

VU Datenbanksysteme, Kapitel 6

Normalformen

Christian Böhm

Motivation

Beispiel-Relation:

Angebot	<u>LNr</u>	LName	<u>WarenNr</u>	Bezeichnung	Farbcode	Farbname	Preis
	103	Qualle	555333	Schränkchen	020280	nachtblau	828,00
	103	Qualle	000123	Tisch	020299	nachtblau	599,00
	103	Qualle	000124	Stuhl	4040FF	himmelblau	129,90
	626	Bschiss	555333	Schränkchen	020280	nachtblau	835,00
	626	Bschiss	000138	Bett	020299	nachtblau	599,90

Redundanzen: für alle Tupel-Paare (t, t') gilt:

- Bei gleicher LNr
 → gleicher LName
- Bei gleicher WarenNr → gleiche Bezeichnung, Farbcode, Farbname
- Bei gleichem Farbcode → gleicher Farbname

Was ist Redundanz?

gebot	<u>LNr</u>	LName	<u>WarenNr</u>	Bezeichnung	Farbcode	Farbname	Preis
	103	Qualle	555333	Schränkchen	020280	nachtblau	828,00
	103	Qualle	000123	Tisch	020299	nachtblau	599,00
	103	Qualle	000124	Stuhl	4040FF	himmelblau	129,90
	626	Bschiss	555333	Schränkchen	020280	nachtblau	835,00
	626	Bschiss	000138	Bett	020299	nachtblau	599,90

Vermeidbare mehrfache Speicherung desselben Faktums

- Z.B. Lieferant 103 heißt Qualle (3x gespeichert)
- Speicherverschwendung!

Redundanzen führen zu Anomalien:

- Insert-Anomalie:
 - z.B. INSERT INTO Angebot VALUES (103, 'Quäle', ...)
- Update-Anomalie:
 - z.B. UPDATE Angebot SET Farbname = 'rot' WHERE WarenNr = 000123
- Delete-Anomalie:
 - z.B. Löschen der letzten Ware eines Lieferanten -> Name geht verloren

Formalisierung der Redundanz: Funktionale Abhängigkeit

(siehe später)

Was tun? Relation zerlegen!

Ursprungsrelation als View: Angebot = Lieferant ⋈ Ware ⋈ Farben ⋈ Preise

Definition: Funktionale Abhängigkeit

Eine Attributmenge Y ist von X funktional abhängig $(X, Y \subseteq R)$

(Notation:
$$X \rightarrow Y$$
)

für jede gültige Ausprägung von R und jedes Paar (t, t') von Tupeln gilt:

$$t.X = t'.X \implies t.Y = t'.Y$$

(zu jeder Kombination von X-Werten existiert genau eine Kombination von Y-Werten)

Vergleich: Funktionale Abhängigkeit / Schlüssel

Wenn die funktionale Abhängigkeit $X \rightarrow Y$ gilt, dann gilt:

$$t.X = t'.X \implies t.Y = t'.Y$$

Ist X ein (Super-) Schlüssel von R, dann gilt die Eindeutigkeits-Eigenschaft:

$$t.X = t'.X \implies t = t'$$
 (d.h. alle Werte gleich)

- → Alle Attribute der Relation sind von **jedem Schlüssel** funktional abhängig
- → Aber es gibt u.U. weitere (z.T. störende) funktionale Abhängigkeiten
- → Funktionale Abhängigkeit ist **Verallgemeinerung** des Schlüssel-Konzepts.

$$t.X = t'.X \implies t.Y = t'.Y$$

bot	<u>LNr</u>	LName	<u>WarenNr</u>	Bezeichnung	Farbcode	Farbname	Preis
	103	Qualle	555333	Schränkchen	020280	nachtblau	828,00
	103	Qualle	000123	Tisch	020299	nachtblau	599,00
	103	Qualle	000124	Stuhl	4040FF	himmelblau	129,90
	626	Bschiss	555333	Schränkchen	020280	nachtblau	835,00
	626	Bschiss	000138	Bett	020299	nachtblau	599,90

Beispiele:

- Alle Attribute von jedem Schlüssel funktional abhängig:
 LNr, WarenNr → LNr, LName, WarenNr, Bezeichnung, Farbcode, Farbname, Preis
- Darüber hinaus funktionale Abhängigkeiten von *Teilen* eines Schlüssels:

<u>LNr</u> → LName <u>WarenNr</u> → Bezeichnung, Farbcode, Farbname

• Funktionale Abhängigkeiten von Nicht-Schlüssel-Attributen:

Farbcode → Farbname

Und viele weitere:

 $\begin{array}{ccc} \text{Preis} & \rightarrow & \text{Preis} \\ \underline{\text{LNr}}, \, \text{Preis} & \rightarrow & \text{LName} \\ \underline{\text{LNr}}, \, \text{Farbcode} & \rightarrow & \text{Farbname} \end{array} \right\} \, \text{Armstrong-Axiome (siehe später)}$

Warum "funktionale Abhängigkeit?"

• Namensgebend ist die Rechts-Eindeutigkeit einer Funktion y = f(x): Jedem x-Wert ist eindeutig ein y-Wert zugeordnet.

Funktionale Abhängigkeit X → Y:
 Jedem X-Wert ist eindeutig ein Y-Wert zugeordnet.

Definition: Volle funktionale Abhängigkeit

Eine funktionale Abhängigkeit

$$X \to Y$$
 $(X, Y \subseteq R)$

heißt volle funktionale Abhängigkeit (Notation: $X \xrightarrow{\bullet} Y$)

$$\neg \exists X' \subsetneq X$$
, so dass $X' \rightarrow Y$

X ist minimale Menge: $X \rightarrow Y$

Andernfalls heißt $X \rightarrow Y$ partielle funktionale Abhängigkeit.

$$\neg \exists X' \subsetneq X$$
, so dass $X' \rightarrow Y$

Angebot	<u>LNr</u>	LName	<u>WarenNr</u>	Bezeichnung	Farbcode	Farbname	Preis
	103	Qualle	555333	Schränkchen	020280	nachtblau	828,00
	103	Qualle	000123	Tisch	020299	nachtblau	599,00
	103	Qualle	000124	Stuhl	4040FF	himmelblau	129,90
	626	Bschiss	555333	Schränkchen	020280	nachtblau	835,00
	626	Bschiss	000138	Bett	020299	nachtblau	599,90

Beispiele:

(1) <u>LNr</u> → LName **voll** funktional abhängig:

Ein-elementige Mengen sind immer minimal

- (2) <u>LNr</u>, <u>WarenNr</u> → LName **partiell** funktional abhängig, wegen (1)
- (3) <u>LNr</u> → Preis **nicht** funktional abhängig
- (5) LNr, WarenNr $\stackrel{\bullet}{\longrightarrow}$ Preis voll funktional abhängig, wegen (3), (4)

Volle Funktionale Abhängigkeit vs. Schlüssel

 Warum folgt aus der Minimalität eines Schlüssels S nicht, dass jedes Attribut voll funktional abhängig vom Schlüssel ist?

```
Schlüssel S: → jedes Attribut A ∈ R ist funktional abhängig von S
→ S ist die minimale Menge, von der alle Attribute funktional abhängig sind (zur Tupel-Identifikation).
```

- aber S ist nicht unbedingt minimal für jede einzelne funktionale Abhängigkeit S → A für jedes Attribut A ∈ R.
- z.B. kann es bei R(A, B, C, D) sein, dass gilt:
 A → B und C → D.
 Schlüssel {A, C} ist für R minimal, aber es gibt partielle Abhängigkeiten.

Armstrong-Axiome

Reflexivität (R):

$$Y \subseteq X \Rightarrow X \rightarrow Y$$

insbes.: $X \longrightarrow X$

Verstärkung (V):

$$X \to Y \Rightarrow X \cup Z \to Y \cup Z$$

Transitivität (T):

$$X \to Y \land Y \to Z \implies X \to Z$$

Die Armstrong-Axiome sind korrekt und vollständig.

(Beweis: Definition der funktionalen Abhängigkeit einsetzen!)

