Séries Temporelles Multivariées

Chapitre 4

Économétrie des séries temporelles

2 / 82

3 / 82

Structure du cours :

Autorégressions Vectorielles - VAR

Exemples de base

Propriétés

Stationnarité

Revisiter les processus ARMA univariés

Prévision

- Causalité de Granger
- ▶ Fonctions de réponse impulsionnelle

Cointégration

- ▶ Examiner les relations à long terme
- Déterminer si un VAR est cointégré
- ► Modèles de Correction d'Erreur
- ► Tests de Cointégration Engle-Granger

Autorégressions Vectorielles – VAR

5 / 82

Pourquoi l'analyse VAR ?

VAR Stationnaires

- ▶ Déterminer si les variables se rétroagissent les unes sur les autres
- Améliorer les prévisions
- ▶ Modéliser l'effet d'un choc dans une série sur une autre
- ▶ Différencier entre les dynamiques à court terme et à long terme

Cointégration

- Lier les marches aléatoires
- ▶ Découvrir les relations à long terme
- ▶ Peut améliorer considérablement les prévisions à moyen et long terme

Définition du VAR

Autorégression d'ordre P, AR(P) :

$$y_t = \phi_0 + \phi_1 y_{t-1} + \ldots + \phi_P y_{t-p} + \varepsilon_t$$

Autorégression vectorielle d'ordre P, VAR(P) :

$$\mathbf{y}_t = \Phi_0 + \Phi_1 \mathbf{y}_{t-1} + \ldots + \Phi_P \mathbf{y}_{t-p} + \varepsilon_t$$

où \mathbf{y}_t et ε_t sont des vecteurs de dimension $k \times 1$

VAR(1) bivarié :

$$\begin{pmatrix} \mathbf{y}_{1,t} \\ \mathbf{y}_{2,t} \end{pmatrix} = \begin{pmatrix} \phi_{01} \\ \phi_{02} \end{pmatrix} + \begin{pmatrix} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{pmatrix} \begin{pmatrix} \mathbf{y}_{1,t-1} \\ \mathbf{y}_{2,t-1} \end{pmatrix} + \begin{pmatrix} \varepsilon_{1,t} \\ \varepsilon_{2,t} \end{pmatrix}$$

Exprime de manière compacte deux modèles liés :

$$y_{1,t} = \phi_{01} + \phi_{11}y_{1,t-1} + \phi_{12}y_{2,t-1} + \varepsilon_{1,t}$$
$$y_{2,t} = \phi_{02} + \phi_{21}y_{1,t-1} + \phi_{22}y_{2,t-1} + \varepsilon_{2,t}$$

Stationnarité Revisitée

La stationnarité est une forme statistiquement significative de régularité.

Un processus stochastique y_t est stationnaire en covariance si :

- \triangleright $E[y_t] = \mu, \forall t$
- $V[y_t] = \sigma^2, \quad \sigma^2 < \infty, \ \forall t$
- $E[(y_t \mu)(y_{t-s} \mu)] = \gamma_s, \quad \forall t, s$

Stationnarité de l'AR(1) : $y_t = \phi y_{t-1} + \varepsilon_t$

- | φ | < 1</p>
- \triangleright ε_t est un bruit blanc

Stationnarité de l'AR(P) :
$$y_t = \phi_1 y_{t-1} + \ldots + \phi_P y_{t-P} + \varepsilon_t$$

- Les racines de $(z^P \phi_1 z^{P-1} \phi_2 z^{P-2} \dots \phi_{P-1} z \phi_P)$ sont inférieures à 1
- $ightharpoonup arepsilon_t$ est un bruit blanc

Pas de dépendance à t

Relation avec AR

AR(1)

$$y_{t} = \phi_{0} + \phi_{1}y_{t-1} + \varepsilon_{t}$$

$$= \phi_{0} + \phi_{1}(\phi_{0} + \phi_{1}y_{t-2} + \varepsilon_{t-1}) + \varepsilon_{t}$$

$$= \phi_{0} + \phi_{1}\phi_{0} + \phi_{1}^{2}y_{t-2} + \phi_{1}\varepsilon_{t-1} + \varepsilon_{t}$$

$$= \phi_{0} + \phi_{1}\phi_{0} + \phi_{1}^{2}(\phi_{0} + \phi_{1}y_{t-3} + \varepsilon_{t-2}) + \phi_{1}\varepsilon_{t-1} + \varepsilon_{t}$$

$$\vdots$$

$$= \sum_{i=0}^{\infty} \phi_{1}^{i}\phi_{0} + \sum_{i=0}^{\infty} \phi_{1}^{i}\varepsilon_{t-i}$$

$$= (1 - \phi_{1})^{-1}\phi_{0} + \sum_{i=0}^{\infty} \phi_{1}^{i}\varepsilon_{t-i}$$

Relation avec AR

VAR(1)

$$\begin{split} \mathbf{y}_t &= \mathbf{\Phi}_0 + \mathbf{\Phi}_1 \mathbf{y}_{t-1} + \varepsilon_t \\ &= \mathbf{\Phi}_0 + \mathbf{\Phi}_1 (\mathbf{\Phi}_0 + \mathbf{\Phi}_1 \mathbf{y}_{t-2} + \varepsilon_{t-1}) + \varepsilon_t \\ &= \mathbf{\Phi}_0 + \mathbf{\Phi}_1 \mathbf{\Phi}_0 + \mathbf{\Phi}_1^2 \mathbf{y}_{t-2} + \mathbf{\Phi}_1 \varepsilon_{t-1} + \varepsilon_t \\ &= \mathbf{\Phi}_0 + \mathbf{\Phi}_1 \mathbf{\Phi}_0 + \mathbf{\Phi}_1^2 (\mathbf{\Phi}_0 + \mathbf{\Phi}_1 \mathbf{y}_{t-3} + \varepsilon_{t-2}) + \mathbf{\Phi}_1 \varepsilon_{t-1} + \varepsilon_t \\ &\vdots \\ &= \sum_{i=0}^{\infty} \mathbf{\Phi}_1^i \mathbf{\Phi}_0 + \sum_{i=0}^{\infty} \mathbf{\Phi}_1^i \varepsilon_{t-i} \\ &= (\mathbf{I}_k - \mathbf{\Phi}_1)^{-1} \mathbf{\Phi}_0 + \sum_{i=0}^{\infty} \mathbf{\Phi}_1^i \varepsilon_{t-i} \end{split}$$

Propriétés d'un VAR(1) et AR(1)

Moyenne, Variance, Autocovariance

Propriété	AR(1)	VAR(1)
Équation	$y_t = \phi_0 + \phi_1 y_{t-1} + \varepsilon_t$	$\mathbf{y}_t = \mathbf{\Phi}_0 + \mathbf{\Phi}_1 \mathbf{y}_{t-1} + \varepsilon_t$
Moyenne	$\frac{\phi_0}{1-\phi_1}$	$(\mathbf{I}_k - \mathbf{\Phi}_1)^{-1}\mathbf{\Phi}_0$
Variance	$\frac{\sigma^2}{1-\phi_1^2}$	$(\mathbf{I} - \mathbf{\Phi}_1 \otimes \mathbf{\Phi}_1)^{-1} vec(\mathbf{\Sigma})$
Autocovariance s	$\gamma_s = \phi_1^s V[y_t]$	$\mathbf{\Gamma}_s = \mathbf{\Phi}_1^s V[\mathbf{y}_t]$
Autocovariance $-s$	$\gamma - s = \phi_1^s V[y_t]$	$\mathbf{\Gamma} - \mathbf{s} = V[\mathbf{y}_t] \mathbf{\Phi}_1^{s\prime}$

Les autocovariances des processus vectoriels ne sont pas symétriques, mais $\Gamma_s = \Gamma'_{-s}$

Stationnarité

- AR(1) : $|\phi_1| < 1$
- lacksquare VAR(1) : $|\lambda_i| < 1$ où λ_i sont les valeurs propres de $oldsymbol{\Phi}_1$

VAR - Relation PIB / Chômage

Modèle

$$\begin{pmatrix} \mathsf{PIB}_t \\ \mathsf{CHO}_t \end{pmatrix} = \begin{pmatrix} 0.547^{\star\star\star} \\ 0.049^{\star} \end{pmatrix} + \begin{pmatrix} 0.182^{\star\star} & -0.639^{\star\star\star} \\ -0.096^{\star\star\star} & 0.507^{\star\star\star} \end{pmatrix} \begin{pmatrix} \mathsf{PIB}_{t-1} \\ \mathsf{CHO}_{t-1} \end{pmatrix} + \begin{pmatrix} \varepsilon_{1,t} \\ \varepsilon_{2,t} \end{pmatrix}$$

