DRAFT: NCT

RA

2021-03-11

1 NCT models

Abbreviations: ODE = ordinary differential equations.

1.1 GSR'03 model of NCT

First we implement the "minimal Ran gradient system" from [GSR03]. The equations are shown in Table 1 and the constants are collected in Table 2. Simulating the ODE across the scenarios of [GSR03] we obtain results that are fairly close to the original, see Table 3.

A coupling of the Ran gradient to importin–cargo transport was proposed in [GSR03, Fig. 6A]. We formulate (part of) it in Table 4.

The following account for the cytoplasmic species. Here, $[\ldots]$ abbreviates the (cytoplasmic) concentration of the complex RanBP1 · Ran · GTP.

$$\frac{\mathrm{d}}{\mathrm{d}t}[\mathsf{Ran}\cdot\mathsf{GDP}]_{\mathrm{cyt}} = \mathsf{F}_{\mathsf{Ran}\cdot\mathsf{GDP}}\frac{V_{\mathrm{nuc}}}{V_{\mathrm{cyt}}} + \mathsf{GAP} + \mathsf{GAP}_{\mathsf{RanBP1}} + \mathsf{Ex}\frac{V_{\mathrm{nuc}}}{V_{\mathrm{cyt}}} \tag{1a}$$

$$\frac{\mathrm{d}}{\mathrm{d}t}[\mathsf{Ran}\cdot\mathsf{GTP}]_{\mathrm{cyt}} = \mathsf{F}_{\mathsf{Ran}\cdot\mathsf{GTP}} \frac{V_{\mathrm{nuc}}}{V_{\mathrm{cyt}}} - \mathsf{GAP} - k_{\mathrm{on}}^{\mathrm{rbp}}[\mathsf{RanBP1}][\mathsf{Ran}\cdot\mathsf{GTP}]_{\mathrm{cyt}} + k_{\mathrm{off}}^{\mathrm{rbp}}[\ldots] \quad (1\mathrm{b})$$

$$\frac{\mathrm{d}}{\mathrm{d}t}[\mathsf{RanBP1}\cdot\mathsf{Ran}\cdot\mathsf{GTP}] = -\mathsf{GAP}_{\mathsf{RanBP1}} \\ \qquad + k_{\mathrm{on}}^{\mathrm{rbp}}[\mathsf{RanBP1}][\mathsf{Ran}\cdot\mathsf{GTP}]_{\mathrm{cyt}} - k_{\mathrm{off}}^{\mathrm{rbp}}[\ldots] \quad (1\mathrm{c})$$

The following account for the nuclear species. E denotes free RCC1.

$$\frac{\mathrm{d}}{\mathrm{d}t}[\mathsf{Ran} \cdot \mathsf{GDP}]_{\mathrm{nuc}} = -\mathsf{F}_{\mathsf{Ran} \cdot \mathsf{GDP}} + r_{8}[\mathsf{IntC}] - r_{1}[\mathsf{E}][\mathsf{Ran} \cdot \mathsf{GDP}]_{\mathrm{nuc}}$$
(2a)

$$\frac{\mathrm{d}}{\mathrm{d}t}[\mathsf{Ran} \cdot \mathsf{GTP}]_{\mathrm{nuc}} = -\mathsf{F}_{\mathsf{Ran} \cdot \mathsf{GTP}} + r_4[\mathsf{IntA}] - r_5[\mathsf{E}][\mathsf{Ran} \cdot \mathsf{GTP}]_{\mathrm{nuc}} - \mathsf{Ex} \tag{2b}$$

The nucleotide-exchange reaction $Ran \cdot GDP + GTP \Longrightarrow Ran \cdot GTP + GDP$ is catalyzed by RCC1. It is modeled as in [Kle+95, Fig. 6] / [GSR03, Fig. 1] with three intermediates. Note that it depends on the availability of GDP and GTP.

