Inhaltsverzeichnis

1	Fehler 2												
	1.1	Kategorien		2									
	1.2	Maschienenzahlen		2									
	1.3	Formeln		3									
2	Interpolation 4												
	2.1	Vandermonde		4									
	2.2	Lagrage		4									
	2.3	Newton		5									
	2.4	Chebyshev Stützstellen		5									
	2.5	Kubische Splines		5									
	2.6	Nachteile Polynominterpolation		6									
3	Diff	ferenzenquotient	ı	7									
	3.1	Varianten		7									
	3.2	Verfahrensfehler		7									
	3.3	Absoluter Fehler		7									
	3.4	Optimales h		7									
	3.5	Ordnung des Fehlers		8									
4	Integration 9												
	4.1	Trapez		9									
	4.2	Simpson		9									
	4.3	Newton-Cotes		9									
	4.4	Gaus-Legendre Stützstellen		0									
	4.5	Romberg		0									
	4.6	Adaptiv		1									
5	Lineare Gleichungssysteme 12												
	5.1	Rechenaufwand	1	2									
	5.2	Normen		2									
	5.3	Fehler		2									
	5.4	LU-Zerlegung		3									
	5.5	QR-Zerlegung: Householder		3									
	5.6	Cholesky-Zerlegung	1										
6	Lineare Ausgleichsrechnung 16												
	6.1	Normalengleichung	1	6									
	6.2	Householder		6									
7	Iterative Verfahren 17												
	7.1	Fixpunktiteration	1	7									
	7.2	Newtonverfahren		7									
	7.3	Sekantenverfahren											
	7.4	Mehrdimensional	1										

1 Fehler

1.1 Kategorien

- Modellfehler (Vereinfachungen)
- Eingabefehler (ungenaue Daten oder vorherige Berechnungen)
- Verfahrensfehler (näherungsweise Berechnung, z.B. Linearisierung)
- Rundungsfehler (Maschienenzahlen)

1.2 Maschienenzahlen

Aufbau

Vorzeichen

Abbildung 1: 32bit Fließkomma (single)

Standartgrößen

• Single: 32Bit

VZ = 1Bit, EXP = 8Bit, MAN = 23Bit, B = 127

• Double: 64Bit

VZ = 1Bit, EXP = 11Bit, MAN = 52Bit, B = 1023

Berechnung

• Dezimal zu Binär

Für die Dezimalzahl \mathbf{x} wiederhole:

- $-\ \widetilde{x}:=2\cdot x$
- $-b_i = \widetilde{x} \operatorname{div} 1$
- $-x := \widetilde{x} \mod 1$

Ergebnis: $0.b_1b_2...b_n$

- Normalisierung $M = (0 := +, 1 := -)1.m \cdot 2^{E}$
- Exponent e = E B

Rundungsfehler

- Auslöschung Subtraktion gleichgroßer Zahlen \Rightarrow Ergebnis wird durch 0ller aufgefüllt
- Angleichung Addition oder Subtraktion, betragsmäßig sehr unterschiedlicher Zahlen

1.3 Formeln

- Absoluter Fehler: $\triangle x = |x \widetilde{x}|$
- Relativer Fehler: $rel = \frac{\triangle x}{|x|}$
- Maschinengenauigkeit: $\epsilon = 2^{-n}$
- Kondition (Verstärkung von Eingabefehlern zu Ausgabefehlern) $\kappa = \left|\frac{f'(x)}{f(x)} \cdot x\right|$ (schlechte Kondition wenn $\kappa \gg 1$)
- Taylorreihen

$$- sin(x) = x - \frac{x^3}{6} + \frac{x^5}{120} - \cdots$$

$$- cos(x) = 1 - \frac{x^2}{2} + \frac{x^4}{24} - \frac{x^6}{720} + \cdots$$

$$- e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \frac{x^5}{120} + \frac{x^6}{720}$$

