Analisi Matematica 2

Edoardo Figini

a.a. 2022-2023

Indice

1	Equ	nazioni differenziali	2
	1.1	Equazioni differenziali del I ordine	3
		1.1.1 Equazioni differenziali a variabili separabili	3
		1.1.2 Equazioni differenziali lineari del primo ordine	4
		1.1.3 Equazioni di Bernoulli	4
	1.2	Equazioni differenziali lineari del II ordine	5
		1.2.1 Integrale generale delle equazioni lineari del II ordine	5
	1.3	Metodo di variazione delle costanti arbitrarie	7
	1.4	Equazioni differenziali lineari di ordine n	7
	1.5	Sistemi di equazioni differenziali lineari	8
		1.5.1 Determinante Wronskiano	9
		1.5.2 Esponenziale di matrice	9
		1.5.3 Sistemi non omogenei	9
2	Seri	ie di funzioni	9
	2.1	Convergenza puntuale	9
	2.2	Convergenza assoluta	9
	2.3	Convergenza totale	9
	2.4	Serie di potenze	9
		2.4.1 Serie di Taylor e funzioni analitiche reali	9
	2.5	Serie di Fourier	9

1 Equazioni differenziali

Def. 1 (Equazione differenziale)

Si definisce equazione differenziale di ordine n un'uguaglianza del tipo

$$F(x, y, y', y'', \dots, y^{(n)}) = 0$$
(1)

dove

- i) y dipende da $x \to y = y(x)$ è la funzione incognita
- ii) F è una funzione assegnata di n+2 variabili
- iii) x è la variabile indipendente

Def. 2 (Soluzione dell'equazione differenziale)

Viene detta soluzione dell'equazione differenziale $F(x, y, y', y'', \dots, y^{(n)}) = 0$ in un certo intervallo $I \subseteq \mathbb{R}$ una funzione $\Phi: I \to \mathbb{R}$ t.c.

$$F(x, \Phi(x), \Phi'(x), \Phi''(x), \dots, \Phi^{(n)}(x) = 0$$
 (2)

Verifica: inserendo Φ (e le sue derivate) al posto dell'incognita y (e delle sue derivate), ottengo un'identità ($\forall x \in I \text{ vale}$)

Def. 3 (Integrale Generale e Particolare)

Sia data $F(x, y, y', y'', \dots, y^{(n)}) = 0$ (E), viene detto INTEGRALE GENERALE di (E) l'insieme di tutte le soluzioni di (E).

Viene detta INTEGRALE PARTICOLARE di (E) una particolare soluzione di (E).

Def. 4 (Problema di Caucy)

Si dice PROBLEMA DI CAUCHY (o "ai valori iniziali") associata a $F(x, y, y', y'', \dots, y^{(n)}) = 0$ il problema

$$\begin{cases}
F(x, y, y', y'', \dots, y^{(n)}) = 0 \\
y(x_0) = y_{0,0} \\
y'(x_0) = y_{0,1} \\
y''(x_0) = y_{0,2} \\
\vdots \\
y^{(n-1)}(x_0) = y_{0,n-1}
\end{cases}$$
(3)

con $y_{0,0}, y_{0,1}, y_{0,2}, \dots, y_{0,n-1} \in \mathbb{R}$ fissati.

L'istante x_0 in cui prescrivo i valori di $y, y', y'', \ldots, y^{(n-1)}$ è sempre lo stesso, fissato.

n condizioni che dicono chi è y, insieme a tutte le sue derivate, fino all'ordine n-1, in un punto/istante fissato.

