- 1/28 -

SEQUENCE LISTING

(1)	GENERAL	INFORMATION:
-----	---------	--------------

- (i) APPLICANTS: Petkovich, P. Martin, White, Jay A., Beckett, Barbara R., Jones, Glenville
- (ii) TITLE OF INVENTION: Retinoid Metabolizing Protein
- (iii) NUMBER OF SEQUENCES: 43
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Torys LLP
 - (B) STREET: 3000 79 Wellington Street West
 - (C) CITY: Toronto
 - (D) STATE: Ontario
 - (£) COUNTRY: Canada
 - (F) ZIP: M5K 1N2
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Diskette, 3 1/2 inch, 1.4 Mb storage
 - (B) COMPUTER: COMPAQ, IBM PC compatible
 - (C) OPERATING SYSTEM: MS-DOS 5.1
 - (D) SOFTWARE: WORD PERFECT
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: 09/668,482
 - (B) FILING DATE: September 25, 2000
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBERS: 08/667,546; 08/724,466; PCT/CA97/00440;
 - (B) FILING DATE: June 21, 1996; October 1, 1996; June 23, 1997;
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Hunt, John C.
 - (B) REGISTRATION NUMBER: 36,424
 - (C) REFERENCE/DOCKET NUMBER: 32391-2005
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (416) 865-8121
 - (B) TELEFAX: (416) 865-7380
- (2) INFORMATION FOR SEQ ID NO:1
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 337 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1

TGÇCAGTGGA	CAATCTCCCT	ACCAAATTCA	CTAGTTATGT	CCAGAAATTA	GCCTAAACCG	60
GAGCCTTTGT	ACATATGTTT	TTATTTTAGA	TGAACTGTGA	TGTATTGGAT	ATTTTCTAAT	120
TTGTTTATAT	ANAGCAGATG	TGTATATAAG	TCTATGCGAA	GAAGCGAAAA	CGAGGGCACT	180

240

300

337

- 2/28 -

AÇT'	TTÇT	CAT (GGAT(CACT	GT A	ATGC'	TACA	G AG	rgtc'	TGTG	ATG	TATA'	TŢŢ	ATAA'	TGTAG
TGT	GTCA'	TAT A	AGCT	FTTG'	ra c	TGTA'	TGÇA	A ÇT	TATT'	TAAC	TCG	CTCT	TTA	TCTC	ATGGG
TTT	ATTT.	TAA	AAAA	CATG'	rr c	TTAC	AAAA	A AA	AAAA	A					
(2)		i) S! (! (!	ATIOI EQUEI A) LI B) T C) S'	NCE (ENGTI YPE: IRANI	CHAR H: 4: amin DEDNI	ACTE 92 au no a ESS:	RIST mino cid sin	ICS: acid	ds						
	(x:	i) 5	EQUEI	NČE I	DESCI	RIPT	ION:	SEQ	ID 1	NO: 2					
Met 1	Gly	Leu	Tyr	Thr 5	Leu	Met	Val	Thr	Phe 10	Leu	Суз	Thr	Ile	Val 15	Leu
Pro	Val	Leu	Leu 20	Phe	Leu	Ala	Ala	Val 25	Lys	Leu	Trp	Glu	Met 30	Lęu	Met
Ile	Arg	Arg 35	Val	Asp	Pro	Asn	Суз 40	Arg	Ser	Pro	Leu	Pro 45	Pro	Gly	Thr
Met	Gly 50	Leu	Pro	Phe	Ile	Glу 55	Gl u	Thr	Leu	Gln	Leu 60	Ile	Leu	Gln	Arg
Arg 65	Lys	Phe	Leu	Arg	Met 70	Lys	Arg	Gln	Lys	Tyr 75	Gly	Сув	Ile	Tyr	Lys 80
Thr	His	Leu	Phe	Gly 05	Asn	Pro	Thr	Val	Arg 90	Val	Met	Gly	Ala	Asp 95	Asn
Val	Arg	Gln	Ile 100	Leu	Leu	Gly	Glu	His 105	Lys	Leu	Val	Ser	Val 110	Gln	Trp
Pro	Ala	Ser 115	Val	Arg	Thr	Ile	Leu 120	Gly	Ser	Asp	Thr	Leu 125	Ser	Asn	Val
His	Gly 130	Val	Gln	His	ГÀз	Asn 135	Lys	Lys	Lys	Ala	Ile 140	Met	Arg	Ala	Phe
Ser 145	Arg	Asp	Ala	Leu	Glu 150	His	Tyr	Ile	Pro	Val 155	Ile	Gln	Gln	Glu	Val 160
Lys	Ser	Ala	Īle	Gln 165	Ğlu	Trp	Leu	Gln	Lys 170	Asp	Ser	Суѕ	Val	Leu 175	Val
Tyr	Pro	Glu	Met 180	Lyş	Lys	Leu	Met	Phe 185	Arg	Ile	Ala	Met	Arg 190	Ile	Leu
Leu	Gly	Phe 195	Glu	Pro	Glu	Gln	Ile 200	_	Thr	Asp	Glu	Gln 205	Glu	Leu	Val

P.18

Glu	Ala 210	Phe	Ģlu	Glu	Meţ	Ile 215	Lys	Asn	Leu	Phe	Şer 220	Leu	Pro	Ile	Asp
225					Leu 230					235					240
His	Ser	Lys	Ile	Glu 245	Glu	Asn	Ile	Arg	Lys 250	Lys	Ile	Gln	Asp	Asp 255	Asp
Asn	Glu	Asn	Glu 260	Gln	Lуs	Tyr	Lys	Asp 265	Ala	Leu	Gln	Leu	Leu 270	Ile	Ģlų
nsA	Ser	Arg 275	Arg	Ser	Asp	Ğlu	Pro 280	Phe	\$er	Leu	Gln	Ala 285	Met	Lys	Glu
Ala	Ala 290	Thr	Glu	Leu	Leu	Phe 295	Gly	Gly	His	Glu	Thr 300	Thr	Ala	Ser	Thr
Ala 305	Thr	Ser	Leu	Val	Met 310	Phe	Leu	Gly	Leu	Asn 315	Thr	Glu	Val	Val	Gln 320
Lys	Val	Arg	Glu	Glu 325	Val	Gln	Glu	Ľуз	Val 330	Glu	Meţ	Gly	Met	Tyr 335	Thr
Pro	Gly	Lyş	Gly 340	Leu	Ser	Met	Glu	Leu 345	Leu	Asp	Gln	Leu	Lys 350	Tyr	Thr
Gly	Cys	Val 355	Ile	Lys	Glu	Thr	Leu 360	Arg	Ile	Asn	Pro	Pro 365	Val	Pro	Gly
Gly	Phe 370	Arg	Val	Ala	Leu	Lys 375	Thr	Phe	Glu	Leu	Asn 380	Gly	туг	Gln	Ile
Pro 385	Lys	Gly	Trp	Asn	Val 390	Ile	Туг	Ser	Ile	Су s 395	Asp	Thr	His	Asp	Val 400
Ala	Asp	Val	Phe	Pro 405	Asn	Lys	Glu	Glu	Phe 410	Gln	Pro	Glu	Arg	Phe 415	Met
Ser	Lys	Ģly	Leu 420	Glu	Asp	Gly	Ser	Arg 425	Phe	Asn	Tyr	Ile	Pro 430	Phe	Gly
Gly	Gly	Ser 435	Arg	Met	Cys	Val	Gly 440	Lys	Glu	Phe	Ala	Lys 445	Vạl	ΓĠñ	Ге́л
Lys	Ile 450	Phe	Leu	Val	Glu	Leu 455	Thr	Gln	Hiş	Cys	Asn 460	Trp	Ile	Leu	Ser
Asn 465	Gly	Pro	Pro	Thr	Met 470	Lys	Thr	Gly	Pro	Thr 475	Ile	Tyr	Pro	Val	Asp 480

