

SEQUENCE LISTING

10> Ish-Horowicz, David
Henrique , Domingos Manuel Pinto
Lewis, Julian Hart
Artavanis Tsakonas, Spyridon
Gray, Grace

<120> ANTIBODIES TO VERTEBRATE DELTA PROTEINS
AND FRAGMENTS

<130> 7326-122-999

<140> 09/783, 931
<141> 2001-02-15

<150> 08/981, 392
<151> 1997-12-22

<150> PCT/US96/11178
<151> 1996-06-28

<150> 60/000, 589
<151> 1995-06-28

<160> 95

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 2508
<212> DNA
<213> Gallus gallus

<220>
<221> CDS
<222> (277)...(2460)
<223> Chick Delta (C-Delta-1) gene

<400> 1
gaattcggca cgagggtttt tttttttttt ttcccccctttt ttctttcttt tcctttgcc 60
atccgaaaga gctgtcagcc gccgcgggc tgcacctaag ggctcggtta gggggataac 120
agtcaagac ctcctgaaa gcaggagacg ggacggtacc ctcggctc tgccggcgg 180
ctgcggcccc tccgttcttt ccccccccccc gagagacact cttccttcc ccccacgaag 240
acacaggggc aggaacgcga gcgctgcccc tccgcc atg gga ggc cgc ttc ctg 294
Met Gly Gly Arg Phe Leu
1 5

ctg acg ctc gcc ctc ctc tcg gcg ctg ctg tgc cgc tgc cag gtt gac 342
Leu Thr Leu Ala Leu Leu Ser Ala Leu Leu Cys Arg Cys Gln Val Asp
10 15 20

ggc tcc ggg gtg ttc gag ctg aag ctg cag gag ttt gtc aac aag aag 390
Gly Ser Gly Val Phe Glu Leu Lys Leu Gln Glu Phe Val Asn Lys Lys
25 30 35

ggg ctg ctc agc aac cgc aac tgc tgc cgg ggg ggc ggc ccc gga ggc 438
Gly Leu Leu Ser Asn Arg Asn Cys Cys Arg Gly Gly Pro Gly Gly
40 45 50

gcc	ggg	cag	cag	cag	tgc	gac	tgc	aag	acc	ttc	ttc	cgc	gtc	tgc	ctg	486
Ala	Gly	Gln	Gln	Gln	Cys	Asp	Cys	Lys	Thr	Phe	Phe	Arg	Val	Cys	Leu	
55					60				65					70		
aag	cac	tac	cag	gcc	agc	gtc	tcc	ccc	gag	ccg	ccc	tgc	acc	tac	ggc	534
Lys	His	Tyr	Gln	Ala	Ser	Val	Ser	Pro	Glu	Pro	Pro	Cys	Thr	Tyr	Gly	
					75				80					85		
agc	gcc	atc	acc	ccc	gtc	ctc	ggc	gcc	aac	tcc	ttc	agc	gtc	ccc	gac	582
Ser	Ala	Ile	Thr	Pro	Val	Leu	Gly	Ala	Asn	Ser	Phe	Ser	Val	Pro	Asp	
					90				95					100		
ggc	gcf	ggc	ggc	gcc	gac	ccc	gcc	ttc	agc	aac	ccc	atc	cgc	ttc	ccc	630
Gly	Ala	Gly	Gly	Ala	Asp	Pro	Ala	Phe	Ser	Asn	Pro	Ile	Arg	Phe	Pro	
					105				110					115		
ttc	ggc	ttc	acc	tgg	ccc	ggc	acc	ttc	tcg	ctc	atc	atc	gag	gct	ctg	678
Phe	Gly	Phe	Thr	Trp	Pro	Gly	Thr	Phe	Ser	Leu	Ile	Ile	Glu	Ala	Leu	
					120				125					130		
cac	acc	gac	tcc	ccc	gac	gac	ctc	acc	aca	gaa	aac	ccc	gag	cgc	ctc	726
His	Thr	Asp	Ser	Pro	Asp	Asp	Leu	Thr	Thr	Glu	Asn	Pro	Glu	Arg	Leu	
					135				140					145		150
atc	agc	cgc	ctg	gcc	acc	cag	agg	cac	ctg	gcf	gtg	ggc	gag	gag	tgg	774
Ile	Ser	Arg	Leu	Ala	Thr	Gln	Arg	His	Leu	Ala	Val	Gly	Glu	Glu	Trp	
					155				160					165		
tcc	cag	gac	ctg	cac	agc	agc	ggc	cgc	acc	gac	ctc	aag	tac	tcc	tat	822
Ser	Gln	Asp	Leu	His	Ser	Ser	Gly	Arg	Thr	Asp	Leu	Lys	Tyr	Ser	Tyr	
					170				175					180		
cgc	ttt	gtg	tgt	gat	gag	cac	tac	tac	ggg	gaa	ggc	tgc	tct	gtc	ttc	870
Arg	Phe	Val	Cys	Asp	Glu	His	Tyr	Tyr	Gly	Glu	Gly	Cys	Ser	Val	Phe	
					185				190					195		
tgc	cg	ccc	cgt	gac	gac	cgc	ttc	ggt	cac	ttc	acc	tgt	gga	gag	cgt	918
Cys	Arg	Pro	Arg	Asp	Asp	Arg	Phe	Gly	His	Phe	Thr	Cys	Gly	Glu	Arg	
					200				205					210		
ggc	gag	aag	gtc	tgc	aac	cca	ggc	tgg	aag	ggc	cag	tac	tgc	act	gag	966
Gly	Glu	Lys	Val	Cys	Asn	Pro	Gly	Trp	Lys	Gly	Gln	Tyr	Cys	Thr	Glu	
					215				220					225		230
ccg	att	tgc	ttg	cct	ggg	tgt	gac	gag	cag	cac	ggc	ttc	tgc	gac	aaa	1014
Pro	Ile	Cys	Leu	Pro	Gly	Cys	Asp	Glu	Gln	His	Gly	Phe	Cys	Asp	Lys	
					235				240					245		
cct	ggg	gaa	tgc	aag	tgc	aga	gtg	ggt	tgg	cag	ggg	cgg	tac	tgt	gac	1062
Pro	Gly	Glu	Cys	Lys	Cys	Arg	Val	Gly	Trp	Gln	Gly	Arg	Tyr	Cys	Asp	
					250				255					260		
gag	tgc	atc	cga	tac	cca	ggc	tgc	ctg	cac	ggt	acc	tgt	cag	cag	cca	1110
Glu	Cys	Ile	Arg	Tyr	Pro	Gly	Cys	Leu	His	Gly	Thr	Cys	Gln	Gln	Pro	
					265				270					275		
tgg	cag	tgc	aac	tgc	cag	gaa	ggc	tgg	ggc	ggc	ctt	ttc	tgc	aac	cag	1158
Trp	Gln	Cys	Asn	Cys	Gln	Glu	Gly	Trp	Gly	Gly	Leu	Phe	Cys	Asn	Gln	
					280				285					290		

gac ctg aac tac tgc act cac cac aag cca tgc aag aat ggt gcc aca		1206	
Asp Leu Asn Tyr Cys Thr His His Lys Pro Cys Lys Asn Gly Ala Thr			
295	300	305	310
tgc acc aac acc ggt cag ggg agc tac act tgt tct tgc cga cct ggg		1254	
Cys Thr Asn Thr Gly Gln Gly Ser Tyr Thr Cys Ser Cys Arg Pro Gly			
315	320	325	
tac aca ggc tcc agc tgc gag att gaa atc aac gaa tgt gat gcc aac		1302	
Tyr Thr Gly Ser Ser Cys Glu Ile Glu Ile Asn Glu Cys Asp Ala Asn			
330	335	340	
cct tgc aag aat ggt gga agc tgc acg gat ctc gag aac agc tat tcc		1350	
Pro Cys Lys Asn Gly Gly Ser Cys Thr Asp Leu Glu Asn Ser Tyr Ser			
345	350	355	
tgt acc tgc ccc cca ggc ttc tat ggt aaa aac tgt gag ctg agt gca		1398	
Cys Thr Cys Pro Pro Gly Phe Tyr Gly Lys Asn Cys Glu Leu Ser Ala			
360	365	370	
atg act tgt gct gat gga ccg tgc ttc aat gga ggg cga tgc act gac		1446	
Met Thr Cys Ala Asp Gly Pro Cys Phe Asn Gly Arg Cys Thr Asp			
375	380	385	390
aac cct gat ggt gga tac agc tgc cgc tgc cca ctg ggt tat tct ggg		1494	
Asn Pro Asp Gly Gly Tyr Ser Cys Arg Cys Pro Leu Gly Tyr Ser Gly			
395	400	405	
ttc aac tgt gaa aag aaa atc gat tac tgc agt tcc agc cct tgt gct		1542	
Phe Asn Cys Glu Lys Lys Ile Asp Tyr Cys Ser Ser Pro Cys Ala			
410	415	420	
aat gga gcc cag tgc gtt gac ctg ggg aac tcc tac ata tgc cag tgc		1590	
Asn Gly Ala Gln Cys Val Asp Leu Gly Asn Ser Tyr Ile Cys Gln Cys			
425	430	435	
cag gct ggc ttc act ggc agg cac tgt gac gac aac gtg gac gat tgc		1638	
Gln Ala Gly Phe Thr Gly Arg His Cys Asp Asp Asn Val Asp Asp Cys			
440	445	450	
gcc tcc ttc ccc tgc gtc aat gga ggg acc tgt cag gat ggg gtc aac		1686	
Ala Ser Phe Pro Cys Val Asn Gly Gly Thr Cys Gln Asp Gly Val Asn			
455	460	465	470
gac tac tcc tgc acc tgc ccc ccg gga tac aac ggg aag aac tgc agc		1734	
Asp Tyr Ser Cys Thr Cys Pro Pro Gly Tyr Asn Gly Lys Asn Cys Ser			
475	480	485	
acg ccg gtg agc aga tgc gag cac aac ccc tgc cac aat ggg gcc acc		1782	
Thr Pro Val Ser Arg Cys Glu His Asn Pro Cys His Asn Gly Ala Thr			
490	495	500	
tgc cac gag aga agc aac cgc tac gtg tgc gag tgc gct cgg ggc tac		1830	
Cys His Glu Arg Ser Asn Arg Tyr Val Cys Glu Cys Ala Arg Gly Tyr			
505	510	515	
ggc ggc ctc aac tgc cag ttc ctg ctc ccc gag cca cct cag ggg ccg		1878	
Gly Gly Leu Asn Cys Gln Phe Leu Leu Pro Glu Pro Pro Gln Gly Pro			
520	525	530	
gtc atc gtt gac ttc acc gag aag tac aca gag ggc cag aac agc cag		1926	

Val	Ile	Val	Asp	Phe	Thr	Glu	Lys	Tyr	Thr	Glu	Gly	Gln	Asn	Ser	Gln	
535				540					545				550			
ttt ccc tgg atc gca gtg tgc gcc ggg att att ctg gtc ctc atg ctg															1974	
Phe	Pro	Trp	Ile	Ala	Val	Cys	Ala	Gly	Ile	Ile	Leu	Val	Leu	Met	Leu	
			555						560				565			
ctg ctg ggt tgc gcc gcc atc gtc gtc tgc gtc agg ctg aag gtg cag															2022	
Leu	Leu	Gly	Cys	Ala	Ala	Ile	Val	Val	Cys	Val	Arg	Leu	Lys	Val	Gln	
			570						575				580			
aag agg cac cac cag ccc gag gcc tgc agg agt gaa acg gag acc atg															2070	
Lys	Arg	His	His	Gln	Pro	Glu	Ala	Cys	Arg	Ser	Glu	Thr	Glu	Thr	Met	
			585						590				595			
aac aac ctg gcg aac tgc cag cgc gag aag gac atc tcc atc agc gtc															2118	
Asn	Asn	Leu	Ala	Asn	Cys	Gln	Arg	Glu	Lys	Asp	Ile	Ser	Ile	Ser	Val	
			600						605				610			
atc ggt gcc act cag att aaa aac aca aat aag aaa gta gac ttt cac															2166	
Ile	Gly	Ala	Thr	Gln	Ile	Lys	Asn	Thr	Asn	Lys	Lys	Val	Asp	Phe	His	
			615						620				625			630
agc gat aac tcc gat aaa aac ggc tac aaa gtt aga tac cca tca gtg															2214	
Ser	Asp	Asn	Ser	Asp	Lys	Asn	Gly	Tyr	Lys	Val	Arg	Tyr	Pro	Ser	Val	
			635						640				645			
gat tac aat ttg gtg cat gaa ctc aag aat gag gac tct gtg aaa gag															2262	
Asp	Tyr	Asn	Leu	Val	His	Glu	Leu	Lys	Asn	Glu	Asp	Ser	Val	Lys	Glu	
			650						655				660			
gag cat ggc aaa tgc gaa gcc aag tgt gaa acg tat gat tca gag gca															2310	
Glu	His	Gly	Lys	Cys	Glu	Ala	Lys	Cys	Glu	Thr	Tyr	Asp	Ser	Glu	Ala	
			665						670				675			
gaa gag aaa agc gca gta cag cta aaa agt agt gac act tct gaa aga															2358	
Glu	Glu	Lys	Ser	Ala	Val	Gln	Leu	Lys	Ser	Ser	Asp	Thr	Ser	Glu	Arg	
			680						685				690			
aaa cgg cca gat tca gta tat tcc act tca aag gac aca aag tac cag															2406	
Lys	Arg	Pro	Asp	Ser	Val	Tyr	Ser	Thr	Ser	Lys	Asp	Thr	Lys	Tyr	Gln	
			695						700				705			710
tcg gtg tac gtc ata tca gaa gag aaa gat gag tgc atc ata gca act															2454	
Ser	Val	Tyr	Val	Ile	Ser	Glu	Glu	Lys	Asp	Glu	Cys	Ile	Ile	Ala	Thr	
			715						720				725			
gag gtg taaaacagac gtgacgtggc aaagcttatac gataccgtca tcaagctt															2508	
Glu	Val															

<210> 2
<211> 728
<212> PRT
<213> Gallus gallus

<400> 2
Met Gly Gly Arg Phe Leu Leu Thr Leu Ala Leu Leu Ser Ala Leu Leu
1 5 10 15
Cys Arg Cys Gln Val Asp Gly Ser Gly Val Phe Glu Leu Lys Leu Gln

