SSD1351

Product Preview

128 RGB x 128 Dot Matrix **OLED/PLED Segment/Common Driver with Controller**

May 2008

CONTENTS

1	GENERAL DESCRIPTION	6
2	FEATURES	6
3	ORDERING INFORMATION	6
4	BLOCK DIAGRAM	
5	DIE PAD FLOOR PLAN	8
6	PIN ARRANGEMENT	11
6.	6.1 SSD1351UR1 PIN ASSIGNMENT	11
7	PIN DESCRIPTIONS	14
8		
	8.1 MCU INTERFACE	
	8.1.1 MCU Parallel 6800-series Interface8.1.2 MCU Parallel 8080-series Interface	
	8.1.2 MCU Parallel 8080-series interface	
	8.1.4 MCU Serial Interface (4-wire SPI)	
	8.2 RESET CIRCUIT	
	8.3 GDDRAM	
	8.3.1 GDDRAM structure	
	8.3.2 Data bus to RAM mapping under different input mode	22
	8.4 COMMAND DECODER	
	8.5 OSCILLATOR & TIMING GENERATOR	
	8.5.1 Oscillator	
	8.6 SEG/COM DRIVING BLOCK	
	8.7 SEG / COM DRIVER	
	8.8 GRAY SCALE DECODER	
	8.9 POWER ON AND OFF SEQUENCE	
	8.10 V _{DD} REGULATOR	30
	8.10.1 V _{DD} Regulator in Sleep Mode	
9		
	9.1 BASIC COMMAND LIST	
	0 COMMAND	
	10.1.1 Set Column Address (15h)	
	10.1.2 Set Row Address (75h)	
	10.1.3 Write RAM Command (5Ch)	
	10.1.4 Read RAM Command (5Dh)	
	10.1.5 Set Re-map & Dual COM Line Mode (A0h)	
	10.1.7 Set Display Start Ellie (ATII)	
	10.1.8 Set Display Mode (A4h ~ A7h)	
	10.1.9 Set Function selection (ABh)	
	10.1.10 Set Sleep mode ON/OFF (AEh / AFh)	
	10.1.11 Set Phase Length (B1h)	
	10.1.12 Set Front Clock Divider / Oscillator Frequency (B3h)	
	10.1.13 Set GPIO (B5h)	44
	10.1.14 Set Second Pre-charge period (B6h)	
	10.1.15 Look Up Table for Gray Scale Pulse width (B8h)	
	10.1.16 Use Built-in Linear LUT (B9h)	
	10.1.17 Set Pre-charge voltage (BBh)	
	10.1.18 Set V _{COMH} Voltage (BEh)	45

10.1	.19 Set Contrast Current for Color A,B,C (C1h)	45
10.1	.20 Master Contrast Current Control (C7h)	45
10.1		46
10.1	.22 Set Command Lock (FDh)	46
11	MAXIMUM RATINGS	47
12	DC CHARACTERISTICS	48
13	AC CHARACTERISTICS	49
14	APPLICATION EXAMPLE	54
15	PACKAGE INFORMATION	55
15.1		
15.2	SSD1351Z DIE TRAY INFORMATION	56

Confidential to the technology inc.

SSD1351 Rev 0.10 P 3/57 May 2008 **Solomon Systech**

TABLES

Table 3-1 : Ordering Information	6
Table 5-1: SSD1351Z Bump Die Pad Coordinates	9
Table 6-1: SSD1351UR1 Pin Assignment Table	
Table 7-1: SSD1351 Pin Description	
Table 7-2: Bus Interface selection	15
Table 8-1: MCU interface assignment under different bus interface mode	17
Table 8-2: Data bus selection modes	
Table 8-3: Control pins of 6800 interface	17
Table 8-4: Control pins of 8080 interface	19
Table 8-5: Control pins of 4-wire Serial interface	19
Table 8-6: Control pins of 3-wire Serial interface	
Table 8-7: 262k Color Depth Graphic Display Data RAM Structure	21
Table 8-8: Write Data bus usage under different bus width and color depth mode	
Table 8-9: Read Data bus usage under different bus width and color depth mode	22
Table 9-1 : Command table	
Table 9-2 : Graphic acceleration command	
Table 11-1 : Maximum Ratings	
Table 12-1 : DC Characteristics	
Table 13-1 : AC Characteristics	
Table 13-2: 6800-Series MCU Parallel Interface Timing Characteristics	
Table 13-3: 8080-Series MCU Parallel Interface Timing Characteristics	
Table 13-4 : Serial Interface Timing Characteristics (4-wire SPI)	
Table 13-5 : Serial Interface Timing Characteristics (3-wire SPI)	53
Table 13-4 : Serial Interface Timing Characteristics (4-wire SPI)	

 Solomon Systech
 May 2008
 P 4/57
 Rev 0.10
 SSD1351

FIGURES

Figure 4-1 Block Diagram	7
Figure 5-1: SSD1351Z Die Drawing	
Figure 6-1: SSD1351UR1 Pin Assignment	
Figure 8-1: Data read back procedure - insertion of dummy read	18
Figure 8-2 : Example of Write procedure in 8080 parallel interface mode	18
Figure 8-3: Example of Read procedure in 8080 parallel interface mode	
Figure 8-4: Display data read back procedure - insertion of dummy read	19
Figure 8-5: Write procedure in 4-wire Serial interface mode	20
Figure 8-6: Write procedure in 3-wire Serial interface mode	20
Figure 8-7 : Oscillator Circuit	
Figure 8-8: I _{REF} Current Setting by Resistor Value	
Figure 8-9: Segment and Common Driver Block Diagram	
Figure 8-10 : Segment and Common Driver Signal Waveform	
Figure 8-11: Gray Scale Control in Segment	27
Figure 8-12: Relation between GDDRAM content and Gray Scale table entry for three colors in 262K color mode	
(under command B9h Use Built-in Linear LUT)	
Figure 8-13: The Power ON sequence.	
Figure 8-14: The Power OFF sequence	
Figure 8-15 V _{CI} > 2.6V, V _{DD} regulator enable: pin connection scheme	
Figure 8-16 V _{DD} regulator disable: pin connection scheme	
Figure 8-17 : Case 1 - Command sequence for just entering/ exiting sleep mode	
Figure 8-18: Case 2 - Command sequence for disabling internal V _{DD} regulator during sleep mode	
Figure 10-1: Example of Column and Row Address Pointer Movement	
Figure 10-2 : Address Pointer Movement of Horizontal Address Increment Mode	
Figure 10-3: Address Pointer Movement of Vertical Address Increment Mode	
Figure 10-4: COM Pins Hardware Configuration (MUX ratio: 128)	
Figure 10-5: Example of Set Display Start Line with no Remap	
Figure 10-6: Example of Set Display Offset with no Remap	
Figure 10-7 : Example of Entire Display OFF	
Figure 10-8 : Example of Entire Display ON	43
Figure 10-9: Example of Normal Display	
Figure 10-10: Example of Inverse Display	
Figure 10-11: Example of Gamma correction by Gamma Look Up table setting	
Figure 13-1: 6800-series MCU parallel interface characteristics	
Figure 13-2: 8080-series MCU parallel interface characteristics	
Figure 13-3 : Serial interface characteristics (4-wire SPI)	
Figure 13-4 : Serial interface characteristics (3-wire SPI)	
Figure 14-1 : SSD1351Z application example for 18-bit 6800-parallel interface mode (Internal regulated V_{DD})	
Figure 15-1: SSD1351UR1 Detail Dimension	
Figure 15-2: SSD1351UR1 Die Tray Information	56

SSD1351 Rev 0.10 P 5/57 May 2008 **Solomon Systech**

GENERAL DESCRIPTION 1

The SSD1351 is a CMOS OLED/PLED driver with 384 segments and 128 commons output, supporting up to 128RGB x 128 dot matrix display. This chip is designed for Common Cathode type OLED/PLED panel.

The SSD1351 has embedded Graphic Display Data RAM (GDDRAM). It supports with 8, 16, 18 bits 8080 / 6800 parallel interface, Serial Peripheral Interface. It has 256-step contrast and 262K color control, giving vivid color display on OLED panels.

2 **FEATURES**

- Resolution: 128 RGB x 128 dot matrix panel
- 262k color depth supported by embedded 128x128x18 bit SRAM display buffer
- Power supply

 $V_{DD} = 2.4V - 2.6V$ (Core V_{DD} power supply, can be regulated from V_{CI})

 $V_{DDIO} = 1.65V - V_{CI}$ (MCU interface logic level) o $V_{CI} = 2.4V - 3.5V$ (Low voltage power supply) \circ $V_{CC} = 10.0V - 20.0V$ (Panel driving power supply)

- o When V_{CI} is lower than 2.6V, V_{DD} should be supplied by external power source
- Segment maximum source current: 200uA
- Common maximum sink current: 70mA
- 256 step brightness current control for the each color component plus 16 step master current control mology Inc.
- Pin selectable MCU Interfaces:
 - 8/16/18 bits 6800-series parallel interface
 - 8/16/18 bits 8080-series parallel interface
 - 3 –wire and 4-wire Serial Peripheral Interface
- Support various color depths
 - 262k color (6:6:6)
 - o 65k color (5:6:5)
- Gamma Look Up Tables (GLUT) with 8 bit entry
- Row re-mapping and Column re-mapping
- Vertical and horizontal scrolling
- Programmable Frame Rate and Multiplexing Ratio
- On-Chip Oscillator
- Color Swapping Function (RGB BGR), arranged in RGB sequence when reset
- Slim chip layout for COF
- Operating temperature range -40°C to 85°C.

ORDERING INFORMATION

Table 3-1: Ordering Information

Ordering Part Number	SEG	СОМ	Package Form	Reference	Remark
			Gold		• Min SEG pad pitch: 25um
SSD1351Z	128RGB	128	Bump	8,56	• Min COM pad pitch: 35um
			Die		• Die thickness : 300 +/- 25um
	128RGB	128	COF		• 48mm film, 4 sprocket hole
					Hot bar type COF
SSD1351UR1				11,55	• 8/16/18-bit 80/68/SPI interface
					• SEG lead pitch: 0.050x0.999=0.04995mm
					• COM lead pitch: 0.06x0.999=0.05994mm

Solomon Systech May 2008 P 6/57 Rev 0.10 SSD1351

4 BLOCK DIAGRAM

V_{DD} Regulator BGGND V_{DD} ↑ V_{CI} RES# Common Drivers COM127 COM125 COM123 CS# (ppo) D/C# Gray Scale Decoder R/W#(W/R#) COM5 COM3 COM1 MCU Interface E(RD#) GDDRAM D[17:0] BS[1:0] SC127 SB127 SA127 SC126 SB126 SA126 SC125 SB125 SA125 \boldsymbol{V}_{DDIO} Segment Drivers V_{LSS} \mathbf{v}_{cc} \mathbf{v}_{ci} SC2 SB2 SA2 SC1 SB1 SA1 SC0 SB0 SA0 V_{SS} VSL SEG/COM Driving Block Command Decoder Display Timing Generator GPIO 0 Common Drivers GPIO 1 COM0 COM2 COM4 Oscillator (even) COM122 COM124 COM126 V_{PP} $V_{\text{COMH}} \blacktriangleleft$ CLS F $C\Gamma$ ${
m I}_{
m REF}$

Figure 4-1 Block Diagram

SSD1351 | Rev 0.10 | P 7/57 | May 2008 | **Solomon Systech**

5 DIE PAD FLOOR PLAN

Figure 5-1: SSD1351Z Die Drawing

Die size	10.7mm x 1.5mm
Die Thickness	300 +/- 25um
Min I/O pad pitch	70um
Min SEG pad pitch	25um
Min COM pad pitch	35um

Bump height	Nominal 15um
Bump size	
Pad 1, 157	49um x 70um
Pad 2-37, 121-156	23um x 70um
Pad 38-120	45um x 90um
Pad 158-189, 582-6	70um x 23um
Pad 192-579	13um x 96um
Pad 190,581	70um x 49um
Pad 191,580	50um x 96um

Alignment mark		
L shape	(4736.35, 126.58)	75um x 75um
T shape	(-4736.35, 126.58	75um x 75um
+ shape	(-4736.35, -284.7	75um x 75um

