Escuela Secundaria N° 34 "Carlos Villamil"

Cursos: 3ro - Matemática

Profesoras: Ritter Laura **Cel:** 3454182374

Actividad N°4

Pasar a fracción los siguientes números decimales

1) 0,9=

2) 0,116=

3) 9,4=

4) 2,1=

5) 0,32=

6) $0.0\widehat{25}$ =

7) 0,25=

8) 4,35=

Realizar las siguientes Operaciones con fracciones (sumas, restas, multiplicación y división)

1)
$$\frac{1}{8} \div \frac{5}{2} =$$

2)
$$-\frac{3}{7}*\frac{6}{2}=$$

3)
$$\frac{8}{4} \div \frac{3}{2} =$$

4)
$$-\frac{3}{6}*(-\frac{2}{4}) =$$

5)
$$\frac{1}{6} \div \frac{2}{9} =$$

6)
$$\frac{3}{9} * \frac{1}{3} =$$

7)
$$\frac{1}{3} + \frac{8}{3} - \frac{4}{3} =$$

8)
$$\frac{7}{4} - \frac{3}{2} + \frac{5}{3} =$$

9)
$$\frac{1}{5} + \frac{3}{5} + \frac{2}{5} =$$

$$10)\frac{3}{5} + \frac{4}{1} - \frac{1}{4} =$$

11)
$$\frac{7}{2} + \frac{1}{9} - \frac{3}{3} =$$

12)
$$\frac{3}{1} - \frac{1}{5} + \frac{2}{3} =$$

Potenciación y Radicación

Potenciación

La **potenciación** es una operación entre dos números *a* y *n*, llamados **base** y **exponente** respectivamente, y es una forma abreviada de escribir un producto de factores iguales.

$$a^n = \underbrace{a.a.a.a..a}_{n \text{ veces}}$$

$$2^{3} = 2.2.2 = 8$$

 $(-3)^{4} = (-3).(-3).(-3).(-3) = 81$
 $0,2^{2} = 0,2.0,2 = 0,04$
 $(-0,03)^{3} = (-0,03).(-0,03).(-0,03) = -0,000027$

$$\left(\frac{4}{7}\right)^2 = \left(\frac{4}{7}\right) \cdot \left(\frac{4}{7}\right) = \frac{4^2}{7^2} = \frac{16}{49}$$

$$\left(-\frac{2}{3}\right)^3 = \left(-\frac{2}{3}\right) \cdot \left(-\frac{2}{3}\right) \cdot \left(-\frac{2}{3}\right) = -\frac{2^3}{3^3} = -\frac{8}{27}$$

$$0, \overline{2}^2 = \left(\frac{2}{9}\right)^2 = \frac{2^2}{9^2} = \frac{4}{81}$$

<u>Para resolver una potencia, se debe multiplicar la base por sí misma la cantidad de veces que me indica el exponente.</u>

$$a^n = base^{exponente}$$

Propiedades de la potenciación

Producto de potencias de igual base.

Cociente de potencias de igual base.

Potencia de otra potencia.

Distributividad respecto de la multiplicación.

Distributividad respecto de la división.

$$a^{n}.a^{m} = a^{n+m}$$
 $a^{n}:a^{m} = a^{n-m}$
 $(a^{n})^{m} = a^{n.m}$
 $(a.b)^{n} = a^{n}.b^{n}$
 $(a:b)^{n} = a^{n}.b^{n}$

- Producto de potencias de igual base: cuando la base es la misma y se está multiplicando, se debe sumar los exponentes conservando la misma base. Ej: 3^2 . $3^3 = 3^{2+3} = 3^5$
- Cociente de potencias de igual base: cuando la base es la misma y se está dividiendo, se debe restar los exponentes conservando la misma base. Ej: 3⁷: 3³ = 3⁷⁻³ = 3⁴
- Potencia de otra potencia: cuando tenemos una potencia elevada a otra potencia, se las debe multiplicar, conservando la misma base. Ej: $(3^2)^3 = 3^{2 \cdot 3} = 3^6$
- ➡ <u>Distributividad respecto de la multiplicación o división</u>: cuando dentro de un paréntesis se multiplique o divida varios números, teniendo una potencia afuera, se debe aplicar la propiedad distributiva con los números que se tiene dentro. Es decir, a cada número que hay dentro del paréntesis se le coloca la misma potencia. Ej: (2:3)³ = 2³:3³

