# **SIGNALS & SYSTEMS**

YEAR 2012 ONE MARK

- MCQ 3.1 If  $x[n] = (1/3)^{|n|} (1/2)^n u[n]$ , then the region of convergence (ROC) of its z-transform in the z-plane will be
  - (A)  $\frac{1}{3} < |z| < 3$

(B)  $\frac{1}{3} < |z| < \frac{1}{2}$ 

(C)  $\frac{1}{2} < |z| < 3$ 

- (D)  $\frac{1}{3} < |z|$
- **MCQ 3.2** The unilateral Laplace transform of f(t) is  $\frac{1}{s^2 + s + 1}$ . The unilateral Laplace transform of tf(t) is
  - (A)  $-\frac{s}{(s^2+s+1)^2}$



(B)  $-\frac{2s+1}{(s^2+s+1)^2}$ 

(C)  $\frac{s}{(s^2+s+1)^2}$ 

(D)  $\frac{2s+1}{(s^2+s+1)^2}$ 

YEAR 2012

TWO MARKS

- MCQ 3.3 Let y[n] denote the convolution of h[n] and g[n], where  $h[n] = (1/2)^n u[n]$  and g[n] is a causal sequence. If y[0] = 1 and y[1] = 1/2, then g[1] equals
  - (A) 0

(B) 1/2

(C) 1

- (D) 3/2
- **MCQ 3.4** The Fourier transform of a signal h(t) is  $H(j\omega) = (2\cos\omega)(\sin 2\omega)/\omega$ . The value of h(0) is
  - (A) 1/4

(B) 1/2

ISBN: 9788192276243

(C) 1

- (D) 2
- MCQ 3.5 The input x(t) and output y(t) of a system are related as  $y(t) = \int_{-\infty}^{t} x(\tau) \cos(3\tau) d\tau$ . The system is
  - (A) time-invariant and stable
  - (B) stable and not time-invariant
  - (C) time-invariant and not stable
  - (D) not time-invariant and not stable

PAGE 116 SIGNALS & SYSTEMS CHAP 3

YEAR 2011 ONE MARK

**MCQ 3.6** The Fourier series expansion  $f(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos n\omega t + b_n \sin n\omega t$  of the periodic signal shown below will contain the following nonzero terms



- (A)  $a_0$  and  $b_n, n = 1, 3, 5, ... \infty$
- (B)  $a_0$  and  $a_n, n = 1, 2, 3, ... \infty$
- (C)  $a_0 a_n$  and  $b_n, n = 1, 2, 3, ... \infty$
- (D)  $a_0$  and  $a_n n = 1, 3, 5, ... \infty$

**MCQ 3.7** Given two continuous time signals  $x(t) = e^{-t}$  and  $y(t) = e^{-2t}$  which exist for t > 0, the convolution  $z(t) = x(t)^* y(t)$  is

(A)  $e^{-t} - e^{-2t}$ 

(B)  $e^{-3t}$ 

(C)  $e^{+t}$ 

(D)  $e^{-t} + e^{-2t}$ 

YEAR 2011 TWO MARKS

**MCQ 3.8** Let the Laplace transform of a function f(t) which exists for t > 0 be  $F_1(s)$  and the Laplace transform of its delayed version  $f(t - \tau)$  be  $F_2(s)$ . Let  $F_1 * (s)$  be the complex conjugate of  $F_1(s)$  with the Laplace variable set  $s = \sigma + j\omega$ . If  $G(s) = \frac{F_2(s) F_1 * (s)}{|F_1(s)|^2}$ , then the inverse Laplace transform of G(s) is an ideal

(A) impulse  $\delta(t)$ 

(B) delayed impulse  $\delta(t-\tau)$ 

(C) step function u(t)

(D) delayed step function  $u(t-\tau)$ 

**MCQ 3.9** The response h(t) of a linear time invariant system to an impulse  $\delta(t)$ , under initially relaxed condition is  $h(t) = e^{-t} + e^{-2t}$ . The response of this system for a unit step input u(t) is

(A)  $u(t) + e^{-t} + e^{-2t}$ 

- (B)  $(e^{-t} + e^{-2t}) u(t)$
- (C)  $(1.5 e^{-t} 0.5e^{-2t}) u(t)$
- (D)  $e^{-t}\delta(t) + e^{-2t}u(t)$

ISBN: 9788192276243

YEAR 2010 ONE MARK

**MCQ 3.10** For the system 2/(s+1), the approximate time taken for a step response to reach 98% of the final value is

(A) 1 s

(B) 2 s

(C) 4 s

(D) 8 s

GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia

- **MCQ 3.11** The period of the signal  $x(t) = 8\sin(0.8\pi t + \frac{\pi}{4})$  is
  - (A)  $0.4\pi \text{ s}$

(B)  $0.8\pi \text{ s}$ 

(C) 1.25 s

- (D) 2.5 s
- MCQ 3.12 The system represented by the input-output relationship

$$y(t) = \int_{-\infty}^{5t} x(\tau) d\tau, t > 0$$

(A) Linear and causal

- (B) Linear but not causal
- (C) Causal but not linear
- (D) Neither liner nor causal
- MCQ 3.13 The second harmonic component of the periodic waveform given in the figure has an amplitude of



YEAR 2010 TWO MARKS

**MCQ 3.14** x(t) is a positive rectangular pulse from t=-1 to t=+1 with unit height as shown in the figure. The value of  $\int_{-\infty}^{\infty} |X(\omega)|^2 d\omega$  {where  $X(\omega)$  is the Fourier transform of x(t)} is.



(A) 2

(B)  $2\pi$ 

(C) 4

(D)  $4\pi$ 

ISBN: 9788192276243

**MCQ 3.15** Given the finite length input x[n] and the corresponding finite length output y[n] of an LTI system as shown below, the impulse response h[n] of the system is

**PAGE 118** SIGNALS & SYSTEMS CHAP 3

$$x[n] = \{1, -1\}$$
  $h[n]$   $y[n] = \{1, 0, 0, 0, -1\}$ 

(A)  $h[n] = \{1, 0, 0, 1\}$ 

(B)  $h[n] = \{1, 0, 1\}$ 

(C)  $h[n] = \{1, 1, 1, 1\}$ 

(D)  $h[n] = \{1, 1, 1\}$ 

## Common Data Questions Q.6-7.

Given f(t) and g(t) as show below





q(t) can be expressed as MCQ 3.16

- (A) q(t) = f(2t-3)
- (B)  $g(t) = f(\frac{t}{2} 3)$

(C)  $g(t) = f(2t - \frac{3}{2})$ 

(D)  $g(t) = f(\frac{t}{2} - \frac{3}{2})$ 

The Laplace transform of g(t) is MCQ 3.17

- (A)  $\frac{1}{s}(e^{3s}-e^{5s})$
- help (B)  $\frac{1}{s}(e^{-5s} e^{-3s})$  (D)  $\frac{1}{s}(e^{5s} e^{3s})$
- (C)  $\frac{e^{-3s}}{s}(1-e^{-2s})$

**YEAR 2009 ONE MARK** 

MCQ 3.18 A Linear Time Invariant system with an impulse response h(t) produces output y(t) when input x(t) is applied. When the input  $x(t-\tau)$  is applied to a system with impulse response  $h(t-\tau)$ , the output will be

(A)  $y(\tau)$ 

(B)  $y(2(t-\tau))$ 

ISBN: 9788192276243

(C)  $y(t-\tau)$ 

(D)  $y(t-2\tau)$ 

**YEAR 2009 TWO MARKS** 

MCQ 3.19 A cascade of three Linear Time Invariant systems is causal and unstable. From this, we conclude that

- (A) each system in the cascade is individually causal and unstable
- (B) at least on system is unstable and at least one system is causal
- (C) at least one system is causal and all systems are unstable

GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia

Visit us at: www.nodia.co.in

Published by: NODIA and COMPANY

(D) the majority are unstable and the majority are causal

**MCQ 3.20** The Fourier Series coefficients of a periodic signal x(t) expressed as  $x(t) = \sum_{k=-\infty}^{\infty} a_k e^{j2\pi kt/T}$  are given by  $a_2 = 2 - j1$ ,  $a_{-1} = 0.5 + j0.2$ ,  $a_0 = j2$ ,  $a_1 = 0.5 - j0.2$ ,  $a_2 = 2 + j1$  and  $a_k = 0$  for |k| > 2

Which of the following is true?

- (A) x(t) has finite energy because only finitely many coefficients are non-zero
- (B) x(t) has zero average value because it is periodic
- (C) The imaginary part of x(t) is constant
- (D) The real part of x(t) is even
- **MCQ 3.21** The z-transform of a signal x[n] is given by  $4z^{-3} + 3z^{-1} + 2 6z^2 + 2z^3$  It is applied to a system, with a transfer function  $H(z) = 3z^{-1} 2$  Let the output be y[n]. Which of the following is true?
  - (A) y[n] is non causal with finite support
  - (B) y[n] is causal with infinite support
  - (C) y[n] = 0; |n| > 3
  - (D)  $\operatorname{Re}[Y(z)]_{z=e^{j\theta}} = -\operatorname{Re}[Y(z)]_{z=e^{-j\theta}}$  $\operatorname{Im}[Y(z)]_{z=e^{j\theta}} = \operatorname{Im}[Y(z)]_{z=e^{-j\theta}}; -\pi \le \theta < \pi$

YEAR 2008 ONE MARK

MCQ 3.22 The impulse response of a causal linear time-invariant system is given as h(t). Now consider the following two statements:

Statement (I): Principle of superposition holds

Statement (II): h(t) = 0 for t < 0

Which one of the following statements is correct ?

