最优化方法

张宏鑫, 华炜

2009-06-18

浙江大学计算机学院

内容

- 线性规划
- 非线性优化
- 主要参考书:
 - 线性规划,张建中,许绍吉,科学出版社
 - 最优化理论与方法, 袁亚湘, 孙文瑜, 科学出版社

一、线性规划

1.1 问题定义 (linear programming, LP)

- 在一组线性的等式或不等式约束下,求一个线性函数的最小值或最大值。
- 形式化的定义:

$$\begin{aligned} &\min \, c_1 x_1 + \ldots + c_n x_n \\ &\text{subject to} \\ &a_{11} x_1 + \ldots + a_{1n} x_n \leq b_1 \\ & \ldots \\ &a_{m1} x_1 + \ldots + a_{mn} x_n \leq b_m \\ &x_1, \ldots, x_n \geq 0 \end{aligned}$$

c: 价值向量, cost vector

A: 约束矩阵,constraint matrix

b: 右端向量, right-hand-side vector

- x满足约束条件,称为可行解或可行点(feasible point); 所有可行点的集合称为可行区域(feasible region),记为D。
- 对LP问题:
 - D = Ø: 无解或不可行
 - D≠∅,但目标函数在D上无上界: 无界
 - D≠Ø, 且目标函数有限的最优解: 有最优解

• 标准形式的LP问题

$$\min z = \mathbf{c} \mathbf{x}$$

s.t.
$$Ax = b$$

•基本定理2

若LP问题

$$\min z = \mathbf{c} \mathbf{x}$$

s.t.
$$Ax = b$$

存在有限最优值(即有最优解),则最优值必在可行区域D的某个极点上达到。并且,目标函数存在有限最优值的充要条件是对D的所有极方向di,均有 cdi≥0.

2.1 基本单纯形方法

- 主要思想: 先找一个基本可行解, 判断它是否为最优解。若不是, 就找一个更好的基本可行解, 在进行检验。如此迭代, 直至最后找到最优解, 或判定无界。
- 两个主要问题:
 - 寻找初始解
 - 如何判别和迭代(先考虑)

单纯形法的计算步骤

- 1. 找初始的可行基;
- 2. 求出对应的典式;
- $3. 求 \zeta_k = \max\{\zeta_j \mid j = 1,...,n\}$

ζ称之为检验向量。

在迭代过程中,如果ζ有不止一个正分量,

则为了使目标函数下降得较快,

一般取最大的分量 ζ_k 所对应的列向量 \mathbf{a}_k 进入基。

4. 若
$$\zeta_k \leq 0$$
,停止。已找到最优解 $\mathbf{x} = \begin{pmatrix} \mathbf{x}_B \\ \mathbf{x}_N \end{pmatrix} = \begin{pmatrix} \overline{\mathbf{b}} \\ \mathbf{0} \end{pmatrix}$ 及最优值 $z = \mathbf{c}_B \overline{\mathbf{b}}$

- 5.若 $\bar{\mathbf{a}}_{k} \leq \mathbf{0}$,停止,原问题无界。
- 6. 求最小比 $\frac{\overline{b}_r}{\overline{a}_{rk}} = \min \left\{ \frac{\overline{b}_i}{\overline{a}_{ik}} | \overline{a}_{ik} > 0 \right\}$
- $7.以\mathbf{a}_{k}$ 代替 \mathbf{a}_{Br} 得到新的基,回到2.

	\mathcal{Z}	\mathcal{X}_1	• • •	\mathcal{X}_r	• • •	\mathcal{X}_{m}	\mathcal{X}_{m+1}	• • •	$\boldsymbol{\mathcal{X}}_k$	•••	\mathcal{X}_n	RHS			
z	1	0	• • •	0	• • •	0	ζ_{m+1}	• • •	ζ_k	•••	ζ_n	z_0			
\mathcal{X}_1	0	1	• • •	0	• • •	O	$\overline{a}_{1,m+1}$	• • •	$\overline{a}_{1,k}$	\···	$\overline{a}_{1,n}$	$\overline{b}_{\!\scriptscriptstyle 1}$	Ī		
:	: :	•	٠.	• •		•	:		÷		•	•		单纯形表	
\mathcal{X}_r	0	0	• • •	1	• • •	0	$\overline{a}_{r,m+1}$	• • •	$\left(\overline{a}_{r,k}\right)$	• • •	$\overline{a}_{r,n}$	\overline{b}_{r}			
:	•	•		•	٠.	•	:		÷		•	•			
\mathcal{X}_{m}	0	0	• • •	0		1	$\overline{a}_{m,m+1}$	• • •	$\overline{a}_{m,k}$	\	$\overline{a}_{m,n}$	$\overline{b}_{\scriptscriptstyle m}$			
														转轴列	
									转车	由行			转	轴元	
<u> ት</u>	トπイ	= =	T <i>た</i> 左 >-	72										11 17 5	

单纯形表可简记为

上述变换又称之为旋转(pivot),类似于解线性方程组的主元消去法.

2.3 初始解:两阶段法

设原问题为

min cx

$$s.t. \ A\mathbf{x} = \mathbf{b} \ (\mathbf{b} \ge \mathbf{0})$$
$$\mathbf{x} \ge \mathbf{0}$$

引入m个人工变量 $\mathbf{x}_a = (x_{n+1},...,x_{n+m})^T$,考虑如下辅助问题 min $g = \mathbf{1}\mathbf{x}_a$ s.t. $A\mathbf{x} + \mathbf{x}_a = \mathbf{b}$ $\mathbf{x}, \mathbf{x}_a \geq 0$

其中 $\mathbf{1} = (1,...,1)$ 。设原问题的可行域为D,辅助问题的可行域为D',

显然
$$\mathbf{x} \in D \Leftrightarrow \begin{pmatrix} \mathbf{x} \\ 0 \end{pmatrix} \in D'$$
。 面 $\begin{pmatrix} \mathbf{x} \\ 0 \end{pmatrix} \in D' \Leftrightarrow \min g = 0.$

2.3 初始解:两阶段法

$$m$$
个人工变量 $\mathbf{x}_a = (x_{n+1},...,x_{n+m})^T$,考虑如下辅助问题
$$\min g = \mathbf{1}\mathbf{x}_a$$
 $s.t.$ $A\mathbf{x} + \mathbf{x}_a = \mathbf{b}$ $\mathbf{x}, \mathbf{x}_a \ge 0$

$$\begin{pmatrix} \mathbf{x} \\ 0 \end{pmatrix} \in D' \Leftrightarrow \min g = 0.$$

对于辅助问题来说,一个基本可行解是 $\begin{pmatrix} \mathbf{x} \\ \mathbf{x}_a \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ \mathbf{b} \end{pmatrix}$,

于是可进行单纯形迭代求解, 其结果有两种可能:

- 1) $\min g > 0$ 。 说明 $D = \emptyset$.
- 2) $\min g = 0$ 。这是自然有 $\mathbf{x}_a = 0$,把它除去后即得到原问题的一个可行解。

2.3 初始解:两阶段法

$$m$$
个人工变量 $\mathbf{x}_a = (x_{n+1}, ..., x_{n+m})^T$,得到辅助问题
$$\min g = \mathbf{1}\mathbf{x}_a$$
 $s.t.$ $A\mathbf{x} + \mathbf{x}_a = \mathbf{b}$ $\mathbf{x}, \mathbf{x}_a \ge 0$
$$\begin{pmatrix} \mathbf{x} \\ 0 \end{pmatrix} \in D' \Leftrightarrow \min g = 0.$$

- * 若此时所有人工变量都是非基变量,则解为基本可行解。
- * 否则,进行旋转变换消去基变量中的人工变量。

设基变量x,为人工变量,

- \triangleright 取第r行的前n个元素中不为零的元素 \overline{a}_{rs} 为转轴元进行变换,则非人工变量 x_s 进入基变量,同时从基本量消除了人工变量 x_r 。
- ▷ 若第r行的前n个元素都为零,则直接去掉该行以及对应的人工变量。

