Roll Nu	mber:			
	Thapar Institute of Engineering Department of Computer Sci			
		Course Code: UCS701 Course Name: Theory of Computati		
August	27, 2023, 05:30 PM			
Time: 3	Hours, M. Marks: 100	Name Of Faculty: SUG, NKA, CHP, N SSS, and JDN	IS,	
Note:	Attempt all questions with proper justifica	tion. Assume missing data, if any, suita	bly.	
Q.1.	Design a deterministic finite automata (a) All the binary numbers divisible (b) All the binary strings that begin	e by 4.	(E.E)	
	(b) All the billary strings that begin	s with a 0 and ends with 101.	(5+5)	
Q2.	Write down the steps needed to conversinto Chomsky Normal Form. Use the absolute Context-free grammar into Chomsky N $S \rightarrow ABA$ $A \rightarrow aA \mid \varepsilon$	pove steps to convert the following		
	$B \rightarrow bB \mid \varepsilon$.		(5+5)	
Q3.	Design a pushdown automata for the the transition diagram along with a near		(10)	
Q4.	Design a post machine for the language	$\geq L = \{ a^n b^n a^n n \ge 1 \}.$	(10)	
Q5.	Prove that L= $\{a^nb^nc^n n \ge 1\}$ is not a co- Lemma.	ontext-free language using Pumping	(10)	
Q6.	Design a Turing machine to mult appropriate transitions, transition diag		(15)	
Q7	Consider the following grammar an grammar. $S \rightarrow AA \mid a$	d convert it into equivalent GNF		
	$A \rightarrow SS \mid b$		(10)	

(P.T.O.)

Q8. Minimize the following deterministic finite automata (Consider A as initial and C as final state).

	Next State	
Present State	I/P = 0	LP=1
A	F	В
8	C	G
C	C G	A C
D	G	C
E	F	H
E	G	C
G	E	G G
H	C	G

(10)

- Q9. Write a regular expression for the following language.
 - L=Set of all strings over {a, b} that begin and end with the same symbol.

(5)

Q10. Describe various variants of Turing machine in detail.

(10)

****** All the best *****

NOTE: The answer sheets will be shown on September 05, 2023 at 05:00 PM in L521, CSED.