電腦視覺與應用 Computer Vision and Applications

Lecture07-Camera calibration

Tzung-Han Lin

National Taiwan University of Science and Technology
Graduate Institute of Color and Illumination Technology

e-mail: thl@mail.ntust.edu.tw

- projection matrix
 - perspective projection
 - orthographic projection

MITUSI. CIT.

- Lecture Reference at:
 - Multiple View Geometry in Computer Vision, (Chapter7)
 - Computer Vision A Modern Approach, Chapter 3 (Geometric Camera Calibration).

TUST. CIT

- Problem description:
 - Camera calibration is to use precise geometric structure, then to adjust the camera parameter under measurements and constraints.
 - In short, given $\mathbf{X}_i \leftrightarrow \mathbf{x}_i$
 - then determine the mapping transformation

The camera mathematical model:

$$\mathbf{x}_{\text{img}} = \mathbf{K}[\mathbf{R} \mid \mathbf{t}]\mathbf{X}_{\text{world}}$$

To determine the mapping matrix (3x4), rewrite as

$$\mathbf{x} = \mathbf{P} \cdot \mathbf{X}$$

To determine P in $x = P \cdot X$

i-th 3D point in space $\mathbf{X}_{i} = \begin{bmatrix} X_{i1} & X_{i2} & X_{i3} & X_{i4} \end{bmatrix}^{T}$ $\mathbf{x}_{i} = \begin{bmatrix} u_{i} & v_{i} & 1 \end{bmatrix}^{T}$ *i*-th 2D point on image

inner product (dot) of two vectors

$$\begin{cases} u_i = \frac{\mathbf{p}_1 \cdot \mathbf{X}_i}{\mathbf{p}_3 \cdot \mathbf{X}_i} \\ v_i = \frac{\mathbf{p}_2 \cdot \mathbf{X}_i}{\mathbf{p}_3 \cdot \mathbf{X}_i} \end{cases} \Rightarrow \begin{cases} u_i \mathbf{p}_3 \cdot \mathbf{X}_i = \mathbf{p}_1 \cdot \mathbf{X}_i \\ v_i \mathbf{p}_3 \cdot \mathbf{X}_i = \mathbf{p}_2 \cdot \mathbf{X}_i \end{cases} \Rightarrow \begin{cases} (\mathbf{p}_1 - u_i \mathbf{p}_3) \cdot \mathbf{X}_i = 0 \\ (\mathbf{p}_2 - v_i \mathbf{p}_3) \cdot \mathbf{X}_i = 0 \end{cases}$$

$$\begin{cases} (\mathbf{p}_{1}^{\prime} - u_{i}\mathbf{p}_{3}) \cdot \mathbf{X}_{i} = 0 \\ (\mathbf{p}_{2} - v_{i}\mathbf{p}_{3}) \cdot \mathbf{X}_{i} = 0 \end{cases}$$

- Again, one feature has two constraints.
- Note: one feature means that you have already known a 3D point (in 3D space) and a projected 2D point (on image)

$$\begin{cases} [\mathbf{p}_1 + 0\mathbf{p}_2 + (-u_i)\mathbf{p}_3] \cdot \mathbf{X}_i = 0 \\ [0\mathbf{p}_1 + \mathbf{p}_2 + (-v_i)\mathbf{p}_3] \cdot \mathbf{X}_i = 0 \end{cases}$$

- So, u_i , v_i and \mathbf{X}_i are known, and \mathbf{p}_1 , \mathbf{p}_2 and \mathbf{p}_3 (12 elements) are unknown and to be solved.
- Re-arrange the equations:

$$\begin{pmatrix} \mathbf{X}_{i}^{\mathrm{T}} & \mathbf{0}^{\mathrm{T}} & -u_{i}\mathbf{X}_{i}^{\mathrm{T}} \\ \mathbf{0}^{\mathrm{T}} & \mathbf{X}_{i}^{\mathrm{T}} & -v_{i}\mathbf{X}_{i}^{\mathrm{T}} \end{pmatrix}_{2\times12} \begin{pmatrix} \mathbf{p}_{1} \\ \mathbf{p}_{2} \\ \mathbf{p}_{3} \end{pmatrix}_{12\times1} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}_{2\times1}$$

■ In practice, given n features:

- Solution? At least 6 features are needed for solving 12-1 unknowns.
- Least square or SVD...

- A simple framework:
 - 3D Checkerboard → known 3D points
 - 2D feature → projected on image

Example

3D points 2D points (on image) $X1=[0,0,75,1]^T$ $uv1 = [83, 146, 1]^T$ $X2=[0,0,25,1]^T$ $uv2=[103,259,1]^T$ $X3=[100,0,25,1]^T$ $uv3=[346,315,1]^T$ $X4=[120,90,15,1]^T$ $uv4=[454,218,1]^T$ $uv5=[365,161,1]^T$ $X5=[90,50,60,1]^T$ $uv6=[218,144,1]^T$ $X6=[0,100,25,1]^T$ $X7 = [60, 40, 20, 1]^T$ $uv7 = [286, 244, 1]^T$

- Example—cont.
- Calculation using Matlab

Puvmatrix=

```
[ X1' zero'-uv1(1).*X1';
 zero' X1' -uv1(2).*X1';
 X2' zero'-uv2(1).*X2';
 zero' X2' -uv2(2).*X2';
       zero' -uv3(1).*X3';
 zero' X3' -uv3(2).*X3';
 X4' zero' -uv4(1).*X4';
 zero' X4' -uv4(2).*X4';
 X5' zero'-uv5(1).*X5';
 zero' X5' -uv5(2).*X5';
 X6'
       zero' -uv6(1).*X6';
 zero' X6' -uv6(2).*X6';
       zero' -uv7(1).*X7';
 zero' X7' -uv7(2).*X7']
```

														(0)
0	0	75	1	0	0	0	0	0	0	-62	225 -	83		(0
0	0	0	0	0	0	75	1	0	0	-10	950 -	146		
0	0	25	1	0	0	0	0	0	0	-25	575 -	103		~ 10
0	0	0	0	0	0	25	1	0	0	-64	175 -2	259		
100	0	25	1	0	0	0	0	-34600		0	-8650	-346	(\mathbf{p}_1)	0
0	0	0	0	100	0	25	1	-31500		0	-7875	-315	1 1	
120	90	15	1	0	0	0	0	-54480	-	40860	-681	0 -454	$* \mathbf{p}_2 $	$= \mid 0$
0	0	0	0	120	90	15	1	-26160	-	19620	-327	0 -218	12	"
90	50	60	1	0	0	0	0	-32850	-1	18250	-2190	0 -365	$\left(\mathbf{p}_{3}\right)_{12x}$	- 1
0	0	0	0	90	50	60	1	-14490	-	8050	-9660	-161	$(P_3)_{12\times}$	1
0	100	25	1	0	0	0	0	0	-218	00	-5450	-218		0
0	0	0	0	0	100	25	1	0	-144	00	-3600	-144		0
60	40	20	1	0	0	0	0	-17160	-1	1440	-5720	-286		10
0	0	0	0	60	40	20	1	-14640	-	9760	-4880	-244		(0)

■ Example—cont.

