## Linkage analysis

Works with only those linkages that can be set up as a succession of fourbars. Linkages having fivebars, such as Klann cannot be analyzed using this script

# Jansens linkage

example14.m



wikipedia



with so many links it is easier to write vectors using joint positions so that  $\mathbf{R}_{AB}$  denotes position of A from B and  $\mathbf{R}_{AB} = -\mathbf{R}_{BA}$ 

$$\mathbf{R}_{AZ} + \mathbf{R}_{BA} + \mathbf{R}_{BY} - \mathbf{R}_{YZ} = 0$$

$$\mathbf{Z}$$

$$\mathbf{A}$$

$$\mathbf{Y}$$

$$\mathbf{R}_{AZ} + \mathbf{R}_{BA} - \mathbf{R}_{BY} - \mathbf{R}_{YZ} = 0$$

$$\mathbf{R}_{AZ} + \mathbf{R}_{CA} - \mathbf{R}_{CY} - \mathbf{R}_{YZ} = 0$$



$$\mathbf{R}_{AZ} + \mathbf{R}_{BA} - \mathbf{R}_{BY} - \mathbf{R}_{YZ} = 0$$

$$\mathbf{R}_{AZ} + \mathbf{R}_{CA} - \mathbf{R}_{CY} - \mathbf{R}_{YZ} = 0$$

$$\mathbf{R}_{\mathrm{BY}} + \mathbf{R}_{\mathrm{DB}} - \mathbf{R}_{\mathrm{DY}} - \mathbf{R}_{\mathrm{YY}} = 0$$





8

$$\mathbf{R}_{AZ} + \mathbf{R}_{BA} - \mathbf{R}_{BY} - \mathbf{R}_{YZ} = 0$$

$$\mathbf{R}_{AZ} + \mathbf{R}_{CA} - \mathbf{R}_{CY} - \mathbf{R}_{YZ} = 0$$

$$\mathbf{R}_{\mathrm{BY}} + \mathbf{R}_{\mathrm{DB}} - \mathbf{R}_{\mathrm{DY}} - \mathbf{R}_{\mathrm{YY}} = 0$$

$$\mathbf{R}_{\mathrm{CY}} + \mathbf{R}_{\mathrm{EC}} - \mathbf{R}_{\mathrm{ED}} - \mathbf{R}_{\mathrm{DY}} = 0$$

$$\mathbf{R}_{EC} + \mathbf{R}_{FE} - \mathbf{R}_{FC} - \mathbf{R}_{CC} = 0$$

10 unknowns, 10 equations!
Since each loop adds 2 new unknowns we can solve them sequentially or all at once numerically (need a good guess to avoid falling into a local minima)



 $\mathbf{R}_{AZ} + \mathbf{R}_{BA} - \mathbf{R}_{BY} - \mathbf{R}_{YZ} = 0$ 

$$\mathbf{R}_{AZ} + \mathbf{R}_{CA} - \mathbf{R}_{CY} - \mathbf{R}_{YZ} = 0$$

$$\mathbf{R}_{\mathrm{BY}} + \mathbf{R}_{\mathrm{DB}} - \mathbf{R}_{\mathrm{DY}} - \mathbf{R}_{\mathrm{YY}} = 0$$

$$\mathbf{R}_{\mathrm{CY}} + \mathbf{R}_{\mathrm{EC}} - \mathbf{R}_{\mathrm{ED}} - \mathbf{R}_{\mathrm{DY}} = 0$$

$$\mathbf{R}_{\mathrm{EC}} + \mathbf{R}_{\mathrm{FE}} - \mathbf{R}_{\mathrm{FC}} - \mathbf{R}_{\mathrm{CC}} = 0$$

Check for open and cross configurations each time until you get the right assembly, try cross for CCW and open for CW

R<sub>YY</sub>=0

The angle of a moving ground should be put as input to the next equation



R<sub>CC</sub>=0

$$\mathbf{R}_F = \mathbf{R}_{FC} + \mathbf{R}_{CA} + \mathbf{R}_{AZ}$$

$$\dot{\mathbf{R}}_F = \dot{\mathbf{R}}_{FC} + \dot{\mathbf{R}}_{CA} + \dot{\mathbf{R}}_{AZ}$$

$$\ddot{\mathbf{R}}_F = \ddot{\mathbf{R}}_{FC} + \ddot{\mathbf{R}}_{CA} + \ddot{\mathbf{R}}_{AZ}$$