20	25	30													
Glu	Phe	Val	Asn	Lys	Lys	Gly	Leu	Leu	Ser	Asn	Arg	Asn	Cys	Cys	Arg
35							40				45				
Gly	Gly	Gly	Pro	Gly	Gly	Ala	Gly	Gln	Gln	Gln	Cys	Asp	Cys	Lys	Thr
50						55				60					
Phe	Phe	Arg	Val	Cys	Leu	Lys	His	Tyr	Gln	Ala	Ser	Val	Ser	Pro	Glu
65					70				75						80
Pro	Pro	Cys	Thr	Tyr	Gly	Ser	Ala	Ile	Thr	Pro	Val	Leu	Gly	Ala	Asn
					85				90						95
Ser	Phe	Ser	Val	Pro	Asp	Gly	Ala	Gly	Gly	Ala	Asp	Pro	Ala	Phe	Ser
				100				105						110	
Asn	Pro	Ile	Arg	Phe	Pro	Phe	Gly	Phe	Thr	Trp	Pro	Gly	Thr	Phe	Ser
				115				120						125	
Leu	Ile	Ile	Glu	Ala	Leu	His	Thr	Asp	Ser	Pro	Asp	Asp	Leu	Thr	Thr
				130				135						140	
Glu	Asn	Pro	Glu	Arg	Leu	Ile	Ser	Arg	Leu	Ala	Thr	Gln	Arg	His	Leu
	145				150					155					160
Ala	Val	Gly	Glu	Glu	Trp	Ser	Gln	Asp	Leu	His	Ser	Ser	Gly	Arg	Thr
					165				170					175	
Asp	Leu	Lys	Tyr	Ser	Tyr	Arg	Phe	Val	Cys	Asp	Glu	His	Tyr	Tyr	Gly
				180					185					190	
Glu	Gly	Cys	Ser	Val	Phe	Cys	Arg	Pro	Arg	Asp	Asp	Arg	Phe	Gly	His
				195				200						205	
Phe	Thr	Cys	Gly	Glu	Arg	Gly	Glu	Lys	Val	Cys	Asn	Pro	Gly	Trp	Lys
	210				215					220					
Gly	Gln	Tyr	Cys	Thr	Glu	Pro	Ile	Cys	Leu	Pro	Gly	Cys	Asp	Glu	Gln
	225				230				235					240	
His	Gly	Phe	Cys	Asp	Lys	Pro	Gly	Glu	Cys	Lys	Cys	Arg	Val	Gly	Trp
				245					250					255	
Gln	Gly	Arg	Tyr	Cys	Asp	Glu	Cys	Ile	Arg	Tyr	Pro	Gly	Cys	Leu	His
				260				265						270	
Gly	Thr	Cys	Gln	Gln	Pro	Trp	Gln	Cys	Asn	Cys	Gln	Glu	Gly	Trp	Gly
				275				280						285	
Gly	Leu	Phe	Cys	Asn	Gln	Asp	Leu	Asn	Tyr	Cys	Thr	His	His	Lys	Pro
				290				295						300	
Cys	Lys	Asn	Gly	Ala	Thr	Cys	Thr	Asn	Thr	Gly	Gln	Gly	Ser	Tyr	Thr
	305				310					315					320
Cys	Ser	Cys	Arg	Pro	Gly	Tyr	Thr	Gly	Ser	Ser	Cys	Glu	Ile	Glu	Ile
				325					330					335	
Asn	Glu	Cys	Asp	Ala	Asn	Pro	Cys	Lys	Asn	Gly	Gly	Ser	Cys	Thr	Asp
				340				345						350	
Leu	Glu	Asn	Ser	Tyr	Ser	Cys	Thr	Cys	Pro	Pro	Gly	Phe	Tyr	Gly	Lys
				355				360				365			
Asn	Cys	Glu	Leu	Ser	Ala	Met	Thr	Cys	Ala	Asp	Gly	Pro	Cys	Phe	Asn
				370				375			380				
Gly	Gly	Arg	Cys	Thr	Asp	Asn	Pro	Asp	Gly	Gly	Tyr	Ser	Cys	Arg	Cys
	385				390					395					400
Pro	Leu	Gly	Tyr	Ser	Gly	Phe	Asn	Cys	Glu	Lys	Lys	Ile	Asp	Tyr	Cys
				405					410					415	
Ser	Ser	Ser	Pro	Cys	Ala	Asn	Gly	Ala	Gln	Cys	Val	Asp	Leu	Gly	Asn
				420					425					430	
Ser	Tyr	Ile	Cys	Gln	Cys	Gln	Ala	Gly	Phe	Thr	Gly	Arg	His	Cys	Asp
				435				440				445			
Asp	Asn	Val	Asp	Asp	Cys	Ala	Ser	Phe	Pro	Cys	Val	Asn	Gly	Gly	Thr
				450				455			460				
Cys	Gln	Asp	Gly	Val	Asn	Asp	Tyr	Ser	Cys	Thr	Cys	Pro	Pro	Gly	Tyr
	465				470					475					480
Asn	Gly	Lys	Asn	Cys	Ser	Thr	Pro	Val	Ser	Arg	Cys	Glu	His	Asn	Pro
				485					490					495	
Cys	His	Asn	Gly	Ala	Thr	Cys	His	Glu	Arg	Ser	Asn	Arg	Tyr	Val	Cys
				500					505					510	

Glu	Cys	Ala	Arg	Gly	Tyr	Gly	Gly	Leu	Asn	Cys	Gln	Phe	Leu	Leu	Pro
515						520						525			
Glu	Pro	Pro	Gln	Gly	Pro	Val	Ile	Val	Asp	Phe	Thr	Glu	Lys	Tyr	Thr
530						535						540			
Glu	Gly	Gln	Asn	Ser	Gln	Phe	Pro	Trp	Ile	Ala	Val	Cys	Ala	Gly	Ile
545						550				555				560	
Ile	Leu	Val	Leu	Met	Leu	Leu	Leu	Gly	Cys	Ala	Ala	Ile	Val	Val	Cys
									570				575		
Val	Arg	Leu	Lys	Val	Gln	Lys	Arg	His	His	Gln	Pro	Glu	Ala	Cys	Arg
									585				590		
Ser	Glu	Thr	Glu	Thr	Met	Asn	Asn	Leu	Ala	Asn	Cys	Gln	Arg	Glu	Lys
								600				605			
Asp	Ile	Ser	Ile	Ser	Val	Ile	Gly	Ala	Thr	Gln	Ile	Lys	Asn	Thr	Asn
								615				620			
Lys	Lys	Val	Asp	Phe	His	Ser	Asp	Asn	Ser	Asp	Lys	Asn	Gly	Tyr	Lys
625						630				635				640	
Val	Arg	Tyr	Pro	Ser	Val	Asp	Tyr	Asn	Leu	Val	His	Glu	Leu	Lys	Asn
								645		650				655	
Glu	Asp	Ser	Val	Lys	Glu	Glu	His	Gly	Lys	Cys	Glu	Ala	Lys	Cys	Glu
								660		665				670	
Thr	Tyr	Asp	Ser	Glu	Ala	Glu	Glu	Lys	Ser	Ala	Val	Gln	Leu	Lys	Ser
								675		680				685	
Ser	Asp	Thr	Ser	Glu	Arg	Lys	Arg	Pro	Asp	Ser	Val	Tyr	Ser	Thr	Ser
								690		695				700	
Lys	Asp	Thr	Lys	Tyr	Gln	Ser	Val	Tyr	Val	Ile	Ser	Glu	Glu	Lys	Asp
705								710				715			720
Glu	Cys	Ile	Ile	Ala	Thr	Glu	Val								
								725							

<210> 3
<211> 2883
<212> DNA
<213> Gallus gallus

<220>
<223> Alternatively spliced chick Delta (C-Delta-1) gene

<400> 3
gaattcggca cgagggtttt ttttttttt ttccctcttt ttctttcttt tccttttgcc 60
atccgaaaga gctgtcagcc gccgcgggc tgcacctaaa ggctcggtt ggggataaac 120
agtcaagac cctcctgaaa gcaggagacg ggacggtacc cctccggctc tgccccggcgg 180
ctgcggccccc tccgttcttt cccctcccccc gagagacact cttcctttcc ccccacgaag 240
acacaggggc aggaacgcga gcgctgcccc tccgcctatgg gaggccgctt cctgctgacg 300
ctcgccctcc tctcggcgct gctgtgccgc tgccaggtt acggctccgg ggtgttcgag 360
ctgaagctgc aggagttgt caacaagaag gggctgctca gcaaccgcaa ctgctgccgg 420
ggggcggcc ccggaggcgcc cgggcagcag cagtgcgact gcaagacctt cttccgcgtc 480
tgcctgaagc actaccaggc cagcgtctcc cccgagccgc cctgcaccta cggcagcgcc 540
atcacccccc tcctcggcgcc caactccttc agcgtccccg acggcgccgg cggcgccgac 600
cccgcccttca gcaacccat ccgttcccccc ttccggcttca cctggcccg caccttctcg 660
ctcatcatcg aggctctgca caccgactcc cccgacgacc tcaccacaga aaaccccgag 720
cgccatcatca gccgcctggc cacccagagg cacctggcg tggcgagga gtggcccg 780
gacctgcaca gcagcggccg caccgaccc aagtactcct atcgctttgt gtgtgatgag 840
cactactacg gggaggctg ctctgtcttc tgccggccccc gtgacgaccg cttcggtcac 900
ttcacctgtg gagagcgtgg cgagaaggc tgcaacccag gctgaaaggc ccagtactgc 960
actgagccga ttgtcttgc tgggtgtgac gagcagcacc gcttctgcga caaacctggg 1020
gaatgcaagt gcagagtggtt ttggcagggg cggtaactgtg acgagtgcat ccgataccca 1080
ggctgcctgc acggtaacctg ttagcagcca tggcagtgcact gacccaggaa aggctggggc 1140
ggcctttct gcaaccagga cctgaactac tgcactcacc acaagccatg caagaatgg 1200
gccacatgca ccaacaccgg tcagggagc tacacttgtt cttgccgacc tgggtacaca 1260
ggctccagct gcgagattga aatcaacgaa tgtgatgcca acccttgcaa gaatgggtgga 1320

agctgcacgg atctcgagaa cagctattcc tgtacctgcc ccccaggctt ctatggtaaa 1380
 aactgtgagc tgagtgaat gacttgtgct gatggaccgt gcttcaatgg agggcgatgc 1440
 actgacaacc ctgatggtgg atacagctgc cgctgcccac tgggttattc tgggttcaac 1500
 tgtaaaaga aaatcgatta ctgcagttcc agcccttgtg ctaatggagc ccagtgcgtt 1560
 gacctgggaa actcctacat atgccagtg caggctggct tcactggcag gcactgtgac 1620
 gacaacgtgg acgattgcgc ctccctcccc tgcgtcaatg gagggacctg tcaggatggg 1680
 gtcaacgact actcctgcac ctgccccccg ggataacaacg ggaagaactg cagcacgccc 1740
 gtgagcagat gcgagcacaac cccctgccac aatggggcca cctgccacga gagaagcaac 1800
 cgctacgtgt gcgagtgccgc tcggggctac ggcggcctca actgccagtt cctgctcccc 1860
 gagccaccc agggggccggt catcggtgac ttacccgaga agtacacaga gggccagaac 1920
 agccagttc cctggatgcg agtgtgccc gggattattc tggtcctcat gctgctgctg 1980
 ggttgcgcgg ccattcgctgt ctgcgtcagg ctgaagggtgc agaagaggca ccaccagccc 2040
 gaggcctgca ggagtgaaac ggagaccatg aacaacctgg cgaactgcca gcgcgagaag 2100
 gacatctcca tcagcgcat cggtgccact cagattaaaa acacaaataa gaaagtagac 2160
 tttcacagcg ataactccga taaaaacggc tacaaggta gataccatc agtggattac 2220
 aatttggtgc atgaactcaa gaatgaggac tctgtgaaag aggagcatgg caaatgcgaa 2280
 gccaagtgtg aaacgtatga ttcagaggca gaagagaaaa gcgcagtaca gctaaaaagt 2340
 agtacacatt ctgaaagaaaa acggccagat tcagtatatt ccacttcaaa ggacacaaag 2400
 taccagtcgg tgtacgtcat atcagaagag aaagatgagt gcatcatagc aactgaggtt 2460
 agtatccac ctggcagtcg gacaagtctt ggtgtgtgat tcccatccag cgccaggtcag 2520
 ggcggccaaa ccattctacc tgctgccaca gtcatctgta cccaatgaaa actggccacc 2580
 ttcagtctgt ggcactgcag acgttggaaa aacttgggtt ggattaacat aagctccagt 2640
 gggggttaca gggacagcaa ttttgcagg caagggtata actgtagtgc agttgttagt 2700
 tactaacctt actgactcat tctttcggtt gcttcctgca gagcctgttt ttgcttggca 2760
 ttgaggtgaa gtcctgaccc tctgcacatcct catagtcctc tgcttctt ttattaaacct 2820
 cttctggtct ctgcttgtct tttctctcaa caggtgtaaa acagacgtga cgtggcaaaag 2880
 ctt 2883

<210> 4
 <211> 2857
 <212> DNA
 <213> mouse

<220>
 <223> mouse Delta-1 gene

<400> 4

gtccagcgg	accatgggcc	gtcggagcgc	gctaccctt	gccgtggct	ctgccctgct	60
gtgccaggc	tggagctccg	gcgtatttga	gctgaagctg	caggagttcg	tcaacaagaa	120
ggggctgctg	ggaaaccgca	actgctgccg	cgggggctct	ggcccgccct	gcgcctgcag	180
gaccttctt	cgcgtatgcc	tcaaccacta	ccagggcagc	gtgtcaccgg	agccaccctg	240
caccta	cgccagtgca	cgccagtgct	gggtctcgac	tccttcagcc	tgcctgatgg	300
cgcaggcatc	gaccccgct	tcagcaaccc	atccgattcc	ccttccggct	tcacctggcc	360
aggtaccttc	tctctgatca	ttgaagccct	ccatacagac	tctcccgatg	acctcgcaac	420
agaaaaccca	gaaagactca	tcagccgct	gaccacacag	aggcaccta	ctgtggacg	480
aatggtctca	ggaccttcac	agtagccggc	gcacagacct	ccggta	taccggttt	540
tgtgtgacga	gcactactac	ggagaagggt	gctctgtgtt	ctgcccac	cggatgacg	600
ccttggcca	cttcacctgc	ggggacagag	gggagaagat	gtgcgaccct	ggctggaaag	660
gccagta	cactgaccca	atctgtctgc	cagggtgtga	tgaccaacat	ggatactgt	720
acaaaccagg	ggagtgcaag	tgcagagttg	gctggcagg	ccgctactgc	gatgagtgca	780
tccgata	aggttgtctc	catggcacct	gccagcaacc	ctggcagtgt	aactgccagg	840
aaggctgggg	ggccctttc	tgcaaccaag	acctgaacta	ctgtactcac	cataagccgt	900
gcaggaatgg	accacactgc	accaacacgg	gccagggag	ctacacatgt	tcctgccgac	960
tgggtatac	aggtgccaac	tgtgagctgg	aagtagatga	gtgtgctcct	agcccctgca	1020
agaacggagc	gagctgcacg	gaccttgagg	acagcttctc	ttgcacctgc	cctcccggt	1080
tctatggcaa	ggtctgtgag	cttgagcgcc	atgacctgt	cagatggccc	ttgcttcaat	1140
ggaggacgat	gttcagataa	ccctgacgga	ggctacacct	gccattgccc	cttgggcttc	1200
tctggctca	actgtgagaa	gaagatggat	ctctgcggct	cttcccccctt	gttctaacgg	1260
tgccaagtgt	gtggacctcg	gcaactctt	cctgtgccgg	tgccaggctg	gcttctccgg	1320
gacctactgc	gaggacaatg	tggatgactg	tgcctcctcc	ccgtgtgcaa	atggggcac	1380
ctgccggac	agtgtgaacg	acttctcctc	tacctgccc	cctggctaca	cggcaagaa	1440

ctgcagcgcc cctgtcagca ggtgtgagca tgcaccctgc cataatgggg ccacacctgcca 1500
 ccagaggggc cagcgctaca tgtgtgagtg cgcccaggc tatggcggcc ccaactgcca 1560
 gtttctgctc cctgagccac caccaggcc catgggtgtg gacctcagtg agaggcatat 1620
 ggagagccag ggcgggcct tcccctcggt ggcgggtgtg gccggggtgg tgcttgcct 1680
 cctgctgctg ctgggctgtg ctgctgtgtt ggtctgcgtc cggctgaagc tacagaaaca 1740
 ccagcctcca cctgaaccct gtggggaga gacagaaacc atgaacaacc tagccaattg 1800
 ccagcgcgag aaggacgtt ctgttagcat cattgggct acccagatca agaacaccaa 1860
 caagaaggcg gacttcacg gggaccatgg agccaaagaag agcagctta aggtccgata 1920
 ccccaactgtg gactataacc tcgttcgaga cctcaaggga gatgaagcca cggtcaggga 1980
 tacacacagc aaacgtgaca ccaagtgcca gtcacagagc tctgcaggag aagagaagat 2040
 cgccccaaaca cttaggggtg gggagattcc tgacagaaaa aggccagagt ctgtctactc 2100
 tacttcaaag gacaccaagt accagtcgt gtatgttctg tctgcagaaa aggatgagtg 2160
 tgttatagcg actgagctgt aagatggaag cgatgtggca aaattcccat ttctctcaaa 2220
 taaaattcca agatatagc cccgatgaat gctgctgaga gaggaaggga gaggaaaccc 2280
 aggactgt gctgagaacc aggttcaggc gaagctgggt ctctcagagt tagcagagc 2340
 gcccgcacact gccagcctag gctttggctg ccgctggact gcctgctgg tggccatt 2400
 gcactatgca cagttgcctt gaagagtata tatttaaatg gacgagtgac ttgattcata 2460
 tacgaagcac gcactgccc cacgtctatc ttggattact atgagccagt ctttcttga 2520
 actagaaaca caactgcctt tattgtcctt tttgatactg agatgtgtt tttttttcc 2580
 tagacgggaa aaagaaaacg tttgttattt ttttggatt tgtaaaaata ttttcatga 2640
 tatctgtaaa gcttgagttat tttgtgacgt tcatttttt ataatttaaa ttttggtaaa 2700
 tatgtacaaa ggcacttcgg gtctatgtga ctatatttt ttgtatataa atgtatttat 2760
 ggaatattgt gcaaatgtta tttgagttt ttactgtttt gttaatgaag aaattcattt 2820
 taaaaatattttccaaaat aaatataatg aactaca 2857

