Лабораторная работа №2

Задание

Вариант №8

Классы 5, 16, 20 ('comp.sys.mac.hardware', "soc.religion.christian', "talk.religion.misc')

```
In [1]: import warnings
         import nltk
         from sklearn.datasets import fetch 20newsgroups
         warnings.simplefilter(action='ignore', category=FutureWarning)
         categories = ['comp.sys.mac.hardware', 'soc.religion.christian', 'talk.religion.misc']
In [2]:
         remove = ('headers', 'footers', 'quotes')
         twenty train full = fetch 20newsgroups(subset='train', categories=categories, shuffle=True, random state=42, rei
         twenty_test_full = fetch_20newsgroups(subset='test', categories=categories, shuffle=True, random_state=42, remo'
In [3]: twenty_train_full.data[0]
         'A SIMM is a small PCB with DRAM chips soldered on.\n\n--maarten'
In [4]: twenty_test_full.data[0]
         "\nI don't know either. Truth be known, so little is known of angels\nto even guess. All we really know is th
out[4]: "\nl don't know eitner. If util be known, so title is known of angestines standing to, so perhaps they\ndon't have ANY l anguage of their own.\n\n\well, we are told to test the spirits. While you could do this\nscripturally, to se
         e if someones claims are backed by the bible,\nI see nothing wrong with making sure that that guy Lazarus reall
         y\nwas dead and now he's alive.\n\n\nIt's a common fallacy you commit. The non-falsifiability trick. How\ncan I prove it when not all the evidence may be seen? Answer: I\ncan't. The fallacy is in assuming that it is up
         to me to prove \nanything. \n\nWhen I say it has never been proven, I'm talking about the ones\nmaking the cla
         ims, not the skeptics, who are doing the proving.\n\nThe burden of proof rest with the claimant. Unfortunately
          , ∖n(pontification warning) our legal system seems to be headed in∖nthe dangerous realm of making people prove
         their innocence (end\npontification).\n\nBut truthfully, Corinthians was so poorly written (or maybe just\nso p
         oorly translated into English) that much remains unknown\nabout just what Paul really intended (despite claims
         of hard\nproof one way or another). Some will see his writings in\n1 cor 12-14 as saying don't do this don't d
         o this and using\nsarcasm, metaphor, etc. while yet others take what he says literally\nsarcasms and metaphors
         notwithstanding.
```

```
Применение стемминга
In [54]: import nltk
         from nltk import word tokenize
         from nltk.stem import **
         nltk.download('punkt')
In [6]:
         def stemming(data):
             porter_stemmer = PorterStemmer()
             stem = []
             for text in data:
                 nltk tokens = word tokenize(text)
                 line = ''.join([' + porter stemmer.stem(word) for word in nltk tokens])
                 stem.append(line)
             return stem
In [7]: stem_train = stemming(twenty_train_full.data)
         stem_test = stemming(twenty_test_full.data)
In [8]: stem_train[0]
         ' a simm is a small pcb with dram chip solder on . -- maarten'
Out[8]:
```

```
In [9]: stem test[0]
```

" i do n't know either . truth be known , so littl is known of angel to even guess . all we realli know is that angel alway speak in the nativ tongu of the person they 're talk to , so perhap they do n't have ani languag of Out[9]: their own . well , we are told to test the spirit . while you could do thi scriptur , to see if someon claim ar e back by the bibl , i see noth wrong with make sure that that guy lazaru realli wa dead and now he 's aliv . i t 's a common fallaci you commit . the non-falsifi trick . how can i prove it when not all the evid may be seen ? answer : i ca n't . the fallaci is in assum that it is up to me to prove anyth . when i say it ha never been proven , i 'm talk about the one make the claim , not the skeptic , who are do the prove . the burden of proof rest with the claimant . unfortun , (pontif warn) our legal system seem to be head in the danger realm of mak e peopl prove their innoc (end pontif) . but truth , corinthian wa so poorli written (or mayb just so poorli translat into english) that much remain unknown about just what paul realli intend (despit claim of hard proo f one way or anoth) . some will see hi write in 1 cor 12-14 as say do n't do thi do n't do thi and use sarcasm , metaphor , etc . while yet other take what he say liter sarcasm and metaphor notwithstand .'

