CMPE 214 GPU Architecture & Programming

Lecture 1. GPU Architecture Overview (4)

Haonan Wang

GPU Microarchitecture: Memory Partition

DRAM Organization:

Row Operations & Row Buffer Locality

RBL & Memory Scheduling Schemes

Activation Counter:

R1: Activation = 1
R5: Activation = 2
R1: Activation = 3
R5: Activation = 4

Out-of-order scheduling

Activation Counter:

```
R1: Activation = 1
R1: Activation = 1
R1: Activation = 1
R5: Activation = 2
```


SRAM Cache Design

Each row holds a data block

Column address selects the requested word from block

Caches

- Hit: Data appears in some block of the cache
 - Hit Rate: # hits / total accesses on the cache
 - Hit Time: Time to access the cache
- Miss: Data needs to be retrieved from the lower level (and stored in cache)
 - Miss Rate: 1 (Hit Rate)
 - Miss Penalty: Average delay in the processor caused by each miss

Cache Types

- N-way Set-Associative: Number of ways > 1 & Number of sets > 1
 - Slightly complex searching mechanism
- Direct Mapped: Number of ways = 1
 - Fast indexing mechanism
- Fully-Associative: Number of sets = 1
 - Extensive hardware resources required to search

Assuming fixed sized cache:

Used for tag compare

Tag

Index

Selects the set

Selects the word in the block

Block offset

Byte offset

Increasing associativity

Fully associative (only one set)

Four-Way Set Associative Cache

Costs of Set Associative Caches

- Must have hardware for replacement policy
 - E.g., to keep track of when each way's block was used
- N-way set associative cache costs
 - N comparators (delay and area) & MUX delay
 - Data is available after Hit/Miss decision.
 - In a direct mapped cache, the cache block is available before the Hit/Miss decision.
- Total cache line size = valid field size + tag size + block data size + data for cache policy (e.g., time stamp, modified bit, etc.)

Memory block access sequence: 0, 8, 0, 6, 5 Which data will be in the cache after accessing this sequence? **CPU** Memory block 0 Read 0 is not in the cache → MISS Set no. in cache 0 % 2 = 0MEM[8] MEM[0] Block no. 0 1 2 3 4 5 6 7 8 9 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 in **memory**

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4

Memory block access sequence: 0,8,0,6,5

Memory block access sequence: 0, 8, 0, 6, 5

Memory block access sequence: 0, 8, 0, 6, 5

Memory block access sequence: 0, 8, 0, 6, 5

Principle of Locality

- **Temporal Locality**: If an address is referenced, it tends to be referenced again
- Spatial Locality: If an address is referenced, neighboring addresses tend to be referenced
- How to create a memory system that gives the illusion of being large, cheap and fast?
 - With hierarchy
 - With parallelism

Memory Hierarchy Performance

memory, AMAT is 30 cycles

longer than cache latency.

Can we reduce the

overhead?

- Example:
 - Cache Hit = 1 cycle
 - Miss rate = 10% = 0.1
 - Miss penalty = 300 cycles
 - AMAT = $T_{hit}(L1)$ + Miss_rate(L1) x T(Memory) = 1 + 0.1 x 300 = 31 cycles


```
 = T_{hit}(L1) + Miss_rate(L1) x   [ T_{hit}(L2) + Miss_rate(L2) x   \{ T_{hit}(L3) + Miss_rate(L3) x Miss_penalty(L3) \} ]
```


=
$$T_{hit}(L1)$$
 + Miss_rate(L1) x
[$T_{hit}(L2)$ + Miss_rate(L2) x
{ $T_{hit}(L3)$ + Miss_rate(L3) x T(memory) }]

Example:

Miss rate of L1, L2, L3 = 10%, 5%, 1%, respectively

 $-AMAT = 1 + 0.1 x [10 + 0.05 x {20 + 0.01 x 300}] = 2.115 cycles$ SJSU

Vs. 31 cycles 14.7x speedup!

Conclusion Time

What is Row Buffer Locality?

Row reuse rate

What are the row operations for the DRAM?

Activation, restore, precharge

Conclusion Time

What are some cache replacement policies?

LRU, LFU, RR, FIFO, ML based, etc.

How is the memory address divided for cache indexing?

Tag, set, word, byte

Conclusion Time

What are the two memory localities?

Temporal, spatial

What is AMAT?

Hit time + miss rate x miss penalty

SAN JOSÉ STATE UNIVERSITY powering SILICON VALLEY