- (A) Statements (I) is correct and statement (II) is wrong
- (B) Statements (II) is correct and statement (I) is wrong
- (C) Both Statement (I) and Statement (II) are wrong
- (D) Both Statement (I) and Statement (II) are correct
- MCQ 3.23 A signal  $e^{-\alpha t}\sin(\omega t)$  is the input to a real Linear Time Invariant system. Given K and  $\phi$  are constants, the output of the system will be of the form  $Ke^{-\beta t}\sin(vt+\phi)$  where
  - (A)  $\beta$  need not be equal to  $\alpha$  but v equal to  $\omega$
  - (B) v need not be equal to  $\omega$  but  $\beta$  equal to  $\alpha$
  - (C)  $\beta$  equal to  $\alpha$  and v equal to  $\omega$
  - (D)  $\beta$  need not be equal to  $\alpha$  and v need not be equal to  $\omega$

PAGE 120 SIGNALS & SYSTEMS CHAP 3

## YEAR 2008 TWO MARKS

**MCQ 3.24** A system with x(t) and output y(t) is defined by the input-output relation :  $y(t) = \int_{-\infty}^{-2t} x(t) d\tau$ 

The system will be

- (A) Casual, time-invariant and unstable
- (B) Casual, time-invariant and stable
- (C) non-casual, time-invariant and unstable
- (D) non-casual, time-variant and unstable
- MCQ 3.25 A signal  $x(t) = \operatorname{sinc}(\alpha t)$  where  $\alpha$  is a real constant  $(\operatorname{sinc}(x) = \frac{\sin(\pi x)}{\pi x})$  is the input to a Linear Time Invariant system whose impulse response  $h(t) = \operatorname{sinc}(\beta t)$ , where  $\beta$  is a real constant. If  $\min(\alpha, \beta)$  denotes the minimum of  $\alpha$  and  $\beta$  and similarly,  $\max(\alpha, \beta)$  denotes the maximum of  $\alpha$  and  $\beta$ , and K is a constant, which one of the following statements is true about the output of the system?
  - (A) It will be of the form  $K \operatorname{sinc}(\gamma t)$  where  $\gamma = \min(\alpha, \beta)$
  - (B) It will be of the form  $K \operatorname{sinc}(\gamma t)$  where  $\gamma = \max(\alpha, \beta)$
  - (C) It will be of the form  $K \operatorname{sinc}(\alpha t)$
  - (D) It can not be a sinc type of signal
- MCQ 3.26 Let x(t) be a periodic signal with time period T, Let  $y(t) = x(t t_0) + x(t + t_0)$  for some  $t_0$ . The Fourier Series coefficients of y(t) are denoted by  $b_k$ . If  $b_k = 0$  for all odd k, then  $t_0$  can be equal to
  - (A) T/8

(B) T/4

(C) T/2

- (D) 2T
- **MCQ 3.27** H(z) is a transfer function of a real system. When a signal  $x[n] = (1+j)^n$  is the input to such a system, the output is zero. Further, the Region of convergence (ROC) of  $(1-\frac{1}{2}z^{-1})$  H(z) is the entire Z-plane (except z=0). It can then be inferred that H(z) can have a minimum of
  - (A) one pole and one zero
  - (B) one pole and two zeros
  - (C) two poles and one zero
  - D) two poles and two zeros
- **MCQ 3.28** Given  $X(z) = \frac{z}{(z-a)^2}$  with |z| > a, the residue of  $X(z)z^{n-1}$  at z=a for  $n \ge 0$  will be
  - (A)  $a^{n-1}$

(B)  $a^n$ 

(C)  $na^n$ 

(D)  $na^{n-1}$ 

- MCQ 3.29 Let  $x(t) = \text{rect}(t \frac{1}{2})$  (where rect(x) = 1 for  $-\frac{1}{2} \le x \le \frac{1}{2}$  and zero otherwise. If  $\text{sinc}(x) = \frac{\sin(\pi x)}{\pi x}$ , then the FTof x(t) + x(-t) will be given by
  - (A)  $\operatorname{sinc}\left(\frac{\omega}{2\pi}\right)$

(B)  $2\operatorname{sinc}\left(\frac{\omega}{2\pi}\right)$ 

(C)  $2\operatorname{sinc}\left(\frac{\omega}{2\pi}\right)\operatorname{cos}\left(\frac{\omega}{2}\right)$ 

(D)  $\operatorname{sinc}\left(\frac{\omega}{2\pi}\right) \sin\left(\frac{\omega}{2}\right)$ 

ISBN: 9788192276243

- **MCQ 3.30** Given a sequence x[n], to generate the sequence y[n] = x[3-4n], which one of the following procedures would be correct?
  - (A) First delay x(n) by 3 samples to generate  $z_1[n]$ , then pick every  $4^{th}$  sample of  $z_1[n]$  to generate  $z_2[n]$ , and than finally time reverse  $z_2[n]$  to obtain y[n].
  - (B) First advance x[n] by 3 samples to generate  $z_1[n]$ , then pick every 4<sup>th</sup> sample of  $z_1[n]$  to generate  $z_2[n]$ , and then finally time reverse  $z_2[n]$  to obtain y[n]
  - (C) First pick every fourth sample of x[n] to generate  $v_1[n]$ , time-reverse  $v_1[n]$  to obtain  $v_2[n]$ , and finally advance  $v_2[n]$  by 3 samples to obtain y[n]
  - (D) First pick every fourth sample of x[n] to generate  $v_1[n]$ , time-reverse  $v_1[n]$  to obtain  $v_2[n]$ , and finally delay  $v_2[n]$  by 3 samples to obtain y[n]

YEAR 2007 ONE MARK

- MCQ 3.31 Let a signal  $a_1 \sin(\omega_1 t + \phi)$  be applied to a stable linear time variant system. Let the corresponding steady state output be represented as  $a_2 F(\omega_2 t + \phi_2)$ . Then which of the following statement is true?
  - (A) F is not necessarily a "Sine" or "Cosine" function but must be periodic with  $\omega_1 = \omega_2$ .
  - (B) F must be a "Sine" or "Cosine" function with  $a_1 = a_2$
  - (C) F must be a "Sine" function with  $\omega_1 = \omega_2$  and  $\varphi_1 = \varphi_2$
  - (D) F must be a "Sine" or "Cosine" function with  $\omega_1 = \omega_2$
- MCQ 3.32 The frequency spectrum of a signal is shown in the figure. If this is ideally sampled at intervals of 1 ms, then the frequency spectrum of the sampled signal will be



PAGE 122 SIGNALS & SYSTEMS CHAP 3









YEAR 2007 TWO MARKS

**MCQ 3.33** A signal x(t) is given by

$$x(t) = \begin{cases} 1, & T/4 < t \le 3T/4 \\ -1, & 3T/4 < t \le 7T/4 \\ -x(t+T) \end{cases}$$

-x(t+T) Which among the following gives the fundamental fourier term of x(t)?

(A) 
$$\frac{4}{\pi}\cos\left(\frac{\pi t}{T} - \frac{\pi}{4}\right)$$

(B) 
$$\frac{\pi}{4}\cos\left(\frac{\pi t}{2T} + \frac{\pi}{4}\right)$$

(C) 
$$\frac{4}{\pi} \sin\left(\frac{\pi t}{T} - \frac{\pi}{4}\right)$$

(D) 
$$\frac{\pi}{4}\sin\left(\frac{\pi t}{2T} + \frac{\pi}{4}\right)$$

ISBN: 9788192276243

### Statement for Linked Answer Question 34 and 35:

- MCQ 3.34 A signal is processed by a causal filter with transfer function G(s)For a distortion free output signal wave form, G(s) must
  - (A) provides zero phase shift for all frequency
  - (B) provides constant phase shift for all frequency

- (C) provides linear phase shift that is proportional to frequency
- (D) provides a phase shift that is inversely proportional to frequency

 $G(z) = \alpha z^{-1} + \beta z^{-3}$  is a low pass digital filter with a phase characteristics MCQ 3.35 same as that of the above question if

(A)  $\alpha = \beta$ 

(B)  $\alpha = -\beta$ 

(C)  $\alpha = \beta^{(1/3)}$ 

(D)  $\alpha = \beta^{(-1/3)}$ 

Consider the discrete-time system shown in the figure where the impulse MCQ 3.36 response of G(z) is  $g(0) = 0, g(1) = g(2) = 1, g(3) = g(4) = \cdots = 0$ 



This system is stable for range of values of K

(A)  $[-1, \frac{1}{2}]$ 

(B) [-1, 1]

(C)  $\left[-\frac{1}{2}, 1\right]$ 

(D)  $\left[-\frac{1}{2}, 2\right]$ 

If u(t), r(t) denote the unit step and unit ramp functions respectively and MCQ 3.37 u(t) \* r(t) their convolution, then the function u(t+1) \* r(t-2) is given by

- (A)  $\frac{1}{2}(t-1)u(t-1)$  (C)  $\frac{1}{2}(t-1)^2u(t-1)$
- (B)  $\frac{1}{2}(t-1)u(t-2)$

(D) None of the above

ISBN: 9788192276243

 $X(z) = 1 - 3z^{-1}$ ,  $Y(z) = 1 + 2z^{-2}$  are Z transforms of two signals x[n], y[n]MCQ 3.38 respectively. A linear time invariant system has the impulse response h[n]defined by these two signals as h[n] = x[n-1] \* y[n] where \* denotes discrete time convolution. Then the output of the system for the input  $\delta[n-1]$ 

- (A) has Z-transform  $z^{-1}X(z) Y(z)$
- (B) equals  $\delta[n-2] 3\delta[n-3] + 2\delta[n-4] 6\delta[n-5]$
- (C) has Z-transform  $1 3z^{-1} + 2z^{-2} 6z^{-3}$
- (D) does not satisfy any of the above three

**YEAR 2006 ONE MARK** 

The following is true MCQ 3.39

- (A) A finite signal is always bounded
- (B) A bounded signal always possesses finite energy
- (C) A bounded signal is always zero outside the interval  $[-t_0, t_0]$  for some  $t_0$
- (D) A bounded signal is always finite

**PAGE 124** SIGNALS & SYSTEMS CHAP 3

- MCQ 3.40 x(t) is a real valued function of a real variable with period T. Its trigonometric Fourier Series expansion contains no terms of frequency  $\omega = 2\pi(2k)/T$ ;  $k = 1, 2\cdots$  Also, no sine terms are present. Then x(t) satisfies the equation
  - (A) x(t) = -x(t-T)
  - (B) x(t) = x(T-t) = -x(-t)
  - (C) x(t) = x(T-t) = -x(t-T/2)
  - (D) x(t) = x(t T) = x(t T/2)
- MCQ 3.41 A discrete real all pass system has a pole at  $z = 2 \angle 30^\circ$ : it, therefore
  - (A) also has a pole at  $\frac{1}{2} \angle 30^{\circ}$
  - (B) has a constant phase response over the z-plane:  $\arg |H(z)| = \text{constant}$ constant
  - (C) is stable only if it is anti-causal
  - (D) has a constant phase response over the unit circle:  $\arg |H(e^{i\Omega})| = \text{constant}$

**YEAR 2006 TWO MARKS** 

- x[n] = 0; n < -1, n > 0, x[-1] = -1, x[0] = 2 is the input and MCQ 3.42 y[n] = 0; n < -1, n > 2, y[-1] = -1 = y[1], y[0] = 3, y[2] = -2 is the output of a discrete-time LTI system. The system impulse response h[n] will be
  - (A) h[n] = 0; n < 0, n > 2, h[0] = 1, h[1] = h[2] = -1
  - (B) h[n] = 0; n < -1, n > 1, h[-1] = 1, h[0] = h[1] = 2(C) h[n] = 0; n < 0, n > 3, h[0] = -1, h[1] = 2, h[2] = 1

