PH3102: QM Assignment 09

Sabarno Saha

22MS037 HSERK

Q1. Perturbing the Infinite square well

The unperturbed problem is H_0 is given as $H_0 = \frac{\hat{p}^2}{2m} + V'(x)$, where

$$V'(x) = \begin{cases} 0 & x : 0 < x < a \\ \infty & \text{elsewhere} \end{cases}$$
 (1)

The perturbation V is given in the problem as

$$V(x) = \begin{cases} V_0 & x: \frac{a}{2} < x < \frac{3a}{2} \\ 0 & \text{elsewhere} \end{cases}$$
 (2)

The energy eigenvalues and eigenfunctions to H_0 are given as

$$E_n = \frac{n^2 \pi^2 \hbar^2}{2ma^2} \quad , \quad \psi_n^{(0)} = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi x}{a}\right)$$

Answer 1.1

Considering the nature of the perturbation, the ground state energy should increase to accomdate the perturbation. Since $V_0 > 0$, the particle in its ground state should have higher energy. The peak of the ground state takes place at x = a/2. Since there is a higher potential at x = a/2, the peak which is proportional to the pdf at x = a/2, will decrease since the addition of a higher potential near it would decrease the pdf and thereafter the peak.

Answer 1.2

We now calculate the first order correction to the ground state energy. The first order correction is given as

$$E_1^{(1)} = \left\langle \psi_1^{(0)} \middle| V \middle| \psi_1^{(0)} \right\rangle = \frac{2}{a} V_0 \int_{\frac{a}{3}}^{\frac{2a}{3}} \sin^2 \left(\frac{\pi x}{a} \right) dx = \left[\frac{2\pi + 3^{\frac{3}{2}}}{6\pi} \right] V_0 = \left[\frac{1}{3} + \frac{\sqrt{3}}{2\pi} \right] V_0 \qquad (3)$$

Answer 1.3

Answer 1.4

Answer 1.5

Q2. Perturbation theory for a 3-level problem

Answer 2.1

The Hamiltonian of the 3-level system is given as

$$\widehat{H} = \begin{bmatrix} -u & v & 0 \\ v & u & 0 \\ 0 & 0 & u' \end{bmatrix} \quad ; u', u, v > 0$$

To apply perturbation theory to this we separate \widehat{H} into H_0+V where H_0 is the zeroth Hamiltonian and V is the perturbation.

We define H_0 and V to be

$$H_0 = \begin{bmatrix} -u & 0 & 0 \\ 0 & u & 0 \\ 0 & 0 & u' \end{bmatrix} \qquad V = \begin{bmatrix} 0 & v & 0 \\ v & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \tag{4}$$

Answer 2.2

We want to find the energy eigenvalues $E_1^{(0)}, E_2^{(0)}, E_3^{(0)}$ and the energy eigenstates $\left|\psi_1^{(0)}\right\rangle, \left|\psi_2^{(0)}\right\rangle, \left|\psi_3^{(0)}\right\rangle$ of the zeroth Hamiltonian. The eigenvalues of a diagonal matrix like H_0 are the diagonal entries themselves. So the energy eigenvalues are

$$E_1^{(0)} = -u \qquad E_2^{(0)} = u \qquad E_3^{(0)} = u'$$

$$\left| \psi_1^{(0)} \right\rangle = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \qquad \left| \psi_2^{(0)} \right\rangle = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \qquad \left| \psi_3^{(0)} \right\rangle = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \tag{5}$$

Answer 2.3

We calculate the energy corrections upto the second order. The first order and second energy corrections are given by

$$E_n^{(1)} = \left\langle \psi_n^{(0)} \middle| V \middle| \psi_n^{(0)} \right\rangle$$

$$E_n^{(2)} = \left\langle \psi_n^{(0)} \middle| V \middle| \psi_n^{(1)} \right\rangle = \sum_{k \neq n} \frac{\left| \left\langle \psi_k^{(0)} \middle| V \middle| \psi_n^{(0)} \right\rangle \right|^2}{E_n^{(0)} - E_k^{(0)}}$$
(6)

