

243 Jubug-Ri, Yangji-Myeon, Yongin-Si, Gyeonggi-Do, Korea 449-822 Tel: +82-31-323-6008 Fax: +82-31-323-6010 http://www.ltalab.com

Dates of Tests: March 19 ~ 24, 2008 Test Report S/N: LR500190803E Test Site: LTA CO., LTD.

CERTIFICATION OF COMPLIANCE

FCC ID

APPLICANT

V60LMT910

DAE MYUNG ELECTRONICS CO.,LTD

TEST REPORT

FCC Classification : Part 15 Security/Remote Control Transmitter

Manufacturing Description : WIRELESS CALLING SYSTEM

Manufacturer : QUFIELD CO.,LTD.

Model name : LM-T910

Test Device Serial No.: : Identification

FCC Rule Part(s) : FCC Part 15 Subpart C; ANSI C-63.4-2003

Frequency Range : 433.92 MHz
Data of issue : March 26, 2008

This test report is issued under the authority of:

The test was supervised by:

Dong -Min JUNG, Technical Manager

Kyung-Taek LEE, Test Engineer

This test result only responds to the tested sample. It is not allowed to copy this report even partly without the allowance of the test laboratory. This report must not be used by the applicant to claim product endorsement by any agency.

NVLAP

NVLAP LAB Code.: 200723-0

TABLE OF CONTENTS

1. GENERAL INI	FORMATION'S	3
2. INFORMATIO	N'S ABOUT TEST ITEM	4
3. TEST REPORT		
3.1 SUMMARY	OF TESTS	5
3.2 TRANSMIT	TTER REQUIREMENTS	
3.2.1 COND	UCTED EMISSION	6
3.2.2 RADIA	ATED EMISSION	7
APPENDIX		
APPENDIX 1	BANDWIDTH OF EMISSION	9
APPENDIX 2	DUTY CYCLE DETERMINATION	11
APPENDIX 3	THE EMITTING TIME OF FUNDAMENTAL FREQUENCY	13
APPENDIX 4	TEST EQUIPMENT USED FOR TESTS	15
APPENDIX 5	LABEL AND USER'S MANUAL INFORMATION	17

1. General information's

1-1 Test Performed

Company name : LTA Co., Ltd.

Address : 243, Jubug-ri, Yangji-Myeon, Youngin-Si, Kyunggi-Do, Korea. 449-822

Web site : http://www.ltalab.com
E-mail : chahn@ltalab.com
Telephone : +82-31-323-6008
Facsimile +82-31-323-6010

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competents of calibration and testing laboratory".

1-2 Accredited agencies

LTA Co., Ltd. is approved to perform EMC testing by the following agencies:

Agency	Country	Accreditation No.	Validity	Reference
NVLAP	U.S.A	200723-0	2008-09-30	ECT accredited Lab.
RRL	KOREA	KR0049	2009-06-20	EMC accredited Lab.
FCC	U.S.A	610755	Updating	FCC filing
VCCI	JAPAN	R2133, C2307	2008-06-22	VCCI registration
IC	CANADA	IC5799	2008-04-23	IC filing

2. Information's about test item

2-1 Client

Company name : QUFIELD CO.,LTD.

Address : 1485-13,BF1, SONGRYONG BLDG. SEOCHO-DONG,

: SEOCHO-GU, SEOUL, KOREA.

Telephone : 82-31-420-4782

2-2 Equipment Under Test (EUT)

Trade name : Wireless Calling System

Model name : LM-T910
Serial number : Identification
Date of receipt : March 17, 2008

EUT condition : Pre-production, not damaged

Antenna type : Internal Wire antenna

Frequency Range : 433.92 MHz

Number of channels : 1

Channel spacing : Not concerned

Power Source : DC 12V(alkaline battery)

Power level, frequency range and channels characteristics are not user adjustable.

2-3 Tested frequency

Frequency	TX	RX
Low	-	-
Mid	433.92 MHz	-
High	-	-

Note: Measurements were performed top and bottom location in the frequency range of operation according to the section 15.31(m)

2-4 Ancillary Equipment

Equipment	nt Model No. Se		Manufacturer	
The EUT itself forms a system.				

No support equipment is requited for its normal operation.

3. Test Report

3.1 Summary of tests

Parameter	Test procedure	Status
Antenna Requirement	FCC Part 15.203	C 2)
Conducted Emission	FCC Part 15.107	NA 3)
Restricted Bands of Operation	FCC Part 15.205 / 209	С
Operation mode	FCC Part 15.231 a)	C 4)
Radiated emissions	FCC Part 15.231 b)	С
20dB Bandwidth	FCC Part 15.231 c)	С

Note 1: C=Complies NC=Not Complies NT=Not Tested NA=Not Applicable

Note 2: Internal Wire antenna without connector

Note 3: Operated by battery.

