Notas para el ACM ICPC

Octavio Alberto Agustín Aquino

Ricardo Omar Chávez García

Fernando Said Ramírez García

17 de octubre de 2005

Indice			9. Programación dinámica	10 10
1	The	1	9.1. Suma de subconjunto	10
1.	Trigonometría	1	9.3. Mayor subsecuencia común	11
2.	Geometría analítica	2	9.4. Distancia de edición	11
	2.1. Rectas, planos y círculos	2	9.5. Mayor subsecuencia creciente o decre-	11
	2.2. Transformación de coordenadas	2	ciente	11
	2.3. Cuadráticas	2	9.6. Conteo de cambio	12
3.	Geometría computacional	3	10. Rastreo hacia atrás	12
	3.1. Triangulación de polígonos	3		
	3.2. Intersección de segmentos	3	11. Algoritmos voraces	12
	3.3. Envolvente convexa	4	12. Teoría de grafos	12
	3.4. Punto en polígono	4	12.1. Circuitos eulerianos	13
	3.5. Mínimo círculo encapsulador	4	12.2. Recorridos	13
			12.3. Caminos mínimos	13
4.		4	12.3.1. Con una sola fuente	13
	4.1. Factoriales	4	12.3.2. Entre todos los pares	14
	4.2. Ternas pitagóricas	4	12.4. Ordenamiento topológico	14
	4.3. Algoritmo de Euclides	4	12.5. Mínimo árbol generador	14
	4.3.1. Ciclos en sucesiones	5	12.6. Grafos hamiltonianos	15
	4.4. Divisores de un número	5	12.7. Flujo máximo	15
	4.5. Números primos	6		
	4.6. Potencias y logaritmos discretos	6	13. Localización de patrones	15
	4.7. Teorema chino del residuo	6	13.1. Algoritmo KMP	15
_			13.2. Detección de periodicidades	15
5.	Combinatoria	6		
	5.1. Objetos combinatorios	6	14. Cuestiones misceláneas	16
	5.2. Números combinatorios	7		
6.	Métodos númericos	8	1. Trigonometría	
	6.1. Interpolación	8	Todo taión ou lo tione una escardo la constante de consta	
	6.2. Diferenciación	8	Todo triángulo tiene un círculo inscrito tangente a	
	6.3. Integración	8	lados e interior a él, cuyo centro es el punto de intersción de las bisectrices de los lados.	sec-
	6.4. Transformación rápida de Fourier	8		2000
	6.5. Álgebra lineal	9	Todo triángulo tiene un círculo circunscrito que p por sus vértices. El punto de intersección de las me	
7	Probabilidad	9	nas del triángulo es su centro de masa.	uia-
7.	1 I UVAVIIIUAU	7	Sea el triángulo $\triangle ABC$ con ángulos A , B y C y s	ean
8.	Ordenamiento y búsqueda	9	a, b y c los lados opuestos a dichos ángulos, respe	
J.	8.1. Algoritmos basados en comparaciones .	9	vamente. Sean h_c , t_c y m_c las longitudes de la altura	
	8.2. Algoritmos lineales	10	bisectriz y la mediana que se originan en el vértice	
	8.3. Búsqueda binaria	10	y sean r y R los sendos radios de los círculos inscri	
		- 0	j ===== : j == === = = === == == == == == == == =	-~ J

circunscrito. Hagamos $s = \frac{1}{2}(a+b+c)$. Se satisfacen las siguientes relaciones.

$$c^2 = a^2 + b^2 - 2ab\cos C (1)$$

$$a = b\cos C + c\cos B \tag{2}$$

$$\frac{a}{\operatorname{sen} A} = \frac{b}{\operatorname{sen} B} = \frac{c}{\operatorname{sen} C}$$

$$area = \frac{1}{2}ch_c = \frac{1}{2}ab\operatorname{sen} C$$

$$(3)$$

$$area = \frac{1}{2}ch_c = \frac{1}{2}ab \operatorname{sen} C \tag{4}$$

$$= \frac{c^2 \operatorname{sen} A \operatorname{sen} B}{2 \operatorname{sen} C} = rS = \frac{abc}{4R}$$
 (5)

$$= \sqrt{s(s-a)(s-b)(s-c)} \tag{6}$$

$$r = c \operatorname{sen} \frac{1}{2} A \operatorname{sen} \frac{1}{2} B \operatorname{sec} \frac{1}{2} C \tag{7}$$

$$r = c \operatorname{sen} \frac{1}{2} A \operatorname{sen} \frac{1}{2} B \operatorname{sec} \frac{1}{2} C$$

$$= \frac{ab \operatorname{sen} C}{2s} = (s - c) \operatorname{tan} \frac{1}{2} C$$
(8)

$$= \left(\frac{1}{h_a} + \frac{1}{h_b} + \frac{1}{h_c}\right)^{-1} \tag{9}$$

$$R = \frac{c}{2 \operatorname{sen} C} = \frac{abc}{4 \operatorname{area}} \tag{10}$$

$$R = \frac{c}{2 \sec C} = \frac{abc}{4 \operatorname{area}}$$

$$h_c = a \sec B = b \sec A = \frac{2 \operatorname{area}}{c}$$
(10)

$$t_c = \frac{2ab}{a+b}\cos\frac{1}{2}C = \sqrt{ab\left(1 - \frac{c^2}{(a+b)^2}\right)}$$
 (12)

$$m_c = \sqrt{\frac{1}{2}a^2 + \frac{1}{2}b^2 - \frac{1}{2}c^2} \tag{13}$$

$$cos(x \pm y) = cos(x)cos(y) \mp sen(x)sen(y)$$
 (14)

$$sen(x \pm y) = cos(x) sen(y) \pm sen(x) cos(y)$$
 (15)

$$\tan 2x = \frac{2\tan x}{1-\tan^2 x} \tag{16}$$

$$\operatorname{sen} \frac{x}{2} = \pm \sqrt{\frac{1 - \cos x}{2}} \tag{17}$$

$$\cos\frac{x}{2} = \pm\sqrt{\frac{1+\cos x}{2}} \tag{18}$$

$$\tan \frac{x}{2} = \pm \sqrt{\frac{1-\cos x}{1+\cos x}} = \frac{\sin x}{1+\cos x} = \frac{1-\cos x}{\sin x}$$
 (19)

Cuadro 1: Ecuaciones de rectas

Condiciones	Ecuación
$\parallel B$, pasa por A	$(r - A) \times B = 0$
Pasa por A yB	$(r - A) \times (B - A) = 0$
$\perp B$, pasa por A	$(r - A) \cdot B = 0$

La distancia d de una recta Ax + By + C = 0 a un punto dado (x_1, y_1) es $d = \frac{|Ax_1 + By_1 + C|}{\sqrt{A^2 + B^2}}$.

En general, el área de un polígono $\{p_i\}_{i=0}^{n-1}$ es

$$K(\{p_i\}_{i=0}^{n-1}) = \frac{1}{2} \sum_{i=0}^{n-1} \begin{vmatrix} x_i & y_i \\ x_{i+1} & y_{i+1} \end{vmatrix}$$

donde los índices se toman módulo el número de vértices n del polígono.

El siguiente determinante indica si un punto p_4 = (x_4, y_4) está sobre (D = 0), dentro (D < 0) o fuera (D > 0)0) del círculo determinado por los puntos $p_1 = (x_1, y_1)$, $p_2 = (x_2, y_2) \text{ y } p_3 = (x_3, y_3).$

$$D = \begin{vmatrix} x_1 & y_1 & x_1^2 + y_1^2 & 1 \\ x_2 & y_2 & x_2^2 + y_2^2 & 1 \\ x_3 & y_3 & x_3^2 + y_3^2 & 1 \\ x_4 & y_4 & x_4^2 + y_4^2 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} x_1 - x_4 & y_1 - y_4 & (x_1 - x_4)^2 + (y_1 - y_4)^2 \\ x_2 - x_4 & y_2 - y_4 & (x_2 - x_4)^2 + (y_2 - y_4)^2 \\ x_3 - x_4 & y_3 - y_4 & (x_3 - x_4)^2 + (y_3 - y_4)^2 \end{vmatrix}.$$
(21)

2. Geometría analítica

2.1. Rectas, planos y círculos

Escribimos $[p_1, p_2, p_3] = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}$ donde $p_i =$

 (x_i, y_i, z_i) . El área signada de un triángulo con vértices en $p_1 = (x_1, y_1), p_2 = (x_2, y_2)$ y $p_3 = (x_3, y_3)$ es

$$K(\lbrace p_i \rbrace_{i=1}^3) = \frac{[q_1, q_2, q_3]}{2} = \frac{1}{2} \begin{vmatrix} x_2 - x_1 & y_2 - y_1 \\ x_3 - x_1 & y_3 - y_1 \end{vmatrix}$$
 (20)

donde $q_i = (x_i, y_i, 1)$. La función K indica si el punto p_3 se encuentra a la izquierda (K < 0), a la derecha (K > 0) o es colineal (K = 0) con respecto al segmento dirigido $\overrightarrow{p_1p_2}$. Por lo tanto, la ecuación de la recta Ax +By + C = 0 que pasa por los puntos (x_1, y_1) y (x_2, y_2) puede escribirse de la siguiente manera:

$$\begin{vmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end{vmatrix} = 0.$$

Transformación de coordenadas 2.2.

Si los ejes coordenados giran un ángulo θ en torno al origen en sentido horario, la relación entre el sistema original y el nuevo es

$$\begin{pmatrix} \xi \\ \eta \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}. \tag{22}$$

2.3. Cuadráticas

El polinomio de segundo grado

$$O(x, y) = Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$$

en donde $B \neq 0$, puede transformarse en otro de la forma

$$Q'(\xi, \eta) = A'\xi^2 + C'\eta^2 + D'\xi + E'\eta + F' = 0$$

haciendo el cambio de variable (22) con parámetro

$$\theta = \begin{cases} \frac{1}{2} \arctan \frac{B}{A-C} & \text{si } A \neq C, \\ \frac{\pi}{A} & \text{si } A = C. \end{cases}$$
 (23)

La forma polar de una cónica de excentricidad e, cuyo foco está en el polo y a p unidades de la directriz, es

$$r = \frac{ep}{1 + e\cos(\theta + \phi)},$$

donde ϕ es el ángulo que forman el eje polar y la línea que une el foco y el polo, tomado en sentido horario. Si e=1, tenemos una párabola; si e<1, una elipse, y si e>1, una hipérbola.

