Упражнение №11:

Денотационна семантика по стойност

Как изглеждат нещата на теория?

Ще припомним основните факти от теорията за частния случай на рекурсивна програма с ∂se функционални променливи. Всяка такава програма е синтактичен обект от вида

$$au_0(X_1,\ldots,X_n,F,G)$$
 where $F(X_1,\ldots,X_k)= au_1(X_1,\ldots,X_k,F,G)$ $G(X_1,\ldots,X_m)= au_2(X_1,\ldots,X_m,F,G)$

Тук X_1, X_2, \ldots са обектови променливи, F и G са функционални променливи, а τ_0, τ_1 и τ_2 са термове.

На тялото на програмата R съответства системата

За да я препишем във вид, удобен за прилагане на общата теория на ОС, въвеждаме т. нар. *термални* оператори. В случая те са два:

$$\Gamma: \mathcal{F}_k \times \mathcal{F}_m \longrightarrow \mathcal{F}_k \quad \text{M} \quad \Delta: \mathcal{F}_k \times \mathcal{F}_m \longrightarrow \mathcal{F}_m,$$

които се определят от термовете au_1 и au_2 както следва:

$$\Gamma(f,g)(x_1,\ldots,x_k) \simeq \tau_1(x_1,\ldots,x_k,f,g)$$
$$\Delta(f,g)(x_1,\ldots,x_m) \simeq \tau_2(x_1,\ldots,x_m,f,g).$$

Така горната система (1) можем да препишем по-компактно като

$$\begin{vmatrix}
f &=& \Gamma(f, g) \\
g &=& \Delta(f, g).
\end{vmatrix} (2)$$

Да означим с $\Gamma = \Gamma \times \Delta$ декартовото произведение на Γ и Δ . По определение, за всяка двойка функции $(f,g) \in \mathcal{F}_k \times \mathcal{F}_m$:

$$\Gamma(f,g) \stackrel{\text{деф}}{=} (\Gamma(f,g), \Delta(f,g)).$$

Да отбележим, че Γ е изображение от вида

$$\Gamma: \mathcal{F}_k \times \mathcal{F}_m \longrightarrow \mathcal{F}_k \times \mathcal{F}_m$$

и следователно можем да говорим за nenodeuжсни $mov\kappa u$ на Γ — neuкоето очевидно не е възможно при операторите Γ и Δ .

От общата теория знаем, че термалните оператори Γ и Δ са непрекъснати. Следователно непрекъснат е и операторът Γ , разглеждан като изображение в областта на Скот

$$(\mathcal{F}_k \times \mathcal{F}_m, \subseteq, (\emptyset^{(k)}, \emptyset^{(m)})).$$

Съгласно обобщената теорема на Кнастер-Тарски, операторът Г има <u>най-малка неподвижна точка $f_{\Gamma} = (f^*, g^*)$.</u> Двойката (f^*, g^*) всъщност се явява най-малкото (относно ⊆) решение на системата (2).

Чрез тази най-малка неподвижна точка (f^*, g^*) въвеждаме денотационната семантика по стойност на програмата R — функцията $D_V(R)$:

Денотационна семантика по стойност на програмата R е функцията $D_V(R): \mathbb{N}^n \longrightarrow \mathbb{N}$, която се определя с равенството:

$$D_V(R)(x_1,\ldots,x_n) \simeq \tau_0(x_1,\ldots,x_n,f,g)$$

за всички естествени $(x_1,\ldots,x_n)\in\mathbb{N}^n$.

Теоремата на Кнастер-Тарски ни казва още, че f_{Γ} има следното представяне:

$$f_{\Gamma} = \bigcup_{n} \underbrace{\Gamma^{n}(\emptyset^{(k)}, \emptyset^{(m)})}_{(f_{n}, g_{n})}.$$
(3)

Да означим с (f_n, g_n) функцията $\Gamma^n(\emptyset^{(k)}, \emptyset^{(m)})$, която има смисъл на anpoксимация на f_{Γ} . От горното представяне за f_{Γ} получаваме

$$f_{\Gamma} = (f^*,g^*) = \bigcup_n (f_n,g_n) \stackrel{\text{по теорема}}{=} (\bigcup_n f_n,\bigcup_n g_n),$$
или разписано по всяка от двете компоненти:

$$f^* = \bigcup_n f_n \qquad \text{if} \qquad g^* = \bigcup_n g_n.$$

 $f^* = \bigcup_n f_n \qquad \text{и} \qquad g^* = \bigcup_n g_n.$ За да видим как са свързани функциите от горните редици $\{f_n\}_n$ и $\{g_n\}_n$, използваме наблюдението, че редицата от $\partial sou \kappa ume$ функции $\{(f_n,g_n)\}_n$ удовлетворява следната рекурентна схема:

$$| (f_0, g_0) = (\emptyset^{(k)}, \emptyset^{(m)})$$

$$| (f_{n+1}, g_{n+1}) = \Gamma(f_n, g_n) = (\Gamma(f_n, g_n), \Delta(f_n, g_n)).$$

