

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : G07C 9/00	A1	(11) International Publication Number: WO 96/38820 (43) International Publication Date: 5 December 1996 (05.12.96)
(21) International Application Number: PCT/GB96/01249		(81) Designated States: AL, AM, AT, AU, AZ, BE, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).
(22) International Filing Date: 24 May 1996 (24.05.96)		
(30) Priority Data: 9511140.7 2 June 1995 (02.06.95) GB		
(71) Applicant (<i>for all designated States except US</i>): MAYOR LIMITED [GB/GB]; Optimus, Bellbrook Business Park, Uckfield, East Sussex TN22 1QU (GB).		
(72) Inventors; and		Published
(75) Inventors/Applicants (<i>for US only</i>): FAIRHURST, Michael, Christopher [GB/GB]; 53 The Crescent, Canterbury, Kent CT2 7AW (GB), KELLY, Stephen William [GB/GB]; 51 The Crescent, Canterbury, Kent CT2 7AW (GB), GOLDING, Martin [GB/GB]; Flat 1, 4 Dent-de-Lions, Westgate, Kent CT8 8NT (GB).		<i>With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</i>
(74) Agent: GILL JENNINGS & EVERY; Broadgate House, 7 Eldon Street, London EC2M 7LH (GB).		

(54) Title: SECURITY CONTROL SYSTEM

(57) Abstract

Control system for a security access device, in particular for revolving doors (1), including video imaging and processing to determine the number of persons within a secured region of the security access device, and controlling the operability of the security access device in dependence on the number of persons.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgyzstan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic of Korea	SD	Sudan
CF	Central African Republic	KR	Republic of Korea	SE	Sweden
CG	Congo	KZ	Kazakhstan	SG	Singapore
CH	Switzerland	LI	Liechtenstein	SI	Slovenia
CI	Côte d'Ivoire	LK	Sri Lanka	SK	Slovakia
CM	Cameroun	LR	Liberia	SN	Senegal
CN	China	LT	Lithuania	SZ	Switzerland
CS	Czechoslovakia	LU	Luxembourg	TD	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
EE	Estonia	MG	Madagascar	UG	Uganda
ES	Spain	ML	Mali	US	United States of America
FI	Finnland	MN	Mongolia	UZ	Uzbekistan
FR	France	MR	Mauritania	VN	Viet Nam
GA	Gabon				

SECURITY CONTROL SYSTEMTECHNICAL FIELD

The present invention relates to a control system for use with a security door, with interlocking or synchronised doors, or with other means, such as turnstiles, flaps or other obstacles, for controlling access to a secured area.

A typical security door may comprise a revolving door divided into, say, four compartments by radially extending wings. The wings are coupled centrally at their upper or lower end to an interlock operated by a control system and are typically motor driven, but may alternatively be pushed manually. Turnstile systems are generally free to be pushed manually.

The control system may operate, for example, in response to a card reader. An authorised person wishing to pass through the door will then insert their pass card in the reader and, provided that their card is recognised, the control system then operates the interlock to free the revolving door so the user can pass through it. If the card is not recognised, or if an unauthorised person attempts to gain access without use of the pass card reader, then the interlock holds the wings of the revolving door against movement and so prevents passage through the door.

BACKGROUND ART

Known security doors suffer from a number of potential forms of misuse. In particular they are vulnerable to "piggy-backing" in which two individuals attempt to pass through the door in one compartment, or "tail-gating" in which an unauthorised person enters the compartment immediately following the one containing the authorised person, or passes through the door in the opposite direction. It has previously been proposed to use pressure-sensitive door mats in the security door, or to use ultra-sonic sensors to detect the presence of more than one person in the door. However these measures have not been wholly successful and there remains a need for a

security system capable of detecting reliably piggy-backing or tail-gating, whilst providing ease of use and only a minimum number of false alarms.

SUMMARY OF THE PRESENT INVENTION

5 According to a first aspect of the present invention a control system suitable for use with a security access device such as a security door comprises a video input device which in use captures visual image data from the secured region of the device, an image processor for
10 processing said image data and deriving at least one parameter for discriminating the number of persons present in the secured area of the device and a comparator for comparing the said parameter derived from the original data with a predetermined threshold and producing a
15 discriminatory output for use in controlling the interlock on the security device depending upon the result of the comparison.

The present inventors have adopted an entirely new approach to the detection of tail-gating and piggy-backing,
20 based on the use of video data. While the use of video data has previously been proposed for the recognition of authorised persons, as an alternative, e.g., to the use of card readers, the use of video data for piggy-backing detection (APB) has not previously been thought desirable
25 or possible. On the face of it the complexity of the visual data which would be gathered from e.g., a revolving transparent door, and the processing overheads involved in determining from such data the number of persons present provide a major disincentive to the adoption of such
30 techniques. By contrast with recognition techniques which take place outside the door, APB detection generally has to be carried out in the short interval of time during which the user is passing through the door and so techniques involving large processing overheads tend to be avoided.
35 However, the present inventors have realised that with appropriate processing, the raw video data can be used to yield a simple parameter for comparison with a

predetermined threshold, and that the use of video data in this manner allows effective APB detection in real time using a relatively low-powered processor. The threshold may be for a statistic derived from a number of parameters
5 in combination.

Preferably the image processor and discriminator comprise a cascaded series of modules, each module being arranged to process image data to determine a respective parameter, and to compare the parameter with a
10 corresponding threshold.

Preferably the modules are arranged so that when one module is able to make a decision at a predetermined confidence level, then that module produces the said discriminatory output signal, otherwise the said module
15 passing image data on to a subsequent module for further processing.

Preferably the modules are arranged generally in order of their discriminatory power, with the most powerful module receiving the image data first.

20 The discriminatory power of a module is a measure of its ability to make a discriminatory decision with a minimum processing overhead, and so at maximum speed. The efficiency of the whole system is maximised by using the fastest tests first, and only passing on to tests with a
25 greater processing overhead when the preceding tests fail to meet a predetermined confidence level.

Preferably the image processor is arranged to capture a background image of the door with no person present, and to capture a subsequent image of the door with a person
30 present and to discard from the second said image video data which is unchanged from the background image.

According to a second aspect of the present invention there is provided a method of controlling a security access device, such as a security door, including capturing video
35 image data from a secured area of the access device,

processing said image data and thereby deriving at least one parameter for discriminating the number of persons present in the secured area, and

5 comparing the said parameter with a predetermined threshold and producing a discriminatory output for use in controlling an interlock on the security device to lock the device when more than a predetermined number of persons are present in the secured area.

10 The present invention also encompasses a security access device when fitted with a control system in accordance with the first aspect of the present invention.

According to a further aspect of the present invention, there is provided a security access device including a secured region bounded by one or more wholly or 15 partially transparent walls, characterised by a control system including a video input device arranged to view the secured region, and in that the transparent walls include filter means arranged to block or reduce the transmission of light in part of the visible/near-visible optical 20 spectrum, and in that the video input device has a sensitivity/wavelength characteristic generally complementary to the transmission characteristic of the said filter means associated with the transparent walls, the visibility to the video input device of objects outside 25 the transparent walls thereby being reduced or eliminated.

