18.102 Assignment 6

Octavio Vega

April 4, 2023

Problem 1

(a)

Proof. Let $\epsilon > 0$, and define $c_1 := a$ and $c_{n+1} := b$.

Since ψ is a step function on [a,b], $\exists c_1 \leq c_2 \leq \cdots \leq c_n \leq c_{n+1} \in [a,b]$ such that $\forall i = 1, \cdots, n$,

$$\psi^{-1}(\{a_i\}) = (c_i, c_{i+1}], \tag{1}$$

where each a_i is one of the finitely many values that ψ takes on.

Choose $\delta > 0$ such that $\delta < \frac{\epsilon}{2n}$. Define $g: [a, b] \to \mathbb{R}$ via

$$g(x) := \begin{cases} \frac{a_i + a_{i-1}}{2} + \left(\frac{a_i - a_{i-1}}{2\delta}\right)(x - c_i), & x \in (c_i - \delta, c_i + \delta) \\ a_i, & x \in [c_i + \delta, c_{i+1} - \delta] \\ -\frac{a_n}{2\delta}(x - b), & x \in (c_{n-1} - \delta, b], \end{cases}$$
(2)

where $a_0 := -a_1$. Then

$$g(a) = \frac{a_1 + a_0}{2} + \left(\frac{a_1 - a_0}{2\delta}\right)(c_1 - c_1) = \frac{a_1 - a_1}{2} = 0,$$
 (3)

and

$$g(b) = -\frac{a_n}{2\delta}(b-b) = 0, \tag{4}$$

as desired. We also see that since g is piecewise linear, it is continuous.

Now consider the difference $|\psi(x) - g(x)|$.

Case 1: $x \in [c_i + \delta, c_{i+1} - \delta]$. Then by (1), we have

$$|\psi(x) - g(x)| = |\psi((c_i, c_{i+1} - \delta)) - a_i| = |a_i - a_i| = 0.$$
 (5)

Case 2: $x \in (c_i - \delta, c_i + \delta)$. Then

$$|\psi(x) - g(x)| = \left| \frac{a_i + a_{i-1}}{2} + \left(\frac{a_i - a_{i-1}}{2\delta} \right) (x - c_i) - \psi(x) \right|$$
 (6)

$$<\left|\frac{a_i+a_{i-1}}{2}+\left(\frac{a_i-a_{i-1}}{2\delta}\right)\delta-\psi(x)\right|$$
 (7)

$$= \left| \frac{a_i + a_{i-1}}{2} + \frac{a_i + a_{i-1}}{2} - \psi(x) \right| \tag{8}$$

$$=|a_i - \psi(x)|\tag{9}$$

$$= 0 \text{ or } |a_{i+1} - a_i|. \tag{10}$$

Case 3: $x \in (c_n - \delta, b)$. Then

$$|\psi(x) - g(x)| = \left| -\frac{a_n}{2\delta}(x - b) - \psi(x) \right| \tag{11}$$

$$<\left|-\frac{a_n}{2\delta}\delta - \psi(x)\right|$$
 (12)

$$= \left| -\frac{a_n}{2} - \psi(x) \right| \tag{13}$$

$$=\frac{3a_n}{2}. (14)$$

So in all three cases, we have that either $|g(x)-\psi(x)|=0$, or $|g(x)-\psi(x)|<\frac{3a}{2}$, or $|g(x)-\psi(x)|<|a_{i+1}-a_i|$.

Define the set E to be the collection of points in [a,b] for which $|\psi(x)-g(x)|\neq 0$. Then

$$E := \bigcup_{k=1}^{n} (c_k - \delta, c_k + \delta). \tag{15}$$

By definition, $\forall x \in E^c$,

$$|\psi(x) - g(x)| = 0 < \epsilon. \tag{16}$$

Since E is a countable union of intervals, we have

$$m(E) = m \left[\bigcup_{k=1}^{n} (c_k - \delta, c_k + \delta) \right]$$

$$\leq \sum_{k=1}^{n} m \left[(c_k - \delta, c_k + \delta) \right]$$
(18)

$$\leq \sum_{k=1}^{n} m \left[\left(c_k - \delta, c_k + \delta \right) \right] \tag{18}$$

$$=\sum_{k=1}^{n}\ell(c_k-\delta,c_k+\delta)$$
(19)

$$= \sum_{k=1}^{n} 2\delta \tag{20}$$

$$= 2n\delta \tag{21}$$

$$< 2n\frac{\epsilon}{2n} \tag{22}$$

$$=2n\delta \tag{21}$$

$$<2n\frac{\epsilon}{2n}$$
 (22)

$$=\epsilon,$$
 (23)

as desired.