Query.jl

David Anthoff UC Berkeley

Installation instructions

To follow this talk on your own system, you need a number of packages:

```
Pkg.clone("https://github.com/davidanthoff/Dataverse.jl")
Pkg.add("RDatasets")
Pkg.add("DataTables")
Pkg.add("IndexedTables")
Pkg.add("TypedTables")
```

You should also execute the initial using cell in this notebook before this talk so that things get precompiled.

Outline

- 1. Feature show-off
- 2. Internals

Feature show-off

Intellectual debt

- .Net LINQ
- https://github.com/blackrock/NamedTuples.jl

https://github.com/davidanthoff/Dataverse.jl

In [2]: using Dataverse, RDatasets, DataFrames, DataTables, IndexedTables, TypedTables

Querying an array

```
source = collect(1:20)
In [3]:
Out[3]: 20-element Array{Int64,1}:
           3
           4
           5
           7
           8
           9
          10
          11
          12
          13
          14
          15
          16
          17
          18
          19
          20
```

Querying a DataFrame

In [5]: df = dataset("ggplot2", "mpg")

Out[5]:

	Manufacturer	Model	Displ	Year	Cyl	Trans	Drv	Cty	Hwy	FI	Class
1	audi	a4	1.8	1999	4	auto(l5)	f	18	29	р	compact
2	audi	a4	1.8	1999	4	manual(m5)	f	21	29	р	compact
3	audi	a4	2.0	2008	4	manual(m6)	f	20	31	р	compact
4	audi	a4	2.0	2008	4	auto(av)	f	21	30	р	compact
5	audi	a4	2.8	1999	6	auto(l5)	f	16	26	р	compact
6	audi	a4	2.8	1999	6	manual(m5)	f	18	26	р	compact
7	audi	a4	3.1	2008	6	auto(av)	f	18	27	р	compact
8	audi	a4 quattro	1.8	1999	4	manual(m5)	4	18	26	р	compact
9	audi	a4 quattro	1.8	1999	4	auto(l5)	4	16	25	р	compact
10	audi	a4 quattro	2.0	2008	4	manual(m6)	4	20	28	р	compact
11	audi	a4 quattro	2.0	2008	4	auto(s6)	4	19	27	р	compact
12	audi	a4 quattro	2.8	1999	6	auto(l5)	4	15	25	р	compact
13	audi	a4 quattro	2.8	1999	6	manual(m5)	4	17	25	р	compact
14	audi	a4 quattro	3.1	2008	6	auto(s6)	4	17	25	р	compact
15	audi	a4 quattro	3.1	2008	6	manual(m6)	4	15	25	р	compact
16	audi	a6 quattro	2.8	1999	6	auto(l5)	4	15	24	р	midsize
17	audi	a6 quattro	3.1	2008	6	auto(s6)	4	17	25	р	midsize
18	audi	a6 quattro	4.2	2008	8	auto(s6)	4	16	23	р	midsize
19	chevrolet	c1500 suburban 2wd	5.3	2008	8	auto(l4)	r	14	20	r	suv
20	chevrolet	c1500 suburban 2wd	5.3	2008	8	auto(l4)	r	11	15	e	suv
21	chevrolet	c1500 suburban 2wd	5.3	2008	8	auto(l4)	r	14	20	r	suv
22	chevrolet	c1500 suburban 2wd	5.7	1999	8	auto(l4)	r	13	17	r	suv
23	chevrolet	c1500 suburban 2wd	6.0	2008	8	auto(l4)	r	12	17	r	suv
24	chevrolet	corvette	5.7	1999	8	manual(m6) r		16	26	р	2seater
25	chevrolet	corvette	5.7	1999	8	auto(l4)	r	15	23	р	2seater

	Manufacturer	Model	Displ	Year	Cyl	Trans	Drv	Cty	Hwy	FI	Class
26	chevrolet	corvette	6.2	2008	8	manual(m6)	r	16	26	р	2seater
27	chevrolet	corvette	6.2	2008	8	3 auto(s6)		15	25	р	2seater
28	chevrolet	corvette	7.0	2008	8	manual(m6)	r	15	24	р	2seater
29	chevrolet	k1500 tahoe 4wd	5.3	2008	8	auto(l4)	4	14	19	r	suv
30	chevrolet	k1500 tahoe 4wd	5.3	2008	8	auto(l4)	4	11	14	е	suv
:	:	:	:	:	:	:	:	:	:	፧	:

