

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION  
International Bureau



INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |         |                                                                                                                                   |    |         |                         |    |         |                            |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------|----|---------|-------------------------|----|---------|----------------------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| (51) International Patent Classification 5 :<br><br>C12N 15/00, 5/00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            | A1      | (11) International Publication Number: <b>WO 91/19796</b><br><br>(43) International Publication Date: 26 December 1991 (26.12.91) |    |         |                         |    |         |                            |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| <p>(21) International Application Number: PCT/US91/04006</p> <p>(22) International Filing Date: 7 June 1991 (07.06.91)</p> <p>(30) Priority data:</p> <table style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 25%;">536,397</td> <td style="width: 25%;">12 June 1990 (12.06.90)</td> <td style="width: 25%;">US</td> </tr> <tr> <td>537,458</td> <td>14 June 1990 (14.06.90)</td> <td>US</td> </tr> <tr> <td>597,694</td> <td>17 October 1990 (17.10.90)</td> <td>US</td> </tr> </table> <p>(71) Applicant: BAYLOR COLLEGE OF MEDICINE [US/US]; One Baylor Plaza, Houston, TX 77030 (US).</p> <p>(72) Inventors: BRADLEY, Allan ; 5619 Wigton, Houston, TX 77096 (US). DAVIS, Ann, C. ; 5415 Braesvalley, #819, Houston, TX 77096 (US). HASTY, Paul ; 1928 North Braeswood, Houston, TX 77030 (US).</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            | 536,397 | 12 June 1990 (12.06.90)                                                                                                           | US | 537,458 | 14 June 1990 (14.06.90) | US | 597,694 | 17 October 1990 (17.10.90) | US | <p>(74) Agent: AUERBACH, Jeffrey, I.; Weil, Gotshal &amp; Manges, 1615 L Street, N.W., Washington, DC 20036 (US).</p> <p>(81) Designated States: AT (European patent), AU, BE (European patent), CA, CH (European patent), DE (European patent), DK (European patent), ES (European patent), FR (European patent), GB (European patent), GR (European patent), IT (European patent), JP, LU (European patent), NL (European patent), SE (European patent).</p> <p>Published<br/><i>With international search report.</i></p> |  |
| 536,397                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12 June 1990 (12.06.90)    | US      |                                                                                                                                   |    |         |                         |    |         |                            |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 537,458                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14 June 1990 (14.06.90)    | US      |                                                                                                                                   |    |         |                         |    |         |                            |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 597,694                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17 October 1990 (17.10.90) | US      |                                                                                                                                   |    |         |                         |    |         |                            |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| <p><b>(54) Title: METHOD FOR HOMOLOGOUS RECOMBINATION IN ANIMAL AND PLANT CELLS</b></p> <p>Step#1, homologous recombination: Adding the human replacement with an insertion vector.</p> <p>Legend:<br/> <span style="display: inline-block; width: 10px; height: 10px; background-color: white;"></span> Mouse non-coding exon<br/> <span style="display: inline-block; width: 10px; height: 10px; background-color: lightgray;"></span> Human non-coding exon<br/> <span style="display: inline-block; width: 10px; height: 10px; background-color: gray;"></span> Human coding exon<br/> <span style="display: inline-block; width: 10px; height: 10px; background-color: black;"></span> Mouse coding exon<br/> <span style="display: inline-block; width: 10px; height: 10px; border-top: 1px dashed black; border-bottom: 1px dashed black;"></span> - Mouse P' flanking sequence, may include the promoter?     </p> <p>Step#2: Reconstruct junction, remove duplicated promoter, add additional 3' human sequences. Select in - FIAU (100%)</p> <p>Step#3: Human gene under mouse P' elements</p> <p>(57) Abstract</p> <p>A method for producing animal cells which contain a desired gene sequence which has been inserted into a predetermined gene sequence by homologous recombination. The method permits the production of animal cells which have subtle and precise modifications of gene sequence and expression.</p> |                            |         |                                                                                                                                   |    |         |                         |    |         |                            |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |

***FOR THE PURPOSES OF INFORMATION ONLY***

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

|    |                          |    |                                          |    |                          |
|----|--------------------------|----|------------------------------------------|----|--------------------------|
| AT | Austria                  | ES | Spain                                    | MG | Madagascar               |
| AU | Australia                | FI | Finland                                  | ML | Mali                     |
| BB | Barbados                 | FR | France                                   | MN | Mongolia                 |
| BE | Belgium                  | GA | Gabon                                    | MR | Mauritania               |
| BF | Burkina Faso             | GB | United Kingdom                           | MW | Malawi                   |
| BG | Bulgaria                 | GN | Guinea                                   | NL | Netherlands              |
| BJ | Benin                    | GR | Greece                                   | NO | Norway                   |
| BR | Brazil                   | HU | Hungary                                  | PL | Poland                   |
| CA | Canada                   | IT | Italy                                    | RO | Romania                  |
| CF | Central African Republic | JP | Japan                                    | SD | Sudan                    |
| CG | Congo                    | KP | Democratic People's Republic<br>of Korea | SE | Sweden                   |
| CH | Switzerland              | KR | Republic of Korea                        | SN | Senegal                  |
| CI | Côte d'Ivoire            | LI | Liechtenstein                            | SU | Soviet Union             |
| CM | Cameroon                 | LK | Sri Lanka                                | TD | Chad                     |
| CS | Czechoslovakia           | LU | Luxembourg                               | TG | Togo                     |
| DE | Germany                  | MC | Monaco                                   | US | United States of America |
| DK | Denmark                  |    |                                          |    |                          |

1  
2  
3  
4  
5  
6

7 **TITLE OF THE INVENTION:**

8  
9  
10 Method for Homologous Recombination in Animal  
11 and Plant Cells  
12  
13

14  
15 **CROSS-REFERENCE TO RELATED APPLICATIONS:**  
16  
17

18 This application is a continuation-in-part application  
19 of U.S. Patent Application Serial No. 07/537,458, filed on  
20 June 14, 1990.

21  
22 **FIELD OF THE INVENTION:**  
23

24 The invention is directed toward recombinant DNA  
25 technology, and more specifically, toward methods for  
26 modifying endogenous genes in a chimeric or transgenic  
27 animal or plant. The invention further pertains to the  
28 animals/plants produced through application of the method,  
29 and to the use of the method in medicine and agriculture.  
30 This invention was supported by Government funds. The  
31 Government has certain rights in this invention.  
32

33 **BACKGROUND OF THE INVENTION:**  
34

35 I. Chimeric and Transgenic Animals  
36

37 Recent advances in recombinant DNA and genetic  
38 technologies have made it possible to introduce and express  
39 a desired gene sequence in a recipient animal. Through the  
40 use of such methods, animals have been engineered to contain

-2-

1 gene sequences that are not normally or naturally present in  
2 an unaltered animal. The techniques have also been used to  
3 produce animals which exhibit altered expression of  
4 naturally present gene sequences.

5 The animals produced through the use of these methods  
6 are known as either "chimeric" or "transgenic" animals. In  
7 a "chimeric" animal, only some of the animal's cells contain  
8 and express the introduced gene sequence, whereas other  
9 cells have been unaltered. The capacity of a chimeric  
10 animal to transmit the introduced gene sequence to its  
11 progeny depends upon whether the introduced gene sequences  
12 are present in the germ cells of the animal. Thus, only  
13 certain chimeric animals can pass along the desired gene  
14 sequence to their progeny.

15 In contrast, all of the cells of a "transgenic" animal  
16 contain the introduced gene sequence. Consequently, a  
17 transgenic animal is capable of transmitting the introduced  
18 gene sequence to its progeny.  
19

20 II. Production of Transgenic Animals:  
21 Microinjection Methods  
22

23 The most widely used method through which transgenic  
24 animals have been produced involves injecting a DNA molecule  
25 into the male pronucleus of a fertilized egg (Brinster, R.L.  
26 et al., Cell 27:223 (1981); Costantini, F. et al., Nature  
27 294:92 (1981); Harbers, K. et al., Nature 293:540 (1981);  
28 Wagner, E.F. et al., Proc. Natl. Acad. Sci. (U.S.A.) 78:5016  
29 (1981); Gordon, J.W. et al., Proc. Natl. Acad. Sci. (U.S.A.)  
30 73:1260 (1976)).

31 The gene sequence being introduced need not be incor-  
32 porated into any kind of self-replicating plasmid or virus  
33 (Jaenisch, R., Science, 240:1468-1474 (1988)). Indeed, the

-3-

1 presence of vector DNA has been found, in many cases, to be  
2 undesirable (Hammer, R.E. et al., Science 235:53 (1987);  
3 Chada, K. et al., Nature 319:685 (1986); Kollias, G. et al.,  
4 Cell 46:89 (1986); Shani, M., Molec. Cell. Biol. 6:2624  
5 (1986); Chada, K. et al., Nature 314:377 (1985); Townes, T.  
6 et al., EMBO J. 4:1715 (1985)).

7 After being injected into the recipient fertilized egg,  
8 the DNA molecules are believed to recombine with one another  
9 to form extended head-to-tail concatemers. It has been  
10 proposed that such concatemers occur at sites of double-  
11 stranded DNA breaks at random sites in the egg's  
12 chromosomes, and that the concatemers are inserted and  
13 integrated into such sites (Brinster, R.L. et al., Proc.  
14 Natl. Acad. Sci. (U.S.A.) 82:4438 (1985)). Although it is,  
15 thus, possible for the injected DNA molecules to be  
16 incorporated at several sites within the chromosomes of the  
17 fertilized egg, in most instances, only a single site of  
18 insertion is observed (Jaenisch, R., Science, 240:1468-1474  
19 (1988); Meade, H. et al. (U.S. Patent 4,873,316)).

20 Once the DNA molecule has been injected into the  
21 fertilized egg cell, the cell is implanted into the uterus  
22 of a recipient female, and allowed to develop into an  
23 animal. Since all of the animal's cells are derived from  
24 the implanted fertilized egg, all of the cells of the  
25 resulting animal (including the germ line cells) shall  
26 contain the introduced gene sequence. If, as occurs in  
27 about 30% of events, the first cellular division occurs  
28 before the introduced gene sequence has integrated into the  
29 cell's genome, the resulting animal will be a chimeric  
30 animal.

31 By breeding and inbreeding such animals, it has been  
32 possible to produce heterozygous and homozygous transgenic  
33 animals. Despite any unpredictability in the formation of

-4-

such transgenic animals, the animals have generally been found to be stable, and to be capable of producing offspring which retain and express the introduced gene sequence.

Since microinjection causes the injected DNA to be incorporated into the genome of the fertilized egg through a process involving the disruption and alteration of the nucleotide sequence in the chromosome of the egg at the insertion site, it has been observed to result in the alteration, disruption, or loss of function of the endogenous egg gene in which the injected DNA is inserted. Moreover, substantial alterations (deletions, duplications, rearrangements, and translocations) of the endogenous egg sequences flanking the inserted DNA have been observed (Mahon, K.A. et al., Proc. Natl. Acad. Sci. (U.S.A.) 85:1165 (1988); Covarrubias, Y. et al., Proc. Natl. Acad. Sci. (U.S.A.) 83:6020 (1986); Mark, W. et al., Cold Spr. Harb. Symp. Quant. Biol. 50:453 (1985)). Indeed, lethal mutations or gross morphological abnormalities have been observed (Jaenisch, R., Science 240:1468-1474 (1988); First, N.L. et al., Amer. Meat Sci. Assn. 39th Reciprocal Meat Conf. 39:41 (1986))).

Significantly, it has been observed that even if the desired gene sequence of the microinjected DNA molecule is one that is naturally found in the recipient egg's genome, integration of the desired gene sequence rarely occurs at the site of the natural gene (Brinster, R.L. et al., Proc. Natl. Acad. Sci. (U.S.A.) 86:7087-7091 (1989)). Moreover, introduction of the desired gene sequence does not generally alter the sequence of the originally present egg gene.

Although the site in the fertilized egg's genome into which the injected DNA ultimately integrates cannot be predetermined, it is possible to control the expression of the desired gene sequence such that, in the animal,

-5-

1 expression of the sequence will occur in an organ or tissue  
2 specific manner (reviewed by Westphal, H., FASEB J. 3:117  
3 (1989); Jaenisch, R., Science 240:1468-1474 (1988)).

4 The success rate for producing transgenic animals is  
5 greatest in mice. Approximately 25% of fertilized mouse  
6 eggs into which DNA has been injected, and which have been  
7 implanted in a female, will become transgenic mice. A lower  
8 rate has been thus far achieved with rabbits, sheep, cattle,  
9 and pigs (Jaenisch, R., Science 240:1468-1474 (1988);  
10 Hammer, R.E. et al., J. Animal. Sci. 63:269 (1986); Hammer,  
11 R.E. et al., Nature 315:680 (1985); Wagner, T.E. et al.,  
12 Theriogenology 21:29 (1984)). The lower rate may reflect  
13 greater familiarity with the mouse as a genetic system, or  
14 may reflect the difficulty of visualizing the male  
15 pronucleus of the fertilized eggs of many farm animals  
16 (Wagner, T.E. et al., Theriogenology 21:29 (1984)).

17 Thus, the production of transgenic animals by  
18 microinjection of DNA suffers from at least two major  
19 drawbacks. First, it can be accomplished only during the  
20 single-cell stage of an animal's life. Second, it requires  
21 the disruption of the natural sequence of the DNA, and thus  
22 is often mutagenic or teratogenic (Gridley, T. et al.,  
23 Trends Genet. 3:162 (1987)).

24  
25 III. Production of Chimeric and Transgenic Animals:  
26 Recombinant Viral and Retroviral Methods  
27

28 Chimeric and transgenic animals may also be produced  
29 using recombinant viral or retroviral techniques in which  
30 the gene sequence is introduced into an animal at a multi-  
31 cell stage. In such methods, the desired gene sequence is  
32 introduced into a virus or retrovirus. Cells which are  
33 infected with the virus acquire the introduced gene

-6-

1 sequence. If the virus or retrovirus infects every cell of  
2 the animal, then the method results in the production of a  
3 transgenic animal. If, however, the virus infects only some  
4 of the animal's cells, then a chimeric animal is produced.

5 The general advantage of viral or retroviral methods of  
6 producing transgenic animals over those methods which  
7 involve the microinjection of non-replicating DNA, is that  
8 it is not necessary to perform the genetic manipulations at  
9 a single cell stage. Moreover, infection is a highly  
10 efficient means for introducing the DNA into a desired cell.

11 Recombinant retroviral methods for producing chimeric or  
12 transgenic animals have the advantage that retroviruses  
13 integrate into a host's genome in a precise manner,  
14 resulting generally in the presence of only a single  
15 integrated retrovirus (although multiple insertions may  
16 occur). Rearrangements of the host chromosome at the site  
17 of integration are, in general, limited to minor deletions  
18 (Jaenisch, R., Science 240:1468-1474 (1988); see also,  
19 Varmus, H., In: RNA Tumor Viruses (Weiss, R. et al., Eds.),  
20 Cold Spring Harbor Press, Cold Spring Harbor, NY, pp. 369-  
21 512 (1982)). The method is, however, as mutagenic as micro-  
22 injection methods.