Def. 5 (Forma normale)

Un'equazione differenziale di ordine n è detta in FORMA NORMALE se la derivata di ordine n è esplicitata, ovvero se è della forma

$$y^{(n)} = \underbrace{g(x, y, y', y'', \dots, y^{(n-1)})}_{\text{funz. di } n+1 \text{ variabili}}$$

$$\tag{4}$$

1.1 Equazioni differenziali del I ordine

Equazioni del tipo

$$F(x, y, y') = 0 \tag{5}$$

Proposizione 1

L'integrale generale di (5) è dato da una famiglia di funzioni dipendente da un parametro $\bar{c} \in \mathbb{R}$

$$\begin{cases} F(x, y, y') = 0 \\ y(x_0) = y_0 \end{cases}$$
 conditione initiale (6)

per avere esistenza e unicità della soluzione

Equazioni considerate in forma normale, ovvero

$$y' = f(x, y) \tag{7}$$

1.1.1 Equazioni differenziali a variabili separabili

Sono nella forma:

$$y' = a(x) \cdot b(y) \tag{8}$$

con a, b funzioni continue

Risoluzione:

- 1. Determinare l'integrale generale dell'equazione y'=a(x)b(y(x))
 - (a) Ricerca delle soluzioni costanti: costanti che annullano b(y) sufficiente porre $b(y) \equiv 0$
 - (b) Tutte le altre soluzioni:
 - Si scrive y' in notazione di Eulero:

$$y' = \frac{dy}{dx} \tag{9}$$

• Si trattano dy e dx come se fossero numeri o funzioni (come se obbedissero alle tipiche regole algebriche) e si portano tutte le y al primo membro e tutte le x al secondo.

$$\frac{dy}{b(y)} = a(x) \cdot dx$$

• Si integrano entrambi i membri:

$$\int \frac{dy}{b(y)} = \int a(x) \, dx \tag{10}$$

Si ottiene l'integrale generale dell'equazione integrale (che dipende da una costante c) nella forma

$$y(x) = f(x)$$

2. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y' = a(x)b(y) \\ y(x_0) = y_0 \end{cases}$$
 (11)

Per poter trovare il valore della costante c, si pone l'integrale generale in funzione di x_0 e lo si pone uguale a y_0 .

1.1.2 Equazioni differenziali lineari del primo ordine

Sono nella forma:

$$y'(x) + a(x)y(x) = f(x)$$
(12)

dove

- f(x) è il termine noto
- a(x) è il coefficiente

con a, f funzioni continue assegnate

Se $f(x) \not\equiv 0$ si chiama "equazione completa" (EC) Se $f(x) \equiv 0$ si chiama "equazione omogenea associata" (EO)

Teorema 1 (Formula risolutiva per eq. lineari del primo ordine)

l'integrale generale di (12) è dato dalla famiglia di funzioni

$$y(x) = Ce^{-A(x)} + e^{-A(x)} \cdot B(x)$$
(13)

al variare di $C \in \mathbb{R}$, dove

$$A(x) = \int a(x) \, dx \tag{14}$$

$$B(x) = \int e^{A(x)} f(x) dx \tag{15}$$

Risoluzione:

- 1. Determinare l'integrale generale dell'equazione
 - (a) Si calcola la primitiva A(x)
 - (b) Si applica la formula

$$y(x) = \left(\int f(x)e^{A(x)} dx + c\right)e^{-A(x)} \tag{16}$$

2. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y' + a(x)y(x) = f(x) \\ y(x_0) = y_0 \end{cases}$$

$$\tag{17}$$

1.1.3 Equazioni di Bernoulli

Sono nella forma:

$$\begin{cases}
y' + a(x)y = b(x)y^{\alpha}, & \alpha \in \mathbb{R} \\
y(x_0) = y_0, & y_0 > 0
\end{cases}$$
(18)

Risoluzione:

1. Si divide per y^{α}

$$y^{-\alpha}y' + a(x)y^{1-\alpha} = b(x)$$

2. Si pone $z(x) := y^{1-\alpha}$

$$\begin{cases} z'(x) + (1 - \alpha)a(x)z(x) = (1 - \alpha)b(x) \\ x(x_0) = y_0^{1 - \alpha} \end{cases}$$

1.2 Equazioni differenziali lineari del II ordine

Sono nella forma:

$$a(x)y''(x) + b(x)y'(x) + c(x)y(x) = f(x)$$
(19)

con a, b, c, f funzioni definite e continue in I ed $a \neq 0$.

