Chapter 1: Basics of Probability Theory

Mathematical Statistics

UIC-DMS

February 27, 2024

UIC-DMS () Chapter 1: Basics of Probability Theory February 27, 2024 1 / 86

Section 1

Events and their Probabilities

Overview

- Events and their Probabilities
- 2 Random Variables
- Bivariate Distributions
- 4 Expected Values
- 5 Random Vectors
- 6 Normal Random Vectors
- 7 Distributions Derived from the Normal Distribution: χ^2 , t, F Distributions

UIC-DMS () Chapter 1: Basics of Probability Theory February 27, 2024 2 / 86

Sample space and events

- The set of all possible outcomes of a random experiment is known as the sample space of the experiment and is denoted by Ω .
- An "event" is a property which can be observed either to hold or not to hold after the experiment is done. Mathematically, an event is identified with a subset of Ω .

February 27, 2024 4 / 86

UIC-DMS () Chapter 1: Basics of Probability Theory February 27, 2024 3 / 86 UIC-DMS () Chapter 1: Basics of Probability Theory

Example 1.1.1

• If the experiment consists of tossing two coins, then the sample space consists of the following four outcomes:

$$\Omega = \{HH, HT, TH, TT\}.$$

• Let *E* be the event that a head appears on the first coin. The event *E* occurs if and only if the outcome *HH* or *HT* appears. Thus we can describe *E* by the subset

$$E = \{HH, HT\}.$$

UIC-DMS ()

Chapter 1: Basics of Probability Theory

bruary 27 2024 5

cont'd

Theorem 1.1.3

Suppose $\mathcal F$ is a σ -field, A_1,A_2 , . . . are in $\mathcal F$, and $m\in\mathbb N$. Then each of the sets

$$\Omega, A_1 \backslash A_2, \bigcup_{j=1}^m A_j, \bigcap_{j=1}^m A_j, \bigcap_{j=1}^\infty A_j$$

also belongs to \mathcal{F} .

σ -Fields

- One collects "good" subsets of Ω , the events, in a class \mathcal{F} , say.
- In probability theory we require \mathcal{F} to be a σ -field (also called σ -algebra). Such a class is supposed to contain all interesting events and is thus closed under usual set operations.

Definition 1.1.2 (σ -field)

Let \mathcal{F} be a collection of subsets of Ω . We call \mathcal{F} a σ -field over Ω , if

- $\bullet \emptyset \in \mathcal{F}$:
- If $A \in \mathcal{F}$ then $A^c \in \mathcal{F}$, where A^c denotes the complement of A;
- \mathcal{F} is closed under countable unions: that is, if A_1, A_2, A_3, \ldots is a countable sequence of events in \mathcal{F} , then $\bigcup_{i=1}^{\infty} A_i$ is also in \mathcal{F} .
- Roughly speaking, we would like that elementary operations such as \cap , \cup and complement on the events of $\mathcal F$ should not lead outside the class $\mathcal F$. This is the intuitive meaning of a σ -field $\mathcal F$.

UIC-DMS (

Chapter 1: Basics of Probability The

E 1 07 0004 6 /

Probability measure

• To each event $A \in \mathcal{F}$ we assign a number $\mathbb{P}(A) \in [0,1]$. This number is the expected fraction of occurrences of the event A in a long series of experiments where A are observed.

Definition 1.1.4 (Probability measure)

A **probability measure** defined on a σ -field $\mathcal F$ over Ω is a function $\mathbb P:\mathcal F\to [0,1]$ that satisfies:

- $\mathbb{P}(\Omega) = 1$;
- $\mathbb{P}(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \mathbb{P}(A_n)$ whenever the A_i are in \mathcal{F} and are pairwise disjoint (i.e. $A_n \cap A_m = \emptyset$ if $n \neq m$).
- We call $(\Omega, \mathcal{F}, \mathbb{P})$ a probability space.

UIC-DMS ()

Chapter 1: Basics of Probability Theory

February 27, 2024 7 / 86

UIC-DMS

Chapter 1: Basics of Probability Th

February 27, 2024 8 / 86

Elementary properties of probability measures

Theorem 1.1.5

- $\mathbb{P}(A \cup B) + \mathbb{P}(A \cap B) = \mathbb{P}(A) + \mathbb{P}(B).$

- **1** If $A \subset B$, then $\mathbb{P}(A) \leq \mathbb{P}(B)$, that is, \mathbb{P} is monotone.
- **⑤** $\mathbb{P}(A_n)$ ↑ $\mathbb{P}(A)$ if A_n ↑ A. Here A_n ↑ A means that $A_1 \subset A_2 \subset \ldots$ and $\bigcup_{n=1} A_n = A$.
- **②** $\mathbb{P}(A_n) \downarrow \mathbb{P}(A)$ if $A_n \downarrow A$. Here $A_n \downarrow A$ means that $A_1 \supset A_2 \supset \ldots$ and $\cap_{n=1} A_n = A$.

UIC-DMS (

Chapter 1: Basics of Probability Theo

bruary 27, 2024 9

Law of total probability and Bayes' Theorem

- A partition represents chopping the sample space into several smaller events, say $A_1, A_2, A_3, \ldots, A_n$, so that they
 - ▶ are mutually exclusive (i.e. don't overlap): $A_i \cap A_j = \emptyset$ for any $i \neq j$
 - cover the whole Ω (i.e. 'no gaps'): $A_1 \cup A_2 \cup A_3 \cup \ldots \cup A_n = \Omega$.

Law of total probability

For any partition, and any event B, we have

$$\mathbb{P}(B) = \mathbb{P}(B|A_1) \cdot \mathbb{P}(A_1) + \mathbb{P}(B|A_2) \cdot \mathbb{P}(A_2) + \ldots + \mathbb{P}(B|A_n) \cdot \mathbb{P}(A_n).$$

Bayes' Theorem

Conditional probabilities can be inverted. That is,

$$\mathbb{P}(A_i|B) = \frac{\mathbb{P}(B|A_i)\mathbb{P}(A_i)}{\mathbb{P}(B)}$$

Conditional probability and product rule

• Conditional probability: if $\mathbb{P}(A) > 0$, define

$$\mathbb{P}(B|A) := \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A)}$$

• All basic formulas of probability remain true, conditionally, e.g.:

$$\mathbb{P}(B^c|A) = 1 - \mathbb{P}(B|A),$$
 $\mathbb{P}(B \cup C|A) = \mathbb{P}(B|A) + \mathbb{P}(C|A) - \mathbb{P}(B \cap C|A).$

Product rule

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B|A)
\mathbb{P}(A \cap B \cap C) = \mathbb{P}(A) \cdot \mathbb{P}(B|A) \cdot \mathbb{P}(C|A \cap B)
\mathbb{P}(A \cap B \cap C \cap D) = \mathbb{P}(A) \cdot \mathbb{P}(B|A) \cdot \mathbb{P}(C|A \cap B) \cdot \mathbb{P}(D|A \cap B \cap C)
\vdots$$

UIC-DMS (

Chapter 1: Basics of Probability The

February 27, 2024 10

Overview

- Events and their Probabilities
- 2 Random Variables
- Bivariate Distributions
- Expected Values
- 6 Random Vectors
- 6 Normal Random Vectors
- 1 Distributions Derived from the Normal Distribution: χ^2 , t, F Distributions

Section 2

Random Variables

UIC-DMS ()

Chapter 1: Basics of Probability Theory

bruary 27 2024 13 / 5

UIC-DMS

Chapter 1: Basics of Probability The

F-h----- 27 2024 14 / 96

Random Variables

We need the random variables to link sample spaces and events to data.

Definition 1.2.7 (Random Variables)

A random variable is a mapping $X:\Omega\to\mathbb{R}$ that assigns a real number $X(\omega)$ to each outcome $\omega\in\Omega$, with the property that X is \mathcal{F} -measurable, that is, $\{\omega\in\Omega:X(\omega)\leq c\}\in\mathcal{F}$ for each $c\in\mathbb{R}$.

