

FORMULÁRIO

1° semestre (2011/2012)

Índice

Intervalos de Confiança (uma amostra / duas amostras independentes)	1
Testes de Hipótese (uma amostra / duas amostras independentes)	1
Bom Ajuste (grandes amostras)	2
Tabelas de Contingência	2
Análise da Variância	3
Planeamento Completamente Aleatório	3
Planeamento com Blocos Aleatórios	3
Planeamento Factorial com Replicações	4
Planeamento 2 ²	5
Planeamento 2 ³	6
Testes a K Médias (não paramétrico)	6
Kruskal Wallis	6
Quade	7
Bom Ajuste (pequenas amostras)	7
Kolmogorov	7
Lilliefors para a Normal	8
Lilliefors para a Exponencial	8
Teste às Distribuições	9
Kolmogorov – Smirnov	9
Smirnov Unilateral	9
Regressão	9
Regressão Linear Simples	9
Regressão Linear Múltipla	10
Regressão Não Linear	10
Independência Estocástica	11
Correlação de Pearson	11
Correlação de Spearman	11

FORMULÁRIO DE ESTATÍSTICA DESCRITIVA

1. MEDIDAS DE LOCALIZAÇÃO

1.1. **MÉDIA**

$$\overline{x} = \frac{1}{n} \sum_{i} x_{i}$$
 dados não-agrupados

$$\overline{x} \approx \sum_{k} f r_{k} M_{k} = \frac{1}{n} \sum_{k} f_{k} M_{k}$$
 dados agrupados

1.2. **MEDIANA**

$$Med = \frac{x_{\left(\frac{n}{2}\right)} + x_{\left(\frac{n}{2}+1\right)}}{2} \text{ n par}$$

$$Med = x_{\left(\frac{n+1}{2}\right)}$$
 n impar

$$Med = LI + \frac{0.5 - F_{r_A}^{-}}{F_{r_{Med}}^{+} - F_{r_A}^{-}} \Delta$$
 representação histograma

1.3. MODA

$$Mod=LI+rac{d_1}{d_1+d_2}\Delta$$

$$d_1=f_{Mod}-f_A^{-}$$
 representação histograma
$$d_2=f_{Mod}-f_D^{+}$$

2. MEDIDAS DE DISPERSÃO

2.1. QUARTIL

$$Q_i = x_{\left(n \times \frac{i}{4}\right)}$$

Nota: Q₂=Med

2.2. PERCENTIL

$$P_i = x_{\left(n \times \frac{i}{100}\right)}$$

Nota: P₅₀=Med; P₂₅=Q₁; P₇₅=Q₃

2.3. VARIÂNCIA

$$s^{2} = \frac{1}{n-1} \sum_{i} (x_{i} - \overline{x})^{2}$$
 dados não-agrupados

$$s^{2} \approx \frac{n}{n-1} \sum_{k} fr_{k} (M_{k} - \overline{x})^{2} = \frac{1}{n-1} \sum_{k} f_{k} (M_{k} - \overline{x})^{2}$$
 dados agrupados

i

2.4. AMPLITUDE

$$A = x_{i_{\text{máx}}} - x_{i_{\text{min}}}$$

FORMULÁRIO DE PROBABILIDADES

AXIOMA 1: $0 \le P(A) \le 1$

AXIOMA 2: P(S) = 1

AXIOMA 3: se A e B mutuamente exclusivos então $P(A \cup B) = P(A) + P(B)$

Propriedades

- 1. $P(A) + P(\overline{A}) = 1$
- 2. $P(\varnothing) = 0$
- 3. $P(\overline{A} \cap B) = P(B) P(A \cap B)$
- 4. $P(A \cup B) = P(A) + P(B) P(A \cap B)$

Probabilidade Condicional

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

$$P(A \cap B) = P(A \mid B) \times P(B)$$

Acontecimentos Independentes

$$P(A \mid B) = P(A)$$

$$P(B \mid A) = P(B)$$

$$P(A \cap B) = P(A) \times P(B)$$

Teorema de Bayes

$$P(A_N \mid B) = \frac{P(B \mid A_N) \times P(A_N)}{\sum_{I=1}^{N} P(B \mid A_I) \times P(A_I)}$$

FORMULÁRIO DE DISTRIBUIÇÕES DE PROBABILIDADE

DISCRETO

propriedades da função probabilidade:

1)
$$f(x) \ge 0$$

2)
$$\sum_{x} f(x) = 1$$

função probabilidade acumulada

$$F(x) = P(X \le x) = \sum_{-\infty}^{x} f(x)$$

valor esperado

$$E(x) = \sum_{x} x \times f(x)$$

variância

$$V(x) = E(x^2) - [E(x)]^2$$

$$V(x) = \sum_{x} (x - \mu)^2 f(x)$$

CONTÍNUO

propriedades da função densidade de probabilidade:

1)
$$f(x) \ge 0$$

$$2) \int_{x} f(x) dx = 1$$

função probabilidade acumulada

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(x) dx$$

valor esperado

$$E(x) = \int_{x} x \times f(x) dx$$

variância

$$V(x) = E(x^2) - [E(x)]^2$$

$$V(x) = \int_{x} (x - \mu)^{2} f(x) dx$$

FUNÇÕES DE PROBABILIDADE

DISCRETAS

Distribuição de Bernoulli

$$f(x) = \theta^{x} (1 - \theta)^{1 - x} \qquad x = 0,1$$

$$\mu = n\theta \quad \sigma^{2} = n\theta (1 - \theta)$$

Distribuição Binomial [B(n,p)]

$$f(x) = \binom{n}{x} p^x (1-p)^{n-x} \quad x = 0,1,2,...,n$$

$$\mu = np \quad \sigma^2 = np(1-p)$$

Distribuição Poisson [P(λ)]

$$f(x) = \frac{\lambda^x e^{-\lambda}}{x!} \quad x = 0, 1, 2, ..., n$$
$$\mu = \lambda \quad \sigma^2 = \lambda$$

Aproximação da Binomial à Poisson

N grande e p muito pequeno $\lambda = np$

Distribuição Uniforme (discreta)

$$f(x) = \frac{1}{k} \quad x = x_1, x_2, ..., x_k$$
$$\mu = \sum_{i} \frac{x_i}{k} \quad \sigma^2 = \sum_{i} \frac{(x_i - \mu)^2}{k}$$

CONTÍNUAS

Distribuição Uniforme [U(a,b)]

$$f(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & outros \end{cases}$$

$$\mu = \frac{a+b}{2} \quad \sigma^2 = \frac{(b-a)^2}{12}$$

Distribuição Exponencial $[EN(1/\theta)]$

$$f(x) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}} & x > 0\\ 0 & outros \end{cases}$$

$$\mu = \theta$$
 $\sigma^2 = \theta^2$

Distribuição Normal [N(μ,σ²)]

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
$$\mu = \mu \quad \sigma^2 = \sigma^2$$

$$\mu = \mu \quad \sigma^2 = \sigma^2$$

$$Z = \frac{X - \mu}{\sigma}$$

Aproximação da Binomial à Normal

Condições
$$\begin{cases} np > 5 \\ nq > 5 \end{cases}$$

$$\mu = n_I$$

$$\sigma^2 = npq$$

Correcção de Yates

$$P(X \le x) \approx P(X < x + 0.5)$$

$$P(Y \ge y) \approx P(Y > y - 0.5)$$

INTERVALOS DE CONFIANÇA E TESTES DE HIPÓTESES PARA UMA AMOSTRA

Parâmetro a estimar	Tipo de População	Dimensão da amostra	Conhece σ ?	E.T ~ Distribuição	Intervalo de Confiança	Notas
	Normal	Qualquer	Sim	$Z = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$	$\overline{x} - z_{(1-\alpha/2)} \frac{\sigma}{\sqrt{n}} < \mu < \overline{x} + z_{(1-\alpha/2)} \frac{\sigma}{\sqrt{n}}$	$Z_{(1-lpha/2)}$: quantil da tabela acumulada da Normal padrão à esquerda
Média μ	Qualquer	<i>n</i> ≥ 30	Não	$Z = \frac{\overline{x} - \mu}{\sqrt[S]{\sqrt{n}}} \sim N(0, 1)$	$\overline{x} - z_{(1-\alpha/2)} \frac{s}{\sqrt{n}} < \mu < \overline{x} + z_{(1-\alpha/2)} \frac{s}{\sqrt{n}}$	Estimador do desvio padrão: $\sigma \approx s$ (1)
	Normal	n < 30	Não	$T = \frac{\overline{x} - \mu}{\sqrt[S]{\sqrt{n}}} \sim t_{n-1}$	$\overline{x} - t_{(\alpha/2),n-1} \frac{s}{\sqrt{n}} < \mu < \overline{x} + t_{(\alpha/2),n-1} \frac{s}{\sqrt{n}}$	
Proporção binomial p	Bernoulli	n > 30 (2)	-	$Z = \frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{n}}} \sim N(0,1)$	$\hat{p} - z_{(1-\alpha/2)} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$	Estimador da proporção binomial $p pprox \hat{p} = \frac{x}{n}$
Variância σ^2	População Normal			$Q = \frac{(n-1)s^2}{\sigma^2} \sim \chi_{n-1}^2$	$\frac{(n-1)s^2}{\chi^2_{(\alpha/2),n-1}} < \sigma^2 < \frac{(n-1)s^2}{\chi^2_{(1-\alpha/2),n-1}}$	