Solve by SVD:

```
V =
```

```
0.0718 -0.3876 0.3934 -0.0600
                                                         0.1281
                                                                 0.6003 -0.5561
                                                                                          0.0063
-0.0016
        0.0007
                0.0000
                                                                                  0.0143
-0.0010 -0.0023
                0.0006
                        -0.0004 -0.2591 -0.4549 -0.0224
                                                          0.2755
                                                                  0.5839
                                                                          0.5553
                                                                                  0.0115
                                                                                           0.0049
                                                                  0.1789
-0.0005 -0.0000 0.0025
                         0.0349 -0.1557 -0.0202
                                                 0.7303 -0.6355
                                                                          0.0672
                                                                                  0.0193
                                                                                          -0.0016
-0.0000 -0.0000
                                                  0.0112
                0.0000 -0.0010 -0.0054 -0.0008
                                                         -0.0100
                                                                  0.0185
                                                                          -0.0008
                                                                                           0.3404
                                                                                  -0.9400
                        -0.1100
                                                                                          0.0009
-0.0009
        0.0009 -0.0001
                                 0.6689 -0.4338
                                                 0.2098
                                                          0.1291
                                                                  0.3196
                                                                         -0.4352
                                                                                  0.0047
-0.0005 -0.0014 0.0005 -0.0898
                                 0.4693
                                         0.6693
                                                 0.2133
                                                         0.2152
                                                                 0.2383
                                                                         0.4185
                                                                                  0.0006
                                                                                         -0.0023
-0.0003
        0.0001
                0.0026 -0.0785
                                 0.2475
                                         0.0391 -0.6100
                                                         -0.6638
                                                                 0.3259
                                                                          0.1096
                                                                                  0.0021
                                                                                          -0.0073
                                 0.0075
                                                                          0.0034
-0.0000
        0.0000
                0.0000 -0.0040
                                         0.0024 -0.0067
                                                         -0.0045
                                                                 -0.0108
                                                                                  0.3402
                                                                                          0.9402
                                         0.0001
0.8391 -0.4776
                0.2602 -0.0046 -0.0007
                                                 0.0003
                                                         0.0006
                                                                 0.0007 -0.0020
                                                                                  0.0000
                                                                                          -0.0000
                                                                                          0.0000
        0.8724
                0.0272 -0.0032 -0.0009
                                         0.0001
                                                 0.0004
                                                         0.0009
                                                                 0.0016
                                                                         0.0019
0.4881
                                                                                  0.0000
       -0.1042
                -0.9651 -0.0133 -0.0020
                                         0.0003
                                                 0.0007
                                                         -0.0029
                                                                  0.0017
                                                                          0.0001
                                                                                  0.0001
                                                                                          -0.0000
0.0087
                -0.0116 0.9834 0.1711 -0.0124 -0.0273 -0.0056
                                                                  0.0336
                                                                          0.0368
                                                                                  -0.0006
                                                                                           0.0030
        -0.0009
```

Get **P**:

 $\mathbf{P} = [V(1:4,12)'; V(5:8,12)'; V(9:12,12)']$

P =

0.0063 0.0049 -0.0016 0.3404 0.0009 -0.0023 -0.0073 0.9402 -0.0000 0.0000 -0.0000 0.0030 P =

2.0791 1.6213 -0.5162 111.7871 0.3027 -0.7658 -2.4001 308.7853 -0.0007 0.0024 -0.0016 1.0000

- Example—cont.
 - Verify solution (in Matlab):

3D points
$X1=[0,0,75,1]^T$
$X2=[0,0,25,1]^T$
$X3=[100,0,25,1]^T$
$X4=[120,90,15,1]^T$
$X5=[90,50,60,1]^T$
$X6=[0,100,25,1]^T$
$X7 = [60,40,20,1]^T$

2D points (on image) $uv1 = [83, 146, 1]^T$ $uv2=[103,259,1]^T$ $uv3=[346,315,1]^T$ $uv4=[454,218,1]^T$ $uv5=[365,161,1]^T$ $uv6=[218,144,1]^T$ $uv7 = [286, 244, 1]^T$

	l e	ı	1			
>> pp1 = P *X1	>> pp2= P*X2	>> pp3= P*X3	>> pp4= P*X4	>> pp5= P*X5	>> pp6= P*X6	>> pp7= P*X7
pp1 =	pp2 =	pp3 =	pp4 =	pp5 =	pp6 =	pp7 =
73.0713 128.7766 0.8807	98.8818 248.7824 0.9602	306.7967 279.0484 0.8862	499.4553 240.1835 1.1002	349.0009 153.7293 0.9562	261.0078 172.2054 1.1968	291.0622 248.3118 1.0184
>> pp1=pp1./pp1(3)	>> pp2=pp2./pp2(3)	>> pp3=pp3./pp3(3)	>> pp4=pp4./pp4(3)	>> pp5=pp5./pp5(3)	>> pp6=pp6./pp6(3)	>> pp7=pp7./pp7(3)
pp1 =	pp2 =	pp3 =	pp4 =	pp5 =	pp6 =	pp7 =
82.9740 146.2286 1.0000	102.9785 259.0896 1.0000	346.1898 314.8785 1.0000	453.9658 218.3080 1.0000	364.9935 160.7738 1.0000	218.0963 143.8936 1.0000	285.8079 243.8292 1.0000
uv1=[83,146,1] ^T	uv2=[103,259,1] ^T	uv3=[346,315,1] ^T	uv4=[454,218,1] ^T	uv5=[365,161,1] ^T	uv6=[218,144,1] ^T	uv7=[286,244,1] ^T

- Example—cont.

Compared with "openCV calibration result"

P

```
1.6213 -0.5162 111.7871
0.3027 -0.7658 -2.4001 308.7853
-0.0007 0.0024 -0.0016 1.0000
```


Intrinsic parameter 3x3 Matrix (for all views) 797.467667 0.000000 318.980339 0.000000 797.569342 243.459839 0.000000 0.000000 1.000000

Distortion factor K -0.002244 0.030546 -0.000019 -0.000223 0.0

view1.bmp: Extrinsic parameter 3x4 matrix 0.937760 0.347283 -0.000317 -83.818298 0.201549 -0.544979 -0.813865 25.437572 -0.282814 0.763146 -0.581054 325.901184

```
>> P=K*rt
P =
 1.0e+004 *
                          9.9632
 -0.0000 0.0001 -0.0001 0.0326
>> P=P./P(3,4)
```

```
P =
         1.5967 -0.5695 113.8802
         -0.7636 -2.4258 305.7125
 -0.0009 0.0023 -0.0018 1.0000
```

- Decomposition for K[R|t]
- In case of: P=K[R|t]

■ then, $[\mathbf{R}|\mathbf{t}] = \mathbf{K}^{-1}\mathbf{P} \rightarrow \text{up to scale}$

Note! Constraints for **R** are orthogonal and unit column/row vectors. In simple, you need to scale it.

Example—cont.

