

Support vector

Support

Support

Intro to Linear Support Vector Machines and Binary Classification

By Matt Flounders June 19, 2019

Support vector what?

Classification Example

Classification Example

Classification Example

Hyperplane: best, worst, and ugly?

Hyperplane: best, worst, and ugly?

Article | Published: 24 April 2005

Predicting the orientation of invisible stimuli from activity in human primary visual cortex

John-Dylan Haynes [™] & Geraint Rees

Abstract

Importance Electroconvu for severe depression. How ECT remain unidentified. Accuracy of dementia diagnosis—a direct comparison between radiologists and a computerized method 3

Stefan Klöppel, Cynthia M. Stonnington, Josephine Barnes, Frederick Chen, Carlton Chu, Catriona D. Good, Irina Mader, L. Anne Mitchell, Ameet C. Patel, Catherine C. Roberts ... Show more

Brain, Volume 131, Issue 11, November 2008, Pages 2969–2974, https://doi.org/10.1093/brain/awn239

Published: 03 October 2008 Article history ▼

Table of contents

- 1. Terminology
- 2. LibSVM
- 3. Workflow
- 4. Examples
 - a. Generic
 - b. Neuroscience
 - i. Binary Classification
 - ii. Binary Classification across time
- 5. Conclusions
- 6. Future Directions

Terminology

Hyperplane: line discerning between data points, a decision boundary

Support vectors: data points closest to the separating hyperplane, identify the boundary of the slab

Margin: maximal width of the slab parallel to the hyperplane that has no interior data points

- **Soft margin:** slab parallel to the hyperplane, where many data points are separated but may contain some data points according to an a priori criteria

Mur et al., 2009

Soft margin

- A soft margin utilizes a priori criteria
 - Reducing "c" makes misclassification less important
 - Increasing "c" aims to stricly separate between classes

Figure 1: Classification (linear separable case)

LibSVM

- A package implemented in many programming languages
- Tool to train, test, and optimize various classifications, regressions, and distributed estimation
 - Kernel options:
 - Linear
 - Polynomial
 - Radial Bias
 - Sigmoid
- Allows for multi-class classification, probability estimates, cross-validation, and "weighted" SVM

Workflow: Preprocess and Segment Data

- Split data into training and test sets
- 2. Within subject, utilize GLM to generate whole-brain activity patterns consisting of beta-estimates

Workflow: Preprocess and Segment Data

- Split data into training and test sets
- Within subject, utilize GLM to generate whole-brain activity patterns consisting of beta-estimates
- Select voxels based on anatomy, function, both

Workflow: Train

1. Split data into training and test sets

STEP 3

STEP 4

STEP 5

Selecting the voxels based on: * training data

* another data set independent from test data set (e.g. anatomy)

Training the classifier

Testing the classifier

- Within subject, utilize GLM to generate whole-brain activity patterns consisting of beta-estimates
- Select voxels based on anatomy, function, both
- 4. Train a classifier

Workflow: Classify/Test/Predict

STEP 4

Training the classifier

Testing the classifier

- 1. Split data into training and test sets
- 2. Within subject, utilize GLM to generate whole-brain activity patterns consisting of beta-estimates
- 3. Select voxels based on anatomy, function, both
- 4. Train a classifier
- 5. Test classifier

Workflow: Cross-validation

- 1. Split data into training and test sets
- Within subject, utilize GLM to generate whole-brain activity patterns consisting of beta-estimates
- 3. Select voxels based on anatomy, function, both
- 4. Train a classifier
- 5. Test classifier
 - a. k-fold cross-validation

Example: heart_scale

- Dataset: 270 examples with 14 features
 - 135 heart_a and 135 hearts_b
 - 14 pieces of information
- Classifying heart_a from heart_b

	BPM	 Tricuspid Diameter
Heart 1		
Heart 270		

Example: heart_scale

Example: heart_scale

- Dataset: 66 examples with 270 features
 - o 33 images "Pre", and 33 images "Post"
 - o 270 MEG sensors
- Classifying Pre vs. Post, given identical stimulus input with differing prior

Pre Post

	MEG Sensor 1	 MEG Sensor 270
Image1		
Image2		

Conclusions

- SVM will always do the job, but it's up to you to constrain it.
- SVM interpretation is limited to input
- SVM is NOT the best method of machine learning, it is one method
- There are many ways to use SVM, LibSVM is one of them
 - SciKit Learn
 - PyMVPA

Future directions

- July 17, 2019: "Random forest: theory and application to neuroimaging" by Meichen Yu
 - Discussion of random forest technique
 - Comparison to Support Vector Machine
 - Best Practices and Pitfalls

References

- Pereira et al., 2009, Machine learning classifiers and fMRI: A tutorial overview,
 Neuroimage (<u>link</u>)
- Norman et al., 2006, Beyond mind-reading: multi-voxel pattern analysis of fMRI data, TiCS (link)
- Mur et al., 2009, Revealing representational content with pattern-information fMRI—an introductory guide, Social Cognitive and Affective Neuroscience (<u>link</u>)
- Gonzalez-Garcia et al., 2018, Content-specific activity in frontoparietal and default-mode networks during prior-guided visual perception, eLife (link)
- Flounders et al., 2019, Neural dynamics of visual ambiguity resolution by perceptual prior, eLife (<u>link</u>)

LibSVM package resources

LibSVM Docs

- Paper: https://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf
- Beginners Guide: https://www.csie.ntu.edu.tw/~cjlin/papers/quide/quide.pdf
- Piaip's LIBSVM tutorial: https://www.csie.ntu.edu.tw/~piaip/svm/svm tutorial.html#
- MATLAB
 - Download directly from site
 - Example/datasets: https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
 - https://www.youtube.com/watch?v=gePWtNAQcK8
- \circ R
 - Download: https://cran.r-project.org/web/packages/e1071/e1071.pdf
 - Example/datasets: https://www.csie.ntu.edu.tw/~cjlin/libsvm/R example.html

MATLAB Resources

- General guide
 - https://www.mathworks.com/help/stats/support-vector-machines-for-binary-classification.html
- Functions of interest (with examples)
 - https://www.mathworks.com/help/stats/fitcsvm.html
- Example data and validation guidelines:
 - https://www.mathworks.com/help/stats/select-data-and-validation-for-classification-problem.html
- Choosing classifers:
 - https://www.mathworks.com/help/stats/choose-a-classifier.html#bunt0n0-1