 Solomon Systech
 May 2008
 P 8/57
 Rev 0.10
 SSD1351

Table 5-1: SSD1351Z Bump Die Pad Coordinates

T. N.C.	Pad #	Pad Name	X-Axis	Y-Axis	Pad #	Pad Name	X-Axis	Y-Axis	Pad #	Pad Name	X-Axis	Y-Axis	Pad #	Pad Name	X-Axis	Y-Axis
3					81				161				-			
4 COMBR 917762 962.00 64 05 8870 95182 114 COMBR 202442 205041 244 85877 35182 06182 145 60 60 60 60 60 60 60 6													-			
S								-					-			
For Course 655726 68208 68 07 20470 65182 716 COURT 203462 42504 246 848 848.00 68132 85 0 68107 65182 6510 651									-				-			
Fig. COMMON 4807.82 680.00 681.00 68													-			
0	_			-662.08				-651.82					-			
To COMID 497762 692.06 90 11 797.70 551.82 170 COMID 234.62 230.64 230 381.93 393.00 691.72 12 12 12 13 13 13 13 1	8	COM100	-4987.62	-662.08	88	D9	480.70	-651.82	168	COM21	5234.62	-90.04	248	SC18	3443.00	681.25
11 COMMON 4487282 662.08 91 012 786.70 651.82 777 COMMON 5254.02 148.65 231 SCIO 3088.00 681.72 671.04	_				89								$\overline{}$			
12 COMIGN 4847 82 696.20 92 D13 872.70 631.82 172 COMITO 524.62 488.90 222 SAA0 334.00 681.52 611.00 6													-			
141 COMMOS 4911262 6922.089 94 D16 1988.70 691.182 T77 COMMOS 5234622 1949.60 2595. \$26203 3318.00 691.125 116 COMMOS 4774262 6922.089 94 D16 1178.70 691.82 T77 COMMOS 523462 1949.60 2595. \$26203 2393.00 691.25 177 COMMOS 232462 1949.60 2595. \$26203 2393.00 691.25 2393.00 2393.																
141 COMITIG 4777426, 6822.08 94 1015 1088707 65182 1774 COMITIG 523462 1794.06 2505. 2502. 3293.00 691.75 1774 COMITIG 4707426, 6822.08 96 97 VSS 358570 451182 1775 COMITIG 523462 1794.06 2505. 6821. 3243.00 691.75 691.77 COMITIG 4807426, 4802.08 98 800380 142.870 451.82 1775 COMITIG 523462 2348.00 2348.00 2348.00 691.75 1775 COMITIG 4807426, 4802.08 98 800380 142.870 451.82 1775 COMITIG 523462 2348.00 2348.00 2348.00 691.75 1775 COMITIG 523462 2348.00 234												-				
Texas													-			
17	15	COM107	-4742.62	-662.08	95	D16	1178.70	-651.82	175	COM14	5234.62	154.96	255	SA21	3268.00	681.25
Fig. COMH11 4807 #26 5802.00 98 SGOND 102670 651.82 717 COMH1 523462 2346	_								-							
19 COMH11 469028 68208 99 VSL 1498.70 681.82 71.9 COMH0 5234.82 294.96 296 5822 3188.00 681.25 21 COMH13 4852.82 4862.00 91 CLS 1698.70 681.82 181 COMB 5234.82 294.96 206 582.31 3118.00 681.25 22 COMH14 4467.82 4862.00 81 70.0 70.767 681.82 181 COMB 5234.82 294.96 206 582.31 3118.00 681.25 23 COMH15 4462.62 682.00 91 CLS 1698.70 681.82 181 COMB 5234.62 294.96 206 2852.33 3068.00 681.25 23 COMH15 4462.62 682.00 91 CLS 1698.70 681.82 181 COMB 5234.62 244.96 263 563.00 581.25 281.20 281.					_											
20																
21 COMM13 458782 Fee2 08	_							-	-			-	-			
24																
24 COM/116 4427.02 692.08 1014 VSS 1890.70 651.62 1891. 184 COM/5 5224.62 469.96 264 SA24 3018.00 681.25 260 COM/117 4392.62 692.08 107 VCOM/6 2009.07 651.82 186 COM/5 2324.62 539.96 266 SC24 2999.00 681.25 280 COM/12 4226.02 602.08 107 VCOM/6 2009.07 651.82 188 COM/5 2324.62 539.96 266 SC24 2999.00 681.25 280 COM/12 4226.02 602.08 109 VCC 2277.70 651.82 188 COM/6 2324.62 609.98 268 SB25 2988.00 681.25 232 COM/12 4226.02 602.08 101 VCO 2327.70 651.82 189 COM/6 2324.62 692.96 270 SA26 2889.00 681.25 233 COM/12 4147.02 662.08 111 VTM 23557.0 651.82 189 COM/6 2324.62 692.96 270 SA26 2889.00 681.25 233 COM/12 4147.02 662.08 111 VTM 26957.0 651.82 190 NC 2324.02 682.95 270 SA26 2889.00 681.25 233 COM/12 4147.02 662.08 1115 VTM 26957.0 651.82 191 SS3 600.00 681.25 272 SC26 2888.00 681.25 233 COM/12 4147.02 662.08 115 VTM 24957.0 651.82 191 SS3 600.00 681.25 272 SC26 2888.00 681.25 273 SC26 2889.00 681.25 273	22	COM114	-4497.62	-662.08	102	VDDIO	1706.70	-651.82	182	COM7	5234.62	399.96	262	SB23	3093.00	681.25
26 COMH17 4392.82 682.08 106 VCMM 203070 681.82 186 COMM 5234.62 509.96 265 582.4 391.60.0 681.52 276 COMM 203070 681.82 187 COMM 5234.62 574.96 267 582.5 298.60 681.52 278 2000 20	23				103				183				263			
27																
28																
28												-	-			
290 COM121 4256 & 662 08 110 VCC 2277.70 651.82 189 COM0 5234.62 644.96 269.90 270 58.02 2318.00 881.25 31 COM122 4418 & 662.08 111 VCI 2555.70 651.82 191 VLSS 4890.00 681.25 271 S826 2888.00 681.25 32 COM124 4417 & 62 662.08 111 VII 2699.70 651.82 191 VLSS 4890.00 681.25 271 S826 2888.00 681.25 33 COM125 4417 & 62 662.08 113 TR2 2494.70 -851.82 193 S80 4818.00 681.25 273 SA27 2818.00 681.25 33 COM125 4407 & 62 662.08 114 TR3 3144.70 -851.82 193 S80 4818.00 681.25 273 SA27 2818.00 681.25 35 COM127 -404.62 662.08 114 TR3 3144.70 -651.82 193 S80 4818.00 681.25 273 SA27 2818.00 681.25 35 COM127 -404.62 662.08 115 TR4 3409.70 -651.82 195 SA1 4768.00 681.25 275 SA27 2768.00 681.25 37 VLSS 3978.62 662.08 117 VLSS 3497.0 -651.82 195 SA1 4768.00 681.25 275 SA27 2768.00 681.25 37 VLSS 3378.30 661.82 110 VLSS 3489.70 -651.82 197 SC1 4718.00 681.25 277 S828 2718.00 681.25 39 VLSS 3376.30 661.82 110 VLSS 3497.0 -651.82 197 SC1 4718.00 681.25 277 S828 2718.00 681.25 40 VCC -3549.30 661.82 110 VLSS 3767.0 -651.82 100 S82 4668.00 681.25 277 S828 2718.00 681.25 40 VCC -3549.30 661.82 121 VLSS 3972.62 -662.08 201 SA3 4618.00 681.25 278 SA29 2928.00 681.25 44 VCC -3549.30 661.82 121 VLSS 3972.62 -662.08 201 SA3 4618.00 681.25 278 SA29 2928.00 681.25 44 VCC -3549.30 661.82 121 VLSS 3072.62 -662.08 201 SA3 4618.00 681.25 288 SA39 2928.00 681.25 44 VCC -3549.30 661.82 121 COM63 462.62 -662.08 201 SA3 4618.00 681.25 288 SA39 2899.00 681.25 44 VCC -3549.30 661.82 121 COM63 462.62 -662.08 201 SA3 4618.00 681.25 288 SA32 2489.00 681.25																
33 COMP12 418 62 662 68 111 COL1 2585.70 4551.82 1591 VLSS 4890.00 681 25 271 S826 2886.00 681 25 32 200		COM121	-4252.62	-662.08		VCC	2277.70	-651.82		COM0		-	-	SC25	2918.00	681.25
32 COM124 4147,62 - 662,08 112 TR1 2699,70 - 651,82 192 SAO 4843,00 681,25 272 SC262 2843,00 681,25 33 COM126 4107,62 - 662,08 114 TR2 2945,70 - 651,82 193 SBO 4818,100 681,25 274 SR27 273,00 681,25 35 COM127 - 4042,62 6,02 602,08 114 TR3 3144,70 - 651,82 194 SCO 4793,00 681,25 124 SR27 273,00 681,25 36 COM127 - 4042,62 6,02 602,08 116 VSS 1479,70 - 651,82 194 SCO 4793,00 681,25 1276 SC27 272,00 681,25 39 VLSS 397,62 - 662,08 116 VSS 1479,70 - 651,82 196 SB1 4743,00 681,25 1276 SC27 2743,00 681,25 37 VLSS 397,62 - 662,08 116 VSS 1486,70 - 651,82 196 SB1 4743,00 681,25 1276 SC27 2743,00 681,25 39 VLSS 3763,00 651,82 118 VLSS 361,70 - 651,82 198 SR2 4693,00 681,25 1278 SC27 2743,00 681,25 140 VCC - 3619,30 - 651,82 112 VLSS 361,70 - 651,82 198 SR2 4693,00 681,25 1278 SC27 2743,00 681,25 140 VCC - 3619,30 - 651,82 120 VSS 3683,70 - 651,82 199 SR2 4683,00 681,25 1278 SC27 2743,00 681,25 140 VCC - 3619,30 - 651,82 120 VSS 3683,70 - 651,82 199 SR2 4683,00 681,25 1279 SA20 2688,00 681,25 124 VLSS 302,30 - 651,82 122 VLSS 407,62 -662,08 120 VLSS 392,30 - 651,82 123 COM63 4042,62 -662,08 120 VLSS 392,30 - 651,82 123 COM63 4042,62 - 662,08 120 VLSS 392,30 - 651,82 123 COM63 4042,62 - 662,08 120 SR3 4848,10 0 681,25 128 SR3 42843,00 681,25 124 VLSS 392,30 - 651,82 125 COM61 417,62 - 662,08 120 SR3 4848,10 0 681,25 128 SR3 1248,10 0 681,25 124 VLSS 392,30 - 651,82 127 COM69 4176,26 -662,08 120 SR3 4848,10 0 681,25 128 SR3 1248,10 0 681,25 124 SR3 4839,30 681,	30	COM122		-662.08	110				190				270		2893.00	
33 COMM26 4417.82 640.08 1418 TR2 2449.70 -651.82 133 S80 44818.00 681.25 273 SA27 2818.00 681.25 340 COMM27 -404.26 2-680.08 115 TR4 3409.70 -651.82 136 SOM 4787.00 681.25 275 SC27 2789.00 681.25 376 COMM27 -404.26 2-680.08 115 TR4 3409.70 -651.82 136 SSA1 4789.00 681.25 275 SC27 2789.00 681.25 377 ULSS -397.26 2 -680.08 117 VLSS 3409.70 -651.82 136 SSA1 4789.00 681.25 277 SE28 277 SE28 261.25 377 ULSS -397.26 2 -680.08 117 VLSS 3409.70 -651.82 139 SE2 4668.00 681.25 278 SE28 2779 SA29 27860.00 681.25 380 VLSS -3766.30 -651.82 119 VSS 3688.70 -651.82 139 SE2 4668.00 681.25 278 SE28 2683.00 681.25 340 VCC -3619.30 -651.82 110 VSS 3688.70 -651.82 120 VSS 3768.70 -651.82 120 VSS 3768.70 -651.82 120 VSS 3768.70 -651.82 120 VSS 3769.70 -651.82								-								
34 COMM26 4407-62 662.08 114 TR3 3144.70 681.82 194 SCO 4793.00 681.25 224 S827 2793.00 681.25 35 COMM27 4042.62 682.08 116 VSS1 3479.70 681.82 186 S81 4743.00 681.25 276 S227 2743.00 681.25 37 VISS 3497.07 681.82 196 S81 4743.00 681.25 276 S228 2743.00 681.25 37 VISS 3397.82 3498.00 681.25 378.00 681.25													$\overline{}$			
35 COM127 -4042 C																
37	_								-			-				
38 VLSS 3776.30 -651.82 19 VSS 3699.70 -651.82 12 VSS 3759.70 -651.82 19 VSS 3699.70 -651.82 12 VSS 3759.70 -651.82						VSS1										
39	37			-662.08	117			-651.82	197	SC1			277		2718.00	681.25
April									-				-			
41																
42 VCOMH 3442.30 651.82 122 VLSS 4007.62 662.08 202 583 4593.00 681.25 282 5A30 2593.00 681.25 44 VLSS 3302.30 651.82 124 COM62 4077.62 662.08 205 584 4543.00 681.25 283 5830 2583.00 681.25 45 VSS 3322.30 651.82 125 COM61 4117.62 662.08 205 584 4543.00 681.25 285 5A31 2518.00 681.25 46 VSS 3322.30 651.82 125 COM61 4117.62 662.08 205 584 4543.00 681.25 285 5A31 2518.00 681.25 47 VSL 3092.30 651.82 127 COM59 4187.62 662.08 205 584 4548.00 681.25 285 5A31 2518.00 681.25 47 VSL 3092.30 651.82 127 COM59 4187.62 662.08 207 SA5 4468.00 681.25 287 SC31 2468.00 681.25 48 VCI 3022.30 651.82 129 COM57 4252.62 662.08 208 585 4448.00 681.25 287 SC31 2468.00 681.25 48 VCI 2469.30																
44									_							
46																
46	44	VLSS	-3302.30	-651.82	124	COM62	4077.62	-662.08	204	SA4	4543.00	681.25	284	SC30	2543.00	681.25
48												-	-			
48																
49													-			
50												-	-			
52 VDD -2659.30 -651.82 132 COM54 4357.62 -662.08 212 SC6 4343.00 681.25 293 SS33 2343.00 681.25 54 VDD -2519.30 -651.82 134 COM52 4427.62 -662.08 213 SA7 4318.00 681.25 293 SG33 2318.00 681.25 55 VDDIO -2366.30 -651.82 135 COM51 4462.62 -662.08 214 SB7 4293.00 681.25 294 SA34 2294.00 681.25 56 VDDIO -2366.30 -651.82 135 COM50 4497.62 -662.08 216 SA8 4243.00 681.25 296 SB34 2268.00 681.25 57 VLSS -2226.30 -651.82 138 COM49 4526.2 -662.08 217 SB4 4218.00 681.25 296 SC34 2243.00 681.25 58 GPIO1 -2048.30 651.82 <td></td> <td></td> <td></td> <td></td> <td></td> <td>COM56</td> <td></td> <td></td> <td></td> <td></td> <td>4393.00</td> <td></td> <td></td> <td></td> <td></td> <td></td>						COM56					4393.00					
S3 VDD -2589.30 -651.82 133 COM53 4392.62 -662.08 213 SA7 4318.00 681.25 294 SA34 2293.00 681.25 55 VDDIO -2368.30 -651.82 134 COM52 4427.62 -662.08 215 SC7 4268.00 681.25 294 SA34 2293.00 681.25 55 VDDIO -2296.30 -651.82 136 COM51 4462.62 -662.08 215 SC7 4268.00 681.25 295 SB34 2268.00 681.25 56 VDDIO -2296.30 -651.82 136 COM50 4497.62 -662.08 216 SA8 4243.00 681.25 296 SC34 2243.00 681.25 57 VLSS -2226.30 -651.82 137 COM49 4532.62 -662.08 217 SB8 4218.00 681.25 297 SA35 2218.00 681.25 58 GPIOO -2134.30 -651.82 138 COM48 4567.62 -662.08 218 SC8 4193.00 681.25 299 SC35 2168.00 681.25 59 GPIO1 -2048.30 -651.82 139 COM47 4602.62 -662.08 219 SA9 4168.00 681.25 299 SC35 2168.00 681.25 60 IREF -1956.30 -651.82 140 COM46 4637.62 -662.08 220 SB9 4143.00 681.25 300 SA36 2143.00 681.25 62 CL -1778.30 -651.82 142 COM44 4707.62 -662.08 221 SC9 A118.00 681.25 302 SC36 2093.00 681.25 62 CL -1778.30 -651.82 143 COM43 4742.62 -662.08 222 SA10 4093.00 681.25 302 SC36 2093.00 681.25 66 CS# -1476.30 -651.82 144 COM42 4777.62 -662.08 222 SA10 4093.00 681.25 304 SB37 2043.00 681.25 66 CS# -1476.30 -651.82 144 COM42 4777.62 -662.08 224 SC10 4043.00 681.25 305 SC37 2018.00 681.25 66 CS# -1476.30 -651.82 148 COM44 4476.20 -662.08 224 SC10 4043.00 681.25 306 SA38 1993.00 681.25 66 CS# -1476.30 -651.82 148 COM44 4476.20 -662.08 224 SC10 4043.00 681.25 306 SA38 1993.00 681.25 66 CS# -1476.30 -651.82 148 COM44 4476.20 -662.08 228 SA11 4018.00 681.25 306 SA38 1993.00 681.25 66 CS# -1476.30 -651.82 148 COM44 4476.20 -662.08 228 SA11 4018.00 681.	51	VDD		-651.82	131			-662.08	211	SB6		681.25	291	SA33	2368.00	681.25
54 VDD -2519.30 -651.82 134 COM52 4427.62 -662.08 214 SB7 4293.00 681.25 294 SA34 2293.00 681.25 55 VDDIO -2366.30 -651.82 136 COM50 4497.62 -662.08 215 SC7 4268.00 681.25 295 SB34 2293.00 681.25 57 VLSS -2226.30 -651.82 137 COM49 4532.62 -662.08 216 SA8 4243.00 681.25 297 SA35 2218.00 681.25 58 GPIO1 -2048.30 -651.82 138 COM49 4602.62 -662.08 218 SS8 4193.00 681.25 298 SB35 2193.00 681.25 60 IREF -1956.30 -651.82 140 COM46 4637.62 -662.08 220 SB9 4143.00 681.25 299 SC35 2168.00 681.25 61 FR -1864.30 -651.82 <td></td>																
55 VDDIO -2366.30 -651.82 135 COM51 4462.62 -662.08 215 SC7 4268.00 681.25 295 SB34 2268.00 681.25 56 VDDIO -2296.30 -651.82 136 COM50 4497.62 -662.08 216 SA8 4243.00 681.25 296 SC34 2243.00 681.25 58 GPIOO -2134.30 -651.82 138 COM49 4532.62 -662.08 218 SC8 4193.00 681.25 297 SA35 2218.00 681.25 59 GPIO1 -2048.30 -651.82 139 COM47 4602.62 -662.08 219 SA9 4168.00 681.25 299 SC35 2168.00 681.25 60 IREF -1956.30 -651.82 140 COM44 4707.62 -662.08 220 SB9 4143.00 681.25 300 SA36 2143.00 681.25 62 CL -1778.30 -651.82<																
56 VDDIO -2296.30 -651.82 136 COM50 4497.62 -662.08 216 SA8 4243.00 681.25 296 SC34 2243.00 681.25 57 VLSS -2226.30 -651.82 137 COM49 4532.62 -662.08 217 SB8 4218.00 681.25 297 SA35 2218.00 681.25 59 GPIO1 -2048.30 -651.82 138 COM44 4602.62 -662.08 219 SA9 4168.00 681.25 299 SG35 2188.00 681.25 60 IREF -1956.30 -651.82 140 COM46 4637.62 -662.08 220 SB9 4143.00 681.25 299 SG35 2188.00 681.25 61 FR -1864.30 -651.82 141 COM44 4707.62 -662.08 220 SB9 4143.00 681.25 300 SA36 2143.00 681.25 62 CL -1778.30 -651.82					.0.			002.00				001.20				001120
57 VLSS -2263.0 -651.82 137 COM49 4532.62 -662.08 217 SB8 4218.00 681.25 297 SA35 2218.00 681.25 59 GPIO1 -2048.30 -651.82 138 COM47 4602.62 -662.08 218 SC8 4193.00 681.25 298 SB35 2193.00 681.25 60 IREF -1956.30 -651.82 140 COM46 4637.62 -662.08 220 SB9 4143.00 681.25 299 SC35 2168.00 681.25 61 FR -1864.30 -651.82 140 COM44 4707.62 -662.08 221 SC9 4118.00 681.25 300 SA36 2143.00 681.25 62 CL -1778.30 -651.82 142 COM44 4707.62 -662.08 222 SA10 4093.00 681.25 302 SC36 2093.00 681.25 62 CL -1778.30 -651.82																
59 GPIO1 -2048.30 -651.82 139 COM47 4602.62 -662.08 219 SA9 4168.00 681.25 299 SC35 2168.00 681.25 60 IREF -1956.30 -651.82 140 COM46 4637.62 -662.08 220 SB9 4143.00 681.25 300 SA36 2143.00 681.25 61 FR -1864.30 -651.82 141 COM44 4707.62 -662.08 222 SA10 4093.00 681.25 301 SB36 2118.00 681.25 62 CL -1778.30 -651.82 142 COM44 4707.62 -662.08 222 SA10 4093.00 681.25 302 SC36 2093.00 681.25 63 VSS -1686.30 -651.82 144 COM43 4747.62 662.08 223 SB10 4068.00 681.25 303 SA37 2068.00 681.25 65 D/C# -1546.30 -651.82													-			
60 IREF -1956.30 -651.82 140 COM46 4637.62 -662.08 220 SB9 4143.00 681.25 300 SA36 2143.00 681.25 61 FR -1864.30 -651.82 141 COM45 4672.62 -662.08 221 SC9 4118.00 681.25 301 SB36 2118.00 681.25 62 CL -1778.30 -651.82 142 COM44 4707.62 -662.08 222 SA10 4093.00 681.25 302 SC36 2093.00 681.25 64 RES# -1616.30 -651.82 144 COM42 4777.62 -662.08 223 SB10 4068.00 681.25 303 SA37 2068.00 681.25 65 D/C# -1546.30 -651.82 146 COM41 4812.62 -662.08 225 SA11 4018.00 681.25 305 SC37 2018.00 681.25 66 CS# +1476.30 -651.82																
61 FR -1864.30 -651.82					_			-	_			-	-			
62 CL -1778.30 -651.82 142 COM44 4707.62 -662.08 222 SA10 4093.00 681.25 302 SC36 2093.00 681.25 63 VSS -1686.30 -651.82 143 COM43 4742.62 662.08 223 SB10 4068.00 681.25 303 SA37 2068.00 681.25 65 D/C# -1546.30 -651.82 144 COM42 4777.62 -662.08 224 SC10 4043.00 681.25 304 SB37 2043.00 681.25 66 CS# -1476.30 -651.82 145 COM41 4812.62 -662.08 225 SA11 4018.00 681.25 305 SC37 2018.00 681.25 66 CS# -1476.30 -651.82 146 COM40 4847.62 -662.08 226 SB11 3993.00 681.25 305 SC37 2018.00 681.25 67 VSS -1406.30 -651.82													-			_
63 VSS -1686.30 -651.82 143 COM43 474.62 -662.08 223 SB10 4068.00 681.25 303 SA37 2068.00 681.25 64 RES# -1616.30 -651.82 144 COM42 4777.62 662.08 224 SC10 4043.00 681.25 304 SB37 2043.00 681.25 66 CS# -1476.30 -651.82 146 COM40 4847.62 -662.08 226 SB11 3993.00 681.25 305 SC37 2018.00 681.25 66 CS# -1476.30 -651.82 146 COM40 4847.62 -662.08 226 SB11 3993.00 681.25 306 SA38 1993.00 681.25 67 VSS -1406.30 -651.82 147 COM39 4882.62 -662.08 227 SC11 3968.00 681.25 307 SB38 1993.00 681.25 68 BS1 -136.30 -651.82																
64 RES# -1616.30 -651.82 144 COM42 4777.62 -662.08 224 SC10 4043.00 681.25 304 SB37 2043.00 681.25 65 D/C# -1546.30 -651.82 145 COM41 4812.62 -662.08 225 SA11 4018.00 681.25 305 SC37 2018.00 681.25 66 CS# -1476.30 -651.82 146 COM40 4847.62 -662.08 226 SB11 3993.00 681.25 306 SA38 1993.00 681.25 68 BS1 -1336.30 -651.82 148 COM38 4917.62 -662.08 228 SA12 3943.00 681.25 307 SB38 1968.00 681.25 69 VDDIO -1266.30 -651.82 149 COM37 4952.62 -662.08 229 SB12 3918.00 681.25 309 SA39 1918.00 681.25 70 BS0 -1196.30 -651.82	_								-				-			
65 D/C# -1546.30 -651.82 145 COM41 4812.62 -662.08 225 SA11 4018.00 681.25 305 SC37 2018.00 681.25 66 CS# -1476.30 -651.82 146 COM40 4847.62 -662.08 226 SB11 3993.00 681.25 306 SA38 1993.00 681.25 67 VSS -1406.30 -651.82 147 COM39 4882.62 -662.08 227 SC11 3968.00 681.25 306 SA38 1993.00 681.25 68 BS1 -1336.30 -651.82 148 COM38 4917.62 -662.08 228 SA12 3943.00 681.25 309 SA38 1993.00 681.25 70 BS0 -1196.30 -651.82 150 COM36 4987.62 -662.08 230 SC12 3893.00 681.25 310 SB39 1893.00 681.25 71 VSS -1126.30 -651.82 <td></td> <td>_</td> <td></td> <td></td> <td></td>													_			
67 VSS -1406.30 -651.82 147 COM39 4882.62 -662.08 227 SC11 3968.00 681.25 307 SB38 1968.00 681.25 68 BS1 -1336.30 -651.82 148 COM38 4917.62 -662.08 228 SA12 3943.00 681.25 308 SC38 1943.00 681.25 69 VDDIO -1266.30 -651.82 149 COM37 4952.62 -662.08 229 SB12 3918.00 681.25 309 SA39 1918.00 681.25 70 BS0 -1196.30 -651.82 150 COM36 4987.62 -662.08 230 SC12 3893.00 681.25 310 SB39 1893.00 681.25 71 VSS -1126.30 -651.82 151 COM35 5022.62 -662.08 231 SA13 3868.00 681.25 311 SC39 1868.00 681.25 72 R/W# (WR# -1056.30 -651.82 152 COM34 5057.62 -662.08 232 SB13 3843.00 681.25 311 SC39 1868.00 681.25 73 E(RD#) -986.30 -651.82 153 COM33 5092.62 -662.08 232 SB13 3843.00 681.25 312 SA40 1843.00 681.25 74 VDDIO -916.30 -651.82 154 COM32 5127.62 662.08 233 SC13 3818.00 681.25 314 SC40 1793.00 681.25 75 VCI -763.30 -651.82 155 COM31 5162.62 -662.08 235 SB14 3768.00 681.25 316 SB41 1768.00 681.25 77 VPP -579.30 -651.82 155 NC COM30 5197.62 -662.08 237 SA15 3718.00 681.25 316 SB41 1743.00 681.25 77 VPP -579.30 -651.82 155 NC COM30 5197.62 -662.08 237 SA15 3718.00 681.25 316 SB41 1743.00 681.25 77 VPP -579.30 -651.82 155 VLSS 5234.62 -440.04 238 SB15 3693.00 681.25 319 SB42 1668.00 681.25 79 D0 -389.30 -651.82 159 VLSS 5234.62 -440.04 238 SB15 3693.00 681.25 319 SB42 1668.00 681.25						COM41	4812.62						-			681.25
68 BS1 -1336.30 -651.82 148 COM38 4917.62 -662.08 228 SA12 3943.00 681.25 308 SC38 1943.00 681.25 69 VDDIO -1266.30 -651.82 149 COM37 4952.62 -662.08 229 SB12 3918.00 681.25 309 SA39 1918.00 681.25 70 BSO -1196.30 -651.82 150 COM36 4987.62 -662.08 230 SC12 3893.00 681.25 310 SB39 1893.00 681.25 71 VSS -1126.30 -651.82 151 COM35 5022.62 -662.08 231 SA13 3868.00 681.25 311 SC39 1868.00 681.25 72 RW# (WR# -1056.30 -651.82 152 COM34 5057.62 -662.08 231 SA13 3868.00 681.25 311 SC39 1868.00 681.25 73 E(RD#) -986.30 -651.82									-				-			
69 VDDIO -1266.30 -651.82 149 COM37 4952.62 -662.08 229 SB12 3918.00 681.25 309 SA39 1918.00 681.25 70 BS0 -1196.30 -651.82 150 COM36 4987.62 -662.08 230 SC12 3893.00 681.25 310 SB39 1893.00 681.25 71 VSS -1126.30 -651.82 151 COM35 5022.62 -662.08 231 SA13 3868.00 681.25 311 SC39 1868.00 681.25 72 R/W# (WR# -1056.30 -651.82 152 COM34 5057.62 -662.08 231 SA13 3843.00 681.25 311 SC39 1860.00 681.25 73 E(RD#) -986.30 -651.82 153 COM33 5092.62 -662.08 233 SC13 3818.00 681.25 313 SB40 1818.00 681.25 74 VDDIO -916.30													-			
70 BS0 -1196.30 -651.82 150 COM36 4987.62 -662.08 230 SC12 3893.00 681.25 310 SB39 1893.00 681.25 71 VSS -1126.30 -651.82 151 COM35 5022.62 -662.08 231 SA13 3868.00 681.25 311 SC39 1868.00 681.25 72 RW# (WR# -1056.30 -651.82 152 COM34 5057.62 -662.08 232 SB13 3843.00 681.25 312 SA40 1843.00 681.25 74 VDDIO -916.30 -651.82 154 COM32 5127.62 -662.08 233 SC13 3818.00 681.25 313 SB40 1818.00 681.25 75 VCI -763.30 -651.82 155 COM31 5162.62 -662.08 235 SB14 3768.00 681.25 314 SC40 1793.00 681.25 76 VDD -693.30 -651.82												-				
71 VSS -1126.30 -651.82 151 COM35 502.62 -662.08 231 SA13 3868.00 681.25 311 SC39 1868.00 681.25 72 R/W# (WR# -1056.30 -651.82 152 COM34 5057.62 -662.08 232 SB13 3843.00 681.25 312 SA40 1843.00 681.25 73 E(RD#) -986.30 -651.82 153 COM33 5092.62 -662.08 233 SC13 3818.00 681.25 313 SB40 1818.00 681.25 74 VDDIO -916.30 -651.82 154 COM32 5127.62 -662.08 234 SA14 3793.00 681.25 314 SC40 1793.00 681.25 75 VCI -763.30 -651.82 155 COM31 519.62 -662.08 235 SB14 3768.00 681.25 315 SA41 1768.00 681.25 76 VDD -693.30 -651.8													-			
72 R/W# (WR# -1056.30 -651.82) 152 COM34 5057.62 -662.08 232 SB13 3843.00 681.25 312 SA40 1843.00 681.25 313 SB40 1818.00 681.25 314 SC40 1793.00 681.25 314 SC40 1793.00 681.25 315 SA41 3763.00 681.25 316 SB41 3763.00 381.25 38																
74 VDDIO -916.30 -651.82 154 COM32 5127.62 -662.08 234 SA14 3793.00 681.25 314 SC40 1793.00 681.25 75 VCI -763.30 -651.82 155 COM31 5162.62 -662.08 236 SB14 3768.00 681.25 315 SA41 1768.00 681.25 76 VDD -693.30 -651.82 156 COM30 5197.62 -662.08 236 SC14 3743.00 681.25 316 SB41 1743.00 681.25 77 VPP -579.30 -651.82 157 NC 5245.12 -662.08 237 SA15 3718.00 681.25 317 SC41 1718.00 681.25 78 VPP -509.30 -651.82 158 VLSS 5234.62 -440.04 238 SB15 3693.00 681.25 318 SA42 1693.00 681.25 79 D0 -389.30 -651.82												-			1843.00	
75 VCI -763.30 -651.82 155 COM31 5162.62 -662.08 235 SB14 3768.00 681.25 315 SA41 1768.00 681.25 76 VDD -693.30 -651.82 156 COM30 5197.62 -662.08 236 SC14 3743.00 681.25 316 SB41 1743.00 681.25 77 VPP -579.30 -651.82 157 NC 5245.12 -662.08 237 SA15 3718.00 681.25 317 SC41 1718.00 681.25 78 VPP -509.30 -651.82 158 VLSS 5234.62 -440.04 238 SB15 3693.00 681.25 318 SA42 1693.00 681.25 79 D0 -389.30 -651.82 159 VLSS 5234.62 -405.04 239 SC15 3668.00 681.25 319 SB42 1668.00 681.25		, ,														
76 VDD -693.30 -651.82 156 COM30 5197.62 -662.08 236 SC14 3743.00 681.25 316 SB41 1743.00 681.25 77 VPP -579.30 -651.82 157 NC 5245.12 -662.08 237 SA15 3718.00 681.25 317 SC41 1718.00 681.25 78 VPP -509.30 -651.82 158 VLSS 5234.62 -440.04 238 SB15 3693.00 681.25 318 SA42 1693.00 681.25 79 D0 -389.30 -651.82 159 VLSS 5234.62 -405.04 239 SC15 3668.00 681.25 319 SB42 1668.00 681.25								-				-				
77 VPP -579.30 -651.82 157 NC 5245.12 -662.08 237 SA15 3718.00 681.25 317 SC41 1718.00 681.25 78 VPP -509.30 -651.82 158 VLSS 5234.62 -440.04 238 SB15 3693.00 681.25 318 SA42 1693.00 681.25 79 D0 -389.30 -651.82 159 VLSS 5234.62 -405.04 239 SC15 3668.00 681.25 319 SB42 1668.00 681.25												-				
78 VPP -509.30 -651.82 158 VLSS 5234.62 -440.04 238 SB15 3693.00 681.25 318 SA42 1693.00 681.25 79 D0 -389.30 -651.82 159 VLSS 5234.62 -405.04 239 SC15 3668.00 681.25 319 SB42 1668.00 681.25																
79 D0 -389.30 -651.82 159 VLSS 5234.62 -405.04 239 SC15 3668.00 681.25 319 SB42 1668.00 681.25	_							-	-			-				
80 D1 -303.30 -651.82 160 COM29 5234.62 -370.04 240 SA16 3643.00 681.25 320 SC42 1643.00 681.25					_	VLSS	5234.62		_				-	SB42		681.25
	80	D1	-303.30	-651.82	160	COM29	5234.62	-370.04	240	SA16	3643.00	681.25	320	SC42	1643.00	681.25

