State-Space Models Parameter inference and software

Mattias Villani

Statistiska institutionen Stockholms universitet

Institutionen för datavetenskap Linköpings universitet

Lecture overview

- **E**stimating model parameters
- Bayesian inference for the LGSS model
- Live demo of some R packages

The linear Gaussian state-space (LGSS) model

$$\begin{split} \text{Measurement eq:} \quad & \mathbf{y}_t = \mathbf{C} \mathbf{x}_t + \boldsymbol{\epsilon}_t \\ \text{State eq:} \quad & \boldsymbol{\epsilon}_t \overset{iid}{\sim} \textit{N}\left(\mathbf{0}, \boldsymbol{\Omega}_{\epsilon}\right) \\ \\ \text{State eq:} \quad & \boldsymbol{\epsilon}_t = \mathbf{A} \mathbf{x}_{t-1} + \mathbf{B} \mathbf{u}_t + \boldsymbol{\nu}_t \\ \end{split}$$

- The elements in A, B, C, Ω_{ε} and Ω_{ν} may be unknown.
- Example: time-varying regression with p covariates z_t $(p \times 1)$

$$y_{t} = \mathbf{z}_{t}^{T} \boldsymbol{\beta}_{t} + \boldsymbol{\varepsilon}_{t}, \qquad \boldsymbol{\varepsilon}_{t} \stackrel{iid}{\sim} \boldsymbol{N}(0, \Omega_{\varepsilon})$$

$$\boldsymbol{\beta}_{1t} = \boldsymbol{a}_{1} \cdot \boldsymbol{\beta}_{1,t-1} + \boldsymbol{\nu}_{t} \qquad \boldsymbol{\nu}_{t} \stackrel{iid}{\sim} \boldsymbol{N}(0, \Omega_{\nu})$$

$$\vdots$$

$$\boldsymbol{\beta}_{pt} = \boldsymbol{a}_{p} \cdot \boldsymbol{\beta}_{p,t-1} + \boldsymbol{\nu}_{t} \qquad \boldsymbol{\nu}_{t} \stackrel{iid}{\sim} \boldsymbol{N}(0, \Omega_{\nu})$$

- ▶ Here $C = \mathbf{z}_t^T$, $\mathbf{x}_t = \beta_t$ and $\mathbf{A} = \text{Diag}(a_1, ..., a_p)$.
- The state space model's matrices (A etc) are parametrized by $\theta = (\theta_1, ..., \theta_s)$. To be explicit: $A(\theta)$, $B(\theta)$, ..., $\Omega_{\nu}(\theta)$.

- Two options: Maximum likelihood estimate (MLE) or Bayesian.
- Likelihood function

$$\rho(y_1, ..., y_T | \theta) = \prod_{t=1}^{T} \rho(y_t | y_{1:t-1}, \theta)$$

How compute $p(y_t|y_{1:t-1},\theta)$? The trick: i) condition on x_t , ii) exploit conditional independencies, iii) get rid of x_t by integrating it out:

$$p(y_t|y_{1:t-1}, \theta) = \int p(y_t|y_{1:t-1}, x_t, \theta) p(x_t|y_{1:t-1}, \theta) dx_t$$

=
$$\int p(y_t|x_t, \theta) p(x_t|y_{1:t-1}, \theta) dx_t$$

- Note:
 - $p(x_t|y_{1:t-1},\theta) = \overline{bel}(x_t)$ is Gaussian
 - $\triangleright p(y_t|x_t,\theta)$ is Gaussian
 - $ightharpoonup p\left(\mathbf{y}_{t}|\mathbf{y}_{1:t-1}, \theta\right)$ is then also Gaussian [not obvious, but

- Remember: we are looking for the Gaussian $p(y_t|y_{1:t-1}, \theta)$.
- Mean by law of iterated expectations (E = EE)

$$\mathbb{E}\left(y_{t}|y_{1:t-1},\theta\right) = C\mathbb{E}\left(x_{t}|y_{1:t-1},\theta\right) = C\bar{\mu}_{t}$$

lacksquare Variance by conditional variance formula ($V=\mathit{EV}+\mathit{VE}$)

$$\begin{split} \mathbb{V}\left(\mathbf{y}_{t}|\mathbf{y}_{1:t-1},\theta\right) &= \mathbb{E}_{\mathbf{x}_{t}|\mathbf{y}_{1:t-1},\theta}\left[\mathbb{V}\left(\mathbf{y}_{t}|\mathbf{x}_{t},\mathbf{y}_{1:t-1},\theta\right)\right] \\ &+ \mathbb{V}_{\mathbf{x}_{t}|\mathbf{y}_{1:t-1},\theta}\left[\mathbb{E}\left(\mathbf{y}_{t}|\mathbf{x}_{t},\mathbf{y}_{1:t-1},\theta\right)\right] \\ &= \Omega_{\varepsilon} + \mathbb{V}_{\mathbf{x}_{t}|\mathbf{y}_{1:t-1},\theta}\left(\mathsf{C}\mathbf{x}_{t}\right) = \Omega_{\varepsilon} + \mathsf{C}\bar{\Sigma}_{t}\mathsf{C}^{T} \end{split}$$

In summary, the likelihood function is

$$p(\mathbf{y}_{1},...,\mathbf{y}_{T}|\theta) = \prod_{t=1}^{T} N\left(\mathbf{y}_{t}|\mathsf{C}\bar{\mu}_{t},\mathsf{C}\bar{\Sigma}_{t}\mathsf{C}^{T} + \Omega_{\varepsilon}\right)$$

where C, Ω_{ε} , $\bar{\mu}_t$ and $\bar{\Sigma}_t$ all depend on θ generally.

