PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7:

(11) International Publication Number:

WO 00/66745

C12N 15/54, 15/11, 9/10, C12Q 1/48, 1/68, A01H 1/00, 5/00, C08B 3/02

A1 (43) International Publication Date:

9 November 2000 (09.11.00)

(21) International Application Number:

PCT/AU00/00385

(22) International Filing Date:

28 April 2000 (28.04.00)

(30) Priority Data:

PQ0052/99

29 April 1999 (29.04.99)

ΑU

(71) Applicants (for all designated States except US): COMMON-WEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANISATION [AU/AU]; Limestone Avenue, Campbell, Australian Capital Territory 2601 (AU). GOODMAN FIELDER LIMITED [AU/AU]; Level 42 Grosvenor Place, Sydney, New South Wales 2000 (AU). GROUPE LIMAGRAIN PACIFIC PTY LTD [AU/AU]; Level 31, 1 O'Connell Street, Sydney, New South Wales 2000 (AU).

(72) Inventors; and

(75) Inventors/Applicants (for US only): MORELL, Matthew [AU/AU]; 33 Wangara Street, Aranda, Australian Capital Territory 2614 (AU). LI, Zhongyi [AU/AU]; 63 Campaspe Circuit, Kaleen, Australian Capital Territory 2617 (AU). RAHMAN, Sadequr [AU/AU]; 46 Scarlett Street, Melba, Australian Capital Territory 2615 (AU). APPELS, Rudolph [AU/AU]; 40 Gingara Street, Aranda, Australian Capital Territory 2614 (AU).

(74) Agents: OLIVE, Mark, R. et al.; Davies Collison Cave, 1 Little Collins Street, Melbourne, Victoria 3000 (AU).

(81) Designated States: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: NOVEL GENES ENCODING WHEAT STARCH SYNTHASES AND USES THEREFOR

(57) Abstract

The present invention provides isolated nucleic acid molecules encoding wheat starch synthases, and probes and primers derived therefrom, which are useful in the modification of plant starch content and/or composition, and for screening plant lines to determine the presence of natural and/or induced mutations in starch synthase genes which affect starch content and/or composition. More particularly, the isolated nucleic acid molecules of the present invention further provide for the screening-assisted breeding of plants having desirable starch content and/or composition, in addition to providing for the direct genetic manipulation of plant starch content and/or composition.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	18	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	us	United States of America
CA	Canada .	IŤ	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway .	ZW	Zimbabwe
CI	Côte d'Ivoire	.KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE.	Germany	LI	Liechtenstein	\$D	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		
			•				

NOVEL GENES ENCODING WHEAT STARCH SYNTHASES AND USES THEREFOR

FIELD OF THE INVENTION

The present invention relates generally to isolated nucleic acid molecules encoding wheat starch synthase enzymes and more particularly, to isolated nucleic acid molecules that encode wheat SSII and SSIII enzyme activities. The isolated nucleic acid molecules provide the means for modifying starch content and composition in plants, for example the ratio of amylose:amylopectin in the starch granule of the endosperm during the grain-filling phase of endosperm development. The isolated nucleic acid molecules of the present invention also provide the means for screening plant lines to determine the presence of natural and/or induced mutations in starch synthase genes which affect starch content and/or composition. The isolated nucleic acid molecules of the present invention further provide for the screening-assisted breeding of plants having desirable starch content and/or composition, in addition to providing for the direct genetic manipulation of plant starch content and/or composition.

GENERAL

Bibliographic details of the publications numerically referred to in this specification are collected at the end of the description. Reference herein to any published document is not to be taken as an indication or admission that any such published document is part of the common general knowledge or background information of a skilled worker in the relevant field.

This specification contains nucleotide and amino acid sequence information (SEQ ID NOS:) prepared using the programme PatentIn Version 2.0, presented herein at the end of the specification. Each nucleotide or amino acid sequence is identified in the sequence listing by the numeric indicator <210> followed by the sequence identifier (e.g. <210>1, <210>2, etc). The length, type of sequence (DNA, protein (PRT), etc) and source organism for each nucleotide or amino acid sequence are indicated by information provided in the numeric indicator fields <211>, <212> and <213>,

respectively. Nucleotide and amino acid sequences (SEQ ID NOs:) referred to in the specification are defined by the information provided in numeric indicator field <400> followed by the sequence identifier (eg. SEQ ID NO: 1 is <400>1, etc).

- The designation of nucleotide residues referred to herein are those recommended by the IUPAC-IUB Biochemical Nomenclature Commission, wherein A represents Adenine, C represents Cytosine, G represents Guanine, T represents thymine, Y represents a pyrimidine residue, R represents a purine residue, M represents Adenine or Cytosine, K represents Guanine or Thymine, S represents Guanine or Cytosine, W represents Adenine or Thymine, H represents a nucleotide other than Guanine, B represents a nucleotide other than Adenine, V represents a nucleotide other than Thymine, D represents a nucleotide other than Cytosine and N represents any nucleotide residue.
- 15 The designations for naturally-occurring amino acid residues referred to herein are set forth in Table I. The designations for a non-limiting set of non-naturally-occurring amino acids is listed in Table 2.

As used herein the term "derived from" shall be taken to indicate that a specified integer may be obtained from a particular source albeit not necessarily directly from that source.

Throughout this specification, unless the context requires otherwise, the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated step or element or integer or group of steps or elements or integers but not the exclusion of any other step or element or integer or group of steps or elements or integers.

- 3 -

TABLE 1

Amino Acid	Three-letter Code	One-letter Code
5 Alanine	Ala	A
Arginine	Arg	R
Asparagine	Asn	. N
Aspartic acid	Asp	D
Cysteine	Cys	С
O Glutamine	Gln	Q
Glutamic acid	Glu	E
Glycine	Gly	G
Histidine	His	H
Isoleucine	Ile	· I
5 Leucine	Leu	L L
Lysine	Lys	K
Methionine	Met	M
Phenylalanine	Phe	F
Proline	Pro	P
O Serine	Ser	S
Threonine	Thr	T
Tryptophan	Тгр	W
Tyrosine	Tyr	Y
Valine	Val	· v
5 Aspartate/glutamate	Baa	В
Asparagine/glutamine		
Any amino acid as above	Xaa	X

- 4 -

TABLE 2

5	Non-conventional amino acid	Code	Non-conventional amino acid	Code
J	α-aminobutyric acid	Abu	L-N-methylalanine	Nmala
	α-amino-α-methylbutyrate	Mgabu	L-N-methylarginine	Nmarg
•	aminocyclopropane-	Cpro	L-N-methylasparagine	Nmasn
	carboxylate	٠	L-N-methylaspartic acid	Nmasp
10	aminoisobutyric acid	Aib	L-N-methylcysteine	Nmcys
	aminonorbornyl-	Norb	L-N-methylglutamine	Nmgln
	carboxylate		L-N-methylglutamic acid	Nmglu
	cyclohexylalanine	Chexa	L-N-methylhistidine	Nmhis
	cyclopentylalanine	Cpen	L-N-methylisolleucine	Nmile
1.5	D-alanine	Dal	L-N-methylleucine	Nmleu
	D-arginine	Darg	L-N-methyllysine	Nmlys
	D-aspartic acid	Dasp	L-N-methylmethionine	Nmmet
	D-cysteine	Dcys	L-N-methylnorleucine	Nmnle
	D-glutamine	Dgln	L-N-methylnorvaline	Nmnva
20	D-glutamic acid	Dglu	L-N-methylornithine	Nmorn
	D-histidine	Dhis	L-N-methylphenylalanine	Nmphe
	D-isoleucine	Dile	L-N-methylproline	Nmpro
	D-leucine	Dleu	L-N-methylserine	Nmser
	D-lysine	Dlys	L-N-methylthreonine	Nmthr
25	D-methionine	Dmet	L-N-methyltryptophan	Nmtrp
	D-ornithine	Dorn	L-N-methyltyrosine	Nmtyr
	D-phenylalanine	Dphe	L-N-methylvaline	Nmval
	D-proline	Dpro	L-N-methylethylglycine	Nmetg
	D-serine	Dser	L-N-methyl-t-butylglycine	Nmtbug
30	D-threonine	Dthr	L-norleucine	Nle
	D-tryptophan	Dtrp	L-norvaline	Nva .

	D-tyrosine	Dtyr	α -methyl-aminoisobutyrate	Maib
	D-valine	Dval	α-methyl-γ-aminobutyrate	Mgabu
	D-α-methylalanine	Dmala	α-methylcyclohexylalanine	Mchexa
	D-α-methylarginine	Dmarg	α-methylcylcopentylalanine	Mcpen
5	D-α-methylasparagine	Dmasn	α-methyl-α-napthylalanine	Manap
	D-α-methylaspartate	Dmasp	α-methylpenicillamine	Mpen
	D-α-methylcysteine	Dmcys	N-(4-aminobutyl)glycine	Nglu
•	D-α-methylglutamine	Dmgln	N-(2-aminoethyl)glycine	Naeg
	D-α-methylhistidine	Dmhis	N-(3-aminopropyl)glycine	Norn
10	D-α-methylisoleucine	Dmile	N-amino-α-methylbutyrate	Nmaabu
	D-α-methylleucine	Dmleu .	α-napthylalanine	Anap
	D-α-methyllysine	Dmlys	N-benzylglycine	Nphe
٠	D-α-methylmethionine	Dmmet	N-(2-carbamylethyl)glycine	Ngln .
	D-α-methylornithine	Dmorn	N-(carbamylmethyl)glycine	Nasn
15	D-α-methylphenylalanine	Dmphe	N-(2-carboxyethyl)glycine	Nglu
	D-α-methylproline	Dmpro	N-(carboxymethyl)glycine	Nasp
	D-α-methylserine	Dmser N-cyc	lobutylglycine	Ncbut
	D-α-methylthreonine	Dmthr	N-cycloheptylglycine	Nchep
•	D-α-methyltryptophan	Dmtrp	N-cyclohexylglycine	Nchex
20	D-α-methyltyrosine	Dmty .	N-cyclodecylglycine	Ncdec
	D-α-methylvaline	Dmval	N-cylcododecylglycine	Ncdod
	D-N-methylalanine	Dnmala	N-cyclooctylglycine	Ncoct
,	D-N-methylarginine	Dnmarg	N-cyclopropylglycine	Ncpro
	D-N-methylasparagine	Dnmasn	N-cycloundecylglycine	Ncund
25	D-N-methylaspartate	Dnmasp	N-(2,2-diphenylethyl)	
			glycine	Nbhm
	D-N-methylcysteine	Dnmcys	N-(3,3-diphenylpropyl)	
	. •		glycine	Nbhe

	D-N-methylglutamine	Dnmgln	N-(3-guanidinopropyl)	
	•		glycine	Narg
	D-N-methylglutamate	Dnmglu	N-(1-hydroxyethyl)glycine	Nthr
	D-N-methylhistidine	Dnmhis	N-(hydroxyethyl))glycine	Nser
5	D-N-methylisoleucine	Dnmile	N-(imidazolylethyl))	
			glycine	Nhis
	D-N-methylleucine	Dnmleu	N-(3-indolylyethyl)	
	•		glycine	Nhtrp
	D-N-methyllysine	Dnmlys	N-methyl-γ-aminobutyrate	Nmgabu
10	N-methylcyclohexylalanine	Nmchexa	D-N-methylmethionine	Dnmmet
	D-N-methylornithine	Dnmorn	N-methylcyclopentylalanine	Nmcpen
	N-methylglycine	Nala	D-N-methylphenylalanine	Dnmphe
	N-methylaminoisobutyrate	Nmaib	D-N-methylproline	Dnmpro
	N-(1-methylpropyl)glycine	Nile	D-N-methylserine	Dnmser
15	N-(2-methylpropyl)glycine	Nleu	D-N-methylthreonine	Dnmthr
•	D-N-methyltryptophan	Dnmtrp	N-(1-methylethyl)glycine	Nval
	D-N-methyltyrosine	Dnmtyr	N-methyla-napthylalanine	Nmanap
	D-N-methylvaline	Dnmval	N-methylpenicillamine	Nmpen
	γ-aminobutyric acid	Gabu	N-(p-hydroxyphenyl)glycine	Nhtyr
20	L-t-butylglycine	Tbug	N-(thiomethyl)glycine	Ncys
	L-ethylglycine	Etg	penicillamine	Pen
	L-homophenylalanine	Hphe -	L-α-methylalanine	Mala
	L-α-methylarginine	Marg	L-α-methylasparagine	Masn
	L-α-methylaspartate	Masp	L-α-methyl-t-butylglycine	Mtbug
25	L-α-methylcysteine	Mcys	L-methylethylglycine	Metg
	L-α-methylglutamine	Mgln	L-α-methylglutamate	Mglu
	L-α-methylhistidine	Mhis	L-α-methylhomo	
			phenylalanine	Mhphe
	L-α-methylisoleucine	Mile	N-(2-methylthioethyl)	
30	•		glycine	Nmet
	L-α-methylleucine	Mleu	L-α-methyllysine	Mlys

PCT/AU00/00385

WO 00/66745

	L-α-methylmethionine	Mmet	L-α-methylnorleucine	Mnle
	L-α-methylnorvaline	Mnva	L-α-methylornithine	Morn
	L-α-methylphenylalanine	Mphe	L-α-methylproline	Mpro
	L-α-methylserine	Mser	L-α-methylthreonine	Mthr
5	L-α-methyltryptophan	Mtrp	L-α-methyltyrosine	Mtyr
	L-α-methylvaline	Mval	L-N-methylhomo	
			phenylalanine	Nmhphe
	N-(N-(2,2-diphenylethyl)		N-(N-(3,3-diphenylpropyl)	
	carbamylmethyl)glycine	Nnbhm	carbamylmethyl)glycine	Nnbhe
10	1-carboxy-1-(2,2-diphenyl-			
	ethylamino)cyclopropane	Nmbc	•	
		•		

Those skilled in the art will appreciate that the invention described herein is susceptible to variations and modifications other than those specifically described. It is to be understood that the invention includes all such variations and modifications. The invention also includes all of the steps, features, compositions and compounds referred to or indicated in this specification, individually or collectively, and any and all combinations or any two or more of said steps or features.

20

The present invention is not to be limited in scope by the specific embodiments described herein, which are intended for the purposes of exemplification only. Functionally-equivalent products, compositions and methods are clearly within the scope of the invention, as described herein.

25

BACKGROUND TO THE INVENTION

The biosynthesis of the starch granule is a complex process which involves the action of an array of isoforms of enzymes involved in the starch biosynthesis. Following the formation of glucose-1-phosphate, the enzyme activities required for the synthesis of granular starch include ADP glucose pyrophosphorylase (EC 2.7.7.27), starch synthases (EC 2.4.1.21), branching enzymes (EC 2.4.1.18) and debranching enzymes

(EC 3.2.1.41 and EC 3.2.1.68) (Mouille *et al.*, 1996). Plants contain isozymes of each of these activities, and the definition of these isoforms and their roles has been conducted through investigation of the properties of the suite of soluble enzymes found in the stroma of the plastid, analysis of the proteins entrapped within the matrix of the starch granule, and mutational studies to identify genes and define linkages between individual genes and their specific roles.

Starch synthases extend regions of α-1,4 glucan through the transfer of the glucosyl moiety of ADPglucose to the non-reducing end of a pre-existing α-1,4 glucan. In addition to GBSS, 3 other classes of starch synthase have been identified in plants, SSI (wheat, Li *et al.*, 1999 and GenBank Accession No. U48227; rice, Baba *et al.*, 1993; potato, Genbank Accession No. STSTASYNT), SSII (pea, Dry *et al.* 1992; potato, Edwards *et al.*, 1995; maize, Harn *et al.* 1998 and GenBank Accession No. U66377) and SSIII (potato, Abel *et al.*, 1996; maize, Gao *et al.*, 1998). In the cereals, the most comprehensively studied species is maize, where in addition to GBSS, cDNAs encoding SSI, SSIIa, and SSIIb have been isolated, and both cDNA and genomic clones for *dull*1 have been characterised (Knight *et al.*, 1998; Harn *et al.*, 1998; Gao *et al.*, 1998). In maize, the product of the *du1* gene is known as maize SSII, however this gene is the homologue of potato SSIII.

20

The proteins within the matrix of the wheat starch granule have been extensively studied (Denyer et al., 1995; Rahman et al., 1995; Takaoka et al., 1997; Yamamori and Endo, 1996) and 60, 75, 85, 100, 104 and 105 kDa protein bands can be visualised following SDS-PAGE. The predominant 60 kDa protein is exclusively granule-bound and is analogous to the "waxy" granule bound starch synthase (GBSS) gene in maize (Rahman et al., 1995). The combination of three null alleles for this enzyme from each of the wheat genomes (Nakamura et al., 1995) results in the amylose-free "waxy" phenotype found in other species The 75 kDa starch synthase I (wSSI) is found in both the granule and the soluble fraction of wheat endosperm (Denyer et al., 1995; Li et al., 1999) and has been assigned to chromosomes 7A, 7B and 7D (Yamamori and Endo, 1996; Li et al., 1999). The 85 kDa band contains a

class II branching enzyme and an unidentified polypeptide (Rahman *et al.*, 1995). The 100, 104 and 105 kDa proteins of the wheat starch granule (designated Sgp-B1, Sgp-D1 and Sgp-A1 by Yamamori and Endo, 1996) have been shown to be encoded by a homeologous set of genes on the short arm of chromosome 7B, 7A and 7D respectively (Yamamori and Endo, 1996; Takaoka *et al.*, 1997). Denyer *et al.* (1995) concluded on the basis of enzyme activity assays that these proteins were also starch synthases. These genes are referred to hereinafter as the "wheat SSII genes".

While GBSS has been established to be essential for amylose synthesis, the remaining starch synthases are thought to be primarily responsible for the elongation of amylopectin chains, although this does not preclude them from also having non-essential roles in amylose biosynthesis. Differences in kinetic properties between isoforms, and the analysis of mutants lacking various isoforms, suggests that each isoenzyme contributes to the extension of specific subsets of the available non-

SUMMARY OF THE INVENTION

The production of plants that produce improved starches that are modified for particular end-use applications, such as, for example, starches having high or low amylose:amylopectin ratios, requires the availability of genes encoding the various starch synthase isoforms. Because of species-specific codon usages, and variations in the kinetic parameters of the starch synthase isoforms between species, the production of modified starches may require the use of genes derived from particular species.

25

Furthermore, the screening-assisted breeding of plants having desirable starch content and/or composition requires specific gene sequences to be provided that can be used to distinguish between different homeologous genes encoding the various isoforms of wheat starch synthases, such as, for example, to identify and distinguish between naturally-occurring variant gene sequences. It is a particular object of the present invention to provide gene sequences to facilitate the screening-assisted selection of

30

wheat plants having starch traits which are associated with the presence and/or expression of one or more wheat SSI and/or SSIII genes.

Accordingly, the present invention provides isolated nucleotide sequences encoding the wheat SSII (i.e. wSSII) and wheat SSIII (i.e. wSSIII) isoenzymes, and DNA markers derived therefrom. The present invention further facilitates the production of transformed plants carrying these nucleotide sequences.

More particularly, the present invention provides isolated nucleic acid molecules encoding the 100, 104 and 105 kDa SSII (Sgp-1) polypeptides of the wheat starch granule matrix, as determined using the SDS/PAGE system of Rahman *et al.* (1995), which polypeptides are equivalent to the 100, 108 and 115 kDa polypeptides described by Yamamori and Endo (1996).

15 The present invention further provides isolated nucleic acid molecules encoding the soluble dull1-type wheat starch synthase III polypeptide. Analysis of the polypeptides encoded by these nucleic acid molecules reveals several consensus amino acid sequence motifs that are highly conserved in wheat starch synthase isoenzymes, in addition to isoenzyme-specific sequences, which sequences possess utility in isolating related starch synthase-encoding sequences and in assaying plants for their expression of one or more starch synthase isoenzymes.

Accordingly, one aspect of the present invention provides an isolated nucleic acid molecule which comprises a sequence of nucleotides which encodes, or is complementary to a nucleic acid molecule which encodes a wheat starch synthase polypeptide, protein or enzyme molecule or a functional subunit thereof selected from the following:

(i) a wheat starch synthase II (wSSII) polypeptide, protein or enzyme or functional subunit thereof which comprises an amino acid sequence which is at least about 85% identical overall to an amino acid sequence set forth in any one of SEQ ID NOS: 2, 4, or 6;

5

10

15

20

25

- (ii) a wheat starch synthase III (wSSIII) polypeptide, protein or enzyme or functional subunit thereof which comprises an amino acid sequence which is at least about 85% identical overall to an amino acid sequence set forth in any one of SEQ ID NOS: 8 or 10;
- (iii) a wheat starch synthase polypeptide, protein or enzyme or functional subunit thereof which comprises a conserved amino acid sequence having at least 25% identity to an amino acid sequence selected from the group consisting of:
 - (a) KVGGLGDVVTS (SEQ ID NO: 39);

(b) GHTVEVILPKY (SEQ ID NO: 40);

- (c) HDWSSAPVAWLYKEHY (SEQ ID NO: 41);
- (d) GILNGIDPDIWDPYTD (SEQ ID NO: 42);
- (e) DVPIVGIITRLTAQKG (SEQ ID NO: 43);
- (f) NGQVVLLGSA (SEQ ID NO: 44);
- (g)AGSDFIIVPSIFEPCGLTQLVAMRYGS (SEQ ID NO: 45); and
- (h)TGGLVDTV (SEQ ID NO: 46);

wherein said wheat starch synthase polypeptide further comprises an amino acid sequence having at least about 85% identity overall to an amino acid sequence set forth in any one of SEQ ID NOS: 2, 4, 6, 8 or 10; and

- (iv) a wheat starch synthase polypeptide, protein or enzyme or functional subunit thereof which comprises a conserved amino acid sequence having at least 25% identity to an amino acid sequence selected from the group consisting of:
 - (a) KTGGLGDVAGA (SEQ ID NO: 47);
 - (b) GHRVMVVVPRY (SEQ ID NO: 48);
 - (c) NDWHTALLPVYLKAYY (SEQ ID NO: 49);
 - (d) GIVNGIDNMEWNPEVD (SEQ ID NO: 50);
 - (e) DVPLLGFIGRLDGQKG (SEQ ID NO: 51);
 - (f) DVQLVMLGTG (SEQ ID NO: 52);
- 30 (g)AGADALLMPSRF(E/V)PCGLNQLYAMAYGT (SEQ ID NO: 53); and
 - (h)VGG(V/L)RDTV (SEQ ID NO: 54);

wherein said wheat starch synthase polypeptide further comprises an amino acid sequence having at least about 85% identity overall to an amino acid sequence set forth in any one of SEQ ID NOS: 2, 4, 6, 8 or 10.

5 In a preferred embodiment, the isolated nucleic acid molecule encodes a starch synthase polypeptide, protein or enzyme having at least about 90% amino acid sequence identity to any one of SEQ ID NOS: 2, 4, 6, 8 or 10, more preferably having at least about 95% or about 97% or about 99% identity to any one of said amino acid sequences.

10

In an alternative embodiment, the isolated nucleic acid molecule of the present invention encodes a wheat starch synthase polypeptide which comprises one or more amino acid sequences selected from the group consisting of:

- (a) GHTVEVILPKY;
- 15
- (b) HDWSSAPVAWLYKEHY;
- (c) DVPIVGIITRLTAQKG;
- (d) NGQVVLLGSA;
- (e)AGSDFIIVPSIFEPCGLTQLVAMRYGS;
- (f)TGGLVDTV;
- 20
- (g) GIVNGIDNMEWNPEVD; and
- (h) AGADALLMPSRF(E/V)PCGLNQLYAMAYGT.

in an alternative embodiment, the present invention provides an isolated nucleic acid molecule which encodes a wheat starch synthase polypeptide, protein or enzyme 25 molecule or a functional subunit thereof, wherein said nucleic acid molecule comprises a nucleotide sequence having at least about 85% nucleotide sequence identity to any one of SEQ ID NOS: 1, 3, 5, 7, 9,11-16, 37 or 38 or a complementary nucleotide sequence thereto.

30 In a preferred embodiment, the isolated nucleic acid molecule comprises the nucleotide sequence set forth in any one of SEQ ID NOS: 1, 3, 5, 7, 9,11-16, 37 or 38,

or is at least about 90% identical, more preferably at least about 95% or 97% or 99% identical to all or a protein-encoding part thereof.

In an alternative embodiment, the present invention provides an isolated nucleic acid molecule which encodes a wheat starch synthase polypeptide, protein or enzyme molecule or a functional subunit thereof, wherein said nucleic acid molecule comprises a nucleotide sequence that is capable of hybridising under at least moderate stringency hybridisation conditions to at least about 30 contiguous nucleotides derived from any one of SEQ ID NOS: 1, 3, 5, 7, 9,11-16, 37 or 38, or a complementary nucleotide sequence thereto.

A second aspect of the present invention provides a method of isolating a nucleic acid molecule that encodes a starch synthase polypeptide, protein or enzyme described *supra*, said method comprising:

- 15 (i) hybridising a probe or primer comprising at least about 15 contiguous nucleotides in length derived from any one of SEQ ID NOS: 1, 3, 5, 7, 9,11-16, 37 or 38, or a complementary nucleotide sequence thereto to single-stranded or double-stranded mRNA, cDNA or genomic DNA; and
- (ii) detecting the hybridised mRNA, cDNA or genomic DNA using a detectingmeans.

Preferably, the detecting means is a reporter molecule covalently attached to the probe or primer molecule or alternatively, a polymerase chain reaction format. Accordingly, the present invention clearly extends to the use of the nucleic acid molecules provided herein to isolate related starch synthase-encoding sequences using standard hybridisation and/or polymerase chain reaction techniques.

A third aspect of the invention provides an isolated probe or primer comprising at least about 15 contiguous nucleotides in length derived from any one of SEQ ID NOS: 1, 3, 30 5, 7, 9,11-16, 37 or 38, or a complementary nucleotide sequence thereto.

Preferably, the probe or primer comprises a nucleotide sequence set forth in any one of SEQ ID NOS: 25 to 34.

A fourth aspect of the present invention is directed to an isolated or recombinant starch synthase polypeptide, protein or enzyme, preferably substantially free of conspecific or non-specific proteins, which comprises an amino acid sequence selected from the following:

- (i) a wheat starch synthase II (wSSII) polypeptide, protein or enzyme or functional subunit thereof which comprises an amino acid sequence which is at least about 85% identical overall to an amino acid sequence set forth in any one of SEQ ID NOS: 2, 4, or 6;
 - (ii) a wheat starch synthase III (wSSIII) polypeptide, protein or enzyme or functional subunit thereof which comprises an amino acid sequence which is at least about 85% identical overall to an amino acid sequence set forth in any one of SEQ ID NOS: 8 or 10;
 - (iii) a wheat starch synthase polypeptide, protein or enzyme or functional subunit thereof which comprises a conserved amino acid sequence having at least 25% identity to an amino acid sequence selected from the group consisting of:

20

10

15

- (a) KVGGLGDVVTS;
- (b) GHTVEVILPKY;
- (c) HDWSSAPVAWLYKEHY;
- (d) GILNGIDPDIWDPYTD;
- (e) DVPIVGIITRLTAQKG;

25

30

- (f) NGQVVLLGSA;
- (g)AGSDFIIVPSIFEPCGLTQLVAMRYGS; and
- (h)TGGLVDTV

wherein said wheat starch synthase polypeptide further comprises an amino acid sequence having at least about 85% identity overall to an amino acid sequence set forth in any one of SEQ ID NOS: 2, 4, 6, 8 or 10; and

(iv) a wheat starch synthase polypeptide, protein or enzyme or functional

subunit thereof which comprises a conserved amino acid sequence having at least 25% identity to an amino acid sequence selected from the group consisting of:

- (a) KTGGLGDVAGA;
- 5 (b) GHRVMVVVPRY;
 - (c) NDWHTALLPVYLKAYY;
 - (d) GIVNGIDNMEWNPEVD;
 - (e) DVPLLGFIGRLDGQKG;
 - (f) DVQLVMLGTG;
 - (g)AGADALLMPSRF(E/V)PCGLNQLYAMAYGT; and
 - (h)VGG(V/L)RDTV

wherein said wheat starch synthase polypeptide further comprises an amino acid sequence having at least about 85% identity overall to an amino acid sequence set forth in any one of SEQ ID NOS: 2, 4, 6, 8 or 10.

15

10

The present invention clearly encompasses the mature protein region of a wheat starch synthase polypeptide which is obtained by removal of the N-terminal transit peptide sequence.

- 20 A further aspect of the invention provides a method of assaying for the presence or absence of a starch synthase isoenzyme or the copy number of a gene encoding same in a plant, comprising contacting a biological sample derived from said plant with an isolated nucleic acid molecule derived from any one of SEQ ID NOS 1, 3, 5, 7, 9,11-16, 37 or 38, or any one of SEQ ID NOS: 25 to 34, or a complementary nucleotide sequence thereto for a time and under conditions sufficient for hybridisation to occur and then detecting said hybridisation using a detection means.
 - The detection means according to this aspect of the invention is any nucleic acid based hybridisation or amplification reaction.

30

A further aspect of the present invention utilises the above-mentioned assay method

in the breeding and/or selection of plants which express or do not express particular starch synthase isoenzymes or alternatively, which express a particular starch synthase isoenzyme at a particular level in one or more plant tissues. This aspect clearly extends to the selection of transformed plant material which contains one or more of the isolated nucleic acid molecules of the present invention.

A further aspect of the present invention provides a method of modifying the starch content and/or starch composition of one or more tissues or organs of a plant, comprising expressing therein a sense molecule, antisense molecule, ribozyme molecule, co-suppression molecule, or gene-targeting molecule having at least about 85% nucleotide sequence identity to any one of any one of SEQ ID NOS: 1, 3, 5, 7, 9,11-16, 37 or 38, or a complementary nucleotide sequence thereto for a time and under conditions sufficient for the enzyme activity of one or more starch synthase isoenzymes to be modified. This aspect of the invention clearly extends to the introduction of the sense molecule, antisense molecule, ribozyme molecule, co-suppression molecule, or gene-targeting molecule to isolated plant cells, tissues or organs or organelles by cell fusion or transgenic means and the regeneration of intact plants therefrom.

20 A further aspect of the present invention provides an isolated promoter that is operable in the endosperm of a monocotyledonous plant cell, tissue or organ, and preferably in the endosperm of a monocotyledonous plant cell, tissue or organ. For example, the HMG promoter from wheat, or the maize zein gene promoter are particularly preferred, as is the promoter derived from a starch synthase gene of the present invention, such 25 as a promoter that is linked *in vivo* to any one of SEQ ID NOS 1, 3, 5, 7, 9,11-16, 37 or 38, or a complementary nucleotide sequence thereto.

A still further aspect of the present invention contemplates a transgenic plant comprising an introduced sense molecule, antisense molecule, ribozyme molecule, co30 suppression molecule, or gene-targeting molecule having at least about 85% nucleotide sequence identity to any one of any one of SEQ ID NOS: 1, 3, 5, 7, 9,11-16,

37 or 38, or a complementary nucleotide sequence thereto or a genetic construct comprising same, and to plant propagules, cells, tissues, organs or plant parts derived from said transgenic plant that also carry the introduced molecule(s).

5 BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a copy of a photographic representation showing the distribution of wheat endosperm starch synthases between the starch granule and soluble fractions. Lane 1, SDS-PAGE of wheat endosperm starch granule proteins revealed by silver staining; lanes 2-7, immunoblot of wheat endosperm soluble phase and starch granule proteins separated by SDS-PAGE from various developmental stages and probed with an anti-(wheat wSSII peptide) monoclonal antibody. Lanes 2-4 contain proteins from the soluble fraction of wheat endosperm at 15 days post anthesis (Lane 2); 20 days post anthesis (Lane 3); and at 25 days post anthesis (Lane 4). Lanes 5-7 contain proteins from the starch granule of wheat endosperm at 15 days post anthesis (Lane 5); 20 days post anthesis (Lane 6); and at 25 days post anthesis (Lane 7).

Figure 2 is a copy of a schematic representation comparing the nucleotide sequences of cDNA clones designated wSSIIA, wSSIIB and wSSIID, encoding the starch synthase II polypeptides from wheat, using the PILEUP programme of Devereaux et 20 al. (1984).

Figure 3 is a copy of a schematic representation comparing the deduced amino acid sequences of starch synthase II from wheat (wSSIIA, wSSIIB and wSSIID), maize (maize SSIIa and maize SSIIb; Harn et al., 1998), pea (pea SSII; Dry et al., 1992) and potato (potato SSII; van der Leij et al., 1991). Identical amino acid residues among each of these sequences are indicated below the sequences with "*". The alignments of maize SSIIa with maize SSIIb, and pea SSII and potato SSII are essentially as described in Harn et al. (1998) and Edwards et al. (1995). All sequences are aligned to position the transit peptide cleavage site below the arrow (1) between residues 59 and 60 of the wSSIIA sequence. The wSSIIp1 sequence, the sequence of SGP-B1 (peptide3), and of eight conserved regions are annotated and underlined.

Figure 4 is a copy of a photographic representation of a northern blot showing the expression of wheat wSSII mRNA in wheat plants. Total RNAs were isolated from leaves pre-anthesis florets and endosperm of the wheat cultivar "Gabo", grown under a photoperiod comprising 16 hours daylength, and at 18 °C during the day, and at 13 °C during the night cycle, and probed with the wSSIIp2 DNA fragment. The source of each RNA is indicated at the top of the Figure as follows: Lane 1, leaf; Lane 2, pre-anthesis florets; Lanes 3-11, endosperm at: 4 days post-anthesis (Lane 3); 6 days post-anthesis (Lane 4); 8 days post-anthesis (Lane 5); 10 days post-anthesis (Lane 6);12 days post-anthesis (Lane 7); 15 days post-anthesis (Lane 8); 18 days post-anthesis (Lane 9); 21 days post-anthesis (Lane 10); and 25 days post-anthesis (Lane 11).

Figure 5 is a copy of a photographic representation showing the localization of wheat starch synthase II genes on the wheat genome by PCR, using the primers ssllc, sslld and sslle in the amplification reaction. The nullisomic-tetrasomic genomic DNA of wheat cv. Chinese Spring was used as template DNA. Lane D, *Triticum tauschii*; Lane AB, Accession line N7DT7B having no 7D chromosome and four copies of the 7B chromosome; Lane AD, Accession line N7BT7A having no 7B chromosome and four copies of the 7A chromosome; Lane BD, Accession line N7AT7B having no 7A chromosome and four copies of the 7B chromosome; Lane ABD, wheat cv. Chinese Spring. PCR products derived from each cDNA clone are labelled. The results indicate that the cDNA clones, wSSIIB, wSSIIA and wSSIID are derived from the B-, A- and D-genomes of wheat, respectively.

- 25 **Figure 6** is a schematic representation showing the organisation of introns (lines) and exons (boxes) in the wheat SSII gene shown in SEQ ID NO: 37. The scale (bases), relative to the nucleotide sequence set forth in SEQ ID NO: 37, is provided at the bottom of the figure.
- 30 **Figure 7** is a schematic representation comparing the deduced amino acid Sequences of the maize, potato and wheat SSIII polypeptides.

Figure 8 is a copy of a photographic representation showing the expression of wheat wSSIII mRNA in wheat. Total RNAs were isolated from the endosperm of the wheat cultivars Wyuna (Panel a) and Gabo (Panel b) leaves pre-anthesis florets and endosperm of the wheat cultivar "Gabo", grown under a photoperiod comprising 16 hours daylength, and at 18 °C during the day cycle, and at 13 °C during the night cycle, and probed with the wSSIIIp1 DNA fragment derived from wSSIII.B3 cDNA. The source of each RNA is indicated at the top of the Figure as follows: Lane 1, endosperm at: 4 days post-anthesis; Lane 2, endosperm at 6 days post-anthesis; Lane 4, endosperm at 8 days post-anthesis; Lane 4, endosperm at 10 days post-anthesis;

10 Lane 5, endosperm at 12 days post-anthesis; Lane 6, endosperm at 15 days post-anthesis; Lane 7, endosperm at 18 days post-anthesis; Lane 8, endosperm at 21 days post-anthesis; Lane 9, endosperm at 25 days post-anthesis; and Lane 10, endosperm at 31 days post-anthesis (Panel a only). In panel (c), L refers to leaf RNA, and P refers to RNA from pre-anthesis florets derived from the cultivar Gabo.

15

Figure 9 is a schematic representation showing the position of conserved amino acid sequences within four wheat starch synthase proteins. The eight highly-conserved regions between the wheat starch synthase polypeptides are underlined and annotated at the top of each group of amino acid sequences. The sequences included in the alignment are the wheat SSII-A1 and wheat SSIII polypeptides of the present invention; wheat GBSS (wGBSS; Yan et al., 1999); wheat SSII (wSS1; Li et al., 1999); wheat SSII (wSS2; SEQ ID NO: 4); and wheat SSIII (wSS3; SEQ ID NO: 8).

Figure 10 is a schematic representation showing the relationships between the primary amino acid sequences of starch synthases (SS) and glycogen synthase of *E. coli* (GS). The dendrogram was generated by the program PILEUP (Devereaux *et al.*, 1984). The amino acid sequences used for the analysis are those of the wheat SSIIA, wheat SSIIB, wheat SSIID, and wheat SSIII polypeptides of the present invention compared to the deduced amino acid sequences of wheat GBSS (Clark *et al.*, 1991), wheat SSI (Li *et al.*, 1999), rice GBSS (Okagaki, 1992), rice SSI (Baba *et al.*, 1993), maize GBSS (Kloesgen *et al.*, 1986), maize SSI (Knight *et al.*, 1998), maize SSIIa and

maize SSIIb (Harn et al., 1998), maize SSIII (Gao et al., 1998), pea GBSS (Dry et al., 1992), pea SSII (Dry et al., 1992), potato GBSS (van der Leij et al., 1991), potato SSI (Genbank accession number: STSTASYNT), potato SSII (Edwards et al., 1995), potato SSIII (Abel et al., 1996), and E. coli glycogen synthase (GS) (Kumar et al., 1986). Five groups of enzymes included in the alignment are granule-bound starch synthase (GBSS), starch synthase-I (SSI), starch synthase-II (SSII), starch synthase-III (SSIII) and glycogen synthase (GS).

Figure 11 is a schematic representation showing the position of conserved regions within cereal starch synthase genes. Comparisons of cereal starch synthases were made based on their deduced amino acid sequences and 8 conserved regions identified. Conserved regions are shown in bold and transit peptides (where defined) in grey. The sequences included in the alignment are the wheat SSII-A1 and wheat SSIII polypeptides of the present invention; wheat GBSS (Ainsworth et al., 1993); wheat SSI (Li et al., 1999); maize SSIIa (Harn et al., 1998); and maize dull-1 (Gao et al., 1998).

Figure 12 is a copy of a schematic representation of a gene map showing the alignment of fragments 1 to 6 of the genomic SSIII gene (lower line) with the corresponding SSIII cDNA clone (upper line). Raised regions in the genomic clone fragments (lower line) represent protein-encoding regions of the gene.

Figure 13 is a schematic representation showing the organisation of introns (lines) and exons (boxes) in the wheat SSIII gene shown in SEQ ID NO: 38. The scale (bases), relative to the nucleotide sequence set forth in SEQ ID NO: 38, is provided at the bottom of the figure.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

30 One aspect of the present invention provides an isolated nucleic acid molecule which comprises a sequence of nucleotides which encodes, or is complementary to a nucleic

5

acid molecule which encodes a wheat starch synthase polypeptide, protein or enzyme molecule or a functional subunit thereof selected from the following:

- (i) a wheat starch synthase II (wSSII) polypeptide, protein or enzyme or functional subunit thereof which comprises an amino acid sequence set forth in any one of SEQ ID NOS: 2, 4, or 6; and
- (ii) a wheat starch synthase III (wSSIII) polypeptide, protein or enzyme or functional subunit thereof which comprises an amino acid sequence set forth in any one of SEQ ID NOS: 8 or 10.
- 10 Alternatively or in addition, the isolated nucleic acid molecule of the present invention encodes a wheat starch synthase II (wSSII) polypeptide, protein or enzyme or functional subunit thereof and comprises a nucleotide sequence set forth in any one of SEQ ID NOS: 1, 3, 5, or 37.
- 15 Alternatively or in addition, the isolated nucleic acid molecule of the present invention encodes a wheat starch synthase III (wSSIII) polypeptide, protein or enzyme or functional subunit thereof and comprises a nucleotide sequence set forth in any one of SEQ ID NOS: 7, 9, or 38.
- 20 As used herein, the term "starch synthase" shall be taken to refer to any enzymatically-active peptide, polypeptide, polypeptide, protein or enzyme molecule that is at least capable of transferring a glucosyl moiety from ADP-glucose to an α -1,4-glucan molecule, or a peptide, polypeptide, oligopeptide or polypeptide fragment of such an enzymatically-active molecule.

The term "wheat starch synthase" refers to a starch synthase derived from hexaploid wheat or barley or a progenitor species, or a relative thereto such as the diploid *Triticum tauschii* or other diploid, tetraploid, aneuploid, polyploid, nullisomic, or a wheat/barley addition line, amongst others, the only requirement that the genomic DNA is at least about 80% identical to the genome of a wheat plant as determined by standard DNA melting curve analyses.

20

25

The term "starch synthase II" or "wSSII" or similar term shall be taken to refer to a starch synthase as hereinbefore defined that is detectable in the starch granule of a plant seed endosperm and possesses one or more properties selected from the group consisting of:

- (i) it is immunologically cross-reactive with the wheat starch granule proteins designated Sgp-B1 and/or Sgp-D1 and/or Sgp-A1, having estimated molecular weights of about 85 kDa to about 115 kDa;
 - (ii) it is encoded by one of a homeologous set of genes localised on wheat chromosomes 7B or 7A or 7D;
- (iii) it is encoded by a nucleotide sequence that comprises at least about 15 nucleotides in length derived from any one or more of SEQ ID NOS: 1, 3, 5, or 37 or a complementary nucleotide sequence thereto;
 - (iv) it is encoded by a nucleotide sequence that is at least about 85% identical to one or more of the nucleotide sequences set forth in SEQ ID NOS:
- 1, 3, 5, or 37, or a complementary nucleotide sequence thereto;
 - (v) it comprises an amino acid sequence having at least about 85% identity to one or more of SEQ ID NOS: 2 or 4 or 6;
 - (vi) it comprises at least about 5 contiguous amino acids, preferably at least about 10 contiguous amino acids, more preferably at least about 15 contiguous amino acids, even more preferably at least about 20 contiguous amino acids and still even more preferably at least about 25-50 contiguous amino acids of the amino acid sequences set forth in SEQ ID NOS: 2 or 4 or 6;
 - (vii) it which comprises a conserved amino acid sequence having at least 25% identity to an amino acid sequence selected from the group consisting of:
 - (a) KVGGLGDVVTS;
 - (b) GHTVEVILPKY;
 - (c) HDWSSAPVAWLYKEHY;
 - (d) GILNGIDPDIWDPYTD;
 - (e) DVPIVGIITRLTAQKG;
- 30 (f) NGQVVLLGSA;
 - (g)AGSDFIIVPSIFEPCGLTQLVAMRYGS; and

(h)TGGLVDTV,

in addition to any one or more of (i) to (vi); and

- (viii) it which comprises a conserved amino acid sequence having at least 25% identity to an amino acid sequence selected from the group consisting of:
 - (a) KTGGLGDVAGA;
 - (b) GHRVMVVVPRY;
 - (c) NDWHTALLPVYLKAYY;
 - (d) GIVNGIDNMEWNPEVD;
 - (e) DVPLLGFIGRLDGQKG;
- 10 (f) DVQLVMLGTG;

20

25

30

- (g)AGADALLMPSRF(E/V)PCGLNQLYAMAYGT; and
- (h)VGG(V/L)RDTV,

in addition to any one or more of (i) to (vi).

- 15 The term "starch synthase III" or "wSSIII" or similar term shall be taken to refer to a starch synthase as hereinbefore defined that possesses one or more properties selected from the group consisting of:
 - (i) it is encoded by a nucleotide sequence that comprises at least about 15 nucleotides in length derived from any one or more of SEQ ID NOS: 7, 9, 11-16, or 38, or a complementary nucleotide sequence thereto;
 - (ii) it is encoded by a nucleotide sequence that is at least about 85% identical to one or more of the nucleotide sequences set forth in SEQ ID NOS: 7, 9, 11-16, or 38, or a complementary nucleotide sequence thereto; and
 - (iii) it comprises an amino acid sequence having at least about 85% identity to one or more of SEQ ID NOS: 8 or 10;
 - (iv) it comprises at least about 5 contiguous amino acids, preferably at least about 10 contiguous amino acids, more preferably at least about 15 contiguous amino acids, even more preferably at least about 20 contiguous amino acids and still even more preferably at least about 25-50 contiguous amino acids of the amino acid sequences set forth in SEQ ID NOS: 8 or 10;
 - (v) which comprises a conserved amino acid sequence having at least 25%

identity to an amino acid sequence selected from the group consisting of:

- (a) KVGGLGDVVTS;
- (b) GHTVEVILPKY;
- (c) HDWSSAPVAWLYKEHY;
- 5
- (d) GILNGIDPDIWDPYTD;
- (e) DVPIVGIITRLTAQKG;
- (f) NGQVVLLGSA;
- (g)AGSDFIIVPSIFEPCGLTQLVAMRYGS; and
- (h)TGGLVDTV
- in addition to any one or more of (i) to (iv); and
 - (vi) it which comprises a conserved amino acid sequence having at least 25% identity to an amino acid sequence selected from the group consisting of:
 - (a) KTGGLGDVAGA;
 - (b) GHRVMVVVPRY;
- 15
- (c) NDWHTALLPVYLKAYY;
- (d) GIVNGIDNMEWNPEVD;
- (e) DVPLLGFIGRLDGQKG;
- (f) DVQLVMLGTG;
- (g)AGADALLMPSRF(E/V)PCGLNQLYAMAYGT; and
- 20
- (h)VGG(V/L)RDTV,

in addition to any one or more of (i) to (iv).

In a more preferred embodiment, the WSSII or WSSIII polypeptide encoded by the nucleic acid molecule of the present invention will comprise a substantial contiguous region of any one of SEQ ID NOS: 2, 4, 6, 8 or 10 or 17 sufficient to possess the biological activity of a starch synthase polypeptide.

For the purposes of nomenclature, the nucleotide sequence set forth in SEQ ID NO: 1 relates to the cDNA molecule encoding the WSSII (i.e. Sgp-B1) polypeptide of wheat. The amino acid sequence of the corresponding polypeptide is set forth herein as SEQ ID NO:2. The nucleotide sequence set forth in SEQ ID NO: 3 relates to the

cDNA molecule encoding the WSSII (i.e. Sgp-A1) polypeptide of wheat. The amino acid sequence of the corresponding polypeptide is set forth herein as SEQ ID NO:4. The nucleotide sequence set forth in SEQ ID NO: 5 relates to the cDNA molecule encoding the WSSII (i.e. Sgp-D1) polypeptide of wheat. The amino acid sequence of the corresponding polypeptide is set forth herein as SEQ ID NO:6. The nucleotide sequences set forth in SEQ ID NOs: 7 and 9 relate, respectively, to full-length and partial cDNA molecules encoding the WSSIII polypeptide of wheat. The amino acid sequences of the corresponding polypeptides are set forth herein as SEQ ID NOS: 8 and 10, respectively. The nucleotide sequences set forth in SEQ ID NOs: 11 to 16 relates to fragments of the genomic gene encoding the WSSIII polypeptide of wheat, significant protein-encoding regions of which are described by reference to Table 4 and Figure 11. The nucleotide sequence set forth in SEQ ID NO: 37 relates to the WSSII genomic gene of *Triticum tauschii*, corresponding to the WSSII gene of the D-genome of wheat, which encodes the WSSIII polypeptide. The nucleotide sequence set forth in SEQ ID NO: 38 relates to the wheat WSSIII genomic gene.

Preferably, the isolated nucleic acid molecule of the present invention comprises a sequence of nucleotides which encodes, or is complementary to a nucleic acid molecule which encodes a wheat starch synthase polypeptide, protein or enzyme 20 molecule or a functional subunit thereof which comprises an amino acid sequence which is at least about 85% identical overall to an amino acid sequence set forth in any one of SEQ ID NOS: 2, 4, 6, 8, or 10 and more preferably, which additionally comprises which comprises one or more amino acid sequences selected from the group consisting of:

- 25
- (a) KVGGLGDVVTS;
- (b) GHTVEVILPKY;
- (c) HDWSSAPVAWLYKEHY;
- (d) GILNGIDPDIWDPYTD;
- (e) DVPIVGIITRLTAQKG;
- 30
- (f) NGQVVLLGSA;
- (g)AGSDFIIVPSIFEPCGLTQLVAMRYGS;

- (h)TGGLVDTV;
- (i) KTGGLGDVAGA;
- (j) GHRVMVVVPRY;
- (k) NDWHTALLPVYLKAYY;
- (I) GIVNGIDNMEWNPEVD;
- (m) DVPLLGFIGRLDGQKG;
- (n) DVQLVMLGTG;
- (o)AGADALLMPSRF(E/V)PCGLNQLYAMAYGT; and
- (p)VGG(V/L)RDTV.

10

30 hydrophobicity.

The present invention clearly extends to homologues, analogues and derivatives of the wheat starch synthase II and III genes exemplified by the nucleotide sequences set forth herein as SEQ ID NOs: 1, 3, 5, 7, 9,11-16, 37 or 38.

15 Preferred starch synthase genes may be derived from a naturally-occurring starch synthase gene by standard recombinant techniques. Generally, a starch synthase gene may be subjected to mutagenesis to produce single or multiple nucleotide substitutions, deletions and/or additions. Nucleotide insertional derivatives of the starch synthase gene of the present invention include 5' and 3' terminal fusions as well as intra-sequence insertions of single or multiple nucleotides. Insertional nucleotide sequence variants are those in which one or more nucleotides are introduced into a predetermined site in the nucleotide sequence although random insertion is also possible with suitable screening of the resulting product. Deletional variants are characterised by the removal of one or more nucleotides from the sequence. Substitutional nucleotide variants are those in which at least one nucleotide in the sequence has been removed and a different nucleotide inserted in its place. Such a substitution may be "silent" in that the substitution does not change the amino acid defined by the codon. Alternatively, substituents are designed to alter one amino acid for another similar acting amino acid, or amino acid of like charge, polarity, or

For the present purpose, "homologues" of a nucleotide sequence shall be taken to

refer to an isolated nucleic acid molecule which is substantially the same as the nucleic acid molecule of the present invention or its complementary nucleotide sequence, notwithstanding the occurrence within said sequence, of one or more nucleotide substitutions, insertions, deletions, or rearrangements.

"Analogues" of a nucleotide sequence set forth herein shall be taken to refer to an isolated nucleic acid molecule which is substantially the same as a nucleic acid molecule of the present invention or its complementary nucleotide sequence, notwithstanding the occurrence of any non-nucleotide constituents not normally 10 present in said isolated nucleic acid molecule, for example carbohydrates, radiochemicals including radionucleotides, reporter molecules such as, but not limited to DIG, alkaline phosphatase or horseradish peroxidase, amongst others.

"Derivatives" of a nucleotide sequence set forth herein shall be taken to refer to any 15 isolated nucleic acid molecule which contains significant sequence similarity to said sequence or a part thereof. Generally, the nucleotide sequence of the present invention may be subjected to mutagenesis to produce single or multiple nucleotide substitutions, deletions and/or insertions. Nucleotide insertional derivatives of the nucleotide sequence of the present invention include 5' and 3' terminal fusions as well 20 as intra-sequence insertions of single or multiple nucleotides or nucleotide analogues. Insertional nucleotide sequence variants are those in which one or more nucleotides or nucleotide analogues are introduced into a predetermined site in the nucleotide sequence of said sequence, although random insertion is also possible with suitable screening of the resulting product being performed. Deletional variants are 25 characterised by the removal of one or more nucleotides from the nucleotide sequence. Substitutional nucleotide variants are those in which at least one nucleotide

inserted in its place.

