

 Document No.
 Date.
 Rev.

 IV-BG-N-E710A-01
 Sep. 09, 2020
 C3-1

Description

Lithium Ion Battery EV 115342102 (71.0Ah)

Technical Specification

Lithium Ion Polymer Rechargeable Battery

Model: CE0710C001A (N60 C3 SPL)

Customer: BESK

Department	Name	Date	Signature
Cell Development	D.Y. Kim	2020.09.09	沙麦叶
Quality Assurance	CON.		

SK innovation Co., Ltd

Battery Division

SPECIFICATION OF PRODUCT CONFIDENTIAL No. Date. Rev. Document No. IV-BG-N-E710A-01 Sep. 09, 2020 C3-1

Description Lithium Ion Battery EV 115342102 (71.0Ah)

Revision History

Revision No.	Date of revision	Description	Author
A0	2018-09-04	First release E710A specification (Draft)	S.H. LEE
A1	2018-10-04	A SPL Peak power and step charge updated	S.H. Lee
A1-1	2018-10-04	A SPL specified update	S.H. Lee
C0	2019-06-03	C SPL specified update	S.H. Lee
C1	2019-09-26	C SPL Nominal specification, Characteristics update	S.W. Park
C1-1	2019-10-16	C SPL OCV update	S.W. Park
C1-2	2019-10-25	Overcharge fault threshold(continuous charge) update	S.W. Park
C1-3	2019-11-22	Maximum Discharge Current Minimum Continuous Discharge Voltage Nominal Weight update	S.W. Park
C1-4	2020-01-22	Minimum Continuous Discharge Voltage update	S.W. Park
C3	2020-03-05	C3MP SPL specified update	S.W. Park
C3-1	2020-09-09	Step charge comment update	S.W. Park

Lithium Ion Battery EV 115342102 (71.0Ah)

Document No. IV-BG-N-E710A-01

Description

Sep. 09, 2020

C3-1

Contents

- 1. Scope
- 2. Nominal specification
- 3. Dimension and Appearance
 - 3.1 Dimension
 - 3.2 Appearance
- 4. Standard Test Conditions
 - 4.1 **Environmental Conditions**
 - 4.2 Equipment
- 5. Characteristics
 - 5.1 Standard Capacity
 - 5.2 Rated Discharge Capability
 - 5.3 Temperature Discharge Characteristic
 - 5.4 Charge Characteristic
 - 5.5 Discharge Characteristic
 - 5.6 Pulse Power Characteristic
 - 5.7 Storage Characteristic
 - 5.8 Self-discharge Characteristic
 - 5.9 . SOC-OCV Table
- 6. Handling Precaution

SPECIFICATION OF P	PRODUCT CONFIDENT	TIAI
--------------------	-------------------	------

Document No.	Date.	Rev.
IV-BG-N-E710A-01	Sep. 09, 2020	C3-1
Description	•	
Lithium Ion Battery	FV 115342102 (71	OAh)

1. Scope

This product specification has been prepared to specify the rechargeable lithium-ion cell characters to be supplied to the customer by SK innovation.

2. Nominal Specifications

	ltem	Description	Note O
Model Name		CE0710C001A	N60 E710A
Nominal Capacity		71.0 Ah	1/3C (Min.)
	_	68.9 Ah	1C (Min.)
Nominal Weight		900 g	± 15g
Average Voltage		3.64 V	1/3C
7.vorage vertage	- \\\\	3.54 V	1C
Usable SOC rang	ge in system	3 ~ 95 %	DOD92%
Operating	DOD100%	4.2~2.5 V	25℃
Voltage range	Usable SOC	4.13~3.1 V	25℃, DOD92%
	/	2.0 V	<0℃, Peak
Minimum Dischar	rae Voltage	2,3 V	<0℃, Continuous
Willing Dischar	ge voltage	2.3 V	≥ 0°C, Peak
		2.5 V	≥ 0 °C, Continuous
Maximum Discharge Current		400 A	Peak 10 seconds
		300 A	Peak 15 seconds
		107 A	Continuous
Maximum Charge	e Voltage	4.2 V	15sec / Continuous
Maximum Charge	e Current	225 A	Peak 15 seconds
		142 A	Continuous
Energy		258 Wh	1/3C (Min.)
		244 Wh	1C (Min.)
Specific Energy		282 Wh/kg	1/3C (Min.)
1	<u> </u>	267 Wh/kg	1C (Min.)
Energy Density		644 Wh/l	1/3C (Min.)
0,000		608 Wh/Ł	1C (Min.)
25℃ Cycle Life	400 cycle	DOD100% / Capacity ≥ 80%	Cha. 1C CV/Dis. 1C CC
	1200 cycle	DOD92% / Capacity ≥ 80%	Cha. 1C CV/Dis. 1C CC
45℃ Cycle Life	400 cycle	DOD100% / Capacity ≥ 80%	Cha. 1C CV/Dis. 1C CC
	900 cycle	DOD92% / Capacity ≥ 80%	Cha. 1C CV/Dis. 1C CC
Operating	Charge	-20 ~ 60 ℃	-
Temperature	Discharge	-30 ~ 60 ℃	-

