1)) y dxdy D mang de x2+y2=2x, y=0 my=x Metoda II $A = \{(x,y) \mid 0 \le x \le 1, 0 \le y \le x\}$ $B = \{(x,y) \mid 1 \le x \le 2, y \le \sqrt{2x-x^2}\}$ $A, B \in \mathcal{J}(\mathbb{R}^2).$ $\chi^2 + \chi^2 = 2 \times$ $\lambda(A \cap B) = \lambda(M_X[o,i]) = 0, \quad b = A \cup B$ (x-1)2+2=1 Jydxdy = Jydxdy + Jydxdy $\int_{A} \gamma dx dy = \int_{0}^{1} \left(\int_{0}^{1} \gamma dy \right) dx = \int_{0}^{1} \left(\frac{\gamma^{2}}{2} \right)^{\gamma = x} dx = \int_{0}^{1} \frac{x^{2}}{2} dx = \frac{x^{3}}{6} \Big|_{0}^{1} = \frac{1}{6}$

$$B = \{(x,y) \mid 1 \le x \le 2, \quad 0 \le y \le \sqrt{2x-x^2} \} = \{(x,y) \mid (x-1)^2 + y^2 \le 1, \sqrt{30}, x-1 \ge 0 \}$$

$$\begin{cases} x = 1 + h \cos \theta, \quad h \in [0, 1] \\ y = h \sin \theta, \quad \theta \in [0, \frac{\pi}{2}] \end{cases}$$

$$\begin{cases} (x-a)^2 + (y-b)^2 \le C^2 \\ x = a + h \cos \theta, \quad h \in [0, C] \end{cases}$$

$$\begin{cases} x = a + h \cos \theta, \quad h \in [0, C] \\ y = b + h \cos \theta, \quad h \in [0, 2\pi] \end{cases}$$

$$\begin{cases} x = a + h \cos \theta, \quad h \in [0, C] \\ y = b + h \cos \theta, \quad h \in [0, 2\pi] \end{cases}$$

$$\begin{cases} x = a + h \cos \theta, \quad h \in [0, C] \\ y = b + h \cos \theta, \quad h \in [0, 2\pi] \end{cases}$$

$$\begin{cases} x = a + h \cos \theta, \quad h \in [0, C] \\ y = b + h \cos \theta, \quad h \in [0, 2\pi] \end{cases}$$

$$\begin{cases} x = a + h \cos \theta, \quad h \in [0, C] \\ y = b + h \cos \theta, \quad h \in [0, 2\pi] \end{cases}$$

$$\begin{cases} x = a + h \cos \theta, \quad h \in [0, C] \\ y = b + h \cos \theta, \quad h \in [0, 2\pi] \end{cases}$$

$$\begin{cases} x = a + h \cos \theta, \quad h \in [0, C] \\ y = b + h \cos \theta, \quad h \in [0, C] \end{cases}$$

$$\begin{cases} x = a + h \cos \theta, \quad h \in [0, C] \\ y = b + h \cos \theta, \quad h \in [0, C] \end{cases}$$

$$\begin{cases} x = a + h \cos \theta, \quad h \in [0, C] \\ y = b + h \cos \theta, \quad h \in [0, C] \end{cases}$$

$$\begin{cases} x = a + h \cos \theta, \quad h \in [0, C] \\ y = b + h \cos \theta, \quad h \in [0, C] \end{cases}$$

$$\begin{cases} x = a + h \cos \theta, \quad h \in [0, C] \\ y = b + h \cos \theta, \quad h \in [0, C] \end{cases}$$

$$\begin{cases} x = a + h \cos \theta, \quad h \in [0, C] \\ y = b + h \cos \theta, \quad h \in [0, C] \end{cases}$$

$$\begin{cases} x = a + h \cos \theta, \quad h \in [0, C] \\ y = b + h \cos \theta, \quad h \in [0, C] \end{cases}$$

$$\begin{cases} x = a + h \cos \theta, \quad h \in [0, C] \\ y = b + h \cos \theta, \quad h \in [0, C] \end{cases}$$

$$\begin{cases} x = a + h \cos \theta, \quad h \in [0, C] \\ y = b + h \cos \theta, \quad h \in [0, C] \end{cases}$$

$$\begin{cases} x = a + h \cos \theta, \quad h \in [0, C] \\ y = b + h \cos \theta, \quad h \in [0, C] \end{cases}$$

$$\begin{cases} x = a + h \cos \theta, \quad h \in [0, C] \\ y = b + h \cos \theta, \quad h \in [0, C] \end{cases}$$

