

PES University, Bengaluru

UE18MA251

(Established under Karnataka Act 16 of 2013)

END SEMESTER ASSESSMENT (ESA) B TECH.- IV SEMESTER- MAY 2020 UE18MA251-LINEAR ALGEBRA

Time: 3 hours Answer all questions Max marks: 100

1(a)	Determine the values of a and b for which the system of equations $x + y + az = 2b$; $x + 3y + (2+2a)z = 7b$; $3x + y + (3+3a)z = 11b$ will have (i) unique trivial solution (ii) trivial solution (iii) no solution (iv) infinity of solutions.	6
(b)	Factor A=LDU, given $A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & -1 \\ 1 & -1 & 4 \end{pmatrix}$. What is the relation between L and U matrices?	7
(c)	Apply Gauss-Jordan method to compute matrix A^{-1} given $A = \begin{pmatrix} 1 & -2 & 1 \\ 4 & -7 & 3 \\ -2 & 6 & 2 \end{pmatrix}$.	7
2(a)	If w_1 , w_2 , w_3 are linearly independent vectors verify whether w_2 - w_3 , w_1 - w_2 are linearly independent vectors or not.	6
(b)	For which $b = (b_1, b_2, b_3, b_4)$ is the system of equations $x + 2y + 3z = b_1$, $2x + 4y + 6z = b_2$, $2x + 5y + 7z = b_3$, $3x + 9y + 12z = b_4$ solvable?	7
(c)	If the column space of A is spanned by the vectors $(1, 4, 2)$, $(2, 5, 1)$ and $(3, 6, 0)$ find all those vectors that span the left null space of A. Determine whether or not the vector $b = (4, -2, 2)$ is in that subspace. What are the dimensions of $C(A^T)$ and $N(A^T)$?	7
3(a)	Find all the vectors in \mathbb{R}^4 that are orthogonal to $(1, 4, 4, 1)$ and $(2, 9, 8, 2)$	6
(b)	Find the matrix of the linear transformation T on R^3 defined by $T(x, y, z)=(2y+z, x-4y, 3x)$ with respect to the basis $(1, 1, 1)$, $(1, 1, 0)$, $(1, 0, 0)$	7
(c)	Find the least square solution of Ax=b given: $A = \begin{pmatrix} -1 & 2 \\ 2 & -3 \\ -1 & 3 \end{pmatrix}, b = \begin{pmatrix} 4 \\ 1 \\ 2 \end{pmatrix}.$	7

SRN						
3.1.1						

4(a)	Determine a and b in eigen vectors $u = \begin{pmatrix} 1 \\ a \\ 1 \end{pmatrix}, v = \begin{pmatrix} -1 \\ b \\ 1 \end{pmatrix}$ for $A = \begin{pmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{pmatrix}$	6
	.Write the corresponding eigen values for the eigen vectors u and v.	
(b)	Use the Gram – Schmidt process to find a set of orthonormal vectors from	
	the independent vectors $a_1 = (1, 0, 1)$, $a_2 = (1, 0, 0)$. Also find the $A = QR$	7
	factorization where $A = [a_1 a_2]$.	
(c)	Diagonalize $A = \begin{pmatrix} -3 & 12 \\ -2 & 7 \end{pmatrix}$ and hence find A^{47} .	7
5(a)	Fi1nd the Singular Value Decomposition of $A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \end{pmatrix}$	12
(b)	If $A = \begin{pmatrix} 10 & 6 \\ 6 & 10 \end{pmatrix}$ is symmetric positive definite, then compute $R = Q\sqrt{\Lambda} Q^T$	8
	its symmetric positive definite square root. Check whether R has positive or negative eigen values	8
