VİTMO

Полупроводниковые приборы – диоды

Николаев Николай Анатольевич

Структура курса

- лекции 16 часов;
- лабораторные работы 32 часа;
- экзамен.

Распределение баллов:

- «экспресс тесты» 6 тестов по 3 балла 18 баллов
- лабораторные работы (8 работ, LtSpice) 6*5+2*6 42 балла
- модульные тесты 2 теста по 10 баллов 20 баллов
- экзамен 20 баллов
- бонусные 3 балла.

Оценивание лабораторных работ

При сдаче л/р оцениваются:

- Качество и полнота отчета;
- Корректность и полнота расчетных и экспериментальных данных
- Качество оформления иллюстрационных материалов
- Корректное использование единиц СИ
- Качество ответов на вопросы
- Срок сдачи работы

Вопросы, освещенные в презентации

- 1. Классификация полупроводниковых диодов
- 2. Параметры полупроводниковых диодов
- 3. Разновидности полупроводниковых приборов
- 4. Схемотехника на полупроводниковых диодах и стабилитронах

Классификация полупроводниковых диодов

По конструкции:

- Плоскостные диоды;
- Точечные диоды;
- Микросплавные диоды.

По мощности:

- Маломощные;
- Средней мощности;
- Мощные.

По частоте:

- Низкочастотные;
- Высокочастотные;
- CB4.

По функциональному назначению:

- Выпрямительные диоды;
- Импульсные диоды;
- Стабилитроны;
- Варикапы;
- Светодиоды;
- Тоннельные диоды и т.д.

По исходному полупроводниковому материалу:

- Германиевые;
- Кремниевые;
- Из арсенида галлия;
- Из фосфида индия.

Полупроводниковый диод

Полупроводниковым **диодом** называется устройство, состоящее из кристалла полупроводника, содержащее обычно один p-n переход и имеющее два вывода. На рисунке показано условное обозначение диода на схеме в соответствии с ГОСТ.

Маркировка

На первом месте - буква или цифра, означающая материал, из которого изготовлен диод.

- Г (1) германий;
- K (2) кремний;
- А (3) арсенид галлия;
- И (4) индий.

На втором - типы диода.

- Д выпрямительные;
- В варикап;
- А сверхвысокочастотные;
- И туннельные;
- С стабилитроны;
- Ц выпрямительные столбы и блоки.

Полупроводниковый диод

Условное графическое обозначение и устройство диода: а — графический символ (УГО); б — диод с p-n переходом; в — диод Шоттки

Поведение диода проще всего представить с помощью его вольт-амперной характеристики, описывающей зависимость тока, протекающего через диод от приложенного к нему напряжения в случае, когда все величины постоянны или медленно меняются во времени.

ВАХ полупроводникового диода

На рисунке представлена ВАХ диода.

Обозначения, приведенные на рисунке:

- 1 прямая вольт-амперная характеристика;
- 2 обратная вольт-амперная характеристика;
- 3 область пробоя;
- 4 прямолинейная аппроксимация прямой ВАХ;

Uпор – пороговое напряжение;

 $r_{\text{дин}}$ - динамическое сопротивление;

Uпроб – пробивное напряжение;

Uобр – постоянное обратное напряжение диода.

ВАХ р-п перехода определяется формулой (уравнение Шокли)

$$I = I_T[\exp\left(\frac{U}{\varphi_T}\right) - 1]$$

 I_T — тепловой ток, U — приложенное напряжение φ_T - термический потенциал, φ_T =kT/q, k — постоянная Больцмана, T — абсолютная температура, q —заряд электрона

Упрощенные ВАХ

Широко используемые обозначения диодов

Эквивалентная схема диода

При несложных вычислениях диод можно рассматривать в виде ключа, разомкнутого в области запирания или замкнутого в области проводимости.

$$\begin{bmatrix} \Delta U_D \\ R_B \end{bmatrix}$$
 $I_D = 0$ для $U_D < U_F$ \to ключ разомкнут (a) $U_D = U_F$ для $I_D > 0$ \to ключ замкнут (б)

