Geometria B - Prova intermedia

Università degli Studi di Trento Corso di Laurea in Matematica A.A. 2017/2018 16 gennaio 2018

Lo studente svolga i seguenti tre esercizi. **Ogni risposta deve essere adeguatamente motivata**. Si terrà conto non solo della correttezza dei risultati, ma anche della completezza e chiarezza delle spiegazioni.

Attenzione. Il testo è composto da due pagine (la seconda pagina è sul retro di questo foglio).

Esercizio 1. Si risponda ai seguenti quesiti:

- (1a) Sia X uno spazio topologico, sia A un sottoinsieme aperto di X e sia D un sottoinsieme denso di X. Si dimostri che $\overline{A} = \overline{A \cap D}$, ove \overline{A} indica la chiusura di A in X e $\overline{A \cap D}$ indica la chiusura di $A \cap D$ in X.
- (1b) Sia X uno spazio topologico, sia C un suo sottoinsieme chiuso e sia Fr(C) la frontiera di C in X. Si dimostri che il sottoinsieme Fr(C) di X non ha punti interni.
- (1c) Sia \mathbb{S}^1 la circonferenza standard di \mathbb{R}^2 dotata della topologia euclidea e sia \mathcal{R} la relazione di equivalenza su \mathbb{S}^1 definita come segue:

$$x \mathcal{R} y$$
 se e soltanto se $y \in \{-x, x\}$.

Indichiamo con \mathbb{S}^1/\mathbb{R} lo spazio topologico quoziente di \mathbb{S}^1 modulo \mathbb{R} e con $\pi: \mathbb{S}^1 \to \mathbb{S}^1/\mathbb{R}$ la proiezione naturale al quoziente. Si dimostri che \mathbb{S}^1/\mathbb{R} è omeomorfo a \mathbb{S}^1 . Si dica inoltre se π è aperta.

SOLUZIONE: (1a) Se $A=\emptyset$ allora $\overline{A}=\emptyset=\overline{A\cap D}$. Supponiamo che $A\neq\emptyset$. Indichiamo con τ la topologia di X. Sia $x\in\overline{A}$. Dobbiamo provare che $x\in\overline{A\cap D}$ o, equivalentemente, che $U\cap(A\cap D)\neq\emptyset$ per ogni $U\in\mathcal{N}_{\tau}(x)$. Sia $U\in\mathcal{N}_{\tau}(x)$. Possiamo supporre che $U\in\tau$. Poiché $U\in\mathcal{N}_{\tau}(x)\cap\tau$, $x\in\overline{A}$ e $A\in\tau$, si ha che $U\cap A$ è un aperto non-vuoto di X. La densità di D in X equivale a dire che D ha intersezione non-vuota con ogni aperto non-vuoto di X (perché?). Segue che $U\cap(A\cap D)=(U\cap A)\cap D\neq\emptyset$, come desiderato.

- (1b) Supponiamo che esista un punto interno x di Fr(C) in X, cioé $x \in int(F(C))$. Poiché C è chiuso in X, si ha che $Fr(C) \subset \overline{C} = C$ e quindi $int(F(C)) \subset int(C)$. D'altra parte per definizione $F(C) \cap int(C) = \emptyset$, dunque $x \in int(F(C)) \subset F(C) \cap int(C) = \emptyset$, che è assurdo.
- (1c) Identifichiamo \mathbb{R}^2 con \mathbb{C} e consideriamo \mathbb{S}^1 come un sottospazio topologico di \mathbb{C} . Definiamo l'applicazione continua $f: \mathbb{S}^1 \to \mathbb{S}^1$ ponendo $f(z) := z^2$ per ogni $z \in \mathbb{S}^1 \subset \mathbb{C}$. Tale applicazione è surgettiva e $\mathcal{R} = \mathcal{R}_f$. Esiste dunque un'applicazione (unica) continua e bigettiva $g: \mathbb{S}^1/\mathbb{R} = \mathbb{S}^1/\mathbb{R}_f \to \mathbb{S}^1$ tale che $f = g \circ \pi$. Poiché \mathbb{S}^1/\mathbb{R} è compatto e \mathbb{S}^1 è T_2 , g è anche una applicazione chiusa e quindi un omeomorfismo.

Dimostriamo infine che π è aperta. Si osservi che l'applicazione antipodale $a: \mathbb{S}^1 \to \mathbb{S}^1$, definita ponendo a(z) := -z, è un omeomorfismo con $a^{-1} = a$. Inoltre, per ogni sottoinsieme

A di \mathbb{S}^1 , la π -saturazione $\pi^{-1}(\pi(A))$ di A coincide con $A \cup a(A)$. Segue che, se A è un aperto di \mathbb{S}^1 , anche $\pi^{-1}(\pi(A)) = A \cup a(A)$ lo è. Questo prova che π è aperta.

