

École Supérieure Privée d'Ingénierie et de Technologies

Session : Principale Documents et Internet **NON** autorisés Semestre : 1

Classes : 3^{ème} A **Techniques d'estimation pour l'ingénieur** Nombre de pages : 6

Date: 18/01/2022 Heure: 13h Durée: 1h30

Exercice 1:(6 points)

Une entreprise produit en grande quantité des batteries de voiture. Le rendement de cette entreprise est modélisé par une variable aléatoire continue X de fonction de répartition :

$$F(x) = \begin{cases} 1 - x^{-\theta} & \text{si } x > 1\\ 0 & \text{sinon,} \end{cases}$$

avec $\theta > 1$ un paramètre inconnu à estimer.

1. (2 point) Montrer que la fonction de densité de X s'écrit sous la forme :

$$f(x) = \begin{cases} \theta x^{-\theta - 1} & \text{si } x > 1\\ 0 & \text{sinon.} \end{cases}$$

- 2. (2 point) Montrer que $E(X) = \frac{\theta}{\theta 1}$.
- 3. (2 point) En déduire un estimateur $\hat{\theta}$ de θ par la méthode des moments.

Exercice 2: (14 points)

Les trois parties A, B et C peuvent être traitées de façon indépendante.

Partie A:

La durée de vie d'une batterie de voiture d'une usine locale, exprimée en mois, est une variable aléatoire X modélisée par :

$$f(x) = \begin{cases} e^{\alpha x} & \text{si } x \ge 0\\ 0 & \text{sinon,} \end{cases}$$

avec $\alpha < 0$.

- 1. (0.5 point) Soit f une densité de probabilité, montrer que $\alpha = -1$.
- 2. (0.5 point) S'agit-t-il d'une loi usuelle? Si oui, laquelle?
- 3. (0.5 point) Donner la fonction de répartition de cette loi.
- 4. (1 point) Quelle est la probabilité qu'une batterie de voiture de cette usine soit encore fonctionnelle au bout de 4 ans d'utilisation?

- 5. (1 point) Sachant qu'une des batteries de voiture est restée fonctionnelle pendant 36 mois. Quelle est la probabilité qu'elle soit encore utilisable au bout de 84 mois?
- 6. (0.5 point) Comparer les deux derniers résultats et conclure.

Partie B:

Une enquête a été menée auprès des familles rurales possédant des voitures électriques, en vue de connaître leur consommation énergétique automobile en une journée.

On suppose que sur l'ensemble des familles interrogées, le taux de consommation électrique d'une voiture en une journée, exprimé en kWh/100km, est une variable aléatoire Y qui suit une loi normale de moyenne μ et d'écart-type σ inconnus.

On interroge indépendamment 9 familles, choisies au hasard sur leur consommation énergétique journalière. On note par $(Y_1, Y_2, ..., Y_n)$ le n-échantillon correspondant. L'échantillon sélectionné a fourni les résultats suivants :

$$\sum_{i=1}^{9} y_i = 90 \quad et \sum_{i=1}^{9} (y_i - \overline{y})^2 = 32.$$

- 1. (1 point) Donner un estimateur sans biais de la moyenne et de la variance, puis calculer une estimation pour chacun des deux paramètres.
- 2. (1.5 point) Estimer par intervalle de confiance la moyenne μ pour un niveau de confiance de 95%.
- 3. (1.5 point) Estimer par intervalle de confiance la variance σ^2 pour un risque de 5%.

Partie C:

On suppose que le nombre journalier de batteries vendues par un magasin de pièces de rechange est modélisé par une variables aléatoires Z. Les ventes journalières sont supposées indépendantes.

1. Supposons que Z suit la loi de Poisson de paramètre λ dont la loi de probabilité est définie par :

$$\forall z \in \mathbb{N}, \ \mathbb{P}(Z=z) = \frac{\lambda^z}{z!} e^{-\lambda}$$

avec $\lambda > 0$.