• Trigonometrische Umformungen

$$-\sin(\alpha)^{2} + \cos(\alpha)^{2} = 1$$

$$-\sin(-\alpha) = -\sin(\alpha)$$

$$-\cos(-\alpha) = \cos(\alpha)$$

$$-\sin(2\alpha) = 2\sin(\alpha)\cos(\alpha)$$

$$-\cos(2\alpha) = \cos(\alpha)^{2} - \sin(\alpha)^{2}$$

$$-\sin(\alpha + \beta) = \cos(\alpha)\sin(\beta) - \sin(\alpha)\cos(\beta)$$

• Ableitung von Grundfunktionen

$$- (sin(x))' = cos(x)
- (cos(x))' = -sin(x)
- (ln(x))' = \frac{1}{x}$$

2 Interpolation

2.1 Vandermonde

• Allgemeine Formel

$$p(x) = c_0 + c_1 x + c_2 x^2 + c_{n-1} x^{n-1}$$
$$A\vec{x} = \vec{y}$$

• Lösungsmatrix

$$A = \begin{pmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{pmatrix}$$

• Hornerschema

$$p(x) = (\dots((c_n x + c_{n-1})x + c_{n-2})x + \dots + c_1)x + c_0$$

• Aufwand: $O(n^3)$

2.2 Lagrage

• Einzelpolynom

$$L_j = \prod_{k=0, k \neq j} \frac{x - x_k}{x_j - x_k} \implies \frac{(x - x_2)(x - x_3) \cdots (x - x_n)}{(x_1 - x_2) \cdots (x_1 - x_n)}$$

• Gesamtpolynom

$$p(x) = \sum_{i=0}^{n} y_i L_i$$

• Aufwand: $O(n^2)$

2.3 Newton

• Allgemeine Formel

$$p_n(x) = y_0 + y_{10}(x - x_0) + y_{210}(x - x_0)(x - x_1) + \dots + y_{n-3210}(x - x_0)(x - x_0) + \dots + y_{n-3210}(x - x_0)(x - x_0)(x - x_0)(x - x_0) + \dots + y_{n-3210}(x - x_0)(x - x_0)(x - x_0)(x - x_0) + \dots + y_{n-3210}(x - x_0)(x - x_0$$

• Dividierte Differenzen (Diagonale y-Werte sind b-Werte)

$$\begin{array}{c|cccc} x_0 & y_0 & & & & & & \\ x_1 & y_1 & y_{10} & & & & & \\ x_2 & y_2 & y_{21} & y_{210} & & & & \\ x_3 & y_3 & y_{32} & y_{321} & y_{3210} & & & & \\ \vdots & \vdots & \vdots & \vdots & \ddots & & & & \\ y_{k\cdots l} = \frac{y_{k\cdots (l+1)} - y_{(k-1)\cdots l}}{x_k - x_l} \implies y_{321} = \frac{y_{32} - y_{21}}{x_3 - x_1} \end{array}$$

• Aufwand: $O(n^2)$ (mit besserer Konstante)

2.4 Chebyshev Stützstellen

$$x_j = \frac{a+b}{2} + \frac{b-a}{2}\cos\left(\frac{2j+1}{2n+2}\pi\right)$$

2.5 Kubische Splines

• Allgemeine Formel

$$s_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3$$

• Formeln für die Parameter

1.
$$h_i = x_{i+1} - x_i$$

2.
$$a_i = y_i$$

3.
$$A\vec{c} = \vec{r} \implies c_i$$

$$\begin{pmatrix} 2(h_0+h_1) & h_1 & 0 & \cdots \\ h_1 & 2(h_1+h_2) & h_2 & \cdots \\ \vdots & \ddots & \ddots & \vdots \\ \cdots & \cdots & h_{n-2} & 2(h_{n-2}+h_{n-1}) \end{pmatrix} \cdot \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_{n-1} \end{pmatrix} = \begin{pmatrix} 3\frac{y_2-y_1}{h_1} - 3\frac{y_1-y_0}{h_0} \\ 3\frac{y_3-y_2}{h_2} - 3\frac{y_2-y_1}{h_1} \\ \vdots \\ 3\frac{y_n-y_{n-1}}{h_{n-1}} - 3\frac{y_{n-1}-y_{n-2}}{h_{n-2}} \end{pmatrix}$$

 $dim(A) = (n-2) \times (n-2)$ wobei
n der Anzahl der Eingabewerte entspricht.

