數位系統導論

Introduction to Digital System

Pei-Yin Chen, 陳培殷

<u>Syllabus</u>

- Time and Place
- Contact Information
 - 。資訊工程系 新大樓 11F (06-2757575 EXT 62547)
 - E-mail: pychen@mail.ncku.edu.tw
- Office Hour (please confirm with email)
 - Wednesday: 16:00~18:00 Thursday: 10:00~11:00
- Course Assistants
 - 。資訊工程系大樓 10F DIC (Digital IC Design) Lab 陳宥融博士生

因應疫情之上課方式

- 9/28 線上上課 (課程說明與簡介) ---- 同步線上
- 自行觀看課程前7周的教學影片 ---- 非同步(My Tube)
- 11/2 10:00 第一次期中考 ---- 實體考試
- 11/9~11/30 視疫情決定上課方式 ---- 實體 或 非同步
- 12/7 10:00 第二次期中考 ---- 實體考試
- 12/14~1/4 視疫情決定上課方式 ---- 實體 或 非同步
- 1/11 10:00 期末考 ---- 實體考試

Office Hour (請事先以email確認為實體或線上討論)

Wednesday: 16:00~18:00 Thursday: 10:30~12:30

Syllabus (continued)

研讀方式: Text book + 上課投影片

Textbook

M. Morris Mano Michael D. Ciletti, "Digital Design: With an Introduction to the Verilog HDL", 6/e, 滄海書局代理

References

- Charles H. Roth, "Fundamentals of Logic Design," PWS
- HDL chip design (Douglas J. Smith), Doone Publications
- □ 陳培殷, 數位邏輯設計, 滄海書局, 2017
- □ 陳培殷,數位IC設計—Verilog,滄海書局,2008

Grading Policies

Mid-term Exam-I: 30% (11/2)

Mid-term Exam-II: 30% (12/7)

Final Exam: 40~30% (1/11, 2022)

Goal

Goal:

- 1. Understand the basic concepts of digital circuit.
- 2. Understand the basic skills for digital circuit design

課程概述	介紹數位電路相關的基礎知識,包含: 邏輯閘、組合電路、循序電路與數位系 統架構設計等。
教學目標	讓學生具備數位電路的基本觀念,並熟 悉設計數位電路的相關技巧。

Overview of a Digital Circuit

A digital circuit accepts the input bit-stream (0 and 1), processes it and produces the proper output results (0 and 1).

Inside a Digital Circuit

A lot of logic gates which use the input bitstream to produce the output bitstream.

Operator Precedence

- Operator Precedence
 - parentheses
 - NOT
 - AND
 - OR
 - examples

$$-xy'+z \implies is x \cdot y' \text{ not } (xy)'$$

- -(xy+z)'
- The operations are implemented with logic gates

Boolean Functions and Gates (1/6)

■ NOT gate (反閘/反相閘)

$$F = A'$$
 or \overline{A}

0: false (low-voltage)

1: true (high voltage)

Truth Table (真值表)

Α	F
0	1
1	0

Input output

Boolean Functions and Gates (2/6)

• AND gate (且閘/及閘)

$$F = A \cdot B = AB$$

Truth Table (真值表)

Α	В	F	
0	0	0	
0	1	0	
1	0	0	
1	1	1	
_			

Input

output

Boolean Functions and Gates (3/6)

• OR gate (或閘)

$$F = A + B$$

Truth Table (真值表)

Α	В	F	
0	0	0	
0	1	1	
1	0	1	
1	1	1	
Ir	output		

Boolean Functions and Gates (4/6)

■ NAND gate (反及閘)

$$F = (AB)$$
' or $\overline{(AB)}$

Truth Table				
А	В	F		
0	0	1		
0	1	1		
1	0	1		
1	1	0		
Input output				

Boolean Functions and Gates (5/6)

NOR gate (反或閘)

$$F = (A + B)$$
' or $\overline{(A + B)}$

Truth Table				
A	В	F		
0	0	1		
0	1	0		
1	0	0		
1	1	0		
Input output				

Boolean Functions and Gates (6/6)

