IMO 2004 – tehtävät ja ratkaisut

1. Olkoon ABC teräväkulmainen kolmio ja $AB \neq AC$. Ympyrä, jonka halkaisija on BC, leikkaa sivun AB pisteessä M ja sivun AC pisteessä N. Olkoon O sivun BC keskipiste. Kulmien BAC ja MON puolittajat leikkaavat toisensa pisteessä R. Todista, että kolmioiden BMR ja CNR ympäri piirretyllä ympyröillä on yhteinen piste, joka on sivulla BC.

Ratkaisu. Koska BCNM on jännenelikulmio,

$$\angle MNA = 180^{\circ} - \angle CNM = \angle ABC.$$

Samoin $\angle AMN = \angle ACB$. Oletuksesta seuraa, että $\angle ABC \neq \angle ACB$, joten $\angle AMN \neq \angle ANM$. Kolmio OMN on tasakylkinen, joten kulman $\angle MON$ puolittaja on myös sivun MN keskinormaali. Siis MR = NR. Kolmioissa AMR ja ANR on kaksi paria yhtä pitkiä sivuja ja yksi pari yhtä suuria kulmia. Koska kulmat $\angle AMN$ ja $\angle ANM$ ovat eri suuria,

mutta $\angle NMR = \angle MNR$, on $\angle AMR \neq \angle ANR$. Yhtenevyyslauseen ssk perusteella on siis $\angle AMR = 180^{\circ} - \angle ANR$. Tämä merkitsee, että AMRN on jännenelikulmio. Tästä puolestaan seuraa, että $\angle MRA = \angle MNA$ ja $\angle ARN = \angle AMN$. Leikatkoon AR sivun BC pisteessä L. Kolmiosta ABL saadaan $\angle ALC = \angle ABC + \angle BAL$ ja kolmiosta AMR samoin $\angle RMB = \angle MRA + \angle RAM$. Edellä sanotun perusteella kulmat $\angle ALC$ ja $\angle RMB$ ovat samat. Tämä merkitsee, että MBLR on jännenelikulmio. Aivan samoin todistetaan, että NRLC on jännenelikulmio. Sivun BC piste L on siis molempien kolmioiden MBR ja NRC yhteinen piste.

2. Määritä kaikki reaalikertoimiset polynomit P(x), jotka toteuttavat yhtälön

$$P(a-b) + P(b-c) + P(c-a) = 2P(a+b+c)$$

kaikilla ehdon ab + bc + ca = 0 toteuttavilla reaaliluvuilla a, b ja c.

Ratkaisu. Osoitetaan, että kysytyt polynomit ovat $P(x) = a_4x^4 + a_2x^2$, missä a_4 ja a_2 ovat mielivaltaisia reaalilukuja. Koska a = b = c = 0 toteuttaa tehtävässä annetun ehdon, on 3P(0) = 2P(0) eli P(0) = 0. Edelleen kaikilla x luvut a = x, b = c = 0 toteuttavat annetun ehdon, joten P(x) + P(-x) = 2P(x) = 0. Siis P(x) = P(-x). Polynomissa, joka on samalla parillinen funktio, kaikkien x:n parittomien potenssien kertoimet ovat nollia. Tehtävän ehdon toteuttavia lukukolmikkoja on äärettömän paljon: jos (a, b, c) toteuttaa yhtälön, myös (ta, tb, tc) toteuttaa sen kaikilla $t \in \mathbb{R}$. Esimerkiksi $(1, 2, -\frac{2}{3})$ toteuttaa ehdon ja siten kaikki lukukolmikot (3t, 6t, -2t). Siis P(-3t) + P(8t) + P(-5t) = 2P(7t) kaikilla $t \in R$. Kaksi polynomia on identtisesti samoja vain, jos niiden kaikki kertoimet ovat samoja. Jos siis $P(x) = a_2x^2 + a_4x^4 + \ldots$, niin $a_{2k}(3^{2k} + 8^{2k} + 5^{2k}) = 2 \cdot 7^{2k}a_{2k}$. Nyt $3^2 + 8^2 + 5^2 = 98 = 2 \cdot 7^2$ ja $3^4 + 8^4 + 5^4 = 4802 = 2 \cdot 7^4$. Mutta $8^6 - 2 \cdot 7^6 = 2(2^{17} - 49^3) > 2(128 \cdot 7^2)$