4.
$$b_i = \frac{y_{i+1} - y_i}{h_i} - \frac{h_i}{3}(c_{i+1} + 2c_i)$$

5.
$$d_i = \frac{c_{i+1} - c_i}{3h_i}$$

• Aus den Ableitungen

$$- y_i + b_i h_i + c_i h_i^2 + d_i h_i^3 = y_{i+1}$$

$$- b_i + 2c_i h_i + 3d_i h_i^2 = b_{i+1}$$

$$- 2c_i + 6d_i h_i = 2c_{i+1}$$

- Natürliche Splines (Erste und letzte Spalte von A fallen weg) (Spline ist eine Gerade außerhalb des Intervalls) $c_0=c_n=0$
- Not-a-knot Splines (Erste u. letzte Spalte von A fallen weg) (Stetigkeit der 3. Ableitung für x_1 und x_{n-1}) $d_0=d_1\wedge d_{n-2}=d_{n-1}$

$$c_0 = \frac{(h_0 + h_1)c_1 - h_0c_2}{h_1}$$

$$c_n = \frac{(h_{n-2} + h_{n-1})c_{n-1} - h_{n-1}c_{n-2}}{h_{n-2}}$$

Außerdem Anpassung des r-Vektors

$$\begin{pmatrix} \frac{h_1}{h_0 + h_1} \cdot r_1 \\ \vdots \\ \frac{h_{n-2}}{h_{n-2} + h_{n-1}} \cdot r_{n-1} \end{pmatrix}$$

• Fehler $H = \frac{h_{max}}{h_{min}}$

$$|f(x) - s(x)| \le 2H \cdot \max_{x=x_0 \cdots x_n} |f^{(4)}(x)| h_{max}^4$$

2.6 Nachteile Polynominterpolation

- Interpolationsaufgabe höherer Ordnung sehr schlecht konditioniert
- Große Interpolations fehler in den Randbereichen
- Polynome hoher Ordnung sehr stark oszillieren
- Stückweise Interpolation oft nicht differenzierbar

3 Differenzenquotient

3.1 Varianten

- Vorwärtsdifferenz (von x aus nach rechts) $\frac{f(x+h)-f(x)}{h}$
- Zentral (von x aus zu beiden Seiten) $\frac{f(x+h)-f(x-h)}{2h}$

3.2 Verfahrensfehler

• Taylorreihe

$$T(f(x)) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n = f(a) + f^{(1)}(a)(x-a) + \frac{f^{(2)}(a)}{2} (x-a)^2 + \cdots$$

• In Formel Einsetzen

• Fehler Berechnen

$$e_v(h) = \left| \frac{T(f(x_0 + h)) - f(x_0)}{h} - f^{(1)}(x_0) \right|$$

3.3 Absoluter Fehler

- $\epsilon_f = maximaler Rundungsfehler$
- $M = Maximum\ 2ter\ Ableitung$

$$|e(h)| \le \frac{h}{2}M + \frac{2\epsilon_f}{h}$$

3.4 Optimales h

$$h_{opt} \approx 2\sqrt{\frac{|f(x_0)|\epsilon_f}{M}}$$

3.5 Ordnung des Fehlers

Formel	$e_v(h)$	$\mid e_R(h) \mid$
$f'(x_0) \approx \frac{f(x_0+h)-f(x_0)}{h}$	$h^{\frac{f^{(2)}(z)}{2}}$	$\frac{2\epsilon_f}{h}$
$f'(x_0) \approx \frac{f(x_0+h) - f(x_0-h)}{2h}$	$h^2 \frac{f^{(3)}(z)}{6}$	$\frac{\epsilon_f}{h}$
$f'(x_0) \approx \frac{-3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h)}{2h}$	$h^2 \frac{f^{(3)}(z)}{3}$	$\frac{4\epsilon_f}{h}$
$f'(x_0) \approx \frac{-f(x_0+2h)+8f(x_0+h)-8f(x_0-h)+f(x_0-2h)}{12h}$	$h^4 \frac{f^{(5)}(z)}{30}$	$\frac{3\epsilon_f}{2h}$

4 Integration

4.1 Trapez

- Zusammengesetzt $T^{(n)}(f) = h(\frac{1}{2}f(x_0) + f(x_1) + \dots + f(x_{n-1}) + \frac{1}{2}f(x_n))$
- Fehler $\left| \int_a^b (f(x) p(x)) dx \right| \le \frac{M_2(b-a)^3}{12}$
- $M_{(n)} = max_{[a,b]}|f^{(n)}(x)|$

