The Hurdle Race

Dan is playing a video game in which his character competes in a hurdle race by jumping over n hurdles with heights $h_0, h_1, \ldots, h_{n-1}$. He can initially jump a maximum height of k units, but he has an unlimited supply of magic beverages that help him jump higher! Each time Dan drinks a magic beverage, the maximum height he can jump during the race increases by 1 unit.

Given n, k, and the heights of all the hurdles, find and print the *minimum* number of magic beverages Dan must drink to complete the race.

Input Format

The first line contains two space-separated integers describing the respective values of n (the number of hurdles) and k (the maximum height he can jump without consuming any beverages).

The second line contains n space-separated integers describing the respective values of h_0,h_1,\ldots,h_{n-1}

Constraints

- $1 \le n, k \le 100$
- $1 \le h_i \le 100$

Output Format

Print an integer denoting the *minimum* number of magic beverages Dan must drink to complete the hurdle race.

Sample Input 0

5 4 1 6 3 5 2

Sample Output 0

Explanation 0

Dan's character can jump a maximum of k=4 units, but the tallest hurdle has a height of $h_1=6$:

To be able to jump all the hurdles, Dan must drink 6-4=2 magic beverages.

Sample Input 1

Sample Output 1

0

Explanation 1

Dan's character can jump a maximum of $\emph{k}=7$ units, which is enough to cross all the hurdles:

Because he can already jump all the hurdles, Dan needs to drink $\,0\,$ magic beverages.