2.4 初始解:大M法

设原问题为

min cx

s.t.
$$A\mathbf{x} = \mathbf{b} \ (\mathbf{b} \ge \mathbf{0})$$

 $\mathbf{x} \ge \mathbf{0}$

引入 $\mathbf{x}_a \in E^m$ 及足够大的正数M,得到新问题如下 $\min \mathbf{cx} + M \mathbf{1x}_a$

s.t.
$$A\mathbf{x} + \mathbf{x}_a = \mathbf{b}$$

 $\mathbf{x}, \mathbf{x}_a \ge 0$

其中 $\mathbf{1} = (1,...,1)$ 。只要M取得足够大,那么可以说

$$x$$
是原问题的最优解 ⇔ $\begin{pmatrix} \mathbf{x} \\ \mathbf{0} \end{pmatrix}$ 是新问题的最优解。

而新问题有初始解 $\begin{pmatrix} \mathbf{0} \\ \mathbf{b} \end{pmatrix}$,因此总可以用单纯形法求解。

对偶定理

- 设x和w分别为(P)和(D)的可行解,则有cx≥wb.
- 设 \mathbf{x} *和 \mathbf{w} *分别为(P)和(D)的可行解,则 \mathbf{x} *和 \mathbf{w} *分别为(P)和(D)的最优解的充要条件是 $\mathbf{c}\mathbf{x}$ *= \mathbf{w} * \mathbf{b} .
- 推论: 若(P)有最优解**x***,则(D)有最优解**w***,且 **cx***=**w*****b**;若(P)无界,则(D)无解。反之亦然。
- 互补松弛性: 设 \mathbf{x} **和 \mathbf{w} **分别为(P)和(D)的最优解,则有 \mathbf{w} *($A\mathbf{x}$ **- \mathbf{b})= $\mathbf{0}$, (\mathbf{c} - \mathbf{w} **A) \mathbf{x} *= $\mathbf{0}$ 。

K-T条件:

$$Ax^* \ge b, x^* \ge 0$$
 (原始可行性) $wA \le c, w \ge 0$ (原始可行性) $w(Ax^* - b) = 0, (wA - c)x^* = 0$ (互补松弛性)

- 从K-T条件与单纯形方法中的最优准则的关系中可以看出:在单纯形方法中,除了K-T条件的v≥0外,其余都得到满足。即单纯形法就是保持了原始可行性、互补松弛性、C-wA-v=0得到满足的条件下逐步改善基本可行解,使得对偶可行性中的v=C-wA≥0得到满足。
- 启发: 也可以在保证对偶可行性和互补松弛性满足的条件下,改善解使得原始可行性得到满足。

二、非线性最优化

引言

•最优化的问题的一般形式为

$$Min f(\mathbf{x})$$
 s.t. $\mathbf{x} \in X$

 $f(\mathbf{x})$ 为目标函数, $\mathbf{X} \subset E^n$ 为可行域。

如 $X=E^n$,则以上最优化问题为无约束最优化问题。

约束最优化问题通常写为

$$\begin{aligned} & \text{Min } f(\mathbf{x}) \\ & \text{s.t. } c_i(\mathbf{x}) = 0, \ i \in E, \\ & c_i(\mathbf{x}) \ge 0, \ i \in I, \end{aligned}$$

其中E, I分别为等式约束的指标集和不等式约束的指标集, $c_i(\mathbf{x})$ 是约束函数。

1. 无约束非线性最优化

网络流量分析

显示学术刊物被引用的关系,借此评价一份学术刊物的份量

Visualizing Information Flow in Science

1.1 无约束问题的最优条件

- $\min f(\mathbf{x}), \mathbf{x} \in \mathbb{R}^n$ 的最优性条件
 - **局部极小** 若存在 $\delta > 0$,使得对所有满足 $\|x x^*\| < \delta$ 的x,都有 $f(x) \ge f(x^*)$,

则称x*为f的局部极小点。 如所有满足 $\|x-x^*\|<\delta$ 的x,都有 $f(x)>f(x^*)$,则称x*为f的严格局部极小点。

• 全局极小 若存在 $\delta > 0$,使得对所有x,都有 $f(x) \ge f(x^*)$,则称 x^* 为f的总体极小点。如所有x,都有 $f(x) > f(x^*)$,

则称x*为f的严格总体极小点。

1.1 无约束问题的最优条件

• $\min f(\mathbf{x}), \mathbf{x} \in \mathbb{R}^n$ 的最优性条件。

设 $g(x) = \nabla f(x)$, $G(x) = \Delta f(x)$ 分别为f的一阶和二阶导数。

 $g(x^*) = 0$,则x称为函数f的平稳点。平稳点有可能是极小点,也可能为极大点,也可能不是极值点(鞍点)。

定理(凸充分性定理): 设 $f: D \subset R^n \to R^1$ 是凸函数且一阶连续可微, $\exists x^*$ 是总体极小点的充要条件是 $g(x^*) = 0$ 。

1.2 最优化方法的结构

- 迭代优化方法的基本思想:
 - 给定一个初始点 \mathbf{x}_0 ,
 - 按照某一迭代规则产生一个点列 $\{\mathbf{x}_k\}$,使得
 - 当{x_k}是有穷点列时,其最后一个点是最优化模型问题的最优解。
 - 当{x_k}是无穷点列时,其极限点为最优解。

- 一个好的算法应具备的典型特征为:
 - 迭代点 $\mathbf{x}_{\mathbf{k}}$ 能稳定地接近局部极小点 \mathbf{x}^* 的邻域,然后迅速收敛于 \mathbf{x}^*
 - 当给定的某种收敛准则满足时,迭代即终止。

最优化方法的结构

给定初始点 \mathbf{x}_0 ,

- 1. 确定搜索方向 \mathbf{d}_k ,即依照一定规则构造f在 \mathbf{x}_k 点处的下降方向为搜索方向
- 2. 确定步长因子α, 使目标函数值有某种意义下降
- 3. $\diamondsuit \mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{d}_k$

若 \mathbf{x}_{k+1} 满足某种终止条件,则停止迭代,得到近似最优解,否则,重复以上步骤。

收敛速度

• 收敛速度也是衡量最优化方法有效性的重要方面。

若存在实数 $\alpha > 0$ 及一个与迭代次数k无关的常数q > 0,使得

$$\lim_{k \to \infty} \frac{\left\|\mathbf{x}_{k+1} - \mathbf{x}^*\right\|}{\left\|\mathbf{x}_{k} - \mathbf{x}^*\right\|^{\alpha}} = q,$$

则称算法产生的迭代点列 $\{\mathbf{x}_k\}$ 具有 $Q-\alpha$ 阶收敛速度。特别地

- (1) 当 α =1, q > 0时, $\{\mathbf{x}_k\}$ 具有Q-线性收敛速度。
- (2) 当 $1 < \alpha < 2$,q > 0时(或者 $\alpha = 1$, q = 0), $\{\mathbf{x}_k\}$ 具有Q —超线性收敛速度。
- (3) 当 α =2, q > 0时, $\{\mathbf{x}_k\}$ 具有Q—二阶收敛速度。

收敛速度

- 一般认为,具有超线性和二阶收敛速度的方法是比较快速的。
- 但对于任何一个算法,收敛线和收敛速度的理论结果并不保证算法在实际执行时一定有好的实际计算结果。
 - 忽略了误差; 函数计算不满足限制条件
- 需要选择有代表性的检验函数进行数值计算。

收敛速度

定理:如果序列 $\{x_k\}Q$ 一超线性收敛到 x^* ,那么

$$\lim_{k \to \infty} \frac{\|x_{k+1} - x_k\|}{\|x_k - x^*\|} = 1,$$

但反之一般不成立。

该定理表面,可以 $||x_{k+1}-x_k||$ 来代替 $||x_k-x||$ 给出终止条件, 并且该估计随着k的增加而改善。

终止条件

$$||x_{k+1}-x_k|| \le \varepsilon$$
, $||x_k|| \le \varepsilon$.