$$\frac{\mathrm{d}}{\mathrm{d}t}[\mathsf{IntA}] = -(r_4 + r_6)[\mathsf{IntA}] + r_5[\mathsf{E}][\mathsf{Ran} \cdot \mathsf{GTP}_{\mathsf{nuc}}] + r_3[\mathsf{GTP}][\mathsf{IntB}] \tag{3a}$$

$$\frac{\mathrm{d}}{\mathrm{d}t}[\mathsf{IntB}] = r_6[\mathsf{IntA}] + r_2[\mathsf{IntC}] - (r_3[\mathsf{GTP}] + r_7[\mathsf{GDP}])[\mathsf{IntB}]$$
(3b)

$$\frac{\mathrm{d}}{\mathrm{d}t}[\mathsf{IntC}] = -(r_2 + r_8)[\mathsf{IntC}] + r_1[\mathsf{E}][\mathsf{Ran} \cdot \mathsf{GDP}_{\mathsf{nuc}}] + r_7[\mathsf{GDP}][\mathsf{IntB}] \tag{3c}$$

Constraints on the total concentration:

$$\label{eq:Free RCC1: Free RCC1: Free RCC1: IntA} \begin{aligned} \text{Free RCC1:} \quad & [\mathsf{E}] = \mathsf{RCC1}_{\mathsf{total}} - ([\mathsf{IntA}] + [\mathsf{IntB}] + [\mathsf{IntC}]) \end{aligned} \end{aligned} \tag{4a}$$

Free
$$[RanBP1] = RanBP1_{total} - [RanBP1 \cdot Ran \cdot GTP]$$
 (4b)

Gradient-driven fluxes from the nucleus to the cytoplasm:

$$\mathsf{F}_{\mathsf{Ran}.\mathsf{GTP}} = D_{\mathsf{Ran}\cdot\mathsf{GTP}} \left([\mathsf{Ran}\cdot\mathsf{GTP}]_{\mathsf{nuc}} - [\mathsf{Ran}\cdot\mathsf{GTP}]_{\mathsf{cvt}} \right) \tag{5a}$$

$$\mathsf{F}_{\mathsf{Ran}.\mathsf{GDP}} = D_{\mathsf{Ran}\cdot\mathsf{GDP}} \left([\mathsf{Ran}\cdot\mathsf{GDP}]_{\mathrm{nuc}} - [\mathsf{Ran}\cdot\mathsf{GDP}]_{\mathrm{cyt}} \right) \tag{5b}$$

RanGAP hydrolyzes the γ -phosphate of Ran · GTP. This is more efficient when Ran · GTP is bound to RanBP1 [Bis+95], reducing the IC50 seven-fold [GSR03, Table I, p. 1091].

$$\mathsf{GAP} = k_{\mathsf{GAP}}[\mathsf{RanGAP}]/(1 + K_{\mathsf{GAP}}/[\mathsf{Ran} \cdot \mathsf{GTP}]_{\mathsf{cyt}}) \tag{6a}$$

$$\mathsf{GAP}_{\mathsf{RanBP1}} = k'_{\mathsf{GAP}}[\mathsf{RanGAP}]/(1 + K'_{\mathsf{GAP}}/[\mathsf{RanBP1} \cdot \mathsf{Ran} \cdot \mathsf{GTP}]) \tag{6b}$$

Table 1: The minimal Ran gradient system from [GSR03, Fig. 2]. Ex is an additional potentially useful flux of nuclear Ran·GTP to cytoplasmic Ran·GDP, set by default to zero.

(1a)	$V_{ m nuc} = 1.2 m pl, V_{ m cyt} = 1.8 m pl$	[GSR03, Table II]	
(1a)	initial condition $[Ran \cdot GDP]_{cyt} = 5 \mu M$	[GSR03, Table II]	
(1b)- $(1c)$	$k_{\text{on}}^{\text{rbp}} = 0.3 \mu\text{M}^{-1}\text{s}^{-1}, k_{\text{off}}^{\text{rbp}} = 4 \times 10^{-4}\text{s}^{-1}$	[GSR03, Supp. Table A]	
(2a)– $(3c)$	$r_1 = 74 \mu\text{M}^{-1}\text{s}^{-1}, r_8 = 55 \text{s}^{-1}$		
	$r_7 = 11 \mu\text{M}^{-1}\text{s}^{-1}, r_2 = 21\text{s}^{-1}$	[GSR03, Supp. Table A]	
	$r_3 = 0.6 \mu\text{M}^{-1}\text{s}^{-1}, r_6 = 19\text{s}^{-1}$	[Kle+95, Fig. 6]	
	$r_5 = 100 \mu\text{M}^{-1}\text{s}^{-1}, r_4 = 55\text{s}^{-1}$		
(3a)- $(3c)$	$[GTP] = 500 \mu M, [GDP] = 1.6 \mu M$	[GSR03, Table II]	
(4a)	$RCC1_{total} = 0.7 \mu M$	[GSR03, Supp. Table B]	
(4b)	$RanBP1_{total} = 2\mu\mathrm{M}$	[GSR03, Fig. 4]	
(5a)	$D_{Ran\cdotGTP} = 0.03\mathrm{s}^{-1}$	[GSR03, Table II]	
(5b)	$D_{Ran\cdotGDP} = 0.12\mathrm{s}^{-1}$		
$\frac{}{(6a)}$	$k_{\text{GAP}} = 10.6 \mathrm{s}^{-1}, K_{\text{GAP}} = 0.7 \mathrm{\mu M}$	[GSR03, Supp. Table A]	
(6b)	$k'_{GAP} = 10.8 \mathrm{s}^{-1}, K'_{GAP} = 0.1 \mathrm{\mu M}$	[GSR03, Table I]	
(6a)- $(6b)$	cytoplasmic [RanGAP] = $0.7 \mu\mathrm{M}$	[GSR03, Table II / ST B]	
TODO(1): Eq	$K_R = 5 \times 10^{-4} \mu\text{M}$	[GSR03, Supp. Table A]	

