Exercice I. Équation de convection-diffusion

1.a. Soit u la solution de l'équation de convection-diffusion. On pose

$$U_i^n = u(j\Delta x, n\Delta t).$$

L'erreur de troncature du schéma est

$$\varepsilon_{j}^{n} = \frac{U_{j}^{n+1} - U_{j}^{n}}{\Delta t} + V \frac{U_{j}^{n} - U_{j-1}^{n}}{\Delta x} - \nu \frac{U_{j+1}^{n} - 2U_{j}^{n} + U_{j-1}^{n}}{(\Delta x)^{2}}$$

En effectuant des développement de Taylor en $(x,t)=(n\Delta x,j\Delta t)$, on montre que

$$\frac{U_j^{n+1} - U_j^n}{\Delta t} = \frac{u(x, t + \Delta t) - u(x, t)}{\Delta t}$$

$$= \frac{\partial u}{\partial t} + \frac{(\Delta t)}{2} \frac{\partial^2 u}{\partial t^2}(x, t) + \mathcal{O}((\Delta t)^2),$$

$$\frac{U_j^n - U_{j-1}^n}{\Delta x} = \frac{u(x, t) - u(x - \Delta x, t)}{\Delta x}$$

$$= \frac{\partial u}{\partial x} - \frac{\Delta x}{2} \frac{\partial^2 u}{\partial x^2}(x, t) + \mathcal{O}((\Delta x)^2),$$

$$\frac{U_{j+1}^n - 2U_j^n + U_{j-1}^n}{(\Delta x)^2} = \frac{u(x + \Delta x, t) - 2u(x, t) + u(x - \Delta x, t)}{(\Delta x)^2}$$

$$= \frac{\partial^2 u}{\partial x^2} + \frac{(\Delta x)^4}{12} \frac{\partial^4 u}{\partial x^4} + \mathcal{O}((\Delta x)^6).$$

En rassemblant ces résultats, on en déduit que

$$\begin{split} \varepsilon_{j}^{n} &= \frac{\partial u}{\partial t} + V \frac{\partial u}{\partial x} - \nu \frac{\partial^{2} u}{\partial x^{2}} \\ &= \frac{\partial u}{\partial t} + V \frac{\partial u}{\partial x} - \nu \frac{\partial^{2} u}{\partial x^{2}} + \frac{(\Delta t)}{2} \frac{\partial^{2} u}{\partial t^{2}} (x, t) - (\Delta x) V \frac{\Delta x}{2} \frac{\partial^{2} u}{\partial x^{2}} (x, t) + \mathcal{O}(\Delta t + \Delta x) \\ &= \frac{(\Delta t)}{2} \frac{\partial^{2} u}{\partial t^{2}} (x, t) - (\Delta x) V \frac{\Delta x}{2} \frac{\partial^{2} u}{\partial x^{2}} (x, t) + \mathcal{O}((\Delta t)^{2} + (\Delta x)^{2}) \end{split}$$

Ainsi, le schéma est d'ordre au moins un en temps et en espace. Cependant, l'expression de l'erreur de troncature obtenue dépend à la fois des dérivées partielles de u en temps et en espace. Les termes de dérivation de u en temps et en espace étant liées (u est solution de l'équation de convection-diffusion), ils pourraient se compenser. L'ordre du schéma serait alors plus élevée que prévue. Dans ce cas particulier, ce n'est pas le cas: On peut s'en convaincre en exprimant la dérivée seconde de u par rapport au temps en fonction des dérivées partielles de u par rapport à x. On a

$$\frac{\partial^2 u}{\partial t^2} = V^2 \frac{\partial^2 u}{\partial x^2} - 2\nu V \frac{\partial^3 u}{\partial x^3} + \nu^2 \frac{\partial^4 u}{\partial x^4}$$

