ch1-Vector-Space-01

Zhang Songxin

2021.2.7

Contents

0.0.0.1 Linear independence and basis

Definition 0.1 (linear independence). A family of vectors $\{x_i\}_{i\in I}$ is called **linear independent** if the vectors x_i are linearly independent i.e.

$$\sum_{i \in I} \alpha_i x_i = 0 \implies \alpha_i = 0 \text{ for each } i$$

Definition 0.2 (system of generators). A subset $S \subset E$ is called a system of generators of E if every vector $x \in E$ is a linear combination of vectors in S.

Proposition 0.1. 1. Every finitely generated non-trivial vector space has a finite basis.

2. Suppose that $S = \{x_1, \ldots, x_m\}$ is a finite system of generators of E and that the subset $R \subset S$ by $R = \{x_1, \ldots, x_r\}$ $(r \leq m)$ consists of linearly independent vectors. Then there exists a basis T of E s.t. $R \subset T \subset S$.

Proof. Just need to notice that every basis is the system of generators, and it is a minimal one.

Theorem 0.1. Let E be a non-trivial vector space. Suppose S is a system of generators and R is a family of linearly independent vectors in E s.t. $R \subset S$. Then there exists a basis T of E s.t. $R \subset T \subset S$.

Proof. Consider the partially order defined between R and S, find some $X \subset E$ s.t.

- $R \subset X \subset S$
- the vectors in X are linearly independent.

We note this partially order as $\mathcal{P}(R, S)$.

Notice that for every chain $\{X_{\alpha}\}\subset \mathcal{P}(R,S)$ has a maximal element $A=\bigcup_{\alpha}X_{\alpha}$. It is obvious that $A\in \mathcal{P}(R,S)$ (Notice that $R\subset A\subset S$ and the property of a chain of the set that contains linearly independent vectors.)

So we prove that every chain $\{X_{\alpha}\}\subset \mathcal{P}(R,S)$ has a upper bound in $\mathcal{P}(R,S)$, so Zorn's Lemma implies that there exists a maximal element $T\in \mathcal{P}(R,S)$ s.t. vectors in T are linearly independent.

Then we just need to show that T generates E. Give $x \in E$, suppose that x is linearly independent to vectors in T. Notice that S generates E, so

$$x = \sum_{i \in I'} \alpha_i x_i \qquad \text{for some } x_i \in S$$

If x is linearly independent to vectors in T then exists some $i \in I'$ s.t. x_i is linearly independent to vectors in T and note this set as $\{x_j\}_{j\in J} \subset S$, consider the set $\{x_j\}_{j\in J} \cup T \supsetneq T$ which leads to a contradiction of the maxmality of T. So T is a basis of E.

Corollary 0.1. 1. Every system of generators of E contains a basis. In particular, every non-trivial vector space has a basis.

2. Every family of linearly independent vectors of E can be extended to a basis.

0.0.0.2 Free vector space Let X be an arbitrary set and consider all maps $f: X \to \mathbb{K}$ s.t. $f(x) \neq 0$ only for finitely many $x \in X$, denoting the set of these maps by F(X), it is easy to show that F(X) is a vector space.

Now give a basis of F(X). For any $a \in X$, let f_a be:

$$f_a(x) = \begin{cases} 1 & x = a \\ 0 & x \neq a \end{cases}$$

Then $\{f_a\}_{a\in X}$ forms a basis of F(X).

F(X) is called the **free vector space over** X.

0.0.0.3 Linear mappings

Definition 0.3 (linear mapping). Suppose that E and F are vector spaces, and let $\phi: E \to F$ be a set mapping s.t.

$$\phi(x+y) = \phi(x) + \phi(y)$$
 for all $x, y \in E$

and

$$\phi(\alpha x) = \alpha \phi(x)$$
 for all $\alpha \in \mathbb{K}, x \in E$

Then we call the mapping ϕ satisfying above conditions linear mappings. Moreover, if $F = \mathbb{K}$, then we called ϕ a **linear function** on E.