Векторизация выборки

Векторизация обучающей и тестовой выборки простым подсчетом слов (CountVectorizer) и значением max features = 10.000

```
In [10]: import numpy as np
         from sklearn.feature extraction.text import CountVectorizer
In [11]: vect without stop = CountVectorizer(max features=10000)
In [12]: train_data = vect_without_stop.fit_transform(twenty_train_full.data)
         test_data = vect_without_stop.transform(twenty_test_full.data)
         def sort by tf(input str):
In [13]:
             return input str[1]
         def top_terms(vector, data, count):
             x = list(zip(vector.get feature names out(), np.ravel(data.sum(axis=0))))
             x.sort(key=sort_by_tf, reverse=True)
             return x[:count]
In [14]: top_terms_without_stop = [{term[0]: term[1]} for term in top_terms(vect_without_stop, train_data, 20)]
         top_terms_without_stop
         top_terms_without_stop_test = [{term[0]: term[1]} for term in top_terms(vect_without_stop, test_data, 20)]
         top terms without stop test
Out[14]: [{'the': 12380},
          {'to': 6270},
{'of': 6251},
          {'and': 4764}
          {'that': 3928},
          {'is': 3902},
          {'in': 3771},
          {'it': 2684},
          {'you': 2165},
          {'not': 1933},
          {'for': 1839},
          {'this': 1688},
          {'be': 1600},
          {'as': 1579},
          {'are': 1534}
          {'have': 1479},
          {'with': 1475},
          {'on': 1351},
          {'but': 1136},
          {'or': 1132}]
         Отсечение стоп-слов
In [15]: vect_stop = CountVectorizer(max_features=10000, stop_words='english')
In [16]: train_data_stop = vect_stop.fit_transform(twenty_train_full.data)
         test data stop = vect stop.transform(twenty test full.data)
In [17]:
         top_terms_stop = [{term[0]: term[1]} for term in top_terms(vect_stop, train_data_stop, 20)]
         top terms stop
         top_terms_stop_test = [{term[0]: term[1]} for term in top_terms(vect_stop, test_data_stop, 20)]
```

```
top terms stop test
Out[17]: [{'god': 1108}
            {'people': 471},
            {'know': 424},
            {'don': 385},
{'just': 380},
            {'does': 378},
            {'like': 375},
{'jesus': 368}
            {'christ': 367},
            {'think': 343},
            {'church': 307},
            {'time': 301},
            {'lord': 298},
            {'say': 287},
            {'did': 269},
{'christian': 268},
            {'bible': 267},
            {'believe': 264},
            {'sin': 259},
            {'mac': 255}]
```

Без стоп-слов

```
In [18]: vect stem without stop = CountVectorizer(max features=10000)
In [19]: train data without stop stem = vect stem without stop.fit transform(stem train)
         test_data_without_stop_stem = vect_stem_without stop.transform(stem test)
         top terms stem = [{term[0]: term[1]} for term in top terms(vect stem without stop, train data without stop stem
In [20]:
         top terms stem
         top terms stem test = [{term[0]: term[1]} for term in top terms(vect stem without stop, test data without stop
         top terms stem test
Out[20]: [{'the': 12380},
          {'to': 6270},
          {'of': 6251}
           {'and': 4764},
          {'is': 3955},
          {'that': 3930},
{'in': 3771},
          {'it': 2882},
          {'you': 2165},
           {'not': 2042},
          {'be': 1904},
          {'for': 1839},
{'thi': 1756},
          {'have': 1614},
          {'as': 1579},
          {'are': 1558},
           {'with': 1476},
           {'on': 1354},
          {'do': 1217},
          {'god': 1173}]
         С использованием стоп-слов
In [21]: vect stem = CountVectorizer(max features=10000, stop words='english')
In [22]: train data stop stem = vect stem.fit transform(stem train)
         test data stop stem = vect stem.transform(stem test)
         top terms stop stem = [{term[0]: term[1]} for term in top terms(vect stem, train data stop stem, 20)]
In [23]:
         top terms stop stem
         top_terms_stop_stem_test = [{term[0]: term[1]} for term in top_terms(vect_stem, test_data_stop_stem, 20)]
         top terms stop stem test
Out[23]: [{'thi': 1756},
          {'god': 1173},
          {'wa': 1154},
          {'hi': 737},
          {'christian': 624},
          {'ha': 566},
{'use': 563},
          {'ani': 510},
          {'doe': 510},
           {'say': 487},
          {'know': 485},
          {'peopl': 473},
          {'like': 425},
          {'homosexu': 410},
          {'sin': 396},
          {'onli': 390},
          {'just': 380},
           {'think': 375},
          {'believ': 371}
          {'christ': 368}]
         Векторизация выборки с помощью TfidfTransformer (TF и TF-IDF)
```