Exponente negativo

Si el exponente es un número negativo, se define: $a^{-n} = \frac{1}{a^n} \wedge \left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n$.

$$3^{-1} = \frac{1}{3} \qquad \left(-\frac{2}{3}\right)^{-2} = \left(-\frac{3}{2}\right)^2 = \frac{9}{4} \qquad \left(-3\right)^{-3} = \frac{1}{(-3)^3} = -\frac{1}{27}$$

$$(-2)^{-2} = \frac{1}{(-2)^2} = \frac{1}{4}$$
 $\left(-\frac{4}{5}\right)^{-3} = \left(-\frac{5}{4}\right)^3 = -\frac{125}{64}$ $\left(-\frac{1}{2}\right)^{-4} = (-2)^4 = 16$

Si el exponente es negativo, para poder resolver la potencia, se debe invertir (girar) la fracción primero.

Radicación

La radicación es una operación entre dos números a y n, llamados base e índice, respectivamente.

$$\sqrt[n]{a} = b \Leftrightarrow b^n = a$$

$$\sqrt{25} = 5 \Leftrightarrow 5^2 = 25$$

$$\sqrt[3]{-64} = -4 \Leftrightarrow (-4)^3 = -64$$

$$\sqrt[4]{81} = 3 \Leftrightarrow 3^4 = 81$$

$$\sqrt[5]{-32} = -2 \Leftrightarrow (-2)^5 = -32$$

La raíz de una fracción es igual a la raíz del numerador y la del denominador de la misma.

$$\sqrt{\frac{25}{64}} = \frac{\sqrt{25}}{\sqrt{64}} = \frac{5}{8}$$

$$\sqrt[3]{\frac{27}{8}} = \frac{\sqrt[3]{27}}{\sqrt[3]{8}} = \frac{3}{2}$$

$$\sqrt[4]{\frac{16}{81}} = \frac{\sqrt[4]{16}}{\sqrt[4]{81}} = \frac{2}{3}$$

Para resolver una raíz, se debe buscar un número que multiplicado por sí mismo las veces que me indica el índice de la raíz, me de ese resultado.

Realizar las siguientes potencias y raíces

1)
$$(-\frac{1}{3})^3$$

2)
$$\left(-\frac{2}{5}\right)^{-2}$$

3)
$$\left(-\frac{3}{2}\right)^{-5}$$

4)
$$(\frac{1}{2})^4$$

5)
$$\sqrt{\frac{25}{49}}$$

6)
$$\sqrt[3]{-\frac{1}{64}}$$

7)
$$\sqrt[4]{\frac{81}{625}}$$

8)
$$\sqrt[4]{\frac{16}{81}}$$

Resolver aplicando las propiedades de la potencia y luego resolver.

1.
$$(-2)^7$$
: $(-2)^3 =$

2.
$$(-3) \cdot (-3)^2 \cdot (-3) =$$

3.
$$\left(-\frac{1}{5}\right)^4: \left(-\frac{1}{5}\right)^2 =$$

4.
$$0,2.0,2^2 =$$

5.
$$\left(\frac{1}{3}\right)^3 : \left(\frac{1}{3}\right)^5 = \underline{\hspace{1cm}}$$

6.
$$0,2:0,2^2=$$

7.
$$\left(-\frac{3}{10}\right)^{-5} \cdot \left(-\frac{3}{10}\right)^4 =$$

8.
$$\left[\left(\frac{3}{10} \right)^2 \right]^2 = \underline{\hspace{1cm}}$$