

Probabilistično razmišljanje in Programiranje

Erik Štrumbelj

Oris vsebine

Zakaj naj mi bo mar za probabilistično programiranje?

1. Temelj sodobnega statističnega modeliranja in strojnega učenja.

Obvezno orodje za vsakogar, ki se želi resno ukvarjati s kvantitativno analizo podatkov!

2. Zelo koristen način razmišljanja.

3. Prihodnost "podatkovnega inženirstva".

uporabna statistika

probabilistični grafični modeli

(generativno) globoko učenje

Interaktivni test opreme za delavnico

1

Negotovost in probabilistično razmišljanje

Q: Ali bo naslednjo sredo v Ljubljani deževalo?

Izrazi verjetnosti v naravnem jeziku

Q: Kako toplo (°C) bo jutri opoldne v Ljubljani?

Naravni jezik je nekonsistenten, nenatačnen in premalo ekspresiven za resno kvantitativno delo!

- **Dobra novica** Primeren jezik so že razvili!
- Slaba novica Gre za teorijo verjetnosti matematiki se ne moremo izogniti.
- Dobra novica Ni se nam potrebno naučiti niti vse dodiplomske verjetnosti¹ –
 potrebujemo le verjetnost kot jezik, računal pa bo računalnik.

Gramatika verjetnosti

Verjetnost P (pogosto Pr) je funkcija, ki dogodkom prireja numerične vrednosti in zadošča tem aksiomom:

A1
$$P(A) \geq 0$$
.

A2
$$P(\Omega) = 1$$
.

A3
$$P(A_1 \cup A_2 \cup A_3 \cup ...) = \sum_{i=1}^{\infty} P(A_i),$$

za poljubno sekvenco disjunktnih dogodkov.

Definicija pogojne verjetnosti:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Porazdelitve

- Porazdelitve so elementarni izrazi probabilističnega razmišljanja in
- osnovni gradniki statističnih modelov.
- Porazdelitve so v skladu s pravili teorije verjetnosti, zato so konsistentne in natančne probabilistične izjave.
- Več kot vemo o porazdelitvah, bolj bogato se lahko izražamo.

Beseda na dan ...

Bernoullijeva porazdelitev

distribution	pmf	mean	variance
Bernoulli(p)	$p^x(1-p)^{1-x}; x=0,1; p\in(0,1)$	p	p(1-p)

Bernoullijeva porazdelitev

distribution	pmf	mean	variance
Bernoulli(p)	$p^x(1-p)^{1-x}; \ x=0,1; \ p\in(0,1)$	p	p(1-p)

Q: Ali bo naslednji teden v Ljubljani deževalo?

Normalna (Gaussova) porazdelitev

distribution	pdf	mean	variance
$Normal(\mu, \sigma^2)$	$\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}; \ \sigma > 0$	μ	σ^2
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.0, — <u> </u>	

Normalna (Gaussova) porazdelitev

Q: Kako toplo (°C) bo jutri opoldne v Ljubljani?

Normalna (Gaussova) porazdelitev

distribution	pdf	mean	variance
$Normal(\mu, \sigma^2)$	$\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}; \ \sigma > 0$	μ	σ^2
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	

Q: Kako toplo (°C) je bilo na današnji dan pred 50 leti?

Porazdelitev Beta

distribution	pdf	mean	variance
$\mathrm{Beta}(\alpha,\beta)$	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}; \ x \in (0,1), \ \alpha,\beta > 0$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$

Porazdelitev Beta

distribution	pdf	mean	variance
$\mathrm{Beta}(\alpha,\beta)$	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}; \ x \in (0,1), \ \alpha,\beta > 0$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$

Q: Kolikšna je verjetnost, da naslednji teden v LJ dežuje?

Preizkus probabilističnega razmišljanja

To so izidi 10 metov (morda nepoštenega) kovanca:

Q1: Je enajsti met **c**ifra ali **g**rb?

Q2: Kolikšna je verjetnost *p*, da na tem kovancu pade grb?

Q3: Je kovanec pošten? Poštenost je npr., da je *p* med 48% and 52%.

V razmislek ...

Verjetnost je koherenten in natančen jezik za izražanje negotovosti:

- Če ne sledimo zakonom verjetnosti, nas nihče ne bo razumel!
- Sicer pa so probabilistične izjave lahko subjektivne ali navidez popolnoma nesmiselne.
- Precej naravno nam je, da imamo verjetnostno mnenje o stvareh, ki niso naključne. Naključje je samo eden izmed virov negotovosti (in ne preveč pogost).

Uporaba verjetnosti za izražanje negotovosti je bistvo bayesovskega pogleda na statistično sklepanje!

2 Statistično modeliranje

Model = Hipoteza, kako so nastali naši podatki.

Ni modeliranja brez modela.

Ne, resno, ni.

Q: Zapišite 1 metodo iz statistike ali strojnega učenja, ki se uporablja za napovedovanje, razpoznavanje vzorcev, gručenje, testiranje hipotez, ipd.

Zaporedje enic in ničel (= podatki):

10010010101101100111111111111111

Statistični model (= poskus statistične interpretacije**):**

Zaporedje je nastalo s 30 neodvisnimi meti kovanca z neznano verjetnostjo enice θ .

Predhodno mnenje o parametrih modela:

Nimam pojma, koliko je θ , zato ne bom izrazil preference do nobene vrednosti θ .

Statistično sklepanje (= učenje):

Pri vseh teh predpostavkah in upoštevajoč zakone verjetnosti, kakšno mora biti moje mnenje o θ, ko vidim podatke?

Zaporedje enic in ničel (= podatki):

10010010101101100111111111111111

Zaporedje je nastalo s 30 neodvisnimi meti kovanca z neznano verjetnostjo enice θ .

