Plookup in action

Ariel Gabizon Zachary J. Williamson

Turbo-PLONK programs (based on PLONK[GWC])

a_1	b_1	c_1	d_1	
:	:		:	
a _i	b _i	c _i	di	
$a_{\mathfrak{i}+1}$	b_{i+1}	c_{i+1}	$d_{\mathfrak{i}+1}$	
÷	:		:	

- Local low-degree constraints between rows (e.g. $a_{i+1} = b_i^2 + c_i$)
- ► Global equality constraints between any two cells (e.g. $a_{100} = d_2$).

Ultra-PLONK programs

- Local low-degree constraints between rows (e.g. $a_{i+1} = b_i^2 + c_i$).
- ► Global equality constraints between any two cells (e.g. $\alpha_{100} = \mathbf{d}_2$).
- ▶ Lookup constraints e.g. (a_5, b_5, c_5) is contained in the rows of a predefined table T.

Lookup constraints in SNARKs

First used in Arya[Bootle, Cerulli, Groth, Jakobsen, Maller]

Lookup constraints in SNARKs

First used in Arya[Bootle, Cerulli, Groth, Jakobsen, Maller]

Plookup [GW20] gives improved efficiency: $2(|\mathbf{T}| + |\mathbf{w}|)$ prover group exp

|T| - number of rows in table |w| - length of witness

Example: bitwise XOR with "direct" table

For row values (a, b, c) want to show $c = a \oplus b$ as 11-bit strings.

Example: bitwise XOR with "direct" table

For row values (a, b, c) want to show $c = a \oplus b$ as 11-bit strings.

Use table T of all triplets (a, b, c) s.t. $c = a \oplus b$.

Example: bitwise XOR with "direct" table

For row values (α,b,c) want to show $c=\alpha\oplus b$ as 11-bit strings.

Use table T of all triplets (a, b, c) s.t. $c = a \oplus b$.

$$|T| = 2^{22}$$

Table T_1 of pairs (α, α_s) - α is 10-bit string, α_s is " α with zeroes in between bits" -

$$\alpha = \Sigma \alpha_{i} \cdot 2^{i}, \, \alpha_{s} = \Sigma \alpha_{i} \cdot 4^{i} \tag{1}$$

Table T_1 of pairs (α, α_s) - α is 10-bit string, α_s is " α with zeroes in between bits" -

$$\alpha = \Sigma \alpha_{i} \cdot 2^{i}, \, \alpha_{s} = \Sigma \alpha_{i} \cdot 4^{i} \tag{1}$$

Field addition on sparse form now gives bitwise XOR :

$$a = (11)$$
 $b = (10)$

Table T_1 of pairs (α, α_s) - α is 10-bit string, α_s is " α with zeroes in between bits" -

$$\alpha = \Sigma \alpha_i \cdot 2^i, \, \alpha_s = \Sigma \alpha_i \cdot 4^i \tag{1}$$

Field addition on sparse form now gives bitwise XOR:

$$\begin{aligned} &\alpha = (11) & b = (10) \\ &\alpha_s = (0101) \\ &b_s = (0100) \end{aligned}$$

Table T_1 of pairs (α,α_s) - α is 10-bit string, α_s is " α with zeroes in between bits" -

$$\alpha = \Sigma \alpha_{i} \cdot 2^{i}, \, \alpha_{s} = \Sigma \alpha_{i} \cdot 4^{i} \tag{1}$$

Field addition on sparse form now gives bitwise XOR : $\alpha = (11) \qquad b = (10) \\ \alpha_s = (0101) \\ b_s = (0100)$

 $a_s + b_s = (1001)$

Table T_1 of pairs (α, α_s) - α is 10-bit string, α_s is " α with zeroes in between bits" -

$$\alpha = \Sigma \alpha_i \cdot 2^i, \, \alpha_s = \Sigma \alpha_i \cdot 4^i$$
 (1)

