

GT911

小尺寸 MID 5 点电容触控芯片

Rev.03——2013年03月19日

===== 免责声明======

本出版物中所述的器件应用信息及其他类似内容仅为您提供,它们可能由更新之信息所替代。确保应用符合技术规范,是您自身应负的责任。GOODIX对这些信息不作任何明示或暗示、书面或口头、法定或其他形式的声明或担保,包括但不限于针对其使用情况、质量、性能、适销性或特定用途的适用性的声明或担保。GOODIX 对因这些信息及使用这些信息而引起的后果不承担任何责任。未经GOODIX书面批准,不得将GOODIX 的产品用作生命维持系统中的关键组件。在GOODIX 知识产权保护下,不得暗中或以其他方式转让任何许可证。

目录

1.	概述.		3
2.	产品特	寺点	3
3.	芯片原	原理图	∠
4.	管脚類	定义	5
5.	传感器	器设计	7
	5.1.	感应通道排布	7
	5.2.	驱动通道排布	7
	5.3.	传感器设计参数要求	8
6.	I ² C 通	讯	9
	6.1.	I ² C 通讯	9
		a) 数据传输	. 10
		b) 对 GT911 写操作	. 11
		c) 对 GT911 读操作	
	6.2.	GT911 的寄存器信息	
		a) 实时命令	
		b) 配置信息	. 12
		c) 坐标信息	. 17
7.	功能扩		. 19
	7.1.	工作模式	. 19
		a) Normal Mode	. 19
		b) Green Mode	. 19
		c) Sleep Mode	. 19
	7.2.	, 中断触发方式	. 20
	7.3.	睡眠模式	. 20
	7.4.	固化配置功能	. 20
	7.5.	跳频功能	. 20
	7.6.	自动校准	. 20
		a) 初始化校准	. 20
		b) 自动温漂补偿	. 20
8.	参考日	· 电路图	
	电气物		
	9.1.	极限电气参数	. 22
	9.2.	推荐工作条件	. 22
	9.3.	AC 特性	. 22
	9.4.	DC 特性	. 22
10		1封装	
11	. 版本	记录	. 24
12	. 联系	方式	. 25

1. 概述

GT911 是专为 7"~8"设计的新一代 5 点电容触控方案,拥有 26 个驱动通道和 14 个感应通道,以满足更高的 touch 精度要求。

GT911 可同时识别 5 个触摸点位的实时准确位置,移动轨迹及触摸面积。并可根据主控需要,读取相应点数的触摸信息。

2.产品特点

- ◆ 内置电容检测电路及高性能 MPU
 - ▶ 触摸扫描频率: 100Hz
 - ▶ 触摸点坐标实时输出
 - > 统一软件版本适用于多种尺寸的电容屏
 - ▶ 单电源供电,内置 1.8V LDO
 - ▶ Flash 工艺制程,支持在线烧录
- ◆ 电容屏传感器
 - ▶ 检测通道: 26(驱动通道)*14(感应通道)
 - ▶ 电容屏尺寸范围: 7"~8"
 - ▶ 支持 ITO 玻璃
 - ➤ Cover Lens 厚度支持: 0.7mm ≤ 玻璃 ≤ 2mm, 0.5mm ≤ 亚克力 ≤ 1.2mm
 - ▶ 内置跳频功能
- ◆ 环境适应性能
 - ▶ 初始化自动校准
 - ▶ 自动温漂补偿
 - 工作温度: -40℃~+85℃,湿度: ≤95%RH
 - ▶ 储存温度: -60℃~+125℃, 湿度: ≦95%RH
- ◇ 通讯接口
 - ▶ 标准 I²C 通讯接口
 - ▶ 从设备工作模式
 - ▶ 支持 1.8V~3.3V 接口电平

- ◆ 响应时间
 - Green mode: <48msSleep mode: <200msInitialization: <200ms
- ◆ 电源电压:
 - ▶ 单电源供电: 2.8V~3.3V
- ◆ 电源纹波:
 - Vpp≤50mV
- ◆ 封装: 52 pins, 6mm*6mm QFN_0.4P
- ◆ 应用开发支持工具
 - ▶ 触摸屏模组参数侦测及配置参数自动生成
 - ▶ 触摸屏模组性能综合测试工具
 - ▶ 模组量产测试工具
 - > 主控软件开发参考驱动代码及文档指导

