Algorithms

Lecture Topic: Approximation Algorithms (Part 2)

Roadmap of this lecture:

- 1. Understand approximation algorithms by solving TSP.
 - 1.1 General TSP has no constant-ratio approximation unless P=NP.
- 2. The "Linear Programming (LP) Technique" for approximation algorithms.
 - 2.1 Approximation algorithm for "Weighted Vertex Cover Problem" using the "LP technique".
 - 2.2 Analyze the approximation ratio of the algorithm.
- 3. Randomized Algorithm.
 - 3.1 Define "Randomized Algorithm".
 - 3.2 Understand "Randomized Algorithm" by solving the "Max 3-CNF SAT Problem"

Approximation Algorithms

Traveling Salesman Problem (TSP)

Input: An undirected complete graph G=(V,E), where every edge $(u,v) \in E$ has a non-negative integer weight w(u,v).

Output: A Hamiltonian cycle of minimum weight.

TSP with Triangle Inequality

Input: An undirected complete graph G=(V,E), where every edge $(u,v)\in E$ has a non-negative integer weight w(u,v).

The edge weights satisfy the triangle inequality.

Output: A Hamiltonian cycle of minimum weight.

Approximation Algorithms

Traveling Salesman Problem (TSP)

Input: An undirected complete graph G=(V,E), where every edge $(u,v) \in E$ has a non-negative integer weight w(u,v).

Output: A Hamiltonian cycle of minimum weight.

Does this general TSP have any approximation algorithm?

TSP with Triangle Inequality

Input: An undirected complete graph G=(V,E), where every edge $(u,v)\in E$ has a non-negative integer weight w(u,v).

The edge weights satisfy the triangle inequality.

Output: A Hamiltonian cycle of minimum weight.

The TSP with triangle inequality has a polynomial-time 2-approximation algorithm.

Even if $\rho=999^{999^{999^{999}}}$ (or any other huge number), there still cannot exist a polynomial-time ρ -approximation algorithm for TSP, unless P=NP (which most people consider to be unlikely).

How to prove it? A hint: if we let $\rho = 1$, the theorem becomes:

If $P \neq NP$, then TSP has no polynomial-time 1-approximation algorithm.

If $P \neq NP$, then TSP is not polynomial-time solvable.

So the above theorem can actually be a generalization of proving TSP to be NP-Complete.

Proof:

Hamiltonian Cycle Problem:

 $G' = (V, E') \qquad b \qquad C$ $a \circ \bigcirc \bigcirc \bigcirc \bigcirc$

Traveling Salesman Problem:

Black edges: weight 1

Red edges: weight

$$\rho |V| + 1$$

Proof: By contradiction: assume the ρ -approximation algorithm exists.

Hamiltonian Cycle Problem:

Traveling Salesman Problem:

G' has a Hamiltonian cycle \longrightarrow G has a Hamiltonian cycle of weight |V| \longrightarrow Using the ρ -approximation algorithm, we can find a Hamiltonian cycle of weight $\leq \rho |V|$ in polynomial time.

Proof: By contradiction: assume the ρ -approximation algorithm exists.

Hamiltonian Cycle Problem:

Traveling Salesman Problem:

G' has a Hamiltonian cycle \longrightarrow G has a Hamiltonian cycle of weight |V| \longrightarrow Using the ρ -approximation algorithm, we can find a Hamiltonian cycle of weight |V| in G in polynomial time.

G' has no Hamiltonian cycle \longrightarrow Any Hamiltonian cycle in G needs to use at least one red edge Any Hamiltonian cycle in G has weight $\geq \rho |V| + 1 + |V| - 1 = (\rho + 1)|V|$ Using the ρ -approximation algorithm, we find a Hamiltonian cycle of weight $\geq (\rho + 1)|V|$ in G in polynomial time.

Proof: By contradiction: assume the ρ -approximation algorithm exists.

Hamiltonian Cycle Problem:

$$G' = (V, E')$$

Traveling Salesman Problem:

$$G = (V, E)$$

G' has a Hamiltonian cycle \longrightarrow G has a Hamiltonian cycle of weight |V| \longrightarrow Using the ρ -approximation algorithm, we can find a Hamiltonian cycle of weight |V| in G in polynomial time.

