Advanced Computer Graphics Practical Session

Marcel Ritter

Summer Semester 2023

- Random Sampling
- Projects

- Random Sampling
- Projects

Advanced Computer Graphics practical session – SS2023

Sampling Triangular Patches

- Triangle in 3D given by vertices p₀, p₁, p₂
- Arbitrary vertex q given by barycentric coordinates
- Correct sampling approach

$$\mathbf{q} = \lambda_0 \mathbf{p}_0 + \lambda_1 \mathbf{p}_1 + (1 - \lambda_0 - \lambda_1) \mathbf{p}_2$$

$$\lambda_0 = 1 - \sqrt{\xi_0}$$

$$\lambda_1 = \xi_1 \sqrt{\xi_0}$$

$$\lambda_2 = 1 - \lambda_0 - \lambda_1 = \sqrt{\xi_0} \left(1 - \xi_1 \right)$$

Advanced Computer Graphics practical session – SS2023

Generating Random Numbers

- Computer-based approaches pseudo-random (i.e. following algorithm)
- Example: drand48()

$$x_{n+1} = (a \cdot x_n + c) \bmod m$$

48-bit parameters given as

$$m = 2^{48}$$
 $a = (5DEECE66D)_{16}$ $c = (B)_{16}$

- Linear congruential generator
- Generates non-negative, double-precision, floatingpoint values, uniformly distributed over [0.0, 1.0]

@igs

Advanced Computer Graphics practical session - SS2023

.

Sampling Strategy

- Fully randomized sampling possibly suboptimal due to clumping of samples
- Stratified or Poisson disk sampling reduces clumping and non-uniformity

Stratified

Poisson disk

Advanced Computer Graphics practical session – SS2023

_

Quasi-Random Sampling

Quasi-random

Random

Advanced Computer Graphics practical session - SS2023

Quasi-Random Sampling

- Deterministic sequence of numbers that only appear random, and regularly cover domain
- Values are said to be of <u>low discrepancy</u>
- Example: Halton sequence
- Representation of positive integer n with base b

$$n = \sum_{i=1}^{\infty} d_i b^{i-1} \qquad 0 \le d_i < b$$

Associated radical inverse function

$$\Phi_b(n) = 0.d_1 d_2 \dots d_m$$

$$d_{m+i} = 0 \qquad i > 0$$

Advanced Computer Graphics practical session – SS2023

Halton Sequence

Example for base 2

n (Base 10)	Base 2 number	$\Phi_2(n)$
1	(1) ₂	$(0.1)_2 = 1/2$
2	$(10)_2$	$(0.01)_2 = 1/4$
3	(11) ₂	$(0.11)_2 = 3/4$
4	(100) ₂	$(0.001)_2 = 1/8$
5	(101) ₂	$(0.101)_2 = 5/8$

Advanced Computer Graphics practical session – SS2023

¥.

Halton Sequence

Example for base 2

n (Base 10)	Base 2 number	$\Phi_2(n)$
1	(1) ₂	$(0.1)_2 = 1/2$
2	$(10)_2$	$(0.01)_2 = 1/4$
3	(11) ₂	$(0.11)_2 = 3/4$
4	(100) ₂	$(0.001)_2 = 1/8$
5	(101) ₂	$(0.101)_2 = 5/8$
	•••	

0.0

Advanced Computer Graphics practical session – SS2023

n

Halton Sequence in 2D

 In higher dimensional cases, choose different prime number as base for each dimension, e.g. Halton-2-3

Sampling Arbitrary Probability Density Function

- PDF: Probability Density Function
- Probability to belong in an interval [a, b] for a variable X with density function p(x):

Sampling Arbitrary Probability Density Function

- Evaluating integrals via Monte-Carlo method requires random samples according to arbitrary PDF
- Option: Inversion method

