Fine-grained Compatibility and Replaceability Analysis of Timed Web Service Protocols

Julien Ponge^{1,2}, Boualem Benatallah², Fabio Casati³ and Farouk Toumani¹

- (1) Université Blaise Pascal, Clermont-Ferrand, France
 - (2) UNSW, Sydney, Australia
 - (3) University of Trento, Italy

ER 2007, Auckland, New Zealand

Outline

- Introduction
- 2 Timed protocols
- Formal framework
- 4 Implementation and conclusion

Outline

- Introduction
- 2 Timed protocols
- Formal framework
- 4 Implementation and conclusion

Static vs dynamic interface

Static vs dynamic interface

Business Protocols

[ER 2004, DKE: Benatallah, Casati, Toumani]

- Conversations: message choreographies
- Finite deterministic automata
- Execution traces semantics

Extensions: transactions, timing constraints, policies, ...

Compatibility analysis

Replaceability analysis

Requester

Replaceability analysis

Use-case: agile composition runtimes

A need for timing constraints

Many examples:

- TCP/IP, watchdogs
- transaction locks
- business agreements
- BPEL (wait / onAlarm)
- RosettaNet
- ..

Outline of contributions

- Extension of business protocols
- 2 Compatibility and replaceability analysis
- 3 A new class of timed automata
- Implementation

Outline

- Introduction
- 2 Timed protocols
- Formal framework
- 4 Implementation and conclusion

Primitives

C-Invoke

Temporal windows for a message exchange

M-Invoke

Expiration for an implicit state change


```
	extsf{C-Invoke}((T_1 < 12 	extsf{h}:50 	extsf{m}) \land (T_2 > 1 	extsf{h})) \ 	extsf{M-Invoke}((T_1 = 6 	extsf{h}) \land (T_2 > 1 	extsf{h})) \ 	extsf{(...)}
```

Primitives

C-Invoke

Temporal windows for a message exchange

M-Invoke

Expiration for an implicit state change

$$\begin{array}{l} \mathsf{C\text{-Invoke}}((T_1 < \mathsf{12h}.\mathsf{50m}) \land (T_2 > \mathsf{1h})) \\ \mathsf{M\text{-Invoke}}((T_1 = \mathsf{6h}) \land (T_2 > \mathsf{1h})) \\ (\cdots) \end{array}$$

Extensions

Analysis classes

- Compatibility:
 - ▶ full
 - partial
- Replaceability:
 - full
 - partial
 - subsumption, equivalence
 - w.r.t. client protocol
 - w.r.t. interaction role

Characterization through operators

Comparison

subsumption (
$$\sqsubseteq$$
), equivalence (\equiv)

Manipulation

parallel composition (
$$\parallel^{TC}$$
), intersection (\parallel^{TI}), difference (\parallel^{TD})

Example: \mathcal{P}_1 can replace \mathcal{P}_2 w.r.t. a client protocol \mathcal{P}_C iff:

- $\bullet \ \left[\mathcal{P}_C \parallel^{\mathtt{TC}} \mathcal{P}_2 \right]_{\mathcal{P}_2} \sqsubseteq \mathcal{P}_1 \text{, or }$
- $\mathcal{P}_C \parallel^{\mathtt{TC}} (\mathcal{P}_2 \parallel^{\mathtt{TD}} \mathcal{P}_1) = \emptyset$

Characterization through operators

Comparison

subsumption (
$$\sqsubseteq$$
), equivalence (\equiv)

Manipulation

parallel composition (
$$\parallel^{TC}$$
), intersection (\parallel^{TI}), difference (\parallel^{TD})

Example: \mathcal{P}_1 can replace \mathcal{P}_2 w.r.t. a client protocol \mathcal{P}_C iff:

- $\bullet \ \left[\mathcal{P}_C \parallel^{\mathtt{TC}} \mathcal{P}_2 \right]_{\mathcal{P}_2} \sqsubseteq \mathcal{P}_1 \text{, or }$
- $\bullet \ \mathcal{P}_C \parallel^{\mathtt{TC}} (\mathcal{P}_2 \parallel^{\mathtt{TD}} \mathcal{P}_1) = \emptyset$

- Algorithms and decidability?
- Are timed protocols closed under our operators?

Outline

- Introduction
- 2 Timed protocols
- Formal framework
- 4 Implementation and conclusion

Timed automata

(Alur, Dill 1994)

- Clocks over dense time + constraints + resets
- Vibrant research
- Use-cases: $\{system, property\} \longrightarrow checker \longrightarrow \{yes, no\}$

"Timed words such that a follows b by at most 5 units of time"

Mapping

Mapping

Mapping

Mapping

The case of ε -transitions

They have clock resets and they cannot be removed!

Proof

Based on precise actions (Bérard, Diekert, Gastin, Petit 99)

The case of ε -transitions

 $(b, \delta_1) \cdot (b, \delta_2) \cdots (b, \delta_{d-1}) \cdot (a, d) \cdot (a, d+1) \cdots$ the occurrences of a-events should be precise

The case of intersection / composition

Usual technique

Product with label synchronization

Determinism problem: ε -transitions are never synchronized!

The case of intersection / composition

Keeps semantics and determinism!

(mandatory $(x_i = k_i)$ clauses in M-Invoke)

Extension of the procedure on deterministic TA

Extension of the procedure on deterministic TA

Extension of the procedure on deterministic TA

Needs exactly 1 run per recognized timed word!

The extended complementation procedure keeps this property

The case of subsumption / equivalence

The test $\mathcal{P}_1 \sqsubseteq \mathcal{P}_2$ is equivalent to $\mathcal{P}_1 \cap \overline{\mathcal{P}_2} = \emptyset$ (timed language inclusion problem)

Complementation

PTA are closed under complementation

Emptiness checking (Alur, Dill 94)

The problem is PSPACE-COMPLETE

 $\longrightarrow \sqsubseteq$ and \equiv need a model-checker (UPPAAL, Kronos, ...)

The case of subsumption / equivalence

The test $\mathcal{P}_1 \sqsubseteq \mathcal{P}_2$ is equivalent to $\mathcal{P}_1 \cap \overline{\mathcal{P}_2} = \emptyset$ (timed language inclusion problem)

Complementation

PTA are closed under complementation

Emptiness checking (Alur, Dill 94)

The problem is PSPACE-COMPLETE

 $\longrightarrow \sqsubseteq$ and \equiv need a model-checker (UPPAAL, Kronos, ...)

Results

- Timed protocols are closed under manipulation operators
- Timed automata based algorithms for manipulation and comparison operators
- Severy compatibility and replaceability class can be implemented
- Protocol timed automata form a new class of timed automata

Outline

- Introduction
- 2 Timed protocols
- Formal framework
- 4 Implementation and conclusion

Prototype

- Eclipse-based
- Protocol editor
- Protocol operators

Complementary modules:

- Protocol extraction from BPEL
- Protocol mining from execution logs (lead by Hamid Motahari)

Perspectives

- Refined expressiveness (in progress)
- Agile composition development and execution runtimes
- Analyse at the composition level
- Help BPEL engines scalability (with O. Coupelon)

Questions?

 $http://www.isima.fr/{\sim}ponge/$

http://servicemosaic.isima.fr/

