برنامهریزی نیمهمعین برای طراحی الگوریتمهای تقریبی

جلسه ششم: دوگانی

قضیه نهایی دوگانی (برای برنامهنویسی نیمهمعین)

maximize
$$C \bullet X$$

subject to $A_i \bullet X = b_i, \quad i = 1, 2, ..., m$
 $X \succeq 0.$

4.1.1 Theorem. If the semidefinite program (4.1) is feasible and has a finite value γ , and if there is a positive definite matrix \tilde{X} such that $A(\tilde{X}) = \mathbf{b}$, then the dual program

minimize
$$\mathbf{b}^T \mathbf{y}$$

subject to $\sum_{i=1}^m y_i A_i - C \succeq 0$ (4.2)

is feasible and has finite value $\beta = \gamma$.

كنج محدب بسته

4.2.1 Definition. Let $K \subseteq V$ be a nonempty closed set. K is called a closed convex cone if the following two conditions hold.

- (i) For all $\mathbf{x} \in K$ and all nonnegative real numbers λ , we have $\lambda \mathbf{x} \in K$.
- (ii) For all $\mathbf{x}, \mathbf{y} \in K$, we have $\mathbf{x} + \mathbf{y} \in K$.

(i) For all $\mathbf{x} \in K$ and all nonnegative real numbers λ , we have $\lambda \mathbf{x} \in K$.

(i) For all
$$\mathbf{x} \in K$$
 and all nonnegative real numbers λ , we have $\lambda \mathbf{x} \in K$
(ii) For all $\mathbf{x}, \mathbf{y} \in K$, we have $\mathbf{x} + \mathbf{y} \in K$.

مثال: مجموعه
$$K = \{0\}$$
 کنج محدب بسته است

4.2.2 Lemma. The set $PSD_n \subseteq SYM_n$ of positive semidefinite matrices is a closed convex cone.

4.2.2 Lemma. The set $PSD_n \subseteq SYM_n$ of positive semidefinite matrices is a closed convex cone.

- الف) بسته
- معادلا: مکملش باز است $ilde{\mathbf{x}}^T M ilde{\mathbf{x}} < 0$ هست که $ilde{x}$
 - $:M+\epsilon B$
 - $\max \tilde{x}^{\mathsf{T}} B \tilde{x}$

4.2.2 Lemma. The set $PSD_n \subseteq SYM_n$ of positive semidefinite matrices is a closed convex cone.

• الف) بسته

ه معادلا: مکملش باز است
$$ilde{\mathbf{x}}^T M ilde{\mathbf{x}} < 0$$
 هست که $ilde{x}$.

 $:M+\epsilon B$

 $\max \tilde{x}^{\mathsf{T}} B \tilde{x}$

 $:\lambda M$ (\smile

$$\mathbf{x}^T \lambda M \mathbf{x} = \lambda \mathbf{x}^T M \mathbf{x} \ge 0$$

4.2.2 Lemma. The set $PSD_n \subseteq SYM_n$ of positive semidefinite matrices is a closed convex cone.

الف) بسته

• معادلا: مكملش باز است

$$ilde{\mathbf{x}}^T M ilde{\mathbf{x}} < 0$$
 هست که $ilde{x}$.

 $:M+\epsilon B$

 $\max \tilde{x}^{\mathsf{T}} B \tilde{x}$

:λ*M* (ب

$$\mathbf{x}^T \lambda M \mathbf{x} = \lambda \mathbf{x}^T M \mathbf{x} \ge 0$$

M+N (ج

$$\mathbf{x}^T (M+N)\mathbf{x} = \mathbf{x}^T M \mathbf{x} + \mathbf{x}^T N \mathbf{x} \ge 0$$

For all $\mathbf{x} \in K$ and all nonnegative real numbers λ , we have $\lambda \mathbf{x} \in K$.

(ii) For all
$$\mathbf{x}, \mathbf{y} \in K$$
, we have $\mathbf{x} + \mathbf{y} \in K$.

مثال: اگر
$$K$$
 و L کنج محدب بسته باشند، آنگاه $K \oplus L := \{(\mathbf{x}, \mathbf{y}) \in V \oplus W : \, \mathbf{x} \in K, \mathbf{y} \in L\}$

$$K \oplus L := \{ (\mathbf{x}, \mathbf{y}) \in V \oplus W : \mathbf{x} \in K, \mathbf{y} \in L \}$$

كنج محدب بسته است.

(i) For all $\mathbf{x} \in K$ and all nonnegative real numbers λ , we have $\lambda \mathbf{x} \in K$. (ii) For all $\mathbf{x}, \mathbf{y} \in K$, we have $\mathbf{x} + \mathbf{y} \in K$.

$$K \oplus L := \{ (\mathbf{x}, \mathbf{y}) \in V \oplus W : \mathbf{x} \in K, \mathbf{y} \in L \}$$

كنج محدب بسته است.

$$M+N$$
 ($\mathbf{\xi}$

الف) بسته

 $:\lambda M$ (\cup

- For all $\mathbf{x} \in K$ and all nonnegative real numbers λ , we have $\lambda \mathbf{x} \in K$.

