Série d'exercices

Exercice 1

Un comprimé de vitamine C contient une masse m = 500mg de l'acide ascorbique de formule chimique $C_6H_8O_6$.

- Calculer la masse molaire de l'acide ascorbique
- 2 Calculer la quantité de matière de l'acide ascorbique dans le comprimé.
- 3 Déduire le nombre de molécules de l'acide ascorbique dans le comprimé.
- ① On dissout le comprimé de vitamine C dans l'eau distillée et on obtient une solution (S) de vitamine C de volume V = 40ml.
 - a Calculer la concentration molaire de la solution (S).
 - **b** Calculer la concentration massique de la solution (S).
- **6** On fait diluer la solution (S) trois fois et on obtient une nouvelle solution (S') de volume V' et de concentration C'.
 - α Calculer la valeur de la concentration C' de la solution (S'), et celle de son volume V'.
 - b Déduire le volume de l'eau distillée ajoutée lors de cette dilution.
 - La masse molaire du carbone : $M(C) = 12g. mol^{-1}$
 - **Données:** La masse molaire d'oxygène : $M(0) = 16g \cdot mol^{-1}$
 - La masse molaire d'hydrogène : $M(H) = 1g. mol^{-1}$

Exercice 2

Le professeur de physique a trouvé dans le laboratoire de lycée une bouteille fermé contenant un liquide incolore . La figure ci-contre représente de la bouteille trouvée

- En exploitant l'étiquette de la bouteille déterminer :
 - Le nom de liquide contenant la bouteille.
 - La masse molaire de ce liquide .
 - La densité de ce liquide .
 - **L**e volume de liquide dans la bouteille .
- Calculer la quantité de matière du liquide dans la bouteille .
- 3 Déduire le nombre de molécules du liquide dans la bouteille.
- Calculer la masse du liquide dans le flacon .
 - ❖ La masse volumique de l'eau : $\rho_e = 1g/mL$

Exercice 3

On dispose une bouteille cylindrique de volume $V=0,7m^3$ contenant de diazote $N_{2(g)}$ sous une pression P=4,3hPa et une température $T=15^{\circ}C$

- 1 Enoncer la loi de Boyle-Mariotte .
- 2 Calculer la masse molaire de diazote.
- **3** Calculer la quantité de matière de diazote dans la bouteille.
- 4 Calculer la masse de diazote dans la bouteille.
- 6 Calculer le volume molaire dans ces conditions.
- ❖ La densité de diazote: d = 0.97; la constant du gaz parfait : R = 8.31Pa. m^3 . K^{-1} . mol^{-1}

Série d'exercices

Exercice 4

On prépare une solution (S) de nitrate d'ammonium $(NH_{4(aq)}^+ + NO_{3(aq)}^-)$ de concentration

 $C=3\times 10^{-2} mol.\,L^{-1}$, en dissolvant une masse m de cristaux de nitrate d'ammonium

- NH_4NO_3 dans un volume V = 100mL de l'eau distillée.
- Calculer la masse molaire de nitrate d'ammonium.
 Calculer la quantité de matière de nitrate d'ammonium dans la solution (S).
- 6 Déduire la valeur de la masse m de nitrate d'ammonium dissoute dans la solution (S).
- **9** On ajoute à la solution (S) un volume V' = 50mL d'une autre solution (S') de nitrate d'ammonium de concentration $C' = 1 \times 10^{-1} mol. L^{-1}$
 - a Calculer la quantité de matière de nitrate d'ammonium dans le mélange obtenu.
 - **b** Calculer la masse de nitrate d'ammonium dans le mélange obtenu.
- **Données**: Les masse molaires en $g. mol^{-1}: M(N) = 14; M(0) = 16; M(0) = 16; M(H) = 1$

Exercice 5

On dispose trois flacons \mathbb{O} , \mathbb{O} et \mathbb{O} à la même température $T = 20^{\circ}C$ tel que :

- Le premier flacon de volume $V_1 = 4L$ contient du butane de formule chimique C_4H_{10} sous une pression $P_1 = 3bar$.
- Le deuxième flacon de volume $V_2 = 9L$ contient une masse $m_2 = 8g$ de l'hélium de formule chimique He et de densité $d_2 = 0,138$
- Le troisième flacon de volume V_3 contient deux moles d'air sous une pression atmosphérique $P_3 = 1atm = 1,01bar$.

On relie les trois flacons par deux tubes très fins contenant chacun un robinet .

Initialement les deux robinets sont fermés. On donne $R=8,31Pa.m^3.K^{-1}.mol^{-1}$

I-Étude du premier flacon .

- Calculer la masse molaire du butane et déduire sa densité .
- 2 Calculer la quantité de matière du butane dans le premier flacon.

II-Étude du deuxième flacon.

- ① Calculer la masse molaire de l'hélium.
- 2 Calculer la quantité de matière l'hélium dans le deuxième flacon.
- **3** Déduire la valeur de la pression P_2 dans ce flacon.

III-Étude du troisième flacon .

- Quelle est la valeur du volume molaire dans ce flacon?
- 2 Calculer le volume de ce flacon.
- IV- On ouvre les deux robinets. Déterminer les valeurs des variables d'état du gaz pour le système formé par les trois flacons .