<210> 5
 <211> 721
 <212> PRT
 <213> Xenopus

<400> 5
 Met Gly Gln Gln Arg Met Leu Thr Leu Leu Val Leu Ser Ala Val Leu
 1 5 10 15
 Cys Gln Ile Ser Cys Ser Gly Leu Phe Glu Leu Arg Leu Gln Glu Phe
 20 25 30
 Val Asn Lys Lys Gly Leu Leu Gly Asn Met Asn Cys Cys Arg Pro Gly
 35 40 45
 Ser Leu Ala Ser Leu Gln Arg Cys Glu Cys Lys Thr Phe Phe Arg Ile
 50 55 60
 Cys Leu Lys His Tyr Gln Ser Asn Val Ser Pro Glu Pro Pro Cys Thr
 65 70 75 80
 Tyr Gly Gly Ala Val Thr Pro Val Leu Gly Thr Asn Ser Phe Val Val
 85 90 95
 Pro Glu Ser Ser Asn Ala Asp Pro Thr Phe Ser Asn Pro Ile Arg Phe
 100 105 110
 Pro Phe Gly Phe Thr Trp Pro Gly Thr Phe Ser Leu Ile Ile Glu Ala
 115 120 125
 Ile His Ala Asp Ser Ala Asp Asp Leu Asn Thr Glu Asn Pro Glu Arg
 130 135 140
 Leu Ile Ser Arg Leu Ala Thr Gln Arg His Leu Thr Val Gly Glu Gln
 145 150 155 160
 Trp Ser Gln Asp Leu His Ser Ser Asp Arg Thr Glu Leu Lys Tyr Ser
 165 170 175
 Tyr Arg Phe Val Cys Asp Glu Tyr Tyr Gly Glu Gly Cys Ser Asp
 180 185 190
 Tyr Cys Arg Pro Arg Asp Asp Ala Phe Gly His Phe Ser Cys Gly Glu
 195 200 205
 Lys Gly Glu Lys Leu Cys Asn Pro Gly Trp Lys Gly Leu Tyr Cys Thr
 210 215 220
 Glu Pro Ile Cys Leu Pro Gly Cys Asp Glu His His Gly Tyr Cys Asp
 225 230 235 240

Lys Pro Gly Glu Cys Lys Cys Arg Val Gly Trp Gln Gly Arg Tyr Cys
 245 250 255
 Asp Glu Cys Ile Arg Tyr Pro Gly Cys Leu His Gly Thr Cys Gln Gln
 260 265 270
 Pro Trp Gln Cys Asn Cys Gln Glu Gly Trp Gly Gly Leu Phe Cys Asn
 275 280 285
 Gln Asp Leu Asn Tyr Cys Thr His His Lys Pro Cys Glu Asn Gly Ala
 290 295 300
 Thr Cys Thr Asn Thr Gly Gln Gly Ser Tyr Thr Cys Ser Cys Arg Pro
 305 310 315 320
 Gly Tyr Thr Gly Ser Asn Cys Glu Ile Glu Val Asn Glu Cys Asp Ala
 325 330 335
 Asn Pro Cys Lys Asn Gly Gly Ser Cys Ser Asp Leu Glu Asn Ser Tyr
 340 345 350
 Thr Cys Ser Cys Pro Pro Gly Phe Tyr Gly Lys Asn Cys Glu Leu Ser
 355 360 365
 Ala Met Thr Cys Ala Asp Gly Pro Cys Phe Asn Gly Gly Arg Cys Ala
 370 375 380
 Asp Asn Pro Asp Gly Gly Tyr Ile Cys Phe Cys Pro Val Gly Tyr Ser
 385 390 395 400
 Gly Phe Asn Cys Glu Lys Lys Ile Asp Tyr Cys Ser Ser Asn Pro Cys
 405 410 415
 Ala Asn Gly Ala Arg Cys Glu Asp Leu Gly Asn Ser Tyr Ile Cys Gln
 420 425 430
 Cys Gln Glu Gly Phe Ser Gly Arg Asn Cys Asp Asp Asn Leu Asp Asp
 435 440 445
 Cys Thr Ser Phe Pro Cys Gln Asn Gly Gly Thr Cys Gln Asp Gly Ile
 450 455 460
 Asn Asp Tyr Ser Cys Thr Cys Pro Pro Gly Tyr Ile Gly Lys Asn Cys
 465 470 475 480
 Ser Met Pro Ile Thr Lys Cys Glu His Asn Pro Cys His Asn Gly Ala
 485 490 495
 Thr Cys His Glu Arg Asn Asn Arg Tyr Val Cys Gln Cys Ala Arg Gly
 500 505 510
 Tyr Gly Gly Asn Asn Cys Gln Phe Leu Leu Pro Glu Glu Lys Pro Val
 515 520 525
 Val Val Asp Leu Thr Glu Lys Tyr Thr Glu Gly Gln Ser Gly Gln Phe
 530 535 540
 Pro Trp Ile Ala Val Cys Ala Gly Ile Val Leu Val Leu Met Leu Leu
 545 550 555 560
 Leu Gly Cys Ala Ala Val Val Val Cys Val Arg Val Arg Val Gln Lys
 565 570 575
 Arg Arg His Gln Pro Glu Ala Cys Arg Gly Glu Ser Lys Thr Met Asn
 580 585 590
 Asn Leu Ala Asn Cys Gln Arg Glu Lys Asp Ile Ser Val Ser Phe Ile
 595 600 605
 Gly Thr Thr Gln Ile Lys Asn Thr Asn Lys Lys Ile Asp Phe Leu Ser
 610 615 620
 Glu Ser Asn Asn Glu Lys Asn Gly Tyr Lys Pro Arg Tyr Pro Ser Val
 625 630 635 640
 Asp Tyr Asn Leu Val His Glu Leu Lys Asn Glu Asp Ser Pro Lys Glu
 645 650 655
 Glu Arg Ser Lys Cys Glu Ala Lys Cys Ser Ser Asn Asp Ser Asp Ser
 660 665 670
 Glu Asp Val Asn Ser Val His Ser Lys Arg Asp Ser Ser Glu Arg Arg
 675 680 685
 Arg Pro Asp Ser Ala Tyr Ser Thr Ser Lys Asp Thr Lys Tyr Gln Ser
 690 695 700
 Val Tyr Val Ile Ser Asp Glu Lys Asp Glu Cys Ile Ile Ala Thr Glu
 705 710 715 720
 Val

<210> 6
<211> 832
<212> PRT
<213> Drosophila

<400> 6
Met His Trp Ile Lys Cys Leu Leu Thr Ala Phe Ile Cys Phe Thr Val
1 5 10 15
Ile Val Gln Val His Ser Ser Gly Ser Phe Glu Leu Arg Leu Lys Tyr
20 25 30
Phe Ser Asn Asp His Gly Arg Asp Asn Glu Gly Arg Cys Cys Ser Gly
35 40 45
Glu Ser Asp Gly Ala Thr Gly Lys Cys Leu Gly Ser Cys Lys Thr Arg
50 55 60
Phe Arg Leu Cys Leu Lys His Tyr Gln Ala Thr Ile Asp Thr Thr Ser
65 70 75 80
Gln Cys Thr Tyr Gly Asp Val Ile Thr Pro Ile Leu Gly Glu Asn Ser
85 90 95
Val Asn Leu Thr Asp Ala Gln Arg Phe Gln Asn Lys Gly Phe Thr Asn
100 105 110
Pro Ile Gln Phe Pro Phe Ser Phe Ser Trp Pro Gly Thr Phe Ser Leu
115 120 125
Ile Val Glu Ala Trp His Asp Thr Asn Asn Ser Gly Asn Ala Arg Thr
130 135 140
Asn Lys Leu Leu Ile Gln Arg Leu Leu Val Gln Gln Val Leu Glu Val
145 150 155 160
Ser Ser Glu Trp Lys Thr Asn Lys Ser Glu Ser Gln Tyr Thr Ser Leu
165 170 175
Glu Tyr Asp Phe Arg Val Thr Cys Asp Leu Asn Tyr Tyr Gly Ser Gly
180 185 190
Cys Ala Lys Phe Cys Arg Pro Arg Asp Asp Ser Phe Gly His Ser Thr
195 200 205
Cys Ser Glu Thr Gly Glu Ile Ile Cys Leu Thr Gly Trp Gln Gly Asp
210 215 220
Tyr Cys His Ile Pro Lys Cys Ala Lys Gly Cys Glu His Gly His Cys
225 230 235 240
Asp Lys Pro Asn Gln Cys Val Cys Gln Leu Gly Trp Lys Gly Ala Leu
245 250 255
Cys Asn Glu Cys Val Leu Glu Pro Asn Cys Ile His Gly Thr Cys Asn
260 265 270
Lys Pro Trp Thr Cys Ile Cys Asn Glu Gly Trp Gly Gly Leu Tyr Cys
275 280 285
Asn Gln Asp Leu Asn Tyr Cys Thr Asn His Arg Pro Cys Lys Asn Gly
290 295 300
Gly Thr Cys Phe Asn Thr Gly Glu Gly Leu Tyr Thr Cys Lys Cys Ala
305 310 315 320
Pro Gly Tyr Ser Gly Asp Asp Cys Glu Asn Glu Ile Tyr Ser Cys Asp
325 330 335
Ala Asp Val Asn Pro Cys Gln Asn Gly Gly Thr Cys Ile Asp Glu Pro
340 345 350
His Thr Lys Thr Gly Tyr Lys Cys His Cys Arg Asn Gly Trp Ser Gly
355 360 365
Lys Met Cys Glu Glu Lys Val Leu Thr Cys Ser Asp Lys Pro Cys His
370 375 380
Gln Gly Ile Cys Arg Asn Val Arg Pro Gly Leu Gly Ser Lys Gly Gln
385 390 395 400
Gly Tyr Gln Cys Glu Cys Pro Ile Gly Tyr Ser Gly Pro Asn Cys Asp
405 410 415

Leu	Gln	Leu	Asp	Asn	Cys	Ser	Pro	Asn	Pro	Cys	Ile	Asn	Gly	Gly	Ser
420							425					430			
Cys	Gln	Pro	Ser	Gly	Lys	Cys	Ile	Cys	Pro	Ser	Gly	Phe	Ser	Gly	Thr
435							440					445			
Arg	Cys	Glu	Thr	Asn	Ile	Asp	Asp	Cys	Leu	Gly	His	Gln	Cys	Glu	Asn
450						455					460				
Gly	Gly	Thr	Cys	Ile	Asp	Met	Val	Asn	Gln	Tyr	Arg	Cys	Gln	Cys	Val
465						470				475					480
Pro	Gly	Phe	His	Gly	Thr	His	Cys	Ser	Ser	Lys	Val	Asp	Leu	Cys	Leu
						485				490					495
Ile	Arg	Pro	Cys	Ala	Asn	Gly	Gly	Thr	Cys	Leu	Asn	Leu	Asn	Asn	Asp
						500				505					510
Tyr	Gln	Cys	Thr	Cys	Arg	Ala	Gly	Phe	Thr	Gly	Lys	Asp	Cys	Ser	Val
						515				520					525
Asp	Ile	Asp	Glu	Cys	Ser	Ser	Gly	Pro	Cys	His	Asn	Gly	Gly	Thr	Cys
						530				535					540
Met	Asn	Arg	Val	Asn	Ser	Phe	Glu	Cys	Val	Cys	Ala	Asn	Gly	Phe	Arg
						545				550					560
Gly	Lys	Gln	Cys	Asp	Glu	Glu	Ser	Tyr	Asp	Ser	Val	Thr	Phe	Asp	Ala
						565				570					575
His	Gln	Tyr	Gly	Ala	Thr	Thr	Gln	Ala	Arg	Ala	Asp	Gly	Leu	Ala	Asn
						580				585					590
Ala	Gln	Val	Val	Leu	Ile	Ala	Val	Phe	Ser	Val	Ala	Met	Pro	Leu	Val
						595				600					605
Ala	Val	Ile	Ala	Ala	Cys	Val	Val	Phe	Cys	Met	Lys	Arg	Lys	Arg	Lys
						610				615					620
Arg	Ala	Gln	Glu	Lys	Asp	Asn	Ala	Glu	Ala	Arg	Lys	Gln	Asn	Glu	Gln
						625				630					640
Asn	Ala	Val	Ala	Thr	Met	His	His	Asn	Gly	Ser	Ala	Val	Gly	Val	Ala
						645				650					655
Leu	Ala	Ser	Ala	Ser	Met	Gly	Gly	Lys	Thr	Gly	Ser	Asn	Ser	Gly	Leu
						660				665					670
Thr	Phe	Asp	Gly	Gly	Asn	Pro	Asn	Ile	Ile	Lys	Asn	Thr	Trp	Asp	Lys
						675				680					685
Ser	Val	Asn	Asn	Ile	Cys	Ala	Ser	Ala							
						690				695					700
Ala	Ala	Ala	Asp	Glu	Cys	Leu	Met	Tyr	Gly	Gly	Tyr	Val	Ala	Ser	Val
						705				710					720
Ala	Asp	Asn	Asn	Asn	Ala	Asn	Ser	Asp	Phe	Cys	Val	Ala	Pro	Leu	Gln
						725				730					735
Arg	Ala	Lys	Ser	Gln	Lys	Gln	Leu	Asn	Thr	Asp	Pro	Thr	Leu	Met	His
						740				745					750
Arg	Gly	Ser	Pro	Ala	Gly	Thr	Ser	Ala	Lys	Gly	Ala	Ser	Gly	Gly	Gly
						755				760					765
Pro	Gly	Ala	Ala	Glu	Gly	Lys	Arg	Ile	Ser	Val	Leu	Gly	Glu	Gly	Ser
						770				775					780
Tyr	Cys	Ser	Gln	Arg	Trp	Pro	Ser	Leu	Ala	Ala	Ala	Gly	Val	Ala	Gly
						785				790					800
Asp	Leu	Phe	Ile	Gln	Leu	Met	Ala	Ala	Ala	Ser	Val	Ala	Gly	Thr	Asp
						805				810					815
Gly	Thr	Ala	Gln	Gln	Gln	Arg	Ser	Val	Val	Cys	Gly	Thr	Pro	His	Met
						820				825					830

<210> 7
<211> 46
<212> PRT
<213> Drosophila

<400> 7
Val Gln Cys Ala Val Thr Tyr Tyr Asn Thr Thr Phe Cys Thr Thr Phe

1 5 10 15
Cys Arg Pro Arg Asp Asp Gln Phe Gly His Tyr Ala Cys Gly Ser Glu
20 25 30
Gly Gln Lys Leu Cys Leu Asn Gly Trp Gln Gly Val Asn Cys
35 40 45

<210> 8
<211> 45
<212> PRT
<213> Gallus gallus

<400> 8
Val Thr Cys Ala Glu His Tyr Tyr Gly Phe Gly Cys Asn Lys Phe Cys
1 5 10 15
Arg Pro Arg Asp Asp Phe Phe Thr His His Thr Cys Asp Gln Asn Gly
20 25 30
Asn Lys Thr Cys Leu Glu Gly Trp Thr Gly Pro Glu Cys
35 40 45

<210> 9
<211> 43
<212> PRT
<213> Drosophila

<400> 9
Asn Leu Cys Ser Ser Asn Tyr His Gly Lys Arg Cys Asn Arg Tyr Cys
1 5 10 15
Ile Ala Asn Ala Lys Leu His Trp Glu Cys Ser Thr His Gly Val Arg
20 25 30
Arg Cys Ser Ala Gly Trp Ser Gly Glu Asp Cys
35 40

