A model for in-host viral infection dynamics

Satvik Saha

1 Model descriptions

1.1 Agent based model

Let $n, m \in \mathbb{N}$. For each $i \in \{1, ..., n\}$, $j \in \{1, ..., m\}$. Consider the following system.

$$\frac{dT_i}{dt} = b - \delta T_i - \frac{\kappa}{1 + \alpha A_i} T_i V_i,\tag{1}$$

$$\frac{dT_i^*}{dt} = \frac{\kappa}{1 + \alpha A_i} T_i V_i - q T_i^*, \tag{2}$$

$$\frac{dV_i}{dt} = pT_i^* - cV_i - c_A A_i V_i - X_i(t) + g\left(W_i + \sum_{j=1}^m \eta_{ij} Z_j\right),\tag{3}$$

$$\frac{dA_i}{dt} = b_A - \delta_A A_i + \kappa_A A_i (t - \tau) V_i (t - \tau), \tag{4}$$

(5)

$$\frac{dZ_j}{dt} = \sum_{i=1}^n \xi_{ij} V_i - \delta_Z Z_j,\tag{6}$$

$$W_i(t) = \zeta \sum_{k=1}^{n} Y_{ik}(\lfloor t \rfloor) V_k(\lfloor t \rfloor), \tag{7}$$

$$g(x) = x \mathbf{1}_{(v,\infty)}(x). \tag{8}$$

Here, we define random variables $X_i(t) \sim \text{Exp}(\lambda)$, $Y_{ik}(|t|) \sim \text{Bernoulli}(s_{ik} p_{\text{inf}})$.

The parameters ξ_{ij} , η_{ij} are to be thought of as weights linking agents with their environments; the parameters s_{ik} are to be thought of as strengths of connections between agents forming a network.

The model state is described by $(T, T^*, V, A, W, Z) \in \mathcal{S} \equiv \mathbb{R}^{3n}_{\geq 0} \times \mathcal{C}_{\tau} \times \mathcal{C}_{\tau} \times \mathbb{R}^m_{\geq 0}$, with $\mathcal{C}_{\tau} \equiv \mathcal{C}(0, \tau), T \equiv (T_1, \dots, T_n)$, and so on.

The model parameters are $(b, \delta, \kappa, q, p, c, b_A, \delta_A, \kappa_A, c_A, \alpha, \tau, \delta_Z, v, \lambda, p_{\text{inf}}, \zeta, \eta, \xi, s) \in \mathcal{P} \equiv \mathbb{R}^{17}_{\geq 0} \times \mathbb{R}^{mn}_{\geq 0} \times \mathbb{R}^{mn}_{\geq 0} \times [0, 1]^{n \times n}$, with $\eta \equiv [\eta_{ij}]_{ij}$, $\xi \equiv [\xi_{ij}]_{ij}$, and $s \equiv [s_{ik}]_{ik}$.

Table 1: Model state variables

Variable	Units	Interpretation
\overline{T}	cells/ml	Concentration of target cells
T^*	$\mathrm{cells/ml}$	Concentration of infected cells
V	copies/ml	Concentration of viral copies
A	$\mathrm{imm/ml}$	Antibody/immunity level
W	copies/ml	Contact pressure of viral copies
Z	$\mathrm{copies/m^2}$	Environmental viral copies

Table 2: Model parameters

Parameter	Units	Interpretation
\overline{b}	$cells ml^{-1}day^{-1}$	Generation rate of target cells
δ	day^{-1}	Death rate of target cells
κ	$\mathrm{cells^{-1}ml\ day^{-1}}$	Infection rate of target cells
q	day^{-1}	Death rate of infected cells
p	$copies cells^{-1}day^{-1}$	Production rate of viral copies
c	day^{-1}	Clearance rate of viral copies
b_A	$imm ml^{-1}day^{-1}$	Generation rate of antibodies
δ_A	day^{-1}	Clearance rate of antibodies
κ_A	$copies^{-1}ml day^{-1}$	Production rate of antibodies
c_A	$\mathrm{imm}^{-1}\mathrm{ml}\ \mathrm{day}^{-1}$	Clearance rate of viral copies via antibodies
α	$\mathrm{imm^{-1}ml}$	Inhibition of viral-target contact
au	day	Delay in antibody production
δ_Z	day^{-1}	Removal rate of viral copies
v	$copies ml^{-1}$	Entry threshold of viral concentration
λ	$copies^{-1}ml day$	Reciprocal of mean of stochastic viral removal
p_{inf}	_	Probability of viral load transfer
ζ	_	Fraction of viral load transferred
η_{ij}	copies $ml^{-1}cells^{-1}m^2 day^{-1}$	Environment-Agent transmission rate of virus
ξ_{ij}	$copies^{-1}ml cells m^{-2} day^{-1}$	Viral shedding rate into environment
s_{ik}	_	Strength of contact between agents

After choosing thresholds V^{\prime} and $A^{\prime},$ we can count

$$S = \sum_{i=1}^{n} \mathbf{1}(A \le A') \mathbf{1}(V \le V')$$

$$I = \sum_{i=1}^{n} \mathbf{1}(V > V'),$$
(9)

$$I = \sum_{i=1}^{n} \mathbf{1}(V > V'), \tag{10}$$

$$R = n - S - I. (11)$$

1.2 In-host submodel

Consider the in-host model described below.

$$\begin{split} \frac{dT}{dt} &= b - \delta T - \frac{\kappa}{1 + \alpha A} TV, \\ \frac{dT^*}{dt} &= \frac{\kappa}{1 + \alpha A} TV - qT^*, \\ \frac{dV}{dt} &= pT^* - cV - c_A AV, \\ \frac{dA}{dt} &= b_A - \delta_A A + \kappa_A A(t - \tau)V(t - \tau). \end{split}$$