(ii) For all
$$\mathbf{x}, \mathbf{y} \in K$$
, we have $\mathbf{x} + \mathbf{y} \in K$.

 $\nabla_n = \{ (\mathbf{x}, r) \in \mathbb{R}^{n-1} \times \mathbb{R} : ||\mathbf{x}|| \le r \}$

(کنج بستنی) کنج محدب بسته است

- convex cone if the following two conditions hold.
- (i) For all $\mathbf{x} \in K$ and all nonnegative real numbers λ , we have $\lambda \mathbf{x} \in K$. (ii) For all $\mathbf{x}, \mathbf{y} \in K$, we have $\mathbf{x} + \mathbf{y} \in K$.

$$\nabla_n = \{ (\mathbf{x}, r) \in \mathbb{R}^{n-1} \times \mathbb{R} : \|\mathbf{x}\| \le r \}$$

(کنج بستنی) کنج محدب بسته است

convex cone if the following two conditions hold.

(i) For all $\mathbf{x} \in K$ and all nonnegative real numbers λ , we have $\lambda \mathbf{x} \in K$.

(ii) For all
$$\mathbf{x}, \mathbf{y} \in K$$
, we have $\mathbf{x} + \mathbf{y} \in K$.

$$\nabla_n = \{ (\mathbf{x}, r) \in \mathbb{R}^{n-1} \times \mathbb{R} : \|\mathbf{x}\| \le r \}$$

(کنج بستنی) کنج محدب بسته است

الف) بسته

(i) For all $\mathbf{x} \in K$ and all nonnegative real numbers λ , we have $\lambda \mathbf{x} \in K$.

(ii) For all
$$\mathbf{x}, \mathbf{y} \in K$$
, we have $\mathbf{x} + \mathbf{y} \in K$.

$$\nabla_n = \{ (\mathbf{x}, r) \in \mathbb{R}^{n-1} \times \mathbb{R} : \|\mathbf{x}\| \le r \}$$

(کنج بستنی) کنج محدب بسته است

(i) For all $\mathbf{x} \in K$ and all nonnegative real numbers λ , we have $\lambda \mathbf{x} \in K$.

(ii) For all
$$\mathbf{x}, \mathbf{y} \in K$$
, we have $\mathbf{x} + \mathbf{y} \in K$.

$$\widehat{\nabla}_n = \{ (\mathbf{x}, r) \in \mathbb{R}^{n-1} \times \mathbb{R} : \|\mathbf{x}\| \le r \}$$

(کنج بستنی) کنج محدب بسته است

ج) ج

(i) For all $\mathbf{x} \in K$ and all nonnegative real numbers λ , we have $\lambda \mathbf{x} \in K$.

$$\nabla_n = \{ (\mathbf{x}, r) \in \mathbb{R}^{n-1} \times \mathbb{R} : ||\mathbf{x}|| \le r \}$$

(کنج بستنی) کنج محدب بسته است

(ii) For all $\mathbf{x}, \mathbf{y} \in K$, we have $\mathbf{x} + \mathbf{y} \in K$.

$$(x,r) + (y,s) = (x+y,r+s)$$

$$(x,r) + (y,s) = (x+y,r+s)$$

الف) بسته

For all $\mathbf{x} \in K$ and all nonnegative real numbers λ , we have $\lambda \mathbf{x} \in K$.

(ii) For all
$$\mathbf{x}, \mathbf{y} \in K$$
, we have $\mathbf{x} + \mathbf{y} \in K$.

$$< 0 = \{(x, y, z) \in \mathbb{R}^3 : x \ge 0, y \ge 0, xy \ge z^2\}$$

(كنج بستني واژگون) كنج محدب بسته است

(i) For all $\mathbf{x} \in K$ and all nonnegative real numbers λ , we have $\lambda \mathbf{x} \in K$. (ii) For all $\mathbf{x}, \mathbf{y} \in K$, we have $\mathbf{x} + \mathbf{y} \in K$.

$$riangle = \{(x,y,z) \in \mathbb{R}^3: \, x \geq 0, y \geq 0, xy \geq z^2 \}$$
کنج بستنی واژگون) کنج محدب بسته است

For all $\mathbf{x} \in K$ and all nonnegative real numbers λ , we have $\lambda \mathbf{x} \in K$. (ii) For all $\mathbf{x}, \mathbf{y} \in K$, we have $\mathbf{x} + \mathbf{y} \in K$.

الف) بسته

(i) For all $\mathbf{x} \in K$ and all nonnegative real numbers λ , we have $\lambda \mathbf{x} \in K$. (ii) For all $\mathbf{x}, \mathbf{y} \in K$, we have $\mathbf{x} + \mathbf{y} \in K$.

(i) For all $\mathbf{x} \in K$ and all nonnegative real numbers λ , we have $\lambda \mathbf{x} \in K$. (ii) For all $\mathbf{x}, \mathbf{y} \in K$, we have $\mathbf{x} + \mathbf{y} \in K$.

(كنج بستنى والرُّكُون) كنج محدب بسته است

• الف) بسته

• ج) جمع