<210> 10
<211> 45
<212> PRT
<213> Drosophila

<400> 10
Val Thr Cys Ala Arg Asn Tyr Phe Gly Asn Arg Cys Glu Asn Phe Cys
1 5 10 15
Asp Ala His Leu Ala Lys Ala Ala Arg Lys Arg Cys Asp Ala Met Gly
20 25 30
Arg Leu Arg Cys Asp Ile Gly Trp Met Gly Pro His Cys
35 40 45

<210> 11
<211> 2692
<212> DNA
<213> mouse

<220>
<221> CDS
<222> (31)...(2199)
<223> Mouse Delta (M-Delta-1) gene

<400> 11
ctgcaggaat tcsmymcgcat gctccggcc gcc atg ggc cgt cgg agc gcg cta 54

	Ala	Met	Gly	Arg	Arg	Ser	Ala	Leu	
	1								
gcc ctt gcc gtg gtc tct gcc ctg ctg tgc cag gtc tgg agc tcc ggc									102
Ala Leu Ala Val Val Ser Ala Leu Leu Cys Gln Val Trp Ser Ser Gly									
10		15					20		
gta ttt gag ctg aag ctg cag gag ttc gtc aac aag aag ggg ctg ctg									150
Val Phe Glu Leu Lys Leu Gln Glu Phe Val Asn Lys Lys Gly Leu Leu									
25		30			35			40	
ggg aac cgc aac tgc tgc cgc ggg ggc tct ggc ccg cct tgc gcc tgc									198
Gly Asn Arg Asn Cys Cys Arg Gly Gly Ser Gly Pro Pro Cys Ala Cys									
45			50				55		
agg acc ttc ttt cgc gta tgc ctc aag cac tac cag gcc agc gtg tca									246
Arg Thr Phe Phe Arg Val Cys Leu Lys His Tyr Gln Ala Ser Val Ser									
60			65				70		
ccg gag cca ccc tgc acc tac ggc agt gcc gtc acg cca gtg ctg ggt									294
Pro Glu Pro Pro Cys Thr Tyr Gly Ser Ala Val Thr Pro Val Leu Gly									
75		80					85		
gtc gac tcc ttc agc ctg cct gat ggc gca ggc atc gac ccc gcc ttc									342
Val Asp Ser Phe Ser Leu Pro Asp Gly Ala Gly Ile Asp Pro Ala Phe									
90		95					100		
agc aac ccc atc cga ttc ccc ttc ggc ttc acc tgg cca ggt acc ttc									390
Ser Asn Pro Ile Arg Phe Pro Phe Gly Phe Thr Trp Pro Gly Thr Phe									
105		110			115			120	
tct ctg atc att gaa gcc ctc cat aca gac tct ccc gat gac ctc gca									438
Ser Leu Ile Ile Glu Ala Leu His Thr Asp Ser Pro Asp Asp Leu Ala									
125			130				135		
aca gaa aac cca gaa aga ctc atc agc cgc ctg acc aca cag agg cac									486
Thr Glu Asn Pro Glu Arg Leu Ile Ser Arg Leu Thr Thr Gln Arg His									
140			145				150		
ctc act gtg gga gaa tgg tct cag gac ctt cac agt agc ggc cgc									534
Leu Thr Val Gly Glu Glu Trp Ser Gln Asp Leu His Ser Ser Gly Arg									
155			160				165		
aca gac ctc cgg tac tct tac cgg ttt gtg tgt gac gag cac tac tac									582
Thr Asp Leu Arg Tyr Ser Tyr Arg Phe Val Cys Asp Glu His Tyr Tyr									
170			175				180		
gga gaa ggt tgc tct gtg ttc tgc cga cct cgg gat gac gcc ttt ggc									630
Gly Glu Gly Cys Ser Val Phe Cys Arg Pro Arg Asp Asp Ala Phe Gly									
185			190				195		200
cac ttc acc tgc ggg gac aga ggg gag aag atg tgc gac cct ggc tgg									678
His Phe Thr Cys Gly Asp Arg Gly Glu Lys Met Cys Asp Pro Gly Trp									
205			210				215		
aaa ggc cag tac tgc act gac cca atc tgt ctg cca ggg tgt gat gac									726
Lys Gly Gln Tyr Cys Thr Asp Pro Ile Cys Leu Pro Gly Cys Asp Asp									
220			225				230		
caa cat gga tac tgt gac aaa cca ggg gag tgc aag tgc aga gtt ggc									774
Gln His Gly Tyr Cys Asp Lys Pro Gly Glu Cys Lys Cys Arg Val Gly									

235	240	245	
tgg cag ggc cgc tac tgc gat gag tgc atc cga tac cca ggt tgt gtc Trp Gln Gly Arg Tyr Cys Asp Glu Cys Ile Arg Tyr Pro Gly Cys Val			822
250	255	260	
cat ggc acc tgc cag caa ccc tgg cag tgt aac tgc cag gaa ggc tgg His Gly Thr Cys Gln Gln Pro Trp Gln Cys Asn Cys Gln Glu Gly Trp			870
265	270	275	280
ggg ggc ctt ttc tgc aac caa gac ctg aac tac tgt act cac cat aag Gly Gly Leu Phe Cys Asn Gln Asp Leu Asn Tyr Cys Thr His His Lys			918
285	290	295	
ccg tgc agg aat gga gcc acc tgc acc aac acg ggc cag ggg agc tac Pro Cys Arg Asn Gly Ala Thr Cys Thr Asn Thr Gly Gln Gly Ser Tyr			966
300	305	310	
aca tgt tcc tgc cga cct ggg tat aca ggt gcc aac tgt gag ctg gaa Thr Cys Ser Cys Arg Pro Gly Tyr Thr Gly Ala Asn Cys Glu Leu Glu			1014
315	320	325	
gta gat gag tgt gct cct agc ccc tgc aag aac gga gcg agc tgc acg Val Asp Glu Cys Ala Pro Ser Pro Cys Lys Asn Gly Ala Ser Cys Thr			1062
330	335	340	
gac ctt gag gac agc ttc tct tgc acc tgc cct ccc ggc ttc tat ggc Asp Leu Glu Asp Ser Phe Ser Cys Thr Cys Pro Pro Gly Phe Tyr Gly			1110
345	350	355	360
aag gtc tgt gag ctg agc gcc atg acc tgt gca gat ggc cct tgc ttc Lys Val Cys Glu Leu Ser Ala Met Thr Cys Ala Asp Gly Pro Cys Phe			1158
365	370	375	
aat gga gga cga tgt tca gat aac cct gac gga ggc tac acc tgc cat Asn Gly Arg Cys Ser Asp Asn Pro Asp Gly Gly Tyr Thr Cys His			1206
380	385	390	
tgc ccc ttg ggc ttc tct ggc ttc aac tgt gag aag aag atg gat ctc Cys Pro Leu Gly Phe Ser Gly Phe Asn Cys Glu Lys Lys Met Asp Leu			1254
395	400	405	
tgc ggc tct tcc cct tgt tct aac ggt gcc aag tgt gtg gac ctc ggc Cys Gly Ser Ser Pro Cys Ser Asn Gly Ala Lys Cys Val Asp Leu Gly			1302
410	415	420	
aac tct tac ctg tgc cggt gtc cag gct ggc ttc tcc ggg agg tac tgc Asn Ser Tyr Leu Cys Arg Cys Gln Ala Gly Phe Ser Gly Arg Tyr Cys			1350
425	430	435	440
gag gac aat gtg gat gac tgt gcc tcc tcc ccgttgt gca aat ggg ggc Glu Asp Asn Val Asp Asp Cys Ala Ser Ser Pro Cys Ala Asn Gly Gly			1398
445	450	455	
acc tgc cggt gac agt gtg aac gac ttc tcc tgt acc tgc cca cct ggc Thr Cys Arg Asp Ser Val Asn Asp Phe Ser Cys Thr Cys Pro Pro Gly			1446
460	465	470	
tac acg ggc aag aac tgc agc gcc cct gtc agc agg tgt gag cat gca Tyr Thr Gly Lys Asn Cys Ser Ala Pro Val Ser Arg Cys Glu His Ala			1494
475	480	485	

ccc tgc cat aat ggg gcc acc tgc cac cag agg ggc cag cgc tac atg		1542	
Pro Cys His Asn Gly Ala Thr Cys His Gln Arg Gly Gln Arg Tyr Met			
490	495	500	
tgt gag tgc gcc cag ggc tat ggc ggc ccc aac tgc cag ttt ctg ctc		1590	
Cys Glu Cys Ala Gln Gly Tyr Gly Pro Asn Cys Gln Phe Leu Leu			
505	510	515	520
cct gag cca cca cca ggg ccc atg gtg gtg gac ctc agt gag agg cat		1638	
Pro Glu Pro Pro Pro Gly Pro Met Val Val Asp Leu Ser Glu Arg His			
525	530	535	
atg gag agc cag ggc ggg ccc ttc ccc tgg gtg gcc gtg tgt gcc ggg		1686	
Met Glu Ser Gln Gly Gly Pro Phe Pro Trp Val Ala Val Cys Ala Gly			
540	545	550	
gtg gtg ctt gtc ctc ctg ctg ctg ggc tgt gct gct gtg gtg gtc		1734	
Val Val Leu Val Leu Leu Leu Gly Cys Ala Ala Val Val Val			
555	560	565	
tgc gtc cg ^g ctg aag cta cag aaa cac cag cct cca cct gaa ccc tgt		1782	
Cys Val Arg Leu Lys Leu Gln Lys His Gln Pro Pro Pro Glu Pro Cys			
570	575	580	
ggg gga gag aca gaa acc atg aac aac cta gcc aat tgc cag cgc gag		1830	
Gly Gly Glu Thr Glu Thr Met Asn Asn Leu Ala Asn Cys Gln Arg Glu			
585	590	595	600
aag gac gtt tct gtt agc atc att ggg gct acc cag atc aag aac acc		1878	
Lys Asp Val Ser Val Ser Ile Ile Gly Ala Thr Gln Ile Lys Asn Thr			
605	610	615	
aac aag aag gc ^g gac ttt cac ggg gac cat gga gcc gag aag agc agc		1926	
Asn Lys Lys Ala Asp Phe His Gly Asp His Gly Ala Glu Lys Ser Ser			
620	625	630	
ttt aag gtc cga tac ccc act gtg gac tat aac ctc gtt cga gac ctc		1974	
Phe Lys Val Arg Tyr Pro Thr Val Asp Tyr Asn Leu Val Arg Asp Leu			
635	640	645	
aag gga gat gaa gcc acg gtc agg gat aca cac agc aaa cgt gac acc		2022	
Lys Gly Asp Glu Ala Thr Val Arg Asp Thr His Ser Lys Arg Asp Thr			
650	655	660	
aag tgc cag tca cag agt ctg cag gag aag aga aga tcg ccc caa cac		2070	
Lys Cys Gln Ser Gln Ser Leu Gln Glu Lys Arg Arg Ser Pro Gln His			
665	670	675	680
tta ggg gtg ggg aga ttc ctg aca gaa aac agg cca gag tct gtc tac		2118	
Leu Gly Val Gly Arg Phe Leu Thr Glu Asn Arg Pro Glu Ser Val Tyr			
685	690	695	
tct act tca aag gac acc aag tac cag tcg gtg tat gtt ctg tct gca		2166	
Ser Thr Ser Lys Asp Thr Lys Tyr Gln Ser Val Tyr Val Leu Ser Ala			
700	705	710	
gaa aag gat gag tgt gtt ata gc ^g act gag gtg taagatggaa gcgatgtggc		2219	
Glu Lys Asp Glu Cys Val Ile Ala Thr Glu Val			
715	720		

aaaattccca tttctcttaa ataaaattcc aaggatatag ccccgatgaa tgctgctgag 2279
agaggaaggg agaggaaacc cagggactgc tgctgagaac caggttcagg cgaacgtgg 2339
tctctcagag tttagcagagg cgcccacac tgccagccta ggcttggct gcccgtggac 2399
tgcctgctgg ttgttcccat tgcactatgg acagttgctt tgaagagtat atatttaat 2459
ggacgagtga cttgattcat ataggaagca cgcactgccc acacgtctat cttggattac 2519
tatgagccag tctttccttg aactagaaac acaactgcct ttattgtcct ttttgatact 2579
gagatgtgtt tttttttt cctagacggg aaaaagaaaa cgtgtgttat ttttttggg 2639
atttgtaaaa atattttca tgattatggg agagctccca acgcgttgaa ggt 2692

<210> 12

<211> 722

<212> PRT

<213> mouse

<400> 12

Met	Gly	Arg	Arg	Ser	Ala	Leu	Ala	Leu	Ala	Val	Val	Ser	Ala	Leu	Leu
1				5					10				15		
Cys	Gln	Val	Trp	Ser	Ser	Gly	Val	Phe	Glu	Leu	Lys	Leu	Gln	Glu	Phe
				20				25				30			
Val	Asn	Lys	Lys	Gly	Leu	Leu	Gly	Asn	Arg	Asn	Cys	Cys	Arg	Gly	Gly
				35				40			45				
Ser	Gly	Pro	Pro	Cys	Ala	Cys	Arg	Thr	Phe	Phe	Arg	Val	Cys	Leu	Lys
				50				55			60				
His	Tyr	Gln	Ala	Ser	Val	Ser	Pro	Glu	Pro	Pro	Cys	Thr	Tyr	Gly	Ser
				65				70			75			80	
Ala	Val	Thr	Pro	Val	Leu	Gly	Val	Asp	Ser	Phe	Ser	Leu	Pro	Asp	Gly
				85				90			95				
Ala	Gly	Ile	Asp	Pro	Ala	Phe	Ser	Asn	Pro	Ile	Arg	Phe	Pro	Phe	Gly
				100				105			110				
Phe	Thr	Trp	Pro	Gly	Thr	Phe	Ser	Leu	Ile	Ile	Glu	Ala	Leu	His	Thr
				115				120			125				
Asp	Ser	Pro	Asp	Asp	Leu	Ala	Thr	Glu	Asn	Pro	Glu	Arg	Leu	Ile	Ser
				130				135			140				
Arg	Leu	Thr	Thr	Gln	Arg	His	Leu	Thr	Val	Gly	Glu	Glu	Trp	Ser	Gln
				145				150			155			160	
Asp	Leu	His	Ser	Ser	Gly	Arg	Thr	Asp	Leu	Arg	Tyr	Ser	Tyr	Arg	Phe
				165				170			175				
Val	Cys	Asp	Glu	His	Tyr	Tyr	Gly	Glu	Gly	Cys	Ser	Val	Phe	Cys	Arg
				180				185			190				
Pro	Arg	Asp	Asp	Ala	Phe	Gly	His	Phe	Thr	Cys	Gly	Asp	Arg	Gly	Glu
				195				200			205				
Lys	Met	Cys	Asp	Pro	Gly	Trp	Lys	Gly	Gln	Tyr	Cys	Thr	Asp	Pro	Ile
				210				215			220				
Cys	Leu	Pro	Gly	Cys	Asp	Asp	Gln	His	Gly	Tyr	Cys	Asp	Lys	Pro	Gly
				225				230			235			240	
Glu	Cys	Lys	Cys	Arg	Val	Gly	Trp	Gln	Gly	Arg	Tyr	Cys	Asp	Glu	Cys
				245				250			255				
Ile	Arg	Tyr	Pro	Gly	Cys	Val	His	Gly	Thr	Cys	Gln	Gln	Pro	Trp	Gln
				260				265			270				
Cys	Asn	Cys	Gln	Glu	Gly	Trp	Gly	Gly	Leu	Phe	Cys	Asn	Gln	Asp	Leu
				275				280			285				
Asn	Tyr	Cys	Thr	His	His	Lys	Pro	Cys	Arg	Asn	Gly	Ala	Thr	Cys	Thr
				290				295			300				
Asn	Thr	Gly	Gln	Gly	Ser	Tyr	Thr	Cys	Ser	Cys	Arg	Pro	Gly	Tyr	Thr
				305				310			315			320	
Gly	Ala	Asn	Cys	Glu	Leu	Glu	Val	Asp	Glu	Cys	Ala	Pro	Ser	Pro	Cys
				325				330			335				
Lys	Asn	Gly	Ala	Ser	Cys	Thr	Asp	Leu	Glu	Asp	Ser	Phe	Ser	Cys	Thr
				340				345			350				
Cys	Pro	Pro	Gly	Phe	Tyr	Gly	Lys	Val	Cys	Glu	Leu	Ser	Ala	Met	Thr
				355				360			365				