3. 芯片原理图

4. 管脚定义

管脚号.	名称	功能描述	备注
1~11	SEN3~SEN13	触摸模拟信号输入	
12	AVDD28	模拟电源正	接 2.2uF 滤波电容
13	AVDD18		接 2.2uF 滤波电容
14	DVDD12		接 2.2uF 滤波电容
15	DGND	数字信号地	
16	INT	中断信号	
17	Sensor_OPT1	模组识别口	
18	Sensor_OPT2	模组识别口(备选)	需外部下拉
19	I2C_SDA	I ² C 数据信号	
20	I2C_SCL	I ² C 时钟信号	
			接 2.2uF 滤波电容
21	VDDIO	GPIO 电平控制	悬空: 1.8V
			接 AVDD: AVDD
22	/RSTB	系统复位脚	需外部 10K 上拉, 拉低复位
23~48	DRV25~DRV0	驱动信号输出	
49	AGND	模拟电源地	

小尺寸 MID 5 点电容触控芯片

50~52 SEN0~SEN2

5. 传感器设计

5.1. 感应通道排布

SENS0~SENS13 是 14 个电容检测输入通道,直接与触摸屏模组的 14 个感应 ITO 通道相连。模组上感应 ITO 通道按照顺序或逆序依次连接至芯片的 SENS0 至 SENS13。若 ITO 通道少于芯片检测通道,请按照《通道选择器》来选择通道。

● 排布方式示例(双面条形设计): 感应 ITO通道按照顺序接入芯片的SENS0至 SENS13。

5.2. 驱动通道排布

DRV0~DRV25 是 26 个电容检测驱动信号输出通道,直接与触摸屏模组的 26 个 ITO 驱动通道相连。驱动线请按照《通道选择器》来选择通道和排布通道,在确定排布方式后,需配置 GT911 芯片的相关寄存器来保证各驱动通道的逻辑位置关系与物理位置关系一致,以使输出坐标与物理坐标匹配。

Sensor 设计的更细规则,请参考具体 layout 指南。

5.3. 传感器设计参数要求

DITO

参 数	范 围
驱动通道走线阻抗	≦3KΩ
驱动通道阻抗	≦10KΩ
感应通道走线阻抗	≦10KΩ
感应通道阻抗	≦40KΩ
节点电容	≦4pF
感应通道 RC 常数	≦6us. Typ.=3.6us

通道走线采用金属走线时,由于工艺控制等原因会导致部分走线被氧化,阻抗变大,导致各通道走线存在差异;当采用 ITO 材料走线时,虽然设计时会尽力通过长度、宽度匹配使得各通道走线一致,但还是会存在不同程度的差异。为保证整屏数据一致性和均匀性,需要控制走线阻抗符合上表要求。

另外,驱动走线与感应走线相邻且平行时,需在两者间插入地线,且地线宽度至少为通道走线宽度的两倍,最小不得小于 0.2mm。

6.I²C 通讯

6.1.I²C 通讯

GT911 提供标准的 I^2 C 通讯接口,由 SCL 和 SDA 与主 CPU 进行通讯。 在系统中 GT911 始终作为从设备,所有通讯都是由主 CPU 发起,建议通讯速度为 400Kbps 或 以下。其支持的 I^2 C 硬件电路支持时序如下:

测试条件 1: 1.8V 通讯接口, 400Kbps 通讯速度, 上拉电阻 2K

Parameter	Symbol	Min.	Max.	Unit
SCL low period	t _{lo}	0.9	-	us
SCL high period	t _{hi}	8.0	-	us
SCL setup time for START condition	t _{st1}	0.4	-	us
SCL setup time for STOP condition	t _{st3}	0.4	-	us
SCL hold time for START condition	t _{hd1}	0.3	-	us
SDA setup time	t _{st2}	0.4	-	us
SDA hold time	t _{hd2}	0.4	-	us

测试条件 2: 3.3V 通讯接口, 400Kbps 通讯速度, 上拉电阻 2K

Parameter	Symbol	Min.	Max.	Unit
SCL low period	t_lo	0.9	-	us
SCL high period	t _{hi}	0.8	-	us
SCL setup time for START condition	t _{st1}	0.4	-	us
SCL setup time for STOP condition	t _{st3}	0.4	-	us
SCL hold time for START condition	t _{hd1}	0.3	-	us
SDA setup time	t _{st2}	0.4	-	us
SDA hold time	t _{hd2}	0.4	-	us

