⑩日本国特許庁(JP)

⑩特許出願公開

® 公 開 特 許 公 報 (A) 昭64-36336

動Int,Cl.・ 識別記号 庁内整理番号 母公開 昭和64年(1989)2月7日
 G 06 F 9/46 3 1 3 C - 7056-5B 9/38 3 3 0 K - 7361-5B 審査請求 有 請求項の数 1 (全14頁)

母発明の名称 計算機システム

到特 関 昭63-122246

纽出 願 昭63(1988)5月20日

砂発 明 者 ジョン・ステイフェ アメリカ合衆国ニユーヨーク州リイーンベツク、トロイ・

ン・リップタイ ドライブ1番地

ズ・コーポレーション

①出 願 人 インターナショナル・ アメリカ合衆国10504、ニユーヨーク州 アーモンク (番

ビジネス・マシーン 地なし)

②代理人 弁理士 頓宮 孝一 外1名

明 細 掛

1発明の名称 計算機システム

2.特許請求の範囲

システムのアーキテクテヤにより製水されるア ドレス可能なレジスタの数を n としたとき、 n よ りも大きな m 個のハードウエア・レジスタを有す るレジスタ・アレイと、

上記レジスタ・アレイに情報を送り且つ上記レ ジスタ・アレイから情報を受け収るように接続された、命令を実行する命令実行装置と、

命令及びデータを保持し且つ上記命令実行装置 に命令及びデータを供給する記憶装置と、

上記記憶装置及び上記命令與行装置に接続され、 上記記憶装置から上記命令與行装置への命令の移動を制御する命令制御装置と、

上記レジスタ・アレイに接続され、命令実行時 にアドレス可能レジスタに上記ハードウェア・レ ジスタを割り当て、且つ順序から外れた命令の実 行時には選択されたアドレス可能レジスタに付加 的なハードウエア・レジスタを割り当て、上配順 序から外れた命令の前後のアドレス可能レジスタ の値を保持するようにする論理装置とを有する計 算機システム。

5. 発明の詳細な説明

A. 産業上の利用分野

本発明は計算機の中央演算処理装置中のアドレス可能なレジスタの管理に関する。より具体的には、本発明は、順序から外れた命令を処理し且つ分岐命令及び割込み時にレジスタ内容の回復処理を行なりためのレジスタ・アレイ用の制御システムに関する。そのようなシステムは、命令のシーケンスが終了した時にアドレス可能レジスタの新旧の内容を両方共保持する必要がある。アドレス可能レジスタを含み得るかそれには限定されない。本第明の実施例は、固定されないのアドレス可能レジスタの機能に役立つ複数の物理的アレイ・レジスタを有する、IBMシステム

/370のアーキテクチャに適合した計算機プロ セッサに関して説明する。

B. 従来技術

典型的な計算機システムの設計は、プログラマがその級械のためにプログラムを設計する時に使 う汎用レジスタ(GPR)等の固定数のアドレス 可能レジスタを設ける事を必要とする。一般シス テムが利用可能になると、アーキテクチャ的に利 用可能なGPRの数を変更する事は、新しい数の GPRを利用するために大幅なプログラムの背き 度しを必要とする。

間様に、計算機及び計算機プログラムの設計は、 計算機プログラムの命令が、それらが普かれシス テムに入れられた照序で計算機により実行される という仮定に落いている。命令は、論理的には、 解番に実行されたように、計算機システムに見え なければならないが、依存関係が他の命令との間 に存在しないと仮足すると、ある命令は物理的に 服に実行される必要はない事が、計算機の性能を

ーパーラップ動作を変更できる制御論理を実現する必要がある。オーパーラップを実施できる多くの異なつた形式が存在し、各々はそれ自身の独得の制御ブログラムの組を有している。

普通の形式のオーバーラップ技術は、いわゆる パイプライン方式である。非常に単純化すると、 パイプライン方式の撥械は、命令の処理の異なつ た段階毎に別個のハードウエアを設ける。命令が 1つの段階の処理を終えると、それは次の段階に 移り、次の命令が、丁度空になつたその段階に来 る。そのような機械では、たとえ具なつた命令に 関して具なつた処理段階が同時に起きるとしても、 その処理のある特定の段階に関しては命令は順番。 に保持される。そのようなプロセツサにおいては、 未だ生成されていない結果が他の命令で必要な事 を制御部が検出すると、制御部はその結果が得ら れそれが必要なところに彼されるまで、パイプラ インの一部を止めなければならない。との制御論 理は時々複雑になりりるが、命令がパイプライン 中に順番に保持されるといり事実は、その複雑性

改善するための努力において判明した。さらに、 ある命令が順序通りに実行されず、且つそのより な命令が分岐命令であり、命令シーケンスを選択 するために分岐予測が行なわれている場合、間違 つた分岐が予測されたならば関連のしよりを元 の値に回復する必要が生じ得る。そのような場合、 システムは分岐が起きた地点まで回復される。耐 序送りでない命令を効率的に実行するには、命令 によって影響を受けるGPRに関して確定した。 によって影響を受けるGPRに関して存む によって影響を受けると共に、影響を受けた GPRに 関して新しい値を臨時に受けたの の必要がある。介在した命令が終了し分岐命令が 解決される時、臨時性は除去され、新しい値が 確定値になる。

