Vector Equations

A **column vector**, or simply **vector**, is a matrix that has *one column*. The set of all vectors that have *two* entries is denoted by \mathbb{R}^2 (r-two), where \mathbb{R} is the set of real numbers and the exponent 2 represents the number of entries that vectors in \mathbb{R}^2 contain. Consider the vector \mathbf{u} in (1), where u_1 and u_2 are real numbers.

$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \tag{1}$$

Two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^2 are **equal** if and only if their corresponding entries (u_1, u_2) and (v_1, v_2) are equal. Therefore, two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^2 are only equal if and only if $u_1 = v_1$ and $u_2 = v_2$, because vectors in \mathbb{R}^2 are ordered pairs of real numbers. The **sum** of two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^2 is the vector $\mathbf{u} + \mathbf{v}$ defined by (2) that is obtained by adding the corresponding entries of \mathbf{u} and \mathbf{v} .

$$\mathbf{u} + \mathbf{v} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} + \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \end{bmatrix}$$
 (2)

Given a vector \mathbf{u} in \mathbb{R}^2 , the scalar multiple of \mathbf{u} by a scalar c is the vector $c\mathbf{u}$ (3) that is obtained by multiplying each entry in \mathbf{u} by c.

$$c\mathbf{u} = c \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} cu_1 \\ cu_2 \end{bmatrix} \tag{3}$$

Geometric Descriptions of \mathbb{R}^2

Consider a rectangular coordinate system in a plane region. Each point in the plane region is defined by an ordered pair $(a, b) \in \mathbb{R}$, so a column vector (4) can be identified by a geometric point (a, b) and, therefore, \mathbb{R}^2 may be regarded as the set of all points in the plane region.

$$\left[\begin{array}{c} a \\ b \end{array}\right] = (a, b) \tag{4}$$

The geometric visualization of a column vector such as (4) is represented by a directed line segment that extends from the origin of the plane region (0,0) to the point (a,b), where the origin (0,0) corresponds to the zero vector $\mathbf{0}$.

Theorem (Parallelogram Rule for Addition).

If \mathbf{u} and \mathbf{v} in \mathbb{R}^2 are represented as points in a plane region, then $\mathbf{u} + \mathbf{v}$ corresponds to the *fourth* vertex of a parallelogram whose other vertices are \mathbf{u} , $\mathbf{0}$, and \mathbf{v} .

Figure 1: Parallelogram Rule for Addition

Vectors in \mathbb{R}^3

A vector in \mathbb{R}^3 is a 3×1 column matrix (5) with *three* entries. Geometrically, vectors in \mathbb{R}^3 are represented by and *ordered triple* (a, b, c) in a three-dimensional coordinate system, with an arrow extending from the origin to the said points.

$$\begin{bmatrix} a \\ b \\ b \end{bmatrix} = (a, b, c) \tag{5}$$

Vectors in \mathbb{R}^n

If $n \in \mathbb{Z}^+$, then \mathbb{R}^n denotes the set of all ordered lists, or ordered *n*-tuples, of numbers $n \in \mathbb{R}$. Therefore, a vector in \mathbb{R}^n , or *n*-vector, is an *n*-tuple of *n* real numbers and is represented by a $n \times 1$ column matrix, such as (6). A vector whose entries are all zero is called a **zero vector** and is denoted by **0**.

$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} = (u_1, u_2, \dots, u_n) \tag{6}$$

For all vectors in \mathbb{R}^n , equality, scalar multiplication, and vector addition are all defined on an entry by entry basis. Therefore, the following algebraic properties of vectors in \mathbb{R}^n can be verified directly from the corresponding algebraic properties of real numbers.

Theorem (Algebraic Properties of \mathbb{R}^n).

For all vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} in \mathbb{R}^n and all scalars c and d:

 $(1) \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$

- (5) $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$
- (2) $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ (3) $\mathbf{u} + \mathbf{0} = \mathbf{0} + \mathbf{u} = \mathbf{u}$
- (6) $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$

- $(7) \ c(d\mathbf{u}) = (cd)\mathbf{u}$
- (4) $\mathbf{u} + (-1)\mathbf{u} = \mathbf{u} + (-\mathbf{u}) = -\mathbf{u} + \mathbf{u} = \mathbf{0}$
- (8) $1\mathbf{u} = \mathbf{u}$

Linear Combinations

In general, a *linear combination* is an expression that is obtained by multiplying each term in a set of terms by a constant and adding the results. Therefore, given the vectors $\mathbf{v}_1, \dots, \mathbf{v}_i \in \mathbb{R}^n$ and scalars c_1, \dots, c_i , the vector \mathbf{u} defined by (7) is called a **linear combination** of $\mathbf{v}_1, \dots, \mathbf{v}_i$ with **weights** c_1, \dots, c_i .

$$\mathbf{u} = c_1 \mathbf{v}_1 + \dots + c_i \mathbf{v}_i \tag{7}$$

Example. Let $\mathbf{a}_1 = (1, -2, 5)$, $\mathbf{a}_2 = (2, 5, 6)$, and let $\mathbf{b} = (7, 4, -3)$. Determine whether \mathbf{b} can be generated (or written) as a linear combination of \mathbf{a}_1 and \mathbf{a}_2 . That is, determine whether the weights c_1 and c_2 exist such that $c_1\mathbf{a}_1 + c_2\mathbf{a}_2 = \mathbf{b}$.

