Aula 9 – Critério de Cauchy e Limites Infinitos

Metas da aula: Enunciar e provar o critério de Cauchy e apresentar algumas de suas aplicações no estabelecimento da convergência e da divergência de sequências. Apresentar o conceito de sequências propriamente divergentes com limites infinitos bem como alguns resultados relacionados com esse conceito.

Objetivos: Ao final desta aula, você deverá ser capaz de:

- Saber o enunciado do critério de Cauchy e o uso desse resultado para estabelecer a convergência e a divergência de sequências.
- Saber o conceito de sequências propriamente divergentes com limites infinitos bem como a resolução de questões simples envolvendo essa noção.

Introdução

Nesta aula vamos concluir nosso estudo sobre sequências de números reais com a apresentação do célebre critério de Cauchy. Esse critério permite determinar a convergência de uma sequência sem o conhecimento prévio do limite ou a divergência da mesma. O nome do critério se refere ao matemático francês Augustin-Louis Cauchy (1789-1857), um dos maiores contribuidores para o desenvolvimento da Análise Matemática no século XIX, que foi quem primeiro o publicou. Vamos também apresentar o conceito de sequências propriamente divergentes.

O Critério de Cauchy

Apesar da frequência com que nos deparamos com sequências monótonas e, portanto, da enorme importância do Teorema da Sequência Monótona, é importante que tenhamos uma condição implicando a convergência de uma sequência que não requeira conhecer de antemão o limite, e que não seja restrita a sequências monótonas. O critério de Cauchy é uma tal condição. Ele se baseia no conceito de sequência de Cauchy que apresentamos a seguir.

Definição 9.1

Diz-se que uma sequência de números reais $\mathbf{x}=(x_n)$ é uma sequência de Cauchy se para todo $\varepsilon>0$ existe $N_0\in\mathbb{N}$ tal que para todos $m,n\in\mathbb{N}$ se

 $m > N_0$ e $n > N_0$, então $|x_m - x_n| < \varepsilon$. Em símbolos, escrevemos

$$(\forall \varepsilon > 0)(\exists N_0 \in \mathbb{N})(\forall m, n \in \mathbb{N}) ((m > N_0 \in n > N_0) \Rightarrow |x_n - x_m| < \varepsilon).$$

Assim como na Definição 6.2, aqui também N_0 depende em geral de ε . Para enfatizar esse fato é usual escrever-se $N_0 = N_0(\varepsilon)$.

Observe que dizer que $\mathbf{x} = (x_n)$ não é uma sequência de Cauchy significa dizer que existe $\varepsilon_0 > 0$ tal que para todo $k \in \mathbb{N}$ existem $m_k, n_k \in \mathbb{N}$ tais que $m_k > N_0, n_k > N_0$ e $|x_{m_k} - x_{n_k}| \ge \varepsilon_0$. Em símbolos, escrevemos

$$(\exists \varepsilon_0 > 0)(\forall k \in \mathbb{N})(\exists m_k, n_k \in \mathbb{N})((m_k > N_0 \in n_k > N_0) \in |x_n - x_m| \ge \varepsilon_0).$$

Notemos que, apenas por conveniência, na fórmula da negação as variáveis ε, N_0, m, n foram trocadas por $\varepsilon_0, k, m_k, n_k$, o que é de nosso pleno direito fazer.

Exemplos 9.1

(a) A sequência (1/n) é uma sequência de Cauchy.

De fato, dado $\varepsilon > 0$, escolhemos $N_0 = N_0(\varepsilon) \in \mathbb{N}$ tal que $N_0 > 2/\varepsilon$. Então se $m, n > N_0$, temos $1/n < 1/N_0 < \varepsilon/2$ e, do mesmo modo, $1/m < \varepsilon/2$ Daí segue que se $m, n > N_0$, então

$$\left|\frac{1}{m} - \frac{1}{n}\right| \le \frac{1}{m} + \frac{1}{n} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

o que demonstra que (1/n) é sequência de Cauchy, uma vez que $\varepsilon > 0$ é arbitrário.

(b) A sequência $(1+(-1)^n)$ não é uma sequência de Cauchy.

Com efeito, seja $\varepsilon_0=2$. Então, qualquer que seja $k\in\mathbb{N}$ podemos tomar $m_k := 2k > k$ e $n_k := 2k + 1 > k$. Como $x_{2k} = 2$ e $x_{2k+1} = 0$ para todo $k \in \mathbb{N}$, temos

$$|x_{m_k} - x_{n_k}| = |x_{2k} - x_{2k+1}| = |2 - 0| = 2 = \varepsilon_0,$$

o que demonstra que $(1+(-1)^n)$ não é uma sequência de Cauchy.

O seguinte resultado constitui a parte mais imediata do critério de Cauchy, estabelecendo uma condição necessária para que uma sequência seja convergente.

Lema 9.1

Se $\mathbf{x} = (x_n)$ é uma sequência convergente de números reais, então \mathbf{x} é uma sequência de Cauchy.

Prova: Seja $\bar{x} = \lim \mathbf{x}$. Então, dado $\varepsilon > 0$ existe $N_0 = N_0(\varepsilon/2) \in \mathbb{N}$ tal que se $n > N_0$, então $|x_n - \bar{x}| < \varepsilon$. Logo, para todos $m, n \in \mathbb{N}$, satisfazendo $m > N_0$, $n > N_0$, temos

$$|x_m - x_n| = |(x_n - \bar{x}) + (\bar{x} - x_m)| \le |x_n - \bar{x}| + |x_m - \bar{x}| < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

Sendo $\varepsilon > 0$ arbitrário, fica provado que \mathbf{x} é uma sequência de Cauchy. \square

Para provar a recíproca do Lema 9.1, que juntamente com este constitui o referido critério de Cauchy, precisaremos do seguinte resultado.

Lema 9.2

Toda sequência de Cauchy é limitada.

Prova: Seja $\mathbf{x} := (x_n)$ uma sequência de Cauchy e $\varepsilon := 1$. Se $N_0 = N_0(1)$ e $n > N_0$, então $|x_n - x_{N_0+1}| < 1$. Logo, pela deiguadade triangular, temos $|x_n| \le |x_{N_0+1}| + 1$ para todo $n > N_0$. Seja

$$M := \sup\{|x_1|, |x_2|, \dots, |x_{N_0}|, |x_{N_0+1}|+1\}.$$

Então temos que $|x_n| \leq M$ para todo $n \in \mathbb{N}$.

Apresentamos agora o importante critério de Cauchy.

Teorema 9.1 (Critério de Cauchy)

Uma sequência de números reais é convergente se, e somente se, ela é uma sequência de Cauchy.

Prova: Vimos no Lema 9.1 que toda sequência convergente é uma sequência de Cauchy.

Reciprocamente, seja $\mathbf{x} = (x_n)$ uma sequência de Cauchy; vamos mostrar que \mathbf{x} é uma sequência convergente. Inicialmente, observemos que, pelo Lema 9.2, \mathbf{x} é limitada. Portanto, pelo Teorema de Bolzano-Weierstrass 8.6, existe uma subsequência $\mathbf{x}' = (x_{n_k})$ de \mathbf{x} que converge para algum $x^* \in \mathbb{R}$. Vamos mostrar que toda a sequência \mathbf{x} converge para x^* .

Como (x_n) é uma sequência de Cauchy, dado $\varepsilon>0$ existe $N_0=N_0(\varepsilon/2)\in\mathbb{N}$ tal que se $n,m>N_0$ então

$$|x_n - x_m| < \varepsilon/2. \tag{9.1}$$

Por outro lado, como \mathbf{x}' converge a x^* , existe $N_1 > N_0$ pertencente ao conjunto $\{n_k : k \in \mathbb{N}\}$ tal que

$$|x_{N_1}-x^*|<\varepsilon/2.$$

Como $N_1 > N_0$, segue de (9.1) com $m = N_1$ que

$$|x_n - x_{N_1}| < \varepsilon/2$$
 para $n > N_0$.

Daí segue que se $n > N_0$, então

$$|x_n - x^*| = |(x_n - x_{N_1}) + (x_{N_1} - x^*)|$$

$$\leq |x_n - x_{N_1}| + |x_{N_1} - x^*|$$

$$< \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

Como $\varepsilon > 0$ é arbitrário, concluímos que $\lim x_n = x^*$.

A seguir damos alguns exemplos de aplicação do critério de Cauchy.

Exemplos 9.2

(a) Seja $\mathbf{x} = (x_n)$ definida por

$$x_1 := 1$$
, $x_2 := 2$ e $x_n := \frac{1}{2}(x_{n-2} + x_{n-1})$ para $n > 2$.