Symmetrie der funktionalen Abhängigkeit

Die funktionale Abhängigkeit erfüllt i.A. weder die Eigenschaft der Symmetrie noch die Eigenschaft der Anti-Symmetrie,

d.h. alle vier Fälle sind bei Attributmengen X, $Y \subseteq R$ möglich:

```
• X \rightarrow Y, aber nicht Y \rightarrow X
```

- $Y \rightarrow X$, aber nicht $X \rightarrow Y$
- sowohl $X \rightarrow Y$, als auch $Y \rightarrow X$
- weder $X \rightarrow Y$, noch $Y \rightarrow X$

Weitere nützliche Gesetze

Vereinigungsregel (VE):
$$X \rightarrow Y \land X \rightarrow Z \implies X \rightarrow YZ$$

Dekompositions regel (D):
$$X \rightarrow YZ \implies X \rightarrow Y, X \rightarrow Z$$

Pseudo-Transitivität (P):
$$X \rightarrow Y \land YV \rightarrow Z \implies XV \rightarrow Z$$

Hierbei steht YZ für Y \cup Z.

Diese Gesetze lassen sich aus den Armstrong-Axiomen herleiten.

Algorithmus AttrHülle

Gegeben: Menge F von funktionalen Abhängigkeiten, Menge X von Attributen (Startmenge).

Welche Attribute X⁺ sind nach Armstrong funktional abhängig von X?

Algorithmus AttrHülle

algorithmus AttrHülle (F, X) $X^+ := X;$ while (Änderungen an X^+) do foreach $Y \to Z \in F$ do if $(Y \subseteq X^+)$ then $X^+ := X^+ \cup Z;$

Beispiel: Gegeben folgende Abhängigkeiten:

```
F = { LNr, Preis → LName Farbcode → Farbname LNr, WarenNr → LNr, LName, WarenNr, Bezeichnung, Farbcode, Farbname, Preis WarenNr → Bezeichnung, Farbcode LNr → LName
```

Ergebnis von AttrHülle(F, {WarenNr}) nach i-tem Durchlauf der Schleife:

```
    X+= {WarenNr} // Initialisierung
    X+= {WarenNr, Bezeichnung, Farbcode}
    X+= {WarenNr, Bezeichnung, Farbcode, Farbname} // transitiv: WarenNr → Farbname
    X+= {WarenNr, Bezeichnung, Farbcode, Farbname} // keine Änderung, fertig!
```

Normalisierung

Maxime: Beseitigung aller funktionaler Abhängigkeiten, außer es steht auf der linken Seite ein gesamter Schlüssel.

Verschiedene Normalformen beseitigen unterschiedliche Arten funktionaler Abhängigkeiten durch Zerlegung des Relationenschemas:

impliziert
 impliziert
 impliziert
 impliziert
 impliziert
 impliziert
 impliziert
 A. Normalform:
 4. Normalform:

(immer gegeben)

partielle Abhängigkeiten

transitive Abhängigkeiten

Abhängigkeiten zwischen Schlüsselkandidaten

mehrwertige Abhängigkeiten

Erste Normalform (1. NF)

- Keine Einschränkungen bezüglich funktionaler Abhängigkeiten
- Alle Attributwerte sind atomar, d.h. nicht mehrwertig
- In relationalen Datenbanken: mehrwertige Attribute nicht möglich → wir werden im weiteren stillschweigend 1. NF voraussetzen.
- Z.B. Zwischenergebnis von GROUP BY vor Aggregation:

,	Α	В	С	D
			3	4
	1	2	4	5
	2	3	3	4
	2	3	4	5_
	J	J	6	7

Ein Relationen-Schema ist in 2. Normalform, wenn jedes Attribut A

- voll funktional abhängig von allen Schlüsselkandidaten ist oder
- selbst Teil eines Schlüsselkandidaten (prim) ist.

Beobachtung: Die Zweite Normalform kann nicht verletzt sein, wenn...

- kein zusammengesetzter Schlüsselkandidat existiert
- oder alle Attribute prim sind.

Ein Relationen-Schema ist in 2. Normalform, wenn jedes Attribut A

- voll funktional abhängig von allen Schlüsselkandidaten ist oder
- selbst Teil eines Schlüsselkandidaten (prim) ist.

Warum sollen Attribute nicht partiell von Schlüsselkandidaten abhängig sein?

• Partielle Abhängigkeiten von Schlüsselkandidaten verursachen Redundanz, z.B.:

```
<u>LNr</u> → LName

<u>WarenNr</u> → Bezeichnung, Farbcode, Farbname
```

• Jeder Schlüssel verursacht diese Redundanz -> "von allen Schlüsselkandidaten"

Angebot	<u>LNr</u>	LName	<u>WarenNr</u>	Bezeichnung	Farbcode	Farbname	Preis
	103	Qualle	555333	Schränkchen	020280	nachtblau	828,00
	103	Qualle	000123	Tisch	020299	nachtblau	599,00
	103	Qualle	000124	Stuhl	4040FF	himmelblau	129,90
	626	Bschiss	555333	Schränkchen	020280	nachtblau	835,00
	626	Bschiss	000138	Bett	020299	nachtblau	599,90

Ein Relationen-Schema ist in 2. Normalform, wenn jedes Attribut A

- voll funktional abhängig von allen Schlüsselkandidaten ist oder
- selbst Teil eines Schlüsselkandidaten (prim) ist.

Warum sind prime Attribute bei der 2. (und 3.) Normalform ausgenommen?

- Partielle Abhängigkeiten zwischen unterschiedlichen Schlüsselkandidaten verursachen ebenfalls Redundanz,
- sind aber problematischer zu beseitigen.

→ Boyce-Codd-Normalform, siehe später!

Ein Relationen-Schema ist in 2. Normalform, wenn jedes Attribut A

- voll funktional abhängig von allen Schlüsselkandidaten ist oder
- selbst Teil eines Schlüsselkandidaten (prim) ist.

```
\begin{array}{ll} \underline{\mathsf{LNr}}, \underline{\mathsf{WarenNr}} \to \mathsf{Preis} \\ \underline{\mathsf{LNr}} & \to \mathsf{LName} \\ \underline{\mathsf{WarenNr}} & \to \mathsf{Bezeichnung}, \mathsf{Farbcode}, \mathsf{Farbname} \\ \overline{\mathsf{Farbcode}} & \to \mathsf{Farbname} \ (\mathsf{nicht} \ \mathsf{relevant} \ \mathsf{für} \ \mathsf{2.} \ \mathsf{NF}) \end{array}
```

Um 2. Normalform herzustellen, zerlegen wir das Relationenschema:

- Attribute, die voll funktional abhängig von allen Schlüsseln sind, bleiben in der Relation
 Angebot LNr LName WarenNr Bezeichnung Farbcode Farbname Preis
- Partiell abhängige Attribute werden aus dem Relationenschema gelöscht

 Angebot LNr Living WarenNr Bezeichnung Farbonde Farbname Preis
- Die partiellen Abhängigkeiten werden nach gleichen linken Seiten gruppiert

 Angebot LNr LName WarenNr Bezeichnung Farbcode Farbname Preis
- Für jede Gruppe wird eine Relation erzeugt mit den Attributen der linken und rechten Seite (linke Seite wird Schlüssel)

Ein Relationen-Schema ist in 2. Normalform, wenn jedes Attribut A

- voll funktional abhängig von allen Schlüsselkandidaten ist oder
- selbst Teil eines Schlüsselkandidaten (prim) ist.

LNr, WarenNr → Preis
LNr → LName
WarenNr → Bezeichnung, Farbcode, Farbname
Farbcode → Farbname (nicht relevant für 2. NF)

• Für jede Gruppe wird eine Relation erzeugt mit den Attributen der linken und rechten Seite (linke Seite wird Schlüssel)

Ein Relationen-Schema ist in Dritter Normalform, wenn für jede funktionale Abhängigkeit $X \rightarrow A$ eine der folgenden Aussagen gilt:

(1) $X \rightarrow A$ ist trivial, d.h. $A \in X$

oder

(2) X ist ein Super-Schlüssel

oder

(3) A ist selbst Teil eines Schlüsselkandidaten (prim).

Ein Relationen-Schema ist in Dritter Normalform, wenn für jede funktionale Abhängigkeit $X \rightarrow A$ eine der folgenden Aussagen gilt:

- (1) $X \rightarrow A$ ist **trivial**, d.h. $A \in X$ oder
- (2) X ist ein Super-Schlüssel

oder

(3) A ist selbst Teil eines Schlüsselkandidaten (prim).

Intuition dieser Definition:

"Es gibt nur Abhängigkeiten, wo links ein ganzer Schlüssel steht"

Aber in der Definition steht der Allquantor "für jede funktionale Abhängigkeit":

- (1) Das Reflexivitätsaxiom erzeugt viele unvermeidbare ("triviale") Abhängigkeiten
- (2) Wegen Verstärkungsaxiom sind alle Attribute auch von Super-Schlüssel abhängig
- (3) Abhängigkeiten zwischen primen Attributen sind problematisch zu beseitigen

Ein Relationen-Schema ist in Dritter Normalform, wenn für jede funktionale Abhängigkeit $X \rightarrow A$ eine der folgenden Aussagen gilt:

- (1) $X \rightarrow A$ ist **trivial**, d.h. $A \in X$ oder
- (2) X ist ein Super-Schlüssel

oder

(3) A ist selbst Teil eines Schlüsselkandidaten (prim).

Ware	<u>WarenNr</u>	Bezeichnung	Farbcode	Farbname
	555333	Schränkchen	020280	nachtblau
	000123	Tisch	020299	nachtblau
	000124	Stuhl	4040FF	himmelblau
	000138	Bett	020299	nachtblau

Die Dritte Normalform schließt aus:

- Partielle Abhängigkeiten von Schlüsselkandidaten
 Nach (2) muss linke Seite X ein ganzer Superschlüssel sein (außer A ist prim/trivial)
 - → Zweite Normalform ist in dieser Definition mit impliziert
- Abhängigkeiten zwischen nicht-primen Attributen, ebenfalls nach (2). Diese erzeugen ebenfalls Redundanzen (siehe Beispiel) Diese Abhängigkeiten heißen missverständlich auch "transitive Abhängigkeiten"

Ein Relationen-Schema ist in Dritter Normalform, wenn für jede funktionale Abhängigkeit $X \rightarrow A$ eine der folgenden Aussagen gilt:

- (1) $X \rightarrow A$ ist **trivial**, d.h. $A \in X$
 - oder
- (2) X ist ein Super-Schlüssel
- oder
- (3) A ist selbst Teil eines Schlüsselkandidaten (prim).

Ware	<u>WarenNr</u>	Bezeichnung	Farbcode
	555333	Schränkchen	020280
	000123	Tisch	020299
	000124	Stuhl	4040FF
	000138	Bett	020299

Farben	<u>Farbcode</u>	Farbname
	020280	nachtblau
	020299	nachtblau
	4040FF	himmelblau

Zerlegungsalgorithmus für Dritte Normalform:

Ausgehend von und analog zur 2. NF (ohne partielle Abhängigkeiten):

- Nicht-prime Attribute werden aus dem Relationenschema gelöscht, wenn sie von nicht-primen Attributen abhängig sind.*
- Die Abhängigkeiten werden nach gleichen linken Seiten gruppiert.
- Für jede Gruppe wird eine Relation erzeugt mit den Attributen der linken und rechten Seite (linke Seite wird Schlüssel).

^{*}mit Ausnahme der trivialen Abhängigkeiten

Kanonische Überdeckung

Ziel: Minimierung der Menge F von funktionalen Abhängigkeiten auf einen Kern ohne überflüssige Elemente (die sich durch die Armstrong-Axiome bzw. AttrHülle ergeben).

Links-Reduktion:

Überprüfe jedes Attribut A auf jeder linken Seite einer jeden funktionalen Abhängigkeit in F, ob es sich löschen lässt, ohne dass funkt. Abhängigkeiten

dazukommen

Rechts-Reduktion: Überprüfe jedes Attribut B auf jeder rechten Seite, ob es sich löschen lässt, ohne dass Abhängigkeiten

wegfallen

Links-Reduktion

Ein Attribut A ∈ X (= linke Seite) der funktionalen Abhängigkeit

$$X \rightarrow Y \in F$$

kann gelöscht werden, wenn Y (z.B. transitiv) durch die funktionalen Abhängigkeiten im **bisherigen** F ohnehin von $X \setminus \{A\}$ abhängig ist.

Also, wenn:

$$Y \subseteq AttrHülle (F, X \setminus \{A\})$$

Ggf. wird A aus $X \rightarrow Y$ in der Menge F gelöscht:

$$F := F \setminus \{X \to Y\} \cup \{X \setminus \{A\} \to Y\}$$

Rechts-Reduktion

Ein Attribut B ∈ Y (= rechte Seite) der funktionalen Abhängigkeit

$$X \rightarrow Y \in F$$

kann gelöscht werden, wenn B auch durch funktionale Abhängigkeiten im neuen F' (nach dem Löschen von B) von X funktional abhängig ist.