Без использования стоп-слов

```
In [24]: from sklearn.feature_extraction.text import TfidfTransformer
In [25]: tf = TfidfTransformer(use_idf=False)
    tfidf = TfidfTransformer(use_idf=True)

In [26]: train_data_tf = tf.fit_transform(train_data)
    test_data_tf = tf.transform(test_data)

    train_data_tfidf = tfidf.fit_transform(train_data)
    test_data_tfidf = tfidf.transform(test_data)
```

```
In [27]: top_terms_tf = [{term[0]: term[1]} for term in top_terms(vect_without_stop, train_data_tf, 20)]
         top_terms_tf
          top terms tf test = [{term[0]: term[1]} for term in top terms(vect without stop, test data tf, 20)]
          top terms tf test
          top_terms_tfidf = [{term[0]: term[1]} for term in top_terms(vect_without_stop, train_data_tfidf, 20)]
          top terms tfidf
          top terms tfidf test = [{term[0]: term[1]} for term in top terms(vect without stop, test data tfidf, 20)]
          top terms tfidf test
Out[27]: [{'the': 148.86207833224387},
          {'to': 86.24069806048266},
          {'of': 78.2528272131044}
          {'and': 62.57405232529181}
          {'that': 61.91582724132609},
          {'is': 58.04952814992369},
          {'in': 54.30601035917385},
          {'it': 50.695055313142554},
{'you': 47.66881664363077},
          {'not': 35.309183144321366},
           {'for': 35.10046683041504},
           {'this': 32.70420270208634}
          {'have': 31.709762102532206},
           {'be': 30.59476801700976},
           {'on': 29.451538737736513}
          {'with': 29.234115766232215},
          {'are': 28.848411519142573},
          {'as': 28.23696021657093},
          {'was': 27.34951804295569}
          {'or': 25.671178548376496}]
         С использованием стоп-спов
In [28]: tf = TfidfTransformer(use_idf=False)
         tfidf = TfidfTransformer(use idf=True)
In [29]: train data stop tf = tf.fit transform(train data stop)
          test data stop tf = tf.transform(test data stop)
          train data stop tfidf = tfidf.fit transform(train data stop)
         test_data_stop_tfidf = tfidf.transform(test_data_stop)
In [30]: top_terms_stop_tf = [{term[0]: term[1]} for term in top_terms(vect_stop, train_data_stop_tf, 20)]
          top terms stop tf
          top_terms_stop_tf_test = [{term[0]: term[1]} for term in top_terms(vect_stop, test_data_stop_tf, 20)]
          top_terms_stop_tf_test
          top_terms_stop_tfidf = [{term[0]: term[1]} for term in top_terms(vect_stop, train_data_stop_tfidf, 20)]
          top terms stop tfidf
          top terms stop_tfidf_test = [{term[0]: term[1]} for term in top_terms(vect_stop, test_data_stop_tfidf, 20)]
         top_terms_stop_tfidf_test
Out[30]: [{'god': 27.95497268349866},
{'know': 18.542141116243307},
          {'just': 16.210267240880423},
          {'does': 16.137672246629286},
          {'don': 16.033474930641432},
           {'like': 15.537254867563917},
           {'think': 14.97705548765351}
          {'people': 14.195382946062232},
           {'mac': 13.981210612738836}
           {'jesus': 12.817753218849594}
          {'christian': 12.506478769588576},
          {'church': 12.347646222961615},
           {'did': 11.951076435168872},
          {'sin': 11.922112737935514},
          {'apple': 11.865499882550811}
           {'monitor': 11.667768613399344},
           {'time': 11.52942804011032},
          {'read': 10.626657803538777}
           {'christ': 10.570073397684714},
           {'believe': 10.530471367142}]
         Со стеммингом без стоп-слов
In [31]: tf = TfidfTransformer(use idf=False)
         tfidf = TfidfTransformer(use_idf=True)
In [32]: train data stem tf = tf.fit transform(train data without stop stem)
         test_data_stem_tf = tf.transform(test_data_without_stop_stem)
          train data stem tfidf = tfidf.fit transform(train data without stop stem)
         test_data_stem_tfidf = tfidf.transform(test_data_without_stop_stem)
```

```
In [33]: top_terms_stem_tf = [\{term[0]: term[1]\}  for term in top_terms(vect_stem_without_stop, train_data_stem_tf, 20)]
         top terms stem tf
         top terms stem tf test = [{term[0]: term[1]} for term in top terms(vect stem without stop, test data stem tf, 2
         top terms stem tf test
         top_terms_stem_tfidf = [{term[0]: term[1]} for term in top_terms(vect_stem_without_stop, train_data_stem_tfidf,
         top_terms_stem_tfidf
         top terms stem tfidf test = [{term[0]: term[1]} for term in top terms(vect stem without stop, test data stem tf
         top terms stem tfidf test
Out[33]: [{'the': 148.44840163307802},
          {'to': 86.18185750706422},
          {'of': 77.96764025564627}
          {'and': 62.34718973797119}
          {'that': 61.801008270307904},
          {'is': 58.55502667880058},
          {'in': 54.22442872955803}
          {'it': 52.874155787450924},
          {'you': 47.98992721956406},
          {'not': 36.69440941285236},
          {'for': 35.22027869058943},
          {'be': 34.71864300028177},
          {'have': 34.241537522424174},
          {'thi': 33.153367265959325},
          {'on': 29.48488130877514}
          {'with': 29.160656939048575},
          {'are': 28.988578800351764},
          {'do': 28.875533246770882},
          {'as': 27.99019444534268},
          {'wa': 27.759404376818473}]
         Со стеммингом с использованием стоп-слов
In [34]: tf = TfidfTransformer(use_idf=False)
         tfidf = TfidfTransformer(use idf=True)
In [35]:
         train data stem stop tf = tf.fit transform(train data stop stem)
         test_data_stem_stop_tf = tf.transform(test_data_stop_stem)
         train data stem stop tfidf = tfidf.fit transform(train data stop stem)
         test data stem stop tfidf = tfidf.transform(test data stop stem)
In [36]: top terms stem stop tf = [{term[0]: term[1]} for term in top terms(vect stem, train data stop tf, 20)]
         top_terms_stem_stop_tf
         top_terms_stem_stop_tf_test = [{term[0]: term[1]} for term in top_terms(vect_stem, test_data_stop_tf, 20)]
         top_terms_stem_stop_tf_test
         top terms stem stop tfidf = [{term[0]: term[1]} for term in top terms(vect stem, train data stop tf, 20)]
         top_terms_stem_stop_tfidf
         top_terms_stem_stop_tfidf_test = [{term[0]: term[1]} for term in top_terms(vect_stem, test_data_stop_tf, 20)]
         top terms stem stop tfidf test
Out[36]: [{'hazrat': 52.56617814468827}
          {'merchandis': 37.79665379581945},
          {'mask': 32.38004562022943}
          {'dieti': 31.714807369343013},
          {'di': 31.552249334010018},
          {'muham': 29.99492088865641}
          {'undiscuss': 27.996778310542236},
          {'relativli': 27.570418756826566},
          {'nobodi': 21.00989194778251},
          {'uniti': 20.69403326971876}
          {'magisterieum': 20.010418361950915},
          {'automat': 19.476981780463902},
          {'cyru': 18.95344612955057},
          {'stare': 18.273135374257958},
          {'aviat': 17.889577615820613},
          {'wish': 17.380657714430487},
          {'abomin': 17.14902573648428},
          {'795': 16.935555097962848},
          {'prone': 16.60129290675252},
          {'sgi': 16.25414677898279}]
         Составление таблицы
In [37]: import pandas as pd
In [38]: columns = pd.MultiIndex.from product([['Count', 'TF', 'TF-IDF'], ['Без стоп-слов', 'С стоп-словами']])
```

```
In [39]: df1 = pd.DataFrame(columns=columns)
         df1['Count', 'Без стоп-слов'] = top_terms_without_stop
         df1['TF', 'Без стоп-слов'] = top terms tf
         df1['TF-IDF', 'Без стоп-слов'] = top terms tfidf
         df1['Count', 'C стоп-словами'] = top terms stop
         df1['TF', 'C стоп-словами'] = top_terms_stop_tf
         df1['TF-IDF', 'C стоп-словами'] = top terms stop tfidf
         df1
```