 $1000-125000)>0, \ \mathrm{ja} \ \mathrm{kun} \ k\geq 8, \ \mathrm{min} \ 8^k-2\cdot 7^k=(7+1)^k-2\cdot 7^k>7^k+k\cdot 7^{k-1}-2\cdot 7^k>0.$ Ainoat polynomit, jotka voivat toteuttaa ehdon, ovat polynomit $P(x)=a_2x^2+a_4x^4. \ \mathrm{On} \ \mathrm{viel} \ \mathrm{\ddot{a}} \ \mathrm{soitettava}, \ \mathrm{ett\ddot{a}} \ \mathrm{kaikki} \ \mathrm{t\ddot{a}llaiset} \ \mathrm{polynomit} \ \mathrm{toteuttavat} \ \mathrm{teht\ddot{a}} \ \mathrm{\ddot{a}} \ \mathrm{hdot}. \ \mathrm{Jos} \ P_1(x) \ \mathrm{ja} \ P_2(x) \ \mathrm{ovat} \ \mathrm{my\ddot{o}} \ \mathrm{teht\ddot{a}} \ \mathrm{v\ddot{a}} \ \mathrm{hdot} \ \mathrm{\ddot{a}} \ \mathrm{\ddot{a}}$

3. Olkoon koukku oheisen kuvion mukaisesti kuudesta yksikköneliöstä muodostuva kuvio tai mikä hyvänsä tästä kuviosta kierroilla tai peilauksilla muodostuva kuvio. Määritä kaikki $m \times n$ -suorakaiteet, jotka voidaan peittää koukuilla niin, että suorakaide peittyy aukottomasti eivätkä koukut peitä toisiaan, mutta mikään koukku ei peitä suorakaiteen ulkopuolista aluetta.

Ratkaisu. Osoitetaan, että peitto on mahdollinen jos ja vain jos luvuista m ja n yksi on jaollinen kolmella ja yksi neljällä eikä kumpikaan luvuista m, n ole 1, 2 tai 5. Oletetaan ensin, että jokin $m \times n$ -suorakaide on peitetty koukuilla. Jokaista koukkua A kohden on yksi ja vain yksi koukku B, joka peittää koukun A sisään jäävän "poukaman". A ja B voivat yhdistyä vain kahdella eri tavalla, joko 3×4 -suorakaiteeksi tai ei-konveksiksi kahdeksankulmioksi, jonka sivut ovat 3, 2, 1, 2, 3, 2, 1, 2. Kummassakin kuviossa on 12 neliötä, joten peitto voi onnistua vain, jos mn on jaollinen 12:lla. Osoitetaan, että joko mtai n on jaollinen 4:llä. Ellei näin ole, sekä m että n ovat parillisia. Numeroidaan rivit ja sarakkeet ja kirjoitetaan luku 1 jokaiseen sellaiseen ruutuun, jonka rivi- ja sarakenumeroista tasan toinen on neljällä jaollinen ja 2 jokaiseen sellaiseen ruutuun, jonka sekä rivi- että sarakenumero on neljällä jaollinen. Koska rivejä ja sarakkeita on parillinen määrä, koko ruudukkoon kirjoitettujen lukujen summa on parillinen. Toisaalta 3×4 -suorakaiteeseen kirjoitettujen lukujen summa voi olla vain 3 tai 7 ja edellä kuvattuun kahdeksankulmaiseen koukkuyhdistelmään kirjoitettujen lukujen summa voi olla vain 5 tai 7. Tästä seuraa, että koukkupareja on oltava parillinen määrä, josta puolestaan seuraa, että mn on jaollinen 24:llä. Tämä on ristiriidassa sen kanssa, että kumpikaan luvuista m ja n ei olisi jaollinen neljällä. On selvää, että kumpikaan luvuista m ja n ei voi olla 1 tai 2. Myöskään 5 ei tule kyseeseen, kuten helposti nähdään, jos yritetään sijoittaa koukkuja viiden neliön pituiselle sivulle.

