N Queens Problem Explanation


```
def solveNQueens(n: int, first_queen_col: int):
  col = set()
  posDiag = set()
  negDiag = set()
  res = ∏
  board = [["."] * n for _ in range(n)]
  def backtrack(r):
    if r == n:
      res.append(["".join(row) for row in board])
      return
    for c in range(n):
      if c in col or (r + c) in posDiag or (r - c) in negDiag:
         continue
       col.add(c)
       posDiag.add(r + c)
       negDiag.add(r - c)
       board[r][c] = "Q"
       backtrack(r + 1)
       col.remove(c)
       posDiag.remove(r + c)
       negDiag.remove(r - c)
       board[r][c] = "."
  col.add(first_queen_col)
  posDiag.add(0 + first_queen_col)
  negDiag.add(0 - first_queen_col)
  board[0][first_queen_col] = "Q"
  backtrack(1) # Start with the second row
  return res
if __name__ == "__main__":
  n = 8
  first_queen_col = 1
  board = solveNQueens(n, first_queen_col)[0]
  for row in board:
    print(" ".join(row))
```

EXPLAIN THIS LINE BY LINE CODE BY CODE

Here's a breakdown of the `solveNQueens` function, line by line:

```
python

def solveNQueens(n: int, first_queen_col: int):
```

- **Purpose**: Define a function called `solveNQueens` that solves the N-Queens problem for an $n \times n$ chessboard, with the first queen placed in a specified column (`first_queen_col`) of the first row.
- **Parameters**: `n` is the size of the board (number of rows/columns), and `first_queen_col` is the column index for the queen in the first row.

```
python

col = set()
  posDiag = set()
  negDiag = set()
```

- **Purpose**: Initialize three sets to track which columns and diagonals are occupied by queens, preventing other queens from being placed in attacking positions.
- `col`: Tracks columns where queens are already placed.
- `posDiag`: Tracks positive diagonals (calculated as row + col), where queens are already placed.
- ullet `negDiag`: Tracks negative diagonals (calculated as ${
 m row-col}$), where queens are already placed.

```
python

res = []
board = [["."] * n for _ in range(n)]
```

- **Purpose**: Initialize `res`, a list to store solutions, and `board`, a 2D list representing the chessboard.
- `res`: Stores each solution, where each solution is a list of strings representing the board.
- `board`: The chessboard initialized with `"."` in each cell, representing empty spaces. `n` rows are created, each with `n` columns.

```
python

def backtrack(r):
```

- **Purpose**: Define an inner helper function `backtrack` that uses recursion to place queens row by row, starting from the row `r`.
- **Parameter**: `r` is the current row being processed.


```
python

if r == n:
    res.append(["".join(row) for row in board])
    return
```

- Base Case: If r == n, it means all queens are placed successfully on the board.
- `res.append(...)`: Convert each row of the board from a list of characters to a string and add it as a solution to `res`.

```
python
  for c in range(n):
```

• **Purpose**: Loop through each column `c` in the current row `r` to find a valid position for the queen.

• **Skip Invalid Positions**: If column c, positive diagonal (r + c), or negative diagonal (r - c) is already occupied by a queen, skip this column.

```
python

col.add(c)
  posDiag.add(r + c)
  negDiag.add(r - c)
  board[r][c] = "Q"
```

- Place Queen: Mark column `c`, positive diagonal `(r + c)`, and negative diagonal `(r c)` as occupied.
- `board[r][c] = "Q"`: Place a queen at row `r`, column `c` on the board.

```
python

backtrack(r + 1)
```

• **Recursive Call**: Call `backtrack` for the next row, `r + 1`, to continue placing queens.

```
python

col.remove(c)
  posDiag.remove(r + c)
```



```
negDiag.remove(r - c)
board[r][c] = "."
```

• **Backtrack (Undo)**: Remove the queen from row `r`, column `c` and update the `col`, `posDiag`, and `negDiag` sets to allow placing queens in other positions.

```
python

col.add(first_queen_col)
 posDiag.add(0 + first_queen_col)
 negDiag.add(0 - first_queen_col)
 board[0][first_queen_col] = "Q"
```

- **Initial Placement**: Place the first queen in the specified `first_queen_col` in the first row.
- Add `first_queen_col` to `col`, `0 + first_queen_col` to `posDiag`, and `0 first_queen_col` to `negDiag`.
- Set `board[0][first_queen_col] = "Q"` to represent the queen's position on the board.

```
python

backtrack(1)
```

• **Start Recursion**: Begin the recursive backtracking process from the second row (r = 1) since the first row already has a queen.

```
python
return res
```

• **Return Results**: Return the list of solutions (`res`), where each solution is a unique board configuration.