Significance: $\star\star\star$: 1%, $\star\star$: 5%, \star : 10%

Modèles

Modèle du PIB

$$PIB_t = \phi_{01} + \phi_{11,1}PIB_{t-1} + \phi_{12,1}CHO_{t-1} + \varepsilon_{1,t}$$

Modèle du Chomage

$$\mathsf{CHO}_t = \phi_{02} + \phi_{21,1} \mathsf{PIB}_{t-1} + \phi_{22,1} \mathsf{CHO}_{t-1} + \varepsilon_{2,t}$$

Estimations VAR(1)

$$\begin{aligned} \mathsf{PIB}_t &= 0.547^{***} + 0.182^{**} \mathsf{PIB}_{t-1} - 0.639^{***} \mathsf{CHO}_{t-1} + \varepsilon_{1,t} \\ \mathsf{CHO}_t &= 0.049^* - 0.096^{***} \mathsf{PIB}_{t-1} + 0.507^{***} \mathsf{CHO}_{t-1} + \varepsilon_{2,t} \end{aligned}$$

Estimations AR(1)

$$\begin{aligned} \mathsf{PIB}_t &= 0.648^{\star\star\star} + 0.414^{\star\star\star} \mathsf{PIB}_{t-1} &+ \varepsilon_{1,t} \\ \mathsf{CHO}_t &= -0.003 &+ 0.692^{\star\star\star} \mathsf{CHO}_{t-1} + \varepsilon_{2,t} \end{aligned}$$

Données

 $y_1: PIB$

 y_2 : Chomâge

Pays: USA

Période : jan. 1980 - déc. 2019

Fréquence : trimestrielle

Les données - Obtention

Graphs – données brutes

Les données - Manipulation

```
# merge les deux variables dans une data.frame
data <- merge(gdp_data[, c("date", "value")],</pre>
              unemp_data[, c("date", "value")],
              by = "date", suffixes = c("_gdp", "_unemp"))
colnames(data) <- c("date", "gdp", "unemp")</pre>
# transformation des variables
data <- data %>%
  mutate(log_gdp = log(gdp), unemp = unemp) %>%
  select(date, log gdp, unemp)
# s'assurer que les données sont stationnaires (différencier si nécessaire)
data diff <- data %>%
  mutate(d_log_gdp = c(NA, diff(log_gdp)),
         d unemp = c(NA, diff(unemp))) \%
  na.omit()
# autre méthode pour transformer les données (à faire).
```

Les données – Tester la stationarité

```
PIB - log et diff(log)
tseries::adf.test(data$log_gdp)
##
##
    Augmented Dickey-Fuller Test
##
## data: data$log_gdp
## Dickey-Fuller = -1.3962, Lag order = 5, p-value = 0.8282
## alternative hypothesis: stationary
tseries::adf.test(data diff$d log gdp)
##
##
    Augmented Dickey-Fuller Test
##
## data: data diff$d log gdp
## Dickey-Fuller = -4.3656, Lag order = 5, p-value = 0.01
## alternative hypothesis: stationary
```

Les données – Tester la stationarité

```
CHO - taux et variation de taux
tseries::adf.test(data$unemp)
##
##
   Augmented Dickey-Fuller Test
##
## data: data$unemp
## Dickey-Fuller = -2.5066, Lag order = 5, p-value = 0.3651
## alternative hypothesis: stationary
tseries::adf.test(data diff$d unemp)
##
##
   Augmented Dickey-Fuller Test
##
## data: data diff$d unemp
## Dickey-Fuller = -3.8569, Lag order = 5, p-value = 0.01802
## alternative hypothesis: stationary
```

Les modèles – Estimation VAR(1) vs AR(1)

VAR(1) – Résultats d'estimation

```
# 3. Analyse des résultats
# Résultats du VAR(1)
# lancer tout de meme summary dans le rmd
# summary(var model)
coeftest(var model)
##
## t test of coefficients:
##
##
                       Estimate Std. Error t value Pr(>|t|)
## d_log_gdp:(Intercept) 0.546785 0.074933 7.2970 1.430e-11 ***
## d_log_gdp:d_log_gdp.l1 0.182007 0.091499 1.9892 0.048442 *
## d_log_gdp:d_unemp.l1
                       -0.639115 0.202632 -3.1541 0.001934 **
## d_unemp:(Intercept) 0.048835 0.027895 1.7507 0.081981 .
## d_unemp:d_log_gdp.l1
                      ## d unemp:d unemp.l1
                    0.507314 0.075432 6.7254 3.178e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Graph des résidus

Diagram of fit and residuals for d_log_gdp

ACF Résidus

23 / 82

PACF Résidus

AR(1) – Résultats d'estimation

```
# Résultats des modèles AR(1)
coeftest(ar_gdp)
##
## z test of coefficients:
##
##
         Estimate Std. Error z value Pr(>|z|)
## ar1 0.413760 0.076315 5.4217 5.903e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
coeftest(ar_unemp)
##
## z test of coefficients:
##
         Estimate Std. Error z value Pr(>|z|)
##
          ## ar1
## intercept -0.0027798 0.0589276 -0.0472 0.9624
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Résidus VAR(1) vs AR(1)

Prévision VAR(1)

Forecast of series d_unemp

Prévision AR(1)

Forecasts from ARIMA(1,0,0) with non-zero mean

Forecasts from ARIMA(1,0,0) with non-zero mean

Politique monétaire - VAR

~ Taylor Rule : Chomage, Fed Funds, Inflation

y₁: Chômagey₂: Fed Fundsy₃: InflationPays: USA

Période : jan. 1957 - déc. 2019

Fréquence : trimestrielle

Stationarité – visuelle

Stationarité – test

```
adf unrate <- tseries::adf.test(UNRATE$value)</pre>
adf dff <- tseries::adf.test(DFF$value)
adf_gdpdef <- tseries::adf.test(GDPDEF$value)</pre>
adf_values <- data.frame(</pre>
  Série = c("UNRATE", "DFF", "GDPDEF"),
  `Statistique ADF` = c(adf_unrate$statistic,
                         adf dff$statistic,
                         adf_gdpdef$statistic),
  `p-value` = c(adf_unrate$p.value,
                 adf dff$p.value,
                 adf_gdpdef$p.value)
adf values
```

```
## Série Statistique.ADF p.value
## 1 UNRATE -2.355513 0.42780874
## 2 DFF -3.150157 0.09839603
## 3 GDPDEF -2.630979 0.31277964
```

Différenciation des séries

```
# on différencie avec des méthodes qui maintiennent
# une "cohérence" des nouvelles variables
UNRATE.d <- na.omit(diff(UNRATE$value))</pre>
DFF.d <- na.omit(diff(DFF$value))</pre>
GDPDEF.d <- na.omit((log(diff(GDPDEF$value))))</pre>
# test stationarité
adf_unrate_d <- tseries::adf.test(UNRATE.d)</pre>
adf_dff_d <- tseries::adf.test(DFF.d)</pre>
adf gdpdef d <- tseries::adf.test(GDPDEF.d)</pre>
adf values d <- data.frame(
  Série = c("UNRATE", "DFF", "GDPDEF"),
  `Statistique ADF` = c(adf_unrate_d$statistic,
                          adf dff d$statistic,
                          adf gdpdef d$statistic).
  `p-value` = c(adf_unrate_d$p.value,
                 adf dff d$p.value,
                 adf_gdpdef_d$p.value)
adf values d
```

Graph de la série $I(2) \rightarrow I(1) \rightarrow I(0)$

```
tsplot(GDPDEF.d)
3DPDEF.d
                         50
                                             100
                                                                  150
                                       Time
# GDPDEF.d n'est toujours pas stationnaire : on différencie une seconde fois
GDPDEF.dd <- na.omit(diff((log(diff(GDPDEF$value)))))</pre>
# test stationarité
tseries::adf.test(diff(GDPDEF.dd))
##
##
    Augmented Dickey-Fuller Test
##
## data: diff(GDPDEF.dd)
## Dickey-Fuller = -10.4, Lag order = 5, p-value = 0.01
## alternative hypothesis: stationary
```

