Matemàtiques

Diagnòstics:
Estudi dels
residus

Distribució dels
errors

Anàlisi de Residus

Diagnòstics:
Estudi dels
residus
Distribució dels
errors
Ajustament al
model lineal
Observacions

Hipòtesis del model de regressió lineal

L'estimació i inferència a partir del model de regressió lineal depèn de diverses hipòtesis, que hauran de ser comprovades emprant diagnòstics de regressió. Els problemes potencials es classifiquen en tres categories:

- Errors: Els errors han de seguir una $N(0, \sigma)$, amb la mateixa variància, i ser incorrelats.
- Model: Els punts s'han d'ajustar a l'estructura lineal considerada.
- Observacions anòmales: De vegades unes quantes observacions no s'ajusten al model.

1/42

2 / 42

Matemàtiques II

Diagnòstics: Estudi dels esidus

Distribució dels errors Ajustament al model lineal Observacions anòmales

Tipus de diagnòstics de regressió

Els diagnòstics poden ser:

- gràfics: Més flexibles però més difícils d'interpretar
 ⇒ Lliçó 28 de R.
- numèrics: D'utilitat més limitada però amb interpretació immediata.

Matemàtiques II Diagnòstics: Estudi dels residus Distribució dels errors Ajustament al model lineal Observacions anòmales

Variància no constant

Un dels problemes que pot patir el nostre model és que la variància dels residus no sigui constant. Vegem-ne un exemple

- > x<-runif(100)
- > y<-1-2*x+0.3*x*rnorm(100)
- > par(mfrow=c(1,2))
- > plot(x,y)
- $> r=lm(y^x)$
- > abline(r,col="red")
- > plot(r\$res~r\$fitted.values)

Matemàtiques II Diagnòstics: Estudi dels residus

Variància no constant

-0.5

r\$fitted.values

5 / 42

Variància no constant

En el cas que la variància no sigui constant, direm que el model presenta heteroscedasticitat.

Gràficament es pot comprovar amb el gràfic $\{(\hat{y}_i, e_i)\}_{i=1,\dots,n}$, detectant zones sense punts.

Emperò també disposam de tests per contrastar-ho.

6 / 42

latemàtiques II

Diagnòstics: Estudi dels esidus

Distribució dels

Ajustament al model lineal Observacions anòmales

Test de White

- **①** Obtenim els residus $\{e_i\}_{i=1,\dots,n}$ de la regressió lineal inicial.
- 2 Calculam el R^2 de la regressió lineal dels e_i^2 respecte de les variables inicials, els seus quadrats i els productes creuats dos a dos.
- **3** Obtenim l'estadístic $X_0 = nR^2$, el qual, suposant que la variància és constant, segueix una χ_q^2 , on q és el número de variables independents de la regressió del pas anterior.
- Calculam el p-valor

$$P(\chi_q^2 \geqslant X_0)$$

amb el significat usual.

Test de White

Anem a aplicar-lo a l'exemple anterior.

- > residus=r\$res
- > X0=length(residus)*
 summary(lm(residus^2~x+x^2))\$r.squared
- > 1-pchisq(X0,2)

[1] 0.0006494604

I per tant, podem rebutjar la hipòtesi nul·la i concloure que el model presenta heteroscedasticitat. Amb R, es pot emprar la funció white.test del paquet bstats.

- > install.packages("bstats")
- > library(bstats)
- > r<-lm(y~x)
- > white.test(r)

White test for constant variance data:

White = 14.6983, df = 2, p-value = 0.0006431

Matemàtiques II Diagnòstics: Estudi dels residus Distribució dels

Ajustament al model lineal

Normalitat

Com ja hem vist anteriorment, els residus han de seguir una distribució $N(0,\sigma)$ variància constant. Això es pot comprovar amb el test KS, emprant S^2 com estimador de la variància.

També es pot recórrer a l'histograma o al gràfic QQ-plot.

> ks.test(r\$res,"pnorm",0,summary(r)\$sigma)
One-sample Kolmogorov-Smirnov test

data: r\$res

D = 0.136, p-value = 0.04958

alternative hypothesis: two-sided

> library(car)

> qqPlot(r\$res,"norm")

Tots dos criteris rebutgen la normalitat dels residus del nostre exemple.

9 / 42

Matemàtiques II Diagnòstics: Estudi dels residus Distribució dels errors Ajustament al model lineal Observacions anòmales

Normalitat

10 / 42

latemàtiques II

Diagnòstics: Estudi dels residus

Distribució dels errors

Ajustament al model lineal

Correlació dels residus: Test de Durbin-Watson

Els residus han de ser incorrelats. L'autocorrelació pot ser de dos tipus:

- Autocorrelació positiva: Un valor positiu (negatiu) d'un error genera una successió de residus positius (negatius).
- Autocorrelació negativa: Els residus van alternant de signe.

