

Design an Elevator Controller using PLC

Section: 01 | Course Code: EEE402

Course Name: Control Systems | Semester: Spring 2024

Course Instructor: DR. Mohammed Mazharul Islam,

Assistant Professor, EEE, EWU

EEE402

01

Submitted By (**Group – 08**)

- 01. Arpon Podder (2020-1-80-005)
- 02. Rohit Bhowmick (2020-1-80-006)

Objective

The objective of designing an elevator controller using a Programmable Logic Controller (PLC) is to create a reliable, efficient, and flexible system that manages the operation of an elevator within a building.

Logic Input & Output

Address	Name	Address	Name
I 1	Lift Outside 1st FL Call Button	I13	Inside Lift#1 3rd FL Call Button
I2	Lift Outside 2nd FL Call Button	I14	Inside Lift#1 4th FL Call Button
I3	Lift Outside 3rd FL Call Button	I15	O/P Passenger for CO22
I 4	Lift Outside 4th FL Call Button	I16	O/P Passenger for C001
I5	Power On	I17	O/P Passenger for C027
I6	Power Off	I18	O/P Passenger
I7	I/P Passenger (max 04)	I19	
I8	I/P Passenger Max 9	I20	Off Counter O/P
I 9	I/P Passenger Max 8	I21	Inside Lift#2 1st FL Call Button
I10	I/P Passenger (max 05)	I22	Inside Lift#2 2nd FL Call Button
I11	Inside Lift#1 1st FL Call Button	I23	Inside Lift#2 3rd FL Call Button
I12	Inside Lift#1 2nd FL Call Button	I24	Inside Lift#2 4th FL Call Button
Q1	Lift#1 1st Floor Light	Q5	Lift#1 1st Floor Light
Q2	Lift#1 2ND Floor Light	Q6	Lift#1 2nd Floor Light
Q3	Lift#1 3 rd Floor Light	Q7	Lift#1 3rd Floor Light
Q4	Lift#1 4th Floor Light	Q8	Lift#1 4 th Floor Light

Solution - 1

Drawback

- After turning "ON" the controller of the elevator, if the elevator in on the 1st floor and if the passenger calls the elevator from the 4th floor or 3rd floor or 2nd floor, the elevator turns "ON" immediately.
 - If more than 04 or 05 passengers board on the elevator, the elevator continues without turning "OFF"

Solution Selection

We are choosing "Solution-02", because

- ☐ This method can stop lift when passenger is more than 4 in the lift#1 and more than 8 in lift#2. if the passengers become less or equal to 4 or 8, lift can go again in desired floor.
- Another advantage is when the lift's power is turned ON and a passenger calls from using outside lift button, it will go to the wanted floor according to time.
- ☐ The time variations are for the lifts

From	ТО	Time (sec)
1st Floor	1st Floor	0
1st Floor	2 nd Floor	2
1st Floor	3 rd Floor	4
1st Floor	4 th Floor	6
2 nd Floor	1st Floor	2
2 nd Floor	2 nd Floor	0
2 nd Floor	3 rd Floor	2
2 nd Floor	4 th Floor	4
3 rd Floor	1st Floor	4
3 rd Floor	2 nd Floor	2
3 rd Floor	3 rd Floor	0
3 rd Floor	4 th Floor	2
4 th Floor	1st Floor	6
4 th Floor	2 nd Floor	4
4 th Floor	3 rd Floor	2
4 th Floor	4 th Floor	0

Discussion

In modern buildings, elevators are essential for efficient vertical transportation, managed by a sophisticated control system. This system comprises a motor, floor call buttons, and destination buttons inside each elevator car. The motor, typically located at the top of the building, drives a pulley system to move the elevator car through the shaft. Users press call buttons on each floor or destination buttons inside the car, prompting the motor to adjust direction and speed to transport them to the desired floor. In buildings with multiple elevators, a central controller coordinates the movement to optimize efficiency, reduce wait times, and minimize wear.

Conclusion

After doing this project, we have learned how to implement a elevator using a PLC ladder diagram. We also learned how we could draw a ladder diagram using logo soft software. In this project we have shown two methods. In solution 01 there was some weakness for this reason, we have made solution 02 where we fix those weaknesses and a give some extra features. So this project helps us a lot in gaining knowledge about the elevator working processes.