- 模式识别 FixMatch
 - 一、实验内容
 - 二、实验过程
 - 2.1 手动实现FixMatch
 - 2.1.1 FixMatch算法原理
 - 2.1.2 关键代码
 - 2.2 使用TorchSSL实现FixMatch
 - 2.2.1 TorchSSL的特点
 - 2.2.2 TorchSSL-FixMatch训练测试
 - 三、实验结果
 - 3.1 对比手动实现和TorchSSL实现的效果
 - 3.2 分析对比FixMatch和其他半监督算法的不同点

模式识别 FixMatch

一、实验内容

基于FixMatch的CIFAR-10数据集半监督图像分类

- 1. 阅读原始论文和相关参考资料,基于Pytorch动手实现FixMatch半监督图像分类算法,在CIFAR-10进行半监督图像分类实验,报告算法在分别使用40,250,4000张标注数据的情况下的图像分类结果
- 2. 按照原始论文的设置,FixMatch使用WideResNet-28-2作为Backbone网络,即深度为28,扩展因子为2,使用CIFAR-10作为数据集,可以参考现有代码的实现,算法核心步骤不能直接照抄!
- 3. 使用TorchSSL中提供的FixMatch的实现进行半监督训练和测试,对比自己实现的算法和TorchSSL中的实现的效果
- 4. 提交源代码,并提交实验报告,描述实现过程中的主要算法部分,可以尝试分析对比FixMatch和其他半监督算法的不同点,例如MixMatch等。

二、实验过程

2.1 手动实现FixMatch

2.1.1 FixMatch 算法原理

FixMatch是一种半监督学习算法,它通过结合少量有标签数据和大量无标签数据来提升模型的性能。其基本思想是通过一致性正则化(Consistency Regularization)和伪标签(Pseudo-Labeling)来利用无标签数据。具体来说,FixMatch的核心思想如下:

- 1. 一致性正则化: 假设模型对相同输入数据的不同扰动(如数据增强)应输出相同的结果。通过强、弱数据增强产生两种输入,模型应对两种增强后的数据输出一致的结果。
- 2. **伪标签**: 利用模型对无标签数据的预测结果作为伪标签,且只在预测置信度高于设定阈值时使用这些伪标签来训练模型。

根据FixMatch的核心思想,可以构建FixMatch框架,其核心步骤在于如何训练模型以进行分类预测,我实现的思路如下:

1. 数据准备和预处理

从数据集中加载有标签训练数据和无标签训练数据,其中无标签训练数据需要分别 进行弱增强和强增强处理。

- 。 弱增强: 随机水平翻转->随机裁剪->标准化
- 。 强增强: 随机水平翻转->随机裁剪->颜色抖动->标准化

2. 模型选取和初始化

- 。 FixMatch的骨干网络使用WideResNet,深度为28,扩展因子为2,因为其在 图像分类任务中性能优越,且网络结构较宽,能更好捕捉到图像的特征,处理 无标签数据的效果更好,更适用于半监督学习。
- 。我的模型中还引入了EMA机制,用于更新模型参数的滑动平均值,以此提升模型的泛化能力和稳定性。
- 。同时在学习率的调整中,采用余弦退火学习率调度器逐渐降低学习率,提高模型的收敛效果。

3. 模型训练

- 。 将批次数据(有标签数据和增强后的无标签数据)输入模型,获得预测结果。
- 。分别计算有标签数据损失 L_x (交叉熵损失)和无标签数据损失 L_u (强增强无标签数据的伪标签损失。伪标签由弱增强无标签数据的预测结果生成,且只在预测置信度高于阈值时参与损失计算),得到两者之和作为训练总损失。
- 。 反向传播并更新模型参数,更新学习率调度器,更新EMA(指数移动平均)模型参数。