有时 $\|x_{k+1} - x_k\|$ 是小的,但 $\|f(x_k) - f(x_{k+1})\|$ 仍然很大(或者相反)。 应同时使用两式,Himmeblau提出:

当
$$\|x_k\| > \varepsilon_2$$
, $|f(x_k)| > \varepsilon_2$ 时,采用 $\frac{\|x_{k+1} - x_k\|}{\|x_k\|} \le \varepsilon_1$, $\frac{|f(x_k) - f(x_{k+1})|}{|f(x_k)|} \le \varepsilon_1$,

否则采用 $\|x_{k+1} - x_k\| \le \varepsilon_1$,或 $|f(x_k) - f(x_{k+1})| \le \varepsilon_1$

对于有一阶导数信息,且收敛不太快的算法,可采用 $\|g_k\| \le \varepsilon_3$,其中 $g_k = \nabla f(x_k)$ 。

但由于平稳点也可能是鞍点, 因此可与上式结合使用。

一般地,可取
$$\varepsilon_1 = \varepsilon_2 = 10^{-5}, \varepsilon_3 = 10^{-4}$$
.

1.3 一维搜索 $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{d}_k \rightarrow \varphi(\alpha) = f(\mathbf{x}_k + \alpha \mathbf{d}_k)$

• 单变量函数的最优化。

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{d}_k,$$

其关键就是构造搜索方向 \mathbf{d}_k 和步长因子 α_k 。设 $\varphi(\alpha) = f(\mathbf{x}_k + \alpha \mathbf{d}_k)$,这样,确定 α_k ,使得 $\varphi(\alpha_k) < \varphi(0)$ 。这就是关于 α 的一维搜索问题。

若 α_k 使得目标函数沿方向达到极小,即 $\varphi(\alpha_k) = \min_{\alpha>0} \varphi(\alpha)$,则称这样的一维搜索为最优一维搜索(或精确一维搜索), α_k 为最优步长因子。若取 α_k 使得目标函数得到可以接受的下降量,则称为近似一维搜索,或不精确一维搜索。

实际中,精确的最优步长因子一般不能求到,求几乎精确的最优步长因子需花费想到大的工作量,因而花费计算量较少的不精确一维搜索受到重视。

一维搜索的主要结构

- 1. 确定包含问题最优解的搜索区间
- 再用某种分割技术或插值方法缩小这个区间,进行搜索求解

- 搜索区间:包含最优值的闭区间。
- 确定搜索区间的简单方法——进退法。
 - 从一点出发,试图确定出函数值呈现"高一低一高"的三点。一个方向不成功,就退回来,再沿相反方向寻找。

- 确定搜索区间的简单方法——进退法。
 - 从一点出发,试图确定出函数值呈现"高一低一高"的三点。一个方向不成功,就退回来,再沿相反方向寻找。
 - 1. 选取初始值 α_0 , h_0 , 加倍系数t > 1(一般t = 2), k = 0
 - 2. 如 $\varphi(\alpha_k + h_k) < \varphi(\alpha_k)$,则 $h_{k+1} = th_k$, $\alpha_{k+1} = \alpha_k + h_{k+1}$, k + +,返回2

一维搜索: 黄金分割法

• 基本思想:通过取试探点和进行函数值比较,使包含极小点的搜索区间不断缩小,当缩短到一定程度后,该区间上的任意一点均可看作极小值的近似。

- 该方法用途广泛,
 - 尤其适合导数表达式复杂或写不出的情况

一维搜索:黄金分割法(0.618法)

设 $\varphi(\alpha) = f(x_k + \alpha d_k)$ 是搜索区间上的单峰函数。

设第k次迭代时搜索区间为[a_k,b_k],

取两个试探点 λ_k , $\mu_k(\lambda_k < \mu_k)$, 计算 $\varphi(\lambda_k)$ 和 $\varphi(\mu_k)$ 。

- (2) 若 $\varphi(\lambda_k) > \varphi(\mu_k)$,则 $\Leftrightarrow a_{k+1} = \lambda_k, b_{k+1} = b_k$

要求试探点 λ_k , μ_k 满足下列条件:

- 1. λ_k , μ_k 到搜索区间[a_k , b_k]的端点等距,即 λ_k - a_k = b_k - μ_k (或 b_k - λ_k = μ_k - a_k)
- 2. 每次迭代,搜索区间长度缩短率相同,即 $b_{k+1}-a_{k+1}=\tau(b_k-a_k)$

则可推出
$$\lambda_k = a_k + (1-\tau)(b_k - a_k)$$
, $\mu_k = a_k + \tau(b_k - a_k)$.

$$3.\lambda_k = \mu_{k+1}$$

可推出
$$\tau = \frac{\sqrt{5}-1}{2} \approx 0.618$$

不难知道第n次迭代后的区间长度为 $\tau^{n-1}(b_1-a_1)$,收敛速度为线性。

改进

实际上所遇到的函数不一定是单峰函数,这时搜索 出的值有可能大于初始区间的端点值。

改进:每次缩小区间时,不只比较两个内点处的函数值,而是要比较两个内点和两个端点处的函数值。 当左边第一个或第二个点是这四个点中函数值最小的点时,丢弃右端点;否则,丢弃左端点。

Fibonacci法

- 与0.618法的主要区别之一:搜索区间缩短率不是采用黄金分割数,而是采用Fibonacci数。
 - Fibonacci数满足:

$$F_0 = F_1 = 1, F_{k+1} = F_k + F_{k-1}, k = 1, 2, \dots$$

1, 1, 2, 3, 5, 8, 13, ...

Fibonacci分割方法:

$$\lambda_k = a_k + (1-\tau)(b_k - a_k), \quad \mu_k = a_k + \tau(b_k - a_k), \tau = \frac{F_{n-k-1}}{F_{n-k+1}}$$

Fibonacci法

$$\lambda_k = a_k + (1 - \tau)(b_k - a_k), \quad \mu_k = a_k + \tau(b_k - a_k), \tau = \frac{F_{n-k-1}}{F_{n-k+1}}$$

要求经过n次计算后,最后的区间长度不超过 δ ,即 $b_n - a_n \le \delta$.

另一方面,
$$b_n - a_n = \frac{F_1}{F_2}(b_{n-1} - a_{n-1}) = \frac{F_1}{F_2} \frac{F_2}{F_3} \cdots \frac{F_{n-1}}{F_n}(b_1 - a_1) = \frac{1}{F_n}(b_1 - a_1)$$

故可得 $F_n \ge \frac{(b_1 - a_1)}{\delta}$

可以证明 $n \to \infty$,*Fibonacci*法与0.618法的区间缩短率相同。 因而*Fibonacci*法线性收敛。

同时可以证明:

Fibonaaci法是分割方法求一维极小化问题的最优策略,而0.618法是分割方法求一维极小化问题的近似最优解。

1.3.2 插值法

- 插值法是一类重要的搜索方法,其基本思想是在搜索区间中不断用低次(通常不超过三次)多项式来近似目标函数,并逐步用插值多项式的极小点来逼近一维搜索问题的极小点。
- 当函数具有比较好的解析性质时,插值方法比直接 方法(0.618法或Fibonacci法)效果更好。

二次插值法:

一点二次插值(牛顿法)

• 利用一点处的函数值、一阶和二阶导数值构造二次插值函数

 $q(\alpha) = a\alpha^2 + b\alpha + c$,则 $\alpha = -\frac{b}{2a}$ 为近似极小点的计算公式。 设端点处值为 $\varphi(\alpha_1)$, $\varphi'(\alpha_1)$, $\varphi''(\alpha_1)$ 。则可推出一维搜索的 近似极小点为

$$\overline{\alpha} = -\frac{b}{2a} = \alpha_1 - \frac{\varphi'(\alpha_1)}{\varphi''(\alpha_1)}$$

