NEW YORK INSTITUTE OF TECHNOLOGY

College of Engineering and Computing Sciences DTSC 620 (Fall 2022)

Classification with Bayes' Classification Rule

Table 1 gives the joint distribution between two binary-valued features and three classes $\{U_1, U_2, U_3\}$.

f 1	f ₂	U	P (f1, f2, U)
1	0	U ₁	0.1
0	0	U ₁	0.1
0	1	U ₁	0.1
1	1	U ₁	0.1
1	0	U_2	0.1
0	0	U_2	0.05
0	1	U_2	0.05
1	1	U_2	0. 05
1	0	U ₃	0.1
0	0	U ₃	0.2
0	1	U ₃	0.05
1	1	U ₃	0.0

Table 1.

(a) Given a test feature vector < $f'_1 = 0$, $f'_2 = 0>$, use Bayes classification rule and the information provided in **Table 1**, to find the class to which this vector belongs.

$$=> U3$$

$$P(f1 = 0, f2 = 0, U = U1) = 0.1$$

$$P(f1 = 0, f2 = 0, U = U2) = 0.05$$

$$P(f1 = 0, f2 = 0, U = U3) = 0.2$$

(b) Given the test feature $f'_1 = 0$, use Bayes classification rule and the information provided in **Table 1**, to find the class to which this vector belongs.

$$f'1 = 0 => U3$$