This mapping induces probability on $\mathbb R$ from Ω as follows: for $A\subset \mathbb R$ define

$$X^{-1}(A) = \{ \omega \in \Omega : X(\omega) \in A \}$$

and let

$$\mathbb{P}(X \in A) = \mathbb{P}(X^{-1}(A)) = \mathbb{P}(\{\omega \in \Omega : X(\omega) \in A\})$$

Definition 1.2.8 (Cumulative Distribution Function)

The cumulative distribution function (CDF) $F_X : \mathbb{R} \to [0,1]$ is defined by

$$F_X(x) = \mathbb{P}(X \leq x).$$

Example 1.2.6 (Random Variables)

• A fair coin is tossed twice: $\Omega = \{HH, HT, TH, TT\}$. For $\omega \in \Omega$, let $X(\omega)$ be the number of heads, so that

$$X(HH) = 2$$
, $X(HT) = X(TH) = 1$, $X(TT) = 0$.

• Now suppose that a gambler wagers his fortune of \$1 on the result of this experiment. He gambles cumulatively so that his fortune is doubled each time a head appears, and is annihilated on the appearance of a tail. His subsequent fortune W is a random variable given by

$$W(HH) = 4$$
, $W(HT) = W(TH) = W(TT) = 0$.

Properties of CDFs

Theorem 1.2.9

A function $F : \mathbb{R} \to [0,1]$ is a CDF for some random variable if and only if it satisfies the following three conditions:

(1) F is non-decreasing:

$$x_1 < x_2 \Rightarrow F(x_1) \leq F(x_2)$$

(2) F is normalized:

$$\lim_{x \to -\infty} F(x) = 0$$
 and $\lim_{x \to +\infty} F(x) = 1$

(3) F is right-continuous:

$$\lim_{y\downarrow x}F(y)=F(x)$$

-DMS ()

Chapter 1: Basics of Probability Theor

February 27, 2024 15 / 86

UIC-DMS

Charter 1: Basin of Bushahilite Th

February 27, 2024 16 /

Discrete random variables

Definition 1.2.10 (Probability Mass Function)

X is discrete if it takes countable many values $\{x_1, x_2, \ldots\}$. We define the **probability mass function (PMF)** for X by

$$f_X(x) = \mathbb{P}(X = x)$$

Relationships between CDF and PMF:

• The CDF of X is related to the PMF f_X by

$$F_X(x) = \mathbb{P}(X \le x) = \sum_{x_i \le x} f_X(x_i)$$

• The PMF f_X is related to the CDF F_X by

$$f_X(x) = F_X(x) - F_X(x^-) = F_X(x) - \lim_{y \uparrow x} F(y).$$

Here $F_X(x^-)$ denots the left-limit of F_X at x.

UIC-DMS (

Chapter 1: Basics of Probability Theory

ebruary 27, 2024 17

Common distributions

- (a) *Bernoulli*. A random variable is Bernoulli if $\mathbb{P}(X = 1) = p$, $\mathbb{P}(X = 0) = 1 p$ for some $p \in [0, 1]$.
- (b) *Binomial*. This is defined by $\mathbb{P}(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$, where n is a positive integer, $0 \le k \le n$, and $p \in [0,1]$.
- (c) *Geometric*. For $p \in (0,1)$ we set $\mathbb{P}(X=k) = (1-p)^k p$. Here k is a nonnegative integer.
- (d) *Poisson.* For $\lambda > 0$ we set $\mathbb{P}(X = k) = e^{-\lambda} \lambda^k / k!$. Again k is a nonnegative integer.
- (e) *Uniform*. For some positive integer n, set $\mathbb{P}(X = k) = 1/n$ for $1 \le k \le n$.
- (f) Uniform on (a, b). Define $f(x) = (b a)^{-1} \mathbf{1}_{(a,b)}(x)$, where $\mathbf{1}_{(a,b)}$ is the indicator function of the interval (a, b), i.e., $\mathbf{1}_{(a,b)}(x) = 1$ if $x \in (a, b)$ and $\mathbf{1}_{(a,b)}(x) = 0$ if $x \notin (a, b)$. If X has a uniform distribution, then

$$\mathbb{P}(X \in A) = \int_A \frac{1}{b-a} \mathbf{1}_{(a,b)}(x) dx.$$

Continuous random variables

Definition 1.2.11

A random variable is continuous if there exists a function f_X such that

- $f_X(x) \ge 0$ for all x
- $\int_{-\infty}^{+\infty} f_X(x) dx = 1$, and
- For every $A \subset \mathbb{R}$,

$$\mathbb{P}(X \in A) = \int_A f_X(x) \, \mathrm{d}x$$

- The function $f_X(x)$ is called the probability density function (PDF)
- Relationship between the CDF $F_X(x)$ and PDF $f_X(x)$:

$$F_X(x) = \int_{-\infty}^x f_X(t)dt, \quad f_X(x) = F_X'(x)$$

UIC-DMS

Chapter 1: Basics of Probability Theo

February 27 2024 18

Common distributions cont'd

- (g) Exponential. For x > 0 let $f(x) = \beta e^{-\beta x}$ and otherwise f(x) = 0.
- (h) Standard normal. Define $f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$. So

$$\mathbb{P}(X \in A) = \frac{1}{\sqrt{2\pi}} \int_A e^{-x^2/2} dx.$$

(i) $N\left(\mu,\sigma^2\right)$. We shall see later that a standard normal has mean zero and variance one. If Z is a standard normal, then a $N\left(\mu,\sigma^2\right)$ random variable has the same distribution as $\mu+\sigma Z$. It is an exercise in calculus to check that such a random variable has density

$$\frac{1}{\sqrt{2\pi}\sigma}e^{-(x-\mu)^2/2\sigma^2}, \quad x \in \mathbb{R}.$$

(j) $Gamma(\alpha, \beta)$. Here

$$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}, \quad x > 0.$$

Transformation of Random Variables

Suppose that X is a random variable with PDF f_X and CDF F_X . Let Y = r(X) be a function of X.

Q: How to compute the PDF and CDF of Y?

- For each y, find the set $A_v = \{x : r(x) \le y\}$
- ② Find the CDF $F_Y(y)$

$$F_Y(y) = \mathbb{P}(Y \le y) = \mathbb{P}(r(X) \le y) = \mathbb{P}(X \in A_y) = \int_{A_y} f_X(x) dx$$

• The PDF is then $f_Y(y) = F'_Y(y)$

Important Fact: When r is strictly monotonic, then r has an inverse $s = r^{-1}$ and

$$f_Y(y) = f_X(s(y)) \left| \frac{\mathrm{d} \ s(y)}{\mathrm{d} \ y} \right|$$

Section 3

Bivariate Distributions

Overview

- Events and their Probabilities
- Random Variables
- Bivariate Distributions
- Expected Values
- Random Vectors
- 6 Normal Random Vectors
- Distributions Derived from the Normal Distribution: χ^2 , t, F Distributions

Joint Distributions

Discrete Case

Definition 1.3.12

Given a pair of discrete random variables X and Y, their joint PMF is defined by

$$f_{X,Y}(x,y) = \mathbb{P}(X=x,Y=y)$$

Continuous Case

Definition 1.3.13

A function $f_{X,Y}(x,y)$ is called the **joint PDF** of continuous random variables Xand Y if

- $f_{X,Y}(x,y) \ge 0$, $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f_{X,Y}(x,y) \, dx \, dy = 1$ For any set $A \subset \mathbb{R} \times \mathbb{R}$

$$\mathbb{P}((X,Y)\in A)=\iint_A f_{X,Y}(x,y)\;\mathrm{d}x\;\mathrm{d}y$$

The **joint CDF** of X and Y is defined as $F_{X,Y}(x,y) = \mathbb{P}(X \le x, Y \le y)$

Marginal Distributions

Discrete Case

If X and Y have joint PMF $f_{X,Y}$, then the marginal PMF of X is

$$f_X(x) = \mathbb{P}(X = x) = \sum_y \mathbb{P}(X = x, Y = y) = \sum_y f_{X,Y}(x, y)$$

