Réseaux euclidiens et cryptographie Journées Télécom-UPS « Le numérique pour tous »

David A. Madore
Télécom ParisTech
david.madore@enst.fr

29 mai 2015

Réseaux euclidiens et cryptographie

David Madore

Plan

Généralités sur les réseaux euclidiens

L'algorithme LLL

Réseaux et cryptographie

Plan

Généralités sur les réseaux euclidiens

'algorithme LLL

léseaux et ryptographie

Généralités sur les réseaux euclidiens

L'algorithme LLL

Réseaux et cryptographie

Réseaux euclidiens : définition

▶ Un **réseau** de \mathbb{R}^m est un sous-groupe (additif) discret L de l'espace euclidien \mathbb{R}^m .

Un tel sous-groupe est nécessairement isomorphe à \mathbb{Z}^n (où $n \leq m$) comme groupe abélien : il existe $b_1, \ldots, b_n \in L$ tels que $L = \mathbb{Z}b_1 \oplus \cdots \oplus \mathbb{Z}b_n$.

De plus, b_1, \ldots, b_n sont \mathbb{R} -libres (=linéairement indép^{ts}).

On dit qu'ils sont une base de L, et que n est le rang de L.

Définition équivalente :

▶ Un **réseau** de \mathbb{R}^m est un $\mathcal{L}(B) := \{uB : u \in \mathbb{Z}^n\}$ où $B \in \mathbb{R}^{n \times m}$ est une matrice de rang n.

(B est la matrice dont les b_i sont les <u>lignes</u>.)

▶ On suppose souvent m=n (réseau de rang plein), quitte à se placer dans $\mathrm{Vect}_{\mathbb{R}}(L)=\mathbb{R}b_1\oplus\cdots\oplus\mathbb{R}b_n$.

Réseaux euclidiens et cryptographie

David Madore

Plan

Généralités sur les réseaux euclidiens

L'algorithme LLL

Réseaux et ryptographie

Les deux réseaux de rang 2 admettant le plus grand groupe de symétries sont (à similitude près) :

$$(A_1)^ \mathbb{Z}^2 \subset \mathbb{R}^2$$

$$\{(x,y,z)\in\mathbb{Z}^3:x+y+z=0\}\subseteq\mathbb{R}^3$$

Réseaux et cryptographie

- Soit $\mathcal{L}(B) = \{uB : u \in \mathbb{Z}^n\} \subseteq \mathbb{R}^m$ (où $\operatorname{rg} B = n$).
- $ightharpoonup \mathcal{P}(B) := \{uB: u \in [0;1[^n]\} \text{ s'appelle parallélotope fondamental associé à la base } B.$
 - ▶ On a $\mathcal{L}(B) = \mathcal{L}(B')$ ssi B' = UB où $U \in GL_n(\mathbb{Z})$.

lci, $GL_n(\mathbb{Z})$ est l'ensemble des matrices $n \times n$ à coefficients entiers, de déterminant ± 1 (unimodulaires).

Dès que n > 1, un réseau admet une infinité de bases.

On peut voir l'ensemble des réseaux de rang plein dans \mathbb{R}^n comme l'ensemble quotient $GL_n(\mathbb{Z})\backslash GL_n(\mathbb{R})$.

 $ightharpoonup \operatorname{vol}(\mathcal{P}(B)) =: \operatorname{covol}(\mathcal{L}(B)) = |\det(B)|$ (lorsque m=n) : volume du parallélogramme fondamental : (co)volume ou déterminant du réseau. Ne dépend pas de B !

Certaines bases sont plus « agréables » que d'autres :

Les deux parallélogrammes fondamentaux dessinés ont la même aire, mais pas la même forme / la même longueur des côtés.

« Bonne » ≈ constituée de petits vecteurs.

Thèmes: Comment construire de « bonnes » bases à partir de « mauvaises » ? (Par des opérations élémentaires entières sur les lignes de B.) Comment exploiter la difficulté de ce problème?

L'algorithme LLL

Réseaux et cryptographie

- Soit $\mathcal{L}(B) = \{uB : u \in \mathbb{Z}^n\} \subseteq \mathbb{R}^m$ (où $\operatorname{rg} B = n$).
- ▶ Si $t \in \mathbb{R}^{\times}$, on a $t \cdot \mathcal{L}(B) = \mathcal{L}(tB)$ (homothétie).

Multiplie le covolume par t^n .

▶ Si $\Omega \in O_m$, on a $\mathcal{L}(B) \cdot \Omega = \mathcal{L}(B\Omega)$ (isométrie).

Ne change pas le covolume.

Si $\mathcal{L}(B)\cdot \Omega=\mathcal{L}(B)$, on dit que Ω est une symétrie de $\mathcal{L}(B)$.

On identifie souvent deux réseaux homothétiques, isométriques, ou les deux (semblables).

Ceci permet de **normaliser** covol(L) = 1.