The main function call and printing the solution:

```
if __name__ == "__main__":
    n = 8
    first_queen_col = 1
    board = solveNQueens(n, first_queen_col)[0]
    for row in board:
        print(" ".join(row))
```

- **Execution**: If the script is run directly, `solveNQueens` is called with an 8x8 board and the first queen in column 1.
- **Output**: It prints the first solution in `res`, formatting each row with a space between columns for readability.

Time Complexity

The time complexity of the `solveNQueens` function is generally analyzed as O(N!) due to the nature of backtracking. Here's a step-by-step breakdown:

1. Placing Queens in Each Row:

- \circ We place queens row by row, starting from the first row to the n-th row.
- o For each row, we try every column to see if placing a queen there is valid.

2. Pruning with Sets:

- By using `col`, `posDiag`, and `negDiag` sets, we eliminate positions that would lead to attacks, reducing the number of recursive calls.
- Even with pruning, in the worst case, we still explore many possible configurations.

3. Worst-Case Complexity:

- \circ With each row, there are approximately N choices (columns) for placing a queen.
- \circ For each placement in a row, the function goes deeper, trying to place the queen in each column of the next row. In the worst case, this yields approximately N! combinations (for large N).
- \circ Hence, the **time complexity is** O(N!).

For example, for an 8×8 board (the classic problem), we explore up to 8! (40,320) configurations, but pruning reduces the practical number of configurations explored.

Space Complexity

The space complexity is determined by the storage required for the board and auxiliary data structures ('col', 'posDiag', 'negDiag'), as well as the recursive call stack.

1. Board Representation:

 \circ We create a 2D list `board` of size $N \times N$, which requires $O(N^2)$ space.

2. Auxiliary Data Structures:

 \circ We use three sets ('col', 'posDiag', 'negDiag'), each of which stores up to N values, contributing O(N) space.

3. Recursive Call Stack:

 \circ The depth of recursion is N because we place one queen per row, so the recursion stack uses O(N) space.

4. **Solution Storage** (`res`):

• If there are S solutions, each solution requires $O(N^2)$ space to store. Thus, the total space required for storing all solutions is $O(S \times N^2)$.

Overall Complexity

- Time Complexity: O(N!)
- ullet Space Complexity: $O(N^2+N+S imes N^2)pprox O(S imes N^2)$


```
import random
import timeit
def deterministic_partition(arr, low, high):
  pivot = arr[high]
  i = low - 1
  for j in range(low, high):
    if arr[i] < pivot:</pre>
       i += 1
       arr[i], arr[j] = arr[j], arr[i]
  arr[i + 1], arr[high] = arr[high], arr[i + 1]
  return i + 1
def randomized_partition(arr, low, high):
  pivot_index = random.randint(low, high)
  arr[pivot_index], arr[high] = arr[high], arr[pivot_index]
  return deterministic_partition(arr, low, high)
def quick_sort(arr, low, high, pivot_selector):
  if low < high:
    pivot_index = pivot_selector(arr, low, high)
    quick_sort(arr, low, pivot_index - 1, pivot_selector)
    quick_sort(arr, pivot_index + 1, high, pivot_selector)
if __name__ == "__main__":
  arr_sizes = [100, 1000, 10000, 100000]
  for size in arr_sizes:
    arr = [random.randint(1, 1000) for _ in range(size)]
    arr.sort(reverse=True)
    deterministic_time = timeit.timeit("quick_sort(arr.copy(), 0, len(arr) - 1,
deterministic_partition)",
                       globals=globals(),
                       number=10)
    randomized_time = timeit.timeit("quick_sort(arr.copy(), 0, len(arr) - 1, randomized_partition)",
                       globals=globals(),
                       number=10)
```



```
print(f"Array size: {size}")
print(f"Deterministic Quick Sort time: {deterministic_time:.6f} seconds")
print(f"Randomized Quick Sort time: {randomized_time:.6f} seconds")
print("-" * 40)
```