 SSD1351
 Rev 0.10
 P 9/57
 May 2008
 Solomon Systech

Pad #	Pad Name		Y-Axis	-	Pad Name		Y-Axis	_	Pad Name		Y-Axis		Pad Name		Y-Axis
321	SA43	1618.00	681.25	401	SC69	-382.00	681.25	481	SA95	-2393.00	681.25	561	SC121	-4393.00	681.25
322	SB43	1593.00	681.25	402	SA70	-407.00	681.25	482	SB95	-2418.00	681.25	562	SA122	-4418.00	681.25
323	SC43	1568.00	681.25	403	SB70	-432.00	681.25	483	SC95	-2443.00	681.25	563	SB122	-4443.00	681.25
324	SA44	1543.00	681.25	404	SC70	-457.00	681.25	484	SA96	-2468.00	681.25	564	SC122	-4468.00	681.25
325	SB44	1518.00	681.25	405	SA71	-482.00	681.25	485	SB96	-2493.00	681.25	565	SA123	-4493.00	681.25
326	SC44	1493.00	681.25	406	SB71	-507.00	681.25	486	SC96	-2518.00	681.25	566	SB123	-4518.00	681.25
327	SA45	1468.00	681.25	407	SC71	-532.00	681.25	487	SA97	-2543.00	681.25	567	SC123	-4543.00	681.25
328	SB45	1443.00	681.25	408	SA72	-557.00	681.25	488	SB97	-2568.00	681.25	568	SA124	-4568.00	681.25
329	SC45	1418.00	681.25	409	SB72	-582.00	681.25	489	SC97	-2593.00	681.25	569	SB124	-4593.00	681.25
330	SA46	1393.00	681.25	410	SC72	-607.00	681.25	490	SA98	-2618.00	681.25	570	SC124	-4618.00	681.25
331	SB46	1368.00	681.25	411	SA73	-632.00	681.25	491	SB98	-2643.00	681.25	571	SA125	-4643.00	681.25
332	SC46	1343.00	681.25	412	SB73	-657.00	681.25	492	SC98	-2668.00	681.25	572	SB125	-4668.00	681.25
333	SA47	1318.00	681.25	413	SC73	-682.00	681.25	493	SA99	-2693.00	681.25	573	SC125	-4693.00	681.25
334	SB47	1293.00	681.25	414	SA74	-707.00	681.25	494	SB99	-2718.00	681.25	574	SA126	-4718.00	681.25
335	SC47	1268.00	681.25	415	SB74	-732.00	681.25	495	SC99	-2743.00	681.25	575	SB126	-4743.00	681.25
336	SA48	1243.00	681.25	416	SC74	-757.00	681.25	496	SA100	-2768.00	681.25	576	SC126	-4768.00	681.25
337	SB48	1218.00	681.25	417	SA75	-782.00	681.25	497	SB100	-2793.00	681.25	577	SA127	-4793.00	681.25
338	SC48	1193.00	681.25	418	SB75	-807.00	681.25	498	SC100	-2818.00	681.25	578	SB127	-4818.00	681.25
339	SA49	1168.00	681.25	419	SC75	-832.00	681.25	499	SA101	-2843.00	681.25	579	SC127	-4843.00	681.25
340	SB49	1143.00	681.25	420	SA76	-857.00	681.25	500	SB101	-2868.00	681.25	580	VLSS	-4890.00	681.25
341	SC49	1118.00	681.25	421	SB76	-882.00	681.25	501	SC101	-2893.00	681.25	581	NC	-5234.62	692.96
342	SA50	1093.00	681.25	422	SC76	-907.00	681.25	502	SA102	-2918.00	681.25	582	COM64	-5234.62	644.96
343	SB50	1068.00	681.25	423	SA77	-932.00	681.25	503	SB102	-2943.00	681.25	583	COM65	-5234.62	609.96
344	SC50	1043.00	681.25	424	SB77	-957.00	681.25	504	SC102	-2968.00	681.25	584	COM66	-5234.62	574.96
345	SA51	1018.00	681.25	425	SC77	-982.00	681.25	505	SA103	-2993.00	681.25	585	COM67	-5234.62	539.96
346	SB51	993.00	681.25	426	SA78	-1007.00	681.25	506	SB103	-3018.00	681.25	586	COM68	-5234.62	504.96
347	SC51	968.00	681.25	427	SB78	-1032.00	681.25	507	SC103	-3043.00	681.25	587	COM69	-5234.62	469.96
348	SA52	943.00	681.25	428	SC78	-1057.00	681.25	508	SA104	-3068.00	681.25	588	COM70	-5234.62	434.96
349	SB52	918.00	681.25	429	SA79	-1082.00	681.25	509	SB104	-3093.00	681.25	589	COM71	-5234.62	399.96
350	SC52	893.00	681.25	430	SB79	-1107.00	681.25	510	SC104	-3118.00	681.25	590	COM72	-5234.62	364.96
351	SA53	868.00	681.25	431	SC79	-1132.00	681.25	511	SA105	-3143.00	681.25	591	COM73	-5234.62	329.96
352	SB53	843.00	681.25	432	VCC	-1158.00	681.25	512	SB105	-3168.00	681.25	592	COM74	-5234.62	294.96
353	SC53	818.00	681.25	433	VCC	-1186.00	681.25	513	SC105	-3193.00	681.25	593	COM75	-5234.62	259.96
354	SA54	793.00	681.25	434	VCC	-1214.00	681.25	514	SA106	-3218.00	681.25	594	COM76	-5234.62	224.96
355	SB54	768.00	681.25	435	VCC	-1242.00	681.25	515	SB106	-3243.00	681.25	595	COM77	-5234.62	189.96
356	SC54	743.00	681.25	436	SA80	-1268.00	681.25	516	SC106	-3268.00	681.25	596	COM78	-5234.62	154.96
357	SA55	718.00	681.25	437	SB80	-1293.00	681.25	517	SA107	-3293.00	681.25	597	COM79	-5234.62	119.96
358	SB55	693.00	681.25	438	SC80	-1318.00	681.25	518	SB107	-3318.00	681.25	598	COM80	-5234.62	84.96
359	SC55	668.00	681.25	439	SA81	-1343.00	681.25	519	SC107	-3343.00	681.25	599	COM81	-5234.62	49.96
360	SA56	643.00	681.25	440	SB81	-1368.00	681.25	520	SA108	-3368.00	681.25	600	COM82	-5234.62	14.96
361	SB56	618.00	681.25	441	SC81	-1393.00	681.25	521	SB108	-3393.00	681.25	601	COM83	-5234.62	-20.04
362	SC56	593.00	681.25	442	SA82	-1418.00	681.25	522	SC108	-3418.00	681.25	602	COM84	-5234.62	-55.04
363	SA57	568.00	681.25	443	SB82	-1443.00	681.25	523	SA109	-3443.00	681.25	603	COM85	-5234.62	-90.04
364	SB57	543.00	681.25	444	SC82	-1468.00	681.25	524	SB109	-3468.00	681.25	604	COM86	-5234.62	-125.04
365	SC57	518.00	681.25	445	SA83	-1493.00	681.25	525	SC109	-3493.00	681.25	605	COM87	-5234.62	-160.04
366	SA58	493.00	681.25	446	SB83	-1518.00	681.25	526	SA110	-3518.00	681.25	606	COM88	-5234.62	-195.04
367	SB58	468.00	681.25	447	SC83	-1543.00	681.25	527	SB110	-3543.00	681.25	607	COM89	-5234.62	-230.04
368	SC58	443.00	681.25	448	SA84	-1568.00	681.25	528	SC110	-3568.00	681.25	608	COM90	-5234.62	-265.04
369	SA59	418.00	681.25	449	SB84	-1593.00	681.25	529	SA111	-3593.00	681.25	609	COM91	-5234.62	-300.04
370	SB59	393.00	681.25	450	SC84	-1618.00	681.25	530	SB111	-3618.00	681.25	610	COM92	-5234.62	-335.04
371	SC59	368.00	681.25	451	SA85	-1643.00	681.25	531	SC111	-3643.00	681.25	611	COM93	-5234.62	-370.04
372	SA60	343.00	681.25	452	SB85	-1668.00		532	SA112	-3668.00	681.25	612	VLSS	-5234.62	
373	SB60	318.00	681.25	453	SC85	-1693.00	681.25	533	SB112	-3693.00	681.25	613	VLSS	-5234.62	-440.04
374	SC60	293.00	681.25	454	SA86	-1718.00	681.25	534	SC112	-3718.00	681.25	010			
375	SA61	268.00	681.25	455	SB86	-1743.00	681.25	535	SA113	-3743.00	681.25				
376	SB61	243.00	681.25	456	SC86	-1768.00	681.25	536	SB113	-3768.00	681.25				
377	SC61	218.00	681.25	457	SA87	-1793.00	681.25	537	SC113	-3793.00	681.25				
378	SA62	193.00	681.25	458	SB87	-1818.00	681.25	538	SA114	-3818.00	681.25				
379	SB62	168.00	681.25	459	SC87	-1843.00	681.25	539	SB114	-3843.00	681.25				
380	SC62	143.00	681.25	460	SA88	-1868.00	681.25	540	SC114	-3868.00	681.25				
381	SA63	118.00	681.25	461	SB88	-1893.00	681.25	541	SA115	-3893.00	681.25				
382	SB63	93.00	681.25	462	SC88	-1918.00	681.25	542	SB115	-3918.00	681.25				
383	SC63	68.00	681.25	463	SA89	-1943.00	681.25	543	SC115	-3943.00	681.25				
384	SA64	43.00	681.25	464	SB89	-1968.00	681.25	544	SA116	-3968.00	681.25				
385	SB64	18.00	681.25	465	SC89	-1993.00	681.25	545	SB116	-3993.00	681.25				
386	SC64	-7.00	681.25	466	SA90	-2018.00	681.25	546	SC116	-4018.00	681.25				
387	SA65	-32.00	681.25	467	SB90	-2013.00	681.25	547	SA117	-4043.00	681.25				
388	SB65	-57.00	681.25	467	SC90	-2068.00	681.25	548	SB117	-4068.00	681.25				
389	SC65	-82.00	681.25	469	SA91	-2003.00	681.25	549	SC117	-4093.00	681.25				
390	SA66	-107.00	681.25	469	SB91	-2118.00	681.25	550	SA118	-4118.00	681.25				
-	SB66	-132.00	681.25	-	SC91	-2143.00	681.25		SB118	-4143.00	681.25				
391	SC66			471				551	SC118						
392		-157.00	681.25	472	SA92	-2168.00	681.25	552		-4168.00	681.25				
393	SA67	-182.00	681.25	473	SB92	-2193.00	681.25	553	SA119	-4193.00	681.25				
394	SB67	-207.00	681.25	474	SC92	-2218.00	681.25	554	SB119	-4218.00	681.25				
395	SC67	-232.00	681.25	475	SA93	-2243.00	681.25	555	SC119	-4243.00	681.25				
396	SA68	-257.00	681.25	476	SB93	-2268.00	681.25	556	SA120	-4268.00	681.25				
397	SB68	-282.00	681.25	477	SC93	-2293.00	681.25	557	SB120	-4293.00	681.25				
398	SC68	-307.00	681.25	478	SA94	-2318.00	681.25	558	SC120	-4318.00	681.25				
399	SA69	-332.00	681.25	479	SB94	-2343.00	681.25	559	SA121	-4343.00	681.25				
400	SB69	-357.00	681.25	480	SC94	-2368.00	681.25	560	SB121	-4368.00	681.25				

SSD1351 Solomon Systech May 2008 P 10/57 Rev 0.10

6 PIN ARRANGEMENT

6.1 SSD1351UR1 pin assignment

Figure 6-1: SSD1351UR1 Pin Assignment

SSD1351 | Rev 0.10 | P 11/57 | May 2008 | **Solomon Systech**

Table 6-1: SSD1351UR1 Pin Assignment Table

Pad#	Pad Name	Pad#	Pad Name	Pad#	Pad Name	Pad#	Pad Name
1	NC	81	COM90	161	SA116	241	SB89
2	VCC	82	COM89	162	SC115	242	SA89
3	VCOMH	83	COM88	163	SB115	243	SC88
4	VDDIO	84	COM87	164	SA115	244	SB88
5	VSL	85	COM86	165	SC114	245	SA88
6	D17	86	COM85	166	SB114	246	SC87
7	D16	87	COM84	167	SA114	247	SB87
8	D15	88	COM83	168	SC113	248	SA87
9	D14	89	COM82	169	SB113	249	SC86
10	D13	90	COM81	170	SA113	250	SB86
11	D12	91	COM80	171	SC112	251	SA86
12	D11	92	COM79	172	SB112	252	SC85
13	D10	93	COM78	173	SA112	253	SB85
14	D9	94	COM77	174	SC111	254	SA85
15	D8	95	COM76	175	SB111	255	SC84
16	D7	96	COM75	176	SA111	256	SB84
17	D6	97	COM74	177	SC110	257	SA84
18	D5	98	COM73	178	SB110	258	SC83
19	D4	99	COM72	179	SA110	259	SB83
20	D3	100	COM71	180	SC109	260	SA83
21	D2	101	COM70	181	SB109	261	SC82
22	D1	102	COM69	182	SA109	262	SB82
23	D0	103	COM68	183	SC108	263	SA82
24	E (RD#)	104	COM67	184	SB108	264	SC81
25	R/W# (WR#)	105	COM66	185	SA108	265	SB81
26	BS0	106	NC NC	186	SC107	266	SA81
27	BS1	107	NC NC	187	SB107	267	SC80
28	NC	108	NC NC	188	SA107	268	SB80
29	CS#	109	NC NO	189	SC106	269	SA80
30	D/C#	110	NC NC	190	SB106	270	SC79
31	RES#				SA106	271	SB79
32	IREF	112	NC NC	192	SC105	272	SA79
33 34	VDD NC	113	NC NC	193 194	SB105	273 274	SC78 SB78
35	NC NC	115	NC NC	195	SA105 SC104		SA78
36	VCI	116	NC NC	196	SB104	275 276	SC77
37	NC NC	117	NC NC	197	SA104	277	SB77
38	VSS	118	NC NC	198	SC103	278	SA77
39	NC NC	119	NC NC	199	SB103	279	SC76
40	NC NC	120	NC	200	SA103	280	SB76
41	NC	121	NC	201	SC102	281	SA76
42	COM129	122	NC	202	SB102	282	SC75
43	COM128	123	NC	203	SA102	283	SB75
44	COM127	124	NC	204	SC101	284	SA75
45	COM126	125	NC	205	SB101	285	SC74
46	COM125	126	SC127	206	SA101	286	SB74
47	COM124	127	SB127	207	SC100	287	SA74
48	COM123	128	SA127	208	SB100	288	SC73
49	COM122	129	SC126	209	SA100	289	SB73
50	COM121	130	SB126	210	SC99	290	SA73
51	COM120	131	SA126	211	SB99	291	SC72
52	COM119	132	SC125	212	SA99	292	SB72
53	COM118	133	SB125	213	SC98	293	SA72
54	COM117	134	SA125	214	SB98	294	SC71
55	COM116	135	SC124	215	SA98	295	SB71
56	COM115	136	SB124	216	SC97	296	SA71
57	COM114	137	SA124	217	SB97	297	SC70
58	COM113	138	SC123	218	SA97	298	SB70
59	COM112	139	SB123	219	SC96	299	SA70
60 61	COM111	140 141	SA123	220	SB96	300 301	SC69 SB69
62	COM110 COM109	141	SC122 SB122	221	SA96 SC95	301	SB69 SA69
63	COM109 COM108	143	SA122	223	SB95	303	SC68
64	COM108 COM107	144	SC121	223	SA95	303	SB68
65	COM107 COM106	145	SB121	225	SA95 SC94	305	SA68
66	COM105	146	SA121	226	SB94	306	SC67
67	COM103	147	SC120	227	SA94	307	SB67
68	COM103	148	SB120	228	SC93	308	SA67
69	COM103	149	SA120	229	SB93	309	SC66
70	COM102	150	SC119	230	SA93	310	SB66
71	COM100	151	SB119	231	SC92	311	SA66
72	COM99	152	SA119	232	SB92	312	SC65
73	COM98	153	SC118	233	SA92	313	SB65
74	COM97	154	SB118	234	SC91	314	SA65
75	COM96	155	SA118	235	SB91	315	SC64
76	COM95	156	SC117	236	SA91	316	SB64
77	COM94	157	SB117	237	SC90	317	SA64
78	COM93	158	SA117	238	SB90	318	SC63
79	COM92	159	SC116	239	SA90	319	SB63
80	COM91	160	SB116	240	SC89	320	SA63

 Solomon Systech
 May 2008
 P 12/57
 Rev 0.10
 SSD1351

Pad#	Pad Name	ì
	_	ł
321 322	SC62 SB62	ł
323	SA62	İ
324	SC61	ĺ
325	SB61	İ
326	SA61	j
327	SC60	ļ
328	SB60	
329	SA60	
330	SC59	
331 332	SB59 SA59	l
333	SC58	l
334	SB58	ĺ
335	SA58	ĺ
336	SC57	Ì
337	SB57	Į
338	SA57	ļ
339	SC56	ł
340 341	SB56	
341	SA56 SC55	l
343	SB55	i
344	SA55	ĺ
345	SC54	j
346	SB54]
347	SA54	ļ
348	SC53	ļ
349	SB53	ļ
350	SA53	ł
351 352	SC52 SB52	l
353	SA52	İ
354	SC51	
355	SB51	
356	SA51	ĺ
357	SC50	
358	SB50	
359	SA50	
360 361	SC49 SB49	l
362	SA49	ł
363	SC48	İ
364	SB48	İ
365	SA48	Ì
366	SC47]
367	SB47	Į
368	SA47	ļ
369	SC46	
370 371	SB46 SA46	
372	SC45)-
373	SB45	Г
374	SA45	ĺ
375	SC44	_
376	SB44	
377	SA44	ļ
378	SC43	ł
379 380	SB43 SA43	ŀ
381	SC42	l
382	SB42	ĺ
383	SA42	ĺ
384	SC41	j
385	SB41	
386	SA41	
387	SC40	ļ
388	SB40	ł
389 390	SA40 SC39	ł
390	SB39	l
392	SA39	ĺ
393	SC38	ĺ
394	SB38)
395	SA38]
396	SC37	Į
397	SB37	ļ
398	SA37	1
399 400	SC36	l
400	SB36	J