大型プロセツサは、複数の命令が同時に種々の 実行状態にあるようなオーパーランプ技術を、多 年にわたつて、用いてきた。そのような技術を用 いると、命令間の依存関係を検出し且つ得られた 結果が「1度に1命令」のアーキテクチャ・モデ ルによつて記述されるものになるように通常のオ

を制御できる範囲内に保つ上で、確かな助けにな る。

ブロセッサが別個の実行ユニットを含む場合には、より複雑な形のオーパーラップが生じる。より一般的でないが、この技術も公知であり、多年にわたつて使われている。異なつた命令は異なつた実行時間を有し、かつ命令間の依存性は可変なので、そのようなブロセッサにおいては、命令が実行され、ブログラム中の順序とは異なつた順序で結果が生じる事は不可避である。そのようなブロセッサが論理的に正しく動作するには、パイプライン構成よりも複雑な制御機構が必要である。

しかしながら、従来技術の多取実行ユニットは、任意の時点で正確な割りとみが起きるのを許さない。例えば、命令がオーパーフロー状態を生じるとき、これが検出される時までに、ブログラム中の後の命令が既に実行されその結果がレジスタ又は主記憶に置かれる事がある。これにより、割り込みをかけ、以前の全ての命令が実行されその後の命令が実行されていないブロセッサの状態を保

存する事が不可能になる。との例では、オーバーフロー割り込みは、それが起きた時よりも後で実際に認識されるであろう。他の同様の状況も従来 技術において存在しうる。

米国特許第4574349号では、各GPRに 付属して付加的なレジスタが設けられ、ポインタ

Bulletin、1986年8月号、991~99 3頁の論文は、条件付き分岐の解決の間に元のG PRの内容を保存し必要ならはシステム状態を回 復するための、1対1に対応した第2のGPRの セットを示している。レジスタの状態を調整し又 はレジスタの元の内容を回復するためにGPRと 伴に条件モード・タグが使われている。

C. 発明が解決しようとする課題

本発明は、計算機のプロセンサに付属するアドレス可能レジスタのためのレジスタ管理システム を提供する。とのレジスタ管理システムは、命令のシーケンス外の実行のために設けられ、命令がシーケンスからはずれる場合の割り込み又は削違った分岐予測から正確に固復するための根構を含んでいる。 値の使用によりレジスタの名前の変更が起きる。 しかし、との特許は、シーケンス外の実行中の制 途つて推測された分岐又は割り込みからの正確な 回復の問題を解決していない。

IBM Technical Disclosure
Bulletia、1981年8月号、1404~1
405頁の論文は、サブルーチンの切り換え時に
配協装置を使用する事を避けるために複数のGP
Rセットの間で切り換えを行なりシステムを示し
ている。またIBM Technical Disclosure
Bulletin、1982年6月号、86~87頁
の論文は、命令実行中にダミー・レジスタを使り
事を示している。実行が終了すると、レジスタは、結果を受取るために命令によつて名付けられたレジスタとして名前を変更される。実行中、レジスタは、ちひっとして名前を変更される。実行中、レジスタはトランスペアレントであり、これは付加的な物理的レジスタを許容する。しかし、これらの文献のいずれもシーケンス外の命令の実行を取り扱っていない。

IBM Technical Disclosure

D. 繰巡を解決するための手段

本発明は、固定数のアドレス可能レジスグを有するアーキテクチャのプロセンサを想定している。 典型的なシステムは、例えば、IBMシステム/ 370アーキテクチャと同形であり、下記の実施 例は主としてそのアーキテクチャにおけるGPR を収り扱う。

本発明は、アーキテクチャによるレジスタの数 よりも大きな数のレジスタを育するレジスタ・ア レイ(RA)を提供する。寒妖に提供されるレジ スタの数は可変であり、例えばアーキテクチャに よるレジスタ数の2倍である。

計算機プログラムの命令はアーキテクチャ中のアドレス可能レジスタの使用を要求するので、RA中のレジスタは、システム/370のGPRのようなアドレス可能レジスタの機能を実行するように割り当てられる。また命令は命令敵別子(ID)数も受け取る。IIDの領回的回転を使用してもよい。またRA中の各レジスタ毎に記入項目を有するアレイ制御リスト(ACL)が設けら

れる。ACL中の各位質は、関連するレジスタに関するいくつかのステータス・フィールド、例えばレジスタの利用可能性状態を含むフィールド、レジスタに与えられた「ID及びレジスタに与えられたGPRの名前等を有している。システム・アーキテクチャのために、RA中のレジスタがGPRとして一度割り当てられると、それはプログラムにとつて、同じGPR省号を有する個人的な物理的レジスタと同じよりに見える。

またレジスタ管理システムは、RAに関連し各GPR毎に1つの位置を有する、デコード・レジスタ割り当てリスト(DRAL)及び1つ以上のパツクアツブ・レジスタ割り当てリスト(BRAL)を含んでいる。DRAL中の各位置の荷号を含んでいる。各命令がデコードされる時、それがお照するGPRに対してとのRA位置が割り当てられたかが決定される。GPRのための結果を受け取るために新しいRA位置が割り当てら

