### Deteção e Segmentação Redes Neurais e Aprendizado Profundo

Moacir A. Ponti

www.icmc.usp.br/~moacir — moacir@icmc.usp.br

São Carlos-SP/Brasil

Agenda

Detecção de Objetos, regressão+classificação e pixel-to-pixel

Agenda

Detecção de Objetos, regressão+classificação e pixel-to-pixel

### Classificação + regressão

#### Objetivo: classificar e localizar



#### Saída da rede

- ► Classes
- ► Valores de uma caixa (bounding box)

### Classificação + regressão

Formato da predição (saída da rede): presença do objeto, bounding box e classes.



### Classificação + regressão: em um grid

Treinamento considera grid  $S \times S$  (comumente  $19 \times 19$ ) e B caixas em formatos pré-definidos, chamados de âncoras.



### YOLO: You Only Look Once



Figure 3: The Architecture. Our detection network has 24 convolutional layers followed by 2 fully connected layers. Alternating  $1 \times 1$  convolutional layers reduce the features space from preceding layers. We pretrain the convolutional layers on the ImageNet classification task at half the resolution (224  $\times$  224 input image) and then double the resolution for detection.

Confiança é calculada com:  $P(classe) \cdot loU$ 

Saída é de tamanho  $S \times S \times (5B + C)$ 

### YOLO: You Only Look Once + IoU

#### Intersecção sobre União







## YOLO: You Only Look Once + Non-Max Supression

Supressão de não máximos



- descartar  $p_c \leq 0.6$
- $\triangleright$  selecionar maior  $p_c$
- ▶ descartar caixas com *IoU* > 0.5 da anterior

## YOLO: You Only Look Once + Non-Max Supression

Supressão de não máximos



- descartar  $p_c \leq 0.6$
- $\triangleright$  selecionar maior  $p_c$
- ▶ descartar caixas com *IoU* > 0.5 da anterior

# Detecção de pontos de referência (landmark)

Exemplo: encontrar pontos de uma face

Formato da predição (saída da rede): presença do objeto de interesse, coordenadas para cada landmark









#### Função de custo

- ► Softmax pixel-a-pixel (ao longo dos canais) + Entropia Cruzada
- Pesos computados para:
  - 1. compensar desbalanceamento (fundo é comumente mais proeminente do que os alvos)
  - 2. dar mais peso às bordas das regiões a serem segmentadas

#### Treinamento:

- ▶ Data augmentation: utilizando deformação suave das imagens
- Inicialização dos pesos por camada
  - 1. baseada na camada anterior
  - 2. distribuição Gaussiana/normal  $\sigma = \sqrt{2/N}$ , N sendo o número de nós de entrada
    - exemplo: camada anterior com 64 filtros 3 × 3,  $\sigma = \sqrt{2/(9\cdot 64)} = \sqrt{2/576}$

### Referências: Classificação e regressão para detecção de objetos

- Material em Português sobre YOLO: https://iaexpert.academy/2020/10/13/deteccao-de-objetos-com-yolo-uma-abordagem-moderna/
- ▶ Blog com implementação básica em Keras: https: //machinelearningmastery.com/how-to-perform-object-detection-with-volov3-in-keras/
- ► Artigo sobre detecção de objetos: https://www.researchgate.net/profile/Liu-76/publication/327550187\_Deep\_Learning\_for\_Generic\_Object\_Detection\_A\_Survey/links/5ddf876aa6fdcc2837f083ea/Deep\_Learning\_for-Generic-Object-Detection-A-Survey.pdf