-0.5503

0.7739

0.1981

-0.2421

```
1.6213 -0.5162 111.7871
   0.3027 -0.7658 -2.4001 308.7853
  -0.0007 0.0024 -0.0016 1.0000
>> RT=inv(K)*P
RT =
   0.0029
             0.0011
                     -0.0000
                               -0.2598
                                0.0819
   0.0006
            -0.0017
                     -0.0025
                                1.0000
                     -0.0016
   -0.0007
             0.0024
   Length=0.0030566112
   Not a unit vector from inv(K)*P. Need a scale.
 >> RT=inv(K)*P./0.0030566112
  RT =
                               -85.0007
     0.9498
              0.3556
                       -0.0035
```

-0.8256

-0.5206 327.1597

26.7962

Intrinsic parameter 3x3 Matrix (for all views) 797.467667 0.000000 318.980339 0.000000 797.569342 243.459839 0.000000 0.000000 1.000000

Distortion factor K -0.002244 0.030546 -0.000019 -0.000223 0.0

view1.bmp: Extrinsic parameter 3x4 matrix 0.937760 0.347283 -0.000317 -83.818298 0.201549 -0.544979 -0.813865 25.437572 -0.282814 0.763146 -0.581054 325.901184

Gold Standard algorithm

Objective

■ Given n≥6 3D to 2D point correspondences $\{\mathbf{X}_i \leftrightarrow \mathbf{x}_i'\}$, determine the Maximum Likelyhood Estimation of mapping transformation **P**

Algorithm

- (i) Linear solution:
 - (a) Normalization:
 - (b) DLT (using SVD or least-square ...) → get
- (ii) Minimization of geometric error: using the linear estimate as a starting point minimize the geometric error. (RANSIC)
- (iii) Denormalization.

$$\mathbf{P} = ([\mathbf{S}][\mathbf{t}]]_{3\times3})^{-1}\widetilde{\mathbf{P}} \cdot ([\mathbf{S}][\mathbf{T}]]_{4\times4})$$

$$\mathbf{x} = \mathbf{P} \cdot \mathbf{X}$$
 normalization $\widetilde{\mathbf{x}} = \widetilde{\mathbf{P}} \cdot \widetilde{\mathbf{X}}$

$$\widetilde{\mathbf{X}} = [\mathbf{S}][\mathbf{T}]_{4\times4} \mathbf{X}$$
 \rightarrow normalization (3D points)

Translate center to the origin

Scale all points to the unit cube (or average the vector distance to be 1.414 or $\sqrt{2}$ \rightarrow textbook suggestion value)

$$\widetilde{\mathbf{x}} = [\mathbf{s}][\mathbf{t}]_{3\times 3} \mathbf{x}$$
 \rightarrow normalization (2D points)

Gold Standard algorithm—cont.

Step-

$$\widetilde{\mathbf{x}} = \widetilde{\mathbf{P}} \cdot \widetilde{\mathbf{X}}$$

 \rightarrow solve **P** by SVD or least-square method

→ minimize the re-projection error, if necessary.

Gold Standard algorithm—cont.

Step-3 De-normalization (determine **P**)

$$\mathbf{x} = \mathbf{P} \cdot \mathbf{X}$$

$$\mathbf{P} = ([\mathbf{S}][\mathbf{t}]]_{3\times 3})^{-1}\widetilde{\mathbf{P}} \cdot ([\mathbf{S}][\mathbf{T}]]_{4\times 4})$$

$$\widetilde{\mathbf{X}} = \widetilde{\mathbf{P}} \cdot \widetilde{\mathbf{X}}$$

$$[[\mathbf{S}][\mathbf{t}]]_{3\times 3} \mathbf{X} = \widetilde{\mathbf{P}}([[\mathbf{S}][\mathbf{T}]]_{4\times 4} \mathbf{X})$$

$$\mathbf{X} = ([[\mathbf{S}][\mathbf{t}]]_{3\times 3})^{-1} \widetilde{\mathbf{P}}([[\mathbf{S}][\mathbf{T}]]_{4\times 4}) \mathbf{X}$$

$$\therefore \mathbf{P} = ([[\mathbf{S}][\mathbf{t}]]_{3\times 3})^{-1} \widetilde{\mathbf{P}} \cdot ([[\mathbf{S}][\mathbf{T}]]_{4\times 4})$$

Gold Standard algorithm—remark

- Special case:
 - Affine camera model for mapping transform

$$\mathbf{x}_{i} = \begin{bmatrix} \mathbf{p}_{1}^{\mathrm{T}} \\ \mathbf{p}_{2}^{\mathrm{T}} \\ \mathbf{p}_{3}^{\mathrm{T}} \end{bmatrix}_{3 \times 4} \cdot \mathbf{X}_{i}$$

$$\mathbf{X}_{i} = \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{bmatrix} \cdot \mathbf{X}_{i}$$

Projective camera

$$\mathbf{x}_{i} = \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{bmatrix} \cdot \mathbf{X}_{i} \qquad \mathbf{x}_{i} = \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \mathbf{X}_{i}$$

Affine camera (orthography)

- Special case:
 - Affine camera model for mapping transform

If in special case (affine camera): $\mathbf{p}_3^T = \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}$

$$\begin{bmatrix} \begin{pmatrix} \mathbf{X}_{1}^{\mathsf{T}} & \mathbf{0}^{\mathsf{T}} & -u_{1}\mathbf{X}_{1}^{\mathsf{T}} \\ \mathbf{0}^{\mathsf{T}} & \mathbf{X}_{1}^{\mathsf{T}} & -v_{1}\mathbf{X}_{1}^{\mathsf{T}} \\ \begin{pmatrix} \mathbf{X}_{2}^{\mathsf{T}} & \mathbf{0}^{\mathsf{T}} & -u_{2}\mathbf{X}_{2}^{\mathsf{T}} \\ \mathbf{0}^{\mathsf{T}} & \mathbf{X}_{2}^{\mathsf{T}} & -v_{2}\mathbf{X}_{2}^{\mathsf{T}} \\ \end{pmatrix} & \begin{pmatrix} \mathbf{p}_{1} \\ \mathbf{p}_{2} \\ \mathbf{p}_{3} \end{pmatrix}_{12 \times 1} = \begin{pmatrix} \mathbf{0} \\ 0 \\ 0 \\ 0 \\ \end{pmatrix} & & \\ \mathbf{Reduce to} \\ \mathbf{0} \\ 0 \\ \end{pmatrix}_{2n \times 1} & & \\ \begin{bmatrix} \mathbf{X}_{1}^{\mathsf{T}} & \mathbf{0}^{\mathsf{T}} \\ \mathbf{0}^{\mathsf{T}} & \mathbf{X}_{1}^{\mathsf{T}} \\ \begin{pmatrix} \mathbf{X}_{2}^{\mathsf{T}} & \mathbf{0}^{\mathsf{T}} \\ \mathbf{0}^{\mathsf{T}} & \mathbf{X}_{2}^{\mathsf{T}} \end{pmatrix} \\ \begin{pmatrix} \mathbf{p}_{1} \\ \mathbf{p}_{2} \\ \end{pmatrix}_{8 \times 1} = \begin{pmatrix} \mathbf{u}_{1} \\ v_{1} \\ u_{2} \\ v_{2} \\ \dots \\ u_{n} \\ v_{n} \end{pmatrix}_{2n} \\ & & \\ \end{bmatrix}_{2n \times 8} & & \\ \begin{bmatrix} \mathbf{X}_{1}^{\mathsf{T}} & \mathbf{0}^{\mathsf{T}} \\ \mathbf{0}^{\mathsf{T}} & \mathbf{X}_{1}^{\mathsf{T}} \end{pmatrix} \\ \mathbf{n}_{2} & & \\ \mathbf{n}_{3} & & \\ \mathbf{n}_{4} & & \\ \mathbf{n}_{2} & & \\ \mathbf{n}_{3} & & \\ \mathbf{n}_{4} & & \\ \mathbf{n}_{5} & & \\ \mathbf{$$

Objective

Given $n \ge 4$ 3D to 2D point correspondences $\{\mathbf{X}_i \leftrightarrow \mathbf{x}_i'\}$, determine the Maximum Likelyhood Estimation of \mathbf{P} , here $\mathbf{p}_3^T = [0,0,0,1]$.