С учетом прямого сопротивления диода

$$I_{D} = \begin{cases} 0 & U_{D} < U_{F} & \to \text{ ключ разомкнут (a)} \\ \frac{U_{D} - U_{F}}{R_{B}} & U_{D} \ge U_{F} & \to \text{ ключ замкнут (б)} \end{cases}$$

Основные параметры диодов

- Ток, проходящий через диод в прямом направлении (Iпр);
- Ток, проходящий через диод в обратном направлении (Іобр);
- Наибольший допустимый выпрямленный ток (Івыпр.макс);
- Наибольший допустимый прямой ток (Іпр.доп);
- Прямое напряжение (Unp);
- Обратое напряжение (Uобр);
- Наибольшее допустимое обратное напряжение (Uобр.макс);
- Емкость между выводами диода (Сд);
- Габариты и диапазон рабочих температур.

Механический аналог диода

LITMO

$$U_{\rm BX} = 2 \, {\rm B} \, R_{\rm H} = 500 \, {\rm OM}$$

$$U_{\rm BX} = 2 \, {\rm B} \, R_{\rm H} = 500 \, {\rm OM}$$

$$I = \frac{U_{\text{BX}}}{R_{\text{H}}}$$

$$U_{\rm BX} = 2 \, {\rm B} \, R_{\rm H} = 500 \, {\rm OM}$$

$$I = \frac{U_{\rm BX}}{R_{\rm H}}$$

Графический метод расчета

$$U_{\rm\scriptscriptstyle BX} = IR_{\scriptscriptstyle
m H} + U_{VD}$$

$$U_{\rm BX} = 2 \, {\rm B} \, R_{\rm H} = 500 \, {\rm Om}$$

Идеальный случай $I = \frac{U_{ ext{BX}}}{R_{ ext{H}}}$

$$I = \frac{U_{\text{BX}}}{R_{\text{H}}}$$

Графический метод расчета

$$U_{\rm BX} = IR_{\rm H} + U_{VD}$$
 $U_{\rm XX} = 2B$
 $I_{\rm K3} = \frac{U_{\rm BX}}{R_{\rm H}} = \frac{2}{500} = 4 \text{ MA}$
 $I = 1 \text{ MA}$ $U_{VD} = 1.5 \text{ B}$

LITMO

Примеры диодов и диодных мостов [4]

Выпрямительные диоды предназначены для выпрямления низкочастотного переменного тока и обычно используются в источниках питания. Под выпрямлением понимают преобразование двухполярного тока в однополярный.

В качестве **выпрямительных диодов** в источниках питания для выпрямления больших токов используют плоскостные диоды, которые имеют большую площадь контакта *p*- и *п*-областей. Такие диоды обладают большой барьерной емкостью.

Для выпрямительных диодов основными являются два параметра:

- 1.Ток прямой номинальный (среднее значение).
- 2. Напряжение обратное максимальное (мгновенное).

Диодом импульсного типа (переключающий, быстродействующий) называют диод имеющий малую длительность переходных процессов и являющийся составной частью импульсной схемы, работающей на высокой частоте.

Для данных целей наиболее подходят диоды с оптимизированными собственными ёмкостью и временем, требующимся на то, чтобы обратное сопротивление восстановилось.

Достижение необходимого показателя по первому параметру происходит при уменьшении длины и ширины p-n — перехода, это соответственно сказывается и на уменьшении допустимых мощностей рассеивания.

По второму — при использовании сильно легированных полупроводниковых элементов.

Диод (импульсный) имеет широкий спектр областей применения, в том числе, с его помощью можно сконструировать электронные ключи, генераторы, модуляторы, формирователи импульсов и демпферы.

По сути импульсный диод выполняет те же функции, что и стандартный диод полупроводникового типа, обладающий p-n — переходом. В момент воздействия прямого напряжения он демонстрирует хорошую электропроводность. Кроме того, в случае смены полярностей происходит перекрывание диода.

Туннельный диод, диод Ганна, PIN-диод

УГО туннельный диод, диод Ганна, PIN-диод

Диоды данных типов используются чаще всего в устройствах с очень высокой частотой вплоть до микроволнового излучения, где непригодны обычные диоды, поскольку они не обладают достаточно высокой скоростью переключения.