  - (D) h[n] = 0; n < -2, n > 1, h[-2] = h[1] = h[-1] = -h[0] = 3
- The discrete-time signal  $x[n] \longleftrightarrow X(z) = \sum_{n=0}^{\infty} \frac{3^n}{2+n} z^{2n}$ , where  $\longleftrightarrow$  denotes a transform-pair relationship, is orthogonal to the signal MCQ 3.43
  - (A)  $y_1[n] \leftrightarrow Y_1(z) = \sum_{n=0}^{\infty} \left(\frac{2}{3}\right)^n z^{-n}$
  - (B)  $y_2[n] \leftrightarrow Y_2(z) = \sum_{n=0}^{\infty} (5^n n) z^{-(2n+1)}$
  - (C)  $y_3[n] \leftrightarrow Y_3(z) = \sum_{n=-\infty}^{\infty} 2^{-|n|} z^{-n}$
  - (D)  $y_4[n] \leftrightarrow Y_4(z) = 2z^{-4} + 3z^{-2} + 1$
- A continuous-time system is described by  $y(t) = e^{-|x(t)|}$ , where y(t) is the MCQ 3.44 output and x(t) is the input. y(t) is bounded
  - (A) only when x(t) is bounded
  - (B) only when x(t) is non-negative

ISBN: 9788192276243

- (C) only for  $t \leq 0$  if x(t) is bounded for  $t \geq 0$
- (D) even when x(t) is not bounded

The running integration, given by  $y(t) = \int_{-t}^{t} x(t') dt'$ MCQ 3.45

- (A) has no finite singularities in its double sided Laplace Transform Y(s)
- (B) produces a bounded output for every causal bounded input
- (C) produces a bounded output for every anticausal bounded input
- (D) has no finite zeroes in its double sided Laplace Transform Y(s)

**YEAR 2005 TWO MARKS** 

For the triangular wave from shown in the figure, the RMS value of the MCQ 3.46 voltage is equal to





(A)  $\sqrt{\frac{1}{6}}$  **gate** (B)  $\sqrt{\frac{1}{3}}$  (C)  $\frac{1}{3}$  (D)  $\sqrt{\frac{2}{3}}$  The Laplace transform of a function f(t) is  $F(s) = \frac{5s^2 + 23s + 6}{s(s^2 + 2s + 2)}$  as MCQ 3.47  $t \to \infty$ , f(t) approaches

(A) 3

(B) 5

(C)  $\frac{17}{2}$ 

(D)  $\infty$ 

MCQ 3.48 The Fourier series for the function  $f(x) = \sin^2 x$  is

- (A)  $\sin x + \sin 2x$
- (B)  $1 \cos 2x$
- (C)  $\sin 2x + \cos 2x$
- (D)  $0.5 0.5 \cos 2x$

If u(t) is the unit step and  $\delta(t)$  is the unit impulse function, the inverse z MCQ 3.49 -transform of  $F(z) = \frac{1}{z+1}$  for k > 0 is

(A)  $(-1)^k \delta(k)$ 

(B)  $\delta(k) - (-1)^k$ 

(C)  $(-1)^k u(k)$ 

(D)  $u(k) - (-1)^k$ 

PAGE 126 SIGNALS & SYSTEMS CHAP 3

YEAR 2004 TWO MARKS

**MCQ 3.50** The rms value of the periodic waveform given in figure is



(A)  $2\sqrt{6}$  A

(B)  $6\sqrt{2}$  A

(C)  $\sqrt{4/3}$  A

(D) 1.5 A

MCQ 3.51 The rms value of the resultant current in a wire which carries a dc current of 10 A and a sinusoidal alternating current of peak value 20 is

(A) 14.1 A

(B) 17.3 A

(C) 22.4 A

(D) 30.0 A

YEAR 2002 ONE MARK

**MCQ 3.52** Fourier Series for the waveform, f(t) shown in Figure is



(A) 
$$\frac{8}{\pi^2} \left[ \sin(\pi t) + \frac{1}{9} \sin(3\pi t) + \frac{1}{25} \sin(5\pi t) + \dots \right]$$

(B) 
$$\frac{8}{\pi^2} \left[ \sin(\pi t) - \frac{1}{9}\cos(3\pi t) + \frac{1}{25}\sin(5\pi t) + \dots \right]$$

(C) 
$$\frac{8}{\pi^2} \left[ \cos(\pi t) + \frac{1}{9} \cos(3\pi t) + \frac{1}{25} \cos(5\pi t) + \dots \right]$$

(D) 
$$\frac{8}{\pi^2} \left[ \cos(\pi t) - \frac{1}{9} \sin(3\pi t) + \frac{1}{25} \sin(5\pi t) + \dots \right]$$

MCQ 3.53 Let s(t) be the step response of a linear system with zero initial conditions; then the response of this system to an an input u(t) is

(A) 
$$\int_0^t s(t-\tau) u(\tau) d\tau$$

(B) 
$$\frac{d}{dt} \left[ \int_0^t s(t-\tau) u(\tau) d\tau \right]$$

GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia

Published by: NODIA and COMPANY

Visit us at: www.nodia.co.in

ISBN: 9788192276243

(C) 
$$\int_0^t s(t-\tau) \left[ \int_0^t u(\tau_1) d\tau_1 \right] d\tau$$

(D) 
$$\int_0^1 [s(t-\tau)]^2 u(\tau) d\tau$$

MCQ 3.54 Let Y(s) be the Laplace transformation of the function y(t), then the final value of the function is

(A)  $\lim_{s\to 0} Y(s)$ 

(B)  $\lim_{s \to \infty} Y(s)$ 

(C)  $\lim_{s\to 0} sY(s)$ 

(D)  $\lim_{s \to \infty} s Y(s)$ 

**MCQ 3.55** What is the rms value of the voltage waveform shown in Figure?



- (A)  $(200/\pi)$  V
- (C) 200 V

- (B)  $(100/\pi) \text{ V}$ 
  - (D) 100 V

YEAR 2001 ONE MARK

MCQ 3.56 Given the relationship between the input u(t) and the output y(t) to be

$$y(t) = \int_0^t (2 + t - \tau) e^{-3(t - \tau)} u(\tau) d\tau,$$

The transfer function Y(s)/U(s) is

(A)  $\frac{2e^{-2s}}{s+3}$ 

(B)  $\frac{s+2}{(s+3)^2}$ 

(C)  $\frac{2s+5}{s+3}$ 

(D)  $\frac{2s+7}{(s+3)^2}$ 

ISBN: 9788192276243

Common data Questions Q.57-58\*

Consider the voltage waveform v as shown in figure



| <b>PAGE 128</b> |                                                  | SIGNALS & SYSTEMS | CHAP 3 |
|-----------------|--------------------------------------------------|-------------------|--------|
|                 |                                                  |                   |        |
| MCQ 3.57        | The DC component of $v$                          | is                |        |
|                 | (A) 0.4                                          | (B) 0.2           |        |
|                 | (C) 0.8                                          | (D) 0.1           |        |
| MCQ 3.58        | The amplitude of fundamental component of $v$ is |                   |        |
|                 | (A) 1.20 V                                       | (B) 2.40 V        |        |
|                 | (C) 2 V                                          | (D) 1 V           |        |
|                 |                                                  |                   |        |

\*\*\*\*\*



# SOLUTION

**SOL 3.1** Option (C) is correct.

$$\begin{split} x[n] &= \left(\frac{1}{3}\right)^{n} - \left(\frac{1}{2}\right)^n u[n] \\ &= \left(\frac{1}{3}\right)^n u[n] + \left(\frac{1}{3}\right)^{-n} u[-n-1] - \left(\frac{1}{2}\right)^n u(n) \end{split}$$

Taking z-transform

$$X[z] = \sum_{n = -\infty}^{\infty} \left(\frac{1}{3}\right)^n z^{-n} u[n] + \sum_{n = -\infty}^{\infty} \left(\frac{1}{3}\right)^{-n} z^{-n} u[-n-1]$$

$$- \sum_{n = -\infty}^{\infty} \left(\frac{1}{2}\right)^n z^{-n} u[n] = \sum_{n = 0}^{\infty} \left(\frac{1}{3}\right)^n z^{-n} + \sum_{n = -\infty}^{-1} \left(\frac{1}{3}\right)^{-n} z^{-n} - \sum_{n = 0}^{\infty} \left(\frac{1}{2}\right)^n z^{-n}$$

$$= \sum_{n = 0}^{\infty} \left(\frac{1}{3z}\right)^n + \sum_{m = 1}^{\infty} \left(\frac{1}{3}z\right)^m - \sum_{n = 0}^{\infty} \left(\frac{1}{2z}\right)^n$$
Taking  $m = -n$ 

Series I converges if  $\left|\frac{1}{3z}\right| < 1$  or  $\left|z\right| > \frac{1}{3}$ 

Series II converges if  $\left|\frac{1}{3}z\right| < 1$  or  $\left|z\right| < 3$ 

Series III converges if  $\left|\frac{1}{2z}\right| < 1$  or  $\left|z\right| > \frac{1}{2}$ 

Region of convergence of X(z) will be intersection of above three

So, 
$$ROC: \frac{1}{2} < |z| < 3E$$

**SOL 3.2** Option (D) is correct.

Using s-domain differentiation property of Laplace transform.

If 
$$f(t) \stackrel{\mathcal{L}}{\longleftrightarrow} F(s)$$

$$tf(t) \stackrel{\mathcal{L}}{\longleftrightarrow} -\frac{dF(s)}{ds}$$

So, 
$$\mathcal{L}[tf(t)] = \frac{-d}{ds} \left[ \frac{1}{s^2 + s + 1} \right] = \frac{2s + 1}{(s^2 + s + 1)^2}$$

**SOL 3.3** Option (A) is correct.

Convolution sum is defined as

$$y[n] = h[n] * g[n] = \sum_{k=-\infty}^{\infty} h[n] g[n-k]$$

For causal sequence,  $y[n] = \sum_{k=0}^{\infty} h[n] g[n-k]$ 

$$y[n] = h[n]g[n] + h[n]g[n-1] + h[n]g[n-2] + \dots$$

ISBN: 9788192276243

GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia

Published by: NODIA and COMPANY

PAGE 130 SIGNALS & SYSTEMS CHAP 3

For 
$$n=0$$
, 
$$y[0] = h[0] g[0] + h[1] g[-1] + \dots$$
$$= h[0] g[0] \qquad g[-1] = g[-2] = \dots 0$$
$$= h[0] g[0] \qquad \dots (i)$$
 For  $n=1$ , 
$$y[1] = h[1] g[1] + h[1] g[0] + h[1] g[-1] + \dots$$
$$= h[1] g[1] + h[1] g[0]$$
 
$$\frac{1}{2} = \frac{1}{2} g[1] + \frac{1}{2} g[0] \qquad h[1] = \left(\frac{1}{2}\right)^1 = \frac{1}{2}$$
 
$$1 = g[1] + g[0]$$
 
$$g[1] = 1 - g[0]$$
 From equation (i), 
$$g[0] = \frac{y[0]}{h[0]} = \frac{1}{1} = 1$$
 So, 
$$g[1] = 1 - 1 = 0$$

### **SOL 3.4** Option (C) is correct.

$$H(j\omega) = \frac{(2\cos\omega)(\sin 2\omega)}{\omega} = \frac{\sin 3\omega}{\omega} + \frac{\sin\omega}{\omega}$$

We know that inverse Fourier transform of  $\sin c$  function is a rectangular function.





