Assignment3

October 28, 2021

CSE 242 Assignment 3, Fall 2021

2 Questions, 60 pts, due: 23:59 pm, Nov 5th, 2021

0.1 Instruction

• Submit your assignments onto **Gradescope** by the due date. Upload a **PDF** file containing:

(1) Your solutions for both math questions.

For assignment related questions, please reach TA or grader through Slack/Piazza/Email.

• This is an **individual** assignment. All help from others (from the web, books other than text, or people other than the TA or instructor) must be clearly acknowledged.

0.2 Objective

- Task 1: Perceptron (math)
- Task 2: Support Vector Machine (math)

1 Question 1. (Perceptron, 30 pts)

1.1 (a - 10 pts)

On what kinds of training data does the perceptron algorithm converge?

1.2 (b - 5*4 pts)

Simulate one pass through the following data with the perceptron algorithm described in lecture and homework. Use the learning rate $\eta = 1$.

Start with w = (0, 0, 0) and show the resulting weight vector after each example.

(Assume that the perceptron algorithm predicts incorrectly when $w \cdot x = 0$, and ignore the bias term.)

x_1	x_2	x_3	y
1	0	1	+1
0	-1	1	-1
1	1	1	+1
-1	2	0	-1
_			

```
Initially, w = (0, 0, 0).

After the first example, w = ( );

After the second example, w = ( );

After the third example, w = ( );

After the fourth example, w = ( ).
```

Reminder: if you are unsure about your answers, give as many details as possible so that you won't get 0 points in the wrong answers.

2 Question 2. (Support Vector Machines, 30 pts)

Suppose that we have the following training set (where the instances have two features):

x_1	x_2	y
1	1	+1
1	2	+1
2	1	+1
0	0	-1
1	0	-1
0	1	-1

$2.1 \quad (a - 10 \text{ pts})$

Plot them (in hand or with python) and find the support vectors (by eye).

$$2.2 \quad (b - 10 + 10 \text{ pts})$$

Using the support vectors, find the equation for the maximum margin separating plane, and determine the geometric margin. (Assume a simple linear SVM and no soft-margin).