Note 4 The emitting time of fundamental frequency is less than 5 seconds.

Refer to the APPENDIX 3.

Note 5: The data in this test report are traceable to the national or international standards.

A sample calculation:

COR. F (correction factor)= Antenna factor + Cable loss- Amp.gain- Distance correction

Emission Level= meter reading + COR.F

3.2 Transmitter requirements

3.2.1 Conducted Emission

Procedure:

The conducted emissions are measured in the shielded room with a spectrum analyzer in peak hold. While the measurement, EUT had its hopping function disabled at the middle channels in line with Section 15.31(m). Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation and Exerciser operation. The highest emissions relative to the limit are listed.

Measurement Data:

- The EUT operates solely by the battery.
- According to the rule of section 15.207(c), The EUT exempt to the power line conducted test.

LIMIT:

Frequency Range	Near-peak	Average	
0.15 ~ 0.5 MHz	66 ~ 56 dBuV	56 ~ 46 dBuV	
0.5 ~ 5 MHz	56 dBuV	46 dBuV	
5 ~ 30 MHz	60 dBuV	50 dBuV	

Note: The limits will decrease with the frequency logarithmically within 0.15 MHz to 0.5 MHz

3.2.2 Radiated Emission

Definition:

The field strength of emissions from intentional radiators was measured.

Test method : FCC Part 15.205 / 209

Transmit Frequency : 433.92MHz

Frequency Range : $30 \text{ MHz} \sim 10^{\text{th}} \text{ harmonic.}$

Bandwidth : 120 kHz (F < 1 GHz) 1 MHz (F > 1 GHz)

Distance of antenna : 3 meters

Test mode : Tx mode

Result : Complies

Measurement Data:

- No other emissions were detected at a level greater than 20dB below limit.

Refer to the next page.

Field Strength Limit of fundamental and Harmonics: Part 15.231(b)

Frequency (MHz)	Limit @ 3m		
433.92	41.6667(F) – 7083.3333 = 10997 uV/m = 80.8 dBuV/m (Average)		
_	100.8dBuV/m (Peak)		
Harmonics	60.8 dBuV/m		
	(The maximum permitted unwanted emission level is 20 dB below the		
	maximum permitted fundamental level.)		

Part 15.209 LIMIT:

Frequency (MHz)	Limit (uV/m) @ 3m
30 ~ 88	100**
88 ~ 216	150**
216 ~ 960	200**
Above 960	500

^{**} Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88MHz, 174-216MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

Measurement Data:

Frequency (MHz)	Peak Level (dBuV/m)	Duty Cycle Factor (dB)	Average Level (dBuV/m)	Limits (dBuV/m)	Margin
433.92	79.9	-5.66	74.24	80.8	6.56
867.84	59.29	-5.66	53.63	60.8	7.17
1301.76	61.57	-5.66	55.91	60.8	4.89
-	-	-	-	-	-

^{*}restricted band of operation §15.205

Note 1: No other emission were detected at a level greater than 20 dB below limit.

Note 2: pulsed modulated device

A duty cycle correction factor has been applied to measures above 1 GHz.

We used the formulas:

ON TIME =
$$N_1L_1 + N_2L_2 + ... + N_{n-1}L_{n-1} + N_nL_n$$

(where N_1 is number of type 1 pulse, L_1 is length of type 1 pulse)

And DUTY CYCLE = ON TIME / 100ms or T (whichever is less, where T is the period of the pulse train).

We have found (See appendix 2),

$$N_1 = 14$$
 $L_1 = 1.05 \text{ms}$ $N_2 = 9$ $L_2 = 0.350 \text{ ms}$ $T = 34.25 \text{ ms}$

So, DUTY CYCLE = $\{(14x1.05ms) + (9x 0.35ms)\}/34.25ms = 52.11 \%$ which gives a correction factor of

Duty cycle Correction Factor (dB) = 20 Log (0.5211) = -5.66 dB

<u>Note 3:</u> All readings above 1GHz were taken using a peak detector function at a distance of 3 meters and the duty cycle correction factor in order to determinate the average value of the emission.