Това означава, че за функциите от редиците $\{f_n\}_n$ и $\{g_n\}_n$ ще имаме:

$$\begin{vmatrix}
f_0 &= \emptyset^{(k)} \\
f_{n+1} &= \Gamma(f_n, g_n)
\end{vmatrix}$$
(4)

$$\frac{\left| f_{0} - \emptyset \right|}{\left| f_{n+1} \right| = \Gamma(f_{n}, g_{n})}$$

$$\frac{\left| g_{0} = \emptyset^{(m)} \right|}{\left| g_{n+1} \right| = \Delta(f_{n}, g_{n})}.$$
(4)

Задачи за определяне на $D_V(R)$

Задача 1. Да се определи $D_V(R)$ за следната програма R:

F(X,1) where

$$F(X,Y)=\inf X==0$$
 then Y else $F(X-1,G(X,Y))$ $G(X,Y)=\inf X==0$ then 0 else $G(X-1,Y)+Y$

Решение. Означаваме с

$$\Gamma: \mathcal{F}_2 \times \mathcal{F}_2 \longrightarrow \mathcal{F}_2 \quad \text{if} \quad \Delta: \mathcal{F}_2 \times \mathcal{F}_2 \longrightarrow \mathcal{F}_2$$

операторите, определени от дефинициите на F и G:

$$\Gamma(f,g)(x,y) \simeq \begin{cases} y, & \text{ako } x=0 \\ f(x-1,g(x,y)), & \text{ako } x>0 \end{cases}$$

$$\Delta(f,g)(x,y) \simeq \begin{cases} 0, & \text{ako } x=0 \\ g(x-1,y)+y, & \text{ako } x>0. \end{cases}$$

Забелязваме, че Δ не зависи от първия си аргумент и затова решаваме първо да пресметнем функциите от редицата g_0, g_1, \ldots

Тръгвайки от $g_0 = \emptyset^{(2)}$, за g_1 ще имаме:

$$g_1(x,y) \overset{(5)}{\simeq} \Delta(\emptyset^{(2)},\emptyset^{(2)})(x,y) \overset{\text{def}}{\simeq} \Delta \begin{cases} 0, & \text{ako } x=0 \\ \emptyset^{(2)}(x-1,y)+y, & \text{ako } x>0 \end{cases} \simeq \begin{cases} 0, & \text{ako } x=0 \\ \neg!, & \text{ako } x>0. \end{cases}$$

За следващата апроксимация g_2 на g можем да напишем:

$$g_2(x,y) \stackrel{(5)}{\simeq} \Delta(f_1,g_1)(x,y) \stackrel{\text{деф}}{\simeq} \stackrel{\Delta}{\simeq} \begin{cases} 0, & \text{ако } x=0 \\ g_1(x-1,y)+y, & \text{ако } x>0 \end{cases} \simeq \begin{cases} 0, & \text{ако } x=0 \\ 0+y, & \text{ако } x=1 \\ \neg!, & \text{ако } x>1, \end{cases}$$

и като обединим първите два реда, преписваме g_2 като

$$g_2(x,y) \simeq \begin{cases} x.y, & \text{ako } x < 2 \\ \neg !, & \text{ako } x \ge 2. \end{cases}$$

Това ни подсказва, че g_n може би има следния общ вид:

$$g_n(x,y) \simeq \begin{cases} x.y, & \text{ako } x < n \\ \neg !, & \text{ako } x \ge n. \end{cases}$$
 (6)

Наистина, по-горе видяхме, че за началните стойности на n това е така. Сега ако допуснем, че за произволно n горното представяне (6) е в сила, то за n+1 ще имаме:

$$g_{n+1}(x,y) \overset{(5)}{\simeq} \Delta(f_n,g_n)(x,y) \overset{\text{деф}}{\simeq} \overset{\Delta}{\simeq} \begin{cases} 0, & \text{ako } x=0 \\ g_n(x-1,y)+y, & \text{ako } x>0 \end{cases} \overset{(6)}{\simeq}$$

$$\begin{cases} 0, & \text{ako } x = 0 \\ (x-1).y + y, & \text{ako } x > 0 \ \& \ x - 1 < n \\ \neg !, & \text{ako } x - 1 \ge n \end{cases} \simeq \begin{cases} 0, & \text{ako } x = 0 \\ xy, & \text{ako } 0 < x < n + 1 \\ \neg !, & \text{ako } x \ge n + 1 \end{cases} \simeq \begin{cases} xy, & \text{ako } x < n + 1 \\ \neg !, & \text{ako } x \ge n + 1. \end{cases}$$

Границата g на редицата $\{g_n\}_n$ формално няма да ни трябва при определянето на $D_V(R)$, затова няма да я намираме.

