Advanced Mathematics

First order Differential Equations

- 1. Find the plane curve through the point (0,2) whose tangent at any of its points has a slope equal to three times the value of its ordinate value.
- 2. Parachutist's descent. Assume that the air resistance force acting against the motion of a falling parachutist is a function that depends solely on its velocity v; taking into account that a reasonable expression for that friction force is Kv^2 , where K is a constant, find the differential equation that links altitude and time. (Hint: Newton's second law states that the total force acting on a body of mass m is equal to the product of its mass and its acceleration: $\overrightarrow{F}(t) = m\overrightarrow{x}''(t)$).
- 3. A toxic substance in some medium destroys a bacterial species at a rate that is proportional to the product of the number of bacteria and the toxin concentration. On the other hand, in the absence of toxin, bacteria would grow at a rate proportional to its population. We assume that the toxin increases at a constant rate and the production started at t=0. If y(t) represents the number of bacteria at time t:
 - (a) Find the first order differential equation for y(t).
 - (b) Solve the resulting equation. What is the behaviour of the solution for $t \to \infty$?

4. Variable separation.

(a) Integrate the following differential equations: I)
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x}{y}$$
 II) $\frac{\mathrm{d}y}{\mathrm{d}x} = y - y^2$ III) $\frac{\mathrm{d}y}{\mathrm{d}x} = y^2 \sin{(x)}$ IV) $(1+e^t)\,x(t)\,x'(t) = e^t$, V) $y' = 2y^2 - 2y$.

(b) Solve the following initial and boundary value problems: I)
$$\frac{\mathrm{d}y}{\mathrm{d}t} = 2y^2 - 2y$$
, $y(0) = 2$ II) $\frac{\mathrm{d}y}{\mathrm{d}t} = (1 - 2t)y^2$, $y(0) = -\frac{1}{6}$ III) $y' = y^2 \sin x$, $y(0) = \frac{1}{2}$ IV) $y'x^3 \sin y = 2$, $\lim_{x \to \infty} y(x) = \frac{\pi}{3}$.

5. First order linear ODE's

(a) Solve the following equations:
$$1) \frac{dy}{dx} + 2y = x \qquad 2) \frac{dy}{dx} + 2y = \cos x \qquad 3) \frac{dy}{dx} - 3y = -2e^{-2x}$$

$$4) \frac{dy}{dx} = \frac{x^3 - 2y}{x} \qquad 5) x' + 5x = t^2 \qquad 6) tx' + \frac{t}{1 + t^2} = x$$

(b) Solve the following initial value problems:

I)
$$\frac{dy}{dt} = 2y$$
, $y(0) = 4$; II) $\frac{dy}{dt} - 3y = -2e^{-2t}$, $y(0) = 5$; III) $\frac{dy}{dt} = 3y + \cos t$, $y(\pi) = 4$; IV) $x' = (\tan t) x + \cos t$, $x(0) = 1$ V) $x' + 2tx = t^3$, $x(0) = 1$

- 6. The population of a city grows at a constant rate. If the number of individuals has doubled in 3 years, and in 5 years reached the value of 40.000, how many people lived in the city at the begining of this five year period?
- 7. (*) a) If f_1 and f_2 are two solutions of the equation y' + p(x)y = 0, prove that $c_1f_1(x) + c_2f_2(x)$ is also a solution of the same equation for every $c_1, c_2 \in \mathbb{R}$.

1

b) If f is a solution of the differential equation y' + p(x)y = g(x), prove that $f(x) + c_1 f_1(x) + c_2 f_2(x)$ is also a solution of the same equation for $c_1, c_2 \in \mathbb{R}$.