30 The present invention extends to the isolated nucleic acid molecule when integrated into the genome of a cell as an addition to the endogenous cellular complement of starch synthase genes, irrespective of whether or not the introduced nucleotide

in the sequence has been removed and a different nucleotide or nucleotide analogue

sequence is translatable or non-translatable to produce a polypeptide. The present invention clearly contemplates the introduction of additional copies of starch synthase genes into plants, particularly wheat plants, in the antisense orientation to reduce the expression of particular wheat starch synthase genes. As will be known to those skilled in the art, such antisense genes are non-translatable, notwithstanding that they can be expressed to produce antisense mRNA molecules.

The said integrated nucleic acid molecule may, or may not, contain promoter sequences to regulate expression of the subject genetic sequence.

10

25

30

Accordingly, the present invention clearly encompasses preferred homologues, analogues and derivatives that comprise a sequence of nucleotides which encodes, or is complementary to a nucleic acid molecule which encodes a wheat starch synthase polypeptide, protein or enzyme molecule or a functional subunit thereof selected from the following:

- (i) a wheat starch synthase II (wSSII) polypeptide, protein or enzyme or functional subunit thereof which comprises an amino acid sequence which is at least about 85% identical overall to an amino acid sequence set forth in any one of SEQ ID NOS: 2, 4, or 6;
- 20 (ii) a wheat starch synthase III (wSSIII) polypeptide, protein or enzyme or functional subunit thereof which comprises an amino acid sequence which is at least about 85% identical overall to an amino acid sequence set forth in any one of SEQ ID NOS: 8 or 10;
 - (iii) a wheat starch synthase polypeptide, protein or enzyme or functional subunit thereof which comprises a conserved amino acid sequence having at least 25% identity to an amino acid sequence selected from the group consisting of:
 - (a) KVGGLGDVVTS;
 - (b) GHTVEVILPKY;
 - (c) HDWSSAPVAWLYKEHY;
 - (d) GILNGIDPDIWDPYTD;

- (e) DVPIVGIITRLTAQKG;
- (f) NGQVVLLGSA;
- (g)AGSDFIIVPSIFEPCGLTQLVAMRYGS; and
- (h)TGGLVDTV

and wherein said wheat starch synthase polypeptide further comprises an amino acid sequence having at least about 85% identity overall to an amino acid sequence set forth in any one of SEQ ID NOS: 2, 4, 6, 8 or 10; and

- (iv) a wheat starch synthase polypeptide, protein or enzyme or functional subunit thereof which comprises a conserved amino acid sequence having at least 25% identity to an amino acid sequence selected from the group consisting of:
 - (a) KTGGLGDVAGA;
 - (b) GHRVMVVVPRY;
 - (c) NDWHTALLPVYLKAYY;
- 15

20

5

10

- (d) GIVNGIDNMEWNPEVD;
- (e) DVPLLGFIGRLDGQKG;
- (f) DVQLVMLGTG;
- (g)AGADALLMPSRF(E/V)PCGLNQLYAMAYGT; and
- (h)VGG(V/L)RDTV,

and wherein said wheat starch synthase polypeptide further comprises an amino acid sequence having at least about 85% identity overall to an amino acid sequence set forth in any one of SEQ ID NOS: 2, 4, 6, 8 or 10.

Preferably, the isolated nucleic acid molecule encodes a starch synthase polypeptide, protein or enzyme that comprises two, more preferably three, more preferably four, more preferably five, more preferably six, more preferably seven and even more preferably eight of the conserved amino acid motifs listed *supra*. Even more preferably, the said amino acid motifs are located in a relative configuration such as that shown for the wheat SSII or wheat SSIII polypeptides described herein.

30

In a preferred embodiment, the isolated nucleic acid molecule encodes a starch

synthase polypeptide, protein or enzyme having at least about 90% amino acid sequence identity to any one of SEQ ID NOS: 2, 4, 6, 8 or 10, more preferably having at least about 95% or about 97% or about 99% identity to any one of said amino acid sequences.

5

In an alternative embodiment, the present invention provides an isolated nucleic acid molecule which encodes a wheat starch synthase polypeptide, protein or enzyme molecule or a functional subunit thereof, wherein said nucleic acid molecule comprises a nucleotide sequence having at least about 85% nucleotide sequence identity to any one of SEQ ID NOS: 1, 3, 5, 7, 9,11-16, 37, or 38, or a degenerate nucleotide sequence thereto or a complementary nucleotide sequence thereto.

By "degenerate nucleotide sequence" is meant a nucleotide sequence that encodes a substantially identical amino acid sequence as a stated nucleotide sequence.

15

In a preferred embodiment, the isolated nucleic acid molecule comprises the nucleotide sequence set forth in any one of SEQ ID NOS: 1, 3, 5, 7, 9,11-16, 37, or 38, or is at least about 90% identical, more preferably at least about 95% or 97% or 99% identical to all or a protein-encoding part thereof.

20

In an alternative embodiment, preferred homologues, analogues and derivatives of the nucleic acid molecule of the present invention encodes a wheat starch synthase polypeptide, protein or enzyme molecule or a functional subunit thereof and comprises a nucleotide sequence that is capable of hybridising under at least moderate stringency hybridisation conditions to at least about 30 contiguous nucleotides derived from any one of SEQ ID NOS: 1, 3, 5, 7, 9,11-16, 37, or 38, or a complementary nucleotide sequence thereto.

For the purposes of defining the level of stringency, a low stringency is defined herein as being a hybridisation and/or a wash carried out in 6xSSC buffer, 0.1% (w/v) SDS at 28°C. Generally, the stringency is increased by reducing the concentration of SSC

buffer, and/or increasing the concentration of SDS and/or increasing the temperature of the hybridisation and/or wash. A moderate stringency comprises a hybridisation and/or a wash carried out in 0.2 x SSC-2 x SSC buffer, 0.1% (w/v) SDS at 42°C to 65°C, while a high stringency comprises a hybridisation and/or a wash carried out in 0.1xSSC-0.2 x SSC buffer, 0.1% (w/v) SDS at a temperature of at least 55°C. Conditions for hybridisations and washes are well understood by one normally skilled in the art. For the purposes of further clarification only, reference to the parameters affecting hybridisation between nucleic acid molecules is found in pages 2.10.8 to 2.10.16. of Ausubel *et al.* (1987), which is herein incorporated by reference.

10

Those skilled in the art will be aware of procedures for the isolation of further wheat starch synthase genes to those specifically described herein or homologues, analogues or derivatives of said genes, for example further cDNA sequences and genomic gene equivalents, when provided with one or more of the nucleotide sequences set forth in SEQ ID NOs: 1, 3, 5, 7, 9,11-16, 37, or 38. In particular, amplifications and/or hybridisations may be performed using one or more nucleic acid primers or hybridisation probes comprising at least 10 contiguous nucleotides and preferably at least about 20 contiguous nucleotides or 50 contiguous nucleotides derived from the nucleotide sequences set forth herein, to isolate cDNA clones, mRNA molecules, genomic clones from a genomic library (in particular genomic clones containing the entire 5' upstream region of the gene including the promoter sequence, and the entire coding region and 3'-untranslated sequences), and/or synthetic oligonucleotide molecules, amongst others. The present invention clearly extends to such related sequences.

25

30

Accordingly, a second aspect of the present invention provides a method of isolating a nucleic acid molecule that encodes a starch synthase polypeptide, protein or enzyme said method comprising:

(i) hybridising a probe or primer comprising at least about 15 contiguous nucleotides in length derived from any one of SEQ ID NOS 1, 3, 5, 7, 9,11-16, 37, or 38, or a complementary nucleotide sequence thereto to single-stranded or double-stranded mRNA, cDNA or genomic DNA; and

(ii) detecting the hybridised mRNA, cDNA or genomic DNA using a detecting means.

Preferably, the detecting means is a reporter molecule covalently attached to the probe or primer molecule or alternatively, a polymerase chain reaction format.

An alternative method contemplated in the present invention involves hybridising two nucleic acid "primer molecules" to a nucleic acid "template molecule" which comprises a related starch synthase gene or related starch synthase genetic sequence or a functional part thereof, wherein the first of said primers comprises contiguous nucleotides derived from any one or more of SEQ ID NOS: 1, 3, 5, 7, 9,11-16, 37, or 38, and the second of said primers comprises contiguous nucleotides complementary to any one or more of SEQ ID NOS: 1, 3, 5, 7, 9,11-16, 37, or 38. Specific nucleic acid molecule copies of the template molecule are amplified enzymatically in a polymerase chain reaction, a technique that is well known to one skilled in the art.

In a preferred embodiment, each nucleic acid primer molecule is at least 10 nucleotides in length, more preferably at least 20 nucleotides in length, even more preferably at least 30 nucleotides in length, still more preferably at least 40 nucleotides in length and even still more preferably at least 50 nucleotides in length.

Furthermore, the nucleic acid primer molecules consists of a combination of any of the nucleotides adenine, cytidine, guanine, thymidine, or inosine, or functional analogues or derivatives thereof which are at least capable of being incorporated into a polynucleotide molecule without having an inhibitory effect on the hybridisation of said primer to the template molecule in the environment in which it is used.

Furthermore, one or both of the nucleic acid primer molecules may be contained in an aqueous mixture of other nucleic acid primer molecules, for example a mixture of degenerate primer sequences which vary from each other by one or more nucleotide substitutions or deletions. Alternatively, one or both of the nucleic acid primer molecules may be in a substantially pure form.

The nucleic acid template molecule may be in a recombinant form, in a virus particle, bacteriophage particle, yeast cell, animal cell, or a plant cell. Preferably, the nucleic acid template molecule is derived from a plant cell, tissue or organ, in particular a cell, tissue or organ derived from a wheat or barley plant or a progenitor species, or a relative thereto such as the diploid *Triticum tauschii* or other diploid, tetraploid, aneuploid, polyploid, nullisomic, or a wheat/barley addition line, amongst others.

Those skilled in the art will be aware that there are many known variations of the basic polymerase chain reaction procedure, which may be employed to isolate a related starch synthase gene or related starch synthase genetic sequence when provided with the nucleotide sequences set forth herein. Such variations are discussed, for example, in McPherson *et al* (1991). The present invention extends to the use of all such variations in the isolation of related starch synthase genes or related starch synthase genetic sequences using the nucleotide sequences embodied by the present invention.

15

As exemplified herein, the present inventors have isolated several wheat starch synthase genes using both hybridisation and polymerase chain reaction approaches, employing novel probes and primer sequences to do so.

- 20 Accordingly, a third aspect of the invention provides an isolated probe or primer comprising at least about 15 contiguous nucleotides in length derived from any one of SEQ ID NOS: 1, 3, 5, 7, 9,11-16, 37, or 38, or a complementary nucleotide sequence thereto.
- 25 Preferably, the probe or primer comprises a nucleotide sequence set forth in any one of SEQ ID NOS: 25 to 34.

The isolated nucleic acid molecule of the present invention may be introduced into and expressed in any cell, for example a plant cell, fungal cell, insect cell. animal cell, yeast cell or bacterial cell. Those skilled in the art will be aware of any modifications which are required to the codon usage or promoter sequences or other regulatory

sequences, in order for expression to occur in such cells.

A further aspect of the invention provides a method of assaying for the presence or absence of a starch synthase isoenzyme or the copy number of a gene encoding same in a plant, comprising contacting a biological sample derived from said plant with an isolated nucleic acid molecule derived from any one of SEQ ID NOS 1, 3, 5, 7, 9,11-16, 37, or 38, or any one of SEQ ID NOS: 25 to 34, or a complementary nucleotide sequence thereto for a time and under conditions sufficient for hybridisation to occur and then detecting said hybridisation using a detection means.

10

The detection means according to this aspect of the invention is any nucleic acid based hybridisation or amplification reaction.

The hexaploid nature of wheat prevents the straightforward identification of starch synthase allelic variants by hybridisation using the complete starch synthase-encoding sequence, because the similarities between the various alleles generally results in significant cross-hybridisation. Accordingly, sequence-specific hybridisation probes are required to distinguish between the various alleles. Similarly, wherein PCR is used to amplify specific allelic variants of a starch synthase gene, one or more sequence-specific amplification primers are generally required. As will be apparent from the amino acid sequence comparisons provided herein, such as in Figures 3 and 13, non-conserved regions of particular wheat starch synthase polypeptides are particularly useful for the design of probes and primers that are capable of distinguishing between one or more starch synthase polypeptide isoenzyme or allelic variant. The present invention clearly contemplates the design of such probes and primers based upon the sequence comparisons provided herein.

In the performance of this embodiment of the present invention, the present inventors particularly contemplate the identification of wheat starch synthase null alleles or alternatively, mutations wherein specific amino acids are inserted or deleted or substituted, compared to one or more of the wheat SSII or SSIII alleles disclosed

herein. Such null alleles and other allelic variants are readily identifiable using PCR screening which employs amplification primers based upon the nucleotide and amino acid sequences disclosed herein for SSII and/or SSIII. Once identified, the various mutations can be stacked or pyramided into one or more new wheat lines, such as by introgression and/or standard plant breeding and/or recombinant approaches (eg. transformation, transfection, etc) thereby producing a novel germplasm which exhibits altered starch properties compared to existing lines. DNA markers based upon the nucleotide and amino acid sequences disclosed herein for SSII and/or SSIII can be employed to monitor the stacking of genes into the new lines and to correlate the presence of particular genes with starch phenotypes of said lines.

In this regard, a significant advantage conferred by the present invention is the design of new DNA markers that reveal polymorphisms such as, for example, length polymorphisms, restriction site polymorphisms, and single nucleotide polymorphisms, amongst others, between wheat starch synthases and, in particular, between wheat GBSS and/or SSI and/or SSII and/or SSIII, or between allelic variants of one or more of said starch synthases, that can be used to identify the three genomes of hexaploid wheats (i.e., the A, B and D genomes).

20 Preferably, such DNA markers are derived from the intron region of a starch synthase gene disclosed herein, more preferably the wheat SSII and/or the wheat SSIII gene. Those skilled in the art will be aware that such regions generally have a higher degree of variation than in the protein-encoding regions and, as a consequence, are particularly useful in identifying specific allelic variants of a particular gene, such as allelic variants contained in any one of the three wheat genomes, or alternatively or in addition, for the purpose of distinguishing between wheat GBSS, SSI, SSII or SSIII genes.

A further approach contemplated by the present inventors is the design of unique isoenzyme-specific and/or allele-specific peptides based upon the amino acid sequence disclosed herein as SEQ ID NOS: 25 and/or SEQ ID NO: 4 and/or SEQ ID

NO: 6 and/or SEQ ID NO: 8 and/or SEQ ID NO: 10, which peptides are then used to produce polyclonal or monoclonal antibodies by conventional means. Alternatively, the genes encoding these polypeptides or unique peptide regions thereof can be introduced in an expressible format into an appropriate prokaryotic or eukaryotic expression system, where they can be expressed to produce the isoenzyme-specific and/or allele-specific peptides for antibody production. Such antibodies may also be used as markers for the purpose of both identifying parental lines and germplasms and monitoring the stacking of genes in new lines, using conventional immunoassays such as, for example, ELISA and western blotting.

10

A further aspect of the present invention utilises the above-mentioned nucleic acid based assay method in the breeding and/or selection of plants which express or do not express particular starch synthase isoenzymes or alternatively, which express a particular starch synthase isoenzyme at a particular level in one or more plant tissues.

15 This aspect clearly extends to the selection of transformed plant material which contains one or more of the isolated nucleic acid molecules of the present invention.

Yet another aspect of the present invention provides for the expression of the nucleic acid molecule of the present invention in a suitable host (e.g. a prokaryote or eukaryote) to produce full length or non-full length recombinant starch synthase gene products.

Hereinafter the term "starch synthase gene product" shall be taken to refer to a recombinant product of a starch synthase gene of the present invention.

25

Preferably, the recombinant starch synthase gene product comprises an amino acid sequence having the catalytic activity of a starch synthase polypeptide or a functional mutant, derivative part, fragment, or analogue thereof.

30 In a particularly preferred embodiment of the invention, the recombinant starch synthase gene product is selected from the following:

- (i) a wheat starch synthase II (wSSII) polypeptide, protein or enzyme or functional subunit thereof which comprises an amino acid sequence which is at least about 85% identical overall to an amino acid sequence set forth in any one of SEQ ID NOS: 2, 4, or 6;
- (ii) a wheat starch synthase III (wSSIII) polypeptide, protein or enzyme or functional subunit thereof which comprises an amino acid sequence which is at least about 85% identical overall to an amino acid sequence set forth in any one of SEQ ID NOS: 8 or 10; and
- (iii) a wheat starch synthase polypeptide, protein or enzyme or functional subunit thereof which comprises a conserved amino acid sequence having at least 25% identity to an amino acid sequence selected from the group consisting of:
 - (a) KVGGLGDVVTS;
 - (b) GHTVEVILPKY;

15

10

5

- (c) HDWSSAPVAWLYKEHY;
- (d) GILNGIDPDIWDPYTD;
- (e) DVPIVGIITRLTAQKG;
- (f) NGQVVLLGSA;
- (g)AGSDFIIVPSIFEPCGLTQLVAMRYGS;

20

- (h)TGGLVDTV;
- (i) a wheat starch synthase II (wSSII) polypeptide, protein or enzyme or functional subunit thereof which comprises an amino acid sequence which is at least about 85% identical overall to an amino acid sequence set forth in any one of SEQ ID NOS: 2, 4, or 6;

25

(ii) a wheat starch synthase III (wSSIII) polypeptide, protein or enzyme or functional subunit thereof which comprises an amino acid sequence which is at least about 85% identical overall to an amino acid sequence set forth in any one of SEQ ID NOS: 8 or 10;

30

(iii) a wheat starch synthase polypeptide, protein or enzyme or functional subunit thereof which comprises a conserved amino acid sequence having at

least 25% identity to an amino acid sequence selected from the group consisting of:

- (a) KVGGLGDVVTS;
- (b) GHTVEVILPKY;
- (c) HDWSSAPVAWLYKEHY;
- (d) GILNGIDPDIWDPYTD;
- (e) DVPIVGIITRLTAQKG;
- (f) NGQVVLLGSA;
- (g)AGSDFIIVPSIFEPCGLTQLVAMRYGS; and
- 10 (h)TGGLVDTV;
 - (i) KTGGLGDVAGA;
 - (j) GHRVMVVVPRY;
 - (k) NDWHTALLPVYLKAYY;
 - (I) GIVNGIDNMEWNPEVD;
- 15 (m) DVPLLGFIGRLDGQKG;
 - (n) DVQLVMLGTG;
 - (o)AGADALLMPSRF(E/V)PCGLNQLYAMAYGT; and
 - (p)VGG(V/L)RDTV.
- 20 Accordingly, the present invention clearly extends to homologues, analogues and derivatives of the amino acid sequences set forth herein as SEQ ID NOS: 2, 4, 6, 8 and 10.
- In the present context, "homologues" of an amino acid sequence refer to those polypeptides, enzymes or proteins which have a similar catalytic activity to the amino acid sequences described herein, notwithstanding any amino acid substitutions, additions or deletions thereto. A homologue may be isolated or derived from the same or another plant species as the species from which the polypeptides of the invention are derived.

30

[&]quot;Analogues" encompass polypeptides of the invention notwithstanding the occurrence

of any non-naturally occurring amino acid analogues therein.

"Derivatives" include modified peptides in which ligands are attached to one or more of the amino acid residues contained therein, such as carbohydrates, enzymes, proteins, polypeptides or reporter molecules such as radionuclides or fluorescent compounds. Glycosylated, fluorescent, acylated or alkylated forms of the subject peptides are particularly contemplated by the present invention. Additionally, derivatives of an amino acid sequence described herein which comprises fragments or parts of the subject amino acid sequences are within the scope of the invention, as are homopolymers or heteropolymers comprising two or more copies of the subject polypeptides. Procedures for derivatizing peptides are well-known in the art.

Substitutions encompass amino acid alterations in which an amino acid is replaced with a different naturally-occurring or a non-conventional amino acid residue. Such substitutions may be classified as "conservative", in which an amino acid residue contained in a starch synthase gene product is replaced with another naturally-occurring amino acid of similar character, for example Gly↔Ala, Val↔Ile↔Leu, Asp↔Glu, Lys↔Arg, Asn↔Gln or Phe↔Trp↔Tyr.

- 20 Substitutions encompassed by the present invention may also be "non-conservative", in which an amino acid residue which is present in a starch synthase gene product described herein is substituted with an amino acid with different properties, such as a naturally-occurring amino acid from a different group (eg. substituted a charged or hydrophobic amino acid with alanine), or alternatively, in which a naturally-occurring amino acid is substituted with a non-conventional amino acid.
 - Non-conventional amino acids encompassed by the invention include, but are not limited to those listed in Table 2.
- 30 Amino acid substitutions are typically of single residues, but may be of multiple residues, either clustered or dispersed.

Amino acid deletions will usually be of the order of about 1-10 amino acid residues, while insertions may be of any length. Deletions and insertions may be made to the N-terminus, the C-terminus or be internal deletions or insertions. Generally, insertions within the amino acid sequence will be smaller than amino- or carboxy-terminal fusions and of the order of 1-4 amino acid residues.

A homologue, analogue or derivative of a starch synthase gene product as referred to herein may readily be made using peptide synthetic techniques well-known in the art, such as solid phase peptide synthesis and the like, or by recombinant DNA manipulations. Techniques for making substituent mutations at pre-determined sites using recombinant DNA technology, for example by M13 mutagenesis, are also well-known. The manipulation of nucleic acid molecules to produce variant peptides, polypeptides or proteins which manifest as substitutions, insertions or deletions are well-known in the art.

15

The starch synthase gene products described herein may be derivatized further by the inclusion or attachment thereto of a protective group which prevents, inhibits or slows proteolytic or cellular degradative processes. Such derivatization may be useful where the half-life of the subject polypeptide is required to be extended, for example to 20 increase the amount of starch produced in the endosperm or alternatively, to increase the amount of protein produced in a bacterial or eukaryotic expression system. Examples of chemical groups suitable for this purpose include, but are not limited to, any of the non-conventional amino acid residues listed in Table 2, in particular a Dstereoisomer or a methylated form of a naturally-occurring amino acid listed in Table 25 1. Additional chemical groups which are useful for this purpose are selected from the list comprising aryl or heterocyclic N-acyl substituents, polyalkylene oxide moieties, desulphatohirudin muteins, alpha-muteins, alpha-aminophosphonic acids, watersoluble polymer groups such as polyethylene glycol attached to sugar residues using hydrazone or oxime groups, benzodiazepine dione derivatives, glycosyl groups such 30 as beta-glycosylamine or a derivative thereof, isocyanate conjugated to a polyol functional group or polyoxyethylene polyol capped with diisocyanate, amongst others. Similarly, a starch synthase gene product or a homologue, analogue or derivative

thereof may be cross-linked or fused to itself or to a protease inhibitor peptide, to reduce susceptibility of said molecule to proteolysis.

In a particularly preferred embodiment, the percentage similarity to in any one of SEQ 5 ID NOS: 2, 4, 6, 8 or 10 is at least about 90%, more preferably at least about 95%, even more preferably at least about 97% and even more preferably at least about 98%, or about 99% or 100%.

In a related embodiment, the present invention provides a "sequencably pure" form of 10 the amino acid sequence described herein. "Sequencably pure" is hereinbefore described as substantially homogeneous to facilitate amino acid determination.

In a further related embodiment, the present invention provides a "substantially homogeneous" form of the subject amino acid sequence, wherein the term 15 "substantially homogeneous" is hereinbefore defined as being in a form suitable for interaction with an immunologically interactive molecule. Preferably, the polypeptide is at least 20% homogeneous, more preferably at least 50% homogeneous, still more preferably at least 75% homogeneous and yet still more preferably at least about 95-100% homogeneous, in terms of activity per microgram of total protein in the protein preparation.

To produce the recombinant polypeptide of the present invention, the coding region of a starch synthase gene described herein or a functional homologue, analogue or derivative thereof is placed operably in connection with a promoter sequence in the sense orientation, such that a starch synthase gene product is capable of being expressed under the control of said promoter sequence.

In the present context, the term "in operable connection with" means that expression of the isolated nucleotide sequence is under the control of the promoter sequence with which it is connected, regardless of the relative physical distance of the sequences from each other or their relative orientation with respect to each other.

Reference herein to a "promoter" is to be taken in its broadest context and includes the transcriptional regulatory sequences of a classical genomic gene, including the TATA box which is required for accurate transcription initiation, with or without a CCAAT box sequence and additional regulatory elements (i.e. upstream activating sequences, enhancers and silencers) which alter gene expression in response to developmental and/or external stimuli, or in a tissue-specific manner. A promoter is usually, but not necessarily, positioned upstream or 5', of a structural gene, the expression of which it regulates. Furthermore, the regulatory elements comprising a promoter are usually positioned within 2 kb of the start site of transcription of the gene.

10

In the present context, the term "promoter" is also used to describe a synthetic or fusion molecule, or derivative which confers, activates or enhances expression of a structural gene or other nucleic acid molecule, particularly in a plant cell and more preferably in a wheat plant or other monocotyledonous plant cell, tissue or organ.

15 Preferred promoters may contain additional copies of one or more specific regulatory elements, to further enhance expression and/or to alter the spatial expression and/or temporal expression. For example, regulatory elements which confer copper inducibility may be placed adjacent to a heterologous promoter sequence, thereby conferring copper inducibility on the expression of said molecule.

20

Those skilled in the art will be aware that in order to obtain optimum expression of the starch synthase gene of the present invention, it is necessary to position said gene in an appropriate configuration such that expression is controlled by the promoter sequence. Promoters are generally positioned 5' (upstream) to the genes that they control. In the construction of heterologous promoter/structural gene combinations it is generally preferred to position the promoter at a distance from the gene transcription start site that is approximately the same as the distance between that promoter and the gene it controls in its natural setting, i.e., the gene from which the promoter is derived. As is known in the art, some variation in this distance can be accommodated without loss of promoter function. Similarly, the preferred positioning of a regulatory sequence element with respect to a heterologous gene to be placed under its control is defined by the positioning of the element in its natural setting, i.e., the genes from

which it is derived. Again, as is known in the art, some variation in this distance can also occur.

Examples of promoters suitable for expressing the starch synthase gene of the present invention include viral, fungal, bacterial, animal and plant derived promoters capable of functioning in prokaryotic or eukaryotic cells. Preferred promoters are those capable of regulating the expression of the subject starch synthase genes in plants cells, fungal cells, insect cells, yeast cells, animal cells or bacterial cells, amongst others. Particularly preferred promoters are capable of regulating expression of the subject nucleic acid molecules in monocotyledonous plant cells. The promoter may regulate the expression of the said molecule constitutively, or differentially with respect to the tissue in which expression occurs or, with respect to the developmental stage at which expression occurs, or in response to external stimuli such as physiological stresses, or plant pathogens, or metal ions, amongst others.

15

Accordingly, strong constitutive promoters are particularly preferred for the purposes of the present invention.

Examples of preferred promoters include the bacteriophage T7 promoter, 20 bacteriophage T3 promoter, SP6 promoter, *lac* operator-promoter, *tac* promoter, SV40 late promoter, SV40 early promoter, RSV-LTR promoter, CMV IE promoter, CaMV 35S promoter, SCSV promoter, SCBV promoter and the like.

Particularly preferred promoters operable in plant cells include, for example the CaMV 35S promoter, and the SCBV promoter. Those skilled in the art will readily be aware of additional promoter sequences other than those specifically described.

In a particularly preferred embodiment, the promoter may be derived from a genomic starch synthase gene. Preferably, the promoter sequence comprises nucleotide sequences that are linked *in vivo* to nucleotide sequences set forth in any one of SEQ ID NOs: 1, 3, 5, 7, 9,11-16, 37, or 38. By "linked *in vivo*" means that the promoter is present in its native state in the genome of a wheat plant where it controls expression

of the starch synthase gene of the present invention.

Conveniently, genetic constructs are employed to facilitate expression of a starch synthase genetic sequence of the present invention or a functional derivative, part, 5 homologue, or analogue thereof. To produce a genetic construct, the starch synthase gene of the invention is inserted into a suitable vector or episome molecule, such as a bacteriophage vector, viral vector or a plasmid, cosmid or artificial chromosome vector which is capable of being maintained and/or replicated and/or expressed in the host cell, tissue or organ into which it is subsequently introduced. The said genetic construct comprises the subject nucleic acid molecule placed operably under the control of a promoter sequence and optionally, a terminator sequence.

The term "terminator" refers to a DNA sequence at the end of a transcriptional unit which signals termination of transcription. Terminators are 3'-non-translated DNA sequences containing a polyadenylation signal, which facilitates the addition of polyadenylate sequences to the 3'-end of a primary transcript. Terminators active in bacteria, yeasts, animal cells and plant cells are known and described in the literature. They may be isolated from bacteria, fungi, viruses, animals and/or plants.

- 20 Examples of terminators particularly suitable for use in expressing the nucleic acid molecule of the present invention in plant cells include the nopaline synthase (NOS) gene terminator of *Agrobacterium tumefaciens*, the terminator of the Cauliflower mosaic virus (CaMV) 35S gene, and the *zein* gene terminator from *Zea mays*.
- 25 Genetic constructs will generally further comprise one or more origins of replication and/or selectable marker gene sequences.

The origin of replication can be functional in a bacterial cell and comprise, for example, the pUC or the CoIE1 origin. Alternatively, the origin of replication is operable in a eukaryotic cell, tissue and more preferably comprises the 2 micron ($2\mu m$) origin of replication or the SV40 origin of replication.

As used herein, the term "selectable marker gene" includes any gene which confers a phenotype on a cell in which it is expressed to facilitate the identification and/or selection of cells which are transfected or transformed with a genetic construct of the invention or a derivative thereof.

Suitable selectable marker genes contemplated herein include the ampicillin-resistance gene (Amp'), tetracycline-resistance gene (Tc'), bacterial kanamycin-resistance gene (Kan'), is the zeocin resistance gene (Zeocin is a drug of bleomycin family which is trademark of InVitrogen Corporation), the *AURI-C* gene which confers resistance to the antibiotic aureobasidin A, phosphinothricin-resistance gene, neomycin phosphotransferase gene (*npt*II), hygromycin-resistance gene, β-glucuronidase (GUS) gene, chloramphenicol acetyltransferase (CAT) gene, green fluorescent protein-encoding gene or the luciferase gene, amongst others. Those skilled in the art will be aware of other selectable marker genes useful in the performance of the present invention and the subject invention is not limited by the nature of the selectable marker gene.

Usually, an origin of replication or a selectable marker gene suitable for use in bacteria is physically-separated from those genetic sequences contained in the genetic construct which are intended to be expressed or transferred to a eukaryotic cell, or integrated into the genome of a eukaryotic cell.

Standard methods can be used to introduce genetic constructs into a cell, tissue or organ for the purposes of modulating gene expression. Particularly preterred methods suited to the introduction of synthetic genes and genetic constructs comprising same to eukaryotic cells include liposome-mediated transfection or transformation, transformation of cells with attenuated virus particles or bacterial cells and standard procedures for the transformation of plant and animal cells, tissues, organs or organisms. Any standard means may be used for their introduction including cell mating, transformation or transfection procedures known to those skilled in the art or described by Ausubel *et al.* (1992).

In a further embodiment of the present invention, the starch synthase genes of the present invention and genetic constructs comprising same are adapted for integration into the genome of a cell in which it is expressed. Those skilled in the art will be aware that, in order to achieve integration of a genetic sequence or genetic construct into the genome of a host cell, certain additional genetic sequences may be required. In the case of plants, left and right border sequences from the T-DNA of the *Agrobacterium tumefaciens* Ti plasmid will generally be required.

The invention further contemplates increased starch and/or modified starch composition in transgenic plants expressing the nucleic acid molecule of the invention in the sense orientation such that the activity of one or more starch synthase isoenzymes is increased therein. By increasing the level of one or more starch synthase isoenzymes, the deposition of starch in the amyloplast or chloroplast is increased and/or a modified starch granule structure is produced and/or starch composition is modified and/or the amylose/amylopectin ratio is altered in the plant.

Wherein it is desired to increase the synthesis of a particular starch synthase isoenzyme in a plant cell, the coding region of a starch synthase gene is placed operably behind a promoter, in the sense orientation, such that said starch synthase is expressed under the control of said promoter sequence. In a preferred embodiment, the starch synthase genetic sequence is a starch synthase genomic sequence, cDNA molecule or protein-coding sequence.

Wherein it is desirable to reduce the level of a particular starch synthase isoenzyme
in a plant cell, the nucleic acid molecule of the present invention can be expressed in
the antisense orientation, as an antisense molecule or a ribozyme molecule, under the
control of a suitable promoter.

Alternatively, the nucleic acid molecule of the present invention may also be expressed in the sense orientation, in the form of a co-suppression molecule, to reduce the level of a particular starch synthase isoenzyme in a plant cell. As will be known to those skilled in the art, co-suppression molecules that comprise inverted repeat sequences

of a target nucleic acid molecule provide optimum efficiency at reducing expression of said target nucleic acid molecule and, as a consequence, the present invention clearly contemplates the use of inverted repeat sequences of any one or more of the starch synthase genetic sequences exemplified herein, or inverted repeat sequences of a homologue, analogue or derivative of said starch synthase genetic sequences, to reduce the level of a starch synthase isoenzyme in a plant.

The expression of an antisense, ribozyme or co-suppression molecule comprising a starch synthase gene in a cell such as a plant cell, fungal cell, insect cell. animal cell, 10 yeast cell or bacterial cell, may also increase the availability of carbon as a precursor for a secondary metabolite other than starch (e.g. sucrose or cellulose). By targeting the endogenous starch synthase gene, expression is diminished, reduced or otherwise lowered to a level that results in reduced deposition of starch in the amyloplast or chloroplast and/or leads to modified starch granule structure and/or composition and/or altered amylose/amylopectin ratio.

Accordingly, a further aspect of the present invention provides a method of modifying the starch content and/or starch composition of one or more tissues or organs of a plant, comprising expressing therein a sense molecule, antisense molecule, ribozyme molecule, co-suppression molecule, or gene-targeting molecule having at least about 85% nucleotide sequence identity to any one of any one of SEQ ID NOS: 1, 3, 5, 7, 9,11-16, 37, or 38, or a complementary nucleotide sequence thereto for a time and under conditions sufficient for the enzyme activity of one or more starch synthase isoenzymes to be modified. This aspect of the invention clearly extends to the introduction of the sense molecule, antisense molecule, ribozyme molecule, co-suppression molecule, or gene-targeting molecule to isolated plant cells, tissues or organs or organelles by cell fusion or transgenic means and the regeneration of intact plants therefrom.

30 Co-suppression is the reduction in expression of an endogenous gene that occurs when one or more copies of said gene, or one or more copies of a substantially similar

gene are introduced into the cell, preferably in the form of an inverted repeat structure.

The present inventors have discovered that the genetic sequences disclosed herein are capable of being used to modify the level of starch when expressed, particularly when expressed in plants cells. Accordingly, the present invention clearly extends to the modification of starch biosynthesis in plants, in particular wheat or barley plants or a progenitor plant species, or a relative thereto such as the diploid *Triticum tauschii* or other diploid, tetraploid, aneuploid, polyploid, nullisomic, or a wheat/barley addition line, amongst others.

10

In particular, the present invention contemplates decreased starch production and/or modified starch composition in transgenic plants expressing the nucleic acid molecule of the invention in the antisense orientation or alteratively, expressing a ribozyme or co-suppression molecule comprising the nucleic acid sequence of the invention such that the activity of one or more starch synthase isoenzymes is decreased therein.

In the context of the present invention, an antisense molecule is an RNA molecule which is transcribed from the complementary strand of a nuclear gene to that which is normally transcribed to produce a "sense" mRNA molecule capable of being translated into a starch synthase polypeptide. The antisense molecule is therefore complementary to the mRNA transcribed from a sense starch synthase gene or a part thereof. Although not limiting the mode of action of the antisense molecules of the present invention to any specific mechanism, the antisense RNA molecule possesses the capacity to form a double-stranded mRNA by base pairing with the sense mRNA, which may prevent translation of the sense mRNA and subsequent synthesis of a

30 Ribozymes are synthetic RNA molecules which comprise a hybridising region complementary to two regions, each of at least 5 contiguous nucleotide bases in the target sense mRNA. In addition, ribozymes possess highly specific endoribonuclease

polypeptide gene product.

25

activity, which autocatalytically cleaves the target sense mRNA. A complete description of the function of ribozymes is presented by Haseloff and Gerlach (1988) and contained in International Patent Application No. WO89/05852.

- 5 The present invention extends to ribozyme which target a sense mRNA encoding a native starch synthase gene product, thereby hybridising to said sense mRNA and cleaving it, such that it is no longer capable of being translated to synthesise a functional polypeptide product.
- 10 According to this embodiment, the present invention provides a ribozyme or antisense molecule comprising at least 5 contiguous nucleotide bases derived from any one of SEQ ID NOS: 1, 3, 5, 7, 9,11-16, 37, or 38, or a complementary nucleotide sequence thereto or a homologue, analogue or derivative thereof, wherein said antisense or ribozyme molecule is able to form a hydrogen-bonded complex with a sense mRNA encoding a starch synthase gene product to reduce translation thereof.

In a preferred embodiment, the antisense or ribozyme molecule comprises at least 10 to 20 contiguous nucleotides derived from any one of SEQ ID NOS: 1, 3, 5, 7, 9,11-16, 37, or 38, or a complementary nucleotide sequence thereto or a homologue, analogue or derivative thereof. Although the preferred antisense and/or ribozyme molecules hybridise to at least about 10 to 20 nucleotides of the target molecule, the present invention extends to molecules capable of hybridising to at least about 50-100 nucleotide bases in length, or a molecule capable of hybridising to a full-length or substantially full-length mRNA encoded by a starch synthase gene.

Those skilled in the art will be aware of the necessary conditions, if any, for selecting or preparing the antisense or ribozyme molecules of the invention.

It is understood in the art that certain modifications, including nucleotide substitutions amongst others, may be made to the antisense and/or ribozyme molecules of the present invention, without destroying the efficacy of said molecules in inhibiting the expression of a starch synthase gene. It is therefore within the scope of the present

invention to include any nucleotide sequence variants, homologues, analogues, or fragments of the said gene encoding same, the only requirement being that said nucleotide sequence variant, when transcribed, produces an antisense and/or ribozyme molecule which is capable of hybridising to a sense mRNA molecule which 5 encodes a starch synthase gene product.

Gene targeting is the replacement of an endogenous gene sequence within a cell by a related DNA sequence to which it hybridises, thereby altering the form and/or function of the endogenous gene and the subsequent phenotype of the cell. According to this embodiment, at least a part of the DNA sequence defined by any one of SEQ ID NOS: 1, 3, 5, 7, 9,11-16, 37, or 38 may be introduced into target cells containing an endogenous gene that encodes a particular starch synthase isoenzyme, thereby replacing said endogenous gene. According to this embodiment, the polypeptide product of the gene targetting molecule generally encodes a starch synthase isoenzyme that possesses different catalytic activity to the polypeptide product of the endogenous gene, producing in turn modified starch content and/or composition in the target cell.

The present invention extends to genetic constructs designed to facilitate expression of a sense molecule, an antisense molecule, ribozyme molecule, co-suppression molecule, or gene targeting molecule of the present invention. The requirements for expressing such molecules are similar to those for expressing a recombinant polypeptide as described *supra*.

25 The present invention further extends to the production and use of starches and proteins produced using the novel genes described herein. Modified starches produced by plants which have been selected using marker-assisted selection, or alternatively, produced by transgenic plants carrying the introduced starch synthase genes, are particularly suitable for use in food products, such as, for example, flour and flour-based products, in particular those products selected from the group consisting of: flour-based sauce; leavened bread; unleavened bread; pasta, noodle; cereal; snack food; cake; and pastry. Modified proteins are also suitable for use in non-

food products, such as, for example, those non-food products selected from the group consisting of: films; coatings; adhesives; building materials; and packaging materials.

Additionally, starch hydrolysates or undegraded starches are both useful in industry and, as a consequence, the present invention is useful in applications relating to the use of both starch hydrolysates and undegraded starches. By "starch hydrolysates" is meant the glucose and glucan components that are obtainable by the enzymatic or chemical degradation of starch in chemical modifications and processes, such as fermentation.

10

Starch produced by plants expressing the sense, antisense, co-suppression, genetargetting or ribozyme molecules of the present invention may exhibit modified viscosities and/or gelling properties of its glues when compared to starch derived from wild-type plants. Native starches produced by the performance of the inventive method 15 are useful as an additive in the following: (i) foodstuffs, for the purpose of increasing the viscosity or gelling properties of food; (ii) in non-foodstuffs, such as an adjuvant or additive in the paper and cardboard industries, for retention or as a size filler, or as a solidifying substance or for dehydration, or film coating, amongst others; (iii) in the adhesive industry as pure starch glue, as an additive to synthetic resins and polymer 20 dispersions, or as an extenders for synthetic adhesives; (iv) in the textile and textile care industries to strengthen woven products and reduce burring or to thicken dye pastes; (v) in the building industry, such as a binding agent in the production of gypsum plaster boards, or for the deceleration of the sizing process; (vi) in ground stabilization or for the temporary protection of ground particles against water in artificial 25 earth shifting; (vii) as a wetting agent in plant protectants and fertilizers; (viii) as a binding agent in drugs, pharmaceuticals and medicated foodstuff such as vitamins, etc; (ix) as an additive in coal and briquettes; (xi) as a flocculent in the processing of coal ore and slurries; (xii) as a binding agent in casting processes to increase flow resistance and improve binding strength; and (xiii) to improve the technical and optical 30 quality of rubber and plastic products. Additional applications are not excluded.

A further aspect of the present invention provides an isolated promoter that is operable

in the endosperm of a monocotyledonous plant cell, tissue or organ, and preferably in the endosperm of a monocotyledonous plant cell, tissue or organ. According to this embodiment, it is preferred that the promoter is derived from a starch synthase gene of the present invention, such as a promoter that is linked *in vivo* to any one of SEQ 5 ID NOS: 1, 3, 5, 7, 9,11-16, 37, or 38, or a complementary nucleotide sequence thereto.

In a particularly preferred embodiment, the promoter comprises a nucleotide sequence derivable from the 5'-upstream region of SEQ ID NO: 11 or SEQ ID NO: 37 or SEQ ID NO: 38, or a complementary nucleotide sequence thereto, an more preferably comprises nucleotides 1 to about 287 of SEQ ID NO: 11, or nucleotides 1 to about 1416 of SEQ ID NO: 37, or nucleotides 1 to about 973 of SEQ ID NO: 38, or a complementary nucleotide sequence thereto. The present invention clearly extends to promoter sequences that comprise further nucleotide sequences in the region 15 upstream of the stated nucleotide sequence that are linked *in vivo* to said nucleotide sequence in the wheat genome.

In a related embodiment, the promoter sequence of the present invention will further comprise an exon sequence derived from a starch synthase gene, such as, for example, an intron I sequence described herein, or a complementary nucleotide sequence thereto. Those skilled in the art will be aware that the inclusion of such nucleotide sequences may increase the expression of a heterologous structural gene, the expression of which is controlled thereby. Preferred intron I sequences include, for example, nucleotide sequences in the region of about position 1744 to about 1847 of SEQ ID NO: 37, and/or about position 1100 to about position 2056 of SEQ ID NO: 38. Additional sequences comprising intron/exon junction boundary sequences which are readily determined by those skilled in the art are not excluded.

The present invention further extends to the expression of any structural gene operably under the control of the starch synthase promoter sequence exemplified herein or a functional homologue, analogue or derivative of said promoter sequence.

As with other embodiments described herein for expression in cells, a genetic construct may be employed to effect said expression and the present invention clearly extends to said genetic constructs.

- 5 The polypeptide encoded by the structural gene component may be a reporter molecule which is encoded by a gene such as the bacterial β-glucuronidase gene or chloramphenical acetyltransferase gene or alternatively, the firefly luciferase gene. Alternatively, wherein it is desirable to alter carbon partitioning within the endosperm, the polypeptide may be an enzyme of the starch sucrose biosynthetic pathways.

 10 Preferably, the promoter sequence is used to regulate the expression of one or more of the starch synthase genes of the present invention or a sense, antisense, ribozyme, co-suppression or gene-targetting molecule comprising or derived from same.
- Recombinant DNA molecules carrying the aforesaid nucleic acid molecule of the 15 present invention or a sense, antisense, ribozyme, gene-targetting or co-suppression molecule and/or genetic construct comprising same, may be introduced into plant tissue, thereby producing a "transgenic plant", by various techniques known to those skilled in the art. The technique used for a given plant species or specific type of plant Means for introducing tissue depends on the known successful techniques. 20 recombinant DNA into plant tissue include, but are not limited to, transformation (Paszkowski et al., 1984), electroporation (Fromm et al., 1985), or microinjection of the DNA (Crossway et al., 1986), or T-DNA-mediated transfer from Agrobacterium to the plant tissue. Representative T-DNA vector systems are described in the following references: An et al. (1985); Herrera-Estrella et al. (1983a, b); Herrera-Estrella et al. 25 (1985). Once introduced into the plant tissue, the expression of the introduced gene may be assayed in a transient expression system, or it may be determined after selection for stable integration within the plant genome. Techniques are known for the in vitro culture of plant tissue, and in a number of cases, for regeneration into whole plants. Procedures for transferring the introduced gene from the originally transformed 30 plant into commercially useful cultivars are known to those skilled in the art.

In general, plants are regenerated from transformed plant cells or tissues or organs on

hormone-containing media and the regenerated plants may take a variety of forms, such as chimeras of transformed cells and non-transformed cells; clonal transformants (e.g., all cells transformed to contain the expression cassette); grafts of transformed and untransformed tissues (e.g., a transformed root stock grafted to an untransformed scion in citrus species). Transformed plants may be propagated by a variety of means, such as by clonal propagation or classical breeding techniques. For example, a first generation (or T1) transformed plants may be selfed to give homozygous second generation (or T2) transformed plants, and the T2 plants further propagated through classical breeding techniques.

10

Accordingly, a still further aspect of the present invention contemplates a transgenic plant comprising an introduced sense molecule, antisense molecule, ribozyme molecule, co-suppression molecule, or gene-targeting molecule having at least about 85% nucleotide sequence identity to any one of any one of SEQ ID NOS: 1, 3, 5, 7, 15 9,11-16, 37, or 38, or a complementary nucleotide sequence thereto or a genetic construct comprising same. The present invention further extends to those plant parts, propagules and progeny of said transgenic plant or derived therefrom, the only requirement being that said propagules and progeny also carry the introduced nucleic acid molecule(s).

20

The present invention is further described by reference to the following non-limiting examples.

EXAMPLE 1

Plant material

25 Genetic stocks of hexaploid bread wheat *Triticum aestivum* cv. Chinese Spring with various chromosome additions and deletions were kindly supplied by Dr E. Lagudah (CSIRO Plant Industry, Canberra) and derived from stocks described in Sears and Miller (1985). The hexaploid (*Triticum aestivum*) wheats cv Gabo and cv Wyuna were grown in controlled growth cabinet conditions (18°C day and 1°3 C night, with a photoperiod of 16 h). Wheat leaves and florets prior to anthesis, and endosperm were collected over the grain filling period, immediately frozen in liquid nitrogen and stored

at -80°C until required.

EXAMPLE 2

Gel Electrophoresis, Antibodies and Immunoblotting

5 Monoclonal antibodies against the Sgp-1 proteins, and their use in the immunoblotting of SDS-PAGE gels have been described previously (Rahman *et al.*, 1995).

EXAMPLE 3

Preparation of total RNA from wheat

10 Total RNA was isolated from the leaf, floret and endosperm tissues of wheat essentially as described by Higgins *et al.* (1976) or Rahman *et al.* (1998). RNA was quantified by UV absorption and by separation in 1.4% (w/v) agarose-formaldehyde gels which were then visualised under UV light after staining with ethidium bromide.

EXAMPLE 4

Construction and screening of cDNA libraries

A first cDNA library, an expression cDNA library of wheat endosperm, was constructed from mRNA isolated from wheat cv Chinese Spring. RNA from 5, 7, 9, 11 and 13 days after anthesis was pooled and random primers were used for the first strand of cDNA synthesis. Monoclonal antibodies against 100 -105 kDa proteins in wheat starch granules (Rahman *et al.*, 1995) were used for immunoscreening of the expression cDNA library.

A second cDNA library was constructed from the endosperm mRNA of the hexaploid 25 Triticum aestivum cultivar Wyuna, 8 - 12 days after anthesis, as described by Rahman et al. (1997). This library was screened with a 85-bp cDNA fragment, wSSIIp1, which was obtained by immunoscreening of the expression cDNA library as described above. The wSSIIp1 probe corresponded to nucleotide positions 988 to 1072 of wSSIIB (SEQ ID NO:1) at the hybridisation conditions as described earlier (Rahman et al., 1998).

30

15

A third cDNA library was constructed from RNA from the endosperm of the hexaploid

Triticum aestivum cultivar Rosella as described by Rahman et al. (1997). This library was screened with a 347-bp cDNA fragment, wSSIIIp1 for the first screening, and a 478-bp cDNA fragment wSSIIIp3 for the second screening using the hybridisation conditions described herein.

5

EXAMPLE 5

Construction and screening of Triticum tauschii genomic library

The genomic library used in this study, prepared from *Triticum tauschii*, var strangulata, (Accession Number CPI 110799), has been described in Rahman *et al.*, 10 (1997). Of all the accessions of *T. tauschii* surveyed, DNA marker analysis suggests that the genome of CPI 110799 is the most closely related to the D genome of hexaploid wheat (Lagudah *et al.*, 1991).

Hybridisations were carried out in 25% formamide, 6 x SSC, 0.1% SDS at 42°C for 16 hours, then filters were washed 3 times using 2 x SSC containing 0.1% SDS at 65°C for 1 hour per wash.

For the isolation of a genomic wSSII clone, the probe comprised the PCR-derived DNA fragment wSSIIp2 and positive-hybridising plaques were digested using the restriction enzyme *Bam*HI, separated on a 1% agarose gel, transferred to nitrocellulose membrane and hybridised to probe wSSIIp4 comprising nucleotides 1 to 367 of the wSSIIA cDNA clone, using the conditions described by Rahman *et al.* (1997).

For the isolation of a genomic wSSIII clone, plaques hybridising to the PCR-derived 25 DNA fragment wSSIIIp1 from clone wSSIII.B3 (i.e. nucleotides 3620 to 3966 of SEQ ID NO:7) were selected and re-screened until plaque-purified.

EXAMPLE 6

DNA sequencing and analysis

30 DNA sequencing was performed using the automated ABI system with dye terminators as described by the manufacturers. DNA sequences were analysed using the GCG

suite of programs (Devereaux et al., 1984).

EXAMPLE 7

DNA and RNA analysis

5 DNA was isolated and analysed as previously described (Maniatis *et al.*, 1982; Rahman *et al.*, 1998). Approximately 20 μg of DNA was digested with restriction enzymes *Bam*HI, *Dra*I and *Eco*RI, separated on a 1% agarose gel and transferred to reinforced nitrocellulose membranes (BioRad) and hybridised with ³²P-labelled DNA probe, either wSSIIIp1, corresponding to nucleotides 3620 to 3966 of the wheat SSIII gene, or alternatively, with the entire wSSII cDNA clone. DNA fragment probes were labelled with the Rapid Multiprime DNA Probe Labelling Kit (Promega).

The hybridisation and wash conditions were performed as described in Rahman *et al.* (1997). For RNA analysis, 10 μg of total RNA was separated in a 1.4% agarose-formaldehyde gel and transferred to a Hybond N+ membrane (Amersham), and hybridised with cDNA probe at 42°C as previously described by Khandjian *et al.*, (1987) or Rahman *et al.*, (1998). After washing for 30 minutes at 65°C with 2x SSC, 0.1% SDS; followed by three washes of 40 minutes at 65°C with 0.2x SSC, 1% SDS, the membranes were visualised by overnight exposure at -80°C with Kodak MR X-ray 20 film.

EXAMPLE 8

Expression of wheat Sgp-1 polypeptides in the wheat endosperm

The development and use of monoclonal antibodies to the Sgp-1 proteins has been described previously (Rahman *et al.*, 1995). These antibodies were used by the present inventors to characterise the expression and localisation of the Sgp-1 proteins.

