Exercise: Analysis of taxi ride data

In this exercise you will use the template notebook we went through at the lecture to make some basic computations and plots for a data set on taxi rides in New York.

Load the libraries you need

```
In [ ]: import os
        import sys
        import matplotlib.pyplot as plt
        import seaborn as sns
        import pandas as pd
        import numpy as np
        from matplotlib_inline.backend_inline import set_matplotlib_formats
        set_matplotlib_formats('retina', 'png')
        sns.set()
        sns.set_style("ticks")
        # scale down size of default plots
        sns.set context("paper")
        import matplotlib as mpl
        scale = 0.8
        d = dict([(k, v*scale) for (k, v) in sns.plotting_context('paper').items(
        d['figure.figsize'] = [5.4, 3.5]
        mpl.rcParams.update(d)
```

Load the data set

Pickup and dropoff are in a fancy date-time format so we exchange them for a simpler duration column for the number of minutes that reach taxi ride takes.

```
import seaborn as sns
rides = sns.load_dataset('taxis')
rides['duration'] = [x.total_seconds()/60 for x in (rides.dropoff - rides
rides = rides[[x for x in rides.columns if x not in ['pickup', 'dropoff']
rides.head()
```

Out[

d	pickup_zone	payment	color	total	tolls	tip	fare	distance	passengers]:
ι	Lenox Hill West	credit card	yellow	12.95	0.0	2.15	7.0	1.60	1	0	
	Upper West Side South	cash	yellow	9.30	0.0	0.00	5.0	0.79	1	1	
	Alphabet City	credit card	yellow	14.16	0.0	2.36	7.5	1.37	1	2	
١	Hudson Sq	credit card	yellow	36.95	0.0	6.15	27.0	7.70	1	3	
١	Midtown East	credit card	yellow	13.40	0.0	1.10	9.0	2.16	3	4	

Exercise 1

Get the pickup_zones of the five taxi rides that took the longest time:

In []:	rides.sort_values(by='duration',					<pre>ascending=False).head(5)</pre>				
Out[]:		passengers	distance	fare	tip	tolls	total	color	payment	
	6053	1	22.17	81.86	0.00	0.0	82.36	green	credit card	Univer
	5567	1	25.51	93.50	0.00	0.0	94.80	green	credit card	
	5648	2	33.46	150.00	0.00	18.9	169.70	green	cash	
	5833	1	12.79	57.00	0.00	0.0	58.80	green	credit card	Queensl
	4218	1	26.92	75.50	23.19	0.0	100.49	yellow	credit card	

Exercise 2

Get the mean fare for each pickup_borough:

Exercise 3

Are rides paid in cash shorter than those paid by credit card? (Note: Just find the mean duration for each payment type and compare them, no statistical test here, although as a bioinformatician you would probably want to do one.)

Exercise 4

In which borrough do taxis most often pick up more than one passenger? (Note: The mean is not the answer here)

Exercise 5

Compute mean tip for all combinations of pickup_borough adn dropoff_borough . It should look like this:

		tip	fare
pickup_borough	dropoff_borough		
Bronx	Bronx	0.095758	14.539091
	Brooklyn	0.000000	54.062500
	Manhattan	0.335600	29.698000
	Queens	0.000000	40.157500
Brooklyn	Bronx	0.000000	58.124000
	Brooklyn	0.629362	11.877589
	Manhattan	2.331493	25.096567
	Queens	1.400769	34.842692
Manhattan	Bronx	0.891818	24.127273
	Brooklyn	3.402026	24.495098
	Manhattan	1.761994	9.727019
	Queens	5.904663	34.623804
	Staten Island	14.165000	44.500000
Queens	Bronx	1.577273	45.772727
	Brooklyn	4.145806	37.018871
	Manhattan	6.194330	36.923839
	Queens	0.843782	12.812178

In []: df = rides[['pickup_borough','dropoff_borough','tip', 'fare']].groupby(by
df

Out[]:			tip	fare
	pickup_borough	dropoff_borough		
	Bronx	Bronx	0.095758	14.539091
		Brooklyn	0.000000	54.062500
		Manhattan	0.335600	29.698000
		Queens	0.000000	40.157500
	Brooklyn	Bronx	0.000000	58.124000
		Brooklyn	0.629362	11.877589
		Manhattan	2.331493	25.096567
		Queens	1.400769	34.842692
	Manhattan	Bronx	0.891818	24.127273
		Brooklyn	3.402026	24.495098
		Manhattan	1.761994	9.727019
		Queens	5.904663	34.623804
		Staten Island	14.165000	44.500000
	Queens	Bronx	1.577273	45.772727
		Brooklyn	4.145806	37.018871
		Manhattan	6.194330	36.923839
		Queens	0.843782	12.812178

Add a new column, <code>generosity</code> , to the dataframe you produced in the previous exercise. It should be <code>tip/fare</code> :

```
In []: df['generosity'] = df.tip/df.fare
    df
```

Out[]:			tip	fare	generosity
	pickup_borough	dropoff_borough			
	Bronx	Bronx	0.095758	14.539091	0.006586
		Brooklyn	0.000000	54.062500	0.000000
		Manhattan	0.335600	29.698000	0.011300
		Queens	0.000000	40.157500	0.000000
	Brooklyn	Bronx	0.000000	58.124000	0.000000
		Brooklyn	0.629362	11.877589	0.052987
		Manhattan	2.331493	25.096567	0.092901
		Queens	1.400769	34.842692	0.040203
	Manhattan	Bronx	0.891818	24.127273	0.036963
		Brooklyn	3.402026	24.495098	0.138886
		Manhattan	1.761994	9.727019	0.181144
		Queens	5.904663	34.623804	0.170538
		Staten Island	14.165000	44.500000	0.318315
	Queens	Bronx	1.577273	45.772727	0.034459
		Brooklyn	4.145806	37.018871	0.111992
		Manhattan	6.194330	36.923839	0.167760
		Queens	0.843782	12.812178	0.065858

Make a barplot (sns.barplot) with these parameters: data=df, x='pickup_borough', y='generosity', hue='dropoff_borough'. Where do generous people live?

```
In [ ]: sns.barplot(data=df, x='pickup_borough', y='generosity', hue='dropoff_bor
Out[ ]: <Axes: xlabel='pickup_borough', ylabel='generosity'>
```


Produce this plot (see the boxplot documentation):

In []: sns.boxplot(data=rides, x='pickup_borough', y='duration', hue='dropoff_bo
Out[]: <Axes: xlabel='pickup_borough', ylabel='duration'>

Make a histogram of the tip for fares starting on Manhattan and ending in Queens:

```
In [ ]: df2 = rides.loc[(rides.dropoff_borough == 'Queens') & (rides.pickup_borousns.histplot(data=df2, x='tip')
```


Exercise 10

Produce this plot, where datapoints are colored by the color of the taxi:


```
In []: g = sns.FacetGrid(data=rides, col="payment", hue='color')
g.map(sns.scatterplot, 'distance', 'duration')
```

Out[]: <seaborn.axisgrid.FacetGrid at 0x14323ac40>

Produce this plot where the color of the datapoints is also determined by the color of the taxi:

In []: g1 = sns.FacetGrid(rides, col='payment', hue='color')
g1.map(sns.histplot,'duration')

Out[]: <seaborn.axisgrid.FacetGrid at 0x143948640>