Graph des séries stationnaires

Estimation VAR(1) - UNRATE, FF, INF

```
PolMon <- VAR(cbind(UNRATE.d, DFF.d, GDPDEF.dd), type = "none")
#summary(PolMon)
coef (PolMon)
## $UNRATE.d
##
                 Estimate Std. Error t value Pr(>|t|)
## UNRATE.d.11 0.65596501 0.06919730 9.479633 2.512014e-17
## DFF.d.11 0.03234603 0.02530148 1.278424 2.028737e-01
## GDPDEF.dd.l1 0.05270480 0.04886464 1.078588 2.823270e-01
##
## $DFF.d
##
                  Estimate Std. Error t value Pr(>|t|)
## UNRATE.d.11 -0.79875010 0.22816004 -3.5008325 0.0005949147
## DFF.d.11 0.06938984 0.08342504 0.8317628 0.4067305799
## GDPDEF.dd.l1 0.02928980 0.16111840 0.1817905 0.8559675801
##
## $GDPDEF.dd
##
                   Estimate Std. Error t value Pr(>|t|)
## UNRATE.d.ll -0.055376927 0.09655546 -0.5735245 5.670611e-01
## DFF.d.l1 0.003746848 0.03530479 0.1061286 9.156077e-01
## GDPDEF.dd.ll -0.479475102 0.06818399 -7.0320779 4.973776e-11
```

Modèle trivarié VAR(1) estimé

$$\begin{split} \textit{UNRATE}_t &= 0.656^{***} \textit{UNRATE}_{t-1} + 0.032\textit{FF}_{t-1} + 0.053\textit{INF}_{t-1} + \varepsilon_{\textit{UNRATE},t} \\ \textit{FF}_t &= -0.799^{***} \textit{UNRATE}_{t-1} + 0.069\textit{FF}_{t-1} + 0.029\textit{INF}_{t-1} + \varepsilon_{\textit{FF},t} \\ \textit{INF}_t &= -0.055\textit{UNRATE}_{t-1} + 0.004\textit{FF}_{t-1} - 0.479^{***} \textit{INF}_{t-1} + \varepsilon_{\textit{INF},t} \end{split}$$

En pratique, pour vérifier la Taylor Rule on applique un VAR structurel (SVAR) afin d'imposer une relation **structurelle**

Graph $\mathbf{y}_t, \widehat{\mathbf{y}}_t, \widehat{\boldsymbol{\varepsilon}}_t, ACF$ et PACF de $\widehat{\boldsymbol{\varepsilon}}_t$ Diagram of fit and residuals for UNRATE.d

VAR(P) est en réalité un VAR(1)

Forme compagnon:

$$\mathbf{y}_t = \Phi_0 + \Phi_1 \mathbf{y}_{t-1} + \Phi_2 \mathbf{y}_{t-2} + \ldots + \Phi_P \mathbf{y}_{t-P} + \varepsilon_t$$

Reformuler en un seul VAR(1) où $\mu = E[\mathbf{y}_t] = (I - \Phi_1 - \ldots - \Phi_P)^{-1}\Phi_0$

$$\mathbf{z}_t = \Upsilon \mathbf{z}_{t-1} + \boldsymbol{\xi}_t$$

$$\mathbf{z}_{t} = \begin{pmatrix} \mathbf{y}_{t} - \mu \\ \mathbf{y}_{t-1} - \mu \\ \vdots \\ \mathbf{y}_{t-P+1} - \mu \end{pmatrix}, \Upsilon = \begin{pmatrix} \Phi_{1} & \Phi_{2} & \Phi_{3} & \dots & \Phi_{P-1} & \Phi_{P} \\ I_{k} & 0 & 0 & \dots & 0 & 0 \\ 0 & I_{k} & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & I_{k} & 0 \end{pmatrix}$$

- ▶ Tous les résultats peuvent être directement appliqués à la forme compagnon.
- ▶ Peut également être utilisé pour transformer AR(P) en VAR(1)

Revisiter les prévisions univariées

Considérons l'AR(1) standard

$$y_t = \phi_0 + \phi_1 y_{t-1} + \varepsilon_t$$

▶ Prévision optimale à 1 étape :

$$\begin{aligned} \mathsf{E}_{t} \left[y_{t+1} \right] &= \mathsf{E}_{t} \left[\phi_{0} \right] + \mathsf{E}_{t} \left[\phi_{1} y_{t} \right] + \mathsf{E}_{t} \left[\varepsilon_{t+1} \right] \\ &= \phi_{0} + \phi_{1} y_{t} + 0 \end{aligned}$$

► Prévision optimale à 2 étapes :

$$\begin{split} \mathsf{E}_{t} \left[y_{t+2} \right] &= \mathsf{E}_{t} \left[\phi_{0} \right] + \mathsf{E}_{t} \left[\phi_{1} y_{t+1} \right] + \mathsf{E}_{t} \left[\varepsilon_{t+2} \right] \\ &= \phi_{0} + \phi_{1} \mathsf{E}_{t} \left[y_{t+1} \right] + 0 \\ &= \phi_{0} + \phi_{1} \left(\phi_{0} + \phi_{1} y_{t} \right) \\ &= \phi_{0} + \phi_{1} \phi_{0} + \phi_{1}^{2} y_{t} \end{split}$$

Prévision optimale à h étapes :

$$\mathsf{E}_{t}\left[y_{t+h}\right] = \sum_{i=0}^{h-1} \phi_{1}^{i} \phi_{0} + \phi_{1}^{h} y_{t}$$

Prévisions avec VAR

Identique au cas univarié

$$\mathbf{y}_t = \mathbf{\Phi}_0 + \mathbf{\Phi}_1 \mathbf{y}_{t-1} + \varepsilon_t$$

▶ Prévision optimale à 1 étape :

$$\begin{aligned} \mathsf{E}_{t}\left[\mathsf{y}_{t+1}\right] &= \mathsf{E}_{t}\left[\Phi_{0}\right] + \mathsf{E}_{t}\left[\Phi_{1}\mathsf{y}_{t}\right] + \mathsf{E}_{t}\left[\varepsilon_{t+1}\right] \\ &= \Phi_{0} + \Phi_{1}\mathsf{y}_{t} + \mathbf{0} \end{aligned}$$

▶ Prévision optimale à *h* étapes :

$$\begin{aligned} \mathsf{E}_t \left[\mathbf{y}_{t+h} \right] &= \mathbf{\Phi}_0 + \mathbf{\Phi}_1 \mathbf{\Phi}_0 + \ldots + \mathbf{\Phi}_1^{h-1} \mathbf{\Phi}_0 + \mathbf{\Phi}_1^h \mathbf{y}_t \\ &= \sum_{i=0}^{h-1} \mathbf{\Phi}_1^i \mathbf{\Phi}_0 + \mathbf{\Phi}_1^h \mathbf{y}_t \end{aligned}$$

▶ Prévision de plus haut ordre peut être calculée de manière récursive

$$\mathsf{E}_{t}\left[\mathbf{y}_{t+h}\right] = \mathbf{\Phi}_{0} + \mathbf{\Phi}_{1}\mathsf{E}_{t}\left[\mathbf{y}_{t+h-1}\right] + \ldots + \mathbf{\Phi}_{P}\mathsf{E}_{t}\left[\mathbf{y}_{t+h-P}\right]$$

Qu'est-ce qui fait une bonne prévision ?

