

Departamento de eletrónica, telecomunicações e informática

Curso 8204 - Mestrado Integrado em Engenharia Eletrónica e Telecomunicações

Disciplina 40333- Laboratório de Sistemas Digitais

Ano letivo 2015/16

Milestone Intermédia

Fechadura Eletrónica

Autores:

79970 Rui Filipe Santos Carapinha

79926 Pedro Francisco dos Santos Figueiredo

Turma P20 Grupo 1

Data 24/04/2016
Docente José Luis Azevedo

Especificações do Sistema

Para este projeto é pretendido simular uma fechadura eletrónica. Para isto iremos ter um supervisor (irá definir a palavra passe) e um utilizador (irá introduzir a palavra passe).

Para isto o supervisor vai ter de definir uma palavra passe, para que o utilizador tenha de a introduzir de modo a ter acesso a algo, de modo a funcionar como uma fechadura eletrónica.

Através dos botões disponíveis no comando remoto por infravermelhos, o utilizador deve introduzir a palavra passe, mostrado através dos displays hexadecimais. Caso o utilizador erre na palavra passe o tempo até que o sistema permita novamente a introdução da palavra passe aumenta. Se após 10 tentativas o utilizador não acertar na palavra passe o sistema fica bloqueado até à introdução de um código de supervisão.

O utilizador vai ter acesso à informação através do display hexadecimal, de modo a obter o número de tentativas restantes e o tempo que falta até á permissão da introdução de uma nova tentativa.

Arquitetura detalhada do sistema

Neste ponto da milestone intermédia, iremos explicar como funcionarão as entidades que vão estar envolvidas no nosso projeto.

a) Locker

Este é o bloco principal do sistema, é a nossa máquina de estados. Vai servir interligar todos os blocos dos quais vamos dispor.

Este bloco tem como entradas a palavra passe do utilizador, a palavra passe de segurança, um relógio (clock) e uma entrada de submissão. Este bloco terá as seguintes saídas: uma denominada de state (em que dizemos se a fechadura foi desbloqueada ou não) e também teremos uma saída denominada de Count (que será '1' sempre que o utilizador errar na palavra passe).

Para facilitar a compreensão deste código, em anexo está disponível a máquina de estados.

b) Blink

Este bloco serve apenas para fazer o display hexadecimal piscar.

Esta entidade tem como entradas um sinal de relógio (clock (1Hz)) e uma entrada n_In. Esta entidade possui uma saída, denominada de n_Out.

Esta entidade irá funcionar quando o supervisor quiser definir uma nova palavra-passe, piscando sempre o dígito que o supervisor estiver a alterar e também funcionará quando as tentativas forem atingidas, fazendo piscar o número 10 e a palavra "Blocked".

c) InfraredRemote

Este bloco serve para fazermos a conexão entre o comando remoto de infravermelhos e o kit DE2-115.

Esta entidade tem como entradas um sinal de relógio (clock) e uma entrada ir_rx. A informação é enviada da seguinte maneira:

- 1 bit inicial de sincronismo (start bit);
- 32 Bits de informação (data bits, bit menos significativo enviado primeiro);
- 1 Bit final de sincronismo (stop bit);

Esta entidade permite-nos usar os botões de um comando remoto de infravermelhos com o protocolo NEC como se fosse uma key ou um switch.

Iremos utilizar esta entidade o utilizador poder fazer a introdução da palavra passe por um comando remoto de infravermelhos. O código em VHDL deste bloco já nos é fornecido.

d) Debouncers

Este bloco é bastante importante para o bom funcionamento das keys disponíveis no kit DE2-115. Este bloco serve para "limpar" o pulso recebido pelas keys quando estas são pressionadas. Ele gera um pulso "limpo" com o tamanho de um ciclo do sinal de relógio.

Este bloco tem como entradas um sinal de relógio (refClk) e uma entrada denominada dirtyIn (esta entrada corresponde ao pulso "sujo" proveniente do kit DE2-115).

(De notar, que este bloco apenas será usado numa primeira fase, visto que depois toda a interface será através do teclado PS/2 e do comando remoto de infravermelhos)

e) FreqDividers

Utilizaremos este bloco para realizar todos os sinais de relógio necessários para o bom funcionamento do projeto.

Este bloco serve para definirmos os clocks que queremos. A partir deste bloco podemos realizar a conversão de um clock (p.e., de 50MHz) para um clock com uma frequência mais baixa. Será

utilizado para definir a frequência do Blink.