Asn Leu Pro Thr Lys Phe Thr Ser Tyr Val Arg Asn

485

(2) INFORMATION FOR SEQ ID NO:3

- 4/28 -

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1850 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear													
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3													
TGTCGCCGTT GCTGTCGGTT GCTGTCGGAC GCTGTCTCCT CTCCAGAAGC TTGTTTTTCG	60												
TTTTGGCGAT CAGTTGCGCG CTTCAAC ATG GGG CTG TAC ACC CTT ATG GTC ACC Met Gly Leu Tyr Thr Leu Met Val Thr 1 5	114												
TTT CTC TGC ACC ATC GTG CTA CCC GTT TTA CTC TTT CTC GCC GCG GTG Phe Leu Cys Thr Ile Val Leu Pro Val Leu Leu Phe Leu Ala Ala Val 10 25	162												
AAG TTG TGG GAG ATG TTA ATG ATC CGA CGA GTC GAT CCG AAC TGC AGA Lys Leu Trp Glu Met Leu Met Ile Arg Arg Val Asp Pro Asn Cys Arg 30 35 40	210												
AGT CCT CTA CCG CCA GGT ACC ATG GGC TTG CCG TTC ATT GGA GAA ACG Ser Pro Leu Pro Pro Gly Thr Met Gly Leu Pro Phe Ile Gly Glu Thr 45 50 55	250												
CTC CAG CTG ATC CTC CAG AGA AGG AAG TTT CTG CGC ATG AAA CGG CAG Leu Gln Leu Ile Leu Gln Arg Arg Lys Phe Leu Arg Met Lys Arg Gln 60 65 70	306												
AAA TAC GGG TGC ATC TAC AAG ACG CAC CTC TTC GGG AAC CCG ACT GTC Lys Tyr Gly Cys Ile Tyr Lys Thr His Leu Phe Gly Asn Pro Thr Val 75 80 85	354												
AGG GTG ATG GGA GCT GAT AAT GTG AGG CAG ATT CTG CTG GGC GAA CAC Arg Val Met Gly Ala Asp Asn Val Arg Gln Ile Leu Leu Gly Glu His 90 95 100 105	402												
AAG CTG GTG TCT GTT CAG TGG CCA GCA TCA GTG AGA ACC ATC CTG GGC Lys Leu Val Ser Val Gln Trp Pro Ala Ser Val Arg Thr Ile Leu Gly 110 115 120	450												
TCT GAC ACC CTC TCC AAT GTC CAT GGA GTT CAA CAC AAA AAC AAG AAA Ser Asp Thr Leu Ser Asn Val His Gly Val Gln His Lys Asn Lys Lys 125 130 135	498												
AAG GCC ATT ATG AGG GCG TTC TCT CGA GAT GCT CTG GAG CAC TAC ATT Lys Ala Ile Met Arg Ala Phe Ser Arg Asp Ala Leu Glu His Tyr Ile 140 145 150	546												
CCC GTG ATC CAG CAG GAG GTG AAG AGC GCC ATA CAG GAA TGG CTG CAA Pro Val Ile Gln Glu Val Lys Ser Ala Ile Gln Glu Trp Leu Gln 155 160 165	594												

- 5/28 -

						AAA Lys		642
						GAG Glu		690
						ATG Met		738
						CTG Leu 230		786
			His			GAA Glu		834
						AAA Lys		882
						GAC Asp		 930
						CTA Leu		978
						ATG Met 310		1026
						GTT Val		1074
						AGT Ser		1122
						GAG Glu		1170
						CTC Leu		1218
						GTC Val 390		1266

- 6/28 -

ATC TGT GAC ACG CAC GAT GTG GCC GAC GTC TTT CCA AAC AAA GAG GAG Tle Cys Asp Thr His Asp Val Ala Asp Val Phe Pro Asn Lys Glu Glu 395 400 405	1314
TTC CAG CCG GAG AGA TTC ATG AGC AAA GGT CTG GAG GAC GGG TCC AGG Phe Gln Pro Glu Arg Phe Met Ser Lys Gly Leu Glu Asp Gly Ser Arg 410 415 420 425	1362
TTT AAC TAC ATC CCC TTC GGA GGA GGA TCC AGG ATG TGT GTG GGC AAA Phe Asn Tyr Ile Pro Phe Gly Gly Ser Arg Met Cys Val Gly Lys 430 435 440	1410
GAG TTC GCC AAA GTG TTA CTC AAG ATC TTT TTA GTT GAG TTA ACG CAG Glu Phe Ala Lys Val Leu Leu Lys Ile Phe Leu Val Glu Leu Thr Gln 445 450 455	1458
CAT TGC AAT TGG ATT CTC TCA AAC GGA CCC CCG ACA ATG AAA ACA GGC His Cys Asn Trp Ile Leu Ser Asn Gly Pro Pro Thr Met Lys Thr Gly 460 465 470	1506
CCG ACT ATT TAC CCA GTG GAC AAT CTC CCT ACC AAA TTC ACT AGT TAT Pro Thr Ile Tyr Pro Val Asp Asn Leu Pro Thr Lys Phe Thr Ser Tyr 475 480 485	1554
GTC AGA AAT TAGCCTAACC GGAGCTTTGT ACATATGTTT TTATTTTAGA Val Arg Asn 490	1603
TGAACTGTGA TGTATTGGAT ATTTTCTATT TTGTTTATAT AAAGCAGATG TGTATATAAG	1663
TCTATGCGAG GAAGCGAAAA CGAGGGCACT ACTTTCTCAT GGATCACTGT AATGCTACAG	1723
AGTGTCTGTG ATGTATATT ATAATGTAGT TGTGTTATAT AGCTTTTGTA CTGTATGCAA	1783
CTTATTTAAC TCGCTCTTTA TCTCATGGGT TTTATTTAAT AAAACATGTT CTTACAAAAA	1843
AAAAAA	1850

- (2) INFORMATION FOR SEQ ID NO:4
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 497 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4

Met Gly Leu Pro Ala Leu Leu Ala Ser Ala Leu Cys Thr Phe Val Leu 1 5 10 15

Pro Leu Leu Phe Leu Ala Ala Ile Lys Leu Trp Asp Leu Tyr Cys 20 25 30

Val Ser Gly Arg Asp Arg Ser Cys Ala Leu Pro Leu Pro Pro Gly Thr 35 40 45 - 7/28 -

