

CORRELATIONS

- 2

Variables that are related

- Let's analyze changes in a variable and how it impacts other variables
- Studying correlations allows us to analyze two or more variables together and to quantify whether:
 - The relation is direct or inverse;
 - The relation is strong or weak.

3

Example

 The table depicts monthly juice production rates and its cost

Month	Production (I)	Total cost (R\$)
Jan	20200	19000
Feb	16700	17000
Mar	14800	14000
Apr	16000	15000
May	12100	14000
Jun	13000	15000
Jul	11600	13000
Aug	15500	16000
Sep	18900	18000
Oct	20000	19000
Nov	22500	20000
Dec	23000	21000

Scatterplots

 In a cartesian system, these plots allow us to see the correlation between variables

5

Pearson correlation coefficient

- Quantifies the correlation between a pair of numeric variables
- The computation of the pearson correlation coefficient r for variables X and Y is as follows:

$$r(X,Y) = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) \times (y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \times \sqrt{\sum_{i=1}^{n} (y_i - y)^2}} = \frac{cov(X,Y)}{\sqrt{var(X) \times var(Y)}}$$

· r lies between [-1; +1]

δ

(not so) formal definition |r| (modulus) | Interpretation | |r| < 0.4 | Weak correlation | |0.4 <= |r| < 0.7 | Mild correlation | |0.7 <= |r| | Strong correlation | There is no consensus on these thresholds. Each area may assume different values.

Pearson correlation

- Apply this to numeric data
- It also assumes that data:
 - Follow a gaussian distribution
 - That the correlation between variables is linear

13

ACTIVITY

Activity

- Create two pandas data frames, each with two variables x and y
- In the first data frame, make sure that y is given by n *
 x, where n is a value you can choose
- In the second data frame, make sure that y=sin(x)
- Compute the correlation between x and y for both dataframes

15

Here, feature x and y are correlated, but not linearly

SPEARMAN CORRELATION

17

Spearman correlation

- · Should be used when variables are ordinal
- · Spearman's ρ
 - Data is sorted from the largest to the smallest value per variable
 - $-\rho$ is computed the same was as Pearson's ryet, assuming the position of each data point
- · Or simply use scipy.stats.spearmanr

CORRELATION BETWEEN CATEGORICAL VARIABLES

19

Cross-tabulating

- A nice way to check whether two categorical variables are correlated is to cross-tabulate them
- Using pd.crosstab, we can check the behavior of two variables
- For a more visual approach, we can use a heatmap to check the correlation

Example

 Let's take a quick look at this approach using the titanic data

21

CORRELATION AND CAUSATION

Correlation and causation

- · Sometimes we will find correlations and we will assume that a variable A is causing variable B to have a certain behavior
- · That may be true, but not necessarily

Spurious Correlations • https://www.tylervigen.com/spurious-correlations Spurious correlations CORRELATION DOES NOT EQUAL CAUSATION TYLER VIGEN

ACTIVITY

35

Activity

- You have until the end of the day to find a dataset that you are interested on working with
- The dataset must be in tabular shape and it must:
- Have at least 10 features (do not pick a large dataset if you are starting on data science projects)
- · At least 100 instances
- Avoid datasets with text data (unless you have a background to work with it, stick with categorical/numerical features)
- · You must send the dataset to jean.barddal@ppgia.pucpr.br