

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/DK05/000244

International filing date: 08 April 2005 (08.04.2005)

Document type: Certified copy of priority document

Document details: Country/Office: DK
Number: PA 2004 01153
Filing date: 27 July 2004 (27.07.2004)

Date of receipt at the International Bureau: 04 May 2005 (04.05.2005)

Remark: Priority document submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b)

World Intellectual Property Organization (WIPO) - Geneva, Switzerland
Organisation Mondiale de la Propriété Intellectuelle (OMPI) - Genève, Suisse

Kongeriget Danmark

Patent application No.: PA 2004 01153

Date of filing: 27 July 2004

Applicant:
(Name and address) BioImage A/S
Mørkhøj Bygade 28
DK-2860 Søborg
Denmark

Title: Diphenyl ox-indol-2-on compounds and their use in the treatment of cancer

IPC: -

This is to certify that the attached documents are exact copies of the above mentioned patent application as originally filed.

Patent- og Varemærkestyrelsen
Økonomi- og Erhvervsministeriet

28 April 2005

Pia Høybye-Olsen

PATENT- OG VAREMÆRKESTYRELSEN

15797DK02

- 1 -

DIPHENYL OX-INDOL-2-ON COMPOUNDS AND THEIR USE IN THE TREATMENT OF CANCER**FIELD OF THE INVENTION**

The present invention relates to substituted 3,3-diphenyl-1,3-dihydro-indol-2-one compounds, and the use of such compounds for the preparation of a medicament for the treatment of cancer in a mammal.

BACKGROUND OF THE INVENTION

US 1,624,675 describes O-O-diacyl derivatives of diphenolisatine and that these compounds possess laxative properties.

While inhibition of protein synthesis inhibits cell proliferation, highly proliferative cancer cells 10 may be more sensitive than normal cells to protein synthesis inhibition because many oncogenes and growth regulatory proteins required for effective cell proliferation are encoded by inefficiently translated mRNAs, and are dependent on eukaryotic translation initiation factors (Aktas et al (1998) Proc Natl Acad Sci 95, 8280 and references therein).

15 Protein synthesis is regulated in response to cell stress, which can be induced by environmental or physiological challenges (such as hypoxia, amino acid or nutrient deprivation), intracellular calcium load and protein glycosylation inhibition. For example, cell stressors such as clotrimazole, 3,3-diphenyloxindole, thapsigargin, tunicamycin and arsenite (Aktas et al (1998) Proc Natl Acad Sci 95, 8280; Brewer et al (1999) Proc Natl Acad Sci 96, 8505-8510; Harding et al (2000) Molecular Cell 5, 897-904; Natarajan et al (2004) J Med Chem 47, 1882-1885) act as translation initiation inhibitors, reducing both protein synthesis and cell proliferation.

20 The possibility that translation initiation inhibitors may have potential as anti-cancer drugs has been described previously (Aktas et al (1998) Proc Natl Acad Sci 95, Natarajan et al (2004) J.Med.Chem 47, 1882-1885). The Natarajan paper further disclose 3,3-diaryl-1,3-dihydroindol-2-ones which potentially inhibit translation initiation.

25 Protein synthesis is also regulated by the mTOR pathway, providing another link to a nutrient and amino acid status (Harris & Lawrence (2003) ScienceSTKE (212) re15; Nave et al (1999) Biochem J 344, 427; Beaunet et al (2003) Biochem J 372, 555-566; Inoki et al (2003) Cell 115, 577-590). This pathway is also linked to regulation of the translation initiation complex

15797DK02

- 2 -

(Cherkasova & Hinnebusch (2003) Genes & Dev 17, 859-872; Kubota et al (2003) J Biol Chem 278, 20457). Inhibition of mTOR signalling inhibits the proliferation of cancer cell lines (Noh et al (2004) Clinical Cancer Research 10, 1013-1023; Yu et al (2001) Endocrine-Related Cancer 8, 249-258), and has been proposed as a target for cancer therapy (Huang & 5 Houghton (2003) Curr Opin Pharmacol 3, 371-377).

However, there is still a need for compounds capable of inhibiting the uncontrolled growth of cancer cells.

SUMMARY OF THE INVENTION

Thus, one aspect of the present invention relates to the use of a compound of the general 10 formula (I) as defined herein for preparation of a medicament for the treatment of cancer in a mammal, cf. claim 1.

Another aspect of the present invention relates to a compound as defined herein for use as a medicament, with the proviso that the compound is not one selected from 3,3-bis-(4-hydroxy-phenyl)-1,3-dihydro-indol-2-one and acetic acid 4-[3-(4-acetoxy-phenyl)-2-oxo-2,3-dihydro-1H-indol-3-yl]-phenyl ester. 15

A further aspect of the present invention relates to a novel compound of the general formula (I) or (II), cf. claims 55 and 56.

A still further aspect of the present invention relates to a pharmaceutical composition, cf. claim 57.

20 A even further aspect of the present invention relates to a method of treating a mammal suffering from or being susceptible to cancer, cf. claim 64.

BRIEF DESCRIPTION OF THE FIGURES

Figure 1: shows results from the cell proliferation studies using the compounds described in the Examples section.

25 Figure 2: shows results of the protein synthesis experiments.

Figure 3: illustrates Translational Control. The figure of the Cell Signaling Technology catalogue 2003-2004.

15797DK02

- 3 -

Figure 4: Western Blots - MDA468 Cells (24 hour compound incubation).

Figure 5: Western Blots - Comparison of MDA468 & MDA 231 cells (48 hours Incubation).

Figure 6: results of the Xenograft experiments (Example 4).

Figure 7: Illustrates the compound plate map relating to Example 5.

5 Figure 8: shows results from the cell proliferation of breast cancer cell lines treated with BIC0043901 in 1% FBS (Example 5).

Figure 9: shows results from the cell proliferation of breast cancer cell lines treated with BIC0043901 in 10% FBS (Example 5).

10 Figure 10: shows results from the cell proliferation of prostate cancer cell lines treated with BIC0043901 in 1% FBS (Example 5).

Figure 11: shows results from the cell proliferation of prostate cancer cell lines treated with BIC0043901 in 10% FBS (Example 5).

DETAILED DESCRIPTION OF THE INVENTION

Compounds for the treatment of cancer in a mammal

15 One aspect of the present invention relates to particular compounds for the preparation of a medicament for the treatment of cancer in a mammal.

The term cancer is typically describing cell growth not under strict control. In one embodiment of the invention, treatment of cancers in which inhibition of protein synthesis and/or inhibition of activation of the mTOR pathway is an effective method for reducing cell growth. Examples of such cancers are breast cancer, renal cancer, multiple myeloma, leucemia, glia blastoma, rhabdomyosarcoma, prostate, soft tissue sarcoma, colorectal sarcoma, gastric carcinoma, head and neck squamous cell carcinoma, uterine, cervical, melanoma, lymphoma, and pancreatic cancer.

The useful compounds have the general formula (I), namely

15797DK02

- 4 -

wherein

V^1 , V^2 , V^3 , and V^4 independently are selected from a carbon atom, a non-quaternary nitrogen atom, an oxygen atom, and a sulfur atom, and where V^4 further may be selected from a

5. bond, so that $-V^1-V^2-V^3-V^4-$ together with the atoms to which V^1 and V^4 are attached form an aromatic or heteroaromatic ring;

R^1 , R^2 , R^3 , and R^4 , when attached to a carbon atom, independently are selected from hydrogen, optionally substituted C_{1-6} -alkyl, optionally substituted C_{2-6} -alkenyl, hydroxy, optionally substituted C_{1-6} -alkoxy, optionally substituted C_{2-6} -alkenyloxy, carboxy, optionally 10 substituted C_{1-6} -alkoxycarbonyl, optionally substituted C_{1-6} -alkylcarbonyl, optionally substituted C_{1-6} -alkylcarbonyloxy, formyl, amino, mono- and di(C_{1-6} -alkyl)amino, carbamoyl, mono- and di(C_{1-6} -alkyl)aminocarbonyl, C_{1-6} -alkylcarbonylamino, C_{1-6} -alkylsulphonylamino, cyano, carbamido, mono- and di(C_{1-6} -alkyl)aminocarbonylamino, C_{1-6} -alkanoyloxy, C_{1-6} -alkylsulphonyl, C_{1-6} -alkylsulphinyl, aminosulfonyl, mono- and di(C_{1-6} -alkyl)aminosulfonyl, 15 nitro, optionally substituted C_{1-6} -alkylthio, aryl, aryloxy, arylcarbonyl, arylamino, heterocyclyl, heterocyclloxy, heterocycllamino, heterocyclcarbonyl, heteroaryl, heteroaryloxy, heteroarylamino, heteroarylcarbonyl, and halogen, where any C_{1-6} -alkyl as an amino substituent is optionally substituted with hydroxy, C_{1-6} -alkoxy, amino, mono- and di(C_{1-6} -alkyl)amino, carboxy, C_{1-6} -alkylcarbonylamino, C_{1-6} -alkylaminocarbonyl, or halogen(s), and 20 wherein any aryl, heterocyclyl and heteroaryl may be optionally substituted;

R^1 , R^2 , R^3 , and R^4 , when attached to a nitrogen atom, independently are selected from hydrogen, optionally substituted C_{1-6} -alkyl, hydroxy, optionally substituted C_{1-6} -alkoxy, optionally substituted C_{1-6} -alkoxycarbonyl, optionally substituted C_{1-6} -alkylcarbonyl, formyl, mono- and di(C_{1-6} -alkyl)aminocarbonyl, amino, C_{1-6} -alkylcarbonylamino, mono- and di(C_{1-6} -alkyl)amino, C_{1-6} -alkylsulphonyl, C_{1-6} -alkylsulphinyl, aryl, aryloxy, arylcarbonyl, arylamino, heterocyclyl, heterocyclloxy, heterocyclcarbonyl, heterocycllamino, heteroaryl, heteroaryloxy, heteroarylcarbonyl, and heteroarylamino; where any C_{1-6} -alkyl as an amino substituent is optionally substituted with hydroxy, C_{1-6} -alkoxy, amino, mono- and di(C_{1-6} -alkyl)amino, carboxy, C_{1-6} -alkylcarbonylamino, C_{1-6} -alkylaminocarbonyl, or halogen(s), and 30 wherein any aryl, heterocyclyl and heteroaryl may be optionally substituted;

15797DK02

- 5 -

or R¹ and R² together with the carbon atoms to which they are attached form a ring, e.g. an aromatic ring, a carbocyclic ring, a heterocyclic ring or a heteroaromatic ring, in particular an aromatic ring, a heterocyclic ring or a heteroaromatic ring;

- X¹ and X² are independently selected from halogen, hydroxy, optionally substituted C₁₋₆-alkoxy, optionally substituted C₁₋₆-alkylcarbonyloxy, amino, mono- and di(C₁₋₆-alkyl)amino, C₁₋₆-alkylcarbonylamino, C₁₋₆-alkylsulphonylamino, mono- and di(C₁₋₆-alkyl)amino-carbonylamino, C₁₋₆-alkanoyloxy, mercapto, optionally substituted C₁₋₆-alkylthio, C₁₋₆-alkylsulfonyl, mono- and di(C₁₋₆-alkyl)aminosulfonyl, aryloxy, arylamino, heterocyclyloxy, heterocyclamino, heteroaryloxy and heteroarylarnino, where any C₁₋₆-alkyl as an amino or sulphur substituent is optionally substituted with hydroxy, C₁₋₆-alkoxy, amino, mono- and di(C₁₋₆-alkyl)amino, carboxy, C₁₋₆-alkylcarbonylamino, C₁₋₆-alkylaminocarbonyl, or halogen(s), and wherein any aryl, heterocyclyl and heteroaryl may be optionally substituted;

>Y(=Q)_n is selected from >C=O, >C=S, >S=O and >S(=O)₂; and

R^N is selected from the group consisting of hydrogen, optionally substituted C₁₋₆-alkyl,

- 15 hydroxy, optionally substituted C₁₋₆-alkoxy, optionally substituted C₁₋₆-alkoxycarbonyl, optionally substituted C₁₋₆-alkylcarbonyl, formyl, mono- and di(C₁₋₆-alkyl)aminocarbonyl, amino, C₁₋₆-alkylcarbonylamino, mono- and di(C₁₋₆-alkyl)amino, C₁₋₆-alkylsulphonyl, and C₁₋₆-alkylsulphinyl; where any C₁₋₆-alkyl as an amino substituent is optionally substituted with hydroxy, C₁₋₆-alkoxy, amino, mono- and di(C₁₋₆-alkyl)amino, carboxy, C₁₋₆-alkylcarbonylamino, C₁₋₆-alkylaminocarbonyl, or halogen(s).

Also included in the class of compounds of the formula (I) are pharmaceutically acceptable salts and prodrugs thereof.

One variant of the compounds of the formula (I) are those wherein each of the benzene rings

- 25 to which X¹ and X² are attached further may be substituted with one, two, three or four fluoro atoms, in particular each benzene ring to which X¹ and X² are attached are substituted with two fluoro atoms in the ortho positions relative to the substituents X¹ and X², respectively.

Definitions

In the present context, the term "C₁₋₆-alkyl" is intended to mean a linear, cyclic or branched hydrocarbon group having 1 to 6 carbon atoms, such as methyl, ethyl, propyl, *iso*-propyl,

- 30 pentyl, cyclopentyl, hexyl, cyclohexyl, and the term "C₁₋₄-alkyl" is intended to cover linear, cyclic or branched hydrocarbon groups having 1 to 4 carbon atoms, e.g. methyl, ethyl, propyl, *iso*-propyl, cyclopropyl, butyl, *iso*-butyl, *tert*-butyl, cyclobutyl.

Similarly, the term "C₂₋₆-alkenyl" is intended to cover linear, cyclic or branched hydrocarbon groups having 2 to 6 carbon atoms and comprising one unsaturated bond. Examples of alkenyl groups are vinyl, allyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl, heptadecaenyl. Preferred examples of alkenyl are vinyl, allyl, butenyl, especially allyl.

- 5 In the present context, i.e. in connection with the terms "alkyl", "alkoxy", and "alkenyl", the term "optionally substituted" is intended to mean that the group in question may be substituted one or several times, preferably 1-3 times, with group(s) selected from hydroxy (which when bound to an unsaturated carbon atom may be present in the tautomeric keto form), C₁₋₆-alkoxy (i.e. C₁₋₆-alkyl-oxy), C₂₋₆-alkenyloxy, carboxy, oxo (forming a keto or aldehyde functionality), C₁₋₆-alkoxycarbonyl, C₁₋₆-alkylcarbonyl, formyl, aryl, aryloxy, aryl-amino, arylcarbonyl, aryloxycarbonyl, arylcarbonyloxy, arylaminocarbonyl, arylcarbonyl-amino, heteroaryl, heteroaryloxy, heteroaryl-amino, heteroarylcarbonyl, heteroaryloxy-carbonyl, heteroarylcarbonyloxy, heteroarylaminocarbonyl, heteroarylcarbonylamino, heterocycl, heterocyclloxy, heterocyclamino, heterocyclcarbonyl, heterocycloxy-carbonyl, heterocyclcarbonyloxy, heterocyclaminocarbonyl, heterocyclcarbonylamino, amino, mono- and di(C₁₋₆-alkyl)amino, carbamoyl, mono- and di(C₁₋₆-alkyl)aminocarbonyl, C₁₋₆-alkylcarbonylamino, cyano, guanidino, carbamido, C₁₋₆-alkyl-sulphonyl-amino, aryl-sulphonyl-amino, heteroaryl-sulphonyl-amino, C₁₋₆-alkanoyloxy, C₁₋₆-alkyl-sulphonyl, C₁₋₆-alkyl-sulphiny, C₁₋₆-alkylsulphonyloxy, nitro, C₁₋₆-alkylthio, and halogen, where any aryl, heteroaryl and heterocycl may be substituted as specifically described below for aryl, heteroaryl and heterocycl, and any alkyl, alkoxy, and the like, representing substituents may be substituted with hydroxy, C₁₋₆-alkoxy, amino, mono- and di(C₁₋₆-alkyl)amino, carboxy, C₁₋₆-alkylcarbonylamino, C₁₋₆-alkylaminocarbonyl, or halogen(s).

- 25 Typically, the substituents are selected from hydroxy (which when bound to an unsaturated carbon atom may be present in the tautomeric keto form), C₁₋₆-alkoxy (i.e. C₁₋₆-alkyl-oxy), C₂₋₆-alkenyloxy, carboxy, oxo (forming a keto or aldehyde functionality), C₁₋₆-alkylcarbonyl, formyl, aryl, aryloxy, arylamino, arylcarbonyl, heteroaryl, heteroaryloxy, heteroaryl-amino, heteroarylcarbonyl, heterocycl, heterocyclloxy, heterocyclamino, heterocyclcarbonyl, amino, mono- and di(C₁₋₆-alkyl)amino; carbamoyl, mono- and di(C₁₋₆-alkyl)aminocarbonyl, amino-C₁₋₆-alkyl-aminocarbonyl, mono- and di(C₁₋₆-alkyl)amino-C₁₋₆-alkyl-aminocarbonyl, C₁₋₆-alkylcarbonylamino, guanidino, carbamido, C₁₋₆-alkyl-sulphonyl-amino, C₁₋₆-alkyl-sulphonyl, C₁₋₆-alkyl-sulphiny, C₁₋₆-alkylthio, halogen, where any aryl, heteroaryl and heterocycl may be substituted as specifically described below for aryl, heteroaryl and heterocycl.
- 35 In some embodiments, substituents are selected from hydroxy, C₁₋₆-alkoxy, amino, mono- and di(C₁₋₆-alkyl)amino, carboxy, C₁₋₆-alkylcarbonylamino, C₁₋₆-alkylaminocarbonyl, or halogen.

15797DK02

- 7 -

The term "Halogen" includes fluoro, chloro, bromo, and iodo.

In the present context, the term "aryl" is intended to mean a fully or partially aromatic carbocyclic ring or ring system, such as phenyl, naphthyl, 1,2,3,4-tetrahydronaphthyl,

anthracyl, phenanthracyl, pyrenyl, benzopyrenyl, fluorenyl and xanthenyl, among which

5 phenyl is a preferred example.

The term "heteroaryl" is intended to mean a fully or partially aromatic carbocyclic ring or ring system where one or more of the carbon atoms have been replaced with heteroatoms, e.g.

nitrogen (=N- or -NH-), sulphur, and/or oxygen atoms. Examples of such heteroaryl groups are oxazolyl, isoxazolyl, thiazolyl, Isothiazolyl, pyrrolyl, imidazolyl, pyrazolyl, pyridinyl,

10 pyrimidinyl, pyrazinyl, pyridazinyl, triazinyl, coumaryl, furanyl, thienyl, quinolyl, benzothiazolyl, benzotriazolyl, benzodiazolyl, benzooxazolyl, phthalazinyl, phthalanyl, triazolyl, tetrazolyl, isoquinolyl, acridinyl, carbazolyl, dibenzazepinyl, Indolyl, benzopyrazolyl, phenoxazonyl. Particularly interesting heteroaryl groups are benzimidazolyl, oxazolyl, isoxazolyl, thiazolyl, Isothiazolyl, pyrrolyl, imidazolyl, pyrazolyl, pyridinyl, pyrimidinyl, 15 pyrazinyl, pyridazinyl, furyl, thienyl, quinolyl, triazolyl, tetrazolyl, isoquinolyl, indolyl in particular benzimidazolyl, pyrrolyl, imidazolyl, pyridinyl, pyrimidinyl, furyl, thienyl, quinolyl, tetrazolyl, and isoquinolyl.

The term "heterocycll" is intended to mean a non-aromatic carbocyclic ring or ring system where one or more of the carbon atoms have been replaced with heteroatoms, e.g. nitrogen

20 (=N- or -NH-), sulphur, and/or oxygen atoms. Examples of such heterocycll groups (named according to the rings) are imidazolidine, piperazine, hexahdropyridazine,

hexahdropyrimidine, diazepane, diazocane, pyrrolidine, piperidine, azepane, azocane, aziridine, azirline, azetidine, pyrrolidine, tropane, oxazinane (morpholine), azepine,

dihydroazepine, tetrahydroazepine, and hexahydroazepine, oxazolane, oxazepane,

25 oxazocane, thiazolane, thiazinane, thiazepane, thiazocane, oxazetane, diazetane, thiazetane, tetrahydrofuran, tetrahydropyran, oxepane, tetrahydrothiophene, tetrahydrothiopyrane,

thiepane, dithiane, dithiepane, dioxane, dioxepane, oxathiane, oxathiepane. The most interesting examples are tetrahydrofuran, imidazolidine, piperazine, hexahdropyridazine,

hexahdropyrimidine, diazepane, diazocane, pyrrolidine, piperidine, azepane, azocane,

30 azetidine, tropane, oxazinane (morpholine), oxazolane, oxazepane, thiazolane, thiazinane, and thiazepane, in particular tetrahydrofuran, imidazolidine, piperazine, hexahdropyridazine, hexahdropyrimidine, diazepane, pyrrolidine, piperidine, azepane, oxazinane (morpholine), and thiazinane.

