UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE QUÍMICA

CQ018 - QUÍMICA TOXICOLÓGICA

Introdução e toxicocinética

Rilton Alves de Freitas

EMENTA

- 2
- INTRODUÇÃO À TOXICOLOGIA
- AÇÃO ORGÂNICA
- LIMITES DE TOLERÂNCIA
- ETIOLOGIA DAS INTOXICAÇÕES
- MECANISMOS DE INTOXICAÇÕES
- NOÇÕES DE METABOLISMO
- PRINCIPAIS AGENTES TÓXICOS
- COLETA E ACONDICIONAMENTO DE MATERIAIS
- PRINCIPAIS MÉTODOS DE ANÁLISE
- AGENTES GASOSOS
- AGENTES VOLÁTEIS
- AGENTES MINERAIS
- AGENTES ORGÂNICOS
- PESTICIDAS
- LABORATÓRIO DE TOXICOLOGIA

CRONOGRAMA E AVALIAÇÃO

Data 2023	Modo	Conteúdo
23/03	Presencial	Introdução, Toxicocinética, Toxicodinâmica
30/03	Presencial	Toxicocinética, Toxicodinâmica
06/04	Remota	Avaliação Toxicológica
13/04	Presencial	Toxicologia Social
20/04	Presencial	Toxicologia Social
27/04	Remota	Doping (Ausente Rio de Janeiro)
04/05	Presencial	Doping
11/05	Presencial	Prova 1
18/05	Presencial	Toxicologia de Medicamentos
25/05	Presencial	Toxicologia de Medicamentos
01/06	Presencial	Toxicologia de Alimentos
15/06	Presencial	Toxicologia Ambiental
17/06	Atividade	Estudos de caso (Reposição dia 08/06)
22/06	Presencial	Toxicologia Ocupacional
29/06	Presencial	Prova 2
06/07	Presencial	Prova Final

A média final (MF) será calculada como:

MF = (Prova 1 x 50 + P2 x 30 + EC x 20)/100

Para ser aprovado quanto a frequência deve-se cursar, minimamente, 75% da disciplina.

REFERÊNCIAS BIBLIOGRÁFICAS

- OGA, S.; CAMARGO, M.M.A.; BATISTUZZO, J.A.O. Fundamentos de toxicologia, 4ª ed., Editora Atheneu, 2014.
- KLAASSEN, C. D.; WATKINS III, J. B. Fundamentos em Toxicologia de Casarett e Doull (Lange), 2^a ed., McGrawHill, 2012.
- MOREAU, R.L.M.; SIQUEIRA, M.E.P.B. Toxicologia Analítica, 1a ed., Editora Guanabara Koogan, 2008.
- LARINI, L. Toxicologia. 3a ed., Editora Manole, 1997.
- https://minhabiblioteca.ufpr.br/biblioteca/

HISTÓRICO

Papiro de Ebres (1500 a.C): "Ópio, cicúta, chumbo, cobre, beladona, venenos animais e agentes tóxicos vegetais"

Mitridates (120-63 a.C.): "Primeiro a realizar experiências toxicológicas". Desenvolveu o Mithridaticum uma mistura de gordura de víbora e enxofre.

Avicena – Abu Ali Husain ibn Abdullah ibn Sina (980-1037): Mecanismo de ação e efeitos tóxicos de venenos; Uso da pedra de bezoar.

1300-1660: Envenenadores profissionais
Madame Toffana – Cosméticos a base de arsênio
La Voisine (Catherine Deshayes) – envenenadora e
prestadora de serviços. Luiz IV estabeleceu a *Chambre*ardente.

HISTÓRICO

Phiippus Aureolus Theophrastus Bombastus von Hohenheim – Paracelsus (1493-1541): "Todas as substâncias são tóxicas, não existe uma que não seja" "A dose certa é o que diferencia o veneno do remédio".

Fontana (1720-1805): Fundador da toxicologia moderna

Mathieu Orfila (1787-1853): Traitè de toxicologie, que realça a importância da combinação de toxicologia forense, clínica e química analítica. Considerada a base da toxicologia forense.

Frederick Accum (1769-1838): Pioneiro na aplicação da química analítica em toxicologia de alimentos e medicamentos.