@collect DataFrame

end

Out[6]:

	Manufacturer	Model	Displ	Year	Cyl	Trans	Drv	Cty	Hwy	FI	Class
1	audi	a4	1.8	1999	4	auto(l5)	f	18	29	р	compact
2	audi	a4	1.8	1999	4	manual(m5)	f	21	29	р	compact
3	audi	a4	2.0	2008	4	manual(m6)	f	20	31	р	compact
4	audi	a4	2.0	2008	4	auto(av)	f	21	30	р	compact
5	audi	a4	2.8	1999	6	auto(l5)	f	16	26	р	compact
6	audi	a4	2.8	1999	6	manual(m5)	f	18	26	р	compact
7	audi	a4	3.1	2008	6	auto(av)	f	18	27	р	compact
8	audi	a4 quattro	1.8	1999	4	manual(m5)	4	18	26	р	compact
9	audi	a4 quattro	1.8	1999	4	auto(l5)	4	16	25	р	compact
10	audi	a4 quattro	2.0	2008	4	manual(m6)	4	20	28	р	compact
11	audi	a4 quattro	2.0	2008	4	auto(s6)	4	19	27	р	compact
12	audi	a4 quattro	2.8	1999	6	auto(l5)	4	15	25	р	compact
13	audi	a4 quattro	2.8	1999	6	manual(m5)	4	17	25	р	compact
14	audi	a4 quattro	3.1	2008	6	auto(s6)	4	17	25	р	compact
15	audi	a4 quattro	3.1	2008	6	manual(m6)	4	15	25	р	compact
16	audi	a6 quattro	2.8	1999	6	auto(l5)	4	15	24	р	midsize
17	audi	a6 quattro	3.1	2008	6	auto(s6)	4	17	25	р	midsize
18	audi	a6 quattro	4.2	2008	8	auto(s6)	4	16	23	p	midsize

```
In [7]: @from i in df begin
     @where i.Manufacturer == "audi"
     @select {i.Model, years_since_95 = i.Year-1995, i.Trans}
     @collect DataFrame
end
```

Out[7]:

	Model	years_since_95	Trans
1	a4	4	auto(l5)
2	a4	4	manual(m5)
3	a4	13	manual(m6)
4	a4	13	auto(av)
5	a4	4	auto(l5)
6	a4	4	manual(m5)
7	a4	13	auto(av)
8	a4 quattro	4	manual(m5)
9	a4 quattro	4	auto(l5)
10	a4 quattro	13	manual(m6)
11	a4 quattro	13	auto(s6)
12	a4 quattro	4	auto(l5)
13	a4 quattro	4	manual(m5)
14	a4 quattro	13	auto(s6)
15	a4 quattro	13	manual(m6)
16	a6 quattro	4	auto(l5)
17	a6 quattro	13	auto(s6)
18	a6 quattro	13	auto(s6)

```
In [8]: @from i in df begin
     @where i.Manufacturer == "audi"
     @orderby descending(i.Year), i.Model, i.Trans
     @select i
     @collect DataFrame
end
```

Out[8]:

	Manufacturer	Model	Displ	Year	Cyl	Trans	Drv	Cty	Hwy	FI	Class
1	audi	a4	2.0	2008	4	auto(av)	f	21	30	р	compact
2	audi	a4	3.1	2008	6	auto(av)	f	18	27	р	compact
3	audi	a4	2.0	2008	4	manual(m6)	f	20	31	р	compact
4	audi	a4 quattro	2.0	2008	4	auto(s6)	4	19	27	р	compact
5	audi	a4 quattro	3.1	2008	6	auto(s6)	4	17	25	р	compact
6	audi	a4 quattro	2.0	2008	4	manual(m6)	4	20	28	р	compact
7	audi	a4 quattro	3.1	2008	6	manual(m6)	4	15	25	р	compact
8	audi	a6 quattro	3.1	2008	6	auto(s6)	4	17	25	р	midsize
9	audi	a6 quattro	4.2	2008	8	auto(s6)	4	16	23	р	midsize
10	audi	a4	1.8	1999	4	auto(l5)	f	18	29	р	compact
11	audi	a4	2.8	1999	6	auto(l5)	f	16	26	р	compact
12	audi	a4	1.8	1999	4	manual(m5)	f	21	29	р	compact
13	audi	a4	2.8	1999	6	manual(m5)	f	18	26	р	compact
14	audi	a4 quattro	1.8	1999	4	auto(l5)	4	16	25	р	compact
15	audi	a4 quattro	2.8	1999	6	auto(l5)	4	15	25	р	compact
16	audi	a4 quattro	1.8	1999	4	manual(m5)	4	18	26	р	compact
17	audi	a4 quattro	2.8	1999	6	manual(m5)	4	17	25	р	compact
18	audi	a6 quattro	2.8	1999	6	auto(l5)	4	15	24	р	midsize

```
In [9]: @from i in df begin
     @group i.Cty by i.Manufacturer into g
     @select {Manufacturer = g.key, Cty = mean(g)}
     @collect DataFrame
end
```

Out[9]:

	Manufacturer	Cty
1	audi	17.61111111111111
2	chevrolet	15.0
3	dodge	13.135135135135135
4	ford	14.0
5	honda	24.4444444444443
6	hyundai	18.642857142857142
7	jeep	13.5
8	land rover	11.5
9	lincoln	11.333333333333333
10	mercury	13.25
11	nissan	18.076923076923077
12	pontiac	17.0
13	subaru	19.285714285714285
14	toyota	18.529411764705884
15	volkswagen	20.925925925925927

File IO

```
In [10]: q = @from i in df begin
     @group i.Cty by i.Manufacturer into g
     @select {Manufacturer = g.key, Cty = mean(g)}
end
save("average_mpg.csv", q)
```

In [11]: dt = DataTable(load("average_mpg.csv"))

Out[11]:

	Manufacturer	Cty
1	audi	17.6111
2	chevrolet	15.0
3	dodge	13.1351
4	ford	14.0
5	honda	24.4444
6	hyundai	18.6429
7	jeep	13.5
8	land rover	11.5
9	lincoln	11.3333
10	mercury	13.25
11	nissan	18.0769
12	pontiac	17.0
13	subaru	19.2857
14	toyota	18.5294
15	volkswagen	20.9259

In [12]: save("average_mpg.feather", dt);

Tabular File IO (via FileIO.jl)

load

File extension	Implementation package
.csv	CSVFiles.jl, TextParse.jl
.xls .xlsx	ExcelFiles.jl, ExcelReader.jl
.feather	FeatherFiles.jl, Feather.jl
.dta .sas7bdat .sav	StatFiles.jl, ReadStat.jl

save

File extension	Implementation package
.csv	CSVFiles.jl
.feather	FeatherFiles.jl, Feather.jl

More data structures

```
avg_mpg = @from i in dt begin
In [13]:
             @select i.Manufacturer => i.Cty
             @collect Dict
         end
Out[13]: Dict{String,Float64} with 15 entries:
           "jeep"
                   => 13.5
           "hyundai"
                       => 18.6429
           "lincoln"
                       => 11.3333
           "mercury"
                        => 13.25
           "nissan"
                       => 18.0769
           "toyota"
                       => 18.5294
           "subaru"
                        => 19.2857
           "ford"
                       => 14.0
           "land rover" => 11.5
           "audi"
                        => 17.6111
           "dodge"
                        => 13.1351
           "honda"
                        => 24.4444
           "volkswagen" => 20.9259
           "pontiac"
                        => 17.0
           "chevrolet" => 15.0
```

```
In [14]: @from i in avg_mpg begin
             @where i.second > 20
             @select i.first
             @collect
         end
Out[14]: 2-element Array{String,1}:
          "honda"
          "volkswagen"
In [15]: @from i in df begin
             @join j in avg_mpg on i.Manufacturer equals j.first
             @select {i.Manufacturer, i.Year, avg_mpg = j.second}
             @collect IndexedTable
         end
Out[15]: Manufacturer Year
                               avg_mpg
         "audi"
                       1999
                               17.6111
         "audi"
                       1999
                               17.6111
         "audi"
                               17.6111
                       1999
         "audi"
                       1999
                               17.6111
         "audi"
                       2008
                               17.6111
         "volkswagen"
                       2008
                               20.9259
         "volkswagen"
                       2008
                               20.9259
         "volkswagen"
                       2008
                               20.9259
         "volkswagen"
                        2008
                               20.9259
         "volkswagen"
                       2008
                               20.9259
```