Варикап

Варикапом (варактор) называют полупроводниковый диод, спроектированный так, чтобы была высока его добротность, а барьерная емкость была стабильна при изменениях частоты и температуры. На рисунке показано, как варикап обозначается на схеме.

На варикап прикладывают обратное напряжение, что изменяет величину ёмкости барьера p-n перехода. Барьерная ёмкость есть у всех полупроводниковых диодов, и она уменьшается по мере увеличения обратного напряжения на диоде. Но вот у варикапов эта ёмкость может меняться в достаточно широких пределах, в 3 — 5 раз и более.

На рисунке приведена схема использования варикапа для настройки частоты колебательного контура.

Стабилитрон

Полупроводниковыми *стабилитронами* называют плоскостные диоды, которые применяют для поддержания на неизменном уровне обратного постоянного напряжения, приложенного к запертому стабилитрону. На рисунке показано условное обозначение стабилитрона на схемах.

Типовая схема включения стабилитрона

Стабилитрон

iip max

Водяная аналогия работы стабилитрона [4]

Однополупериодный выпрямитель

Выпрямитель преобразует переменный ток в постоянный, выпрямительные схемы являются самыми простыми и наиболее полезными в практическом отношении диодными схемами. Простейшая выпрямительная схема приведена на рисунке.

Двухполупериодный выпрямитель

На рисунке приведена схема двухполупериодного выпрямителя (мостовая схема) и ее выходной сигнал. Из графика видно, что входной сигнал используется при выпрямлении полностью. На графике выходного напряжения наблюдаются интервалы времени с нулевым значением напряжения, они обусловлены прямым напряжением диодов.

Двухполупериодный однофазный выпрямитель

Выходное напряжение здесь в 2 раза меньше, чем в схеме мостового выпрямителя. Схема двухполупериодного однофазного выпрямителя не является эффективной с точки зрения использования трансформатора, так как каждая половина вторичной обмотки используется только в одном полупериоде. Трансформатор для этой схемы следует выбирать так, чтобы его предельный ток был в 1,41 раза больше, чем у трансформатора мостовой схемы, в противном случае такой выпрямитель будет более дорогим и более громоздким, чем мостовой.

Диодные развязки

Еще одна область применения диодов основана на их способности пропускать большее из двух напряжений, не оказывая влияния на меньшее. Ha рисунке представлена схема с резервной батареей питания – она используется в устройствах, которые должны работать непрерывно даже при отключении питания. В отсутствие сбоев в питании батарея не работает, при возникновении сбоя питание на схему подается от батареи, при этом перерыва питания не происходит.

Диодные ограничители

В тех случаях, когда необходимо ограничить диапазон изменения сигнала, например напряжения, можно воспользоваться схемой, приведенной на рисунке. Благодаря диоду напряжение не может превышать +5,6 В, при этом наличие диода никак не сказывается на меньших напряжений (в значениях TOM числе отрицательных), единственное условие состоит в том, что отрицательное напряжение не должно достигать значения напряжения пробоя.

Двухсторонний ограничитель

Ограничитель, схема которого приведена на рисунке, ограничивает размах выходного сигнала и делает его равным падению напряжения на диоде, т.е приблизительно 0,6 В. Может показаться, что это очень маленькое значение, если однако следующим каскадом схемы является усилитель с большим коэффициентом усиления ПО напряжению, то входной сигнал для него всегда должен быть немногим более 0 В, иначе усилитель попадает в режим насыщения. Такая схема часто используется в качестве защиты на входе усилителя с большим коэффициентом усиления.

Стабилизатор напряжения

Схема простейшего стабилизатора напряжения приведена на рисунке. Резистор R задает номинальный ток стабилизации. Принцип действия. При уменьшении входного напряжения ток через стабилитрон и падение напряжения на R может уменьшаться, а напряжения на стабилитроне и на нагрузке останутся постоянными. При увеличении входного напряжения ток через стабилитрон и U_{R} увеличивается, а напряжение на нагрузке всё равно остаётся постоянным и напряжению равным стабилизации.