EXPLAIN THIS LINE BY LINE CODE BY CODE

Here's a line-by-line explanation of the code provided:

```
import random
import timeit
```

• **Imports**: Import the `random` module to select random pivot indices and `timeit` to measure the execution time of sorting algorithms.

Deterministic Partition Function

```
def deterministic_partition(arr, low, high):
    pivot = arr[high]
    i = low - 1
```

- **Function Purpose**: Defines `deterministic_partition`, which partitions the array around a chosen pivot element (the last element in the subarray) and returns the pivot's final position after partitioning.
- `pivot = arr[high]`: Selects the pivot element as the last element in the range `[low, high]`.
- `i = low 1`: Initializes `i` to one position before the low index to help track elements smaller than the pivot.

```
python

for j in range(low, high):
    if arr[j] < pivot:
        i += 1
        arr[i], arr[j] = arr[j], arr[i]</pre>
```

- **Loop Through Elements**: Loops from `low` to `high 1` to compare each element with the pivot.
- Comparison and Swap:
 - If `arr[j] < pivot`, it increments `i` and swaps `arr[i]` with `arr[j]`, effectively moving smaller elements to the left side of the pivot.


```
python

arr[i + 1], arr[high] = arr[high], arr[i + 1]
return i + 1
```

- **Final Swap**: After the loop, it swaps the pivot (at `high`) with the element at `i + 1`, placing the pivot in its correct, sorted position.
- **Return Pivot Position**: Returns `i + 1`, which is the index of the pivot after partitioning.

Randomized Partition Function

```
def randomized_partition(arr, low, high):
    pivot_index = random.randint(low, high)
    arr[pivot_index], arr[high] = arr[high], arr[pivot_index]
    return deterministic_partition(arr, low, high)
```

- **Function Purpose**: Defines `randomized_partition`, which selects a random pivot index within `[low, high]`, swaps it with the last element, and calls `deterministic_partition` to partition around the randomized pivot.
- `pivot_index = random.randint(low, high)`: Selects a random pivot index.
- `arr[pivot_index], arr[high] = arr[high], arr[pivot_index]`: Swaps the pivot with the last element to prepare for partitioning.
- `return deterministic_partition(arr, low, high)`: Calls `deterministic_partition` on the array to partition around this randomized pivot.

Quick Sort Function

```
python

def quick_sort(arr, low, high, pivot_selector):
    if low < high:
        pivot_index = pivot_selector(arr, low, high)
        quick_sort(arr, low, pivot_index - 1, pivot_selector)
        quick_sort(arr, pivot_index + 1, high, pivot_selector)</pre>
```

- **Function Purpose**: Defines `quick_sort`, a recursive implementation of the Quick Sort algorithm.
- Parameters:
 - o `arr`: The array to sort.
 - `low` and `high`: The current subarray boundaries.
 - `pivot_selector`: A function (either `deterministic_partition` or `randomized_partition`) to determine the pivot.
- Base Condition: If `low < high`, it proceeds with sorting; otherwise, it ends the recursion.
- Recursive Partitioning:
 - Calls `pivot_selector(arr, low, high)` to partition the array and obtain the pivot's sorted position (`pivot_index`).

Recursively calls `quick_sort` on the left subarray (`low` to `pivot_index - 1`) and right
subarray (`pivot index + 1` to `high`).

