

Bachelorarbeit

cand. el. Emilio Rivera

Institutsleitung

Prof. Dr.-Ing. Dr. h. c. J. Becker Prof. Dr.-Ing. E. Sax Prof. Dr. rer. nat. W. Stork **Betreuer** M.Sc. Benedikt Haas

Bewertung und Vergleich verschiedener Arten faltender künstlicher neuronaler Netze hinsichtlich der automatisierten Fehlererkennung kardiovaskulärer Implantate basierend auf Kamerabildern und Deep Learning

Gliederung

- Motivation und Zielsetzung
- Grundlagen
- Fehlererkennung
 - Bildvorverarbeitung
 - Analyse des Picks
 - Bewertung und Vergleich der Architekturen
- Fazit und Ausblick

Motivation

- 195.690 Todesfälle in 2019 an einer Herzerkrankung [1]
- Stents vermeiden eine Verstopfung bzw. ein Zusammenfallen von Gefäßen
- Visuelle Inspektion durch Menschen
 - Zeitaufwendig
 - Fehleranfällig
- Automatisierung des Prozesses
 - Niedrigere Kosten und Materialverbrauch
 - Qualitätssicherung

Bild entnommen aus [2]

Stents

- Herstellung
 - Drehender Ring mit Klöppeln
 - Klöppel drehen sich entgegengesetzt

Merkmale:

- Flechtwinkel
- Picklänge

Zielsetzung

- Überprüfung der Stent-Geometrie anhand der Picklänge basierend auf Kamerabildern
 - Geeignete Bildvorverarbeitung
 - Implementierung der faltenden künstlichen neuronalen Netze
 - Evaluierung der Netze
 - Vergleich
 - Abschließende Fehlerlokalisierung

Ursprüngliches Bild aus [3]

Faltende neuronale Netze (CNNs)

- Vorwärtsgekoppelte Netzwerkarchitekturen
- Besonders für Bilderanalyse geeignet
- Convolutional Layer → Faltungsoperation
- Pooling Layer
 - Max Pooling, Average Pooling
- Fully Connected Layer

Sichtprüfung der Stents während der Produktion

Sichtprüfung der Stents während der Produktion

Histogrammausgleich

- Kontrasterhöhung
- Adaptiver Histogrammausgleich (AHE)
 - Mehrere Histogramme
 - Abgeleitet aus Nachbarschaftsbereich
- Kontrastbegrenzter adaptiver Histogrammausgleich (CLAHE)
 - Begrenzung der Verstärkung

Ursprüngliches Bild aus [3]

Datensatz

- Aufnahmen: 23.527
- Augmentierte Bilder: 3892
- → Gesamt verwendbar: 8683
- Min. Picklänge: 40 Pixel, Max. Picklänge: 219 Pixel
- Normalisieren und Aufteilen der Daten
 - Trainingsdatensatz
 - Validierungsdatensatz
 - **Testdatensatz**

Auswahl von neuronalen Netzen

- Bildklassifizierung, Objekterkennung, Segmentierung
- AlexNet (2012)
- VGG (2014)
- ResNetV2 (2016)
- Inception-v4 (2017)
- Inception-ResNet-v2 (2017)
- Xception (2017)
- MobileNetV3 (2019)
- EfficientNet (2019)

Ursprüngliches Bild aus [5]

Ergebnisse und Vergleich

Architektur	Trainingsdauer
VGG19	15h 48m 28s
AlexNet	4h 55m 54s
EfficientNet B2	16h 56m 49s
Inception-ResNet-v2	20h 32m 46s
Xception	12h 30m 33s

Fehler zu Rechenzeit

Architektur	Fehler (Pixel)	Rechenzeit pro Bild (ms)
VGG19	1,764	18,9
MNV3 large	1,924	8,2
MNV3 small	2,634	7,6

Architektur	Trainingsdauer
VGG19	15h 48m 28s
MNV3 large	14h 5m 24s
MNV3 small	22h 4m 32s

Fehlerbestimmung

- Gegeben: Sollwert, Toleranz
- Fehler anhand Abweichung und Toleranz

Toleranzwert

- Je höher die Toleranz
 - Weniger angebliche Fehler werden angezeigt
 - Geringere Genauigkeit
- Vorgaben Industriepartner
 - Optimal: $l_1 = 0.01$ mm $\triangleq 0.23$ Pixel
 - Gut: $l_2 = 0.02$ mm $\triangleq 0.46$ Pixel
 - Ausreichend: $l_3 = 0.05$ mm $\triangleq 1.15$ Pixel

Fazit und Ausblick

- Ergebnisse:
 - Unterschiedliche Netzwerkarchitekturen
 - Bewertung und Vergleich der Netze → VGG19: 0,077mm
 - Zielzahlen schwer zu erzielen
- Ausblick:
 - Hyperparameteroptimierung
 - Erweiterung des Datensatzes mit anderen Flechtwinkeln, Lichtverhältnissen, Hintergründen

Vielen Dank für Ihre Aufmerksamkeit!