G' has no Hamiltonian cycle Any Hamiltonian cycle in G needs to use at least one red edge Any Hamiltonian cycle in G has weight $\geq \rho |V| + 1 + |V| - 1 = (\rho + 1)|V|$ Using the ρ -approximation algorithm, we find a Hamiltonian cycle of weight $\geq (\rho + 1)|V|$ in G in polynomial time.

Proof: By contradiction: assume the ρ -approximation algorithm exists.

Hamiltonian Cycle Problem:

$$G' = (V, E')$$

Traveling Salesman Problem:

$$G = (V, E)$$

G' has a Hamiltonian cycle

Using the

 ρ -approximation algorithm, we can find a Hamiltonian cycle of weight $\leq \rho |V|$ in G in polynomial time.

G' has no Hamiltonian cycle

Using the

 ρ -approximation algorithm, we find a Hamiltonian cycle of weight $\geq (\rho + 1)|V|$ in G in polynomial time.

We can solve the Hamiltonian Cycle Problem "exactly" in polynomial time by solving TSP approximately using the polynomial-time ρ -approximation algorithm:

1) If we find a Hamiltonian cycle of weight $\leq \rho |V|$ in G

G' has a Hamiltonian cycle

2) If we find a Hamiltonian cycle of weight $\geq (\rho + 1)|V|$ in G \longrightarrow G' has no Hamiltonian cycle

Proof: By contradiction: assume the ρ -approximation algorithm exists.

Hamiltonian Cycle Problem:

G' = (V, E')

Traveling Salesman Problem:

$$G = (V, E)$$

G' has a Hamiltonian cycle \blacksquare \bullet \bullet \bullet \bullet \bullet \bullet \bullet Using the ρ -approximation algorithm, we can find a Hamiltonian cycle of weight $\leq \rho \, |V|$ in G in polynomial time.

G' has no Hamiltonian cycle

 ρ -approximation algorithm, we find a Hamiltonian cycle of weight $\geq (\rho + 1)|V|$ in G in polynomial time.

We can solve the Hamiltonian Cycle Problem "exactly" in polynomial time

by solving TSP approximately using the polynomial-time ρ -approximation algorithm:

- 1) If we find a Hamiltonian cycle of weight $\leq \rho |V|$ in G \longrightarrow G' has a Hamiltonian cycle
- 2) If we find a Hamiltonian cycle of weight $\geq (\rho + 1)|V|$ in G \longrightarrow G' has no Hamiltonian cycle

Proof: By contradiction: assume the ρ -approximation algorithm exists.

We can solve the Hamiltonian Cycle Problem "exactly" in polynomial time.

Proof: By contradiction: assume the ρ -approximation algorithm exists.

We can solve the Hamiltonian Cycle Problem "exactly" in polynomial time.

But we know the Hamiltonian Cycle Problem in NP-complete.

So it has to be

$$P = NP$$

which is a contradiction.

Quiz questions: 1. What method did we use to prove that general TSP has no constant-approximation unless P=NP?

Roadmap of this lecture:

- 1. Understand approximation algorithms by solving TSP.
 - 1.1 General TSP has no constant-ratio approximation unless P=NP.
- 2. The "Linear Programming (LP) Technique" for approximation algorithms.
 - 2.1 Approximation algorithm for "Weighted Vertex Cover Problem" using the "LP technique".
 - 2.2 Analyze the approximation ratio of the algorithm.
- 3. Randomized Algorithm.
 - 3.1 Define "Randomized Algorithm".
 - 3.2 Understand "Randomized Algorithm" by solving the "Max 3-CNF SAT Problem"

Weighted Vertex Cover Problem:

Input: An undirected graph G=(V,E), where every vertex $v \in V$ has a weight w(v) > 0.

Output: A vertex cover of minimum total weight.

Weighted Vertex Cover Problem:

Input: An undirected graph G=(V,E), where every vertex $v \in V$ has a weight w(v) > 0.

Output: A vertex cover of minimum total weight.

Weight of vertex cover: 6

Weighted Vertex Cover Problem:

Input: An undirected graph G=(V,E), where every vertex $v \in V$ has weight w(v) > 0.

Output: A vertex cover of minimum total weight.

