COMP 9602: Convex Optimization

Localization Methods

Dr. C Wu

Department of Computer Science
The University of Hong Kong

Roadmap

	convex set
	convex function
	standard forms of optimization problems, quasi-convex optimization
	linear program, integer linear program
Theory	quadratic program
	geometric program
	semidefinite program
	vector optimization
	duality
Algorithm	unconstrained optimization
	equality constrained optimization
	interior-point method
	subgradient methods
	localization methods
	decomposition methods
	and more

Localization methods

- also called cutting-plane methods
 - based on the idea of "localizing" desired point in some set, which becomes smaller at each step
- classes of algorithms
 - Ellipsoid method
 - Center of gravity method
 - Analytic centering method
 - Chebyshev center method
 - ...
- less efficient for problems to which interior point methods apply
- but can solve general convex and quasi-convex problems
 - may not require differentiability of the objective and constraint functions
- as compared to subgradient methods
 - can be much more efficient
 - require more memory and computation per step

Cutting plane oracle

- Oracle: a device that can answer question for us; we make no assumption on how an answer is found by the device
- $lue{}$ Cutting plane oracle (also called separation oracle), once queried at x, either
 - \blacksquare asserts $x \in X$ ($X \subseteq \mathbf{R}^n$)
 - \blacksquare or returns a separating hyperplane between x and $X: a \neq 0$,

$$a^T z \le b \text{ for } z \in X, \qquad a^T x \ge b$$

(a,b) called a *cutting-plane*, or *cut*, since it eliminates the halfspace $\{z \mid a^Tz > b\}$ from our search for a point in X

Neutral and deep cuts

If $a^Tx = b$ (x is on boundary of the halfspace that is cut), the cutting plane is called a neutral cut

If $a^T x > b$ (x lies in the interior of the halfspace that is cut), the cutting plane is called a deep cut

Unconstrained optimization

minimize $f_0(x)$

- \Box $f_0: \mathbf{R}^n \to \mathbf{R}$, convex; x^* is the optimal solution; X is the set of optimal points
- lacksquare Given x, find $g \in \partial f_0(x)$
- \square x^* belongs to the halfspace: $\{z|g^T(z-x)\leq 0\}, \forall x$
 - $g^T(z-x) \leq 0$ defines a cutting plane at x (a=g, $b=g^Tx$)

Unconstrained optimization (cont'd)

minimize $f_0(x)$

☐ The idea of the localization algorithm is to use hyperplanes to separate the current point from the optimal point

For k=1,2,...

- at $x^{(k)}$, evaluate $g \in \partial f_0(x^{(k)})$ then $x^* \in \{z | g^T(z-x^{(k)}) \leq 0\}$
 - use this cutting plane to cut down the volume of the set of feasible points
- choose $x^{(k+1)}$ at the center of the new polyhedron and hope to further cut down its volume

Inequality constrained optimization

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$

$$f_0,\ldots,f_m:\mathbf{R}^n\to\mathbf{R}$$
 convex

If x is feasible, we have a (neural) objective cut

$$g_0^T(z-x) \le 0, \qquad g_0 \in \partial f_0(x)$$

If x is not feasible, e.g., $f_j(x) > 0$, we have a (deep) feasibility cut

$$f_j(x) + g_j^T(z - x) \le 0, \qquad g_j \in \partial f_j(x)$$

Localization algorithm

Basic (conceptual) cutting-plane/localization algorithm

```
given an initial polyhedron \mathcal{P}_0 = \{z \mid Cz \leq d\} known to contain X. k := 0. repeat

Choose a point x^{(k+1)} in \mathcal{P}_k.

Query the cutting-plane oracle at x^{(k+1)}.

If the oracle determines that x^{(k+1)} \in X, quit.

Else, add new cutting-plane a_{k+1}^T z \leq b_{k+1}:

\mathcal{P}_{k+1} := \mathcal{P}_k \cap \{z \mid a_{k+1}^T z \leq b_{k+1}\}
```

If
$$\mathcal{P}_{k+1} := \mathcal{P}_k \cap \{z \mid a_{k+1}z \leq b\}$$

 $k := k+1$

Localization algorithm (cont'd)

- ullet want to pick $x^{(k+1)}$ so that \mathcal{P}_{k+1} is as small as possible, no matter what cut is made

. . .

Choosing the center point (specific localization methods)

Center of gravity

P. 416, textbook

Center of gravity method (CG algorithm)

$$x^{(k)} = \mathbf{cg}(C^{(k-1)}) = \frac{\int_{C^{(k-1)}} z dz}{\int_{C^{(k-1)}} dz}$$

- Analytic centering
 - Analytic centering cutting-plane method (ACCPM)
 - $x^{(k)}$ is the analytic center of $C^{(k-1)}$, i.e.,

$$x^{(k)} = argmin_z - \sum_{i=1}^{m} \log(b_i - a_i^T z)$$

- Chebyshev center
 - Chebyshev center cutting-plane method
 - lacktriangle Chebyshev center is the center of the largest ball inside $C^{(k-1)}$
- Center of the maximum volume ellipsoid (MVE)

Bisection method on R

- \square minimize convex $f: \mathbb{R} \to \mathbb{R}$
- $luepsilon \mathcal{P}_k$ is an interval
- lacktriangledown obvious choice for query point: $x^{(k+1)} := \mathsf{midpoint}(\mathcal{P}_k)$

Bisection algorithm for one-dimensional search.

given an initial interval [l, u] known to contain x^* ; a required tolerance r > 0 repeat

$$x := (l + u)/2.$$

Query the oracle at x.

If the oracle determines that $x^* \leq x$, u := x.

