

Introduction to R for spatial modeling

Ruhollah Taghizadeh Soil Science and Geomorphology

Content

□Part 1

- R and RStudio
- Setting up an R session
- Data types
- Data structures
- Selecting subsets
- Functions
- Import/export of data
- Plotting
- Working with spatial data in R

☐ Part 2

•Lets practice!!

What is R?

- ■R is a free programming language for statistics
- R is command line based

- ■R is used to analyze and visualize (geographic) data
- R is comparatively easy to access

Why R?

- It is free
- •Available for the most popular operating systems

- Low system requirements
- Continuous <u>further development</u>
- •Active user community with its own conference (useR!)
- Application in many natural sciences
- **PYPL** Popularity of Programming Language: 7th place

First steps

- <u>https://www.r-project.org/</u>
 - •R website, where you will find the program itself, FAQs, manuals and other useful information about and around R:

- •CRAN (Comprehensive R Archive Network; <u>cran.r-project.org</u>)
- •Manuals (<u>cran.r-project.org/manuals.html</u>)
- Mailing lists
- Books list

R software

First steps

Other user interfaces

- ■R Commander (https://www.rcommander.com/)
- •RStudio(<u>https://rstudio.com/</u>) (<u>https://rstudio.com/products/rstudio/download/</u>)
- And some others (e.g., Tinn-R)

- Open source and commercial user interfaces
- Desktop and server variants

RStudio

First steps-Help

•R-help(Mailing-Listen)

Most <u>important list</u> for user questions (Pay attention to <u>posting</u>)

R Community, most problems are not new and solutions can be found online

Stackoverflow

R-bloggers,

Quick-R,

Books and eBooks

R Cookbook

R for Data Science, Spatial Data Science,

Geocomputationwith R, The R Inferno, Rstudio Cheatsheets

- Basic arithmetic functions:
- + (addition), (subtraction), * (multiplication), / (division),
- (exponentiation)

Basic arithmetic operations:

```
Logarithms and exponentials: log2(x), log10(x), exp(x)
```

Trigonometric functions: cos(x), sin(x), tan(x), acos(x), asin(x), atan(x)

Other mathematical functions: abs(x): absolute value; sqrt(x): square root.

•Assigning values to variables:

```
s <- 5
5
s <- seq(from=20, to=0, by=-2)
20 18 16 14 12 10 8 6 4 2 0
s \leftarrow rep(1:4, 2)
12341234
s <- rnorm(10, mean = 10, sd = 1)
9.3 10.5 10.4 13.2 10.1 10.9 11.5 10.4 9.1 9.6
```

•Assigning values to variables:

```
Clay <- 40
Sand <- 40
Silt <- 20

Sum <- Clay + Sand + Silt

print (Sum) # => 100
```

Note: R is case sensitive!

Data types

Basic data types:

```
> × <- 10.1
Numeric
            > X
            [1] 10.1
            > class(x)
            [1] "numeric"
```

```
■Integer > y <- as.integer(x)
          > y
          Γ17 10
          > class(y)
          [1] "integer"
```

```
Character > z <- "Bas"</p>
             [1] "Bas"
             > class(z)
             [1] "character"
```

```
Logical
              > \times < -1; y < -2
              > z <- x > y
              > Z
              [1] FALSE
              > class(z)
              [1] "logical"
              >
```

class(x)

•Vectors:

Sequence of elements of the same basic type (character, logical, integer or numeric).