OF EON TOATION OF TROBUST CONTIDENTIAL			
Document No.	Date.	Rev.	
IV-BG-N-E710A-01	Sep. 09, 2020	C3-1	
Description	<u> </u>		

Lithium Ion Battery EV 115342102 (71.0Ah)

Storage Temperat	ure	-40 ~ 60 ℃	-
Standard	Charge	1/3C, <u>4.2V/0.05C</u> <u>Cut-off</u> 1/3C, 2.5V Cut-off	Standard at 25 ± 2 ℃
Internal resistance (1kHz)		0.7 ± 0.15	SOC 50%, 25℃

3. Dimension and Appearance

3.1 Dimension

Width : 342 ± 1 mm (without positive/negative terminals)

Height : $102 \pm 1 \text{ mm}$ Thickness : $11.5 \pm 0.2 \text{ mm}$

Weight: avg. 900 g

3.2 Appearance

SKI shall agree visual standard with BESK.

Pouch surface defects can be categorized such as dent, scratch, and stain.

O. LON IOATION OF TROBOOT CONTIDENTIAL			
Document No.	Date.	Rev.	
IV-BG-N-E710A-01	Sep. 09, 2020	C3-1	
Description			
Lithium Ion Battery	EV 115342102 (71	.0Ah)	

4. Standard Test Conditions

4.1 Environmental Conditions

Unless otherwise specified in a device-specific test plan, the ambient temperature for all tests should be controlled at a default nominal temperature of $25 \pm 2^{\circ}$ C and humidity $60 \pm 20\%$.

4.2 Equipment

- 4.2.1 All testing is to be performed on test channels with current and voltage capabilities adequate for the specific test procedures to be performed.
- 4.2.2 Except where specifically notes otherwise, all tests will be performed within a temperature chamber capable of controlling the chamber temperature to within ± 3°C.
- 4.2.3 Measurement Rates and Accuracy Measured data shall be acquired at rates and with accuracies adequate to ensure that the usefulness of the data is not compromised. In the absence of more specific requirements by the test sponsor, the measurement accuracies in Table are acceptable.

Table, Measurement Accuracies

Parameter	Accuracy	
Temperature	± 2℃ ± 5%. of reading	
Voltage (volts)		
Current (amps)	± 1%. of reading	
Resistance (Ω)		

C. ZCII IOMITON OF THE BENTIAL			
Document No.	Date.	Rev.	
IV-BG-N-E710A-01	Sep. 09, 2020	C3-1	
Description	-		

Lithium Ion Battery EV 115342102 (71.0Ah)

5. Characteristics

5.1 Standard Capacity

Cells shall be fully charged and discharge with C/3 current. 10 minutes rest shall be applied between charge and discharge step.

Discharge capacity

Min. 71.0Ah

5.2 Rated Discharge Capability

Cells shall be fully charged with standard charge and discharged with rated current shows below.

Current	Discharge rate		
Current	C/3 (=23.67A)	1.0C(=71.0A)	
Rate vs C/3 (Capacity, BOL)	≥100%	≥95%	
Rate vs C/3 (Energy, BOL)	≥100%	≥94%	

5.3 Temperature Discharge Characteristic

Cells shall be fully charged with standard charge and discharged at various temperatures shows below.

