Name:

1 Prove that (a) \iff (b).

4 points

- (a) Archimedes' principle holds.
- (b) For any c > 0, there exists some k in \mathbb{N} such that $k 1 \le c < k$.

Solution. (\Rightarrow)

Let c > 0 be given arbitrarily. Set

$$A = \{k \in \mathbb{N} \mid c < k\}.$$

We apply Archimedes' principle to M = c and $\epsilon = 1$, which implies $A \neq \emptyset$. The last inequality holds for $k = \min A$. (+2 points)

 (\Leftarrow)

Let ϵ and M be any two positive real numbers. Then, there exists some k in \mathbb{N} such that $\frac{M}{\epsilon} < k$. In other words, $M < k\epsilon$. (+2 points)

- (a) Explain why sup S exists in \mathbb{R} .
- (b) Prove that $\sup S$ is a limit point of S.

Solution. (a) For any $n \in \mathbb{N}$,

$$\sum_{k=1}^{n} \frac{1}{(k!)^2} \le \sum_{k=1}^{n} \frac{1}{(2^{k-1})^2} \quad (\because 2^{k-1} \le k! \text{ for any } k = 1, 2, \cdots)$$
$$\le \sum_{k=1}^{\infty} \frac{1}{(2^{k-1})^2} = \frac{1}{1 - \frac{1}{4}} = \frac{4}{3}.$$

Therefore, $\frac{4}{3}$ is an upper bound of S. (+2 points) Because \mathbb{R} is complete, $\sup S$ exists in \mathbb{R} .

(b) Let $m = \sup S$. Choose any $\epsilon > 0$. We need to show that

$$S \cap N'(m; \epsilon) \neq \emptyset$$
.

Because $m = \sup S$,

$$\exists x \in S \text{ such that } m - \epsilon < x \le m. \text{ (+2 points)}$$

Fix any such x. Since $x \in S$, x is of the form

$$\sum_{k=1}^{n} \frac{1}{(k!)^2}.$$

We prove $x \neq m$ by contradiction. Suppose x = m and let $y = x + \frac{1}{((n+1)!)^2}$. Then,

$$y \in S$$
 and $y > x = m$,

which contradicts that $m = \sup S$. Therefore, $x \in S \cap N'(m; \epsilon)$. (+2 points)

MAS241 Quiz 1

Remark.

A lot of mistakes.

- 1. $\sup S \epsilon < x_{k_0} \le \sup S$. Not $\sup S \epsilon < x_{k_0} < \sup S$. It is sometimes a big deal.
- 2. It can happen $N(\sup S, \epsilon) \cap S \neq \emptyset$ and $N'(\sup S, \epsilon) \cap S = \emptyset$.
- 3. You need to show that $\sup S \notin S$.
- 4. That is not true if $\sup S$ is not a limit point implies that $\sup S \epsilon$ is an upper bound. Consider that the case $\sup S \in S$ and $N'(\sup S, \epsilon) \cap S = \emptyset$ then $\sup S \epsilon$ is not an upper bound