Ainsi,

$$\varepsilon_j^n = \frac{\partial^2 u}{\partial x^2}(x,t) \left(V^2(\Delta t) - V(\Delta x) \right) / 2 - \nu V(\Delta t)$$
$$\frac{\partial^3 u}{\partial x^3}(x,t) + \frac{\nu^2(\Delta t)}{2} \frac{\partial^4 u}{\partial x^3}(x,t) + \mathcal{O}((\Delta t)^2 + (\Delta x)^2).$$

b. Le schéma proposé est explicite: on peut exprimer directement u^{n+1} en fonction de u^n sans inverser de matrice. On a

$$u_{i}^{n+1} = \alpha u_{i+1}^{n} + \beta u_{i}^{n} + \gamma u_{i-1}^{n}.$$

οù

$$\alpha = \frac{\nu \Delta t}{(\Delta x)^2}$$
$$\beta = 1 - \frac{V \Delta t}{\Delta x} - \frac{2\nu \Delta t}{(\Delta x)^2}$$
$$\gamma = \frac{V \Delta t}{\Delta x} + \frac{\nu \Delta t}{(\Delta x)^2}.$$

On constate que $1 = \alpha + \beta + \gamma$. Ainsi, si α , β et γ sont des coefficients positifs, u_j^{n+1} est une combinaison convexe de u_{j+1}^n , u_j^n et u_{j-1}^n . On en déduit dans ce cas que le schéma est stable, en effet,

$$|u_{j}^{n+1}| \leq \alpha |u_{j+1}^{n}| + \beta |u_{j}^{n}| + \gamma |u_{j-1}^{n}| \leq (\alpha + \beta + \gamma) \sup_{k} |u_{k}^{n}| = \sup_{k} |u_{k}^{n}|,$$

et

$$\sup_{j} |u_j^{n+1}| \le \sup_{j} |u_j^0|.$$

Si $\beta<0,$ le schéma n'est pas stable en norme $L^{\infty}.$ En effet, si $u_{j}^{0}=(-1)^{j},$ on a

$$u_j^n = (2\beta - 1)^n (-1)^j$$

et $|u_i^n| \to +\infty$ lorsque $n \to +\infty$.

Dans le cas V > 0, on en déduit que le schéma est stable si et seulement si

$$\frac{V\Delta t}{\Delta x} - \frac{2\nu\Delta t}{(\Delta x)^2} \le 1. \tag{1}$$

Dans le cas V<0, on en déduit que le schéma est instable en norme L^∞ si (1) n'est pas vérifié et stable si (1) est vérifié et

$$\nu \ge |V| \Delta x$$
.

Il est difficile d'établir une condition nécessaire et suffisante de stabilité L^{∞} dans le cas V<0. Par contre, un tel résultat de stabilité est obtenu aisément en

norme L^2 . En appliquant la transformation de Fourier au schéma, on montre que

$$\hat{u}^{n+1}(k) = A(k)\hat{u}^n(k),$$

οù

$$A(k) = \alpha e^{i2\pi k\Delta x} + \beta + \gamma e^{-i2\pi k\Delta x}.$$

Le schéma est stable L^2 si et seulement si $|A(k)| \leq 1$ pour tout k, or

$$|A(k)|^2 = |1 - 2(\alpha + \gamma)s_k|^2 + (\alpha - \gamma)^2 s(1 - s),$$

où $s_k = \sin(k\pi\Delta x)^2$. On en déduit que le schéma est stable L^2 si et seulement si

$$\begin{cases} (\alpha - \gamma)^2 \le 4(\alpha + \gamma) \\ |1 - 2(\alpha + \gamma)| \le 1. \end{cases}$$

En remplaçant α et γ par leur expression, on obtient les conditions de stabilité

$$\begin{cases} V^2 \Delta t \le 4(V \Delta x + 2\nu) \\ 1 \ge \frac{V \Delta t}{\Delta x} + \frac{2\nu \Delta t}{(\Delta x)^2} \ge 0 \end{cases}$$

Ainsi, lorsque $\nu \to 0$, la première condition de stabilité ne peut-être vérifiée si V < 0. Le schéma est alors instable en norme L^2 et doc instable en norme L^{∞} .

