Universidad de San Carlos de Guatemala Guatemala Facultad de Ingeniería Escuela de Ciencias y Sistemas Prácticas Iniciales 2ndo. Semestre 2025

14 agosto 2025 8:00hrs

Reporte 2: INSTALACIÓN DE LINUX

INTEGRANTES

Astrid Vanesa Kim Ortiz Carmen Pamela Marroquín Salgado Mariana Elizabeth Sulecio Rosales José Luis Saloj Julajuj Emida Meramí García Juárez Darren Daniel Isaac Castro Espinoza

TUTORES

Daniel Abraham Gálvez Solorzano José Daniel Guzmán Hernández

CONTENIDO

RESUMEN	3
INSTALACIÓN DE LINUX	4
Sobre el Sistema Operativo	4
Requisitos del Sistema Anfitrión (Host)	4
Configuración de la Máquina Virtual (VM) en VirtualBox	5
Tipo de Sistema: Linux (64-bit).	5
Instalación de Linux utilizando virtual box	6
Instalación de VirtualBox	6
Crear la máquina virtual	6
Instalar Ubuntu	7
Verificar la instalación	7
PASOS ILUSTRADOS	8
AYUDA	32
VIDEOS GUÍA	34
LIBROS RECOMENDADOS	34
HERRAMIENTAS UTILES	34
ANEXOS	35

RESUMEN

Nuestro objetivo fue instalar debemos contar con los dos sistemas operativos, para esto tuvimos que instalar varios archivos como virtual box y Ubuntu, los cuales nos permitieron instalar Linux sin perder ningún dato o archivo, luego los ejecutamos, colocamos las especificaciones que cada programa necesitaba para correr correctamente y solucionamos errores que nos surgían durante la práctica, al final mostramos como se pudieron solucionar los errores, y como al Linux sin perder Windows, lo que significa que al final del proyecto ir a la información de sistema de nuestro dispositivo, podemos ver ambos sistemas operativos.

INSTALACIÓN DE LINUX

Sobre el Sistema Operativo Requisitos del Sistema Anfitrión (Host)

Windows 10/11, macOS, o Linux (64-bit).

CPU:

Procesador de 64-bit con soporte para virtualización (Intel VT-x / AMD-V).

Recomendado: Mínimo 2 núcleos físicos (4 hilos para mejor rendimiento).

RAM:

Mínimo: 4 GB (para el sistema anfitrión + la máquina virtual).

Recomendado: 8 GB o más si se ejecutan otras aplicaciones en paralelo.

Almacenamiento:

Mínimo: 25 GB de espacio libre en disco (para la VM).

Recomendado: SSD y 40 GB para mayor fluidez y espacio adicional.

VirtualBox:

Versión 7.0 o superior (descargar desde virtualbox.org).

Configuración de la Máquina Virtual (VM) en VirtualBox *Tipo de Sistema: Linux (64-bit).*

Memoria RAM asignada:

Mínimo: 2 GB.

Recomendado: 4 GB (para un rendimiento óptimo).

Almacenamiento Virtual:

Tipo de disco: VDI (VirtualBox Disk Image).

Tamaño: Mínimo 25 GB (asignado dinámicamente para ahorrar espacio).

Procesadores:

Asignar al menos 2 núcleos virtuales (en Configuración > Sistema > Procesador).

Aceleración:

Habilitar PAE/NX y VT-x/AMD-V en Configuración > Sistema > Aceleración.

Gráficos:

Memoria de video: Mínimo 128 MB (recomendado 256 MB).

Habilitar 3D Acceleration si se usa la interfaz gráfica.

Instalación de Linux utilizando virtual box

- Descargar virtual box en la página de Oracle box
- Descargar la versión para Windows
- Descargar el iso de Ubuntu
- Descargar Iso de Ubuntu 24.04.2 LTS (Desde la página de Ubuntu)

Instalación de VirtualBox

- Ejecutar como administrador el ejecutable de VirtualBox
 - Es necesario tener instalado Microsoft visual c++ 2015 2022
 - Proporciona las bibliotecas en tiempo de ejecución
 - Descargarlo desde la página de Microsoft
- Next
- Aceptar los términos y condiciones
- Next
- Yes
- Next
- Install
- Finish

Crear la máquina virtual

- Abrir virtual box
- Seleccionar la opción "nuevo"
- Escribir el nombre de la maquina
- Cargar la imagen iso de Ubuntu 24.04.2 LTS
- Asignar memoria base
- Asignar procesadores
- Asignar el tamaño del disco
 - Este proceso se realiza si se desea realizar una instalación automática
 - De lo contrario se debe marcar la opción de checkbox de omitir la instalación desatendida
 - Y el proceso se realizaría en la configuración de Ubuntu
- En la opción de instalación desatendida
- Asignar nombre de usuario y contraseña
- Confirmación de contraseña
- Terminar

Instalar Ubuntu

- Iniciar la máquina virtual
 - o Si muestra error se debe apagar y configurar la opción de pantalla
 - o Cambiando la memoria de vídeo de 16 MB a 256 MB
 - o Cambiar el controlador grafico de VMSVGA a VBoxSVGA
- Volver a iniciar la maquina
- Seleccionar la opción de Try or Install Ubuntu
- Esperar a que se termine la instalación hasta que muestre el escritorio de Ubuntu

Verificar la instalación

- Abrir una terminal
 - Escribir el comando:
 - o neofetch
 - (Sirve para ver las especificaciones del sistema operativo)
 - Si marca error se debe instalar la librería de neofetch con el siguiente comando:
 - o sudo apt install neofetch
- Volver a escribir el comando: neofetch

