

Command and Data Handling: Design

Mark Campbell

AA420 Space Design

Outline

Driving Issues and Requirements

- mission
- sensors and actuators
- communications
- radiation

Software approaches

- simple versus OS
- Protocols
- · Types of Architectures
- Design Approach
- · References:
 - Larson and Wertz
 - Stone, Harold E.; Microcomputer Interfacing; Addison-Wesley Publishing Company; Reading, MA; 1982.
 - Blau, Mike; C&DH SW Homepage, NASA TRACE project, http://sunland.gsfc.nasa.gov/~cdhsw/trace/cdhswtop.htm, 1996.
 - Questions to mentors

Driving Issues and Requirements

- Mission
 - amount, importance of science data
 - on-board calculations required
- · Number, type, and rate of sensors and actuators
- Radiation
- · Communication windows and the amount of data sent/received
- Vibration/thermal characteristics of boards
- Power required
- · Complexity in software design
- Cost

Mission Objectives and Science Data

- The mission objectives and importance of the data collected drive the on-board memory type and size.
- Is the science data very important, such that it cannot be stored in RAM but requires radiation hardened memory or ROM?
- How many communication passes are there to downlink the data?
- How much data is required for downlink (and thus storage)?
- Is there on-board decision making or other high computationally intensive software?
 - Rendezvous closed loop system
 - video downlink
 - rendezvous sensors

Sensors and Actuators

- · Sensors are required for
 - health (temperature, voltage, current, pressure, fuel,...)
 - decision making (attitude determination, navigation and rendezvous)
- · Each sensor must have a
 - type (digital or analog)
 - data rate
 - word size
 - number of sensors
- A table of sensors and each of the above characteristics should be started asap

Example: Dawgstar Sensors

	Telem etry		Sampling	Word Size	Required Data
1bem	Type	Quantity	Rate (Hz)	(bits)	Rate (bps)
Power					
Solarcellvollage in sensor	voltage	1	1	8	8
Powerbus voltage outsensor	voltage	1	1	8	8
Battery charge sensor	voltage	1	1	8	8
PowerManagement		1	1	8	8
Therm al					
PRT sensor	tem perature	2	0.1	16	3.2
ThermalControl	heaters	1	0.1	8	0.8
Communications					
GPS powerlevelsensor	voltage	1	1	8	8
GPS temperature sensor	tem perature	1	1	8	8
Antenna tem p	tem perature	1	1	8	8
TransmitPower	voltage	2	1	8	16
Kalman Filter	GPS	1	0.01	16	0.16
C&DH					
CPU powerlevelsensor	voltage	1	1	8	8
CPU temperature sensor	tem perature	1	1	8	8
FaultD etection M onitor	emordetection	1	5	8	40
FaultCorrection	emorcomection	1	5	8	40
Telemetry Processing	system health	1	10	8	80
Command Processing	system m anagem ent	1	10	8	80
Propulsion					
Capacitorvoltage sensor	voltage	4	10	8	320
Propelantsensor	voltage	8	2	8	128
D LC apacitorsensor	voltage	8	5	8	320
ADCS					
Magnetometer	xyzposition	1	10	16	160
Gymo	xyz rotation	1	10	8	80
Horizon Sensor	pitch and roll	2	10	8	160
Tem perature sensor	tem perature	4	10	8	320
ThrusterControl	thrustercontrol	8	1	8	64
OrbitPropagation	orbitdeterm ination	1	1	8	8
EmorD etection	Orbiterror	1	1	8	8
Science					
Absolute electron density		1	70	16	1120
In pedance data		1	0.7	16	11.2
			PCM Data Rate (bps)		3031.36

Radiation

- Radiation can work in primarily two ways:
 - 1. Single Event Upsets usually a bit flip (software) or a hardware anomaly (latchup) caused by a short burst of radiation (such as a solar flair). Latchups are much more dangerous.
 - 2. Constant bombardment of radiation over time
- Single event upsets are usually helped by
 - using a WatchDog timer on the CPU
 - using a second CPU to watch the primary
- · Constant bombardment is a function of
 - location in space
 - time of mission

neither of which should affect our mission

 Radiation Hardened components can help with both types of radiation, but they are VERY expensive (>\$30K)

Other Issues

- Communication windows (i.e. how long can we talk) and power drive the amount of data that can be sent to the ground.
 - This is a big system driver for small satellites in LEO
- · Downlink options for Universities:
 - own ground station
 - other universities
 - purchase time from commercial ground stations
- Vibration/thermal characteristics of boards
 - are they classified as MIL spec?
 - High thermal loads on boards is an important driver
- How much continuous power is required for the board?
- What is the cost of the board?
- · What is the mass of the board
 - including wiring?

