Case Introduction (SF6 Sensor)

1. Function Implementation

Collect data from a relatively complex RS485 interface SF6 sensor (Sulfur Hexafluoride), and report to the 61850 master station.

This SF6 sensor device contains two types of data points: telemetry type (integer or floating point) and telesignaling type (status bit 0/1), so we need two device models: YC_RM telemetry and YX_RS telesignaling. However, this device has a special characteristic where its status bit information is also stored in holding registers (16-bit length), occupying specific bits. For details, please refer to the Modbus data point table below.

2. Device RS485 Communication Parameters

SF6 Sensor Device No.1: 9600 baud, no parity, 1 stop bit

3. Device Modbus Data Point Table

The following data points use Modbus 03 Read Holding Registers function code

Data Point Address	Name	Modbus Data Type	Additional Notes	61850 Data Type
0000H	Probe 1 Oxygen Value	U_AB (16-bit unsigned integer)	Integer divided by 10, unit: 0.1PPM	YC_RM Telemetry-Float
0001H	Probe 2 Oxygen Value	U_AB (16-bit unsigned integer)	Integer divided by 10, unit: 0.1PPM	YC_RM Telemetry-Float
0002H	Probe 3 Oxygen Value	U_AB (16-bit unsigned integer)	Integer divided by 10, unit: 0.1PPM	YC_RM Telemetry-Float
0003H	Probe 4 Oxygen Value	U_AB (16-bit unsigned integer)	Integer divided by 10, unit: 0.1PPM	YC_RM Telemetry-Float
003CH	Probe 1 SF6 Status	Bool	Occupies bit 0 of 0x003C register, 0- Normal 1-Alarm	YX_RS Telesignaling- Switch
003CH	Probe 2 SF6 Status	Bool	Occupies bit 1 of 0x003C register, 0- Normal 1-Alarm	YX_RS Telesignaling- Switch
003CH	Probe 3 SF6 Status	Bool	Occupies bit 2 of 0x003C register, 0- Normal 1-Alarm	YX_RS Telesignaling- Switch
003CH	Probe 4 SF6 Status	Bool	Occupies bit 3 of 0x003C register, 0- Normal 1-Alarm	YX_RS Telesignaling- Switch
0042H	Probe 1 O2 Status	Bool	Occupies bit 0 of 0x0042 register, 0- Normal 1-Alarm	YX_RS Telesignaling- Switch
0042H	Probe 2 O2 Status	Bool	Occupies bit 1 of 0x0042 register, 0- Normal 1-Alarm	YX_RS Telesignaling- Switch
0042H	Probe 3 O2 Status	Bool	Occupies bit 2 of 0x0042 register, 0- Normal 1-Alarm	YX_RS Telesignaling- Switch
0042H	Probe 4 O2 Status	Bool	Occupies bit 3 of 0x0042 register, 0- Normal 1-Alarm	YX_RS Telesignaling- Switch
0050H	Temperature	U_AB (16-bit unsigned integer)	Integer divided by 10, unit: 0.1°C	YC_RM Telemetry-Float
0051H	Humidity	U_AB (16-bit unsigned integer)	Integer divided by 10, unit: 0.1%	YC_RM Telemetry-Float

4. How to Use This Case

- Copy the init folder in this case to completely overwrite the init folder in the FLEXLUA_61850 software directory, then click Generate in Step 4 of the software to generate the required 3 files (main.lua, model.cfg, rtu.cid).
- The main.lua and model.cfg files need to be placed into the protocol converter through the USB-C port. The rtu.cid file can be provided to 61850 master station developers for device import.

5. Testing

In the test folder of this case, there are modbus slave device simulation files. If you have modbus slave and IEDScout testing tool software installed on your computer, they can be used to simulate modbus slave devices and 61850 master station software respectively to complete testing.

Read Registers (Telemetry) Test Results

Read Coils (Telesignaling) Test Results