Wir löschen B probeweise:

$$F' := F \setminus \{X \to Y\} \cup \{X \to Y \setminus \{B\}\}$$

Für die Entscheidung, F' beizubehalten überprüfen wir:

$$B \in AttrH\"ulle (F', X)$$
 $\Rightarrow F := F';$

Synthese-Algorithmus für Dritte Normalform

- (1) Ermittle die kanonische Überdeckung F_c der funkt. Abh. F von R:
 - (a) Führe alle möglichen Links-Reduktionen durch;
 - (b) Führe alle möglichen Rechts-Reduktionen durch;
 - (c) Entferne funktionale Abhängigkeiten $X \rightarrow \{\}$;
 - (d) Vereinige funktionale Abhängigkeiten mit gleicher linker Seite;
- (2) Für jede funktionale Abhängigkeit $X \rightarrow Y$ in F_c : Erzeuge Relation $R_x := X \cup Y$; (X wird Schlüssel von R_x);
- (3) Falls keine Relation R_X aus Schritt (2) einen Schlüssel von R enthält: Erzeuge eine Relation R_S mit einem Schlüsselkandidaten S von R;
- (4) Lösche R_X wenn Teilmenge einer anderen Relation $R_{X'}: \underbrace{X \cup Y}_{R_X} \subseteq \underbrace{X' \cup Y'}_{R_{X'}}$.

Beispiel

- a) Führe alle möglichen Links-Reduktionen durch;
- (b) Führe alle möglichen Rechts-Reduktionen durch;
- c) Entferne funktionale Abhängigkeiten $X \rightarrow \{\}$;
- d) Vereinige funktionale Abhängigkeiten mit gleicher linker Seite;

Wir betrachten die folgenden, gültigen funktionalen Abhängigkeiten:

- (1) <u>LNr</u>, <u>WarenNr</u> → LName, Bezeichnung, Farbcode, Farbname, Preis
- (2) LNr \rightarrow LName
- (3) <u>WarenNr</u> → Bezeichnung, Farbcode, Farbname
- (4) WarenNr, Preis \rightarrow Farbcode
- (5) Farbcode \rightarrow Farbname

Links-Reduktionen:

(4) <u>WarenNr</u>, Preis → Farbcode wegen (3)

Rechts-Reduktionen:

(1)	<u>LNr, WarenNr</u>	\rightarrow	LName , Bezeichnung, Farbcode, Farbname, Preis	wegen (2)
(1)	LNr, WarenNr	\rightarrow	Bezeichnung, Farbcode, Farbname, Preis	wegen (3)
(3)	<u>WarenNr</u>	\rightarrow	Bezeichnung, Farbcode, Farbname	wegen (5)
111	MaranNr		Forboodo	wogon (2)

(4) <u>WarenNr</u> → Farbcode wegen (3)

Beispiel

- a) Führe alle möglichen Links-Reduktionen durch;
- (b) Führe alle möglichen Rechts-Reduktionen durch;
- (c) Entferne funktionale Abhängigkeiten $X \rightarrow \{\}$;
- d) Vereinige funktionale Abhängigkeiten mit gleicher linker Seite;

Nach Schritt (b) haben wir folgende funktionale Abhängigkeiten:

- (1) LNr, WarenNr \rightarrow Preis
- (2) LNr \rightarrow LName
- (3) <u>WarenNr</u> → Bezeichnung, Farbcode
- (4) WarenNr \rightarrow {}
- (5) Farbcode \rightarrow Farbname

In Schritt (c) wird (4) eliminiert:

In Schritt (d) ist nichts zu tun.

Beispiel

```
    (2) Für jede funktionale Abhängigkeit X→Y in F<sub>c</sub>:
        Erzeuge Relation R<sub>x</sub> := X∪Y; (X wird Schlüssel von R<sub>x</sub>);
    (3) Falls keine Polation P. aus Schritt (2) einen Schlüssel von P. anthi
```

- (3) Falls keine Relation R_x aus Schritt (2) einen Schlüssel von R enthält: Erzeuge eine Relation R_s mit einem Schlüsselkandidaten S von R;
- (4) Lösche R_X wenn Teilmenge einer anderen Relation $R_{X'}$

Die kanonische Überdeckung F_c enthält jetzt folgende funktionale Abhängigkeiten:

- (1) LNr, WarenNr \rightarrow Preis
- (2) LNr \rightarrow LName
- (3) <u>WarenNr</u> → Bezeichnung, Farbcode
- (5) Farbcode \rightarrow Farbname

In Schritt (2) wird für jede Abhängigkeit eine Relation erzeugt:

```
R<sub>1</sub> (LNr, WarenNr, Preis)
R<sub>2</sub> (LNr, LName)
R<sub>3</sub> (WarenNr, Bezeichnung, Farbcode)
R<sub>5</sub> (Farbcode, Farbname)
```

In Schritt (3) ist nichts zu tun, da R_1 bereits den Schlüssel (<u>LNr</u>, <u>WarenNr</u>) enthält. In Schritt (4) ist nichts zu tun, da keine Relation Teilmenge einer anderen ist.

Das Ergebnis des Synthesealgorithmus ist...

• Verlustlos (oder auch: Verbund-treu):

$$R = R_1 \bowtie R_2 \bowtie ...$$

Beweis-Idee: Für (R_i, R_j) gilt immer: $(R_i \cap R_j) \rightarrow R_i$ oder $(R_i \cap R_j) \rightarrow R_j$

Abhängigkeitserhaltend:

Für jede Abhängigkeit $X \rightarrow Y$: \exists Relation R_i : $X, Y \subseteq R_i$

d.h. jede funktionale Abhängigkeit ist einer Relation zugeordnet. Beweis-Idee: Algorithmus erzeugt jede Relation aus einer Abhängigkeit.

• In Dritter Normalform.

Boyce-Codd-Normalform

Welche funktionalen Abhängigkeiten können in 3. NF noch auftreten?

Abhängigkeiten zwischen Attributen, die prim sind, aber noch nicht vollständig einen Schlüssel bilden.

```
Beispiel: Autoverzeichnis (Hersteller, HerstellerNr, ModellNr)
```

```
\left. \begin{array}{ll} \text{mit} & \text{Hersteller} \\ \text{und} & \text{HerstellerNr} \end{array} \right. \rightarrow \left. \begin{array}{ll} \text{HerstellerNr} \\ \rightarrow & \text{Hersteller} \end{array} \right\} \ \text{d.h. 1:1-Beziehung}
```

Schlüsselkandidaten: {Hersteller, ModellNr}, {HerstellerNr, ModellNr}.

Schema ist in Dritter Normalform, weil alle Attribute prim sind.

Definition Boyce-Codd-Normalform (BCNF):

Ein Relationen-Schema ist in Boyce-Codd-Normalform, wenn für jede funktionale Abhängigkeit $X \longrightarrow A$ eine der folgenden Aussagen gilt:

(1) $X \rightarrow A$ ist **trivial**, d.h. $A \in X$

oder

(2) X ist ein Super-Schlüssel

Herstellen der Boyce-Codd-Normalform

Zerlegungsalgorithmus analog zur/ausgehend von 2./3. Normalform:

- Löschen der partiell abhängigen, primen Attribute aus dem Relationenschema
- Gemeinsam mit der zugehörigen linken Seite: Erzeuge neue Relation!

Beispiel:

Autoverzeichnis (Hersteller, HerstellerNr, ModellNr)

Verzeichnis (<u>Hersteller</u>, ModellNr)

Firmen (Hersteller, HerstellerNr)

→ Zerlegung verlustlos, aber nicht immer Abhängigkeits-erhaltend ggf. Verschlechterung der Situation: Abhängigkeiten nicht mehr überprüfbar ohne Join

Fazit

- Gut durchdachtes E/R-Diagramm → weitgehend normalisierte Tabellen
- Normalformen sind Alternative und Ergänzung zum E/R-Modell
- Extrem-Ansatz ohne E/R-Modell: Universal Relation Assumption:
 - Alles in einer Tabelle modellieren
 - funktionale Abhängigkeiten ermitteln
 - Synthesealgorithmus.

Normalisierung kann schädlich für Performanz sein (Join)

- Nicht jede funktionale Abhängigkeit berücksichtigen (Postleitzahl, ...)
- Man kann auch komplexe Integritätsbedingungen in SQL formulieren
- Man kann SQL-Tabellen so abspeichern, dass Join unterstützt wird (Cluster)