Met	Gly 50	Phe	Pro	Phe	Phe	Gly 55	Glu	Thr	Leu	Gln	Met 60	Val	Leu	Gln	Ar
Arg 65	Lys	Phe	Leu	Gln	Met 70	Lys	Arg	Arg	Lys	Туг 75	Gly	Phe	Ile	Tyr	Ly. 80
Thr	His	Leu	Phe	Gl y 85	Arg	Pro	Thr	Val	Arg 90	Val	Met	Gly	Ala	Asp 95	Ası
Val	Arg	Arg	Ile 100		Leu	Gly	Asp	Asp 105		Leu	Val	Ser	Val 110	His	Tr
Pro	Ala	Ser 115	Val	Arg	Thr	Ile	Leu 120	Gly	Ser	Gly	Cys	Leu 125	Ser	Asn	Le
His	Asp 130	Ser	Ser	His	гÃа	Gln 135	Arg	Lys	Lys	Val	Ile 140	Met	Arg	Ala	Phe
Ser 145	Arg	Ģlu	Ala	Leu	Glu 150	Cys	Tyr	Val	Pro	Val 155	Ile	Thr	Glu	Glu	Va:
Gly	5er	\$er	Leu	Glu 165	Gln	Trp	Leu	Ser	Cys 170	Gly	Glu	Arg	Gly	Leu 175	Let
Val	Туг	Pro	Glu 180	Val	Lys	Arg	Lėu	Met 185	Phe	Arg	Îlė	Ala	Met 190	Arg	Ile
Leu	Leu	Gly 195	Cys	Glu	Pro	Gln	Leu 200	Ala	Gly	Asp	Gly	Asp 205	Ser	Glu	Ğlr
Gln	Leu 210	Val	Glu	Ala	Phę	Glu 215	Glu	Met	Thr	Arg	Asn 220	Leu	Phe	Ser	Leι
Pro 225	Ile	Asp	Val	Pro	Phe 230	Ser	Gly	Leu	Туг	Arg 235	Gly	Met	Ĺys	Ala	Arc 240
Asn	Leu	Ile	His	Ala 245	Arg	Ile	Glu	Gln	Asn 250	Ile	Arg	Ala	Lys	Ile 255	Суз
			Ala 260					265					270		
Leu	Гéй	11e 275	Glu	Hiş	Şer	Trp	Glu 280	Arg	Gly	Glu	Arg	Leu 285	Asp	Met	Gln
Ala	Leu 290	Lys	Gln	Ser	Ser	Thr 295	Glu	Leu	Leu	Phe	Gly 300	Gly	His	Glu	Thr
Thr 305	Ala	Ser	Ala	Ala	Thr 310	Şęr	Leu	Ile	Thr	Tyr 315	Leu	Gly	Leu	Tyr	Pro 320
His	Val	Leu	Gln	Lys 325	Val	Arg	Glu	Glu	Leu 330	Lys	Ser	Lys	Gly	Leu 335	Leu
Суз	Lys	Ser	Asn 340	Gln	Asp	Asn	ŗÀş	Leu 345	Asp	Met	Glu	Ile	Leu 350	Glu	Gln

- 8/28 -

Leu	Lys	Tyr 355	Ile	Gly	Суз	Val	Ile 360	Lyŝ	Glu	Thr	Leu	Arg 365	Leu	Asn	Pro		
Pro	Val 370	Pro	Gly	Gly	Phe	Arg 375	Val	Ala	Leu	Lys	Thr 380	Phe	Glu	Leu	Aşn		
Gly 385	Tyr	Gln	Ile	Pro	Lys 390	Gly	Trp	Asn	Val	Ile 395	Tyr	Ser	Ile	Суз	Asp 400		
Thr	His	Asp	Val	Ala 405	Glu	Ile	Phe	Thr	Asn 410	Lys	Glu	Glu	Phė	Asn 415	Pro		
Asp	Arg	Phe	Ser 420	Ala	Pro	His	Pro	Glu 425	Asp	Ala	Ser	Arg	Phe 430	Şer	Phe		
Ile	Pro	Phe 435	Gly	Gly	Gly	Leu	Arg 440	Ser	Cys	Val	Gly	Lys 445	Glu	Phe	Ala		
Lys	Ile 450	Leu	Leu	Lys	Ile	Phe 455	Thr	Val	Glu	Leu	Ala 460	Arg	Ris	САз	qeA		
Trp 465	Gln	Ľėu	Ľėu	Asn	Gly 470	Pro	Pro	Thr	Met	Lys 475	Thr	Ser	Pro	Thr	Val 480		
Туг	Бъо	Val	Asp	Asn 485	Leu	Pro	Ala	Arg	Phe 490	Thr	His	Phe	His	Gly 495	Glu		
Ile																	
(2)		L) SE (<i>F</i> (E	ATION CQUEN A) LE B) TY C) SI	NCE C ENGTH (PE: TRANE	HARA I: 14 nucl	CTEF 194 k eic Ess:	RISTI ase acid sing	CS: pair	:s								
	(xi	.) \$E	QUEN	ÇE E)E\$CF	RIPTI	ON:	SEQ	ID N	10:5							
	GGG Gly															48	
	ÇTG Leu															96	
	AĞC Ser															144	
	GGC Gly 50															192	

- 9/28 -

	TTC Phe											240
	CTG Leu											288
	CGC Arg											336
	TCG Ser 115											384
	TCC Ser											432
	GAG Glu											480
	AGC Ser											529
	CCC Pro											576
	GGC Gly 195											624
	GTG Val											672
	GAC Asp		Ser	Gly	Leu	Tyr	Arg	Gly	Met	Ala		720
	ATT Ile											768
	CGG Arg											816
	ATC Ile 275											864

- 10/28 -

	CTA Leu 290								912
	GCC Ala								960
	GTT Val								1008
	AAG Lys								1056
	P Y Y								1104
	GTT Val 370	 							1152
	TAC Tyr								1200
	CAT His								1248
	CGA Arg								1296
	CCA Pro								1344
	ATT Ile 450			Thr					1392
	CAG Gln								1440
	CCT Pro								1488
ATC Ile	TGA								1494

- 11/28 -

- (2) INFORMATION FOR SEQ ID NO:6
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6

Pro Phe Gly Gly Gly Pro Arg Leu Cys Pro Gly Tyr Glu Leu Ala Arg

Val Ala Leu Ser 20

- (2) INFORMATION FOR SEO ID NO:7
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7

Pro Phe Ser Gly Gly Ala Arg Asn Cys Ile Gly Lys Gln Phe Ala Met

Ser Glu Met Lys

- (2) INFORMATION FOR SEQ ID NO:8
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8

Pro Phe Ser Gly Gly Ala Arg Asn Cys Ile Gly Lys Gln Phe Ala Met

Asn Glu Leu Lys

- (2) INFORMATION FOR SEQ ID NO:9
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- 12/28 -

/vil	SECHENCE	DESCRIPTION:	SEO	TD	NO - 9
(XI)	SECUENCE	DESCRIPTION:	טבט	Tυ	NOIS

Pro Phe Gly Thr Gly Pro Arg Asn Cys Ile Gly Met Arg Phe Ala Ile 1 10 15

Met Asn Met Lys 20

- (2) INFORMATION FOR SEQ ID NO:10
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10

Pro Phe Ser Gly Gly Ser Arg Asn Cys Ile Gly Lys Gln Phe Ala Met
1 5 10 15

Asn Glu Leu Lys 20

- (2) INFORMATION FOR SEQ ID NO:11
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 351 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLÓGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11

GAACTCCTCT TTGGAGGACA CGAAACCACG GCCAGTGCAG CCACATCTCT GATCACTTAC 60
CTGGGGCTCT ACCCACATGT TCTCCAGAAA GTGCGAGAAG AGCTGAAGAG TAAGGGTTTA 120
CTTTGCAAGA GCAATCAAGA CAACAAGTTG GACATGGAAA TTTTGGAACA ACTTAAATAC 180
ATCGGGTGTG TTATTAAGGA GACCCTTCGA CTGAATCCCC CAGTTCCAGG AGGGTTTCGG 240
GTTGCTCTGA AGACTTTTGA ATTAAATGGA TACCAGATTC CCAAGGGCTG GAATGTTATC 300
TACAGTATCT GTGATACTCA TGATGTGGCA GAGATCTTCA CCAACAAGGA A 351

- (2) INFORMATION FOR SEQ ID NO:12
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 14 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12

TTTTTTTTT TTGG 14

P.28

(2)	INFORMATION FOR SEQ ID NO:13 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 14 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13	
TTTT	TTTTTT TTGA	14
(2)	<pre>INFORMATION FOR SEQ ID NO:14 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 14 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14	
TTTI	TTTTTT TTGT	14
(2)	<pre>INFORMATION FOR SEQ ID NO:15 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 14 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15	
TTTT	TTTTTT TTGC	14
(2)	INFORMATION FOR SEQ ID NO:16 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 14 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16	
TTTŢ	TTTTTT TTAG	14
(2)	INFORMATION FOR SEQ ID NO:17 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 14 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	

