Введение в обучение с подкреплением

Тема 5: МППР и оптимальные стратегии

Лектор: Кривошеин А.В.

МППР: уравнения Беллмана

Пусть задана динамика переходов среды в рамках конечного МППР,

то есть задана функция p(s', r | s, a).

Пусть агент действует по стратегии π , где $\pi(a \mid s)$ — вероятности выбора действия a в состоянии s.

Для оценки стратегии мы использовали функции ценности состояний и действий.

Эти функции удовлетворяют уравнениям Беллмана

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a \mid s) \sum_{s' \in S} \sum_{r \in \mathcal{R}} p(s', r \mid s, a) (r + \gamma v_{\pi}(s')) = \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s],$$

$$q_{\pi}(s, a) = \sum_{r \in \mathcal{R}} \sum_{s' \in \mathcal{S}} p(s', r \mid s, a) \left(r + \gamma \sum_{a' \in \mathcal{A}} \pi(a' \mid s') q_{\pi}(s', a') \right).$$

Связь между функциями $v_{\pi}(s)$ и $q_{\pi}(s, a)$:

$$\nu_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a \mid s) q_{\pi}(s, a).$$

Для различных стратегий получатся разные функции ценности.

Как среди множества стратегий выбрать лучшую?

МППР: улучшение стратегий

Будем говорить, что **одна стратегия лучше другой**, если ожидаемый доход при действии по стратегии π' выше при старте из любого состояния:

 $\pi' \geq \pi$, если $\nu_{\pi'}(s) \geq \nu_{\pi}(s)$ для каждого $s \in \mathcal{S}$.

Далее, так как
$$\nu_\pi(s) = \sum_{a \in \mathcal{A}} \pi(a \mid s) \ q_\pi(s, a)$$
, то $\min_a q_\pi(s, a) \leq \nu_\pi(s) \leq \max_a q_\pi(s, a)$.

Пусть $a' = \arg\max_a q_{\pi}(s, a)$. Тогда $q_{\pi}(s, a') \ge \nu_{\pi}(s)$, то есть выбор действия a' в состоянии s (и следование стратегии π затем) приведёт большему ожидаемому доходу.

Но как связаны стратегия π и стратегия, при которой во всех встреченных состояниях s мы будем принимать действие a', а других состояниях действовать по стратегии π . Является ли одна лучше другой?

Теорема об улучшении стратегии. Пусть π , π' две стратегии, причём π' детерминирована и $q_{\pi}(s, \pi'(s)) \ge \nu_{\pi}(s)$ для всех $s \in S, \gamma < 1$.

Тогда стратегия π' не хуже π . То есть $\pi' \geq \pi$ или $\nu_{\pi'}(s) \geq \nu_{\pi}(s)$.

На самом деле, можно установить чуть более общее утверждение.

Общая теорема об улучшении стратегии. Пусть π , π' две стратегии и

Тогда стратегия π' не хуже π . То есть $\pi' \geq \pi$ или $\nu_{\pi'}(s) \geq \nu_{\pi}(s)$.

МППР: доказательство теоремы об улучшении стратегий

Доказательство. Рассмотрим цепочку неравенств

$$\begin{split} \nu_{\pi}(s) & \leq q_{\pi}(s, \, \pi^{\, \prime}(s)) = \sum_{r \in \mathcal{R}} \sum_{s' \in S} p(s^{\, \prime}, \, r \, | \, s, \, \pi^{\, \prime}(s)) \, (r \, + \, \gamma \, \, \nu_{\pi}(s^{\, \prime})) \leq \\ & \sum_{r \in \mathcal{R}} \sum_{s' \in S} p(s^{\, \prime}, \, r \, | \, s, \, \pi^{\, \prime}(s)) \, (r \, + \, \gamma \, \, q_{\pi}(s^{\, \prime}, \, \pi^{\, \prime}(s^{\, \prime}))) \leq \\ & \sum_{r \in \mathcal{R}} \sum_{s' \in S} p(s^{\, \prime}, \, r \, | \, s, \, \pi^{\, \prime}(s)) \left(r \, + \, \gamma \, \, \sum_{r \in \mathcal{R}} \sum_{s'' \in S} p(s^{\, \prime\prime}, \, r \, | \, s^{\, \prime}, \, \pi^{\, \prime}(s^{\, \prime})) \, (r \, + \, \gamma \, \, \nu_{\pi}(s^{\, \prime\prime})) \right) \leq \, \ldots, \end{split}$$