3. Geometría computacional

Teorema 3.1 (Pick). Sea P un polígono reticular, I(P) el número de puntos reticulares interiores a él y F(P) los puntos reticulares en su frontera. Entonces

$$K(P) = I(P) + \frac{F(P)}{2} - 1.$$

3.1. Triangulación de polígonos

Una *oreja* de un polígono *P* son tres vértices consecutivos que determinan un triángulo completamente contenido en *P*. Todo polígono tiene al menos una oreja.

Algoritmo 3.1. Determina si tres puntos de un polígono son una oreja.

Entrada: Tres puntos p_i, p_j, p_k en un polígono P ordenado en sentido antihorario.

Salida: Verdadero, si los puntos conforman una oreja. Falso en otro caso.

- 1: **función** Oreja (p_i, p_j, p_k, P)
- 2: **si** $K(p_i, p_j, p_k) < 0$ **entonces**
- 3: **devolver** falso.
- 4: para todo $m \neq i, j, k$ hacer
- 5: **si** $p_m \in \triangle p_i p_j p_k$ **entonces**
- 6: **devolver** falso.
- 7: devolver verdadero.

Algoritmo 3.2 (Otectomía). Triangula un polígono P de n vértices en tiempo $O(n^2)$.

Entrada: Un polígono $P = \{p_i\}_{i=0}^{n-1}$

Salida: Una triangulación T.

- 1: $T \leftarrow \emptyset$.
- 2: para todo $p_i \in P$ hacer
- 3: $l_i \leftarrow (i-1) \mod n, r_i \leftarrow (i+1) \mod n$.
- 4: $i \leftarrow n 1$.
- 5: mientras |T| < n 2 hacer
- 6: $i \leftarrow r_i$
- 7: **si** Oreja (l_i, i, r_i, P) **entonces**
- 8: $T \leftarrow T \cup \{p_{l_i}, p_i, p_{r_i}\}.$
- 9: $l_{r_i} \leftarrow l_i, r_{l_i} \leftarrow r_i$.

3.2. Intersección de segmentos

Algoritmo 3.3. Determina si dos segmentos $\overrightarrow{p_0p_1}$ y $\overrightarrow{q_0q_1}$ se intersectan usando (20).

Entrada: Dos segmentos $\overrightarrow{p_0p_1}$ y $\overrightarrow{q_0q_1}$.

Salida: Verdadero si los segmentos se intersectan. Falso en caso contrario.

- 1: $d_1 \leftarrow \operatorname{sgn} K(q_0, q_1, p_0), d_2 \leftarrow \operatorname{sgn} K(q_0, q_1, p_1).$
- 2: $d_3 \leftarrow \operatorname{sgn} K(p_0, p_1, q_0), d_4 \leftarrow \operatorname{sgn} K(p_0, p_1, q_1).$ $\{\operatorname{sgn}(x) = [x > 0] - [x < 0].\}$
- 3: **si** $(d_1 \cdot d_2 < 0) \lor (d_3 \cdot d_4 < 0)$ **entonces**
- 4: **devolver** verdadero.
- 5: **si no**
- 6: $u \leftarrow \min(p_{0_x}, p_{1_x}), U \leftarrow \max(p_{0_x}, p_{1_x}).$
- 7: $v \leftarrow \min(p_{0_v}, p_{1_v}), V \leftarrow \max(p_{0_v}, p_{1_v}).$
- 8: $s \leftarrow \min(q_{0_x}, q_{1_x}), S \leftarrow \max(q_{0_x}, q_{1_x}).$
- 9: $t \leftarrow \min(q_{0_y}, q_{1_y}), T \leftarrow \max(q_{0_y}, q_{1_y}).$
- 10: **si** $(d_1 = 0) \land (p_0 \in (s, S) \times (t, T))$ **entonces**
- 11: **devolver** verdadero.
- 12: **si no si** $(d_2 = 0) \land (p_1 \in (s, S) \times (t, T))$ **entonces**
- 13: **devolver** verdadero.
- 14: **si no si** $(d_3 = 0) \land (q_0 \in (u, U) \times (v, V))$ **entonces**
- 15: **devolver** verdadero.
- 16: **si no si** $(d_4 = 0) \land (q_1 \in (u, U) \times (v, V))$ **entonces**
- 17: **devolver** verdadero.
- 18: devolver falso.

Sean s_1 y s_2 dos segmentos. Decimos que son *comparables* si la línea de barrido los intersecta, y que s_1 está por arriba de s_2 si su ordenada de intersección es la mayor de ambas.

Algoritmo 3.4. Determina si un conjunto de segmentos se intersecta en tiempo $O(n \log n)$.

Entrada: Un conjunto de segmentos S.

Salida: Verdadero si hay intersecciones en S. Falso en caso contrario.

- 1: $T \leftarrow \emptyset$.
- 2: Ordenar los segmentos de *S* de izquierda a derecha, de extremo izquierdo a derecho y de menor a mayor ordenada.
- 3: para todo $p \in P$ hacer
- 4: **si** *p* es extremo izquierdo de un segmento *s* **en-**
- 5: Insertar(T, s).
- 6: **si** Arriba $(T, s) \cap s \neq \emptyset$ o Abajo $(T, s) \cap s \neq \emptyset$ **entonces**
- 7: **devolver** verdadero.
- 8: **si** *p* es extremo derecho de un segmento *s* **enton- ces**
- 9: **si** Arriba $(T, s) \cap A$ bajo $(T, s) \neq \emptyset$ **entonces**
- 10: **devolver** verdadero.
- 11: SACAR(T, s).
- 12: devolver falso.

3.3. Envolvente convexa

Algoritmo 3.5 (Graham). Calcula la envolvente convexa de un conjunto de puntos Q.

Entrada: Un conjunto de puntos $Q = \{p_i\}_{i=0}^m \subset \mathbb{R}^2$. **Salida:** El conjunto de vértices de la envolvente convexa en la pila S.

- 1: Sea $p_0 \in Q$ el punto de menores coordenadas.
- 2: Sean $p_1 \leq \ldots \leq p_m$ los puntos restantes de Q ordenados por ángulo polar alrededor de p_0 . Si hay empates, quitar todos los de mismo ángulo salvo el de mayor módulo.
- 3: Meter p_0, p_1, p_2 en la pila S.
- 4: **para** $i \leftarrow 3$ hasta m **hacer**
- 5: **mientras** $K(p_{tope(S)-1}, p_{tope(S)}, p_i) \le 0$ **hacer**
- 6: SACAR(S).
- 7: METER(S, p_i).

3.4. Punto en polígono

Las operaciones en los índices del polígono son módulo el número de vértices del mismo.

Algoritmo 3.6. Determina si un punto está en el interior de un polígono simple. Identificamos al punto (x, y) con (x, y, 1) y ∞ con (1, 0, 0).

Entrada: Un punto $p = (x_0, y_0, 1)$ y un polígono P. **Salida:** Verdadero si el punto está en el polígono. Falso en caso contrario.

- 1: $a \leftarrow \text{falso}$.
- 2: para todo $\overrightarrow{p_i p_{i+1}} \in P$ hacer
- 3: **si** $([p, \infty, p_i] < 0) \neq ([p, \infty, p_{i+1}] < 0)$ **entonces**
- 4: **si** $([p_i, p_{i+1}, p] < 0) \neq ([p_i, p_{i+1}, \infty] < 0)$ **entonces**
- 5: $a \leftarrow \neg a$.
- 6: **si no si** $[p_i, p_{i+1}, p] = 0 \land x_i \le x \le x_{i+1}$ **entonces**
- 7: **devolver** verdadero.
- 8: **devolver** a.

Algoritmo 3.7. Determina si un punto está en el interior de un polígono.

Entrada: Un punto $p = (x_0, y_0)$ y un polígono P.

Salida: El índice g del polígono alrededor de p. Si g = 0, p está fuera del polígono.

- 1: $g \leftarrow 0$.
- 2: para todo $\overrightarrow{p_i p_{i+1}} \in P$ hacer
- 3: **si** $y_i \le y_0$ **entonces**
- 4: **si** $y_{i+1} > y_0$ **entonces**
- 5: **si** $K(p_i, p_{i+1}, p_0) < 0$ **entonces**
- 6: $g \leftarrow g + 1$.
- 7: **si no**
- 8: $\mathbf{si}\ y_{i+1} \leq y_0 \ \mathbf{entonces}$
- 9: **si** $K(p_i, p_{i+1}, p_0) > 0$ **entonces**

10:
$$g \leftarrow g - 1$$
.

11: **devolver** g.

3.5. Mínimo círculo encapsulador

Algoritmo 3.8. Para hallar el centro y el radio del mínimo círculo encapsulador, invocamos a Min-Circ(P, \emptyset).

Entrada: Un conjunto de puntos $P = \{p_i\}_{i=1}^n$.

Salida: El centro *c* y radio *r* del mínimo círculo encapsulador.

- 1: **función** MinCirc(P, B)
- 2: $\mathbf{si} |B| = 1$ entonces
- 3: **devolver** $c \leftarrow b_1$ y $r \leftarrow 0$.
- 4: si no si |B| = 2 entonces
- 5: **devolver** $c \leftarrow \frac{1}{2}(b_1 + b_2)$ y $r \leftarrow \frac{1}{2}d(b_1, b_2)$.
- 6: si no si |B| = 3 entonces
- 7: Hacer c el centro del círculo circunscrito del triángulo $\{b_1, b_2, b_3\}$
- 8: **devolver** $c y r \leftarrow d(c, b_1)$.
- 9: $c \leftarrow (\infty, \infty), r \leftarrow 0$.
- 10: para todo $p_i \in P$ hacer
- 11: **si** $d(p_i, c) > r$ **entonces**
- 12: $B \leftarrow B \cup \{p_i\}.$
- 13: MinCirc(P, B).
- 14: fin funcion

4. Teoría de números

4.1. Factoriales

La mayor potencia de un primo p que divide a n! es $\epsilon_p(n) = \sum_{k=1}^{\lfloor \log_p n \rfloor} \left\lfloor \frac{n}{p^k} \right\rfloor$. En consecuencia, el número Z de ceros al final de n! es $Z = \sum_{k=1}^{\lfloor \log_5 n \rfloor} \left\lfloor \frac{n}{5^k} \right\rfloor$.

Teorema 4.1 (Wilson). Se satisface $(p-1)! \equiv -1 \pmod{p}$ si, y sólo si, p es primo.

4.2. Ternas pitagóricas

Las ternas pitagóricas son tripletes $(u, v, w) \in \mathbb{N}^3$ tales que $w^2 = u^2 + v^2$. Si $u \perp v \perp w$, entonces la tripleta se dice *primitiva*. Toda terna primitiva es de la forma $(u, v, w) = (x^2 - y^2, 2xy, x^2 + y^2)$, donde $y < x y x \perp y$. Aunque hay una infinidad de ternas que tienen esta forma, no todas son primitivas.