Per comprovar si es satisfà que els residus no presenten correlació, es pot aplicar el test de Durbin-Watson.

Matemàtiques II Diagnòstics: Estudi dels residus Distribució dels errors Ajustament al model lineal Observacions anòmales

Correlació dels residus: Test de Durbin-Watson

Siguin $\{e_i\}_{i=1,\dots,n}$ els residus de la regressió. Siguin E_i i E_{i-1} les variables aleatòries error (traslladades en un índex) i $E_i=\beta_1 E_{i-1}+\beta_0$ la recta de regressió de E_i respecte a E_{i-1} . Es planteja el següent contrast:

$$\begin{cases}
H_0: \beta_1 = 0, \\
H_1: \beta_1 \neq 0
\end{cases}$$

Aleshores es defineix el següent estadístic de contrast

$$d = \frac{\sum_{i=2}^{n} (e_i - e_{i-1})^2}{\sum_{i=1}^{n} e_i^2}$$

El valor d'aquest estadístic és aproximadament $2(1 - b_1)$ on b_1 és una estimació de β_1 . Si H_0 és certa, la seva distribució és la d'una certa combinació lineal de χ^2 .

Matemàtiques II Diagnòstics: Estudi dels

estuai deis residus Distribució dels

errors
Ajustament al

Test de Durbin-Watson

El test necessita d'una taula de valors crítics per prendre la decisió final. En concret, d s'ha de comparar amb dos valors crítics $d_{L,\alpha}$ i $d_{U,\alpha}$ on α és el nivell de significació que depenen de n i de k.

Contrastem si hi ha autocorrelació positiva

- Si $d < d_{L,\alpha}$, hi ha autocorrelació positiva.
- Si $d > d_{U,\alpha}$, no hi ha autocorrelació positiva.
- Altrament, ens trobam a la zona de penombra.

Contrastem si hi ha autocorrelació negativa

- Si $4 d < d_{L,\alpha}$, hi ha autocorrelació negativa.
- Si $4-d>d_{U,\alpha}$, no hi ha autocorrelació negativa.
- Altrament, ens trobam a la zona de penombra.

Test de Durbin-Watson

- > residus=r\$res
- > sum(diff(residus)^2)/sum(residus^2)
 [1] 2.132796

I mirant la taula amb n=100 i k=1 tenim que $d_{L,0.05}=1.65$ i $d_{U,0.05}=1.69$ i concloem que no existeix autocorrelació de cap tipus.

14 / 42

latemàtiques II

Diagnòstics: Estudi dels residus

Distribució dels errors Ajustament al model lineal

Test de Durbin-Watson

Amb R, el test es troba implementat en la funció dwtest del paquet lmtest. S'ha d'especificar amb el paràmetre alternative si s'està contrastant l'autocorrelació positiva o la negativa.

> dwtest(r,alternative="less")
Durbin-Watson test
data: r
DW = 2.1328, p-value = 0.245
alt. hypothesis: true autocorrelation is less than 0
> dwtest(r,alternative="greater")
...
DW = 2.1328, p-value = 0.755
alt. hypothesis: true autocorrelation is greater than 0

La funció retorna un p-valor amb el significat usual. Com podem veure, no podem descartar la hipòtesi nul·la en cap dels dos casos i els residus no presenten autocorrelació

Matemàtiques II

Diagnòstics: Estudi dels residus Distribució dels errors

Ajustament al model lineal Observacions anòmales

Additivitat i linealitat

Com ja s'ha comentat, el gràfic $\{e_i, \hat{y}_i\}_{i=1,\dots,n}$ permet contrastar gràficament si la variància dels residus és constant. Emperò, també permet veure si existeix algun tipus de tendència o estructura en els punts d'aquest gràfic. En cas afirmatiu, es té que el model lineal no és l'adequat per aquestes observacions.

> r2 < -lm(y2~x2)

> plot(r2\$fitted,r2\$res)

15 / 42

Diagnòstics: Estudi dels residus Distribució dels

Additivitat i linealitat

Quan es planteja un model lineal, les següents suposicions en són implícites:

- Additivitat: Per cada variable independent X_k , la variació de $\mu_{Y|x_1,...,x_k}$ associada amb un augment en X_k (mantenint les altres variables constants) és la mateixa siguin quin siguin els valors de les altres variables independents.
- Linealitat: Per cada variable independent X_k , la variació de $\mu_{Y|x_1,...,x_k}$ associada amb un augment en X_k (mantenint les altres variables constants) és la mateixa sigui quin sigui el valor de X_k .

