บทที่ 7

การวิเคราะห์ถดถอยและสหสัมพันธ์อย่างง่าย

(Simple linear regression and Correlation)

การวิเคราะห์ความถดถอย (Regression Analysis)

• การวิเคราะห์ความถดถอย คือ การศึกษาความสัมพันธ์ระหว่างตัวแปร ตั้งแต่ 2 ตัวขึ้นไป เพื่อทำให้สามารถประมาณค่าของตัวแปรหนึ่งจากตัวแปร อื่นๆ โดยจะต้องทราบค่าตัวแปรอื่นๆ ล่วงหน้า เช่น ความสัมพันธ์ระหว่างเกรด เฉลี่ยกับคะแนนของรายวิชาต่างๆ ที่ลงทะเบียนเรียน

การวิเคราะห์ความถดถอยอย่างง่าย (Simple regression)

- การวิเคราะห์ความถดถอยอย่างง่าย คือ การศึกษาความสัมพันธ์ระหว่าง
 - 2 ตัวแปร เพื่อทำให้สามารถประมาณค่าของตัวแปรตาม (y) ได้จากตัวแปร อิสระ (x) เช่น
 - ความสัมพันธ์ระหว่างรายจ่ายกับรายรับ
 - ความสัมพันธ์ระหว่างแรงดัน output กับแรงดัน input
 - ความสัมพันธ์ระหว่างเกรดกับคะแนนรายวิชาสถิติ

แผนภาพการกระจาย (Scatter Diagram)

- แผนภาพการกระจาย คือ แผนภาพที่แสดงความสัมพันธ์ระหว่าง 2 ตัวแปร ซึ่งสามารถอยู่ในรูปแบบของ
 - เส้นตรง
 - พาราโบลา
 - เอ็กซ์โพเนนเชียล

การวิเคราะห์ความถดถอยเชิงเส้นอย่างง่าย (Simple Linear Regression Analysis)

• การวิเคราะห์ความถดถอยเชิงเส้นอย่างง่าย คือ การศึกษาความสัมพันธ์ ระหว่างตัวแปร 2 ตัว ที่มีความสัมพันธ์ในรูปเชิงเส้น ซึ่งสามารถแสดงให้อยู่ ในรูปสมการเชิงเส้นได้ดังนี้

$$Y_i = \beta_0 + \beta_1 X_i + e_i$$

- Y ตัวแปรตาม
- X ตัวแปรอิสระ
- β₀ ส่วนตัดแกน Υ
- β₁ ความชัน (slope)
- e ความคลาดเคลื่อนอย่างสุ่ม

 การจะหาค่า β₀ และ β₁ เป็นไปได้อยากในทางปฏิบัติ จึงต้องใช้ข้อมูลตัวอย่าง ขนาด n ในการประมาณค่าโดยวิธี กำลังสองน้อยสุด (Least Square Method) ดังนี้

จากเดิม
$$Y_i=eta_0+eta_1X_i+e_i$$
ประมาณได้ $\hat{y}_i=a+bX_i$

 $\bullet \beta_0 = a = \overline{y} - b\overline{x}$

িচ্ছা
$$\boldsymbol{\beta}_1 = b = \frac{\sum X_i Y_i - \frac{\left(\sum X_i\right)\left(\sum Y_i\right)}{n}}{\sum X_i^2 - \frac{\left(\sum X_i\right)^2}{n}} = \frac{S^2_{XY}}{S^2_{X}}$$

• Ex ในการหาความสัมพันธ์ระหว่างแรงดัน output และแรงดัน input ของ วงจรจ่ายแรงดัน (mV) เพื่อนำมาประมาณค่าของการจ่ายแรงดัน output โดยเก็บข้อมูลตัวอย่างมาดังนี้ จงหาสมการความถดถอย

ครั้งที่	1	2	3	4	5
input	1	2	3	4	5
output	1	1	2	2	4

Output(Y)	Input(X)	X_iY_i	x_i^2
1	1		
1	2		
2	3		
2	4		
4	5		
ΣY = <u>Y</u> =	$\Sigma X = \overline{X} =$	ΣXY =	$\Sigma X^2 =$

• Ex1 ในการหาความสัมพันธ์ระหว่างแรงดัน output และแรงดัน input ของวงจรจ่ายแรงดัน (mV) เพื่อนำมาประมาณค่าของการจ่ายแรงดัน output โดยเก็บข้อมูลตัวอย่างมาดังนี้ จงหาสมการความถดถอย

ครั้งที่	1	2	3	4	5	6	7	8	9	10	11	12
in	0.8	1.0	1.6	2.0	2.2	2.6	3.0	3.0	4.0	4.0	4.0	4.6
out	22	28	22	26	34	18	30	38	30	40	50	46

