Math 112 Exam 03

2022-04-14 (R)

Your name: Grader's Solutions

Figure 1: Graphs for Exercise 1.

(10 pt) True/False. For each of the following statements, circle whether it is true or false. No justification is necessary.

For parts (a)–(b), let $g : \mathbf{R} \to \mathbf{R}$ be the function given by $g(x) = \sin x$, graphed in Figure 1.

(a)
$$(2 \text{ pt}) \int_{-\pi}^{\pi} g(x) dx = 0$$
 Check $g \cap g \cap h$

false
$$\int_{-g}^{g} s(n(x) dx) dx$$

(b) (2 pt) For every positive real number
$$\alpha$$
, $\int_{-\alpha}^{\alpha} g(x) \ dx = 0$.

= 0. -(OS(A)) = 0false -(OS(A) + (OS(-A)) = 0

For parts (c)–(e), let $f:[0,2\pi] \to \mathbb{R}$ be a continuous function, and let $F:[0,2\pi] \to \mathbb{R}$ be the cumulative signed area function graphed in Figure 1, given by

$$F(x) = \int_0^x f(t) dt$$

$$F'(x) = F'(x)$$

(c) (2 pt) For all x in the range $0 \le x \le \pi$, f(x) > 0.

Slope is regative for
$$X \in (\frac{\pi}{2}, \pi)$$

true

(2 pt) On the interval
$$[0, 2\pi]$$
 $f(x) = 0$ at exactly two points

(d) (2 pt) On the interval $[0, 2\pi]$, f(x) = 0 at exactly two points.

The false true $g \approx h$

(e) (2 pt) The average value of f on the interval $[0, 2\pi]$ equals 0.

(12 pt) Evaluate each indefinite integral. Clearly communicate your approach.

(a)
$$(4 \text{ pt}) \int e^{2x} + 3x^2 - 4x \, dx$$

$$= \left(\frac{1}{2} e^{2x} + x^3 - 2x^2 + C \right)$$

(b)
$$(4 \text{ pt}) \int t^{2} (\sin(t^{3}))^{2} \cos(t^{3}) dt$$

$$= \int t^{2} \cos(t^{3}) (\sin(t^{3}))^{2} dt$$

$$= \frac{1}{3} \int v^{2} dv$$

$$= \frac{1}{4} (\sin(t^{3}))^{3} + C$$
(c) $(4 \text{ pt}) \int x^{2} \cos x dx$

$$= \chi^{2} \sin x - \int 2 x \sin x dx$$

$$= x^{2} \sin x + 2x\cos x - 2 \cos x dx$$

$$= x^{2} \sin x + 2x\cos x - 2\sin x + C$$

$$V = Sin(t^{3})$$

$$du = 3t^{2}cos(t^{3})dt$$

$$\frac{1}{3}du = t^{2}cos(t^{3})dt$$

$$U = \chi^2$$
 $du = 2 \times dx$
 $dV = \cos x dx$ $V = \sin x$

$$U = 2x$$
 $dv = 2dx$
 $dv = 5inx dx$ $V = -cos x dx$

U=2(0)+1=-1 U=2(1)-1=1

(12 pt) Evaluate each definite integral. Clearly communicate your approach.

(a)
$$(4 \text{ pt}) \int_{0}^{1} (2x-1)^{3} dx$$

$$= \frac{1}{2} \int_{X=0}^{X=1} U^{3} dx$$

$$= \frac{1}{2} \int_{U=-1}^{U=1} U^{3} dx$$

$$= \frac{1}{8} U^{4} = \frac{1}{8} = \frac{1}{8} = 0$$

(b)
$$(4 \text{ pt}) \int_0^4 \sqrt{4x - x^2} \, dx$$

Hint: Set the integrand equal to y. Massage this equation into the form $(x-a)^2+(y-b)^2=r^2$, an equation of a circle with center (a, b) and radius r. Use geometry to deduce the value of the integral.

$$y=\sqrt{4x-x^2}$$
 => $x^2-4x+y^2=0$ Circle w/ radius = $\sqrt{(x^2-4)^2+y^2}=2^2$ Centred at $(2,0)$ positive square radius

Circle W/ radius = Z positive square cost= upper area of circle

(c)
$$(4 \text{ pt}) \int_{0}^{2} (x^{2} - 1)(x^{3} - 3x)^{3} dx$$
 $V = (0)^{3} - 3(0) = 0$ $U = X^{3} - 3x$

$$= \frac{1}{3} \int_{X=0}^{X=2} V^{3} dv \qquad U = (2)^{3} - 3(2) = 2 dv = 3x^{2} - 3 dx$$

$$= \frac{1}{3} \int_{V=0}^{V=2} V^{3} dv \qquad dv = 3(x^{2} - 1) dx$$

$$= \frac{1}{3} \int_{V=0}^{V=2} V^{3} dv \qquad \frac{1}{3} dv = x^{2} - 1 dx$$

(8 pt) Use the fundamental theorem of calculus to compute each derivative. Assume $x \ge 0$.

(a)
$$(4 \text{ pt}) \frac{d}{dx} \int_0^x e^{-t^2} dt$$

$$= e^{-x^2}$$

(b)
$$(4 \text{ pt}) \frac{d}{dx} \int_{x^2}^{4x^2} \sin(\sqrt{t}) dt$$

$$= \frac{d}{dx} \left[F(4x^2) - F(x^2) \right]$$

$$= 8x F(4x^2) - 2x F(x^2)$$

$$= 8x Sin(4x^2) - 2x Sin(5x^2)$$

$$= 8x Sin(2x) - 2x Sin(x)$$

(10 pt) Let $f: [-2, 6] \to \mathbf{R}$ be a piecewise function. A graph of $F(x) = \int_{-2}^{x} f(t) dt$ is shown below.

(a) (4 pt) On which intervals is f positive? negative? equal to zero?

$$F'(x) = F(x)$$

(b) (4 pt) On which intervals is f increasing? decreasing? constant?

(c) (2 pt) What is the average value of f on the interval [-2,6]?

$$\frac{1}{6+2} \int_{-2}^{6} F(t) dt = \frac{1}{8} \left[F(6) - F(-2) \right]$$

(8 pt) Consider the functions $f:[0,+\infty)\to R$ and $g:R\to R$ given by

$$f(x) = 2\sqrt{x}$$

$$g(x) = 2 + \frac{1}{2}(x - 1)$$
Area being Calculated

respectively. Graphs of f and g appear below.

(a) (4 pt) Using the graph, write the two points (x,y) of intersection of f and g. Using the equations for f and g, show that, for each point (x, y) of intersection, f(x) = y and g(x) = y. That is, the intersection points (x, y) are on the graphs of both f and g.

$$F(9) = 259 = 6$$

$$g(9) = 2 + \frac{1}{2}(9-1) = 6$$

(b) (4 pt) Recall that linearity of the integral implies that

$$\int_{\alpha}^{b} f(x) - g(x) dx = \int_{\alpha}^{b} f(x) dx - \int_{\alpha}^{b} g(x) dx$$

Use this to help explain, geometrically, why the area between the graphs of f(x) and g(x)equals $\int_1^9 f(x) - g(x) dx$.