Backup – Histogrammausgleich

Ursprüngliches Bild

Histogrammausgleich

AHE

CLAHE

Backup – Trainingsverlauf (VGG19)

Backup – Netzwerkanwendungen

Architektur	Klassifizierung	Objekterkennung	Segmentierung	Sonstige
AlexNet	\checkmark			Quantisierung
VGG	\checkmark			Superauflösung
ResNetV2	✓		✓	Covid-19 Diagnose
Inception-v4	\checkmark		\checkmark	Läsionssegmentierung
Inception-ResNet-v2	\checkmark	✓		Maschinenübersetzung
Xception	\checkmark	\checkmark		Läsionssegmentierung
MobileNetV3	✓	✓	✓	Objektverfolgung
EfficientNet	✓	✓	✓	Covid-19 Diagnose

Backup – Trainingsergebnisse

Architektur	Fehler (Pixel)	Fehler (mm)
VGG19	1,764	0,077
MobileNetV3 large	1,924	0,084
ResNet101V2	1,988	0,086
ResNet50V2	2,045	0,089
VGG16	2,085	0,091
MobileNetV3 small	2,634	0,115
Xception	3,020	0,131
EfficientNet B2	3,242	0,141
Inception-ResNet-v2	3,311	0,144
EfficientNet B1	4,206	0,183
EfficientNet B0	5,612	0,244
Inception-v4	6,840	0,297
AlexNet	11,167	0,486

Backup – Vergleichsfaktoren

Architektur	Fehler (Pixel)	Fehler (mm)	Rechenzeit pro Bild (ms)	Trainingsdauer
VGG19	1,764	0,077	18,9	15h 48m 28s
MobileNetV3 large	1,924	0,084	8,2	14h 5m 24s
ResNet101V2	1,988	0,086	19,3	18h 15m 18s
ResNet50V2	2,045	0,089	11,9	13h 24m 31s
VGG16	2,085	0,091	16,2	8h 40m 55s
MobileNetV3 small	2,634	0,115	7,6	22h 4m 32s
Xception	3,020	0,131	12,2	12h 30m 33s
EfficientNet B2	3,242	0,141	12,3	16h 56m 49s
Inception-ResNet-v2	3,311	0,144	26,6	20h 32m 46s
EfficientNet B1	4,206	0,183	11,9	10h 52m 11s
EfficientNet B0	5,612	0,244	9,6	7h 26m 50s
Inception-v4	6,840	0,297	20,6	12h 7m 27s
AlexNet	11,167	0,486	6,6	4h 55m 54s

Verweise

- [1]: https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Gesundheit/Todesursachen/Tabellen/sterbefaelle-herz-kreislauferkrankungen-insgesamt.html (Abgerufen am: 05.03.2021, 10:46)
- [2]:https://www.destatis.de/DE/Presse/Pressemitteilungen/Grafiken/Gesundheit/ 2021/ Statisch/20210203-sterbefaelle-2019.png?___blob=poster (Abgerufen am: 14.04.2021, 20:57)
- [3]: Stents4Tomorrow, Project coordinator: Marc Bräuner, ADMEDES GmbH
- [4]: Rikiya Yamashita; Mizuho Nishio; Richard Kinh Gian Do; Kaori Togashi. Convolutional neural networks: ann overview and application in radiology. Insights into Imaging, 9:611–629, 2018
- [5]: https://github.com/ayoolaolafenwa/PixelLib (Abgerufen am: 17.04.2021, 20:07)

Emilio Rivera – Bewertung und Vergleich verschiedener Arten faltender künstlicher neuronaler Netze hinsichtlich

der automatisierten Fehlererkennung kardiovaskulärer Implantate basierend auf Kamerabildern und Deep Learning