- 14/28 -

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17	
TTTT	TTTTT TTAA	14
(2)	INFORMATION FOR SEQ ID NO:18 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 14 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18	
TTTT	TTTTTT TTAT	14
(2)	<pre>INFORMATION FOR SEQ ID NO:19 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 14 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear</pre>	
	(xi) SEQUENCE DESCRIPTION; SEQ ID NO:19	
TTTT	TTTTTT TTAC	14
(2)	INFORMATION FOR SEQ ID NO:20 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 14 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20	
TTTT	TTTTTT TTCG	14
(2)	<pre>INFORMATION FOR SEQ ID NO:21 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 14 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21	
TTTT	TTTTTT TTCA	14

- 15/28 -

TORYS LLP TORONTO

(2)	<pre>INFORMATION FOR SEQ ID NO:22 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 14 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22	
TTTT	TTTTTT TTCT	14
(2)	INFORMATION FOR SEQ ID NO:23 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 14 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23	
TTTT	TTTTTT TTCC	14
(2)	INFORMATION FOR SEQ ID NO:24 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24	
AAGC	GACCGA	10
(2)	INFORMATION FOR SEQ ID NO:25 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 base pairs (E) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25	
TGTT	CGCCAG	10
(2)	INFORMATION FOR SEQ ID NO:26	

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

- 16/28 -

	(x1) SEQUENCE DESCRIPTION: SEQ ID NO:26	
TGCC	AGTGGA	10
(2)	<pre>INFORMATION FOR SEQ ID NO:27 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27	
GGCT	GCAAAC	10
(2)	<pre>INFORMATION FOR SEQ ID NO:28 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28	
CCTA	GCGTTG	10
(2)	INFORMATION FOR SEQ ID NO:29 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xí) SEQUENCE DESCRIPTION: SEQ ID NO:29	
GTAG	CGGCCG CTGCCAGTGG A	21
(2)	<pre>INFORMATION FOR SEQ ID NO:30 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30	
ርሞአር፣	CGGCCG CT	12

- 17/28 -

(2)	INFORMATION FOR	SEQ ID NO:31
	(i) SEQUENCE CH	ARACTERISTICS:
	(A) TENTAME	7775 base pair

(A) LENGTH: 1725 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS; single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31

(XI) Shyohned bhoomililion, oly is noted	•
GCACGAGGGA GGCTGAAGCG TGCC ATG GGG CTC CCG GCG CTG CTG GCC AGT Met Gly Leu Pro Ala Leu Leu Ala Ser 1	51
GCG CTC TGC AGC TTC GTG CTG CCG CTG CTC TTC CTG GCG GC	99
AAG CTC TGG GAC CTG TAC TGT GTG AGC AGC CGC GAT CGC AGC TGC GCC Lys Leu Trp Asp Leu Tyr Cys Val Ser Ser Arg Asp Arg Ser Cys Ala 30 35 40	147
CTC CCC TTG CCC CCC GGT ACC ATG GGC TTC CCA TTC TTT GGG GAA ACA Leu Pro Leu Pro Pro Gly Thr Met Gly Phe Pro Phe Gly Glu Thr 45 50 55	195
TTG CAG ATG GTG CTT CAG CGG AGG AAG TTT CTG CAG ATG AAG CGC AGG Leu Gln Met Val Leu Gln Arg Lys Phe Leu Gln Met Lys Arg Arg 60 65 70	243
AAA TAC GGC TTC ATC TAC AAG ACG CAT CTG TTT GGG CGG CCC ACG GTG Lys Tyr Gly Phe Ile Tyr Lys Thr His Leu Phe Gly Arg Pro Thr Val 75 80 85	291
CGG GTG ATG GGC GCG GAT AAT GTG CGG CGC ATC TTG CTG GGA GAG CAC Arg Val Met Gly Ala Asp Asn Val Arg Arg Ile Leu Leu Gly Glu His 90 95 100 105	339
CGG TTG GTG TCG GTG CAC TGG CCC GCG TCG GTG CGC ACC ATC CTG GGC Arg Leu Val Ser Val His Trp Pro Ala Ser Val Arg Thr Ile Leu Gly 110 115 120	387
GCT GGC TGC CTC TCC AAC CTG CAC GAT TCC TCG CAC AAG CAG CGA AAG Ala Gly Cys Leu Ser Asn Leu His Asp Ser Ser His Lys Gln Arg Lys 125 130 135	435
AAG GTG ATT ATG CAG GCC TTC AGC CGC GAG GCA CTC CAG TGC TAC GTG Lys Val Ile Met Gln Ala Phe Ser Arg Glu Ala Leu Gln Cys Tyr Val 140 145 150	483
CTC GTG ATC GCT GAG GAA GTC AGC AGT TGT CTG GAG CAG TGG CTA AGC Leu Val Ile Ala Glu Glu Val Ser Ser Cys Leu Glu Gln Trp Leu Ser 155 160 165	531
TGC GGC GAG CGC GGC CTC CTG GTC TAC CCC GAG GTG AAG CGC CTC ATG Cys Gly Glu Arg Gly Leu Leu Val Tyr Pro Glu Val Lys Arg Leu Met 170 175 180 185	579

- 18/28 -

CGC Arg								627
 GGC G l y								675
CGC Arg								723
CGG Arg 235								771
ATT Ile								819
TGC Cys								867
GAG Glu								915
TTT Phe								963
TAC Tyr 315								1011
AAG Lys								1059
ATG Met				Tyr	Gly			1107
ACC Thr								1155
AAG Lys								1203
ATT Ile 395								1251

			GAA Glu														1299
			CGG Arg														1347
			AAA Lys 445			-									GTG Val	,	1395
			AGG Arg												ACA Thr		1443
			AGC Ser							-				-	AGA Arg		1491
			TTC Phe					TGAT	'AGCT	'AT T	TCAA	TTCT	T				1535
ĠĠAC	TTAT	TT G	SAAGI	GTAT	'A TI	GGTI	TTTT	TTA	AAAA	TAG	TGTC	ATGT	TG A	CTTI	TTTA	A.	1595
ATTI	CTAA	AT G	TATA	GTAI	'G A'I	'ATTT	'ATGT	' GTC	TCTA	CTA	CAGT	ccce	TG G	TCTT	'AAAT'		1655
ATTA	TAAA	'AA I	GAAT	TTGT	'A TG	ATTT	'CCCA	ATA	AAGT	'AAA	ATTA	AAAA	GT G	SAAAA	AAAA	7	1715
AAAA	AAAA	AA															1725

- (2) INFORMATION FOR \$EQ ID NO:32
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 497 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:32

