

Geodatenanalyse I: Regressionsanalyse – Verallgemeinerte Lineare Modelle

Kathrin Menberg

Stundenplan

	08:30 – 12:30 Uhr	13:30 – 17:30 Uhr		
Montag	Tag 1 / Block 1	Tag 1 / Block 2		
Dienstag	Tag 2 / Block 1	Tag 2 / Block 2		
Mittwoch	Tag 3 / Block 1	Tag 3 / Block 2		
Donnerstag	Tag 4 / Block 1	Tag 4 / Block 2		
Freitag	Tag 5 / Block 1	Tag 5 / Block 2		

- 2.13 Regressionsanalyse Lineare Regression
- ► 2.14 Regressionsanalyse Verallgemeinerte lineare Modelle
- 2.15 Fragestunde und Abschluss

Lernziele Block 2.14

Am Ende der Stunde werden die Teilnehmer:

- ... einen Überblick über verschiedene Arten von verallgemeinerten linearen Modellen und deren Einsatzgebiete haben.
- ... die mathematischen Grundlagen zur logistischen Regression kennen.
- … eine logistische Regression in Python durchführen können.

Anknüpfung an letzte Stunde...

- ▶ Lineare Regression
 - Normalverteilte unabhängige Variablen und Residuen
 - Kontinuierliche, abhängige Variable
 - USW.
- Verallgemeinerte lineare
 Modelle (generalized linear models)
 - Verteilungen aus der Exponentialfamilie (Poisson, Gamma, usw.)
 - Diskrete abhängige Variablen

Logistische Regression

- engl. logistic (or logit) regression
- ▶ Binäre abhängige Variable: 1 ("ja", Erfolg, usw.) oder 0 ("nein", Misserfolg, usw.)
 - Wert "1" sollte das bevorzugte Ergebnis darstellen
- Methode zur Klassifikation in zwei Kategorien
 - Funktion finden, die die Kategorien möglichst genau separiert
- Für nominale, bzw. ordinale abhängige Variablen
 - Multinominale logistische Regression
 - Ordinale logistische Regression

Grundlagen logistische Regression

Logistische Regressionsfunktion

- $mit z = \alpha + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n + \epsilon_i$
- Ziel: Vorhersage der Eintrittswahrscheinlichkeit von y
- Werte nahe 0 → Eintreten unwahrscheinlich
- Werte nahe 1 → Eintreten wahrscheinlich
- Regressionskoeffizienten abschätzen mit Hilfe von Maximum Likelihood Methode

Maximum Likelihood Schätzung (MLS)

- Engl. Maximum Likelihood Estimation (MLE)
- Bestimmung der Regressionskoeffizienten so, dass für die beobachteten y-Werte möglichst hohe Wahrscheinlichkeiten vorausgesagt werden $L(x_1, x_2, \ldots, x_n; \theta)$
- Maximierung der Likelihood-Funktion

$$L(\theta) = \prod_{i=1}^n f_{\theta}(x_i)$$

- $\hat{\theta}_{ML} = \arg \max_{\theta = \Theta} L(\theta)$
- Oft auch als Log-Likelihood, da effizienter zu bestimmen

Institut für Angewandte Geowissenschaften (AGW), Lehrstuhl für Ingenieurgeologie

$$P(y = 1) = \frac{1}{1 + e^{-\alpha + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n + \epsilon_i}}$$

- ▶ Vorzeicheninterpretation: $\beta > 0$ → Anstieg in β bewirkt Anstieg in P(y = 1)
- Interpretation mittels sog. "Odds Ratios"

$$Odd = \frac{P(y \, trifft \, ein)}{P(y \, trifft \, nicht \, ein)} = \frac{P(y \, trifft \, ein)}{1 \, - P(y \, trifft \, ein)}$$

$$Odds \ Ratio = \ e^{\beta} = \frac{Odd \ nach \ dem \ Anstieg \ von \ x \ um \ eine \ Einheit}{Odd \ vor \ dem \ Anstieg \ von \ x \ um \ eine \ Einheit} = \frac{Odds_{nach}}{Odds_{vor}}$$

Faktor, um den sich die Wahrscheinlichkeiten bei Veränderung von x ändern

Überprüfung der Anpassungsgüte

- Jaccard Index
- Ähnlichkeitsmaß für Mengen und Vektoren
- Verhältnis von Schnittmenge und Vereinigungsmenge

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

- Logistische Regression: Vergleich der Vorhersagen aus Trainings- und Testdaten
- ▶ Bei vollständig korrekter Vorhersage J = 1
- ▶ Bei inkorrekter Vorhersage J = 0

Überprüfung der Anpassungsgüte

- Wahrheitsmatrix (engl. confusion matrix)
- Anwenden des logistischen
 Modells auf den Testdatensatz
- Auswerten der korrekt und falsch vorhergesagten Werte für y
- Trefferquote (engl. precision)
- Maß für die Genauigkeit

$$P (pos. Ergebnis|wirklich positiv) = \frac{TP}{TP + FP}$$

Annahmen für logistische Regression

- Linearer Zusammenhang zwischen unabh. Variablen und log y
- Aussagekräftige unabhängige Variablen, keine Multikollinearität
 - Korrelationsmatrix: Achtung bei binären Daten!
 - Extensive, sorgfältige explorative Datenanalyse
- Große Datensätze erforderlich!
 - mehrere Hundert Datenpunkte...

Übung 2.14: Logistische Regression

- Logistische Regression
 - ▶ Datensatz aus Gelman et al. (2020)
 - Arsenbelastungen in Brunnen in Bangladesch
 - Umfrage zu Wechseln von Brunnen (binäre Daten: ja/nein)
 - Weitere Daten: Distanz zu n\u00e4chsten (unbelasteten) Brunnen,
 Arsenkonzentration, Bildungsniveau,
 Mitgliedschaf in lokalen Verb\u00e4nden.
- Aufgaben in Jupyter Notebook: geodatenanalyse_1-2-14

https://www.deutschlandfunkkultur.de/

Aufgabenbesprechung

Explorative Datenanalyse

Aufgabenbesprechung

► Logistische Regression mit *statsmodels.api*

		successfully on value: 0.					
Logit Regression Results							
Dep. Variable Model: Method: Date: Time: converged: Covariance Ty	Mon	M , 22 Feb 20: 17:21:4 Tri	it Df Res LE Df Mod	del: o R-squ.: kelihood: ll:		2416 2414 1 0.04470 -1572.3 -1645.9 7.322e-34	
========	coef	std err	Z	P> z	[0.025	0.975]	
		0.105 0.036		0.000 0.000	-1.099 0.386	-0.686 0.526	

Aufgabenbesprechung

Logistische Regression mit scikit-learn

Literatur

Gelman et al. (2020) Regression and Other Stories, Cambridge **University Press**

Nützliche Weblinks:

- https://www.methodenberatung.uzh.ch/de/datenanalyse spss.html
- https://www.probabilitycourse.com/chapter8/8 2 3 max likelihoo d estimation.php