The proteins found in the matrix of the wheat starch granule are shown in Figure 1, lane 1. The remaining lanes show an immunoblot of proteins from the soluble phase 30 (Figure 1; lanes 2-4) and the starch granule (Figure 1; lanes 5-7), respectively, following SDS-PAGE. In addition to cross-reactivity with the 100-105 kDa proteins, a

weak cross-reaction with a 50 kDa protein in both the granule and the soluble fractions were observed (Figure 1). The Sgp-1 polypeptides are present in the starch granule throughout endosperm development (Figure 1; lanes 5-7, also see Rahman *et al.*, 1995). However, as the endosperms matures, there is a reduction in the amount of Sgp-1 protein found in the soluble fraction. Lane 4 shows that by 25 days after anthesis, the level of these proteins in the soluble fraction is substantially reduced. This observation is consistent with previous results from Rahman *et al.*, (1995), who suggested that the Sgp-1 proteins were exclusively granule bound based on studies of granules from endosperm in mid-late stages endosperm development, however, these results suggest that the partitioning of these proteins between the granule and the soluble phase changes during development.

EXAMPLE 9

Isolation of cDNA clones encoding wheat starch synthase II (wSSII) proteins

Monoclonal antibodies against Sgp-1 polypeptides (Rahman et al., 1995) were used to probe the expression library described in Example 4 (i.e. the first cDNA library). Three immunoreactive plaques were identified and sequenced. One clone, designated wSSIIp1, contained an 85-bp cDNA insert with homology to maize SSIIa (Harn et al., 1998).

20 .

DNA from the wSSIIp1 clone was used as a probe in the hybridisation screening of the second cDNA library, prepared from *Triticum aestivum* cultivar Wyuna endosperm RNA as described in Example 4. Ten hybridising cDNA clones were selected and sequenced. On the basis of the DNA sequences obtained, the 10 cDNA clones can be classified into three groups. Group 1 contains 7 cDNA clones, group 2 contains 2 cDNA clones and group 3 contains 1 cDNA clone.

The longest clone from group 1 (designated wSSIIB) is 2939 bp in length (SEQ ID NO:1) and encodes a 798 -amino acid polypeptide in the region from nucleotide position 176 to nucleotide position 2569 (SEQ ID NO:2).

The longest clone from group 2 (designated wSSIIA) is 2842 bp in length (SEQ ID NO:3) and encodes a 799 -amino acid polypeptide in the region from nucleotide position 89 to nucleotide position 2485 (SEQ ID NO:4).

5 The cDNA from group 3 is a partial cDNA clone (designated wSSIID), which is 2107 bp in length (SEQ ID NO:5) and encodes a 597 -amino acid polypeptide in the region from nucleotide position 1 to nucleotide position 1791 (SEQ ID NO:6). The encoded polypeptide is approximately a 200 amino acid residues shorter than that of polypeptides encoded by longest clones of group 1 or 2 clones, respectively (Figure 10 2).

Comparison of the three cDNA clones, wSSIIB, wSSIIA and wSSIID shows that they share 95.7% to 96.6% identity at the amino acid level, with variation at 44 amino acid positions between the three sequences (Figure 3). Of the 44 amino acid changes between these sequences, 31 changes occur in the N-terminal region (residues 1 to 300), 10 changes occur in the central region (residues 301 to 729) and 3 changes occur in the C-terminal region (residues 730 to 799). The wSSIIA polypeptide (799 amino acid residues) and wSSIIB polypeptide (798 amino acid residues) sequences differ in length by a single amino acid residue, due to the deletion of Asp-69 from the wSSIIB polypeptide sequence.

A comparison of the nucleotide sequences of the wSSIA, wSSIIB and wSSIID cDNA clones with the nucleotide sequence of the wSSIIp1 cDNA obtained by immunoscreening confirms that the wSSIIp1 sequence is found in each cDNA (Figure 3). The peptide encoded by the wSSIIp1 cDNA clone corresponds to amino acid residues in the region from residue 272 to residue 298 of the wSSIIA polypeptide, and to amino acid residues in the region from residue 271 to residue 297 of the wSSIIB polypeptide (see Figure 3). Thus, the peptide epitope encoded by wSSIIp1 that reacts with the anti-Sgp-1 monoclonal antibodies can therefore be localised to this region of the wSSIIA and wSSIIB polypeptides and to the corresponding region of the wSSIID polypeptide.

Notwithstanding that a region having about 63% amino acid sequence identity to the peptide epitope encoded by clone wSSIIp1 is found in the maize SSIIa polypeptide (Figure 3), the degree of amino acid conservation between maize and wheat sequences in this region of the polypeptide is insufficient for immunological cross-reactivity to occur between these species using the monoclonal antibodies to the wheat Sgp-1 proteins described by Rahman *et al.* (1995). Additionally, this peptide epitope is not found in granule-bound starch synthases, SSI, or SSIII (data not shown).

The wSSIIB cDNA (SEQ ID NO:1) encodes an amino acid sequence comprising the peptide motif AAGKKDAGID (SEQ ID NO: 18) between residues 60 and 69 of SEQ ID NO:2 (Figure 3) which, with the exception of the second residue, is identical to the N-terminal of the 100 kDa (AT/LGKKDAGID: SEQ ID NOS:19 and 20) protein (Sgp-B1) from the wheat starch granule (note that the sequence given in Rahman *et al.*, 1995 (AT/LGKKDAL: SEQ ID NOS: 21 and 22) has been revised following further amino acid sequence analysis).

The wSSIIA cDNA clone (SEQ ID NO:3) encodes an amino acid sequence comprising the peptide motif AAGKKDARVDDDAA (SEQ ID NO: 23) at residues 60 to 73 of SEQ ID NO:4, which is about 66% identical to the N-terminal amino acid sequence (i.e. ALGKKDAGIVDGA: SEQ ID NO: 24) of the 104 kDa and 105 kDa starch granule proteins, Sgp-D1 and Sgp-A1 respectively, as determined by sequence analysis of isolated protein (Rahman *et al.*, 1995).

Furthermore, Takaoka et al. (1997) reported the amino acid sequences of 3 polypeptides obtained from sequencing starch granule proteins derived from the Sgp-1 proteins. Peptide 3 described by Takaoka et al. (1997) corresponds to amino acid residues 378 to 387 of the amino acid sequence of the wSSIIA cDNA (SEQ ID NO:4; Figure 3). Peptides 1 and 2 described by Takaoka et al. (1997) could not be detected in the amino acid sequences of the wSSII cDNA clones of the present invention, however peptide 1 of Takaoka et al. (1997) can be found in the amino acid sequences of SSI from maize, rice, wheat and potato (data not shown).

Denyer et al. (1995) demonstrated that the Sgp-1 proteins possess starch synthase activity and, as a consequence, the wSSIIB, wSSIA and wSSIID cDNA clones encode starch synthase enzymes that are differentially expressed in a developmentally-regulated manner in both the soluble and granule-bound fractions of the endosperm 5 (Figure 1). Based on the nomenclature suggested by Harn et al. (1998), it is appropriate to describe the Sgp-1 proteins as "starch synthases" rather than "granule-bound starch synthases".

EXAMPLE 10

Analysis of wheat starch synthase II mRNA expression

The mRNA for wheat starch synthase II could be detected in leaves, pre-anthesis florets and endosperm of wheat when total RNAs isolated from these tissue were probed with a PCR probe, wSSIIp2, corresponding to nucleotide positions 1435 to 1835 bp of wSSIIB-cDNA (SEQ ID NO:1; Figure 4). Unlike wSSI, which could not be detected in wheat leaves derived from plants grown under the same conditions, wSSII genes are highly-expressed in the leaves (Figure 4, lane 1), and expressed at an intermediate level in pre-anthesis florets (Figure 4, lane 2), and at much lower levels in developing wheat endosperm cells (Figure 4, lanes 3-11). In contrast, the maize SSIIa is expressed predominantly in the endosperm, whilst the maize SSIIb is detected mainly in the leaf, albeit at low levels (Harn et al., 1998).

The wSSII mRNA was detectable in the endosperm 6 days after anthesis and mRNA levels increase between 8 and 18 days post-anthesis, after which time levels of mRNA decline.

25

10

Southern blotting experiments in wheat demonstrated that the wSSIIp2 probe used detected only a single copy of the SSII gene in each genome (data not shown). Thus, it is unlikely that this probe cross-hybridised with mRNAs encoded by genes other than wSSII.

EXAMPLE 11

Chromosomal localization of the wheat wSSII genes.

I. Amplification of specific cDNA regions of wheat starch synthase II using PCR
 Two PCR products, wSSIIp2 and wSSIIp3 were amplified from the cDNA clone wSSIIB
 and used for the northern hybridisation and Southern hybridisation, respectively.

The primers sslla (5' TGTTGAGGTTCCATGGCACGTTC 3': SEQ ID NO: 25) and ssllb (5' AGTCGTTCTGCCGTATGATGTCG 3': SEQ ID NO: 26) were used to amplify the cDNA fragment wSSIIp2 (i.e. nucleotide positions 1435 to 1835 of SEQ ID NO:1).

10

- The primers ssIIc (5' CCAAGTACCAGTGGTGAACGC 3': SEQ ID NO: 27) and ssIId (5' CGGTGGGATCCAACGGCCC 3': SEQ ID NO: 28) were used to amplify the cDNA fragment wSSIIp3 (i.e. nucleotide positions 2556 to 2921 of SEQ ID NO:1).
- 15 The amplification reactions were performed using a FTS-1 thermal sequencer (Corbett, Australia) for 1 cycle of 95°C for 2 minutes; 35 cycles of 95°C for 30 seconds, 60°C for 1 minutes, 72°C for 2 minutes and 1 cycle of 25°C for 1 minute.
 - II. PCR and nucleotide sequence analysis of 3' sequences of wheat SSII genes
- 20 Genomic DNA was extracted from wild-type Chinese Spring wheat, and from three nullisomic-tetrasomic lines of chromosome 7 of Chinese Spring wheat, and from *Triticum tauschii* (var strangulata, accession number CPI 100799), and used as a template for the amplification and nucleotide sequence analysis of wheat SSII genes.
- 25 RFLP analysis of *Bam*HI and *Eco*RI restricted DNA from each wheat or *T. Tauschii* line was carried out using the wSSIIp3 fragment as a probe. Three hybridising bands were obtained which could be assigned to chromosomes 7A, 7B and 7D, respectively (data not shown). This analysis indicates that there is a single copy of the wSSII gene in each genome in hexaploid wheat, consistent with the findings of Yamamori and Endo (1996) who located the SGP-A1, B1 and D1 proteins to the short arm of chromosome

PCR analysis was used to assign each of the cDNA clones to the individual wheat genomes. A single 365 bp PCR fragment was obtained from nullisomic-tetrasomic genomic DNA of Chinese Spring when primers ssllc and sslld were used for the PCR amplification (Figure 5, right panel). This PCR product is obtained only from lines bearing the B genome. The fragment was cloned and sequenced and shown to be identical to a 365 bp region of the wSSIIB cDNA. An identical fragment is obtained by PCR amplification of the wSSIIB cDNA clone, but not by amplification of the wSSIIA or wSSIID clones, supporting the conclusion that the wSSIIB cDNA is the product of a gene located on chromosome 7 of the B genome of hexaploid wheat.

10

Two PCR products were also amplified from nullisomic-tetrasomic genomic DNA of Chinese Spring using the primers ssllc and sslle (Figure 5, left panel). One PCR fragment, approximately 350 bp is only amplified when the A genome is present, and a second 322 bp product is only amplified when the D-genome is present. The 350 and 15 322 bp PCR products were also cloned and sequenced and shown to be identical to the wSSIIA and wSSIID cDNAs, respectively, supporting the conclusion that the wSSIIA and wSSIID cDNAs are the products of genes located on chromosomes 7A and 7D, respectively.

20

EXAMPLE 12

Isolation of genomic wSSII clones

Screening of a genomic library from the D-genome donor of wheat, *T. tauschii*, was performed as described in Example 5, using the PCR-derived DNA fragment wSSIIp2 as a hybridisation probe. A positive-hybridising clone, designated wSSII-8, and comprising a putative *T. tauschii* homologue of the wSSII gene, was isolated.

Positive-hybridising plaques were digested using the restriction enzyme *BamHI*, separated on a 1% agarose gel, transferred to nitrocellulose membrane and hybridised to probe wSSIIp4 comprising nucleotides 1 to 367 of the wSSIIA cDNA clone, using the conditions described by Rahman *et al.* (1997). Clone wSSII-8 also hybridises strongly to the wSSIIp4 probe, confirming its identity as a genomic wSSII gene.

The complete nucleotide sequence of the wSSII gene was determined and is presented herein as SEQ ID NO: 37. The structural features of this gene are present in Table 3. A schematic representation of the intron/exon organisation of this gene is also presented in Figure 6.

5

TABLE 3
Structural features of the wheat starch synthase II genomic gene

	Nucleotide Position in SEQ ID NO: 37	Feature	Length (bases)
10	1- 1416	5'-untranscribed region and promoter sequence	1416
	1417 - 1743	exon 1	327
	1480-1482	translation start codon (ATG)	3
	1744 - 1847	intron 1	104
,	1848 - 2553	exon 2	706
15	2554 - 2641	intron 2	88
	2642 - 2706	exon 3	65
	2707 - 3606	intron 3	900
	3607 - 3684	exon 4	78
	3685 - 3773	intron 4	89
20	3774 - 3884	exon 5	111
	3885 - 3981	intron 5	97
	3982 - 4026	exon 6	45
	4027 - 4406	intron 6	380
	4407 - 4580	exon 7	174
25	4581 - 7296	intron 7	2716
	7297 - 8547	exon 8	1251
	8251 - 8253	translation stop codon (TGA)	3
	8548 -9024	3'-untranscribed region	477

EXAMPLE 13

Cloning of specific cDNA regions of wheat starch synthase III using RT-PCR PCR primers were used to amplify sequences of starch synthase III from wheat endosperm cDNA. The design of PCR primers was based on the sequences of starch synthase III from potato and the *du1* starch synthase III gene of maize.

First-strand cDNAs were synthesised from 1 μ g of total RNA (derived from endosperm of the cultivar Rosella, 12 days after anthesis) as described by Maniatis *et al.* (1982), and then used as templates to amplify two specific cDNA regions, wSSIIIp1 and wSSIIIp2, of wheat starch synthase III by PCR.

The primers used to obtain the cDNA clone wSSIIIp1 were as follows: Primer wSS3pa (5' GGAGGTCTTGGTGATGTTGT 3': SEQ ID NO: 29); and Primer wSS3pb (5' CTTGACCAATCATGGCAATG 3': SEQ ID NO: 30).

15

The primers used to obtain the cDNA clone wSSIIIp2 were as follows: Primer wSS3pc (5' CATTGCCATGATTGGTCAAG 3': SEQ ID NO: 31); and Primer wSS3pd (5' ACCACCTGTCCGTTCCGTTGC 3': SEQ ID NO: 32).

20 The amplified clones wSSIIIp1 and wSSIIIp2 were used as probes to screen the third cDNA library and *T. tauschii* genomic DNA library as described in Example 4.

A further probe designated wSSIIlp3 was used for screening the third cDNA library, as described in Example 4. Probe wSSIIlp3 was amplified by PCR from a cDNA clone produced from the first screening using the following amplification primers: Primer wSS3pe (5' GCACGGTCTATGAGAACAATGGC 3': SEQ ID NO: 33); and Primer wSS3pf (5' TCTGCATACCACCAATCGCCG 3': SEQ ID NO: 34).

The amplification reactions were performed using a FTS-1 or FTS4000 thermal sequencer (Corbett, Australia) for 1 cycle of 95°C for 2 minutes; 35 cycles of 95°C for 30 seconds, 60°C for 1 minutes, 72°C for 2 minutes and 1 cycle of 25°C for 1 minute.

Amplified sequences of the expected length were obtained, cloned and sequenced, and shown to contain DNA sequences highly homologous to the maize and potato SSIII genes. PCR fragments were subsequently used to probe a wheat cDNA library by DNA hybridisation and 8 positive clones were obtained, including one 3 kb cDNA. A region from the 5' end of this cDNA was amplified by PCR and used a probe for a second round of screening the cDNA library, obtaining 8 cDNA clones. Of these, one cDNA was demonstrated to be full length (wSSIII.B3, 5.36 kb insert). The sequence of the 5,346 bp wSSIII.B3 cDNA clone is given in SEQ ID NO:7.

10

- Sequencing of the 8 cDNA clones obtained from the second round screening of the wheat cDNA library revealed that there were at least 2 classes of cDNA encoding SSIII present, possibly being encoded by homeologous genes on different wheat genomes. The sequence of a representative of this second class of cDNA clones, wSSIII.B1, is shown in SEQ ID NO:9. The 3261 bp clone wSSIII.B1 is not full length, however it is similar to nucleotides 1739 to 5346 of the homeologous clone wSSIII.B3 (SEQ ID NO: 7). Clone wSSIII.B1 has an open reading frame between nucleotide positions 1 and 3177.
- 20 An open reading frame is found in the cDNA clone wSSIII.B3 (SEQ ID NO:7), in the region between position 29, commencing the ATG start codon, and nucleotide position 4912. The amino acid sequence deduced from this open reading frame is shown in SEQ ID NO:8.
- 25 An alignment of the deduced amino acid sequences of SSIII from maize, potato and wheat is shown in Figure 7. There is about 56.6% identity between the maize SSIII and wheat wSSIII.B3 sequence at the amino acid level.

The C-terminal domain of starch synthases comprise the catalytic domain, and a characteristic amino acid sequence motif KVGGLGDVVTSLSRAVQDLGHNVEV (SEQ ID NO: 35) in maize, or alternatively KVGGLGDVVTSLSRAIQDLGHTVEV (SEQ ID

NO: 36) in wheat, marking the first conserved region in the C-terminal domain. This amino acid sequence is present at amino acid residues 1194 to 1218 of SEQ ID NO: 8.

5 The amino acid identity between maize dull1 and wSSIII.B3 in the N-terminal region (i.e. amino acids 1 to 600 in Figure 7) is only 32.2%; whilst the amino acid identity in the central region (i.e. amino acids 601 to 1248 in Figure 7) is 68.4%; and in the C-terminal region (i.e. amino acids 1249 to 1631 in Figure 7) is 84.6%. Accordingly, the SSIII starch synthases are much more highly conserved between maize and wheat in the region comprising the catalytic domain of the proteins.

EXAMPLE 14

Analysis of wheat starch synthase III mRNA expression

Figure 8 shows the expression of wSSIII mRNA during endosperm development in two wheat varieties grown under defined environmental conditions. The expression of the gene is seen very early in endosperm development in both cultivars, 4 days after anthesis (Figure 8, panels a and b). Expression in the leaf of the variety Gabo is very weak (Figure 8, panel c, Lane L) whereas strong expression is seen in pre-anthesis florets (Figure 8, panel c, Lane P).

20

EXAMPLE 15

Amino acid sequence comparisons between wheat SSII and SSIII polypeptides

Amino acid sequence comparisons between wheat BSSS, SSI, SSII and SSIII 25 polypeptides reveals eight highly-conserved domains (Figure 9). The amino acid sequences of these domains are represented in the wheat SSIII amino acid sequence by the following sequence motifs:

(a) Region 1:

KVGGLGDVVTS;

(b) Region 2:

GHTVEVILPKY;

30

(c) Region 3:

HDWSSAPVAWLYKEHY;

(d) Region 4:

GILNGIDPDIWDPYTD;

(e) Region 5:

DVPIVGIITRLTAQKG;

(f) Region 5a:

NGQVVLLGSA;

(g) Region 6:

AGSDFIIVPSIFEPCGLTQLVAMRYGS; and

(h) Region 7:

TGGLVDTV.

5

These conserved amino acid sequences are summarised in Table 4. As shown in Table 4 below, there is at least about 25% amino acid sequence identity, preferably at least about 30% amino acid sequence identity, more preferably at least about 40% amino acid sequence identity, more preferably at least about 40% amino acid sequence identity, more preferably at least about 45% amino acid sequence identity, more preferably at least about 55% amino acid sequence identity, more preferably at least about 65% amino acid sequence identity, more preferably at least about 65% amino acid sequence identity, more preferably at least about 65% amino acid sequence identity, more preferably at least about 70% amino acid sequence identity, more preferably at least about 80% amino acid sequence identity, more preferably at least about 85% amino acid sequence identity, more preferably at least about 90% amino acid sequence identity and even more preferably at least about 95% amino acid sequence identity between the amino acid sequences of plant starch synthase enzymes, in particular wheat starch synthases.

From the data presented in Table 4, the most conserved regions of the wheat SSII and SSIII polypeptides are a region of 6 or 7 identical amino acids in Region 1 and a region of 8 or 9 identical amino acids in Region 6. The lowest regions of identity are found in regions 3 and 5a.

For each of the amino acid sequences presented in the first column of Table 4, which are specific for wSSIII polypeptides, corresponding signature motifs which are specific for wSSII-A, wSSII-B, and wSSII-D polypeptides can be derived from the alignment, as follows:

Region 1: KTGGLGDVAGA;

Region 2: GHRVMVVVPRY;

Region 3: NDWHTALLPVYLKAYY;

Region 4: GIVNGIDNMEWNPEVD;

Region 5: DVPLLGFIGRLDGQKG;

Region 5a: DVQLVMLGTG;

Region 6: AGADALLMPSRF(E/V)PCGLNQLYAMAYGT; and

Region 7: VGG(V/L)RDTV.

Comparison of the amino acid sequences of all available starch synthases with the deduced amino acid sequences of the three wSSII cDNA clones of the present invention (i.e. wSSIIB, wSSIIA and wSSIID) was conducted using PILEUP analysis (Devereaux et al., 1984) and data are presented herein as a dendrogram (Figure 10). The sequence of the glycogen synthase of *E. coli* was also included. Based upon their amino acid similarities, four classes of plant starch synthases can be defined: GBSS, SSI, SSII and SSIII.

Table 5 shows that levels of identity at the amino acid level between the wSSII sequences, as determined using the BESTFIT programme in GCG (Devereaux et al., 1984), and other class II starch synthases range from 70% identity with potato SSII to 85% identity with maize SSIIa. Both wSSIIB and wSSIID showed significantly higher homology to maize SSIIa than wSSIIA. Based upon sequence identities and the function of the Sgp-1 proteins in wheat, the wSSIIB, wSSIIA and wSSID cDNA clones are members of the starch synthase II (SSII) group and are more similar in sequence to maize SSIIa than maize SSIIb.

TABLE 4
Identities between conserved motifs of plant starch synthases

	Sequence in wSSIII polypeptide	Number of conserved residues between wheat starch synthases	Number of conserved residues between wheat SSII and SSIII polypeptides
5	Region 1: KVGGLGDVVTS	6/11 residues	6/11 residues
	Region 2: GHTVEVILPKY	6/11 residues	6/11 residues
10	Region 3: HDWSSAPVAWLYKEHY	4/16 residues	5/16 residues
	Region 4: GILNGIDPDIWDPYTD	7/16 residues	8/16 residues
	Region 5: DVPIVGIITRLTAQKG	8/16 residues	10/16 residues
15	Region 5a: NGQVVLLGSA	4/10 residues	4/10 residues
	Region 6: AGSDFIIVPSIFEPCGLT QLVAMRYGS	15/27 residues	17/27 residues
20	Region 7: TGGLVDTV	5/9 residues	5/9 residues

TABLE 5

		wSSII-A	wSSII-B	wSSII-D	
	wSSI-A	100%			
5	wSSII-B	95.9%	100%	·	
	wSSII-D	96.3%	96.7%	100%	
	maize SSIIa	76.1%	85.2%	84.7%	
	maize SSIIb	76.3%	76.7%	75.9%	
	pea SSII	72.0%	72.2%	71.8%	
	potato SSII	70.9%	71.1%	70.3%	

10

Figure 11 shows a schematic representation of an alignment of plant starch synthase sequences, including wheat GBSS, wheat SSI, wheat SSII-A1, maize SSIIa, and maize dull-1 polypeptides, in which the position of the first homologous region, comprising the consensus motif KXGG, is used as the basis of the alignment. The major differences in structure between the classes of genes are found in the length of the N-terminal region between the transit peptide and the first conserved region. At one extreme, the GBSS genes have a very short N-terminal arm, whereas the *du1* starch synthase contains a very long N-terminal extension containing several distinct regions. The wSSII genes contain an N-terminal extension which is longer than either 20 GBSS, SSI, or SSIIb, and slightly longer than the maize SSIIa gene.

EXAMPLE 16

Isolation of genomic clones for SSIII

Screening of a genomic library from the D-genome donor of wheat, *T. tauschii*, 25 identified a number of clones which hybridised to the wSSIII PCR fragment. Positive plaques in the genomic library were selected as those hybridising with a probe that had been generated by PCR (amplifying between nucleotide positions 3620 to 3966) from the SSIII cDNA as template. The primer sequences used were as follows:

wSS3pa (5' GGAGGTCTTGGTGATGTTGT 3': SEQ ID NO: 29); and

30 wSS3pb (5' CTTGACCAATCATGGCAATG 3' : SEQ ID NO: 30).

Hybridisation was carried out in 25% formamide, 6 x SSC, 0.1% SDS at 42 °C for 16 hour, then washed three times with 2 x SSC containing 0.1% SDS at 65 °C, for 1 hour per wash. shows an example of a plaque lift showing positive and negative hybridisations for plaques containing the *T. tauschii* homologue of the wSSIII.B3 gene.

5

DNA was isolated from positive-hybridising λ clones using methods described by Maniatis *et al.* Briefly, DNA was digested using *Bam*HI or *BgI*I and sub-cloned in to the vector pJKKmfm. DNA sequencing was performed using the automated ABI system with dye terminators as described by the manufacturers. DNA sequences were analysed using the GCG suite of programs (Devereaux *et al.*, 1984).

Nucleotide sequences of the genomic SSIII clone from *T. tauschii* are provided herein as 6 contiguous sequences designated fragments 1 to 6 (SEQ ID NOs: 11 to 16, respectively). Table 6 defines the relative positions of these fragments with respect to the SSIII cDNA and describes the positions of exons. Figure 11 shows this information schematically.

The complete nucleotide sequence of a wheat SSIII genomic gene is presented herein as SEQ ID NO: 38. The structural features of this gene are presented in Table 7. A schematic representation of the intron/exon organisation of this gene is also presented in Figure 12.

EXAMPLE 17

Discussion

- 25 Early work on the Sgp-1 starch synthase proteins (Denyer et al., 1995; Rahman et al., 1995) was based on the localisation of these proteins in the wheat starch granule, and no definitive conclusion concerning their presence or absence in soluble extracts of the wheat endosperm was presented.
- 30 We have now demonstrated that a monoclonal antibody against the Sgp-1 proteins cross reacts strongly with those starch synthase proteins having apparent molecular

weights of 100-105 kDa in soluble extracts, however, the appearance of these proteins in soluble extracts is dependant on the developmental stage of the endosperm material. Whilst the proteins can be detected in the soluble phase in early to mid endosperm development, little or no soluble protein remains in late endosperm development (Figure 1). This observation accounts for the failure of Rahman et al. (1995) to detect the protein in soluble extracts in a previous report.

Based upon the localisation of the Sgp-1 starch synthase proteins in the wheat endosperm, the following nomenclature is suggested for wheat starch synthase 10 enzymes: wGBSS for the 60 kDa granule bound starch synthase (Wx); wSSI for the 75 kDa starch synthase I (Sgp-3); wSSII for the 100 - 105 kDa proteins (Sgp-1); and wSSIII for a soluble high molecular starch synthase.

The present invention provides cDNA and genomic clones encoding the wSSII and 15 wSSIII polypeptides and the corresponding genomic clones. Whilst the evidence is compelling that the wSSIIA, wSSIIB and wSSIID cDNAs encode the Sgp-A1, Sgp-B1 and Sgp-D1 proteins of the wheat starch granule, molecular weights calculated from the deduced amino acid sequences of the clones are considerably lower than estimates obtained from SDS-PAGE. The molecular weight of the precursor wSSIIA 20 protein is 87,229 Da, and the mature protein 81,164 Da, yet the estimated molecular weight in our experience is 105 kDa. The assignment of the wSSIIA cDNA to the Agenome of wheat is demonstrated in Figure 5, and the assignment of the 105 kDa protein to the A-genome in Denyer et al. (1995) and Yamamori and Endo (1996). Similarly, the molecular weight of the wSSI/B protein is 86,790 Da and the mature 25 protein 80,759 Da, yet the molecular weight of the Sgp-B1 protein is estimated to be 100 kDa. No comparison can be made of the wSSIID sequences as a full length cDNA clone was not obtained. The wSSIIA and wSSIIB amino acid sequences differ by just a single amino acid residue, yet there is an apparent difference of 5 kDa in molecular weight when estimated by SDS-PAGE. Several possibilities can be advanced to 30 account for this apparent discrepancy in molecular weights. Firstly, the wSSII proteins may not migrate in SDS-PAGE in accordance with their molecular weight because they retain some conformation under the denaturing conditions used. Secondly, the proteins may be glycosylated. It is also possible that the proteins may be non-covalently linked to starch through a high affinity starch binding site which survives denaturation and SDS-PAGE. Differences between the apparent molecular weights and those calculated from the deduced amino acid sequences will have to be defined in establishing the relationship between the wSSII proteins and proteins encoded by the analogous SSII genes of other species.

The catalytic domain of the starch synthases is found at the C-terminal end of the protein (Gao et al., 1998; Harn et al., 1998). Harn et al. (1998) identified 7 conserved regions among SSIIa, SSIIb, SSI and GBSS sequences. We have identified an additional conserved region (designated region 5a in Table 4 and Figure 10) comprising the amino acid sequence motif DVQLVMLGTG, by a comparison of the wSSII and wSSIII sequences of the present invention with differing isoforms of other plant starch synthases (GBSS, SS1, SSII and SSIII). The conservation of eight peptide regions among the 4 classes of starch synthases is striking, in terms of their sequence homologies and their alignment.

Analysis of the wheat SSII genes shows that there is a motif, PVNGENK, which is repeated. The area surrounding the repeated PVNGENK motif is not homologous to maize SSIIa and the insertion of this region is responsible for the difference in length between the wheat SSII and maize SSIIa genes. In pea and potato SSII polypeptides, a PPP motif (Figure 3; residues 251-253 and 287-289 respectively) has been suggested to mark the end of the N-terminal region and to facilitate the flexibility of an "N-terminal arm". This motif is not found in either the maize or wheat SSII sequences.

The generation of a wheat line combining null alleles at each of the three wSSII loci, wSSIIA, wSSIIB and wSSIID, has been reported recently by Yamamori (1998). In this triple null line, the large starch granules were reported to be mostly deformed and a novel starch with high blue value was observed when stained with iodine, indicating that wSSII is a key enzyme for the synthesis of starch in wheat. Further analysis of the

starch derived from this triple null mutant is in progress.

Mutations in starch synthases are known in three other species. In pea, mutation in SSII gives rise to starch with altered granule morphology and an amylopectin which 5 yields an oligosaccharide distribution with reduced chain length on debranching, compared to the wild type (Craig et al., 1998). A similar mutation in a gene designated SSII is known in Chlamydomonas (the sta-3 mutation) and similar effects on granule morphology and amylopectin structure are observed (Fontaine et al., 1993). In maize, two mutations affecting starch synthases are known. First, the dull1 mutation has been 10 shown to be caused by a lesion within the du1 SSIII-type starch synthase gene (Gao et al., 1998). A second mutation, the sugary-2 mutation yields a starch with reduced amylopectin chain lengths on debranching (this mutation co-segregates with the SSIIa locus (Harn et al., 1998) although direct evidence that the sugary-2 mutation is caused by a lesion in the SSIIa gene is lacking). In the SSII mutants of each of these species, 15 amylose biosynthesis capacity is retained, suggesting different roles in amylose and amylopectin synthesis for the GBSS and SSII genes. Given the conservation in overall organisation of the GBSS and SSII genes (see Figures 12 and 13), when an alignment is made based on the KTGGL motif of the first conserved region, this focuses attention on the role(s) of the N-terminal region in defining substrate specificity and the 20 localisation of the proteins as the N-terminal region is the major area of divergence between the 4 classes of starch synthases. However, it is premature to exclude the influence of more subtle mutations in central and C-terminal regions of the gene.

The cloning of the wSSII and wSSIII cDNAs and genomic clones described herein provides useful tools for the further study of the roles of the starch synthases in wheat. Firstly, they provide a source of markers which can be used to recover and combine null or divergent alleles. Secondly, genetic manipulation of wheat by gene suppression or over-expression can be carried out, and the genes may be used for over expression in other species. The promoter regions of these genes are also useful in regulating the expression of starch synthase genes and other heterologous genes in the developing wheat endosperm and in pre-anthesis florets of wheat.

FABLE 6

Summary of the Wheat Starch Synthase III Genomic Sequence

	-			•
	Fragment in genomic DNA	Length	Features in SEQ ID NOS:11 to 16	Corresponding region in cDNA sequence
	clone	(dq)		
	Fragment 1	728	Translation start codon (nucleotides 287 to 289);	
	(SEQ ID NO: 11)		Exon 1.1 (nucleotides 260 to 385).	Exon 1.1: nucleotides 1 to 126
	Fragment 2	2446	Exon 2.1 (nucleotides 1 to 1938);	Exon 2.1: nucleotides 1008 to 2948;
	(SEQ ID NO: 12)		Exon 2.2 (nucleotides 2197 to 2418).	Exon 2.2: nucleotides 2949 to 3171
	Fragment 3	1032	Exon 3.1 (nucleotides 310 to 580)	Exon 3.1: nucleotides 3172 to 3440
0	(SEQ ID NO: 13)			
	Fragment 4	892	Exon 4.1 (nucleotides 678 to 853)	Exon 4.1: nucleotides 3441 to 3616
	(SEQ ID NO: 14)			
	Fragment 5	871	Partial Exon 5.1 (nucleotides 1 to 29)	Exon 5.1: nucleotides 3908 to 3937 (partial)
-	(SEQ ID NO: 15)		Exon 5.2 (nucleotides 293 to 463)	Exon 5.2: nucleotides 3938 to 4108
			Exon 5.3 (nucleotides 589 to 695)	Exon 5.3: nucleotides 4109 to 4215
8	Fragment 6	1583	Exon 6.1 (nucleotides 471 to 653);	Exon 6.1: nucleotides 4238 to 4420
	(SEQ ID NO: 16)		Exon 6.2 (nucleotides 770 to 902);	Exon 6.2: nucleotides 4421 to 4552
			Exon 6.3 (nucleotides 999 to 1110);	Exon 6.3: nucleotides 4553 to 4664
			Exon 6.4 (nucleotides 1201 to 1328);	Exon 6.4: nucleotides 4665 to 4793
			Partial Exon 6.5 (nucleotides 1408 to 1583);	Exon 6.5: nucleotides 4794 to 4966 (partial)
			Translation stop codon (nucleotides 1536 to 1538)	,

TABLE 7
Structural features of the wheat starch synthase III genomic gene

	Nucleotide Position	Feature	Length (bases)
-	in SEQ ID NO: 38	5'-untranscribed region and	973
5	1- 973	promoter sequence	973
}	974 - 1099	exon 1	126
┝	1001-1003	translation start codon (ATG)	3
· -	1100 - 2056	intron 1	957
-	2057 - 2120	exon 2	64
-	2121 - 2588	intron 2	468
-	2589 - 5291	exon 3	2703
-	5292 - 5549	intron 3	258
t	5550 - 5767	exon 4	218
	5768 - 6103	intron 4	336
	6104 - 6374	exon 5	271
	6375 - 7148	intron 5	774
	7149 - 7324	exon 6	176
ľ	7325 - 7438	intron 6	114
Ī	7439 - 7546	exon 7	108
, [7547 - 7792	intron 7	246
	7793 - 7902	exon 8	110
ſ	7903 - 8797	intron 8	895
	8798 - 8900	exon 9	103
	8901 - 9164	intron 9	264
5	9165 - 9335	exon 10	171
ļ	9336 - 9460	intron 10	125
	9461 - 9589	exon 11	129
	9590 - 9677	intron 11	88

	9678 - 9860	exon 12	183
	9861 - 9977	intron 12	117
	9978 - 10109	exon 13	132
	10110 - 10205	intron 13	96
5	10206 - 10317	exon 14	112
	10318 - 10407	intron 14	90
٠	10408 - 10536	exon 15	129
	10537 - 10618	intron 15	82
	10619 - 11146	exon 16	128
10	10744 - 10746	translation stop codon (TGA)	3
٠.	11147 - 11611	3'-untranscribed region	465

REFERENCES

- 15 1. Ausubel, F. M., Brent, R., Kingston, RE, Moore, D.D., Seidman, J.G., Smith, J.A., and Struhl, K. (1987). *In:* Current Protocols in Molecular Biology. Wiley Interscience (ISBN 047150338).
- Abel GJW, Springer F, Willmitzer L, Kossmann J (1996) Cloning and functional analysis of a cDNA encoding a novel 139 kDa starch synthase from potato (*Solanum tuberosum* L.). Plant J 10: 981-991.
 - 3. Ainsworth C, Clark J, Balsdon J (1993) Expression, organisation and structure of the genes encoding the waxy protein (granule-bound starch synthase) in wheat. Plant Mol Biol **22**: 67-82.
- Baba T, Nishihara M, Mizuno K, Kawasaki T, Shimada H, Kobayabashi E,
 Ohnishi S, Tanaka K, Arai Y (1993) Identification, cDNA cloning, and Gene Expression of Soluble Starch Synthase in Rice (*Oryza sativa* L.) Immature Seeds. Plant Physiol 103: 565-573.
- Craig J, Lloyd JR, Tomlinson K, Barber L, Edwards A, Wang TL, Martin C, Hedley CL, Smith AM (1998) Mutations in the gene encoding starch synthase II
 profoundly alter amylopectin structure in pea embryos. Plant Cell 10: 413-426.

- 6. Denyer K, Hylton CM, Jenner CF, Smith AM (1995) Identification of multiple isoforms of soluble and granule-bound starch synthase in developing wheat endosperm. Planta **196**: 256-265.
- 7. Devereaux, J, Haeberli P, Smithies O (1984) A comprehensive set of sequence 5 analysis programs for the VAX. Nucleic Acids Res **12**: 387-395.
 - 8. Dry I, Smith A, Edwards A, Bhattacharyya M, Dunn P, Martin C (1992) Characterisation of cDNAs encoding two isoforms of granule-bound starch synthase which show differential expression in developing storage organ of pea and potato. Plant J 2: 193-202.
- 10 9. Edwards A, Marshall J, Sidebottom C, Visser RGF, Smith AM, Martin C (1995) Biochemical and molecular characterization of a novel starch synthase from potato tubers. Plant J 8: 283-294.
 - 10. Fontaine T, D'Hulst C, Maddelein M-L, Routier F, Pépin TM, Decq A, Wieruszeski J-M, Delrue B, Van den Koornhuyse N, Bossu J-P, Fournet B, Ball S
- 15 (1993) Toward an understanding of the biogenesis of the starch granule. Evidence that *Chlamydomonas* soluble starch synthase II controls the synthesis of intermediate size glucans of amylopectin. J Biol Chem **22**: 16223-16230.
- Furukawa K, Tagaya M, Inouye M, Preiss J, Fukui T (1990) Identification of lysine 15 at the active site in *Escherichia coli* glycogen synthase. J Biol Chem 265: 20 2086-2090.
 - 12. Gao M, Wanat J, Stinard PS, James MG, Myers AM (1998) Characterization of dull1, a maize gene coding for a novel starch synthase. Plant Cell 10: 399-412.
- 13. Harn C, Knight M, Ramakrishnan A, Guan H, Keeling PL, Wasserman BP (1998) Isolation and characterization of the zSSIIa and zSSIIb starch synthase cDNA
 25 clones from maize endosperm. Plant Mol Biol 37: 639-649.
 - 14. Kloesgen RB, Gierl A, Schwarz-Sommer ZS, Saedler H (1986) Molecular analysis of the waxy locus of Zea mays. Mol Gen Genet 203: 237-244.
 - 15. Knight ME, Harn C, Lilley CER, Guan H, Singletary G W, MuForster C, Wasserman BP, Keeling PL (1998) Molecular cloning of starch synthase I from maize
- 30 (W64) endosperm and expression in Escherichia. Plant J 14: 613-622.
 - 16. Kumar A, Larsen CE, Preiss J (1986) Biosynthesis of bacterial glycogen:

- Primary structure of *Escherichia coli* ADP-glucose:alpha-1,4-glucan, 4-glucosyltransferase as deduced from the nucleotide sequence of the *glg*A gene. J Biol Chem **261**: 16256-16259.
- 17. Li Z, Rahman S, Kosar-Hashemi B, Mouille G, Appels R Morell, MK (1999) 5 Cloning and characterisation of a gene encoding wheat starch synthase I. Theor Appl Genet: *In press*.
 - 18. Mouille G, Maddelein M-L, Libessart N, Talaga P, Decq A, Delrue B Ball, S (1996). Preamylopectin processing: A mandatory step for starch biosynthesis in plants. Plant Cell 8: 1353-1366.
- 10 19. Nakamura T, Yamamori M, Hirano H, Hidaka S, Nagamine T (1995) Production of waxy (amylose-free) wheats. Mol Gen Genet **248**: 253-259.
 - 20. Okagaki, RJ (1992) Nucleotide sequence of a long cDNA from the rice waxy gene. Plant Mol Biol 19: 513-516.
- 21. Ozbun, J.L., Hawker, J.S. and Preiss, J. (1971) Adensine diphosphoglucose-15 starch glucosyltransferases from developing kernels of waxy maize. Plant Physiology 48: 765-769
- Ozbun, J.L., Hawker, J.S., Greenberg, E., Lammel, C., Preiss, J. and Lee, E.Y.C.(1973) Starch synthetase, phosphorylase, ADPglucose pyrophosphorylase, and UDPglucose pyrophosphorylase in developing maize kernels. Plant Physiology 51: 1-20 5.
 - 23. Pollock, C. and Preiss, J.(1980) The citrate-stimulated starch synthase of starchy maize kernels: purification and properties. Arch Biochem Biophys **204**: 578-588.
- Rahman S, Abrahams S, Abbott D, Mukai Y, Samuel M, Morell M, Appels R
 (1997) A complex arrangement of genes at a starch branching enzyme I locus in D-genome donor of wheat. Genome 40: 465-474.
 - 25. Rahman S, Kosar-Hashemi B, Samuel M, Hill A, Abbott DC, Skerritt JH, Preiss J, Appels R, Morell M (1995) The major proteins of wheat endosperm starch granules. Aust J Plant Physiol **22**: 793-803.

- 26. Rahman S, Li Z, Abrahams S, Abbott D, Appels R, Morell M (1998) Characterisation of a gene encoding wheat endosperm starch branching enzyme-I. Theor Appl Genet 98: *In press*.
- 27. Sears ER, Miller TG (1985) The history of Chinese spring wheat. Cereal Res 5 Comm 13: 261-263.
 - 28. Takaoka M, Watanabe S, Sassa H, Yamamori M, Nakamura T, Sasakuma T, Hirano H (1997) Structural characterisation of high molecular weight starch granule-bound proteins in wheat (*Triticum aestivum* L). J Agric Food Chem **45**: 2929-2934.
- van der Leij FR, Visser RGF, Ponstein AS, Jacobsen E, Feenstra WJ (1991)
 Sequence of the structural gene for granule bound starch synthase of potato (*Solanum tuberosum* L.) and evidence for a single point deletion in the *amf* allele. Mol Gen Genet 228: 240-248.
- 30. Yamamori M, Endo TR (1996) Variation of starch granule proteins and chromosome mapping of their coding genes in common wheat. Theor Appl Genet **93**: 15 275-281.
 - 31. Yamamori M (1998) Selection of a wheat lacking a putative enzyme for starch synthesis, SGP-1 *Proc* 9th *In Wheat Gen Symp* **4**, 300-302.

CLAIMS:

- 1. An isolated nucleic acid molecule which comprises a sequence of nucleotides selected from the group consisting of:
 - (i) the nucleotide sequence set forth in SEQ ID NO: 1 or the protein-encoding region thereof or a degenerate nucleotide sequence thereto;
 - (ii) the nucleotide sequence set forth in SEQ ID NO: 3 or the protein-encoding region thereof or a degenerate nucleotide sequence thereto;
 - (iii) the nucleotide sequence set forth in SEQ ID NO: 5 or the protein-encoding region thereof or a degenerate nucleotide sequence thereto;
 - (iv) the nucleotide sequence set forth in SEQ ID NO: 7 or the protein-encoding region thereof or a degenerate nucleotide sequence thereto;
 - (v) the nucleotide sequence set forth in SEQ ID NO: 9 or the protein-encoding region thereof or a degenerate nucleotide sequence thereto;
 - (vi) the nucleotide sequence set forth in SEQ ID NO: 11 or the protein-encoding region thereof or a degenerate nucleotide sequence thereto;
 - (vii) the nucleotide sequence set forth in SEQ ID NO: 12 or the protein-encoding region thereof or a degenerate nucleotide sequence thereto;
 - (viii) the nucleotide sequence set forth in SEQ ID NO: 13 or the protein-encoding region thereof or a degenerate nucleotide sequence thereto;
 - (ix) the nucleotide sequence set forth in SEQ ID NO: 14 or the protein-encoding region thereof or a degenerate nucleotide sequence thereto;
 - (x) the nucleotide sequence set forth in SEQ ID NO: 15 or the protein-encoding region thereof or a degenerate nucleotide sequence thereto;
 - (xi) the nucleotide sequence set forth in SEQ ID NO: 16 or the protein-encoding region thereof or a degenerate nucleotide sequence thereto;
 - (xii) the nucleotide sequence set forth in SEQ ID NO: 37 or the protein-encoding region thereof or a degenerate nucleotide sequence thereto;
 - (xiii) the nucleotide sequence set forth in SEQ ID NO: 38 or the protein-encoding

region thereof or a degenerate nucleotide sequence thereto;

- (xiv) the nucleotide sequence set forth in SEQ ID NO: 11 or the protein-encoding region thereof or a degenerate nucleotide sequence thereto;
- (xv) a nucleotide sequence which encodes a wheat starch synthase polypeptide as hereinbefore defined wherein said nucleotide sequence has at least about 85% identity overall to any one of (i) to (xiv); and
- (xvi) a nucleotide sequence which is complementary to any one of (i) to (xv).
- 2. The isolated nucleic acid molecule according to claim 1 wherein the wheat starch synthase polypeptide further comprises one or more amino acid sequences selected from the group consisting of:
 - (a) KVGGLGDVVTS;
 - (b) GHTVEVILPKY;
 - (c) HDWSSAPVAWLYKEHY;
 - (d) GILNGIDPDIWDPYTD;
 - (e) DVPIVGIITRLTAQKG;
 - (f) NGQVVLLGSA;
 - (g)AGSDFIIVPSIFEPCGLTQLVAMRYGS;
 - (h)TGGLVDTV:
 - (i) KTGGLGDVAGA;
 - (j) GHRVMVVVPRY;
 - (k) NDWHTALLPVYLKAYY;
 - (I) GIVNGIDNMEWNPEVD;
 - (m) DVPLLGFIGRLDGQKG;
 - (n) DVQLVMLGTG;

(o)AGADALLMPSRF(E/V)PCGLNQLYAMAYGT; and (p)VGG(V/L)RDTV.

- 3. The isolated nucleic acid molecule according to claim 2 wherein the wheat starch synthase polypeptide comprises at least three of said amino acid sequences selected from the group consisting of (a) to (h).
- 4. The isolated nucleic acid molecule according to claim 2 wherein the wheat starch synthase polypeptide comprises at least six of said amino acid sequences selected from the group consisting of (i) to (p).
- 5. The isolated nucleic acid molecule according to claim 1 encoding a wheat starch synthase II polypeptide.
- 6. The isolated nucleic acid molecule according to claim 1 encoding a wheat starch synthase III polypeptide.
- 7. An isolated nucleic acid molecule encoding a starch synthase polypeptide which comprises one or more amino acid sequences selected from the group consisting of:
 - (a) GHTVEVILPKY;
 - (b) HDWSSAPVAWLYKEHY;
 - (c) DVPIVGIITRLTAQKG;
 - (d) NGQVVLLGSA;
 - (e)AGSDFIIVPSIFEPCGLTQLVAMRYGS;
 - (f)TGGLVDTV;
 - (g) GIVNGIDNMEWNPEVD; and

(h) AGADALLMPSRF(E/V)PCGLNQLYAMAYGT.

- 8. The isolated nucleic acid molecule of claim 5 encoding a wheat starch synthase II polypeptide which comprises an amino acid sequence selected from the group consisting of:
 - (i) SEQ ID NO: 2;
 - (ii) SEQ ID NO: 4;
 - (iii) SEQ ID NO: 6; and
 - (iv) a homologue of any one of (i) to (iii) having at least about 85% identity thereto.
- 9. The isolated nucleic acid molecule of claim 6 encoding a wheat starch synthase III polypeptide which comprises an amino acid sequence selected from the group consisting of:
 - (i) SEQ ID NO: 8;
 - (ii) SEQ ID NO: 10; and
 - (iii) a homologue of (i) or (ii) having at least about 85% identity thereto.
- 10. A probe or primer comprising at least about 15 contiguous nucleotides in length derived from the nucleotide sequence according to claim 1.
- 11. The probe or primer according to claim 10 comprising a nucleotide sequence selected from the group consisting of:
 - (i) the nucleotide sequence set forth in SEQ ID NO: 25;
 - (ii) the nucleotide sequence set forth in SEQ ID NO: 26;
 - (iii) the nucleotide sequence set forth in SEQ ID NO: 27;

- (iv) the nucleotide sequence set forth in SEQ ID NO: 28;
- (v) the nucleotide sequence set forth in SEQ ID NO: 29;
- (vi) the nucleotide sequence set forth in SEQ ID NO: 30;
- (vii) the nucleotide sequence set forth in SEQ ID NO: 31;
- (viii) the nucleotide sequence set forth in SEQ ID NO: 32;
- (ix) the nucleotide sequence set forth in SEQ ID NO: 33;
- (x) the nucleotide sequence set forth in SEQ ID NO: 34;
- (xi) a nucleotide sequence which encodes an amino acid sequence selected from the group consisting of:
 - (a) KVGGLGDVVTS;
 - (b) GHTVEVILPKY;
 - (c) HDWSSAPVAWLYKEHY;
 - (d) GILNGIDPDIWDPYTD;
 - (e) DVPIVGIITRLTAQKG;
 - (f) NGQVVLLGSA;
 - (g)AGSDFIIVPSIFEPCGLTQLVAMRYGS;
 - (h)TGGLVDTV;
 - (i) KTGGLGDVAGA;
 - (j) GHRVMVVVPRY;
 - (k) NDWHTALLPVYLKAYY;
 - (I) GIVNGIDNMEWNPEVD;
 - (m) DVPLLGFIGRLDGQKG;
 - (n) DVQLVMLGTG;
 - (o)AGADALLMPSRF(E/V)PCGLNQLYAMAYGT; and

(p)VGG(V/L)RDTV;

- (xii) a nucleotide sequence comprising at least about 15 contiguous nucleotides of an intron region of SEQ ID NO: 37;
- (xiii) a nucleotide sequence comprising at least about 15 contiguous nucleotides of an intron region of SEQ ID NO: 38; and
- (xiv) a nucleotide sequence which is complementary to any one of (i) to (xiii).
- 12. An isolated or recombinant polypeptide, protein or enzyme comprising an amino acid sequence selected from the following:
 - (i) the amino acid sequence set forth in SEQ ID NO: 2 or the mature protein region thereof;
 - (ii) the amino acid sequence set forth in SEQ ID NO: 4 or the mature protein region thereof;
 - (iii) the amino acid sequence set forth in SEQ ID NO: 6 or the mature protein region thereof;
 - (iv) the amino acid sequence set forth in SEQ ID NO: 8 or the mature protein region thereof;
 - (v) the amino acid sequence set forth in SEQ ID NO: 10 or the mature protein region thereof;
 - (vi) a wheat starch synthase polypeptide having at least about 85% identity overall to any one of (i) to (v).
- 13. The isolated or recombinant polypeptide according to claim 12 further comprising one or more amino acid sequences selected from the group consisting of:
 - (a) KVGGLGDVVTS;
 - (b) GHTVEVILPKY;
 - (c) HDWSSAPVAWLYKEHY;

- (d) GILNGIDPDIWDPYTD;

 (e) DVPIVGIITRLTAQKG;

 (f) NGQVVLLGSA;

 (g)AGSDFIIVPSIFEPCGLTQLVAMRYGS;

 (h)TGGLVDTV;

 (i) KTGGLGDVAGA;

 (j) GHRVMVVVPRY;

 (k) NDWHTALLPVYLKAYY;

 (l) GIVNGIDNMEWNPEVD;

 (m) DVPLLGFIGRLDGQKG;

 (n) DVQLVMLGTG;

 (o)AGADALLMPSRF(E/V)PCGLNQLYAMAYGT; and

 (p)VGG(V/L)RDTV.
- 14. The isolated or recombinant polypeptide according to claim 13 wherein the wheat starch synthase polypeptide comprises at least three of said amino acid sequences selected from the group consisting of (a) to (h).
- 15. The isolated or recombinant polypeptide according to claim 13 wherein the wheat starch synthase polypeptide comprises at least six of said amino acid sequences selected from the group consisting of (i) to (p).
- 16. The isolated or recombinant polypeptide according to claim 12 encoding a wheat starch synthase II polypeptide.