Met Gly Leu Pro Ala Leu Leu Ala Ser Ala Leu Cys Thr Phe Val Leu 1 5 10 15

Pro Leu Leu Phe Leu Ala Ala Leu Lys Leu Trp Asp Leu Tyr Cys 20 25 30

Val Ser Ser Arg Asp Arg Ser Cys Ala Leu Pro Leu Pro Pro Gly Thr
35 40

Met Gly Phe Pro Phe Phe Gly Glu Thr Leu Gln Met Val Leu Gln Arg 50 60

Arg Lys Phe Leu Gln Met Lys Arg Arg Lys Tyr Gly Phe Ile Tyr Lys 65 70 75 80

- 20/28 -

Thr	His	Leu	Phe	Gly 85	Arg	Pro	Thr	Val	Arg 90	Val	Met	Gly	Ala	Asp 95	Asn
Val	Arg	Arg	Ile 100	Leu	Leu	Gly	Glu	His 105	Arg	Lęu	Val	Ser	Val 110	His	Trp
Pro	Ala	Ser 115	Val	Arg	Thr	Ile	Leu 120	Gly	Ala	Gly	Cys	Leu 125	\$er	Asn	Leu
His	Asp 130	Ser	Ser	His	Lys	Gln 135	Arg	Lys	Lys	Val	Ile 140	Met	Gln	Ala	Phe
Ser 145	Arg	Glu	Ala	Leu	Gln 150	Cys	Tyr	Val	Leu	Val 155	Ile	Ala	Glu	Glu	Val 160
Ser	Ser	Сув	Leu	Glu 165	Gln	Trp	Leu	Şer	Cys 170	Gly	Glu	Arg	Gly	Leu 175	Leu
Val	Tyr	Pro	Glu 180	Val	Lys	Arg	Leu	Met 185	Phe	Arg	Ile	Ala	Met 190	Arg	Ile
Leu	Leu	Gly 195	Cys	Glu	Pro	Gly	Pro 200	Ala	Gly	Gly	Gly	Glu 205	qaA	Glu	Gln
Gln	Leu 210		Glu	Ala	Phe	Glu 215		Met	Thr	Arg	Asn 220		Phe	Ser	Leu
Pro 225	Ile	Asp	۷al	Pro	Phe 230	Ser	Gly	Leu	Tyr	Arg 235	Gly	Val	Lys	Ala	Arg 240
Asn	Leu	Ile	His	Ala 245	Arg	Ile	Glu	Glu	Asn 250	Ile	Arg	Ala	Lys	Ile 255	Arg
Arg	Leu	Gln	Ala 260	Thr	Glu	Pro	Asp	Gly 265	Gly	Cys	Lys	qeA	Ala 270	Leu	Gln
Leu	Leu	Ile 275	Glu	His	Ser	Trp	Glu 280	Arg	Gly	Glu	Arg	Leu 285	Asp	Met	Gln
Ala	Leu 290	Lys	Gln	Ser	Ser	Thr 295	Glu	Leu	Leu	Phe	Gly 300	Gly	His	Glu	Thr
Thr 305	Ala	Ser	Ala	Ala	Thr 310	Ser	Leu	Ile	Thr	Tyr 315	Leu	Gly	Leu	Tyr	Pro 320
His	Val	Leu	Gln	Lys 325	Val	Ārģ	Glu	Glu	Ile 330	Ľуз	Ser	Lys	Ğly	Leu 335	Leu
Cys	Lys	Şer	Aşn 340	Gln	Asp	Asn	Lys	Leu 345	Asp	Met	Glu	Thr	Leu 350	Glu	Gln
Leu	Lys	Tyr 355	Ile	Gly	Сув	Val	Ile 360	Lys	Glu	Thr	Leu	Arg 365	Leu	Asn	Pro
Pro	Val 370	Pro	Gly	Gly	Phe	Arg 375	Val	Ala	Leu	Lys	Thr 380	Phe	Glu	Leu	Aşn

- 21/28 -

Gly 385	Tyr	Gln	Ile	Pro	Lys 390	Gly	Trp	Asn	Val	Ile 395	Tyr	Ser	Ile	Суѕ	Asp 400	
Thr	His	Asp	Val	Ala 405	Asp	Ile	Phe	Thr	Asn 410	Lys	Glu	Glu	Phe	Asn 415	Pro	
Aşp	Arg	Phe	11e 420	Val	Pro	His	Pro	Glu 425	qeA	Ala	Ser	Arg	Phe 430	Ser	Phe	
Ile	Pro	Phe 435	Gly	Gly	Gly	Leu	Arg 440	Ser	Сұз	Val	Gly	Lys 445	Glu	Phe	Ala	
Lys	Ile 450	Leu	Leu	Lys	Ile	Phe 455	Thr	Val	Glu	Leu	Ala 460	Arg	His	Сув	Asp	
Trp 465	Gln	Leu	Lęụ	Aşn	Gly 470	Pro	Pro	Thr	Met	Lys 475	Thr	Ser	Pro	Thr	Val 480	
Tyr	Pro	Val	Asp	Asn 485	Leu	Pro	Ala	Arg	Phe 490	Thr	Tyr	Phe	Gln	Gly 495	Asp	
Ilę																
(2)	(2) INFORMATION FOR SEQ ID NO:33 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 273 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:33															
	(xi	(E (C (I	3) TY 3) ST 3) TÇ	PE: RANI POLC	nucl EDNE GY:	.eic SS: line	acio sino ar	i jle		0:33	ł					
ĊĠÇA		(E (C (I) TY) SI)) TÇ	PE: RAND POLO	nucl EDNE GY: ESCF	eic SS: line	acio sing ar ON:	jle SEQ	ID N			GCCI	'CT G	CCTC	:GGCGC	60
	.cccc	(E (C (I .) SE	B) TY C) SI D) TO CQUEN	PE: RANE POLC ICE E	nucl EDNE GY: ESCF	eic SS: line UPTI	acic sing ar ON:	i gle SEQ CCG	ID N	CGC	CGCC				egecec	60 120
GGAA	CCCC	(E (C (I .) SE LAG G	B) TY C) ST C) TO CQUEN GAGGO	(PE: PRANI POLC ICE I IGGGG AGAT	nucl EDNE GY: DESCF T CG	eic CSS: line CIPTI GGAGG	acic sinc ar ON: GAAG	SEQ CCG	ID N GCCAC GCCG	cgc cgg	CGCC	AGGA	.GC C	AGGG		
GGAA AATC	CCCC CAAA CCGC	(E (C (I) SE LAG G LCG G	3) TY C) ST COUEN GAGGC GTTAA	(PE: PRANE POLC ICE D IGGGG LAGAT LGATG	nucleed nucles of the control of the	eic SS: line CAGG GGGC	acic sing ar ON: GAAG CASC	SEQ CCG CCG	ID N CCAC TCCG	CGC CGG TGT	CGCC GGGG CTGA	AGGA	.GC C	AGGG AACG	GCCCC	120
GGAA AATO AGCA	CCCC CAAA CCGC ACCT	(EAA T	3) TY C) ST COUEN GAGGC GTTAA	PE: PRANI POLO ICE D IGGGG LAGAT IGATG	nucl DEDNE DESCR T CG T TT A AC	eic SS: line GGAGG GGGC	acic sing con: con: consc consc consc	SEQ GCGGGAAGGGAAGGGAAGGGAAGGGAAGGGAAGGGAAG	ID N CCCAC TCCG TAAT	CGC CGG TGT	CGCC GGGG CTGA	AGGA	.GC C	AGGG AACG	GCCCC	120
GGAA AATO AGCA	CCCC CAAA CCGC ACCT GTGG INF	(EAG GAA TEGG GAA TEG	TYAAA CCGC GGGA TION QUEN TYAAA TOON TOON TOON TOON TOON TOON TOON T	PE: RAND POLO GGGG AGAT GGTC FOR CE C NGTH PE: RAND	nucleans of the control of the contr	eic SS: line GAGG GGGC TTTG GCGG GCGC ID CTER 74 b eic SS: line	acic sing sar SON: GGAAG CASC CASC CAGC SCACC SCAGC SCACC SCAGC SCACC SCAGC SCAGC SCAGC SCAGC SCAGC SCAGC SCAGC SCACC SCAGC SCAGC SCAGC SCAGC SCAC SCA	SEQ SEQ GCC GCC AAC GCC TGC 4 Cs: pair	ID N CCAC TCCG TAAT GTGG	ccgc ccgg TGT GGT	CGCC GGGG CTGA	AGGA	.GC C	AGGG AACG	GCCCC	120 180 240
GGAA AATC AGCA GCAG (2)	CCCC CAAA CCGC ACCT GTGG INF (i	(E) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	TYAAA TOOLOGICATION TOOLOGICATION TOOLOGICATION TOOLOGICATION TOOLOGICATION TYON TYON TYON TYON TYON TYON TYON TY	PE: RAND POLC GCGC AGAT GATG CTAT GGTC CE C NGTH PE: RAND POLO CE D	DESCRETA ACCEPTAGE AND CONTROL OF	eic SS: line GAGG GGGC TTTG GCGG CTER 74 b eic SS: line IPTI	acid sing sar SON: SGAAG CASC CASC SCAGC SCAC SCA	SEQ SEQ GCC GCC AAC TGC TGC TGC	ID NGCCAC	CGC CGG TGT GGT	CGCC GGGG CTGA TTGA	AGGA CCAA AGCG	GC C	AGGG AACG GCGG	GCCCC	120 180 240

