Importing Libraries and Loading dataset

```
#importing libraries
import pandas as pd
import numpy as np
{\tt import\ matplotlib.pyplot\ as\ plt}
import seaborn as sns
#loading dataset
df=pd.read_csv('/content/insurance_data.csv')
```

		age	sex	bmi	children	smoker	Claim_Amount	past_consultations	num_of_steps	Hospital_expenditure	NUmber_of_past_hospita
	0	18.0	male	23.210	0.0	no	29087.54313	17.0	715428.0	4.720921e+06	
	1	18.0	male	30.140	0.0	no	39053.67437	7.0	699157.0	4.329832e+06	
	2	18.0	male	33.330	0.0	no	39023.62759	19.0	702341.0	6.884861e+06	
	3	18.0	male	33.660	0.0	no	28185.39332	11.0	700250.0	4.274774e+06	
	4	18.0	male	34.100	0.0	no	14697.85941	16.0	711584.0	3.787294e+06	
	1333	33.0	female	35.530	0.0	yes	63142.25346	32.0	1091267.0	1.703805e+08	
	1334	31.0	female	38.095	1.0	yes	43419.95227	31.0	1107872.0	2.015152e+08	
	1335	52.0	male	34.485	3.0	yes	52458.92353	25.0	1092005.0	2.236450e+08	
	1336	45.0	male	30.360	0.0	yes	69927.51664	34.0	1106821.0	2.528924e+08	
	1337	54.0	female	47.410	0.0	yes	63982.80926	31.0	1100328.0	2.616317e+08	
1	338 rc	ws × 1	3 columr	าร							

Next steps: Generate code with df

View recommended plots

New interactive sheet

→ EDA

 $\hbox{\#check for null values , duplicate values , get brief info of this dataset}\\$ #check number of rows and columns in the dataset

df.info() #info of the dataset

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1338 entries, 0 to 1337 Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	age	1329 non-null	float64
1	sex	1338 non-null	object
2	bmi	1335 non-null	float64
3	children	1333 non-null	float64
4	smoker	1338 non-null	object
5	Claim_Amount	1324 non-null	float64
6	past_consultations	1332 non-null	float64
7	num_of_steps	1335 non-null	float64
8	Hospital_expenditure	1334 non-null	float64
9	NUmber_of_past_hospitalizations	1336 non-null	float64
10	Anual_Salary	1332 non-null	float64
11	region	1338 non-null	object
12	charges	1338 non-null	float64

dtypes: float64(10), object(3) memory usage: 136.0+ KB

df.isnull().sum() #check total no.of null values in each column

```
<del>_</del>__
                                       0
                                       9
                   age
                                       0
                   sex
                   bmi
                                       3
                 children
                                       5
                  smoker
                                       0
              Claim_Amount
                                      14
            past_consultations
               num_of_steps
                                       3
           Hospital_expenditure
                                       4
      NUmber_of_past_hospitalizations
               Anual_Salary
                                       6
                  region
                                       0
                                       0
                 charges
     dtype: int64
df.isnull().sum().sum() #to check the total null of null values in the dataset
→ np.int64(52)
df.duplicated().sum()
→ np.int64(0)
#if i want to know how many people are smoker and how many are not
df['smoker'].value_counts()
₹
              count
      smoker
        no
               1064
                274
       yes
     dtype: int64
#if we have null value in numerical column we will replace it with mean or median
#if in categorical column we will replace it with mode
col list=list(df.columns)
print(col_list)
for x in col_list:
  if df[x].dtypes=='object':
    df[x].fillna(df[x].mode()[0],inplace=True)
  else:
    df[x].fillna(df[x].mean(),inplace=True)
ج ['age', 'sex', 'bmi', 'children', 'smoker', 'Claim_Amount', 'past_consultations', 'num_of_steps', 'Hospital_expenditure', 'NUmber_of_pas
     <ipython-input-8-e2eea41e5016>:8: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignme
     The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting value
     For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].me
       df[x].fillna(df[x].mean(),inplace=True)
     <ipython-input-8-e2eea41e5016>:6: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignme
     The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting value
     For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].me
```

df[x].fillna(df[x].mode()[0],inplace=True)

df.isnull().sum() #null values are replaced

} ▼	0
age	0
sex	0
bmi	0
children	0
smoker	0
Claim_Amount	0
past_consultations	0
num_of_steps	0
Hospital_expenditure	0
NUmber_of_past_hospitalization	s 0
Anual_Salary	0
region	0
charges	0