停止する。

ACL及びDRALは、命令が解脱され実行される時に協動して働き、プログラムにより認識される資源であるアーキテクチャ上のGPRに従つてRAの内容を管理する。新しい命令が解脱される時、それが参照するレジスタは、どのRA位置がそれに割り当てられたかを見つけるためにDRAし中で検索される。その後、RA位置アドレスがGPR名の代りに実行ユニットによつて使用される。RAの割り当てがDRALにおいて判明した後、ステータスを決定するためにACLがアクセスされ、その情報が実行ユニットに送られる。

命令が終了すると、その「IDは、RA中のIIDと比較するために実行ユニットによりACLに送られる。何じIIDから結果を受け取つた各RA位置毎に、終了ステータスを表現するように制御タグが変更される。

条件付き分岐に出会りと、命令は、予測された 分岐の万向で解脱される。 顧々に命令を完了する という要求があるので、取つた分岐が解決される れると、DRALは新しい割り当てに関して継続的に更新される。

プログラム実行中の正確な地点におけるDRA Lのステータスを凍結し保存し、必必な時にその 正確な地点までDRALを回復するために、DR - ALK対して1つ以上のBRALが存在する。 桑 件付分岐に出会りと、その地点のDRALがBR ALKコピーされる。もし第2の分岐に出会つた 場合、BRALが存在していれば、その地点のD RALが2番目のBRALにコピーされ、又それ が存在しなければ、それは妨げられる。3番目の BRAL、又はそれ以上の数のBRALを、所空 により取けてもよい。各BRALは、システムが 処理を統行している間、特定の固定した時点のシ ステム・ステータスを保存するのに役立つ。設け られる BRALの実際の数は、川時に進行し得る、 初期のシステム・ステータスの回復を必要とする 可能な状況の最大数に対するシステム設計者の認 敵に 基いて与えられる。 もし十分な BRALが与 えられていないと、条件が解決されるまで実行が

前にプロセンサは、予測分岐中のどの命令に関しても完了信号を出さない。必要であれば、分岐予測が行なわれた後で新しく割り当てられた各RA位置に関して、そのような割り当てが無効化されるように各ACL位置中の制御フィールドがセットされる。

分岐予測が間違つていた時の分岐回復技術は、 プロセッサの全ての部分が関係する。レジスタ管 理プロセスに関してそれが意味するものは、分岐 点に到達した後で命令の解放が停止した場合にG PRがそうであつた状態にGPRのステータスを 回復する必要がある事である。とのプロセスは、 分岐が解説されて以来、GPR側御ステータスに 対して2つの型の更新が行なわれている事を総設 する。1つの型は分岐以前の命令の、完了近新の 大の進行及び実験の完了を反映し、その更新 は、分岐後の命令の解脱及び実行を反映し、これ の更新はGPRのステータスから除去しなければ ならない。 (初り込みを除いて)DRALは命令が解認される時にだけ更新され、完了によつては影響されないので、DRALの内容は、分較後に命令が全く解説されなかつたならは、変化していないである。従つて、DRALに関して望ましい事は、分岐命令の解説直後のステータスに、もし2つ以上のBRALがあれば適当なBRALをDRALに回復する事によつてRAの割り当てを正しいステータスに戻す。条件付き分岐が解説される毎に、分岐解説直接のDRALの内容はBRALに移される。分岐予測が解決される時、BRALは廃棄されるか又はDRALを回復するために使われる。

割り込み制御は、割り込み地点より先の命令が 完了する事を防止するために散けられる。割り込みは、その原因になつた命令の完了又は抑圧のい ずれを要求する事もできる。先行する命令は、特 定の割り込みによつて許される地点までに完了す る事が許される。との地点で、DRALは、割り 込みなしに進行したエントリを含んでいるので、

E. 実施例

本発明は、汎用レジスタのような特定の複数の アドレス可能レジスタ、例えばn個の汎用レジス タ(GPR)というアーキテクチャ上の設計要求 を有する計算級システムのためのレジスタ管型シ ステムに関する。m餡のレジスタ(但しmはnよ りも大きい)を有するレジスタ・アレイ(RA) が、n個の汎用レジスタの機能を実現するために 設けられる。説明のための実施例として、16個 のGPRを有する周知のIBMシステム/37D アーキチクチャに従うシステムについて説明する。 本発明によるRAは、アーキテクチャ上のレジス タの機能を契現するためれ、RA位置の動的な割 り当てを行なう。具体的レジスタ割り当ての機能 が終了すると、RA中の位置が解放され、同じ又 は他のアーキテクチャのCPRとして再割り当て 可能になる。

本発明のレジスタ管理システムは、全体的な計 算機アーキテクチャに依存せず、種々の環境で実 現状に合わない、又は不適切な状態にある。しかし、ACLは、割り当てられた状態の全てのRA 位置に関する正しい情報を含んでいる。ACLの 位置は、キャンセルされ、削り込みを超える命令 に関して利用可能なステータスに戻される。次に ACLは、割り込みから回復するためにDRAL に現在のステータス値を与えるために使われる。