- 22/28 -

GATCCGCAAT TAAAGATGAA CTTTGGGTGA ACTAATTTGT CTGACCAAGG TAACGTGGGC	190
AGTAACCTGG GCGGCCTTAT AAAGAGGGCG CGCGGCGGGG TTCGGAGCTA GGGAGGCGGC	240
GGCAGGTGGC GCGGGAGGCT GAAGCGTGCC ATGG	274
(2) INFORMATION FOR SEQ ID NO:35 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 319 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35	
TCGGGGGAAT TAACACCTTT TCAAAGTGAA ATCTCAGGAT TGTCTGCCTT CTACAGGAGG	60
TGGTATTAAA ATGCGCCTAT AACAAATGGT TGAGAGTTTG GAGCCGCTTC TGCCCTGTGG	120
GCGGGGCGAG ATGACACCAC AATTAAAGAT GAACTTTGGG TGAACTAATT TATCTGAGGA	180
AGTTAACAGG AGGAGACCTG CGCGCAATGG ATATATAAGG GCGCGCAGGC GAGGACGCCC	240
TCAGTTTGTG CGTAAAGACG CGTCTCCTCT CCAGAAGCTT GTTTTTCGTT TTGGCGATCA	300
GTTGCGCGCT TCAACATGG	319
(2) INFORMATION FOR SEQ ID NO:36 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2677 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36	
GATCCCAGAT CTGCCTATTG CGCCCGATGC CCCGAGGCTC TCTCTTGGAC TCTGGCCCTG	60
AGTTCTTCTG CGCGATCCTT CGGAGACGTC TGGAGGCCTG CTTTATGCAT CTCTCTTGGA	120
CCTCAGTTTC CCCACACGTG GGAGGAGGCA GCTGGACGAT TCCTGAAAGG ACTTTCCCTT	180
GCTTCCTCAT CACGTGGAAG AGAGCCCACC CGGCACCTGG AAATGGAAAG CCAGTGAAGG	240
CTGCTTTGGG CCGGGGCAKC GGGTGGGACC GGGCGGAGG GATTCCAAAG AGACCGCCGG	300
GAAGGCTAGA GCTTGGAATT CCGGCTCCTC GGAGTCCTGG CCCTCCCCCA CCGCCGCCTC	360
GGAGCTCAGC ACACCTTGGA TGGGGGAGGC GGGCAGCTCC TAGCCCCGCA CCCCAGGAGG	420
CGCGCTCGGA GGGAAGCCGC CACCGCCGCC GCCTCTGCCT CGGCGCGGAA CAAACGGTTA	480
AAGATTTTGG GCCASCGCCT CCGCGGGGGG AGGAGCCAGG GGCCCCAATC CCGCAATTAA	540
AGATGAACTT TGGGTGAACT AATTGTCTGA CCAAGGTAAC GTGGGCAGCA ACCTGGGCCG	600

- 23/28 -

CCTATAAAGC	GGCAGCGCCG	TGGGGTTTGA	AGCGCTGGCG	GCGGCGGCAG	GTGGCGCGGG	660
AGGTCGCGGC	GCGCCATGGG	GCTCCCGGCG	CTGCTGGCCA	GTGCGCTCTG	CACCTTCGTG	720
CTGCCGCTGC	TGCTCTTCCT	GGCTGCGATC	AAGCTCTGGG	ACCTGTACTG	CGTGAGCGGC	780
CGCGACCGCA	GTTGTGCCCT	CCCATTGCCC	CCCGGGACTA	TSGGSTTCCC	CTTCTTTGGG	840
GAAACCTTGC	AGATGNTACT	NCAGGTAAGG	GAGGGTGGGG	CGGGACAGGC	TGCTTCCCCG	900
GAGCCCGGCG	CGGCTCTGGG	CTTCTGCTGA	AGTCGGGGTA	GGCGCCCCCG	GGAGGCATGC	9 6 0
TATTGCGGCT	AGGAGCAGGG	CTGGCGGGAG	CGCGGCGCTC	CCCGGMKYMC	SCTCAWGCSC	1020
RCWWKTMWCC	TCCGCCTYMC	TCCCAMAGCG	GARSAARWKC	YKGMRGATGA	AGCGCAGGAA	1080
ATACGGCTTC	ATCTACAAGA	CGCATCTGTT	CGGGCGCCC	ACCGTACGGG	TGATGGGCGC	1140
GGACAATGTG	CGGCGCATCT	TGCTCGGAGA	GCACCGGCTG	GTGTCGGTCC	ACTGGCCAGC	1200
GTCGGTGCGC	ACCATTCTGG	GATCTGGCTG	CCTCTCTAAC	CTGCACGACT	CCTCGCACAA	1260
GCAGCGCAAG	AAGGTGGGGG	CAGGAGGCGA	CGGCTGGACA	GGGAGGGGGA	CCCCATTTAT	1320
GAGCGGAATT	CCGGCTGATG	GATGCTAGGC	GCGGGCTAGC	AGCTTGAGGT	GGGCTAGGAC	1380
CCTCTGCCAG	CTCCAGGTTA	GCTTTCCCAG	CTCGGAGAGT	GCCATGTGTC	TGGCAGGACT	1440
GGGGGTGTCT	GGAAGGGGAC	GGCGGTAGAC	GAGAGGGGCG	GATGGAGGCT	TTTAACGCTG	1500
TCCCCTCCTC	GGGACTCAGG	TGATTATGCG	GGCCTTCAGC	CGCGAGGCAC	TCGAATGCTA	1560
CGTGCCGGTG	ATCACCGAGG	AAGTGGGCAG	CAGCCTGGAG	CAGTGGCTGA	GCTGCGGCGA	1620
GCGCGGCCTC	CTGGTCTACC	CCGAGGTGAA	GCGCCTCATG	TTCCGAATCG	CCATGCGCAT	1680
CCTACTGGGC	TGCGAACCCC	AACTGGCGGG	CGACGGGGAC	TCCGAGCAGC	AGCTTGTGGA	1740
GGCCTTCGAG	GAAATGACCC	GCAATCTCTT	CTCGCTGCCC	ATCGACGTGC	CCTTCAGCGG	1800
GCTGTACCGG	GTAAGGGCGG	CAAACGGGCT	GCGGACTAGG	GGCGCGGGAC	CTGGGCGTCT	1860
GCTCACCGCC	GCGCGCTCTC	TGCGCTCAGG	GCATGAAGGC	GCGGAACCTC	ATTCACGCGC	1920
GCATCGAGCA	GAACATTCGC	GCCAAGATCT	GCGGGCTGCG	GGCATCCGAG	GCGGGCCAGG	1980
GCTGCAAAGA	CGCGCTGCAG	CTGTTGATCG	AGCACTCGTG	GGAGAGGGGA	GAGÇGGCTGG	2040
ACATGCAGGT	GAGTAGCAGC	TTCAGACCAG	GCACTGCGGA	GTTTGGTCCC	CTGGCTTTCC	2100
AAGGCGCTGT	TCCTGGGGCC	CCCAAAGCGC	GCGCCTGGGG	CCCAGCTTTC	TGGAGTGGGC	2160
GGCCGGCTCA	GACTACAGCT	ATGGAATCCC	GAAGGAAGGC	TGAGACACCC	GGTÇAGGAGA	2220
GCTGCGGAAG	GGGCTGCGGM	GGAAACTGGG	AGCATCCCCT	AGCCTTTAMC	AGGTTTCAAA	2280