где многоточие значит и дальше оценивать $\nu_{\pi}(s'') \leq q_{\pi}(s'', \pi'(s''))$ и подставлять выражение для $q_{\pi}(s'', \pi'(s''))$. Получающиеся суммы не отличаются от итерации равенства

$$\nu_{\pi'}(s) = \sum_{s' \in S} \sum_{r \in \mathcal{R}} p(s', r \mid s, \pi'(s)) (r + \gamma \nu_{\pi'}(s')) = \sum_{r \in \mathcal{R}} \sum_{s' \in S} p(s', r \mid s, \pi'(s)) \left(r + \gamma \sum_{r \in \mathcal{R}} \sum_{s'' \in S} p(s'', r \mid s', \pi'(s')) (r + \gamma \nu_{\pi'}(s''))\right)$$

кроме самого правого слагаемого:

в цепочке неравенств оно имеет вид $\nu_{\pi}(s^{(n)})$, а в цепочке равенств оно имеет вид $\nu_{\pi'}(s^{(n)})$. где n число проделанных итераций. У слагаемых этого типа накапливается множитель γ^n .

Зафиксируем $\varepsilon > 0$, тогда можно проделать столько итераций n, что $\gamma^n \max_{s \in \mathcal{S}} |\nu_\pi(s) - \nu_{\pi'}(s)| < \varepsilon$, а тогда

$$\nu_{\boldsymbol{\pi}}(s) \leq \sum_{r \in \mathcal{R}} \sum_{s' \in S} p(s', r \mid s, \boldsymbol{\pi}'(s)) \left(\dots \right) = \nu_{\boldsymbol{\pi}'}(s) + \left(\sum_{r \in \mathcal{R}} \sum_{s' \in S} p(s', r \mid s, \boldsymbol{\pi}'(s)) \left(\dots \right) - \nu_{\boldsymbol{\pi}'}(s) \right) \leq \nu_{\boldsymbol{\pi}'}(s) + \varepsilon.$$

и следовательно $\nu_{\pi}(s) \leq \nu_{\pi'}(s)$. •

МППР: улучшение стратегий

В силу доказанной теоремы, чтобы по имеющейся стратегии построить стратегию лучше, надо **новую стратегию определять жадным образом относительно** $q_{\pi}(s, a)$. А именно,

$$\pi'(s) := \arg\max_a \ q_\pi(s, a)$$
. Эта стратегия будет не хуже, то есть $\pi \le \pi'$.

Таким образом, детерминированные стратегии всегда лучше стохастических.

Наилучшую стратегию следует искать среди детерминированных.

Для конечного МППР число детерминированных стратегий конечное число. Тогда в процессе монотонного улучшения стратегий возникнет момент, когда функции ценности по новой стратегии π' и старой стратегии π будут совпадать, то есть

$$u_{\pi} =
u_{\pi'}$$
 или $u_{\pi}(s) = \max_{a} q_{\pi}(s, a).$

То есть ни в одном состоянии нет действия, которое ещё увеличит ожидаемый доход.

Полученное уравнение — это уравнение оптимальности Беллмана:

$$u_{\pi}(s) = \max_{a} q_{\pi}(s, a) = \max_{a} \sum_{r \in \mathcal{R}} \sum_{s' \in \mathcal{S}} p(s', r \mid s, a) \left(r + \gamma \, \nu_{\pi}(s')\right)$$
 для всех $s \in \mathcal{S}$.

МППР: оператор Беллмана

Введём оператор Беллмана, покажем, что он сжимающий на векторах $V = \{V(s)\}_{s \in S}$.

$$B V(s) := \max_{a} \sum_{r \in \mathcal{R}} \sum_{s' \in \mathcal{S}} p(s', r \mid s, a) (r + \gamma V(s')).$$

Рассмотрим тах-норму и провёдем оценку

$$||B V - B W|| \le \max_{s \in S} \left| \max_{a} \sum_{r \in \mathcal{R}} \sum_{s' \in S} p(s', r \mid s, a) (r + \gamma V(s')) - \max_{a'} \sum_{r \in \mathcal{R}} \sum_{s' \in S} p(s', r \mid s, a') (r + \gamma W(s')) \right| \le \max_{s \in S} \left| \max_{a} \left(\sum_{r \in \mathcal{R}} \sum_{s' \in S} p(s', r \mid s, a) (r + \gamma V(s')) - \sum_{r \in \mathcal{R}} \sum_{s' \in S} p(s', r \mid s, a') (r + \gamma W(s')) \right) \right| \le \max_{s \in S} \max_{a} \sum_{r \in \mathcal{R}} \sum_{s' \in S} p(s', r \mid s, a) \gamma \max_{s'} |V(s') - W(s')| \le \gamma ||V - W||.$$

Значит уравнение оптимальности Беллмана BV = V имеет единственное решение при $\gamma < 1$.

В доказательстве используется неравенство : $\left| \max_{x} f(x) - \max_{x} g(x) \right| \le \max_{x} |f(x) - g(x)|$.

