BME2105 Introduction to Biomedical Engineering

WELCOME!

Instructor: Prof. SHI, Peng

Office: P6423, x9529

Email: pengshi@cityu.edu.hk

Engineering

From Merriam-Webster Dictionary:

- engineering noun:
 - a) the application of **science** and **mathematics** by which the properties of matter and the sources of energy in nature are made useful to people;
 - b) the design and manufacture of complex products.

Engineering disciplines

- Mechanical Engineering
- Electrical Engineering
- Civil Engineering
- Chemical Engineering
- Material Engineering
- Bioengineering/Biomedcial Engineering

Life Expectancy

Why People are living longer?

X-ray

Heart and Lung Machine

ECG (Electrocardiograph)

_

Cell Culture Technology

Cell Culture Technology: Artificial Skin

Artificial Heart

Gene Chip Technology

Evolution of the Engineering for Health& Medicine

Multidiciplinary Areas

THE WORLD OF BIOMEDICAL ENGINEERING

Biomechanics

Medical & Biological Analysis

Prosthetic Devices & Artificial Organs

Biosensors

Clinical Engineering

Medical & Bioinformatics

> Rehabilitation Engineering

Medical Imaging

Biomaterials

Biotechnology

Tissue Engineering

Neural Engineering

Physiological Modeling

Biomedical Instrumentation

Bionanotechnology

Subdicipline1: Physiological Modeling

Subdicipline2:Biomedical Instrumentation

Subdicipline3: Biomedical Imaging

Subdicipline 4: Biomechanics

Subdicipline 5: Cellular and Molecular Engineering

В

Lecture Contents

- Molecular Fundamentals
- Genetic Engineering
- Cell and Tissue Engineering
- Cardiovascular System and Engineering
- Neural Engineering
- Immune System and Engineering
- Biomedical Imaging
- Technology and Cancer
- Biomechanics and Orthopedics

Course Grading

- Homework (10%)
- Midterm Exam (30%)
- Final Exam (30%)
- Project (30%)

Reference:

W. Mark Saltzman, Biomedical Engineering: Bridging Medicine and Technology, Cambridge University Press, 2009.

(http://books.google.com.hk/books?id=4b4Mxsiw9gIC&hl=zh-TW&source=gbs-book-other-versions)

Molecular and Cellular Fundamentals

Biological Molecules

Knowing how molecules interact with each other and with their environments helps engineers to manipulate these molecules to create new tools for treating disease.

- Nucleic acids
- Proteins
- Carbohydrates
- Lipids

Bonding between atoms and molecules

Ionic bonds

formed when electrons are transferred from one atom to another (NaCl, Salt).

 H_2O

Covalent bonds

Sharing electrons: polar or nonpolar

Water

δ-Θ (H)

Polar

Unequal sharing of electrons results in polar distribution of charges

Nonpolar

Charges are distributed symmetrically

Bonding between atoms and molecules

Hydrogen bonds

Bonding between atoms and molecules

Van der Waals interactions

Water: The medium of life

The right pH

Water: The medium of life

- Hydrophilic: "water loving"
- Hydrophobic: "water fearing"

Nonpolar molecules aggregate together, example: protein folding

Amphiphilic molecule

Lipids

- Two types of lipids:
 - Triglyceries (energy storage)
 - Phospholipids

Phospholipids

Self-assembly in water:

Solve problem for cells: separate interior water from outside water

Cell Membrane

Phospholipids are major component of the cell membrane.

Transport across the cell membrane

Diffusion:

- Passive, depend on the concentration difference, O₂, CO₂, etc...
- Diffusion of water (Osmosis)

Transport across the cell membrane

- Facilitated Diffusion
- Active transport (energy consuming)

Inside a Cell

Nucleus, cytosol, organelles, structure proteins

Cell culture

- Convenient model of cell function
- Protein/biomolecule production yeast and plant cultures
- Growth of cells for tissue engineering applications

Cell culture - challenges

Equipment / techniques of cell culture seek to replicate and control specific aspects of the tissue environment:

- Temperature
- pH
- Nutrients delivery
- Waste removal
- Anchorage
- Experimental observation and manipulation

Modern materials

Cell culture

Year	Event					
1885	Roux demonstrates that chick cells can be kept alive in saline					
1907	Harrison cultures frog spinal cord cells on clotted lymph, basis of neuronal					
	doctrine					
1913	Carrel established extended cultures through regular feeding under aseptic					
	conditions					
1948	Earle: single cells isolated and cultured, giving rise to the L cell line					
1950s	initial use of serum in media					
1952	Gey established HeLa cell line from a human cervical carcinoma					
1955	Eagle systematic investigation into nutrient formulations.					
1958	Temin and Rubin viral transformation of chick cells accomplished in the					
	laboratory					
1964	Kato and Takeuchi grow complete carrot from single plant cell					
1965	Harris and Watkins: viral-induced fusion of mouse and human cells					
1975	Köhler and Milstein: first monoclonal antibody-secreting hybridoma cell lines					
1976	Sato demonstrates in serum-free culture that different cells need different media					
1970's	Boyer and Cohen develop recombinant DNA-technology					
1977	Wigler and Axel introduce mammalian genes into cultured cells					
1986	Martin and Evans isolate and culture mouse embryonic stem cells					
1998	Thomas and Gearhart isolate human embryonic stem cells					