Soient $z_1, z_2, ..., z_n, n$ —observations de l'échantillon $Z_1, Z_2, ..., Z_n$ de n variables aléatoires indépendantes et de même loi que X.

(a) (1.5 point) Montrer que la fonction de vraisemblance $L(z_1, z_2, ..., z_n; \lambda)$ est de la forme

$$L(z_1, z_2, ..., z_n; \lambda) = e^{-\lambda n} \prod_{i=1}^{n} \frac{\lambda^{z_i}}{z_i!}.$$

(b) (1 point) Montrer que le log-vraisemblance, associé aux observations $(z_1, z_2, ..., z_n)$, s'écrit

$$\ln L(z_1, z_2, ..., z_n; \lambda) = -\lambda n + \ln \lambda \sum_{i=1}^n z_i - \sum_{i=1}^n \ln(z_i!).$$

- (c) (1.5 point) Déduire l'estimateur $\hat{\lambda}$ du maximum de vraisemblance de λ .
- 2. (2 point) Lors d'un contrôle de qualité, le responsable technique envisage de prélever un échantillon de 1000 batteries vendues choisies au hasard, il trouve 12 batteries défectueuses.

Peut-on conclure qu'au seuil de risque 5%, la proportion des batteries défectueuses est inférieure à 1%? (Détailler les différentes étapes du test qu'il faut construire.)