4.3. Algoritmo de Euclides

Algoritmo 4.1 (Euclides). Calcula el máximo común divisor de *a* y *b*.

Entrada: $a, b \in \mathbb{Z}$.

Salida: El máximo común divisor de *a* y *b*.

1: **mientras** $a \neq 0$ y $b \neq 0$ **hacer**

2: $\mathbf{si} |a| > |b|$ entonces

3: $a \leftarrow a \mod b$.

4: **si no**

5: $b \leftarrow b \mod a$.

6: **si** $a \neq 0$ **entonces**

7: **devolver** *a*.

8: **si no**

9: **devolver** *b*.

Algoritmo 4.2 (**Blankinship**). Calcula el m. c. d. (a,b) de a y b y la combinación lineal ar + bs = (a,b).

Entrada: $a, b \in \mathbb{Z}$.

Salida: El m. c. d. de a y b y r y s tales que ar + bs = (a, b).

1: **función** MCD(*a*,*b*)

2: $u \leftarrow 1, d \leftarrow a$.

3: $\mathbf{si} b = 0$ entonces

4: **devolver** (d, u, 0).

5: **si no**

6: $v_1 \leftarrow 0, v_3 \leftarrow b$.

7: mientras $v_3 \neq 0$ hacer

8: $q \leftarrow \lfloor d/v_3 \rfloor, t_3 \leftarrow d \mod v_3$.

9: $t_1 \leftarrow u - qv_1, u \leftarrow v_1, d \leftarrow v_3, v_1 \leftarrow t_1, v_3 \leftarrow t_3$.

10: **devolver** (d, u, (d - au)/b).

Con el algoritmo anterior puede resolverse una congruencia de la forma $ax \equiv b \mod m$.

Algoritmo 4.3. Calcula una solución de $ax = b \mod m$.

Entrada: $a, b, m \in \mathbb{Z}$.

Salida: Si existe, x tal que $ax = b \mod m$. Si no, falso.

1: $(d, x', y') \leftarrow MCD(a, m)$.

2: si $d \setminus b$ entonces

3: $x \leftarrow x'(b/d)$

4: **para** i = 0 hasta d - 1 **hacer**

5: **devolver** $(x + i\frac{m}{d}) \mod m$

6: **si no**

7: **devolver** falso.

Obsérvese que podemos resolver la ecuación diofántica ax + my = b, obteniendo x con el algoritmo anterior y $y = \frac{b-ax}{d}$, siempre que $(a, m) \backslash b$.

4.3.1. Ciclos en sucesiones

Algoritmo 4.4 (Floyd). Encuentra un ciclo en una sucesión definida a través de $a_{i+1} = f(a_i)$, donde $f: S \to S$ y S es finito.

Entrada: Una sucesión finita $\{a_i\}_{i=1}^{\infty}$.

Salida: La longitud *t* del ciclo de *a*.

1: $\alpha \leftarrow a_1, \beta \leftarrow a_1, t \leftarrow 0$.

2: repetir

3: $\alpha \leftarrow f(\alpha), \beta \leftarrow f(f(\beta)), t \leftarrow t + 1.$

4: hasta que $\alpha = \beta$

4.4. Divisores de un número

Teorema 4.2. Sea $n \in \mathbb{N}$ y sea

$$n = \prod_{i=1}^{s} p_i^{\alpha_i} \tag{24}$$

su descomposición en números primos. Entonces n tiene $N = \prod_{i=1}^{s} (\alpha_i + 1)$ divisores.

El menor divisor propio p de un número n es primo.

Algoritmo 4.5 (División exhaustiva). El siguiente algoritmo halla el menor divisor de un número entero.

Entrada: $n \in \mathbb{N}$.

Salida: El menor divisor d de n, o 1 si n = 1.

1: $\operatorname{si} n \equiv 0 \pmod{2}$ entonces

2: **devolver** 2.

3: **si** $n \equiv 0 \pmod{3}$ **entonces**

4: **devolver** 3.

5: $\Delta_0 \leftarrow 2, \Delta_1 \leftarrow 4, d \leftarrow 5, i \leftarrow 0, q \leftarrow 25$.

6: **mientras** $n \mod d > 0 \land q \le n$ **hacer**

7: $q \leftarrow q + 2\Delta_i d + 4 + 12i, d \leftarrow d + \Delta_i, i \leftarrow (i+1)$ mod 2.

8: $\operatorname{si} q > n$ entonces

9: **devolver** *n*.

10: **devolver** *d*.

Algoritmo 4.6 (Suma de divisores). Para obtener la suma de los divisores propios de un número, aprovechamos la identidad

$$\sigma(n) = \sum_{\substack{d \mid n \\ 1 \le d \le n}} d = \sum_{\substack{d \mid n \\ 1 \le d \le n}} \left(d + [d^2 < n] \frac{n}{d} \right).$$

Entrada: $n \in \mathbb{N}$.

Salida: $S = \sigma(n)$.

1: $S \leftarrow 0, d \leftarrow 1, c \leftarrow 1$.

2: repetir

3: $\sin n \equiv 0 \mod d$ entonces

4: $S \leftarrow S + d$.

5: $\mathbf{si} \ c < n \ \mathbf{entonces}$

6: $S \leftarrow S + \frac{n}{d}$

7: $c \leftarrow c + d + d + 1, d \leftarrow d + 1$.

8: hasta que c > n

Para la suma de todos los divisores de n, se puede usar $\sigma_1(n) = \prod_{i=1}^s \frac{p_i^{\alpha_i+1}-1}{p_i-1}$.

4.5. Números primos

Los números $M_p = 2^p - 1$, con p primo, se denominan *primos de Mersenne*.

Teorema 4.3 (Lucas-Lehmer). Sea r_n la sucesión definida a través de $r_1 = 4$, $r_{n+1} = r_n^2 - 2$. Entonces M_p es primo si, y sólo si, M_p/r_{p-1} .

Teorema 4.4 (Euclides). Si M_p es primo, entonces $2^{p-1}(2^p-1)$ es perfecto, y recíprocamente.

Teorema 4.5. El número de Fermat $F_n = 2^{2^n} + 1$ es primo si, y sólo si, $3^{\frac{F_n-1}{2}} \equiv -1 \pmod{F_n}$.

Del Teorema 4.7 se sigue que si p es un primo impar y (a, p) = 1 entonces

$$a^{p-1} \equiv 1 \pmod{p}. \tag{25}$$

Todo número que satisface (25) se dice un pseudoprimo para la base *a*. Los primos impares son pseudoprimos para todas sus bases coprimas. Los números compuestos que son pseudoprimos para todas sus bases coprimas se denominan *números de Carmichael*.

Teorema 4.6. El entero n > 1 con descomposición (24) es un número de Carmichael si, y sólo si, $\alpha_i = 1$ y $(p_i - 1)/(n-1)$ para todo i = 1, ..., s.

Algoritmo 4.7 (Eratóstenes). Obtención de los primos hasta una cota dada por medio de una criba.

Entrada: Una cota N para obtener todos los primos impares hasta 2N + 1.

Salida: Un arreglo *X* tal que $X_k = [2k+1 \text{ no es primo}].$

1: $X \leftarrow (0, \dots, 0)$.

2: **para** $k \leftarrow 3$ hasta $\sqrt{2N+1}$ sumando 2 **hacer**

3: **si** $X_{(k-1)/2} = 0$ **entonces**

4: **para** $i \leftarrow k^2$ hasta 2N + 1 sumando 2k **hacer**

5: $X_{(i-1)/2} \leftarrow 1$.

4.6. Potencias y logaritmos discretos

Teorema 4.7 (Euler). Para todo n > 1, $a \in \mathbb{Z}_n$, $a^{\phi(n)} \equiv 1 \pmod{n}$, donde $\phi(n)$ es la cardinalidad del conjunto de números que son coprimos con n.

La función ϕ satisface $\phi(n) = \prod_{i=1}^{s} p_i^{\alpha_i - 1}(p_i - 1) = n \prod_{p/n} \left(1 - \frac{1}{p}\right)$.

Teorema 4.8. El grupo multiplicativo \mathbb{Z}_n es cíclico si, y sólo si, $n = 2,4, p^e$ o $2p^e$ para un primo impar p y algún $e \in \mathbb{Z}$ positivo.

Teorema 4.9. Si \mathbb{Z}_n está generado por g, entonces $g^x \equiv g^y \mod n$ si, y sólo si, $x \equiv y \pmod{\phi(n)}$

Algoritmo 4.8 (Exponenciación rápida). Calcula a^b en un semigrupo en tiempo $O(\log b)$.

Entrada: a en un semigrupo S y $b \in \mathbb{Z}$. **Salida:** a^b .

1: $r \leftarrow 1$.

2: **mientras** b > 0 **hacer**

3: $\operatorname{si} b \equiv 1 \mod 2$ entonces

4: $r \leftarrow a \cdot r$.

5: $a \leftarrow a \cdot a, b \leftarrow \left| \frac{b}{2} \right|$.

6: **devolver** r.

4.7. Teorema chino del residuo

Teorema 4.10. Sean $a_1, \ldots, a_n, m_1, \ldots, m_n \in \mathbb{Z}$ tales que los elementos de $\{m_i\}_{i=1}^n$ son coprimos. Entonces el sistema $x \equiv a_k \pmod{m_k}$, $k = 1, \ldots, n$, tiene solución.

Algoritmo 4.9 (Chino inductivo). Calcula una solución al sistema del Teorema 4.10.

Entrada: Dos conjunto de enteros: $\{m_i\}_{i=1}^n$ coprimos a pares y $\{x_i\}_{i=1}^n$.

Salida: x tal que $x \equiv x_i \pmod{m_i}$.

1: $m \leftarrow m_1, x \leftarrow x_1$.

2: **para** $i \leftarrow 2$ hasta k **hacer**

3: $(d, u, v) \leftarrow \text{MCD}(m, m_i)$.

4: $x \leftarrow umx_i + vm_ix, m \leftarrow mm_i, x \leftarrow x \mod m$

5: **devolver** x.

5. Combinatoria

Teorema 5.1 (Principio de inclusión y exclusión). Sea $\{A_i\}_{i=1}^n$ una colección de conjuntos. Sea $\mathcal{P}_+(n)$ el conjunto de subconjuntos no vacíos I de $\{1,\ldots,n\}$. Entonces $\left|\bigcup_{i=1}^n A_i\right| = \sum_{I \in \mathcal{P}_+(n)} (-1)^{|I|+1} \left|\bigcap_{i \in I} A_i\right|$.

