Contents

1	Coloring	2
	Vertex Coloring	2
	1.0.1 Chromatic Polynomial	4
	Edge Coloring	4
2	The Next Section	:

1 Coloring

Vertex Coloring

Theorem 1.1 (Brook's Theorem). In a connected graph in which every vertex has at most Δ neighbors, the vertices can be colored with only Δ colors, except for two cases, complete graphs and cycle graphs of odd length, which require $\Delta + 1$ colors.

1.0.1 Chromatic Polynomial

$$P_G(k) = P_{G_1}(k) + P_{G_2}(k)$$

The first coefficient is always 1.

The degree of the first term is the (|V|).

The second coefficient is always -(|E|).

The final (constant) coefficient is always 0.

Definition 1.2. The chromatic polynomial of a complete graph K_n on n vertices is

$$P_{K_n} = k(k-1)(k-2)...(k-(n-1))$$

Definition 1.3. The chromatic polynomial of a tree T_n on n vertices is

 $P_{T_n} = k(k-1)^{n-1}$

 \Diamond

 \Diamond

 \Diamond

Edge Coloring

Definition 1.4. The chromatic index of a graph, χ' , is ...

number of edges in $L(G) = \sum_{i=1}^{n} {d_i \choose 2}$

Theorem 1.5. $\chi'(G) = \chi(L(G))$

Theorem 1.6 (Vizing's Theorem). The chromatic index of simple undirected graph is either Δ or $\Delta + 1$.

Theorem 1.7 (König's Line Coloring Theorem).

Continued line graph derivations of connected graphs

- 1. Paths
- 2. Cycles
- 3. $K_{1,3}$
- 4. All others grow

Theorem 1.8 (Whitney's Theorem). Two connected graphs on at least 4 vertices are isomorphic if and only if their line graphs are isomorphic.

2 The Next Section

Hello this is another section.