Résidus de prévision

$$\hat{\mathbf{e}}_{t+h|t} = y_{t+h} - \hat{y}_{t+h|t}$$

- Les résidus ne sont pas un bruit blanc
- Peut contenir une composante MA(h-1)
 - ▶ Erreur de prévision pour $y_{t+1} \widehat{y}_{t+1|t-h+1}$ n'était pas connue au moment t.
- ► Tracez vos résidus
- ACF des résidus
- ► Régressions de Mincer-Zarnowitz
- ► Procédure à trois périodes
 - ▶ Échantillon d'entraînement : Utilisé pour construire le modèle
 - ► Échantillon de validation : Utilisé pour affiner le modèle
 - ▶ Échantillon d'évaluation : Test ultime, idéalement en une seule fois

Prévision multi-étapes

Deux méthodes

- Méthode itérative
 - Construire un modèle pour les prévisions à 1 étape

$$\mathbf{y}_t = \mathbf{\Phi}_0 + \mathbf{\Phi}_1 \mathbf{y}_{t-1} + \boldsymbol{\varepsilon}_t$$

- Itérer la prévision jusqu'à la période h

$$\hat{\mathbf{y}}_{t+h|t} = \sum_{i=0}^{h-1} \mathbf{\Phi}_1^i \mathbf{\Phi}_0 + \mathbf{\Phi}_1^h \mathbf{y}_t$$

- Utilise efficacement les informations Impose beaucoup de structure au problème
 - Méthode directe
 - Construire un modèle pour les prévisions à h étapes

$$\mathbf{y}_t = \mathbf{\Phi}_0 + \mathbf{\Phi}_h \mathbf{y}_{t-h} + \varepsilon_t$$

- Prévision directe en utilisant une méthode pseudo à 1 étape

$$\hat{\mathbf{y}}_{t+h|t} = \mathbf{\Phi}_0 + \mathbf{\Phi}_h \mathbf{y}_t$$

- Robuste à certaines non-linéarités

Évaluation des prévisions multi-étapes

- L'évaluation des prévisions multi-étapes est identique à l'évaluation des prévisions à une étape avec une réserve
- Les erreurs de prévision à h étapes peuvent être corrélées avec toute erreur de prévision non connue au moment t

$$\hat{\mathbf{e}}_{t+1|t-h+1}, \hat{\mathbf{e}}_{t+2|t-h+2}, \dots, \hat{\mathbf{e}}_{t+h-1|t-1}$$

- ▶ Conduit à une structure MA(h-1) dans les erreurs de prévision
- Solutions :
 - Utiliser une régression GMZ régulière avec un estimateur de covariance Newey-West

$$y_{t+h} - \hat{y}_{t+h|t} = \beta_1 + \beta_2 \hat{y}_{t+h|t} + \gamma \mathbf{x}_t + \eta_t$$

 $H_0: eta_1=eta_2=\gamma=0, H_1: eta_1
eq 0\cup eta_2
eq 0\cup \gamma_j
eq 0\exists j$ - Modéliser explicitement le MA(h-1) et utiliser un estimateur de covariance standard

$$y_{t+h} - \hat{y}_{t+h|t} = \beta_1 + \beta_2 \hat{y}_{t+h|t} + \gamma \mathbf{x}_t + \eta_t + \sum_{i=1}^{h-1} \theta_i \eta_{t-i}$$

Note : Nulle est la même : n'impose pas de restriction sur θ

Exemple : VAR de Politique Monétaire

- Prévisions produites de manière itérative pour 1 à 8 trimestres à l'avance
- ▶ Benchmark (bm) de marche aléatoire (Fixed Forecast) ou de moyenne constante
- ▶ AR et VAR sélectionnent la longueur de décalage en utilisant BIC
- Forcer la réversion à la moyenne dans l'échantillon en utilisant un estimateur à 2 étapes
 - 1. Estimer la moyenne de l'échantillon, et soustraire pour produire $\tilde{\mathbf{y}}_t = \mathbf{y}_t \hat{\boldsymbol{\mu}}$
 - 2. Estimer VAR sans constante

$$\tilde{\mathbf{y}}_t = \mathbf{\Phi}_1 \tilde{\mathbf{y}}_{t-1} + \ldots + \mathbf{\Phi}_P \tilde{\mathbf{y}}_{t-P} + \boldsymbol{\varepsilon}_t$$

3. Prévision puis ajouter la moyenne dans l'échantillon

$$\mathsf{E}_t\left[\tilde{\mathsf{y}}_{t+h}\right] + \hat{\boldsymbol{\mu}}$$

Évaluation basée sur MSE relatif :

Rel. MSE =
$$\frac{\text{MSE}}{\text{MSE}_{bm}}$$
, MSE = $1/(T - h - R)\sum_{t=R}^{T-h} (y_{t+h} - \hat{y}_{t+h|t})^2$

Exemple : VAR de Politique Monétaire

Horizon	Série	VAR		AR	
		Restreinte	Non restreinte	Restreinte	Non restreinte
1	Chômage	0.522	0.520	0.507	0.507
	Taux des fonds fédéraux	0.887	0.903	0.923	0.933
	Inflation	0.869	0.868	0.839	0.840
2	Chômage	0.716	0.710	0.717	0.718
	Taux des fonds fédéraux	0.923	0.943	1.112	1.130
	Inflation	1.082	1.081	1.031	1.030
4	Chômage	0.872	0.861	0.937	0.940
	Taux des fonds fédéraux	0.952	0.976	1.082	1.109
	Inflation	1.000	0.999	0.998	0.998
8	Chômage	0.820	0.806	0.973	0.979
	Taux des fonds fédéraux	0.974	1.007	1.062	1.110
	Inflation	1.001	1.000	0.998	0.997

Performances de prévision VAR vs AR

- 1. Le taux de chômage,
- 2. Le taux des Fed Funds,
- 3. L'inflation.

Les prévisions sont réalisées à partir de 50 % de l'échantillon disponible, et les paramètres du modèle sont réestimés à chaque itération.

La précision des prévisions est mesurée par la Mean Squared Error (MSE) hors échantillon, comparée à celle d'un modèle de référence (random walk pour le Fed Funds rate et moyenne historique pour les autres variables).

Deux variantes du VAR sont testées :

- ▶ Modèle restreint : Forcé à converger vers la moyenne historique.
- ▶ Modèle non restreint : Estime librement les paramètres, y compris l'intercept.

Le VAR intègre des interactions entre plusieurs séries temporelles, offrant des prévisions plus précises que les modèles univariés dans 7 cas sur 12. Lorsqu'il n'est pas optimal, il reste compétitif.

En **politique monétaire** et plus généralement en macroéconomie, permet d'anticiper l'impact des chocs et améliorer la prise de décision.

Estimation

Estimation et Identification

- Identification univariée : Box-Jenkins
 - ▶ Utiliser ACF et PACF pour déterminer l'ordre de décalage AR et MA
 - Examiner les résidus
 - Principe de parcimonie
- L'autocorrélation d'un processus scalaire est définie

$$\rho_{\rm S} = \frac{\gamma_{\rm S}}{\gamma_{\rm 0}}$$

où γ_s est la $s^{\mathrm{\`e}me}$ autocovariance

► Coefficient de régression :

$$y_t = \mu + \rho_s y_{t-s} + \varepsilon_t$$

- Autocorrélation partielle ψ_s
 - ▶ Interprétation de régression de la $s^{\text{ème}}$ autocorrélation partielle :

$$y_t = \mu + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \ldots + \phi_{s-1} y_{t-s+1} + \psi_s y_{t-s} + \varepsilon_t$$

 $ightharpoonup \psi$ est la $s^{
m ème}$ autocorrélation partielle

CCF et PCCF

(Fonction Cross Correlation) et (Fonction Cross Correlation Partielle)

- Équivalents multivariés
 - ACF et PACF ont les mêmes définitions de régression
 - Fonction de corrélation croisée

$$\begin{split} \rho_{xy,s} &= \frac{\mathsf{E}\left[\left(x_{t} - \mu_{x}\right)\left(y_{t-s} - \mu_{y}\right)\right]}{\sqrt{\mathsf{V}\left[x_{t}\right]\mathsf{V}\left[y_{t}\right]}} \\ \rho_{yx,s} &= \frac{\mathsf{E}\left[\left(y_{t} - \mu_{y}\right)\left(x_{t-s} - \mu_{x}\right)\right]}{\sqrt{\mathsf{V}\left[x_{t}\right]\mathsf{V}\left[y_{t}\right]}} \end{split}$$

- Généralement différent
- Fonction de corrélation partielle croisée $\psi_{xy,s}$

$$x_{t} = \phi_{0} + \phi_{x1}x_{t-1} + \dots + \phi_{xs-1}x_{t-(s-1)} + \phi_{y1}y_{t-1} + \dots + \phi_{ys-1}y_{t-(s-1)} + \varphi_{xy,s}y_{t-s} + \varepsilon_{x,t}$$

- Peut aider à identifier l'ordre VAR
- Problème plus profond : trop nombreux et trop compliqués
- ► Solution simple : Sélection de modèle