Revolving security doors, for example, are commonly built with glass doors. Objects outside the secured area are therefore potentially visible to any video security control system and may "confuse" any judgement made by the 30 control system. This aspect of the present invention overcomes this problem by using walls which are transparent in one part of the visible/near-visible spectrum and a video input device which is sensitive in another part of the spectrum. The walls may, for example, be covered by a 35 film which blocks transmission in the infra-red. The video device may either be selected to be inherently sensitive in the infra-red range, and insensitive outside that range,

or, may be provided with an input filter giving this desired sensitivity/wavelength characteristic.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a block diagram of a system embodying the present invention;

Figures 2a and 2b are schematic representations of captured video data at different stages of processing;

Figure 3 shows a set of pixel masks used in processing the image data to detect the head edges shown in Figure 2b;

Figure 4 is a schematic illustrating the processing of the image data to derive the image height and width;

Figure 5 is a flow diagram for the image processing in the APB control circuit;

Figure 6 is a schematic of hardware for implementing the system of Figure 1; and

Figures 7a - 7d are graphs showing experimental data obtained using the system of Figure 1.

DETAILED DESCRIPTION

An entry control system comprises a revolving door 1 which, in this example, has four compartments defined by radially extending wings 2a-2d. The movement of the wings is controlled by an interlock 3 mounted centrally above the wings. This interlock operates in a fashion conventional in revolving security doors to lock the door against movement until an appropriate control signal is received from a control unit.

A card reader 5 is connected to the door controller 4 and stands outside the door 1. In use, when someone wishes to pass through the door, that person inserts their card in the reader 5. Provided that the card is recognised, the reader 5 outputs an authorization signal to the door controller 4 which then operates the interlock 3 to free the door which is then driven by a motor through an angle sufficient for the authorised user to pass from the entrance to the exit of the door.

Such security door systems are vulnerable to misuse if there is piggy-backing, that is to say if a second

unauthorised person enters the compartment together with the authorised person, or if there is tail-gating, in which the unauthorised person passes through the door in another of the compartments at the same time as the authorised 5 person goes through. In the present example, the control system for the door further comprises a video camera 6 which is mounted above the door looking down into an underlying compartment. The video data from the camera is processed in an APB control circuit 7 to produce a 10 discriminatory output which goes to the controller 4 for the door to operate the interlock 3 to lock the door when piggy-backing or tail-gating is detected.

As illustrated in Figure 5, the APB control circuit has a cascaded hierarchical structure. This comprises a 15 plurality of stages arranged generally in order of the discriminatory power of the particular parameter which is derived and used. In use, the image data is first subject to processing by the first of this hierarchy of stages. If that results in the production of a parameter having a 20 value such that a decision on the presence or absence of a second person can be made with adequate confidence, then the processing is terminated at that stage and an appropriate output signal produced and fed to the external control unit. If, however, a decision cannot be made based 25 on the first parameter, then the image data is passed on to the next stage in the hierarchy, for further processing and the derivation of a further parameter and so on. In this way, the system is structured to maximise the processing speed and to minimise the average processing overhead for 30 the image data. Just a single parameter may be used for the discrimination in the majority of cases, with further parameters being derived and tested only in those marginal cases where a single parameter does not enable a decision to be made with sufficient confidence.

35 In the present example, the first stage of the video control circuit is a background-subtraction stage. This firstly captures a background image of the compartment of

the door prior to the entry of the user into the field of view of the camera. This background image is stored in order to provide a means of identifying changes occurring when entry into the door compartment is effected.

5 Subsequently, as the user passes into the field of view, the system captures a second image, the "present" image. This is compared with the stored background image and those pixels which are unchanged are discarded, thereby eliminating them from the subsequent processing stages. In

10 this example, the comparison is carried out by taking the grey scale values in the range 1-255 of each pixel, subtracting one from the other and writing a value of 0 for each pixel where the result of the subtraction is 0 or is less than a predetermined small value, say 10. Where the

15 difference is greater than this predetermined threshold, then the value written is simply the grey scale value of the present image for that pixel. In the course of this process a count is maintained of the number of non-zero pixels produced and this is used as the first test

20 parameter for APB detection. It is found that when two or more persons are present the difference count is characteristically higher than when a single person is present in the door. In some cases however the result of the difference count will be too close to the relevant

25 predetermined threshold for a reliable determination to be made. In this case the video data is passed on for subsequent stages of processing and discrimination.

Referring again to Figure 5, in this example the next stage carries out edge detection using the known Sobel edge detection algorithm. This algorithm is applied only to the non-zero pixels of the image output from the first stage and sets those pixels to one of two binary values producing a binary image with, for example, edges shown in black on a white ground as in Figure 2a. A determination is then

30 made of the area inside the edges. This is done by stepping a window of dimensions, e.g., 10 x 10 through the image and recording a count for each pixel which is inside

35

the edges and for which none of the pixels of the window cross an edge. This count then is a measure of the area inside the edges and is related to the area in the view of the camera of the shoulders and head of the person passing through the door. This measure of the area provides a second discriminatory parameter which as in the first stage is compared with a respective discriminatory threshold. As before, if this comparison produces a result with a sufficient degree of certainty, then the processing can be terminated at that stage and the discriminatory output passed on to the control system 7. If this is not the case, then the system passes on to the next stage of processing. As illustrated in Figure 4, this calculates the height and width of the image defined by the edges, calculates the ratio of the two, and compares this with a respective predetermined threshold.

In this example the final processing module carries out what has been termed "head edge detection". This uses the aliasing characteristic of the "corners" of the detected edges. The image data is compared with a set of pixel masks of the form shown in Figure 3. A count is incremented, and a mark displayed (Figure 2b), for each pixel where a match is found with one of the masks. The count of the number of matches is then compared with a predetermined threshold for the count to provide a further discriminatory test.

When any of the tests produces an output indicating that two or more people are in the door, then the control system 7 may activate the interlock to lock the door against movement, thereby trapping the users, or may drive the door in the reverse direction to expel the users.

The inventors have found that the discrimination of the system can be improved by calculating an additional parameter to compensate for the position of an object in the door. The parameters discussed above are based on what is assumed to be a plan view from above of the person in the door. However, if the person is not directly under the

camera, then the camera captures part of the side of the body too. This extra information would tend to distort the measurement and could lead to the mis-classification of a tall off-centre person as two people. To avoid this, a 5 measurement is taken first of the position of the centre of the object. This is then compared with the actual centre of the camera and an adjustment parameter is set. The adjustment parameter takes the form of a ratio by which subsequently determined parameters are multiplied.