Out[39]: Count TE TF-IDE Без стоп-С стоп-Без стоп-слов С стоп-словами Без стоп-слов С стоп-словами слов словами {'the' {'the' {'god': 84.04605919516031} {'god': 43.82121116891297} 0 {'the': 16652} {'god': 1427} 543.0887145775569} 215.18803930002346} {'to' {'iesus': {'to': 8490} {'people': 779} {'know': 53.06617041632788} 286.0938629517631} 26.401690904264303} 122.86230443612654} {'people': {'people': 2 {'of': 8334} {'jesus': 722} {'of': 113.2408746455194} 51.461500350700305} 249.31964725391921} 26.116384920488024} {'and' {'and' {'just': 49.95803872415939} {'and': 6656} 3 {'know': 625} 209.99355122874857} 96.00866795656545} 25.990836762272973} {'is': {'that': {'just': 24.554027466416436} {'does': 47.66231977464952} {'that': 5747} {'does': 624} 194.50478082296198} 90.94335853814704} {'that': 5 {'is': 5591} {'just': 586} ('don': 45.904856306460154) {'is': 89.68245849269316} {'does': 24.159380757560697} 185.161466645549} 6 {'in': 4801} {'don': 571} {'like': 44.557247980439584} {'in': 75.20695624577941} {'don': 23.236656368031195} 155.5536983679511} {'it': {'think': 42.683000298870574} {'it': 70.64716108495936} {'like': 22.53936626597992} 7 {'it': 3830} {'think': 565} 141.18074652398246} {'you' {'you': 3092} {'jesus': 41.40465459972886} {'you': 70.267094812125} {'think': 22 101945828068693} 8 {'like': 559} 117.98544884456389} {'for' {'for' {'believe' 9 {'not': 2749} {'say': 461} {'mac': 19.43308741744436} 105.73857309057988} 31.590391737280633} 53.56843356240359} {'this' {'this' {'believe': {'time': 31.41388463517261} 10 {'for': 2699} {'time': 444} 19.378790437446035} 89.73752243825957} 50.75562852683706} {'not': {'not': ('christian': {'good': 29.98678066435632} 11 {'this': 2486} {'believe': 437} 17.988599957072733} 86.13716438441566} 50.09016544368851} {'be' {'say': 17.32450731690708} 12 {'be': 2316} {'aood': 416} {'be': 84.021549942572} {'sav': 29.883715281817828} 47.79328531321388} {'have' {'are' {'mac': 29.593860305546464} {'good': 17.28507445229634} 13 {'are': 2220} {'church': 414} 82.5414991960181} 45.582372704508933 {'with' {'christian': {'have' {'have': 2166} {'bible': 411} {'time': 17.23652678997511} 78.72180061552618} 28.097482333068694} 45.302196085167424} {'christian': {'are' {'with': {'christians': 15 {'as': 2136} {'use': 27.373307702686343} 42.98742534542351} 17.137530582992603} 75.29563703121633} 396} {'as' {'with': 2071} {'way': 377} {'way': 25.76215334315875} {'bible': 16.90297950194337} 16 70.41570789025904} 41.569249901325044} {'problem' {'on' {'apple': {'on': 1823} 17 {'christ': 373} {'if': 65.83106887666393} 16.555927890043925} 25.573089707965188 39.87771437760014} {'christians' {'church': {'but' 18 {'but': 1818} {'did': 373} {'if': 38.47381716307315} 64.7675841529437} 16.50243190133636} 25.446644491594235 {'christians' {'thanks': {'as' {'but' {'bible': 25.228516436347924} {'was': 1622}

```
In [40]: df2 = pd.DataFrame(columns=columns)
           df2['Count', 'Без стоп-слов'] = top terms without stop test
          df2['TF', 'Без стоп-слов'] = top terms tf test
          df2['TF-IDF', 'Без стоп-слов'] = top_terms_tfidf_test
          df2['Count', 'C стоп-словами'] = top_terms_stop_test
df2['TF', 'C стоп-словами'] = top_terms_stop_tf_test
          df2['TF-IDF', 'C стоп-словами'] = top terms stop tfidf test
          df2
```

