E31

November 14, 2022

1 Exercise 31 - Regularized Least Squares

A colleague has measured a distribution. This distribution becomes part of a Monte Carlo simulation. To be able to work better with this distribution | you look for a suitable parameterization. You know that the distribution can be well described by a sixth-degree polynomial. However, the measurement is very noisy and your colleague was also only able to take eight pairs of values (x, y).

a) Fit a sixth degree polynomial to the data in the file ex_a.csv using the least squares method. State the resulting coefficients and plot the fitted polynomial and data.

```
[1]: import numpy as np
import matplotlib.pyplot as plt
from numpy.linalg import inv, pinv
```

```
[2]: x, y = np.genfromtxt('ex_a.csv', unpack=True, delimiter=',', skip_header=1)
     def xn(x,n):
         return x**n
     # design matrix
     A = []
     for i in range(7): A.append(xn(x,i))
     A = np.array(A).T
     # solution (coefficient) vector for least squares (weight matrix = unit matrix)
     a = pinv(A.T@A)@A.T@y
     x_{-} = np.linspace(x[0]-0.1, x[-1]+0.1, 100)
     plt.plot(x,y, '.')
     plt.plot(x_, np.polyval(np.flip(a), x_)) # coefficient vector in reverse_
      →order for polyval-function
     plt.legend(["Raw data points", "Sixth degree polynomial fit"])
     plt.title("Polynomial Fit - Least Squares")
     plt.show()
```

Polynomial Fit - Least Squares

Solution: The coefficients are

p_0	p_1	p_2	p_3	p_4	p_5	p_6
3.55e-04	-8.41e-03	7.69e-02	-3.37e-01	7.03e-01	-5.78e-01	2.50e-01

b) Fit a sixth degree polynomial to the data in the file ex_a.csv using the least squares method and additionally use the regularization via the second derivative $(\Gamma = \sqrt{\lambda}CA)$. For the regularization strength use $\lambda \in (0.1, 0.3, 0.7, 3, 10)$. State the resulting coefficients and plot the fitted polynomial and the data.

We use
$$C = \begin{pmatrix} -1 & 1 & 0 & 0 & \cdots \\ 1 & -2 & 1 & 0 & \cdots \\ 0 & 1 & -2 & 1 & \cdots \\ \cdots & \cdots & 1 & -2 & 1 \\ \dots & \cdots & \cdots & 1 & -1 \end{pmatrix}$$
.

Regularized polynomial fit


```
[4]: print(a_reg)
```

Table with regularized coefficients

	a_0	a_1	a_2	a_3	a_4	a_5	a_6
$\lambda =$	1.77e-01	-2.90e-01	3.75 e-01	-1.77e-01	3.94 e-02	-4.20e-03	1.74e-04
0.1	1 50- 01	1 50- 01	0 14- 01	0.0400	0.0000	0.14- 02	0.61 - 05
$\lambda = 0.3$	1.50e-01	-1.58e-01	2.14e-01	-9.84e-02	2.09e-02	-2.14e-03	8.61e-05
$\lambda =$	1.42e-01	-8.72e-02	1.22 e-01	-5.43e-02	1.09e-02	-1.06e-03	4.11e-05
0.7	1 40 01	2 72 02	0 =1 00	1 7 4 00	2 = 2	2.24 .04	0.07.00
$\lambda = 3$	1.46e-01	-2.53e-02	3.71e-02	-1.54e-02	2.73e-03	-2.34e-04	8.27e-06
$\lambda =$	1.50e-01	-8.00e-03	1.09e-02	-4.81e-03	7.81e-04	-5.87e-05	1.85e-06
10							

Your colleague makes the effort to produce 50 new measurements of the spectrum.