On peut considérer $SL_n^\pm(\mathbb{R})/O_n$ comme l'espace des formes de parallélotopes de dimension n [espace riemannien symétrique], et $GL_n(\mathbb{Z})\backslash SL_n^\pm(\mathbb{R})/O_n$ comme l'espace des formes de réseaux de rang plein.

▶ Matrice de Gram : $G := BB^{\mathrm{tr}}$ soit $G_{ij} = b_i \cdot b_j$, invariante par isométrie $(B\Omega(B\Omega)^{\mathrm{tr}} = BB^{\mathrm{tr}})$.

L'algorithme LLL

Réseaux et cryptographie

- Soit $\mathcal{L}(B) = \{uB : u \in \mathbb{Z}^n\} \subseteq \mathbb{R}^m$ (où $\operatorname{rg} B = n$).
- Matrice de Gram : $G := BB^{tr}$ soit $G_{ij} = b_i \cdot b_j$.
- Invariante par isométrie $(B\Omega(B\Omega)^{tr} = BB^{tr} \text{ si } \Omega \in O_m)$.
- Est la matrice de la forme quadratique sur \mathbb{Z}^n définie par $q(u) = \|uB\|^2$ (norme euclidienne transportée au réseau), donc définie positive. (\Rightarrow Lien avec les f.q. sur les entiers.)
- ▶ Vérifie $\det(G) = \operatorname{covol}(L)^2$ (discriminant de $L = \mathcal{L}(B)$). En effet, $\det(G) = \det(B)^2$ est évident si m = n.
- ▶ Réciproquement, si G est définie positive, on peut écrire $G = BB^{\mathrm{tr}}$ pour $B \in GL_n(\mathbb{R})$ (conséquence de Cholesky ou du théorème spectral), et B est unique à isométrie près.

L'espace $SL_n^\pm(\mathbb{R})/O_n$ s'identifie donc à l'ensemble des matrices définies positives de déterminant 1, et $GL_n(\mathbb{Z})\backslash SL_n^\pm(\mathbb{R})/O_n$ à l'ensemble des formes quadratiques définies positives sur un \mathbb{Z} -module de rang n.

L'algorithme LLL

Réseaux et cryptographie

▶ Si $b_1, \ldots, b_n \in \mathbb{R}^m$ sont \mathbb{R} -libres, on définit par récurrence $b_i^\star := b_i - \sum_{j < i} \mu_{i,j} \, b_j^\star$ où $\mu_{i,j} := (b_i \cdot b_j^\star) / \|b_j^\star\|^2$ (i.e., $b_i^\star = \operatorname{proj}_{\operatorname{Vect}(b_i:j < i)^\perp}(b_i)$).

Les $(b_i^{\star})_{i \leq s}$ sont donc une base orthogonale de $\operatorname{Vect}(b_i^{\star}: i \leq s) = \operatorname{Vect}(b_i: i \leq s)$.

Formulation matricielle (pour m=n) : B=MDV avec M triangulaire inférieure de diagonale 1 (soit : $M_{ij}=\mu_{i,j}$ si j< i, 1 si j=i, et 0 si j>i), D diagonale de diagonale $\|b_i^*\|$, et V orthogonale.

En particulier, $|\det(B)| = \det D = \prod_{i=1}^n ||b_i^*||$.

 $\begin{array}{l} \bullet \ \ \text{Dépend de l'ordre}: \ \text{si on permute} \ b_i \leftrightarrow b_{i+1}, \ \text{alors} \\ (b_i^{\star}, b_{i+1}^{\star}) \ \ \text{devient} \ (b_{i+1}^{\star} + \mu_{i+1,i} \ b_i^{\star}, \ \frac{\|b_{i+1}^{\star}\|^2 \ b_i^{\star} - \mu_{i+1,i} \ \|b_i^{\star}\|^2 \ b_{i+1}^{\star}}{\|b_{i+1}^{\star}\|^2 + \mu_{i+1,i}^2 \ \|b_i^{\star}\|^2}). \end{array}$

Réseaux et cryptographie

Calcul de l'aire d'un parallélogramme :

La matrice (DV) des b_i^* définit un parallélotope rectangle ayant le même volume covol(L) que celui défini par les b_i .

Les b_i^{\star} n'appartiennent pas à L en général.

Minima successifs d'un réseau

Soit L un réseau euclidien de rang n dans $\mathbb{R}^m.$ On définit, pour $1 \leq i \leq n$:

$$\lambda_i(L) = \min\{r \in \mathbb{R}_+ : \dim \operatorname{Vect}(L \cap B_f(0,r)) \ge i\}$$

où
$$B_f(0,r) = \{x \in \mathbb{R}^m : ||x|| \le r\}.$$

Autrement dit, $\lambda_i(L)$ est le plus petit r tel qu'on puisse trouver i vecteurs \mathbb{R} -libres tous de norme $\leq r$ dans L.