So, inverse Fourier transform of  $H(j\omega)$ 

$$h(t) = h_1(t) + h_2(t)$$
  
 $h(0) = h_1(0) + h_2(0) = \frac{1}{2} + \frac{1}{2} = 1$ 

ISBN: 9788192276243

#### **SOL 3.5** Option (D) is correct.

$$y(t) = \int_{-\infty}^{t} x(\tau) \cos(3\tau) d\tau$$

GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia

Published by: NODIA and COMPANY

#### Time invariance:

Let, 
$$x(t) = \delta(t)$$

$$y(t) = \int_{-\infty}^{t} \delta(t) \cos(3\tau) d\tau = u(t) \cos(0) = u(t)$$

For a delayed input  $(t-t_0)$  output is

$$y(t,t_0) = \int_{-\infty}^{t} \!\! \delta(t-t_0) \cos(3\tau) \, d au \, = \, u(t) \cos(3t_0)$$

Delayed output

$$y(t - t_0) = u(t - t_0)$$
  
 $y(t, t_0) \neq y(t - t_0)$ 

System is not time invariant.

### Stability:

Consider a bounded input  $x(t) = \cos 3t$ 

$$y(t) = \int_{-\infty}^{t} \cos^{2} 3t = \int_{-\infty}^{t} \frac{1 - \cos 6t}{2} = \frac{1}{2} \int_{-\infty}^{t} 1 dt - \frac{1}{2} \int_{-\infty}^{t} \cos 6t \ dt$$

As  $t \to \infty$ ,  $y(t) \to \infty$  (unbounded)

System is not stable.

# **SOL 3.6** Option (D) is correct.



$$f(t) = a_0 + \sum_{n=1}^{\infty} (a_n \cos \omega t + b_n \sin n\omega t)$$

- The given function f(t) is an even function, therefore  $b_n = 0$
- f(t) is a non-zero average value function, so it will have a non-zero value of  $a_0$

$$a_0 = \frac{1}{(T/2)} \int_0^{T/2} f(t) dt$$
 (average value of  $f(t)$ )

•  $a_n$  is zero for all even values of n and non zero for odd n

$$a_n = \frac{2}{T} \int_0^T f(t) \cos(n\omega t) d(\omega t)$$

So, Fourier expansion of f(t) will have  $a_0$  and  $a_n$ ,  $n = 1, 3, 5... \infty$ 

## **SOL 3.7** Option (A) is correct.

$$x(t) = e^{-t}$$

Laplace transformation

GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia

Published by: NODIA and COMPANY

PAGE 132 SIGNALS & SYSTEMS CHAP 3

$$X(s) = \frac{1}{s+1}$$
$$y(t) = e^{-2t}$$
$$Y(s) = \frac{1}{s+2}$$

Convolution in time domain is equivalent to multiplication in frequency domain.

$$z(t) = x(t) * y(t)$$
  

$$Z(s) = X(s) Y(s) = \left(\frac{1}{s+1}\right)\left(\frac{1}{s+2}\right)$$

By partial fraction and taking inverse Laplace transformation, we get

$$Z(s) = \frac{1}{s+1} - \frac{1}{s+2}$$
$$z(t) = e^{-t} - e^{-2t}$$

**SOL 3.8** Option (D) is correct.

$$f(t) \stackrel{\mathcal{L}}{\longleftrightarrow} F_{1}(s)$$

$$f(t-\tau) \stackrel{\mathcal{L}}{\longleftrightarrow} e^{-s\tau} F_{1}(s) = F_{2}(s)$$

$$G(s) = \frac{F_{2}(s) F_{1}^{*}(s)}{|F_{1}(s)|^{2}} = \frac{e^{-s\tau} F_{1}(s) F_{1}^{*}(s)}{|F_{1}(s)|^{2}}$$

$$= \frac{e^{-sE} |F_{1}(s)|^{2}}{|F_{1}(s)|^{2}}$$

$$= e^{-s\tau}$$

$$\text{Se. Laplace transform}$$

$$f(t) \stackrel{\mathcal{L}}{\longleftrightarrow} F_{1}(s)$$

$$= F_{1}(s) |F_{1}(s)|^{2}$$

$$= e^{-s\tau}$$

Taking inverse Laplace transform

$$g(t) = \mathcal{L}^{-1}[e^{-s\tau}] = \delta(t-\tau)$$

**SOL 3.9** Option (C) is correct.

$$h(t) = e^{-t} + e^{-2t}$$

Laplace transform of h(t) i.e. the transfer function

$$H(s) = \frac{1}{s+1} + \frac{1}{s+2}$$

For unit step input

$$r(t) = \mu(t)$$
 or 
$$R(s) = \frac{1}{s}$$
 Output, 
$$Y(s) = R(s)H(s) = \frac{1}{s} \left[ \frac{1}{s+1} + \frac{1}{s+2} \right]$$

By partial fraction

$$Y(s) = \frac{3}{2s} - \frac{1}{s+1} - \left(\frac{1}{s+2}\right)\frac{1}{2}$$

GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia

Published by: NODIA and COMPANY ISBN: 9788192276243

Taking inverse Laplace

$$y(t) = \frac{3}{2}u(t) - e^{-t}u(t) - \frac{e^{-2t}u(t)}{2}$$
$$= u(t)[1.5 - e^{-t} - 0.5e^{-2t}]$$

**SOL 3.10** Option (C) is correct.

System is given as

$$H(s) = \frac{2}{(s+1)}$$

Step input

$$R(s) = \frac{1}{s}$$

Output

$$Y(s) = H(s)R(s) = \frac{2}{(s+1)}(\frac{1}{s}) = \frac{2}{s} - \frac{2}{(s+1)}$$

Taking inverse Laplace transform

$$y(t) = (2 - 2e^{-t})u(t)$$

Final value of y(t),

$$y_{ss}(t) = \lim_{t \to \infty} y(t) = 2$$

Let time taken for step response to reach 98% of its final value is  $t_s$ . So,

$$2-2e^{-t_s} = 2 \times 0.98$$
 $0.02 = e^{-t_s}$ 
 $t_s = \ln 50 = 3.91 \text{ sec.}$ 

**SOL 3.11** Option (D) is correct.

Period of x(t),

$$T = \frac{2\pi}{\omega} = \frac{2\pi}{0.8\,\pi} = 2.5\,\mathrm{sec}$$

**SOL 3.12** Option (B) is correct.

Input output relationship

$$y(t) = \int_{-\infty}^{5t} x(\tau) d\tau, \quad t > 0$$

Causality:

y(t) depends on x(5t), t > 0 system is non-causal.

For example t=2

y(2) depends on x(10) (future value of input)

Linearity:

Output is integration of input which is a linear function, so system is linear.

ISBN: 9788192276243

PAGE 134 SIGNALS & SYSTEMS CHAP 3

### **SOL 3.13** Option (A) is correct.

Fourier series of given function

$$x(t) = A_0 + \sum_{n=1}^{\infty} a_n \cos n\omega_0 t + b_n \sin n\omega_0 t$$

$$\therefore x(t) = -x(t) \text{ odd function}$$
So, 
$$A_0 = 0$$

$$a_n = 0$$

$$b_n = \frac{2}{T} \int_0^T x(t) \sin n\omega_0 t \, dt$$

$$= \frac{2}{T} \left[ \int_0^{T/2} (1) \sin n\omega_0 t \, dt + \int_{T/2}^T (-1) \sin n\omega_0 t \, dt \right]$$

$$= \frac{2}{T} \left[ \left( \frac{\cos n\omega_0 t}{-n\omega_0} \right)_0^{T/2} - \left( \frac{\cos n\omega_0 t}{-n\omega_0} \right)_{T/2}^T \right]$$

$$= \frac{2}{n\omega_0 T} \left[ (1 - \cos n\pi) + (\cos 2n\pi - \cos n\pi) \right]$$

$$= \frac{2}{n\pi} [1 - (-1)^n]$$

$$b_n = \begin{cases} \frac{4}{n\pi}, & n \text{ odd} \\ 0, & n \text{ even} \end{cases}$$

So only odd harmonic will be present in x(t)

For second harmonic component (n = 2) amplitude is zero.

# **SOL 3.14** Option (D) is correct.

By parsval's theorem

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} |X(\omega)|^2 d\omega = \int_{-\infty}^{\infty} x^2(t) dt$$
$$\int_{-\infty}^{\infty} |X(\omega)|^2 d\omega = 2\pi \times 2 = 4\pi$$

## **SOL 3.15** Option (C) is correct.

Given sequences

$$x[n] = \{1, -1\}, 0 \le n \le 1$$
  
 $y[n] = \{1, 0, 0, 0, -1\}, 0 \le n \le 4$ 

If impulse response is h[n] then

$$y[n] = h[n] * x[n]$$

Length of convolution (y[n]) is 0 to 4, x[n] is of length 0 to 1 so length of h[n] will be 0 to 3.

Let 
$$h[n] = \{a, b, c, d\}$$

GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia

Published by: NODIA and COMPANY ISBN: 9788192276243

Convolution



$$y[n] = \{a, -a+b, -b+c, -c+d, -d\}$$

By comparing

$$a = 1$$

$$-a+b=0 \Rightarrow b=a=1$$

$$-b+c=0 \Rightarrow c=b=1$$

$$-c+d=0 \Rightarrow d=c=1$$
So,
$$h[n] = \{1,1,1,1\}$$

**SOL 3.16** Option (D) is correct.

We can observe that if we scale f(t) by a factor of  $\frac{1}{2}$  and then shift, we will get g(t).

