

# [AWS] 4. VPC (Virtual Private Cloud)

#### References

- AWS 공인 솔루션스 아키텍트 스터디 가이드 어소시에이트 3/e 4장
- https://inpa.tistory.com/entry/WEB-IP-클래스-서브넷-마스크-서브넷팅-총정리
  (IP / Subnet)
- https://inpa.tistory.com/entry/WEB-⊕-CIDR-이-무얼-말하는거야-⇒-개념-정리-계산법 (CIDR 개념)
- https://inpa.tistory.com/entry/AWS->>-아마존-웹-서비스-구조-Region-AZ-Edge-Location-Cache-완벽-정리#엣지\_로케이션\_(Edge\_Location)
- https://medium.com/harrythegreat/aws-가장쉽게-vpc-개념잡기-71eef95a7098
  (VPC 쉬운 개념 정리)
- o <a href="https://inpa.tistory.com/entry/AWS->>-NAT-Gateway-NAT-Instance-대체해서-비용-절약?category=947440">https://inpa.tistory.com/entry/AWS->>-NAT-Gateway-NAT-Instance-대체해서-비용-절약?category=947440</a> (NAT Gateway → NAT Instance)



VPC 가 없는 구조



VPC가 있는 구조

#### ※ VPC의 기본 개념

# • VPC (Virtural Private Cloud) 개요

- AWS 사용자 전용 가상 네트워크로, 개인 네트워크 망 데이터 센터로 이해하면 된다.
- 모든 서비스에 VPC를 적용하도록 강제 하고 있다.
- 인스턴스를 하나의 VPC로 네트워크를 구분하여, VPC 별로 필요한 설정을 통해 인 스턴스에 네트워크 설정을 적용할 수 있게 되었다.
- 위 그림처럼 VPC 없는 구조에서 인스턴스 추가 삭제에 따른 네트워크 문제를 해결하기 위해 등장한 가상 네트워크 개념

#### ※ IP / Subnet / CIDR 기본 개념

#### IP

- IP 란 장치를 식별 할 수있는 고유 주소
- 。 네트워크 ID + 호스트 ID 로 구성된다.
- o IPv4
  - IP 주소를 8비트씩 4등분, 각각을 옥텟 이라고 부른다.
  - 옥텟 별로 IP를 A, B, C 클래스로 나눈다.

# A 클래스

|00000001|00000000|00000000|00000000|

8비트 네트워크 ID

24비트 호스트 ID

# B 클래스

|1000000|00000000|0000000|00000000|

16비트 네트워크 ID

16비트 호스트 ID

# C 클래스

[10000000]000000000]00000000]000000000

24비트 네트워크 ID

8비트 호스트 ID

■ 가장 첫번째 호스트 주소, 마지막 주소는 사용할 수 없다 (네트워크, 브로드캐 스트 주소)

## 서브넷 (Subnet)

- 클래스로 나누어 할당하는 것이 비효율 적이기에 네트워크 장치수에 따라 효율적으로 사용 가능한 서브넷 개념이 등장
- 서브넷이란 하나의 네트워크를 분할시켜 나눈 작은 네트워크

- 。 이런 서브넷 네트워크 만들기 위해 분할하는 것을 서브네팅 이라 한다.
- 。 이 서브네팅은 서브넷 마스크를 통해 계산되어 수행 된다.

#### • 서브넷 마스크 (Subnet Mask)

- 32비트 2진수로 표현되며, 연속된 1과 연속된 0 으로 구성된다.
- 11111111.11111111.11111100.00000000 처럼 1이 연속되거나 아닌 형태만 가능하다.
- 。 A클래스의 디폴트 서브넷 마스크 255.0.0.0
- B클래스의 디폴트 서브넷 마스크 255.255.0.0
- 。 C클래스의 디폴트 서브넷 마스크 255.255.255.0

#### • prefix 표현

- 。 서브넷 마스크를 간소화 하여 표현하기 위한 방법
- 예를들어 /24 라는 뜻은 앞에서부터 1의 갯수가 24개라는 뜻 (/0 ~/32 까지 가능하다)