GT911 的 I^2 C 从设备地址有两组,分别为 0xBA/0xBB 和 0x28/0x29。主控在上电初始 化时控制 Reset 和 INT 口状态进行设定,设定方法及时序图如下:

上电时序图:

设定地址为 0x28/0x29 的时序:

设定地址为 0xBA/0xBB 的时序:

a) 数据传输

(以设备地址为 0xBA/0xBB 为例)

通讯总是由主 CPU 发起,有效的起始信号为:在 SCL 保持为"1"时,SDA 上发生由"1" 到"0"的跳变。地址信息或数据流均在起始信号之后传输。

所有连接在I²C总线上的从设备,都要检测总线上起始信号之后所发送的8位地址信息,并做出正确反应。在收到与自己相匹配的地址信息时,GT911在第9个时钟周期,将SDA改为输出口,并置"0",作为应答信号。若收到不与自己匹配的地址信息,即非0XBA或0XBB,GT911将保持闲置状态。

SDA 口上的数据按 9 个时钟周期串行发送 9 位数据: 8 位有效数据+1 位接收方发送的 应答信号 ACK 或非应答信号 NACK。数据传输在 SCL 为"1"时有效。

当通讯完成时,由主 CPU 发送停止信号。停止信号是当 SCL 为"1"时,SDA 状态由"0" 到"1"的跳变。

b) 对 GT911 写操作

(以设备地址为 0xBA/0xBB 为例)

写操作时序图

上图为主 CPU 对 GT911 进行的写操作流程图。首先主 CPU 产生一个起始信号,然后发送地址信息及读写位信息"0"表示写操作:0XBA。

在收到应答后,主 CPU 发送寄存器的 16 位地址,随后是 8 位要写入到寄存器的数据内容。

GT911 寄存器的地址指针会在写操作后自动加 1, 所以当主 CPU 需要对连续地址的寄存器进行写操作时,可以在一次写操作中连续写入。写操作完成,主 CPU 发送停止信号结束当前写操作。

c) 对 GT911 读操作

(以设备地址为 0xBA/0xBB 为例)

读操作时序图

上图为主 CPU 对 GT911 进行的读操作流程图。首先主 CPU 产生一个起始信号,然后发送设备地址信息及读写位信息"0"表示写操作: 0XBA。

在收到应答后,主 CPU 发送首寄存器的 16 位地址信息,设置要读取的寄存器地址。在收到应答后,主 CPU 重新发送一次起始信号,发送读操作: 0XBB。收到应答后,主 CPU 开始读取数据。

GT911 同样支持连续的读操作,默认为连续读取数据。主 CPU 在每收到一个 Byte 数据后需发送一个应答信号表示成功接收。在接收到所需的最后一个 Byte 数据后,主 CPU 发送"非应答信号 NACK",然后再发送停止信号结束通讯。

6.2.GT911 的寄存器信息

a) 实时命令

(Write Only)

Addr	Name	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0x8040	Command	3:	读坐标状态 基准更新 余值无效			直原始值 作校准(内		2: 软件复 5:关屏	位

b) 配置信息

(R/W)

寄存器	Config Data	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
0x8047	Config_ Version		配置文件的版本号(新下发的配置版本号大于原版本,或等于原版本号但配置内容有变化时保存,版本号版本正常范围: 'A'~'Z',发送 0x00 则将版本号初始化为'A')							
0x8048	X Output Max (Low Byte)		X 坐标输出最大值							
0x8049	X Output Max (High Byte)		人							
0x804A	Y Output Max (Low Byte)	Y 坐标输出最大值								
0x804B	Y Output Max (High Byte)									
0x804C	Touch Number		Reser	ved		输	输出触点个数上限: 1~5			
0x804D	Module_ Switch1	Rese	rved	Streto	ch_rank	X2Y (X,Y 坐 标交换)	Reserve d	INT 触 00: 上升 01: 下降 02: 低电 03: 高电	十沿触发 锋沿触发 ¹ 平查询	
0x804E	Module_ switch2	Reserved								
0x804F	Shake_Count	Reserved 手指按下/松开去抖次数								
0x8050	Filter	First_Filter Normal_Filter(原始坐标窗口滤波值,系数为 1)					ı			
0x8051	Large_Touch	大面积触摸点个数								
0x8052	Noise_ Reduction	Reserved			噪声消	除值(系数)	为 1,0-15 7	与效)		

