

# **Concepts of Confidence Intervals**

#### **Confidence Interval**



- After taking samples and calculating statistics on these samples, we get a range of reasonable guesses at a population value, such as
  - Average height of males
  - Average shoe size of KU undergraduates
- The concept of the confidence level captures the chance that this range of guesses captures the true population value
- We usually set this confidence level to 95%
- From this, we derive the confidence interval (CI), which is:

#### **Confidence Interval**



- The confidence interval (CI) is estimate +/- margin of error at confidence level
- The CI depends on the statistic that I am measuring on my sample!
- Equations and definitions for the CI are different depending on whether I am interested in
  - Means

Most often used

- Differences
- Ratios
- Variation...

# Transportation Example: Confidence in the **mean**



- Let's go back to measuring car speeds again, we assume that car speeds are normally distributed
- We take one sample of n=36 and find that this has a mean speed = 75.3km/h.
- The standard deviation is known to be SD = 8km/h.
- How confident can we be in our experimental data if we were to repeat this experiment??



- The confidence interval for the mean is based on the standard error of the mean or SEM
- SEM = SD of sample / sqrt(n)



- For our car example:
  - SEM = 8km/h / sqrt(36) = 8 / 6 = 1.33km/h
- This happens to be the standard deviation of the distribution of sample means



So, with this information we know that within +/- 1
 SEM, we will see around 68% of data





• If we repeat the experiment, 68% of the time, the true population mean will be within 75.3km/h +/- 1.33km/h





 But we would like to be 95% sure! So, we find the number of standard deviations that cover 95% of the normal distribution





- The confidence interval for the mean is called standard error of the mean or SEM
- SEM = SD of sample / sqrt(n)
- SEM = 8 km/h / sqrt(36) = 8 / 6 = 1.33 km/h
- When we need to be 95% sure, we need to take 1.96 times the SEM and so for our example:
  - CI = 1.96\*1.33 = 2.63, about 2.6km/h

#### Interpretation



- With this information, we get this CI:
  - -75.3km/h +/-2.6km/h; 72.6km/h 78.0km/h
- And we say, we are 95% confident that the true population mean is within this CI

### Misconceptions



- We usually do ONE experiment, get ONE sample, and from this calculate ONE confidence interval
- The true population mean (which we are interested in), lies in a MANY CIs with 95% probability
  - Sometimes it does, sometimes it doesn't!!

# Misconceptions



- Here are 50 samples with their corresponding confidence intervals the true population mean is shown as  $\mu$
- $\mu$  is sometimes in the CI, sometimes not



### Interpretation



- Let's go back to our example CI:
  75.3km/h +/-2.6km/h; 72.6km/h 78.0km/h
- If we cannot say that there is a 95% probability that THIS interval contains the true mean, what usefulness does the CI have??
- Let's give another interpretation: this CI tells us something about the range of the means that we will accept to be consistent with our experiment

#### How to make inferences from CIs



- In our example, the CI is found to be: 72.6km/h 78.0km/h
- We can ask, could the mean speed be 72 km/h?
- Maybe, but our interval does not include 72km/h, so it seems likely that the true population mean is above 72km/h.

#### **Another location**



- Let's increase the sample size to n=49 and go to another location to record car speeds
- We record a sample mean=70.3 km/h and we know that SD = 8
- With this:  $SEM = 8 / sqrt(49) \sim 1.1$
- And our 95% confidence level will be 1.96 \* 1.1 ~ 2.2
- So our Cl is 70.3 +/- 2.2 or 68.1 to 72.5
  - Note, how the CI became smaller [4.4 versus 5.4 before for the smaller sample]

# Looking for differences

- Now we have measured speeds in two different locations – we have the two sample averages, and importantly the two Cls
- Can we answer whether locations 1 and 2 differ in their mean speed??
  - CI for location 1 is72.6 to 78.0
  - CI for location 2 is
    68.1 to 72.5
- We plot this as two bars with two whiskers for the CI



# CognitiveSystems

# Looking for differences

- This means that the range of accepted values for location 1 is in the first CI, and for location 2 in the second CI
- But these CIs do NOT overlap!



