ESERCIZI DI ALGEBRA LINEARE E COMPLEMENTI DI GEOMETRIA

Foglio 3*

Esercizio 1. Determinare la decomposizione LU della matrice reale simmetrica

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 5 & 3 \\ 1 & 3 & 4 \end{bmatrix}$$

Esercizio 2. Determinare la decomposizione LU della matrice

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 2 \\ 1 & 1 & 1 & 3 \end{bmatrix}$$

Esercizio 3. Determinare la decomposizione LU o P^TLU della matrice

$$A = \left[\begin{array}{ccccc} 2 & 4 & 2 & -2 & 6 \\ 3 & 6 & 0 & 6 & 3 \\ 1 & 2 & 2 & 0 & 5 \\ 1 & 2 & 1 & -1 & 3 \end{array} \right]$$

Infine determinare le colonne dominanti edil rango della matrice A.

Esercizio 4. Determinare la decomposizione LU o P^TLU della matrice

$$A = \begin{bmatrix} 1 & 0 & 2 & i & -i \\ 1 & 0 & 1-i & i & -1 \\ 0 & 2 & 1 & 0 & -i \\ 0 & i & 1-i & 2 & 1 \\ i & 0 & -i & 0 & 1 \end{bmatrix}$$

Infine determinare le colonne dominanti edil rango della matrice A.

Esercizio 5. Si consideri la matrice

$$\mathbf{M} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Determinare, quando possibile, la decomposizione LU di M o la decomposizione P^TLU .

Esempio 6. Sia α un parametro complesso e si consideri la matrice

$$A_{\alpha} = \begin{bmatrix} -1 & \alpha - 2 & 2 - \alpha & 1 & 0 \\ 2 - \alpha & 1 & -1 & 1 & 0 \\ -1 & \alpha - 2 & 0 & 1 & 0 \\ 2 - \alpha & 1 & 0 & 2 - \alpha & -1 \end{bmatrix}$$

Se ne trovi una decomposizione LU e, per i valori di α per cui ci non possibile, una decomposizione P^TLU . Per $\alpha=0$ e $\alpha=2$, determinare una base dello spazio nullo e una base dello spazio delle colonne di \mathbf{A}_{α} . Inoltre, pensando la matrice A_{α} , come alla matrice completa di un sistema lineare, determinare le soluzioni di tale sistema al variare di α .

^{*}Sono a grato a quanti mi indicheranno i molti errori presenti in questi fogli, al fine di fornire uno strumento migliore a quanti lo riterranno utile, e-mail: sansonetto@sci.univr.it

Esercizi di Algebra Lineare e complementi di Geometria

Sol. Se $\alpha \neq 2, 1, 3$ possiamo considerare la decomposizione LU di A_{α} (senza effettuare scambi di righe):

$$A_{\alpha} \longrightarrow U_{\alpha} = \begin{bmatrix} 1 & 2 - \alpha & \alpha - 2 & -1 & 0 \\ 0 & 1 & -1 & (\alpha - 1)^{-1} & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & -(\alpha - 3)^{-1} \end{bmatrix}$$

in cui $U_{\alpha}=L_{\alpha}^{-1}\,A_{\alpha}$ e

$$L_{\alpha}^{-1} = E_{44}((\alpha - 3)^{-1}) E_{43}(-1) E_{33}((\alpha - 2)^{-1}) E_{42}((\alpha - 2)^{2} - 1)$$
$$E_{22}((\alpha - 1)^{-1}(3 - \alpha)^{-1}) E_{41}(\alpha - 2) E_{31}(1) E_{21}(\alpha - 2) E_{11}(-1)$$

Da cui

$$L_{\alpha} = E_{11}(1) E_{21}(2 - \alpha) E_{31}(1) E_{41}(2 - \alpha) E_{22}((\alpha - 1)(3 - \alpha))$$

$$E_{42}(1 - (\alpha - 2)^2) E_{33}(\alpha - 2) E_{43}(1) E_{44}(\alpha - 3)$$

Notiamo, inoltre che il $\mathrm{rk}A_\alpha=4$, quindi una base per $Col(A_\alpha)$ è dato dalle prime 4 colonne di U_α . In questo caso pensando alla matrice A_α come ad una matrice completa associata ad un sistema lineare si ha che tale sistema ammette un'unica soluzione.

Per $\alpha=1,2,3$ invece, si debbono effettuare degli scambi di riga, dobbiamo quindi determinare delle decomposizioni P^TLU di A_{α} , $\alpha=1,2,3$.

Caso $\alpha = 1$.