Podem comprovar l'additivitat amb el test de Tukey, mentre que s'empraran els anomenats gràfics de residus parcials per la linealitat.

17 / 42

Diagnòstics: Estudi dels residus Distribució dels errors Ajustament al model lineal Observacions anòmales

Test de Tukey per la no additivitat

La idea principal és verificar que no hi hagi interacció entre les variables independents i així, cada una tendrà un efecte additiu en el model. Si existeix la interacció, alguns termes quadràtics tendran pes en el model. Aquesta és la base del Test de Tukey.

- **1** S'obtenen els $\{\hat{y}_i\}$ per la regressió lineal inicial.
- ② Es duu a terme una segona regressió lineal incloent com a nova variable independent els \hat{y}_i^2 . Sigui β el coeficient d'aquesta nova variable.
- 3 Es realitza el contrast

$$\begin{cases} H_0: \beta = 0 \\ H_1: \beta \neq 0 \end{cases}$$

Si no podem descartar la hipòtesi nul·la, la variable dels \hat{y}_i^2 no és significativa i el model és additiu.

18 / 42

latemàtiques II

Diagnòstics: Estudi dels residus Distribució dels errors Aiustament al

Test de Tukey per la no additivitat

```
> yhat2<-predict(r)^2</pre>
> rnova<-update(r,.~.+yhat2)</pre>
> summary(rnova)
Call:
lm(formula = y ~ x + yhat2)
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.03464
                        0.03838 26.956
                                           <2e-16 ***
            -2.06595
                        0.05781 -35.735
                                           <2e-16 ***
            -0.02653
                        0.05068 -0.524
                                            0.602
vhat2
Sig. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Res. standard error: 0.1671 on 97 degrees of freedom
Multiple R-squared: 0.9294, Adjusted R-squared: 0.928
F-statistic: 638.8 on 2 and 97 DF, p-value: < 2.2e-16
I amb un p-valor de 0.602, no podem rebutjar que el
model sigui additiu.
                                                    19 / 42
```


Test de Tukey per la no additivitat

Amb R, la funció residualPlots del paquet car, entre altres coses, retorna l'estadístic i el p-valor del Test de Tukey.

> residualPlots(r)

Test stat Pr(>|t|)x -0.524 0.602 Tukey test -0.524 0.601

Matemàtiques II

Diagnòstics:
Estudi dels
esidus
Distribució dels
errors
Ajustament al
model lineal

Linealitat: Gràfics de residus parcials

Els gràfics de residus parcials són una eina útil per detectar la no linealitat en una regressió. Es defineixen els residus parcials e_{ij} per la variable independent X_j com

$$e_{ij} = e_i + b_j x_{ij}$$

on e_i és el residu de la regressió lineal, b_j és el coeficient de X_j i x_{ij} és l'observació j-èsima de l'individu i.

Els residus parcials es dibuixen contra els valors de x_j i es fa la seva recta de regressió. Si aquesta no s'ajusta a la corba donada per una regressió no paramètric suau (les variables independents no estan predeterminades i es construeixen amb les dades), el model no és lineal.

La funció de R per representar aquests gràfics és crPlots del paquet car.

Matemàtiques I
Diagnòstics:
Estudi dels
residus
Distribució dels
errors
Ajustament al
model lineal
Observacions

Gràfics de residus parcials

Anem a construir una variable més o manco lineal, una quadràtica i una altra logarítmica i facem-ne la regressió i els gràfics de residus parcials.

- > y<-c(1:1000)
- > x1<-c(1:1000)*runif(1000,min=0,max=2)
- > x2<-(c(1:1000)*runif(1000,min=0,max=2))^2
- > x3<-log(c(1:1000)*runif(1000,min=0,max=2))
- > library(car)
- $> lm_fit < -lm(y^x1+x2+x3)$
- > crPlots(lm_fit)

Com es pot veure als gràfics següents, les variables x2 i x3 no s'ajusten al model lineal.

22 / 42

Natemàtiques II

Diagnòstics: Estudi dels esidus Distribució dels errors Ajustament al

Gràfics de residus parcials

Matemàtiques II

Diagnòstics:
Estudi dels
residus

Distribució dels
errors
Ajustament al
model lineal

Observacions
anòmales

21 / 42

Observacions anòmales

- Les observacions anòmales poden provocar que es malinterpretin patrons en el conjunt de dades.
- A més, punts aïllats poden tenir una gran influència en el model de regressió donant resultats completament diferents.
- Poden provocar que el nostre model no capturi característiques importants de les dades.