Corollary 0.2. Linear mappings preserve linear relations.

Proof. Suppose ϕ be a linear mappings, and let $u = \alpha x + \beta y \in E$, then

$$\phi(u) = \phi(\alpha x + \beta y) = \alpha \phi(x) + \beta \phi(y)$$

Let $\phi: E \to F, \psi: F \to G$ be linear mappings, then the composition of them $\psi \circ \phi: E \to G$ is defined by:

$$(\psi \circ \phi)(x) = \psi(\phi(x))$$

It is easy to show that $\psi \circ \phi$ is still a linear mapping.

Proposition 0.2. Suppose S is a system of generators of E and $\phi_0: S \to F$ where F is also a vector space. Then ϕ_0 can be extended in at most one way to linear mapping $\phi: E \to F$. And the extension exists iff such an extension is that

$$\sum_{i} \alpha_{i} \phi_{0} \left(x_{i} \right) = 0$$

whenever $\sum_{i} \alpha_i x_i = 0$.

Proof. $\bullet \implies$: Suppose ϕ to be a linear mapping and it is the extension of ϕ_0 , then $\phi\left(\sum_{i=1}^n \alpha_i x_i\right) = \sum_{i=1}^n \alpha_i \phi\left(x_i\right)$ for each $x_i \in E$. And for each $x_i \in S$,

$$\phi\left(\sum_{i=1}^{n} \alpha_{i} x_{i}\right) = \sum_{i=1}^{n} \alpha_{i} \phi\left(x_{i}\right) = \sum_{i=1}^{n} \alpha_{i} \phi_{0}\left(x_{i}\right)$$

so $\phi(0) = \phi_0(0) = 0$.

• \Leftarrow : For any $x \in E$, define there exists some $\{x_i\}_{i \in I} \subset S$ s.t. $x = \sum_{i \in I} \alpha_i x_i$. Define

$$\phi\left(x\right) = \sum_{i \in I} \alpha_i \phi_0\left(x_i\right)$$

It is obvious that ϕ is that linear mapping.

Notice that if S is a basis of E, let ϕ_0 be a set map from S to E, then ϕ_0 can be extended in a unique way to a linear mapping $\phi: E \to F$.

Proposition 0.3. Let $\phi: E \to F$ be a linear mapping and $\{x_{\alpha}\}$ be a basis of E. Then ϕ is a linear isomorphism iff the vectors $y_{\alpha} = \phi(x_{\alpha})$ form a basis for F.

Proof. • \Longrightarrow : As ϕ is a linear isomorphism, so for any $y \in F$, there exists a unique $x \in E$ s.t. $x = \phi^{-1}(y)$. Notice that $\{x_{\alpha}\}$ is a basis, so $x = \sum_{\alpha} a_{\alpha} x_{\alpha}$ for some a_{α} , so $y = \phi(x) = \phi(\sum_{\alpha} a_{\alpha} x_{\alpha}) = \sum_{\alpha} a_{\alpha} \phi(x_{\alpha})$. That means $\{\phi(x_{\alpha})\}$ generates F. Then we need to prove the linear independence. Let $\sum_{\alpha} \lambda_{\alpha} x_{\alpha} = 0$, then $\lambda_{\alpha} = 0$ for each α . Then let $\sum_{\alpha} \gamma_{\alpha} \phi(x_{\alpha}) = 0$, then

$$\sum_{\alpha} \gamma_{\alpha} \phi(x_{\alpha}) = \phi\left(\sum_{\alpha} \gamma_{\alpha} x_{\alpha}\right) = 0$$

so $\sum_{\alpha} \gamma_{\alpha} x_{\alpha} = 0$ which means $\gamma_{\alpha} = 0$ for each α . So $\{\phi(x_{\alpha})\}$ is a basis of F.

