

## **TIME SERIES MODELING & ANALYSIS**

Instructor Name: Reza Jafari

**HW#:** 6

Submitted by: Dinesh Kumar Padmanabhan

**Date:** 23-Oct-2020

## **ANSWERS TO ASKED QUESTIONS**

```
1 ssh://ubuntu@54.172.90.76:22/usr/bin/python3 -u /home/
  ubuntu/ML2-AWS/QUIZ/Lab6_.py
2 Enter the order of moving average: 3
4 Result of 3-MA is: [120.666666666667, 126.33333333333333
  , 127.33333333333333, 128.33333333333334, 134.
  6666666666666, 143.666666666666, 144.0, 134.
  333333333334, 119.66666666666667, 113.6666666666667, 112
  .3333333333333, 119.6666666666667, 127.33333333333333,
  134.0, 133.66666666666666, 136.3333333333334, 148.0, 163.0
  157.66666666666666, 163.6666666666666, 171.0, 171.0, 183.0
   192.0, 194.0, 181.66666666666666, 164.0, 158.0, 161.0,
  172.3333333333334, 181.333333333334, 184.66666666666666
  , 185.66666666666666, 194.0, 210.3333333333334, 230.0, 227
  333333333334, 195.3333333333334, 209.3333333333334, 222
  .333333333334, 233.333333333334, 235.66666666666666,
  245.3333333333334, 259.666666666667, 257.666666666667,
  240.0, 209.3333333333334, 197.3333333333334, 195.0, 197.
  666666666666666, 209.0, 216.666666666666, 232.0, 241.
  6666666666666, 266.666666666667, 286.333333333333, 284.
  666666666667, 260.333333333333, 230.3333333333334, 220.
  3333333333334, 224.66666666666666, 234.6666666666666, 247
  .3333333333334, 256.33333333333, 268.666666666667, 284.
  666666666667, 316.333333333333, 342.0, 341.0, 311.0, 274.
  33333333333, 263.0, 266.3333333333, 279.6666666666667
   292.6666666666667, 302.333333333333, 316.0, 335.0, 368.
  33333333333, 397.333333333333, 391.0, 355.333333333333
  , 310.6666666666667, 294.33333333333, 297.33333333333,
  307.333333333333, 324.0, 335.0, 353.0, 375.0, 414.0, 451.
  333333333333, 445.333333333333, 406.0, 352.0, 329.
  333333333333, 327.0, 331.33333333333, 340.0, 342.
  666666666667, 357.6666666666667, 382.0, 429.666666666667
  , 477.0, 466.6666666666667, 422.6666666666667, 357.
  666666666667, 335.33333333333, 335.666666666667, 346.
  33333333333, 369.333333333333, 381.33333333333, 407.
  33333333333, 429.333333333333, 480.0, 526.3333333333334
  , 523.333333333334, 476.33333333333, 410.666666666667,
  391.333333333333, 394.666666666667, 404.3333333333333,
  409.0, 423.6666666666667, 450.6666666666667, 489.
  33333333333, 543.0, 587.66666666666, 578.66666666666
   525.0, 453.0, 427.6666666666667]
5 Result of 3-MA is: [120.6666666666667, 126.3333333333333333
   127.3333333333333, 128.3333333333334, 134.
```

