

INTRODUCCIÓN A LAS REDES NEURONALES ARTIFICIALES

15/9/23 – Oberá, Misiones, Argentina

EL CEREBRO HUMANO

- ≈1,4 kg, 1,13 litros (F) o 1,26 litros (H)
- Los pliegues (surcos) incrementan la superficie, que totaliza ≈ 0,25 m²
- ≈ 80.000 M neuronas
- ≈ 1.000.000.000 M sinapsis
- 200-400 kCal/día → 10-20 Watts

- 1000 módulos, c/u con unas 500 NN
- Cómputo paralelo

LA NEURONA BIOLÓGICA

- Dendritas: entradas
- Axón: salida
- Un enlace axón-dendrita es una sinapsis.
- Una señal es transmitida al axón sólo cuando la neurona se excita; por eso esta puede inhibir o amplificar una señal.

PERCEPTRÓN: NEURONA ARTIFICIAL

$$f(x) = \sum_{i=1}^{n} w_i \cdot x_i$$

$$f(x) = \boldsymbol{W} \cdot \boldsymbol{X}$$

$$y = \begin{cases} 1 & 0 < f(x) + b \\ 0 & otro \end{cases}$$

$$X \sim [0,1]$$

FUNCIONES DE ACTIVACIÓN

Lineal

$$f(W \cdot X - b) = \lambda(W \cdot X - b)$$

Escalón

$$f(W \cdot X - b) = \begin{cases} \alpha_1 & b \le W \cdot X \\ \alpha_2 & W \cdot X < b \end{cases}$$

Rampa

$$f(W \cdot X - b) = \begin{cases} -\alpha & -\epsilon \le W \cdot X - b \\ W \cdot X - b & -\epsilon < W \cdot X - b < \epsilon \\ \alpha & \epsilon < W \cdot X - b \end{cases}$$

Sigmoidea

$$f(W \cdot X - b) = \frac{1}{1 + e^{-\lambda(W \cdot X - b)}}$$

FUNCIONES DE ACTIVACIÓN

Tangente hiperbólica

$$f(W \cdot X - b) = \frac{e^{(W \cdot X - b)} - e^{-(W \cdot X - b)}}{e^{(W \cdot X - b)} + e^{-(W \cdot X - b)}}$$

Gaussiana

$$f(W \cdot X - b) = e^{\frac{-(W \cdot X - b)^2}{\sigma^2}}$$

ReLU

$$f(W \cdot X - b) = \begin{cases} 0 & W \cdot X - b < 0 \\ W \cdot X - b & 0 < W \cdot X - b \end{cases}$$

FLUJO DE TRABAJO CON RNA

- Importar y curar datos
- Análisis exploratorio
- Elegir topología
- Diseñar input layer
- Diseñar output layer
- Escoger validación

- Especificar topología
- Entrenar
- Evaluar error de validación
- Analizar error de test

Implementación

- Exportar modelo
- Implementar consulta
- Analizar rendimiento y desempeño

APRENDIZAJE: LO MÁS ELEMENTAL

x_1	x_2	y
0	0	0
0	1	0
1	0	0
1	1	1

$$\begin{cases} w_{1} \cdot 1 + w_{2} \cdot 1 - b > 0 \Big|_{1,1} \\ w_{1} \cdot 1 + w_{2} \cdot 0 - b < 0 \Big|_{1,0} \\ w_{1} \cdot 0 + w_{2} \cdot 1 - b < 0 \Big|_{0,1} \end{cases}$$

$$\begin{cases} w_1 & 1 \\ w_2 & 1 \\ b & 2 \end{cases}$$

EN LA REALIDAD...

APRENDIZAJE SUPERVISADO EN RNA

- Típicamente una sola capa oculta, con H neuronas, todo full connected.
- Cada función de activación puede ser diferente.
- Típicamente la capa de entrada tiene función de activación lineal.
- Puede aproximar cualquier función continua para la frontera de decisión con una sola capa si esta tiene suficientes neuronas.
- Si la capa de entrada tiene funciones de orden elevado (diferente de lineal), se llama Functional Link NN.

FEEDFORWARD NN

$$y'_{m,k} = f_{y_m} \left(\sum_{h=1}^{H} w_{m,h} \cdot f_{y_h} \left(\sum_{n=1}^{N} w_{h,n} \cdot x_{n,k} \right) \right)$$

SIMPLE RECURRENT NN

Incorpora retroalimentaciones que le confiere la habilidad de aprender características temporales de los datos.

Jordan

Elman

TIME DELAY NN

 El aprendizaje de características temporales de los datos se ve reforzado por múltiples secuencias de retardos, generalmente con pesos descendentes.

 y_1

 El bloque de la neurona con sus retardos ponderados es la unidad básica para asociar FFNN multilayer.

DESCENSO DEL GRADIENTE

K observaciones

$$\epsilon = \sum_{k=1}^{K} (\mathbf{y}_k - \mathbf{y}_k')^2$$

Objetivo $\epsilon \rightarrow 0$

$$w_i(t) = w_i(t-1) + \Delta w_i(t)$$

$$\Delta w_i(t) = \eta \left(-\frac{\delta \epsilon}{\delta w_i} \right)$$

 η tasa de aprendizaje

Regla generalizada Widrow-Hoff

$$\frac{\delta \epsilon}{\delta w_i} = -2(y_k - y_k') \cdot x_{i,k}$$

$$w_i(t) = w_i(t-1) + 2\eta(y_k - y_k') \cdot x_{i,k}$$

BACKPROPAGATION

 α momento

Cada iteración de aprendizaje popularmente se denomina "época", se suceden dos etapas:

- 1. Pasar feedforward: calcular la salida de la NN para cada observación presente en el training set.
- 2. Backward propagation: propagar desde las salidas hacia las entradas una señal de error.

En estocástico, los pesos son actualizados según:

$$w_{m,h}(t) += \Delta w_{m,h}(t) + \alpha \Delta w_{m,h}(t-1)$$

DETENCIÓN ¿CUÁNDO PARAR?

- Máximo número de épocas.
- Cuando el error sobre el training set es aceptablemente pequeño, se suele utilizar el error cuadrático medio.
- Cuando hay sobre entrenamiento: el conjunto de entrenamiento empieza a ser memorizado; esto se verifica si el error de validación más la varianza es mayor que el promedio de errores de validación en las épocas anteriores.

$$\epsilon_V' > \overline{\epsilon_V} + \sigma_{\epsilon_V}$$