4. 模型测试

在每个训练周期结束后,使用测试数据集评估模型性能,计算Top-1准确率,并保存最佳模型。

2.1.2 关键代码

1. 数据准备和预处理

使用 get_cifar10()获取处理后的数据,包括有标签数据、无标签数据和测试数据,其中调用 TransformFixMatch类进行数据增强。

```
# myFM.py
labeled_dataset, unlabeled_dataset, test_dataset =
get_cifar10('./data',NUM_LABELED,NUM_CLASSES,BATCH_SIZE,EVAL_STEP)
```

```
# cifar.py
# 获取CIFAR-10数据集
def get_cifar10(root, num_labeled, num_classes, batch_size, eval_step):
   # 有标签数据的转换
   transform labeled = transforms.Compose([
       transforms.RandomHorizontalFlip(), # 随机水平翻转
transforms.RandomCrop(size=32,padding=int(32*0.125),padding_mode='reflect'),
# 随机裁剪
       transforms.ToTensor(), # 转换为张量
       transforms.Normalize(mean=cifar10_mean, std=cifar10_std) # 标准化
   ])
   # 测试数据的转换
   transform_val = transforms.Compose([
       transforms.ToTensor(),
       transforms.Normalize(mean=cifar10_mean, std=cifar10_std)
   ])
   # 下载CIFAR-10基础数据集
   base_dataset = datasets.CIFAR10(root, train=True, download=True)
   # 分割有标签和无标签的数据索引
   train_labeled_idxs, train_unlabeled_idxs = x_u_split(num_labeled,
num_classes, batch_size, eval_step, base_dataset.targets)
   # 定义有标签和无标签的数据集、测试数据集
   train_labeled_dataset = CIFAR10SSL(root, train_labeled_idxs,
train=True, transform=transform_labeled)
   train_unlabeled_dataset = CIFAR10SSL(root, train_unlabeled_idxs,
train=True, transform=TransformFixMatch(mean=cifar10_mean, std=cifar10_std))
   test_dataset = datasets.CIFAR10(root, train=False,
transform_transform_val, download=False)
   return train_labeled_dataset, train_unlabeled_dataset, test_dataset
# 定义TransformFixMatch类,包含弱增强和强增强
class TransformFixMatch(object):
   def __init__(self, mean, std):
```

self.weak = transforms.Compose([

```
transforms.RandomHorizontalFlip(), # 随机水平翻转
transforms.RandomCrop(size=32,padding=int(32*0.125),padding_mode='reflect')])
# 随机裁剪
       self.strong = transforms.Compose([
           transforms.RandomHorizontalFlip(), # 随机水平翻转
transforms.RandomCrop(size=32,padding=int(32*0.125),padding_mode='reflect'),
# 随机裁剪
           transforms.ColorJitter(brightness=0.5, contrast=0.5,
saturation=0.5, hue=0.5),]) # 颜色抖动
       self.normalize = transforms.Compose([
           transforms.ToTensor(), # 转换为张量
           transforms.Normalize(mean=mean, std=std)]) # 标准化
   def __call__(self, x):
       weak = self.weak(x)
       strong = self.strong(x)
       return self.normalize(weak), self.normalize(strong) # 返回增强后的结果
```

