New and Emerging Technologies and Trends

PQ Monitoring and Analysis for optimised Quality Power delivery

Smt Vandana Singhal, Shri Rajen Mehta and Shri Manas Kundu

Speaker: Manas Kundu, APQI India Co-Ordinator Advisor Energy Regulatory Affairs (ICA India)

INDEX

- Power Distribution Today
- Effects of Digital Economy on PQ
- PQ Standards Enablers for PQ Management
- Case Study 1 (Industry)
- Case Study 2 (Data Center)
- Summary
- PQ Management A Path forward

POWER DISTRIBUTION - TODAY

India is the third largest producer of electricity in the world.

Where Electricity Consumption by Industrial & Commercial sector is > 50%

THE DRIVERS BEHIND THE DIGITAL ECONOMY

All PQ Indices to experience significant deterioration from the current levels

EFFECTS OF POWER QUALITY - INDUSTRIES & UTILITIES

Productivity costs
Pow Qua

Poor Power Quality And Utilities are blamed almost always!

Decreased equipment life

Lost opportunity

Product damage

Wasted energy

ANALYSE

Do you have the tools to navigate the evolving PQ landscape?

What you can't measure, can't be managed

energyberg

LOSS OF BRAND ENERGY SPIKES DOWNTIME MALFUNCTIONING

INEFFICIENT DEVICES
POOR CONDITIONING
FIRE HAZARDS
EARTHING PROBLEMS
COMPROMISED SAFETY
BAD POWER QUALITY
NON COMPLIANCE
DATA LOSS
SUB OPTIMAL DESIGNS

PQ STANDARDS - ENABLERS FOR BETTER

PQ MANAGEMENT

IS 17036/SEMI 47 among others

Specifies the main characteristics of the voltage at network user's supply terminals in distribution system and provides voltage sag immunity levels

Measurement & Monitoring Methods

Provides standardised power quality measurement methods and frameworks for PQ monitoring implementation by key stakeholders

FOR Model Regulations

Provides guidance to all stakeholders on a foundation for implementing Power Quality Measurements, Monitoring & overall Management

India
SMART UTILITY
Week 2023
01 - 04 MARCH 2023 | © NEW DILHI

PQ Management - Food Beverage Industry

Background

- One of the largest bottling facilities in CBO
- Manufacturing Capacity 2400+ bpm, 6 lines
- Fed from 220 kV S/S 25 KMs away

Issues

- Frequent Voltage drops, unscheduled power cuts
- Further aggravated by a neighbouring traction load
- Stoppage of Production line happening for years!
- Failure of Electronic cards

IEC 61000-4-30

CASE STUDY - 1

PQ Management - Food Beverage Industry

Draft PQ Std.

Measurement Methodology

PQ Management - Food Beverage Industry

33 kV Main Incomer

PQ Management - Food Beverage Industry

Results & Recommendations

01	Voltage fluctuations, over voltages, and sags are causing critical equipment failures
02	Huge variations in load by trains operating on 33 KV industrial feeder
03	Severe voltage dips discovered in SCADA caused tripping
04	Traction load introducing 2nd 3rd and 5th harmonics causing Voltage Amplification
05	Voltage Interruptions are alarmingly high - max 60 in a month!

- Install 2 no. of UPS each of 600 kVA at critical locations (Immediate)
- DISCOM needs to separate the Traction feeder from all Industrial feeders
- Protection settings should be adjusted
- Further investigation required for 2ms voltage dips
- An SVC with 'Load balancing control' can balance out the voltage supply
- Auto changeover of supply through RMU fed by two reliable HV feeders

Before PQ Monitoring and Analysis		After PQ Monitoring and Analysis		
1.	Tremendous Financial Losses to the		etention of investment in the state	
	consumer	2. A	ctual source of the issue discovered	
2.	More than half the time DG power required		ctions taken by the Utility to eparate traction load	
3.	Utility held directly responsible for poor PQ		fluch smoother and compatible input oltage supply	
4.	Local workers at risk of		lant was able to remain operational	
	unemployment	6. F	aith regained in the Utility's apabilities	

PQ Management - Data Center / Steel Plant

Before PQ Monitoring and Analysis	After PQ Monitoring and Analysis		
 Investment in a 50MW data cente needs assurance w.r.t power availability and reliability Concrete actionable recommendations not available to mitigate issues if any 	 Timely discovery of Power Quality non-compliances due to neighbouring steel plant Grid level mitigation actions now clear to utility DC can take proactive actions at their end knowing the intensity and frequency of PQ trends and events. 		

SUMMARY

Industry	Problem	PQ issue	Actual Cause	Standards used for analysis
Food and Beverage Industry (Existing)	Extremely poor voltage quality, Huge financial losses	Voltage Sags, Swells and Interruptions	Neighbouring load - traction	IS 17036 ITIC Curve New Draft Standard
Data Center (New Consumer)	Incoming Supply feeder has non- compliant Power Quality for DCs	Flickers, Harmonics, Voltage Sags, Swells and RVCs	Neighbouring load - Steel Plant	IS 17036 SEMI F47 IEEE 519-2014 New Draft Standard

PQ MANAGEMENT – A TORCH IN THE DARKNESS!

Measure

Collate

Analyse

Improve

Control

- Automated compliance to Standards & real time reports
- Causal Analysis on hard to trace failures/malfunctions
- Actionable recommendations for the Pollutant
- Improve Asset life and capex reduction by timely actions
- Use of AI/ML for Predictive insights to prevent future failures
- Real time Identification and situational intelligence of the electrical network

Enhancing PQ Management through IT means better customer service and in turn profitable utilities!!!!!

CONCLUSION & WAY FORWARD

- PQ Monitoring & Analysis = Revenue
- PQ Analytics = Insights into asset health
- Smart meters without PQ =
 Opportunity Lost
- Adherence to PQ Standards = Reliable Grid