On vielä osoitettava, että esitetyt välttämättömät ehdot ovat riittäviä. Jos $3 \mid m$ ja $4 \mid n$ tai $4 \mid m$ ja $3 \mid n$, asia on triviaali: 3×4 -suorakaiteet riittävät. Jos $12 \mid m$ ja $n \notin \{1, 2, 5\}$, $3 \mid n$, $4 \mid n$, niin n = 3a + 4b joillain positiivisilla kokonaisluvuilla a ja b (riittää, kun havaitaan, että 7, 11, 13, 14, 17 ja 19 ovat tätä muotoa). $m \times n$ suorakaide voidaan jakaa $m \times 3a$ - ja $m \times 4b$ -suorakaiteiksi, jotka voidaan peittää 3×4 -suorakaiteilla.

4. Olkoon $n \geq 3$ kokonaisluku ja olkoot t_1, t_2, \ldots, t_n positiivisia reaalilukuja, joille on voimassa

$$n^{2} + 1 > (t_{1} + t_{2} + \dots + t_{n}) \left(\frac{1}{t_{1}} + \frac{1}{t_{2}} + \dots + \frac{1}{t_{n}} \right).$$

Osoita, että t_i, t_j, t_k ovat kaikilla $i, j, k, 1 \le i < j < k \le n$, kolmion sivujen pituuksia.

Ratkaisu. Symmetrian perusteella riittää, kun osoitetaan, että $t_1 < t_2 + t_3$. On voimassa

$$\sum_{i=1}^{n} t_i \sum_{i=1}^{n} t_i^{-1} = n + t_1 \left(\frac{1}{t_2} + \frac{1}{t_3} \right) + \frac{1}{t_1} (t_2 + t_3) + \sum_{\substack{1 \le i < j \le n \\ (i,j) \ne (1,2), (1,3)}} \left(\frac{t_i}{t_j} + \frac{t_j}{t_i} \right).$$

Aritmeettis-geometrisen epäyhtälön perusteella

$$\frac{1}{t_2} + \frac{1}{t_3} \ge \frac{2}{\sqrt{t_2 t_3}}, \quad t_2 + t_3 \ge 2\sqrt{t_2 t_3} \quad \text{ja} \quad \frac{t_i}{t_j} + \frac{t_j}{t_i} \ge 2.$$

Oletuksen perusteella on siis, kun merkitään $a = t_1/\sqrt{t_2t_3}$,

$$n^{2} + 1 > n + \frac{2t_{1}}{\sqrt{t_{2}t_{3}}} + \frac{2\sqrt{t_{2}t_{3}}}{t_{1}} + 2\left(\binom{n}{2} - 2\right) = 2a + \frac{2}{a} + n^{2} - 4.$$

atoteuttaa toisen asteen epäyhtälön 2a+2/a-5<0,jonka ratkaisujoukko on $(1/2,\,2).$ Siis $t_1<2\sqrt{t_2t_3}\leq t_2+t_3.$

5. Kuperan nelikulmion ABCD lävistäjä BD ei ole kulman ABC eikä kulman CDA puolittaja. Piste P on nelikulmion ABCD sisällä ja toteuttaa ehdot

$$\angle PBC = \angle DBA$$
 ja $\angle PDC = \angle BDA$.

Todista, että ABCD on jännenelikulmio, jos ja vain jos AP = CP.

