

1994021786

N94- 26289

**Technology Drivers for Flight
Telerobotic System Software**

442577

**Robert Labaugh
SET Group
Denver, Colorado**

223

PRECEDING PAGE BLANK NOT FILMED

Technology Drivers for Flight Telerobotic System Software

**Robert J. LaBaugh
SET Group
Denver, Colorado**

Selected Topics In Robotics For Space Exploration

Introduction

- Major Software Drivers in a Flight Manipulator System
 - Control Algorithms
 - Distributed Hardware Architecture
 - Bus Loading
 - Margin/Performance Requirements (10ms/20ms)
 - Data Management
 - Telemetry/Data Recording
 - Operator Interface
 - Safety
 - Fix It in Software

Flight Software Lines of Code

- Estimated at 40K Ada Statements
- Approximately 22K in Development Library at Start of Technology Capture Effort

<u>Function</u>	<u>Lines of Code</u>	<u>Percentage</u>
Control Algorithms	5.5K	13.8%
Operator Interface	10.0K	25.0%
Safety	5K	12.5%
Data Management	7K	17.5%
Misc. Hardware Control	5.5K	13.8%
Common Utilities	5K	12.5%
ROM	2K	5.0%

Flight Computer Architecture

- Distributed 80386-80387s
 - 8 Controllers
 - Custom Design
 - 512K Bytes RAM
 - Joint Controllers Embedded in Arm
 - 4x4 in. Surface Mount Boards
 - Space Station Standard Data Processor
 - 3 CPUs with 4M Bytes RAM each
- MIL-STD-1553B Busses Connecting CPUs
 - Workstation Bus
 - Telerobot Bus
- PGSC Used for Display and Initial Program Load

System Safety

- Critical Items Required To Be Two Fault Tolerant
 - One Path Outside of Computer System
 - Other Two in Independent Systems
- FTS Safety Requirements
 - Safe Return Of Orbiter
 - Doors Must Be Able To Close
 - System Must Be Safe For Landing (Caged)
 - Inadvertent Release of Hardware
 - Manipulator Grasp of Object
 - Object Caging Mechanism
 - Correct Operation of Manipulator
 - No Unplanned Contact with Environment
 - Planned Contact at Safe Forces and Torques

Safety Critical Parameters

<u>Parameter</u>	<u>Monitored By</u>	<u>Hazard Mitigated</u>
Cartesian Position	TRCC/TRRC	Unplanned Contact
Cartesian Velocity	TRCC/TRRC	Unplanned Contact
Cartesian Force (6 DOF)	Joint Controllers (H/W)	Excessive Force
Joint Position	Joint Controllers (H/W)/TRRC	Unplanned Contact
Joint Velocity	Joint Controllers/TRRC	Unplanned Contact
Joint Torque	Joint Controllers (H/W)	Unplanned Contact, Excessive Force
Joint Motor Current	Joint Controllers (H/W)	Unplanned Contact, Excessive Force
End Effector Gripping Force	Joint Controllers (H/W)	Excessive Force
End Effector Grip Current	Joint Controllers (H/W)	Excessive Force
Joint Position Variance	Joint Controllers	Unplanned Contact
FTT-A versus FTT-B Variance	TRCC	Excessive Force
Actuator/EE Temperature	TRCC	Failure to Stow
Processor Temperature	TRCC	Failure to Stow, Unplanned Contact
Processor Health	TRCC/TRRC/PM	Unplanned Contact

3/18/93 LARC

System Safety – Software Functions

- Cartesian Safety
 - Position/Boundary Management
 - Check Arm Position versus Environment
 - Velocity Limits
 - Force Applied to Environment
- Manipulator Joint Safety
 - Position versus Joint Stops
 - Consistency of Three Position Sensors
- Communications
 - Heartbeat Between Critical Computers
 - Checksum of All Messages
- Temperatures

System Safety – Software Functions (cont.)

- Operational Checks
 - Tighter Bounds than Safety Limits
 - Violation Results in Limited Value or Soft Stop
- Safety Checks
 - Violation Results in Emergency Shutdown
- Hardware Checks Can Also Produce Emergency Shutdown (ESD)
 - Need to Report Sensor Which Caused ESD
- Ada Run-time Checks Not Sufficient for Detection of Problems
 - Corruption of Code
 - Execution of Non-code
- DDC-I Use of 80386 Protected Mode
 - Code in Read Only Segment
 - Access Outside of Segment Trapped by Hardware

Fix It in Software

- Coarse Encoder Calibration Curves
 - Position Dependent Error
 - Varied with Temperature
 - Varied with Time
- Augmented Damping
 - 1000Hz
 - Multiple Digital Filters
- FTT Decoupling
- Safety
 - Force Limiting
 - Third Instance of Collision Avoidance
- Power Switch Control
- Power / Thermal Problem