Pad# Pad Name 401 SA36 402 SC35 403 SB35 404 SA35 406 SB34 407 SA34 408 SC33 409 SB33 410 SA33 411 SC32 412 SB32 413 SA32 414 SC31 415 SB31 416 SA31 417 SC30 418 SB30 419 SA30 420 SC29 421 SB29 422 SA29 423 SC28 424 SB28 425 SA28 426 SC27 427 SB27 428 SA27 429 SC26 430 SB26 431 SA26 432 SC25 433 SB25		
402 SC35 403 SB35 404 SA35 406 SB34 407 SA34 408 SC33 409 SB33 410 SA33 411 SC32 412 SB32 413 SA32 414 SC31 415 SB31 416 SA31 417 SC30 418 SB30 419 SA30 420 SC29 421 SB29 422 SA29 423 SC28 424 SB28 425 SA28 426 SC27 427 SB27 428 SA27 429 SC26 430 SB26 431 SA26 432 SC25 433 SB25 434 SA25 435 SC24 <th></th> <th>1</th>		1
403 SB35 404 SA35 405 SC34 406 SB34 407 SA34 408 SC33 409 SB33 410 SA33 411 SC32 412 SB32 413 SA32 414 SC31 415 SB31 416 SA31 417 SC30 418 SB30 419 SA30 420 SC29 421 SB29 422 SA29 423 SC28 424 SB28 425 SA28 426 SC27 427 SB27 428 SA27 429 SC26 430 SB26 431 SA26 432 SC25 433 SB25 434 SA25 435 SC24 <td></td> <td>-</td>		-
404 SA35 405 SC34 406 SB34 407 SA34 408 SC33 409 SB33 410 SA33 411 SC32 412 SB32 413 SA32 414 SC31 415 SB31 416 SA31 417 SC30 418 SB30 420 SC29 421 SB29 422 SA29 423 SC28 424 SB28 425 SA28 426 SC27 427 SB27 428 SA27 429 SC26 431 SA26 431 SA26 433 SB26 431 SA25 433 SB26 431 SA25 433 SB24 437 SA24 <td></td> <td></td>		
405 SC34 406 SB34 406 SB34 407 SA34 408 SC33 409 SB33 410 SA33 411 SC32 412 SB32 413 SA32 414 SC31 415 SB31 416 SA31 417 SC30 418 SB30 419 SA30 420 SC29 421 SB29 422 SA29 422 SA29 423 SC28 424 SB28 425 SA28 426 SC27 427 SB27 428 SA27 429 SC26 430 SB26 431 SA26 432 SC25 433 SB25 434 SA25 435 SC24 436 SB24 437 SA24 438 SC23 439 SB23 440 SA23 441 SC22 442 SB22 443 SA25 435 SC24 436 SC27 427 SB27 428 SA27 429 SC26 430 SB26 430 SB26 431 SA26 432 SC25 433 SB25 434 SA25 435 SC24 436 SB24 437 SA24 438 SC23 439 SB23 440 SA23 441 SC22 444 SC21 445 SB21 446 SA21 447 SC20 448 SB20 449 SA20 450 SC19 451 SB19 452 SA18 456 SC17 457 SB17 458 SA16 466 SB14 466 SB14 467 SA18 468 SC13 469 SB15 466 SC17 457 SB17 458 SA16 466 SB14 466 SB14 466 SB14 466 SB14 466 SB15 466 SC17 457 SB17 458 SA16 466 SB14 466 SB14 466 SB14 466 SB14 466 SB15 466 SC13 469 SB13 470 SA10 477 SC10 477 SC10 477 SC10 477 SC11 477 SC11 477 SC11 477 SC11 477 SC11 477 SC11 477 SC11 477 SC11 477 SC11 477 SC11 477 SC11 477 SC11 477 SC11 477 SC11 477 SC11		
406 SB34 407 SA34 408 SC33 409 SB33 410 SA33 411 SC32 412 SB32 413 SA32 414 SC31 415 SB31 416 SA31 417 SC30 418 SB30 419 SA30 420 SC29 421 SB29 422 SA29 423 SC28 424 SB28 425 SA28 426 SC27 427 SB27 428 SA27 429 SC26 430 SB26 431 SA26 432 SC25 433 SB25 434 SA25 435 SC24 436 SB24 437 SA24 438 SC23 <td>1</td> <td></td>	1	
408 SC33 409 SB33 409 SB33 410 SA33 411 SC32 411 SC32 4112 SB32 4113 SA32 4114 SC31 415 SB31 416 SA31 417 SC30 418 SB30 419 SA30 420 SC29 421 SB29 422 SA29 421 SB29 422 SA29 422 SA29 423 SC28 426 SC27 427 SB27 428 SA27 429 SC26 430 SB26 431 SA26 431 SA26 432 SC25 433 SB25 434 SA27 429 SC26 430 SB26 431 SA26 432 SC25 433 SB25 434 SA25 435 SC24 436 SB24 437 SA24 438 SC23 439 SB23 440 SA23 441 SC21 441 SC22 442 SB22 444 SC21 445 SB21 446 SA21 447 SC20 448 SB20 449 SA20 449 SA20 449 SA20 449 SA20 449 SA20 449 SA20 449 SA20 449 SA20 440 SA23 450 SC19 451 SB19 452 SA19 455 SA18 456 SC17 457 SB17 458 SA17 458 SA17 459 SC16 460 SB16 460 SB16 461 SA16 462 SC15 463 SB15 466 SB14 466 SB14 467 SA14 468 SC13 471 SC12 472 SB12 473 SA12 474 SC11 477 SC10 477 SC10 477 SC10 477 SC11 477 SC11 477 SC11 477 SC11 477 SC11 477 SC11 477 SC11 477 SC11 477 SC11 477 SC11 477 SC11		SB34
409 SB33 410 SA33 411 SC32 412 SB32 413 SA32 414 SC31 415 SB31 416 SA31 417 SC30 418 SB30 419 SA30 420 SC29 421 SB29 422 SA29 423 SC28 424 SB28 425 SA28 426 SC27 427 SB27 428 SA27 429 SC26 430 SB26 431 SA26 432 SC25 433 SB25 434 SA25 435 SC24 436 SB24 437 SA24 438 SC23 439 SB23 440 SA23 441 SC22 <td></td> <td>SA34</td>		SA34
410 SA33 411 SC32 412 SB32 413 SA32 414 SC31 415 SB31 416 SA31 417 SC30 418 SB30 420 SC29 421 SB29 422 SA29 423 SC28 424 SB28 425 SA28 426 SC27 427 SB27 428 SA27 429 SC26 430 SB26 431 SA26 432 SC25 433 SB26 434 SA25 435 SC24 436 SB24 437 SA24 438 SC23 439 SB23 440 SA23 441 SC22 442 SB21 444 SC21 <td></td> <td></td>		
411 SC32 412 SB32 413 SA32 414 SC31 415 SB31 416 SA31 417 SC30 418 SB30 419 SA30 420 SC29 421 SB29 422 SA29 423 SC28 424 SB28 425 SA28 426 SC27 427 SB27 428 SA27 429 SC26 430 SB26 431 SA26 432 SC25 433 SB25 434 SA25 435 SC24 436 SB24 437 SA24 438 SC23 439 SB23 440 SA23 441 SC22 442 SB22 443 SA22 <td>1</td> <td>1</td>	1	1
412 SB32 413 SA32 414 SC31 415 SB31 416 SA31 417 SC30 418 SB30 419 SA30 420 SC29 421 SB29 422 SA29 423 SC28 424 SB28 425 SA28 426 SC27 427 SB27 428 SA27 429 SC26 430 SB26 431 SA26 432 SC25 433 SB25 434 SA25 435 SC24 436 SB24 437 SA24 438 SC23 440 SA23 441 SC22 442 SB22 443 SA24 438 SC23 449 SA20 <td></td> <td></td>		
413 SA32 414 SC31 415 SB31 416 SA31 417 SC30 418 SB30 419 SA30 420 SC29 421 SB29 422 SA29 423 SC28 424 SB28 425 SA28 426 SC27 427 SB27 428 SA27 429 SC26 430 SB26 431 SA26 432 SC25 433 SB25 434 SA25 435 SC24 436 SB24 437 SA24 438 SC23 439 SB23 440 SA23 441 SC21 442 SB22 443 SA22 444 SC21 445 SB21 <td></td> <td></td>		
414 SC31 415 SB31 416 SA31 417 SC30 418 SB30 419 SA30 420 SC29 421 SB29 422 SA29 423 SC28 424 SB28 425 SA28 426 SC27 427 SB27 428 SA27 429 SC26 430 SB26 431 SA26 432 SC25 433 SB25 434 SA25 435 SC24 436 SB24 437 SA24 438 SC23 439 SB23 440 SA23 441 SC22 442 SB22 443 SA22 444 SC21 445 SB21 446 SA21 <td></td> <td></td>		
416 SA31 417 SC30 418 SB30 419 SA30 420 SC29 421 SB29 422 SA29 423 SC28 424 SB28 425 SA28 426 SC27 427 SB27 428 SA27 429 SC26 430 SB26 431 SA26 432 SC25 433 SB25 434 SA25 435 SC24 436 SB24 437 SA24 438 SC23 439 SB23 440 SA23 441 SC22 442 SB22 443 SA22 444 SC21 445 SB21 446 SA21 447 SC20 448 SB20 <td></td> <td></td>		
417 SC30 418 SB30 419 SA30 420 SC29 421 SB29 422 SA29 423 SC28 424 SB28 425 SA28 426 SC27 428 SA27 429 SC26 430 SB26 431 SA26 432 SC25 433 SB25 434 SA25 435 SC24 436 SB24 437 SA24 438 SC23 439 SB23 440 SA23 441 SC22 442 SB22 443 SA24 443 SA23 440 SA23 441 SC22 442 SB22 443 SA24 443 SA22 444 SC21 <td>415</td> <td>SB31</td>	415	SB31
418 SB30 419 SA30 420 SC29 421 SB29 422 SA29 423 SC28 424 SB28 425 SA28 426 SC27 428 SA27 429 SC26 430 SB26 431 SA26 432 SC25 433 SB25 434 SA25 435 SC24 436 SB24 437 SA24 438 SC23 439 SB23 440 SA23 441 SC22 442 SB22 443 SA22 444 SC21 445 SB21 446 SA21 447 SC20 448 SB20 449 SA20 450 SC19 451 SB19 <td></td> <td>i</td>		i
419 SA30 420 SC29 421 SB29 422 SA29 423 SC28 424 SB28 425 SA28 426 SC27 427 SB27 428 SA27 429 SC26 430 SB26 431 SA26 432 SC25 433 SB25 434 SA25 435 SC24 436 SB24 437 SA24 438 SC23 439 SB23 440 SA23 441 SC22 443 SA22 444 SC21 445 SB21 446 SA21 447 SC20 448 SB20 449 SA20 450 SC19 451 SB18 452 SA19 <td></td> <td></td>		
420 SC29 421 SB29 422 SA29 423 SC28 424 SB28 425 SA28 426 SC27 427 SB27 428 SA27 429 SC26 430 SB26 431 SA26 432 SC25 433 SB25 434 SA25 435 SC24 436 SB24 437 SA24 438 SC23 439 SB23 440 SA23 441 SC22 442 SB22 443 SA22 444 SC21 445 SB21 446 SA21 447 SC20 448 SB20 449 SA20 450 SC19 451 SB19 452 SA19 <td></td> <td></td>		
421 SB29 422 SA29 423 SC28 424 SB28 425 SA28 426 SC27 427 SB27 428 SA27 429 SC26 430 SB26 431 SA26 432 SC25 433 SB25 434 SA25 435 SC24 436 SB24 437 SA24 438 SC23 439 SB23 440 SA23 441 SC22 442 SB22 443 SA22 444 SC21 445 SB21 446 SA21 447 SC20 448 SB20 449 SA20 450 SC19 451 SB19 452 SA19 453 SC18 <td></td> <td></td>		
422 SA29 423 SC28 424 SB28 425 SA28 426 SC27 427 SB27 428 SA27 429 SC26 430 SB26 431 SA26 432 SC25 433 SB25 434 SA25 435 SC24 436 SB24 437 SA24 438 SC23 439 SB23 440 SA23 441 SC22 442 SB22 443 SA22 444 SC21 445 SB21 446 SA21 447 SC20 448 SB20 449 SA20 450 SC19 451 SB19 452 SA19 453 SC18 454 SB18 <td>1</td> <td></td>	1	
423 SC28 424 SB28 425 SA28 426 SC27 427 SB27 428 SA27 429 SC26 430 SB26 431 SA26 432 SC25 433 SB25 434 SA25 435 SC24 436 SB24 437 SA24 438 SC23 439 SB23 440 SA23 441 SC22 442 SB22 443 SA22 444 SC21 445 SB21 446 SA21 447 SC20 448 SB20 449 SA20 449 SA20 450 SC19 451 SB19 452 SA18 455 SA18 456 SC17 <td></td> <td></td>		
424 SB28 425 SA28 426 SC27 427 SB27 428 SA27 429 SC26 430 SB26 431 SA26 432 SC25 433 SB25 434 SA25 435 SC24 436 SB24 437 SA24 438 SC23 439 SB23 440 SA23 441 SC22 442 SB22 443 SA22 444 SC21 445 SB21 446 SA21 447 SC20 448 SB20 449 SA20 450 SC19 451 SB19 452 SA19 453 SC18 454 SB18 455 SA18 456 SC17 <td></td> <td></td>		
426 SC27 427 SB27 428 SA27 429 SC26 430 SB26 431 SA26 432 SC25 433 SB25 434 SA25 435 SC24 436 SB24 437 SA24 438 SC23 439 SB23 440 SA23 441 SC22 442 SB22 443 SA22 444 SC21 445 SB21 446 SA21 447 SC20 448 SB20 449 SA20 450 SC19 451 SB19 452 SA19 453 SC18 454 SB18 455 SA18 456 SC17 457 SB17 458 SA17 <td>424</td> <td></td>	424	
427 SB27 428 SA27 429 SC26 430 SB26 431 SA26 432 SC25 433 SB25 434 SA25 435 SC24 436 SB24 437 SA24 438 SC23 439 SB23 440 SA23 441 SC22 442 SB22 443 SA22 444 SC21 445 SB21 446 SA21 447 SC20 448 SB20 449 SA20 450 SC19 451 SB19 452 SA19 453 SC18 454 SB18 455 SA18 456 SC17 457 SB17 458 SA17 459 SC16 <td></td> <td>SA28</td>		SA28
428 SA27 429 SC26 430 SB26 431 SA26 432 SC25 433 SB25 434 SA25 435 SC24 436 SB24 437 SA24 438 SC23 439 SB23 440 SA23 441 SC22 442 SB22 443 SA22 444 SC21 445 SB21 446 SA21 447 SC20 448 SB20 449 SA20 450 SC19 451 SB19 452 SA19 453 SC18 454 SB18 455 SA18 455 SA18 456 SC17 457 SB17 458 SA17 459 SC16 <td></td> <td></td>		
429 SC26 430 SB26 431 SA26 432 SC25 433 SB25 434 SA25 435 SC24 436 SB24 437 SA24 438 SC23 439 SB23 440 SA23 441 SC22 442 SB22 443 SA22 444 SC21 445 SB21 446 SA21 447 SC20 448 SB20 449 SA20 450 SC19 451 SB19 452 SA19 453 SC18 454 SB18 455 SA18 456 SC17 457 SB17 458 SA17 459 SC16 460 SB16 461 SA16 <td></td> <td></td>		
430 SB26 431 SA26 432 SC25 433 SB25 434 SA25 435 SC24 436 SB24 437 SA24 438 SC23 439 SB23 440 SA23 441 SC22 442 SB22 443 SA22 444 SC21 445 SB21 446 SA21 447 SC20 448 SB20 449 SA20 450 SC19 451 SB19 452 SA19 453 SC18 454 SB18 455 SA18 456 SC17 457 SB17 458 SA17 459 SC16 460 SB16 461 SA16 462 SC15 <td></td> <td></td>		
431 SA26 432 SC25 433 SB25 434 SA25 435 SC24 436 SB24 437 SA24 438 SC23 439 SB23 440 SA23 441 SC22 442 SB22 443 SA22 444 SC21 445 SB21 446 SA21 447 SC20 448 SB20 449 SA20 450 SC19 451 SB19 452 SA19 453 SC18 454 SB18 455 SA18 456 SC17 457 SB17 458 SA17 459 SC16 460 SB16 461 SA16 462 SC15 463 SB15 <td></td> <td></td>		
432 SC25 433 SB25 434 SA25 435 SC24 436 SB24 437 SA24 438 SC23 439 SB23 440 SA23 441 SC22 442 SB22 443 SA22 444 SC21 445 SB21 446 SA21 447 SC20 448 SB20 449 SA20 450 SC19 451 SB19 452 SA19 453 SC18 454 SB18 455 SA18 456 SC17 457 SB17 458 SA17 459 SC16 460 SB16 461 SA16 462 SC15 463 SB15 464 SA15 <td></td> <td></td>		
433 SB25 434 SA25 435 SC24 436 SB24 437 SA24 438 SC23 439 SB23 440 SA23 441 SC22 442 SB22 443 SA22 444 SC21 445 SB21 446 SA21 447 SC20 448 SB20 449 SA20 450 SC19 451 SB19 452 SA19 453 SC18 454 SB18 455 SA18 456 SC17 457 SB17 458 SA17 459 SC16 460 SB16 461 SA16 462 SC15 463 SB15 464 SA15 465 SC14 <td></td> <td></td>		
435 SC24 436 SB24 437 SA24 438 SC23 439 SB23 440 SA23 441 SC22 442 SB22 443 SA22 444 SC21 445 SB21 446 SA21 447 SC20 448 SB20 449 SA20 450 SC19 451 SB19 452 SA19 453 SC18 454 SB18 455 SA18 456 SC17 457 SB17 458 SA17 459 SC16 460 SB16 461 SA16 462 SC15 463 SB15 464 SA15 465 SC14 466 SB14 467 SA14 <td></td> <td></td>		
436 SB24 437 SA24 438 SC23 439 SB23 440 SA23 441 SC22 442 SB22 443 SA22 444 SC21 445 SB21 446 SA21 447 SC20 448 SB20 449 SA20 450 SC19 451 SB19 452 SA19 453 SC18 454 SB18 455 SA18 456 SC17 457 SB17 458 SA17 459 SC16 460 SB16 461 SA16 462 SC15 463 SB15 464 SA15 465 SC14 466 SB14 467 SA14 468 SC13 469 SB13 470 SA13 471 SC12 472 SB12 473 SA12 474 SC11 475 SB11 477 SC10 478 SB10 477 SC10 478 SB10 477 SC10 478 SB10 477 SC10 478 SB10	434	\$A25
437 SA24 438 SC23 439 SB23 440 SA23 441 SC22 442 SB22 443 SA22 444 SC21 445 SB21 446 SA21 447 SC20 448 SB20 449 SA20 450 SC19 451 SB19 452 SA19 453 SC18 454 SB18 455 SA18 456 SC17 457 SB17 458 SA17 459 SC16 460 SB16 461 SA16 462 SC15 463 SB15 464 SA15 465 SC14 466 SB14 467 SA14 468 SC13 470 SA13 <td>435</td> <td>SC24</td>	435	SC24
438 SC23 439 SB23 440 SA23 441 SC22 442 SB22 443 SA22 444 SC21 445 SB21 446 SA21 447 SC20 448 SB20 449 SA20 450 SC19 451 SB19 452 SA19 453 SC18 454 SB18 455 SA18 456 SC17 457 SB17 458 SA17 459 SC16 460 SB16 461 SA16 462 SC15 463 SB15 464 SA15 465 SC14 466 SB14 467 SA14 468 SC13 470 SA13 471 SC12 <td></td> <td>1</td>		1
439 SB23 440 SA23 441 SC22 442 SB22 443 SA22 444 SC21 445 SB21 446 SA21 447 SC20 448 SB20 449 SA20 450 SC19 451 SB19 452 SA19 453 SC18 454 SB18 455 SA18 456 SC17 457 SB17 458 SA17 459 SC16 460 SB16 461 SA16 462 SC15 463 SB15 464 SA15 465 SC14 466 SB14 467 SA14 468 SC13 469 SB13 470 SA13 471 SC12 <td>-</td> <td>1</td>	-	1
440 SA23 441 SC22 442 SB22 443 SA22 444 SC21 445 SB21 446 SA21 447 SC20 448 SB20 449 SA20 450 SC19 451 SB19 452 SA19 453 SC18 454 SB18 455 SA18 456 SC17 457 SB17 458 SA17 459 SC16 460 SB16 461 SA16 462 SC15 463 SB15 464 SA15 465 SC14 466 SB14 467 SA14 468 SC13 469 SB13 470 SA13 471 SC12 472 SB12 <td>1</td> <td></td>	1	
441 SC22 442 SB22 443 SA22 444 SC21 445 SB21 446 SA21 447 SC20 448 SB20 449 SA20 450 SC19 451 SB19 452 SA19 453 SC18 454 SB18 455 SA18 456 SC17 457 SB17 458 SA17 459 SC16 460 SB16 461 SA16 462 SC15 463 SB15 464 SA15 465 SC14 466 SB14 467 SA14 468 SC13 469 SB13 470 SA13 471 SC12 472 SB12 473 SA12 <td></td> <td></td>		
442 SB22 443 SA22 444 SC21 445 SB21 446 SA21 447 SC20 448 SB20 449 SA20 450 SC19 451 SB19 452 SA19 453 SC18 454 SB18 455 SA18 456 SC17 457 SB17 458 SA17 459 SC16 460 SB16 461 SA16 462 SC15 463 SB15 464 SA15 465 SC14 466 SB14 467 SA14 468 SC13 469 SB13 470 SA13 471 SC12 472 SB12 473 SA12 474 SC11 <td></td> <td></td>		
443 SA22 444 SC21 445 SB21 446 SA21 447 SC20 448 SB20 449 SA20 450 SC19 451 SB19 452 SA19 453 SC18 454 SB18 455 SA18 456 SC17 457 SB17 458 SA17 459 SC16 460 SB16 461 SA16 462 SC15 463 SB15 464 SA15 465 SC14 466 SB14 467 SA14 468 SC13 469 SB13 470 SA13 471 SC12 472 SB12 473 SA12 474 SC11 476 SA11 <td></td> <td></td>		
445 SB21 446 SA21 447 SC20 448 SB20 449 SA20 450 SC19 451 SB19 452 SA19 453 SC18 454 SB18 455 SA18 456 SC17 457 SB17 458 SA17 459 SC16 460 SB16 461 SA16 462 SC15 463 SB15 464 SA15 465 SC14 466 SB14 467 SA14 468 SC13 469 SB13 470 SA13 471 SC12 472 SB12 473 SA12 474 SC11 475 SB10 479 SA10	443	SA22
446 SA21 447 SC20 448 SB20 449 SA20 450 SC19 451 SB19 452 SA19 453 SC18 454 SB18 455 SA18 456 SC17 457 SB17 458 SA17 459 SC16 460 SB16 461 SA16 462 SC15 463 SB15 464 SA15 465 SC14 466 SB14 467 SA14 468 SC13 469 SB13 470 SA13 471 SC12 472 SB12 473 SA12 474 SC11 475 SB11 476 SA11 477 SC10 478 SB10 <td></td> <td>SC21</td>		SC21
447 SC20 448 SB20 449 SA20 450 SC19 451 SB19 452 SA19 453 SC18 454 SB18 455 SA18 456 SC17 457 SB17 458 SA17 459 SC16 460 SB16 461 SA16 462 SC15 463 SB15 464 SA15 465 SC14 466 SB14 467 SA14 468 SC13 469 SB13 470 SA13 471 SC12 472 SB12 473 SA12 474 SC11 475 SB11 476 SA11 477 SC10 478 SB10 479 SA10 <td></td> <td></td>		
448 SB20 449 SA20 450 SC19 451 SB19 452 SA19 453 SC18 454 SB18 455 SA18 456 SC17 457 SB17 458 SA17 459 SC16 460 SB16 461 SA16 462 SC15 463 SB15 464 SA15 465 SC14 466 SB14 467 SA14 468 SC13 469 SB13 470 SA13 471 SC12 472 SB12 473 SA12 474 SC11 475 SB11 476 SA11 477 SC10 478 SB10 479 SA10		
449 SA20 450 SC19 451 SB19 452 SA19 453 SC18 454 SB18 455 SA18 456 SC17 457 SB17 458 SA17 459 SC16 460 SB16 461 SA16 462 SC15 463 SB15 464 SA15 465 SC14 466 SB14 467 SA14 468 SC13 469 SB13 470 SA13 471 SC12 472 SB12 473 SA12 474 SC11 476 SA11 477 SC10 478 SB10 479 SA10		
451 SB19 452 SA19 453 SC18 454 SB18 455 SA18 456 SC17 457 SB17 458 SA17 459 SC16 460 SB16 461 SA16 462 SC15 463 SB15 464 SA15 465 SC14 466 SB14 467 SA14 468 SC13 470 SA13 471 SC12 472 SB12 473 SA12 474 SC11 475 SB11 476 SA11 477 SC10 478 SB10 479 SA10		
451 SB19 452 SA19 453 SC18 454 SB18 455 SA18 456 SC17 457 SB17 458 SA17 459 SC16 460 SB16 461 SA16 462 SC15 463 SB15 464 SA15 465 SC14 466 SB14 467 SA14 468 SC13 470 SA13 471 SC12 472 SB12 473 SA12 474 SC11 475 SB11 476 SA11 477 SC10 478 SB10 479 SA10	450	SC19
453 SC18 454 SB18 455 SA18 455 SA18 456 SC17 457 SB17 458 SA17 459 SC16 460 SB16 461 SA16 462 SC15 463 SB15 464 SA15 465 SC14 466 SB14 467 SA14 468 SC13 469 SB13 470 SA13 471 SC12 472 SB12 473 SA12 474 SC11 475 SB11 476 SA11 477 SC10 478 SB10 479 SA10		SB19
454 SB18 455 SA18 455 SA18 456 SC17 457 SB17 458 SA17 459 SC16 460 SB16 461 SA16 462 SC15 463 SB15 464 SA15 465 SC14 466 SB14 467 SA14 468 SC13 469 SB13 470 SA13 471 SC12 472 SB12 473 SA12 474 SC11 475 SB11 476 SA11 477 SC10 478 SB10 479 SA10		
455 SA18 456 SC17 457 SB17 458 SA17 458 SA17 459 SC16 460 SB16 461 SA16 462 SC15 463 SB15 464 SA15 465 SC14 466 SB14 467 SA14 468 SC13 470 SA13 471 SC12 472 SB12 473 SA12 474 SC11 475 SB11 476 SA11 477 SC10 478 SB10 479 SA10		
456 SC17 457 SB17 458 SA17 458 SA17 459 SC16 460 SB16 461 SA16 462 SC15 463 SB15 464 SA15 465 SC14 466 SB14 467 SA14 468 SC13 470 SA13 471 SC12 472 SB12 473 SA12 474 SC11 475 SB11 476 SA11 477 SC10 478 SB10 479 SA10		
457 SB17 458 SA17 459 SC16 460 SB16 460 SB16 461 SA16 462 SC15 463 SB15 464 SA15 465 SC14 466 SB14 467 SA14 468 SC13 469 SB13 470 SA13 471 SC12 472 SB12 473 SA12 474 SC11 475 SB11 476 SA11 477 SC10 477 SC10 478 SB10 479 SA10		
458 SA17 459 SC16 460 SB16 461 SA16 462 SC15 463 SB15 464 SA15 465 SC14 466 SB14 467 SA14 468 SC13 469 SB13 470 SA13 471 SC12 472 SB12 473 SA12 474 SC11 475 SB11 476 SA11 477 SC10 478 SB10 479 SA10		
459 SC16 460 SB16 461 SA16 461 SA16 462 SC15 463 SB15 464 SA15 465 SC14 466 SB14 467 SA14 468 SC13 469 SB13 470 SA13 471 SC12 472 SB12 473 SA12 474 SC11 475 SB11 476 SA11 477 SC10 478 SB10 479 SA10		
460 SB16 461 SA16 462 SC15 463 SB15 464 SA15 465 SC14 466 SB14 467 SA14 468 SC13 469 SB13 470 SA13 471 SC12 472 SB12 473 SA12 474 SC11 475 SB11 476 SA11 477 SC10 478 SB10 479 SA10		1
462 SC15 463 SB15 464 SA15 465 SC14 466 SB14 466 SB14 467 SA14 468 SC13 469 SB13 470 SA13 471 SC12 472 SB12 473 SA12 474 SC11 475 SB11 476 SA11 477 SC10 478 SB10 479 SA10		
463 SB15 464 SA15 465 SC14 466 SB14 467 SA14 468 SC13 469 SB13 470 SA13 471 SC12 472 SB12 473 SA12 474 SC11 475 SB11 476 SA11 477 SC10 478 SB10 479 SA10		
464 SA15 465 SC14 466 SB14 467 SA14 468 SC13 469 SB13 470 SA13 471 SC12 472 SB12 473 SA12 474 SC11 475 SB11 476 SA11 477 SC10 478 SB10 479 SA10		
465 SC14 466 SB14 467 SA14 468 SC13 469 SB13 470 SA13 471 SC12 472 SB12 473 SA12 474 SC11 475 SB11 476 SA11 477 SC10 478 SB10 479 SA10		
466 SB14 467 SA14 468 SC13 469 SB13 470 SA13 471 SC12 472 SB12 473 SA12 474 SC11 475 SB11 476 SA11 477 SC10 478 SB10 479 SA10		
467 SA14 468 SC13 469 SB13 470 SA13 471 SC12 472 SB12 473 SA12 474 SC11 475 SB11 476 SA11 477 SC10 478 SB10 479 SA10		
469 SB13 470 SA13 471 SC12 472 SB12 473 SA12 474 SC11 475 SB11 476 SA11 477 SC10 478 SB10 479 SA10	-	
470 SA13 471 SC12 472 SB12 473 SA12 474 SC11 475 SB11 476 SA11 477 SC10 478 SB10 479 SA10		
471 SC12 472 SB12 473 SA12 474 SC11 475 SB11 476 SA11 477 SC10 478 SB10 479 SA10		
472 SB12 473 SA12 474 SC11 475 SB11 476 SA11 477 SC10 478 SB10 479 SA10		
473 SA12 474 SC11 475 SB11 476 SA11 477 SC10 478 SB10 479 SA10		
474 SC11 475 SB11 476 SA11 477 SC10 478 SB10 479 SA10		
475 SB11 476 SA11 477 SC10 478 SB10 479 SA10		
476 SA11 477 SC10 478 SB10 479 SA10		
477 SC10 478 SB10 479 SA10		i
479 SA10		1
480 SC9	-	
	480	SC9