Attention : $L \cap B_{\mathbf{f}}(0,\lambda_n)$ ne contient pas forcément une \mathbb{Z} -base de L.

En particulier, $\lambda_1(L) = \min\{||x|| : x \in L \setminus \{0\}\}$ est la norme du plus petit vecteur non nul de L.

Exercice : Montrer que $\lambda_1(L) \geq \min\{\|b_i^\star\| : 1 \leq i \leq n\}$. Indication : $\|uMDV\| = \|uMD\|$ avec MDV comme dans G-S.

Question: Peut-on borner $\lambda_1(L) \operatorname{covol}(L)^{-1/n}$?

Réseaux

lci, L est de rang plein.

Soit $\rho(L) := \frac{1}{2}\lambda_1(L)$. Il s'agit du plus grand rayon ρ tel que les boules ouvertes de rayon ρ centrées sur les points de Lsoient deux à deux disjointes.

La densité = fraction du volume occupé par les boules vaut alors $\mathscr{V}_n \ \rho(L)^n/\operatorname{covol}(L)$ où $\mathscr{V}_n := \frac{\pi^{n/2}}{(n/2)!}$ est le volume de la n-boule unité.

Il est souvent plus commode de travailler avec $\rho(L)^n/\operatorname{covol}(L)$, ou encore $\lambda_1(L) \operatorname{covol}(L)^{-1/n}$.

Question: Quelles valeurs ces nombres peuvent-ils prendre? (Quel réseau empile le mieux les boules en dimension n?) Réponse connue pour $n \le 8$ et n = 24.

Constante de Hermite :

 $\gamma_n := \sup\{\lambda_1(L)^2 : L \text{ t.q. } \operatorname{covol}(L) = 1\}$ (atteint ; on a alors $\gamma_1 = 1$, $\gamma_2 = \frac{2}{2}\sqrt{3}$, $\gamma_3 = \sqrt[3]{2}$, $\gamma_8 = 2$, $\gamma_{24} = 4$).

[†]Où $(k+\frac{1}{2})! := \frac{(2k+1)!!}{2k+1} \sqrt{\pi}$ (et $(2k+1)!! = \prod$ impairs). $\leftarrow 12/31 \rightarrow$

Théorème (Blichfeld) : Si $L \subseteq \mathbb{R}^n$ de rg. pl., et $S \subseteq \mathbb{R}^n$ t.q. vol(S) > covol(L), alors $\exists z_1 \neq z_2 \in S$ t.q. $z_1 - z_2 \in L$.

Preuve: sinon, les $S_z := (S+z) \cap \mathcal{P}$ sont disjoints (pour $z \in L$). Or $\sum_z \operatorname{vol}(S_z) = \sum_z \operatorname{vol}(S_z - z) = \operatorname{vol} S > \operatorname{vol} \mathcal{P}$, contradiction.

Théorème (Minkowski) : Si $L \subseteq \mathbb{R}^n$ de rg. pl., et S convexe sym^{que} t.q. $\operatorname{vol}(S) > 2^n \operatorname{covol}(L)$, alors $S \cap (L \setminus \{0\}) \neq \emptyset$. Preuve : $\operatorname{vol}(\frac{1}{2}S) = 2^{-n} \operatorname{vol}(S) > \operatorname{covol}(L)$ donc il existe $z_1 \neq z_2 \in \frac{1}{2}S$ t.q., $z_1 - z_2 \in L$, or $z_1 - z_2 = \frac{1}{2}(2z_1 - 2z_2) \in S$.

Corollaire : $\lambda_1(L) \leq \sqrt{n} \operatorname{covol}(L)^{1/n}$ (c'est-à-dire, $\gamma_n \leq n$).

Preuve: Appliquer le théorème à la boule ouverte de centre 0 et rayon λ_1 , et utiliser la minoration $\mathscr{V}_n \geq (2/\sqrt{n})^n$ (car la boule unité contient un cube de côté $2/\sqrt{n}$).

Amélioration: $(\prod_{i=1}^n \lambda_i(L))^{1/n} \leq \sqrt{n} \operatorname{covol}(L)^{1/n}$.

Idée : Remplacer la boule par l'ellipsoïde de demi-axes $\lambda_1, \dots, \lambda_n$ orientés selon le Gram-Schmidt des minima successifs. $\leftarrow 13/31-$

Réseaux euclidiens et cryptographie

David Madore

Plan

Généralités sur les réseaux euclidiens

'algorithme LLL

Réseaux et cryptographie

Si $L \subseteq \mathbb{R}^n$ est un réseau de rang plein, son **dual** est

$$L^* := \{ y \in \mathbb{R}^n : \forall x \in L, \, x \cdot y \in \mathbb{Z} \}$$

où $x \cdot y$ est le produit scalaire (euclidien).

