Floyd-Warshall Algorithm

• It a dynamic-programming formulation to solve the all-pairs shortest-paths problem on a directed graph, which may have negative-weight edges, but it is assumed that there are no negative-weight cycles.

Contd...

all intermediate vertices in $\{1, 2, \dots, k-1\}$ all intermediate vertices in $\{1, 2, \dots, k-1\}$

p: all intermediate vertices in $\{1, 2, \dots, k\}$

$$d_{ij}^{(k)} = min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)})$$

Contd...

 $d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0 \;, \\ \min \left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \right) & \text{if } k \geq 1 \;. \end{cases}$

$$\pi_{ij}^{(0)} = \begin{cases} \text{NIL} & \text{if } i = j \text{ or } w_{ij} = \infty, \\ i & \text{if } i \neq j \text{ and } w_{ij} < \infty. \end{cases}$$

$$\pi_{ij}^{(k)} = \begin{cases} \pi_{ij}^{(k-1)} & \text{if } d_{ij}^{(k-1)} \le d_{ik}^{(k-1)} + d_{kj}^{(k-1)} , \\ \pi_{kj}^{(k-1)} & \text{if } d_{ij}^{(k-1)} > d_{ik}^{(k-1)} + d_{kj}^{(k-1)} . \end{cases}$$

Example

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0, \\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \ge 1. \end{cases} \quad \pi_{ij}^{(0)} = \begin{cases} \text{NIL} & \text{if } i = j \text{ or } w_{ij} = \infty, \\ i & \text{if } i \ne j \text{ and } w_{ij} < \infty. \end{cases}$$

$$\pi_{ij}^{(0)} = \begin{cases} \text{NIL} & \text{if } i = j \text{ or } w_{ij} = \infty, \\ i & \text{if } i \neq j \text{ and } w_{ij} < \infty. \end{cases}$$

D (0)	V_1	V_2	V_3	V_4	V_5
V_1	0	3	8	8	-4
V_2	8	0	8	1	7
V_3	8	4	0	8	8
V_4	2	8	-5	0	8
V_5	8	8	8	6	0

$\pi^{(0)}$	V_1	V_2	V_3	V_4	V ₅
V_1	NIL	1	1	NIL	1
V_2	NIL	NIL	NIL	2	2
V_3	NIL	3	NIL	NIL	NIL
V_4	4	NIL	4	NIL	NIL
V_5	NIL	NIL	NIL	5	NIL

$$\text{Conto} \quad d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0 \ , \\ \min \left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \right) & \text{if } k \geq 1 \ . \end{cases} \quad \pi_{ij}^{(k)} = \begin{cases} \pi_{ij}^{(k-1)} & \text{if } d_{ij}^{(k-1)} \leq d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \ , \\ \pi_{kj}^{(k-1)} & \text{if } d_{ij}^{(k-1)} > d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \ . \end{cases}$$

D (0)	V_1	V_2	V_3	V_4	V ₅
V_1	<u></u>	3	8	∞	-4
V_2	∞	0	∞	1	7
V_3	8	4	0	~	∞
V_4	2	~	-5	0	∞
V_5	8	8	∞	6	0

$\pi^{(0)}$	V_1	V_2	V_3	V_4	V ₅
V_1	NIL	1	1	NIL	1
V_2	NIL	NIL	NIL	2	2
V_3	NIL	3	NIL	NIL	NIL
V_4	4	NIL	4	NIL	NIL
V_5	NIL	NIL	NIL	5	NIL

D ⁽¹⁾	V_1	V_2	V_3	V_4	V_5
V_1	0	3	8	8	-4
V_2	8	0	8	1	7
V_3	8	4	0	8	8
V_4	2	5	-5	0	-2
V_5	8	8	8	6	0

$\pi^{(1)}$	V_1	V_2	V_3	V_4	V_5
V_1	NIL	1	1	NIL	1
V_2	NIL	NIL	NIL	2	2
V_3	NIL	3	NIL	NIL	NIL
V_4	4	1	4	NIL	1
V_5	NIL	NIL	NIL	5	NIL

$$\text{Conto} \quad d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0 \ , \\ \min \left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \right) & \text{if } k \geq 1 \ . \end{cases} \quad \pi_{ij}^{(k)} = \begin{cases} \pi_{ij}^{(k-1)} & \text{if } d_{ij}^{(k-1)} \leq d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \ , \\ \pi_{kj}^{(k-1)} & \text{if } d_{ij}^{(k-1)} > d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \ . \end{cases}$$

D ⁽¹⁾	V_1	V_2	V_3	V_4	V_5
V_1	0	3	8	8	-4
V_2	8	0	∞	1	7
	_	100			
V_3	∞	4	0	∞	∞
V ₃ V ₄	∞ 2	5	-5	∞ 0	∞ -2

$\pi^{(1)}$	V_1	V_2	V_3	V_4	V ₅
V_1	NIL	1	1	NIL	1
V_2	NIL	NIL	NIL	2	2
V_3	NIL	3	NIL	NIL	NIL
V_4	4	1	4	NIL	1
V_5	NIL	NIL	NIL	5	NIL