Similarly, the marginal PMF of Y is

$$f_Y(y) = \mathbb{P}(Y = y) = \sum_{x} \mathbb{P}(X = x, Y = y) = \sum_{x} f_{X,Y}(x, y)$$

Continuous Case

If X and Y have joint PDF $f_{X,Y}$, then the marginal PDFs of X and Y are

$$f_X(x) = \int f_{X,Y}(x,y) dy$$
 and $f_Y(y) = \int f_{X,Y}(x,y) dx$

UIC-DMS (

Chapter 1: Basics of Probability Theory

ebruary 27, 2024 25 / 8

UIC-DN

Chapter 1: Basics of Probability Theo

February 27, 2024

Conditional Distributions

Discrete Case

The conditional PMF:

$$f_{X|Y}(x|y) = \mathbb{P}(X = x|Y = y) = \frac{\mathbb{P}(X = x, Y = y)}{\mathbb{P}(Y = y)} = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

Continuous Case

The conditional PDF is

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_{Y}(y)}$$

Then,

$$\mathbb{P}(X \in A|Y = y) = \int_A f_{X|Y}(x|y) \, dx$$

Independent Random Variables

Definition 1.3.14

Two random variables X and Y are **independent** if, for every $A, B \subset \mathbb{R}$

$$\mathbb{P}(X \in A, Y \in B) = \mathbb{P}(X \in A)\mathbb{P}(Y \in B)$$

Criterion of independence:

Theorem 1.3.15

Let X and Y have joint PDF/PMF $f_{X,Y}$. Then X and Y are independent if and only if

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$

Overview

- Events and their Probabilities
- 2 Random Variables
- Bivariate Distributions
- 4 Expected Values
- 6 Random Vectors
- 6 Normal Random Vectors
- 1 Distributions Derived from the Normal Distribution: χ^2 , t, F Distributions

Section 4

Expected Values

Chapter 1: Basics of Probability Theory

ebruary 27, 2024 29 /

The variance measures the "spread" of a distribution.

Definition 1.4.17 (Variance)

Let X be a random variable with mean μ_X .

The **variance** of X, denoted Var[X] or σ_X^2 , is defined by

$$\sigma_X^2 \equiv \mathsf{Var}[X] = \mathbb{E}\left[(X - \mu_X)^2 \right] = \begin{cases} \sum_x (x - \mu_X)^2 \, f_X(x), & \text{if } X \text{ is discrete} \\ \int (x - \mu_X)^2 \, f_X(x) \, \, \mathrm{d}x, & \text{if } X \text{ is continuous} \end{cases}$$

The standard deviation is $\sigma_X = \sqrt{\text{Var}[X]}$

Important Properties of Var[X]

- $Var[X] = \mathbb{E}[X^2] (\mathbb{E}[X])^2$
- If a and b are constants, then $Var[aX + b] = a^2 Var[X]$
- If X_1, \ldots, X_n are independent and a_1, \ldots, a_n are constants, then

$$\operatorname{Var}\left[\sum_{i=1}^{n} a_{i} X_{i}\right] = \sum_{i=1}^{n} a_{i}^{2} \operatorname{Var}\left[X_{i}\right]$$

The expectation (or mean) of a random variable X is the average value of X.

Definition 1.4.16 (Expectation)

The **expectation**, or **mean**, or **first moment** of X is

$$\mu_X \equiv \mathbb{E}[X] = \begin{cases} \sum_x x f_X(x), & \text{if } X \text{ is discrete} \\ \int x f_X(x) \, \mathrm{d}x, & \text{if } X \text{ is continuous} \end{cases}$$

assuming that the sum (or integral) is well-defined.

- Let Y = r(X), then $\mathbb{E}[Y] = \mathbb{E}[r(X)] = \sum_x r(x) f_X(x)$ or $\int r(x) f_X(x) \, \mathrm{d}x$
- If X_1, \ldots, X_n are random variables and a_1, \ldots, a_n are constants, then

$$\mathbb{E}\left[\sum_{i=1}^n a_i X_i\right] = \sum_{i=1}^n a_i \mathbb{E}\left[X_i\right]$$

• Let X, Y be independent random variables. Then,

$$\mathbb{E}\left[XY\right] = \mathbb{E}\left[X\right]\mathbb{E}\left[Y\right]$$

MS ()

Chapter 1: Basics of Probability Theo

February 27, 2024 3

Expectation and Variance of Important Random Variables

Distribution	Mean	Variance
Point mass at a	а	0
Bernoulli(p)	p	p(1-p)
Bin(n, p)	np	np(1-p)
Geom(p)	1/p	$(1-p)/p^2$
Poisson(λ)	λ	λ
Uniform (a, b)	(a+b)/2	$(b-a)^2/12$
$\mathcal{N}\left(\mu,\sigma^{2}\right)$	$\mid \stackrel{\cdot}{\mu} \mid$	σ^2
$Exp(\beta)$	$1/\beta$	$1/\beta^2$
$Gamma(\alpha,\beta)$	α/β	α/β^2

Covariance and Correlation

If X and Y are random variables, then the covariance and correlation between X and Y measure how strong the linear relationship is between X and Y.

Definition 1.4.18 (Covariance)

Let X and Y be random variables with means μ_X and μ_Y and standard deviations σ_X and σ_Y . Define the **covariance** between X and Y by

$$\mathsf{Cov}(X,Y) = \mathbb{E}\left[\left(X - \mu_X\right)\left(Y - \mu_Y\right)\right]$$

and the correlation (also called correlation coefficient) by

$$\rho(X,Y) = \frac{\mathsf{Cov}(X,Y)}{\sigma_X \sigma_Y}$$

UIC-DMS (

Chapter 1: Basics of Probability Theory

ebruary 27, 2024 33 /

Conditional Expectation

• The conditional expectation of X given Y = y is

$$\mathbb{E}[X|Y=y] = \begin{cases} \sum_{X} x f_{X|Y}(x|y), & \text{discrete case;} \\ \int x f_{X|Y}(x|y) \, \mathrm{d}x, & \text{continuous case.} \end{cases}$$

- ▶ $\mathbb{E}[X]$ is a number
- ▶ $\mathbb{E}[X|Y=y]$ is a function of y
- ▶ $\mathbb{E}[X|Y]$ is the random variable whose value is $\mathbb{E}[X|Y=y]$ when Y=y
- The Rule of Iterated Expectations or Law of Total Expectation

$$\mathbb{E}\left(\mathbb{E}[X|Y]\right) = \mathbb{E}[X]$$

Properties of Covariance and Correlation

• The covariance satisfies (useful in computations):

$$\mathsf{Cov}(X,Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

• The correlation satisfies:

$$-1 \le \rho(X, Y) \le 1$$

• If Y = aX + b for some constants a and b, then

$$\rho(X,Y) = \begin{cases} 1, & \text{if } a > 0 \\ -1, & \text{if } a < 0 \end{cases}$$

- If X and Y are independent, then $Cov(X,Y)=\rho(X,Y)=0$. The converse is not true
- For random variables X_1, \ldots, X_n

$$\operatorname{Var}\left[\sum_{i=1}^{n} a_{i} X_{i}\right] = \sum_{i=1}^{n} a_{i}^{2} \operatorname{Var}\left[X_{i}\right] + 2 \sum_{i < j} a_{i} a_{j} \operatorname{Cov}\left(X_{i}, X_{j}\right)$$

UIC-DMS

Chapter 1: Basics of Probability The

February 27 2024 34 /

Conditional Variance

• The conditional variance of X given Y = y is

$$\mathsf{Var}[X|Y=y] = \mathbb{E}\left[(X - \mathbb{E}[X|Y=y])^2|Y=y\right]$$

- ► Var[X] is a number
- ▶ Var[X|Y = y] is a function of y
- ▶ Var[X|Y] is the random variable whose value is Var[X|Y = y] when Y = y
- For random variables X and Y

$$Var[X] = \mathbb{E} Var[X|Y] + Var \mathbb{E}[X|Y]$$

DMS () Chapter 1: Basics of Probability The

February 27, 2024

Chapter 1: Basics of Probability 7

February 27, 2024 36 / 86

Moment-generating functions

Definition 1.4.19 (Moment-Generating Function)

The moment-generating function (MGF) of a random variable X is

$$M(t) = \mathbb{E}\left[e^{tx}\right]$$

(if the expectation is defined)

Important Properties of MGFs:

- If $\exists \varepsilon > 0$ such that M(t) exists for all $t \in (-\varepsilon, \varepsilon)$, then M(t) uniquely determines the probability distribution, and we write $M(t) \rightsquigarrow f(x)$.
- If M(t) exists in an open interval containing zero, then

$$M^{(r)}(0) = \mathbb{E}[X^r]$$
 (hence the name)

To find moments $\mathbb{E}[X']$, we must do integration or calculate a sum. Knowing the MGF allows to replace integration or sum by differentiation.