10 Figure 7a and Column 1 of Table 1 show the measurements of the position of the object used for determining the adjustment ratio for a sample of 72 test images. The higher the number the further the object is from the centre of the camera. The images are a selection 15 from the following categories: a single person; two people; people carrying large and small objects; a person carrying a large object over their head.

Figure 7b and Column 2 of the table show the difference count parameter, after correction by the 20 adjustment ratio or "normalising factor" of Figure 7a. Note that images 68-70 are large objects carried over the top of the head and so result in a large difference count. Figure 7c and Column 3 show the (corrected) head area parameter. This measurement is a guide to the total area 25 available to be a head space. Images 68-70 would cause concern as the values are extremely high. These images would fall above the alarm threshold, as 2 people could fit under such a large object. Figure 7d shows the height/width ratio parameter measuring the compactness of 30 the image. The lower the value, the more likely that the imaged object is two people.

Table 1 below lists the data illustrated in these graphs. Columns 1 to 3 are identified above. The data contained in the other columns are as follows:

35 Column 4 Width
This is the width of the Head Area region.

10

Column 5 Height

This is the height of the Head Area region.

Column 6 Normalised Ratio

- 5 This is the ratio of the width and height. The Normalising Factor is used to adjust the ratio depending on the position of the object in respect to the centre of the camera.

10 Column 7 Head Edges

This measurement is the number of pixel patterns that match with a head indicator mask. The greater the number the larger the number of head mask matches.

15

Column 8 Head Edge Groups

This is the number of concentrated groups of Head Edges.

Column 9 Straight Edge Indicator

- 20 This measurement is the number of straight lines found in the image.

Column 10 Volume

This is the total volume that would encapsulate the object.

25

Column 11 Volume Width

This is the width of volume.

Column 12 Volume Height

- 30 This is the height of volume.

Column 13 Volume Ratio

This is the ratio of the volume height and volume width.

35

Not all of the parameters listed in the table need be used in any given implementation of the invention. The comparators may be arranged to make an "intelligent"

decision based on a number of parameters, rather than simply applying a single threshold. The system may also include a knowledge base so that it can judge each situation on the measurements of the current image and 5 knowledge gained about the environment the system is working with.

Table 2 lists the subjects used for the different images listed in Table 1.

For the data of this example, the following thresholds 10 may be used by the comparators for discrimination:

Normalised Difference

Below 750 - Allow entry

Above 15000 - Refuse entry. Suspect door entry

Area

15 Below 750 - Allow entry

Above 4500 - Refuse entry. Suspect door entry

Normalised Ratio

Above 95 - Allow entry

20 Not all measurements have a pass & fail level. For example if the ratio is above 95 then we would allow entry. If it is below this level, we use other measurements to make a decision.

The system described above may be modified through the 25 use of moving images, that is to say the capturing of a series of video frames as the person moves through the door. This then produces distinctive "constants" which may be used as the basis for discriminatory parameters in an analogous fashion to the process discussed above.

30 In systems embodying the invention, some of the processing modules may use appropriately trained neural networks. These may be trained on the parameters produced by other modules.

35 Appropriate thresholds for the different parameters used by different modules may be obtained by inspection from real sample data such as that illustrated in Figures

7a-7d, and or from computer modelling of the environment in which the system is to be used.

Figure 6 illustrates one example of hardware embodying the system. A camera 61 views the target scene and passes 5 the acquired image to a frame grabber 62. In this preferred implementation, the camera views the target scene through an IR bandpass filter. An IR bandstop filter which may be in the form of a film applied to the walls of the revolving door and which is transparent in the rest of the 10 visual spectrum is then used to screen the extraneous visual field from the field of view of the camera. A light source may be provided inside the door to provide illumination at levels appropriate to the sensitivity of the video camera 61.

15 The image from the frame grabber is passed to a single board PC 63 which runs image processing software implementing the hierarchical modular structure discussed above. Once a decision has been made by the control program, an output is passed to the door controller 64.

20 In the presently described example, the camera 61 is a 1/3 inch black and white EI camera (RS845-184) having a 1/3 inch CS mount DD lens, 2.6mm (RS846-266). The frame grabber is that available commercially as VIDEOBLASTER SE. In this example the single board PC uses an Intel 486DX2/66 25 microprocessor and an ISA bus. The interface to the door controller 64 is a standard PC ISA bus serial card. The user interface which enables the user to set adjustable parameters for the control program may comprise a keyboard or keypad and a VDU or LCD display.

30 It will be understood that the above components are given by way of example only, and that a number of alternative implementations are possible.

The following appendices list, in appendix A, the source code for the image processing/discrimination program 35 run on the single board PC 63, and, in appendix B, the different elements of the program are listed in pseudocode.

IMAGE

13

TABLE 1 (i)

	C1	C2	C3	C4	C5	C6	C7	C8	C9 - COLUMN
1	12.08305	57241	15311	93	132	103	120	35	103
2	8.602325	47421	8071	86	78	120	150	53	103
3	12.561481	51631	13951	94	99	142	115	28	130
4	12.56981	80021	25371	110	131	124	165	30	145
5	2.828427	68881	10371	80	102	86	140	35	97
6	9.273618	38001	9231	65	76	116	77	22	85
7	6.480741	42371	3871	87	91	119	114	26	80
8	10.488091	27251	7711	56	74	106	77	24	45
9	12.16553	46401	11991	96	98	144	154	45	103
10	4.690416	46051	2171	86	93	109	134	28	69
	4	97081	12691	92	123	85	252	90	127
	7.348469	9961	19781	92	140	84	192	33	135
	5.830952	126481	19991	184	100	66	270	88	175
	4.242641	101471	16161	89	120	86	255	78	143
	10.95445	94241	3431	105	156	96	192	57	123
	11.66119	81201	17711	134	147	133	229	53	140
	12.16553	67701	29031	109	104	141	122	36	80
	12.24745	63531	21491	108	102	140	167	46	113
	4.242641	72621	4031	190	92	56	295	87	82
	6.164414	123201	43221	118	170	86	238	72	172
	5.477226	75361	20341	164	96	70	151	28	103
	8.36681	70901	22871	118	129	121	157	43	90
	5.830952	70821	25711	121	72	72	214	52	72
	7.071068	68911	19881	93	91	124	170	41	91
	4	102701	27721	145	143	113	134	35	163
	5.291503	102841	22901	155	138	107	206	65	127
	5.656854	48741	8791	82	83	120	193	65	78
	11.48913	59081	20371	98	124	115	138	38	129
	10.95445	60811	15631	130	108	119	170	54	125
	5.291503	67561	21111	92	123	89	133	38	117
	9.695361	53521	16211	81	103	108	151	31	87
	6.480741	69251	28991	123	103	104	157	37	92
	4	68621	23241	94	111	97	197	53	69
	4	98211	30781	112	132	97	240	98	135
	8.124038	119761	30761	126	157	105	229	55	181
	4.242641	136781	16781	118	171	80	511	169	139
	2.828427	52521	9781	77	82	103	106	22	73
	4.472136	94231	25671	94	138	80	232	61	146
	5.656854	85461	12431	106	143	90	195	59	140
40	3.464102	61451	12031	128	80	70	173	44	81
	2.828427	57961	12611	132	79	65	151	33	86
	3.464102	61516	17251	155	84	61	134	36	86
	6.324555	60731	5371	107	87	101	173	48	105
	5.830952	80561	22711	129	105	99	189	46	128
	4.690416	99841	25311	117	138	99	303	112	117
	5.656854	13831	7151	79	46	71	39	10	43
	8.717798	8191	10061	45	40	118	41	10	21
	12.56981	9251	82	28	32	130	24	6	28
	11.13553	83701	39841	158	101	91	175	38	122
	10.09951	58351	2215	127	116	127	185	50	102
	9.165151	52891	21951	116	98	114	136	34	90
	11.74734	62561	35321	138	99	104	139	37	86
	8.124038	70451	21261	88	106	109	202	53	118
	12.80625	49691	25271	81	90	136	149	53	58
	11.91638	52281	22511	96	95	144	172	40	106

