Week 8: Portfolio Optimizaton

Ernest Chan, Ph.D.

Preliminaries

- A portfolio consists of N financial instruments (e.g. stocks, futures, currencies) or strategies.
- Each instrument or strategy i has its own expected net return $E(R_i) := m_i := M$, stddev of returns $sd(R_i) = E((R_i m_i)^2)^{1/2} := s_i$.
- Important to consider: *covariance* of returns $C_{i,j} = \mathbf{C}$ among all instruments i, j.
 - M is $N \times 1$, C is $N \times N$
- \triangleright Capital allocated to instrument i is F_i .
 - \circ *F* is the *N* × 1 capital allocation vector.

Preliminaries

- ightharpoonup Expected return of portfolio is F^TM
- ightharpoonup Expected variance of returns for portfolio is F^tCF

What is Portfolio Optimization?

Markowitz portfolio optimization: find F that minimizes variance of return of a portfolio subject to an expected return constraint.

Markowitz Portfolio Optimization?

- But what is the best trade-off between expected return and variance?
 - Markowitz says we should prefer the "tangency portfolio" that maximizes Sharpe ratio (i.e. expected return / volatility) ... but why?
 - The reason: this portfolio has maximum compounded growth rate under the constraint of a fixed leverage!

Maximizing expected compound returns

- Recall from Week 2 exercise, expected compound growth rate=expected log return= $(m s^2/2)$
 - m=expected net return, s=standard deviation
- For a portfolio, $m=F^TM$, $s^2=F^tCF$
 - We used to solve the constrained maximization problem by finding the efficient frontier by numerical quadratic programming.
 - But analytically, maximizing $F^TM-F^tCF/2$ means taking partial derivative of this w.r.t. F_i and setting it to 0.
 - Note this is equivalent to constrained optimization by Lagrange Multipliers! (See reference on next slide.)
 - Solution: $F^* = C^{-1}M$ (Kelly formula!)

Connection with Markowitz Portfolio Optimization

- It can be shown that the Kelly portfolio allocation formula results in the tangency portfolio of the efficient frontier.
 - Rf: epchan.blogspot.com/2014/08/kelly-vsmarkowitz-portfolio.html
- Note that this F* maximizes both the compound growth rate of the value of the portfolio and the Sharpe ratio.
- F^* also tells the what the optimal leverage is, whereas tangency portfolio doesn't.

Limitations of portfolio optimization

- Returns of stocks are notoriously difficult to predict.
 - Optimal portfolio based on historical returns may not be optimal out-of-sample.
- Covariance easier to predict than expected returns.
 - Estimates of mean do not improve with larger sample size, while estimates of covariance do.
 - See Ang, "Asset Management: A systematic Approach to Factor Investing"
- Hence minimum variance portfolio more stable than tangency portfolio.

Minimum variance portfolio

- Research also shows low volatility stocks outperform high volatility stocks out-ofsample.
 - See people.stern.nyu.edu/jwurgler/papers/fajbenchmarks.pdf
- In the last 20 years, investors have increasingly favored minimum variance over tangency portfolio.
 - E.g. Minimum volatility ETFs: SPLV (even correlations are presumed 0), ACWV, EEMV, and USMV.

Minimum variance portfolio

- Many investors distrust even covariance forecasts:
 - Allocate capital based just on inverse volatilities.
 - "Risk parity" portfolios.
 - E.g. Bridgewater Associates' All Weather Fund
 - · Blamed for 2015 Q4 financial contagion.
 - Have you read Ray Dalio's bestseller "Principles"?
- Why should we fear volatilities?
 - Tail risks and drawdowns more scary.
 - Should minimize different risk measures e.g. VaR, ES, tail index, max drawdown, etc.

Hierarchical Risk Parity (HRP)

- Addresses shortcomings of Markowitz's portfolio, esp. poor OOS performance.
- Applies graph theory, machine learning, to build diversified portfolio based on covariance matrix.
- Invented by Marcos López de Prado who generated multi-billion-dollar profits for investors in Guggenheim Partners.
- papers.ssrn.com/sol3/papers.cfm?abstract_id = 2708678