X _i	Y _i	X_iY_i	X _i ²	Y _i ²
0.8	22			
1.0	28			
1.6	22			
2.0	26			
2.2	34			
2.6	18			
3.0	30			
3.0	38			
4.0	30			
4.0	40			
4.0	50			
4.6	46			
$\frac{\Sigma X}{X} =$	$\frac{\Sigma Y}{Y} =$	ΣXY =	ΣX ² =	$\Sigma Y^2 =$

การประมาณค่าแปรปรวนของความคาดเคลื่อน(S²)

ullet ค่าคาดเคลื่อนในการประมาณ $old Y_i$ ด้วย $old \gamma_i$ สามารถคำนวณได้ดังนี้

การประมาณค่าแปรปรวนของความคาดเคลื่อน

• จาก **EX1** จงหาความแปรปรวนความคาดเคลื่อน

การประมาณค่า β₁ แบบช่วง ที่ระดับความเชื่อมั่น (1-α)100% เมื่อ ขนาด ตัวอย่าง n ≥ 30 สามารถทำได้ดังนี้

$$\beta_1 \pm Z_{\frac{\alpha}{2}} \frac{S}{S_X}$$

การประมาณค่า β₁ แบบช่วง ที่ระดับความเชื่อมั่น (1-α)100% เมื่อ ขนาด
 ตัวอย่าง n < 30 สามารถทำได้ดังนี้

$$\beta_1 \pm t_{\frac{\alpha}{2};n-2} \frac{S}{S_X}$$

ullet จากตัวอย่าง $oldsymbol{\mathsf{EX1}}$ จงประมาณค่า $oldsymbol{eta}_1$ แบบช่วงที่ระดับความเชื่อมั่น $oldsymbol{\mathsf{95\%}}$

การประมาณค่า β₀ แบบช่วง ที่ระดับความเชื่อมั่น (1-α)100% เมื่อ ขนาด
 ตัวอย่าง n ≥ 30 สามารถทำได้ดังนี้

$$\beta_0 \pm Z_{\frac{\alpha}{2}} S \sqrt{(1/n) + (X^2/S_X^2)}$$

การประมาณค่า β₀ แบบช่วง ที่ระดับความเชื่อมั่น (1-α)100% เมื่อ ขนาด
 ตัวอย่าง n < 30 สามารถทำได้ดังนี้

$$\beta_0 \pm t_{\frac{\alpha}{2},n-2} S \sqrt{(1/n) + (X^2/S_X^2)}$$

• จากตัวอย่าง **EX1** จงประมาณค่า eta_0 แบบช่วงที่ระดับความเชื่อมั่น 95%

การประมาณค่า Y แบบช่วงเมื่อกำหนดค่า X

การประมาณค่า Y แบบช่วงที่ระดับความเชื่อ (1-α)100% เมื่อ ขนาด
 ตัวอย่าง n ≥ 30 สามารถทำได้ดังนี้

$$\hat{y}_{p} \pm Z_{\frac{\alpha}{2}} S \sqrt{1 + (1/n) + (X_{p} - \overline{X})^{2} / S_{X}^{2}}$$

การประมาณค่า Y แบบช่วงที่ระดับความเชื่อ (1-α)100% เมื่อ ขนาด
 ตัวอย่าง n < 30 สามารถทำได้ดังนี้

$$\hat{y}_{p} \pm t_{\frac{\alpha}{2};n-2} S \sqrt{1 + (1/n) + (X_{p} - \overline{X})^{2} / S_{x}^{2}}$$

การประมาณค่า Y แบบช่วงเมื่อกำหนดค่า X

• จากตัวอย่าง **EX1** ถ้าต้องการประมาณค่าแรงดัน **output** แบบช่วง เมื่อ กำหนดแรงดัน **input** เป็น **2.5 mV** ที่ระดับความเชื่อมั่น **95%**

การประมาณค่าเฉลี่ย Y แบบช่วงเมื่อกำหนดค่า X

การประมาณค่าเฉลี่ย Y (µ_{Y.X}) แบบช่วงที่ระดับความเชื่อมั่น (1-α)100%
 เมื่อขนาดตัวอย่าง n ≥ 30

$$\hat{y}_{p} \pm Z_{\frac{\alpha}{2}} S_{\sqrt{(1/n) + (X_{p} - \bar{X})^{2}/S_{X}^{2}}}$$

การประมาณค่าเฉลี่ย Y (μ_{Y.X}) แบบช่วงที่ระดับความเชื่อมั่น (1-α)100% เมื่อขนาดตัวอย่าง n < 30

$$\hat{y}_{p} \pm t_{\frac{\alpha}{2};n-2} S_{\sqrt{(1/n) + (X_{p} - \overline{X})^{2}/S_{X}^{2}}}$$

การประมาณค่าเฉลี่ย Y แบบช่วงเมื่อกำหนดค่า X

• จากตัวอย่าง **EX1** ถ้าต้องการประมาณค่าเฉลี่ยแรงดัน **output** แบบช่วง เมื่อกำหนดแรงดัน **input** เป็น 2.5 mV ที่ระดับความเชื่อมั่น 95%