写成迭代形式为

$$\alpha_{k+1} = \alpha_k - \frac{\varphi'(\alpha_k)}{\varphi''(\alpha_k)}$$

• 牛顿法的优点是收敛速度快,具有局部二阶收敛速度。

二点二次插值法

• 给出两点的函数值和其中一点的导数值,构造二次插值函数。类似的可得

$$\overline{\alpha} = -\frac{b}{2a} = \alpha_1 - \frac{(\alpha_1 - \alpha_2)\varphi'(\alpha_1)}{2\left[\varphi'(\alpha_1) - \frac{\varphi(\alpha_1) - \varphi(\alpha_2)}{\alpha_1 - \alpha_2}\right]}^{\circ}$$
写成迭代形式为 $\alpha_{k+1} = \alpha_k - \frac{(\alpha_k - \alpha_{k-1})\varphi'(\alpha_k)}{2\left[\varphi'(\alpha_k) - \frac{\varphi(\alpha_k) - \varphi(\alpha_{k-1})}{\alpha_k - \alpha_{k-1}}\right]}$

• 可证明二点二次插值法的收敛阶为1.618,超线性收敛。

三点二次法(抛物线法)

$$\overline{\alpha} = -\frac{b}{2a} = \frac{1}{2} (\alpha_1 + \alpha_2) + \frac{1}{2} \frac{(\varphi_1 - \varphi_2)(\varphi_2 - \varphi_3)(\varphi_3 - \varphi_1)}{(\alpha_2 - \alpha_3)\varphi_1 + (\alpha_3 - \alpha_1)\varphi_2 + (\alpha_1 - \alpha_2)\varphi_3} \circ$$

$$\varphi_1 > \varphi_2, \varphi_3 > \varphi_2$$
迭代时,从 α_1 , α_2 , α_3 , $\overline{\alpha}$ 中选择目标函数最小的点及其左右两点,进行下一步的迭代。

• 超线性收敛,收敛阶近似为1.32

二点三次插值法

用三次多项式来逼近。比二次插值法有较好的收敛效果,但通常要求计算导数值,且计算量较大。一般当导数易求时,用三次插值法较好。

用函数 $\varphi(\alpha)$ 在a,b两点的函数值 $\varphi(a),\varphi(b)$ 和导数值 $\varphi'(a),\varphi'(b)$ 来构造三次函数,初值条件 $a < b,\varphi'(a) < 0,\varphi'(b) > 0$ 。经过推导

$$\overline{\alpha} = a + (b-a) \frac{(w-\varphi'(a)-z)}{\varphi'(b)-\varphi'(a)+2w},$$

其中
$$z = 3\frac{\varphi(b) - \varphi(a)}{b - a} - \varphi'(a) - \varphi'(b)$$
, $w^2 = z^2 - \varphi'(a)\varphi'(b)$

在迭代时,若 $f(\overline{\alpha}) < 0$,则令 $a = \overline{\alpha}$;若 $f(\overline{\alpha}) > 0$,令 $b = \overline{\alpha}$.

• 收敛速度为2阶,一般优于抛物线法。

1.3.3 不精确的一维搜索方法

- 精确一维搜索往往需要花费很大的时间。
 - 当迭代点远离问题的解时,精确求解通常不十分有效。
 - 很多最优化方法,如牛顿法和拟牛顿法,其收敛速度并不依赖于精确一维搜索过程。
- 只要保证目标函数有满意的下降,可大大节省计算量。

Armijo-Goldstein准则

设区间 $J = \{\alpha > 0 \mid \varphi(\alpha) < \varphi(0)\}$.要保证目标函数下降,同时f的下降不是太小。一个合理的要求:

$$\varphi(\alpha) \le \varphi(0) + \rho \alpha \varphi'(0), \sharp + 0 < \rho < 0.5.$$

为了避免 α 取得过小,加上另一个要求

$$\varphi(\alpha) \ge \varphi(0) + (1-\rho) \alpha \varphi'(0)$$

上述两式称为Armijo – Goldstein 不精确线性搜索准则。满足上述要求的 α 构成区间 J_2 = [b,c],称为可接受区间, α 称为可接受步长因子。

Wolfe-Powell准则

• Armijo-Goldstein准则有可能把最优步长因子排除在可接受 区间外,因此更改第二个条件为

$$\varphi(\alpha) \ge \varphi(0) + (1-\rho)\alpha\varphi'(0) \Longrightarrow \varphi'(\alpha) \le \sigma |\varphi'(0)|, \sharp \varphi \wedge \varphi < 1_{\circ}$$

 一般地, σ值越小(0.1), 线性搜索越精确。不过, 计算量也越大。通常取ρ =0.1, σ=0.4.

1.4 牛顿型方法

1.4.1最速下降法

- 以负梯度方向作为极小化算法的搜索方向,即 $\mathbf{d}_{k}=-\mathbf{g}_{k}$
- 具有总体收敛性:
 - 产生的迭代点列 $\{\mathbf{x}_k\}$ 的每一个聚点都是平稳点。
- 最速下降方向仅是局部性质
 - 对于许多问题并非下降方向,而且下降 非常缓慢
 - 接近极小点时,步长越小前进越慢
- 线性收敛

1.4.2 牛顿法

牛顿法的基本思想是利用目标函数的二次Taylor展开,并 将其极小化。

函数f(x)在 x_k 处的二次Taylor展开为 $f(x_k + s) \approx q^{(k)}(s) = f(x_k) + \nabla f(x_k)^T s + \frac{1}{2} s^T \nabla^2 f(x_k) s$

其中 $s = x - x_k$.将 $q^{(k)}(s)$ 极小化,得到

$$x_{k+1} = x_k - \left[\nabla^2 f(x_k)\right]^{-1} \nabla f(x_k) = x_k - G_k^{-1} g_k$$

- 对于正定二次函数,一步即可得最优解。
- 由于目标函数在极点附件近似于二次函数,故在初始点接近极小点时, 牛顿法收敛速度较快。
- 牛顿法具有局部收敛性,为二阶收敛。

牛顿法

• 当初始点远离最优解时, G_k 不一点正定,则牛顿方向不一定为下降方向,其收敛性不能保证。这说明恒取步长因子为1是不合适的,应该采用一维搜索(仅当步长因子 $\{\alpha_k\}$ 收敛1时,牛顿法才是二阶收敛的)。

迭代公式为:
$$d_k = -G_k^{-1}g_k, x_{k+1} = x_k + \alpha_k d_k$$

• 带步长因子的牛顿法是总体收敛的。

1.4.3 修正牛顿法

- 牛顿法的主要困难在于Hesse阵 G_k 不正定。这时二次型模型不一定有极小点,甚至没有平稳点。
- Goldstein&Price(1967)当 G_k 非正定时,采用最速下降方向结合方向,给出

$$\mathbf{d}_{k} = \begin{cases} \mathbf{d}_{k}^{N} = -G_{k}^{-1}\mathbf{g}_{k}, & angle \langle \mathbf{d}_{k}^{N}, -\mathbf{g}_{k} \rangle < \frac{\pi}{2} \\ -\mathbf{g}_{k}, & \text{otherwise} \end{cases}$$

Goldfeld修正牛顿法

• 使牛顿方向偏向最速下降方向。更明确地说,将Hesse阵 G_k 改变成 G_k+v_kI ,使得 G_k+v_kI 正定。比较理想的是, v_k 为使 G_k+v_kI 正定的最小v。

利用Gill和Murray的修改Cholesky分解算法确定 v_k .即

$$G_k + E = LDL^T(L$$
为下三角阵, D 为对角阵)

$$若E=0,则v_k=0;$$

$$b_1 = \left| \min_{1 \le i \le n} \left\{ \left(G_k \right)_{ii} - \sum_{j \ne i} \left| \left(G_k \right)_{ij} \right| \right\} \right| \ge \left| \min_i \, \lambda_i \right|$$