Check for open and cross configurations each time until you get the right assembly, try cross for CCW and open for CW

$$\mathbf{R}_{AZ} + \mathbf{R}_{BA} - \mathbf{R}_{BY} - \mathbf{R}_{YZ} = 0$$

$$\mathbf{R}_{AZ} + \mathbf{R}_{CA} - \mathbf{R}_{CY} - \mathbf{R}_{YZ} = 0$$

$$\mathbf{R}_{\mathrm{BY}} + \mathbf{R}_{\mathrm{DB}} - \mathbf{R}_{\mathrm{DY}} - \mathbf{R}_{\mathrm{YY}} = 0$$

$$\mathbf{R}_{\mathrm{CY}} + \mathbf{R}_{\mathrm{EC}} - \mathbf{R}_{\mathrm{ED}} - \mathbf{R}_{\mathrm{DY}} = 0$$

$$\mathbf{R}_{EC} + \mathbf{R}_{FE} - \mathbf{R}_{FC} - \mathbf{R}_{CC} = 0$$

```
% VECTOR LOOP EQUATIONS
% ** note that the vecloop equation MUST be in one of these forms with spa-
% between each position vector, upper case letters and the same exact
% signs. Modify your vectors so that these are satisfied
% RAZ + RBA - RBY - RZY = 0
% RAB + RBA = 0 % when the vectors are opposite to each other
% RAZ - RBA = 0 % when links are extended in the same direction
% for angled links simply use the fourbar loop as if for a ternary link.
% (1) RAZ + RBA - RBY - RZY = 0
% the second argument is 1 for open configuration and 2 for cross
links=solve_vecloop('RAZ + RBA - RBY - RYZ = 0', 2, links);
% ** (2) RAZ + RCA - RCY - RYZ = 0
links=solve_vecloop('RAZ + RCA - RCY - RYZ = 0', 1, links);
% ** (3) RBY + RDB - RDY - RYY = 0
links=solve_vecloop('RBY + RDB - RDY - RYY = 0', 2, links);
% ** (4) RCY + REC - RED - RDY = 0
links=solve_vecloop('RCY + REC - RED - RDY = 0', 1, links);
% ** (5) REC + RFE - RFC - RCC= 0
links=solve_vecloop('REC + RFE - RFC - RCC = 0', 2, links);
```















# Pantograph

example13.m

### Analysis of linkages with > 4 bars

- 1. Draw the kinematic diagram
- 2. Draw the vector loop, showing all the angles
- Identify each loop, taking care that you have no more than 2 unknowns per vector loop.
- 4. Compare the equations with the form for which the formulae have been derived to identify which angles are being output

$$\mathbf{R}_{AZ} + \mathbf{R}_{BA} - \mathbf{R}_{BY} - \mathbf{R}_{YZ} = 0$$

$$\mathbf{R}_{YB} + \mathbf{R}_{BY} = 0$$

$$\mathbf{R}_{DB} - \mathbf{R}_{BA} = 0$$

$$\mathbf{R}_{DB} + \mathbf{R}_{ED} - \mathbf{R}_{EY} - \mathbf{R}_{YB} = 0$$

$$\mathbf{R}_{FE} - \mathbf{R}_{ED} = 0$$



 $\angle YB = \angle BY + \pi$ 

### Analysis of linkages with > 4 bars

- 1. Draw the kinematic diagram
- 2. Draw the vector loop, showing all the angles
- Identify each loop, taking care that you have no more than 2 unknowns per vector loop.
- 4. Compare the equations with the form for which the formulae have been derived to identify which angles are being output



```
\mathbf{R}_{AZ} + \mathbf{R}_{BA} - \mathbf{R}_{BY} - \mathbf{R}_{YZ} = 0
\mathbf{R}_{YB} + \mathbf{R}_{BY} = 0
\mathbf{R}_{DB} - \mathbf{R}_{BA} = 0
\mathbf{R}_{DB} + \mathbf{R}_{ED} - \mathbf{R}_{EY} - \mathbf{R}_{YB} = 0
\mathbf{R}_{FE} - \mathbf{R}_{ED} = 0
```

```
% VECTOR LOOP EQUATIONS
% ** note that the vecloop equation MUST be in this form with spaces in
% between each position vector, upper case letters and the same exact
% signs. Modify your vectors so that these are satisfied
% the second argument is 1 for open configuration and 2 for cross
links=solve_vecloop('RAZ + RBA - RBY - RYZ = 0', 1, links);
links=solve_vecloop('RDB - RBA = 0', 1, links);
links=solve_vecloop('RYB + RBY = 0', 1, links);
links=solve_vecloop('RDB + RED - REY - RYB = 0', 1, links);
links=solve_vecloop('RFE - RED = 0', 1, links);
```