Charge	Discharge temperature		
Temp.(Std)	-15 ± 2℃	25 ± 2 ℃	45 ± 2 ℃
25 ± 2℃, C/3 (Capacity, BOL)	≥80%	≥100%	≥100%
25 ± 2°C, C/3 (Energy, BOL)	≥75%	≥100%	≥100%

5.4 Charge Characteristic

5.4.1 Charge Operating Voltage

Item	Description	Condition	Note	
Maximum continuous charge current	142 A	-	-	
Maximum pulse charge current	225 A	15s	-	
Maximum continuous charge Cut-off voltage	4.13 V	-	Filter time ≤5s	
Overcharge fault threshold	4.0.14			
(continuous charge)	4.2 V	-	Filter time ≤5s	
Overcharge voltage recovery threshold	4.14 V	Discharge allowed	Filter time ≤5s	
Maximum pulse charge Cut-off voltage	4.2 V	-	Filter time ≤5s	
Overcharge fault threshold (pulse charge)	4.25 V	-	Filter time ≤5s	

| Document No. | Date. | Rev. | IV-BG-N-E710A-01 | Sep. 09, 2020 | C3-1 | Description |

Lithium Ion Battery EV 115342102 (71.0Ah)

5.4.2 Standard Charge

Item	Description	Condition
Current	23.67 A	25℃
Voltage	4.13 V	-
Chare mode	CC-CV	4.13 V, 3.55 A cut-off
Temperature	25 ±2 ℃	Cell temperature

Cells can be charged using on board charger. Maximum charge current and SOC using on board charger refers below.

Charge procedure will be provided for each temperature later.

5.4.3 Step Charge

Cells can be charged by step charge method. Maximum charge current and voltage at various temperatures refers table below and linear interpolation applied for unspecified temperature. 充电倍率

Step#	Cutoff V	-20 °C	-15 °C	-10 °C	-5 °C	0 °C	5 °C	10 °C	15 °C	25 °C	45 °C
1	3.87	0.16	0.22	0.30	0.42	0.58	0.79	1.07	1.37	2.00	2.00
2	3.88	0.15	0.21	0.29	0.40	0.55	0.75	1.02	1.30	1.90	1.90
3	3.89	0.14	0.20	0.27	0.38	0.52	0.71	0.96	1.23	1.80	1.80
4	3.91	0.14	0.19	0.26	0.36	0.49	0.67	0.91	1.16	1.70	1.70
5	3.92	0.13	0.18	0.24	0.33	0.46	0.63	0.86	1.09	1.60	1.60
6	3.95	0.12	0.17	0.23	0.31	0.43	0.59	0.80	1.03	1.50	1.50
7	3.97	0.11	0.15	0.21	0.29	0.40	0.55	0.75	0.96	1.40	1.40
8	4.01	0.10	0.14	0.20	0.27	0.37	0.52	0.70	0.89	1.30	1.30
9	4.05	0.09	0.13	0.18	0.24	0.34	0.46	0.63	0.80	1.17	1.17
10	4.08	0.09	0.12	0.17	0.23	0.32	0.44	0.59	0.75	1.10	1.10
11	4.13	0.08	0.11	0.15	0.21	0.29	0.40	0.54	0.68	1.00	1.00
12	1	0.07	0.10	0.14	0.19	0.26	0.36	0.48	0.62	0.90	0.90
13	1	0.06	0.09	0.12	0.17	0.23	0.32	0.43	0.55	0.80	0.80
14	1	0.06	0.08	0.11	0.15	0.20	0.28	0.37	0.48	0.70	0.70
15	1	0.05	0.07	0.09	0.13	0.17	0.24	0.32	0.41	0.60	0.60
16	1 /		0.06	0.08	0.10	0.14	0.20	0.27	0.34	0.50	0.50
17			0.05	0.06	0.08	0.12	0.16	0.21	0.27	0.40	0.40
18	$\times \nu$			0.05	0.06	0.09	0.12	0.16	0.21	0.30	0.30
19	///1				0.05	0.06	0.08	0.11	0.14	0.20	0.20
20	1					0.05	0.05	0.05	0.07	0.10	0.10
21	J			/					0.05	0.05	0.05

5.4.4 Rate Charge Capacity & Energy

Cells shall be fully discharged with standard discharge and charged with rated current shows below.