สัมประสิทธิ์การตัดสินใจ (Coefficient of Determination : R2)

สัมประสิทธิ์การตัดสินใจ (R²) คือ ค่าที่ใช้อธิบายเปอร์เซ็นต์การ เปลี่ยนแปลงของตัวแปรตาม (Y) ว่ามีความสัมพันธ์กับตัวแปรอิสระ (X) มากหรือน้อย ซึ่งสามารถคำนวณได้ดังนี้

•
$$R^2 = 1 - \frac{SSE}{SST}$$

 $SST = SSR + SSE$
 $SSR = \frac{(S_{XY}^2)^2}{S_X^2}$

• $0 \le R^2 \le 1$

สัมประสิทธิ์การตัดสินใจ (Coefficient of Determination : R²)

- คุณสมบัติของ R²
 - R² มีค่าเข้าใกล้ **1** คือ **X และ Y มีความสัมพันธ์กันมาก** หรือ แสดงว่าเปอร์เซ็นต์ที่ **X** สามารถอธิบายการเปลี่ยนแปลงของ **Y** มีค่ามาก
 - R² มีค่าเข้าใกล้ **0** คือ **X และ Y มีความสัมพันธ์กันน้อย** หรือ แสดงว่าเปอร์เซ็นต์ที่ **X** สามารถอธิบายการเปลี่ยนแปลงของค่า **Y** มีค่าน้อย
 - R² มีค่าอยู่ระหว่าง **0.3** ถึง **0.7** คือ **X** และ **Y** มีความสัมพันธ์ปานกลาง หรือ แสดงว่าเปอร์เซ็นต์ที่ **X** สามารถอธิบายการเปลี่ยนแปลงของ **Y** ได้ ปานกลาง

สัมประสิทธิ์การตัดสินใจ (Coefficient of Determination : R2)

• จากตัวอย่าง **EX1** จงหาสัมประสิทธิ์การตัดสินใจ พร้อมทั้งอธิบายความหมาย

สัมประสิทธิ์สหสัมพันธ์ (Correlation Coefficient: r)

เส้นตรงระหว่าง 2 ตัวแปร

• สัมประสิทธิ์สหสัมพันธ์ (r) คือ ค่าที่แสดงถึงประเภทความสัมพันธ์เชิง

$$r = \frac{S_{XY}^2}{\sqrt{S_X^2 S_Y^2}}$$

- คุณสมบัติของ **r**
 - ค่า r เป็นบวก แสดงว่า X และ Y มีความ<mark>สัมพันธ์เชิงบวก (</mark>แปรผันตรง) ก้า X เพิ่ม Y ก็เพิ่ม หรือ X ลด Y ก็ลด
 - ค่า r เป็นลบ แสดงว่า X และ Y มีความ<mark>สัมพันธ์เชิงลบ (</mark>แปรผกผัน) ก้า X เพิ่ม Y จะลด หรือ X ลด Y จะเพิ่ม
 - r = 0 หมายถึง X และ Y ไม่มีความสัมพันธ์กัน

สัมประสิทธิ์สหสัมพันธ์ (Correlation Coefficient: r)

• จาก **Ex1** จงหาค่าสัมประสิทธิ์สหสัมพันธ์

Excel

• การวิเคราะห์ความถดถอยอย่างง่าย

Data -> Data Analysis -> Regression

Excel

• **การวิเคราะห์ความถดถอยอย่างง่าย** ตัวแปรดิสระ, ตัวแปรตาม

Excel

การบ้าน

 ในการหาความสัมพันธ์ระหว่างแรงดัน output และแรงดัน input ของวงจรจ่าย แรงดัน (mV) เพื่อนำมาประมาณค่าของการจ่ายแรงดัน output โดยเก็บข้อมูล ตัวอย่างมาดังนี้ จงหาสมการความถดถอย

	1	2	3	4	5	6	7	8	9	10
in	1.2	0.8	1.0	1.3	0.7	0.8	1.0	0.6	0.9	1.1
out	101	92	110	120	90	82	93	75	91	105

- จงหาสมการถดถอย
- จงประมาณค่าแปรปรวนของความคาดเคลื่อน
- จงประมาณค่าแบบช่วงค่า $oldsymbol{eta}_1$ และ $oldsymbol{eta}_0$ ที่ความเชื่อมั่น $oldsymbol{95\%}$
- จงประมาณค่า Y แบบช่วง เมื่อกำหนด X=2.5~mV
- จงประมาณค่าเฉลี่ย Y แบบช่วง เมื่อกำหนด $X=2.5~\mathrm{mV}$
- หาค่า ${\sf R}^2$ และ ${\sf r}$ พร้อมอธิบายความหมาย