- **c.** Si les conditions CFL introduites précédemment sont vérifiée, le schéma est stable. Comme il est consistant, on en déduit qu'il est convergent d'après le Théorème de Lax.
 - d. D'après le calcul de l'erreur de troncature

$$\varepsilon_{j}^{n} = \frac{\partial u}{\partial t} + V \frac{\partial u}{\partial x} - \nu \frac{\partial^{2} u}{\partial x^{2}} + \frac{(\Delta t)}{2} \frac{\partial^{2} u}{\partial t^{2}}(x, t) - (\Delta x) V \frac{\Delta x}{2} \frac{\partial^{2} u}{\partial x^{2}}(x, t) + \mathcal{O}((\Delta t)^{2} + (\Delta x)^{2})$$

Ainsi, le schéma est d'ordre 2 en espace et un en temps pour l'équation

$$\frac{\partial u}{\partial t} + V \frac{\partial u}{\partial x} - (\nu + (\Delta x)V) \frac{\partial^2 u}{\partial x^2} = 0.$$

Ainsi, si dans le schéma initial, on remplace ν par

$$\nu^* = \nu - (\Delta x)V,$$

on obtient un schéma d'ordre supérieur (2 en temps et un en espace). Dans le cas V>0, la condition de stabilité L^∞ devient

$$3\frac{V\Delta t}{\Delta x} - \frac{2\nu\Delta t}{(\Delta x)^2} \le 1. \tag{2}$$

Notons que nous avons effectivement gagné quelque-chose. Au paravant, pour obtenir une erreur de l'ordre de h, il fallait choisir Δt et Δx de l'ordre de h. Le schéma modifié ne nécessite de choisir Δt de l'ordre de h, mais Δx uniquement d'ordre $h^{1/2}$. La condition de stabilité () devient alors

$$3Vh^{1/2} < 1 + 2\nu$$

et est bien vérifiée pour h suffisamment petit.

2. Schéma centré.

Le schéma centré proposé peut s'écrire sous la forme

$$\begin{split} u_{j}^{n+1} - \frac{\Delta t \nu}{2(\Delta x)^{2}} (u_{j+1}^{n+1} - 2u_{j}^{n+1} + u_{j-1}^{n+1}) = \\ u_{j}^{n} - \frac{V \Delta t}{2\Delta x} (u_{j+1}^{n} - u_{j-1}^{n}) + \frac{\Delta t \nu}{2(\Delta x)^{2}} (u_{j+1}^{n} - 2u_{j}^{n} + u_{j-1}^{n}) \end{split}$$

Par transformation de Fourier, on en déduit que

$$\left(1 + \frac{2\Delta t\nu}{(\Delta x)^2}\sin(k\pi\Delta x)^2\right)\hat{u}^{n+1}(k) = \left(1 - \frac{2\Delta t\nu}{(\Delta x)^2}\sin(k\pi\Delta x)^2 - i\frac{V\Delta t}{\Delta x}\sin(2k\pi\Delta x)\right)\hat{u}^n.$$

Ainsi, $\hat{u}^{n+1}(k) = \hat{u}^n(k)$ avec

$$A(k) = \frac{(\Delta x)^2 - 2\Delta t\nu \sin(k\pi\Delta x)^2 - iV\Delta t\Delta x \sin(2k\pi\Delta x)}{(\Delta x)^2 + 2\Delta t\nu \sin(k\pi\Delta x)^2}.$$

La condition de stabilité est $|A(k)| \le 1$. On a

$$|A(k)|^{2} = 1 + (\Delta x)^{2} \frac{(V\Delta t)^{2} (1 - s(k)) s(k) - 8\Delta t \nu s(k)}{((\Delta x)^{2} + 2\Delta t \nu s(k))^{2}},$$

où $s(k) = \sin^2(k\pi\Delta x)$. Le schéma est donc stable en norme L^2 si et seulement si

$$(V\Delta t)^2(1-s) - 8\Delta t\nu \le 0$$

pour tout s, 0 < s < 1, c'est à dire si et seulement si

$$\Delta t \le 8\nu/V^2$$
.