4.2 Simpson

- Einfach $S(f) = \frac{h}{6}(f(x_0) + 4f(\frac{x_0 + x_1}{2}) + f(x_1))$
- $\bullet \ \ Zusammengesetzt$

$$S^{(n)}(f) = \frac{h}{6} \left(f(x_0) + 2 \sum_{k=1}^{n-1} f(x_k) + 4 \sum_{k=1}^{n} f\left(\frac{x_{k-1} + x_k}{2}\right) + f(x_n) \right)$$

• Fehler
$$e_v = \left| \int_a^b (f(x) - p(x)) dx \right| \le \frac{M_4(b-a)^5}{2880}$$

4.3 Newton-Cotes

• Allgemeine Formel

$$P(f) = (b - a) \sum_{i=0}^{n} \alpha_i f(x_i)$$

• Tableau

	1					1
n	a_i					name
1	$\frac{1}{2}$	$\frac{1}{2}$				Trapez
2	$\frac{1}{6}$	$\frac{3}{6}$	$\frac{1}{6}$			Simpson
3	$\frac{1}{8}$	3/8	3/8	$\frac{1}{8}$		$\frac{3}{8} - Regel$
4	$\frac{7}{90}$	$\frac{32}{90}$	$\frac{12}{90}$	$\frac{32}{90}$	$\frac{7}{90}$	Milne/Boole

4.4 Gaus-Legendre Stützstellen

- $\begin{array}{l} \bullet \ \ \text{Formeln} \\ x_k = \frac{b-a}{2} \widetilde{x}_k + \frac{b+a}{2} \\ \alpha_k = \frac{b-a}{2} \widetilde{\alpha}_k \end{array}$
- Werte für \widetilde{x}_k

• Werte für $\widetilde{\alpha}_k$

4.5 Romberg

• Allgemeine Formel

$$T_h^{(k)} = \frac{2^{2k} T_{h/2}^{(k-1)} - T_h^{(k-1)}}{2^{2k} - 1}$$

• Tableau

• Diagonale Ausgerechnet

$$\frac{0}{T_h^{(0)}} \quad \frac{4T_{h/2}^{(0)} - T_h^{(0)}}{3} \quad \frac{16T_{h/2}^{(1)} - T_h^{(1)}}{3} \quad \frac{64T_{h/2}^{(2)} - T_h^{(2)}}{63}$$

• Bedingung für Termination

$$\frac{|T_h^{(k)}(f) - T_h^{(k-1)}(f)|}{|T_h^{(k)}(f)|} \le TOL$$

4.6 Adaptiv

- 1. Starte mit $I_0 = [a, b]$ und TOL:
 - $S_{[a,b]}^{(0)}(f)$
 - $S_{[a,b]}^{(1)}(f) = S_{[a,\frac{a+b}{2}]}^{(0)}(f) + S_{[\frac{a+b}{2},b]}^{(0)}(f)$
- 2. Wenn $|S_{[a,b]}^{(0)}(f) S_{[a,b]}^{(1)}(f)| > (2^q 1) \cdot TOL$ dann:
 - (a) Halbiere Intervall I in $[a_1,b_1]$ und $[a_2,b_2]$
 - (b) Wiederhole den Algorithmus für jedes Teilintervall
- 3. Fehler

$$E_h(f) = I(f) - S_h(f) \approx \frac{2^q}{2^q - 1} (S_{h/2}(f) - S_h(f))$$

- Simpson: q = 4
- Trapez: q=2

5 Lineare Gleichungssysteme

5.1 Rechenaufwand

- $v^T \cdot w \Rightarrow O(n)$
- $A \cdot v \Rightarrow O(n^2)$
- $A \cdot B \Rightarrow O(n^3)$
- $Ax = b \Rightarrow O(n^3)$

5.2 Normen

Vektornorm

- 1. Summennorm $||x||_1 = \sum_{i=1}^n |x_i|$
- 2. Euklidsche Norm $||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}$
- 3. Maximumnorm $||x||_{\infty} = max(x)_{i=1\cdots n}|x_i|$

Matrixnorm

Maß für maximale Streckung eines Vektors

- 1. Spaltensummennorm $||A||_1 = max(x)_{j=1\cdots n} \sum_{i=1}^n |a_{ij}|$
- 2. Euklidsche Norm $||A||_2 = \sqrt{\lambda_{max}(A^TA)}$
- 3. Zeilensummennorm $||A||_{\infty} = \max(x)_{i=1\cdots n} \sum_{j=1}^n |a_{ij}|$

