

Aleksander
Wojnarowicz(AW77438)

Yuqing Liu(YL110057)

Data Mining Final Project 2021

1.1 Motivation

In the past few years, people have used intuition to distinguish fake job postings. For example, unusually high salaries may suggest false job postings. Nowadays, big data technology allows us to process these usage models to release job data more reliably and identify fake data. The goal of our project is to train a classifier to identify fake or real job postings using functions such as salary range, benefits, Required_experience, Required_education, etc.

1.2 Dataset Description

This dataset contains 18K job descriptions out of which about 800 are fake. The data consists of both textual information and meta-information about the jobs. The dataset can be used to create classification models which can learn the job descriptions which are fraudulent.

Link: https://www.kaggle.com/shivamb/real-or-fake-fake-jobposting-prediction

1.3 Description of Task

Our task is to bulid some models to predict whether the job is fake or not.

1.4 Descripe Target Variables

fraudulent - the job is fake or not? (binary: 'yes', 'no')

Features Explanation

Variables	Explain
Job_id	Unique Job ID
title	The title of the job ad entry. Most likely unique
	for each entry.
location	Geographical location of the job ad : Country,
	State, City
Department	Corporate department (e.g. sales).Most likely
	unique for each posting.
Salary_range	Indicative salary range
Company_profile	A brief company description
description	A brief company description
requirements	Enlisted requirements for the job opening.
Benefits	Enlisted requirements for the job opening.
Telecommuting	Enlisted requirements for the job opening.
Has_company_logo	True if company logo is present.
Has_quesitons	True if company logo is present.
Employment_type	True if company logo is present.
Required_experience	True if company logo is present.
Required_education	True if company logo is present.
Industry	True if company logo is present.

>>STEPS

- 1. Cleaning Dataset
- 2. EDA
- 3. Data Processing
- 4. Build the Model
- 5. Summary

Cleaning Dataset

Dataset Report: https://github.com/AleksanderWWW/Data_mining-Fake_job/blob/master/DatasetReport.7z

Cleaning Dataset

- 1.1 Removing Missing
 - # Delete unnamed col
- # Delete 'telecommuting, has_company_logo, has_questions, fraudulent' not 1 or 0
 - # Unbalanced Dataset
 - 1.2 Imputing Missing
 - 1.3 Handling Special Variable
 - # Salary>> Max & Min
 - # Convert numeric variable format from str to numeric

EDA

Education Related Variables

Real Posts

Fradulent Posts

- Telecommuting
- Company Logo
- Employment Type
- Required Experience and Education

- X Telecommuting
- Company Logo
- Employment Type
- Required Experience and Education

Text information variables

3.1 Key-Value

Descriptive related variables converted to length

3.2 One-hot encode

Ordinal variables

Discrete variable

- 3.3 PCA
- 3.4 Standard Scale
- 3.5 Upsampling
- 3.6 Clone
- 3.7 Feature Selection

4. Build the Model

PCA_LR

Precision: 0.627

Recall: 0.347

F1: 0.447

PCA_ Decision Tree

Precision: 0.905

Recall: 0.857

F1: 0.880

Bagging

Precision: 1.000

Recall: 0.925

F1: 0.961

Summary

- LR | 0.447
- DT | 0.879
- BA | 0.961

Thank you for your attention!