3333

63.60347816394421}

16.34820801151869}

38.129554444839656}

	Без стоп- слов	С стоп- словами	Без стоп-слов	С стоп-словами	Без стоп-слов	С стоп-словами
0	{'the': 12380}	{'god': 1108}	{'the': 364.8095702637773}	{'god': 52.56617814468827}	{'the': 148.86207833224387}	{'god': 27.95497268349866}
1	{'to': 6270}	{'people': 471}	{'to': 197.36462753116095}	{'know': 37.79665379581945}	{'to': 86.24069806048266}	{'know': 18.542141116243307}
2	{'of': 6251}	{'know': 424}	{'of': 166.55696621672018}	{'just': 32.38004562022943}	{'of': 78.2528272131044}	{'just': 16.210267240880423}
3	{'and': 4764}	{'don': 385}	{'and': 133.468347925069}	{'don': 31.714807369343013}	{'and': 62.57405232529181}	{'does': 16.137672246629286}
4	{'that': 3928}	{'just': 380}	{'that': 124.37884585010595}	{'does': 31.552249334010018}	{'that': 61.91582724132609}	{'don': 16.033474930641432}
5	{'is': 3902}	{'does': 378}	{'is': 121.71255438787193}	{'like': 29.99492088865641}	{'is': 58.04952814992369}	{'like': 15.537254867563917}
6	{'in': 3771}	{'like': 375}	{'in': 107.7277527155332}	{'think': 27.996778310542236}	{'in': 54.30601035917385}	{'think': 14.97705548765351}
7	{'it': 2684}	{'jesus': 368}	{'it': 99.81441760032114}	{'people': 27.570418756826566}	{'it': 50.695055313142554}	{'people': 14.195382946062232}
8	{'you': 2165}	{'christ': 367}	{'you': 79.20779132071978}	{'mac': 21.00989194778251}	{'you': 47.66881664363077}	{'mac': 13.981210612738836}
9	{'not': 1933}	{'think': 343}	{'for': 67.78077562867219}	{'time': 20.69403326971876}	{'not': 35.309183144321366}	{'jesus': 12.817753218849594}
10	{'for': 1839}	{'church': 307}	{'not': 59.84862781060529}	{'jesus': 20.010418361950915}	{'for': 35.10046683041504}	{'christian': 12.506478769588576}
11	{'this': 1688}	{'time': 301}	{'have': 56.67244054149067}	{'christian': 19.476981780463902}	{'this': 32.70420270208634}	{'church': 12.347646222961615}
12	{'be': 1600}	{'lord': 298}	{'this': 56.440703899829245}	{'did': 18.95344612955057}	{'have': 31.709762102532206}	{'did': 11.951076435168872}
13	{'as': 1579}	{'say': 287}	{'be': 52.411421997778284}	{'say': 18.273135374257958}	{'be': 30.59476801700976}	{'sin': 11.922112737935514}
14	{'are': 1534}	{'did': 269}	{'on': 51.36403034174104}	{'church': 17.889577615820613}	{'on': 29.451538737736513}	{'apple': 11.865499882550811}
15	{'have': 1479}	{'christian': 268}	{'with': 50.75947933208338}	{'way': 17.380657714430487}	{'with': 29.234115766232215}	{'monitor': 11.667768613399344}
16	{'with': 1475}	{'bible': 267}	{'are': 45.60043873793938}	{'believe': 17.14902573648428}	{'are': 28.848411519142573}	{'time': 11.52942804011032}
17	{'on': 1351}	{'believe': 264}	{'as': 41.77266737924603}	{'apple': 16.935555097962848}	{'as': 28.23696021657093}	{'read': 10.626657803538777}
18	{'but': 1136}	{'sin': 259}	{'if': 39.598719691654146}	{'new': 16.60129290675252}	{'was': 27.34951804295569}	{'christ': 10.570073397684714}
19	{'or': 1132}	{'mac': 255}	{'but': 39.57916126789582}	{'read': 16.25414677898279}	{'or': 25.671178548376496}	{'believe': 10.530471367142}

