Preprocessing(2)

n-gram

n-gram

WHAT Contiguous sequence of *n* items from a given sample of text or speech phonemes, *syllables*, *letters*, *words* or *base pairs* according to the application

WHY Predicts a next letter

Given a sequence of letters, what is the likelihood of the next letter?

$$P(x_i|x_{i-(n-1)},...,x_{i-1})$$

WPM

Word Piece Model

하나의 단어를 내부 단어(Subword Unit)들로 분리하는 단어 분리 모델

Google's Neural Machine Translation System:
Bridging the Gap between Human and Machine Translation
Wo at el, 2016

System	Combined test set
Bing Translate	23.48
Google Translate	22.67
Word Model	18.19
Word-piece Model	26.58

BPE

Byte Pair Encoding (Digram Coding)

Simple form of data compression

The most common pair of consecutive bytes of data is replaced with a byte

Philip Gage, 1994

Neural Machine Translation of Rare Words with Subword Units
Sennrich at el, 2015

example

- learning
 - word:freq: {low:5, lowest:2, newer:6, wider:3}
 - marge & count
 - 1. 'r' '</w>' : 9 → marge'r</w>'
 - 'e' 'r</w>' : 9 → marge'er</w>'
 - 3. 'l' 'o' : 7 → marge'lo'
 - 4. 'lo' 'w' : 7 → marge'low'
 - → OOV: 'lower' segmented 'low er</w>'

Empirical Law

Zipf's Law

WHAT An empirical law

frequency of word is inversely proportional to its rank in frequency table most frequent word will occur approximately twice

as often as the second most frequent word

단어 순위 (Rank)

Heaps' Law

WHAT An empirical law

of distinct words in a document as a function of the document length

