POSSESSION OF MOBILES IN EXAM IS UFM PRACTICE

Na	c of student Enrolment No	_
	BENNETT UNIVERSITY, GREATER	NOIDA
	B.TECH/ TEST – Supplementary Examination: SPRING S	EMESTER A.Y. 2018-2019
	URSE CODE EPHY105L URSE NAME: Electromagnetics	MAX. TIME: 2 hours
COURSE CREDIT: 3		MAX . MARKS: 100
AI	QUESTIONS ARE COMPULSORY	
1.	Give brief answers with appropriate reasons to the following quest a) A positive charge of 1 μC is placed at the center of a cavity fo <i>shell</i> having an inner radius 1 m and an outer radius 2 m. Wha 0.5 m from the center?	med inside a spherical conducting
	 A sphere of radius R carries a charge density given by ρ(r) = ∇. E at a point at a distance R/2 from the center? A charge Q is placed at the center of a dielectric sphere of radic constant K. Using Gauss's law obtain E within the sphere. 	us R and uniform dielectric
	Determine whether the vector function $\vec{G} = \frac{c}{r^3} (2 \cos \theta \hat{r} + \sin \theta)$	$(\partial \widehat{oldsymbol{ heta}})$ (expressed in spherical polar
	coordinates) can represent a magnetic field.	(")
	A cylindrical wire of radius R is carrying a current given by $I($	
	 cylindrical polar coordinate) where I₀ is a constant. What is the from the axis? An infinitely long straight wire made of copper (with μ = μ₀) a which is uniformly distributed across its cross section. Using A 	nd of radius R carries a current I
	magnetization \overrightarrow{M} within the wire.	
	Verify whether the following two vector potentials \vec{A}_1 and \vec{A}_2 the same magnetic field.	$= \vec{A}_1 + (x\hat{x} + y\hat{y}) \text{ correspond to}$
	h) An infinitely long straight solenoid with circular cross section of radius R has a cylindrical rod of radius $R/2$ placed coaxially with the solenoid. If the magnetic susceptibility of the rod is χ_m what is the ratio of \vec{H} in the rod to \vec{H} in the air gap?	
2.	A point charge Q is placed at the center of a sphere which has free inear, homogeneous dielectric with susceptibility χ_e for $R_1 < r < R_2$.) Using Gauss's law find the electric field in all regions. (b) What is the value of $\oint \vec{E} \cdot d\vec{a}$ integrated over a sphere of radius obtain the bound surface and volume charge densities in the definition.	2 and free space for $r > R_2$. (6) $2R_2.$
3.	An infinitely long straight cylindrical tube with inner radius R_1 and outer radius R_2 made of a materia with magnetic permeability μ carries a current I which is uniformly distributed across its cross section.	
) Using Ampere's law, obtain the fields \vec{H} and \vec{B} in all the regio	
	Obtain the surface bound current and volume bound current in What is the value of $\nabla \times \vec{B}$ at a distance $R_1/2$ from the axis of	. ,
	, what is the value of V × B at a distance K/2 from the axis of	(2)

- 4. A uniform magnetic field $\vec{B} = B(t)\hat{z}$ exists in the cylindrical region r < R with a time varying magnetic field given by $B(t) = B_0 \sin \omega t$; the magnetic field is zero for r > R. Assuming that the induced electric field due to the time varying magnetic field is along $\hat{\phi}$ direction (in cylindrical coordinates),
 - a) Obtain the induced electric field \vec{E} at a distance r < R and r > R. (9)
 - b) What will be the values of $\nabla \times \vec{E}$ for r < R and r > R? (5)
- 5. An electromagnetic wave propagating in free space (velocity of the wave is 3 x 10⁸ m/s) is described by the following expression for the electric field (z is measured in meters):

$$\vec{E} = E_0 \hat{y} \cos[2\pi(2 \times 10^6 z + \nu t)]$$

- a) What are the values of frequency ν and wavelength λ of the wave? (4)
- b) What is the direction of propagation of the wave? (4)
- c) Given that the corresponding magnetic field of the wave is $\vec{B} = \vec{B}_0 \cos[2\pi(2 \times 10^6 z + \nu t)]$, using Maxwell's equations obtain the magnitude and direction of \vec{B}_0 . (8)

Some useful formulas

- $\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/\text{N-m}^2$
- In Cartesian coordinates:

$$\nabla f = \frac{\partial f}{\partial x} \hat{\imath} + \frac{\partial f}{\partial y} \hat{\jmath} + \frac{\partial f}{\partial z} \hat{k}$$

$$\nabla \cdot \vec{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}$$

$$\nabla \times \vec{F} = \left[\frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} \right] \hat{\imath} + \left[\frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} \right] \hat{\jmath} + \left[\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right] \hat{k}$$

In spherical polar coordinates;

$$\nabla f = \frac{\partial f}{\partial r} \hat{r} + \frac{1}{r} \frac{\partial f}{\partial \theta} \hat{\theta} + \frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi} \hat{\phi}$$

$$\nabla \cdot \vec{F} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 F_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta F_\theta) + \frac{1}{r \sin \theta} \frac{\partial F_\phi}{\partial \phi}$$

$$\nabla \times \vec{F} = \frac{1}{r \sin \theta} \left[\frac{\partial}{\partial \theta} (\sin \theta F_\phi) - \frac{\partial F_\theta}{\partial \phi} \right] \hat{r} + \frac{1}{r} \left[\frac{1}{\sin \theta} \frac{\partial F_r}{\partial \phi} - \frac{\partial}{\partial r} (r F_\phi) \right] \hat{\theta} + \frac{1}{r} \left[\frac{\partial}{\partial r} (r F_\theta) - \frac{\partial}{\partial \theta} \right] \hat{\phi}$$

• In cylindrical coordinates;

$$\begin{split} \nabla f &= \frac{\partial f}{\partial r} \hat{\boldsymbol{r}} + \frac{1}{r} \frac{\partial f}{\partial \phi} \widehat{\boldsymbol{\phi}} + \frac{\partial f}{\partial z} \hat{\boldsymbol{z}} \\ \nabla \cdot \vec{\boldsymbol{F}} &= \frac{1}{r} \frac{\partial}{\partial r} (r F_r) + \frac{1}{r} \frac{\partial F_{\phi}}{\partial \phi} + \frac{\partial F_z}{\partial z} \\ \nabla \times \vec{\boldsymbol{F}} &= \left[\frac{1}{r} \frac{\partial F_z}{\partial \phi} - \frac{\partial F_{\phi}}{\partial z} \right] \hat{\boldsymbol{r}} + \left[\frac{\partial F_r}{\partial z} - \frac{\partial F_z}{\partial r} \right] \widehat{\boldsymbol{\phi}} + \frac{1}{r} \left[\frac{\partial}{\partial r} (r F_{\phi}) - \frac{\partial}{\partial \phi} F_r \right] \hat{\boldsymbol{z}} \end{split}$$

Maxwell's equations;

$$\nabla \cdot \vec{E} = \frac{\rho}{\epsilon_0}$$

$$\nabla \cdot \vec{B} = 0$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\nabla \times \vec{B} = \mu_0 \vec{J} + \mu_0 \epsilon_0 \frac{\partial \vec{E}}{\partial t}$$