• Exclusive-OR (XOR) gate (互斥或閘)

$$F = AB' + A'B = A \oplus B$$

Truth Table

Α	В	F
0	0	0
0	1	1
1	0	1
1	1	0
	Input	output

真值表

Name	Graphic symbol	Algebraic function	Truth table
AND	$x \longrightarrow F$	F = xy	$\begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$
OR	x y F	F = x + y	$\begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \end{array}$
Inverter	$x \longrightarrow F$	F = x'	$ \begin{array}{c cc} x & F \\ \hline 0 & 1 \\ 1 & 0 \end{array} $
Buffer	$x \longrightarrow F$	F = x	$\begin{array}{c c} x & F \\ \hline 0 & 0 \\ 1 & 1 \end{array}$

Figure 2.5 Digital logic gates (continued)

Figure 2.5 Digital logic gates

A Simple Circuit

Half Adder

00 01 01 10

	e 4.3 Adder	carry	sum
X	y	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Digital System

semiconductor

Digital IC Design

Example:

```
always @(IN)
begin
 OUT = (IN[0] | IN[1]) & (IN[2] | IN[3]);
end
```

IC Industry in Taiwan

Chip/Circuit Everywhere!

p-substrate

2020 Top 10 Fabless IC Suppliers

http://www.thelec.net/news/articleView.html?idxno=2567

Rank	Company	2020 Revenue	2019 Revenue	YoY Change
1	Qualcomm	19,407	14,518	33.7%
2	Broadcom	17,745	17,246	2.9%
3	Nvidia	15,412	10,125	52.2%
★ 4	MediaTek	10,929	7,962	37.3%
5	AMD	9,763	6,731	45,0%
6	Xilinx	3,053	3,234	-5.6%
7	Marvell	2,942	2,708	8.7%
★8	Novatek	2,712	2,085	30.1%
* 9	Realtek	2,635	1,965	34.1%
10	Dialog	1,376	1,421	-3.2%
Top	10 Total	85,974	67,995	26.4%

聯發科

聯詠瑞昱

2019台灣IC設計公司營收

排名	公司	千元		11	矽創	13,804,562
1	聯發科	322,145,988	三千兩百億	12	敦泰	13,800,348
2	聯詠	79,955,521		13	創意	13,569,441
3	瑞昱	77,759,469		13	后) 心	13,307,771
	群聯 [*]	48,496,522		14	天鈺	10,884,838
	擎亞 [*]	26,889,818		1 5	<u>Б</u> .	0.140.017
4	奇景光電	26,214,000		15	原相	8,148,017
	新唐[*]	20,668,056		16	致新	7,407,799
5	慧榮	15,507,030		17	祥碩	6,987,470
6	譜瑞	15,278,350		18	威盛	6,502,741
7	品豪	15,268,091			* -	, ,
8	義隆	15,099,690		19	神盾	6,224,427
9	瑞鼎	14,425,152		20	盛群	5,614,539
				21	智原	5,498,295
10	矽力	13,936,157		22	凌陽	6,439,865
				23	茂達	5,389,874

<u>Outline</u>

Chapter 1: Binary System

Chapter 2: Boolean Algebra and Logic Gates

Chapter 3: Gate-Level Minimization

Chapter 4: Combinational Logic

Chapter 5: Synchronous sequential Logic

Chapter 6: Registers and Counters

Chapter 7: Memory and Programmable Logic

Chapter 8: Design at the Register Transfer Level

系上教育目標(工程認證)

● 課程成績評量參考指標

紙筆測驗	■書面報告	□□頭報告
□課堂問答	□實作表現	上課表現
■指定作業	□專題研究	課堂出席

- 修習本課程後,學生可獲得以下核心能力
 - 1.1 具備基礎專業數學及資訊理論知識之基本能力
 - 1.2 具備理論推導及實驗數據分析歸納之能力
 - □ 1.3 具備終身學習之能力
 - 2.1 具備發掘、分析及解決資訊應用問題之能力
 - 2.2 具備資訊工程設計、創新、測試及驗證之能力
 - 2.3 具備系統整合之能力
 - □ 3.1 具備科技人文素養及資訊工程倫理之精神
 - □ 3.2 具備良好溝通技巧及國際觀
 - □ 3.3 具備負責之工作態度及團隊合作之能力