

Operating Systems - Test 1 - Chapter 5 (Concurrency)

Study online at quizlet.com/_341825

buffer and that the consumer won't remove data from an empty buffer.

Anything that is accessing a critical section first needs	acquire a lock	12.	Describe the readers-writer problem	Two or more threads are attempting to access the same resource at the same time.
to 2. Communication of a message between two	synchronization between the two	13.	Fill out a semaphore/critical section example chart.	Cool.
processes implies 3. Define barrier synchronization	Processes cannot proceed past a certain point until all processes have reached that point	14.	Functions used to implement lock (get(lock) and release(lock)) must	atomic
4. Define critical section	Anything that is being shared	15.	be If a process calls	be postponed forever
Define deadlock in the context of	Two or more processes are waiting on each other in order to get locks, but		get() / P(s), it should not	
semaphores	none of them can proceed due to not being able to get the locks.	16.	16. In regards to processes, what	The states of the processes are saved
Define mutual exclusion	Only one process can be in the critical section at a time.		occurs when an interrupt is raised?	
7. Define semaphore.	A nonnnegative integer variable that can only be changed or tested by two atomic functions: P() and V()	17.	In the context of concurrency, what does synchronization	Enforces mutual exclusion.
8. Define starvation in the context of	Being indefinitely postponed from entering the CS	18	do?	Uninterruptible
semaphores 9. Describe the barbershop problem.	There is a barbershop with a waiting room, a barber's chair, and a barber who sleeps when there are no customers. When the barber is not cutting anyone's hair, he will go to the waiting room to check if there are any customers waiting. If there are, he escorts them to the barber's chair. If there are none, he goes back to his chair and sleeps. When a customer comes in, they check to see what the	.0.	mutual exclusion, what does atomic mean?	
		19.	In the context of synchronization, when a receive primitive is executed in a process, what are the two possibilities?	If there is no message, the process is blocked until a message arrive or the process continues to execute, abandoning the attempt to receive; or if a message has previously been sent the message is received and execution continues
10. Describe the dining philosopher problem.	barber is doing. 5 dining philosophers are sitting around a table with 5 forks. In order to eat the spaghetti, a philosopher must have 2 forks.	20.	In the semaphore solution, what is each lock associated with?	A semaphore
		21.	In what form is	send(destination, message),
Describe the producer/consumer problem.	Two processes (producer and consumer) share a common, fixed-size buffer used as a queue. The producer is repeatedly inserting data into the buffer. At the same time, the consumer is repeatedly removing data from the buffer. The problem is to ensure the producer won't insert data into a full		message passing provided?	receive(source, message)
		22.	Label a semaphore diagram	Cool.

23. Only the Competing for a CS processes that aremust be considered		33. What is the fairest solution to the readers/writers problem?	FIFO queue
for resolving who enteres the CS next.		34. What is the ideal solution to the dining	Each fork is assigned a particular value; each philosopher is required to attempt to pick up a set fork each time (i.e. the lower valued fork) before picking up another fork. This leaves one fork open for a philosopher to finish eating with, and then the next philosopher can pick up a fork to eat, and so on.
24. The receiver cannot receive a message until	it has been sent by another process	philosophers problem?	
25. What are concerns that are related to concurrency?	Synchronization (support for mutual exclusion), communication (data sharing/message passing), protection of data/resources (access control for sharing),	35. What results from a lack of mutual exclusion?	Results of multiple executions are not consistent
26. What are disadvantages of disabling interrupts?	deadlock, resource allocation/deallocation User process can abuse; could be disabled infinitely long; prevents any process from executing; in a multiprocessor system, disabling interrupts in one processor does	36. What two mechanisms are needed to facilitate concurrency?	Synchronization and communication
27. What are other names	not disable them in a different processor P(), wait(), pthread_mutex_lock()	37. Who originally came up with the semaphore?	Dijkstra
for get()? 28. What are other names for release()?	V(), signal(), pthread_mutex_unlock()	38. Why should assumptions not be made about the relative speed of processes or the number of competing processes when	That information changes.
29. What are some methods of managing access?	Disabling interrupts, locks, semaphores		
30. What are the rules for software locks?	No assumptions should be made about the relative speeds of processes or the number of competing processes; a process should not be delayed access to a critical section when no other processes are attempting to access it; no deadlock or starvation should occur; only the processes competing for a CS are to be considered for resolving who enters the CS next	coding? 39. Write out an example of code that will result in deadlock.	Cool.
		40. Write out the code associated with the ideal solution to the	Cool.
31. What does it mean to write a routine in	The routine cannot be interrupted in the middle of its running.	dining philosophers problem.	
an atomic way? 32. What is another method for	Message passing.	41. Write out the code for the ideal solution to the barbershop problem.	Cool.
facilitating			

concurrency?

42. Write out the code for the semaphore struct, get(semaphore s), and release(semaphore)	Cool.
43. Write out the code necessary for the fairest solution to the readers/writers problem?	Cool.
44. Write out the Compare & swap implementation of semaphore.	Cool.
45. Write the code for the solution to the bounded-buffer producer/consumer problem	Cool.