Cys	Ala	Asp	Gly	Pro	Cys	Phe	Asn	Gly	Gly	Arg	Cys	Ser	Asp	Asn	Pro
370					375						380				
Asp	Gly	Gly	Tyr	Thr	Cys	His	Cys	Pro	Leu	Gly	Phe	Ser	Gly	Phe	Asn
385					390					395					400
Cys	Glu	Lys	Lys	Met	Asp	Leu	Cys	Gly	Ser	Ser	Pro	Cys	Ser	Asn	Gly
					405				410						415
Ala	Lys	Cys	Val	Asp	Leu	Gly	Asn	Ser	Tyr	Leu	Cys	Arg	Cys	Gln	Ala
					420				425						430
Gly	Phe	Ser	Gly	Arg	Tyr	Cys	Glu	Asp	Asn	Val	Asp	Asp	Cys	Ala	Ser
					435				440						445
Ser	Pro	Cys	Ala	Asn	Gly	Gly	Thr	Cys	Arg	Asp	Ser	Val	Asn	Asp	Phe
					450				455						460
Ser	Cys	Thr	Cys	Pro	Pro	Gly	Tyr	Thr	Gly	Lys	Asn	Cys	Ser	Ala	Pro
465					470				475						480
Val	Ser	Arg	Cys	Glu	His	Ala	Pro	Cys	His	Asn	Gly	Ala	Thr	Cys	His
					485				490						495
Gln	Arg	Gly	Gln	Arg	Tyr	Met	Cys	Glu	Cys	Ala	Gln	Gly	Tyr	Gly	Gly
					500				505						510
Pro	Asn	Cys	Gln	Phe	Leu	Leu	Pro	Glu	Pro	Pro	Pro	Gly	Pro	Met	Val
					515				520						525
Val	Asp	Leu	Ser	Glu	Arg	His	Met	Glu	Ser	Gln	Gly	Gly	Pro	Phe	Pro
					530				535						540
Trp	Val	Ala	Val	Cys	Ala	Gly	Val	Val	Leu	Val	Leu	Leu	Leu	Leu	Leu
545					550				555						560
Gly	Cys	Ala	Ala	Val	Val	Val	Cys	Val	Arg	Leu	Lys	Leu	Gln	Lys	His
					565				570						575
Gln	Pro	Pro	Pro	Glu	Pro	Cys	Gly	Gly	Glu	Thr	Glu	Thr	Met	Asn	Asn
					580				585						590
Leu	Ala	Asn	Cys	Gln	Arg	Glu	Lys	Asp	Val	Ser	Val	Ser	Ile	Ile	Gly
					595				600						605
Ala	Thr	Gln	Ile	Lys	Asn	Thr	Asn	Lys	Lys	Ala	Asp	Phe	His	Gly	Asp
					610				615						620
His	Gly	Ala	Glu	Lys	Ser	Ser	Phe	Lys	Val	Arg	Tyr	Pro	Thr	Val	Asp
625					630				635						640
Tyr	Asn	Leu	Val	Arg	Asp	Leu	Lys	Gly	Asp	Glu	Ala	Thr	Val	Arg	Asp
					645				650						655
Thr	His	Ser	Lys	Arg	Asp	Thr	Lys	Cys	Gln	Ser	Gln	Ser	Leu	Gln	Glu
					660				665						670
Lys	Arg	Arg	Ser	Pro	Gln	His	Leu	Gly	Val	Gly	Arg	Phe	Leu	Thr	Glu
					675				680						685
Asn	Arg	Pro	Glu	Ser	Val	Tyr	Ser	Thr	Ser	Lys	Asp	Thr	Lys	Tyr	Gln
					690				695						700
Ser	Val	Tyr	Val	Leu	Ser	Ala	Glu	Lys	Asp	Glu	Cys	Val	Ile	Ala	Thr
705					710				715						720
Glu	Val														

<210> 13

<211> 578

<212> PRT

<213> Artificial Sequence

<220>

<223> Consenses sequence of Chick Delta and Mouse Delta

<400> 13

Met	Gly	Arg	Leu	Leu	Ala	Ser	Ala	Leu	Leu	Cys	Val	Ser	Gly	Val	Phe
1					5				10						15
Glu	Leu	Lys	Leu	Gln	Glu	Phe	Val	Asn	Lys	Lys	Gly	Leu	Leu	Asn	Arg
					20				25						30

Asn	Cys	Cys	Arg	Gly	Gly	Gly	Cys	Cys	Thr	Phe	Phe	Arg	Val	Cys	Leu
									35	40	45				
Lys	His	Tyr	Gln	Ala	Ser	Val	Ser	Pro	Glu	Pro	Pro	Cys	Thr	Tyr	Gly
									50	55	60				
Ser	Ala	Thr	Pro	Val	Leu	Gly	Ser	Phe	Ser	Pro	Asp	Gly	Ala	Gly	Asp
									65	70	75				80
Pro	Ala	Phe	Ser	Asn	Pro	Ile	Arg	Phe	Pro	Phe	Gly	Phe	Thr	Trp	Pro
									85	90	95				
Gly	Thr	Phe	Ser	Leu	Ile	Ile	Glu	Ala	Leu	His	Thr	Asp	Ser	Pro	Asp
									100	105	110				
Asp	Leu	Thr	Glu	Asn	Pro	Glu	Arg	Leu	Ile	Ser	Arg	Leu	Thr	Gln	Arg
									115	120	125				
His	Leu	Val	Gly	Glu	Glu	Trp	Ser	Gln	Asp	Leu	His	Ser	Ser	Gly	Arg
									130	135	140				
Thr	Asp	Leu	Tyr	Ser	Tyr	Arg	Phe	Val	Cys	Asp	Glu	His	Tyr	Tyr	Gly
									145	150	155				160
Glu	Gly	Cys	Ser	Val	Phe	Cys	Arg	Pro	Arg	Asp	Asp	Phe	Gly	His	Phe
									165	170	175				
Thr	Cys	Gly	Arg	Gly	Glu	Lys	Cys	Pro	Gly	Trp	Lys	Gly	Gln	Tyr	Cys
									180	185	190				
Thr	Pro	Ile	Cys	Leu	Pro	Gly	Cys	Asp	Gln	His	Gly	Cys	Asp	Lys	Pro
									195	200	205				
Gly	Glu	Cys	Lys	Cys	Arg	Val	Gly	Trp	Gln	Gly	Arg	Tyr	Cys	Asp	Glu
									210	215	220				
Cys	Ile	Arg	Tyr	Pro	Gly	Cys	Val	His	Gly	Thr	Cys	Gln	Gln	Pro	Trp
									225	230	235				240
Gln	Cys	Asn	Cys	Gln	Glu	Gly	Trp	Gly	Gly	Leu	Phe	Cys	Asn	Gln	Asp
									245	250	255				
Leu	Asn	Tyr	Cys	Thr	His	His	Lys	Pro	Cys	Asn	Gly	Ala	Thr	Cys	Thr
									260	265	270				
Asn	Thr	Gly	Gln	Gly	Ser	Tyr	Thr	Cys	Ser	Cys	Arg	Pro	Gly	Tyr	Thr
									275	280	285				
Gly	Cys	Glu	Glu	Glu	Cys	Pro	Cys	Lys	Asn	Gly	Ser	Cys	Thr	Asp	Leu
									290	295	300				
Glu	Ser	Ser	Cys	Thr	Cys	Pro	Pro	Gly	Phe	Tyr	Gly	Lys	Cys	Glu	Leu
									305	310	315				320
Ser	Ala	Met	Thr	Cys	Ala	Asp	Gly	Pro	Cys	Phe	Asn	Gly	Gly	Arg	Cys
									325	330	335				
Asp	Asn	Pro	Asp	Gly	Gly	Tyr	Cys	Cys	Pro	Leu	Gly	Ser	Gly	Phe	Asn
									340	345	350				
Cys	Glu	Lys	Lys	Asp	Cys	Ser	Ser	Pro	Cys	Asn	Gly	Ala	Cys	Val	Asp
									355	360	365				
Leu	Gly	Asn	Ser	Tyr	Cys	Cys	Gln	Ala	Gly	Phe	Gly	Arg	Cys	Asp	Asn
									370	375	380				
Val	Asp	Asp	Cys	Ala	Ser	Pro	Cys	Asn	Gly	Gly	Thr	Cys	Asp	Val	Asn
									385	390	395				400
Asp	Ser	Cys	Thr	Cys	Pro	Pro	Gly	Tyr	Gly	Lys	Asn	Cys	Ser	Pro	Val
									405	410	415				
Ser	Arg	Cys	Glu	His	Pro	Cys	His	Asn	Gly	Ala	Thr	Cys	His	Arg	Arg
									420	425	430				
Tyr	Cys	Glu	Cys	Ala	Gly	Tyr	Gly	Gly	Asn	Cys	Gln	Phe	Leu	Leu	Pro
									435	440	445				
Glu	Pro	Pro	Gly	Pro	Val	Asp	Glu	Glu	Gln	Phe	Pro	Trp	Ala	Val	Cys
									450	455	460				
Ala	Gly	Leu	Val	Leu	Leu	Leu	Gly	Cys	Ala	Ala	Val	Val	Cys	Val	
									465	470	475				480
Arg	Leu	Lys	Gln	Lys	Pro	Glu	Cys	Glu	Thr	Glu	Thr	Met	Asn	Asn	Leu
									485	490	495				
Ala	Asn	Cys	Gln	Arg	Glu	Lys	Asp	Ser	Ser	Ile	Gly	Ala	Thr	Gln	Ile
									500	505	510				
Lys	Asn	Thr	Asn	Lys	Lys	Asp	Phe	His	Asp	Lys	Lys	Val	Arg	Tyr	Pro

515	520	525
Val Asp Tyr Asn Leu Val Leu Lys Val His Lys Lys Cys Ser Glu Glu		
530	535	540
Lys Ala Leu Arg Lys Arg Pro Ser Val Tyr Ser Thr Ser Lys Asp Thr		
545	550	555
Lys Tyr Gln Ser Val Tyr Val Ser Glu Lys Asp Glu Cys Ile Ala Thr		
565	570	575
Glu Val		

<210> 14

<211> 525

<212> DNA

<213> Homo sapiens

<400> 14

```
tacgatgaay aacctggcga actgccagcg tgagaaggac atctcagtca gcatcatcg 60
ggcyacgtca gatcargaac accaacaaga aggcggactt ymcascgggg gaccasagcg 120
tccgacaaga atggmttca aggccccta ccccagcgtg gactataact cgtgcaggac 180
ctcaagggtg acgacaccgc cgtcaggacg tcgcacagca agcgtgacac caagtgccag 240
tccccaggtt cctcagggag gagaagggga ccccgaccac actcagggk tgcgtgctgc 300
gggcccggct caggaggggg tacctggggg gtgtcttcct ggaaccactg ctccgtttct 360
cttcccaaat gttctcatgc attcatgtg gattttctct atttccttt tagtgagaa 420
gcatctgaaa gaaaaaggcc ggactcgggc tggtaactt caaaagacac caagtaccag 480
tcggtgtacg tcatatccga ggagaaggac gagtgcgta tcgca 525
```

<210> 15

<211> 10

<212> PRT

<213> Artificial Sequence

<220>

<223> Predicted amino acid sequence of humna delta

<220>

<221> VARIANT

<222> 4

<223> Xaa = Any Amino Acid

<400> 15

Tyr	Asp	Glu	Xaa	Pro	Gly	Glu	Leu	Pro	Ala
1			5				10		

<210> 16

<211> 44

<212> PRT

<213> Artificial Sequence

<220>

<223> Predicted amino acid sequence of humna delta

<220>

<221> VARIANT

<222> 11, 15, 23, 24, 28

<223> Xaa = Any Amino Acid

<400> 16

Glu	Gly	His	Leu	Ser	Gln	His	His	Arg	Gly	Xaa	Val	Arg	Ser	Xaa	Thr
1				5				10				15			

Pro Thr Arg Arg Arg Thr Xaa Xaa Arg Gly Thr Xaa Ala Ser Asp Lys
20 25 30
Asn Gly Phe Gln Gly Pro Leu Pro Gln Arg Gly Leu
35 40

<210> 17
<211> 118
<212> PRT
<213> Artificial Sequence

<220>
<223> Predicted amino acid sequence of humna delta

<220>
<221> VARIANT
<222> 41
<223> Xaa = Any Amino Acid

<400> 17
Leu Val Gln Asp Leu Lys Gly Asp Asp Thr Ala Val Arg Thr Ser His
1 5 10 15
Ser Lys Arg Asp Thr Lys Cys Gln Ser Pro Gly Ser Ser Gly Arg Arg
20 25 30
Arg Gly Pro Arg Pro His Ser Gly Xaa Ala Cys Cys Gly Pro Gly Ser
35 40 45
Gly Gly Gly Thr Trp Gly Val Ser Ser Trp His Cys Ser Val Ser Leu
50 55 60
Pro Lys Cys Ser His Ala Phe Ile Val Asp Phe Leu Tyr Phe Pro Phe
65 70 75 80
Ser Gly Glu Ala Ser Glu Arg Lys Arg Pro Asp Ser Gly Cys Ser Thr
85 90 95
Ser Lys Asp Thr Lys Tyr Gln Ser Val Tyr Val Ile Ser Glu Glu Lys
100 105 110
Asp Glu Cys Val Ile Ala
115

<210> 18
<211> 173
<212> PRT
<213> Artificial Sequence

<220>
<223> Predicted amino acid sequence of human delta

<220>
<221> VARIANT
<222> 34, 35, 39, 44, 96
<223> Xaa = Any Amino Acid

<400> 18
Thr Met Asn Asn Leu Ala Asn Cys Gln Arg Glu Lys Asp Ile Ser Val
1 5 10 15
Ser Ile Ile Gly Ala Thr Ser Asp Gln Glu His Gln Gln Glu Gly Gly
20 25 30
Leu Xaa Xaa Gly Gly Pro Xaa Pro Thr Arg Met Xaa Phe Lys Ala Arg
35 40 45
Tyr Pro Ser Val Asp Tyr Asn Ser Cys Arg Thr Ser Arg Val Thr Thr
50 55 60
Pro Pro Ser Gly Arg Arg Thr Ala Ser Val Thr Pro Ser Ala Ser Pro

65	70	75	80
Gln Ala Pro Gln Gly Gly Glu Gly Asp	Pro Asp His Thr Gln Gly Xaa		
85	90	95	
Arg Ala Ala Gly Arg Ala Gln Glu Gly Val Pro Gly Gly Cys Leu Pro			
100	105	110	
Gly Thr Thr Ala Pro Phe Leu Phe Pro Asn Val Leu Met His Ser Leu			
115	120	125	
Trp Ile Phe Ser Ile Phe Leu Leu Val Glu Lys His Leu Lys Glu Lys			
130	135	140	
Gly Arg Thr Arg Ala Val Gln Leu Gln Lys Thr Pro Ser Thr Ser Arg			
145	150	155	160
Cys Thr Ser Tyr Pro Arg Arg Arg Thr Ser Ala Ser Ser			
165	170		

<210> 19

<211> 60

<212> PRT

<213> Artificial Sequence

<220>

<223> Predicted amino acid sequence of human delta

<220>

<221> VARIANT

<222> 1, 19, 23, 32, 33, 36, 43

<223> Xaa = Any Amino Acid

<400> 19

Xaa Thr Trp Arg Thr Ala Ser Val Arg Arg Thr Ser Gln Ser Ala Ser			
1	5	10	15
Ser Gly Xaa Arg Gln Ile Xaa Asn Thr Asn Lys Lys Ala Asp Phe Xaa			
20	25	30	
Xaa Gly Asp Xaa Ser Val Arg Gln Glu Trp Xaa Ser Arg Pro Ala Thr			
35	40	45	
Pro Ala Trp Thr Ile Thr Arg Ala Gly Pro Gln Gly			
50	55	60	