Advanced Computer Graphics practical session - SS2023

13

Inversion Method – Continuous PDF

- 1) Compute cumulative distribution function for PDF $P(X) = \int_{-\infty}^{x} p(x) dx$
- 2) Compute inverse of CDF (not always feasible)
- 3) Draw uniformly distributed random number ξ
- 4) Obtain new random variable, adhering to probability density function p(x)

$$X = P^{-1}(\xi)$$

Advanced Computer Graphics practical session – SS2023

Inversion Method

Mapping graphically

2D Joint Distribution

- Multivariate Probability Density Function
- E.g. 2D random variable

$$P(X,Y) = \int_{-\infty}^{Y} \int_{-\infty}^{X} p(x,y) \, dx \, dy$$

Advanced Computer Graphics practical session – SS2023

Conditional probability

Marginal densities:

$$p(x) = \int p(x, y) dy$$
$$p(y) = \int p(x, y) dx$$

Conditional probability:

$$p(y|x) = \frac{p(x,y)}{p(x)}$$

https://upload.wikimedia.org/wikipedia/commons/thumb/9/95/Multivariate normal

Advanced Computer Graphics practical session – SS2023

Conditional Probability

Probability of outcome given another event occurred

$$P(X|Y) = \frac{P(X,Y)}{P(Y)}$$

- Example: rolling two fair dice
- Joint probability of sum being 6 and 2nd die showing 2 P(X,Y) = 1/36
- Conditional probability that sum of two-dice throw equals 6, given that first roll shows 2

$$P(X|Y) = \frac{P(X,Y)}{P(Y)} = \frac{1/36}{1/6} = 1/6$$

Advanced Computer Graphics practical session - SS2023

2D Joint Distribution Random Sampling

1) Compute marginal probability density function

$$p(x) = \int p(x, y) dy$$

2) Obtain conditional probability density function

$$p(y|x) = \frac{p(x,y)}{p(x)}$$
 [see last slides]

- 3) Sample marginal probability function using p(x)
- 4) Sample conditional probability function using p(y/x)

Advanced Computer Graphics practical session – SS2023

21

Uniformly Sampling Triangle Area

- Without loss of generality, assume isosceles triangle with area $A = \frac{1}{2}$
- Extends to general case via barycentric coordinates

- Determine joint probability density function p(x,y)
 (constant for uniform probability over area)
- According to definition of PDF

$$\int_{A} p(x, y) dA = 1$$

Advanced Computer Graphics practical session - SS2023

Uniformly Sampling Triangle Area

- Determine joint probability density function p(x,y) (constant for uniform probability over area)
- According to definition of PDF

$$\int_{A} p(x, y) dA = 1$$

$$p(x, y) \int_{A} dA = 1$$

$$p(x, y) \frac{1}{2} = 1$$

$$p(x, y) = 2$$

Advanced Computer Graphics practical session – SS2023

Compute marginal probability density function

$$p(x) = \int_{0}^{1-x} p(x, y) dy$$

$$p(x) = \int_{0}^{1-x} 2 \cdot dy$$

$$p(x) = 2y|_{0}^{1-x}$$

$$p(x) = 2 - 2x$$

Advanced Computer Graphics practical session – SS2023

Uniformly Sampling Triangle Area

Determine cumulative distribution functions for applying inversion method

$$P(x) = \int_{-\infty}^{x} p(\hat{x}) d\hat{x}$$

$$P(x) = \int_{0}^{x} p(\hat{x}) d\hat{x}$$

$$P(x) = \int_{0}^{x} 2 - 2\hat{x} \cdot d\hat{x}$$

$$P(x) = \left[2\hat{x} - \hat{x}^{2}\right]_{0}^{x}$$

Advanced Computer Graphics practical session – SS2023

Compute conditional probability density function

$$p(y|x) = \frac{p(x,y)}{p(x)}$$

$$p(y|x) = \frac{2}{2 - 2x}$$

$$p(y|x) = \frac{1}{1-x}$$

Advanced Computer Graphics practical session – SS2023

Uniformly Sampling Triangle Area

Determine cumulative distribution functions for applying inversion method

$$P(y) = \int_{0}^{y} p(\hat{y}|x) d\hat{y}$$
$$P(y) = \int_{0}^{y} \frac{1}{1-x} d\hat{y}$$

