17. 细胞膜的选择透过性与细胞膜的静息电位密切相关。科学家以哺乳动物骨骼肌细胞为材料,研究了静息
电位形成的机制。
(1) 骨骼肌细胞膜的主要成分是, 膜的基本支架是。
(2) 假设初始状态下,膜两侧正负电荷均相等,且膜内 K+浓度高于膜外。在静息电位形成过程中,当膜仅
对 K^+ 具有通透性时, K^+ 顺浓度梯度向膜外流动,膜外正电荷和膜内负电荷数量逐步增加,对 K^+ 进一步外流
起阻碍作用,最终 K+跨膜流动达到平衡,形成稳定的跨膜静电场,此时膜两侧的电位表现是。
K^+ 静电场强度只能通过公式 " K^+ 静电场强度(mV) = $60 \times 1g \frac{ 胞外 K^+ 浓度}{ 胞内 K^+ 浓度}$ " 计算得出。
(3) 骨骼肌细胞处于静息状态时,实验测得膜的静息电位为-90mV,膜内、外 K ⁺ 浓度依次为 155mmoL/L
和 4mmoL/L($1g\frac{\hbar h K^+浓度}{\hbar h K^+浓度}$ = -1.59),此时没有 K^+ 跨膜净流动。
①静息状态下,K+静电场强度为mV,与静息电位实测值接近,推测K+外流形成的静电场可能
是构成静息电位的主要因素。
②为证明①中的推测,研究者梯度增加细胞外 K+浓度并测量静息电位。如果所测静息电位的值,
则可验证此假设。