y$  and using the identity  $(P^{-1} + B^T R^{-1} B)^{-1} B^T R^{-1} = PB^T (BPB^T + R)^{-1}$ •  $\Rightarrow w = \Phi^T (\Phi \Phi^T + \lambda I)^{-1} y = \sum_{i=1}^m \alpha_i \phi(x_i)$  where  $\alpha_i = ((\Phi \Phi^T + \lambda I)^{-1} y)_i$ •  $\Rightarrow$  the final decision function  $f(\mathbf{x}) = \phi^T(\mathbf{x}) \mathbf{w} = \sum_{i=1}^m \alpha_i \phi^T(\mathbf{x}) \phi(\mathbf{x}_i)$
- Again, We notice that the only way the decision function  $f(\mathbf{x})$  involves  $\phi$  is through  $\phi^{\top}(\mathbf{x}_i)\phi(\mathbf{x}_j)$ , for some i,j

#### The Kernel function

- We call  $\phi^{\top}(\mathbf{x}_i)\phi(\mathbf{x}_j)$  a kernel function:  $K(\mathbf{x}_i, \mathbf{x}_i) = \phi^{\top}(\mathbf{x}_i)\phi(\mathbf{x}_i)$
- The Kernel Trick: For some important choices of  $\phi$ , compute  $K(\mathbf{x}_i, \mathbf{x}_j)$  directly and more efficiently than having to explicitly compute/enumerate  $\phi^{(\mathbf{x}_i)}$  and  $\phi(\mathbf{x}_j)$
- The expression for decision function becomes  $f(x) = \sum_{i=1}^{m} \alpha_i K(\mathbf{x}, \mathbf{x}_i)$
- Computation of  $\alpha_i$  is specific to the objective function being minimized: Closed form exists for Ridge regression but NOT for SVR

#### Back to the Kernelized version of SVR

The kernelized dual problem:

$$max_{\alpha_i,\alpha_i^*} - rac{1}{2} \sum_i \sum_j (\alpha_i - \alpha_i^*)(\alpha_j - \alpha_j^*) K(\mathbf{x}_i, \mathbf{x}_j)$$
 $-\epsilon \sum_i (\alpha_i + \alpha_i^*) + \sum_i y_i (\alpha_i - \alpha_i^*)$ 

s.t.

$$\sum_{i} (\alpha_i - \alpha_i^*) = 0$$

•  $\alpha_i, \alpha_i^* \in [0, C]$ 

• The kernelized decision function:  $f(\mathbf{x}) = \sum_{i} (\alpha_i - \alpha_i^*) K(\mathbf{x}_i, \mathbf{x}) + b$ 

• Using any point  $x_j$  with  $\alpha_j \in (0, C)$ :  $b = y_j - \sum_i (\alpha_i - \alpha_i^*) K(\mathbf{x}_i, \mathbf{x}_j)$ 

• Computing  $K(\mathbf{x}_1, \mathbf{x}_2)$  often does not even require computing  $\phi(\mathbf{x}_1)$  or  $\phi(\mathbf{x}_2)$  explicitly

## Basis function expansion and the Kernel trick

• We started off with the functional form<sup>3</sup>

$$f(\mathbf{x}) = \sum_{j=1}^{p} w_j \phi_j(\mathbf{x})$$

Each  $\phi_j$  is called a basis function and this representation is called basis function expansion<sup>4</sup>

And we landed up with an equivalent

$$f(\mathbf{x}) = \sum_{i=1}^{m} \alpha_i K(\mathbf{x}, \mathbf{x}_i)$$

for Ridge regression and Support Vector Regression

• Aside: For  $p \in [0, \infty)$ , with what K, kind of regularizers, loss functions, *etc.*, will these dual representations hold?<sup>5</sup>



 $<sup>^3</sup>$ The additional b term can be either absorbed in  $\phi$  or kept separate as discussed on several occasions.

<sup>&</sup>lt;sup>4</sup>Section 2.8.3 of Tibshi

## An Example Kernel

- Let  $K(\mathbf{x}_1, \mathbf{x}_2) = (1 + \mathbf{x}_1^{\top} \mathbf{x}_2)^2$
- What  $\phi(\mathbf{x})$  will give  $\phi^{\top}(\mathbf{x}_1)\phi(\mathbf{x}_2)=K(\mathbf{x}_1,\mathbf{x}_2)=(1+\mathbf{x}_1^{\top}\mathbf{x}_2)^2$
- ullet Is such a  $\phi$  guaranteed to exist?
- Is there a unique  $\phi$  for given K?