Geometricamente essa sequência é formada tomando-se o ponto médio de sucessivos intervalos, cujos extremos são os dois últimos termos da sequência até então definidos, a começar pelo intervalo [1, 2]. Fica claro então que $1 \le x_n \le 2$, fato que pode ser provado rigorosamente usandose Indução Matemática. Com efeito, a afirmação vale para n=1 e n=2, por definição, e supondo que seja válida para $j=1,2,\ldots,k$, com k > 2, vemos facilmente que

$$x_{k+1} = (x_k + x_{k-1})/2 \ge (1+1)/2 = 1,$$

 $x_{k+1} = (x_k + x_{k-1})/2 \le (2+2)/2 = 2.$

Provemos também por indução que vale

$$|x_n - x_{n+1}| = \frac{1}{2^{n-1}}.$$

De fato, a afirmação é verdadeira para n=1, e supondo que $|x_k-x_k|$ $|x_{k+1}| = 1/2^{k-1}$ temos

$$|x_{k+1} - x_{k+2}| = |x_{k+1} - \frac{x_k + x_{k+1}}{2}| = \frac{1}{2}|x_k - x_{k+1}| = \frac{1}{2^k},$$

o que conclui a prova por indução da afirmação.

Assim, dados m > n, temos

$$|x_n - x_m| \le |x_n - x_{n+1}| + |x_{n+1} - x_{n+2}| + \dots + |x_{m-1} - x_m|$$

$$= \frac{1}{2^{n-1}} + \frac{1}{2^n} + \dots + \frac{1}{2^{m-2}}$$

$$= \frac{1}{2^{n-1}} \left(1 + \frac{1}{2} + \dots + \frac{1}{2^{m-n-1}} \right) < \frac{1}{2^{n-2}}.$$

Portanto, dado $\varepsilon > 0$ qualquer, tomando-se $N_0 \in \mathbb{N}$ tal que $1/2^{N_0-2} < \varepsilon$, se $m > N_0$, $n > N_0$ e supondo sem nenhuma perda de generalidade que $m \geq n$, obtemos que $|x_n - x_m| < 1/2^{n-2} < 1/2^{N_0-2} < \varepsilon$. Logo, \mathbf{x} é uma sequência de Cauchy. Pelo critério de Cauchy concluímos que \mathbf{x} converge para algum $\bar{x} \in \mathbb{R}$, o qual, pelo Teorema 7.5, deve satisfazer $1 \leq x \leq 2$.

Observe que não adiantará usar a regra de formação $x_n := (x_{n-1} + x_{n-2})/2$ para tentar saber o valor de \bar{x} , já que tomando-se o limite nessa relação obtemos $\bar{x} = (\bar{x} + \bar{x})/2$, o que é uma identidade trivialmente verdadeira porém inútil.

Para se conhecer o valor de \bar{x} é necessário observar que vale

$$x_{2n-1} < x_{2n+1} < x_{2n+2} < x_{2n}$$
 para todo $n \in \mathbb{N}$,

que pode ser facilmente provado por indução (Exercício!). Em particular, a subsequência $\mathbf{x}' = (x_{2n-1})$ é crescente e a subsequência $\mathbf{x}'' = (x_{2n})$ é decrescente. Segue daí que, para a subsequência $\mathbf{x}' = (x_{2n-1})$ temos

$$x_{2n+1} - x_{2n-1} = (x_{2n} - x_{2n-1}) - (x_{2n} - x_{2n+1}) = \frac{1}{2^{2n-2}} - \frac{1}{2^{2n-1}} = \frac{1}{2^{n-1}},$$

ou seja,
$$x_{2n+1} = x_{2n-1} + 1/2^{2n-1}$$
, e assim

$$x_{2n+1} = 1 + \frac{1}{2} + \frac{1}{2^3} + \dots + \frac{1}{2^{2n-1}}$$
$$= 1 + \frac{1/2 - 1/2^{2n+1}}{1 - 1/2^2} = 1 + \frac{2}{3} \left(1 - \frac{1}{4^n} \right) \to \frac{5}{3},$$

onde foi usada a conhecida fórmula para a soma de uma progressão geométrica.

Portanto, temos que $\bar{x} = \lim \mathbf{x} = \lim \mathbf{x}' = 5/3$.