"volkswagen"

"volkswagen"

"volkswagen"

"volkswagen"

"volkswagen"

2008

2008

2008

2008

2008

20.9259

20.9259

20.9259

20.9259

20.9259

IterableTables.jl

Source & Sink

- DataFrames.jl
- DataStreams.jl (CSV.jl, Feather.jl, SQLite.jl, ODBC.jl)
- DataTables.jl
- IndexedTables.jl
- TimeSeries.jl
- Temporal.jl
- TypedTables.jl

Sources

- Any named tuple iterator
- DifferentialEquations.jl

Sinks

- Gadfly.jl
- VegaLite.jl
- StatsModels.jl (→ GLM.jl)

Piping

```
In [16]: load("average_mpg.csv") |>
    save("testfile2.feather")
```

Out[16]: Feather.Sink(Feather.Metadata.CTable("", 15, Feather.Metadata.Column[Feather. Metadata.Column("Manufacturer", Feather.Metadata.PrimitiveArray(UTF8, PLAIN, 8, 15, 0, 168), 0, nothing, ""), Feather.Metadata.Column("Cty", Feather.Metadata.PrimitiveArray(DOUBLE, PLAIN, 176, 15, 0, 120), 0, nothing, "")], 2, ""), "C:\\Users\\david\\Google Drive\\Talks\\2017 juliacon\\testfile2.feather", IOBuffer(data=UInt8[...], readable=true, writable=true, seekable=true, append=false, size=0, maxsize=Inf, ptr=1, mark=-1), "", "", 15×2 DataFrames.DataFrame

Row	Manufacturer	Cty	
1	"audi"	17.6111	
2	"chevrolet"	15.0	
3	"dodge"	13.1351	
4	"ford"	14.0	
5	"honda"	24.4444	
6	"hyundai"	18.6429	
7	"jeep"	13.5	
8	"land rover"	11.5	
9	"lincoln"	11.3333	
10	"mercury"	13.25	
11	"nissan"	18.0769	
12	"pontiac"	17.0	
13	"subaru"	19.2857	
14	"toyota"	18.5294	
15	"volkswagen"	20.9259)

```
In [17]: df |> save("testfile2.csv")
```

