The Okavango Delta - Microtopography and hydrology

Landcover of the Okavango Delta – a window of the microtopography?

Islands with detailed surveys of landcover and topography

Water = 2.5 m below reference level

Permanent Swamp = 2.0 m below reference level

Primary floodplain = 1.6 m below reference level

Secondary floodplain = 1.0 m below reference level

Grassland = reference level

Salt pan = 0.5 m below reference level

Occasionally flooded grassland = 0.5 m below reference

Salt pan = 0.5 m below reference level

Riverine forest = 1.2 m above reference level

Dry woodland = reference level

Dry woodland = reference level

Relative microtopography of the Okavango Delta

Evaluation of the microtopographic map

Primary islands built from accumulation of clastic sediments

Island types

Inverted channel island

Primary islands built from accumulation of clastic sediments

Island types

Scroll bar island

Primary islands built from accumulation of clastic sediments

Island types Anthill island

Secondary islands grown from precipitation of chemical sediments

Island types
Riparian forest island

Secondary islands grown from precipitation of chemical sediments

Island types
Salt islands

Island delineation

	\mathbf{A}	В	C	D	$oldsymbol{\Gamma}$	F	G	II
Roundness	0.49	0.91	0.51	0.48	0.36	0.47	0.58	0.92
Regional salt posttion	distol ²	nο	na	proximal	distal	equal	proximal	11:9
Channel salt position	front	ня	ня	back	back	back	back*	па

Island orientation – interacting with water flow over the Delta surface

Detail of the Chitabe area

Detailed relief of the Chitabe area

Microtopography – conclusions

Simple compared to other methods But some merits

- •Cheap
- •Fits land cover perfectly
- Bathymery in addition to topography

The volume represented by islands would take approximately 50000 years to accumulate given the rate of dissolved matter inflow to the Okavango Delta. Over this time period the total matter added to the present active (flooded) Delta would have built 1 metre.

Sub-basins of the Okavango delineated from the microtopography

Flooding of the Okavango – a statistical prediction model

Calibrating and validating the Delta model Classification of historical flood area

Unsupervised classification of \sim 400 satellite images (NOAA AVHRR, ERS-2 ATSR), and supervised classification of Landsat MSS / TM (subset of \sim 3000 images)

Evaluation of AVHRR against Landsat TM & ATSR

AVHRR vs. Landsat TM AVHRR vs. ATSR

Flooding, years (1985-2000)

Maximum area of flooding =
Inflow at the Panhandle +
local precipitation +
previous years flood

5500 km²

 7500 km^2

Sub-basins of the Okavango delineated from the microtopography

Statistical hydrological model – conclusions

Simple compared to other methods But some merits

- •Cheap
- •Easy to use
- •Translation to spatial extension robust

Upstream water abstraction leads to a loss of 1 km² of wetland per million cubic metre of water abstracted.

Groundwater model for Xaxaba – a detail to explore?