(b) A sequência do exemplo anterior pertence a uma classe especial de sequências que vamos definir agora.

Dizemos que uma sequência de números reais $\mathbf{x} = (x_n)$ é contrativa se existe uma constante λ , com $0 < \lambda < 1$, tal que

$$|x_{n+2} - x_{n+1}| \le \lambda |x_{n+1} - x_n|$$

para todo $n \in \mathbb{N}$. O número λ é chamado a constante de contração da sequência.

Toda sequência contrativa $\mathbf{x} = (x_n)$ é uma sequência de Cauchy e, portanto, convergente para algum $x^* \in \mathbb{R}$. Além disso, temos

$$|x^* - x_n| \le \frac{\lambda^n}{1 - \lambda} |x_2 - x_1|$$
 para todo $n \in \mathbb{N}$, (9.2)

$$|x^* - x_n| \le \frac{\lambda}{1 - \lambda} |x_n - x_{n-1}|$$
 para todo $n \in \mathbb{N}$. (9.3)

Com efeito, é fácil provar por indução que

$$|x_{n+2} - x_{n+1}| \le \lambda^n |x_2 - x_1| \qquad \text{para todo } n \in \mathbb{N}. \tag{9.4}$$

De fato, a desigualdade (9.4) vale para n=1 pela definição. Suponhamos que a desigualdade vale para n = k. Então temos

$$|x_{k+3} - x_{k+2}| \le \lambda |x_{k+2} - x_{k+1}| \le \lambda \left(\lambda^k |x_2 - x_1|\right) = \lambda^{k+1} |x_2 - x_1|,$$

o que prova (9.4) para todo $n \in \mathbb{N}$.

Para m > n, aplicamos a desigualdade triangular e a fórmula da soma de uma progressão geométrica para obter

$$|x_{m} - x_{n}| \leq |x_{m} - x_{m-1}| + |x_{m-1} - x_{m-2}| + \dots + |x_{n+1} - x_{n}|$$

$$\leq (\lambda^{m-2} + \lambda^{m-3} + \dots + \lambda^{n-1})|x_{2} - x_{1}|$$

$$= \lambda^{n-1} \left(\frac{1 - \lambda^{m-n}}{1 - \lambda}\right)|x_{2} - x_{1}|$$

$$\leq \lambda^{n-1} \left(\frac{1}{1 - \lambda}\right)|x_{2} - x_{1}|.$$

Como $0 < \lambda < 1$, sabemos que $\lim \lambda^n = 0$. Portanto, deduzimos que (x_n) é uma sequência de Cauchy. Pelo critério de Cauchy, segue que (x_n) converge para algum $x^* \in \mathbb{R}$.

Agora, fazendo $m \to \infty$ na desigualdade

$$|x_m - x_n| \le \lambda^{n-1} \left(\frac{1}{1-\lambda}\right) |x_2 - x_1|,$$

obtemos

$$|x^* - x_n| \le \frac{\lambda^n}{1 - \lambda} |x_2 - x_1|$$
 para todo $n \in \mathbb{N}$.

Quanto à desigualdade (9.3), notemos que

$$|x_m - x_n| \le (\lambda^{m-n} + \dots + \lambda^2 + \lambda)|x_n - x_{n-1}|$$

$$\le \frac{\lambda}{1 - \lambda}|x_n - x_{n-1}|.$$

Fazendo $m \to \infty$ obtemos a desigualdade (9.3).

(c) Considere a equação $p(x) := x^3 - 5x + 3 = 0$. Como p(0) = 3 > 0 e p(1) = -1 < 0 somos levados a conjecturar que existe uma solução x_* da equação satisfazendo $0 < x_* < 1$. Seja x_1 um número qualquer satisfazendo $0 < x_1 < 1$. Definimos a sequência (x_n) indutivamente por

$$x_{n+1} := \frac{1}{5}(x_n^3 + 3)$$
 para todo $n \in \mathbb{N}$.