0x8053	Screen_		- 1 평	- 価増占以る	三到有的阈值			
0.00000	Touch_Level		/ / / / / / / / / / / / / / / / / / /					
0x8054	Screen_	屏上触摸点从有到无的阈值						
0,000	Leave_Level	//1 上/ルス // ハフ とり // 日 日						
0x8055	Low_Power_		Reserved		进	低功耗时间(0~15s)		
0.00000	Control		reserved		M.	[於公]東中共[中](O 109)		
0x8056	Refresh_Rate		Reserved		坐标上	二报率(周期为 5+N ms)		
0x8057	x_threshold			Reser	ved			
0x8058	y_threshold			110361	veu			
0x8059	X_Speed_Limit			Reser	wod			
0x805A	Y_Speed_Limit			Reser	veu			
0x805B	0	上边村	框的空白区(以 32 为系	(数)	下边框的]空白区(以 32 为系数)		
0x805C	Space	左边村	框的空白区(以 32 为系	(数)	右边框的]空白区(以 32 为系数)		
0005D	Otratala Data		December		弱拉伸的拉	伸程度(拉伸 x/16 Pitch)		
0x805D	Stretch_Rate		Reserved		(beta	版占用,发布版无效)		
0x805E	Stretch_R0			拉伸区间	1 系数			
0x805F	Stretch_R1			拉伸区间	2 系数			
0x8060	Stretch_R2			拉伸区间	3 系数			
0x8061	Stretch_RM			各拉伸区	间基数			
	Drv_GroupA_	All_Drivi						
0x8062	Num	ng Reserved		Driver_Gro	oup_A_number			
	Drv_GroupB_	0						
0x8063	Num		Reserved		Driver_Gro	oup_B_number		
0x8064	Sensor_Num	Se	ensor_Group_B_Numb	l	Sens	or_Group_A_Number		
0x8065	FreqA_factor		为组 A 的驱动频率倍频			ce = 倍频系数 * 基频		
0x8066	FreqB_factor		加组 B 的驱动频率倍频;			e = 倍频系数 * 基频		
0,0000	Pannel	704	7. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	小致 Glou	pb_i requeric	人 一 旧		
0x8067	BitFreqL							
	Pannel		驱动组A、B	的基频(152	6HZ<基频<1	4600Hz)		
0x8068	BitFreqH							
	Pannel_Sensor_T							
0x8069	imeL	相忽而发	医勃信星输电时间间隔	(1) ue 为 单	(位) Pasary	ed(beta 版占用,发布版无		
	Pannel_Sensor_T	ሳር ፈክሌስ ነ <u>ነ</u>		效 us 为事效)	- 14.7 ,IXESEIV	Cu (beta 灰白用,及相似儿		
0x806A	imeH			XX)				
	iiileii							
	Pannel_Tx_			Pannel_D	Prv_output_	Pannel_DAC_Gain		
0x806B	Gain		Reserved		R	0:Gain 最大		
	Gaili			4 档	当可调	7: Gain 最小		
	Dannol Dy	Pannel		Dannal I	Dv \/omi/4	Pannel DGA Coin		
0x806C	Pannel_Rx_ Gain	Pannei_ PGA_C	Pannel_PGA_R	_	Rx_Vcmi(4 ፲调)	Pannel_PGA_Gain (8 档可调)		
	Gaiii	FGA_C		1≒ □	1 Nri /	(O /i=i P) /PD /		