Teorema 5.2. Hay $\binom{n+k-1}{k-1}$ formas de colocar n objetos distinguibles en k cajas distinguibles.

Sea G un grupo que actúa por la izquierda sobre un conjunto S. Para $g \in S$ consideramos el conjunto $F(g) = \{s \in S : gs = s\}$. La *órbita* de $s \in S$ es el conjunto orb $(s) = \{gs : g \in G\}$.

Teorema 5.3 (Burnside). Sea G un grupo finito que actúa sobre el conjunto S. El número de órbitas de G en S es $\frac{1}{|G|} \sum_{g \in G} |F(g)|$.

5.1. Objetos combinatorios

Aquí T es un segmento inicial de \mathbb{N} de longitud n.

Algoritmo 5.1 (sucesor, código Gray). Aquí se considera el orden de cambio mínimo para los subconjuntos de T.

Algoritmo 5.2 (colocador, código Gray). Se considera el orden de cambio mínimo para los subconjuntos de T.

```
    b ← r ← 0.
    para i ← n − 1 decreciendo hasta 0 hacer
    si n − i ∈ T entonces
    b ← 1 − b.
    si b = 1 entonces
    r ← r + 2<sup>i</sup>.
    devolver r.
```

Algoritmo 5.3 (extractor, código Gray). Se considera el orden de cambio mínimo para los subconjuntos de T.

```
    T ← ∅, b' ← 0.
    para i ← n − 1 decreciendo hasta 0 hacer
    b ← [r/2i]
    si b ≠ b' entonces
    T ← T ∩ {n − i}.
    b' ← b, r ← r − b2i.
    devolver T.
```

Algoritmo 5.4 (sucesor, k-subconjuntos). Calcula el sucesor de un k-subconjunto (combinación) de T en orden lexicográfico.

```
1: U \leftarrow T, i \leftarrow k

2: mientras ((i \ge 1) \land (t_i = n - k + 1)) hacer

3: i \le i - 1.

4: si i = 0 entonces

5: devolver falso.

6: si no

7: para j \leftarrow i hasta k hacer

8: u_j \leftarrow t_i + 1 + j - i.

9: devolver verdadero.
```

Algoritmo 5.5 (colocador, k-subconjuntos). Coloca un k-subconjunto (combinación) de T en la posición r.

1:
$$t_0 \leftarrow r \leftarrow 0$$
.

```
    para i ← n − 1 hasta k hacer
    si t<sub>i-1</sub> + 1 ≤ t<sub>i</sub> − 1 entonces
    b ← 1 − b.
    para j ← t<sub>i-1</sub> + 1 hasta t<sub>i</sub> − 1 hacer
    r ← r + (<sup>n-j</sup><sub>k-i</sub>)
    devolver r.
```

Algoritmo 5.6 (extractor, k-subconjuntos). Extrae de la posición r el k-subconjunto (combinación) de T.

```
1: x \leftarrow 1

2: para i \leftarrow 1 hasta k hacer

3: mientras \binom{n-x}{k-i} \leq r hacer

4: r \leftarrow r - \binom{n-x}{k-i}, x \leftarrow x + 1.

5: t_i \leftarrow x, x \leftarrow x + 1.

6: devolver T.
```

Algoritmo 5.7 (extractor, permutaciones). Extrae de la posición r una permutación de T en orden lexicográfico.

```
1: \pi_n \leftarrow 1.

2: para j \leftarrow 1 hasta n - 1 hacer

3: d \leftarrow \lfloor \frac{r \mod (j-1)!}{j!} \rfloor, r \leftarrow r - d \cdot j!, \pi_{n-j} \leftarrow d + 1

4: para i \leftarrow n - j + 1 hasta n hacer

5: si \pi_i > d entonces

6: \pi_i \leftarrow \pi_i + 1.

7: devolver \pi.
```

Algoritmo 5.8 (colocador, permutaciones). Coloca en la posición r una permutación de T en orden lexicográfico.

```
1: r \leftarrow 0, \rho \leftarrow \pi.

2: para j \leftarrow 1 hasta n hacer

3: r \leftarrow r + (\rho_j - 1)(n - j)!

4: para i \leftarrow j + 1 hasta n hacer

5: si \rho_i > \rho_j entonces

6: \rho_i \leftarrow \rho_i - 1.

7: devolver r.
```

5.2. Números combinatorios

1. Subconjuntos de k elementos de un conjunto de n elementos: $\binom{n}{k}$.

```
Fórmula explícita: \binom{n}{k} = \frac{n!}{k! (n-k)!}.

Recurrencia: \binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}.

Valores iniciales: \binom{n}{0} = \binom{n}{n} = 1, n \ge 0.
```

2. Permutaciones de *n* letras que tienen exactamente k ciclos: $\begin{bmatrix} n \\ k \end{bmatrix}$.

Recurrencia:
$$\begin{bmatrix} n \\ k \end{bmatrix} = \begin{bmatrix} n-1 \\ k-1 \end{bmatrix} + (n-1) \begin{bmatrix} n-1 \\ k \end{bmatrix}$$

Valores iniciales: $\begin{bmatrix} 0 \\ k \end{bmatrix} = [k=0], \begin{bmatrix} n \\ 0 \end{bmatrix} = [n=0].$

k ascendentes: $\binom{n}{k}$.

Recurrencia: $\binom{n}{k} = (k+1)\binom{n-1}{k} + (n-k)\binom{n-1}{k-1}$ **Valores iniciales:** $\binom{0}{k} = [k = 0].$

4. Particiones de un conjunto de *n* elementos en *k* clases: $\binom{n}{k}$.

Recurrencia: $\binom{n}{k} = \binom{n-1}{k-1} + k \binom{n-1}{k}.$ **Valores iniciales:** $\binom{0}{k} = [k = 0], \binom{n}{0} = [n = 0].$

5. Particiones p(n, k) de n cuya mayor parte es k.

Recurrencia: p(n,k) = p(n-1,k-1) + p(n-k,k). **Valores iniciales:** p(n,k) = 0 si $n \le 0, k \le 0$ o k > n y p(1, 1) = 1.

6. Números de Catalan C_n .

Fórmula explícita: $C_n = \frac{1}{n+1} \binom{2n}{n}$. **Recurrencias:** $C_{n+1} = \frac{2(2n+1)}{n+2} C_n = \sum_{k=0}^{n} C_k C_{n-k}$.

6. Métodos númericos

Interpolación

Dados los puntos $\{(x_i, y_i)\}_{i=0}^n$, la recurrencia de Nevi-

$$Q_{i,j}(x) = \frac{(x-x_{i-j})Q_{i,j-1}(x) - (x-x_i)Q_{i-1,j-1}(x)}{x_i - x_{j-1}}$$

calcula el valor de la interpolación polinomial de dichos puntos, usando como valores iniciales $Q_{i,0} = y_i$.

6.2. Diferenciación

La fórmula central de f' para una función $f \in$ $C^{3}[a, b] \operatorname{con} x - h, x, x + h \in [a, b] \operatorname{es}$

$$f'(x) \approx \frac{f(x+h) - f(x-h)}{2h} =: f_c(x,h),$$

con error $O(h^2)$. La fórmula central de f' para una función $f \in C^{5}[a, b]$ con $x-2h, x-h, x, x+h, x+2h \in [a, b]$ es

$$f'(x) \approx 8f_c(x,h) - 2f_c(x,2h),$$

con error $O(h^4)$.

Integración **6.3.**

Algoritmo 6.1 (Método de Simpson adaptativo). En el siguiente algoritmo, definimos S(a, b, c, h) = $\frac{h}{3}(f(a) + 4f(c) + f(b)).$

Entrada: Un intervalo de integración [a, b], una función $f \in C^4[a,b]$ y una tolerancia ϵ .

3. Permutaciones de *n* letras que tienen exactamente Salida: El valor de $\int_a^b f(x) dx$ con la tolerancia esta-

1: **función** Simp $(f, [a, b], \epsilon)$

2: $h \leftarrow \frac{b-a}{2}, c = \frac{b+a}{2}$.

3: $a_1 \leftarrow a, b_1 \leftarrow a_2 \leftarrow c, b_2 \leftarrow b$.

4: $c_1 = \frac{b_1 + a_1}{2}$, $c_2 = \frac{b_2 + a_2}{2}$. 5: $L = \frac{S(a_1, b_1, c_1, h) + S(a_2, b_2, c_2, h)}{2}$. 6: **si** $\frac{1}{10} |L - S(a, b)| < \epsilon$ **entonces**

devolver L.

8: **si no**

devolver SIMP $(f, [a_1, b_1], \frac{\epsilon}{2})$ +SIMP $(f, [a_2, b_2], \frac{\epsilon}{2})$.

Sea $f: \mathbb{R} \to \mathbb{R}$. Supongamos que $J \geq 1$ y que los puntos $\{x_k = a + kh\}$ subdividen al intervalo [a, b] en $2^{J} = 2M$ intervalos de anchura $h = \frac{b-a}{2^{J}}$. Haciendo $T(0) = \frac{h}{2}(f(a) + f(b))$, la fórmula trapezoidal recurren-

$$T(J) = \frac{T(J-1)}{2} + h \sum_{k=1}^{M} f(x_{2k-1}).$$

Iniciando la tabla $R_{J,0} = T(J)$, tenemos la recursión de Richardson

$$R_{J,K} = \frac{4^K R_{J,K-1} - R_{J-1,K-1}}{4^K - 1},$$

que aproxima a $\int_a^b f(x) dx$ con un error de truncamiento de orden $O(h^{2K+2})$ para R(J,K) cuando $f \in C^{2K+2}[a,b]$.

Transformación rápida de Fourier **6.4.**

Algoritmo 6.2. Transformación rápida de Fourier.

1: **función** TRF(*a*)

2: $n \leftarrow |a| \{n \text{ es una potencia de 2}\}$

3: $\sin n = 1$ entonces

devolver a.

5: **para** j ← 1 hasta n/2 **hacer**

 $b_i \leftarrow a_{2j-1}, c_j \leftarrow a_{2j}$

7: $b^* \leftarrow \text{TRF}(b), c^* \leftarrow \text{TRF}(c)$.

8: $\omega_n \leftarrow \exp\left(\frac{2\pi}{n}\right), \omega_n \leftarrow \exp\left(\frac{2\pi}{n}\right)$

10: **para** $j \leftarrow 1$ hasta n/2 **hacer**

 $\begin{array}{l} a_{j}^{*} \leftarrow b_{j}^{*} + \omega c_{j}^{*}, a_{j+n/2+1}^{*} \leftarrow b_{j}^{*} - \omega c_{j}^{*}. \\ \omega \leftarrow \omega \omega_{n} \text{ {Usar } } \overline{\omega_{n}} \text{ para la inversa} \end{array}$

Algoritmo 6.3. Multiplicación de polinomios con TRF.

