

030AIQW

Dynamic Design of Machines

a.a. 2020-2021
Mechanical Engineering
Prof. Nicola Amati
Dipartimento di Ingegneria Meccanica ed Aerospaziale
nicola.amati@polito.it
angelo.bonfitto@polito.it

Tutorial 4 – Controlled systems

Index

Exercise	1p	age 2
Exercise	2 p	age 3
Exercise	3p	age 4

Exercise 1

In the linear system with a single degree of freedom in Figure 1, an active control action is provided by an actuator working on the spring with stiffness K1.

Figure 1 - Exercise 1.

It is requested to:

- a) Compute the equation of motion of the system
- b) Obtain the equivalent block diagram of the system
- c) Considering that the controlled variable is the displacement of the mass m, write the closed loop transfer function G1(s) = x(s)/xref(s), considering a PID control action (GPID = KP+KDs + KI/s)
- d) Write the closed loop transfer function G2(s) = x(s)/F(s), considering a PID control action (GPID = KP+KDs + KI/s)
- e) Use the Matlab script and the Simulink model in the folder to design the PID control and evaluate the behaviour of the controlled system.

Exercise 2

In the linear system with a single degree of freedom in Figure 2, an active control action is provided by an actuator working on the dashpot with damping C1.

Figure 2 - Exercise 2.

It is requested to:

- a) Compute the equation of motion of the system
- b) Obtain the equivalent block diagram of the system
- c) Considering that the controlled variable is the displacement of the mass m, write the closed loop transfer function G1(s) = x(s)/xref(s), considering a PID control action (GPID = KP+KDs + KI/s)
- d) Write the closed loop transfer function G2(s) = x(s)/F(s), considering a PID control action (GPID = KP+KDs + KI/s)
- e) Adapt the Matlab script and the Simulink model in the folder to design the PID control and evaluate the behaviour of the controlled system.

Exercise 3

In the linear system with a single degree of freedom in Figure 3, an active control action is provided by an actuator working on an auxiliary mass m1.

Figure 3 - Exercise 3.

It is requested to:

- f) Compute the equation of motion of the system
- g) Obtain the equivalent block diagram of the system
- h) Considering that the controlled variable is the displacement of the mass m, write the closed loop transfer function G1(s) = x(s)/xref(s), considering a PID control action (GPID = KP+KDs + KI/s)
- i) Write the closed loop transfer function G2(s) = x(s)/F(s), considering a PID control action (GPID = KP+KDs + KI/s)
- j) Adapt the Matlab script and the Simulink model in the folder to design the PID control and evaluate the behaviour of the controlled system.