* الهندسة الفضائية *

 $Cig(x_C;y_C;z_Cig)$ ، $Big(x_B;y_B;z_Big)$ ، $Aig(x_A;y_A;z_Aig)$: نعتبر في كل ما يلي $ig(0;ec{i},ec{j},ec{k}ig)$ معلم متعامد و متجانس للفضاء ، نضع

$\overrightarrow{AB}ig(x_{B}-x_{A};y_{B}-y_{A};z_{B}-z_{A}ig)$: مرکبات الشعاع	مركبات شىعاع
$\overrightarrow{AB}ig(x_B-x_A;y_B-y_A;z_B-z_Aig):$ مرکبات الشعاع \overrightarrow{AB} هي مرکبات الشعاع $\overrightarrow{u}=\sqrt{x^2+y^2+z^2}$ هي $\overrightarrow{u}\left(x;y;z ight)$	طويلة شبعاع
$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}$	المسافة بين نقطتين
$Iigg(rac{x_A+x_B}{2};rac{y_A+y_B}{2};rac{z_A+z_B}{2}igg)$: منتصف القطعة I	منتصف قطعة مستقيمة
$\vec{u} \cdot \vec{v} = \vec{u} \times \vec{v} \times \cos(\vec{u}; \vec{v})$	الجداء السلمي بين شعاعين
$\overrightarrow{v}(x';y';z')$ $\overrightarrow{u}(x;y;z)$ $\overrightarrow{u} \circ \overrightarrow{v} = x.x' + y.y' + z.z'$	العبارة التحليلية للجداء السلمي
$\overrightarrow{u} \cdot \overrightarrow{v} = 0$: متعامدان إذا كان $\overrightarrow{u} \cdot \overrightarrow{v} = 0$	تعامد شبعاعين
$k \in \mathbb{R}$ معناه $\overrightarrow{u} = k\overrightarrow{v}$ معناه $\overrightarrow{v} = \frac{x}{x'} = \frac{y}{y'} = \frac{z}{z'} = k$ معنان إذا كان \overrightarrow{u}	الارتباط الخطي بين شعاعين
ميث $\overline{n}\left(a;b;c ight)$ شعاعه الناظم ، $ax+by+cz+d=0$	(P)المعادلة الديكارتية للمستوي
$k\in\mathbb{R}$ و (P') ناظمي لـ (P) و $\overline{n'}$ ناظمي لـ $\overline{n'}$ عيث $\overline{n'}$ عيث $\overline{n'}$	(P')توازي مستويين
(P') عيث \overrightarrow{n} ناظمي لـ (P) و $\overrightarrow{n'}$ ناظمي لـ $\overrightarrow{n'}$ = 0	(P')تعامد مستويين (P) و
$d(A;(P)) = \frac{ a x_A + b y_A + c z_A + d }{\sqrt{a^2 + b^2 + c^2}}$	$\left(P ight)$ بعد النقطة A عن المستوي
$\left(x-x_0 ight)^2+\left(y-y_0 ight)^2+\left(z-z_0 ight)^2=r^2$ حيث $\omega\left(x_0;y_0;z_0 ight)$ مركزها و $\omega\left(x_0;y_0;z_0 ight)$	(S)المعادلة الديكارتية لسطح كرة
$lpha \ \overrightarrow{GA} + eta \ \overrightarrow{GB} = \overrightarrow{0}$: مرجح الجملة $ig\{ ig(A; lpha ig), ig(B; eta ig) ig\}$ مرجح الجملة	مرجح نقطتين
$lpha+eta+\delta eq 0$ مرجح الجملة $\left\{ ig(A;lphaig),ig(B;etaig),ig(C;\deltaig) ight\}$ مع $lpha$ معناه : \overrightarrow{G}	مرجح ثلاث نقط
$ig\{ig(A;lphaig),ig(B;lphaig),ig(C;lphaig)ig\}$ مركز ثقل المثلث ABC معناه G	مركز ثقل المثلث ABC
$G\left(\frac{\alpha x_A + \beta x_B}{\alpha + \beta}; \frac{\alpha y_A + \beta y_B}{\alpha + \beta}; \frac{\alpha z_A + \beta z_B}{\alpha + \beta}\right)$	إحداثيات مرجح نقطتين
$G\left(\frac{\alpha x_{A} + \beta x_{B} + \delta x_{C}}{\alpha + \beta + \delta}; \frac{\alpha y_{A} + \beta y_{B} + \delta y_{C}}{\alpha + \beta + \delta}; \frac{\alpha z_{A} + \beta z_{B} + \delta z_{C}}{\alpha + \beta + \delta}\right)$	إحداثيات مرجح ثلاث نقط
$S=rac{1}{2}$ الارتفاع $ imes$ مساحة القاعدة	مساحة مثلث
حيث S مساحة القاعدة (مثلث) وَ h الإِرتفاع $V=rac{1}{3} imes S imes h$	حجم رباعي الوجوه