Algorithm

- (i) Normalization:
- (ii) Correspondence (governing equation)
- (iii) Determine P by SVD or DLT.
- (iv) Denormalization:

- Intrinsic parameter & extrinsic parameter
- Lecture Reference at:
 - Multiple View Geometry in Computer Vision, (Chapter 8.4, 8.5)
 - Computer Vision A Modern Approach, NA
 - Select paper: Zhang, Z. 1999. Flexible camera calibration by viewing a plane from unknown orientations. *IEEE International Conference on Computer Vision*. 1, (1999), 666-673.

- Intrinsic parameter calibration
 - From absolute conic
 - 2. From homography

ATUST. CIT.

- From absolute conic
 - Points on the plane at infinity and absolute conic

$$\mathbf{x} = \mathbf{P} \cdot \mathbf{X}_{\infty}$$

$$\mathbf{x} = \mathbf{K} [\mathbf{R} \mid \mathbf{t}] \cdot \mathbf{X}_{\infty}$$

$$\mathbf{X}_{\infty} \text{ is one 3D point at infinity. Let } \mathbf{X}_{\infty} = \begin{bmatrix} \mathbf{d}_{3 \times 1} \\ 0 \end{bmatrix}$$

$$\mathbf{x} = \mathbf{K} [\mathbf{R} \mid \mathbf{t}] \cdot \mathbf{X}_{\infty} = \mathbf{K} [\mathbf{R} \mid \mathbf{t}] \cdot \begin{bmatrix} \mathbf{d}_{3 \times 1} \\ 0 \end{bmatrix}$$

 $\mathbf{x} = \mathbf{KRd} \longrightarrow 2D$ point to 2D point mapping \rightarrow homography $\mathbf{x} = \mathbf{Hd}$

- From absolute conic—cont.
 - Points on the plane at infinity and absolute conic
 - The mapping between π_{∞} and an image is given by the planar homography $\mathbf{x} = \mathbf{Hd}$ with

$$\mathbf{H} = \mathbf{K}\mathbf{R}$$

- From absolute conic—cont.
 - Points on the plane at infinity and absolute conic
- Recall the property of the conic: if one point is on the conic C, it forms

$$\mathbf{x}^\mathsf{T} \mathbf{C} \mathbf{x} = 0$$

For example, one ellipse:

$$\begin{bmatrix} x & y & 1 \end{bmatrix} \begin{bmatrix} 5 & 0 & 4 \\ 0 & 15 & 1 \\ 4 & 1 & -11 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = 0$$

- From absolute conic—cont.
 - Points on the plane at infinity and absolute conic
- Absolute conic Ω_{∞} : the a (point) conic on $\pi_{\infty} = (0,0,0,1)^{\mathrm{T}}$

$$X_{\infty} = (X_{1}, X_{2}, X_{3}, X_{4})$$

$$X_{0} = (X_{1}, X_{2}, X_{3}, X_{4})$$

$$X_{1}^{2} + X_{2}^{2} + X_{3}^{2} = 0$$

$$X_{2}^{2} + X_{3}^{2} + X_{3}^{2} = 0$$

$$X_{3} = (X_{1}, X_{2}, X_{3}) \mathbf{I}(X_{1}, X_{2}, X_{3})^{\mathsf{T}} = 0$$

$$\mathbf{C} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- From absolute conic—cont.
 - Points on the plane at infinity and absolute conic
- The image of the absolute conic (called IAC) is the conic:

$$\boldsymbol{\omega} = (\mathbf{K}\mathbf{K}^{\mathrm{T}})^{-1}$$

- Proof: $\mathbf{x}' = \mathbf{H}\mathbf{x}$ \rightarrow points **x** are mapped to **x**' by homography **H** $C' = H^{-T}CH^{-1}$ \rightarrow conic C will be mapped to C' (according this eqs)
- Since we want to determine the mapping result (says ω as a new notation) of the absolute conic (C=I), the H=KR

$$\omega = \mathbf{H}^{-T}\mathbf{I}\mathbf{H}^{-1} = (\mathbf{K}\mathbf{R})^{-T}\mathbf{I}(\mathbf{K}\mathbf{R})^{-1} = \mathbf{K}^{-T}\mathbf{R}^{-T}\mathbf{I}\mathbf{R}^{-1}\mathbf{K}^{-1}$$

$$= \mathbf{K}^{-T}\mathbf{R}\mathbf{I}\mathbf{R}^{-1}\mathbf{K}^{-1} = \mathbf{K}^{-T}\mathbf{K}^{-1} = (\mathbf{K}\mathbf{K}^{T})^{-1}$$

to determine **K** from a known ω , Cholesky factorization is used.

- From absolute conic—cont.
 - Points on the plane at infinity and absolute conic
- **Absolute conic:** points $\begin{bmatrix} 1 & \pm i & 0 \end{bmatrix}$ are on absolute conic (imaginary point).

 $\begin{bmatrix} 1 & \pm i & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ \pm i \\ 0 \end{bmatrix} = 0$ Points at infinity plane (and on absolute conic)

Suppose these points can be mapped by a known **H**, the mapped points will be $\mathbf{h}_1 \pm i\mathbf{h}_2$

$$\mathbf{H} \begin{bmatrix} 1 \\ \pm i \\ 0 \end{bmatrix} = \begin{bmatrix} \mathbf{h}_1 & \mathbf{h}_2 & \mathbf{h}_3 \end{bmatrix} \begin{bmatrix} 1 \\ \pm i \\ 0 \end{bmatrix} = \mathbf{h}_1 \pm i\mathbf{h}_2$$

Points mapping back (via homography) to image plane

3D Points on the plane at infinity and absolute

$$\mathbf{X}_{\infty} = (X_1, X_2, X_3, X_4) \quad \boldsymbol{\pi}_{\infty} = (0,0,0,1)^{\mathrm{T}}$$

$$\mathbf{C} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$\mathbf{x}' = \mathbf{H}\mathbf{x}$

$$\mathbf{C}' = \mathbf{H}^{-T} \mathbf{C} \mathbf{H}^{-1}$$

$$\boldsymbol{\omega} = \mathbf{H}^{-T} \boldsymbol{\Omega}_{\infty} \mathbf{H}^{-1}$$
$$\boldsymbol{\omega} = (\mathbf{K}\mathbf{R})^{-T} \boldsymbol{\Omega}_{\infty} (\mathbf{K}\mathbf{R})^{-1}$$

- From absolute conic—cont.
 - Points on the plane at infinity and absolute conic
- According the "points on conic" equation $\mathbf{x}^{\mathrm{T}}\mathbf{C}\mathbf{x} = 0$

$$(\mathbf{h}_1 \pm i\mathbf{h}_2)^{\mathrm{T}} \boldsymbol{\omega} (\mathbf{h}_1 \pm i\mathbf{h}_2) = 0$$
The mapping back points will be on the conic

■ Deal with real part & imaginary part individually:

$$\mathbf{h}_{1}^{\mathsf{T}}\boldsymbol{\omega}\mathbf{h}_{1} + i^{2}\mathbf{h}_{2}^{\mathsf{T}}\boldsymbol{\omega}\mathbf{h}_{2} + 2i(\mathbf{h}_{1}^{\mathsf{T}}\boldsymbol{\omega}\mathbf{h}_{2}) = 0$$

$$\mathbf{h}_{1}^{\mathsf{T}}\boldsymbol{\omega}\mathbf{h}_{2} = 0$$

$$\mathbf{h}_{1}^{\mathsf{T}}\boldsymbol{\omega}\mathbf{h}_{1} = \mathbf{h}_{2}^{\mathsf{T}}\boldsymbol{\omega}\mathbf{h}_{2}$$

- Summary: A simple calibration from the absolute conic
 - ■Step-1: compute **H** for each square \rightarrow for example 3 squares induce 3 **H** (unit corners (0,0),(1,0),(0,1),(1,1))
 - ■Step-2: compute the imaged circular points $\mathbf{H}(1,\pm i,0)^T$
 - ■Step-3: fit a conic to 6 circular points $\omega \rightarrow SVD$
 - ■Step-4: compute **K** from **\omega** through Cholesky factorization

Example: from absolute conic

A-square	B-square	· C-square
152,149	596,84	490,387
218,413	596,334	343,602
490,332	838,458	689,722
482,77	898,195	780,465

ATUST. CIT

Example: from absolute conic—cont.

Homography (unit square to **A-square**) 379.199677 111.830818 152.000000 -64.140297 350.826263 149.000000 0.102074 0.210233 1.000000

Homography (unit square to **B-square**) 168.271439 125.763161 596.000000 81.960945 320.478027 84.000000 -0.148918 0.211012 1.000000

Homography (unit square to **C-square**) 228.969971 -209.572891 490.000000 41.616714 105.178200 387.000000 -0.078244 -0.182428 1.000000

- Example: from absolute conic—cont.
 - To determine ω, remember this is a "conic", a symmetric 3x3 matrix form

$$\begin{aligned} & \mathbf{h}_{1}^{T} \boldsymbol{\omega} \mathbf{h}_{2} = 0 \\ & \mathbf{h}_{1}^{T} \boldsymbol{\omega} \mathbf{h}_{1} = \mathbf{h}_{2}^{T} \boldsymbol{\omega} \mathbf{h}_{2} \\ & \mathbf{h}_{1}^{T} \begin{bmatrix} \omega_{11} & \omega_{12} & \omega_{13} \\ \omega_{21} & \omega_{22} & \omega_{23} \\ \omega_{31} & \omega_{32} & \omega_{33} \end{bmatrix} \mathbf{h}_{2} = 0 \\ & \mathbf{h}_{1}^{T} \begin{bmatrix} \omega_{11} & \omega_{12} & \omega_{13} \\ \omega_{21} & \omega_{22} & \omega_{23} \\ \omega_{31} & \omega_{32} & \omega_{33} \end{bmatrix} \mathbf{h}_{1} = \mathbf{h}_{2}^{T} \begin{bmatrix} \omega_{11} & \omega_{12} & \omega_{13} \\ \omega_{21} & \omega_{22} & \omega_{23} \\ \omega_{31} & \omega_{32} & \omega_{33} \end{bmatrix} \mathbf{h}_{2} \end{aligned}$$

$$\mathbf{h}_{1} = \begin{bmatrix} h_{11} \\ h_{12} \\ h_{13} \end{bmatrix}, \mathbf{h}_{2} = \begin{bmatrix} h_{21} \\ h_{22} \\ h_{23} \end{bmatrix}$$

$$h_{11}h_{21}\omega_{11} + h_{11}h_{22}\omega_{12} + h_{11}h_{23}\omega_{13} + h_{12}h_{21}\omega_{21} + h_{12}h_{22}\omega_{22} + h_{12}h_{23}\omega_{23} + h_{13}h_{21}\omega_{31} + h_{13}h_{22}\omega_{32} + h_{13}h_{23}\omega_{33} = 0$$

$$h_{11}h_{11}\omega_{11} + h_{11}h_{12}\omega_{12} + h_{11}h_{13}\omega_{13} + h_{12}h_{11}\omega_{21} + h_{12}h_{12}\omega_{22} + h_{12}h_{13}\omega_{23} + h_{13}h_{11}\omega_{31} + h_{13}h_{12}\omega_{32} + h_{13}h_{13}\omega_{33} = 0$$

$$h_{21}h_{21}\omega_{11} + h_{21}h_{22}\omega_{12} + h_{21}h_{23}\omega_{13} + h_{22}h_{21}\omega_{21} + h_{22}h_{22}\omega_{22} + h_{22}h_{23}\omega_{23} + h_{23}h_{21}\omega_{31} + h_{23}h_{22}\omega_{32} + h_{23}h_{23}\omega_{33}$$

Example: from absolute conic—cont.

$$\begin{split} h_{11}h_{21}\omega_{11} + (h_{11}h_{22} + h_{12}h_{21})\omega_{12} + (h_{11}h_{23} + h_{13}h_{21})\omega_{13} + h_{12}h_{22}\omega_{22} + (h_{12}h_{23} + h_{13}h_{22})\omega_{23} + h_{13}h_{23}\omega_{33} &= 0 \\ (h_{11}h_{11} - h_{21}h_{21})\omega_{11} + (h_{11}h_{12} + h_{12}h_{11} - h_{21}h_{22} - h_{22}h_{21})\omega_{12} + (h_{11}h_{13} + h_{13}h_{11} - h_{21}h_{23} - h_{23}h_{21})\omega_{13} + (h_{12}h_{12} - h_{22}h_{22})\omega_{22} \\ + (h_{12}h_{13} + h_{13}h_{12} - h_{22}h_{23} - h_{23}h_{22})\omega_{23} + (h_{13}h_{13} - h_{23}h_{23})\omega_{33} &= 0 \end{split}$$

$$\begin{bmatrix} h_{11}h_{21} & (h_{11}h_{22} + h_{12}h_{21}) & (h_{11}h_{23} + h_{13}h_{21}) & h_{12}h_{22} & (h_{12}h_{23} + h_{13}h_{22}) & h_{13}h_{23} \\ (h_{11}^2 - h_{21}^2) & 2(h_{11}h_{12} - h_{21}h_{22}) & 2(h_{11}h_{13} - h_{21}h_{23}) & (h_{12}^2 - h_{22}^2) & 2(h_{12}h_{13} - h_{22}h_{23}) & (h_{13}^2 - h_{23}^2) \end{bmatrix} \begin{bmatrix} a \\ \omega_{12} \\ \omega_{13} \\ \omega_{22} \\ \omega_{23} \\ \omega_{33} \end{bmatrix} = 0$$
Two constraints from one homography

6 unknowns (actually 5 unknowns upto scale), so it needs at least **3** homography

A=[h(1,1)*h(2,1) h(1,1)*h(2,2)+h(1,2)*h(2,1) h(1,1)*h(2,3)+h(1,3)*h(2,1) h(1,2)*h(2,2) h(1,2)*h(2,3)+h(1,3)*h(2,2) h(1,3)*h(2,3); $h(1,1)^2-h(2,1)^2 = 2*(h(1,1)*h(1,2)-h(2,1)*h(2,2)) = 2*(h(1,1)*h(1,3)-h(2,1)*h(2,3)) + (1,2)^2-h(2,2)^2$ 2*(h(1,2)*h(1,3)-h(2,2)*h(2,3)) h(1,3)^2-h(2,3)^2

■ Example: from absolute conic—cont.