5 3333333333334, 119.6666666666667, 113.6666666666667, 112 .3333333333333, 119.66666666666667, 127.333333333333333, 134.0, 133.66666666666666, 136.3333333333334, 148.0, 163.0 , 166.0, 153.66666666666666, 135.0, 129.0, 133.0, 145.0, 157.66666666666666, 163.666666666666, 171.0, 171.0, 183.0 172.3333333333334, 181.333333333334, 184.66666666666666 , 185.66666666666666, 194.0, 210.3333333333334, 230.0, 227 .0, 214.0, 190.666666666666666, 185.66666666666666, 187. 333333333334, 195.333333333334, 209.3333333333334, 222 .3333333333334, 233.333333333334, 235.66666666666666, 245.3333333333334, 259.666666666667, 257.666666666667 240.0, 209.3333333333334, 197.3333333333334, 195.0, 197. 66666666666666, 209.0, 216.666666666666, 232.0, 241. 6666666666666, 266.6666666666667, 286.333333333333, 284. 666666666667, 260.333333333333, 230.33333333333334, 220. 3333333333334, 224.666666666666666, 234.6666666666666, 247 .333333333334, 256.33333333333, 268.666666666667, 284. 666666666667, 316.333333333333, 342.0, 341.0, 311.0, 274. 33333333333, 263.0, 266.33333333333, 279.666666666667 292.6666666666667, 302.333333333333, 316.0, 335.0, 368. 33333333333, 397.333333333333, 391.0, 355.333333333333 310.6666666666667, 294.33333333333, 297.33333333333, 307.333333333333, 324.0, 335.0, 353.0, 375.0, 414.0, 451. 333333333333, 445.333333333333, 406.0, 352.0, 329. 333333333333, 327.0, 331.33333333333, 340.0, 342. 66666666667, 357.6666666666667, 382.0, 429.66666666667 , 477.0, 466.666666666667, 422.666666666667, 357. 666666666667, 335.33333333333, 335.666666666667, 346. 333333333333, 369.333333333333, 381.33333333333, 407. 33333333333, 429.333333333333, 480.0, 526.333333333334 , 523.33333333334, 476.33333333333, 410.666666666667, 391.333333333333, 394.666666666667, 404.3333333333333, 409.0, 423.6666666666667, 450.6666666666667, 489. 333333333333, 543.0, 587.66666666666, 578.66666666666 , 525.0, 453.0, 427.6666666666667] 6 Result of 5-MA is: [122.4, 127.0, 133.0, 136.2, 137.6, 137. 2, 131.0, 125.0, 118.4, 116.4, 120.8, 127.0, 128.4, 135.2, 144.0, 149.8, 154.4, 156.0, 149.0, 143.0, 138.0, 136.4, 145 .4, 155.2, 161.6, 168.2, 178.0, 182.2, 186.4, 184.4, 178.0 171.4, 165.8, 165.0, 171.2, 178.2, 181.6, 191.0, 201.0, 210.8, 216.4, 218.0, 208.8, 201.6, 192.4, 189.8, 198.8, 211 .4, 218.4, 227.8, 241.4, 248.6, 249.0, 245.4, 232.8, 220.2 206.6, 196.8, 201.6, 211.0, 217.6, 229.6, 252.4, 264.0, 270.4, 269.4, 257.2, 242.6, 232.4, 227.2, 234.8, 248.0, 256 .2, 270.8, 297.0, 313.0, 321.6, 322.4, 306.8, 289.6, 277.0 Page 2 of 7

```
6 , 270.0, 278.6, 293.8, 301.8, 319.8, 347.0, 364.6, 373.0,
  370.6, 350.0, 328.6, 310.6, 299.8, 309.8, 325.2, 335.0, 356
  .4, 389.2, 411.4, 422.6, 421.0, 397.6, 371.8, 346.4, 329.2
  , 332.2, 340.8, 346.2, 365.2, 399.8, 428.4, 439.6, 438.8,
  413.8, 383.0, 354.0, 341.6, 351.0, 368.2, 384.8, 407.2, 448
  .4, 479.0, 492.4, 489.8, 467.8, 439.2, 410.8, 396.4, 398.8
   418.6, 432.0, 455.6, 501.8, 539.2, 548.6, 546.4, 517.4,
  479.41
7 Result of 7-MA is: [127.85714285714286, 133.0, 135.
  57142857142858, 133.71428571428572, 130.14285714285714, 129
  .71428571428572, 126.85714285714286, 123.71428571428571,
  122.71428571428571, 122.57142857142857, 123.42857142857143
  , 129.85714285714286, 137.28571428571428, 145.
  14285714285714, 149.71428571428572, 148.57142857142858, 145
  .57142857142858, 147.71428571428572, 147.14285714285714,
  144.28571428571428, 145.42857142857142, 146.14285714285714
  , 151.71428571428572, 160.85714285714286, 169.
  28571428571428, 177.0, 181.85714285714286, 179.
  57142857142858, 177.14285714285714, 176.28571428571428, 175
  .28571428571428, 172.57142857142858, 171.71428571428572,
  171.28571428571428, 174.28571428571428, 184.57142857142858
   193.71428571428572, 203.85714285714286, 208.0, 207.
  71428571428572, 206.42857142857142, 208.0, 204.
  85714285714286, 200.0, 199.14285714285714, 202.
  85714285714286, 208.28571428571428, 218.42857142857142, 228
  .42857142857142, 239.28571428571428, 245.14285714285714,
  241.57142857142858, 233.71428571428572, 229.71428571428572
   224.14285714285714, 213.28571428571428, 208.0, 206.
  57142857142858, 209.85714285714286, 221.85714285714286, 236
  .28571428571428, 249.0, 259.14285714285717, 258.
  2857142857143, 254.85714285714286, 254.14285714285714, 251.
  0, 241.14285714285714, 237.42857142857142, 238.
  85714285714286, 244.71428571428572, 260.7142857142857, 280.
  0, 295.0, 306.2857142857143, 307.2857142857143, 302.
  7142857142857, 303.85714285714283, 299.42857142857144, 287.
  0, 282.7142857142857, 282.85714285714283, 289.
  14285714285717, 308.7142857142857, 328.0, 345.2857142857143
  , 356.42857142857144, 354.85714285714283, 348.
  85714285714283, 347.14285714285717, 338.7142857142857, 322.
  7142857142857, 315.7142857142857, 314.7142857142857, 321.
  7142857142857, 343.2857142857143, 366.0, 387.7142857142857
   402.42857142857144, 401.14285714285717, 395.0, 392.
  2857142857143, 380.57142857142856, 359.57142857142856, 344.
  57142857142856, 336.57142857142856, 338.85714285714283, 357
  .42857142857144, 379.57142857142856, 403.14285714285717,
  415.42857142857144, 415.0, 409.57142857142856, 405.
```

