Making Life More Confusing for Firefighters

Mateusz Pach, Michał Wronka

Samuel Hand, Jessica Enright, and Kitty Meeks School of Computing Science, University of Glasgow, UK

24 marca 2022

Pożarem na grafie G nazwiemy dyskretny proces na spójnym, nieskierowanym, bezpętlowym, ukorzenionym grafie, dla którego prawdziwe są następujące zdania:

- **1** W sekundzie t = 0 korzeń zaczyna płonąć.
- ② W każdej z sekund $t \ge 1$, jeden wybrany wierzchołek zostaje obroniony, a następnie wszystkie nieobronione dotąd wierzchołki sąsiednie do wierzchołków płonących też zaczynają płonąć.
- Proces kończy się, w sekundzie t, w której żaden nowy wierzchołek nie zaczyna płonąć.
- Obroniony może zostać tylko wierzchołek dotąd nieobroniony i niepłonący.

Pożarem na grafie G nazwiemy dyskretny proces na spójnym, nieskierowanym, bezpętlowym, ukorzenionym grafie, dla którego prawdziwe są następujące zdania:

- W sekundzie t = 0 korzeń zaczyna płonąć.
- ② W każdej z sekund $t \ge 1$, jeden wybrany wierzchołek zostaje obroniony, a następnie wszystkie nieobronione dotąd wierzchołki sąsiednie do wierzchołków płonących też zaczynają płonąć.
- Proces kończy się, w sekundzie t, w której żaden nowy wierzchołek nie zaczyna płonąć.
- Obroniony może zostać tylko wierzchołek dotąd nieobroniony i niepłonący.

Strategią nazwiemy ciąg obron wierzchołków v_1, v_2, \ldots, v_l , taki że dla każdego i wierzchołek v_i może zostać obroniony w sekundzie i.

FIREFIGHTER to problem decyzyjny, który na wejściu dostaje spójny, nieskierowany, bezpętlowy, ukorzeniony w r graf (G,r) i wartość k, a na wyjściu ma odpowiedzieć, czy istnieje strategia ratująca co najmniej k wierzchołków.

FIREFIGHTER to problem decyzyjny, który na wejściu dostaje spójny, nieskierowany, bezpętlowy, ukorzeniony w r graf (G, r) i wartość k, a na wyjściu ma odpowiedzieć, czy istnieje strategia ratująca co najmniej k wierzchołków.

Graf dynamiczny to para (G,λ) gdzie G to statyczny graf (V,E) i $\lambda:E\to 2^\mathbb{N}$ to funkcja przypisująca do każdej krawędzi zbiór sekund w których jest aktywna.

FIREFIGHTER to problem decyzyjny, który na wejściu dostaje spójny, nieskierowany, bezpętlowy, ukorzeniony w r graf (G,r) i wartość k, a na wyjściu ma odpowiedzieć, czy istnieje strategia ratująca co najmniej k wierzchołków.

Graf dynamiczny to para (G,λ) gdzie G to statyczny graf (V,E) i $\lambda:E\to 2^\mathbb{N}$ to funkcja przypisująca do każdej krawędzi zbiór sekund w których jest aktywna.

Długością życia Λ grafu dynamicznego G jest maksymalna sekunda, w której aktywna jest jakaś krawędź w G. $\Lambda = \max\{\max \lambda(e) : e \in E(G)\}$.

FIREFIGHTER to problem decyzyjny, który na wejściu dostaje spójny, nieskierowany, bezpętlowy, ukorzeniony w r graf (G,r) i wartość k, a na wyjściu ma odpowiedzieć, czy istnieje strategia ratująca co najmniej k wierzchołków.

Graf dynamiczny to para (G,λ) gdzie G to statyczny graf (V,E) i $\lambda:E\to 2^\mathbb{N}$ to funkcja przypisująca do każdej krawędzi zbiór sekund w których jest aktywna.

Długością życia Λ grafu dynamicznego G jest maksymalna sekunda, w której aktywna jest jakaś krawędź w G. $\Lambda = \max\{\max \lambda(e) : e \in E(G)\}$.

Wierzchołki v_1, v_2 sąsiadują w dynamicznym grafie (G, λ) w czasie t jeśli $t \in \lambda(v_1, v_2)$.

Pożar na grafie dynamicznym definiujemy jak na statycznym z zastrzeżeniem, że pożar rozprzestrzenia się tylko po aktywnych krawędziach.

Pożar na grafie dynamicznym definiujemy jak na statycznym z zastrzeżeniem, że pożar rozprzestrzenia się tylko po aktywnych krawędziach.

