A Simulation Approach to Assess Lower Bounds (Population threshold Reference points)

Approach:

Investigate the Efficiency and Efficacy of Lower Pop. Thresholds to Protect Stocks

The investigation focused on finding answers to the following questions for specific lower bounds:

- How quickly would spawning biomass increase to S_{MSY}?
- How many additional management actions (AMAs) would occur?
- What would be the long-term, average escapement?
- What would be the long-term, average harvest?

Investigative Tool: Simulation

Current information was used to build simulations:

- Estimated stock-recruit relationships with observed variation in predictions, process error (with autocorrelation)
- Constant harvest rates
- Age structured model with constant selectivity, survival by age and maturation.

You're a Fisheries Manager and Spawning Biomass have been low....

Risk for the fisheries manager is the probability of making the wrong decision:

- Unnecessarily Restricting Fisheries when fishing is optimal; or
- Not Protecting Stocks when they are overfished.

Management Action is NOT Needed

Spawning Biomass

Management Action IS Needed

Management Action IS Needed

Even with recruitment overfishing, Spawning Biomass are ABOVE "E" in 32% of calendar years.

Setting Lower Bounds According to Acceptable Risks

- Decide what are acceptable risks:
 - a) x % (e.g. 10%) risk of unnecessarily restricting fisheries; and
 - b) y% (e.g. 5%) risk of not protecting overfished stocks.
- 2. Use simulations based on current information and estimated optimal harvest rates (optimal fishing) to estimate the general probability of taking an AMA.
- 3. Change lower bounds in simulations until the general probability of taking an AMA is x (eg. 10%).

Setting Lower Bounds According to Acceptable Risks (cont.)

- 4. Reduce productivity in simulated stock-recruit relationships by a substantial amount, say 40%, to simulate recruitment overfishing.
- 5. Rerun simulations for overfished stocks and the lower bounds established in step 3 to estimate the general probability of <u>not taking</u> an AMA.
- 6. If general probability of <u>not taking</u> an AMA is substantially different than y (eg 5%), alter productivity of simulated stocks and try again (back to step 4).

Results (Albacore) I

Biological and ecological structures					
#Gender Group	1 (Sex ratio 1:1)				
Age classes	0 - 10				
Natural mortality	M=0.2207 (/year) constant over ages				
Growth formula	L=147.5(1-exp(-0.126(t+1.89))) common to sex				
Weight-length allometry	$W = aL^b$ with $a = 5.691 \times 10^{-5}$, $b = 2.7514$. common to sex.				
Maturity	Age-specific (0 for Age \leq 3, 0.25 for Age=4, 0.5 for Age=5, 0.75 for Age=6 and 1 for Age>=7)				
Fecundity	Proportional to the spawning biomass				
Spawner-recruitment	B-H (fixed steepness at 0.8) and sigma_R=0.2				

Probability of falling below 0.4 S_{MSY} (estimated at 40,348 t) fishing at different rates and assuming different auto-correlation of the process error term

		Harvest Rate								
		0.1	0.2	0.3	0.4	0.5	0.6			
ion	0.1	0.0%	0.0%	0.0%	1.3%	38.0%	76.0%			
elat	0.15	0.0%	0.0%	0.0%	1.5%	38.5%	75.9%			
orr	0.2	0.0%	0.0%	0.0%	2.1%	39.0%	76.1%			
Auto-correlation	0.25	0.0%	0.0%	0.0%	2.5%	39.6%	76.0%			
Aut	0.3	0.0%	0.0%	0.0%	3.0%	40.0%	76.0%			
	0.35	0.0%	0.0%	0.0%	3.7%	40.7%	75.9%			
	0.4	0.0%	0.0%	0.0%	4.3%	41.3%	76.0%			
	0.45	0.0%	0.0%	0.0%	5.1%	41.7%	76.0%			
	0.5	0.0%	0.0%	0.0%	6.1%	42.1%	75.9%			
	0.55	0.0%	0.0%	0.1%	7.0%	42.7%	76.0%			
	0.6	0.0%	0.0%	0.1%	8.2%	43.5%	76.0%			
	0.65	0.0%	0.0%	0.2%	9.6%	44.0%	76.1%			
	0.7	0.0%	0.0%	0.3%	11.1%	44.8%	75.8%			
	0.75	0.0%	0.0%	0.7%	12.7%	45.5%	75.9%			
	0.8	0.0%	0.0%	1.2%	14.6%	46.5%	75.7%			
	0.85	0.0%	0.0%	1.9%	16.6%	47.4%	75.5%			
	0.9	0.0%	0.1%	3.1%	19.5%	48.6%	75.0%			

	Harvest Rate								
		0.1	0.2	0.3	0.4	0.5	0.6		
ion	0.1	0	0	0	36	48	61		
elat	0.15	0	0	0	35	49	61		
orr	0.2	0	0	0	38	49	62		
Auto-correlation	0.25	0	0	0	39	50	62		
Aut	0.3	0	0	0	41	51	62		
	0.35	0	0	0	43	52	63		
	0.4	0	0	0	43	53	63		
	0.45	0	0	26	45	54	64		
	0.5	0	0	31	47	55	64		
	0.55	0	0	39	48	56	64		
	0.6	0	0	34	50	57	65		
	0.65	0	0	39	51	58	65		
	0.7	0	0	41	53	59	66		
	0.75	0	0	46	55	60	66		
	0.8	0	0	52	57	61	67		
	0.85	0	31	56	58	62	67		
	0.9	0	62	58	59	63	68		

Number of years to recovery

RESULTS (Albacore) 3:

The lower the Lower Bound,

- the fewer the number of actions taken, but
- the slower Spawning Biomass increase to S_{MSY}.

The higher the Lower Bound,

- the higher the number of actions taken; but
- the quicker Spawning Biomass increase to S_{MSY}.

If actions are taken relative to a Lower Bound,

- average Spawning Biomass is higher than S_{MSY}
- average harvest is similar to MSY