Comparison of different learning rates in planning with TD(0)

Sumana Basu and Charles C Onu

The wall-following domain

- Robot starts from one of the bottom three states
- Works its way up one row at a time
- Trial terminates if
 - robot runs into the wall
 - wanders off into the "open space"
 - successfully reaches the exit

	Probability of Movement		
Distance	Forward	Directly	Forward
from wall	& Left	Forward	& Right
1	1/6	1/3	1/2
2	1/4	1/2	1/4
3	1/2	1/3	1/6

Goal

- Apply TD(0) to evaluate the given policy
- Compare learning curves for different values of learning rate (α)

Procedure

- 1. Under the given policy generate 50,000 episodes
- 2. Estimate the "true" value function using TD(0) to learn from all 50,000 episodes (should converge to "true" in the limit)
- 3. Given a finite number of episodes (4,000), how long does it take TD(0) for $\alpha = \{0.01, 0.1, 0.5\}$ to find the true value function of the policy?

TD(0)

Update V(S_t) towards a bootstrap estimate G_t:

• $V(S_t) \leftarrow V(S_t) + \alpha(G_t - V(S_t))$

Where G_t is:

• $V(S_t) \leftarrow V(S_t) + \alpha(R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$

Results