TEMPORAL FIREFIGHTER to problem decyzyjny, który na wejściu dostaje **dynamiczny**, spójny, nieskierowany, bezpętlowy, ukorzeniony w r graf (G, r, λ) i wartość k, a na wyjściu ma odpowiedzieć, czy istnieje strategia ratująca co najmniej k wierzchołków.

Dotychczasowe wyniki

• FIREFIGHTER jest NP-Zupełny na dowolnych grafach. Fomin et al.

Dotychczasowe wyniki

- FIREFIGHTER jest NP-Zupełny na dowolnych grafach. Fomin et al.
- FIREFIGHTER jest P w szczególności na grafach przedziałowych, grafach permutacji, grafach bez P_k dla k>5, grafach rozdzielonych, kografach i grafach o maksymalnym stopniu wierzchołków 3 z korzeniem o stopniu co najwyżej 2. Finbow et al., Fomin et al.

Nowe wyniki

• TEMPORAL FIREFIGHTER jest NP-Zupełny na wszystkich grafach na których FIREFIGHTER jest NP-Zupełny.

Nowe wyniki

- TEMPORAL FIREFIGHTER jest NP-Zupełny na wszystkich grafach na których FIREFIGHTER jest NP-Zupełny.
- TEMPORAL FIREFIGHTER jest NP-zupełny na wszystkich z wymienionych grafach na których FIREFIGHTER jest P oprócz grafów o maksymalnym stopniu wierzchołków 3 z korzeniem o stopniu co najwyżej 2. Jest też NP-zupełny na grafach bez AT.

Nowe wyniki

- TEMPORAL FIREFIGHTER jest NP-Zupełny na wszystkich grafach na których FIREFIGHTER jest NP-Zupełny.
- ② TEMPORAL FIREFIGHTER jest NP-zupełny na wszystkich z wymienionych grafach na których FIREFIGHTER jest P oprócz grafów o maksymalnym stopniu wierzchołków 3 z korzeniem o stopniu co najwyżej 2. Jest też NP-zupełny na grafach bez AT.
- Istnieje algorytm FPT dla TEMPORAL FIREFIGHTER parametryzowany przez vertex-interval-membership-width.

Wynik 1.

Obserwacja 1.

Dla każdej klasy grafów $\mathcal C$ dla których FIREFIGHTER jest NP-zupełny, TEMPORAL FIREFIGHTER jest NP-zupełny na klasach grafów dynamicznych, które pod spodem mają grafy z klasy $\mathcal C$.

Obserwacja 2.

TEMPORAL FIREFIGHTER jest NP-zupełny na klasie grafów dynamicznych, które pod spodem mają klikę.

Lemat 1.

- Niech S to strategia dla TEMPORAL FIREFIGHTER na ukorzenionym dynamicznym grafie $(((V, E), \lambda), r)$, która ratuje k wierzchołków.
- Niech F to zbiór dodatkowych krawędzi spoza E.
- Niech $\lambda': E \cup F \to 2^{\mathbb{N}}$ to funkcja przyjmująca te wartości co λ na krawędziach z E oraz spełniająca $\min(\lambda'(f)) \geq |V| 1$ dla krawędzi f z F.
- Niech S' to strategia S rozszerzona o obrony pozostałych nieobronionych wierzchołków w dowolnej kolejności.

S' ratuje k wierzchołków w problemie TEMPORAL FIREFIGHTER na grafie $(((V, E \cup F), \lambda'), r)$.

Twierdzenie 1.

Dla dowolnej stałej $c\in\mathbb{N}$, TEMPORAL FIREFIGHTER jest NP-zupełny na grafach dynamicznych, które pod spodem mają klikę i których długość życia wynosi co najwyżej $n^{\frac{1}{c}}$, gdzie n to liczba wierzchołków w grafie.

Lemat 2.

Dla ukorzenionego grafu dynamicznego $(G,\lambda),r)$ o maksymalnym stopniu wierzchołka 3 i korzeniu o stopniu ograniczonym przez 2 istnieje wielomianowy algorytm rozwiązujący na nim problem $\operatorname{Temporal}$ FIREFIGHTER

Podzielimy wierzchołki na 3 rozłączne, zbiory V_0, V_1, V_c , takie że (dist to najkrótsza ścieżka w grafie dynamicznym):

Podzielimy wierzchołki na 3 rozłączne, zbiory V_0, V_1, V_c , takie że (dist to najkrótsza ścieżka w grafie dynamicznym):

 $V_0,\,V_1$ — zbiór wierzchołków v, takich że w czasie ${\sf dist}(v,r)+1$ są one dynamicznie przyległe do odpowiednio 0 lub 1 wierzchołka nie należącego do ścieżki od korzenia w G

 V_c — wierzchołki leżące na cyklu, które nie należą do $V_0 \cup V_1$

 $C(u): u \in V(G) \longrightarrow C(u):=$ rozmiar najmniejszego cyklu w statycznym G do którego należy u

$$f(u): u \in V(G)$$
 — $f(u):= egin{cases} \operatorname{dist}(r,u)+1 & u \in V_0 \cup V_1 \ \operatorname{dist}(r,u)+C(u)-1 & u \in V_C \ \infty & \operatorname{wpp} \end{cases}$

Dla danego grafu $((G, \lambda), r)$ o maksymalnym stopniu wierzchołka 3 i korzeniu o stopniu ograniczonym przez 2 istnieje optymalna strategia, która zawsze broni wierzchołek sąsiadujący z płonącym.