First scale f(t) by a factor of  $\frac{1}{2}$   $g_1(t) = f(t/2)$ 



Shift  $g_1(t)$  by 3,  $g(t) = g_1(t-3) = f(\frac{t-3}{2})$ 



$$g(t) = f\left(\frac{t}{2} - \frac{3}{2}\right)$$

**SOL 3.17** Option (C) is correct. g(t) can be expressed as

ISBN: 9788192276243

PAGE 136 SIGNALS & SYSTEMS CHAP 3

$$q(t) = u(t-3) - u(t-5)$$

By shifting property we can write Laplace transform of g(t)

$$G(s) = \frac{1}{s}e^{-3s} - \frac{1}{s}e^{-5s} = \frac{e^{-3s}}{s}(1 - e^{-2s})$$

**SOL 3.18** Option (D) is correct.

Let 
$$x(t) \stackrel{\mathcal{L}}{\longleftrightarrow} X(s)$$
$$y(t) \stackrel{\mathcal{L}}{\longleftrightarrow} Y(s)$$
$$h(t) \stackrel{\mathcal{L}}{\longleftrightarrow} H(s)$$

So output of the system is given as

$$Y(s) = X(s) H(s)$$
 Now for input 
$$x(t-\tau) \xleftarrow{\mathcal{L}} e^{-s\tau} X(s) \quad \text{(shifting property)}$$
 
$$h(t-\tau) \xleftarrow{\mathcal{L}} e^{-s\tau} H(s)$$
 So now output is 
$$Y(s) = e^{-s\tau} X(s) \cdot e^{-\tau s} H(s)$$
 
$$= e^{-2s\tau} X(s) H(s) = e^{-2s\tau} Y(s)$$
 
$$y'(t) = y(t-2\tau)$$

**SOL 3.19** Option (B) is correct.

Let three LTI systems having response  $H_1(z), H_2(z)$  and  $H_3(z)$  are Cascaded as showing below



Assume  $H_1(z) = z^2 + z^1 + 1$  (non-causal)

$$H_2(z) = z^3 + z^2 + 1$$
 (non-causal)

Overall response of the system

$$H(z) = H_1(z) H_2(z) H_3(z)$$
  

$$H(z) = (z^2 + z^1 + 1) (z^3 + z^2 + 1) H_3(z)$$

To make H(z) causal we have to take  $H_3(z)$  also causal.

Let 
$$H_3(z) = z^{-6} + z^{-4} + 1$$
  
=  $(z^2 + z^1 + 1)(z^3 + z^2 + 1)(z^{-6} + z^{-4} + 1)$   
 $H(z) \rightarrow \text{causal}$ 

Similarly to make H(z) unstable at least one of the system should be unstable.

**SOL 3.20** Option (C) is correct.

Given signal

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{j2\pi kt/T}$$

GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia

Published by: NODIA and COMPANY ISBN: 9788192276243

Let  $\omega_0$  is the fundamental frequency of signal x(t)

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t} \qquad \qquad \because \frac{2\pi}{T} = \omega_0$$

$$x(t) = a_{-2} e^{-j2\omega_0 t} + a_{-1} e^{-j\omega_0 t} + a_0 + a_1 e^{j\omega_0 t} + a_2 e^{j2\omega_0 t}$$

$$= (2 - j) e^{-2j\omega_0 t} + (0.5 + 0.2j) e^{-j\omega_0 t} + 2j + (0.5 - 0.2) e^{j\omega_0 t} + (2 + j) e^{j2\omega_0 t}$$

$$= 2[e^{-j2\omega_0 t} + e^{j2\omega_0 t}] + j[e^{j2\omega_0 t} - e^{-j2\omega_0 t}] + 0.5[e^{j\omega_0 t} + e^{-j\omega_0 t}] - 0.2j[e^{+j\omega_0 t} - e^{-j\omega_0 t}] + 2j$$

$$= 2(2\cos 2\omega_0 t) + j(2j\sin 2\omega_0 t) + 0.5(2\cos \omega_0 t) - 0.2j(2j\sin \omega_0 t) + 2j$$

$$= [4\cos 2\omega_0 t - 2\sin 2\omega_0 t + \cos \omega_0 t + 0.4\sin \omega_0 t] + 2j$$

$$\operatorname{Im}[x(t)] = 2 \quad (\operatorname{constant})$$

#### **SOL 3.21** Option (A) is correct.

Z-transform of x[n] is

$$X(z) = 4z^{\text{-}3} + 3z^{\text{-}1} + 2 - 6z^2 + 2z^3$$
 Transfer function of the system

$$H(z) = 3z^{-1} - 2$$

Output

$$Y(z) = H(z)X(z)$$

$$Y(z) = (3z^{-1} - 2)(4z^{-3} + 3z^{-1} + 2 - 6z^{2} + 2z^{3})$$

$$= 12z^{-4} + 9z^{-2} + 6z^{-1}$$

$$= 12z^{-4} - 8z^{-3} + 9z^{-2} - 4 - 18z + 18z^{2} - 4z^{3}$$

Or sequence y[n] is

$$y[n] = 12\delta[n-4] - 8\delta[n-3] + 9\delta[n-2] - 4\delta[n] - \\ 18\delta[n+1] + 18\delta[n+2] - 4\delta[n+3]$$

$$y[n] \neq 0, \ n < 0$$

So y[n] is non-causal with finite support.

#### **SOL 3.22** Option (D) is correct.

Since the given system is LTI, So principal of Superposition holds due to linearity.

For causal system h(t) = 0, t < 0

Both statement are correct.

#### **SOL 3.23** Option (C) is correct.

For an LTI system output is a constant multiplicative of input with same frequency.

ISBN: 9788192276243

GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia

Published by: NODIA and COMPANY

PAGE 138 SIGNALS & SYSTEMS CHAP 3

Here input 
$$g(t) = e^{-\alpha t} \sin(\omega t)$$
  
output  $y(t) = Ke^{-\beta t} \sin(vt + \phi)$   
Output will be in form of  $Ke^{-\alpha t} \sin(\omega t + \phi)$   
So  $\alpha = \beta, v = \omega$ 

**SOL 3.24** Option (D) is correct.

Input-output relation

$$y(t) = \int_{-\infty}^{-2t} x(\tau) \, d\tau$$

Causality:

Since y(t) depends on x(-2t), So it is non-causal.

Time-variance:

$$y(t) = \int_{-\infty}^{-2t} x(\tau - \tau_0) d\tau \neq y(t - \tau_0)$$

So this is time-variant.

Stability:

Output y(t) is unbounded for an bounded input.

For example

Let 
$$x(\tau) = e^{-\tau}$$
 (bounded) 
$$y(t) = \int_{-\infty}^{-2t} e^{-\tau} d\tau = \left[\frac{e^{-\tau}}{-1}\right]^{2t} \longrightarrow \text{Unbounded}$$

**SOL 3.25** Option (A) is correct.

Or

Output y(t) of the given system is

$$y(t) = x(t) * h(t)$$

$$Y(j\omega) = X(j\omega) H(j\omega)$$

$$x(t) = \operatorname{sinc}(\alpha t) \text{ and } h(t) = \operatorname{sinc}(\beta t)$$

Fourier transform of x(t) and h(t) are

$$X(j\omega) = \mathcal{F}[x(t)] = \frac{\pi}{\alpha} rect(\frac{\omega}{2\alpha}), -\alpha < \omega < \alpha$$

$$H(j\omega) = \mathcal{F}[h(t)] = \frac{\pi}{\beta} rect(\frac{\omega}{2\beta}), -\beta < \omega < \beta$$

$$Y(j\omega) = \frac{\pi^2}{\alpha\beta} rect(\frac{\omega}{2\alpha}) rect(\frac{\omega}{2\beta})$$



ISBN: 9788192276243

GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia

Published by: NODIA and COMPANY

So, 
$$Y(j\omega) = K \operatorname{rect} \left(\frac{\omega}{2\gamma}\right)$$
Where 
$$\gamma = \min(\alpha, \beta)$$
And 
$$y(t) = K \operatorname{sinc}(\gamma t)$$

**SOL 3.26** Option (B) is correct.

Let  $a_k$  is the Fourier series coefficient of signal x(t)

Given 
$$y(t) = x(t - t_0) + x(t + t_0)$$
  
Fourier series coefficient of  $y(t)$   
 $b_k = e^{-jk\omega t_0} a_k + e^{jk\omega t_0} a_k$   
 $b_k = 2a_k \cos k\omega t_0$   
 $b_k = 0$  (for all odd  $k$ )

$$k\omega t_0 = \frac{\pi}{2}, \ \mathbf{k} \to \text{odd}$$

$$k\frac{2\pi}{T}t_0 = \frac{\pi}{2}$$

For 
$$k = 1$$
,  $t_0 = \frac{T}{4}$ 



**SOL 3.27** Option () is correct.

SOL 3.28 Option (D) is correct. Given that  $X(z) = \frac{z}{(z-a)^2}$ , z > a

Residue of  $X(z)z^{n-1}$  at z=a is

$$= \frac{d}{dz}(z-a)^{2}X(z)z^{n-1}|_{z=a}$$

$$= \frac{d}{dz}(z-a)^{2}\frac{z}{(z-a)^{2}}z^{n-1}|_{z=a}$$

$$= \frac{d}{dz}z^{n}|_{z=a} = nz^{n-1}|_{z=a} = na^{n-1}$$

**SOL 3.29** Option (C) is correct.

Given signal

So, 
$$x(t) = \operatorname{rect}\left(t - \frac{1}{2}\right)$$
$$x(t) = \begin{cases} 1, & -\frac{1}{2} \le t - \frac{1}{2} \le \frac{1}{2} & \text{or } 0 \le t \le 1\\ 0, & \text{elsewhere} \end{cases}$$

Similarly

$$x(-\ t) = \mathrm{rect}\big(\!-t - \!\frac{1}{2}\big)$$

GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia

ISBN: 9788192276243

Published by: NODIA and COMPANY

**PAGE 140** SIGNALS & SYSTEMS CHAP 3

$$\begin{split} x(-t) &= \begin{cases} 1, & -\frac{1}{2} \leq -t - \frac{1}{2} \leq \frac{1}{2} \quad \text{or} \quad -1 \leq t \leq 0 \\ 0, & \text{elsewhere} \end{cases} \\ \mathcal{F}[x(t) + x(-t)] &= \int_{-\infty}^{\infty} x(t) \, e^{-j\omega t} \, dt + \int_{-\infty}^{\infty} x(-t) \, e^{-j\omega t} \, dt \\ &= \int_{0}^{1} (1) \, e^{-j\omega t} \, dt + \int_{-1}^{0} (1) \, e^{-j\omega t} \, dt \\ &= \left[ \frac{e^{-j\omega t}}{-j\omega} \right]_{0}^{1} + \left[ \frac{e^{-j\omega t}}{-j\omega} \right]_{-1}^{0} = \frac{1}{j\omega} (1 - e^{-j\omega}) + \frac{1}{j\omega} (e^{j\omega} - 1) \\ &= \frac{e^{-j\omega/2}}{j\omega} (e^{j\omega/2} - e^{-j\omega/2}) + \frac{e^{j\omega/2}}{j\omega} (e^{j\omega/2} - e^{-j\omega/2}) \\ &= \frac{(e^{j\omega/2} - e^{-j\omega/2}) (e^{-j\omega/2} + e^{j\omega/2})}{j\omega} \\ &= \frac{2}{\omega} \sin\left(\frac{\omega}{2}\right) \cdot 2\cos\left(\frac{\omega}{2}\right) = 2\cos\frac{\omega}{2} \operatorname{sinc}\left(\frac{\omega}{2\pi}\right) \end{split}$$

