Nombres complexes : point de vue algébrique

Motivations

Étant donné que certaines équations polynomiales 'a coefficients réels n'ont pas toujours de solution, on cherche 'a construire un nouvel ensemble de nombres :

- contenant tous les nombres réels.
- muni de deux opérations prolongeant l'addition et la multiplication des nombres réels et ayant les mêmes règles de calculs,
- contenant un élément noté i tel que $i^2 = -1$,
- tout nombre z s'écrit de manière unique z = a + ib o'u a et b sont des réels.

Un tel ensemble existe, il s'agit de l'ensemble des nombres complexes noté C.

I Ensemble des nombres complexes

Remarque: la notation $\sqrt{-1}$ n'est pas possible, car on devrait avoir $\sqrt{-1}^2 = -1$ et $\sqrt{-1}^2 = \sqrt{(-1)^2} = \sqrt{1} = 1$.

I.1 Nombre i

On admet qu'il existe un nombre imaginaire (non réel) défini par $i^2 = -1$. L'ensemble des nombres complexes, noté \mathbb{C} , est l'ensemble des nombres z = a + ib, avec a et b réels.

I.2 Forme algébrique

🖰 Vocabulaire et définitions :

- L'écriture z = x + iy avec x et y réels est appelée forme algébrique du nombre complexe z = x + iy.
- Dans ce cas, *x* est appelé la partie réelle de *z* et notée Re(*z*) et *y* la partie imaginaire de z et notée Im(*z*).
- z est réel si, et seulement si, y = Im(z) = 0
- z est imaginaire pur si, et seulement si, x = Re(z) = 0

I.3 Affixe d'un point ou d'un vecteur du plan

Définition

Dans tout ce qui suit, le plan est rapporté à un repère orthonormal $(O; \overrightarrow{u}; \overrightarrow{v})$. À chaque nombre complexe z = x + iy, on associe de manière unique le point M(x; y) et réciproquement, à chaque point M(x; y) correspond un unique nombre complexe z = x + iy.

Ce nombre est appelé affixe de *z* (affixe est un mot féminin)

🕄 Remarques :

Tous les points de l'axe des abscisses (O; \overrightarrow{u}) ont une affixe z dite réelle car Im(z) = 0.

Tous les points de l'axe des ordonnées $(O; \overrightarrow{v})$ ont une affixe z dite imaginaire pure car Re(z) = 0.

Le point ${\cal O}$ a pour affixe 0 qui est à la fois réel et imaginaire pur.

Lorsque l'on associe les nombres complexes aux points d'un plan du repère orthonormal direct $(O; \vec{u}; \vec{v})$, on dit que l'on travaille dans le **plan complexe**.

Exemples:

- 1. Représenter les points A, B et C d'affixes respectives -3 i, 2 et 3i.
- 2. Soit *G* le point d'affixe 3 + 2i. Soit *E* le point tel que $\overrightarrow{CE} = \overrightarrow{OG}$. Quelle est l'affixe de \overrightarrow{CE} ?
- 3. Que remarque-t-on sur les affixes de deux points symétriques par rapport à *O*?
- 4. Que remarque-t-on sur les affixes de deux points symétriques par rapport à l'axe $(O; \vec{u})$?
- 5. Que remarque-t-on sur les affixes de deux points symétriques par rapport à l'axe $(O; \vec{v})$?

Définition:

Deux nombres complexes sont dits égaux s'ils représentent le même point, c'est-à-dire s'ils ont la même partie réelle et la même partie imaginaire.

$$x + iy = x' + iy' \Leftrightarrow x = x' \text{ et } y = y'$$

Remarque : un nombre complexe est nul si, et seulement si, sa partie réelle et sa partie imaginaire sont toutes les deux nulles.

II Opérations sur les nombres complexes

Soient z = x + iy et z' = x' + iy' deux nombres complexes, x, y, x' et y' réels.

II.1 Addition

$$z + z' = (x + iy) + (x' + iy') = (x + x') + i(y + y')$$

Exemple: $(2+3i) + (5+7i) = 2+5+3i+7i = \boxed{7+10i}$

Soustraction II.2

$$z - z' = (x + iy) - (x' + iy') = (x - x') + i(y - y')$$

Multiplication II.3

$$zz' = (x + iy)(x' + iy') = (xx' - yy') + i(xy' + x'y)$$

Exemple : Soient z = 2 + 3i et z' = 7 + 2i.

Alors $zz' = (2+3i)(7+2i) = 2 \times 7 + 3 \times 2i + 3i \times 7 + 3i \times 2i = 14 + 4i + 21i + 6i^2 = 14 + 25i - 6 = 14 - 6 + 25i = 8 + 25i$ $(car i^2 = -1).$

Conjugué d'un nombre complexe

Définition :

On appelle conjugué de z et on le note \overline{z} , le nombre défini par : $\overline{z} = x - iy$.

Exemples: $\overline{2+3i} = 2-3i$; $\overline{5-7i} = 5+7i$

🕄 Propriété

- Pour tout $z \in \mathbb{C}$, $\overline{\overline{z}} = z$.

- z∈ R ⇔ z = z̄
 z∈ iR ⇔ z = -z̄
 M(z) et M'(z̄) sont symétriques par rapport à l'axe des réels
- Si z = x + iy, $z\overline{z} = x^2 + y^2$ (carré de partie réelle plus carré de la partie imaginaire)

II.5 Inverse

Si
$$z \neq 0$$
, $\frac{1}{z} = \frac{\overline{z}}{z\overline{z}} = \frac{x - iy}{x^2 + y^2} = \frac{x}{x^2 + y^2} - \frac{y}{x^2 + y^2}i$.