• \Leftarrow : Let $\{y_{\alpha} = \phi(x_{\alpha})\}$ be a basis of F, then for each $y \in F$, there exists a unique components (λ_{α}) s.t. $\sum_{\alpha} \lambda_{\alpha} y_{\alpha} = y$. Then we have

$$\sum_{\alpha} \lambda_{\alpha} \phi(x_{\alpha}) = \phi\left(\sum_{\alpha} \lambda_{\alpha} x_{\alpha}\right) = \phi(x)$$

for some unique $x \in E$.

0.0.0.4 Subspace and factor space

Definition 0.4 (Subspace). Let X be a vector space and let $A \subset X$ be a subset of X. Then A is called a subspace if A is also a vector space.

Let S be a non-empty subset of X and there exists a set, noting as X_S , is the linear combination of any vectors in S, X_S is truly a subspace which is called **the subspace generated by** S or **linear closure** of S.

Proposition 0.4. Let A_1, A_2 be two subspaces of the vector space X and suppose that $A_1 \cap A_2 \neq \emptyset$ then $A_1 \cap A_2$ is still a subspace of X.

Definition 0.5 (sum of subspace). Let A_1, A_2 be two subspaces of a vector space X, then $\{x = x_1 + x_2 : x_1 \in A_1, x_2 \in A_2\}$ is called the **sum of** A_1 **and** A_2 , denote as $A_1 + A_2$. It is easy to determine that $A_1 + A_2$ is still a subspace of X

Notice that the decomposition is not determined uniquely.

Let $x = x_1 + x_2 = x_1' + x_2'$, then $x_1 - x_1' = x_2 - x_2' = z \in A_1 \cap A_2$. Only if $A_1 \cap A_2 = \{0\}$, then $x = x_1 + x_2$ is uniquely determined. In this time, we called that sum as **direct sum** of A_1 and A_2 , denote as $A_1 \oplus A_2$.

Proposition 0.5. • Let A_1 , A_2 be subspaces of X and let S_1 , S_2 be systems of generators of A_1 and A_2 , then $S_1 \cup S_2$ generates $A_1 + A_2$.

• Suppose that $A_1 \cap A_2 = \{0\}$ and T_1, T_2 are basis of A_1, A_2 , then $T_1 \cup T_2$ is the basis of $A_1 \oplus A_2$.

Proof. Give any $x \in A_1 + A_2$, then $x = x_1 + x_2$ for some $x_1 \in A_1, x_2 \in A_2$. $x_1 = \sum_{\alpha} \lambda_{\alpha} x_{\alpha}$ for some $x_{\alpha} \in S_1$ and $x_2 = \sum_{\beta} \gamma_{\beta} x_{\beta}$ for some $x_{\beta} \in S_2$, so $x = \sum_{\alpha} \lambda_{\alpha} x_{\alpha} + \sum_{\beta} \gamma_{\beta} x_{\beta}$, notice that every $x_{\alpha}, x_{\beta} \in S_1 \cup S_2$, so $S_1 \cup S_2$ generates $A_1 + A_2$.

Now we need to prove that $T_1 \cup T_2$ is linearly independent.

Notice that $T_1 \subset A_1, T_2 \subset A_2, A_1 \cap A_2 = \{0\}$, so $T_1 \cap T_2 = \{0\}$. So consider $x \in A_1 \oplus A_2, x = \sum_{\alpha} \lambda_{\alpha} x_{\alpha} + \sum_{\beta} \gamma_{\beta} x_{\beta} = 0$, then $A_1 \ni x_1 = \sum_{\alpha} \lambda_{\alpha} x_{\alpha} = -\sum_{\beta} \gamma_{\beta} x_{\beta} = x_2 \in A_2$, so $x_1 = x_2 = 0$, then as the property of basis, $\lambda_{\alpha} = 0$ for all α and $\gamma_{\beta} = 0$ for all β .

1