TABLE 1 (iii)

IMAGE	C1	C2	C3	C4	C5	C6	C7	C8	C9	COLUMN
	9.165151	5904	2249	82	72	118	201	86	63	
	12.32883	5811	3225	104	99	141	157	41	73	
	11.83216	8789	4192	102	156	95	198	60	148	
60-	11.40175	5393	3357	99	100	142	136	48	66	
	10.77033	4947	2292	104	76	104	138	31	68	
	5.477226	6150	2355	130	66	60	265	154	69	
	9.591663	4957	2422	113	85	103	112	32	77	
	9.380832	5654	2489	127	114	122	140	37	92	
	10.19804	4186	2294	83	70	118	122	43	61	
	9.797959	5108	2359	96	89	128	120	42	83	
	5.830952	6286	2231	99	105	115	150	28	99	
	15.42725	6134	3250	115	116	160	144	52	98	
	12.49	18356	15000	163	187	130	144	35	100	
	8.246211	28437	16666	219	254	114	266	46	177	
70-	10.09951	24673	15205	214	254	117	234	50	215	
	6.928203	6718	967	123	116	120	259	83	111	
	2.528427	7376	1401	115	106	102	197	66	114	

TABLE 1 (iii) 15

	C10	C11	C12	C13	- COLUMN
1	32551	851	341	59	
2	30101	761	341	59	
3	47001	851	491	86	
.	74801	931	631	109	
.	40801	761	501	72	
.	24701	621	371	80	
10-	35671	731	401	67	
	14431	471	371	110	
	48001	741	491	98	
	42141	731	481	77	
	48951	891	541	69	
	60481	881	711	103	
	80501	1561	451	34	
	53401	871	601	79	
	73131	981	701	102	
	99161	1121	731	95	
	37631	901	521	84	
	45501	991	491	73	
	62221	1451	331	25	
20-	76001	981	791	99	
	78721	1151	481	49	
	53101	1141	451	52	
	42351	1081	341	38	
	35341	801	371	59	
	64481	1171	521	51	
	89701	1441	641	53	
	31161	691	371	64	
	57821	881	581	94	
	39361	1041	481	66	
30-	44021	801	611	92	
	42121	811	511	86	
	62731	1231	511	51	
	49681	901	531	57	
	54001	1001	591	67	
	62371	971	771	104	
	84551	1061	681	97	
	25411	711	331	51	
	65101	861	691	94	
	76321	1041	711	83	
40-	41481	921	331	39	
	52801	941	391	45	
	46621	1101	361	36	
	44941	961	411	52	
	68371	1291	521	49	
	67861	891	571	76	
	17381	571	221	46	
	9451	451	201	59	
	3841	231	161	103	
50-	70501	1371	471	49	
	69851	1021	551	74	
	30451	931	341	49	
	52921	1181	411	49	
	39601	811	441	71	
	34321	791	441	83	
	33601	951	341	51	

TABLE 1 (iv)

C10	C11	C12	C13
2414	76	33	58
3478	99	37	55
6794	92	78	123
2844	85	35	59
2992	96	34	50
3564	119	33	32
4104	97	38	53
4080	108	33	41
2822	83	33	54
3268	86	42	66
2904	76	43	69
3948	96	42	69
15040	149	93	92
24852	213	113	70
70 24282	201	114	78
6273	117	50	53
5175	112	45	44

TABLE 2

IMAGE NO.	SUBJECT
1 to 5	1 person -positional test
6 to 10	1 person -positional test
11 to 14	2 people -positional test
15 to 19	1 person-positional test
20	2 people
21 to 24	1 person + brolly
25 to 26	1 person + box
27 to 29	1 person -positional test
30 to 33	1 person + brolly
34 to 36	1 person + box
37	1 person + brolly
38	2 people
39	1 person + box
40 to 42	1 person + brolly
43	1 person + briefcase
44	1 person + brolly
45	2 people
46 to 48	postbag in door
49	small single object
50	1 person + rucksack
51-57	1 person carrying object
58-60	1 person + hooded coat
61-68	1 person -different arm positions
69-71	1 person - box overhead
72	1 person -hat

APPENDIX A

18

```
*****  
/*      Mayor - Guard - Door Security Program      *  
/*      *  
/*      Martin Golding      *  
/*      mg@ukc.ac.uk      *  
/*      Written in C using Turbo Borland C      *  
*****  
  
// these include other software needed to run the program  
#include <ctype.h>  
#include <dos.h>  
#include <stdio.h>  
#include <stdlib.h>  
#include <iostream.h>  
#include <iomanip.h>  
#include <conio.h>  
#include <math.h>  
#include <graphics.h>  
  
// the size of the images that we use. Can be modified latter to  
speed  
// up operation  
int const IMAGE_SIZE = 256;  
  
// these are used to hold the image information  
unsigned char ** Img1;  
unsigned char ** Img2;  
unsigned char ** Back;  
  
*****  
// creates space for a new image in memory  
//  
void newImage(unsigned char * * i,int size) {  
    (*i) = new unsigned char * [size];  
    for (int x=0;x<size;x++) {  
        (*i)[x] = new unsigned char[size];  
        if (!((*i)[x])) {  
            clrscr();  
            cout << "\nImage Error\n\n";  
            getch();  
            exit(1);  
        }  
    }  
} //*****  
// deletes space taken up by an image  
//  
void deleteImage(unsigned char** i,int size) {  
    for (int x=0;x<size;x++) {  
        if ((*i)[x])) delete ((*i)[x]);  
    }  
    delete (*i);  
} //*****
```

```

// displays the image on the screen
//
void display(unsigned char** Img) {
    int Size = IMAGE_SIZE;

    for (int y = 0; y < Size; y++)
        for (int x = 0; x < Size; x++)
            putpixel(x,y,Img[y][x]/16);
}

//***** *****
// creates all the space for the images required
//
void start() {
    newImage(&Img1,256);
    newImage(&Img2,256);
    newImage(&Back,256);
}

//***** *****
// deletes all the space for the images
void end() {
    deleteImage(&Img1,256);
    deleteImage(&Img2,256);
    deleteImage(&Back,256);
}

//***** *****
// turns the computer into graphics mode so we can see the image
//
void startGraphics() {

    int errorcode, graphdriver, graphmode;
    if (registerfarbgidriver(EGAVGA_driver_far) < 0) exit(1);

    graphdriver      = VGA;
    graphmode       = VGAHI;

    initgraph(&graphdriver, &graphmode, " .. ");
    errorcode = graphresult();
    if (errorcode != grOK) {
        cout << "Cant do graphics. \n" ;
        exit(1);
    }
    struct palettetype pal;
    getpalette(&pal);

    // create gray scale
    for (int i = 0; i < pal.size; i++)
        setrgbpalette(pal.colors[i], i*4, i*4, i*4);
}

//***** *****
// resets the computer from graphics mode
//
void endGraphics() {
    closegraph();
}

//***** *****
// use roberts operator to detect a presence of a line
//