#### • 서브네팅

○ 서브넷 구분비트를 호스트 ID 비트의 제일 왼쪽 비트부터 할당 하여 호스트를 나눔

#### • 슈퍼네팅

- 。 서브네팅의 반대의 개념으로 네트워크를 합치는 것이다.
- 。 서브넷 마스크를 이동시키면 된다 = Prefix를 감소 시킨다.
- 。 Prefix 숫자가 감소한다는 것은 호스트ID 갯수가 늘어난다는 뜻

#### • CIDR (사이더)

- 。 Classless Inter-Domain Routing 으로 클래스 없는 도메인 간 라우팅 기법 이다.
- 。 서브네팅과 유사하지만 서브네팅의 상위 개념
- 。 CIDR는 서브네팅 슈퍼니팅 등 IP를 나누고 합치는 기법을 모두 일컫는다.

#### • CIDR 표기법

- 네트워크 정보를 여러개로 나누어진 Sub-Network들을 모두 나타낼 수 있는 하나 의 Network로 통합해서 보여주는 방법이다
- 한줄 표기법으로 네트워크 범위를 추측 또는 측정 할 수 있다.
- 예) 192.168.10.70/26
  - 서브넷 마스크 255.255.255.192
  - <u>256 192</u> = 64 2(네트워크, 브로드캐스트 주소 제외) 개의 호스트 ID를 가질수 있다.
  - 256 / 64 = 4개의 서브넷 네트워크를 가진다.
  - 각 62개씩 호스트 ID를 지닌 4개의 네트워크로 분리되어
  - 192.168.10.70 은 두번째 네트워크인 (192.168.10.64 ~ 192.168.10.127) 에 속해 있다는 것을 알 수 있다.

#### • VPC 의 CIDR (IPv4)

- VPC CIDR 지정 시 어떤 IP 범위라도 사용할 수 있지만, 다른 퍼블릭 인터넷 주소 와 충돌을 피하기 위해 RFC 1918 범위를 사용할 것을 권장한다.
  - **1**0.0.0.0~10.255.255.255 (10.0.0.0/8)
  - **172.16.0.0~172.32.255.255 (172.16.0.0/12)**
  - 192.168.0.0~192.168.255.255 (192.168.0.0/16)
- VPC의 CIDR 범위는 /16 에서 /28 까지 가능하다.
- VPC 생성 후 기본 CIDR 블록은 변경할 수 없으므로 VPC를 생성하기 전에 주소 요구사항을 신중히 검토 해야 한다.



- AWS 에서 보조 CIDR 블록이라 일컫는 CIDR 블럭은 일종의 서브넷 이다. (위 예시)
  - 네트워크 (VPC CIDR 블록): 192.168.0.0/16 으로 기본 CIDR 블록 지정
  - 서브넷 1,2,3 (보조 CIDR 블록)
- AWS 에서는 자체 클라우드에서 설정해 사용하고 있는 IP 가 있어 총 5개의 IP가 자동으로 할당 된다.
  - 첫번째 주소 : 네트워크 주소
  - 두번째 주소 : AWS VPC 라우터 용으로 예약 (Default Gateway)
  - 세번째 주소 : DNS 서버 주소, DNS 서버의 IP 주소는 기본 VPC 네트워크 범위에 2를 더한 주소이다. CIDR 블록이 여러개인 VPC인 경우 DNS 서버의 IP 주소가 기본 CIDR 에 위치한다.
  - 네번째 주소 : AWS 에서 앞으로 사용하려고 예약한 주소 (예비 주소)
  - 마지막 주소 : 네트워크 브로드캐스트 주소

#### • VPC 의 IPv6 CIDR 블록

- IPv4의 기본 CIDR 지정과 달리, IPv6에서는 CIDR 를 지정할 수 없다.
- 대신 AWS에 요청 시 VPC에 IPv6 CIDR를 할당하며 이렇게 할당받은 CIDR는 글로벌 유니케스트 IPv6 주소공간에서 퍼블릭 라우팅이 가능한 IP 프리픽스로 사용될 수 있다.

