

HYPERTENSION

I. PATHOPHYSIOLOGY

A. PRIMARY HYPERTENSION

B. SECONDARY HYPERTENSION C. STAGING OF HYPERTENSION

II. COMPLICATIONS

A. CARDIOVASCULAR DISEASE

B. NEUROLOGIC DISEASE

C. RENAL DISEASE
D. RETINAL DISEASE

III. DIAGNOSTIC APPROACH
BP MEASUREMENT

ACH IV. TREATMENT

A. TREATMENT GUIDELINE

B. ANTIHYPERTENSIVE BASED ON COMORBIDITIES

C. TREATMENT OF HYPERTENSIVE CRISIS

I. PATHOPHYSIOLOGY

A. PRIMARY HYPERTENSION

- Also known as Essential Hypertension
- Accounts for approximately 90% of cases
- Presents in those from ages 25 to 55

Mechanisms

a) Vessel Wall Thickening

- Pathophysiology:
 - Older patients → Calcium deposits in vessels → Thick-walled vessel → ↓Luminal diameter → ↑Systemic vascular resistance (SVR) → ↑BP

Risk Factors:

- o Older age
- o Smoking
- o Diabetes

b) **\(\Delta \)** Vasoconstriction

- Pathophysiology:
 - ↑Vasoconstriction → ↑SVR → ↑BP

Risk Factors:

- o ↑Stress:
 - Type A personality
 - Exhibits a stressful lifestyle
- o Obesity:
 - Modifiable risk factor
 - Causes \(\backslash\) Cytokine release that can stimulate vasoconstriction

c) Sodium Diet

- Pathophysiology:
 - ↑Na⁺ diet causing the kidneys to have difficulty secreting Na⁺
 - → ↑Serum Na⁺ → H₂O retention
 - → \uparrow Preload → \uparrow SV → \uparrow CO → \uparrow BP

Essential HTN *25-55 yrs*

SECONDARY HYPERTENSION

- Patients with secondary hypertension commonly have Refractory Hypertension
 - o Administration of 3 or more antihypertensives → <u>Unable</u> to control hypertension

Causes

Mnemonic RENALSS

Renal Disease

- Pathophysiology:
 - ↓GFR → ↑RAAS → ↑Vasoconstriction → ↑SVR → ↑BP
- - o Renal vascular diseases such as CKD or Renal Artery Stenosis

Endocrine Disease

Thyroid

Hyperthyroidism

- ↑T3, T4 → ↑CO and ↑Contractility → ↑SBP Hypothyroidism
- **↓T3**, **T4** → **↑**Vasoconstriction → **↑**DBP

Adrenal Glands

Hyperaldosteronism

- ↑Aldosterone → ↑Na⁺ and water reabsorption → ↑BP Cushing's Syndrome/Cushing's Disease
- ↑Cortisol → ↑Sympathetic activity → ↑BP Pheochromocytoma
- ↑NE and Epi → ↑Sympathetic activity

Neurologic Disorders -

- Pathophysiology:
 - A neurologic disorder that manifests with **↑Intracranial** pressure (ICP) → Cushing's Triad
 - o Causes: Cerebral edema, CNS bleed, Hydrocephalus, CNS mass

Cushing's Triad:

1) Bradycardia, 2) Hypertension, 3) Irregular Respirations

Aortic Diseases

Coarctation of the Aorta

- Pathophysiology:
 - o Narrowing of the aortic lumen after the left subclavian artery
 - → ↑Pressure prior to the narrowed portion of the aorta
 - → ↑Upper extremity BP and ↓Lower extremity BP

Little People

Pre-Eclampsia and Eclampsia

- Pathophysiology:
 - Insufficient placental blood supply → Placenta releases vasoactive chemicals → Vasoconstriction → ↑Maternal BP in pregnant patients in the 3rd trimester with proteinuria, edema, and ↑BP (Seizures also occur if presenting with eclampsia)

<u>Substances</u>

Sympathomimetics

- Pathophysiology:
 - O Sympathomimetics → Vasoconstriction → ↑BP along with Altered mental status, diaphoretic, hypertensive, tachycardic, with a history of drug abuse
 - o Examples: Cocaine, Methamphetamine, PCP