<210> 20

<211> 11

<212> PRT

<213> Artificial Sequence

<220>

<223> Predicted amino acid sequence of human delta

<400> 20

Arg His Arg Arg Gln Asp Val Ala Gln Gln Ala			
1	5	10	

<210> 21

<211> 61

<212> PRT

<213> Artificial Sequence

<220>

<223> Predicted amino acid sequence of human delta

<400> 21

His Gln Val Pro Val Pro Arg Leu Leu Arg Glu Glu Lys Gly Thr Pro
1 5 10 15
Thr Thr Leu Arg Gly Cys Val Leu Arg Ala Gly Leu Arg Arg Gly Tyr
20 25 30
Leu Gly Gly Val Phe Leu Glu Pro Leu Leu Arg Phe Ser Ser Gln Met
35 40 45
Phe Ser Cys Ile His Cys Gly Phe Ser Leu Phe Ser Phe
50 55 60

<210> 22
<211> 33
<212> PRT
<213> Artificial Sequence

<220>
<223> Predicted amino acid sequence of human delta

<400> 22
Lys Lys Lys Ala Gly Leu Gly Leu Phe Asn Phe Lys Lys Arg His Gln
1 5 10 15
Val Pro Val Gly Val Arg His Ile Arg Gly Glu Gly Arg Val Arg His
20 25 30
Arg

<210> 23
<211> 175
<212> PRT
<213> Artificial Sequence

<220>
<223> Predicted amino acid sequence of human delta

<220>
<221> VARIANT
<222> 25, 34, 35, 38, 97
<223> Xaa = Any Amino Acid

<400> 23
Thr Met Asn Asn Leu Ala Asn Cys Gln Arg Glu Lys Asp Ile Ser Val
1 5 10 15
Ser Ile Ile Gly Ala Thr Gly Ile Xaa Asn Thr Asn Lys Lys Ala Asp
20 25 30
Phe Xaa Xaa Gly Asp Xaa Ser Ser Asp Lys Asn Gly Phe Gln Lys Ala
35 40 45
Arg Tyr Pro Ser Val Asp Tyr Asn Leu Val Gln Asp Leu Lys Gly Asp
50 55 60
Asp Thr Ala Val Arg Thr Ser His Ser Lys Arg Asp Thr Lys Cys Gln
65 70 75 80
Ser Pro Gly Ser Ser Gly Arg Arg Gly Pro Arg Pro His Ser Gly
85 90 95
Xaa Ala Cys Cys Gly Pro Gly Ser Gly Gly Thr Trp Gly Val Ser
100 105 110
Ser Trp Asn His Cys Ser Val Ser Leu Pro Lys Cys Ser His Ala Phe
115 120 125
Ile Val Asp Phe Leu Tyr Phe Pro Phe Ser Gly Glu Ala Ser Glu Arg
130 135 140
Lys Arg Pro Asp Ser Gly Cys Ser Thr Ser Lys Asp Thr Lys Tyr Gln
145 150 155 160

Ser Val Tyr Val Ile Ser Glu Glu Lys Asp Glu Cys Val Ile Ala
165 170 175

<210> 24

<211> 2899

<212> DNA

<213> Artificial Sequence

<220>

<223> Consenses sequence of mouse delta and human delta

<220>

<221> misc_feature

<222> 854, 973, 984, 1582, 1787, 1819, 1864, 1916, 1951, 2033,
2152, 2156, 2171, 2183, 2194, 2212, 2220, 2226, 2230, 2244,
2245, 2264, 2265, 2266, 2287

<223> n = A,T,C or G

<400> 24

gtccagcgg accatgggcc gtcggagcgc gctaccctt gccgtggct ctgccctgct 60
gtgccaggc tggagctccg gcgtatttga gctgaagctg caggagttcg tcaacaagaa 120
ggggctgctg ggaaccgca actgctgccg cggggctct ggccgcctt ggcgcctgcag 180
gaccttctt cgcttatgcc tcaaccacta ccaggccagc gtgtcaccgg agccaccctg 240
cacctacggc agtgctgtca cgccagtgct gggtctcgac tccttcagcc tgccctsatkg 300
sgyasgsryc smccycgagg yckwcrgyaw csmyaagyyy gatatcgmmmy tycggcttca 360
cctggccrrg yacttctct ctgatyattg aagcyctcca yacagaytct ccygatgacc 420
tcgcaacaga aaacccagaa agactcatca gccgcctgrc cacycagagg cacctsackg 480
tgggmarga rtggtcycag gacckkcaca gyagcggccg cacrgacctc mrgtactcyt 540
accgsttygt gtgtgacgar cactactacg gagarggytg ctctgtkttc tgccgwccyc 600
gggaygaygc ctyggccac ttcacctgyg gggasmgwgg ggagaarrtg tgcraccctg 660
gctggaaagg scmgtactgc acwgasscra tctgyctgcc wggrtgtgat gascarcatg 720
gatwytgtga caaaccaggg gartgcaagt gcagagtkgg ctggcagggc cgstactgyg 780
atgagtgat ccgytaycca ggytgtctcc atggcacctg ccagcarccc tggcagtgya 840
actgccagga agntgggg ggcctttct gcaaccarga cctgaactac tgyacwcacc 900
ataagccstg cargoatgga gccacctgca acmaacacgg gccaggggaa gctacacwtg 960
ktcyttggcc ggncykgggt ayanagggtg ccamctgya agcttgggra ktrgaygagt 1020
tgttgmyccy agcccytggy aagaacggag sgagctksac ggayttcgg agracagctw 1080
ctcytgyacc tgcccwcccg gcttctaygg caarrtctgt garytgagyg ccatgacctg 1140
tgcrgrayggc cttgtctya aygrrggwgc rtgytcagay arcccygayg gaggstacas 1200
ctgccrytgc cccktgggct wctcyggctt caactgtgag aagaaratkg ayywctgcrg 1260
ctcttcmyccy tttctaaayg gtgccaagtg tgtggacctc ggyraykcyt acctgtgccg 1320
stgccaggc ggcttctcsg ggaggyactg ygasgacaay gtggaygact gygcctcctc 1380
cccgtygcm aayggggca cctgccggg yrgygtgaac gacttgtcct gyacactgccc 1440
rcctggctac acgggcarga actgcagygc cccygycagc aggtgygagc aycaccctg 1500
ccayaatggg gccacctgcc acsagagggg ccascgtay wtgtgygagt gygcccrrrg 1560
ctayggsggy cccaactgcc anttyctgct cccygaarcy gmccmccmgg scccayggtg 1620
gtgaaamctc msykararrm aymtarragr gccrgggsgg gcccwtcccc tkggtggycg 1680
tgtgyccgg ggtstsctt gtcctcmtgc tgctgctggg ctgtgcyyct gtggtggtct 1740
gcgtccggct gargctrca gaaarcaccrc cyccasacyga mcccctgnsgg grrgagacrg 1800
araccatgaa caacctrngnc aaytgccagc gygagaagga crtytcwgyt agcatcatyg 1860
gggnyacsca catcaagaac accaacaaga aggccgactt ycacggggac cayrngccr 1920
asaagaryrg ctyyaaggyc cgmtacccmr nkgtggacta taacctcgk crrgacctca 1980
agggwgayga mrccrcsgtc agggayrcrc acagcaarcg tgacaccaag tgncagycmc 2040
agrgrctcykg agrgargag aaggggaycs ccgaccmaca ctyaggggt ggaggaagmw 2100
tcytgamaga aaaaggccrg astyygggy trytcwactt tcaaargaca ancmangtac 2160
magtcggtgt nygtymtkc ygnagragga agntgastg ygtyataggm rnytgaggtn 2220
gtaarntgn agcgatgtgg caannttccc atttctcksa aaknnnattc cmmggatata 2280
gcycggntga atgctkctga gagaggaagg gagagggaaac ccagggactg ytkytcagaa 2340
ccaggttcag gcgaagctgg ttctctcaga gttagcagag gcccgcaca ctgcccagcct 2400
aggcttggc tgccgctgga ctgcctgctg gttgttccca ttgcactatg gacagttgct 2460

ttgaagagta tatatttaaa tggacgagtg acttGattca tatacgaagc acgcactgcc 2520
 cacacgtcta tcttgatta ctatgagcca gtcttcctt gaactagaaaa cacaactgcc 2580
 tttattgtcc tttttgatac tgagatgtgt tttttttt cctagacggg aaaaagaaaa 2640
 cgtgtgttat tttttggga tttgtaaaaa ttttttcat gatatctgta aagctttagt 2700
 attttgtgac gttcattttt ttataattta aattttggta aatatgtaca aaggcacttc 2760
 gggctatgt gactatattt ttttgtatataaatgtattt atgaaatattt gtgcaaatgt 2820
 tatttgagtt ttttactgtt ttgttaatga agaaattcat tttaaaaata ttttccaaa 2880
 ataaatataa tgaactaca 2899

<210> 25
 <211> 8
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> sequence encoded by SEQ ID NO. 93 (degenerated oligo)

<400> 25
 Glu Lys Asp Glu Cys Val Ile Ala
 1 5

<210> 26
 <211> 1981
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> 559, 678, 689, 1287, 1492, 1524, 1569, 1621, 1656, 1738,
 1857, 1861, 1876, 1888, 1899, 1917, 1925, 1931, 1935, 1942,
 1943, 1952, 1953, 1954, 1968
 <223> n = A,T,C or G

<400> 26
 cattgggtac gggccccct cgaggtcgac ggtatcgata agcttgatata cgaattccgg 60
 cttcacctgg ccgggcacct tctctctgat tattgaagct ctccacacag attctcctga 120
 tgacctcgca acagaaaaacc cagaaagact catcagccgc ctggccaccc agaggcacct 180
 gacggtgggc gaggagtggt cccaggacct gcacagcagc ggccgcacgg acctcaagta 240
 ctctaccgc ttctgtgtg acgaacacta ctacggagag ggctgctccg ttttctgccc 300
 tccccgggac gatgccttcg gccacttcac ctgtggggag cgtggggaga aagtgtgcaa 360
 ccctggctgg aaaggccct actgcacaga gccgatctgc ctgcctggat gtatgagca 420
 gcatggattt tgtacaaaac cagggaaatg caagtgcaga gtggctggc agggccggta 480
 ctgtgacgag tgtatccgct atccaggctg tctccatggc acctgcccagc agccctggca 540
 gtgcaactgc caggaaggnt gggggccct tttctgcaac caggacctga actactgcac 600
 acaccataag ccctgcaaga atggagccac ctgcaacaaa cacggccag gggagctac 660
 acttggtctt tggccgnct ggggtacana gggtgccacc tgcgaagctt gggatttgg 720
 cgagttgtt accccagccc ttggtaagaa cggagggagc ttgacggatc ttccggagaa 780
 agctactcct gtacctgccc acccggttc tacggaaaaa tctgtgaatt gagtgcctg 840
 acctgtgcgg acggcccttg cttaacggg ggtcggtct cagacagccc cgatggaggg 900

tacagctgcc gctgccccgt gggctactcc ggcttcaact gtgagaagaa aattgactac 960
 tgcagctctt caccctgttc taatggtgcc aagtgtgtgg acctcggtga tgcctacctg 1020
 tgccgctgcc aggccggctt ctcggggagg cactgtgacg acaacgtgga cgactgcgcc 1080
 tcctccccgt ggcacacgg gggcacactgc cgggatggcg tgaacgactt ctccctgcacc 1140
 tgcccgccctg gctacacggg caggaactgc agtgcccccg ccagcaggtg cgagcacgca 1200
 ccctgccaca atggggccac ctgccacgag agggccacc gctatttggc cgagtgtgcc 1260
 cgaagctacg ggggtcccaa ctgcccanttc ctgctccccg aaactgcccc cccggccca 1320
 cggtggtgga aactccctta aaaaaaccta aaaggccgg gggggccca tccccttgg 1380
 ggacgtgtgc gccgggggtca tccttgctt catgctgctg ctggctgtg ccgctgtggt 1440

ggtctgcgtc cggctgaggc tgcagaagca ccggccccca gccgaccct gncggggga 1500
gacggagacc atgaacaacc tggncaactg ccagcgttag aaggacatct cagtcagcat 1560
catcggggncc acgcagatca agaacaccaa caagaaggcg gacttccacg gggaccacag 1620
ngccgacaag aatggcttca aggccccta cccagnggtg gactataacc tcgtgcagga 1680
cctcaagggt gacgacacccg ccgtcaggga cgccgacacgc aagcgtgaca ccaagtgnca 1740
gcccccaggc tcctcagggg aggagaaggg gaccccccac ccacactcag ggggtggagg 1800
aagcatcttg aaagaaaaag gccggacttc gggcttggtt aactttcaaa agacaancaa 1860
ngtacaagtc ggtgtncgtc atttccgnag gaggaaggnt gactgcgtca taggaantt 1920
aggtngtaaa ntggnagttg annttgaaa gnnntccccg gattccgntt tcaaagttt 1980
t 1981

<210> 27
<211> 31
<212> PRT
<213> Artificial Sequence

<220>
<223> Deduced amino acid sequence using the three
possible ORF of human Delta contigs

<400> 27
His Trp Val Arg Ala Pro Leu Glu Val Asp Gly Ile Asp Lys Leu Asp
1 5 10 15
Ile Glu Phe Arg Leu His Leu Ala Gly His Leu Leu Ser Asp Tyr
20 25 30

<210> 28
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Deduced amino acid sequence using the three
possible ORF of human Delta contigs

<400> 28
Ser Ser Pro His Arg Phe Ser
1 5

<210> 29
<211> 45
<212> PRT
<213> Artificial Sequence

<220>
<223> Deduced amino acid sequence using the three
possible ORF of human Delta contigs

<400> 29
Pro Arg Asn Arg Lys Pro Arg Lys Thr His Gln Pro Pro Gly His Pro
1 5 10 15
Glu Ala Pro Asp Gly Gly Arg Gly Val Val Pro Gly Pro Ala Gln Gln
20 25 30
Arg Pro His Gly Pro Gln Val Leu Leu Pro Leu Arg Val
35 40 45

<210> 30
<211> 49

<212> PRT
<213> Artificial Sequence

<220>
<223> Deduced amino acid sequence using the three
possible ORF of human Delta contigs

<400> 30
Arg Thr Leu Leu Arg Arg Gly Leu Leu Arg Phe Pro Ser Pro Gly Arg
1 5 10 15
Cys Leu Arg Pro Leu His Leu Trp Gly Ala Trp Gly Glu Ser Val Gln
20 25 30
Pro Trp Leu Glu Arg Ala Leu Leu His Arg Ala Asp Leu Pro Ala Trp
35 40 45
Met

<210> 31
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Deduced amino acid sequence using the three
possible ORF of human Delta contigs

<400> 31
Ala Ala Trp Ile Leu
1 5

<210> 32
<211> 16
<212> PRT
<213> Artificial Sequence

<220>
<223> Deduced amino acid sequence using the three
possible ORF of human Delta contigs

<400> 32

Gln Thr Arg Gly Met Gln Val Gln Ser Gly Leu Ala Gly Pro Val Leu
1 5 10 15

<210> 33
<211> 40
<212> PRT
<213> Artificial Sequence

<220>
<223> Deduced amino acid sequence using the three
possible ORF of human Delta contigs

<220>
<221> VARIANT
<222> 25
<223> Xaa = Any Amino Acid

<400> 33

Arg Val Tyr Pro Leu Ser Arg Leu Ser Pro Trp His Leu Pro Ala Ala
1 5 10 15
Leu Ala Val Gln Leu Pro Gly Arg Xaa Gly Gly Pro Phe Leu Gln Pro
20 25 30
Gly Pro Glu Leu Leu His Thr Pro
35 40

<210> 34
<211> 45
<212> PRT
<213> Artificial Sequence

<220>
<223> Deduced amino acid sequence using the three
possible ORF of human Delta contigs