Interprétation des CCF et PCCF

y a une dynamique (Hétérogène) HAR et se "déverse" dans x

$$\begin{bmatrix} x_t \\ y_t \end{bmatrix} = \begin{bmatrix} 0.5 & 0.9 \\ .0 & 0.47 \end{bmatrix} \begin{bmatrix} x_{t-1} \\ y_{t-1} \end{bmatrix} + \sum_{i=2}^{5} \begin{bmatrix} 0 & 0 \\ 0 & 0.06 \end{bmatrix} \begin{bmatrix} x_{t-i} \\ y_{t-i} \end{bmatrix} + \sum_{i=6}^{22} \begin{bmatrix} 0 & 0 \\ 0 & 0.01 \end{bmatrix} \begin{bmatrix} x_{t-j} \\ y_{t-j} \end{bmatrix} + \begin{bmatrix} \varepsilon_{x,t} \\ \varepsilon_{y,t} \end{bmatrix}$$

détaillée par

$$\begin{bmatrix} x_t \\ y_t \end{bmatrix} = \underbrace{\begin{bmatrix} 0.5 & 0.9 \\ 0 & 0.47 \end{bmatrix} \begin{bmatrix} x_{t-1} \\ y_{t-1} \end{bmatrix}}_{\text{D\'ependance imm\'ediate sur } t-1} + \underbrace{\sum_{i=2}^{5} \begin{bmatrix} 0 & 0 \\ 0 & 0.06 \end{bmatrix} \begin{bmatrix} x_{t-i} \\ y_{t-i} \end{bmatrix}}_{\text{Effet de m\'emoire moyen terme (lags 2-5) sur } y_t$$

$$+ \underbrace{\sum_{j=6}^{22} \begin{bmatrix} 0 & 0 \\ 0 & 0.01 \end{bmatrix} \begin{bmatrix} x_{t-j} \\ y_{t-j} \end{bmatrix}}_{\text{Innovations}} + \underbrace{\begin{bmatrix} \varepsilon_{x,t} \\ \varepsilon_{y,t} \end{bmatrix}}_{\text{Innovations}}$$

Graph des séries

Données simulées

ACF et CCFS

Économétrie des Séries Temporelles - Chapitre 4

51 / 82

Fonctions PACF

PACF

PACF de x_t

PACF de y_t

Sélection de modèle

- ▶ Étape 1 : Choisir la longueur de décalage maximale
 - Critères d'information

$$\begin{array}{ll} \text{AIC:} & & \ln |\mathbf{\Sigma}(P)| + k^2 P \, \frac{2}{T} \\ \text{Hannan-Quinn IC (HQIC):} & & \ln |\mathbf{\Sigma}(P)| + k^2 P \frac{\ln \ln T}{T} \\ \text{SIC:} & & \ln |\mathbf{\Sigma}(P)| + k^2 P \frac{\ln T}{T} \end{array}$$

- \triangleright $\Sigma(P)$ est la covariance des résidus en utilisant P décalages
- ▶ | · | est le déterminant
- ▶ Basé sur l'hypothèse de test
 - ► Général à Spécifique
 - Spécifique à Général
- Rapport de vraisemblance

$$\left(T-P_2k^2\right)\left(\ln|\mathbf{\Sigma}\left(P_1\right)|-\ln|\mathbf{\Sigma}\left(P_2\right)|\right)\overset{A}{\sim}\chi^2_{\left(P_2-P_1\right)k^2}$$

Sélection de la longueur de décalage dans le VAR de la Politique Monétaire

► Décalage maximal : 12 (1 an)

Longueur de décalage	AIC	HQIC	BIC	LR	P-val
0	4.014	3.762	3.605	925	0.000
1	0.279	0.079	$0.000^{ abla\Delta}$	39.6	0.000
2	0.190	0.042	0.041	40.9	0.000
3	0.096	$0.000^{ abla}$	0.076	29.0	0.001
4	$0.050^{ abla}$	0.007	0.160	7.34	0.602^{∇}
5	0.094	0.103	0.333	29.5	0.001
6	0.047	0.108	0.415	13.2	0.155
7	0.067	0.180	0.564	32.4	0.000
8	0.007	0.172^{Δ}	0.634	19.8	0.019
9	0.000^{Δ}	0.217	0.756	7.68	0.566^{Δ}
10	0.042	0.312	0.928	13.5	0.141
11	0.061	0.382	1.076	13.5	0.141
12	0.079	0.453	1.224	-	-

Causalité de Granger

- Premier concept fondamentalement nouveau
- ▶ Examine si les décalages d'une variable sont utiles pour prédire une autre

Définition (Causalité de Granger)

Une variable aléatoire scalaire $\{x_t\}$ est dite **ne pas** causer au sens de Granger $\{y_t\}$ si $\operatorname{E}\left[y_t\mid x_{t-1},y_{t-1},x_{t-2},y_{t-2},\ldots\right]=\operatorname{E}\left[y_t\mid y_{t-1},y_{t-2},\ldots\right]$. C'est-à-dire, $\{x_t\}$ ne cause pas au sens de Granger si la prévision de y_t est la même que l'on conditionne ou non sur les valeurs passées de x_t .

Causalité de Granger

- ▶ Se traduit directement en une restriction dans un VAR
- Non restreint

$$\left[\begin{array}{c} x_t \\ y_t \end{array}\right] = \left[\begin{array}{c} \phi_{01} \\ \phi_{02} \end{array}\right] + \left[\begin{array}{cc} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{array}\right] \left[\begin{array}{c} x_{t-1} \\ y_{t-1} \end{array}\right] + \left[\begin{array}{c} \varepsilon_{1,t} \\ \varepsilon_{2,t} \end{array}\right]$$

ightharpoonup Restreint de sorte que x_t ne GC pas y_t

$$\begin{bmatrix} x_t \\ y_t \end{bmatrix} = \begin{bmatrix} \phi_{01} \\ \phi_{02} \end{bmatrix} + \begin{bmatrix} \phi_{11} & \phi_{12} \\ 0 & \phi_{22} \end{bmatrix} \begin{bmatrix} x_{t-1} \\ y_{t-1} \end{bmatrix} + \begin{bmatrix} \varepsilon_{1,t} \\ \varepsilon_{2,t} \end{bmatrix}$$

$$x_t = \phi_{01} + \phi_{11}x_{t-1} + \phi_{12}y_{t-1} + \varepsilon_{1,t}$$

$$y_t = \phi_{02} + \phi_{22}y_{t-1} + \varepsilon_{2,t} \Leftarrow \text{ Pas de } x_t!$$

Plus de causalité de Granger

▶ Dans le modèle de décalage P

$$\mathbf{y}_t = \mathbf{\Phi}_0 + \mathbf{\Phi}_1 \mathbf{y}_{t-1} + \mathbf{\Phi}_2 \mathbf{y}_{t-2} + \ldots + \mathbf{\Phi}_P \mathbf{y}_{t-P} + \varepsilon_t$$

l'hypothèse nulle est

$$H_0: \phi_{ij,1} = \phi_{ij,2} = \ldots = \phi_{ij,P} = 0$$

Alternative est

$$H_0: \phi_{ij,1} \neq 0$$
 ou $\phi_{ij,2} \neq 0$ ou ... ou $\phi_{ij,P} \neq 0$

► Test du rapport de vraisemblance

$$\left(T - Pk^2\right)\left(\ln |\mathbf{\Sigma}_r| - \ln |\mathbf{\Sigma}_u|\right) \stackrel{A}{\sim} \chi_P^2$$

- \triangleright Σ_u est la covariance des erreurs à partir du modèle non restreint
- $ightharpoonup \Sigma_r$ est la covariance des erreurs à partir du modèle restreint
- $T Pk^2$ est le nombre d'observations moins le nombre de paramètres libres dans le modèle non restreint
 - Pourquoi χ_P^2 ?