23 / 42 24 / 42

Diagnòstics: Estudi dels residus Distribució dels errors Ajustament al model lineal Observacions

Exemple

Com es pot observar, la presència d'un valor anòmal distorsiona completament el model.

25 / 42

27 / 42

Tipus d'observacions anòmales

Tenim tres tipus d'observacions anòmales:

- Outliers de regressió: És una observació que té un valor anòmal de la variable dependent Y, condicionat als valors de les seves variables independents X_i . Tendrà un residu molt alt però pot no afectar massa al pendent.
- **2** Leverages: És una observació amb un valor anòmal de les variables independents X_i . No té perquè afectar els coeficients de la regressió.
- Observacions influents: Són aquelles que tenen un alt leverage i són outliers de regressió i afecten fortament a la regressió.

26 / 42

Matemàtiques II

Diagnòstics:
Estudi dels
residus
Distribució dels
errors
Ajustament al
model lineal
Observacions

Exemple

Aquestes seran les dades que emprarem a continuació. El primer data frame (dadesoutl) conté un outlier; el segon (dadeslev), un leverage i el tercer (dades), un punt influent.

Matemàtiques II Diagnòstics: Estudi dels residus Distribució dels errors

Diagnòstics:

Leverages

Per trobar els leverages, en primer lloc, anem a definir la matriu $Hat\ H$ donada per

$$H = X(X'X)^{-1}X'$$

Aquesta matriu és simètrica $(H^t = H)$ i idempotent $(H^2 = H)$. A més, és fàcil comprovar que $\hat{y} = Xb = X(X'X)^{-1}X'y = Hy$ i així tenim que

$$\hat{y}_j = h_{1j}y_1 + h_{2j}y_2 + \ldots + h_{nj}y_n = \sum_{i=1}^n h_{ij}y_i$$

Diagnòstics: istudi dels esidus Distribució dels arjustament al model lineal Observacions

Leverages

- Si h_{ij} és gran, l'observació i-èsima té un impacte substancial en el valor predit j-èsim.
- Es defineix el leverage de l'observació *i*-èsima, *h_i* com el seu valor hat

$$h_i = \sum_{j=1}^n h_{ij}^2$$

i així, el valor hat h_i mesura el leverage potencial de y_i en tots els valors predits.

29 / 42

Propietats leverages

iagnòstics: studi dels sidus Distribució dels rrors Jjustament al

- El valor hat mitjà és $\overline{h} = \frac{k+1}{n}$.
- Els valors hat satisfan $\frac{1}{n} \leqslant h_i \leqslant 1$.
- En la regressió lineal simple, els valors hat mesuren la distància de x_i a la mitjana de X:

$$h_i = rac{1}{n} + rac{(x_i - \overline{x})^2}{\sum_{j=1}^n (x_j - \overline{x})^2}$$

• En la regressió múltiple, h_i mesura la distància d'una observació al vector de mitjà de X.

30 / 42

Matemàtiques II

Diagnòstics:
Estudi dels
residus
Distribució dels
errors
Ajustament al
model lineal

Leverages

La regla de decisió és que es considerarà que una observació té leverage gran (i per tant, ha de ser considerada amb cura) quan

$$h_i > 2 \frac{k+1}{n}$$
.

La funció hatvalues de R calcula els valors hat donat un model de regressió.

Matemàtiques II

Estudi dels residus Distribució dels errors Ajustament al model lineal

Leverages

Diagnòstics: Estudi dels residus Distribució dels errors Ajustament al model lineal Observacions

Outliers

- L'estratègia per determinar quines observacions són susceptibles de ser outliers es basen en els anomenats residus Studentitzats.
- Es basen en recalcular el model després d'eliminar l'observació i-èsima i trobar la corresponent (MSE)_i.
- Es defineixen com

$$E_i^\star = rac{e_i}{\sqrt{(\mathit{MSE})_i(1-h_i)}}$$

i segueixen una distribució t d'Student amb n-k-2 graus de llibertat.

latemàtiques II

Diagnòstics:
Estudi dels
residus
Distribució dels
errors
Ajustament al
model lineal
Observacions

Outliers

• Es realitza una correcció de Bonferroni al p-valor multiplicant-lo per *n* i així, el p-valor ajustat és

$$2nP(t_{n-k-2}\geqslant E_i^{\star})$$

 Es van considerant per ordre decreixent de E^{*}_i fins que es troba una observació que ja no sigui un outlier.