- <u>IPv6 VPC 기본 CIDR 의 프리픽스 길이는 항상 /56 이다.</u>
- ∘ IPv6 서브넷의 접두사 길이는 /64로 고정되어 있다.
- IPv6만 사용 할 계획이라도 서브넷에는 반드시 IPv4 CIDR 블록을 할당해야 한다.

#### • VPC 의 서브넷

- 。 VPC 안 로직 컨테이너
- 인스턴스간 트래픽 유입 유출을 제어하고 기능별로 조직화 할 수 있다.
- 인터넷 접속이 가능한 퍼블릭 웹서버용 서브넷을 하나 만들고, 웹 인스턴스만 접속
  가능한 데이터베이스 전용 서브넷을 추가하는 구성이 가능하다.
- 。 서브넷은 전통적인 가상 LAN(VLAN) 과 유사한 개념의 네트워크 요소
- 서브넷에 인스턴스를 생성후 다른 서브넷으로 옮길 수 없다.
  - 만약 옮겨야 할 때는 기존 인스턴스의 EBS 볼륨 스냅샷 생성, AMI 생성 그리고 해당 AMI를 사용하여 원하는 서브넷에서 새 인스턴스를 시작해야 한다.

## • AZ, Availability Zone (가용 영역)

- 。 리전 내 개별 데이터센터와 비슷한 개념
- 。 서브넷은 하나의 가용영역내에서만 존재할 수 있다.
- AWS 리전의 가용영역은 서로 연결되어 있으며, 하나의 가용영역에 장애가 발생하더라도 다른 영역에 그 영향이 미치지 않도록 설계되어 있다.



 위 그림 처럼 하나의 VPC 아래 두개의 서브넷을 가용영역 A, C에 구성 한다면, A 영역에서 장애가 발생하더라도 B영역의 EC2 웹서버는 정상적으로 사용이 가능하다. (고가용성)

#### ENI (Elastic Network Interface)

- Elastic Network Interface 란 인스턴스가 AWS 서비스 등 다른 네트워크 리소스와
  통신 할 수 있도록 한다.
- SSH, RDP(Remote Desktop Protocol) 등을 이용해 인스턴스에서 실행되는 OS
  와도 통신 가능.
- 。 물리적 서버의 네트워크 인터페이스와 같은 기능을 제공한다.
- 。 모든 인스턴스는 ENI를 가져야 하며, 이 인터페이스는 하나의 서브넷에만 연결 된다.
- 각 인스턴스는 기본 프라이빗 IP 주소를 지니며, 인스턴스의 기본 ENI와 연결된다,
  삭제 변경 불가능
- 각 인스턴스에 기본 프라이빗 IP 주소 외에 보조 프라이빗 IP를 할당하여 사용 가능하며, 보조 프라이빗 IP 주소는 기본 ENI와 연결된 서브넷 범위 내에 있어야 한다.

- ENI 는 인스턴스와 독립적으로 존재할 수 있으며, ENI를 생성한 뒤 인스턴스에 부 착할 수 있다.
- '종료 시 삭제' 속성을 비활성화 하면 인스턴스 삭제 후에도 ENI가 삭제되지 않는다.

#### • 성능강화 네트워크 (Enhanced Networking)

- ENI 에 비해 고속의 네트워크 처리속도 및 저지연성을 제공한다.
- 。 단일 루트 입출력 가상화 (SR-IOV) 기법을 사용
  - SR-IOV 기법 : 동일한 물리적 서버에서 호스팅 되는 다수의 인스턴스가 하이 퍼바이저를 우회할 수 있도록 하여 좀더 낮은 CPU 활성화 수준 및 좀 더 높은 네트워크 성능을 제공

| Elastic Network Adapter ENA            | 100 Gbps 처리속도 제공, 대부분의 인스턴스 타입<br>지원                |
|----------------------------------------|-----------------------------------------------------|
| Intel 82599 Virtual Function Interface | 10 Gbps 처리속도 제공, ENA를 지원하지 않는 일<br>부 인스턴스 타입을 지원한다. |

성능 강화 네트워크를 사용하려면 OS에 성능강화 네트워크를 지원할 수 있는 드라이버가 설치 되어 있어야 하며, Amazon Linux 및 Ubuntu HVM AMI 에는 ENA 지원 기능이 기본적으로 탑재되어 있다.