VAR de Politique Monétaire - Campbell

- ▶ Outil standard dans l'analyse de la politique monétaire
 - Taux de chômage (différencié)
 - Taux des fonds fédéraux
 - ► Taux d'inflation (différencié)

$$\left[\begin{array}{c} \Delta \text{UNEMP}_t \\ \text{FF}_t \\ \Delta \text{INF}_t \end{array} \right] = \Phi_0 + \Phi_1 \left[\begin{array}{c} \Delta \text{UNEMP}_{t-1} \\ \text{FF}_{t-1} \\ \Delta \text{INF}_{t-1} \end{array} \right] + \left[\begin{array}{c} \varepsilon_{1,t} \\ \varepsilon_{2,t} \\ \varepsilon_{3,t} \end{array} \right]$$

Causalité de Granger dans le VAR de Campbell

- ▶ Utiliser le modèle avec 3 décalages (HQIC)
- \vdash $H_0: \phi_{ii,1} = \phi_{ii,2} = \phi_{ii,3} = 0$
- ► $H_1: \phi_{ii,1} \neq 0$ ou $\phi_{ii,2} \neq 0$ ou $\phi_{ii,3} \neq 0$
- ▶ i représente la série affectée par les décalages de la série j

	Taux des fonds fédéraux		Inflation		Chômage	
Exclusion	P-val	Stat	P-val	Stat	P-val	Stat
Taux des fonds fédéraux	=	-	0.001	13.068	0.014	8.560
Inflation	0.001	14.756	-	-	0.375	1.963
Chômage	0.000	19.586	0.775	0.509	=	-
Tous	0.000	33.139	0.000	18.630	0.005	10.472

Fonctions de réponse impulsionnelle

- ▶ Deuxième concept fondamentalement nouveau
- La dynamique complexe d'un VAR rend l'interprétation directe des coefficients difficile
- La solution est d'examiner les réponses impulsionnelles
- La fonction de réponse impulsionnelle de y_i par rapport à un choc dans ε_j , pour tout j et i, est définie comme le changement dans $y_{it+s}, s \geq 0$ pour un choc unitaire dans ε_{jt}
 - Difficile à déchiffrer
- ► Tant que y_t est stationnaire en covariance, il doit avoir une représentation VMA,

$$\mathbf{y}_t = \boldsymbol{\mu} + \boldsymbol{\varepsilon}_t + \mathbf{\Xi}_1 \boldsymbol{\varepsilon}_{t-1} + \mathbf{\Xi}_2 \boldsymbol{\varepsilon}_{t-2} + \dots$$

- \triangleright Ξ_i sont les réponses impulsionnelles !
- ► Pourquoi ?
 - Mesurent directement l'effet dans la période j de tout choc

AP(P) et $MA(\infty)$

► Tout AR(P) stationnaire

$$y_t = \phi_0 + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \ldots + \phi_P y_{t-P} + \varepsilon_t$$

peut être représenté comme un $MA(\infty)$

$$y_t = \phi_0/(1 - \phi_1 - \phi_2 - \ldots - \phi_P) + \varepsilon_t + \sum_{i=1}^{\infty} \theta_i \varepsilon_{t-i}$$

► AR(1)

$$y_t = \phi_0 + \phi_1 y_{t-1} + \varepsilon_t$$

devient

$$y_t = \phi_0 / (1 - \phi_1) + \varepsilon_t + \sum_{i=1}^{\infty} \phi_1^i \varepsilon_{t-i}$$

▶ Les VAR(P) stationnaires ont la même relation avec VMA(∞)

$$\mathbf{y}_t = \Phi_0 + \Phi_1 \mathbf{y}_{t-1} + \Phi_2 \mathbf{y}_{t-2} + \ldots + \Phi_P \mathbf{y}_{t-P} + \varepsilon_t$$

$$\mathbf{y}_t = \boldsymbol{\mu} + \boldsymbol{\varepsilon}_t + \boldsymbol{\Xi}_1 \boldsymbol{\varepsilon}_{t-1} + \boldsymbol{\Xi}_2 \boldsymbol{\varepsilon}_{t-2} + \dots$$

61 / 82

Résolution IR

Facile dans VAR(1)

$$y_t = (\mathbf{I}_K - \Phi_1)^{-1} \Phi_0 + \varepsilon_t + \Phi_1 \varepsilon_{t-1} + \Phi_1^2 \varepsilon_{t-2} + \dots$$

- $\mathbf{E}_j = \Phi_1^j$
- Dans le VAR(P) général,

$$\Xi_j = \Phi_1 \Xi_{j-1} + \Phi_2 \Xi_{j-2} + \ldots + \Phi_P \Xi_{j-P}$$

où $\Xi_0 = \mathbf{I}_k$ et $\Xi_m = 0$ pour m < 0.

Dans un VAR(2),

$$\begin{aligned} y_t &= \Phi_1 y_{t-1} + \Phi_2 y_{t-2} + \varepsilon_t \\ -\Xi_0 &= \mathbf{I}_k, \Xi_1 = \Phi_1, \Xi_2 = \Phi_1^2 + \Phi_2, \text{ et } \Xi_3 = \Phi_1^3 + \Phi_1 \Phi_2 + \Phi_2 \Phi_1 \end{aligned}$$

Les intervalles de confiance sont également assez compliqués

Considérations pour les chocs

▶ VAR bivariée simple d'ordre 1

$$\left[\begin{array}{c} x_t \\ y_t \end{array}\right] = \left[\begin{array}{c} \phi_{01} \\ \phi_{02} \end{array}\right] + \left[\begin{array}{cc} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{array}\right] \left[\begin{array}{c} x_{t-1} \\ y_{t-1} \end{array}\right] + \left[\begin{array}{c} \varepsilon_{1,t} \\ \varepsilon_{2,t} \end{array}\right]$$

- La manière dont vous choquez importe
- ▶ Dépend de la corrélation entre $\varepsilon_{1,t}$ et $\varepsilon_{2,t}$
- 3 méthodes
 - ▶ Ignorer la corrélation et choquer simplement $\varepsilon_{i,t}$ avec un choc d'écart-type unitaire
 - Utiliser Cholesky pour factoriser Σ et utiliser Σ^{1/2}e_j où e_j est un vecteur de zéros avec 1 dans la j^{ème} position

$$\mathbf{\Sigma} = \begin{bmatrix} 1 & .5 \\ .5 & 1 \end{bmatrix} \quad \mathbf{\Sigma}_C^{1/2} = \begin{bmatrix} 1 & 0 \\ .5 & .866 \end{bmatrix}$$

- L'ordre des variables importe
- * "Réponse impulsionnelle généralisée" qui utilise une méthode de projection

Exemple des différents chocs

Définir la covariance des erreurs

$$\mathbf{\Sigma} = \left[\begin{array}{cc} \sigma_{\mathbf{x}}^2 & \sigma_{\mathbf{x}} \sigma_{\mathbf{y}} \rho \\ \sigma_{\mathbf{x}} \sigma_{\mathbf{y}} \rho & \sigma_{\mathbf{y}}^2 \end{array} \right]$$

Standardisé

$$\left[\begin{array}{c}\sigma_x\\0\end{array}\right]\ {\rm et}\ \left[\begin{array}{c}0\\\sigma_y\end{array}\right]$$

Cholesky

$$\begin{split} \boldsymbol{\Sigma}_{C}^{1/2} \left[\begin{array}{c} \boldsymbol{0} \\ \boldsymbol{1} \end{array} \right] &= \left[\begin{array}{c} \sigma_{x} & \boldsymbol{0} \\ \sigma_{y}\rho & \sigma_{y}\sqrt{1-\rho^{2}} \end{array} \right] \left[\begin{array}{c} \boldsymbol{0} \\ \boldsymbol{1} \end{array} \right] = \left[\begin{array}{c} \boldsymbol{0} \\ \sigma_{y}\sqrt{1-\rho^{2}} \end{array} \right] \\ \left[\begin{array}{c} \sigma_{x} & \boldsymbol{0} \\ \sigma_{y}\rho & \sigma_{y}\sqrt{1-\rho^{2}} \end{array} \right] \left[\begin{array}{c} \boldsymbol{1} \\ \boldsymbol{0} \end{array} \right] = \left[\begin{array}{c} \sigma_{x} \\ \sigma_{y}\rho \end{array} \right], \text{ autre est } \left[\begin{array}{c} \boldsymbol{0} \\ \sigma_{y}\sqrt{1-\rho^{2}} \end{array} \right] \end{split}$$

Réponses impulsionnelles

- ► Taux des fonds fédéraux ordonné en premier
- ► Réponse à un choc des fonds fédéraux
- ► Factorisation de Cholesky

```
irf_var_FF_INF <- irf(PolMon, impulse = "DFF.d", response = "GDPDEF.dd")
irf_var_FF_UNRATE <- irf(PolMon, impulse = "DFF.d", response = "UNRATE.d")
irf_var_FF_FF <- irf(PolMon, impulse = "DFF.d", response = "DFF.d")
par(mfrow=c(1,3))
plot(irf_var_FF_INF)
plot(irf_var_FF_UNRATE)
plot(irf_var_FF_FF)
par(mfrow=c(1,1))</pre>
```


Cointégration

- ▶ La cointégration est la version VAR des racines unitaires
- ▶ Établit des relations à long terme entre deux variables à racine unitaire
 - La consommation a une racine unitaire, le revenu a une racine unitaire
 - ► Consommation Revenu : ????