Parâmetro a estimar	Tipo de População	Dimensão da amostra	Conhece σ ?	E.T ~ Distribuição	Intervalo de Confiança	Notas
	Normais	Quaisquer	σ_1 e σ_2 Sim	$Z = \frac{\left(\overline{x}_1 - \overline{x}_2\right) - \left(\mu_1 - \mu_2\right)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1)$	$(\overline{x}_1 - \overline{x}_2) \pm z_{(1-\alpha/2)} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$	
Diferença entre as médias	Quaisquer	$n_1 \ge 30 \text{ e } n_2 \ge 30$	$\sigma_{_1}$ e $\sigma_{_2}$ Não	$Z = \frac{\left(\overline{x}_1 - \overline{x}_2\right) - \left(\mu_1 - \mu_2\right)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \sim N(0, 1)$	$(\overline{x}_1 - \overline{x}_2) \pm z_{(1-\alpha/2)} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$	Estimadores dos desvios padrão: $\sigma_1 \approx s_1$, $\sigma_2 \approx s_2$
$\mu_1 - \mu_2$	Normais	$n_1 < 30 \text{ e } n_2 < 30$	σ_1 e σ_2 Não e $\sigma_1^2 = \sigma_2^2$	$T = \frac{(\overline{x}_{1} - \overline{x}_{2}) - (\mu_{1} - \mu_{2})}{s_{p} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}} \sim t_{GL}$	$\left(\overline{x}_{1} - \overline{x}_{2}\right) \pm t_{(\alpha/2),GL} s_{p} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}$	$GL = n_1 + n_2 - 2$ $s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$
	Normais Amostras dependentes	$n_1 < 30 \text{ e } n_2 < 30$	$\sigma_{_1}$ e $\sigma_{_2}$ Não	$T = \frac{\overline{D}_i - \left(\mu_1 - \mu_2\right)}{\frac{s_{D_i}}{\sqrt{n}}} \sim t_{(n-1)}$	$\overline{D}_{i} - t_{(n-1), \frac{\sigma}{2}} \cdot \frac{s_{D_{i}}}{\sqrt{n}} < \mu_{1} - \mu_{2} < \overline{D}_{i} + t_{(n-1), \frac{\sigma}{2}} \cdot \frac{s_{D_{i}}}{\sqrt{n}}$	$egin{aligned} s_{D_i} &= s_{n-1} ext{ para} \ D_i &= X_{1i} - X_{2i} \end{aligned}$
Diferença de proporções $p_1 - p_2$	Bernoulli	$n_1 \ge 30 \text{ e } n_2 \ge 30$	-	$Z = \frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{\sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}} \sim N(0,1) $ (3)	$(\hat{p}_1 - \hat{p}_2) \pm z_{(1-\alpha/2)} \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$	Estimadores das proporções binomiais (4) $\hat{p}_1 = \frac{x_1}{n_1} e \hat{p}_2 = \frac{x_2}{n_2}$
Razão de variâncias σ_1^2 / σ_2^2	Normais	Quaisquer	-	$F = rac{s_1^2}{s_2^2 / \sigma_1^2} \sim F_{v_1, v_2} \ \sigma_2^2$	$\frac{s_1^2}{s_2^2} \frac{1}{F_{(\alpha/2),\nu_1,\nu_2}} < \frac{\sigma_1^2}{\sigma_2^2} < \frac{s_1^2}{s_2^2} \frac{1}{F_{(1-\alpha/2),\nu_1,\nu_2}}$	$v_1 = n_1 - 1 \text{ e } v_2 = n_2 - 1$ $\frac{1}{F_{(1-\alpha/2),v_1,v_2}} = F_{(\alpha/2),v_2,v_1}$

(1) O desvio padrão σ , sendo desconhecido, é estimado através de $s = \sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(x_i - \overline{x})^2}$; (2) Proporção para amostras de pequena dimensão necessário recorrer à solução exacta através da distribuição binomial; (3) e (4) No teste à diferença

de proporções se
$$H_0: p_1 - p_2 = 0$$
, a E.T. passa a ser
$$Z = \frac{(\hat{p}_1 - \hat{p}_2)}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \sim N(0,1), \ \text{com} \ \hat{p} = \frac{x_1 + x_2}{n_1 + n_2}.$$

Teste do "bom ajuste" do Qui-Quadrado para grandes amostras

• Probabilidades completamente especificadas na hipótese nula

$$H_0: p_1=p_{10}, \ p_2=p_{20},..., \ p_k=p_{k0}$$
 e $p_{10}+p_{20}+...p_{k0}=1$. R.R. $Q\geq c$ com $c=\chi^2_{k-1,\alpha}$

• Probabilidades não totalmente especificadas na hipótese nula

 H_0 : as probabilidades correspondentes das classes provêm de uma distribuição da família ...

R.R. R.R.
$$Q \ge c \text{ com } c = \chi^2_{a,l,\alpha}$$

graus de liberdade =
n o de celas -1-
n o de parâmetros estimados

$$Q = \sum_{i=1}^k \frac{(f_i - e_i)^2}{e_i}$$
 com a frequência esperada dada por e_i =n. p_i

Tabelas de Contingência

1. Teste de independência

Hipótese nula:

$$H_0: p_{ij}=p_{i.}p_{.j}$$
 (as variáveis são independentes), $i=1,...,a$ e $j=1,...,b$ R.R: $Q>c$ com $c=\chi^2_{(a-1)(b-1),lpha}$

 $2\,$. Teste de homogeneidade

Hipótese nula:

$$H_0: w_{1j}=w_{2j}=...=w_{aj}$$
 (as subpopulações A são equivalentes) para $j=1,...,b$. R.R: $Q>c$ com $c=\chi^2_{(a-1)(b-1),\alpha}$

$$Q = \sum_{i=1}^b \sum_{i=1}^a \frac{(f_{ij} - e_{ij})^2}{e_{ij}} \text{com a frequência esperadada dada por } e_{ij} = \frac{n_{i.}n_{.j}}{n} \quad i = 1, ..., a \ e \ j = 1, ..., b$$

