

Vectors and scalars are both quantities (amounts of something)

Vectors

Have magnitude (size) and direction

Examples:

(magnitude) (Direction)

5 meters east

- · Displacement
- Force
- · Velocity
- Acceleration
- Momentum

Scalars

Have magnitude (size) and NO direction

Examples:

(magnitude)

5 meters

- · Length
- Area
- Temperature
- Mass
- Energy

Finding the Angle of a Vector

Example: You start swimming straight across a river at 3 m/s but the river's current pulls you downstream at 5 m/s. What velocity do you have in total? What direction do you move in?

https://www.physicsclassroom.com/Physics-Interactives/Vectors-and-Projectiles/Riverboat-Simulator/Riverboat-Simulator-Interactive

https://www.physicsclassroom.com

Drawing a Vector

Vectors are quantities that have both magnitude (size) and direction. To show their magnitude and direction, we draw vectors as arrows.

Adding Vectors:

Check for understanding

Labeling Vectors

The symbol we use for labeling vectors is a letter with an arrow above it.

The same letter without an arrow above it means the scalar magnitude of that vector

= 10 meters

X and **Y** Components:

All vectors have an x-component and a y-component

X-component: how far in the horizontal direction the vector travels

Y-Component: how far in the vertical direction the vector travels

https://www.physicsclassroom.com/Physics-Interactives/Vectors-and-Projectiles/Vector-Addition/Vector-Addition-Interactive

Finding X and Y Components Using Trig

All x and y components form right triangles with the vectors of which they are components, so we can find their values using trig.

https://www.youtube.com/watch?v=GjgHAff_Oio&list=PLeveV E-rwOyLM5yS2-uMLPxKBIffiG8MS&index=6

https://www.physicsclassroom.com/Physics-Interactives/Vectors-and-Projectiles/Riverboat-Simulator/Riverboat-Simulator-Interactive

Finding the Angle of a Vector

After adding two vectors that point up, down, left, or right together, you need to find the angle. Vectors communicate magnitude AND direction, so the direction of the sum of vectors matters a lot.

Because the simple vectors we're adding point up, down, left, and right, they form right triangles with their resultants, so we can use trig to find the angles of the vectors.

$$+6$$
 = 6

Adding Vectors Using X and Y Components:

$$\Sigma x = R_x$$
 $\Sigma y = R_y$

Adding Vectors Using X and Y Components:

$$\Sigma x = R_x \quad \Sigma y = R_y$$

$$R = \sqrt{\Sigma x^2 + \Sigma y^2}$$

$$\theta = \operatorname{Tan}^{-1}(\frac{\Sigma y}{\Sigma x})$$

$$\mathbf{A}_{\mathsf{x}}$$

https://www.physicsclassroom.com/Physics-Interactives/Vectors-and-Projectiles/Vector-Guessing-Game/Vector-Guessing-Game-Interactive

Adding Vectors Using X and Y Components:

$$\Sigma x = R_x \quad \Sigma y = R_y$$

$$R = \sqrt{\Sigma x^2 + \Sigma y^2}$$

$$\theta = \operatorname{Tan}^{-1}(\frac{\Sigma y}{\Sigma x})$$

https://www.youtube.com/watch?v=2jv4REHqKI0&list=PLeveV E-rwOyLM5yS2-uMLPxKBIffiG8MS&index=7

Adding Vectors Using X and Y Components:

$$\Sigma x = R_x \quad \Sigma y = R_y$$

$$R = \sqrt{\Sigma x^2 + \Sigma y^2}$$

$$\theta = \operatorname{Tan}^{-1}(\frac{\Sigma y}{\Sigma x})$$

$$B_x$$
___ B_y ___

Finding the Angle of a Vector

$$Sin^{-1}(\frac{\text{Length of opposite side}}{\text{Length of hypotenuse}}) = \Theta$$

https://www.youtube.com/watch?v=D_4WG6WO_NE&list=<u>PLe</u> <u>veVE-rwOyLM5yS2-uMLPxKBIffiG8MS</u>&index=4

Fonction trigonométrique	สูตร Excel Fonction Excel
Sin(x)	=SIN(radians)
Cos(x)	=COS(radians)
Tan(x)	=TAN(radians)
ArcSin(x)	=ASIN(valeur)
arcCos(x)	=ACOS(valeur)
arcTan(x)	=ATAN(valeur)

- 24	Α	В	С	D	E	F
48	Angle(rd.)	0	π/6	π/4	π/3	π/2
49	Radians	-	0,5236	0,7854	1,0472	1,5708
50	Degrés	7	30,00	45,00	60,00	90,00
51	Sinus	-	0,5000	0,7071	0,8660	1,0000
52		0	1/2	$\sqrt{2}/2$	$\sqrt{3}/2$	1
53	Cosinus	1,0000	0,8660	0,7071	0,5000	0,0000
54		1	$\sqrt{3}/2$	$\sqrt{2}/2$	1/2	0
55	Tangente	-1	0,5774	1,0000	1,7321	1,63E+16
56		0	$\sqrt{3}/3$	1	√3	00

- = ROUND(1.10789, 2) = 1.11
- = PI() = 3.14159 >> 180 องศา
- = RADIANS(30) = PI()/6
- = DEGREES(3.14159) = 180 >>
- = SIN(RADIANS(30)) >> SIN (30)
- =FORMULATEXT(F7) >> แสดงสูตร

-4	A	В	С	D	E	F
48	Angle(rd.)	o	π/6	π/4	π/3	π/2
49	Radians	0	=PI()/6	=PI()/4	=PI()/3	=PI()/2
50	Degrés	=DEGRES(B49)	=DEGRES(C49)	=DEGRES(D49)	=DEGRES(E49)	=DEGRES(F49)
51	Sinus	=SIN(B49)	=SIN(C49)	=SIN(D49)	=SIN(E49)	=SIN(F49)
52		0	1/2	$\sqrt{2}/2$	√3/2	1
53	Cosinus	=COS(B49)	=COS(C49)	=COS(D49)	=COS(E49)	=COS(F49)
54		1	√3/2	$\sqrt{2}/2$	1/2	0
55	Tangente	=TAN(B49)	=TAN(C49)	=TAN(D49)	=TAN(E49)	=TAN(F49)
56		0	√3/3	1	√3	∞