Main Execution Block

```
python

if __name__ == "__main__":
```

• **Purpose**: Checks if the script is being run directly. If true, the following code block runs, benchmarking Quick Sort with different array sizes.

```
python

arr_sizes = [100, 1000, 100000, 100000]
    for size in arr_sizes:
        arr = [random.randint(1, 1000) for _ in range(size)]
        arr.sort(reverse=True)
```

- `arr_sizes`: A list of array sizes used for testing.
- Loop Through Array Sizes: For each size in `arr_sizes`, it creates a random array of integers.
- `arr.sort(reverse=True)`: Sorts `arr` in descending order to test Quick Sort on a reverse-sorted array, often a worst-case scenario for Quick Sort without randomization.

- **Measure Execution Time**: Uses `timeit.timeit` to measure the execution time of `quick_sort` with both `deterministic_partition` and `randomized_partition`.
 - `quick_sort(arr.copy(), 0, len(arr) 1, deterministic_partition)`: Sorts a copy of `arr` using deterministic Quick Sort.
 - `quick_sort(arr.copy(), 0, len(arr) 1, randomized_partition)`: Sorts a copy of `arr` using randomized Quick Sort.
 - `globals=globals()`: Allows `timeit` to access all global variables (like `quick_sort`).
 - `number=10`: Repeats the sorting 10 times for each algorithm, returning the total time.

```
python

print(f"Array size: {size}")
print(f"Deterministic Quick Sort time: {deterministic_time:.6f} seconds")
```



```
print(f"Randomized Quick Sort time: {randomized_time:.6f} seconds")
print("-" * 40)
```

- **Print Results**: Displays the array size, execution time for deterministic Quick Sort, and execution time for randomized Quick Sort.
- `print("-" * 40)`: Prints a separator line for clarity between results.

Summary

• The code benchmarks deterministic and randomized Quick Sort on arrays of increasing sizes and prints out the execution time for each

TIME AND SPACE COMPLEXITY

Time Complexity

1. Deterministic Quick Sort:

- \circ **Best and Average Case**: When the pivot divides the array into two nearly equal parts in each recursive call, the time complexity is $O(N\log N)$, where N is the number of elements in the array. This happens on average if the array is random or when the pivot tends to be near the median.
- \circ **Worst Case**: If the array is already sorted (like when it's in reverse order and the last element is always chosen as the pivot), the complexity degrades to $O(N^2)$ due to uneven partitioning. This is because, in each recursive call, only one element is partitioned on one side of the pivot, leading to N recursive calls, each requiring O(N) operations.

2. Randomized Quick Sort:

- o **Best and Average Case**: With random pivot selection, the chances of consistently bad splits reduce, making the average-case complexity $O(N \log N)$. Randomization reduces the likelihood of the worst-case scenario by ensuring the pivot is selected unpredictably.
- \circ **Worst Case**: In extremely rare cases, random selection could still lead to $O(N^2)$, but this is highly unlikely in practice. Randomization effectively makes the algorithm behave like $O(N \log N)$ most of the time.

3. Overall Complexity for Benchmarking:

o Since each sorting function is called `10` times in the benchmark code, the time complexity for each function call is effectively multiplied by `10`. However, this doesn't change the asymptotic complexity of the function, as $10 \cdot O(N \log N)$ remains $O(N \log N)$.

Space Complexity

1. Recursive Call Stack:

- Quick Sort is an in-place algorithm, meaning it doesn't require additional space for sorting itself, aside from the recursive stack.
- \circ The recursive depth of the call stack can go up to N in the worst case (when each partition has only one element on one side), which takes O(N) space.
- \circ On average, with balanced splits, the recursive depth is $O(\log N)$, giving an average space complexity of $O(\log N)$.

2. Auxiliary Space for the Array Copies:

 \circ In the benchmarking code, `arr.copy()` is used to ensure the original array remains unsorted for both sorting functions. This takes O(N) space for each copy, but it's independent of the sorting algorithm's core complexity.

Summary

- **Deterministic Quick Sort Time Complexity**: $O(N^2)$ worst case, $O(N\log N)$ average and best cases.
- Randomized Quick Sort Time Complexity: $O(N^2)$ rare worst case, $O(N\log N)$ average and best cases.
- **Space Complexity**: O(N) worst-case call stack, $O(\log N)$ average call stack, plus O(N) for array copies in benchmarking.

ChatGPT can make mistakes. Check important info.