Со стеммингом

```
In [41]: df3 = pd.DataFrame(columns=columns)

df3['Count', 'Без стоп-слов'] = top_terms_stem
    df3['TF', 'Без стоп-слов'] = top_terms_stem_tf
    df3['TF-IDF', 'Без стоп-словами'] = top_terms_stem_tfidf

df3['Count', 'С стоп-словами'] = top_terms_stop_stem
    df3['TF', 'С стоп-словами'] = top_terms_stem_stop_tf
    df3['TF-IDF', 'С стоп-словами'] = top_terms_stem_stop_tfidf
```

	Count		Count			
	Без стоп- слов	С стоп- словами	Без стоп-слов	С стоп-словами	Без стоп-слов	С стоп-словами
0	{'the': 16651}	{'thi': 2494}	{'the': 533.6024042368656}	{'hazrat': 84.04605919516031}	{'the': 216.64166617238433}	{'hazrat': 84.04605919516031}
1	{'to': 8490}	{'wa': 1669}	{'to': 280.79790354201583}	{'merchandis': 53.06617041632788}	{'to': 124.00623302448895}	{'merchandis': 53.06617041632788}
2	{'of': 8334}	{'god': 1453}	{'of': 244.9348757517005}	{'relativli': 51.461500350700305}	{'of': 114.05132687333837}	{'relativli': 51.461500350700305}
3	{'and': 6657}	{'hi': 1004}	{'and': 206.1233106003709}	{'mask': 49.95803872415939}	{'and': 96.67208703969094}	{'mask': 49.95803872415939}
4	{'that': 5748}	{'christian': 909}	{'is': 194.3722816360924}	{'di': 47.66231977464952}	{'that': 91.9081519574775}	{'di': 47.66231977464952}
5	{'is': 5686}	{'ha': 867}	{'that': 181.67024370851857}	{'dieti': 45.904856306460154}	{'is': 91.65225243008739}	{'dieti': 45.904856306460154}
6	{'in': 4801}	{'doe': 788}	{'in': 152.53476815361205}	{'muham': 44.557247980439584}	{'in': 75.5050120617292}	{'muham': 44.557247980439584}
7	{'it': 4087}	{'peopl': 785}	{'it': 146.0633678113764}	{'undiscuss': 42.683000298870574}	{'it': 74.18016258094475}	{'undiscuss': 42.683000298870574}
8	{'you': 3091}	{'say': 759}	{'you': 115.83370128734639}	{'magisterieum': 41.40465459972886}	{'you': 70.98559082363474}	{'magisterieum': 41.40465459972886}
9	{'not': 2921}	{'use': 731}	{'for': 103.80770583846451}	{'abomin': 31.590391737280633}	{'for': 54.01225755326821}	{'abomin': 31.590391737280633}
10	{'be': 2723}	{'know': 720}	{'be': 93.93792886919096}	{'uniti': 31.41388463517261}	{'be': 53.347885440854434}	{'uniti': 31.41388463517261}
11	{'for': 2699}	{'jesu': 716}	{'not': 89.13474917240082}	{'heat': 29.98678066435632}	{'not': 52.92993046720662}	{'heat': 29.98678066435632}
12	{'thi': 2494}	{'think': 659}	{'thi': 88.44240833356106}	{'stare': 29.883715281817828}	{'thi': 51.466855199772894}	{'stare': 29.883715281817828}
13	{'have': 2332}	{'ani': 658}	{'have': 87.30612987422288}	{'nobodi': 29.593860305546464}	{'have': 48.22745458111488}	{'nobodi': 29.593860305546464}
14	{'are': 2261}	{'onli': 625}	{'with': 77.19469611884804}	{'automat': 28.097482333068694}	{'are': 46.82287154841494}	{'automat': 28.097482333068694}
15	{'as': 2134}	{'like': 613}	{'are': 75.68404303725856}	{'vp': 27.373307702686343}	{'with': 43.31005469740532}	{'vp': 27.373307702686343}
16	{'with': 2071}	{'believ': 599}	{'on': 69.42025813969494}	{'wish': 25.76215334315875}	{'as': 41.801909793427605}	{'wish': 25.76215334315875}
17	{'do': 1828}	{'just': 586}	{'do': 65.4990726142797}	{'sall': 25.573089707965188}	{'do': 41.33281243586461}	{'sall': 25.573089707965188}
18	{'on': 1828}	{'time': 532}	{'if': 64.51634873919015}	{'avail': 25.446644491594235}	{'on': 40.45808721538086}	{'avail': 25.446644491594235}
19	{'but': 1818}	{'did': 518}	{'but': 63.585352804666755}	{'acceptab': 25.228516436347924}	{'if': 38.77263584827218}	{'acceptab': 25.228516436347924}

```
In [42]: df4 = pd.DataFrame(columns=columns)

df4['Count', 'Без стоп-слов'] = top_terms_stem_test
    df4['TF', 'Без стоп-слов'] = top_terms_stem_tf_test
    df4['TF-IDF', 'Без стоп-слов = top_terms_stem_tfidf_test

df4['Count', 'C стоп-словами'] = top_terms_stop_stem_test
    df4['TF', 'C стоп-словами'] = top_terms_stem_stop_tf_test
    df4['TF-IDF', 'C стоп-словами'] = top_terms_stem_stop_tfidf_test

df4
```

