

Title: Predictive Model for Carbon Emission Detector

Names: Dhruv Gupta, Sarthak, Manas Verma

Roll Numbers: 2022a6r016 2022a6r044 2022a6r052

Branch: CSE AI-ML

Model Institute of Engineering & Technology

Problem Statement

Every time we start the engine, CO₂ goes up into the atmosphere. And with more vehicles hitting the road every year, it's becoming a serious issue.

The challenge?

We don't have smart tools that can predict emissions for any vehicle in real time. Most of the existing methods are outdated, manual, or just too generic to be useful.

Project Objectives & Approach

Our Objectives:

- Predict CO₂ emissions based on vehicle specifications.
- Compare the effectiveness of three ML models:
 - Linear Regression
 - Random Forest
 - XGBoost
- Deploy a user-friendly web app using Streamlit.

Approach:

- Data preprocessing, model training, and evaluation using standard regression metrics.
- Interactive dashboard for real-time prediction and analysis.

Solution

We built a machine learning model that predicts a vehicle's CO₂ emissions (g/km) based on its specifications — like engine size, fuel type, cylinders, and fuel consumption. And showcases it in a user friendly format using Streamlit web interfaces.

Our goal is to make CO₂ impact estimation easy, accessible, and actionable — for everyone from car makers to policymakers.

Model Evaluation and Results

Features Used:

- 1. Engine Size (L)
- 2. Cylinders
- 3. Fuel Type
- 4. Fuel Consumption

Target Variable:

CO₂ Emissions (g/km)

Model	R ² Score	RMSE
Linear Regression	0.8942	19.5
Random Forest	0.9974	3.01
XGBoost	0.9971	3.21

Model Evaluation Metrics Results

Streamlit Web App & Real-World Impact

App Features:

- Upload vehicle datasets.
- Choose a prediction model.
- Get real-time emission predictions.
- Visualize results and trends.

Potential Applications:

- Government: Regulatory planning
- Industry: Eco-friendly vehicle design
- Consumers: Understand vehicle environm impact

Applications

Automotive Industry

Design and evaluate low-emission vehicles

Policy Making

Support development of environmental regulations

Research and Academia

Analyze emission trends and vehicle impact

Consumers

Compare environmental footprint before purchasing