File - Lab6

```
7 85714285714283, 395.14285714285717, 373.85714285714283, 359
  .7142857142857, 358.57142857142856, 367.2857142857143, 390.
 42857142857144, 420.57142857142856, 449.0, 466.
 2857142857143, 466.42857142857144, 461.57142857142856, 459.
 42857142857144, 451.57142857142856, 429.14285714285717, 409
  .14285714285717, 408.85714285714283, 418.14285714285717,
 442.85714285714283, 473.85714285714283, 500.85714285714283
  , 517.5714285714286, 523.5714285714286, 513.4285714285714,
  507.7142857142857]
8 Result of 9-MA is: [131.0, 131.777777777777, 130.
 222222222223, 128.6666666666666, 127.111111111111, 127
  .66666666666667, 128.3333333333334, 126.88888888888889,
 124.3333333333333, 125.77777777777, 131.4444444444446
  , 138.7777777777777, 143.222222222223, 145.
  22222222223, 143.8888888888889, 143.777777777777, 144
  150.1111111111111, 150.333333333334, 152.5555555555555
   159.88888888888889, 169.3333333333334, 174.
  222222222223, 176.1111111111111, 175.66666666666666, 174
  .3333333333334, 175.22222222223, 176.1111111111111,
  177.777777777777, 175.777777777777, 174.0, 177.
 777777777777, 185.333333333334, 196.0, 200.
 777777777777, 203.0, 202.1111111111111, 202.
  222222222223, 203.8888888888889, 205.3333333333334, 207
  .3333333333334, 207.88888888888889, 206.4444444444446,
  210.22222222223, 218.333333333334, 229.4444444444446
  234.222222222223, 235.8888888888889, 234.
  1111111111111, 230.222222222223, 226.777777777777, 222
  .222222222223, 221.333333333334, 217.222222222223,
 213.0, 216.0, 226.11111111111111, 238.66666666666666, 245.
  1111111111111, 247.8888888888889, 249.5555555555554, 248
  .888888888889, 250.5555555555554, 250.4444444444446,
  250.777777777777, 247.1111111111111, 244.55555555555555
  , 250.777777777777, 265.777777777777, 281.
  777777777777, 291.0, 294.555555555554, 295.0, 296.
 222222222223, 297.888888888889, 298.666666666667, 298.
 8888888889, 293.22222222223, 290.0, 296.88888888888
  312.333333333333, 331.0, 339.555555555554, 342.0, 341.
  333333333333, 340.111111111111, 340.33333333333, 338.
 444444444446, 336.444444444446, 329.222222222223, 323
  .6666666666667, 331.1111111111111, 348.777777777777, 370.
  5555555555554, 381.444444444446, 385.0, 385.
  444444444446, 383.222222222223, 382.333333333333, 378.
  22222222223, 371.5555555555554, 358.5555555555554, 347
  .0, 350.4444444444446, 366.444444444446, 388.
  666666666667, 396.22222222223, 398.333333333333, 397.
```