Table 2: Constants for the "standard simulation condition" at 25 °C. Except for (1a), all species are initialized to zero at t=0.

Condition	Affected	Nuclear RanGTP, µM	Cytoplasmic RanGTP, nM	Dynamic capacity, µM/s
	parameters	ranG1r, μm	Rangir, iiwi	capacity, µm/s
"Standard"	See Table 2	4.26 (4.3)	7.75 (7.7)	0.59 (0.60)
Omission of RanBP1	$RanBP1_{total} := 0$	4.27 (4.3)	8.13 (8.1)	0.59 (0.60)
200% RCC1	RCC1 _{total}	3.95 (4.0)	7.17 (7.1)	0.59 (0.60)
50% RCC1	RCC1 _{total}	4.31 (4.3)	7.82 (7.7)	0.58 (0.60)
10% RCC1	RCC1 _{total}	3.59 (3.6)	6.50 (6.4)	0.46 (0.48)
1% RCC1	RCC1 _{total}	1.40 (1.4)	2.52(2.5)	0.075 (0.08)
GTP:GDP = 500:0	$[GDP] := 0\mu\mathrm{M}$	4.80 (4.8)	8.72 (8.6)	0.59 (0.60)
GTP:GDP = 500:50	$[GDP] := \frac{1}{10}[GTP]$	0.98 (0.8)	1.76 (1.5)	0.57 (0.58)
GTP:GDP = 500:500	[GDP] := [GTP]	0.12 (0.12)	0.22 (0.21)	0.34 (0.34)
Saturating NTF2	$D_{Ran \cdot GDP} := 0.48 \mathrm{s}^{-1}$	5.12 (5.1)	9.32 (9.2)	2.18 (2.2)
No NTF2	$D_{Ran\cdotGDP} := D_{Ran\cdotGTP}$	2.55(2.5)	4.60(4.5)	0.15 (0.16)
200% RanGAP	[RanGAP]	4.27(4.3)	3.95(3.9)	0.59 (0.60)
50% RanGAP	[RanGAP]	4.26 (4.3)	14.9 (14)	0.59 (0.60)
50% permeability	$D_{Ran\cdotGTP}$	4.91 (4.9)	4.44 (4.4)	0.59 (-)
200% permeability	$D_{Ran\cdotGTP}$	3.41 (3.4)	12.4 (12.3)	0.59 (-)
400% permeability	$D_{Ran\cdotGTP}$	2.46 (2.5)	18.0 (17.8)	0.59 (-)

Table 3: Steady-state concentrations for the simulation scenarios from [GSR03, Table II/III], with their results shown in brackets. Value for $D_{\mathsf{Ran}\,\cdot\,\mathsf{GDP}}$ is from [GSR03, Fig. 3].

