Лабораторна робота №3

Виконав: студент 4-го курсу спеціальність Математика Шатохін Михайло

1 Постановка задачі

На відрізку [a,b] методом невизначених коефіцієнтів Коллатца побудувати в точці $x_i \in \{x_j\}_{j=1}^{r+1}$ апроксимацію лінійного диференціального оператора

$$Lu(x) = u(x) + du^{(2)}(x) + ku^{(4)}(x) + u^{(m)}(x)$$

з порядком $q = r + 1 - m \equiv g$. Тут введено позначення:

$$[a,b] = [0,1],$$

$$x_j = a + (j-1)h, \quad h = \frac{b-a}{r}, \quad j = \overline{1, r+1},$$

$$m = g + 4$$
, $i = mod(d, r + 1)$,

k — номер за списком студента в групі,

g — номер групи,

d — день народження студента.

2 Теоретичні відомості

Для апроксимації оператора використовується метод невизначених коефіцієнтів Коллатца. Згідно з цим методом необхідно визначитися з так званим шаблоном $S(x_i)$, вузли якого і відповідні значення функції u(x) використовуються у формулі числового диференціювання. Крім того, цей метод передбачає рівномірний розподіл вузлів x_i . За таких припущень формула числового диференціювання є зваженою сумою значень функції u(x) у точках шаблона де коефіцієнти — невідомі, а їх кількість (r+1) залежить від заданого порядку апроксимації диференціального оператора і визначиться пізніше. Ідея методу полягає у знаходженні таких значень коефіцієнтів c_i , щоб забезпечити найбільший порядок нев'язки. Вимагаючи певного порядку нев'язки, необхідно перш за все забезпечити в її розвиненні у ряд Тейлора нульові коефіцієнти похідних функції u(x) до m-го порядку включно, а також додаткові рівняння для складання замкненої системи рівнянь щодо знаходження коефіцієнтів c_i . Тобто, усього рівнянь має бути (r+1), причому $r \geq m$. Запишемо розвинення нев'язки $\psi(x)^2$ у ряд Тейлора в околі точки шаблона x_i , отримаємо систему лінійних алгебраїчних рівнянь відносно коефіцієнтів c_i з такою розширеною матрицею:

$$\begin{pmatrix} 1 & 1 & \dots & 1 & a_0 \\ a_0 & a_1 & \dots & a_r & \frac{a_1}{h} \\ \dots & \dots & \dots & \dots & \dots \\ a_0^m & a_1^m & \dots & a_r^m & m! \frac{a_m}{h^m} \\ a_0^{m+1} & a_1^{m+1} & \dots & a_r^{m+1} & 0 \\ \dots & \dots & \dots & \dots & \dots \\ a_0^r & a_1^r & \dots & a_r^r & 0 \end{pmatrix}$$

матрицею Вандермонда, що не дорівнює нулю, тому що a_k попарно різні. Це означає, що система лінійних алгебраїчних рівнянь відносно коефіцієнтів c_i має єдиний розв'язок.

3 Практична реалізація

Нижче наведена реалізація методу невизначених коефіцієнтів Коллатца мовою Matlab.

Функція main здійснює ініціалізацію параметрів задачі та виклик функції GetCollatzCoefficients, яка виконує основні обрахунки.

main.m

Функція GetCollatzCoefficients власне містить інтерпретацію мовою ./Matlab наведеного вище алгоритму невизначених коефіцієнтів Коллатца.

GetCollatzCoefficients.m

```
function [ coefficients , approximationDegree] =
        GetCollatzCoefficients (operatorCoefficients, intervalDivision, pointNumber)
        operatorDegree = length( operatorCoefficients );
2
       divisionNumber = length( intervalDivision ) -1;
3
        intervalLength = (intervalDivision (end) - intervalDivision (1)) / divisionNumber;
4
       approximationDegree = divisionNumber + 1 – operatorDegree;
5
        matrix = (ones(divisionNumber + 1, 1) * ((0: divisionNumber) – pointNumber)).^
6
            ((ones(divisionNumber + 1, 1) * (0:divisionNumber))');
        rightSide = zeros(divisionNumber + 1, 1):
7
        rightSide(1) = 1;
8
        for i = 1: operator Degree
9
            rightSide (i + 1) = rightSide (i) * i / intervalLength;
10
       end;
11
        rightSide = rightSide .* ([ operatorCoefficients , zeros(1, approximationDegree)]');
12
        coefficients = matrix \ rightSide;
13
   end;
14
```

Використаний у функції main файл params.mat містить параметри задачі, що наведені в постановці задачі. Наведено текстовий варіант цього файлу з метою можливості його розуміння людиною.

params.mat

```
1 # name: operatorCoefficients
```

^{2 #} type: matrix

```
3 # rows: 1
4 # columns: 6
   1 0 13 0 21 1
6 # name: divisionNumber
   # type: scalar
7
8
9 # name: pointNumber
10 # type: scalar
11
12 # name: interval
13 # type: matrix
14 # rows: 1
15 # columns: 2
   0 1
16
```

В результаті роботи даної програми отримується наступний результат

```
>>main
1
    coefficients =
2
3
      7.9686e+03
4
5
     -8.3537e+04
      3.8411e+05
6
7
     -8.5664e+05
      9.7606e+05
8
9
     -5.3989e+05
      1.0012e+05
10
      1.4767e+04
11
     -2.9540e+03
12
13
   approximationDegree = 3
14
15
```