Като знаем как изглежда всяка функция g_n , можем да пристъпим към пресмятането на функциите от първата редица $\{f_n\}_n$. Началната функция f_0 отново е $\emptyset^{(2)}$, а за f_1 ще имаме:

$$f_1(x,y) \overset{(4)}{\simeq} \Gamma(\emptyset^{(2)},\emptyset^{(2)})(x,y) \overset{\text{деф}}{\simeq} \begin{cases} y, & \text{ako } x = 0 \\ \emptyset^{(2)}(x-1,\emptyset^{(2)}(x,y)), & \text{ako } x > 0 \end{cases} \simeq \begin{cases} y, & \text{ako } x = 0 \\ \neg !, & \text{ako } x > 0. \end{cases}$$

Оттук за следващата функция f_2 получаваме:

$$f_2(x,y) \stackrel{(4)}{\simeq} \Gamma(f_1,g_1)(x,y) \stackrel{\text{деф}}{\simeq} \Gamma \begin{cases} y, & \text{ако } x=0 \\ f_1(x-1,\underline{g_1(x,y)}), & \text{ако } x>0 \end{cases} \simeq \begin{cases} y, & \text{ако } x=0 \\ \neg!, & \text{ако } x>0. \end{cases}$$

Излезе, че $f_1=f_2$, което обаче не означава (както беше при операторите на един аргумент), че рекурсията "ще се затвори" на стъпка 2 (т.е. ще имаме $f_1=f_2=f_3\dots$). Това е защото следващата апроксимация f_3 зависи както от f_2 , така и от g_2 , а g_2 е различна от g_1 . Да видим:

$$f_3(x,y) \stackrel{(4)}{\simeq} \Gamma(f_2,g_2)(x,y) \stackrel{\text{деф}}{\simeq} \Gamma \begin{cases} y, & \text{ако } x = 0 \\ f_2(x-1,g_2(x,y)), & \text{ако } x > 0 \end{cases}$$

$$\simeq \begin{cases} y, & \text{ako } x = 0 \\ \underbrace{g_2(1,y)}_y, & \text{ako } x = 1 \\ \neg !, & \text{ako } x > 1 \end{cases} \simeq \begin{cases} x!.y, & \text{ako } x < 2 \\ \neg !, & \text{ako } x \geq 2. \end{cases}$$

Очертава се хипотезата, че при $n \ge 2$ функцията f_n ще изглежда така:

$$f_n(x,y) \simeq \begin{cases} x!.y, & \text{ако } x < n-1 \\ \neg !, & \text{иначе.} \end{cases}$$
 (7)

Наистина, експериментите ни по-горе потвърдиха, че f_2 и f_3 имат този вид. Да приемем, че за произволно $n \geq 2$ това е така. Тогава за n+1 ще имаме:

$$f_{n+1}(x,y)\stackrel{(4)}{\simeq}\Gamma(f_n,g_n)(x,y)\stackrel{\text{деф}}{\simeq}\Gamma \begin{cases} y, & \text{ако } x=0 \\ f_n(x-1,g_n(x,y)), & \text{ако } x>0 \end{cases}$$

$$\overset{(6)}{\simeq} \begin{cases} y, & \text{ако } x = 0 \\ f_n(x-1, xy), & \text{ако } x > 0 \& \underbrace{x < n}_{x-1 < n-1} \overset{(7)}{\simeq} \begin{cases} y, & \text{ако } x = 0 \\ (x-1)!(x.y), & \text{ако } x > 0 \& x < n \\ \neg !, & \text{в останалите случаи} \end{cases}$$

$$\simeq \begin{cases} x!.y, & \text{ако } x < n \\ \neg !, & \text{иначе.} \end{cases}$$

Като знаем общия вид (7) на всяка от функциите f_n , не е трудно да съобразим, че тяхната граница $f = \bigcup_n f_n$ ще е функцията x!.y. Тогава за $D_V(R)(x)$ ще имаме:

$$D_V(R)(x) \simeq \tau_0(x,f) \simeq f(x,1) = x!$$
 за всяко $x \in \mathbb{N}$.