8 444444444446, 394.666666666667, 396.0, 393.666666666667 , 390.444444444446, 379.88888888889, 370.444444444446 378.0, 399.0, 426.6666666666667, 440.6666666666667, 445. 88888888889, 448.111111111111, 448.0, 450.333333333333 , 447.111111111111, 441.222222222223, 431.5555555555555 , 421.888888888889, 429.88888888889, 453.777777777777 , 480.8888888888889, 492.33333333333, 497.222222222222 497.111111111111, 498.5555555555555 9 Result of 2x4-MA is: [115.0, 125.0, 130.5, 125.0, 128.0, 141.5, 148.0, 142.0, 127.5, 111.5, 111.0, 116.5, 120.5, 133 .5, 138.0, 130.0, 137.0, 159.5, 170.0, 164.0, 145.5, 123.5 127.0, 142.5, 147.5, 164.0, 170.5, 167.5, 175.0, 188.5, 199.0, 191.5, 173.0, 154.0, 156.0, 168.5, 175.5, 186.5, 187 .0, 182.0, 200.5, 224.0, 236.0, 225.5, 200.0, 181.5, 183.0 195.0, 196.0, 216.0, 235.5, 232.0, 236.0, 253.5, 268.0, 254.5, 224.0, 195.5, 190.5, 202.5, 196.0, 211.5, 231.0, 230 .5, 249.0, 283.0, 297.5, 276.0, 244.0, 216.0, 216.0, 235.5 237.5, 250.0, 268.0, 269.5, 292.5, 339.5, 355.5, 329.5, 293.0, 255.5, 257.5, 281.0, 280.5, 297.0, 315.0, 315.5, 346 .0, 393.5, 409.0, 380.0, 330.5, 288.5, 288.5, 310.5, 308.0 328.5, 352.0, 351.5, 388.5, 443.5, 466.0, 435.5, 375.5, 326.0, 320.5, 338.0, 329.0, 340.0, 355.0, 355.5, 399.0, 463 .0, 498.0, 454.5, 381.5, 334.5, 323.5, 348.5, 351.0, 374.0 , 401.0, 408.0, 446.0, 510.0, 553.5, 511.0, 435.0, 384.5, 383.5, 411.0, 404.0, 405.0, 440.0, 466.5, 503.5, 578.5, 614 .0, 557.0] 10 Result of 2x6-MA is: [115.0, 125.0, 130.5, 125.0, 128.0, 141.5, 148.0, 142.0, 127.5, 111.5, 111.0, 116.5, 120.5, 133 .5, 138.0, 130.0, 137.0, 159.5, 170.0, 164.0, 145.5, 123.5 127.0, 142.5, 147.5, 164.0, 170.5, 167.5, 175.0, 188.5, 199.0, 191.5, 173.0, 154.0, 156.0, 168.5, 175.5, 186.5, 187 .0, 182.0, 200.5, 224.0, 236.0, 225.5, 200.0, 181.5, 183.0 195.0, 196.0, 216.0, 235.5, 232.0, 236.0, 253.5, 268.0, 254.5, 224.0, 195.5, 190.5, 202.5, 196.0, 211.5, 231.0, 230 .5, 249.0, 283.0, 297.5, 276.0, 244.0, 216.0, 216.0, 235.5 237.5, 250.0, 268.0, 269.5, 292.5, 339.5, 355.5, 329.5, 293.0, 255.5, 257.5, 281.0, 280.5, 297.0, 315.0, 315.5, 346 .0, 393.5, 409.0, 380.0, 330.5, 288.5, 288.5, 310.5, 308.0 328.5, 352.0, 351.5, 388.5, 443.5, 466.0, 435.5, 375.5, 326.0, 320.5, 338.0, 329.0, 340.0, 355.0, 355.5, 399.0, 463 .0, 498.0, 454.5, 381.5, 334.5, 323.5, 348.5, 351.0, 374.0 , 401.0, 408.0, 446.0, 510.0, 553.5, 511.0, 435.0, 384.5, 383.5, 411.0, 404.0, 405.0, 440.0, 466.5, 503.5, 578.5] 11 Result of 2x8-MA is: [115.0, 125.0, 130.5, 125.0, 128.0, 141.5, 148.0, 142.0, 127.5, 111.5, 111.0, 116.5, 120.5, 133 .5, 138.0, 130.0, 137.0, 159.5, 170.0, 164.0, 145.5, 123.5