Planeamento completamente aleatório

$$SQT = \sum_{j=1}^{k} n_{j} (\overline{y}_{.j} - \overline{Y})^{2}$$

$$STQ = \sum_{j=1}^{k} \sum_{i=1}^{n_{j}} (y_{ij} - \overline{Y})^{2}$$

$$SQR = \sum_{j=1}^{k} \sum_{i=1}^{n_{j}} (y_{ij} - \overline{y}_{.j})^{2}$$

$$SQR = STQ - SQT \quad \text{com} \quad N = \sum_{j=1}^{k} n_{j}$$

 $T_{.j}$ é o total dos valores obtidos para o tratamento j ; $T_{..}$ é o grande total

Tendo-se
$$STQ = SQT + SQR$$

Modelo populacional:
$$y_{ij} = \mu + \alpha_j + e_{ij}$$

com $i = 1,...,n_j$ e $j = 1,...,k$ $e_{ij} \sim N(0,\sigma^2)$

Teste às diferenças entre os tratamentos

$$H_0: \alpha_1 = \alpha_2 = \dots = \alpha_k = 0$$

(não existem diferenças entre as médias das k populações).

 H_1 : os efeitos da aplicação dos tratamentos são significativos (ou existem diferenças entre os tratamentos).

R.R : F>c em que c (Fisher) é determinado por forma a $lpha=P\left[F>c;H_{0}
ight]$

Tabela ANOVA

Fonte de variação	Soma dos quadrados	graus de liberdade	Média dos quadrados	v.a. F
Tratamentos	SQT	k-1	MQT = SQT/(k-1)	
Resíduos	SQR	$\sum n_j - k$	$MQR = SQR/(\Sigma n_j - k)$	$F = \frac{MQT}{MQR}$
Total	STQ	$\Sigma n_j - 1$		

ullet Intervalos de confiança para diferenças entre pares de médias de tratamentos i e j com i
eq j = 1, 2, ..., k

$$T = \frac{(\overline{y}_{.i} - \overline{y}_{.j}) - (\mu_i - \mu_j)}{\sqrt{\frac{SQR}{N-k}(\frac{1}{n_i} + \frac{1}{n_i})}} \sim t_{N-k}$$

Planeamento com blocos aleatórios

$$\begin{array}{ll} SQT = b \sum_{j=1}^{k} (\overline{y}_{.j} - \overline{Y})^2 \\ SQB = k \sum_{i=1}^{b} (\overline{y}_{i.} - \overline{Y})^2 \\ STQ = \sum_{i=1}^{b} \sum_{j=1}^{k} (y_{ij} - \overline{Y})^2 \\ SQR = \sum_{i=1}^{b} \sum_{j=1}^{k} (y_{ij} - \overline{y}_{i.} - \overline{y}_{.j} + \overline{Y})^2 \\ \end{array} \qquad \begin{array}{ll} SQT = \frac{1}{b} \sum_{j=1}^{k} T_{.j}^2 - \frac{1}{kb} T_{..}^2 \\ SQR = \frac{1}{k} \sum_{i=1}^{b} T_{i.}^2 - \frac{1}{kb} T_{..}^2 \\ STQ = \sum_{i=1}^{b} \sum_{j=1}^{k} y_{ij}^2 - \frac{1}{kb} T_{..}^2 \\ SQR = STQ - SQT - SQB \end{array}$$

 $T_{i.}$ é o total dos valores obtidos para o bloco i^{-} ; $T_{.j}$ é o total dos valores obtidos para

o tratamento j

Modelo populacional:
$$y_{ij} = \mu + \alpha_j + \beta_i + e_{ij}$$
 para $i = 1, ..., b$ e $j = 1, ..., k$ $e_{ij} \sim N(0, \sigma^2)$

Teste às diferenças entre os tratamentos

$$H_{01}: \alpha_1 = \alpha_2 = \dots = \alpha_k = 0$$

(não existem diferenças significativas entre os tratamentos).

 H_{11} : os efeitos da aplicação dos tratamentos são significativos (ou existem diferenças entre os tratamentos).

R.R:
$$F_1 > c$$
 em que c (Fisher) é determinado a partir de
$$\alpha = P\left[F_{1,((k-1),(b-1)(k-1))} > c; H_{01}\right] \quad e \quad F_1 = \frac{MQT}{MOR}$$

Teste às diferenças entre os blocos

$$H_{02}: \beta_1 = \beta_2 = \dots = \beta_b = 0$$

(não existem diferenças significativas entre os efeitos dos blocos)

 H_{12} : existem diferenças entre os efeitos dos blocos

R.R: $F_2>c$ em que c (Fisher) é determinado a partir de $lpha=P\left[F_{2,((b-1),(b-1)(k-1))}>c;H_{02}
ight]$ e $F_2=\frac{MQB}{MOR}$

Tabela ANOVA

F. de variação	S. dos quadrados	graus de liberdade	Média dos quadrados	v.a. F
Tratamentos	SQT	k-1	MQT = SQT/(k-1)	
Blocos	SQB	b-1	MQB=SQB/(b-1)	$F_1 = \frac{MQT}{MQR}$
Resíduos	SQR	(k-1).(b-1)	MQR = SQR/(k-1).(b-1)	$F_2 = \frac{MQB}{MQR}$
Total	STQ	k.b - 1		

