Markov Chains

06 November, 2022

1 Basics

1.1 Chapman-Kolmogorov (CK) equations

The **n-step** transition probability is

$$p_{ij}(n) = \Pr(X_{m+n} = j | X_m = i)$$

1.2 First passage and hitting times

The first passage time is

$$T_j = \min\{n \in \mathbb{N} : X_n = j\}$$

In other words, $\{T_j = n\} = \{X_n = j, X_{n-1} \neq j, \dots, X_1 \neq j\}$, if $X_n \neq j, \forall n \in \mathbb{N}$, then $T_j = \infty$. The first passage probability is

$$f_{ij}(n) = \Pr(T_i = n | X_0 = i), n \in \mathbb{N}_0$$

from which the hitting probability follows

$$f_{ij} = \Pr(T_j < \infty | X_0 = i) = \sum_{n=0}^{\infty} f_{ij}(n)$$

With the special case being $f_{ij}(0) = 0$.

1.3 Generating Functions of Markov Chain

Recall the probability generating function

$$G_X(s) = \sum_{x=0}^{\infty} s^x \Pr(X = x)$$

where this holds on the support

$$\mathcal{S}_{\mathcal{X}} = \left\{ s \in \mathbb{R} : \sum_{x=0}^{\infty} |s|^x \Pr(X = x) < \infty \right\}$$

The generating functions here are

$$G_{p_{ij}(n)} = \sum_{n=0}^{\infty} p_{ij}(n)s^n$$

$$G_{f_{ij}(n)} = \sum_{n=0}^{\infty} f_{ij}(n)s^n$$

By arguing using equating coefficients and an identity, we have a theorem

$$G_{p_{ij}(n)} = \delta_{ij} + G_{f_{ij}(n)}(s)G_{p_{ij}(n)}$$

The identity used is

$$p_{ij}(n) = \sum_{l=1}^{n} f_{ij}(l) p_{jj}(n-l)$$

2 Recurrence and Transience

A state j is **recurrent** if and only if

$$\sum_{n=1}^{\infty} p_{jj}(n) = \infty$$

A state j is **transient** if and only if

$$\sum_{n=1}^{\infty} p_{jj}(n) < \infty$$

Examples: Examples of transient, irreducible chains

The number of periods that the chain is in state j (or number of visits to j) is

$$N_j = \sum_{n=1}^{\infty} I_n(j)$$

where $I_n(j)$ is the indicator function taking value 1 if $X_n = j$ and 0 otherwise.

The **expected number of visits** to state j given $X_0 = j$ is

$$\mathbb{E}[N_j|X_0=j] = \sum_{n=0}^{\infty} p_{jj}(n)$$

proof using generating functions:

Taking $s \to 1$ and using Abel's theorem, we can deduce...

2.1 Properties of recurrent/transient states

Theorem (Number of visits is geometric for transient states)

If j is transient, then

$$\Pr(N_j = n | X_0 = j) = f_{jj}^{n-1} (1 - f_{jj}), n \in \mathbb{N}$$

Let $i \neq j$, then

$$\Pr(N_j = n | X_0 = i) = \begin{cases} 1 - f_{ij} & n = 0\\ f_{ij} f_{jj}^{n-1} (1 - f_{jj}) & n \ge 1 \end{cases}$$

Intuition is that the chain visits j for the first time and returns to it for n-1 times, then leaves it. Therefore, it follows that for $i \neq j$,

$$\mathbb{E}[N_j|X_0=i] = \frac{f_{ij}}{1-f_{ij}}$$

and

$$\mathbb{E}[N_j|X_0=j] = \frac{1}{1-f_{jj}}$$

Theorem(Unlikely to visit a transient state)

If j is transient, then

$$\lim_{n \to \infty} p_{ij}(n) = 0, \forall j \in E$$

2.2 Mean recurrence time, null and positive recurrence

The mean recurrence time μ_j is

$$\mu_j = \mathbb{E}[T_j | X_0 = j] = \sum_{n=1}^{\infty} n f_{jj}(n)$$

where we recall that $\{T_j = n\} = \{X_n = j, X_{n-1} \neq j, \cdots, X_1 \neq j\}.$

Similarly, we can define the mean first passage time

$$\mu_{ij} = \mathbb{E}[T_j | X_0 = i] = \sum_{n=1}^{\infty} n f_{ij}(n)$$

those expectations can be finite or infinite; for transient states, they must be infinite.

Theorem(mean first passage time)

For a recurrent state j, it is called **null recurrent** if $\mu_j = \infty$ and **positive recurrent** if $\mu_j < \infty$.

