Economic Growth Analysis and Prediction for G7 and BRICS Nations Prepared by Saurav Sahu | Analyst

1. Introduction

In an interconnected global economy, understanding macroeconomic trends is pivotal for policymakers and businesses. This project analyzes historical economic data (1972–2022) and forecasts GDP growth for **G7** (Canada, France, Germany, Italy, Japan, UK, USA) and **BRICS** (Brazil, Russia, India, China, South Africa) nations through **2023–2030**. By integrating exploratory analysis, machine learning, and interactive visualization, the study deciphers growth drivers and offers actionable insights for strategic decision-making.

2. Dataset Overview

- **Source**: World Bank. [For Convenience to download the dataset click here]
- **Scope**: 12 countries, 15 parameters, including GDP growth, FDI, inflation, population trends, and unemployment.
- Preprocessing:
 - Missing Values: Converted non-numeric entries (e.g., "-") to NaN, imputed row-wise means, and assigned 0.00 where data was absent.
 - Outliers: Removed using IQR (e.g., Japan's 33% gross savings in 1996–1998; Russia's 99% current account balance in 2004).
 - o **Reshaping**: Transformed from wide to long format for time-series analysis.

3. Methodology

3.1 Exploratory Data Analysis (EDA)

- Correlation Analysis:
 - **G7**: GDP growth correlated strongly with GDP per capita growth (r = 1) and gross savings (r = 0.52).
 - o **BRICS**: GDP growth linked to FDI inflows (r = 0.42) and imports of goods/services (r = 0.24).
- Group Trends: BRICS showed higher volatility but stronger growth potential compared to G7.

3.2 Machine Learning Pipeline

- Feature Engineering:
 - o Scaled features (e.g., Year) and target variable (GDP growth) using StandardScaler.
 - Split data into 80% training and 20% testing sets.
- Model Selection:

- **G7**: **Support Vector Regression (SVR)** outperformed others (MSE = 0.65) with hyperparameters C=100, epsilon=0.1.
- BRICS: Linear Regression achieved the lowest error (MSE = 0.72), reflecting simpler economic relationships.
- Validation: 5-fold cross-validation ensured robustness.

3.3 Time-Series Forecasting

• Predictions (2023-2030):

Year G7 (%) BRICS (%)

2023 4.79 6.57

2024 4.77 6.60

2025 4.74 6.63

2026 4.71 6.66

2027 4.69 6.70

2028 4.67 6.73

2029 4.65 6.76

2030 4.65 6.79

• Trend Drivers:

- o **G7 Decline**: Aging populations, market saturation.
- o **BRICS Growth**: FDI inflows, trade openness.

4. Interactive Dashboard

Built using **Streamlit** and **Plotly**, the dashboard enables:

- 1. **Predicted Trends**: Interactive line charts comparing G7 and BRICS forecasts.
- 2. **Comparative Analysis**: Parameter-specific trends (e.g., inflation) across customizable year ranges.
- 3. **Country Benchmarking**: Side-by-side comparison of metrics like FDI or unemployment. *Example Insight*: BRICS' GDP growth is projected to surpass G7 by 2030.

5. Key Insights

1. G7 Challenges:

- o Aging demographics and high GDP per capita correlate with slower growth.
- Recommendation: Boost innovation and savings rates to counter stagnation.

2. BRICS Opportunities:

- o FDI and trade openness are critical growth drivers.
- o **Recommendation**: Stabilize fiscal policies to sustain momentum.
- 3. **Global Shift**: BRICS' rising influence signals a rebalancing of economic power.

6. Limitations & Future Work

• Limitations:

- o Assumes no major geopolitical disruptions (e.g., wars, pandemics).
- Relies on historical trends, omitting external factors like climate change.

• Future Directions:

- o Incorporate climate data, geopolitical indices, or sector-specific metrics.
- o Expand country coverage to include emerging economies like Indonesia or Mexico.

7. Conclusion

This project underscores the transformative potential of data science in economics. By systematically preprocessing data, training tailored models, and visualizing results, it provides a replicable framework for forecasting and policy analysis. The interactive dashboard democratizes access to insights, empowering stakeholders to navigate global economic shifts proactively.

Tools Used: Python (Pandas, Scikit-learn, Matplotlib), Streamlit.

Dashboard: [Streamlit Link]
Code: [GitHub Repository Link]