UIC-DMS (

Chapter 1: Basics of Probability Theor

ruary 27, 2024 37

Moment-generating functions: Limitations and Examples

The major limitation of the moment-generating function is that it may not exist. In this case, the characteristic function may be used:

$$\phi(t) = \mathbb{E}\left[e^{itX}\right]$$

Examples:

• $\mathcal{N}\left(\mu,\sigma^2\right)$:

$$M(t) = e^{\mu t} e^{\sigma^2 t^2/2}$$

• Gamma (α, β) :

$$M(t) = \int_0^\infty e^{tx} \frac{\beta^\alpha}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x} dx$$

$$= \int_0^\infty \frac{\beta^\alpha}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x (1 - t/\beta)} dx \qquad [y := x(1 - t/\beta)]$$

$$= \frac{1}{(1 - t/\beta)^\alpha} \int_0^\infty \frac{\beta^\alpha}{\Gamma(\alpha)} y^{\alpha - 1} e^{-\beta y} dx$$

$$= \frac{1}{(1 - t/\beta)^\alpha}, \quad t < \beta.$$

Moment-generating functions

Important Properties of MGFs: (continuation)

• If X has the MGF $M_X(t)$ and Y = a + bX, then

$$M_Y(t) = e^{at} M_X(bt)$$

• If X and Y are independent, then

$$M_{X+Y}(t) = M_X(t)M_Y(t)$$

• If X and Y have a joint distribution, then their joint MGF is defined as

$$M_{X,Y}(s,t) = \mathbb{E}\left[e^{sX+tY}\right]$$

X and Y are independent if and only if

$$M_{X,Y}(s,t) = M_X(s)M_Y(t)$$

UIC-DMS

Chapter 1: Basics of Probability The

February 27, 2024 38 /

Inequalities

• Chebyshev inequality: If X is a non-negative random variable, then for any a>0

$$\mathbb{P}(X \geq a) \leq \frac{\mathbb{E}[X]}{a}$$

• Cauchy-Schwarz inequality: If X and Y have finite variances, then

$$\mathbb{E}[|XY|] \le \sqrt{\mathbb{E}[X^2] \mathbb{E}[Y^2]}$$

- Jensen Inequality:
 - ▶ Recall that a function g on $\mathbb R$ is said to be **convex**, if for any $x,y\in\mathbb R$ and any $0<\lambda<1$,

$$g(\lambda x + (1 - \lambda)y) \ge \lambda g(x) + (1 - \lambda)g(y).$$

E.g.,
$$g(x) = x^2$$
 or $g(x) = |x|$.

▶ If g is convex, then $\mathbb{E}[g(X)] \ge g(\mathbb{E}[X])$

Law of Large Numbers

The LLN says that the mean of a large sample is close to the mean of the distribution.

Theorem 1.4.20 (The Weak Law of Large Numbers)

Let X_1, \ldots, X_n be i.i.d. with mean μ and variance σ^2 . Let $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. Then

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \stackrel{\mathbb{P}}{\to} \mu$$
 as $n \to \infty$

The notation $\stackrel{\mathbb{P}}{\to}$ means **convergence in probability**, whose more precise definition is as follows: for every $\epsilon > 0$,

$$\mathbb{P}\left(\left|\overline{X}_{n}-\mu\right|>\epsilon\right)\to 0\quad \text{ as } n\to\infty$$

UIC-DMS

Chapter 1: Basics of Probability Theor

bruary 27, 2024 41 /

Overview

- Events and their Probabilities
- Random Variables
- Bivariate Distributions
- 4 Expected Values
- 6 Random Vectors
- 6 Normal Random Vectors
- 7 Distributions Derived from the Normal Distribution: χ^2 , t, F Distributions

Central Limit Theorem

The CLT says that \bar{X}_n has a distribution which is approximately Normal with mean μ and variance σ^2/n . This is remarkable since nothing is assumed about the distribution of X_i , except the existence of the mean and variance.

Theorem 1.4.21 (The Central Limit Theorem)

Let X_1, \ldots, X_n be i.i.d. with mean μ and variance σ^2 . Then

$$oxed{Z_n \equiv rac{ar{X}_n - \mu}{\sigma/\sqrt{n}} \stackrel{\mathcal{D}}{\longrightarrow} Z \sim \textit{N}(0,1)} \quad \textit{as } n o \infty$$

The notation $\stackrel{\mathcal{D}}{\longrightarrow}$ means **convergence in distribution**, and it holds if and only if

$$\mathbb{P}(a \leq Z_n \leq b) \to \mathbb{P}(a \leq Z \leq b)$$
 as $n \to \infty$

for every a and b.

-DMS ()

Chapter 1: Basics of Probability The

February 27, 2024

Section 5

Random Vectors

IIC-DMS () Chapter 1: Basics of Probability Theory February 27, 2024 43 / 86 UIC-DMS () Chapter 1: Basics of Probability Theory February 27, 2024 44

Random Vector

- Let $\mathbf{X} = (X_1, \dots, X_n)^T$ denote an *n*-dimensional **random vector** if its components X_1, \dots, X_n are one-dimensional random variables.
- The **space** of of this random vector is the set of ordered n-tuples

$$\mathcal{D} = \{(x_1, x_2, \cdots, x_n) : x_1 = X_1(\omega), \cdots, x_n = X_n(\omega), \ \omega \in \mathcal{C}\}.$$

Notation: \mathbf{y}^T , or \mathbf{y}' , denotes the transpose of \mathbf{y} , where \mathbf{y} can be a matrix or a vector.

We denote (X_1, \ldots, X_n) by the n-dimensional column vector **X** and the observed values (x_1, \ldots, x_n) of the random vector by **x**.

UIC-DMS ()

Chapter 1: Basics of Probability Theory

ebruary 27, 2024 45 / 8

Continuous Random Vectors and Joint pdf

A random vector **X** is **continuous**, if it has a **joint probability density function** $f_{\mathbf{X}}$, that is, for every $A \subset \mathbb{R}^n$,

$$\mathbb{P}(\mathbf{X} \in A) = \int \cdots \int_{A} f_{\mathbf{X}}(x_{1}, \ldots, x_{n}) dx_{1} \cdots dx_{n},$$

where the density is a function satisfying

$$f_{\mathbf{X}}(\mathbf{x}) \geq 0$$
 for every $\mathbf{x} \in \mathbb{R}^n$

and

$$\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{\boldsymbol{X}}\left(x_1, \ldots, x_n\right) \mathrm{d}x_1 \cdots \mathrm{d}x_n = 1.$$

Joint CDF of a Random Vector

• The joint cumulative distribution function of a random vector **X** is defined as

$$F_{\mathbf{X}}(\mathbf{x}) = \mathbb{P}\left(X_1 \leq x_1, \dots, X_n \leq x_n\right)$$

= $\mathbb{P}\left(\left\{\omega \in \mathcal{C} : X_1(\omega) \leq x_1, \dots, X_n(\omega) \leq x_n\right\}\right),$

where

$$\mathbf{x}=(x_1,\ldots,x_n)\in\mathbb{R}^n.$$

For simplicity, the continuous random vectors are taken as examples for the following text. As for the discrete case, the analog is simple.