#### • 라우팅 테이블과 라우터

- VPC 내의 트래픽의 유입, 유출, 이동을 제어하기 위해 라우트 테이블에 저장된 라 우트를 사용
- 사용자에 의한 환경설정이 필요한 기존 물리적 혹은 가상 라우터와 달리 VPC 아키텍처는 IP 라우팅을 소프트웨어 함수로 구현한 내재된 라우터 (Implied Router) 의특징을 지닌다.
- VPC에는 인터페이스 IP 주소를 설정할 가상 라우터, BGP와 같은 동적 라우팅 프로토콜도 없다.
- 서브넷은 라우트 테이블 연결 없이 존재할 수 없으며, 서브넷을 커스텀 라우트 테이블에 명시적으로 연결하지 않으면, AWS가 암묵적으로 해당 서브넷을 기본 라우트테이블에 연결한다.
- 라우트는 라우트 테이블과 연결된 서브넷 내에서의 트래픽 유입 및 유출을 결정
- 라우트를 생성시에 대상(destination) 주소 IP 프리픽스, 타겟 리소스 요소를 반드 시 설정

내재된 라우터는 트래픽을 어디로 보낼지 결정할 때 가장 일치도가 높은 범위를 선택하며, 라우트 순서에는 상관하지 않는다.

#### • 인터넷 게이트웨이

- 。 VPC와 인터넷을 연결해주는 Gateway
- 。 온프레미스에 설치하는 인터넷 라우터와 유사
- 차이점은 기존 네트워크에서 코어 라우터의 기본 라우터가 인터넷 라우터의 IP를 가리키도록 되어 있지만, 인터넷 게이트웨이에는 IP주소나 네트워크 인터페이스가 없어, AWS 리소스 ID를 식별용으로 할당 (igw- 로 시작 하는 ID) (→ 아래 그림의 서브넷 라우팅테이블 0.0.0.0/0 IGA A 에 해당한다)



• 인터넷 게이트웨이를 사용 하려면, 라우트 테이블에 인터넷 게이트웨이를 타겟으로 하는 기본 라우트를 생성해야 한다.

#### • 보안그룹 (= 방화벽)

- 인스턴스 ENI에 대한 트래픽의 유입 또는 유출 여부를 결정한다.
- 모든 ENI는 최소 하나 이상의 보안그룹에 연결 되어 있어야 한다.

- 。 하나의 보안그룹을 다수의 ENI에 연결 가능하다.
- 하나의 인스턴스에는 여러개의 ENI 여러개의 보안그룹이 연결 될 수 있다.

|          | 필수 요소                 | 허용 및 규칙 방식                                                             |
|----------|-----------------------|------------------------------------------------------------------------|
| 인바운드 규칙  | 소스, 프로토콜, 포트 범위       | 기본 거부 규칙을 사용 (Default-deny), 보안<br>그룹의 규칙 순서에는 영향이 없다.                 |
| 아웃바운드 규칙 | 대상 주소, 프로토콜, 포트<br>범위 | 기본 허용 규칙을 사용, 규칙 제거 시 보안그룹<br>은 인스턴스가 외부 다른 어떤 요소에도 접근<br>하지 못하도록 막는다. |

- 소스 및 대상 주소에는 CIDR 블록 또는 보안그룹의 리소스 ID가 될 수 있다.
- 소스 보안 그룹은 다른 AWS 계정에 있어도 무방하며, 이 때 소스 보안 그룹에 해당 계정 소유자 ID를 지정하면 된다.
- ∘ 상태 저장 방화벽 (Stateful Firewall) 기능을 제공한다.
  - 보안 그룹이 트래픽을 한방향으로 전달하도록 허용한 뒤, 반대 방향의 응답 트 래픽을 기억해 두었다 지능적으로 허용하는 것을 의미한다.
  - 보안 그룹은 연결 추적 기능을 이용하여 응답 트래픽의 허용 여부를 결정한다.
- 。 모든 VPC에는 삭제 불가능한 기본 보안그룹이 포함되어 있다.