Matriciellement, si les vecteurs sont vus comme des vecteurs-lignes :

$$L^* = \{ y \in \mathbb{R}^n : \forall x \in L, \, xy^{\text{tr}} \in \mathbb{Z} \}$$

= \{ y \in \mathbb{R}^n : \forall u \in \mathbb{Z}^n, \ uBy^{\text{tr}} \in \mathbb{Z} \}
= \{ y \in \mathbb{R}^n : yB^{\text{tr}} \in \mathbb{Z}^n \} = \mathcal{L}(B^{-\text{tr}})

C'est donc aussi un réseau, et $(L^*)^* = L$. Covolume : $\operatorname{covol}(L^*) = \operatorname{covol}(L)^{-1}$. Homothéties : $(t \cdot L)^* = \frac{1}{t} \cdot L^*$. Inverse la matrice de Gram. Cas de rang non plein : on peut définir $\mathcal{L}(B)^* = \mathcal{L}((G^{-1}B)^{\operatorname{tr}}) \subseteq \operatorname{Vect}_{\mathbb{R}}(\mathcal{L}(B))$.

Symétrie sur l'espace riemannien symétrique $SL_n^\pm(\mathbb{R})/\mathit{O}_n$.

▶ Si $L \subseteq L^*$, i.e., si la matrice de Gram G est à coefficients entiers, on dit que L est **entier**.

Notamment, dans ce cas, le discriminant $\det G = \operatorname{covol}(L)^2$ est entier.

- \Rightarrow Lien avec les formes quadratiques entières $(q(u) = ||uB||^2 = uGu^{\mathrm{tr}}).$
- ▶ On a $L = L^*$ ssi L est entier et $\operatorname{covol}(L) = 1$ (i.e., $G \in GL_n(\mathbb{Z})$). On dit alors que L est unimodulaire.

Si de plus $||x||^2 \in 2\mathbb{Z}$ pour tout $x \in L$ (i.e., q prend des valeurs paires), on dit que L est pair (=de type II), sinon impair (=de type I).

Le plus petit rang d'un réseau unimodulaire pair est 8, et ce réseau est unique à isométrie près (c'est E_8).

Réseaux et cryptographie

- Quelques réseaux remarquables
 - $ightharpoonup \mathbb{Z}^n$ réseau entier de covolume 1, avec $\lambda_1 = \cdots = \lambda_n = 1$.
 - ▶ $A_n := \{(x_0, \dots, x_n) \in \mathbb{Z}^{n+1} : \sum_{i=0}^n x_i = 0\}$ réseau entier de covolume $\sqrt{n+1}$, avec $\lambda_1 = \dots = \lambda_n = \sqrt{2}$.

Note : A_1 est isométrique à $\sqrt{2}\mathbb{Z}$, et A_2 est le réseau hexagonal, A_3 le « cubique faces centrées ».

$$A_n^* = A_n + \mathbb{Z}(-\frac{n}{n+1}, \frac{1}{n+1}, \frac{1}{n+1}, \dots, \frac{1}{n+1}) \text{ ici } \lambda_1 = \sqrt{\frac{n}{n+1}}.$$

Note : A_1^* est isométrique à $\frac{1}{\sqrt{2}}\mathbb{Z}$ et A_2^* à $\frac{1}{\sqrt{3}}A_2$, et A_3^* est le « cubique centré ».

▶ $D_n := \{(x_1, \dots, x_n) \in \mathbb{Z}^n : \sum_{i=1}^n x_i \in 2\mathbb{Z}\}$ réseau entier de covolume 2, avec $\lambda_1 = \dots = \lambda_n = \sqrt{2}$. Note : D_2 est isométrique à $\sqrt{2}\mathbb{Z}^2$, et D_3 est isométrique à A_3 .

 $D_n^* = \mathbb{Z}^n \cup (\mathbb{Z} + \frac{1}{2})^n$, avec $\lambda_1 = 1$ si $n \geq 4$.

Note : D_4^* est isométrique à $\frac{1}{\sqrt{2}}D_4$.

▶ $E_8 := \{(x_1, \dots, x_8) \in (\mathbb{Z}^8 \cup (\mathbb{Z} + \frac{1}{2})^8) : \sum_{i=1}^8 x_i \in 2\mathbb{Z}\}$ réseau entier de covolume 1, avec $\lambda_1 = \dots = \lambda_8 = \sqrt{2}$.

L'algorithme LLL

Réseaux et cryptographie

Algorithmiquement, on considère généralement des réseaux $L\subseteq\mathbb{Z}^n$ (ou en tout cas $L\subseteq\mathbb{Q}^n$). Parfois $N\mathbb{Z}^n\subseteq L\subseteq\mathbb{Z}^n$ (« N-modulaires »).

▶ Problème SVP $_h$ (« Shortest Vector Problem ») : pour $h \geq 1$, donnée une base B de $L = \mathcal{L}(B)$, trouver $z \in L$ tel que $0 \neq \|z\| \leq h \cdot \lambda_1(L)$.