D ⁽²⁾	V_1	V_2	V_3	V_4	V ₅
V_1	0	3	8	4	-4
V_2	8	0	8	1	7
V_3	8	4	0	5	11
V_4	2	5	-5	0	-2
V_5	8	8	8	6	0

$\pi^{(2)}$	V_1	V_2	V_3	V_4	V_5
V_1	NIL	1	1	2	1
V_2	NIL	NIL	NIL	2	2
V_3	NIL	3	NIL	2	2
V_4	4	1	4	NIL	1
V_5	NIL	NIL	NIL	5	NIL

$$\text{Conto.} \quad d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0 \ , \\ \min \left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \right) & \text{if } k \geq 1 \ . \end{cases} \quad \pi_{ij}^{(k)} = \begin{cases} \pi_{ij}^{(k-1)} & \text{if } d_{ij}^{(k-1)} \leq d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \ , \\ \pi_{kj}^{(k-1)} & \text{if } d_{ij}^{(k-1)} > d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \ . \end{cases}$$

D ⁽²⁾	V_1	V_2	V_3	V_4	V ₅
V_1	0	3	8	4	-4
V_2	8	0	8	1	7
V_3	8	4	0	5	11
V_4	2	5	-5	0	-2
V_5	8	8	∞	6	0

$\pi^{(2)}$	V_1	V_2	V_3	V_4	V ₅
V_1	NIL	1	1	2	1
V_2	NIL	NIL	NIL	2	2
V_3	NIL	3	NIL	2	2
V_4	4	1	4	NIL	1
V_5	NIL	NIL	NIL	5	NIL

D (3)	V_1	V_2	V_3	V_4	V ₅
V_1	0	3	8	4	-4
V_2	8	0	8	1	7
V_3	8	4	0	5	11
V_4	2	-1	-5	0	-2
V_5	8	8	8	6	0

$\pi^{(3)}$	V_1	V_2	V_3	V_4	V ₅
V_1	NIL	1	1	2	1
V_2	NIL	NIL	NIL	2	2
V_3	NIL	3	NIL	2	2
V_4	4	3	4	NIL	1
V_5	NIL	NIL	NIL	5	NIL

 $\text{Conto} \quad d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0 \ , \\ \min \left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \right) & \text{if } k \geq 1 \ . \end{cases} \quad \pi_{ij}^{(k)} = \begin{cases} \pi_{ij}^{(k-1)} & \text{if } d_{ij}^{(k-1)} \leq d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \ , \\ \pi_{kj}^{(k-1)} & \text{if } d_{ij}^{(k-1)} > d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \ . \end{cases}$

D(3)	V_1	V_2	V_3	V_4	V ₅
V_1	0	3	8	4	-4
V_2	8	0	8	1	7
V_3	8	4	0	5	11
V_4	2	-1	-5	0	-2
V_5	8	8	8	6	0

$\pi^{(3)}$	V_1	V_2	V_3	V_4	V ₅
V_1	NIL	1	1	2	1
V_2	NIL	NIL	NIL	2	2
V_3	NIL	3	NIL	2	2
V_4	4	3	4	NIL	1
V_5	NIL	NIL	NIL	5	NIL

D ⁽⁴⁾	V_1	V_2	V_3	V_4	V ₅
V_1	0	3	-1	4	-4
V_2	3	0	-4	1	-1
V_3	7	4	0	5	3
V_4	2	-1	-5	0	-2
V_5	8	5	1	6	0

$\pi^{(4)}$	V_1	V_2	V_3	V_4	V_5
V_1	NIL	1	4	2	1
V_2	4	NIL	4	2	1
V_3	4	3	NIL	2	1
V_4	4	3	4	NIL	1
V_5	4	3	4	5	NIL

 $\text{Conto} \dots d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0 \ , \\ \min \left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \right) & \text{if } k \geq 1 \ . \end{cases} \\ \pi_{ij}^{(k)} = \begin{cases} \pi_{ij}^{(k-1)} & \text{if } d_{ij}^{(k-1)} \leq d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \ , \\ \pi_{kj}^{(k-1)} & \text{if } d_{ij}^{(k-1)} > d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \ . \end{cases}$