File - LabS

```
11 , 127.0, 142.5, 147.5, 164.0, 170.5, 167.5, 175.0, 188.5,
   199.0, 191.5, 173.0, 154.0, 156.0, 168.5, 175.5, 186.5, 187
   .0, 182.0, 200.5, 224.0, 236.0, 225.5, 200.0, 181.5, 183.0
   , 195.0, 196.0, 216.0, 235.5, 232.0, 236.0, 253.5, 268.0,
   254.5, 224.0, 195.5, 190.5, 202.5, 196.0, 211.5, 231.0, 230
   .5, 249.0, 283.0, 297.5, 276.0, 244.0, 216.0, 216.0, 235.5
    , 237.5, 250.0, 268.0, 269.5, 292.5, 339.5, 355.5, 329.5,
   293.0, 255.5, 257.5, 281.0, 280.5, 297.0, 315.0, 315.5, 346
   .0, 393.5, 409.0, 380.0, 330.5, 288.5, 288.5, 310.5, 308.0
   , 328.5, 352.0, 351.5, 388.5, 443.5, 466.0, 435.5, 375.5,
   326.0, 320.5, 338.0, 329.0, 340.0, 355.0, 355.5, 399.0, 463
   .0, 498.0, 454.5, 381.5, 334.5, 323.5, 348.5, 351.0, 374.0
    , 401.0, 408.0, 446.0, 510.0, 553.5, 511.0, 435.0, 384.5,
   383.5, 411.0, 404.0, 405.0, 440.0, 466.5]
12 Result of 2x10-MA is: [115.0, 125.0, 130.5, 125.0, 128.0,
   141.5, 148.0, 142.0, 127.5, 111.5, 111.0, 116.5, 120.5, 133
   .5, 138.0, 130.0, 137.0, 159.5, 170.0, 164.0, 145.5, 123.5
    127.0, 142.5, 147.5, 164.0, 170.5, 167.5, 175.0, 188.5,
   199.0, 191.5, 173.0, 154.0, 156.0, 168.5, 175.5, 186.5, 187
   .0, 182.0, 200.5, 224.0, 236.0, 225.5, 200.0, 181.5, 183.0
   , 195.0, 196.0, 216.0, 235.5, 232.0, 236.0, 253.5, 268.0,
   254.5, 224.0, 195.5, 190.5, 202.5, 196.0, 211.5, 231.0, 230
   .5, 249.0, 283.0, 297.5, 276.0, 244.0, 216.0, 216.0, 235.5
   , 237.5, 250.0, 268.0, 269.5, 292.5, 339.5, 355.5, 329.5,
   293.0, 255.5, 257.5, 281.0, 280.5, 297.0, 315.0, 315.5, 346
   .0, 393.5, 409.0, 380.0, 330.5, 288.5, 288.5, 310.5, 308.0
    , 328.5, 352.0, 351.5, 388.5, 443.5, 466.0, 435.5, 375.5,
   326.0, 320.5, 338.0, 329.0, 340.0, 355.0, 355.5, 399.0, 463
   .0, 498.0, 454.5, 381.5, 334.5, 323.5, 348.5, 351.0, 374.0
    , 401.0, 408.0, 446.0, 510.0, 553.5, 511.0, 435.0, 384.5,
   383.5, 411.0, 404.0, 405.0]
13 ADF Statistic: 0.815369
14 p-value: 0.991880
15 Critical Values:
16
       1%: -3.482
17
       5%: -2.884
18
       10%: -2.579
19 ADF Statistic: -6.628746
20 p-value: 0.000000
21 Critical Values:
22
       1%: -3.482
       5%: -2.884
23
       10%: -2.579
25 Strength of trend for Air Passengers dataset is 0.998
26 Strength of seasonality for Air Passengers dataset is 0.987
```