Pad#	Pad Name
481	SB9
482	SA9
483	SC8
484	SB8
485	SA8
486	SC7
487	SB7
488	SA7
489	SC6
490	SB6
491	SA6
492	SC5
493	SB5
494	SA5
495	SC4
496	SB4
497	SA4
498	SC3
499	SB3
500	SA3
501	SC2
502	SB2
503	SA2
504	SC1
505	SB1
506	SA1
507	SC0
508	SB0
509	SA0
510	NC NC
511	NC NC
512 513	NC NC
514	NC
515	NC
516	NC NC
517	NC
518	NC
519	NC
520	NC
521	NC
521	NC
521 522	NC NC
521 522 523	NC NC NC
521 522 523 524	NC NC NC
521 522 523 524 525	NC NC NC NC
521 522 523 524 525 526 527 528	NC NC NC NC NC NC NC NC NC NC NC NC
521 522 523 524 525 526 527 528 529	NC NC NC NC NC NC NC NC NC NC NC NC NC N
521 522 523 524 525 526 527 528 529 530	NC NC NC NC NC NC NC NC NC NC NC COM0
521 522 523 524 525 526 527 528 529 530 531	NC NC NC NC NC NC NC NC NC NC COM0 COM1
521 522 523 524 525 526 527 528 529 530 531 532	NC NC NC NC NC NC NC NC NC COM0 COM1 COM2
521 522 523 524 525 526 527 528 529 530 531 532 533	NC NC NC NC NC NC NC NC NC COM0 COM1 COM2 COM3
521 522 523 524 525 526 527 528 529 530 531 532 533 534	NC NC NC NC NC NC NC NC NC COM0 COM1 COM2 COM4
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535	NC NC NC NC NC NC NC NC NC COM0 COM1 COM2 COM3 COM4 COM5
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536	NC NC NC NC NC NC NC NC NC NC COM0 COM1 COM2 COM3 COM4 COM5 COM6
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537	NC NC NC NC NC NC NC NC NC NC NC COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538	NC NC NC NC NC NC NC NC NC NC NC COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7 COM8
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538	NC NC NC NC NC NC NC NC NC NC NC COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7 COM8
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540	NC NC NC NC NC NC NC NC NC NC NC COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540	NC NC NC NC NC NC NC NC NC NC NC NC COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10 COM10
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541	NC NC NC NC NC NC NC NC NC NC NC NC COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10 COM11
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542	NC NC NC NC NC NC NC NC NC NC NC NC NC COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10 COM11 COM12 COM12
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544	NC NC NC NC NC NC NC NC NC NC NC NC NC N
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544	NC NC NC NC NC NC NC NC NC NC NC NC NC N
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544	NC NC NC NC NC NC NC NC NC NC NC NC NC N
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545	NC NC NC NC NC NC NC NC NC NC NC NC NC N
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547	NC NC NC NC NC NC NC NC NC NC NC NC NC N
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548	NC NC NC NC NC NC NC NC NC NC NC NC NC N
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549	NC NC NC NC NC NC NC NC NC NC NC NC NC N
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550	NC NC NC NC NC NC NC NC NC NC NC NC NC N
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551	NC NC NC NC NC NC NC NC NC NC NC NC NC N
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 550	NC NC NC NC NC NC NC NC NC NC NC NC NC N
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 550 551 552 553	NC NC NC NC NC NC NC NC NC NC NC NC NC N
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556	NC NC NC NC NC NC NC NC NC NC NC NC NC N
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 550 551	NC NC NC NC NC NC NC NC NC NC NC NC NC N
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554	NC NC NC NC NC NC NC NC NC NC NC NC NC N
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559	NC NC NC NC NC NC NC NC NC NC NC NC NC N
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554	NC NC NC NC NC NC NC NC NC NC NC NC NC N

Pad#	Pad Name
561	COM31
562	COM32
563	COM33
564	COM34
565	COM35
566	COM36
567	COM37
568	COM38
569	COM39
570	COM40
571	COM41
572	COM42
573	COM43
574	COM44
575	COM45
576	COM46
577	COM47
578	COM48
579	COM49
580	COM50
581	COM51
582	COM52
583	COM53
584	COM54
585	COM55
586	COM56
587	COM57
588	COM58
589	COM59
590	COM60
591	COM61
592	COM62
593	COM63
594	NC
595	NC
1	

SSD1351 Rev 0.10 P 13/57 May 2008 **Solomon Systech**

7 PIN DESCRIPTIONS

Key:

I = Input	NC = Not Connected
O =Output	Pull LOW= connect to Ground
I/O = Bi-directional (input/output)	Pull HIGH= connect to V _{DDIO}
P = Power pin	

Table 7-1: SSD1351 Pin Description

Pin Name	Pin Type	Description
$ m V_{DD}$	P	Power supply pin for core logic operation. V_{DD} can be supplied externally (within the range of 2.4V to 2.6V) or regulated internally from V_{CI} . A capacitor should be connected between V_{DD} and V_{SS} under all circumstances.
		Refer to Section 8.10 for details.
$V_{\rm DDIO}$	P	Power supply for interface logic level. It should match with the MCU interface voltage level and must be connected to external source.
V_{CI}	P	Low voltage power supply V_{CI} must always be equal to or higher than V_{DD} and V_{DDIO} .
X7	D	Refer to Section 8.10 for details.
V_{CC}	P	Power supply for panel driving voltage. This is also the most positive power voltage supply pin. It is supplied by external high voltage source.
V_{PP}	P	Reserved pin. It must be connected to V _{DD} .
V_{SS}	P	Ground pin
V_{LSS}	P	Analog system ground pin
$V_{\rm COMH}$	P	COM signal deselected voltage level. A capacitor should be connected between this pin and $V_{\rm SS}$.
BGGND	P	It should be connected to Ground.
GPIO0	I/O	Detail refer to Command B5h
GPIO1	I/O	Detail refer to Command B5h
VSL	P	This is segment voltage reference pin. When external VSL is not used, this pin should be left open. When external VSL is used, connect with resistor and diode to ground. (details depend on application)

 Solomon Systech
 May 2008
 P 14/57
 Rev 0.10
 SSD1351

Pin Name	Pin Type	Description				
BS[1:0]	I	MCU bus interface selection pins. Select appropriate logic setting as described in the				
		following table. BS3 and BS2 are command programmable (by command ABh).				
		[reset = 00]. BS1 and BS0 are pin select.				
		Table 7-2 : Bus Interface selection				
		BS[3:0] Interface				
		XX00 4 line SPI				
		XX01 3 line SPI				
		0011 8-bit 6800 parallel				
		0010 8-bit 8080 parallel				
		0111 16-bit 6800 parallel				
		0110 16-bit 8080 parallel				
		1111 18-bit 6800 parallel				
		1110 18-bit 8080 parallel				
		Note				
		(1) 0 is connected to V _{SS}				
		$^{(2)}$ 1 is connected to $V_{\rm DDIO}$				
I_{REF}	I	This pin is the segment output current reference pin.				
*KEF	1	A resistor should be connected between this pin and V_{SS} .				
CL	I	External clock input pin.				
		4.461				
		When internal clock is enable (i.e. pull HIGH in CLS pin), this pin is not used and				
		should be connected to Ground.				
		When internal clock is disable (i.e. pull LOW is CLS pin), this pin is the external clock source input pin.				
		clock source input pin.				
CLS	I	Internal clock selection pin.				
		When this pin is pulled HIGH, internal oscillator is enabled (normal operation).				
		When this pin is pulled LOW, an external clock signal should be connected to CL.				
CS#	I	This pin is the chip select input connecting to the MCU.				
		ms pm is the chip select input conflecting to the MCO.				
		The chip is enabled for MCU communication only when CS# is pulled LOW.				
RES#	I	This pin is reset signal input.				
		When the pin is pulled LOW, initialization of the chip is executed.				
		Keep this pin pull HIGH during normal operation.				
		recep unis più pun rirett during normai operation.				
D/C#	I	This pin is Data/Command control pin connecting to the MCU.				
		When the pin is pulled HIGH, the data at D[17:0] will be interpreted as data.				
		When the pin is pulled LOW, the data at D[17:0] will be interpreted as command.				
R/W# (WR#)	I	This pin is read / write control input pin connecting to the MCU interface.				
K W # (W K#)	1	This pin is read / write control input pin connecting to the twee interface.				
		When 6800 interface mode is selected, this pin will be used as Read/Write (R/W#)				
		selection input. Read mode will be carried out when this pin is pulled HIGH and				
		write mode when LOW.				
		William 0000 to the form and the state of th				
		When 8080 interface mode is selected, this pin will be the Write (WR#) input. Data				
		write operation is initiated when this pin is pulled LOW and the chip is selected.				
		When serial interface is selected, this pin R/W (WR#) must be connected to V _{SS.}				
		, F (1.2) mass of commerce to 1.55.				
	•					

SSD1351 Rev 0.10 P 15/57 May 2008 **Solomon Systech**

Pin Name	Pin Type	Description
E (RD#)	I	This pin is MCU interface input.
		When 6800 interface mode is selected, this pin will be used as the Enable (E) signal. Read/write operation is initiated when this pin is pulled HIGH and the chip is selected.
		When 8080 interface mode is selected, this pin receives the Read (RD#) signal. Read operation is initiated when this pin is pulled LOW and the chip is selected.
		When serial interface is selected, this pin $E(RD\#)$ must be connected to V_{SS} .
D[17:0]	I/O	These pins are bi-directional data bus connecting to the MCU data bus.
		Unused pins are recommended to tie LOW. (Except for D2 pin in SPI mode)
FR	0	This pin is reserved pin. No connection is necessary and should be left open individually.
TR[4:0]	О	These are reserved pins. No connection is necessary and should be left open individually.
V_{SS1}	P	This pin is reserved pin. It should be connected to V_{SS} .
V_{CII}	P	This pin is reserved pin. No connection is necessary and should be left open individually.
SA[127:0] SB[127:0] SC[127:0]	0	These pins provide the OLED segment driving signals. These pins are V_{SS} state when display is OFF.
50[127.0]		The 384 segment pins are divided into 3 groups, SA, SB and SC. Each group can have different color settings for color A, B and C.
COM[127:0]	I/O	These pins provide the Common switch signals to the OLED panel.
	uni	These pins provide the Common switch signals to the OLED panel.

 Solomon Systech
 May 2008
 P 16/57
 Rev 0.10
 SSD1351

8 FUNCTIONAL BLOCK DESCRIPTIONS

8.1 MCU Interface

SSD1351 MCU interface consist of 18 data pin and 5 control pins. The pin assignment at different interface mode is summarized in Table 8-1. Different MCU mode can be set by hardware selection on BS[1:0] pins and software command on BS[3:0].(refer to Table 7-2 for BS[3:0] setting)

Pin Name Control Signal Data / Command Interface D17 D16 D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 Bus Interface F R/W# CS# D/C# RES# 8b / 8080 D[7:0] RD# Tie Low RES# Tie Low D[7:0] R/W# D/C# 8b / 6800 RD# 16b / 8080 D[15:0] WR# Tie Low D[15:0] R/W# D/C# 16b / 6800 18b / 8080 D[17:0] RD# WR# CS# D/C# 18b / 6800 D[17:01 R/W# CS# D/C# Tie Low SPI 4-wire SCLK Tie Low D/C# SPI 3-Wire Tie Low SDIN SCLK Tie Low Tie Low

Table 8-1: MCU interface assignment under different bus interface mode

Table 8-2: Data bus selection modes

	6800 – series Parallel Interface	8080 – series Parallel Interface	3-wire Serial Interface or 4-wire Serial Interface
Data Read	18-/16-/8-bits	18-/16-/8-bits	No
Data Write	18-/16-/8-bits	18-/16-/8-bits	8-bits
Command Read	Yes. Refer to section 9	Yes. Refer to section 9	No
Command Write	Yes	Yes	Yes

8.1.1 MCU Parallel 6800-series Interface

The parallel interface consists of 18 bi-directional data pins (D[17:0]), R/W#, D/C#, E and CS#.

A LOW in R/W# indicates WRITE operation and HIGH in R/W# indicates READ operation. A LOW in D/C# indicates COMMAND read/write and HIGH in D/C# indicates DATA read/write. The E input serves as data latch signal while CS# is LOW. Data is latched at the falling edge of E signal.

Table 8-3: Control pins of 6800 interface

Function	E	R/W#	CS#	D/C#
Write command	↓	L	L	L
Read status	\downarrow	Н	L	L
Write data	↓	L	L	Н
Read data	\downarrow	Н	L	Н

Note

In order to match the operating frequency of display RAM with that of the microprocessor, some pipeline processing is internally performed which requires the insertion of a dummy read before the first actual display data read. This is shown in Figure 8-1.

SSD1351 | Rev 0.10 | P 17/57 | May 2008 | **Solomon Systech**

^{(1) ↓} stands for falling edge of signal

⁽²⁾ H stands for HIGH in signal

⁽³⁾ L stands for LOW in signal

Figure 8-1: Data read back procedure - insertion of dummy read

8.1.2 MCU Parallel 8080-series Interface

The parallel interface consists of 18 bi-directional data pins (D[17:0]), RD#, WR#, D/C# and CS#.

A LOW in D/C# indicates COMMAND read/write and HIGH in D/C# indicates DATA read/write. A rising edge of RD# input serves as a data READ latch signal while CS# is kept LOW. A rising edge of WR# input serves as a data/command WRITE latch signal while CS# is kept LOW.

Figure 8-2: Example of Write procedure in 8080 parallel interface mode

Figure 8-3 : Example of Read procedure in 8080 parallel interface mode

 Solomon Systech
 May 2008
 P 18/57
 Rev 0.10
 SSD1351

Table 8-4: Control pins of 8080 interface

Function	RD#	WR#	CS#	D/C#
Write command	Н	↑	L	L
Read status	1	Н	L	L
Write data	Н	↑	L	Н
Read data	1	Н	L	Н

Note

(1) ↑ stands for rising edge of signal

(2) H stands for HIGH in signal

(3) L stands for LOW in signal

In order to match the operating frequency of display RAM with that of the microprocessor, some pipeline processing is internally performed which requires the insertion of a dummy read before the first actual display data read. This is shown in Figure 8-4.

Figure 8-4: Display data read back procedure - insertion of dummy read

8.1.3 MCU Serial Interface (4-wire SPI)

The 4-wire serial interface consists of serial clock: SCLK, serial data: SDIN, D/C#, CS#. In 4-wire SPI mode, R/W# (WR#) acts as SCLK, D0 acts as SDIN. For the unused data pins, D1 should be left open. The pins from D2 to D17and E can be connected to an external ground.

Table 8-5: Control pins of 4-wire Serial interface

Function	E	CS#	D/C#
Write command	Tie LOW	L	L
Write data	Tie LOW	L	Н

Note

(1) H stands for HIGH in signal

(2) L stands for LOW in signal

SDIN is shifted into an 8-bit shift register on every rising edge of SCLK in the order of D7, D6, ... D0. D/C# is sampled on every eighth clock and the data byte in the shift register is written to the Graphic Display Data RAM (GDDRAM) or command register in the same clock.

Under serial mode, only write operations are allowed.

SSD1351 | Rev 0.10 | P 19/57 | May 2008 | **Solomon Systech**

Figure 8-5: Write procedure in 4-wire Serial interface mode

8.1.4 MCU Serial Interface (3-wire SPI)

The 3-wire serial interface consists of serial clock SCLK, serial data SDIN and CS#. In 3-wire SPI mode, D0 acts as SCLK, D1 acts as SDIN. For the unused data pins, D2 should be left open. The pins from D3 to D7, R/W# (WR#), E(RD#) and D/C# can be connected to an external ground.

