A-II, Thm.2.6 that $p(e^{-\lambda t}T(t)f) \le p(f)$ (f $\in E$, $t \ge 0$). Hence, (3.5) $<(T(t)f)^+$, $\phi> \le e^{\lambda t} < f^+$, $\phi>$ (f $\in E$, $t \ge 0$).

Now let t>0 and $f\le 0$; then $f^+=0$. It follows from (3.5) that $<(T(t)f)^+, \phi>\le 0$. Since $\phi\in M'$ is arbitrary and M' is strictly positive, it follows that $(T(t)f)^+=0$; i.e., $T(t)f\le 0$. This implies that $T(t)\ge 0$.

<u>Remark</u> 3.11. a) The proof of Theorem 3.8 shows the following. If A is the generator of a positive semigroup and E' contains strictly positive linear forms, then there exist a continuous half-norm p on E and w $\in \mathbb{R}$ such that A - w is p-dissipative. We stress that p cannot be replaced by the norm (or by N⁺), since in general none of the semigroups $(e^{-wt}T(t))_{t\geq 0}$ (w $\in \mathbb{R}$) is contractive for the norm (cf. Derndinger (1984) and Batty-Davies (1982)).

b) Using Proposition 3.10 one can show with the help of the proof of A-II, Prop.2.9 that a densely defined operator is closable whenever there exists a strictly positive set M' of subeigenvectors of A' such that (K) holds for all $f \in D(A)$ and $\phi \in M'$.

 $\overline{\text{Remark}}$ 3.12 In Theorem 3.8 and Corollary 3.9 one can replace inequality (K) by the inequality

(3.6)
$$\langle P_{(f^+)} Af, \phi \rangle \leq \langle f^+, A' \phi \rangle$$
,

(with the notation of Prop.3.10).

Indeed, (3.6) for -f yields $\langle -P_{(f^-)}Af, \phi \rangle \leq \langle f^-, A'\phi \rangle$. Adding up both inequalities one obtains $\langle (sign f)Af, \phi \rangle \leq \langle |f|, A'\phi \rangle$.

On the other hand, if A generates a positive semigroup, one sees by the obvious alterations in the proof of Theorem 2.4 that (3.6) holds for all $f \in D(A)$ and $\phi \in D(A')_{\perp}$.

Next we formulate the result for the space $\,^{\rm C}_{\rm O}({\rm X})$, where $\,^{\rm X}$ is a locally compact space (concerning the notation cf. Thm.2.6 and Sec.2 of B-II).

Theorem 3.13. Let A be the generator of a semigroup on $C_{_{\scriptsize O}}(X)$. The semigroup is positive if and only if there exists a core D $_{_{\scriptsize O}}$ of A and a strictly positive set M' of subeigenvectors of A' such that

(K)
$$\langle (\text{sign f}) \text{Af}, \phi \rangle \leq \langle |f|, A' \phi \rangle$$
 for all $f \in D_{O}$, $\phi \in M'$.

П