Frühjahr 14 Themennummer 1 Aufgabe 4 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Es sei $G \subset \mathbb{C}$ ein beschränktes Gebiet und $f: G \to \mathbb{C}$ eine Funktion, die bei Annäherung an ∂G gegen ∞ strebt (d.h. für jede Folge (z_n) in G mit $z_n \to z \in \partial G$ gilt $|f(z_n)| \to \infty$). Zeigen Sie, dass f nicht holomorph ist, indem Sie die folgenden drei Fälle unterscheiden:

- (i) f hat keine Nullstelle in G.
- (ii) f hat endlich viele Nullstellen in G.
- (iii) f hat unendlich viele Nullstellen in G.

Lösungsvorschlag:

(i) Wenn f unstetig ist, kann f nicht holomorph sein, wir können ohne Beschränkung der Allgemeinheit also die Stetigkeit von f annehmen. Wir fordern außerdem $G \neq \emptyset$. Weil |f| nach unten durch 0 beschränkt ist, existiert $c = \inf_{z \in G} |f(z)|$, wir behaupten c>0 und, dass das Infimum angenommen wird, also ein Minimum ist. Nach der Definition des Infimums finden wir eine Folge komplexer Zahlen z_n in G, sodass $|f(z_n)| \to c$ konvergiert, wenn $n \to \infty$ strebt (wähle z_n mit $c \le |f(z_n)| \le c + \frac{1}{n}$). Weil G beschränkt ist, besitzt diese Folge einen komplexen Häufungspunkt z und es existiert eine Teilfolge z_{n_k} , die gegen z konvergiert, wobei $|f(z_{n_k})| \to c$ immer noch gilt. Weil $c < \infty$ ist, kann z kein Element des Randes sein, sondern muss im Innern von G liegen. Wegen der Stetigkeit von f und von der Betragsfunktion folgt $|f(z)| = \lim_{k \to \infty} |f(z_{n_k})| = c$, weshalb das Minimum angenommen wird. Wäre c = 0, so besäße f die Nullstelle z im Widerspruch zur Annahme. Damit ist die Behauptung bewiesen. Weil z nun ein Minimum von |f| darstellt, ohne eine Nullstelle zu sein, kann f nur dann holomorph sein, wenn es sich um eine konstante Funktion handelt. Dies steht aber im Widerspruch zur Voraussetzung an das Randverhalten von f. Bemerkung: Hier geht ein, dass ein beschränktes, nichtleeres Gebiet in \mathbb{C} auch nichtleeren Rand hat. Gäbe es ein beschränktes, nichtleeres Gebiet ohne Rand, so würde die Identität oder jede Konstante darauf holomorph sein und bei Annäherung an den Rand gegen ∞ streben (weil es keine Folge gibt, die gegen einen Randpunkt konvergiert). Daher soll hier noch $\partial G \neq \emptyset$ bewiesen werden: Aus den Voraussetzungen folgt, dass \overline{G} eine nichtleere kompakte Menge ist, insbesondere also $\overline{G} \notin \{\emptyset, \mathbb{C}\}.$ Wäre $\overline{G}\backslash G^{\circ} = \partial G = \emptyset$, so müsste $\overline{G} \subset G^{\circ} \subset G \subset \overline{G}$, also $G^{\circ} = G = \overline{G}$ gelten, d. h. G wäre offen und abgeschlossen zugleich.

