Practical 4

Aim: Write an Hadoop MapReduce Program in Python

Create the mapper.py

```
Practical4 > mapper.py

1  #!/usr/bin/env python
2  """mapper.py"""
3

4  import sys
5

6  # input comes from STDIN (standard input)
7  for line in sys.stdin:
8  # remove leading and trailing whitespace
9  line = line.strip()
10  # split the line into words
11  words = line.split()
12  # increase counters
13  for word in words:
14  # write the results to STDOUT (standard output);
15  # what we output here will be the input for the
16  # Reduce step, i.e. the input for reducer.py
17
18  # tab-delimited; the trivial word count is 1
19  print ("%s\t%s" % (word, 1))
```

Create the reducer.py

```
"""reducer.py"""
from operator import itemgetter
import sys
current_word = None
current_count = 0
word = None
for line in sys.stdin:
    line = line.strip()
    word, count = line.split('\t', 1)
    try:
        count = int(count)
    except ValueError:
        continue
    if current word == word:
        current_count += count
    else:
        if current word:
            print ("%s\t%s" % (current_word, current_count))
        current_count = count
        current_word = word
if current word == word:
    print ("%s\t%s" % (current_word, current_count))
```

```
reducer.py ×
      """reducer.py"""
      from operator import itemgetter
      import sys
      current_word = None
      current_count = 0
      word = None
      for line in sys.stdin:
          line = line.strip()
          word, count = line.split('\t', 1)
             count = int(count)
          except ValueError:
       continue
          if current_word == word:
             current_count += count
              if current_word:
                 print ("%s\t%s" % (current_word, current_count))
             current_count = count
              current_word = word
      if current_word == word:
         print ("%s\t%s" % (current_word, current_count))
```

Running mapper and reducer without Hadoop HDFS

Step 1: Open Command Prompt where the mapper.py and reducer.py is located

```
PROBLEMS OUTPUT TERMINAL JUPYTER COMMENTS DEBUG CONSOLE

Microsoft Windows [Version 10.0.19044.1826]
(c) Microsoft Corporation. All rights reserved.

F:\Practicals\BigData>cd Practical4

F:\Practicals\BigData\Practical4>
```

Step 2: To Execute the program create one file in the same location with name sample.txt

```
F sample.txt ×

Practical4 > F sample.txt

1 foo foo quux labs foo bar quux
```

Step 3: Now run the following command to get the output

type .\sample.txt | python .\mapper.py | sort |python .\reducer.py

Running the Python Code on Hadoop

Step 1: Download example input data

We will use three eBooks from Project Gutenberg for this example:

- The Outline of Science, Vol. 1 (of 4) by J. Arthur Thomson
- The Notebooks of Leonardo Da Vinci
- <u>Ulysses by James Joyce</u>

Download each eBook as text files in Plain Text UTF-8 encoding and store the files in a local temporary directory of choice.

Copy local example data to HDFS

Before we run the actual MapReduce job, we must first copy the files from our local file system to Hadoop's HDFS.

Step 1: Open Command Prompt in Administration Mode and change the present working directory to the C:\Hadoop\hadoop-3.3.3\sbin

Step 2: Now run the command .\start-all.cmd

Step3: Now change the present working directory to **C:\Hadoop\hadoop-3.3.3\bin** and run the command

hadoop dfs -copyFromLocal 'path of the downloaded sample file' 'path to store on the hdfs'

hadoop dfs -copyFromLocal

"F:\Practicals\BigData\Practical4\Data" hdfs://localhost:9000/Harsh

hadoop dfs -ls /Harsh

Step 4: To check the files are uploaded to the Hadoop HDFS the visit http://localhost:9870/dfshealth.html#tab-overview → go to utilities in the navigation bar and click on the Browse the file system

Step 5: Run the MapReduce job

hadoop jar C:\Hadoop\hadoop-3.3.3\share\hadoop\tools\lib\hadoop-streaming-3.3.3.jar -file F:\Practicals\BigData\Practical4\mapper.py -mapper "python mapper.py" -file F:\Practicals\BigData\Practical4\reducer.py -reducer "python reducer.py" -input hdfs://localhost:9000/Harsh/sample.txt -output /output

Step 6: Check if the result is successfully stored in HDFS directory /output

hadoop dfs -ls /output

BIG DATA

MSC COMPUTER SCIENCE

Name: Harsh Chheda Roll Number: 22-15405

Step 7: To check the output is generated to the Hadoop HDFS the visit http://localhost:9870/dfshealth.html#tab-overview → go to utilities in the navigation bar and click on the Browse the file system

Step 8: You can then inspect the contents of the file with the dfs -cat command:

hadoop fs -cat /output/part-00000