Optimal sample size allocation for cluster sampling

Week 8 (5.4)

Stat 260, St. Clair

1/19

Optimal Allocation

This allocation is **optimal** because it either

- minimizes costs for a fixed SE/margin of error, or
- minimizes SE/margin of error for a fixed survey cost.

An optimal solution is "easy" to derive assuming equal cluster sizes:

- $M_i = M$: cluster sizes are equal
- $m_i=m$: cluster sample sizes are equal

Determining sample sizes for a cluster sample

Problem: You have a quantitative variable y and you want to estimate its population mean/total.

Question 1: How many SSU (elements) to sample?

Question 2: How many PSU (clusters) to sample?

Optional: How to do this in an optimal way?

2/19

Optimal Allocation

Mathematical Problem:

Let c_1 be the cost per PSU (cluster) and c_2 be the cost per SSU (element). With c_0 fixed costs, the total survey costs are

$$C(m,n)=c_0+c_1n+c_2(mn)$$

Variance is also a function of m and n and ANOVA MS.

$$V(\hat{ar{y}}_{unb};m,n) = \left(1-rac{n}{N}
ight)rac{MSB}{nM} + \left(1-rac{m}{M}
ight)rac{MSW}{nm}$$

Optimal Allocation: 1. SSU sample size

Solution: Use Lagrange Multiplier method to minimize one function (C or V) subject to the contraints of the other function.

The optimal SSU (element) sample size is

$$m_{opt} = \sqrt{rac{c_1 M (N-1) (1-R_a^2)}{c_2 (NM-1) R_a^2}} pprox \sqrt{rac{c_1 (1-R_a^2)}{c_2 R_a^2}} ~~ ext{when}~ N >> M$$

where
$$R_a^2=1-rac{MSW}{S^2}$$

Optimal Allocation

- We know m_{opt}
- final sample size is then determined by n:

 $n \times m_{opt} = ext{number of observation units sampled}$

Question 2: Determine n subject to a constraint:

- fixed SE/margin of error, or
- fixed survey cost.

5 / 19

Optimal Allocation: 2. PSU sample size:

(a) achieving a margin of error

Problem: How many PSU to sample to estimate $\bar{y}_{\mathcal{U}}$ with $(1-\alpha)100\%$ confidence and a margin of error $e=z_{\alpha/2}SE(\hat{y}_{unb})$?

Solution: Get m_{opt} , if you ignore the FPC then

$$n_{opt} = rac{
u z_{lpha/2}^2}{e^2} ~~ ext{where}~~
u = rac{MSB}{M} + \left(1 - rac{m_{opt}}{M}
ight) rac{MSW}{m_{opt}}$$

Optimal Allocation: 2. PSU sample size:

(a) achieving a margin of error

ullet If N is smaller, don't ignore FPC and use:

$$n_{opt} = rac{
u z_{lpha/2}^2}{e^2 + rac{z^2 MSB}{NM}}$$

• To estimate t with e_t margin of error, set $e=e_t/(NM)$.

Optimal Allocation: 2. PSU sample size:

(b) Do not go over budget

Problem: How many PSU to sample if your budget is ${\cal C}$ dollars (or man hours, etc...)?

Solution: Get m_{opt} , then

$$n_{opt} = rac{C-c_0}{c_1+c_2m_{opt}}$$

Optimal Allocation

- Note: The **cost** and **ME** solutions for *n* work for *any* values of *m* given a desired cost or ME.
- · You need a guess at MSB and MSW
 - $\circ \ MSB = S_t^2/M$ (how to cluster totals vary?)
 - $MSW = \sum_{i}^{N} S_{i}^{2}/N$ (within cluster variation?)
- ullet HW #7: How to compute MSB and MSW from guesses of R_a^2 and S^2

9 / 19

Example: Dorms

- • New GPA study: want to estimate average dorm GPA with a 95% ME of 0.2 • N=100 rooms with M=4 students per room
- Previous study: One-stage example
 - msw = 0.18504, msb = 0.56392 and $\hat{S}^2 = 0.279$
 - $\circ \; {\hat R}_a^2 pprox 0.337$
- · Costs?
- ullet $c_1=20$ minutes to travel between rooms and
- $c_2=10$ minute to talk to each student.

Example: Dorms

What is the optimal number of student to sample per room?

Example: Dorms

How many rooms to sample to get a ME of e=0.2 for estimating mean GPA?

Example: Dorms - check answer

- ullet We used z=1.96 for 95% confidence, but we should be using a t-distribution with n-1 degrees of freedom for CI when n is "small"
- Check margin of error with our larger multiplier, suggests a larger n

```
n <- 16
qt(.975, df= n-1)
## [1] 2.13145
se_squared <- (1-n/100)*0.56392/(n*4) + (1-2/4)*0.18504/(n*2)
qt(.975, df= n-1)*sqrt(se_squared) # 0.2 or less??
## [1] 0.2162418</pre>
```

13 / 19

Example: Dorms - check answer

• Try *n* of 17, 18 and 19!

```
n <- c(17,18,19)
se_squared <- (1-n/100)*0.56392/(n*4) + (1-2/4)*0.18504/(n*2)
qt(.975, df= n-1)*sqrt(se_squared) # 0.2 or less??
## [1] 0.2077542 0.2000704 0.1930670
```

• Final answer: n=19 will give a ME of at most 0.2

Example: Dorms

How many rooms to sample if we have a fixed cost of 300 minutes?

Example: Dorms with $R_a^2=0.334\,$

Example: Dorms with $R_a^2=0.7\,$

17/19

Optimal Allocation: Unequal cluster sizes

If clusters are not too variable with respect to size, the (almost) optimal solution could use \bar{M} to get m_{opt}

- ullet use m_{opt} for all clusters or
- ullet use an average of m_{opt}
 - $\circ m_i/M_i$ roughly constant

If clusters sizes are variable, don't use the optimal solution for equal sizes!