- 17. The isolated or recombinant polypeptide according to claim 12 encoding a wheat starch synthase III polypeptide.
- 18. An isolated or recombinant starch synthase polypeptide which comprises one or more amino acid sequences selected from the group consisting of:
 - (a) GHTVEVILPKY;
 - (b) HDWSSAPVAWLYKEHY;
 - (c) DVPIVGIITRLTAQKG;
 - (d) NGQVVLLGSA;
 - (e)AGSDFIIVPSIFEPCGLTQLVAMRYGS;
 - (f)TGGLVDTV;
 - (g) GIVNGIDNMEWNPEVD; and
 - (h) AGADALLMPSRF(E/V)PCGLNQLYAMAYGT.
- 19. The isolated or recombinant polypeptide according to claim 16 consisting of a wheat starch synthase II polypeptide which comprises an amino acid sequence selected from the group consisting of:
 - (i) SEQ ID NO: 2;
 - (ii) SEQ ID NO: 4;
 - (iii) SEQ ID NO: 6; and
 - (iv) a homologue of any one of (i) to (iii) having at least about 85% identity thereto.
- 20. The isolated or recombinant polypeptide according to claim 17 consisting of a wheat starch synthase III polypeptide which comprises an amino acid sequence selected from the group consisting of:

- (i) SEQ ID NO: 8;
- (ii) SEQ ID NO: 10; and
- (iii) a homologue of (i) or (ii) having at least about 85% identity thereto.
- 21. The isolated or recombinant polypeptide according to claim 12 substantially free of conspecific or non-specific proteins.
- 22. A method comprising:
 - (i) hybridising single-stranded or double-stranded mRNA, cDNA or genomic DNA with a nucleotide sequence selected from the group consisting of:
 - (a) the nucleotide sequence according to any one of claims 1 to 9;
 - (b) a probe or primer derived from a nucleotide sequence according to subparagraph (a) and comprising at least about 15 contiguous nucleotides of said nucleotide sequence in length; and
 - (ii) detecting the hybridised mRNA, cDNA or genomic DNA using a detecting means.
- 23. The method according to claim 22 wherein the detecting means consists of a reporter molecule covalently attached to the probe or primer molecule.
- 24. The method according to claim 22 wherein the detecting means consists of a polymerase chain reaction.
- 25. The method according to claim 22 wherein the probe or primer comprises a nucleotide sequence selected from the group consisting of:
 - (i) the nucleotide sequence set forth in SEQ ID NO: 25;

- the nucleotide sequence set forth in SEQ ID NO: 26; (ii) the nucleotide sequence set forth in SEQ ID NO: 27; (iii) the nucleotide sequence set forth in SEQ ID NO: 28; (iv) the nucleotide sequence set forth in SEQ ID NO: 29; (v) the nucleotide sequence set forth in SEQ ID NO: 30; (vi) the nucleotide sequence set forth in SEQ ID NO: 31; (vii) the nucleotide sequence set forth in SEQ ID NO: 32; (viii) the nucleotide sequence set forth in SEQ ID NO: 33; (ix) the nucleotide sequence set forth in SEQ ID NO: 34; (x) a nucleotide sequence which encodes an amino acid sequence selected from (xi) the group consisting of: (a) KVGGLGDVVTS; (b) GHTVEVILPKY; (c) HDWSSAPVAWLYKEHY; (d) GILNGIDPDIWDPYTD; (e) DVPIVGIITRLTAQKG; (f) NGQVVLLGSA; (g)AGSDFIIVPSIFEPCGLTQLVAMRYGS; (h)TGGLVDTV;
 - (k) NDWHTALLPVYLKAYY;

(i) KTGGLGDVAGA;

(j) GHRVMVVVPRY;

- (I) GIVNGIDNMEWNPEVD;
- (m) DVPLLGFIGRLDGQKG;

- (n) DVQLVMLGTG;
- (o)AGADALLMPSRF(E/V)PCGLNQLYAMAYGT; and
- (p)VGG(V/L)RDTV;
- (xii) a nucleotide sequence comprising at least about 15 contiguous nucleotides of an intron region of SEQ ID NO: 37;
- (xiii) a nucleotide sequence comprising at least about 15 contiguous nucleotides of an intron region of SEQ ID NO: 38; and
- (xiv) a nucleotide sequence which is complementary to any one of (i) to (xiii).
- 26. A method of assaying for the presence or absence of a wheat starch synthase polypeptide in a plant or a plant extract or isolated nucleic acid sample, said method at least comprising performing the method according to any one of claims 22 to 25.
- 27. The method according to claim 26 further comprising preparing the plant extract or nucleic acid sample.
- 28. A method of marker-assisted breeding and/or selection of a plant at least comprising performing the method according to any one of claims 22 to 25.
- 29. The method according to claim 28 further comprising selecting a plant which expresses a desirable wheat starch synthase characteristic.
- 30. The method according to claim 28 further comprising crossing a plant which expresses a desirable wheat starch synthase characteristic to another plant.
- 31. The method according to claim 30 further comprising selecting progeny of the cross

which expresses a desirable wheat starch synthase characteristic.

- 32. A plant produced by the method according to any one of claims 28 to 31 wherein said plant expresses a wheat starch synthase polypeptide at a desired level detectable using said method.
- 33. A method of modifying the starch content and/or starch composition of one or more tissues or organs of a plant, comprising expressing in said plant a nucleic acid molecule for a time and under conditions sufficient for the enzyme activity of one or more starch synthase isoenzymes to be modified, wherein said nucleic acid molecule is selected from the group consisting of:
 - (i) the isolated nucleic acid molecule according to any one of claims 1 to 9;
 - (ii) a fragment of (i) which comprises a nucleotide sequence capable of being expressed to down-regulate the expression of an endogenous wheat starch synthase isoenzyme of said plant; and
 - (iii) a fragment of (i) which encodes a functional wheat starch synthase isoenzyme of said plant.
- 34. The method according to claim 33 wherein the fragment at sub-paragraph (ii) is an antisense molecule, ribozyme molecule, co-suppression molecule, or gene-targeting molecule.
- 35. The method according to claim 33 further comprising introducing the nucleic acid molecule to an isolated plant cell, tissue, organ, or organelle.
- 36. The method according to claim 35 further comprising regenerating an intact plant from the isolated plant cell, tissue, organ, or organelle carrying the introduced nucleic acid molecule.

- 37. The method according to claim 35 wherein the nucleic acid molecule is introduced to the plant cell, tissue, organ, or organelle by introgression.
- 38. The method according to claim 35 wherein the nucleic acid molecule is introduced to the plant cell, tissue, organ, or organelle by transformation means.
- 39. An isolated promoter sequence comprising a nucleotide sequence selected from the group consisting of:
 - (i) nucleotides 1 to about 287 of SEQ ID NO: 11;
 - (ii) nucleotides 1 to about 1416 of SEQ ID NO: 37;
 - (iii) nucleotides 1 to about 973 of SEQ ID NO: 38;
 - (iv) a fragment of any one of (i) to (iii) capable of conferring expression on a heterologous gene in a monocotyledonous plant cell, tissue or organ; and
 - (v) a complementary nucleotide sequence to any one of (i) to (iv).
- 40. The isolated promoter sequence according to claim 39 that is operable in the endosperm.
- 41. A plant carrying the isolated nucleic acid molecule according to any one of claims 1 to 9 as an exogenous complement to its genome.
- 42. A progeny of the plant according to claim 41 wherein said progeny carries the introduced nucleic acid molecule.
- 43. A propagule of the plant according to claim 41 or 42 wherein said propagule carries the

introduced nucleic acid molecule present in said plant.

- 44. A gene construct or vector which comprises the isolated nucleic acid molecule according to any one of claims 1 to 9 and one or more origins of replication.
- 45. The gene construct according to claim 44 further comprising a promoter sequence in operable connection with said isolated nucleic acid molecule.
- 46. A gene construct or vector which comprises the probe or primer according to claim 10 or 11 and one or more origins of replication.
- 47. A modified starch derived from the plant according to claim 32 or 41 wherein said starch is modified by virtue of the use of the isolated nucleic acid according to claim 1 to produce said plant.
- 48. A modified starch derived from the progeny according to claim 42 wherein said starch is modified by virtue of the use of the isolated nucleic acid according to claim 1 to produce said progeny.
- 49. A modified starch derived from the propagule according to claim 43 wherein said starch is modified by virtue of the use of the isolated nucleic acid according to claim 1 to produce said propagule.
- 50. A food product comprising the modified starch according to any one of claims 47 to 49.
- 51. The food product according to claim 50 consisting of flour or a flour-based food product.

- 52. The food product according to claim 50 or 51 selected from the group consisting of: flour-based sauce; leavened bread; unleavened bread; pasta, noodle; cereal; snack food; cake; and pastry.
- 53. Use of the modified starch according to any one of claims 47 to 49 in the preparation of a food product for consumption by an animal or human.
- 54. A modified protein derived from the plant according to claim 32 or 41 wherein said protein is modified by virtue of the use of the isolated nucleic acid according to claim 1 to produce said plant.
- 55. A modified protein derived from the progeny according to claim 42 wherein said protein is modified by virtue of the use of the isolated nucleic acid according to claim 1 to produce said progeny.
- 56. A modified protein derived from the propagule according to claim 43 wherein said protein is modified by virtue of the use of the isolated nucleic acid according to claim 1 to produce said propagule.
- 57. A non-food product comprising the modified protein according to any one of claims 54 to 56.
- 58. The non-food product according to claim 57 selected from the group consisting of: films; coatings; adhesives; building materials; and packaging materials.
- 59. Use of the modified protein according to any one of claims 54 to 56 in the preparation of a non-food product.

	FIGURE 2A	
	FIGURE 2B	
	FIGURE 2C	
	FIGURE 2D	
	FIGURE 2E	
	FIGURE 2F	
	FIGURE 2G	
	FIGURE 2H	
	FIGURE 21	
·	FIGURE 2J	
	FIGURE 2K	
	FIGURE 2L	
	FIGURE 2M	
	FIGURE 2N	
	FIGURE 20	

FIGURE 2

•	< C	1	1
(1)
1	-		4

					20	
WSSIIB	ATTTCCTCGG			CCACACAGAG CACACTCCAG	CACACTCCAG	•
WSSIID	~~~~~~~	~~~~~~~~	<pre></pre>	<pre></pre>	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
WSSIIA	****	<pre></pre>	* * * * * * * * * * * * * * * * * * * *	~~~~~~~~	*****	
	-	•	•	•		
	51				100	
WSSIIB	TCCAGTCCAG	CCCACTGCCG	CGCTACTCCC	CGCTACTCCC CACTCCCACT	GCCACCACCT	
MSSTID	*****	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	* * * * * * * * * * * * * * * * * * * *	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
WSSIIA	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	* * * * * * * * * * * * * * * * * * * *	TD9~~~~~~	GCCACCACCT	
•						
	101				150	
WSSIIB	CCGCCTGCGC	CCGCCTGCGC CGCGCTCTGG	GCGGACCAAC	CCGCGCATCG	TATCACGATC	
MASTID	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~~~~~~~~~	~~~~~~~	
ST FOOT		SSTOTOTOTOTO	GCGGAGGACC	AACCCGCGCA	TCGTACCATC	
WI TOOM)))))))			
	151				200	
WSSIIB	ACCCACCCCG	ATCCCGGCCG	CCGCCATGTC	CCGCCATGTC GTCGGCGGTC GCGTCCGCCG	GCGTCCGCCG	
WSSIID	~~~~~~~~	*****	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
WSSIIA	5000000000	ATCCCGGCCG	CCGCCATGTC	GICGGCGGIC GCGICCGCCG	GCGTCCGCCG	

	201				250
WSSIIB	CGICCIICCI	CGCGCTCGCG	TCCGCCTCCC	TCCGCCTCCC CCGGGAGATC ACGGAGGAGG	ACGGAGGAGG
WSSIID	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	******	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	*****
WSSIIA	CGICCTICCI	CECECTCECC	TCCGCCTCCC	TCCGCCTCCC CCGGGAGATC	ACGCAGGCGG
			*		
	251				300
WSSIIB	ACGAGGGTGA	GIGA GCGCGICGCC ACCCCACACC GGGGCIGGCA GGIIGCACIG	ACCCCACACC	GGGGCTGGCA	GGTTGCACTG
WSSIID	~~~~~~~	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	* * * * * * * * * * * * * * * * * * * *	******	*****
WSSIIA	GCGAGGGTGA	GCGCGCCGCC ACCCCACGCC		GGGCCGGCA	GGCTGCACTG
	301				350
WSSIIB	GCCGCCGICG	CCGCCGCAGC		GCACGGCTCG CGACGGAGCG GTGGCCGCGC	GIGGCCGCGC
WSSIID	****	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	* * * * * * * * * * * * * * * * * * * *
WSSIIA	GCCGCCGTGG	CCGCCGCAGC	GCACGGCTCG	CGACGGAGGT	GIGGCCGCGC
	351		*		400
WSSIIB	9922922929	GAAGAAGGAC	GCGGGGAT	. CGACGACGC	.9090009090
WSSIID	*****	~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	****
WSSIIA	9900900909		GAAGAAGGAC GCGAGGGTCG	ACGACGACGC	ACGACGACGC CGCGTCCGCG

FIGURE 2B

401 AGGCAGCCCC GCGCACTCCG CGGTGGCGCC AGGCAGCCCC GCGCACGCCC CGGTGGCGCC GAGGGATCCC GTCAAGACGC TCGATCGCGA CACCCCCC GTCAAGACGC TCGATCGCGA CGTCCCCGCC GTCAAGACGC TCGATCGCGA 501 CGTCCCCGCC GGCACCGAGG CAGGAGGACG CGCCACCGCC GGCACCGAGG CAGGACGCCG 551 GGCATGCCGG TGAACGGTGA AAACAAATCT CGCACCGG TGAACGGTGA GAACAAATCT	450 TTGCGGAGCG ~~~~~~~~~~~~~~	GGTGGCG ~~~~~~ GGTGGCG	550 GAGCATGAAC ~~~~~~~~ GAGTATGAAC	600 GCGGCGCGAC ~~~~~~~~ GCGGCGCGAC
	GCCACCAAGG	CGCCGCGGAA		
	CGGTGGCGCC			AAACAAATCT ~~~~~~~~~ GAACAAATCT
	GCGCACTCCG	GTCAAGACGC ~~~~~~~~ GTCAAGACGC	GGCACCGAGG	TGAACGGTGA ~~~~~~~~~ TGAACGGTGA
WSSIIB WSSIID WSSIIB WSSIIB WSSIIB WSSIIB WSSIIB WSSIIB WSSIIB	401 AGGCAGCCCC ~~~~~~~~~~~~~~~~~~~~~~~~~~~~	GATCCC	501 CGTCCCCGCC ~~~~~~~~~	551 GGCATGCCGG ~~~~~~~~~ GGCACGCCGG
	WSSIIB WSSIID WSSIIA	WSSIIB WSSIID WSSIIA	WSSIIB WSSIID WSSIIA	WSSIIB WSSIIA WSSIIA

FIGURE 2C

FIGURE 2D

650	CCGTCGAGCC	*****	CCGTCGACCC	. 700	CGCCTCGCCG	* * * * * * * * * * * * * * * * * * * *	CECCICECCE		750	CTACCATTTC	~~~~~~~	CTACCATTTC		800	CCCAGCCGAG AAGGCGCCGC	AAGACGCCGC	AAGCCGCCGC
	CGCGCCCCAG CCGTCGAGCC	* * * * * * * * * * * * * * * * * * * *	CGCGCCCCAT		AAGCTAACGT	*****	AAGCTAACGT	-		CGCGGCTCCG GATCCCGCAG	*****	CGTGGCTCCG GATTCCGCAG		·	CCCAGCCGAG	~CCAGCTGAG	CCCAGCCGAG
	CACCGCACG	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	CACCCGCACG		AGAACAGAGT ACCGGTGAAT GGTGAAAACA AAGCTAACGT	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	GGTGAAAACA AAGCTAACGT				2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	CGTGGCTCCG			AGTCCGTTGT	* * * * * * * * * * * * * * * * * * * *	AGTCCGTTGT
	GGGCTGCCCG	~~~~~~~~	GGGCTgcCCG		ACCGGTGAAT	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ACCAGTGAAC	•		TAGCCGAGGT	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	TAGCCGAGGT	•		CATCAGTGAC AAGGCGCCAG AGTCCGTTGT	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	CATCAGIGAC AAGGCGCCGG AGICCGIIGI
601	TAAAGACAGC	~~~~~~~~~	CAAAGACAGC	651	AGAACAGAGT	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	AgAACAgAGT		701	CCGACGAGCA	<pre> 2 2 2 2 2 2 2 2 2 3 3 3 3 4 4 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7</pre>	CCGACGAGCA		751	CATCAGTGAC	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	CATCAGTGAC
	WSSIIB	WSSIID	WSSIIA		WSSIIB	WSSIID	WSSIIA			WSSIIB	WSSIID	WSSIIA			WSSIIB	WSSIID	WSSIIA

FIGURE 2E

850	cggGtctGAC	CGGGTCTGAC	CAGGCTGGAC	006	tCattgTcaA	TCGTTGTCGA	TCATCGTCGA	950	CCCGCTGTAC	CCCGCTGTAC	CCCGCTGTAC	1000	GGAGCCCGTG	GGAGCCCGTG	GGAGCCCGTG
	cttctGctCc	CCICITGCITCC	CTTCTGCTCC		aAGGGtgCgg	AAGGGTGCGG	AAGGGTGCGG		GCCCGCAGCA	GCCtGCAGCc	GCCTGCAGCC		TIGGTITCGA	TIGGTTICGA	TIGGCTICGA
	gtgCcCtCgg	GAGTCCTCGG	GTGgTCTCGG		TgaActGAAg	AGAACTGAAG	TGAACTGAAG		CTCTTTCGCC	CTCTTTCGCC	CICITICGCC		AAGAAATACA	AAGAAATACA	AAGAAATACA
	CtcAAATtTc	CTCAAATTTC	CTCAAATTTC		acGtGGaact	ACGTGGAACA	ATGTTGAACC		aGAAgcTcCa aaCcCaAaGG	AAGCCAAAGG	AACCCAAAGG		TIGGGACTIC	TIGGGALTIC	TTGGGACTTC
. 1	CGtCgtcCgg	CGTCGTCCGG	CGTCGTCCGG	851	actgtCaGCG	ACTGTCAGCG	ATTGACAGCG	901	aGAAgcTcCa	AGAAGCTCCA	AGAAGCTCCA	951	AACAAGACCT	AAGAACCT	AAGAAGACCT
801	WSSIIB	WSSIID	WSSIIA		WSSIIB	WSSIID	WSSIIA		WSSIIB	WSSIID	WSSIIA		WSSIIB	WSSIID	WSSIIA

FIGURE 2F

	•		
1050 GCTCCTTCGA GCTCCTTTGA GCTCCTTTGA	1100 AACGTCATGA AAtGTCATGA AACGTCATGA	1150 AACAGGTGGT AACAGGTGGT	1200 AGAGAGGACA AGAGAGGACA AGAGAGGACA
1050 GATGATGCGG GCTCCTTCGA GATGATGCGG GCTCCTTTGA GATGATGCGG GCTCCTTTGA	GGCAGGGGAG GGCAGGGGGAG GGCAGGGGGAG	CCTGGTGCAA CCTGGTGCAA CCTGGTGCAA	GCTTTGGCGA GCTTTGGCAA GCTTTGGCGA
GGCTGTTGCA	CCGGGCCTTT	GAATGTTCTC	TTTGCCCAAG
GGCTGTCGCA	CCGGACCTTT	GAGTGTTCTC	TCTGCCCAAG
GGCTGTTGCA	CCGGACCTTT	GAATGTTCTC	TTTGCCCAAG
ATGATGGCCG	AATCACGATT	CGTGGCTGCT	TTGCCGGTGC
ATGATGGCCG	AATCACGACT	CGTGGCTGCT	TTGCGGGTGC
ATGATGGCTG	AACCATGATT	CGTGGCTGCT	TTGCCGGTGC
1001	1051	1101	1151
GAGGCCAAGG	ACACCACCAG AATCACGATT	ACGTGGTCGT	CTTGGAGATG
GAGGCCAAGG	ACACCACCAG AATCACGACT	ACGTGGTCGT	CTGGGAGATG
GAGGCCAAGG	ACATCACCAG AACCATGATT	ACGTGGTCGT	CTTGGAGATG
wSSIIB	WSSIIB	WSSIIB	WSSIIB
wSSIID	WSSIID	WSSIID	WSSIID
wSSIIA	WSSIIA	WSSIIA	WSSIIA

1250	GAAGCCTACG	GAACCTACGG	GAAGCCTACG	1300	TATGGAAGTG	TATGGAAGTG	TATGGAAGTG	1350	TCATTGACGC	TCATTGACGC	TCATTGACGC	1400	AGCAGACAGG	AGCAGACAGG	AGCAGACAGG
	GGACTATGAG GAAGCCTACG	GGACTATGAa	GGACTATGAG		TACAAGGCTG CTGGACAGGA	CTGGACAGGA	CTGGACAGGA		GATTTTGTGT	GATTTTGTGT	GATTTTGTGT		TTATGGGGGC	TTATGGGGGC	TTATGGGGGC
	CAAGGTATGG	CAAGGTATGG	CAAGGTATGG	·	TACAAGGCTG	TACAAGGCTG	TACAAGGCTG		CGATGGAGTT	CGATGGAGTT	CGATGGAGTT		AGGAAGACAT	AGGAAGACAT	AGGAAGACAT
	GTTGTGGTAC	GTTGTGGTAC	GTTGTGGTAC		CCGAAAATAC	CCGAAAATAC	CCGAAAATAC		ATGCTTATAT	ATGCTTATAT	ATGCTTATAT		CGACACCGCC	CGACACCGAG	CGACACCGCC
1201	TCGTGTTATG	TCGTGTTATG	TCGTGTTATG	1251	ATGTCGGAGT	ATGTCGGAGT	ATGTCGGAGT	1301	AATTATTTCC	AATTATTCC	AATTATTTCC	1351	TCCTCTCTTC	TCCTCTTTC	TCCTCTTTC
•	WSSIIB	WSSIID	WSSIIA		WSSIIB	WSSIID	WSSIIA		WSSIIB	WSSIID	WSSIIA		WSSIIB	WSSIID	WSSIIA

FIGURE 2G

FIGURE 2H

1450	1500	1550	1600
CGAGGTTCCA	ATCTGGTGTT	CTGAAAGCAT	TATGGTGATA
TGAGGTTCCA	ATCTGGTGTT	CTGAAAGCAT	TATGGTGATA
CGAGGTTCCT	ATCTGGTGTT	CTGAAAGCAT	TATGGTGATA
AGGCCGCTGT	GGGGATGGAA	GCCTGTCTAT	CTCGGTCCAT
AGGCCGCTGT	GGGGATGGAA	GCCTGTCTAT	CTCGGTCCAT
AGGCCGCTGT	GGGGATGGAA	GCCTGTCTAT	CTCGGTCCAT
TTGTTCTGCA	TGTCCCTTAT	CGGCACTCCT	ATGCAGTACA
TTGTTCTGCA	TGTCCCTTAT	CGGCACTCCT	ATGCAGTACA
TTGTTCTGCA	TGTCCCTTAT	CGGCACTCCT	ATGCAGTACA
GCGCATGATT GCGCATGATT GCGCATGATT	CATGCGGCGG CATGCGGCGG	GATTGGCACA GATTGGCACA GATTGGCACA	CCATGGTTTG CCATGGTTTG CCATGGTTTG
1401 AAATTATGAA GCGCATGATT AAATTATGAA GCGCATGATT AAATTATGAA GCGCATGATT	1451 TGGCACGTTC TGGCACGTTC TGGCACGTTC	1501 TATTGCAAAT TATTGCAAAT TATTGCAAAT	1551 ATTACAGGGA ATTACAGGGA
wSSIIB	WSSIIB	WSSIIB	WSSIIB
wSSIID	WSSIID	WSSIID	WSSIID
wSSIIA	WSSIIA	WSSIIA	WSSIIA

21
URE
FIGI

1650	TCCCGTTCAC	TCCCGTTCAC	TCCCGTTCAC	1700	GACCCCGTGG	GACCCCGTGG	GACCCCGTGG	1750	GGCGGACCAG	GGCGGACCAG	GgCGGACCAG	1800	CGGTGGAGGG	CGGTGGAGGG	CGGTGGAGGG
	GTAGATGAGT	GTAGATGAAT	GTAGATGAAT		CAGACTGTAC	CAGACTGTAC	CAGACTGTAC		GCCTGAAGAT	GCCTGAAGAT	GCCTGAAGAT		GAGCTGAAGA	GAGCTGAAGA	gAGCTCAAGA
	CCGTGGCCCA	CCGTGGCCCT	CCGTGGCCCA		TGGAACACTT	TGGAACACTT	TGGAACACTT		TTCGCCGCCG	TTCGCCGCCG	TTCGCCGCCG		GTACCTGTGG	GTACCTGTGG	GTACCTGTGG
	CTCACCAGGG	CTCACCAGGG	CGCACCAGGG		GAGCACTACC	GAGCACTACC	GAGCACTACC	*	CGCCAACTAC	CGCCAACTAC	CGCCAACTAC		TGAGCCCGGG	TGAGCCCCGG	TGAGCCCCGG
1601	CATAACATCG	CATAACATCG	CATAACATCG	1651	CGAGTTGCCT	CGAGTTGCCT	CGAGTIGCCT	1701	GTGGTGAACA	GTGGTGAACA	GTGGTGAGCA	1751	GTTGTCGTCG	GTTGTCGTGG	GTTGTCGTGG
	WSSIIB	WSSIID	WSSIIA												

–	7	•	
(1	Į	
	Š		
 -)) }	
		1	
		1	

	1801				1850
WSSIIB	CGGCTGGGGG	CTTCACGACA	TCATACGGCA GAACGACTGG		AAGACCCGCG
WSSIID	CGGCTGGGGG	CTTCACGACA	TCATACGGCA	GAACGACTGG	AAGACCCGCG
WSSIIA	CGGCTGGGGG	CTTCACGACA	TCATACGGCA	GAACGACTGG	AAGACCCGCG
	1851				1900
WSSIIB	GCATCGTGAA	CGGCATCGAC AACATGGAGT	AACATGGAGT	GGAACCCCGA	GGTGGACGTC
WSSIID	GCATCGTCAA	CGGCATCGAC AACATGGAGT	AACATGGAGT	GGAACCCCGA	GGTGGACGCC
WSSIIA	GCATCGTCAA	CGGCATCGAC	CGGCATCGAC AACATGGAGT	GGAACCCCGA	GGTGGACGTC
	1901	. •			1950
WSSIIB	CACCTCAAGT	CGGACGGCTA	CACCAACTIC	TCCCTGGGGA	CGCTGGACTC
WSSIID	CACCTCAAGT	CGGACGGCTA	CACCAACTTC	TCCCTGAGGA	CGCTGGACTC
WSSIIA	CACCTCAAGT	CGGACGGCTA	CACCAACTTC	TCCCTGGGGA	CGCTGGACTC
		٠.			
	1951				2000
WSSIIB	CGGCAAGCGG	CAGTGCAAGG	AGGCCCTGCA	GCGGGAGCTG	GGCCTGCAGG
WSSIID	CGGCAAGCGG	CAGTGCAAGG	AGGCCCTGCA	GCGCGAGCTG	GGCCTGCAGG
WSSIIA	CGGCAAGCGG	CAGTGCAAGG	AGGCCCTGCA	GCGCGAGCTG	GGCCTGCAGG

2K	
IRE	
FIC	

		•													
2050	GGACGGGCAG	GGACGGGCAG	GGACGGGCAG	2100	TGAGCCAGGA	TGAGCCAGGA	TGAGCCAGGA	2150	GAGGGCATGC	GAGAGCATGC	gAGAGCATGC	2200	GTGGGTGGGG	GTGGGTGGGG	${ t gTGGGTGGGG}$
	TCGGGCGCCT	TCGGCCGCCT	TCGGCCGCCT		CCCTGGATCG	CCCTGGATCG	CCCTGGaTCG		CCACGACCTG	CCACGACCTG	CCACGACCTG		AGGTGCGCGG	AGGTGCGCGG	AGGTGCGCGG
	CICGGCTICA	CTCGGCTTCA	CTCGGCTTCA		GGACGCGATG	GGACGCCATG	GGACGCCATG		GCACCGGGCG	GCACCGGGCG	GCACCGGCCG		CACCACGACA	CACCACGACA	CACCACGACA
. !	CGTGCCGCTG	CGTGCCGCTG	CGTGCCGCTG		AGATCATCGC	AGATCATCGC	AGATCATCGC		GTCATGCTGG	GTGATGCTGG	GTCATGCTGG		CGAGCGGGAG	CGAGCGGGAG	CGAGCGGGAG
2001	TCCGCGGCGA	TCCGCGCCGA	TCCGCGCCGA	2051	AAGGGCGTGG	AAGGGCGTGG	AAGGGCGTGG	2101	CGTGCAGCTG	CGTGCAGCTG	CGTGCAGCTG	2151	TGCGGCACTT	TGCAGCACTT	TGCGGCACTT
	WSSIIB	WSSIID	WSSIIA												

2201	7				2250
	TTCTCCGTGC	GGCTGGCGCA	CCGGATCACG	5005055005	ACGCGCTCCT
	TICICCGIGC	GCCTGGCGCA	CCGGATCACG	9909999999	ACGCGCTCCT
	TTCTCCGTgc	GCCTGGCGCA	CCGGATCACG	ອວວອວອອວອ	ACGCGCTCcT
	2251 CATGCCCTCC	CGGTTCGAGC	CGTGCGGACT	GAACCAGCTC	2300
	CATGCCCTCC	CGGTTCGTGC	CGTGCGGGCT	GAACCAGCTC	TACGCCATGG
	CATGCCCTCC	CGGTTCGAgC	CGGTTCGAGC CGTGCGGGTT	GAACCAGCTt	TACGCCATGG
	2301				2350
	CCTACGGCAC	CGICCCCGIC	GTGCATGCCG	TCGGTGGCCT	GAGGGACACC
	CCTACGGCAC	CGTCCCCGTC	GTGCACGCCG	TCGGCGGCCT	CAGGGACACC
	CCTACGGCAC	CGICCCCGIC	GTGCACGCCG	TCGGCGGGGT	GAGGGACACC
	2351				2400
	GTGCCGCCGT	TCGACCCCTT	CAACCACTCC	GGGCTCGGGT	GGACGTTCGA
	GIGCCGCCGI	TCGACCCCTT	CAACCACTCC	GGGCTCGGGT	GGACGTTCGA
	GIGCCGCCGI	TCGACCCCTT	CAACCACTCC	GGCCTCGGGT	GGACGTTCGA

FIGURE 2L

V
21
H
K
15
FI
<u>.</u>

2450 TGCCTCCGCA TGCCTCCGCA	2500 GCGCGGCATG GCGCGGCATG GCGCGGCATG	2550 AGGACGTCCT AGGACGTCCT AGGACGTCCT	2600 CGGTCCAGCC CGCTCCAGCC
GCTCGGGCAC GCTCGGGCAC GCTCGGGCAC	GGCTCCAGGA CCCTCCAGGA GcCTCCAGGA	AAGCTCTACG AAGCTCTACG AAGCTCTACG	AGCTGCTAGC AGCTGCTAGC AGCTGCTAGC
TGATCGAGGC TGATCGAGGC TGATCGAGGC	2451 CCTACCGGGA CTACAAGGAG AGCTGGAGGG GGCTCCAGGA CCTACCGAGA CTTCAAGGAG AGCTGGAGGG CCCTCCAGGA CCTACCGGGA CTACAAGGAG AGCTGGAGGG GCCTCCAGGA	GCATGCCGCC GCACGCCGCC GCATGCCGCC	GGTGAACGCT GGTGAACGCT GGTGAACGCT
GCGCAGAAGC GCGCACAAGC GCGCACAAGC	2451 CCTACCGGGA CTACAAGGAG CCTACCGAGA CTTCAAGGAG	TCAGCTGGGA TCAGCTGGGA TCAGCTGGGA	AAGTACCAGT AAGTACCAGT AAGTACCAGT
2401 CCGCGCAGAG GCGCAGAAGC CCGCGCCGAG GCGCACAAGC	2451 CCTACCGGGA CCTACCGAGA CCTACCGGGA	2501 TCGCAGGACT TCGCAGGACT TCGCAGGACT	2551 CGTCAAGGCC CGTCAAGGCC CCTCAAGGCC
wSSIIB wSSIID wSSIIA	WSSIIB WSSIID WSSIIA	WSSIIB WSSIID WSSIIA	WSSIIB WSSIID WSSIIA

	2601				2650
WSSIIB	CCGCATGCG.	TGCATGA	CAGGATGGAA	TTGCGCATTG	CGCACGCAGG
WSSIID	CCGCATGCG.	TGCATGA	CAGGATGGAA	CTGCATTG	CGCACGCAGG
WSSIIA	CCGCATGCGT	GCATGcatgA	gAGGgTGGAA	CTGCGCATTG	CGCCCGCAGG
	2651				2700
WSSIIB	AAGGTGCCAT	•	.GGAGCGCCG	GCATCCGCGA	AGTACAGTGA
WSSIID	AAAGTGCCAT	•	.GGAGCGCCG	GCATCCGCGA	AGTACAGTGA
WSSIIA	AACGTGCCAT	ccttctcgat	gGGAGCGCCG	GCATCCGCGA	gGTgCAGTGA
	2701				2750
WSSIIB	CATGAGGT	GTGTGTGGTT	GAGACGCTGA	TTCC GATCTGGTCC	GATCTGGTCC
WSSIID	CATGAGGT	GTGTGTGGTT	GAGACGCTGA	TTCC	AATCCGGCCC
WSSIIA	CATGAGagGT	GTGTGTGGTT	GAGACGCTGA	TTCCGATCTC	gatctGGTCC
	٠				
	2751				2800
WSSIIB	GTAGCAGAGT	AGAGCGGAGG	TAGGGAAGCG	CTCCTTGTTA	CAGGTATATG
WSSIID	GTAGCAGAGT	AGAGCGGAGG	TATATGGGAA	TCTTAACTTG	GTATTGTAAT
WSSIIA	GTAGCAGAGT	AGAGCGGAcG	TAGGGAAGCG	CICCIIGIIG	CAGGTATATG

WSSIIB	2801 GGAATGTTGT	TAACTTGGTA	TTGTAATTTG	TTATGTTGTG	2850 TGCATTATTA
WSSIID	GGAATGTTGT	CAACTTGGTA	TTGTAGTTTG	GITATGTTGTA	TGCGTTATTA
WSSIIB	2851 CAGAGGGCAA	CGATCTGCGC	CGGCGCACCG	GCCCAACTGT	2900 TGGGCCGGTC
WSSIID	CGGAGGCCAA	GGGCGAAAGC	TAGCTCACAT	GTCTGATGGA	TGCAAAAAAA
WSSIIA	caatgttgtt	acttattctt	gtTaaaaaa aaaaaaaaa	AAAAAAAAA	AAAA~~~~~
	2901	.*			2950
WSSIIB	GCACAGCAGC	CAGC CGTTGGATCC GACCGCCTGG	GACCGCCTGG	GCCGTTGGAT	CCCACCGAAA
WSSIID	AAAAAAAAA	AAAAAAAA AAA~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~	******
WSSIIA	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	* * * * * * * * * * * * * * * * * * * *	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	* * * * * * * * * * * * * * * * * * * *
•			*.		
	2951	2965			
WSSIIB	AAAAAAAA AAAAA	AAAAA			
WSSIID	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~ ~ ~ ~ ~ ~			
WSSIIA	* * * * * * * * * * * * * * * * * * * *	~~~~		(

FIGURE 3A
FIGURE 3B
FIGURE 3C
FIGURE 3D
FIGURE 3E
FIGURE 3F
FIGURE 3G

FIGURE 3

51 51		57	26	49	57		1.11	110		97	89	109	116
	! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !			R	0			*0******				TIEKSK**LA LORELIQQIA ERKKLVSSID	NSGEAA-S *DESNDALQV TIEKSK**LA MQQDLLQQIA ERRKVVSSIK
FLALASA SP-GRSRRRA RVSAPPPHAG AGRLHW PPWPP-QRTA		*-S*SFAFWA **S**RAPRD	YSGAELRL** ARRG*P*DG*	GVGRLNCGSV	LSLIHGSSRE		KDARVDDD AASARQPRAR RGGAATKVAE RRDPVKTLDR	******				LORELIQUIA	MQQDLLQQIA
RVSAPPPHAG ****T*		**GSS*F*T*	S*G*ALRSY*			ge site	RGGAATKVAE	******		*NA*SK ***	1		TIEKSK**LA
SP-GRSRRRA **-****T		******	**R**G	FTPKL*TLNGDLAFSKGL	GNQFHPNLPL	nsit peptide cleavage site	AASARQPRAR	T******** **-ID***		***PPERS GDA**L***		SFGADENG DG*EDDVVNA	*DESNDALQV
FLALASA		STE******	SAFL*PV**S	VLP*H*KNLK	VMENSI*LHS GNOFHPNLPLLALRPKK	U Transit pep	GKKDARVDDD	**-ID****		*G***PPERS	AGG	*	*ENSGEAA-S
MSSAVASAAS ******		****AV****	*PG*-I*SS*	*MISIG*D*T	PVNFIFCDFY V	⇒	RDGGVAARAA GK	*******		AALVR*EAE*	-ASVR**A*P	LNHKQHV**V	MWRNQRVK*T
, – –		H	Ч	H	10		52	52		58	57	50	58
WSSIIA WSSIIB	WSSIID	ZSSIIA	SSSIIB	PEASSII	POTSSII		WSSIIA.	WSSIIB	WSSIID	ZSSIIA	ZSSIIB	PEASSII	POTSSII

FIGURE 3A

231 230

PRLDIDSDVE *GS*TV*** *GS*TV***

GSNFVVSASA

VPAEKPPPSS.

SISDKAPESV

VVAPDSAATI *A***P****

VASPPTSIAE

171 203

WSSIIB

WSSIID ZSSIIA ZSSIIB

WSSIIA

188 158 199

--GIAPPT** DASAVKPEPA ASSKLHFNEQ

E*PA*DGD*N P*AP*TKREI

****SI****

SSQETLL**N

EIEKKND*VK

L**P**--LH A*VSG*KADH SSVGINQGFD

> TSGGSSASTA RSKETETWA* RS*IT*SSQI

> > FQQ----LC LADERAPPLS

PPN*L**APK *ETKR--WHC *E*KREIKRD

PSG*I***T*

FP**GYRMIL QSQSAAMQNG

A**K

134

147

PEASSII POTSSII

SSTVSSK--R

TL*VPPETPK

231

٠		
		_
		_
		_
		T
		-
		•
		ш
		P
		С
		<u></u>
		_
		1
		•
		\subseteq
		Ŀ
		•

WSSIIA 112 PAPRQDAARP PSMNGTPVNG ENKSTGGGGA TKDSGLPAPA RAPHPSTQNR VPVNGENKAN 171 WSSIIB 111 *****ED**L *****M*** ****** ****** ***Q**S*** ******** 170 WSSIID ZSSIIA 98	-J C	~ ~	10 N
SSIIA 112 PAPRODAARP PSMNGTPVNG ENKSTGGGGA SSIIB 111 ************************************	171 170	\vdash	\leftarrow
SSIIA 112 PAPRODAARP PSMNGTPVNG ENKSTGGGGA SSIIB 111 ************************************	KAN * * *	15* S*S	GSA HDF
SSIIA 112 PAPRODAARP PSMNGTPVNG ENKSTGGGGA SSIIB 111 ************************************	1GEN	 3V*I (AVD	SSSS
SSIIA 112 PAPRODAARP PSMNGTPVNG ENKSTGGGGA SSIIB 111 ************************************	VPVN * * * *	 ALAI STAF	QKGS NTPE
SSIIA 112 PAPRODAARP PSMNGTPVNG ENKSTGGGGA SSIIB 111 ************************************	* *	* A \$ 000	*. DK
SSIIA 112 PAPRODAARP PSMNGTPVNG ENKSTGGGGA SSIIB 111 ************************************	PSTQ ****	A*C* AGAV	DS TTDV
SSIIA 112 PAPRODAARP PSMNGTPVNG ENKSTGGGGA SSIIB 111 ************************************	APH] **Q	TGA) L + 1
SSIIA 112 PAPRODAARP PSMNGTPVNG ENKSTGGGGA SSIIB 111 ************************************	2A R * * *	1 * SS	- TS
SSIIA 112 PAPRODAARP PSMNGTPVNG ENKSTGGGGA SSIIB 111 ************************************	LPAI	TGN	TVP
SSIIA 112 PAPRODAARP PSMNGTPVNG ENKSTGGGGA SSIIB 111 ************************************	(DSG	 (G*A SSEE	
SSIIA 112 PAPRODAARP PSMNGTPVNG SSIIB 111 *****ED**L *****M**** SSIID SSIIA 98 SSIIB 69 EASSII 110 SDSIPGLEGN GVSYESSEKS OTSSII 117 SSL*NA KGTYDGGSGS			1 D
SSIIA 112 PAPRODAARP PSMNGTPVNG SSIIB 111 *****ED**L *****M**** SSIID SSIIA 98 SSIIB 69 EASSII 110 SDSIPGLEGN GVSYESSEKS OTSSII 117 SSL*NA KGTYDGGSGS	* * *	OPV	
SSIIA 112 PAPRODAARP PSMNGTPVNG SSIIB 111 *****ED**L *****M**** SSIID SSIIA 98 SSIIB 69 EASSII 110 SDSIPGLEGN GVSYESSEKS OTSSII 117 SSL*NA KGTYDGGSGS	XSTG ****		R DVD1
SSIIA 112 PAPRQDAARP PSMN SSIIB 111 ****ED**L **** SSIID SSIIA 98 SSIIB 69 EASSII 110 SDSIPGLEGN GVSY OTSSII 117 SSL*NA KGTY	EN# *		LSI
SSIIA 112 PAPRQDAARP PSMN SSIIB 111 ****ED**L **** SSIID SSIIA 98 SSIIB 69 EASSII 110 SDSIPGLEGN GVSY OTSSII 117 SSL*NA KGTY	>VNG		SEKS
SSIIA 112 PAPRQDAARP PSM SSIIB 111 ****ED**L *** SSIID SSIIA 98 SSIIB 69 EASSII 110 SDSIPGLEGN GVS OTSSII 117 SSL*NA KGT			\rightarrow
SSIIA 112 PAPRODAAR SSIIB 111 ****ED** SSIID SSIIA 98 SSIIB 69 EASSII 110 SDSIPGLEG OTSSII 117 SSL*N	⋝ : ∗ .		GVS
SSIIA 112 P SSIIB 111 * SSIID - SSIIA 98 - SSIIB 69 - SSIIB 110 S OTSSII 117 S	$\alpha \star$	1 1 1	EGN *NA
SSIIA 112 P SSIIB 111 * SSIID - SSIIA 98 - SSIIB 69 - SSIIB 110 S OTSSII 117 S	ODA:		PGLI -SL
SSIIA 112 SSIIB 111 SSIID 98 SSIIA 98 SSIIB 69 EASSII 110 OTSSII 117	PAPR		SDSI
SSIIA SSIIB SSIID SSIIA SSIIB EASSII		დ თ	0 1
SSII SSII SSII SSII SSII EASS		, , , , , , , , , , , , , , , , , , , ,	
o o o o o o e o	SIL	SIIS	ເທເທ
	O O	∞ ∞ ∞	ыe

291 291 2291 224	242	277	٠		349	348	349	282	248	302	337
MAVADDAGSE R****** R****** R****** RVG******	PSSKEV*NEA	GSS*EANEET		Region 2	RGHRVMVVVP	******	******	******	* * * * * * * *	*V*I*****	* \ * * * * * * *
EEPVEAKDDG WAV ******** R** ******** R** D**D***** R** D**D***** R**	KFENFEGANE	HVEQRNENLE			WCKTGGLGDV AGALPKALAK	*****	*****	V******	V*******	X******	X*******
LWDFKKYIGF ******* ******** T*****************	TSST	*ESSAS		Region 1	WCKTGGLGDV	*****	******	*****	F*******	********	*******
PPAAPAVQED *******Q* **************************	R	R		,	VVVVAAECSP	******	******	******** I *	*4**8****	III*S***A*	III**S**A*
EEAPNPKALS K******* ****K****	TKDISSSI	KKIQSYMPSL			GPLAGENVMN	******	*****	*******	******	****L****d	D****T****
PELKKGAVIV L********* Q***********	IKN*LYERPD	SRKSLVD*PG			EHHONHDS	*****	*****	* * * XGDN * *	APYDRE*NEP	*NFESGGEKP	*DPV*I*EKP
232 231 232 189	200	231			292	291	292	225	189	243	278
WSSIIA WSSIIB WSSIID ZSSIIA	PEASSII	POTSSII			WSSIIA.	WSSIIB	WSSIID	ZSSIIA	ZSSIIB	PEASSII	POTSSII

FIGURE 3C

FIGURE 3D

	409	408	409	342	308	362	397			469	468	469	402	368	422	457
	EDIYGGSRQE	******	*****	*******	NN****E*LD	SN*****NS	ΩΛ*Ν****NN		·	YRDHGLMQYT	*****	******	******	V*****N***	**N******	**N*I*N*** ******
	IDAPLFRHRQ	******	14****	*****	VE*****H	**S*I**NTE	*HSHW***IG		. 8 .	LVFIANDWHT ALLPVYLKAY YRDHGLMQYT	******	*****	*****	******	*****	******
Sgp-1 Peptide 3	AYIDGVDFVF	*****	*****	********	********	**I******I	***VD*T**Q *LLMDC***	-	Region 3	LVFIANDWHT	*****	*****	*****	*****	*****	*****
Sgp-1	GODMEVNYFH AYIDGVDFVF	*******	******	********	***L**S***	***L*****	0**T*dV***			CGGVPYGDGN	******	******	*******	****\AL***	******TC***	******
	VGVRKYYKAA	******	******	******T**	L***RR**V*	I****R**V*	00**I****S		*	AAVEVPWHVP	*******	*******	********	*******	*******	********
	רו	******	*******	*3******	***E*A**R*	*H**V*N**H	** * DN * b * PO *		.,	IMKRMILFCK	******	******	*******	*******T*	*LR**V***	*******\T*
	350	349	350		249	303	338			410	409	410	343	309	363	398
	WSSIIA	WSSIIB	WSSIID	ZSSIIA	ZSSIIB	PEASSII	POTSSII			WSSIIA	WSSIIB	WSSIID	ZSSIIA	ZSSIIB	PEASSII	POTSSII

529	528	529	462	428	482	517			588	587	588	521	487	541	57.7
LKMADQVVVV	******	******	*******	**T**B**T*	**T**RI*T*	**T**K**T*			SDGYTNFSLG	******	Y******	当** 基*****	**D***YTFE	X*NX*****	*NE****LO* *****TK** ***L***PR ****M*Y**D 577
HQGRGPVDEF PFTELPEHYL EHFRLYDPVG GEHANYFAAG LKMADQVVVV	*****	******	**** I * * * * *	****\0	***T*J***	****I*J***			IRONDWKTRG IVNGIDNMEW NPEVDVHLK-	-******	-*** D****	**K****R-	-+*+***H-	**QF*AY*T-	***L***PR
EHFRLYDPVG	********	******	O**E*****	D**K***NI*	DI*KM****	DP*K*****		Region 4	IVNGIDNMEW	*******	*****	**OH***** *NI****S**	******* *OT*****N*	*NES***F** ***V*TKD* **QF*AY*T-	********
PFTELPEHYL	******	******	*********	VNFD****I	NTVD*SGN**	SXVD**P**M		Ä	IRONDWKTRG	******	******	*NI * * * * S * *	*N*****N*	*NES***F**	
HQGRGPVDEF	******	*****	*****	*******	********	******TED*			VEGGWGLHDI	******	******	******	********	*N******	*O******Os
RSIMVIHNIA	******	******	********	****** ^T 1**	******T^**	******T^**			SPGYLWELKT	******	******	*X*****	*****W**N*	******H*	*****S**H*
470	469	470	404	369	423	458	•		530	529	530	463	429	483	518
WSSIIA	WSSIIB	WSSIID	ZSSIIA	ZSSIIB	PEASSII	POTSSII			WSSIIA	WSSIIB	WSSIID	ZSSIIA	ZSSIIB	PEASSII	POTSSII

FIGURE 3E

	648	647	648	581	547	601	637			30 Z	707	708	641	607	661	269	
kegion sa		*	*	* I			*	•		-		*****		**	* *		
Kec	VSQDVQLVML	*****	*****	AG*****	AG*****	W*H*****W	WG*****			PCGLNQLYAM	******	****	*****	****	*****	*********	
	EIIADAMPWI	******	*****	D**C*****	0*******U	DI**E*I**M	DI**E*V**M		Region 6	DALLMPSRFE	******	A******	*******\	********	*******T*	********	
	IGRLDGQKGV	******	*******	*******	****H****	****H****	******		Regi	RLAHRITAGA	******	*****	PM*******	*******	KM******	KTS*****	
Kegion 5	VRADVPLLGF	*******	******	********	**I******	**ET***E**	**I*****			KVRGWVGFSV	******	******	******	*******	************	*******T*	
	EALORELGLO	*****	*****	B********	A***Q****	A*******	A***K***P			LRHFEREHHD	******	*********	Nd * * * * T * O *	********	*KE**AQ*C*	*********	
	TLDSGKRQCK	*******	*******	*******	*****L***	*********	***OT**		-			******	****B*	*****	*********	*****O*	
	589	588	588	522	488	542	578			649	648	649	582	548	602	638	
	WSSIIA	WSSIIB	WSSIID	SSI	SSI	PEASSII	POTSSII			WSSIIA	WSSIIB	WSSIID	ZSSIIA	ZSSIIB	PEASSII	OTSSI	
							•							٠			

FIGURE 3F

۲
1
2
FI
•

	768	167	768	701	667	721	757								
	TYRDYKESWR	*******	******	***K*G***K	*****N***	**K***E	***E**K**E								
	LIEALGHCLR TYRDYKESWR	******	*******	*******	M*D**S**T	*WA**WN**L	**PRIRN**L								
		*0******	******	*N******	*******	*N******	GPS****SQ		66L M	* 798	* 799	* 732	· 869 *	* 752	* 788
-	FDPFNHSGLG	*******	*******	****GDA***	***LO****	*N**DE**N*	***TWSODM*		EDVLLKAKYQ	*****^**	******	*****^**	******	*E**VA***	*E**IA***
Region 7	VGGVRDTVPP	*******	*******	*******	*Y***T***	*0****T***	*O***T***		FSWEHAAKLY	******	*******	T**D***E**	T**D***N**	T * * DN * * OO *	T * * DN * * ON *
	AYGTVPVVHA	******	*****	*****	******	S*******S	X***I***X		GLQERGMSQD	******	*******	******W**S	ACRA***AE*	******** I *	*I*T*C*T*
	709	708	709	642	809	662	869	-	169	768	169	702	999	722	759
	WSSIIA	WSSIIB	WSSIID	ZSSIIA	ZSSIIB	PEASSII	POTSSII		WSSIIA	WSSIIB	WSSIID	ZSSIIA	SSSIIB	PEASSII	POTSSII