Le soluzioni di un'equazione differenziale lineare del secondo ordine sono infinite e dipendono da due parametri arbitrari.

Teorema 2 (Principio di Sovrapposizione)

Se y_1 è soluzione di $ay'' + by' + cy = f_1$ e y_2 è soluzione di $ay'' + by' + cy = f_2$, allora

$$y(x) = C_1 y_1 + C_2 + y_2 (20)$$

è soluzione di $ay'' + by' + cy = C_1f_1 + C_2f_2$.

1.2.1 Integrale generale delle equazioni lineari del II ordine

Teorema 3 (Struttura per le equazioni Omogenee)

L'integrale generale di a(x)y'' + b(x)y' + c(x)y = 0, con a, b, c funzioni definite e continue in I ed $a \neq 0$, è dato da tutte le combinazioni lineari

$$y(t) = C_1 y_1(t) + C_2 y_2(t) \quad \forall C_1, C_2 \in \mathbb{R}$$
 (21)

dove y_1 e y_2 sono due soluzioni linearmente indipendenti dell'equazione.

Teorema 4 (Struttura per le equazioni Complete)

L'integrale generale di a(x)y'' + b(x)y' + c(x)y = f(x), con a, b, c, f funzioni definite e continue in I ed $a \neq 0$, è dato da tutte e solo le funzioni

$$y(t) = C_1 y_1(t) + C_2 y_2(t) + y_P(x) \quad \forall C_1, C_2 \in \mathbb{R}$$
 (22)

dove y_1 e y_2 sono due soluzioni linearmente indipendenti dell'equazione e y_P è una soluzione particolare dell'equazione completa.

Per la ricerca dell'integrale generale si considera il polinomio caratteristico associato

$$P(\lambda) = a\lambda^2 + b\lambda + c \tag{23}$$

e l'equazione caratteristica associata

$$P(\lambda) = 0 \tag{24}$$

Risoluzione:

- 1. Trovare il polinomio caratteristico
- 2. Studiare il segno del discriminante dell'equazione caratteristica
- 3. Trovare λ_1 e λ_2 e quindi y_1 e y_2
- 4. Tramite il Teorema di Struttura (3) trovare l'integrale generale.

Il carattere di $P(\lambda)$ è dato dal segno del discriminante:

• Se $\Delta > 0$

si hanno due soluzioni reali distinte:

$$\lambda_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
$$\lambda_1 = \frac{-b + \sqrt{\Delta}}{2a}$$

da cui

$$y_1(x) = e^{\lambda_1 t}$$

$$y_1(x) = e^{\lambda_2 t}$$
(25)

La soluzione sarà

$$y(t) = C_1 e^{\lambda_1 t} + C_2 e^{\lambda_2 t} \quad \forall C_1, C_2 \in \mathbb{R}$$
(26)

• Se $\Delta < 0$ si hanno due soluzioni complesse coniugate

$$\lambda_1 = \alpha + i\beta$$
$$\lambda_1 = \alpha - i\beta$$

dove

$$\alpha = -\frac{b}{2a} \quad \beta = \frac{\sqrt{4ac - b^2}}{2a}$$

Per avere soluzioni reali, si sfrutta la linearità, ottenendo

$$u_1(t) = e^{\alpha t} \cos(\beta t)$$

$$u_1(t) = e^{\alpha t} \sin(\beta t)$$
(27)

La soluzione sarà

$$y(x) = e^{\alpha t} (C_1 \cos(\beta t) + C_2 \sin(\beta t)) \quad \forall C_1, C_2 \in \mathbb{R}$$
(28)