INTRODUÇÃO

TOXICOLOGIA: Toxicology is the study of the adverse effects of chemical, physical or biological agents on living organisms and the ecosystem, including the prevention and amelioration of such adverse effect

(American

Society

of

Toxicology]

INTRODUÇÃO: TERMINOLOGIA

- 9
- EFEITO NOCIVO (National Academy of Sciences):
 - AO SER PRODUZIDO UMA EXPOSIÇÃO PROLONGADA QUE RESULTE EM TRANSTORNOS DA CAPACIDADE FUNCIONAL E/OU DA CAPACIDADE DO ORGANISMO EM COMPENSAR NOVA SOBRECARGA;
 - DIMINUI PERCEPTIVELMENTE A CAPACIDADE DO ORGANISMO DE MANTER A HOMEOSTASIA;
 - AUMENTA A SUSCEPTIBILIDADE AOS EFEITOS INDESEJÁVEIS DE OUTROS FATORES AMBIENTAIS.

INTRODUÇÃO: TERMINOLOGIA

- 10
- AGENTE TÓXICO, TOXICANTE: Entidade química capaz de causar dano ao um sistema biológico, alterando sua função.
- **XENOBIÓTICO**: Qualquer substância química estranha ao organismo.
- **VENENOS**: Termo popular usado para designar a substância química ou mistura que provoca efeitos tóxicos. Reservado para toxicantes animais.
- **DROGA:** É toda substância capaz de modificar o sistema fisiológico ou o estado patológico, com ou sem intensão de benefício.
- **ANTÍDOTO:** É um agente capaz de antagonizar os efeitos tóxicos de substâncias

ETIOLOGIA DA INTOXICAÇÃO

- ACIDENTAIS
- IATROGÊNCIAS (TRATAMENTOS OU TERAPIAS)
- PROFISSIONAIS OU OCUPACIONAIS
- SUICIDAS
- HOMICIDAS OU MAUS TRATOS
- ENDÊMICAS (ÁGUA, AR, ALIMENTOS)
- AMBIENTAL
- SOCIAIS
- ESPORTIVAS
- GENÉTICAS (IDIOSSINCRASIA A DROGAS)

COMO OCORRE UMA INTOXICAÇÃO?

FASE TOXICOCINÉTICA

FASE TOXICODINÂMICA

FASE CLÍNICA

ETAPAS DE UM XENOBIÓTICO NO ORGANISMO

Proteínas ligantes

14

• Albumina: ácidos fracos

• Glicoproteína alfa-1- ácida: bases fracas

• Lipoproteínas: drogas extremamente lipossolúveis

TOXICOCINÉTICA

Área da toxicologia que estuda:

absorção
distribuição
biotransformação/metabolização
excreção

TOXICOCINÉTICA

Absorção

 processo pelo qual um toxicante penetra na corrente sanguínea sem ser quimicamente alterado

OU

 o movimento do toxicante de seu local de aplicação até o sangue

TOXICOCINÉTICA

Fatores que influenciam a velocidade de absorção do toxicante:

- via de administração
- circulação no local da administração
- dose
- estado físico (tamanho da partícula, sólido ou líquido)

VIA DIGESTIVA/DIGESTORIA

TOXICOCINÉTICA: LIPOSSOLUBILIDADE

Ionização:

pK_a do toxicante; pH sistema biológico

Suco gástrico pH= 2-3 Intestino delgado = 5-6,6 Sangue= 7,4

TOXICOCINÉTICA: LIPOSSOLUBILIDADE

21

Para ácidos:

$$pKa - pH = log \left(\frac{Moléculas}{ions}\right)$$

Para bases:

TOXICOCINÉTICA: LIPOSSOLUBILIDADE

Porcentagem não ionizada

pН	Ácido Benzóico (pKa ~4)	Anilina (pKa ~ 5)
2	99,0	0,1
3	90,0	1,0
4	50,0	10,0
5	10,0	50,0
7	0,1	99,0