Cell culture media – Dulbecco's Modified Eagle's Medium

				3.5 5 11.5	
An	nino acids (mg/L)		Sa	alts (mg/L)	
•	L-Arginine•HCI	(84.0)	•	CaCl ₂	(200.0)
•	L-Cystine	(48.0)	•	$Fe(NO_3)_3 \cdot 9H_2O$	(0.1)
•	L-Glutamine	(584.0)	•	KCI	(400.0)
•	Glycine	(30.00)	•	$MgSO_4 - 7H_2O$ (200.0)	
 L-Histidine•HCl•H₂O (42.0) 			•	NaCl	(6400.0)
•	L-Isoleucine	(104.8)	•	NaHCO ₃	(3700.0)
•	L-Leucine	(104.8)	•	$NaH_2PO_4 \cdot H_2O(125.0)$	
•	L-Lysine•HCl	(146.2)			
•	L-Methionine	(30.0)	Vit	amins (mg/L)	
•	L-Phenylalanine	(66.0)	•	D-Ca Pantothenate	(4.0)
•	L-Serine	(42.0)	•	Choline Chloride	(4.0)
•	L-Threonine	(95.2)	•	Folic Acid	(4.0)
•	L-Tryptophan (16.0)		•	<i>i</i> -inositol	(7.0)
•	L-Tyrosine	(72.0)	•	Nicotinamide	(4.0)
•	L-Valine	(93.60)	•	Pyridoxine•HCI	(4.0)
Other components (mg/L)			•	Riboflavin	(0.4)
•	Glucose	(4500)	•	Thiamine•HCl (4.0)	

(15.0)

(110.00)

Phenol Red

Sodium Pyruvate

Cell culture media – focus on pH

$$pH = -\log[H^+]$$

general buffering concept

$$A^- + H^+ \leftrightarrow HA$$

bicarbonate buffering system

$$HCO_3^- + H^+ \leftrightarrow H_2CO_3 \leftrightarrow H_2O + CO_2$$

bicarbonate (soluble)

carbonic acid (soluble)

carbon dioxide (gas)

- Carbon dioxide dissolved in media and in the atmosphere regulate pH
- Primary mechanism of pH regulation in animal tissues
- Phenol red in the media changes color with respect to pH.
 - Orange-red at correct pH.
 - Purple at high pH
 - Yellow at low pH (e.g. in the presence of a lot of lactic acid)

Cell culture incubators – pH and temperature

Cell culture incubator

- Maintain temperature
 - 37° C for most mammalian cells
- Maintain humidity
- Maintain 5% CO₂/air mixture
 - Bicarbonate buffer
 - pH 7.4

Outside the incubator

- Relatively easy to control temperature
- Control of pH ~ 7.4
 - bicarbonate for closed system
 - HEPES buffer good
 - Tris buffer okay

This all acts in concert with cell growth geometry

Cell culture media – antibiotics

Reduce growth of bacteria, yeasts, fungi, etc.

Penicillin-G, Streptomycin (bacteria)

Gentamycin (bacteria)

Fungizone (Amphotericin B) (fungi, yeasts)

Ampicillin, Neomycin, Kanamycin (bacteria)

important in recombinant DNA technology

Cell culture media – serum

- With the components describe to here, cells can live, but don't thrive
- Serum, isolated from clotted animal blood, was a critical discovery leading to modern cell culture
- Serum is a mix of proteins, carbohydrates, vitamins, minerals, much more.
- Full understanding of what each component does is not clear, but some important players are:
- Growth factors (<100 ng/ml, each):
 - Epidermal Growth Factor (EGF), Platelet-derived Growth Factor (PDGF), IGF-1, IGF-2, FGF, IL-1, IL-6
- Hormones (<100 ng/ml each):
 - Insulin promote uptake of glucose and amino acids
- Other components (which are particularly important for this class):
- Albumin (20-50 mg/ml) lipid transport. The "globular protein".
 Non-cell adhesive
- Fibronectin (1-10 μg/ml) cell adhesive protein

Adoptive T cell therapy

Target therapy with Tumor specific T cells

- Cancer: Melanoma
- Autologous tumor infiltrating lymphocytes (TILs); "Live drug"

Advantages

- High response rate (>50%),
- Long-term remission,
- Less toxic & gentler to the patient

■ Limitation:

- Extraction of TILs,
- Cell manufacturing

Possible alternate

T cell Engineering (CAR-T cells)

Stem cell therapy

Pluripotent stem cells

- Can proliferate indefinitely in the lab: unlimited cell source
- Pluripotent: can give rise to any cells type in the body

Stem cell therapy

Reprogramming to make iPS cells

• 'Switch on' several genes => 'add' several proteins in the cells

Stem cell therapy

Potentials of iPS cells:

