

What is HPC?

What is HPC

"High-Performance Computing," or HPC, is the application of "sup for standard computers or would take too long. A desktop compu CPU. A HPC system, on the other hand, is essentially a network or ...

as well as its own memory.

High Performance Computing moaither too large aggregating computing power in one could get out of a n-

lly refers to the practice of much higher performance than rkstation in order to solve large

application programs efficiently, reliably and quickly. The term applies especially to systems action above a teraflop or 10¹² floating-point operations per second. The term HPC is a synonym for supercomputing, although technically a supercomputer or near the currently highest operational rate for computers. K at more than a petaflop or 1015 floating-point operations per

Definition - What does High-Performance Computing (HPC)

High-performance computing (HPC) is the use of super computers and parallel processing techniques for solving complex problems. HPC technology

computational techniques.

algorithms and systems to Computing? Computational techniques What is High Performance Computing?

High Performance Computing most generally refers to the practice of aggregating computing power in a way that delivers much higher performance than one could get out of a typical desktop computer or workstation in order to solve large problems in science, engineering, or business.

What is HPC – Mission Statement

The use of <u>parallel*</u> processing for running advanced application programs <u>efficiently</u> and <u>quickly</u> in terms of:

Speed - Reducing time-to-solutionEnergy efficiency - Doing more with less powerHigh throughput - Handling large volumes of data in real-time

^{*} By utilizing all available resources

Resources

CPU vs TPU vs GPU

GPGPU – Short History

- 90's: GPU Graphics Processing Unit
 - Dedicated hardware for graphics
- 2001: Programmable Pipeline Introduced.
 - Small processing units ("shaders")
 - Optimized for matrix multiplication tasks
 - Idea: set color/intensity for each pixel in parallel
- 2006: GPGPU General Purpose GPU
 - Use those processing units ("cores") for math
 - From sequential to parallel processing
- 2014: NVIDIA Jetson

NVIDIA Tegra Family

JETSON NANO

JETSON TX2 series (TX2, TX2 4GB, TX2i*)

JETSON AGX XAVIER series (AGX Xavier, Xavier ind.)

0.5 TFLOPS (FP16) 5-10W 45mm x 70mm \$129

1.3 TFLOPS (FP16) 7.5-15W 50mm x 87mm Starting at \$249

6 TFLOPS (FP16) | 21 TOPS (INT8) 10-15W 45mm x 70mm \$399

20-32 TOPS (INT8) 5.5-11 TFLOPS (FP16) 10-30W 100mm x 87mm Starting at \$899

CPU vs. GPU - Trends

Multi Node

Multi Socket

Core/Thread Optimization

CPU/GPU Workload

SIMD Instructions

Dividing the data into smaller pieces that can be processed in parallel

Multi Node

Multi Socket

Core/Thread Optimization

CPU/GPU Workload

SIMD Instructions

Use optimized instructions for vector operations

Multi Node

Multi Socket

Core/Thread Optimization

CPU/GPU Workload

SIMD Instructions

Make CPU and GPU to execute data in parallel

Multi Node

Multi Socket

Core/Thread Optimization

CPU/GPU Workload

SIMD Instructions

Use Core Affinity to manually distribute tasks to cores for optimal execution

Multi Node

Multi Socket

Core/Thread Optimization

Threads

Cores

CPU/GPU Workload

SIMD Instructions

If there are more than one CPU/GPU — distribute data between them in efficient way

Multi Node

Multi Socket

Core/Thread Optimization

CPU/GPU Workload

SIMD Instructions

For cloud computing or larger networks – efficient distribution of resources Multi Node

Multi Socket

Core/Thread Optimization

CPU/GPU Workload

SIMD Instructions

Algo-Software Design Flow

Algo-Software Design Flow

Image Processing

Object Detection & Tracking

Sensor-based Navigation

Deep Learning Inference

3D Modelling

Decision Making

Image Processing

- Histogram Stretch
 - CLAHE
- Temporal Corrections
- Edge Detection
 - SOBEL
- Distortion Correction
 - Parallax
 - Gray Levels
- Image Stitching
- Color Transformations

Sensor-based Navigation

- Image-Map Registration
 - Non-linear Solver
 - RANSAC
 - FFT
- 2D SLAM
- 3D SLAM
- Terrain Registration
- Horizon Detection

3D Modelling

- Terrain Reconstruction (CSF)
- Objects Detection
- Objects Classification
- Noise Filtering
- Terrain Fusion

Object Detection & Tracking

- Object Detection
 - Background Subtraction
 - Deep Learning (CNN)
- Tracking
 - Temporal Filter
 - Optical Flow
 - GFTT
 - Superglue/D2NET (CNN)c

Deep Learning Inference

- Quantization Techniques
- Inference Framework
 - Cross-Platform
 - Cross-Framework
 - CPU/GPU/TPU/APU/FPGA
- Custom Layers

GAN

Depth Reconstruction