- To determine K in
$$\boldsymbol{\omega} = (\mathbf{K}\mathbf{K}^{\mathrm{T}})^{-1}$$

Assume $\mathbf{K} = \begin{bmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & 1 \end{bmatrix} \stackrel{\longleftarrow}{\boldsymbol{\omega}} \boldsymbol{\omega}^{-1} = \begin{bmatrix} \boldsymbol{\varpi}_{11} & \boldsymbol{\varpi}_{12} & \boldsymbol{\varpi}_{13} \\ \boldsymbol{\varpi}_{21} & \boldsymbol{\varpi}_{22} & \boldsymbol{\varpi}_{23} \\ \boldsymbol{\varpi}_{31} & \boldsymbol{\varpi}_{32} & \boldsymbol{\varpi}_{33} \end{bmatrix} = s^2 \begin{bmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & 1 \end{bmatrix}^{\mathrm{T}}$

$$= s^2 \begin{bmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & 0 & 0 \\ b & d & 0 \\ c & e & 1 \end{bmatrix} = s^2 \begin{bmatrix} a^2 + b^2 + c^2 & bd + ce & c \\ bd + ce & d^2 + e^2 & e \\ c & e & 1 \end{bmatrix}$$

$$\begin{bmatrix} \boldsymbol{\varpi}_{11} & \boldsymbol{\varpi}_{12} & \boldsymbol{\varpi}_{13} \end{bmatrix} \begin{bmatrix} a^2 + b^2 + c^2 & bd + ce & c \end{bmatrix}$$

$$\mathbf{\omega}^{-1} = \begin{bmatrix} \boldsymbol{\varpi}_{11} & \boldsymbol{\varpi}_{12} & \boldsymbol{\varpi}_{13} \\ \boldsymbol{\varpi}_{21} & \boldsymbol{\varpi}_{22} & \boldsymbol{\varpi}_{23} \\ \boldsymbol{\varpi}_{31} & \boldsymbol{\varpi}_{32} & \boldsymbol{\varpi}_{33} \end{bmatrix} = s^2 \begin{bmatrix} a^2 + b^2 + c^2 & bd + ce & c \\ bd + ce & d^2 + e^2 & e \\ c & e & 1 \end{bmatrix} \qquad s = \pm \sqrt{\boldsymbol{\varpi}_{33}}$$

41

Example: from absolute conic—cont.
$$\begin{bmatrix} \varpi_{11} & \varpi_{12} & \varpi_{13} \\ \varpi_{21} & \varpi_{22} & \varpi_{23} \\ \varpi_{31} & \varpi_{32} & \varpi_{33} \end{bmatrix} = s^2 \begin{bmatrix} a^2 + b^2 + c^2 & bd + ce & c \\ bd + ce & d^2 + e^2 & e \\ c & e & 1 \end{bmatrix}$$

let
$$\varpi_{33} = 1$$

then,
$$c = \varpi_{13}$$

$$e = \varpi_{23}$$

Solve d: (by 2nd row, 2nd column)
$$d = \pm \sqrt{\varpi_{22} - e^2}$$
 (use positive value)

Solve e:(by 1st row, 2nd column)
$$b = (\varpi_{12} - ce)/d$$

Solve a:(by 1st row, 1st column)
$$a = \pm \sqrt{\varpi_{11} - b^2 - c^2}$$
 (use positive value)

Finally,
$$\mathbf{K} = \begin{bmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & 1 \end{bmatrix}$$
 Another solution for $\mathbf{\omega} = (\mathbf{K}\mathbf{K}^{\mathrm{T}})^{-1}$ is Cholesky factorization (matlab2011)

■ Example: from absolute conic—cont.

Of course you can assume $\mathbf{K} = \begin{bmatrix} a & 0 & c \\ 0 & d & e \\ 0 & 0 & 1 \end{bmatrix}$, since most digital CCDs have NO (or tiny) skew effect.

$$\mathbf{\omega}^{-1} = \begin{bmatrix} \boldsymbol{\varpi}_{11} & \boldsymbol{\varpi}_{12} & \boldsymbol{\varpi}_{13} \\ \boldsymbol{\varpi}_{21} & \boldsymbol{\varpi}_{22} & \boldsymbol{\varpi}_{23} \\ \boldsymbol{\varpi}_{31} & \boldsymbol{\varpi}_{32} & \boldsymbol{\varpi}_{33} \end{bmatrix} = s^2 \begin{bmatrix} a^2 + c^2 & ce & c \\ ce & d^2 + e^2 & e \\ c & e & 1 \end{bmatrix}$$

let $\varpi_{33} = 1$ then, $c = \varpi_{13}$ $e = \varpi_{23}$

$$e = \varpi_{23}$$

Solve d: (by 2nd row, 2nd column) $d = \pm \sqrt{\varpi_{22} - e^2}$ (use positive value)

Solve a:(by 1st row, 1st column) $a = \pm \sqrt{\varpi_{11} - c^2}$ (use positive value)

Check $|\varpi_{12} - ce|$ value, if it is not neglected, this assumption is poor.

Solution in Matlab (for example)

 $\begin{bmatrix} h_{11}h_{21} & (h_{11}h_{22} + h_{12}h_{21}) & (h_{11}h_{23} + h_{13}h_{21}) & h_{12}h_{22} & (h_{12}h_{23} + h_{13}h_{22}) & h_{13}h_{23} \\ (h_{11}^{2} - h_{21}^{2}) & 2(h_{11}h_{12} - h_{21}h_{22}) & 2(h_{11}h_{13} - h_{21}h_{23}) & (h_{12}^{2} - h_{22}^{2}) & 2(h_{12}h_{13} - h_{22}h_{23}) & (h_{13}^{2} - h_{23}^{2}) \end{bmatrix} \begin{bmatrix} \omega_{11} \\ \omega_{12} \\ \omega_{13} \\ \omega_{22} \\ \omega_{23} \\ \omega_{33} \end{bmatrix} = 0$

Step-1 determine every homography (in this example 3 square → 3 homography)

Step-2 determine every **h**1 & **h**2 from 3 homography. One homography gives two equations (constraints) (NOTE! The transpose operation is ONLY for notation purpose in Matlab)

Step-3 construct the matrix form, then solve it by SVD for determine ω .

 $A = [hap(1,1)*hap(2,1) hap(1,1)*hap(2,2) + hap(1,2)*hap(2,1) hap(1,1)*hap(2,3) + hap(1,3)*hap(2,1) hap(1,2)*hap(2,2) hap(1,2)*hap(2,3) + hap(1,3)*hap(2,2) hap(1,3)*hap(2,3); \\ hap(1,1)^2 - hap(2,1)^2 2*(hap(1,1)*hap(1,2) - hap(2,1)*hap(2,2)) 2*(hap(1,1)*hap(1,3) - hap(2,1)*hap(2,3)) hap(1,2)^2 - hap(2,2)^2 2*(hap(1,2)*hap(2,2)) hap(1,3)*hap(2,2)) hap(1,3)^2 - hap(2,3)^2; \\ hbp(1,1)*hbp(2,1) hbp(2,1) hbp(2,1) hbp(2,2) + hbp(1,2)*hbp(2,1) hbp(2,1) hbp(2,3) + hbp(2,3) + hbp(2,3) hbp(1,2)*hbp(2,2) hbp(1,3)*hbp(2,2) hbp(1,3)*hbp(2,3); \\ hbp(1,1)^2 - hbp(2,1)^2 2*(hbp(1,1)*hbp(1,2) - hbp(2,1) hbp(2,2) hbp(1,3) + hbp(2,3) hbp(1,3)^2 - hbp(2,3)^2; \\ hcp(1,1)*hcp(2,1) hcp(1,1) + hcp(2,2) + hcp(1,2) + hcp(2,3) + hcp(1,3) + hcp(2,3) + hcp(1,3) + hcp(2,3) hcp(1,3) + hcp(2,3) + hcp(1,3) + hcp$

Solution in Matlab (for example)—cont.