UIC-DMS (

Chapter 1: Basics of Probability The

ebruary 27 2024 /

Marginal Densities

If a vector **X** has density $f_{\mathbf{X}}$, all its components X_i , the vectors of the pairs $(X_i, X_j)^T$, triples $(X_i, X_j, X_k)^T$, etc., have their own **marginal densities**.

Example 1.5.22

We consider the case n = 3. Then the marginal densities are obtained as follows:

$$f_{\mathbf{X}_1}(x_1) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{\mathbf{X}}(\mathbf{x}) dx_2 dx_3, \quad f_{\mathbf{X}_1, \mathbf{X}_2}(x_1, x_2) = \int_{-\infty}^{\infty} f_{\mathbf{X}}(\mathbf{x}) dx_3$$

 $f_{X_2}(x_2)$ is obtained by integrating $f_{\mathbf{X}}(\mathbf{x})$ with respect to x_1 and x_3, f_{X_1, X_3} by integrating $f_{\mathbf{X}}(\mathbf{x})$ with respect to x_2 , etc.

Mean Vector and Covariance Matrix

• Consider an *n*-dimensional random vector $\mathbf{X} = (X_1, X_2, \dots, X_n)^T$. The **mean** vector of X is

$$\mathbb{E}(\mathbf{X}) = (\mathbb{E}X_1, \mathbb{E}X_2, \cdots, \mathbb{E}X_n)^T$$

• The covariance matrix of X is defined as

$$\operatorname{Var}(\mathbf{X}) = \mathbb{E}\left[(\mathbf{X} - \mathbb{E}[\mathbf{X}])(\mathbf{X} - \mathbb{E}[\mathbf{X}])^{T} \right]$$

$$= \begin{pmatrix} \operatorname{Var}(X_{1}) & \cdots & \operatorname{Cov}(X_{1}, X_{n}) \\ \vdots & \ddots & \vdots \\ \operatorname{Cov}(X_{n}, X_{1}) & \cdots & \operatorname{Var}(X_{n}) \end{pmatrix},$$

where

$$\operatorname{Cov}(X_{i}, X_{j}) = \mathbb{E}\left[\left(X_{i} - \mu_{X_{i}}\right)\left(X_{j} - \mu_{X_{j}}\right)\right]$$
$$= \mathbb{E}\left(X_{i}X_{j}\right) - \mu_{X_{i}}\mu_{X_{i}}$$

is the covariance of X_i and X_i . Notice that $Cov(X_i, X_i) = \sigma_{X_i}^2$.

Covariance matrix is positive semi-definite

Theorem 1.5.24

Let **X** be a random vector. Then $Var(\mathbf{X})$ is symmetric and positive semi-definite.

Proof:

- Var(X) is obviously symmetric.
- For any $\mathbf{c} \in \mathbb{R}^n$, define $Y := \mathbf{c}^T \mathbf{X}$, which is a random variable. Then

$$0 \le Var(Y) = Var(\mathbf{c}^T \mathbf{X}) = \mathbb{E}\left[\left(\mathbf{c}^T \mathbf{X} - \mathbb{E}\mathbf{c}^T \mathbf{X}\right)^2\right]$$
$$= \mathbb{E}\left[\left(\mathbf{c}^T \mathbf{X} - \mathbb{E}\mathbf{c}^T \mathbf{X}\right)\left(\mathbf{c}^T \mathbf{X} - \mathbb{E}\mathbf{c}^T \mathbf{X}\right)^T\right]$$
$$= \mathbf{c}^T \mathbb{E}\left[\left(\mathbf{X} - \mathbb{E}\mathbf{X}\right)(\mathbf{X} - \mathbb{E}\mathbf{X})^T\right] \mathbf{c}$$
$$= \mathbf{c}^T Var(\mathbf{X}) \mathbf{c},$$

showing that $Var(\mathbf{X})$ is positive semi-definite.

Mean vector and covariance matrix under linear transform

Theorem 1.5.23

Let **X** be an n-dimensional random vector. Suppose **A** is an $m \times n$ matrix and $\mathbf{b} \in \mathbb{R}^m$. Then

$$\mathbb{E}(\mathbf{AX} + \mathbf{b}) = \mathbf{A}\mathbb{E}(\mathbf{X}) + \mathbf{b}$$
 and $\operatorname{Var}(\mathbf{AX} + \mathbf{b}) = \mathbf{A}\operatorname{Var}(\mathbf{X})\mathbf{A}^{T}$.

Independence for multiple events or RVs

- The definition of independence can be extended to an arbitrary finite number of events and random variables.
- The events A_1, \ldots, A_n are independent if, for every choice of indices $1 \le i_1 < \cdots < i_k \le n$ and integers $1 \le k \le n$

$$\mathbb{P}\left(A_{i_1}\cap\cdots\cap A_{i_k}\right)=\mathbb{P}\left(A_{i_1}\right)\cdots\mathbb{P}\left(A_{i_k}\right).$$

• The random variables X_1, \ldots, X_n are independent if, for every choice of indices $1 \le i_1 < \dots < i_k \le n$, integers $1 \le k \le n$ and all subsets B_1, \dots, B_n of \mathbb{R} .

$$\mathbb{P}\left(X_{i_1} \in B_{i_1}, \ldots, X_{i_k} \in B_{i_k}\right) = \mathbb{P}\left(X_{i_1} \in B_{i_1}\right) \cdots \mathbb{P}\left(X_{i_k} \in B_{i_k}\right)$$

This means that the events $\{X_1 \in B_1\}, \dots, \{X_n \in B_n\}$ are independent.

▶ Notice that independence of the components of a random vector implies the independence of each pair of its components, but the converse is in general not true.

Random vector with independent components

• The random variables X_1, \ldots, X_n are independent if and only if their joint CDF can be written as follows:

$$F_{X_1,\ldots,X_n}(x_1,\ldots,x_n)=F_{X_1}(x_1)\cdots F_{X_n}(x_n), \quad (x_1,\ldots,x_n)\in\mathbb{R}^n$$

• If the random vector $\mathbf{X} = (X_1, \dots, X_n)^T$ has density $f_{\mathbf{X}}$, then X_1, \dots, X_n are independent if and only if

$$f_{X_1,\ldots,X_n}(x_1,\ldots,x_n)=f_{X_1}(x_1)\cdots f_{X_n}(x_n), \quad (x_1,\ldots,x_n)\in\mathbb{R}^n.$$

• If the random variable X_i has the marginal mgf $M(0, \ldots, 0, t_i, 0, \ldots, 0)$, then X_1, \ldots, X_n are mutually independent if and only if

$$M(t_1, t_2, \ldots, t_n) = \prod_{i=1}^n M(0, \ldots, 0, t_i, 0, \ldots, 0).$$

UIC-DMS (

Chapter 1: Basics of Probability Theory

bruary 27, 2024 53 / 8

Overview

- Events and their Probabilities
- 2 Random Variables
- Bivariate Distributions
- 4 Expected Values
- 6 Random Vectors
- 6 Normal Random Vectors
- 1 Distributions Derived from the Normal Distribution: χ^2 , t, F Distributions

Properties of independent RVs

An important consequence of the independence of random variables is the following property:

Theorem 1.5.25

If $X_1, ..., X_n$ are independent, then for any real-valued functions $g_1, ..., g_n$, the random variables $g_1(X_1), ..., g_n(X_n)$ are again independent and moreover,

$$\mathbb{E}\left[g_1\left(X_1\right)\cdots g_n\left(X_n\right)\right] = \mathbb{E}g_1\left(X_1\right)\cdots \mathbb{E}g_n\left(X_n\right),\,$$

provided the considered expectations are well defined.

