Logistic Classifier

CISC 5800 Professor Daniel Leeds

Classification strategy: generative vs. discriminative

- Generative, e.g., Bayes/Naïve Bayes:
- Identify probability distribution for each class
- Determine class with maximum probability for data example
- Discriminative, e.g., Logistic Regression:
 - Identify boundary between classes
 - Determine which side of boundary new data example exists on

2

Linear algebra: data features

• Vector – list of numbers: Wolf each number describes Monkey a data **feature**

 Matrix – list of lists of numbers: features for each data point Feature space

• Each data feature defines a dimension in space

	Document	Documentz	Documen	lβ
Wolf	12	8	0	
Lion	16	10	2	
Monkey	14	11	1	
Broker	0	1	14	
Analyst	1	0	10	
Dividend	1	1	12	
ŧ				

Document 1 Document 2 Document 2

The dot product

The dot product compares two vectors:

•
$$a = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}$$
 , $b = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}$

$$\boldsymbol{a} \cdot \boldsymbol{b} = \sum_{i=1}^{n} a_i b_i = \boldsymbol{a}^T \boldsymbol{b}$$

$$\begin{bmatrix} 5 \\ 10 \end{bmatrix} \cdot \begin{bmatrix} 10 \\ 10 \end{bmatrix} =$$

The dot product, continued $\mathbf{a} \cdot \mathbf{b} = \sum_{i=1}^{n} a_i b_i$

Magnitude of a vector is sum of squares of the elements

$$|\boldsymbol{a}| = \sqrt{\sum_i a_i^2}$$

If ${\pmb a}$ has unit magnitude, ${\pmb a}\cdot {\pmb b}$ is "projection" of ${\pmb b}$ onto ${\pmb a}$

$$\begin{bmatrix} 0.6 \\ 0.8 \end{bmatrix} \cdot \begin{bmatrix} 1.5 \\ 1 \end{bmatrix} =$$

Separating boundary, defined by w

- Separating hyperplane splits class 0 and class 1
- Plane is defined by line w perpendicular to plane
- Is data point x in class 0 or class 1? w^Tx+b > 0 class 1 w^Tx+b < 0 class 0

Separating boundary, defined by \mathbf{w} and b

Example:

$$\mathbf{w} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad \text{b=-4}$$

$$\mathbf{x}^1 = \begin{bmatrix} 5 \\ 0 \end{bmatrix}$$

$$\mathbf{x}^2 = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$$

11

Notational simplification

Recall:
$$\mathbf{w}^T \mathbf{x} = \mathbf{w} \cdot \mathbf{x} = \sum_{i=1}^n w_i x_i$$

Define $x'_{1:n}=x_{1:n}$ and $x'_{n+1}=1$ for all inputs x and $w'_{1:n}=w_{1:n}$ and $w'_{n+1}=b$

Now
$$\mathbf{w'}^T \mathbf{x'} = \mathbf{w}^T \mathbf{x} + b$$

Let's assume $x_{n+1}=1$ always, and $w_{n+1}=b$ always

From real-number projection to 0/1 label

Binary classification: 0 is class A, 1 is class B

Sigmoid function stands in for p(x|y)

Sigmoid: $g(h) = \frac{1}{1+e^{-h}}$

$$p(y = 0|x; \theta) = 1 - g(\mathbf{w}^T \mathbf{x}) = \frac{e^{-\mathbf{w}^T x}}{1 + e^{-\mathbf{w}^T x}}$$
$$p(y = 1|x; \theta) = g(\mathbf{w}^T \mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^T x}}$$

$$p(y = 1|x; \theta) = g(\mathbf{w}^T \mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^T}}$$

$$w^T x = \sum_j w_j x_j + b$$

Learning parameters for classification

Similar to MLE for Bayes classifier

"Likelihood" for data points y1, ..., yn (different from Bayesian likelihood)

- If yⁱ in class A, yⁱ =0, multiply (1-g(xⁱ;w))
- If yi in class B, yi=1, multiply (g(xi;w))

$$\underset{w}{\operatorname{argmax}} L(y|x;w) = \prod_{i} \left(1 - g(\mathbf{x}^{i}; \mathbf{w})\right)^{(1-y^{i})} g(\mathbf{x}^{i}; \mathbf{w})^{y^{i}}$$