dtype: int64

Outliers Detection

```
#outliers detection
plt.boxplot(df['Anual_Salary'])
plt.xlabel('Annual Salary')
plt.ylabel('Count')
plt.show()
```



```
#outlier detection for all the columns in the dataset
for x in col_list:
   if df[x].dtypes=='int64' or df[x].dtypes=='float64':
     plt.boxplot(df[x])
   plt.xlabel(x)
   plt.ylabel('Count')
   plt.show()
```



```
#finding the lower_bound and upper_bound values of bmi column
Q1= df.bmi.quantile(0.25)
Q3=df.bmi.quantile(0.75)
IQR= Q3-Q1
lower_bound= Q1-1.5*IQR
upper_bound= Q3+1.5*IQR
print(lower_bound)
print(upper_bound)
→ 13.803125000000003
     47.168124999999996
#finding all the lower_bound and upper_bound values of all the numerical columns and removing outliers
col_list=list(df.columns)
print(col_list)
for x in col_list:
 if df[x].dtypes=='object' or x=='charges':
   continue
   Q1=df[x].quantile(0.25)
   Q3=df[x].quantile(0.75)
   IQR=Q3 - Q1
   lower_bound=Q1-1.5*IQR
   upper_bound= Q3+1.5*IQR
   print(f"lower bound of \{x\} is \{lower\_bound\}")
   print(f"upper bound of {x} is {upper_bound}")
   df = df[(df[x]>=lower\_bound) & (df[x]<=upper\_bound)]
🚁 ['age', 'sex', 'bmi', 'children', 'smoker', 'Claim_Amount', 'past_consultations', 'num_of_steps', 'Hospital_expenditure', 'NUmber_of_pas
     lower bound of age is -9.0
     upper bound of age is 87.0
     lower bound of bmi is 13.803125000000003
     upper bound of bmi is 47.168124999999996
     lower bound of children is -3.0
     upper bound of children is 5.0
     lower bound of Claim_Amount is -15079.880879999993
     upper bound of Claim_Amount is 80991.7952
     lower bound of past_consultations is -7.5
     upper bound of past_consultations is 36.5
     lower bound of num_of_steps is 662100.125
     upper bound of num_of_steps is 1155245.125
     lower bound of Hospital_expenditure is -6066324.56875
     upper bound of Hospital_expenditure is 20930808.357249998
     lower bound of NUmber_of_past_hospitalizations is 1.0
     upper bound of NUmber_of_past_hospitalizations is 1.0
     lower bound of Anual_Salary is -99592205.85625002
     upper bound of Anual_Salary is 384246561.35375
#vizual representation of the dataset after removing outliers
import matplotlib.pyplot as plt
for x in col_list:
 if df[x].dtypes=='object' or x=='charges':
   continue
  else:
   plt.boxplot(df[x])
   plt.xlabel(x)
   plt.ylabel('Count')
   plt.show()
```


#There can be a possibility that catergorical columns can also be affecting my model #But my model cannot understand the catergorical columns
#so i should convert the catergorical columns into numerical columns.

Encoding

#Encoding - the process of converting categorical (non-numerical) data into a numerical format that machine learning algorithms can understa #Common Encoding Techniques

- # 1.One-Hot Encoding
- # 2.Label Encoding
- # 3.Ordinal Encoding
- # 4.Mean Encoding
- # 5.Frequency Encoding

#Label Encoding - Assigns a unique numerical label to each category #We have to import Labelencoding sklearn.preprocessing

from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()

for x in col_list:
 if df[x].dtypes=='object':
 df[x]=le.fit_transform(df[x])

df

} ▼	age	sex	bmi	children	smoker	Claim_Amount	past_consultations	num_of_steps	${\tt Hospital_expenditure}$	NUmber_of_past_hospitali
151	25.0	1	27.550	0.0	0	39148.95495	10.0	780652.0	8.614147e+06	
152	22.0	0	20.235	0.0	0	41547.52536	13.0	802627.0	2.491594e+05	
153	25.0	1	35.625	0.0	0	39660.60193	12.0	770773.0	3.043323e+06	
154	20.0	1	31.130	2.0	0	16032.87148	7.0	769255.0	1.599069e+06	
155	21.0	0	17.400	1.0	0	31090.98977	21.0	778769.0	3.015365e+06	
1046	29.0	0	27.940	1.0	1	51168.25474	23.0	993751.0	1.665982e+07	
1048	31.0	1	25.900	3.0	1	46619.40230	27.0	989387.0	1.361938e+07	
1050	31.0	1	29.810	0.0	1	24382.58056	21.0	973924.0	1.028991e+07	
1062	43.0	0	20.045	2.0	1	21596.43846	10.0	994419.0	1.083030e+07	
1069	35.0	0	28.025	0.0	1	17200.14586	15.0	993979.0	1.247744e+07	

Next steps: (Generate code with df

View recommended plots

New interactive sheet

Model Building

from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split

- $\# x_train \rightarrow Training questions independent columns$
- # y_train -> Training answers dependent column
- # x_test -> Testing questions of independent columns (some rows that I won't pass to the model)
- # y_test -> Testing answers of dependent column (To analyse the performance of the model)

