Machine learning handbook

Classifier

Taeyang Yang

Update: July 13, 2018

BCILAB, UNIST

Supervised vs. unsupervised learning

Supervised learning

Unsupervised learning

Supervised vs. unsupervised learning

Supervised learning

- Linear Regression
- Naïve Bayes (NB) classifier
- Linear Discriminant Analysis (LDA)
- Support Vector Machine (SVM)

Linear Regression (overview)

• Same expression!

$$y = ax + b$$

$$\hat{y} = X\beta + \varepsilon$$

$$y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}, \quad X = \begin{bmatrix} x_1^T \\ x_2^T \\ \vdots \\ x_n^T \end{bmatrix} = \begin{bmatrix} x_{11} & \dots & x_{1p} \\ x_{21} & \dots & x_{2p} \\ \vdots & \ddots & \vdots \\ x_{n1} & \dots & x_{np} \end{bmatrix}, \quad \beta = \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{bmatrix}, \quad \varepsilon = \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix}$$

• Cost (Loss) function

$$J(\beta) = MSE = \frac{1}{2m} \sum_{i=1}^{m} (\hat{y}^{(i)} - y^{(i)})^{2}$$
$$= \frac{1}{2m} \sum_{i=1}^{m} (X^{(i)}\beta + \varepsilon - y^{(i)})^{2}$$

• Cost (Loss) function

$$J(\beta) = MSE = \frac{1}{2m} \sum_{i=1}^{m} (X^{(i)}\beta + \varepsilon - y^{(i)})^2$$

Derivate

$$\frac{\partial J}{\partial \varepsilon} = \frac{1}{m} \sum_{i=1}^{m} (X^{(i)} \beta + \varepsilon - y^{(i)})$$
$$\frac{\partial J}{\partial \beta} = \frac{1}{m} \sum_{i=1}^{m} (X^{(i)} \beta + \varepsilon - y^{(i)}) X^{(i)}$$

Solution 1: Normal equation, derivate=0

$$\varepsilon m + \beta \sum_{i=1}^{m} X^{(i)} = \sum_{i=1}^{m} y^{(i)}$$

$$\varepsilon \sum_{i=1}^{m} X^{(i)} + \beta \sum_{i=1}^{m} X^{(i)^{2}} = \sum_{i=1}^{m} y^{(i)} X^{(i)}$$

Matrix expression

$$\begin{bmatrix} \mathcal{E} \\ \beta \end{bmatrix}^T \begin{bmatrix} m & \sum_{i=1}^m X^{(i)} \\ \sum_{m=1}^m X^{(i)} & \sum_{i=1}^m X^{(i)^2} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^m y^{(i)} \\ \sum_{i=1}^m y^{(i)} X^{(i)} \end{bmatrix}$$

Trick

$$\boldsymbol{w} = \begin{bmatrix} \varepsilon \\ \beta \end{bmatrix}, \boldsymbol{X} = \begin{bmatrix} 1 & \boldsymbol{x}_1^T \\ 1 & \boldsymbol{x}_2^T \\ \vdots \\ 1 & \boldsymbol{x}_n^T \end{bmatrix}, \boldsymbol{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

$$\boldsymbol{X^TX} = \begin{bmatrix} m & \sum_{i=1}^m x_i \\ \sum_{i=1}^m x_i & \sum_{i=1}^m x_i^2 \end{bmatrix}, \boldsymbol{X^Ty} = \begin{bmatrix} \sum_{i=1}^m y_i \\ \sum_{i=1}^m y_i x_i \end{bmatrix}$$

· Estimated weight

$$wX^{T}X = X^{T}y$$
$$w = (X^{T}X)^{-1}X^{T}y$$

Naïve Bayes classifier (overview)

Naïve Bayes classifier

- Bayes theorem-based model
 - Bayes' theorem

Likelihood Class prior probability
$$p(C_k|x) = \frac{p(x|C_k)p(C_k)}{p(x)}$$
 Predictor prior probability

Naïve Bayes classifier

$$p(C_k|x) = \frac{p(x|C_k)p(C_k)}{p(x)}$$

Joint probability: chain rule of conditional probability

$$p(C_k, x_1, ..., x_n) = p(x_1, ..., x_n, C_k)$$

$$= p(x_1 | x_2, ..., x_n, C_k) p(x_2, ..., x_n, C_k)$$

$$= p(x_1 | x_2, ..., x_n, C_k) p(x_2 | x_3, ..., x_n, C_k) p(x_3, ..., x_n, C_k)$$

$$= ...$$

$$= p(x_1 | x_2, ..., x_n, C_k) p(x_2 | x_3, ..., x_n, C_k) ... p(x_n | C_k) p(C_k)$$

- Assumption of "naïve conditional independence":
 - Each x_i is conditionally independent of every other features x_j for $j \neq i$ given the category C_k

$$p(x_i|x_{i+1},...,x_n,C_k) = p(x_i|C_k)$$

Posterior

$$p(C_k|x_1, ... x_n) \propto p(C_k, x_1, ..., x_n) = p(C_k) p(x_1|C_k) p(x_2|C_k) ... p(x_n|C_k)$$
$$= p(C_k) \prod_{i=1}^n p(x_i|C_k)$$

Naïve Bayes classifier

Maximum a posterior (MAP)

$$\hat{y} = \underset{k \in \{1, \dots, K\}}{\operatorname{argmax}} p(C_k) \prod_{i=1}^{n} p(x_i | C_k)$$

- What is $p(x_i|C_k)$?
 - parameter estimation based on assumption of likelihood
 - Gaussian naïve Bayes $\rightarrow \mu, \sigma$

$$p(x = v | C_k) = \frac{1}{\sqrt{2\pi\sigma_k^2}} e^{-\frac{(v - \mu_k)^2}{2\sigma_k^2}}$$

• Multinomial naïve Bayes $\rightarrow p_{ki}$

$$p(X|C_k) = \frac{(\sum_i x_i)!}{\prod_i x_i!} \prod_i p_{ki}^{x^i}$$

Linear Discriminant Analysis (LDA)

Shrinkage Linear discriminant analysis

Support Vector Machine (SVM)

Unsupervised learning

- Random forest
- K-nearest neighborhood
- K-means clustering

Random forest

K-nearest neighborhood

K-means clustering