# Key concepts



 Confidence intervals measure the degree to which a statistic could vary if the experiment were repeated

The typical 95%-CI for the mean is calculated as

$$CI = 1.96 \frac{\sigma}{\sqrt{n}}$$

— And you need to know the **true population standard deviation**  $\sigma$  and the sample size n

### Another example



- Another study compares speed reduction due to enforcement vs. education
- 95% confidence intervals for mean speed reduction

Cop on side of road: 13.4 to 18.0

Speed monitor only: 6.4 to 11.2



 Do you think this means that 95% of locations with cop present will lower speed between 13.4 and 18.0 km/h?



| • | Do you think this means that 95% of locations with cop |
|---|--------------------------------------------------------|
|   | present will lower speed between 13.4 and 18.0 km/h?   |
|   |                                                        |



- Can we conclude that there is a difference between the two types of speed reduction measures?
- 95% confidence intervals for mean speed reduction

Cop on side of road: 13.4 to 18.0

Speed monitor only: 6.4 to 11.2



- Can we conclude that there is a difference between the two types of speed reduction measures?
- 95% confidence intervals for mean speed reduction

Cop on side of road: 13.4 to 18.0

Speed monitor only: 6.4 to 11.2

#### How much reduction?



- For cop present, mean speed reduction = 15.8 km/h
- For sign only, mean speed reduction = 8.8 km/h
- Difference = 7 km/h "more" reduction by enforcement method
- This difference relates to the effect size of speed reduction measures!



# Effect size – the first thoughts

# Effect size example

- For the two locations from our transportation example, we found that the two CIs do NOT overlap
  - So, most likely the two population means are different
- How much different are they?
- The sample means we measured are 70.3 and 75.3 km/h, so the difference is 5 km/h
- This is the "effect size"!



# Effect size example

- Is that a lot? Will we conclude that speeds are "very" different?
- This depends on the application!!!
- If the speed limit was 70 km/h, then location 1 has "speeding" cars
- However, the amount of speeding is 5km/h over the limit, which – in Germany – at least is within the tolerance of speed measurement devices
- In percent of the base speed, this is around 7%



# How to make anything different



- We saw that confidence intervals (for a given confidence level (95%)) depend on two things:  $CI \sim \frac{\sigma}{\sqrt{n}}$ , the population standard deviation, and the sample size
- So, let's say, I'm again looking to test two speed reduction measures
  - Speed bumps with yellow/black stripes
  - Speed bumps with yellow/gray stripes

# How to make anything different



- I am recording n = 100 cars for each speed bump type and get:
  - CI(y/b) = 48 52km/h
  - CI(y/g) = 49 53km/h
- These intervals clearly overlap, and it is highly unlikely that the two true population means differ



# How to make anything different



- Hmm, but how about taking n = 1000 cars?
  - CI(y/b) = 49.4 50.6km/h
  - CI(y/g) = 50.9 52.1km/h
- Now, the two intervals do NOT overlap, so the true population means the different speed bumps are likely different



#### Key concepts



 Even though you did not find overlapping confidence intervals, you can always simply use a larger sample size to make virtually ANY difference "significant"



#### More on confidence intervals

### Recap



- Here is again the definition of the confidence interval of the mean:  $CI = Z * \frac{\sigma}{\sqrt{n}}$
- Z is determined by the confidence level (we usually choose 95%, and Z = 1.96)
- $\sigma$  is the population standard deviation
- *n is* the sample size

### CI for unknown standard deviation



- Here is again the definition of the confidence interval of the mean:  $CI = Z * \frac{\sigma}{\sqrt{n}}$
- Slight problem: we have to know  $\sigma$ , the true population standard deviation!
- But how do we know this? Perhaps from the previous literature and other experiments?
- Well, we have again the central limit theorem to the rescue!
- It turns out, **for large samples**, you can use the sample standard deviation and do:  $CI = Z * \frac{\sigma_{sample}}{\sqrt{n}}$