0x806D	Pannel_Dump_ Shift	Reserved				屏原始值放大系数(2 的 N 次方)		
0x806E	Drv_Frame_ Control	Reserve d	SubFrame DryNum			Repeat_Num (采样累加次数)		
0x806F	NC				Reser	ved		
0x8070	NC				Reser	ved		
0x8071	NC				Reser	ved		
0x8072	Stylus_Tx_ Gain		<u> </u>	暫未定义()	当 stylus_	priority=0 时无效)		
0x8073	Stylus_Rx_ Gain		2	暫未定义()	当 stylus_	priority=0 时无效)		
0x8074	Stylus_Dump_ Shift		笔原	原始值放大系	〔数(2 的	N 次方),Reserved	i	
0x8075	Stylus_Driver_To uch_Level	笔触摸有效阈值(驱动方向),Reserved						
0x8076	Stylus_Sensor_T ouch_Level	笔触摸有效阈值(感应方向),Reserved						
0x8077	Stylus_ Control		触摸	笔超时退出	时间(以	秒为单位),Reserve	ed	
0x8078	Base_reduce	S型改善	量(通常为2	2-4), Res	erved	削底系数 N,削底量:次方(通常 2-4		
0x8079	NC				Reser	ved		
0x807A	Freq_Hopping_St art		跳频范围的起	起点频率(以	从 2KHz 为	p单位,例如 50 表示:	100KHz)	
0x807B	Freq_Hopping_E nd		跳频范围的约	홍点频率(빙	、2KHz 为	单位,例如 150 表示	300KHz)	
0x807C	Noise_Detect_Ti mes	(一次噪声 频率点上	tay_Times 检测中每个 检测次数,建 2)	(多次		Detect_Confirm_Time 后确定噪声量,1-63 有		
0x807D	Hopping_Flag	Hopping _En	Rese	rved	(Detect_Time_ 噪声检测超时时间,以	=	
0x807E	Hoppging_ Threshold	•				Hopping_Hit_Th 顶率选定条件,当前工作 量>设定值 x4,则选定	作频率干扰量一最小	
0x807F	Noise_ Threshold	判别有干扰的门限(所有频率点上干扰量小于此值认为无干扰)						
0x8080	NC				Reser	ved		
0x8081	NC				Reser	ved		

0x8082	Hopping_seg1_Bi tFreqL				
0x8083	Hopping_seg1_Bi tFreqH	跳频检测区间频段 1 中心点	基频(适用于驱动 A、B)		
0x8084	Hopping_seg1_F actor	跳频检测区间频段 1 中心点倍频系数(适用于驱动 A,驱动 B 在此基础上换算出			
0x8085	Hopping_seg2_Bi tFreqL	跳频检测区间频段 2 中心点	5.基新(适田干驱动Δ R)		
0x8086	Hopping_seg2_Bi tFreqH	<u>奶奶</u> 妈妈妈妈	《圣妙、旭川 】 驱幼 八、 日)		
0x8087	Hopping_seg2_F actor	 跳频检测区间频段 2 中心点倍频系数(适序	用于驱动 A,驱动 B 在此基础上换算出来)		
0x8088	Hopping_seg3_Bi tFreqL	以 新 於 涮 区 间 新 段 3 由 心 占	i 其颒(活田干驱动Δ R)		
0x8089	Hopping_seg3_Bi tFreqH	跳频检测区间频段3中心点基频(适用于驱动A、B)			
0x808A	Hopping_seg3_F actor	跳频检测区间频段 3 中心点倍频系数(适用于驱动 A,驱动 B 在此基础上换算出来			
0x808B	Hopping_seg4_Bi tFreqL	跳频检测区间频段 4 中心点基频(适用于驱动 A、B)			
0x808C	Hopping_seg4_Bi tFreqH	907次型型型凸间 <i>9</i> 次长 4 中心点	咖炒№№№ \$ T心点至炒(但用 J 狍幼 A、 D)		
0x808D	Hopping_seg4_F actor	跳频检测区间频段 4 中心点倍频系数(适序	用于驱动 A, 驱动 B 在此基础上换算出来)		
0x808E	Hopping_seg5_Bi tFreqL	跳频检测区间频段 5 中心点基频(适用于驱动 A、B)			
0x808F	Hopping_seg5_Bi tFreqH	907次型型型凸凹 <i>9</i> 次长 3 千亿点	(全/水、) (是/11 1 4)(4)(八、 U)		
0x8090	Hopping_seg5_F actor	跳频检测区间频段 5 中心点倍频系数(适序	用于驱动 A, 驱动 B 在此基础上换算出来)		
0x8091	NC	Rese	erved		
0x8092	NC	Rese	erved		
0x8093	Key 1	Key 1 位置: 0-255 有效 (其中 0 表示无按键, 4 个键位置均为 8 的倍数时表示为独立按键)			
0x8094	Key 2	Key 2 位置: 0-255 有效 (其中 0 表示无按键, 4 个键位置均为 8 的倍数时表示为独立按键)			
0x8095	Key 3	Key 3 位置: 0-255 有效 (其中 0 表示无按键, 4 个键位置均为 8 的倍数时表示为独立按键)			
0x8096	Key 4	Key 4 位置: 0-255 有效 (其中 0 表示无按键, 4 个键位置均为 8 的倍数时表示为独立按键)			
0x8097	Key_Area	长按更新时间(1~16s)	按键有效区间设置(单侧):0-15 有效		