Out[42]:	Count	TF	TF-IDF

	Без стоп- слов	С стоп- словами	Без стоп-слов	С стоп-словами	Без стоп-слов	С стоп-словами
0	{'the': 12380}	{'thi': 1756}	{'the': 357.42953269535775}	{'hazrat': 52.56617814468827}	{'the': 148.44840163307802}	{'hazrat': 52.56617814468827}
1	{'to': 6270}	{'god': 1173}	{'to': 193.0934678602922}	{'merchandis': 37.79665379581945}	{'to': 86.18185750706422}	{'merchandis': 37.79665379581945}
2	{'of': 6251}	{'wa': 1154}	{'of': 163.11159230069902}	{'mask': 32.38004562022943}	{'of': 77.96764025564627}	{'mask': 32.38004562022943}
3	{'and': 4764}	{'hi': 737}	{'and': 130.64064754373393}	{'dieti': 31.714807369343013}	{'and': 62.34718973797119}	{'dieti': 31.714807369343013}
4	{'is': 3955}	{'christian': 624}	{'that': 121.85582499990868}	{'di': 31.552249334010018}	{'that': 61.801008270307904}	{'di': 31.552249334010018}
5	{'that': 3930}	{'ha': 566}	{'is': 121.07210432311149}	{'muham': 29.99492088865641}	{'is': 58.55502667880058}	{'muham': 29.99492088865641}
6	{'in': 3771}	{'use': 563}	{'in': 105.56690438668741}	{'undiscuss': 27.996778310542236}	{'in': 54.22442872955803}	{'undiscuss': 27.996778310542236}
7	{'it': 2882}	{'ani': 510}	{'it': 102.97217168052809}	{'relativli': 27.570418756826566}	{'it': 52.874155787450924}	{'relativli': 27.570418756826566}
8	{'you': 2165}	{'doe': 510}	{'you': 77.64234325340601}	{'nobodi': 21.00989194778251}	{'you': 47.98992721956406}	{'nobodi': 21.00989194778251}
9	{'not': 2042}	{'say': 487}	{'for': 66.44039176340249}	{'uniti': 20.69403326971876}	{'not': 36.69440941285236}	{'uniti': 20.69403326971876}
10	{'be': 1904}	{'know': 485}	{'not': 61.51670078442213}	{'magisterieum': 20.010418361950915}	{'for': 35.22027869058943}	{'magisterieum': 20.010418361950915}
11	{'for': 1839}	{'peopl': 473}	{'have': 61.345637245795935}	{'automat': 19.476981780463902}	{'be': 34.71864300028177}	{'automat': 19.476981780463902}
12	{'thi': 1756}	{'like': 425}	{'be': 60.1583338096674}	{'cyru': 18.95344612955057}	{'have': 34.241537522424174}	{'cyru': 18.95344612955057}
13	{'have': 1614}	{'homosexu': 410}	{'thi': 55.97694335313927}	{'stare': 18.273135374257958}	{'thi': 33.153367265959325}	{'stare': 18.273135374257958}
14	{'as': 1579}	{'sin': 396}	{'on': 50.23064353616814}	{'aviat': 17.889577615820613}	{'on': 29.48488130877514}	{'aviat': 17.889577615820613}
15	{'are': 1558}	{'onli': 390}	{'with': 49.68487967865335}	{'wish': 17.380657714430487}	{'with': 29.160656939048575}	{'wish': 17.380657714430487}
16	{'with': 1476}	{'just': 380}	{'are': 45.2643257420303}	{'abomin': 17.14902573648428}	{'are': 28.988578800351764}	{'abomin': 17.14902573648428}
17	{'on': 1354}	{'think': 375}	{'do': 44.96495617079795}	{'795': 16.935555097962848}	{'do': 28.875533246770882}	{'795': 16.935555097962848}
18	{'do': 1217}	{'believ': 371}	{'as': 40.80538032516044}	{'prone': 16.60129290675252}	{'as': 27.99019444534268}	{'prone': 16.60129290675252}
19	{'god': 1173}	{'christ': 368}	{'if': 38.80762817439416}	{'sgi': 16.25414677898279}	{'wa': 27.759404376818473}	{'sgi': 16.25414677898279}