Sleep Apnea

- Pathophysiology:
 - Nocturnal hypoxia during periods of apnea during sleep →
 ↑Sympathetic nervous system → ↑Vasoconstriction leading to
 - → Refractory Hypertension

Risk Factors and Clinical Features:

- o Obese patients
- o Witnessed periods of snoring and apnea

B. STAGING OF HYPERTENSION

17:59 —

Stage	SBP	DBP
Normal BP	<120	<8 <i>0</i>
Prehypertensive	<130	
Stage I	<140	<90
Stage II	>140	>90
HTN urgency (Øtarget organ damage)		
HTN emergency (target organ damage)	>180	>120

Stage I: \uparrow BP plus comorbidities may consider initiation of medications **Stage II:** Two or more readings of \uparrow BP warrant antihypertensive medication

Remember:

The presence of target organ damage → Hypertensive Emergency!

Especially in the setting of elevated BP (>180/>120)

COMPLICATIONS

- Target organ damage is classified as:
 - o Cardiovascular disease
 - o Neurologic disease
 - o Renal disease
 - o Retinal disease

C. CARDIOVASCULAR DISEASE

Heart Failure (HFpEF)

• Pathophysiology:

o Severe and acute ↑BP → ↑Afterload → Left ventricle has to work harder → LV hypertrophy → ↓ Ventricular filling → **Diastolic Heart Failure or HFpEF**

- Presents with the following:
 - o Flash pulmonary edema
 - Acute development of Hypoxia, ↑RR/WOB

2. Atherosclerosis

- Pathophysiology:
 - ↑BP → Triggers atherosclerosis of blood vessels

a) CAD/MI

- Stable CAD Pathophysiology:
 - o Coronary plaques → ↓Coronary supply → Angina in the setting of ↑O2 demand during exertion
- ACS or MI Pathophysiology:
 - o Coronary plaque rupture → Coronary occlusion → Reduces O₂ perfusion significantly → MI
- Presentation of MI:
 - o Angina
 - o ECG with ST changes
 - o Troponin elevation

b) PAD or CLI

- Pathophysiology:
 - o LE arterial plaque → ↓Blood supply to LE muscles and skin
- Presentation of PAD:
 - o LE pain, ↓Pulses, LE pallor, arterial ulcers, claudication

3. Aortic Dissection

- Pathophysiology:
 - o ↑BP causes shearing forces in the aortic walls → Intimal tear
 - → Blood moves within the false lumen → Aortic Dissection
- Presentation of Aortic Dissection:
 - o Ripping or tearing chest pain
 - o Asymmetric BP and pulses

Aortic Aneurysm

• Pathophysiology:

- Vasa vasorum damage → ↓Supply to the aortic wall
- → Weakening of aortic wall → Dilation of aorta →
- **Aortic Aneurysm (AAA most common)** • Presentation of AAA:
 - O Usually asymptomatic → Requiring surveillance via U/S

Cardiovascular disease

D. NEUROLOGIC DISEASE

1. Transient Ischemic Attack or Cerebrovascular Accident

- Pathophysiology:
 - o Carotid, Vertebral, and Intracranial blood vessels become atherosclerotic → $\sqrt{02}$ supply to the brain → Cerebral ischemia and potential infarction if plaque ruptures
- Presentation of TIA or CVA:
 - o Neurologic deficits dependent on vascular territory affected

2. Intracerebral or Subarachnoid Hemorrhage

- Pathophysiology:
 - o Acute ↑BP → Rupture of cerebral vessels → Blood accumulates in parenchyma (ICH) or subarachnoid space (SAH)
- Presentation of ICH or SAH:
 - o Headache
 - o Neurologic deficits dependent on vascular territory affected

Neurologic disease

E. RENAL DISEASE

a) AKI or CKD

- Pathophysiology:
 - o ↑BP → ↑GFR → Thickening or sclerosis of the afferent **arteriole** to compensate for \uparrow GFR $\rightarrow \downarrow$ Blood flow to the glomerulus → Ischemia → Renal injury (AKI or CKD)