The operation is similar to 4-wire serial interface while D/C# pin is not used. There are altogether 9-bits will be shifted into the shift register on every ninth clock in sequence: D/C# bit, D7 to D0 bit. The D/C# bit (first bit of the sequential data) will determine the following data byte in the shift register is written to the Display Data RAM (D/C# bit = 1) or the command register (D/C# bit = 0). Under serial mode, only write operations are allowed.

Table 8-6: Control pins of 3-wire Serial interface

Function	E(RD#)	R/W #(WR #)	CS#	D/C#	D0	
Write command	Tie LOW	Tie LOW	L	Tie LOW		Note
Write data	Tie LOW	Tie LOW	L	Tie LOW	↑	(1) L stands for LOW in signal

Figure 8-6: Write procedure in 3-wire Serial interface mode

Solomon Systech May 2008 | P 20/57 | Rev 0.10 | SSD1351

8.2 **Reset Circuit**

When RES# input is pulled LOW, the chip is initialized with the following status:

- 1. Display is OFF
- 2. 128 MUX Display Mode
- 3. Normal segment and display data column address and row address mapping (SEG0 mapped to address 00h and COM0 mapped to address 00h)
- 4. Display start line is set at display RAM address 0
- 5. Column address counter is set at 0
- 6. Normal scan direction of the COM outputs
- 7. Command A2h,B1h,B3h,BBh,BEh are locked by command FDh

8.3 **GDDRAM**

GDDRAM structure 8.3.1

The GDDRAM is a bit mapped static RAM holding the pattern to be displayed. The RAM size is 128 x 128 x 18bits. For mechanical flexibility, re-mapping on both Segment and Common outputs can be selected by software. Each pixel has 18-bit data. Each sub-pixels for color A, B and C have 6 bits. The arrangement of data pixel in graphic display data RAM is shown in Table 8-7

Table 8-7: 262k Color Depth Graphic Display Data RAM Structure Normal 127 Segment Remapped 127 Address

C	olor	Α	В	C	A	В	C	A			C	A	В	C	
I	Data	A5	B5	C5	A5	B5	C5	A5		,	C5	A5	B5	C5	
/	Format	A4	B4	C4	A4	B4	C4	A4		T2.	C4	A4	B4	C4	
		A3	В3	C3	A3	В3	C3	A3		\ .\	C3	A3	В3	C3	
Common		A2	B2	C2	A2	B2	C2	A2			C2	A2	B2	C2	
Address		A1	B1	C1	A1	B1	C1	A1			C1	A1	B1	C1	
		A0	В0	C0	A0	В0	C0	A0			C0	A0	В0	C0	Common
Normal	Remapped														output
0	127	6	6	6	6	6	6	6			6	6	6	6	COM0
1	126	6	6	6	6	6	6	6			6	6	6	6	COM1
2	125	6	6	6	6	6	6	6			6	6	6	6	COM2
3	124	6	6	6	6	6	6	6			6	6	6	6	COM3
4	123	6	6	6	6	6	6	6			6	6	6	6	COM4
5	122	6	6	6	6	6	6	6			6	6	6	6	COM5
6	121	6	6	no of bi	ts in this	cell	6	6			6	6	6	6	COM6
7	120										6	6	6	6	COM7
:	:		:	:	:	:	:	:			:	:	:	:	:
:	:	:	:	:	:	:	:	:			:	:	:	:	:
:	:		:	:	:	:	:	:			:	:	:	:	:
123	4	6	6	6	6	6	6	6			6	6	6	6	:
124	3	6	6	6	6	6	6	6			6	6	6	6	COM124
125	2	6	6	6	6	6	6	6			6	6	6	6	COM125
126	1	6	6	6	6	6	6	6	1		6	6	6	6	COM126

SE	Goutput	SA0	SB0	SC0	SA1	SB1	SC1	SA2	 	SC126	SA127	SB127	SC127

SSD1351 Rev 0.10 P 21/57 May 2008 Solomon Systech

COM127

8.3.2 Data bus to RAM mapping under different input mode

Table 8-8: Write Data bus usage under different bus width and color depth mode

	Write Data										Data	bus								
Bus width	Color Depth	Input order	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D 0
8 bits/Serial	65k	1st	X	X	X	X	X	X	X	X	X	X	C ₄	C ₃	C_2	C_1	C ₀	B ₅	B4	\mathbf{B}_3
o bits/scriar	USK	2nd	X	X	X	X	X	X	X	X	X	X	B_2	B_1	B_0	A4	A ₃	A_2	A_1	A_0
		1st	X	X	X	X	X	X	X	X	X	X	X	X	C ₅	C4	C ₃	C ₂	C ₁	C ₀
8 bits/Serial	262k	2nd	X	X	X	X	X	X	X	X	X	X	X	X	B ₅	B4	\mathbf{B}_3	B_2	B_1	\mathbf{B}_0
		3rd	X	X	X	X	X	X	X	X	X	X	X	X	A5	A4	A3	A_2	A_1	A_0
16 bits	65k		X	X	C4	C ₃	C ₂	C ₁	C ₀	B 5	B4	B ₃	B_2	B ₁	B_0	A4	A ₃	A ₂	A_1	A_0
16 bits	262k	1st	X	X	X	X	X	X	X	X	X	X	X	X	C ₅	C4	C ₃	C_2	C ₁	C ₀
10 5113	format 1	2nd	X	X	X	X	\mathbf{B}_5	B_4	\mathbf{B}_3	B_2	B_1	B_0	X	X	A_5	A_4	A_3	A_2	A_1	A_0
		1st	X	X	X	X	C15	C14	C1 ₃	C1 ₂	C1 ₁	C10	X	X	B15	B14	B13	B12	B1 ₁	B10
16 bits	262k format 2	2nd	X	X	X	X	A15	A14	A13	A 12	A1 ₁	A10	X	X	C25	C24	C2 ₃	C22	C2 ₁	C20
		3rd	X	X	X	X	B25	B24	B2 ₃	B2 ₂	B2 ₁	B20	X	X	A25	A24	A23	A22	A21	A20
18 bits	262k		C ₅	C ₄	C ₃	C ₂	C ₁	C ₀	B ₅	B ₄	B ₃	\mathbf{B}_2	B ₁	B ₀	A5	A4	A ₃	A_2	A_1	A_0

Table 8-9: Read Data bus usage under different bus width and color depth mode

	Read Data										Data	bus								
Bus width	Color Depth	Input order	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
8 bits	65k	1st	X	X	X	X	X	X	X	X	X	X	C4	C ₃	C ₂	C ₁	C ₀	\mathbf{B}_5	B ₄	B ₃
o bits	ODK	2nd	X	X	X	X	X	X	X	X	X	X	\mathbf{B}_2	\mathbf{B}_1	B_0	A4	A ₃	A_2	A_1	A_0
		1st	X	X	X	X	X	X	X	X	X	X	X	X	C5	C4	C ₃	C ₂	Cı	C ₀
8 bits	262k	2nd	X	X	X	X	X	X	X	X	X	X	X	X	B ₅	B4	B ₃	\mathbf{B}_2	\mathbf{B}_1	B_0
		3rd	X	X	X	X	X	X	X	X	X	X	X	X	A5	A4	A3	A_2	A_1	A_0
16 bits	65k		X	X	C ₄	C ₃	C ₂	C ₁	C ₀	B ₅	B4	B ₃	B_2	\mathbf{B}_{1}	B_0	A4	A3	A_2	A_1	A_0
16 bits	262k	1st	X	X	X	X	X	X	X	X	X	X	X	X	C5	C4	C ₃	C ₂	Cı	C ₀
10 0113	format 1	2nd	X	X	X	X	\mathbf{B}_5	B4	B ₃	\mathbf{B}_2	B_1	\mathbf{B}_0	X	X	A5	A4	A3	A_2	A_1	A_0
		1st	X	X	X	X	C15	C14	C1 ₃	C1 ₂	C1 ₁	C1 ₀	X	X	B15	B14	B13	B12	B1 ₁	B10
16 bits	262k format 2	2nd	X	X	X	X	A15	A14	A13	A12	A1 ₁	A 10	X	X	C25	C24	C2 ₃	C2 ₂	C2 ₁	C20
		3rd	X	X	X	X	B25	B24	B2 ₃	B22	B2 ₁	B20	X	X	A25	A24	A23	A22	A21	A20
18 bits	262k	·	C ₅	C ₄	C ₃	C_2	Cı	C_0	B_5	B ₄	B_3	B_2	B_1	B_0	A ₅	A_4	A ₃	A_2	A_1	A_0

 Solomon Systech
 May 2008
 P 22/57
 Rev 0.10
 SSD1351

8.4 Command Decoder

This module determines whether the input should be interpreted as data or command based upon the input of the D/C# pin.

If D/C# pin is HIGH, data is written to Graphic Display Data RAM (GDDRAM). If it is LOW, the inputs at D0-D17 are interpreted as a Command and it will be decoded and be written to the corresponding command register.

8.5 Oscillator & Timing Generator

8.5.1 Oscillator

Figure 8-7: Oscillator Circuit

This module is an On-Chip low power RC oscillator circuitry (Figure 8-7). The operation clock (CLK) can be generated either from internal oscillator or external source CL pin by CLS pin. If CLS pin is HIGH, internal oscillator is selected. If CLS pin is LOW, external clock from CL pin will be used for CLK. The frequency of internal oscillator F_{OSC} can be programmed by command B3h.

The display clock (DCLK) for the Display Timing Generator is derived from CLK. The division factor "D" can be programmed from 1 to 16 by command B3h.

$$DCLK = F_{OSC} / D$$

The frame frequency of display is determined by the following formula:

$$F_{FRM} = \frac{F_{osc}}{D \times K \times No. \text{ of Mux}}$$

where

- D stands for clock divide ratio. It is set by command B3h A[3:0]. The divide ratio has the range from 1 to 1024.
- K is the number of display clocks per row. The value is derived by

K = Phase 1 period + Phase 2 period + X

X = DCLKs in current drive period. Default X = 134

Default K is 5 + 8 + 134 = 147

- Number of multiplex ratio is set by command CAh. The reset value is 127 (i.e. 128MUX).
- F_{osc} is the oscillator frequency. It can be changed by command B3h A[7:4]. The higher the register setting results in higher frequency.

If the frame frequency is set too low, flickering may occur. On the other hand, higher frame frequency leads to higher power consumption on the whole system.

SSD1351 | Rev 0.10 | P 23/57 | May 2008 | **Solomon Systech**

8.6 SEG/COM Driving block

This block is used to derive the incoming power sources into the different levels of internal use voltage and current.

- V_{CC} is the most positive voltage supply.
- V_{COMH} is the Common deselected level. It is internally regulated.
- V_{LSS} is the ground path of the analog and panel current.
- I_{REF} is a reference current for segment current drivers I_{SEG}. The relationship between reference current and segment current of a color is:

```
I_{SEG} = Contrast / 256 * I_{REF} * scale factor
```

in which

the contrast is set by Set Contrast command (C1h); and the scale factor (1 ~ 16) is set by Master Current Control command (C7h).

A resistor should be connected between I_{REF} pin and V_{SS} pin.

For example, in order to achieve $I_{SEG} = 200 uA$ at maximum contrast 255, I_{REF} is set to around 12.5uA. This current value is obtained by connecting an appropriate resistor from I_{REF} pin to V_{SS} as shown in Figure 8-8.

Figure 8-8: I_{REF} Current Setting by Resistor Value

Since the voltage at I_{REF} pin is $V_{CC}-6V$, the value of resistor R1 can be found as below:

For $I_{REF} = 12.5uA$, $V_{CC} = 18V$:

$$\begin{split} R1 &= (Voltage~at~I_{REF} - V_{SS}) ~/~I_{REF} \\ &\approx (18-6) ~/~12.5 uA \\ &\approx ~1 M \Omega \end{split}$$

 Solomon Systech
 May 2008
 P 24/57
 Rev 0.10
 SSD1351

8.7 SEG / COM Driver

Segment drivers consist of 384 (128 x 3 colors) current sources to drive OLED panel. The driving current can be adjusted from 0 to 200uA with 256 steps by contrast setting command (C1h). Common drivers generate scanning voltage pulse. The block diagrams and waveforms of the segment and common driver are shown as follow.

Figure 8-9: Segment and Common Driver Block Diagram

The commons are scanned sequentially, row by row. If a row is not selected, all the pixels on the row are in reverse bias by driving those commons to voltage V_{COMH} as shown in Figure 8-10.

In the scanned row, the pixels on the row will be turned ON or OFF by sending the corresponding data signal to the segment pins. If the pixel is turned OFF, the segment current is disabled and the Reset switch is enabled. On the other hand, the segment drives to I_{SEG} when the pixel is turned ON.

SSD1351 | Rev 0.10 | P 25/57 | May 2008 | **Solomon Systech**

Figure 8-10: Segment and Common Driver Signal Waveform

There are four phases to driving an OLED a pixel. In phase 1, the pixel is reset by the segment driver to V_{LSS} in order to discharge the previous data charge stored in the parasitic capacitance along the segment electrode. The period of phase 1 can be programmed by command B1h A[3:0]. An OLED panel with larger capacitance requires a longer period for discharging.

Solomon Systech May 2008 | P 26/57 | Rev 0.10 | SSD1351

In phase 2, first pre-charge is performed. The pixel is driven to attain the corresponding voltage level V_P from V_{LSS} . The amplitude of V_P can be programmed by the command BBh. The period of phase 2 can be programmed by command B1h A[7:4]. If the capacitance value of the pixel of OLED panel is larger, a longer period is required to charge up the capacitor to reach the desired voltage.

In phase 3, the OLED pixel is driven to the targeted driving voltage through second pre-charge. The second pre-charge can control the speed of the charging process. The period of phase 3 can be programmed by command B6h.

Last phase (phase 4) is current drive stage. The current source in the segment driver delivers constant current to the pixel. The driver IC employs PWM (Pulse Width Modulation) method to control the gray scale of each pixel individually. The gray scale can be programmed into different Gamma settings by command B8h/B9h. The bigger gamma setting in the current drive stage results in brighter pixels and vice versa (Details refer to Section 8.8). This is shown in the following figure.

Figure 8-11: Gray Scale Control in Segment

After finishing phase 4, the driver IC will go back to phase 1 to display the next row image data. This four-step cycle is run continuously to refresh image display on OLED panel.

The length of phase 4 is defined by command B8h "Look Up Table for Gray Scale Pulse width" or B9h "Use Built-in Linear LUT". In the table, the gray scale is defined in incremental way, with reference to the length of previous table entry.

8.8 Gray Scale Decoder

The gray scale effect is generated by controlling the segment current in current drive phase. The segment current is controlled by the Gamma Settings (Setting $0\sim$ Setting 180) through command B8h. The larger the setting, the brighter the pixel will be. The Gray Scale Table stores the corresponding Gamma Setting of the 64 gray scale levels (GS0~GS63) through the software commands B8h or B9h. Three programmable Gray Scale Tables (Gamma Look Up table) support the three colors A, B and C.

As shown in Figure 8-12, color A, B, C sub-pixel RAM data has 6 bits, represent the 64 gray scale level from GS0 to GS63.

Figure 8-12 : Relation between GDDRAM content and Gray Scale table entry for three colors in 262K color mode (under command B9h Use Built-in Linear LUT)

Color A, B or C	Gray Scale Table	Default Gamma Setting
GDDRAM data (6 bits)		(Command B9h Linear Gamma Look Up Table)
000000	GS0	Setting 0
000001	GS1	Setting 0
000010	GS2	Setting 2
000011	GS3	Setting 4
000100	GS4	Setting 6
:		
111101	GS61	Setting 120
111110	GS62	Setting 122
111111	GS63	Setting 124

In command B8h, there are total 180 Gamma Settings (Setting 0 to Setting 180) available for the Gray Scale table. GS0 has no pre-charge and current drive stages so it is in Gamma Setting 0. GS1 can be set as only pre-charge but no current drive stage by input Gamma Setting 0.

When setting the Gray Scale Table (by B8h command), the rules below must follow:

- 1) All Gamma Settings (i.e. GS1, GS2, GS3,.....GS63) are entered after command B8h.
- 2) The gray scale is defined in incremental way, with reference to the length of previous table entry:

Setting of GS1 has to be >= 0Setting of GS2 has to be > Setting of GS1 +1 Setting of GS3 has to be > Setting of GS2 +1

Setting of GS63 has to be > Setting of GS62 +1

 Solomon Systech
 May 2008
 P 28/57
 Rev 0.10
 SSD1351

Power ON and OFF sequence

The following figures illustrate the recommended power ON and power OFF sequence of SSD1351 (assume V_{CI} and V_{DDIO} are at the same voltage level and internal V_{DD} is used).

Power ON sequence:

- 1. Power ON V_{CI} , V_{DDIO} .
- 2. After V_{CI} , V_{DDIO} become stable, set wait time at least 1ms (t_0) for internal V_{DD} become stable. Then set RES# pin LOW (logic low) for at least 2us (t₁) ⁽⁴⁾ and then HIGH (logic high).
- 3. After set RES# pin LOW (logic low), wait for at least 2us (t_2). Then Power ON V_{CC} .
- 4. After V_{CC} become stable, send command AFh for display ON. SEG/COM will be ON after 200ms $(t_{AF}).$

Figure 8-13: The Power ON sequence.

Power OFF sequence:

- Send command AEh for display OFF.
 Power OFF V_{CC}. (1), (2)
- 3. Wait for t_{OFF} . Power OFF V_{CI} , V_{DDIO} (where Minimum t_{OFF} =0ms ⁽³⁾, Typical t_{OFF} =100ms)

Figure 8-14: The Power OFF sequence

Note:

 $^{(1)}$ Since an ESD protection circuit is connected between V_{CI} , V_{DDIO} and V_{CC} , V_{CC} becomes lower than V_{CI} whenever V_{CI} , V_{DDIO} is ON and V_{CC} is OFF as shown in the dotted line of V_{CC} in Figure 8-13 and Figure 8-14.

(2) V_{CC} should be kept float (disable) when it is OFF.

 $^{(3)}$ V_{CI} , V_{DDIO} should not be Power OFF before V_{CC} Power OFF.

⁽⁴⁾ The register values are reset after t_1 .

⁽⁵⁾ Power pins (V_{DD}, V_{CC}) can never be pulled to ground under any circumstance.

SSD1351 Rev 0.10 P 29/57 May 2008 Solomon Systech

8.10 V_{DD} Regulator

In SSD1351, the power supply pin for core logic operation: V_{DD} , can be supplied by external source or internally regulated through the V_{DD} regulator.

When the command ABh, bit A[0] is set to 1b, the internal V_{DD} regulator is enabled. V_{CI} should be larger than 2.6V when using the internal V_{DD} regulator. The typical regulated V_{DD} is about 2.5V

When the command ABh, bit A[0] is set to 0b, external V_{DD} should be used. (external V_{DD} range : 2.4V~2.6V)

It should be notice that, no matter V_{DD} is supplied by external source or internally regulated, V_{CI} must always be equal or higher than V_{DD} and V_{DDIO} .

The following figure shows the V_{DD} regulator pin connection scheme:

Figure 8-15 $V_{CI} > 2.6V$, V_{DD} regulator enable : pin connection scheme

Figure 8-16 V_{DD} regulator disable: pin connection scheme

Solomon Systech May 2008 | P 30/57 | Rev 0.10 | SSD1351

8.10.1 V_{DD} Regulator in Sleep Mode

Power can be saved by disable the internal V_{DD} regulator during Sleep mode. The following figures show the corresponding command sequence:

Figure 8-17: Case 1 - Command sequence for just entering/ exiting sleep mode

Command for entering sleep mode : AEh (Sleep In)

Sleep mode

Command for exiting sleep mode : AFh (Sleep Out)

Figure 8-18: Case 2 - Command sequence for disabling internal VDD regulator during sleep mode

Command for entering sleep mode : AEh (Sleep In)

Command for disable internal V_{DD} regulator: ABh, bit A[0] is set to 0b

Sleep mode

Command for enable internal V_{DD} regulator $^{(1)}$: ABh, bit A[0] is set to 1b

Wait at least 1ms for V_{DD} becomes stable

Command for exiting sleep mode : AFh (Sleep Out)

In the above two cases, the RAM content can also be kept during the sleep mode.

Note:

 $^{(1)}$ It should be noted that the internal V_{DD} regulator should be enabled before exiting sleep mode (issuing command AFh).

 $^{(2)}$ No RAM access through MCU interface when there is no external/ internal $V_{\text{DD}}.$

9 COMMAND

9.1 Basic Command List

Table 9-1: Command table

(D/C# = 0, R/W#(WR#) = 0, E(RD#) = 1) unless specific setting is stated Single byte command (D/C# = 0), Multiple byte command (D/C# = 0) for first byte, D/C# = 1 for other bytes)

	mental (57, 11	-0111	, i.v. t	,,	John Marie (D) CII	= 0 for first byte, D/C# = 1 for other bytes)
D /C#	Hex	D7	1			D3	D2	D2	D0	Command	Description
0 1 1	15 A[6:0] B[6:0]	0 *	0 A ₆ B ₆	0 A ₅ B ₅	1 A ₄	0 A ₃	1 A ₂ B ₂	0 A ₁ B ₁	1 A ₀ B ₀	Set Column	A[6:0]: Start Address. [reset=0] B[6:0]: End Address. [reset=127] Range from 0 to 127
0 1 1 1 0	75 A[6:0] B[6:0]	0 * *	1 A ₆ B ₆	1 A ₅ B ₅	1 A ₄ B ₄	0 A ₃ B ₃	1 A ₂ B ₂	0 A ₁ B ₁	1 A ₀ B ₀	Set Row Address	A[6:0]: Start Address. [reset=0] B[6:0]: End Address. [reset=127] Range from 0 to 127 Enable MCU to write Data into RAM
0	5D	0	1	0	1	1	1	0	1	Command Read RAM Command	Enable MCU to read Data from RAM
0	A0 A[7:0]	1 A ₇	0 A ₆	1 A ₅	0 A ₄	0 A ₃	0 A ₂	0 A ₁	0 A ₀	40	A[0]=0b, Horizontal address increment [reset] A[0]=1b, Vertical address increment A[1]=0b, Column address 0 is mapped to SEG0 [reset]
4								5	O	Set Re-map / Color	A[1]=1b, Column address 127 is mapped to SEG0 A[2]=0b, Color sequence: $A \rightarrow B \rightarrow C$ [reset] A[2]=1b, Color sequence is swapped: $C \rightarrow B \rightarrow A$ A[3]=0b, Reserved A[3]=1b, Reserved
										RAM to Panel)	A[4]=0b, Scan from COM0 to COM[N -1] [reset] A[4]=1b, Scan from COM[N-1] to COM0. Where N is the Multiplex ratio. A[5]=0b, Disable COM Split Odd Even [reset] A[5]=1b, Enable COM Split Odd Even A[7:6] Set Color Depth, 00b 256 color 01b 65K color, [reset] 10b 262k color, 8/18-bit,16 bit (1st option) MCU interface 11b 262k color, 16 - bit MCU interface (2nd option) Refer to section for 8.3.2 details.