Entrada: Dos sucesiones $a = \{a_k\}_{k=0}^{n-1} \text{ y } b = \{b_k\}_{k=0}^{m-1}$ que son los coeficientes de los polinomios $p(x) = \sum_{k=0}^{n-1} a_k x^k$ y $q(x) = \sum_{k=0}^{m-1} b_k x^k$.

Salida: Una sucesión $c = \{c_k\}_{k=0}^{n-1}$ de los coeficientes del polinomio $p(x) \cdot q(x)$.

1: **función** MultPolinomio(a, b)

```
2: \ell \leftarrow \lceil \log_2(n+m) \rceil
 3: para j \leftarrow n hasta 2^{\ell} - 1 hacer
         a_i \leftarrow 0.
 5: para j \leftarrow m hasta 2^{\ell} - 1 hacer
         b_i \leftarrow 0.
 7: \alpha = TRF(a), \beta = TRF(b)
 8: para k = 0 hasta k = n - 1 hacer
         \gamma_k \leftarrow \alpha_k \cdot \beta_k.
10: devolver c \leftarrow ITRF(\gamma).
```

Álgebra lineal 6.5.

Algoritmo 6.4. Encuentra la descomposición LUP de una matriz $A \in \mathcal{M}_{m \times n}$.

```
1: para i = 1 hasta n hacer
         \pi[i] \leftarrow i
 3: para k \leftarrow 1 hasta n hacer
         p \leftarrow 0
         para i \leftarrow k hasta n hacer
 5:
             \mathbf{si} |a_{ik}| > p entonces
 6:
                 p \leftarrow |a_{ik}|, k' \leftarrow i.
 7:
             \mathbf{si} \ p = 0 \ \mathbf{entonces}
 8:
                 error Matriz singular.
 9:
             Intercambiar \pi[k] \leftrightarrow \pi[k'].
10:
             para i \leftarrow 1 hasta n hacer
11:
                 Intercambiar a_{k1} \leftrightarrow a_{k'i}.
12:
             para i \leftarrow k + 1 hasta n hacer
13:
14:
                 a_{ik} \leftarrow a_{ik}/a_{kk}.
                 para j \leftarrow k + 1 hasta n hacer
15:
                     a_{ii} \leftarrow a_{ii} - a_{ik}a_{ki}.
16:
```

Algoritmo 6.5. Resuelve el sistema Ax = b con la descomposición LUP de $A \in \mathcal{M}_{m \times n}$.

```
1: para i = 1 hasta n hacer
2: y_i \leftarrow b_{\pi[i]} - \sum_{j=1}^{i-1} L_{ij} y_j.

3: para i = n hasta 1 hacer
           x_i \leftarrow \frac{y_i - \sum_{j=i+1}^n U_{ij} x_j}{U_{ii}}.
```

7. **Probabilidad**

Teorema 7.1 (Desigualdad de Markov). Sea t > 0 y X una variable aleatoria no negativa. Entonces $P(X \ge$ $t) \le \frac{E(X)}{t}$.

Teorema 7.2 (Desigualdad de Chebyshev). Sea t > 0y X una variable aleatoria no negativa. Entonces P(|X- $|E(X)| \ge t \le \frac{V(X)}{2}$.

Sean dos eventos A y B, con sendas probabilidades P(A) y P(B).

1. La probabilidad condicional P(A|B) satisface Algoritmo 8.3. Algoritmo de ordenación rápida de $P(A|B) = \frac{P(A \cap B)}{P(B)}$.

- 2. Los eventos A y B son independientes si P(A|B) =P(A). Además, $P(AB) = P(A) \cdot P(B)$.
- 3. Se satisface $P(A \cup B) = P(A) + P(B) P(A \cap B)$.

Si X e Y son variables aleatorias independientes, con distribuciones f y g respectivamente, entonces la distribución de Z = X + Y es $f * g = \int_{-\infty}^{\infty} f(t)g(x - t) dt$.

8. Ordenamiento y búsqueda

8.1. Algoritmos basados en comparaciones

En los algoritmos de esta sección N es la cardinalidad del conjunto L a ordenar.

Algoritmo 8.1 (Ordenamiento por inserción). Puede calcular el número mínimo de intercambios para ordenar a L. En cada iteración del ciclo externo los elementos $L_0, \ldots L_i$ forman una lista ordenada.

```
1: \mu \leftarrow 0.
2: para i \leftarrow 1 hasta i < N hacer
        t \leftarrow L_i, j \leftarrow i - 1.
3:
        mientras L_i > t y j \ge 0 hacer
            L_{j+1} \leftarrow L_j, j \leftarrow j-1.
            L_{i+1} \leftarrow t, \, \mu \leftarrow \mu + 1.
6:
7: devolver \mu.
```

1: $\mu \leftarrow 0$.

Algoritmo 8.2 (Ordenamiento por fusión). Puede calcular el número mínimo de intercambios para ordenar a L en tiempo $O(n \log n)$.

```
2: función Partir(i, j).
 3: si i \neq j entonces
         p \leftarrow \lfloor \frac{i+j}{2} \rfloor.
         PARTIR(i, p), PARTIR(p + 1, j).
 5:
         a \leftarrow 0, b \leftarrow 0, c \leftarrow 0.
 6:
         mientras (a < (p+i-1)) \land (b < (j-p)) hacer
 7:
 8:
            si L_{i+a} < L_{p+1+b} entonces
                \Lambda_c \leftarrow L_{i+a}, a \leftarrow a+1.
 9:
10:
                \Lambda_c \leftarrow L_{p+i+b}, b \leftarrow b+1.
11:
                \mu \leftarrow \mu + p + 1 - (a + i). {Intercambio.}
12:
            c \leftarrow c + 1.
13:
         mientras i + a \le p hacer
14:
15:
             \Lambda_c \leftarrow L_{i+a}, a \leftarrow a+1, c \leftarrow b+1.
         mientras p + 1 + b \le j hacer
16:
             \Lambda_c \leftarrow L_{p+1+b}, b \leftarrow b+1, c \leftarrow b+1.
17:
         para todo k, 0 \le k \le j - i hacer
18:
19:
             L_{i+k} = \Lambda_i.
```

Hoare. Se invoca con ORDRAP(0, N-1).

1: **función** OrdRap(i, j)2: $d \leftarrow L_j$ 3: $\lambda \leftarrow i - 1, \kappa \leftarrow j, c \leftarrow 1$ 4: si $i \ge j$ entonces devolver 0. 6: **mientras** c > 0 **hacer** mientras $L_{\lambda} < d$ hacer 7: $\lambda \leftarrow \lambda + 1$. 8: mientras $L_{\kappa} > d$ hacer 9: $\kappa \leftarrow \kappa - 1$. 10: si $\lambda < \kappa$ entonces 11: 12: Intercambiar $L_{\lambda} \leftrightarrow L_{\kappa}$ 13: si no 14: $c \leftarrow 0$. 15: Intercambiar $L_{\lambda} \leftrightarrow L_{\kappa}$ 16: OrdRap $(i, \lambda - 1)$, OrdRap $(\lambda + 1, j)$.

8.2. Algoritmos lineales

Algoritmo 8.4 (Conteo).

Entrada: Un arreglo *A* a ordenar, y una cota para los datos *k*.

1: **para** $i \leftarrow 1$ hasta k **hacer**

2: $C[i] \leftarrow 0$.

3: **para** $j \leftarrow 1$ hasta longitud(A) **hacer**

4: $C[A[j]] \leftarrow C[A[j]] + 1$.

5: **para** $i \leftarrow 2$ hasta k **hacer**

6: $C[i] \leftarrow C[i] + C[i-1]$

7: **para** j = |A| decreciendo hasta 1 **hacer**

8: $B[C[A[j]]] \leftarrow A[j]$

9: $C[A[j]] \leftarrow C[A[j]] - 1$

Algoritmo 8.5 (Cubeta). Ordena $\{A_i\}_{i=1}^n \subset [0, 1)$ usando n subintervalos iguales de [0, 1).

1: **para** $i \leftarrow 1$ hasta n **hacer**

2: Insertar A[i] en la lista $B[\lfloor nA[i] \rfloor]$.

3: **para** i ← 0 hasta n − 1 **hacer**

4: Ordenar la lista B[i] con inserción.

5: Concatenar las listas $B[0], \ldots, B[n-1]$ en orden.

8.3. Búsqueda binaria

Algoritmo 8.6 (búsqueda binaria). Algoritmo que busca una llave en un conjunto ordenado en tiempo $O(\log_2 n)$.

Entrada: La llave *K* para buscar, el límite inferior *i* y superior *j* donde se hará la búsqueda.

Salida: k tal que $L_k = K$ o falso si no existe.

1: mientras j - i > 1 hacer

2: $p = \lfloor \frac{j+i}{2} \rfloor$.

3: **si** $L_p < K$ **entonces**

4: $i \leftarrow p$.

5: **si no**

6: $j \leftarrow p$.

7: $\mathbf{si}\ L_i = K \ \mathbf{entonces}$

8: **devolver** i.

9: **si no si** $L_j = K$ **entonces**

10: **devolver** j.

11: **si no**

12: **devolver** falso.

9. Programación dinámica

9.1. Suma de subconjunto

Algoritmo 9.1. Dado un conjunto de enteros positivos $\{a_1, \ldots, a_n\}$, queremos saber cuántos subconjuntos de tal conjunto suman B. Definimos la recurrencia

$$m(1, j) = [j = a_1],$$

 $m(i, j) = m(i - 1, j) + [j > a_i]m(i - 1, j - a_i) + [j = a_i],$

para $2 \le i \le n$ y $1 \le j \le B$. El valor de m(n, B) nos da la respuesta, calculando m tiempo O(nB).

1: **para** $j \leftarrow 1$ hasta B **hacer**

2: $m(1, j) \leftarrow [j = a_1].$

3: **para** $i \leftarrow 2$ hasta n **hacer**

4: **para** $j \leftarrow 1$ hasta B **hacer**

5: $m(i, j) \leftarrow m(i - 1, j) + [j = a_i].$

6: **si** $j > a_i$ **entonces**

7: $m(i, j) \leftarrow m(i, j) + m(i - 1, j - a_i)$

Algoritmo 9.2 (Recuperación de un subconjunto).

La tabla generada anteriormente da información suficiente para encontrar un subconjunto en tiempo O(B), llamando a Secuencia(n, B).

1: **función** Secuencia(i, B)

2: $\operatorname{si} m(i, B) = 0$ entonces

imprime "No hay solución".