Para ácidos:

$$pKa - pH = log \left(\frac{Moléculas}{ions}\right)$$

Para bases:

$$pH - pka = log \left(\frac{Moléculas}{ions}\right)$$

 $\overline{0}1/04/2023$

VIA RESPIRATÓRIA

ÁREA SUPERFICIAL DE ATÉ 100 m²

COEFICIENTE DE PARTIÇÃO SANGUE/AR CLOROFÓRMIO = 15 – FATOR LIMITANTE RESPIRAÇÃO ETILENO = 0,14 - FATOR LIMITANTE CIRCULAÇÃO

VIA RESPIRATÓRIA

Predicted fractional deposition of inhaled particles in the nasopharyngeal, tracheobronchial, and alveolar region of the human respiratory tract during nose breathing. (Used with permission of J. Harkema.) (Reproduced with permission from Oberdorster G, Oberdorster E, Oberdorster J: Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles, Environ Health Perspect, 2005 Jul;113(7):823–839.)

Source: Toxic Responses of the Respiratory System, Casarett & Doull's Essentials of Toxicology, 3e

Citation: Klaassen CD, Watkins III JB Casarett & Doull's Essentials of Toxicology, 3e; 2015 Available at:

http://accessbiomedicalscience.mhmedical.com/DownloadImage.aspx?image=/data/books/1540/klaassen3_ch15_fig-1501.png&sec=92526754&BookID=1540&ChapterSecID=92526745&imagename= Accessed: November 11, 2017

VIA CUTÂNEA

 $\acute{A}rea\ Superficial \cong$

 $\frac{altura (cm)x Peso (kg)}{3600}$

TOXICOCINÉTICA: LIPOSSOLUBILIDADE E ABSORÇÃO DE TÓXICOS

Mecanismos de transporte através de membranas

- odifusão passiva
- odifusão através de poros
- Endocitose: fagocitose; pinocitose;
 mediada por proteínas clatrina)
- otransporte ativo

TOXICOCINÉTICA: DISTRIBUIÇÃO

27

Vd = [(Q / C)/peso corporeo kg]

Q = dose em g C= concentração plasmática g/L Vd = Volume de distribuição em L ou L/kg

TOXICOCINÉTICA: DISTRIBUIÇÃO

4 L

Fármacos com elevada massa molar ou ligados a proteínas plasmáticas

4-14 L

Moléculas de baixa massa molar Hidrossolúveis

>14L

Difusão para fluídos intracelulares Liga-se ao tecido fortemente

TOXICOCINÉTICA: DISTRIBUIÇÃO

29

Limita a capacidade dos tóxicos de atingir o cérebro:

Lipossubilidade Ligação a proteínas Grau de ionização

TOXICOCINÉTICA: BIOTRANSFORMAÇÃO

(30)

Transformação mediada por enzimas de uma substância química em outra

Locais de Biotransformação

- ·Fígado
- •rim, pulmão, epitélio GI
- ·outros tecidos

TOXICOCINÉTICA: BIOTRANSFORMAÇÃO

(32)

- ENVOLVE DOIS TIPOS DE REAÇÃO BIOQUÍMICA:
- •Reações de fase I oxidação, redução, hidrólise (em geral metabólitos ativos)
- •Reações de fase II conjugação (metabólitos inativos)

Geralmente ocorrem sequencialmente.

Ambas as etapas diminuem a lipossolubilidade, aumentando a eliminação renal do tóxico.

TOXICOCINÉTICA: BIOTRANSFORMAÇÃO

Citocromo P450

MAIS IMPORTANTE SISTEMA DE METABOLIÇÃO DE TÓXICOS

- •Citocromo P₄₅₀ é uma família de enzimas
- ·localizada na fração microssomal do figado
- •várias formas diferentes

NOMENCLATURA

34

•A nomenclatura atual é baseada na proposta de Daniel Nebert (1991):

NOMENCLATURA

(35)

•Importância relativa

Quantidade relativa

Indutores e inibidores do CYP-450

Citocromo P-450	Indutores	Inibidores
CYP1A	Hidrocarbonetos aromáticos Benzopireno Rifampicina	Fluvoxamina Flurafilina
CYP2B	Fenobarbital	
CYP2C	Carbamazepina Rifampicina Prednisona Rifampicina	Fluoxetina Omeprazol Fluvoxamina Fluoxetina
CITZD	Kilanipicina	Quinidina Cimetidina
CYP2E	Etanol, Isoniazida	Dissulfiram
CYP3A	Barbitúricos Carbamazepina Fenitoína Rifampicina	Cetoconazol Itraconazol Eritromicina

Mecanismo resumido

38

Hidroxilação aromática

$$\begin{array}{c} CH_3 & O \\ NH-C-CH_2.N \\ C_2H_5 \end{array} \longrightarrow \begin{array}{c} CH_3 & O \\ NH-C-CH_2.N \\ C_2H_5 \end{array}$$

Figure 1.1 The 3-hydroxylation of lignocaine.

