ISTM 6212 - Week 12 Hands on w/Spark

Daniel Chudnov, dchud@gwu.edu

Agenda

- Schedule check
- Project 02 / Trifacta feature / Project 03 check-in
- Spark RDDs, DataFrames, SQL
- Streams and Column storage
- Spark w/Zeppelin

Schedule check

Project 02 wrap-up

Project 02 - Overall

- Bimodal performance
- $\mu = 89.8$
- A few common mistakes

Project 02 - More good examples

- Yuanjing and Youdan's exploration:
 - * github.com/Yuanjing-Han/Yuanjing-Han-istm-6212/blob/ master/project-02%2BYuanjing and Youdan.ipynb
- Daniel and Kevin's encoding lesson

Project 02 - Common mistakes

- * Describe your data! What is it, where's it from, what does it cover? Include a link to a main site.
- Create dimensions with DISTINCT values
- Leave precise time (minutes, seconds) out of dimensions
- Use JOINs and UPDATEs to populate surrogate keys in fact tables
- At most one SERIAL per table

Project 02 - Common mistakes

- * %matplotlib inline # <— only need this once</p>
- If time is on the X axis, order it by time
- Assume your reader is not at your computer
- Keep and share a copy of your dataset

Project 02 - Common mistakes

- Use your spellchecker
- Use correct punctuation
- Never, ever write slang (e.g. "gonna")
- * "I" vs. "We"

Project 02 - Data woes

Ars longa, data brevis*

* *Ask Abhinav, Aida, Boer, Clare, Cora, Gaoshuang, Junfei, Livia, Xinyi L, Xinyi W

Project 02 - Discussion

- What about street addresses?
 - Natural affinity?
 - Filtering function?

Trifacta feature

Project 03 check-in

Spark RDDs, Dataframes, SQL

Running Spark yourself

- * My recommendation: Install it yourself, directly on your machine **not** in a VM, and use PySpark
- Or use Databricks Community Edition
- Or run it on AWS EMR or EC2 w/Zeppelin
- Or ask Lawrence about running it w/Docker

Spark RDDs

www.slideshare.net/sparkInstructor/apache-spark-rdd-101

www.tutorialspoint.com/apache_spark/apache_spark_rdd.htm

Spark RDDs

```
many_texts = sc.textFile('texts/*.txt')
word_counts = many_texts \
    .flatMap(lambda line: line.lower().split(" ")) \
    .filter(lambda word: word not in stop_words) \
    .map(lambda word: (word, 1)) \
    .reduceByKey(lambda a, b: a + b)
word_counts.takeOrdered(25, lambda w: -w[1])
```

RDD -> DataFrames

- * RDDs are a key innovation from Spark
- * R- and Pandas-like DataFrames suit many tasks
- SQL suits many tasks
- w/Spark 2.0+, DataFrames are key concept

Spark DataFrames

- Like R / Pandas, mostly
- Fully supported in pyspark
- Some RDD-like residuals

```
# Select everybody, but increment the age by 1
df.select(df['name'], df['age'] + 1).show()
# | name|(age + 1)|
  +----+
# |Michael| null|
# | Andy| 31|
# | Justin| 20|
# Select people older than 21
df.filter(df['age'] > 21).show()
# |age|name|
# | 30|Andy|
# Count people by age
df.groupBy("age").count().show()
  | age|count|
# | 19 | 1 |
# |null| 1|
# | 30| 1|
```

Spark SQL

- DataFrame select/group/filter implementation shares a lot of concerns with RDBMS/SQL implementation:
 - Query parsing, planning, optimization
- When those are in place for one, you can handle the other
- SQL works in Spark wherever DataFrames work

DataFrame —> SQL

- Same DataFrame (df)
- df.createOrReplaceTempView("TABLE_NAME")

Streams and Column storage

Streaming data

- * "A stream is just more table data you don't have yet." -paraphrasing Jennifer Widom cs.stanford.edu/people/widom/
- Repeating similar process in batches
- * Key question: what to do next with the data?

Streaming example: Tweets

```
sc = SparkContext()
ssc = StreamingContext(sc,
        app.config['SPARK_BATCH_INTERVAL'])
# Watch for new files in args.dir
incoming tweets = ssc.textFileStream(args.dir)
# Send each new batch through process()
incoming_tweets.foreachRDD(process_tweets)
# Kick off directory watching
ssc.start()
```

Streaming example: Tweets (cont'd)

```
def process_tweets(tweet_rdd):
    tweet_json = tweet_rdd.map(lambda line:
                               json.loads(line)).cache()
   hashtag_counts = tweet_json.flatMap(
          lambda tweet: [(ht['text'].lower(), 1)
             for ht in tweet.get('entities',
                { 'hashtags': []})['hashtags']]) \
        .reduceByKey(lambda a, b: a + b).collect()
   pipe = redis_conn.pipeline()
   for hashtag, count in hashtag_counts:
        pipe.zincrby(timed_name, hashtag, count)
   pipe.execute()
```

Row storage and Column storage

- In general, RDBMS systems store data in rows
- Think of CSV:
 - Record 1: field_1, field_2, field_3
 - * Record 2: field_1, field_2, field_3
- Datatype definitions (DDL) define row/attr sizes

Column storage

- * For many analytics applications, we are measuring facts given one or more context:
 - Filter and group by region, district, brand, and product, then add up sales
 - Filter and group by department, professor, and year, than count enrollment by semester
- Those facts we measure are often "one column"

	Table			
	Country	Product	Sales	
Row 1	India	Chocolate	1000	
Row 2	India	Ice-cream	2000	
Row 3	Germany	Chocolate	4000	
Row 4	US	Noodle	500	

Row Store		
	India	
Row 1	Chocolate	
	1000	
Row 2	India	
	Ice-cream	
	2000	
	Germany	
Row 3	Chocolate	
NOW 3	4000	
	US	
Row 4	Noodle	
	500	

Table - SALES

Row	1
Row	2

Row 4

Row 2	
Row 3	

Date	Country	Product	Sales
2013-01-01	India	Chocolate	1000
2013-01-10	India	Ice-cream	2000
2013-02-20	Germany	Chocolate	4000
2013-03-01	US	Noodle	500

Column Operation: SELECT SUM(SALES) FROM SALES WHERE DATE > 2012-01-01

Row Operation: SELECT * FROM SALES WHERE COUNTRY = 'INDIA'

Benefits of column storage

- Very fast measurements / aggregations
- Column indexing: each block start/finish values allow skipping to precise blocks
- Compression, indexing advantages for speed

Column storage in practices

- Many data warehouse products use column storage
- AWS Redshift is a version of PostgreSQL optimized w/column storage
- Parquet is a columnar file format gaining popularity w/Hadoop, Spark, etc. computing

Spark w/Zeppelin

tinyurl.com / dchud - spark - demo