## An Example Kernel

- ullet We can prove that such a  $\phi$  exists
- For example, for a 2-dimensional  $\mathbf{x}_i$ :

$$\phi(\mathbf{x}_i) = \begin{bmatrix} 1\\ x_{i1}\sqrt{2}\\ x_{i2}\sqrt{2}\\ x_{i1}x_{i2}\sqrt{2}\\ x_{i1}^2\\ x_{i2}^2 \end{bmatrix}$$

- $\phi(\mathbf{x}_i)$  exists in a 5-dimensional space
- But, to compute  $K(\mathbf{x}_1, \mathbf{x}_2)$ , all we need is  $x_1^\top x_2$  without having to enumerate  $\phi(\mathbf{x}_i)$

#### More on the Kernel Trick

- **Kernels** operate in a *high-dimensional*, *implicit* feature space without necessarily computing the coordinates of the data in that space, but rather by simply computing the Kernel function
- This approach is called the "kernel trick" and will subsequently talk about valid kernels
- This operation is often computationally cheaper than the explicit computation of the coordinates
- Claim: If  $K_{ij} = K(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle$  are entries of an  $n \times n$  **Gram Matrix** K then
  - ullet  $\mathcal K$  must be positive semi-definite

• Proof: 
$$\mathbf{b}^T \mathcal{K} \mathbf{b} = \sum_{i,j} b_i \mathcal{K}_{ij} b_j = \sum_{i,j} b_i b_j \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle$$
  
 $= \langle \sum_i b_i \phi(\mathbf{x}_i), \sum_j b_j \phi(\mathbf{x}_j) \rangle = ||\sum_i b_i \phi(\mathbf{x}_i)||_2^2 \ge 0$ 



## Existence of basis expansion $\phi$ for symmetric K?

• Positive-definite kernel: For any dataset  $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m\}$  and for any m, the Gram matrix  $\mathcal{K}$  must be positive definite

$$\mathcal{K} = \begin{bmatrix} K(\mathbf{x}_1, \mathbf{x}_1) & \dots & K(\mathbf{x}_1, \mathbf{x}_n) \\ \dots & K(\mathbf{x}_i, \mathbf{x}_j) & \dots \\ K(\mathbf{x}_m, \mathbf{x}_1) & \dots & K(\mathbf{x}_m, \mathbf{x}_m) \end{bmatrix}$$

so that  $\mathcal{K}=U\Sigma U^T=(U\Sigma^{\frac{1}{2}})(U\Sigma^{\frac{1}{2}})^T=RR^T$  where rows of U are linearly independent and  $\Sigma$  is a positive diagonal matrix



<sup>&</sup>lt;sup>6</sup>Eigen-decomposition wrt linear operators. See https://en.wikipedia.org/wiki/Mercer%27s\_theorem <sup>7</sup>That is, if every Cauchy sequence is convergent.

## Existence of basis expansion $\phi$ for symmetric K?

• Positive-definite kernel: For any dataset  $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m\}$  and for any m, the Gram matrix  $\mathcal{K}$  must be positive definite

$$\mathcal{K} = \begin{bmatrix} K(\mathbf{x}_1, \mathbf{x}_1) & \dots & K(\mathbf{x}_1, \mathbf{x}_n) \\ \dots & K(\mathbf{x}_i, \mathbf{x}_j) & \dots \\ K(\mathbf{x}_m, \mathbf{x}_1) & \dots & K(\mathbf{x}_m, \mathbf{x}_m) \end{bmatrix}$$

so that  $\mathcal{K} = U\Sigma U^T = (U\Sigma^{\frac{1}{2}})(U\Sigma^{\frac{1}{2}})^T = RR^T$  where rows of U are linearly independent and  $\Sigma$  is a positive diagonal matrix

• *Mercer kernel:* Extending to eigenfunction decomposition<sup>6</sup>:

$$K(\mathbf{x}_1,\mathbf{x}_2) = \sum_{j=1}^{\infty} \alpha_j \phi_j(\mathbf{x}_1) \phi_j(\mathbf{x}_2)$$
 where  $\alpha_j \geq 0$  and  $\sum_{j=1}^{\infty} \alpha_j^2 < \infty$ 

• Mercer kernel and Positive-definite kernel turn out to be equivalent if the input space  $\{x\}$  is  $compact^7$ 



<sup>&</sup>lt;sup>6</sup>Eigen-decomposition wrt linear operators. See https://en.wikipedia.org/wiki/Mercer%27s\_theorem <sup>7</sup>That is, if every Cauchy sequence is convergent.