```

```

void edgeDetect(unsigned char** imgIn,unsigned char** imgOut,int
level) {

    int ySize = IMAGE_SIZE;
    int xSize = IMAGE_SIZE;

    double a,b,c,d,rob;

    for(int y=0;y<ySize-1;y++)
    for(int x=0;x<xSize-1;x++) {
        // only look a pixel that is not background
        if (imgIn[y][x]) {

            a = double(imgIn[y][x]);
            b = double(imgIn[y][x+1]);
            c = double(imgIn[y+1][x]);
            d = double(imgIn[y+1][x+1]);

            rob = sqrt(((a-d)*(a-d))+((b-c)*(b-c)));
            if (rob>=(double)(level)) // if a line
                imgOut[y][x] = 255;
            else
                // not
                imgOut[y][x] = 1;
        } else imgOut[y][x] = 0;
    }

    //*****
    // realign all black pixels to be 1 instead of 0 so we speed up
    // operation.
    // All the algorithms know a pixel of 0 is not worth looking at.
    void levelBlack(unsigned char** in) {
        for(int y=0;y<IMAGE_SIZE;y++)
        for(int x=0;x<IMAGE_SIZE;x++)
            if (in[y][x]==0) in[y][x] = 1;
    }
    //*****
    // set all the image to be 0
    //
    void blank(unsigned char** in) {
        for(int y=0;y<IMAGE_SIZE;y++)
        for(int x=0;x<IMAGE_SIZE;x++)
            in[y][x]=0;
    }
    //*****
    // deduct the background image from the present image and save
    // the result
    //
    long deduct(unsigned char** back, unsigned char** img, unsigned
char** out,int LEVEL) {
}

```

```

int value ;
long count=0;
int ImageSize = IMAGE_SIZE;

for(int y=0;y<ImageSize;y++)
for(int x=0;x<ImageSize;x++) {
    value = (int)(img[y][x]);

        // if the absolute value is greater the level
given
        // then set the out value
        if (abs((int)(back[y][x])-value)>LEVEL) {
            out[y][x] = img[y][x] ;
            count++;
        } else
            // otherwise turn to not worth looking at
            out[y][x] = 0;
    }

// return the number of differences
return(count);
}
//*****
// read in the image file named with 'inFile'
//
int ReadInFile(unsigned char** Img, char *inFile) {
    FILE *file;
    int ch;

    if ((file=fopen(inFile,"rb"))==NULL) {
        cout << "Cant open file "<< inFile << "\n";
        return(0) ;
    }

    char Header[512] ;
    fread(Header,1,512,file);

    for (int y=0;y<IMAGE_SIZE;y++)
    for (int x=0;x<IMAGE_SIZE;x++)
        if ((ch=fgetc(file))=='EOF') {
            cout << "Reached end before should have\n";
            fclose(file);
            return(0);
        } else {
            Img[y][x] = ch ;
        }

    fclose(file);

    return(1) ;
}

//*****
// get the details of the image file
//
int GetFileInfo(char *inFile, int* grays, int* size) {

```

```
FILE *file;
if ((file=fopen(inFile,"rb"))==NULL) {
    cout << "Cant open " << inFile << "\n";
    return(0);
}
char Header[43] ;
fread(Header,1,43,file) ;
int GrayLevels ;
int ImageRes ;
div_t temp ;
GrayLevels = (int)Header[41] ;
GrayLevels = (1 << GrayLevels) ;
temp = div(512,(int)Header[42]) ;
ImageRes = temp.quot ;
*grays = GrayLevels;
*size = ImageRes ;
fclose(file) ;
if (GrayLevels==256) {
if (ImageRes==IMAGE_SIZE) {
    return(1);
} else {
    return(0);
}
} else {
    return(0);
};
}
//*****
// check the image file is ok and import the file
// 
int ImportFile(unsigned char** Img, char* inFile) {
    int GrayLevels;
    int ImageSize;
    if (!GetFileInfo(inFile,&GrayLevels,&ImageSize)) {
        return(0);
    }
    if (!ReadInFile(Img,inFile)) return(0);
    return(1);
}
//*****
// export the image into a file
// 
int ExportFile(unsigned char** Img, char* name) {
```

```

FILE *file;
static char ext[1];
ext[0]='\0';

if ((file=fopen(name,"rb"))!=NULL) {
{
    fclose(file);
    remove(name);
}
}

if ((file=fopen(name,"wb"))==NULL) {
{
    printf("Cannot save... press any key to cont");
    getch();
}
}

char Header[512] ;

int ImageRes ;
div_t temp ;
ImageRes = IMAGE_SIZE;
Header[41] = 8;
temp = div(512,ImageRes) ;
Header[42] = temp.quot;

fwrite(Header,1,512,file) ;
int imgSize = IMAGE_SIZE;
int Val;
for(int y=0;y

```

```

// if 1 should look at this pixel, 0 means dont bother
if (in[y+WIN/2][x+WIN/2]) {
    count =0;

    // count all the ones to look for
    for(int yy=y;yy<y+WIN;yy++) {
        for(int xx=x;xx<x+WIN;xx++) {
            if (in[yy][xx]==look) {
                count++;
            } else
                break;
        }

        // if they are all to be looked at
        if (count==WIN*WIN) {

            // fill them all in
            for(int yy=y;yy<y+WIN;yy++)
                for(int xx=x;xx<x+WIN;xx++) {
                    out[yy][xx] = 255;
                }
            result++;

        }
    }

    // return all the ones found
    return(result);
}

//*****// detects the head edges using head masks
//*****//
int DetectPossibleHeadEdges(unsigned char** img, unsigned char** imgOut) {
    int iSize = IMAGE_SIZE;
    int x,y,xx,yy,cnt=0;
    int x1,x2,x3,x4,x5,x6,x7,x8,x9;

    // go around in a 3x3 window
    for(x=1;x<iSize-3;x++)
    for(y=1;y<iSize-3;y++)

    // dont bother looking at a 0
    if (!img[y][x]) {

        // get all 9 elements
        x1=img[y-1][x-1];
        x2=img[y-1][x];
        x3=img[y-1][x+1];
        x4=img[y][x-1];
        x5=img[y][x];
        x6=img[y][x+1];
        x7=img[y+1][x-1];
        x8=img[y+1][x];
        x9=img[y+1][x+1];
    }
}