In the present context, i.e. in connection with the terms "aryl", "heteroaryl", "heterocycll"

35 and the like (e.g. "aryloxy", "heterarylcarbonyl", etc.), the term "optionally substituted" is intended to mean that the group in question may be substituted one or several times,

15797DK02

- 8 -

- preferably 1-5 times, in particular 1-3 times, with group(s) selected from hydroxy (which when present in an enol system may be represented in the tautomeric keto form), C₁₋₆-alkyl, C₁₋₆-alkoxy, C₂₋₆-alkenyloxy, oxo (which may be represented in the tautomeric enol form), carboxy, C₁₋₆-alkoxycarbonyl, C₁₋₆-alkylcarbonyl, formyl, aryl, aryloxy, arylamino, aryloxy-carbonyl, arylcarbonyl, heteroaryl, heteroarylarnino, amino, mono- and di(C₁₋₆-alkyl)amino; carbamoyl, mono- and di(C₁₋₆-alkyl)aminocarbonyl, amino-C₁₋₆-alkyl-aminocarbonyl, mono- and di(C₁₋₆-alkyl)amino-C₁₋₆-alkyl-aminocarbonyl, C₁₋₆-alkylcarbonylamino, cyano, guanidino, carbamido, C₁₋₆-alkanoyloxy, C₁₋₆-alkyl-sulphonyl-amino, aryl-sulphonyl-amino, heteroaryl-sulphonyl-amino, C₁₋₆-alkyl-sulphonyl, C₁₋₆-alkyl-sulphanyl, C₁₋₆-alkylsulphonyloxy, nitro, sulphanyl, amino, amino-sulfonyl, mono- and di(C₁₋₆-alkyl)amino-sulfonyl, dihalogen-C₁₋₄-alkyl, trihalogen-C₁₋₄-alkyl, halogen, where aryl and heteroaryl representing substituents may be substituted 1-3 times with C₁₋₄-alkyl, C₁₋₄-alkoxy, nitro, cyano, amino or halogen, and any alkyl, alkoxy, and the like, representing substituents may be substituted with hydroxy, C₁₋₆-alkoxy, C₂₋₆-alkenyloxy, amino, mono- and di(C₁₋₆-alkyl)amino, carboxy, C₁₋₆-alkyl-carbonylamino, halogen, C₁₋₆-alkylthio, C₁₋₆-alkyl-sulphonyl-amino, or guanidino.

Typically, the substituents are selected from hydroxy, C₁₋₆-alkyl, C₁₋₆-alkoxy, oxo (which may be represented in the tautomeric enol form), carboxy, C₁₋₆-alkylcarbonyl, formyl, amino, mono- and di(C₁₋₆-alkyl)amino; carbamoyl, mono- and di(C₁₋₆-alkyl)aminocarbonyl, amino-C₁₋₆-alkyl-aminocarbonyl, C₁₋₆-alkylcarbonylamino, guanidino, carbamido, C₁₋₆-alkyl-sulphonyl-amino, aryl-sulphonyl-amino, heteroaryl-sulphonyl-amino, C₁₋₆-alkyl-sulphonyl, C₁₋₆-alkyl-sulphanyl, C₁₋₆-alkylsulphonyloxy, sulphanyl, amino, amino-sulfonyl, mono- and di(C₁₋₆-alkyl)amino-sulfonyl or halogen, where any alkyl, alkoxy and the like, representing substituents may be substituted with hydroxy, C₁₋₆-alkoxy, C₂₋₆-alkenyloxy, amino, mono- and di(C₁₋₆-alkyl)amino, carboxy, C₁₋₆-alkylcarbonylamino, halogen, C₁₋₆-alkylthio, C₁₋₆-alkyl-sulphonyl-amino, or guanidino. In some embodiments, the substituents are selected from C₁₋₆-alkyl, C₁₋₆-alkoxy, amino, mono- and di(C₁₋₆-alkyl)amino, sulphanyl, carboxy or halogen, where any alkyl, alkoxy and the like, representing substituents may be substituted with hydroxy, C₁₋₆-alkoxy, C₂₋₆-alkenyloxy, amino, mono- and di(C₁₋₆-alkyl)amino, carboxy, C₁₋₆-alkylcarbonylamino, halogen, C₁₋₆-alkylthio, C₁₋₆-alkyl-sulphonyl-amino, or guanidino.

The term "prodrug" used herein is intended to mean a derivative of a compound of the formula (I) which – upon exposure to physiological conditions – will liberate a compound of the formula (I) which then will be able to exhibit the desired biological action. Examples of prodrugs are esters (carboxylic acid ester, phosphate esters, sulphuric acid esters, etc.), acid labile ethers, acetals, ketals, etc.

The term "pharmaceutically acceptable salts" is intended to include acid addition salts and basic salts. Illustrative examples of acid addition salts are pharmaceutically acceptable salts

15797DK02

- 9 -

formed with non-toxic acids. Exemplary of such organic salts are those with maleic, fumaric, benzoic, ascorbic, succinic, oxalic, bis-methylenesalicylic, methanesulfonic, ethanesulfonic, acetic, propionic, tartaric, salicylic, citric, gluconic, lactic, malic, mandelic, cinnamic, citraconic, aspartic, stearic, palmitic, Itaconic, glycolic, p-aminobenzoic, glutamic, benzenesulfonic, and theophylline acetic acids, as well as the 8-halotheophyllines, for example 8-bromotheophylline. Exemplary of such inorganic salts are those with hydrochloric, hydrobromic, sulfuric, sulfamic, phosphoric, and nitric acids. Examples of basic salts are salts where the (remaining) counter ion is selected from alkali metals, such as sodium and potassium, alkaline earth metals, such as calcium, and ammonium ions ($^+N(R)_3R'$, where R and R' independently designates optionally substituted C₁₋₆-alkyl, optionally substituted C₂₋₆-alkenyl, optionally substituted aryl, or optionally substituted heteroaryl). Pharmaceutically acceptable salts are, e.g., those described in Remington's Pharmaceutical Sciences, 17. Ed. Alfonso R. Gennaro (Ed.), Mack Publishing Company, Easton, PA, U.S.A., 1985 and more recent editions and in Encyclopedia of Pharmaceutical Technology. Thus, the term "an acid addition salt or a basic salt thereof" used herein is intended to comprise such salts. Furthermore, the compounds as well as any intermediates or starting materials may also be present in hydrate form.

Embodiments

The function of V¹, V², V³, and V⁴ is mainly to be of sterical character, i.e. determinative for the orientation of the groups R¹-R⁴. It is, however, also believed that heteroatoms as one or more of V¹, V², V³, and V⁴ may create dipole interactions with other entities and thereby have influence on, e.g., the solubility of the compounds of the general formula (I).

V¹, V², V³, and V⁴ are independently selected from a carbon atom, a non-quaternary nitrogen atom, an oxygen atom, and a sulfur atom, and where V⁴ further may be selected from a bond, so that -V¹-V²-V³-V⁴- together with the atoms to which V¹ and V⁴ are attached form an aromatic or heteroaromatic ring. Particularly useful examples of such aromatic rings and heteroaromatic rings are those selected from a benzene ring, a thiophene ring (V¹=S, V²=V³=C(-) and V⁴=bond; V²=S, V¹=V³=C(-) and V⁴=bond; or V³=S, V¹=V²=C(-) and V⁴=bond), a furan ring (V¹=O, V²=V³=C(-) and V⁴=bond; V²=O, V¹=V³=C(-) and V⁴=bond; or V³=O, V¹=V²=C(-) and V⁴=bond), a pyrazole ring (V¹=N(-), V²=N, V³=C(-) and V⁴=bond; V¹=N, V²=N(-), V³=C(-) and V⁴=bond), an imidazole ring (V¹=N(-), V²=C(-), V³=N and V⁴=bond; V¹=N, V²=C(-), V³=N(-) and V⁴=bond), a pyridine ring (V¹=N, V²=V³=V⁴=C(-); V²=N, V¹=V²=C(-) and V⁴=N, V¹=V²=V³=C(-)), a pyrimidine ring (V¹=V³=N, V²=V⁴=C(-); V²=V⁴=N, V¹=V³=C(-)), pyrazines (V¹=V⁴=N, V²=V³=C(-)), a pyridazine ring (V¹=V²=N, V³=V⁴=C(-); V²=V³=N, V¹=V⁴=C(-); V³=V⁴=N, V¹=V²=C(-)), a thiazole ring (V¹=N, V²=C(-), V³=S, V⁴=bond; V¹=S, V²=C(-), V³=N, V⁴=bond), and an

15797DK02

- 10 -

- isothiazole ring ($V^1=N$, $V^2=S$, $V^3=C(-)$, $V^4=bond$; $V^1=S$, $V^2=N$, $V^3=C(-)$, $V^4=bond$; $V^1=C(-)$, $V^2=S$, $V^3=N$, $V^4=bond$; $V^1=C(-)$, $V^2=N$, $V^3=S$, $V^4=bond$).

The meaning of V^1 , V^2 , V^3 and V^4 for each heteroaromatic ring is merely specified for the purpose of illustrating that various orientations of the heteroatoms are possible. Furthermore,

5 it should be understood that the respective rings carry the substituents R^1 , R^2 , R^3 and R^4 (where applicable) in accordance with the general formula (I). Thus, specification of "C(-)" and "N(-)" as possible meanings of V^1 , V^2 , V^3 and V^4 is made for the purpose of describing that the atoms in question carry a substituent (which may be hydrogen): Specification of "N" means that the respective atoms do not carry an "R" substituent, i.e. the corresponding "R" substituent is absent.

10 In one embodiment, $-V^1-V^2-V^3-V^4-$ together with the atoms to which V^1 and V^4 are attached form a ring selected from a benzene ring, a thiophene ring, a furan ring, a pyrazole ring, an imidazole ring, a pyridine ring, a pyrimidine ring, pyrazines, and a pyridazine ring, in particular from a benzene ring and a pyridine ring where the nitrogen atom represents V^3 (see also the Examples). In accordance with the general formula (I), the respective ring (aromatic or heteroaromatic) carries the substituents R^1-R^4 (where applicable).

The substituents R^1-R^4 (where applicable) are believed to be at least partly responsible for the biological effect, e.g. the ability of the compounds to inhibit cell proliferation in cancer cells.

20 In one embodiment, R^1 , R^2 , R^3 , and R^4 are, when attached to a carbon atom, independently selected from hydrogen, optionally substituted C_{1-6} -alkyl, optionally substituted C_{2-6} -alkenyl, hydroxy, optionally substituted C_{1-6} -alkoxy, optionally substituted C_{2-6} -alkenyloxy, carboxy, optionally substituted C_{1-6} -alkoxycarbonyl, optionally substituted C_{1-6} -alkylcarbonyl, optionally substituted C_{1-6} -alkylcarbonyloxy, formyl, amino, mono- and di(C_{1-6} -alkyl)amino, carbamoyl, mono- and di(C_{1-6} -alkyl)aminocarbonyl, C_{1-6} -alkylcarbonylamino, C_{1-6} -alkylsulphonylamino, cyano, carbamido, mono- and di(C_{1-6} -alkyl)aminocarbonylamino, C_{1-6} -alkanoyloxy, C_{1-6} -alkylsulphonyl, C_{1-6} -alkylsulphanyl, aminosulfonyl, mono- and di(C_{1-6} -alkyl)aminosulfonyl, nitro, optionally substituted C_{1-6} -alkylthio, and halogen, where any C_{1-6} -alkyl as an amino substituent is optionally substituted with hydroxy, C_{1-6} -alkoxy, amino, mono- and di(C_{1-6} -alkyl)amino, carboxy, C_{1-6} -alkylcarbonylamino, C_{1-6} -alkylaminocarbonyl, or halogen(s); and R^1 , R^2 , R^3 , and R^4 are, when attached to a nitrogen atom, independently selected from hydrogen, optionally substituted C_{1-6} -alkyl, hydroxy, optionally substituted C_{1-6} -alkoxy, optionally substituted C_{1-6} -alkoxycarbonyl, optionally substituted C_{1-6} -alkylcarbonyl, formyl, mono- and di(C_{1-6} -alkyl)aminocarbonyl, amino, C_{1-6} -alkylcarbonylamino, mono- and di(C_{1-6} -alkyl)amino, C_{1-6} -alkylsulphonyl, and C_{1-6} -alkylsulphanyl; where any C_{1-6} -alkyl as an amino substituent is optionally substituted with hydroxy, C_{1-6} -alkoxy, amino, mono- and di(C_{1-6} -

15797DK02

- 11 -

alkyl)amino, carboxy, C₁₋₆-alkylcarbonylamino, C₁₋₆-alkylaminocarbonyl, or halogen(s), and wherein any aryl, heterocyclyl and heteroaryl may be optionally substituted.

- More particularly, R¹, R², R³, and R⁴ are independently selected from hydrogen, halogen, optionally substituted C₁₋₆-alkyl, hydroxy, optionally substituted C₁₋₆-alkoxy, optionally substituted C₁₋₆-alkoxycarbonyl, optionally substituted C₁₋₆-alkylcarbonyl, amino, C₁₋₆-alkylcarbonylamino, C₁₋₆-alkylcarbonylamino, C₁₋₆-alkylsulphonylamino, mono- and di(C₁₋₆-alkyl)aminosulfonyl, and mono- and di(C₁₋₆-alkyl)amino, where any C₁₋₆-alkyl as an amino substituent is optionally substituted with hydroxy, C₁₋₆-alkoxy, amino, mono- and di(C₁₋₆-alkyl)amino, carboxy, C₁₋₆-alkylcarbonylamino, C₁₋₆-alkylaminocarbonyl, or halogen(s), such as from hydrogen, optionally substituted C₁₋₆-alkyl, hydroxy, optionally substituted C₁₋₆-alkoxy, optionally substituted C₁₋₆-alkoxycarbonyl, optionally substituted C₁₋₆-alkylcarbonyl, amino, C₁₋₆-alkylcarbonylamino, C₁₋₆-alkylcarbonylamino, C₁₋₆-alkylsulphonylamino, mono- and di(C₁₋₆-alkyl)aminosulfonyl, and mono- and di(C₁₋₆-alkyl)amino, where any C₁₋₆-alkyl as an amino substituent is optionally substituted with hydroxy, C₁₋₆-alkoxy, amino, mono- and di(C₁₋₆-alkyl)amino, carboxy, C₁₋₆-alkylcarbonylamino, C₁₋₆-alkylaminocarbonyl, or halogen(s).

As an alternative to the above, R¹ and R² may in one embodiment together with the carbon atoms to which they are attached form a heterocyclic ring or a heteroaromatic ring; and in another embodiment, R¹ and R² may together with the carbon atoms to which they are attached form an aromatic ring or a carbocyclic ring.

In one particular variant, R¹ is selected from hydrogen, halogen, C₁₋₆-alkyl, trifluoromethyl and C₁₋₆-alkoxy, when V² is a carbon atom.

In a further variant, R² is selected from hydrogen, halogen, optionally substituted aryl, optionally substituted aryloxy, and optionally substituted heteroaryl, when V² is a carbon atom.

In a still further variant, R³ is selected from hydrogen, optionally substituted C₁₋₆-alkoxy, halogen, cyano, optionally substituted aryl, optionally substituted aryloxy, optionally substituted heteroaryl, amino, C₁₋₆-alkylcarbonylamino, C₁₋₆-alkylsulphonylamino, and mono- and di(C₁₋₆-alkyl)aminosulfonyl, when V³ is a carbon atom.

30 In an even still further variant, R⁴ is hydrogen, when V⁴ is a carbon atom.

It is currently believed that the substituents X¹ and X² must include a heteroatom directly bound to the phenyl ring, cf. the definition further above.

15797DK02

- 12 -

In one embodiment, X¹ and X² are independently selected from hydroxy, optionally substituted C₁₋₆-alkoxy, optionally substituted C₁₋₆-alkylcarbonyloxy, amino, mono- and di(C₁₋₆-alkyl)amino, C₁₋₆-alkylcarbonylamino, C₁₋₆-alkylsulphonylamino, mono- and di(C₁₋₆-alkyl)aminocarbonylamino, C₁₋₆-alkanoyloxy, and mono- and di(C₁₋₆-alkyl)aminosulfonyl, where any C₁₋₆-alkyl as an amino substituent is optionally substituted with hydroxy, C₁₋₆-alkoxy, amino, mono- and di(C₁₋₆-alkyl)amino, carboxy, C₁₋₆-alkylcarbonylamino, C₁₋₆-alkylaminocarbonyl, or halogen(s).

In a more preferred embodiment, X¹ and X² independently are selected from halogen, OR⁶, OCOR⁵, N(R⁶)₂, NHCOR⁵, NSO₂R⁵, and NHCON(R⁶)₂, wherein R⁵ is selected from C₁₋₆-alkyl, optionally substituted aryl and optionally substituted heteroaryl, and each R⁶ independently is selected from hydrogen, C₁₋₆-alkyl, optionally substituted aryl and optionally substituted heteroaryl, such as from OR⁶, OCOR⁵, N(R⁶)₂, NHCOR⁵, NSO₂R⁵, and NHCON(R⁶)₂, wherein R⁵ is selected from C₁₋₆-alkyl, optionally substituted aryl and optionally substituted heteroaryl, and each R⁶ independently is selected from hydrogen, C₁₋₆-alkyl, optionally substituted aryl and optionally substituted heteroaryl, in particular X¹ and X² are independently selected from halogen, hydroxy, OAc, NH₂, NMe₂, NHAc, NSO₂Me and NHCONMe₂, such as from hydroxy, OAc, NH₂, NMe₂, NHAc, NSO₂Me and NHCONMe₂.

This being said, it is currently believed that X¹ and X² may be the same for both phenyl rings, i.e. X¹=X². This has the advantage that achiral compounds are achieved. In the pharmaceutical business, use of chiral drugs typically requires isolation of the individual stereoisomeric forms. Another advantage is seen in the synthesis route. A one-step introduction of the two PhX groups saves at least one synthesis step and associated time, and increases the overall yield of the preparation process.

Although not specified in the general formula (I), it is believed that introduction of fluoro atoms in the benzene rings may provide certain advantages. Thus as defined above, a variant of compounds are those wherein each of the benzene rings to which X¹ and X² are attached further may be substituted with one, two, three or four fluoro atoms, in particular each benzene ring to which X¹ and X² are attached are substituted with two fluoro atoms in the ortho positions relative to the substituents X¹ and X², respectively.

The structural element >Y(=Q)_n is not considered particularly critical. However, for synthetic reasons, it is preferred that Y is a carbon atom and Q is an oxygen atom, i.e. >Y(=Q)_n is >C=O. In the alternative, Y is a sulfur atom, n is 2, and each Q is an oxygen atom, i.e. >Y(=Q)_n is >S(=O)₂.

It is believed that R^N may be selected from a wide variety of substituents. However, it is currently believed that it may be advantageous if R^N is selected from hydrogen, C₁₋₆-alkyl,

15797DK02

- 13 -

· amino, and C₁₋₆-alkylcarbonylamino. Most preferred is the embodiments wherein R^N is hydrogen (see Table 1).

In view of the above, and in view of the current set of biological data, it is postulated that certain subclasses of compounds may exhibit particular advantages, cf. the subclasses defined in the following:

One subclass of compounds are those wherein V¹, V², V³, V⁴ all are a carbon atom, >Y(=Q)_n is >C=O, and R^N is hydrogen.

In one embodiment hereof, R⁴ is hydrogen; in particular, both of R³ and R⁴ are hydrogen.

10 In another embodiment within the subclass, R¹ is C₁₋₄-alkyl and R² is halogen, e.g. R¹ is methyl and R² is chloro.

In an alternative embodiment within this subclass, R¹ and R² together with the carbon atoms to which they are attached form a ring, e.g. an aromatic ring, a carbocyclic ring, a heterocyclic ring or a heteroaromatic ring, in particular an aromatic ring or a carbocyclic ring.

In another embodiment series, R¹, R² and R⁴ all are hydrogen.

15 In a further embodiment within this subclass which may be combined with the above embodiment, R³ is selected from hydrogen, halogen (such as fluoro, chloro, bromo, iodo), nitro, C₁₋₄-alkyl (such as methyl), C₁₋₄-alkoxy (such as methoxy), trifluoromethoxy, amino, carboxy, and dimethylaminocarbonyl, in particular hydrogen, halogen (such as fluoro, chloro, bromo, iodo), nitro, methyl, methoxy, and amino.

20 In still another embodiment series, R², R³ and R⁴ all are hydrogen.

In a further embodiment within this subclass which may be combined with the above embodiment, R¹ is selected from fluoro, chloro, bromo, C₁₋₄-alkyl (such as methyl or tert-butyl), trifluoromethyl, C₁₋₄-alkoxy (such as methoxy), and dimethylaminocarbonyl.

25 In still another embodiment series, R¹ is selected from halogen (such as fluoro, chloro, bromo), C₁₋₄-alkyl (such as methyl or tert-butyl), trifluoromethyl, C₁₋₄-alkoxy (such as methoxy), and dimethylaminocarbonyl, R² is selected from hydrogen and halogen, and R³ is selected from hydrogen, halogen, C₁₋₄-alkyl (such as methyl), and amino; where R² and R³ are not both hydrogen.

