Untitled

```
ff_final <- readRDS("C:/Users/mexic/Documents/R/Fast-Fashion-Welfare/data/tidy/ff_final.RData")
ff final <- ff final %>%
  select(year, trade_value_usd, total_trade, ff, country, gdp_c)
names(ff_final) <- c("Year", "Apparel_Exports", "Total_Exports", "Apparel_Export_Share", "Country", "GD.</pre>
ff_plm <- pdata.frame(ff_final, index = c("Country", "Year"),</pre>
                       drop.index = FALSE)
ff_bal <- make.pbalanced(ff_plm)
ff_bal <- ff_bal %>%
  mutate(Apparel_Exports = Apparel_Exports/1000,
         Total Exports = Total Exports/1000)
linear_model <- lm(log(GDP_C) ~ log(Apparel_Exports) + Country, data = ff_final)</pre>
linear_model <- plm(log(GDP_C) ~</pre>
                       log(Apparel_Exports) + Country, data = ff_bal,
                    index = c("Country", "Year"), model = "pooling")
fixed_model <- plm(log(GDP_C) ~</pre>
                      log(Apparel_Exports), data = ff_bal,
                    index = c("Country", "Year"), model = "within")
tb12 <- ff_bal %>%
  group_by(Year) %>%
  summarize('Average GDP_C, thousands 2010 USD' = mean(GDP_C, na.rm = TRUE),
            'Average Apparel Exports, thousands 2010 USD' = mean(Apparel_Exports, na.rm = TRUE),
            'Average Total Exports, thousands 2010 USD' = mean(Total_Exports, na.rm = TRUE),
            'Average % Apparel Export Share' = mean(Apparel_Export_Share, na.rm = TRUE))
sum_tbl2 <- ff_bal %>%
  group_by(Year) %>%
  summarize('Average GDP_C, 2010 USD' = mean(GDP_C, na.rm = TRUE),
            'Average Apparel Exports, thousands 2010 USD' = mean(Apparel_Exports, na.rm = TRUE),
            'Average Total Exports, thousands 2010 USD' = mean(Total Exports, na.rm = TRUE),
            'Average % Apparel Export Share' = mean(Apparel_Export_Share, na.rm = TRUE))
xt <- xtable(print(sum_tbl2), caption = c("test"))</pre>
## # A tibble: 25 x 5
      Year `Average GDP_C,~ `Average Appare~ `Average Total ~
##
##
      <fct>
                       <dbl>
                                         <dbl>
                                                           <dbl>
## 1 1990
                      16386.
                                       359455.
                                                      33815767.
## 2 1991
                      16464.
                                       364719.
                                                      41789262.
## 3 1992
                      15304.
                                       513231.
                                                      43197753.
## 4 1993
                      15171.
                                       450871.
                                                      39622588.
## 5 1994
                      14205.
                                       477334.
                                                      41081877.
## 6 1995
                      13174.
                                       475885.
                                                      42620251.
```

```
##
    7 1996
                       12296.
                                       451496.
                                                       39160926.
    8 1997
                       11964.
                                       518448.
                                                       37451131.
##
                                                       36984778.
    9 1998
                       12650.
                                       489562.
## 10 1999
                       13791.
                                       489541.
                                                       38005873.
## # ... with 15 more rows, and 1 more variable: `Average % Apparel Export
       Share` <dbl>
print(xt, caption.placement = "top", type = "latex", comment = FALSE, scalebox = 0.6)
```