```

```

// look at all the 6 masks
// if found then increase count
    i   f
((x1)&&(!x2)&&(!x3)&&(x4)&&(x5)&&(!x6)&&(x7)&&(x8)&&(!x9))
{ imgOut[y][x] = 255; cnt++; }
    e   1   s   e   i   f
((!x1)&&(!x2)&&(x3)&&(!x4)&&(x5)&&(x6)&&(!x7)&&(x8)&&(x9))
{ imgOut[y][x] = 255; cnt++; }
    e   1   s   e   i   f
((!x1)&&(!x2)&&(!x3)&&(!x4)&&(x5)&&(x6)&&(x7)&&(x8)&&(x9))
{ imgOut[y][x] = 255; cnt++; }
    e   1   s   e   i   f
((!x1)&&(!x2)&&(!x3)&&(x4)&&(x5)&&(!x6)&&(x7)&&(x8)&&(x9))
{ imgOut[y][x] = 255; cnt++; }
    e   1   s   e   i   f
((x1)&&(x2)&&(x3)&&(x4)&&(x5)&&(!x6)&&(!x7)&&(!x8)&&(!x9))
{ imgOut[y][x] = 255; cnt++; }
    e   1   s   e   i   f
((x1)&&(x2)&&(x3)&&(!x4)&&(x5)&&(x6)&&(!x7)&&(!x8)&&(!x9))
{ imgOut[y][x] = 255; cnt++; }

}

// return the numbers of head edges there are
return(cnt);

}

//*****find the height of the object*****
// find the height of the object
//
int height(unsigned char** in) {
int x,y;
int start=-1,end=IMAGE_SIZE+1;

    for(y=0;y<IMAGE_SIZE;y++) {
        for(x=0;x<IMAGE_SIZE;x++) {
            if (in[y][x]==255) {
                start=y;
                break;
            }
        }
        if (start!=-1) break;
    }

    for(y=IMAGE_SIZE-1;y>=0;y--) {
        for(x=0;x<IMAGE_SIZE;x++) {
            if (in[y][x]==255) {
                end=y;
                break;
            }
        }
        if (end!=IMAGE_SIZE+1) break;
    }

if (start==-1) return(0);
// return the height

```

```
    return(end-start);

}
//***** find the width of the object
//
int width(unsigned char** in) {
int x,y;
int start=-1,end=IMAGE_SIZE+1;

for(x=0;x<IMAGE_SIZE;x++) {
    for(y=0;y<IMAGE_SIZE;y++) {
        if (in[y][x]==255) {
            start=x;
            break;
        }
    if (start!=-1) break;
}

for(x=IMAGE_SIZE-1;x>=0;x--) {
    for(y=0;y<IMAGE_SIZE;y++) {
        if (in[y][x]==255) {
            end=x;
            break;
        }
    if (end!=IMAGE_SIZE+1) break;
}

if (start==end) return(0);
//return the width
return(abs(end-start));
}

//***** the main program

int main(int, char* []) {

start(); // start up the space for the images
startGraphics(); // turn on the graphics

ImportFile(Back,"back.img"); // load up the background image
display(Back); // display and wait
getch();

ImportFile(Img1,"frame.img"); // load up the present image
display(Img1); // display and wait
getch();

levelBlack(Img1); // realign the black pixels so we can use them
levelBlack(Back); // to know what to look for
```

```
long diff = deduct(Back,Img1,Img2,17); // take the background
from
                                // foreground and get the difference

display(Img2); // display the result and wait
getch();

edgeDetect(Img2,Img1,30); // detect the edges in the image

display(Img1); // display the result and wait
getch();

blank(Img2); // set the image to all 0s

int area = FindPossibleHeadSpace(Img1,Img2); // get the total
area

display(Img2); // display result and wait
getch();

int h = height(Img2); // calculate the height
int w = width(Img2); // calculate the width

blank(Img1); // set the image to all 0s

int edges = DetectPossibleHeadEdges(Img2,Img1); // look for
possible head edges

display(Img1); // display result and wait
getch();

endGraphics(); // shut down the graphics
end(); // release all the memory for the images

cout << "diff\t" << diff << endl; // output the results
cout << "area\t" << area << endl;
cout << "width\t" << w << endl;
cout << "height\t" << h << endl;

double ratio;

if (w>h) // calculate the ratio of height/width
    ratio = double(h)/double(w);
else
    ratio = double(w)/double(h);

cout << "ratio\t" << ratio << endl;
cout << "edges\t" << edges << endl;

double const RATIO = 0.6; // define the thresholds
int const EDGE = 45;
long const DIFF = 10000;

cout << endl << endl;

// tell them what you are looking for
cout << "We will look for a difference of " << DIFF << endl;
```

```
cout << "We will look for a edges of " << EDGE << endl;
cout << "We will look for a ratio of " << RATIO << endl;
cout << endl << endl;

// see how we have done

if (diff<DIFF) {
    cout << "one person - on differences" << endl;
} else {
    cout << "two people - on differences" << endl;
}
if (edges>EDGE) {
    cout << "two people - on edges" << endl;
} else {
    cout << "one person - on edges" << endl;
}

if (ratio<RATIO) {
    cout << "two people - on ratio" << endl;
} else {
    cout << "one person - on ratio" << endl;
}

return(1); // finished
}
```

APPENDIX B

```
*****  
/* Mayor - Sydo Guard - Door Security Program */  
/*  
/*  
/* Martin Golding  
/* mg@ukc.ac.uk  
/* Written in sydo-code  
*****  
  
***** define the size of the  
image to be 256  
  
define the number of gray scales as 256  
  
define a pixel of value 0  
A pixel value of 0 will be given to a pixel that is not to  
be looked at and not used in the evaluation.  
  
define a pixel in the range 1-255  
A pixel in this range will be looked at and will be used in  
the evaluation.  
  
define WHITE equals 255.  
define BLACK equals 1.  
define NOTHING equals 0.  
  
*****  
Main part of the program start  
CreateImage Create space for images in the computer.  
ImportBackGround Get the background image.
```

30

ImportCurrentImage Get the current image that we need to
test for people.

Level0OutOfImage Convert the background image so it does
not have BackGround any 0 value pixels.

have Level0OutOfImage Convert the current image so it does not
Current any 0 value pixels.

image. RemoveBackground Remove the background from the current
person/s Mark all pixels that are not part of the
value. The that have moved into view with a 0
the number of differences are assigned to
threshold DIFFERENCE_VALUE variable. Use a
level for deduction.