Per $\alpha = 1$

$$A_1 = \left[\begin{array}{cccccc} -1 & -1 & 1 & 1 & 0 \\ 1 & 1 & -1 & 1 & 0 \\ -1 & -1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 1 \end{array} \right]$$

Scambiamo la seconda riga con la quarta:

$$A_1 \xrightarrow{E_{42}} P_1 A_1 = \begin{bmatrix} -1 & -1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 1 \\ -1 & -1 & 0 & 1 & 0 \\ 1 & 1 & -1 & 1 & 0 \end{bmatrix}$$

Ora applichiamo la decomposizione LU a P_3A_3

$$P_1 A_1 \longrightarrow U_1 = \begin{bmatrix} 1 & -1 & 1 & -1 & 0 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & \frac{1}{2} \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Quindi

$$A_1 = P_1^T L_1 U_1$$

in cui $L_1 = E_{11}(-1)\,E_{21}(1)\,E_{31} - 1E_{41}(1)\,E_{32}(-1)\,E_{33}(2)\,E_{43}(2)\,E_{44}(-1)$ e $P_1^T = E_{42}^T$. Notiamo che $rk\,A_3 = 4$, quindi una base per $Col(A_1)$ è data dalla prima e la terza, la quarta e la quinta colonna di U_1 .

Notiamo che $rk A_3 = 4$, quindi una base per $Col(A_1)$ e data dalla prima e la terza, la quarta e la quinta colonna di U_1 . In questo caso pensando alla matrice A_1 come ad una matrice completa associata ad un sistema lineare, si ha che tale sistema non ammette soluzioni in quanto la colonna dei termini noti è dominante.

Caso $\alpha=2$.

Per $\alpha = 2$

$$A_2 = \left[\begin{array}{cccccc} -1 & 0 & 0 & 1 & 0 \\ 0 & 1 & -1 & 1 & 0 \\ -1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & -1 \end{array} \right]$$

Scambiamo la terza con la quarta riga

$$A_2 \xrightarrow{E_{34}} P_2 A_2 = \left[\begin{array}{ccccc} -1 & 0 & 0 & 1 & 0 \\ 0 & 1 & -1 & 1 & 0 \\ 0 & 1 & 0 & 0 & -1 \\ -1 & 0 & 0 & 1 & 0 \end{array} \right]$$

Ora applichiamo la decomposizione LU a P_2A_2

$$P_2 A_2 \longrightarrow U_2 = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & -1 & 1 & 0 \\ 0 & 0 & 1 & -1 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Quindi

$$A_2 = P_2^T L_2 U_2$$

in cui
$$L_2 = E_{11}(-1) E_{41}(-1) E_{32} 1$$
 e $P_2^T = E_{34}^T$.

Notiamo che $rk A_2 = 3$, quindi una base per $Col(A_2)$ è data dalle prime tre colonne di U_2 .

In questo caso pensando alla matrice A_2 come ad una matrice completa associata ad un sistema lineare si ha che tale sistema ammette infinite soluzioni dipendenti da un parametro.

Caso $\alpha = 3$.

Per $\alpha = 3$

$$A_3 = \begin{bmatrix} -1 & 1 & -1 & 1 & 0 \\ -1 & 1 & -1 & 1 & 0 \\ -1 & 1 & 0 & 1 & 0 \\ -1 & 1 & 0 & -1 & -1 \end{bmatrix}$$

Scambiamo la seconda riga con la quarta:

$$A_3 \xrightarrow{E_{42}} P_3 A_3 = \begin{bmatrix} -1 & 1 & -1 & 1 & 0 \\ -1 & 1 & 0 & -1 & -1 \\ -1 & 1 & 0 & 1 & 0 \\ -1 & 1 & -1 & 1 & 0 \end{bmatrix}$$

Ora applichiamo la decomposizione LU a P_3A_3

$$P_3 A_3 \longrightarrow U_3 = \begin{bmatrix} 1 & -1 & 1 & -1 & 0 \\ 0 & 0 & 1 & -2 & -1 \\ 0 & 0 & 0 & 1 & \frac{1}{2} \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Ouindi

$$A_3 = P_3^T L_3 U_3$$

in cui
$$L_3=E_{11}(-1)\,E_{21}(-1)\,E_{31}-1E_{41}(-1)\,E_{32}(1)\,E_{33}(2)$$
 e $P_3^T=E_{42}^T.$

Notiamo che $rk A_3 = 3$, quindi una base per $Col(A_3)$ è data dalla prima, la terza e la quarta colonna di U_3 .

In questo caso pensando alla matrice A_3 come ad una matrice completa associata ad un sistema lineare, si ha che tale sistema ammette infinite soluzioni dipendenti da un parametro.

