Theorem 5.12

If G is a cubic graph, the $\kappa(G) = \lambda(G)$.

Proof:

For a cubic graph G, it follows that $\kappa(G) = \lambda(G) = 0$ if and only if G is disconnected. If $\kappa(G) = 3$, then $\lambda(G) = 3$ by Theorem 5.11. So two cases remain, namely $\kappa(G) = 1$ or $\kappa(G) = 2$. Let U be a minimum vertex-cut of G. Then |U| = 1 or |U| = 2. So G - U is disconnected. Let G_1 and G_2 be two components of G - U. Since G is cubic, for each $u \in U$, at least one of G_1 and G_2 contains exactly one neighbor of G.

Case 1. $\kappa(G) = |U| = 1$. Thus U consists of a cut-vertex u of G. Since some component of G - U contains exactly one neighbor w of u, the edge uw is a bridge of G and so $\lambda(G) = \kappa(G) = 1$.

Case 2. $\kappa(G) = |U| = 2$ Let $U = \{u, v\}$. Assume that each of u and v has exactly one neighbor, say u' and v', respectively, in the same component of G - U. (This is the case that holds if $uv \in E(G)$.). Then $X = \{uu', vv'\}$ is an edge-cut of G and $\lambda(G) = \kappa(G) = 2$.

Hence we may assume that u has one neighbor u' in G_1 and two neighbors in G_2 ; while v has two neighbors in G_1 and one neighbor v' in G_2 . Therefore, $uv \notin E(G)$ and $X = \{uu', vv'\}$ is an edge-cut of G; so $\lambda(G) = \kappa(G) = 2$.