Solving for an equilibrium, we demand

$$\frac{\kappa}{1+\alpha A}TV = b - \delta T = qT^*, \qquad pT^* = (c + c_A A)V, \qquad b_A - \delta_A A = -\kappa_A AV.$$

Thus,

$$\frac{p}{q}(b - \delta T) = -\frac{(c + c_A A)(b_A - \delta_A A)}{\kappa_A A},$$

whence

$$T = \frac{b}{\delta} + \frac{q(c + c_A A)(b_A - \delta_A A)}{p \delta \kappa_A A}.$$

Furthermore,

$$1 + \alpha A = \frac{\kappa TV}{b - \delta T} = -T \frac{(b_A - \delta_A A)/\kappa_A}{(b - \delta T)/\kappa},$$

whence

$$\frac{b - \delta T}{\kappa T} = -\frac{b_A - \delta_A A}{\kappa_A (1 + \alpha A)}.$$

Thus,

$$T = \frac{q(c + c_A A)(1 + \alpha A)}{p\kappa A}.$$

This gives

$$\frac{b}{\delta} = \frac{q(c + c_A A)}{pA} \left[\frac{1 + \alpha A}{\kappa} - \frac{b_A - \delta_A A}{\delta \kappa_A} \right].$$

Putting $T_0 = b/\delta$, $T = b_A/\delta_A$, we have

$$pAT_0 = q(c + c_A A) \left[\frac{1 + \alpha A}{\kappa} - \frac{\delta_A (A_0 - A)}{\delta \kappa_A} \right],$$

whence

$$p\kappa T_0 A = q(c + c_A A) \left[1 - \frac{\kappa/\delta}{\kappa_A/\delta_A} A_0 + \left(\alpha + \frac{\kappa/\delta}{\kappa_A/\delta_A} \right) A \right].$$

Setting $\beta = (\kappa/\delta)/(\kappa_A/\delta_A)$, r = p/q, $\gamma = c_A/c$, we have

$$\kappa r T_0 A = c(1 + \gamma A)[1 - \beta A_0 + (\alpha + \beta)A].$$

Thus.

$$\gamma(\alpha + \beta)A^{2} + [\gamma(1 - \beta A_{0}) + (\alpha + \beta) - \kappa r T_{0}/c]A + (1 - \beta A_{0}) = 0,$$

or

$$A^{2} + \left[\frac{1 - \beta A_{0}}{\alpha + \beta} + \frac{1}{\gamma} - \frac{\kappa r T_{0}}{c\gamma(\alpha + \beta)}\right] A + \frac{1 - \beta A_{0}}{\gamma(\alpha + \beta)} = 0.$$

1.3 Multiscale model

$$\frac{dS}{dt} = -\beta_I(V, I)SI - \beta_Z(Z)SZ + \mu R,$$
(12)

$$\frac{dI}{dt} = \beta_I(V, I)SI + \beta_Z(Z)SZ - \gamma I, \tag{13}$$

$$\frac{dR}{dt} = \gamma I - \mu R,\tag{14}$$

$$(15)$$

$$\frac{dZ}{dt} = \xi I - \delta_Z Z,\tag{16}$$

$$\epsilon \frac{dT}{dt} = b - \delta T - \frac{\kappa}{1 + \alpha A} TV, \tag{18}$$

$$\epsilon \frac{dT^*}{dt} = \frac{\kappa}{1 + \alpha A} TV - qT^*, \tag{19}$$

$$\epsilon \frac{dV}{dt} = \eta Z + pT^* - cV - c_A AV, \tag{20}$$

$$\epsilon \frac{dA}{dt} = b_A - \delta_A A + \kappa_A A(t - \tau) V(t - \tau). \tag{21}$$

Here,

$$\beta_I(V, I) = \frac{\beta_{I0} + C_0 V}{1 + C_1 I}, \qquad \beta_Z(Z) = \frac{\beta_{Z0}}{1 + C_2 Z}.$$

1.4 SIRS model

$$\frac{dS}{dt} = -\frac{\beta SI}{N} + \mu R,\tag{22}$$

$$\frac{dI}{dt} = \frac{\beta SI}{N} - \gamma I,\tag{23}$$

$$\frac{dR}{dt} = \gamma I - \mu R. \tag{24}$$

Here, N = S + I + R.

2 Objectives

- 1. Compare the S, I, R curves with those obtained from a simplified model with one agent and one environment.
- 2. Identify/interpret infection phases (S, I, R) using the in-host variables (T, T^*, V, A) .
- 3. Investigate the effects of heterogeneity in the agents and their contact network. For instance,
 - (a) In-host parameters may be varied across agents, forming two or more groups.
 - (b) Groups of agents may be vaccinated.
- 4. Investigate the effect of the stochastic term $X_i(t)$ in the in-host model.

3 Observations

- 1. The agent based model (1.1) is capable of producing infection curves with multiple waves/peaks.
- 2. Averaged infection curves from model (1.1) also show multiple peaks; the curve up to the first peak fits well against the SIRS model (1.4).
- 3. Individuals in model (1.1) become 'infected' when a pulse is applied on W_i . The viral load V_i rapidly increases, which after a short delay leads to a rapid increase in the antibody/immunity A_i . This V_i to fall sharply to zero. A_i gradually drops back to its baseline level. A sufficiently elevated A_i confers 'immunity' to the individual, preventing reinfection. The probability of reinfection, as a function of time since infection, can be calculated.

Figure 1: Infection curves, by varying infection probabilities p_{inf} .

Figure 2: Number of runs (out of 100) with n peaks in the infection curve, by varying infection probabilities p_{\inf}