EEEN281 MATLAB ile MÜHENDİSLİK UYGULAMALARI DERSİ FINAL SINAVI

Sınav süresi 90 dakikadır. Başarılar dilerim. Doç.Dr. Sezai Tokat

end Dizi indisi olarak kullanıldığında sıralı bir dizinin son indeks numarasını verir.

Whos Name Size Bytes Class Attributes açıklamaları ile ilgili çalışma alanındaki değişkenleri listeler.

Linspace(a,b,n) a ve b değerleri arasında sabit aralıklı n nokta alır.

LENGTH(X) X vektörünün uzunluğunu verir. Boş olmayan diziler için MAX(SIZE(X))'e ve boş diziler için sıfıra eşittir.

SQRT(X) X değişkeninin karekökünü verir.

```
SORU 1)
```

```
function [x,y,z] = nargtest(p,q,r,s,t)
if nargout >= 1
  x = 50;
if nargout >= 2
  y = 'foo';
if nargout >=3
  z = 3:7;
end
end
end
whos % yerel çalışma alanını gösterir
end
```

Yanda verilen fonksiyonun aşağıdaki şekillerde çağrılması sonucundan elde edilen ekran çıktıları nasıl olur?

```
a)
        a = nargtest(5,6,7)
                                                            b)
                                                                  [a, b] = nargtest(3)
Name
                                                                   Size
                     Bytes Class
                                     Attributes
                                                         Name
                                                                               Bytes Class
                                                                                              Attributes
         Size
        1x1
                      8 double
                                                                 1x1
                                                                               8 double
                      8 double
                                                                 1x1
                                                                              8 double
        1x1
q
                                                         X
       1x1
                     8 double
                                                         y
                                                                1x3
                                                                               6 char
r
                      8 double
        1x1
X
                                                        a =
a =
                                                           50
  50
                                                        b =
                                                        foo
```

SORU 2) $N(t) = 1 - \frac{1}{2}\cos(2\pi t)$ ve t=0:10 aralığında 900 adet eşit aralıklı nokta ile tanımlıdır. N fonksiyonunun t'ye göre değişimine ait iki-boyutlu grafiği çizim rengi siyah ('k'), x ve y eksen etiketleri ve uygun bir başlıkla, <u>herhangi bir döngü ve akış kontrolü kullanmadan</u> elde ediniz. {Döngü ve akış kontrolü ile elde edilen sonuçlar kabul edilmeyecektir!!!}

```
t=linspace(0,10,900);
```

```
N=1-1/2*cos(2*pi*t);
```

plot(t,N,'k'), xlabel('t [s]'), ylabel('N'), title('N fonksiyonunun zamana göre değişimi')

SORU 3) A herhangi bir $m \times n$ boyutlu matris olsun. Aşağıda verilen görevleri sadece tek işlem ile elde ediniz.

- a) **A** matrisinin çift numaralı sütünlarını **B** matrisine atayınız. B=A(:,2:2:end)
- b) A matrisinin tek numaralı satırlarını C matrisine atayınız.C=A(1:2:end,:)
- c) **A** matrisinin her a_{ij} elemanının yerine 1/aij değeri gelen **D** matrisini elde ediniz. D=1./A
- d) A matrisinin her a_{ij} elemanın yerine a_{ij} 'nin karekökünün geldiği E matrisini elde ediniz. sqrt(A)

SORU 4) x=3:0.5:35 vektörünü oluşturunuz ve aşağıdaki fonksiyonu bir for döngüsü veya if akış kontrolü kullanmadan elde ediniz.

$$y(x) = \begin{cases} 2 & E \S er \ x < 6 \\ x - 4 & E \S er \ 6 \le x < 20 \\ 36 - x & x \ge 20 \end{cases}$$

$$y=2.*(x<6)+(x-4).*(6<=x & x<20) + (36-x).*(x<=20)$$

Veya

indx1=x<6; y(indx1)=sin(x(indx1));

indx2=6 <= x & x < 20; y(indx2) = x(indx2) - 4;

indx3=x>=20; y(indx3)=36-x(indx3);

SORU 5) İkinci dereceden doğrusal bir sistem $\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} u(t)$ ve $y(t) = \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ olarak verildiğine göre SIMULINK blok diyagram gösterilimini çiziniz.