- The Kalman filter gives us everything we need for $p(y_1, ..., y_T | \theta)!$
- Numerical optimization (e.g. optim in R) to find MLE $\hat{\theta}_{MLE}$.
- Approximate $\mathbb{V}\left(\hat{\theta}_{\textit{MLE}}\right)$ from the numerical Hessian.
- Sampling from the posterior distribution

$$p(\theta|y_1, ..., y_T) \propto p(y_1, ..., y_T|\theta) p(\theta)$$

by Metropolis-Hastings.

State smoothing

Filtering (real time):

$$p(\mathbf{x}_t|\mathbf{y}_{1:t})$$

■ Smoothing (retrospective):

$$p(\mathbf{x}_t|\mathbf{y}_{1:T})$$

- Start at the end t = T. We already have $p(x_T|y_{1:T})$ from the last iteration of the Kalman filter. Work yourself backward in time to obtain $p(x_{T-1}|y_{1:T}), ..., p(x_1|y_{1:T})$.
- Note: the end result are the **marginal** densities at any t, $p(x_t|y_{1:T})$. More work to do if one also wants $p(x_{t_1}, x_{t_2}|y_{1:T})$ for some times t_1 and t_2 .

State smoothing

- Algorithm Smoothing($s_{t+1}, S_{t+1}, \mu_t, \Sigma_t, \bar{\mu}_{t+1}, \bar{\Sigma}_{t+1}$)
 - Mean update:

$$s_t = \mu_t + \Sigma_t A^T \bar{\Sigma}_{t+1}^{-1} (s_{t+1} - \bar{\mu}_{t+1})$$

Covariance update:

$$S_t = \Sigma_t + \Sigma_t A^T \bar{\Sigma}_{t+1}^{-1} \left(S_{t+1} - \bar{\Sigma}_{t+1} \right) \bar{\Sigma}_{t+1}^{-1} A \Sigma_t$$

Return s_t, S_t

Bayesian inference for the state

- How to sample from posterior of the state $p(x_1, ..., x_T | y_{1:T}, \theta)$?
- Simulate the state trajectory **backward in time** starting with x_T :

$$p(x_{1:T}|y_{1:T},\theta) = p(x_T|y_{1:T},\theta)p(x_{T-1}|x_T,y_{1:T},\theta)\cdots p(x_1|x_{T-1:2},y_{1:T},\theta)$$

- Forward Filtering Backward Sampling (FFBS):
 - ▶ Run the Kalman filter forward in time t = 1, ..., T.
 - ▶ Simulate x_T from $N(\mu_T, \Sigma_T)$.
 - ▶ Simulate states backward in time t = T 1, T 2, ..., 1:

$$x_t | x_{t+1:T}, y_{1:T}, \theta \sim N(h_t, H_t)$$

$$h_t = \mu_t + \Sigma_t A^T \bar{\Sigma}_{t+1}^{-1} (\mathbf{x}_{t+1} - \bar{\mu}_{t+1})$$

and

$$\mathsf{H}_t = \Sigma_t - \Sigma_t \mathsf{A}^T \bar{\Sigma}_{t+1}^{-1} \mathsf{A} \Sigma_t.$$

- Note: FFBS distributions conditions on x_{t+1:T}.
- So the FFBS gives the *joint* (smoothing) posterior for $x_{1:T}$,

dlm package in R

The linear Gaussian state-space (LGSS) model

$$\begin{split} \text{Measurement eq:} \quad & \mathbf{y}_t = \mathbf{C}\mathbf{x}_t + \boldsymbol{\varepsilon}_t \\ \text{State eq:} \quad & \boldsymbol{\varepsilon}_t \overset{iid}{\sim} \textit{N}\left(\mathbf{0}, \Omega_{\boldsymbol{\varepsilon}}\right) \\ \text{State eq:} \quad & \boldsymbol{v}_t \overset{iid}{\sim} \textit{N}\left(\mathbf{0}, \Omega_{\boldsymbol{\nu}}\right) \end{split}$$

In the dlm package

$$\begin{array}{ll} \text{Measurement eq:} & Y_t = F\theta_t + v_t \\ & \qquad \qquad \epsilon_t \stackrel{\textit{iid}}{\sim} \textit{N}\left(0, \textit{V}\right) \\ \\ \text{State eq:} & \quad \theta_t = G\theta_{t-1} + w_t \\ & \qquad \qquad v_t \stackrel{\textit{iid}}{\sim} \textit{N}\left(0, \textit{W}\right) \\ \end{array}$$

- θ_t is the state vector in dlm. Y_t are the measurements (a vector).
- The dlm notation goes back to West and Harrison's yellow DLM bible.
- The state is an unknown, so it is a greek letter.
- Measurements is a random variable so it is a capital letter.
- \blacksquare dlm can also handle when F, G, V, W vary of over time.

dlm package in R

DLM

$$\begin{array}{ll} \text{Measurement eq:} \quad Y_t = F\theta_t + v_t & \qquad \epsilon_t \stackrel{\textit{iid}}{\sim} \textit{N}\left(0,\textit{V}\right) \\ \\ \text{State eq:} \quad \theta_t = G\theta_{t-1} + w_t & \qquad \nu_t \stackrel{\textit{iid}}{\sim} \textit{N}\left(0,\textit{W}\right) \end{array}$$

- Main functions:
 - ▶ dlm creates the dlm model object
 - dlmFilter Kalman filtering
 - dlmSmooth State smoothing
 - dlmLL computes the log-likelihood