Suites arithmétiques

Terminale STMG 2

1 Termes d'une suite arithmétique

Définition 1 (Rappel). *Une suite arithmétique est une suite numérique* $(u_n)_{n\in\mathbb{N}}$ *définie par son premier terme* u_0 *et un nombre r appelé la raison, tel que chaque terme* u_n *pour* n>0 *est obtenu en ajoutant r au terme précédent :*

$$u_n = u_{n-1} + r$$

Exemple. • La suite

$$0; 2; 4; 6; 8; 10; \dots$$

est la suite de premier terme 0 et de raison 2.

$$0 \xrightarrow{+2} 2 \xrightarrow{+2} 4 \xrightarrow{+2} 6 \xrightarrow{+2} 8 \xrightarrow{+2} 10$$

• La suite

$$10; 9; 8; 7; 6; 5; \dots$$

est la suite de premier terme 10 et de raison -1.

• La suite 1; 2; 4; 7; 11; ... n'est pas une suite arithmétique. En effet,

Remarque. Une suite arithmétique est constante (tous ses termes sont égaux) si et seulement si sa raison est égale à 0.

Proposition 1. Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique de raison r. Alors, son n^e terme est donné par la formule

$$u_0 + n \times r$$

Exemple.

- a) Donner le 5^e terme de la suite arithmétique de premier terme 3, 5 et de raison 3 :
- b) Donner le 10^e terme de la suite arithmétique de premier terme 12 et de raison -5:

En résumé, il y a deux types d'écriture pour le n^e terme d'une suite arithmétique :

- La formule de récurrence $u_n = u_{n-1} + r$. Pour vérifier qu'une suite est arithmétique, on vérifie qu'on obtient chaque terme en ajoutant r au terme précédent.
- La formule explicite $u_n = u_0 + n \times r$. On l'utilise une fois qu'on sait qu'une suite arithmétique, pour calculer directement le n^e terme.

Suites arithmétiques Terminale STMG 2

2 Étude d'une suite arithmétique

2.1 Variation d'une suite arithmétique

Proposition 2.

- Une suite arithmétique de raison r est **croissante** si et seulement si r est positive.
- Une suite arithmétique de raison r est **décroissante** si et seulement si r est négative.

Exemple. La suite arithmétique

	2,0,0,11,
est	car sa raison vaut
	La suite arithmétique
	$4;-2;-8;\dots$
est	car sa raison vaut

2.5.8.11.

2.2 Représentation graphique

Proposition 3. Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique de raison n. Alors les points $(0,u_0)$, $(1,u_1)$, $(2,u_2)$, ...sont alignés. **Exemple.**

On a représenté ici les premiers termes d'une suite arithmétique $(u_n)_{n\in\mathbb{N}}$.

- a) Quel est le premier terme u_0 de cette suite?
- b) Quelle est la raison r de cette suite?
- c) Placer les points correspondants aux termes suivants de cette suite.
- d) À partir de quel terme (quel n?) la suite devient positive?

Remarque. Un phénoméne représenté par une suite arithmétique suit une évolution dite linéaire.

3 Moyenne arithmétique

Définition 2. La moyenne arithmétique entre deux nombres a et b est donnée par

$$\frac{a+b}{2}$$

Exemple. Calculer la moyenne arithmétique des couples de nombres s	s suivants :
---	--------------

a) 10 et 12:

Proposition 4. Soit une suite arithmétique $(u_n)_{n\in\mathbb{N}}$. Alors chaque terme u_n est la moyenne arithmétique du terme précédent et du terme suivant.

$$u_n = \frac{u_{n-1} + u_{n+1}}{2}$$

4 Somme des premiers termes d'une suite arithmétique

Définition 3. Soit $(u_n)_{n\in\mathbb{N}}$ une suite. Pour parler de la somme $u_0+u_1+u_2+\cdots+u_N$, on utilise la notation suivante :

$$\sum_{n=0}^{N} u_n$$

Proposition 5. Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique, et N un nombre entier. Alors, $\sum_{n=0}^N u_n = (N+1)\frac{u_0 + u_N}{2}$.

Remarque. En français, cette formule donnerait

$$(Nombre\ de\ termes\ \grave{a}\ ajouter) imes rac{Premier\ terme + Dernier\ terme}{2}$$

Exemple. Calculer les sommes suivantes :

- a) $u_0 + u_1 + \cdots + u_5$ pour $(u_n)_{n \in \mathbb{N}}$ de premier terme 6 et de raison 5.
- b) $\sum_{n=0}^{10} v_n$ pour $(v_n)_{n\in\mathbb{N}}$ une suite arithmétique de premier terme 27 et de raison -3.
- c) $\sum_{n=0}^{42} w_n$ pour $(v_n)_{n\in\mathbb{N}}$ une suite arithmétique de premier terme 15 et de raison 10.