FIGURE 4

FIGURE 5

FIGURE 7A
FIGURE 7B
FIGURE 7C
FIGURE 7D
FIGURE 7E
FIGURE 7F
FIGURE 7G
FIGURE 7H
FIGURE 7I

FIGURE 7

20	RFTRSRTLRC	RFARRKVIRC	? ?		100	TEHNNRD	SEHHDSSRHR	<pre></pre>		150	NALSSSIIGE	KVSINASLGE	****		200	VDAADKARVK EDAFELDLPA	VDPKDEHNAK .DVFVVDSSG	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	GLTQPFLMNG	GGTQSLLRTT	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			RLIVEPSNEN	RLLVESSSKK	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			TAKADSSQ	QHISEEELPG	~~~~~~~~~~			VDAADKARVK	VDPKDEHNAK	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	VVRPAGRG	IFRPTVAGGG	<pre></pre>			KVISSRGYTT	KVAAYSNYAP	<pre></pre>	,		NREAE	NRDVEIEVDL	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			YSLSSVMKKE	IVLRNVAVRE	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
	LCPRSRQPLV	LCLRS.GPVL	<pre></pre>			KSRRMVPPQV	KS.RTASPNV	<pre></pre>		-	LSTETAEWTD	SGSDAAELTS	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-		EDILAADLTV	EDKFEVDTSG	*****	
, —I	MEMSLWPRSP	MEMVLRSQSP	******		51	MVASSDPPNR	VVASPGCPNR	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		101	EETLDTYNAL	EETIDIYNGE	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		151	VDVAD	METVDEAEVE	~~~~~~	
	WSSIII	mSSIII.	DSSIII	٠		WSSIII	MSSIII	DSSIII			WSSIII	IIISSm	pssiii			WSSIII	MSSIII	IIISSd	

FIGURE 7A

250	300	350	400
TLRSVIVDVM	TVEL	NDQGIFRADL	PMWDAIDETV
LMEEALLENF	KPKPLPIVRF	DEQKQLTDDF	TGLHEQDQSV
.HNGTVQE	IAINGKRRSL	DASDEAG	DSSGNVSTSA
LNNATIEEID		DKQEENSTAF	DGSYKQDRST
LRSVIVDVMD	GNISSSAT	VSNSATVREV	AGSIKDRFET
MVDVDILGLD	GELPSTSVDC	CEEGQPVVDY	SKFLEQKQEL
MDHNGTVQET	EEDVFELDLS	DKFEATSSGN	VEVGAVDE
VVDEAEVEED	GRTYGGVDEL	VDEEGLIASS	PEPNNDIVGS
201	251	301	351
TTLRSVIVDV	D.DAADKARV	DAVDEVGPVQ	SGNVFSSSTT
TAPDNAAVEE	DVDSPGNASS	QEQEQIVLSI	PEEGISIVHF
wssiii	wssiii	wSSIII	wssiii
mssiii	mssiii	mSSIII	mssiii
pssiii	pssiii	pSSIII	pssiii

FIGURE 7B

	•		
450 LFASESGHEK QIQSVAGYIK ~~~~~MDVPF	500 LNPELRLVRV KQDKSVVSVP WRKDGMVTGV	550 GPTQSIFGSS KLDQSIVGSL RKVQKSNGDK	600 P EPKQSIDGFP EDEDEINGST
RSEEETFAMD QDQSIAGAPE	DKAIAKTGVS EIDQSIVGSH TTSLSVQSSS	KQDKSIADVA EKVQSITSYD PRKPSGMSTQ	SQDLSAVSL. KQQQSIVHIV KGVVRDHKFL
REVDDVVDET NDQSIAGSHR	YPVPSSFSMW KKIESIISYN KPILGFVSHG	GQNQSIIGSY RQAESIIGVP SQGSSPKGFV	EQKQSIVGFR KPNQSIVGLP ARVETSDDDT
SGNASSCATY VG.VPQQIQY	TDEEETYQQQ KQHELIIPEP VSNAITHLKI	KKDLSIDDLP KPNQSTVDSY RRRRKVSTPR	KQNQSIVSVT EKIQSIVHYT SEISNQKTVE
401 ADQDTFEADL VSSHGQDKSI	451 HMAVDYVGEA PNQ.SIVGSC PLHRSLSCTS	501 EEQGKVNFSD EQIQSIVSHS SFSICANFSG	551 KQHRSIVAFP KQDEPIISVP ESKSTSTSKE
wssiii mssiii pssiii	wSSIII mSSIII pSSIII	wSSIII mSSIII pSSIII	wssiii mssiii pssiii

FIGURE 7C

																•	
650	TSEKTDEDAL	ISOKIEGUIL	SGFIIDSVIR	700	EEHLYMTEHQ KRAAEGQM	KSIAMNEEQT	.NAGNVEYKG		750	EDDGQYEVDE	EADEQYEVDE	KSDLIEEDEP		008	KLFVFPEVVK	KLFTYPDVLK	RLFCFPEVVK
	NGLEAKEGDH	KGVEAKE	N. KSKRSEE		EEHLYMTEHQ	DEDLVMIEEQ	VEPQQLKEN.			SWSEDEVQLI	SWDENEVGII	DLDTNSFF			LAEKNYSMRN	LAEKNYSLGN	LAEENLLQGI
	VVDRQDALYV	Т.VGТ.НОСГГМ	GGDDKDAVKL		VEKKTWKKVD	DEITIIEKIN	TKLYEILQVD			EIGMGRGD.K IQHVLSEEEL	FLHLLSEEES	VEHTESNEID			POALKVMLQE	POALWSMLQE	ANLRROAIER
	SREGOTKOVP	SNEFQTRQLA	SSQFVESEET		RKHQADRTQA	OKQEGLTKEA	ASSKGSHAVG			EIGMGRGD.K	KVEIGIDKAK	KASD			IQGSPQDVVD	IQESPNDDLD	SSINLRLEME
.601	KQ.NVPIVGT	KQ.DLSIVG1	KSISMSPVRV	651	HVKFNVDNVL	QATFNVDNLS	EQSGSQGETN	•	701	VVNEDELSIT	IVTEEDIPMA	PVASKLLEIT		751	TSVSVNVEQD	TSMSTEQD	LAAGTVETGD
	WSSIII		pssiii		WSSIII	mSSIII	pssili			WSSIII	MSSIII	DSSIII	ı		WSSIII	mSSIII	pssili

FIGURE 7D

	•						
850 HKSDLGGVWW HKSELAGDWW	TETHLNGDWW 900 NEDLFEDFLV	DENLFEDFLA QIIDFENFLL	950 AKAEIEIKKK	AKEEAAKKKK	1000	LVHSTEIWMH	LSHAKDLWIH
WKWRLFTERL WKWRFFTEKL	WKYKSFTTKL DFCIGIEGTM	DFVIQIESTM DFSITVKGGM	RAADEAVRAQ	KAEIEADRAQ	agnanaata	RLYYNINSRP	RLYYNKSSGP
DVVIKGAFNG DVLIKGAFNG	DVLIMGAFNE	HTVYENNNN QDVYDNNDGN	TEEORRRKEA	AEEQRRIEAE	ASTUTECTOR	PITTGQEATV	PSEFKCEDKV
RDLTALANEP RDLSAVANEP	KGLSTLKNES YRLDFVFFNG	YRMDEVFFNG YRADEVFFNG	AMEEAERRTQ ANFFAFFRED	AKEQAERERL	TCVUNT WYTE		KTRDITWYIE
801 ADSVIDLYLN ADSTIDLYFN	PDEDVEIFUN 851 SCKLYIPKEA	CCKLYIPKQA SCKIHVPKEA	901 KEKQRELEKL	K W W W W E C	951 KIOSMISIAD	KLCNVLGLAR	VLRELMVKAT
SSII	pssill wssill	mSSIII pSSIII	NSS H	DSSIII	TILOGIA	ITISSM	DSSIII

FIGURE 7E

1050 DWVFADGPAG	DWVFADGPPG	DWVFADGPPK	1100	QERREKEETM	QERREREEAI	EERRLREAAM	1150	TTVDVLYNPS	TTIDVLYNPS	SSVTVYYNPA	1200	KATVDVPPDA	KATVYVPRDA	RATVKVPLDA
VIPPEKALVL	VVVPERTYVL	VVIPDQALFL		EEQNIYTRLL	EEQRIYTRLQ	EEHQIFKTLQ		YTEPLEIRAG	YTEPLEIHAG	YTEPLDIQAG		HSSGALPPQK MVKSGDGPLL	MVQAENGSHL	MSPAENGTHV
DKDGDWWYAD	DKDCDWWFAD	RIDGDWWYTE		NVTEEGFWAQ EEQNIYTRLL	NMTEEEYWME	HIPEELYWVE		RFLLSOKHIV	MFLVSQKHIV	SFLLSQKHVV		HSSGALPPQK	YPGGVLPPQK	HRLGPLPPQK
SIVESFVKCN	SFAERLVHHH	SIVKKLVKSE	·	QDFHAILPNN	HDFHATLP.N	QDFHAIVP.N		KAEMKAKTMR	KAEMKEKTMR	KTETKERTMK		WFRCSFNLWM	WFRCSFNRWM	WERCSFNRWT
1001 GGYNNWTDGL	GGYNNWIDGL	GGYNNWKDGL	1051	NARNYDNNAR	SARNYDNNGG	HAIAYDNNHR	1101	KRKAFRSANI	KRKAERNAKM	RAKVEKTALL	1151	NTVLNGKSEG	NTVLTGKPEV	NTVLNGKPEI
WSSIII	IIISSm	pssiii		WSSIII	IIISSW	pssiii		TISSM	ILISSE	IIISSd		WSSIII	mSSIII	DSSIII

FIGURE 7F

1250	1300	1350	1400
IHIAVEMAPV	DLHLYQSFSW	RFGFFCHSAL	VVETIHNLEE
VHIAVEMAPI	NLQIHQSFSW	RFGFFCRSAL	VVETIHNLEE
VHIAVEMAPI	DFRFHKNYFW	RFGFFCHAAL	IVETIHNLEE
SIETENYMRI	GHTVEVILPK YDCLNQSSVK	CVYG.RNDDR	YSQSRMASTR
SIAKEPPMHI	GHNVEVILPK YGCLNLSNVK	YVYG.RDDDR	YAKSSLANAR
GVAKEPPMHI	NHNVDIILPK YDCLKMNNVK	CVYGCSNDGE	YTHYGLSKSR
GMDYHIPVSD	GHTVEVILPK	EPQNGMFGVG	APVAWLYKEH
GLDYHIPVFG	GHNVEVILPK	EPQNGMFGVG	APVAWLHKEN
GMDYHIPVFG	NHNVDIILPK	EPQNGLFSKG	APVAWLFKEQ
EEDGIYDNRN EEGGIYDNRN EDGGIFDNKS	TSLSRAIQDL TSLSRAVQDL TSLSRAVQDL	1301 GGTEIKVWVG RVEDLTVYFL GGSEINVWRG LVEGLCVYFL GGTEIKVWFG KVEGLSVYFL	HIIHCHDWSS NIIHCHDWSS DIIHCHDWSS
1201	1251	1301	1351
YMMDFVFSEW	AKVGGLGDVV	GGTEIKVWVG	EFILQNEFSP
YMMDFVFSES	AKVGGLGDVV	GGSEINVWRG	EFLLQSGSSP
YMMDFVFSER	AKVGGLGDVV	GGTEIKVWFG	EFLLQGGFSP
wssiii	wssiii	wssiii	wssiii
mssiii	mssiii	mssiii	mssiii
pssiii	pssiii	pssiii	pssiii

FIGURE 7G

7H
JRE
J E
U
E

1500	1550	1600
PIVGIITRLT	ADALHGVYHG	RYGSIPIVRK
PVVGIVTRLT	ANTLHGVNHG	RYGTIPIVRK
PLVGIITRLT	ANQLHSKYND	RYGSIPVVRK
QKFGLQQTDV	HRIQGDFCRL	PCGLTQLVAM
QKFGLQQIDV	SRIQADFVNL	PCGLTQLVAM
RKLGLKQADL	PRVQNNFVNL	PCGLTQLTAM
GKRAAKRALQ	HVVLLGSAPD	DFIIVPSIFE
GKRAAKRALQ	QVVLLGSAPD	DFILVPSIFE
GKTAAKEALQ	QVVLLGSAPD	DFILVPSIFE
VPYTCENVVE	AIHRTLESNG	PLSHLIYAGS
VHYTCENVVE	AIHRTLERNG	PLSHLIYAGS
IPYTSENVVE	AIWRTLERNG	PLSHLIYAGA
1451	1501	1551
WDPYTDNFIP	AQKGIHLIKH	RVKLVLTYDE
WDPYNDNFIP	AQKGIHLIKH	QVRLSLTYDE
WDPLNDKFIP	HQKGIHLIKH	RARLCLTYDE
WSSIII MSSIII PSSIII	wssiii mssiii pssiii	WSSIII MSSIII
	1451 WDPYTDNFIP VPYTCENVVE GKRAAKRALQ WDPYNDNFIP VHYTCENVVE GKRAAKRALQ WDPLNDKFIP IPYTSENVVE GKTAAKEALQ	1451 WDPYTDNFIP VPYTCENVVE GKRAAKRALQ III WDPYNDNFIP VHYTCENVVE GKRAAKRALQ III WDPLNDKFIP IPYTSENVVE GKTAAKEALQ III AQKGIHLIKH AIHRTLESNG HVVLLGSAPD III AQKGIHLIKH AIHRTLERNG QVVLLGSAPD III HQKGIHLIKH AIHRTLERNG QVVLLGSAPD

FIGURE 71

39/50.

[a] Wyuna

[b] Gabo 4 6 8 10 12 15 18 21 25 L P 5.3 kb →

FIGURE 8

9	
RE	
H	

FIGURE 9B	FIGURE 9D	FIGURE 9F
FIGURE 9A	FIGURE 9C	FIGURE 9E

							•										
	20	DQYKDAWDT-	LNGSSDKNYA	GD*EE*Y*V-	*CLNQSSVK-	,	140	ILNLDNNPYF	**E*GGYI*G	HVPCGGV**G	**QNEFS*H-		230	YDKPVEGRKI	HALDKGEAVN	* * PVGGEHAN	
Regior. 2	40	HRVMVISPRY	*******	*******	*T*E**L*K*		130	LCQAALEVPR	**X**C*A*L	F*K**V***W	F*HS***F		220	FKSSFDFIDG	EWVFPEWARR	-EHYLEHFRL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	30	KTGGLGDLLG GLPPAMAANG HRVMVISPRY	*S*****UC* S**I*L**R* ****VM***	*******VA* A**K*L*KR* *****VV***	*V*****VVT S*SR*IQDL* *T*E**L*K*		120	YEDNQQRFSL	FG***F*YT*	RQEIMK*MI*	GCVY GRNDDR**GF		210	NLPDR	G**PEWYGAL	**I	CDK
Region 1	20	KTGGLGDLLG	*S*****C*	*******	ΔΛΛ ****Λ*		110	KIYGPDAGTD	NFGA	S			200	RESEDDFAQL	LEPASTYPD*	*GPV*E*PFT	AHYIGKAMTY
(10	FVGAEMAPWS	-*TG*A**YA	A**CS**C	-IAV****VA		100	LEKVRGKTKE	-HRPGSLYGD	RHRQEDIYGG	* * PQN *MFGV		190	FCIHNISYQG	LV * * * LAH * *	MV****AH**	*T***L-EF*
		81	144	314	1187			171	234	404	1277	-	•	261	324	494	1367
	٠	WGBSS	wSS1	wSS2	wSS3			WGBSS	wSS1	wSS2	wSS3			WGBSS	wSS1	wSS2	wSS3

FIGURE 9A

	•	
170 233 403 1276	260 323 493 1366	350 413 583 1456
90 DRVEVDHPCF *W*****SY *F**I*A*L* G**EDLTVY*	180 NGIYRAAKVA Y*V**DSRST H*LMQYTRSI -SRMASTR*V	250 270 DKVLTVSPYY AEELISGEAR GCELDNIMRL RI*TVSQG*S W*VTTAEGGQ *LNELLSS*K QV*VVSPG*L W*LKTVEGGW *LHDIIRQNDAT TVSPTYSRDV AGHGAIAPHR
	Region 3 160 VCNDWHTGLL ACYLKSNYQS *V****AS*V PVL*AAK*RP IA****A** PV***AY*RD H*H**SSAPV *WLY*EH*SQ	250 260 DKVLTVSPYY AEELISGEAR RI*TVSQG*S W*VTTAEGGQ QV*VVSPG*L W*LKTVEGGW
70 80 IKVVDKYERV RYFHCYKRGV *PCFGGSHE* TF**E*RDN* Y*AAGQDME* N***A*ID** -DLHLYQSFS WGGTEI*VW*	Region 3 160 VCNDWHTGLL ACYLKSNYQS *V***AS*V PVL*AAK*RP IA****A** PV***AY*RD H*H**SSAPV *WLY*EH*SQ	
60 SVVSE KALYTGKHIK G*RKY	150 SGPYGEDVVF QNCM* D*NL**	240 NWMKAGILQA FLKG*VVTAD YFAAGLKMAD

FIGURE 9B

ζ	ノ
	7
	KE
-	T

	320	EALEGKALNK	DD*S***KC*	TLDS * * RQC *	**AKRALOQ*			410	APLA	SA*V	VR**	-VLTYDE**S
	310	GITTIVNGM DVSEWDPTKD KFLAVNYDIT TALEGKALNK EALEGKALNK	1 1 1 1 1 1 1 1 1 1 1	VH*KSDGYTNFSLG TLDS**RQC*	KFYG*L**I *PDI***YT* N*IP*P*TCENVVEG* **AKRALQQ*			400	SKVRAVVRFN	D*F*GW*G*S		TL*SNG*V** **SAPDHRIQ GDFCRLADAL HG*YHGRVKL -VLTYDE**S
	300	KFLAVNYDIT			N*IP*P*TCE			. 390	LKEEDVOIVL LGTGKKKFER LLKSIEEKFP SKVRAVVRFN	MR****F*M **S*DPI**G WMR*T*SSYK D*F*GW*G*S	-SO***I,*M ****RHDL*S M*RHF*REHH D***GW:C*S	GDFCRLADAL
4	290	DVSEWDPTKD	*L**N*QNI*	KTRG****I *NM**N*EV*	*PDI ***YT*		5a	380	LGTGKKKFER	**S*DPI **G	*****	**SAPDHRIQ
Region 4	280	TGITTIVNGM	SVLNG***I	WKTRG****I *NM**N*EV*	F.KFYG*L**I		Region 5a	370	I,KEEDVOIVL	*MX******	M*'1***OS-A	TL*SNG*V**
			414		57) 1			441		674	1547
•		WGBSS	wSS1	C S S 3	1 C C C C C C C C C C C C C C C C C C C				SSACM	100 M	C C C C C C C C C C C C C C C C C C C	200x

FIGURE 9D

		440	503	673	1546	on 7		530	593	763	1636	
	360	DVMIASIPEI	*LIKMA***-	EIIADAM*W*	-HL*KHAIHR	Region 7	450	TPCACASTGG	*VPVVHG***	*VPVVHAV**	SIPIVRK***	
	350	IGRLEEQKGP	*RED***IG* ****DY***I	*RAD***LG* ****DG***V EIIADAM*W*	D**I*GI *T**TA***I -HL*KHAIHR		440	HOMMAGADVL AVTSRFEPCG LIQLQGMRYG TPCACASTGG	*RIT**C*I* LMP***** *N**YA*Q** *VPVVHG***	*RIT****A* LMP****** *N**YA*A** *VPVVHAV**	*!, TV * * S * FI I * P * I * * * * * T * * VA * * * SIPIVRK * * *	
Kegion o	340	EALOAEVGLP VDRKVPLVAF IGRLEEQKGP	*RED***IG*	*RAD* * * LG*	I9*I**0	9	430	AVTSRFEPCG	LMP******	LMP******	*****I*d*I	
	330	EALOAEVGLP	AF.**K*L***	*******	FG * * OT	Region 6	420	HOMMAGADVL	*RIT**C*I*	*RIT***A*	*1.TY**S*FI	

45/50

531 594 764 1637 5 621	Region 7 (Continued) 460 470 LVDTIVEGKT GFHMGRL *R**-**TFN VR**-*PPFD VR**-*FDV D NDKDRAR ****-*FDV D NDKDRAR 560 570 T APLAMENVAA P* FVDQPYVM	FORTHWERE SYD CNVVEPADVK KVVTTLKRAV KVVGTPAYHE *R**-**TFNPFGAKGEE GTGWAFSPLT VDKMLW*LRT VR**-*FDV D NDKDRAR*LG LEPNGFSFDG ADSNGVDY*L NRAIGAWFDA 560 570 580 590 600 APLAMENVAA P*	480 CNVVEPADVKPFGAKGEEPFNHSGLG LEPNGFSFDG 580	490 500 KVVTTLKRAV KVVGTPAYHE GTGWAFSPLT VDKMLW*LRTW*FD**E AHKLIE*LGH ADSNGVDY*L NRAIGAWFDA 590 600	500 KVVGTPAYHE VDKMLW*LRT AHKLIE*LGH NRAIGAWFDA 600
854	KYQW	•		•	•
wSS3 1727	•	•	•		•

FIGURE 9E

FIGURE 9F

						•		
	620 683	853	1726		710	773	943	1816
040	SEPGIVGEEI EQYEQIF*WA	KLYED*LLKA	AARKF*		•	•	•	•
000	DVLLELGVEG TKDHTWDHAA	**R*LQERGM SQDFSWEHAA	PA*DYIELYH	630	•	•	•	•
0.25	MVKNCMIQDL SWKGPAKNWE AMSTFREHKP **E*LM*RGM	**R*LQERGM	VMEQDWSWNR	620	•	•	•	•
016	MVKNCMIQDL AMSTFREHKP	CLRTYRDYKE	RDWFHSLCKK	610				

PCT/AU00/00385

48/50

FIGURE 12

FIGURE 13

-1-

SEQUENCE LISTING

<110>	GOODM.	AN F	ELDE	ER L	EMITE	ED			TRIA	L RE	SEAR	сн о	RGAN	ISATIO	N
<120>	NOVEL THERE		ES EN	(COD	ING V	VHEAT	r st <i>i</i>	ARCH	SYNT	HAȘE	S AN	יט 'סו	SES		
<130>	p:\op	er\mı	iq/o	i-wss	.pct	=									
	TO BE														
	AU PQ					•									
<160>	54														
<170>	Paten	țIn V	er.	2.0											
<212>	2939	cum a	nesti	Lvum											
<220> <221> <222>		(25	69)												
<400>														.+	60
	ctcgg (•					
	tgccg														
gcgga	ccaac (ccgcg	jcato	g ta	itcac	gato	acc	cacc	ccg	atco	cggc	cg (cegec	Met 1	178
	cg gcg Ser Ala														226
tcc c Ser P	cc ggg Pro Gly 20	aga Arg	tca Ser	cgg Arg	agg Arg	agg Arg 25	acg Thr	agg Arg	gtg Val	agc Ser	gcg Ala 30	tcg Ser	cca Pro	ccc Pro	274
	acc ggg Thr Gly 35														322
	gct cgc Ala Arg														370
	ggg atc Sly Ile													-	418
	ggc gcc Gly Ala														466
	gat cgc Asp Arg														514

		100					105					110				
Arg	cag Gln .115	gag Glu	gac Asp	ġcc Ala	cgt Arg	ctg Leu 120	ccg Pro	agc Ser	atg Met	aac Asn	ggc Gly 125	atg Met	ccg Pro	gtg Val	aac Asn	562
ggt Gly 130	gaa Glu	aac Asn	aaa Lys	tct Ser	acc Thr 135	ggc Gly	ggc Gly	ggc Gly	ggc Gly	gcg Ala 140	act Thr	aaa Lys	gac Asp	agc Ser	ggg Gly 145	610
ctg Leu	ccc Pro	gca Ala	ccc Pro	gca Ala 150	cgc Arg	gcg Ala	ccc Pro	cag Gln	ccg Pro 155	tcg Ser	agc Ser	cag Gln	aac Asn	aga Arg 160	gta Val	658
ccg Pro	gtg Val	aat Asn	ggt Gly 165	gaa Glu	aac Asn	aaa Lys	gct Ala	aac Asn 170	gtc Val	gcc Ala	tcg Ser	ccg Prọ	ccg Pro 175	acg Thr	agc Ser	706
ata Ile	gcc Ala	gag Giu 180	gtc Val	gcg Ala	gct Ala	ccg Pro	gat Asp 185	ccc Pro	gca Ala	gct Ala	acc Thr	att Ile 190	tcc Ser	atc Ile	agt Ser	754
Asp	aag Lys 195	gcg Ala	cca Pro	gag Glu	tcc Ser	gtt Val 200	gtc Val	cca Pro	gcc Ala	gag Glu	aag Lys 205	gcg Ala	ccg Pro	ccg Pro	tcg Ser	802
tcc Ser 210	ggc Gly	tca Ser	aat Asn	ttc Phe	gtg Val 215	ccc Pro	tcg Ser	gct Ala	tct Ser	gct Ala 220	ccc Pro	ggg Gly	tct Ser	gac Asp	act Thr 225	850
gtc Val	agc Ser	gac Asp	gtg Val	gaa Glu 230	ctt Leu	gaa Glu	ctg Leu	aag Lys	aag Lys 235	ggt Gly	gcg Ala	gtc Val	att Ile	gtc Val 240	aaa Lys	898
gaa Glu	gct Ala	cca Pro	aac Asn 245	cca Pro	aag Lys	gct Ala	ctt Leu	tcg Ser 250	Pro	ccc Pro	gca Ala	gca Ala	ccc Pro 255	gct Ala	gta Val	946
caa Gln	caa Gln	gac Asp 260	ctt Leu	tgg Trp	gac Asp	ttc Phe	aag Lys 265	Lys	tac Tyr	att Ile	ggt Gly	ttc Phe 270	gag Glu	gag Glu	Pro	994
gtg Val	gag Glu 275	gcc Ala	aag Lys	gat Asp	gat Asp	ggc Gly 280	cgg Arg	gct Ala	gtt Val	gca Ala	gat Asp 285	gat Asp	gcg Ala	ggc Gly	tcc Ser	1042
			cac His												aac Asn 305	1090
gtc Val	atg Met	aac Asn	gtg Val	gtc Val 310	gtc Val	gtg Val	gct Ala	gct Ala	gaa Glu 315	tgt Cys	tct Ser	ccc Pro	tgg Trp	tgc Cys 320	aaa Lys	1138
			ctt Leu 325													1186
			cat His													1234
			tac Tyr												gga Gly	1282

cag Gln 370	gat Asp	atg Met	gaa Glu	gtg Val	aat Asn 375	tat Tyr	ttc Phe	cat His	gct Ala	tat Tyr 380	atc Ile	gat Asp	gga Gly	gtt Val	gat Asp 385	1330
ttt Phe	gtg Val	ttc Phe	att Ile	gac Asp 390	gct Ala	cct Pro	ctc Leu	ttc Phe	cga Arg 395	cac His	cgc Arg	cag Gln	gaa Glu	gac Asp 400	att Ile	1378
tat Tyr	ggg Gly	ggc Gly	agc Ser 405	aga Arg	cag Gln	gaa Glu	att Ile	atg Met 410	aag Lys	cgc Arg	atg Met	Ile	ttg Leu 415	ttc Phe	tgc Cys	1426
aag Lys	gcc Ala	gct Ala 420	gtc Val	gag Glu	gtt Val	cca Pro	tgg Trp 425	cac His	gtt Val	cca Pro	tgc Cys	ggc Gly 430	ggt Gly	gtc Val	cct Pro	1474
tat Tyr	ggg Gly 435	gat Asp	gga Gly	aat Asn	ctg Leu	gtg Val 440	ttt Phe	att Ile	gca Ala	aat Asn	gat Asp 445	tgg Trp	cac His	acg Thr	gca Ala	1522
ctc Leu 450	ctg Leu	cct Pro	gtc Val	tat Tyr	ctg Leu 455	aaa Lys	gca Ala	tat Tyr	tac Tyr	agg Arg 460	gac Asp	cat His	ggt Gly	ttg Leu	atg Met 465	1570
cag Gln	tac Tyr	act Thr	cgg Arg	tcc Ser 470	att Ile	atg Met	gtg Val	ata Ile	cat His 475	aac Asn	atc Ile	gct Ala	cac His	cag Gln 480	ggc Gly	1618
cgt Arg	ggc Gly	cca Pro	gta Val 485	Asp	gag Glu	ttc Phe	ccg Pro	ttc Phe 490	acc Thr	gag Glu	ttg Leu	cct Pro	gag Glu 495	cac His	tac Tyr	1666
ctg Leu	gaa Glu	cac His 500	ttc Phe	aga Arg	ctg Leu	tac Tyr	gac Asp 505	ccc Pro	gtg Val	ggt Gly	ggt Gly	gaa Glu 510	cac His	gcc Ala	aac .Asn	1714
tac Tyr	ttc Phe 515	gcc Ala	gcc Ala	ggc Gly	ctg Leu	aag Lys 520	atg Met	gcg Ala	gac Asp	cag Gln	gtt Val 525	gtc Val	gtc Val	gtg Val	agc Ser	1762
ccg Pro 530	ggg Gly	tac Tyr	ctg Leu	tgg Trp	gag Glu 535	ctg Leu	aag Lys	acg Thr	gtg Val	gag Glu 540	ggc Gly	ggc Gly	tgg Trp	ggg Gly	ctt Leu 545	1810
cac His	gac Asp	atc Ile	ata Ile	cgg Arg 550	cag Gln	aac Asn	gac Asp	tġg Trp	aag Lys 555	acc Thr	cgc Arg	ggc Gly	atc Ile	gtg Val 560	aac Asn	1858
ggc Gly	atc Ile	gac Asp	aac Asn 565	atg Met	gag Glu	tgg Trp	aac Asn	ccc Pro 570	gag Glu	gtg Val	gac Asp	gtc Val	cac His 575	ctc Leu	aag Lys	1906
tcg Ser	gac Asp	ggc Gly 580	tac Tyr	acc Thr	aac Asn	ttc Phe	tcc Ser 585	ctg Leu	ggg Gly	acg Thr	ctg Leu	gac Asp 590	tcc Ser	ggc Gly	aag Lys	1954
cgg Arg	cag Gln 595	tgc Cys	aag Lys	gag Glu	gcc Ala	ctg Leu 600	cag Gln	cgg Arg	gag Glu	ctg Leu	ggc Gly 605	ctg Leu	cag Gln	gtc Val	cgc Arg	2002
ggc Gly 610	gac Asp	gtg Val	ccg Pro	ctg Leu	ctc Leu 615	ggc Gly	ttc Phe	atc Ile	ggg Gly	cgc Arg 620	ctg Leu	gac Asp	ggg Gly	cag Gln	aag Lys 625	2050

ggc gtg gag Gly Val Glu	atc atc Ile Ile 630	gcg gac Ala Asp	gcg a	tg ccc et Pro 635	tgg Trp	atc Ile	gtg Val	agc Ser	cag Gln 640	gac Asp	2098
gtg cag ctg Val Gln Leu	gtc atg Val Met 645	ctg ggc Leu Gly	Thr G	gg cgc ly Arg 50	cac His	gac Asp	ctg Leu	gag Glu 655	ggc Gly	atg Met	2146
ctg cgg cac Leu Arg His 660	ttc gag Phe Glu	cgg gag Arg Glu	cac ca His H: 665	ac gac is Asp	aag Lys	Val	cgc Arg 670	ggg Gly	tgg Trp	gtg Val	2194
ggg ttc tcc Gly Phe Ser 675	gtg cgg Val Arg	ctg gcg Leu Ala 680	cac co	gg atc rg Ile	acg Thr	gcc Ala 685	ggc Gly	gcc Ala	gac Asp	gcg Ala	2242
ctc ctc atg Leu Leu Met .690	ccc tcc Pro Ser	cgg ttc Arg Phe 695	gag co Glu Pr	cg tgc ro Cys	gga Gly 700	ctg Leu	aaċ Asn	cag Gln	ctc Leu	tac Tyr 705	2290
gcc atg gcc Ala Met Ala	tac ggc Tyr Gly 710	acc gtc Thr Val	ccc gt Pro Va	tc gtg al Val 715	cat His	gcc Ala	gtc Val	ggt Gly	ggc Gly 720	ctg Leu	2338
agg gac acc Arg Asp Thr	gtg ccg Val Pro 725	ccg ttc Pro Phe	Asp P	cc ttc ro Phe 30	aac Asn	cac His	tcc Ser	ggg Gly 735	ctc Leu	ggg Gly	2386
tgg acg ttc Trp Thr Phe 740	gac cgc Asp Arg	gca gag Ala Glu	gcg ca Ala Gi 745	ag aag ln Lys	ctg Leu	Ile	gag Glu 750	gcg Ala	ctc Leu	GJA āāā	2434
cac tgc ctc His Cys Leu 755	cgc acc Arg Thr	tac cgg Tyr Arg 760	gac ta Asp Ty	ac aag yr Lys	gag Glu	agc Ser 765	tgg Trp	agg Arg	ggg Gly	ctc Leu	2482
cag gag cgc Gln Glu Arg 770	Gly Met	tcg cag Ser Gln 775	gac ti Asp Pi	tc agc ne Ser	tgg Trp 780	gag Glu	cat His	gcc Ala	gcc Ala	aag Lys 785	2530
ctc tac gag Leu Tyr Glu	gac gtc Asp Val 790	ctc gtc Leu Val	aag go Lys Al	cc aag la Lys 795	tac Tyr	cag Gln	tgg Trp	tgaa	cgct	ag	2579.
ctgctagccg	gtccagccc	c gcatgo	gtgc a	atgacag	gat	ggaa	ttgc	gc a	ttgc	gcacg	2639
caggaaggtg	ccatggagc	g ccggca	atccg (cgaagta	cag	tgac	atga	gg t	gtgt	gtggt	2699
tgagacgctg	attccgatc	t ggtcc	gtagc a	agagtag	agc	ggag	gtag	igg a	agco	ctcct	2759
tgttacaggt	atatgggaa	t gttgt1	aact	tggtatt	gta	ättt	gtta	tg t	tgtg	gtgcat	2819
tattacagag	ggcaacgat	c tgcgc	eggeg (caccggo	cca	actg	ttgç	igc (ggto	gcaca	2879
gcagccgttg	gatccgacc	g cctgg	gccgt	tggatco	cac	cgaa	aaaa	aa a	aaaa	aaaaa	2939

Met Ser Ser Ala Val Ala Ser Ala Ala Ser Phe Leu Ala Leu Ala Ser 1 5 10 15

<210> 2 <211> 798 <212> PRT <213> Triticum aestivum

<400> 2

Ala	Ser	Pro	Gly 20	Àrg	Ser	Arg	Arg	Arg 25	Thr	Arg	Val	Ser	Ala 30	Ser	Pro
Pro	His	Thr 35	Gly	Ala	Gly	Arg	Leu 40	His	Trp	Pro	Pro	Ser 45	Pro	Pro	Gln
Arg	Thr 50	Ala	Arg	Asp	Gly	Ala 55	Val	Ala	Ala	Arg	Ala 60	Ala	Gly	Lys	Lys
Asp 65	Ala	Gly	Ile	Asp	Asp 70	Ala	Ala	Pro	Ala	Arg 75	Gln	Pro	Arg	Ala	Leu 80
Arg	Gly	Gly	Ala	Ala 85	Thr	Lys	Val	Ala	Glu 90	Arg	Arg	Asp	Pro	Val 95	Lys
Thr	Leu	Asp	Arg 100	Asp	Ala	Ala	Glu	Gly 105	Gly	Ala	Pro	Ser	Pro 110	Pro	Ala
Pro	Arg	Gln 115	Glu	Asp	Ala	Arg	Leu 120	Pro	Ser	Met	Asn	Gly 125	Met	Pro	Val
Asn	Gly 130	Glu	Asn	Lys	Ser	Thr 135	Gly	Gly	Gly	Gly	Ala 140	Thr	Lys	Asp	Ser
Gly 145	Leu	Pro	Ala	Pro	Ala 150	Arg	Ala	Pro	Gln	Pro 155	Ser	Ser	Gln	Asn	Arg 160
Val	Pro	Val	Asn	Gly 165	Glu	Asn	Lys	Ala	Asn 170	Val	Ala	Ser	Pro	Pro 175	Thr
Ser	Ile	Ala	Glu 180	Val	Ala	Ala	Pro	Asp 185	Pro	Ala	Ala	Thr	Ile 190	Ser	Ile
Ser	Asp	Lys: 195	Ala	Pro	Glu	Ser	Val 200	Val	Pro	Ala	Glu	Lys 205	Ala	Pro	Pro
Ser	Ser 210	Gly	Ser	Asn	Phe	Val 215	Pro	Ser	Ala	Ser	Ala 220	Pro	Gly	Ser	Asp
Thr 225	Val	Ser	Asp	Val	Glu 230	Leu	Glu	Leu	Lys	Lys 235	Gly	Ala	Val	Ile	Val 240
Lys	Glu	Ala	Pro	Asn 245	Pro	Lys	Ala	Leu	Ser 250	Pro	Pro	Ala	Ala	Pro 255	Ala
Val	Gln	Gln	Asp 260	Leu	Trp	Asp	Phe	Lys 265	ГÀЗ	Tyr	Ile	Gly	Phe 270	Glu	Glu
Pro	Val	Glu 275	Ala	Lys	Asp	Asp	Gly 280	Arg	Ala	Val	Ala	Asp 285	Asp	Ala	Gľy
Ser	Phe 290	Glu	His	His	Gln	Asn 295	His	Asp	Ser	Gly	Pro 300	Leu	Ala	Gly	Glu
Asn 305	Val	Met	Asn	Val	Val 310	Val	Val	Ala	Ala	Glu 315	Cys	Ser	Pro	Trp	Cys 320
Lys _.	Thr	Gly	Gly	Leu 325	Gly	Asp	Val	Ala	Gly 330	Ala	Leu	Pro	Lys	Ala 335	Leu
Ala	Lys	Arg	Gly 340	His	Arg	Val	Met	Val 345	Val	Val	Pro	Arg	Tyr 350	Gly	Asp

Tyr Glu Glu Ala Tyr Asp Val Gly Val Arg Lys Tyr Tyr Lys Ala Ala

		355					360					365			
Gly	Gln 370	Asp	Met	Glu	Val	Asn 375	Tyr	Phe	His	Ala	Tyr 380	Ile	Asp	Gly	Val
Asp 385	Phe	Val	Phe	Ile	Asp 390	Ala	Pro	Leu	Phe	Arg 395	His	Arg	Gln	Glu	Asp 400
Ile	Tyr	Gly	Gly	Ser 405	Arg	Gĺn	Glu	Ile	Met 410		Arg	Met	Ile	Leu 415	Phe
Cys	Lys	Ala	Ala 420.		Glu	Val	Pro	Trp 425	His	Val	Pro	Cys	Gly 430	Gly	Val
Pro	Tyr	Gly 435	Asp	Gly	Asn	Leu	Val 440	Phe	Ile	Ala	Asn	Asp 445	Trp	His	Thr
Ala	Leu 450	Leu	Pro	Val	Tyr	Leu 455	Lys	Ala	Tyr	Tyr	Arg 460	Asp	His	Gly	Leu
Met 465	Gln	Tyr	Thr	Arg	Ser 470	Ile	Met	Val	Ile	His 475	Asn	Ile	Ala	His	Gln 480
Gly	Arg	Gly	Pro	Val 485	Asp	Glu	Phe	Pro	Phe 490	Thr	Glu	Leu.	Pro	Glu 495	His
Tyr	Leu	Glu	His 500	Phe	Arg	Leu	Tyr	Asp 505	Pro	Val	Gly	Gly	Glu 510	His	Ala
Asn	Tyr	Phe 515	Ala	Ala	Gly	Leu	Lys 520	Met	Ala	Asp	Gln	Val 525	Val	Val	Val
Ser	Pro 530	Gly	Tyr	Leu	Trp	Glu 535	Leu	Lys	Thr	Val	Glu 540	Gly	Gly	Trp	Gly
Leu 545	His	Asp	Ile	Ile	Arg 550	Gln	Asn	Asp	Trp	Lys 555	Thr	Arg	Gly	Ile	Val 560
Asn	Gly	Ile	Asp	Asn 565	Met	Glu	Trp	Asn	Pro [.] 570	Glu	Val	Asp	Val	His 575	Leu
Lys	Ser	Asp	Gly 580	Tyr	Thr	Asn	Phe	Ser 585	Leu	Gly	Thr	Leu	Asp 590	Ser	Gly
		595	Суѕ				600			•		605			
	610					615					620	٠.			Gln
625					630					635					Gln 640
Asp	Val	Gln	Leu	Val 645		Leu	Gly	Thr	Gly 650		His	Asp	Leu	Glu 655	Gly
			660					665					670		Trp
		675					.680					685			Asp
Ala	Leu 690	Leu	Met	Pro	Ser	Arg 695	Phe	Glu	Pro	Cys	Gly 700		Asn	Gln	Leu

Tyr 705	Ala	Met	Ala	Ţyr	Gly 710	Thr	Val	Pro	Val	Val 715	His	Ala	Val	Gly	Gly 720	
Leu	Arg	Asp	Thr	Val 725	Pro	Pro	Phe	Asp	Pro 730	Phe	Asn	His	Ser	Gly 735	Leu	
Gly	Trp		Phe 740	Asp	Arg	Ala	Glu	Ala 745	Gln	Lys	Leu	Ile	Glu 750	Ala	Leu.	
Gly	His	Cys 755	Leu	Arg	Thr	Tyr	Arg 760	Asp	Tyr	Lys	Glu	Ser 765	Trp	Arg	Gly	
Leu	Gln 770	Glu	Arg	Gly	Met	Ser 775	Gln	Asp	Phe	Ser	Trp 780	Glu	His	Aļa	Ala	
Lys 785	Leu	Tyr	Glu	Asp	Val 790	Leu	Val	Lys	Ala	Lys 795	Tyr	Gln	Trp	•		
<211 <212)> 3 l> 28 2> DN 3> Tr	IA .	um a	nesti	vum										•	~
)> L> CI 2> (8		(248	35)											*	
<400 gct)> 3 gccac	ca c	ctcc	gcct	g co	, ccg	gcto	t g	ıgcgg	ıagg	acca	acco	gc g	cato	gtacc	60
atc	geeeg	jcc d	:cgat	cccg	ig co	gcc	jcc a	tg t Met S	cg t Ser S	cg g Ser A	ıcg g Ma V	tc g al A	cg tala	cc g Ser A	icc ila	112
gcg Ala	tcc Ser 10	ttc Phe	ctc Leu	gcg Ala	ctc Leu	gcc Ala 15	tcc Ser	gcc Ala	tcc Ser	ccc Pro	ggg Gly 20	aga Arg	tca Ser	cgc Arg	agg Arg	160
cgg Arg 25	gcg Ala	agg Arg	gtg Val	agc Ser	gcg Ala 30	ccg Pro	cca Pro	ccc Pro	cac His	gcc Ala 35	ggg Gly	gcc Ala	ggc Gly	agg Arg	ctg Leu 40	208
cac His	tgg Trp	ccg Pro	ccg Pro	tgg Trp 45	ccg Pro	ccg Pro	cag Gln	cgc Arg	acg Thr 50	Ala	cgc Arg	gac Asp	gga Gly	ggt Gly 55	Val	256
gcc Ala	gcg Ala	cgc Ara	gcc Ala	gcc	ggg	aag Lvs	aag Lvs	gac Asp	gcg Ala	agg	gtc Va`	gac Asp	gac Asp	gac Asp	gcc Ala	304
			60		Gly	-1-	•	65		ALG	V4.		. 70			
aca	tcc	aca	60 agg	cag Gln	ccc	cgc	gca	65 cgc	cgc	ggt	ggc	gcc	. 70 gcc	acc	aag Lys	352
gcg Ala	Ser	gcg Ala 75	agg Arg	cag	ccc Pro	cgc Arg	gca Ala 80 gtc	cgc Arg	cgc Arg	ggt Gly ctc	ggc Gly gat	gcc Ala 85	70 gcc Ala gac	acc Thr	Lys	352 400
gcg Ala gtc Val	gcg Ala 90 ggt Gly	gcg Ala 75 gag Glu	agg Arg cgg Arg	cag Gln agg	ccc Pro gat Asp	cgc Arg ccc Pro 95	gca Ala 80 gtc Val	cgc Arg aag Lys	cgc Arg acg Thr	ggt Gly ctc Leu	ggc Gly gat Asp 100	gcc Ala 85 cgc Arg	gcc Ala gac Asp	acc Thr gcc Ala	gcg Ala	
gcg Ala gtc Val gaa Glu 105	gcg Ala 90 ggt Gly	gcg Ala 75 gag Glu ggc Gly	agg Arg cgg Arg gcg Ala	cag Gln agg Arg	gat Asp gca Ala 110	cgc Arg ccc Pro 95 ccg Pro	gca Ala 80 gtc Val ccg Pro	cgc Arg aag Lys gca Ala	cgc Arg acg Thr ccg Pro	ggt Gly ctc Leu agg Arg 115	ggc Gly gat Asp 100 cag Gln	gcc Ala 85 cgc Arg gac Asp	gcc Ala gac Asp gcc Ala aaa	acc Thr gcc Ala gcc Ala	gcg Ala cgt Arg 120	400

				125					130					135		
ggc Gly	ggc Gly	ggc Gly	ggc Gly 140	gcg Ala	acc Thr	aaa Lys	gac Asp	agc Ser 145	ggg Gly	ctg Leu	ccc Pro	gca Ala	ccc Pro 150	gca Ala	cgc Arg	544
gcg Ala	ccc Pro	cat His 155	ccg Pro	tcg Ser	acc Thr	cag Gln	aac Asn 160	aga Arg	gta Val	cca Pro	gtg Val	aac Asn 165	ggt Gly	gaa Glu	aac Asn	592
aaa Lys	gct Ala 170	aac Asn	gtc Val	gcc Ala	tcg Ser	ccg Pro 175	ccg Pro	acg Thr	agc Ser	ata Ile	gcc Ala 180	gag Glu	gtc Val	gtg Val	gct Ala	640
ccg Pro 185	gat Asp	tcc Ser	gca Ala	gct Ala	acc Thr 190	att Ile	tcc Ser	atc Ile	agt Ser	gac Asp 195	aag Lys	gcg Ala	ccg Pro	gag Glu	tcc Ser 200	688
gtt Val	gtc Val	cca Pro	gcc Ala	gag Glu 205	aag Lys	ccg Pro	ccg Pro	ccg Pro	tcg Ser 210	Ser	ggc Gly	tca Ser	aat Asn	ttc Phe 215	gtg Val	736
gtc Val	tcg Ser	gct Ala	tct Ser 220	gct Ala	ccc Pro	agg Arg	ctg Leu	gac Asp 225	att Ile	gac Asp	agc Ser	gat Asp	gtt Val 230	gaa Glu	cct Pro	784
gaa Glu	ctg Leu	aag Lys 235	aag Lys	ggt Gly	gcg Ala	gtc Val	atc Ile 240	gtc Val	gaa Glu	gaa Glu	gct Ala	cca Pro 245	aac Asn	cca Pro	aag Lys	832
gct Ala	ctt Leu 250	tcg Ser	ccg Pro	cct Pro	gca Ala	gcc Ala 255	ccc Pro	gct Ala	gta Val	caa Gln	gaa Glu 260	gac Asp	ctt Leu	tgg Trp	gac Asp	880
ttc Phe 265	aag Lys	aaa Lys	tac Tyr	att Ile	ggc Gly 270	ttc Phe	gag Glu	gag Glu	ccc Pro	gtg Val 275	gag Glu	gcc Ala	aag Lys	gat Asp	gat Asp 280	928
ggc Gly	tgg Trp	gct Ala	gtt Val	gca Ala 285	gat Asp	gat Asp	gcg Ala	ggc Gly	tcc Ser 290	ttt Phe	gaa Glu	cat His	cac His	cag Gln 295	Asn	976
cat His	gat Asp	tcc Ser	gga Gly 300	cct Pro	ttg Leu	gca Ala	ggg Gly	gag Glu 305	aac Asn	gtc Val	atg Met	aac Asn	gtg Val 310	gtc Val	gtc Val	1024
gtg Val	gct Ala	gct Ala 315	gaa Glu	tgt Cys	tct Ser	Pro	tgg Trp 320	tgc Cys	aaa Lys	aca Thr	ggt Gly	ggt Gly 325	ctt Leu	gga Gly	gat Asp	1072
gtt Val	gcc Ala 330	ggt Gly	gct Ala	ttg Leu	ccc Pro	aag Lys 335	gct Ala	ttg Leu	gcg Ala	aag Lys	aga Arg 340	gga Gly	cat His	cgt Arg	gtt Val	1120
atg Met 345	gtt Val	gtg Val	gta Val	cca Pro	agg Arg 350	tat Tyr	Gly	gac Asp	tat Tyr	gag Glu 355	gaa Glu	gcc Ala	tac Tyr	gat Asp	gtc Val 360	1168.
gga Gly	gtc Val	cga Arg	aaa Lys	tac Tyr 365	Tyr	aag Lys	gct Ala	gct Ala	gga Gly 370	Gln	gat Asp	atg Met	gaa Glu	gtg Val 375	aat Asn	1216
tat Tyr	ttc Phe	cat His	gct Ala 380	Tyr	atc Ile	gat Asp	gga Gly	gtt Val 385	Asp	ttt Phe	gtg Val	ttc Phe	att Ile 390	Asp	gct Ala	1264

1	cct Pro	ctc Leu	ttc Phe 395	cga Arg	cac His	cgc Arg	cag Gln	gaa Glu 400	gac Asp	att Ile	tat Tyr	ggg Gly	ggc Gly 405	agc Ser	aga Arg	cag Gln	1312
•	gaa Glu	att Ile 410	atg Met	aag Lys	cgc Arg	atg Met	att Ile 415	ttg Leu	ttc Phe	tgc Cys	aag Lys	gcc Ala 420	gct Ala	gtc Val	gag Glu	gtt Val	1360
1	cct Pro 425	tgg Trp	cac His	gtt Val	cca Pro	tgc Cys 430	ggc Gly	ggt Gly	gtc Val	cct Pro	tat Tyr 435	Gly ggg	gat Asp	gga Gly	aat Asn	ctg Leu 440	1408
,	gtg Val	ttt Phe	att Ile	gca Ala	aat Asn 445	gat Asp	tgg Trp	cac His	acg Thr	gca Ala 450	ctc Leu	ctg Leu	cct Pro	gtc Val	tat Tyr 455	ctg Leu	1456
1	aaa Lys	gca Ala	Tyr	tac Tyr 460	agg Arg	gac Asp	cat His	ggt Gly	ttg Leu 465	atg Met	cag Gln	tac Tyr	act Thr	cgg Arg 470	tcc Ser	att Ile	1504
1	atg Met	gtg Val	ata Ile 475	cat His	aac Asn	atc Ile	gcg Ala	cac His 480	cag Gln	ggc Gly	cgt Arg	ggc Gly	cca Pro 485	gta Val	gat Asp	gaa Glu	1552
	ttc Phe	ccg Pro 490	ttc Phe	acc Thr	gag Glu	ttg Leu	cct Pro 495	gag Glu	cac His	tac Tyr	ctg Leu	gaa Glu 500	cac His	ttc Phe	aga Arg	ctg Leu	1600
•	tac Tyr 505	gac Asp	ccc Pro	gtg .Val	ggt Gly	ggt Gly 510	gag Glu	cac His	gcc Ala	aac Asn	tac Tyr 515	ttc Phe	gcc Ala	gcc Ala	ggc Gly	ctg Leu 520	1648
	aag Lys	atg. Met	gcg Ala	gac Asp	cag Gln 525	gtt Val	gtc Val	gtg Val	gtg Val	agc Ser 530	ccc Pro	ggg Gly	tac Tyr	ctg Leu	tgg Trp 535	gag Glu	1696
	ctc Leu	aag Lys	acg Thr	gtg Val 540	gäg Glu	ggc Gly	ggc Gly	tgg Trp	ggg Gly 545	ctt Leu	cac His	gac Asp	atc Ile	ata Ile 550	cgg Arg	cag Gln	1744
	aac Asn	gac Asp	tgg Trp 555	aag Lys	acc Thr	cgc Arg	ggc Gly	atc Ile 560	Val	aac Asn	ggc Gly	atc Ile	gac Asp 565	aac Asn	atg Met	gag Glu	1792
	tgg Trp	aac Asn 570	ccc Pro	gag Glu	gtg Val	gac Asp	gtc Val 575	cac His	ctc Leu	aag Lys	tcg Ser	gac Asp 580	Gly	tac Tyr	acc Thr	aac Asn	1840
	ttc Phe 585	tcc Ser	ctg Leu	ggg Gly	acg Thr	ctg Leu 590	gac Asp	tcc Ser	ggc	aag Lys	cgg Arg 595	Gln	tgc Cys	aag Lys	gag Glu	gcc Ala 600	1888
	ctg Leu	cag Gln	cgc Arg	gag Glu	ctg Leu 605	ggc Gly	ctg Leu	cag Gln	gtc Val	cgc Arg 610	gcc Ala	gac Asp	gtg Val	ccg Pro	ctg Leu 615	ctc Leu	1936
	ggc Gly	ttc Phe	atc Ile	ggc Gly 620	Arg	ctg Leu	gac Asp	Gly	cag Gln 625	Lys	ggc Gly	gtg Val	gag Glu	atc Ile 630	Ile	gcg Ala	1984
	gac Asp	gcc Ala	atg Met 635	Pro	tgg Trp	ato	gtg Val	agc Ser 640	Gln	gac Asp	gtg Val	cag Gln	ctg Leu 645	Val	atg Met	ctg Leu	2032