Оно верно по следующим причинам:

верно, что
$$f(x) \leq |f(x)-g(x)|+g(x)$$
, а значит
$$\max_x f(x) \leq \max_x \left(|f(x)-g(x)|+g(x)\right) \leq \max_x |f(x)-g(x)| + \max_x g(x).$$
 Тем самым,
$$\max_x f(x) - \max_x g(x) \leq \max_x |f(x)-g(x)|.$$

Поменяв ролями f и g, получим

$$\max_{x} g(x) - \max_{x} f(x) \le \max_{x} |f(x) - g(x)|$$
, что в итоге даёт треубемое неравенство.

С одной стороны, начиная с каждой стратегии, можно начать процесс улучшения и добраться до такой стратегии π^* , у которой функция ценности ν_{π^*} удовлетворяет уравнению оптимальности Беллмана.

С другой стороны, решение уравнения оптимальности Беллмана единственно. То есть

 $u_{\pi^*}(s) \geq \nu_{\pi}(s)$ для всех состояний $s \in \mathcal{S}$ и стратегий π или $\nu_{\pi^*}(s) := \max_{\pi} \nu_{\pi}(s)$.

Введём обозначение : $v_*(s) := \max_{\pi} v_{\pi}(s)$.

Это и есть наилучшая функция ценности состояний из возможных.

Любую стратегию π^* , для которой $\nu_{\pi^*} = \nu_*$, называют **оптимальной**.

Аналогично, можно ввести **наилучшую функцию ценности действий**. Пусть π^* оптимальная стратегия, тогда

$$q_{\pi^*}(s,\,a) = \sum_{r \in \mathcal{R}} \sum_{s' \in S} p(s',\,r\,|\,s,\,a)\,(r\,+\,\gamma\,\nu_{\pi^*}(s')) \,\,\geq\,\, \sum_{r \in \mathcal{R}} \sum_{s' \in S} p(s',\,r\,|\,s,\,a)\,(r\,+\,\gamma\,\nu_{\pi}(s)) \,= q_{\pi}(s,\,a)$$
 или

 $q_{\pi^*}(s,\,a) \geq \; q_{\pi}(s,\,a) \;\;$ для всех $s \in \mathcal{S},\,a \in \mathcal{A}$ и стратегий $\pi.$

Тогда наилучшая функция ценности действий : $q_*(s,a) := \max_{\pi} q_{\pi}(s,a) = q_{\pi^*}(s,a)$.

МППР: Итерация по стратегии

Соображения выше приводят к двум методам поиска оптимальной стратегии.

Способ 1. Метод итерации по стратегиям.

Общая идея алгоритма итерации по стратегии:

- 1. Инициализация начальной стратегии π_0 случайным образом, i=0
- 2. Повторять, пока стратегия меняется:

Оценить стратегию, то есть найти ν_{π_i} по итеративному алгоритму

Улучшить стратегию π_i , выбрав новую стратегию π_{i+1}

$$\begin{array}{l} i=i+1\\ \pi_0 {\overset{\text{вычислить}}{\longrightarrow}} \nu_{\pi_0} {\overset{\text{улучшить}}{\longrightarrow}} \pi_1 {\overset{\text{вычислить}}{\longrightarrow}} \nu_{\pi_1} \ldots {\overset{}{\longrightarrow}} \pi_* {\overset{}{\longrightarrow}} \nu_*. \end{array}$$

Шаг улучшения заключается в следующем: найти $q_{\pi}(s, a)$ для всех s и a и определить

новую стратегию π' жадным образом относительно $q_{\pi}(s, a)$.

$$\pi'(s) := \arg \max_{a} \ q_{\pi}(s, a) = \arg \max_{a} \ \sum_{r \in \mathcal{R}} \sum_{s' \in S} p(s', r \mid s, a) (r + \gamma \, \nu_{\pi}(s')).$$

Эта стратегия будет не хуже, то есть $\pi \leq \pi'$.

МППР: Итерация по стратегии, псевдокод

Шаг 1. Инициализировать:

число $\theta > 0$ (порог для критерия остановки итераций);

значения V(s) для $s \in S$ произвольным образом;

значения $\pi(s) \in \mathcal{A}(s)$ произвольным образом для каждого s(начальная детерминированная стратегия).

Шаг 2. Оценка стратегии

Повторять:

$$\Delta := 0$$

Повторять для каждого $s \in S$:

$$v := V(s)$$

 $V(s) := \sum_{s' \in S} \sum_{r \in \mathcal{R}} p(s', r \mid s, \pi(s)) (r + \gamma V(s'))$

 $\Delta := \max \{ \Delta, | v - V(s) | \}$

пока не окажется, что $\Delta < \theta$.