•Factors:

A vector with categorical values (classes)

```
x <- c(1, 2, 3)
y <- as.factor(x)

> y
[1] 1 2 3
Levels: 1 2 3
```

•Matrix:

•Matrices are similar to vectors, but have two dimensions

```
x < -1:20
x \leftarrow matrix(x, 5, 4)
                                  # matrix(x, nrow = 5, ncol = 4)
x[2, 3]
x[c(1, 5), 2:4]
x[, 2:4]
dim(x); nrow(x); ncol(x)
length(x)
as.matrix(x)
is.matrix(x)
x[, "b"]
x[, c("a", "b")]
```

Arrays:

•Arrays are similar to matrices, but can have more than two dimensions

```
x < -1:60
x \leftarrow array(x, c(5, 4, 3))
x[2, 3, 1]
x[1, 2:4, 3]
x[, , 1]
dim(x); dimnames(x)
nrow(x); ncol(x)
length(x)
as.array(x)
is.array(x)
```

List:

Ordered sequence of objects of the same or dissimilar type

```
x \leftarrow list(Eins = 11:15, Zwei = c("a", "b", "c"), Drei = (1:4) > 0)
y \leftarrow list(x = x, Vier = 1:3)
x$Eins
                                                        a[1:2]
                                                                       a[4]
                                            а
y$x$Eins
                                              3
y$Vier
                                                       "a string"
                                        "a string"
y[[2]]
length(x)
                                        3.141525
length(y)
y$Fuenf <- names(x)
                                         a[[4]]
                                                       a[[4]][1]
                                                                   a[[4]][[1]]
                                                                       -1
```

Data frame:

Data frames are similar to matrices but with the same or different types

df[1:2,]

df[,1]

Functions, Arguments, and Packages

•Functions:

Data analyses and modelling is done through functions.

hist(x) plot(x)

args(plot)

Functions, Arguments, and Packages

Packages:

install.packages("package name")

install.packages("ggplot2")

library(ggplot2)

detach("ggplot2 ")

installed.packages()

remove.packages()

update.packages()

Useful commands

Command	Purpose
help()	Obtain documentation for a given R command
example()	View some examples on the use of a command
c(), scan()	Enter data manually to a vector in R
seq()	Make arithmetic progression vector
rep()	Make vector of repeated values
data()	Load (often into a data.frame) built-in datase
View()	View dataset in a spreadsheet-type format
str()	Display internal structure of an R object
read.csv(), read.table()	Load into a data.frame an existing data file
library(), require()	Make available an R add-on package
dim()	See dimensions (# of rows/cols) of data.frame
length()	Give length of a vector
ls()	Lists memory contents
rm()	Removes an item from memory
names()	Lists names of variables in a data.frame
hist()	Command for producing a histogram
histogram()	Lattice command for producing a histogram
stem()	Make a stem plot
table()	List all values of a variable with frequencies
xtabs()	Cross-tabulation tables using formulas
mosaicplot()	Make a mosaic plot
cut()	Groups values of a variable into larger bins
mean(), median()	Identify "center" of distribution
by()	apply function to a column split by factors
summary()	Display 5-number summary and mean
var(), sd()	Find variance, sd of values in vector
sum()	Add up all values in a vector
quantile()	Find the position of a quantile in a dataset
barplot()	Produces a bar graph
barchart()	Lattice command for producing bar graphs
boxplot()	Produces a boxplot
bwplot()	Lattice command for producing boxplots

Command	Purpose
plot()	Produces a scatterplot
xyplot()	Lattice command for producing a scatterplot
lm()	Determine the least-squares regression line
anova()	Analysis of variance (can use on results of lm())
predict()	Obtain predicted values from linear model
nls()	estimate parameters of a nonlinear model
residuals()	gives (observed - predicted) for a model fit to data
sample()	take a sample from a vector of data
replicate()	repeat some process a set number of times
cumsum()	produce running total of values for input vector
ecdf()	builds empirical cumulative distribution function
dbinom(), etc.	tools for binomial distributions
dpois(), etc.	tools for Poisson distributions
pnorm(), etc.	tools for normal distributions
qt(), etc.	tools for student t distributions
pchisq(), etc.	tools for chi-square distributions
binom.test()	hypothesis test and confidence interval for 1 proportion
prop.test()	inference for 1 proportion using normal approx.
chisq.test()	carries out a chi-square test
fisher.test()	Fisher test for contingency table
t.test()	student t test for inference on population mean
qqnorm(), qqline()	tools for checking normality
addmargins()	adds marginal sums to an existing table
<pre>prop.table()</pre>	compute proportions from a contingency table
par()	query and edit graphical settings
<pre>power.t.test()</pre>	power calculations for 1- and 2-sample t
anova()	compute analysis of variance table for fitted model

Base R Cheat Sheet

Getting Help

Accessing the help files

?mean

Get help of a particular function.

help.search('weighted mean')

Search the help files for a word or phrase. help(package = 'dplyr')

Find help for a package.

