Simon King, FSU Jena Fakultät für Mathematik und Informatik Henicke, Kraume, Lafeld, Max, Rump

Lineare Algebra für *-Informatik

Wintersemester 2020/21

Übungsblatt 10

Hausaufgaben (Abgabe bis 25.01.2021, 14:00 Uhr)

Hausaufgabe 10.1: (4 P.) Sei \mathbb{K} ein Körper und $n \in \mathbb{N}^*$. Zeigen Sie, dass für alle $x_1, \ldots, x_n \in \mathbb{K}$ gilt:

$$\det \begin{pmatrix} \frac{1}{x_1} & \frac{1}{x_2} & \cdots & \frac{1}{x_n} \\ \frac{x_1^2}{x_1^2} & \frac{x_2^2}{x_2^2} & \cdots & \frac{x_n^2}{x_n^2} \\ \frac{x_1^3}{x_1^3} & \frac{x_2^3}{x_2^3} & \cdots & \frac{x_n^3}{x_n^3} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{x_1^{n-1}}{x_1^{n-1}} & \frac{x_2^{n-1}}{x_n^{n-1}} & \cdots & \frac{x_n^{n-1}}{x_n^{n-1}} \end{pmatrix} = \prod_{1 \le i < j \le n} (x_j - x_i).$$

Hinweis: Diese Matrix nennt man *Vandermonde-Matrix*. Vereinfachung durch Zeilenoperationen, Laplace-Entwicklung, Induktion.

Hausaufgabe 10.2: Einige kleine Beweise Sei \mathbb{K} ein Körper, $n \in \mathbb{N}^*$ und $A \in M_n(\mathbb{K})$. Zeigen Sie:

- a) (1 P.) $\forall B \in M_n(\mathbb{K})$: Spur $(A \cdot B) = \text{Spur}(B \cdot A)$. **Anmerkung:** Einsetzen der Definitionen von Matrixmultiplikation und Spur. Die Gleichung ist nichttrivial, da im Allgemeinen $A \cdot B \neq B \cdot A$.
- b) (2 P.) Wenn $S \in GL_n(\mathbb{K})$ und $B := S^{-1}AS$, dann $\chi_B(X) = \chi_A(X)$. **Hinweis:** Rechenregeln für Determinanten.
- c) (1 P.) Sei V ein endlichdimensionaler K-Vektorraum mit Basen B_1, B_2 und $\varphi \colon V \to V$ ein Endomorphismus. Sei $A_1 := \frac{B_1}{B_1} \varphi$ und $A_2 := \frac{B_2}{B_2} \varphi$. Zeigen Sie $\chi_{A_1}(X) = \chi_{A_2}(X)$. **Hinweise:** Vorige Teilaufgabe; Basiswechsel. **Anmerkung:** Man kann also $\chi_{\varphi}(X) := \chi_{A_1}(X)$ und ebenso $\mathrm{Spur}(\varphi) := \mathrm{Spur}(A_1)$ sowie $\det(\varphi) := \det(A_1)$ definieren wie hier gezeigt wird, ist dies von der Wahl der Basis B_1 unabhängig, also wohldefiniert.

Hausaufgabe 10.3: Berechnung von Eigenräumen Sei $A := \begin{pmatrix} 1 & -1 & -2 \\ -1 & 1 & -2 \\ -2 & -2 & -2 \end{pmatrix} \in M_3(\mathbb{Q}).$

(4 P.) Berechnen Sie die Eigenwerte von A sowie jeweils Basen der zugehörigen Eigenräume. **Hinweise:** Die Eigenwerte sind kleine ganze Zahlen; einer der Eigenräume ist zweidimensional.

Erreichbare Punktzahl: 12