Remarques: pour tout $z \in \mathbb{C}$, $z\overline{z} = \overline{z}z = x^2 + y^2 \in \mathbb{R}$.

On ne laisse pas de nombre complexe au dénominateur d'une fraction.

Exemple:
$$z = 2 + 3i$$
; $\frac{1}{z} = \frac{\overline{z}}{z\overline{z}}$; $\overline{z} = \overline{2 + 3i}$; $z\overline{z} = 2^2 + 3^2 = 13$.

Par conséquent : $\frac{1}{z} = \frac{2 - 3i}{13} = \boxed{\frac{2}{13} - \frac{3}{13}i}$

Quotient de deux nombres complexes

$$\frac{z}{z'} = z \times \frac{1}{z'}$$
 et on applique la méthode précédente d'où : $\frac{z}{z'} = \frac{z\overline{z'}}{z'\overline{z'}}$

Exemple:
$$\frac{2+3i}{5+7i} = \frac{(2+3i)(5-7i)}{5^2+7^2} = \frac{10-14i+15i-21i)2}{74} = \frac{10+21+i}{74} = \frac{31+i}{74} = \boxed{\frac{31}{74} + \frac{1}{74}i}$$

Conjugué, et opérations

Propriétés :

Soient deux nombres complexes z et z'.

a)
$$\overline{\overline{z}} = z$$

b)
$$\overline{z+z'} = \overline{z} + \overline{z'}$$

c)
$$\overline{z-z'} = \overline{z} - \overline{z'}$$

d)
$$\overline{zz'} = \overline{z}\overline{z'}$$

b)
$$z + z' = z + z'$$

c) $\overline{z - z'} = \overline{z} - \overline{z'}$
d) $\overline{zz'} = \overline{z}\overline{z'}$
e) Pour tout $n \in \mathbb{N}^*$, $\overline{z^n} = \overline{z}^n$

f)
$$\overline{\left(\frac{1}{z}\right)} = \frac{1}{\overline{z}}$$

g)
$$\overline{\left(\frac{z}{z'}\right)} = \frac{\overline{z}}{\overline{z'}}$$

Théorème:

Soit z un nombre complexe.

1.
$$z \in \mathbb{R} \Leftrightarrow z = \overline{z}$$

2.
$$z \in i\mathbb{R} \Leftrightarrow z = -\overline{z}$$

Équations du second degré

On considère l'équation $az^2 + bz + c = 0$, avec a, b et c réels.

En utilisant la forme canonique, cette équation s'écrit :
$$a\left[\left(z+\frac{b}{2a}\right)^2-\frac{\Delta}{4a^2}\right]=0$$
, où $\Delta=b^2-4ac$.

On a trois cas possibles:

 $\overline{\text{Premier cas}}; \Delta > 0$

On remarque que $\frac{\Delta}{4a^2} = \left(\frac{\sqrt{\Delta}}{2a}\right)^2$; on obtient une identité remarquable, on factorise et on trouve (situation

vue en Première) deux solutions **réelles**;
$$z_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 et $z_2 = \frac{-b + \sqrt{\Delta}}{2a}$

Deuxième cas : $\Delta = 0$

On retrouve de même qu'il y a une solution réelle double : z = -

Troisième cas : $\Delta < 0$

Alors $\Delta = -(-\Delta) = i^2 \times (-\Delta) = (i\sqrt{-\Delta})^2 \text{ car } \Delta > 0;$ on a alors $(i\sqrt{-\Delta})^2 = i^2(\sqrt{-\Delta})^2 = (-1) \times (-\Delta) = \Delta.$

$$a\left[\left(z+\frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2}\right] = a\left[\left(z+\frac{b}{2a}\right)^2 - \left(\frac{\mathrm{i}\sqrt{-\Delta}}{2a}\right)^2\right] = a\left(z+\frac{b}{2a} + \frac{\mathrm{i}\sqrt{-\Delta}}{2a}\right)\left(z+\frac{b}{2a} - \frac{\mathrm{i}\sqrt{-\Delta}}{2a}\right)$$
$$= a\left(z-\frac{-b-\mathrm{i}\sqrt{-\Delta}}{2a}\right)\left(z-\frac{-b+\mathrm{i}\sqrt{-\Delta}}{2a}\right).$$

Dans C, un produit de facteurs est nul si, et seulement si, l'un des facteurs est nul.

On obtient deux solutions complexes conjuguées : $z_1 = \frac{-b - i\sqrt{-\Delta}}{2a}$ et $z_2 = \frac{-b + i\sqrt{-\Delta}}{2a}$

Solutions de l'équation $az^2 + bz + c = 0$, $(a; b; c) \in \mathbb{R}^3$:

- Si $\Delta > 0$, on a deux solutions **réelles**: $z_1 = \frac{-b \sqrt{\Delta}}{2a}$ et $z_2 = \frac{-b + \sqrt{\Delta}}{2a}$.
- Si $\Delta = 0$, l'équation a une solution **réelle double** : $z = -\frac{b}{2a}$.
- Si $\Delta < 0$, on a deux solutions **complexes conjuguées**: $z_1 = \frac{-b i\sqrt{-\Delta}}{2a}$ et $z_2 = \frac{-b + i\sqrt{-\Delta}}{2a}$.