Lorsque $\nu \to 0$, le schéma devient instable, quelque soit le pas de temps Δt fixé. Ce résultat n'a rien d'étonnant, en effet, pour $\nu = 0$, le schéma centré est instable pour l'équation d'advection (cf. cours).

b. On procède comme lors de la question 1.a. Soit $U_j^n=u(j\Delta x,j\Delta t)$, l'erreur de troncature est

$$\varepsilon_{j}^{n} = \frac{U_{j}^{n+1} - U_{j}^{n}}{\Delta t} + V \frac{U_{j+1}^{n} - U_{j-1}^{n}}{2\Delta x} - \frac{\nu}{2} \left(\frac{U_{j+1}^{n+1} - 2U_{j}^{n+1} + U_{j-1}^{n+1}}{(\Delta x)^{2}} + \frac{U_{j+1}^{n} - 2U_{j}^{n} + U_{j-1}^{n}}{(\Delta x)^{2}} \right).$$

$$\varepsilon_j^n = \frac{\partial u}{\partial t} + V \frac{\partial u}{\partial x} - \nu \frac{\partial^2 u}{\partial x^2} + \frac{\Delta t}{2} \frac{\partial^2 u}{\partial t^2} + \frac{(\Delta x)^2}{6} \frac{\partial^3 u}{\partial x^3} + \mathcal{O}((\Delta x)^4 + (\Delta t)^2).$$

Le schéma est donc au moins d'ordre 2 en espace et un en temps. De plus, quitte a remplacer la dérivée seconde de u en temps par son expression en fonction des dérivées partielles de u suivant x, on peut montrer que c'est l'ordre optimal.

c. Pour Δt assez petit, la condition de stabilité est automatiquement vérifiée, on en déduit (d'après le théorème de Lax) que le schéma est convergent et que pour Δt assez petit, il existe une constante K tel que

$$||e^n||_2 \le KTC((\Delta t) + (\Delta x)^2)$$

où
$$e^n = u^n - U^n$$
.

Exercice II. θ -schéma.

Par développement de Taylor, on montre que

$$\begin{split} &\frac{u(t_{n+1},x_j)-u(t_n,x_j)}{\Delta t} + \nu \frac{-u(t_n,x_{j-1})+2u(t_n,x_j)-u(t_n,x_{j+1})}{(\Delta x)^2} \\ &= \frac{\Delta t}{2} \frac{\partial^2 u}{\partial t^2} + \frac{(\Delta t)^2}{6} \frac{\partial^3 u}{\partial t^3} - \frac{\nu(\Delta x)^2}{12} \frac{\partial^4 u}{\partial x^4} \\ &- \frac{\nu(\Delta x)^4}{360} \frac{\partial^6 u}{\partial x^6}(t_n,x_j) + \mathcal{O}((\Delta x)^6 + (\Delta t)^3) \\ &= \left(\frac{\Delta t \nu^2}{2} - \frac{(\Delta x)^2 \nu}{12}\right) \frac{\partial^4 u}{\partial x^4} + \left(\frac{(\Delta t)^2 \nu^3}{6} - \frac{(\Delta x)^4 \nu}{360}\right) \frac{\partial^6 u}{\partial x^6}(t_n,x_j) \\ &+ \mathcal{O}((\Delta x)^6 + (\Delta t)^3) \end{split}$$

et

$$\frac{u(t_{n+1}, x_j) - u(t_n, x_j)}{\Delta t} + \nu \frac{-u(t_{n+1}, x_{j-1}) + 2u(t_{n+1}, x_j) - u(t_{n+1}, x_{j+1})}{(\Delta x)^2}$$