Esercizio 7. Determinare al variare di $\alpha \in \mathbb{C}$ la decomposizione LU o P^TLU della matrice

$$A_{\alpha} = \begin{bmatrix} i & 0 & -i & i\alpha \\ 1 & \alpha^2 + 4 & 0 & \alpha \\ 1 & \alpha^2 + 4 & 0 & 2\alpha \end{bmatrix}$$

Infine determinare le colonne dominanti ed il rango di A_{α} .

Esempio 8. Sia α un parametro reale e si consideri la matrice

$$\mathbf{A}_{\alpha} = \begin{bmatrix} -1 & 0 & 1 & -\alpha & 0\\ \alpha & 2 & 4-\alpha & \alpha^2-2 & 0\\ 0 & -1 & -2 & \alpha+1 & -\alpha^2\\ 0 & 0 & 0 & 1 & -\alpha \end{bmatrix}$$

Se ne trovi una decomposizione LU e, per i valori di α per cui ci non possibile, una decomposizione P^TLU . Per $\alpha=0$ e $\alpha=2$, determinare una base dello spazio nullo e una base dello spazio delle colonne di \mathbf{A}_{α} .

Sol. Se $\alpha \neq 0$ possiamo considerare la decomposizione LU di \mathbf{A}_{α} senza effettuare scambi di righe:

$$\mathbf{A}_{\alpha} \longrightarrow \mathbf{U}_{\alpha} = \begin{bmatrix} 1 & 0 & -1 & \alpha & 0 \\ 0 & 1 & 2 - \alpha & \alpha^2 - 1 & 0 \\ 0 & 0 & 1 & 1 - \alpha & \alpha \\ 0 & 0 & 0 & 1 & -\alpha \end{bmatrix}$$

in cui $\mathbf{A}_{\alpha} = \mathbf{L}_{\alpha} \, \mathbf{U}_{\alpha} \, \mathbf{e}$

$$\mathbf{L}_{\alpha} = \begin{bmatrix} -1 & 0 & 0 & 0 \\ \alpha & 2 & 0 & 0 \\ 0 & -1 & \alpha & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Se $\alpha = 0$ calcoliamo la P^TLU di \mathbf{A}_{α} . Scambiamo la terza e la quarta riga:

$$\mathbf{B}_0 = E_{34} \, \mathbf{A}_0 = \begin{bmatrix} -1 & 0 & 1 & 0 & 0 \\ 0 & 2 & 4 & -2 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & -1 & -2 & 1 & 0 \end{bmatrix}$$

A questo punto calcoliamo la decomposizione LU di \mathbf{B}_0 :

$$\mathbf{B}_0 \longrightarrow \mathbf{U}_0 = \begin{bmatrix} 1 & 0 & -1 & 0 & 0 \\ 0 & 1 & 2 & -1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

e quindi $\mathbf{A}_0 = \mathbf{P}^T \mathbf{L}_0 \mathbf{U}_0$, in cui $\mathbf{P}^T = E_{34}^T$ e

$$\mathbf{L}_0 = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix}$$

Sia ancora $\alpha=0$ allora una base dello spazio delle colonne di \mathbf{A}_0 ($Col(\mathbf{A}_0)$) è data da tre colonne linearmente indipendenti di \mathbf{A}_0 , dal momento che $rank \mathbf{A}_0=3$:

$$Col(\mathbf{A}_0) = <[-1 \quad 0 \quad 0 \quad 0]^T, [0 \quad 2 \quad -1 \quad 0]^T, [0 \quad -2 \quad 1 \quad 1]^T >$$

Una base per lo spazio nullo di \mathbf{A}_0 ($N(\mathbf{A}_0)$), si trova, ad esempio, risolvendo il sistema omogeneo $\mathbf{A}_0\mathbf{v}=0$, in cui \mathbf{v} è un vettore di \mathbb{R}^5 , quindi:

$$N(\mathbf{A}_0) = <[1 \quad -2 \quad 1 \quad 0 \quad 0]^T, [0 \quad 0 \quad 0 \quad 0 \quad 1]^T >$$

con $\lambda \in \mathbb{R}$. Sia $\alpha = 2$ allora una base dello spazio delle colonne di \mathbf{A}_2 è data da quattro colonne linearmente indipendenti di \mathbf{A}_2 , dal momento che $rank \mathbf{A}_2 = 4$:

$$Col(\mathbf{A}_2) = <[-1 \quad 2 \quad 0 \quad 0]^T, [0 \quad 2 \quad -1 \quad 0]^T, [1 \quad 2 \quad -2 \quad 0]^T, [-2 \quad 2 \quad 3 \quad 1]^T >$$

Una base per lo spazio nullo di A_2 è

$$N(\mathbf{A}_2) = < [-4 \quad 6 \quad 0 \quad 2 \quad 1]^T >$$

Esempio 9. Sia $\alpha \in \mathbb{C}$ e si consideri la matrice

$$\mathbf{A}_{\alpha} = \begin{bmatrix} i & 0 & -2i & i \\ \alpha & \alpha & -1 & 0 \\ 2 & -1 & -5 & 2 \\ 0 & -\alpha & -1 & 0 \end{bmatrix}.$$

Se ne calcoli una decomposizione LU e, per i valori di α per i quali non possibile, una decomposizione P^TLU . Si calcolino anche basi dello spazio delle colonne e dello spazio nullo di \mathbf{A}_{α} , per ogni $\alpha \in \mathbb{C}$.