$$\mathsf{R}_{\mathsf{cyt}} := -k_{\mathsf{on}}^{\mathsf{R}}[\mathsf{Imp}\beta][\mathsf{Ran}\cdot\mathsf{GTP}]_{\mathsf{cyt}} + k_{\mathsf{off}}^{\mathsf{R}}[\mathsf{Imp}\beta\cdot\mathsf{Ran}\cdot\mathsf{GTP}]_{\mathsf{cyt}} \tag{7a}$$

$$C_{\rm cyt} := -k_{\rm on}^{\rm C}[{\rm Imp}\beta][{\rm Cargo}]_{\rm cyt} + k_{\rm off}^{\rm C}[{\rm Imp}\beta \cdot {\rm Cargo}]_{\rm cyt} \tag{7b}$$

$$\frac{\mathrm{d}}{\mathrm{d}t}[\mathsf{Imp}\beta \cdot \mathsf{Ran} \cdot \mathsf{GTP}]_{\mathrm{cyt}} = -\mathsf{R}_{\mathsf{cyt}} + \mathsf{F}_{\mathsf{Imp}\beta \cdot \mathsf{Ran} \cdot \mathsf{GTP}} \frac{V_{\mathrm{nuc}}}{V_{\mathrm{cyt}}} \tag{7c}$$

$$\frac{\mathrm{d}}{\mathrm{d}t}[\mathsf{Imp}\beta]_{\mathrm{cyt}} = +\mathsf{R}_{\mathrm{cyt}} + \mathsf{C}_{\mathrm{cyt}} + \mathsf{F}_{\mathsf{Imp}\beta} \frac{V_{\mathrm{nuc}}}{V_{\mathrm{cyt}}} \tag{7d}$$

$$\frac{\mathrm{d}}{\mathrm{d}t}[\mathsf{Imp}\beta \cdot \mathsf{Cargo}]_{\mathrm{cyt}} = -\mathsf{C}_{\mathrm{cyt}} + \mathsf{F}_{\mathsf{Imp}\beta \cdot \mathsf{Cargo}} \frac{V_{\mathrm{nuc}}}{V_{\mathrm{cyt}}}$$

$$\frac{\mathrm{d}}{\mathrm{d}t}[\mathsf{Cargo}]_{\mathrm{cyt}} = +\mathsf{C}_{\mathrm{cyt}} + \mathsf{F}_{\mathsf{Cargo}} \frac{V_{\mathrm{nuc}}}{V_{\mathrm{cyt}}}$$
(7e)

$$\frac{\mathrm{d}}{\mathrm{d}t}[\mathsf{Cargo}]_{\mathrm{cyt}} = +\mathsf{C}_{\mathrm{cyt}} + \mathsf{F}_{\mathsf{Cargo}} \frac{V_{\mathrm{nuc}}}{V_{\mathrm{cyt}}} \tag{7f}$$

TODO(2): Analogous equations for *nuclear*

TODO(3): Diffusion eqn

TODO(4): Add R to Ran · GTP eqn

TODO(5): Need $Imp\beta \cdot Ran \cdot GTP + Cargo \Longrightarrow Imp\beta \cdot Cargo + Ran \cdot GTP$?

Table 4: Eq

References

- [Bis+95] F. R. Bischoff, H. Krebber, E. Smirnova, W. Dong, and H. Ponstingl. "Co-activation of RanGTPase and inhibition of GTP dissociation by Ran–GTP binding protein RanBP1". In: *The EMBO Journal* 14.4 (Feb. 1995), pp. 705–715. DOI: 10.1002/j.1460-2075.1995.tb07049.x (cit. on p. 2).
- [Kle+95] C. Klebe, H. Prinz, A. Wittinghofer, and R. S. Goody. "The Kinetic Mechanism of Ran-Nucleotide Exchange Catalyzed by RCC1". In: *Biochemistry* 34.39 (Oct. 1995), pp. 12543–12552. DOI: 10.1021/bi00039a008 (cit. on pp. 2, 3).
- [GSR03] D. Görlich, M. J. Seewald, and K. Ribbeck. "Characterization of Ran-driven cargo transport and the RanGTPase system by kinetic measurements and computer simulation". In: *The EMBO Journal* 22.5 (Mar. 2003), pp. 1088–1100. DOI: 10. 1093/emboj/cdg113 (cit. on pp. 1–3).

TODOs:

- 1. p.3. Eq
- 2. p.4. Analogous equations for nuclear
- 3. p.4. Diffusion eqn
- 4. p.4. Add R to Ran · GTP eqn
- 5. p.4. Need $Imp\beta \cdot Ran \cdot GTP + Cargo \rightleftharpoons Imp\beta \cdot Cargo + Ran \cdot GTP$?