設約すると、本発明のレジスタ管理システムは、 順序外の命令及び分岐命令を、RA及び2重機能 側側システムを用いて収り扱う。制御システムの 第1の部分、DRALはアーキテクチャ上のGP Rの視点から命令を管理する。側郷システムの解 2の部分、ACLはレジスタ・アレイの実際の内 容を管理する。これにより、命令がシーケンス外 に実行されても、分岐条件又は割り込みが回復で きる。

施できる。例えば、第1A図及び第1B図に示す 計算機シスナム10は、キャッシュ・メモリ・シ ステム14の接続された主記憶12を有する。キャッシュ・メモリ・システム14は、多くの許容 可能な方式で構成できるが、この例では、各々命 令及びデータを別々に扱う命令キャッシュ16及 びデータ・キャッシュ18から構成されている。 カスケード構成においてメモリ・スピードとメモ リ・サイズの利点を両方共提供するために2レベ ル以上のキャッシュ・メモリを散ける事はメモリ 散計の分野で公知であり、ここに示されてはいな いが、そのようなメモリ設計も本発明に適合する。

命令は、命令キャッシュ16から命令パッファ・ユニット20を経由して命令レジスタ・ユニット22へ伝達される。説明のため、命令レジスタ・ユニット22は2個以上の独立した命令レジスタを有し、2、3又は4がそのような命令レジスタの望ましい数である。

計算機設計の分野において、システムが2以上 の汎用実行ユニットを持つ事は公知である。例え は、汎用ユニットは、実行される機能の型の系列 に沿つて、算術又は論理演算、スカラー又はベク トル、スカラー又は浮動小数点、等と設計し得る。 汎用実行ユニットのどのような構成も汎用レジス タを利用するので、本発明は計算機中の汎用実行 ユニットの数、機能構成及び設計の多くの変型に 適用可能である。

関明のため、とのシステムは汎用実行ユニット(GPE)1及び2(各々参照符号24、26)を有するものとする。汎用実行ユニット24は出力が記憶パッファ・ユニット28に接続され、とれはさらにデータ・キャッシュ18に出力が接続される。汎用実行ユニット24は、実際には、単一の実行ユニットでも又ユニットの組み合せでもよく、との実施例に示されているように、ユニント24は記憶パッファ28に行く結果を生成する。その結果は、命令が完了するまでそとで保持され、次にメモリに記憶される。汎用実行ユニット26は、出力が、汎用レジスタ・アレイ(RA)30に接続される。GPE26は、即座に記憶される

RMS32は、命令の発行から実行まで退跡するため並びに入力オペランド及び出力オペランドのためのレジスタ割り当てのために、命令レジスタ・ユニント22並びにGPE24及び26に接続される。

との実施例の計算機は、命令レジスタ・ユニット22から命令を受け収るように接続され、命令アドレス計算部(IーACB)52に出力を与えるキュー50を有する。IーACE52はRA30から直接入力を受け収るようにも接続され、また命令キャンシュ16に接続された出力を有する。命令キュー50はステータス情報を与えるためにRMS32に接続される。

この実施例の計算機は命令レジスタ・ユニット 22からの出力を受け取るよりに接続されたアドレス・キュー60を有する。アドレス・キュー6 0の出力は、データ・アドレス計算部(D-AC E)に入力として接続される。D-ACE62へ の他の入力はRA30からのものである。D-A CE62はステータス情報を与えるためにRMS のではなくレジスタで利用可能になる必要のある 結果を生成する命令により動作する。命令レジス タ・ユニット22から命令を受け収りそれらをG PE24又は26に適当にふりむけるために命令 スタック又はキュー31が設けられる。 複数の種 々の型の実行ユニットを、単一のレジスタ・アレ イ及びレジスタ管理システムと共に用いてもよい。

RA30は、との契施例のアーキテクチャにより認識される16個のGPRの機能を実施するために32個の動的に割り当てられる実レジスタを有する。

R A 3 0 は制御パス 3 4 を軽由してレジスタ管 型ンステム(R N S) 3 2 により制御され、且つ それにステータス情報を与える。R M S 3 2 は、 種々の型のステータス情報を受け取り且つ与える ために種々の他のシステムに接続されている。 割 り込み制御部 3 6 は、割り込みを適切に処理し必 要なステータス情報を保存するために、命令レジ スタ 2 2、R M S 3 2、及び R A 3 0 に接続され ている。

32に接続される。

D-ACE62の出力はアドレス収り出しキュー64に接続され、これはさらに第1の出力がデータ・キャッシュ18への入力として、及び第2の出力がアドレス記憶キュー66への入力として接続されている。アドレス記憶キューは、出力がデータ・キャッシュ18に接続され、且つステータス情報を与えるためにRMS32に接続を有している。

この契施例の計算機は、浮動小数点演算ユニット 70を有し、これもステータス情報を与えるために RMS 32 に接続されている。 RMS 32は、RA 30 に関係付けられないレジスタ及びユニットと共に動作できる事に注意されたい。例えば、1つの RM Sは 2以上のレジスタ・アレイと共に動作し得る。より具体的には、1つの RM Sは、同じ又は異なつた型の複数の実行ユニットに接続された 2個の RA を制御し得る。