Por indução provamos sem dificuladade que vale $0 < x_n < 1$ para todo $n \in \mathbb{N}$ (Exercício!). Além disso, usando a fórmula $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$, obtemos

$$|x_{n+2} - x_{n+1}| = \left| \frac{1}{5} (x_{n+1}^3 + 3) - \frac{1}{5} (x_n^3 + 3) \right| = \frac{1}{5} |x_{n+1}^3 - x_n^3|$$

$$= \frac{1}{5} |x_{n+1}^2 + x_{n+1} x_n + x_n^2| |x_{n+1} - x_n| \le \frac{3}{5} |x_{n+1} - x_n|.$$

Portanto, (x_n) é uma sequência contrativa e, sendo assim, converge para algum $x_* \in \mathbb{R}$. Tomando o limite na equação $x_{n+1} := \frac{1}{5}(x_n^3 + 3)$ obtemos $x_* = \frac{1}{5}(x_*^3 + 3)$. Logo, x_* é raiz da equação $x^3 - 5x + 3 = 0$.

As relações (9.2) e (9.3) podem ser usadas para se estimar o erro cometido ao se aproximar o valor de x_* pelo de x_n .

(d) Seja $\mathbf{y} = (y_n)$ a sequência de números reais dada por

$$y_1 := \frac{1}{1!}, \quad y_2 := \frac{1}{1!} - \frac{1}{2!}, \dots, \quad y_n := \frac{1}{1!} - \frac{1}{2!} + \dots + \frac{(-1)^{n+1}}{n!}, \dots$$

Claramente, y não é uma sequência monótona. Porém, se m>n, então

$$y_m - y_n = \frac{(-1)^{n+2}}{(n+1)!} + \frac{(-1)^{n+3}}{(n+2)!} + \dots + \frac{(-1)^{m+1}}{m!}.$$

Como $2^{r-1} \le r!$ para todo $r \in \mathbb{N}$, segue que se m > n, então

$$|y_m - y_n| \le \frac{1}{(n+1)!} + \frac{1}{(n+2)!} + \dots + \frac{1}{m!}$$

 $\le \frac{1}{2^n} + \frac{1}{2^{n+1}} + \dots + \frac{1}{2^{m-1}} < \frac{1}{2^{n-1}}.$

Portanto, temos que (y_n) é uma sequência de Cauchy. Logo, ela converge para algum $\bar{y} \in \mathbb{R}$. Não temos ainda elementos para saber o valor de \bar{y} . Passando ao limite quando $m \to \infty$ na desigualdade anterior obtemos

$$|\bar{y} - y_n| \le \frac{1}{2^{n-1}},$$

o que nos permite estimar o erro cometido ao aproximarmos o valor de \bar{y} pelo valor de y_n . Apenas por curiosidade, podemos adiantar que o valor exato de \bar{y} é 1 - 1/e.

Limites Infinitos

Em alguns casos é conveniente termos uma definição para o significado de uma sequência (x_n) de números reais "tender a $\pm \infty$ ".

Definição 9.2

Seja (x_n) uma sequência de números reais.

- (i) Dizemos que (x_n) tende a $+\infty$, e escrevemos $\lim x_n = +\infty$, se para todo M > 0 existe $N_0 = N_0(M) \in \mathbb{N}$ tal que se $n > N_0$, então $x_n > M$.
- (ii) Dizemos que (x_n) tende a $-\infty$, e escrevemos $\lim x_n = -\infty$, se para todo M>0 existe $N_0=N_0(M)\in\mathbb{N}$ tal que se $n>N_0$, então $x_n<-M$.

Dizemos que (x_n) é propriamente divergente no caso em que temos $\lim x_n = +\infty$ ou $\lim x_n = -\infty$.

Observe que $\lim x_n = -\infty$ se, e somente se, $\lim(-x_n) = -\infty$.

Exemplos 9.3

(a) $\lim n = +\infty$.

De fato, dado M > 0, existe um $N_0 \in \mathbb{N}$ com $N_0 > M$, pela Propriedade Arquimediana, e assim n > M para todo $n > N_0$.

(b) Se b > 1, então $\lim b^n = +\infty$.

Escrevamos b = 1 + c, com c = b - 1 > 0. Pela desigualdade de Bernoulli temos

$$b^n = (1+c)^n \ge 1 + nc.$$

Portando, dado M > 0, tomando $N_0 > M/c$, obtemos $b^n \ge 1 + nc > 0$ 1 + M > M para todo $n > N_0$.

Chamamos sua atenção para o fato de que sequências propriamente divergentes constituem um caso particular de sequências divergentes. As propriedades válidas para o limite de sequências convergentes que vimos em aulas anteriores podem não valer quando alguma das sequências envolvidas tem limite $\pm \infty$. No entanto, temos o seguinte resultado.

