

Root Cause Analysis for SO2 Emission in Kraft Recovery Boiler

Daniel Yung Chi Cho Dec 6, 2018

Recovery Cycle

Problem Statement

- High sulfur dioxide emission at recovery boiler at a pulp mill.
- Sulfur dioxide is a regulated pollutant.
- Company faces penalty for emission beyond the limit.

Objective

 Finding the root cause for sulfur dioxide emission based on historical data.

Data Source and Variables

• **Source:** hourly process data from March 2016 to June 2016 provided by an industrial partner.

• Data Type: Numerical

• Variables: 26

Observations: 2327

Time Stamp BL Density Dry Solids-B

Primary Air Flow Primary Air Temp.

Secondary Air Flow

Tertiary Air Flow

Primary Windbox Pressure

Secondary Windbox Pressure

Tertiary Windbox Pressure

Burn Rate

Sulfidity Calculated

BL Solid 50/50 Test

Flue Gas Oxygen

TRSRAW 1 Min Avg.

BL Density Dry Solids-A

Secondary Air Temp.

Steam Flow

Liquor Solids Flow

ST/DS Ratio

SO2 Raw (1min Avg.)

SO2 Raw (1Hr Avg.)

Black Liquor Press

BL Indirect Heater Temp.

Salt Cake Rotary Feeder Sp.

Lime Kiln Entry

Nox (1Hr Avg.)

Recovery Boiler schematics

Inside the Recovery boiler

Exploratory Analysis

Correlation Map, High Density plot, Compression Test, Quantification Test

Spectral Correlation

- Secondary Air Flow (Tag 3)
- Flue Gas Oxygen (Tag11)
- Dry Solid Density Transmitter A & B (Tag 13,14)
- Primary Air Temperature (Tag 15)
- Secondary Air Temperature (Tag 16)
- Black Liquor Pressure (Tag 22),
 Black Liquor Indirect Heater
 Temperature (Tag 23)
- Green Liquor Sulfidity (tag 25)
- and NOX Correlation (Tag 26)

Pre-Processing

Outliner, Transformation, lag adjustment, MA filter, Normalization

Outlier Treatment Using DVA tool

Log Transformation of SO2 Emission

Box-Cox Transformation of burn rate

Definition of Box-Cox

$$Data(\lambda) = \frac{Data^{\lambda} - 1}{\lambda}$$

Box-Cox Transformation of Sulfidity

Is Emission Oscillating?

Cross-correlation for all variables with SO2

Lag time found by maximizing Cross-Correlation

Variables	Lag time with Log
Time stamp	0
PAF	-5
SAF	-5
TAF	-9
PWP	-5
SWP	0
TWP	-26
BR	-10
Sulfidity	-1
BL_Solid_Test	-9
FGO	-21
TRS	-30
DSDA	-10

Variables	Lag time
DSDB	-10
PAT	0
SAT	0
Steam_Flow	-2
BL_Solid_Flow	-10
Steam/DS	-2
SO2M	0
SO2HR	-1
BLPressure	-10
BL_IHT	0
SC_RFS	-34
LKGL_SULFIDITY	-9
NOXCORR	-15

Effect of Lag adjustment Changes in Correlation with SO2 emission

Moving Average filter

Window size = 20

Normalization

• Data are normalized and centered to balance the scale of the variables and make variance comparable.

Creation of training and test set

- Training set and test set were created using random sampling without replacement.
- 1366 records goes to training and 585 records goes to testing

Training and Testing

OLS, PCR, PLS, Regression Trees

Ordinary Least Square Regression

Model

$$\hat{\beta} = (X_t^T X_t)^{-1} X_t^T Y_t$$

Testing

$$\hat{Y} = \hat{\beta} X_{test}$$

Ordinary Least Square Testing

- Regress with all 23 variables
- SSE is 237.8710
- RMSE was 0.6512
- R² is 0.5866.

LASSO

Objective Function

$$\min_{eta \in \mathbb{R}^p} \left\{ rac{1}{N} \|y - Xeta\|_2^2 + \lambda \|eta\|_1
ight\}$$

Trace Plot of Coefficients Fit by Lasso

Testing LASSO

- Regress with all except Sulfidity
- RSS = 251.8956
- RSE = 0.6695
- Rsq = 0.5623

Principle Component Analysis

- Dimension reduction by creating latent variables that are linear combination of the original variables.
- PCA finds efficient ways to describe data with less variable and with minimum data loss

X training data in the first two principle component space

Variance explained by principle components

Principle Component Regression

- Regression with all variables
- SSE is 237.87
- RMSE is 0.6512
- Rsq = 0.5866
- Identical to OLS when regressing all variables

Principle Component Regression

- Regress with top 10 components
- SSE = 304.6549
- RMSE = 0.7369
- R-sq = 0.4706
- Over estimated in the low end and underestimated in the high end

Partial Least Square

Partial Least Square Testing

- Regress with to 10 components
 & 10 fold crossvalidation
- SSE = 257.56
- RMSE = 0.66
- R square = 0.55
- Same accuracy as OLS with fewer components