Следващата задача е съвсем проста; дадена е на изпит единствено с цел да се провери дали човек знае съответните дефиниции (всъщност тя има и втора част — да се направи същото и за денотационната семантика по име).

Задача 2. (Писмен изпит, 05/02/2017, спец. KH) Определете $D_V(R)$ за следващата програма R:

$$\begin{array}{lll} G(X,F(X)) & \text{where} \\ F(X) & = \text{ if } X == 0 & \text{then} & F(G(X,F(X))) & \text{else} & 0 \\ G(X,Y) & = \text{ if } X == 0 & \text{then} & 0 & \text{else} & G(F(X),Y) \end{array}$$

Решение. Да означим отново с

$$\Gamma: \mathcal{F}_1 \times \mathcal{F}_2 \longrightarrow \mathcal{F}_1 \quad \text{if} \quad \Delta: \mathcal{F}_1 \times \mathcal{F}_2 \longrightarrow \mathcal{F}_2$$

операторите, определени от дефинициите на F и G:

$$\Gamma(f,g)(x) \simeq \begin{cases} f(g(x,f(x))), & \text{ako } x=0 \\ 0, & \text{ako } x>0 \end{cases}$$

$$\Delta(f,g)(x,y) \ \simeq \ \begin{cases} 0, & \text{ako} \ x=0 \\ g(f(x),y), & \text{ako} \ x>0. \end{cases}$$

Вече казахме, че тази задача е много лесна. Да се убедим:

$$f_1(x) \stackrel{(4)}{\simeq} \Gamma(\emptyset^{(1)}, \emptyset^{(2)})(x) \stackrel{\text{деф}}{\simeq} \begin{cases} \emptyset^{(1)}(\emptyset^{(2)}(x, \emptyset^{(1)}(x))), & \text{ako } x = 0 \\ 0, & \text{ako } x > 0 \end{cases} \simeq \begin{cases} \neg!, & \text{ako } x = 0 \\ 0, & \text{ako } x > 0. \end{cases}$$

Следващата апроксимация $f_2 \stackrel{\text{деф}}{=} \Gamma(f_1, g_1)$ формално зависи от g_1 , но на практика g_1 не ни трябва, за да определим f_2 :

$$f_2(x) \stackrel{(4)}{\simeq} \Gamma(f_1, g_1)(x) \stackrel{\text{деф}}{\simeq} \Gamma \begin{cases} f_1(g_1(x, \underbrace{f_1(x)})), & \text{ако } x = 0 \\ 0, & \text{ако } x > 0 \end{cases} \simeq \begin{cases} \neg!, & \text{ако } x = 0 \\ 0, & \text{ако } x > 0. \end{cases}$$

Ясно е, че и за всяко n > 0, f_n ще има горния вид, откъдето и точната горна граница f ще е същата функция:

$$f(x) \simeq \begin{cases} \neg!, & \text{ako } x = 0 \\ 0, & \text{ako } x > 0. \end{cases}$$

Сега за функциите от редицата g_0, g_1, \dots ще имаме:

$$g_1(x,y) \overset{(5)}{\simeq} \Delta(f_0,g_0)(x,y) \overset{\text{деф}}{\simeq} \overset{\Delta}{\simeq} \begin{cases} 0, & \text{ako } x = 0 \\ \emptyset^{(2)}(\emptyset^{(1)}(x),y), & \text{ako } x > 0 \end{cases} \simeq \begin{cases} 0, & \text{ako } x = 0 \\ \neg!, & \text{ako } x > 0. \end{cases}$$

Оттук, като имаме предвид и полученото по-горе за f_1 , можем да запишем следното за g_2 :

Излезе, че $g_2 = \lambda x, y.0$. Функцията g_2 е тотална, а от теорията знаем, че $g_2 \subseteq g_3$, което означава, че $g_2 = g_3$, а оттук и $g_2 = g_n$ за всяко $n = 2, 3, \ldots$. Тогава и граничната функция g ще е равна на g_2 , т.е. ще имаме

$$g(x,y) \simeq 0$$
 за всички $x,y \in \mathbb{N}$.

Сега финално

$$D_V(R)(x) \overset{\text{деф}}{\simeq} g(x, f(x)) \simeq \begin{cases} \neg!, & \text{ако } x = 0 \\ 0, & \text{ако } x > 0. \end{cases}$$