Key_Touch_							
0x8098	Level	wel					
0x8099	Key_Leave_ Level	触摸按键松键阈值					
0x809A	Key_Sens	KeySens_1(按键 1 灵敏度系数)	KeySens_2(按键2灵敏度系数)				
0x809B	Key_Sens	KeySens_3(按键 3 灵敏度系数)	KeySens_4(按键 4 灵敏度系数)				
0x809C	Key_Restrain	手指从屏上离开后抑制按键的时间(以 100ms 为单位),0表示 600ms 抑制	独立按键邻键抑制参数(当次大值超过最大值的 Key_Restrain/16 时则不输出按键),推荐设置 7±2				
0x809D	NC	Rese	rved				
0x809E	NC	Rese	rved				
0x809F	NC	Rese	erved				
0x80A0	NC	Rese	erved				
0x80A1	NC	Rese	erved				
0x80A2	Proximity_Drv_Se lect	Drv_Start_Ch(驱动方向起始通道)	Drv_End_Ch(结束通道, 为起始通道加此值)				
0x80A3	Proximity_ Sens_Select	Sens_Start_Ch(感应方向起始通道	Sens_End_Ch (结束通道, 为起始通道加此值)				
0x80A4	Proximity_ Touch_Level	设定值× 10= 接	近感应生效阈值				
0x80A5	Proximity_ Leave_Level	设定值× 10= 接	近感应无效阈值				
0x80A6	Proximity_Sample_ Add_Times	采样值累	尽加次数				
0x80A7	Proximity_Sample_ Dec_ValL	采样值减此值(16 位)后再累加,低字节				
0x80A8	Proximity_Sample_ Dec_ValH	采样值减此值(16 位)后再累加,高字节				
0x80A9	Proximity_Leave_S hake_Count	退出接近感	应去抖次数				
0x80AA	Self_Cap_Tx_ gain	自电容易	· · · · · · · · · · · · · · · · · · ·				
0x80AB	Self_Cap_Rx_ gain	自电容接收增益					
0x80AC	Self_Cap_Dump_ Shift	自电容原始值放大系数(2的N次方)					
0x80AD	SCap_Diff_Up_Le vel_Drv	自电容抑制悬浮上升阈值(驱动方向)					
0x80AE	Scap_Merge_Tou ch_Level_Drv	自电容 Touch L	evel(驱动方向)				
0x80AF	SCap_Pulse_	自电容采样时	间(低字节)				

	TimeL				
0x80B0	SCap_Pulse_ TimeH	自电容采样时间(高字节)			
0x80B1	SCap_Diff_Up_Le vel_Sen	自电容抑制悬浮上升阈值(感应方向)			
0x80B2	Scap_Merge_Tou ch_Level_Sen	自电容 Touch Level(感应方向)			
0x80B3	NC	Reserved			
0x80B4	NC	Reserved			
0x80B5	NC	Reserved			
0x80B6	NC	Reserved			
0x80B7 ~ 0x80C4	Sensor_CH0~ Sensor_CH13	ITO Sensor 对应的芯片通道号			
0x80C5~ 0x80D4	NC	Reserved			
0x80D5~ 0x80EE	Driver_CH0~ Driver_CH25	ITO Driver 对应的芯片通道号			
0x80EF~ 0x80FE	NC	Reserved			
0x80FF	Config_Chksum	配置信息校验(0x8047 到 0x80FE 之字节和的补码)			
0x8100	Config_Fresh	配置已更新标记(由主控写入标记)			

