Seven Sketches in Compositionality – Exercises

Adam Catto

1 Chapter 1 — Generative Effects: Orders and Galois Connections

(1.1)

- (a) order-preserving $f: x \mapsto x+1$ non-order-preserving $f: x \mapsto -x$
- (b) metric-preserving $x \mapsto x + 2$ non-metric-preserving $x \mapsto 2x$
- (c) addition-preserving $x \mapsto x$ non-addition-preserving $x \mapsto 2x$

(1.2)

Circle 21, Circle the rest, box around the whole thing. i.e.

(1.6)

- 1. True
- 2. False
- 3. True

(1.7)

- 1. $\{\}, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}$
- 2. $\{1\} \cup \{1,3\} = \{1,3\}$
- 3. (h,1), (h,2), (h,3), (1,1), (1,2), (1,3)
- 4. (h,1), (1,1), (1,2), (2,2), (3,2)

5. $A \cup B = \{h, 1, 2, 3\}$

1.11

- 1. If there were more than one $p' \in P'$ such that $A_p = A'_{p'}$ (i.e. p'_1 and p'_2 such that $A_p = A'_{p'_1}$ and $A_p = A'_{p'_2}$), then $p'_1 \neq p'_2$, so necessarily $A'_{p'_1} \cap A'_{p'_2} = \emptyset$. But then since $A'_{p'_1} = A_p = A'_{p'_2}$, then $A'_{p'_1} = A'_{p'_2}$, thus $A'_{p'_1} \cap A'_{p'_2} = A_p \cap A_p = A_p \neq \emptyset$, by definition of partition, therefore there cannot be more than one $p' \in P'$ such that $A_p = A'_{p'}$.
- 2. Since there exists a $p' \in P'$ such that $A_p = A'_{p'}$, and by 1.11.1, there is at most one such p', it follows that there is a bijection between these $p \in P$ and $p' \in P'$, thus $\forall p' \in P'$ there exists a $p \in P$ such that $A_p = A'_{p'}$.

1.12

(11, 11), (12, 12), (13, 13), (21, 21), (22, 22), (23, 23), (11, 12), (12, 11), (22, 23), (23, 22)

1.15

- 1. Each A_p is (\sim)-connected, therefore they are nonempty.
- 2. If $A_p \cap A_q \neq \emptyset$, then for any $x \in A_p \cap A_q$, it follows that $x \in A_p$ and $x \in A_q$. Thus for any $x_p \in A_p$, we have $x_p \sim x$, and under (\sim)-closure and $x \in A_q$, it follows that $x_p \in A_q$, and the same for $x_q \in A_q$. Therefore, $A_p = A_q \models p = q$, which violates the contextual assertion that $p \neq q$, therefore $p \neq q \implies A_p \cap A_q = \emptyset$.
- 3. Each A_p is nonempty and \sim is reflexive, i.e. we have at least for each x that $x \sim x$, therefore we have at least that A is the union of singleton sets that cover A, therefore $A = \bigcup_{p \in P} A_p$.

1.19

- 1. $f: \mathbb{Z} \to \mathbb{R}: x \mapsto x+1$
- 2. $f: \mathbb{Q} \to \mathbb{Z}: x \mapsto x \frac{x}{10}$
- 3. (1): yes (2): no (3): no (4): yes
- 4. (1): neither (2): top dot's targets are not unique, bottom dot has no target (3): top dot has no target (partial function?) (4) bijective

1.20

By function definition, each $a \in A$ has a unique $y \in \emptyset$ such that $(a, y) \in f$. But there are no $y \in \emptyset$, therefore there cannot exist any such $a \in A$, therefore A is empty.

1.33

 $\begin{vmatrix} a & 1 & 2 \\ b & 1 & 3 \\ c & 1 & 3 \\ d & 2 & 2 \\ e & 2 & 3 \end{vmatrix}$

1.35

(1,1),(1,2),(1,3),(2,2),(2,3),(3,3),(4,4)

1.41

It is not a total order; for instance, neither $7 \leq 9$ nor $9 \leq 7.$

1.43

Yes.

1.46

1.48

Coarsest: identity function (top level of Hasse diagram)

Finest: projection onto singleton sets for each $s \in S$ (second to bottom level of Hasse diagram)

1.50

This is the same as proving that all subsets of X are upper sets of the discrete preorder on X, i.e. that $\forall [x,y\in X]$. $[x\in U \land x\leq y\implies y\in U]$. The empty set is in U via vacuous truth of the antecedent. Also, each $\{x\}$ for $x\in X$ is an upper set, via reflexivity of (discrete) preorder. Then for any $x\in X$, take the union of the singleton set $\{x\}$ and any other subset $Y\subseteq X$ disjoint from this singleton. By the argument from two sentences ago, each such singleton set is an upper set. This union is a subset of X, and furthermore it is an upper set, since the antecedent conjunction is false – it is not the case that $x\leq y$ for any $y\in Y$, since they are not comparable via definition of discrete preorder. Therefore all such Y are upper sets. These three statements (empty set is an upper set, all singletons are upper sets, all other subsets are upper sets) entail that all subsets of X are upper sets, therefore the preorder of upper sets on X is the power set.