<220>
<221> VARIANT
<222> 27
<223> Xaa = Any Amino Acid

<400> 34
Ala Leu Gln Glu Trp Ser His Leu Gln Gln Thr Arg Ala Arg Gly Ser
1 5 10 15
Tyr Thr Trp Ser Leu Ala Gly Leu Gly Tyr Xaa Gly Cys His Leu Arg
20 25 30
Ser Leu Gly Ile Gly Arg Val Val Asp Pro Ser Pro Trp
35 40 45

<210> 35
<211> 196
<212> PRT
<213> Artificial Sequence

<220>
<223> Deduced amino acid sequence using the three
possible ORF of human Delta contigs

<220>
<221> VARIANT
<222> 166, 179
<223> Xaa = Any Amino Acid

<400> 35
Glu Arg Arg Glu Leu Asp Gly Ser Ser Glu Asn Ser Tyr Ser Cys Thr
1 5 10 15
Cys Pro Pro Gly Phe Tyr Gly Lys Ile Cys Glu Leu Ser Ala Met Thr
20 25 30
Cys Ala Asp Gly Pro Cys Phe Asn Gly Gly Arg Cys Ser Asp Pro Asp
35 40 45
Gly Gly Tyr Ser Cys Arg Cys Pro Val Gly Tyr Ser Gly Phe Asn Cys
50 55 60
Glu Lys Lys Ile Asp Tyr Cys Ser Ser Pro Cys Ser Asn Gly Ala
65 70 75 80
Lys Cys Val Asp Leu Gly Asp Ala Tyr Leu Cys Arg Gly Gln Ala Gly
85 90 95
Phe Ser Gly Arg His Cys Asp Asp Asn Val Asp Asp Cys Ala Ser Ser
100 105 110
Pro Cys Ala Asn Gly Gly Thr Cys Arg Asp Gly Val Asn Asp Phe Ser

115	120	125
Cys Thr Cys Pro Pro Gly Tyr	Thr Gly Arg Asn Cys	Ser Ala Pro Ala
130	135	140
Ser Arg Cys Glu His Ala Pro Cys His Asn Gly	Ala Thr Cys His	Glu
145	150	155
Arg Gly His Arg Tyr Xaa Cys Glu Cys Ala	Arg Ser Tyr Gly	Gly Pro
165	170	175
Asn Cys Xaa Phe Leu Leu Pro Glu Thr Ala Pro	Pro Ala Pro Arg Trp	
180	185	190
Trp Lys Leu Pro		
195		

<210> 36

<211> 65

<212> PRT

<213> Artificial Sequence

<220>

<223> Deduced amino acid sequence using the three
possible ORF of human Delta contigs

<220>

<221> VARIANT

<222> 51

<223> Xaa = Any Amino Acid

<400> 36

Lys Asn Leu Lys Gly Pro Gly Gly Ala His Pro Leu Gly Gly Arg Val			
1	5	10	15
Arg Arg Gly His Pro Cys Pro His Ala Ala Ala Gly Leu Cys Arg Cys			
20	25	30	
Gly Gly Leu Arg Pro Ala Glu Ala Ala Glu Ala Pro Ala Pro Ser Arg			
35	40	45	
Pro Leu Xaa Gly Gly Asp Gly Asp His Glu Gln Pro Gly Gln Leu Pro			
50	55	60	

Ala

65

<210> 37

<211> 42

<212> PRT

<213> Artificial Sequence

<220>

<223> Deduced amino acid sequence using the three
possible ORF of human Delta contigs

<220>

<221> VARIANT

<222> 28, 39

<223> Xaa = Any Amino Acid

<400> 37

Glu Gly His Leu Ser Gln His His Arg Gly His Ala Asp Gln Glu His			
1	5	10	15
Gln Gln Glu Gly Gly Leu Pro Arg Gly Pro Gln Xaa Arg Gln Glu Trp			
20	25	30	
Leu Gln Gly Pro Leu Pro Xaa Gly Gly Leu			
35	40		

<210> 38
 <211> 7
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Deduced amino acid sequence using the three possible ORF of human Delta contigs

<400> 38
 Pro Arg Ala Gly Pro Gln Gly
 1 5

<210> 39
 <211> 11
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Deduced amino acid sequence using the three possible ORF of human Delta contigs

<400> 39
 Arg His Arg Arg Gln Gly Arg Ala Gln Gln Ala
 1 5 10

<210> 40
 <211> 57
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Deduced amino acid sequence using the three possible ORF of human Delta contigs

<220>
 <221> VARIANT
 <222> 4, 43, 45, 50, 54
 <223> Xaa = Any Amino Acid

<400> 40
 His Gln Val Xaa Ala Pro Gly Leu Leu Arg Gly Gly Glu Gly Asp Pro
 1 5 10 15
 Arg Pro Thr Leu Arg Gly Trp Arg Lys His Leu Glu Arg Lys Arg Pro
 20 25 30
 Asp Phe Gly Leu Val Gln Leu Ser Lys Asp Xaa Gln Xaa Thr Ser Arg
 35 40 45
 Cys Xaa Ser Phe Pro Xaa Glu Glu Gly
 50 55

<210> 41
 <211> 8
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Deduced amino acid sequence using the three
 possible ORF of human Delta contigs

<220>
 <221> VARIANT
 <222> 5, 8
 <223> Xaa = Any Amino Acid

<400> 41
 Leu Arg His Arg Xaa Leu Arg Xaa
 1 5

<210> 42
 <211> 13
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Deduced amino acid sequence using the three
 possible ORF of human Delta contigs

<220>
 <221> VARIANT
 <222> 1, 4, 5
 <223> Xaa = Any Amino Acid

<400> 42
 Xaa Trp Lys Xaa Xaa Pro Gly Phe Arg Phe Gln Ser Phe
 1 5 10

<210> 43
 <211> 276
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Deduced amino acid sequence using the three
 possible ORF of human Delta contigs

<220>
 <221> VARIANT
 <222> 226, 230
 <223> Xaa = Any Amino Acid

<400> 43
 Ile Gly Tyr Gly Pro Pro Ser Arg Ser Thr Val Ser Ile Ser Leu Ile
 1 5 10 15
 Ser Asn Ser Gly Phe Thr Trp Pro Gly Thr Phe Ser Leu Ile Ile Glu
 20 25 30

Ala Leu His Thr Asp Ser Pro Asp Asp Leu Ala Thr Glu Asn Pro Glu
 35 40 45

Arg Leu Ile Ser Arg Leu Ala Thr Gln Arg His Leu Thr Val Gly Glu
 50 55 60

Glu Trp Ser Gln Asp Leu His Ser Ser Gly Arg Thr Asp Leu Lys Tyr
 65 70 75 80

Ser Tyr Arg Phe Val Cys Asp Glu His Tyr Tyr Gly Glu Gly Cys Ser

	85		90		95										
Val	Phe	Cys	Arg	Pro	Arg	Asp	Asp	Ala	Phe	Gly	His	Phe	Thr	Cys	Gly
				100				105				110			
Glu	Arg	Gly	Glu	Lys	Val	Cys	Asn	Pro	Gly	Trp	Lys	Gly	Pro	Tyr	Cys
				115				120				125			
Thr	Glu	Pro	Ile	Cys	Leu	Pro	Gly	Cys	Asp	Glu	Gln	His	Gly	Phe	Cys
				130				135				140			
Asp	Lys	Pro	Gly	Glu	Cys	Lys	Cys	Arg	Val	Gly	Trp	Gln	Gly	Arg	Tyr
				145				150				155			160
Cys	Asp	Glu	Cys	Ile	Arg	Tyr	Pro	Gly	Cys	Leu	His	Gly	Thr	Cys	Gln
					165				170						175
Gln	Pro	Trp	Gln	Cys	Asn	Cys	Gln	Glu	Gly	Trp	Gly	Gly	Leu	Phe	Cys
				180				185				190			
Asn	Gln	Asp	Leu	Asn	Tyr	Cys	Thr	His	His	Lys	Pro	Cys	Lys	Asn	Gly
				195				200				205			
Ala	Thr	Cys	Asn	Lys	His	Gly	Pro	Gly	Gly	Ala	Thr	Leu	Gly	Leu	Trp
				210				215				220			
Pro	Xaa	Trp	Gly	Thr	Xaa	Gly	Ala	Thr	Cys	Glu	Ala	Trp	Gly	Leu	Asp
				225				230				235			240
Glu	Leu	Leu	Thr	Pro	Ala	Leu	Gly	Lys	Asn	Gly	Gly	Ser	Leu	Thr	Asp
					245				250						255
Leu	Arg	Arg	Thr	Ala	Thr	Pro	Val	Pro	Ala	His	Pro	Ala	Ser	Thr	Ala
					260				265						270
Lys	Ser	Val	Asn												
				275											

<210> 44
<211> 93
<212> PRT
<213> Artificial Sequence

<220>
<223> Deduced amino acid sequence using the three possible ORF of human Delta contigs

	44														
Pro	Val	Arg	Thr	Ala	Leu	Ala	Leu	Thr	Gly	Val	Gly	Ala	Gln	Thr	Ala
				1		5			10						15
Pro	Met	Glu	Gly	Thr	Ala	Ala	Ala	Ala	Pro	Trp	Ala	Thr	Pro	Ala	Ser
					20				25						30
Thr	Val	Arg	Arg	Lys	Leu	Thr	Thr	Ala	Ala	Leu	His	Pro	Val	Leu	Met
					35				40						45
Val	Pro	Ser	Val	Trp	Thr	Ser	Val	Met	Pro	Thr	Cys	Ala	Ala	Ala	Arg
				50				55				60			
Pro	Ala	Ser	Arg	Gly	Gly	Thr	Val	Thr	Thr	Thr	Trp	Thr	Thr	Ala	Pro
				65				70			75				80
Pro	Pro	Arg	Ala	Pro	Thr	Gly	Ala	Pro	Ala	Gly	Met	Ala			
					85				90						

<210> 45
<211> 74
<212> PRT
<213> Artificial Sequence

<220>
<223> Deduced amino acid sequence using the three possible ORF of human Delta contigs

<220>
<221> VARIANT
<222> 55
<223> Xaa = Any Amino Acid

<400> 45
Thr Thr Ser Pro Ala Pro Ala Arg Leu Ala Thr Arg Ala Gly Thr Ala
1 5 10 15
Val Pro Pro Pro Ala Gly Ala Ser Thr His Pro Ala Thr Met Gly Pro
20 25 30
Pro Ala Thr Arg Gly Ala Thr Ala Ile Cys Ala Ser Val Pro Glu Ala
35 40 45
Thr Gly Val Pro Thr Ala Xaa Ser Cys Pro Lys Leu Pro Pro Arg Pro
50 55 60
His Gly Gly Gly Asn Ser Pro Lys Lys Thr
65 70

<210> 46
<211> 187
<212> PRT
<213> Artificial Sequence

<220>
<223> Deduced amino acid sequence using the three
possible ORF of human Delta contigs

<220>
<221> VARIANT
<222> 47, 58, 73, 101, 128, 167, 168, 181, 187
<223> Xaa = Any Amino Acid

<400> 46
Lys Gly Arg Gly Gly Pro Ile Pro Leu Val Asp Val Cys Ala Gly Val
1 5 10 15
Ile Leu Val Leu Met Leu Leu Leu Gly Cys Ala Ala Val Val Val Cys
20 25 30
Val Arg Leu Arg Leu Gln Lys His Arg Pro Pro Ala Asp Pro Xaa Arg
35 40 45
Gly Glu Thr Glu Thr Met Asn Asn Leu Xaa Asn Cys Gln Arg Glu Lys
50 55 60
Asp Ile Ser Val Ser Ile Ile Gly Xaa Thr Gln Ile Lys Asn Thr Asn
65 70 75 80
Lys Lys Ala Asp Phe His Gly Asp His Ala Asp Lys Asn Gly Phe Lys
85 90 95
Ala Arg Tyr Pro Xaa Val Asp Tyr Asn Leu Val Gln Asp Leu Lys Gly
100 105 110
Asp Asp Thr Ala Val Arg Asp Ala His Ser Lys Arg Asp Thr Lys Xaa
115 120 125
Gln Pro Gln Gly Ser Ser Gly Glu Glu Gly Thr Pro Asp Pro His Ser
130 135 140
Gly Gly Gly Ser Ile Leu Lys Glu Lys Gly Arg Thr Ser Gly Leu
145 150 155 160
Phe Asn Phe Gln Lys Thr Xaa Xaa Val Gln Val Gly Val Arg His Phe
165 170 175
Arg Arg Arg Lys Xaa Asp Cys Val Ile Gly Xaa
180 185

<210> 47
<211> 20

<212> PRT
<213> Artificial Sequence

<220>
<223> Deduced amino acid sequence using the three possible ORF of human Delta contigs

<220>
<221> VARIANT
<222> 2, 4, 5, 7, 8, 11, 16
<223> Xaa = Any Amino Acid

<400> 47
Gly Xaa Lys Xaa Xaa Val Xaa Xaa Gly Lys Xaa Ser Pro Asp Ser Xaa
1 5 10 15
Phe Lys Val Phe
20

<210> 48
<211> 12
<212> PRT
<213> Artificial Sequence

<220>
<223> Deduced amino acid sequence using the three possible ORF of human Delta contigs

<400> 48
Leu Gly Thr Gly Pro Pro Arg Gly Arg Arg Tyr Arg
1 5 10

<210> 49
<211> 13
<212> PRT
<213> Artificial Sequence

<220>
<223> Deduced amino acid sequence using the three possible ORF of human Delta contigs

<400> 49
Tyr Arg Ile Pro Ala Ser Pro Gly Arg Ala Pro Ser Leu
1 5 10

<210> 50
<211> 30
<212> PRT
<213> Artificial Sequence

<220>
<223> Deduced amino acid sequence using the three possible ORF of human Delta contigs

<400> 50
Leu Leu Lys Leu Ser Thr Gln Ile Leu Leu Met Thr Ser Gln Gln Lys
1 5 10 15
Thr Gln Lys Asp Ser Ser Ala Ala Trp Pro Pro Arg Gly Thr

20

25

30

<210> 51
<211> 135
<212> PRT
<213> Artificial Sequence

<220>
<223> Deduced amino acid sequence using the three
possible ORF of human Delta contigs

<220>
<221> VARIANT
<222> 126
<223> Xaa = Any Amino Acid

<400> 51
Arg Trp Ala Arg Ser Gly Pro Arg Thr Cys Thr Ala Ala Ala Ala Arg
1 5 10 15
Thr Ser Ser Thr Pro Thr Ala Ser Cys Val Thr Asn Thr Thr Glu
20 25 30
Arg Ala Ala Pro Phe Ser Ala Val Pro Gly Thr Met Pro Ser Ala Thr
35 40 45
Ser Pro Val Cys Ser Val Gly Arg Lys Cys Ala Thr Leu Ala Gly Lys
50 55 60
Gly Pro Thr Ala Gln Ser Arg Ser Ala Cys Leu Asp Val Met Ser Ser
65 70 75 80
Met Asp Phe Phe Val Thr Asn Gln Asn Ala Ser Ala Glu Trp Ala Gly
85 90 95
Arg Ala Gly Thr Val Thr Ser Val Ser Ala Ile Gln Ala Val Ser Met
100 105 110
Ala Pro Ala Ser Ser Pro Gly Ser Ala Thr Ala Arg Lys Xaa Gly Gly
115 120 125
Ala Phe Ser Ala Thr Arg Thr
130 135

<210> 52
<211> 46
<212> PRT
<213> Artificial Sequence

<220>
<223> Deduced amino acid sequence using the three
possible ORF of human Delta contigs

<220>
<221> VARIANT
<222> 30, 33
<223> Xaa = Any Amino Acid

<400> 52
Thr Thr Ala His Thr Ile Ser Pro Ala Arg Met Glu Pro Pro Ala Thr
1 5 10 15
Asn Thr Gly Gln Gly Glu Leu His Leu Val Phe Gly Arg Xaa Gly Val
20 25 30
Xaa Arg Val Pro Pro Ala Lys Leu Gly Asp Trp Thr Ser Cys
35 40 45

<210> 53
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Deduced amino acid sequence using the three possible ORF of human Delta contigs

<400> 53
Pro Gln Pro Leu Val Arg Thr Glu Gln Glu
1 5 10

<210> 54
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Deduced amino acid sequence using the three possible ORF of human Delta contigs