浮助小数点ユニット(FPU)10への入力は、 浮動小数点命令キュー12及び浮動小数点データ ・レジスタ・ユニット 7 4 によつて与えられる。 戸動小数点命令キュー 7 2 は I ー R E G 2 2 から 入力を受け収る。 戸動小数点データ・レジスタ・ ユニット 7 4 は F P U 7 0 及びデータ・キャッシュ 1 8 から入力を受け収る。 戸動小数点ユニット 7 0 の出力は、配憶パッフア・ユニットに接続され、 これはさらにデータ・キャッシュ 1 8 に接続されている。

第2図をお照すると、レジスタ管理システム3 2の辞細な構造が示されている。デコード・レジスタ割り当てリスト(DRAL)100が、ステータス及び制御信号線に接続される。また論理ユニント101がDRALの内容をモニタし制御するためにステータス及び制御信号線に接続されている。DRALは命令が解読され、GPR代入がRA代入に翻訳される時に使われる。DRALは、いくつかの異なつた方式で解成できる。例えば、各DRALに複数コピーを有する2個以上のDRALが存在し、それが各GPR毎に一つの位置を含み、その位置が、そのGPRに関して値を受け

A L は D R A L と何じ構造を有し、1 サイクルで D R A L の全内容が B R A L に コピーできまた逆 も可能なように接続されている。 これらの転送は、 論理ユニット 1 0 1 によつて制御されている。 それは、例えば、分岐が起きる方向に関する予測が 間違つている場合に D R A L の内容を保存するために、条件付分岐に出会う時に使用される。

母DRAL部に1つだけのBRALが設けられている場合、通常、1つだけの条件付分岐を過ぎて辨脱を行なり事しか可能でない。しかし、GPRを変更する命令が間に介在する事なく第2の条件付き分岐命令に出会りという特別な場合には、その分岐命令も過ぎて解脱する事が可能になる。というのは同じDRAL内容が両方の分岐に関してBRAL中に保存されるからである。

アレイ制御リスト(ACL)110は、ステータス情報を受け取り且つ制御情報を送るためにRA及び計算機システムの致りに送続される。論理ユニント101はACL110の内容を制御し、ACL及びDRALの動作を調整する。GPRを

収るように破も放立割当てられたRA位置の数を含んでいる。各命令が解説される時、それが経照するGPRがDRAL中で検索され、どのRA位置がそのGPRに割当てられたかが決定される。また、新しいRA位置が結果を受け収るように割当てられる時、それらの割当てを反映するようにDRALが更新される。このようにして、GPRを使用する各命令が、そのGPRを扱も放近に移
限した命令に割当てられたRA位置を見出すようにDRALによつて指示される。

パックアップ・レジスタ割当てリスト102、104、及び106は、動作のある特定の時点が DRAL100の内容全体を受け収るように接続される。通常、各DRALに対応してシステムが に少なくとも一つのDRALが存在する。もなた中に少なくとも一つのDRALが存在するれるなかけ、レジスタ智理システムはBRALなしに動作したる。一つ、二つ又は、三つのBRALを使用すると、それぞれ待機なしに一つ、二つ又は、三つの条件付分岐を処理する事が可能になる。BR

サポートする各RA毎に、そのRAに関するステータス情報を記憶するACLレジスタが存在する。アレイの各レジスタ位置低に1つのエントリが存在し、この実施例では、各エントリは第3図及び第4図に示すように、CTL、ABC、IID、PRV及びREGの5つのフィールドに分割された14ビットから構成される。CTLはRA位置の全体的ステータスを定義する訓御フィールドである。それは下記の値を取り得る。

- 00:利用可能一そのRA位置は使用中ではな く、必要であれば割り当てる耶が可能で ある。CTL='00'の時、ABC、 IID、PRV及びREGのフィールド は何の意味も特たない。
- 0 1: 制り当て隣一とのRA位置はRECフィールドにより指定されたGPRに割り当てられている。完了した現在の命令に割り込みが起きると、これはそのGPRに対応するRA位置である。任意の与えられた瞬間には、各GPRに対して1つだ

けのRA位置が割り当てられている。C TL= *01 *の時、ABCフイールドは *000 *であり、IID及びPRV フイールドは意味を持たない。

10:係以中且つ未ロードーとのRA位置は、 まだ契行が完了していない命令の結果を 受け取るように割り当てられているが、 とれまで命令は結果をこのRA位似にロ ードしていない。IIDフィールドは、 とのRA位置が結果を受け取る命令に割 り当てられたIIDである。ABCフィ ールドは、この命令が条件付きで発行さ れていれば非セロであり、さらなければ * 0 0 0 * である。多くの場合、R E G フイールドは、このRA位置が結果を受 け取るGPRの描号であり、PRVフィ ールドは、そのGPRの古い値を保持す るRA位置の番号である。GPRを変化 させない比較命令という特殊な場合では、 RA位置にはとにかく割り当てが行なわ

れ、REGフィールドは無関係であり、 PRVフィールドはこのRA位似の省号 を含む。

11:係以中且つロード病一とのRA位似は、 まだ実行が完了していない命令の結果を 受け収るように割り当てられているが、 その結果を受け収つている。ABC、I ID、PRV及びREGのフィールドは、 CTL=*10*の時と同じ意味を有す る。但しこの状態では比較命令に関する 特殊な場合は起きない。