15797DK02

- 14 -

In a further embodiment, which may be combined with any of the before-mentioned embodiments, each of X¹ and X² independently are selected from halogen (such as fluoro) hydroxy, C₁₋₄-alkoxy (such as methoxy), amino, and dimethylamino. Also preferred are the embodiments, wherein X¹ and X² are the same.

- 5 Another subclass of compounds are those wherein at least one of V¹, V², V³, and V⁴ is selected from a non-quaternary nitrogen atom, an oxygen atom, and a sulfur atom, and where V⁴ further may be selected from a bond, so that -V¹-V²-V³-V⁴- together with the atoms to which V¹ and V⁴ are attached form a heteroaromatic ring. In this case, the heteroaromatic ring is preferably selected from a pyridine ring and a pyrazole ring.
- 10 Within this subclass, it is further preferred that >Y(=Q)_n is >C=O and R^N is hydrogen. Also preferred are the embodiments, wherein X¹ and X² are the same.

A further aspect of the invention relates to the use of a 3,3-diphenyl-1,3-dihydro-indol-2-one type compound of the formula (II)

- 15 wherein

R¹ is selected from hydrogen, halogen, C₁₋₆-alkyl, trifluoromethyl and C₁₋₆-alkoxy;

R² is selected from hydrogen, halogen, optionally substituted aryl, optionally substituted aryloxy, and optionally substituted heteroaryl;

- 20 R³ is selected from hydrogen, optionally substituted C₁₋₆-alkoxy, halogen, cyano, and optionally substituted aryl, optionally substituted aryloxy, optionally substituted heteroaryl, amino, C₁₋₆-alkylcarbonylamino, C₁₋₆-alkylsulphonylamino, and mono- and di(C₁₋₆-alkyl)aminosulfonyl;

Z is CH or N; and

15797DK02

- 15 -

- X^1 and X^2 are independently selected from halogen, OR^6 , $OCOR^5$, $N(R^6)_2$, $NHCOR^5$, $NHSO_2R^5$, and $NHCON(R^6)_2$, wherein R^5 is selected from C_{1-6} -alkyl, optionally substituted aryl and optionally substituted heteroaryl, and each R^6 independently is selected from hydrogen, C_{1-6} -alkyl, optionally substituted aryl and optionally substituted heteroaryl; and
- 5 pharmaceutically acceptable salts and prodrugs thereof (as defined further above);
 - for the preparation of a medicament for the treatment of cancer in a mammal.

- As above, each of the benzene rings to which X^1 and X^2 are attached further may be substituted with one, two, three or four fluoro atoms, in particular each benzene ring to which X^1 and X^2 are attached are substituted with two fluoro atoms in the ortho positions relative to the substituents X^1 and X^2 , respectively.

- In one embodiment, X^1 and X^2 are independently selected from OR^6 , $OCOR^5$, $N(R^6)_2$, $NHCOR^5$, $NHSO_2R^5$, and $NHCON(R^6)_2$, wherein R^5 is selected from C_{1-6} -alkyl, optionally substituted aryl and optionally substituted heteroaryl, and each R^6 independently is selected from hydrogen, C_{1-6} -alkyl, optionally substituted aryl and optionally substituted heteroaryl.
- 15 In one variant, R^1 is selected from C_{1-6} -alkyl and C_{1-6} -alkoxy, such as from methyl, ethyl, isopropyl, methoxy, ethoxy and isopropoxy, in particular from methoxy, ethoxy and isopropoxy, or from methyl, ethyl, and isopropyl.

- In another variant, R^2 is selected from hydrogen, chloro, methoxy, dimethylamino, phenyl, phenoxy, optionally substituted thiophen-2-yl, and optionally substituted thiophen-3-yl.
- 20 In still another variant, R^3 is selected from hydrogen, methoxy, fluoro, chloro, cyano, phenyl, phenoxy, optionally substituted thiophen-2-yl, and optionally substituted thiophen-3-yl, amino, acetylamino, methylsulfonylamino, and dimethylaminosulfonyl.

- In a still further variant, X^1 and X^2 independently are selected from halogen, hydroxy, OAc, NH₂, NMe₂, NHAc, NHSO₂Me and NHCONMe₂, such as from hydroxy, OAc, NH₂, NMe₂, NHAc, NHSO₂Me and NHCONMe₂.

Each X^1 and X^2 are preferably the same.

Presently very interesting compounds of the formula I are those listed in the following as compounds 1 to 200:

15797DK02

- 16 -

1 5-Amino-6-chloro-3,3-bis-(4-hydroxy-phenyl)-7-methyl-1,3-dihydro-indol-2-one
 2 5-Chloro-3,3-bis-(4-hydroxy-phenyl)-7-methyl-1,3-dihydro-indol-2-one
 3 5-Fluoro-3,3-bis-(4-hydroxy-phenyl)-1,3-dihydro-indol-2-one
 4 3,3-Bis-(4-hydroxy-phenyl)-5-nitro-1,3-dihydro-indol-2-one
 5 3,3-Bis-(4-hydroxy-phenyl)-7-methyl-1,3-dihydro-pyrrolo[3,2-c]pyridin-2-one
 6 6-Bromo-3,3-bis-(4-hydroxy-phenyl)-1,3-dihydro-pyrrolo[3,2-c]pyridin-2-one
 7 6-Bromo-3,3-bis-(4-hydroxy-phenyl)-7-methyl-1,3-dihydro-pyrrolo[3,2-c]pyridin-2-one
 8 6-Bromo-3,3-bis-(4-hydroxy-phenyl)-5,7-dimethyl-1,3-dihydro-indol-2-one
 9 6-Bromo-3,3-bis-(4-hydroxy-phenyl)-7-methoxy-2-oxo-2,3-dihydro-1H-indole-5-carbonitrile
 10 6-Bromo-3,3-bis-(4-hydroxy-phenyl)-5-methoxy-7-methyl-1,3-dihydro-indol-2-one
 11 6-Bromo-3,3-bis-(4-hydroxy-phenyl)-7-methoxy-1,3-dihydro-pyrrolo[3,2-c]pyridin-2-one;
 12 6-Bromo-7-ethyl-3,3-bis-(4-hydroxy-phenyl)-1,3-dihydro-pyrrolo[3,2-c]pyridin-2-one
 13 6-Bromo-7-ethyl-3,3-bis-(4-hydroxy-phenyl)-5-methyl-1,3-dihydro-indol-2-one
 14 6-Bromo-5-ethyl-3,3-bis-(4-hydroxy-phenyl)-7-methyl-1,3-dihydro-indol-2-one
 15 6-Bromo-7-ethyl-3,3-bis-(4-hydroxy-phenyl)-2-oxo-2,3-dihydro-1H-indole-5-carbonitrile
 16 6-Bromo-7-ethyl-3,3-bis-(4-hydroxy-phenyl)-5-methoxy-1,3-dihydro-indol-2-one
 17 6-Chloro-3,3-bis-(4-hydroxy-phenyl)-1,3-dihydro-pyrrolo[3,2-c]pyridin-2-one
 18 6-Chloro-3,3-bis-(4-hydroxy-phenyl)-7-methyl-1,3-dihydro-pyrrolo[3,2-c]pyridin-2-one
 19 6-Chloro-3,3-bis-(4-hydroxy-phenyl)-5,7-dimethyl-1,3-dihydro-indol-2-one
 20 6-Chloro-3,3-bis-(4-hydroxy-phenyl)-7-methyl-2-oxo-2,3-dihydro-1H-indole-5-carbonitrile
 21 6-Chloro-3,3-bis-(4-hydroxy-phenyl)-5-methoxy-7-methyl-1,3-dihydro-indol-2-one
 22 6-Chloro-3,3-bis-(4-hydroxy-phenyl)-7-methoxy-1,3-dihydro-pyrrolo[3,2-c]pyridin-2-one
 23 6-Chloro-7-ethyl-3,3-bis-(4-hydroxy-phenyl)-1,3-dihydro-pyrrolo[3,2-c]pyridin-2-one
 24 6-Chloro-7-ethyl-3,3-bis-(4-hydroxy-phenyl)-5-methyl-1,3-dihydro-indol-2-one
 25 6-Chloro-5-ethyl-3,3-bis-(4-hydroxy-phenyl)-7-methyl-1,3-dihydro-indol-2-one
 26 6-Chloro-7-ethyl-3,3-bis-(4-hydroxy-phenyl)-2-oxo-2,3-dihydro-1H-indole-5-carbonitrile
 27 6-Chloro-7-ethyl-3,3-bis-(4-hydroxy-phenyl)-5-methoxy-1,3-dihydro-indol-2-one
 28 6-Chloro-3,3-bis-(4-hydroxy-phenyl)-5-methyl-7-methoxy-1,3-dihydro-indol-2-one;
 29 6-Chloro-3,3-bis-(4-hydroxy-phenyl)-7-methoxy-2-oxo-2,3-dihydro-1H-indole-5-carbonitrile;
 30 6-Chloro-3,3-bis-(4-hydroxy-phenyl)-7-methoxy-1,3-dihydro-pyrrolo[3,2-c]pyridin-2-one;
 31 6-Chloro-3,3-bis-(4-hydroxy-phenyl)-7-methoxy-5-methyl-1,3-dihydro-indol-2-one;
 32 6-Chloro-5-ethyl-3,3-bis-(4-hydroxy-phenyl)-7-methoxy-1,3-dihydro-indol-2-one;
 33 6-Chloro-3,3-bis-(4-hydroxy-phenyl)-5,7-dimethoxy-1,3-dihydro-indol-2-one;
 34 N-[4-[3-(4-Acetylamino-phenyl)-5-chloro-7-methyl-2-oxo-2,3-dihydro-1H-indol-3-yl]-phenyl]-acetamide;
 35 N-[4-[5-Chloro-3-(4-methanesulfonylamino-phenyl)-7-methyl-2-oxo-2,3-dihydro-1H-indol-3-yl]-phenyl]-methanesulfonamide
 36 N-[4-[3-(4-Acetylamino-phenyl)-5-chloro-7-methyl-2-oxo-2,3-dihydro-1H-indol-3-yl]-phenyl]-acetamide;
 37 N-[4-[6-Chloro-3-(4-methanesulfonylamino-phenyl)-7-methyl-2-oxo-2,3-dihydro-1H-indol-3-yl]-phenyl]-methanesulfonamide;
 38 N-[4-[3-(4-Acetylamino-phenyl)-5-chloro-7-methoxy-2-oxo-2,3-dihydro-1H-indol-3-yl]-phenyl]-acetamide;
 39 N-[4-[5-Chloro-3-(4-methanesulfonylamino-phenyl)-7-methoxy-2-oxo-2,3-dihydro-1H-indol-3-yl]-phenyl]-methanesulfonamide;
 40 N-[4-[3-(4-Acetylamino-phenyl)-6-chloro-7-methoxy-2-oxo-2,3-dihydro-1H-indol-3-yl]-phenyl]-acetamide; and
 41 N-[4-[6-Chloro-3-(4-methanesulfonylamino-phenyl)-7-methoxy-2-oxo-2,3-dihydro-1H-indol-3-yl]-phenyl]-methanesulfonamide
 50 42 2-Chloro-6,6-bis-(4-hydroxy-phenyl)-3-methyl-4,6-dihydro-3H-pyrrolo[2,3-d]imidazol-5-one
 43 Acetic acid 4-[6-(4-acetoxy-phenyl)-2-chloro-3-methyl-5-oxo-3,4,5,6-tetrahydro-pyrrolo[2,3-d]imidazol-6-yl]-phenyl ester
 44 6,6-Bis-(4-amino-phenyl)-2-chloro-3-methyl-4,6-dihydro-3H-pyrrolo[2,3-d]imidazol-5-one
 45 2-Chloro-6,6-bis-(4-dimethylamino-phenyl)-3-methyl-4,6-dihydro-3H-pyrrolo[2,3-d]imidazol-5-one
 55 46 N-[4-[6-(4-Acetylamino-phenyl)-2-chloro-3-methyl-5-oxo-3,4,5,6-tetrahydro-pyrrolo[2,3-d]imidazol-6-yl]-phenyl]-acetamide
 47 N-[4-[2-Chloro-6-(4-methanesulfonylamino-phenyl)-3-methyl-5-oxo-3,4,5,6-tetrahydro-pyrrolo[2,3-d]imidazol-6-yl]-phenyl]-methanesulfonamide
 48 4,4-Bis-(4-hydroxy-phenyl)-1-methyl-4,6-dihydro-1H-pyrrolo[2,3-c]pyrazol-5-one
 60 49 Acetic acid 4-[4-(4-acetoxy-phenyl)-1-methyl-5-oxo-1,4,5,6-tetrahydro-pyrrolo[2,3-c]pyrazol-4-yl]-phenyl ester
 50 4,4-Bis-(4-amino-phenyl)-1-methyl-4,6-dihydro-1H-pyrrolo[2,3-c]pyrazol-5-one
 51 N-[4-[4-(4-Methanesulfonylamino-phenyl)-1-methyl-5-oxo-1,4,5,6-tetrahydro-pyrrolo[2,3-c]pyrazol-4-yl]-phenyl]-methanesulfonamide

15797OK02

- 17 -

52 4,4-Bis-(4-dimethylamino-phenyl)-1-methyl-4,6-dihydro-1H-pyrrolo[2,3-c]pyrazol-5-one
 53 N-{4-[4-(4-Acetylamino-phenyl)-1-methyl-5-oxo-1,4,5,6-tetrahydro-pyrrolo[2,3-c]pyrazol-4-yl]-phenyl}-acetamide
 54 4,4-Bis-(4-hydroxy-phenyl)-2-methyl-2,6-dihydro-4H-pyrrolo[2,3-c]pyrazol-5-one
 55 Acetic acid 4-[4-(4-acetoxy-phenyl)-2-methyl-5-oxo-2,4,5,6-tetrahydro-pyrrolo[2,3-c]pyrazol-4-yl]-phenyl ester
 56 4,4-Bis-(4-amino-phenyl)-2-methyl-2,6-dihydro-4H-pyrrolo[2,3-c]pyrazol-5-one
 57 4,4-Bis-(4-dimethylamino-phenyl)-2-methyl-2,6-dihydro-4H-pyrrolo[2,3-c]pyrazol-5-one
 58 N-{4-[4-(4-Acetylamino-phenyl)-2-methyl-5-oxo-2,4,5,6-tetrahydro-pyrrolo[2,3-c]pyrazol-4-yl]-phenyl}-acetamide
 10 59 N-{4-[4-(4-Methanesulfonylamino-phenyl)-2-methyl-5-oxo-2,4,5,6-tetrahydro-pyrrolo[2,3-c]pyrazol-4-yl]-phenyl}-methanesulfonamide
 60 4,4-Bis-(4-hydroxy-phenyl)-4,6-dihydro-thieno[2,3-b]pyrrol-5-one
 61 Acetic acid 4-[4-(4-acetoxy-phenyl)-5-oxo-5,6-dihydro-4H-thieno[2,3-b]pyrrol-4-yl]-phenyl ester
 15 62 4,4-Bis-(4-amino-phenyl)-4,6-dihydro-thieno[2,3-b]pyrrol-5-one
 63 4,4-Bis-(4-dimethylamino-phenyl)-4,6-dihydro-thieno[2,3-b]pyrrol-5-one
 64 N-{4-[4-(4-Acetylamino-phenyl)-5-oxo-5,6-dihydro-4H-thieno[2,3-b]pyrrol-4-yl]-phenyl}-acetamide
 65 N-{4-[4-(4-Methanesulfonylamino-phenyl)-5-oxo-5,6-dihydro-4H-thieno[2,3-b]pyrrol-4-yl]-phenyl}-methanesulfonamide
 20 66 2-Chloro-4,4-bis-(4-hydroxy-phenyl)-4,6-dihydro-thieno[2,3-b]pyrrol-5-one
 67 Acetic acid 4-[4-(4-acetoxy-phenyl)-2-chloro-5-oxo-5,6-dihydro-4H-thieno[2,3-b]pyrrol-4-yl]-phenyl ester
 68 4,4-Bis-(4-amino-phenyl)-2-chloro-4,6-dihydro-thieno[2,3-b]pyrrol-5-one
 69 2-Chloro-4,4-bis-(4-dimethylamino-phenyl)-4,6-dihydro-thieno[2,3-b]pyrrol-5-one
 25 70 N-{4-[4-(4-Acetylamino-phenyl)-2-chloro-5-oxo-5,6-dihydro-4H-thieno[2,3-b]pyrrol-4-yl]-phenyl}-acetamide
 71 N-{4-[2-Chloro-4-(4-methanesulfonylamino-phenyl)-5-oxo-5,6-dihydro-4H-thieno[2,3-b]pyrrol-4-yl]-phenyl}-methanesulfonamide
 72 4,4-Bis-(4-hydroxy-phenyl)-4,6-dihydro-furo[2,3-b]pyrrol-5-one
 30 73 Acetic acid 4-[4-(4-acetoxy-phenyl)-5-oxo-5,6-dihydro-4H-furo[2,3-b]pyrrol-4-yl]-phenyl ester
 74 4,4-Bis-(4-amino-phenyl)-4,6-dihydro-furo[2,3-b]pyrrol-5-one
 75 4,4-Bis-(4-dimethylamino-phenyl)-4,6-dihydro-furo[2,3-b]pyrrol-5-one
 76 N-{4-[4-(4-Acetylamino-phenyl)-5-oxo-5,6-dihydro-4H-furo[2,3-b]pyrrol-4-yl]-phenyl}-acetamide
 77 N-{4-[4-(4-Methanesulfonylamino-phenyl)-5-oxo-5,6-dihydro-4H-furo[2,3-b]pyrrol-4-yl]-phenyl}-methanesulfonamide
 35 78 2-Chloro-4,4-bis-(4-hydroxy-phenyl)-4,6-dihydro-furo[2,3-b]pyrrol-5-one
 79 Acetic acid 4-[4-(4-acetoxy-phenyl)-2-chloro-5-oxo-5,6-dihydro-4H-furo[2,3-b]pyrrol-4-yl]-phenyl ester
 80 4,4-Bis-(4-amino-phenyl)-2-chloro-4,6-dihydro-furo[2,3-b]pyrrol-5-one
 81 2-Chloro-4,4-bis-(4-dimethylamino-phenyl)-4,6-dihydro-furo[2,3-b]pyrrol-5-one
 40 82 N-{4-[4-(4-Acetylamino-phenyl)-2-chloro-5-oxo-5,6-dihydro-4H-furo[2,3-b]pyrrol-4-yl]-phenyl}-acetamide
 83 N-{4-[2-Chloro-4-(4-methanesulfonylamino-phenyl)-5-oxo-5,6-dihydro-4H-furo[2,3-b]pyrrol-4-yl]-phenyl}-methanesulfonamide
 84 3,3-Bis-(4-hydroxy-phenyl)-6-methyl-3,8-dihydro-1H-1,8-diaza-as-indacen-2-one
 45 85 Acetic acid 4-[3-(4-acetoxy-phenyl)-6-methyl-2-oxo-1,2,3,8-tetrahydro-1,8-diaza-as-indacen-3-yl]-phenyl ester
 86 3,3-Bis-(4-amino-phenyl)-6-methyl-3,8-dihydro-1H-1,8-diaza-as-indacen-2-one
 87 3,3-Bis-(4-dimethylamino-phenyl)-6-methyl-3,8-dihydro-1H-1,8-diaza-as-indacen-2-one
 88 N-{4-[3-(4-Acetylamino-phenyl)-6-methyl-2-oxo-1,2,3,8-tetrahydro-1,8-diaza-as-indacen-3-yl]-phenyl}-acetamide
 50 89 N-{4-[3-(4-Methanesulfonylamino-phenyl)-6-methyl-2-oxo-1,2,3,8-tetrahydro-1,8-diaza-as-indacen-3-yl]-phenyl}-methanesulfonamide
 90 3,3-Bis-(4-hydroxy-phenyl)-1,3-dihydro-benzo[g]indol-2-one
 91 Acetic acid 4-[3-(4-acetoxy-phenyl)-2-oxo-2,3-dihydro-1H-benzo[g]indol-3-yl]-phenyl ester
 55 92 3,3-Bis-(4-amino-phenyl)-1,3-dihydro-benzo[g]indol-2-one
 93 3,3-Bis-(4-dimethylamino-phenyl)-1,3-dihydro-benzo[g]indol-2-one
 94 N-{4-[3-(4-Acetylamino-phenyl)-2-oxo-2,3-dihydro-1H-benzo[g]indol-3-yl]-phenyl}-acetamide
 95 N-{4-[3-(4-Methanesulfonylamino-phenyl)-2-oxo-2,3-dihydro-1H-benzo[g]indol-3-yl]-phenyl}-methanesulfonamide
 60 96 1-Amino-6-chloro-3,3-bis-(4-hydroxy-phenyl)-7-methyl-1,3-dihydro-indol-2-one
 97 Acetic acid 4-[3-(4-acetoxy-phenyl)-1-amino-6-chloro-7-methyl-2-oxo-2,3-dihydro-1H-indol-3-yl]-phenyl ester
 98 N-{4-[3-(4-Acetylamino-phenyl)-1-amino-6-chloro-7-methyl-2-oxo-2,3-dihydro-1H-indol-3-yl]-phenyl}-acetamide

15797DK02

- 18 -

99 N-[4-[1-Amino-6-chloro-3-(4-methanesulfonylamino-phenyl)-7-methyl-2-oxo-2,3-dihydro-1H-indol-3-yl]-phenyl]-methanesulfonamide
 100 Acetic acid 4-[3-(4-acetoxy-phenyl)-1-acetylamino-6-chloro-7-methyl-2-oxo-2,3-dihydro-1H-indol-3-yl]-phenyl ester
 5 101 N-[3,3-Bis-(4-amino-phenyl)-6-chloro-7-methyl-2-oxo-2,3-dihydro-indol-1-yl]-acetamide
 102 N-[6-Chloro-3,3-bis-(4-dimethylamino-phenyl)-7-methyl-2-oxo-2,3-dihydro-indol-1-yl]-acetamide
 103 N-[3,3-Bis-(4-acetylamino-phenyl)-6-chloro-7-methyl-2-oxo-2,3-dihydro-indol-1-yl]-acetamide
 104 N-[6-Chloro-3,3-bis-(4-methanesulfonylamino-phenyl)-7-methyl-2-oxo-2,3-dihydro-indol-1-yl]-acetamide
 10 105 6-Chloro-3,3-bis-(4-hydroxy-phenyl)-7-methyl-1,3-dihydro-indole-2-thione
 106 Acetic acid 4-[3-(4-acetoxy-phenyl)-6-chloro-7-methyl-2-thioxo-2,3-dihydro-1H-indol-3-yl]-phenyl ester
 107 3,3-Bis-(4-amino-phenyl)-6-chloro-7-methyl-1,3-dihydro-indole-2-thione
 108 6-Chloro-3,3-bis-(4-dimethylamino-phenyl)-7-methyl-1,3-dihydro-indole-2-thione
 15 109 N-[4-[3-(4-Acetylamino-phenyl)-6-chloro-7-methyl-2-thioxo-2,3-dihydro-1H-indol-3-yl]-phenyl]-acetamide
 110 Methanesulfonic acid 4-[6-chloro-3-(4-methanesulfonyloxy-phenyl)-7-methyl-2-thioxo-2,3-dihydro-1H-indol-3-yl]-phenyl ester
 111 Acetic acid 4-[4-(4-acetoxy-phenyl)-2-chloro-5-thioxo-5,6-dihydro-4H-thieno[2,3-b]pyrrol-4-yl]-phenyl ester
 20 112 Acetic acid 4-[4-(4-acetoxy-phenyl)-2-chloro-5-thioxo-5,6-dihydro-4H-furo[2,3-b]pyrrol-4-yl]-phenyl ester
 113 6,6-Bis-(4-amino-phenyl)-2-chloro-3-methyl-4,6-dihydro-thieno[3,2-b]pyrrole-5-thione
 114 2-Chloro-6,6-bis-(4-dimethylamino-phenyl)-3-methyl-4,6-dihydro-3H-pyrrolo[2,3-d]imidazole-5-thione
 25 115 N-[4-[6-(4-Acetylamino-phenyl)-3-chloro-5-thioxo-1,4,5,6-tetrahydro-pyrrolo[3,2-c]pyrazol-6-yl]-phenyl]-acetamide
 116 Methanesulfonic acid 4-[2-chloro-4-(4-methanesulfonyloxy-phenyl)-5-thioxo-5,6-dihydro-4H-furo[2,3-b]pyrrol-4-yl]-phenyl ester
 117 6-Chloro-7-cyclopropyl-3,3-bis-(4-hydroxy-phenyl)-1,3-dihydro-indol-2-one
 118 6-Chloro-7-cyclopropyl-3,3-bis-(4-hydroxy-phenyl)-1,3-dihydro-pyrrolo[3,2-c]pyridin-2-one
 119 6-Chloro-3,3-bis-(4-hydroxy-phenyl)-7-trifluoromethyl-1,3-dihydro-indol-2-one
 120 6-Chloro-3,3-bis-(4-hydroxy-phenyl)-7-trifluoromethyl-1,3-dihydro-pyrrolo[3,2-c]pyridin-2-one
 121 6-Chloro-7-cyclopropoxy-3,3-bis-(4-hydroxy-phenyl)-1,3-dihydro-indol-2-one
 122 6-Chloro-7-cyclopropoxy-3,3-bis-(4-hydroxy-phenyl)-1,3-dihydro-pyrrolo[3,2-c]pyridin-2-one
 35 123 6-(4-Fluoro-phenoxy)-3,3-bis-(4-hydroxy-phenyl)-7-trifluoromethyl-1,3-dihydro-indol-2-one
 124 Acetic acid 4-[3-(4-acetoxy-phenyl)-6-chloro-7-cyclopropyl-2-oxo-2,3-dihydro-1H-indol-3-yl]-phenyl ester
 125 Acetic acid 4-[3-(4-acetoxy-phenyl)-6-chloro-7-cyclopropyl-2-oxo-2,3-dihydro-1H-pyrrolo[3,2-c]pyridin-3-yl]-phenyl ester
 40 126 Acetic acid 4-[3-(4-acetoxy-phenyl)-6-chloro-2-oxo-7-trifluoromethyl-2,3-dihydro-1H-indol-3-yl]-phenyl ester
 127 Acetic acid 4-[3-(4-acetoxy-phenyl)-6-chloro-2-oxo-7-trifluoromethyl-2,3-dihydro-1H-pyrrolo[3,2-c]pyridin-3-yl]-phenyl ester
 128 Acetic acid 4-[3-(4-acetoxy-phenyl)-6-chloro-7-cyclopropoxy-2-oxo-2,3-dihydro-1H-indol-3-yl]-phenyl ester
 45 129 Acetic acid 4-[3-(4-acetoxy-phenyl)-6-chloro-7-cyclopropoxy-2-oxo-2,3-dihydro-1H-pyrrolo[3,2-c]pyridin-3-yl]-phenyl ester
 130 Acetic acid 4-[3-(4-acetoxy-phenyl)-6-(4-fluoro-phenoxy)-2-oxo-7-trifluoromethyl-2,3-dihydro-1H-indol-3-yl]-phenyl ester
 50 131 Dimethylamino-acetic acid 4-{6-chloro-7-cyclopropyl-3-[4-(2-dimethylamino-acetoxy)-phenyl]-2-oxo-2,3-dihydro-1H-indol-3-yl}-phenyl ester
 132 Dimethylamino-acetic acid 4-{6-chloro-7-cyclopropyl-3-[4-(2-dimethylamino-acetoxy)-phenyl]-2-oxo-2,3-dihydro-1H-pyrrolo[3,2-c]pyridin-3-yl}-phenyl ester
 133 Dimethylamino-acetic acid 4-{6-chloro-3-[4-(2-dimethylamino-acetoxy)-phenyl]-7-methyl-2-oxo-2,3-dihydro-1H-indol-3-yl}-phenyl ester
 55 134 6-Chloro-3,3-bis-(4-hydroxy-phenyl)-7-trifluoromethoxy-1,3-dihydro-indol-2-one
 135 Acetic acid 4-[3-(4-acetoxy-phenyl)-6-chloro-2-oxo-7-trifluoromethoxy-2,3-dihydro-1H-indol-3-yl]-phenyl ester
 136 Dimethylamino-acetic acid 4-{6-chloro-3-[4-(2-dimethylamino-acetoxy)-phenyl]-2-oxo-7-trifluoromethoxy-2,3-dihydro-1H-indol-3-yl}-phenyl ester
 60 137 6-Chloro-4-fluoro-3,3-bis-(4-hydroxy-phenyl)-7-methyl-1,3-dihydro-indol-2-one
 138 3-Chloro-7,7-bis-(4-hydroxy-phenyl)-4-methyl-5,7-dihydro-pyrrolo[3,2-c]pyridazin-6-one
 139 Acetic acid 4-[3-(4-acetoxy-phenyl)-6-chloro-4-fluoro-7-methyl-2-oxo-2,3-dihydro-1H-indol-3-yl]-phenyl ester

15797DK02

- 19 -

140 Acetic acid 4-[3-(4-acetoxy-phenyl)-6-chloro-4,7-dimethyl-2-oxo-2,3-dihydro-1H-indol-3-yl]-phenyl ester
 141 Acetic acid 4-[7-(4-acetoxy-phenyl)-3-chloro-4-methyl-6-oxo-6,7-dihydro-5H-pyrrolo[3,2-c]pyridazin-7-yl]-phenyl ester
 5 142 6-Chloro-4,5-difluoro-3,3-bis-(4-hydroxy-phenyl)-7-methyl-1,3-dihydro-indol-2-one
 143 Acetic acid 4-[3-(4-acetoxy-phenyl)-6-chloro-4,5-difluoro-7-methyl-2-oxo-2,3-dihydro-1H-indol-3-yl]-phenyl ester
 144 3,3-Bis-(4-hydroxy-phenyl)-3,6,7,8-tetrahydro-1H-1-aza-as-indacen-2-one
 145 3,3-Bis-(4-hydroxy-phenyl)-1,3,6,7,8,9-hexahydro-benzo[g]indol-2-one
 10 146 3,3-Bis-(4-hydroxy-phenyl)-7-trifluoromethyl-1,3-dihydro-indol-2-one
 147 7-Chloro-3,3-bis-(4-hydroxy-phenyl)-1,3-dihydro-indol-2-one
 148 3,3-Bis-(4-hydroxy-phenyl)-2-oxo-2,3-dihydro-1H-indole-7-carbonitrile
 149 7-Ethyl-3,3-bis-(4-hydroxy-phenyl)-1,3-dihydro-indol-2-one
 150 3,3-Bis-(4-hydroxy-phenyl)-7-morpholin-4-yl-1,3-dihydro-indol-2-one
 15 151 3,3-Bis-(4-hydroxy-phenyl)-7-isopropyl-1,3-dihydro-indol-2-one
 152 7-tert-Butyl-3,3-bis-(4-hydroxy-phenyl)-1,3-dihydro-indol-2-one
 153 3,3-Bis-(4-hydroxy-phenyl)-2-oxo-2,3-dihydro-1H-indole-7-carboxylic acid dimethylamide
 154 3,3-Bis-(4-hydroxy-phenyl)-7-(4-methyl-piperazine-1-carbonyl)-1,3-dihydro-indol-2-one
 155 3,3-Bis-(4-hydroxy-phenyl)-2-oxo-2,3-dihydro-1H-indole-5-carboxylic acid
 20 156 3,3-Bis-(4-hydroxy-phenyl)-2-oxo-2,3-dihydro-1H-indole-5-carboxylic acid dimethylamide
 157 3,3-Bis-(4-hydroxy-phenyl)-5-(morpholine-4-carbonyl)-1,3-dihydro-indol-2-one
 158 3,3-Bis-(4-hydroxy-phenyl)-4-methoxy-1,3-dihydro-indol-2-one
 159 3,3-Bis-(4-hydroxy-phenyl)-6-methoxy-1,3-dihydro-indol-2-one
 160 3,3-Bis-(4-hydroxy-phenyl)-5-(4-methyl-piperazine-1-carbonyl)-1,3-dihydro-indol-2-one
 25 161 6-Chloro-3,3-bis-(4-mercaptop-phenyl)-7-methyl-1,3-dihydro-indol-2-one
 162 N-{4-[3-(4-Acetylarnino-phenyl)-7-methyl-2-oxo-2,3-dihydro-1H-indol-3-yl]-phenyl}-acetamide
 163 3,3-Bis-(4-hydroxy-phenyl)-7-(3-methoxy-prop-1-ynyl)-1,3-dihydro-indol-2-one
 164 3,3-Bis-(4-hydroxy-phenyl)-7-pyridin-3-yl-1,3-dihydro-indol-2-one
 165 7-Bromo-3,3-bis-(4-hydroxy-phenyl)-1,3-dihydro-indol-2-one
 30 166 6-Chloro-3,3-bis-(4-methanesulfonyl-phenyl)-7-methyl-1,3-dihydro-indol-2-one
 167 6,6-Bis-(4-hydroxy-phenyl)-4,6-dihydro-pyrrolo[3,2-d]thiazol-5-one
 168 6,6-Bis-(4-hydroxy-phenyl)-2-methyl-4,6-dihydro-pyrrolo[3,2-d]thiazol-5-one
 169 6,6-Bis-(4-hydroxy-phenyl)-2-isopropyl-4,6-dihydro-pyrrolo[3,2-d]thiazol-5-one
 170 2-Chloro-6,6-bis-(4-hydroxy-phenyl)-4,6-dihydro-pyrrolo[3,2-d]thiazol-5-one
 35 171 4,4-Bis-(4-hydroxy-phenyl)-4,6-dihydro-pyrrolo[3,2-d]isothiazol-5-one
 172 3,3-Bis-(4-hydroxy-phenyl)-7-methyl-1,3-dihydro-pyrrolo[2,3-c]pyridin-2-one
 173 3,3-Bis-(4-hydroxy-phenyl)-7-methyl-1,3-dihydro-pyrrolo[3,2-b]pyridin-2-one
 174 3,3-Bis-(4-fluoro-phenyl)-7-methyl-1,3-dihydro-pyrrolo[3,2-b]pyridin-2-one
 175 3,3-Bis-(4-fluoro-phenyl)-7-methyl-1,3-dihydro-pyrrolo[3,2-c]pyridin-2-one
 40 176 3,3-Bis-(4-fluoro-phenyl)-7-isopropyl-1,3-dihydro-pyrrolo[3,2-c]pyridin-2-one
 177 3,3-Bis-(4-hydroxy-phenyl)-3,6,7,8-tetrahydro-1H-1,5-diaza-as-indacen-2-one
 178 3,3-Bis-(4-hydroxy-phenyl)-3,6,7,8-tetrahydro-1H-1,4-diaza-as-indacen-2-one
 179 3,3-Bis-(4-hydroxy-phenyl)-1,3,6,7,8,9-hexahydro-pyrrolo[3,2-c]quinolin-2-one
 180 3,3-Bis-(4-hydroxy-phenyl)-1,3,6,7,8,9-hexahydro-pyrrolo[3,2-c]isoquinolin-2-one
 45 181 5-Fluoro-3,3-bis-(4-hydroxy-phenyl)-3,6,7,8-tetrahydro-1H-1-aza-as-indacen-2-one
 182 7-Ethyl-5-fluoro-3,3-bis-(4-hydroxy-phenyl)-1,3-dihydro-indol-2-one
 183 3,3-Bis-(4-hydroxy-phenyl)-1,3,6,8-tetrahydro-7-oxa-1-aza-as-indacen-2-one
 184 3,3-Bis-(4-hydroxy-phenyl)-1,3,7,8-tetrahydro-6-oxa-1-aza-as-indacen-2-one
 185 3,3-Bis-(4-hydroxy-phenyl)-1,6,7,9-tetrahydro-3H-8-oxa-1-aza-cyclopenta[a]naphthalen-2-one
 50 186 3,3-Bis-(4-hydroxy-phenyl)-1,7,8,9-tetrahydro-3H-pyrano[2,3-g]indol-2-one
 187 3,3-Bis-(4-hydroxy-phenyl)-7-methyl-3,6,7,8-tetrahydro-1H-1,7-diaza-as-indacen-2-one
 188 3,3-Bis-(4-hydroxy-phenyl)-7-methyl-1,3,7,8-tetrahydro-1,7-diaza-as-indacene-2,6-dione
 189 3,3-Bis-(4-hydroxy-phenyl)-7,8,8-trimethyl-1,3,7,8-tetrahydro-1,7-diaza-as-indacene-2,6-dione
 190 3,3-Bis-(4-hydroxy-phenyl)-5-iodo-1,3-dihydro-indol-2-one
 55 191 5-Amino-3,3-bis-(4-hydroxy-phenyl)-1,3-dihydro-indol-2-one
 192 5-Amino-3,3-bis-(4-hydroxy-phenyl)-7-methyl-1,3-dihydro-indol-2-one
 193 6-Bromo-3,3-bis-(4-hydroxy-phenyl)-7-methyl-1,3-dihydro-indol-2-one
 194 7-Fluoro-3,3-bis-(4-hydroxy-phenyl)-1,3-dihydro-indol-2-one
 195 3,3-Bis-(4-hydroxy-phenyl)-7-methoxy-1,3-dihydro-indol-2-one
 60 196 4,7-Dichloro-3,3-bis-(4-hydroxy-phenyl)-1,3-dihydro-indol-2-one
 197 6-Chloro-3,3-bis-(4-hydroxy-phenyl)-1,7-dimethyl-1,3-dihydro-indol-2-one
 198 6-Chloro-3,3-bis-(4-fluoro-phenyl)-7-methyl-1,3-dihydro-indol-2-one
 199 3,3-Bis-(4-hydroxy-phenyl)-7-(morpholine-4-carbonyl)-1,3-dihydro-indol-2-one
 200 3,3-Bis-(4-hydroxy-phenyl)-1,3-dihydro-pyrrolo[2,3-d]pyridin-2-one.

15797DK02

- 20 -

Method of treatment

- A further aspect of the present invention relates to a method of treating a mammal suffering from or being susceptible to cancer, the method comprising administering to the mammal a therapeutically effective amount of a compound defined herein. Conditions with respect to dosage, administration, etc. may be as defined further below.
- 5

Biological effects

- The present inventors have found that many compounds of general formula (I) are shown to inhibit the proliferation of MDA468 cells at lower concentrations as those required to inhibit
10 proliferation of MDA231 cells. A possible mechanism to explain this finding is the selective inhibition of protein synthesis by compounds of general formula (I) in MDA468 cells compared to MDA231 cells. Our present hypothesis is that compounds of the general formula (I) inhibit protein synthesis by selective inhibition of mTOR pathway activation of translation inhibition.
- 15 The selective inhibition of mTOR pathway activation by compounds of the general formula (I) in Western blots correlates with cell proliferation and protein synthesis data. This suggests that detection of mTOR pathway activity by measurement of either p70S6K, 4E-BP1 or S6K phosphorylation status using phosphor-specific or total protein antibodies by Western blot or ELISA, or measurement of p70S6K kinase activity, in patient tumour material or blood
20 samples, may provide a useful method for selecting patients who will respond to compounds of general formula (I). Alternatively, measurement of p70S6K or S6K phosphorylation status using phosphospecific antibodies, or p70S6K kinase activity, in tumour material or blood samples may provide a biomarker useful for determining drug dosing of compounds of the general formula (I) in human clinical trials.

Compounds for medical use

- Apart from the more specific medical use outlined above, it is also believed that the majority of the compounds defined herein are generally applicable for medical use.
- Thus, in a further aspect the present invention relates to a compound as defined herein for use as a medicament, with the proviso that the compound is not one selected from 3,3-bis-
30 (4-hydroxy-phenyl)-1,3-dihydro-indol-2-one and acetic acid 4-[3-(4-acetoxy-phenyl)-2-oxo-2,3-dihydro-1H-indol-3-yl]-phenyl ester.

Novel compounds

As mentioned in the Introductory section, a few compounds according to the general formula (I) have been described in the literature and (unrelated) biological effects have previously been described for some of these compounds.

5 Thus, a still further aspect of the present invention relates to a compound of the formula (I)

as defined further above, with the proviso that the compound is not one selected from
3,3-bis-(4-hydroxy-phenyl)-1,3-dihydro-indol-2-one,
3,3-bis-(4-hydroxy-phenyl)-7-methyl-1,3-dihydro-indol-2-one;

10 3,3-bis-(4-hydroxy-phenyl)-4,5-dimethyl-1,3-dihydro-indol-2-one ;
3,3-bis-(4-hydroxy-phenyl)-5,7-dimethyl-1,3-dihydro-indol-2-one;

5-bromo-3,3-bis-(4-hydroxy-phenyl)-1,3-dihydro-indol-2-one;

5-chloro-3,3-bis-(4-hydroxy-phenyl)-1,3-dihydro-indol-2-one;

3,3-bis-(4-hydroxy-phenyl)-5-methoxy-1,3-dihydro-indol-2-one;

15 3,3-bis-(4-hydroxy-phenyl)-5-methyl-1,3-dihydro-indol-2-one;
6-chloro-3,3-bis-(4-hydroxy-phenyl)-7-methyl-1,3-dihydro-indol-2-one;

acetic acid 4-[3-(4-acetoxy-phenyl)-2-oxo-2,3-dihydro-1H-indol-3-yl]-phenyl ester; and

acetic acid 4-[3-(4-acetoxy-phenyl)-5-methyl-2-oxo-2,3-dihydro-1H-indol-3-yl]-phenyl ester.

The specification of the compound of the formula (I) and the preferences are as described
20 hereinabove. In particular, preferred compounds of the formula (I) have the formula (II) as
defined above.

Preparation of compounds of the formula (I) and the formula (II)

The compounds generally can be synthesized as described in the Examples section.

15797DK02

- 22 -

Formulation of pharmaceutical compositions

The compound of the formula (I) (and the more specific compound of the formula (III)) is suitably formulated in a pharmaceutical composition so as to suit the desirable route of administration.

- 5 The administration route of the compounds may be any suitable route which leads to a concentration in the blood or tissue corresponding to a therapeutic effective concentration. Thus, e.g., the following administration routes may be applicable although the invention is not limited thereto: the oral route, the parenteral route, the cutaneous route, the nasal route, the rectal route, the vaginal route and the ocular route. It should be clear to a person skilled in the art that the administration route is dependent on the particular compound in question; particularly the choice of administration route depends on the physico-chemical properties of the compound together with the age and weight of the patient and on the particular disease or condition and the severity of the same.
- 10 10

- 15 The compounds may be contained in any appropriate amount in a pharmaceutical composition, and are generally contained in an amount of about 1-95%, e.g. 1-10%, by weight of the total weight of the composition. The composition may be presented in a dosage form which is suitable for the oral, parenteral, rectal, cutaneous, nasal, vaginal and/or ocular administration route. Thus, the composition may be in form of, e.g., tablets, capsules, pills, powders, granulates, suspensions, emulsions, solutions, gels including hydrogels, pastes, ointments, creams, plasters, drenches, delivery devices, suppositories, enemas, injectables, implants, sprays, aerosols and in other suitable form.
- 20 20

- 25 The pharmaceutical compositions may be formulated according to conventional pharmaceutical practice, see, e.g., "Remington's Pharmaceutical Sciences" and "Encyclopedia of Pharmaceutical Technology", edited by Swarbrick, J. & J. C. Boylan, Marcel Dekker, Inc., New York, 1988. Typically, the compounds defined herein are formulated with (at least) a pharmaceutically acceptable carrier or excipient. Pharmaceutically acceptable carriers or excipients are those known by the person skilled in the art. Formation of suitable salts of the compounds of the Formula I will also be evident in view of the before-mentioned.

- 30 Thus, the present invention provides in a further aspect a pharmaceutical composition comprising a compound of the general Formula I in combination with a pharmaceutically acceptable carrier.

The compound is preferably one of those defined under "Compounds for medical use".

15797DK02

- 23 -

In a particular embodiment, the compound is as defined under "Novel compounds", i.e. novel compounds of the Formula (I) and Formula (II) respectively.

- Pharmaceutical compositions according to the present invention may be formulated to release the active compound substantially immediately upon administration or at any substantially predetermined time or time period after administration. The latter type of compositions is generally known as controlled release formulations.

In the present context, the term "controlled release formulation" embraces i) formulations which create a substantially constant concentration of the drug within the body over an extended period of time, ii) formulations which after a predetermined lag time create a substantially constant concentration of the drug within the body over an extended period of time, iii) formulations which sustain drug action during a predetermined time period by maintaining a relatively, constant, effective drug level in the body with concomitant minimization of undesirable side effects associated with fluctuations in the plasma level of the active drug substance (sawtooth kinetic pattern), iv) formulations which attempt to localize drug action by, e.g., spatial placement of a controlled release composition adjacent to or in the diseased tissue or organ, v) formulations which attempt to target drug action by using carriers or chemical derivatives to deliver the drug to a particular target cell type.

Controlled release formulations may also be denoted "sustained release", "prolonged release", "programmed release", "time release", "rate-controlled" and/or "targeted release" formulations.

Controlled-release pharmaceutical compositions may be presented in any suitable dosage forms, especially in dosage forms intended for oral, parenteral, cutaneous nasal, rectal, vaginal and/or ocular administration. Examples include single or multiple unit tablet or capsule compositions, oil solutions, suspensions, emulsions, microcapsules, microspheres, nanoparticles, liposomes, delivery devices such as those intended for oral, parenteral, cutaneous, nasal, vaginal or ocular use.

Preparation of solid dosage forms for oral use, controlled release oral dosage forms, fluid liquid compositions, parenteral compositions, controlled release parenteral compositions, rectal compositions, nasal compositions, percutaneous and topical compositions, controlled release percutaneous and topical compositions, and compositions for administration to the eye will be well-known to those skilled in the art of pharmaceutical formulation. Specific formulations can be found in "Remington's Pharmaceutical Sciences".

Capsules, tablets and pills etc. may contain for example the following compounds: microcrystalline cellulose, gum or gelatin as binders; starch or lactose as excipients;

15797DK02

- 24 -

- stearates as lubricants; various sweetening or flavouring agents. For capsules the dosage unit may contain a liquid carrier like fatty oils. Likewise coatings of sugar or enteric agents may be part of the dosage unit. The pharmaceutical compositions may also be emulsions of the compound(s) and a lipid forming a micellar emulsion.
- 5 · For parenteral, subcutaneous, intradermal or topical administration the pharmaceutical composition may include a sterile diluent, buffers, regulators of tonicity and antibacterials. The active compound may be prepared with carriers that protect against degradation or immediate elimination from the body, including implants or microcapsules with controlled release properties. For intravenous administration the preferred carriers are physiological saline or phosphate buffered saline.
- 10

Dosages

- In one embodiment, the pharmaceutical composition is in unit dosage form. In such embodiments, each unit dosage form typically comprises 0.1-250 mg, such as 0.1-100 mg, e.g. 0.1-50 mg, of the compound.
- 15 · More generally, the compound are preferably administered in an amount of about 0.1-50 mg per kg body weight per day, such as about 0.5-25 mg per kg body weight per day.

For compositions adapted for oral administration for systemic use, the dosage is normally 2 mg to 1 g per dose administered 1-4 times daily for 1 week to 12 months depending on the disease to be treated.
- 20 · The dosage for oral administration of the composition in order to prevent diseases or conditions is normally 1 mg to 75 mg per kg body weight per day. The dosage may be administered once or twice daily for a period starting 1 week before the exposure to the disease until 4 weeks after the exposure.
- 25 · For compositions adapted for rectal use for preventing diseases, a somewhat higher amount of the compound is usually preferred, i.e. from approximately 1 mg to 100 mg per kg body weight per day.

For parenteral administration, a dose of about 0.1 mg to about 50 mg per kg body weight per day is convenient. For Intravenous administration, a dose of about 0.1 mg to about 20 mg per kg body weight per day administered for 1 day to 3 months is convenient. For
- 30 · intraarticular administration, a dose of about 0.1 mg to about 20 mg per kg body weight per

15797DK02

- 25 -

day is usually preferable. For parenteral administration in general, a solution in an aqueous medium of 0.5-2% or more of the active ingredients may be employed.

For topical administration on the skin, a dose of about 1 mg to about 5 g administered 1-10 times daily for 1 week to 12 months is usually preferable.

5 Combination treatment

In an intriguing embodiment of the present invention, the compound of the general formula (I) or the general formula (II) is used therapeutically in combination with one or more other chemotherapeutic agents. Examples of such chemotherapeutic agents are those selected from daunorubicin, docetaxel, prednisone, dexamethasone, decadron, altretamine,

10 amifostine, aminoglutethimide, dactinomycin, anastrozole, asparaginase, bicalutamide, bleomycin, busulfan, carboplatin, carmustine, chlorambucil, chlorodeoxyadenosine, cisplatin, cytosine arabinoside, dacarbazine, doxorubicin, epirubicin, estramustine, diethylstilbestrol, fludarabine, flutamide, 5-fluorouracil, gemcitabine, goserelin, Idarubicin, irinotecan, levamisole, lomustine, mechlorathamine, alkeran, mercaptopurine, taxol (e.g. paclitaxel). In 15 particular, the further chemotherapeutic agent is selected from taxanes such as Taxol, Paclitaxel and Docetaxel.

Thus, with respect to the use defined herein, the medicament may further comprise one or more other chemotherapeutic agents.

With respect to the pharmaceutical composition defined herein, such a composition may 20 further comprise one or more other chemotherapeutic agents.

EXAMPLES

Example 1: Procedures for preparation of isatin derivatives

Isatin derivatives used as intermediates can be obtained by either Protocol A or Protocol B.

Protocol A, based on literature procedures, was used to generate aromatic isatins with either 25 electron-donating substituents (see Stolle: *J. Prakt. Chem.* (1922), **105**, 137 and Sandmeyer: *Helv. Chim. Acta* (1919), **2**, 234) or a 5-membered electron rich heteroaromatic moiety (see Shvedov et al. (*Chem. Heterocycl. Compd. Engl. Transl.* (1975), **11**, 666). Examples of preferred 5-membered heterocycles are thiophenes ($V^1=S$, $V^2=V^3=C(-)$ and $V^4=bond$; $V^2=S$, $V^1=V^3=C(-)$ and $V^4=bond$ or $V^3=S$, $V^1=V^2=C(-)$ and $V^4=bond$), furans ($V^1=O$, $V^2=V^3=C(-)$ and $V^4=bond$; $V^2=O$, $V^1=V^3=C(-)$ and $V^4=bond$ or $V^3=O$, $V^1=V^2=C(-)$ and

15797DK02

- 26 -

V^4 =bond), pyrazoles ($V^1=N(-)$, $V^2=N$, $V^3=C(-)$ and $V^4=bond$; $V^1=N$, $V^2=N(-)$, $V^3=C(-)$ and $V^4=bond$) and imidazoles ($V^1=N(-)$, $V^2=C(-)$, $V^3=N$ and $V^4=bond$; $V^1=N$, $V^2=C(-)$, $V^3=N(-)$ and $V^4=bond$).

Protocol B, based on literature procedures, was used to generate aromatic isatins with electron-withdrawing substituents (see Hewawasam and Maenwell: *Tet. Lett.* (1994), **35**, 7303) and 6-membered electron-poor heteroaromatic isatins (see Rivalle and Bisagni: *J. Heterocycl. Chem.* (1997), **34**, 441). Examples of preferred 6-membered heterocycles are pyridines ($V^1=N$, $V^2=V^3=V^4=C(-)$; $V^2=N$, $V^1=V^3=V^4=C(-)$; $V^3=N$, $V^1=V^2=V^4=C(-)$ and $V^4=N$, $V^1=V^2=V^3=C(-)$), pyrimidines ($V^1=V^3=N$, $V^2=V^4=C(-)$; $V^2=V^1=N$, $V^1=V^3=C(-)$), pyrazines ($V^1=V^4=N$, $V^2=V^3=C(-)$) and pyridazines ($V^1=V^2=N$, $V^3=V^4=C(-)$; $V^2=V^3=N$, $V^1=V^4=C(-)$; $V^3=V^4=N$, $V^1=V^2=C(-)$).

Other isatins of interest could in addition be prepared using one of the alternative methods published in the literature (see i.e. Tatsugi et al. *ARKIVOC* (2001), 67-73 or the review by Silva et al. in *J. Braz. Chem. Soc.* (2001), **12**, 273-324).

15 Protocol A: Preparation of isatin derivatives

To a well stirred suspension of sodium sulfate (314 g, 2211 mmol) in water (700 mL) at 60°C were added in sequence hydroxylamine hydrochloride (56 g, 806 mmol), chloral hydrate (47 g, 284 mmol), 2-methyl-3-chloro-aniline (40 g, 283 mmol) in water (500 mL) and finally concentrated hydrochloric acid (12 M, 24.2 ml, 290 mmol). The mixture temperature was risen to 100°C. After 20 minutes, the brown solution was left to cool to room temperature and kept stirring overnight. The solid present was filtered, washed with water (3X), heptane (2X) and dried at 60°C under vacuum for 6 hours. Obtained 62 g of N-(3-Chloro-2-methyl-phenyl)-2-hydroxyimino-acetimidoyl chloride (1) as a beige solid used without further purification. δ_{H} (400 MHz, DMSO-d6) 12.3 (1 H, s), 9.8 (1 H, s), 7.7 (1 H, s), 7.42 (1 H, d, $J=7.8$), 7.36 (1 H, d, $J=7.6$), 7.3 (1 H, m), 2.25 (3 H, s).

To well stirred sulphuric acid (18.3 M, 300 ml) heated at 50°C was added N-(3-Chloro-2-methyl-phenyl)-2-hydroxyimino-acetimidoyl chloride (1) in small portion over 20 minutes (exothermic up to 70°C) (60 g, 282 mmol). After addition was completed, the temperature was risen to 80°C and kept for 20 minutes after which the reaction was left cool to room

15797DK02

- 27 -

temperature. The brown mixture was slowly poured into ice (~500 g) and water (500 mL), diluted with more water (1 L) to yield a brown-orange slurry. The solid was collected by filtration, washed with water (2X) under suction to yield an orange solid. This solid was dissolved in 0.4 M sodium hydroxide (1 L). All insoluble tar was removed by filtration.

5 · Concentrated hydrochloric acid (12 M, 70 mL) was added, the resulting brown-orange solid was collected by filtration, washed with water (3X), heptane (2X) and dried at 54°C under vacuum for 6 hours. Obtained 34.5 g (208 mmol, 62%) of 6-Chloro-7-methyl-1H-indole-2,3-dione (2). δ_H (400 MHz, DMSO-d6) 11.3 (1 H, s), 7.4 (1 H, d, $J=8.0$), 7.2 (1 H, d, $J=8.1$), 2.25 (3 H, s).

10 · Protocol B: Preparation of isatin derivatives

To a well stirred solution of Boc anhydride (2.56 g, 11.7 mmol) in THF (10 mL) was added 4-aminopyridine (1.0 g, 10.6 mmol) in portions over 3 minutes while maintaining the temperature between 20°C and 25°C. No more exotherm was observed after 5 minutes. The reaction was then stirred at room temperature for 3.5 hours. After *in vacuo* concentration the crude mixture was then titurated in hexane (20 mL), filtered and washed with more hexane (~5 mL). The resulting solid dried under reduced pressure to yield 1.93 g (9.9 mmol, 94%) of pyridin-4-yl-carbamic acid tert-butyl ester as a white solid and was used without further purification. LCMS (BDS-Hypersil C₁₈, 50 mm X 2.1 mm, 5 μ , 2.5 minutes) m/z 195 [MH]⁺ @ retention time 0.90 minutes, 100% by UV at 215 nm.

To a stirred solution of pyridin-4-yl-carbamic acid *tert*-butyl ester (0.62 g, 3.09 mmol) in THF (9 mL) cooled to -5°C was slowly added a solution of t-BuLi (1.7M in THF, 5.5 mL, 9.27 mmol) over 17 minutes while maintaining the temperature between -5°C and 1°C. A red brown precipitate resulted and the reaction mixture stirred at 0°C for a further 1.5 hours. The reaction mixture was then cooled back down to -5°C and diethyloxalate (1.3 mL, 9.27 mmol) was added. The reaction was allowed to reach room temperature and then after 2 hours quenched with water (10 mL). After *in vacuo* concentration the resulting mixture was diluted in ethyl acetate (20 mL) and washed with water (10 mL), dried over Na₂SO₄ and concentrated *in vacuo*. Purification by flash column chromatography (30% EtOAc/ Hexane) afforded 0.16 g (0.54 mmol, 17%) of (4-*tert*-butoxycarbonylamino-pyridin-3-yl)-oxo-acetic acid ethyl ester as a brown oil.

15797DK02

- 28 -

LCMS (BDS-Hypersil C₁₈, 50 mm X 2.1 mm, 5 μ , 2.5 minutes) m/z 295 [MH]⁺ + H₂O adduct @ retention time 1.07 minute, 96% by UV at 215 nm

(4-tert-Butoxycarbonylamino-pyridin-3-yl)-oxo-acetic acid ethyl ester (0.14 g, 0.476 mmol) was heated at 186°C under 5 mmHg for 25 minutes in a Kugelrohr apparatus. The brown oil darkens and subsequently gives off gases to form a dark green solid. The solid was dissolved in MeOH and concentrated *in vacuo* to yield 0.04 g (0.3 mmol, 56%) of 1*H*-pyrrolo[3,2-c]pyridine-2,3-dione as a dark solid. The isatin was then taken to the next step without further purification.

Protocol C: Introduction of functional groups on the Isatin derivatives

10 . 6-Chloro-7-methyl-5-nitro-1H-indole-2,3-dione (4)

To a well stirred suspension of 2 (2.0 g, 10.2 mmol) in glacial acetic acid (2 mL) and sulphuric acid (4 mL) cooled in ice/water was added a cold mixture of nitric acid (69%, 1 g, 10.9 mmol) and sulphuric acid (0.7 g, 7.3 mmol) at such a rate to maintain internal temperature below 5°C. After addition was completed reaction mixture was stirred at room temperature for 1 h, then slowly poured over ice (~20 g) and left standing for 10 minutes. The solid formed was collected by filtration, washed with cold water (3X), dried under vacuum overnight to yield 1.92 g (8.0 mmol, 78%) of 6-Chloro-7-methyl-5-nitro-1H-indole-2,3-dione (4) as an orange solid, LCMS m/z 118.79 [Fragment]⁺ @ R_t 1.14min, 95%

20 Example 2: Procedures for preparation of the final compounds of the invention

The obtained isatin derivatives were used to generate the final compounds of the invention. Typically, an isatin derivative was heated with a benzene derivative to 100 °C in a mixture of glacial acetic acid and sulphuric acid under nitrogen. Alternatively, the isatin derivative was reacted at room temperature with a benzene derivative in triflic acid under nitrogen (see Klumpp *et al.* *J. Org. Chem.* (1998), **63**, 4481-84). Thioamide derivatives of the final compounds ($Q=S$ and $n=1$) were obtained by reacting the corresponding amides ($Q=O$ and $n=1$) with Lawesson's reagent as described in *Organic Synthesis Coll. Vol. VII*, p372.

15797DK02

- 29 -

Protocol D: Preparation of the final compounds

- To a suspension of phenol (0.28 g, 2.9 mmol) and 5-methoxy-1H-indole-2,3-dione (0.24 g (1.3 mmol) in glacial acetic acid (1.5 ml) under nitrogen was added sulphuric acid (18.3 M, 0.145 mL). The mixture was heated at 100°C for 2 hours. Crude reaction mixture was diluted with water and extracted with ethyl acetate (2X). The organic layer was dried (Na_2SO_4) and concentrated under reduced pressure to yield a brown solid. This solid was mixed with DCM: AcOEt (9: 1) (3X) and gave 0.08 g (0.35 mmol, 18%) of 3,3-bis-(4-hydroxy-phenyl)-5-methoxy-1,3-dihydro-indol-2-one (7).
- LCMS m/z 348.19 [M+H]⁺ @ R_T 1.09 min, 100%

δ_{H} (400 MHz, Methanol-d4) 6.92 (4 H, d, $J=8.80$ Hz), 6.79 - 6.82 (1 H, m), 6.69 - 6.73 (1 H, m), 6.61 (5 H, m), 3.62 (3 H, s)

Protocol E: Preparation of the final compounds

- To a well stirred suspension of 6-chloro-7-methyl-1H-indole-2,3-dione (0.15 g, 0.76 mmol) in toluene (anhydrous) (1 mL) was added trifluoromethane sulfonic acid (1.25 mL). The tube was sealed and the mixture was stirred at room temperature for 12 hours. The dark brown reaction mixture was then slowly poured over ice (~10 g) and left standing for 10 minutes. The formed precipitate was collected by filtration, washed with cold water (3X 100 mL), dried under vacuum. Purification by flash column chromatography (gradient elution with EtOAc/Heptane (1:9 to 1:1)) followed by recrystallisation (MeOH/EtOAc) gave 25.2 mg (0.07

15797DK02

- 30 -

mmol, 9%) of 6-chloro-7-methyl-3,3-di-p-tolyl-1,3-dihydro-indol-2-one (**28**) as a light brown solid.

LCMS (BDS-Hypersil C₁₈, 50 mm X 2.1 mm, 5 μ, 2.5 minutes) m/z major 362.12 [MH]⁺ and minor 403.17 [MH+MeCN]⁺ @ retention time 2.18 minutes, 100% by UV at 215 nm.

5 δ_H (400 MHz, DMSO-d6) 2.24 (6 H, s) 2.28 (3 H, s) 7.00 - 7.03 (5 H, m) 7.05 - 7.12 (5 H, m) 10.96 (1 H, s).

The following compounds were all prepared according to Protocols D or E, unless otherwise specified.

6-Chloro-3,3-bis-(4-hydroxy-phenyl)-7-methyl-1,3-dihydro-Indol-2-one (3)(BIC0043901)

10

LCMS m/z 366.3 [(Cl³⁵) M+H]⁺ @ R_T 1.3 min, 100%

δ_H (400 MHz, DMSO-d6) 10.9 (1 H, s), 9.5 (2 H, s), 7.1 (1 H, d, J=9.8), 7.05 (1 H, d, J=9.6), 6.95 (4 H, d, J=10.2), 6.7 (4 H, d, J=10.2), 2.35 (3 H, s).