Intervalos de confiança para diferenças entre pares de médias de tratamentos:

$$T = \frac{(\overline{y}_{j1} - \overline{y}_{j2}) - (\mu_{j1} - \mu_{j2})}{\sqrt{MQR(\frac{2}{b})}} \sim t_{(b-1)(k-1)}$$

Planeamento factorial com replicações

$$SQF_{A} = qr \sum_{i=1}^{p} (\overline{y}_{i..} - \overline{Y})^{2}$$

$$SQF_{B} = pr \sum_{j=1}^{q} (\overline{y}_{.j.} - \overline{Y})^{2}$$

$$SQF_{B} = \sum_{i=1}^{p} \sum_{j=1}^{q} \sum_{k=1}^{r} (y_{ijk} - \overline{y}_{ij.})^{2}$$

$$SQR = \sum_{i=1}^{p} \sum_{j=1}^{q} \sum_{k=1}^{r} (y_{ijk} - \overline{Y})^{2}$$

$$SQR = \sum_{i=1}^{p} \sum_{j=1}^{q} \sum_{k=1}^{r} (y_{ijk} - \overline{Y})^{2}$$

$$SQR = \sum_{ijk} y_{ijk}^{2} - \frac{T^{2}}{pqr}$$

$$SQR = \sum_{ijk} y_{ijk}^{2} - \frac{T^{2}}{pqr}$$

$$STQ = \sum_{i=1}^{p} \sum_{j=1}^{q} \sum_{k=1}^{r} y_{ijk}^{2} - \frac{T^{2}}{pqr}$$

$$SQI_{AB} = STQ - SQF_{A} - SQF_{B} - SQR$$

 T_{ij} é a soma das observações da célula (i,j)

Modelo populacional

$$y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + e_{ijk}$$

para
$$i=1,...,p$$
 , $j=1,...,q$. e $k=1,...,r$ e $e_{ijk}\sim N(0,\sigma^2)$

Testes de hipóteses

• Factor A

$$H_{01}: \alpha_1 = \alpha_2 = \dots = \alpha_p = 0$$

 H_{11} : existem diferenças significativas entre os níveis de A

R.R : $F_1 > c \text{ com } c$ (Fisher) determinado de

$$\alpha = \Pr[F_{1_{(p-1),pq(r-1)}} > c; H_{01}] \ e \ F_1 = \frac{MQF_A}{MQR}$$

• Factor B

$$H_{02}: \beta_1 = \beta_2 = \dots = \beta_q = 0$$

 H_{12} : existem diferenças significativas entre os níveis de B

R.R : $F_2 > c \operatorname{com} c$ (Fisher) determinado de

$$\alpha = \Pr[F_{2_{(q-1),pq(r-1)}} > c; H_{02}] \ e \ F_2 = \frac{MQF_B}{MQR}$$

• Interacção AB

$$H_{03}: \gamma_{11} = \gamma_{12} = \dots = \gamma_{21} = \dots = \gamma_{pq} = 0$$

 H_{13} : existem diferenças significativas devido a interacção

R.R : $F_3 > c$ com c (Fisher) determinado de

$$\alpha = Pr[F_{3_{(p-1)(q-1),pq(r-1)}} > c; H_{03}] \ e \ F_3 = \frac{MQI_{AB}}{MQR}$$

Tabela ANOVA

Fonte de variação	Soma dos Quadrados	graus de lib.	Média dos Quadrados	v.a F
Factor A	SQF_A	p-1	MQF_A	
Factor B	SQF_B	q-1	MQF_B	$F_1 = \frac{MQF_A}{MQR}$
Interacção AxB	SQI_{AB}	(p-1).(q-1)	MQI_{AB}	$F_2 = \frac{MQF_B}{MQR}$
Resíduos	SQR	p.q.(r-1)	MQR	$F_3 = \frac{MQI_{AB}}{MQR}$
Total	STQ	pqr-1		

Testes não paramétricos

Teste de Kruskal-Wallis

 ${
m H_0}$: Não existem diferenças significativas entre os efeitos dos tratamentos ou as médias das distribuições das k populações são idênticas

 H_1 : Nem todas as k distribuições têm médias idênticas.

R.R: $H \geq c$ onde c é determinado de $\ \alpha = \ Pr[H \geq c; H_0]$ e

$$H = \frac{12}{n(n+1)} \left[\frac{W_1^2}{n_1} + \frac{W_2^2}{n_2} + \dots + \frac{W_k^2}{n_k} \right] - 3(n+1) \operatorname{com} W_i = \sum_{j=1}^{n_i} R_{ij} \ i = 1, 2, \dots, k$$

Para k>3 ou $n_1,n_2,...$ e/ou $n_i>5$, a distribuição assintótica de H é a χ^2 com k-1 graus de liberdade.

A 'estatística' ajustada é

$$H^{'} = \frac{H}{1 - \frac{\sum_{j=1}^{l} q_{j}(q_{j}^{2} - 1)}{n(n^{2} - 1)}}$$

em que l é o número de conjuntos com observações repetidas existente e q_j é o número de elementos nesse conjunto j (j=1,...,l). A 'estatística' $H^{'}$ tem ainda uma distribuição assintótica χ^2_{k-1} .

Planeamento com blocos. Teste de Quade

Os dados consistem num conjunto de b variáveis aleatórias independentes a k dimensões

 $(y_{i1}, y_{i2}, ..., y_{ik}), i = 1, ..., b,$ chamadas blocos.

