

Kuliah Teori Bahasa dan Automata Program Studi Ilmu Komputer Fasilkom UI

Prepared by:

Suryana Setiawan

Revised by:

Maya Retno Ayu S.

Anda akan belajar

- Konsep simbol, alfabet, string dan bahasa
- Notasi-notasi dan terminologi khusus
- Variabel-variabel
- Operator-operator
- Properti-properti, fungsi-fungsi, relasi-relasi
- Sifat closure

Pengantar

- Bahasa merupakan pokok bahasan utama dalam kuliah ini sehingga terminologi dasar terkait bahasa akan disampaikan.
- Suatu bahasa sebagai suatu himpunan dapat dipandang sebagai hasil operasi himpunan antara sejumlah bahasa lainnya, oleh sebab itu sejumlah **notasi operator** akan juga disampaikan.
- Bahasa sendiri sebagai himpunan berisikan sejumlah berhingga/tak berhingga string dari simbol-simbol yang didefinisikan dalam alfabet bahasa tersebut.
 - Terminologi hal-hal ini dijelaskan pada slide berikut

Terminologi Dasar

- **Simbol**: elemen pembentuk string yang biasanya menggunakan simbol-simbol alfanumerik (dalam buku teks disebut juga dengan nama **karakter**).
- Alfabet simbol (notasi Σ): himpunan berhingga simbol-simbol pembentuk string.
- String: deretan simbol dari beberapa alfabet Σ sebagai satu kesatuan arti (suatu simbol bisa muncul sekali, berulang atau 0 kali)
- Σ^* : semua kemungkinan string yang dapat dibentuk dari alfabet Σ tersebut, suatu himpunan semesta.
- **Bahasa**: himpunan string dengan spesifikasi tertentu, jadi jika Σ^* adalah himpunan semesta dari string, maka suatu bahasa adalah subset di dalamnya.

Bahasa Kosong dan String Kosong

- String kosong (*empty string dengan* notasi ε): suatu string tanpa berisi simbol satupun
- Bahasa kosong (*empty language*): suatu bahasa yang tidak memiliki string satupun dan seperti halnya himpunan kosong, dinotasikan dengan ∅ or {}.
 - Perhatian bahwa $\{\varepsilon\} \neq \emptyset$, karena $\{\varepsilon\}$ <u>tidak kosong</u> (berisi satu string ε , yaitu <u>string kosong</u>)!!!

Alfabet-alfabet sederhana

- Tanpa kehilangan sifat umumnya, dalam pembahasan kita selanjutnya, kita cenderung menggunakan alfabetalfabet sederhana sbb:
 - Alfabet {1} untuk membentuk string-string 11, 111111, 11,...
 - Alfabet {0, 1} untuk membentuk string 00101101, 010, ...
 - Alfabet {a, b, c} untuk membentuk string-string ab, aabc, abcca, aaaaaaab,....
- Peringatan: Disini penulisan string tidak menggunakan tanda petik (apostroph) sehingga a dapat dibaca sebagai suatu simbol dan juga suatu string!

Variabel untuk String/Bahasa

- Dalam pembahasan suatu string (bahasa) bisa diwakili oleh sebuah variabel string (bahasa). Karena variabel memerlukan nama, maka kita perlu membuat konvensi penamaannya (jika akan menggunakan huruf-huruf huruf-huruf roman)
- **Simbol-simbol** (kalau bukan angka) menggunakan hurufhuruf kecil (font Arial) dari yang urutan terkiri: a, b, c, ...
- Nama variable string menggunakan huruf-huruf kecil italic: ..., x, y, z. (huruf-huruf terkanan dalam abjad)
- Variabel bilangan menggunakan huruf-huruf: ..., k, l, m, n, ... (huruf-huruf menengah dalam abjad)
- **Bahasa** menggunakan nama dengan minimal huruf pertama huruf besar: L, A^nB^n , Pal, L_1 , L_2 .