| 28 | <sub>ab6_</sub><br>Process | finish | ed with | exit | code ( | ) |  |  |
|----|----------------------------|--------|---------|------|--------|---|--|--|
| 29 |                            |        |         |      |        |   |  |  |
|    |                            |        |         |      |        |   |  |  |
|    |                            |        |         |      |        |   |  |  |
|    |                            |        |         |      |        |   |  |  |
|    |                            |        |         |      |        |   |  |  |
|    |                            |        |         |      |        |   |  |  |
|    |                            |        |         |      |        |   |  |  |
|    |                            |        |         |      |        |   |  |  |
|    |                            |        |         |      |        |   |  |  |
|    |                            |        |         |      |        |   |  |  |
|    |                            |        |         |      |        |   |  |  |
|    |                            |        |         |      |        |   |  |  |
|    |                            |        |         |      |        |   |  |  |
|    |                            |        |         |      |        |   |  |  |
|    |                            |        |         |      |        |   |  |  |
|    |                            |        |         |      |        |   |  |  |
|    |                            |        |         |      |        |   |  |  |
|    |                            |        |         |      |        |   |  |  |
|    |                            |        |         |      |        |   |  |  |
|    |                            |        |         |      |        |   |  |  |
|    |                            |        |         |      |        |   |  |  |
|    |                            |        |         |      |        |   |  |  |
|    |                            |        |         |      |        |   |  |  |
|    |                            |        |         |      |        |   |  |  |
|    |                            |        |         |      |        |   |  |  |
|    |                            |        |         |      |        |   |  |  |
|    |                            |        |         |      |        |   |  |  |

```
display a message that m=1,2 will not be accepted).
If m is even, then the software must ask a user to enter the folding order.
In the latter case the folding order must be even. Then the code should
Result of 3-MA is: [120.666666666666667, 126.3333333333333, 127.3333333333333,
195.333333333334, 209.33333333333334, 222.333333333334, 233.3333333333334,
523.33333333334, 476.333333333333, 410.6666666666666, 391.333333333333, 394.666666666667, 404.333333333333, 409.0, 423.66666666667, 450.6666666666667,
```

```
Result of 3-MA is: [120.66666666666667, 126.3333333333333, 127.33333333333333,
331.333333333333, 340.0, 342.666666666667, 357.6666666666667, 382.0,
394.666666666667, 404.333333333333, 409.0, 423.666666666667, 450.666666666667,
427.66666666666671
```



```
Result of 5-MA is: [122.4, 127.0, 133.0, 136.2, 137.6, 137.2, 131.0, 125.0, 118.4, 116.4, 120.8, 127.0, 128.4, 135.2, 144.0, 149.8, 154.4, 156.0, 149.0, 143.0, 138.0, 136.4, 145.4, 155.2, 161.6, 168.2, 178.0, 182.2, 186.4, 184.4, 178.0, 171.4, 165.8, 165.0, 171.2, 178.2, 181.6, 191.0, 201.0, 210.8, 216.4, 218.0, 208.8, 201.6, 192.4, 189.8, 198.8, 211.4, 218.4, 227.8, 241.4, 248.6, 249.0, 245.4, 232.8, 220.2, 206.6, 196.8, 201.6, 211.0, 217.6, 229.6, 252.4, 264.0, 270.4, 269.4, 257.2, 242.6, 232.4, 227.2, 234.8, 248.0, 256.2, 270.8, 297.0, 313.0, 321.6, 322.4, 306.8, 289.6, 277.0, 270.0, 278.6, 293.8, 301.8, 319.8, 347.0, 364.6, 373.0, 370.6, 350.0, 328.6, 310.6, 299.8, 309.8, 325.2, 335.0, 356.4, 389.2, 411.4, 422.6, 421.0, 397.6, 371.8, 346.4, 329.2, 332.2, 340.8, 346.2, 365.2, 399.8, 428.4, 439.6, 438.8, 413.8, 383.0, 354.0, 341.6, 351.0, 368.2, 384.8, 407.2, 448.4, 479.0, 492.4, 489.8, 467.8, 439.2, 410.8, 396.4, 398.8, 418.6, 432.0, 455.6, 501.8, 539.2, 548.6, 546.4, 517.4, 479.4]
```



```