To find them we represent the perturbation V in the eigenbasis of H_0 that is in terms of $\left|\psi_1^{(0)}\right\rangle, \left|\psi_2^{(0)}\right\rangle, \left|\psi_3^{(0)}\right\rangle$.

$$V = \begin{bmatrix} \left\langle \psi_{1}^{(0)} \middle| V \middle| \psi_{1}^{(0)} \right\rangle & \left\langle \psi_{1}^{(0)} \middle| V \middle| \psi_{2}^{(0)} \right\rangle & \left\langle \psi_{1}^{(0)} \middle| V \middle| \psi_{3}^{(0)} \right\rangle \\ \left\langle \psi_{2}^{(0)} \middle| V \middle| \psi_{1}^{(0)} \right\rangle & \left\langle \psi_{2}^{(0)} \middle| V \middle| \psi_{2}^{(0)} \right\rangle & \left\langle \psi_{2}^{(0)} \middle| V \middle| \psi_{3}^{(0)} \right\rangle \\ \left\langle \psi_{3}^{(0)} \middle| V \middle| \psi_{1}^{(0)} \right\rangle & \left\langle \psi_{3}^{(0)} \middle| V \middle| \psi_{2}^{(0)} \right\rangle & \left\langle \psi_{3}^{(0)} \middle| V \middle| \psi_{3}^{(0)} \right\rangle \end{bmatrix}$$

$$= \begin{bmatrix} 0 & v & 0 \\ v & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$(7)$$

Let us calculate $E_n^{(1)}$ using the gram-matrix elements of V using the eigenbasis of H_0

$$E_1^{(1)} = E_2^{(2)} = E_3^{(3)} = 0 (8)$$

We know calculate ${\cal E}_n^{(2)}$ using the matrix elements of V in the eigenbasis of ${\cal H}_0$

$$E_{1}^{(2)} = \frac{\left|\left\langle\psi_{2}^{(0)}\middle|V\middle|\psi_{1}^{(0)}\right\rangle\right|^{2}}{E_{1}^{(0)} - E_{2}^{(0)}} = -\frac{v^{2}}{2u}$$

$$E_{2}^{(2)} = \frac{\left|\left\langle\psi_{1}^{(0)}\middle|V\middle|\psi_{2}^{(0)}\right\rangle\right|^{2}}{E_{2}^{(0)} - E_{1}^{(0)}} = \frac{v^{2}}{2u}$$

$$E_{3}^{(2)} = 0$$

$$(9)$$

Answer 2.4

We use the expression for the corrections to the eigenstates as $\left|\psi_{n}^{(j)}\right\rangle = \sum_{k\neq n} c_{nk}^{(j)} \left|\psi_{n}^{(0)}\right\rangle$ to find the first order corrections to the eigenstates. To find out $c_{nk}^{(1)}$ we use,

$$c_{nk}^{(1)} = \frac{\left\langle \psi_k^{(0)} \middle| V \middle| \psi_n^{(0)} \right\rangle}{E_n^{(0)} - E_k^{(0)}} \tag{10}$$

Let us write the matrix of the coefficients of first order corrections C as $C_{ij} = c_{ij}^{(1)}$. The matrix is

$$C = \begin{bmatrix} 0 & \frac{v}{2u} & 0 \\ -\frac{v}{2u} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \tag{11}$$

The first order correction to the eigenstates are $|\psi_1^{(1)}\rangle, |\psi_2^{(1)}\rangle, |\psi_3^{(1)}\rangle$, are

$$\begin{aligned} \left| \psi_{1}^{(1)} \right\rangle &= C_{12} |\psi_{2}^{0}\rangle + C_{13} |\psi_{3}^{0}\rangle = -\frac{v}{2u} |\psi_{2}^{(0)}\rangle = -\frac{v}{2u} \begin{pmatrix} 0\\1\\0 \end{pmatrix} \\ \left| \psi_{2}^{(1)} \right\rangle &= C_{21} |\psi_{1}^{0}\rangle + C_{23} |\psi_{3}^{0}\rangle = \frac{v}{2u} |\psi_{1}^{(0)}\rangle = \frac{v}{2u} \begin{pmatrix} 1\\0\\0 \end{pmatrix} \\ \left| \psi_{3}^{(1)} \right\rangle &= C_{32} |\psi_{2}^{0}\rangle + C_{31} |\psi_{1}^{0}\rangle = 0 \end{aligned}$$