Définition (Intégré d'Ordre 1)

Une variable y_t est intégrée d'ordre 1, ou l(1), si y_t est non stationnaire et $\Delta y_t = y_t - y_{t-1}$ est stationnaire.

Cointégration

Définition (Cointégration Bivariée)

Si x_t et y_t sont cointégrés si les deux sont l(1) et il existe un vecteur β avec les deux éléments non nuls tels que

$$\beta_1 x_t - \beta_2 y_t \sim I(0)$$

- ▶ Lien fort entre x_t et y_t
- Les deux sont des marches aléatoires mais la différence est à retour moyen
- Retour moyen à la tendance (tendance stochastique)

67 / 82

À quoi ressemble la cointégration ?

$$\mathbf{y}_{t} = \mathbf{\Phi}_{ij}\mathbf{y}_{t-1} + \varepsilon_{t}$$

$$\mathbf{\Phi}_{11} = \begin{bmatrix} 0.8 & 0.2 \\ 0.2 & 0.8 \end{bmatrix}, \quad \lambda_{i} = 1, 0.6$$

$$\mathbf{\Phi}_{21} = \begin{bmatrix} 0.7 & 0.2 \\ 0.2 & 0.7 \end{bmatrix}, \quad \lambda_{i} = 0.9, 0.5$$

$$\mathbf{\Phi}_{12} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \lambda_{i} = 1, 1$$

$$\mathbf{\Phi}_{22} = \begin{bmatrix} -0.3 & 0.3 \\ 0.1 & -0.2 \end{bmatrix}, \quad \lambda_{i} = -0.43, -0.06$$

Persistance, Anti-persistance et Cointégration

Comment savons-nous quand un VAR est cointégré ?

▶ La condition des valeurs propres détermine si un VAR(1) est cointégré

$$\left[\begin{array}{c} y_t \\ x_t \end{array}\right] = \left[\begin{array}{cc} .8 & .2 \\ .2 & .8 \end{array}\right] \left[\begin{array}{c} y_{t-1} \\ x_{t-1} \end{array}\right] + \left[\begin{array}{c} \varepsilon_{1,t} \\ \varepsilon_{2,t} \end{array}\right]$$

- Cointégré si une seule valeur propre est unitaire.
- ► Si tous inférieurs à 1 · ??
- ▶ Si les deux 1 : deux racines unitaires indépendantes

$$\mathbf{\Phi}_{11} = \begin{bmatrix} .8 & .2 \\ .2 & .8 \end{bmatrix} \quad \mathbf{\Phi}_{12} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
\lambda_i = 1, 0.6
\lambda_i = 1, 1$$

$$\mathbf{\Phi}_{21} = \begin{bmatrix} .7 & .2 \\ .2 & .7 \end{bmatrix} \quad \mathbf{\Phi}_{22} = \begin{bmatrix} -.3 & .3 \\ .1 & -.2 \end{bmatrix}
\lambda_i = 0.9, 0.5$$

$$\lambda_i = -0.43, -0.06$$

Modèles de Correction d'Erreur

- ▶ Point majeur de la cointégration
 - ► Cointégré ⇔ Modèle de correction d'erreur
- Qu'est-ce qu'un modèle de correction d'erreur ?
 - VAR cointégré :

$$\left[\begin{array}{c} y_t \\ x_t \end{array}\right] = \left[\begin{array}{cc} .8 & .2 \\ .2 & .8 \end{array}\right] \left[\begin{array}{c} y_{t-1} \\ x_{t-1} \end{array}\right] + \left[\begin{array}{c} \varepsilon_{1,t} \\ \varepsilon_{2,t} \end{array}\right]$$

► Modèle de correction d'erreur :

$$\left[\begin{array}{c} \Delta y_t \\ \Delta x_t \end{array}\right] = \left[\begin{array}{cc} -.2 & .2 \\ .2 & -.2 \end{array}\right] \left[\begin{array}{c} y_{t-1} \\ x_{t-1} \end{array}\right] + \left[\begin{array}{c} \varepsilon_{1,t} \\ \varepsilon_{2,t} \end{array}\right]$$

Forme normalisée

$$\left[\begin{array}{c} \Delta y_t \\ \Delta x_t \end{array}\right] = \left[\begin{array}{c} -.2 \\ .2 \end{array}\right] \left[\begin{array}{c} 1 & -1 \end{array}\right] \left[\begin{array}{c} y_{t-1} \\ x_{t-1} \end{array}\right] + \left[\begin{array}{c} \varepsilon_{1,t} \\ \varepsilon_{2,t} \end{array}\right]$$

- ▶ [1 1] est le vecteur de cointégration
- ▶ [-.2 .2]′ mesure la vitesse d'ajustement

De VAR à VECM

$$\left[\begin{array}{c} y_t \\ x_t \end{array}\right] = \left[\begin{array}{cc} .8 & .2 \\ .2 & .8 \end{array}\right] \left[\begin{array}{c} y_{t-1} \\ x_{t-1} \end{array}\right] + \left[\begin{array}{c} \varepsilon_{1,t} \\ \varepsilon_{2,t} \end{array}\right]$$

Soustraire $[y_{t-1}x_{t-1}]'$ des deux côtés

$$\begin{bmatrix} y_{t} \\ x_{t} \end{bmatrix} - \begin{bmatrix} y_{t-1} \\ x_{t-1} \end{bmatrix} = \begin{bmatrix} .8 & .2 \\ .2 & .8 \end{bmatrix} \begin{bmatrix} y_{t-1} \\ x_{t-1} \end{bmatrix} - \begin{bmatrix} y_{t-1} \\ x_{t-1} \end{bmatrix} + \begin{bmatrix} \varepsilon_{1,t} \\ \varepsilon_{2,t} \end{bmatrix}$$

$$\begin{bmatrix} \Delta y_{t} \\ \Delta x_{t} \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} .8 & .2 \\ .2 & .8 \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \end{pmatrix} \begin{bmatrix} y_{t-1} \\ x_{t-1} \end{bmatrix} + \begin{bmatrix} \varepsilon_{1,t} \\ \varepsilon_{2,t} \end{bmatrix}$$

$$\begin{bmatrix} \Delta y_{t} \\ \Delta x_{t} \end{bmatrix} = \begin{bmatrix} -.2 & .2 \\ .2 & -.2 \end{bmatrix} \begin{bmatrix} y_{t-1} \\ x_{t-1} \end{bmatrix} + \begin{bmatrix} \varepsilon_{1,t} \\ \varepsilon_{2,t} \end{bmatrix}$$

$$\begin{bmatrix} \Delta y_{t} \\ \Delta x_{t} \end{bmatrix} = \begin{bmatrix} -.2 \\ .2 \end{bmatrix} \begin{bmatrix} 1 & -1 \end{bmatrix} \begin{bmatrix} y_{t-1} \\ x_{t-1} \end{bmatrix} + \begin{bmatrix} \varepsilon_{1,t} \\ \varepsilon_{2,t} \end{bmatrix}$$

Vecteurs de cointégration

La relation de cointégration peut toujours être décomposée

$$\Delta \mathsf{y}_t = \pi \mathsf{y}_{t-1} + arepsilon_t$$
 $\pi = lpha eta'$

- $ightharpoonup \alpha$ mesure la vitesse de convergence
- ightharpoonup eta contiennent les vecteurs de cointégration
- Le nombre de vecteurs de cointégration est rank $(\alpha \beta')$

$$\alpha \beta' = \begin{bmatrix} 0.3 & 0.2 & -0.36 \\ 0.2 & 0.5 & -0.35 \\ -0.3 & -0.3 & 0.39 \end{bmatrix}$$

► Combien ?