$$= -\frac{\Delta t}{2} \frac{\partial^2 u}{\partial t^2} - \frac{(\Delta t)^2}{3} \frac{\partial^3 u}{\partial t^3} - \frac{\nu(\Delta x)^2}{12} \frac{\partial^4 u}{\partial x^4}$$

$$-\frac{\nu(\Delta x)^2 \Delta t}{12} \frac{\partial^5 u}{\partial t \partial x^4} - \frac{\nu(\Delta x)^2 (\Delta t)^2}{24} \frac{\partial^6 u}{\partial t^2 \partial x^4} - \frac{\nu(\Delta x)^4}{360} \frac{\partial^6 u}{\partial x^6} (t_n, x_j)$$

$$+ \mathcal{O}((\Delta t)^3 + (\Delta x)^6 + (\Delta x)^4 (\Delta t))$$

$$= -\left(\frac{\Delta t \nu^2}{2} + \frac{\nu(\Delta x)^2 \nu}{12}\right) \frac{\partial^4 u}{\partial x^4} + \frac{(\Delta t)^2 \nu^2}{2} \frac{\partial^5 u}{\partial x^5}$$

$$-\left(\frac{(\Delta t)^2 \nu^3}{3} + \frac{\Delta t(\Delta x)^2 \nu^2}{12} + \frac{(\Delta x)^4 \nu}{360}\right) \frac{\partial^6 u}{\partial x^6}$$

$$-\frac{(\Delta t)^2 (\Delta x)^2 \nu^3}{24} \frac{\partial^8 u}{\partial x^8} + \mathcal{O}((\Delta t)^3 + (\Delta x)^6 + (\Delta x)^4 (\Delta t)).$$

Par combinaison linéaire, on obtient que

$$\begin{split} \frac{u(t_{n+1},x_{j}) - u(t_{n},x_{j})}{\Delta t} &+ \theta \nu \frac{-u(t_{n+1},x_{j-1}) + 2u(t_{n+1},x_{j}) - u(t_{n+1},x_{j+1})}{(\Delta x)^{2}} \\ &+ (1-\theta)\nu \frac{-u(t_{n},x_{j-1}) + 2u(t_{n},x_{j}) - u(t_{n},x_{j+1})}{(\Delta x)^{2}} \\ &= \left(\left(\frac{1-2\theta}{2}\right)\nu^{2}\Delta t - \frac{\nu(\Delta x)^{2}}{12}\right)\frac{\partial^{4}u}{\partial x^{4}} \\ &+ \theta \frac{(\Delta t)^{2}\nu^{2}}{2}\frac{\partial^{5}u}{\partial x^{5}} \\ &+ \left(\frac{(\Delta t)^{2}\nu^{3}}{6} - \frac{(\Delta x)^{4}\nu}{360} - (\Delta t)^{2}\nu^{3}\theta\left(\frac{1}{2} + \frac{(\Delta x)^{2}}{12(\Delta t)\nu}\right)\right)\frac{\partial^{6}u}{\partial x^{6}} \\ &- \theta \frac{(\Delta t)^{2}(\Delta x)^{2}\nu^{3}}{24}\frac{\partial^{8}u}{\partial x^{8}} \\ &+ \mathcal{O}((\Delta t)^{3} + (\Delta x)^{6} + (\Delta x)^{4}(\Delta t)). \end{split}$$

