Lemma Finite set convex cone is a closed set C= cone fa,... ams Prod: [Assuming that a,... an are linearly independent) XK & C -> X Then x must be in C - checking this $x^{k} = \sum_{i=1}^{m} \lambda_{i}^{k} a_{i} \rightarrow x$ $\lambda_{i}^{k} = \lambda_{i}^{k} a_{i} \rightarrow x$ Since timbe subspaces of IR" are closed x = Zdia: To show that gizo, we can show that Aik - Ai for any i. Wlog, take i=1 $\|x^{12} - x\|^{2} = \|\sum_{i=1}^{m} \lambda_{i}^{n} x x_{i} - \sum_{i=1}^{m} \lambda_{i}^{n} x x_{i}\|^{2} =$ $= ||(\lambda_1^k - \lambda_1^k) a_1 + \sum_{i=2}^m (\lambda_i^k - \lambda_i^i) a_i||^2$ $\mathcal{U} = \text{Span } \lambda a_2 \dots a_m y$ $q_i = q_{11} + q_{11}$ $q_i = q_{12} + q_{13}$ = $\|(h'_{1}-h_{1}) \alpha_{14} + \tilde{\alpha}\|^{2} = (h'_{1}-h_{1})^{2} \|\alpha_{14}\|^{2} + \|\tilde{\alpha}\|^{2}$ So, if $A_i^k \not\rightarrow A_i$ then $x^k \not\rightarrow x$ So Contradiction is wosed was separable separable separable by a hyperplane

Forkas lemma and ist convex analysis proof Jx: JAx=b2 JyTA < 070 JyTA < 070 JyTA > 0Ex: (PF) (PF) Ax=b $\begin{cases}
y^{\dagger}Ax = y^{\dagger}b > 0 \\
y^{\dagger}Ax = y^{\dagger}b > 0
\end{cases}$ constraid extraction! Ax=6, x≥0, then (B) 1 cone 4 a,... an 3 = 0 By separation then (checked closedeness of som end 18% is bounded) So any ZE come ta, ... any ∂y, r: | y = - r < 0 (→ y A - [+) < 0 Why r can be taken o? y z <r for == (always in the cone) if we have to E Cone: y 720>0 then # 200: 2006 Conc y (420) >0 20 Ly00 This is impossible (r is upper Bounded by So, we can write 1 y 7 Z € 0 + Z € Cone 7 y 50 >0 #

Next past: Faskers lemme => LP strong ducliby

(P) [min CTx]

Ax = B

[X > D) [max b y]

A y = C]

Weak dualidy: if x is any feasible solution of D

y is any feasible solution of D

CTx > B y

Strong duality if P has an optimal value = D

Strong duciny if @ has an optimal value of D also has an optimal value and they are the same

 $C^T X_{\sharp} = G^T Y_{55} = P_{\pi}$

Farkas from strong duality:

 $\begin{cases}
min 0 \\
stAx = 6 \\
x > 0
\end{cases}$ $\begin{cases}
max y^Tb \\
s.t. A^Ty < 0
\end{cases}$

(other wise we can consider (29) $d \rightarrow \infty$ and max of (D) with le ∞)

Strong duality of LP from farkas lemma (+ weak dealety)

If p^{+} is the finite optimal value for P, then (with duality)

P* > yTh for any y: Afy \(\) \

this means that

Px = yob, y, Px

opt opt

solution value

for D) So, is is enough to show Jy) ATy ≤ C L Px & yTb) $2 \left[\frac{1}{3} \frac{1}{3} \left(\frac{A^{T}}{-b^{T}} \right) \cdot y \right] \leq \left(\frac{c}{-\rho_{*}} \right)$ (Lemma) (Variant of Farkas lemma)

34: 1 Ay = B} (=> \$\frac{\frac{1}{2}}{2} = 0 \] Proof of Lemma: Jy: JAy=by $\exists \tilde{y}: \tilde{q} \tilde{y} = (\tilde{y}, \tilde{y}, \tilde{s}) > 0 \mid \tilde{A}(\tilde{y} - \tilde{y}) + \tilde{s} = \tilde{D} \tilde{y}$ $\exists \tilde{y}: \tilde{q} \tilde{y} = (\tilde{y}, \tilde{y}, \tilde{s}) > 0 \mid \tilde{A}(\tilde{y} - \tilde{y}) + \tilde{s} = \tilde{D} \tilde{y}$ $\exists \tilde{y}: \tilde{q} \tilde{y} = (\tilde{y}, \tilde{y}, \tilde{s}) > 0 \mid \tilde{A}(\tilde{y} - \tilde{y}) + \tilde{s} = \tilde{D} \tilde{y}$ 7 #x=6 } { y R ≥ 0 } y b < 0 } AA { AT (A 1-A | I) > 0 } $\begin{pmatrix} A \\ -\overline{A}^{T} \end{pmatrix} \lambda \approx 0 \qquad \frac{A \downarrow \geq 0}{A \downarrow \leq 0} \Rightarrow \overline{A} \downarrow = 0$

Next Application: strong duality of LP for combinatorial (graph) optimization Poodle (Claud)
12,12:15,12:30 (and about relaxations) Tao o o o people as possible Einstein -Can be represented as a dipartite graph where edges indicate availability. & Goal: to select as many edges cach vertex used at most once A Matching Selecting a subset of vertices, so that every edge is connected to one of the selected vertices certificale: Selected rows and columns (arrows) so a vertex cover that each time slot touches one of them Lemma The cardinality of any matching & The cardinality of any vertex cover

Then [Rolling] If 6 is bipartick then

| max matching| = | min vertex cover|

| cordinality (IX| = number of clements in the sed x)

| for not biparticle | max | = 2 | max matching| = |

| (M) = | max | E e;
| i=1 | Ze; | |
| e; = 0, | te; \(\) \(E \) \(= \) \(