Fungsi Property dari String: panjang, okurensi

- Jika s dan t merupakan string-string,
 - **Panjang string** s (notasi |s|): banyaknya simbol dalam string s.
 - |aaba| = 4; $|\epsilon| = 0$
 - **Kemunculan/okurensi simbol** c dalam s (notasi $\#_c(s)$): jumlah kemunculan simbol c dalam s.
 - $\#_a(aaba) = 3$; $\#_a(bbc) = 0$

Operasi String: konkatenasi

- Jika s dan t merupakan string-string,
 - **Konkatenasi** s dan t (notasi s||t, atau lebih sederhana st): string yang didapat dengan menyambungkan t setelah s.
 - s = aab dan t = bb, maka s||t = aabbb; |st| = |s| + |t|

Operasi String: replikasi, reversi

• Notasi w^n : **replikasi** string w sebanyak n kali, yang didefinisikan sbb:

•
$$w^0 = \varepsilon$$

•
$$w^{n+1} = w^n w$$

Contoh:

- $a^3 = aaa$
- (bye)2 = byebye
- $a^0b^3 = bbb$
- Notasi w^R : **reversi** dari w, yang didefinisikan
 - jika |w| = 0 maka $w^{R} = w = \varepsilon$
 - jika $|w| \ge 1$ maka
 - $\exists \mathbf{a} \in \Sigma (\exists u \in \Sigma^* (w = u\mathbf{a})), \text{ maka } w^{\mathbf{R}} = \mathbf{a}u^{\mathbf{R}}$
 - Contoh: $(nama)^R = aman$
 - Jika w dan x string, maka $(wx)^R = x^R w^R$
 - Contoh: $(apakabar)^R = (kabar)^R (apa)^R = rabakapa$

Relasi Antar String

- String *abaab* memiliki **prefiks-prefiks** ε, a, ab, aba, abaa, abaab
- String *abaab* memiliki **prefiks-prefiks sejati** (*proper prefix*) ε , a, ab, aba, abaa.
- String abaab memiliki **sufiks-sufiks** ε , b, ab, aab, baab, abaab
- String *abaab* memiliki **suffiks-sufiks sejati** (*proper suffix*) ε , b, ab, aab, baab
- String *abaab* memiliki **substring** *ba* tapi tidak memiliki substring *bab*

Lebih lanjut dengan Σ dan Σ^*

- Σ dapat merupakan alfabet dari beberapa bahasa, tetapi, bahasa-bahasa berbeda dapat memiliki alfabet berbeda (atau beririsan).
 - Jika itu terjadi kita gunakan subscript berbeda: Σ_1 , Σ_2 ,....
- Σ^* adalah himpunan semua kemungkinan string yang dapat dibuat dari alfabel Σ ,
 - setiap bahasa L dari Σ merupakan subset dari Σ^* (Σ^* adalah himpunan semesta semua L dari Σ).
 - Contoh: Jika $\Sigma = \{0, 1\}$, maka $\Sigma^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, ...\}$

Spesifikasi Bahasa

- Seperti halnya himpunan, jika L bahasa dengan alfabet $\Sigma = \{0, 1\}, L$ dapat dispesifikasikan:

 - Dengan menderetkan beberapa anggota dan diikuti "..." agar anggota lain dapat diperkirakan, misalnya, $L = \{01, 0011, 000111, 00001111, ...\}$
 - Sebagai pasangan ekspresi dan predikat, terpisahkan dengan titik dua (":") atau garis tegak ("|"), misalnya.,
 - $L_1 = \{0^n 1^n : n \ge 1\}$
 - $L_2 = \{ w \in \Sigma^* : w \text{ memiliki prefiks } 000 \}$
 - $L_3 = \{v111w : v, w \in \{0\}^*\}$

Contoh

• $L = \{x \in \{a, b\}^* : \text{semua a mendahului b}\}$

• ϵ , a, aa, aabbb, dan bb adalah string pada L.

• aba, ba, and abc bukan string pada L.

Finite atau Countably-infinite

- Sebagai himpunan bahasa bisa finite atau countably infinite
 - *Finite* (berhingga): jika string-string dalam bahasa bisa dienumerasi tuntas (hingga n dan n $< \infty$) Contoh: $L_1 = \{a^nb : n \le 7\} = \{b, ab, ..., aaaaaaab\}$
 - *Countably infinite*: jika terdapat bijeksi (pemetaan) dari setiap anggotanya ke bilangan natural (1,2,3...)
 - Contoh: $L_2 = \{a^nb : n \ge 0\} = \{b, ab, aab, aaab, ...\}$

Catatan: Dalam L_1 walaupun n besar sekali string terpanjang tetap bisa didapatkan, sementara dalam L_2 kita tidak bisa mendapatkan string terpanjangnya.

Uncountable?