Teorema 9.2

- (i) Se $\lim x_n = +\infty$ e (y_n) é uma sequência limitada inferiormente, então $\lim (x_n + y_n) = +\infty$.
- (ii) Se $\lim x_n = +\infty$ e existe c > 0 tal que $y_n > c$ para todo $n \in \mathbb{N}$, então $\lim (x_n y_n) = +\infty$.
- (iii) Se $x_n > c > 0$, $y_n > 0$ para todo $n \in \mathbb{N}$ e $\lim y_n = 0$, então $\lim \frac{x_n}{y_n} = +\infty$.
- **Prova:** (i) Existe $c \in \mathbb{R}$ tal que $y_n \geq c$ para todo $n \in \mathbb{N}$. Dado M > 0 qualquer, existe $N_0 \in \mathbb{N}$ tal que $x_n > M c$ para todo $n > N_0$. Logo, se $n > N_0$, então $x_n + y_n > (M c) + c = M$, o que mostra que $\lim (x_n + y_n) = +\infty$.
- (ii) Analogamente, dado M>0, existe $N_0\in\mathbb{N}$ tal que $x_n>M/c$ para todo $n>N_0$. Logo, se $n>N_0$, então $x_ny_n>(M/c)c=M$, o que demonstra que $\lim(x_ny_n)=+\infty$.
- (iii) Dado M > 0, existe $N_0 = N_0(M/c) \in \mathbb{N}$ tal que se $n > N_0$, então $y_n = |y_n| < c/M$. Logo, se $n > N_0$, então $x_n/y_n > c/(c/M) = M$, o que mostra que $\lim (x_n/y_n) = +\infty$.

Observe que se $\lim x_n = +\infty$ e $\lim y_n = -\infty$, então nada pode ser afirmado sobre a divergência ou convergência da sequência $(x_n + y_n)$. Por exemplo, se $x_n = n + 1/n$ e $y_n = -n$, então $(x_n + y_n)$ é convergente e $\lim (x_n + y_n) = 0$. Se $x_n = 2n$ e $y_n = -n$, então $\lim (x_n + y_n) = +\infty$. Finalmente, se $x_n = n + (-1)^n$ e $y_n = -n$, então $(x_n + y_n)$ é divergente, mas não propriamente divergente.

O seguinte resultado estabelece um critério que determina quando uma sequência monótona é propriamente divergente.

Teorema 9.3

Uma sequência monótona de números reais é propriamente divergente se, e somente se, é ilimitada.

(i) Se (x_n) é uma sequência ilimitada não-decrescente, então $\lim x_n = +\infty$.

(ii) Se (x_n) é uma sequência ilimitada não-crescente, então $\lim x_n = -\infty$.

Prova: Suponhamos que (x_n) é uma sequência não-decrescente. Sabemos que se (x_n) é limitada então ela é convergente. Portanto, se ela é propriamente divergente, então tem que ser ilimitada. Se (x_n) é ilimitada, ela não é limitada superiormente, já que é limitada inferiormente por ser nãodecrescente. Então dado M > 0 existe $N_0 \in \mathbb{N}$ tal que $x_{N_0} > M$. Como (x_n) é não-decrescente, se $n > N_0$, então $x_n \ge x_{N_0} > M$. Logo, $\lim x_n = +\infty$.

A afirmação (ii) se reduz a (i) considerando-se a sequência $(-x_n)$.

O seguinte "critério de comparação" é frequentemente utilizado para demonstrar que uma sequência é propriamente divergente.

Teorema 9.4

Sejam (x_n) e (y_n) sequências satisfazendo

$$x_n \le y_n$$
 para todo $n \in \mathbb{N}$. (9.5)

- (i) Se $\lim x_n = +\infty$, então $\lim y_n = +\infty$.
- (ii) Se $\lim y_n = -\infty$, então $\lim x_n = -\infty$.

Prova: (i) Se $\lim x_n = +\infty$, dado M > 0, existe $N_0 \in \mathbb{N}$ tal que $n > N_0$ implica $x_n > M$. Mas então, se $n > N_0$, de (9.5) segue que temos $y_n > M$, o que mostra que $\lim y_n = +\infty$.

A afirmação (ii) se reduz a (i) considerando-se as sequências $(-x_n)$ e $(-y_n)$.