SVP_h est NP-dur pour $h \lesssim \sqrt{n}$, polynomial (P) par LLL pour $h = 2^{n/2}$. SVP = SVP₁ est résoluble en complexité $2^{O(n)}$.

▶ Problème CVP_h (« Closest Vector Problem ») : pour $h \ge 1$, donnée une base B de $L = \mathcal{L}(B)$ et $t \in \mathbb{R}^n$, trouver $z \in L$ tel que $||t - z|| \le h \cdot \operatorname{dist}(t, L)$.

 CVP_h est au moins aussi dur que SVP_h , et polynomial (P) pour $h = 2^{n/2}$ par $\mathsf{LLL+Babai}$.

Réseaux et cryptographie

Gram-Schmidt : $b_i^\star := b_i - \sum_{j < i} \mu_{i,j} b_j^\star$ où $\mu_{i,j} := (b_i \cdot b_j^\star) / \|b_j^\star\|^2$.

La base b_1, \ldots, b_n est dite LLL- δ -réduite $(\frac{1}{4} < \delta < 1)$ si :

- lacksquare pour tous i>j, on a $|\mu_{i,j}|\leq rac{1}{2}$, et
- pour tout i < n, on a $||b_{i+1}^{\star} + \mu_{i+1,i}||b_{i}^{\star}||^{2} \ge \delta \cdot ||b_{i}^{\star}||^{2}$.

Intuitivement, la première condition assure que les b_i ne sont pas trop loin d'être orthogonaux, et la seconde, qu'on ne gagne pas trop à échanger $b_i \leftrightarrow b_{i+1}$ avant d'appliquer G-S.

Notion de « bonne » base : on va voir que tout réseau a une base LLL-réduite, calculable en temps polynomial.

On déduit $||b_{i+1}^{\star}||^2 \geq (\delta - \mu_{i+1,i}^2) ||b_i^{\star}||^2 \geq (\delta - \frac{1}{4}) ||b_i^{\star}||^2$. Donc $||b_i^{\star}|| \geq (\delta - \frac{1}{4})^{(i-1)/2} ||b_1||$.

Comme $\lambda_1 \ge \min \|b_i^{\star}\|$, on a $\|b_1\| \le (\delta - \frac{1}{4})^{-(n-1)/2} \lambda_1$.

- ▶ Réduction de la ligne b_i par b_j (j < i): remplacer b_i par $b_i cb_j$ (soit $B \leftarrow (1_n cE_{ij})B$) où $c = \lceil \mu_{i,j} \rceil$ (arrondi[†]).
- Effet sur G-S : $\mu_{i,k} \leftarrow \mu_{i,k} c\mu_{j,k}$, donc $\mu_{i,j} \leftarrow |\cdot| \leq \frac{1}{2}$. Les b_i^* ne changent pas.
- ► Réduction de taille de la base : pour *i* allant de 2 à *n*.

pour j allant de i-1 à 1 (décroissant), réduire b_i par b_j (soit $b_i \leftarrow b_i - \lceil \mu_{i,j} \rfloor b_j$).

Assure la propriété $|\mu_{i,j}| \leq \frac{1}{2}$.

▶ Échange $b_i \leftrightarrow b_{i+1}$ [et recalculer / m.à.j. G-S !]

L'échange servira à assurer la propriété de Lovász $\|b_{i+1}^{\star} + \mu_{i+1,i} b_i^{\star}\|^2 \ge \delta \cdot \|b_i^{\star}\|^2$.

Il faut refaire une réduction de taille après chaque échange !

[†]Soit $\lceil \xi \rceil := \lceil (\xi + \frac{1}{2}) \rceil$ où $\lceil \cdot \rceil =$ partie entière.

Algorithme de Lenstra-Lenstra-Lovász donnés b_1, \ldots, b_n base d'un réseau L de \mathbb{R}^m , calcule une base LLL- δ -réduite.

- ▶ (1) Calculer (ou m.à.j.) Gram-Schmidt.
- ▶ (2) Réduction de taille de la base :

 $\mathbf{pour}\ i \ \mathbf{allant}\ \mathbf{de}\ 2\ \mathbf{\grave{a}}\ n,$

pour j allant de i-1 à 1 (décroissant), réduire b_i par b_j (soit $b_i \leftarrow b_i - \lceil \mu_{i,j} \rfloor b_j$) (et $\mu_{i,k} \leftarrow \mu_{i,k} - \lceil \mu_{i,j} \rfloor \mu_{j,k}$).

▶ (3) S'il existe i tel que $||b_{i+1}^{\star} + \mu_{i+1,i} b_i^{\star}||^2 < \delta \cdot ||b_i^{\star}||^2$: échanger $b_i \leftrightarrow b_{i+1}$, et retourner en (1).

Théorème: LLL termine en temps polynomial.