	<pre>@select i end) > @sub(save("te</pre>	estfile3.csv"))	> Ind	lexedTa	able					
Out[18]:	Manufacturer Class	Model	Displ	Year	Cyl	Trans	Drv	Cty	Hwy	Fl
	"audi" "p" "compa	"a4" ct"	1.8	1999	4	"auto(15)"	"f"	18	29	
	"audi" "p" "compa	"a4"	1.8	1999	4	"manual(m5)"	"f"	21	29	
	"audi" "p" "compa	"a4"	2.0	2008	4	"auto(av)"	"f"	21	30	
	"audi" "p" "compa	"a4"	2.0	2008	4	"manual(m6)"	"f"	20	31	
	"audi" "p" "compa	"a4"	2.8	1999	6	"auto(15)"	"f"	16	26	
	"audi" "p" "compa	"a4"	2.8	1999	6	"manual(m5)"	"f"	18	26	
	"audi" "p" "compa	"a4"	3.1	2008	6	"auto(av)"	"f"	18	27	
	"audi" "p" "compa	"a4 quattro"	1.8	1999	4	"auto(15)"	"4"	16	25	
	"audi" "p" "compa	"a4 quattro"	1.8	1999	4	"manual(m5)"	"4"	18	26	
	"audi" "p" "compa	"a4 quattro"	2.0	2008	4	"auto(s6)"	"4"	19	27	
	:									
	"volkswagen" "r" "compa	"gti" ct"	2.8	1999	6	"manual(m5)"	"f"	17	24	
	"volkswagen" "d" "compa	"jetta"	1.9	1999	4	"manual(m5)"	"f"	33	44	
	"volkswagen" "r" "compa		2.0	1999	4	"auto(14)"	"f"	19	26	
	"volkswagen" "r" "compa		2.0	1999	4	"manual(m5)"	"f"	21	29	
	"volkswagen" "p" "compa	ct"	2.0	2008	4	"auto(s6)"	"f"	22	29	
	"volkswagen" "p" "compa	ct"	2.0	2008	4	"manual(m6)"	"f"	21	29	
	"volkswagen" "r" "compa		2.5	2008	5	"auto(s6)"	"f"	21	29	
	"volkswagen" "r" "compa	ct"	2.5	2008	5	"manual(m5)"	"f"	21	29	
	"volkswagen" "r" "compa	ct"	2.8	1999	6	"auto(14)"	"f"	16	23	
	"volkswagen" "r" "compa	"jetta" ct"	2.8	1999	6	"manual(m5)"	"f"	17	24	

Plotting

```
In [19]: df |>
    vlplot() |>
    mark_point() |>
    encoding_column_ord(:Cyl) |>
    encoding_row_ord(:Year) |>
    encoding_x_quant(:Displ) |>
    encoding_y_quant(:Hwy) |>
    encoding_size_quant(:Cty) |>
    encoding_color_nominal(:Manufacturer)
Out[19]:

4

6

8

6

Manufacturer

audi
chervolet
codocle
chervolet
codocle
codocle
chervolet
codocle
codocle
chervolet
codocle
codocl
```



```
In [22]: | df |>
         @query(i, begin
             @where i.Trans=="auto(15)"
             @group i by i.Manufacturer into g
             @let p = (vlplot(g) |> mark_point() |> encoding_x_ord(:Year) |> encoding_y
         _quant(:Hwy))
             @select {filename="$(g.key).pdf", plot=p}
         end ) |>
         res -> begin
             for i in res
                 save(i.filename, i.plot)
             end
         end
         WARNING: Mapping to the storage type failed; perhaps your data had out-of-ran
         ge values?
         Try `map(clamp01nan, img)` to clamp values to a valid range.
         WARNING: Mapping to the storage type failed; perhaps your data had out-of-ran
         Try `map(clamp01nan, img)` to clamp values to a valid range.
         WARNING: Mapping to the storage type failed; perhaps your data had out-of-ran
         Try `map(clamp01nan, img)` to clamp values to a valid range.
         WARNING: Mapping to the storage type failed; perhaps your data had out-of-ran
         ge values?
         Try `map(clamp01nan, img)` to clamp values to a valid range.
         WARNING: Mapping to the storage type failed; perhaps your data had out-of-ran
         ge values?
         Try `map(clamp01nan, img)` to clamp values to a valid range.
         WARNING: Mapping to the storage type failed; perhaps your data had out-of-ran
         ge values?
         Try `map(clamp01nan, img)` to clamp values to a valid range.
         WARNING: Mapping to the storage type failed; perhaps your data had out-of-ran
         ge values?
         Try `map(clamp01nan, img)` to clamp values to a valid range.
         WARNING: Mapping to the storage type failed; perhaps your data had out-of-ran
         Try `map(clamp01nan, img)` to clamp values to a valid range.
         WARNING: Mapping to the storage type failed; perhaps your data had out-of-ran
         ge values?
         Try `map(clamp01nan, img)` to clamp values to a valid range.
         WARNING: Mapping to the storage type failed; perhaps your data had out-of-ran
         ge values?
```

Try `map(clamp01nan, img)` to clamp values to a valid range.