Observação 9.1

O Teorema 9.4 continua verdadeiro se a condição (9.5) é ultimadamente verdadeira: isto é, se existe $M_0 \in \mathbb{N}$ tal que $x_n \leq y_n$ para todo $n \geq M_0$.

O seguinte resultado também serve como um "critério de comparação" e é bastante útil nos casos em que não se tem a condição (9.5).

Teorema 9.5

Sejam (x_n) e (y_n) duas sequências de números reais positivos e suponhamos que para algum L > 0 tenhamos

$$\lim \frac{x_n}{y_n} = L.$$
(9.6)

Então $\lim x_n = +\infty$ se, e somente se, $\lim y_n = +\infty$.

Prova: Se a condição (9.6) vale, então existe $M_0 \in \mathbb{N}$ tal que

$$\frac{1}{2}L < \frac{x_n}{y_n} < \frac{3}{2}L$$
 para todo $n \ge M_0$.

Portanto, temos $(L/2)y_n < x_n < (3L/2)y_n$ para todo $n \in \mathbb{N}$. A conclusão segue então do Teorema 9.4.

Exercícios 9.1

- 1. Mostre diretamente da definição que as seguintes sequências são sequências de Cauchy.
 - (a) $\left(\frac{n+1}{n}\right)$.
 - (b) $\left(1 + \frac{1}{2!} + \dots + \frac{1}{n!}\right)$.
- 2. Mostre diretamente da definição que as seguintes sequências não são sequências de Cauchy.
 - (a) $((-1)^n)$.
 - (b) $(n + \frac{(-1)^n}{n}).$
- 3. Mostre diretamente da definição que se (x_n) e (y_n) são sequências de Cauchy, então $(x_n + y_n)$ e $(x_n y_n)$ são sequências de Cauchy.
- 4. Seja $p \in \mathbb{N}$. Mostre que a sequência (x_n) , com $x_n := \sqrt{n}$, satisfaz $\lim |x_{n+p} x_n| = 0$, mas ela não é uma sequência de Cauchy.
- 5. Seja (x_n) uma sequência de Cauchy satisfazendo $x_n \in \mathbb{Z}$ para todo $n \in \mathbb{N}$. Mostre que (x_n) é ultimadamente constante.
- 6. Se C > 0, 0 < r < 1 e $|x_{n+1} x_n| < Cr^n$ para todo $n \in \mathbb{N}$, mostre que (x_n) é uma sequência de Cauchy.
- 7. Se $x_1 < x_2$ são números reais arbitrários e $x_n := \frac{1}{3}x_{n-1} + \frac{2}{3}x_{n-2}$ para n > 2, mostre que (x_n) é uma sequência de Cauchy e encontre $\lim x_n$.
- 8. Mostre que as seguintes sequências são contrativas e encontre seus limites.
 - (a) $x_1 := 1 \text{ e } x_{n+1} := 1/(2+x_n) \text{ para todo } n \in \mathbb{N}.$
 - (b) $x_1 := 2 e x_{n+1} := 2 + 1/x_n$ para todo $n \in \mathbb{N}$.

- 9. Defina uma sequência contrativa para aproximar uma raíz r da equação polinomial $x^3 - 3x + 1 = 0$ satisfazendo 0 < r < 1. Encontre um valor aproximado de r com erro menor que 10^{-4} .
- 10. Mostre que se (x_n) é uma sequência ilimitada, então ela possui uma subsequência propriamente divergente.
- 11. Dê exemplos de sequência propriamente divergentes (x_n) e (y_n) com $y_n \neq 0$ para todo $n \in \mathbb{N}$ tais que:
 - (a) (x_n/y_n) é convergente;
 - (b) (x_n/y_n) é propriamente divergente.
- 12. Mostre que as sequências (\sqrt{n}) e $(n/\sqrt{n+1})$ são propriamente divergentes.
- 13. Mostre que se $\lim x_n = 0$ e $x_n > 0$ para todo $n \in \mathbb{N}$, então $\lim (1/x_n) =$ $+\infty$.
- 14. Mostre que se $\lim (x_n/n) = L$, onde L > 0, então $\lim x_n = +\infty$.
- 15. Suponha que (x_n) é uma sequência propriamente divergente e (y_n) é uma sequência tal que existe $\lim (x_n y_n) \in \mathbb{R}$. Mostre que $\lim y_n = 0$.