另外,令 $b_2 = \max_{i} \{(E)_{ii}\}$ 也是 ν 的一个上界。

最后,取
$$v_k = \min\{b_1, b_2\}$$

负曲率方向法

- 在鞍点处 g_k =0而 G_k 不是正半定时,修正牛顿法失效
 - 采用负曲率方向作为搜索方向,可使目标函数值下降
- 若 $G(\mathbf{x})$ 至少有一个负特征值,则 \mathbf{x} 叫做不定点
- 若 \mathbf{x} 是一个不定点,方向 \mathbf{d} 满足 $\mathbf{d}^{\mathrm{T}}G(\mathbf{x})\mathbf{d}<0$,

则d为f(x)在x处的负曲率方向

Gill-Murray稳定牛顿法

- 基本思想是:
 - 当 G_k 不定矩阵时,采用修改Cholesky分解强迫矩阵正定;
 - 当 \mathbf{g}_k 趋于0时,采用负曲率方向使函数值下降

$$\text{in } \overline{G}_k = G_k + E_k = L_k D_k L_k^T$$

构造负曲率方向:

$$1_{\circ} \Leftrightarrow w_{j} = d_{jj} - e_{jj}, j = 1,...,n$$

$$2_{\circ}$$
 求下标 t ,使得 $w_{t} = \min\{w_{j} \mid j = 1,...,n\}$

Gill-Murray稳定牛顿法

- 1。给定初始点 x_0 , $\varepsilon > 0$,k = 1
- 2。 计算 g_k 和 G_k
- 3。对 G_k 进行修改Cholesky分解, $L_kD_kL_k^T=G_k+E_k$
- 5。构造负曲率方向,若求不处方向(即 $w_t \ge 0$),则停止;否则,

6。一维搜索, 使得
$$f(x_k + \alpha_k d_k) = \min_{\alpha \geq 0} f(x_k + \alpha d_k)$$
, 并令

$$x_{k+1} = x_k + \alpha_k d_k$$

7。若满足终止条件,则停止; 否则, k = k + 1, 转2。

• 可证明该方法总体收敛。

信赖域方法

• 不仅可以用来代替一维搜索,而且也可以解决Hessen矩阵 不正定等困难

• 主要思想:

- 首先选择一个步长r,使得在 $\|\mathbf{x}-\mathbf{x}_k\| < r$ 范围内(信赖域)
- 目标函数用n维二次模型来逼近,并以此选择一个搜索方向 \mathbf{s}_k ,取 $\mathbf{x}_{k+1}=\mathbf{x}_k+\mathbf{s}_k$
- 具有牛顿法的快速局部收敛性,又具有理想的总体收敛性。

Levenberg-Marquardt方法

最重要的一类的信赖域是取12范数,此时原模型等效于

$$\min q^{(k)}(s) = f_k + \mathbf{g}_k^T \mathbf{s} + \frac{1}{2} \mathbf{s}^T G_k \mathbf{s}, \qquad s.t. \|\mathbf{s}\|_2 \le h_k$$

引入
$$Lagrange$$
函数 $L(\mathbf{s}, \mu) = q^{(k)}(\mathbf{s}) + \frac{1}{2}\mu(\mathbf{s}^T\mathbf{s} - h_k^2)$

根据约束最优化的最优性条件知: $\nabla_s L = 0, \mu \ge 0$ 从而可推出

$$L(s, \mu_k) = q^{(k)}(s) + \frac{1}{2}\mu_k(s^T s - h_k^2) = q^{(k)}(s) + \frac{1}{2}\mu_k(s^T s - h_k^2) + s_k^T \nabla_s L(s_k, \mu_k)$$

$$= f_k + g_k^T s + \frac{1}{2} s^T G_k s + \frac{1}{2} \mu_k (s^T s - h_k^2) + s_k^T \nabla_s L(s_k, \mu_k) + s_k^T [g_k + G_k s_k + \mu_k s_k]$$

$$= q^{(k)}(s_k) + \frac{1}{2}(s - s_k)^T (G_k + \mu_k I)(s - s_k)$$

Levenberg-Marquardt方法

信赖域采用1,范数定义,原模型等效于

min
$$q^{(k)}(\mathbf{s}) = f_k + g_k^T \mathbf{s} + \frac{1}{2} \mathbf{s}^T G_k \mathbf{s}, \quad s.t. ||s||_2 \le h_k$$

号
$$\lambda Lagrange$$
 函数 $L(\mathbf{s}, \mu) = q^{(k)}(\mathbf{s}) + \frac{1}{2}\mu(\mathbf{s}^T\mathbf{s} - h_k^2)$

根据约束最优化的最优性条件知: $\nabla_s L = 0, \mu \ge 0$

$$L(\mathbf{s}, \mu_k) = q^{(k)}(\mathbf{s}_k) + \frac{1}{2}(\mathbf{s} - \mathbf{s}_k)^T (G_k + \mu_k I)(\mathbf{s} - \mathbf{s}_k)$$

可证明:

总体解的二阶必要条件为 $(G_k + \mu_k I)$ 半正定。

总体解严格最小的充分条件为 $(G_k + \mu_k I)$ 正定。

因此,LM方法都是要确定一个 $\mu_k \geq 0$,使得 $(G_k + \mu_k I)$ 正定, 并用 $\mathbf{g}_k + (G_k + \mu_k I)\mathbf{s} = 0$ (即 $\nabla_s L = 0$)求解 \mathbf{s}_k 。同时可以证明 $\|\mathbf{s}\|_2$ 随 μ 单调减小。

Levenberg-Marquardt方法

- 1。给定初始点 $x_0, \mu_0 > 0, k = 1$
- 2。 计算 g_k 和 G_k
- 3。若 $|g_k|| < \varepsilon$,停止。
- 4。分解 $G_k + \mu_k I$,若不正定,置 $\mu_k = 4\mu_k$,重复4直到正定。
- 5_{\circ} 解 $(G_k + \mu_k I)s = -g_k$,求出 s_k
- $6_{\circ} \Re f(x_k + s_k), q^{(k)}(s_k) \Re r_k = \frac{\Delta f_k}{\Delta q^{(k)}}$

- 9。 $\diamondsuit k = k + 1, 转2$ 。

1.5 共轭方向法

介于最速下降法与牛顿法之间的一个方法,仅需利用一阶导数,但克服了最速下降法收敛慢地缺点,又避免存储和计算牛顿法所需要的二阶导数信息。

共轭

• 设G是 $n \times n$ 对称正定矩阵,若给定n维非零向量 \mathbf{d}_1 和 \mathbf{d}_2 ,满足

$$\mathbf{d}_1^{\mathrm{T}}\mathbf{G}\mathbf{d}_2 = 0$$
,

则称向量d₁,d₂是G-共轭的

• 类似,设n维非零向量 \mathbf{d}_1 , \mathbf{d}_2 ,... \mathbf{d}_m , 如果 $\mathbf{d}_i^T G \mathbf{d}_j = 0$ ($i \neq j$),则称 \mathbf{d}_1 , \mathbf{d}_2 , ... \mathbf{d}_m 是G-共轭的

一般共轭方向法

- 1。给定初始点 \mathbf{x}_0 ,k=0
- 2。计算 \mathbf{g}_0
- 3。计算 \mathbf{d}_0 ,使得 $\mathbf{d}_k^T \mathbf{g}_k < 0$
- 4。一维搜索得到 \mathbf{x}_{k+1} 。
- 5。 计算 \mathbf{d}_{k+1} ,使得 $\mathbf{d}_{k+1}^T G \mathbf{d}_j = 0, j = 0, 1, ..., k$
- 6。 k = k + 1,转4。

共轭方向法的基本性质:

- 共轭方向 \mathbf{d}_0 , \mathbf{d}_1 , ..., \mathbf{d}_n , 对于所有i <= n-1, 有 $\mathbf{g}^T_{i+1}\mathbf{d}_j = 0$, (j=0,...,i)
- 对于正定二次函数, 共轭方向法至多经过n步精确线性搜索终止。

共轭梯度法

考虑目标函数:
$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T G \mathbf{x} + \mathbf{b}^T \mathbf{x} + \mathbf{c}$$

