Data

BUSINESS ANALYST

CHANGE AGENT

Role

Improves business process as intermediary between business and IT

Languages

SQL

Mindset

Resilient project juggler

Skills & Talents

- Basic tools (e.g. MS Office)
- Data visualization tools (e.g. Tableau)
- Conscious listening and storytelling
- Business Intelligence understanding
- Data modeling

DATA ANALYST

DATA DETECTIVE

Role

Collects, processes and performs statistical data analyses

Languages

R, Python, HTML, Javascript, C/C++, SQL

Mindset

Intutive data junkie with high "figure-it-out" quotient

Skills & Talents

- Spreadsheet tools (e.g. Excel)
- Database systems (SQL and NO SQL based)
- Communication & visualization
- Math, Stats, Machine Learning

Clean and Transform the Data

Student Loan Data

Loan ID#	Graduated	Loan Type	Loan Balance	Next Payment	Months Delinquent	Defaulted
10148975	Yes	1	31567	327	0	N
19773966	Yes	3	27909	-	3	N
25220947	Yes	2	11,463	243	25	Υ
17090812	No	2	29801	255	15	Υ
23956341	Yes	3	18755	173	0	N
12680900	Yes	1	16,211	122	7	N
23435111	No	1	5064	84	0	N

One-Hot Encoding

Student Loan Data

Graduated	Loan 1	Loan 2	Loan 3	Loan Balance	Next Payment	Months Delinquent	Defaulted
1	1	0	0	31567	327	0	N
1	0	0	1	27909	200	3	N
1	0	1	0	11463	243	25	Υ
0	0	1	0	29801	255	15	Υ
1	0	0	1	18755	173	0	N
1	1	0	0	16211	122	7	N
0	1	0	0	5064	84	0	N

DataFrame

Student Loan Data

Graduated	Loan Balance	Next Payment	Months Delinquent	Defaulted
1	31567	327	0	0
1	27909	200	3	0
1	11463	243	25	1
0	29801	255	15	1
1	18755	173	0	0
1	16211	122	7	0
0	5064	84	0	0
0	17198	154	0	0
1	21309	201	0	0
0	14693	193	4	1

Student Loan Data

1	31567	327	0	0
1	27909	200	3	0
1	11463	243	25	1
0	29801	255	15	1
1	18755	173	0	0
1	16211	122	7	0
0	5064	84	0	0
0	17198	154	0	0
1	21309	201	0	0
0	14693	193	4	1

Common Machine Learning Algorithms

Linear Regression

Logistic Regression

Support Vector Machine

Decision Tree

 $\hat{f}(X)$

The Prediction

$$\mathring{y} = f(X)$$

Linear Regression

equation of a line

$$y = mx + b$$

equation of a line

$$y = mx + b$$

linear regression

$$y = \beta_0 + \beta_1 x$$

Simple Linear Regression

Input

learned coefficients (weights)

output

 X_1

$$\beta_0$$
, β_1

Y

$$y = \beta_0 + \beta_1 x$$

Weekly Hours Spent Studying

Gender	Number of Classes	Social Accounts	Hours Studying
Male	2	1	7.5
Male	4	3	12.25
Female	4	3	12.75
Female	3	4	7.75
Female	4	2	14
Male	2	3	5.75
Female	5	1	18.25

Multiple Linear Regression

Hrs. Studying =
$$1.63 + 3.51x_1 + .27x_2 - 1.08x_3$$

 x_1 = number of classes

 $x_2 = gender (m=0, female=1)$

X3 = number of social accounts

HEIGHT

A MALE
WILL GROW TO
BE ABOUT THE
HEIGHT OF

THE MOTHER (INCHES)

FATHER (INCHES)

+ 5 INCHES, DIVIDED BY TWO. A FEMALE
WILL GROW TO
BE ABOUT THE
HEIGHT OF

THE MOTHER (INCHES)

FATHER (INCHES)

- 5 INCHES, DIVIDED BY TWO.

CLASSIFIER

What is a classifier?

Learning Process

Logistic Regression

Logistic Regression

intermediate step

$$z = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$$

Logistic (Sigmoid) Function

Logistic Regression

$$\hat{f}(X) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 X_1 + \beta_2 X_2)}}$$

Linear Regression

Logistic Regression

positive class = 1 negative class = 0

if probability >= 0.5 : predict 1

if probability < 0.5 : predict 0

DEBORAH HILL

Highly motivated C# Sultenie Devel programming tanquinges, including N device drivers and applications. Exwithin Fortune 100, small start-up out software project and subcontract ma mentoring, and training. Proven a Demonstrated leadership abilities of supervision. Hold a current Departy

34.40 --

Programming Languages: Cit, SQL, HTML, XML, CSS, C+

NET Skill Set: NET Framework 4.0 and Com Web Services

MS SQL Server 2008, MySC

Software: Visual Studio 2010, Dream Clear Case, Clear Quest,

Operating Systems: Windows 7:NT/059/2003

Department of Defen Sucret

Certified Manager James Madison Ur

Not Master's Pri SetFocus, LLC

The Selfocus knowledge of a Devel

encar

User

envi Ser

Crosted business of the must be formula for any organization of the must be considered with building sociable enterprises associated with building sociable Library Management of the considered Public Library Management of the considered public with the considered public with public web pages secured muddle for data access components. Non-public web pages secured muddle for data access components.

55 Blue Way, New City, CT, 55555. Tel. (203) 555-5558, email: sbarnes@jupiter.com

Seeking a challenging authorise development apportunity in a dynamic environment where innovation. education and sense of ownership are valued and encouraged.