منه و $\vec{u}(a;b;c)$ شعاع توجیه له $A(x_A;y_A;z_A)$ منه و \mathbb{R} ، $\begin{cases} x=x_A+a\ t \end{cases}$ $y=y_A+b\ t$ $z=z_A+c\ t$	$\left(d ight)$ التمثيل الوسيطي للمستقيم
$\frac{x - x_A}{a} = \frac{y - y_A}{b} = \frac{z - z_A}{c}$	ig(dig)التمثيل الديكارتي للمستقيم
$t,s\in\mathbb{R}$ ، $\begin{cases} x=x_A+at+a's \ y=y_A+bt+b's \ z=z_A+ct++c's \end{cases}$ حيث $\vec{v}(a';b';c')$ منه $A(x_A;y_A;z_A)$ شعاعي توجيه له	$\left(P ight)$ التمثيل الوسيطي للمستوي
مجموعة النقط M هو المستوي الذي يشمل A و \overrightarrow{n} ناظمي له $\overrightarrow{AM} \bullet \overrightarrow{n} = 0$ \bigcirc \boxed{AB} مجموعة النقط M هو المستوي المحوري للقطعة \boxed{AB} مجموعة النقط M هو المستوي المحوري للقطعة \boxed{AB} مجموعة النقط M هو سطح كرة مركزها A و نصف قطرها \boxed{AB} $\boxed{AM} \bullet \overrightarrow{BM} = 0$ $\boxed{AM} \bullet \overrightarrow{AM} \bullet \overrightarrow{BM} = 0$ $\boxed{AM} \bullet \overrightarrow{n} < 0$ $\boxed{AM} \bullet \overrightarrow{n} > 0$ $\boxed{AM} \bullet \overrightarrow{n} > 0$ $\boxed{AM} \bullet \overrightarrow{n} = 0$ يشمل A و نصف فضاء مفتوح حده المستوي الذي يشمل A \boxed{A} \boxed{AB} \boxed{A} \boxed{AB} المسقط العمودي لـ A على A	مجموعة النقط M في الفضاء

* الاستدلال بالتراجع *

مبرهنة

. خاصية متعلقة بعدد طبيعي n وَ n عدد طبيعي P(n)

للبرهان على صحة الخاصية $P\left(n
ight)$ من أجل كل عدد طبيعي n أكبر من أو يساوي n_0 ، يكفى :

- $P\left(n_0
 ight)$ نتأكد من صحة الخاصية من أجل n_0 أي $oldsymbol{0}$
- نفرض أن الخاصية صحيحة من أجل عدد طبيعي كيفي n أكبر من أو يساوي n_0 أي P(n) (فرضية التراجع) و نبرهن صحة الخاصية من أجل n+1 أي n+1 .

ملاحظات

- $n\in\mathbb{N}$ إذا كان $n\in\mathbb{N}$ فإنn=0 ، وَ إذا كان $n\in\mathbb{N}^*$ فإنn=1 ، وهكذا
- 🗢 يمكن التفكير في استعمال الاستدلال بالتراجع للبرهان على صحة خاصية متعلقة بالأعداد الطبيعية .