$$\begin{cases} x = a + h \cos \theta, \quad h \in [0, C] \\ y = b + h \cos \theta, \quad h \in [0, C] \end{cases}$$

$$\begin{cases} x = a + h \cos \theta, \quad h \in [0, C] \\ y = b + h \cos \theta, \quad h \in [0, C] \end{cases}$$

$$\begin{cases} x = a + h \cos \theta, \quad h \in [0, C] \\ y = b + h \cos \theta, \quad h \in [0, C] \end{cases}$$

$$\begin{cases} x = a + h \cos \theta, \quad h \in [0, C] \\ y = b + h \cos \theta, \quad h \in [0, C] \end{cases}$$

$$\begin{cases} x = a + h \cos \theta, \quad h \in [0, C] \\ y = b + h \cos \theta, \quad h \in [0, C] \end{cases}$$

$$\begin{cases} x = a + h \cos \theta, \quad h \in [0, C] \\ y = b + h \cos \theta, \quad h \in [0, C] \end{cases}$$

$$\begin{cases} x = a + h \cos \theta, \quad h \in [0, C] \\ y = b + h \cos \theta, \quad h \in [0, C] \end{cases}$$

$$\begin{cases} x = a + h \cos \theta, \quad h \in [0, C] \\ y = b + h \cos \theta, \quad h \in [0, C] \end{cases}$$

$$\begin{cases} x = a + h \cos \theta, \quad h \in [0, C] \\ y = b + h \cos \theta, \quad h \in [0, C] \end{cases}$$

$$\begin{cases} x = a + h \cos \theta, \quad h \in [0, C] \\ y = b + h \cos \theta, \quad h \in [0, C] \end{cases}$$

$$\begin{cases} x = a + h \cos \theta, \quad h \in [0, C] \\ y = b + h \cos \theta, \quad h \in [0, C] \end{cases}$$

$$\begin{cases} x = a + h \cos \theta, \quad h \in [0$$

2)
$$\int \int x^{2} dx dy$$
, $\int = \int (x, y) \in \mathbb{R}^{2} | 2x \leq x^{2} + y^{2} \leq 4x$, $y \approx 0$ }

 $2x \leq x^{2} + y^{2} = 0$, $y^{2} + x^{2} - 2x + 1 \geq 1 \Rightarrow 0$ $(x - 1)^{2} + y^{2} \geq 1$.

 $x^{2} + y^{2} \leq 4x \Rightarrow 0$, $x^{2} - 4x + 1 + y^{2} \leq 4 \Rightarrow 0$ $(x - 2)^{2} + y^{2} \leq 4$, $(x -$

$$\frac{1}{12} = \frac{1}{12} \left(h, \theta \right) \in \mathbb{R}^2 \left(\frac{1}{12} \right), 2 \cos \theta \in h \in 4 \cos \theta \right), dx dy = h d h d \theta$$

$$\int \sqrt{x^2 + y^2} dx dy = \int h \cdot h d h d \theta = \int \frac{1}{2} \left(\int \frac{4 \cos \theta}{h^2 d h} \right) d\theta$$

$$= \int \frac{1}{2} \frac{h^2}{3} \left(\frac{h^2}{3} \right) dh = \int \frac{1}{2} \frac{56}{3} \cos \theta d\theta - \frac{56}{3} \int \frac{1}{2} \cos \theta d\theta$$

$$= \frac{56}{3} \sin \theta \left(\frac{1}{1} - \frac{56}{3} \right) \int \frac{1}{2} \sin \theta d\theta$$

$$= \frac{56}{3} \sin \theta \left(\frac{1}{1} - \frac{56}{3} \right) \int \frac{1}{2} \sin \theta d\theta$$

$$= \frac{56}{3} \sin \theta \left(\frac{1}{1} - \frac{56}{3} \right) \int \frac{1}{2} \sin \theta d\theta$$

$$= \frac{56}{3} \sin \theta \left(\frac{1}{1} - \frac{56}{3} \right) \int \frac{1}{2} \sin \theta d\theta$$

$$= \frac{56}{3} \sin \theta \left(\frac{1}{1} - \frac{56}{3} \right) \int \frac{1}{2} \sin \theta d\theta$$

3) Condonate polare generalizate.

$$X = a h \cos \theta$$
, $h \in [0, 2\pi]$, $a, b \neq 70$.

 $Y = b h \sin \theta$

Se folorise data integram pe o multime marginata de elepsa $\frac{x^2}{a^2} + \frac{y^2}{b^2} = c^2$
 $\phi: [0, \infty) \times [0, 2\pi] \rightarrow \mathbb{R}^2$, $\phi(r, \theta) = (a n \cos \theta, b h \sin \theta)$
 $h = h \cos \theta$, $h = h \cos \theta$, $h = h \cos \theta$.