$$(12)$$

Answer 2.5

We now solve the problem by diagonalising the matrix H. The matrix H is diagonalizable because it is a symmetric matrix and symmetric matrics are normal. By Spectral Theorem, there exists an orthogonal eigenbasis of the matrix. After diagonalizing, we get

$$H = \begin{bmatrix} -u & v & 0 \\ v & u & 0 \\ 0 & 0 & u' \end{bmatrix} = \begin{bmatrix} \psi_1 & \psi_2 & \psi_3 \end{bmatrix} \begin{bmatrix} -\sqrt{u^2 + v^2} & 0 & 0 \\ 0 & \sqrt{u^2 + v^2} & 0 \\ 0 & 0 & u' \end{bmatrix} \begin{bmatrix} \psi_1 & \psi_2 & \psi_3 \end{bmatrix}^{\mathsf{T}}$$

$$= \begin{bmatrix} \frac{-\sqrt{u^2 + v^2} + u}}{v} & \frac{-\sqrt{u^2 + v^2} - u}{v} & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -\sqrt{u^2 + v^2} & 0 & 0 \\ 0 & \sqrt{u^2 + v^2} & 0 \\ 0 & 0 & u' \end{bmatrix} \begin{bmatrix} \frac{-\sqrt{u^2 + v^2} + u}}{v} & 1 & 0 \\ \frac{-\sqrt{u^2 + v^2} - u}}{v} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$(13)$$

The energy eigenvalues that we get from diagonalising the matrix are

$$E_1 = -\sqrt{u^2 + v^2} \quad ; \quad E_2 = \sqrt{u^2 + v^2} \quad ; \quad E_3 = u' \tag{14} \label{eq:14}$$

The third energy eigenvalue is not disturbed by the perturbation V. Let us focus on the other ones. In the regime where $v \ll u$, we expand eigenvalues as a power series in terms of $\frac{v}{u}$

$$\begin{split} E_1 &= -u\sqrt{1 + \frac{v^2}{u^2}} = -u - \frac{v^2}{2u} - O\left(\frac{v^4}{u^2}\right) \\ E_1 &= u\sqrt{1 + \frac{v^2}{u^2}} = u + \frac{v^2}{2u} + O\left(\frac{v^4}{u^2}\right) \end{split}$$

Thus we can see that this result matches that of perturbative result which we have calculated ignoring terms with $O\left(\frac{v^4}{u^2}\right)$.

Answer 2.6

We calculate the wavefunction renormalization as Z of the ground state which is given by

$$Z = \left| \left\langle \psi_1^{(0)} \middle| \psi_1 \right\rangle_N \right|^2 \tag{15}$$

We apply the corrections we obtained from the perturation theory results, to the ground state

$$\begin{aligned} |\psi_1\rangle &= \left|\psi_1^{(0)}\right\rangle - \frac{v}{2u} \middle|\psi_2^{(0)}\right\rangle = \begin{pmatrix} 1\\ -\frac{v}{2u}\\ 0 \end{pmatrix} \\ \Rightarrow \left|\psi_1\right\rangle_N &= \frac{1}{\sqrt{1 + \frac{v^2}{2u^2}}} \begin{pmatrix} 1\\ -\frac{v}{2u}\\ 0 \end{pmatrix} \\ \Rightarrow Z &= \frac{1}{1 + \frac{v^2}{2u^2}} \middle|(1 \ 0 \ 0) \begin{pmatrix} 1\\ -\frac{v}{2u}\\ 0 \end{pmatrix} \middle|^2 \\ \Rightarrow Z &= \frac{1}{1 + \frac{v^2}{2u^2}} \end{aligned} \tag{16}$$

The regime of validity of this perturbation problem is $v \ll u$. We can see this regime validity appearing in the renormalization problem. Going beyond the regime of this problem, we get

$$Z \longrightarrow 0$$
, as $\frac{v}{u} \longrightarrow \infty$