MAXimal

home

algo

bookz

forum

about

Advanced

Euclidean algorithm

Contents [hide]

added: 10 Jun 2008 17:58 Edited: 17 Oct 2012 14:55

- Advanced Euclidean algorithm
 - Algorithm
 - Implementation
 - Literature

While the "normal" Euclidean algorithm simply finds the greatest

common divisor of two numbers a and b, extended Euclidean algorithm finds the GCD also factors in addition to x, and y such that:

$$a \cdot x + b \cdot y = \gcd(a, b).$$

le he finds the coefficients with which the GCD of two numbers expressed in terms of the numbers themselves.

Algorithm

Make the calculation of these coefficients in the Euclidean algorithm is simple enough to derive formulas by which they change from pair (a, b) to pair (b% a, a)(percent sign denotes the modulo).

Thus, suppose we have found a solution (x_1, y_1) of the problem for a new pair (b%a, a)

$$(b\%a) \cdot x_1 + a \cdot y_1 = g,$$

and want to get a solution (x, y) for our couples (a, b):

$$a \cdot x + b \cdot y = g.$$

To do this, we transform the value of b%a:

$$b\%a = b - \left| \frac{b}{a} \right| \cdot a.$$

Substituting this in the above expression x_1 and y_1 obtain:

$$g = (b\%a) \cdot x_1 + a \cdot y_1 = \left(b - \left\lfloor \frac{b}{a} \right\rfloor \cdot a\right) \cdot x_1 + a \cdot y_1,$$

and performing regrouping terms, we obtain:

$$g = b \cdot x_1 + a \cdot \left(y_1 - \left\lfloor \frac{b}{a} \right\rfloor \cdot x_1 \right).$$

Comparing this with the original expression of the unknown x, and y we obtain the required expression:

$$\begin{cases} x = y_1 - \left\lfloor \frac{b}{a} \right\rfloor \cdot x_1, \\ y = x_1. \end{cases}$$

Implementation

This is a recursive function, which still returns the GCD of the numbers a and b, but apart from that - as desired coefficients x and y as a function parameter, passed by reference.

Base of recursion - the case a=0. Then GCD equal b, and, obviously, the desired ratio x and y are 0 and 1 respectively. In other cases, the usual solution is working, and the coefficients are converted by the above formulas.

Advanced Euclidean algorithm in this implementation works correctly even for negative numbers.

Literature

Thomas Cormen, Charles Leiserson, Ronald Rivest, Clifford Stein.
Algorithms: Design and Analysis [2005]

8 Комментариев e-maxx

Лучшее вначале ▼

Присоединиться к обсуждению...

RiaD • 2 года назад

База рекурсии — случай . Наверно а = 0.

6 ^ 🗸 • Ответить • Поделиться >

е_maxx Модератор → RiaD • 2 года назад

Точно, спасибо!

2 **^** • Ответить • Поделиться >

first • 2 года назад

Проверьте пожалуйста, все ли правильно в реализации? Там вызывается gcd (b%a, a, x1, y1), a x1 и y1 не определены :(

1 ^ У • Ответить • Поделиться >

е_maxx Модератор → first · 2 года назад

Да, всё правильно. Они не определены, потому что это выходные параметры: вызываемая функция gcd сама их присваивает. Поэтому они передаются по ссылке ("&"), а не как обычные параметры.

Кей • 2 года назад

а как вызывать функцию? что вместо х и у писать?

Ответить • Поделиться >

olololsha → Кей · 2 года назад

Советую почитать ISBN: 0-201-88954-4

4 • Ответить • Поделиться >

German • 6 месяцев назад

Кстати, еще одно название этого "расширенного алгоритма Евклида" пульверизатор (Pulverizer), по крайне мере так его до сих пор называют в MIT-е на курсе CS.

Есть предположение, что так его назвал в свое время индийский астроном/математик, который обнаружил, что это расширение позволяет легко решать линейное Диофантово уравнение, которое вообщем-то и приведено в "Дано".