• Se $\Delta = 0$

si hanno due soluzioni reali coincidenti

$$\lambda_1 = \lambda_2 = -\frac{b}{2a}$$

Per avere due soluzioni linearmente indipendenti si pone

$$y_1(x) = e^{\lambda_1 t}$$

$$y_1(x) = t e^{\lambda_2 t}$$
(29)

La soluzione sarà

$$y(t) = C_1 e^{\lambda_1 t} + C_2 t e^{\lambda_2 t} \quad \forall C_1, C_2 \in \mathbb{R}$$
(30)

Secondo il teorema di struttra occorre trovare una soluzione particolare dell'equazione completa. Si usa il metodo di *Somiglianza*:

Sia

$$y'' + ay' + by = f(x)$$

con $a, b \in \mathbb{R}$ e $f \in C(I)$. Se f è • polinomio (di grado n): si cerca una soluzione y polinomio.

$$\begin{cases} P_n(x) & \text{se } \lambda = 0 \text{ non è soluzione di } P(\lambda) & b \neq 0 \\ xP_n(x) & \text{se } \lambda = 0 \text{ è soluzione di } P(\lambda) \text{ con molt. 1} & b = 0, a \neq 0 \\ x^2P_n(x) & \text{se } \lambda = 0 \text{ è soluzione di } P(\lambda) \text{ con molt. 2} & b = 0, a = 0 \end{cases}$$
 (31)

• esponenziale $(f = Ce^{kx})$: si cerca una soluzione y esponenziale.

$$\begin{cases} Ae^{kx} & \text{se } k \text{ non è soluzione di } P(\lambda) \\ xAe^{kx} & \text{se } k \text{ è soluzione di } P(\lambda) \text{ con molteplicità 1} \\ x^2Ae^{kx} & \text{se } k \text{ è soluzione di } P(\lambda) \text{ con molteplicità 2} \end{cases}$$
(32)

• trigonometrica $(f = A\cos(\beta x) + B\sin(\beta x))$: si cerca una soluzione y trigonometrica.

$$\begin{cases}
c_1 \cos(\beta x) + c_2 \sin(\beta x) & \text{se } \lambda = i\beta \text{ non è soluzione di } P(\lambda) \\
x \cdot c_1 e^{\alpha x} \cos(\beta x) + x \cdot c_2 e^{\alpha x} \sin(\beta x) & \text{se } \lambda = i\beta \text{ è soluzione di } P(\lambda)
\end{cases}$$
(33)

1.3 Metodo di variazione delle costanti arbitrarie

$$\underbrace{y' + a(x)y}_{(EO)} = f(x)$$

1. Si integra (EO):

$$y(x) = Ce^{-A(x)}$$
 $C \in \mathbb{R}$

2. Serve una soluzione particolare:

$$y(x) = c(x)e^{-A(x)}$$
$$y'(x) = c'(x)e^{-A(x)} - c(x)e^{-A(x)}(a(x))$$

sostituendo in y' + a(x)y = f(x):

$$c'(x)e^{-A(x)} - c(x)e^{-A(x)}(a(x)) + c(x)e^{-A(x)} = f(x)$$

semplificando risulta:

$$c'(x) = e^{A(x)} f(x)$$

1.4 Equazioni differenziali lineari di ordine n

Sono nella forma:

$$(EC_n) \quad y^{(n)} + a_{n-1}(x)y^{(n-1)} + a_{n-2}(x)y^{(n-2)} + \dots + a_1(x)y' + a_0(x)y = f(x)$$
(34)

Teorema 5 (Esistenza e unicità Globale per i problemi di Caucy associati)