					•												
	ggc Gly	acc Thr 650	ggc Gly	cgc Arg	cac His	gac Asp	ctg Leu 655	gag Glu	agc Ser	atg Met	ctg Leu	cgg Arg 660	cac His	ttc Phe	gag Glu	cgg Arg	2080
	gag Glu 665	cac His	cac His	gac Asp	aag Lys	gtg Val 670	cgc Arg	ggg Gly	tgg Trp	gtg Val	ggg Gly 675	ttc Phe	tcc Ser	gtg Val	cgc Arg	ctg Leu 680	2128
	ġcg Ala	cac His	cgg Arg	atc Ile	acg Thr 685	gcg Ala	ggc Gly	gcc Ala	gac Asp	gcg Ala 690	ctc Leu	ctc Leu	atg Met	ccc Pro	tcc Ser 695	Arg	2176
	ttc Phe	gag Glu	ccg Pro	tgc Cys 700	.ggg Gly	ttg Leu	aac Asn	cag Gln	ctt Leu 705	tac Tyr	gcc Ala	atg Met	gcc Ala	tac Tyr 710	ggc Gly	acc Thr	2224
	gtc Val	ccc Pro	gtc Val 715	gtg Val	cac His	gcc Ala	gtc Val	ggc Gly 720	ggg Gly	gtg Val	agg Arg	gac Asp	acc Thr 725	gtg Val	ccg Pro	ccg Pro	2272
	ttc Phe	gac Asp 730	ccc Pro	ttc Phe	aac Asn	cac His	tcc Ser 735	ggc Gly	ctc Leu	ggg Gly	tgg Trp	acg Thr 740	ttc Phe	gac Asp	cgc Arg	gcc Ala	2320
	gag Glu 745	gcg Ala	cac His	aag Lys	ctg Leu	atc Ile 750	gag Glu	gcg Ala	ctc Leu	ggg Gly	cac His 755	tgc Cys	ctc Leu	cgc Arg	acc Thr	tac Tyr 760	2368
	cgg Arg _.	gac Asp	tac Tyr	aag Lys	gag Glu 765	agc Ser	tgg Trp	agg Arg	ggc Gly	ctc Leu 770	cag Gln	gag Glu	cgc Arg	ggc Gly	atg Met 775	_	2416
,	cag Gln	gac Asp	ttc Phe	agc Ser 780	tgg Trp	gag Glu	cat His	gcc Ala	gcc Ala 785	aag Lys	ctc Leu	tac Tyr	gag Glu	gac Asp 790	gtc Val	ctc Leu	2464
	ctc Leu	aag Lys	gcc Ala 795	aag Lys	tac Tyr	cag Gln	tgg Trp	tgaa	acgc	tag (ctgci	tagc	cg ci	tcca	gece	2	2515
	gca	tgcg	tgc a	atgc	atga	ga g	ggtg	gaac	t gc	gcati	tgcg	CCC	gcag	gaa	cgtg	ccatcc	2575
	ttc	tcga	tgg (gagc	gccg	gc a	tccg	cgag	gitg	cagt	gaca	tga	gagg	tgt	gtgt	ggttga	2635
	gac	gctg	att (ccga	tctc	ga t	ctgg	tccg	t ag	caga	gtag	agc	ggac	gta	ggga	agcgct	2695
	cct	tgtt	gca	ggta	tatg	gg a	atgt	tgtc	a ac	ttgg	tatt	gta	gttt	gct	atgt	tgtatg	2755
•	cgt	tätt	aca	atgt	tgtt	ac t	tatt	cttg	t ta	agtc	ggag	gca	aagg	gcg	aaag	ctagct	2815
	cac	atga	aaa	aaaa	aaaa	aa a	aaaa	aa									2842
		0> 4 1> 7										•					

<210> 4 <211> 799 <212> PRT

<213> Triticum aestivum

Ala Ser Pro Gly Arg Ser Arg Arg Arg Ala Arg Val Ser Ala Pro Pro 20 25 30

Pro His Ala Gly Ala Gly Arg Leu His Trp Pro Pro Trp Pro Pro Gln Arg Thr Ala Arg Asp Gly Gly Val Ala Ala Arg Ala Ala Gly Lys Lys Asp Ala Arg Val Asp Asp Asp Ala Ala Ser Ala Arg Gln Pro Arg Ala Arg Arg Gly Gly Ala Ala Thr Lys Val Ala Glu Arg Arg Asp Pro Val Lys Thr Leu Asp Arg Asp Ala Ala Glu Gly Gly Ala Pro Ala Pro Pro 105 Ala Pro Arg Gln Asp Ala Ala Arg Pro Pro Ser Met Asn Gly Thr Pro Val Asn Gly Glu Asn Lys Ser Thr Gly Gly Gly Gly Ala Thr Lys Asp 135 Ser Gly Leu Pro Ala Pro Ala Arg Ala Pro His Pro Ser Thr Gln Asn Arg Val Pro Val Asn Gly Glu Asn Lys Ala Asn Val Ala Ser Pro Pro 165 Thr Ser Ile Ala Glu Val Val Ala Pro Asp Ser Ala Ala Thr Ile Ser 185 Ile Ser Asp Lys Ala Pro Glu Ser Val Val Pro Ala Glu Lys Pro Pro 200 Pro Ser Ser Gly Ser Asn Phe Val Val Ser Ala Ser Ala Pro Arg Leu Asp Ile Asp Ser Asp Val Glu Pro Glu Leu Lys Lys Gly Ala Val Ile Val Glu Glu Ala Pro Asn Pro Lys Ala Leu Ser Pro Pro Ala Ala Pro Ala Val Gln Glu Asp Leu Trp Asp Phe Lys Lys Tyr Ile Gly Phe Glu Glu Pro Val Glu Ala Lys Asp Asp Gly Trp Ala Val Ala Asp Asp Ala 280 Gly Ser Phe Glu His His Gln Asn His Asp Ser Gly Pro Leu Ala Gly Glu Asn Val Met Asn Val Val Val Ala Ala Glu Cys Ser Pro Trp 310 315 Cys Lys Thr Gly Gly Leu Gly Asp Val Ala Gly Ala Leu Pro Lys Ala Leu Ala Lys Arg Gly His Arg Val Met Val Val Val Pro Arg Tyr Gly 345 . Asp Tyr Glu Glu Ala Tyr Asp Val Gly Val Arg Lys Tyr Tyr Lys Ala 360 Ala Gly Gln Asp Met Glu Val Asn Tyr Phe His Ala Tyr Ile Asp Gly

	Asp	nh -	U = 1	nha	Tlo	n on	בות	Pro	T.o.s	Pho	Ara	Hie	Ara	Gln	Glu
Val 385	Asp	Phe	vaı	Pne	390	ASP	HIG	PIO	rea	395	MIG	nis	ura		400
Asp	.Ile	Tyr	Gly	Gly 405	Ser	Arg	Gln	Glu	Ile 410	Met	Lys	Arg	Met	Ile 415	Leu
Phe	Cys	Lys	Ala 420	Ala	Val	Glu	Val	Pro 425	Trp	His	Val	Pro	Cys 430	Gly	Gly
Val	Pro	Tyr 435	Gly	Asp	Gly	Asn	Leu 440	Val	Phe	Ile	Ala	Asn 445	Asp	Trp	His
Thr	Ala 450	Leu	Leu	Pro	Val	Tyr 455	Leu	Lys	Ala	Tyr	Tyr 460	Arg	Asp	His	Gly
Leu 465	Met	Gln	Tyr	Thr	Arg 470	Ser	Ile	Met	Val	Ile 475	His	Asn	Ile	Ala	His 480
Gln	Gly	Arg	Gly ·	Pro 485	Val	Asp	Glu	Phe	Pro 490	Phe	Thr	Glu	Leu	Pro 495	Glu
His	Tyr	Leu	Glu 500		Phe	Arg		Tyr 505	Asp	Pro	Val		Gly 510	Glu	His
Ala	Asn	Tyr 515	Phe	Ala	Ala	Gly	Leu 520	Lys	Met	Ala	Asp.	Gln 525	Val	Val	Val
Val	Ser 530	Pro	Gly	Tyr	Leu	Trp 535	Glu	Leu	Lys	Thr	Val 540	Glu	Gly	Gly	Trp
Gly 545	Leu	His	Asp	Ile	Ile 550	Arg	Gln	Asn	Asp	Trp 555	Lys	Thr	Arg	Gly	11e. 560
Val	Asn	Gly	Ile	Asp 565	Asn	Met	Glu	Trp	Asn 570	Pro	Glu	Val	Asp	Val 575	His.
Leu	Lys	Ser	Asp 580	Gly	Tyr	Thr	Asn	Phe 585	Ser	Leu	Gly	Thr	Leu 590	Asp.	Ser
Gly	Lys	Arg 595	Gln	Cys	Lys	Glu	Ala 600	Leu	Gln	Arg	Glu	Leu 605	Gly	Leu	Gln
Val	Arg 610	Ala	Asp	Val	Pro	Leu 615	Leu	Gly	Phe	Ile	Gly 620	Arg	Leu	Asp	Gly
Gln 625	Lys	Gly	Val	Glu	11e 630	Ile	Ala	Asp	Ala	Met 635	Pro	Trp.	Ile	Val	Ser 640
Gln	Asp	Val	Gl _i n	Leu 645	Val	Met	Leu	Gly	Thr 650	Gly	Arg	His	Asp	Leu 655	Glu
Ser	Met	Leu	Arg 660	His	Phe	Glu	Arg	Glu 665	His	His	Asp	Lys	Val 670	Arg	Gly
Trp	Val	Gly 675	Phe	Ser	Val	Arg	Leu 680	Ala	His	Arg	Ile	Thr 685	Ala	Gly	Ala
Asp	Ala 690	Leu	Leu	Met	Pro	Ser 695	Arg	Phe	Glu	Pro	Cys 700	Gly	Leu	Asn	Gln
Leu 705	Tyr	Ala	Met	Ala	Tyr 710	Gly	Thr	Val	Pro	Val 715	Val	His	Ala	Val	Gly 720

Gly Val Arg Asp Thr Val Pro Pro Phe Asp Pro Phe Asn His Ser Gly

				725					730					735		
Leu	Gly	Trp	Thr 740	Phe	Asp	Arg	Ala	Glu 745	Ala	His	Lys	Leu	Ile 750	Glu	Ala	
Leu	Gly	His 755	Cys	Leu	Arg	Thr	Tyr 760	Arg	Asp	Tyr	Lys	Glu 765	Ser	Trp	Arg	
Gly	Leu 770	Gln.	Glu	Arg	Gly	Met 775	Ser	Gln	Asp	Phe	Ser 780	Trp	Glu	His	Ala	
Ala 785	Lys	Leu	Tyr	Glu	Asp 790	Val	Leu	Leu	Lys	Ala 795	Lys	Tyr	Gln	Trp		
<211 <212)> 5 .> 2] ?> DN 3> Tr	IA	cum a	nesti	.vum											
	.> CI		(1791	L)												
cca)> 5 gct Ala	gag Glu	aag Lys	acg Thr 5	ccg Pro	ccg Pro	tcg Ser	tcc Ser	ggc Gly 10	tca Ser	aat Asn	ttc Phe	gag Glu	tcc Ser 15	tcg Ser	48
gcc Ala	tct Ser	gct Ala	ccc Pro 20	ggg Gly	tct Ser	gac Asp	act Thr	gtc Val 25	agc Ser	gac Asp	gtg Val	gaa Glu	caa Gln 30	gaa Glu	ctg Leu	96
aag Lys	aag Lys	ggt Gly 35	gcg Ala	gtc Val	gtt Val	gtc Val	gaa Glu 40	gaa Glu	gct Ala	cca Pro	aag Lys	cca Pro 45	aag Lys	gct Ala	ctt Leu	144
tcg Ser	ccg Pro 50	cct Pro	gca Ala	gcc Ala	ccc Pro	gct Ala 55	gta Val	caa Gln	gaa Glu	gac Asp	ctt Leu 60	tgg Trp	gat Asp	ttc Phe	aag Lys	192
aaa Lys 65	tac Tyr	att Ile	ggt Gly	ttc Phe	gag Glu 70	gag Glu	ccc Pro	gtg Val	gag Glu	gcc Ala 75	aag Lys	gat Asp	gat Asp	ggc Gly	cgg Arg 80	240
														cac His 95		288
tcc Ser	gga Gly	cct Pro	ttg Leu 100	gca Ala	ggg Gly	gag Glu	aat Asn	gtc Val 105	atg Met	aac Asn	gtg Val	gtc Val	gtc Val 110	gtg Val	gct Ala	336
gct Ala	gag Glu	tgt Cys 115	tct Ser	ccc	tgg Trp	tgc Cys	aaa Lys 120	aca Thr	ggt Gly	ggt Gly	ctg Leu	gga Gly 125	gat Asp	gtt Val	gcg Ala	384
ggt Gly	gct Ala 130	ctg Leu	ccc Pro	aag Lys	gct Ala	ttg Leu 135	gca Ala	aag Lys	aga Arg	gga Gly	cat His 140	cgt Arg	gtt Val	atg Met	gtt Val	432
gtg Val 145	gta Val	cca Pro	agg Arg	tat Tyr	ggg Gly 150	Asp	tat Tyr	gaa Glu	gaa Glu	cct Pro 155	Thr	gat Asp	gtc Val	gga Gly	gtc Val 160	480

1	cga Arg	aaa Lys	tac Tyr	tac Tyr	aag Lys 165	gct Ala	gct Ala	gga Gly	cag Gln	gat Asp 170	atg Met	gaa Glu	gtg Val	aat Asn	tat Tyr 175	ttc Phe	528
1	cat	gct Ala	tat Tyr	atc Ile 180	gat Asp	gga Gly	gtt Val	gat Asp	ttt Phe 185	gtg Val	ttc Phe	att Ile	gac Asp	gct Ala 190	cct Pro	ctc Leu	576
1	ttc Phe	cga Arg	cac His 195	cga Arg	gag Glu	gaa Glu	gac Asp	att Ile 200	tat Tyr	ggg Gly	ggc Gly	agc Ser	aga Arg 205	cag Gln	gaa Glu	att Ile	624
i	atg Met	aag Lys 210	cgc Arg	atg Met	att Ile	ttg Leu	ttc Phe 215	tgc Cys	aag Lys	gcc Ala	gct Ala	gtt Val 220	gag Glu	gtt Val	cca Pro	tgg Trp	672
ŧ	cac His 225	gtt Val	cca Pro	tgc Cys	ggc Gly	ggt Gly 230	gtc Val	cct Pro	tat Tyr	ggg Gly	gat Asp 235	gga Gly	aat Asn	ctg Leu	gtg Val	ttt Phe 240	720
ć	att Ile	gca Ala	aat Asn	gat Asp	tgg Trp 245	cac His	acg Thr	gca Ala	ctc Leu	ctg Leu 250	cct Pro	gtc Val	tat Tyr	ctg Leu	aaa Lys 255	gca Ala	768
1	tat Tyr	tac Tyr	agg Arg	gac Asp 260	cat His	ggt Gly	ttg Leu	atg Met	cag Gln 265	tac Tyr	act Thr	cgg Arg	tcc Ser	att Ile 270	atg Met	gtg Val	816
	ata Ile	cat His	aac Asn 275	Ile	gct Ala	cac His	cag Gln	ggc Gly 280	cgt Arg	ggc Gly	cct Pro	gta Val	gat Asp 285	gaa Glu	ttc Phe	ccg Pro	.864
1	ttc Phe	acc Thr 290	gag Glu	ttg Leu	cct Pro	gag Glu	cac His 295	tac Tyr	ctg Leu	gaa Glu	cac His	ttc Phe 300	aga Arg	ctg Leu	tac Tyr	gac Asp	912
1	ccc Pro 305	gtg Val	ggt Gly	ggt Gly	gaa Glu	cac His 310	gcc Ala	aac Asn	tac Tyr	ttc Phe	gcc Ala 315	gcc Ala	ggc Gly	ctg Leu	aag Lys	atg Met 320	960
2	gcg Ala	gac Asp	cag Gln	gtt Val	gtc Val 325	gtg Val	gtg Val	agc Ser	ccc Pro	ggg Gly 330	tac Tyr	ctg Leu	tgg Trp	gag Glu	ctg Leu 335	aag Lys	1008
	acg Thr	gtg Val	gag Glu	ggc Gly 340	ggc Gly	tgg Trp	Gly ggg	ctt Leu	cac His 345	gac Asp	atc Ile	ata Ile	cgg Arg	cag Gln 350	aac Asn	gac Asp	1056
	tgg Trp	aag Lys	acc Thr 355	cgc Arg	ggc Gly	atc Ile	gtc Val	aac Asn 360	ggc Gly	atc Ile	gac Asp	aac Asn	atg Met 365	gag Glu	tgg Trp	aac Asn	1104
	ccc Pro	gag Glu 370	gtg Val	gac Asp	gcc Ala	cac His	ctc Leu 375	aag Lys	tcg Ser	gac Asp	ggc Gly	tac Tyr 380	acc Thr	aac Asn	ttc Phe	tcc Ser	1152
	ctg Leu 385	agg Arg	acg Thr	ctg Leu	gac Asp	tcc Ser 390	ggc Gly	aag Lys	cgg Arg	cag Gln	tgc Cys 395	aag Lys	gag Glu	gcc Ala	ctg Leu	cag Gln 400	1200
	cgc Arg	gag Glu	ctg Leu	ggc Gly	ctg Leu 405	cag Gln	gtc Val	cgc Arg	gcc Ala	gac Asp 410	gtg Val	ccg Pro	ctg Leu	ctc Leu	ggc Gly 415	ttc Phe	1248
	atc	ggc	cgc	ctg	gac	ggg	cag	aag	ggc	gtg	gag	atc	atc	gcg	gac	gcc	1296

Ile	Gly	Arg	Leu 420	Asp	Gly	Gln	Lys	Gly 425	Val	Glu	Ile	Ile	Ala 430	Asp	Ala	
							gac Asp 440									1344
ggg Gly	cgc Arg 450	cac His	gac Asp	ctg Leu	gag Glu	agc Ser 455	atg Met	ctg Leu	cag Gln	cac His	ttc Phe 460	gag Glu	cgg Arg	gag Glu	cac His	1392
cac His 465	gac Asp	aag Lys	gtg Val	cgc Arg	ggg Gly 470	tgg Trp	gtg Val	ggg Gly	ttc Phe	tcc Ser 475	gtg Val	cgc Arg	ctg Leu	gcg Ala	cac His 480	1440
cgg Arg	atc Ile	acg Thr	gcg Ala	ggg Gly 485	gcg Ala	gac Asp	gcg Ala	ctc Leu	ctc Leu 490	atg Met	ccc Pro	tcc Ser	cgg Arg	ttc Phe 495	gtg Val	1488
ccg Pro	tgc Cys	Gly ggg	ctg Leu 500	aac Asn	cag Gln	ctc Leu	tac Tyr	gcc Ala 505	atg Met	gcc Ala	tac Tyr	ggc Gly	acc Thr 510	gtc Val	ccc Pro	1536
gtc Val	gtg Val	cac His 515	gcc Ala	gtc Val	ggc Gly	ggc Gly	ctc Leu 520	agg Arg	gac Asp	acc Thr	Val	ccg Pro 525	.ccg Pro	ttc Phe	gac Asp	1584
ccc Pro	ttc Phe 530	aac Asn	cac His	tcc Ser	ggg Gly	ctc Leu 535	Gly ggg	tgg Trp	acg Thr	ttc Phe	gac Asp 540	cgc Arg	gcc Ala	gag Glu	gcg Ala	1632
cac His 545	aag Lys	ctg Leu	atc Ile	gag Glu	gcg Ala 550	ctc Leu	GJ A Gaa	cac His	tgc Cys	ctc Leu 555	cgc Arg	acc Thr	tac Tyr	cga Arg	gac Asp 560	1680
ttc Phe	aag Lys	gag Glu	agc Ser	tgg Trp 565	agg Arg	gcc Ala	ctc Leu	cag Gln	gag Glu 570	Arg	ggc Gly	atg Met	tcg Ser	cag Gln 575	gac Asp	1728
ttc Phe	agc Ser	tgg Trp	gag Glu 580	cac His	gcc Ala	gcc Ala	aag Lys	ctc Leu 585	tac Tyr	gag Glu	gac Asp	gtc Val	ctc Leu 590	gtc Val	aag Lys	1776
-	aag Lys		-		tgaa	acgct	ag o	ctgct	agco	eg et	ccaq	gece	c gca	atgc	gtgc	1831
atga	acago	gat q	gaad	ctgca	et to	gcgca	acgca	a gga	aagt	gcc	atg	gagc	acc d	ggcat	ccgcg	1891
aagt	acaç	gtg a	acato	gaggt	tg t	gtgt	ggtt	g aga	acgct	tgat	tcca	aatc	cgg (ccg	agcag	1951
agta	agago	cgg a	aggtá	atato	gg ga	aatc	ttaad	e tte	ggtai	ttgt	aat	ttgti	tat o	gttg	tgtgca	2011
ttat	ttaca	aat q	gttgi	tact	tt at	ttct	tgtta	a agt	tegga	aggc	caa	gggc	gaa a	agct	agctca	2071
cato	gtctq	gat q	ggato	gcaaa	aa aa	aaaa	aaaa	a aáa	aaaa							2107

Pro Ala Glu Lys Thr Pro Pro Ser Ser Gly Ser Asn Phe Glu Ser Ser

<210> 6 <211> 597 <212> PRT <213> Triticum aestivum

1				. 5					10					15	
Ala	Ser	Ala	Pro 20	Gly	Sér	Asp	Thr	Val 25	Ser	Asp	Val	Glu	Gln 30	Glu	Leu
Lys	Lys	Gly 35	Ala	Val	Val	Val	Glu 40	Glu	Ala	Pro	Lys ·	Pro 45	Lys	Ala	Leu
Ser	Pro 50	Pro	Ala	Ala	Pro	Ala 55	Val	Gln	Glu	Asp	Leu 60	Trp	Asp	Phe	Lys
Lys 65	Tyr	Ile	Gly	Phe	Glu 70	Glu	Pro	Val	Glu	Ala 75	Lys	Asp	Asp	Gly	Arg 80
Ala	Val	Ala	Asp	Asp 85	Ala	Gly	Ser	Phe	Glu 90	His	His	Gln	Asn	His 95	Asp
Ser	Gly	Pro	Leu 100	Ala	Gly	Glu	Asn	Val 105	Met	Asn	Val	Val	Val 110	Val	Ala
Ala		Cys 115	Ser	Pro	Trp	Cys	Lys 120	Thr	Gly	Gly		Gly 125	Asp	Val	Ala
Sly	Ala 130	Leu	Pro	Lys	Ala	Leu 135	Ala	Lys	Arg	Gly	His 140	Arg	Val	Met	Val
Val 145	Val	Pro	Arg	Tyr	Gly 150	Asp	Tyr	Glu	Glu	Pro 155	Thr	Asp	Val	Gly	Val 160
Arg	Lys	Tyr	Tyr	Lys 165	Ala	Ala	Gly	Gln	Asp 170	Met	Glu	Val	Asn	Tyr 175	Phe
His	Ala	Tyr	Ile 180	Asp	Gly	Val	Asp	Phe 185	Val	Phe	Ile	Asp	Ala 190	Pro	Leu
Phe	Arg	His 195	Arg	Glu	Glu	Àsp	11e 200	Tyr	Gly	Gly	Ser	Arg 205	Gln	Glu	Ile
Met	Lys 210	Arg	Met	Ile	Leu	Phe 215	Cys	Lys	Ala	Ala	Val 220	Glu	Val	Pro	Trp
His 225	Val	Pro	Cys	Gly	Gly 230	Val	Pro	Tyr	Gly	Asp 235	Gly	Asn	Leu	Val	Phe 240
Ile	Ala	Asn	Asp	Trp 245	His	Thr	Ala	Leu	Leu 250	Pro	Val	Tyr	Leu	Lys 255	Ala
Tyr	Tyr	Arg	Asp 260	His	Gly	Leu	Met	Gln 265		Thr	Arg	Ser	11e 270	Met	Val
Ile	His	Asn 275	Ile	Ala	His	Gln	Gly 280	Arg	Gly	Pro	Val	Asp 285	Glu	Phe	Pro
Phe	Thr 290	Glu	Leu	Pro	Glu	His 295	Tyr	Leu	Glu	His	Phe 300	Arg	Leu	Tyr	Asp
Pro 305	Val	Gly	Gly	Glu	His 310	·Ala	Asn	Tyr	Phe	Ala 315	Ala	Gly	Leu	Lys	Met 320
Ala	Asp	Gln	Val	Val 325	Val	Val	Ser	Prio	Gly 330	Tyr	Leu	Trp	Glu	Leu 335	Lys
Thr	Val	Glu	Gly 340	Gly	Trp	Gly	Leu	His 345		Ile	Ile	Arg	Gln 350	Asn	Asp

52

Trp	Lys	Thr 355	Arg	Gly	Ile	Val	Asn 360	Gly	Ile	Ąsp	Asn	Met 365	Glu	Trp	Asn
Pro	Glu 370	Val	Asp	Ala	His	Leu 375	Lys	Ser	Asp	Gly	Tyr 380	Thr	Asn	Phe	Ser
Leu 385	Arg	Thr	Leu	Asp	Ser 390	Gly	Lys	Arg	Gln	Cys 395	Lys	Glu	Ala	Leu	Gln 400
Arg	Glu	Leu	Gly	Leu 405	Gln	Val	Arg	Ala	Asp 410	Val	Pro	Leu	Leu	Gly 415	
Ile	Gly	Arg	Leu 420	Asp	Gly	Gln	Lys	Gly 425	Val	Glu	Ile	Ile	Ala 430	Asp	Ala
Met	Pro	Trp 435	Ile	Val	Ser	Gln	Asp 440	Val	Gln	Leu	Val	Met 445	Leu	Gly	Thr
Gly	Arg 450	His	Asp	Leu	Glu	Ser 455	Met	Leu	Gln	His	Phe 460	Glu	Arg	Glu	His
His 465	Asp	Lys	Val	Arg	Gly 470	Trp	Val	Gly	Phe	Ser 475	Val	Arg	Leu	Ala	His 480
Arg	Ile	Thr	Ala	Gly 485	Ala	Asp	Ala	Leu	Leu 490	Met	Pro	Ser	Arg	Phe 495	Val
Pro	Cys	Gly	Leu 500	Asn	Gln	Leu	Tyr	Ala 505	Met	Ala	Tyr	Gly	Thr 510	Val	Pro
Val	Val [°]	His 515	Ala	Val	Gly	Gly	Leu 520	Arg	Asp	Thr	Val	Pro 525	Pro	Phe	Asp
Pro	Phe 530	Asn	His	Ser	Gly	Leu 535	Gly	Trp	Thr	Phe	Asp 540	Arg	Ala	Glu	Ala
His 545	Lys	Leu	Ile	Glu	Ala 550	Leu	Gly	His	Cys	Leu 555	Arg	Thr	Tyr	Arg	Asp 560
Phe	Lys	Glu		Trp 565	Arg	Ala	Leu	Gln	G1u 570	Arg	Gly	Met	Ser	Gln 575	Asp
Phe	Ser	Trp	G1u 580	His	Ala	Ala	Ļys	Leu 585	Tyr	Glu	Asp	Val	Leu 590	Val	Lys
Ala	Lys	Tyr 595	Gln	Trp								•		•	
<211 <212	0> 7 L> 5: 2> Di 3> Ti	346 NA	cum a	aest:	ivum										·
	L> CI		. (49:	12)			٠								- 12

age cee ctg tge cet cgg age agg cag ceg ctc gtc gtc gtc cgg ccg Ser Pro Leu Cys Pro Arg Ser Arg Gln Pro Leu Val Val Val Arg Pro

cggcacgagg tttagtaggt tccgggaa atg gag atg tct ctc tgg cca cgg
Met Glu Met Ser Leu Trp Pro Arg

1 5

	10					15					20					
gcc Ala 25	ggc Gly	cgc Arg	ggc Gly	ggc Gly	ctc Leu 30	acg Thr	cag Gln	cct Pro	ttt Phe	ttg Leu 35	atg Met	aat Asn	ggc Gly	aga Arg	ttt Phe 40	148
act Thr	cga Arg	agc Ser	agg Arg	acc Thr 45	ctt Leu	cga Arg	tgc Cys	atg Met	gta Val 50	gca Ala	agt Ser	tca Ser	gat Asp	cct Pro 55	cct. Pro	196
aat Asn	agg Arg	aaa Lys	tca Ser 60	aga Arg	agg Arg	atg Met	gta Val	cca Pro 65	cct Pro	cag Gln	gtt Val	aaa Lys	gtc Val 70	att Ile	tct Ser	244
tct Ser	aga Arg	gga Gly 75	tat Tyr	acg Thr	aca Thr	aga Arg	ctc Leu 80	att Ile	gtt Val	gaa Glu	cca Pro	agc Ser 85	aac Asn	gag Glu	aat Asn	292
aca Thr	gaa Glu 90	cac His	aat Asn	aat Asn	cgg Arg	gat Asp 95	gaa Glu	gaa Glu	act Thr	ctt Leu	gat Asp 100	aca Thr	tac Tyr	aat Asn	gcg Ala	340
cta Leu 105	tta Leu	agt Ser	acc Thr	gag Glu	aca Thr 110	gca Ala	gaa Glu	tgg Trp	aca Thr	gat Asp 115	aat Asn	aga Arg	gaa Glu	gcc Ala	gag Glu 120	388
act Thr	gct Ala	aaa Lys	gcg Ala	gac Asp 125	tcg Ser	tcg Ser	caa Gln	aat Asn	gct Ala 130	tta Leu	agc Ser	agt Ser	tct Ser	ata Ile 135	att Ile	436
ggg Gly	gaa Glu	gtg Val	gat Asp 140	gtg Val	gcg Ala	gat Asp	gaa Glu	gat Asp 145	ata Ile	ctt Leu	gcg Ala	gct Ala	gat Asp 150	ctg Leu	aca Thr	484
gtg Val	tat Tyr	tca Ser 155	ttg Leu	agc Ser	agt Ser	gta Val	atg Met 160	aag Lys	aag Lys	gaa Glu	gtg Val	gat Asp 165	gca Ala	gcg Ala	gac Asp	532
aaa Lys	gct Ala 170	aga Arg	gtt Val	aaa Lys	gaa Glu	gac Asp 175	gca Ala	ttt Phe	gag Glu	ctg Leu	gat Asp 180	ttg Leu	cca Pro	gca Ala	act Thr	580
aca Thr 185	ttg Leu	aga Arg	agt Ser	gtg Val	ata Ile 190	gta Val	gat Asp	gtg Val	atg Met	gat Asp 195	cat His	aat Asn	ggg Gly	act Thr	gta Val 200	628
caa Gln	gag Glu	aca Thr	ttg Le'i	aga Arg 205	agt Ser	gtg Val	ata Ile	gta Val	gat Asp 210	gtg Val	atg Met	gat Asp	cat His	aat Asn 215	Gly	676
Thr	Val	Gln	Glu 220		Leu	Arg	Ser	Val 225	Ile	Val	Asp	Val	Met 230	Asp	Asp	724
gcg Ala	gcg Ala	gac Asp 235	Lys	gct Ala	aga Arg	gtt Val	gaa Glu 240	gaa Glu	gac Asp	gta Val	ttt Phe	gag Glu 245	ctg Leu	gat Asp	ttg Leu	772
tca Ser	gga Gly 250	Asn	att Ile	tca Ser	agc Ser	agt Ser 255	gcg Ala	acg Thr	acc Thr	gtg Val	gaa Glu 260	Leu	gat Asp	gcg Ala	gtt Val	820
gac Asp 265	Glu	gto	ggg Gly	cct Pro	gtt Val 270	Gln	gac Asp	aaa Lys	ttt Phe	gag Glu 275	Ala	acc Thr	tca Ser	tca Ser	gga Gly 280	868

aat Asn	gtt Val	tca Ser	aac Asn	agt Ser 285	gca Ala	acg Thr	gta Val	cgg Arg	gaa Glu 290	gtg Val	gat Asp	gca Ala	agt Ser	gat Asp 295	gaa Glu	916
gct Ala	ggg	aat Asn	gat Asp 300	caa Gln	ggc Gly	ata Ile	ttt Phe	aga Arg 305	gca Ala	gat Asp	ttg Leu	tca Ser	gga Gly 310	aat Asn	gtt Val	964
ttt Phe	tca Ser	agc Ser 315	agt Ser	aca. Thr	aca Thr	gtg Val	gaa Glu 320	gtg Val	ggt Gly	gca Ala	gtg Val	gat Asp 325	gaa Glu	gct Ala	G1y ggg	1012
tct Ser	ata Ile 330	aag Lys	gac Asp	agg Arg	ttt Phe	gag Glu 335	acg Thr	gat Asp	tcg Ser	tca Ser	gga Gly 340	aat Asn	gtt Val	tca Ser	aca Thr	1060
agt Ser 345	gcg Ala	ccg Pro	atg Met	tgg Trp	gat Asp 350	gca Ala	att Ile	gat Asp	gaa Glu	acc Thr 355	gtg Val	gct Ala	gat Asp	caa Gln	gac Asp 360	1108
aca Thr	ttt Phe	gag Glu	gcg Ala	gat Asp 365	ttg Leu	tcg Ser	gga Gly	aat Asn	gct Ala 370	tca Ser	agc Ser	tgc Cys	gca Ala	aca Thr 375	tac Tyr	1156
aga Arg	gaa Glu	gtg Val	gat Asp 380	gat Asp	gtg Val	gtg Val	gat Asp	gaa Glu 385	act Thr	aga Arg	tca Ser	gaa Glu	gag Glu 390	gaa Glu	aca Thr	1204
ttt Phe	gca Ala	atg Met 395	gat Asp	ttg Leu	ttt Phe	gca Ala	agt Ser 400	gaa Glu	tca Ser	ggc Gly	cat His	gag Glu 405	aaa Lys	cat His	atg Met	1252
gca Ala	gtg Val 410	gat Asp	tat Tyr	gtg Val	ggt Gly	gaa Glu 415	gct Ala	acc Thr	gat Asp	gaa Glu	gaa Glu 420	gag Glu	act Thr	tac Tyr	caa Gln	1300
cag Gln 425	caa Gln	tat Tyr	cca Pro	gta Val	ccg Pro 430	tct Ser	tca Ser	ttc Phe	tct Ser	atg Met 435	tgg Trp	gac Asp	aag Lys	gct Ala	att Ile 440	1348
gct Ala	aaa Lys	aca Thr	ggt Gly	gta Val 445	agt Ser	ttg Leu	aat Asn	cct Pro	gag Glu 450	ctg Leu	cga Arg	ctt Leu	gtc Val	agg Arg 455	gtt Val	1396
gaa Glu	gaa Glu	caa Gln	ggc Gly 460	aaa Lys	gta Val	aat Asn	ttt Phe	agt Ser 465	gat Asp	aaa Lys	aaa Lys	gac Asp	ctg Leu 470	tca Ser	att Ile	1444
gat Asp	gat Asp	tta Leu 475	cca Pro	gga Gly	caa Gln	aac Asn	caa Gln 480	tcg Ser	atc	att Ile	ggt Gly	tcc Ser 485	tat Tyr	aaa Lys	caa Gln	1492
gat Asp	aaa Lys 490	tca Ser	att Ile	gct Ala	gat Asp	gtt Val 495	Ala	gga Gly	ccg Pro	acc Thr	caa Gln 500	Ser	att	ttt Phe	ggt G <u>l</u> y	1540
tct Ser 505	Ser	aaa Lys	caa Gln	cac His	cgg Arg 510	Ser	att Ile	gtt Val	.gct Ala	ttc Phe 515	Pro	aaa Lys	caa Gln	aac Asn	cag Gln 520	1588
tca Ser	att Ile	gtt Val	agt Ser	gtc Val 525	Thr	gag Glu	caa Gln	aag Lys	cag Gln 530	Ser	ata	gtt Val	gga Gly	ttc Phe 535	Arg	1636

					•												
	agt Ser	caa Gln	gat Asp	ctt Leu 540	tcg Ser	gct Ala	gtt Val	agt Ser	ctc Leu 545	cct Pro	aaa Lys	caa Gln	Asn	gta Val 550	cca Pro	att Ile	1684
	gtt Val	ggt Gly	acg Thr 555	tcg Ser	aga Arg	gag Glu	ggt Gly	caa Gln 560	aca Thr	aag Lys	caa Gln	gtt Val	Pro 565	gtt Val	gtt Val	gat Asp	1732
	aga Arg	cag Gln 570	gat Asp	gca Ala	ttg Leu	tat Tyr	gtg Val 575	aat Asn	gga Gly	ctg Leu	gaa Glu	gct Ala 580	aag Lys	gag Glu	gga Gly	gat Asp	1780
	cac His 585	aca Thr	tcc Ser	gag Glu	aaa Lys	act Thr 590	gat Asp	gag Glu	gat Asp	gcg Ala	ctt Leu 595	cat His	gta Val	aag Lys	ttt Phe	aat Asn 600	1828
	gtt Val	gac Asp	aat Asn	gtg Val	ttg Leu 605	cgg Arg	aag Lys	cat His	cag Gln	gca Ala 610	gat Asp	aga Arg	acc Thr	caa Gln	gca Ala 615	gtg Val	1876
	gaa. Glu	aag Lys	aaa Lys	act Thr 620	tgg Trp	aag Lys	aaa Lys	gtt Val	gat Asp 625	gag Glu	gaa Glu	cat His	ctt Leu	tac Tyr 630	atg Met	act Thr	1924
	gaa Glu	cat His	cag Gln 635	aáa Lys	cgt Arg	gct Ala	gcc Ala	gaa Glu 640	gga Gly	cag Gln	atg Met	gta Val	gtt Val 645	aac Asn	gag Glu	gat Asp	1972
	gag Glu	ctt Leu 650	tct Ser	ata Ile	act Thr	gaa Glu	att Ile 655	gga Gly	atg Met	ggg Gly	aga Arg	ggt Gly 660	gat Asp	aaa Lys	att Ile	cag Gln	2020
	cat His 665	gtg Val	ctt Leu	tct Ser	gag Glu	gaa Glu 670	gag Glu	ctt Leu	tca Ser	tgg Trp	tct Ser 675	gaa Glu	gat Asp	gaa Glu	gtg Val	cag Gln 680	2068
	tta Leu	att Ile	gag Glu	gat Asp	gat Asp 685	gga Gly	caa Gln	tat Tyr	gaa Glu	gtt Val 690	gac Asp	gag Glu	acc Thr	tct Ser	gtg Val 695	tcc Ser	2116
•	gtt Val	aac Asn	gtt Val	gaa Glu 700	caa Gln	gat Asp	atc Ile	cag Gln	999 Gly 705	tca Ser	cca Pro	cag Gln	gat Asp	gtt Val 710	gtg Val	gat Asp	2164
	ccg Pro	caa Gln	gca Ala 715	cta Leu	aag Lys	gtg Val	atg Met	ctg Leu 720	caa Gln	gaa Glu	ctc Leu	gct Ala	gag Glu 725	aaa Lys	aat Asn	tat Tyr	2212
	tcg Ser	atg Met 730	agg Arg	aac Asn	aag Lys	ctg Leu	ttt Phe 735	gtt Val	ttt Phe	cca Pro	gag Glu	gta Val 740	gtg Val	aaa Lys	gct Ala	gat Asp	2260
	tca Ser 745	gtt Val	att Ile	gat Asp	ctt Leu	tat Tyr 750	tta Leu	aat Asn	cgt Arg	gac Asp	cta Leu 755	aca Thr	gct Ala	ttg Leu	gcg Ala	aat Asn 760	2308
	gaa Glu	ccc Pro	gat Asp	gtc Val	gtc Val 765	atc Ile	aaa Lys	gga Gly	gca Ala	ttc Phe 770	Asn	ggt Gly	tgg Trp	aaa Lys	tgg Trp 775	agg Arg	2356
	ctt Leu	ttc Phe	act Thr	gaa Glu 780	aga Arg	ttg Leu	cac His	aag Lys	agt Ser 785	gac Asp	ctt Leu	gga Gly	ggg Gly	gtt Val 790	tgg Trp	tgg Trp	2404
	tct	tgc	aaa	ctg	tac	ata	ccc	aag	gag	gcc	tac	aga	tta	gac	ttt	gtg	2452

				•												
Ser	Cys	Lys 795	Leu	Tyr	Ile	Pro	Lys 800	Glu	Ala	Tyr	Arg	Leu 805	Asp	Phe	Val	
ttc Phe	ttc Phe 810	aac Asn	ggt Gly	cgc Arg	acg Thr	gtc Val 815	tat Tyr	gag Glu	aac Asn	aat Asn	ggc Gly 820	aac Asn	aat Asn	gat Asp	ttc Phe	2500
tgt Cys 825	ata Ile	gga Gly	ata Ile	Glu	ggc Gly 830	act Thr	atg Met	aat Asn	gaa Glu	gat Asp 835	ctg Leu	ttt Phe	gag Glu	gat Asp	ttc Phe 840	2548
ttg Leu	gtt Val	aaa Lys	gaa Glu	aag Lys 845	caa Gln	agg Arg	gag Glu	ctt Leu	gag Glu 850	aaa Lys	ctt Leu	gcc Ala	atg Met	gaa Glu 855	gaa Glu	2596
gct Ala	gaa Glu	agg Arg	agg Arg 860	aca Thr	cag Gln	act Thr	gaa Glu	gaa Glu 865	cag Gln	cgg Arg	cga Arg	aga Arg	aag Lys 870	gaa Glu	gca Ala	2644
agg Arg	gct Ala	gca Ala 875	gat Asp	gaa Glu	gct Ala	gtc Val	agg Arg 880	gca Ala	caa Gln	gcg Ala	aag Lys	gcc Ala 885	gag Glu	ata Ile	gag Glu	2692
atc Ile	aag Lys 890	aag Lys	aaa Lys	aaa Lys	ttg Leu	caa Gln 895	agt Ser	atg Met	ttg Leu	agt Ser	ttg Leu 900	gcc Ala	aga Arg	aca Thr	tgt C y s	2740
gtt Val 905	gat Asp	aat Asn	ttg Leu	tgg Trp	tac Tyr 910	ata Ile	gag Glu	gct Ala	agc Ser	aca Thr 915	gat Asp	aca Thr	aga Arg	gga Gly	gat Asp 920	2788
act Thr	atc Ile	agg Arg	tta Leu	tat Tyr 925	Tyr	aac Asn	aga Arg	aac Asn	tcg Ser 930	agg Arg	cca Pro	ctt Leu	gcg Ala	cat His 935	agt. Ser	2836
act Thr	gag Glu	att Ile	tgg Trp 940	atġ Met	cat His	ggt Gly	ggt Gly	tac Tyr 945	aac Asn	aat Asņ	tgg Trp	aca Thr	gat Asp 950	gga Gly	ctc Leu	2884
tct Ser	att Ile	gtt Val 955	gaa Glu	agc Ser	ttt Phe	gtc Val	aag Lys 960	tgc Cys	aat Asn	gac Asp	aaa Lys	gac Asp 965	ggc Gly	gat Asp	tgg Trp	2932
tgg Trp	tat Tyr 970	gca Ala	gat Asp	gtt Val	att Ile	cca Pro 975	cct Pro	gaa Glu	aag Lys	Ala	ctt Leu 980	Val	ttg Leu	gac Asp	tgg Trp	2980
gtt Val 985	ttt Phe	gct Ala	gat Asp	ggg Gly	cca Pro 990	gct Ala	ggg Gly	aat Asn	gca Ala	agg Arg 995	aac Asn	tat Tyr	gac Asp	Asn	aat Asn 1000	3028
gct Ala	cga Arg	caa Gln	Asp	ttc Phe 1005	cat His	gct Ala	att Ile	Leu	ccg Pro 1010	aac Asn	aac Asn	aat Asn	Val	acc Thr 1015	gag Glu	3076
gaa Glu	ggc Gly	Phe	tgg Trp 1020	gcg Ala	caa Gln	gag Glu	Glu	caa Gln 1025	Asn	atc Ile	tat Tyr	Thr	agg Arg 1030	ctt Leu	ctg Leu	3124
caa Gln	Glu	agg Arg 1035	aga Arg	gaa Glu	aag Lys	Glu	gaa Glu 1040	acc Thr	atg Met	aaa Lys	Arg	aag Lys 1045	gct Ala	gag Glu	aga Arg	3172
agt Ser	gca Ala	aat Asn	atc Ile	aaa Lys	gct Ala	gag Glu	atg Met	aag Lys	gca Ala	aaa Lys	act Thr	atg Met	cga Arg	agg Arg	ttt Phe	3220

1050	, 1	.055	1060		
ctg ctt tcc Leu Leu Se: 1065	c cag aaa cac r Gln Lys His 1070	att gtt tat Ile Val Tyr	acc gaa ccg c Thr Glu Pro L 1075	tt gaa ata cgt eu Glu Ile Arg 1080	3268
gcc gga acc Ala Gly Th	c aca gtg gat r Thr Val Asp 1085	Val Leu Tyr	aat ccc tct a Asn Pro Ser A 1090	ac aca gtg cta sn Thr Val Leu 1095	3316
aat gga aag Asn Gly Lys	g tcg gag ggt s Ser Glu Gly 1100	tgg ttt aga Trp Phe Arg 1105	tgc tcc ttt a Cys Ser Phe A	ac ctt tgg atg sn Leu Trp Met 1110	3364
cat tca age His Ser Ser 1115	c Gly Ala Leu	cca ccc cag Pro Pro Gln 1120	aag atg gtg a Lys Met Val L 11	aa tca ggg gat ys Ser Gly Asp 25	3412
ggg ccg ctc Gly Pro Let 1130	ı Leu Lys Ala	aca gtt gat Thr Val Asp 135	gtt cca ccg g Val Pro Pro A 1140	at gcc tat atg sp Ala Tyr Met	3460
atg gac tti Met Asp Pho 1145	gtt ttc tcc Val Phe Ser 1150	gag tgg gaa Glu Trp Glu	gaa gat ggg a Glu Asp Gly I 1155	tc tat gac aac le Tyr Asp Asn 1160	3508
agg aat ggg Arg Asn Gly	g atg gac tat y Met Asp Tyr 1165	His Ile Pro	gtt tct gat to Val Ser Asp So 170	ca att gaa aca er Ile Glu Thr 1175	3556
gag aat tac Glu Asn Tyr	c atg cgt att c Met Arg Ile 1180	atc cac att Ile His Ile 1185	gcc gtt gag a Ala Vaļ Glu M	tg gcc ccc gtt et Ala Pro Val 1190	3604
gca aag gtt Ala Lys Val 1195	l Gly Gly Leu	ggg gat gtt Gly Asp Val 1200	gtt aca agt c Val Thr Ser L 12	tt tca cgt gcc eu Ser Arg Ala 05	3652
att caa gat Ile Gln Asp 1210	Leu Gly His	act gtc gag Thr Val Glu 215	gtt att ctc c Val Ile Leu P 1220	cg aag tac gac ro Lys Tyr Asp	3700
tgt ttg aad Cys Leu Asi 1225	c caa agc agt n Gln Ser Ser 1230	gtc aag gat Val Lys Asp	tta cat tta t Leu His Leu T 1235	at caa agt ttt yr Gln Ser Phe 1240	3748
tct tgg ggf Ser Trp Gl	t ggt aca gaa y Gly Thr Glu 1245	Ile Lys Val	tgg gtt gga c Trp Val Gly A 1250	ga gtc gaa gac rg Val Glu Asp 1255	3796
ctg acc gt Leu Thr Va	t tac ttc ctg 1 Tyr Phe Leu 1260	gaa cct caa Glu Pro Gln 1265	aat ggg atg t Asn Gly Met P	tt ggc gtt gga he Gly Val Gly 1270	3844
	r Gly Arg Asn		Arg Phe Gly P	tc ttc tgt cat The Phe Cys His 85	3892
	u Glu Phe Ile			ca cat ata ata Pro His Ile Ile	3940
				ta tat aag gaa eu Tyr Lys Glu 1320	3988

cac tat tcc caa tcc aga atg gca agc act cgg gtt gta ttt acc atc His Tyr Ser Gln Ser Arg Met Ala Ser Thr Arg Val Val Phe Thr Ile 1325 1330 1335	4036
cac aat ctt gaa ttt gga gca cat tat att ggt aaa gca atg aca tac His Asn Leu Glu Phe Gly Ala His Tyr Ile Gly'Lys Ala Met Thr Tyr 1340 1345 1350	4084
tgt gat aaa gcc aca act gtt tct cct aca tat tca agg gac gtg gca Cys Asp Lys Ala Thr Thr Val Ser Pro Thr Tyr Ser Arg Asp Val Ala 1355 1360 1365	4132
ggc cat ggc gcc att gct cct cat cgt gag aaa ttc tac ggc att ctc Gly His Gly Ala Ile Ala Pro His Arg Glu Lys Phe Tyr Gly Ile Lev 1370 1375 1380	4180
aat gga att gat cca gat atc tgg gat ccg tac act gac aat ttt atc Asn Gly Ile Asp Pro Asp Ile Trp Asp Pro Tyr Thr Asp Asn Phe Ile 1385 1390 1395 1400	
ccg gtc cct tat act tgt gag aat gtt gtc gaa ggc aag aga gct gca Pro Val Pro Tyr Thr Cys Glu Asn Val Val Glu Gly Lys Arg Ala Ala 1405 1410 1415	4276
aaa agg gcc ttg cag cag aag ttt gga tta cag caa act gat gtc cct Lys Arg Ala Leu Gln Gln Lys Phe Gly Leu Gln Gln Thr Asp Val Pro 1420 1425 1430	4324
att gtc gga atc atc acc cgt ctg aca gcc cag aag gga atc cac ctc Ile Val Gly Ile Ile Thr Arg Leu Thr Ala Gln Lys Gly Ile His Leu 1435 1440 1445	4372
atc aag cac gca att cac cga act ctc gaa agc aac gga cat gtg gtt Ile Lys His Ala Ile His Arg Thr Leu Glu Ser Asn Gly His Val Val 1450 1455 1460	4420
ttg ctt ggt tca gct cca gat cat cga ata caa ggc gat ttt tgc aga Leu Leu Gly Ser Ala Pro Asp His Arg Ile Gln Gly Asp Phe Cys Arg 1465 1470 1475 1480	
ttg gcc gat gct ctt cat ggt gtt tac cat ggt agg gtg aag ctt gtt Leu Ala Asp Ala Leu His Gly Val Tyr His Gly Arg Val Lys Leu Val 1485 1490 1495	4516
cta acc tat gat gag cct ctt tct cac ctg ata tac gct ggc tcg gac Leu Thr Tyr Asp Glu Pro Leu Ser His Leu Ile Tyr Ala Gly Ser Asp 1500 1505 1510	4564
ttc ata att gtt cct tca atc ttc gaa ccc tgt ggc tta aca caa ctt Phe Ile Ile Val Pro Ser Ile Phe Glu Pro Cys Gly Leu Thr Gln Leu 1515 1520 1525	4612
gtt gcc atg cgt tat gga tcg atc cct ata gtt cgg aaa act gga gga Val Ala Met Arg Tyr Gly Ser Ile Pro Ile Val Arg Lys Thr Gly Gly 1530 1535 1540	
ctt cac gac aca gtc ttc gac gta gac aat gat aag gac cgg gct cgc Leu His Asp Thr Val Phe Asp Val Asp Asn Asp Lys Asp Arg Ala Arg 1545 1550 1555 1566	Ī
tct ctt ggt ctt gaa cca aat ggg ttc agt ttc gac gga gcc gac age Ser Leu Gly Leu Glu Pro Asn Gly Phe Ser Phe Asp Gly Ala Asp Ser 1565 1570 1575	4756