Pour $\theta \neq 1/2$, le θ -schéma est d'ordre 1 en temps et 2 en espace. Pour $\theta = 1/2$ (schéma de Crank-Nicholson), le schéma est d'ordre 2 en espace et en temps. Pour $\theta = 1/2 - (\Delta x)^2/12\nu\Delta t$, le schéma est d'ordre 4 est espace et 2 en temps. En effet,

$$\frac{u(t_{n+1}, x_j) - u(t_n, x_j)}{\Delta t} + \theta \nu \frac{-u(t_{n+1}, x_{j-1}) + 2u(t_{n+1}, x_j) - u(t_{n+1}, x_{j+1})}{(\Delta x)^2}
+ (1 - \theta)\nu \frac{-u(t_n, x_{j-1}) + 2u(t_n, x_j) - u(t_n, x_{j+1})}{(\Delta x)^2}
= \left(\frac{\nu(\Delta x)^2}{12} - \frac{\nu(\Delta x)^2}{12}\right) \frac{\partial^4 u}{\partial x^4}
+ \left(\frac{1}{2} - \frac{(\Delta x)^2}{12\nu\Delta t}\right) \frac{(\Delta t)^2 \nu^2}{2} \frac{\partial^5 u}{\partial x^5}
+ \left(\frac{3(\Delta x)^4 \nu}{720} - \frac{(\Delta t)^2 \nu^3}{6}\right) \frac{\partial^6 u}{\partial x^6}
- \left(\frac{\nu(\Delta x)^2}{12} - \frac{\nu(\Delta x)^2}{12}\right) \frac{(\Delta t)^2 (\Delta x)^2 \nu^3}{24} \frac{\partial^8 u}{\partial x^8}
+ \mathcal{O}((\Delta t)^3 + (\Delta x)^6 + (\Delta x)^4(\Delta t)).$$

(Ouf!)

b. Par transformation de Fourier, on montre que

$$((\Delta x)^2 - \theta \Delta t (e^{2i\pi k \Delta x} - 2 + e^{-2i\pi k \Delta x})) \hat{u}^{n+1}(k) = ((\Delta x)^2 + (1 - \theta) \Delta t (e^{2i\pi k \Delta x} - 2 + e^{-2i\pi k \Delta x})) \hat{u}^n(k),$$

puis que $\hat{u}^{n+1}(k) = A(k)\hat{u}^n(k)$ avec

$$A(k) = 1 - \frac{4\sin(k\pi\Delta x)^2 \Delta t}{(\Delta x)^2 + 4\Delta t \theta \sin(k\pi\Delta x)^2}.$$

La condition de stabilité est $|A(k)| \le 1$, c'est à dire

$$1 - \frac{4s\Delta t}{(\Delta x)^2 + 4\Delta t\theta s} \le 2,$$

pour tout $s \in [0, 1]$, ou encore

$$2\Delta t(1-2\theta) \le (\Delta x)^2. \tag{3}$$

En particulier, si $\theta \ge 1/2$, le schéma est inconditionnellement stable.

- c. Sous la condition CFL (3), le schéma est stable et donc convergent d'après le théorème de Lax (il est consistant d'après la question 1).
- **2.** On discrétise tout d'abord les fonctions σ et a en posant $\sigma_i = \sigma(i\Delta x)$ et $a_i = a(i\Delta x)$. On propose de généraliser le θ -schéma à l'aide du schéma

$$\sigma_{j} \frac{u_{j}^{n+1} - u_{j}^{n}}{\Delta t} - \theta \frac{a_{j} u_{j+1}^{n+1} - (a_{j} + a_{j-1}) u_{j}^{n+1} + a_{j-1} u_{j-1}^{n+1}}{(\Delta x)^{2}} - (1 - \theta) \frac{a_{j} u_{j+1}^{n} - (a_{j} + a_{j-1}) u_{j}^{n} + a_{j-1} u_{j-1}^{n}}{(\Delta x)^{2}} = 0.$$

b. Soit u_i^n définit par le schéma proposé, on a pour tout $v \in L^2_{\Delta x}(0,1)$,

$$\sum_{j} \sigma_{j=0}^{N} \frac{u_{j}^{n+1} - u_{j}^{n}}{\Delta t} v_{j} - \theta \sum_{j=0}^{N} \frac{a_{j} u_{j+1}^{n+1} - (a_{j} + a_{j-1}) u_{j}^{n+1} + a_{j-1} u_{j-1}^{n+1}}{(\Delta x)^{2}} v_{j}$$
$$- (1 - \theta) \sum_{j=0}^{N} \frac{a_{j} u_{j+1}^{n} - (a_{j} + a_{j-1}) u_{j}^{n} + a_{j-1} u_{j-1}^{n}}{(\Delta x)^{2}} v_{j} = 0$$