Esercizio 2. Siano B_s e B_d le famiglie di sottoinsiemi della retta reale \mathbb{R} definite ponendo:

$$B_s := \{(a, b] \in \mathcal{P}(\mathbb{R}) \mid a, b \in \mathbb{R}, a < b\} \quad \text{and} \quad B_d := \{[a, b) \in \mathcal{P}(\mathbb{R}) \mid a, b \in \mathbb{R}, a < b\}.$$

Siano j_s e j_d le topologie su \mathbb{R} aventi rispettivamente per basi B_s e B_d . Indichiamo con (\mathbb{R}^2, η) il prodotto topologico tra (\mathbb{R}, j_s) e (\mathbb{R}, j_d) .

- (2a) Si dimostri che η è più fine della topologia euclidea di \mathbb{R}^2 .
- (2b) Si dica se (\mathbb{R}^2, η) è compatto.
- (2c) Si dica se (\mathbb{R}^2, η) è connesso.
- (2d) Sia $f: (\mathbb{R}^2, \eta) \to (\mathbb{R}, j_d)$ la funzione definita ponendo f(x, y) := x + y. Si dimostri che f non è continua.

SOLUZIONE: (2a) Siano $a, b \in \mathbb{R}$ tali che a < b. Si osservi che $(a, b) = \bigcup_{r \in (a,b)} (a,r] = \bigcup_{r \in (a,b)} [r,b)$. Dunque la base $\{(a,b)\}_{a,b \in \mathbb{R}, a < b}$ della topologia euclidea $\tau^1_{\mathcal{E}}$ di \mathbb{R} (e dunque la topologia $\tau^1_{\mathcal{E}}$ stessa) è contenuta in entrambe le topologie j_s e j_d di \mathbb{R} . In particolare la topologia euclidea $\tau^2_{\mathcal{E}}$ di \mathbb{R}^2 (che è il prodotto topologico di $\tau^1_{\mathcal{E}}$ per se stessa) è contenuta nella topologia η (che è il prodotto topologico di j_s per j_d).

- (2b) (\mathbb{R}^2, η) non è compatto infatti dal ricoprimento aperto $\{(-n, n] \times [-n, n)\}_{n \in \mathbb{N}, n \geq 1}$ non è possibile estrarre alcun sottoricoprimento finito.
- (2c) $(-\infty,0] = \bigcup_{n\in\mathbb{N}}(-n-1,0] \in j_s$ e $(0,+\infty) = \bigcup_{n\in\mathbb{N}}(0,n+1] \in j_s$. Dunque $A:=(-\infty,0]\times\mathbb{R}\in\eta$, $B:=(0,+\infty)\times\mathbb{R}\in\eta$, $A\cap B=\emptyset$ e $A\cup B=\mathbb{R}$. Segue che (\mathbb{R}^2,η) non è connesso.
- (2d) Sia $[0, +\infty) = \bigcup_{n \in \mathbb{N}} [0, n+1) \in j_d$ e sia $A := f^{-1}([0, +\infty)) = \{(x, y) \in \mathbb{R}^2 \mid x+y \geq 0\}$. È sufficiente provare che A non è un aperto di η . Sia $(0, 0) \in A$. La famiglia $\{(-\epsilon, 0] \times [0, \epsilon)\}_{\epsilon > 0}$ di sottoinsiemi di \mathbb{R}^2 è un sistema fondamentale di intorni di (0, 0) per η . D'altra parte, per ogni $\epsilon > 0$, $(-\epsilon/2, 0) \in ((-\epsilon, 0] \times [0, \epsilon)) \setminus A$ e quindi $(-\epsilon, 0] \times [0, \epsilon) \not\subset A$. Segue che (0, 0) non è un punto interno di A in η . In particolare A non è aperto in η e quindi f non è continua.

Esercizio 3. Sia S lo spazio topologico ottenuto come quoziente di un ottagono rispetto alle identificazioni indicate nella figura seguente.

- (3a) Si dimostri che S è una superficie compatta e la si classifichi.
- (3b) Si dica se esistono due numeri naturali g e g' tali che $T_g \,\sharp\, S$ è omeomorfo a $T_{g'} \,\sharp\, U_4$.

SOLUZIONE: (3a) La procedura di taglio/incolla mostra che S è omeomorfa alla superficie topologica U_3 .

(3d) $T_g \sharp S \simeq U_{3+2g}, T_{g'} \sharp U_4 \simeq U_{4+2g'}$ e $3+2g \neq 4+2g'$ per ogni $g,g' \in \mathbb{N}$. Dunque $T_g \sharp S$ e $T_{g'} \sharp U_4$ non sono mai omeomorfe.