令 $\mathbf{d}_0 = -\mathbf{g}_0$,根据一维精确搜索的性质, $\mathbf{g}_1^T \mathbf{d}_0 = 0$

$$\mathbf{d}_1 = -\mathbf{g}_1 + \beta_0 \mathbf{d}_0 \tag{*}$$

选择 β_0 使得 $\mathbf{d}_1^T G \mathbf{d}_0 = 0.$ 则(*)式两边乘 $\mathbf{d}_0^T G$,可得

$$\beta_0 = \frac{\mathbf{g}_1^T G \mathbf{d}_0}{\mathbf{d}_1^T G \mathbf{d}_0} \xrightarrow{\exists \text{min}} = \frac{\mathbf{g}_1^T (\mathbf{g}_1 - \mathbf{g}_0)}{\mathbf{d}_1^T (\mathbf{g}_1 - \mathbf{g}_0)} = \frac{\mathbf{g}_1^T \mathbf{g}_1}{\mathbf{g}_0^T \mathbf{g}_0}$$

共轭梯度法仅比最速下降法稍微复杂一点,但具有二次终止性(对于二次函数,算法在有限步终止)。

共轭梯度法

$$\beta_0 = \frac{\mathbf{g}_1^T G \mathbf{d}_0}{\mathbf{d}_1^T G \mathbf{d}_0} \xrightarrow{= \pm \infty \times \times} = \frac{\mathbf{g}_1^T (\mathbf{g}_1 - \mathbf{g}_0)}{\mathbf{d}_1^T (\mathbf{g}_1 - \mathbf{g}_0)} = \frac{\mathbf{g}_1^T \mathbf{g}_1}{\mathbf{g}_0^T \mathbf{g}_0}$$

$$\mathbf{d}_{k+1} = -\mathbf{g}_{k+1} + \boldsymbol{\beta}_{k} \mathbf{d}_{k}, \\ \boldsymbol{\beta}_{k} = \frac{\mathbf{g}_{k+1}^{T} (\mathbf{g}_{k+1} - \mathbf{g}_{k})}{\mathbf{d}_{k}^{T} (\mathbf{g}_{k+1} - \mathbf{g}_{k})} (\text{Crowder} - \text{Wolfe公式})$$

$$= \frac{\mathbf{g}_{k+1}^{T} \mathbf{g}_{k+1}}{\mathbf{g}_{k}^{T} \mathbf{g}_{k}} (\text{Fletcher} - \text{Reeves 公式})$$

$$= -\frac{\mathbf{g}_{k+1}^{T} \mathbf{g}_{k+1}}{\mathbf{d}_{k}^{T} \mathbf{g}_{k}} (\text{Dixon 公式})$$

共轭梯度法仅比最速下降法稍微复杂一点,但具有二次终止性(对于二次函数,算法在有限步终止)。

再开始FR共轭梯度法

- 对于一般非二次函数, *n*步后共轭梯度法产生的搜索方向不再共轭。
- 再开始共轭梯度法
 - n步后周期性采用最速下降方向作为搜索方向
 - 在精确线性搜索条件下,总体收敛。
 - 满足Lipschitz条件,线性搜索由Wolfe-Powell准则确定,且下降方向与负梯度方向小于90度,总体收敛。
 - 具有*n*步二阶收敛性。(*n*步可求得二次凸函数的极小点,相当牛顿法的执行一步)

拟牛顿法

- 计算Hesse矩阵工作量,有时目标函数的Hesse阵 很难计算。
- 拟牛顿法利用目标函数和一阶导数,来构造目标函数的曲率近似,而不需要明显形成Hesse阵,同时具有收敛速度快的优点。

拟牛顿条件

f在 \mathbf{x}_{k+1} 附近的二次近似为

$$f(\mathbf{x}) \approx f(\mathbf{x}_{k+1}) + \mathbf{g}_{k+1}^{T}(\mathbf{x} - \mathbf{x}_{k+1}) + \frac{1}{2}(\mathbf{x} - \mathbf{x}_{k+1})^{T} G_{k+1}(\mathbf{x} - \mathbf{x}_{k+1}),$$

对上式求导,有

$$\mathbf{g}(\mathbf{x}) \approx \mathbf{g}_{k+1} + G_{k+1}(\mathbf{x} - \mathbf{x}_{k+1}),$$

$$G_{k+1}^{-1}\mathbf{y}_k \approx \mathbf{s}_k$$

对于二次函数ƒ,上述关系式精确成立。

要求在拟牛顿法中构造出Hesse逆近似 H_{k+1} ,满足

$$H_{k+1}\mathbf{y}_{k}=\mathbf{s}_{k}$$

称为拟牛顿条件。或构造Hesse近似

$$B_{k+1}\mathbf{s}_k = \mathbf{y}_k$$

一般的拟牛顿算法

一般拟牛顿算法:

- 1。 给初值 $\mathbf{x}_0 \in R^n, H_0 \in R^{n \times n}, 0 \le \varepsilon \le 1, k = 0.$
- 2。若 $\|\mathbf{g}_k\| \le \varepsilon$,则停止;否则,计算 $d_k = -H_k g_k$
- 3。沿方向 \mathbf{d}_k 线性搜索求 α_k , 令 $x_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{d}_k$
- 4。校正 H_k 产生 H_{k+1} ,使得拟牛顿条件满足。
- 5。*k* = *k* + 1,转步2。

优点:

- 仅需一阶导数
- H_k保持正定,具有下降性。
- 迭代每次需要O(n²)次乘法。(牛顿法O(n³)次乘法)

对称秩一校正(SR1校正)

希望有 $H_{k+1} = H_k + E_k$,其中 E_k 为一个低阶矩阵。在秩一校正情形下, $E_k = uv^T$.

根据拟牛顿条件有, $(H_k + uv^T)y_k = s_k \Rightarrow (v^Ty_k)u = s_k - H_ky_k$,故 u必在方向 $s_k - H_ky_k$ 上。

取 $u = \frac{1}{v^T y_k} (s_k - H_k y_k)$,因为Hesse为对称阵,故取 $v = (s_k - H_k y_k)$ 。

那么
$$H_{k+1} = H_k + \frac{(s_k - H_k y_k)(s_k - H_k y_k)^T}{(s_k - H_k y_k)^T y_k}$$
,称为对称秩一校正(SR1校正).

性质

- 1。对于二次函数,不需要精确一维搜索,具有n步终止性质, $H_n = G^{-1}$
- 2。不能保持正定性,仅当 $(s_k H_k y_k)^T y_k > 0$ 时。但这个条件往往很难满足。这使得SR1校正在应用中受到限制。

DFP校正

设秩二校正为 $H_{k+1} = H_k + auu^T + bvv^T$.

若要拟牛顿条件 $(H_k + auu^T + bvv^T)y_k = s_k$ 成立,

对于u,v一个明显的取法为 $u=s_k, v=H_k y_k$ 。

同时令: $au^T y_k = 1, bv^T y_k = -1,$ 可知(*)恒成立。

那么
$$a = \frac{1}{s_k^T y_k}, b = -\frac{1}{y_k^T H_k y_k}$$

那么
$$H_{k+1} = H_k + \frac{s_k^T s_k}{s_k^T y_k} - \frac{H_k y_k y_k^T H_k^T}{y_k^T H_k y_k}$$
,称为 DFP 校正.