23 Chimeric animals have, for example, been produced by  
24 incorporating a desired gene sequence into a virus (such as  
25 bovine papilloma virus or polyoma) which is capable of  
26 infecting the cells of a host animal. Upon infection, the  
27 virus can be maintained in an infected cell as an  
28 extrachromosomal episome (Elbrecht, A. et al., Molec. Cell.  
29 Biol. 7:1276 (1987); Lacey, M. et al., Nature 322:609  
30 (1986); Leopold, P. et al., Cell 51:885 (1987)). Although  
31 this method decreases the mutagenic nature of  
32 chimeric/transgenic animal formation, it does so by  
33 decreasing germ line stability, and increasing oncogenicity.

-7-

1        Pluripotent embryonic stem cells (referred to as "ES"  
2        cells) are cells which may be obtained from embryos until  
3        the early post-implantation stage of embryogenesis. The  
4        cells may be propagated in culture, and are able to  
5        differentiate either in vitro or in vivo upon implantation  
6        into a mouse as a tumor. ES cells have a normal karyotype  
7        (Evans, M.J. et al., Nature 292:154-156 (1981); Martin, G.R.  
8        et al., Proc. Natl. Acad. Sci. (U.S.A.) 78:7634-7638  
9        (1981)).

10       Upon injection into a blastocyst of a developing embryo,  
11       ES cells will proliferate and differentiate, thus resulting  
12       in the production of a chimeric animal. ES cells are  
13       capable of colonizing both the somatic and germ-line  
14       lineages of such a chimeric animal (Robertson, E. et al.,  
15       Cold Spring Harb. Conf. Cell Prolif. 10:647-663 (1983);  
16       Bradley A. et al., Nature 309:255-256 (1984); Bradley, A. et  
17       al., Curr. Top. Devel. Biol. 20:357-371 (1986); Wagner, E.F.  
18       et al., Cold Spring Harb. Symp. Quant. Biol. 50:691-700  
19       (1985); (all of which references are incorporated herein by  
20       reference).

21       In this method, ES cells are cultured in vitro, and  
22       infected with a viral or retroviral vector containing the  
23       gene sequence of interest. Chimeric animals generated with  
24       retroviral vectors have been found to have germ cells which  
25       either lack the introduced gene sequence, or contain the  
26       introduced sequence but lack the capacity to produce progeny  
27       cells capable of expressing the introduced sequence (Evans,  
28       M.J. et al., Cold Spring Harb. Symp. Quant. Biol. 50:685-689  
29       (1985); Stewart, C.L. et al., EMBO J. 4:3701-3709 (1985);  
30       Robertson, L. et al., Nature (1986); which references are  
31       incorporated herein by reference).

32       Because ES cells may be propagated in vitro, it is  
33       possible to manipulate such cells using the techniques of

-8-

1 somatic cell genetics. Thus, it is possible to select ES  
2 cells which carry mutations (such as in the hprt gene  
3 (encoding hypoxanthine phosphoribosyl transferase) (Hooper,  
4 M. et al., Nature 326:292-295 (1987); Kuehn, M.R. et al.,  
5 Nature 326:295-298 (1987)). Such selected cells can then be  
6 used to produce chimeric or transgenic mice which fail to  
7 express an active HPRT enzyme, and thus provide animal  
8 models for diseases (such as the Lesch-Nyhan syndrome which  
9 is characterized by an HPRT deficiency) (Doetschman, T. et  
10 al., Proc. Natl. Acad. Sci. (U.S.A.) 85:8583-8587 (1988)).

11 As indicated above, it is possible to generate a  
12 transgenic animal from a chimeric animal (whose germ line  
13 cells contain the introduced gene sequence) by inbreeding.

14 The above-described methods permit one to screen for the  
15 desired genetic alteration prior to introducing the trans-  
16 fected ES cells into the blastocyst. One drawback of these  
17 methods, however, is the inability to control the site or  
18 nature of the integration of the vector.

19

20       IV.      Production of Chimeric and Transgenic Animals:  
21                   Plasmid Methods

22

23       The inherent drawbacks of the above-described methods  
24 for producing chimeric and transgenic animals have caused  
25 researchers to attempt to identify additional methods  
26 through which such animals could be produced.

27

28       Gossler, A. et al., for example, have described the use  
29 of a plasmid vector which had been modified to contain the  
30 gene for neomycin phosphotransferase (nptII gene) to  
31 transfect ES cells in culture. The presence of the nptII  
32 gene conferred resistance to the antibiotic G418 to ES cells  
33 that had been infected by the plasmid (Gossler, A. et al.,  
Proc. Natl. Acad. Sci. (U.S.A.) 83:9065-9069 (1986), which

-9-

reference is incorporated herein by reference). The chimeric animals which received the plasmid and which became resistant to G418, were found to have integrated the vector into their chromosomes. Takahashi, Y. et al. have described the use of a plasmid to produce chimeric mice cells which expressed an avian crystallin gene (Development 102:258-269 (1988), incorporated herein by reference). The avian gene was incorporated into a plasmid which contained the nptII gene. Resulting chimeric animals were found to express the avian gene.

11           V.       Introduction of Gene Sequences into Somatic Cells

12           DNA has been introduced into somatic cells to produce  
13           variant cell lines. hprt-deficient Chinese hamster ovary  
14           (CHO) cells have been transformed with the CHO hprt gene in  
15           order to produce a prototrophic cell line (Graf, L.H. et  
16           al., Somat. Cell Genet. 5:1031-1044 (1979)). Folger et al.  
17           examined the fate of a thymidine kinase gene (tk gene) which  
18           had been microinjected into the nuclei of cultured mammalian  
19           cells. Recipient cells were found to contain from 1 to 100  
20           copies of the introduced gene sequence integrated as  
21           concatemers at one or a few sites in the cellular genome  
22           (Folger, K.R. et al., Molec. Cell. Biol. 2:1372-1387  
23           (1982)). DNA-mediated transformation of an RNA polymerase  
24           II gene into Syrian hamster cells has also been reported  
25           (Ingles, C. et al., Molec. Cell. Biol. 2:666-673 (1982)).

26           Plasmids conferring host neomycin resistance and  
27           guanosine phosphotransferase activity have been transfected  
28           into Chinese hamster ovary cells to generate novel cell  
29           lines (Robson, C.N. et al., Mutat. Res. 163:201-208 (1986)).

-10-

1 VI. Chimeric or Transgenic Plants  
2

3 Extensive progress has been made in recent years in the  
4 fields of plant cell genetics and gene technology. For many  
5 genera of plants, protoplast regeneration techniques can be  
6 used to regenerate a plant from a single cell (Friedt, W. et  
7 al. Prog. Botany 49:192-215 (1987); Brunold, C. et al.,  
8 Molec. Genet. 208:469-473 (1987); Durand, J. et al.,  
9 Plant Sci. 62:263-272 (1989) which references are  
10 incorporated herein by reference).

11 Several methods can be used to deliver and express a  
12 foreign gene into a plant cell. The most widely used method  
13 employs cloning the desired gene sequence into the Ti  
14 plasmid of the soil bacterium A. tumefaciens (Komari, T.  
15 et al., J. Bacteriol. 166:88-94 (1986); Czako, M. et al.,  
16 Plant Mol. Biol. 6:101-109 (1986); Jones, J.D.G. et al.,  
17 EMBO J. 4:2411-2418 (1985); Shahin, E.A. et al., Theor.  
18 Appl. Genet. 73:164-169 (1986)). The frequency of  
19 transformation may be as high as 70%, depending upon the  
20 type of plant used (Friedt, W. et al. Prog. Botany 49:192-  
21 215 (1987)).

22 Plant viruses have also been exploited as vectors for  
23 the delivery and expression of foreign genes in plants. The  
24 cauliflower mosaic virus (Brisson, N. et al., Nature  
25 310:511-514 (1984) has been particularly useful for this  
26 purpose (Shah, D.M. et al., Science 233:478-481 (1986);  
27 Shewmaker, C.K. et al., Virol. 140:281-288 (1985). Vectors  
28 have also been prepared from derivatives of RNA viruses  
29 (French, R. et al., Science 231:1294-1297 (1986)).

30 Techniques of microinjection (Crossway, A. et al.,  
31 Molec. Gen. Genet. 202:179-185 (1986); Potrykus, I. et al.,  
32 Molec. Gen. Genet. 199:169-177 (1985)), have been used to  
33 accomplish the direct transfer of gene sequences into plant

-11-

1       cells. Transformation with a plasmid capable of site  
2       specific recombination has been used to introduce gene  
3       sequences into Aspergillus (May, G.S., J. Cell Biol.  
4       109:2267-2274 (1989); which reference is incorporated herein  
5       by reference).

6       Electroporation has been identified as a method for  
7       introducing DNA into plant cells (Fromm, M.E., et al., Proc.  
8       Natl. Acad. Sci. (U.S.A.) 82:5824-5828 (1985); Fromm, M.E.  
9       et al., Nature 319:791-793 (1986); Morikawa, H. et al., Gene  
10      41:121-124 (1986); Langridge, W.H.R. et al., Theor. Appl.  
11      Genet. 67:443-455 (1984)).

12      Gross genetic mutations can be produced in plant cells  
13      using transposable elements (Saedler, H. et al., EMBO J.  
14      4:585-590 (1985); Peterson, P.A., BioEssays 3:199-204  
15      (1985)). Such elements can initiate chromosomal  
16      rearrangements, insertions, duplications, deletions, etc.  
17      Chimeric plants can be regenerated from such cells using the  
18      procedures described above.

19      A major deficiency of present methods for gene  
20      manipulation in plants is the difficulty of selecting the  
21      desired recombinant cell (Brunold, C. et al., Molec. Gen.  
22      Genet. 208:469-473 (1987)). In an attempt to address this  
23      deficiency, kanamycin resistance and nitrate reductase  
24      deficiency have been used as selectable markers (Brunold, C.  
25      et al., Molec. Gen. Genet. 208:469-473 (1987)).

26  
27

-12-

1       VII.     C nclusions

2  
3       The application of the above-described technologies has  
4       the potential to produce types of plants and animals which  
5       cannot be produced through classical genetics. For example,  
6       animals can be produced which suffer from human diseases  
7       (such as AIDS, diabetes, cancer, etc.), and may be valuable  
8       in elucidating therapies for such diseases. Chimeric and  
9       transgenic plants and animals have substantial use as probes  
10      of natural gene expression. When applied to livestock and  
11      food crops, the technologies have the potential of yielding  
12      improved food, fiber, etc.

13      Despite the successes of the above-described techniques,  
14      a method for producing chimeric or transgenic plants and  
15      animals which was less mutagenic, and which would permit  
16      defined, specific, and delicate manipulation of the inserted  
17      gene sequence at a specific chromosomal location would be  
18      highly desirable.

19

20

21       BRIEF DESCRIPTION OF THE FIGURES:

22

23      Figure 1 illustrates the use of replacement vectors and  
24      insertion vectors in gene targeting. Figure 1A is a  
25      diagrammatical representation of the use of a replacement  
26      vector in gene targeting; Figure 1B illustrates the use of  
27      an insertion vector to produce subtle mutations in a desired  
28      gene sequence.

29

30      Figure 2 is a diagrammatical representation of a DNA  
31      molecule which has a region of heterology located at a  
32      proposed insertion site. Figure 2A shows a construct with a  
33      2 kb region of heterology. Figure 2B shows a construct with  
34      a 26 base long region of heterology which has been

-13-

1 linearized at the center of the region of heterology.  
2 Figure 2C shows a construct with a region of heterology  
3 located internal to the region of homology at which  
4 recombination is desired. In Figure 2C, the normal BamHI  
5 site of the vector has been changed to an NheI site and the  
6 normal EcoRI site of the vector has been changed to a BamHI  
7 site. The vector is linearized with XbaI.

8 Figure 3 is a diagrammatical representation of the  
9 mechanism through which a "humanized" gene may be introduced  
10 into a chromosomal gene sequence in a one step method.

11 Figure 4 is a diagrammatical representation of the  
12 mechanism through which a large gene may be introduced into  
13 a chromosomal gene sequence so as to place the gene under  
14 the transcriptional control of a heterologous promoter (for  
15 example, to place a human gene under the control of a mouse  
16 gene). The first step is additive and the second is a  
17 replacement event. Figure 4A shows the first step of the  
18 process; Figure 4B shows the second step of the process.  
19 The repair recombination event may be configured to remove  
20 all of the mouse coding exons if desired.

21 Figure 5 is a diagrammatical representation of the use of  
22 a positive selection/ negative selection "cassette" to  
23 introduce subtle mutations into a chromosome.

24 Figure 6 is a diagrammatical representation of a multi-  
25 step method (Figures 6A-6E) for introducing small or large  
26 desired gene sequences into a contiguous region of a cell's  
27 genome. The figure illustrates a vector capable of  
28 facilitating the sequential addition of overlapping clones  
29 to construct a large locus. Every step is selectable.  
30 Subsequent additions may be made by returning to steps 4 and  
31 5 as many times as required, selecting for insertion in HAT  
32 medium, and for repair in media supplemented with 6

-14-

1 thioguanine. This procedure may also be accomplished at the  
2 other end of the locus if required.

3 Figure 7 is a diagrammatical representation of the  
4 vectors used in a co-electroporation experiment to mutate  
5 the hprt gene.

6 Figure 8 illustrates the predicted structure of the hprt  
7 gene following homologous recombination of the IV6.8 vector.  
8 HR is the predicted size fragment indicative of the  
9 homologous recombination event. End, D is the endogenous  
10 fragment, duplicated by the recombination event. End is the  
11 predicted flanking fragment detected by the partial cDNA  
12 probe used in these experiments.

13 Figure 9 shows the reversion of homologous recombinants  
14 generated with insertion vectors.

15 Figure 10 illustrates the use of Poly A selection as a  
16 means for selecting homologous recombination events.

17 Figure 11 illustrates the use of the invention to  
18 introduce insertions into the sequence of a desired gene of  
19 a cell. Figure 11A is a diagram of the c-src locus showing  
20 relevant restriction sites (E=EcoRI; N=NcoI; X=XhoI;  
21 H=HindIII; B=BamHI; Nh=NheI). Figure 11B illustrates the  
22 src 14 vector used to introduce mutations into the c-src  
23 locus; Figure 11C illustrates the subtle mutation introduced  
24 through the use of this vector.

25 Figure 12 illustrates the use of the invention to  
26 introduce substitutions into the sequence of a desired gene  
27 of a cell. Figure 12A is a diagram of the c-src locus  
28 showing relevant restriction sites (E=EcoRI; N=NcoI; X=XhoI;  
29 H=HindIII; B=BamHI; Nh=NheI). Figure 12B illustrates the  
30 src 33 vector used to introduce mutations into the c-src  
31 locus; Figure 12C illustrates the subtle mutation introduced  
32 through the use of this vector.

-15-

1           Figure 13 illustrates a comparison between targeted and  
2           random recombinational events. In a random recombinational  
3           event, although concatemers can excise duplications, one  
4           copy of the vector must remain in the genome. In contrast,  
5           in a targeted recombinational event, all sequences, except  
6           the desired sequence is excised from the genome.