Os cálculos para este teste devem estar assim ordenados:

Amplitude do bloco: A_i Graduações do bloco de acordo Matriz S_{ij} $A_i = max_j(y_{ij}) - min_j(y_{ij}) \qquad \text{com a sua amplitude: } R(A_i) \qquad S_{ij} = R(A_i)[R(y_{ij}) - \frac{k+1}{2}]$

 $R(y_{ij})$ - graduações das observações $y_{ij},\ (j=1,...,k)$

$$S_j = \sum_{i=1}^b S_{ij}; \quad SQT = \frac{1}{b} \sum_{j=1}^k S_j^2; \quad STQ = \sum_{i=1}^b \sum_{j=1}^k S_{ij}^2$$

Se não existirem observações repetidas, STQ reduz-se a

$$b(b+1)(2b+1)k(k+1)(k-1)/72$$
.

Teste de hipóteses

 H_0 : Não existem diferenças significativas entre os tratamentos

(ou, os efeitos dos tratamentos são idênticos)

H1: Pelo menos um dos tratamentos tende a conseguir valores observados maiores do que um outro tratamento.

R.R: T>c onde c é um ponto crítico da distribuição F que corresponde ao nível de significância α ,

com (k-1) e (b-1)(k-1) graus de liberdade

$$T = \frac{(b-1)SQT}{STQ - SQT}$$

Comparações dois a dois

Os tratamentos i e j são considerados significativamente diferentes se

$$|S_i - S_j| > c\sqrt{\frac{2b(STQ - SQT)}{(b-1)(k-1)}}$$

sendo c o ponto crítico da distribuição t-Student, com (b-1)(k-1) graus de liberdade que corresponde a uma região de rejeição de tamanho α (nível de significância)

Testes de ajuste de distribuições

Testes do tipo de Kolmogorov para pequenas amostras

S(x) é a função de distribuição empírica que é definida como fracção dos $X_i^{'}$ s (elementos da amostra) que são menores ou iguais a X, para cada X ($-\infty < X < +\infty$)

Dados: $F^*(x)$ é uma função distribuição completamente especificada

A. Teste bilateral	B. Teste unilateral	C. Teste unilateral
$H_0: F(x) = F^*(x) \ \forall_x$	$H_0: F(x) \ge F^*(x)$	$H_0: F(x) \le F^*(x)$
$H_1: F(x) \neq F^*(x)$	$H_1: F(x) < F^*(x)$	$H_1: F(x) > F^*(x)$
$T = \sup_x F^*(x) - S(x) $	$T^{+} = \sup_{x} [F^{*}(x) - S(x)]$	$T^{-} = \sup_{x} [S(x) - F^{*}(x)]$

R.R. T $(T^+ ou T^-) > c$ com c calculado de $\alpha = Prob(Rej H_0; H_0) = Prob(T > c; H_0 de A.)$.

Os pontos críticos da distribuição de T $(T^+$ ou $T^-)$ correspondem a p=1-lpha

Teste de Lilliefors para a Normal

DADOS: Os dados consistem numa amostra aleatória $X_1, X_2, ..., X_n$ de tamanho n associada com alguma função distribuição desconhecida F(x).

 H_{0} : A amostra aleatória foi retirada de uma distribuição normal, com média e/ou variância não especificadas.

H₁: A função distribuição dos $X_i^{'}s$ não é normal.

R.R: $T_1>c$ sendo c o ponto crítico da distribuição de T_1 que corresponde a p=1-lpha

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$
 e $s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2}$

$$Z_i = \frac{X_i - \overline{X}}{s}, \quad i = 1, 2, ..., n \quad T_1 = \sup_z |F^*(z) - S(z)|$$

Teste de Lilliefors para a exponencial

DADOS: Os dados consistem numa amostra aleatória $X_1, X_2, ..., X_n$ de tamanho n associada com alguma função distribuição desconhecida F(x).

 H_0 : A amostra aleatória segue a distribuição exponencial:

$$F(x) = F^*(x) = \begin{cases} 1 - e^{-x/\beta}, & \text{para } x > 0 \\ 0 & \text{para } x < 0 \end{cases}$$

em que β é um parâmetro desconhecido.

 H_1 : A distribuição dos $X_i^{'}s$ não é exponencial.

$$\overline{X} = \frac{\sum_{i=1}^{n} X_{i}}{n} \quad Z_{i} = \frac{X_{i}}{\overline{X}}, \ i = 1, 2, ..., n$$

$$F^*(z) = \begin{cases} 1 - e^{-z}, & \text{para} \quad z > 0 \\ 0 & \text{para} \quad z < 0 \end{cases}$$

$$T_2 = \sup_{z} |F^*(z) - S(z)|$$

R.R.: $T_2>c$ sendo c o ponto crítico da distribuição de T_2 que corresponde a p=1-lpha.

Teste a duas distribuições. Amostras independentes.

Teste de Kolmogorov - Smirnov

DADOS: Os dados consistem em duas amostras aleatórias independentes, uma de tamanho $n,\ X_1,X_2,...,X_n$ e outra de tamanho $m,\ Y_1,Y_2,...,Y_m$ retiradas de duas populações com distribuições F(x) e G(y) (ou G(x)) respectivamente.