Este bloco tem como entradas um sinal de relógio (clkIn) e tem como saídas outro sinal de relógio (clkOut).

f) PS2Interface

Este bloco serve para fazer a conexão entre o teclado PS/2 e o kit DE2-115. Utilizaremos esta entidade para o supervisor fazer a definição da palavra-passe, necessária para poder desbloquear a fechadura.

Este bloco tem como entradas um relógio (clock), uma entrada writeEnable, uma entrada command. O bloco também possui duas entradas/saídas, uma denominada ps2_clk, outra denominada ps2_dat. Por último, o bloco tem como saídas, uma denominada valid, outra denominada data e outra denominada can_write. O código em VHDL deste bloco já nos é fornecido.

g) Bin7SegDecoder

Este bloco será utilizado para mostrar a informação pretendida nos displays hexadecimais.

Este bloco tem como entrada um sinal denominado de binInput (input em binário) e uma saída denominada de decOut_n (output em decimal).

Vamos instanciar este bloco de modo a ser possível mostrar as vezes que o utilizador já errou a palavra passe (as tentativas) e mostrar o tempo que falta até à permissão, novamente, da introdução de palavra passe.

h) Counter

Este bloco será utilizado para saber quantas tentativas é que o utilizador já dispôs.

Este bloco tem como entrada um sinal denominado de CountIn e uma saída denominada de CountOut.

Vamos instanciar este bloco em conjunto com a saída Count da máquina de estados, em cada ciclo sempre que o Count for '1' o nosso bloco Counter acrescrentará 1 à sus saída CountOut, que por sua vez estará ligada a um Bin7SegDecoder para ser possível visualizar no display hexadecimal.

Arquitetura faseada do desenvolvimento e validação

Quanto ao planeamento do nosso projeto, tencionamos fazer as seguintes fases com as seguintes características.

- Fase 1: Definição do código através de keys, introdução do código em switches e realização da máquina de estados. Realizaremos isto, através de um clock (controlado por uma key).
 Caso os códigos sejam iguais um led acenderá. Nesta fase já incluiremos a penalização por tempo.
- Fase 2: Nesta fase, iremos realizar a função do sistema bloquear quando o utilizador errar 10 vezes na introdução da palavra passe. E a função do sistema desbloquear quando o código de supervisão é introduzido.
- Fase 3: Nesta fase, tencionamos mostrar toda a informação ao utilizador e ao supervisor informação sobre o sistema. Desde o tempo que falta até à introdução de uma nova palavra passe até ao dígito que está a ser alterado. Também tencionamos implementar a entidade Blink nesta fase do trabalho.
- Fase 4: Nesta fase, adicionaremos o teclado PS/2 e o comando remoto por infravermelhos para definição do código e introdução do código.

Tencionamos, realizar o funcionamento e a validação das entidades base até 3 semanas antes da apresentação e defesa do miniprojecto. As últimas semanas serão dedicadas a melhorias, à resolução do relatório final e a correção de algum imprevisto.

Divisão do trabalho entre os dois elementos do grupo

Para aumentar a rapidez com que o projeto é desenvolvido e para este ser um projeto, igualmente, importante para a aprendizagem na linguagem em VHDL decidimos dividir a realização das entidades de forma igual (cada aluno, irá realizar ou adaptar as entidades necessárias) e realizar as Test Benchs em conjunto, de modo, a ser mais rápido a compreensão do que está acontecer. Com isto, decidimos dividir assim o trabalho:

- O Rui Carapinha vai ficar com as seguintes entidades: InfraredRemote, Locker, Counter e Blink.
- O Pedro Figueiredo vai ficar com as seguintes entidades: FreqDividers, PS/2Interface, Debouncers eBin7SegDecoder.

Muitas destas entidades já foram desenvolvidas em aulas práticas, por isso, será apenas necessário adaptar de forma a obtermos o resultado pretendido para este projeto.

Manual do Utilizador

O utilizador tem á sua disposição um comando remoto por infravermelhos e um teclado PS/2 onde pode modificar o comportamento do circuito. O comando remoto vai ser necessário para introdução da palavra passe e o teclado PS/2 vai ser necessária para definição da palavra passe e para a reposição do código de supervisão caso o sistema fique bloqueado.

No comando, o utilizador pode introduzir a palavra passe, através do teclado disponível, de 0 até 9. Caso queira eliminar o dígito premido anteriormente basta carregar no Key 0. Se o utilizador não acertar na palavra passe após 10 tentativas o supervisor pode fazer reset ao introduzir o código de supervisão, repondo o sistema no seu estado inicial, caso o supervisor se engane ao colocar o código de supervisão também será penalizado por tempo.

Anexos