c) 坐标信息

Addr	Access	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0x8140	R	Product ID (first Byte,ASCII 码)							
0x8141	R		Product ID (second Byte,ASCII 码)						
0x8142	R			Product ID (third Byte,	ASCII	码)		
0x8143	R			Product ID (forth Byte,	ASCII	码)		
0x8144	R			Firmware ve	rsion (HEX	(low b	yte)		
0x8145	R		Firmware version (HEX.high byte)						
0x8146	R		x coordinate resolution (low byte)						
0x8147	R		x coordinate resolution (high byte)						
0x8148	R	y coordinate resolution (low byte)							
0x8149	R	y coordinate resolution (high byte)							
0x814A	R	Vendor_id(当前模组选项信息)							
0x814B	R	Reserved							
0x814C	R	Reserved							
0x814D	R	Reserved							
0x814E	R/W	buffer status	large detect	Rese	rved	numb	er of t	ouch p	oints
0x814F	R	track id							

0x8150	R	point 1 x coordinate (low byte)
0x8151	R	point 1 x coordinate (high byte)
0x8152	R	point 1 y coordinate (low byte)
0x8153	R	point 1 y coordinate (high byte)
0x8154	R	Point 1 size (low byte)
0x8155	R	point 1 size (high byte)
0x8156	R	Reserved
0x8157	R	track id
0x8158	R	point 2 x coordinate (low byte)
0x8159	R	point 2 x coordinate (left byte)
0x815A	R	point 2 y coordinate (low byte)
0x815B	R	point 2 y coordinate (low syte)
0x815C	R	point 2 y coordinate (riigh byte) point 2 size (low byte)
0x815D	R	point 2 size (low byte) point 2 size (high byte)
0x815E	R	Reserved
0x815E		track id
	R	
0x8160	R	point 3 x coordinate (low byte)
0x8161	R	point 3 x coordinate (high byte)
0x8162	R	point 3 y coordinate (low byte)
0x8163	R	point 3 y coordinate (high byte)
0x8164	R	point 3 size (low byte)
0x8165	R	point 3 size (high byte)
0x8166	R	Reserved
0x8167	R	track id
0x8168	R	point 4 x coordinate (low byte)
0x8169	R	point 4 x coordinate (high byte)
0x816A	R	point 4 y coordinate (low byte)
0x816B	R	point 4 y coordinate (high byte)
0x816C	R	point 4 size (low byte)
0x816D	R	point 4 size (high byte)
0x816E	R	Reserved
0x816F	R	track id
0x8170	R	point 5 x coordinate (low byte)
0x8171	R	point 5 x coordinate (high byte)
0x8172	R	point 5 y coordinate (low byte)
0x8173	R	point 5 y coordinate (high byte)
0x8174	R	point 5 size (low byte)
0x8175	R	point 5 size (high byte)
0x8176	R	Reserved
0x8177	R	Reserved

7. 功能描述

7.1. 工作模式

a) Normal Mode

GT911 在 Normal mode 时,最快的坐标刷新周期为 7ms-10ms 间(依赖于配置信息的设定,配置信息可控周期步进长度为 1ms)。

Normal mode 状态下,一段时间无触摸事件发生,GT911 将自动转入 Green mode,以降低功耗。GT911 无触摸自动进入 Green mode 的时间可通过配置信息设置,范围为 0~15s,步进为 1s。

b) Green Mode

在 Green mode 下,GT911 扫描周期约为 40ms,若检测到有触摸动作发生,自动进入 Normal mode。

c) Sleep Mode

主 CPU 通过 I²C 命令,使 GT911 进入 Sleep mode (需要先将 INT 脚输出低电平)。 当需要 GT911 退出 Sleep mode 时,主机输出一个高电平到 INT 脚(主机打高 INT 脚 2~5ms),唤醒后 GT911 将进入 Normal mode。

7.2. 中断触发方式

当有触摸时, GT911 每个扫描周期均会通过 INT 脚发出脉冲信号, 通知主 CPU 读取坐标信息。主 CPU 可以通过相关的寄存器位"INT"来设置触发方式。设为"0"表示上升沿触发, 即在有用户操作时, GT911 会在 INT 口输出上升沿跳变, 通知 CPU; 设为"1"表示下降沿触发, 即在有用户操作时, GT911 会在 INT 口输出下降沿跳变。

7.3. 睡眠模式

当显示屏熄灭时或在其他不需要操作触摸屏的状态下,可以通过 I²C 命令使 GT911 进入 Sleep mode 以降低功耗。当需要 GT911 正常工作时,主控将 INT 口输出一段时间的高电平将其唤醒。主控控制 GT911 进入睡眠状态和退出睡眠状态时序,具体时序请参考第 7.1 节。