7

8           SUMMARY OF THE INVENTION:

9

10          The present invention provides a method for obtaining a  
11         desired animal or non-fungal plant cell which contains a  
12         predefined, specific and desired alteration in its genome.  
13         The invention further pertains to the non-human animals and  
14         plants which may be produced from such cells. The invention  
15         additionally pertains to the use of such non-human animals  
16         and plants, and their progeny in research, medicine, and  
17         agriculture.

18          In detail, the invention provides a method for obtaining  
19         a desired animal or non-fungal plant cell which contains a  
20         desired non-selectable gene sequence inserted within a  
21         predetermined gene sequence of the cell's genome, which  
22         method comprises:

23           A. incubating a precursor cell with a DNA molecule  
24         containing the desired non-selectable gene sequence, wherein  
25         the DNA molecule additionally contains two regions of  
26         homology which flank the desired gene sequence, and which  
27         are sufficient to permit the desired gene sequence to  
28         undergo homologous recombination with the predetermined gene  
29         sequence of the genome of the precursor cell;

30           B. causing the DNA molecule to be introduced into  
31         the precursor cell;

32           C. permitting the introduced DNA molecule to  
33         undergo homologous recombination with the predetermined gene

-16-

1 sequence of the genome of the precursor cell to thereby  
2 produce the desired cell wherein the desired non-selectable  
3 gene sequence has been inserted into the predetermined gene  
4 sequence; and

5 D. recovering the desired cell.

6 The invention further includes the embodiments of the  
7 above-described method wherein the DNA molecule contains a  
8 detectable marker gene sequence, and/or wherein the DNA  
9 molecule is introduced into the precursor cell by subjecting  
10 the precursor cell and the DNA molecule to electroporation  
11 (especially wherein in step B, the precursor cell is  
12 simultaneously subjected to electroporation with a second  
13 DNA molecule, the second DNA molecule containing a  
14 detectable marker gene sequence).

15 The invention further includes the embodiments of the  
16 above-described method wherein the desired cell is a non-  
17 fungal plant cell, a somatic animal cell (especially one  
18 selected from the group consisting of a chicken, a mouse, a  
19 rat, a hamster, a rabbit, a sheep, a goat, a fish, a pig, a  
20 cow or bull, a non-human primate and a human), a pluripotent  
21 animal cell (especially one selected from the group  
22 consisting of a chicken, a mouse, a rat, a hamster, a  
23 rabbit, a sheep, a goat, a fish, a pig, a cow or bull, and  
24 a non-human primate). The invention includes with the  
25 embodiment wherein the pluripotent cell is an embryonic stem  
26 cell.

27 The invention also includes the embodiments of the  
28 above-described methods wherein the desired gene sequence is  
29 substantially homologous to the predetermined gene sequence  
30 of the precursor cell and/or wherein the desired gene  
31 sequence is an analog (and especially a human analog) of the  
32 predetermined sequence of the precursor cell.

-17-

1       The invention also includes the embodiment wherein the  
2       desired gene sequence encodes a protein selected from the  
3       group consisting of: a hormone, an immunoglobulin, a  
4       receptor molecule, a ligand of a receptor molecule, and an  
5       enzyme.

6       The invention also includes a non-fungal plant cell  
7       which contains an introduced recombinant DNA molecule  
8       containing a desired gene sequence, the desired gene  
9       sequence being flanked by regions of homology which are  
10      sufficient to permit the desired gene sequence to undergo  
11      homologous recombination with a predetermined gene sequence  
12      of the genome of the cell.

13      The invention also includes a non-human animal cell  
14      which contains an introduced recombinant DNA molecule  
15      containing a desired gene sequence, the desired gene  
16      sequence being flanked by regions of homology which are  
17      sufficient to permit the desired gene sequence to undergo  
18      homologous recombination with a predetermined gene sequence  
19      of the genome of the cell.

20      The invention also includes the desired cell produced by  
21      any of the above-described methods.

22      The invention also includes a non-human animal  
23      containing a cell derived from the above-described desired  
24      cell, or a descendant thereof, wherein the animal is either  
25      a chimeric or a transgenic animal, and particularly includes  
26      the embodiment wherein the non-human animal and the desired  
27      cell are of the same species, and wherein the species is  
28      selected from the group consisting of: a chicken, a mouse,  
29      a rat, a hamster, a rabbit, a sheep, a goat, a fish, a pig,  
30      a cow or bull, and a non-human primate.

31      The invention also includes a non-fungal plant  
32      containing a cell derived from the above-described desired

-18-

1 non-fungal plant cell, wherein said non-fungal plant is  
2 either a chimeric or a transgenic plant.

3 The invention also includes a method of gene therapy  
4 which comprises introducing to a recipient in need of such  
5 therapy, a desired non-selectable gene sequence, the method  
6 comprising:

7 A. providing to the recipient an effective amount  
8 of a DNA molecule containing the desired non-selectable gene  
9 sequence, wherein the DNA molecule additionally contains two  
10 regions of homology which flank the desired gene sequence,  
11 and which are sufficient to permit the desired gene sequence  
12 to undergo homologous recombination with a predetermined  
13 gene sequence present in a precursor cell of the recipient;

14 B. permitting the DNA molecule to be introduced  
15 into the precursor cell;

16 C. permitting the introduced DNA molecule to  
17 undergo homologous recombination with the predetermined gene  
18 sequence of the genome of the precursor cell to thereby  
19 produce a desired cell wherein the desired non-selectable  
20 gene sequence has been inserted into the predetermined gene  
21 sequence; and wherein the presence or expression of the  
22 introduced gene sequence in the cell of the recipient  
23 comprises the gene therapy.

24 In particular, the invention includes the embodiments of  
25 the above-stated method wherein the recipient is a non-  
26 fungal plant, or a human or a non-human animal (particularly  
27 a non-human animal is selected from the group consisting of:  
28 a chicken, a mouse, a rat, a hamster, a rabbit, a sheep, a  
29 goat, a fish, a pig, a cow or bull, a non-human primate and  
30 a human).

-19-

1           The invention also provides a method for obtaining a  
2           desired animal or non-fungal plant cell which contains a  
3           desired non-selectable gene sequence inserted within a  
4           predetermined gene sequence of the cell's genome, which  
5           method comprises:

6           A. incubating a precursor cell under non-selective  
7           culture conditions, or under a first set of selective  
8           culture conditions, with a DNA molecule containing:

9           i) the desired non-selectable gene sequence,  
10           wherein the DNA molecule additionally contains  
11           two regions of homology which flank the desired  
12           gene sequence, and which are sufficient to  
13           permit the desired gene sequence to undergo  
14           homologous recombination with the predetermined  
15           gene sequence of the genome of the precursor  
16           cell; and

17           ii) a selectable gene sequence whose presence or  
18           expression in the cell can be selected for by  
19           culturing the cells under the first set of  
20           selective culture conditions, and whose  
21           presence or expression in the cell can be  
22           selected against by culturing the cells under  
23           a second set of selective culture conditions;

24           B. permitting the DNA molecule to be introduced  
25           into the precursor cell;

26           C. permitting the introduced DNA molecule to  
27           undergo homologous recombination with the predetermined gene  
28           sequence of the genome of the precursor cell to thereby  
29           produce the desired cell wherein the desired non-selectable  
30           gene sequence has been inserted into the predetermined gene  
31           sequence; and

32           D. recovering the desired cell by culturing the  
33           cell under the first set of selective culture conditions, by

-20-

1       then permitting the cell to undergo intrachromosomal  
2       recombination under non-selective culture conditions, and by  
3       then incubating the cell under the second set of selective  
4       culture conditions.

5       The invention also includes the embodiment wherein the  
6       cell is deficient in an HPRT, APRT, or TK enzyme, and  
7       wherein the selectable gene sequence expresses an active  
8       HPRT, APRT, or TK enzyme, and wherein the first set of  
9       selective culture conditions comprises incubation of the  
10      cell under conditions in which the presence of an active  
11      HPRT, APRT, or TK enzyme in the cell is required for growth,  
12      and wherein the second set of selective culture conditions  
13      comprises incubation of the cell under conditions in which  
14      the absence of an active HPRT, APRT, or TK enzyme in the  
15      cell is required for growth.

16

17

18       DESCRIPTION OF THE PREFERRED EMBODIMENTS:

19

20       The present invention concerns a method for introducing  
21      DNA into the genome of a recipient plant or animal cell.  
22      The method may be used to introduce such DNA into germ line  
23      cells of animals (especially, rodents (i.e. mouse, rat,  
24      hamster, etc.), rabbits, sheep, goats, fish, pigs, cattle  
25      and non-human primates) in order to produce chimeric or  
26      transgenic animals. The methods may also be used to  
27      introduce DNA into plant cells which can then be manipulated  
28      in order to produce chimeric or transgenic plants.

29       Alternatively, the method may be used to alter the  
30      somatic cells of an animal (including humans) or a plant.  
31      The plants and plant cells which may be manipulated through  
32      application of the disclosed method include all  
33      multicellular, higher (i.e. non-fungal or non-yeast) plants.

-21-

1           I. Homologous Recombination  
2

3           The present invention provides a method for introducing  
4           a desired gene sequence into a plant or animal cell. Thus,  
5           it is capable of producing chimeric or transgenic plants and  
6           animals having defined, and specific, gene alterations.

7           An understanding of the process of homologous  
8           recombination (Watson, J.D., In: Molecular Biology of the  
9           Gene, 3rd Ed., W.A. Benjamin, Inc., Menlo Park, CA (1977),  
10          which reference is incorporated herein by reference) is  
11          desirable in order to fully appreciate the present  
12          invention.

13          In brief, homologous recombination is a well-studied  
14          natural cellular process which results in the scission of  
15          two nucleic acid molecules having identical or substantially  
16          similar sequences (i.e. "homologous"), and the ligation of  
17          the two molecules such that one region of each initially  
18          present molecule is now ligated to a region of the other  
19          initially present molecule (Sedivy, J.M., Bio-Technol.  
20          6:1192-1196 (1988), which reference is incorporated herein  
21          by reference).

22          Homologous recombination is, thus, a sequence specific  
23          process by which cells can transfer a "region" of DNA from  
24          one DNA molecule to another. As used herein, a "region" of  
25          DNA is intended to generally refer to any nucleic acid  
26          molecule. The region may be of any length from a single  
27          base to a substantial fragment of a chromosome.

28          For homologous recombination to occur between two DNA  
29          molecules, the molecules must possess a "region of homology"  
30          with respect to one another. Such a region of homology must  
31          be at least two base pairs long. Two DNA molecules possess  
32          such a "region of homology" when one contains a region whose

-22-

1 sequence is so similar to a region in the second molecule  
2 that homologous recombination can occur.

3 Recombination is catalyzed by enzymes which are  
4 naturally present in both prokaryotic and eukaryotic cells.  
5 The transfer of a region of DNA may be envisioned as  
6 occurring through a multi-step process.

7 If either of the two participant molecules is a circular  
8 molecule, then the above recombination event results in the  
9 integration of the circular molecule into the other  
10 participant.

11 Importantly, if a particular region is flanked by  
12 regions of homology (which may be the same, but are  
13 preferably different), then two recombinational events may  
14 occur, and result in the exchange of a region of DNA between  
15 two DNA molecules. Recombination may be "reciprocal," and  
16 thus results in an exchange of DNA regions between two  
17 recombining DNA molecules. Alternatively, it may be "non-  
18 reciprocal," (also referred to as "gene conversion") and  
19 result in both recombining nucleic acid molecules having the  
20 same nucleotide sequence. There are no constraints  
21 regarding the size or sequence of the region which is  
22 exchanged in a two-event recombinational exchange.

23 The frequency of recombination between two DNA molecules  
24 may be enhanced by treating the introduced DNA with agents  
25 which stimulate recombination. Examples of such agents  
26 include trimethylpsoralen, UV light, etc.  
27

-23-

1           II.       Pr duction of Chimeric and Transgenic Animals:  
2                   Gene Targeting Methods

3  
4           One approach to producing animals having defined and  
5           specific genetic alterations has used homologous  
6           recombination to control the site of integration of an  
7           introduced marker gene sequence in tumor cells and in  
8           fusions between diploid human fibroblast and tetraploid  
9           mouse erythroleukemia cells (Smithies, O. et al., Nature  
10           317:230-234 (1985)).

11           This approach was further exploited by Thomas, K. R.,  
12           and co-workers, who described a general method, known as  
13           "gene targeting," for targeting mutations to a preselected,  
14           desired gene sequence of an ES cell in order to produce a  
15           transgenic animal (Mansour, S.L. et al., Nature 336:348-352  
16           (1988); Capecchi, M.R. Trends Genet. 5:70-76 (1989);  
17           Capecchi, M.R. et al., In: Current Communications in  
18           Molecular Biology, Capecchi, M.R. (ed.), Cold Spring Harbor  
19           Press, Cold Spring Harbor, NY (1989), pp. 45-52; which  
20           references are incorporated herein by reference).

21           Gene targeting has been used to produce chimeric and  
22           transgenic mice in which an nptII gene has been inserted  
23           into the  $\beta_2$ -microglobulin locus (Koller, B.H. et al., Proc.  
24           Natl. Acad. Sci. (U.S.A.) 86:8932-8935 (1989); Zijlstra, M.  
25           et al., Nature 342:435-438 (1989); Zijlstra, M. et al.,  
26           Nature 344:742-746 (1989); DeChiaba et al., Nature 345:78-80  
27           (1990)). Similar experiments have enabled the production of  
28           chimeric and transgenic animals having a c-abl gene which  
29           has been disrupted by the insertion of an nptII gene  
30           (Schwartzberg, P.L. et al., Science 246:799-803 (1989)).  
31           The technique has been used to produce chimeric mice in  
32           which the en-2 gene has been disrupted by the insertion of

1 an nptII gene (Joyner, A.L. et al., Nature 338:153-155  
2 (1989)).

3 Gene targeting has also been used to correct an hprt  
4 deficiency in an hprt ES cell line. Cells corrected of the  
5 deficiency were used to produce chimeric animals.  
6 Significantly, all of the corrected cells exhibited gross  
7 disruption of the regions flanking the hprt locus; all of  
8 the cells tested were found to contain at least one copy of  
9 the vector used to correct the deficiency, integrated at the  
10 hprt locus (Thompson, S. et al., Cell 56:313-321 (1989);  
11 Koller, B.H. et al., Proc. Natl. Acad. Sci. (U.S.A.)  
12 86:8927-8931 (1989)).

13 In order to utilize the "gene targeting" method, the  
14 gene of interest must have been previously cloned, and the  
15 intron-exon boundaries determined. The method results in  
16 the insertion of a marker gene (i.e. the nptII gene) into a  
17 translated region of a particular gene of interest. Thus,  
18 use of the gene targeting method results in the gross  
19 destruction of the gene of interest.