Weil $\emptyset \neq G \neq \mathbb{C}$ sein soll, finden wir ein $a \in G$ und ein $b \notin G$ und betrachten die Abbildung $g:[0,1] \to \{0,1\}, g(t) = \chi_G(bt+(1-t)a)$, wobei $\chi_G:\mathbb{C} \to \{0,1\}, \chi_G(x) = 1$, falls $x \in G, \chi_G(x) = 0$, falls $x \notin G$ die charakteristische Funktion des Gebiets ist. Nun ist $\chi_G^{-1}(\{0,1\}) = \mathbb{C}, \chi_G^{-1}(\emptyset) = \emptyset, \chi_G^{-1}(\{0\}) = \mathbb{C} \setminus G$, und $\chi_G^{-1}(\{1\}) = G$, das Urbild jeder abgeschlossenen Teilmenge von $\{0,1\}$ (mit Betrag) ist also abgeschlossen (weil G offen und abgeschlossen ist) und χ_G ist daher stetig. Damit ist auch g als Verkettung stetiger Funktionen stetig. Es gilt nun g(0) = 1, g(1) = 0 und $g:[0,1] \to \mathbb{R}$ ist stetig. Nach dem Zwischenwertsatz ist g([0,1]) also ein Intervall, aber $g([0,1]) = \{0,1\}$ ist kein Intervall. Dies liefert einen Widerspruch und der Rand von G kann nicht leer sein.

(ii) Angenommen es gäbe eine holomorphe Funktion f mit diesen Eigenschaften. Weil f nur endlich viele Nullstellen haben soll, kann es sich nicht um die Nullfunktion handeln. Jede Nullstelle hat also eine endliche Ordnung. Seien $z_1, z_2, ..., z_n$ die Nullstellen von f in G mit Ordnungen $k_1, k_2, ..., k_n$, dann ist die Funktion $g: G\setminus\{z_1, z_2, ..., z_n\} \to \mathbb{C}, g(z) = \frac{f(z)}{\prod\limits_{j=1}^{n}(z-z_j)^{k_j}}$ holomorph mit hebbaren Singullstellen von $g: G\setminus\{z_1, z_2, ..., z_n\}$

laritäten $z_1, z_2, ..., z_n$. Die holomorphe Fortsetzung $h: G \to \mathbb{C}$ hat nun keine Nullstellen in G strebt bei Annäherung an den Rand aber immer noch gegen ∞ :

Sei $z_0 \in \partial G$ ein Randpunkt, $c:=\prod_{j=1}^n |z_0-z_j|^{k_j}>0$ und $z_n\subset G$ eine Folge, die

gegen z_0 konvergiert. Weil die Abbildung $G\ni z\mapsto \prod_{j=1}^n|z-z_j|^{k_j}$ stetig ist, gibt es

ein $N \in \mathbb{N}$ mit $n \geq N \implies \prod_{j=1}^{n} |z_n - z_j|^{k_j} \geq \frac{c}{2} > 0$. Dann folgt für $n \geq N$ auch

 $|h(z_n)| \geq \frac{2|f(z_n)|}{c} \to \infty$ für $n \to \infty$. Nun ist $h: G \to \mathbb{C}$ nullstellenfrei, holomorph und strebt gegen ∞ bei Annäherung an ∂G . Dies widerspricht aber dem Fall (i) und die Annahme war falsch. Es gibt also auch keine holomorphe Funktion mit endlich vielen Nullstellen, die bei Annäherung an den Rand gegen ∞ strebt.

(iii) Zuletzt habe f unendlich viele Nullstellen, dann gibt es wegen der Beschränktheit des Gebietes einen Häufungspunkt $z \in \overline{G}$ der Nullstellen. Dieser kann nicht auf dem Rand liegen, weil es sonst eine Folge von Nullstellen gäbe, die gegen $z \in \partial G$ konvergiert, deren Bilder bleiben allerdings konstant 0 und somit beschränkt. Also muss $z \in G$ liegen. Wäre f holomorph, so würde nach dem Identitätssatz bereits $f \equiv 0$ auf G folgen, was wiederum der Voraussetzung an das Randverhalten widerspricht. (Hier geht wieder $\partial G \neq \emptyset$ ein.) Auch dieser Fall tritt folglich nicht auf. Weil alle auftretenden Fälle berücksichtigt worden sind, und f in keinem Falle holomorph sein kann, ist die Behauptung bewiesen.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$