Cahier des Charges - MBOYY MII Alert

1. Introduction

Ce document décrit les exigences fonctionnelles et non fonctionnelles pour le développement de la plateforme "MBOYY MII Alert". Cette plateforme vise à alerter et prévenir les populations du Sénégal des risques sanitaires liés aux vagues de chaleur, en proposant des gestes préventifs personnalisés.

2. Objectifs du Projet

2.1. Objectif Principal

Alerter les populations (notamment les plus vulnérables) des risques sanitaires liés aux vagues de chaleur et proposer des gestes préventifs personnalisés au Sénégal.

2.2. Objectifs Spécifiques

- Fournir des alertes localisées en temps réel.
- Afficher des données météo-santé précises et compréhensibles.
- Offrir des recommandations de prévention personnalisées selon le profil utilisateur.
- Mettre à disposition un module d'aide en cas d'urgence.
- Intégrer les bulletins officiels des autorités compétentes (CNCS/ANACIM).
- Permettre la collecte de données terrain pour le suivi sanitaire.
- Développer un module d'analyse basé sur l'IA pour l'identification des tendances.
- Assurer une accessibilité multilingue (Français, Wolof, Pulaar).
- Fournir une interface d'administration pour la gestion et le suivi.

3. Périmètre Fonctionnel

3.1. Rôles Utilisateurs

La plateforme gérera deux rôles principaux : - **Administrateur** : Gère les utilisateurs, les alertes, visualise les statistiques et les rapports. - **Client** : Reçoit les alertes, consulte les données météo, accède aux recommandations, soumet des rapports terrain.

3.2. Fonctionnalités Détaillées

3.2.1. Système d'alerte localisée (Mobile)

- Notification push/SMS : Envoi d'alertes en cas de vague de chaleur annoncée.
- Alerte basée sur la position GPS: Localisation des alertes par région (Matam, Podor, Kaffrine, etc.).
- Niveau de vigilance : Affichage clair du niveau de risque (Très inconfortable / Dangereux / Très dangereux).

3.2.2. Affichage des données météo-santé (Web et Mobile)

- **Températures prévues** : Affichage des températures maximales et nocturnes (via API existantes).
- Niveau de risque : Représentation visuelle du niveau de risque (code couleur).
- Carte thermique par région : Visualisation géographique des zones à risque (pour l'interface Admin).

3.2.3. Profil utilisateur pour recommandations ciblées (Mobile)

- **Précision du profil** : L'utilisateur peut spécifier s'il est : Personne âgée, Femme enceinte, Enfant, Souffrant de maladie chronique.
- Messages de prévention adaptés : L'application adapte les recommandations en fonction du profil de vulnérabilité.

3.2.4. Module "Que faire?" (Mobile)

- **Gestes de premiers secours** : Informations sur les actions à entreprendre en cas de coup de chaleur.
- **Conseils pratiques**: Hydratation, habillage, ventilation.
- Bouton "Urgence": Appel direct à un numéro d'urgence prédéfini (ex: XX XX).

3.2.5. Connexion aux bulletins CNCS/ANACIM (Web)

- Intégration automatique : Récupération des bulletins PDF et alertes en temps réel.
- **Méthodes d'intégration** : Via API ou dépôt manuel dans l'application (si nécessaire).

3.2.6. Collecte de données (Mobile)

- **Soumission de données terrain** : Permettre aux utilisateurs (citoyens, agents de santé, relais communautaires) de soumettre des informations sur :
 - o Symptômes observés (ex. déshydratation, coup de chaleur).
 - o Signalements d'événements sanitaires.
 - Ressenti thermique.
 - Conditions environnementales locales (absence d'ombre, accès à l'eau, etc.).

3.2.7. Module IA (Web)

• **Création et entraînement de modèles IA** : Pour l'analyse prédictive des vagues de chaleur et l'identification des zones à risque.

3.2.8. Version multilingue (Mobile)

• **Support linguistique**: Français, Wolof, Pulaar (via audio ou texte).

3.2.9. Administration et statistiques (Web)

- **Gestion des utilisateurs** : Création, modification, suppression et gestion des rôles.
- Visualisation des alertes : Suivi en temps réel des alertes émises.