$$P(y) = \frac{y}{1 - x}$$

Advanced Computer Graphics practical session – SS2023

Determine cumulative distribution functions for applying inversion method

$$P(x) = 2x - x^2$$

$$P(y) = \frac{y}{1 - x}$$

Advanced Computer Graphics practical session – SS2023

Uniformly Sampling Triangle Area

 Invert CDF for sampling with canonical uniformly distributed variable

$$\hat{\xi}_0 = 2x - x^2$$

Advanced Computer Graphics practical session – SS2023

Invert CDF for sampling with canonical uniformly distributed variable

$$\hat{\xi}_0 = 2x - x^2$$

$$1 - \xi_0 = 2x - x^2$$

Advanced Computer Graphics practical session – SS2023

Uniformly Sampling Triangle Area

 Invert CDF for sampling with canonical uniformly distributed variable

$$\hat{\xi}_0 = 2x - x^2$$

$$1 - \xi_0 = 2x - x^2$$

$$\xi_0 = 1 - 2x + x^2$$

$$\xi_0 = (1 - x)^2$$

$$\sqrt{\xi_0} = 1 - x$$

$$x = 1 - \sqrt{\xi_0}$$

Advanced Computer Graphics practical session – SS2023

Invert CDF for sampling with canonical uniformly distributed variable

$$\xi_1 = \frac{y}{1 - x}$$

$$\xi_1 = \frac{y}{\sqrt{\xi_0}}$$

$$y = \xi_1 \sqrt{\xi_0}$$

Advanced Computer Graphics practical session – SS2023

33

Sampling Triangular Patches

- Triangle in 3D given by vertices p₀, p₁, p₂
- Arbitrary vertex q given by barycentric coordinates
- Correct sampling approach

$$\mathbf{q} = \lambda_0 \mathbf{p}_0 + \lambda_1 \mathbf{p}_1 + (1 - \lambda_0 - \lambda_1) \mathbf{p}_2$$

$$\lambda_0 = 1 - \sqrt{\xi_0}$$

$$\lambda_1 = \xi_1 \sqrt{\xi_0}$$

$$\lambda_2 = 1 - \lambda_0 - \lambda_1 = \sqrt{\xi_0} \left(1 - \xi_1 \right)$$

Advanced Computer Graphics practical session – SS2023

Uniformly Sampling Disk Area

• Unit disk with max radius r=1

$$A_{disk} = r^{2}\pi = \pi$$

$$\int_{A} p(x, y)dA = 1$$

$$\to p(x, y) = 1/\pi$$

Polar coordinates

$$p(x,y) = p(r,\varphi)/r$$
$$p(r,\varphi) = r p(x,y) = \frac{r}{\pi}$$

Advanced Computer Graphics practical session – SS2023

inn

Uniformly Sampling Disk Area

Marginal density

$$p(r) = \int_0^{2\pi} p(r, \varphi) d\varphi = \int_0^{2\pi} \frac{r}{\pi} d\varphi = 2r$$

Conditional density

$$p(\varphi|r) = \frac{p(r,\varphi)}{p(r)} = \frac{r/\pi}{2r} = \frac{1}{2\pi}$$

Advanced Computer Graphics practical session – SS2023

3(

Uniformly Sampling Disk Area

Cumulative distribution

$$P(r) = \int p(r)dr = 2\frac{r^2}{2} = r^2$$

Invert

$$\hat{\xi}_0 = r^2$$

$$\rightarrow r = \sqrt{\hat{\xi}_0}$$

Advanced Computer Graphics practical session – SS2023

univ innst

Uniformly Sampling Disk Area

Cumulative distribution

$$P(\varphi|r) = \int p(r,\varphi)d\varphi = \frac{\varphi}{2\pi}$$

Invert

$$\hat{\xi}_1 = \frac{\varphi}{2\pi}$$

$$\varphi = \hat{\xi}_1 \ 2\pi$$

Advanced Computer Graphics practical session – SS2023

Uniformly Sampling Disk Area

Polar to cartesian

$$x = r \cos(\varphi) = \xi_0 \cdot \cos(\xi_1 2\pi)$$

$$y = r \sin(\varphi) = \xi_0 \cdot \sin(\xi_1 2\pi)$$
0.5
0.0
0.0
-0.5

$$x = r \cos(\varphi) = \sqrt{\xi_0} \cdot \cos(\xi_1 2\pi)$$
$$y = r \sin(\varphi) = \sqrt{\xi_0} \cdot \sin(\xi_1 2\pi)$$

@igs

Advanced Computer Graphics practical session – SS2023

Random Sampling

Projects

Advanced Computer Graphics practical session – SS2023

Projects

- Select an extension to the Assignment 2 (small-pt)
 - 1. Add 2D texture mapping support and implement a procedural texture (2D and 3D)
 - 2. Speed up triangle intersections
 - Speed up indirect illumination computation by photon mapping
 - 4. Add a black hole object with gravitational lens distortion
 - 5. Implement other 'random' generators and compare
 - 6. Add dispersion to the refraction computations
 - 7. Add a fish-eye camera model
- Suggest a topic on your own