-DMS () Chapter 1: Basics of Probability Theory February 27, 2024 54 / 8

Section 6

Normal Random Vectors

JIC-DMS () Chapter 1: Basics of Probability Theory February 27, 2024 55 / 86 UIC-DMS () Chapter 1: Basics of Probability Theory February 27, 2024 56

Standard normal random vector

• Consider $\mathbf{Z} = (Z_1, \dots, Z_n)^T$, where Z_1, \dots, Z_n are i.i.d. N(0,1) random variables. Then the density of \mathbf{Z} is

$$f_{\mathbf{Z}}(\mathbf{z}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{1}{2}z_{i}^{2}\right\} = \left(\frac{1}{2\pi}\right)^{n/2} \exp\left\{-\frac{1}{2}\sum_{i=1}^{n}z_{i}^{2}\right\}$$
$$= \left(\frac{1}{2\pi}\right)^{n/2} \exp\left\{-\frac{1}{2}\mathbf{z}^{T}\mathbf{z}\right\}$$

for $\mathbf{z} \in \mathbb{R}^n$.

Obviously,

$$E[\mathbf{Z}] = \mathbf{0}$$
 and $Cov[\mathbf{Z}] = \mathbf{I}_n$,

where I_n denotes the identity matrix of order n.

• We call **Z** an *n*-dimensional standard normal random vector and write

$$\mathbf{Z} \sim N(\mathbf{0}, \mathbf{I}_n)$$

UIC-DMS ()

Chapter 1: Basics of Probability Theor

ebruary 27, 2024 57 /

Normal random vector

Definition 1.6.27

A random vector $\mathbf{X} = (X_1, \dots, X_n)^T$ is called a normal random vector if there exists an ℓ -dimensional standard normal random vector \mathbf{Z} , an n-vector $\boldsymbol{\mu}$, and an $n \times \ell$ matrix \mathbf{A} , such that

$$X = AZ + \mu$$
.

In this case we write

$$\mathbf{X} \sim \mathcal{N}(oldsymbol{\mu}, oldsymbol{\Sigma}), \quad ext{with} \quad oldsymbol{\Sigma} = \mathbf{A}\mathbf{A}^{\mathrm{T}}.$$

Formally:

$$\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \iff \exists \ \boldsymbol{\mu} \in \mathbb{R}^n, \mathbf{A} \in \mathbb{R}^{n \times \ell}, \mathbf{Z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_{\ell}) \text{ such that}$$

$$\mathbf{X} = \mathbf{A}\mathbf{Z} + \boldsymbol{\mu} \quad \text{and} \quad \boldsymbol{\Sigma} = \mathbf{A}\mathbf{A}^T$$

ullet If $\mathbf{X} \sim \mathcal{N}(oldsymbol{\mu}, oldsymbol{\Sigma})$, then it's easy to see that

$$\mathbb{E}(\mathsf{X}) = \mu, \quad \mathrm{Cov}(\mathsf{X}) = \Sigma.$$

Definition 1.6.26

A random vector $\mathbf{X} = (X_1, \dots, X_n)^T$ is called a centered normal random vector if there exists a deterministic $n \times \ell$ matrix \mathbf{A} such that

$$X = AZ$$

where **Z** is a standard normal random vector with ℓ components.

Density function: non-degenerate case

Theorem 1.6.28

Suppose $\mathbf{X} \sim \mathcal{N}(\mu, \Sigma)$ and Σ is positive definite. Then \mathbf{X} has probability density function given by

$$f_{\mathbf{X}}(\mathbf{x}) = rac{1}{(2\pi)^{n/2}\sqrt{\det(\mathbf{\Sigma})}}e^{-rac{1}{2}(\mathbf{x}-oldsymbol{\mu})^T\mathbf{\Sigma}^{-1}(\mathbf{x}-oldsymbol{\mu})}, \quad \mathbf{x} \in \mathbb{R}^n.$$

Proof: We only show the 2-dimensional case, the general case is similar. By results from linear algebra, $\exists \mathbf{A} \in \mathbb{R}^{2\times 2}$ such that

$$\Sigma = AA^T$$
.

Thus for $\mathbf{Z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_2)$, it follows that

$$\mathsf{AZ} + \mu \sim \mathcal{N}(\mu, \Sigma).$$

Without loss of generality, assume that

$$X = AZ + \mu$$
.

Proof cont'd

Consider the map $g: \mathbb{R}^2 \to \mathbb{R}^2$ defined by

$$g(z) = Az + \mu, \quad z \in \mathbb{R}^2.$$

Let $h = g^{-1}$ be the inverse map. Note that

$$x = Az + \mu \iff z = A^{-1}(x - \mu).$$

So $h(\mathbf{x}) = \mathbf{A}^{-1}(\mathbf{x} - \boldsymbol{\mu})$. It follows that the Jacobian of h is

$$J = \begin{pmatrix} \frac{\partial h_1}{\partial x_1} & \frac{\partial h_1}{\partial x_2} \\ \frac{\partial h_2}{\partial x_1} & \frac{\partial h_2}{\partial x_2} \end{pmatrix} = \mathbf{A}^{-1}.$$

Since **Z** has density

$$f_{\mathbf{Z}}(\mathbf{z}) = \frac{1}{2\pi} \exp\left\{-\frac{1}{2}\mathbf{z}^{T}\mathbf{z}\right\},$$

it follows that X has density

$$f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{2\pi} \exp \left\{ -\frac{1}{2} h(\mathbf{x})^T h(\mathbf{x}) \right\} |J|.$$

UIC-DMS ()

Chapter 1: Basics of Probability Theor

ebruary 27, 2024 61 /

Density function: bivariate case

Let $(X, Y)^T$ be a 2-dimensional normal random vector with parameters

$$\boldsymbol{\mu} = \left(\begin{array}{c} \mu_X \\ \mu_Y \end{array} \right), \quad \boldsymbol{\Sigma} = \left(\begin{array}{cc} \sigma_X^2 & \rho \sigma_X \sigma_Y \\ \rho \sigma_X \sigma_Y & \sigma_Y^2 \end{array} \right),$$

where ρ is the correlation between X and Y.

Theorem 1.6.29

Suppose Σ is non-degenerate, i.e., $\sigma_X>0$, $\sigma_Y>0$ and $|\rho|\neq 1$. Then $(X,Y)^T$ has density

$$f(x,y) = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}} \cdot \exp\left(-\frac{1}{2(1-\rho^2)}\left[\left(\frac{x-\mu_X}{\sigma_X}\right)^2 - 2\rho\left(\frac{x-\mu_X}{\sigma_X}\right)\left(\frac{y-\mu_Y}{\sigma_Y}\right) + \left(\frac{y-\mu_Y}{\sigma_Y}\right)^2\right]\right)$$

Proof cont'd

It remains to note that

$$h(\mathbf{x})^{T} h(\mathbf{x}) = (\mathbf{A}^{-1}(\mathbf{x} - \boldsymbol{\mu}))^{T} \mathbf{A}^{-1}(\mathbf{x} - \boldsymbol{\mu})$$
$$= (\mathbf{x} - \boldsymbol{\mu})^{T} (\mathbf{A}^{-1})^{T} \mathbf{A}^{-1}(\mathbf{x} - \boldsymbol{\mu})$$
$$= (\mathbf{x} - \boldsymbol{\mu})^{T} (\mathbf{A}\mathbf{A}^{T})^{-1} (\mathbf{x} - \boldsymbol{\mu})$$
$$= (\mathbf{x} - \boldsymbol{\mu})^{T} \mathbf{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu}).$$

and

$$|J|=|\mathbf{A}^{-1}|=rac{1}{|\mathbf{A}|}=rac{1}{\sqrt{|\mathbf{\Sigma}|}},$$

where the last equality follows from

$$|\mathbf{\Sigma}| = |\mathbf{A}\mathbf{A}^T| = |\mathbf{A}|^2.$$

UIC-DMS

Chapter 1: Basics of Probability The

February 27, 2024 62

Proof

It's easy to see that

$$|\Sigma| = \sigma_X^2 \sigma_Y^2 \left(1 - \rho^2\right) \text{ and } \Sigma^{-1} = \frac{1}{\sigma_X^2 \sigma_Y^2 \left(1 - \rho^2\right)} \left(\begin{array}{cc} \sigma_Y^2 & -\rho \sigma_X \sigma_Y \\ -\rho \sigma_X \sigma_Y & \sigma_X^2 \end{array} \right).$$