^{*} Peak level = Reading value + Antenna factor - Amp Gain

^{*} Average Level = Peak Level + Duty Cycle Factor

BANDWIDTH OF EMISSION

DUTY CYCLE DETERMINATION

THE EMITTING TIME OF FUNDAMENTAL FREQUENCY

The Emitting time of Fundamental Frequency

TEST EQUIPMENT USED FOR TESTS

	Description	Model No.	Serial No.	Manufacturer	Next Cal. Date
1	Spectrum Analyzer	8594E	3649A03649	НР	Apr-08
2	Signal Generator	8648C	3623A02597	НР	Apr-08
3	Attenuator (3dB)	8491A	37822	HP	Oct-08
4	Attenuator (10dB)	8491A	63196	НР	Oct-08
5	EMI Test Receiver	ESVD	843748/001	R&S	Aug-08
6	LISN	KNW-407	8-1430-1	Kyoritsu	Jan-09
7	Two-Line V-Network	ESH3-Z5	893045/017	R&S	Oct-08
8	RF Amplifier	8447D	2949A02670	НР	Jan-09
9	RF Amplifier	8447D	2439A09058	НР	Oct-08
10	RF Amplifier	8449B	3008A02126	НР	Apr-09
11	Test Receiver	ESHS10	828404009	R&S	Aug-08
12	TRILOG Antenna	VULB 9160	9160-3212	SCHWARZBECK	Jul-08
13	LogPer. Antenna	VULP 9118	9118 A 401	SCHWARZBECK	Apr-09
14	Biconical Antenna	BBA 9106	VHA 9103-2315	SCHWARZBECK	Apr-09
15	Horn Antenna	3115	00055005	ETS LINDGREN	Mar-09
16	Dipole Antenna	VHA9103	2116	Schwarzbeck	Nov-07
17	Dipole Antenna	VHA9103	2117	Schwarzbeck	Nov-07
18	Dipole Antenna	UHA9105	2261	Schwarzbeck	Nov-07
19	Dipole Antenna	UHA9105	2262	Schwarzbeck	Nov-07
20	Spectrum Analyzer	8591E	3649A05888	НР	Oct-08
21	Spectrum Analyzer	8563E	3425A02505	НР	Apr-08
22	Hygro-Thermograph	THB-36	0041557-01	ISUZU	May-08
23	Splitter (SMA)	ZFSC-2-2500	SF617800326	Mini-Circuits	Jun-08
24	RF Switch	MP59B	6200414971	ANRITSU	Jun-08
25	RF Switch	MP59B	6200438565	ANRITSU	Jun-08
26	Power Divider	11636A	6243	HP	Oct-08
27	DC Power Supply	6622A	3448A03079	HP	Oct-08
28	Attenuator (30dB)	11636A	6243	HP	Oct-08
29	Frequency Counter	5342A	2826A12411	HP	Apr-08
30	Power Meter	EPM-441A	GB32481702	HP	Apr-08
31	Power Sensor	8481A	2702A64048	HP	Apr-08
32	Audio Analyzer	8903B	3729A18901	HP	Oct-08
33	Modulation Analyzer	8901B	3749A05878	НР	Oct-08
34	TEMP & HUMIDITY Chamber	YJ-500	L05022	JinYoung Tech	Oct-08
35	LOOP-ANTENNA	FMZB 1516	151602/94	SCHWARZBECK	Mar-09

Label and User's Manual Information

Certification Labeling Requirements

§ 15.19 Labeling requirements.

- (a) In addition to the requirements in part 2 of this chapter, a device subject to **certification**, **or verification** shall be labeled as follows:
- (1) Receivers associated with the operation of a licensed radio service, e.g., FM broadcast under part 73 of this chapter, land mobile operation under part 90, etc., shall bear the following statement in a conspicuous location on the device:

This device complies with part 15 of the FCC Rules. Operation is subject to the condition that this device does not cause harmful interference.

(2) A stand-alone cable input selector switch, shall bear the following statement in a conspicuous location on the device:

This device is verified to comply with part 15 of the FCC Rules for use with cable television service.

(3) All other devices shall bear the following statement in a conspicuous location on the device:

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

- (4) Where a device is constructed in two or more sections connected by wires and marketed together, the statement specified under paragraph (a) of this section is required to be affixed only to the main control unit.
- (5) When the device is so small or for such use that it is not practicable to place the statement specified under paragraph (a) of this section on it, the information required by this paragraph shall be placed in a prominent location in the instruction manual or pamphlet supplied to the user or, alternatively, shall be placed on the container in which the device is marketed. However, the FCC identifier or the unique identifier, as appropriate, must be displayed on the device.

User's Manual Information

§ 15.21 Information to user.

The users manual or instruction manual for an intentional or unintentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

The following is extracted from Title 47 of the Code of Federal Regulations, Part 15, Subpart B - Unintentional Radiators: **§ 15.105** Information to the user.

(b) For a Class B digital device or peripheral, the instructions furnished the user shall include the following or similar statement, placed in a prominent location in the text of the manual:

Note: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- --Reorient or relocate the receiving antenna.
- --Increase the separation between the equipment and receiver.
- --Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- --Consult the dealer or an experienced radio/TV technician for help.