1st VALSE Workshop on Methods and Technologies for Looking At People (MATLAP)

面向人体姿态行为理解的深度学习方法 Deeply Understanding Human Poses and Actions in the Wild

乔宇

中国科学院深圳先进技术研究院 2018年4月22日

深度学习方法推动计算机视觉技术快速发展

深度神经网络已被成功用于物体识别、场景分类、行为识别等视觉核心任务,极大地推动了计算机视觉的发展

深度学习方法的兴起

深度神经网络已经在语音、视觉、自然语言处理等领域取得了巨大的成功,在学术界和工业界都引起了极大关注。

行为和姿态识别

- The goal of human action recognition is to automatically detect and classify ongoing activities from an input video (i.e. a sequence of images frames).
 - Human vision system is very effective in perceiving and predicting actions through visual information.
 - A basic problem in computer vision, with wide applications.

Action recognition

Pose estimation

应用: 互联网和监控视频理解

互联网 图像 视频

2500亿张照片,视频日播放80亿次

日上传图片10亿张,视频播放20亿次

监控 视频 深圳、广州等大型城市,市内监控探头总数超40万。 以720p计算,**每秒产生数据>4T**。

"图像视频大数据是人工智能的突破口, 是信息产业新的增长点。"

2018.4

更多应用

Yu QIAO

Human Motion Analysis

4/ game interraces 6

挑战-数据

- > High dimension
- ➤ Large variation and complexity

Variation in Appearance

Variation in Pose

Occlusion & clutter

Adapted from http://luthuli.cs.uiuc.edu/~daf/tutorial.html

Yu QIAO 7 2018. 4

挑战-标定

Huge number of categories

From UCF101

Yu QIAO Bounding box Pose 2018. 4

行为数据库

Action recognition "in the lab": KTH, Weizmann etc. Action recognition "in TV, Moive": UCF Sports, Hollywood etc. Action recognition "in the wild": Olympic, HMDB51, UCF101 etc.

视频样例

KTH In the lab

KTH-Boxing

KTH-Jogging

Hollywood-Talking

Hollywood-Driving

Movie

Basketball

2018.4 Bowling

视频样例

HMDB51

chewing

Brushing hair

UCF101

Eye makeup

Baby crawling

Youtube-8M 2017

https://research.google.com/youtube8m/

更多大规模视频数据库

- 306,245 videos in total
- 400 action classes
- Each clip lasts around 10s

- over 1,000,000 videos
- 339 Moment classes
- 3-second video

Listen to, Watch

Carry/Hold, Talk to; Right: Sit, Write

Left: Sit, Ride, Talk to; Right: Sit, Drive,

AVA Dataset

- 80 atomic actions
- 192 clips (15 mins per clip)
- 740k annotations

2018.4 Yu QIAO

课题组开展的工作

从视频行为理解和识别是计算机视觉的基本和热点问题,在监控、互联网等有着广泛的应用。在CVPR,ICCV,IJCV,TIP等重要视觉会议和期刊发表了20多篇论文,其中2篇论文分别被ICCV和CVPR录用为Oral。

早期视频行为识别DL方法

Sports-1M Dataset

[Karpathy et al., CVPR, 2014]

Two Stream-CNN

[Karen NIPS, 2014]

C3D: 3D VGGNet

															_
Conv1a	-17	Conv2a	M	Conv3a	Conv3b	m	Conv4a	Conv4b	4	Conv5a	Conv5h	Ы	fr6	fc7	X
Conv1a 64	0	130	00	2011	25/	00	F13	F12	00	F12	C13	og,	1000	1000	E E
04	ĭL	128	الثال	250	200	ľÏ	312	312	ľ	312	512	ľÜ	4090	4090	20

Figure 3. C3D architecture. C3D net has 8 convolution, 5 max-pooling, and 2 fully connected layers, followed by a softmax output layer. All 3D convolution kernels are $3 \times 3 \times 3$ with strike 1 in both spatial and temporal dimensions. Number of filters are denoted in each box. The 3D pooling layers are denoted from pool 1 to pool 5. All pooling kernels are $2 \times 2 \times 2$, except for pool 1 is $1 \times 2 \times 2$. Each fully connected layer has 4006 output units.

[Tran et al. CVPR 2015]

在UCF101的表现并没有明显好于非传统方法

工作1:轨迹池化卷积特征TDD(CVPR15)

Limin Wang, Yu Qiao, Xiaoou Tang "Action Recognition with Trajectory-Pooled Deep-Convolutional Descriptors", Proc. Int. Conf. Computer Vision and Pattern Recognition (CVPR), 2015 (430引用)

TDD的框架

Trajectory-pooled deep convolutional descriptor (TDD) 特征结合了传统方法的轨迹跟踪和深度学习方法的卷积特征提取。