#### • 네트워크 접속 제어 목록 (NACL)

- Network Access Control List 는 보안그룹과 마찬가지로 방화벽의 기능을 수행한다.
- 각 VPC에는 삭제 불가능한 기본 NACL이 있다.
- NACL은 ENI 가 아닌 서브넷에 연결된다.
- 서브넷 내 인스턴스간 트래픽 제어에는 보안그룹을 사용해야 한다.
- 。 서브넷에는 하나의 NACL만 연결 가능하다.
- 。 하나의 NACL은 여러개의 서브넷에 연결이 가능하다.
- 기본 NACL을 수정하거나 새 NACL을 만들어 연결한다.
- 보안그룹이 Statefule 속성을 지니는 반면 NACL은 Stateless 속성을 지닌다.
- NACL을 통과하는 연결상태를 추적하지 않고, 응답트래픽을 자동으로 허용하지 않는다는 점에서 전통적인 스위치, 라우터의 ACL과 유사하다.
- NACL과 보안그룹이 충돌 시 보안그룹이 더 높은 우선순위를 갖는다.

|          | 필수 요소                                             | 허용 및 규칙 방식                                                     |
|----------|---------------------------------------------------|----------------------------------------------------------------|
| 인바운드 규칙  | 규칙번호, 프로토콜, 포트<br>범위, 소스 CIDR, 동작<br>(Allow/Deny) | 규칙은 규칙 번호의 오름차순으로 처리한다,<br>규칙번호는 가장 작은 숫자부터 우선된다               |
| 아웃바운드 규칙 | 규칙번호, 프로토콜, 포트<br>범위, 소스, 동작                      | stateless 속성에 따라 응답트래픽을 자동으로<br>허용하지 않는다. 즉 명시적으로 허용해야 한<br>다. |

## • Public IP (퍼블릭 IP 주소)

- 。 퍼블릭 인터넷으로 접속 가능한 주소
- 。 VPC에 인터넷 게이트웨이를 연결해야 한다.
- 퍼블릭 IP 주소는 기본적으로 DHCP(?) 이므로 인스턴스 재시작 시 새로운 퍼블릭
  IP가 할당된다.

### • Elastic IP (탄력적 IP 주소)

- 사용자의 요청에 따라 AWS 가 사용자의 계정에 할당하는 퍼블릭 IP 주소
- EIP를 처음 생성하면 인스턴스와 연결되지 않은 상태이므로 (독립적), 직접 ENI와
  연결후 ENI를 인스턴스와 연결하여 사용하여야 한다.
- EIP를 ENI와 연결한 뒤에는 ENI를 삭제하거나 EIP를 해제하지 않는 한 연결이 지속
- 。 EIP는 리전 단위로 제공된다.
- EIP를 AWS 계정이 보유한 퍼블릭 주소로 전달 가능하다. (BYOIP Bring your own IP address 라 부르며 리전당 최대 다섯개의 주소목록을 가져올 수 있다.)

#### • AWS 글로벌 엑셀레이터

- AWS의 여러 리전에 리소스가 분리되어 있다면 리전별 여러개의 EIP를 관리하기 위해 사용
- AWS 글로벌 엑셀레이터는 <u>어디에든 연결할 수 있는 두개의 정적 IPv4 주소를 제</u> 공하여 이를 통해 어떤 리전에 있는 리소스와도 연결 가능하다.
- 。 애니캐스트 주소 anycast address 라고도 부른다.
- 。 접속 포인트 (POP) 를 연결한 정적 주소 체계

 특정 POP이 작동하지 않을 시 트래픽을 자동으로 다른 POP로 라우팅 하므로 전체 서비스엔 영향이 없다.