- 24/28 -

GGGAAAGTTG	GAATTTGCAA	AAATGTTAAT	AAAGAACCTT	GCGATTTTAA	TAAAACTAAG	2340
ACTTTAACTC	AGGAGTTTCC	GGTAGRGCGG	GGTCGTACTC	GCCTTACTGC	TCCAGCTGAA	2400
CTAAAGGGAC	GTTGCATTTT	GTTTAAAGAT	ATTGCTTTCC	TTGACTTTCT	GTCAGCAAAA	2460
CATTTAGCCC	TTCTAGTCTT	CCCTCCAGAA	CTCTCAGTTC	GATTCTGAGT	AATCCTTCTG	2520
TCAAACCGCA	GGCAGACTTG	TGAGAATGTG	GGTCTCACTC	TATTCTTAGG	CACTAAAGCA	2580
ATCTTCAACC	GAACTCCTCT	TTGGAGGACA	CGAAACCACG	GCCAGTGCAG	CCACATCTCT	2640
GATCACTTAC	CTGGGGCTCT	ACCCACATGT	TCTCCAG			2677

(2) INFORMATION FOR SEQ ID NO:37

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 683 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37

GATCCAGGTT	GCTGAAACAT	ATCTCCATAT	AGGGCAGAAC	AATTATCAAA	AGCATAAGAA	60
TTGCAGCCAC	AGCATAGGGA	AGAAAGAGGA	GTTTTTAAAC	CACAACAAAA	GGGAGAAAGA	120
AGAGAATTTT	AACTTACATT	TAATTCAAAA	GTCTTCAGAG	CAACCCGAAA	CCCTCCTGGA	180
ACTGGGGGAT	TCAGTCGAAG	GGTCTCCTTA	ATAACACACC	CGATGTATYT	AAGTTGTTCC	240
AAAATTTCCA	TGTCCAACTT	GTTGTCTTGA	TTGCTCTTGC	AAAGTAAACC	CTAYCAAAAY	300
AGTCATACAG	AGGTGAACAG	TYATTTTGTG	CTCCAATTAA	AATCAGCCCA	GCAGACGTAA	360
ACAGGGCTTA	AGTGGAGACT	AAACCCAAAG	GGCCCCATGA	TGGGAGAGAC	TGGGAGGGGG	420
AAACAGCAGC	TAATGGCCAT	TTGCCTGCCC	AAATCCACTA	TCTATTTACA	ATCCCAGGAG	480
AATGCTGCTC	ACCAGTTAGA	AGGACCAAGT	TTCTCCCCAC	GCCCCCCAC	CCCACACTCA	540
CCACCACCAC	CCACACTAAT	CAGCTATTCA	CACTATGTAT	GCCCTTGGAC	ACACCAATTC	600
AAGAAAAGTG	GAACCTATCT	GAGAATCTCC	ACGGTTCACA	AAAAGGTGGA	GGAGGGGTAG	660
GAATACAAGG	TCAAACCCTG	CCC				683

(2) INFORMATION FOR SEQ ID NO:38

- (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4164 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

60

- 25/28 -

(xi)	SEQUENCE I	ESCRIPTIÓN:	SEQ ID NO:3	.	
TCGCGAGGA	G CGACCACGO	GC TTGAAGAGGG	GTAGACGAGA	CCAGATGCTC	CCCGGCGCCC

CCTCATGCGG GTTGCGGTCT CTCTCCTCCA CCTCCCTCTC AGCGGAGGAA GTTTCTGCAG ATGAAGCGCA GGAAATACGG CTTCATCTAC AAGACGCATC TGTTTGGGCG GCCCACGGTG 180

CGGGTGATGG GCGCGGATAA TGTGCGGCGC ATCTTGCTGG GAGAGCACCG GTTGGTGTCG 240

GTGCACTGGC CCGCGTCGGT GCGCACCATC CTGGGCGCTG GCTGCCTCTC CAACCTGCAC 300

360 GATTCCTCGC ACAAGCAGCG AAAGAAGGTG AGGGTGAGCT GGCAACTCCT TGGCTGGCAG

420 GGAGACCTCA TCCTATGGCT TGGTTCAGGC AAAATAGAAT GCGGGGCGAG GGCTAGTCCT

ATGTGGTGGG GACCAGGACC CTCTCTATCT GAGATCCACT TTAGCTTTTC TGCTAGCACG 480

TGGGTTAGTC CTGGGGGGGA CTGAAATTCT TGAAAGGGTA CTCGGAAAGG CGAAGGGGGG 540

GGGGCTGAGG GAAAGTAGAG GATTGTAACA CTCTCTGCTC CTGGGGGGTG CTCAGGTGAT 600

TATGCAGGCC TTCAGCCGCG AGGCACTCCA GTGCTACGTG CCCGTGATCG CTGAGGAAGT 660

CAGCAGTTGT CTGGAGCAGT GGCTAAGCTG CGGCGAGCGC GGCCTCCTGG TCTACCCCGA 720

GGTGAAGCGC CTCATGTTCC GCATCGCCAT GCGCATCCTG CTGGGCTGCG AGCCGGGTCC 780

AGCGGGCGGC GGGGAGGACG AGCAGCAGCT CGTGGAGGCT TTCGAGGAGA TGACCCGCAA 840 TCTCTTCTCT CTTCCCATTG ACGTGCCCTT TAGCGGCCTG TACCGGGTAA GGGCGGTTTG 900