 Solomon Systech
 May 2008
 P 32/57
 Rev 0.10
 SSD1351

Funda	mental (Com	man	d Ta	ble						
D/C#	Hex	D7	D6	D5	D4	D3	D2	D2	D0	Command	Description
0	A1	1	0	1	0	0	0	0	1		Set vertical scroll by RAM from 0~127. [reset=00h]
1	A[7:0]	*	A_6	A_5			A_2	A_1	A_0	Set Display Start Line	, i i
0	A2	1	0	1	0	0	0	1	0		Set vertical scroll by Row from 0-127. [reset=60h]
1	A[7:0]	*	A_6	A ₅	A_4	A_3	A_2	A_1	A_0	Set Display Offset	Note (1) This command is locked by Command FDh by default. To unlock it, please refer to Command FDh.
0	A4~A7	1	0	1	0	0	1	X ₁	X ₀	Set Display	A4h: All OFF A5h: All ON (All pixels have GS63) A6h: Reset to normal display [reset] A7h: Inverse Display (GS0 -> GS63, GS1 -> GS62,)
0 1	AB A[0]	1 A ₇	0 A ₆	1 0	0 0	1 0	0 0	1 0	1 A ₀	Function Selection	A[0]=0b, Select external V_{DD} A[0]=1b, Enable internal V_{DD} regulator [reset] A[7:6]=00b, Select 8-bit parallel interface [reset] A[7:6]=01b, Select 16-bit parallel interface A[7:6]=11b, Select 18-bit parallel interface
0	AD	1	0	1	0	1	1	0	1	NOP	Command for no operation.
0	AE~AF	1	0	1	0	1	1	1	X_0	Set Sleep mode ON/OFF	AEh = Sleep mode On (Display OFF) AFh = Sleep mode OFF (Display ON)
0	В0	1	0	1	1	0	0	0	0	NOP	Command for no operation.
0 1	B1 A[7:0]	1 A ₇	0 A ₆	1 A ₅	1 A ₄	0 A ₃	0 A ₂	0 A ₁	1 A ₀		A[3:0] Phase 1 period of 5~31 DCLK(s) clocks [reset=0010b] A[3:0]: 0-1 invalid 2 = 5 DCLKs 3 = 7 DCLKs : 15 =31DCLKs A[7:4] Phase 2 period of 3~15 DCLK(s) clocks [reset=1000b] A[7:4]: 0-2 invalid 3 = 3 DCLKs 4 = 4 DCLKs : 15 =15DCLKs Note (1) 0 DCLK is invalid in phase 1 & phase 2 (2) This command is locked by Command FDh by default. To unlock it, please refer to Command FDh.

SSD1351 Rev 0.10 P 33/57 May 2008 **Solomon Systech**

Funda	mental (Com	man	d Ta	ble						
D /C#	Hex	D7	D6	D5	D4	D3	D2	D2	D 0	Command	Description
0	B3	1	0	1	1	0	0	1	1	0022222	A[3:0] [reset=0001], divide by DIVSET where
1	A[7:0]	A_7		_		_		_	A_0		rigs.of [reset=0001], divide by D1 VBL1 where
1	A[7.0]	A 7	A_6	A_5	A_4	A_3	A_2	\mathbf{A}_1	A_0		A[3:0] DIVSET
											0000 divide by 1
											0001 divide by 2
											0010 divide by 4
											0011 divide by 8
											0100 divide by 16
											0101 divide by 32
										Front Clock	0110 divide by 64
										Divider	0111 divide by 128
										(DivSet)/	1000 divide by 256
										Oscillator	1001 divide by 512
										Frequency	1010 divide by 1024
											>=1011 invalid
											A[7:4] Oscillator frequency, frequency increases as level
											increases [reset=1101b]
											Note
										Jan Jan	(1) This command is locked by Command FDh by default. To
											unlock it, please refer to Command FDh.
									\mathcal{I}_{I}		difficultity produce refer to communic 1 2 in
0	B4	1	0	1	1	0	1	0	0		A[3:0] sets the VSL voltage as follow:
1	A[7:0]	1	0	1	0	0	0	A_1	A_0	40	10013
1	B[7:0]	1	0	1	1	0	1	0	1		A[1:0]=00 External VSL [reset]
		_				_				Set Segment	A[1:0]=10 Internal VSL (kept VSL pin NC)
1	C[7:0]	0	1	0	1	0	1	0	1	Low Voltage	
										(VSL)	Note
											(1) When external VSL is enabled, in order to avoid distortion
											in display pattern, an external circuit is needed to connect
								\supset			between VSL and V_{SS} as shown in Figure 14-1.
						20					
0	В5	1	0	1	1	0	1	0	1		A[1:0] GPIO0: 00 pin HiZ, Input disabled
1	A[3:0]	*	*	*	*	A_3	A_2	A_1	A_0		01 pin HiZ, Input enabled
_	11[0.0]					3	112	1-1	0		10 pin output LOW [reset]
											11 pin output HIGH
										Set GPIO	A12 21 CD101 00 1 H177 I 4 11 11 1
											A[3:2] GPIO1: 00 pin HiZ, Input disabled 01 pin HiZ, Input enabled
											10 pin output LOW [reset]
											11 pin output HIGH
											11 pm output 111011
0	В6	1	0	1	1	0	1	0	0		A[3:0] Set Second Pre-charge Period
1	A[3:0]	*	*	*	*	A_3	A_2	A_1	A_0		_
1	11[3.0]					113	1.12	**1	- - U		0000b invalid
											0001b 1 DCLKS
										Set Second Pre-	0010b 2 DCLKS
										charge Period	
											1000 8 DCLKS [reset]
											 1111
											1111 13 DCLKS
i											

 Solomon Systech
 May 2008
 P 34/57
 Rev 0.10
 SSD1351

Funda	mental (Com	man	d Ta	ble						
D /C#	Hex	D7	D6	D5	D4	D3	D2	D2	D 0	Command	Description
0 1 1 1 1 1 1 1 1 1	B8 A1[7:0] A2[7:0]	A2 ₇	A2 ₆	A2 ₅	A2 ₄	A2 ₃	A2 ₂	A2 ₁	A2 ₀	Look Up Table for Gray Scale Pulse width	The next 63 data bytes define Gray Scale (GS) Table by setting the gray scale pulse width in unit of DCLK's (ranges from 0d ~ 180d) A1[7:0]: Gamma Setting for GS1, A2[7:0]: Gamma Setting for GS2, : A62[7:0]: Gamma Setting for GS63 Note (1) 0 ≤ Setting of GS1 < Setting of GS63 Note (2) GS0 has only pre-charge but no current drive stages. (3) GS1 can be set as only pre-charge but no current drive stage by input gamma setting for GS1 equals 0. (4) Refer to section 8.8 for details
0	В9	1	0	1	1	1	0	0		Use Built-in Linear LUT [reset= linear]	Reset to default Look Up Table: GS1 = 0 DCLK GS2 = 2 DCLK GS3 = 4 DCLK GS4 = 6 DCLK GS62 = 122 DCLK GS63 = 124 DCLK Wote (1) Refer to section 8.8 for details
0 1	BB A[4:0]	1 0	0 0	1 0	1 A ₄	1 A ₃	0 A ₂	1 A ₁	1 A ₀	Set Pre-charge voltage	Set pre-charge voltage level.[reset = 17h]
0 1	BE A[6:0]	1 0	0 0	1 0	1 0	1 0	1 A ₂	1 A ₁	0 A ₀	Set V _{COMH} Voltage	Set COM deselect voltage level [reset = 05h]

SSD1351 Rev 0.10 P 35/57 May 2008 **Solomon Systech**

Funda	mental (Com	man	d Ta	ble						
D /C#	Hex	D7	D6	D5	D4	D3	D2	D2	D0	Command	Description
0	C1	1	1	0	0	0	0	0	1		A[7:0] Contrast Value Color A [reset=10001010b]
1	A[7:0]	A_7				-		A_1	A_0	Set Contrast	B[7:0] Contrast Value Color B [reset=01010001b] C[7:0] Contrast Value Color C [reset=10001010b]
1 1	B[7:0] C[7:0]	B ₇ C ₇		B_5 C_5	\mathbf{B}_4 \mathbf{C}_4	B_3 C_3	$egin{array}{c} B_2 \\ C_2 \end{array}$	\mathbf{B}_1 \mathbf{C}_1	\mathbf{B}_0 \mathbf{C}_0	Current for Color A,B,C	
1	C[7.0]	C ₇	C_6	C ₅	C_4	C ₃	C_2	C_1	C_0	, , , , , , , , , , , , , , , , , , , ,	
0	C7	1	1	0	0	0	1	1	1		A[3:0]:
1	A[3:0]	*	*	*	*	A_3	A_2	A_1	A_0		0000b reduce output currents for all colors to 1/16 0001b reduce output currents for all colors to 2/16
										Master Contrast Current Control	1110b reduce output currents for all colors to 15/16 1111b no change [reset = 1111b]
0	CA	1	1	0	0	1	0	1	0		A[6:0] MUX ratio 16MUX ~ 128MUX, [reset=127],
1	A[6:0]	0	A_6	A_5	A_4	A_3	A_2	A_1	A_0	Set MUX Ratio	(Range from 15 to 127)
0	D1	1	0	1	0	1	1	0	1	NOP	Command for No Operation
0	E3	1	1	1	0	0	0	1	1	NOP	Command for No Operation
0	FD	1	1	1	1	1	1	0	1		A[7:0]: MCU protection status [reset = 12h]
1	A[7:0]	A_7	A_6	A_5	A_4	A_3	A_2	A_1	A_0	70	A[7:0] = 12b, Unlock OLED driver IC MCU interface from entering command [reset]
							7	5	0		A[7:0] = 16b, Lock OLED driver IC MCU interface from entering command
				1	34					Set Command Lock	A[7:0] = B0b, Command A2,B1,B3,BB,BE inaccessible in both lock and unlock state [reset] A[7:0] = B1b, Command A2,B1,B3,BB,BE accessible if in unlock state
											Note (1) The locked OLED driver IC MCU interface prohibits all commands and memory access except the FDh command.

 Solomon Systech
 May 2008
 P 36/57
 Rev 0.10
 SSD1351

Table 9-2: Graphic acceleration command

Set (GAC) (D/C# = 0, R/W#(WR#)= 0, E(RD#) = 1) unless specific setting is stated Single byte command (D/C# = 0), Multiple byte command (D/C# = 0 for first byte, D/C# = 1 for other bytes)

Grap	hic acc	ele	rati	on	con	nm	and	l			
D /C#	Hex	D7	D6	D5	D4	D3	D2	D2	D0	Command	Description
1 1 1	96 A[7:0] B[6:0] C[7:0] D[6:0] E[1:0]	* C ₇ *	\mathbf{B}_6 \mathbf{C}_6 \mathbf{D}_6	A ₅ B ₅ C ₅ D ₅	$\begin{matrix} A_4 \\ B_4 \\ C_4 \\ D_4 \end{matrix}$	A ₃ B ₃ C ₃ D ₃	A ₂ B ₂ C ₂	B_1 C_1	B_0 C_0		$A[7:0] := 00000000b \ No \ scrolling \\ A[7:0] := 00000001b-011111111b \ Scroll \ towards \ SEG127 \ with 1 \ column \ offset \\ A[7:0] := 10000001b-111111111b \ Scroll \ towards \ SEG0 \ with 1 \ column \ offset \\ B[6:0] : \ start \ row \ address \\ C[7:0] : \ number \ of \ rows \ to \ be \ H-scrolled \\ B+C <= 128 \\ D[6:0] : \ Reserved \ (reset=00h) \\ E[1:0] : \ scrolling \ time \ interval \\ 00b \ test \ mode \\ 01b \ normal \\ 10b \ slow \\ 11b \ slowest \\ Note : operates \ during \ display \ ON.$
0	9E	1	0	0	1	1	1	1	0	Stop Moving	Note (1) After sending 9Eh command to stop the scrolling action, the ram data needs to be rewritten
0	9F	1	0	0	1	1	1	1	1	Start Moving	Start horizontal scroll

SSD1351 Rev 0.10 P 37/57 Solomon Systech May 2008

Note
(1) After executed the graphic command, waiting time is required for update GDDRAM content. ... requir

10 COMMAND

10.1.1 Set Column Address (15h)

This triple byte command specifies column start address and end address of the display data RAM. This command also sets the column address pointer to column start address. This pointer is used to define the current read/write column address in graphic display data RAM. If horizontal address increment mode is enabled by command A0h, after finishing read/write one column data, it is incremented automatically to the next column address. Whenever the column address pointer finishes accessing the end column address, it is reset back to start column address and the row address is incremented to the next row.

10.1.2 Set Row Address (75h)

This triple byte command specifies row start address and end address of the display data RAM. This command also sets the row address pointer to row start address. This pointer is used to define the current read/write row address in graphic display data RAM. If vertical address increment mode is enabled by command A0h, after finishing read/write one row data, it is incremented automatically to the next row address. Whenever the row address pointer finishes accessing the end row address, it is reset back to start row address.

For example, column start address is set to 2 and column end address is set to 125, row start address is set to 1 and row end address is set to 126. Horizontal address increment mode is enabled by command A0h. In this case, the graphic display data RAM column accessible range is from column 2 to column 125 and from row 1 to row 126 only. In addition, the column address pointer is set to 2 and row address pointer is set to 1. After finishing read/write one pixel of data, the column address is increased automatically by 1 to access the next RAM location for next read/write operation(solid line in Figure 10-1). Whenever the column address pointer finishes accessing the end column 125, it is reset back to column 2 and row address is automatically increased by 1(solid line in Figure 10-1). While the end row 126 and end column 125 RAM location is accessed, the row address is reset back to 1 and the column address is reset back to 2(dotted line in Figure 10-1).

Figure 10-1: Example of Column and Row Address Pointer Movement

Solomon Systech May 2008 | P 38/57 | Rev 0.10 | SSD1351

10.1.3 Write RAM Command (5Ch)

After entering this single byte command, data entries will be written into the display RAM until another command is written. Address pointer is increased accordingly. This command must be sent before write data into RAM.

10.1.4 Read RAM Command (5Dh)

After entering this single byte command, data is read from display RAM until another command is written. Address pointer is increased accordingly. This command must be sent before read data from RAM.

10.1.5 Set Re-map & Dual COM Line Mode (A0h)

This command has multiple configurations and each bit setting is described as follows:

• Address increment mode (A[0])

When A[0] is set to 0, the driver is set as horizontal address increment mode. After the display RAM is read / written, the column address pointer is increased automatically by 1. If the column address pointer reaches column end address, the column address pointer is reset to column start address and row address pointer is increased by 1. The sequence of movement of the row and column address point for horizontal address increment mode is shown in Figure 10-2.

 Col 0
 Col 1

 Col 126
 Col 127

 Row 0

 Row 1

 Row 126

 Row 127

Figure 10-2: Address Pointer Movement of Horizontal Address Increment Mode

When A[0] is set to 1, the driver is set to vertical address increment mode. After the display RAM is read / written, the row address pointer is increased automatically by 1. If the row address pointer reaches the row end address, the row address pointer is reset to row start address and column address pointer is increased by 1. The sequence of movement of the row and column address point for vertical address increment mode is shown in Figure 10-3.

 Col 0
 Col 1

 Col 126
 Col 127

 Row 0

 Row 1

 Eow 126

 Row 127

Figure 10-3: Address Pointer Movement of Vertical Address Increment Mode

• Column Address Remap (A[1])

This command bit is made for increasing the layout flexibility of segment signals in OLED module with segment arranged from left to right (when A[1] is set to 0) or vice versa (when A[1] is set to 1), as demonstrated in Figure 10-4.

A[1] = 0 (reset): RAM Column $0 \sim 127$ maps to Col $0 \sim$ Col127

A[1] = 1: RAM Column $0 \sim 127$ maps to Col127 \sim Col0

• Color Remap (A[2])

A[2] = 0 (reset): color sequence $A \rightarrow B \rightarrow C$

A[2] = 1: color sequence $C \rightarrow B \rightarrow A$

• COM scan direction Remap (A[4])

This command bit determines the scanning direction of the common for flexible layout of common signals in OLED module either from up to down or vice versa.

A[1] = 0 (reset): Scan from up to down

A[1] = 1: Scan from bottom to up

Details of pin arrangement can be found in Figure 10-4.

• Odd even split of COM pins (A[5])

This command bit can set the odd even arrangement of COM pins.

A[5] = 0 (reset): Disable COM split odd even, pin assignment of common is in sequential as COM127 COM126...COM 65 COM64...SEG479...SEG0...COM0 COM1...COM62 COM63

A[5] = 1: Enable COM split odd even, pin assignment of common is in odd even split as COM127 COM125...COM3 COM1...SEG479...SEG0...COM0 COM2...COM124 COM126 Details of pin arrangement can be found in Figure 10-4.

Figure 10-4: COM Pins Hardware Configuration (MUX ratio: 128) A[0] = 0A[1]=0A[7]=0Disable COM Left / Right Disable Odd Even Split of COM Scan Direction: COM pins from COM0 to COM127 Remap ROW12 ROW ROW63 ROW0 OMO SSD135 COM127 COM63 Pad 1,2,3,...Gold Bumps face up A[0] = 1A[1]=0A[7]=0Enable Odd Even Split of Disable COM Left / Right COM Scan Direction: from COM pins Remap COM0 to COM127 ROW126 ROW127 ROW125 128 x 128 ROW1 ROW0

Solomon Systech May 2008 | P 40/57 | Rev 0.10 | SSD1351

Pad 1,2,3,... Gold Bumps face up

SSD1351Z

COM64

COM0

Display color mode (A[7:6]) Select either 262k, 65k or 256 color mode.

10.1.6 Set Display Start Line (A1h)

This command is used to set Display Start Line register to determine starting address of display RAM to be displayed by selecting a value from 0 to 127. Figure 10-5 shows an example of using this command when MUX ratio = 128 and MUX ratio = 100 and Display Start Line = 28. In there, "Row" means the graphic display data RAM row.

Figure 10-5: Example of Set Display Start Line with no Remap

	128	128	100	100	MUX ratio (CAh)
COM Pin	0	28	0	28	Display start line (A1h)
COM0	Row0	Row28	Row0	Row28	
COM1	Row1	Row29	Row1	Row29	
COM2	Row2	Row30	Row2	Row30	7
COM3	Row3	Row31	Row3	Row31	7
COM4	Row4	Row32	Row4	Row32	7
COM5	Row5	Row33	Row5	Row33	1
COM6	Row6	Row34	Row6	Row34	1
:	:	:		:	1
:	:	:	: YY	:	
:	:	:	: 1	:	7
	1:	:		:	
COM95	Row95	Row123	Row95	Row124	nG.
COM96	Row96	Row124	Row96	Row125	4
COM97	Row97	Row125	Row97	Row126	
COM98	Row98	Row126	Row98	Row127	
COM99	Row99	Row127	Row99	Row0	
COM100	Row100	Row0	- KOW > >	Rowo	
COM100	Row100	Row1	-		
COM101 COM102	Row101	Row2	-	-	4
COM102	Row102	Row3	-	-	-
COM103 COM104	Row103	Row3		-	-
					-
COM105	Row105	Row5		-	4
COM106	Row106	Row6		-	4
COM107	Row107	Row7	-	-	
COM108	Row108	Row8	-	-	4
COM109	Row109	Row9	-	-	
COM110	Row110	Row10	-	-	4
COM111	Row111	Row11	-	-	4
COM112	Row112	Row12	-	-	
COM113	Row113	Row13	-	-	4
COM114	Row114	Row14	-	-	_
COM115	Row115	Row15	-	-	4
COM116	Row116	Row16	-	-	
COM117	Row117	Row17	-	-	
COM118	Row118	Row18	-	-	
COM119	Row119	Row19	-	-	
COM120	Row120	Row20	-	-	
COM121	Row121	Row21	-	=	
COM122	Row122	Row22	-	=	
COM123	Row123	Row23	-	-	
COM124	Row124	Row24	-	-	7
COM125	Row125	Row25	-	-	7
COM126	Row126	Row26	-	-	7
COM127	Row127	Row27	-	-	7
Display example	SOLOMON SYSTECH	SOLOMON	COLOMON	SOLOMON SYSTECH	SOLOMON SYSTECH
	(a)	(b)	(c)	(u)	(GDDARAM)

SSD1351 | Rev 0.10 | P 41/57 | May 2008 | **Solomon Systech**

10.1.7 Set Display Offset (A2h)

This command specifies the mapping of display start line (it is assumed that COM0 is the display start line, display start line register equals to 0) to one of COM0-127. For example, to move the COM16 towards the COM0 direction for 16 lines, A[7:0] should be given by 00010000. The figure below shows an example of this command. In there, "Row" means the graphic display data RAM row.