## • 네트워크 주소 변환 (NAT)

- 사설 네트워크에 속한 여러 대의 호스트가 하나의 공인 IP 주소를 사용하여 인터넷
  에 접속하기 위함
- 。 인터넷 게이트웨이가 퍼블릭 IP주소를 ENI의 프라이빗 IP 주소로 매핑하는 과정
- NAT 작업은 인스턴스가 퍼블릭 IP를 지닌 경우, 인터넷 게이트웨이에서 자동으로 이루어 지며, 사용자가 변경 불가능하다.

#### • NAT 게이트웨이

 인터넷 접속이 가능한 Public 서브넷에 NAT 게이트웨이를 생성하고, Private 서브 넷이 외부 인터넷으로 나아갈 경우에만 라우팅을 추가



- NAT Gateway 는 내부에서 외부로의 접속만 가능하며, 외부에서 NAT Gateway를 이용하여 접속하는 것은 불가능 하다.
- 。 외부 인터넷 연결에 대한 보안 문제 해결
- NAT Gateway 는 인터넷 게이트웨이 없이 동작할 수 없다.
- NAT Gateway는 기본적으로 트래픽이 나갈때 데이터 처리 요금이 발생하고, 계속 돌려놓고 있어도 시간당 요금이 청구되는 꽤 비싼 서비스이다.

NAT Gateway를 생성할 때 EIP를 할당해서 연결해야 하며, 퍼블릭 서브넷에 생성한다.

#### • NAT 인스턴스

- NAT Gateway의 비용을 절약하기 위해 EC2를 NAT로 사용하는 기술
- NAT Gateway와 달리 대역폭 요구가 증가하더라도 자동으로 확장되지 않는다.
- 적절한 성능을 갖춘 인스턴스 유형을 선택하는것이 중요하다.
- NAT 인스턴스는 ENI를 지니고 보안그룹을 적용해야 하므로, 직접 퍼블릭 IP 주소도 할당해야 한다.
- 직접 NAT 인스턴스의 ENI에서 소스/대상 주소 옵션을 비활성화 해야한다.
- NAT 인스턴스의 이점은 배스티온 호스트 (Bastion Host) 또는 점프 호스트 (Jump Host) 로 사용하여 퍼블릭 IP가 없는 인스턴스에 연결할 수 있다는 점이다. (NAT 게이트웨이로는 불가능)
- 。 인스턴스나 AZ 장애시 치명적 (다른 NAT 인스턴스를 가리키도록 하는 것이 불가능)

| NAT Instance               | NAT Gateway          |
|----------------------------|----------------------|
| 단일 인스턴스                    | AWS에서 제공하는 서비스       |
| = EC2                      | = 서비스                |
| 꺼지면 죽음                     | 대져도 죽지않음(고가용성 보장)    |
| 보안그룹 영향 받음                 | 보안그룹 영향 받지않음         |
| 예전 스타일                     | 요즘 스타일               |
| Source/Destination을 해제해야 함 |                      |
| Bastion을 걤할 수O             | Bastion을 겸할 수X       |
| Public Subnet에 있어야 함       | Public Subnet에 있어야 함 |

#### • VPC 피어링

- 프라이빗 AWS 네트워크를 통해 하나의 VPC에 포함된 인스턴스가 다른 VPC에 포함된 인스턴스와 소통할 수 있다.
- Point to Point 연결로, 두 VPC간 하나의 피어링만 설정 가능하며 CIDR 블록은 겹 치지 않아야 한다.
- 인스턴스간 통신만 허용하며, 인터넷게이트웨이 NAT 디바이스는 공유할 수 없지만 NLB(Network Load Balancer) 는 공유할 수 있다.
- 트래픽이 양방향으로 소통되도록 두 VPC에 새로운 라우팅 규칙이 추가된다.
- 각 라우트 대상 주소 프리픽스는 대상주소 VPC의 범위내에 있어야 하며, 각 라우트 타겟은 pcx- 로 시작하는 피어링 연결 ID로 한다. (각 VPC의 타겟은 같은 피어링 ID로 동일)
- 일부 리전간 VPC 피어링을 사용할 수 없고, IPv6를 지원하지 않는다.
- 。 리전 간 피어링 연결의 최대 전송 단위는 1,500바이트