D ⁽⁴⁾	V_1	V_2	V_3	V_4	V_5
V_1	0	3	-1	4	-4
V_2	3	0	-4	1	-1
V_3	7	4	0	5	3
V_4	2	-1	-5	0	-2
V_5	8	5	1	6	0

$\pi^{(4)}$	V_1	V_2	V_3	V_4	V_5
V_1	NIL	1	4	2	1
V_2	4	NIL	4	2	1
V_3	4	3	NIL	2	1
V_4	4	3	4	NIL	1
V_5	4	3	4	5	NIL

D (5)	V_1	V_2	V_3	V_4	V_5
V_1	0	1	-3	2	-4
V_2	3	0	-4	1	-1
V_3	7	4	0	5	3
V_4	2	-1	-5	0	-2
V_5	8	5	1	6	0

$\pi^{(5)}$	V_1	V_2	V_3	V_4	V_5
V_1	NIL	3	4	5	1
V_2	4	NIL	4	2	1
V_3	4	3	NIL	2	1
V_4	4	3	4	NIL	1
V_5	4	3	4	5	NIL

Contd...

D (5)	V_1	V_2	V_3	V_4	V_5
V_1	0	1	-3	2	-4
V_2	3	0	-4	1	-1
V_3	7	4	0	5	3
V_4	2	-1	-5	0	-2
V_5	8	5	1	6	0

$\pi^{(5)}$	V_1	V_2	V_3	V_4	V_5
V_1	NIL	3	4	5	1
V_2	4	NIL	4	2	1
V_3	4	3	NIL	2	1
V_4	4	3	4	NIL	1
V_5	4	3	4	5	NIL

Implementation

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0 \ , \\ \min \left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \right) & \text{if } k \geq 1 \ . \end{cases}$$

$$\pi_{ij}^{(0)} = \begin{cases} \text{NIL} & \text{if } i = j \text{ or } w_{ij} = \infty, \\ i & \text{if } i \neq j \text{ and } w_{ij} < \infty. \end{cases}$$

$$\pi_{ij}^{(k)} = \begin{cases} \pi_{ij}^{(k-1)} & \text{if } d_{ij}^{(k-1)} \leq d_{ik}^{(k-1)} + d_{kj}^{(k-1)} , \\ \pi_{kj}^{(k-1)} & \text{if } d_{ij}^{(k-1)} > d_{ik}^{(k-1)} + d_{kj}^{(k-1)} . \end{cases}$$

```
n= W.rows
D^0 = W
\pi^0 is a matrix with nil in every entry
for i=1 to n do
    for j = 1 to n do
         if i \neq j and D_{i,j}^0 < \infty then
             \pi_{i,j}^{0} = i
         end if
    end for
end for
for k=1 to n do
     let D^k be a new n \times n matrix.
     let \pi^k be a new n \times n matrix
     for i=1 to n do
         for j = 1 to n do
              if d_{ij}^{k-1} \leq d_{i,k}^{k-1} + d_{k,j}^{k-1} then
                  d_{i,j}^k = d_{i,j}^{k-1}
                  \pi_{i,j}^k = \pi_{i,j}^{k-1}
              else
                  d_{i,j}^{k} = d_{i,k}^{k-1} + d_{k,j}^{k-1}\pi_{i,j}^{k} = \pi_{k,j}^{k-1}
              end if
         end for
     end for
end for
```

Print-All-Pair-Shortest-Path

```
PRINT-ALL-PAIRS-SHORTEST-PATH (\Pi, i, j)

1 if i == j

2 print i

3 elseif \pi_{ij} == \text{NIL}

4 print "no path from" i "to" j "exists"

5 else PRINT-ALL-PAIRS-SHORTEST-PATH (\Pi, i, \pi_{ij})

6 print j
```

Example:

- ? 1->2
- ? 1->3
- ? 1->4
- ? 1->5

PRINT-ALL-PAIRS-SHORTEST-PATH (Π, i, j)

```
1 if i == j

2 print i

3 elseif \pi_{ij} == \text{NIL}

4 print "no path from" i "to" j "exists"

5 else PRINT-ALL-PAIRS-SHORTEST-PATH (\Pi, i, \pi_{ij})

6 print j
```

Example:

?
$$1 - > 2$$
 : $1, 5, 4, 3, 2$: $(-4) + (6) + (-5) + (4) = 1$

? 1->3 : 1, 5, 4, 3 :
$$(-4)+(6)+(-5) = -3$$

? 1->4 : 1, 5, 4 :
$$(-4)+(6)=2$$

?
$$1->5$$
 : $1,5$: $(-4)=-4$

D (5)	V_1	V_2	V_3	V_4	V_5
V_1	0	1	-3	2	-4
V_2	3	0	-4	1	-1
V_3	7	4	0	5	3
V_4	2	-1	-5	0	-2
V_5	8	5	1	6	0

$\pi^{(5)}$	V_1	V_2	V_3	V_4	V_5
V_1	NIL	3	4	5	1
V_2	4	NIL	4	2	1
V_3	4	3	NIL	2	1
V_4	4	3	4	NIL	1
V_5	4	3	4	5	NIL

Thank You