Figure 10-6: Example of Set Display Offset with no Remap

	a	b	С	Case	
	128	96	96	MUX ratio (CAh)	
	0	0	32	Display offset (A2h A[7:0])	
COM0	Row0	Row0	Row32		
COM1	Row1	Row1	Row33		
COM2	Row2	Row2	Row34		
	:	:	:		
COM61	Row61	Row61	Row93		
COM62	Row62	Row62	Row94		
COM63	Row63	Row63	Row95		
COM64	Row64	Row64	-		
COM65	Row65	Row65	-		
COM66	Row66	Row66	-		
	:	:	:		
COM93	Row93	Row93	-		
COM94	Row94	Row94	-		
COM95	Row95	Row95	-		
COM96	Row96	-	Row0		
COM97	Row97	-	Row1		
COM98	Row98	-	Row2	Inc	
	:	:			
COM125	Row125		Row29		
COM126	Row126	-	Row30	102)	
COM127	Row127	-	Row31		
Display					
example			COLOBION		
			CAI ARAARI		
		COLOMON			
	SOLOMON			SOLOMON	
	SYSTECH			SYSTECH	
	(a)	(c)	(d)	(GDDARAM)	
	(/	()		(= = = = = = = = = = = = = = = = = = =	

 Solomon Systech
 May 2008
 P 42/57
 Rev 0.10
 SSD1351

10.1.8 Set Display Mode (A4h ~ A7h)

These are single byte command and they are used to set Normal Display, Entire Display ON, Entire Display OFF and Inverse Display.

• All OFF (A4h)

Force the entire display to be at gray scale level "GS0" regardless of the contents of the display data RAM as shown in Figure.

Figure 10-7: Example of Entire Display OFF

• Set Entire Display ON (A5h)

Force the entire display to be at gray scale "GS63" regardless of the contents of the display data RAM as shown in Figure 10-8.

Figure 10-8: Example of Entire Display ON

• Set Entire Display OFF (A6h)

Reset the above effect and turn the data to ON at the corresponding gray level. Figure 10-9 shows an example of Normal Display.

Figure 10-9: Example of Normal Display

• Inverse Display (A7h)

The gray level of display data are swapped such that "GS0" \leftrightarrow "GS63", "GS1" \leftrightarrow "GS62", ... Figure 10-10 shows an example of inverse display.

Figure 10-10: Example of Inverse Display

SSD1351 | Rev 0.10 | P 43/57 | May 2008 | **Solomon Systech**

10.1.9 Set Function selection (ABh)

This double byte command is used to enable or disable the V_{DD} regulator.

Internal V_{DD} regulator is selected when the bit A[0] is set to 0b, while external V_{DD} is selected when A[0] is set to 1b.

10.1.10 Set Sleep mode ON/OFF (AEh / AFh)

These single byte commands are used to turn the OLED panel display ON or OFF.

When the display is OFF (command AEh), the segment is in V_{SS} state and common is in high impedance state.

10.1.11 Set Phase Length (B1h)

This double byte command sets the length of phase 1 and 2 of segment waveform of the driver.

- Phase 1 (A[3:0]): Set the period from 5 to 31 in the unit of 2 DCLKs. A larger capacitance of the OLED pixel may require longer period to discharge the previous data charge completely.
- Phase 2 (A[7:4]): Set the period from 3 to 15 in the unit of DCLKs. A longer period is needed to charge up a larger capacitance of the OLED pixel to the target voltage V_P.

10.1.12 Set Front Clock Divider / Oscillator Frequency (B3h)

This double byte command consists of two functions:

- Front Clock Divide Ratio (A[3:0])
 Set the divide ratio to generate DCLK (Display Clock) from CLK. The divide ratio is from 1 to 16, with reset value = 1. Please refer to Section 8.5 for the detail relationship of DCLK and CLK.
- Oscillator Frequency (A[7:4])
 Program the oscillator frequency Fosc which is the source of CLK if CLS pin is pulled HIGH. The 4-bit value results in 16 different frequency settings being available.

10.1.13 Set GPIO (B5h)

This double byte command is used to set the states of GPIO0 and GPIO1 pins. Refer to Table 9-1 for details.

10.1.14 Set Second Pre-charge period (B6h)

This double byte command is used to set the phase 3 second pre-charge period. The period of phase 3 can be programmed by command B6h and it is ranged from 1 to 15 DCLK's. Please refer to Table 9-1 for the detail information.

10.1.15 Look Up Table for Gray Scale Pulse width (B8h)

This command is used to set each individual gray scale level for the display. Except gray scale levels GS0 that has no pre-charge and current drive, each gray scale level is programmed in the length of current drive stage pulse width with unit of DCLK. The longer the length of the pulse width, the brighter the OLED pixel when it's turned ON. Following the command B8h, the user has to set the gray scale setting for GS1, GS2, ..., GS62, GS63 one by one in sequence. GS1 can be set as gamma setting 0, which means there is only precharge phase but no current drive phase. Refer to Section 8.8 for details.

The setting of gray scale table entry can perform gamma correction on OLED panel display. Since the perception of the brightness scale shall match the image data value in display data RAM, appropriate gray scale table setting like the example shown below (Figure 10-11) can compensate this effect.

Solomon Systech May 2008 | P 44/57 | Rev 0.10 | SSD1351

Figure 10-11: Example of Gamma correction by Gamma Look Up table setting

10.1.16 Use Built-in Linear LUT (B9h)

This single byte command reloads the preset linear Gray Scale table as GS0 =Gamma Setting 0, GS1 = Gamma Setting 0, GS2 = Gamma Setting 2, GS3 = Gamma Setting 4,... GS62 = Gamma Setting 122, GS63 = Gamma Setting 124. Refer to Section 8.8 for details.

10.1.17 Set Pre-charge voltage (BBh)

This double byte command sets the first pre-charge voltage (phase 2) level of segment pins. The level of pre-charge voltage is programmed with reference to $V_{\rm CC}$. Refer to Table 9-1 for details.

10.1.18 Set V_{COMH} Voltage (BEh)

This double byte command sets the high voltage level of common pins, V_{COMH} . The level of V_{COMH} is programmed with reference to V_{CC} . Refer to Table 9-1 for details.

10.1.19 Set Contrast Current for Color A,B,C (C1h)

This double byte command is used to set Contrast Setting of the display. The chip has 256 contrast steps from 00h to FFh. The segment output current I_{SEG} increases linearly with the contrast step, which results in brighter display.

10.1.20 Master Contrast Current Control (C7h)

This double byte command is to control the segment output current by a scaling factor. The chip has 16 master control steps, with the factor ranges from 1 [0000b] to 16 [1111b – default]. The smaller the master current value, the dimmer the OLED panel display is set.

For example, if original segment output current is 160uA at scale factor = 16, setting scale factor to 8 would reduce the current to 80uA.

10.1.21 Set Multiplex Ratio (CAh)

This double byte command switches default 1:128 multiplex mode to any multiplex mode from 16 to 128. For example, when multiplex ratio is set to 16, only 16 common pins are enabled. The starting and the ending of the enabled common pins are depended on the setting of "Display Offset" register programmed by command A2h. Figure 10-5 and Figure 10-6 show examples of setting the multiplex ratio through command CAh.

10.1.22 Set Command Lock (FDh)

This command is used to lock the OLED driver IC from accepting any command except itself. After entering FDh 16h (A[2]=1b), the OLED driver IC will not respond to any newly-entered command (except FDh 12h A[2]=0b) and there will be no memory access. This is call "Lock" state. That means the OLED driver IC ignore all the commands (except FDh 12h A[2]=0b) during the "Lock" state.

Entering FDh 12h (A[2]=0b) can unlock the OLED driver IC. That means the driver IC resume from the "Lock" state. And the driver IC will then respond to the command and memory access.

Solomon Systech May 2008 | P 46/57 | Rev 0.10 | SSD1351

11 MAXIMUM RATINGS

Table 11-1: Maximum Ratings

(Voltage Reference to V_{SS})

Symbol	Parameter	Value	Unit
V_{DD}		-0.5 to 2.75	V
V _{CC}	Consulta Valta an	-0.5 to 21.0	V
V _{DDIO}	Supply Voltage	-0.5 to $V_{\rm CI}$	V
V _{CI}		-0.3 to 4.0	V
V_{SEG}	SEG output voltage	0 to V _{CC}	V
V _{COM}	COM output voltage	0 to 0.9*V _{CC}	V
V _{in}	Input voltage	Vss-0.3 to V _{DDIO} +0.3	V
T _A	Operating Temperature	-40 to +85	°C
$T_{\rm stg}$	Storage Temperature Range	-65 to +150	°C
		4/C	
	140		Co.
	stde!	Alla.	Inc.
	anfider	Allar	Iuc.
	confide	1091	Inc.
	confide	o cology	Inc.
	Confide	ation of the second second	Inc.
	confide	o chnology	Inc.
	Confide	echnology echnology	InG.
	confide t	echnology echnology	InG.
	Confide to	echnology	InG.
	confiden	echnology	InG.
	confide	echnology	InG.
	confide	echnology,	InG.
	confide	echnology,	InG.

^{*}Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description.

SSD1351 Rev 0.10 P 47/57 May 2008 Solomon Systech

^{*}This device may be light sensitive. Caution should be taken to avoid exposure of this device to any light source during normal operation. This device is not radiation protected.

12 DC CHARACTERISTICS

Conditions (Unless otherwise specified):

Voltage referenced to V_{SS}

 $V_{DD} = 2.4 \text{ to } 2.6 \text{V}$

 $V_{CI} = 2.4$ to 3.5V (V_{CI} must be larger than or equal to V_{DD})

 $T_A=25^{\circ}C$

Table 12-1: DC Characteristics

Symbol	Parameter	Test Condition			Min	Тур	Max	Unit
V _{CC}	Operating Voltage	-			10	-	20	V
V _{DD}	Logic Supply Voltage	-			2.4	-	2.6	V
V _{CI}	Low voltage power supply	-			2.4	-	3.5	V
$V_{\rm DDIO}$	Power Supply for I/O pins	-			1.65	-	V_{CI}	V
V _{OH}	High Logic Output Level	Iout =100uA			0.9*V _{DDIO}	-	$V_{\rm DDIO}$	V
V _{OL}	Low Logic Output Level	Iout =100uA			0	-	$0.1*V_{DDIO}$	V
V_{IH}	High Logic Input Level	-			$0.8*V_{DDIO}$	-	$V_{\rm DDIO}$	V
$V_{\rm IL}$	Low Logic Input Level	-			0	-	$0.2*V_{DDIO}$	V
I_{SLP_VDD}	V _{DD} Sleep mode Current	$V_{CI} = V_{DDIO} = 2.8V, V_{CC}$ V_{DD} (external) = 2.5V, Di No panel attached			-	-	10	uA
I _{SLP_VDDIO}	V _{DDIO} Sleep mode Current	$V_{CI} = V_{DDIO} = 2.8V,$ $V_{CC} = 18V$	External V _{DD}	= 2.5V	-	-	10	uA
SEI_VEEIG	BBIO 1	Display OFF, No panel attached	Internal V _{DD}		-	-	10	uA
T	W Cl 1 C	$V_{\text{CI}} = V_{\text{DDIO}} = 2.8 \text{V},$ $V_{\text{CC}} = 18 \text{V}$	External V _{DD}	= 2.5V	-	4	10	uA
I _{SLP_VCC}	V _{CC} Sleep mode Current	Display OFF, No panel attached	Internal V _{DD}	4.6		-	10	uA
		$V_{CI} = V_{DDIO} = 2.8V,$	External V _{DD}	= 2.5V			10	uA
I _{SLP_VCI}	V _{CI} Sleep mode Current	V _{CC} =18V Display OFF,	Enable International during Sleep in		-	-	40	uA
		No panel attached Disable Inte			-	-	10	uA
I_{DD}	V _{DD} Supply Current	$V_{CI} = V_{DDIO} = 3.3V$, V_{CC} External $V_{DD} = 2.5V$, Di No panel attached, contra	= 18V, isplay ON,		-	TBD	TBD	uA
T	V Supply Control	$V_{CI} = V_{DDIO} = 3.3V$, $V_{CC} = 18$, Display ON,	External V _{DD}	= 2.5V	-	0.5	10	uA
I_{DDIO}	V _{DDIO} Supply Current	No panel attached, contrast = FF	Internal V _{DD}		-	0.5	10	uA
T	V 6 1 6	$V_{CI} = V_{DDIO} = 3.3V,$ $V_{CC} = 18$, Display ON,	External V _{DD}	= 2.5V	-	TBD	TBD	uA
I_{CI}	V _{CI} Supply Current	No panel attached, contrast = FF	Internal V _{DD}		-	TBD	TBD	uA
ī	V. Sumaly Course	$V_{CI} = V_{DDIO} = 3.3V,$ $V_{CC} = 18$, Display ON,	External V _{DD}	= 2.5V	-	TBD	TBD	mA
I_{CC}	V _{CC} Supply Current	No panel attached, contrast = FF	Internal V _{DD}		-	TBD	TBD	mA
	Segment Output Current	Contrast = FFh			-	200	-	uA
I_{SEG}	Setting	Contrast = 7Fh			-	100	-	uA
	$V_{CC} = 18$ at $I_{REF} = 12.5 \text{uA}$	Contrast = 3Fh			-	50	-	uA
	Segment (SA, SB, SC) output	$Dev = (I_{Sn} - I_{MID})/I_{MID}$		n = A	-3	-	3	%
Dev	current uniformity (contrast = FF)	$I_{\text{MID}} = (I_{\text{MAX}} + I_{\text{MIN}})/2$	$I_{\text{MID}} = (I_{\text{MAX}} + I_{\text{MIN}})/2$			-	3	1
	(Contrast – 1'1')	$I_{Sn} = Segment \ n \ current \ . \ e.g. \ For \ n=A,$ then $I_{Sn} = I_{SA} = SA \ current$ $n = C$			-3	-	3	1
	A diamond min and the diamond	Adj Dev = $(I_{Sn}[m]-I_{Sn}[m+1])$		n = A	-2	-	2	%
Adj. Dev	Adjacent pin output current uniformity (contrast = FF)	I_{Sn} [m+1]) e.g. For n=A, m=3, then	$I_{Sn}[m] = I_{SA}[3]$	n = B	-2	-	2	
		= SA[3] current		n = C	-2	-	2	

 Solomon Systech
 May 2008
 P 48/57
 Rev 0.10
 SSD1351

13 AC CHARACTERISTICS

Conditions (Unless otherwise specified):

Voltage referenced to V_{SS} $V_{DD} = 2.4 \text{ to} 2.6 \text{V}$ $T_A = 25^{\circ}C$

Table 13-1: AC Characteristics

	Parameter	Test Condition	Min	Тур	Max	Unit
	Oscillation Frequency of Display Timing Generator	$V_{CI} = 2.8V$	TBD	TBD	TBD	MHz
FFRM		128x128 Graphic Display Mode, Display ON, Internal Oscillator Enabled	-	F _{OSC} * 1/(D*K*128)	-	Hz
t_{RES}	Reset low pulse width (RES#)	-	2000	-	-	ns

K: Phase 1 period +Phase 2 period +X

X: DCLKs in current drive period

SSD1351 Rev 0.10 P 49/57 **Solomon Systech** May 2008

a. command B3h & (1) F_{OSC} stands for the frequency value of the internal oscillator and the value is measured when command B3h A[7:4] is in default value.

⁽²⁾ D: divide ratio set by command B3h A[3:0]

Table 13-2: 6800-Series MCU Parallel Interface Timing Characteristics

 $(V_{DD} - V_{SS} = 2.4 \text{ to } 2.6 \text{V}, V_{DDIO} = 1.65 \text{V}, V_{CI} = 2.8 \text{V}, T_A = 25^{\circ}\text{C})$

Symbol	Parameter	Min	Тур	Max	Unit
t_{CYCLE}	Clock Cycle Time	300	-	-	ns
t_{AS}	Address Setup Time	10	-	-	ns
t _{AH}	Address Hold Time	0	-	-	ns
t_{DSW}	Write Data Setup Time	40	-	-	ns
$t_{\rm DHW}$	Write Data Hold Time	7	-	-	ns
t _{DHR}	Read Data Hold Time	20	-	-	ns
t_{OH}	Output Disable Time	-	-	70	ns
t _{ACC}	Access Time	-	-	140	ns
PW _{CSL}	Chip Select Low Pulse Width (read) Chip Select Low Pulse Width (write)	120 60	-	-	ns
PW _{CSH}	Chip Select High Pulse Width (read) Chip Select High Pulse Width (write)	60 60	-	-	ns
t_R	Rise Time	-	-	15	ns
$t_{\rm F}$	Fall Time	-	-	15	ns

Figure 13-1: 6800-series MCU parallel interface characteristics

SSD1351 Solomon Systech May 2008 P 50/57 Rev 0.10

Note $^{(1)}$ when 8 bit used: D[7:0] instead; when 16 bit used: D[15:0] instead; when 18 bit used: D[17:0] instead.

Table 13-3: 8080-Series MCU Parallel Interface Timing Characteristics

 $(V_{DD}$ - V_{SS} = 2.4 to 2.6V, V_{DDIO} =1.65V, V_{CI} = 2.8V, T_A = 25°C)

Symbol	Parameter	Min	Тур	Max	Unit
t _{CYCLE}	Clock Cycle Time	300	-	-	ns
t _{AS}	Address Setup Time	10	-	-	ns
t _{AH}	Address Hold Time	0	-	-	ns
$t_{ m DSW}$	Write Data Setup Time	40	-	-	ns
$t_{ m DHW}$	Write Data Hold Time	7	-	-	ns
t_{DHR}	Read Data Hold Time	20	-	-	ns
t_{OH}	Output Disable Time	-	-	70	ns
t_{ACC}	Access Time	-	-	140	ns
t_{PWLR}	Read Low Time	150	-	-	ns
t_{PWLW}	Write Low Time	60	-	-	ns
t_{PWHR}	Read High Time	60	-	-	ns
t _{PWHW}	Write High Time	60	-	-	ns
t_R	Rise Time	-	-	15	ns
t_{F}	Fall Time	-	-	15	ns
t_{CS}	Chip select setup time	0	-	-	ns
t _{CSH}	Chip select hold time to read signal	0	-	-	ns
t _{CSF}	Chip select hold time	20	-	-	ns

Figure 13-2: 8080-series MCU parallel interface characteristics

SSD1351 Rev 0.10 P 51/57 May 2008 Solomon Systech

Table 13-4: Serial Interface Timing Characteristics (4-wire SPI)

 $\underline{(V_{DD}$ - V_{SS} = 2.4 to 2.6V, V_{DDIO} =1.65V, V_{CI} = 2.8V, T_A = 25°C)

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	50	-	-	ns
t_{AS}	Address Setup Time	15	-	-	ns
t_{AH}	Address Hold Time	15	-	-	ns
t_{CSS}	Chip Select Setup Time	20	-	-	ns
t_{CSH}	Chip Select Hold Time	10	-	-	ns
t_{DSW}	Write Data Setup Time	15	-	-	ns
$t_{ m DHW}$	Write Data Hold Time	15	-	-	ns
t_{CLKL}	Clock Low Time	20	-	-	ns
t_{CLKH}	Clock High Time	20	-	-	ns
t_R	Rise Time	-	-	15	ns
$t_{\rm F}$	Fall Time	-	-	15	ns

Figure 13-3 : Serial interface characteristics (4-wire SPI)

 Solomon Systech
 May 2008
 P 52/57
 Rev 0.10
 SSD1351

Table 13-5: Serial Interface Timing Characteristics (3-wire SPI)

 $\underline{(V_{DD}$ - V_{SS} = 2.4 to 2.6V, V_{DDIO} =1.65V, V_{CI} = 2.8V, T_A = 25°C)

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	50	-	-	ns
t _{CSS}	Chip Select Setup Time	20	-	-	ns
t_{CSH}	Chip Select Hold Time	10	-	-	ns
t_{DSW}	Write Data Setup Time	15	-	-	ns
$t_{ m DHW}$	Write Data Hold Time	15	-	-	ns
$t_{ m CLKL}$	Clock Low Time	20	-	-	ns
t_{CLKH}	Clock High Time	20	-	-	ns
t_R	Rise Time	-	-	15	ns
t_{F}	Fall Time	-	-	15	ns

Figure 13-4: Serial interface characteristics (3-wire SPI) CS# **SCLK** SDIN D/C# D5 D2 D1 D0 D7 D6 D4 D3 t_{CSH} CS# t_{CYCLE} $t_{\text{CLKH}} \\$ t_{CLKL} SCLK (R/W# (WR#)) $t_{\,\underline{DHW}}$ t_{DSW} SDIN Valid Data (D0)

SSD1351 Rev 0.10 P 53/57 May 2008 **Solomon Systech**

14 APPLICATION EXAMPLE

Figure 14-1: SSD1351Z application example for 18-bit 6800-parallel interface mode (Internal regulated V_{DD}) The configuration for 18-bit 6800-parallel interface mode is shown in the following diagram: $(V_{CI} = 3.3 \text{V} \text{ (V}_{CI} \text{ must be} > 2.6 \text{V}), \text{ Internal regulated } V_{DD} = 2.5 \text{V}, V_{DDIO} = 1.8 \text{V}, \text{ external } V_{CC} = 18 \text{V}, I_{REF} = 12.5 \text{uA}, \text{ (V}_{CI} \text{ must be} > 2.6 \text{V}), \text{ (V}_{CI} \text{ must$ BS[3:2] are set to 11b through command A0h) Color OLED Panel 128RGBx128 SSD1351Z $V_{DDIO} \ V_{CI}$ [GND] Voltage at I_{REF} = V_{CC} – 6V. For V_{CC} = 18V, I_{REF} = 12.5uA: $R1 = (Voltage at I_{REF} - V_{SS}) / I_{REF}$ = (18-6) / 12.5 u $=1M\Omega$ $R2=50\Omega,\,1/8W^{\,(1)}$ D1 ~ D2: V_{th} =0.7V, 1N4148 $^{(1)}$ C1 ~ C3: 1uF, C4a, C5: 4.7uF, C4b: 0.1uF (1) ⁽¹⁾ The values are recommended value. Select appropriate value against module application.

Solomon Systech May 2008 | P 54/57 | Rev 0.10 | SSD1351

15 PACKAGE INFORMATION

15.1 SSD1351UR1 detail dimension

Figure 15-1: SSD1351UR1 Detail Dimension

15.2 SSD1351Z Die Tray Information

Figure 15-2: SSD1351UR1 Die Tray Information

 Solomon Systech
 May 2008
 P 56/57
 Rev 0.10
 SSD1351

confidentie

All Solomon Systech Products complied with six (6) hazardous substances limitation requirement per European Union (EU) "Restriction of Hazardous Substance (RoHS) Directive (2002/95/EC)" and China standard "电子信息产品污染控制标识要求 (SJ/T11364-2006)" with control Marking Symbol Hazardous Substances test report is available upon requested.

http://www.solomon-systech.com

SSD1351 Rev 0.10 P 57/57 May 2008 Solomon Systech