6-Chloro-3,3-bis-(4-hydroxy-phenyl)-7-methyl-5-nitro-1,3-dihydro-Indol-2-one (5)

15

LCMS m/z 411.1 [(Cl³⁵) M+H]⁺ @ R_T 1.26 min, 93%

δ_H (400 MHz, DMSO-d6) 7.48 (1 H, s), 6.96 - 6.96 (4 H, m), 6.66 - 6.59 (4 H, m), 2.35 (3 H, s).

15797DK02

- 31 -

5-Amino-6-chloro-3,3-bis-(4-hydroxy-phenyl)-7-methyl-1,3-dihydro-indol-2-one (6)

To a solution of 5 (0.1 g, 0.24 mmol) in methanol (2 mL) was added Pd/C (10% w/w, 0.03 g). The black mixture was stirred under hydrogen at room temperature for 16 hours. The catalyst was removed by filtration, and the solvent was removed under reduced pressure to yield 0.084 g (0.22 mmol, 92%) of 5-Amino-6-chloro-3,3-bis-(4-hydroxy-phenyl)-7-methyl-1,3-dihydro-indol-2-one (6).

LCMS m/z 381.16 $[(Cl^{35}) M+H]^+$ @ R_T 0.94 min, 84%. δ_H (400 MHz, DMSO-d6) 11.7 (1 H, s), 8.1 (1 H, s), 2.3 (3 H, s).

10 **3,3-Bis-(4-hydroxy-phenyl)-5-methoxy-1,3-dihydro-indol-2-one (7)****3,3-Bis-(4-hydroxy-phenyl)-5-trifluoromethoxy-1,3-dihydro-indol-2-one (8)**

LCMS m/z 402.12 [M+H]⁺ @ R_T 1.27 min, 96%

δ_H (400 MHz, DMSO-d6) 10.78 (1 H, s), 9.43 (2 H, s), 7.23 (1 H, d, J=8.56), 7.17 (1 H, s), 6.99 (1 H, d, J=8.56), 6.93 (4 H, d, J=8.80), 6.66 (4 H, d, J=8.56).

3,3-Bis-(4-hydroxy-phenyl)-5,7-dimethyl-1,3-dihydro-indol-2-one (9)

15797DK02

- 32 -

LCMS m/z 346.19 [M+H]⁺ @ R_T 1.24 min, 92%

δ_H (400 MHz, DMSO-d6) 10.39 (1 H, s), 9.25 (2 H, s), 6.8 (4 H, d, J=8.6), 6.70 (1 H, s), 6.68 (1 H, s), 6.52 (4 H, d, J=8.6), 2.09 (6 H, s).

3,3-Bis-(4-hydroxy-phenyl)-2-oxo-2,3-dihydro-1H-indole-7-carboxylic acid (10)

5

LCMS m/z 362.13 [M+H]⁺ @ R_T 1.06 min, 90%

δ_H (400 MHz, DMSO-d6) 10.11 (1 H, s), 9.43 (2 H, s), 7.71 (1 H, dd, J=8.1, 1.2), 7.38 (1 H, dd, J=7.3, 0.7), 7.08 (1 H, t, J=7.8), 6.92 (4 H, d, J=8.8), 6.67 (4 H, d, J=8.8).

5-Chloro-3,3-bis-(4-hydroxy-phenyl)-1,3-dihydro-indol-2-one (11)

10

LCMS m/z 352.11 [(Cl³⁵) M+H]⁺ @ R_T 1.21 min, 100%

δ_H (400 MHz, DMSO-d6) 10.72 (1 H, s), 9.42 (2 H, s), 7.25 (1 H, dd, J=8.2, 2.1), 7.18 (1 H, d, J=2.2), 6.89-6.95 (5 H, m), 6.68 (4 H, d, J=8.6).

5-Fluoro-3,3-bis-(4-hydroxy-phenyl)-1,3-dihydro-indol-2-one (12)

15

15797DK02

- 33 -

LCMS m/z 336.16 [M+H]⁺ @ R_T 1.14 min, 90%

δ_H (400 MHz, DMSO-d6) 10.61 (1 H, s), 9.41 (2 H, s), 7.00-7.10 (2 H, m), 6.93 (4 H, d, J=8.6), 6.89 (1 H, dd, J=8.4, 4.5), 6.67 (4 H, d, J=8.8).

3,3-Bis-(4-hydroxy-phenyl)-5-nitro-1,3-dihydro-indol-2-one (13)

5

LCMS m/z 362.86 [M+H]⁺ @ R_T 1.25 min, 93%

δ_H (400 MHz, DMSO-d6) 11.31 (1 H, s), 9.48 (2 H, s), 8.19 (1 H, dd, J=8.7, 2.3), 7.90 (1 H, d, J=2.2), 7.12 (1 H, d, J=8.8), 6.94 (4 H, d, J= 8.8), 6.70 (4 H, d, J=8.8).

5-Chloro-3,3-bis-(4-hydroxy-phenyl)-7-methyl-1,3-dihydro-indol-2-one (14)

10

LCMS m/z 365.92 [(Cl³⁵) M+H]⁺ @ R_T 1.36 min, 91%

δ_H (400 MHz, DMSO-d6) 10.77 (1 H, s), 9.41 (2 H, s), 7.10 (1 H, d, J=1.5), 6.98 (1 H, d, J=1.9), 6.91 (4 H, d, J=8.6), 6.67 (4 H, d, J=8.6), 2.22 (3 H, s).

3,3-Bis-(4-hydroxy-phenyl)-5-methyl-1,3-dihydro-indol-2-one (15)

15

15797DK02

- 34 -

LCMS m/z 331.97 [M+H]⁺ @ R_T 1.37 min, 91%

δ_{H} (400 MHz, DMSO-d6) 10.42 (1 H, s), 9.33 (2 H, s), 6.90-6.97 (2 H, m), 6.88 (4 H, d, J=8.6), 6.75 (1 H, d, J=7.8), 6.62 (4 H, d, J=8.8), 2.17 (3 H, s).

5-Bromo-3,3-bis-(4-hydroxy-phenyl)-1,3-dihydro-indol-2-one (16)

5

LCMS m/z 396.05 [(Br⁷⁹) M+H]⁺ @ R_T 1.14 min, 94%

δ_{H} (400 MHz, MeOD) 7.28 (1 H, dd, J = 8.3, 2.0), 7.14 (1 H, d, J = 2.0), 6.88-6.92 (4 H, m), 6.81 (1 H, d, J=8.3), 6.60-6.64 (4 H, m).

3,3-Bis-(4-hydroxy-phenyl)-5-iodo-1,3-dihydro-indol-2-one (17)

10

LCMS m/z 444.01 [M+H]⁺ @ R_T 1.70 min, 100%

δ_{H} (250 MHz, MeOD) 6.72 - 6.85 (5 H, m) 6.99 - 7.08 (5 H, m) 7.15 - 7.21 (1 H, m) 7.28 (1 H, t, J=7.23 Hz) 7.41 - 7.52 (2 H, m) 7.60 (1 H, dd, J=8.23, 1.65 Hz).

5-Amino-3,3-bis-(4-hydroxy-phenyl)-1,3-dihydro-indol-2-one (18)

15

LCMS m/z 333.13 [M+H]⁺ @ R_T 1.29 min, 90%

15797DK02

- 35 -

δ_H (250 MHz, Methanol-D4) 6.71 (4 H, d, $J=8.60$ Hz) 6.98 - 7.05 (4 H, m) 7.12 (1 H, d, $J=8.23$ Hz) 7.20 (1 H, d, $J=1.83$ Hz) 7.26 - 7.33 (1 H, m).

5-Amino-3,3-bis-(4-hydroxy-phenyl)-7-methyl-1,3-dihydro-indol-2-one (19)

5 LCMS m/z 347.14 [M+H]⁺ @ R_T 1.28 min, 100%

δ_H (400 MHz, Methanol-D4) 7.02 (4 H, d, $J=8.8$ Hz), 6.68 (4 H, d, $J=8.8$ Hz), 6.42 - 6.52 (2 H, m), 2.21 (3 H, s).

6-Bromo-3,3-bis-(4-hydroxy-phenyl)-7-methyl-1,3-dihydro-indol-2-one (20)

10 LCMS m/z 410.04 [M+H]⁺ @ R_T 1.39 min, 94%

δ_H (400 MHz, Methanol-D4) 7.22 (1 H, d, $J=7.8$ Hz), 7.00 (4 H, d, $J=8.8$ Hz), 6.85 (1 H, d, $J=7.8$ Hz), 6.69 (4 H, d, $J=8.8$ Hz), 2.35 (3 H, s).

3,3-Bis-(4-hydroxy-phenyl)-7-fluoro-1,3-dihydro-indol-2-one (21)

15 LCMS m/z 336.11 [M+H]⁺ @ R_T 1.15 min, 97%

δ_H (400 MHz, Methanol-D4) 6.85 - 6.97 (7 H, m), 6.60 (4 H, d, $J=8.8$ Hz).

15797DK02

- 36 -

*3,3-Bis-(4-hydroxy-phenyl)-7-methoxy-1,3-dihydro-indol-2-one (22)*LCMS m/z 348.13 [M+H]⁺ @ R_T 1.14 min, 94%

δ_H (400 MHz, Methanol-D4) 6.95 - 7.06 (5 H, m), 6.89 (1 H, d, J=8.3 Hz), 6.75 (1 H, d, J=7.8 Hz), 6.68 (4 H, d, J=8.8 Hz), 3.89 (3 H, s).

*4,7-Dichloro-3,3-bis-(4-hydroxy-phenyl)-1,3-dihydro-indol-2-one (23)*LCMS m/z 386.04 [M+H]⁺ @ R_T 1.35 min, 97%

δ_H (400 MHz, Methanol-D4) 7.29 (1 H, d, J=8.8 Hz), 7.06 (4 H, d, J=8.8 Hz), 6.97 (1 H, d, J=8.8 Hz), 6.71 (4 H, d, J=8.8 Hz).

*6-Chloro-3,3-bis-(4-hydroxy-phenyl)-1,7-dimethyl-1,3-dihydro-indol-2-one (24)*LCMS m/z 380.11 [M+H]⁺ @ R_T 1.49 min, 100%

δ_H (400 MHz, Methanol-D4) 7.12 (1 H, d, J=7.8 Hz), 6.85 - 7.02 (5 H, m), 6.60 - 6.72 (4 H, m), 3.57 (3 H, s), 2.69 (3 H, s).

15797DK02

- 37 -

6-Chloro-3,3-bis-(4-fluoro-phenyl)-7-methyl-1,3-dihydro-Indol-2-one (25)LCMS m/z 380.11 [M+H]⁺ @ R_T 1.79 min, 100% δ_H (400 MHz, Methanol-D4) 7.15 - 7.30 (4 H, m), 6.97 - 7.13 (6 H, m), 2.34 (3 H, s).**5 3,3-Bis-(4-hydroxy-phenyl)-7-(morpholine-4-carbonyl)-1,3-dihydro-Indol-2-one (26)**

To 10 (1 eq) dissolved in dimethylformamide was added SOCl₂ (3 eq) at 0°C. The mixture was stirred for 1 hour and evaporated to remove excess SOCl₂. Morfoline (3 eq) was added and the reaction mixture was left for 3 hours at room temperature. The solvent was removed

10 In vacuo and the 26 purified by filtration through a pad of silica using dichloromethane-MeOH as eluent.

LCMS m/z 431.16 [M+H]⁺ δ_H (400 MHz, Methanol-D4) 7.19 - 7.29 (2 H, m), 7.11 (1 H, m), 6.97 - 7.05 (4 H, m), 6.64 - 6.75 (4 H, m), 3.69 (8 H, brs).**15 3,3-Bis-(4-hydroxy-phenyl)-1,3-dihydro-pyrrolo[3,2-c]pyridin-2-one (27)**

15797DK02

- 38 -

LCMS (BDS-Hypersil C₁₈, 50 mm X 2.1 mm, 5 µ, 2.5 minutes) m/z 319.28 [MH]⁺ @ retention time 0.76 minute, 100% by UV at 215 nm.

δ_H (400 MHz, CD₃OD) 6.63 (4H, d, J 8.6 Hz), 6.93 (4H, d, J 8.8 Hz), 6.95 (1H, d, J 5.4 Hz), 8.10 (1H, s), 8.24 (1H, d, J 5.4Hz).

5 *Example 2: Cell proliferation*

Inhibition of the proliferation of human cancer cells is widely used to predict the anti-cancer potential of novel chemicals. Typically, human cancer cell lines derived from tumour material are maintained in monolayer cultures and test chemicals are added for varying durations. Test compounds with anti-cancer potential are expected to reduce proliferation and thereby 10 reduce cell number relative to vehicle treated control cell cultures. Cell number can be monitored by cell counting, determining metabolic rate (e.g. metabolic reduction of tetrazolium salts such as (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide or alamarBlue), quantifying DNA content (using DNA binding dyes such as BODIPY-FL-14-dUTP) or measuring nucleotide incorporation into DNA (e.g. radiolabelled thymidine or bromodeoxyuridine incorporation). 15

One important consideration is whether any inhibitory effects of test compounds are specific to cancer cell proliferation or are due to general inhibition of cell proliferation. This issue can be addressed using paired cell lines; for example, the effects of test compounds on the proliferation of transformed cancer cell lines can be compared with the effects of test 20 compounds on the proliferation of untransformed cells from the same tissue source. Alternatively, phenotypic differences between cancer cell lines can be exploited to evaluate the selectivity of test compounds. For example, the anti-proliferative effects of some compounds are only apparent in certain sub-types of human breast cancer cell lines (e.g. breast cancer cell lines with PTEN gene mutations or gene amplification of the p70S6K 25 protein kinase), but not in breast cancer cell lines that do not exhibit this phenotype (Noh et al (2004) Clinical Cancer Research 10, 1013-1023; Yu et al (2001) Endocrine-Related Cancer 8, 249-258). The selectivity of test compounds in the latter models is associated with the mechanism of compound action and is related to the presence, absence or relative abundance of the protein target of the test compound in the relevant cell lines.

30 Method

Compound effects were evaluated on the proliferation of MDA-468 and MDA-231 human breast cancer cells. Cells were maintained in growth medium: RPMI 1640 containing 10% foetal bovine serum and 1% pen/strep. Cells were split 1:4 or 1:8 twice a week when 90% confluent. For the cell proliferation assay, cells were plated at 8000 cell/well into 96 well

15797DK02

- 39 -

black Packard Viewplates in growth medium. After 1 day, the growth medium was replaced with growth medium containing test compounds or vehicle, and cells were maintained in culture for a further 2 days. Growth medium was then removed and replaced with 150 µl of alamarBlue in RPMI medium containing 1% pen/strep. Following 120 minutes incubation at 5 37°C, fluorescent intensity was read using a plate reader.

Results

The results shown in Figure 1 demonstrate the ability of the compounds of the general formula (I) to inhibit the proliferation of MDA468 human breast cancer cells at lower concentrations as those required to inhibit proliferation of MDA231 human breast cancer 10 cells.

Example 3: Protein synthesis studies

The purpose of these studies as to investigate compounds of the general formula (I) have effect on protein synthesis, measured as ^{14}C -Leucine uptake or incorporation into proteins. As described in "Leucine Uptake [^{14}C] Cytostar-T assay, Amersham Biosciences" (CFA773).

15 MDA-MB-231 and -468 were seeded at 8000 cells/well in CytoStar-T 96-well microplates. And incubated overnight in growth medium. The next day medium was carefully aspirated (8-channel Vacuboy) and 50 µL of fresh pre-warmed medium (10% FCS, 10 mM HEPES pH 7.2 – 7.5) was added. Cells were allowed to equilibrate at 37 °C for 60 min. Test compounds were added in 50 µL medium and ^{14}C -Leucine was added in 100 µL medium (0.5 µCi mL⁻¹ final).
20 Plates were sealed with transparent, adhesive foil. Plates were then incubated in a 37°C for 6h in a humidified incubator. Incorporation of radioactive leucine into proteins (a measure of protein synthesis) was then read by coincidence scintillation (counts per minute (CPM)) using a Wallac Microbeta detector at the indicated time-intervals. A reading at t=0 (5 min after sealing plates) for each well is subtracted as background.
25 The results are shown in Figure 2 measured after 6 hours.
The results indicate that BIC0043901 (compound (3) above) significantly inhibits ^{14}C -Leucine incorporation in MDA-MB-468 in a concentration dependent manner observed after 240 min compound incubation and up to 22 hours. EC₅₀ is estimated to 100 nM (240 min to 22 hours). Interestingly, the effect seems to reach a plateau at the high concentrations corresponding to 30 approx. 1/6 of total incorporated. This indicates that there is some proportion of the protein synthesis that BIC0043901 is not able to affect.

15797DK02

- 40 -

No significant effect of BIC0043901 was observed in MDA-MB-231 up to 430 min. At 22 hours a minor effect is observed at 30 µM. EC₅₀ >> 30 µM (22 hours).

The inhibitory effect of BIC0043901 is therefore very specific for MDA-MB-468.

5 The higher concentrations of the control compounds Anisomycin and Cycloheximide completely inhibit incorporation at all time-points (as opposed to BIC0043901, see above).

Example 4: Western Blot Studies

To investigate the mechanism of action of compounds of general formula (I) Western Blot studies were performed to investigate the activation state of pathways linked to the regulation of protein synthesis (see Figure 3).

10 Method

MDA-MB-468 cells (also called MDA468) or MDA-MB-231 (also called MDA231) were kept in culture and plated at 400 000 cells/well in 6 well cell culture plate. 16-24 hours after, the growth medium were shifted to growth medium containing compounds.

15 After 24 or 48 hours incubation with compounds, cells were washed with ice cold PBS buffer and harvested in lysis buffer: Cytobuster reagent (Novagen) containing phosphatase inhibitor cocktail 1 and 2 and protease inhibitor cocktail (Sigma). Samples containing an equal amount of protein were loaded onto 7% Tris Acetate gels, 10% Bis-Tris in MES buffer or 12% Bis-Tris gels using MOPS running buffer (Invitrogen). Following electrophoresis the samples were blotted onto a PVDF membrane (Invitrogen). For membrane blocking and antibody 20 incubations of p70 S6K, Phospho-p70 S6K (Thr389), PathscanI and S6 antibodies (Cell Signalling Technology) a buffer containing 0.2% Tween-20, 5% non-fat dry milk, 5% FBS, in Tris buffered Saline (TBS) were used. For immunoblotting of 4EBP1, Phospho 4EBP1 (Thr37/46), Phospho 4EBP1 (Ser65) (Cell Signalling Technology) and Cyclin D3 (Santa Cruz) a protocol from Cell Signalling Technology were used. Cell Signalling Technology blocking 25 buffer contains 0.1% Tween-20, 5% non fat dry milk in TBS and primary antibody dilution buffer contains 0.1% Tween-20, 5% BSA in TBS. Before adding primary antibody dilution buffer to the membranes, the blots were rinsed briefly in 0.1% Tween-20. All antibody 30 incubations were done overnight at 4°C overnight. After washing the membranes with 0.1% Tween-20 in TBS, the blots were incubated with horseradish peroxidase conjugated anti-Rabbit IgG (1:1000-1:3000; Amersham Biosciences) at room temperature for 1 hour. Peroxidase activity was detected using the ECL detection system (Amersham Biosciences).

15797DK02

- 41 -

Results

Western blot analyses demonstrate that compounds of general formula (I), such as BIC0043901 (Compound (3) above), inhibit the phosphorylation of p70S6K and S6 ribosomal protein in MDA468 cells following 24 hour incubation (Figure 4). Similar effects are observed with the mTOR inhibitor, rapamycin and the PI3 kinase inhibitor LY294002. AKT phosphorylation on Ser473 is not inhibited by BIC0043901 or rapamycin, whereas LY294002 inhibits the phosphorylation of AKT on Ser473. Furthermore, BIC0043901 induces a gel mobility shift in 4E-BP1 as shown using both total and thr37/46 phospho-specific anti-4E-BP1 antibodies, indicative of an alteration in the phosphorylation status of 4E-BP1. This is confirmed by the inhibitory effect of BIC0043901 on the phosphorylation of ser65 of 4E-BP1. Similar effects are observed with the mTOR inhibitor, rapamycin and the PI3 kinase inhibitor LY294002. In addition, expression of the cell cycle regulatory protein cyclin D3 is reduced by BIC0043901, rapamycin and LY294002. These data suggest that mammalian homologue of TOR (mTOR) kinase is active in MDA468 cells under growth conditions, leading to phosphorylation of mTOR target proteins such as p70S6 kinase (p70S6K) and 4EBP1, and downstream regulation of protein synthesis and cell proliferation via S6 ribosomal protein, eukaryotic translation initiation factor, eIF4, and cyclin D3. Compounds of general formula (I), such as BIC0043901, as well as rapamycin and LY294002, inhibit this pathway in MDA468 cells and might be expected to reduce protein synthesis and cell proliferation.

Compounds of general formula (I) such as BIC0043901 did not inhibit the phosphorylation of p70S6K, or induce a gel mobility shift in total p70S6K, in MDA231 cells following 48 hour incubation (Figure 5). In contrast, rapamycin and LY294002 inhibit the phosphorylation of p70S6K, and induce a gel mobility shift in total p70S6K, following 48 hour incubation in MDA231 cells. BIC0043901, rapamycin and LY294002 all inhibit the phosphorylation of p70S6K and induce a gel mobility shift in total p70S6K in MDA468 cells following 48 hour incubation, demonstrating a cell selective effect of compounds of general formula (I), such as BIC0043901.