ABCフィールトは、条件付き分岐を過ぎて解 就された命令に関係するRA位置を識別するため に使われる。この情報はIIDを調べる事により 決定できるので、本発明を実施するためにそのよ りなフィールドは必ずしも必要ではない。しかし、 IIDをテストする事により定期的にそれを決定 するよりも、この少並の情報を記憶するためにみ 用のフィールドを設ける方が、より経済的且つ高 速であるので、との実施例ではこのフィールドを

設けた。

るつまでの条件付き分岐に出会つてもよいよう に 3 つの B R A L が設けられているとの実施例の 場合、ABCフイールドは3ピツトを有し、とれ は最初 * 0 0 0 * にセットされる。 最初の分岐に 出会うと、第1のBRALにDRALの内容がロ ードされ、ABCフイールドは、BRALのロー ド及び未解決の分岐の存在を示すために"100° に変更される。第1の分岐が解決される以前に第 2の分岐に出会うと、第2のBRALにその時点 のDRALの内容がロードされ、ABCフィール ドは 1 1 0 ° K変更される。最後 K、 最初 O 2 つの分岐が未解決で且つ第3の分岐に出会うと、 第3のBRALが、その時点のDRAL内容を受 け取り、ABCフィールドは「111 Kなる。 ABCフィールド中の各ピットは、BRALが活 性であり、未解決の分岐に関する特定のDRAL 内容を記憶している事を示すために独立に特定の BRALに関係付けられている。 論理ユニット 1 0 1 はこれらの機能を制御する。

もし分岐が好ましい方向で解決されると、割り 当てられたBRAL内容は不必要であり、ABC フィールドの適当なピットがOにセットされる。 以前の例を参照すると、分岐は必ずしも生起した 順に解決される必要はない。もし第1の分岐が起 き(ABC= "100") そして次に第2の分岐 が起き(ABC= '110') たとすると、第2 の分岐が最初に解決され、ABCフィールドが単 に「100」にリセットされてもよい。もし最初 の例のように、るつの分岐が順に起き(ABC= *1111)、そして第2の分岐が娘初に解決さ れると、第2のBRALが利用可能になり、AB Cフィールドは 1 1 0 1 " にセットされる。さら に、これは、他の分岐に出会づた場合に1つのB RALが利用可能である事を意味する。ABCフ イールド中のピットは、分岐の発生及び解決に対 応して任意の順序でセント及びリセントできる。 例えば、ABCフィールドが『101 * であれば、 新しい分岐に出会つてBピットがセットされ、A BCフィールドが(これは分岐の発生した順序を

表していないが)「111」になる事もある。

命令が解読される時、それが参照するGPRはDRAL中で検索され、どのRA位置がそれに割当てられているかが見出される。これは、使用されているGPR及び変更されたGPRの両者を含む。もし命令がGPRの値を変化させると、新しい値を受け取るようにRA位置が割当てられ、これらの新しいRA位置がこれらのGPRに関連付けられるようにDRALが更新される。次に、RA位置の割当ては、GPRの実際の割当てではなく実行論理ユニットに伝送される。

ブロセツサが二つの命令を向時に解説する能力を有していると仮定すると、DRALは、それらの各々に関して、R1、R1+1、X及びBレジスタ(IBMンステム/370の命令形式を参照されたい)を検累する能力を提供する。一般にアーキテクチャを参照すると、命令は、必要なメモリ・アクセスを行なりために、インデックス値及びペース値を求めてGPRを要求する事がある。これは多くの命令に関して適切であるが、流切で

と、それは「保風中且つ未ロード」状態(CTL =・10・)にセットされ、Iフイールドは割り 当てが行なわれた命令のIIDにセットされ、R EGフイールドはGPRの番号にセットされ、P RVフイールドはそのレジスタに以前に割り割て られていたRA位置の番号(DRAL中を検索しし られていたRA位置の番号(DRAL中を検索し を事により決定される)にセットされる。但しまか 数命令の場合は、PRVフイールドは、ちよりと 割り当てられたこのRA位置を割り当てる理由及 びとの動作方式の理由は、後述する。

R A に関するとの制御構造は、命令の解説にある条件を課す。

1. DRAL中でレジスタを検索する機能は大多数の命令の要求を満足するが、異なつた要求を有するものが存在する。これらの命令は解読に2サイクル以上を要する。システム/370のアーキテクチャにおけるそのような命令の部分的なリストは、MVCL、CLCL、AXR、SXR、LM、STM、EDMK及びTRTである。

ない場合、解説に複数サイクルが必要である。システム/370のアーキテクチャにおいて、複数ロード命令は16個までのGPRを参照できる。各GPRがDRAL中で被案された後、そのようにして見つけられたRA位置が、そのRA位置がロードされたか否かを判定するためにACL中で検索され、この情報が命令と共に実行ユニットに送られる。RA位置は、「割り当て済」又は「係好中且つロード済」の状態(CTL=「X1°)であれば、ロード済と考えられる。

プロセッサは、各サイクル毎に少なくとも2つの新しいRA位置を割り当てる能力を提供する。例えば、GPRを、GPRの各群毎に別個のRAを有する1つは偶及び1つは奇の2つの群から構成してもよい。との時、各サイクルに、2つのRAに対応するGPRの各群から2つ、4つのGPRを割り当てる事ができる。これを行なり回路は、ACL中のCTLフィールドを調査し、「利用可能」状態(CTL= 00・)にある域初のRA位置を選択する。もしRA位置が割り当てられる

