Canonical Ecology Curriculum: a working document for its core content

Carsten F. Dormann (University of Freiburg, Germany) Marco A.R. Mello (University of São Paulo, Brazil)
Karl Andraczek (University of Leipzig, Germany) Oliver Bossdorf (University of Tübingen, Germany)
Gian Marco Palamara (University of Bern, Switzerland)

November 19, 2023

1 About

Which elements of ecology should be known to any ecologist reaching MSc (or early PhD) level? Following Dormann & Mello (2023), we suggest to organise the topics by spatio-temporal scale (= level of organisation) from large to small. This repository aims at collecting and communicating ideas and links to resources (books, papers, MOOCs, videos) that help teaching (and learning) about a subject.

We recognise that opinions will differ about what to include as *core* ecological topics. Take your pick and add your ideas! This is not aiming to be prescriptive or homogenising, but fostering a common language and knowledge base.

All material presented for download is open access for non-commercial use, unless stated otherwise.

2 Introduction

Within ecology, collaborations are key to understanding the beauty and complexity of nature, and for addressing urgent environmental problems. But how often did we experience collaborations thwarted by miscommunication and lack of a common language? We seem to work with loosely defined concepts and inconsistent vocabulary. Overcoming such problems starts with a well-trained new generation of ecologists. For them, a Canonical Ecology Curriculum is needed, focusing on core theories, seminal papers and standard methods used by ecologists.

Based on a conceptual and operational backbone, such a curriculum could be taught in graduate programmes worldwide, augmented by local examples, individual research interests and enthusiasm. It would minimize the ambiguity of what ecologists learn, while enriching our common vocabulary, reinforcing our ability to understand nature and address complex environmental issues.

We call for a global, open collaboration to collectively develop the curriculum, and make it directly usable in real-world teaching. As a starting point, we provide eight central spatiotemporal themes, ranging from molecular to global, with recommendations on target variables, theories, classical studies, methods and teaching resources.

If you are interested in joining our cause, take a look at, and comment on, the current version of our curriculum's backbone (for more background reading see our paper in Basic and Applied Ecology):

- Below the table, please link your teaching material to openly share with colleagues.
- If you miss something in the curriculum, please add this topic at the bottom of the text along with a justification.
- If you think something is not important enough for a core curriculum, please leave a similar note below the table to tell us why.

3 Elements of the Canonical Ecology Curriculum

Only unshaded rows are developed to some extent, the others are very preliminary.

Scale	Target variables (examples)	Theory or Framework	Classics (by keyword)	Methods
Global	Biomass, productivity	species-energy relationship (incl. Bergmann's Rule;)	Biome delineation	database skills; Model 2 regression;
	species occurrence; species richness	(Macroecology); island	Island radiation (Echium, Geospiza);	(non)linear (mixed-effects) model;
		biogeography; speciation, extinction	Latitudinal gradient in species	
		mechanisms; (animal) migration;	richness	
		mid-domain effect		
	functional traits	Rapaport's Rule, Foster's Rule		
	stoichiometry	stoichiometry-energy relationship		
	C-balance, O2-production		GlobalCarbonBudget	
Landscape	Patch-level population size	Landscape configuration,	SLOSS; fragmentation; landscape	GIS; remote sensing; biotelemetry;
		meta-community, meta-population; species-area law;	networks	mathematical modelling
Ecosystem	C-, N-, P-pools and fluxes; water	Nutrient cycles; energy fluxes;	Biosphere 2; Duke & Harvard Forest;	EC-towers; decomposition bags; lea
	fluxes; decomposition rates; tree	metabolic scaling theory; BD-EF	FLUXNET; Si-deposition from Chad	chemistry; Earth system models;
	growth; energy density per trophic level		in Amazon	forester diagram-models; ODEs (ordinary differential equations)
	types of ecosystems (terrestrial,			
	limnic, marine)			
Community	Richness,	(modern) coexistence theory:	Succession: Michigan dunes, Mount	Plot sampling in the field; diversity
	functional/phylogenetic/other	equalising (storage, Janzen-Connell,	Glacier forefield;	metrics; multivariate statistics,
	diversity; species abundance	niche differentiation) and stabilising;		ordination, distances and clustering
	distributions;	Temporal community dynamics		network analysis; Database skills;
		(succession);	. Id. por	taxonomic expertise, meta-genomic
	co-occurrence patterns, beta-diversity;	Assembly rules, neutral theory;	neutral theory: BCI	stochastic coupled ODE simulation
	network structure and stability	food webs; ecological networks;	top-down/bottom-up:	
		indirect interactions;	Oksanen/Fretwell/HSS; keystone	
			species: starfish-algae: Paine;	
			otter-kelp forest: Estes; beaver,	
			elephants,; frugivorous bird	
			networks along Andean altitude gradient;	
Pairwise	Abundances of both species;	Continuous Lotka-Volterra	Competition experiment;	Microbial/plant competition
dynamics	Tibulidances of both species,	competition, predation, and	Janzen-Connell effect; biocontrol	experiments in field and lab; design
		mutualism models; (modern)	(importance of timing);	for feeding trials; population
		coexistence theory; parasite-host	snowshoe-hare-lynx; Paramecium	monitoring; ODE/DE simulations;
		dynamics (discrete: Nicholson-Bailey, Hassall);	aurelia vs P. caudata;	state/phase-space plots; game theor
		Functional and numerical response; Tilman's Isocline model;		
		Character/niche displacement,	Hohenheimer ground water	
		fundamental & realised niche;	experiment;	
		Herbivory & plant defence;		
		allometric prey-predator rules;		
		disease spread/epidemiology (SIR);	SARS-CoV2 (SIR)	
		multiple resource model;		
		apparent competition/apparent		
		facilitation		
	fitness;			
	interaction strength			
Individual	Activity budget; movement; niche;	Individual specialisation; behavioural	Individual specialisation; evolution of	Biotelemetry; cafeteria trials;
	feeding preferences; ontogenetic	ecology; evolutionary game theory;	altruistic behaviour; the logic of	captivity experiments; mathematica
	changes in behaviour	allometric growth law; dynamic	animal conflict	modelling (ODE, DE; IBM)
		energy budget (incl. optimal		
		foraging); Liebig's law of minimum		
Genes	Allele frequencies; heterozygosity	Population genetics (selection,	Drosophila and Arabidopsis;	Behavioural observations; fitness

References

Dormann, C. F. & Mello, M. A. R. (2023). Why we need a canonical ecology curriculum. Basic and Applied Ecology, 71, 98–109.

mutation, genetic drift, gene flow);

coalescent theory; landscape genetics

bottleneck effect; inbreeding

depression; genetic drift

manipulation; game theory