Decide if value DIFFERENCE_VALUE is strong enough to make a
decision.
YES - decide
NO - carry on

EdgeDetect Detect all the edges of the image. Use a
threshold level for possibility for an edge.

possibly FindAreaForHead Find areas within the image that could
areas be big enough for a head. The number of
variable. found is assigned to the AREA_VALUE

Decide if value AREA_VALUE is strong enough to make a
decision.
YES - decide
NO - carry on

The CalculateHeight Calculate the height of the areas found.
HEIGHT_VALUE height of the areas is assigned to the
variable.

The width CalculateWidth Calculate the width of the areas found.
WIDTH_VALUE of the areas is assigned to the
variable.

to get CalculateRatio Use the HEIGHT_VALUE and the WIDTH_VALUE
value is a ratio of the area found. The ratio
assigned to the RATIO_VALUE variable.

Decide if value RATIO_VALUE is strong enough to make a
decision.

31

YES - decide
NO - carry on

DetectHeadEdges Detect edges that could be part of a person. The number of person edges found is assigned to the HEAD_EDGES_VALUE variable.

Decide if value HEAD_EDGES_VALUE is strong enough to make a decision.
YES - decide
NO - carry on

.....
.....
.....

This section can be either continued with further processing, re-tried with different thresholds or a best guess can be done.

.....
.....
.....

DeleteImage Deletes space for images in the computer.

end Main part of the program.

The next section will define all the blocks above.

CreateImage Input Values : A pointer to the image. The size of the image needed.
Output Result : A pointer to the space allocated for the image.
allocate enough pointers for the columns.
at each column allocate enough space for the rows.

DeleteImage Input Values : A pointer to the image. The size of the image.
Output Result : A pointer to the no space.
delete space in each columns so we delete all the rows.
delete columns pointers.

ImportFile Input Values : A pointer to the image. The name of the file.
Output Result : The image is either placed in the space for the image or an error occurs.
in Get the information from the file. Make sure it is correct size and the number of gray scales.
if not correct then produce an error.
Else then read in the file in the space provided.

32

```

***** ImportBackGround   Input Values : The name of the file.
***** Output Result : The image is either placed in the space for the
image
or an error occurs.

run ImportFile( backGround , background filename).

***** ImportCurrentImage  Input Values : The name of the file.
***** Output Result : The image is either placed in the space for the
image
or an error occurs.

run ImportFile( currentImage , currentImage filename).

***** Level0OutOfImage   Input Values : The image we will work on.
***** Output Result : The image will have no 0 value pixels in it.

start at the top left hand corner pixel.

LOOP_1: get the image value.

is value equal to 0
yes : replace pixel value with a BLACK.

move to the next pixel on the right.

are we on the right hand edge of the image.
yes : move down one pixel, go back to the
first lefthand pixel.

are we on the bottom edge of the image.
no : goto LOOP_1.

we have completed the process.

***** RemoveBackground   Input Values : The background, the
currentImage,
the result image, a threshold level.
Output Result : The result image will contain a image that is the
current
image with the background removed.
The number of differences there are will be given.

start at the top left hand corner pixel.
start counting the number of differences at 0.

LOOP_1:
get the background image pixel value.
get the current image pixel value.

if the difference between these 2 pixels greater than the
threshold.
yes:
copy the current image pixel into the
image pixel
add one to the number of differences.
no:
let the result image pixel equal NOTHING.

```

33

```

move to the next pixel on the right.

are we on the right hand edge of the image.
    yes : move down one pixel, go back to the
          first lefthand pixel.

are we on the bottom edge of the image.
    no : goto LOOP_1.

we have completed the process.
return the value of the number of differences.

//*****
EdgeDetect      Input Values : The image to work on, the
resulting image, a threshold level.
Output Result : The result image will contain the edges of the
current image.

start at the top left hand corner pixel.

LOOP_1:
get the image pixel value.

is the pixel value equal to NOTHING.
no:
result.           copy the current image pixel into the
let a = current pixel value.
let b = next left pixel value.
let c = next down pixel value.
let d = next left and down pixel value.
line value = square root( square(a-d) +
square(b-c) ).           if line value is greater then the
threshold.                 yes:           set result pixel equal to
                                 WHITE.           no:           set result pixel equal to
                                 BLACK.

yes:           set result image pixel to NOTHING.

move to the next pixel on the right.

are we on the right hand edge of the image minus 1 pixel.
    yes : move down one pixel, go back to the
          first lefthand pixel.

are we on the bottom edge of the image minus 1 pixel.
    no : goto LOOP_1.

we have completed the process.

//*****
FindAreaForHead   Input Values : The image to work on, the
result image.
Output Result : The result image will contain areas marked
                that are possibly large enough for body features.
                Will return the number of areas found.

define a the sub-window size to be 10 called WIN_SIZE.
```

34

```

start at the top left hand corner pixel.
start counting the number of areas found at 0.

LOOP_1:
get the image pixel value.

is the pixel equal to NOTHING.
no:
    look around the current pixel in a WIN_SIZE
    window. Count all the pixels that are
BLACK.

if the count was equal to WIN_SIZE*WIN_SIZE
then all pixels in the window were BLACK.

count equal to WIN_SIZE*WIN_SIZE.
yes:
    set all the window of WIN_SIZE
around
    current pixel in the result image
to
    be WHITE.
    set the area count to be plus 1.

move to the next pixel on the right.

are we on the right hand edge of the image.
yes : move down one pixel, go back to the
first lefthand pixel.

are we on the bottom edge of the image.
no : goto LOOP_1.

we have completed the process.
return the value of the number of areas found.

```

```

//*****CalculateHeight*****
CalculateHeight      Input Values : The image to work on.
Output Result : The height found in the image.

first      go from the top of the image to the bottom, stop at the
           WHITE pixel found.

first      go from the bottom of the image to the top, stop at the
           WHITE pixel found.

we have completed the process.
return the value of the 2 numbers taken from each other.

//*****CalculateWidth*****
CalculateWidth      Input Values : The image to work on
Output Result : The width found in the image

first      go from the left of the image to the right, stop at the
           WHITE pixel found.

first      go from the right of the image to the left, stop at the
           WHITE pixel found.

we have completed the process.