Internals

```
User syntax
```

```
LINQ style
x = @from i in source begin
    @where i.age > 40
    @select {i.Firstname, i.Lastname}
    @collect DataFrame
end
```

```
dplyr style (julia 1.0 timeframe)
```

```
x = source |> @filter(age>40) |>
    @select(Firstname, Lastname) |> DataFrame
```

Generator style (maybe julia 2.0+)

```
x = DataFrame({i.Firstname, i.Lastname} for
  i in source if i.age > 40)
```

Backends

Iterator based

- · Chained iterators
- Main current implementation
- Works with a lot of sources
- · Doesn't exploit source data structure

Query translation based (prototype)

- · Builds an AST of the query
- A source can translate this into e.g. SQL
- Barely functional SQLite prototype

Lots of potential!

IndexedTables.jl JuliaDB.jl DryadLINQ PLINQ

SQL

```
In [23]: using SQLite
In [24]: db = SQLite.DB(joinpath(Pkg.dir("SQLite"), "test", "Chinook_Sqlite.sqlite"))
Out[24]: SQLite.DB("C:\Users\david\.julia\v0.6\SQLite\test\Chinook_Sqlite.sqlite")
In [25]: t = Query.table(db, "Employee")
Out[25]: Query.SQLiteTable(SQLite.DB("C:\Users\david\.julia\v0.6\SQLite\test\Chinook_Sqlite.sqlite"), "Employee")
In [26]: @from i in t begin
     @where i.ReportsTo==2
     @select {Name=i.LastName, Adr=i.Address}
     @collect DataFrame
end
```

SELECT LastName AS Name, Address AS Adr FROM Employee WHERE ReportsTo="2"

Out[26]:

	Name	Adr
1	Nullable{String}("Peacock")	Nullable{String}("1111 6 Ave SW")
2	Nullable{String}("Park")	Nullable{String}("683 10 Street SW")
3	Nullable{String}("Johnson")	Nullable{String}("7727B 41 Ave")

```
DataFrame (
           select internal
                            where internal (
                                           query (source)
                                              1->i.aye > 40),
                             i->@NT(Firstname=i.Firstname, Lastname=i.Lastname)))
 query(source::IterSource)
                                                          Query(source::SQLTable)
                                                          → <: CustomSQLImpl
 → <: BaseIterImpl
                                                 where internal(source:: CustomSQLImpl,...)
where internal(source:: BaseIterImpl,...)
→ <: BaseIterImpl
                                                  → <: CustomSQLImpl
select internal(source:: BaseIterImpl,...)
                                            select internal(source:: CustomSQLImpl,...)
→ <: BaseIterImpl
                                                  → <: CustomSQLImpl
DataFrame(
           select internal)
                           where internal()
                                           query (source)
                            i->@NT(Firstname=i.Firstname, Lastname=i.Lastname)))
function DataFrame (...)
                                     next(...)
  for row in source
    # Put into df
 end
                                                      next(...)
end
                           select internal()
                                                                   next(...)
                                           where_internal()
                                                                                DataFrame
                                                               query()
```

Conclusion

Status

- Stable
- Tested
- Documented
- No major (or minor) redesign on the horizon

Performance

size(data) == (100 000 000, 2)

DataTables.jl

```
by(data, :B, d -> mean(d[:A]))
```

Query.jl

```
x = @from i in data begin
    @group i.A by i.B into g
    @select {m = mean(g)}
    @collect DataTable
end
```

Pandas.jl

mean(groupby(data, "B"))

Package	Runtime
DataTables.jl (PR #76)	5.4s
Query.jl	5.2s
Pandas.jl	2.7s

Pain points (and their solution)

- Dealing with columns
 - → named tuples in base will solve that (julia 1.0)
- Boxing of named tuples in certain situations
 - → #18632 (julia 1.0)
- Currently discussed julia 1.0 named tuple syntax (; a=3, b=2)
 - → Begging Jeff
- Current (official?) missing values plan Union {T, Null}
 - → DataValues.jl

Future

- dplyr like interface
- Performance of iterator based implementation
- More operators
- Please help and contribute, this is a big project!

Thank you!

David Anthoff
anthoff@berkeley.edu
www.david-anthoff.com