§1.5 meducible Components of an algebraic set.

$$V_1 \cup V_2 = \alpha f_2$$
.
 $V \stackrel{?}{=} V_1 \cup V_2$

An algebraic set VCIA is reducible if V=V, UV2 (V= algebraic sets with V+K) Otherwise V 75 meduable

Zxample: point

Example: An alg set in 1A' is it. if It is a pt or the whole sp. 一般的好知何别断?

mp: V= ir \ ⇒ 1(v) = prime.

Pf: 1° Suppose I(V) + prime, = Fi, Fi & I(V) & Fi, Fi & I(V). Then $\begin{cases} V = (V \cap V(F_1)) \cup (V \cap V(F_2)) \\ V \neq V \cap V(F_n) \end{cases} \Rightarrow V = reducable$

2° Suppose V=VIUV2 (V+V2). Then I(V2) & I(V).

 $\forall F_i \in I(V_i) \setminus I(V)$ $\Rightarrow F_i F_i \in I(V) \Rightarrow I(V) \neq Prime$.

Len: R = noetherian ring.

9 = nonempty collection of ideals in R, Then

Y has a maximal member

Only need to show $y_n = \phi$ for some n. Suppose not.

$$I := \bigcup_{n=0}^{\infty} 1_n \triangleleft R$$

$$R = noeth. \Rightarrow 1 = fg. \quad I = (F_1, \dots, F_r).$$

$$\Rightarrow \exists n >> s. *. \quad F_1, \dots, F_r \in I_n$$

$$\Rightarrow 1 = I_n \Rightarrow 1_{n+1} = I_n \cdot y.$$

Cor: any collection of algebraic sets in 1A^(k) has a minimal member

 $\text{Pf} \left\{ V_{\alpha} \right\} \rightarrow \left\{ I(V_{\alpha}) \land k[x_{1}, ..., x_{n}] \right\}_{R}$

Thm: $V \subseteq A^n(k)$ algebraic set. Then $\exists !$ irr. algebraic sets V_1, \dots, V_m s.t.

$$V = V_1 \cup \cdots \cup V_m$$

and $V_i \neq V_j$ for all $\bar{\nu} \neq \hat{\jmath}$. $V_{\bar{\nu}}$'s are called the treducible amponents of V.

Pf: Bristance.

 $\mathcal{G} := \mathcal{F} V \subset IA^n(k) \mid alg. Sets not union of f. in. ones \}$ WNTS: $\mathcal{G} = \phi$. Suppose NOt. Let $V \models a$ minimal one.

$$V \neq inr \Rightarrow V = V_1 \cup V_2 \qquad \left(V_1 \neq V \neq V_2\right)$$

$$\Rightarrow V_1, V_2 \notin \mathcal{G} \Rightarrow \begin{cases} V_1 = \bigcup V_{i_1} \\ V_2 = \bigcup V_{i_2} \end{cases}$$

$$\Rightarrow V = \left(\bigcup V_{i_1}\right) \cup \left(\bigcup V_{i_2}\right) \qquad \downarrow$$

$$\forall hrow away \quad V_i \quad s.e. \quad V_i \subset V_j \quad (i \neq j)$$

uniqueles.
$$V_1 \cup \cdots \cup V_m = W_1 \cup \cdots \cup W_n$$

 $\Rightarrow \forall i, \ V_i = (W_1 \cap V_i) \cup \cdots \cup (W_n \cap V_i)$
 $\Rightarrow \exists \bar{j} \quad s.*. \ V_i = W_{\bar{j}} \cap V_i \quad (i.e. \ V_{\bar{i}} \subseteq W_{\bar{j}})$
Conversely, $\exists \bar{i} \mid s.*. \ W_{\bar{j}} \subseteq V_{\bar{i}} \mid s.*.$
 $\Rightarrow \ i = \bar{i} \mid s. \ W_{\bar{j}} = V_{\bar{i}} \mid s.$

Zxampla:

Zeample:
$$V(y^2 - \chi(x^2-1)) \subseteq \mathring{A}(\mathbb{R})$$

$$V(y^2-\chi(x^2-1))\subseteq \mathring{A}(C)$$