#### **SOL 3.30** Option (B) is correct.

In option (A)

$$z_{1}[n] = x[n-3]$$

$$z_{2}[n] = z_{1}[4n] = x[4n-3]$$

$$y[n] = z_{2}[-n] = x[-4n-3] \neq x[3-4n]$$
In option (B)
$$z_{1}[n] = x[n+3]$$

$$z_{2}[n] = z_{1}[4n] = x[4n+3]$$

$$y[n] = z_{2}[-n] = x[-4n+3]$$
In option (C)

In option (C)

$$v_1[n] = x[4n]$$
  
 $v_2[n] = v_1[-n] = x[-4n]$   
 $y[n] = v_2[n+3] = x[-4(n+3)] \neq x[3-4n]$ 

In option (D)

$$v_1[n] = x[4n]$$
  
 $v_2[n] = v_1[-n] = x[-4n]$   
 $y[n] = v_2[n-3] = x[-4(n-3)] \neq x[3-4n]$ 

#### Option () is correct. **SOL 3.31**

The spectrum of sampled signal  $s(j\omega)$  contains replicas of  $U(j\omega)$  at frequencies  $\pm nf_s$ .

Where 
$$n = 0, 1, 2, \dots$$
  
 $f_s = \frac{1}{T_c} = \frac{1}{1 \text{ m sec}} = 1 \text{ kHz}$ 

GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia

Published by: NODIA and COMPANY ISBN: 9788192276243







SOL 3.32 Option (D) is correct. For an LTI system input and output have identical wave shape (i.e. frequency of input-output is same) within a multiplicative constant (i.e. Amplitude response is constant)

So F must be a sine or cosine wave with  $\omega_1 = \omega_2$ 

SOL 3.33 Option (C) is correct.

Given signal has the following wave-form



**PAGE 142** SIGNALS & SYSTEMS CHAP 3

Function x(t) is periodic with period 2T and given that

$$x(t) = -x(t+T)$$
 (Half-wave symmetric)

So we can obtain the fourier series representation of given function.

**SOL 3.34** Option (C) is correct.

> Output is said to be distortion less if the input and output have identical wave shapes within a multiplicative constant. A delayed output that retains input waveform is also considered distortion less.

Thus for distortion less output, input-output relationship is given as

$$y(t) = Kg(t - t_d)$$

Taking Fourier transform.

$$Y(\omega) = KG(\omega) e^{-j\omega t_d} = G(\omega) H(\omega)$$

 $H(\omega) \Rightarrow$  transfer function of the system

So, 
$$H(\omega) = Ke^{-j\omega t_d}$$

Amplitude response  $|H(\omega)| = K$ 

Phase response, 
$$\theta_n(\omega) = -\omega t_0$$

For distortion less output, phase response should be proportional to frequency.

Option (A) is correct.  $G(z)\big|_{z=e^{j\omega}}=\alpha e^{-j\omega}+\beta e^{-3j\omega}$  for linear phase characteristic  $\alpha=\beta$ . **SOL 3.35** 

**SOL 3.36** Option (A) is correct.

System response is given as

$$H(z) = \frac{G(z)}{1 - KG(z)}$$

$$g[n] = \delta[n-1] + \delta[n-2]$$

$$G(z) = z^{-1} + z^{-2}$$
So
$$H(z) = \frac{(z^{-1} + z^{-2})}{1 - K(z^{-1} + z^{-2})} = \frac{z+1}{z^2 - Kz - K}$$

For system to be stable poles should lie inside unit circle.

$$\begin{split} |z| &\leq 1 \\ z &= \frac{K \pm \sqrt{K^2 + 4K}}{2} \leq 1 \ K \pm \sqrt{K^2 + 4K} \leq 2 \\ \sqrt{K^2 + 4K} &\leq 2 - K \\ K^2 + 4K &\leq 4 - 4K + K^2 \\ 8K &\leq 4 \\ K &\leq 1/2 \end{split}$$

GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia

Published by: NODIA and COMPANY

Visit us at: www.nodia.co.in

ISBN: 9788192276243

#### **SOL 3.37** Option (C) is correct.

Given Convolution is,

$$h(t) = u(t+1) * r(t-2)$$

Taking Laplace transform on both sides,

$$H(s) = \mathcal{L}[h(t)] = \mathcal{L}[u(t+1)] * \mathcal{L}[r(t-2)]$$

We know that,  $\mathcal{L}[u(t)] = 1/s$ 

$$\mathcal{L}[u(t+1)] = e^{s} \left(\frac{1}{s^{2}}\right)$$
 (Time-shifting property)

and

$$\mathcal{L}[r(t)] = 1/s^2$$

$$\mathcal{L} r(t-2) = e^{-2s} \left(\frac{1}{s^2}\right)$$
 (Time-shifting property)

So

$$H(s) = \left[e^{s} \left(\frac{1}{s}\right)\right] \left[e^{-2s} \left(\frac{1}{s^{2}}\right)\right]$$

$$H(s) = e^{-s} \left(\frac{1}{s^{3}}\right)$$

Taking inverse Laplace transform

$$h(t) = \frac{1}{2}(t-1)^2 u(t-1)$$

#### **SOL 3.38** Option (C) is correct.

Impulse response of given LTI system.

$$h[n] = x[n-1] * y[n]$$

Taking z-transform on both sides.
$$H(z) = z^{-1}X(z) Y(z)$$

We have  $X(z) = 1 - 3z^{-1}$  and  $Y(z) = 1 + 2z^{-2}$ 

So

$$H(z) = z^{-1}(1 - 3z^{-1})(1 + 2z^{-2})$$

Output of the system for input  $u[n] = \delta[n-1]$  is,

$$y(z) = H(z) U(z)$$

 $U[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} U(z) = z^{-1}$ 

ISBN: 9788192276243

 $\therefore x[n-1] \stackrel{\mathcal{Z}}{\longleftrightarrow} z^{-1}x(z)$ 

So

$$Y(z) = z^{-1}(1 - 3z^{-1})(1 + 2z^{-2})z^{-1}$$
  
=  $z^{-2}(1 - 3z^{-1} + 2z^{-2} - 6z^{-3}) = z^{-2} - 3z^{-3} + 2z^{-4} - 6z^{-5}$ 

Taking inverse z-transform on both sides we have output.

$$y[n] = \delta[n-2] - 3\delta[n-3] + 2\delta[n-4] - 6\delta[n-5]$$

#### **SOL 3.39** Option (B) is correct.

A bounded signal always possesses some finite energy.

$$E = \int_{t}^{t_0} |g(t)|^2 dt < \infty$$

### GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia

PAGE 144 SIGNALS & SYSTEMS CHAP 3

### **SOL 3.40** Option (C) is correct.

Trigonometric Fourier series is given as

$$x(t) = A_0 + \sum_{n=1}^{\infty} a_n \cos n\omega_0 t + b_n \sin n\omega_0 t$$

Since there are no sine terms, so  $b_n = 0$ 

$$b_n = \frac{2}{T_0} \int_0^{T_0} x(t) \sin n\omega_0 t \, dt$$
  
=  $\frac{2}{T_0} \left[ \int_0^{T_0/2} x(\tau) \sin n\omega_0 \tau \, d\tau + \int_{T_0/2}^T x(t) \sin n\omega_0 t \, dt \right]$ 

Where 
$$\tau = T - t \Rightarrow d\tau = -dt$$

$$= \frac{2}{T_0} \left[ \int_{T_0}^{T_0/2} x(T - t) \sin n\omega_0 (T - t) (-dt) + \int_{T_0/2}^T x(t) \sin n\omega_0 t \, dt \right]$$

$$= \frac{2}{T_0} \left[ \int_{T_0/2}^{T_0} x(T - t) \sin n\left(\frac{2\pi}{T} T - t\right) dt + \int_{T_0/2}^T x(t) \sin n\omega_0 t \, dt \right]$$

$$= \frac{2}{T_0} \left[ \int_{T_0/2}^{T_0} x(T - t) \sin (2n\pi - n\omega_0) \, dt + \int_{T_0/2}^{T_0} x(t) \sin n\omega_0 t \, dt \right]$$

$$= \frac{2}{T_0} \left[ -\int_{T_0/2}^{T_0} x(T - t) \sin (n\omega_0 t) \, dt + \int_{T_0/2}^{T_0} x(t) \sin n\omega_0 t \, dt \right]$$

$$b_n = 0 \text{ if } x(t) = x(T-t)$$

From half wave symmetry we know that if

$$x(t) = -x(t \pm \frac{T}{2})$$
 1 C

Then Fourier series of x(t) contains only odd harmonics.

# **SOL 3.41** Option (C) is correct.

Z-transform of a discrete all pass system is given as

$$H(z) = \frac{z^{-1} - z_0^*}{1 - z_0 z^{-1}}$$

It has a pole at  $z_0$  and a zero at  $1/z_0^*$ .

Given system has a pole at

$$z = 2 \angle 30^{\circ} = 2 \frac{(\sqrt{3} + j)}{2} = (\sqrt{3} + j)$$

ISBN: 9788192276243



system is stable if |z| < 1 and for this it is anti-causal.

## **SOL 3.42** Option (A) is correct.

According to given data input and output Sequences are

$$x[n] = \{-1, 2\}, -1 \le n \le 0$$
 
$$y[n] = \{-1, 3, -1, -2\}, -1 \le n \le 2$$

If impulse response of system is h[n] then output

$$y[n] = h[n] * x[n]$$

Since length of convolution (y[n]) is -1 to 2, x[n] is of length -1 to 0 so length of h[n] is 0 to 2.

Let 
$$h[n] = \{a, b, c\}$$

Convolution



### **SOL 3.43** Option () is correct.

### **SOL 3.44** Option (D) is correct.

Output 
$$y(t) = e^{-|x(t)|}$$

If x(t) is unbounded,  $|x(t)| \to \infty$ 

$$y(t) = e^{-|x(t)|} \rightarrow 0$$
 (bounded)

So y(t) is bounded even when x(t) is not bounded.