- Mercer kernel:  $K(\mathbf{x}_1, \mathbf{x}_2)$  is a Mercer kernel if  $\int \int K(\mathbf{x}_1, \mathbf{x}_2) g(\mathbf{x}_1) g(\mathbf{x}_2) d\mathbf{x}_1 d\mathbf{x}_2 \ge 0$  for all square integrable functions  $g(\mathbf{x})$   $(g(\mathbf{x})$  is square integrable iff  $\int (g(\mathbf{x}))^2 dx$  is finite)
- Mercer's theorem:

An implication of the theorem:

for any Mercer kernel 
$$K(\mathbf{x}_1, \mathbf{x}_2)$$
,  $\exists \phi(\mathbf{x}) : \mathbb{R}^n \mapsto H$ , s.t.  $K(\mathbf{x}_1, \mathbf{x}_2) = \phi^{\top}(\mathbf{x}_1)\phi(\mathbf{x}_2)$ 

- where H is a Hilbert space<sup>8</sup>, the infinite dimensional version of the Eucledian space.
- Eucledian space:  $(\Re^n, <.,.>)$  where <.,.> is the standard dot product in  $\Re^n$
- Advanced: Formally, Hibert Space is an inner product space with associated norms, where every Cauchy sequence is convergent

<sup>&</sup>lt;sup>8</sup>Do you know Hilbert? No? Then what are you doing in his space? :) ←□→←♂→←≧→←≧→ ≥ →△へ

# Prove that $(\mathbf{x}_1^{\top}\mathbf{x}_2)^d$ is a Mercer kernel $(d \in \mathbb{Z}^+, \ d \geq 1)$

- We want to prove that  $\int_{\mathbf{x}_1} \int_{\mathbf{x}_2} (\mathbf{x}_1^\top \mathbf{x}_2)^d g(\mathbf{x}_1) g(\mathbf{x}_2) \, d\mathbf{x}_1 d\mathbf{x}_2 \geq 0,$  for all square integrable functions  $g(\mathbf{x})$
- ullet Here,  $old x_1$  and  $old x_2$  are vectors s.t  $old x_1, old x_2 \in \Re^t$
- Thus,  $\int_{\mathbf{x}_1} \int_{\mathbf{x}_2} (\mathbf{x}_1^\top \mathbf{x}_2)^d g(\mathbf{x}_1) g(\mathbf{x}_2) d\mathbf{x}_1 d\mathbf{x}_2$

$$= \int_{x_{11}} ... \int_{x_{1t}} \int_{x_{21}} ... \int_{x_{2t}} \left[ \sum_{n_1..n_t} \frac{d!}{n_1!..n_t!} \prod_{j=1}^t (x_{1j}x_{2j})^{n_j} \right] g(x_1)g(x_2) dx_{11}...dx_{1t}dx_{21}...dx_{2t}$$

$$= \int_{x_{11}} ... \int_{x_{1t}} \int_{x_{21}} ... \int_{x_{2t}} \left[ \sum_{n_1..n_t} \frac{d!}{n_1!..n_t!} \prod_{j=1}^t (x_{1j}x_{2j})^{n_j} \right] g(x_1)g(x_2) dx_{11}...dx_{1t}dx_{21}...dx_{2t}$$

s.t. 
$$\sum_{i=1}^{t} n_i = d$$
(taking a leap)

# Prove that $(\mathbf{x}_1^{\top}\mathbf{x}_2)^d$ is a Mercer kernel $(d \in \mathbb{Z}^+, \ d \geq 1)$

$$= \sum_{n_1...n_t} \frac{d!}{n_1! \dots n_t!} \int_{\mathbf{x}_1} \int_{\mathbf{x}_2} \prod_{j=1}^t (x_{1j} x_{2j})^{n_j} g(x_1) g(x_2) dx_1 dx_2$$

$$= \sum_{n_1...n_t} \frac{d!}{n_1! \dots n_t!} \int_{\mathbf{x}_1} \int_{\mathbf{x}_2} (x_{11}^{n_1} x_{12}^{n_2} \dots x_{1t}^{n_t}) g(x_1) (x_{21}^{n_1} x_{22}^{n_2} \dots x_{2t}^{n_t}) g(x_2) dx_1 dx_2$$