First observe that the definitions of scalar multiplication and vector addition can be used to express the vector equation $c_1\mathbf{a}_1 + c_2\mathbf{a}_2 = \mathbf{b}$ as follows.

$$c_{1} \begin{bmatrix} 1 \\ -2 \\ -5 \end{bmatrix} + c_{2} \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix} = \begin{bmatrix} 7 \\ 4 \\ -3 \end{bmatrix} \implies \begin{bmatrix} c_{1} \\ -2c_{1} \\ -5c_{1} \end{bmatrix} + \begin{bmatrix} 2c_{2} \\ 5c_{2} \\ 6c_{2} \end{bmatrix} = \begin{bmatrix} 7 \\ 4 \\ -3 \end{bmatrix}$$

$$\implies \begin{bmatrix} c_{1} + 2c_{2} \\ -2c_{1} + 5c_{2} \\ -5c_{1} + 6c_{2} \end{bmatrix} = \begin{bmatrix} 7 \\ 4 \\ -3 \end{bmatrix}$$

Recall that two vectors are equal if and only if their corresponding entries are equal. Therefore, the vector equation $c_1\mathbf{a}_1 + c_2\mathbf{a}_2 = \mathbf{b}$ is true if and only if there exist weights c_1 and c_2 such that c_1 and c_2 satisfy the following linear system.

$$c_1 + 2c_2 = 7$$

$$-2c_1 + 5c_2 = 4$$

$$-5c_1 + 6c_2 = 3$$

Application of the row reduction algorithm to the augmented matrix of the preceding linear system provides the solution set $\{c_1, c_2\} = \{3, 2\}$.

$$\begin{bmatrix} 1 & 2 & 7 \\ -2 & 5 & 4 \\ -5 & 6 & -3 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 7 \\ 0 & 9 & 18 \\ 0 & 16 & 32 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 7 \\ 0 & 1 & 2 \\ 0 & 16 & 32 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

Thus, the vector **b** can be expressed as a linear combination of the vectors \mathbf{a}_1 and \mathbf{a}_2 with weights $c_1 = 3$ and $c_2 = 2$.

$$3\begin{bmatrix} 1\\-2\\-5 \end{bmatrix} + 2\begin{bmatrix} 2\\5\\6 \end{bmatrix} = \begin{bmatrix} 7\\4\\-3 \end{bmatrix}$$

Observe that, as shown in the preceding example, a vector equation of the form $c_1\mathbf{a}_1+\cdots+c_n\mathbf{a}_n=\mathbf{b}$ can be expressed by an augmented matrix $\begin{bmatrix} \mathbf{a}_1 & \cdots & \mathbf{a}_n & \mathbf{b} \end{bmatrix}$ that can be row reduced to obtain the weights c_1,\ldots,c_n .

Fact (Solution Set of a Vector Equation).

A vector equation of the form $c_1\mathbf{a}_1 + \cdots + c_n\mathbf{a}_n = \mathbf{b}$ has the same solution set as the linear system whose augmented matrix is

$$\begin{bmatrix} \mathbf{a}_1 & \cdots & \mathbf{a}_n & \mathbf{b} \end{bmatrix}$$

In particular, **b** can be generated (or expressed) by a linear combination of $\mathbf{a}_1, \ldots, \mathbf{a}_n$ if and *only* if there exists a solution (c_1, \ldots, c_n) to the linear system that corresponds to the preceding augmented matrix.

Span

The *span* of a fixed set of vectors $\{\mathbf{v}_1, \dots, \mathbf{v}_i\} \in \mathbb{R}^n$ is the set of all vectors that can be generated, or expressed, as a linear combination of $\{\mathbf{v}_1, \dots, \mathbf{v}_i\}$.

Definition (Span).

If $\{\mathbf{v}_1,\ldots,\mathbf{v}_i\}\in\mathbb{R}^n$, then the set of all linear combinations of $\mathbf{v}_1,\ldots,\mathbf{v}_i$ is the **subset of** \mathbb{R}^n **spanned** (or **generated**) by $\mathbf{v}_1,\ldots,\mathbf{v}_i$, denoted by $\mathrm{Span}\{\mathbf{v}_1,\ldots,\mathbf{v}_i\}$. That is, $\mathrm{Span}\{\mathbf{v}_1,\ldots,\mathbf{v}_i\}$ is the collection of all vectors that can be written in the following form with c_1,\ldots,c_i scalars.

$$c_1\mathbf{v}_1 + \cdots + c_i\mathbf{v}_i$$

If a vector $\mathbf{b} \in \operatorname{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_i\}$, then there exists a solution $\{c_1, \dots, c_n\}$ to the vector equation $c_1\mathbf{v}_1 + \dots + c_n\mathbf{v}_n = \mathbf{b}$ or, equivalently, a solution $\{c_1, \dots, c_n\}$ to the linear system whose corresponding augmented matrix is $[\mathbf{a}_1 \dots \mathbf{a}_n \mathbf{b}]$. Note that since $\operatorname{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_i\}$ contains every scalar multiple c_1, \dots, c_i of the set $\{\mathbf{v}_1, \dots, \mathbf{v}_i\}$, the zero vector $\mathbf{0} \in \operatorname{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_i\}$.

Geometric Description of $Span\{v\}$ and $Span\{u, v\}$

Let \mathbf{v} be a nonzero vector in \mathbb{R}^3 . The set of all scalar multiples of \mathbf{v} is $\mathrm{Span}\{\mathbf{v}\}$, so geometrically, $\mathrm{Span}\{\mathbf{v}\}$ represents the set of all points on a *line* in \mathbb{R}^3 that extends (indefinitely) through \mathbf{v} and $\mathbf{0}$. If \mathbf{u} is also a vector in \mathbb{R}^3 and not a scalar multiple of \mathbf{v} , then the set of all scalar multiples of $\{\mathbf{u}, \mathbf{v}\}$ is $\mathrm{Span}\{\mathbf{u}, \mathbf{v}\}$, which is geometrically represented by the set of all points on a *plane* region in \mathbb{R}^3 that contains \mathbf{u} , \mathbf{v} , and $\mathbf{0}$.