A. Teste bilateral	B. Teste unilateral	C. Teste unilateral
$H_0: F(x) = G(x) \ \forall_x$	$H_0: F(x) \le G(x)$	$H_0: F(x) \ge G(x)$
$H_1: F(x) \neq G(x)$	$H_1: F(x) > G(x)$	$H_1: F(x) < G(x)$
$T_1 = \sup_x S_1(x) - S_2(x) $	$T_1^+ = \sup_x [S_1(x) - S_2(x)]$	$T_1^- = \sup_x [S_2(x) - S_1(x)]$

com $S_1(x)$ a função empírica baseada na amostra $X_1, X_2, ..., X_n$ e $S_2(x)$ a função empírica baseada em $Y_1, Y_2, ..., Y_m$ R.R: T_1 $(T_1^+$ ou $T_1^-) > c$ sendo c o ponto crítico da distribuição da estatística que corresponde a um nível de significância

Teste a k distribuições. Amostras independentes. Teste unilateral de Smirnov

DADOS: k amostras aleatórias de tamanho iguais a n. Se as distribuições empíricas

forem, respectivamente, $S_1(x), S_2(x), ..., S_k(x)$, e as funções distribuição $F_1(x)$,

 $F_2(x),...,F_k(x)$ representam as k populações, desconhecidas,

 $H_0: F_1(x) \leq F_2(x) \leq \ldots \leq F_k(x)$ para todo o x

 $H_1: F_i(x) > F_j(x)$ para algum i < j e algum x

R.R: $T_2>c$ sendo c o ponto crítico, que corresponde a p=1-lpha, ao nível de significância lpha.

$$T_2 = \sup_{x,i < k} [S_i(x) - S_{i+1}(x)]$$
 $i = 1, ..., k-1$

Regressão linear e simples

$$Y_i \sim N(\alpha + \beta x_i, \sigma^2)$$

 α .

$$Y_i = \alpha + \beta x_i + e_i \text{ com } x_i = X_i - \overline{X}, i = 1,..,n$$

Os estimadores de máxima verosimilhança, para os parâmetros α, β e σ^2 são

$$\tilde{\alpha} = \frac{\sum_{i=1}^{n} Y_i}{n} = \overline{Y} \quad ; \quad \tilde{\beta} = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{\sum_{i=1}^{n} (X_i - \overline{X})^2} = \frac{\sum_{i=1}^{n} (X_i - \overline{X})Y_i}{\sum_{i=1}^{n} (X_i - \overline{X})^2};$$

$$\tilde{\sigma}^2 = \frac{1}{(n-2)} \sum_{i=1}^n [Y_i - \tilde{\alpha} - \tilde{\beta}(X_i - \overline{X})]^2$$

Testes de hipóteses

$$T_1 = \frac{\tilde{\alpha} - \alpha}{\sqrt{\frac{\tilde{\sigma}^2}{n}}} \sim t_{n-2} \quad ; \qquad T_2 = \frac{\tilde{\beta} - \beta}{\sqrt{\frac{\tilde{\sigma}^2}{\sum_{1}^{n}(X_i - \overline{X})^2}}} \sim t_{n-2}$$

 $H_0: \beta = 0$

 $H_1: \beta > 0 \ (ou \ \beta \neq 0)$

R.R: $T_2 \geq c \operatorname{com} c = t_{n-2,\alpha \text{ (ou } \alpha/2)}$

Do mesmo modo, a 'estatística' T_1 pode ser usada para calcular intervalos de confiança e testes de hipóteses relacionados com o parâmetro α

Média e variância de um valor estimado de Y:

$$E[Y_0] = E[\tilde{\alpha}] + (X_0 - \overline{X})E[\tilde{\beta}] = \alpha + \beta(X_0 - \overline{X})$$

$$var[Y_0] = \sigma^2(\frac{1}{n} + \frac{(X_0 - \overline{X})^2}{\sum_{i=1}^n (X_i - \overline{X})^2})$$

Regressão linear e múltipla

$$Y_i = \alpha + \beta x_i + \gamma z_i + e_i$$

em que $x_i = X_i - \overline{X}, z_i = Z_i - \overline{Z}$ e e_i é o erro aleatório de observação, normalmente distribuído com média zero e variância comum σ^2 (i=1,...,n).

$$E[Y] = \alpha + \beta(X - \overline{X}) + \gamma(Z - \overline{Z}).$$

$$\tilde{\alpha} = \frac{\sum_{i=1}^{n} Y_i}{n} = \overline{Y} \quad ; \quad \tilde{\sigma}^2 = \frac{1}{(n-3)} \sum_{i=1}^{n} (Y_i - \tilde{\alpha} - \tilde{\beta}x_i - \tilde{\gamma}z_i)^2$$

$$\begin{cases} \sum_{i=1}^{n} x_{i} Y_{i} = \tilde{\beta} \sum_{i=1}^{n} x_{i}^{2} + \tilde{\gamma} \sum_{i=1}^{n} x_{i} z_{i} \\ \sum_{i=1}^{n} z_{i} Y_{i} = \tilde{\beta} \sum_{i=1}^{n} x_{i} z_{i} + \tilde{\gamma} \sum_{i=1}^{n} z_{i}^{2} \end{cases}$$