Our technique:

1. Formulate the problem as an integer programming problem.

Define variables:

Define variables: For every node
$$v \in V$$
, define a variable $x(v) = \begin{cases} 1 & \text{if } v \text{ is in vertex cover} \\ 0 & \text{otherwise} \end{cases}$

Weighted Vertex Cover Problem:

Input: An undirected graph G=(V,E), where every vertex $v \in V$ has weight w(v) > 0.

Output: A vertex cover of minimum total weight.

Our technique:

1. Formulate the problem as an integer programming problem.

Define variables:

For every node $v \in V$, define a variable $x(v) = \begin{cases} 1 \\ 1 \end{cases}$

$$x(v) =$$

if v is in vertex cover

Integer Programming Problem:

minimize
$$\sum_{v \in V} w(v)x(v)$$

s.t. for every edge
$$(u, v) \in E$$
, $x(u) + x(v) \ge 1$ for every node $v \in V$, $x(v) \in \{0,1\}$

Weighted Vertex Cover Problem:

Input: An undirected graph G=(V,E), where every vertex $v \in V$ has weight w(v) > 0.

Output: A vertex cover of minimum total weight.

Our technique:

- 1. Formulate the problem as an integer programming problem.
- 2. Relax condition to turn it into an LP.

Integer Programming Problem:

minimize
$$\sum_{v \in V} w(v)x(v)$$
s.t. $\forall (u, v) \in E, \quad x(u) + x(v) \ge 1$
 $\forall v \in V, \quad x(v) \in \{0,1\}$

Linear Programming Problem:

minimize
$$\sum_{v \in V} w(v)x(v)$$

s.t.
$$\forall (u, v) \in E$$
, $x(u) + x(v) \ge 1$
 $\forall v \in V$, $0 \le x(v) \le 1$

Weighted Vertex Cover Problem:

Input: An undirected graph G=(V,E), where every vertex $v \in V$ has weight w(v) > 0.

Output: A vertex cover of minimum total weight.

Our technique:

- 1. Formulate the problem as an integer programming problem.
- 2. Relax condition to turn it into an LP.
- 3. Solve the LP, then turn the LP solution to a solution of the original integer programming problem using "rounding".

Integer Programming Problem:

minimize
$$\sum_{v \in V} w(v)x(v)$$

s.t.
$$\forall (u, v) \in E$$
, $x(u) + x(v) \ge 1$
 $\forall v \in V$, $x(v) \in \{0,1\}$

Linear Programming Problem:

minimize
$$\sum_{v \in V} w(v)x(v)$$
st $\forall (u, v) \in E$ $x(u) + x(v)$

s.t.
$$\forall (u, v) \in E$$
, $x(u) + x(v) \ge 1$
 $\forall v \in V$, $0 \le x(v) \le 1$

Weighted Vertex Cover Problem:

Input: An undirected graph G=(V,E), where every vertex $v \in V$ has weight w(v) > 0.

Output: A vertex cover of minimum total weight.

Our technique:

- 1. Formulate the problem as an integer programming problem.
- 2. Relax condition to turn it into an LP.
- 3. Solve the LP, then turn the LP solution to a solution of the original integer programming problem using "rounding".

Integer Programming Problem:

minimize
$$\sum_{v \in V} w(v)x(v)$$

s.t. $\forall (u, v) \in E, \ x(u) + x(v) \ge 1$
 $\forall v \in V, \ x(v) \in \{0,1\}$

Linear Programming Problem:

Weighted Vertex Cover Problem:

Input: An undirected graph G=(V,E), where every vertex $v \in V$ has weight w(v) > 0.

Output: A vertex cover of minimum total weight.

Integer Programming Problem:

minimize
$$\sum_{v \in V} w(v)x(v)$$
s.t. $\forall (u, v) \in E$, $x(u) + x(v) \ge 1$
 $\forall v \in V$, $x(v) \in \{0,1\}$

Get a solution to the Integer Programming Problem:

Programming Problem:
$$\forall v \in V, \quad x(v) = \begin{cases} 1 \\ 0 \end{cases}$$

Our technique:

- 1. Formulate the problem as an integer programming problem.
- 2. Relax condition to turn it into an LP.
- 3. Solve the LP, then turn the LP solution to a solution of the original integer programming problem using "rounding".