2. WideResNet骨干网络

参考现成的WideResNet代码模块,稍作修改使其能在 myFM.py的模型初始化中调用,具体见 /models/WideResNet.py。

3. FixMatch模型训练

按照上述我的算法思路进行代码编写,训练过程包括模型预测、损失计算、模型测试等。

```
# 模型训练
def train(self, labeled_trainloader, unlabeled_trainloader, test_loader):
    global best_acc
    test_accs = [] # 存储测试准确率
    labeled_iter = iter(labeled_trainloader)
    unlabeled_iter = iter(unlabeled_trainloader)
    self.model.train()
    for epoch in range(self.epochs):
        for batch_idx in range(EVAL_STEP):
               inputs_x, targets_x = labeled_iter.next()
           except:
               labeled_iter = iter(labeled_trainloader)
               inputs_x, targets_x = labeled_iter.next()
           try:
               (inputs_u_w, inputs_u_s), _ = unlabeled_iter.next()
           except:
               unlabeled_iter = iter(unlabeled_trainloader)
               (inputs_u_w, inputs_u_s), _ = unlabeled_iter.next()
           batch_size = inputs_x.shape[0]
            inputs = interleave(torch.cat((inputs_x, inputs_u_w, inputs_u_s)),
2*MU+1).cuda() # 将有标签和无标签数据合并并交错
```

```
targets_x = targets_x.cuda()
           logits = self.model(inputs) # 模型预测
           logits = de_interleave(logits, 2*MU+1) # 反交错
           logits_x = logits[:batch_size]
           logits_u_w, logits_u_s = logits[batch_size:].chunk(2) # 无标签数
据的弱增强和强增强预测结果
           del logits
           Lx = F.cross_entropy(logits_x, targets_x, reduction='mean') # 有标
签数据的交叉熵损失
           pseudo_label = torch.softmax(logits_u_w.detach(), dim=-1) # 计算
无标签数据的伪标签
           max probs, targets u = torch.max(pseudo label, dim=-1) # 获得伪标
签和其最大概率
           mask = max_probs.ge(self.threshold).float() # 置信度大于阈值的伪标签
           Lu = (F.cross_entropy(logits_u_s, targets_u,reduction='none') *
mask).mean() # 无标签数据的损失,仅对高置信度样本计算
           loss = Lx + Lu # 总损失
           loss.backward() # 反向传播
           self.optimizer.step() # 更新优化器参数
           self.scheduler.step() # 更新学习率
           self.ema_model.update(self.model) # 更新EMA模型
           self.model.zero_grad() # 清零梯度
           print(f'Epoch {epoch+1}/{self.epochs}, Iter
{batch_idx+1}/{EVAL_STEP}, Loss: {loss.item()}')
           test model = self.ema model.ema
           test_acc = self.test(test_loader, test_model) # 测试准确率
           is_best = test_acc > best_acc # 判断当前测试准确率是否为最佳
           best_acc = max(test_acc, best_acc) # 更新最佳准确率
           model_to_save = self.model.module if hasattr(self.model, "module")
else self.model # 获取需要保存的模型
           ema_to_save = self.ema_model.ema.module if
hasattr(self.ema_model.ema, "module") else self.ema_model.ema # 获取需要保存
的EMA模型
           save_checkpoint({
              'epoch': epoch + 1,
              'state_dict': model_to_save.state_dict(),
              'ema state_dict': ema_to_save.state_dict(),
              'acc': test_acc,
               'best_acc': best_acc,
               'optimizer': self.optimizer.state_dict(),
              'scheduler': self.scheduler.state_dict(),
           }, is_best, 'result') # 调用save_checkpoint函数保存模型
           test_accs.append(test_acc) # 将测试准确率添加到列表中
```

4. 模型测试

根据当前模型在测试集中的输出结果,与正确标签进行比较,输出准确率。

```
# 模型测试
def test(self, test_loader, model):
```

```
model.eval()
correct = 0
total = 0
with torch.no_grad():
    for data in test_loader:
        images, labels = data
        outputs = model(images.cuda()) # 模型预测
        __, predicted = torch.max(outputs.data, 1) # 获取预测结果
        total += labels.size(0) # 总样本数
        correct += (predicted == labels.cuda()).sum().item() # 计算正确

预测的样本数
    test_acc = correct / total # 计算测试准确率
    print('Accuracy: %d %%' % (100 * test_acc))
    return test_acc
```

2.2 使用TorchSSL实现FixMatch

2.2.1 TorchSSL的特点

1. 高效的数据加载和处理

TorchSSL通过使用PyTorch的DataLoader类和多进程数据加载方式,提高了数据加载的效率。特别是对于大型数据集或复杂的数据增强操作,能够显著减少数据准备时间。

2. 多种数据增强策略

除了FixMatch中使用的弱增强和强增强策略外,TorchSSL还提供了其他数据增强 方法,例如随机裁剪、水平翻转、颜色抖动等。用户可以根据需要选择和组合不同 的数据增强策略,进一步提升模型的泛化能力。

3. 指数滑动平均(EMA)

除了常规的模型参数更新,TorchSSL还实现了EMA机制,通过滑动平均来更新模型参数。这种处理方式能够提升模型的稳定性和泛化能力,特别是在小数据集或标签稀缺的情况下。

4. 自动混合精度训练(AMP)

TorchSSL支持自动混合精度训练(AMP),通过在训练过程中动态选择合适的精度(例如半精度float16和单精度float32),加速模型训练的同时减少显存使用。这对于大型模型和高分辨率图像非常有用。

5. 丰富的日志记录和监控

TorchSSL提供了详细的日志记录和监控功能,包括训练和测试过程中的损失、准确率、学习率等关键指标。用户可以通过这些日志实时监控模型训练的进展,并根据需要调整训练参数。

