MATH H104: Homework 5

William Guss 26793499 wguss@berkeley.edu

September 30, 2015

56. Prove the following.

Theorem 1. The 2-sphere is not homeomorphic to the plane.

Proof. For this proof we make use of the heine-borel theorem and the preservation of topological properties through embedding. Take the two sphere S^2 . Take the embedding $h: S^2 \to S \subset \mathbb{R}^3$. This embedding exists as $S = \{r \in \mathbb{R}^3 \mid ||x|| = 1\}$ is a natural image. By the Heine-Borel theorem S is compact because it is closed and bounded. Then, because h is an embedding, S^2 is also compact, a topological invariant. By \mathbb{R}^2 not compact, we have that $S^2 \ncong \mathbb{R}^2$, and the proof is complete.

57. Prove the following.

Theorem 2. If S is connected, its interior may be disconnected.

Proof. Consider the following counter example. Denote the closed r-ball $B_r^c(y) = \{x \in \mathbb{R}^2 \mid ||x-y|| \le r\}$ furthermore let the openr-ball B_r^o be the interior of $B_r^c(y)$. If $S = B_1^c(-1,0) \cup B_1^c(1,0)$, then the interior of S is clearly $B_1^o(-1,0) \cup B_1^o(1,0)$. Since these two sets are disjoint, we have that $int(S) = B_1^o(-1,0) \cup B_1^o(1,0)$. Lastly since $B_1^o(-1,0)$ and $B_1^o(1,0)$ open in int(S), they are also closed since they are compliments. The counter example is complete as int(S) is disconnected in contrast to S connected. \square

- 58. Theorem 49 states that the closure of a connected set is connected.
 - (a) The closure of a disconnected set is disconnected. If M disconnected then, $M = A \sqcup B$ for A, B disjoint clopen subsets of M. The closure of M is the intersection of all; closed sets containing M, which is trivially M. Hence the closure of M is M which is disconnected.
 - (b) What about the interior of a disconnected set? If M is disconnected, then the interior of M is the union of sets in the topology of M. Since M is clopen and in the topology of M, the interior of M is maximally M. Therefore, the interior of M is disconnected.

- 60. Prove the following.
 - (a) Integer domain:

Theorem 3. If $f: M \to \mathbb{Z}$ is continuous, then M connected implies that $f(M) = \{c\}$ is a singleton.

Proof. Suppose for the sake of contradiction that $B = \{a \in M \mid f(a) \neq c\}$ is non=empty. Then $f(M) = \{c\} \sqcup f(B) \subset \mathbb{Z}$. By \mathbb{Z} disconnected, we have that f(M) is disconnected. This is a contradiction to M connected, implies f(M) connected (by continuity). Hence, f(M) is a singleton.

(b) Rational domain:

Lemma 1. \mathbb{Q} is totally disconnected.

Proof. We will show the theorem if for every $x,y\in\mathbb{Q}$ there exist A,B separations of \mathbb{Q} with $x\in A,x\in B$. Without loss of generality, assume x< y. Since between two rationals there is an irrational, take the trirational z to be in between x and y. Let $A'=(-\infty,z)$ and $B'=(z,\infty)$. Then if $A=A'_{\mathbb{Q}}=A'\cap\mathbb{Q}$ and $B=B'_{\mathbb{Q}}$, we have that $\mathbb{Q}=(-\infty,z)_{\mathbb{Q}}\sqcup(z,\infty)_{\mathbb{Q}}=A\sqcup B$. Clearly $x\in A,y\in B$. Therefore \mathbb{Q} is totally disconnected.

Theorem 4. If $f: M \to \mathbb{Q}$ continuous, M connected implies that f(M) is trivially the singleton.

Proof. Suppose f(M) is not trival (not the singleton, nor empty), then $f(M) \subset \mathbb{Q}$ implies that f(M) is totally disconnected by the previous lemma. This is a contradiction to M connected, by M connected implies f(M) connected. Therefore f(M) is the singleton.

72.

102.

103.

108.