PLS Residuals

Regression Trees

Regression Tree Testing

- Regression with all variables with unlimited branches and 10 fold cross validation.
- SSE = 81.5320
- RMSE = 0.3812
- R sq = 0.8583

Regression Tree Testing

- With 30 splits only, 10 fold cross validation, and all variables
- SSE = 150.8188
- RMSE = 0.5126
- R sq = 0.7379

Regression Tree Importance of parameters

Summary of Method Prediction Performance

Method	RMSE	R square	number of variables/components/split for trees
OLS	0.6512	0.5866	23
LASSO	0.6695	0.5623	22
PCR	0.6512	0.5866	23
PCR	0.7369	0.4706	10
PLS	0.6699	0.5524	10
Regression Trees	0.3669	0.8583	max
Regression Trees	0.5056	0.7451	30

Root Cause Analysis Top 6 Variables in beta magnitude

		PLS Beta with Decision				
	OLS Beta	PCR Beta	_	.0 component	Tree	
Intercept	•		-0.0033	-0.002		
Primary Air Flow	0.	.13	0.1338	0.1736	1 25E-03	
Secondary Air Flow	0.	48	0.4791	0.3014	8.33E-05	\rightarrow
Tertiary Air Flow	-0.	.09	-0.0891	-0.106	1.24E-05	
Primary Windbox Pressure	0.	.01	0.0063	0.0692	4.35E-05	
Secondary Windbox Pressure	0.	.16	0.1629	0.1517	4.62E-04	
Tertiarary Windbox Pressure	O.	.23	0.2291	0.2278	2.92E-04	
Burn Rate	-0.	.05	-0.0517	-0.2344	1.10E-05	
White Liquor Sulfidity	-i.	.15	-1.1528	-0.2019	3.55F-05	
Black Liquor Solid 50./50 Test	-0.	.56	-0.5635	-0.5889	1.15E-04	
Flue Gas Oxygen	-0.	14	-0.1381	-0.2517	6.98E-05	
Total Reduced Sulfur	0.	.11	0.1131	0.1305	5.07E-05	
Dry Solid Density Transmitte	1					
Α	0.	.04	0.0446	0.2063	1.25E-05	
Dry Solid Density Transmitte	1					
В	0.	.32	0.3174	-0.0241	1.12E-05	
Primary Air Temperature	-1.	.88	-1.8789	-0.6623	4.04E-04	
Secondary Air Temperature	1.	.91	1.9104	0.7832	6.65E-05	
Steam Flow Rate	0.	.14	0.1429	0.103	1.87E-05	
Black Liquor Solid Flow Rate	-0.	.19	-0.1942	-0.0042	8.37E-05	
Steam to Dry Solid Ratio	0.	.28	0.2757	0.3191	1.62E-04	
Black Liquor Pressure	٥	07	-0 0679	0.0106	4.80E-05	
Black Liquor Indirect Heater	1	.15				
Temperature	-	.13	1.1518	0.1438	1.75E-04	
Salt Cake Rotary Feeder						
Speed	0.	.16	0.163	0.1107	7.59E-07	
Lime Kiln Green Liquor						
Sulfidity		0.4	-0.3978	-0.3204	7.19E-04	
Nitrogen Oxides correlation	0.	.02	0.0184	0.0697	1.39E-04	

Root Cause Analysis

	SPECTRAL ANALYSIS	REGRESSION	REACHABILITY
PRIMARY AIR FLOW		Yes	
SECONDARY AIR FLOW	Yes	Yes	Yes
TERTIARY AIR FLOW			
PRIMARY WINDBOX PRESSURE			
SECONDARY WINDBOX PRESSURE			
TERTIARARY WINDBOX PRESSURE			
BURN RATE			
WHITE LIQUOR SULFIDITY	Yes	Yes	Yes
BLACK LIQUOR SOLID 50./50 TEST		Yes	
FLUE GAS OXYGEN	Yes		
TOTAL REDUCED SULFUR			
DRY SOLID DENSITY TRANSMITTER A	Yes		
DRY SOLID DENSITY TRANSMITTER B	Yes		
PRIMARY AIR TEMPERATURE	Yes	Yes	Yes
SECONDARY AIR TEMPERATURE	Yes	Yes	Yes
STEAM FLOW RATE			
BLACK LIQUOR SOLID FLOW RATE			
STEAM TO DRY SOLID RATIO			
BLACK LIQUOR PRESSURE	Yes		
BLACK LIQUOR INDIRECT HEATER	Yes	Yes	Yes
TEMPERATURE			
SALT CAKE ROTARY FEEDER SPEED			
LIME KILN GREEN LIQUOR SULFIDITY	Yes	Yes	
NITROGEN OXIDES CORRELATION			

Conclusion

- Primary air temperature is the root cause of SO2 emission
- Regression tree has the highest accuracy in predicting SO2 emission from data
- Emission can be reduced if the mill increase primary air temperature and lower black liquor indirect heat temperature
- There is no oscillation in SO2 emission in the data provided.

Next Step

- Sensitivity analysis on moving average filter window size
- Random forest maybe able to give better insights into importance of parameters
- Convert normalized prediction back to its units