Шаг 3. Улучшение стратегии

IsOptimal := True

Повторять для каждого $s \in S$:

oldAction := $\pi(s)$

bestActions(s) :=
$$\underset{a}{\operatorname{arg max}} \sum_{r \in \mathcal{R}} \sum_{s' \in S} p(s', r \mid s, a) \, (r + \gamma \, V(s'))$$
 (формируем множество лучших действий)

Если oldAction ∉ bestActions(s), то IsOptimal = False.

 $\pi(s) = a$, где $a \in bestActions(s)$.

Если IsOptimal = True, то стоп, иначе перейти к Шагу 2.

Особенность псевдокода: при запуске Шага 2 для оценки стратегии, начальной оценкой является приближение функции ценности предыдущей стратегии (на практике это обычно увеличивает скорость сходимости).

МППР: Итерация по ценности

Способ 2. Метод итерации по ценности.

Поскольку решение уравнения оптимальности Беллмана — это нахождение неподвижной точки сжимающего оператора, то решение, то есть оптимальную функцию ценности состояний v_* , можно искать итеративным методом.

$$V_{k+1} = B \ V_k$$
 или $V_{k+1}(s) = \max_a \sum_{s' \in S} \sum_{r \in \mathcal{R}} p(s', r \mid s, a) \ (r + \gamma \ V_k(s')).$

Как восстановить оптимальную стратегию π^* ?

Для этого можно вычислить оптимальную функцию ценности действий:

$$q_*(s, a) = \sum_{r \in \mathcal{R}} \sum_{s' \in S} p(s', r \mid s, a) (r + \gamma v_*(s'))$$

и выбирать действия жадно относительно $q_*(s, a)$:

$$\pi^*(s) := \arg \max_{a} \ q_*(s, a) = \ \arg \max_{a} \sum_{s' \in S} \sum_{r \in R} p(s', r \, | \, s, a) \, (r \, + \, \gamma \, \nu_*(s')).$$

Общий алгоритм итерации по ценности:

- 1. Инициализировать случайным образом функцию ценности для всех состояний $V_0(s)$.
- 2. Повторять, пока не получится хорошее приближение:

$$V_{k+1} = B V_k.$$

3. Выделить оптимальную стратегию.

Если изобразить схему алгоритма, аналогичную итерации по стратегии, то она имеет вид

$$V_0 {\:\longrightarrow\:} V_1 {\:\longrightarrow\:} V_2 {\:\longrightarrow\:} ... {\:\longrightarrow\:} \nu_*.$$

МППР: Итерация по ценности, псевдокод

Шаг 1. Инициализировать:

число $\theta > 0$ (порог для критерия остановки итераций); значения V(s) для $s \in S$ произвольным образом;

Шаг 2. Решение уравнения оптимальности Беллмана:

Повторять:

$$\Delta := 0$$

Повторять для каждого $s \in S$:

$$\begin{split} v &\coloneqq \textit{V(s)} \\ \textit{V(s)} &\coloneqq \max_{a} \sum_{s' \in S} \sum_{r \in \mathcal{R}} p(s', r \mid s, a) \left(r + \gamma \, \textit{V(s')} \right) \\ \Delta &\coloneqq \max \left\{ \Delta, \, |\textit{v} - \textit{V(s)}| \right\} \end{split}$$

пока не окажется, что $\Delta < \theta$.

Шаг 3. Выделение оптимальной стратегии:

$$\pi(s) = \underset{a}{\operatorname{argmax}} \sum_{s' \in S} \sum_{r \in \mathcal{R}} p(s', r \mid s, a) (r + \gamma V(s'))$$

МППР: диаграммы

Итерация по стратегиям означает чередование двух шагов:

- 1. Оценка: найти истинную функцию ценности ν_{π} для текущей стратегии;
- 2. Улучшение: выбрать стратегию жадно, относительно текущей функции ценности ν_{π} .

Out[=]=

Итерация по ценности в некотором смысле также чередует эти два шага: по сути вычисляется одна итерация оценки Q-функции и при необходимости можно получить улучшенную стратегию жадным выбором действия по этой оценке.

При вычисления in-place чередование шагов происходит ещё чаще: обновляется оценка ценности для одного состояния и сразу улучшается стратегия.

Обобщённая итерация по стратегиям (ОИС) — это чередование шагов оценки и улучшения стратегии произвольным образом.

Шаг улучшения стратегии жадно выбирает стратегию по текущей функции ценности и делает эту функцию некорректной для новой стратегии.

Шаг обновления оценки для текущей функции ценности приводит к тому, что новая стратегия перестаёт быть жадной. Однако, совместно эти два процесса находят единственную оптимальную функцию ценности.