Step-4 solve \mathbf{K} , take inverse of $\mathbf{\omega}$, then use close-form solution

$$>> c=inw(1,3)$$
 $>> e=inw(2,3)$ $>> d=sqrt(inw(2,2)-e^2)$ $>> b=(inw(1,2)-c*e)/d$ $>> a=sqrt(inw(1,1)-b^2-c^2)$

$$c = e = d = b = a =$$

$$\mathbf{K} = \begin{bmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1118.7 & -25.7 & 531.5 \\ 0 & 1100.3 & 409.6 \\ 0 & 0 & 1 \end{bmatrix}$$

Finally

$$\mathbf{K} = \begin{bmatrix} 1108.3 & -9.8 & 525.8 \\ 0 & 1097.8 & 395.9 \\ 0 & 0 & 1 \end{bmatrix}$$

(from textbook)

What's NEXT?

Determine distortion & extrinsic parameter

Refer to the following paper:

Zhang, Z. 1999. Flexible camera calibration by viewing a plane from unknown orientations. IEEE International Conference on Computer Vision. 1, 666-673.

from homography—Zhang's method

Zhang, Z. 1999. Flexible camera calibration by viewing a plane from unknown orientations. *IEEE International Conference on Computer* Vision. 1, 666-673.

from homography—Zhang's method—cont.

from homography—Zhang's method—cont.

Points on a 3D plane: $\mathbf{x} = \mathbf{PX} = \begin{bmatrix} \mathbf{p}_1 & \mathbf{p}_2 & \mathbf{p}_3 & \mathbf{p}_4 \end{bmatrix} \begin{bmatrix} X \\ Y \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{p}_1 & \mathbf{p}_2 & \mathbf{p}_4 \end{bmatrix} \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix}$

Recall the pin-hole projection formula:

$$x = PX = K[R | t]X$$

can be reduced to:

K: intrinsic parameter. [**R**|**t**]: extrinsic parameter

 $\mathbf{x} = s \begin{vmatrix} u \\ v \\ 1 \end{vmatrix} = \mathbf{K} [\mathbf{r}_1 \quad \mathbf{r}_2 \quad \mathbf{t}] \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix} = \mathbf{H} \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix}$

The mapping (indeed homography) can be defined as

$$\mathbf{H} = \mathbf{K}[\mathbf{r}_1 \quad \mathbf{r}_2 \quad \mathbf{t}]$$

Remark: **H** consists of intrinsic and part of extrinsic parameters

1x3 column vector

■ from homography—Zhang's method—cont.

Since homography is up to scale, we define 3 column vectors for **H** and rewrite the equation:

$$\mathbf{H} = \mathbf{K}[\mathbf{r}_1 \quad \mathbf{r}_2 \quad \mathbf{t}] \quad \rightarrow \quad \begin{bmatrix} \mathbf{h}_1 & \mathbf{h}_2 & \mathbf{h}_3 \end{bmatrix} = \lambda \mathbf{K}[\mathbf{r}_1 \quad \mathbf{r}_2 \quad \mathbf{t}]$$

here, some information is important:

$$\begin{cases} \mathbf{h}_1 = \lambda \mathbf{K} \mathbf{r}_1 \\ \mathbf{h}_2 = \lambda \mathbf{K} \mathbf{r}_2 \end{cases} \rightarrow \begin{cases} \mathbf{r}_1 = \frac{1}{\lambda} \mathbf{K}^{-1} \mathbf{h}_1 \\ \mathbf{r}_2 = \frac{1}{\lambda} \mathbf{K}^{-1} \mathbf{h}_2 \end{cases}$$

Recall the behavior of "Rotation Matrix": orthogonal & unit length

Orthogonal: inner product=
$$0 \rightarrow \mathbf{r}_1^T \mathbf{r}_2 = 0$$

unit length: the same length $\rightarrow \mathbf{r}_1^T \mathbf{r}_1 = \mathbf{r}_2^T \mathbf{r}_2$

from homography—Zhang's method—cont.

$$\begin{cases} \mathbf{r}_{1}^{\mathsf{T}}\mathbf{r}_{2} = 0 \\ \mathbf{r}_{1}^{\mathsf{T}}\mathbf{r}_{1} = \mathbf{r}_{2}^{\mathsf{T}}\mathbf{r}_{2} \end{cases} \begin{cases} (\mathbf{K}^{-1}\mathbf{h}_{1})^{\mathsf{T}}(\mathbf{K}^{-1}\mathbf{h}_{2}) = 0 \\ (\mathbf{K}^{-1}\mathbf{h}_{1})^{\mathsf{T}}(\mathbf{K}^{-1}\mathbf{h}_{1}) = (\mathbf{K}^{-1}\mathbf{h}_{2})^{\mathsf{T}}(\mathbf{K}^{-1}\mathbf{h}_{2}) \end{cases}$$

$$\Rightarrow \begin{cases} \mathbf{h}_{1}^{\mathsf{T}}(\mathbf{K}^{-\mathsf{T}}\mathbf{K}^{-1})\mathbf{h}_{2} = 0 \\ \mathbf{h}_{1}^{\mathsf{T}}(\mathbf{K}^{-\mathsf{T}}\mathbf{K}^{-1})\mathbf{h}_{1} = \mathbf{h}_{2}^{\mathsf{T}}(\mathbf{K}^{-\mathsf{T}}\mathbf{K}^{-1})\mathbf{h}_{2} \end{cases} \Rightarrow \text{The same result with absolute conic method} \\ \mathbf{h}_{1}^{\mathsf{T}}\boldsymbol{\omega}\mathbf{h}_{2} = 0 \\ \mathbf{h}_{1}^{\mathsf{T}}\boldsymbol{\omega}\mathbf{h}_{2} = 0 \\ \mathbf{h}_{1}^{\mathsf{T}}\boldsymbol{\omega}\mathbf{h}_{2} = 0 \end{cases} \qquad \boldsymbol{\omega} = (\mathbf{K}\mathbf{K}^{\mathsf{T}})^{-1}$$

Summary:

$$\mathbf{v}_{ij} = \begin{bmatrix} h_{i1}h_{j1} & h_{i1}h_{j2} + h_{i2}h_{j1} & h_{i2}h_{j2} & h_{i3}h_{j1} + h_{i1}h_{j3} & h_{i3}h_{j2} + h_{i2}h_{j3} & h_{i3}h_{j3} \end{bmatrix}^{\mathrm{T}}$$

$$\begin{bmatrix} \mathbf{v}_{12}^{\mathrm{T}} \\ (\mathbf{v}_{11} - \mathbf{v}_{22})^{\mathrm{T}} \end{bmatrix} \boldsymbol{\omega} = 0 \quad \text{and} \quad \boldsymbol{\omega} = (\mathbf{K}\mathbf{K}^{\mathrm{T}})^{-1} \qquad \mathbf{v}_{ij}^{\mathrm{T}} \mathbf{b} = 0 \quad \text{Note, the difference between } \boldsymbol{\omega} \text{ and } \mathbf{b}$$

$$\mathbf{b} = \begin{bmatrix} B_{11} & B_{12} & B_{22} & B_{13} & B_{23} & B_{33} \end{bmatrix}^{\mathrm{T}}$$