5.3 Fehler

• Absoluter Fehler

$$|| \triangle x|| \le ||A^{-1}|| \cdot || \triangle b||$$

• Relativer Fehler

$$\frac{|| \triangle x||}{||x||} \le (||A^{-1}|| \cdot ||A||) \cdot \frac{|| \triangle b||}{||b||}$$

• Kondition

$$\kappa(A) = ||A^{-1}|| \cdot ||A||$$

Eigenschaften: Kondition

- $\kappa(A) \geq 1$
- $\kappa(I) = 1$
- $\kappa(\lambda A) = \kappa(A)$
- singulär: $\kappa(A) = \infty$

5.4 LU-Zerlegung

Kompakte Schreibweise

$$LU = \begin{pmatrix} u & u & u & u \\ l & u & u & u \\ l & l & u & u \\ l & l & l & u \end{pmatrix}$$

Bessere Kondition

- Vertausche in jeder Spaltenrechnung, so dass der Pivot am größten ist (Permutationsvector p)
- Für jeden Schritt (m = Zeilenindex):

$$\vec{p} = \begin{pmatrix} \widetilde{m} \\ \vdots \\ \widetilde{m} \end{pmatrix}$$

5.5 QR-Zerlegung: Householder

Eigenschaften der Q-Matrix

- $\bullet \ Q^{-1} = Q^T$
- $||Q||_2 = 1$
- $Q^TQ = QQ^T = I$
- für jede reguläre Matrix existiert eine QR-Zerlegung
 - A ist regulär wenn es eine inverse gibt
 - regulär wenn rank(A) = n

Verfahren

$$A = QR \Rightarrow R \cdot \vec{x} = Q^T \cdot \vec{b}$$

Berechnung von $Q^T \cdot \vec{b}$ und R

$$A = (\vec{a}_1 \quad \vec{a}_2 \quad \cdots)$$

1. Householdervektor

$$\vec{v}_1 = \vec{a}_1 + sign(\vec{a}_{11}) \cdot ||\vec{a}_1||_2 \cdot \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

2. Spiegelung

$$Q_1 a_i = a_i - \frac{2}{v_1^T v_1} v_1(v_1^T a_i)$$
$$Q_1 b = b - \frac{2}{v_1^T v_1} v_1(v_1^T b)$$

3. Iteration

$$A_2 = Q_2 = \begin{pmatrix} Q_1 a_1 & Q_1 a_2 & \cdots & Q_1 a_n \end{pmatrix}$$

$$Q_2 = \begin{pmatrix} 1 & 0 & \cdots \\ 0 & \widetilde{Q}_2 \\ \vdots & & \end{pmatrix}$$

$$\vec{b}_2 = \begin{pmatrix} 1 \\ \widetilde{b}_2 \\ \vdots \end{pmatrix}$$

4. Verwende \widetilde{Q}_2 und \widetilde{b}_2 und wiederhole schritte

$$\vec{a}_i := Q_1 \tilde{a}_{i+1}$$
$$\vec{b}_i := Q_1 \tilde{b}_{i+1}$$

5. Zusammensetzen

$$R = \begin{pmatrix} Q_1 & & \\ & \widetilde{Q}_2 & \\ & \ddots \end{pmatrix}$$
$$Q^T \vec{b} = \begin{pmatrix} b_1 \\ \widetilde{b}_2 \\ \vdots \end{pmatrix}$$

5.6 Cholesky-Zerlegung

Positiv definit

- Alle Eigenwerte sind positiv
- \bullet LU-Zerlegung ohne Vertauschungen \Rightarrow positive U-Diagonale

Verfahren

Allgemeine Formel: $A = L \cdot L^T$

Verwendung: $Ax = b \Rightarrow Ly = b \Rightarrow L^Tx = y$

$$l_{ij} = \begin{cases} 0 & \text{für } i < j \\ \sqrt{a_{ii} - \sum_{k=1}^{i-1} l_{ik}^2} & \text{für } i = j \\ \frac{1}{l_{ij}} (a_{ij} - \sum_{k=1}^{j-1} l_{ik} l_{jk}) & \text{für } i > j \end{cases}$$