Loi normale réduite : probabilités unilatérales

Cette table donne p tel que P(Z > a) = p , où Z est la loi normale réduite

a	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,00	0,50000	0,49601	0,49202	0,48803	0,48405	0,48006	0,47608	0,47210	0,46812	0,46414
0,10	0,46017	0,45620	0,45224	0,44828	0,44433	0,44038	0,43644	0,43251	0,42858	0,42465
0,20	0,42074	0,41683	0,41294	0,40905	0,40517	0,40129	0,39743	0,39358	0,38974	0,38591
0,30	0,38209	0,37828	0,37448	0,37070	0,36693	0,36317	0,35942	0,35569	0,35197	0,34827
0,40	0,34458	0,34090	0,33724	0,33360	0,32997	0,32636	0,32276	0,31918	0,31561	0,31207
0,50	0,30854	0,30503	0,30153	0,29806	0,29460	0,29116	0,28774	0,28434	0,28096	0,27760
0,60	0,27425	0,27093	0,26763	0,26435	0,26109	0,25785	0,25463	0,25143	0,24825	0,24510
0,70	0,24196	0,23885	0,23576	0,23270	0,22965	0,22663	0,22363	0,22065	0,21770	0,21476
0,80	0,21186	0,20897	0,20611	0,20327	0,20045	0,19766	0,19489	0,19215	0,18943	0,18673
0,90	0,18406	0,18141	0,17879	0,17619	0,17361	0,17106	0,16853	0,16602	0,16354	0,16109
1,00	0,15866	0,15625	0,15386	0,15151	0,14917	0,14686	0,14457	0,14231	0,14007	0,13796
1,10	0,13567	0,13350	0,13136	0,12924	0,12714	0,12507	0,12302	0,12100	0,11900	0,11702
1,20	0,11507	0,11314	0,11123	0,10935	0,10749	0,10565	0,10383	0,10204	0,10027	0,09853
1,30	0,09680	0,09510	0,09342	0,09176	0,09012	0,08851	0,08691	0,08534	0,08379	0,08226
1,40	0,08076	0,07927	0,07780	0,07636	0.07493	0,07353	0,07215	0,07078	0,06944	0,06811
1,50	0,06681	0,06552	0,06426	0,06301	0,06178	0,06057	0,05938	0,05821	0,05705	0,05592
1,60	0,05480	0,05370	0,05262	0,05155	0,05050	0,04947	0,04846	0,04746	0,04648	0,04551
1,70	0,04457	0,04363	0,04272	0,04182	0,04093	0,04006	0,03920	0,03836	0,03754	0,03673
1,80	0,03593	0,03515	0,03438	0,03362	0,03288	0,03216	0,03144	0,03074	0,03005	0,02938
1,90	0,02872	0,02807	0,02743	0,02680	0,02619	0,02559	0,02500	0,02442	0,02385	0,02330
2,00	0,02275	0,02222	0,02169	0,02118	0,02068	0,02018	0,01970	0,01923	0,01876	0,01831
2,10	0,01786	0,01743	0,01700	0,01659	0,01618	0,01578	0,01539	0,01500	0,01463	0,01426
2,20	0,01390	0,01355	0,01321	0,01287	0,01255	0,01222	0,01191	0,01160	0,01130	0,01101
2,30	0,01072	0,01044	0,01017	0,00990	0,00964	0,00939	0,00914	0,00889	0,00866	0,00842
2,40	0,00820	0,00798	0,00776	0,00755	0,00734	0,00714	0,00695	0,00676	0,00657	0,00639
2,50	0,00621	0,00604	0,00587	0,00570	0,00554	0,00539	0,00523	0,00508	0,00494	0,00480
2,60	0,00466	0,00453	0,00440	0,00427	0,00415	0,00402	0,00391	0,00379	0,00368	0,00357
2,70	0,00347	0,00336	0,00326	0,00317	0,00307	0,00298	0,00289	0,00280	0,00272	0,00264
2,80	0,00256	0,00248	0,00240	0,00233	0,00226	0,00219	0,00212	0,00205	0,00199	0,00193
2,90	0,00187	0,00181	0,00175	0,00169	0,00164	0,00159	0,00154	0,00149	0,00144	0,00139
3,00	0,00135	0,00131	0,00126	0,00122	0,00118	0,00114	0,00111	0,00107	0,00104	0,00100
3,10	0,00097	0,00094	0,00090	0,00087	0,00084	0,00082	0,00079	0,00076	0,00074	0,00071
3,20	0,00069	0,00066	0,00064	0,00062	0,00060	0,00058	0,00056	0,00054	0,00052	0,00050
3,30	0,00048	0,00047	0,00045	0,00043	0,00042	0,00040	0,00039	0,00038	0,00036	0,00035
3,40	0,00034	0,00032	0,00031	0,00030	0,00029	0,00028	0,00027	0,00026	0,00025	0,00024
3,50	0,00023	0,00022	0,00022	0,00021	0,00020	0,00019	0,00019	0,00018	0,00017	0,00017
3,60	0,00016	0,00015	0,00015	0,00014	0,00014	0,00013	0,00013	0,00012	0,00012	0,00011
3,70	0,00011	0,00010	0,00010	0,00010	0,00009	0,00009	0,00008	0,00008	0,00008	0,00008
3,80	0,00007	0,00007	0,00007	0,00006	0,00006	0,00006	0,00006	0,00005	0,00005	0,00005
3,90	0,00005	0,00005	0,00004	0,00004	0,00004	0,00004	0,00004	0,00004	0,00003	0,00003
4,00	0,00003	0,00003	0,00003	0,00003	0,00003	0,00003	0,00002	0,00002	0,00002	0,00002

Tableau T

Tableau de l' tel qu'une variable de Student à *dl* degrès de liberté ait probabilité p d'être supérieure à l'