(c) Fit a sixth degree polynomial to the mean values of the data from the file ex_c.csv using the least squares method. Weight the calculated means with the uncertainty of the mean. Use these weights when fitting. Plot the fitted polynomial and the averaged data.

```
[5]: data = np.genfromtxt('ex_c.csv', unpack=True, delimiter=',', skip_header=1)
x = data[0]
y = data[1:]
y = y.T #the index now corresponds to the respective y_i

y_m = np.mean(y, axis=1)
y_s = np.std(y, axis=1)
```

We introduce the weight matrix $\mathbf{W}[\mathbf{y}] = \operatorname{Var}[\mathbf{y}]^{-1} = \begin{pmatrix} \frac{1}{\sigma_0^2} & 0 & \cdots & 0 \\ 0 & \frac{1}{\sigma_1^2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \frac{1}{\sigma_n^2} \end{pmatrix}$

to get the general solution of the weighted least squares $\hat{a} = (A^{\top}WA)^{-1}A^{\top}Wy$.

```
[6]: W = np.diag(1/(y_s)**2)
     # new design matrix
     A = []
     for i in range(7): A.append(xn(x,i))
     A = np.array(A).T
     # general (weighted) solution (coefficient vector)
     a = pinv(A.T@W@A)@A.T@W@y_m
     # for comparison: least squares without weights
     p = np.polyfit(x, y_m, 6)
     x_{-} = np.linspace(0,8,100)
     fig, ax = plt.subplots(2, figsize=(15,10))
     ax[0].grid()
     ax[0].errorbar(x, y_m, yerr=y_s, capsize=8, lw=0, elinewidth=1.5, capthick=2)
     ax[0].plot(x_, np.polyval(p, x_)) # least squares without weights
     ax[0].plot(x, y_m, 'b.')
     ax[0].legend(["Unweighted least square fit", "Mean value data points", "Standard ⊔

→deviation"])
     ax[0].set_title("Simple fit with standard deviation")
     ax[1].grid()
     ax[1].plot(x_, np.polyval(np.flip(a), x_))
     ax[1].plot(x, y_m, 'b.')
     ax[1].set_title("Corrected (weighted) fit")
     ax[1].legend(["Weighted least square fit","Mean value data points"])
     plt.show()
```


Error bars represent the (square-rooted) reciprocal magnitude of the weights.

The two graphs are very similar. For comparison we calculate the absolute and relative deviation.

Absolute: $\Delta y(x) = y_u(x) - y_w(x) =: y_{abs}(x)$ with - y_u : unweighted least squares and - y_w : weighted least squares.

Relative: $\Delta \bar{y}(x) = \frac{y_u(x) - y_w(x)}{y_u(x)} =: y_{rel}(x)$

```
ax[2].legend(["Relative difference"])
ax[2].set_title("Relative difference")
ax[2].grid()
x_s = np.linspace(2.5, 4.5, 100)
ax[3].plot(x_s, np.polyval(p, x_s)) # least squares without weights
ax[3].plot(x_s, np.polyval(np.flip(a), x_s))
ax[3].plot(x[2:4], y_m[2:4], 'b.')
ax[3].legend(["Unweighted least square fit", "Weighted least square fit", "Mean_
⇔value data points"])
ax[3].set_title("Direct comparison, narrowed range")
ax[3].grid()
x_{-} = np.linspace(-2, 10, 100)
ax[4].plot(x__, np.polyval(p, x__)) # least squares without weights
ax[4].plot(x__, np.polyval(np.flip(a), x__))
ax[4].plot(x, y_m, 'b.')
ax[4].legend(["Unweighted least square fit", "Weighted least square fit", "Mean_
⇔value data points"])
ax[4].set_title("Direct comparison, wider range")
ax[4].grid()
plt.show()
```


In the range of the data points, the relative deviation of the two polynomial fits (weighted and unweighted least squares) is not greater than 2.5%.

For a wider range of x-values we notice a dampened divergence towards infinity.

It is also noticeable that the *weighted least squares*-method doesn't necessarily guarantee a fit that is closer to the data points. It is rather smoothed out like the methods used previously.