Concept Drift

Albert Bifet (@abifet)

Paris, 2 December 2016 albert.bifet@telecom-paristech.fr

Data Streams

Big Data & Real Time

Data Mining Algorithms with Concept Drift.

Introduction.

Problem

Given an input sequence x_1, x_2, \dots, x_t we want to output at instant t an alarm signal if there is a distribution change and also a prediction \widehat{x}_{t+1} minimizing prediction error:

$$|\widehat{x}_{t+1} - x_{t+1}|$$

Outputs

- an estimation of some important parameters of the input distribution, and
- a signal alarm indicating that distribution change has recently occurred.

Change Detectors and Predictors

Change Detectors and Predictors

Change Detectors and Predictors

Concept Drift Evaluation

Mean Time between False Alarms (MTFA) Mean Time to Detection (MTD) Missed Detection Rate (MDR) Average Run Length (ARL(θ))

The design of a change detector is a compromise between detecting true changes and avoiding false alarms.

Data Stream Algorithmics

- High accuracy in the prediction
- ► Low mean time to detection (MTD), false positive rate (FAR) and missed detection rate (MDR)
- Low computational cost: minimum space and time needed
- Theoretical guarantees
- No parameters needed

Main properties of an optimal change detector and predictor system.

The CUSUM Test

- The cumulative sum (CUSUM algorithm), gives an alarm when the mean of the input data is significantly different from zero.
- ► The CUSUM test is memoryless, and its accuracy depends on the choice of parameters v and h.

$$g_0=0, \qquad g_t=\max{(0,g_{t-1}+\epsilon_t-\upsilon)}$$
 if $g_t>h$ then alarm and $g_t=0$

Cumulative sum algorithm (CUSUM).

Page Hinckley Test

The CUSUM test

$$g_0=0, \qquad g_t=\max \left(0,g_{t-1}+\epsilon_t-\upsilon
ight)$$
 if $g_t>h$ then alarm and $g_t=0$

The Page Hinckley Test

$$g_0=0, \qquad g_t=g_{t-1}+(\epsilon_t-v)$$
 $G_t=\min(g_t)$ if $g_t-G_t>h$ then alarm and $g_t=0$

Geometric Moving Average Test

The CUSUM test

$$g_0=0, \qquad g_t=\max{(0,g_{t-1}+\epsilon_t-\upsilon)}$$
 if $g_t>h$ then alarm and $g_t=0$

The Geometric Moving Average Test

$$g_0 = 0,$$
 $g_t = \lambda g_{t-1} + (1-\lambda)\epsilon_t$

if $g_t > h$ then alarm and $g_t = 0$

The forgetting factor λ is used to give more or less weight to the last data arrived.

Statistical test

$$\hat{\mu}_0 - \hat{\mu}_1 \in N(0, \sigma_0^2 + \sigma_1^2), \text{ under } H_0$$

Example: Probability of false alarm of 5%

$$\Pr\left(\frac{|\hat{\mu}_0 - \hat{\mu}_1|}{\sqrt{\sigma_0^2 + \sigma_1^2}} > h\right) = 0.05$$

As P(X < 1.96) = 0.975 the test becomes

$$\frac{(\hat{\mu}_0 - \hat{\mu}_1)^2}{\sigma_0^2 + \sigma_1^2} > 1.96^2$$

Concept Drift

6 sigma

Concept Drift

Statistical Drift Detection Method (Joao Gama et al. 2004)

ADWIN: Adaptive Data Stream Sliding Window

Let
$$W = \boxed{1010101101111111}$$

- ► Equal & fixed size subwindows: 1010 1011011 1111
- ► Equal size adjacent subwindows: 1010101 1011 1111
- ► Total window against subwindow: 10101011011 1111
- ADWIN: All adjacent subwindows:

```
1 | 01010110111111
1010 | 10110111111
1010101 | 10111111
1010101101 | 11111
10101011011111 | 1
```

Data Stream Sliding Window

101100011110101 0111010

Sliding Window

We can maintain simple statistics over sliding windows, using $O(\frac{1}{\epsilon}\log^2 N)$ space, where

- N is the length of the sliding window
- $ightharpoonup \epsilon$ is the accuracy parameter
- M. Datar, A. Gionis, P. Indyk, and R. Motwani.

 Maintaining stream statistics over sliding windows. 2002

Exponential Histograms

```
M=2
  1010101
          101
       4 2 2 1
Content:
Capacity: 7 3 2 1 1 1
  1010101
          101
       4 2 2 2 1
Content:
Capacity: 7 3 2 2 1
  1010101
          10111
Content:
            5 2 1
Capacity:
```

Exponential Histograms

```
1010101 101 11 1 1
```

Content: 4 2 2 1 1

Capacity: 7 3 2 1 1

Error < content of the last bucket W/M $\epsilon = 1/(2M)$ and $M = 1/(2\epsilon)$

 $M \cdot \log(W/M)$ buckets to maintain the data stream sliding window

Exponential Histograms

```
1010101 101 11 1 1
```

Content: 4 2 2 1 1

Capacity: 7 3 2 1 1

To give answers in O(1) time, it maintain three counters LAST, TOTAL and VARIANCE.

 $M \cdot \log(W/M)$ buckets to maintain the data stream sliding window

```
ADWIN: ADAPTIVE WINDOWING ALGORITHM
   Initialize W as an empty list of buckets
   Initialize WIDTH, VARIANCE and TOTAL
3
   for each t > 0
4
        do SETINPUT(x_t, W)
5
            output \hat{\mu}_W as TOTAL/WIDTH and ChangeAlarm
SETINPUT(item e, List W)
   INSERTELEMENT(e, W)
   repeat DELETEELEMENT(W)
3
      until |\hat{\mu}_{W_0} - \hat{\mu}_{W_1}| < \epsilon_{cut} holds
        for every split of W into W = W_0 \cdot W_1
4
```

INSERTELEMENT(item e, List W)

- 1 create a new bucket b with content e and capacity 1
- 2 $W \leftarrow W \cup \{b\}$ (i.e., add e to the head of W)
- 3 update WIDTH, VARIANCE and TOTAL
- 4 COMPRESSBUCKETS(W)

DELETEELEMENT(List W)

- 1 remove a bucket from tail of List W
- 2 update WIDTH, VARIANCE and TOTAL
- 3 ChangeAlarm ← true

COMPRESSBUCKETS(List W)

Traverse the list of buckets in increasing order
 do If there are more than M buckets of the same capacity
 do merge buckets
 COMPRESSBUCKETS(sublist of W not traversed)

4□ > 4□ > 4□ > 4□ > 4□ > 9

Theorem

At every time step we have:

- 1. (False positive rate bound). If μ_t remains constant within W, the probability that ADWIN shrinks the window at this step is at most δ .
- 2. (False negative rate bound). Suppose that for some partition of W in two parts W_0W_1 (where W_1 contains the most recent items) we have $|\mu_{W_0} \mu_{W_1}| > 2\epsilon_{cut}$. Then with probability 1δ ADWIN shrinks W to W_1 , or shorter.

ADWIN tunes itself to the data stream at hand, with no need for the user to hardwire or precompute parameters.

ADWIN using a Data Stream Sliding Window Model,

- can provide the exact counts of 1's in O(1) time per point.
- ▶ tries O(log W) cutpoints
- uses $O(\frac{1}{\epsilon} \log W)$ memory words
- ▶ the processing time per example is $O(\log W)$ (amortized and worst-case).

Sliding Window Model

	1010101	101	11	1	1
Content:	4	2	2	1	1
Capacity:	7	3	2	1	1