34 / 42

Matemàtiques II

Diagnòstics:
Estudi dels
residus
Distribució dels
errors
Ajustament al
model lineal

Outliers

```
> n=length(dadesoutl[,1])
```

- > rout=lm(dadesoutl[,2]~dadesoutl[,1])
- > residus=summary(rout)\$res
- > hats=hatvalues(rout)
- > sigmes=c()
- > for (i in 1:n)

 $\{ \verb|sigmes=c(sigmes, \verb|summary(update(rout, \verb|subset=-i)) \$| sigma) \}$

- > rstudents=residus/(sigmes*sqrt(1-hats))
- > 2*length(dadesoutl[,1])*(1-pt(abs(rstudents),n-3))

1 2 3 4

4.31827408 4.75837310 5.94956512 6.40049712 8.40087400 6 7 8 9

3.80527695 8.83857494 4.79294502 0.02148867

> dadesout1[9,]

V1 V2

9 65 50

I tendríem que la novena observació seria un outlier.

Matemàtiques II

Diagnòstics:
Estudi dels
residus
Distribució del
errors
Ajustament al
model lineal
Observacions
anòmales

Outliers

La funció de R que realitza aquest test de detecció d'outliers és la funció outlier.test del paquet car.

Arribant a la mateixa conclusió.

Diagnòstics: Estudi dels esidus Distribució dels errors Ajustament al model lineal Observacions

Observacions influents: Distància de Cook

- Com hem dit, una observació influent és aquella que combina discrepància amb leverage.
- Una forma de determinar-les és examinar com canvien els coeficients de la regressió si s'elimina una observació en concret.
- La mesura per avaluar aquest canvi és l'anomenada distància de Cook:

$$D_i = \frac{e_{S_i}^2}{k+1} \cdot \frac{h_i}{1-h_i}$$

on h_i és el leverage i e_{S_i} és l'anomenat residu estandaritzat, donat per

$$e_{S_i} = \frac{e_i}{\sqrt{MSE(1-h_i)}}.$$

37 / 42

Diagnòstics:
Estudi dels
residus
Distribució del
errors
Ajustament al
model lineal
Observacions
anòmales

Distància de Cook

- El primer factor mesura el grau de ser outlier mentre que el segon mesura el grau de leverage.
- Una regla per determinar quines observacions són influents és

$$D_i > \frac{4}{n-k-1}.$$

38 / 42

Natemàtiques II

Diagnòstics:
Estudi dels
residus
Distribució dels
errors
Ajustament al
model lineal

Distància de Cook

- > r=lm(dades[,2]~dades[,1])
- > hats=hatvalues(r)
- > resstd=r\$res/(summary(r)\$sigma*sqrt(1-hats))
- > cooks=resstd^2/2*hats/(1-hats)
- > cooks

1 2 3 4
71.193885062 0.036284611 0.038913392 0.003134472
5 6 7 8
0.018290844 0.093186308 0.065299277 0.045157990
9
0.240848787

> dades[which(cooks>4/2),]

V1 V2 1 166 56

Concloem que l'observació 1 és influent en el model.

Matemàtiques II

residus
Distribució del
errors
Ajustament al
model lineal
Observacions

Distància de Cook

Les distàncies de Cook es poden calcular emprant la funció cooks.distance del paquet car de R.

> cooks.distance(r)

1 2 3 4 71.193885062 0.036284611 0.038913392 0.003134472 5 6 7 8 0.018290844 0.093186308 0.065299277 0.045157990 9

Diagnòstics: Estudi dels esidus Distribució dels errors Ajustament al model lineal Observacions

I què en feim amb les observacions anòmales?

- El tractament de les observacions anòmales és força complex.
- Es poden deure a errors en l'entrada o recollida de les dades i en aquest cas, es podrien eliminar.
- Però també poden explicar que no s'ha considerat alguna variable independent que afecta al conjunt d'observacions anòmales.
- Les més perilloses són les influents. En el cas que es determini que es poden eliminar, s'han d'eliminar d'una a una, actualitzant el model cada vegada.

Matemàtiques

Estudi dels
residus
Distribució dels
errors
Ajustament al
model lineal
Observators
anòmales

Algunes consideracions finals: Selecció del model

- El model de regressió lineal no és l'únic que podem emprar (polinòmics, logarítmics), i altres models podrien donar ajustaments millors
- El model pot ser més eficaç si afegim altres variables, o pot ser igual d'eficaç si llevam variables redundants
- Hi pot haver dependències lineals entre les variables que les faci redundants: ho podem detectar amb la matriu de covariàncies
- Hi ha mètodes iteratius per cercar el model lineal amb un millor equilibri de simplicitat i adequació: millor fer-los amb R

42 / 42