Ratkaisu. Voidaan olettaa, että P on kolmiossa BCD ja kolmiossa ABC. Oletetaan ensin, että ABCD on jännenelikulmio. Leikatkoon BP AC:n pisteessä K ja DP AC:n pisteessä L. Tehtävän oletuksesta ja kehäkulmalauseen seurauksista $\angle ABD = \angle ACD$, $\angle BCA = \angle BDA$ seuraa, että kolmiot ABD, KBC ja LCD ovat yhdenmuotoiset. Tästä seuraa $\angle PLK = \angle PKL$, joten PK = PL. Myös kolmiot ADL ja BDC ovat yhdenmuotoisia. Siis

$$\frac{AL}{BC} = \frac{AD}{BD} = \frac{KC}{BC}.$$

Siis AL = KC. Mutta tästä seuraa, että kolmiot ALP ja CKP ovat yhteneviä (sks). Siis AP = CP.

Oletetaan sitten, että AP = PC. Oletetaan, että kolmion BCP ympäri piirretty ympyrä leikkaa suoran DC myös pisteessä X ja suoran PD myös pisteessä Y. Silloin $\angle PXC = \angle PBC = \angle ABP$. Tästä seuraa, että kolmioit ABD ja PXD ovat yhdenmuotoisia. Siis

$$\frac{AD}{PD} = \frac{BD}{DX}.$$

Tästä seuraa, että kolmiot PDA ja XDB ovat yhdenmuotoisia (sks), joten

$$\frac{BX}{AP} = \frac{BD}{AD} = \frac{XD}{PD}. (1)$$

Koska PYXC on jännenelikulmio, $\angle PYX = \angle PCD$. Kolmiot DPC ja DXY ovat siis yhdenmuotoisia. Siis

$$\frac{YX}{CP} = \frac{XD}{PD}. (2)$$

Koska AP = PC, yhtälöistä (1) ja (2) seuraa BX = YX. Näin ollen $\angle DCB = \angle DCP + \angle PCB = \angle PYX + \angle PYB = \angle XYB = \angle XBY = \angle XPY = \angle PDX + \angle PXD = \angle ADB + \angle ABD = 180^{\circ} - \angle DAB$. Edellisen yhtälöketjun ensimmäisen ja viimeisen kulman yhtäsuuruus osoittaa, että ABCD on jännenelikulmio.

6. Positiivista kokonaislukua kutsutaan *vuorottelevaksi*, jos sen kymmenjärjestelmäesityksessä jokaisesta kahdesta peräkkäisestä numerosta toinen on parillinen ja toinen pariton. Määritä kaikki positiiviset kokonaisluvut, joilla on vuorotteleva monikerta.

Ratkaisu. Jos luku päättyy nollaan ja sen toiseksi viimeinen numero on parillinen, luvulla ei ole vuorottelevaa monikertaa. Osoitetaan, että kaikilla muilla luvuilla, siis luvuilla, jotka eivät ole jaollisia 20:llä, sellainen on. Merkitään numeroin $a_k, a_{k-1}, \ldots, a_1$ kirjoitettavaa lukua $\overline{a_k a_{k+1} \ldots a_1}$. Merkintä $u^k \| a$ tarkoittaa, että $u^k \| a$, mutta $u^{k+1} \| a$. Osoitetaan ensin, että kaikilla luvun 2 potensseilla on vuorotteleva monikerta, jonka numeroiden lukumäärä on parillinen. Tähän riittää, jos voidaan konstruoida päättymätön jono väliin [0, 9] kuuluvia kokonaislukuja a_n niin, että $a_n \equiv n+1$ mod 2, $2^{2n-1} \| \overline{a_{2n-1}a_{2n-2} \ldots a_1}$ ja $2^{2n+1} \| \overline{a_{2n}a_{2n-1} \ldots a_1}$ kaikilla n. Aloitetaan konstruktio luvuista $a_1 = 2$ ja $a_2 = 7$. Oletetaan, että jono on jo konstruoitu lukuun a_{2n} asti. Asetetaan $a_{2n+1} = 4$. Koska $2^{2n+2} \| 4 \cdot 10^{2n}$ ja $2^{2n+1} \| \overline{a_{2n}a_{2n-1} \ldots a_1}$, niin $2^{2n+1} \| \overline{a_{2n+1}a_{2n} \ldots a_1}$. Merkitään $\overline{a_{2n+1}a_{2n} \ldots a_1} = 2^{2n+1}A$, missä A on pariton luku. Luvun a_{2n+2} on nyt oltava pariton ja on oltava $2^{2n+3} \| \overline{a_{2n+2}a_{2n+1} \ldots a_1} = a_{2n+2} \cdot 10^{2n+1} + \overline{a_{2n+1}a_{2n} \ldots a_1} = 2^{2n+1}(a_{2n+2}5^{2n+1} + A)$. Tämä toteutuu, jos $5a_{2n+2} + A \equiv 4$ mod 8. Lineaarisella kongruenssiyhtälöllä on ratkaisu a_{2n+2} ; ratkaisu voidaan aina valita joukosta $\{0, 1, 2, \ldots, 7\}$. Konstruktiota voidaan siis jatkaa.

