

An Introduction to Visualization

Definition

Objectives

History

Applications

Model

How to create a Visualization?

What is Visualization?

Is the process of exploring, transforming and **representing data** as images to **provide insight into phenomena**

"augmenting human capabilities" (Munzner, 2014)

Passamoquoddy Bay (10⁶ measures) (Ware, 2019)

Portuguese Higher Education (data from 120 000 candidates)

Definition (yet another)

 "The representation and presentation of data that exploits our visual perception abilities in order to amplify cognition" (Kirk, 2012)

Visualization benefits

- Helps us think
- Reduces load on working memory
- Offloads cognition
- Uses the power of human perception

https://www.interaction-design.org/literature/book/the-encyclopedia-of-human-computer-interaction-2nd-ed/data-visualization-for-human-perception

The process of visualization: graphically encoded data is viewed in order to form a mental model of that data (Spence, 2007)

Data and Information Visualization

In general:

Scientific Visualization (SciVis) - Data having an inherent spatial structure

(e.g., CAT, MR, geophysical, meteorological, fluid dynamics data)

Information Visualization (InfoVis) – "Abstract" tabular data not having an inherent spatial structure (tabular data)

(e.g., stock exchange, census, S/W, social networks, text data)

	Population by age group		
Census Year	Group 1: 0-14 years	Groups 2: 15-64 years	Group 3: 65 + years
1960	2591955	5588868	708569
1970	2451850	5326515	832760
1981	2508673	6198883	1125458
1991	1972403	6552000	1342744
2001	1656602	7006022	1693493
2011	1572329	6979785	2010064
2021	1331188	6588239	2423639

Borders between these areas are not well defined ...

Scientific Visualization (examples "made in UA") (511,21,548) **↑**Tomography (2011)Laser scanner Ground (2015) **Penetrating Radar Air pollution** (2022) (1999)**Tomography** (2004) **Tomography** Tomography and SPECT (2008)(1996)profile coulor scale **Electrical and mechanical**

ground resistivity (2010)

Information Visualization (examples "made in UA")

Machine Learning Visualization (XAI) (UA, 2020)

Academic data (UA, 2020)

Student Migrations (UA, 2015)

Taxonomy Visualization (UA, 2021)

Pedigree trees (UA, 2011)

Monitorização Mensal - Todos os Cursos 13.52 13.108

Brief History

Brief history

 The usefulness of graphical representations of large amounts of data has been recognized long ago:

XVIII e XIX centuries- use of graphics in statistics and science: W. Playfair, C. J. Minard

XX century- J. Bertin, E. Tufte

 The use of the computer made Visualization a more practicable discipline:

1987 - Identification of Visualization as an autonomous discipline

Visualization in Scientific Computing (McCormick, de Fanti and Brown – 1987)

Brief history

- Plenty of Visualization examples of the "pre-computer age":
 - Inclination of planetary orbits Xth century
 - Import/ export (Playfair) XVIIIth century
 - Magnetic declination (Halley) XVIIIth century
 - Russia campaign of Napoleon (Minard) –XIXth century
 - Cholera out-brake in London (Dr. Snow) XIXth century

"Pre-computer" Visualization:

One of the oldest known Visualizations

Inclination of orbits along the time - Xth century (Tufte, 1983)

One of the first Visualizations used in "business"

Import/export during the period from 1770 to 1782 by William Playfair (Tufte, 1983)

One of the first visualizations using contours (isolines)

Magnetic declination 1701 Edmund Halley (Tufte, 1983)

"Ancestors" of simple representations of univariate data

Exports and Imports of Scotland to and from different parts for one W. Playfair's *The Commercial and Political Atlas, 1871*

https://en.wikipedia.org/wiki/William_Playfair

W. Playfair, Statistical Breviary, 1801

Multidimensional Visualization

6 dimensions: place (2), n. of men and direction of the army, date, temperature

Russia campaign of Napoleon 1861 by Charles Minard (Tufte, 1983)

Visualization in scientific discovery

Discovering the cause of the London cholera out brake, 1853-54 (Wikipedia)

Dr. John Snow

Applications

Applications of Scientific Visualization

- Scientific Visualization is currently used in many scientific areas:
 - All engineering fields …
 - Medicine
 - Meteorology, climatology, oceanography
 - Fluid dynamics
 - Cosmology
 - etc., etc.

- Let us see some examples ...
- Can you think of an area where data visualization cannot be applied?