Statistični model (= poskus statistične interpretacije**):**

Predhodno mnenje o parametrih modela:

Nimam pojma, koliko je θ , zato ne bom izrazil preference do nobene vrednosti θ .

Statistično sklepanje (= učenje**):**

Pri vseh teh predpostavkah in upoštevajoč zakone verjetnosti, kakšno mora biti moje mnenje o θ , ko vidim podatke?

$$y_1,\ldots,y_n \qquad \qquad y_i\in\{0,1\}$$

$$y_1, y_2, \dots, y_n | \theta \sim_{iid} Bernoulli(\theta)$$

$$heta \sim \textit{Beta}(1,1)$$

$$p(\theta|y) = \frac{p(\theta, y)}{p(y)} = \frac{p(y|\theta)p(\theta)}{\int p(y|\theta)p(\theta)d\theta}$$

$$\theta|y_1,\ldots,y_n\sim Beta(\sum y_i+1,n-\sum y_i+1)$$

Naše mnenje o θ prej in **potem**, ko smo videli zaporedje, ki vsebuje 20 enic in 10 ničel.

Naše mnenje o θ **potem**, ko smo videli zaporedje, ki vsebuje 20 enic in 10 ničel.

3

Probabilistično programiranje

Probabilistični programski jezik (PPL) je programski jezik, ki je zasnovan za opisovanje probabilističnih modelov in računsko sklepanje iz teh modelov.

Vir: Wikipedia

Probabilistični programski jezik nam omogoča, da se osredotočimo na modeliranje in preskočimo matematične in računske probleme pri sklepanju.

Dva primera imperativnega programiranja

```
1 # Bubble Sort
 2 - sort <- function(x) {
     n \leftarrow length(x)
 4
    for (k in n:2) {
     i <- 1
     while (i < k) {
 8 +
      if (x[i] > x[i+1]) {
       temp <- x[i+1]
         x[i+1] <- x[i]
10
11
          x[i] <- temp
12
        i < -i + 1
13
14
15
16
    Х
   }
17
```

```
# Generate 30 Bernoulli variables
 2 → bernoulli <- function(p) {
    x <- c()
    for (i in 1:30) {
    if (runif(1) > p) {
         x \leftarrow c(x, 0)
       } else {
 8 -
         x \leftarrow c(x, 1)
10
12
    X
13
14
```

Imperativno programiranje

in Statistično modeliranje

```
# Generate 30 Bernoulli variables
 2 * bernoulli <- function(p) {</pre>
     X < - C()
     for (i in 1:30) {
     if (runif(1) > p) {
     x < -c(x, 0)
    } else {
     x \leftarrow c(x, 1)
    X
13
14
```

#Sklepanje o relativni frekvenci tega zaporedja 100100101101100111111111111111111

$$y_1, \dots, y_n$$
 $y_i \in \{0, 1\}$ $y_1, y_2, \dots, y_n | \theta \sim_{iid} Bernoulli(\theta)$ $\theta \sim Beta(1, 1)$

- Podane imamo vhodne podatke in parametre,
- sprogramiramo algoritem, ki generira zahtevane izhodne podatke.

- Podane imamo vhodne in izhodne podatke,
- opišemo generator, ki naj bi generiral podatke,
- sklepamo o najbolj verjetnih vrednostih parametrov.

4

MCMC (Markov Chain Monte Carlo)

5

Programski jezik

Stan

Kaj je Stan?

- Orodje za učinkovito Bayesovo statistično modeliranje:
 - Programski jezik
 - Matematična knjižnica z avtomatskim odvajanjem
 - Algoritmi MCMC
- Najlažje ga uporabljamo preko vmesnikov (RStan, PyStan...).
- Aktivna skupnost, odličen priročnik, konstanten razvoj:

https://mc-stan.org/ https://discourse.mc-stan.org/

Stan program je organiziran v bloke

 data – blok, v katerem deklariramo vhodne podatke. Vrednosti vhodnih podatkov pripravi uporabnik.

• **parameters** – blok, v katerem deklariramo parametre, ki jih želimo oceniti (kateri parametri našega statističnega modela nas zanimajo).

model – opis statističnega modela.

```
Primer komentarja, ki obsega
več vrstic.
data {
 // tukaj definiramo vhodne podatke
parameters {
  // parametri modela, ki jih želimo oceniti
model {
  // sem spada statistično modeliranje
```

Osnovni tipi spremenljivk

• int – celo število	int n;
• real – realno število	real r;
• seznam (array) – seznam celih ali realnih števil	int a[10]; real b[n];
• matrika (matrix) – 2D seznam [vrstice, stolpci]	int A[10, 10];
• vector – vektor realnih števil (optimiziran seznam)	<pre>vector[n] v;</pre>
• simplex – vektor pozitivnih realnih števil, ki se seštejejo v 1	<pre>simplex[n] s;</pre>
 (skoraj) vsem spremenljivkam lahko določimo zgornjo in spodnjo mejo 	<pre>real<lower=0> sigma; real<lower=0,upper=1> success rate;</lower=0,upper=1></lower=0></pre>

Porazdelitve

```
Bernoulli
                                                               y ~ bernoulli(theta);
     y je vektor "uspehov" (1) in "neuspehov" (0)
     \theta (theta) predstavlja verjetnost uspeha

    beta

     y je vektor realnih števil med 0 in 1
                                                               y ~ beta(alpha, beta);
     \alpha, \beta parametra porazdelitve

    normal

     y je vektor realnih števil
                                                               y ~ normal(mu, sigma);
     \mu, \sigma sta upanje oziroma varianca

    porazdelitve uporabimo tudi za vnašanje

  predznanja o določenih parametrih modela
```

theta \sim beta(1,1);

6 Praktični primeri