Normalizing Flows

Mostafa Tavassolipour Fall 2024

Latent Variable Models

Normalizing Flow

• In a **normalizing flow** model, the mapping between Z and X, given by $f_{\theta} \colon \mathbb{R}^n \to \mathbb{R}^n$, is deterministic and invertible such that $X = f_{\theta}(Z)$ and $Z = f_{\theta}^{-1}(X)$

• Note: x, z need to be continuous and have the same dimension.

Bijective Transformation

Non-bijective Transformation

$$Z \in \mathbb{R}^5$$

 $X \in \mathbb{R}^{0}$

Normalizing Flows

$$\chi = f_{k_0} f_{k_{-1}} 0 \dots 0 f_{1}(z_0)$$

$$f_{1}(\mathbf{z}_0)$$

$$\Rightarrow$$
 $\left| z + (z) \right|$ $\left| z = f'(x) \right|$

$$(\mathbf{z}_{i-1})^{f_i(\mathbf{z}_{i-1})}$$

$$\mathbf{z}_0 \sim p_0(\mathbf{z}_0)$$
 1

$$F_{2}(z)$$

$$\mathbf{z}_i \sim p_i(\mathbf{z}_i)$$

$$\mathbf{z}_K \sim p_K(\mathbf{z}_K)$$

$$f_2(z) \Rightarrow f_2(z)$$

$$W = F_X^{-1}(y)$$

$$X = F_X^{-1} \left(F_Z(z) \right)$$

Example

Prfa < Z < b >=0

• Base distribution: Gaussian

M = 2M = 10

X00+

Example: MNIST Dataset

Normalizing Flows vs. VAE

Marginal Likelihood: VAE vs NF

Decoder

$$D = \{\chi_1, \chi_2, \dots, \chi_n\}$$

$$\hat{\theta}_{ML} = \text{arg max log } P(D) = \text{arg max log } P(\lambda_1, \dots, \lambda_n)$$

$$= \text{arg max} \sum_{i=1}^{n} \log P(\lambda_i)$$

From Normal to Complex Distribution

Normalizing Flow: another Example

Samples from Normalizing Flow

Samples from the Glow model (Source)

(3) X ا كنيست المويت (3) كنوع المويت (3) كنوع

Change of Variable Formula

• Let $Z \sim \mathcal{U}[0,2]$

$$P_Z(z) = \frac{1}{2}$$

• Let
$$X = 4Z$$
 \Rightarrow $0 \leq X \leq 8$

•
$$P_X(4) = ?$$

Change of Variable Formula

$$P_Y(y) = \frac{1}{2}P_X(x) = \frac{1}{2}P_X\left(\frac{y-1}{2}\right)$$

$$Y=2X+1$$

$$X = \frac{y-1}{2}$$

Change of variable formula (1-D case)

• If X = f(Z) and f(.) is monotone with inverse $Z = f^{-1}(X) = h(X)$, then:

$$P_X(x) = P_Z(h(x)) |h'(x)|$$

Change of formula: Example

$$Z \sim \mathcal{U}[0,2]$$

$$X = f(Z) = \exp(Z) = \frac{Z}{2}$$

• What is $P_X(x) = ?$

$$P_{\chi}(x) = P_{Z}(f(x)) | f(x) |$$

$$= \frac{1}{2} \times | \frac{1}{2} | = \frac{1}{2x}$$

$$= \frac{1}{2} \times | \frac{1}{2} | = \frac{1}{2x}$$

$$= \frac{1}{2} \times | \frac{1}{2} | = \frac{1}{2x}$$

Change of variable: 1-D case

Change of Variable Formula: 1-Dimensional

$$P_X(x) = P_Z(f^{-1}(x)) \left| \frac{\partial f^{-1}(x)}{\partial x} \right|$$

Change of variable: n-Dimensional

Determinants and Volume

$$\det(A) = \det\begin{pmatrix} a & c \\ b & d \end{pmatrix} = ad - bc$$

a+C

$$b + d$$

$$d$$

$$d$$

$$d$$

$$d$$

$$c$$

$$d$$

$$d$$

$$d$$

$$d$$

$$d$$

$$(a+c)(b+d)-ab-2bc-cd=ad-bc$$

$$\chi = f(z)$$

$$K = A Z$$

$$D (A)$$

$$P_X(x) = \frac{1}{|\det(A)|} P_Z(A^{-1}x)$$

ACTO OF

Jacobian Determinant

$\Delta A = |J| \times Area \ of \ square$

https://www.geogebra.org/m/qM777NYH

Jacobian Matrix

$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \quad \stackrel{f}{\to} \quad \mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$

$$\frac{\partial (y_1, \dots, y_n)}{\partial (x_1, \dots, x_n)} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \dots & \frac{\partial y_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial y_n}{\partial x_1} & \dots & \frac{\partial y_n}{\partial x_n} \end{bmatrix}_{nm}$$

Change of Variable Formula: n-Dimensional

Learning and Inference

$$P_{\chi}(x) = P_{z}(f(x)) |J|$$

Learning via Maximum Likelihood:

man

$$\max_{\theta} \log p_X(\mathcal{D}; \theta) = \sum_{\mathbf{x} \in \mathcal{D}} \log p_Z(\mathbf{f}_{\theta}^{-1}(\mathbf{x})) + \log \left| \det \left(\frac{\partial \mathbf{f}_{\theta}^{-1}(\mathbf{x})}{\partial \mathbf{x}} \right) \right|$$
Sampling:

Sampling:

$$z \sim p_Z(z) \quad x = f_\theta(z)$$

Latent Representation:

$$z = f_{\theta}^{-1}(x)$$

Calculation of the Determinant

• Computing the determinant for an $n \times n$ matrix is $O(n^3)$: prohibitively expensive within a learning loop!

• **Key idea**: Choose transformations so that the resulting Jacobian matrix has **special structure**. For example, the determinant of a **triangular** matrix is the product of the diagonal entries, i.e., an O(n) operation.