Acute Kidney Injury (AKI)

- Abrupt ↑ in creatinine
- Hematuria

Chronic Kidney Disease (CKD)

- ↓GFR over time
- Albuminuria

Renal disease

F. RETINAL DISEASE

30:01

- Pathophysiology:
 - o Sclerosis of the vessels leading to \downarrow O₂ supply of the retinal tissues → Small hemorrhaging → ↑Edema
- Presentation of Retinopathy:
 - o Blurry vision
 - o Progressive vision loss

Retinal disease

AV nicking

Constricted vessels

Grade I

Grade II

*In the chronic stages, you can see AV nicking, constriction of vessels, and cotton wool spots. Acutely, there should be close monitoring for papilledema

TABLE 1. STAGING OF HYPERTENSIVE RETINOPATHY.

Sclerosis Hemorrhages

II. DIAGNOSTIC APPROACH

BP MEASUREMENT

- Obtain BP in both arms
- Are there hypertensive readings?
 - o Yes? → Return to office in 1-4 weeks

Upon Follow-Up:

- o Recheck BP in both arms
- ↑BP reading? → Hypertension

Hypertension requires ≥ 2 readings of elevated blood pressure in two spaced-out office visits.

White-Coat Hypertension

- White-Coat Hypertension:
 - o Blood pressure readings at a health care provider's office are higher than they are in other settings, such as at home

● Normal at home? → White-Coat Hypertension

Hypertensive Urgency and Hypertensive Emergency

- If the BP is > 180/120, suspect a Hypertensive Crisis
 - (-) TOD → Hypertensive Urgency
 - (+) TOD → Hypertensive Emergency

III. TREATMENT

A. TREATMENT GUIDELINE

TABLE 2. TREATMENT OF HYPERTENSION ACCORDING TO STAGING.

Stage	SBP (mmHg)	DBP (mmHg)	Treatment
Normal BP	< 120	. 00	Lifestyle Modifications
Prehypertensive	< 130	< 80	(↓Weight, DASH diet, Exercise, ↓Na diet, ↓Alcohol)
Stage 1	< 140	< 90	Lifestyle Modifications (↓Weight, DASH diet, Exercise, ↓Na diet, ↓Alcohol) Start Antihypertensives if ASCVD risk≥10% (ACE-I/ARB, Thiazides, CCB)
Stage 2	> 140	> 90	Lifestyle Modifications (↓Weight, DASH diet, Exercise, ↓Na diet, ↓Alcohol) Start Antihypertensives (ACE-I/ARB, Thiazides, CCB)

Patients suspected of hypertension should undergo lifestyle modification

Normal or Prehypertensive

a) Lifestyle Modifications

- o Lose weight
- o DASH diet
- o Exercise
- o Reduce Na⁺ diet
- o Reduce alcohol

Stage I

• Lifestyle modification +

b) Antihypertensives

- If ASCVD risk ≥ 10%
 - o Indicative of ↑Risk of stroke, MI, CLI
 - Requires the initiation of antihypertensives
- Examples:
 - o ACE-I or ARBs (most common)
 - o Thiazides
 - o Calcium-Channel Blockers (CCBs)
 - Amlodipine or Nifedipine

Stage 2

• Lifestyle modification +

c) Antihypertensives

- Start antihypertensive regimen
 - o Regardless of ASCVD risk
- Choice of one of the following:
 - o ACE-I, ARBs, Thiazides, or CCB

If the patient is <u>African-American</u>, consider **CCBs and Thiazides** instead of ACE-I/ARBs because they have low-renin hypertension.