- Suatu himpunan bisa:
 - Himpunan bilangan real antara 0 dan 1 adalah uncountable karena deretan bilangannya tidak dapat dipetakan ke bilangan bulat (disebutkan satu persatu).
 - Himpunan dari semua himpunan bagian dari suatu himpunan countably infinite adalah uncountable.
- Suatu bahasa dari alfabet {a,b} tidak uncountable tetapi countable infinite karena kita selalu bisa mengurutkan satu demi satu, misalnya secara proper-order (lihat slide berikutnya)!

Operasi Himpunan pada Bahasa

 Karena bahasa adalah himpunan string maka setiap operasi himpunan dapat diaplikasikan untuk bahasabahasa juga:

```
• L = L_1 \cup L_2 iff L = \{w : w \in L_1 \text{ atau } w \in L_2\}
```

•
$$L = L_1 \cap L_2$$
 iff $L = \{w : w \in L_1 \text{ dan } w \in L_2\}$

•
$$L = L_1 - L_2$$
 iff $L = \{w : w \in L_1 \text{ dan } w \notin L_2\}$

- Himpunan semesta adalah Σ^* .
- Jika L_1 merupakan komplemen L (dinotasikan $\neg L$), maka $L_1 = \{ w \in \Sigma^* : w \notin L \}$
- Komplemen dari Σ^* adalah \emptyset .
- Dst...

Proper Order Bahasa

- Proper order: enumerasi string dengan cara
 - Urutan dari yang terpendek hingga terpanjang
 - $\circ (\forall x (\forall y ((|x| < |y|) \rightarrow (x <_L y)))$
 - String-string dengan panjang yang sama urutkan secara lexicographic.
- Lexicographic order: enumerasi string yang memenuhi $(c_1w_1 <_L c_2w_2)$ iff $(c_1 < c_2)$ atau $((c_1 = c_2)$ dan $(w_1 <_L w_2))$
 - Peringatan: dalam buku Rich, penulis mendefinisikan
 Proper Order sebagai Lexicographic Order!
- Contoh: $L = \{w \in \{0,1\}^* \mid w \text{ memiliki sufiks } 100\},$ proper order dari L adalah:
 - 100, 0100, 1100, 00100, 01100, 10100, 11100, ...

Cobalah sendiri!

- Dapatkanlah 5 anggota pertama secara proper order dari $L = \{w \in \{0,1\}^*: \text{ w tidak memiliki substring 00}\}$
- Dapatkanlah 5 anggota pertama secara proper order dari $L = \{w \in \{0,1\}^*: \#_1(w) \text{ bilangan genap}\}$
- Dapatkanlah 5 anggota pertama secara proper order dari
 L = {w ∈ {0,1}*: setiap kemunculan 0 dalam w akan
 segera diikuti 11}
- Dapatkanlah 5 anggota pertama secara proper order dari $A^nB^n = \{a^mb^n: 3m+2n > 5\}$

Kardinalitas Bahasa

- Kardinalitas Bahasa L adalah banyaknya string berbeda dalam L (notasi: |L|).
 - Bahasa dengan alfabet Σ yang memiliki kardinalitas terkecil adalah $\varnothing \rightarrow$ kardinalitas 0.
 - Bahasa dengan alfabet Σ yang memiliki kardinalitas terbesar adalah $\Sigma^* \rightarrow$ kardinalitas ∞ .
- Tanya: Berapa kardinalitas dari $L = \{x \in \Sigma^* : |x| \le n\}$?
 - $|L| = |\{x \in \Sigma^* \mid |x| = 0\}| + |\{x \in \Sigma^* \mid |x| = 1\}| + \dots |\{x \in \Sigma^* \mid |x| = n\}|$
 - $\circ = 1 + |\Sigma| + |\Sigma|^2 + \dots + |\Sigma|^n$
 - Misalnya $\Sigma = \{0, 1\}$ dan n = 5, |L| = 1 + 2 + ... + 32

Konkatenasi Bahasa-bahasa

- Jika $L_1 \subseteq \Sigma_1^*$ dan $L_2 \subseteq \Sigma_2^*$, konkatenasi L_1 dengan L_2 atau $L_1L_2 = \{vw : v \in L_1 \text{ dan } w \in L_2\}$
 - Contoh:

```
L_1 = {Kabupaten_, Kota_}, L_2 = {Bandung, Bogor, Sukabumi}, L_1L_2 = {Kabupaten_Bandung, Kabupaten_Bogor, Kabupaten_Sukabumi, Kota_Bandung, Kota_Bogor, Kota_Sukabumi}
```

• Sifat:

- $L_1(L_2L_3) = (L_1L_2)L_3$
- $|L_1L_2| = |L_1| \times |L_2|$
- Jika L_1 atau L_2 countable infinite, maka L_1L_2 countable infinite.

