Eliminacija pozadine u video zapisima Seminarski rad u okviru kursa Naučno izračunavanje

Matematički fakultet

Vesna Katanić, Anja Ivanišević

14. septembar 2019.

Sadržaj

2	Primenjeni algoritmi					
	2.1	Basic Motion Detection				
	2.2	Gaussian Mixture Model				
	2.3	K nearest neighbours				

1 Uvod

Algoritmi za eliminaciju pozadine u video zapisima su algoritmi koji imaju za cilj detekciju kretanja i odvajanje pozadine od objekata koji se kreću. CIlj ovog rada je upoznavanje različitim algoritmima za detekciju kretanja i njihovo poređenje.

2 Primenjeni algoritmi

U ovom radu smo poredili tri različita algoritma za eliminaciju pozadine u video zapisima. Ti algoritmi su: Basic Motion Detection (BMD), Gaussian Mixture Model (GMM) i K Nearest Neighbours (KNN). Ideja svakog od ovih algoritama je da transformišu ulazni video u novi video u kojem će pozadina biti ofarbana u crno a objekti koji se kreću u belo, kako bi se oni izdvojili. U nastavku rada će ovi algoritmi biti predstavljeni.

2.1 Basic Motion Detection

 $Basic\ Motion\ Detection$ je najjednostavniji algoritam od predstavljenih algoritama. U ovom algoritmu se polazi od pretpostavke da se video I sastoji od statičke pozadine B ispred koje se nalaze objekti koji se kreću. Kako bismo detektovali objekte računa se rastojanje trenutnog modela pozadine i posmatranog frejma. Na osnovu ovog rastojanja pravi se rezultujuća crno-bela slika.

Model pozadine se ažurira na osnovu prethodnog stanja i trenutno posmatranog frejma po sledećoj formuli: $B_{s,t+1} = (1 - \alpha) * B_{s,t} + \alpha * I_{s,t}$ gde je s posmatrani piksel, t posmatrani frejm i α parametar za koju je uzeta vrednost 0.001. Za početnu vrednost modela pozadine B je uzet prvi frejm, dok je rastojanje između frejma i modela računato na osnovu Euklidskog rastojanja.

2.2 Gaussian Mixture Model

Ideja algoritma $Gaussian\ Mixture\ Model$ je da imamo K klastera. Za svaki klaster računamo matematičko očekivanje i stanardnu devijaciju Gausove raspodele i njihovim kombinovanjem modelujemo svaki piksel. Broj K se određuje za svaki piksel posebno. Implementacija ovog algoritma postoji u OpenCV biblioteci i nju smo koristili za potrebe ovog rada.

2.3 K Nearest Neighbours

Ideja ovog algoritma je da se konstantno ažuriraju parametri Gaussian Mixture Modela i bira odgovarajući broj komponenti za svaki piksel. Koristi se metoda K najbližih suseda. Implementacija ovog algoritma postoji u OpenCV biblioteci i nju smo koristili za potrebe ovog rada.

3 Evaluacija algoritma

Na narednim slikama su redom prikazani ulazna slika i rezultati algoritama $BMD,\ GMM$ i KNN.

Slika 1: Originalna slika i rezultat BMD algoritma

Slika 2: Rezultati GMM i KNN algoritama

Algoritmi su pokretani na tri vrste test primera - saobraćaj za vreme mećave, saobraćaj u standardnim uslovima i noćni snimak nadzorne kamere. Svaki od algoritama je posmatran kao problem klasifikacije i za evaluaciju rezultata korišćene su mere *Precision* i *Recall*.

Ostvareni su sledeći rezulati:

BMD	GMM	KNN
0.9409	0.4237	0.5218
0.4757	0.1820	0.2738
0.9822	0.8972	0.8872

BMD	GMM	KNN
0.4528	0.9414	0.9157
0.7833	0.8926	0.9025
0.9436	0.7184	0.9068