20 Recently, chimeric mice carrying the homeobox hox 1.1  
21 allele have been produced using a modification of the gene  
22 targeting method (Zimmer, A. et al., Nature 338:150-154  
23 (1989). In this modification, the integration of vector  
24 sequences was avoided by microinjecting ES cells with linear  
25 DNA containing only a portion of the hox 1.1 allele, without  
26 any accompanying vector sequences. The DNA was found to  
27 cause the gene conversion of the cellular hox allele.  
28 Selection was not used to facilitate the recovery of the  
29 "converted" ES cells, which were identified using the  
30 polymerase chain reaction ("PCR"). Approximately 50% of  
31 cells which had been clonally purified from "converted"  
32 cells were found to contain the introduced hox 1.1 allele,  
33 suggesting to Zimmer, A. et al. either chromosomal

-25-

1 instability or contamination of sample. None of the  
2 chimeric mice were found to be able to transmit the  
3 "converted" gene to their progeny (Zimmer, A. et al., In:  
4 Current Communications in Molecular Biology, Capecchi, M.R.  
5 (ed.), Cold Spring Harbor Press, Cold Spring Harbor, NY  
6 (1989), pp. 53-58).

7 The use of the gene targeting method is illustrated in  
8 Figure 1A. In that figure, a gene construct is produced in  
9 which the nptII gene is inserted into an exon (designated  
10 region "3") of a sequence of the hprt gene. The construct  
11 is then permitted to undergo recombination with the hprt  
12 gene of a cell. Such recombination results in the  
13 replacement of the exon 3 sequence of the cell with the  
14 disrupted exon 3 - nptII sequence of the construct.  
15 Significantly, as illustrated in Figure 1A, the use of gene  
16 targeting to alter a gene of a cell results in the formation  
17 of a gross alteration in the sequence of that gene. As  
18 indicated in Figure 1A, the efficiency of gene targeting is  
19 approximately 1/300.

20

21 III. Production of Chimeric and Transgenic Animals:  
22 Use of Insertion Vectors

23

24 In contrast to the above-described methods, the present  
25 invention is capable of producing subtle, precise, and  
26 predetermined mutations in the sequence of a desired gene of  
27 a cell. The present invention has several embodiments, the  
28 simplest of which is illustrated in Figure 1B.

29 As shown in Figure 1B, an insertion vector is used to  
30 mutate the nucleotide sequence of the hprt gene. The use of  
31 this vector type in combination with a second selectable  
32 reversion event prevents the disruption of the chromosome by  
33 the nptII gene or by the vector sequences. Thus, gross

1           distortions of the recipient chromosome are avoided by the  
2           present invention. Moreover, the efficiency of the gene  
3           targeting was substantially improved (i.e. 1/32 as opposed  
4           to 1/300).

5           The DNA molecule(s) which are to be introduced into the  
6           recipient cell preferably contains a region of homology with  
7           a region of the cellular genome. In a preferred embodiment,  
8           the DNA molecule will contain two regions of homology with  
9           the genome (both chromosomal and episomal) of the  
10          pluripotent cell. These regions of homology will preferably  
11          flank a "desired gene sequence" whose incorporation into the  
12          cellular genome is desired. As stated above, the regions of  
13          homology may be of any size greater than two bases long.  
14          Most preferably, the regions of homology will be greater  
15          than 10 bases long.

16          The DNA molecule(s) may be single stranded, but are  
17          preferably double stranded. The DNA molecule(s) may be  
18          introduced to the cell as one or more RNA molecules which  
19          may be converted to DNA by reverse transcriptase or by other  
20          means. Preferably, the DNA molecule will be double stranded  
21          linear molecule. In the best mode for conducting the  
22          invention, such a molecule is obtained by cleaving a closed  
23          covalent circular molecule to form a linear molecule.  
24          Preferably, a restriction endonuclease capable of cleaving  
25          the molecule at a single site to produce either a blunt end  
26          or staggered end linear molecule is employed. Most  
27          preferably, the nucleotides on each side of this restriction  
28          site will comprise at least a portion of the preferred two  
29          regions of homology between the DNA molecule being  
30          introduced and the cellular genome.

31          The invention thus provides a method for introducing the  
32          "desired gene sequence" into the genome of an animal or  
33          plant at a specific chromosomal location. The "desired gene

-27-

1 sequence" may be of any length, and have any nucleotide  
2 sequence. It may comprise one or more gene sequences which  
3 encode complete proteins, fragments of such gene sequences,  
4 regulatory sequences, etc. Significantly, the desired gene  
5 sequence may differ only slightly from a native gene of the  
6 recipient cell (for example, it may contain single, or  
7 multiple base alterations, insertions or deletions relative  
8 to the native gene). The use of such desired gene sequences  
9 will permit one to create subtle and precise changes in the  
10 genome of the recipient cell. Thus, the present invention  
11 provides a means for manipulating and modulating gene  
12 expression and regulation.

13 In particular, the invention provides a mean for  
14 manipulating and modulating gene expression and protein  
15 structure through the replacement of a gene sequence with a  
16 "non-selectable" "desired gene sequence." A gene sequence  
17 is non-selectable if its presence or expression in a  
18 recipient cell provides no survival advantage to the cell  
19 under the culturing conditions employed. Thus, by  
20 definition, one cannot select for cells which have received  
21 a "non-selectable" gene sequence. In contrast, a "dominant"  
22 gene sequence is one which can under certain circumstances  
23 provide a survival advantage to a recipient cell. The  
24 neomycin resistance conferred by the nptII gene is a  
25 survival advantage to a cell cultured in the presence of  
26 neomycin or G418. The nptII gene is thus a dominant, rather  
27 than a non-selectable gene sequence.

28 In particular, the invention permits the replacement of  
29 a gene sequence which is present in the recipient cell with  
30 an "analog" sequence. A sequence is said to be an analog of  
31 another sequence if the two sequences are substantially  
32 similar in sequence, but have minor changes in sequence  
33 corresponding to single base substitutions, deletions, or

1 insertions with respect to one another, or if they possess  
2 "minor" multiple base alterations. Such alterations are  
3 intended to exclude insertions of dominant selectable marker  
4 genes.

5 When the desired gene sequence, flanked by regions of  
6 homology with the recipient cell, is introduced into the  
7 recipient cell as a linear double stranded molecule, whose  
8 termini correspond to the regions of homology, a single  
9 recombination event with the cell's genome will occur in  
10 approximately 5% of the transfected cells. Such a single  
11 recombinational event will lead to the integration of the  
12 entire linear molecule into the genome of the recipient  
13 cell.

14 The structure generated by the integration of the linear  
15 molecule will undergo a subsequent, second recombinational  
16 event (approximately  $10^{-5}$  -  $10^{-7}$  per cell generation). This  
17 second recombinational event will result in the elimination  
18 of all DNA except for the flanking regions of homology, and  
19 the desired DNA sequence from the integrated structure.

20 Thus, the consequence of the second recombinational event  
21 is to replace the DNA sequence which is normally present  
22 between the flanking regions of homology in the cell's  
23 genome, with the desired DNA sequence, and to eliminate the  
24 instability of gene replacement.

25 The DNA molecule containing the desired gene sequence  
26 may be introduced into the pluripotent cell by any method  
27 which will permit the introduced molecule to undergo  
28 recombination at its regions of homology. Some methods,  
29 such as direct microinjection, or calcium phosphate  
30 transformation, may cause the introduced molecule to form  
31 concatemers upon integration. These concatemers may resolve  
32 themselves to form non-concatemeric integration structures.  
33 Since the presence of concatemers is not desired, methods

-29-

which produce them are not preferred. In a preferred embodiment, the DNA is introduced by electroporation (Toneguzzo, F. et al., Nucleic Acids Res. **16**:5515-5532 (1988); Quillet, A. et al., J. Immunol. **141**:17-20 (1988); Machy, P. et al., Proc. Natl. Acad. Sci. (U.S.A.) **85**:8027-8031 (1988); all of which references are incorporated herein by reference).

After permitting the introduction of the DNA molecule(s), the cells are cultured under conventional conditions, as are known in the art.

In order to facilitate the recovery of those cells which have received the DNA molecule containing the desired gene sequence, it is preferable to introduce the DNA containing the desired gene sequence in combination with a second gene sequence which would contain a detectable marker gene sequence. For the purposes of the present invention, any gene sequence whose presence in a cell permits one to recognize and clonally isolate the cell may be employed as a detectable marker gene sequence.

In one embodiment, the presence of the detectable marker sequence in a recipient cell is recognized by hybridization, by detection of radiolabelled nucleotides, or by other assays of detection which do not require the expression of the detectable marker sequence. Preferably, such sequences are detected using PCR (Mullis, K. et al., Cold Spring Harbor Symp. Quant. Biol. **51**:263-273 (1986); Erlich H. et al., EP 50,424; EP 84,796, EP 258,017, EP 237,362; Mullis, K., EP 201,184; Mullis K. et al., US 4,683,202; Erlich, H., US 4,582,788; and Saiki, R. et al., US 4,683,194), which references are incorporated herein by reference).

PCR achieves the amplification of a specific nucleic acid sequence using two oligonucleotide primers complementary to regions of the sequence to be amplified.

-30-

1 Extension products incorporating the primers then become  
2 templates for subsequent replication steps. PCR provides a  
3 method for selectively increasing the concentration of a  
4 nucleic acid molecule having a particular sequence even when  
5 that molecule has not been previously purified and is  
6 present only in a single copy in a particular sample. The  
7 method can be used to amplify either single or double  
8 stranded DNA.

9 Most preferably, however, the detectable marker gene  
10 sequence will be expressed in the recipient cell, and will  
11 result in a selectable phenotype. Examples of such  
12 preferred detectable gene sequences include the hprt gene  
13 (Littlefield, J.W., Science 145:709-710 (1964), herein  
14 incorporated by reference), a xanthine-guanine  
15 phosphoribosyltransferase (gpt) gene, or an adenosine  
16 phosphoribosyltransferase (aprt) gene (Sambrook et al., In:  
17 Molecular Cloning A Laboratory Manual, 2nd. Ed., Cold Spring  
18 Harbor Laboratory Press, NY (1989), herein incorporated by  
19 reference), a tk gene (i.e. thymidine kinase gene) and  
20 especially the tk gene of herpes simplex virus (Giphart-  
21 Gassler, M. et al., Mutat. Res. 214:223-232 (1989) herein  
22 incorporated by reference), the nptII gene (Thomas, K.R. et  
23 al., Cell 51:503-512 (1987); Mansour, S.L. et al., Nature  
24 336:348-352 (1988), both references herein incorporated by  
25 reference), or other genes which confer resistance to amino  
26 acid or nucleoside analogues, or antibiotics, etc. Examples  
27 of such genes include gene sequences which encode enzymes  
28 such as dihydrofolate reductase (DHFR) enzyme, adenosine  
29 deaminase (ADA), asparagine synthetase (AS), hygromycin B  
30 phosphotransferase, or a CAD enzyme (carbamyl phosphate  
31 synthetase, aspartate transcarbamylase, and dihydroorotase)  
32 (Sambrook et al., In: Molecular Cloning A Laboratory Manual,

-31-

1           2nd. Ed., Cold Spring Harbor Laboratory Press, NY (1989),  
2           herein incorporated by reference).

3           Cells that do not contain an active thymidine kinase  
4           (TK) enzyme, a hypoxanthine-phosphoribosyltransferase (HPRT)  
5           enzyme, a xanthine-guanine phosphoribosyltransferase (XGPRT)  
6           enzyme, or an adenosine phosphoribosyltransferase (APRT)  
7           enzyme, are unable to grow in medium containing  
8           hypoxanthine, aminopterin, and/or mycophenolic acid (and  
9           preferably adenine, xanthine, and/or thymidine), and  
10          thymidine, but are able to grow in medium containing  
11          nucleoside analogs such as 5-bromodeoxyuridine, 6-  
12          thioguanine, 8-azapurine, etc. (Littlefield, J.W., Science  
13          145:709-710 (1964); Sambrook et al., In: Molecular Cloning  
14          A Laboratory Manual, 2nd. Ed., Cold Spring Harbor Laboratory  
15          Press, NY (1989)).

16          Conversely, cells that do contain such active enzymes  
17          are able to grow in such medium, but are unable to grow in  
18          medium containing nucleoside analogs such as 5-  
19          bromodeoxyuridine, 6-thioguanine, 8-azapurine, etc.  
20          (Sambrook et al., In: Molecular Cloning A Laboratory Manual,  
21          2nd. Ed., Cold Spring Harbor Laboratory Press, NY (1989)).

22          Cells expressing active thymidine kinase are able to  
23          grow in media containing HATG, but are unable to grow in  
24          media containing nucleoside analogues such as 5-azacytidine  
25          (Giphart-Gassler, M. et al., Mutat. Res. 214:223-232  
26          (1989)). Cells containing an active HSV-tk gene are  
27          incapable of growing in the presence of gangcylovir or  
28          similar agents.

29          The detectable marker gene may be any gene which can  
30          complement for a recognizable cellular deficiency. Thus,  
31          for example, the gene for HPRT could be used as the  
32          detectable marker gene sequence when employing cells lacking  
33          HPRT activity. Thus, this gene is an example of a gene

-32-

1       whose expression product may be used to select mutant cells,  
2       or to "negatively select" for cells which express this gene  
3       product.

4       The nptII gene (Southern, P.J., et al., J. Molec. Appl.  
5       Genet. 1:327-341 (1982); Smithies, O. et al., Nature  
6       317:230-234 (1985), which references are incorporated herein  
7       by reference) is the most preferred detectable marker gene  
8       sequence. Constructs which contain both an nptII gene and  
9       either a tk gene or an hprt gene are especially preferred.  
10

11      A. **Use of a Single DNA Molecule Containing Both the**  
12      **Detectable Marker Sequence and the Desired Gene**  
13      **Sequence**

14

15      In a first preferred embodiment, the detectable marker  
16      gene sequence, flanked by the regions of homology, is  
17      provided to the recipient cells on the same DNA molecule  
18      which contains the desired gene sequence. As discussed  
19      previously, it is preferred that this DNA molecule be a  
20      linear molecule.

21

22      After selection for cells which have incorporated the  
23      desired DNA molecule (for example by selection for G418  
24      resistant cells when the detectable marker gene sequence is  
25      an expressible nptII gene sequence), the cells are cultured,  
26      and the presence of the introduced DNA molecule is confirmed  
27      as described above. Approximately  $10^7$  cells are cultured and  
28      screened for cells which have undergone the second  
29      recombinational event (discussed above) resulting in the  
30      replacement of a native sequence (i.e. a gene sequence  
31      which is normally and naturally present in the recipient  
32      cell) with the desired gene sequence.

33      Any of a variety of methods may be used to identify  
          cells which have undergone the second recombinational event.

1 Direct screening of clones, use of PCR, use of hybridization  
2 probes, etc., may all be employed for this purpose. In a  
3 preferred embodiment, the DNA molecule will, in addition to  
4 the desired gene sequence, the flanking regions of homology  
5 and the detectable marker gene sequence, contain an  
6 additional gene sequence which will permit the selection or  
7 recognition of cells which have undergone the second  
8 recombinational event. This additional gene sequence will  
9 be excised from the cell's genome as a direct consequence of  
10 the second recombinational event. Thus, gene sequences  
11 which are suitable for this purpose include any gene  
12 sequence whose loss from a cell can be detected or selected  
13 for. Examples of such "negative selection" gene sequences  
14 include the hprt gene, and the tk gene (especially the tk  
15 gene of herpes simplex virus).

16 In the first preferred embodiment, the frequency of the  
17 second recombinational event is approximately  $10^{-5}$ . However,  
18 the use of a "negative selection" gene sequence permits one  
19 to identify such recombinant cells at a frequency of  
20 approximately 100%.