So, for
$$\mathbf{z} = (x, y)^T$$
,

$$\begin{aligned} &(\mathbf{z} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{z} - \boldsymbol{\mu}) \\ &= \frac{1}{\sigma_X^2 \sigma_Y^2 (1 - \rho^2)} \left(x - \mu_X, y - \mu_Y \right)^T \begin{pmatrix} \sigma_Y^2 & -\rho \sigma_X \sigma_Y \\ -\rho \sigma_X \sigma_Y & \sigma_X^2 \end{pmatrix} \begin{pmatrix} x - \mu_X \\ y - \mu_Y \end{pmatrix} \\ &= \frac{1}{\sigma_X^2 \sigma_Y^2 (1 - \rho^2)} \left[\sigma_Y^2 \left(x - \mu_X \right)^2 - 2\rho \sigma_X \sigma_Y \left(x - \mu_X \right) \left(y - \mu_Y \right) + \sigma_X^2 \left(y - \mu_Y \right)^2 \right] \\ &= \frac{1}{(1 - \rho^2)} \left[\left(\frac{x - \mu_X}{\sigma_X} \right)^2 - 2\rho \left(\frac{x - \mu_X}{\sigma_X} \right) \left(\frac{y - \mu_Y}{\sigma_Y} \right) + \left(\frac{y - \mu_Y}{\sigma_Y} \right)^2 \right]. \end{aligned}$$

The assertion now follows from the previous theorem.

Decomposition into independent components

If the covariance matrix of a normal random vector **X** is of block diagonal form, i.e.,

$$\Sigma = \begin{pmatrix} \Sigma_{11} & 0 \\ 0 & \Sigma_{22} \end{pmatrix}, \tag{1}$$

where Σ_{11} is an $m \times m$ matrix with m < n, then we can write

$$\mathbf{X} = \left(egin{array}{c} \mathbf{X}_1 \ \mathbf{X}_2 \end{array}
ight), \quad oldsymbol{\mu} = \left(egin{array}{c} oldsymbol{\mu}_1 \ oldsymbol{\mu}_2 \end{array}
ight),$$

where $\mathbf{X}_1 := (X_1, \dots, X_m)^T$, $\mathbf{X}_2 := (X_{m+1}, \dots, X_n)^T$ and μ_1, μ_2 are similarly defined.

Theorem 1.6.30

Let Σ be of block diagonal form as in (1). Then $X_i \sim N(\mu_i, \Sigma_{ii})$, i = 1, 2, and X_1, X_2 are independent.

Linear transform of a normal random vector

Theorem 1.6.31

Let **c** be a $m \times n$ matrix and $\mathbf{d} \in \mathbb{R}^m$. If

$$\mathbf{X} = (X_1, \cdots, X_n)^T \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma}),$$

then

$$\mathsf{cX} + \mathsf{d} \sim \mathcal{N}(\mathsf{c}\mu + \mathsf{d}, \mathsf{c}\Sigma\mathsf{c}^\mathsf{T}).$$

Proof

Since Σ_{11} and Σ_{22} are both positive semi-definite, there exist $m \times m$ matrix \mathbf{A}_1 and $(n-m)\times (n-m)$ matrix \mathbf{A}_2 such that

$$oldsymbol{\Sigma}_{11} = oldsymbol{\mathsf{A}}_1oldsymbol{\mathsf{A}}_1^T, \quad oldsymbol{\Sigma}_{22} = oldsymbol{\mathsf{A}}_2oldsymbol{\mathsf{A}}_2^T.$$

Then

$$\mathbf{A} := \left(\begin{array}{cc} \mathbf{A}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{A}_2 \end{array} \right) \quad \text{satisfies} \quad \mathbf{A}\mathbf{A}^T = \left(\begin{array}{cc} \mathbf{A}_1\mathbf{A}_1^T & \mathbf{0} \\ \mathbf{0} & \mathbf{A}_2\mathbf{A}_2^T \end{array} \right) = \mathbf{\Sigma}.$$

We can find i.i.d. $Z_i \sim N(0,1)$ with

$$\mathbf{Z}_1 := (Z_1, \dots, Z_m)^T, \quad \mathbf{Z}_2 := (Z_{m+1}, \dots, Z_n)^T$$

such that

$$\left(egin{array}{c} m{\mathsf{X}}_1 \ m{\mathsf{X}}_2 \end{array}
ight) = \left(egin{array}{c} m{\mathsf{A}}_1 & 0 \ 0 & m{\mathsf{A}}_2 \end{array}
ight) \left(egin{array}{c} m{\mathsf{Z}}_1 \ m{\mathsf{Z}}_2 \end{array}
ight) + \left(egin{array}{c} m{\mu}_1 \ m{\mu}_2 \end{array}
ight) = \left(egin{array}{c} m{\mathsf{A}}_1m{\mathsf{Z}}_1 + m{\mu}_1 \ m{\mathsf{A}}_2m{\mathsf{Z}}_2 + m{\mu}_2 \end{array}
ight) \sim \mathcal{N}\left(m{\mu}, m{\Sigma}
ight),$$

since $\mathbf{A}\mathbf{A}^T = \mathbf{\Sigma}$. Thus

$$\mathsf{X}_i = \mathsf{A}_i \mathsf{Z}_i + \mu_i \sim \mathcal{N}\left(\mu_i, \Sigma_{ii}
ight)$$

and

$$\mathbf{Z}_1 \perp \!\!\! \perp \mathbf{Z}_2 \implies \mathbf{X}_1 \perp \!\!\! \perp \mathbf{X}_2$$
. [" $\perp \!\!\! \perp$ " means independence]

Linear transform of a normal random vector cont'd

Corollary 1.6.32

Suppose $X \sim \mathcal{N}(\mu, \Sigma)$ and $\mathbf{c} \in \mathbb{R}^n$. Then

$$\mathbf{c}^T\mathbf{X} \sim \mathit{N}(\mathbf{c}^T \mu, \mathbf{c}^T \mathbf{\Sigma} \mathbf{c})$$

• In other words, any linear combination of the one-dimensional components of a normal random vector is again normal.

February 27, 2024

Example

Let X_1, \dots, X_n be i.i.d. random variables each having a normal distribution with mean μ and variance σ^2 . Then

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim N\left(\mu, \frac{\sigma^2}{n}\right).$$

UIC-DMS (

Chapter 1: Basics of Probability Theor

ebruary 27, 2024 69 / 3

Overview

- Events and their Probabilities
- 2 Random Variables
- Bivariate Distributions
- 4 Expected Values
- 6 Random Vectors
- 6 Normal Random Vectors
- \bigcirc Distributions Derived from the Normal Distribution: χ^2 , t, F Distributions

Example

Suppose
$$\mathbf{X}=\left(X_1,\cdots,X_n\right)^T\sim \mathcal{N}(\boldsymbol{\mu},\boldsymbol{\Sigma}).$$
 Then
$$X_i\sim \mathcal{N}\left(\mu_i,\sigma_{ii}\right),\quad i=1,\ldots,n.$$

UIC-DMS ()

Chapter 1: Basics of Probability The

-L..... 27 2024 7

Section 7

Distributions Derived from the Normal Distribution: χ^2 , t, F Distributions

Definition of Chi-square distribution

The random variable X has a chi-square distribution with n degrees of freedom if X has the same distribution as

$$\sum_{i=1}^n Z_i^2,$$

where Z_1, \ldots, Z_n are independent standard normal random variables.

