

Grupo Disciplinar de Eletrónica Industrial/Secção de Automação e Eletrónica

ISEL / DEEEA

Eletrónica Geral - 6º Trabalho de Laboratório: Zonas de Funcionamento do Transístor Bipolar de Junção (TBJ) - 2º Semestre - Ano Letivo 2023/2024

1 - Introdução

Um transístor bipolar de junção (TBJ) é um dispositivo semicondutor de três camadas (com duas junções) do tipo PNP ou NPN, dependendo do tipo de camadas. Os transístores bipolares de junção têm dois tipos básicos de aplicação, a saber: comutação (condução e corte) e amplificação. Os circuitos onde os transístores funcionam à comutação são normalmente aplicados em sistemas de eletrónica de potência, sendo os circuitos de amplificação com transístores utilizados em sistemas de eletrónica analógica.

2 - OBJETIVOS

Com este trabalho pretende-se que o aluno concretize os seguintes objetivos:

- Tomar contato com díodos do tipo Led;
- Compreender a função dos diversos componentes num circuito;
- Analisar as zonas de funcionamento do TBJ;
- Determinar experimentalmente a potência de um transístor TBJ.

Grupo Disciplinar de Eletrónica Industrial/Secção de Automação e Eletrónica

ISEL / DEEEA

Eletrónica Geral - 6º Trabalho de Laboratório: Zonas de Funcionamento do Transístor Bipolar de Junção (TBJ) - 2º Semestre - Ano Letivo 2023/2024

3 - ESQUEMA DE MONTAGEM

Para a resposta às questões colocadas no dimensionamento, considere a seguinte montagem:

Figura 1

4 - DIMENSIONAMENTO

O transístor é não ideal (V_{BE} =0,7V e V_{CEsat} =0,2V) e tem um ganho β =100. O díodo zener, quando funciona como díodo, vale V_{D} =0,7V e, quando funciona como díodo zener, vale V_{Z} =5,1V. O díodo Led quando está à condução vale V_{Led} =2V. **Utilizando exclusivamente o software MATLAB/SIMULINK** e tendo em conta o circuito da Figura 1 determine:

- 4.1 A zona de funcionamento do transístor, com potenciómetro no seu valor máximo ($\approx 10 \mathrm{k}\Omega$). Justifique.
- 4.2 A zona de funcionamento do transístor, com potenciómetro no seu valor mínimo ($\approx 0\Omega$). Justifique.
- 4.3 O valor limite do potenciómetro, para colocar o transístor na zona ativa direta. Justifique.
- 4.4 O valor limite do potenciómetro, para colocar o transístor na zona de saturação. Justifique.

Grupo Disciplinar de Eletrónica Industrial/Secção de Automação e Eletrónica

ISEL / DEEEA

Eletrónica Geral - 6º Trabalho de Laboratório: Zonas de Funcionamento do Transístor Bipolar de Junção (TBJ) - 2º Semestre - Ano Letivo 2023/2024

5 - CONDUÇÃO DO TRABALHO

Considere o circuito da Figura 2.

Figura 2

A lista do material para realizar o trabalho prático é:

1 Resistência (R_1) 10 $k\Omega$ 1 Resistência (R_C) 470 Ω 1 Díodo zener 5,1V1 Potenciómetro 10 $k\Omega$

1 Led Amarelo/Verde

1 Transistor 2N3904

1 Fonte de tensão CC ajustável

5.1 - Monte o circuito da Figura 2. Ajuste a tensão de saída da fonte de alimentação para uma tensão de 15V e, só depois, alimente o circuito.

Grupo Disciplinar de Eletrónica Industrial/Secção de Automação e Eletrónica

ISEL / DEEEA

Eletrónica Geral - 6º Trabalho de Laboratório: Zonas de Funcionamento do Transístor Bipolar de Junção (TBJ) - 2º Semestre - Ano Letivo 2023/2024

5.2 - Com o cursor do potenciómetro todo rodado para a direita e com o auxílio do osciloscópio observe e registe, sincronizadamente no tempo, os seguintes pares de evoluções temporais: V_{CE}, V_{BE} e V_{CB}=V_{CE}-V_{BE}; V_Z e V_B. Retire o potenciómetro do circuito e meça o valor da sua resistência (R_P). Indique qual o estado de funcionamento do díodo Led.

Registo dos valores de: Vce, Vbe, Vcb, Vz, Vb e Rp.

Vce	V_{BE}	V _{CB}	Vz	V_{B}	R_P

5.3 - Com o cursor do potenciómetro todo rodado para a esquerda e com o auxílio do osciloscópio observe e registe, sincronizadamente no tempo, os seguintes pares de evoluções temporais: V_{CE} , V_{BE} e V_{CB} = V_{CE} - V_{BE} ; V_Z e V_B . Retire o potenciómetro do circuito e meça o valor da sua resistência (R_P). Indique qual o estado de funcionamento do díodo Led.

Registo dos valores de: VCE, VBE, VCB, VZ, VB e RP.

V_{CE}	V_{BE}	V_{CB}	$V_{\rm Z}$	V_{B}	R_P

5.4 - Com o cursor do potenciómetro numa posição intermédia, onde o brilho do Led não seja máximo nem mínimo e com o auxílio do osciloscópio observe e registe, sincronizadamente no tempo, os seguintes pares de evoluções temporais: V_{CE} , V_{BE} e V_{CB} = V_{CE} - V_{BE} ; V_{Z} e V_{B} . Retire o potenciómetro do circuito e meça o valor da sua resistência (R_P). Indique qual o estado de funcionamento do díodo Led.

Registo dos valores de: Vce, Vbe, Vcb, Vz, Vb e Rp.

V_{CE}	V_{BE}	V_{CB}	Vz	V_{B}	R_P

Grupo Disciplinar de Eletrónica Industrial/Secção de Automação e Eletrónica

ISEL / DEEEA

Eletrónica Geral - 6º Trabalho de Laboratório: Zonas de Funcionamento do Transístor Bipolar de Junção (TBJ) - 2º Semestre - Ano Letivo 2023/2024

6 - Análise dos Resultados e Conclusões

6.1 - Indique justificadamente em que zona de funcionamento se encontra o transístor e o díodo zener para as situações de 5.2, 5.3 e 5.4. Compare com os resultados obtidos nas alíneas 4.1, 4.2 4.3 e 4.4.

6.2 - A partir do resultado obtido em 5.4, determine a potência dissipada no transístor e no díodo zener.

7 - ELABORE UM RELATÓRIO DE ACORDO COM O MODELO FORNECIDO