性质

- 1。对于二次函数,精确一维搜索,具有n步终止性质, $H_n = G^{-1}$
- 2。对于二次函数, $H_0 = I$ 时,产生共轭方向与共轭梯度。
- 3。校正保持正定性,下降性质成立。
- 4。具有超线性收敛。
- 5。采用精确线性搜索时,对于凸函数,总体收敛。

2. 约束非线性最优化

2.1 约束优化最优性条件

约束最优化问题通常写为

 $\min f(\mathbf{x})$

s.t.
$$c_i(\mathbf{x})=0$$
, $i \in E=\{1,...,m_e\}$, $c_i(\mathbf{x})\geq 0$, $i \in I=\{m_e+1,...,m\}$

在x*处的非积极约束

设 \mathbf{x} *为一个局部极小点,若不等式约束 i_0 有, \mathbf{c}_{i0} (\mathbf{x} *)>0,则可将第 i_0 个约束去掉,且 \mathbf{x} *仍然是去掉第 i_0 个约束条件的问题的局部极小点。称约束 c_{i0} 在 \mathbf{x} *处是非积极的。

定义: $I(\mathbf{x})=\{i \mid c_i(\mathbf{x})<=0, i \in I\}; A(\mathbf{x})=\mathrm{EUI}(\mathbf{x})$ 为x点处的积极集合。

一阶最优性条件

Kuhn-Tucker必要条件:

$$\nabla f(x^*) = \sum_{i=1}^m \lambda_i^* \nabla c_i(x^*), \tag{*}$$

$$\lambda_i^* \ge 0, \quad \lambda_i^* c_i(x^*) = 0, i \in I.$$
 (**)

满足上述两式的点称为K-T点。与该定理联系密切的是Lagrange 函数:

$$L(x,\lambda) = f(x) - \lambda^{T} c(x).$$

则(*)条件等价于 $\nabla_x L = 0$ 。 λ 称为Lagrange乘子。

二阶必要条件

定义:设 x^* 是K-T点, λ^* 称为相应的Lagrange乘子,若存在序列 $\{d_k\}$ 和 $\{\delta_k>0\}$ 使得 $x^*+\delta_k d_k \in X$

$$\sum_{i=1}^{m} \lambda_i^* c_i \left(x^* + \delta_k d_k \right) = 0, i \in I.$$

且有 $d_k \to d$, $\delta_k \to 0$,则称d为 x^* 处的序列零约束方向。在 x^* 处的所有序列零约束方向的集合记为 $S(x^*, \lambda^*)$

二阶必要性条件:

设 x^* 为局部极小点, λ^* 称为相应的Lagrange乘子,则必有 $d^T \nabla^2_{xx} L(x^*, \lambda^*) d \geq 0, \forall d \in S(x^*, \lambda^*)$ 其中 $L(x, \lambda)$ 为Lagrange函数。

稍加强可得充分性条件:

设 x^* 为K-T点, λ^* 称为相应的Lagrange乘子,若 $d^T \nabla^2_{xx} L(x^*,\lambda^*) d > 0, \forall 0 \neq d \in S(x^*,\lambda^*)$,则 x^* 为局部严格极小点。

2.2 可行方向法

- 可行方向法即要去每次迭代产生的点 \mathbf{x}_k 都是约束优化问题的可行点。
- 关键在于每一步寻找可行下降方向:

 $d^T \nabla f(x_k) < 0, d \in FD(x_k, X).$

可行方向: 设 $\bar{x} \in X$, $0 \neq d \in R^n$,如存在 $\delta > 0$ 使得 $\bar{x} + td \in X$,则称d为 \bar{x} 处的可行方向。X在 \bar{x} 处的所有可行方向集合记为 $FD(\bar{x}, X)$ 。

广义消去法

考虑等式约束问题

 $\min f(x)$,

s.t.
$$c(x) = 0$$

设有变量分解 $x = \begin{bmatrix} x_B \\ x_N \end{bmatrix}$,其中 $x_B \in R^m$, $x_N \in R^{n-m}$.则c(x) = 0可改写为

$$c(x_B, x_N) = 0.$$

假定可以从(1)解出 $x_R = \varphi(x_N)$, 则原问题等价于

$$\min_{x_N \in \mathbb{R}^{n-m}} f(x_B, x_N) = f(\varphi(x_N), x_N) = \widetilde{f}(x_N).$$

称 $\tilde{g}(x_N) = \nabla_{x_N} \tilde{f}(x_N)$ 为既约梯度。

不难验证

$$\widetilde{g}(x_N) = \frac{\partial f(x_B, x_N)}{\partial x_N} + \frac{\partial x_B^T}{\partial x_N} \frac{\partial f(x_B, x_N)}{\partial x_R},$$

从(1)可得

$$\frac{\partial x_B^T}{\partial x_N} \frac{\partial c(x_B, x_N)^T}{\partial x_B} + \frac{\partial c(x_B, x_N)^T}{\partial x_N} = 0.$$

假设
$$\frac{\partial c(x_B, x_N)^T}{\partial x_B}$$
 非奇异,可得到

$$\widetilde{g}(x_N) = \frac{\partial f(x_B, x_N)}{\partial x_N} - \frac{\partial c(x_B, x_N)^T}{\partial x_N} \left(\frac{\partial c(x_B, x_N)^T}{\partial x_B} \right)^{-1} \frac{\partial f(x_B, x_N)}{\partial x_B}$$

$$\diamondsuit\lambda = \left(\frac{\partial c(x_B, x_N)^T}{\partial x_B}\right)^{-1} \frac{\partial f(x_B, x_N)}{\partial x_B}, 则发现可以将既约$$

梯度写成Larg range函数在既约空间上的梯度,

$$\tilde{g}(x_N) = \frac{\partial}{\partial x_N} [f(x) - \lambda^T c(x)]$$
。或者说,有

$$\nabla_x L(x,\lambda) = \begin{bmatrix} 0 \\ \tilde{g}(x_N) \end{bmatrix}$$
。故既约梯度可看作 $Lagrange$ 函数

之梯度的非零部分。利用既约梯度,可以构造无约束 优化问题的线搜索方向。例如可取最速下降方向

$$\tilde{d}_k = -\tilde{g}((x_N)_k)$$
,或拟牛顿方向 $\tilde{d}_k = -H_k\tilde{g}((x_N)_k)$ 。

在无约束问题上作线性搜索,等价于对原目标函数 f(x)在曲线

$$c(x_B,(x_N)_k + \alpha \tilde{d}_k) = 0$$
 (2)

上作曲线搜索。因为 $\varphi(x)$ 的解析表达式并不知道,故作一维搜索时,每个试探步长 $\alpha > 0$ 都要用(2)来求解 x_B .

变量消去法

- 1。给出可行点 x_1 , $\varepsilon \ge 0$, k = 1
- 2。 计算 $\frac{\partial c(x_k)^T}{\partial x} = \begin{bmatrix} A_B \\ A_N \end{bmatrix}$, 其中划分使得 A_B 非奇异;

计算
$$\lambda = \left(\frac{\partial c(x_B, x_N)^T}{\partial x_B}\right)^{-1} \frac{\partial f(x_B, x_N)}{\partial x_B}$$
及 $\tilde{g}((x_N)_k) = \frac{\partial}{\partial x_N} [f(x) - \lambda^T c(x)].$

3。如果 $\|\tilde{g}_k\| \le \varepsilon$,则停止;否则利用某种方式产生下降方向 \tilde{d}_k ,即使得 $\tilde{d}_k \tilde{g}_k < 0$;

$$4_{\circ} \min_{\alpha \geq 0} f(\varphi((x_N)_k + \alpha \tilde{d}_k), (x_N)_k + \alpha \tilde{d}_k)$$
进行线性搜索给出 $\alpha_k > 0$, 令
$$x_{k+1} = (\varphi((x_N)_k + \alpha_k \tilde{d}_k), (x_N)_k + \alpha_k \tilde{d}_k), k = k+1, 转2步。$$

考虑更一般的形式。任意非奇异矩阵 $S \in \mathbb{R}^{n \times n}$,以及变量替换 x = Sw

对w进行变量分离
$$w = \begin{bmatrix} w_B \\ w_N \end{bmatrix}$$
。利用约束条件 $c(x) = 0$ 进行变量消去

得到 $w_B = \varphi(w_N)$ 。于是原问题等价于

$$\min_{w_N \in \mathbb{R}^{n-m}} f(S_B w_B + S_N w_N) = \widetilde{f}(w_N)$$

可直接计算得到
$$\nabla_{w_n} \tilde{f}(w_N) = \tilde{g}((x_N)_k) = (S_k)_N [\nabla f(x) - \nabla c(x)^T \lambda]$$