# Prove that $(\mathbf{x}_1^{\top}\mathbf{x}_2)^d$ is a Mercer kernel $(d \in \mathbb{Z}^+, d \geq 1)$

$$= \sum_{n_{1}...n_{t}} \frac{d!}{n_{1}! \dots n_{t}!} \int_{x_{1}} \int_{x_{2}} \prod_{j=1}^{t} (x_{1j}x_{2j})^{n_{j}} g(x_{1})g(x_{2}) dx_{1} dx_{2}$$

$$= \sum_{n_{1}...n_{t}} \frac{d!}{n_{1}! \dots n_{t}!} \int_{x_{1}} \int_{x_{2}} (x_{11}^{n_{1}}x_{12}^{n_{2}} \dots x_{1t}^{n_{t}})g(x_{1}) (x_{21}^{n_{1}}x_{22}^{n_{2}} \dots x_{2t}^{n_{t}})g(x_{2}) dx_{1} dx_{2}$$

$$= \sum_{n_{1}...n_{t}} \frac{d!}{n_{1}! \dots n_{t}!} (\int_{x_{1}} (x_{11}^{n_{1}} \dots x_{1t}^{n_{t}})g(x_{1}) dx_{1}) (\int_{x_{2}} (x_{21}^{n_{1}} \dots x_{2t}^{n_{t}})g(x_{2}) dx_{2})$$
(integral of decomposable product as product of integrals)
$$\text{s.t. } \sum_{i}^{t} n_{i} = d$$

# Prove that $(\mathbf{x}_1^{\top}\mathbf{x}_2)^d$ is a Mercer kernel $(d \in \mathbb{Z}^+, \ d \geq 1)$

- Realize that both the integrals are basically the same, with different variable names
- Thus, the equation becomes:

$$\sum_{n_1...n_t} \frac{d!}{n_1! \ldots n_t!} \left( \int_{\mathbf{x}_1} (x_{11}^{n_1} \ldots x_{1t}^{n_t}) g(x_1) \, dx_1 \right)^2 \geq 0$$

(the square is non-negative for reals)

ullet Thus, we have shown that  $(\mathbf{x}_1^{ op}\mathbf{x}_2)^d$  is a Mercer kernel.

What about 
$$\sum_{d=1}^{\infty} \alpha_d (\mathbf{x}_1^{\top} \mathbf{x}_2)^d$$
 s.t.  $\alpha_d \geq 0$ ?

• 
$$K(\mathbf{x}_1, \mathbf{x}_2) = \sum_{d=1}^r \alpha_d (\mathbf{x}_1^\top \mathbf{x}_2)^d$$

• Is 
$$\int_{\mathbf{x}_1} \int_{\mathbf{x}_2} \left( \sum_{d=1}^r \alpha_d(\mathbf{x}_1^\top \mathbf{x}_2)^d \right) g(\mathbf{x}_1) g(\mathbf{x}_2) d\mathbf{x}_1 d\mathbf{x}_2 \ge 0$$
?

We have

$$\int_{\mathbf{x}_1} \int_{\mathbf{x}_2} \left( \sum_{d=1}^r \alpha_d (\mathbf{x}_1^\top \mathbf{x}_2)^d \right) g(x_1) g(x_2) dx_1 dx_2 =$$

What about 
$$\sum_{d=1}^{\infty} \alpha_d (\mathbf{x}_1^{\top} \mathbf{x}_2)^d$$
 s.t.  $\alpha_d \geq 0$ ?

• 
$$K(\mathbf{x}_1, \mathbf{x}_2) = \sum_{d=1}^{r} \alpha_d (\mathbf{x}_1^{\top} \mathbf{x}_2)^d$$

• Is 
$$\int_{\mathbf{x}_1} \int_{\mathbf{x}_2} \left( \sum_{d=1}^r \alpha_d(\mathbf{x}_1^\top \mathbf{x}_2)^d \right) g(\mathbf{x}_1) g(\mathbf{x}_2) d\mathbf{x}_1 d\mathbf{x}_2 \ge 0$$
?