Idée: $\prod_{i=1}^n \|b_i^{\star}\|^{2(n-i+1)} = \prod_{i=1}^n \operatorname{covol}(\mathcal{L}(b_1,\ldots,b_i))^2$ décroît d'un facteur δ pour chaque échange.

Note : pour n=2, LLL \cong algo. de Lagrange|Gauß \approx « Euclide centré ».

Réseaux euclidiens et cryptographie

David Madore

Plan

Généralités sur les réseaux euclidiens

L'algorithme LLL

Réseaux et cryptographie

Réseaux et cryptographie

Soit $\alpha = \frac{1}{\delta - \frac{1}{4}}$ et b_1, \dots, b_n une base LLL- δ -réduite.

On a vu $\|b_1\| \le \alpha^{(n-1)/2} \lambda_1$, donc pour $\delta = \frac{3}{4}$ on a $\|b_1\| \le 2^{(n-1)/2} \lambda_1$ et LLL résout SVP $|_h$ pour $h = 2^{(n-1)/2}$ (renvoyer b_1) en temps poly.

Plus généralement, on a :

- $\|b_i\| \le \alpha^{(n-1)/2} \, \lambda_i$
- ▶ $||b_1|| \le \alpha^{(n-1)/4} \operatorname{covol}(L)^{1/n}$

Expérimentalement, sur des réseaux et bases aléatoires, on observe des inégalités meilleures (mais toujours exponentielles), par exemple $||b_1|| \leq 1.022^n \operatorname{covol}(L)^{1/n}$.

cryptographie

Soit $L=\mathcal{L}(B)$ un réseau et $t\in\mathbb{R}^n$. On veut résoudre le problème CVP_h avec $h=2^{n/2}$, i.e., trouver $z\in L$ tel que $\|z-t\|\leq 2^{n/2}\ \mathrm{dist}(t,L)$.

- ▶ Appliquer LLL avec $\delta = \frac{3}{4}$ à B.
- Faire $x \leftarrow t$, puis **pour** j allant de n à 1 (décroissant), remplacer $x \leftarrow x - cb_j$ où $c = \lceil (b \cdot b_j^\star) / \lVert b_j^\star \rVert^2 \rfloor$.
- $\qquad \qquad \textbf{Retourner} \ z = t x.$

De façon équivalente : on choisit d'abord $c \in \mathbb{Z}$ tel que l'hyperplan affine $cb_n^{\star} + \operatorname{Vect}(b_1, \ldots, b_{n-1})$ soit aussi proche que possible de t, puis on applique récursivement pour trouver un élément proche de x dans $cb_n + \mathcal{L}(b_1, \ldots, b_{n-1})$ (i.e., proche de $x - cb_n$ dans $\mathcal{L}(b_1, \ldots, b_{n-1})$).

Réseaux et cryptographie

- ▶ Soient $(\xi_1,\ldots,\xi_r)\in\mathbb{R}$ irrationnels. On cherche à approcher les ξ_i par des rationnels p_i/q de même dénominateur, i.e., trouver $(p_1,\ldots,p_r)\in\mathbb{Z}^r$ et $q\in\mathbb{N}_{>0}$ tels que les $|q\xi_i-p_i|$ soient petits et q pas trop grand. Qualité prédite par :
- ▶ Dirichlet : Il existe des q arbitrairement grands tels que $|q\xi_i p_i| \le q^{-1/r}$ où $p_i = \lceil q\xi_i \rceil$.

Preuve : Découper $(\mathbb{R}/\mathbb{Z})^r$ en N^r cubes de côté 1/N, et considérer les N^r+1 classes des points $q\vec{\xi}$ pour $0\leq q\leq N^r$: il existe $0\leq q_1< q_2\leq N^r$ tels que les classes tombent dans la même boîte, et si $q=q_2-q_1$ alors on a $|q\xi_i-p_i|\leq \frac{1}{N}\leq q^{-1/r}$.

- ▶ Réseau : pour N>0 réel, considérer l'image de $\mathbb{Z}^{r+1} \to \mathbb{R}^{r+1}$ envoyant (p_1,\ldots,p_r,q) sur $(N(q\xi_1-p_1),\ldots,N(q\xi_r-p_r),q/N^r)$. On vient de voir que ce réseau a des petits vecteurs non nuls.
- ▶ LLL donne $|q\xi_i p_i| \le 2^{r/2}/N$ avec $q \le 2^{r/2}N^r$.

Réseaux et cryptographie

Problème: Donnés a_1,\ldots,a_r,s entiers >0, on cherche un sous-ensemble P de $\{1,\ldots,r\}$ tel que $\sum_{i\in P}a_i=s$ (supposé exister).

Approche par LLL : soit B une constante bien choisie $(\lceil \sqrt{n2^n} \rceil)$. considérer l'image de $\mathbb{Z}^{r+1} \to \mathbb{R}^{r+1}$ envoyant (u_1,\ldots,u_r,v) sur $(u_1,\ldots,u_r,B\cdot(vs-\sum u_ia_i))$.

Avec les bonnes conditions sur les a_i (uniformément choisis sur un intervalle assez grand) et s (supérieur à $\frac{1}{2}\sum a_i$, ce qu'on peut toujours supposer), on montre qu'avec une probabilité extrêmement élevée, le plus court vecteur trouvé par LLL résout le problème du sac à dos.

Réseaux et cryptographie

Utilisation pour le chiffrement à clé publique :

- \blacktriangleright La clé secrète sera typiquement une « bonne » base d'un réseau L (ou de son dual).
- ightharpoonup La clé publique sera typiquement une « mauvaise » base du même réseau L.

Il est facile de générer la mauvaise base à partir de la bonne, difficile de faire l'opération inverse.

▶ Le chiffrement consiste à fabriquer un problème difficile à partir d'une mauvaise base, que la connaissance d'une bonne base permet de résoudre.

Par exemple : pour chiffrer, écrire le message sous forme d'un petit vecteur e, choisir z aléatoirement dans L, et renvoyer x=z+e. Déchiffrer demande de retrouver $z\in L$ proche de x.

L'algorithme LLL

Réseaux et cryptographie

Espoirs de la cryptographie basée sur les réseaux :

- ► Résistance aux ordinateurs quantiques.
- Contrairement aux problèmes de théorie des nombres (factorisation, pb. du log discret) utilisés comme source de difficulté en cryptographie à clé publique traditionnelle, et qui sont cassés par les ordinateurs quantiques[†], les problèmes de réseaux *paraissent* aussi difficiles pour les ordinateurs quantiques que pour les ordinateurs classiques.
- ➤ Outils plus puissants, p.ex., chiffrement complètement homomorphe (⇒calculs sur les chiffrés).

Limitations:

- ► Taille de clés/chiffrés beaucoup plus grande.
- ► Encore mal compris : pas de paramètres de sécurité standardisés.

[†]Si un jour ils existent vraiment...

Equivalent à la donnée d'un sous-groupe $L/N\mathbb{Z}^m \subseteq \mathbb{Z}_{/N}^m$ (si N=q premier, d'un sous- \mathbb{F}_q -esp. vect. de \mathbb{F}_q^m).

Attention : Le rang du réseau ici est m , même si $L/N\mathbb{Z}^m$ est très petit.

Si $A \in (\mathbb{Z}_{/\!N})^{n \times m}$ (typiquement, $n \leq m \approx n \log n$), soient :

$$\Lambda(A) := \mathcal{L}(A) + N\mathbb{Z}^m = \{ x \in \mathbb{Z}^m : \exists u \in \mathbb{Z}^n, x \equiv uA \ [N] \}$$
$$\Lambda^{\perp}(A) := \{ v \in \mathbb{Z}^m : Av^{\text{tr}} \equiv 0 \ [N] \}$$

les réseaux N-modulaires (de rang m) engendré par les lignes de A, resp. orthogonal aux lignes de A.

- ▶ On a $\Lambda^{\perp}(A) = N \cdot \Lambda(A)^*$ et $\Lambda(A) = N \cdot \Lambda^{\perp}(A)^*$.
- ▶ Si $N{=}q$ premier, et A de rang n, on a $\Lambda^{\perp}(A)=\Lambda(B)$ où $B\in\mathbb{Z}_{/q}^{(m-n)\times m}$ de rang m-n (lignes de B base du suppl. ortho. des lignes de A, soit $BA^{\mathrm{tr}}=0$).
- Avec haute probabilité, $\operatorname{covol}(\Lambda(A)) = q^{m-n}$ et $\operatorname{covol}(\Lambda^{\perp}(A)) = q^n$. $\leftarrow 27/31 \rightarrow$

Réseaux euclidiens et cryptographie

David Madore

Plan

Généralités sur les réseaux euclidiens

L'algorithme LLL

Réseaux et cryptographie

« Learning With Errors » (LWE)

Soit q premier. Typiquement, $10^3 < q < 10^5$ ici, $10^2 < n < 10^3$ et $10^3 < m < 10^4.$

Soit $A\in\mathbb{Z}_{/q}^{n\times m}$ tiré au hasard uniformément. Le vecteur $x\in\mathbb{Z}_{/q}^m$ est défini par l'un des deux procédés suivants :

- lacktriangle tiré au hasard uniformément dans $\mathbb{Z}_{/q}^m$, ou bien
- ▶ calculé par x = uA + e où $u \in \mathbb{Z}_{/q}^n$ est tiré au hasard uniformément, et $e \in \mathbb{Z}_{/q}^m$ selon une distribution gaussienne (arrondie aux entiers et réduite mod q).

Défi : distinguer ces deux cas avec probabilité $> \frac{1}{2} + \varepsilon$.

Si l'écart-type est assez petit, application du CVP à x pour le réseau $\Lambda(A)$. Correction de l'« erreur » e.

Théorème (informel^t) : pour un écart-type assez élevé dans la gaussienne ($>\sqrt{\frac{2\pi}{n}}$), LWE est au moins aussi difficile que certains problèmes difficiles « standards » sur les réseaux.

Réseaux euclidiens et cryptographie

David Madore

Plan

Généralités sur les réseaux euclidiens

_'algorithme LLL

Réseaux et cryptographie

←28/31→

L'algorithme LLL

Réseaux et cryptographie

- ▶ Paramètre : $A \in \mathbb{Z}_{/q}^{n \times m}$ tiré au hasard uniformément. Clé secrète : $s \in \mathbb{Z}_{/q}^{m}$ selon une distribution gaussienne (« petit vecteur » secret). Clé publique : $p := As^{\operatorname{tr}} \in \mathbb{Z}_{/q}^{n}$.
- ▶ Chiffrement d'un bit $b \in \{0,1\}$: tirer $u \in \mathbb{Z}_{/q}^n$ uniformément et $(e,e_0) \in \mathbb{Z}_{/q}^{m+1}$ selon une distribution gaussienne (« erreur »). Renvoyer $x = uA + e \in \mathbb{Z}_{/q}^m$ ainsi que $c = b \lfloor \frac{q}{2} \rfloor + u \cdot p + e_0 \in \mathbb{Z}_{/q}$.
- ▶ Déchiffrement : recevant $x \in \mathbb{Z}_{/q}^m$ et $c \in \mathbb{Z}_{/q}$, calculer $c x \cdot s^{\mathrm{tr}}$, qui vaut $b \lfloor \frac{q}{2} \rfloor + e_0 e \cdot s^{\mathrm{tr}}$: si ce nombre est plus proche de $\frac{q}{2}$, décoder 1, sinon, décoder 0. Validité : $e_0 e \cdot s^{\mathrm{tr}}$ a une probabilité négligeable d'être $\gtrsim \frac{q}{2}$.

Le paramétrage de m,n,q et les écarts-types des gaussiennes doit être fait pour rendre le chiffrement difficile à casser et la probabilité d'erreur au décodage négligeable.

Réseaux et cryptographie

▶ Paramètre : $A \in \mathbb{Z}_{/q}^{n \times m}$. Clé secrète : $s \in \mathbb{Z}_{/q}^{m}$ (« petit vecteur »). Clé publique : $p := As^{\operatorname{tr}} \in \mathbb{Z}_{/q}^{n}$.

La clé publique est plutôt $(A|p)\in\mathbb{Z}_{/q}^{n\times(m+1)}$. Soit $L:=\Lambda(A|p)$ le réseau engendré par ses lignes.

▶ Chiffrement : $x = uA + e \in \mathbb{Z}_{/q}^m$ et $c = b\lfloor \frac{q}{2} \rfloor + u \cdot p + e_0 \in \mathbb{Z}_{/q}$ où $u \in \mathbb{Z}_{/q}^n$ uniforme et $(e, e_0) \in \mathbb{Z}_{/q}^{m+1}$ « erreur ».

On a donc $(x|p) = u(A|p) + (e|e_0) + (0|b\lfloor \frac{q}{2} \rfloor) \in \mathbb{Z}_{/q}^{m+1}$ qui est soit proche de L, soit de $L + (0|\lfloor \frac{q}{2} \rfloor)$.

La distinction entre ces deux cas est rendue possible par la connaissance du petit vecteur $(-s|1) \in \Lambda^{\perp}(A|p)$ (car on a $(A|p)(-s|1)^{\mathrm{tr}} = -As^{\mathrm{tr}} + p = 0$).

Moralité : Connaître un petit vecteur dans le réseau dual L^* permet de séparer nettement L en hyperplans.

L'algorithme LLL

Réseaux et cryptographie

Preuve en deux points :

▶ Savoir distinguer une clé publique $p \in \mathbb{Z}_{/q}^n$ (avec $p = As^{\mathrm{tr}}$ où $s \in \mathbb{Z}_{/q}^m$ petit vecteur) d'une clé aléatoire uniforme $\in \mathbb{Z}_{/q}^{n \times (m+1)}$ revient à savoir résoudre LWE.

En effet, se donner $p=As^{\mathrm{tr}}$ revient à se donner s modulo $\Lambda^{\perp}(A)$, c'est-à-dire un tirage vB+s avec v uniforme, où $B\in\mathbb{Z}_{/q}^{(m-n)\times n}$ définit $\Lambda(B)=\Lambda^{\perp}(A)$. C'est bien un problème LWE.

▶ Savoir déchiffrer pour une clé $A' \in \mathbb{Z}_{/q}^{n \times (m+1)}$ aléatoire uniforme revient à savoir résoudre LWE.

En effet, il s'agit de distinguer uA' + e' (avec u uniforme).