			Table 1: 1	test	
	Year	Average GDP_C, 2010 USD	Average Apparel Exports, thousands 2010 USD	Average Total Exports, thousands 2010 USD	Average % Apparel Export Share
1	1990	16385.99	359455.13	33815767.14	2.69
2	1991	16464.03	364719.14	41789261.90	2.41
3	1992	15303.85	513230.97	43197753.41	2.85
4	1993	15171.25	450871.45	39622588.25	3.19
5	1994	14205.39	477333.87	41081876.62	2.34
6	1995	13174.18	475885.38	42620250.61	2.02
7	1996	12295.71	451496.48	39160925.59	2.29
8	1997	11963.97	518447.63	37451130.77	2.33
9	1998	12650.04	489562.19	36984778.18	2.28
10	1999	13790.60	489541.30	38005872.74	2.33
11	2000	14032.27	470279.91	38990083.92	3.04
12	2001	14438.35	478943.11	38288447.90	3.26
13	2002	14752.35	527867.88	40995511.84	3.20
14	2003	14705.33	630005.64	47527091.41	3.35
15	2004	15214.11	732824.31	57838956.62	3.50
16	2005	15236.62	816933.09	66388500.98	3.23
17	2006	16111.50	965674.27	76637404.30	2.94
18	2007	16530.06	1165212.78	87811895.58	2.97
19	2008	16723.79	1242917.89	103965026.14	2.84
20	2009	15881.59	1108643.00	78846389.77	2.94
21	2010	15783.45	1201903.30	93014532.47	2.55
22	2011	16140.90	1453846.46	114000302.99	2.62
23	2012	16358.24	1448970.87	112231631.03	2.72
24	2013	17147.61	1646756.95	119482211.16	2.61
25	2014	16956.84	1595487.61	120555097.81	2.39

% Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu % Date and time: Fri, Mar 22, 2019 - 1:27:10 AM

Table 2: Summary Statistics by Year

Statistic	N	Mean	St. Dev.	Min	Pctl(25)	Pctl(75)
Apparel_Exports	2,597	877,501.900	4,600,512.000	0.001	1,259.931	545,374.000
Total_Exports	2,597	68,530,240.000	$171,\!267,\!411.000$	$2,\!588.695$	1,220,602.000	55,632,228.000
Apparel_Export_Share	2,597	2.789	7.265	0.00000	0.054	1.935
GDP_C	$2,\!597$	$15{,}125.980$	19,060.320	170.582	$2,\!190.766$	$22,\!489.320$

[%] Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu

```
random <- plm(log(GDP_C) ~ log(Apparel_Exports), data = ff_bal, index=c("Country", "Year"), model="rand
phtest(fixed_model, random)</pre>
```

##

Hausman Test

##

data: log(GDP_C) ~ log(Apparel_Exports)

[%] Date and time: Fri, Mar 22, 2019 - 1:27:10 AM

[%] Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu

[%] Date and time: Fri, Mar 22, 2019 - 1:27:10 AM

[%] Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu

[%] Date and time: Fri, Mar 22, 2019 - 1:27:11 AM

Table 3: Model 1: One Way Individual Effects Model

Dependent variable:			
$\log(\mathrm{GDP_C})$			
0.038***			
(0.003)			
p = 0.000			
•			
2,597			
0.063			
0.008			
$166.109^{***} (df = 1; 2450)$			
*p<0.1; **p<0.05; ***p<0.01			
-			

Table 4: Augmented Dickey Fuller Test for Stationarity

	Dependent variable:		
	$\log(\mathrm{GDP_C})$		
log(Apparel_Exports)	0.038***		
	(0.003)		
Observations	2,597		
\mathbb{R}^2	0.063		
Adjusted \mathbb{R}^2	0.008		
F Statistic	$166.109^{***} (df = 1; 2450)$		
Note:	*p<0.1; **p<0.05; ***p<0.01		

Table 5: Hausman Test

	Dependent variable:		
	$\log(\mathrm{GDP_C})$		
log(Apparel_Exports)	0.038***		
	(0.003)		
Observations	2,597		
\mathbb{R}^2	0.063		
Adjusted R ²	0.008		
F Statistic	$166.109^{***} (df = 1; 2450)$		
Note:	*p<0.1; **p<0.05; ***p<0.01		

```
## alternative hypothesis: one model is inconsistent
ff_bal2 <- ff_plm %>%
 mutate(log_GDP_C = log(GDP_C))
adf.test(ff_bal2$GDP_C, k = 2)
## Warning in adf.test(ff_bal2$GDP_C, k = 2): p-value smaller than printed p-
##
   Augmented Dickey-Fuller Test
##
##
## data: ff_bal2$GDP_C
## Dickey-Fuller = -8.1909, Lag order = 2, p-value = 0.01
## alternative hypothesis: stationary
fixed model2 <- plm((GDP C) ~</pre>
                      Apparel_Export_Share, data = ff_bal,
                    index = c("Country", "Year"), model = "within")
linear_model2 <- plm((GDP_C) ~</pre>
                      (Apparel_Export_Share) + Country, data = ff_bal,
                    index = c("Country", "Year"), model = "pooling")
random2 <- plm((GDP_C) ~ (Apparel_Export_Share), data = ff_bal, index=c("Country", "Year"), model="rand
phtest(fixed_model2, random2)
##
## Hausman Test
##
## data: (GDP_C) ~ Apparel_Export_Share
## chisq = 4.2084, df = 1, p-value = 0.04022
## alternative hypothesis: one model is inconsistent
```