- Platforms: UNIX/Sofaris, Windows
- Pustorms: UNIX/Solaris, Windows
 Languages: Java-USEE (concurrency, socket level, NIO, JSP, Serviets, EJB, RM, Swing), C/C++ (STL, 1997), Serviets, EJB, Swing), C/C++ (STL, 1997), Serviets, EJB, Swing), C/C++ (STL, 1997), Swing), C/C++ (STL, 1997), Swing), C/C++ (STL, 1997), Swing), C/C++ (STL, 199 Networking: TCPIIP, UDP, HTML XML, Abache & Tomost
- Detabases Oracle, PL/SQL, JDBC
- Methodologies: OOP/D, UME, Design Patterns, Extreme Programming

Methodologies: OOPriD, UME, Design Patterns, Extreme Programming Tools: Code/Warrior, VisualStude, ClearCase, SourceSafe, RationalRose, Optimizett

NETWORK INTERACTIVE

Software Engineer

- Contributed to the development and continuous enhancement of the company's proprietary server-
- scleryfatform framework.

 Ceagned and implemented the room server a Java game matchnosting application that serves as the Designed and implemented the room server - a Java game manchmaning appacation that serves as the main backbone of the system. This high-availability multitreaded server maintains persistent TERIS and available an main backbone of the system. This high-availability multitrovaded server maintains persistent TDPNP connections with all players on the system, provides an interface for creating and rurning games, acts as
- connections with air payers on the system, provides an interface for creating and running games, acts a communication rule and enforces data integrity between clients and game-specific business logic. a communication rule and entories data integrity between claims and game-specific business logic.

 Participated in the implementation of several key platform services such as uper account management. Participated in the implementation of several key platform services such as user account management player risings, game prizes and tournaments. Each service is a must seried system consisting of a
- basease component, server approach and at least one client APT.

 Developed several new features of the web site including intelligent method of routing players to optimal Levelopeo several new restures or one was set including intelligent method of routing play genes based on player preferences, player statistics and the current load on the system.
- garriss barried on player premierencies, player statestics and the current load on the system.

 Assisted their party partners as well as internal engineers in developing and customizing garnes for
- displayment on the system.

 Developed web-based and command line tools that allowed administrators to configure and monitor.
- system components.

 Assumed ownership of the source code and developed regular updates to a Windows game
- matchmating application.
 Served as a technical lead to jurior team members and as a link to other teams by providing assistance and training.

 Assumed management responsibilities by evaluating upcoming and ongoing projects, assigning tasks to PRESENTATION PUBLISHING CORPORATION

Software Engineer

Standard, CT

March 1996 - Jan 1997

Debook Hill recess

Took part in developing a lightweight, graphically rich business presentation application. Took part in developing a signal signal specific graphically non-business presentation approach. Graphid several installation programs for various packaging options of the product. Managed the build and release process of the company's product line. Administrand the company's various control system.

Gender	Years Exp.	Source 1	Source 2	Source 3	Phone Screen	On-site Interview
1	3	0	1	0	9	1
0	2	0	0	1	7.5	0
0	2	1	0	0	7	0
0	4	0	1	0	8.5	1
1	4	0	1	0	9.5	1
1	2	0	1	0	6.5	0
0	3	1	0	0	8	0
1	2	0	0	1	8	0
1	4	0	1	0	9	1
0	4	0	1	0	7	1

Decision Boundary

On-site Interview =
$$-6 + 1x_1 + 1x_2$$

predict 1 when
$$-6 + 1x_1 + 1x_2 >= 0$$

predict 0 when
$$-6 + 1x_1 + 1x_2 < 0$$

Decision Boundary = $-6 + 1x_1 + 1x_2$

$$\hat{f}(X) = \frac{1}{1 + e^{-(-6 + 1X_1 + 1X_2)}}$$

Support Vector Machine

Support Vector Machine

Large Margin Classifier

if
$$\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 >= 1$$
: predict 1

if
$$\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 < -1$$
: predict 0

40-yard dash	Weight	Height	Drafted
5.10	290	74	1
4.92	275	75.5	1
4.43	178	69	0
4.62	221	74.5	1
4.91	248	75	0
5.53	303	77	0
4.47	189	71	1
4.56	205	71	1
4.75	267	73	0
4.84	261	74	1

Feature Engineering

40-yard dash	BMI (wt/ht ²)	Drafted
5.10	37.2	1
4.92	33.9	1
4.43	26.3	0
4.62	28	1
4.91	31	0
5.53	35.9	0
4.47	26.4	1
4.56	28.6	1
4.75	35.2	0
4.84	33.5	1

Kernel

non-linear classification

Decision Tree

Decision Tree

Short-term Attractiveness

Short-term Attractiveness

Facial Symmetry	ВМІ	Waist-to-Hip	Well-Groomed
0.9	23.4	0.93	1
0.85	27.9	0.87	0
0.65	27.1	0.79	1
0.85	22.6	0.91	1
0.9	30.3	0.82	0
0.75	29.0	0.82	0
0.85	22.3	0.89	1
0.7	37.6	0.73	0
0.85	24.2	0.85	0

[att, ave, un]

Structured Data

Age	Weight	Gender	ВМІ	Diabetes
47	192	М	23.4	No
53	164	F	27.2	Yes
68	214	М	25.2	Yes
43	151	F	24.8	No

Unstructured Data

Audio

Image

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar ultricies, purus lectus malesuada libero, sit amet commodo magna eros quis urna.

Deep Learning

Neural Network (feed forward network)

Facebook - DeepFace

Matup