Theorem (unlikely to visit null recurrent state) If j is null recurrent, then

$$\lim_{n \to \infty} p_{jj}(n) = 0, \forall j \in E$$

In addition,

$$\lim_{n \to \infty} p_{ij}(n) = 0, \forall i \neq j \in E$$

2.3 Examples

3 Aperiodicity and Ergodicity

The **period** of a state j is

$$d(j) = \gcd\{n : p_{ij}(n) > 0\}$$

It is not necessarily true that $p_{jj}(d(j)) > 0$ (cf. Notes Pg. 36).

A state is **ergodic** if it is positive recurrent and aperiodic.

4 Communicating classes

- We say that a state j is accessible from state i if the chain can reach j at some time, written as $i \to j$.
- Two states i and j are **communicating** if there exists a state k such that $i \to k$ and $k \to j$, we write $i \leftrightarrow j$; this is an **equivalence relation**.
- If $i \neq j$, then $i \rightarrow j$ if and only if $f_{ij} > 0$.

4.1 Properties preserved by Communicating Classes

- Same period
- Same transience/recurrence
- Null recurrence

For a set of states C:

- C is **closed** if $\forall i \in C, j \notin C, p_{ij} = 0$
- C is **irreducible** if all states in the set communicate with each other

Therefore, an irreducible set of states share the same properties described above.

Theorem (Recurrence and closed) If C is a communicating class of recurrent states, then C is closed.

Theorem (Stochastic matrix on closed states) The stochastic matrix P restricted to a closed set of closed states C is still a stochastic matrix.

4.2 Decomposition of Chains

The state space can be partitioned into communicating classes.

$$E = T \cup \left(\bigcup_{i} C_{i}\right)$$

where T is the set of transient states and C_i 's are irreducible closed sets of recurrent states.

4.3 Class Properties

The classes refer to communicating classes.

Theorem (Finite Chains have recurrent) When state space is finite, at least one state is recurrent and all recurrent states are positive

Remark This combined with later results on stationarity makes a chain with finite state space particularly nice.

Remark It follows that there are no null recurrent states in a finite state space.

Theorem (Finite and closed) If C is a finite, closed communicating class, then all states are positive recurrent.

Communicating class properties

Type of Class	Finite	Infinite
Closed Not closed	positive recurrent transient	positive/null recurrent, transient transient

5 Gambler's Ruin

6 Stationarity

We are interested in the equilibrium states of a chain

- A distribution is a row vector λ with $\Sigma_j \lambda_j = 1$
- If $\lambda P = \lambda$ then it is called *invariant*

•

6.1 Stationary distributions of irreducible chains

Theorem Every irreducible chain has a stationary distribution π if and only if all states are positive recurrent - π is unique - $\pi = \mu_i^{-1}$ the inverse of mean recurrence time

We first have some lemmas:

$$l_{ji}(n) = \Pr(X_n = i, T_j \ge n | X_0 = j)$$

being the probability that the chain reaches i in n steps without returning to j Lemma (Decomposing the first hitting)

$$f_{jj}(m+n) = \sum_{i \in E, i \neq j} l_{ji}(m) f_{ij}(n)$$

from which $f_{jj}(m+n) \ge l_{ji}(m)f_{ij}(n)$ follows

Lemma (Formula for hitting) We also have the following recurrence relation for $l_{ii}(n+1)$

$$l_{ji}(n+1) = \sum_{r \in E, r \neq j} p_{ri} l_{jr}(n)$$

with $l_{ji}(1) = p_{ji}$.

Lemma (Existence): A positive recurrent chain has a stationary distribution.

Proof: (constructive)

- (Step1 Construction) Let $N_i(j)$ be the number of visits to state i before visiting state j (again); the sum of such numbers over i is equal to the hitting time T_i
- Define $\rho_i(j)$ to be the expected number of visits to the state *i* between two successive visits to state *j* (in this step the **recurrence** of the chain is used, as the T_j is finite with probability 1)

$$\rho_i(j) = \mathbb{E}[N_i(j)|X_0 = j]$$

$$= \sum_n \Pr(X_n = i, T_j \ge n | X_0 = j)$$

$$= \sum_n l_{ji}(n)$$

• Now the mean hitting time can be computed as

$$\mu_j = \mathbb{E}\left[\sum_i N_i(j)|X_0 = j\right]$$
$$= \sum_i \rho_i(j)$$

- which can be written as sum of $\rho_i(j)$ by Tonelli and linearity of conditional expectation
- (Step2 Finiteness) Use a lemma to bound $\rho_i(j)$ so it's finite
- Namely write $\rho_i(j) = \sum_n l_{ji}(n)$ and bound using the fact that the chain is irreducible, so there exists $f_{ij}(n^*) > 0$, so $f_{jj}(m+n^*) \ge l_{ji}(m)f_{ij}(n^*)$
- (Step3 Stationarity) Use a recurrence to show

