10,2,3

Proposition: For f continuously differentiable on [a,b] where f(a)f(b) < 0, the sequence of midpoints of subintervals in [a,b], $\{x^{(h)}\}_{n=1}^{\infty}$ converges to a number x^* in (a,b) such that $f(x^*) = 0$, and each iterate $x^{(k)}$ satisfies $|x^{(k)} - x^*| \leq \frac{b-a}{2^k}$.

Proof: Let the sequence $2a_k s_{k=0}^{\infty}$ be the left endpoints of the interval for each iteration k of the bisection method. Let $\{b_k\}_{k=0}^{\infty}$ be the right endpoints for each iteration.

We know $4o = a \le a_1 \le a_2 \le ... \le b_0 = b$ and $b_0 \ge b_1 \ge b_2 \ge ... \ge a_0 = a$.

Since 29k3 is monotonically increasing and bounded above, and 2 bk3 is monotonically decreasing and bounded below, both sequences converge by Monotone Convergence Theorem.

We know that $b_{k}-a_{k}=\frac{b_{k-1}-a_{k-1}}{2}=..=\frac{b-a}{2^{k}}$ and $\lim_{k\to\infty}a_{k}=\lim_{k\to\infty}b_{k}=x^{*}$. Also $\lim_{k\to\infty}f(a_{k})f(b_{k})=(f(x^{*}))^{2}\leq 0$, implying $f(x^{*})=0$.

If a_k and b_k converges to x^* , then $|x^{(k)}-x^*| \leq \frac{b-a}{2^k}$ by Convergence of a Sequence