- Suivi des rapports de signalement : Consultation et analyse des données terrain.
- **Gestion des régions/zones de vigilance** : Configuration des zones géographiques pour les alertes.
- Téléchargement des bulletins : Accès aux bulletins PDF et données climatiques.
- Statistiques d'impact santé: Visualisation via graphes et cartographie.

4. Périmètre Non Fonctionnel

4.1. Performance

- Le temps de réponse des APIs ne doit pas dépasser 2 secondes pour 90% des requêtes.
- Le chargement des pages des interfaces utilisateur ne doit pas dépasser 3 secondes.
- La plateforme doit pouvoir gérer un minimum de 1000 utilisateurs simultanés.

4.2. Sécurité

- Authentification robuste des utilisateurs (JWT, hachage des mots de passe).
- Protection contre les injections SQL et les attaques XSS.
- Gestion des autorisations basée sur les rôles.
- Communication sécurisée (HTTPS) entre le client et le serveur.
- Protection des données personnelles conformément aux réglementations en vigueur.

4.3. Fiabilité

- Disponibilité de la plateforme : 99.5%.
- Système de logging et de monitoring des erreurs.
- Mécanismes de sauvegarde et de restauration de la base de données.

4.4. Maintenabilité

- Code source bien structuré, commenté et documenté.
- Utilisation de frameworks et bibliothèques standards.
- Facilité de déploiement et de mise à jour.

4.5. Évolutivité

- Architecture modulaire permettant l'ajout de nouvelles fonctionnalités.
- Capacité à gérer une augmentation du nombre d'utilisateurs et de données.

4.6. Ergonomie et Design

- Interfaces utilisateur intuitives, simples et modernes.
- Design responsive pour une expérience optimale sur mobile et web.
- Cohérence graphique et respect des principes d'UX/UI.
- Tableau de bord vertical pour l'interface Admin.

4.7. Données

- Utilisation d'APIs météo réelles (Open-Meteo).
- Intégration des données CNCS/ANACIM (si API disponible, sinon dépôt manuel).
- Données de localisation précises pour les alertes.

5. Contraintes Techniques

- Backend: Node.js, Express.js, Sequelize, MySQL.
- **Frontend**: React.js, Tailwind CSS.
- Base de données : MySQL.
- API Météo : Open-Meteo.
- **Déploiement** : Environnement Linux (Ubuntu).

6. Calendrier Prévisionnel (Estimatif)

- Phase 1: Planification et Conception (1 semaine)
 - Rédaction du cahier des charges et spécifications techniques.
 - o Conception de l'architecture et du schéma de base de données.
- Phase 2 : Développement Backend (3 semaines)
 - Mise en place de l'API REST, authentification, gestion des utilisateurs.
 - o Intégration de l'API météo et logique de calcul de risque.
- Phase 3 : Développement Frontend Admin (2 semaines)
 - o Implémentation du tableau de bord, gestion des utilisateurs, alertes.
- Phase 4 : Développement Frontend Client (3 semaines)
 - Interface mobile, profil utilisateur, module "Que faire?", signalement.
- Phase 5 : Intégration et Tests (1 semaine)
 - o Intégration des modules, tests fonctionnels et de performance.
- Phase 6 : Déploiement et Documentation (1 semaine)
 - Préparation à la production, rédaction des rapports et guides.

7. Critères d'Acceptation

- Toutes les fonctionnalités décrites dans le périmètre fonctionnel doivent être implémentées et testées.
- Les exigences non fonctionnelles (performance, sécurité, fiabilité) doivent être respectées.
- Les interfaces utilisateur doivent être intuitives et conformes aux maquettes (si fournies).
- La base de données doit être stable et les données cohérentes.
- L'application doit être déployable et fonctionnelle dans l'environnement cible.
- La documentation technique et utilisateur doit être complète et à jour.

8. Glossaire

- API: Application Programming Interface
- CNCS : Centre National de la Climatologie du Sénégal
- ANACIM : Agence Nationale de l'Aviation Civile et de la Météorologie
- GPS: Global Positioning System
- IA: Intelligence Artificielle
- JWT: JSON Web Token
- **ORM**: Object-Relational Mapper
- **REST**: Representational State Transfer
- **SMS**: Short Message Service
- **UI**: User Interface
- **UX**: User Experience
- XSS: Cross-Site Scripting

Date de Génération : 24 juillet 2025