Document No.	Date.	Rev.
IV-BG-N-E710A-01	Sep. 09, 2020	C3-1
Description	-	
Lithium Ion Battery	EV 115342102 (71.	OAh)

Current	Charge rate				
Current	C/3 (=23.67A)	1.0C(=71.0A)			
CC vs CV ratio (Capacity, BOL)	≥90 %	≥80 %			
CC vs CV ratio (Energy, BOL)	≥90 %	≥73 %			

71/3=23.66666

1倍率为71.0A

5.5 Discharge Characteristic

5.5.1 Discharge Operating Voltage

Item	Description	Condition	Note	
Standard discharge current	1/3C	25℃	23.67A	
Maximum continuous discharge current	107A	\ - /	Ø	
Maximum pulse discharge	400A	10s	-	
current	300A	15s	_	
Current	300A	30s	_	
Minimum continuous discharge voltage	[-30°C~-5°C] 2.6V [0°C~5°C] 2.8V [10°C~15°C] 3.0V [25°C~55°C] 3.1V	Unspecified temperature, linear interpolation	Filter time ≤5s	
Minimum pulse discharge voltage	[-30°C~-5°C] 2.6V [0°C~5°C] 2.8V [10°C~15°C] 3.0V [25°C~55°C] 3.1V	Unspecified temperature, linear interpolation	Filter time ≤5s	
Cell over-discharge failure voltage	[-30 ℃~0 ℃] 2.0V [0 ℃~60 ℃] 2.3V		Filter time ≤5s	

5.6 Pulse Power Characteristic

5.6.1 30sec Peak Discharge Power

30sec Peak discharge power measured by HPPC method is shown on the table below. 300A for I_{dis_max} will be used unless cell voltage meets cutoff condition within 30sec of discharge or charge at that point and linear interpolation applied for unspecified temperature. ($I_{chg} = 0.75*I_{dis}$)

(Unit: W)

5%×Qt 10%×Qt 20%×Qt

50%×Qt

55

187

213

233

SPECIFICATION OF PRODUCT CONFIDENTIAL

1388

1631

Document No.	Date.	Rev.
IV-BG-N-E710A-01	Sep. 09, 2020	C3-1
Description		

Lithium Ion Battery EV 115342102 (71.0Ah)

		Table 1, 30S	Discharge Pu	se Power Ma	rtrix (cell un	it: W)				
20°C	-15°C	-10℃	-7°C	-5℃	0°C	5℃	10℃	15℃	25 °C	45 ℃
2.6	2.6	2.6	2.6	2.6	2.8	2.8	3.0	3.0	3.1	3.1
19	23	32	39	48	51	71	78	106	163	396
33	45	68	85	108	118	164	190	242	343	647
122	176	237	292	333	388	519	514	626	742	1058
213	288	373	452	498	568	749	726	855	989	1383
266	357	459	546	602	688	891	862	1005	1164	1594
316	418	533	628	692	786	999	983	1129	1330	1860

974

1224 1303

1381

1423

1467

5.6.2 Peak charge power

380

492 547 702 764

812

559

663

815 874

915

15sec Peak charge power measured by HPPC method is shown on the table below. 225A for I_chg_max will be used unless cell voltage meets cutoff condition within 15sec of discharge or charge at that point and linear interpolation applied for unspecified temperature.

942

 $(I_{chg} = 0.75*I_{dis})$

(Unit: W)

2941

		Table	2 1. 155 Charg	e Pulse Pow	er matrix (B	rake energy r	ecovery) (Cell unit: W	_		
SOC	-20℃	-15℃	-10℃	-7℃	-5℃	0°C	5℃	10℃	15℃	25℃	45℃
Vma x/V	4.13	4.13	4.13	4.13	4.13	4.13	4.13	4.13	4.13	4.13	4.13
0	233	338	456	581	634	868	1147	1279	1431	1811	2451
10%×Qt	169	246	360	483	538	762	1048	1239	1444	1953	2904
20%×Qt	152	231	338	439	494	704	975	1170	1376	1879	2673
30%×Qt	152	227	329	421	479	683	936	1152	1340	1830	2563
40%×Qt	139	208	294	387	434	616	864	1059	1256	1713	2401
50%×Qt	114	175	248	324	355	511	721	874	1048	1421	1948
60%×Qt	77	116	170	246	246	362	519	640	772	1064	1460
70%×Qt	46	73	111	189	168	255	375	468	568	792	1098
80%×Qt	25	44	73	87	100	154	226	281	343	481	669
90%×Qt	9	15	24	36	38	58	86	108	133	189	263
95%×Qt	6	9	15	20	23	36	51	65	80	113	155

5.7 Storage Characteristic

5.7.1 Storage

Cells shall be stored during 4 weeks at room temperature after standard charge.

