SEDRA/SMITH Microelectronic Circuits SEVENTH EDITION

Notes by Kevin Wang

June 12, 2023

Contents

Chapter 3

Semiconductors

Introduction

- 3.1 Intrinsic Semiconductors
- 3.2 Doped Semiconductors
- 3.3 Current Flow in Semiconductors
- 3.4 The pn Junction with an Applied Voltage
- 3.4.1 Qualitative Description of Junction Operation
- 3.4.2 The Current-Voltage Relationship of the Junction
- 3.4.3 Reverse Breakdown

3.5 Capacitive Effects in the pn Junction

2 ways charge can be stored in pn junction.

- 1. charge in depletion region (more visible when reverse bias)
- 2. minority charge in n and p material (more visible when forward bias)
 - concentration profile by injecting to n-dope
 - " to p-dope

3.5.1 Depletion or Junction Capacitance

Assumption: pn junction reversed bias with V_R , charge on either side of junction:

$$Q_J = A\sqrt{2\epsilon_s q \frac{N_A N_D}{N_A + N_D} (V_0 + V_R)} = \alpha \sqrt{(V_0 + V_R)}$$
(3.1)

We denote α as $A\sqrt{2\epsilon_sq\frac{N_AN_D}{N_A+N_D}}$ and observe that $Q_J\not\subset V_R$ (also not linearly related)

 \bullet Hard to define capacitance that accounts for changing Q_J when V_R changes

Assumption: junction operates as a point Q and define

$$C_j = \frac{dQ_J}{dV_r} \bigg|_{V_R = V_Q} \tag{3.2}$$

Figure 3.1: The charge stored on either side of the depletion layer as a function of the reverse voltage V_R

Note:-

The definition of capacitance

$$q = CV \implies C = q/V = \frac{\Delta q}{\Delta V}$$

- Equation ?? useful in electronic cct design
- This equation used in this book frequently
- Called the "incremental-capacitance approach"

Combining equations ?? with ?? we obtain:

$$C_j = \frac{\alpha}{2\sqrt{V_0 + V_R}} \tag{3.3}$$

We observe that C_j at reverse bias $(V_R=0)$ is $C_{j0}=\frac{\alpha}{2\sqrt{V_0}},$ so we can write C_j as

$$C_j = \frac{C_{j0}}{\sqrt{1 + \frac{V_R}{V_0}}} \tag{3.4}$$

Substituting for α , we obtain:

$$C_{j} = A\sqrt{\left(\frac{\epsilon_{s}q}{2}\right)\left(\frac{N_{A}N_{D}}{N_{A} + N_{D}}\right)\left(\frac{1}{V_{0}}\right)}$$
(3.5)

Before leaving concept of junction capacitance, we introduce

Definition 3.5.1: Terms

Abrupt junction: pn junction, doping concentration changes abruptly at junction boundary (this is deliberately done)

Graded junction: pn junction, carrier concentration changes gradually from one side to another.

If graded junction, then C_i becomes:

$$C_j = \frac{C_{j0}}{\left(1 + \frac{V_R}{V_0}\right)^m}$$

where m is the **Grading coefficient**

- m ranges from 1/3 to 1/2
- m depends on manner in which concentration changes from p to n side

Question 1: Exercise 3.14

For the $pn \dots cm^2$.

Solution: Solution

3.5.2 Diffusion Capacitance

Consider: pn junction, forward bias:

Assume: in steady state

- Minority-carrier distributions in p and n regions as shown in $\langle \text{Fig. } 3.12 \rangle$
 - Some minority charge carrier charges stored in p and n regions outside depletion region

This, completely different charge-storage phenomenon than ??

- Previous section was charge-storage of non-depletion region
- This section is charge-storage of depletion region

We calculate excess minority-carrier charge $\langle \text{Fig. } 3.12 \rangle \text{by taking shaded area under exponential Consider: excess hole charges in } n \text{ region } Q_p$

$$Q_p = Aq \times \text{shaded area under the } p_n(x) \text{ curve}$$

= $Aq [p_n(x_n) - p_{n0}] L_p$ (3.6)

Note:-

Recall area under exponential curve $Ae^{-x/B}$ is equal to AB

Doing some substitutions (add sections) to Eq. (??):

$$Q_p = \frac{L_p^2}{D_n} I_p \tag{3.7}$$

We note that the factor $\frac{L_p^2}{D_p}$ relates Q_p to I_p is very useful parameter, and has dimensions of time (s). Thus we denote:

$$\tau_p = \frac{L_p^2}{D_p} \tag{3.8}$$

So:

$$Q_p = \tau_p I_p \tag{3.9}$$

Definition 3.5.2: Terms

Minority-carrier (hole) lifetime: Average time it takes for a hole injected into the n region to recombine with a majority electron, denoted τ_{v}

This definition has the following implications:

- Entire charge, Q_p disappears
- Q_p has to be replenished every τ_p seconds
- The current responsible for replenishing is I_p

Similarly for electrons charge in p region:

$$Q_n = \tau_n I_n \tag{3.10}$$

Where τ_n is electron lifespan in p region. Thus, the total excess minority-carrier charge:

$$Q = \tau_p I_p + \tau_n I_n \tag{3.11}$$

In terms of $I = I_p + I_n$, the diode current

$$Q = \tau_T I \tag{3.12}$$

Definition 3.5.3: Term

Mean transit time: For the junction, is equal to τ_T

We recognize that one side of junction more heavily doped than another. If $N_A >> N_D$:

- $I_p >> I_n$
- $I \approx I_p$
- $Q_p >> Q_n$
- $Q \approx Q_p$
- $\tau_T \approx \tau_p$

Definition 3.5.4: Term

Incremental diffusion capacitance: Defined C_d , for small changes around a bias point:

$$C_d = \frac{dQ}{dV} = \left(\frac{\tau_T}{V_T}\right)I\tag{3.13}$$

Where I is the forward-bias current

Note:

- $C_d \propto I$
 - Because of this, C_d negligibly small when reverse bias
- \bullet To keep C_d small, transit time must be small
 - Important requirement for pn junction for high-speed or high-frequency

Question 2: Exercise 3.15

Use the definition . . . **Solution:** Solution

Question 3: Exercise 3.16

For the $pn \dots$ Solution: