Pseudocódigo Factorización LU

David Isaac Oliva Villar

- 1. Inicio
- 2. Definir Constantes:
 - \blacksquare N
- 3. Inicializar Matrices y Vectores:
 - Matriz A[N][N]
 - Vector b[N]
 - Matriz $L[N][N] \to \text{Matriz Cero}$
 - Matriz $U[N][N] \to \text{Matriz Cero}$
 - Vector $y[N] \to \text{Vector Cero}$
 - Vector $x[N] \to \text{Vector Cero}$
- 4. Descomposición LU (Doolittle):
 - Para $i \rightarrow 0$ hasta N-1:
 - **4.1** (Asignar diagonal de L)
 - $L[i][i] \rightarrow 1$
 - **4.2** (Calcular Fila i de U)
 - Para $j \rightarrow i$ hasta N-1:
 - \circ suma $\rightarrow 0$
 - \circ Para $k \to 0$ hasta i-1:
 - $\diamond \ suma \rightarrow suma + L[i][k] \times U[k][j]$
 - $\circ U[i][j] \to A[i][j] suma$
 - **4.3** (Calcular Columna i de L)
 - Para $j \rightarrow i+1$ hasta N-1:
 - \circ suma $\rightarrow 0$
 - \circ Para $k \to 0$ hasta i-1:
 - $\diamond \ suma \rightarrow suma + L[j][k] \times U[k][i]$

$$\circ \ L[j][i] \to (A[j][i] - suma)/U[i][i]$$

- 5. **Imprimir** Matriz L
- 6. Imprimir Matriz U
- 7. Sustitución Hacia Adelante (Resolver Ly = b):
 - Para $i \rightarrow 0$ hasta N-1:
 - $suma \rightarrow 0$
 - Para $j \to 0$ hasta i 1: • $suma \to suma + L[i][j] \times y[j]$
 - $y[i] \rightarrow b[i] suma$
- 8. Sustitución Hacia Atrás (Resolver Ux = y):
 - Para $i \to N-1$ hasta 0 (decrementando):
 - $suma \rightarrow 0$
 - Para $j \rightarrow i + 1$ hasta N 1: • $suma \rightarrow suma + U[i][j] \times x[j]$
 - $\bullet \ x[i] \to (y[i] suma)/U[i][i]$
- 9. Imprimir Solución:
 - Imprimir "Vector Solucion x:"
 - Para $i \rightarrow 0$ hasta N-1:
 - Imprimir "x[- i + "] = x[i]
- 10. **Fin**