Profesor: Fernando Lozano

Asistente: Alejandro Arias (a.ariasz)

Clasificación de Imágenes: Redes Convolucionales e Implementación de Modelos en Sistemas Embebidos mediante Edge Impulse (EI)

Instrucciones

En esta ocasión se busca desarrollar un modelo de clasificación de imágenes para algunos objetos que usted tenga en su hogar. Se desea explorar conceptos de:

- Redes Neuronales Convolucionales
- Preprocesamiento de Imágenes
- Despliegue de Modelos en Sistemas Embebidos
- Introducción a Herramienta Edge Impulse
- Transfer Learning
- Quantization

Debe entregar el cuaderno de Jupyter adjunto a este enunciado junto con un documento en **formato PDF** con evidencia, análisis y resultados. La fecha límite de entrega es el día **10 de diciembre** y se realizará a través de Bloque Neón.

1 Creación de una Cuenta de Edge Impulse

Ingrese a Edge Impulse y seleccione la opción Sign Up para crear una cuenta nueva con su correo electrónico.

2 Configuración de su Celular para Toma de Base de Datos

Una vez tenga su cuenta de Edge Impulse, debe crear un nuevo proyecto con un nombre de su elección y enlazarlo a su *Smartphone* (ver requisitos en la documentación más adelante), para realizar la toma de una base de datos que utilizará en este taller.

Siga la documentación en el link para configurar y enlazar su teléfono móvil al proyecto de Edge Impulse creado.

3 Definición de Modelo e Impulso en Edge Impulse

Edge Impulse es una herramienta que permite unificar el proceso de: toma de base de datos, definición de modelo de Machine Learning, entrenamiento (el cómputo se realiza en la nube) y despliegue en sistemas embebidos. En este taller desarrollará una actividad tipo tutorial que le enseñará algunas cosas sobre la herramienta y la utilidad de las Redes Neuronales Convolucionales en tareas de clasificación de imágenes (aunque esta no es su única aplicación).

Siga las instrucciones indicadas en el link para desarrollar esta tarea.

Nota: cuando esté configurando la sección de *Transfer Learning*, realice el entrenamiento del modelo para las versiones del modelo (*Model Version* en EI):

- Quantized (int8)
- Unoptimized (float32)

Y observe las diferencias en cada resultado según los valores estimados para *On-device performance*, determine las ventajas y desventajas de utilizar un modelo de tamaño reducido (cuantizado). Puede encontrar más información en el siguiente artículo: Quantization in Deep Learning.

4 Desarrollo y Evaluación de Modelo en Cuaderno de Jupyter

Abra el cuaderno de Jupyter ML_hw6.ipynb y siga las instrucciones allí anotadas. Complete e interprete la sección Definición de Red (Secuencial) para correr el entrenamiento del modelo directamente allí en el cuaderno.

A continuación, puede encontrar algunos artículos relacionados:

- Convolutional Neural Network (CNN)
- MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
- Image classification with Convolution Neural Networks (CNN) with Keras

5 Muestra de Resultados y Conclusiones

Realice un análisis detallado sobre cada uno de los puntos mencionados:

- Redes Neuronales Convolucionales
- Preprocesamiento de Imágenes
- Despliegue de Modelos en Sistemas Embebidos
- Utilidad de Herramienta Edge Impulse
- Transfer Learning
- Quantization

Reporte sus resultados utilizando imágenes y concluya sobre cada etapa. Si lo considera necesario, incluya referencias hacia la documentación utilizada.