#### **SOL 3.45** Option (B) is correct.

Given 
$$y(t) = \int_{-\infty}^{t} x(t') dt'$$

GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia

Published by: NODIA and COMPANY

PAGE 146 SIGNALS & SYSTEMS CHAP 3

Laplace transform of y(t)

$$Y(s) = \frac{X(s)}{s}$$
, has a singularity at  $s = 0$ 

For a causal bounded input,  $y(t) = \int_{-\infty}^{t} x(t') dt'$  is always bounded.

**SOL 3.46** Option (A) is correct.

RMS value is given by

$$V_{rms} = \sqrt{\frac{1}{T} \int_0^T V^2(t) dt}$$

Where

$$V(t) = \begin{cases} \left(\frac{2}{T}\right)t, 0 \le t \le \frac{T}{2} \\ 0, \quad \frac{T}{2} < t \le T \end{cases}$$

So 
$$\frac{1}{T} \int_{0}^{T} V^{2}(t) dt = \frac{1}{T} \left[ \int_{0}^{T/2} \left( \frac{2t}{T} \right)^{2} dt + \int_{T/2}^{T}(0) dt \right]$$
$$= \frac{1}{T} \cdot \frac{4}{T^{2}} \int_{0}^{T/2} t^{2} dt = \frac{4}{T^{3}} \left[ \frac{t^{3}}{3} \right]_{0}^{T/2}$$
$$= \frac{4}{T^{3}} \times \frac{T^{3}}{24} = \frac{1}{6}$$
$$V_{rms} = \sqrt{\frac{1}{6}} V \qquad 1 \qquad Q$$

SOL 3.47 Option (A) is correct.

By final value theorem

help

$$\lim_{t \to \infty} f(t) = \lim_{s \to 0} s F(s) = \lim_{s \to 0} s \frac{(5s^2 + 23s + 6)}{s(s^2 + 2s + 2)}$$
$$= \frac{6}{2} = 3$$

**SOL 3.48** Option (D) is correct.

$$f(x) = \sin^2 x = \frac{1 - \cos 2x}{2}$$
$$= 0.5 - 0.5 \cos 2x$$
$$f(x) = A_0 + \sum_{n=1}^{\infty} a_n \cos n\omega_0 x + b_n \sin n\omega_0 x$$

 $f(x) = \sin^2 x$  is an even function so  $b_n = 0$ 

$$A_0 = 0.5$$
 $a_n = \begin{cases} -0.5, & n = 1 \\ 0, & \text{otherwise} \end{cases}$ 
 $\omega_0 = \frac{2\pi}{T_0} = \frac{2\pi}{T} = 2$ 

GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia

Published by: NODIA and COMPANY ISBN: 9788192276243

**SOL 3.49** Option (B) is correct.

Z-transform 
$$F(z) = \frac{1}{z+1} = 1 - \frac{z}{z+1} = 1 - \frac{1}{1+z^{-1}}$$
  
so,  $f(k) = \delta(k) - (-1)^k$   
Thus  $(-1)^k \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{1}{1+z^{-1}}$ 

**SOL 3.50** Option (A) is correct.

Root mean square value is given as

$$I_{rms} = \sqrt{\frac{1}{T}} \int_{0}^{T} I^{2}(t) dt$$
From the graph,  $I(t) = \begin{cases} -\left(\frac{12}{T}\right)t, 0 \le t < \frac{T}{2} \\ 6, & T/2 < t \le T \end{cases}$ 
So
$$\frac{1}{T} \int_{0}^{T} I^{2} dt = \frac{1}{T} \left[ \int_{0}^{T/2} \left(\frac{-12t}{T}\right)^{2} dt + \int_{T/2}^{T} (6)^{2} dt \right]$$

$$= \frac{1}{T} \left( \frac{144}{T^{2}} \left[ \frac{t^{3}}{3} \right]_{0}^{T/2} + 36 [t]_{T/2}^{T} \right)$$

$$= \frac{1}{T} \left[ \frac{144}{T^{2}} \left( \frac{T^{3}}{24} \right) + 36 \left( \frac{T}{2} \right) \right] = \frac{1}{T} [6T + 18T] = 24$$

$$I_{rms} = \sqrt{24} = 2\sqrt{6} \text{ A}$$

**SOL 3.51** Option (B) is correct.

Total current in wire

$$I = 10 + 20 \sin \omega t$$
 $I_{rms} = \sqrt{(10)^2 + \frac{(20)^2}{2}} = 17.32 \text{ A}$ 

help

**SOL 3.52** Option (C) is correct.

Fourier series representation is given as

$$f(t) = A_0 + \sum_{n=1}^{\infty} a_n \cos n\omega_0 t + b_n \sin n\omega_0 t$$

From the wave form we can write fundamental period  $T = 2 \sec \theta$ 

$$f(t) = \begin{cases} \left(\frac{4}{T}\right)t, & -\frac{T}{2} \le t \le 0\\ -\left(\frac{4}{T}\right)t, & 0 \le t \le \frac{T}{2} \end{cases}$$

$$f(t) = f(-t), f(t) \text{ is an even function}$$

So, 
$$b_n = 0$$
$$A_0 = \frac{1}{T} \int_T f(t) dt$$

GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia

ISBN: 9788192276243

Published by: NODIA and COMPANY

**PAGE 148** SIGNALS & SYSTEMS CHAP 3

$$\begin{aligned}
&= \frac{1}{T} \left[ \int_{-T/2}^{0} \left( \frac{4}{T} \right) t dt + \int_{0}^{T/2} \left( -\frac{4}{T} \right) t dt \right] \\
&= \frac{1}{T} \left( \frac{4}{T} \left[ \frac{t^{2}}{2} \right]_{-T/2}^{0} - \frac{4}{T} \left[ \frac{t^{2}}{2} \right]_{0}^{T/2} \right) \\
&= \frac{1}{T} \left[ \frac{4}{T} \left( \frac{T^{2}}{8} \right) - \frac{4}{T} \left( \frac{T^{2}}{8} \right) \right] = 0 \\
a_{n} &= \frac{2}{T} \int_{T} f(t) \cos n\omega_{0} t dt \\
&= \frac{2}{T} \left[ \int_{-T/2}^{0} \left( \frac{4}{T} \right) t \cos n\omega_{0} t + \int_{0}^{T/2} \left( -\frac{4}{T} \right) t \cos n\omega_{0} t dt \right]
\end{aligned}$$

By solving the integration

 $a_n = \begin{cases} \frac{8}{n^2 \pi^2}, & n \text{ is odd} \\ 0, & n \text{ is even} \end{cases}$ So,  $f(t) = \frac{8}{2} \left[\cos \pi t + \frac{1}{9} \cos(3\pi t) + \frac{1}{25} \cos(5\pi t) + \dots\right]$ 

Option (A) is correct. **SOL 3.53** 

Option (A) is correct. Response for any input u(t) is given as

$$y(t) = u(t) * h(t)$$
  
$$y(t) = \int_{-\infty}^{\infty} u(\tau) h(t - \tau) d\tau$$

 $h(t) \rightarrow \text{impulse response}$ 

Impulse response h(t) and step response s(t) of a system is related as  $h(t) = \frac{d}{dt}[s(t)]$ 

$$h(t) = \frac{d}{dt}[s(t)]$$

So 
$$y(t) = \int_{-\infty}^{\infty} u(\tau) \frac{d}{dt} s[t - \tau] d\tau = \frac{d}{dt} \int_{-\infty}^{\infty} u(\tau) s(t - \tau) d\tau$$

Option (B) is correct. **SOL 3.54** 

Final value theorem states that

$$\lim_{t \to \infty} y(t) \lim_{s \to \infty} Y(s)$$

Option (D) is correct. **SOL 3.55** 

$$V_{rms} = \sqrt{\frac{1}{T_0} \int_{T_0} V^2(t) dt}$$

here  $T_0 = \pi$ 

$$\frac{1}{T_0} \int_{T_0} V^2(t) dt = \frac{1}{\pi} \left[ \int_0^{\pi/3} (100)^2 dt + \int_{\pi/3}^{2\pi/3} (-100)^2 dt + \int_{2\pi/3}^{\pi} (100)^2 dt \right] 
= \frac{1}{\pi} \left[ 10^4 \left( \frac{\pi}{3} \right) + 10^4 \left( \frac{\pi}{3} \right) + 10^4 \left( \frac{\pi}{3} \right) \right] = 10^4 \text{ V}$$

GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia

Published by: NODIA and COMPANY ISBN: 9788192276243

$$V_{rms} = \sqrt{10^4} = 100 \text{ V}$$

**SOL 3.56** Option (D) is correct.

Let h(t) is the impulse response of system

$$y(t) = u(t) * h(t)$$

$$y(t) = \int_0^t u(\tau) h(t - \tau) d\tau$$
$$= \int_0^t (2 + t - \tau) e^{-3(t - \tau)} u(\tau) d\tau$$

So

$$h(t) = (t+2) e^{-3t} u(t), t > 0$$

Transfer function

$$H(s) = \frac{Y(s)}{U(s)} = \frac{1}{(s+3)^2} + \frac{2}{(s+3)}$$
$$= \frac{1+2s+6}{(s+3)^2} = \frac{(2s+7)}{(s+3)^2}$$

Option (B) is correct. **SOL 3.57** 

Fourier series representation is given as

$$v(t) = A_0 + \sum_{n=1}^{\infty} a_n \cos n\omega_0 t + b_n \sin n\omega_0 t$$
 period of given wave form  $T = 5$  ms

DC component of v is

onent of 
$$v$$
 is
$$A_0 = \frac{1}{T} \int_{T}^{5} v(t) dt$$

$$= \frac{1}{5} \left[ \int_{0}^{3} 1 dt + \int_{3}^{5} -1 dt \right]$$

$$= \frac{1}{5} [3 - 5 + 3] = \frac{1}{5}$$

**SOL 3.58** Option (A) is correct.

Coefficient, 
$$a_n = \frac{2}{T} \int_T v(t) \cos n\omega_0 t \, dt$$
  

$$= \frac{2}{5} \left[ \int_0^3 (1) \cos nwt \, dt + \int_3^5 (-1) \cos nwt \, dt \right]$$

$$= \frac{2}{5} \left( \left[ \frac{\sin n\omega t}{n\omega} \right]_0^3 - \left[ \frac{\sin n\omega t}{n\omega} \right]_3^5 \right)$$
Put  $\omega = \frac{2\pi}{T} = \frac{2\pi}{5}$ 

