# MECH3005 – Building Services http://www.hku.hk/bse/mech3005/



## Lift and Escalators: Lift Traffic Analysis



Dr. Sam C M Hui

Department of Mechanical Engineering
The University of Hong Kong
E-mail: cmhui@hku.hk

#### Contents



Lift Traffic Analysis

Lift Traffic Calculations

Advanced Traffic Planning

## Lift Traffic Analysis



- Assessment of demand
  - Traffic patterns (in an office building)
    - Morning UP peak
    - Evening DOWN peak
    - Two-way traffic (lunch periods)
    - Interfloor traffic
    - Other considerations, e.g. 'Flexitime' attendance
  - Estimation of population (occupant density)
  - Estimation of arrival rate



Traffic pattern in an office building





Down peak traffic profile

#### Estimation of population

| <b>Building type</b>       | <b>Estimated population</b>           |  |
|----------------------------|---------------------------------------|--|
| Hotel                      | 1.5-1.9 persons/room                  |  |
| Flats                      | 1.5-1.9 persons/bedroom               |  |
| Hospital                   | 3.0 persons/bedspace*                 |  |
| School                     | 0.8-1.2 m <sup>2</sup> net area/pupil |  |
| Office (multiple tenancy): |                                       |  |
| - Regular                  | 10-12 m <sup>2</sup> net area/person  |  |
| - Prestige                 | 15-18 m <sup>2</sup> net area/person  |  |
| Office (single tenancy):   |                                       |  |
| - Regular                  | 8-10 m <sup>2</sup> net area/person   |  |
| - Prestige                 | 12-20 m <sup>2</sup> net area/person  |  |

<sup>\*</sup> excluding patient

#### Percentage arrival rates and up-peak intervals

| <b>Building type</b>       | Arrival rate (%) | Interval (sec) |
|----------------------------|------------------|----------------|
| Hotel                      | 10-15            | 30-50          |
| Flats                      | 5-7              | 40-90          |
| Hospital                   | 8-10             | 30-50          |
| School                     | 15-25            | 30-50          |
| Office (multiple tenancy): |                  |                |
| - Regular                  | 11-15            | 25-30          |
| - Prestige                 | 15-17            | 20-25          |
| Office (single tenancy):   |                  |                |
| - Regular                  | 15               | 25-30          |
| - Prestige                 | 15-17            | 20-25          |

## Lift Traffic Analysis



- Estimation of quality of service
  - Actual average passenger waiting time (AWT)
    - Time between the instant of passenger arrival until the instant of the actual arrival of the lift
    - Shorter the waiting time, better the service
    - But cannot be measured easily
  - Interval of car arrivals at the main terminal
    - Often taken to estimate the probable quality of service
    - A part of the evaluation of handling capacity
    - AWT  $\approx$  85% of the interval (assumed 80% car loading)

#### Probable quality of service in office buildings

| Interval (sec) | Quality of service |  |
|----------------|--------------------|--|
| ≤ 20           | Excellent          |  |
| 25             | Very good          |  |
| 30             | Good               |  |
| 40             | Poor               |  |
| ≥ 50           | Unsatisfactory     |  |



- Lift traffic calculations
  - (1) Based on classical formulae & results
    - For the worst <u>5-min</u> period during <u>morning up peak</u>
  - (2) Based on a discrete digital simulation of the building, its lifts and the passenger dynamics
    - Such as for down peak, two-way & interfloor traffic
- Need to work at early design stage with architect or planner, and the client to establish the lift system & its design criteria



- Calculate up peak performance
  - Determine round trip time (RTT)
    - Time for a single lift to make a round trip
  - Select number of lifts (*L*)
  - Determine up peak interval (UPPINT)
    - Such as, <= 30 sec (good)
  - Determine up peak handling capacity (UPPHC)
    - During the worst 5-min (300 sec) of up peak



- RTT =  $2 H t_v + (S + 1) t_s + 2 P t_p$ 
  - H = average highest call reversal floor
  - $t_v = \text{single floor transit time (s)}$
  - S = average no. of stops
  - $t_s$  = time consumed when stopping (s)
  - P = average no. of passengers carried
  - $t_p$  = passenger transfer time (s)
- UPPINT = RTT / L
- UPPHC =  $(300 \times L \times P) / RTT$



- Parameters in RTT equation
  - Average no. of passengers (P)
    - P = 0.8 x rate capacity of lift car
  - Average highest call reversal floor (*H*)

$$H = N - \sum_{i=1}^{N-1} \left(\frac{i}{N}\right)^{P}$$

• Average no. of stops (*S*)

$$S = N \times \left(1 - \left(1 - \frac{1}{N}\right)^P\right)$$



- Parameters in RTT equation (cont'd)
  - Single floor transit time,  $t_v = d_f / v$ 
    - $d_{\rm f}$  = average interfloor distance (m)
    - v = contract (rated) speed (m/s)
    - For a lift serving an upper zone, an extra time to make the jump to/from the express zone to the main terminal must be added:

RTT = 2 
$$H t_v + (S + 1) t_s + 2 P t_p + [2 H_e t_v]$$

•  $H_e$  = number of average height floors passed through to reach the first served floor of the express zone



- Parameters in RTT equation (cont'd)
  - Time consumed when stopping

$$t_{\rm s} = T - t_{\rm v} = t_{\rm f}(1) + t_{\rm c} + t_{\rm o} - t_{\rm v}$$

- T = floor-to-floor cycle time (s)
- $t_f(1) = \text{single floor flight time (s)}$
- $t_c = \text{door closing time (s)}$
- $t_0$  = door opening time (s)
- Floor cycle time (T) has the most effect on RTT
  - Can be used to judge the quality of service
  - For a good system, T = 9 to 10 sec

## **Lift Traffic Analysis**



- Parameters in RTT equation (cont'd)
  - Passenger transfer time  $(t_p)$ , vague to define. It depends on:
    - Shape of lift car
    - Size and type of car entrance
    - Environment (commercial, institutional, residential)
    - Type of passenger (age, gender, purpose, etc)



- Basic assumptions of RTT equation
  - Average no. of passengers
  - Passengers arrive uniformly in time
  - All floors equally populated
  - All cars load to 80%
  - Rated speed reached in a single floor jump and interfloor height are equal
  - Other operating time (like dwell time) ignored
  - Traffic controller is 'ideal'



- Average passenger waiting time (AWT)
  - Average time an individual passenger waits at a floor before being able to board a lift
    - Not dependent solely on UPPINT
    - Also affected by the average car load and the arrival probability distribution function
  - Some design criteria for different traffic patterns have been derived empirically based on the simulation method (see *CIBSE Guide D*)





 Computer software: SIMPLE (suite of iterative balance method and other programs for lift and elevator design)

Your choice ?





- Key considerations
  - Lifts and escalators should provide
    - Sufficient handling capacity for the building's traffic
    - Short waiting and journey times throughout the day
    - Optimum use of core building space
  - The main parameters are
    - Handling Capacity (HC) the number of people the elevators can carry to upper floors within five minutes during the morning "up-peak"
    - Interval (I) the average departure time for elevators from the main entrance during morning up peak





- Building categorization
  - The need for traffic planning varies according to the type and usage of the building
  - Typical categories:
    - Residential
    - Public service (e.g. subways, shopping centers, airports)
    - Hospital and multi-purpose buildings
    - Commercial mid-, high- and mega high rise -buildings (e.g. offices, hotels, cruise liners)





- Residential buildings
  - Traffic intensity is rather low
  - Waiting times even twice as long as those in commercial buildings may be acceptable
  - Can normally be selected by using local, international or comparable standards
- Public service (airports/subways, shopping centres)
  - Travelling height is typically no more than a few floors
  - Escalators can handle many times the traffic of lifts
  - Autowalks speed the people flow across long walking distances
  - Lifts are usually provided for handicapped access and the transport of goods or equipment

#### Performance Criteria for Passenger Elevators



Handling Capacity (% of Population/ 5 minutes)

[Source: Kone]

#### Residential buildings – passenger traffic flow





## **Advanced Traffic Planning**

#### Hospitals

- Need detailed planning to cover emergency, service, bed, patient, visitor and staff transportation
- Architecture and special needs e.g. the location of the operating theatre affect transportation arrangements

#### Multi-purpose buildings

- Separate elevators for different purposes
- If the same lifts are to serve office and residential areas, they should be selected according to the highest estimated peak traffic demands



## **Advanced Traffic Planning**

- Mid-rise commercial buildings
  - Hotels: the selection largely depends on the number of rooms and beds. Additional lifts are required for service purposes
  - Office buildings: three peak traffic hours generally occur: morning up peak, lunchtime mixed traffic and evening down peak
    - Up peak is normally used in lift planning
    - Lunch hour traffic is often heavier than the morning up peak





- High-rise commercial buildings
  - One lift group alone cannot meet all needs. They are often divided into zones, served by separate lifts groups
  - In mega-high-rise buildings (> 50-60 floors), either double-deck lifts are used or lift groups are stacked on top of one another in sky lobby arrangements
    - Shuttle groups serve traffic between the main entrance floor and the sky lobby
    - Local elevator groups start from both the main floor and from the sky lobby
    - Shuttle group criteria: HC > 16 % / 5 min.; Interval < 32 sec

#### Typical lift arrangements in Mega high rise buildings



[Source: Kone]

Typical double-deck lifts



[Source: <a href="http://www.elevator-world.com">http://www.elevator-world.com</a>]