Asn	Gly	Val 1	Asp 580	Tyr	Ala	Leu		Arg .585	Ala	Ile	Gly	Ala 1	Trp .590	Phe	Asp	4804
gcc _. Ala	Arg	gat Asp 595	tgg Trp	ttc Phe	cac His	Ser	ctg Leu 1600	tgt Cys	aag Lys	agg Arg	Val	atg Met 605	gag Glu	caa Gln	gac Asp	4852
Trp	tcg Ser 610	tgg Trp	aac Asn	cgg Arg	Pro	gca Ala 615	ctg Leu	gac Asp	tac Tyr	Ile	gaa Glu 620	ttg Leu	tac Tyr	cat His	gcc Ala	4900
	Arg			tgad	acco	aa c	etgaa	iccaa	at ga	acaaç	gaaca	a ago	gcat	tgt		4952
ggga	tcga	ct a	gtca	taca	g gg	ctgt	gcag	ato	gtct	tgc	ttca	gtta	gt c	gccct	cttca	5012
gtta	gttc	ca a	gcgc	acta	ic ag	ıtcgt	acat	ago	tgaç	ggat	ccto	ttgc	ct o	ctac	caggg	5072
ggaa	caaa	gc a	gaaa	tgca	it ga	gtgc	atto	gga	agac	ttt	tato	tata	tt ç	jttaa	aaaaa	5132
tttc	cttt	tc t	tttc	ctto	c ct	gcac	ctgg	, aaa	tggt	taa	gcgc	atco	icc č	gagat	aagaa	5192
ccgc	agtg	ac a	ttct	gtga	ıg ta	gctt	tgta	tat	tcto	ctca	tctt	gtga	aa a	ctaa	tgttc	5252
atgt	tagg	rct g	tctg	atca	it gt	ggaa	gctt	: tgt	tata	atgt	tact	tato	ıgt a	ataca	tcaat	5312
gata	ttta	ca t	ttgt	ggaa	a aa	aaaa	aaaa	aaa	ıa							5346
<212 <213	> 16 > PR > Tr	T	:um a	iesti	ivum											
<400 Met 1)> 8 Glu	Met	Ser	Leu 5	Trp	Pro	Arg	Ser	Pro 10	Leu	Cys	Pro	Arg	Ser 15	Arg	
Gln	Pro	Leu	Val 20	Val	Val	Arg	Pro	Ala 25	Gly	Arg	Gly	Gly	Leu 30	Thr	Gln	
		35					Phe 40		•			45				
	50					55	Pro				60					
65			•		70		Ser			75	•				80	
Ile	Val	Glu	Pro	Ser 85	Asn	Glu	Asn	Thr	Glu 90		Asn	Asn	Arg	Asp 95	Glu	
Glu	Thr	Leu	Asp 100	Thr	Tyr	Asn	Ala	Leu 105	Leu	Ser	Thr	Glu	Thr 110	Ala	Glu	
Trp	Thr	Asp 115	Asn	Arg	Glu	Ala	Glu 120	Thr	Ala	Lys	Ala	Asp 125	Ser	Ser	Gln	
Asn	Ala	Leu	Ser	Şer	Ser	Ile	Ile	Gly	Glu	Val	Asp	Val	Ala	Asp	Glu	
	130					135		•			140					

145					150					155					160
Lys	Lys	Glu	Val	Asp 165	Ala	Ala	Asp	Lys	Ala 170	Arg	Val	Lys _.	Glu	Asp 175	Ala
Phe	Glu	Léu	Asp 180	Leu	Pro	Ala	Thr	Thr 185	Leu	Arg	Ser	Val	Ile 190	Val	Asp
Val	Met	Asp 195	His	Asn	Gly	Thr	Val 200	Gln	Glu	Thr	Leu	Arg 205	Ser	Val	Ile
Val	Asp 210	Val	Met	Asp	His	Asn 215	Gly	Thr	Val	Gln	Glu 220	Thr	Leu	Arg	Ser
Val 225	Ile	Val	Asp	Val	Met 230	Asp	Asp	Ala	Ala	Asp 235	Lys	Ala	Arg	Val	Glu 240
	-			245			•		250					Ser 255	
Thṛ	Thr	Val	Glu 260	Leu	Asp	Ala	Val	Asp 265	Glu	Val	Gly	Pro	Val 270	Gln	Asp
		275		•			280					285		Thr	
	290					295					300			Ile	
305					310					315				Val	320
				325					330					Glu 335	
			340					345					350	Ala	
		355					360					365	•		Gly
	370					375					380		-		Asp
385					390					395					Ser 400
				405				٠	410					415	Ala
Thr	Asp	Glu	Glu 420	Glu	Thr	Tyr	Gln	Gln 425	Gln	Tyr	Pro	Val	Pro 430	Ser	Ser
Phe	Ser	Met 435		Asp	Lys	Ala	Ile 440		Lys	Thr	Gly	Val 445	Ser	Leu	Asn
	450					455					460				Phe
465					470	ı				475					Gln 480
Ser	Ile	Ile	Gly	Ser		Lys	Gln	Asp	Lys	Ser	Ile	Ala	Asp	Val 495	Ala

Gly	Pro	Thr	Gln 500	Ser	Ile	Phe	Gly	Ser 505	Ser	Lys	Gln	His	Arg 510	Ser	Ile
Val	Ala	Phe 515	Pro	Lys	Gln	Asn	Gln 520	Ser	Ile	Val	Ser	Val 525	Thr	Glu	Gln
Lys	Gln 530	Ser	Ile	Val	Gly	Phe 535	Arg	Ser	Gln		Leu 540	Ser	Ala	Val	Ser
Leu 545	Pro	Lys	Gln	Asn	Val 550	Pro	Ile	Val	Gly	Thr 555	Ser	Årg	Glu	Gly	Gln 560
Thr	Lys	Gln	Val	Pro 565	Val	Val	Asp	Arg	Gln 570	Asp	Ala	Leu	Tyr	Val 575	Asn
Gly	Leu	Glu	Ala 580	Lys	Glu	Gly	Asp	His 585	Thr	Ser	Glu	L <u>y</u> s	Thr 590	Asp	Glu
Asp	Ala	Leu 595	His	Val	Lys	Phe	Asn 600	Val	Asp	Asn	Val	Leu 605	Arg	Lys	His
Gln	Ala 610	Asp	Arg	Thr		Ala 615	Val ·	Glu	Lys	Lys	Thr 620	Trp	Lys	Lys	Val
Asp 625	Ģlu	Glu	His	Leu	Tyr 630	Met	Thr	Glu	His	Gln 635	Lys	Arg	Ala	Ala	Glu 640
Gly	Gln	Met	Val	Val 645	Asn	Glu	Asp	Glu	Leu 650	Ser	Ile	Thr	Glu	Ile 655	Gly
Met	Gly	Arg	Gly 660	Asp	Lys	Ile	Gln	His 665	Val	Leu	Ser	Glu	Glu 670	Glu	Leu
Ser	Trp	Ser 675	Glu	Asp	Glu	Val	Gln 680	Leu	Ile	Glu	Asp	Asp 685	Gly	Gln	Tyr
Glu	Val 690	Asp	Glu	Thr	Ser	Val 695	Ser	Val	Asn	Val	Glu 700	Gln	Asp	Ile	Gln
Gly 705	Ser	Pro	Gln	Asp	Val 710	Val	Asp	Pro	Gln	Ala 715	Leu	Lys	Val		Leu 720
Gln	Glu	Leu	Ala	Glu 725	Lys	Asn	Tyr	Ser	Met 730	Arg	Asn	Lys	Leu	Phe 735	Val
Phe	Pro	Glu	Val 749	Val	Lys	Ala	Asp	Ser 745	Val	Ile	Asp	Leu	Tyr 750	Leu	Asn
Arg	Asp	Leu 755	Thr	Ala	Leu	Ala	Asn 760	Gļu	Pro	Asp	Val	Val 765	Ile	Lys	Gly
Ala	Phe 770	Asn	Gly	Trp	Lys	Trp 775	Arg	Leu	Phe	Thr	Glu 780	Arg	Leu	His	ГЛЗ
Ser 785	Asp	Leu	Gly	Gly	Val 790	Trp	Trp	Ser	Cys	Lys 795	Leu	Tyr	Ile	Pro	Lys 800
Glu	Ala	Tyr	Arg	Leu 805		Phe	Val	Phe	Phe 810	Asn	Gly	Arg	Thr	Val 815	Tyr
			Gly 820					825					830		
Asn	Glu	Asp 835	Leu	Phe	Glu	Asp	Phe 840		Val	Lys	Glu	Lýs 845	Gln	Arg	Glu

- Leu Glu Lys Leu Ala Met Glu Glu Ala Glu Arg Arg Thr Gln Thr Glu 850 855 860
- Glu Gln Arg Arg Arg Lys Glu Ala Arg Ala Ala Asp Glu Ala Val Arg 865 870 875 880
- Ala Gln Ala Lys Ala Glu Ile Glu Ile Lys Lys Lys Leu Gln Ser 885 890 895
- Met Leu Ser Leu Ala Arg Thr Cys Val Asp Asn Leu Trp Tyr Ile Glu 900 905 910
- Ala Ser Thr Asp Thr Arg Gly Asp Thr Ile Arg Leu Tyr Tyr Asn Arg 915 920 925
- Asn Ser Arg Pro Leu Ala His Ser Thr Glu Ile Trp Met His Gly Gly 930 935 940
- Tyr Asn Asn Trp Thr Asp Gly Leu Ser Ile Val Glu Ser Phe Val Lys 945 950 955 960
- Cys Asn Asp Lys Asp Gly Asp Trp Trp Tyr Ala Asp Val Ile Pro Pro 965 970 975
- Glu Lys Ala Leu Val Leu Asp Trp Val Phe Ala Asp Gly Pro Ala Gly 980 985 990
- Asn Ala Arg Asn Tyr Asp Asn Asn Ala Arg Gln Asp Phe His Ala Ile 995 1000 1005
- Leu Pro Asn Asn Asn Val Thr Glu Glu Gly Phe Trp Ala Gln Glu Glu 1010 1015 1020
- Gln Asn Ile Tyr Thr Arg Leu Leu Gln Glu Arg Arg Glu Lys Glu Glu 025 1030 1035 1040
- Thr Met Lys Arg Lys Ala Glu Arg Ser Ala Asn Ile Lys Ala Glu Met 1045 1055 1055
- Lys Ala Lys Thr Met Arg Arg Phe Leu Leu Ser Gln Lys His Ile Val 1060 1065 1070
- Tyr Thr Glu Pro Leu Glu Ile Arg Ala Gly Thr Thr Val Asp Val Leu 1075 1080 1085
- Tyr Asn Pro Ser Asn Thr Val Leu Asn Gly Lys Ser Glu Gly Trp Phe 1090 1095 1100
- Arg Cys Ser Phe Asn Leu Trp Met His Ser Ser Gly Ala Leu Pro Pro 105 1110 1115 1120
- Gln Lys Met Val Lys Ser Gly Asp Gly Pro Leu Leu Lys Ala Thr Val 1125 1130 1135
- Asp Val Pro Pro Asp Ala Tyr Met Met Asp Phe Val Phe Ser Glu Trp 1140 . 1145 1150
- Glu Glu Asp Gly Ile Tyr Asp Asn Arg Asn Gly Met Asp Tyr His Ile 1155 1160 1165
- Pro Val Ser Asp Ser Ile Glu Thr Glu Asn Tyr Met Arg Ile Ile His 1170 1175 1180
- Ile Ala Val Glu Met Ala Pro Val Ala Lys Val Gly Gly Leu Gly Asp

1200

1190

185

- 28 -

1195

al	Val	Thr		Leu 1205	Ser	Arg	Ala		Gln 1210	Asp	Leu	Gly	His	Thr 1215	Val
lu	Val	Ile 1	Leu .220	Pro	Lys	Tyr	Asp	Cys 1225		Asn	Gln		Ser 230	Val	Lys
sp		His 1235	Leu	Tyr	Gln		Phe 240	Ser	Trp	Gly	Gly	Thr 245	Glu	Ile	Lys
	Trp 250	Val	Gly	Arg		Glu .255	Asp	Leu	Thr	.Val	Tyr L260	Phe	Leu	Glu	Pro
1n 65	Asn	Gly	Met		Gly .270	Val	Gly	Cys		Tyr .275	Gly	Arg	Asn	Asp 1	Asp 280
rg	Arg	Phe		Phe .285	Phe	Cys	His	Ser 1	Ala 1290	Leu	Glu	Phe	Ile	Leu 1295	Gln
sn	Glu	Phe 1	Ser .300	Pro	His	Ile	Ile	His 1305		His	Asp	Trp	Ser 310	Ser	Ala
ro		Ala 1315	Trp	Leu	Tyr		Glu .320	His	Tyr	Ser	Gln 1	Ser .325	Arg	Met	Ala
	Thr 330	Arg	Val	Val		Thr .335	Ile	His	Asn		Glu 1340	Phe	Gly	Ala	His
45		Gly		1	350				1	.355				1	360
ro	Thr	Tyr		Arg 1365		Val	Ala		His 1370	Gly	Ala	Ile	Ala	Pro 1375	His
arg	Glu	Lys 1	Phe .380	Tyr	Gly	Ile	Leu	Asn 1385		Ile	Asp	Pro	Asp 1390	Ile	Trp
asp		Tyr 1395	Thr	Asp	Asn ·		Ile 1400	Pro	Val	Pro		Thr 1405	Суѕ	Glu	Asn
	Val 410	Glu	Gly	Lys		Ala 1415	Ála	Lys	Arg		Leu 1420	Gln	Gln	Lys	Phe
61y 125	Leu	Gln	Gln		Asp 1430	Val	Pro	Ile		Gly 1435	Ile	Ile	Thr	Arg	Leu 1440
hr	Ala	Gln	_	Gly 1445	Ile	His	Leu		Lys 1450	His	Ala	Ile	His	Arg 1455	Thr
Leu	Glu	Ser	Asn 1460	Gly	His	Val	Val	Leu 146		Gly	Ser		Pro 1470		His
Arg		Gln 1475	Gly	Asp	Phe		Arg 1480	Leu	Ala	Asp	Ala	Leu 1485	His	Gly	Val
	His 1490	Gly	Arg	Val		Leu 1495	Val	Leu	Thr		Asp 1500	Glu	Pro	Leu	Ser
His 505	Leu	Ile	Tyr		Gly 1510	Ser	Asp	Phe		Ile 1515		Pro	Ser		Phe 1520
31u	Pro	Cys		Leu 1525		Gln	Leu		Ala 1530		Arg	Tyr	Gly	Ser 1535	

Pro Ile Val Arg Lys Thr Gly Gly Leu His Asp Thr Val Phe Asp Val 1545 Asp Asn Asp Lys Asp Arg Ala Arg Ser Leu Gly Leu Glu Pro Asn Gly 1560 Phe Ser Phe Asp Gly Ala Asp Ser Asn Gly Val Asp Tyr Ala Leu Asn 1580 Arg Ala Ile Gly Ala Trp Phe Asp Ala Arg Asp Trp Phe His Ser Leu Cys Lys Arg Val Met Glu Gln Asp Trp Ser Trp Asn Arg Pro Ala Leu 1615 Asp Tyr Ile Glu Leu Tyr His Ala Ala Arg Lys Phe <210> 9 <211> 3621 <212> DNA <213> Triticum aestivum <220> <221> CDS <222> (1)..(3177) gat gca ttg tat gtg aat gga ctg gaa gct aag gag gga gat cac aca Asp Ala Leu Tyr Val Asn Gly Leu Glu Ala Lys Glu Gly Asp His Thr 10 tcc gag aaa act gat gag gat gcg ctt cat gta aag ttt aat gtt gac 96 Ser Glu Lys Thr Asp Glu Asp Ala Leu His Val Lys Phe Asn Val Asp aat gtg ttg cgg aag cat cag gca gat aga acc caa gca gtg gaa aag Asn Val Leu Arg Lys His Gln Ala Asp Arg Thr Gln Ala Val Glu Lys aaa act tgg aag aaa gtt gat gag gaa cat ctt tac atg act gaa cat Lys Thr Trp Lys Lys Val Asp Glu Glu His Leu Tyr Met Thr Glu His 55 caq aaa cgt gct gcc gaa gga cag atg gta gtt aac gag gat gag ctt Gln Lys Arg Ala Ala Glu Gly Gln Met Val Val Asn Glu Asp Glu Leu tct ata act gaa att gga atg ggg aga ggt gat aaa att cag cat gtg Ser Ile Thr Glu Ile Gly Met Gly Arg Gly Asp Lys Ile Gln His Val 90 ctt tct gag gaa gag ctt tca tgg tct gaa gat gaa gtg cag tta att Leu Ser Glu Glu Glu Leu Ser Trp Ser Glu Asp Glu Val Gln Leu Ile 105 100 gag gat gat gga caa tat gaa gtt gac gag acc tct gtg tcc gtt aac 384 -Glu Asp Asp Gly Gln Tyr Glu Val Asp Glu Thr Ser Val Ser Val Asn

gtt gaa caa gat atc cag ggg tca cca cag gat gtt gtg gat ccg caa Val Glu Gln Asp Ile Gln Gly Ser Pro Gln Asp Val Val Asp Pro Gln

140

135

gca Ala 145	cta Leu	aag Lys	gtg Val	atg Met	ctg Leu 150	caa Gln	gaa Glu	ctc Leu	gct Ala	gag Glu 155	aaa Lys	aat Asn	tat Tyr	tcg Ser	atg Met 160	480
agg Arg	aac Asn	aag Lys	ctg Leu	ttt Phe 165	gtt Val	ttt	cca Pro	gag Glu	gta Val 170	gtg Val	aaa Lys	gct Ala	gat Asp	tca Ser 175	gtt Val	528
att Ile	gat Asp	ctt Leu	tat Tyr 180	tta Leu	aat Asn	cgt Arg	gac Asp	cta Leu 185	aca Thr	gct Ala	ttg Leu	gcg Ala	aat Asn 190	gaa Glu	ccc Pro	576
gat Asp	gtc Val	gtc Val 195	atc Ile	aaa Lys	gga Gly	gca Ala	ttc Phe 200	aat Asn	ggt Gly	tgg Trp	aaa Lys	tgg Trp 205	agg Arg	ctt Leu	ttc Phe	624
act Thr	gaa Glu 210	aga Arg	ttg Leu	cac His	aag Lys	agt Ser 215	gac Asp	ctt Leu	gga Gly	ggg Gly	gtt Val 220	tgg Trp	tgg Trp	tct Ser	tgc Cys	672
aaa Lys 225	ctg Leu	tac Tyr	ata Ile	ccc Pro	aag Lys 230	Glu	gcc Ala	tac Tyr	aga Arg	tta Leu 235	gac Asp	ttt Phe	gtg Val	ttc Phe	ttc Phe 240	720
aac Asn	ggt Gly	cgc Arg	acg Thr	gtc Val 245	tat Tyr	gag Glu '	aac Asn	aat Asn	ggc Gly 250	aac Asn	aat Asn.	gat Asp	ttc Phe	tgt Cys 255	ata Ile	768
gga Gly	ata Ile	Glu	ggc Gly 260	act Thr	atg Met	aat Asn	gaa Glu	gat Asp 265	ctg Leu	ttt Phe	gag Glu	gat Asp	ttc Phe 270	ttg Leu	gtt Val	816
aaa Lys	gaa Glu	aag Lys 275	caa Gln	agg Arg	gag Glu	ctt Leu	gag Glu 280	aaa Lys	ctt Leu	gcc Ala	atg Met	gaa Glu 285	gaa Glu	gct Ala	gaa Glu	864
agg Arg	agg Arg 290	aca Thr	cag Gln	act Thr	gaa Glu	gaa Glu 295	cag Gln	cgg Arg	cga Arg	aga Arg	aag Lys 300	gaa Glu	gca Ala	ágg Arg	gct Ala	912
gca Ala 305	gat Asp	gaa Glu	gct Ala	gtc Val	agg Arg 310	gca Ala	caa Gln	gcg Ala	aag Lys	gcc Ala 315	gag Glu	ata Ile	gag Glu	atc Ile	aag Lys 320	960 .
aag Lys	aaa Lys	aaa Lys	ttg Leu	caa Gln 325	agt Ser	atg Met	ttg Leu	agt Ser	ttg Leu 330	gcc Ala	aga Arg	aca Thr	tgt Cys	gtt Val 335	gat Asp	1008
aat Asn	ttg Leu	tgg Trp	tac Tyr 340	ata Ile	gag Glu	gct Ala	agc Ser	aca Thr 345	gat Asp	aca Thr	aga Arg	gga Gly	gat Asp 350	act Thr	atc Ile	1056
agg Arg	tta Leu	tat Tyr 355	tat Tyr	aac Asn	aga Arg	aac Asn	tcg Ser 360	agg Arg	cca Pro	ctt Leu	gcg Ala	cat His 365	agt Ser	act Thr	gag Glu	1104
att	tgg Trp 370	atg Met	cat His	ggt Gly	ggt Gly	tac Tyr 375	aac Asn	aat Asn	tgg Trp	tca Ser	gat Asp 380	gga Gly	ctc Leu	tct Ser	att Ile	1152
gtt Val 385	gaa Glu	agc Ser	ttt Phe	gtc Val	aag Lys 390	tgc Cys	aat Asn	gac Asp	aaa Lys	gac Asp 395	ggc Gly	gat Asp	tgg Trp	tgg Trp	tat Tyr 400	1200
gca	gat	gtt	att	сса	cct	gaa	aag	gca	ctt	gtg	ttg	gac	tgg	gtt	ttt	1248

												•				
Ala	Asp	Val	Ile	Pro 405	Pro	Glu	Lys	Ala	Leu 410	Val	Leu	Asp	Trp	Val 415	Phe	
gct Ala	gat Asp	ggg Gly	cca Pro 420	gct Ala	ggg Gly	aat Asn	gca Ala	agg Arg 425	aac Asn	tat Tyr	gac Asp	aac Asn	aat Asn 430	gct Ala	cga Arg	1296
caa Gln	gat Asp	ttc Phe. 435	cat His	gct Ala	att Ile	ctt Leu	ccg Pro 440	aac Asn	aac Asn	aat Asn	gta Val	acc Thr 445	gag Glu	gaa Glu	ggc Gly	1344
ttc Phe	tgg Trp 450	gcg Ala	caa Gln	gag Glu	gag Glu	caa Gln 455	aac Asn	atc Ile	tat Tyr	aca Thr	agg Arg 460	ctt Leu	ctg Leu	caa Gln	gaa Glu	1392
agg Arg 465	aga Arg	gaa Glu	aag Lys	gaa Glu	gaa Glu 470	acc Thr	atg Met	aaa Lys	aga Arg	aag Lys 475	gct Ala	gag Glu	aga Arg	agt Ser	gca Ala 480	1440
aat Asn	atc Ile	aaa Lys	gct Ala	gag Glu 485	atg Met	aag Lys	gca Ala	aaa Lys	act Thr 490	atg Met	cga Arg	agg Arg	ttt Phe	ctg Leu 495	ctt Leu :	1488
tcc Ser	cag Gln	aaa Lys	cac His 500	att Ile	gtt Val	tat Tyr	acc Thr	cga Arg 505	acc Thr	gnc Xaa	ttg Leu	aaa Lys	tac Tyr 510	gtg Val	ccc Pro	1536
gga Gly	acc Thr	aca Thr 515	gtg Val	gat Asp	gtg Val	cta Leu	tac Tyr 520	aat Asn	ccc Pro	tct Ser	aac Asn	aca Thr 525	gtg Val	cta Leu	aat Asn	1584
gga Gly	aag Lys 530	Ser	gag Glu	ggt Gly	tgg Trp	ttt Phe 535	aga Arg	tgc Cys	tcc Ser	ttt _. Phe	aac Asn 540	ctt Leu	tgg Trp	atg Met	cat His	1632
tca Ser 545	agt Ser	ggg Gly	gca Ala	ttg Leu	cca Pro 550	ccc Pro	cag Gln	aag Lys	atg Met	gtg Val 555	aaa Lys	tca Ser	ggg Gly	gat Asp	ggg Gly 560	1680
ccg Pro	ctc Leu	tta Leu	aaa Lys	gca Ala 565	aca Thr	gtt Val	gat Asp	gtt Val	cca Pro 570	ccg Pro	gat Asp	gcc Ala	tat Tyr	atg Met 575	atg Met	1728
gac Asp	ttt Phe	gtt Val	ttc Phe 580	tcc Ser	gag Glu	tgg Trp	Glu	gaa Glu 585	Asp	ggg Gly	atc Ile	tat Tyr	gac Asp 590	Asn	agg Arg	1776
aat Asn	ggg Gly	atg Met 595	gac Asp	tat Tyr	cat His	att Ile	cct Pro 600	gtt Val	tct Ser	gat Asp	tca Ser	att Ile 605	gaa Glu	aca Thr	gag Glu	1824
aat Asn	tac Tyr 610	atg Met	cgt Arg	att Ile	atc Ile	cac His 615	att Ile	gcc Ala	gtt Val	gag Glu	atg Met 620	gcc Ala	Pro	gtt Val	gca Ala	1872
aag Lys 625	gtt Val	gga Gly	ggt Gly	ctt Leu	ggg Gly 630	gat Asp	gtt Val	gtt Val	aca Thr	agt Ser 635	ctt Leu	tca Ser	cgt Arg	gcc Ala	att Ile 640	1920
caa Gln	gat Asp	cta Leu	gga Gly	cat His 645	Thr	gtc Val	gag Glu	gtt Val	att Ile 650	ctc Leu	ccg Pro	aag Lys	tac Tyr	gac Asp 655	tgt Cys	1968
ttg Leu	aac Asn	caa Gln	agc Ser	agt Ser	gtc Val	aag Lys	gat Asp	tta Leu	cat His	tta Leu	tat Tyr	caa Gln	agt Ser	ttt Phe	tct Ser	2016

									•							
			660					665					670			
tgg Trp	ggt Gly	ggt Gly 675	aca Thr	gaa Glu	ata Ile	aaa Lys	gta Val 680	tgg Trp	gtt Val	gga Gly	cga Arg	gtc Val 685	gaa Glu	gac Asp	ctg Leu	2064
acc	gtt Val 690	tac Tyr	ttc Phe	ctg Leu	gaa Glu	cct Pro 695	caa Gln	aat Asn	ggg Gly	atg Met	ttt Phe 700	Gly Gly	gtt Val	gga Gly	tgt Cys	2112
gta Val 705	tat Tyr	gga Gly	agg Arg	aat Asn	gat Asp 710	gac Asp	cgc Arg	aga Arg	ttt Phe	ggg Gly 715	ttc Phe	ttc Phe	tgt Cys	cat His	ser 720	2160
gct Ala	cta Leu	gag Glu	ttt Phe	atc Ile 725	ctc Leu	cag Gln	aat Asn	gaa Glu	ttt Phe 730	tct Ser	cca Pro	cat His	ata Ile	ata Ile 735	cat His	2208
tgc Cys	cat His	gat Asp	tgg Trp 740	tca Ser	agt Ser	gct Ala	ccg Pro	gtc Val 745	gcc Ala	tgg Trp	cta Leu	tat Tyr	aag Lys 750	gaa Glu	cac His	2256
tat Tyr	tcc Ser	caa Gln 755	tcc Ser	aga Arg	atg Met	gca Ala	agc Ser 760	act Thr	cgg Arg	gtt Val	gta Val	ttt Phe 765	acc Thr	atc Ile	cac His	2304
aat Asn	ctt Leu 770	gaa Glu	ttt Phe	gga Gly	gca Ala	cat His 775	tat Tyr	att Ile	ggt Gly	aaa Lys	gca Ala 780	atg Met	aca Thr	tac Tyr	tgt Cys	2352
gat Asp 785	aaa Lys	gcc Ala	aca Thr	act Thr	gtt Val 790	tct Ser	cct Pro	aca Thr	tat Tyr	tca Ser 795	agg Arg	gac Asp	gtg Val	gca Ala	ggc Gly 800	,2400
cat His	ggc Gly	gcc Ala	att Ile	gct Ala 805	cct Pro	cat His	cgt Arg	Glu	aaa Lys 810	ttc Phe	tac Tyr	Gly	att Ile	ctc Leu 815	aat Asn	2448
gga Gly	att Ile	gat Asp	cca Pro 820	gat Asp	atc Ile	tgg Trp	gat Asp	ccg Pro 825	tac Tyr	act Thr	gac Asp	aat Asn	ttt Phe 830	atc Ile	ccg Pro	2496
gtc Val	cct Pro	tat Tyr 835	act Thr	tgt Cys	gag Glu	aat Asn	gtt Val 840	gtc Val	gaa Glu	ggc Gly	aag Lys	agg Arg 845	gct Ala	gca Ala	aaa Lys	2544
agg Arg	gcc Ala 850	ttg Leu	cag Gln	cag Gln	aag Lys	ttt Phe 855	gga Gly	tta Leu	cag Gln	caa Gln	act Thr 860	gat Asp	gtc Val	cct Pro	att Ile	2592
gtc Val 865	gga Gly	atc Ile	atc	acc Thr	cgt Arg 870	ctg Leu	aca Thr	gca Ala	cag Gln	aag Lys 875	gga Gly	atc Ile	cac His	ctc Leu	atc Ile 880	2640
aag Lys	cac His	gca Ala	att	cac His 885	cga Arg	acc Thr	ctc Leu	gag Glu	agc Ser 890	aat Asn	gga Gly	caa Gln	gtg Val	gtt Val 895	ttg Leu	2688
				cca Pro												2736
gcc Ala	gat Asp	gct Ala 915	ctt Leu	cac His	ggt Gly	gtt Val	tac Tyr 920	cat	ggt Gly	agg Arg	gtg Val	aag Lys 925	ctt Leu	gtt Val	cta Leu	2784

											·					
acc Thr	tac Tyr 930	gat Asp	gag Glu	cct Pro	ctt Leu	tct Ser 935	cac His	ctg Leu	ata Ile	tac Tyr	gct Ala 940	ggc Gly	tcc Ser	gac Asp	ttc Phe	2832
att Ile 945	att Ile	gtc Val	cct Pro	tca Ser	atc Ile 950	ttt Phe	gaa Glu	ccc Pro	tgt Cys	ggc Gly 955	tta Leu	aca Thr	caa Gln	ctt Leu	gtt Val 960	2880
gcc Ala	atg Met	cgt Arg	tat Tyr	gga Gly 965	tcg Ser	atc Ile	cct Pro	ata Ile	gtt Val 970	cgg Arg	aaa Lys	acc Thr	gga Gly	gga Gly 975	ctt Leu	2928
tac Tyr	gac Asp	act Thr	gtc Val 980	ttc Phe	gac Asp	gta Val	gac Asp	aat Asn 985	gat Asp	aag Lys	gac Asp	cgg Arg	gct Ala 990	cgg Arg	tct Ser	2976
ctt Leu	ggt Gly	ctt Leu 995	gaa Glu	cca Pro	aat Asn	Gly	ttc Phe 1000	agt Ser	ttc Phe	gac Asp	Gly	gcc Ala 1005	gac Asp	agc Ser	aat Asn	3024
Gly	gtg Val 1010	gat Asp	tat Tyr	gcc Ala	Leu	aac Asn 1015	aga Arg	gca Ala	atc Ile	Gly	gct Ala 1020	tgg Trp	ttc Phe	gat Asp	gcc Ala	3072
cgt Arg 1029	gat Asp	tgg Trp	ttc Phe	His	tcc Ser 1030	ctg Leu	tgt Cys	aag Lys	Arg	gtc Val 1035	atg Met	gag Glu	caa Gln	Asp	tgg Trp 1040	3120
tcg Ser	tgg Trp	aac Asn	Arg	cct Pro 1045	gca Ala	ctg Leu	gac Asp	Tyr	att Ile 1050	gaa Glu	ttg Leu	tac Tyr	His	gcc Ala LO55	gct Ala	3168
-	aaa Lys			cacco	caa (ctgaa	accaa	at go	gcaag	gaaca	a ago	egcat	tgt	•		3217
_	-			cata	ac aç	gggct	tgtgo	c aga	atcgt	ctt	gcti	cagi	tta (gtgc	ctctt	3277
cagi	tagt	ttc (caago	egca	ct a	cagto	cgtad	ata	agct	gagg	atco	ctct	tgc (ctcc	tccacc	3337
 agg	ggaaa	aca a	aagc	agaa	at go	cata	agtgo	ati	tggga	aaga	ctt	ttat	gta	tatte	gttaaa	3397
ttt	ttcc1	ttt 1	tctt	ttcc	tt c	cctg	cacci	t gga	aaat	ggtt	aage	cgca	tcg	ccga	gataag	3457
aac	caca	gta a	acat	tctg	tg a	gtag	cttt	g ta	tatt	ctct	cat	cttg	tga .	aaac	taatgt	3517
gca	tgtt	agg (ctct	ctga	tc a	tgtg	gaag	c tt	tgtt	atat	gtt	actt	atg .	gtta	tatggt	3577
ata	catc	aat (gata	ttta	ca t	ttgt	ggaa	a aa	aaaa	алаа	aaa.	a				3621
<21 <21	0> 1 1> 1 2> P 3> T	059 RT	cum:	aest	ivum									,		
.<40 Asp 1		0 Leu		Val		Gly	Leu	Glu	Ala		Glu	Gly	Asp	His 15	Thr	
Ser	Glu	Lys	Thr 20		Glu	Asp	Ala	Leu 25		Val	Lys	Phe	Asn 30		Asp	

Asn Val Leu Arg Lys His Gln Ala Asp Arg Thr Gln Ala Val Glu Lys 35 40 45

Lys	Thr 50	Trp	Lys	Lys	Val	Asp 55	Glu	Glu	His	Leu	Tyr 60	Met	Thr	Glu	His
Gln 65	Lys	Arg	Ala	Ala	Glu 70	Ġly	Gln	Met	Val	Val 75	Asn	Glu	Asp	Glu	Leu 80
Ser	Ile	Thr	Glu	Ile 85	Gly	Met	Gly	Arg	Gly 90	Asp	Lys	Ile	Gln	His 95	Val
Leu	Ser	Glu	Glu 100	Glu	Leu	Ser	Trp	Ser 105	Glu	Asp	Glu	Val	Gln 110	Leu	Ile
Glu	Asp	Asp 115	Gly	Gln	Tyr	Glu	Val 120	Asp	Glu	Thr	Ser	Val 125	Ser	Val	Asn
Val	Glu 130	Gln	Asp	Ile	Gln	Gly 135	Ser	Pro	Gln	Asp	Val 140	Val	Asp	Pro	Gln
Ala 145	Leu	Lys	Val	Met	Leu 150	Gln	Glu	Leu	Ala	Glu 155	Lys	Asn	Tyr	Ser	Met 160
Arg	Asn	Lys	Leu	Phe 165	Val	Phe	Pro	Glu	Val 170	Val	Lys	Ala	Asp	Ser 175	Val
Ile	Asp	Leu	Tyr 180	Leu	Asn	Arg	Asp	Leu 185	Thr	Ala	Leu	Ala	Asn 190	Glu	Pro
Asp	Val	Val 195	Ile	Lys	Gly	Ala	Phe 200	Asn	Gly	Trp	Lys	Trp 205	Arg	Leu	Phe
Thr	Glu 210	Arg	Leu	His	Lys	Ser 215	Asp	Leu	Gly		Val 220	Trp	Trp	Ser	Cys .
Lys 225	Leu	Tyr	Ile	Pro	Lys 230	Glu	Ala	Tyr	Arg	Leu 235	Asp	Phe	Val	Phe	Phe . 240
Asn	Gly	Arg	Thr	Val 245	Tyr	Glu	Asn	Asn	G1y 250	Asn	Asn	Asp	Phe	Cys 255	Ile
Gly	Ile	Glu	Gly 260	Thr	Met	Asn	Glu	Asp 265		Phe	Glu	Asp	Phe 270	Leu	Val
Lys	Glu	Lys 275	Gln	Arg	Glu	Leu	Glu 280	Lys	Leu	Ala	Met	Glu 285	Glu	Ala	Glu
Arg	Arg 290	Thr	Gln	Thr	Glu	Glu 295	Gln	Arg	Arg	Arg	Lys 300	Glu	Ala	Arg	Ala
Ala 305	Asp	Glu	Ala	Val	Arg 310	Ala	Gln	Ala	Lys	Ala 315	Ģlu	Ile	.Glu	Ile	Lys 320
Lys	Lys	Lys	Leu	Gln 325	Ser	Met	Leu	Ser	Leu 330	Ala	Arg	Thr	Cys	Val 335	Asp
Asn	Leu	Trp	Tyr 340	Ile	Glu	Ala	Ser	Thr 345	Asp	Thr	Arg	Gly	Asp 350	Thr	Ile
Arg	Leu	Tyr 355	Tyr	Asn	Arg	Asn	Ser 360	Arg	Pro	Leu	Ala	His 365	Ser	Thr	Glu
Ile	Trp 370	Met	His	Gly	Gly	Tyr 375	Asn	Asn	Trp	Ser	Asp 380	Gly	Leu	Ser	Ile
Val	Glu	Ser	Phe	Val	Lys	Cys	Asn	Asp	Lys	Asp	Gly	Asp	Trp	Trp	Tyr

385					390					395					400
Ala	Asp	Val	Ile	Pro 405	Pro	Glu	Lys	Ala	Leu 410	Val	Leu	Asp	Trp	Val 415	Phe
Ala	Asp	Gly	Pro 420	Ala	Gly	Asn	Ala	Arg 425	neA	Tyr	Asp	Asn	Asn 430	Ala	Arg
Gln	Asp	Phe. 435	His	Ala	Ile	Leu	Pro 440	Asn	neA	Asn	Val	Thr 445	Glu	Glu	Gly
Phe	Trp 450	Ala	Gln	Glu	Glu	Gln 455	Asn	Ile	Tyr	Thr	Arg 460	Leu .	Leu	Gln	Glu
Arg 465	Arg	Glu	Lys	Glu	Glu 470	Thr	Met	Lys	Arg	Lys 475	Ala	Glu	Arg	Ser	Ala 480
Asn	Ile	Lys	Ala	Glu 485	Met	Lys	Ala	Lys	Thr 490	Met	Arg	Arg	Phe	Leu 495	Leu
Ser	Gln	Lys	His 500	Ile	Val	Tyr	Thr	Arg 505	Thr	Xaa	Leu	Lys	Tyr 510	Val	Pro
Gly	Thr	Thr 515	Val	Asp	Val	Leu	Tyr 520	Asn	Pro	Ser	Asn	Thr 525	Val	Leu	Asn
Gly	Lys 530	Ser	Glu	Gly	Trp	Phe 535	Arg	Cys	Ser	Phe	Asn 540	Leu	Trp	Met	His
Ser 545	Ser	Gly	Ala	Leu	Pro 550	Pro	Gln	Lys	Met	Val 555	Lys	Ser	Gly	Asp	Gly 560
Pro	.Leu	Leu	Lys	Ala 565	Thr	Val	Asp	Val	Pro 570	Pro	Asp	Ala	Tyr	Met 575	Met
Asp	Phe	Val	Phe 580	Ser	Glu	Trp	Glu	Glu 585	Asp	Gly	Ile	Tyr	Asp 590	Asn	Arg
Asn	Gly	Met 595	Asp	Tyr	His	Ile	Pro 600	Val	Ser	Asp	Ser	Ile 605	Glu	Thr	Glu
Asn	Tyr 610	Met	Arg	Ile	Ile	His 615	Ile	Ala	Val	Glu	Met 620	Ala	Pro	Val	Ala
Lys 625	Val	Gly	Gly	Leu	Gly 630	Asp	Val	Val	Thr	Ser 635	Leu	Ser	Arg	Ala	11e 640
Gln	Asp	Leu	Gly	His 645	Thr	Val	Glu	Val	Ile 650	Leu	Pro	Lys	Tyr	Asp 655	Cys
Leu	Asn	Gln	Ser 660	Ser	Val	Lys	Asp	Leu 665	His	Leu	Tyr	Gln	Ser 670	Phe	Ser
Trp	Gly	Gly 675	Thr	Glu	Ile	Lys	Val 680	Trp	Vaļ	Gly	Arg	Val 685	Glu	Asp	Leu
Thr	Val 690	Tyr	Phe	Leu	Glu	Pro 695		Asn	Gly	Met	Phe 700		Val	Gly	Cys
Val 705	Tyr	Gly	Arg	Asn	Asp 710		Arg	Arg	Phe	Gly 715		Phe	Суѕ	His	Ser 720
Ala	Leu	Glu	Phe	Ile		Gln	Asn		Phe		Pro	His	Ile	Ile 735	

Cys His Asp Trp Ser Ser Ala Pro Val Ala Trp Leu Tyr Lys Glu His 740 745 750

Tyr Ser Gln Ser Arg Met Ala Ser Thr Arg Val Val Phe Thr Ile His 755 760 765

Asn Leu Glu Phe Gly Ala His Tyr Ile Gly Lys Ala Met Thr Tyr Cys 770 780

Asp Lys Ala Thr Thr Val Ser Pro Thr Tyr Ser Arg Asp Val Ala Gly 785 790 795 800

His Gly Ala Ile Ala Pro His Arg Glu Lys Phe Tyr Gly Ile Leu Asn 805 810 815

Gly Ile Asp Pro Asp Ile Trp Asp Pro Tyr Thr Asp Asn Phe Ile Pro 820 825 830

Val Pro Tyr Thr Cys Glu Asn Val Val Glu Gly Lys Arg Ala Ala Lys 835 840 845

Arg Ala Leu Gln Gln Lys Phe Gly Leu Gln Gln Thr Asp Val Pro Ile 850 855 860

Val Gly Ile Ile Thr Arg Leu Thr Ala Gln Lys Gly Ile His Leu Ile 865 870 875 880

Lys His Ala Ile His Arg Thr Leu Glu Ser Asn Gly Gln Val Val Leu 885 890 895

Leu Gly Ser Ala Pro Asp His Arg Ile Gln Gly Asp Phe Cys Arg Leu 900 905 910

Ala Asp Ala Leu His Gly Val Tyr His Gly Arg Val Lys Leu Val Leu 915 920 925

Thr Tyr Asp Glu Pro Leu Ser His Leu Ile Tyr Ala Gly Ser Asp Phe 930 935 940

Ile Ile Val Pro Ser Ile Phe Glu Pro Cys Gly Leu Thr Gln Leu Val 945 950 955 960

Ala Met Arg Tyr Gly Ser Ile Pro Ile Val Arg Lys Thr Gly Gly Leu 965 970 975

Tyr Asp Thr Val Phe Asp Val Asp Asn Asp Lys Asp Arg Ala Arg Ser 980 985 990

Leu Gly Leu Glu Pro Asn Gly Phe Ser Phe Asp Gly Ala Asp Ser Asn 995 1000 1005

Gly Val Asp Tyr Ala Leu Asn Arg Ala Ile Gly Ala Trp Phe Asp Ala 1010 1015 1020

Arg Asp Trp Phe His Ser Leu Cys Lys Arg Val Met Glu Gln Asp Trp 1025 1030 1035 1040

Ser Trp Asn Arg Pro Ala Leu Asp Tyr Ile Glu Leu Tyr His Ala Ala 1045 1050 1055

Arg Lys Phe

<210> 11 < 211> 728

<212> DNA <213> Triticum sp.

<400> 11
gatcttgaac ggcacgtgaa agacttgtaa caacatcccc gagacctcca acctatgaga 60
tcatcgatca tgacagagca tagtattatg gcatagaatg aaaaaaaaggc ataaggtgat 120
gagatctcca cgccagagcg ttgtattcca attttagttc tttccccgtg aggaggggag 180
gctaggcggg cgaggcagag gggatagggc agtcgccgct gcgtggtgga ctgactggtg 240
tggtgggtgg tgggttttgc gggcggggtt tagtaggtc ccggaaatgg agatggctct 300
ccggccacgg agccctctgt gccctcggag cagtcagccg ctcgtcgtcg tccggccgcg 360
cggccgcggc ggcggctcg cgcaggtacg ggtgattatg gttcttgatt cggtcggttc 420
accggaatgtt gtttgatttg gttctgtccc gggtcaggtt catagtgatt ttattccgca 480
aaaaaaaaag gtttatagtg attttgatt ctttcatctc gggaacattt ttatactgg 540
gagtcaaagg gcattggtt tgatttgcat gcggaacata ttggttatt attaatgtgg 600
tgagctggaa ttcatactgc ttaaaacgac gtgattttaa ttgctggaag aggtaaagaa 660
catgaattct tgttatatt gttaaaaaaa atcccctgtt ctagcgttc aatctgcatg 720
atcatgaa

<210> 12 <211> 2446 <212> DNA

<213> Triticum sp.

<400> 12
gtgggtctat aaaagacagg tttgagcgga ttcgtcagga aatgtttcaa caagtgcgac 60
gatgtgggat gcaattgatg aaaccgtggc ttgatcaaga cgcagttgag gcggatttgt 120
cgggaaatgc ttcaagctgc gcgacataca gagaagtgga tgatgtggtg gatgaaacta 180
gatcagaaga ggaaacattt gcgatggatt tgtttgcaag tgaatcaggc catgagaaac 240
atatggcagt ggatcatgtg ggtgaagcta ccgatgaaga agagacttac caacagcaat 300
atccagtacc gtcttcattc tctatgtggg acaaggctat tgctaaaaca ggtgtaagtt 36^
tgaatcctga gctgcgactt gtcagggttg aagaacaagg caaagtaaat tttagtgata 420
aaaaagacct gtcaattgat gattaccag gacaaaacca atcgatcatt ggttcctata 480
aacaagataa atcaattgct gatgtgcgg gaccgaccca atcaatttt ggttctagta 540
aacaacaccg gtcaattgtt gcttcccca aacaaaacca gtcaattgtt agtgtcactg 600
agcaaaagca gtccatagtt ggatccgta gtcaagatct ttcggctgtt agtctcccta 660
aacaaaacgt accaattgtt ggtacgtcga gagagggtca aacaaagcaa gttcctgttg 720
ttgatagaca ggatgcgttg tatgtgaatg gactggaagc taaggagga gatcacacat 780
ccgagaaaac cgatgaggat gtgcttcatg taaaatttaa tgttgacaat gtgttgcgga 840

agcatcagge agatagaace caagcagtgg aaacgataac ttggaagaaa gttgatgagg 900 aacatettta eatgactgaa cateagatag gtgetgeega aggacagatg gtagttaacg 960 aggatgaget ttetataact gaaattggaa tggggagagg tgataaaatt cagcatgtge 1020 tttctgagga agagctttca tggtctgaag atgaagtgca gttaattgag gatgatggac 1080 aatatgaagt tgatgagacc tctgtgtccg ttaacgttga acaagatatc caggggtcac 1140 cacaggatgt tgtggatccg caagcactaa aggtgatgct gcaagaactc gctgagaaaa 1200 attattcgat gaggaacaag ctgtttgttt ttccagaggt agtgaaagct gattcagtta 1260 ttgatcttta tttcaatcgt gacctaacag ctttggcgaa tgaacccgat gttgtcatca 1320 aaggagcatt caatggttgg aaatggaggc ttttcactga aagattgcat aagagtgacc 1380 ttggaggggt ttggtggtct tgcaaactgt acatacccaa ggaggcctac agattagact 1440 ttgtgttctt caacggtcgc acggtctatg agaacaatgg caacaatgat ttctgtatag 1500 gaatagaagg cactatgaat gaagatctgt ttgaggattt cttggttaaa gaaaagcaaa 1560 gggagcttga gaaacttgcc atggaagaag ctgaaaggag gacacagact gaagaacagc 1620 ggcgaagtaa ggaagcaagg gctgcagatg aagctgtcag ggcacaagcg aaggccgaga 1680 tagagatcaa gaacaaaaaa ttgcagagta tgttgagttt ggccagaaca tgtgttgata 1740 atttgtggta catagaggct agcacagata caagcggaga tactatcagg ttatactata 1800 acagaaactc gaggccactt gcgcatagta ctgagatttg gatgcatggt ggttacaaca 1860 attggtcaga tggactctct attgttgaaa gctttgtcaa gtgcaatgac agagacggcg 1920 attggtggta tgcagatggt acgacacctc aacctttgta cataaggcaa cattgttttg 1980 attttttttg ttgaggaaac atttgttttg attctagcat aatgctccta caaatatggc 2040 atgaatttcc ttgttttatt gatgtcatga gaaagtattt tattaactcg aaggccatgg 2100 aagctcaaca tttaccatag acagacgctt aaagatcatt tgtattccgt ggatcatata 2160 tgtaatgtaa tacctgtctt ttctctatat gtacagttat tccacctgaa aaagcacttg 2220 tgttggactg ggtttttgct gatgggccag ctgggaatgc aaggaactat gacaacaatg 2280 ctcgacaaga tttccatgct attcttccaa acaacaatgt aaccgaggaa ggcttctggg 2340 tgcaagagga gcaaaacatc tatacaaggc ttctgcaaga aaggaggaa aaggaagaaa 2400 2446 ccatgaaaag aaaggtgagt tgcaacaaaa tctttgcata tagatc

<210> 13

<211> 1032

<212> DNA

<213> Triticum sp.

<400> 13
gatctctata attttggcag ttaacccctg agtgatggca aatatattcc ctttcgtcta 60
ttttccaaat tcaaaatgca tggttccatg caagcttatc caaaatcact tgataatata 120

ccaatcacaa cataactttg tttaccataa gaacattcct acttaaaatt tgcaaggtaa 180 ctccctttcg aggctggttg gcttgatgag taactggcaa ttaacaaaga aaagatatat 240 ctgatgtttg gaacaaaaca tatgatcagg gttgtttggg ttgactcatg ttccttttta 300 cctacacagg ctgagagaag tgcaaatatc aaagctgaga tgaaggcaaa aactatgcga 360 aggittetge titteccagaa acacattgit tataccgaac egettgaaat aegigeegga 420 accacagtgg atgtgctata caatccctct aacacagtgc taaatggaaa gccggaggtt 480 tggtttagat gctcttttaa cctttggatg catccaagtg gagcattgcc accccagaag 540 atggtgaaat caggggatgg gccgctctta aaagccacag gtttattgcg ttattacatc 600 actgttatta gtatatatat aaccattttt atgcaatcaa tagagtcaag tgcaactaat 660 gatgcacaga taggatcaca tcattaggag aatgatgtga tggacaagac ccaatcctaa 720 gcatagcaca agatcgtgta gttcgttcgc tagagctttt ctaatgtcaa gtatcatttc 780 cttagaccat gagattgtgc aactcccgga tatcgtagga gtgctttggg tgtatcaaat 840 gtcacaacgt aactgggtga ctataaaggt gcactacagg tatctccgaa agtttctgtt 900 gggttggcac gaatcgagac tgggatttgt cactccgtat gacggagagg tatctttggg 960 cccactcggt aatgcatcat cataatgagc tcaatgtgac taaggagtta gccacgggat 1020 1032 cgagaattcc cg

<210> 14 <211> 892 <212> DNA <213> Triticum sp.