Hidroxilação alifática

$$0 = \bigvee_{N = 0}^{N} C_{2}H_{5}$$

$$C_{1}H_{5}$$

$$C_{1}H_{5}$$

$$C_{1}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{1}H_{5}$$

$$C_{2}H_{5}$$

$$C_{1}H_{5}$$

$$C_{2}H_{5}$$

$$C_{1}H_{5}$$

$$C_{1}H_{5}$$

$$C_{2}H_{5}$$

$$C_{1}H_{5}$$

$$C_{2}H_{5}$$

$$C_{1}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{3}H_{5}$$

$$C_{4}H_{5}$$

$$C_{5}H_{5}$$

$$C_{7}H_{5}$$

$$C_{8}H_{7}$$

$$C_{8}H_{7}$$

$$C_{8}H_{7}$$

$$C_{8}H_{7}$$

$$C_{8}H_{7}$$

$$C_{8}H_{7}$$

$$C_{8}H_{8}$$

Figure 1.2 The side-chain hydroxylation of pentobarbitone.

39

Epoxidação

Figure 1.3 The formation of benzo[a]pyrene-4,5-epoxide.

Desalquilação

Figure 1.4 The N-demethylation of diazepam.

(40)

O-desmetilação

Figure 1.6 The O-demethylation of codeine.

S-desmetilação

$$\begin{array}{c|c} CH_3 & H & \\ &$$

Figure 1.7 The S-demethylation of S-methylthiopurine.

Lembrete: Ocorre biotransformação também por outras enzimas: solúveis e mitocondriais

Álcool desidrogenase

$$H_3C-C-OH + NAD^+ \longrightarrow H_3C-C^{\prime\prime} + NADH + H^+$$

Figure 1.16 The oxidation of ethanol by alcohol dehydrogenase.

- Aldeído desidrogenase
- Aminoxidases

REAÇÃO DE FASE II

Reações de Conjugação

Reação	Enzima	Grupo
Glucoronidação	UDP-Glucoronosiltransferase	-OH; -COOH; -NH $_2$; -SH
Sulfatação	Sulfotransferase	-OH; -SO ₂ NH ₂ ; -NH ₂
Metilação	Metiltransferase	-OH; -NH ₂
Acetilação	Acetiltransferase	-OH; -SO ₂ NH ₂ ; -NH ₂
Conjugação com aminoácidos		-СООН
Conjugação com Glut	ation Glutationa-S-transferase	- epóxidos; haletos orgânicos

45

 Conjugação glucurônica: álcoois, ácidos carboxílicos, aminas, tióis.

46

Sulfatação: Álcoois, aminas, tióis

Figure 1.35 The structure of PAPS.

Table 1.8 Sulfotransferases and their substrates

Isoenzyme	Substrate	Site
Phenol sulfotransferase	Isoprenaline	Liver Kidney Gut
Alcohol sulfotransferase	Dimetranidazole	Liver
Steroid sulfotransferase	Oestrone	Liver
Arylamine sulfotransferase	Paracetamol	Liver

47

Acetilação: aminas aromáticas e sulfonamidas

Conjugação com glicina: ácidos

(49)

Conjugação com a glutationa: epóxidos.

Tempo de meia-vida

Ordem 0

$$t_{1/2} = \frac{0.5C_0}{k}$$

1^a ordem

$$t_{1/2} = \frac{0.693}{k}$$

Onde
$$k=\beta$$

EXCREÇÃO RENAL

Existem três processos básicos responsáveis por grandes diferenças na excreção renal:

- Filtração glomerular
- Secreção ou reabsorção tubulares ativas
- Difusão passiva através do epitélio tubular

Exemplos