X=df.iloc[:,:12]
Y=df.iloc[:,-1]

X #independent columns

Next steps: Generate code with X View recommended plots New interactive sheet

Y #dependent columns

→		charges
	151	2523.16950
	152	2527.81865
	153	2534.39375
	154	2566.47070
	155	2585.26900
	1046	19107.77960
	1048	19199.94400
	1050	19350.36890
	1062	19798.05455
	1069	20234.85475

dtype: float64

881 rows × 1 columns

X_train,X_test,Y_train,Y_test=train_test_split(X,Y,train_size=0.75)

 X_{train} #Training data (questions)

₹		age	sex	bmi	children	smoker	Claim Amount	nast consultations	num of stens	Hosnital expenditure	NUmber of past hospitaliza
		uge	JCA	Omi	CHILLUI CH	Smorter	CIGIN_AMOUNT	past_consultations	паш_01_5сер5	nospitui_expenditure	Nomber_or_pase_nospicaliza
	838	55.0	0	30.140	2.0	0	9056.42148	24.0	944311.0	6.361727e+06	
	698	54.0	1	31.600	0.0	0	24661.25182	5.0	922267.0	7.844040e+06	
	236	27.0	0	23.210	1.0	0	11003.85343	4.0	815134.0	4.585253e+06	
	779	56.0	0	39.820	0.0	0	28716.57206	22.0	942062.0	8.381702e+06	
	851	54.0	0	30.800	3.0	0	36160.15855	9.0	933932.0	1.093410e+07	
	180	24.0	0	29.925	0.0	0	47697.21927	12.0	801145.0	9.343137e+06	
	677	46.0	1	24.795	3.0	0	53204.28189	15.0	928337.0	1.256063e+06	
	755	55.0	1	21.500	1.0	0	12121.20912	17.0	925692.0	3.808804e+06	
	610	47.0	0	24.320	0.0	0	12207.16184	7.0	914552.0	3.474461e+06	
	885	60.0	0	35.100	0.0	0	51236.61127	7.0	936964.0	8.250142e+06	
	660 rc	ows × 1	2 colu	ımns							

New interactive sheet

Y_train #training data answers.

Next steps: Generate code with X_train View recommended plots

_		charges
	838	11881.96960
	698	9850.43200
	236	3561.88890
	779	11090.71780
	851	12105.32000
	180	2850.68375
	677	9500.57305
	755	10791.96000
	610	8534.67180
	885	12644.58900
	660 rc	ws × 1 columns

dtype: float64

 $\mathbf{X}_{\mathtt{test}}$ #Testing data. after building the model I will test my model with this data.

_	4	÷

bmi	children	smoker	Claim_Amount	<pre>past_consultations</pre>	num_of_steps	Hospital_expenditure	NUmber_of_past_hospitaliza
29.370	1.0	0	34628.746980	4.0	892575.0	5.763826e+06	
28.310	1.0	0	33295.679460	15.0	919699.0	8.146261e+06	
27.170	0.0	0	54067.641030	22.0	900391.0	6.156272e+06	
38.830	0.0	0	18763.140540	10.0	939384.0	5.550482e+06	
46.700	2.0	0	32446.156670	11.0	925256.0	1.123172e+07	
35.625	4.0	0	17368.246560	14.0	931847.0	4.724863e+06	
31.730	2.0	0	45087.100540	14.0	915453.0	1.004051e+07	
27.455	1.0	0	32845.669720	15.0	906079.0	2.587267e+06	
41.230	4.0	0	45345.774660	11.0	927845.0	9.955031e+06	
34.800	1.0	0	6863.265468	11.0	843105.0	4.091292e+06	
nns							

Next steps: Generate code with X_test View recommended plots New interactive sheet

Y_test #When the model will predict the values for us we will compare those values with y_test

charges
613 8547.69130
788 11272.33139
619 8601.32930
901 12981.34570
812 11538.42100
... ...
754 10736.87075
784 11187.65670
684 9617.66245

774 11033.66170

375 5246.04700 221 rows × 1 columns

dtype: float64

linear_model=LinearRegression()

linear_model.fit(X_train,Y_train)