As 'estatísticas' T_1, T_2 e T_3 para testes de hipóteses e intervalos de confiança, em relação,

respectivamente, aos parâmetros α, β e γ , são:

$$T_1 = \frac{\tilde{\alpha} - \alpha}{\sqrt{\frac{\tilde{\sigma}^2}{n}}}; \qquad T_2 = \frac{\tilde{\beta} - \beta}{\sqrt{\frac{\tilde{\sigma}^2}{\sum x_i^2 - \frac{(\sum x_i z_i)^2}{\sum z_i^2}}}}; \qquad T_3 = \frac{\tilde{\gamma} - \gamma}{\sqrt{\frac{\tilde{\sigma}^2}{\sum z_i^2 - \frac{(\sum x_i z_i)^2}{\sum x_i^2}}}} \text{ e seguem a distribuição t-Student com}$$

n-3 graus de liberdade.

Regressão não-linear

i)
$$E[Y_i] = \alpha + \beta X_i^2$$

O modelo matemático geral, é: $Y_i = \alpha + \beta w_i + \gamma w_i^2 + e_i \mod w_i = W_i - \overline{W}$ e o $e_i \sim N(0, \sigma^2)$ (i = 1, ..., n). Define-se X = W e $Z = W^2$, o que reduz este caso à regressão múltipla e linear.

ii)
$$E[Y_i] = X_i^{\beta}$$

O modelo matemático mais geral e comum é: $Y_i = \alpha e^{\beta X_i} u_i$. Os erros aleatórios u_i (i=1,...,n) têm agora uma distribuição, em geral não simétrica e centrada em 1.

Lineariza-se o modelo passando-se a ter: $lnY_i = ln\alpha + \beta X_i + lnu_i$ e aplica-se a análise de regressão linear e simples.

Testes de independência estocástica

• Coeficiente de correlação da amostra. Teste de Pearson

$$X \sim N(\mu_1, \sigma_1^2)$$
 e $Y \sim N(\mu_2, \sigma_2^2)$

$$H_0: \rho = 0$$

$$H_1: \rho \neq 0$$

R.R. $|R| \geq c$. O valor de c é determinado de $\alpha = P_r[|R| \geq c; H_0]$

$$R = \frac{\sum_{i=1}^{n} X_i Y_i - \frac{\sum_{i=1}^{n} X_i \sum_{i=1}^{n} Y_i}{n}}{\sqrt{(\sum_{i=1}^{n} X_i^2 - \frac{(\sum_{i=1}^{n} X_i)^2}{n})(\sum_{i=1}^{n} Y_i^2 - \frac{(\sum_{i=1}^{n} Y_i)^2}{n})}}$$

e que é o coeficiente de correlação da amostra de Pearson.

A variável $T=\frac{R\sqrt{n-2}}{\sqrt{1-R^2}}\sim t_{n-2}$ e o teste resume-se a, rejeitar H_0 se $|T|\geq c$ com c determinado de $\alpha=P_r[|T|\geq c;H_0]$.

• Correlação de Spearman

 $(X_1,Y_1),(X_2,Y_2),...,(X_n,Y_n)$ amostra aleatória bivariada, de tamanho n $R(X_i)$ graduação do valor de X_i

 $R(Y_i)$ graduação do valor de $Y_i \ (i=1,2,...,n)$

A medida de correlação de Spearman R_S é definida por

$$R_{S} = \frac{\sum_{i=1}^{n} [R(X_{i}) - \frac{n+1}{2}][R(Y_{i}) - \frac{n+1}{2}]}{\frac{n(n^{2}-1)}{12}}$$

ou

$$R_S = 1 - \frac{6T}{n(n^2 - 1)}$$
 com $T = \sum_{i=1}^{n} [R(X_i) - R(Y_i)]^2$

caso não existam observações repetidas. Existindo repetições deve usar-se a expressão:

$$R_{S} = \frac{\sum_{i=1}^{n} R(X_{i})R(Y_{i}) - n(\frac{n+1}{2})^{2}}{\sqrt{\sum_{i=1}^{n} R(X_{i})^{2} - n(\frac{n+1}{2})^{2}}} \cdot \sqrt{\sum_{i=1}^{n} R(Y_{i})^{2} - n(\frac{n+1}{2})^{2}}}$$

A. Teste bilateral

 H_0 : As variáveis X e Y são independentes.

 H_{1} : (a) Existe uma tendência para os maiores valores de X formarem pares com os maiores valores de Y, ou

(b) Existe uma tendência para os menores valores de X formarem pares com os maiores valores de Y.

R.R: $R_S>c_1$ ou $R_S< c_2$, sendo c_1 o ponto crítico que corresponde a $1-\frac{\alpha}{2}$ e c_2 o ponto crítico que corresponde a $\frac{\alpha}{2}$

B. Teste unilateral para correlação positiva

 H_0 : As variáveis X e Y são independentes.

 H_1 : Existe uma tendência para os maiores valores de X e de Y formarem pares.

R.R: $R_S > c$, em que c é o ponto crítico que corresponde a $1-\alpha$

C. Teste unilateral para correlação negativa

 H_0 : As variáveis X e Y são independentes.

 H_1 : Existe uma tendência para os menores valores de X formarem pares com os maiores valores de Y e vice-versa.

R.R: $R_S < c$ sendo c o ponto crítico que corresponde a α .