Dawgstar Requirements

Hardware Capabilities				
Digital I/O Lines 48 – 24	48 - 4			
RS-232 in addition to above lines	4			
Analog Input Signals	64 - 8			
bus width / addressable memory space	25-bit or higher			
Boot Image Memory	256k			
Boot image Memory	(Fuse-Link ROM on flight board, EEPROM			
	on development boards)			
System Memory	1 MB			
FIFO Data Memory	8 MB			
Processor Speed	20 – 15 MHz			
•				
Operating Environment				
Industry Standard Compliance	Mil-Spec 883, Level B			
	NOTE: compliance with this standard is			
	equivalent to the requirements listed below.			
Operating Temperature	-55 to +85 C			
Cooling Mechanism	Conduction cooled			
Structural Stability	40g shock loads, 12g RMS random vibe			
Total Radiation Dose	20 - 10 krad			
Single Event Upset Threshold	40 - 20 MeV/mg/cm2			
SEU Error Rate	10E-10 - 10E-8 errors/bit/day			
Hardware Watchdog Timer	2-1			
Development, Support, etc.				
VxWorks OS Support				
1 Flight Board, 3 Development boards				
Lead Times: 2 weeks for development				
boards, 6 months for flight board				
Educational Discount				
Physical Characteristics				
Mass	0.1 kg			
Power consumption	0.8 – 1.2 W			

Simple Software Design: "Loop"

While "Spacecraft OK"

- sample attitude sensors
- sample health sensors
- sample navigation and other science sensors
- save health and science sensors to off-board memory queue
- calculate attitude command
- calculate position command
- send out commands to attitude actuators
- send out commands to propulsion

• End

Interrupt for:

- communications
- anomalies

W

Communication Protocols and Information Flow

- A Terminal Node Controller (TNC) packetizes binary serial data into a communications protocol format.
- An alternative is an internal modem in the transmitter/receiver
- After packetizing the data, the TNC modulates it using frequency shift keying (FSK)
- Frames and packets are two methods of formatting data for storage and transmission
 - frames are fixed
 - packets are variable
- · Packets add flexibility to the telemetry system
 - Each major subsystem can package its data differently
 - Data can be transmitted as generated
 - Standard communication protocols can be used
 - many EDAC software exists
- Examples
 - X.25, TCP/IP, ETHERNET

AX.25 Packet Structure

- Packet ID: Identifies which satellite is sending the data
- RT Bit: Real Time bit identifies whether the data is real time, or processed data
- Data: Data field (larger field means faster transfer, but more risk)
- CRC: allows the satellite to determine if the packet has been corrupted

Software Issues

- How does information flow:
 - serially
 - pull
 - interrupt
- Mission goals, cost requirements will drive the decision of using an operating system
- The best approach to software design is to define "modes of operation"
 - initial checkout
 - diagnostic
 - nominal attitude control
 - rendezvous
 - docking
 - servicing
 - ..

C&DH: States of operation

Diagnostics

- Check battery charge
- Check temperature sensors
- Everything OK go to science mode

Science Mode

- Attitude control
 - gyroscope, magnetometer, camera
- Science measurements
- · Health monitoring
- •GPS and Crosslink monitoring

Low Power

- DAWGSTAR is in light
 - orient to max solar intake
 - shut down inessentials while charging
- DAWGSTAR is cold
 - sleep till light side

Bad Thermal

- Low temperature
 - use heaters
- Excessive temperature
 - shut down device
 - · rotate away from sun

Propulsion

- Attitude and position determined before entering propulsion state
- Fire thrusters 1, 2, ..., n for x seconds

Formation maneuvering

- Based on GPS, Crosslink, and Uplink instructions
- Only a few times during mission duration
- Attitude Control

Downlink / Uplink Mode

- Uplink instructions to memory address
- Downlink data from memory address
- · Health monitoring
- •Attitude Control

Formation Keeping

Based on GPS and Crosslink data
Attitude Control

Design Approach

- List design drivers, associated calculations, narrow requirements
- Fill out more detailed specification based on template, list the requirements for your system
- Make a table of the sensors, data rates, numbers, type
- · List modes of operation
- Estimate processing required for each mode of operation
- Using specifications, do a trade study on the different commercial off the shelf board options
 - you may need to make some small changes to the board, such as added RS-232 ports
 - remember MUXing!
- Purchase a board a start the initial prototyping (remember lead time!)