Lemat 3.

Problem Temporal Firefighter jest równoważny Temporal Firefighter Reserve

Lemat 3.

Problem Temporal Firefighter jest równoważny Temporal Firefighter Reserve

Lemat 4.

Dla każdej optymalnej strategii TEMPORAL FIREFIGHTER RESERVE istnieje równoważna, w której bronimy wierzchołek dopiero w turze w której miałby spłonąć.

vertex-minimal-interval-width

```
vimw = max_{t \in |\Lambda||F_t|}, gdzie F_t = \{v \in V(G) : mintime(v) \le t \le maxtime(v)\}, gdzie mintime(v), to minimalna runda w której v ma aktywną dowolną przyległą krawędź, symetrycznie maxtime(v).
```

Rekurencja

$$L_i \subset \mathcal{P}(F_i) \times \mathcal{P}(F_i) \times [\Lambda] \times [n]$$
 $D := \{v \in F_i : v \text{ jest chronione}\}$
 $B := \{v \in F_i : v \text{ płonie}\}$
 $g := \text{liczba ruchów dostępnych w rundzie } i+1$
 $c := \{v \in V(G) : v \text{ płonie}\}$

 E_i — zbiór krawędzi aktywnych w rundzie $i \implies V(E_i) \subset F_i$

Instancja startowa i końcowa

 $(,\{r\},1,1)$

Problem ma rozwiązanie, gdy $\exists (D,B,g,c) \in L_{\Lambda}: |V(G)-c \geq k$

Krok

Wybieramy zbiór wierzchołków $A \subset V(E_i) \setminus (B \cup D)$ do ochrony.

$$L_{i-1}
i (D,B,g,c)
ightarrow (D',B',g-|A|+1,c') \in L_i$$
, spełniające:

1. —
$$D' = (D \cap F_i) \cup A$$

2.
$$-B' = (B \cap F_i) \cup N_i(B) \setminus D'$$

3.
$$-g - |A| + 1 > 0$$

4.
$$-c' = c + |N_i(B) \setminus (B \cup D')|$$

Złożoność

Zbiory F_i można wyznaczyć, w czasie $O(\omega \Lambda)$, gdzie $vimw = \omega$.

Można zaobserwować, że sumaryczna liczba spalonych wierzchołków, w dowolnej rundzie i może być ograniczona przez $\sum_{j=1}^{i} |V(E_j)| = O(\omega\Lambda)$, bo w każdej rundzie spłonąć mogą wierzchołki z $V(E_i)$, a $|V(E_i)| \leq 2|E_i| \leq 2\omega$. Więc $|L_i| = O(|P(F_i)|^2 \cdot \Lambda \cdot \omega\Lambda) = O(4^\omega \omega \Lambda^2)$, ponadto w każdej rundzie można rozważyć do 2^ω różnych zbiorów A, a to wszytko dla L_i : $i \in [\Lambda]$.

Co daje sumaryczną złożoność $O(8^{\omega}\omega\Lambda^3)$

$$L_i \subset \mathcal{P}(F_i) \times \mathcal{P}(F_i) \times [\Lambda] \times [n]$$

Drobne poprawienie wyników (?!)

vertex-minimal-interval-width-bounded-on-arrival-time

 $vmiwboat = max_{t \in |\Lambda||F'_t|} = \omega' \le \omega$, gdzie $F'_t = \{v \in V(G) : dist_t(r, v) \le t \le maxtime(v)\}$, gdzie $dist_t(r, v)$, to minimalna runda w której v jest osiągalne z korzenia.

Drobne poprawienie wyników (?!)

vertex-minimal-interval-width-bounded-on-arrival-time

 $vmiwboat = max_{t \in |\Lambda||F'_t|} = \omega' \leq \omega$, gdzie $F'_t = \{v \in V(G) : dist_t(r, v) \leq t \leq maxtime(v)\}$, gdzie $dist_t(r, v)$, to minimalna runda w której v jest osiągalne z korzenia.

Analogicznie można ograniczyć E_i' by $V(E_i') \subset F_i'$. Co poprawia złożoność do $O(8^{\omega'}\omega'\Lambda^3)$