沿着运动轨迹对特征进行编码

TDD的性能

第一个在UCF和HMDB上全面超越传统浅层模型的深度学习方法。

Algorithm	HMDB51	UCF101
HOG [31, 32]	40.2%	72.4%
HOF [31, 32]	48.9%	76.0%
MBH [31, 32]	52.1%	80.8%
HOF+MBH [31, 32]	54.7%	82.2%
iDT [31, 32]	57.2%	84.7%
Spatial net [24]	40.5%	73.0%
Temporal net [24]	54.6%	83.7%
Two-stream ConvNets [24]	59.4%	88.0%
Spatial conv4	48.5%	81.9%
Spatial conv5	47.2%	80.9%
Spatial conv4 and conv5	50.0%	82.8%
Temporal conv3	54.5%	81.7%
Temporal conv4	51.2%	80.1%
Temporal conv3 and conv4	54.9%	82.2%
TDD	63.2%	90.3%
TDD and iDT	65.9%	91.5%

Yu QIAO 2018. 4

工作2:深度时序分割模型TSN (ECCV 16)

如何对视频序列进行建模和深度学习?

核心问题:视频的数据量大,特征维度很高,但深度学习的训练 受制于显存和SGD算法。

Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao et al, "Temporal Segment Networks: Towards Good Practices for Deep Action Recognition," Proc. European Conference Computer Vision (ECCV), 2016 (260引用)

2018.4 Yu QIAO

TSN框架

From Y. Xiong 2016

TSN的性能评价

ActivityNet 2016

200个类别,648小时视频,10k训练,5k测试

http://activity-net.org/challenges/2016/

在24个队中排名第一。

Validation Set	mAp	Top-3 Acc.			
Visual	90.4%	95.2%			
Audio	15.2%	29.1%			
Visual + Audio	90.9%	95.6%			
Testing Set	mAP	Top-3 Acc.			
Visual CNN (Single)	91.2%	95.6%			
Final Ensemble	93.2%	96.4%			

工作3: 递归姿态注意网络RPAN(ICCV17 Oral)

提出姿态注意机制RPAN对行为的动态过程进行建模。

- 把行为识别和姿态估计两个任务进行结合。
- 利用姿态的变化,引导递归神经网络对行为的动态过程进行建模。

2018.4

RPAN的性能

State-of-the-art	Authors	Year	Sub-JHMDB	PennAction
Dense+Pose	H. Jhuang, et al	2013	52.9	-
STIP	W. Zhang, et al	2013	-	82.9
Action Bank	W. Zhang, et al	2013	-	83.9
MST	J. Wang, et al	2014	45.3	74.0
AOG	B. X. Nie, et al	2015	61.2	85.5
P-CNN	G. Cheron et al	2015	66.8	-
Hierarchical	I. Lillo et al	2016	77.5	-
C3D	C. Cao, et al	2016	-	86.0
JDD	C. Cao, et al	2016	77.7	87.4
idt-fv	U. Iqbal et al	2017	60.9	92.0
Pose+ idt-fv	U. Iqbal et al	2017	74.6	92.9
Our RPAN			78.6	97.4

RPAN用于姿态估计

工作4:从静态图像中估计运动(CVPR18)

Humans can classify new action categories after seeing few images:

- 1. Comparing appearance similarities between images on hand
- 2. Recalling importance motion cues from relevant action videos in memory

Lei Zhou Y Wang, Yu Qiao., Temporal Hallucinating for Action Recognition with Few Still Images, CVPR 2018

Hybrid Video Memory (HVM) Machine

- Temporal Memory Module
 - 1. Hallucinating temporal features for still images
 - 2. Predicting action labels by hallucinated features
- Spatial Memory Module
 - 1. Predicting action labels by spatial features
 - 2. Spatial and temporal prediction are complementary
- Memory Selection Module: most-relevant videos as memory

Temporal Hallucinating

Temporal Predicting

实验结果

1-training-image per category

Approaches	WEB101	VOC	DIFF20	
KNN	26.1	38.3	55.7	
SVM	22.3	32.0	54.2	
TGPN [36]	15.5	30.5	35.2	
TSN [37]	26.1	40.3	56.3	
R*CNN [8]	n/a	28.3	n/a	
KV-MemNNs [21]	24.4	39.5	52.1	
Matching Network [34]	26.6	39.9	56.7	
Our HVM	35.4	42.2	60.2	

模型和代码公开

场景理解与分类

- •MR-CNNs (2nd in scene classification task ImageNet 2016, 1st in LSUN 2016)
- •Weakly Supervised PatchNets (Top performance in MIT Indoor67 and SUN397)

行为识别和检测

- •Temporal Segment Networks (NO1 in ActivityNet 2016)
- •MV-CNNS(Speed:300帧/s)
- •Trajectory-Pooled Deep-Convolutional Descriptors (Top performance in UCF101 and HMDB51) 人脸检测与识别
- •MJ-CNN face detection (top performance in FDDB & WIDE)
- •HFA-CNN face recognition (single model 99% in LFW)

场景文字检测与识别

•Connectionist Text Proposal Network for Scene Text Detection (Top performance in ICDAR)

下载地址

http://mmlab.siat.ac.cn/yuqiao/Codes.html

谢谢!

A&Q

敬请批评指正