21 As illustrated in Figure 2, the DNA molecule may have a  
22 region of heterology located at the proposed insertion site.  
23 Insertion of such a vector permits one to select for  
24 recombinants which have recombined at the insertion site  
25 (and not at other potential sites). If recombination occurs  
26 at the desired insertion site, it will lead to the loss of  
27 the sequence of heterology located at the proposed insertion  
28 site of the DNA molecule (HSVtk, for example, in Figure 2A).  
29 Insertions which result from other recombinational events  
30 will retain the sequence of heterology. Thus, by employing  
31 a region of heterology which encodes an assayable gene  
32 product, or which can be used as a "negative selectable"  
33 marker, one can readily determine that the locus of

-34-

1 insertion of the recipient cell contains the precise  
2 sequence desired. As indicated in Figure 2A), the  
3 efficiency of such a vector is approximately 1/197.

4 The region of heterology which may be introduced at the  
5 insertion site of the DNA molecule may be either short (for  
6 example, 26 base pairs, Figure 2B) or of substantial size  
7 (for example, 2 kb, Figure 2A). The site of linearization  
8 may be 5', 3', or within the region of heterology. When the  
9 site of linearization is within the region of heterology,  
10 the efficiency of gene targeting is 1/63.

11 As shown in Figure 2C, the region of heterology may be  
12 located at a site internal to the region of homology where  
13 the desired recombination shall occur. Such a construct can  
14 be used when one desires to introduce a subtle mutation into  
15 a locus of the cellular gene at a site other than that of  
16 the site of desired recombination.  
17

18       **B. Use of a Different DNA Molecules to Provide the**  
19       **Detectable Marker Sequence and the Desired Gene**  
20       **Sequence**

22       In a second preferred embodiment, the detectable marker  
23       gene sequence, flanked by the regions of homology, will be  
24       provided to the recipient cell on a different DNA molecule  
25       from that which contains the desired gene sequence. It is  
26       preferred that these molecules be linear molecules.

27       When provided on separate DNA molecules, the detectable  
28       marker gene sequence and the desired gene sequence will most  
29       preferably be provided to the recipient cell by co-  
30       electroporation, or by other equivalent techniques.

31       After selection of such recipients (preferably through  
32       the use of a detectable marker sequence which expresses the  
33       nptII gene and thus confers cellular resistance to the

-35-

1           antibiotic G418), the cells are grown up and screened to  
2           confirm the insertion event (preferably using PCR).

3           In the absence of any selection, only one cell in  $10^7$   
4           would be expected to have the predicted recombinant  
5           structures. If, however, one selects for recipient cells  
6           which contain and express a detectable marker sequence (such  
7           as the nptII gene), it is possible to obtain a  $10^3$  to  $10^5$   
8           fold enrichment for cells which have taken up both DNA  
9           molecules. Typically, such enrichment enables one to  
10          identify the desired recipient cell (in which the introduced  
11          DNA has integrated into the cell's genome) by screening only  
12          800 -1,500 cells. Such screening is preferably done using  
13          PCR, or other equivalent methods. Using such negative  
14          selection techniques, one may manipulate the vector copy  
15          number.

16          The two introduced DNA molecules will generally not have  
17          integrated into the same site in the genome of the recipient  
18          cell. Thus, in some cases, the desired gene sequence will  
19          have integrated in a manner so as to replace the native  
20          cellular gene sequence between the flanking regions of  
21          homology. The locus of integration of the detectable marker  
22          gene is unimportant for the purposes of the present  
23          invention, provided it is not genetically linked to the same  
24          locus as the desired gene sequence. If desired, however, it  
25          is possible to incorporate a gene sequence capable of  
26          negative selection along with the DNA containing the  
27          detectable marker sequence. Thus, one can ultimately select  
28          for cells which have lost the introduced selectable marker  
29          gene sequence DNA.

30

1                   C. Use of Direct Selection to Identify Homologous  
2                   R combination Events

3  
4                 Although all of the above-described preferred  
5                 embodiments enable the isolation of cells in which one of a  
6                 cell's alleles has been mutated to contain a desired gene  
7                 sequence, each embodiment requires the screening of a  
8                 significant number of candidate cells in order to identify  
9                 the desired recombinant cell. It is, however, possible to  
10                directly select for the desired recombinant cell by  
11                employing a variation of the above embodiments. This  
12                embodiment of the invention is illustrated in Figure 13. In  
13                the methods illustrated in Figure 13, if the sequence  
14                located below the asterisk is a neo gene, then only the  
15                mutant revertants will be selected if 6-thioguanine and G418  
16                selection is applied to select for the excision events.

17               The method for direct selection of the desired cells  
18               relies upon the phenotypic difference in targeted and non-  
19               targeted cells and the use of a single gene which can be  
20               used for both positive and negative selection.

21               Typically, in any homologous recombination experiment  
22               performed with an insertion vector, three populations of  
23               cells will be created. The first class of cells will be  
24               those which have failed to receive the desired DNA molecule.  
25               This class will comprise virtually all of the candidate  
26               cells isolated on completion of the experiment. The second  
27               class of cells will be those cells in which the desired gene  
28               sequence has been incorporated at a random insertion site  
29               (i.e. a site other than in the gene desired to be mutated).  
30               Approximately one cell in  $10^3$ - $10^4$  total cells will be in this  
31               class. The third class of cells will be those cells in  
32               which the desired gene sequence has been incorporated by  
33               homologous recombination into a site in the desired gene.

-37-

1           Approximately one cell in  $10^5$ - $10^6$  total cells will be in this  
2           class.

3           In the above-described embodiments, the cells of the  
4           first class (non-transfected cells) can be eliminated by  
5           positive selection, thus necessitating the screening of only  
6           about 1,000 cells in order to identify the desired  
7           recombinant cell. In the present embodiment, cells of the  
8           third class (homologous recombinants) may be selected from  
9           the cells of the second class (random insertions) if a  
10          phenotypic difference exists between the cells of the two  
11          classes.

12          Since random integration sites are likely to be  
13          concatemeric with few single copy clones (depending upon the  
14          DNA concentration with which the cells were transfected),  
15          such integration events are inherently unstable. Thus, such  
16          concatemeric constructs will typically undergo intrachromo-  
17          somal recombination. Such recombination will always leave  
18          one intact copy of the vector in the genome. Thus, all  
19          random insertion events may be negatively selected from the  
20          population if a negatively selectable marker is included on  
21          the vector.

22          In contrast, cells in which the desired gene sequence  
23          has been incorporated into the desired gene by homologous  
24          recombination will revert with a relatively high frequency  
25          (approximately 1 in  $10^4$ - $10^5$  per cell division (depending upon  
26          the size of the duplicated structure) to produce a mutated  
27          desired gene that does not contain vector sequences.  
28          Therefore, even if the vector contained a negatively  
29          selectable gene sequence, such cells will survive negative  
30          selection, and can be recovered. The majority of homologous  
31          recombinant cells do not undergo reversion, and will be  
32          eliminated by the negative selection. Thus, the sum of the

1       selections will result in the isolation of the desired  
2       recombinants.

3       The method comprises incubating a "precursor cell" (i.e.  
4       a cell which is to be changed by application of the method  
5       into the "desired" recombinant cell) under non-selective  
6       culture conditions, or under a first set of selective  
7       culture conditions. A culturing condition (i.e. medium,  
8       temperature, etc.) is said to be "non-selective" if it is  
9       capable of promoting the growth (or sustaining the  
10      viability) of a precursor cell, a desired cell, and an  
11      intermediate cell type (i.e. a cell obtained during the  
12      progression of a precursor cell into a desired cell). A  
13      culturing condition is said to be "selective" if it is  
14      capable of promoting the growth (or sustaining the  
15      viability) of only certain cells (i.e. those having a  
16      particular genotype and which therefore contain a particular  
17      gene product in either an active or an inactive form).

18      Preferred selective culturing conditions thus depend  
19      upon the genotype of the precursor cell. As stated above,  
20      cells that do not contain an active thymidine kinase (TK)  
21      enzyme, a hypoxanthine-phosphoribosyltransferase (HPRT)  
22      enzyme, a xanthine-guanine phosphoribosyltransferase (XGPRT)  
23      enzyme, or an adenosine phosphoribosyltransferase (APRT)  
24      enzyme, are unable to grow in medium containing  
25      hypoxanthine, aminopterin, and/or mycophenolic acid (and  
26      preferably adenine, xanthine, and/or thymidine), and  
27      thymidine, but are able to grow in medium containing  
28      nucleoside analogs such as 5-bromodeoxyuridine, 6-  
29      thioguanine, 8-azapurine, etc. Conversely, cells that do  
30      contain such active enzymes are able to grow in such medium,  
31      but are unable to grow in medium containing nucleoside  
32      analog such as 5-bromodeoxyuridine, 6-thioguanine, 8-  
33      azapurine, etc.

-39-

Such incubation is conducted in the presence of a DNA molecule containing a desired non-selectable gene sequence. Preferably, the DNA molecule additionally contains two regions of homology which flank this desired gene sequence, and which are sufficient to permit the desired gene sequence to undergo homologous recombination with a predetermined gene sequence of the genome of the precursor cell. The DNA molecule additionally contains a selectable gene sequence whose presence or expression in the cell can be selected for by culturing the cell under a first set of selective culture conditions, and whose presence or expression in the cell can be selected against by culturing the cell under a second set of selective culture conditions.

Examples of preferred selectable gene sequences include gene sequences which encode an active thymidine kinase (TK) enzyme, a hypoxanthine-phosphoribosyltransferase (HPRT) enzyme, a xanthine-guanine phosphoribosyltransferase (XGPRT) enzyme, or an adenosine phosphoribosyltransferase (APRT) enzyme. Such gene sequences can be used for both positive and negative selection.

Additional gene sequences which can be used as selectable gene sequences include those which encode enzymes such as dihydrofolate reductase (DHFR) enzyme, adenosine deaminase (ADA), asparagine synthetase (AS), hygromycin B phosphotransferase, or a CAD enzyme (carbamyl phosphate synthetase, aspartate transcarbamylase, and dihydroorotate). Methods for producing cells deficient in expressing these enzymes are described by Sambrook *et al.* (In: Molecular Cloning A Laboratory Manual, 2nd. Ed., Cold Spring Harbor Laboratory Press, NY (1989), herein incorporated by reference). Such gene sequences can be used only for positive selection.

1           The incubation is performed under conditions sufficient  
2       to permit the DNA molecule to be introduced into the  
3       precursor cell. Such introduced DNA molecules are able to  
4       then undergo homologous recombination with the predetermined  
5       gene sequence of the genome of the precursor cell to thereby  
6       produce the desired cell wherein the desired non-selectable  
7       gene sequence has been inserted into the predetermined gene  
8       sequence.

9           Such a desired cell can be recovered by culturing the  
10      cell under the first set of selective culture conditions, by  
11      then permitting the cell to undergo intrachromosomal  
12      recombination under non-selective culture conditions, and by  
13      then incubating the cell under the second set of selective  
14      culture conditions.

15          Thus, in one preferred embodiment, the precursor cell  
16      lacks an active hypoxanthine-phosphoribosyltransferase (HPRT)  
17      enzyme, a xanthine-guanine phosphoribosyltransferase (XGPRT)  
18      enzyme, or an adenosine phosphoribosyltransferase (APRT)  
19      enzyme, and the selectable gene sequence expresses an active  
20      HPRT, XGPRT or APRT enzyme. In the first set of selectable  
21      culture conditions, medium containing hypoxanthine,  
22      aminopterin and/or mycophenolic acid (and preferably  
23      adenine, xanthine, and/or thymidine) is employed. In the  
24      second set of selectable culturing conditions, medium  
25      containing a nucleoside analog such as 5-bromodeoxyuridine,  
26      6-thioguanine, 8-azapurine, etc., is employed.

27          In a second preferred embodiment, the precursor cell  
28      lacks an active TK enzyme, and the selectable gene sequence  
29      expresses an active TK enzyme. In the first set of  
30      selectable culture conditions, medium containing  
31      hypoxanthine, aminopterin, and thymidine is employed. In  
32      the second set of selectable culturing conditions, medium  
33      containing a thymidine analog such as FIAU (Borrelli, Proc.

-41-

1       Nat'l. Acad. Sci. (U.S.A.) 85:7572 (1988), or gancyclovir,  
2       etc. is employed (if an HSV tk gene is used), or 5-  
3       bromodeoxyuridine, etc. (if a cellular tk gene is employed).

4       A preferred negative selectable marker is the hprt gene  
5       (cells expressing an active HPRT enzyme are unable to grow  
6       in the presence of certain nucleoside analogues such as 6-  
7       thioguanine, etc.). When using 6-thioguanine as a negative  
8       selection agent, a density of  $10^4$  cells /  $\text{cm}^2$  is preferably  
9       used since the efficiency of 6-thioguanine selection is cell  
10      density dependent. A typical experiment with  $10^7$  transfected  
11      cells would yield approximately 10 revertant cells after  
12      successive selection. The relative yield of revertant  
13      clones can be substantially increased by using "Poly A  
14      Selection" for the first round of selection. "Poly A  
15      Selection" is discussed in detail in Example 6 below.

16

17      IV.     The Production of Chimeric and Transgenic Animals

18

19      The chimeric or transgenic animals of the present  
20      invention are prepared by introducing one or more DNA  
21      molecules into a precursor pluripotent cell, most preferably  
22      an ES cell, or equivalent (Robertson, E.J., In: Current  
23      Communications in Molecular Biology, Capecchi, M.R. (ed.),  
24      Cold Spring Harbor Press, Cold Spring Harbor, NY (1989), pp.  
25      39-44, which reference is incorporated herein by reference).  
26      The term "precursor" is intended to denote only that the  
27      pluripotent cell is a precursor to the desired  
28      ("transfected") pluripotent cell which is prepared in  
29      accordance with the teachings of the present invention. The  
30      pluripotent (precursor or transfected) cell may be cultured  
31      in vivo, in a manner known in the art (Evans, M.J. et al.,  
32      Nature 292:154-156 (1981)) to form a chimeric or transgenic  
33      animal.

