Long Quiz #4.1 (23-Apr): CSC-2259: Discrete Structures, Sp 2020 Your answers must be to the point. Total = 50; marks for each question is shown in [].		
1.		wer the following questions on linear orders on a set X . State the additional condition that a partial order R must satisfy in order to be a linear order. [2]
	(b)	For $ X = 3$, show the structure of a linear order, that of its Hasse-diagram, and #(linear orders on X). [3+3+3]
	(c)	Repeat (b) for a strict linear order. [1+1+1]
	(d)	Give a susbet $X = \{x_1, x_2, x_3, x_4\} \subseteq \{1, 2, \dots, 10\}$ such that the "divide"-relation on X is a linear order. [3]
	(e)	What is the maximum #(links, including loops) for a partial order on X , when $ X = n$? Is it true that a partial order is a linear order if and only if #(links, including loops) is maximum? How can we use it to determine from the relationmatrix R of a partial-order whether it is a linear order or not? [3+2+3]
	(f)	BONUS. Let R be the relation-matrix of a linear order on X , $ X = n$. What is wrong with the argument below. [3] For every $0 \le i < j < n$, we have $R[i][j] + R[j][i] = 1$, i.e., $(R[i][j], R[j][i]) = (0, 1)$ or $(1, 0)$, i.e., 2 choices for each of $n(n-1)/2$ pairs $(R[i][j], R[j][i])$. Also, each $R[i][i]$ is 1. Thus, there are $2^{n(n-1)/2}$ many linear orders.
2.	Ans (a)	wer the following questions on probability. Show the sample space S of the experiment "three tosses of a coin". [3]
	(b)	Show the subset of S in (a) for the event E_1 = "at least 2 heads". [3]
	(c)	If $Prob(H) = 2/3$ and the tosses in the experiment in (a) are independent, then what is $Prob(HHT)$? [2]
	(d)	Give $Prob(E_1)$ in (b) based on $Prob(H) = 2/3$; show details. [3]
	(e)	State the sum-rule for probabilities. [3]
	(f)	State the complement event of E_1 in (b) in English without using "not". Also, verify the complement-rule using the events E_1 and E_1^c based on $Prob(H) = 2/3$. (Show details of computing $Prob(E_1^c)$.) [1+3]
		$E_1^c = \dots, Prob(E_1^c) = \dots = \dots = \dots = \dots$
	(g)	Consider the spinning wheel discussed in the class with $Prob(3) = 1/3 = Prob(8)$ and $Prob(4) = 1/6 = Prob(5)$ when we turn the wheel once. Now consider the outcomes (s_1, s_2, s_3) in the experiment of three independent turns of the wheel. (g.1) Show the sample points (s_1, s_2, s_3) for the event $E_{1,2}$: " $s_1 = 3 = s_2$ ". [2]
		(g.2) Show the details in computing $Prob(E_{1,2})$. [2]

(g.3) Consider the event $E_{1,2} \cup E_{2,3}$: " $s_1 = 3 = s_2$ or $s_2 = 3 = s_3$ ". Compute Prob $(E_{1,2} \cup E_{2,3})$ using sum-rule. [3]