

NP-C: Ciclo Hamiltoniano

Teoría de Algoritmos I (75.29 / 95.06)

Ing. Víctor Daniel Podberezski

Ciclo Hamiltoneano

Sea

G = (V,E) grafo direccionado

Definimos

Un ciclo C en G como hamiltoneano

Si

Visita cada vértice 1 y solo 1 vez

Comienza y termina por el mismo vértice

Ciclo Hamiltoneano (cont.)

Recibe su nombre

Por Sir William Rowan Hamilton,

En 1857

Inventa el Juego "Icosian"

Dado un dodecaedro

Encontrar un ciclo que recorra todos los vértices, iniciando y finalizando por el mismo vértice

Problema de decisión de Ciclo Hamiltoneano

Sea

G = (V,E) grafo direccionado

Existe

Un ciclo hamiltoneano?

Llamaremos al problema

HAM-CYCLE

Problema de decisión de Ciclo Hamiltoneano

HAM-CYCLE ∈ "NP"

Dado

G=(V,E)

T certitifcado = $\{t_0,...t_{|V|}\}$ lista ordenada de vértices

Puedo verificar (en tiempo polinomial)

$$|T| = |V|$$
, $t_0 = t_{|V|}$

Todos los vértices de V están en T

Para todo t_i $t_{i+1} \in T$, $(t_i, t_{i+1}) \in E$

 \Rightarrow HAM-CYCE \in NP

¿HAM-CYCLE es "P"?

No se conoce algoritmo

3SAT

Dado

 $X=\{x_1,...x_n\}$ conjunto de n Variables booleanas = $\{0,1\}$

k clausulas booleanas $Ti = (t_{i1} \lor t_{i2} \lor t_{i3})$

Con cada $t_{ij} \in X \cup \overline{X} \cup \{1\}$

Determinar

Si existe asignación de variables tal que $T_1 \wedge T_2 \wedge ... \wedge T_k = 1$

Reducción de 3SAT a HAM-CYCLE

Para I instancia de3SAT

Con n variables $x_1, ..., x_n$

Y k clausulas c₁,...,C_k

(existen 2ⁿ asignaciones de variables posibles)

Construiremos

Un grafo G=(V,E) donde encontrar el ciclo hamiltoneano.

Construimos n caminos p1, ..., pn

cada uno representa a una variable

Cada camino estará conformado por 2*k nodos

Unidos entre si por aristas de ida y vuelta

(cada 2 nodos corresponden a la variable en una clausula)

Uniremos cada camino

Desde su nodo inicial hasta el nodo inicial del camino siguiente

Desde su nodo inicial hasta el nodo final del camino siguiente

Desde su nodo final hasta el nodo inicial del camino siguiente

Desde su nodo final hasta el nodo final del camino siguiente

Creamos nodos: s y t

Unimos con los ejes s- $v_{1,1}$, s- $v_{1,2k}$, $v_{n,2k}$ -t, $v_{n,2k}$ -t, t-s

Creamos 1 nodo por cada clausula: Ti = $(t_{i1} \lor t_{i2} \lor t_{i3})$

Cada clausula tendrá 3 pares de ejes

Para cada variable x de la clausula i

Se une 2 nodos del camino de la variable x con el nodo de la clausula i

en la posición j=i*2 y k=i*2+1

(el sentido de los ejes depende si la variable esta negada o no)

Variable sin negar

Variable negada

Existencia de camino Hamiltoneano

Si existe un camino hamiltoneano

Que parte de s y llegue a t

(regresando a s desde t para conformar el ciclo)

Pasando por todos los nodos (y por lo tanto activando las clausulas)

Entonces hay forma de satisfacer la expresión booleana

El sentido por el que se recorre el camino que representa la variable determina si su valor es 0 o 1

El eje seleccionado para acceder al nodo "clausula" nos dice que variable la activa

Si una variable requiere estar negado y no estarlo para activar varias clausulas, el ciclo es imposible de construir

Ejemplo

Si tengo la expresión

$$E = (X_1 \lor X_2 \lor X_4) \land (\overline{X}_1 \lor X_3 \lor X_4) \land (\overline{X}_2 \lor \overline{X}_3 \lor X_4)$$

Con 4 variables y 3 clausulas

Tendré

4 caminos (n=4)

3*2 = 6 nodos por caminos

3 nodos clausulas

$$\mathsf{E} = (\mathsf{x}_1 \lor \mathsf{x}_2 \lor \mathsf{x}_4) \land (\overline{\mathsf{x}}_1 \lor \mathsf{x}_3 \lor \mathsf{x}_4) \land (\overline{\mathsf{x}}_2 \lor \overline{\mathsf{x}}_3 \lor \mathsf{x}_4)$$

HAM-CYCLE es NP-C

Como

HAM-CYCLE ∈ NP

Y 3SAT ≤_p HAM-CYCLE NP

Entonces

HAM-CYCLE ∈ NP-C

De igual manera (quitando en la transformación el eje t-s)

Puedo demostrar que HAM-PATH es NP-C

HAM-CYCLE para grafos no dirigidos

Utilizando grafos dirigidos

Se conoce al problema como DIRECTED HAMILTONIAN CYCLE

Utilizando grafos no dirigidos

Se conoce al problema como UNDIRECTED HAMILTONIAN CYCLE

Karp demostró en 1972

Que ambos problemas son NP-C

(utilizando otro camino)

Presentación realizada en Junio de 2020