Linear Programming Problem:

minimize
$$\sum_{v \in V} w(v)x(v)$$

s.t.
$$\forall (u, v) \in E$$
, $x(u) + x(v) \ge 1$
 $\forall v \in V$, $0 \le x(v) \le 1$

if
$$\bar{x}(v) \ge 0.5$$

if $\bar{x}(v) < 0.5$

Weighted Vertex Cover Problem:

Input: An undirected graph G=(V,E), where every vertex $v \in V$ has weight w(v) > 0.

Output: A vertex cover of minimum total weight.

Example:

Integer Programming Problem:

minimize
$$\sum_{v \in V} w(v)x(v)$$

s.t.
$$\forall (u, v) \in E$$
, $x(u) + x(v) \ge 1$
 $\forall v \in V$, $x(v) \in \{0,1\}$

Linear Programming Problem:

minimize
$$\sum_{v \in \mathcal{V}} w(v)x(v)$$

s.t.
$$\forall (u, v) \in E$$
, $x(u) + x(v) \ge 1$
 $\forall v \in V$, $0 \le x(v) \le 1$

Programming Problem:
$$\forall \ v \in V, \quad x(v) = \begin{cases} 1 \\ 0 \end{cases}$$

if
$$\bar{x}(v) \ge 0.5$$

if
$$\bar{x}(v) < 0.5$$

Weighted Vertex Cover Problem:

Input: An undirected graph G=(V,E), where every vertex $v \in V$ has weight w(v) > 0.

Output: A vertex cover of minimum total weight.

Example:

Integer Programming Problem:

minimize
$$\sum_{v \in V} w(v)x(v)$$

s.t.
$$\forall (u, v) \in E$$
, $x(u) + x(v) \ge 1$
 $\forall v \in V$, $x(v) \in \{0,1\}$

Linear Programming Problem:

minimize
$$\sum_{v \in V} w(v)x(v)$$

s.t.
$$\forall (u, v) \in E$$
, $x(u) + x(v) \ge 1$
 $\forall v \in V$, $0 \le x(v) \le 1$

Programming Problem:
$$\forall v \in V, \quad x(v) = \begin{cases} 1 \\ 0 \end{cases}$$

if
$$\bar{x}(v) \ge 0.5$$

if
$$\bar{x}(v) < 0.5$$

Weighted Vertex Cover Problem:

Input: An undirected graph G=(V,E), where every vertex $v \in V$ has weight w(v) > 0.

Output: A vertex cover of minimum total weight.

Example:

Integer Programming Problem:

minimize
$$\sum_{v \in V} w(v)x(v)$$

s.t. $\forall (u, v) \in E, \ x(u) + x(v) \ge 1$

 $\forall v \in V, \ x(v) \in \{0,1\}$

Linear Programming Problem:

Get a solution to the Integer Programming Problem:

Programming Problem:
$$\forall \ v \in V, \quad x(v) = \begin{cases} 1 & \text{if } \bar{x}(v) \ge 0.5 \\ 0 & \text{if } \bar{x}(v) < 0.5 \end{cases}$$

Weighted Vertex Cover Problem:

Input: An undirected graph G=(V,E), where every vertex $v \in V$ has weight w(v) > 0.

Output: A vertex cover of minimum total weight.

Example:

$$\bar{x}(b) = 0.5$$

$$x(b) = 1$$

$$b$$

$$\bar{x}(a) = 0.5$$

$$\bar{x}(b) = 1$$

Integer Programming Problem:

minimize
$$\sum_{v \in V} w(v)x(v)$$

s.t.
$$\forall (u, v) \in E$$
, $x(u) + x(v) \ge 1$
 $\forall v \in V$, $x(v) \in \{0,1\}$

Linear Programming Problem:

minimize
$$\sum_{v \in V} w(v)x(v)$$

s.t.
$$\forall (u, v) \in E$$
, $x(u) + x(v) \ge 1$
 $\forall v \in V$, $0 \le x(v) \le 1$

Programming Problem:
$$\forall \ v \in V, \quad x(v) = \begin{cases} 1 \\ 0 \end{cases}$$

if
$$\bar{x}(v) \ge 0.5$$

if
$$\bar{x}(v) < 0.5$$

Weighted Vertex Cover Problem:

Input: An undirected graph G=(V,E), where every vertex $v \in V$ has weight w(v) > 0.

Output: A vertex cover of minimum total weight.

