Predicting Prices for Airbnb Accommodations

Capstone Project

Problem Statement

- About: Renting accommodation's site
- Audience: primary and secondary
- Metrics: Regression Problem RMSE

About Data

Datasets:

- Listing accommodations New York City;
 - ▶ 38,000 x 75
- ▶ Neighborhoods price;
 - ► ~180 neighborhoods

Cleaning Process:

- ▶ Null values, Input Strategies, Regex, Feature Engineering, handle outliers;
 - ▶ 25,000 x 23

Data Science Workflow

Distributions:

- Correlations with the target;
 - latitude/longitude x neighborhood;

price	0.36	0.5	0.41	0.38	1	0.12	0.097
	neigh_price_sqft	accommodates	bedrooms	speq	price	bathrooms_nbr	review_scores_rating

- 250

Boxplot for categorical variables

Models Evaluation

- Tranformers:
 - ▶ One Hot Encoded;
 - Scalling;
- Models:
 - Supervised: Linear Regression / KNN
 - Unsupervised: Decision Trees / RainForest / Neural Networks
- Techniques:
 - Regularization
 - Gridsearch

Models Evaluation

airbnb

Benchmark's Model:

Model	Train Score	Test Score	Diff.	RMSE
Random Forest	0.8866	0.6818	20.48%	150.465
K-NNeighbor	0.7198	0.6619	5.79%	150.487
Stacked Model ElasticNet	0.6526	0.5790	7.36%	126.150

Transfer Learning

- Transfer Learning using KMeans
 - ▶ k = 150, using silhouette score;

Conclusions and Recommendations

airbnb

Conclusions:

- feature engineering 'amenities_count' and 'description_listing_count';
- ▶ latitude/longitude or cluster with transfer learning to replace the neighborhood;
- some variables are more important than others in determining the accommodation' prices
 - ▶ (the neighborhood feature carries more weight to the target than the number of beds or baths)

Conclusions and Recommendations

airbnb

Recommendations:

- Between 5 groups of neighborhood Manthan has so far the higher If you living in Manhathan
- more efficient increase the capacity of accommodate people than necessarily adding a room;

Airbnb App

airbnb

- App to explorer Airbnb Listing Data and Predicting Prices:
 - Airbnb Explorer App

Thank You!