Vergleich: LU, QR, Cholesky

- LU
 - Rechenaufwand: $(O(n^3))$
 - Sehr schlechte Kondition bei fast Singulären Matrizen
 - Bei fast Singularität durch Rundungsfehler nicht mehr eindeutig lösbar.
- \bullet QR
 - Rechenaufwand: doppelt so groß wie der der LU Zerlegung
 - Numerisch Stabil
- Cholesky
 - Geringster Rechenaufwand: halb so groß wie der der LU zerlegung
 - Kondition verschlechtert sich nicht
 - Matrizen sind nie singulär
 - Keine Pivot-Suche nötig für numerische Stabilität
 - Nur bei Positiv Definiten Matrizen möglich

6 Lineare Ausgleichsrechnung

6.1 Normalengleichung

Allgemeine Formel

- $f(x) = \alpha_1 f_1(x) + \cdots + \alpha_n f_n(x)$
- Ausgleichsproblem

$$A = \begin{pmatrix} f_1(x_1) & \cdots & f_n(x_1) \\ \vdots & \ddots & \vdots \\ f_1(x_m) & \cdots & f_n(x_m) \end{pmatrix}, \alpha = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}, b = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$$

$$A^T A \alpha = A^T b$$

• Aufwand $m \cdot n^2 + \frac{1}{3}n^3$

6.2 Householder

- Approximierende Funktion: $f(x) = \alpha_1 + \alpha_2 \cdot x$
- Ausgleichsproblem: $A\alpha = f(\vec{x}) \Rightarrow R\alpha = Q^T \cdot f(\vec{x})$
- Wende Householder auf Ausgleichsproblem an
- Residuum (Näherungsfehler)

$$Q^T \vec{b} = \begin{pmatrix} \vdots \\ res \end{pmatrix}$$

7 Iterative Verfahren

7.1 Fixpunktiteration

• Gleichung umformen: $f(x) = 0 \Rightarrow x = g(x)$

$$f(x) = 0 \Rightarrow x = x\alpha f(x)$$

• Konvergent (anziehend) wenn: |g'(x*)| < 1 für gegebenen Punkt

7.2 Newtonverfahren

• Allgemeines Verfahren

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

• Als Fixpunkt

$$g(x) = x - \frac{f(x)}{f'(x)}$$

• Quadratische Näherung, nicht nur linear

$$x_{i+1} = x_i - m \frac{f(x_i)}{f'(x_i)}$$

m ist Position der gesuchten Nullstelle

7.3 Sekantenverfahren

• Allgemeine Verfahren

$$x_{i+1} = x_i - \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})} f(x_i)$$

• Konvergiert nur linear

7.4 Mehrdimensional

Eine Gleichung

1. Gradient

$$\nabla f(\vec{x}) = \begin{pmatrix} \frac{\delta f}{\delta x_1} \\ \frac{\delta f}{\delta x_2} \\ \vdots \end{pmatrix}$$

2. Jacobi-Matrix J_g

$$J_g(\vec{x}) = \begin{pmatrix} \frac{\delta \nabla f_1}{\delta x_1} & \frac{\delta \nabla f_1}{\delta x_2} & \cdots \\ \frac{\delta \nabla f_2}{\delta x_1} & \frac{\delta \nabla f_2}{\delta x_2} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix}$$

3. Iteration

$$\vec{x}_{i+1} = \vec{x}_i - J_g^{-1}(\vec{x}_i) \cdot \nabla f(\vec{x}_i)$$

GLS

1. Alle Gleichungen nach 0 auflösen

$$g(\vec{x}) = \begin{pmatrix} g_1(\vec{x}) \\ g_2(\vec{x}) \\ \vdots \end{pmatrix}$$

2. Jacobi-Matrix ${\cal J}_g$

$$J_g(\vec{x}) = \begin{pmatrix} \frac{\delta g_1}{\delta x_1} & \frac{\delta g_1}{\delta x_2} & \dots \\ \frac{\delta g_2}{\delta x_1} & \frac{\delta g_2}{\delta x_2} & \dots \\ \vdots & \vdots & \ddots \end{pmatrix}$$

3. Iteration

$$\vec{x}_{i+1} = \vec{x}_i - J_g^{-1}(\vec{x}_i) \cdot g(\vec{x}_i)$$