1 Any ES cell may be used in accordance with the present  
2 invention. It is, however, preferred to use primary  
3 isolates of ES cells. Such isolates may be obtained  
4 directly from embryos such as the CCE cell line disclosed by  
5 Robertson, E.J., In: Current Communications in Molecular  
6 Biology, Capecchi, M.R. (ed.), Cold Spring Harbor Press,  
7 Cold Spring Harbor, NY (1989), pp. 39-44), or from the  
8 clonal isolation of ES cells from the CCE cell line  
9 (Schwartzberg, P.A. et al., Science 246:799-803 (1989),  
10 which reference is incorporated herein by reference). Such  
11 clonal isolation may be accomplished according to the method  
12 of E.J. Robertson (In: Teratocarcinomas and Embryonic Stem  
13 Cells: A Practical Approach, (E.J. Robertson, Ed.), IRL  
14 Press, Oxford, 1987) which reference and method are  
15 incorporated herein by reference. The purpose of such  
16 clonal propagation is to obtain ES cells which have a  
17 greater efficiency for differentiating into an animal.  
18 Clonally selected ES cells are approximately 10-fold more  
19 effective in producing transgenic animals than the  
20 progenitor cell line CCE. For the purposes of the  
21 recombination methods of the present invention, clonal  
22 selection provides no advantage. An example of ES cell  
23 lines which have been clonally derived from embryos are the  
24 ES cell lines, AB1 (hprt<sup>+</sup>) or AB2.1 (hprt<sup>-</sup>).  
25

26 The ES cells are preferably cultured on stromal cells  
27 (such as STO cells (especially SNC4 STO cells) and/or  
28 primary embryonic fibroblast cells) as described by E.J.  
29 Robertson (In: Teratocarcinomas and Embryonic Stem Cells: A  
30 Practical Approach, (E.J. Robertson, Ed.), IRL Press,  
31 Oxford, 1987, pp 71-112), which reference is incorporated  
32 herein by reference. The stromal (and/or fibroblast) cells  
33 serve to eliminate the clonal overgrowth of abnormal ES  
cells. Most preferably, the cells are cultured in the

-43-

1 presence of leukocyte inhibitory factor ("lif") (Gough, N.M.  
2 et al., Reprod. Fertil. Dev. 1:281-288 (1989); Yamamori, Y.  
3 et al., Science 246:1412-1416 (1989), both of which  
4 references are incorporated herein by reference). Since the  
5 gene encoding lif has been cloned (Gough, N.M. et al.,  
6 Reprod. Fertil. Dev. 1:281-288 (1989)), it is especially  
7 preferred to transform stomal cells with this gene, by means  
8 known in the art, and to then culture the ES cells on  
9 transformed stomal cells that secrete lif into the culture  
10 medium.

11 ES cell lines may be derived or isolated from any  
12 species (for example, chicken, etc.), although cells derived  
13 or isolated from mammals such as rodents (i.e. mouse, rat,  
14 hamster, etc.), rabbits, sheep, goats, fish, pigs, cattle,  
15 primates and humans are preferred.

16

17 V. The Production of Chimeric and Transgenic Plants

18

19 The chimeric or transgenic plants of the invention are  
20 produced through the regeneration of a plant cell which has  
21 received a DNA molecule through the use of the methods  
22 disclosed herein.

23 All plants from which protoplasts can be isolated and  
24 cultured to give whole regenerated plants can be transformed  
25 by the present invention so that whole plants are recovered  
26 which contain the introduced gene sequence. Some suitable  
27 plants include, for example, species from the genera  
28 Fragaria, Lotus, Medicago, Onobrychis, Trifolium,  
29 Trigonella, Vigna, Citrus, Linum, Geranium, Manicot, Daucus,  
30 Arabidopsis, Brassica, Raphanus, Sinapis, Atropa, Capsicum,  
31 Datura, Hyoscyamus, Lycopersicon, Nicotiana, Solanum,  
32 Petunia, Digitalis, Majorana, Cichorium, Helianthus,  
33 Lactuca, Bromus, Asparagus, Antirrhinum, Hemerocallis,

-44-

1        Nemesia, Pelargonium, Panicum, Pennisetum, Ranunculus,  
2        Senecio, Salpiglossis, Cucumis, Browallia, Glycine, Lolium,  
3        Zea, Triticum, Sorghum, Ipomoea, Passiflora, Cyclamen,  
4        Malus, Prunus, Rosa, Rubus, Populus, Santalum, Allium,  
5        Lilium, Narcissus, Ananas, Arachis, Phaseolus, Pisum and  
6        Datura.

7        There is an increasing body of evidence that practically  
8        all plants can be regenerated from cultured cells or  
9        tissues, including but not limited to all major cereal crop  
10      species, sugarcane, sugar beet, cotton, fruit and other  
11      trees, legumes and vegetables.

12      Plant regeneration from cultural protoplasts is  
13      described in Evans et al., "Protoplast Isolation and  
14      Culture," in Handbook of Plant Cell Culture 1:124-176  
15      (MacMillan Publishing Co., New York, 1983); M.R. Davey,  
16      "Recent Developments in the Culture and Regeneration of  
17      Plant Protoplasts," Protoplasts, 1983 - Lecture Proceedings,  
18      pp. 19-29 (Birkhauser, Basel, 1983); P.J. Dale, "Protoplast  
19      Culture and Plant Regeneration of Cereals and Other  
20      Recalcitrant Crops," in Protoplasts 1983 - Lecture  
21      Proceedings, pp. 31-41 (Birkhauser, Basel, 1983); and H.  
22      Binding, "Regeneration of Plants," in Plant Protoplasts, pp.  
23      21-37 (CRC Press, Boca Raton, 1985).

24      Regeneration varies from species to species of plants,  
25      but generally a suspension of transformed protoplasts  
26      containing the introduced gene sequence is formed. Embryo  
27      formation can then be induced from the protoplast  
28      suspensions, to the stage of ripening and germination as  
29      natural embryos. The culture media will generally contain  
30      various amino acids and hormones, such as auxin and  
31      cytokinins. It is also advantageous to add glutamic acid  
32      and proline to the medium, especially for such species as  
33      corn and alfalfa. Shoots and roots normally develop

-45-

1       simultaneously. Efficient regeneration will depend on the  
2       medium, on the genotype, and on the history of the culture.  
3       If these three variables are controlled, then regeneration  
4       is fully reproducible and repeatable.

5       The mature plants, grown from the transformed plant  
6       cells, are selfed to produce an inbred plant. The inbred  
7       plant produces seed containing the introduced gene sequence.  
8       These seeds can be grown to produce plants that express this  
9       desired gene sequence.

10      Parts obtained from the regenerated plant, such as  
11     flowers, seeds, leaves, branches, fruit, and the like are  
12     covered by the invention. Progeny and variants, and mutants  
13     of the regenerated plants are also included within the scope  
14     of this invention.

15      As used herein, variant describes phenotypic changes  
16     that are stable and heritable, including heritable variation  
17     that is sexually transmitted to progeny of plants.

18  
19           VI.        GENE EXPRESSION

20  
21      In one embodiment, the DNA molecule(s) which are to be  
22     introduced into the recipient cells in accordance with the  
23     methods of the present invention will be incorporated into  
24     a plasmid or viral vector (or a derivative thereof) capable  
25     of autonomous replication in a host cell.

26      Preferred prokaryotic vectors include plasmids such as  
27     those capable of replication in E. coli such as, for  
28     example, pBR322, ColE1, pSC101, pACYC 184,  $\pi$ VX. Such  
29     plasmids are, for example, disclosed by Maniatis, T., et al.  
30     (In: Molecular Cloning, A Laboratory Manual, Cold Spring  
31     Harbor Press, Cold Spring Harbor, NY (1982)). Bacillus  
32     plasmids include pC194, pC221, pT127, etc. Such plasmids  
33     are disclosed by Gryczan, T. (In: The Molecular Biology of

-46-

1       the Bacilli, Academic Press, NY (1982), pp. 307-329).  
2       Suitable Streptomyces plasmids include pIJ101 (Kendall,  
3       K.J., et al., J. Bacteriol. 169:4177-4183 (1987)), and  
4       Streptomyces bacteriophages such as φC31 (Chater, K.F., et  
5       al., In: Sixth International Symposium on Actinomycetales  
6       Biology, Akademiai Kaido, Budapest, Hungary (1986), pp. 45-  
7       54). Pseudomonas plasmids are reviewed by John, J.F., et  
8       al. (Rev. Infect. Dis. 8:693-704 (1986)), and Izaki, K.  
9       (Jpn. J. Bacteriol. 33:729-742 (1978)).

10      Examples of suitable yeast vectors include the yeast 2-  
11     micron circle, the expression plasmids YEP13, YCP and YRP,  
12     etc., or their derivatives. Such plasmids are well known in  
13     the art (Botstein, D., et al., Miami Wntr. Symp. 19:265-274  
14     (1982); Broach, J.R., In: The Molecular Biology of the  
15     Yeast Saccharomyces: Life Cycle and Inheritance, Cold  
16     Spring Harbor Laboratory, Cold Spring Harbor, NY, p. 445-470  
17     (1981); Broach, J.R., Cell 28:203-204 (1982)).

18      Examples of vectors which may be used to replicate the  
19     DNA molecules in a mammalian host include animal viruses  
20     such as bovine papilloma virus, polyoma virus, adenovirus,  
21     or SV40 virus.

22

## 23      VII.     Uses of the Present Invention

24

25      The methods of the present invention permit the  
26     introduction of a desired gene sequence into an animal or  
27     plant cell.

28      In a first embodiment, the methods of the present  
29     invention may be used to introduce DNA into germ line cells  
30     of animals in order to produce chimeric or transgenic  
31     animals which contain a desired gene sequence. The animals  
32     which may be produced through application of the described  
33     method include chicken, non-human mammals (especially,

-47-

1           rodents (i.e. mouse, rat, hamster, etc.), rabbits, sheep,  
2           goats, fish, pigs, cattle and non-human primates).

3           As stated above, the desired gene sequence may be of any  
4           length, and have any nucleotide sequence. In particular, it  
5           is possible to design the sequence of the desired gene  
6           sequence in order to create single, or multiple base  
7           alterations, insertions or deletions in any preselected gene  
8           of a cell.

9           If such changes are within a translated region of a  
10          native gene sequence, then a new protein variant of a native  
11          protein can be obtained. Such a procedure can, for example  
12          be used to produce animals which produce improved (i.e. more  
13          stable, more active, etc.) enzymes, binding proteins,  
14          receptors, receptor ligands, etc.

15          The methods of the present invention may be used to  
16          produce cells in which a natural gene has been replaced with  
17          a heterologous gene. A gene is said to be heterologous to  
18          a transgenic cell if it is derivable from a species other  
19          than that of the transgenic cell.

20          In one embodiment, this replacement may be accomplished  
21          in a single step (Figure 3). To accomplish such  
22          replacement, a DNA molecule containing a desired gene  
23          sequence and a region of homology is introduced into a  
24          recipient cell. A selectable marker gene is also introduced  
25          into the cell, and used to select for cells which have  
26          underwent recombination. The method results in the  
27          replacement of the normal sequences adjacent to the region  
28          of homology with the heterologous sequences of the desired  
29          DNA sequence.

30          In a second embodiment, this replacement may be  
31          accomplished in a two steps (Figure 4). As in the  
32          embodiment described above, a cell is provided with a DNA  
33          molecule containing a desired gene sequence and a region of

1 homology. The DNA molecule also contains a selectable  
2 marker gene used to select for cells which have undergone a  
3 recombinational event that has resulted in the insertion of  
4 the introduced DNA molecule into their chromosomes at the  
5 site of homology. The structure of such an insertion site  
6 is depicted in Figure 4A.

7 Significantly, in this embodiment, the introduced DNA  
8 molecule will also contain a "negative selectable" marker  
9 gene which can be used to select for cells which undergo a  
10 second recombinational event that results in the loss of the  
11 inserted DNA.

12 As shown in Figure 4B, a second DNA molecule is employed  
13 to complete the gene replacement. This second DNA molecule  
14 need not contain any selectable marker gene. Upon receipt  
15 of the second DNA molecule, a second recombinational event  
16 occurs which exchanges the "second" DNA molecule for the  
17 integrated "first" DNA molecule (including the desired DNA  
18 sequence, the selectable marker sequence, and the "negative  
19 selectable" marker sequence contained on that molecule).  
20 This aspect of the invention is illustrated in Figure 4B.

21 In another embodiment of the invention, subtle mutations  
22 may be introduced into a desired locus using a "cassette"  
23 construct containing both a positive selection marker (such  
24 as the nptII gene or the gpt gene) and a negative selection  
25 marker (such as the tk gene). In this embodiment, one first  
26 uses the positive selection capacity of the construct to  
27 introduce the two selection markers into a desired locus.  
28 One then introduces the desired subtle mutations (substi-  
29 tutions, insertions, deletions, etc.) by providing a cell  
30 with a DNA molecule that contains the desired mutation. By  
31 selecting for the loss of the "cassette" (using the negative  
32 selection marker), one can select for recombinational events  
33 which result in the replacement of the "cassette" sequence

-49-

1       with the DNA sequence containing the desired mutation. This  
2       embodiment of the invention is illustrated in Figure 5.

3       The methods of the present invention may also be used to  
4       replace contiguous regions of a chromosome with any desired  
5       gene sequence. Thus, the present invention is not limited  
6       in the size of the DNA regions which may be altered or  
7       replaced. This aspect of the present invention is  
8       illustrated in Figure 6, as a series of 5 steps (Figures 6A-  
9       6E). The method is applicable to any gene sequence. It is  
10      especially useful in producing cells which contain  
11      heterologous immunoglobulins (such as the heavy chain locus  
12      of an immunoglobulin).

13      The first step in replacing a large region of a  
14      chromosome with a desired sequence involves setting up an  
15      initial target. In this step, a recipient cell is provided  
16      with a DNA molecule which contains a "first fragment" of the  
17      total desired replacement sequence (Figure 6A). This "first  
18      fragment" of the desired replacement sequence contains a  
19      selectable marker sequence (most preferably the nptII gene)  
20      at its end.

21      The DNA molecule also contains a "dual selection" gene  
22      sequence which encodes a non-functional fragment of a gene  
23      sequence for which both a positive and a negative selection  
24      exists. An example of such a gene is the gpt gene when used  
25      in the context of an hprt cell. Cells which express a  
26      functional gpt gene can be selected for by their ability to  
27      grow in HAT medium; Cells which lack a functional gpt gene  
28      can be selected for by their ability to grow in the presence  
29      of 6-thioguanine.

30      Homologous recombination results in the insertion of the  
31      DNA molecule into the cell's genome at the region of  
32      homology (Figure 6A). Importantly, since this step results  
33      in the creation of a cell whose genome contains the

1           selectable marker gene, it is possible to select for the  
2           desired recombinational event.

3           In the second step of the method, a second DNA molecule  
4           is provided to the cell. This second DNA molecule contains  
5           a "second fragment" of the desired replacement sequence as  
6           well as a sequence of the dual selection gene that, due to  
7           an internal deletion, is incapable of encoding a functional  
8           gene product. Homologous recombination results in the  
9           insertion of the second DNA molecule into the cell's genome  
10          in a manner so as to create a functional dual selection gene  
11          (Figure 6B). Recombination also results in the integration  
12          of a non-functional fragment of the dual selection gene.  
13          Importantly, since this step results in the creation of a  
14          cell whose genome contains a functional dual selection gene,  
15          it is possible to select for the desired recombinational  
16          event.

17          In the third step of the method, a third DNA molecule is  
18          provided to the cell. This third DNA molecule contains both  
19          the "first" and "second" fragments of the desired  
20          replacement sequence. Homologous recombination results in  
21          the insertion of the third DNA molecule into the cell's genome  
22          in a manner so as to delete the functional dual  
23          selection gene. The non-functional fragment of the dual  
24          selection gene (formed in step 2) is not affected by the  
25          recombination, and is retained (Figure 6C). Importantly,  
26          since this step results in the creation of a cell whose  
27          genome lacks the dual selection gene, it is possible to  
28          select for the desired recombinational event.

29          In the fourth step of the method, a fourth DNA molecule  
30          is provided to the cell. This fourth DNA molecule contains  
31          a "third fragment" of the desired replacement sequence as  
32          well as a sequence of the dual selection gene that, as in  
33          step 2, is incapable of encoding a functional gene product

-51-

1       due to an internal deletion. Homologous recombination  
2       results in the insertion of the fourth DNA molecule into the  
3       cell's genome in a manner so as to create a functional dual  
4       selection gene (Figure 6D). Recombination also results in  
5       the integration of a non-functional fragment of the dual  
6       selection gene. Importantly, since this step results in the  
7       creation of a cell whose genome contains a functional dual  
8       selection gene, it is possible to select for the desired  
9       recombinational event.

10      In the fifth step of the method, a fifth DNA molecule is  
11     provided to the cell. This fifth DNA molecule contains both  
12     the "second" and "third" fragments of the desired  
13     replacement sequence. Homologous recombination results in  
14     the insertion of the fifth DNA molecule into the cell's  
15     genome in a manner so as to delete the functional dual  
16     selection gene. The non-functional fragment of the dual  
17     selection gene (formed in step 4) is not affected by the  
18     recombination, and is retained (Figure 6C). Importantly,  
19     since this step results in the creation of a cell whose  
20     genome lacks the dual selection gene, it is possible to  
21     select for the desired recombinational event.

22      As will be appreciated, the net effect of the above-  
23     described steps is to produce a cell whose genome has been  
24     engineered to contain a "first," "second," and "third"  
25     "fragment" of a particular desired gene in a contiguous  
26     manner. The steps may be repeated as desired in order to  
27     introduce additional "fragments" into the cell's genome. In  
28     this manner, cells can be constructed which contain  
29     heterologous genes, chromosome fragments, or chromosomes,  
30     that could not be introduced using a single vector. As  
31     indicated above, each step of the method can be selected  
32     for.

1           In particular, this aspect of the present invention may  
2       be used to produce "humanized" antibodies (i.e. non-human  
3       antibodies which are non-immunogenic in a human) (Robinson,  
4       R.R. et al., International Patent Publication  
5       PCT/US86/02269; Akira, K. et al., European Patent  
6       Application 184,187; Taniguchi, M., European Patent  
7       Application 171,496; Morrison, S.L. et al., European Patent  
8       Application 173,494; Neuberger, M.S. et al., PCT Application  
9       WO 86/01533; Cabilly, S. et al., European Patent Application  
10      125,023; Better, M. et al., Science 240:1041-1043 (1988);  
11      Liu, A.Y. et al., Proc. Natl. Acad. Sci. USA 84:3439-3443  
12      (1987); Liu, A.Y. et al., J. Immunol. 139:3521-3526 (1987);  
13      Sun, L.K. et al., Proc. Natl. Acad. Sci. USA 84:214-218  
14      (1987); Nishimura, Y. et al., Canc. Res. 47:999-1005 (1987);  
15      Wood, C.R. et al., Nature 314:446-449 (1985)); Shaw et al.,  
16      J. Natl. Cancer Inst. 80:1553-1559 (1988).

17           The method may also be used to produce animals having  
18       superior resistance to disease, animals which constitute or  
19       produce improved food sources, animals which provide fibers,  
20       hides, etc. having more desirable characteristics. The  
21       method may also be used to produce new animal models for  
22       human genetic diseases. For example, the method may be used  
23       to "humanize" the CD4 analog of an animal, and thus provide  
24       an animal model for AIDS. Such animal models can be used  
25       for drug testing, and thus hasten the development of new  
26       therapies for genetic diseases.

27           In addition, the present invention permits the formation  
28       of cells and of transgenic animals which contain mutations  
29       in medically or clinically significant heterologous genes.  
30       A gene is said to be medically or clinically significant if  
31       it expresses an isotype of a protein associated with a human  
32       or animal disease or condition. Examples of such genes  
33       include the genes which encode: topoisomerase p180, 5-a

-53-

1 reductase, ACAT, 5-lipoxygenase, the insulin receptor, the  
2 interleukin-2 receptor, the epidermal growth factor  
3 receptor, the serotonin receptor, the dopamine receptor, the  
4 GABA receptor, the V<sub>2</sub> vasopressin receptors, G proteins  
5 (signal transduction), phospholipase C proteins, and  
6 insulin. A transgenic mouse produced by microinjection  
7 which expresses human insulin was reported by Selden, R.F.  
8 et al. (European Patent Publication No. 247,494, which  
9 reference is incorporated herein by reference).

10 The transgenic cells and animals discussed above can be  
11 used to study human gene regulation. For example,  
12 transgenic animals which express a human isotype of  
13 topoisomerase p180, 5- $\alpha$  reductase, ACAT, 5-lipoxygenase, or  
14 hormone or cytokine receptors would have utility in in vivo  
15 drug screening. The expression of topoisomerase p180 is  
16 associated with resistance to chemotherapeutics. Thus,  
17 agents which interfere with this enzyme could be used to  
18 enhance the effectiveness of chemotherapy. An animal,  
19 especially a rat, capable of expressing a human isotype of  
20 5- $\alpha$  reductase (especially in the prostate gland) would be  
21 highly desirable. ACAT is a key enzyme in lipid metabolism;  
22 an animal model for its regulation would be extremely  
23 valuable. Animals that express 5-lipoxygenase could be of  
24 interest to many research programs, particularly to screen  
25 isotype selective inhibitors. An animal which expressed  
26 human hormone or cytokine receptor proteins would be  
27 valuable in identifying agonists and antagonists of receptor  
28 action. Similarly, an animal that expressed components of  
29 the human signal transduction system (i.e. G proteins and  
30 phospholipase Cs, etc.) could be used to study the  
31 pathophysiologic consequences of disordered function of  
32 these proteins.

1       The present invention can be used to produce cells and  
2       animals which express human isotypes of transport proteins  
3       (i.e. proteins which facilitate or enable the transport of  
4       other molecules or ions across membranes in the gut, blood  
5       brain barrier, kidney, etc.). Such cells or animals can  
6       then be used to study the role of such proteins in  
7       metabolism. In particular, the extent and patterns of  
8       conjugation mediated by such isotypes may be studied in  
9       order to investigate the pharmacokinetic consequences of  
10      specific differences in protein structure or sequence.  
11      Glucoronide transferase, glycine conjugation and sulfation,  
12      methylases, and glutathione conjugation are examples of  
13      enzymes of particular interest in this regard.

14     The clearance of many compounds is mediated by  
15     esterases. Cells or animals which express heterologous  
16     isotypes of such esterases may be exploited in investigating  
17     such clearance.

18     Cells or animals which express isotypes of proteins  
19     involved in azo or nitro reduction would be desirable for  
20     research on the processes of azo or nitro reduction.

21     Significantly, potential therapeutic agents are  
22     frequently found to induce toxic effects in one animal model  
23     but not in another animal model. To resolve the potential  
24     of such agents, it is often necessary to determine the  
25     metabolic patterns in various species, and to then determine  
26     the toxicities of the metabolites. The present invention  
27     permits one to produce transgenic cells or animals which  
28     could facilitate such determinations.

29     The methods of the present invention may be used to  
30     produce alterations in a regulatory region for a native gene  
31     sequence. Thus, the invention provides a means for altering  
32     the nature or control of transcription or translation of any  
33     native gene sequence which is regulated by the regulatory

-55-

1       region. For example, it is possible to introduce mutations  
2       which remove feedback inhibition, and thus result in  
3       increased gene expression. Similarly, it is possible to  
4       impair the transcriptional capacity of a sequence in order  
5       to decrease gene expression. Such alterations are  
6       especially valuable in gene therapy protocols, and in the  
7       development of improved animal models of human disease. For  
8       example, the capacity to increase insulin gene transcription  
9       or translation provides a potential genetic therapy for  
10      diabetes. Similarly, the ability to impair the synthesis of  
11      beta globin chains provides an animal model for beta-  
12      thalassemia.

13      The methods of the present invention, quite apart from  
14      their uses in veterinary and human medicine, may be used to  
15      investigate gene regulation, expression and organization in  
16      animals.

17      Since the methods of the present invention utilize  
18      processes of DNA repair and recombination, agents which  
19      inhibit or impair the present methods may act by affecting  
20      these processes. Since agents which impair DNA repair and  
21      recombination have potential antineoplastic utility, the  
22      present invention provides a means for identifying novel  
23      antineoplastic agents.

24      The present invention may additionally be used to  
25      facilitate both the cloning of gene sequences, and the  
26      mapping of chromosomes or chromosomal abnormalities.

27      Since the desired gene sequence need not be homologous  
28      or analogous to any native gene sequence of the recipient  
29      cell, the methods of the present invention permit one to  
30      produce animals which contain and express foreign gene  
31      sequences. If the cell expresses an analogous gene, the  
32      desired gene sequence may be expressed in addition to such  
33      analogous cellular genes (for example, an animal may express

1 both a "humanized" receptor and an analogous native  
2 receptor). Thus, for example, the invention provides a  
3 means for producing animals which express important human  
4 proteins (such as human interferons, tissue plasminogen  
5 activator, hormones (such as insulin and growth hormone),  
6 blood factors (such as Factor VIII), etc.).

7 In a second embodiment, the methods of the invention may  
8 be used to introduce DNA into plant cells which can then be  
9 manipulated in order to produce chimeric or transgenic  
10 plants. The plants which may be produced through  
11 application of the disclosed method include all  
12 multicellular, higher (i.e. non-fungal) plants. A non-  
13 fungal plant is any plant which is not a fungus or yeast.

14 In a third embodiment, the methods of the invention may  
15 be used to introduce DNA into the somatic cells of an animal  
16 (particularly mammals including humans) or plant in order to  
17 provide a treatment for genetic disease (i.e. "gene  
18 therapy"). The principles of gene therapy are disclosed by  
19 Oldham, R.K. (In: Principles of Biotherapy, Raven Press, NY,  
20 1987), and similar texts.

21 In this third embodiment, the genetic lesion which  
22 causes the disease is replaced with a gene sequence encoding  
23 a preferred gene product. Examples of such genetic lesions  
24 are those responsible for diseases such as cystic fibrosis,  
25 phenylketonuria, hemophilia, von Willebrand's Disease,  
26 sickle cell anemia, thalassemia, galactosemia, fructose  
27 intolerance, diseases of glycogen storage, hyper-  
28 cholesterolemia, juvenile diabetes, hypothyroidism,  
29 Alzheimer's Disease, Huntington's Disease, Gout, Lesch-Nyhan  
30 Syndrome, etc. (Bondy, P.K. et al., In: Disorders of  
31 Carbohydrate Metabolism, pp 221-340, Saunders (1974);  
32 Coleman, J. et al., Molecular Mechanisms of Disease, Yale  
33 University Press, (1975)). Disclosures of the methods and

-57-

1       uses for gene therapy are provided by Boggs, S.S. (Int. J.  
2       Cell Clon. 8:80-96 (1990)); Karson, E.M. (Biol. Reprod.  
3       42:39-49 (1990)); Ledley, F.D., In: Biotechnology, A  
4       Comprehensive Treatise, volume 7B, Gene Technology, VCH  
5       Publishers, Inc. NY, pp 399-458 (1989)); all of which  
6       references are incorporated herein by reference.

7       In a fourth embodiment, the methods of the invention may  
8       be used to provide a treatment to protect recipient animals  
9       or plants from exposure to viruses, insects or herbicides  
10      (in the case of plants), insecticides, toxins, etc. In this  
11      embodiment, the introduced gene would provide the recipient  
12      with gene sequences capable of mediating either an enhanced  
13      or novel expression of an enzyme, or other protein, capable  
14      of, for example, degrading an herbicide or toxin. For  
15      example, a plant cell may receive a gene sequence capable of  
16      mediating an enhanced or novel expression of a chitinase,  
17      thus conferring increased resistance to insect parasites.

18      When providing the desired gene sequence to the cells of  
19      an animal, pharmaceutically acceptable carriers (i.e.  
20      liposomes, etc.) are preferably employed. Such gene  
21      sequences can be formulated according to known methods to  
22      prepare pharmaceutically useful compositions, whereby these  
23      materials, or their functional derivatives, are combined in  
24      admixture with a pharmaceutically acceptable carrier  
25      vehicle. Suitable vehicles and their formulation, are  
26      described, for example, in Nicolau, C. et al. (Crit. Rev.  
27      Ther. Drug Carrier Syst. 6:239-271 (1989)), which reference  
28      is incorporated herein by reference.

29      In order to form a pharmaceutically acceptable  
30      composition suitable for effective administration, such  
31      compositions will contain an effective amount of the desired  
32      gene sequence together with a suitable amount of carrier  
33      vehicle.

1           Additional pharmaceutical methods may be employed to  
2 control the duration of action. Control release  
3 preparations may be achieved through the use of polymers to  
4 complex or absorb the desired gene sequence (either with or  
5 without any associated carrier). The controlled delivery  
6 may be exercised by selecting appropriate macromolecules  
7 (for example polyesters, polyamino acids, polyvinyl,  
8 pyrrolidone, ethylenevinylacetate, methylcellulose,  
9 carboxymethylcellulose, or protamine, sulfate) and the  
10 concentration of macromolecules as well as the methods of  
11 incorporation in order to control release. Another possible  
12 method to control the duration of action by controlled  
13 release preparations is to incorporate the agent into  
14 particles of a polymeric material such as polyesters,  
15 polyamino acids, hydrogels, poly(lactic acid) or ethylene  
16 vinylacetate copolymers. Alternatively, instead of  
17 incorporating these agents into polymeric particles, it is  
18 possible to entrap these materials in microcapsules  
19 prepared, for example, by coacervation techniques or by  
20 interfacial polymerization, for example, hydroxymethylcellu-  
21 lose or gelatine-microcapsules and poly(methylmethacrylate)  
22 microcapsules, respectively, or in colloidal drug delivery  
23 systems, for example, liposomes, albumin microspheres,  
24 microemulsions, nanoparticles, and nanocapsules or in  
25 macroemulsions.

26           In a fifth embodiment, the methods of the present  
27 invention may be used to improve the food or fiber  
28 characteristics of plants or non-human animals. For  
29 example, the methods can be used to increase the overall  
30 levels of protein synthesis thereby resulting in faster  
31 growing plants or non-human animals, or in the production of  
32 plants and non-human animals which have increased food  
33 value.

-59-

Having now generally described the invention, the same will be more readily understood through reference to the following examples which are provided by way of illustration, and are not intended to be limiting of the present invention, unless specified.

EXAMPLE 1  
ELECTROPORATION

Electroporation was performed as follows:

DNA Preparation:

DNA used for electroporation was purified by CsCl gradient centrifugation. A large-scale digest of this purified DNA was prepared by incubating the DNA with an appropriate restriction enzyme. The large-scale digest was examined for complete digestion by running 500 ng on a minigel. The DNA concentration of the large-scale digest should be no higher than 1  $\mu$ g/ $\mu$ l.

The large-scale digest was then extracted once with an equal volume of phenol/chloroform and once with an equal volume of chloroform. The DNA was precipitated with 2.4 volumes of ethanol, pelleted by centrifugation, and dried using a Speed-Vac.

The pelleted DNA was then resuspended at the desired concentration (usually 1  $\mu$ g/ $\mu$ l) in a sterile Tris-EDTA buffer such as 0.1X TE (25  $\mu$ l of DNA per electroporation). The concentration of the DNA was then measured with a fluorometer.