4: si no si $B = a_i$ entonces

5: **imprime** a_i .

6: si no si $B > a_i$ entonces

7: **imprime** a_i .

8: Secuencia $(i-1, B-a_i)$.

9.2. Estructuras de Catalan óptimas

Algoritmo 9.3 (Mínimo genérico). Se le ajusta la relajación apropiada al siguiente algoritmo.

1: **función** Mínimo

2: **para** $i \leftarrow 1$ hasta n - 1 **hacer**

3: $M_{i,i+1} \leftarrow 0$.

4: **para** j ← 2 hasta n − 1 **hacer**

5: **para** i ← 1 hasta n - d **hacer**

6: Relaja(i, j).

7: **devolver** $M_{1,n}$

Algoritmo 9.4 (Relajación). Si el problema es de triangulación óptima usamos:

$$F(i, j, k) = \begin{cases} \frac{1}{2} |K(p_i, p_j, p_k)| & \text{(\'Area),} \\ ||p_i, p_j|| + ||p_j, p_k|| + ||p_k, p_i|| & \text{(Perímetro).} \end{cases}$$

donde $\|\cdot,\cdot\|$ es una métrica adecuada. Si es de multiplicación óptima de n matrices, usamos

$$F(i, j, k) = D(i) \cdot D(j) \cdot D(k)$$

donde la matriz i-ésima es de dimensión $D(i) \times D(i+1)$ y $1 \le i \le n$. Para el problema de secuencia óptima de corte, tenemos

$$F(i, j, k) = C(j) - C(i),$$

donde C(i) es el corte i-ésimo.

1: **función** Relaja(i, j)

2: $M_{i,j} \leftarrow \infty$.

3: **para** $k \leftarrow i + 1$ hasta j - 1 **hacer**

4: $t \leftarrow F(i, j, k) + M_{i,k} + M_{k,j}$.

5: **si** $M_{i,j} > t$ **entonces**

6: $M_{i,j} \leftarrow t, s_{i,j} \leftarrow k$

Algoritmo 9.5 (Recuperación de la secuencia). Para recuperar la secuencia de pasos para obtener el mínimo, invocamos a Secuencia(s, 1, n).

1: **función** Secuencia(s, i, j)

2: $\mathbf{si}\ i = j$ entonces

3: **imprime** "A"+i.

4: **si no**

5: **imprime** "(".

6: SECUENCIA($s, i, s_{i,j}$).

7: SECUENCIA($s, s_{i,j} + 1, j$).

8: imprime ")".

9.3. Mayor subsecuencia común

Algoritmo 9.6 (Longitud de la mayor subsecuencia común).

Entrada: Cadenas X e Y de sendas cardinalidades m y 9.5.

Salida: La longitud de la M. S. C. en $c_{m,n}$.

1: **para** $i \leftarrow 1$ hasta m **hacer**

2: $c_{i,0} \leftarrow 0$.

3: **para** $j \leftarrow 1$ hasta n **hacer**

4: $c_{0,i} \leftarrow 0$.

5: **para** i ← 1 hasta m **hacer**

6: **para** $j \leftarrow 1$ hasta n **hacer**

 $\mathbf{si}\ X_{i-1} = Y_{j-1}\ \mathbf{entonces}$

8: $c_{i,j} \leftarrow c_{i-1,j-1} + 1, b_{i,j} \leftarrow 1.$

9: **si no si** $c_{i-1,j} \ge c_{i,j-1}$ **entonces**

 $c_{i,j} \leftarrow c_{i-1,j}, b_{i,j} \leftarrow 2.$

11: **si no**

7:

10:

12: $c_{i,j} \leftarrow c_{i,j-1}, b_{i,j} \leftarrow 3.$

13: **devolver** $c_{m,n}$

Algoritmo 9.7 (Recuperación de la subsecuencia).

Requiere que se haya ejecutado previamente el algoritmo anterior.

1: **función** Subsecuencia(i, j, X, b)

2: **si** $i = 0 \lor j = 0$ **entonces**

3: **devolver** \emptyset .

4: **si** $b_{i,i} = 1$ **entonces**

5: Subsecuencia(i-1, j-1, X, b)

6: **imprime** X_{i-1} .

7: si no si $b_{i,j} = 2$ entonces

8: Subsecuencia(i-1, j, X, b)

9: **si no**

10: Subsecuencia(i, j - 1, X, b)

9.4. Distancia de edición

Sean m la matriz de costos mínimos de transformacion y p la matriz de predecesores. Considerando que la operacion 1 es cambiar, la 2 es insertar y la 3 es borrar, tenemos las siguientes condiciones iniciales

$$d_{0,0} = 0$$
, $d_{0,j} = j$, $d_{i,0} = i$,
 $p_{0,0} = -1$, $p_{0,j} = 1$, $p_{i,0} = 2$,

para $0 \le i \le |s_1|$ y $0 \le j \le |s_2|$. Definamos

 $T_1(i, j) = d_{i-1, i-1} + [s_i \neq s_i],$ (Cambiar)

 $T_2(i, j) = d_{i,j-1} + 1,$ (Insertar)

 $T_3(i, j) = d_{i-1, j} + 1.$ (Borrar)

Las relaciones de recurrencia son:

$$d_{i,j} = \min_{k} \{T_k(i,j) : 1 \le k \le 3\}, \quad p_{i,j} = k.$$

Tenemos que $d_{|s_1|,|s_2|}$ es la distancia de edición.

9.5. Mayor subsecuencia creciente o decreciente

Algoritmo 9.8. Dada la sucesión $\{A_i\}_{i=1}^n$, encuentra una subsucesión $\{A_{i_k}\}_{k=1}^m$ que sea estrictamente creciente o decreciente de máxima cardinalidad.

Entrada: Una sucesión $\{A_i\}_{i=1}^n$.

Salida: Un conjunto de longitudes máximas ℓ y un conjunto de predecesores π .

```
1: para i \leftarrow 1 hasta n - 1 hacer

2: para j \leftarrow i + 1 hasta n hacer

3: si A_j > A_i y \ell_i + 1 > \ell_j entonces

4: \ell_j \leftarrow \ell_i + 1, \pi_j \leftarrow i.
```

9.6. Conteo de cambio

Algoritmo 9.9.

6: **devolver** F_W .

Entrada: Un conjunto M = {m_i}ⁿ_{i=0} ⊂ N y W ∈ N.
Salida: El número de submulticonjuntos de M que suman W.
1: F₀ ← 1
2: para i ← 0 hasta n − 1 hacer
3: c ← M_i
4: para j ← c hasta W hacer
5: F_j ← F_j + F_{j-c}

10. Rastreo hacia atrás

Solución de un problema por rastreo hacia atrás.

Algoritmo 10.1. Esquema para una solución.

repetir

Seleccionar candidato.
si aceptable entonces

Anotar candidato.
si solución incompleta entonces

Ensayar(paso siguiente)
si no acertado entonces

Borrar candidato.
si no

Anotar solución.
Hacer acertado ← cierto.

hasta que acertado=cierto o no haya candidatos fin procedimiento

Algoritmo 10.2. Esquema para todas las soluciones.

procedimiento Ensayar(paso : TipoPaso)
para todo candidato hacer
Seleccionar candidato.
si aceptable entonces
Anotar candidato.
si solución incompleta entonces
Ensayar(paso siguiente).
si no
Almacenar solución.
Borrar candidato.
fin procedimiento

11. Algoritmos voraces

Algoritmo 11.1 (Mochila continua).

Entrada: Un conjunto $\{(s_i, w_i)\}_{i=1}^n$ de pares ordenados de reales positivos y un objetivo S.

Salida: Un conjunto $\{x_i\}_{i=1}^n$ tal que $S = \sum_{i=1}^n x_i s_i$ y $\sum_{i=1}^n x_i w_i$ es mínimo.

1: Ordenar $\{(s_i, w_i)\}_{i=1}^n$ según w_i/s_i en forma no decreciente.

2: $s \leftarrow S, i \leftarrow 1$.

3: mientras $s_i \leq s$ hacer

4: $x_i \leftarrow 1, s = s - s_i, i \leftarrow i + 1.$

5: $x_i \leftarrow s/s_i$.

6: **para** $j \leftarrow i + 1$ hasta n **hacer**

7: $x_i \leftarrow 0$.

Algoritmo 11.2 (Mochila 0-1). Si tenemos n objetos con pesos W_i y valores V_i con $1 \le i \le n$ y una mochila con capacidad w. ¿Qué objetos debemos meter en la mochila para maximizar el valor de lo que contiene? La solución se puede encontrar en $C_{n,w}$.

Entrada: Los pesos $\{W_i\}_{i=1}^n$ y los valores $\{V_i\}_{i=1}^n$ de los n objetos.

Salida: El máximo valor que puede contener una mochila de capacidad *w*.

1: **para** $i \leftarrow 0$ hasta N **hacer**

2: $C_{0,w} \leftarrow C_{i,0} \leftarrow 0$

3: **para** $i \leftarrow 1$ hasta N **hacer**

4: **para** $j \leftarrow 1$ hasta w **hacer**

5: $\mathbf{si} \ W_i > w \ \mathbf{entonces}$

6: $C_{i,j} = C_{i-1,j}$.

7: **si no**

8: $C_{i,j} = \max(C_{i-1,j}, C_{i-1,j-W_i} + V_i).$

12. Teoría de grafos

Para un grafo G con $V(G) = \{v_i\}_{i=1}^p$, la sucesión $\{\text{grad } v_i\}_{i=1}^p$ ordenada en forma decreciente se denomina *sucesión de grados* de G. Una sucesión de enteros no negativos se dice *gráfica* si es la sucesión de grados de algún grafo.

Teorema 12.1 (Havel-Hakimi). Una sucesión $\{s_i\}_{i=1}^p$ de enteros no negativos, con $p \ge 2$ y $d_i \ge 1$, es gráfica si, y sólo si, la sucesión $d_2 - 1, d_3 - 1, \dots, d_{d_1+1} - 1, d_{d_1+2}, d_{d_1+3}, \dots, d_p$ es gráfica.

Algoritmo 12.1. Creación de un conjunto.

1: **función** HazConjunto(x)

2: $p(x) \leftarrow x, r(x) \leftarrow 0$.

Algoritmo 12.2.

función Halla(x)
 mientras x ≠ p(x) hacer
 x ← p(x).
 devolver p(x)

Algoritmo 12.3.

1: **función** ENLAZA(x, y)2: **si** r(x) > r(y) **entonces** 3: $x \leftrightarrow y$. 4: **si** r(x) = r(y) **entonces** 5: $r(y) \leftarrow r(y) + 1$. 6: $p(x) \leftarrow y$. 7: **devolver** y.