Запись в файл

```
In [43]: import openpyxl

In [44]: writer = pd.ExcelWriter('result.xlsx', engine='openpyxl')

df1.to_excel(writer, sheet_name='Train, wo stem')
df2.to_excel(writer, sheet_name='Test, wo stem')
df3.to_excel(writer, sheet_name='Train, with stem')
df4.to_excel(writer, sheet_name='Test, with stem')
writer.close()
```

```
return cv, tf
In [48]: result = []
         for max features value in max features values:
             for stop word in stop words:
                 for ut in use_tf:
                     for ui in use idf:
                         options = {}
                         cv, tf = prepare(twenty_train_full.data, max_features_value, stop_word, ut, ui)
                         if tf:
                             clf = MultinomialNB()
                             clf.fit(tf.transform(cv.transform(twenty train full.data)), twenty train full.target)
                             prep_test = tf.transform(cv.transform(twenty_test_full.data))
                         else:
                             clf = MultinomialNB()
                             clf.fit(cv.transform(twenty_train_full.data), twenty_train_full.target)
                             prep test = cv.transform(twenty test full.data)
                         options['features'] = max_features_value
                         options['stop_words'] = stop_word
                         options['use_tf'] = ut
                         options['use idf'] = ui
                         result data = classification report(clf.predict(prep test), twenty test full.target, output dic
                         result_df = pd.DataFrame(result_data)
                         result.append({
                              'df': result_df,
                              'options': options
                         })
In [49]: writer = pd.ExcelWriter('result compare.xlsx', engine='openpyxl')
         df = pd.DataFrame(columns=['Номер страницы', 'features', 'stop words', 'use tf', 'use idf'])
         for it, item in enumerate(result):
             for key, value in item['options'].items():
                 df.at[it, key] = value
             df.at[it, 'Номер страницы'] = it
         df.to_excel(writer, sheet_name='Оглавление')
         for it, item in enumerate(result):
             df new = pd.DataFrame(item['df'])
             df_new.to_excel(writer, sheet_name=f'Страница {it}')
         writer.close()
In [50]: from sklearn.pipeline import Pipeline
         parameters = {
              'vect__max_features': max_features_values,
             'vect__stop_words': stop_words,
'tfidf__use_idf': use_idf
         ('clf', MultinomialNB())])
In [51]: from sklearn.model_selection import GridSearchCV
         gscv = GridSearchCV(text_clf, param_grid=parameters)
         gscv.fit(twenty_train_full.data, twenty_train_full.target)
               GridSearchCV
Out[51]: -
          ▶ estimator: Pipeline
            ► CountVectorizer
           ▶ TfidfTransformer
             ▶ MultinomialNB
```

In [52]: print(classification report(gscv.predict(twenty test full.data), twenty test full.target))

tf.fit(cv.transform(data))

	precision	recall	f1-score	support
0 1 2	0.94 0.95 0.23	0.94 0.65 0.88	0.94 0.77 0.36	386 583 65
accuracy macro avg weighted avg	0.71 0.90	0.82 0.77	0.77 0.69 0.81	1034 1034 1034

In [53]: gscv.best_params_