						$P T \ge$	(*) - p					
di	0.25	0.2	0.15	0.1	0.05	0.025	0.02	0.01	0.005	0.0025	0.001	0.0005
1	1.000	1.376	1.963	3.078	6.314	12.71	15.89	31.82	63.66	127.3	318.3	636.6
2	.8165	1.061	1.386	1.886	2.920	4.303	4.849	6.965	9.925	14.09	22.33	31.60
3	.7649	.9785	1.250	1.638	2.353	3.182	3,482	4.541	5.841	7.453	10.21	12.92
4	.7407	.9410	1.190	1.533	2.132	2.776	2.999	3.747	4.604	5.598	7.173	8.610
5	.7267	.9195	1.156	1.476	2.015	2.571	2.757	3.365	4.032	4.773	5.893	6.869
- 6	.7176	.9057	1.134	1.440	1.943	2,447	2.612	3.143	3.707	4.317	5.208	5.959
7	.7111	8960	1.119	1.415	1.895	2.365	2.517	2.998	3.499	4.029	4.785	5.408
8	.7064	8889	1.108	1.397	1.860	2,306	2.449	2.896	3,355	3.833	4.501	5.041
9	.7027	8834	1.100	1.383	1.833	2.262	2.398	2.821	3.250	3,690	4.297	4.781
10	.6998	8791	1.093	1.372	1.812	2.728	2.359	2.764	3.169	3.581	4.144	4.587
11	.6974	8755	1.088	1.363	1.796	2.201	2.328	2.718	3.106	3,497	4.025	4.437
12	.6955	8726	1.083	1.356	1.782	2.179	2.303	2,681	3.055	3.428	3.930	4.318
13	.6938	8702	1.079	1.350	1.771	2.160	2.282	2.650	3.012	3.372	3.852	4.221
14	.6924	8681	1.076	1.345	1.761	2.145	2.264	2,624	2.977	3.326	3.787	4.140
15	.6912	8662	1.074	1.341	1.753	2.131	2.249	2,602	2.947	3.286	3.733	4.073
16	.6901	.8647	1.071	1.337	1.746	2.120	2.235	2.583	2.921	3.252	3.686	4.015
17	.6892	8633	1.069	1.333	1.740	2.110	2.224	2.567	2,898	3.222	3.646	3.965
18	.6884	8620	1.067	1.330	1.734	2.101	2.214	2.552	2.878	3.197	3.610	3.922
19	.6876	8610	1.066	1.328	1.729	2.093	2.205	2.539	2.861	3.174	3.579	3.883
20	.6870	8600	1.064	1.325	1.725	2.085	2.197	2.528	2.845	3.153	3.552	3.850
21	.6864	8591	1.063	1.323	1.721	2,080	2.189	2.518	2.831	3.135	3.527	3.819
22	.6858	8583	1.061	1.321	1.717	2.074	2.183	2.508	2.819	3.119	3.505	3.792
23	.6853	.8575	1.060	1.319	1.714	2.069	2.177	2.500	2.807	3.104	3.485	3.768
24	.6848	8569	1.059	1.318	1.711	2.064	2.172	2.492	2.797	3.091	3.467	3.745
25	.6844	8562	1.058	1.316	1.708	2.060	2.167	2.485	2.787	3.078	3.450	3.725
26	.6840	8557	1.058	1.315	1.706	2.056	2.162	2.479	2.779	3.067	3.435	3.707
27	.6837	8551	1.057	1.314	1.703	2.052	2.158	2.473	2.771	3.057	3.421	3.690
28	.6834	8546	1.056	1.313	1.701	2,048	2.154	2.467	2.763	3.047	3.408	3.674
29	.6830	8542	1.055	1.311	1.699	2.045	2.150	2.462	2.756	3.038	3.396	3.659
30	.6828	8538	1.055	1.310	1.697	2.042	2.147	2.457	2.750	3.030	3.385	3.646
40	.6807	.8507	1.050	1.303	1.684	2.021	2.123	2.423	2.704	2.971	3.307	3.551
50	.6794	8489	1.047	1.299	1.676	2.009	2.109	2.403	2.678	2.937	3.261	3.496
60	.6786	.8477	1.045	1.296	1.671	2.000	2.099	2.390	2.660	2.915	3.232	3.460
80	.6776	B461	1.043	1.292	1.664	1.990	2.088	2.374	2.639	2.887	3.195	3.416
100	.6770	.8452	1.042	1.290	1.660	1.984	2.081	2.364	2.626	2.871	3.174	3.390
1000	.6747	8420	1.037	1.282	1.646	1.962	2.056	2.330	2.581	2.813	3.098	3.300
	0.674	0.842	1.035	1.282	1.645	1.960	2.054	2.326	2.576	2.807	3.090	3.291
	0.25	0.2	0.15	0.1	0.05	0.025	0.02	0.01	0.005	0.0025	0.001	0.0005