Recovery capacity

≥ 80% of nominal capacity

5.8 Self-discharge Characteristic

Item	Description	Condition		
Self-discharge	Capacity retention ≥95% Capacity recovery ≥97%	25℃ / SOC100% / 28days		

5.9 SOC-OCV Table

Document No.	Date.	Rev.
IV-BG-N-E710A-01	Sep. 09, 2020	C3-1
Description	-	
Lithium Ion Battery	EV/ 44E242402 /74	046)

Item	Open circuit Voltage at 25°C								
SOC	100	100 95 90 85 80 75 70							
Voltage	4.175	4.097	4.075	4.038	3.986	3.938	3.900		
SOC	65	60	55	50	45	40	35		
Voltage	3.861	3.817	3.767	3.704	3.667	3.639	3.615		
SOC	30	25	20	15	10	5	0		
Voltage	3.591	3.563	3.524	3.471	3.409	3.367	3.163		

Document No. IV-BG-N-E710A-01

Sep. 09, 2020

C3-1

Description

Lithium Ion Battery EV 115342102 (71.0Ah)

6. Handling Precaution

Proper Use and Handling of Li-Ion **Polymer Battery**

This User's Reference explains how to properly use the Li-ion Polymer Battery (hereafter called as "battery") supplied by SK Innovation Co., Ltd.(hereafter called "SKI") to ensure its safe use and maximize its efficiency. The battery should not be used for any purposes other than its originally intended uses. If you encounter any problems from its use, please do not hesitate to contact SKI for further information and consultation. Please make sure to read this Reference carefully before using the battery.

1. Reference Content:

This User's Reference describes the requirements and cautions accompanying the use of SKI-supplied Li-ion Polymer Battery for both the device makers to ensure proper assembly and the end-customers to ensure its safe use.

2. Battery specification

- Model: EV 115342102
- Nominal Capacity: 71.0 Ah
- Capacity on shipping : Less than SOC 30% Voltage on shipping : 3.55 ~ 3.65 V (3)

3. Use Environments and Conditions

Do not expose the battery to any liquids. It can cause battery swelling, heat, explosion, or fire.

Do not leave the battery next to any heat sources like a stove. It will cause swelling, heat, explosion, or fire.

Do not leave the battery in any place where the temperature is expected to rise, such as exposing the battery to prolonged direct sunlight. It can cause swelling, heat, explosion, fire or it will shorten battery life

The temperature range for charging the battery is -20 ~ 60°C. Charging it under any temperatures outside this range may cause swelling, heat, explosion, and fire.

The operating temperature range is -30 ~ 60 °C. Do not operate outside this temperature range.

4. Handling Cautions for Moving

Handle carefully when moving the battery to avoid any If the battery is damaged by moving equipments during its transportation, it can cause swelling, heat, explosion, and fire. If you see any damages to the packing box, stop and isolate the damaged box, check to make sure there is no actual damage to the battery itself, and then resume transporting the item only after repackaging it.

Storage Cautions

Please store the battery under the following conditions and environments (storing it in an improper environment or condition may lower its performance and cause swelling, heat, explosion, and fire.)

- Please store indoor without direct exposure to
- The proper storage environment is as below: Temperature: 23 ± 5 °C, Humidity: 60 + 10%, - 20%
- Cautions for long-term storage (3) If you intend to store the battery for more than 6 months, please store in its original SOC condition as you found it when it was first shipped by SKI. Storing the battery for an extended period of time in a condition other than this original shipping condition of SKI may lower the battery performance.

6. Handling/Use Cautions

For information on how to charge the battery, consult the handling manual for the charger. Please use the designated chargers only for Li-ion batteries

Your battery has its polarity (+/-). When charging or installing, do not use excess force, and make sure to place the battery in the proper position for its polarity. Placing it with its polarity reversed will undermine its charging process and inflict internal damages, and it will cause leakage, swelling, heat, explosion, or fire.

