18.022 Recitation Handout 29 September 2014

1. Evaluate the limit $\lim_{(x,y,z)\to(0,0,0)}\frac{2xy^2+xy}{x^2+y^2}$, or explain why the limit fails to exist. Recall that the limit exists and equals L if for all $\epsilon>0$ there exists $\delta>0$ which may depend on ϵ such that whenever $0<\|(x,y,z)\|<\delta$, the value of $\frac{2xy^2+xy}{x^2+y^2}$ is within ϵ of L. If the limit exists, find some δ that satisfies this definition. If the limit does not exist, find a value of ϵ for which no value of δ and L satisfy the definition.

2. Find $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, and $\frac{\partial f}{\partial z}$ for $f(x, y, z) = \frac{1}{xy} + \log(xyz) + e^x \sin(yz)$.

3. Define $f(x) = (x^2 - 4)/(x - 2)$ when $x \ne 2$ and $f(2) = c_1$. Determine the value of the constant c_1 for which f is continuous. Do the same for

$$g(x,y) = \begin{cases} \frac{3|x|^3 + 3|y|^3 - x^{10} \arctan(y)}{|x|^3 + |y|^3} & \text{if } (x,y) \neq (0,0) \\ c_2 & \text{if } (x,y) = (0,0). \end{cases}$$

4. Suppose that f, g, and h are real-valued functions on \mathbb{R}^n , and suppose that $f(\mathbf{x}) = g(\mathbf{x})h(\mathbf{x})$. Prove that if g is bounded and $\lim_{\mathbf{x}\to\mathbf{0}}h(\mathbf{x})=0$, then $\lim_{\mathbf{x}\to\mathbf{0}}f(\mathbf{x})=0$.