Examenul de bacalaureat național 2020 Proba E. c)

Matematică *M_şt-nat* BAREM DE EVALUARE ȘI DE NOTARE

Test 9

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\log_2 16 = \log_2 2^4 = 4$	2p
	Cum $\sqrt[3]{125} = \sqrt[3]{5^3} = 5$, obținem că $\log_2 16 < \sqrt[3]{125}$	3p
2.	$\Delta = (a+2)^2 - 4(2a+1) = a^2 - 4a$, unde a este număr real	2p
	Graficul funcției f este tangent axei $Ox \Leftrightarrow \Delta = 0$, deci $a = 0$ sau $a = 4$	3p
3.	$x^2 - x - 2 = 3x - 5 \Leftrightarrow x^2 - 4x + 3 = 0$	3p
	x=1 sau $x=3$	2p
4.	$C_4^1 = 4$, $A_4^2 = 12$ și $A_5^2 = 20$	3 p
	$12 = \frac{4+20}{2}$, deci C_4^1 , A_4^2 și A_5^2 sunt termeni consecutivi ai unei progresii aritmetice	2p
5.	$m_{AB} = \frac{a-1}{2}$, $m_{BC} = \frac{a+1}{3}$, unde a este număr real	2p
	A, B și C sunt coliniare $\Rightarrow m_{AB} = m_{BC} \Rightarrow 3a - 3 = 2a + 2$, deci $a = 5$	3 p
6.	$\sin P = \frac{1}{2}$	2p
	$2R = \frac{MN}{\sin P} \Rightarrow R = 16$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(1) = \begin{pmatrix} 1 & 1 & -1 \\ 1 & -1 & -1 \\ 1 & -1 & 1 \end{pmatrix} \Rightarrow \det(A(1)) = \begin{vmatrix} 1 & 1 & -1 \\ 1 & -1 & -1 \\ 1 & -1 & 1 \end{vmatrix} =$	2p
	=-1+1+(-1)-1-1-1=-4	3 p
b)	$\det(A(a)) = -a(a^2 + 3)$, pentru orice număr real a	2p
	Matricea $A(a)$ este inversabilă $\Leftrightarrow \det(A(a)) \neq 0$, deci $a \in \mathbb{R}^*$	3 p
c)	Dacă (x_0, y_0, z_0) este soluție și $x_0 = y_0 = z_0$, atunci $\begin{cases} x_0 + ax_0 - x_0 = a \\ x_0 - x_0 - ax_0 = -1 \text{, unde } a \text{ este număr } ax_0 - x_0 + x_0 = -1 \end{cases}$ real	2p
	Obținem $ax_0 = 1$ și $ax_0 = -1$, ceea ce este imposibil	3 p
2.a)	$2020*(-2020) = \sqrt[3]{2020^3 + (-2020)^3 + 8} = \sqrt[3]{2020^3 - 2020^3 + 8} = $ $= \sqrt[3]{8} = 2$	3p 2p
b)	$x*e=x$, pentru orice număr real x , deci $\sqrt[3]{x^3+e^3+8}=x \Leftrightarrow x^3+e^3+8=x^3 \Leftrightarrow e=-2$	3p
	Cum $(-2) * x = \sqrt[3]{(-2)^3 + x^3 + 8} = \sqrt[3]{x^3} = x$, pentru orice număr real x , obținem că $e = -2$ este elementul neutru al legii de compoziție ,,*"	2p

c)	$f(x*y) = (x*y)^3 + 8 = (\sqrt[3]{x^3 + y^3 + 8})^3 + 8 = x^3 + y^3 + 8 + 8 =$	2p
	$= x^3 + 8 + y^3 + 8 = f(x) + f(y)$, pentru orice numere reale x și y , deci f este morfism de	3n
	la grupul $(\mathbb{R},*)$ la grupul $(\mathbb{R},+)$	Эþ

(30 de puncte) SUBIECTUL al III-lea

SUDII	OUBLECTUL al III-lea (30 de pund		
1.a)	$\lim_{x \to +\infty} \left(x f\left(x\right) \right) = \lim_{x \to +\infty} \left(\frac{x}{x+2} + \frac{x}{x+4} \right) = \lim_{x \to +\infty} \left(\frac{1}{1+\frac{2}{x}} + \frac{1}{1+\frac{4}{x}} \right) =$	3p	
	=1+1=2	2p	
b)	$f'(x) = -\frac{1}{(x+2)^2} - \frac{1}{(x+4)^2}, \ x \in (-2, +\infty)$	3 p	
	$f'(x) < 0$, pentru orice $x \in (-2, +\infty)$, deci f este descrescătoare pe $(-2, +\infty)$	2 p	
c)	f este continuă, f este descrescătoare pe $\left[-1,+\infty\right)$, $f\left(-1\right) = \frac{4}{3}$ și $\lim_{x \to +\infty} f\left(x\right) = 0$, deci $f\left(x\right) \in \left(0,\frac{4}{3}\right]$, pentru orice $x \in \left[-1,+\infty\right)$	3p	
	$f(x) \in \mathbb{Z}$, deci $f(x) = 1 \Leftrightarrow x^2 + 4x + 2 = 0$ şi, cum $x \in [-1, +\infty)$, obţinem $x = -2 + \sqrt{2}$	2 p	
	$\int_{0}^{2} \frac{x+1}{f(x)} dx = \int_{0}^{2} e^{x} dx = e^{x} \Big _{0}^{2} =$	3p	
	$=e^2-e^0=e^2-1$	2 p	
b)	$\int_{0}^{1} e^{3x} f^{2}(x) dx = \int_{0}^{1} (x+1)^{2} e^{x} dx = (x^{2}+1)e^{x} \Big _{0}^{1} =$	3 p	
	$=2e-e^0=2e-1$	2 p	
c)	$\frac{f(x)}{x+1} = e^{-x}, \ x \in (0,+\infty) \Rightarrow 1 - \int_0^a \frac{f(x)}{x+1} dx = e^{-a}, \ 1 - \int_0^b \frac{f(x)}{x+1} dx = e^{-b}, \ 1 - \int_0^c \frac{f(x)}{x+1} dx = e^{-c}$	3 p	
	e^{-a} , e^{-b} și e^{-c} sunt termeni consecutivi ai unei progresii geometrice \Leftrightarrow $\left(e^{-b}\right)^2 = e^{-a} \cdot e^{-c}$, deci $e^{-2b} = e^{-a-c}$, de unde obținem $2b = a + c$, adică a , b și c sunt termeni consecutivi ai unei progresii aritmetice	2 p	