Reversi Bahasa

- $L^{R} = \{ w \in \Sigma^* : w = x^{R} \text{ untuk } x \in L \}$
- Sifat:

$$(L_1L_2)^R = L_2^R L_1^R$$

- $\circ \varnothing R = \varnothing$
- Catatan:
 - $L = \{w \in \Sigma^* : w = w^R\}$ dinamai juga bahasa Palindrom (Pal) dan memiliki sifat $L = L^R$.

Operasi-operasi Kleene* dan Kleene+

• Suatu bahasa dapat direplikasi (self-concatenated) pula,

```
L^n = LL...L (n kali), yang mana difenisikan bahwa: L^0 = \{\varepsilon\} L^n = L^{n-1} L L^* = \{\varepsilon\} \cup \{w \in \Sigma^* : \exists k \geq 1 \} (\exists w_1, w_2, \dots w_k \in L \ (w = w_1 \ w_2 \dots w_k))\}
```

Contoh:

```
L = \{ \text{dog, cat, fish} \}
L^* = \{ \epsilon, \text{dog, cat, fish, dogdog, dogcat, fishcatfish, fishdogdogfishcat, ...} \}
```

Operasi-Operasi Kleene* dan Kleene+

- Operasi Kleene* (dibaca Kleene-star) didefinisikan sbb,
 - $\circ L^* = U_{k>0} L^k$
- Operasi Kleene+ (dibaca Kleene-plus) didefinisikan sbb,
 - $\circ L^+ = U_{k \geq l} L^k$
- Tanya:
 - Benarkah $L^+ = LL^*$? (jawab: Ya, tapi mengapa?)
 - Karena $L^0 = \{\epsilon\}$, benarkah selalu $L^+ = L^* \{\epsilon\}$? (jawab: Tidak! Coba cari kasus yang tidak memenuhi)

Contoh-contoh

- Apakah $\forall L.(L\varnothing = L)$? [Tidak, tapi mengapa?]
- Apakah $\forall L.(L\{\varepsilon\} = L)$? [Ya, tapi mengapa?]
- Apakah $\emptyset \cup \emptyset^* = \emptyset$? [Tidak, tapi mengapa?]
- Apakah $\forall L.((L^+)^* = L^*)$? [Ya, tapi mengapa?]
- Apakah $\{a, ab\}^* = (\{a\}^* \{ab\}^*)^*$? [Ya, tapi mengapa?]

Sifat Tertutup di bawah Suatu Operasi

- Bahasa *L* disebut "tertutup di bawah suatu operasi" (*closed under an operation*),
 - jika $\forall w \in L$, maka juga $F(w) \in L$.
- Contoh:
 - $L = \{w \in \{a, b\}^* : w \text{ memiliki sufiks } bba\}, L \text{ tertutup}$ di bawah operasi konkatenasi.
 - $L = \{w \in \{a, b\}^* : w \text{ memiliki sufiks } bba\}, L \underline{\text{tidak}}$ <u>tertutup</u> di bawah operasi reversi.
 - Pal tidak tertutup di bawah operasi konkatenasi.
 - Pal <u>tertutup</u> di bawah operasi reversi.

Ada Berapa Banyak Bahasa Berbeda dari Σ?

- Dengan alfabet Σ , bahasa berbeda yang bisa dibuat adalah sebanyak $|\mathcal{P}(\Sigma^*)|$ (\mathcal{P} adalah power set).
 - Untuk $\Sigma = \emptyset$, karena $\Sigma^* = \varepsilon$, $\mathcal{P}(\Sigma^*) = {\emptyset, {\varepsilon}}$.
 - Untuk $\Sigma \neq \emptyset$, maka Σ^* countably infinite, berarti juga $\mathcal{P}(\Sigma^*)$ uncountably infinite.
 - (Mengapa? Lihat Theorem 1.2 dan 1.3, buku Elaine Rich).
- Note: berapa banyak bahasa berbeda dari Σ , <u>dengan</u> panjang string maksimum 10? Finite atau infinite?