Result of 7-MA is: [127.85714285714286, 133.0, 135.57142857142857, 126.857142857142857, 130.1428571428571428571428571, 129.71428571428571, 121.7142857142857, 126.857142857142857, 122.57142857142857, 121.2142857142857, 122.57142857142857, 122.857142857142857, 122.857142857142857, 148.5714285714286, 137.285714285714285, 145.142857142857142857142857, 148.5714285714285, 145.5714285714285, 145.5714285714285, 145.4285714285, 145.42857142857142, 146.14285714285714, 151.7142857142857, 160.85714285714286, 169.28571428571428, 177.0, 181.85714285714286, 179.5714285714285, 177.14285714285714, 176.28571428571428, 175.28571428571428, 172.5714285714285, 171.71428571428572, 203.8571428571428, 174.285714285, 193.71428571428572, 203.8571428571428, 174.285714285, 193.71428571428572, 203.85714285714285, 208.0, 207.71428571428572, 206.42857142857142, 208.0, 204.8571428571428572, 206.42857142857142, 208.0, 204.857142857142857142, 209.2857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857
```







```
Result of 2x6-MA is: [115.0, 125.0, 130.5, 125.0, 128.0, 141.5, 148.0, 142.0 127.5, 111.5, 111.0, 116.5, 120.5, 133.5, 138.0, 130.0, 137.0, 159.5, 170.0, 164.0, 145.5, 123.5, 127.0, 142.5, 147.5, 164.0, 170.5, 167.5, 175.0, 188.5, 199.0, 191.5, 173.0, 154.0, 156.0, 168.5, 175.5, 186.5, 187.0, 182.0, 200.5, 224.0, 236.0, 225.5, 200.0, 181.5, 183.0, 195.0, 196.0, 216.0, 235.5, 232.0, 236.0, 253.5, 268.0, 254.5, 224.0, 195.5, 190.5, 202.5, 196.0, 211.5, 231.0, 230.5, 249.0, 283.0, 297.5, 276.0, 244.0, 216.0, 216.0, 235.5, 237.5, 250.0, 268.0, 269.5, 292.5, 339.5, 355.5, 329.5, 293.0, 255.5, 257.5, 281.0, 280.5, 297.0, 315.0, 315.5, 346.0, 393.5, 409.0, 380.0, 330.5, 288.5, 288.5, 310.5, 308.0, 328.5, 352.0, 351.5, 388.5, 443.5, 466.0, 435.5, 375.5, 326.0, 320.5, 338.0, 329.0, 340.0, 355.0, 355.5, 399.0, 463.0, 498.0, 454.5, 381.5, 334.5, 323.5, 348.5, 351.0, 374.0, 401.0, 408.0, 446.0, 510.0, 553.5, 511.0, 435.0, 384.5, 383.5, 411.0, 404.0, 405.0, 440.0, 466.5, 503.5, 578.5]
```



```
Result of 2x8-MA is: [115.0, 125.0, 130.5, 125.0, 128.0, 141.5, 148.0, 142.0 127.5, 111.5, 111.0, 116.5, 120.5, 133.5, 138.0, 130.0, 137.0, 159.5, 170.0, 164.0, 145.5, 123.5, 127.0, 142.5, 147.5, 164.0, 170.5, 167.5, 175.0, 188.5, 199.0, 191.5, 173.0, 154.0, 156.0, 168.5, 175.5, 186.5, 187.0, 182.0, 200.5, 224.0, 236.0, 225.5, 200.0, 181.5, 183.0, 195.0, 196.0, 216.0, 235.5, 232.0, 236.0, 253.5, 268.0, 254.5, 224.0, 195.5, 190.5, 202.5, 196.0, 211.5, 231.0, 230.5, 249.0, 283.0, 297.5, 276.0, 244.0, 216.0, 216.0, 235.5, 237.5, 250.0, 268.0, 269.5, 292.5, 339.5, 355.5, 329.5, 293.0, 255.5, 257.5, 281.0, 280.5, 297.0, 315.0, 315.5, 346.0, 393.5, 409.0, 380.0, 330.5, 288.5, 288.5, 310.5, 308.0, 328.5, 352.0, 351.5, 388.5, 443.5, 466.0, 435.5, 375.5, 326.0, 320.5, 338.0, 329.0, 340.0, 355.0, 355.5, 399.0, 463.0, 498.0, 454.5, 381.5, 334.5, 323.5, 348.5, 351.0, 374.0, 401.0, 408.0, 446.0, 510.0, 553.5, 511.0, 435.0, 384.5, 383.5, 411.0, 404.0, 405.0, 440.0, 466.5]
```



```
Result of 2x10-MA is: [115.0, 125.0, 130.5, 125.0, 128.0, 141.5, 148.0, 142.0, 127.5, 111.5, 111.0, 116.5, 120.5, 133.5, 138.0, 130.0, 137.0, 159.5, 170.0, 164.0, 145.5, 123.5, 127.0, 142.5, 147.5, 164.0, 170.5, 167.5, 175.0, 188.5, 199.0, 191.5, 173.0, 154.0, 156.0, 168.5, 175.5, 186.5, 187.0, 182.0, 200.5, 224.0, 236.0, 225.5, 200.0, 181.5, 183.0, 195.0, 196.0, 216.0, 235.5, 232.0, 236.0, 253.5, 268.0, 254.5, 224.0, 195.5, 190.5, 202.5, 196.0, 211.5, 231.0, 230.5, 249.0, 283.0, 297.5, 276.0, 244.0, 216.0, 216.0, 235.5, 237.5, 250.0, 268.0, 269.5, 292.5, 339.5, 355.5, 329.5, 293.0, 255.5, 257.5, 281.0, 280.5, 297.0, 315.0, 315.5, 346.0, 393.5, 409.0, 380.0, 330.5, 288.5, 288.5, 310.5, 308.0, 328.5, 352.0, 351.5, 388.5, 443.5, 466.0, 435.5, 375.5, 326.0, 320.5, 338.0, 329.0, 340.0, 355.0, 355.5, 399.0, 463.0, 498.0, 454.5, 381.5, 334.5, 323.5, 348.5, 351.0, 374.0, 401.0, 408.0, 446.0, 510.0, 553.5, 511.0, 435.0, 384.5, 383.5, 411.0, 404.0, 405.0]
```



```
p-value: 0.991880
Critical Values:
ADF Statistic: -6.628746
Original DataSet
As per the test results above, the p-value is ~0.1 which is >0.05 therefore we
Detrended Dataset
As per the test results above, the p-value is 0.01 which is <0.05 therefore we
```