Резонансный контур

Ha рисунке приведена схема резонансного контура с электронной перестройкой при помощи постоянного напряжения Un. Напряжение перестройки подается в среднюю точку двух встречно последовательно включенных варикапов VD1 и VD2 через дополнительный резистор Rд. Такое включение варикапов позволяет увеличить крутизну перестройки и устраняет необходимость применения разделительного конденсатора.

Простейшие логические элементы на диодах

Способность диодов проводить электрический ток в одном направлении может быть использована в различных устройствах коммутации и логических цепях. Примеры простейших диодных логических элементов приведены на рисунках.

Гаситель напряжения

Соединив последовательно несколько диодов, можно получить падение напряжения, равное сумме падений напряжений на каждом отдельном диоде в последовательности.

Гасители напряжения применяются в случаях, когда необходимо получить небольшую фиксированную разность напряжений между двумя каскадами схемы.

Стабилизатор напряжения на диоде

В данном случае последовательно включенные диоды дают стабильное низковольтное напряжение (0,6*3=1,8 В). Последовательно включенный резистор задает требуемый выходной ток. Его значение должно быть меньше, чем результат следующей формулы, но не таким низким, чтобы превышалась номинальная мощность самого резистора или диодов.

$$R_{\text{посл}} = \frac{U_{\text{вх}} - U_{\text{вых}}}{I}.$$

Защита от подачи обратного напряжения

Последовательное включение диода — при правильной полярности ток протекает, при обратной полярности блокирует прохождения тока. Недостаток схемы — диод должен работать с полным током нагрузки, падение напряжение на диоде сокращает время работы устройства от батареи.

Защита от подачи обратного напряжения

Параллельное включение диода. Этот диод защищает нагрузку от неправильной полярности. При неправильной полярности через диод течет большой ток. С помощью шунтирующего диода можно защитить, например, измерительные приборы.

Ошибки при работе с диодами

- 2. Неправильная полярность (диоды должны подключаться с прямым смещением, стабилитроны с обратным).
- 3. Неверный тип диода. Например, использование стабилитрона вместо диода (стабилитрон имеет намного меньшим напряжением пробоя и не станет блокировать обратный ток).

Практические рекомендации

При выборе диодов необходимо руководствоваться следующими характеристиками:

- 1. Максимальное обратное напряжение (МОН)
- 2. Допустимая нагрузка по прямому току
- 3. Время реакции (время, требуемое диоду для включения/выключения)
- 4. Максимальный обратный ток утечки
- 5. Максимальное прямое напряжение

Примеры диодов

Диод	Тип	мон, в	I _{np.max}	І обр.тах	I _{пр.уд}	U _{np.max} , B
1N34A	Сигнальный (Ge)	60	8,5 MA	15 мкА	_	1,0
1N67A	Сигнальный (Ge)	100	4,0 mA	5 мкА	_	1,0
1N191	Сигнальный (Ge)	90	5,0 м A		_	1,0
1N914	Быстрый коммутационный	90	75 mA	25 нА	_	0,8
1N4148	Сигнальный	75	10 м А	25 нА	450 mA	1,0
1N4445	Сигнальный	100	100 MA	50 нА	_	1,0
1N4001	Выпрямитель	50	1 A	0,03 M A	30 A	1,1
1N4002	Выпрямитель	100	1 A	0,03 мА	30 A	1,1
1N4003	Выпрямитель	200	1 A	0,03 мА	30 A	1,1
1N4004	Выпрямитель	400	1 A	0,03 мА	30 A	1,1
1N4007	Выпрямитель	1000	1 A	0,03 мА	30 A	1,1
1N5002	Выпрямитель	200	3 A	500 мкА	200 A	
1N5006	Выпрямитель	600	3 A	500 мкА	200 A	
1N5008	Выпрямитель	1000	3 A	500 мкА	200 A	
1N5817	Шоттки	20	1 A	1 M A	25 A	0,75
1N5818	Шоттки	30	1 A	_	25 A	
1N5819	Шоттки	40	1 A	_	25 A	0,90
1N5822	Шоттки	40	3 A	_		
1N6263	Шоттки	70	15 mA	_	50 mA	0,41
5052-2823	Шоттки	8	1 mA	100 нА	10 мА	0,34

Светодиодом называют такой полупроводниковый компонент, в котором рекомбинацию носителей зарядов сопровождает испускание квантов некогерентного света (прибор, в котором происходит непосредственное преобразование электрической энергии в энергию светового излучения).

