

Metaplasticity in Multistate Memristor Synaptic Networks

Fatima Tuz Zohora[†], Abdullah M. Zyarah^{*}, Nicholas Soures^{*} and Dhireesha Kudithipudi[†]

[†]Neuromorphic AI Lab, University of Texas at San Antonio *Rochester Institute of Technology

2020 IEEE International Symposium on Circuits and Systems
Virtual, October 10-21, 2020

A Robot...

.....trained to open a doorknob...

... learns to climb the stairs next.

The robot forgets how to open a doorknob!

Resource-constrained platforms prohibit heavy-duty solution

- Metaplasticity is deemed crucial for memory retention in biological synapses
- Incorporating metaplasticity in synaptic devices can lead to energy-efficient neuromorphic systems

Contribution

- To emulate binary metaplastic synapses leveraging device characteristics of memristor
- To demonstrate its efficacy in a 5 by 3 crossbar circuit architecture
- To conduct high level simulation of a 128 by 128 network incorporating hardware constraints

Simple vs. Metaplastic Binary Synapse

Simple Binary Synapse

Multistate Metaplastic Synapse^[1]

Fig: Simple and Metaplastic binary synapses

Analysis of the Effects of Metaplasticity on Continual Learning

Experimental Set-up

- Feedforward network, N_{in} neurons are connected to N_{out} neurons through sparsely connected synapses (c % connectivity)
- Input patterns has f % activity
- McCullogh-Pitts neuron with threshold cfN_{in}/2
- Training through perceptron learning rule
- Learning accuracy and mean accuracy is observed

Experimental Results: Learning

Binary synapses show better learning ability compared to multistate synapses

Fig: Learning accuracy of different synapses

Experimental Results: Mean Accuracy

Metaplastic synapses show much slower decay in mean accuracy

Fig: Mean accuracy of different synapses

Effect of Network Size: Learning

Increasing network size reduces the drop in learning accuracy

Fig: Effect of network size on learning accuracy

Effect of Network Size: Mean Accuracy

Increasing network size improves the mean accuracy

Fig: Effect of network size on mean accuracy

Effect of Activity and Connectivity

Sparse input activity is conductive to high mean accuracy

Fig: Effect of activity and connectivity on mean accuracy

Observations

- Better accuracy in detecting patterns learned over lifetime
- Degradation in learning ability
- Suitable for large networks

Realization of Metaplastic Synapse with Memristor

Metaplasticity with Memristor

- Inherent device characteristics of memristor can be utilized to realize metastates
- Non-ideal effect
 - Difference of conductance across metastates of same efficacy
 - Cycle to cycle variability

Fig: Multistate model mapped onto memristor device

Experimental Results: Learning

Multistate synapse realized with memristor also shows degradation in learning accuracy

Fig: Learning accuracy for memristor synapses

Experimental Results: Mean Accuracy

Mean accuracy drops below the empirical threshold much slower in multistate model

Fig: Mean accuracy for memristor synapses

System Architecture for Metaplastic Synapse with On-device Learning

Network Architecture

Fig: Proposed system architecture

Fig:The training circuit, current comparator and the error computing unit

Training scenario

- Synapses in metalevel 0
 change conductance level
- Synapses at higher metalevel remain in same conductance level but change metalevel

Fig: Change in metaplastic synapses with potentiation and depression

Summary

- Multistate metaplastic model is emulated using device characteristics of memristor
- ullet High level simulation with hardware constraints shows the efficacy of the synaptic model in a 128 imes 128 crossbar
- A small scale crossbar is simulated in Cadence Virtuoso

Thank you!