其中 λ 满足 $(S_k)_R [\nabla f(x) - \nabla c(x)^T \lambda] = 0$ 。

广义消去法:

- 1。给出可行点 x_1 , ε ≥ 0, k = 1
- 2。以某种方式构造一非奇异矩阵 S_k ,且有划分 $S_k = [(S_k)_B, (S_k)_N]$,使得 $(S_k)_B^T \frac{\partial c(x_k)^T}{\partial x}$ 非奇异;

根据
$$(S_k)_B [\nabla f(x) - \nabla c(x)^T \lambda] = 0$$
计算 λ ,以及计算 $\tilde{g}((x_N)_k) = (S_k)_N [\nabla f(x) - \nabla c(x)^T \lambda]$ 。

3。如果 $\|\tilde{g}_k\| \le \varepsilon$,则停止;否则利用某种方式产生下降方向 \tilde{d}_k ,即使得

$$\tilde{d}_k \tilde{g}_k < 0;$$

$$4 \circ \min_{\alpha > 0} f(S_k)_B \varphi(w_k)_N + \alpha \tilde{d}_k (S_k)_B (x_k)_N + \alpha \tilde{d}_k)$$
进行线性搜索给出 $\alpha_k > 0$,令

$$x_{k+1} = ((S_k)_B \varphi((w_k)_N + \alpha_k \tilde{d}_k)(S_k)_B ((x_k)_N + \alpha_k \tilde{d}_k)), k = k+1, \quad \ddagger 2 \implies 0$$

• 若 $S_k=I$,广义消去法就是变量消去法。

梯度投影法

广义消去法每次迭代的变量增量 $x_{k+1} - x_k$ 由两部分组成,

$$x_{k+1} = x_k + d_k^{(1)} + d_k^{(2)}, \sharp$$

$$d_{k}^{(1)} = \alpha_{k} (S_{k})_{N} \widetilde{d}_{k}, d_{k}^{(2)} = (S_{k})_{B} \left[\varphi ((w_{k})_{N} + \alpha_{k} \widetilde{d}_{k}) - (w_{k})_{B} \right]$$

迭代过程是先得到 $d_k^{(1)}$,再在 $d_k^{(2)}$ 方向上迭代得到正确的步长。

在 $d_k^{(2)}$ 方向上迭代的过程就是利用c(x) = 0求解 w_B 的过程。 即求解方程 $c(S_k)_B w_B + (S_k)_N [(w_k)_N + \alpha \tilde{d}_k] = 0$

- 迭代方式存在不合理之处。本来希望 迭代点都在可行域上,但具体迭代过 程却是先远离可行域,然后再校正回 可行域中。
- 希望离开程度尽可能小?沿线性化方向。迭代过程可以更快的收敛。

线性化可行方向:

|设 x^* ∈可行域X,d∈ R^n

 $\left| d^T \nabla c_i(x^*) = 0, i \in E; d^T \nabla c_i(x^*) \ge 0, i \in I(x^*) \right|$

| 则 d 为 X 的 x * 处 的 线 性 化 可 行 方 向 。

为使 $d_k^{(1)}$ 沿线性化可行方向,应选取 S_k 使得 $(S_k)_N^T \nabla c(x_k)^T = 0$.

设 $A_k = \nabla c(x_k)^T$,则由 $(S_k)_N$ 的列向量所张成的子空间就是 A_k^T 的零空间。

|而另一方面, $P = I - A_k (A_k^T A_k)^{-1} A_k^T$ 为到该零空间的投影算子。

|当在广义消去法中用最速下降法时,可得 $d_k^{(1)} = -\alpha_k(S_k)_N(S_k)_N^T \nabla f(x_k)$,

因为 $d_k^{(1)}$ 为线性可行方向,故 $d_k^{(1)}$ 在 A_k^T 的零空间中,进而可知 $(S_k)_N(S_k)_N^T$ 为投影算子P。

|在计算中,可利用 A_k 的QR分解,

$$A_k = QR = [Y_k \quad Z_k] \begin{bmatrix} R_k \\ 0 \end{bmatrix}, A_k \in R^{n \times m}, Q$$
为正交阵, $Y_k \in R^{n \times m}, Z_k \in R^{n \times (n-m)},$

 $|R_k \in R^{m \times m}$ 可逆上三角矩阵。可取 $(S_k)_N = Z_k, (S_k)_B = I_\circ$

若将搜索方向换成 $d_k = -Z_k z_k, z_k \in R^{n-m}$,且满足 $z_k^T \tilde{g}_k < 0$,则算法是一个一般形式的线性化可行方向法,简称可行方向法。

罚函数法

•利用目标函数和约束函数构造具有"罚性质"的函数 $P(\mathbf{x}) = P(f(\mathbf{x}), c(\mathbf{x}))$

所谓的罚性质,即要求对于可行点 $P(\mathbf{x})=f(\mathbf{x})$, 当约束条件破坏很大时, $P(\mathbf{x})>>f(\mathbf{x})$

定义约束违反度函数:

$$C^{(-)}(\mathbf{x}) = (c_1^{(-)}(\mathbf{x}), \dots, c_m^{(-)}(\mathbf{x})),$$

其中:

$$c_i^{(-)}(\mathbf{x}) = c_i(\mathbf{x}), i=1,...,m_e;$$

 $c_i^{(-)}(\mathbf{x}) = \min\{c_i(\mathbf{x}), 0\}, i=m_e+1,...,m$

罚函数法

罚函数一般可表示为目标函数与一项与c(x)有关的"罚项"之和,即

$$P(x) = f(x) + h(c^{(-)}(x))$$

罚项是定义在 R^m 上的函数,满足h(0) = 0, $\lim_{\|c\| \to \infty} h(c) = +\infty$

最早的罚函数是Courant罚函数,定义如下

$$P(x) = f(x) + \sigma ||c^{(-)}(x)||_{2}^{2}, \sigma > 0$$
是一正常数,罚因子。

事实上, 更一般的可定义为

$$P(x) = f(x) + \sigma ||c^{(-)}(x)||^{\alpha}, \quad \alpha > 0.$$

罚函数法

一般定义为

$$P(x) = f(x) + \sigma ||c^{(-)}(x)||^{\alpha}, \quad \alpha > 0.$$

若罚函数在可行域边界上取值为无穷,则称为内点罚函数。 内点罚函数仅适合不等式约束问题。 常见有倒数罚函数和对数罚函数:

$$P(x) = f(x) + \sigma^{-1} \sum_{i=1}^{m} \frac{1}{c_i(x)}, \quad P(x) = f(x) + \sigma^{-1} \sum_{i=1}^{m} \log c_i(x)$$

内点罚函数在可行域的边界上形成一堵无穷高的"障碍墙", 所以也称为障碍罚函数。

罚函数法的基本点是:

每次迭代(求解一个无约束优化问题)增加罚函数因子,直到使 $c^{(-)}(x)$ 缩小到给定误差。

设x*为原问题的K-T点,而x*一般不是Courant函数的稳定点。为了克服这一缺点,引入参数 $\theta=(\theta_1,...,\theta_m)$,其中 $\theta_i \geq 0 (i=m_e+1,...,m)$ 。则

$$P(x) = f(x) + \sum_{i=1}^{m_e} \left[-\lambda_i c_i(x) + \frac{1}{2} \sigma_i (c_i(x))^2 \right] +$$

$$\sum_{i=m_e+1}^{m} \begin{cases} -\lambda_i c_i(x) + \frac{1}{2} \sigma_i (c_i(x))^2, \text{如}c_i(x) < \lambda_i / \sigma_i \\ -\frac{1}{2} \lambda_i^2 / \sigma_i, 例 \end{cases}$$

其中
$$\lambda_i = \sigma_i \theta_i$$

It is just a new beginning

大音希声, 大象无形

——摘自老子《道德经》

Thank you!

Please keep on learning mathematics in your life