Fluid mechanics visualization

NASA/Boeing CFD visualization of vortices responsible for the noise created by the 777's noise landing

https://www.youtube.com/watch?v=F9EFx7aQuhw

Visualization and Virtual Reality at the Automotive Industry

90% of the new Maserati M20 was digitally developed

Tested in a VR simulator, improving results, reducing time and cost of development

https://www.youtube.com/watch?v=mICaOrJ9oAk

Civil engineering visualization

Bridge project: Visualizing Displacement, Force and Moment in Beams, Stress in Beams, and Stress in Roadway

https://www.comsol.com/blogs/efficientlyanalyze-civil-engineering-designs-using-an-app

Molecule visualization

https://www.samson-connect.net/

Software visualization

git-style package dependency graph of dia (also shown in Fig. 1). The freetype node has been duplicated to show alignment between the two halves.

https://ieeexplore.ieee.org/document/8419271

https://ieeexplore.ieee.org/document/8742198

https://ieeexplore.ieee.org/document/9604892

Machine Learning visualization

 To help understand the "inner workings" of neural networks and other AI methods

https://distill.pub/2020/circuits/visualizing-weights/

https://ieeexplore.ieee.or g/document/8807299

Medicine (education)

- Human anatomy
- using volume rendering
- VOXELman (University of Hamburg)
- Visible Human project
 (National Library of Medicine-USA)

https://www.visiblebody.com/

http://www.voxel-man.de/3d-navigator/inner_organs/
http://www.nlm.nih.gov/research/visible/visible_human.html
https://www.nlm.nih.gov/research/visible/applications.html

Medicine (e.g. surgery training)

VOXELman, University of Hamburg

- Temporal bone surgery
- Movement of the drill is controlled with a force feedback device

https://www.voxel-man.com/simulators/tempo/
https://www.youtube.com/watch?v=CUOm6fxCJqI

Combining imaging from MRIs, CT scans and angiograms to create a three-dimensional model that physicians and patients can see and manipulate — just like a virtual reality game — Stanford Medicine

https://medicalgiving.stanford.edu/news/virtual-reality-system-helps-surgeons-reassures-patients.html

https://www.statnews.com/2019/08/16/virtual-reality-improve-surgeon-training/

Dentistry (e.g. training)

Stereoscopic display + glasses

Interaction devices:

- two force feedback devices
- foot pedal

https://www.voxel-man.com/simulators/dental/

https://www.youtube. com/watch?v=CB_v dW6K42o

An example of Scientific Visualization:

The visible Human Project

(1994, 1995)

The data sets were designed to serve as

- (1) a reference for the study of human anatomy,
- (2) public-domain data for testing medical imaging algorithms,
- (3) a test bed and model for the construction of network-accessible image libraries.

Have been applied to a wide range of educational, diagnostic, treatment planning, virtual reality, artistic, mathematical, and industrial uses.

About 4,000 licensees from 66 countries

As of 2019, a license is no longer required to access the VHP datasets.

Meteorology and oceanography

https://www.iblsoft.com/products/visualweather/

Climate research (by NOAA)

•The Climate Explorer offers graphs, maps, and data of observed and projected temperature, precipitation, and related climate variables for every county in the contiguous US

- The tool shows projected conditions for two possible futures:
 - one in which humans make a moderate attempt to reduce global emissions of heat-trapping gases,
 - one in which we go on conducting business as usual.

https://www.climate.gov/maps-data/primer/visualizingclimate-data

View by Variable interface. View Maximum Daily Temperature variable in Climate Explorer.

https://toolkit.climate.gov/tools/climate-explorer

Example in Climate monitoring: Drought Severity Index (by IPMA)

http://www.ipma.pt/pt/oclima/observatorio.secas/

Sea Level Trends

-12 to -9 (-4 to -3)

-15 to -12 (-5 to -4)

-18 to -15 (-6 to -5)

15 to 21 (5 to 7)

12 to 15 (4 to 5)

9 to 12 (3 to 4)

6 to 9 (2 to 3)

3 to 6 (1 to 2)

0 to 3 (0 to 1)

-3 to 0 (-1 to 0)

-6 to -3 (-2 to -1)

-9 to -6 (-3 to -2)

36

gov/sltrends/sltrends.html

What about the future of Visualization?