Integer Programming Problem:

minimize
$$\sum_{v \in V} w(v)x(v)$$
s t $\forall (u, v) \in E$ $x(u) + x$

s.t.
$$\forall (u, v) \in E$$
, $x(u) + x(v) \ge 1$
 $\forall v \in V$, $x(v) \in \{0,1\}$

Get a solution to the Integer

Programming Problem:
$$\forall \ v \in V, \quad x(v) = \begin{cases} 1 & \text{if } \bar{x}(v) \geq 0.5 \\ 0 & \text{if } \bar{x}(v) < 0.5 \end{cases}$$
 Why is this indeed a vertex cover?

Linear Programming Problem:

minimize
$$\sum_{v \in V} w(v)x(v)$$

s.t.
$$\forall (u, v) \in E$$
, $x(u) + x(v) \ge 1$
 $\forall v \in V$, $0 \le x(v) \le 1$

if
$$\bar{x}(v) \ge 0.5$$

Quiz questions:

- I. What is the main idea of the above LP-based approximation algorithm for "Weighted Vertex Cover"?
- 2. Can you think of an instance for which the above approximation algorithm outputs an optimal solution, and an instance for which it does not?

Roadmap of this lecture:

- 1. Understand approximation algorithms by solving TSP.
 - 1.1 General TSP has no constant-ratio approximation unless P=NP.
- 2. The "Linear Programming (LP) Technique" for approximation algorithms.
 - 2.1 Approximation algorithm for "Weighted Vertex Cover Problem" using the "LP technique".
 - 2.2 Analyze the approximation ratio of the algorithm.
- 3. Randomized Algorithm.
 - 3.1 Define "Randomized Algorithm".
 - 3.2 Understand "Randomized Algorithm" by solving the "Max 3-CNF SAT Problem"

minimize
$$\sum_{v \in V} w(v)x(v)$$

s.t. $\forall (u, v) \in E, \ x(u) + x(v) \ge 1$
 $\forall v \in V, \ x(v) \in \{0,1\}$

Linear Programming Problem:

Optimal solution to LP: $\bar{x}(v) \quad \forall v \in V$

Get a solution to the Integer

Programming Problem:
$$\forall v \in V, \quad x(v) = \begin{cases} 1 \\ 0 \end{cases}$$

if
$$\bar{x}(v) \geq 0.5$$

if
$$\bar{x}(v) < 0.5$$

The above algorithm is a polynomial-time 2-approximation algorithm.

minimize
$$\sum_{v \in V} w(v)x(v)$$

s.t. $\forall (u, v) \in E, \ x(u) + x(v) \ge 1$
 $\forall v \in V, \ x(v) \in \{0,1\}$

Linear Programming Problem:

minimize $\sum_{v \in V} w(v)x(v)$

s.t.
$$\forall (u, v) \in E$$
, $x(u) + x(v) \ge 1$
 $\forall v \in V$, $0 \le x(v) \le 1$

Optimal solution to LP: $\bar{x}(v) \forall v \in V$

Get a solution to the Integer Programming Problem:

Programming Problem:
$$\forall \ v \in V, \quad x(v) = \begin{cases} 1 \\ 0 \end{cases}$$

if
$$\bar{x}(v) \geq 0.5$$

if
$$\bar{x}(v) < 0.5$$

Theorem: The above algorithm is a polynomial-time 2-approximation algorithm.

Proof: Weight of LP solution

$$\bar{C} = \sum_{v \in V} w(v)\bar{x}(v)$$

minimize
$$\sum_{v \in V} w(v)x(v)$$

s.t. $\forall (u, v) \in E, \ x(u) + x(v) \ge 1$
 $\forall v \in V, \ x(v) \in \{0,1\}$

Linear Programming Problem:

minimize $\sum_{v \in V} w(v)x(v)$

s.t.
$$\forall (u, v) \in E$$
, $x(u) + x(v) \ge 1$
 $\forall v \in V$, $0 \le x(v) \le 1$

Optimal solution to LP: $\bar{x}(v) \quad \forall v \in V$

Get a solution to the Integer Programming Problem:

Programming Problem:
$$\forall \ v \in V, \quad x(v) = \begin{cases} 1 \\ 0 \end{cases}$$

if
$$\bar{x}(v) \geq 0.5$$

if
$$\bar{x}(v) < 0.5$$

Theorem: The above algorithm is a polynomial-time 2-approximation algorithm.