```

35

```
    return the value of the 2 numbers taken away from each
other.

//*****CalculateRatio      Input Values : The width value, the height
value.
Output Result : the ratio value.

    if width is greater than the height.
        yes:      divide height by width.

    if height is greater than the width.
        yes:      divide width by height.

    we have completed the process.
    return the ratio value.

//*****TestMaskWithWindow
Input Values : The mask value, the window pixel values to look at.
Output Result : True is the mask works for the pixel value False
if not.

blanks means a NOTHING value.
'o' means a WHITE value.

3x3
Each element in the mask represents a comparision with the
window.
```

mask1

mask2

mask3

mask4


```

+-----+
| o | o |
+-----+
| o | o | o |
+-----+
| o | o |
+-----+
| o | o | o |
+-----+
mask5
-----
+-----+
| o | o | o |
+-----+
| o | o |
+-----+
| o | o |
+-----+
| o | o | o |
+-----+
mask6
-----
+-----+
| o | o | o |
+-----+
| o | o |
+-----+
| o | o |
+-----+
| o | o | o |
+-----+
+-----+
***** DetectHeadEdges      Input Values : The image to work on, the
result image.
Output Result : The result image will contain points marked that
are possible points on a body.
The number of points marked as head edges.
start at the top left hand corner pixel.
start counting the number of head edges found at 0.
LOOP_1:
get the image pixel value.
is the pixel equal to NOTHING.
no:
window          look around current image pixel, in a 3x3
indicator        take values out and test against a head
                  mask.
TestMaskWithWindow( mask1 , 3x3 window).
TestMaskWithWindow( mask2 , 3x3 window).
TestMaskWithWindow( mask3 , 3x3 window).
TestMaskWithWindow( mask4 , 3x3 window).
TestMaskWithWindow( mask5 , 3x3 window).
TestMaskWithWindow( mask6 , 3x3 window).
If any mask results to true.
yes:
WHITE.           Set result pixel equal to
counter.         Increment head edge
no:
NOTHING.        Set result pixel equal to

```

37

move to the next pixel on the right.

are we on the right hand edge of the image.
yes : move down one pixel, go back to the
first lefthand pixel.

are we on the bottom edge of the image.
no : goto LOOP_1.

we have completed the process.
return the value of the number of head edges found.

CLAIMS

1. A control system for use with a security access device such as a revolving door (1), the control system comprising:
 - 5 a video input device (6) which in use captures image data from the secured region of the access device;
 - 10 an image processor (7) for processing the said image data and deriving at least one parameter for discriminating the number of persons present in the secured region of the access device; and
 - 15 a comparator for comparing the said parameter derived from the original data with a predetermined threshold and for producing a discriminatory output for use in controlling the interlock (3) on the security device depending upon the result of the comparison.
2. A system according to claim 1, in which the image processor (7) and discriminator comprise a cascaded series of modules, each module being arranged to process image data to determine a respective parameter, and to compare the parameter with a corresponding threshold.
- 20 3. A system according to claim 2, in which the modules are arranged so that when one module is able to make a decision at a predetermined confidence level then that module produces the said discriminatory output signal, otherwise the said module passing image data onto a subsequent module for further processing.
- 25 4. A system according to claim 2 or 3, in which the modules are arranged generally in order of their discriminatory power, with the most powerful module receiving the image data first.
- 30 5. A system according to any one of the preceding claims, in which the image processor is arranged to capture a background image of the door with no person present, and to capture a subsequent image of the door with a person present, and to discard from the second said image video data which is unchanged from the background image.

6. A method of controlling a security access device such as a security door including capturing video image data from a secured area of the access door;
 - 5 processing said image data and thereby deriving at least one parameter for discriminating the number of persons present in the secured area; and
 - 10 comparing the said parameter with a predetermined threshold and producing a discriminatory output for use in controlling an interlock on the security device to lock the device when more than a predetermined number of persons are present in the secured area.
7. A security access device fitted with a control system according to any of claims 1 to 5.
8. A security access device including a secured region
15 bounded by one or more wholly or partially transparent walls, characterised by a control system including a video input device arranged to view the secured region, and in that the transparent walls include filter means arranged to block or reduce the transmission of light in part of the visible/near-visible optical spectrum, and in that the video input device has a sensitivity/wavelength characteristic generally complementary to the transmission characteristic of the said filter means associated with the transparent walls, the visibility to the video input
20 device of objects outside the transparent walls thereby being reduced or eliminated.
- 25 9. A device according to claim 8, in which the filter means are arranged to block transmission in the infra-red, and the video input device is insensitive outside the infra-red.
- 30 10. A device according to claim 8 or 9, in which the video input device includes an input optical filter arranged to provide the said sensitivity/wavelength characteristic.
11. A device according to any one of claims 8 to 10
35 including a control system according to any one of claims 1 to 5.

Fig.1.

Fig.4.

Fig.2A.

Fig.2B.

Fig.3.

Fig.5.

Fig.7a.

Fig.7b.

Fig.7d.

INTERNATIONAL SEARCH REPORT

International Application No
PCT/GB 96/01249A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 G07C9/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 6 G07C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	WO 81 01213 A (OTIS ELEVATOR CO) 30 April 1981 see claim 1; figure 1 ---	1,6-8,11
Y	EP 0 431 363 A (GALLENSCHUETZ E METALLBAU) 12 June 1991 see claim 1; figure 1 ---	1,6-8,11
A	WO 94 27408 A (RCT SYSTEMS INC) 24 November 1994 see claim 1; figure 1 ---	1-11
A	DE 37 40 115 A (MATSUSHITA ELECTRIC WORKS LTD) 9 June 1988 see claim 1; figure 4 ---	1-11
	-/-	

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents :

- *'A' document defining the general state of the art which is not considered to be of particular relevance
- *'E' earlier document but published on or after the international filing date
- *'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *'O' document referring to an oral disclosure, use, exhibition or other means
- *'P' document published prior to the international filing date but later than the priority date claimed

'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

'X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents such combination being obvious to a person skilled in the art

'*&' document member of the same patent family

Date of the actual completion of the international search 11 September 1996	Date of mailing of the international search report 25.09.96
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patenttaan 2 NL - 2280 HV Rijswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Fax (+ 31-70) 340-3016	Authorized officer Kirsten, K

INTERNATIONAL SEARCH REPORT

Int'l Application No
PCT/GB 96/01249

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 3 564 132 A (BAKER RICHARD H ET AL) 16 February 1971 see claim 1; figure 4 -----	1-11

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/GB 96/01249

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO-A-8101213	30-04-81	US-A-	4303851	01-12-81
		CA-A-	1143816	29-03-83
		EP-A-	0037830	21-10-81
EP-A-0431363	12-06-91	DE-C-	3940176	16-05-91
		ES-T-	2047232	16-02-94
		JP-B-	2509385	19-06-96
		JP-A-	4001388	06-01-92
		US-A-	5076013	31-12-91
WO-A-9427408	24-11-94	AU-A-	6786194	12-12-94
		EP-A-	0700623	13-03-96
		US-A-	5465115	07-11-95
DE-A-3740115	09-06-88	JP-B-	7027551	29-03-95
		JP-A-	63266589	02-11-88
		JP-A-	63134981	07-06-88
		JP-B-	6100660	12-12-94
		JP-A-	63134989	07-06-88
		JP-B-	6100661	12-12-94
		JP-A-	63134990	07-06-88
		GB-A,B	2199658	13-07-88
		US-A-	4849737	18-07-89
US-A-3564132	16-02-71	NONE		