After purchasing the battery, if you encounter any rust, strange odor or unusual heat coming from the battery, stop your use and contact SKI (Contact info is provided at the end of this

The battery is partially charged before shipping, allowing you to use it immediately to test your Please be careful not to touch battery terminals with hands

Please keep the battery out of reach that has no experience of battery. When the battery is to be used by them, please make sure to explain to them clearly how to use it properly as outlined in this Reference. Once they start to use it, also make sure to check and verify that they are indeed using the battery properly.

When using the battery, please make sure to heed to the following warnings.

Do not throw into fire or heat it. This will not only melt and damage its enclosure but it can also cause swelling, heat, explosion, or fire. Do not use with its polarity (+/-) reversed. Reverse charging will not only lead to abnormal chemical reaction internally, but it may undermine the proper flow of its electrical current, causing the battery to swell, heat, explode, or catch on fire. Do not let the terminal ends (+/-) of the battery come into contact with any metals.

Do not carry or store it with any metal objects such as jewelry or hair pins. It will short-circuit the battery, leading it to emit high voltage current and causing it to swell, heat, explode, or catch on fire. Do not apply blunt force or throw it. It will damage and cause the battery to swell, heat, explode, or catch on fire.

Do not nail, hammer, or step on it. It will

C3-1

Document No. IV-BG-N-E710A-01 Sep. 09, 2020

Description

Lithium Ion Battery EV 115342102 (71.0Ah)

undermine the physical integrity of the battery, and may cause it to swell, heat, explode, or catch on fire.

Do not heat or solder the battery directly. Insulation will melt and be damaged by heat, causing the battery to swell, heat, explode, or catch on fire.

Do not use with disposable batteries or other batteries with different capacity, type, or brand. The resulting emission of excess voltage and overchaging may trigger abnormal chemical reaction inside the battery, causing it to swell, heat, explode, or catch on fire.

Do not disassemble or modify the battery.

If not used for an extended period of time, your battery may not be charged fully. If you intend not to use the battery for a long period, charge it fully once every six months.

When the terminal ends of the battery get dirty, clean them with a dry cloth and then use. If the connection with the device is poor, electricity may be interrupted or the battery may not be charged.

8. How to Handle Troubles

While using or storing the battery, if you detect any strange odor, heat, discoloring, or physical alteration, or any aspect that appears different from your usual use, remove the battery from your device or charger and stop using it. Continuing to use under such conditions may cause the battery to heat, explode, or catch on fire. In addition, if charging is not completed even after sufficient time has gone by, stop charging.

If you detect any leakage or strange odor, immediately move the battery away from any source of open fire. The spilled battery liquid may ignite and cause the battery to explode or

catch on fire.

If the battery leaks and your eyes come into contact with its liquid, do not rub but rinse thoroughly with clean water, and seek doctor's help immediately. You eyes may get damaged if you do not take these precautions.

If the battery leaks and its liquid come into contact with your skin or clothes, immediately wash with clean water, as the failure to do so can damage your skin

In case of ingestion, Dilute by giving plenty of water and get immediate medical attention. Assure that the victim does not aspirate vomited material by use of positional drainage. Assure that mucus does not obstruct the airway.

In case of inhalation, Move to fresh air and ventilate the contaminated area. Give oxygen or artificial respiration if needed.

In case of electrolytes being spilled out of batteries onto the floor, Wipe up and wash with large amounts of water.

9. Cautions for Disposing Depleted Batteries When disposing depleted or damaged batteries, please make sure to tape over their terminal ends (+/-) or dispose them by placing each of them separately in a plastic bag.

Do not burn when disposing. It may explode if (2) placed into fire.

Use a proper charger with specified voltage and current. The recommended voltage accuracy of the charger is 4.20V ± 0.3mV / Cell. Standard charging time takes about 4.0 hours. (Standard Charging : CC/CV 1/3 CA, 4.2V, 0.05 CA Cut-off) For over-discharged cells or batteries, you need to

begin charging them by applying micro voltage. Rapid charging may lower their performance.

Cautions for Discharging Avoid over-discharging the battery below the standard voltage (2.5V). Over-discharging may lower the performance of battery or cause swelling.

12 SKI Contact Information 1 Marketing Team, Battery Biz Unit Tel: +86-186-1018-2955 Responsible Person: Haifeng Li

Quality Assurance Team, Battery Biz Unit Tel: +82-41-950-8108 Responsible Person: Sangmok Lee