Field addition on sparse form now gives bitwise XOR : $a = (11) \qquad b = (10)$ $a_s = (0101)$ $b_s = (0100)$

$$a_s + b_s = (1001)$$

Odd bits are XORs

After adding in sparse form, can use another lookup to "decode" XOR result $T_2 = \{c_s, c_{XOR}\}$ so

 $c_s = \sum c_i 4^i$, $c_{XOR} = \sum c_i (c_i) 4^i$.

$$\Phi(0) = 0, \Phi(1) = 1, \Phi(2) = 0, \Phi(3) = 1$$

After adding in sparse form, can use another lookup to "decode" XOR result $T_2 = \{c_s, c_{XOR}\}$ so

$$c_s = \Sigma c_i 4^i, c_{XOR} = \Sigma \phi(c_i) 4^i,$$

 $\phi(0) = 0, \phi(1) = 1, \phi(2) = 0, \phi(3) = 1$

Can get AND at same time (see Arya paper)

SHA-256 with Sparse representations on Steroids

MAJ' is one of the two main "chunks" of a SHA round:

- \triangleright a, b, c 32-bit values
- >>> is right rotation.

MAJ' is one of the two main "chunks" of a SHA round:

- \triangleright a, b, c 32-bit values
- >>> is right rotation.

$$MAJ'(a, b, c) :=$$

 $(a >>> 2) \oplus (a >>> 13) \oplus (a >>> 22) \oplus MAJ(a, b, c)$

MAJ' is one of the two main "chunks" of a SHA round:

- \triangleright a, b, c 32-bit values
- >>> is right rotation.

$$MAJ'(a, b, c) :=$$

 $(a >>> 2) \oplus (a >>> 13) \oplus (a >>> 22) \oplus MAJ(a, b, c)$

We map $\alpha,\,b,\,c$ into 16-sparse form: $\Sigma\alpha_i2^i\to\Sigma\alpha_i16^i$

We map a, b, c into 16-sparse form: $\Sigma a_i 2^i \rightarrow \Sigma a_i 16^i$

In sparse form we simply add in field:

$$4*((\alpha >>> 2)+(\alpha >>> 13)+(\alpha >>> 22))+(\alpha+b+c)$$

We map a, b, c into 16-sparse form: $\Sigma a_i 2^i \rightarrow \Sigma a_i 16^i$

In sparse form we simply add in field:

$$4*((a >>> 2)+(a >>> 13)+(a >>> 22))+(a+b+c)$$

Addition result is "injective enough" to retrieve output of **MAJ'**.

Split 32-bit α to limbs $(\alpha_2, \alpha_1, \alpha_0)$ of 10, 11, 11 bits respectively.

Split 32-bit α to limbs $(\alpha_2, \alpha_1, \alpha_0)$ of 10, 11, 11 bits respectively.

We have in total 9 "rotate contributions": 3 right-rotates - 2, 13, 22 of the three limbs.

Split 32-bit α to limbs $(\alpha_2, \alpha_1, \alpha_0)$ of 10, 11, 11 bits respectively.

We have in total 9 "rotate contributions": 3 right-rotates - 2, 13, 22 of the three limbs.

But only two "non-trivial" contributions: $(\alpha_1, 13), (\alpha_0, 2)$

Split 32-bit α to limbs $(\alpha_2, \alpha_1, \alpha_0)$ of 10, 11, 11 bits respectively.

We have in total 9 "rotate contributions": 3 right-rotates - 2, 13, 22 of the three limbs.

But only two "non-trivial" contributions: $(\alpha_1, 13), (\alpha_0, 2)$ both can be computed with a table of right rotate by 2.

Split 32-bit α to limbs $(\alpha_2, \alpha_1, \alpha_0)$ of 10, 11, 11 bits respectively.

We have in total 9 "rotate contributions": 3 right-rotates - 2, 13, 22 of the three limbs.

But only two "non-trivial" contributions: $(\alpha_1, 13), (\alpha_0, 2)$ both can be computed with a table of right rotate by 2.

In total for MAJ'- 3 tables of size $\leq 2^{11}$