Lean 4 Cheatsheet

If a tactic is not recognized, write import Mathlib.Tactic at the top of your file.

Logical symbol	Appears in goal	Appears in hypothesis
\forall (for all)	intro x	apply h or specialize h x
\rightarrow (implies)	intro h	apply h or specialize h1 h2
$\neg \text{ (not)}$	intro h	apply h or contradiction
$\leftrightarrow (\mathrm{if} \ \mathrm{and} \ \mathrm{only} \ \mathrm{if})$	constructor	rw [h] or rw [← h] or apply h.1 or apply h.2
\wedge (and)	constructor	obtain $\langle h1, h2 \rangle := h$
\exists (there exists)	use x	obtain $\langle x, hx \rangle := h$
\vee (or)	left or right	obtain h1 h2 := h
a = b (equality)	rfl or ext	rw [h] or rw [+ h] or subst h (if b is a variable)

Tactic	Effect	
	Applying Lemmas	
$\mathtt{exact}\ expr$	prove the current goal exactly by expr.	
apply $expr$	prove the current goal by applying $expr$ to some arguments.	
$\texttt{refine}\ expr$	like exact, but $expr$ can contain sub-expressions?_ that will be turned into new goals.	
convert expr	prove the goal by showing that it is equal to the type of $expr$.	
	${\bf Adding\ hypotheses/data}$	
$\mathtt{have}\ \mathtt{h}\ :\ proposition\ :=\ expr}$	add a new hypothesis h of type proposition. Do not use for data!	
have h : proposition	also creates <i>proposition</i> as a new goal.	
$\mathtt{set} \ \mathtt{x} \ : \ proposition := expr$	add an abbreviation \mathbf{x} with value $expr$.	
by_cases h : proposition	create two goals, one where ${\tt h}$ is the hypothesis that $proposition$ is true and one where ${\tt h}$ is the hypothesis where it is false.	
exfalso	replace the current goal by False.	
by_contra h	proof by contradiction; adds the negation of the goal as hypothesis h.	
<pre>push_neg or push_neg at h</pre>	push negations into quantifiers and connectives in the goal (or in h).	
symm	swap a symmetric relation.	
${ t trans} \ expr$	split a transitive relation into two parts with $expr$ in the middle.	
congr	prove an equality using congruence rules.	
gcongr	prove an inequality using congruence rules.	
rw [expr]	in the goal, replace (all occurrences of) the left-hand side of $expr$ by its right-hand side. $expr$ must be an equality or if and only if statement.	
rw [$\leftarrow expr$]	\dots rewrites using $expr$ from right-to-left.	
rw [expr] at h	rewrite in hypothesis h.	
simp	simplify the goal using all lemmas tagged $@[simp]$ and basic reductions.	
simp at h	simplify in hypothesis h.	
simp [*, expr]	\dots also simplify with all hypotheses and $expr$.	
simp only [expr]	\dots only simplify with $expr$ and basic reductions (not with simp-lemmas).	
simp?	\dots generate a simp only [\dots] tactic that applies the same simplifications.	
$simp_rw [expr1, expr2]$	like rw, but uses simp only at each step.	
exact?	search for a single lemma that closes the goal using the current hypotheses.	
apply?	gives a list of lemmas that can apply to the current goal.	
rw?	gives a list of lemmas that can be used to rewrite the current goal.	
linarith	prove linear (in)equalities from the hypotheses.	
	- **	

ring / noncomm_ring
field_simp / abel / group
aesop
tauto

prove the goal by using the axioms of a commutative ring / ring / field / abelian group / group.

simplify the goal, and use various techniques to prove the goal.

prove logical tautologies.

 $other\ useful\ tactics:\ \verb"induction",\ \verb"ext",\ \verb"positivity",\ \verb"split_ifs",\ \verb"calc",\ \verb"conv",\ \verb"polyrith",\ \verb"norm_cast",\ \verb"push_cast" in the cast of the convergence of the co$