<400> 54
Arg Ile Phe Gly Glu Gln Leu Leu Leu Tyr Leu Pro Thr Arg Leu Leu
1 5 10 15
Arg Gln Asn Leu
20

<210> 55
<211> 12
<212> PRT
<213> Artificial Sequence

<220>
<223> Deduced amino acid sequence using the three possible ORF of human Delta contigs

<400> 55
Ile Glu Cys His Asp Leu Cys Gly Arg Pro Leu Leu
1 5 10

<210> 56
<211> 25
<212> PRT
<213> Artificial Sequence

<220>
<223> Deduced amino acid sequence using the three possible ORF of human Delta contigs

<400> 56
Arg Gly Ser Val Leu Arg Gln Pro Arg Trp Arg Val Gln Leu Pro Leu
1 5 10 15
Pro Arg Gly Leu Leu Arg Leu Gln Leu
20 25

<210> 57

```

<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Deduced amino acid sequence using the three
      possible ORF of human Delta contigs

<400> 57
Leu Leu Gln Leu Phe Thr Leu Phe
  1           5

<210> 58
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Deduced amino acid sequence using the three
      possible ORF of human Delta contigs

<400> 58
Trp Cys Gln Val Cys Gly Pro Arg
  1           5

<210> 59
<211> 15
<212> PRT
<213> Artificial Sequence

<220>
<223> Deduced amino acid sequence using the three
      possible ORF of human Delta contigs

<400> 59
Cys Leu Pro Val Pro Leu Pro Gly Arg Leu Leu Gly Glu Ala Leu
  1           5           10           15

<210> 60
<211> 131
<212> PRT
<213> Artificial Sequence

<220>
<223> Deduced amino acid sequence using the three
      possible ORF of human Delta contigs

<220>
<221> VARIANT
<222> 76
<223> Xaa = Any Amino Acid

<400> 60
Arg Gln Arg Gly Arg Leu Arg Leu Leu Pro Val Arg Gln Gly His Leu
  1           5           10           15
Pro Gly Trp Arg Glu Arg Leu Leu Leu His Leu Pro Ala Trp Leu His
  20          25          30
Gly Gln Glu Leu Gln Cys Pro Arg Gln Gln Val Arg Ala Arg Thr Leu

```

35	40	45	
Pro Gln Trp Gly His Leu Pro Arg Glu Gly Pro Pro	Leu Phe Val Arg		
50	55	60	
Val Cys Pro Lys Leu Arg Gly Ser Gln Leu Pro Xaa	Pro Ala Pro Arg		
65	70	75	80
Asn Cys Pro Pro Gly Pro Thr Val Val Glu Thr Pro	Leu Lys Lys Pro		
85	90	95	
Lys Arg Ala Gly Gly Pro Ser Pro Trp Trp Thr Cys	Ala Pro Gly		
100	105	110	
Ser Ser Leu Ser Ser Cys Cys Cys Trp Ala Val Pro	Leu Trp Trp Ser		
115	120	125	
Ala Ser Gly			
130			

<210> 61
<211> 18
<212> PRT
<213> Artificial Sequence

<220>
<223> Deduced amino acid sequence using the three
possible ORF of human Delta contigs

<220>
<221> VARIANT
<222> 12
<223> Xaa = Any Amino Acid

<400> 61
Gly Cys Arg Ser Thr Gly Pro Gln Pro Thr Pro Xaa Gly Gly Arg Arg
1 5 10 15
Arg Pro ,

<210> 62
<211> 98
<212> PRT
<213> Artificial Sequence

<220>
<223> Deduced amino acid sequence using the three
possible ORF of human Delta contigs

<220>
<221> VARIANT
<222> 4, 19, 36, 48, 75
<223> Xaa = Any Amino Acid

```

<400> 62
Thr Thr Trp Xaa Thr Ala Ser Val Arg Arg Thr Ser Gln Ser Ala Ser
1           5                   10                  15
Ser Gly Xaa Arg Arg Ser Arg Thr Pro Thr Arg Arg Arg Thr Ser Thr
20          25                  30
Gly Thr Thr Xaa Pro Thr Arg Met Ala Ser Arg Pro Ala Thr Gln Xaa
35          40                  45
Trp Thr Ile Thr Ser Cys Arg Thr Ser Arg Val Thr Thr Pro Pro Ser
50          55                  60
Gly Thr Arg Thr Ala Ser Val Thr Pro Ser Xaa Ser Pro Arg Ala Pro
65          70                  75                  80

```

Gln Gly Arg Arg Arg Cys Pro Pro Thr His Thr Gln Gly Val Glu Glu
85 90 95
Ala Ser

<210> 63
<211> 33
<212> PRT
<213> Artificial Sequence

<220>
<223> Deduced amino acid sequence using the three
possible ORF of human Delta contigs

<220>
<221> VARIANT
<222> 16, 17, 22, 26, 30
<223> Xaa = Any Amino Acid

<400> 63
Lys Lys Lys Ala Gly Leu Arg Ala Cys Ser Thr Phe Lys Arg Gln Xaa
1 5 10 15
Xaa Tyr Lys Ser Val Xaa Val Ile Ser Xaa Gly Gly Arg Xaa Thr Ala
20 25 30
Ser

<210> 64
<211> 22
<212> PRT
<213> Artificial Sequence

<220>
<223> Deduced amino acid sequence using the three
possible ORF of human Delta contigs

<220>
<221> VARIANT
<222> 2, 6, 8, 10, 13, 14, 19
<223> Xaa = Any Amino Acid

<400> 64
Glu Xaa Glu Val Val Xaa Trp Xaa Leu Xaa Leu Glu Xaa Xaa Pro Arg
1 5 10 15
Ile Pro Xaa Ser Lys Phe
20

<210> 65
<211> 192
<212> PRT
<213> Artificial Sequence

<220>
<223> Composite human delta (H-Delta-1) amino acid
sequence

<400> 65
Gly Phe Thr Trp Pro Gly Thr Phe Ser Leu Ile Ile Glu Ala Leu His

1	5	10	15
Thr Asp Ser Pro Asp Asp Leu Ala Thr Glu Asn Pro Glu Arg		Leu Ile	
20		25	30
Ser Arg Leu Ala Thr Gln Arg His Leu Thr Val Gly Glu Glu Trp Ser			
35	40	45	
Gln Asp Leu His Ser Ser Gly Arg Thr Asp Leu Lys Tyr Ser Tyr Arg			
50	55	60	
Phe Val Cys Asp Glu His Tyr Tyr Gly Glu Gly Cys Ser Val Phe Cys			
65	70	75	80
Arg Pro Arg Asp Asp Ala Phe Gly His Phe Thr Cys Gly Glu Arg Gly			
85		90	95
Glu Lys Val Cys Asn Pro Gly Trp Lys Gly Pro Tyr Cys Thr Glu Pro			
100		105	110
Ile Cys Leu Pro Gly Cys Asp Glu Gln His Gly Phe Cys Asp Lys Pro			
115		120	125
Gly Glu Cys Lys Cys Arg Val Gly Trp Gln Gly Arg Tyr Cys Asp Glu			
130		135	140
Cys Ile Arg Tyr Pro Gly Cys Leu His Gly Thr Cys Gln Gln Pro Trp			
145		150	155
Gln Cys Asn Cys Gln Glu Gly Trp Gly Gly Leu Phe Cys Asn Gln Asp			
165		170	175
Leu Asn Tyr Cys Thr His His Lys Pro Cys Lys Asn Gly Ala Thr Cys			
180		185	190

<210> 66

<211> 6

<212> PRT

<213> Artificial Sequence

<220>

<223> Composite human delta (H-Delta-1) amino acid sequence

<400> 66

Thr Asn Thr Gly Gln Gly
1 5

<210> 67

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<223> Composite human delta (H-Delta-1) amino acid sequence

<400> 67

Lys Asn Gly Gly Ser Leu Thr Asp Leu
1 5

<210> 68

<211> 157

<212> PRT

<213> Artificial Sequence

<220>

<223> Composite human delta (H-Delta-1) amino acid

sequence

<400> 68
Glu Asn Ser Tyr Ser Cys Thr Cys Pro Pro Gly Phe Tyr Gly Lys Ile
1 5 10 15
Cys Glu Leu Ser Ala Met Thr Cys Ala Asp Gly Pro Cys Phe Asn Gly
20 25 30
Gly Arg Cys Ser Asp Ser Pro Asp Gly Gly Tyr Ser Cys Arg Cys Pro
35 40 45
Val Gly Tyr Ser Gly Phe Asn Cys Glu Lys Lys Ile Asp Tyr Cys Ser
50 55 60
Ser Ser Pro Cys Ser Asn Gly Ala Lys Cys Val Asp Leu Gly Asp Ala
65 70 75 80
Tyr Leu Cys Arg Cys Gln Ala Gly Phe Ser Gly Arg His Cys Asp Asp
85 90 95
Asn Val Asp Asp Cys Ala Ser Ser Pro Cys Ala Asn Gly Gly Thr Cys
100 105 110
Arg Asp Gly Val Asn Asp Phe Ser Cys Thr Cys Pro Pro Gly Tyr Thr
115 120 125
Gly Arg Asn Cys Ser Ala Pro Ala Ser Arg Cys Glu His Ala Pro Cys
130 135 140
His Asn Gly Ala Thr Cys His Glu Arg Gly His Arg Tyr
145 150 155

<210> 69

<211> 12

<212> PRT

<213> Artificial Sequence

<220>

<223> Composite human delta (H-Delta-1) amino acid
sequence

<400> 69

Cys Glu Cys Ala Arg Ser Tyr Gly Gly Pro Asn Cys
1 5 10

<210> 70

<211> 5

<212> PRT

<213> Artificial Sequence

<220>

<223> Composite human delta (H-Delta-1) amino acid
sequence

<400> 70

Phe Leu Leu Pro Glu
1 5

<210> 71

<211> 4

<212> PRT

<213> Artificial Sequence

<220>

<223> Composite human delta (H-Delta-1) amino acid
sequence

<400> 71
Pro Pro Gly Pro
1

<210> 72
<211> 25
<212> PRT
<213> Artificial Sequence

<220>
<223> Composite human delta (H-Delta-1) amino acid sequence

<400> 72
Leu Leu Leu Gly Cys Ala Ala Val Val Val Cys Val Arg Leu Arg Leu
1 5 10 15
Gln Lys His Arg Pro Pro Ala Asp Pro

20 25

<210> 73
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Composite human delta (H-Delta-1) amino acid sequence

<400> 73
Arg Gly Glu Thr Glu Thr Met Asn Asn Leu
1 5 10

<210> 74
<211> 14
<212> PRT
<213> Artificial Sequence

<220>
<223> Composite human delta (H-Delta-1) amino acid sequence

<400> 74
Asn Cys Gln Arg Glu Lys Asp Ile Ser Val Ser Ile Ile Gly
1 5 10

<210> 75
<211> 16
<212> PRT
<213> Artificial Sequence

<220>
<223> Composite human delta (H-Delta-1) amino acid sequence

<400> 75
Thr Gln Ile Lys Asn Thr Asn Lys Lys Ala Asp Phe His Gly Asp His
1 5 10 15

<210> 76
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> Composite human delta (H-Delta-1) amino acid sequence

<400> 76
Ala Asp Lys Asn Gly Phe Lys Ala Arg Tyr Pro
1 5 10

<210> 77
<211> 26
<212> PRT
<213> Artificial Sequence

<220>
<223> Composite human delta (H-Delta-1) amino acid sequence

<400> 77
Val Asp Tyr Asn Leu Val Gln Asp Leu Lys Gly Asp Asp Thr Ala Val
1 5 10 15
Arg Asp Ala His Ser Lys Arg Asp Thr Lys
20 25

<210> 78
<211> 13
<212> PRT
<213> Artificial Sequence

<220>
<223> Composite human delta (H-Delta-1) amino acid sequence

<400> 78
Gln Pro Gln Gly Ser Ser Gly Glu Glu Lys Gly Thr Pro
1 5 10

<210> 79
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> Composite human delta (H-Delta-1) amino acid sequence

<400> 79
Pro Thr Leu Arg
1

```

<210> 80
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> Composite human delta (H-Delta-1) amino acid
      sequence

<400> 80
Arg Lys Arg Pro
  1

<210> 81
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerated oligo as primer

<220>
<221> VARIANT
<222> 6, 12, 18, 21
<223> n = I (Inosine)

<400> 81
ttcggnttya cntggccngg nac.                                23

<210> 82
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerated oligo as primer

<220>
<221> VARIANT
<222> 3, 9, 12, 15
<223> n = I (Inosine)

<400> 82
tcnatgcang tnccnccrtt                                         20

<210> 83
<211> 8
<212> PRT
<213> Drosophila

<400> 83
Phe Gly Phe Thr Trp Pro Gly Thr
  1                      5

<210> 84
<211> 7
<212> PRT

```

```

<213> Drosophila

<400> 84
Asn Gly Gly Thr Cys Ile Asp
 1           5

<210> 85
<211> 12
<212> PRT
<213> Drosophila

<400> 85
Ser Ile Pro Pro Gly Ser Arg Thr Ser Leu Gly Val
 1           5           10

<210> 86
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer 1 for PCR

<220>
<221> VARIANT
<222> 3, 9, 15, 18, 21
<223> n = I (Inosine)

<400> 86
ggnttcacnt ggccnggnac .ntt                                23

<210> 87
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer 2 for PCR

<220>
<221> VARIANT
<222> 3, 6, 18
<223> n = I (Inosine)

<400> 87
gtncncncrt tytrcangg rtt                                23

<210> 88
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> EGF-like repeats encoded by SEQ ID NO. 87

<400> 88
Asn Pro Cys Lys Asn Gly Gly Thr
 1           5

```

```

<210> 89
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> degenerated oligo primer

<220>
<221> VARIANT
<222> 3, 15, 18
<223> n = I (Inosine)

<400> 89
acnatgaaya ayctngcnaa ytg 23

<210> 90
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> amino acid encoded by SEQ ID NO. 89

<400> 90
Thr Met Asn Asn Leu Ala Asn Cys
1 5

<210> 91
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> degenerated oligo primer

<220>
<221> VARIANT
<222> 6, 9, 21
<223> n = I (Inosine)

<400> 91
acrtanacng aytgrtaytt ngt 23

<210> 92
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> amino acid sequence encoded by SEQ ID NO. 91

<400> 92
Thr Lys Tyr Gln Ser Val Tyr Val
1 5

<210> 93
<211> 23

```

<212> DNA
 <213> Artificial Sequence

 <220>
 <223> degenerated oligo

 <220>
 <221> VARIANT
 <222> 6
 <223> n = I (Inosine)

 <400> 93
 gcdatnacrc aytcrtcytt ytc

 <210> 94
 <211> 8
 <212> PRT
 <213> Artificial Sequence

 <220>
 <223> amino acid sequence endoced by SEQ ID NO. 86

 <400> 94
 Gly Phe Thr Trp Pro Gly Thr Phe
 1 5

 <210> 95
 <211> 129
 <212> PRT
 <213> Homo sapiens

 <400> 95
 Thr Met Asn Asn Leu Ala Asn Cys Gln Arg Glu Lys Asp Ile Ser Ile
 1 5 10 15
 Ser Val Ile Gly Ala Thr Gln Ile Lys Asn Thr Asn Lys Lys Val Asp
 20 25 30
 Phe His Ser Asp Asn Ser Asp Lys Asn Gly Tyr Lys Val Arg Tyr Pro
 35 40 45
 Ser Val Asp Tyr Asn Leu Val His Glu Leu Lys Asn Glu Asp Ser Val
 50 55 60
 Lys Glu Glu His Gly Lys Cys Glu Ala Lys Cys Glu Thr Tyr Asp Ser
 65 70 75 80
 Glu Ala Glu Glu Lys Ser Ala Val Gln Leu Lys Ser Ser Asp Thr Ser
 85 90 95
 Glu Arg Lys Arg Pro Asp Ser Val Tyr Ser Thr Ser Lys Asp Thr Lys
 100 105 110
 Tyr Gln Ser Val Tyr Val Ile Ser Glu Glu Lys Asp Glu Cys Ile Ile
 115 120 125
 Ala