Introduction to Networks

What's a Network?

What's a Network?

A **network** is two or more computer systems linked together by some form of the transmission medium that enables them to share information

Local Area Network (LAN)

Local Area Network (LAN)

A LAN is a **local** network

- Could be as small as two computers or large, with thousands of devices connected
- Usually restricted to spanning a particular geographic location

Wide Area Network (WAN)

Wide Area Network (WAN)

A **WAN** is a collection of computers and devices connected by a communications network over a wide geographic area

WANs are commonly connected either through the Internet or special arrangements made with phone companies or other service providers

The Internet is considered the largest WAN in the world

Common Network Components

Common Network Components

- - Can be a computer or device
 - PC

- Printer
- Laptop
- Router
- Server
- Switch
- Smartphone
 - etc.

Some examples of Node

Common Network Components

- Host
- $\qquad \qquad \Rightarrow \qquad \qquad \\$
- Hosts are any device which sends or receive traffic.
- Requires IP Address
- Can be a client or server

Common Network Components

- **Server** A powerful computer used to store files and run programs centrally
- **Client** A device that makes request from a server
- Web Server Application Server Proxy Server DNS Server Mail Server File Server

- Print Server Telephony Server

Common types of servers

Common Network Connectivity Devices

Network Interface Controller (NIC)

- A hardware that connects computers to a network
- Every NIC has a unique MAC address

MAC Address

- A media access control address (MAC address) is a unique identifier assigned to a network interface controller (NIC) for use as a network address in communications within a network segment.
- MAC Addresses are unique 48-bits hardware number of a computer.
- Represented as:
 - o 68-7F-74-12-34-56

Router

What is OSI Reference Model?

The **OSI** provides a standard for different computer systems to be able to communicate with each other

Developed by ISO in 1984

OSI Model

- Nodes must follow rules to communicate
 - Example: any language -English, Spanish, etc
- Rules for networking are divided into 7 layers (OSI Model)

7 Application
6 Presentation
5 Session
4 Transport
3 Network
2 Data Link
1 Physical

Data Encapsulation

Data Encapsulation

- For two nodes communicate they must use the same protocol
- Each layer communicates with its equivalent layer on the other node via the lower layers of the model
- Each layer provides services for the layer above and uses the services of the layer below

Layer 1 - Physical

- Purpose: Transporting Bits
 - o Transmits bits (1's, 0's) between nodes
- Technologies
 - Cables, WiFi, Repeaters, Hubs

- 7 Application6 Presentation5 Session
- 4 Transport
- 3 Network
- 2 Data Link
- 1 Physical

Layer 1 - Transporting Bits

- 7 Application
- 6 Presentation
- 5 Session
- 4 Transport

3

Network

- 2 Data Link
- 1 Physical

Layer 2 - Data Link

- Purpose: Hop-to-Hop
 - Addressing scheme: MAC Address
 - 48-bits / 12 hex digits (e.g. 74:56:D9:84:AB:6F)
 - Often traffic is sent over multiple "hops"
- Technologies
 - Network Interface Card (NIC)
 - Switch

- 7 Application6 Presentation
- 5 Session
- 4 Transport
- 3 Network
- 2 Data Link
- 1 Physical

Layer 2 - Hop to Hop

- 7 Application
- 6 Presentation
- 5 Session
- 4 Transport
- 3 Network
- 2 Data Link
- 1 Physical

Layer 3 - Network Layer

- Purpose: End-to-End
 - Addressing scheme: IP Address
 - 32-bits / 4 Octets each 0-255
 - **1**92.168.1.20
- Technologies
 - Routers, Hosts
 - Anything with an IP

7 Application
6 Presentation
5 Session
4 Transport
3 Network
2 Data Link
1 Physical

Layer 4 - Transport Layer

- Purpose: Service-to-Service
 - Deliver to the right service (aka software)
 - Distinguish data streams
 - Addressing scheme: Port / Protocol
 - o Ports 0 to 65535
 - o Protocols TCP, UDP

7 Application
6 Presentation
5 Session
4 Transport
3 Network
2 Data Link
1 Physical

Layer 4 - Transport Layer

7 Application
6 Presentation
5 Session
4 Transport
3 Network
2 Data Link
1 Physical

TCP/IP Model

TCP/IP and the OSI Model

 The TCP/IP model is a condensed version of the OSI model

TCP/IP and the OSI Model

TCP/IP and the DoD Model

Network Access Layer

- Defines details of how data is physically sent through the network
- Main protocols are Ethernet, Token Ring, FDDI, X.25, and Frame Relay

FDDI: Fiber Distributed Data Interface

TCP/IP and the DoD Model

Internet Layer

- Packs data into data packets known as IP datagrams
- Responsible for routing of IP datagrams
- Main protocols are IP, ICMP, ARP, RARP, and IGMP

IP. Internet Protocol ICMP: Internet Control Message Protocol ARP. Address Resolution Protocol RARP: Reverse Address Resolution Protocol IGMP: Internet Group Message Protocol

TCP/IP and the DoD Model

Transport Layer

- Permits devices on the source and destination to carry on a conversation
- Defines the level of service and status of the connection used when transporting data
- Main protocols are TCP and UDP

TCP/IP and the DoD Model

Process/Application layer

- Enables applications to communicate with each other.
- Provides access to the services that operate at the lower layers of the TCP/IP model.
- It contains a protocol that implements user-level functions such as mail delivery, file transfer, and remote login.
- Includes all higher-level protocols: DNS, HTTP, Telnet, SSH, FTP, SNMP, DHCP, etc.

DNS: Domain Name Service **HTTP**: Hyper-text Transfer Protocol **SSH**: Secure Shell

FTP: File Transfer Protocol

SNMP: Simple Network Management Protocol **DHCP**: Dynamic Host Configuration Protocol

THANKS!

Any questions?

You can find me at:

- ► @David Instructor
- david@clarusway.com

Encapsulation