7.4. 固化配置功能

GT911 支持固化配置功能,当获取项目的配置参数后,GT911 会自动将版本较高的配置参数固化,固化了配置参数后的 GT911 只会与主控进行 I2C 通讯,不会接收主控下发的低版本配置。

7.5. 跳频功能

GT911 拥有很好的硬件抗干扰基础,当 GT911 的驱动频谱与干扰信号的峰值频谱叠加时,可通过自适应跳频机制来切换到另一个频率,从而避开干扰。

7.6. 自动校准

a) 初始化校准

不同的温度、湿度及物理空间结构均会影响到电容传感器在闲置状态的基准值。GT911 会在初始化的 200ms 内根据环境情况自动获得新的检测基准。完成触摸屏检测的初始化。

b) 自动温漂补偿

温度、湿度或灰尘等环境因素的缓慢变化,也会影响到电容传感器在闲置状态的基准值。 GT911 实时检测各点数据的变化,对历史数据进行统计分析,由此来修正检测基准。 从而降低环境变化对触摸屏检测的影响。

8.参考电路图

GT911 参考应用电路图

注:

- 1、 本电路仅表示基本应用方式,实际或根据应用环境需要对部分电路进行调整。
- 2、 电容建议采用 X7R 材质

9. 电气特性

9.1.极限电气参数

(环境温度为 25℃)

参数	最小值	最大值	单位
模拟电源 AVDD28(参考 AGND)	2.66	3.47	V
VDDIO(参考 DGND)	1.7	3.47	V
数字 I/O 可承受电压	0	3.47	V
模拟 I/O 可承受电压	0	3.47	V
工作温度范围	-40	85	${\mathbb C}$
存储温度范围	-60	125	${\mathbb C}$
焊接温度(10 秒钟)		300	${\mathbb C}$
ESD 保护电压(HB Model)	_	±2	KV

9.2.推荐工作条件

参数	最小值	典型值	最大值	单位
AVDD28	2.8	-	3.3	V
VDDIO	1.8	-	3.3	V
工作温度	-20	25	85	$^{\circ}$

9.3.AC 特性

(环境温度为 25℃, AVDD=2.8V, VDDIO=1.8V)

参数	最小值	典型值	最大值	单位
OSC 振荡频率	59	60	61	MHz
I/O 输出由低到高转换时间	-	-	0.5	ns
I/O 输出由高到低转换时间	-	-	0.5	ns

9.4.DC 特性

(环境温度为 25℃, AVDD=2.8V, VDDIO=1.8V)

参数	最小值	典型值	最大值	单位
Normal mode 工作电流	-	6.2	-	mA
Green mode 工作电流	ı	3.3	ı	mA
Sleep mode 工作电流	70	-	120	uA
数字输入为低电平电压值	-0.3	0	0.45	V
数字输入为高电平电压值	1.35	1.8	2.1	V

10. 产品封装

symbol	Dimensions In Millimeters			
Symbol	Min.	Normal	Max.	
Α	0.70	0.75	0.80	
A1	0.00	0.035	0.05	
b	0.40BSC			
D	6.00BSC			
D1	4.40	4.50	4.60	
Е	6.00BSC			
E1	4.40	4.50	4.60	
е	0.15	0.20	0.25	
L	0.30	0.40	0.50	
L1	0.31	0.36	0.41	
L2	0.13	0.18	0.23	
K	0.203BSC			

* Controlling Dimension: MM

11. 版本记录

文件版本	发布时间	修订
Rev.00	2012-11-02	预发布
Rev.01	2012-11-22	修改配置信息、更新参考电路图
Rev.02	2012-12-26	修改存储温度、各模式电流及部分表述
Rev.03	2013-03-19	在配置信息列表中增加 filter 功能描述

12. 联系方式

深圳市汇顶科技股份有限公司

深圳市福田保税区腾飞工业大厦 B 座 13 层 518000

Floor 13, Phase B, TengFei Industrial Building, FuTian Free Trade Zone, ShenZhen, 518000

电话/TEL: +86-755-33338828 传真/FAX: +86-755-33338828

www.goodix.com

