

N.N.¹, N.N.^{2,3},...

Corresponding author: Name, Address. (email)

¹Affiliation one

²Affiliation two

 $^{^3}$ Affiliation three

2 Abstract. ...

1. Introduction

- 2. Methods
- 2.1. Sea level projections (PG)
- 2.1.1. Limitations of the sea level projections
 - 2.2. Decision tools (KdB, MD, TT)
- 2.2.1. Limitations of the decision tools
 - 3. Case studies
 - 3.1. Data (**PG**)
 - 3.2. Timing of adaptation measures (KdB, TT)
- A case study focusing on and comparing different cities in Norway.
 - 3.3. Selection of adaptation measures(?) (MD)
- A case study focusing on Denmark.

4. Conclusions

- Acknowledgments. This work was funded by NordForsk through project number
- ⁸ 74456 "Statistical Analysis of Climate Projections" (eSACP) and The Research Council
- of Norway through project number 243953 "Physical and Statistical Analysis of Climate
- Extremes in Large Datasets" (ClimateXL). The source code for the analysis is imple-
- mented in the statistical programming language R (http://www.R-project.org) and is
- available on GitHub at http://github.com/eSACP/....

References

- Robert, C. P., and G. Casella (2004), Monte Carlo Statistical Methods, 2nd ed., Springer,
- New York.
- Rue, H., S. Martino, and N. Chopin (2009), Approximate Bayesian Inference for Latent
- Gaussian Models Using Integrated Nested Laplace Approximations (with Discussion),
- Journal of the Royal Statistical Society, Series B, 71, 319–392.