960 CGGAGTCGGA GTAGGGGAAC GCAAGCTCGG GCATCCGCTC ACCGCCACGC TCTCTCCGCG

1020 CTCAGGGCGT GAAGGCGCGG AACCTTATAC ACGCGCGCAT CGAGGAGAAC ATTCGCGCCA

AGATCCGCCG GCTTCAGGCT ACAGAGCCGG ATGGGGGTTG CAAGGACGCG CTGCAGCTCC 1080

TGATTGAGCA CTCGTGGGAG AGGGGAGAGA GGCTGGATAT GCAGGTGAGA AGCAATTTCA 1140

AAAGGTGCCA AGGGCCGGGG AGTGCCTCTG ACTTTCCAGA CACACTTTCT GGGGTCTCCA 1200

AAGCCCTGTC AAGGCCCCAG CTACTTCCAA GTGGGCGGCG ATGCTAGGTC TAGAGCTTTT 1260

CAACCTGTGG GTCGTGACCC CTTCACGGAG CCAAACAACC CTTTCAGAAG GGTCGCCTAA 1320

GAGCATCTGC ATATCCGATA TTTACATCAA GAAACATAAC AGTAGCAAAA TTACCGTTAT 1380

GAAGTAGCAA CAAAGATAAT TTTATCGTTG GGGGTCACCA CAACACGAGG AACCGTATTA 1440

AAGGGTGGCA TTGGTCTAGA GAGCTGTGGA AGGGGGTGGC TGAGCAATGG GGAAGATCCC 1500

AAAGTTCAAA GGGCAAGGCT CATCTACAAA GGTTAAAGCG GAAGAGCAGG ATTAAGGGAG 1560

TTTTGCGTTT TTGTTTGTGG TCTTTGACTT TCTATGAACA AAACGGATTT TACCCTTGAA 1620

1680 GTCTTCCGTG CAATATICTC AGGTCAGGTC TTTGTAACAG TGCTATAAAC TGCACTCAGA

- 26/28 -

TCTGTATAAA	CTTCCGTTTT	TATCCTTAGG	ÇAÇTAAAACA	ATCGTCAACA	GAGCTCCTCT	1740
TTGGTGGTCA	TGAAACTACA	GCCAGTGCTG	CGACGTCACT	GATCACTTAC	CTAGGACTCT	1800
ACCCACATGT	CCTÇÇAGAAA	GTTCGAGAAG	AGATAAAGAG	CAAGGTAGGA	TGATTCTAGA	1860
GGTTCCCCAT	TTGCCTAGGA	CATTCCTCTA	TTAACCACCA	CCACCACCCC	ÇACTGTATAT	1920
AAGTTTGCTÇ	GATACACCCA	GTACTATGAC	AGTGAAGATC	TGAGAGCTAG	GTGGGACTGT	1980
GGGGGAGAGA	CTCCACCTCG	TGAATTTAAA	AAGGCAGTTG	TTTGTACTGG	GCTCTCTCTT	2040
GGGCAGAATT	TGACCCTCTC	CTCCTCCTCC	TCCTCCTCCT	CCTCTTCCTC	CTCCACCACC	2100
ACCACCATCA	CCACCTTTTA	TAGAGCAAGG	TTCTCCTTTC	CCTGACCAAG	AACATGAATA	2160
ATGTGATTAG	AGCCAATAGC	TGATCAGGGT	CGCAGTGTTG	GTGAGGGCTC	AGGGTATGAC	2220
CCTTTATATA	CCTGATAAGC	AACATTGTCT	GGATAATGGG	TTTAGGCTGA	GGAAGTGTGG	2280
AAAGGAAGGC	CATCAGGCCA	TCAGCTCTTT	CCCTTTTATC	CTCTCCCATC	CAGACGCCTT	2340
CAGGTTTAGT	TAACAGGTGA	GTCCTGCTGG	GCTGACTTTT	TTTTTGGAG T	GCCCAGGGAT	2400
CCATCACTCA	CTTTTTTATC	TGTTTCCATA	GGGCTTACTT	TGCAAGAGCA	ATCAAGACAA	2460
CAAGTTAGAC	ATGGAAACTT	TGGCACAGCT	TAAATACACT	GGGTGTGTCA	TTAAGGAGAC	2520
CCTGCGATTG	AATCCTCCGG	TTCCAGGAGG	GTTTCGGGTT	GCTCTGAAGA	CTTTTGAGCT	2580
GAATGTGAGT	GCACCTCCTG	TCCCCCACCC	CCAGCCCTCG	TCCACGTCCA	CTCTGCTATG	2640
CTGTTGAGCA	TCAGCTGCCC	AGAGCAGTGG	CTCACTGCCC	TTGACAGTGT	CCTGCCTCCT	2700
ATGGTACTGG	GAACCAATTT	GCTCTCÇTÇT	CTTAATGCCA	TCCATGCTAG	TAATGACTTT	2760
TTGTTGTTGC	AAGCTCAGGG	CCGGGATTGT	CAATTCTTAG	GATTTTTTT	AAATTTTTTT	2820
CAGGGATACC	AGATCCCCAA	GGGCTGGAAT	GTTATTTACA	GTATCTGTGA	CACCCACGAT	2880
GTGGCAGATA	TCTTCACTAA	CAAGGAGGAA	TTTAATCCCG	ACCGCTTTAT	AGTGCCTCAT	2940
CCAGAGGATG	CTTCCCGGTT	CAGCTTCATT	CCATTTGGAG	GAGGCCTTCG	GAGÇTGTGTA	3000
GGCAAAGAGT	TTGCAAAAAT	TCTTCTTAAG	ATATTTAÇAÇ	TGGAGCTGGC	TAGGCACTGT	3060
GATTGGCAGC	TTCTAAATGG	ACCTÇÇTAÇA	ATGAAGAÇAA	GCCCCACTGT	GTACCCTGTG	3120
GACAATCTCC	CTGCAAGATT	TACCCACTTC	CAGGGAGATA	TCTGATAGCT	ATTTCAATTC	3180
TTGGACTTAT	TTGAAGTGTA	TATTGTTTTT	TTTAAAATAG	TGTĆATGTTG	ACTTTATTTA	3240
ATTTCTAAAT	GTATAGTATG	ATATTTATGT	GTCTCTACTA	CAGTCCCGTG	GTCTTAAATA	3300
TAAAAATT	GAATTTGTAT	GATTTCCCAA	TAAAGTAAAA	TTAAAAAGTG	CTTCTCTTGC	3360

- 27/28 -

TTTTTAAGAT	TCTTGTTGGC	AAGCTGCCCA	TGGTGGTACA	TTGCTGTAAT	ACTAGGACTT	3420
GGAAGGTGGA	GGCAAGAAGA	GCAGGCATTC	AAGGCTAGCC	TGGGCTACAG	AAATCCTGTC	3480
TTAAACAAAC	ACTACAACAA	AAAGTCCTGT	TAGGGAATÇT	GACTGGCTCA	GTGTTTGTAC	3540
TTTGTGTATT	TAAAATGATT	TAGAGTGAAA	CCATAGGTCT	CTCCCCCATG	TCAGAAAATA	3600
TATATTATTA	TGTGTATGCT	GATCCAAAGT	ATCTTTGTAA	CTTTTTCTAA	GGTCATTGAG	3660
ACTTCATATT	TTGAAATTGT	ATGGAGGCTA	GTTATATTAC	ATTATTTATT	TATTTATTTA	3720
TTTACATTTT	TATGGTGCTG	GGGATTGGAT	CGAAGGCTTC	ACACCTCTAG	GGCAAGCCCT	3780
TTGTCATTAA	GGCGCTGCCT	CTCCCTTTCA	GCCCAACGTT	AATTCTAGAT	TCTTTTCTT	3840
TGGTGCTTTT	GGGAGGTAAA	CCTGGGATGC	TGCAGTTATT	TGGTGGTGGT	CGTTGGTTTT	3900
ACTCTAGAGA	GAAGGCAACT	TTGGGAAGGC	AACACTGCTG	CTGGTGAGTC	GGGAAGCATC	3960
ATCCCAGAGC	AACGGGGTCA	GCATAGCTAA	CATTTTAAAT	CAGCATAATG	AATCCCTGTC	4020
ATATGGAGGA	GGCAGAACTC	CTCTTTGAAG	TTGATATTTT	AGATAAGACA	GAGCCAGCCC	4080
CTCTGGTTAT	GGACAGTTCT	TACCCAAAAT	GAAACAGAGA	AGAAAACCAC	TGGTGTGTCA	4140
CCTTTCCTTA	GAAGTGCTTC	AGGA				4164

(2) INFORMATION FOR SEQ ID NO:39

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 17 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ix) FEATURE:
 - (D) OTHER INFORMATION: Each N can represent any nucleotide and there can be 0 to 5 N $\,$
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:39

TGAACTNNNN NTGAACT

17

- (2) INFORMATION FOR SEQ ID NO:40
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS; single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:40

TCTGASSAAG KTAAC

15

10

P.43

10						4
(2) INFORMATION	FOR	SEO	ΤD	NO:4	ι Τ

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:41

CAATTAAAGA

(2) INFORMATION FOR SEQ ID NO:42

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 31 base pairs
 - (B) TYPE; nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:42

CAATTAAAGA TGAACTTTGG GTGAACTAAT T

AGA TGAACTTTGG GTGAACTAAT T 31

- (2) INFORMATION FOR SEQ ID NO:43
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:43

GTAGCACGGA TGGTG 15