PASOS ILUSTRADOS

Abrir el navegador

Buscamos virtual box y le damos clic al enlace que se muestra a continuación

Presionamos para descargar

Seleccionamos el que aparece a continuación

Descargamos y guardamos en archivos

Buscamos en el navegador iso Ubuntu y damos clic al lic que se muestra

Presionamos en Descargar

Presionamos en donde indica la imagen

Descargamos y guardamos en archivos

Buscamos en el navegador lo que se muestra en la imagen

Damos clic en el link que aparece

Damos clic en el enlace que se muestra

Descargamos y guardamos en archivos

Presionamos "repair"

Esperamos a que cargue

Ejecutamos el archivo de virtual box

Presionamos "next"

Seleccionamos que aceptamos los términos

Presionamos "next"

Volvemos a presionar "next"

Presionamos "yes"

Presionamos "next"

Presionamos "install"

Esperamos a que cargue

Presionamos "finish"

Nuestro programa ya debería ejecutarse correctamente

Presionamos en "nuevo" para crear una máquina virtual

Colocamos un nombre y luego en imagen ISO seleccionamos "otro"

Escogemos nuestro archivo Ubuntu anteriormente descargado

Nos vamos a la opción "hardware"

Incrementamos la memoria base y el CPU

Presionamos "Instalación desatendida"

Llenamos los campos solicitados

Presionamos "terminar"

Ya se habrá creado exitosamente

Presionamos el área de "pantalla"

Se debe abrir una ventana como la siguiente

Damos clic en el centro y tiene que salir una ventana como la siguiente

Presionamos en donde se muestra a continuación

Luego tendremos una ventana como esta

Si nos encontramos con este error

Presionamos "x" y "apagar máquina"

Esto nos devolverá a la pantalla inicial

Esta vez nos dirigimos al área "pantalla" y seleccionamos donde dice "controlador Gráfico"

Seleccionamos la opción que se muestra en la imagen y "aceptar"

Luego seleccionamos donde dice "Memoria de video" y lo ponemos al máximo

Luego iniciamos la máquina

Se debe abrir una ventana como la siguiente

Damos clic en el centro y tiene que salir una ventana como la siguiente

Presionamos en donde se muestra a continuación

Luego tendremos una ventana como esta

Esta vez se ejecutará correctamente

Deberá aparecer una pantalla como la siguiente

Luego debe cargar Ubuntu

Luego debes iniciar sesión con la cuenta que se creó anteriormente

Luego presionamos "next"

Presionamos "skip"

Volvemos a presionar "next"

Presionamos "finish"

Presionamos el botón de abajo a la izquiera

Luego presionamos "terminal"

Luego mostrará una ventana como la siguiente

Escribimos "neofetch"

Nos debe mostrar lo que se ve en la pantalla

Luego seleccionar "y"

```
Need to get 16.2 MB of archives.
After this operation, 57.1 MB of additional disk space will be used.
Do you want to continue? [Y/n] y
Get:1 http://archive.ubuntu.com/ubuntu noble/main amd64 libfftw3-double3 amd64 3
.3.10-1ubuntu3 [838 kB]
4% [1 libfftw3-double3 736 kB/838 kB 88%]
```

Luego deberá aparecer esto en la pantalla

Esperamos hasta que finalice la carga

```
Setting up wam-tmg (0.5.3+gtt20230121-2ubuntus) ...

Setting up libmagickcore-6.q16-7-extra:amd64 (8:6.9.12.98+dfsg1-5.2build2) ...

Setting up imagemagick (8:6.9.12.98+dfsg1-5.2build2) ...

Processing triggers for hicolor-icon-theme (0.17-2) ...

Processing triggers for gnome-menus (3.36.0-1.1ubuntu3) ...

Processing triggers for libc-bin (2.39-0ubuntu8.5) ...

Processing triggers for man-db (2.12.0-4build2) ...

Processing triggers for desktop-file-utils (0.27-2build1) ...

iniciales@Maquina1:-$
```

Luego escribimos "clear" para que se limpie todo lo anterior

```
Processing triggers for man-db (2.12.0-4build2) ...
Processing triggers for desktop-file-utils (0.27-2build1) ...
iniciales@Maquina1:~$ cle
```

En la pantalla limpia debemos escribir nuevamente neofetch

Solo minimizamos la ventana

Abrimos configuración

Y ahí se pueden ver los dos sistemas

AYUDA

No nos dejaba guardar porque el nombre no fue aceptado

Nos dio error:

Y tuvimos que cambiar algunas especificaciones:

Seleccionamos la opción que se muestra en la imagen y "aceptar"

Luego seleccionamos donde dice "Memoria de video" y lo ponemos al máximo

Al escribir el comando "neofetch" no lo reconoció por lo que debimos escribir "sudo apt install neofetch" para instalar el comando.

VIDEOS GUÍA

https://www.youtube.com/watch?v=MPMnizrPvHE YouTube

https://www.youtube.com/watch?v=mgKhgCpyOkY_YouTube

https://www.youtube.com/watch?pp=0gcJCf8Ao7VqN5tD&v=dmSymuoxoNA

LIBROS RECOMENDADOS

- Linux Install Or Dual Boot Susan Tringale
- Dual Boot Mastery Seamlessly Navigate Windows and Linux for DevOps Success – TailoredRead AI
- Ubuntu Hacks: Tips & Tools for Exploring, Using, and Tuning Linux Jonathan Oxer, Kyle Rankin y Bill Childers
- Linux From Scratch Gerard Beekmans (y colaboradores)

HERRAMIENTAS UTILES

Rufus (Windows) → Ligero y rápido, soporta ISO de Ubuntu, Mint, Fedora, etc. Ideal para crear USB en modo BIOS o UEFI.

VirtualBox (Windows/Linux/Mac) → Gratuito y multiplataforma.

ANEXOS