■ from homography—Zhang's method—cont.

$$\mathbf{r}_{1} = \lambda \mathbf{K}^{-1} \mathbf{h}_{1}$$

$$\mathbf{r}_{2} = \lambda \mathbf{K}^{-1} \mathbf{h}_{2}$$

$$\lambda = \frac{1}{|\mathbf{K}^{-1} \mathbf{h}_{1}|} = \frac{1}{|\mathbf{K}^{-1} \mathbf{h}_{2}|}$$

$$\mathbf{r}_{3} = \mathbf{r}_{1} \times \mathbf{r}_{2}$$

$$\mathbf{t} = \lambda \mathbf{K}^{-1} \mathbf{h}_{3}$$

$$\mathbf{R} = [\mathbf{r}_{1} \quad \mathbf{r}_{2} \quad \mathbf{r}_{3}]$$

$$\mathbf{x} = \mathbf{P} \cdot \mathbf{X} = \mathbf{K} [\mathbf{R} \mid \mathbf{t}] \mathbf{X}$$

One square has one \mathbf{H} (of course, one $\mathbf{R}|\mathbf{t}$)

Example: from homography—Zhang's—

follow the previous example

Homography (unit square to **A-square**)

379.199677 111.830818 152.000000

-64.140297 350.826263 149.000000

0.102074 0.210233 1.000000

Homography (unit square to **B-square**)

168.271439 125.763161 596.000000

81.960945 320.478027 84.000000

-0.148918 0.211012 1.000000

Homography (unit square to **C-square**)

228.969971 -209.572891 490.000000

41.616714 105.178200 387.000000

-0.078244 -0.182428 1.000000

Solve equation:
$$\begin{bmatrix} h_{11}h_{21} & (h_{11}h_{22} + h_{12}h_{21}) & (h_{11}h_{23} + h_{13}h_{21}) & h_{12}h_{22} & (h_{12}h_{23} + h_{13}h_{22}) & h_{13}h_{23} \\ (h_{11}^2 - h_{21}^2) & 2(h_{11}h_{12} - h_{21}h_{22}) & 2(h_{11}h_{13} - h_{21}h_{23}) & (h_{12}^2 - h_{22}^2) & 2(h_{12}h_{13} - h_{22}h_{23}) & (h_{13}^2 - h_{23}^2) \end{bmatrix}$$

$$\mathbf{K} = \begin{bmatrix} 1118.7 & -25.7 & 531.5 \\ 0 & 1100.3 & 409.6 \\ 0 & 0 & 1 \end{bmatrix}$$

What are $\mathbf{R}|\mathbf{t}$ of square A, B and C?


```
(for square B)
  168.2714 125.7632 596.0000
  81.9609 320.4780 84.0000
  -0.1489 0.2110 1.0000
  (in Matlab)
 rb=inv(K)*hb
    0.2242
            0.0171
                     0.0509
    0.1299
            0.2127
                    -0.2959
   -0.1489
            0.2110
                    1.0000
[\mathbf{R} | \mathbf{t}] =
0.7501
        0.0565
                 0.6589
                          0.1702
                 -0.5557
        0.7086
                          -0.9902
```

0.7033

-0.7388

3.1192

0.5070

```
hc =
 228.9700 -209.5729 490.0000
 41.6167 105.1782 387.0000
  -0.0782 -0.1824 1.0000
(in Matlab)
rc=inv(K)*hc
  0.2434 -0.0969 -0.0376
  0.0670 0.1635 -0.0205
 -0.0782 -0.1824 1.0000
[\mathbf{R} | \mathbf{t}] =
 0.9210 -0.3896
                   0.0083
```

(for square C)

3.3463

(inv(K)*h3./0.3206)

0.3184

0.6582

0.6822

π

Draw camera positions relative to "Single Square"

$$\mathbf{X}_{\text{cam}} = \begin{bmatrix} u_x' & v_x' & w_x' & t_x \\ u_y' & v_y' & w_y' & t_y \\ u_z' & v_z' & w_z' & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix}^{-1} \cdot \mathbf{X}_{\text{world}}$$

Draw squares respective to Single camera

draw

$$[\mathbf{R} \mid \mathbf{t}] \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}, [\mathbf{R} \mid \mathbf{t}] \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}, [\mathbf{R} \mid \mathbf{t}] \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}, [\mathbf{R} \mid \mathbf{t}] \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$

Other resources:

Camera calibration toolbox for Matlab

Modern CCD cameras are usually capable of a spatial accuracy greater than 1/50 of the pixel size. However, such accuracy is not easily attained due to various error sources that can affect the image formation process. Current calibration methods typically assume that the observations are unbiased, the only error is the zero-mean independent and identically distributed

random noise in the observed image coordinates, and the camera model completely explains the mapping between the 3D coordinates and the image coordinates. In general, these conditions are not met, causing the calibration results to be less accurate than expected.

Deal with the lens distortion:

■ Lens distortion from Zhang's method

 $[u \ v \ 1]^T \rightarrow ideal points on image (distortion-free)$

 $[\bar{u} \ \bar{v} \ 1]^T$ \rightarrow measurement points on image (distortion)

 $\begin{bmatrix} x & y & 1 \end{bmatrix}^T$ \rightarrow ideal points on real 3D space (normalized, distortion-free)

 $[\bar{x} \ \bar{y} \ 1]^T \rightarrow$ measurement on real 3D space (normalized, distortion)

Radial distortion model:

$$\begin{cases} \ddot{x} = x + x[k_1(x^2 + y^2) + k_2(x^2 + y^2)^2] \\ \ddot{y} = y + y[k_1(x^2 + y^2) + k_2(x^2 + y^2)^2] \end{cases}$$

Lens distortion from Zhang's method—cont.

$$\mathbf{x} = \mathbf{P} \cdot \mathbf{X} = \mathbf{K} [\mathbf{R} \mid \mathbf{t}] \mathbf{X}$$

$$\begin{bmatrix} [x & y & 1]^T \\ [x & y & 1]^T \end{bmatrix} \\ [y] = y + y [k_1(x^2 + y^2) + k_2(x^2 + y^2)^2] \end{bmatrix}$$

$$\begin{cases} \vec{u} = u_0 + \alpha \vec{x} + c \vec{y} \\ \vec{v} = v_0 + \beta \vec{y} \end{cases}$$
Initial guess
$$\begin{cases} \vec{u} = u + (u - u_0)[k_1(x^2 + y^2) + k_2(x^2 + y^2)^2] \\ [y] = v + (v - v_0)[k_1(x^2 + y^2) + k_2(x^2 + y^2)^2] \end{cases}$$

$$\begin{bmatrix} (u - u_0)(x^2 + y^2) & (u - u_0)(x^2 + y^2)^2 \\ (v - v_0)(x^2 + y^2) & (v - v_0)(x^2 + y^2)^2 \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} = \begin{bmatrix} \vec{u} - u \\ \vec{v} - v \end{bmatrix}$$

$$\Rightarrow \text{solve by SVD, then iteratively minimize the error}$$

$$\mathbf{K} = \begin{bmatrix} \alpha & c & u_0 \\ 0 & \beta & v_0 \\ 0 & 0 & 1 \end{bmatrix}$$

■ Lens distortion from Zhang's method—cont.