#now we need to test the data to check what values my model cal predict

model_predicted=linear_model.predict(X_test)
model predicted

```
      →
      array([7765.42800061, 10376.27028334, 9034.68372458, 11716.62335944, 10540.53235134, 3026.91067583, 10060.03543412, 6323.23519115, 18896.4833641, 13561.37003915, 8899.70851398, 2886.61644702, 13006.21673345, 4003.55249521, 5442.04230199, 5882.29813661, 4328.15882684, 12669.78023405, 11967.73673585, 16549.85176121, 5210.91700187, 10302.74888698, 13147.0005343, 9971.48719266, 9189.96048415, 3646.08454009, 14286.10326176, 11850.54630126, 8274.30961962, 12584.44832136, 2394.31416877, 7220.84066505, 13930.9669238, 10276.36342053, 12849.61240149, 2551.33183055, 7541.68463732, 11229.96172675, 7259.26979883, 7133.88021428,
```

```
17024.4147842 , 4890.42743718, 4013.91224279, 3713.80129508, 7393.69582227, 3134.34266248, 10872.21519587, 9292.47645094,
 8043.03114431, 11245.14603346, 11144.61420721, 7371.43140547,
11367.316831 , 5292.87462721, 3025.42025135, 12159.09650708, 8210.81604537, 6635.47309122, 8283.17546523, 5855.17408451,
 7082.62216918, 251.14396791, 9939.71314907, 9464.06666656,
 7390.7250398 , 10371.41001422 , 6057.29097056 , 6197.74884523 , 3999.10177598 , 5185.82520283 , 7446.5105116 , 9163.27485816 ,
9114.70630788, 12512.56080967, 7258.51559356, 13745.69310614, 7028.20402291, 9620.29148158, 3551.14708833, 15413.74538124, 10383.8511418, 3229.14631246, 5644.94052637, 4410.19254374,
 8077.18022236, 6129.62539532, 6943.81590127, 8206.74418216,
 4829.73743192, 12746.64351425, 6958.69600868, 6052.29035191,
 6820.98554607, 9697.38532498, 6227.90494608, 4940.82617289,
8153.25565356, 3203.13109048, 10535.19814707, 9415.58967579, 10661.49854251, 9175.72113436, 2850.11183887, 4728.48953844,
 8523.15958899, \quad 7720.849622 \quad , \quad 4877.74568442, \quad 5143.70399683,
3799.01340793, 6114.73131333, 6341.36545273, 10569.27509776, 12571.42403974, 11583.55326366, 12770.550434 , 4998.70428695,
 3760.53476931, 9606.91442814, 6582.30801594, 2591.72279963,
 8277.98019793, 12879.52594815, 7620.61452162, 7455.56830074, 6436.88016066, 8953.51619832, 3354.90653953, 10329.15075043,
 6116.43783156, 12999.78385295, 10410.22568834, 8246.12980801,
17024.39944319, 10713.5988916 , 16791.4401858 , 11187.39452276,
 8276.41293833, 7956.77340667, 10293.04514522, 7203.34301159,
 6768.30898229, 11343.64642423, 13338.81306625, 11575.93455769,
 2509.53210964, 9055.09912073, 12974.6114663 , 13427.94061517,
 9392.76599556, 10497.43402238, 10457.51352811, 13883.92642259,
 4739.44057094, 9237.57960582, 9733.86387244, 5041.22174967,
 5053.46660849, 9995.68992688, 17254.58819689, 1945.91406609,
10481.30167612, 5346.75540731, 8514.98372949, 5826.75007779,
12475.97531153, 14790.89381039, 9017.48285313, 7063.96833347,
 8601.02737374, 5502.85146328, 6244.68134238, 12807.03733869,
 7474.13136304, 9321.87727851, 4593.77659354, 6824.26512314,
 9250.10092418, 3392.56608659, 6918.47161105, 8818.69426094,
13454.29031684, 13304.64582447, 5711.78927429, 6032.38757978,
16815.087611 , 2026.98665235, 9374.91008574, 3537.85107475,
12244.56419213, 4259.90805102, 12520.76633316, 14573.29619232,
 7396.26719337, \ 10964.14210032, \ 16364.3126161 \ , \quad 4931.12888833,
11898.78069533, 11672.75713649, 2635.8066275 , 17930.64847678,
12937.69435443, 5417.71562203, 2744.69454115, 12228.86164288,
 9153.16917741, 8212.82106447, 12341.40642688, 5514.61551633,
10424.24938338, 14952.66777259, 4461.01707816, 11105.73725873,
13800.84381578, 7291.64024165, 11027.8937917 , 11233.71021851,
11227.65554077, 10175.20287243, 9711.8142677, 11244.33877183,
```

MSE,R2_score

```
#MSE -> Mean Squared Error
#RMSE -> Root Mean Squared Error
#r2_score
from sklearn.metrics import mean_squared_error
mse=mean_squared_error(Y_test,model_predicted)
mse
→ 587936.1964791534
rmse=np.sqrt(mse)
rmse
np.float64(766.7699762504745)
from sklearn.metrics import r2_score
r2_score=r2_score(Y_test,model_predicted)
r2_score*100
→ 95.92307201834575
sns.regplot(x=model_predicted,y=Y_test)
plt.xlabel('Predictions')
plt.ylabel('Actual Values')
plt.title('Regression Plot')
plt.show()
₹
```