Advanced Computer Graphics practical session - SS2023

41

Add 2D texture mapping support and implement a procedural texture (2D and 3D)

- Add computation of (u,v) coordinates to the sphere intersection (polar)
- Load a texture from a file an map it onto a sphere
 - Nearest pixel or linear interpolation
- Implement a procedural texture in 2D and 3D:
 - (u,v) -> RGB and (x,y,z) -> RGB
 - E.g.: Checkerboard or bricks
 - Map one sphere with the 2D the other with a 3D (solid) texture
- Optional: Add bump mapping to the material

Advanced Computer Graphics practical session – SS2023

Speed up triangle intersections

- Build a bounding sphere hierarchy for mesh objects:
 - Group neighboring triangles
 - Compute (non-tight) bounding spheres and store triangle
 IDs in the first sphere layer
 - Group bounding spheres of the next layer containing the lower layer spheres (and so on ...)
 - Implement an intersection test hierarchically traversing down the sphere layers until it (maybe) hits a triangle
- Analyze the number of intersections also compared to the brute force version (and speed-up)

Advanced Computer Graphics practical session – SS2023

12

Speed up indirect illumination computation by photon mapping

- Start from the light source to send light rays into the scene via path tracing
- Store intersection points in 3D space along with the incoming direction of the photon in a kd-tree
 - Either implement yourself or use a library such as https://github.com/flann-lib/flann
- From the camera now radiosities can be compute by a one pass intersection, and a range query into the kd-tree. Via photons, material, and cached directions compute the indirect lighting.

Advanced Computer Graphics practical session – \$\$2023

Add a black hole object with gravitational lens distortion

- Light is 'bend' around heavy gravitational objects
- Use an estimation function to compute the kink of a ray close to a black hole (heavy mass sphere) as approximation.

https://marcel-ritter.com/wp-content/uploads/2016/12/MR.pdf

 Optional: solve the geodesic equations numerically (Schwarzschild metric)

@igs

Advanced Computer Graphics practical session - SS2023

45

Implement other 'noise' generators and compare

- Add a window region for rendering
- Add other 'random' number generators
 - Halton23
 - Stratified
- Use instead of drand48()
- Compute a high-quality image for comparison (very large number of samples)
- Evaluate the other generators using lower sample counts with respect to the high-quality image. (e.g. visual, difference, snr, run-time)

Advanced Computer Graphics practical session – SS2023

Add dispersion to the refractions

- Implement a black and white solid texture for the walls
- Compute refractions dependent on the wavelength
 - Send multiple color-component rays per refraction

Add fish-eye lens

- Exchange the pinhole camera by a fish-eye camera
- Use a mapping of polar 2D pixel to 3D hemisphere to compute the outgoing camera ray directions
- Add a depth of field effect

Advanced Computer Graphics practical session – SS2023

Suggest on your own

- E.g. from: https://www.pbr-book.org
 - Other material models (sub surface scattering)
 - Procedural textures (noise and fractals)
 - ..

https://users.math.yale.edu/public_html/People/frame/Fractals Panorama/Art/MountainsSim/Romantic/Romantic.html https://www.classes.cs.uchicago.edu/archive/2015/fall/23700-1/final-project/MuseraveTerrain00.pdf

Advanced Computer Graphics practical session – SS2023

49

Practical sessions Schedule

Date	Topic	Remark
13.3.	Introduction	
20.3.	Theory 1 (Radiosity)	Hand-out PA1
27.3.	Programming 1 (Radiosity)	
	Easter Break	
17.4.	Programming 2 (Radiosity)	
24.4.	Presentation Assignment 1	Hand-in PA1, Hand-out PA2
01.5.	Staatsfeiertag	
08.5.	Programming 3 (Path Tracing)	
15.5.	Programming 4 (Path Tracing)	
22.5.	Theory 2 (Sampling), Support A1	Project
29.5.	Pfingsten	
5.6.	Presentation Assignment 2 (Meshlab?)	Hand-in PA2
12.6.	Theory 3 (ICP, Marching Cubes)	
19.6.	Programming support	
26.6.	Presentation final project	Hand-in project

Advanced Computer Graphics practical sessions – SS2023