#### • 하이브리드 클라우드 네트워킹

- 프라이빗 속성을 지니고 인터넷과 연결성 없이, AWS의 온프레미스와 VPC의 프라이빗 연결 서비스는 다음과 같다
  - VPN
  - AWS Transit Gateway
  - AWS Direct Connect

#### VPN

- VPG(Virtual Private Gateway)라 부르는 VPC 리소스를 구성한 뒤, 온프레미스 라우터 또는 방화벽 등 고객 게이트웨이를 구성하게 되며, 이를통해 VPG로 암호화 VPN 터널이 생성된다.
- VPG는 AES 256 비트 및 AES 128 비트 암호를 지원한다.
- 대량의 VPC를 온프레미스 네트워크에 연결 시, 또는 다수의 온프레미스 네트워크를 하나의 VPC에 연결 시 VPN은 많은 수작업을 필요로 하고 실수가 발생할 확률

이 높아 이런 경우 AWS Transit Gateway를 사용하는 것이 좋다.

#### AWS Transit Gateway

- Direct Connect 링크와 VPN을 사용해서 다수의 VPC 및 다수의 온프레미스 네트 워크를 연결할 수 있도록 해주는 고가용성 서비스
- Transit Gateway 라우트 테이블을 통해 부착된 요소를 서로 연결
- ㅇ 주요 용도

| 중앙화 라우터 | 중앙화 라우터로 모든 VPC 및 온프레미스 트래픽을 제어                                                                               |
|---------|---------------------------------------------------------------------------------------------------------------|
| 격리라우터   | 하나의 Transit Gateway에 다수의 격리 VPC를 생성하여 VPC간 격리성을<br>유지                                                         |
| 공유서비스   | 하나의 VPC에서 Active Directory, LLDP 등의 공유 서비스를 호스팅 하는<br>경우, Transit Gateway를 이용하여 격리 보안이 유지된 상태에서 공유환경<br>구성 가능 |
| 피어링     | 서로 다른 리전간 피어링이 가능하다.                                                                                          |
| 멀티캐스트   | VPC간 멀티캐스트 지원                                                                                                 |
| 블랙홀 라우트 | 특정 라우트를 차단하고 싶을 때 Transit Gateway 라우트 테이블에 블랙홀<br>엔트리를 추가하여 트래픽을 차단.                                          |

#### • AWS Direct Connect

- 。 AWS 리소스에 대한 프라이빗, 저지연성 연결을 제공
- 인터넷을 우회해서 접속하는 방법을 제공하여, 문제발생 가능성을 낮추고 광대역 인터넷을 사용할 수 있도록 해준다.
- 대량의 데이터 또는 실시간 데이터 전송, 퍼블릭 인터넷으로 데이터를 전송해서 안 될때 유용하다.

| 전용(Dedicated) | 물리적 단일 연결, Direct Connect 지점에 자체 장비를 추가해야 한다. 1Gps ~ 10Gps 연결속도를 선택 가능하다.                                                           |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------|
| 호스트(Hosted)   | 50Mbps ~ 10 Gbps 연결을 지원하는 호스트 연결타입은 자체장비를 추가할 여력이 없거나 1Gps 미만의 연결속도로 충분할 때 사용, 데이터센터 또는 사무실과 Direct Connect 지점을 잇는 라스트 마일 연결을 제공한다. |

#### Direct Connect Gateways

- 。 리전 내 여러 VPC를 하나의 연결지점에서 접속할 수 있도록 해주는 글로벌 리소스
- o AWS 측에서는 Transit Gateway 또는 VPG가 Direct Connect Gateway 역할
- 사용자 측에서는 Direct Connect Gateway가 온프레미스 장비로 BGP 세션을 유지하며 IPv4, IPv6 라우트 프리픽스를 전파 및 수신한다.

