MD ML 7

2 Models

Proposed Hamiltonian Architecture

Training Setting

Optimizer : Adam

Learning Rate (LR): 1e-3

Scheduler : None

Seed : 937162211 (9-digit Prime Number)

Epochs: 100

Batch Size : 32 / Shuffle

Large Time Step : 0.01 (1 Step) = 0.01

Ground Truth : 0.01

Final Statistic : $\Delta q = 0.00034 (5 d.p)$

 $\Delta p = 0.00099 (5 d.p)$

Remarks:

- 1. Tried using scheduler of reduce on plateau, patience = 10, factor = 0.99, loss stuck at ~1.2
- 2. Temperature used: 1 10, interval 1
- 3. Tried 50 epochs, loss seems to be fluctuating
- 4. Seed to consider:
 - a. Random.seed
 - b. Numpy.seed
 - . Torch.seed
 - d. Torch.cuda.seed

Distribution Sampling

To update the distribution, we use the following splitting:

$$P(t = t + \Delta t) = [L_{\chi} (L_{p(\Delta t/n)} L_{q(\Delta t/n)} L_{p(\Delta t/n)})^{n} L_{\chi}]P(t = t)$$

Where $\Delta t/n = 0.01$ for the ground truth reference to calculate the **mean absolute error**

- 1. $(L_{p(\Delta t/n)} L_{q(\Delta t/n)} L_{p(\Delta t/n)})^n$ can be replaced by the model separately where n = 1
- 2. The constant random term is kept constant for Model and exact integration and the distribution is sampled after each update

Distribution Performance (10⁴ Sampling)

Hamiltonian Checking (time step: 0.01)

Mean Absolute Error (time step: 0.01)

Training Setting

Optimizer : Adam

Learning Rate (LR): 1e-3

Scheduler : None

Seed : 937162211 (9-digit Prime Number)

Epochs : 100

Batch Size : 32 / Shuffle

Large Time Step : 0.01 (50 Step) = 0.5

Ground Truth : 0.01

Final Statistic : $\Delta q = 0.00018 (5 d.p)$

 $\Delta p = 0.00023 (5 d.p)$

Remarks:

- 1. Tried using scheduler of reduce on plateau, patience = 10, factor = 0.99, loss seems to be stuck again
- 2. Temperature used: 1 10, interval 1
- 3. Seed to consider:
 - a. Random.seed
 - b. Numpy.seed
 - c. Torch.seed
 - d. Torch.cuda.seed

Distribution Performance (10⁴ Sampling)

Hamiltonian Checking (time step: 0.5)

150

50

0

energy 100

Mean Absolute Error (time step: 0.5)

Analysis

Literature Review

1) Langevin Process:

- Introduction to the theory of stochastic processes and Brownian motion problems by J. L. Garcia-Palacios (https://arxiv.org/abs/cond-mat/0701242v1) ⇒ Reference that I used
- 2. Overleaf Document by Liu Wei

2) Hamiltonian Neural Network:

- 1. Hamiltonian Neural Networks by Sam Greydanus, Misko Dzamba, Jason Yosinski (https://arxiv.org/abs/1906.01563)
- Symplectic Recurrent Neural Networks by Zhengdao Chen, Jianyu Zhang, Martin Arjovsky, Léon Bottou (https://arxiv.org/abs/1909.13334)

3) Langevin Sampling:

 Robust and efficient configurational molecular sampling via Langevin Dynamics by Benedict Leimkuhler, Charles Matthews (https://arxiv.org/abs/1304.3269)