More about an object

str(iris)

Get a summary of an object's structure. class(iris)

Find the class an object belongs to.

Using Libraries

install.packages('dplyr')

Download and install a package from CRAN.

library(dplyr)

Load the package into the session, making all its functions available to use.

dplyr::select

Use a particular function from a package.

data(iris)

Load a built-in dataset into the environment.

Working Directory

getwd()

Find the current working directory (where inputs are found and outputs are sent).

setwd('C://file/path')

Change the current working directory.

Use projects in RStudio to set the working directory to the folder you are working in.

Vectors **Creating Vectors**

c(2, 4, 6)	2 4 6	Join elements into a vector
2:6	23456	An Integer sequence
seq(2, 3, by=0.5)	2.0 2.5 3.0	A complex sequence
rep(1:2, times=3)	121212	Repeat a vector
rep(1:2, each=3)	111222	Repeat elements of a vector

Vector Functions

sort(x)	rev(x)
Return x sorted.	Return x reversed.
table(x)	unique(x)
See counts of values.	See unique values.

Selecting Vector Elements

By Position

```
x[-4]
                All but the fourth.
```

```
x[2:4]
              Elements two to four.
```

x[-(2:4)]	All elements except
	two to four.

Elements one and x[c(1, 5)]five.

By Value

x[x == 10]	Elements which are equal to 10.
x[x < 0]	All elements less than zero.
x[x %in% c(1, 2, 5)]	Elements in the set 1, 2, 5.

Named Vectors

x['apple']	Element with
	name 'apple'.

Programming

for (variable in sequence){ Do something

For Loop

Example

```
for (i in 1:4){
  i < -i + 10
   print(i)
```

While Loop

```
while (condition){
  Do something
              Example
```

```
while (i < 5){
   print(i)
    i \leftarrow i + 1
```

If Statements

```
if (condition){
   Do something
} else {
   Do something different
```

Example

```
if (i > 3){
   print('Yes')
} else {
   print('No')
```

Functions

```
function_name <- function(var){
  Do somethina
  return(new variable)
```

Example

```
square <- function(x){
   squared <- x*x
   return(squared)
```

Reading and Writing Data

Input	Ouput	Description
<pre>df <- read.table('file.txt')</pre>	write.table(df, 'file.txt')	Read and write a delimited text file.
<pre>df <- read.csv('file.csv')</pre>	write.csv(df, 'file.csv')	Read and write a comma separated value file. This is a special case of read.table/ write.table.
load('file.RData')	<pre>save(df, file = 'file.Rdata')</pre>	Read and write an R data file, a file type special for R.

Types

Converting between common data types in R. Can always go from a higher value in the table to a lower value.

		i de la companya de
as.logical	TRUE, FALSE, TRUE	Boolean values (TRUE or FALSE)
as.numeric	1, 0, 1	Integers or floating point numbers.
as.character	'1', '0', '1'	Character strings. Generally preferred to factors.
as.factor	'1', '0', '1', levels: '1', '0'	Oharacter strings with preset levels. Needed for some statistical models.

Maths Functions

log(x)	Natural log.	sum(x)	Sum.
exp(x)	Exponential.	mean(x)	Mean.
max(x)	Largest element.	median(x)	Median.
min(x)	Smallest element.	quantile(x)	Percentage quantiles.
round(x, n)	Round to n decimal places.	rank(x)	Rank of elemen
signif(x, n)	Round to n significant figures.	var(x)	The variance.
cor(x, y)	Correlation.	sd(x)	The standard deviation.