SMD-светодиоды

Chip-On-Board (COB)

VİTMO

Характеристики светодиода

К наиболее важным характеристикам светодиодов относят спектральную и яркостную характеристики:

- Спектральная характеристика зависимость вырабатываемой мощности светового потока от длины волны
- Яркостная характеристика это зависимость мощности светового потока от силы тока, протекающего по светодиоду в прямом включении

Достоинства и недостатки светодиода. Схема включения

Достоинства светодиодов:

- механическую прочность;
- длительное время наработки на отказ;
- низкое прямое напряжение;
- малую стоимость;
- возможность функционирования в широком диапазоне температур.

Недостатки индикаторных светодиодов:

- обычно невысокое КПД, составляющее от долей до нескольких процентов.

VITMO

Типовая схема включения. Порядок расчета

Выбрав светодиод имеем следующие параметры:

- напряжение на светодиоде Ucв
- ток светодиода Ісв

Далее выбирается необходимое балластное сопротивление

$$R = \frac{(U_{\rm BX} - U_{\rm CB})}{I_{\rm CB}}$$

Последовательное и параллельное включение светодиодов

Последовательное соединение

$$R = \frac{(U_{\rm BX} - n \cdot U_{\rm CB})}{I_{\rm CB}}$$

Параллельное соединение

LITMO

Фоторезистор — полупроводниковый прибор, изменяющий величину своего сопротивления при облучении светом.

Важнейшие параметры фоторезисторов:

- Интегральная чувствительность отношение изменения напряжения на единицу мощности падающего излучения (при номинальном значении напряжения питания);
- ▼ Порог чувствительности величина минимального сигнала, регистрируемого фоторезистором, отнесённая к единице полосы рабочих частот.

Основные параметры фоторезисторов

- ▼ Темновое сопротивление (Rтм) сопротивление фоторезистора при 20°С через 30 с после снятия освещенности 200 лк.;
- ▼ Темновой ток (Ітм) ток, протекающий в цепи фоторезистора при приложенном рабочем напряжении через 30 с после снятия освещенности 200 лк.;
- Световой ток (Ісв) ток через фоторезистор при приложенном напряжении и освещенности 200 лк.;
- Удельная чувствительность отношение фототока к произведению величины падающего на резистор светового потока и приложенного к нему напряжения;
- ✓ Интегральная чувствительность произведение удельной чувствительности на предельное рабочее напряжение.

LITMO

Основные характеристики фоторезисторов

- ▼ Вольт-амперная, характеризующая зависимость фототока (при постоянном световом потоке Ф) или темнового тока от приложенного напряжения;
- Спектральная, характеризующая чувствительность фоторезистора при действии на него потока излучения постоянной мощности определенной длины волны;
- У Частотная, характеризующая чувствительность фоторезистора при действии не него светового потока, изменяющегося с определенной частотой.

Рис. 8.9. Характеристики фоторезисторов: a — вольт-ампериая; b — спектральные; ϵ — изстотные

Фотодиодом называют фотогальванический приемник с электронно-дырочным переходом, облучение которого светом вызывает увеличение силы обратного тока.

На рисунке показано условное обозначение фотодиода на схемах.

При облучении кристалла слабым световым потоком, к спектру которого будет чувствителен фотодиод, возникнет генерация электронов и дырок, и обратный ток станет больше $(\Phi_1 > \Phi_0)$.

Оптрон (светодиод-фотодиод)

Такая комбинация по функции аналогична электромагнитному реле и характерна прежде всего гальванической развязкой входной (управляющей) и выходной (нагрузочной) цепей.

Диод Шоттки

Электрический переход, возникающий на границе металл — полупроводник, при определенных условиях обладающий выпрямительными свойствами; создается при напылении металла на высокоомный полупроводник, например, n-типа. Прибор на основе такого перехода называется диодом Шотки. Главная особенность данного диода — это отсутствие неосновных носителей заряда в процессе его работы.