Proof: Weight of LP solution

$$\bar{C} = \sum_{v \in V} w(v)\bar{x}(v)$$

Weight of optimal

vertex cover: C*

minimize
$$\sum_{v \in V} w(v)x(v)$$

s.t. $\forall (u, v) \in E, \ x(u) + x(v) \ge 1$
 $\forall v \in V, \ x(v) \in \{0,1\}$

Linear Programming Problem:

minimize $\sum_{v \in V} w(v)x(v)$

s.t.
$$\forall (u, v) \in E$$
, $x(u) + x(v) \ge 1$
 $\forall v \in V$, $0 \le x(v) \le 1$

Optimal solution to LP: $\bar{x}(v) \quad \forall v \in V$

Get a solution to the Integer Programming Problem:

$$\forall \ v \in V, \quad x(v) = \begin{cases} 1 \\ 0 \end{cases}$$

if
$$\bar{x}(v) \geq 0.5$$

if
$$\bar{x}(v) < 0.5$$

Theorem: The above algorithm is a polynomial-time 2-approximation algorithm.

Proof: Weight of LP solution

$$\bar{C} = \sum_{v \in V} w(v)\bar{x}(v)$$

Weight of optimal vertex cover: C*

$$\bar{C} \leq C^*$$

Why?

minimize
$$\sum_{v \in V} w(v)x(v)$$

s.t. $\forall (u, v) \in E, \ x(u) + x(v) \ge 1$
 $\forall v \in V, \ x(v) \in \{0,1\}$

Linear Programming Problem:

minimize $\sum_{v \in V} w(v)x(v)$

s.t.
$$\forall (u, v) \in E$$
, $x(u) + x(v) \ge 1$
 $\forall v \in V$, $0 \le x(v) \le 1$

Optimal solution to LP: $\bar{x}(v) \quad \forall v \in V$

Get a solution to the Integer Programming Problem:

$$\forall \ v \in V, \quad x(v) = \begin{cases} 1 \\ 0 \end{cases}$$

if
$$\bar{x}(v) \geq 0.5$$

if
$$\bar{x}(v) < 0.5$$

Theorem: The above algorithm is a polynomial-time 2-approximation algorithm.

Proof: Weight of LP solution

$$\bar{C} = \sum_{v \in V} w(v)\bar{x}(v)$$

Weight of optimal vertex cover: C*

$$\bar{C} \leq C^*$$

Weight of integer program solution

$$C = \sum_{v \in V} w(v)x(v)$$

Integer Programming Problem:

minimize
$$\sum_{v \in V} w(v)x(v)$$

s.t. $\forall (u, v) \in E, \ x(u) + x(v) \ge 1$
 $\forall v \in V, \ x(v) \in \{0,1\}$

Linear Programming Problem:

minimize $\sum_{v \in V} w(v)x(v)$

s.t.
$$\forall (u, v) \in E$$
, $x(u) + x(v) \ge 1$
 $\forall v \in V$, $0 \le x(v) \le 1$

Get a solution to the Integer Programming Problem:

$$\forall \ v \in V, \quad x(v) = \begin{cases} 1 \\ 0 \end{cases}$$

Optimal solution to LP: $\bar{x}(v) \quad \forall v \in V$

if
$$\bar{x}(v) \ge 0.5$$

if $\bar{x}(v) < 0.5$

Theorem: The above algorithm is a polynomial-time 2-approximation algorithm.

Proof: Weight of LP solution

$$\bar{C} = \sum_{v \in V} w(v)\bar{x}(v)$$

Weight of optimal vertex cover: C*

$$\bar{C} \leq C^*$$

Weight of integer program solution

$$C = \sum_{v \in V} w(v)x(v) \le 2\sum_{v \in V} w(v)\bar{x}(v)$$
 Why?