<400> 14
aatatttett gttetattat tggtaataat tagetagttt aatgecataa geecataaca 60
gatatgeaac tacteectee aateeatatt acttgtegea actttggtae aactttagta 120
caaagttata ctaaagetgt gacaagtaat atggacegga gggagtaeta tataagettg 180
tagetgttt gagaeegagt gtetgetegg gtggetaget ggageggget gaagtgettg 240
caggeacete tteteta aa aaaagtgett geageeeeee egeeeetee atagggtgag 300
tggteacett tettetaaa aattatggea eeaagggaaa tteteggetg gtegagettg 360
tagetatttt tteggagegt gaatgggage gtetttetgt ataaggeeta taggettaet 420
ttgatatata ttgtgaagte acttaageet tgttaaaaeg tagaaaetta gtteegeaae 480
ttggeeaaat eeetgttaaa ttggtttaet gtgtaetaga tgeategatg gegeagagte 540
ceggggggta ataaagette catttetae aatgaagtta attateetae ttgeettgta 600
attactgagt acaatacaga geacegaaaa getgtateet teetaettee ttatgttat 660
ctgtgtteet tgtetagtta atgtteeace ggatgeetat atgatggaet ttgttteete 720
cgagtgggaa gaagatggga tetatgaeaa caggaatggg atggaetate atatteetgt 780

ttctgattca attgaaacag agaattacat gcgtattatc cacattgccg ttgagatggc 840 ccccgttgca aaggtaatat aattctaagg ctagtttctt tgatgcgagg cg 892

<210> 15 <211> 871 <212> DNA <213> Triticum sp.

<400> 15 aggttatcct ccagaatgaa ttttttccag tacgtattat ttagaatact agcggtatat 60 tgactttttc tttgtgagac tacactttct tgtttaccat tccagtgcac catgttcaaa 120 atcttgtatt cagcgcgtta ctttcagttt ctttactact agcttatttg gtgcattggt 180 gtttcctttc ctactctact atctgaatgc tacttgtgtt ttcgcaacag ttgcttcttt 240 atccccttcc atttctcagt taaaaaaact tgcatctgta ttcacgtgac agcatataat 300 acattgccat gattggtcaa gtgctccggt cgcctggcta tataaggaac actattccca 360 atccagaatg gcaagcactc gggttgtatt taccatccac aatcttgaat ttggagcaca 420 ttatattggt aaagcaatga catactgtga taaagccaca actgtgagtg ccttactgtc 480 ttgtaatttt taatctttct gtttggcgca cagaaaatct tccacatttt acagaatcat 540 gttcttgtgt tttgtacgta ttcaactatt tccacccaaa cttttcaggt ttctcctaca 600 tattcaaggg acgtggcagg ccatggtgcc attgctcctc atcgtgagaa attctacggc 660 attotcaatg gaattgatoo agatatotgg gatootgatt gocaacatgo tgtttggtog 720 tctcgaggtc tttacattgc tggtgctctt taccccgact ttctggcgtg aatgatggag 780 taatacgtga aaacattaat tettttetea acaagggaeg gacaaaegeg egagattgee 840 tcctacctgg cttcggaact gaaagaactg g

<210> 16 <211> 1592 <212> DNA <213> Triticum sp.

gattacagca aactgatgtc cctattgtcg gaatcatcac ccgtctgaca gcccagaagg 600 gaatccacct catcaagcac gcaattcacc gaaccctcga aagcaacgga caggttcatc 660 atcccttgtg aacgaataaa catcaaacgt tttgtttata aaaagttgct tactatttgt 720 ttttgtttac ttcaaaacaa aagtctgaaa atgaagtgtt tggttcctag gtggttttgc 780 ttggttcagc tccagatcat cgaatacaag gcgatttttg cagattggcc gatgctcttc 840 acqqtqttta ccacqqtagq qtgaaqcttg ttctaaccta cgatqaqcct ctttctcacc 900 tggtgagctc caatatccta cacaccatct agccagccct tcattatggg agctggagac 960 tactttataa tttaggttga tgatcgatca tgctgcagat atacgctggc tccgacttca 1020 ttattgtccc ttcaatcttc gaaccctgtg gcttaacaca acttgttgcc atgcgttatg 1080 gatcgatccc tatagttcgg aaaaccggag gtgtgtgact atttctctcc attatgctgc 1140 actgatttgc atatgtcgag ctgttggaca tgaaatggaa actatccttt ggtatcgcag 1200 qactttacqa cactgtcttc gacgtagaca atgataagga ccgggctcgg tctcttggtc 1260 ttgaaccaaa tgggttcagt ttcgacggag ccgacagcaa cggcgtggat tatgccctca 1320 acaggcaagt atcgttcctc aattagccct gaattcagca gtagtgctag gttatttacc 1380 ttqcatqttc catacctcat ttcagagcaa tcggcgcttg gttcgatgcc cgtgattggt 1440 tccactccct gtgtaagagg gtcatggaac aagactggtc atggaaccgg cccgcactgg 1500 actacattga attgtaccat gccgctcgaa aattctgaca cccaactgaa ccaatggcaa 1560 1592 gaacaagcgc attgtgggat cgagaattcc cg

Ala Ala Gly Lys Lys Asp Ala Gly Ile Asp

<400> 18

<210> 17 <211> 10 <212> PRT

```
<211> 10
  <212> PRT
  <213> Artificial Sequence
  <220>
  <223> Description of Artificial Sequence: PEPTIDE MOTIF
  <400> 19
  Ala Thr Gly Lys Lys Asp Ala Gly Ile Asp
  <210> 20
  <211> 10
  <212> PRT
  <213> Artificial Sequence
  <220>
  <223> Description of Artificial Sequence: PEPTIDE MOTIF
  <400> 20
  Ala Leu Gly Lys Lys Asp Ala Gly Ile Asp
   1
  <210> 21
  <211> 8
  <212> PRT
  <213> Artificial Sequence
 <220>
<223> Description of Artificial Sequence: PEPTIDE MOTIF
  <400> 21
 Ala Thr Gly Lys Lys Asp Ala Leu
  <210> 22
  <211> 8
  <212> PRT
  <213> Artificial Sequence
  <220>
  <223> Description of Artificial Sequence: PEPTIDE MOTIF
  Ala Leu Gly Lys Lys Asp Ala Leu
  <210> 23
  <211> 14
  <212> PRT
  <213> Artificial Sequence
  <223> Description of Artificial Sequence: PEPTIDE MOTIF
  <400> 23
  Ala Ala Gly Lys Lys Asp Ala Arg Val Asp Asp Asp Ala Ala
                                       10
```

```
<210> 24
<211> 13
<212> PRT -
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: PEPTIDE MOTIF
<400> 24
Ala Leu Gly Lys Lys Asp Ala Gly Ile Val Asp Gly Ala
<210> 25
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: PRIMER
<400> 25
                                                                    23
tgttgaggtt ccatggcacg ttc
<210> 26
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: PRIMER
<400> 26
                                                                    23
agtcgttctg ccgtatgatg tcg
<210> 27
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: PRIMER
<400> 27
                                                                    21
ccaagtacca gtggtgaacg c
<210> 28
<211> 19
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: PRIMER
<400> 28
                                                                    19
cggtgggatc caacggccc
 <210> 29
 <211> 20
 <212> DNA
```

<213> Artificial Sequence

<220>		Common DR TMPR	
<223>	Description of Artificial	Sequence: PRIMER	
<400>	29		
ggaggt	cttg gtgatgttgt		20
		•	
<210>			
<211>	·		
<212>			
<213>	Artificial Sequence	•	•
<220>			
<223>	Description of Artificial	Sequence: PRIMER	
<400>			20
cttgac	caat catggcaatg		20
			•
<210>	31		
<211>			
<212>		•	
	Artificial Sequence		
<220>			
<223>	Description of Artificial	Sequence: PRIMER	
<400>			
cattgo	catg attggtcaag	•	20
-010>		•	
<210> <211>			
<211>			
	Artificial Sequence		•
/213/	Altilitial beddenee		
<220>			
<223>	Description of Artificial	Sequence: PRIMER	
<400>			21
accacc	tgtc cgttccgttg c	•	. 21
	•		
<210>	33		•
<211>	•	•	
<212>		•	
	Artificial Sequence	•	•
	•	•	
<220>		•	
<223>	Description of Artificial	Sequence: PRIMER	
<400>			23
gcacg	gtcta tgagaacaat ggc		23
			•
<210>	34	•	
<211>			
<212>			
	Artificial Sequence		
			•
<220>			
	Description of Artificial	Sequence: PRIMER	
•			
<400>	34		

tctgcatacc accaatcgcc g .

21

<210> 35

<210> 33 <211> 25

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: PEPTIDE MOTIF

<400> 35

Lys Val Gly Gly Leu Gly Asp Val Val Thr Ser Leu Ser Arg Ala Val

Gln Asp Leu Gly His Asn Val Glu Val 20 25

<210> 36

<211> 25

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: PEPTIDE MOTIF

<400> 36

Lys Val Gly Gly Leu Gly Asp Val Val Thr Ser Leu Ser Arg Ala Ile 1 5 10 15

Gln Asp Leu Gly His Thr Val Glu Val 20 25

<210> 37

<211> 9024

<212> DNA

<213> Triticum sp.

<400> 37

aaatatgaaa ccaaaaaaa aatagaaaaa ggaaaggtaa aatagaaagt taaataggaa 60 taatggataa aaaataaaac atcaaagaaa aacgaaatgc agaagaaaaa aacgtcactt 120 gttcccttat tatctcccgt gcaccccggt agcgtaggac aaaaaagaaaa aatagaacgg 180 acccaacgtc acaagctcac acatgcccag cgagagaaaa gaaaaatggt gcgacaaaaa 240 aaaggaaacg ggctgagagc cgaaacacat gggctgcgct ttgttcgcta cgaagctctc 300 ccctcgacaa aatatgaatc gcgacgtgat tggatcctat ggtggaaaaa gtgaatgaga 360 ccaaaagaat tctcagctga atgagttta gcaagactga tcattatatc caacataaat 420 agatttttt tttgcaaaaa taatccaaat ctattagcaa agttcagtag aagtacaaag 480 catctcgaac attataaaca ttacactgag attccaggac caccaaacaa cccactactg 540 ccgcgaaaag aaaaggattc ggaagacaga aattatccaa accacgttcg tccttggttg 600 ttggtctcat tgcgcgctaa acaacctgga cagcagaaga agcaaagcag tgtgcttccg 660 ctccgcagca agaagacaag tcgtcacatg tcagacgccg tcactcaagc aagcaaactg 720

caatgettet egtteggttt atceectage acgeacgaac geatgtgeeg caeegegtea 780 cgcaacgcat gcatgcacaa accaacaaac gaaacagtgc agttgcagtg ctctatctac 840 atatacgcaa tcaacgcggg cotcotcott cgccgcgagc cccgttccgt cctcggtott 900 cacgtggatt ttgcaacttc cttccagcag cttgtcacca cggacgcttc ctctctgaca 960 actggccccg tgggcggaac ggggcctccg ctcgcccctt gcgaaaccca cggctcgtcc 1020 gttcgcttct ctagcgggca ccgacagaag gggccggcgc agggtaggac caggctgtca 1080 gctggtgagg agcctgccgc tcgttgtgcc gcagctggag accgagcggg gcaacggaac 1140 ggctgccgcc ctcgtgtgct gctcgcgtgg cacgccgcaa cggcaccggg cccgctttcc 1200 agegtgeteg eccgeaaace geagacecaa caegecagee geeaggggge egttegtaeg 1260 tacccgcccc tcgtgtaaag ccgccgccgt cgtcgccgtc ccccgctcgc ggccatttct 1320 teggeetgae ecegttegtt tacceccaca cagageacae tecagtecag tecageecae 1380 tgccaccgcg ctactctcca ctcccactgc caccacctcc gcctgcgccg cgctctgggc 1440 ggaccaaccc gcgaaccgta ccatctcccg ccccgatcca tgtcgtcggc ggtcgcgtcc 1500 geogratect teetegeget egegteagee teeceeggga gateaegeag gegggegagg 1560 gtgagcgcgc agccacccca cgccggggcc ggcaggttgc actggccgcc gtggccgccg 1620 cagcgcacgg ctcgcgacgg agctgtggcg gcgctcgccg ccgggaagaa ggacgcgggg 1680 atcgacgacg ccgccgcgtc cgtgaggcag ccccgcgcac tccgcggtgg cgccgccacc 1740 aaggtagtta gttatgacca agttatgacg cgtgcgcgcg cctcgagatc atcgtcgtct 1800 cgctcacgaa ttgtttattt atacaaaacg cacgcccgcg tgtgcaggtc gcggagcgaa 1860 gggatcccgt caagacgctc gaccgcgacg ccgcggaagg cggcgggccg tccccgccgg 1920 cagcgaggca ggacgccgcc cgtccgccga gtatgaacgg catgccggtg aacggcgaga 1980 acaaatctac cggcggcggc ggcgcgacta aagacagcgg gctgcccacg cccgcacgcg 2040 cgccccatcc gtcgacccag aacagagcac cggtgaacgg tgaaaacaaa gctaacgtcg 2100 cctcgccgcc gacgagcata gccgaggccg (ggcttcgga ttccgcagct accatttcca 2160 tcagcgacaa ggcgccggag tccgttgtcc cagctgagaa gacgccgccg tcgtccggct 2220 caaatttcga gtcctcggcc tctgctcccg ggtctgacac tgtcagcgac gtggaacaag 2280 aactgaagaa gggtgcggtc gttgtcgaag aagctccaaa gccaaaggct ctttcgccgc 2340 ctgcagcccc cgctgtacaa gaagaccttt gggatttcaa gaaatacatt ggtttcgagg 2400 agcccgtgga ggccaaggat gatggccggg ctgtcgcaga tgatgcgggc tcctttgaac 2460 accaccagaa tcacgactcc ggacctttgg caggggagaa tgtcatgaac gtggtcgtcg 2520 tggctgctga gtgttctccc tggtgcaaaa caggcatgga cattacctct tcagtctctc 2580 ttcctgttgt tcataaaact ttgctcgaat tactcataag aacaaacatt gtgttgcata 2640

ggtggtctgg gagatgttgc gggtgctctg cccaaggctt tggcaaagag aggacatcgt 2700 gttatggtac tacaagcttt catttaactc tgttgggtcc atatgttcga ataatatcag 2760 tgagtagtat aatgttatta agtgcaagac atgaaagtgt tcttctgtca tactccctcc 2820 gtaaattaat ataagagcgt ttagattact actttagtga tctaaacgct cttatagtag 2880 tttacagacg gagtagagta tttcatagcc aaccctggag gttaggttgc tgaggcctac 2940 tgggtggggg agggggtttg aaacaagtgg tggttagcag ccagatttca caaagaagga 3000 ggctgataac cacaccatca gtgaaggaat gaatgtcggg tacccgatcg accgttttgc 3060 ccaacgtcgg gtttacccgc cctatagatc cgaataagta gttcctatct tcaattaggt 3120 accaaatatc gccagcgccc gtgtgtgtat ttatactact ggatgatcaa tttatcaaca 3180 tttccggtta atggtttcta tcatattcac tgtaattgtt agtaaacagt agatgtttgt 3240 aatgtagatg atggataaat gtatgttgtc gagctttcat ttcaatgcaa ttttgattgg 3300 gagctagttt cgcggttcgg ttagagccat caaaacccca gaatttttgg gagttggctt 3360 gtgagagagg gttttgggga gttaactttc gggattcagt tagagacgct cttactagtt 3420 ccagtaaaga gtaaactatt ttctgcaggc atcccaatta ttctgtagaa attagaagtg 3480 gaaaatagtt atggtatcat ataaaccata tattattcaa aatctagaat catggacttg 3540 gctagacttt gataatctga aattttaaat ttgatgataa ttgagaaatg atcctttcta 3600 tcttaggttg tggtaccaag gtatggggac tatgaagaag cctacgatgt cggagtccga 3660 aaatactaca aggctgctgg acaggtaagc aaaaatgcaa tcgaagggga gctgaaattt 3720 tattgcttat tgtcataata aatcaatttt taagtgtttt ttttgtcctg caggatatgg 3780 aagtgaatta tttccatgct tatatcgatg gagttgattt tgtgttcatt gacgctcctc 3840 tettecgaca cegteaggaa gacatttatg ggggeageag acaggttaat ettetatatg 3900. ttggtgtttg attgcactga taaactgaga acaagccaag gcctactgac tggcatatga 3960 ttacacattt tatttttca ggaaattatg aagcgcatga ttttgttctg caaggccgct 4020 gttgaggtat ctctccaact caattgacaa cctattacca ctatacaatt atgtgtatgc 4080 atgtatttca acagatacat aatctcttgt gaagtgcata tatactaata acatttcaat 4140 accttacatg cacatttggt caagcgttat gatttaactt ctgataatct attgcactga 4200 tgaacaatta tottgatgat cottgttact toatogttat gtttccatgt totottcacc 4260 gcgaattgat ttggaaatag catttccacc tgccacaaac aataatatac actcctactt 4320 tcatccaatt tagatatttt cgtacttggc atatcatccc attaaatatt attggtccat 4380 catttttatt cctctataat ttgcaggttc catggcacgt tccatgcggc ggtgtccctt 4440 atggggatgg aaatctggtg tttattgcaa atgattggca cacggcactc ctgcctgtct 4500 atctgaaagc atattacagg gaccatggtt tgatgcagta cactcggtcc attatggtga 4560 tacataacat cgctcaccag gttccttttc tcctaatctt gatttttctc tagtctctac 4620

tatttactcc acattgtttg aggaaactaa acgggttgca aaattatgat ggcttatgaa 4680 agttatagtc ttatagaggt aaatgcacca gtggtgcttg aacttgtcac gcgtgttcac 4740 tttggtgctt acagttgtag actatgaaaa acgggtgcaa aaacttgctg ttgtgtgcca 4800 tacggtgcat tttccgtatg taggagtcaa acgttgccta tgtgggcatt gtattcccgt 4860 ctatagctgt tagaccgtgc ctacgtcgcc attgggccca cacactctct atttacatgt 4920 gggccccact tgtcaaccta tgacataaat aaatggaaat ttataataaa aatgatggcc 4980 tggggtcttg aaaatgggac ctcgcaggta tgctggtagc cagcacgccc taaacattaa 5040 tcccctatgc acttcatgtc ttgtgtatgt gtgtgtctgt gtgggggaggg ggggggtatgc 5100 atgctgtttt tctttggttc aaggctacca tgctcaacaa gcccacctcc gcttcaacac 5160 ggccagcgcc ttcatgatgg cccaagtgct ccgcaccatc gctcaaagcg gcaacgtcgt 5220 tgtcatgacc atccaccaac ccaacacaca aaatcctcaa catccgcaaa tagtgagcat 5280 gcccctcttg tcctttcccc tcgtacccaa acatgtcttg ataacccttg gagctgcaca 5340 agttgtgacc atcgcctgcg tcgcctcata gagcccgacc tagccggacc gttatagaag 5400 cctacttggg agcccatacc tccctgcaca tcctcctctt tccccataga tcgtgccgcc 5460 atogoaaaco aacttotoot otoottotoo cactotggoo gtttocooog cogogaagot 5520 gcaatacatg ccgagttggc catggcccta ttccccaatt gctcgcacta ggaggtcctc 5580 ctctaagcct agcacctttt cccctcacca attgcaagtt ggggagcccc tcgcgagctc 5640 cctacgtcgg ctgcagttgc ctgccgcctc aactctgatc cagacctcgt tcccgtggcc 5700 teggegacat etectegace teccatteea caegtggeet ggegaggate acegeatgtt 5760 catccatgtg aaccgaatca tcatagaact aacaccggag aggtcatccc gacggcgtcg 5820 cactgttcct ctattccccc caagccgtgt cgcgtcataa tataagacgg acttatttgt 5880 atcccttggg tcatcggttc aatggctatt tctttctcct gtctactgat aagtgggacc 5940 cacacgccac actaagccct ttctttctcc tacccgttga taagtgggac ccacacacag 6000 tacttagcca gagagagaac atgagcttgt tggtgccacg tcggcaagcc atgtcagcag 6060 tcttaacggc tacaaacaac ggatatggtg tcacgtgagc gtttacgaat ggaaagtgca 6120 tcatactgca tgcgagagcc agagccaggt ttttgcacca gttttctgta ttttacaact 6180 gcgagcatca aagtgtacat atgccgaacc aaagtgaaca tggtgagtcc attctttct 6240 ggtgcggtgg gtggctcaaa gacaccccaa tagaagctat tgcctccgac attgccaatt 6300 cggtgccgaa ccatattgaa gtggtgaggt cagttgcttg tgctatgact actaggtatt 6360 ggatgaggga cataaaggat ctcataaata ttgcaatgtt cattcaaatt cttaacattt 6420 gcgaagcgct tcatgatttc catctccct agatcagaga cacttggtcg tgtacactga 6480 atttctcagg tcgcttctcg tctaaatccg catatgtagc tcacttcaat gacttgcctt 6540

tggtccaget aacgccattt gcgtagcaaa tttttcatat ggctcgctct gcgcaagagg 6600 atttggatca cgggcagacg cgctagacaa ggtcttccgc acaatgaaca ttgagttttt 6660 tgatccgctc ttcccgaaga cacttgtgat cttattacga gttgtgccat ttcaaacatc 6720 tgtctctcca tggtcgcccc agccatagat gccttgttct ctgaatggtg ggtttcagct 6780 aggaacaggg tgccaccttc ggacaagaag ttgcgtagtt tggtcgtctt aactgcttgg 6840 ttgatttgga aggaacacaa caacagtctt tgaaggcaaa gctaattcct tcgatcaagt 6900 tattagacgg atcaagtgtg atgaatccta ctggtacaat gccgttgcta gttgcttgga 6960 gtcactattt ggctaggtcg cttgccatcc cgctctgtgc taagcgcttg gggtcgcttt 7020 tgctcaattt gtattttgtt gttatgtgtt tttagtaatg taacctgaac tttctggact 7080 aagtagaaaa aaattotoot ooataatgat cacatacagt totootgcat ggttogaaaa 7140 aaaaatgaga acatccgtgg caagtttaag caccaccggt gcatttttac ctcaaagtta 7200 tatacaacac tgacatgccg aattacatgc tttggtcagt tattccattc ttcggtactc 7260 cgttgggcta attettete tteatgttge atgeagggce gtggccetgt agatgaatte 7320 ccgttcaccg agttgcctga gcactacctg gaacacttca gactgtacga ccccgtgggt 7380 ggtgaacacg ccaactactt cgccgccggc ctgaagatgg cggaccaggt tgtcgtggtg 7440 agccccgggt acctgtggga gctgaagacg gtggagggcg gctgggggct tcacgacatc 7500 atacggcaga acgactggaa gacccgcggc.atcgtcaacg gcatcgacaa catggagtgg 7560 aaccccgagg tggacgccca cctcaagtcg gacggctaca ccaacttctc cctgaggacg 7620 ctggactccg gcaagcggca gtgcaaggag gccctgcagc gcgagctggg cctgcaggtc 7680 cgcgccgacg tgccgctgct cggcttcatc ggccgcctgg acgggcagaa gggcgtggag 7740 atcategegg acgecatgee etggategtg agecaggaeg tgeagetggt gatgetggge 7800 accgggegee acgaectgga gageatgetg eggeaetteg agegggagea eeacgaeaag 7860 gtgcgcgggt gggtggggtt ctccgtgcgc ctggcgcacc ggatcacggc gggggcggac 7920 gegeteetea tgeeeteeeg gttegageeg tgegggetga accageteta egeeatggee 7980 tacggcaccg teccegtegt geacgeegtt ggeggeetea gggacaccgt geegeegtte 8040 gaccccttca accactccgg gctcgggtgg acgttcgacc gcgccgaggc gcacaagctg 8100 atcgaggcgc tcgggcactg cctccgcacc taccgagact tcaaggagag ctggagggcc 8160 ctccaqqagc gcggcatgtc gcaggacttc agctgggagc acgccgccaa gctctacgag 8220 gacgtcctcg tcaaggccaa gtaccagtgg tgaacgctag ctgctagccg ctccagcccc 8280 gcatgcgtgc atgacaggat ggaactgcat tgcgcacgca ggaaagtgcc atggagcgcc 8340 ggcatccgcg aagtacagtg acatgaggtg tgtgtggttg agacgctgat tccaatccgg 8400 cccgtagcag agtagagcgg aggtatatgg gaatcttaac ttggtattgt aatttgttat 8460 gttgtgtgca ttattacaat gttgttactt attcttgtta agtcggaggc caagggcgaa 8520

agctagetca catgtetgat ggatgeacgt gecatggttg gtttggtage geagtgeaaa 8580 eggeaagaat gggaagtgaa tteeteetg ettgaattag eacttteagt aataateagt 8640 eagttaaaac aatageactt egagtggaag tgaacaagaa aaccaacate acaceeggta 8700 eggacteata geatgttace aaaaaatgee tttegeeceeg etgtatatat aaagcaacga 8760 ecateaacat ttgaacetat acaaactaga acacaceact eaaaaceeac acaceeggg 8820 ecagatacat aggtgeeaaa gggetacaac eacaacacac egaaagaete acatagaeta 8880 eaagtgaagg eaacaageat eactaeggag ecteeggegt eetteegatg aagaaateat 8940 gaagagttga agttgtgatt tgacgaaace gtgegeteea aaacggtgee tteaggaagg 9000 acacegteace gteeaateea aaga

<210> 38 <211> 11611 <212> DNA <213> Triticum aestivum

<400> 38 taatccgttt gtctaatgaa atatatgtga tgggagagga tttggagcat tgggggtgctc 60 caccccccc ctatatgagt attaaattca aaaaacaaac cgaggatatt caaaaagtct 120 acaattttgg gatactaaac ctggatgctc agtctactcc catgtgaagt ttcatgaaaa 180 aaatatcagg aaacgtattc tcagtaaaaa cagacaaaaa attcttatgc acagaaaaaa 240 ctgtttgggt ggatcatagg tcagactata ttttcttcca tggatacatg tcatggtatt 300 ttttcacaaa acttcacatg agagtagatt tgggcatcca agtttgatat ccccatattc 360 caagttottt cgaattttcc tagtattttt tgaaattaat attcgtatag gggtggagca 420 tccaggagct ctggtgtatt tttcaatata tgtatggtta tttaaaaaaa aactcgtaca 480 acaatctcag aaaaaactgg acggtttatt ctagctgatt ttgtgtgcag tttcccataa 540 tcagaagtgg ccctcagccc ctcactcttc ttcctcctac cttctgctct gtcttccgct 600 tcctgcacga acattcgcgt tgaagttttt tcaaaagaaa acaatatact tgctggaaaa 660 agaaagcaag tacaaaaaac accagccatc caccaccgtc cgttactggt ccacctgcat 720 ttccatgtgt gcgcacacgg agaagcagct cgaacaaaaa aaccaaacga aaataaagga 780 tcgaagctgc tctcggacaa aatggttgaa ggacgaagga gcctttttgg tgcgcagatc 840 tccacgccag agcgttgtat tccaatttta gttctttccc cgtgaggagg ggaggctagg 900 cgggcgaggc agaggggata gggcagtcgc cgctgcgtgg tggactgact ggtgtggtgg 960 gtggtgggtt ttgcgggcgg ggtttagtag gttcccggaa atggagatgg ctctccggcc 1020 acggageet etgtgeete ggageagtea geegetegte gtegteegge eggeeggeeg 1080 cggcggcggc ctcgcgcagg tacgggtgat tatggttctt gattcggtcg gttcacggaa 1140 tgttgtttga tttggttctg tcccgggtca ggttcatagt gattttattc cgcaaaaaaa 1200

aaaggtttat agtgattttg atttctttca tctcgggaac atttttatat ctgggagtca 1260 aagggcattg gttttgattt gcatgcggaa catattggtt atttattaat gtggtgagct 1320 ggaattcata ctgcttaaaa cgacgtgatt ttaattgctg gaagaggtaa agaacatgaa 1380 ttctgttata tttgttaaaa aaaatcccct gttctagcgt ttcagtctgc atgatcatgg 1440 aaatqttaat qttaatqctg gttaatttgg agtgaagatt tccacggcaa gagtttcgaa 1500 caaqaaacaq aaattcattq cqaaaaaatg gtggagcgaa ttcggagagt atttacattg 1560 totgcacctt gtatgtttgt gatgaagtta tttccatata ttttttgcga taaagttact 1620 tccgtatgta aggcgagcat tgccatcttt ctataagctg gtatttgtct gccagatagc 1680 atataaattg gattacatcc tttctgttga acggagaaat ttatccttgc ttagaagtga 1800 ggtcagaaaa tgagatacag tggggacctt ccctactgta ttatgctaaa aagaagaagt 1860 gaggtcagaa ggcgatttca gtagaattta tatgagaggc ataaataatt tggtaggatt 1920 aaatgacctt gataattotg ttoogattgt togcaaatac ottoggattt totoaagcat 1980 tatctataag aaggtttcct ttttacgctc aaacatgttg agctgcacaa cttattttcc 2040 cttttgtgtt ttccagcctt ttttgatgaa tggcagattt actcgaagca ggacccttcg 2100 atgcatggta gcaagttcag gtttgaggaa taatctgtca aatggcctat cattctatct 2160 gtttggaagc aatgtcttat tcaaacctca gtattttgat actacggttt tctatagcga 2220 tgacaatgaa tactgtagtt tatgaaacca acagtctttc taagtatttc ggcaacagtg 2280 gtatgtttgg caatcaaaag tatacagcgt tgcaataggc caccagtaga caaggccttt 2340 gttgcgtttc tcagtttttt aaaaagaggt cccaactact ttttttaata ctgcaaaaac 2400 actacagttt tgtggatact gtagtttata atactacaat ttttattaca gccaaacacc 2460 tcaaagtatt taaaaccata gtttttagaa aaactgtagt atccttgaaa tactttgaga 2520 atactttqca acgaaacaca gcccagatgt tctgttaact tcatgtcttt ccaaattgca 2580 tcattcagat cctcctaata ggaaatcaag aaagatggta tcacctcagg ttaaagtcat 2640 ttcttctaga ggatatacga caagactcat tgttgaacca agcaccgaga atatagaaca 2700 caataatcgg gatgaagaaa ctcttgatac atacaatgcg ctattaagta ccgagacagc 2760 agaatggaca gatactagag aagccgagac tgctaaagcg gactcgtcgc aaaatgcttt 2820 aagcagttct ataatcgggg gagtggatgt ggcggatgaa gatatacttg cggctgatct 2880 gacagtgaat tcattaagca gtataacgaa gaaggaagtg gatgcagtgg acaaagctag 2940 agttaaagaa gacgtatttg agctggattt gccagcaact acattgagaa gtgtgatagt 3000 ggatgtgatg gatcataatg ggactgtaca agagacattg agaagtgtga tagtagatgt 3060 gatggatgat gcggcggaca aagctagagt tgaagaagac gtatttgagc tggatttgtc 3120

aggaaatatt tcaagcagtg cgaccgt ggaactagat gcggttgacg aagtcgggcc 3180 tgttcaagac, acatttgagg cgaactcgtc aggaaatgtt tcaaacagtg caacggtacg 3240 ggaagtggat acgagtgctg aagctgggaa tgatcaaggc atatttagag cagatttgtc 3300 aggaaatgtt ttttcaagca gtacaacagt ggaagtgggt gcagtggatg aagctgggtc 3360 tataaaagac aggtttgaga cggattcgtc aggaaatgtt tcaacaagtg cgacgatgtg 3420 ggatgcaatt gatgaaaccg tggctgatca agacgcagtt gaggcggatt tgtcgggaaa 3480 tgcttcaagc tgcgcgacat acagagaagt ggatgatgtg gtggatgaaa ctagatcaga 3540 agaggaaaca tttgcgatgg atttgtttgc aagtgaatca ggccatgaga aacatatggc 3600 agtggatcat gtgggtgaag ctaccgatga agaagagact taccaacagc aatatccagt 3660 accetettea ttetetatet gegacaagge tatteetaaa acaegtetaa ettegaatee 3720 tgagctgcga cttgtcaggg ttgaagaaca aggcaaagta aattttagtg ataaaaaaga 3780 cctgtcaatt gatgatttac caggacaaaa ccaatcgatc attggttcct ataaacaaga 3840 taaatcaatt gctgatgttg cgggaccgac ccaatcaatt tttggttcta gtaaacaaca 3900 ccggtcaatt gttgctttcc ccaaacaaaa ccagtcaatt gttagtgtca ctgagcaaaa 3960 gcagtccata gttggattcc gtagtcaaga tctttcggct gttagtctcc ctaaacaaaa 4020 cqtaccaatt qttqqtacqt cgagagaggg tcaaacaaag caagttcctg ttgttgatag 4080 acaggatgcg ttgtatgtga atggactgga agctaaggag ggagatcaca catccgagaa 4140 aaccgatgag gatgtgcttc atgtaaaatt taatgttgac aatgtgttgc ggaagcatca 4200 ggcagataga acccaagcag tggaaacgat aacttggaag aaagttgatg aggaacatct 4260 ttacatgact gaacatcaga taggtgctgc cgaaggacag atggtagtta acgaggatga 4320 gctttctata actgaaattg gaatggggag aggtgataaa attcagcatg tgctttctga 4380 qqaaqaqctt tcatqqtctq aagatqaagt qcagttaatt gaggatgatg gacaatatga 4440 agttgatgag acctctgtgt ccgttaacgt tgaacaagat atccaggggt caccacagga 4500 tgttgtggat ccgcaagcac taaaggtgat gctgcaagaa ctcgctgaga aaaattattc 4560 gatgaggaac aagctgtttg tttttccaga ggtagtgaaa gctgattcag ttattgatct 4620 ttatttcaat cgtgacctaa cagctttggc gaatgaaccc gatgttgtca tcaaaggagc 4680 attcaatggt tggaaatgga ggcttttcac tgaaagattg cataagagtg accttggagg 4740 ggtttggtgg tcttgcaaac tgtacatacc caaggaggcc tacagattag actttgtgtt 4800 cttcaacggt cgcacggtct atgagaacaa tggcaacaat gatttctgta taggaataga 4860 aggcactatg aatgaagatc tgtttgagga tttcttggtt aaagaaaagc aaagggagct 4920 tgagaaactt gccatggaag aagctgaaag gaggacacag actgaagaac agcggcgaag 4980 taaggaagca agggctgcag atgaagctgt cagggcacaa gcgaaggccg agatagagat 5040 caagaacaaa aaattgcaga gtatgttgag tttggccaga acatgtgttg ataatttgtg 5100

gtacatagag gctagcacag atacaagcgg agatactatc aggttatact ataacagaaa 5160 ctcgaggcca cttgcgcata gtactgagat ttggatgcat ggtggttaca acaattggtc 5220 agatggactc tctattgttg aaagctttgt caagtgcaat gacagagacg gcgattggtg 5280 gtatgcagat ggtacgacac ctcaaccttt gtacataagg caacattgtt ttgatttttt 5340 ttgttgagga aacatttgtt ttgattctag cataatgctc ctacaaatat ggcatgaatt 5400 tccttgtttt attgatgtca tgagaaagta ttttattaac tcgaaggcca tggaagctca 5460 acatttacca tagacagacg cttaaagatc atttgtattc cgtggatcat atatgtaatg 5520 taatacctgt cttttctcta tatgtacagt tattccacct gaaaaagcac ttgtgttgga 5580 ctgggttttt gctgatgggc cagctgggaa tgcaaggaac tatgacaaca atgctcgaca 5640 . agatttccat gctattcttc caaacaacaa tgtaaccgag gaaggcttct gggtgcaaga 5700 ggagcaaaac atctatacaa ggcttctgca agaaaggaga gaaaaggaag aaaccatgaa 5760 aagaaaggtg agttgcaaca aaatctttgc atatgatctc tataattttg gcagttaacc 5820 cctgagtgat ggcaaatata ttccctttcg tctattttcc aaattcaaaa tgcatggttc 5880 catgcaagct tatccaaaat cacttgataa tataccaatc acaacataac tttgtttacc 5940 ataagaacat tootaottaa aatttgcaag gtaactcoot ttcgaggotg gttggcttga 6000 tgagtaactg gcaattaaca aagaaaagat atatctgatg tttggaacaa aacatatgat 6060 cagggttgtt tgggttgact catgttcctt tttacctaca caggctgaga gaagtgcaaa 6120 tatcaaagct gagatgaagg caaaaactat gcgaaggttt ctgctttccc agaaacacat 6180 tgtttatacc gaaccgcttg aaatacgtgc cggaaccaca gtggatgtgc tatacaatcc 6240 gatgcatcca agtggagcat tgccacccca gaagatggtg aaatcagggg atgggccgct 6360 cttaaaagcc acaggtttat tgcgttatta catcactgtt attagtatat atataaccat 6420 ttttatgcaa tcaatagagt caagtgcaac taatgatgca cagataggat ccaatatttc 6480 ttgttctatt attggtaata attagctagt ttaatgccat aagcocataa cagatatgca 6540 actactccct ccaatccata ttacttgtcg caactttggt acaactttag tacaaagtta 6600 tactaaagct gtgacaagta atatggaccg gagggagtac tatataagct tgtagctgtt 6660 ttgagaccga gtgtctgctc gggtggctag ctggagcggg ctgaagtgct tgcaggcacc 6720 tettetetaa aaaaaagtge ttgcageece eeegeeceet ceatagggtg agtggteace 6780 tttcttctta aaaattatgg caccaaggga aattctcggc tggtcgagct tgtagctatt 6840 ttttcggagc gtgaatggga gcgtctttct gtataaggcc tataggctta ctttgatata 6900 tattgtgaag tcacttaagc cttgttaaaa cgtagaaact tagttccgca acttggccaa 6960 atccctgtta aattggttta ctgtgtacta gatgcatcga tggcgcagag tccggggggt 7020

aataaagctt ccattttcta caatgaagtt aattatccta cttgccttgt aattactgag 7080 tacaatacag agcaccgaaa agctgtatcc ttcctacttc cttatgttta tctgtgttcc 7140 ttgtctagtt aatgttccac cggatgccta tatgatggac tttgttttct ccgagtggga 7200 agaagatggg atctatgaca acaggaatgg gatggactat catattcctg tttctgattc 7260 aattgaaaca gagaattaca tgcgtattat ccacattgcc gttgagatgg cccccgttgc 7320 aaaggtaata taattctaág gctagtttct ttgatgcgag gcgagatctc atcaccttat 7380 gccttttttt cattctatgc cataatacta tgctctgtca tgatcgatga tctcataggt 7440 tggaggtctc ggggatgttg ttacaagtct ttcacgtgcc gttcaagatc tagggcatac 7500 tgtcgaggtt attctcccga agtacgactg tttgaaccaa agcagtgtaa gttgaagtac 7560 tgtactacat aatctattca cttagtcttt aaaatttcaa ctcaaaatgc cacgaagctt 7620 caactgaagc taaagaattc tgagctgcga tggagcgcag tagggtggca cagatcccaa 7680 taaaccaata tatgaccaat aagggggtgc caagatcagt aggcactaat gaattteett 7740 tgttttatat ccattataca ttattaatca agttacatct atttcaatgc aggtcaagga 7800 tttacattta tatcaaagtt tttcttgggg tggtacagaa ataaaagtat gggttggacg 7860 agtcgaagac ctgaccgttt acttcctgga acctcaaaat gggtatgaat cagctaatgt 7920 atagtttttt ttgtgggaaa tgtatagttg agtgatataa aacatattac ttcttttcac 7980 aaaattatta ggctagagcc ttgtactggt taataatgtg tacctttttc tcattcatat 8040 aactacttat cgtagactat agaagccaat tagtaacaca atacattggc cttggcattc 8100 caggetgaga getagttata acaatgatat gtgagattag tggetetata accaettttg 8160 agctaaagga atttgctgct agatgagcca atcaatccaa ctaattttaa attccatgat 8220 caccctagga cacgcagcct gcacaaccaa gaacacagct aagatcatcg cgtgggcaca 8280 aaaggttgtg cattaaggct aggccctggt cagtggctgt caaggactcc atggggctcc 8340 ttacagtttt tattctgata tctcttgcgc ccatatgacg ctaccaaacg cttgtaacct 8400 gtagcaaact attgccatct gtcactcaat gataaggtag acaatctttc ctttcccttt 8460 aagatgttca acctttattt atgcttgagg atgcgtttga ttgtcaaatt tcagtttctc 8520 tagattgcag acacacttgc acgtgctgtg tacaccttcc attatctggc atgggatttg 8580 catttcaatt aagagaaata tgaaagaaag aaatgttatc acctgaatgt tagagcttaa 8640 aaggcacaag caatcagcac catttatcaa aaataaatga tttacttgtc tagttgtctc 8700 tttttggttc tcttcctgta agtggatgcc aatatctcaa gaactctcct gaggattttt 8760 cttcacaacc tattcatttt gacatttcct tttctaggat gtttggcgtc ggatgtgtat 8820 atggaaggaa tgatgaccgc agatttgggt tcttctgtca ttctgctctt gagtttatcc 8880 tccagaatga attttctcca gtacgtatta tttagaatac tagctgctat attgactttt 8940 tctttgtgag actacacttt cttgtttacc attccagtgc accatgttca aaatcttgta 9000

ttcagcgcgt tactttcagt ttctttacta ctagcttatt tggtgcattg gtgtttcctt 9060 tcctactcta ctatctgaat gctacttgtg ttttcgcaac agttgcttct ttatccctt 9120 ccatttctca gttaaaaaaa cttgcatctg tattcacgtg acagcatata atacattgcc 9180 atgattggtc aagtgctccg gtcgcctggc tatataagga acactattcc caatccagaa 9240 tggcaagcac tcgggttgta tttaccatcc acaatcttga atttggagca cattatattg 9300 gtaaagcaat gacatactgt gataaagcca caactgtgag tgccttactg tcttgtaatt 9360 tttaatcttt ctgtttggcg cacagaaaat cttccacatt ttacagaatc atgttcttgt 9420 gttttgtacg tattcaacta tttccaccca aacttttcag gtttctccta catattcaag 9480 ggacgtggca ggccatggtg ccattgctcc tcatcgtgag aaattctacg gcattctcaa 9540 tggaattgat ccagatatct gggatccata cactgacaat tttatcccgg taccagattt 9600 tttcccagag tgcaagtaga tatataccaa ggccacagat agttttatgc ttaactatgt 9660 gtttcatact acttcaggtc ccttatactt gtgagaatgt tgtcgaaggc aagagagctg 9720 caaaaagggc cttgcagcag aagtttggat tacagcaaac tgatgtccct attgtcggaa 9780 tcatcacccg tctgacagcc cagaagggaa tccacctcat caagcacgca attcaccgaa 9840 ccctcgaaag caacggacag gttcatcatc ccttgtgaac gaataaacat caaacgtttt 9900 gtttataaaa agttgcttac tatttgtttt tgtttacttc aaaacaaaag tctgaaaatg 9960 aagtgtttgg ttcctaggtg gttttgcttg gttcagctcc agatcatcga atacaaggcg 10020 atttttgcag attggccgat gctcttcacg gtgtttacca cggtagggtg aagcttgttc 10080 taacctacga tgagcctctt tctcacctgg tgagctccaa tatcctacac accatctagc 10140 cagcccttca ttatgggagc tggagactac tttataattt aggttgatga tcgatcatgc 10200 tgcagatata cgctggctcc gacttcatta ttgtcccttc aatcttcgaa ccctgtggct 10260 taacacaact tgttgccatg cgttatggat cgatccctat agttcggaaa accggaggtg 10320 tgtgactatt tctctccatt atgctgcact gatttgcata tgtcgagctg ttggacatga 10380 aatggaaact atccttiggt atcgcaggac tttacgacac tgtcttcgac gtagacaatg 10440 ataaggaccg ggctcggtct cttggtcttg aaccaaatgg gttcagtttc gacggagccg 10500 acagcaacgg cgtggattat gccctcaaca gagcaagtat cgttcctcaa ttagccctga 10560 attcagcagt agtgctaggt tatttacctt gcatgttcca tacctcattt cagagcaatc 10620 ggcgcttggt tcgatgcccg tgattggttc cactccctgt gtaagagggt catggaacaa 10680 gactggtcat ggaaccggcc cgcactggac tacattgaat tgtaccatgc cgctcgaaaa 10740 ttctgacacc caactgaacc aatggcaaga acaagcgcat tgtgggatcg actacagtca 10800 tacagggctg tgcagatcgt cttgcttcag ttagttccaa gcgcactgca gtcgtacata 10860 gctgaggatc ctcttgcctc ctccaccagg gggaacaaag cagaaatgca tgagtgcatt 10920

```
gggaagactt ttatgtatat tgttaagatt ttccttttct tttccttccc tgcacctgga 10980
 aatggttaag cgcatcggca atataagaac cgcagtgaca ttttgtgagt agctttgtat 11040
 attototoat ottgtgcaaa ottatgtgca tgctaggoto totgatoatg tggaagottt 11100
 gttatatgtt acttatggta tacatcaatg atatttacat ttgtggatga gctactgcac 11160
 ttggtttctg ctatctgttt tgtgaaatgg cagggccatg attatgcaga ttcactggtt 11220
 ctgaaacaga cacgctcctc taagctgtga ctgtgagctc tgaaaacagc attgttaaca 11280
 tctattagta taaactaagg tacatcaacg gtgaagattt acgagctaaa ctccgtttgg 11340
 ttgtagacat tcactagaag tataagcgcg cttttctgcg ccgcctaggc tgcaatgatt 11400
 ttttttttat gtgtgtgtgg atatttcact atgacctgtg ggcaaaaggc tggccgagat 11460
 ttaggaagcg ctcaagcaat tggccaatgg gaaggtgccg gccctgatgg tttcacggcc 11520
 cagttettge getectgetg ggatateate aagggagate gagaatteee gggateegeg 11580
                                                                    11611
 gccgcgagct tccctatagt gagtcgtatt a
 <210> 39
 <211> 11
 <212> PRT
 <213> Artificial Sequence
 <220> -
 <223> Description of Artificial Sequence: PEPTIDE
 Lys Val Gly Gly Leu Gly Asp Val Val Thr Ser
 <210> 40
 <211> 11
 <212> PRT
 <213> Artificial Sequence
· <220>
 <223> Description of Artificial Sequence: PEPTIDE
 <400> 40
 Gly His Thr Val Glu Val Ile Leu Pro Lys Tyr
 <210> 41
 <211> 16
 <212> PRT
 <213> Artificial Sequence
 <223> Description of Artificial Sequence: PEPTIDE
 <400> 41
 His Asp Trp Ser Ser Ala Pro Val Ala Trp Leu Tyr Lys Glu His Tyr
                                       10
```

A SECTION OF STATE OF

```
<211> 16
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: PEPTIDE
<400> 42
Gly Ile Leu Asn Gly Ile Asp Pro Asp Ile Trp Asp Pro Tyr Thr Asp
                                      10
<210> 43
<211> 16 ·
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: PEPTIDE
<400> 43
Asp Val Pro Ile Val Gly Ile Ile Thr Arg Leu Thr Ala Gln Lys Gly
                                     10
<210> 44
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: PEPTIDE
Asn Gly Gln Val Val Leu Leu Gly Ser Ala
1
·<210> 45
<211> 27
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: PEPTIDE
<400> 45
Ala Gly Ser Asp Phe Ile Ile Val Pro Ser Ile Phe Glu Pro Cys Gly
Leu Thr Gln Leu Val Ala Met Arg Tyr Gly Ser
             20
<210> 46
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: PEPTIDE
<400> 46
Thr Gly Gly Leu Val Asp Thr Val
```

```
<210> 47
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: PEPTIDE
<400> 47
Lys Thr Gly Gly Leu Gly Asp Val Ala Gly Ala
<210> 48
<211> 11
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: PEPTIDE
<400> 48
Gly His Arg Val Met Val Val Val Pro Arg Tyr
<210> 49
<211> 16
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: PEPTIDE
<400> 49
Asn Asp Trp His Thr Ala Leu Leu Pro Val Tyr Leu Lys Ala Tyr Tyr
                  5
                                     10
<210> 50
<211> 16
<212> PRT
<213> Artificial Sequence
.223> Description of Artificial Sequence: PEPTIDE
<400> 50
Gly Ile Val Asn Gly Ile Asp Asn Met Glu Trp Asn Pro Glu Val Asp
                                      10
<210> 51
<211> 16
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: PEPTIDE
<400> 51
Asp Val Pro Leu Leu Gly Phe Ile Gly Arg Leu Asp Gly Gln Lys Gly
                  5
```

```
<210> 52
<211> 10
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: PEPTIDE
<400> 52
Asp Val Gln Leu Val Met Leu Gly Thr Gly
<210> 53
<211> 27
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: PEPTIDE
<400> 53
Ala Gly Ala Asp Ala Leu Leu Met Pro Ser Arg Phe Xaa Pro Cys Gly
                                    10
Leu Asn Gln Leu Tyr Ala Met Ala Tyr Gly Thr
            20
<210> 54
<211> 8
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence:PEPTIDE
<400> 54
Val Gly Gly Xaa Arg Asp Thr Val
```

INTERNATIONAL SEARCH REPORT

International application No.
PCT/AU00/00385

			PCT/AU00/0	0392		
A.	CLASSIFICATION OF SUBJECT MATTER					
Int. Cl. 7;	C12N 15/54, 15/11, C12N 9/10; C12Q 1/48, 1	1/68; A01H 1/00, 5/00; C0	8B 3/02.	•		
According to	International Patent Classification (IPC) or to both	national classification and I	PC			
В.	FIELDS SEARCHED					
	umentation searched (classification system followed by classification syst	lassification symbols)				
	searched other than minimum documentation to the ext., EMBL, SWISS-PROTEINS, PIR	ent that such documents are inc	uded in the field	s searched		
	base consulted during the international search (name of earch synthase. Seq id nos 2, 4, 6, 8, 10 and 39-		e, search terms u	sed)		
C.	DOCUMENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where app	propriate, of the relevant pass	ages Rele	vant to claim No.		
P, X	Li Z et al "The localization and expression of wheat" Plant Physiol 1999 Aug 120(4) pp 11 document.		es of	1-59.		
P, X	GenPept accession no. CAB86618, and GenB published 7 April 2000. Gao M and Chibbar and expression analysis of starch synthase IIa aestivum L.)" See the whole document.	cation (sec	1-8, 10-19 and 21 (seq id nos 1-6, 50 and 53)			
X; Y	WO 97/45545 A (HOECHST SCHERING A 1997. See the whole document especially the e		41-59	0-19, 21-38 and (seq id nos 1-6, 50 and 53)		
X	Further documents are listed in the continuation	n of Box C X See pat	ent family ann	ex		
Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" carlier application or patent but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document defining the general state of the art which is not considered to be of particular relevance the international filing date of understand the principle or theory underlying the invention document of particular relevance; the claimed invention can be considered novel or cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention can be considered to involve an inventive step when the document of particular relevance; the claimed invention can be considered to involve an inventive step when the document of particular relevance; the claimed invention can be considered to involve an inventive step when the document of particular relevance; the claimed invention can be considered to involve an inventive step when the document of particular relevance; the claimed invention can be considered to involve an inventive step when the document of particular relevance; the claimed invention can be considered to involve an inventive step when the document of particular relevance; the claimed invention can be considered to involve an inventive step when the document of particular relevance; the claimed invention can be considered to involve an inventive step when the document of particular relevance; the claimed invention can be considered to involve an inventive step when the document of particular relevance. "Y"						
	nal completion of the international search	Date of mailing of the internation	policearch report			
		Authorized officer		÷		
PO BOX 200, E-mail address	DCU(A)DAUSITANIA.POV.BU	J.H. CHAN Telephone No : (02) 6283 23	40			

INTERNATIONAL SEARCH REPORT Information on patent family members

International application No. PCT/AU00/00385

This Annex lists the known "A" publication level patent family members relating to the patent documents cited in the above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent Doo	cument Cited in Search Report		Patent Family Member								
wo	9745545	AU	30302/97	BR	9709487	CN	1219970				
٠		CZ	9803890	DE	19621588	EP	907741				
٠		SK	1636/98	ZA	9704657						
							END OF ANNE				