 $h = h \cos \theta$
 $h = h \cos \theta$

 $dxdy = 2.3 r drd\theta = 6 r dr d\theta$

$$\left(\int \frac{1}{4 - \frac{x^{2}}{4} - \frac{y^{2}}{9}} dx dy = \int \frac{1}{\sqrt{4 - h^{2}}} \cdot 6h dh d\theta
\right)$$

$$= \left(\int \frac{1}{4} \frac{6h}{\sqrt{4 - h^{2}}} d\theta \right) dh = \int \frac{6\pi h}{\sqrt{4 - h^{2}}} dh$$

$$4 - h^{2} = \mu - 2h dh = d\mu, \quad h = 0, \quad \mu = 4$$

$$h = 1, \quad \mu = 3$$

$$= -\int \frac{-3\pi}{\sqrt{h}} d\mu \int \frac{3\pi}{\sqrt{h}} d\mu = 6\pi \sqrt{h} \Big|_{3}^{4} = 6\pi \left(2 - \sqrt{3} \right)$$

4)
$$(x^2+y^2) dxdydy$$
, $V = \{(x,y,z) \in \mathbb{R}^3\}$ $x^2+y^2 \in \mathbb{Z}^2$, $0 \in \mathbb{Z} \in \mathbb{Z}^3$ $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2} con$

$$D = P^r x_{oy} V = \{(x,y) \in \mathbb{R}^2\}$$
 $x^2+y^2 \in \mathbb{Z}^3$ $(x,y) \in \mathbb{R}^3$ $x^2+y^2 \in \mathbb{Z}^3$ $(x,y) \in \mathbb{R}^3$ $(x,y) \in \mathbb{R}^3$

5)
$$I = \iiint X^2 + y^2 + z^2$$
 $dxdydz$, $y = \{(xyz) \mid x^2 + y^2 + z^2 \leq 1\}$
 $\begin{cases} x = h \text{ sun } \{\cos \theta \quad x^2 + y^2 = h^2 \text{ sun}^2 \theta \} \\ y = h \text{ sun } \{\sin \theta \} \\ z = h \cos \theta \end{cases}$
 $\begin{cases} x = h \text{ sun } \{\sin \theta \} \\ z = h \cos \theta \end{cases}$
 $\begin{cases} h = h \cos \theta \}$
 $\begin{cases} h = h \cos \theta \}$

Exerciti

- $\int \int (1+x) dxdy, D = \{(x,y)\in \mathbb{R}^2 \mid x^2+y^2 \leq 2y, y \leq 2-x\}$
- 2) \(\(\text{(x+xy)dxdy}, \text{ Dete trapezul determinat de } \\ \ \(\text{A(1,0)}, \text{B(5,0)}, \text{C(3,4)}, \text{D(1,4)} \)
- 3) $\left(\left(x^{2} + y^{2} + xy \right) dxdy, D = \left\{ (x,y) \in \mathbb{R}^{2} \mid 4 \leq x^{2} + y^{2} \leq 9, 0 \leq x \leq y \right\} \right)$
- 4) $\iint (x+y)xy dxdy$, Deste lumbert de dreptele 0 X+y=-3, X+y=3, X-y=1, X-y=-1

i)
$$D = \{(x,y) \in \mathbb{R}^2 | x^2 + y^2 \le 4, y \le x\}$$

(6)
$$\int \int \int \int \int (x^2+y^2) dx dy, D = \{(x,y) \in \mathbb{R}^2 | (\leq x^2+y^2 \leq 4, y \leq 13 \times \}$$

9)
$$\iiint \chi^2 dx dy d\chi$$
, $V = \{(x, y, \pm) \in \mathbb{R}^3 \mid \frac{1}{2} \le \frac{\chi^2}{4} + \frac{y^2}{9} \le 2\pm \}$

10)
$$\iiint_{X} \pm dxdyd_{X}$$
, $V = \{(x,y,\pm) \in \mathbb{R}^{3} \mid x^{2}+y^{2} \le 42, \ 0 \le 2 \le 1\}$

(1)
$$\left(\left(\left(\left(x, y, z \right) \in \mathbb{R}^3 \right) \right) g \leq x^2 + y^2 \leq z^2, 0 \leq z \leq 5 \right)$$

(2) Calc. volumul (adică masına Jondan) urmatoarelor multimi i) V este margimit de suprafetele: $x^2+y^2+z^2=4$ si $x^2+y^2=3$ t ii) V este margimit de suprafetele: $x^2+y^2=4$, $x^2+y^2=4$, z=0