Диод Шоттки

К **достоинствам** относят чрезвычайно малый обратный ток, возможность работы компонентов отдельных марок на частотах до сотен ГГц и даже выше. Некоторые мощные диоды Шоттки допускают прямые токи в сотни ампер. Прямое падение напряжения на переходе Шоттки меньше, чем у типового электронно-дырочного перехода.

Основными **недостатками** выступают высокая стоимость используемых материалов и довольно низкое максимально допустимое обратное напряжение. Выдерживающие более высокие обратные напряжения диоды Шоттки, обычно получают последовательным соединением нескольких переходов Шоттки. От этого падение напряжения на сборке диодов Шоттки в прямом включении станет примерно таким же, или даже большим, чем у аналогичного по некоторым параметрам диода с электронно-дырочным переходом.

Тип диода	Обозначение	Описание			
С <i>р–п-</i> переходом	A K	Функционирует как однонаправленный вентиль, пропуская ток в направлении от анода (А) к катоду (К) и блокируя его в обратном направлении. Существуют крем ниевые и германиевые диоды. Для активации режима проводимости прилагаемс прямое напряжение составляет от 0,6 до 1,7 В для кремниевых диодов и от 0,2 до 0,4 В для германиевых. Применяются в приложениях выпрямления напряжен подавления всплесков, умножения напряжения, РЧ-демодуляции, аналоговой локи, фиксаторов напряжения, быстродействующих коммутаторов и стабилизации напряжения			
Шоттки	а -) [- к	Работает подобно диодам с <i>p</i> - <i>n</i> -переходом, но оснащен специальным металлическим полупроводниковым переходом вместо <i>p</i> - <i>n</i> -перехода. Благодаря этому емкость его перехода чрезвычайно низкая, в результате чего время срабатывания перехода более быстрое, чем у обычных диодов. Это делает диоды Шоттки полезными для использования в таких приложениях, как фиксация напряжения и высокочастотные приложения, приближающиеся к гигагерцевому диапазону. У них также более низкое напряжение прямого смещения — в диапазоне от 0,15 до 0,9 В, а в среднем 0,4 В. Используется в приложениях, подобных приложениям для обычных диодов, но обладает лучшими свойствами обнаружения сигналов низкого уровня, скоростью и низкими потерями при выпрямлении благодаря более низкому пороговому напряжению прямого смещения			
Стабилитрон	а -) - к	Обладает проводимостью от анода (A) к катоду (K), как обычные диоды, но также и в обратном направлении, если прилагаемое напряжение обратного смещения превышает напряжение пробоя стабилитрона U_Z . Функционирует как чувствительный к напряжению управляющий вентиль. В зависимости от типа, мимеет разную номинальную мощность и напряжение пробоя — 1,2; 3,0; 5,1; 6,3; 9; 12 В и т. д. Область применения — стабилизация напряжения, ограничитель сигнала, смещение напряжения, подавление всплесков и т. п.			