We have

$$\int_{\mathbf{x}_1} \int_{\mathbf{x}_2} \left( \sum_{d=1}^r \alpha_d (\mathbf{x}_1^\top \mathbf{x}_2)^d \right) g(\mathbf{x}_1) g(\mathbf{x}_2) d\mathbf{x}_1 d\mathbf{x}_2 =$$

$$\sum_{d=1}^r \alpha_d \int_{\mathbf{x}_1} \int_{\mathbf{x}_2} (\mathbf{x}_1^\top \mathbf{x}_2)^d g(\mathbf{x}_1) g(\mathbf{x}_2) d\mathbf{x}_1 d\mathbf{x}_2$$

What about 
$$\sum_{d=1}^{\infty} \alpha_d (\mathbf{x}_1^{\top} \mathbf{x}_2)^d$$
 s.t.  $\alpha_d \geq 0$ ?

- We have already proved that  $\int_{\mathbf{x}_1} \int_{\mathbf{x}_2} (\mathbf{x}_1^\top \mathbf{x}_2)^d g(\mathbf{x}_1) g(\mathbf{x}_2) d\mathbf{x}_1 d\mathbf{x}_2 \geq 0$
- Also,  $\alpha_d \geq 0$ ,  $\forall d$
- Thus,

$$\sum_{d=1}^{r} \alpha_d \int_{\mathbf{x}_1} \int_{\mathbf{x}_2} (\mathbf{x} 1^{\top} \mathbf{x}_2)^d g(\mathbf{x}_1) g(\mathbf{x}_2) d\mathbf{x}_1 d\mathbf{x}_2 \geq 0$$

- By which,  $K(\mathbf{x}_1, \mathbf{x}_2) = \sum_{d=1}^{r} \alpha_d(\mathbf{x}_1^{\top} \mathbf{x}_2)^d$  is a Mercer kernel.
- Examples of Mercer Kernels: Linear Kernel, Polynomial Kernel, Radial Basis Function Kernel



#### Kernels in SVR

• Recall:

$$\max_{\alpha_i,\alpha_i^*} - \frac{1}{2} \sum_i \sum_j (\alpha_i - \alpha_i^*)(\alpha_j - \alpha_j^*) K(\mathbf{x}_i, \mathbf{x}_j) - \epsilon \sum_i (\alpha_i + \alpha_i^*) + \sum_i y_i (\alpha_i - \alpha_i^*)$$
 and the decision function:  $f(\mathbf{x}) = \sum_i (\alpha_i - \alpha_i^*) K(\mathbf{x}_i, \mathbf{x}) + b$  are all in terms of the kernel  $K(\mathbf{x}_i, \mathbf{x}_i)$  only

• One can now employ any mercer kernel in SVR or Ridge Regression to implicitly perform linear regression in higher dimensional spaces

## Equivalent Forms of Ridge Regression

 Consider the formulation in which we limit the weights of the coefficients by putting a constraint on size of the L2 norm of the weight vector:

$$\operatorname{argmin}_{\mathbf{w}}(\mathbf{\Phi}\mathbf{w} - \mathbf{y})^T(\mathbf{\Phi}\mathbf{w} - \mathbf{y}) \ \|\mathbf{w}\|_2^2 \leq \xi$$

- The objective function, namely  $f(\mathbf{w}) = (\mathbf{\Phi}\mathbf{w} \mathbf{y})^{\mathsf{T}}(\mathbf{\Phi}\mathbf{w} \mathbf{y})$  is strictly convex. The constraint function,  $g(\mathbf{w}) = \|\mathbf{w}\|_2^2 \xi$ , is also convex.
- For convex  $g(\mathbf{w})$ , the set  $\{\mathbf{w}|\mathbf{g}(\mathbf{w}) \leq \mathbf{0}\}$ , is also convex. (Why?)



## Equivalent Forms of Ridge Regression

• To minimize the error function subject to constraint  $|\mathbf{w}| \leq \xi$ , we apply KKT conditions at the point of optimality  $\mathbf{w}^*$ 

$$abla_{\mathbf{w}^*}(f(\mathbf{w}) + \lambda \mathbf{g}(\mathbf{w})) = \mathbf{0}$$

(the first KKT condition). Here,  $f(\mathbf{w}) = (\Phi \mathbf{w} - \mathbf{y})^T (\Phi \mathbf{w} - \mathbf{y})$  and,  $g(\mathbf{w}) = ||\mathbf{w}||^2 - \xi$ .