Variable Assignment

<- 'apple' > a [1] 'apple'

The Environment

ls()	List all variables in the environment.	
rm(x)	Remove x from the environment.	
rm(list = ls())	Remove all variables from the environment.	
You can use the environment panel in RStudio to		

browse variables in your environment.

Matrixes

m <- matrix(x, nrow = 3, ncol = 3)</pre> Create a matrix from x.

m[2.	- Select a row	t(m)	
		Transpose	
m[. 1]	1] - Select a column	m %*% n	
		Matrix Multiplication solve(m, n)	
m[2, 3]	- Select an element	Find x in: m * x = n	

Lists

 $l \leftarrow list(x = 1:5, y = c('a', 'b'))$

A list is collection of elements which can be of different types.

1[[2]] Second element of L

1[1] New list with only the first element.

1\$x Element named

l['y'] New list with only element named y.

Also see the dplyr library.

Data Frames

List subsetting

Understanding a data frame

frame.

rows.

df[[2]]

See the full data

See the first 6

 $df \leftarrow data.frame(x = 1:3, y = c('a', 'b', 'c'))$ A special case of a list where all elements are the same length.

df\$x

x	у
1	a
2	b
3	С

Matrix subsetting

df[, 2]

df[2,]

nrow(df) Number of rows

View(df)

head(df)

ncol(df) Number of columns.

dim(df) Number of columns and rows.

cbind - Bind columns.

rbind - Bind rows.

Strings

Also see the stringr library.

Find regular expression matches in x.

Convert to uppercase.

paste(x, y, sep = ' ') Join multiple vectors together.

paste(x, collapse = ' ') Join elements of a vector together.

grep(pattern, x)

gsub(pattern, replace, x) Replace matches in x with a string.

toupper(x)

tolower(x) Convert to lowercase.

nchar(x) Number of characters in a string.

Factors

factor(x)

Turn a vector into a factor, Can set the levels of the factor and the order.

cut(x, breaks = 4)

Turn a numeric vector into a factor but 'cutting' into sections.

Statistics

 $lm(x \sim y, data=df)$ Linear model.

 $glm(x \sim y, data=df)$ Generalised linear model.

summary Get more detailed information out a model.

t.test(x, y) Preform a t-test for difference between

means. pairwise.t.test

Preform a t-test for paired data.

proportions. aov

prop.test

Test for a

difference

between

Analysis of variance.

Distributions

	Random Variates	Density Function	Cumulative Distribution	Quantile
Normal	rnorm	dnorm	pnorm	qnorm
Poison	rpois	dpois	ppois	qpois
Binomial	rbinom	dbinom	pbinom	qbinom
Uniform	runif	dunif	punif	qunif

Plotting

Also see the ggplot2 library.

plot(x) Values of x in

Dates

See the **lubridate** library.

Spatial Data in R:

R offers a wide variety of packages and tools that can handle

Relevant packages:

-sp : handling spatial data

-raster : reading/manipulating/writing spatial raster data

-rgdal : reading/writing spatial data

Spatial data class summary:

-5

gridded <

fullgridded

-sp:

- SpatialPointsDataFrame
- SpatialPixelDataFrame
- *•SpatialGridDataFrame
 - SpatialPolygonDataFrame
 - SpatialLinesDataFrame

•Format: **shapefile**

•Format: GeoTiff

-raster:

- RasterLayer(single layer)
- RasterStack/ RasterBrick(multiple layers)

•Importing and exporting spatial data:

•rgdal: readOGR(vector), readGDAL(raster)

•raster: raster

rgdal: writeOGR(vector), writeGDAL(raster)

•raster: writeRaster

Projections:

- •Once you have loaded your spatial data in R, you might need to tell R its geographic projection.
- •Check the current projection: **proj4string** function (sppackage).
- Setting a projection: CRSfunction (sppackage).
- •Reprojectingto another coordinate system: **spTransform**function (sppackage) or **projectRaster**(raster package).

Please install R and RStudio

Please install **SAGA** and **Google Earth**