# graph. Add an appropriate title, x-label, y-label, and legend to the graph.







| #%%====================================                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #8- Calculate the strength of trend using the following equation and display the following message on the # console:                                                                            |
| # The strength of trend for the minimum temperature data set is<br># %%                                                                                                                         |
| Strength of trend for Air Passengers dataset is 0.998                                                                                                                                           |
| #%%====================================                                                                                                                                                         |
| #9- Calculate the strength of seasonality using the following equation and display the following message # on the console:                                                                      |
| # The strength of seasonality for the minimum temperature data set is<br># %%                                                                                                                   |
| Strength of seasonality for Air Passengers dataset is 0.987                                                                                                                                     |
| #%%====================================                                                                                                                                                         |
| #%-====================================                                                                                                                                                         |
|                                                                                                                                                                                                 |
| Running the example plots the observed, trend and seasonal time series.<br>We can see that there is strong trend and seasonality information extracted from<br>the series does seem reasonable. |

## **APPENDIX**

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from statsmodels.tsa.stattools import adfuller
from statsmodels.tsa.seasonal import STL
from pandas.plotting import register_matplotlib_converters
register_matplotlib_converters()
sns.set_style('darkgrid')
df = pd.read_csv('AirPassengers.csv', index_col='Month', parse_dates=True)
Year = pd.date_range(start='1949-01-01', end='1960-12-01', freq='MS')
y = df['#Passengers'].astype(float)
def plot_ma(y, k, trend, detrend, ma_order, folding_order):
    plt.figure(figsize=(16,10))
    plt.plot(np.array(Year[:50]), np.array(y[:50]), label='original')
    if ma_order%2 != 0:
        plt.plot(np.array(Year[k:50]), np.array(trend[:50-k]), label='{}-
MA'.format(ma_order))
        plt.title('Plot for {}-MA'.format(ma order))
        plt.plot(np.array(Year[k:50]), np.array(trend[:50 - k]), label='{}x{}-
MA'.format(folding_order, ma_order))
        plt.title('Plot for {}x{}-MA'.format(folding_order, ma_order))
    plt.plot(np.array(Year[k:50]), np.array(detrend[:50-k]), label='detrended')
    plt.xlabel('Year')
    plt.ylabel('# of Passengers')
    plt.legend()
    plt.show()
def ADF_Cal(x):
    result = adfuller(x)
    print('ADF Statistic: %f' %result[0])
    print('p-value: %f' %result[1])
    for key, value in result[4].items():
        print('\t%s: %.3f' % (key, value))
m = int(input('Enter the order of moving average: '))
while m <= 2:
    m = int(input('Enter the order of moving average: '))
    n = int(input('Enter the order of moving average: '))
    while n < 2 or n % 2 != 0 or n >= m:
        n = int(input('Enter the order of moving average: '))
def cal moving average(col, ma order, folding order):
    ma = []
```

```
k = int(np.ceil((ma_order - 1) / 2))
    for t in range(0, len(col) - ma_order + 1):
        temp = np.sum(y[t:ma_order + t])
        ma.append(temp / ma_order)
    if folding_order > len(ma):
folding order is greater than the length of first moving average result")
    # passing folding order as zero for odd order of moving average
    elif folding order != 0:
         k1 = int(np.ceil((ma order - 1) / 2) + ((folding order - 1) / 2))
         folding_ma = []
         for t in range(0, len(ma) - folding_order + 1):
             a = np.sum(y[t:folding_order + t])
             folding_ma.append(a / folding_order)
        print("Result of {}x{}-MA is: {}".format(folding_order, ma_order,
folding_ma))
        detrended = np.divide(list(y.iloc[k1:-k1]), folding_ma)
        plot_ma(y, k1, ma, detrended, ma_order, folding_order)
        return detrended, folding_ma
         print("Result of {}-MA is: {}".format(ma order, ma))
        detrended = np.divide(list(y.iloc[k:-k]), ma)
        plot ma(y, k, ma, detrended, ma order, folding order)
        return detrended, ma
if m % 2 != 0:
    res_ma = cal_moving_average(col=y, ma_order=m, folding_order=0)
    res_ma = cal_moving_average(col=y, ma_order=m, folding_order=n)
detrended_3, ma_3 = cal_moving_average(col=y, ma_order=3, folding_order=0)
detrended_5, ma_5 = cal_moving_average(col=y, ma_order=5, folding_order=0)
detrended_7, ma_7 = cal_moving_average(col=y, ma_order=7, folding_order=0)
detrended_9, ma_9 = cal_moving_average(col=y, ma_order=9, folding_order=0)
detrended_2x4, ma_2x4 = cal_moving_average(col=y, ma_order=4, folding_order=2)
detrended_2x6, ma_2x6 = cal_moving_average(col=y, ma_order=6, folding_order=2)
detrended_2x8, ma_2x8 = cal_moving_average(col=y, ma_order=8, folding_order=2)
detrended_2x10, ma_2x10 = cal_moving_average(col=y, ma_order=10, folding_order=2)
ADF Cal(v)
ADF_Cal(detrended_3)
STL = STL(y)
res = STL.fit()
fig = res.plot()
plt.fig(figsize=(16,10))
plt.show()
T = res.trend
S = res.seasonal
R = res.resid
plt.figure(figsize=(16,10))
plt.plot(T, label='trend')
plt.plot(S, label='Seasonal')
plt.plot(R, label='residuals')
```

```
plt.xlabel('Year')
plt.ylabel('Magnitude')
plt.title('Trend, Seasonality, Residual components using STL Decomposition')
plt.legend()
plt.show()
adjusted_seasonal = y-S
plt.figure(figsize=(16,10))
plt.plot(y, label='Original')
plt.plot(adjusted_seasonal, label='Seasonally Adjusted')
plt.xlabel('Year')
plt.ylabel('Magnitude')
plt.title('Original vs Seasonally adjusted')
plt.legend()
plt.show()
# Measuring strength of trend and seasonality
F = np.max([0,1-np.var(np.array(R))/np.var(np.array(T+R))])
print('Strength of trend for Air Passengers dataset is', round(F,3))
FS = np.max([0, 1-np.var(np.array(R))/np.var(np.array(S+R))])
print('Strength of seasonality for Air Passengers dataset is', round(FS,3))
```