• Note that Z_i^2 has mgf $(1-2t)^{-1/2}$. In fact, for $t<\frac{1}{2}$,

$$\begin{split} \mathbb{E}(e^{tZ_i^2}) &= \int e^{tz^2} \frac{1}{\sqrt{2\pi}} e^{-z^2/2} dz \\ &= \int \frac{1}{\sqrt{2\pi}} e^{-(1-2t)z^2/2} dz \qquad [\tilde{z} := \sqrt{1-2t}z] \\ &= \left(\sqrt{1-2t}\right)^{-1} \int \frac{1}{\sqrt{2\pi}} e^{-\tilde{z}^2} d\tilde{z} = \left(\sqrt{1-2t}\right)^{-1}. \end{split}$$

UIC-DMS (

Chapter 1: Basics of Probability Theory

bruary 27, 2024 73

February 27, 2024

Graph of the χ_n^2 PDF: small n

The mgf of Chi-square distribution

It follows that the mgf of X is

$$M(t) = \mathbb{E}(e^{t\sum_{i=1}^{n} Z_{i}^{2}}) = \mathbb{E}(e^{tZ_{1}^{2}} \cdots e^{tZ_{n}^{2}})$$

$$= \mathbb{E}(e^{tZ_{1}^{2}}) \cdots \mathbb{E}(e^{tZ_{n}^{2}}) = (1 - 2t)^{-n/2}, \quad t < \frac{1}{2}.$$
(2)

Hence,

$$\mathbb{E}X = M'(0) = n$$

and

$$Var X = M''(0) - n^2 = 2n.$$

Graph of the χ_n^2 PDF: large n

0.1 0.09 0.08 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.09

- CLT: χ_n^2 converges to a normal distribution as $n \to \infty$
- $\chi_n^2 \to \mathcal{N}(n, 2n)$, as $n \to \infty$
- When n > 50, for many practical purposes, $\chi_n^2 \approx N(n, 2n)$

MS () Chapter 1: Basics of Probability Theory

UIC-DMS

------ 1. Besies of Beskehille, Theo

February 27, 2024 76 / 86

Gamma distribution

Recall that a Gamma distribution has a pdf with two parameters $\alpha>0$ and $\beta>0$.

$$f(x) = \begin{cases} \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}, & 0 < x < \infty, \\ 0, & \text{elsewhere.} \end{cases}$$

This distribution is usually denoted by $Gamma(\alpha, \beta)$.

UIC-DMS (

Chapter 1: Basics of Probability Theory

ebruary 27 2024 77 /

Properties of Chi-square distribution

Theorem 1.7.33

Suppose X_1, X_2 are independent and $X_1 \sim \chi_n^2, X_2 \sim \chi_m^2$. Then

$$X_1 + X_2 \sim \chi^2_{n+m}$$
.

Proof: It suffices to show that $X_1 + X_2$ has mgf $(1 - 2t)^{-(m+n)/2}$. But, by independence,

$$\begin{split} \mathbb{E}(e^{t(X_1+X_2)}) &= \mathbb{E}(e^{tX_1}e^{tX_2}) \\ &= \mathbb{E}(e^{tX_1})\mathbb{E}(e^{tX_2}) \\ &= (1-2t)^{-n/2}(1-2t)^{-m/2} \\ &= (1-2t)^{-(m+n)/2}, \quad t < \frac{1}{2}. \end{split}$$

The theorem is proved.

Equivalent definition as a Gamma distribution

• The mgf of a gamma distribution is

$$M(t) = \frac{1}{(1-t/\beta)^{\alpha}}, \quad t < \beta.$$

• Compared with (2), we see that the chi-square distribution with n degrees of freedom is identical to the gamma distribution with parameters (n/2, 1/2).

UIC-DIVIS

Chapter 1: Basics of Probability The

February 27 2024 78

The *t*-distribution

If Z is a standard normal random variable and V is a chi-square random variable with r degrees of freedom, and Z and V are independent, then

$$T = \frac{Z}{\sqrt{V/r}}$$

is a random variable following a t-distribution with r degrees of freedom. Its pdf is

$$f_T(t) = rac{\Gamma[(r+1)/2]}{\sqrt{\pi r} \Gamma(r/2)} rac{1}{(1+t^2/r)^{(r+1)/2}}, \quad -\infty < t < \infty.$$

Graph of the *t*-distribution PDF: small *n*

UIC-DMS (

Chapter 1: Basics of Probability Theory

ebruary 27, 2024 81 /

The *F*-distribution

If U is a $\chi^2(r_1)$ random variable and V is a $\chi^2(r_2)$ random variable, and U and V are independent, then

 $F = \frac{U/r_1}{V/r_2}$

is a random variable following an F-distribution with r_1 and r_2 degrees of freedom. Its pdf is

$$f_F(x) = \begin{cases} \frac{\Gamma[(r_1 + r_2)/2](r_1/r_2)^{r_1/2}}{\Gamma(r_1/2)\Gamma(r_2/2)} \frac{x_1^{r_1/2 - 1}}{(1 + r_1x/r_2)^{(r_1 + r_2)/2}} & 0 < x < \infty \\ 0 & \text{elsewhere.} \end{cases}$$

Graph of the *t*-distribution PDF: large *n*

UIC-DMS (

apter 1: Basics of Probability Theo

bruary 27 2024 82

Student's Theorem

Theorem 1.7.34

Let X_1, \dots, X_n be i.i.d random variables with $X_i \sim N(\mu, \sigma^2)$. Define

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \text{ and } S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

Then

- \bar{X} has a $N\left(\mu, \frac{\sigma^2}{n}\right)$ distribution.
- ② \bar{X} and S^2 are independent.
- $(n-1)S^2/\sigma^2$ has a $\chi^2(n-1)$ distribution.
- The random variable

$$T = \frac{\bar{X} - \mu}{S / \sqrt{n}}$$

has a t-distribution with n-1 degrees of freedom.

Proof: (1) and (2)

We have already shown (1) earlier. Let's turn to (2). Note that for each i

$$\begin{pmatrix} \bar{X} \\ X_i - \bar{X} \end{pmatrix}$$

is a linear transform of $(X_1, \ldots, X_n)^T$, so it is a 2-dimensional normal random vector. But

$$\operatorname{Cov}(\bar{X}, X_i - \bar{X}) = \operatorname{Cov}(\bar{X}, X_i) - \operatorname{Cov}(\bar{X}, \bar{X})$$

$$= \operatorname{Cov}\left(\frac{1}{n}X_i, X_i\right) - \operatorname{Var}(\bar{X})$$

$$= \frac{1}{n} - \frac{1}{n} = 0$$

Therefore, \bar{X} and $X_i - \bar{X}$ are independent for all i. Because S^2 is a function of $X_i - \bar{X}$, $i = 1, \dots, n$, it follows that S^2 is independent of \bar{X} .

JIC-DMS ()

Chapter 1: Basics of Probability Theor

February 27, 2024 85

Proof: (3) and (4)

We first note that

$$\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu)^2 = \sum_{i=1}^n \left(\frac{X_i - \mu}{\sigma} \right)^2 \sim \chi_n^2$$

Also,

$$\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu)^2 = \frac{1}{\sigma^2} \sum_{i=1}^n \left[(X_i - \bar{X}) + (\bar{X} - \mu) \right]^2$$

Expanding the square and using the fact that $\sum_{i=1}^{n} (X_i - \bar{X}) = 0$, we obtain

$$W := \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu)^2 = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \bar{X})^2 + \left(\frac{\bar{X} - \mu}{\sigma/\sqrt{n}}\right)^2 =: U + V$$

This is a relation of the form W = U + V. Independence of U and V implies $M_W(t) = M_U(t)M_V(t)$. W and V both follow chi-square distributions, so

$$M_U(t) = rac{M_W(t)}{M_V(t)} = rac{(1-2t)^{-n/2}}{(1-2t)^{-1/2}} = (1-2t)^{-(n-1)/2},$$

which is mgf of a χ^2_{n-1} distribution. So (3) is true. The assertion (4) now follows from (2) and (3) .