chisq = 25.116, df = 1, p-value = 5.398e-07

% Date and time: Fri, Mar 22, 2019 - 1:27:11 AM

Table 6: Model 2: One Way Individual Effects Model for Apparel Export Share

% Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu

	Dependent variable:
	(GDP_C)
Apparel_Export_Share	-57.774***
– . –	(21.297)
Observations	2,597
\mathbb{R}^2	0.003
Adjusted R ²	-0.056
F Statistic	$7.359^{***} (df = 1; 2450)$
Note:	*p<0.1; **p<0.05; ***p<0.01

% Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu % Date and time: Fri, Mar 22, 2019 - 1:27:11 AM

Table 7: Hausman Test for Model 2

	Dependent variable:
	(GDP_C)
Apparel_Export_Share	-57.774***
	(21.297)
Observations	2,597
\mathbb{R}^2	0.003
Adjusted R ²	-0.056
F Statistic	$7.359^{***} (df = 1; 2450)$
Note:	*p<0.1; **p<0.05; ***p<0.05

% Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu % Date and time: Fri, Mar 22, 2019 - 1:27:11 AM

Table 8:

Statistic	Mean	St. Dev.	Min	Max
GDP_C	15,126.0	19,060.3	170.6	111,968.3
Apparel_Exports	877,501.9	4,600,513.0	0.001	96,792,727.0
Total_Exports	68,530,240.0	$171,\!267,\!411.0$	$2,\!588.7$	2,342,292,696.0
$Apparel_Export_Share$	2.8	7.3	0.0000	74.2

% Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu % Date and time: Fri, Mar 22, 2019 - 1:27:11 AM

Table 9: ______ 0.6

Call:

```
## plm(formula = log(GDP_C) ~ Apparel_Export_Share + log(Apparel_Exports),
##
      data = ff_bal, model = "within", index = c("Country", "Year"))
##
## Unbalanced Panel: n = 146, T = 1-25, N = 2597
##
## Residuals:
        Min.
               1st Qu.
                           Median
                                    3rd Qu.
                                                 Max.
## -1.3605902 -0.1068590 0.0026963 0.1039957 0.8723673
##
## Coefficients:
                        Estimate Std. Error t-value Pr(>|t|)
## log(Apparel_Exports) 0.0451323 0.0032022 14.0942 < 2.2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares:
                          103.12
## Residual Sum of Squares: 95.383
## R-Squared:
                 0.07504
## Adj. R-Squared: 0.01952
## F-statistic: 99.3415 on 2 and 2449 DF, p-value: < 2.22e-16
% Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu
```

Table 10: Hausman Test for Model 2

	Dependent variable:		
	$\log(\mathrm{GDP_C})$		
Apparel_Export_Share	-0.008***		
	(0.002)		
log(Apparel_Exports)	0.045***		
,	(0.003)		
Observations	2,597		
\mathbb{R}^2	0.075		
Adjusted R ²	0.020		
F Statistic	$99.341^{***} (df = 2; 2449)$		
Note:	*p<0.1; **p<0.05; ***p<0.01		

cor.test(ff_final\$Apparel_Exports, ff_final\$Apparel_Export_Share)

% Date and time: Fri, Mar 22, 2019 - 1:27:11 AM

```
##
## Pearson's product-moment correlation
##
## data: ff_final$Apparel_Exports and ff_final$Apparel_Export_Share
## t = 4.7157, df = 2595, p-value = 2.536e-06
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.05390596 0.13018028
```

```
## sample estimates:
## cor
## 0.09217833
```