Algoritmo 12.4. Une conjuntos considerando el peso.

1: **función** Unión(x, y)

2: Enlaza(Halla(x), Halla(y)).

12.1. Circuitos eulerianos

Teorema 12.2. Un grafo conexo contiene un circuito euleriano si, y sólo si, a) cada vértice es de grado par; b) las aristas pueden particionarse en ciclos ajenos.

Algoritmo 12.5 (Hierholzer). Halla un circuito euleriano pegando circuitos.

Entrada: Un grafo conexo con todos sus vértices de grado par.

Salida: Un circuito euleriano C de G.

1: Sea $v \in V$. Construir un ciclo C empezando en v.

2: **mientras** $E(C) \neq E(G)$ **hacer**

3: Sea $w \in C$, $u \in V$ tal que $\{w, u\} \notin E(C)$.

4: Construir un ciclo C^* empezando en w en el grafo G - E(C).

5: Insertar a C^* en lugar de w.

12.2. Recorridos

Algoritmo 12.6. Al hacer recorrido por profundidad, si el grafo no es conexo, marcar cada vértice visitado apropiadamente.

Entrada: Un grafo $G = (V, E) \operatorname{con} |V| = n$.

Salida: Una función de profundidad o anchura p y el número c de componentes del grafo.

1: **para todo** $0 \le i \le n$ **hacer**

2: $p(i) \leftarrow \infty$.

3: $M \leftarrow \{1, ..., n\}, c \leftarrow 0$.

4: **mientras** Vacio(M) = falso **hacer**

5: $c \leftarrow c + 1, k \leftarrow \min(M), p(k) \leftarrow 0.$

6: Meter(v_k , Q). {Si la búsqueda es en profundidad, Q es una pila. En otro caso, es una cola.}

7: **mientras** $Q \neq \emptyset$ hacer

8: $w \leftarrow \text{Sacar}(Q)$. 9: **para todo** $\{v_i, w\} \in E \text{ tal que } p(i) = \infty \text{ hacer}$ 10: $Meter(v_i, Q), M \leftarrow M \setminus \{i\}, p(i) \leftarrow p(w) + 1$.

Algoritmo 12.7. Halla vértices de separación y puentes.

Entrada: Un grafo G = (V, E).

Salida: Un arreglo s tal que $s_u = 1 \iff u$ es de separación y p tal que $p_{uv} = 1 \iff uv$ es un puente.

1: para todo $u \in V$ hacer

2: $c_u \leftarrow W, \pi_u \leftarrow \infty, a_u \leftarrow 0, s_u \leftarrow 0.$

3: **para todo** $uv \in E$ hacer

4: $p_{uv} \leftarrow 0$.

5: $t \leftarrow 0$.

6: **para todo** u ∈ V **hacer**

7: **si** $c_u = W$ **entonces**

8: BPP(u).

9: **si** $a_u \le 1$ **entonces**

10: $s_u = 0$

Algoritmo 12.8. Búsqueda a primera profundidad para el algoritmo anterior.

1: **función** BBP(*u*)

2: $c_u \leftarrow G, t \leftarrow t + 1, d_u \leftarrow L_u \leftarrow t$.

3: **para todo** $uv \in E \land v \neq \pi_u$ **hacer**

4: $\mathbf{si} \ c_v = W \ \mathbf{entonces}$

5: $\pi_v \leftarrow v, a_u \leftarrow a_u + 1.$

6: BPP(v).

7: $L_u \leftarrow \min(L_u, L_v)$.

8: **si** $L_v > d_u$ **entonces**

9: $p_{uv} \leftarrow 1$.

10: **si** $L_v \ge d_u$ **entonces**

11: $s_u \leftarrow 1$.

12: **si no si** $d_v < d_u$ **entonces**

13: $L_u \leftarrow \min(L_u, d_v)$.

14: $c_u \leftarrow B, t \leftarrow t + 1, f_u \leftarrow t$.

15: fin funcion

12.3. Caminos mínimos

En esta sección, G(E, V, W) es un grafo con el conjunto de aristas E y el conjunto de vértices V, con una función de peso $W: E \to \mathbb{R}$. La arista que conecta a los vértices $u, v \in V$ se escribe como $e_{uv} \in E$.

12.3.1. Con una sola fuente

Se desea encontrar todas las distancias d(u) de cualquier vértice a otro distinguido s.

Algoritmo 12.9 (Inicialización). Establece el estado Salida: Una función de distancias mínimas d_v y de preinicial de conocimiento de distancias y rutas más cortas.

- 1: **función** Inicializa(s)
- 2: $d(s) \leftarrow 0, \pi(s) \leftarrow 0$.
- 3: para todo $v \in V \operatorname{con} v \neq s \operatorname{hacer}$
- $d(v) \leftarrow \infty, \pi(v) \leftarrow \text{Null.}$

La arista e_{uv} se dice tensa si $d(u) + W(e_{uv}) < d(v)$.

Algoritmo 12.10 (Relajación). Si se encuentra una arista tensa, se relaja con la siguiente función.

- 1: **función** Relaja(e_{uv})
- 2: **si** $d(v) > d(u) + w(e_{uv})$ **entonces**
- $d(v) \leftarrow d(u) + w(e_{uv}), \pi(v) \leftarrow u.$
- devolver verdadero. 4:
- 5: **si no**
- devolver falso.

Algoritmo 12.11 (Dijkstra). Aquí B una cola de prioridad de los vértices con prioridad d sobre el mínimo. Siendo así, el tiempo de ejecución del algoritmo es $O(|E| + |V| \log |V|)$.

Entrada: Un vértice $s \in V(G)$ como fuente.

Salida: Una función de distancias mínimas d y de predecesores π .

- 1: **función** Dijkstra($G(E, V, W), d, \pi, s$)
- 2: INICIALIZA(S)
- 3: Meter(B, s).
- 4: mientras $B \neq \emptyset$ hacer
- $u = \operatorname{Sacar}(B)$.
- para todo $e_{uv} \in E(G)$ hacer 6:
- si Relaja (e_{uv}) entonces 7:
- Meter(B, v). 8:

Algoritmo 12.12 (Moore-Bellman-Ford). Encuentra los caminos mínimos con una sola fuente en un grafo pesado G(E, V, w) en tiempo O(|E||V|)

- 1: **función** BellmanFord($G(E, V, W), d, \pi, s$).
- 2: Inicializa(s).
- 3: **para** $i \leftarrow 1$ hasta |V| **hacer**
- para todo $e_{uv} \in E(G)$ hacer 4:
- Relaja(e_{uv}); 5:
- 6: **para todo** e_{uv} ∈ E(G) hacer
- si $d(v) > d(u) + w(e_{uv})$ entonces 7:
- devolver falso. 8:
- 9: devolver verdadero.

12.3.2. **Entre todos los pares**

tiempo $O(|V||E| + |V|^2 \log |V|)$.

decesores π_v para $v \in V(G)$.

- 1: $V = V \cup \{s\}, E' = E, W' = W$
- 2: para todo $v \in V$ hacer
- $E' = E' \cup \{e_{sv}, e_{vs}\}$
- $W(e_{sv}) \leftarrow 0, W(e_{vs}) \leftarrow \infty.$ 4:
- 5: **si** BellmanFord($G(E', V', W'), d_s, \pi_s, s$) es falso entonces
- devolver "Hay un ciclo negativo". 6:
- 7: para todo $e_{uv} \in E$ hacer
- $W''(e_{uv}) \leftarrow d_s(u) + w(e_{uv}) d_s(v)$.
- 9: **para todo** $v \in V$ **hacer**
- DIJKSTRA($G(E, V, W''), d_v, \pi_v, v$). 10:
- 11: para todo $u \in V$ hacer
- $d_v(u) \leftarrow d_s(v) + d_v(u) d_s(u)$.

Algoritmo 12.14 (Floyd). Encuentra las distancias mínimas entre todos los vértices de un grafo pesado G = (V, E, w) en tiempo $O(|V|^3)$

Entrada: Matriz de pesos w de un grafo con n vértices. **Salida:** Matriz de distancias mínimas d y de caminos

- 1: **para** $i \leftarrow 0$ hasta n 1 **hacer**
- **para** j ← 0 hasta n − 1 **hacer** 2:
- $d_{i,j} \leftarrow w_{i,j}, p_{i,j} \leftarrow i \{ \text{Inicialización} \}$
- 4: **para** i ← 0 hasta n − 1 **hacer**
- 5: $d_{i,i} \leftarrow 0$.
- 6: **para** k ← 0 hasta n − 1 **hacer**
- **para** $i \leftarrow 0$ hasta n-1 hacer 7:
- **para** j ← 0 hasta n − 1 **hacer** 8:
- $d_{i,i} \leftarrow \min(d_{i,i}, d_{i,k} + d_{k,i}), p_{i,i} \leftarrow p_{k,i}$ 9:

12.4. Ordenamiento topológico

Algoritmo 12.15. Algoritmo de ordenamiento topológico. Corre en tiempo O(|V|+|E|).

Entrada: Un grafo dirigido acíclico G = (V, E).

Salida: Un ordenamiento lineal de V tal que y > x si, sólo si, existe un camino dirigido de x hacia y.

- 1: Meter todos los vértices cuya valencia de entrada es cero en una cola O.
- 2: mientras $Q \neq \emptyset$ hacer
- 3: Sacar a n de Q.
- **devolver** n. 4:
- 5: **para todo** vértice m con una arista e_{nm} hacer
- 6: Quitar a *e* del grafo.
- si m no tiene otras aristas incidentes entonces 7:
- Meter m a Q. 8:

12.5. Mínimo árbol generador

Algoritmo 12.13 (Johnson). Este algoritmo corre en Algoritmo 12.16 (Kruskal). Encuentra en tiempo $O(|E|\log |V|)$ el mínimo árbol generador de un grafo conexo pesado no trivial G

Salida: El mínimo árbol generador F.

- 1: Ordenar E por peso y hacer $F \leftarrow \emptyset$.
- 2: para todo $v \in V$ hacer
- 3: HazConjunto(v).
- 4: **para** $i \leftarrow 1$ hasta |E| **hacer**
- 5: $\{u, v\} \leftarrow e_i$.
- 6: **si** Halla(u) \neq Halla(v) **entonces**
- 7: Unión $(u, v), F \leftarrow F \cup \{u, v\}.$

12.6. Grafos hamiltonianos

Algoritmo 12.17. Para determinar un ciclo hamiltoniano de bajo peso en un grafo que satisface la desigualdad del triángulo.

Entrada: Un grafo completo pesado K de orden $p \ge 3$.