Integer Programming Problem:

minimize
$$\sum_{v \in V} w(v)x(v)$$
s.t. $\forall (u, v) \in E, \ x(u) + x(v) \ge 1$
 $\forall v \in V, \ x(v) \in \{0,1\}$

Linear Programming Problem:

minimize $\sum_{v \in V} w(v)x(v)$

s.t.
$$\forall (u, v) \in E$$
, $x(u) + x(v) \ge 1$
 $\forall v \in V$, $0 \le x(v) \le 1$

Get a solution to the Integer Programming Problem:

$$\forall \ v \in V, \quad x(v) = \begin{cases} 1 \\ 0 \end{cases}$$

Optimal solution to LP: $\bar{x}(v) \forall v \in V$

if
$$\bar{x}(v) \ge 0.5$$

if $\bar{x}(v) < 0.5$

Theorem: The above algorithm is a polynomial-time 2-approximation algorithm.

Proof: Weight of LP solution

$$\bar{C} = \sum_{v \in V} w(v)\bar{x}(v)$$

Weight of optimal vertex cover: C*

$$\bar{C} \leq C^*$$

Weight of integer program solution

$$C = \sum_{v \in V} w(v)x(v) \le 2\sum_{v \in V} w(v)\bar{x}(v) = 2\bar{C} \le 2C^*$$

Vertex Cover Problem: 2-approximation.

TSP with triangle inequality: 2-approximation.

General TSP: no constant ratio approximation unless P=NP.

Set Covering Problem: $\rho(n)$ -approximation

$$\rho(n) \to \infty \text{ as } n \to \infty$$

Subset Sum Problem: $(1 + \epsilon)$ -approximation

Time complexity $\operatorname{poly}(n, \frac{1}{\epsilon})$

Quiz question:

I. How did we find the approximation ratio for the above algorithm for "Weighted Vertex Cover" without knowing the optimal cost?

Roadmap of this lecture:

- 1. Understand approximation algorithms by solving TSP.
 - 1.1 General TSP has no constant-ratio approximation unless P=NP.
- 2. The "Linear Programming (LP) Technique" for approximation algorithms.
 - 2.1 Approximation algorithm for "Weighted Vertex Cover Problem" using the "LP technique".
 - 2.2 Analyze the approximation ratio of the algorithm.
- 3. Randomized Algorithm.
 - 3.1 Define "Randomized Algorithm".
 - 3.2 Understand "Randomized Algorithm" by solving the "Max 3-CNF SAT Problem"

Consider a maximization problem.

Let $C^* > 0$ be the cost of an optimal solution.

Let C > 0 be the expected cost of the solution of a randomized algorithm.

If for all instances, we have
$$\frac{C^*}{C} \leq \rho$$
,

then the randomized algorithm is called a

 ρ -approximation randomized algorithm.

Consider a minimization problem.

Let $C^* > 0$ be the cost of an optimal solution.

Let C > 0 be the expected cost of the solution of a randomized algorithm.

If for all instances, we have $\frac{C}{C^*} \leq \rho$,

then the randomized algorithm is called a ρ -approximation randomized algorithm.

Quiz questions:

- I. What is a "Randomized Algorithm"?
- 2. What is the difference between the approximation ratio of a randomized algorithm and that of a deterministic algorithm?

Roadmap of this lecture:

- 1. Understand approximation algorithms by solving TSP.
 - 1.1 General TSP has no constant-ratio approximation unless P=NP.
- 2. The "Linear Programming (LP) Technique" for approximation algorithms.
 - 2.1 Approximation algorithm for "Weighted Vertex Cover Problem" using the "LP technique".
 - 2.2 Analyze the approximation ratio of the algorithm.
- 3. Randomized Algorithm.
 - 3.1 Define "Randomized Algorithm".
 - 3.2 Understand "Randomized Algorithm" by solving the "Max 3-CNF SAT Problem"

Max 3-CNF SAT Problem

Input: A 3-CNF Boolean formula of n variables and k clauses, Where every clause is the OR of 3 literals.

The 3 variables involved in each clause are distinct.

Output: A solution to the variables that maximizes the number of satisfied clauses.

Max 3-CNF SAT Problem

Input: A 3-CNF Boolean formula of n variables and k clauses, Where every clause is the OR of 3 literals.

The 3 variables involved in each clause are distinct.

Output: A solution to the variables that maximizes the number of satisfied clauses.

Randomized Algorithm:

For each variable, let it be 0 or 1 with probability 0.5 and 0.5.

Max 3-CNF SAT Problem

Input: A 3-CNF Boolean formula of n variables and k clauses, Where every clause is the OR of 3 literals.