B. ANTIHYPERTENSIVE BASED ON COMORBIDITIES

1. Comorbidities:

Post-MI

Beta-Blockers Purpose:

- →Risk for V-Tach or V-Fib
- ↓Ventricular remodeling

ACE-I or ARB Purpose:

↓Ventricular remodeling

Heart Failure

Beta-Blockers Purpose:

↓Ventricular remodeling

ACE-I or ARB Purpose:

Aldosterone Antagonist Purpose:

↓Ventricular remodeling

Diabetes Mellitus,

Chronic Kidney Disease

ACE-I or ARB purpose

 → Proteinuria, → damage to the kidneys → Help prevent progression to CKD

Pregnancy

- o No teratogenic effects
 - → Safe for pregnancy

Mnemonics

Healthy Moms Love Nifedipine

Hydralazine

Methyldopa

Labetalol

Nifedipine

0

-Osteoporosis

Thiazides Purpose:

 Reabsorbs calcium across kidneys, maintaining a good serum calcium

- Benign Prostatic Hyperplasia

Alpha-1 Antagonist Purpose:

 ○ Causes vasodilation → ↓Preload and afterload

Coronary Artery Disease

• Indicated for patients <u>WITH</u> Angina:

Beta-Blockers Purpose:

 $\circ \downarrow$ Contractility, \downarrow HR

CCB's Purpose:

Nitrates Purpose:

o ↓Preload

TABLE 3. SUMMARY OF ANTIHYPERTENSIVES BASED ON COMORBIDITIES.

Disease	Optimal Antihypertensive
Post-MI	■ BB (Metoprolol, Carvedilol) ■ ACE-I or ARB
Heart Failure	 BB (Metoprolol, Carvedilol) ACE-I (Lisinopril) or ARB (Losartan) Aldosterone Antagonist (Spironolactone)
Coronary Artery Disease	 BB (Metoprolol, Carvedilol) CCB (Diltiazem, Verapamil or Amlodipine) Nitrates (ISDN or ISMN)
Atrial Fibrillation	■ BB (Metoprolol, Carvedilol) ■ Non-DHP CCB (Diltiazem or Verapamil)
Diabetes Mellitus Chronic Kidney Disease	■ ACE-I (Lisinopril) or ARB (Losartan)
Pregnancy	Hydralazine Methyl dopa Labetalol Nifedipine
Osteoporosis	■ Thiazides (HCTZ)
ВРН	■ Alpha-1 Antagonist (Tamsulosin, Doxazosin)

-Atrial Fibrillation

Beta-Blockers Purpose:

- → HR by blocking AV nodeCCB's Purpose:
- ↓HR by blocking AV node

2. Other Things to Consider:

- Avoid β-blockers in COPD, asthma and acute heart failure (AHF)
 Can worsen cardiogenic shock
- Avoid Non-DHP CCBs in AHF
- Avoid ACE-I, ARBs, AA in acute kidney injury and hyperkalemia
 Can ↑K⁺ and creatinine
- Avoid **Thiazides** in gout
- o Possibility of 个Uric acid

• Do they have target organ damage?

- o Neurologic deficits?
- o Confusion and encephalopathy?
- o Chest pain and ECG changes?
- o Pulmonary edema or signs of acute HF?
- o Aortic dissection or aneurysm?
- o AKI?

1. Hypertensive Urgency

- (-) TOD
- Aim to ↓BP to ≤ 160/100 in 1-2 hours through oral meds
- Goal → Normalize BP in 1-2 days
 - o Abrupt drop in BP can cause ischemia → Monitor closely

2. Hypertensive Emergency

- (+) TOD
- Aim to
 ↓ MAP by appx 25% in 1-2 hours through IV agents
- Goal → Normalize BP in 1-2 days

3. Complications of Abrupt \downarrow in BP

• Developing Ischemia → Worsening organ malperfusion and TOD

4. IV Antihypertensives in HTN Emergency

	Infusion or IV Push	IV agent
	Nicardipine (common)	
	Infusion (titratable)	Esmolol (Good in cardiac disease)
	Nitroprusside (Avoid) ↑ Risk of CN toxicity with prolonged infusions (Lactic Acidosis can develop as a result)	
		(=====,
	IV push	Hydralazine

a) Infusion

• Titratable and controlled

Nicardipine

o Most commonly utilized infusion (inpatient setting)

Esmolol

o Good in cardiac diseases such as CAD, MI, or Aortic Disease **Nitroprusside**

o Caution due to the risk of lactic acidosis

b) IV Push

- If BP does not require close titration:
 - Hydralazine
 - Labetalol