#### • 가상 인터페이스

 Direct Connect 연결 방식에 따라 가상 인터페이스를 생성해서 사용하며, 세가지의 가상 인터페이스를 제공한다

| 프라이빗 가상 인터페이스 | 단일 VPC 내 EC2 또는 RDS 인스턴스 등과 같은 리소스의 프라이빗 IP<br>주소에 연결할 수 있다.                                                              |
|---------------|---------------------------------------------------------------------------------------------------------------------------|
| 퍼블릭 가상 인터페이스  | 퍼블릭 엔드포인트를 지닌 S3 또는 DynamoDB 와 같은 AWS 서비스의<br>퍼블릭 IP 주소에 연결할 수 있다, 온프레미스 애플리케이션을 퍼블릭 엔<br>드포인트를 이용해서 AWS 서비스에 연결하려는 경우 유용 |
| 트랜싯 가상 인터페이스  | 하나 이상의 AWS Transit Gateway에 연결한다. 1Gbps 이상의 속도를<br>제공                                                                     |

## 고성능 컴퓨팅 (HPC - High Perfomance Computing)

- 고성능 컴퓨팅은 집약적인 워크로드를 다수의 인스턴스 (HPC 클러스터) 를 이용하여 동시에 병렬적으로 처리하는 연산 패러다임
- HPC는 보통 긴밀하게 연결된 HPC 클러스터를 의미하며, 보통 고속, 저지연성, 고 신뢰성 네트워크 연결을 기본 속성으로 한다.

| Loosely Coupled (느슨<br>한 연결 클러스터) | 개별 인스턴스가 독립적으로 처리할 수 있도록 다시 세분화, 이미지 프로<br>세싱등의 업무에 주로 활용되며, 하나의 인스턴스는 다른 인스턴스와 완<br>전히 별개의 요소로 작동하며, 고속의 통신 등을 필요로 하지 않아 별개의<br>클러스터 플레이스먼트 그룹에 배치 가능하다. |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tightly Coupled (긴밀한<br>연결 클러스터)  | 여러개의 인스턴스가 단일 슈퍼컴퓨터와 같이 작동, 인스턴스는 고속의<br>네트워크로 서로 연결, 동일 클러스터 플레이스먼트 그룹에 배치하는 작<br>업이 필요하다, 하나의 변수가 다른 변수에 영향을 미치는 복합적인 시뮬<br>레이션 작업에 사용, 머신러닝, 기상예측 등    |

### • 일래스틱 패브릭 어댑터 (EFA)

- Elastic Fabric Adapter 는 전통적인 TCP/IP 네트워크 연결성을 지원하는 특수한 형태의 ENA
- Libfabirc API 를 이용해 OS 의 기본 TCP/IP 스택을 우회해 EFA 에 직접 접속할 수 있도록 해주므로 HPC 애플리케이션을 위한 높은 처리량 및 저지연성을 제공
- ENA란? Elastic Network Adapter의 약자로 최신의 프로세스에 최적화 해 대역폭 및 성능을 향상(호스트의 프로세스의 부하 감소)시킨 네트워크 아답터 모듈이다.
- 。 고가의 인스턴스 타입만 지원하고 하나의 인스턴스에는 하나의 EFA만 부착할 수 있다.

#### AWS ParallelCluster

- 리눅스 기반 HPC 클러스터를 자동으로 관리하며, 클러스터 인스턴스 프로비저닝
  작업을 수행하고, 15GB 공유 파일시스템을 자동으로 생성한다.
- 。 공유 파일시스템은 마스터 인스턴스의 EBS 볼륨에 저장되며, NFS를 통해 다른 인 스턴스에 공유
- NFS 외에도 Amazon EFS, Amazon FSx 를 공유 파일시스템으로 활용 가능하다.
- ParallelCluster는 AWS Batch 를 이용해 배치 스케줄러를 생성한다. 사용자가 배치 스케줄러에 HPC 컴퓨팅 잡을 제출하면, ParallelCluster는 작업에 맞춰 자동으로 클러스터 확장 또는 축소를 수행한다.