Table de la loi du Khi-deux

Valeurs de χ^2 ayant la probabilité ${\bf P}$ d'être dépassées

ν	P = 0.995	0,99	0,975	0,95	0,90	0,10	0,05	0,025	0,01	0,005
1	0,00004	0,0002	0,001	0,0039	0,0158	2,706	3,841	5,024	6,635	7,879
2	0,010	0,020	0,051	0,103	0,211	4,605	5,991	7,378	9,210	10,597
3	0,072	0,115	$0,\!216$	0,352	0,584	6,251	7,815	9,348	11,345	12,838
4	0,207	0,297	0,484	0,711	1,064	7,779	9,488	11,143	13,277	14,860
5	0,412	0,554	0,831	1,145	1,610	9,236	11,070	12,833	15,086	16,750
6	0,676	0,872	$1,\!237$	1,635	2,204	10,645	12,592	14,449	16,812	18,548
7	0,989	1,239	1,690	2,167	2,833	12,017	14,067	16,013	18,475	20,278
8	1,344	1,646	$2{,}180$	2,733	3,490	13,362	15,507	17,535	20,090	21,955
9	1,735	2,088	2,700	3,325	4,168	14,684	16,919	19,023	21,666	23,589
10	2,156	2,558	3,247	3,940	4,865	15,987	18,307	20,483	23,209	25,188
11	2,603	3,053	3,816	4,575	5,578	17,275	19,675	21,920	24,725	26,757
12	3,074	3,571	4,404	5,226	6,304	18,549	21,026	23,337	26,217	28,300
13	3,565	4,107	5,009	5,892	7,042	19,812	22,362	24,736	27,688	29,819
14	4,075	4,660	$5,\!629$	6,571	7,790	21,064	23,685	26,119	29,141	31,319
15	4,601	5,229	$6,\!262$	7,261	8,547	22,307	24,996	27,488	30,578	32,801
16	5,142	5,812	6,908	7,962	9,312	23,542	26,296	$28,\!845$	32,000	34,267
17	5,697	6,408	$7,\!564$	8,672	10,085	24,769	27,587	30,191	33,409	35,718
18	6,265	7,015	8,231	9,39	10,865	25,989	28,869	31,526	34,805	37,156
19	6,844	7,633	8,907	10,117	11,651	27,204	30,144	32,852	36,191	38,582
20	7,434	8,260	9,591	10,851	12,443	28,412	31,410	34,170	37,566	39,997
21	8,034	8,897	10,283	11,591	13,240	29,615	32,671	35,479	38,932	41,401
22	8,643	9,542	10,982	12,338	14,041	30,813	33,924	36,781	40,289	42,796
23	9,260	10,196	11,689	13,091	14,848	32,007	35,172	38,076	41,638	44,181
24	9,886	10,856	12,401	13,848	15,659	33,196	36,415	39,364	42,980	45,559
25	10,520	11,524	13,120	14,611	16,473	34,382	37,652	40,646	44,314	46,928
26	11,160	12,198	13,844	15,379	17,292	35,563	38,885	41,923	45,642	48,290
27	11,808	12,879	14,573	16,151	18,114	36,741	40,113	43,195	46,963	49,645
28	12,461	13,565	15,308	16,928	18,939	37,916	41,337	44,461	48,278	50,993
29	13,121	14,256	16,047	17,708	19,768	39,087	42,557	45,722	49,588	52,336
30	13,787	14,953	16,791	18,493	20,599	40,256	43,773	46,979	50,892	53,672

Nota. ν est le nombre de degrés de liberté. Pour $\nu>30$, on peut admettre que la quantité $\sqrt{2\chi^2}-\sqrt{2\nu-1}$ suit la loi normale centrée réduite.