Se a_j , $j \in [1, n-1]$ sono continui in $[a,b] \subseteq \mathbb{R}$, $e \ f \ e$ continua in [a,b], allora $\forall x_0 \in [a,b]$ $e \ \forall (y_{0,0}, y_{0,1}, \ldots, y_{0,n-1}) \in \mathbb{R}^n \ \exists ! \ la \ solutione \ di$

$$\begin{cases}
(EC_n) \\
y(x_0) = y_{0,0} \\
y'(x_0) = y_{0,1} \\
y''(x_0) = y_{0,2} \\
\vdots \\
y^{(n-1)}(x_0) = y_{0,n-1}
\end{cases}$$
(35)

e tale soluzione è definita su tutto [a, b]

Teorema 6 (Struttura)

L'integrale generale di (EC_n) è dato dal seguente insieme:

$$\Sigma = \{ y = \overline{y} + y_0, \text{ dove } y_0 \text{ risolve } (EO_n) \}$$
(36)

essendo \overline{y} una soluzione di (EC_n)

1.5 Sistemi di equazioni differenziali lineari

Un'equazione differenziale di ordine n t.c.

$$y^{(n)} = f(t, y', y'', \dots, y^{(n-1)})$$

ed il problema di Cauchy corrispondente, può essere riscritta nella forma di sistema di equazioni differenziali:

$$\begin{cases} y'_{1}(t) = y_{2}(t) \\ y'_{2}(t) = y_{3}(t) \\ y'_{3}(t) = y_{4}(t) \\ \vdots \\ y'_{n}(t) = f(t, y_{1}, y_{2}, \dots, y_{(n-1)}) \end{cases}$$

$$(37)$$

Oss: Mentre ogni eq. può essere convertita, non tutti i sistemi possono essere scritti in forma di equazione.

Esempio:

Posta

$$y'' + ay' + y = 0$$

si pone z = y':

$$\begin{cases} y'(t) = z(t) \\ z'(t) = -az(t) - cy \end{cases}$$

$$\begin{bmatrix} y'(t) \\ z'(t) \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & 1 \\ -c & -a \end{bmatrix}}_{} \begin{bmatrix} y(t) \\ z(t) \end{bmatrix}$$
(38)

Risoluzione:

Dato un sistema:

$$\begin{cases} y' = ay + bz \\ z' = cy + dz \end{cases}$$
$$\begin{bmatrix} y'(t) \\ z'(t) \end{bmatrix} = \underbrace{\begin{bmatrix} a & c \\ b & d \end{bmatrix}}_{A} \begin{bmatrix} y(t) \\ z(t) \end{bmatrix}$$

1. Ricerca degli autovalori λ di A:

$$|A - \lambda I| = 0$$

$$\begin{vmatrix} a - \lambda & b \\ c & d - \lambda \end{vmatrix} = 0$$
(39)

Si ottiene $P(\lambda)$

2. Per ogni autovalore λ si cerca l'autovettore $\vec{\omega}$ corrispondente:

$$[A - \lambda I] \cdot \vec{\omega} = \underline{0}$$

$$\begin{bmatrix} -\lambda & 1 \\ -c & -a - \lambda \end{bmatrix} \begin{bmatrix} \omega_1 \\ \omega_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$(40)$$

3. Le soluzioni esponenziali di (EO) sono del tipo:

$$\vec{u} = \vec{\omega}e^{\lambda t} \tag{41}$$

4. L'integrale generale è dato da

- 1.5.1 Determinante Wronskiano
- 1.5.2 Esponenziale di matrice
- 1.5.3 Sistemi non omogenei

2 Serie di funzioni

Def. 6

Sia $I \subseteq \mathbb{R}$ e siano $f_n : I \to R$. Si definisce

$$\sum_{n=0}^{\infty} f_n \tag{43}$$

come la successione delle ridotte $S_N:I\to\mathbb{R}$ con

$$S_N(x) = \sum_{n=0}^{N} f_n \tag{44}$$

- 2.1 Convergenza puntuale
- 2.2 Convergenza assoluta
- 2.3 Convergenza totale
- 2.4 Serie di potenze
- 2.4.1 Serie di Taylor e funzioni analitiche reali
- 2.5 Serie di Fourier