 $a_n = \frac{1}{n\pi} [\sin 3n\omega - \sin 5n\omega + \sin 3n\omega]$ 

ISBN: 9788192276243

**PAGE 150** SIGNALS & SYSTEMS CHAP 3

$$= \frac{1}{n\pi} \left[ 2\sin\left(3n\frac{2\pi}{5}\right) - \sin\left(5n\frac{2\pi}{5}\right) \right]$$

$$= \frac{1}{n\pi} \left[ 2\sin\left(\frac{6\pi n}{5}\right) - \sin(2n\pi) \right]$$

$$= \frac{2}{n\pi} \sin\left(\frac{6\pi n}{5}\right)$$
Coefficient,  $b_n = \frac{2}{T} \int_T v(t) \sin n\omega_0 t dt$ 

$$= \frac{2}{5} \left[ \int_0^3 (1) \sin nwt dt + \int_3^5 (-1) \sin nwt dt \right]$$

$$= \frac{2}{5} \left( \left[ -\frac{\cos n\omega t}{n\omega} \right]_0^3 - \left[ -\frac{\cos n\omega t}{n\omega} \right]_3^5 \right)$$
put
$$\omega = \frac{2\pi}{T} = \frac{2\pi}{5}$$

$$b_n = \frac{1}{n\pi} \left[ -\cos 3n\omega + 1 + \cos 5n\omega - \cos 3n\omega \right]$$

$$= \frac{1}{n\pi} \left[ -2\cos 3n\omega + 1 + \cos 5n\omega \right]$$

$$= \frac{1}{n\pi} \left[ -2\cos \left(3n\frac{2\pi}{5}\right) + 1 + \cos\left(5n\frac{2\pi}{5}\right) \right]$$

$$= \frac{1}{n\pi} \left[ -2\cos\left(\frac{6\pi n}{5}\right) + 1 + 1 \right]$$

$$= \frac{2}{n\pi} \left[ 1 - \cos\left(\frac{6\pi n}{5}\right) \right]$$
Amplitude of fundamental component of  $v$  is

$$v_f = \sqrt{a_1^2 + b_1^2}$$

$$a_1 = \frac{2}{\pi} \sin\left(\frac{6\pi}{5}\right), \ b_1 = \frac{2}{\pi} \left(1 - \cos\frac{6\pi}{5}\right)$$

$$v_f = \frac{2}{\pi} \sqrt{\sin^2\frac{6\pi}{5} + \left(1 - \cos\frac{6\pi}{5}\right)^2}$$
= 1.20 Volt

# **GATE Multiple Choice Questions**

# For Electrical Engineering

# By RK Kanodia & Ashish Murolia

## Available in Two Volumes

# **Features:**

- The book is categorized into chapter and the chapter are sub-divided into units
- Unit organization for each chapter is very constructive and covers the complete syllabus
- Each unit contains an average of 40 questions
- The questions match to the level of GATE examination
- Solutions are well-explained, tricky and consume less time. Solutions are presented in such a way that it enhances you fundamentals and problem solving skills
- There are a variety of problems on each topic
- Engineering Mathematics is also included in the book

# **Contents**

# **VOLUME-1**

| UNIT 1 | ELECTRIC CIRCUITS & FIELDS           |         |
|--------|--------------------------------------|---------|
|        | 1.1 Basic Concepts                   | 1-20    |
|        | 1.2 Graph Theory                     | 21-42   |
|        | 1.3 Methods of Analysis              | 43-63   |
|        | 1.4 Circuit Theorems                 | 64-85   |
|        | 1.5 Transient Response               | 86-113  |
|        | 1.6 Sinusoidal Steady State Analysis | 114-131 |
|        | 1.7 Circuit Analysis In s-domain     | 132-151 |
|        | 1.8 Magnetically Coupled Circuits    | 152-171 |
|        | 1.9 Two-port Network                 | 172-192 |
|        | 1.10 Frequency Response              | 193-205 |
|        | 1.11 Three-phase Circuits            | 206-218 |
|        | 1                                    | 219-236 |

| UNIT 2                                    | SIGNALS & SYSTEMS                                         |                    |
|-------------------------------------------|-----------------------------------------------------------|--------------------|
|                                           | 2.1 Continuous-Time Signals                               | 237-261            |
|                                           | 2.2 Continuous-Time Systems                               | 262-281            |
|                                           | 2.3 Discrete-Time Signal                                  | 282-311            |
|                                           | 2.4 Discrete-Time System                                  | 312-331            |
|                                           | 2.5 The Laplace Transform                                 | 332-344            |
|                                           | 2.6 The Z-transform                                       | 345-360            |
| 2.7 The Continuous-Time Fourier Transform |                                                           | 361-376            |
|                                           | 2.8 The Continuous-Time Fourier Series                    | 377-396            |
|                                           | 2.9 Sampling                                              | 397-408            |
|                                           |                                                           |                    |
| UNIT 3                                    | ELECTRICAL MACHINES                                       |                    |
|                                           | 3.1 Transformer                                           | 409-438            |
|                                           | 3.2 DC Generator                                          | 439-463            |
|                                           | 3.3 DC Motor                                              | 464-492            |
|                                           | 3.4 Synchronous Generator                                 | 493-519            |
| 3.5 Synchronous Motor                     |                                                           | 520-539            |
|                                           | 3.6 Induction Motor                                       | 540-564            |
|                                           | 3.7 Single Phase Induction Motor & Special Purpose        | 565-581            |
|                                           | Machines                                                  |                    |
| HINET 4                                   | DOWED OVOTEN                                              |                    |
| UNIT 4                                    | POWER SYSTEM                                              | 502 605            |
|                                           | 4.1 Fundamentals of Power Systems                         | 583-607            |
|                                           | 4.2 Characteristics & Performance of Transmission Lines   | 608-645            |
|                                           | 4.3 Load Flow Studies                                     | 646-659            |
|                                           | 4.4 Symmetrical Fault Analysis                            | 660-687<br>688-715 |
|                                           | 4.5 Symmetrical Components & Unsymmetrical Fault Analysis |                    |
|                                           | 4.6 Power System Stability & Protection                   | 716-740            |
|                                           | 4.7 Power System Control                                  | 741-760            |
|                                           | ANSWER KEY                                                |                    |

# **VOLUME-2**

| UNIT 5 | CONTROL SYSTEM                          |         |
|--------|-----------------------------------------|---------|
|        | 5.1 Transfer Function                   | 3-24    |
|        | 5.2 Stability                           | 25-44   |
|        | 5.3 Time Response                       | 45-65   |
|        | 5.4 The Root-Locus Technique            | 66-87   |
|        | 5.5 Frequency Domain Analysis           | 88-109  |
|        | 5.6 Design of Control System            | 110-114 |
|        | 5.7 The State Variable Analysis         | 115-140 |
|        |                                         |         |
| UNIT 6 | ELECTRICAL & ELECTRONIC MEASUREMENTS    |         |
|        | 6.1 Measurement & Error                 | 143-159 |
|        | 6.2 Electromechanical Instruments       | 160-203 |
|        | 6.3 Instrument Transformer              | 204-211 |
|        | 6.4 Electronic & Digital Instruments    | 212-218 |
|        | 6.5 Measurement of R, L, C & AC Bridges | 219-240 |
|        | 6.6 CRO                                 | 241-257 |
|        |                                         |         |
| UNIT 7 | ANALOG & DIGITAL ELECTRONICS            |         |
|        | 7.1 Diode Circuits                      | 261-285 |
|        | 7.2 BJT Biasing & Amplifier             | 286-319 |
|        | 7.3 FET Biasing & Amplifier             | 320-342 |
|        | 7.4 Operational Amplifier               | 343-380 |
|        | 7.5 Number System & Boolean Algebra     | 381-402 |
|        | 7.6 Combinational Logic Circuits        | 403-425 |
|        | 7.7 Sequential Logic Circuits           | 426-454 |
|        | 7.8 Digital Systems                     | 455-472 |
|        | 7.9 Microprocessor                      | 473-495 |

| UNIT 8 | POWER ELECTRONICS               |         |
|--------|---------------------------------|---------|
|        | 8.1 Power Semiconductor Devices | 499-509 |
|        | 8.2 Diode Circuits & Rectifiers | 510-516 |
|        | 8.3 Thyristor                   | 517-532 |
|        | 8.4 Phase Controlled Converters | 533-560 |
|        | 8.5 Choppers                    | 561-575 |
|        | 8.6 Inverters                   | 576-592 |
|        | 8.7 AC & DC Drives              | 593-603 |
|        |                                 |         |
| UNIT 9 | ENGINEERING MATHEMATICS         |         |
|        | 9.1 Linear Algebra              | 607-626 |
|        | 9.2 Differential Calculus       | 627-650 |
|        | 9.3 Integral Calculus           | 651-671 |
|        | 9.4 Differential Equation       | 672-692 |
|        | 9.5 Complex Variable            | 693-711 |
|        | 9.6 Probability & Statistics    | 712-730 |
|        | 9.7 Numerical Methods           | 731-745 |

# **Exclusive Series By Jhunjhunuwala**

# **GATE CLOUD**

By R. K. Kanodia & Ashish Murolia

**GATE Cloud** is an exclusive series of books which offers a completely solved question bank to GATE aspirants. The book of this series are featured as

- ➤ Over 1300 Multiple Choice Questions with full & detailed explanations.
- ➤ Questions are graded in the order of complexity from basic to advanced level.
- > Contains all previous year GATE and IES exam questions from various branches
- Each question is designed to GATE exam level.
- > Step by step methodology to solve problems

# **Available Title In this series**

- Signals and Systems (For EC and EE)
- Network Analysis (For EC)-- Available in 2 Volumes
- □ Electric Circuit and Fields (For EE) -- Available in two volumes
- Electromagnetic (For EC)

# **Upcoming titles in this series**

- Digital Electronics (Nov 2012)
- Control Systems (Dec 2012)
- Communication Systems (Jan 2012)

# **Exclusive Series By Jhunjhunuwala**

# **GATE GUIDE**

Theory, Example and Practice
By R. K. Kanodia & Ashish Murolia

**GATE GUIDE** is an exclusive series of books which provides theory, solved examples & practice exercises for preparing for GATE. A book of this series includes :

- > Brief and explicit theory
- > Problem solving methodology
- > Detailed explanations of examples
- Practice Exercises

## **Available Title In this series**

- Signals and Systems (For EC and EE)
- Network Analysis (For EC)
- **Electric Circuit and Fields (For EE)**

# **Upcoming titles in this series**

- Digital Electronics(For EC and EE)
- Control Systems (For EC and EE)
- Communication Systems (For EC and EE)