The 3 variables involved in each clause are distinct.

Output: A solution to the variables that maximizes the number of satisfied clauses.

Randomized Algorithm:

For each variable, let it be 0 or 1 with probability 0.5 and 0.5.

Theorem: The algorithm is a polynomial-time $\frac{8}{7}$ -approximation randomized algorithm.

Max 3-CNF SAT Problem

Input: A 3-CNF Boolean formula of n variables and k clauses, Where every clause is the OR of 3 literals.

The 3 variables involved in each clause are distinct.

Output: A solution to the variables that maximizes the number of satisfied clauses.

Randomized Algorithm:

For each variable, let it be 0 or 1 with probability 0.5 and 0.5.

Theorem: The algorithm is a polynomial-time $\frac{8}{7}$ -approximation randomized algorithm.

Proof: Consider any clause in the 3-CNF formula.

$$x_1 \vee \bar{x}_2 \vee \bar{x}_3$$

Max 3-CNF SAT Problem

Input: A 3-CNF Boolean formula of n variables and k clauses, Where every clause is the OR of 3 literals.

The 3 variables involved in each clause are distinct.

Output: A solution to the variables that maximizes the number of satisfied clauses.

Randomized Algorithm:

For each variable, let it be 0 or 1 with probability 0.5 and 0.5.

Theorem: The algorithm is a polynomial-time $\frac{8}{7}$ -approximation randomized algorithm.

Proof: Consider any clause in the 3-CNF formula.

Probability that the clause is satisfied = $\frac{7}{8}$

$$x_1 \vee \bar{x}_2 \vee \bar{x}_3$$

Max 3-CNF SAT Problem

Input: A 3-CNF Boolean formula of n variables and k clauses, Where every clause is the OR of 3 literals.

The 3 variables involved in each clause are distinct.

Output: A solution to the variables that maximizes the number of satisfied clauses.

Randomized Algorithm:

For each variable, let it be 0 or 1 with probability 0.5 and 0.5.

Theorem: The algorithm is a polynomial-time $\frac{8}{7}$ -approximation randomized algorithm.

Proof: Consider any clause in the 3-CNF formula.

Probability that the clause is satisfied = $\frac{7}{8}$

Expected number of satisfied clauses $C = \frac{7}{8} \cdot k$

$$x_1 \vee \bar{x}_2 \vee \bar{x}_3$$

Max 3-CNF SAT Problem

Input: A 3-CNF Boolean formula of n variables and k clauses, Where every clause is the OR of 3 literals.

The 3 variables involved in each clause are distinct.

Output: A solution to the variables that maximizes the number of satisfied clauses.

Randomized Algorithm:

For each variable, let it be 0 or 1 with probability 0.5 and 0.5.

Theorem: The algorithm is a polynomial-time $\frac{8}{7}$ -approximation randomized algorithm.

Proof: Consider any clause in the 3-CNF formula.

Probability that the clause is satisfied = $\frac{7}{8}$

Expected number of satisfied clauses $C = \frac{7}{8} \cdot k$

Number of satisfied clauses for an optimal solution $C^* \leq k$

$$x_1 \vee \bar{x}_2 \vee \bar{x}_3$$

Max 3-CNF SAT Problem

Input: A 3-CNF Boolean formula of n variables and k clauses, Where every clause is the OR of 3 literals.

The 3 variables involved in each clause are distinct.

Output: A solution to the variables that maximizes the number of satisfied clauses.

Randomized Algorithm:

For each variable, let it be 0 or 1 with probability 0.5 and 0.5.

Theorem: The algorithm is a polynomial-time $\frac{8}{7}$ -approximation randomized algorithm.

Proof: Consider any clause in the 3-CNF formula.

Probability that the clause is satisfied = $\frac{7}{8}$

Expected number of satisfied clauses $C = \frac{7}{8} \cdot k$

Number of satisfied clauses for an optimal solution $C^* \leq k$

$$\frac{C^*}{C} \le \frac{k}{\frac{7}{8} \cdot k} = \frac{8}{7} \approx 1.14$$

$$x_1 \vee \bar{x}_2 \vee \bar{x}_3$$

Quiz questions:

- I. What is the main idea of the above randomized algorithm?
- 2. If the number of literals in each clause increase, will the approximation ratio of the randomized algorithm increase or decrease?