Fundamental Concepts in Computational and Applied Mathematics

Juan Meza School of Natural Sciences University of California, Merced

Fall 2014

Recap

- Beware catastrophic cancellation know the limits of precision
- Learn about the conditioning of your problem
- Choose algorithms known to be stable so as to not introduce any more loss of precision than necessary
 - Conditioning is fundamentally a characteristic of the problem while
 - Stability is related to algorithms

Dense Linear Algebra methods

Let
$$x, y \in R^N$$
 and $A \in R^{N \times N}$

- Basic Linear Algebra
 - dot products: $x^T y$
 - matvec: Ax
 - saxpy: ax + y
 - Solve Ax = b
 - Solve $Ax = \lambda x$

Rule of Thumb

We cannot solve anything except linear systems

Warning

Never (EVER) solve a linear system by calculating the inverse of the matrix and multiplying!

Linear Algebra methods

- Various standard methods
 - LU
 - Cholesky
 - QR
 - SVD
- All have advantages and disadvantages learn about them!
- Your choice will depend on the application, software availability, and time constraints

Some Useful Definitions

Definition (Condition Number)

The condition number of a matrix A is given by: $\kappa(A) = ||A|| \cdot ||A^{-1}||$

Definition (Residual)

The residual of linear system is given by b - Ax

Definition (Machine Precisions)

The machine precision is denoted by μ

Definition

A problem is said to be ill-conditioned if $\mu \kappa_{\infty}(A) \approx 1$

Fun Facts

- Gaussian elimination always produces solutions with relatively small residuals (minor caveats)
- Best possible error bound for solving a system of linear equations can be given by

$$\frac{||x - \hat{x}||_{\infty}}{||x||_{\infty}} \le 4\mu\kappa_{\infty}(A) \tag{1}$$

where μ is machine precision of the computer.

Stable or Unstable? Well conditioned or ill-conditioned?

Consider Ax = b where

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Comparison of algorithms

Table: Number of iterations to reduce error by 10^{-3} .

$\overline{\kappa(A)}$	Value	iter
1	0.0	1
10^{2}	0.82	15
10^{4}	0.98	150
10^{8}	0.9998	15,000

LU with Partial Pivoting

• Can show that LU/PP generates the exact solution to a perturbed problem (A+E)x=b, such that

$$||E||_{\infty} \le 8n^3 \rho ||A||_{\infty} \mu \tag{2}$$

- ullet The growth factor ho can grow exponentially, but in practice is usually of order 10
- Consider the residual, b Ax:

Summary

- A
- B
- C

References

- Methods of Conjugate Gradients for Solving Linear Systems,
 Magnus R. Hestenes and Eduard Stiefel, J. Res. of NBS, Vol. 49, No. 6, Dec. 1952.
- Matrix Computations, 3rd Ed., Gene H. Golub and Charles F. Van Loan, Johns Hopkins, 1996.
- Iterative Methods for Linear and Nonlinear Equations, C.T. Kelley, SIAM, 1995.