(avec la convention $v_{k+p(N+1)} = v_k$ pour tout $k \in \{0, \dots, N\}$ et $p \in \mathbb{Z}$). On

$$\sum_{j=0}^{N} \frac{a_{j} u_{j+1}^{n+1} - (a_{j} + a_{j-1}) u_{j}^{n+1} + a_{j-1} u_{j-1}^{n+1}}{(\Delta x)^{2}} v_{j}$$

$$= \sum_{j=0}^{N} \frac{a_{j}}{\Delta x} \left(u_{j+1}^{n+1} - u_{j}^{n+1} \right) v_{j} - \sum_{j=0}^{N} \frac{a_{j-1}}{\Delta x} \left(u_{j+1}^{n} - u_{j}^{n-1} \right) v_{j}$$

$$= \sum_{j=0}^{N} \frac{a_{j}}{\Delta x} \left(u_{j+1}^{n+1} - u_{j}^{n+1} \right) \left(v_{j+1} - v_{j} \right).$$
(4)

Ainsi, en posant

$$(u,v)_{\sigma} = \sum_{j=0}^{N} \sigma_j u_j v_j$$

et

$$a_h(u,v) = \sum_{i=0}^{N} a_j \frac{u_{j+1} - u_j}{\Delta x} \frac{v_{j+1} - v_j}{\Delta x},$$

on déduit de (4) que

$$\left(\frac{u^{n+1} - u^n}{\Delta t}, v\right)_{\sigma} + a_h \left(\theta u^{n+1} + (1 - \theta)u^n, v\right) = 0.$$
 (5)

c. On applique la formule (5) à $v_h = \theta u^{n+1} + (1-\theta)u^n$. On en déduit que

$$|u^{n+1}|_{\sigma}^{2} - |u^{n}|_{\sigma}^{2} + (2\theta - 1)|u^{n+1} - u^{n}|_{\sigma}^{2} + a_{h}(\theta u^{n+1} + (1 - \theta)u^{n}), \theta u^{n+1} + (1 - \theta)u^{n})) = 0,$$

où $|v|_{\sigma}^2=\sigma(v,v)$. Or pour tout $v\in L^2_{\Delta x}(0,1),$ on a $a_h(v,v)\geq 0.$ Ainsi, si $\theta\geq 1/2,$ on a

$$|u^{n+1}|_{\sigma}^2 \leq |u^n|_{\sigma}^2$$
.

Ainsi, $|u^n|_{\sigma}^2 \leq |u^0|_{\sigma}^2$, et

$$\sigma_* ||u^n||^2 \le |u^n|_{\sigma}^2 \le |u^0|_{\sigma}^2 \le \sigma^* ||u^0||^2.$$

Le schéma est donc stable en norme L^2 .

d. On pose $U_j^n=u(j\Delta x,n\Delta t)$. Par développement de Taylor, on montre que

$$a_{j}U_{j+1}^{n} - (a_{j} + a_{j-1})U_{j}^{n} + a_{j-1}U_{j-1} = (\Delta x)^{2} \left(a(x) \frac{\partial^{2} u}{\partial x^{2}} + a'(x) \frac{\partial u}{\partial x} \right) + \mathcal{O}((\Delta x)^{4}).$$

On aisément que le schéma est d'au moins d'ordre 1 en temps et en espace (en poussant le développement, on peut montrer que c'est l'ordre optimal).

D'après le théorème de Lax, on en déduit que le schéma est convergent pour $\theta \geq 1/2$, et converge en $\mathcal{O}(\Delta t + \Delta x)$.