TOPOLOGY IN AND VIA LOGIC HOMEWORK ASSIGNMENT 1

• Deadline: February 10 at 23:59.

• All exercises are worth the same points.

• Good luck!

TOPOLOGICAL SPACES

Exercise 1. Consider the space (\mathbb{R}, τ_{Euc}) , with its Euclidean topology.

(1) Give an example of a set which is neither open nor closed.

(2) Show that the open intervals of the form (x, y) where $x, y \in \mathbb{Q}$ form a basis for this topology.

(3) Show that \mathbb{Q} is a countable union of closed sets.

Exercise 2. Let X be a set. We say that an operation $\square : \mathcal{P}(X) \to \mathcal{P}(X)$ is called an *interior operator* if it satisfies for each $U, V \in \mathcal{P}(X)$,

• (All set): $\Box X = X$;

• (Normality): $\Box(U \cap V) = \Box U \cap \Box V$;

• (Inflationarity): $\Box U \subseteq U$;

• (Idempotence): $\Box U \subseteq \Box \Box U$.

(1) Show that if (X, τ) is a topological space, the topological interior *int* is an interior operator in this sense.

(2) Given a set (X, \square) equipped with an interior operator, define a topology for which \square is the topological interior operator.

(3) We say that an interior operator \square is *completely multiplicative* if for each $(U_i)_{i\in I}$ we have that:

$$\Box(\bigcap_{i\in I}U_i)=\bigcap_{i\in I}\Box U_i$$

Show that Alexandroff topology are in 1-1 correspondence with completely multiplicative interior operators.

(4) Let (X, \square) be a set, equipped with a completely multiplicative interior operator, with the following property: if $x \neq y$, then there is some $U \subseteq X$ such that either $x \in \square U$ and $y \notin \square U$ or $y \in \square U$ and $y \notin \square U$. Show that then there is a poset (P, \leq) such that the Alexandroff topology on P is the same as the topology induced on X by the interior operator.

CONTINUITY AND CONTINUOUS FUNCTIONS

Exercise 3. Show the following:

- (1) Given an example of a bijective continuous map which is not a homeomorphism.
- (2) Show that all functions from a discrete space to another space are continuous. If (X, τ) is a space with the *indiscrete* topology, which functions from this space to some other space are continuous?
- (3) Show that if $f: X \to Y$ is a bijective continuous map between topological spaces, then the following are equivalent:
 - f^{-1} is continuous;
 - f is closed;
 - \bullet f is a homeomorphism.

Exercise 4. (*Product maps*) Let X, Y be topological spaces.

(1) Show that for any other topological space Z, if there exists continuous functions $\pi_1: Z \to X$ and $\pi_2: Z \to Y$, then there exists a unique continuous function $\pi_1 \times \pi_2: Z \to X \times Y$ making the following diagram commute

(2) Show that this defines the product topology up to homeomorphism: whenever a topological space A satisfies the condition in (1), then there exists a homeomorphism between A and $X \times Y$.