Osoitetaan sitten, että jokaisella muotoa $2 \cdot 5^n$ olevalla luvulla on vuorotteleva monikerta, jossa on parillinen määrä numeroita. Tähän riittää, että konstruoidaan päättymätön jono väliin [0, 9] kuuluvia kokonaislukuja b_n , joille $b_n \equiv n+1 \mod 2$ ja $2 \cdot 5^n | \overline{b_n b_{n-1} \dots b_1}$ kaikilla n. Aloitetaan asettamalla $b_1 = 0$, $b_2 = 5$. Oletetaan, että luvut $b_1, b_2, \dots b_n$ on jo määritelty ja olkoon $\overline{b_n b_{n-1} \dots b_1} = 5^q B$, missä B ei ole jaollinen viidellä ja $q \geq n$. Luvun b_{n+1} on toteutettava $b_{n+1} \equiv n+2 \mod 2$, ja 5^{n+1} :n on oltava luvun $\overline{b_{n+1} b_n \dots b_1} = 1$

 $b_{n+1}10^n + \overline{b_n b_{n-1} \dots b_1} = 5^n (b_{n+1}2^n + 5^{q-n}B)$ tekijä. Luvun $b_n 2^n + 5^{q-n}B$ on oltava viidellä jaollinen. Kiinalaisen jäännöslauseen nojalla kongruenssiparilla

$$\begin{cases} x \equiv 2^n (n+1) \bmod 2^{n+1} \\ x \equiv -5^{q-n} B \bmod 5 \end{cases}$$

on ratkaisu x. Lisäksi $x = 2^n y$, missä y on kokonaisluku. Kongruenssiparilla

$$\begin{cases} y \equiv n + 1 \mod 2 \\ 2^n y + 5^{q-n} B \equiv 0 \mod 5 \end{cases}$$

on siis ratkaisu y. Ratkaisu voidaan aina valita joukosta $\{0, 1, \ldots, 9\}$.

Siirrytään sitten yleisen luvun $n=2^{\alpha}5^{\beta}k$, missä k ei ole jaollinen kahdella eikä viidellä. Jos 20 /n, niin $2^{\alpha}5^{\beta}$ on joko kahden tai viiden potenssi tai muotoa $2 \cdot 5^{\beta}$. Edellä sanotun perusteella $2^{\alpha}5^{\beta}$:lla on kaikissa näissä tapauksissa vuorotteleva monikerta M, jonka numeroiden määrä on parillinen, 2m. Kaikilla p>1 luku C_pM , missä $C_p=1+10^{2p}+10^{4p}+\cdots+10^{(p-1)2m}$ on $2^{\alpha}5^{\beta}$:n vuorotteleva monikerta. Luvuista C_p jotkin kaksi, esimerkiksi C_{p_1} ja C_{p_2} , ovat laatikkoperiaatteen perusteella kongruentteja modulo k. Mutta $C_{p_2}-C_{p_1}=C_{p_2-p_1}10^{p_12m}$, joten $k|C_{p_2-p_1}$. Luku $C_{p_2-p_1}M$ on siten luvun $n=2^{\alpha}5^{\beta}k$ vuorotteleva monikerta.