# Course Code: ESC106A Course Title: Construction Materials and Engineering Mechanics

Lecture No. 20: Equilibrium of Structural Systems

Delivered By: Dr. T. Valsa Ipe



## **Lecture Intended Learning Outcomes**

#### At the end of this lecture, students will be able to:

- Define types of forces
- Define Equilibrium and Equilibrant
- Describe conditions of equilibrium for concurrent and non concurrent force systems



## **Contents**

Types of forces, equilibrium and equilibrant, conditions of equilibrium



# Types of forces









ACTS IN AN OPPOSITE DIRECTION TO MOVEMENT.

**Gravity Force** 

Magnetic Force

**Applied Force** 





**Buoyant Force** 

**Tension Force** 

**Drag Force** 

AMOUNTS OF ENERGY THINK

ABOUT THE STRUTS OF CARS.

## **Applied Forces**

- Applied forces are the forces applied externally to a body
- Each of the forces has got a point of contact with the body



Ex: If a person stands on a ladder, his weight is an applied force



## **Non-Applied Forces**

There are two types of non-applied forces

(a)Self Weight

(b)Reactions

(a)Self Weight: Every body is subjected to gravitational acceleration and hence has a self-weight

#### W=mg

Where m is the mass of the body

And g is the gravitational acceleration

- Self-weight always acts in vertically downward direction
- When analyzing equilibrium of a body, self weight is treated as acting through the centre of gravity of the body



## **Non-Applied Forces**

There are two types of non-applied forces

(a)Self Weight

(b)Reactions

#### (b)Reactions:

 These are self-adjusting forces developed by the other bodies which come in contact with the body under consideration



## **Applied force**



## Non applied force





## **Applied force**



## Non applied force





# Equilibrium



 The term equilibrium implies that either the body is at rest or a body is in static equilibrium when the force system acting on it tends to produce no net translation or rotation of the body





# **Conditions of Equilibrium**

- $\Sigma V=0$  or  $\Sigma Fy=0$
- i.e Algebraic sum of all the vertical forces must be equal to zero
- $\Sigma H=0$  or  $\Sigma Fx=0$
- i.e Algebraic sum of all the horizontal forces must be equal to zero
- ΣM=0
- i.e Algebraic sum of moment of all the forces about any point must be equal to zero



# **Equilibrant**



Force which is equal and opposite to the resultant force is called as Equilibrant





## **Summary**

- Forces are broadly classified into applied and non applied forces
- A body is said to be in equilibrium when the force system acting on it tends to produce no net translation or rotation of the body
- Force which is equal and opposite to the resultant force is called as Equilibrant