Example 5: Xenograft studies

The purpose of this study was to evaluate whether compounds of general formula (I), such as BIC0043901 (compound (3) above), inhibit the growth of cancer cells in a xenograft animal model.

Method

Male nude NMRI nu/nu mice weighing 25-45 grams are implanted with PRXF PC3M tumours by subcutaneous implantation in both flanks. BIC0043901 (50 & 100mg) is administered

15797DK02

- 42 -

- daily by the per-oral (PO) route in an appropriate vehicle (2% DMSO:5% Tween 80: 93% saline) either alone or in combination with a sub-optimal dose of paclitaxol (10mg/kg ; intravenous; given once/week). Tumor diameter is determined twice/week for a period of 14 days.

5 Results

BIC0043901 reduces the rate of tumour cell growth when given as a monotherapy (see Figure 6). Furthermore, additive anti-growth effects are noted in combination with paclitaxol.

Example 5: Effect BIC0043901 on Cell Proliferation of Breast and Prostate Cancer Cell Lines

Materials:

10 All cell lines were obtained from ATCC. Breast cancer lines: MDA-MB-231, MDA-MB-435S, MDA-MB-453, MDA-MB-468, SKBr-3, BT-474, BT-549, MCF-7, MCF-10A, T-47D, and ZR75-1. Prostate cancer lines: PC-3, LnCaP, DU-145. Terfenadine is obtained from Sigma-Aldrich. Penicillin-Streptomycin and gentamicin is purchased from Invitrogen. Alamar Blue reagent is from BioSource.

Methods:

Cell culture:

All cell lines except MCF-10A are maintained in RPMI medium containing 10% foetal Bovine Serum (FBS) 100 U/ml penicillin, and 100 µg/ml streptomycin. MCF-10A is maintained in mammary epithelial growth medium (MEGM) with singlequot addition (BPE, hydrocortisone, hEGF, insulin, gentamicin/amphotecirin-B) (Clonetics/Cambrex Bio Science). All cell lines are incubated at 37°C, 5% CO₂, and 95% humidity.

Alamar Blue cell proliferation assay:

Cells are plated in black cell culture treated Packard/Perkin Elmer 96-viewplates in 100 µl/well RPMI medium containing 10% FBS, 100 U/ml penicillin, and 100 µg/ml streptomycin.

25 Each cell line is tested in triplicate in 1% FBS or in 10% FBS. Cell densities are estimated based on growth during the assay to 80-90% confluence, cell densities are shown in table 1. The day after plating, the growth medium is changed to either 100 µl/well RPMI containing 1% FBS, 100 U/ml penicillin, 100 µg/ml streptomycin and 25 µg/ml gentamicin or 100 µl/well RPMI containing 10% FBS, 100 U/ml penicillin, 100 µg/ml streptomycin and 25 µg/ml

15797DK02

- 43 -

gentamicin. Compounds are added according to the plate map shown in Figure 7. Briefly, compounds are diluted in compound plates in growth medium containing either 1% FBS or 10% FBS corresponding to the medium in the plates. Compounds are transferred to the cell plates by transfer of 100 µl/well resulting in a total volume of 200 µl/well containing compound concentrations as indicated in the plate map and 0.25% DMSO. Terfenadine is used as a control for maximal cell kill in wells containing 50 µM terfenadine and 0.5% DMSO (S_{max}). Negative control wells (S_0) contain medium with 0.25% DMSO.

After compound addition cell plates are incubated undisturbed for 72 hours at 37°C, 5% CO₂, and 95% humidity.

- 10 The number of viable cells are estimated using an Alamar Blue assay that measures mitochondrial activity. The medium is decanted and replaced with 150 µl/well RPMI medium without phenol-red containing 100 U/ml penicillin, and 100 µg/ml streptomycin and 10% Alamar Blue. The plates are placed in the incubator at 37°C, 5% CO₂, and 95% humidity for 2 hours. Then, plates are moved to a table at room temperature and allowed to cool for 1 hour without stacking the plates. Alamar blue signal is read in a fluorescence plate reader using a 590 nm emission filter and a 530 nm excitation filter.
- 15 Data are normalised to values from 0% activity (S_0) to 100% activity (S_{max}). Average values for S_0 and S_{max} are calculated and used to calculate percent activity (PCTACT) in the assays by the formula: $PCTACT = (X_{raw} - S_{max}) / (S_0 - S_{max}) * 100$.
- 20 Z'-values for assay plates are calculated by:

$$Z' = 1 - 3 * (\text{STDEV}(S_0) + \text{STDEV}(S_{max})) / (S_0 - S_{max}). \text{ In aveage } Z' \sim 0.8 \text{ and always above 0.6.}$$

Sigmoidal curve fitting is done using Prism; Equation: $Y = \text{Bottom} + (\text{Top} - \text{Bottom}) / (1 + 10^{((\text{LogEC}_{50} - X) * \text{HillSlope})})$.

15797DK02

- 44 -

Table 1. Cell densities at plating in 96-well plates

Cell line	Cells/well in 1% FBS	Cells/well in 10% FBS
MDA-MB-231	6000	4000
MDA-MB-435S	10000	5000
MDA-MB-453	3000	2000
MDA-MB-468	6000	4000
SKBr-3	7000	6000
BT-474	10000	10000
BT-549	6000	5000
MCF-7	5000	5000
T-47D	5000	5000
ZR75-1	7000	7000
PC-3	4000	3000
LnCaP	8000	8000
DU-145	2000	1250

Results:

All cell lines are run in cell proliferation in medium containing either 1% serum or 10% serum, both estimations in triplicate. Percent activity (PCTACT) in the assays, equal to percent inhibition of growth, is calculated as described in Methods.

Table 2 summarizes the EC₅₀ values and maximal activities for cell proliferation inhibition of the cell lines. Cell proliferation curve fits are shown in Figures 8 to 11.

The tested breast cancer cell lines fall into two very clear categories. 1) Cell lines that are sensitive to BIC0043901 with cell proliferation EC₅₀ values ranging from 0.6 nM to 80 nM. These include T47-D, MCF-7, MDA-MB-453, MDA-MB-468, BT-474, SKBr-3 and BT-549 grown under both high (10% FBS) and low (1% FBS) serum conditions. 2) Cell lines that are insensitive to BIC0043901 with EC₅₀ values above 5 µM. These include MDA-MB-231, MDA-MB-435S, and ZR75-1 grown under both high (10% FBS) and low (1% FBS) serum conditions. Percent activity as related to growth inhibition with 50 µM terfenadine ranged from 60% to 90% growth inhibition. In general, the cell lines are slightly more sensitive to the compound under low (1% FBS) serum conditions than under high (10% FBS) serum conditions. The most sensitive line is MDA-MB-453.

15797DK02

- 45 -

PC-3 prostate cancer cells are clearly sensitive to BIC0043901, while DU-145 is not. LnCaP cells are sensitive to BIC0043901, but only when assayed in 1% FBS and not in 10% FBS, suggesting that serum stimulates signalling pathways in LnCaP cells that render them insensitive to BIC0043901 treatment.

5. *Table 2. Summary table of EC₅₀ values (nM) and max activities for cell proliferation inhibition.*

Cell line	EC50	Max Act	EC50	Max Act
T47-D	12.0	83	37.4	78
MCF-7	24.3	75	76.2	59
MDA-MB-435S	9490	108	>2000	>60
MDA-MB-453	0.6	92	18.5	89
MDA-MB-468	15.5	83	50.5	83
MDA-MB-231	9080	103	>2000	>45
BT-474	12.6	74	37.4	72
SKBr-3	12.4	79	42.8	85
BT-549	18.1	64	68.1	57
ZR75-1	>3000	100	>1000	100
DU-145	4680	109	>3000	100
LnCaP	22.9	72	5840	86.62
PC-3	19.9	68	89.4	77.33

Notes:

EC₅₀ values are shown in nano-molar concentration. Max Act is maximal inhibition of cell growth as compared to maximal cell kill estimated by terfenedine addition (see Methods).

15797DK02

- 45 -

CLAIMS

1. Use of a compound of the general formula (I)

wherein

5 V^1 , V^2 , V^3 , and V^4 independently are selected from a carbon atom, a non-quaternary nitrogen atom, an oxygen atom, and a sulfur atom, and where V^4 further may be selected from a bond, so that $-V^1-V^2-V^3-V^4-$ together with the atoms to which V^1 and V^4 are attached form an aromatic or heteroaromatic ring;

10 R^1 , R^2 , R^3 , and R^4 , when attached to a carbon atom, independently are selected from hydrogen, optionally substituted C_{1-6} -alkyl, optionally substituted C_{2-6} -alkenyl, hydroxy, optionally substituted C_{1-6} -alkoxy, optionally substituted C_{2-6} -alkenyloxy, carboxy, optionally substituted C_{1-6} -alkoxycarbonyl, optionally substituted C_{1-6} -alkylcarbonyl, optionally substituted C_{1-6} -alkylcarbonyloxy, formyl, amino, mono- and di(C_{1-6} -alkyl)amino, carbamoyl, mono- and di(C_{1-6} -alkyl)aminocarbonyl, C_{1-6} -alkylcarbonylamino, C_{1-6} -alkylsulphonylamino, cyano, carbamido, mono- and di(C_{1-6} -alkyl)aminocarbonylamino, C_{1-6} -alkanoyloxy, C_{1-6} -alkylsulphonyl, C_{1-6} -alkylsulphinyl, aminosulfonyl, mono- and di(C_{1-6} -alkyl)aminosulfonyl, nitro, optionally substituted C_{1-6} -alkylthio, aryl, aryloxy, arylcarbonyl, arylamino, heterocyclyl, heterocycloloxy, heterocyclylamino, heterocyclylcarbonyl, heteroaryl, heteroaryloxy, heteroarylamino, heteroarylcarbonyl, and halogen, where any C_{1-6} -alkyl as an amino substituent is optionally substituted with hydroxy, C_{1-6} -alkoxy, amino, mono- and di(C_{1-6} -alkyl)amino, carboxy, C_{1-6} -alkylcarbonylamino, C_{1-6} -alkylaminocarbonyl, or halogen(s), and wherein any aryl, heterocyclyl and heteroaryl may be optionally substituted;

15 R^1 , R^2 , R^3 , and R^4 , when attached to a nitrogen atom, independently are selected from hydrogen, optionally substituted C_{1-6} -alkyl, hydroxy, optionally substituted C_{1-6} -alkoxy, optionally substituted C_{1-6} -alkoxycarbonyl, optionally substituted C_{1-6} -alkylcarbonyl, formyl, mono- and di(C_{1-6} -alkyl)aminocarbonyl, amino, C_{1-6} -alkylcarbonylamino, mono- and di(C_{1-6} -alkyl)amino, C_{1-6} -alkylsulphonyl, C_{1-6} -alkylsulphinyl, aryl, aryloxy, arylcarbonyl, arylamino, heterocyclyl, heterocycloloxy, heterocyclylcarbonyl, heteroaryl, heteroarylamino, heteroaryl,

15797DK02

- 47 -

heteroaryloxy, heteroarylcarbonyl, and heteroarylarnino; where any C₁₋₆-alkyl as an amino substituent is optionally substituted with hydroxy, C₁₋₆-alkoxy, amino, mono- and di(C₁₋₆-alkyl)amino, carboxy, C₁₋₆-alkylcarbonylamino, C₁₋₆-alkylaminocarbonyl, or halogen(s), and wherein any aryl, heterocycll and heteroaryl may be optionally substituted;

5 or R¹ and R² together with the carbon atoms to which they are attached form a ring, e.g. an aromatic ring, a carbocyclic ring, a heterocyclic ring or a heteroaromatic ring, in particular an aromatic ring, a heterocyclic ring or a heteroaromatic ring;

X¹ and X² are independently selected from halogen, hydroxy, optionally substituted C₁₋₆-alkoxy, optionally substituted C₁₋₆-alkylcarbonyloxy, amino, mono- and di(C₁₋₆-alkyl)amino,

10 C₁₋₆-alkylcarbonylamino, C₁₋₆-alkylsulphonylamino, mono- and di(C₁₋₆-alkyl)amino-carbonylamino, C₁₋₆-alkanoyloxy, mercapto, optionally substituted C₁₋₆-alkylthio, C₁₋₆-alkylsulfonyl, mono- and di(C₁₋₆-alkyl)aminosulfonyl, aryloxy, arylamino, heterocyclyloxy, heterocycliamino, heteroaryloxy and heteroarylarnino, where any C₁₋₆-alkyl as an amino or sulphur substituent is optionally substituted with hydroxy, C₁₋₆-alkoxy, amino, mono- and di(C₁₋₆-alkyl)amino, carboxy, C₁₋₆-alkylcarbonylamino, C₁₋₆-alkylaminocarbonyl, or halogen(s), and wherein any aryl, heterocycll and heteroaryl may be optionally substituted;

>Y(=Q)_n is selected from >C=O, >C=S, >S=O and >S(=O)₂; and

R^N is selected from the group consisting of hydrogen, optionally substituted C₁₋₆-alkyl, hydroxy, optionally substituted C₁₋₆-alkoxy, optionally substituted C₁₋₆-alkoxycarbonyl,

20 optionally substituted C₁₋₆-alkylcarbonyl, formyl, mono- and di(C₁₋₆-alkyl)aminocarbonyl, amino, C₁₋₆-alkylcarbonylamino, mono- and di(C₁₋₆-alkyl)amino, C₁₋₆-alkylsulphonyl, and C₁₋₆-alkylsulphiny; where any C₁₋₆-alkyl as an amino substituent is optionally substituted with hydroxy, C₁₋₆-alkoxy, amino, mono- and di(C₁₋₆-alkyl)amino, carboxy, C₁₋₆-alkylcarbonylamino, C₁₋₆-alkylaminocarbonyl, or halogen(s); and

25 pharmaceutically acceptable salts and prodrugs thereof;

for the preparation of a medicament for the treatment of cancer in a mammal.

2. The use according to claim 1, wherein each of the benzene rings to which X¹ and X² are attached further may be substituted with one, two, three or four fluoro atoms, in particular each benzene ring to which X¹ and X² are attached are substituted with two fluoro atoms in the ortho positions relative to the substituents X¹ and X², respectively.

15797DK02

- 48 -

3. The use according to any one of the preceding claims, wherein R¹, R², R³ and R⁴ are not all hydrogen.

4. The use according to any one of the preceding claims, wherein -V¹-V²-V³-V⁴- together with the atoms to which V¹ and V⁴ are attached form a ring selected from a benzene ring, a thiophene ring (V¹=S, V²=V³=C(-) and V⁴=bond; V²=S, V¹=V³=C(-) and V⁴=bond; or V³=S, V¹=V²=C(-) and V⁴=bond), a furan ring (V¹=O, V²=V³=C(-) and V⁴=bond; V²=O, V¹=V³=C(-) and V⁴=bond; or V³=O, V¹=V²=C(-) and V⁴=bond), a pyrazole ring (V¹=N(-), V²=N, V³=C(-) and V⁴=bond; V¹=N, V²=N(-), V³=C(-) and V⁴=bond), an imidazole ring (V¹=N(-), V²=C(-), V³=N and V⁴=bond; V¹=N, V²=C(-), V³=N(-) and V⁴=bond), a pyridine ring (V¹=N, V²=V³=V⁴=C(-); V²=N, V¹=V³=V⁴=C(-); V³=N, V¹=V²=V⁴=C(-) and V⁴=N, V¹=V²=V³=C(-)), a pyrimidine ring (V¹=V³=N, V²=V⁴=C(-); V²=V⁴=N, V¹=V³=C(-)), pyrazines (V¹=V⁴=N, V²=V³=C(-)), a pyridazine ring (V¹=V²=N, V³=V⁴=C(-); V²=V³=N, V¹=V⁴=C(-); V³=V⁴=N, V¹=V²=C(-)), a thiazole ring (V¹=N, V²=C(-), V³=S, V⁴=bond; V¹=S, V²=C(-), V³=N, V⁴=bond), and an isothiazole ring (V¹=N, V²=S, V³=C(-), V⁴=bond; V¹=S, V²=N, V³=C(-), V⁴=bond; V¹=C(-), V²=S, V³=N, V⁴=bond; V¹=C(-), V²=N, V³=S, V⁴=bond).

5. The use according to claim 4, wherein -V¹-V²-V³-V⁴- together with the atoms to which V¹ and V⁴ are attached form a ring selected from a benzene ring, a thiophene ring, a furan ring, a pyrazole ring, an imidazole ring, a pyridine ring, a pyrimidine ring, pyrazines, and a pyridazine ring.

6. The use according to claim 5, wherein the ring is selected from a benzene ring and a pyridine ring where the nitrogen atom represents V³.

7. The use according to any one of the preceding claims, wherein R¹, R², R³, and R⁴, when attached to a carbon atom, independently are selected from hydrogen, optionally substituted C₁₋₆-alkyl, optionally substituted C₂₋₆-alkenyl, hydroxy, optionally substituted C₁₋₆-alkoxy, optionally substituted C₂₋₆-alkenoxy, carboxy, optionally substituted C₁₋₆-alkoxycarbonyl, optionally substituted C₁₋₆-alkylcarbonyl, optionally substituted C₁₋₆-alkylcarbonyloxy, formyl, amino, mono- and di(C₁₋₆-alkyl)amino, carbamoyl, mono- and di(C₁₋₆-alkyl)aminocarbonyl, C₁₋₆-alkylcarbonylamino, C₁₋₆-alkylsulphonylamino, cyano, carbamido, mono- and di(C₁₋₆-alkyl)aminocarbonylamino, C₁₋₆-alkanoyloxy, C₁₋₆-alkylsulphonyl, C₁₋₆-alkylsulphanyl, aminosulfonyl, mono- and di(C₁₋₆-alkyl)aminosulfonyl, nitro, optionally substituted C₁₋₆-alkylthio, and halogen, where any C₁₋₆-alkyl as an amino substituent is optionally substituted with hydroxy, C₁₋₆-alkoxy, amino, mono- and di(C₁₋₆-alkyl)amino, carboxy, C₁₋₆-alkylcarbonylamino, C₁₋₆-alkylaminocarbonyl, or halogen(s); and R¹, R², R³, and R⁴, when attached to a nitrogen atom, independently are selected from hydrogen, optionally substituted C₁₋₆-alkyl, hydroxy, optionally substituted C₁₋₆-alkoxy,

15797DK02

- 49 -

optionally substituted C₁₋₆-alkoxycarbonyl, optionally substituted C₁₋₆-alkylcarbonyl, formyl, mono- and di(C₁₋₆-alkyl)aminocarbonyl, amino, C₁₋₆-alkylcarbonylamino, mono- and di(C₁₋₆-alkyl)amino, C₁₋₆-alkylsulphonyl, and C₁₋₆-alkylsulphanyl; where any C₁₋₆-alkyl as an amino substituent is optionally substituted with hydroxy, C₁₋₆-alkoxy, amino, mono- and di(C₁₋₆-alkyl)amino, carboxy, C₁₋₆-alkylcarbonylamino, C₁₋₆-alkylaminocarbonyl, or halogen(s), and wherein any aryl, heterocycl and heteroaryl may be optionally substituted.

8. The use according to any one of the preceding claims, wherein R¹, R², R³, and R⁴ independently are selected from hydrogen, halogen, optionally substituted C₁₋₆-alkyl, hydroxy, optionally substituted C₁₋₆-alkoxy, optionally substituted C₁₋₆-alkoxycarbonyl, optionally substituted C₁₋₆-alkylcarbonyl, amino, C₁₋₆-alkylcarbonylamino, C₁₋₆-alkylcarbonylamino, C₁₋₆-alkylsulphonylamino, mono- and di(C₁₋₆-alkyl)aminosulfonyl, and mono- and di(C₁₋₆-alkyl)amino, where any C₁₋₆-alkyl as an amino substituent is optionally substituted with hydroxy, C₁₋₆-alkoxy, amino, mono- and di(C₁₋₆-alkyl)amino, carboxy, C₁₋₆-alkylcarbonylamino, C₁₋₆-alkylaminocarbonyl, or halogen(s).

9. The use according to claim 8, wherein R¹, R², R³, and R⁴ independently are selected from hydrogen, optionally substituted C₁₋₆-alkyl, hydroxy, optionally substituted C₁₋₆-alkoxy, optionally substituted C₁₋₆-alkoxycarbonyl, optionally substituted C₁₋₆-alkylcarbonyl, amino, C₁₋₆-alkylcarbonylamino, C₁₋₆-alkylcarbonylamino, C₁₋₆-alkylsulphonylamino, mono- and di(C₁₋₆-alkyl)aminosulfonyl, and mono- and di(C₁₋₆-alkyl)amino, where any C₁₋₆-alkyl as an amino substituent is optionally substituted with hydroxy, C₁₋₆-alkoxy, amino, mono- and di(C₁₋₆-alkyl)amino, carboxy, C₁₋₆-alkylcarbonylamino, C₁₋₆-alkylaminocarbonyl, or halogen(s).

