Last time we saw the sacred formula

$$\dim V = \dim \ker \phi + \dim \operatorname{Im} \phi$$

where $\phi: V \to W$ is a linear map.

And we mentioned that V could be "chopped up" into two pieces: $\ker \varphi$ and some other subspace U, where φ was injective. Let's make this chopping thing rigorous.

Example 1. Let $\begin{pmatrix} 1 \\ 1 \end{pmatrix} \in \mathbb{R}^2$, $\begin{pmatrix} -1 \\ 1 \end{pmatrix} \in \mathbb{R}^2$. They form a basis, this means that given any $\vec{v} \in \mathbb{R}^2$, there are α , b such that

$$\vec{v} = \alpha \begin{pmatrix} 1 \\ 1 \end{pmatrix} + b \begin{pmatrix} -1 \\ 1 \end{pmatrix}.$$

Let us rephrase this a little. Call $U := Span\{\begin{pmatrix} 1 \\ 1 \end{pmatrix}\}$, $W := Span\{\begin{pmatrix} -1 \\ 1 \end{pmatrix}\}$. Then

where
$$\vec{\mathbf{u}} = \mathbf{a} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $\vec{w} = \mathbf{b} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$. Notice $\vec{\mathbf{u}} \in \mathbf{U}$ and $\vec{w} \in \mathbf{W}$.

In the example above, we saw that any vector \vec{v} may be "broken up" into a sum $\vec{u} + \vec{w}$ where $\vec{u} \in U, \vec{w} \in W$.

Let's make this definition.

Definition 2. Let V be a vector space. Let $U, W \subset V$ be subspaces. We define their *sum* to be

$$U + W := \{ \vec{v} \in V \mid \exists \vec{u} \in U, \vec{w} \in W, \vec{v} = \vec{u} + \vec{w} \}$$
$$:= \{ \vec{u} + \vec{w} \mid \vec{u} \in U, \vec{w} \in W \}$$

When $U \cap W = \{\vec{0}\}\$, we say U and W are in *direct sum* and write $U \oplus W$.

Remark 3. If U, W < V are subspaces, then $U \cap W$ is also a subspace.

Proposition 4. U + W is a subspace.

Proposition 5. If
$$U = \text{Span}\{\vec{u}_1, \dots, \vec{u}_r\}, W = \text{Span}\{\vec{w}_1, \dots, \vec{w}_s\}$$
 then
$$U + W = \text{Span}\{\vec{u}_1, \dots, \vec{u}_r, \vec{w}_1, \dots, \vec{w}_s\}$$

Let's see an example.

Date: John Calabrese, October 11, 2017.

I

Example 6. Take $U = \text{Span}\left\{\begin{pmatrix} 1\\1\\0 \end{pmatrix}\right\}$, $W = \text{Span}\left\{\begin{pmatrix} -1\\1\\0 \end{pmatrix}\right\}$. What is U + W? Notice that U + W is the xy-plane.

What is $U \cap W$? Notice that $U \cap W = \{\vec{0}\}$. So $U \oplus W$ (they are in direct sum), however $U \oplus W \neq \mathbb{R}^3$.

Example 7. Take
$$U := \operatorname{Span}\left\{\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}\right\}, W := \left\{\begin{pmatrix} 0 \\ -1 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix}\right\}.$$
 What is $U + W$? Well, certainly
$$\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}\right\}, \left\{\begin{pmatrix} 0 \\ -1 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix}\right\} \in U + W$$

and Span
$$\left\{ \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 0 \\ -1 \\ -1 \end{pmatrix} \right\} = \mathbb{R}^3$$
. Hence, $U + W = \mathbb{R}^3$.

What is $U \cap W$? Well, $\begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} \in W$, so $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \in W$. Therefore $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \in U \cap W$. Hence, Span $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \in W$.

 $U \cap W$. That is, the x-axis is contained in $U \cap W$. However, a picture suggests $U \cap W$ is the x-axis. More on this later.

One last example.

Example 8. Consider

$$U := \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \right\}$$
$$= \left\{ \begin{pmatrix} x \\ y \\ 0 \\ 0 \end{pmatrix} \mid x, y \in \mathbf{R} \right\}$$
$$W := \operatorname{Span} \left\{ \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\}$$
$$= \left\{ \begin{pmatrix} 0 \\ 0 \\ s \\ t \end{pmatrix} \mid s, t \in \mathbf{R} \right\}$$

3

Notice that $U + W = \mathbb{R}^4$ and $U \cap W = \{\vec{j}\}$. So, in four dimensions there is enough space to find two planes intersecting *only* at the origin.

Here is another awesome formula.

Theorem 9. Let V be a vector space. Let U, W < V be subspaces. Then

$$\dim(U+W) = \dim U + \dim W - \dim(U \cap W)$$

Proof. Let's give an idea. First, pick a basis $\vec{v}_1, \dots, \vec{v}_\alpha$ of $U \cap W$. Extend it to a basis $\vec{v}_1, \dots, \vec{v}_\alpha, \vec{u}_1, \dots, \vec{u}_r$ of U. Extend it to a basis $\vec{v}_1, \dots, \vec{v}_\alpha, \vec{w}_1, \dots, \vec{w}_s$ of W. Notice that,

$$\dim U \cap W = a, \dim U = a + r, \dim W = a + s.$$

We want to show that

$$\dim U + W = \dim U + \dim W - \dim U \cap W = (\alpha + r) + (\alpha + s) - \alpha = \alpha + r + s.$$

How to show this? We already have a candidate basis for U+W, namely $\vec{v}_1, \dots, \vec{v}_{\alpha}, \vec{u}_1, \dots, \vec{u}_r, \vec{w}_1, \dots, \vec{w}_s$. So, it suffices to show that:

$$U + W = \operatorname{Span}\{\vec{v}_1, \dots, \vec{v}_{\alpha}, \vec{u}_1, \dots, \vec{u}_r, \vec{w}_1, \dots, \vec{w}_s\}$$

and $\vec{v}_1,\ldots,\vec{v}_\alpha,\vec{u}_1,\ldots,\vec{u}_r,\vec{w}_1,\ldots,\vec{w}_s$ are linearly independent.

The first is easy (try it!), the second is not hard but a little tricky (try it!).