Interpretando la matrice come matrice completa di un sistema lineare, per quali valori di α esso ha soluzione?

Sol. Sia $\alpha \neq 0, 1$, allora

 $\mathbf{A}_{\alpha} = \mathbf{L}_{\alpha} \mathbf{U}_{\alpha}$

in cui

$$\mathbf{L}_{\alpha} = \begin{bmatrix} i & 0 & 0 & 0 \\ \alpha & \alpha & 0 & 0 \\ 2 & -1 & \frac{\alpha - 1}{\alpha} & 0 \\ 0 & -\alpha & -2 + 2\alpha & \alpha \end{bmatrix}$$

e

$$\mathbf{U}_{\alpha} = \begin{bmatrix} 1 & 0 & -2 & 1\\ 0 & 1 & \frac{2\alpha - 1}{\alpha} & -1\\ 0 & 0 & 1 & \frac{\alpha}{1 - \alpha}\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Se $\alpha=0$ scambiamo la seconda con la terza riga e poi procediamo con la riduzione LU, da cui $\mathbf{A}_0=\mathbf{P^TL}_0~\mathbf{U}_0$ in cui

$$\mathbf{L}_0 = \begin{bmatrix} i & 0 & 0 & 0 \\ 2 & -1 & 0 & 0 \\ 2 & 0 & -1 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$

e

$$\mathbf{U}_0 = \begin{bmatrix} 1 & 0 & -2 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Se $\alpha=1$ non occorre effettuare scambi di righe: $\mathbf{A}_1=E_{34}\mathbf{L}_1~\mathbf{U}_1$ in cui

$$\mathbf{L}_1 = \begin{bmatrix} i & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 2 & 1 & -1 & 0 \\ 0 & -1 & 0 & -1 \end{bmatrix}$$

e

$$\mathbf{U}_1 = \begin{bmatrix} 1 & 0 & -2 & 1 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Se $\alpha \neq 0, 1$ allora la matrice \mathbf{A}_{α} ha rango 4, quindi lo spazio nullo di \mathbf{A}_{α} è costituito dal solo vettore nullo e una base per lo spazio delle colonne è data dalle quattro colonne di \mathbf{A}_{α} .

Se $\alpha = 0$, allora

$$Col(\mathbf{A}_0) = \langle (i \ 0 \ 2 \ 0)^t, (0 \ 0 \ -1 \ 0)^t, (-2i \ -1 \ -5 \ -1)^t \rangle$$

 $N(\mathbf{A}_0) = \langle (-1 \ 0 \ 0 \ 1)^t \rangle$

Se $\alpha = 1$ allora

$$Col(\mathbf{A}_1) = <(i \quad 0 \quad 2 \quad 0)^t, (0 \quad 0 \quad -1 \quad 0)^t, (i \quad 0 \quad 2 \quad 0)^t >$$

$$N(\mathbf{A}_{-1}) = <[2 \quad -1 \quad 1 \quad 0]^t >$$

Se interpretiamo la matrice A_{α} come matrice completa di un sistema lineare, questo ammette soluzione solamente per $\alpha = 0, 1$, cioè quando la colonna dei termini noti non è dominante.

Esercizi di Algebra Lineare e complementi di Geometria

Esercizio 10. Sia $\alpha \in \mathbb{R}$. Determinare una decomposizione LU per

$$\mathbf{A}_{\alpha} = \begin{bmatrix} \alpha & 2\alpha & 0 & \alpha & 0 \\ -1 & -1 & 2 & -3 & 0 \\ 0 & 0 & 1 & -1 & \alpha \\ 1 & 2 & 0 & 1 & \alpha \end{bmatrix}$$

per i valori di α per cui non è possibile, determinare una P^TLU .

Esercizio 11. Sia $\alpha \in \mathbb{R}$. Determinare una decomposizione LU per

$$\mathbf{A}_{\alpha} = \begin{bmatrix} \alpha & 0 & 1 \\ -1 & 1 - 2\alpha & 2 \\ 2 & 2 & 0 \\ -\alpha & 0 & -1 \end{bmatrix}$$

per i valori di α per cui non è possibile, determinare una $P^TLU.$