10. The use according to any one of the preceding claims, wherein R¹ and R² together with the carbon atoms to which they are attached form a heterocyclic ring or a heteroaromatic ring.

11. The use according to any one of the claims 1-9, wherein R¹ and R² together with the carbon atoms to which they are attached form an aromatic ring or a carbocyclic ring.

12. The use according to any one of the preceding claims, wherein R¹ is selected from hydrogen, halogen, C₁₋₆-alkyl, trifluoromethyl and C₁₋₆-alkoxy, when V¹ is a carbon atom.

13. The use according to any one of the preceding claims, wherein R² is selected from hydrogen, halogen, optionally substituted aryl, optionally substituted aryloxy, and optionally substituted heteroaryl, when V² is a carbon atom.

15797DK02

- 50 -

14. The use according to any one of the preceding claims, wherein R³ is selected from hydrogen, optionally substituted C₁₋₆-alkoxy, halogen, cyano, optionally substituted aryl, optionally substituted aryloxy, optionally substituted heteroaryl, amino, C₁₋₆-alkylcarbonylamino, C₁₋₆-alkylsulphonylamino, and mono- and di(C₁₋₆-alkyl)aminosulfonyl, when V³ is a carbon atom.

5

15. The use according to any one of the preceding claims, wherein R⁴ is hydrogen, when V⁴ is a carbon atom.

16. The use according to any one of the preceding claims, wherein X¹ and X² are independently selected from hydroxy, optionally substituted C₁₋₆-alkoxy, optionally substituted C₁₋₆-alkylcarbonyloxy, amino, mono- and di(C₁₋₆-alkyl)amino, C₁₋₆-alkylcarbonylamino, C₁₋₆-alkylsulphonylamino, mono- and di(C₁₋₆-alkyl)aminocarbonylamino, C₁₋₆-alkanoyloxy, and mono- and di(C₁₋₆-alkyl)aminosulfonyl, where any C₁₋₆-alkyl as an amino substituent is optionally substituted with hydroxy, C₁₋₆-alkoxy, amino, mono- and di(C₁₋₆-alkyl)amino, carboxy, C₁₋₆-alkylcarbonylamino, C₁₋₆-alkylaminocarbonyl, or halogen(s).

10

17. The use according to any one of the preceding claims, wherein X¹ and X² independently are selected from halogen, OR⁶, OCOR⁵, N(R⁶)₂, NHCOR⁵, NHSO₂R⁵, and NHCON(R⁶)₂, wherein R⁵ is selected from C₁₋₆-alkyl, optionally substituted aryl and optionally substituted heteroaryl, and each R⁶ independently is selected from hydrogen, C₁₋₆-alkyl, optionally substituted aryl and optionally substituted heteroaryl.

15

18. The use according to claim 17, wherein X¹ and X² independently are selected from OR⁶, OCOR⁵, N(R⁶)₂, NHCOR⁵, NHSO₂R⁵, and NHCON(R⁶)₂, wherein R⁵ is selected from C₁₋₆-alkyl, optionally substituted aryl and optionally substituted heteroaryl, and each R⁶ independently is selected from hydrogen, C₁₋₆-alkyl, optionally substituted aryl and optionally substituted heteroaryl.

20

19. The use according to any one of the preceding claims, wherein X¹ and X² independently are selected from halogen, hydroxy, OAc, NH₂, NMe₂, NHAc, NHSO₂Me and NHCONMe₂.

25

20. The use according to claim 19, wherein X¹ and X² independently are selected from hydroxy, OAc, NH₂, NMe₂, NHAc, NHSO₂Me and NHCONMe₂.

21. The use according to any one of the preceding claims, wherein X¹ and X² are the same.

30

22. The use according to any one of the preceding claims, wherein Y is a carbon atom and Q is an oxygen atom, i.e. >Y(=Q)_n is >C=O.

15797DK02

- 51 -

23. The use according to any one of the claims 1-21, wherein Y is a sulfur atom, n is 2, and each Q is an oxygen atom, i.e. $>Y(=Q)_n$ is $>S(=O)_2$.

24. The use according to any one of the preceding claims, wherein R^N is selected from hydrogen, C₁₋₆-alkyl, amino, and C₁₋₆-alkylcarbonylamino, in particular R^N is hydrogen.

5 25. The use according to any one of the preceding claims, wherein V¹, V², V³, V⁴ all are a carbon atom, >Y(=Q)_n is >C=O, and R^N is hydrogen.

26. The use according to claim 25, wherein R⁴ is hydrogen.

27. The use according to claim 26, wherein R³ and R⁴ both are hydrogen.

10 28. The use according to any one of the claims 25-27, wherein R¹ is C₁₋₄-alkyl and R² is halogen, e.g. R¹ is methyl and R² is chloro.

29. The use according to any one of the claims 25-27, wherein R¹ and R² together with the carbon atoms to which they are attached form a ring, e.g. an aromatic ring, a carbocyclic ring, a heterocyclic ring or a heteroaromatic ring, in particular an aromatic ring or a carbocyclic ring.

15 30. The use according to any one of the claims 25-29, wherein each of X¹ and X² independently are selected from halogen, hydroxy, C₁₋₄-alkoxy, amino, and dimethylamino.

31. The use according to claim 26, wherein R¹, R² and R⁴ all are hydrogen.

32. The use according to any one of the claims 25 and 31, wherein R³ is selected from hydrogen, halogen, nitro, C₁₋₄-alkyl, C₁₋₄-alkoxy, trifluoromethoxy, amino, carboxy, and dimethylaminocarbonyl, in particular hydrogen, halogen, nitro, methyl, methoxy, and amino.

33. The use according to any one of the claims 31-32, wherein each of X¹ and X² independently are selected from halogen, hydroxy, C₁₋₄-alkoxy, amino, and dimethylamino.

34. The use according to claim 26, wherein R², R³ and R⁴ all are hydrogen.

25 35. The use according to any one of the claims 25 and 34, wherein R¹ is selected from fluoro, chloro, bromo, C₁₋₄-alkyl, trifluoromethyl, C₁₋₄-alkoxy, and dimethylaminocarbonyl.

15797DK02

- 52 -

36. The use according to any one of the claims 34-35, wherein each of X¹ and X² independently are selected from halogen, hydroxy, C₁₋₄-alkoxy, amino, and dimethylamino.

37. The use according to any one of the claims 25 and 26, wherein R¹ is selected from halogen, C₁₋₄-alkyl, trifluoromethyl, C₁₋₄-alkoxy, and dimethylaminocarbonyl, R² is selected from hydrogen and halogen, and R³ is selected from hydrogen, halogen, C₁₋₄-alkyl, and amino; where R² and R³ are not both hydrogen.

38. The use according to claim 37, wherein each of X¹ and X² independently are selected from halogen, hydroxy, C₁₋₄-alkoxy, amino, and dimethylamino.

39. The use according to any one of the claims 1-24, wherein at least one of V¹, V², V³, and V⁴ is selected from a non-quaternary nitrogen atom, an oxygen atom, and a sulfur atom, and where V⁴ further may be selected from a bond, so that -V¹-V²-V³-V⁴- together with the atoms to which V¹ and V⁴ are attached form a heteroaromatic ring.

40. The use according to claim 39, wherein the heteroaromatic ring is selected from a pyridine ring and a pyrazole ring.

41. The use according to any one of the claims 39-40, wherein >Y(=Q)_n is >C=O and R^N is hydrogen.

42. The use according to any one of the claims 25-41, wherein X¹ and X² are the same.

43. Use of a 3,3-diphenyl-1,3-dihydro-indol-2-one type compound of the formula (II)

20 wherein

R¹ is selected from hydrogen, halogen, C₁₋₆-alkyl, trifluoromethyl and C₁₋₆-alkoxy;

R² is selected from hydrogen, halogen; optionally substituted aryl, optionally substituted aryloxy, and optionally substituted heteroaryl;

15797DK02

- 53 -

R³ is selected from hydrogen, optionally substituted C₁₋₆-alkoxy, halogen, cyano, and optionally substituted aryl, optionally substituted aryloxy, optionally substituted heteroaryl, amino, C₁₋₆-alkylcarbonylamino, C₁₋₆-alkylsulphonylamino, and mono- and di(C₁₋₆-alkyl)aminosulfonyl;

5 Z is CH or N; and

X¹ and X² are independently selected from halogen, OR⁶, OCOR⁵, N(R⁶)₂, NHCOR⁵, NHSO₂R⁵, and NHCON(R⁶)₂, wherein R⁵ is selected from C₁₋₆-alkyl, optionally substituted aryl and optionally substituted heteroaryl, and each R⁶ independently is selected from hydrogen, C₁₋₆-alkyl, optionally substituted aryl and optionally substituted heteroaryl; and

10 pharmaceutically acceptable salts and prodrugs thereof;

for the preparation of a medicament for the treatment of cancer in a mammal.

44. The use according to claim 43, wherein each of the benzene rings to which X¹ and X² are attached further may be substituted with one, two, three or four fluoro atoms, in particular each benzene ring to which X¹ and X² are attached are substituted with two fluoro atoms in the ortho positions relative to the substituents X¹ and X², respectively.

45. The use according to any one of the claims 43 and 44, wherein X¹ and X² are independently selected from OR⁶, OCOR⁵, N(R⁶)₂, NHCOR⁵, NHSO₂R⁵, and NHCON(R⁶)₂, wherein R⁵ is selected from C₁₋₆-alkyl, optionally substituted aryl and optionally substituted heteroaryl, and each R⁶ independently is selected from hydrogen, C₁₋₆-alkyl, optionally substituted aryl and optionally substituted heteroaryl.

46. The use according to any one of the claims 43-45, wherein R¹ is selected from C₁₋₆-alkyl and C₁₋₆-alkoxy, such as from methyl, ethyl, isopropyl, methoxy, ethoxy and isopropoxy, in particular from methoxy, ethoxy and isopropoxy, or from methyl, ethyl, and isopropyl.

47. The use according to any one of the claims 43-46, wherein R² is selected from hydrogen, chloro, methoxy, dimethylamino, phenyl, phenoxy, optionally substituted thiophen-2-yl, and optionally substituted thiophen-3-yl.

48. The use according to any one of the claims 43-47, wherein R³ is selected from hydrogen, methoxy, fluoro, chloro, cyano, phenyl, phenoxy, optionally substituted thiophen-2-yl, and optionally substituted thiophen-3-yl, amino, acetylamino, methylsulphonylamino, and dimethylaminosulfonyl.

15797DK02

- 54 -

49. The use according to any one of the claims 43-48, wherein X¹ and X² independently are selected from halogen, hydroxy, OAc, NH₂, NMe₂, NHAc, NHSO₂Me and NHCONMe₂.

50. The use according to claim 49, wherein X¹ and X² independently are selected from hydroxy, OAc, NH₂, NMe₂, NHAc, NHSO₂Me and NHCONMe₂.

51. The use according to any one of the claims 43-50, wherein X¹ and X² are the same.

52. The use according to any one of preceding claims, wherein the compound is selected from Compounds 1 to 200 listed herein.

53. The use according to any one of preceding claims, wherein the medicament further comprises one or more other chemotherapeutic agents.

10 54. A compound as defined in any one of the claims 1-52 for use as a medicament, with the proviso that the compound is not one selected from 3,3-bis-(4-hydroxy-phenyl)-1,3-dihydro-indol-2-one and acetic acid 4-[3-(4-acetoxy-phenyl)-2-oxo-2,3-dihydro-1H-indol-3-yl]-phenyl ester.

55. A compound of the general formula (I)

as defined in any one of the claims 1-42, with the proviso that the compound is not one selected from

3,3-bis-(4-hydroxy-phenyl)-1,3-dihydro-indol-2-one,
 3,3-bis-(4-hydroxy-phenyl)-7-methyl-1,3-dihydro-indol-2-one;
 20 3,3-bis-(4-hydroxy-phenyl)-4,5-dimethyl-1,3-dihydro-indol-2-one ;
 3,3-bis-(4-hydroxy-phenyl)-5,7-dimethyl-1,3-dihydro-indol-2-one;
 5-bromo-3,3-bis-(4-hydroxy-phenyl)-1,3-dihydro-indol-2-one;
 5-chloro-3,3-bis-(4-hydroxy-phenyl)-1,3-dihydro-indol-2-one;
 3,3-bis-(4-hydroxy-phenyl)-5-methoxy-1,3-dihydro-indol-2-one;
 25 3,3-bis-(4-hydroxy-phenyl)-5-methyl-1,3-dihydro-indol-2-one;
 6-chloro-3,3-bis-(4-hydroxy-phenyl)-7-methyl-1,3-dihydro-indol-2-one;

15797DK02

- 55 -

acetic acid 4-[3-(4-acetoxy-phenyl)-2-oxo-2,3-dihydro-1H-indol-3-yl]-phenyl ester; and
acetic acid 4-[3-(4-acetoxy-phenyl)-5-methyl-2-oxo-2,3-dihydro-1H-indol-3-yl]-phenyl ester.

56. A 3,3-Diphenyl-1,3-dihydro-indol-2-one type compound of the formula (II)

5 as defined in any one of the claims 43-52, with the proviso that the compound is not one selected from:

3,3-bis-(4-hydroxy-phenyl)-1,3-dihydro-indol-2-one,
3,3-bis-(4-hydroxy-phenyl)-7-methyl-1,3-dihydro-indol-2-one;
3,3-bis-(4-hydroxy-phenyl)-4,5-dimethyl-1,3-dihydro-indol-2-one;

10 3,3-bis-(4-hydroxy-phenyl)-5,7-dimethyl-1,3-dihydro-indol-2-one;
5-bromo-3,3-bis-(4-hydroxy-phenyl)-1,3-dihydro-indol-2-one;
5-chloro-3,3-bis-(4-hydroxy-phenyl)-1,3-dihydro-indol-2-one;
3,3-bis-(4-hydroxy-phenyl)-5-methoxy-1,3-dihydro-indol-2-one;
3,3-bis-(4-hydroxy-phenyl)-5-methyl-1,3-dihydro-indol-2-one;
15 6-chloro-3,3-bis-(4-hydroxy-phenyl)-7-methyl-1,3-dihydro-indol-2-one;
acetic acid 4-[3-(4-acetoxy-phenyl)-2-oxo-2,3-dihydro-1H-indol-3-yl]-phenyl ester; and
acetic acid 4-[3-(4-acetoxy-phenyl)-5-methyl-2-oxo-2,3-dihydro-1H-indol-3-yl]-phenyl ester.

57. A pharmaceutical composition comprising a compound as defined in any one of the claims 1-52 and a pharmaceutically acceptable carrier.

20 58. The pharmaceutical composition according to claim 57, which is in unit dosage form.

59. The pharmaceutical composition according to claim 58, wherein each unit dosage form comprises 0.1-250 mg of the compound.

60. The pharmaceutical composition according to any one of the claims 57-59, wherein the compound is as defined in claim 54.

15797DK02

- 56 -

- 61. The pharmaceutical composition according to any one of the claims 57-59, wherein the compound is as defined in claim 55.
- 62. The pharmaceutical composition according to any one of the claims 57-59, wherein the compound is as defined in claim 56.
- 5 63. The pharmaceutical composition according to any one of the claims 57-62, which further comprises one or more other chemotherapeutic agents.
- 64. A method of treating a mammal suffering from or being susceptible to cancer, the method comprising administering to the mammal a therapeutically effective amount of a compound according to any of the claims 1-52.
- 10 65. The method according to claim 64, wherein the compound is administered in combination with one or more other chemotherapeutic agents.

Figure 1

Cmpd No	1092 MDA-231	1092 MDA-468	231/468 Ratio	R1	R2	R3	R4	RN	X1 = X2
3	7.6	0.011	691	Me	Cl	H	H	H	OH
5	10.3	8.4	1	Me	Cl	NO2	H	H	OH
6	>40	0.325	>123	Me	Cl	NH2	H	H	OH
7	>40	0.16	>247	H	H	OMe	H	H	OH
8	9.8	2.6	4	H	H	OCF3	H	H	OH
9	12.4	0.162	77	Me	H	Me	H	H	OH
10	>40	>40	-	COOH	H	H	H	H	OH
11	14.4	0.085	152	H	H	Cl	H	H	OH
12	12.7	0.171	74	H	H	F	H	H	OH
13	12.8	0.065	197	H	H	NC(=O)2	H	H	OH
14	6.7	0.044	152	Me	H	Cl	H	H	OH
15	6.7	0.192	35	H	H	Me	H	H	OH
16	11.3	0.12	94	H	H	Br	H	H	OH
17	9.2	0.051	180	H	H	I	H	H	OH
18	>40	3.3	>12	H	H	NH2	H	H	OH
19	>40	1	>40	Me	H	NH2	H	H	OH
20	6.8	0.054	124	Me	Br	H	H	H	OH
21	>40	0.021	>1870	F	H	H	H	H	OH
22	>40	0.262	>153	OMe	H	H	H	H	OH
23	11.2	6.9	2	Cl	H	Cl	H	H	OH
24	9	11.6	1	Me	Cl	H	H	Me	OH
25	3.77	0.28	14	Me	Cl	H	H	F	
26	>40	8.4	>4.8	CO(morfoline)	H	H	H	H	OH
commercial	>40	0.125	>320	H	H	H	H	H	OH
commercial	>40	0.012	>3540	Me	H	H	H	H	OH

Figure 2

3
Figure 5

FIGURE 4: MDA468 Cells (24 hour compound incubation)

1: DMSO 0,08%
 2: BIC0043901 200 nM
 3: BIC0043901 2 µM
 4: other 2 µM
 5: Rapamycin 100 nM
 6: LY294002 10 µM

Figure 5: Comparison of MDA468 & MDA 231 cells (48 hours incubation)

1: DMSO	0,08%
2: BIC0043901	200 nM
4: other	2 µM
5: Rapamycin	100 nM
6: LY294002	10 µM

Figure 8

15797DK02

Figure 7

	S_{max} 50 μM terfenedi ne	S_{max} 50 μM terfenedi ne	S_{max} 50 μM terfenedi ne	S_{max} 50 μM terfenedi ne	S_0 0.25% DMSO	S_0 0.25% DMSO	S_0 0.25% DMSO	S_0 0.25% DMSO
12								
11	Wortmannin 400 nM	Rapamycin 1000 nM	Oxyphenisatin e 31.6 μM	BIC0043901 31.6 μM	BIC0197919 40 μM	ICOS D-052 40 μM	LY294002 40 μM	0.25% DMSO
10	Wortmannin 200 nM	Rapamycin 316 nM	Oxyphenisatin e 10 μM	BIC0043901 10 μM	BIC0197919 20 μM	ICOS D-052 20 μM	LY294002 20 μM	0.25% DMSO
9	Wortmannin 100 nM	Rapamycin 100 nM	Oxyphenisatin e 3.2 μM	BIC0043901 3.2 μM	BIC0197919 10 μM	ICOS D-052 10 μM	LY294002 10 μM	0.25% DMSO
8	Wortmannin 50 nM	Rapamycin 31.6 nM	Oxyphenisatin e 1 μM	BIC0043901 1 μM	BIC0197919 5 μM	ICOS D-052 5 μM	LY294002 5 μM	0.25% DMSO
7	Wortmannin 25 nM	Rapamycin 10 nM	Oxyphenisatin e 316 nM	BIC0043901 316 nM	BIC0197919 2.5 μM	ICOS D-052 2.5 μM	LY294002 2.5 μM	0.25% DMSO
6	Wortmannin 12.5 nM	Rapamycin 3.2 nM	Oxyphenisatin e 100 nM	BIC0043901 100 nM	BIC0197919 1.3 μM	ICOS D-052 1.3 μM	LY294002 1.3 μM	0.25% DMSO
5	Wortmannin 6.3 nM	Rapamycin 1 nM	Oxyphenisatin e 31.6 nM	BIC0043901 31.6 nM	BIC0197919 625 nM	ICOS D-052 625 nM	LY294002 625 nM	0.25% DMSO
4	Wortmannin 3.1 nM	Rapamycin 0.3 nM	Oxyphenisatin e 10 nM	BIC0043901 10 nM	BIC0197919 313 nM	ICOS D-052 313 nM	LY294002 313 nM	0.25% DMSO
3	Wortmannin 1.6 nM	Rapamycin 0.1 nM	Oxyphenisatin e 3.2 nM	BIC0043901 3.2 nM	BIC0197919 156 μM	ICOS D-052 156 μM	LY294002 156 μM	0.25% DMSO
2	medium							
1	S_0 0.25% DMSO	S_0 0.25% DMSO	S_0 0.25% DMSO	S_0 0.25% DMSO	S_{max} 50 μM terfenedi ne	S_{max} 50 μM terfenedi ne	S_{max} 50 μM terfenedi ne	S_{max} 50 μM terfenedi ne
	A	B	C	D	E	F	G	H

15797DK02

Figure 8

5

Figure 9

15797DK02

Figure 10

5 Figure 11