The process of creating a (simple) Visualization

The data may be acquired from the world (e.g. sensors, questionnaires)

or **simulated** (e.g. Finite Element Analysis, weather models)

The users should get **insights** from analyzing the visualization and be supported in their tasks (answer their questions)

It is a **human-in-the-loop process**

• "human-in-the-loop" problems involve the user as a part of the system

- They are very complex due to the facts that:
 - humans are very complex systems
 - not well known
 - in general we cannot change them
- Target users' profile, needs, and context of use must be carefully considered whenever designing a visualization

Visual Data Exploration applications

To let the users visually and interactively explore data it is necessary to provide ways to interact along the process

Developing this type of application implies a specific approach:

Human-centred design

∴Data can be

- simulated

```
(e.g. stress of a mechanical part, phantom of the human body, etc.)
```

- measured from real phenomena
- Then a visualization technique is applied, involving:
 - data transformation through several methods

 (e.g. scale transformation, noise filtering, outlier elimination, changing resolution, etc.)
 - mapping to an adequate form to represent data visually (e.g. lines, points, color)
 - producing an image or sequence of images (display)
- This process is repeated as needed to provide insight

The choice of the right mapping is fundamental

Consider the values of a function or terrain altitude data, or sea depth:

- different mappings or visualization techniques can be used, e.g.
 - three-dimensional surface
 - pseudo-color
 - contours (isolines)

- Visualization may be used with different purposes:
 - personal exploration
 - discussion with colleagues
 - presentation to other people

- explorative analysis
- confirmative analysis

Classical examples for:

a) exploration

for

b) presentation

Example of Presentation to other people: World health by Hans Rosling: 200 years of health/income – **120 000 values in 4 min**

Whatever the purpose, a visualization:

 Should allow offload internal cognition and memory usage to the perceptual system, using carefully designed images as a form of external representations (external memory)

- To support users' tasks

To design simple or complex visualizations:

Need to find what are the questions users will ask!

Example: how to select simple charts?

Max and Min temperatures along the month of February (in °C):

day	Max T	Min. T
1	15	7
2	14	8
3	13	6
4	13	6
5	12	6
6	13	7
7	13	7
8	14	8
9	15	5
10	12	5
11	13	6
12	12	7
13	11	8
14	11	8
15	12	8
16	12	9
17	13	9
18	14	9
19	14	8
20	13	8
21	13	8
22	12	7
23	12	7
24	11	7
25	11	6
26	11	7
27	13	6
28	14	6

- Q1- What were the maximum and minimum values of MaxT?
- Q2- What was the most frequent MaxT?
- Q3- In how many days was that MaxT value attained?
- Q4- How were the daily temperature ranges?
- Q5 What was the maximum temperature range?

- What type of chart would you use to answer Q1?
- And the other questions?

Example: how to select simple charts?

Temperatures along the month of February (in °C): a few possible charts

day	Max T	Min. T	Max and Min Temperatures		
1	15	7	16		
2	14	8	10		
3	13	6	14		
4	13	6			
5	12	6	12		
6	13	7	16 00 10		
7	13	7	14 <u>9</u> 10		
8	14	8	12		
9	15	5	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<u> </u>	
10	12	5	<u> </u>	L	
11	13	6	° \ \ \ \ \ \ \ \ \ \ \ \		
12	12	7	6		
13	11	8	4 2		
14	11	8	0		
15	12	8	0 day		
16	12	9	1 3 5 7 9 11 13 15 17 19 21 23 25 27 Clay	Max temp Min temp	
17	13	9			
18	14	9	12		
19	14	8	10	Max T (
20	13	8			
21	13	8	8	■ 11 °C	
22	12	7	6	12	
23	12	7		1 3	
24	11	7	4	1 4	
25	11	6		_ 15	
26	11	7	2		
27	13	6			
28	14	6	11 12 13 14 15 Max T (°C)		

Simple example

Temperatures along the month of February (in °C):

Would you prefer this one?

Anything "odd" about this chart?

Test it using https://www.color-blindness-simulator/

Do not forget "cultural" aspects, nor individual differences!

Next sessions:

- Data characteristics, the phenomena they represent and pre-processing
- Human characteristics fundamental for Visualization
- Creating a Visualization: visually representing
 - 1D, 2D, 3D and nD quantitative data
 - Other types of data (maps, networks, hierarchical data, text...)

Effective Visualization

Ishiara test: color blindness test

Look at the plotures below, and enter the numbers that you see in the corresponding boxes.*

https://colormax.org/color-blind-test/