AMENDMENTS TO THE CLAIMS

Please amend the claims as follows:

1	1.	(currently amended) A memory system comprising:
2	•	a memory controller;
3		an interface device coupled to the memory controller via a first signal path that is
4		permanently terminated at the interface device; and
5	i	a plurality of memory elements removably coupled to the interface device via respective
6		second signal paths, each of the second signal paths having a lower data transfer
7	•	capacity than a data transfer capacity of the first signal path.
1	2.	(original) The memory system of claim 1 wherein the first signal path comprises a
2		plurality of substantially parallel signal lines that extend from a first end at the memory
3		controller to a second end at the interface device.
1	3.	(original) The memory system of claim 2 wherein the plurality of the signal lines is
2		disposed within a flexible material to form a flex cable.
1	4.	(original) The memory system of claim 2 wherein the first signal path further comprises a
2		plurality of shielding elements disposed adjacent individual signal lines of the plurality of
3		signal lines to shield the individual signal lines from one another.
t	5.	(original) The memory system of claim 4 wherein each of the shielding elements is
2		disposed in coaxial alignment with a respective one of the individual signal lines.
l	6.	(original) The memory system of claim 2 wherein the plurality of signal lines comprise
		Application No. 10/823,499 -2- Atty. Docket No. SIPI P118

- 2 conductive traces disposed on a printed circuit board.
- 1 7. (original) The memory system of claim 1 wherein the interface device is implemented in a
- 2 dedicated integrated circuit device.
- 1 8. (original) The memory system of claim 1 wherein the data transfer capacity of the first
- 2 signal path is at least as great as a sum of the data transfer capacities of the second signal
- 3 paths.
- 1 9. (original) The memory system of claim 1 wherein the first signal path comprises at least
- 2 one signal line to conduct a first timing signal from the memory controller to the interface
- device, and wherein the interface device includes circuitry to sample signals on the first
- 4 signal path in synchronism with the first timing signal.
- 1 10. (original) The memory system of claim 9 wherein the first timing signal is a clock signal.
- 1 11. (original) The memory system of claim 9 wherein the first timing signal is a strobe signal.
- 1 12. (original) The memory system of claim 9 wherein the second signal paths comprise
- 2 respective signal lines to conduct second timing signals from the interface device to the
- 3 memory elements, and wherein the first timing signal oscillates at greater frequency than
- 4 the second timing signals.
- 1 13. (original) The memory system of claim 12 wherein the oscillating frequency of the first
- 2 timing signal is an integer multiple of the oscillating frequency of the second timing
- 3 signals.

SG&C LLP

1	14.	(original) The memory system of claim 1 wherein at least one of the memory elements
2		comprises a memory module having a plurality of discrete memory devices mounted
3		thereon.
1	15.	(original) The memory system of claim 1 wherein at least one of the memory elements
2		comprises a plurality of memory modules coupled in parallel to the respective second
3		signal path.
1	16.	(original) The memory system of claim 1 wherein at least one of the memory elements
2		comprises a discrete semiconductor memory device.
1 .	17.	(currently amended) A method of operation within a memory system, the method
2		comprising:
3		transmitting multiplexed data from a memory controller to an interface device at a first data
4		rate via a signal path that is permanently terminated at the interface device;
5		demultiplexing the multiplexed data into a plurality of data subsets within the interface
6		device; and
7		transmitting the each of the data subsets from the interface device to a respective one of a
8		plurality of memory elements at a second data rate.
1	18.	(original) The method of claim 17 wherein the second data rate is lower than the first data
2		rate.

second data rate.

1

2

19. (original) The method of claim 17 wherein the first data rate is an integer multiple of the

•	20.	(original) The method of claim 17 luriner comprising receiving the multiplexed data
2		within the memory controller.
1	21.	(original) The method of claim 17 further comprising receiving a plurality of data values
2		from a host device, and wherein transmitting multiplexed data from the memory controller
3		to the interface device comprises transmitting the plurality of data values to the interface
4		device in respective time intervals.
1	22.	(original) The method of claim 17 wherein demultiplexing the multiplexed data into a
2		plurality of data subsets comprises allocating multiplexed data received in the interface
3		device during a first time interval to a first one of the data subsets and allocating
4		multiplexed data received during a second time interval to a second one of the data subsets
1	23.	(currently amended) An interface device for use in a memory system, the interface device
2		comprising:
3		a first input/output (I/O) port to receive multiplexed data from a memory controller at a
4		first signaling rate via a signal path that is permanently terminated at the interface
5		device;
6		demultiplexing circuitry to demultiplex the multiplexed data into a plurality of data subsets
7		and
8		a plurality of second I/O ports to output the plurality of data subsets to respective memory
9		elements at a second signaling rate.
1	24.	(original) The interface device of claim 23 wherein the second signaling rate is slower than
2		the first signaling rate.
	Appli	cation No. 10/823,499 -5- Atty. Docket No. SIPI.P118

- 25. (original) The interface device of claim 24 wherein the first signaling rate is an integer 1
- 2 multiple of the second signaling rate.
- 26. (original) The interface device of claim 23 wherein the interface device is implemented in 1
- 2 a dedicated integrated circuit device.
- 27. (original) The interface device of claim 23 wherein the demultiplexing circuitry is 1
- configured to allocate multiplexed data received during a first time interval to a first one of 2
- the data subsets and to allocate multiplexed data received during a second time interval to 3
- 4 another one of the data subsets.