2.2.2 TorchSSL-FixMatch训练测试

从https://github.com/StephenStorm/TorchSSL下载TorchSSL源代码。

cifar10-40

python fixmatch.py --c config/fixmatch/fixmatch_cifar10_40_0.yaml

cifar10-250

python fixmatch.py --c config/fixmatch/fixmatch_cifar10_250_0.yaml

cifar10-4000

python fixmatch.py --c config/fixmatch/fixmatch_cifar10_4000_0.yaml

三、实验结果

3.1 对比手动实现和TorchSSL实现的效果

在cifar_10数据集上分别应用手动实现和TorchSSL实现的FitMatch算法,进行训练测试,batch_size均设为64。由于训练时间过长,现只截取40000个iters,进行模型效果对比如下:

实现方式\有 标注数量	40	250	4000
手动实现 (epoch 40)	44% Epoch 37/1024, Iter 382/1024, Loss: 0.07230693101882935 Accuracy: 44 %	67% Epoch 36/1924, Iter 96/1924, Loss: 0.07136058807373047 Accuracy: 67 %	86% Epoch 38/1024, Iter 802/1024, Loss: 0.15734972059726715 Accuracy: 86 %
TorchSSL (epoch 8)	58.7% 40000 iteration, USE_EMA: True, {'train: ime': 4.0959990896585945e-06, 'train/ruBEST_EVAL_ACC: 0.587 at 40000 iters	90.4% 4000 iteration, USE EMA: True, f'train/sup_loss': 1 time': 0.0044293122291564945, 'train/run_time': 0.226 62266666666666), BEST_EVAL_ACC: 0.904, at 40000 iters	91.94% 46000 iteration USE EMA: True, ('train/sup_loss': to time': 0.004078336142493653, 'train/run time': 0.2274 792711111111), BEST_EVAL_ACC. 0.9194 at 40000 iters

实现方式\有标注数量	40	250	4000
TorchSSL	91.21%	93.74%	94.49%
(最终)	BEST_EVAL_ACC: 0.9121, at 270000 iters	BEST_EVAL_ACC: 0.9374, at 270000 iters	BEST_EVAL_ACC: 0.9449, at 275000 iters

分析:

- 1. 从训练速度来看,在同等显卡环境下,TorchSSL的训练速度远快于手动实现(并没有展示),推测可能是因为TorchSSL使用了AMP加速训练,也可能因为其模块化和不断优化后性能已经达到了最优状态,这是普通的手动实现无法比拟的。
- 2. 从FixMatch分类效果来看,TorchSSL实现的FitMatch在测试集上的分类准确率也是远远高于手动实现,推测可能是TorchSSL的优化器参数选择了一组最优的参数,而且数据增强策略也更多元化,使得模型泛化能力更强,等等。
- 3. 有标签数据量越多,在短时间内,TorchSSL实现的FitMatch分类准确率更接近官方实验结果预期。
- 4. 总的来说,我的手动实现FitMatch模型是适用于半监督图像分类任务的,只是模型性能有待优化。

3.2 分析对比FixMatch和其他半监督算法的不同点

通过网上的学习和理解,对比FixMatch和其他半监督算法的核心思想、关键步骤和优缺点总结如下:

算法	核心思想	主要步骤	优点	缺点
FixMatch	结合伪标签和一 致性正则化	弱增强生成伪标 签,强增强应用一 致性损失	简单高效, 性能优异	伪标签质量依 赖于模型
Mean Teacher	教师模型和学生 模型,教师参数 为EMA	学生模型训练,教师模型提供一致性 约束	教师模型稳 定,减少噪 声	计算开销较大
Pseudo- Labeling	使用模型预测生 成伪标签	预测无标签数据, 选择概率最高的类 作为伪标签	实现简单, 易于理解	容易引入错误 标签
UDA	一致性训练和无 监督数据增强	强增强应用一致性 损失	利用数据增 强,提升鲁 棒性	数据增强策略 复杂,参数调 节困难

算法	核心思想	主要步骤	优点	缺点
MixMatch	综合多种技术	多次增强,伪标签 平均,混合标签	性能优异, 充分利用无 标签数据	实现复杂, 计 算开销较大