# Transportation Example



96

- Here's another set of data: We took a random sample of 59 locations on a highway and recorded crash rates
- The average crash rate across all locations was 273.2
- In order to calculate the CI, we would need to know the standard deviation of crash rates – but we don't
- Luckily, we have a large sample (n=59), and we calculate the sample standard deviation = 94.40.

$$273.20 \pm 1.96 \left(\frac{94.4}{\sqrt{59}}\right) = 273.20 \pm 24.09$$

We can be 95% confident that the average crash rate was between 249.11 and 297.29

# Transportation example with small sample



- Let's repeat the experiment, but now we only have a random sample of 15 similar location crash rates
- We record an average crash rate of 6.4 with a sample standard deviation of 1.
- We still do not know the true population standard deviation, and we have a small sample!

# Transportation example with small sample



- We can correct for this by using a different method to calculate the confidence level
- It now comes from another distribution, the t-distribution and we get:  $CI = t(n) * \frac{\sigma_{sample}}{\sqrt{n}}$
- t is determined by the confidence level and the sample size n (we usually choose 95%, and then we have to look up t)
- $\sigma_{sample}$  is the sample standard deviation
- *n is* the sample size

#### Student's t-distribution



Here is the t distribution for a range of sample sizes



# Student's t-distribution versus normal Z distribution



Let's compare the two distributions: we can see that

#### T-distribution and Standard Normal Z distribution



#### t-distribution



- Very similar to standard normal distribution, except:
  - t depends on the degrees of freedom "n-1", where n is the sample size
  - It is more likely to get extreme t values than extreme Z values

# Let's compare t and Z values



 We can see that for smaller samples (n=6), the t-values are larger – so we are "less confident"!!!

| Confidence | t value with | <b>Z</b> value |
|------------|--------------|----------------|
| level      | 5 d.f        |                |
| 90%        | 2.015        | 1.65           |
| 95%        | 2.571        | 1.96           |
| 99%        | 4.032        | 2.58           |

# Let's compare t and Z values

- Sample of 15 locations crash rate of 6.4 with sample standard deviation of 1
- Need t with n-1 = 15-1 = 14 d.f.
- For 95% confidence, we look it up and get:  $t_{14} = 2.145$

$$\overline{x} \pm t \left(\frac{s}{\sqrt{n}}\right) = 6.4 \pm 2.145 \left(\frac{1}{\sqrt{15}}\right) = 6.4 \pm 0.55$$

• We can be 95% confident that the average crash rate for the small sample is between 5.85 and 6.95.

# Larger sample sizes



 As sample size gets larger, t- and Z-distribution become identical → we can always use t actually ☺

T-distribution and Standard Normal Z distribution



#### **ATTENTION**



- We can always use t??
- The confidence intervals and especially the tdistribution are ONLY valid, if your population is normally distributed!
- The central limit theorem cannot rescue us, since we have a small sample when applying the t-distribution!!

### Key concepts



 For small samples and normally distributed data, confidence intervals are determined using the tdistribution

#### How-to:

- If you have a large sample of, say, 60 or more measurements, then don't worry about normality,
- If you have a small sample and your data are normally distributed,
- If you have a small sample and your data are not normally distributed,

# Where do we go from here?

- We now know a bit about distributions and how to get confidence intervals about our statistic measures
- With this knowledge, we can actually already do a bit of **inference**, that is, we can say whether two sets of experimental data may have different means, etc.
  - And we have seen that we can even do that, when we have smaller samples [and the data is normally distributed]
- Armed with this knowledge, we next take a look back at descriptive statistics, before going further into inferential statistics

#### YOUR DATA



- Please everybody fill out the "Getting data" assignment. It is a short ANONYMOUS survey that asks you some questions yes, I ask your height and shoe size ☺
- I need this data from you by Tuesday, so that our next session can be filled with YOUR input!
- THANKS!