Solving we get,

$$\mathbf{w}^* = (\Phi^T \Phi + \lambda I)^{-1} \Phi^T \mathbf{y}$$

From the second KKT condition we get,

$$\|\mathbf{w}^*\|^2 \leq \xi$$

From the third KKT condition,

$$\lambda \geq 0$$

From the fourth condition

$$\lambda \|\mathbf{w}^*\|^2 = \lambda \xi$$



## Equivalent Forms of Ridge Regression

ullet Values of ullet and  $\lambda$  that satisfy all these equations would yield an optimal solution. That is, if

$$\|\mathbf{w}^*\| = \|(\Phi^T \Phi)^{-1} \Phi^T \mathbf{y}\| \le \xi$$

then  $\lambda=0$  is the solution. Else, for some sufficiently large value,  $\lambda$  will be the solution to

$$\|\mathbf{w}^*\| = \|(\Phi^T \Phi + \lambda I)^{-1} \Phi^T \mathbf{y}\| = \xi$$

## Bound on $\lambda$ in the regularized least square solution

Consider,

$$(\Phi^T \Phi + \lambda I)^{-1} \Phi^T \mathbf{y} = \mathbf{w}^*$$

We multiply  $(\Phi^T \Phi + \lambda I)$  on both sides and obtain,

$$\|(\Phi^T\Phi)\mathbf{w}^* + (\lambda \mathbf{I})\mathbf{w}^*\| = \|\mathbf{\Phi}^\mathsf{T}\mathbf{y}\|$$

Using the triangle inequality we obtain,

$$\|(\boldsymbol{\Phi}^{T}\boldsymbol{\Phi})\mathbf{w}^{*}\| + (\lambda)\|\mathbf{w}^{*}\| \geq \|(\boldsymbol{\Phi}^{T}\boldsymbol{\Phi})\mathbf{w}^{*} + (\lambda\mathbf{I})\mathbf{w}^{*}\| = \|\boldsymbol{\Phi}^{T}\mathbf{y}\|$$

• By the Cauchy Shwarz inequality,  $\|(\Phi^T \Phi) \mathbf{w}^*\| \le \alpha \|\mathbf{w}^*\|$  for some  $\alpha = \|(\Phi^T \Phi)\|$ . Substituting in the previous equation,

$$(\alpha + \lambda) \|\mathbf{w}^*\| \ge \|\mathbf{\Phi}^\mathsf{T}\mathbf{y}\|$$

i.e.

$$\lambda \ge \frac{\|\boldsymbol{\Phi}^T \mathbf{y}\|}{\|\mathbf{w}^*\|} - \alpha$$

Note that when  $\|\mathbf{w}^*\| \to \mathbf{0}, \lambda \to \infty$ . (Any intuition?) Using  $\|\mathbf{w}^*\|_2^2 \le \xi$  we get,

## Bound on $\lambda$ in the regularized least square solution

 $\|(\Phi^T\Phi)\mathbf{w}^*\| \le \alpha \|\mathbf{w}^*\|$  for some  $\alpha$  for finite  $\|(\Phi^T\Phi)\mathbf{w}^*\|$ . Substituting in the previous equation,

$$(\alpha + \lambda) \|\mathbf{w}^*\| \ge \|\mathbf{\Phi}^T \mathbf{y}\|$$

i.e.

$$\lambda \ge \frac{\|\boldsymbol{\Phi}^{T}\mathbf{y}\|}{\|\mathbf{w}^*\|} - \alpha$$

Note that when  $\|\mathbf{w}^*\| \to 0, \lambda \to \infty$ . (Any intuition?) Using  $\|\mathbf{w}^*\|^2 \le \xi$  we get,

$$\lambda \ge \frac{\|\boldsymbol{\Phi}^{T}\mathbf{y}\|}{\sqrt{\xi}} - \alpha$$

This is not the exact solution of  $\lambda$  but the bound proves the existence of  $\lambda$  for some  $\xi$  and  $\Phi$ .

## The Resultant alternative objective function

Substituting  $g(\mathbf{w}) = \|\mathbf{w}\|^2 - \xi$ , in the first KKT equation considered earlier:

$$\nabla_{\mathbf{w}^*}(f(\mathbf{w}) + \lambda \cdot (\|\mathbf{w}\|^2 - \xi)) = \mathbf{0}$$

This is equivalent to solving

$$\min(\parallel \Phi \mathbf{w} - \mathbf{y} \parallel^2 + \lambda \parallel \mathbf{w} \parallel^2)$$

for the same choice of  $\lambda$ . This form of **regularized** ridge regression is the **penalized** ridge regression.