ESc201: Introduction to Electronics

Combinational Circuit Design

Dr. Y. S. Chauhan

Dept. of Electrical Engineering

IIT Kanpur

Design Flow

This design approach becomes difficult to use

General Approach

There are certain sub-systems or blocks that are used quite often such as:

- 1. Decoders, Encoders
- 2. Multiplexers
- 3. Adder/Subtractors, Multipliers
- 4. Comparators
- 5. Parity Generators
- 6.

Decoders

In general maps a smaller number of inputs to a larger set of outputs

В	Α	Y_0	Y ₁	Y ₂	Y ₃
0	0	1 0 0 0	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

Example

Decoder with Enable Input

_	Ε	В	Α	Y ₀	Y ₁	Y ₂	Y_3
	0	X	X	0	0 0 1 0 0	0	0
	1	0	0	1	0	0	0
	1	0	1	0	1	0	0
	1	1	0	0	0	1	0
	1	1	1	0	0	0	1

Е	В	Α	Y ₀	Y ₁	Y ₂	Y ₃
1	X	X	0	0 0 1 0	0	0
0	0	0	1	0	0	0
0	0	1	0	1	0	0
0	1	0	0	0	1	0
0	1	1	0	0	0	1

Decoder: gate Implementation

Е	В	Α	Y ₀	Y ₁	Y ₂	Y ₃
0	X	X	0	0 0 1 0	0	0
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1

$$Y_0 = E.\overline{B}.\overline{A}; Y_1 = E.\overline{B}.A; Y_2 = E.B.\overline{A}; Y_3 = E.B.A$$

A n to 2ⁿ decoder is a minterm generator

X	у	min term
0 0 1	0 1 0	x.y m0 x.y m1 x.y m2 x.y m3

It can be used to implement any combinational circuit

Implementation of a 3-variable function with a 3-to-8 decoder

С	В	Α	f
0	0	0	1
	0	1	0
0 0 0 1	1	0	1
0	1	1	1 0 1
1	0	0	
1	0	1	0 0 0
1	1	0	0
1	1	1	0

Although it is easy to implement any combinational circuit with this method, it is often very inefficient in terms of gate utilization. Note that this method does not require any minimization.

3/8 decoder using 2/4 decoders

How many 2/4 decoders are required to implement a 4/16 decoder ?

Seven segment decoder

Encoders

An encoder performs the inverse operation of a decoder.

d_3	d_2	d ₁	d_0	В	Α	
0	0 0 1 0	0	1	0	0	_
0	0	1	0	0	1	
0	1	0	0	1	0	
1	0	0	0	1	1	

$$B = \overline{d_1} \ \overline{d_0}$$

$$A = \overline{d_2} \ \overline{d_0}$$

Multiplexers

Implementing Boolean expressions using Multiplexers

$$y = x_1 \overline{x_2} + \overline{x_1} x_2$$

$$x_1$$
 x_2 y
0 0 0
0 1 1 $y = x_2$ when $x_1 = 0$
1 0 1
1 1 0 $y = \overline{x_2}$ when $x_1 = 1$