2. 1サイクル当り2つ以上のRA位置をレジスタの各租に割り当てる能力はある状況では重要である。複数の偶/奇汎用レジスタ対又は2以上の浮動小数点レジスタを変更できる、370アーキテクチャの命令の部分的なリストは、MYCL、CLCL、AXB、SXR及びLMである。とれらの命令は、1サイクルに充分なRA位置が割り当てられなければ、1サイクルで解説できない。個々の命令の問題を越えて、とれは、どの命令が同時に解読可能かという都に対して条件を与える。同じ組の中で余りに多くのレジスタを変更する2つの命令は同時に解読する事ができない。

5. DRALが正しく動作するために、解説時にレジスタ位置が検索される時、そのレジスタを変更した敢も最近の先行命令の結果を受け取るように割り当てられたRA位置に関する背号をDRALが含んでいる事が必要である。これは、その命令が直前の先行命令であつてブロセッサが同時に両方の命令を解脱しようとしているのでなければ、何の問題もない。この状況を取り扱うために、あ

る命令がレジスタを変更し且つ後続の命令がその レジスタを参照する時は、必ず、2番目の命令は 最初の命令と同時に解説される事を許されない。

各命令が完了すると、そのIIDがACLに送られる。この命令からの結果をどのRA位置が受け取つたかを判定するために、論理ユニット101によつてACL中の全てのIIDフィールドに対して比較が行なわれる。次に、このようにして対して比較が行なわれる。次に、このようにでで、一次ではないでは、このないでは、このないではないでは、とのないでは、これらのRA位置が利用ではいる。また、これらのRA位置が利用ではいる。というではないでは、これらのRA位置が利用ではいる。というではないでは、これらのRA位置が利用ではいる。というではないでは、これらのRA位置が利用ではいる。というではないでは、これにはいる。というではないでは、これにはいる。といるのではないでは、これにはいる。というではないないでは、これにはいる。

とれらの機能を実行する全ての論理は並列に動作する。例えば、1サイクルで、完了した命令に

値を受け取るように選択された金ての新しいRA 位置はABCフィールドが、その分岐に割り当て られたBRALに関するエントリにおいて「1」 にセットされる。後に、分岐の方向が確定した時 に、その分岐後の全ての命令の処理を取り消して 他の方向で命令の処理を開始する必要があるかも しれない。

要緊には、との型の分岐も全て条件付きとして 扱われる。というのは分岐命令のターグット・ア ドレスを設別するために分岐履歴テーブル(BH T)が共通に使用されるからである。BHT中の ターゲット・アドレスの位置は、少なくとも正し いターゲット・アドレスが決定されるまで、命令 を条件付きにする。BHTが最初にターゲット・ アドレスを識別する時、ターゲット・アドレスが 正しい事は後まで明らかでない。ターゲット・アドレスの正しさが解決される時、分岐の条件付き 状態が除かれる。

失敗した分岐からの分岐の回復はブロセッサの 全ての部分が関与する。 レジスタ管理システムに 関する古いレジスタ値を含む全てのRA位置が利用可能状態に変更され、新しい低を含む全てのRA位置が、割り当て済み状態に変更される。命令の正規の完了は、DRALに対して何の影響も持たない。

理論的には、命令自体を調べる事によつて分岐が起きるか否かを知る事ができない場合、その分岐は条件付き分岐と考えられる。とのカテゴリーに異する370の分岐命令は、BCTR(R2≒0)、BCTR(R2≒0)、BCTR(R2≒0)、BCTR(R2≒0)、BCT、BCTR(R2≒0)、BXLE及びBXHである。これらの分岐命令の1つが解説されると、I要素は、分岐が行なわれると、I要素は、分岐が行なわれるとで調すべきか又は行なわれないものと予測すべきかの判定を行なわれないものと予測する。一方ブロセンサが出来ない唯一の事は、これらの命令を完了する事である。というのは、それらは論理的に分岐に続いており、分岐が完了するまで完了できないからである。この期間中、レジスタ

関してそれが意味するものは、命令解説が分岐の 後で停止した場合の状態に G P R の状態を回復す る必要がある事である。分岐命令が解説されてか らの中間の時期には、レジスタ制御状態に対して 2つの型の更新が行なわれる。1つの型は、分岐 以前の命令の実行へ向つての進行及び実際の完了 を反映する。この更新の効果は保存されなければ ならない。第2の型の更新は、分岐後の命令の解 飲及び実行を反映する。この更新は、無効又は無 意味であるとして G P R の状態から取り除かなけ ればならない。

通常、DRALは命令が解脱される時にしか災 断されず、その完了によつては影響を受けない。 従つて、DRALの内容は、分岐後に命令が解疏 されなければ変更されない。割込みの状況は異な つており、別に説明する。従つて、DRALに関 して望ましい事は、分岐命令の直後の状態にそれ を回復する事である。これはBRALを使用する 事によつて達成される。条件付分岐命令が解説さ れる毎に、分岐命令解読直後のDRALの内容が BRALに移され、问時にABCフィールドの適当なピットが『1』にセットされる。それは、分岐に関する予測が正しかつたか又は間違つていたかが決定されるまでそとに保持され、そして廃棄されるか又はDRALに回復される。