Тип диода	Обозначение	Описание
Варактор (варикап)	A → → K	Функционирует как управляемый напряжением переменный конденсатор, чья емкость обратно пропорциональна напряжению обратного смещения. Имеет специально разработанный переход со сравнительно большим диапазоном емкости при ограниченном диапазоне напряжения обратного смещения. Поскольку емкость в диапазоне пикофарад, применение обычно ограничено РЧ-приложениями, такими как настройка приемников и генераторов ЧМ-колебаний
РІN-диоды, ЛПД, диоды Ганна, туннельные диоды и т.п.	A	Большинство из этих резистивных устройств используются в радиочастотных, микроволновых и миллиметровых приложениях (например, усилители и генераторы колебаний). Благодаря уникальным физическим механизмам, эти диоды обладают намного меньшим временем отклика, чем обычные диоды на основе механизма дисперсии носителей заряда через <i>p</i> - <i>n</i> -переход
Светодиод и лазерный диод	A - K	При подаче напряжения прямого смещения ($U_A > U_K$) величиной около 1,7 В светодиоды излучают свет почти постоянной длины волны. Доступны в широком диапазоне длины волны (от ИК до видимого), размеров, номинальной мощности и т. п. Используются в качестве индикаторов и источников сигнала в системах связи на инфракрасном и видимом свете. Лазерные диоды похожи на светодиоды, но имеют значительно более узкий волновой спектр (~1 нм по сравнению с ~40 нм у светодиодов), обычно в ИК-области спектра. Обладают очень быстрым временем отклика (нс). Благодаря этим свойствам лазеры выдают чистый сигнал, применимый в системах волоконно-оптической связи, в которых требуется минимальный дисперсионный эффект, эффективная связность и незначительная деградация сигнала на больших расстояниях. Также используются в пазерных указках, проигрывателях компакт- и DVD-дисков, считывателях штрихкодов и в разных хирургических инструментах
Фотодиод	A - K	При освещении создает ток, или может изменять протекающий через него ток в зависимости от интенсивности освещения. Нормальная работа при освещении — в режиме обратного смещения (ток протекает от катода (К) к аноду (А)). Сила тока прямо пропорциональна интенсивности освещения. Очень быстрое время отклика (нс). Менее чувствительные, чем фототранзисторы, но благодаря своим линейным характеристикам полезны в простых люксметрах

Задача

Uпит=5 В

R1=R2=1 кОм

UBx=1 B

Определить токи через диоды, напряжения на диодах, напряжение на выходах.

Контрольные вопросы

1. Нарисуйте вольт-амперную характеристику полупроводникового диода и объясните его принцип действия.

- 2. Чем отличаются свойства германиевых и кремниевых диодов
- 3. Перечислите и дайте формулировку основных параметров диода и покажите на вольт-амперной характеристике, как определяются сопротивление диода в прямом и обратном направлении.
- 4. Нарисуйте вольт-амперную характеристику кремниевого стабилитрона и покажите на ней рабочий участок.
- 5. Нарисуйте схему включения стабилитрона и поясните принцип стабилизации напряжения на нагрузке.
- 6. Объясните назначение и принцип действия импульсных диодов.
- 7. Каково назначение и принцип действия туннельного диода?
- 8. Какой прибор называется варикапом и для чего он применяется?
- 9. Объясните буквенно-цифровую систему обозначения диодов.
- 10. Какой материал чаще всего используется для изготовления выпрямительных диодов?
- 11. Что такое диффузия носителей в полупроводнике?

Контрольные вопросы

- 13. Какие полупроводниковые диоды, плоскостные или точечные, могут работать на более высоких частотах? Для чего главным образом применяются точечные диоды?
- 14. Чем объясняется относительно высокое значение обратного тока точечного диода в сравнении с плоскостным диодом?
- 15. Какие полупроводниковые диоды работают в режиме пробоя?
- 16. Каков порядок величины дифференциального сопротивления опорного диода в рабочей области?
- 17. Почему у полупроводниковых диодов вольт-амперная характеристика в области больших прямых токов близка к линейной?
- 18. Что ограничивает максимально допустимый прямой ток через диод?
- 19. Почему с ростом температуры германиевого диода его пробивное напряжение уменьшается?

Список использованных источников

- 1. Платт Ч. Энциклопедия электронных компонентов. Том 1. Резисторы, конденсаторы, катушки индуктивности, переключатели, преобразователи, реле, транзисторы: Пер. с англ. СПб.: БХВ-Петербург, 2017. 352 с.: ил.
- 2. Электроника. Теория и практика 4-е издание.: Пер. с англ. / Саймон Монк, Пауль Шерц. СПб.: БХВ-Петербург, 2018. 1168 с.: ил.
- 3. Титце У., Шенк К. Полупроводниковая схемотехника. 12е изд. Том І: Пер. с нем. М.: ДМК Пресс, 2008. 832 с.: ил.
- 4. Саймон Монк. Электроника. Теория и практика 4-е изд.: Пер. а англ. / С. Монк, Пауль Шерц. СПб.: БХВ-Петербург, 2018. 1168 с.

Спасибо за внимание!

ITSMOre than a UNIVERSITY