$$\rho_i(j) = \sum_n l_{ji}(n)$$

$$= p_{ji} + \sum_{n=2} \sum_{r,r\neq j} p_{ri} l_{jr}(n-1)$$

$$= p_{ji} \rho_j(j) + \sum_{n=1} \sum_{r\neq j} p_{ri} l_{jr}(n)$$

$$= p_{ji} \rho_j(j) + \sum_{r,r\neq j} p_{ri} \sum_{n=1} l_{jr}(n)$$

$$= \sum_r \rho_r(j) p_{ri}$$

- which uses the fact that $\rho_i(j) = 1$
- This $\rho_i(j)$ does not necessarily give a probability vector when the chain is not positive recurrent.
- Now if the chain is positive recurrent, we have μ_i finite for every j, we have

$$\pi_i = \frac{\rho_i(j)}{\mu_i}$$

Therefore, we conclude that

Every **irreducible**, **recurrent** chain has a positive solution to the equation $\mathbf{x} = \mathbf{x}P$, which is unique up to a multiplicative constant (see PS2 for proof).

Moreover, the chain is

- positive recurrent if $\sum_i x_i < \infty$
- null recurrent if $\sum_i x_i = \infty$

Also, from the proof, we conclude 3 identities:

(Sum of expected visits)

$$\mu_j = \sum_i \rho_i(j)$$

(Sum of hitting prob)

$$\rho_i(j) = \sum_n l_{ji}(n)$$

(Sum of number of visits)

$$T_j = \sum_i N_i(j)$$

Lemma (Alternative expectation) T is a nonnegative integer-valued random variable and A is an event with Pr(A) > 0. Then

$$\mathbb{E}[T|A] = \sum_{n=0}^{\infty} \Pr(T \ge n|A)$$

Lemma If a stationary distribution exists, then the chain is positive recurrent and the distribution must be given by $\pi_i = \mu_i^{-1}$

proof: ...

In a **reducible chain**, the following results are useful:

- $\pi_i = 0$ for stationary distribution π if i is transient or null recurrent, so we can only compute the positive recurrent states and set the rest of π_i to 0
- A discrete time Markov chain with **finite** state space always has at least one stationary distribution.
- This distribution is unique unless it has two or more closed communicating classes.
- Every stationary distribution is a **linear combination** of the stationary distributions of the closed communicating classes, with coefficients adding up to 1.

6.2 Limiting Distribution

A distribution π is a **limiting distribution** of a chain if π satisfies

$$\lim_{n\to\infty} p_{ij}(n) = \pi_j$$

Theorem For an irreducible, aperiodic chain

$$\lim_{n \to \infty} p_{ij}(n) = \frac{1}{\mu_j}$$

Example of Chain with no limiting distribution

6.3 Ergodic Theorem

The number of visits to i before time n is defined as

$$V_i(n) = \sum_{k=0}^{n-1} \mathbb{1}_{\{X_k = i\}}$$

Theorem If a chain is irreducible, $V_i(n)/n$ denotes the proportion of time the chain spent in state i before time n

$$\Pr\left(\frac{V_i(n)}{n} \to \frac{1}{\mu_j} \text{ as } n \to \infty\right) = 1$$

6.4 Summary of properties of irreducible chains

7 Time reversibility

In this section, we assume the Markov chains are **irreducible and positive recurrent**, therefore there is a unique stationary distribution π .

The **reversed chain** for some $N \in \mathbb{N}$ is defined as

$$Y_n = X_{N-n}$$

Theorem (Reversed still Markov) The reversed chain is a Markov chain

$$\Pr(Y_{n+1} = j | Y_n = i) = \frac{\pi_j}{\pi_i} p_{ji}$$

A Markov chain (X_n) is called **time-reversible** if its transition matrix is the same as the transition matrix of its reversed chain.

Theorem A Markov chain is time-reversible if and only if

$$\pi_i p_{ij} = \pi_j p_{ji}$$

this condition is called **detailed balance**.

Theorem (Time reversible and positive recurrent) For an irreducible chain, if there is a vector π such that the condition in the first theorem holds for all i, j, then the chain is time-reversible and positive recurrent with stationary distribution π .