間違つた条件付き分岐の後では、ACLを正しい状態に回復する事が必要である。条件付き分岐が解説された後に行なわれた全てのACLエントリは、ABCフイールドが、その特定の分岐に関するBRALのために使われる特定のピット位置において「1・にセットされる。これらのエントリは全て、条件付分岐が解説された時に「利用可能」状態であったか又は、その徐によって、条件付分岐に何らかによって、条件付分岐に何らかにより再利用のために取り出されたRA位置にであって、条件付分岐に何らかのというのは条件付分岐以後の命令はどれる。というのは条件付分岐以後の命令はどれる。条件付分岐以後、全く

無条件分岐命令は、命令処理がどのように進行すべきかについて何の不確定性も生じず、従つてレジスタ管理システムはそれに対して何の注意も払わない。BAL及びBALRはこのカテゴリーに属するシステム/370の命令であり、且つGPRを変更がる。従つて、それらはレジスタを変更する他の命令と同様に扱われる。BHTを有する機械において、このカテゴリーの命令は存在したいかもしれない。

割り込みは他の状態とは少し違つたふりに取り 扱う必要がある。割り込み条件が検出されるとす ぐに、割り込み網碑部3 6に信号が送られる。 と のシステムは、命令完了制御部と通信して、割り 込み地点以後の命令が完了する事を関止する。割り 込みの地点は、その原因になつた命令の面前犯 は優後である。これは割り込みの型が命令の抑圧 を要求するか又は完了を要求するかに依存する。 割り込み地点に先行する命令は完了する事を許さ れる。その地点において、DRALの内容は、割り 込みの原因になった命令以後のいくつかの命令 命令が解脱されていなければ、これらのRA位置 の全ては「利用可能」状態にあり、それはぞれら が戻されるべきものである。

特定の分岐に関してABCフィールドが・0・にセットされたRA位置は、「割り当て済」状態にあるRA位置の組及び、条件付き分岐に先行する係属中の命令に関連するそれらを含んでいる。分岐以後に解読が行なわれなければ、とれらのエントリは凹じ状態のままであり、従つてそのされた条件付分岐の後にACLを正しい状態に回復におた条件付分岐の後にACLを正しい状態に回復においてABC=・1・であるような全てのACLエントリを「利用可能」状態(CTL=・000・1)にセットする事が判明すれば、ACL中の全ての人BCビットはその分岐に関する特定のビット位置が「0・にセットされる。

分岐は、解脱時にそれが起きる事が視察により 快定できるならば、無条件であると考えられる。

が実行された場合に収られたであろり動作を反映 する。

ACLは、「割り当て済み」状態にある全てのRA位置が、割り当てられたGPRに関する正しい値を含んでいるものであるような状態にある。さらに、ACLは、「係属中」状態の1つにあるRA位置の数を有していてもよい。これらは全て割り込み地点以後の命令に関連しており、次のスナップはこれらのRA位置の全てが「利用可能」状態に戻される(もしてTL="1X"ならばそれは"00"にセットされる)事である。ACLは正しい状態にセットされ、そしてDRALを対応する状態にする必要がある。

DRALは、GPRアドレスの各々を経てカウンタを歩進する事によつて数サイクルの期間にわたつてセントされる。各サイクル毎に新しい値を経てそれが歩進する時、その値はACLエントリの各々と比較される。この機能は論理ユニット101によつて達成できる。もしREGフィールドがカウンタ中の値に一致し且つRA位置が「割り

当て街」状態(CTL='01')であれば、比較一致が検出される。各GPRに対して正確に1つのRA位置が割り当てられなければならないので、この比較ブロセスは各サイクル毎に正確に1つのRA位置に対して比較一致を発生しなければならない。これらの比較の結果はRA位置の番号はDRALに送られ、順々にDRALエントリに掛込まれる。このブロセスの様りに、DRALエントリに掛込まれる。このブロセスの様りに、DRALエントリに掛込まれる。このブロセスの様りに、DRALエントリに掛込まれる。このブロセスの様りに、DRALエントリの各々は、そのエントリが各々対応するGPRに割り当てられたRA位置を指示する。これはDRALに関する正しい状態である。

DRALをその正しい状態に回復するプロセスは、割り込みプロセスに余分の時間を付加しないようにプログラム・ステータス・ワード(PSW)の交換のプロセス中に実行する事ができる。

F. 発明の効果

本発明を用いれば、条件付き分岐や割り込み等の、通常の処理順序から外れた命令の処理を効率的に行なり事ができる。

4.図明の簡単な説明

第1 A図及び第1 B図は本発明による計算機システムの実施例の統略図、

第2回は第1A回及び第1B回に示した実施例の中のレジスタ管理システムの図、

第3 図は第2 図の中のアレイ制御リスト(ACL)の図、

第4図は第3図に示したACLのエントリのライールド構成を示す図である。

出 順 人 インターナンヨか・ビネス・マシーンズ・コーポューション 代 理 人 弁理士 頃 宮 孝 一 (外1名)

FIG.2

FIG.4

-234-