1.61 (Yoneda Lemma for Preorders)

- 1. We have $p \in \uparrow p$ via reflexivity of \leq , and exactly when $p \leq p'$ we have $p' \in \uparrow p$; this is exactly the definition of upper set.
- 2. For $x,y\in P$, if $x\leq y$ then $x\leq^{OP}y$ in P^{OP} . There's an obvious map \uparrow from P^{OP} to the set of upper sets of elements of $P,\ U(P)$ as defined in (1.61.1). U(P) is preordered via the subset relation. Recalling that $x\leq^{OP}y\iff y\leq x$, then we must show that $x\leq^{OP}y\implies \uparrow(x)\subseteq\uparrow(y)$, i.e. $y\leq x\implies \uparrow(x)\subseteq\uparrow(y)$. $y\leq x$, and due to transitivity of $x\leq x$, then $x\leq x$, i.e. if $x\leq x$, then $x\leq x$, i.e. if $x\leq x$, then $x\leq x$, i.e. if $x\leq x$, then $x\leq x$, then $x\leq x$, i.e. if $x\leq x$, then $x\leq x$, i.e. if $x\leq x$, then $x\leq x$, i.e. if $x\leq x$, then $x\leq x$, i.e. if $x\leq x$, then $x\leq x$, i.e. if $x\leq x$, then $x\leq x$, then $x\leq x$, i.e. if $x\leq x$, then $x\leq x$, then $x\leq x$, i.e. if $x\leq x$, then $x\leq x$, then $x\leq x$, then $x\leq x$, i.e. if $x\leq x$, then $x\leq x$ then $x\leq x$, then $x\leq x$ then
- 3. Suppose $p \leq p'$ in P. Then $p' \leq^{op} p$, and due to monotonicity of \uparrow on the domain P^{op} , $\uparrow (p') \subseteq \uparrow (p)$. Now suppose that $\uparrow (p') \subseteq \uparrow (p)$. Then for every element $x \in P$ such that $x \leq p$, it follows that $x \leq p'$. Then there exists a $y \in P$ such that $p \leq y \leq p'$, therefore $p \leq p'$.

1.66

- 1. $x \le y \implies id(x) \le id(y) \implies x \le y$
- 2. for $p_1, p_2 \in P$, $p_1 \leq p_2 \implies f(p_1) \leq f(p_2)$, and for $q_1, q_2 \in Q$, $q_1 \leq q_2 \implies g(q_1) \leq g(q_2)$. Let $q_1 = f(p_1)$, $q_2 = f(p_2)$. Then $p_1 \leq p_2 \implies g(f(p_1)) \leq g(f(p_2))$, i.e. (f;g) is monotone.

1.80

- 1. Check that p is \leq each element: $p \leq p$; and that each least element is \leq to p: $p \leq p \implies p \leq p$.
- 2. If P is a partial order, then if $x \equiv y \iff x = y$. It follows that if $\bigwedge A \equiv p$, then $\bigwedge A = p$.
- 3. Yes, these are still true if we replace meets with joins. This can be checked simply by replacing \leq with \leq^{op} , and that $p \leq^{op} p$ entails $p \leq p$.

1.92

A right adjoint for $(3 \times -)$ is $\lfloor -/3 \rfloor$. We check that $x \leq \lfloor y/3 \rfloor \iff 3x \leq y$. (\Rightarrow) Suppose $x \leq \lfloor y/3 \rfloor$. Since $\lfloor y/3 \rfloor \leq y/3$, it follows that $x \leq y/3$, thus $3x \leq y$.

(\Leftarrow) Suppose now that $3x \le y$. Then $x \le y/3 \implies \lfloor x \rfloor \le \lfloor y/3 \rfloor$, and since $x \in \mathbb{Z}$, it follows that |x| = x, therefore $x \le |y/3|$.

1.93

1.
$$f(1) = 1 \implies \begin{vmatrix} 1 \le 1 \implies g(1) = 2 \implies 1 \le 2 \\ 1 \le 2 \implies g(2) = 2 \implies 1 \le 2 \\ 1 \le 3 \implies g(3) = 3 \implies 1 \le 3 \end{vmatrix}$$

$$f(2) = 1 \implies \begin{vmatrix} 1 \le 1 \implies g(1) = 2 \implies 1 \le 2 \\ 1 \le 2 \implies g(2) = 2 \implies 1 \le 2 \\ 1 \le 3 \implies g(3) = 3 \implies 1 \le 3 \end{vmatrix}$$

$$f(3) = 3 \implies [3 \le 3 \implies g(3) = 3 \implies 3 \le 3]$$

therefore f is left-adjoint to g.

$$2. \ f(1) = 1 \implies \begin{vmatrix} 1 \le 1 \implies g(1) = 2 \implies 1 \le 2 \\ 1 \le 2 \implies g(2) = 2 \implies 1 \le 2 \\ 1 \le 3 \implies g(3) = 3 \implies 1 \le 3 \end{vmatrix}$$

$$f(2) = 2 \implies \begin{vmatrix} 2 \le 2 \implies g(2) = 2 \implies 2 \le 2 \\ 2 \le 3 \implies g(3) = 3 \implies 3 \le 3 \end{vmatrix}$$

$$f(3) = 3 \implies [3 \le 3 \implies g(3) = 3 \implies 3 \le 3]$$

therefore f is left-adjoint to g.

2 Chapter 2 – Resource Theories: Monoidal Preorders and Enrichment

(2.4)

This fails due to condition (a) of Definition (2.1) – $\forall [x_1, x_2, y_1, y_2 \in X]$. $[(x_1 \leq y_1 \land x_2 \leq y_2) \implies x_1 \otimes x_2 \leq y_1 \otimes y_2]$ for instance, any model in which x_1, x_2 are both negative real numbers larger in magnitude than positive reals y_1, y_2 will not yield $x_1 \otimes x_2 \leq y_1 \otimes y_2$.

(2.6)

Yes, \mathbf{Disc}_M is indeed a symmetric monoidal preorder. It satisfies conditions (b) and (c) of Definition (2.1) via equation (2.2). It satisfies condition (d) of Definition (2.1) via the asserted commutativity of *. Finally, this induces satisfaction of condition (a) of Definition (2.1), via renaming of identical variables: if m = n and s = t, then m * s = n * s = n * t.