Salida: Un ciclo hamiltoniano de peso menor que el doble del ciclo hamiltoniano mínimo.

- 1: Encontrar el mínimo árbol generador T de G.
- 2: Recorrer T en una búsqueda a primero profundidad obteniendo la secuencia de vértices v_{i_1}, \ldots, v_{i_n} .
- 3: **devolver** $v_{i_1}, \ldots, v_{i_p}, v_{i_1}$.

Teorema 12.3 (Dirac). Sea G un grafo de orden $p \ge 3$. Si grad $v \ge p/2$ para cada $v \in V(G)$, entonces G es hamiltoniano.

12.7. Flujo máximo

Algoritmo 12.18 (Ford-Fulkerson). Este algoritmo sólo funciona si las capacidades de las aristas son racionales. Si Q es una cola, entonces el algoritmo corre en tiempo O(|V||E|(|V|+|E|)).

Entrada: Una red G(E, V, C), una fuente s, un destino t y un flujo factible f.

Salida: Un flujo máximo f.

- 1: Etiquetar la fuente con $(\emptyset, \emptyset, \epsilon(s) = \infty)$.
- 2: Meter(Q, s).
- 3: mientras $Q \neq \emptyset$ hacer
- 4: Tomar u = Sacar(Q) con etiqueta $(w, \pm, \epsilon(u))$.
- 5: **para todo** $e_{uv} \in E(G)$ con v no etiquetado y tal que $f(e_{uv}) < c(e_{uv})$ **hacer**
- 6: Etiquetar a v con $(u, +, \min(\epsilon(u), c(e_{uv}) f(e_{uv})))$.
- 7: Meter(Q, v).
- 8: **para todo** $e_{vu} \in E(G)$ con v no etiquetado y tal que $f(e_{uv}) > 0$ **hacer**
- 9: Etiquetar a $v \operatorname{con}(u, -, \min(\epsilon(u), f(e_{uv})))$.
- 10: Meter(Q, v).
- 11: **si** *t* está etiquetado **entonces**
- 12: $\epsilon \leftarrow \epsilon(t)$.
- 13: **mientras** $t \neq s$ **hacer**

- 14: **si** la etiqueta de t es $(u, +, \epsilon(t))$ **entonces**15: $f(e_{u,t}) \leftarrow f(e_{u,t}) + \epsilon$ 16: **si no si** la etiqueta de t es $(u, -, \epsilon(t))$ **enton**
 - ces $f(a_i) \leftarrow f(a_i) = 6$
- 17: $f(e_{t,u}) \leftarrow f(e_{t,u}) \epsilon$
- 18: $t \leftarrow u$.
- 19: VACIAR(Q) y METER(Q, s).

13. Localización de patrones

13.1. Algoritmo KMP

Algoritmo 13.1 (Knuth-Morris-Pratt). Localiza una cadena en otra.

Entrada: Dos cadenas T y S, con |T| = n y |P| = m. **Salida:** Una posición k tal que $T_k \cdots T_{k+n-1} = P$, o falso si no existe.

- 1: $j \leftarrow 1$.
- 2: **para** $i \leftarrow 1$ hasta n **hacer**
- 3: **mientras** j > 0 y $T_i \neq P_j$ hacer
- 4: $j = \Phi(j)$.
- 5: $\mathbf{si} \ j = m \ \mathbf{entonces}$
- 6: **devolver** i m + 1
- 7: $j \leftarrow j + 1$.
- 8: devolver falso.

Algoritmo 13.2. Calcula la función Φ requerida en el algoritmo anterior.

Entrada: Una cadena $P \operatorname{con} |P| = m$ **Salida:** La función Φ .

- 1: $j \leftarrow 0$.
- 2: **para** $i \leftarrow 1$ hasta m **hacer**
- 3: $\mathbf{si} P_i = P_j \mathbf{entonces}$
- 4: $\Phi(i) \leftarrow \Phi(j)$.
- 5: **si no**
- 6: $\Phi(i) \leftarrow j$.
- 7: **mientras** j > 0 y $P_i \neq P_j$ hacer
- 8: $j \leftarrow \Phi(j)$.
- 9: $j \leftarrow j + 1$.

13.2. Detección de periodicidades

El *borde* de una cadena $C = c_0 \dots c_{n-1}$ es la subcadena propia de longitud máxima $B = c_0 \dots c_{b-1}$ de C tal que $B = c_{n-b} \dots c_{n-1}$.

Algoritmo 13.3. Cálculo en tiempo O(n) de las longitudes de los bordes de los prefijos de la cadena $C = c_0 \dots c_{n-1}$.

Entrada: Una cadena $C \operatorname{con} |C| = n$

Salida: Un arreglo de las longitudes de los bordes B tal que B_i es la longitud del borde de la subcadena $c_0 \dots c_i$.

```
1: B_0 \leftarrow 0.

2: para i \leftarrow 0 hasta n - 1 hacer

3: b \leftarrow B_i.

4: mientras b > 0 y C_{i+1} \neq C_b hacer

5: b \leftarrow B_{b+1}.

6: si C_{i+1} = C_b entonces

7: B_{i+1} \leftarrow b + 1.

8: si no

9: B_{i+1} \leftarrow 0.
```

Sea b la cardinalidad del borde B de C. Entonces C consta de $\lfloor \frac{n}{p} \rfloor$ cadenas iguales de longitud p, donde n = |C| y p = n - b, y p es el menor número con esa propiedad. Si $p \setminus n$, entonces la cadena es periódica con periodo p.

14. Cuestiones misceláneas

double modf(double d, double *p) Devuelve la parte fraccionaria de d, coloca la parte entera en *p.

std::atoi(cadena.c_str()) Convertir una cadena a un numero.

string.erase(posicion,nelementos) Borrar un subconjunto de la cadena.

string.replace (posicion, nelementos, subcadena)

Reemplaza un subconjunto de una cadena.

string::size_type s1.find(s2) Devuelve la posición de la cadena s2 en s1. Si falla devuelve **npos**. Si **npos** está ocupado, se lanza un **range_error**.

string.substr(posicion,nelementos) Extraer un subconjunto de una cadena.

void erase(iterator pos) Elimina el elemento apuntado por pos en un conjunto.

size_type erase(const key_type& x) Elimina el elemento x de un conjunto.

Aritmética de precisión arbitraria implementada con cadenas.

```
string convertir(long long n) {
  string c("");
  do {
    c += (char)(n%10+'0'); n /= 10;
    }while(n);
  reverse(c.begin(),c.end());
  return c; }

string borrar_ceros(string a) {
  int i=0;
  while(a[i]=='0'&&i<a.size()-1) i++;
  return a.substr(i,a.size()-i); }

bool menor(string a, string b) {</pre>
```

```
a=borrar_ceros(a); b=borrar_ceros(b);
 if(a.size()<b.size()) return true;</pre>
 else if(a.size()>b.size())
  return false;
 else return a<b; }</pre>
string suma(string a, string b) {
 string ans(""); int k=0;
 if(a.size()<b.size()) swap(a,b);</pre>
 int j = a.size()-1, i = b.size()-1;
 for(; j>=0; j--,i--){
   int u = a[j] - '0';
   if(i>=0){
    ans += (u+(b[i]-'0')+k)%10+'0';
    k = (u+(b[i]-'0')+k)>=10; }
 /* ans += (u-(b[i]-'0')+k+10)%10+'0';
    k = 0-((u-(b[i]-'0')+k)<0); */
   else{
    ans += (u+k)%10+'0';
    k = (u+k)>=10;  }
 /* ans += (u+k+10)%10+'0';
    k = 0-((u+k)<0); } */
 if(k) ans += '1';
 reverse(ans.begin(),ans.end());
 return ans; }
string mult(string a, string b){
 int n = a.size(), m = b.size();
 int t,k,i; string ans(m+n,'0');
 for(int j = m; j>0; j--){
   for(i = n,k=0; i>0; i--){
    t = ((a[i-1]-'0')*(b[j-1]-'0'));
    t += (ans[i+j-1]-'0')+k;
    ans[i+j-1] = (t%10)+'0';
    k = t/10;
   ans[j-1]=k+'0'; }
 return borrar_ceros(ans); }
string divide_d(string a, int d) {
 string temp("");
 int N,i,res=0; N = a.size();
 temp+=((a[0]-'0')/d)+'0';
 res = ((int)(a[0]-'0'))%d;
 for(i=1;i<N;i++) {
   res = (res*10)+(a[i]-'0');
   temp +=(res/d+'0'); res = res%d; }
 return borrar_ceros(temp); }
string divide(string u, string v) {
 string d(""),ans(""),parcial("");
 string temp1(""),temp2("");
 vector <string> mul;
```

```
mul.clear();
 if(v.size()==1)
                                              //Lee cadenas y las pasa a temp.
  return divide_d(u,v[0]-'0');
                                              while(in >> temp)
 int m,q=0,a1,a2,a3,a4,a5,j,inc;
                                              cout << temp << endl;</pre>
 d += (10/((v[0]-'0')+1)+'0');
 u = mult(d,u); v = mult(d,v);
 u.insert(u.begin(),'0'); j = 0;
 mul.push_back("0"); mul.push_back(v);
 for(int k=2; k<10; k++)
   mul.push_back(suma(mul[k-1],v));
 m = u.size()-v.size()-1;
 while(j<=m)</pre>
  {
   a1 = u[j]-'0'; a2 = u[j+1]-'0';
   a3 = u[j+2]-'0'; a4 = v[0]-'0';
   a5 = v[1]-'0';
   if(a1==a4) q = 9;
   else q = (a1*10+a2)/a4;
   while (q*a5>((a1*10+a2-q*a4)*10+a3))
   parcial.erase();
   for(int l=j;l< j+v.size()+1;l++)
    parcial += u[1];
   if(menor(parcial,mul[q])) q--;
   temp2 = resta(parcial,mul[q]);
   for(int l=j;l< j+v.size()+1;l++)
    u[1] = temp2[1-j];
   ans += (char)(q+'0'); j++;
  }
 return borrar_ceros(ans); }
Extracción de datos listados en una sola fila cuando no
se especifica su número.
cin.getline(conjuntos, 1000);
ptr = strtok(conjuntos," ");
while(ptr!=NULL) {
numero=atoi(ptr); B.insert(numero);
ptr = strtok(NULL, " "); }
Leer datos cuando no especifican cuántos son.
#include <sstream>
int i; double f; string cad,temp;
// Delimitador del '.'
// getline(cin, cad,'.');
//Para leer muchas cadenas
getline(cin, cad);
istringstream in(cad);
// Pero como esta esta cosa
// lee primero un entero.
in >>i; cout<<ii*10<<endl;
```