1

Assignment 13

Yenigalla Samyuktha EE20MTECH14019

Abstract—This document explains a proof in linear transformations.

Download all latex-tikz codes from

https://github.com/EE20MTECH14019/EE5609/ tree/master/Assignment 13

1 Problem

Let **A** be an $m \times n$ matrix with real entries. Prove that $\mathbf{A} = \mathbf{0}$ is and only if $tr(\mathbf{A}^T \mathbf{A}) = 0$.

2 Solution

The proof is given in the table 2 and the properties used for the proof are listed in the table 1

Properties Used		
SVD of matrix A	$\mathbf{A} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^T$	
U is unitary	$\mathbf{U}^T\mathbf{U} = \mathbf{I}$	
V is unitary	$\mathbf{V}^T\mathbf{V} = \mathbf{I}$	
Σ is diagonal	$\mathbf{\Sigma}^T \mathbf{\Sigma} = \mathbf{\Sigma}^2$	
Cyclic property	$tr(\mathbf{ABC}) = tr(\mathbf{CAB})$	
Rank (A)	$Rank(\mathbf{A}) = \#non-zero singular values$	

TABLE 1: Properties

Statement	Proof	
	$tr\left(\mathbf{A}^{T}\mathbf{A}\right) = tr\left(\mathbf{V}\mathbf{\Sigma}^{T}\mathbf{U}^{T}\mathbf{U}\mathbf{\Sigma}\mathbf{V}^{T}\right)$	(2.0.1)
	$= tr\left(\mathbf{V}\mathbf{\Sigma}^T\mathbf{\Sigma}\mathbf{V}^T\right)$	(2.0.2)
	$= tr\left(\mathbf{V}\mathbf{\Sigma}^2\mathbf{V}^T\right)$	(2.0.3)
	$= tr(\mathbf{V}^T \mathbf{V} \mathbf{\Sigma}^2)$	(2.0.4)
	$=tr\left(\Sigma^{2}\right)$	(2.0.5)
$tr(\mathbf{A}^T\mathbf{A}) = 0 \implies \mathbf{A} = 0$	$=\sum_{i=1}^{r}\sigma_{i}^{2}$	(2.0.6)
	$tr\left(\mathbf{A}^{T}\mathbf{A}\right) = 0$	(2.0.7)
	$\implies \sum_{i=1}^{r} \sigma_i^2 = 0 \ \forall i = 1, 2, \dots r$	(2.0.8)
	$\implies \sigma_i = 0 \ \forall i = 1, 2, \dots r$	(2.0.9)
	$\therefore Rank(\mathbf{A}) = #non-zero singular values = 0$	(2.0.10)
	$\implies A = 0$	(2.0.11)
$\mathbf{A} = 0 \implies tr(\mathbf{A}^T \mathbf{A}) = 0$	A = 0	(2.0.12)
	$\implies \mathbf{A}^T \mathbf{A} = 0$	(2.0.13)
()	$\implies tr(\mathbf{A}^T\mathbf{A}) = 0$	(2.0.14)

TABLE 2: Proofs