If the oracle determines that $x^* \geq x$, l := x.

until $u - l \le 2r$

Bisection method on R (cont'd)

for differentiable f: evaluate f'(x) if f'(x) < 0, l := x; else u := x

Ellipsoid method (for unconstrained convex problems)

- Idea
 - Use ellipsoids to approximate polyhedron, find x* in an ellipsoid instead of a polyhedron
- Algorithm sketch

ellipsoid at iteration k

- 1. at iteration k we know $x^\star \in \mathcal{E}^{(k)}$
- 2. set $x^{(k+1)} := \operatorname{center}(\mathcal{E}^{(k)})$; evaluate $g^{(k+1)} \in \partial f_0(x^{(k+1)})$ $(g^{(k)} = \nabla f_0(x^{(k)})$ if f_0 is differentiable)
- 3. hence we know

$$x^* \in \mathcal{E}^{(k)} \cap \{z \mid g^{(k+1)T}(z - x^{(k+1)}) \le 0\}$$

(a half-ellipsoid)

4. set $\mathcal{E}^{(k+1)}:=$ minimum volume ellipsoid covering $\mathcal{E}^{(k)}\cap\{z\mid g^{(k+1)T}(z-x^{(k+1)})\leq 0\}$

Example

Ellipsoid method (cont'd)

- Let $\mathcal{E}(x,P) = \{z \mid (z-x)^T P^{-1}(z-x) \le 1\}$
- the minimum volume ellipsoid to cover $\mathcal{E} \cap \{z \mid g^T(z-x) \leq 0\}$ is described by: (n is the dimension of x)

$$x^{+} = x - \frac{1}{n+1}P\tilde{g}$$

$$P^{+} = \frac{n^{2}}{n^{2}-1}\left(P - \frac{2}{n+1}P\tilde{g}\tilde{g}^{T}P\right)$$

where
$$\tilde{g} = (1/\sqrt{g^T P g})g$$

Ellipsoid method (cont'd)

☐ Basic ellipsoid algorithm (for unconstrained convex problems)

given ellipsoid $\mathcal{E}(x,P)$ containing x^\star , accuracy $\epsilon>0$ repeat

- 1. evaluate $g \in \partial f_0(x)$
- 2. if $\sqrt{g^T P g} \le \epsilon$, return(x)
- 3. update ellipsoid

3a.
$$\tilde{g} := \frac{1}{\sqrt{g^T P g}} g$$

3b.
$$x := x - \frac{1}{n+1} P \tilde{g}$$

3c.
$$P := \frac{n^2}{n^2 - 1} \left(P - \frac{2}{n+1} P \tilde{g} \tilde{g}^T P \right)$$

Ellipsoid method (cont'd)

Stopping criteria

$$\sqrt{g^{(k)T}P^{(k)}g^{(k)}} \le \epsilon \implies f(x^{(k)}) - f(x^*) \le \epsilon$$

Convergence

- $\mathbf{vol}(\mathcal{E}^{(k+1)}) < e^{-\frac{1}{2n}} \mathbf{vol}(\mathcal{E}^{(k)})$ (volume reduction factor degrades rapidly with n, compared to CG or MVE cutting-plane methods)
- ullet modest computation per step $(O(n^2))$, via analytical formula
- efficient in theory; slow but steady in practice

Example

$$f(x) = \max_{i=1}^{m} (a_i^T x + b_i)$$
, with $n = 20$, $m = 100$

Ellipsoid method (for inequality constrained problems)

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$

ullet if $x^{(k)}$ feasible, update ellipsoid with objective cut

$$g_0^T(z - x^{(k)}) + f_0(x^{(k)}) - f_{\text{best}}^{(k)} \le 0, \qquad g_0 \in \partial f_0(x^{(k)})$$

 $f_{
m best}^{(k)}$ is best objective value of feasible iterates so far ightharpoonup a deep cut

ullet if $x^{(k)}$ infeasible, update ellipsoid with feasibility cut

$$g_j^T(z-x^{(k)}) + \boxed{f_j(x^{(k)})} \leq 0, \qquad g_j \in \partial f_j(x^{(k)})$$
 assuming $f_j(x^{(k)}) > 0$

Ellipsoid method (for inequality constrained problems)

minimum volume ellipsoid containing ellipsoid intersected with halfspace

$$\mathcal{E} \cap \left\{ z \mid g^T(z-x) + h \le 0 \right\}$$

with $h \ge 0$, is given by

$$x^{+} = x - \frac{1 + \alpha n}{n+1} P \tilde{g}$$

$$P^{+} = \frac{n^{2}(1 - \alpha^{2})}{n^{2} - 1} \left(P - \frac{2(1 + \alpha n)}{(n+1)(1 + \alpha)} P \tilde{g} \tilde{g}^{T} P \right)$$

where

$$\tilde{g} = \frac{g}{\sqrt{g^T P g}}, \qquad \alpha = \frac{h}{\sqrt{g^T P g}}$$

(if $\alpha > 1$, intersection is empty)

Ellipsoid method (for inequality constrained problems)

Stopping criteria

• if
$$x^{(k)}$$
 is feasible and $\sqrt{g_0^{(k)T}P^{(k)}g_0^{(k)}} \le \epsilon$ $(x^{(k)} \text{ is } \epsilon\text{-suboptimal})$

• if
$$f_j(x^{(k)}) - \sqrt{g_j^{(k)T}P^{(k)}g_j^{(k)}} > 0$$
 (problem is infeasible)

Reference

- Localization methods: localization_methods_notes.pdf (reference 7 on Moodle)
- Ellipsoid method:
 - ellipsoid_method_notes (reference 7 on Moodle)
 - pp. 170-185, C. H. Papadimitrou, K. Steiglitz. Combinatorial Optimization: Algorithms and Complexity, 1998.

Acknowledgement

Some materials are extracted from the slides created by Prof. Stephen Boyd for EE364b at Standard University