אלגוריתם למציאת בסיס ז'ורדן

.T מצאו את הפ"א של 1.

F מעל מתפרק לגורמים לינאריים מעל

אם כן ־ המשיכו לשלב 2

אם לא ⁻ עצרו או המשיכו מעל שדה מורחב שמכיל את השורשים של הפ"א (שדה סגור אלגברית לדוגמא)

- אם הר"א הוא הר"א (כאשר את להמ"ע המוכללים המ"ע המוכללים את מצאו עבור .2 ווא את הבסיסים את את הבסיסים את את הבסיסים את את הבסיסים או הע"ע ל $(\lambda$ ע"ע או הבסיסים את הבסיסים את הבסיסים או הע"ע או הבסיסים את הבסיסים
- משלב (משלב הבסיס של את וקטורי החזקות של ($T-\lambda I)$ משלב את הפעילו את של לכל ע"ע אינדקס הנילפוטנטיות של או שנסמנו בי $(T-\lambda I)|_{U_\lambda}$ שנסמנו בי
 - $k=k_{\lambda}$ ו־ג $S=(T-\lambda I)$ נסמן. 4.
 - $:B_0$ א) מציאת בסיס
 - $kerS \cap ImS^{k-1}$ עבור B_{k-1} .i
 - $.B_{k-2}$ שנסמנו ב־ $KerS\cap ImS^{k-2}$ שנסמנו ב־ B_{k-1} .ii
 - B_{k-3} שנסמנו ב־ $KerS \cap ImS^{k-3}$ שנסמנו ב־ B_{k-2} אווו. השלימו
- שאותו $KerS\cap ImS$ שאותו בסיס של בסיס אותו אנגיע לבסיס .iv נמשיך כך עד שנגיע לבסיס של .KerS בסיס של
 - $.B_0$ ב) נתבונן ב־(ב)

 $v \in KerS \cap$, כלומר, $v_i \in B_j$ כל ש־ $l_i = max\{j\}$ נסמן עבור כל $v_i \in B_0$ עבור כל $l_i = max\{j\}$

 $.S^{l_i}(u_i) = v_i$ כעת מצאו וקטור עז u_i וקטור כעת מצאו

- . $\{S^{l_i}(u_i),S^{l_i-1}(u_i),...,u_i\}$ בסיס ז'ורדן עבור ע"י רישום של השרשרת נוצר ע"י נוצר ע"י נוצר ע"י בסיס הבסיס הנ"ל מתאים לבלוק ז'ורדן ו $J_{e_i+1}(\lambda)$
- .T אבור את בסיס ז'ורדן שמצאתם לכל ע"ע א ותקבלו בסיס ז'ורדן עבור .5

$$[T]_E=A=egin{pmatrix} 4&1&-3\ 4&0&-2\ 6&1&-4 \end{pmatrix}$$
 המטריצה המטריצה $T:\mathbb{R}^3 o\mathbb{R}^3$

צריך למצוא צורת ז'ורדן ובסיס ז'ורדן.

 $\Delta_A(x) = x^3$ שלב 1:

 \mathbb{R}^3 שלב ביסים הסטנדרטי ולכן ולכן ולכן $U_{\lambda=0}=\mathbb{R}^3 \Leftarrow$ ($ar v\in V$) אולכן ולכן שלב בי

 $B_{U_0} = \{\bar{e}_1, \bar{e}_2, \bar{e}_3\} \Leftarrow$

$$A=egin{pmatrix} 4&1&-3\\ 4&0&-2\\ 6&1&-4 \end{pmatrix}^2=egin{pmatrix} 2&1&-2\\ 4&2&-4\\ 4&2&-4 \end{pmatrix} \Leftarrow A^2$$
 אינדקס שלב \mathbf{E} : נחשב את $A=A^2$

הנילפוטנטיות של ע"ע () הוא 3

שלב 4:

$$B_{3-1}=B_2=span\{kerA\cap ImA^{3-1}\}$$
 א) נמצא (א ker $A=span\{egin{pmatrix}1\\2\\2\end{pmatrix}\};\ ImA^2=span\{egin{pmatrix}1\\2\\2\end{pmatrix}\}\Rightarrow B_2=span\{egin{pmatrix}1\\2\\2\end{pmatrix}\}$

$$B_1 = span\{kerA \cap ImA\} \Rightarrow B_1 = span\{\begin{pmatrix} 1\\2\\2 \end{pmatrix}\}$$

$$B_0 = span\{kerA\} \Rightarrow B_0 = span\{\begin{pmatrix} 1\\2\\2 \end{pmatrix}\}$$

ב) מצאנו $l_1=2$. $v_1\in B_0$, $v_1=egin{pmatrix}1\\2\\2\end{pmatrix}$ ב) מצאנו (ב) מצאנו

 $A^{2}\left(ar{u_{1}}
ight) =v_{1}$ כעת עלינו למצוא $ar{u_{1}}$ כך שמתקיים כי

$$u_1=egin{pmatrix} 0 \ 1 \ 0 \end{pmatrix}$$
 נקבל את $z=0$ ו־ $z=0$ ו־ $z=0$ למשל עבור $z=0$ למשל עבור $z=0$ למשל עבור $z=0$ ו־ $z=0$ נקבל את $z=0$

(v) (ביע"י הצבת (u_1, Au_1, u_1) ע"י הצבת (u_1, Au_1, u_1) ע"י הצבת (u_1, Au_1, u_1) גו

המתאים אנחת
$$\{\begin{pmatrix}1\\2\\2\end{pmatrix},\begin{pmatrix}1\\0\\1\end{pmatrix},\begin{pmatrix}0\\1\\0\end{pmatrix}\}$$
 המסיס הוא הבסיס הוא $A^2u_1=v_1$

$$J = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
 ז'ורדן