Détermination des vecteurs de cointégration

$$\Delta \mathbf{y}_t = \pi \mathbf{y}_{t-1} + \varepsilon_t
\pi = \begin{bmatrix}
0.3 & 0.2 & -0.36 \\
0.2 & 0.5 & -0.35 \\
-0.3 & -0.3 & 0.39
\end{bmatrix}$$

ightharpoonup Mettre π sous forme échelonnée par ligne

Forme Échelonnée par Ligne =
$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -0.3 \\ 0 & 0 & 0 \end{bmatrix}$$

• Rappel $\pi = \alpha \beta'$

$$\beta = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ -1 & -.3 \end{bmatrix} \qquad \alpha = \begin{bmatrix} .3 & .2 \\ .2 & .5 \\ -.3 & -.3 \end{bmatrix}$$

Résolution des vecteurs de cointégration

$$\alpha\beta' = \begin{bmatrix} 0.3 & 0.2 & -0.36 \\ 0.2 & 0.5 & -0.35 \\ -0.3 & -0.3 & 0.39 \end{bmatrix}$$
 Forme Échelonnée par Ligne $\Rightarrow \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -0.3 \\ 0 & 0 & 0 \end{bmatrix}$
$$\beta = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ \beta_1 & \beta_2 \end{bmatrix}$$

et α a 6 paramètres inconnus. $\alpha\beta'$ peut être combiné pour produire

$$\pi = \begin{bmatrix} \alpha_{11} & \alpha_{12} & \alpha_{11}\beta_1 + \alpha_{12}\beta_2 \\ \alpha_{21} & \alpha_{22} & \alpha_{21}\beta_1 + \alpha_{22}\beta_2 \\ \alpha_{31} & \alpha_{32} & \alpha_{31}\beta_1 + \alpha_{32}\beta_2 \end{bmatrix}$$

Tester la cointégration

- ▶ Deux tests pour la cointégration
 - Engle-Granger
 - Johansen
- ▶ Nous allons nous concentrer sur Engle-Granger
 - ► Simple et intuitif
 - Seulement applicable avec 1 relation de cointégration
- ► Tester la propriété clé de la cointégration : la différence est I(0)
- ▶ La plupart du travail est une simple OLS

$$y_t = \delta_0 + \beta x_t + \varepsilon_t$$

- Reste du travail est de tester $\hat{\varepsilon}_t$ pour une racine unitaire
- ▶ Johansen teste les valeurs propres de $\pi = \alpha \beta'$ directement.

Procédure Engle-Granger

Algorithme (Test Engle-Granger)

- 1. Commencer par analyser x_t et y_t isolément. Les deux doivent être des racines unitaires pour envisager la cointégration.
- 2. Estimer la relation à long terme

$$y_t = \delta_0 + \beta x_t + \varepsilon_t$$

et tester $H_0: \gamma = 0$ contre $H_0: \gamma < 0$ dans la régression ADF

$$\Delta \hat{\varepsilon}_t = \gamma \hat{\varepsilon}_{t-1} + \delta_1 \Delta \hat{\varepsilon}_{t-1} + \ldots + \delta_p \Delta \hat{\varepsilon}_{t-P} + \eta_t$$

 En utilisant les paramètres estimés, spécifier et estimer la forme de correction d'erreur de la relation,

$$\left[\begin{array}{c} \Delta x_t \\ \Delta y_t \end{array}\right] = \begin{array}{c} \pi_{01} \\ \pi_{02} \end{array} + \begin{array}{c} \alpha_1 \hat{\varepsilon}_t \\ \alpha_2 \hat{\varepsilon}_t \end{array} + \pi_1 \left[\begin{array}{c} \Delta x_{t-1} \\ \Delta y_{t-1} \end{array}\right] + \ldots + \pi_P \left[\begin{array}{c} \Delta x_{t-P} \\ \Delta y_{t-P} \end{array}\right] + \left[\begin{array}{c} \eta_{1,t} \\ \eta_{2,t} \end{array}\right]$$

4. Évaluer le modèle

Considérations Engle-Granger

- Termes déterministes
 - Pas de termes déterministes : seulement dans des circonstances spéciales

$$y_t = \beta x_t + \varepsilon_t$$

► Constante : cas standard

$$y_t = \delta_0 + \beta x_t + \varepsilon_t$$

 Constante et tendance temporelle : permettre différents taux de croissance/tendances temporelles dans les variables

$$y_t = \delta_0 + \delta_1 t + \beta x_t + \varepsilon_t$$

Valeurs Critiques

- Les valeurs critiques dépendent des déterministes dans la régression CI
 - Les modèles avec plus de déterministes ont des valeurs critiques plus basses (plus négatives)
- Les valeurs critiques dépendent du nombre de variables I(1) du côté droit
 - Les modèles plus grands ont des valeurs critiques plus basses

Exemple: cay

- La relation consommation-richesse agrégée a été une série cointégrée intéressante dans la littérature financière récente
- ► A relancé le CCAPM
- ► Trois composantes :
 - Consommation (c)
 - ► Richesse en actifs (a)
 - Revenu du travail (richesse humaine) (y)
- ▶ Écart par rapport à la relation à long terme lié au rendement attendu
- ▶ Relation de cointégration : $c_t + 0.643 0.249a_t 0.785y_t$

	Tests de racine unitaire		
Série	T-stat	P-val	Décalages ADF
С	-1.198	0.674	5
а	-0.205	0.938	3
У	-2.302	0.171	0
$\hat{\varepsilon}_t^c$	-2.706	0.383	1
êt êt êt ê∙	-2.573	0.455	0
$\hat{\varepsilon}_t^{\hat{y}}$	-2.679	0.398	1

```
# Télécharger les données
consommation <- fredr(series id = "PCE", observation start = as.Date("1955-01-0
richesse <- fredr(series_id = "TNWBSHNO", observation_start = as.Date("1955-01-
revenu <- fredr(series id = "PI", observation start = as.Date("1955-01-01"), ob
# Fusionner les données
donnees <- consommation %>%
  select(date, valeur c = value) %>%
  left_join(richesse %>% select(date, valeur_a = value), by = "date") %>%
  left_join(revenu %>% select(date, valeur_y = value), by = "date")
# Nettoyer les données
donnees <- na.omit(donnees)</pre>
donnees <- donnees %>%
  mutate(
    log_c = log(valeur_c),
    log_a = log(valeur_a),
    log_y = log(valeur_y)
# Test de stationnarité
adf.test(donnees$log c)
## Augmented Dickey-Fuller Test
## alternative: stationary
##
## Type 1: no drift no trend
##
```

lag ADF p.value ## [1,] 0 22.22 0.99 <u>Économétrie des Séries Temporelles - Chapitre 4</u> 80 / 82

Modèle Vectoriel de Correction d'Erreur

▶ VECM estimé en utilisant les résidus de la régression de cointégration

$$\begin{bmatrix} \Delta c_t \\ \Delta g_t \\ \Delta g_t \\ \Delta g_t \end{bmatrix} = \begin{bmatrix} 0.003 \\ (0.000) \\ (0.004) \\ (0.014) \\ 0.003 \\ (0.000) \end{bmatrix} + \begin{bmatrix} -0.000 \\ (0.281) \\ 0.002 \\ (0.037) \\ 0.000 \\ (0.515) \end{bmatrix} \hat{\varepsilon}_{t-1} + \begin{bmatrix} 0.192 & 0.102 & 0.139 \\ 0.005) & (0.000) & (0.004) \\ 0.282 & 0.220 & -0.149 \\ (0.116) & (0.006) & (0.414) \\ 0.369 & 0.061 & -0.139 \\ (0.000) & (0.088) & (0.140) \end{bmatrix} \begin{bmatrix} \Delta c_{t-1} \\ \Delta g_{t-1} \\ \Delta g_{t-1} \end{bmatrix} + \eta_t$$

- Valeurs p entre parenthèses
- Estimation de la relation de cointégration n'a aucun effet sur les erreurs standard
 - Converge rapidement (T)
 - Les paramètres VECM convergent à la racine \sqrt{T}

Régression Fallacieuse et Équilibre

- ▶ La prudence est nécessaire lorsqu'on travaille avec des données I(1)
 - ▶ I(0) sur I(0) : Le cas habituel. Les arguments asymptotiques standards s'appliquent.
 - ► I(1) sur I(0) : Cette régression est déséquilibrée.
 - l(1) sur l(1): Cointégration ou régression fallacieuse.
 - ▶ I(0) sur I(1) : Cette régression est déséquilibrée.
- La régression fallacieuse peut conduire à de grandes statistiques t lorsque les séries sont indépendantes.
 - ▶ Deux processus I(1) non liés, x_t et y_t :

$$x_t = x_{t-1} + \varepsilon_t$$

$$y_t = y_{t-1} + \eta_t$$

- Lorsque T = 50, environ 80% des statistiques t sont significatives
- ► Toujours vérifier pour I(1) lors de l'utilisation de données de séries temporelles
- Si les deux sont I(1), assurez-vous qu'ils sont cointégrés.