31

-60-

1           Preparation of Cells for Electroporation:

2  
3           Embryonic stem cells of the AB1 cell line were cultured  
4           to approximately 80% confluence according to the methods of  
5           E.J. Robertson (In: Teratocarcinomas and Embryonic Stem  
6           Cells: A Practical Approach, (E.J. Robertson, Ed.), IRL  
7           Press, Oxford, 1987, pp 71-112). Cells were cultured in the  
8           presence of stromal cells which expressed lif into the  
9           culture medium. Cells were passaged 1:2 the day before  
10          electroporation, and fed 4 hours before harvesting.

11          Cells were harvested by trypsinizing the cells, and by  
12          resuspending in media (cells from 2 x 10 cm plates were  
13          combined in a total volume of 10 ml in a 15 ml tube).

14          The cells were pelleted by centrifugation, and the  
15          supernatant was removed by aspiration. The cells were then  
16          resuspended in 10 ml of phosphate buffered saline and the  
17          total number of cells was determined by counting a 20  $\mu$ l  
18          aliquot. The usual yield is  $30 \times 10^6$  cells per 10 cm plate.

19          The cells were then pelleted by centrifugation and the  
20          supernatant was removed by aspiration. Cells were  
21          resuspended at a density of  $11 \times 10^6$  cells/ml. A 20  $\mu$ l  
22          aliquot was counted to confirm this cell density.

23  
24          Electroporation

25  
26          Cells, prepared as described above, were incubated in  
27          the presence of an appropriate amount of DNA in a 15 ml  
28          tube. 25  $\mu$ l of DNA and 0.9 ml of cells were used for each  
29          electroporation.

30          The mixture was allowed to incubate at room temperature  
31          for 5 minutes (this step may, however, be omitted).

32          The cell/DNA mixture was then carefully aliquoted into  
33          electroporation cuvettes (0.9 ml per cuvette; the volume is

-61-

1 important). The cuvette was placed in the electroporation  
2 holder with the foil electrodes in contact with the metal  
3 holding clips.

4 Electroporation was accomplished using a Biorad  
5 GenePulser set at 230V, 500  $\mu$ F (this requires a capacitance  
6 extender). The time constant should read between 5.6 and  
7 7.0.

8 The cuvette was left at room temperature for 5 minutes  
9 and then the cells were plated at an appropriate density (up  
10 to  $2 \times 10^7$  cells/100 mm plate or  $6 \times 10^6$  cells/60 mm plate).  
11 When G418 was used as a selective agent, this cell density  
12 should not be exceeded since G418 takes 3-4 days before  
13 killing starts and plates will become over-confluent. When  
14 G418 selection was to be applied, it is applied 24 hours  
15 post-electroporation. G418 concentration must be titrated  
16 for every batch.

17 The plate(s) were re-fed with fresh media + G418 every  
18 day for the first 6-7 days (until colonies are visible and  
19 most cell debris has been removed). If using FIAU (0.2  $\mu$ M)  
20 selection, this may proceed simultaneously.

21 The typical yield for RV4.0 (Thomas, K.R. *et al.*, Cell  
22 51:503-512 (1987)) is up to  $10^4$  colonies/ $10^7$  cells/100 mm  
23 plate. Although this yield may be significantly (and  
24 unpredictably) different from the yield obtained when other  
25 constructs are used, the use of the method always results in  
26 the recovery of some colonies of cells which contain the  
27 electroporated DNA.

28 Colonies may be picked as early as 8 days. It is most  
29 preferred to pick colonies at around 10-11 days. Colonies  
30 may, however, be recovered up to 18-21 days after the  
31 electroporation.  
32

EXAMPLE 2  
CO-ELECTROPORATION OF ES CELLS

To illustrate the invention, embryonic stem ("ES") cells were co-electroporated with a 4.5 kb nptII-containing vector (pPGKneobpA) which had been linearized by treatment with XbaI restriction endonuclease, and with the 6.5 kb HPRT vector, AD 8 (linearized with SacI) (Figure 7). Electroporation (230 V, 500  $\mu$ F) were done on 0.9 ml aliquot of CCEp24 cells ( $7.5 \times 10^6$  cells/ml).

The electroporation reactions were conducted using molar ratios of 1:1, 1:10, and 1:100 (nptII DNA:HPRT DNA). The total amount of DNA provided was either 25, 50, 100, or 200 µg. The vectors used in this experiment are illustrated in Figure 7. The results of this experiment are shown in Table 1.

TABLE 1  
CO-ELECTROPORATION OF nptII AND hprt GENE SEQUENCES

**Average of Number of Colonies Formed per  $1 \times 10^6$  Cells  
( $\mu\text{g}$  of DNA ( $\#$  = Number of trials averaged)))**

| Ratio<br>of<br>DNA | 200               |                 |   | 100               |                 |   | 50                |                 |   | 25                |                 |   |
|--------------------|-------------------|-----------------|---|-------------------|-----------------|---|-------------------|-----------------|---|-------------------|-----------------|---|
|                    | G418 <sup>R</sup> | TG <sup>R</sup> | # |
| 1:1                | 233               | 2.7             | 3 | 101               | 1.5             | 3 | 64                | 0               | 3 | 23                | 0               | 5 |
| 1:10               | 46                | 0               | 3 | 16                | 0               | 5 | 8.7               | 0               | 7 | nd                | nd              |   |
| 1:100              | 8                 | 0.2             | 5 | 4.3               | 0               | 7 | 1.6               | 0               | 7 | nd                | nd              |   |

This experiment shows that co-electroporation of an hprt gene sequence with an nptII-containing gene sequence in the presence of selection for only the nptII-containing sequence, resulted in recombination of both the nptII and hprt DNA molecules.

-63-

1           The frequencies of recombination are shown in Table 2  
 2           below.

3  
 4           TABLE 2  
 5           FREQUENCY OF RECOMBINATION  
 6

| 7  | Expt | Ratio<br>Neo:Hprt | [DNA]<br>μg/ml | G418 <sup>R</sup> /10 <sup>5</sup> | TG <sup>R</sup> /10 <sup>7</sup> | TG <sup>R</sup> /G418 <sup>R</sup> |
|----|------|-------------------|----------------|------------------------------------|----------------------------------|------------------------------------|
| 10 | A    | 1:1               | 200            | 23.3                               | 2.6                              | 1/873                              |
| 11 | B    | 1:1               | 100            | 10.1                               | 1.0                              | 1/1010                             |
| 12 | C    | 1:100             | 200            | 0.8                                | 0.2                              | 1/400*                             |
| 13 | Cont | ---               | 25             | 10.8                               | 2.7                              | 1/402                              |

14  
 15           The reactions were carried out as described above. The  
 16           reproducibility of the experimental results was examined.  
 17           The results of this experiment are shown in Table 3.  
 18

19           TABLE 3  
 20           EFFECT OF MODIFIED CO-ELECTROPORATION PROTOCOL ON  
 21           RECOMBINATION FREQUENCY  
 22

| 23 | Molar ratios | DNA per zap | # of zap | G418 <sup>R</sup> /HPRT-colonies (total) | HPRT- G418R | HPRT- (per cell transfected) (X 10 <sup>-9</sup> ) | G418 <sup>R</sup> (X 10 <sup>-6</sup> ) |
|----|--------------|-------------|----------|------------------------------------------|-------------|----------------------------------------------------|-----------------------------------------|
| 24 | Neo:         | (μg)        |          |                                          |             |                                                    |                                         |
| 25 | 1:1          | 200         | 8        | 16,150 / 32                              | 1/504       | 400                                                | 202                                     |
| 26 |              | 100         | 3        | 3,030 / 3                                | 1/1,010     | 100                                                | 105                                     |
| 27 |              | 50          | 3        | 1,920 / 0                                |             | 67                                                 |                                         |
| 28 |              | 25          | 5        | 1,150 / 0                                |             | 24                                                 |                                         |
| 29 | 1:10         | 200         | 16       | 608 / 7                                  | 1/868       | 43                                                 | 47                                      |
| 30 |              | 100         | 5        | 800 / 0                                  |             | 17                                                 |                                         |
| 31 |              | 50          | 7        | 609 / 0                                  |             | 9                                                  |                                         |
| 32 | 1:100        | 200         | 5        | 400 / 1                                  | 1/400       | 8                                                  |                                         |
| 33 |              | 100         | 7        | 300 / 0                                  |             | 4.5                                                |                                         |
| 34 |              | 50          | 7        | 112 / 0                                  |             | 1.7                                                |                                         |

-64-

1                           **EXAMPLE 3**  
2                           HOMOLOGOUS RECOMBINATION  
3

4                           In order to investigate the chromosomal structure  
5                           which is produced by the recombination of the vectors of the  
6                           above-described vectors into the chromosomes of recipient  
7                           cells, the following experiments were conducted.

8                           For this purpose, a vector was used which contained a  
9                           6.5 kb region of homology with the cellular hprt locus. The  
10                          vector also contained the nptII gene, as a selectable marker.  
11                          The vector was linearized with XbaI and provided to ES cells  
12                          by electroporation, as described above. Cells which became  
13                          resistant to G418 were selected and their DNA was analyzed  
14                          to determine if it contained restriction fragments that were  
15                          consistent with the predicted integration structure.

16                          The vector used, and the predicted integration structure  
17                          are illustrated in Figure 8. Gel electrophoresis of  
18                          restriction digests of cellular DNA confirmed that the G418  
19                          resistant cells contained the hprt structure shown in Figure  
20                          8. This finding confirmed that the vector had integrated  
21                          into the chromosome of the cell by homologous recombination  
22                          at the hprt locus.

23  
24  
25                          **EXAMPLE 4**  
26                          REVERSION OF RECOMBINANTS  
27

28                          The effect of the size of the region of homology carried  
29                          by the vector on the reversion frequency of recombinants was  
30                          determined. Recombinants containing a vector having 6.8 kb  
31                          of homology with the hprt locus were prepared as described  
32                          in Example 3. Using the same method, recombinants were also  
33                          prepared which contained a similar vector having only 1.3 kb

-65-

1 of homology with the hprt locus. The structures of the  
2 insertion site of the 6.8 kb vector is illustrated in Figure  
3 8. The reversion frequency of the two constructs is shown  
4 in Table 4. The structure obtained from the reversion of  
5 the insertion is shown in Figure 9.

6  
7 TABLE 4  
8 REVERSION FREQUENCY  
9

| Duplication | # Clones | # Revertible | Frequency x10 <sup>-5</sup> |
|-------------|----------|--------------|-----------------------------|
| 6.8 kb      | 19       | 19           | 3.3 to 0.2                  |
| 1.3 kb      | 2        | 2            | 1.2 to 0.3                  |

14  
15  
16 EXAMPLE 5  
17 TARGETING FREQUENCY OF INSERTION AND REPLACEMENT VECTORS  
18

19 A series of different vectors were used to investigate  
20 the targeting frequency achieved through the use of the  
21 methods of the invention. These vectors contained 6.8 kb of  
22 homology with the murine hprt gene and had regions of  
23 heterology either at the linearization site or internally  
24 (Figure 2).

25 For this purpose, 10<sup>8</sup> cells were electroporated into ES  
26 cells, prepared as described above, and plated onto 10 x 90  
27 mm plates. After 24 hours G418 (at 350 µg/ml) was added to  
28 the media. After 5 days selection 10<sup>-5</sup> M 6-thioguanine was  
29 added to 9 plates, 1 was retained under G418 selection as  
30 the transfection control. Selection was continued for an  
31 additional 7 days. Colonies were scored at this time and  
32 expanded for southern analysis as separate clones.  
33 Targeting efficiencies are detailed for each of the vectors  
34 (Figure 2; Table 5).

-66-

Southern analysis showed that the majority of the 6-TG<sup>R</sup> clones had the predicted integration structure depicted for HindIII digestion in Figure 8.

Reversion of the hprt clones was done by measuring HAT<sup>R</sup>. Cells were clonally expanded under 6-TG selection to prevent "jackpot" effects caused by the early recombinational loss of the duplicated element giving rise to a large number of colonies by cell division. When  $10^7$  cells were obtained, the cells were reseeded onto 90 mm plates without selection for 48 hours. After 48 hours HAT selection was applied and resistant colonies were scored 10 days later, typically 20 to 200 colonies were observed per  $10^7$  cells plated (Table 4). Every clone examined reverted at a similar frequency.

TABLE 5  
REPLACEMENT AND INSERTION VECTORS: TARGETING AND FREQUENCY

| <u>Gene</u> | <u>Homology</u>   | <u>Vector</u> | <u>Frequency</u> |                          |     |
|-------------|-------------------|---------------|------------------|--------------------------|-----|
| Hprt        | 6.8 kb            | RV            | 1/300            | <input type="checkbox"/> |     |
| Hprt        | 6.8 kb            | IV            | 1/32             | <input type="checkbox"/> | 10X |
| Hprt        | 1.3 kb<br>minimum | RV            | <1/5000          | <input type="checkbox"/> |     |
| Hprt        | 6.8 kb            | IV            | 1/400            | <input type="checkbox"/> | 12X |
| Hox2.6      | 3.2 kb            | IV+           | 1/33             |                          |     |

RV=Replacement Vector; IV=Insertion Vector

EXAMPLE 6  
SELECTION FOR HOMOLOGOUS RECOMBINATION

It is possible to use "Poly A Selection" in order to enhance the selection of cells which have integrated the introduced DNA by homologous recombination.

-67-

1        If an introduced DNA molecule were to integrate at  
2        random into the host chromosome, it would generally not  
3        integrate at a site adjacent to a necessary 3'  
4        polyadenylation site. Thus, the mRNA produced by the  
5        transcription of such randomly inserted constructs would  
6        generally lack polyadenylation. This fact can be exploited  
7        by using vectors which permit one to select for a  
8        recombinational event that results in integration adjacent  
9        to the natural polyadenylation site of the introduced gene  
10      sequence (i.e. by homologous recombination rather than by  
11      random insertion).

12      To illustrate this aspect of the invention, three  
13      vectors were constructed which contain fragments of the hprt  
14      gene (Figure 10). As shown in Figure 10, the vectors  
15      contain exons 7, 8, and 9 of the hprt gene. The  
16      polyadenylation site is located in exon 9. A HinDIII site  
17      is present within exon 9, and an EcoRI site is located after  
18      the end of the exon.

19      The first vector employed contained a 5.0 kb region, and  
20      thus contained the polyadenylation site of exon 9 (Vector 6,  
21      Figure 10). As shown in Table 6, the frequency of insertion  
22      was high (i.e. frequency of G418 resistant colonies was  $24 \times 10^{-5}$ ), but only 1/941 colonies showed the dual thioguanine  
23      resistance and G418 resistance which would characterize a  
24      desired recombinant (i.e. a recombinant in which integration  
25      had resulted in an intact hprt gene and an intact nptII  
26      gene). Thus, some random integration is occurring.

27      Similarly, when a vector of 3.5 kb was employed (Vector  
28      10) which contained DNA from the XbaI site to the EcoRI site  
29      of Vector 6, the frequency of insertion was high (i.e.  
30      frequency of G418 resistant colonies was  $21 \times 10^{-5}$ ), but only  
31      1/770 colonies showed the dual thioguanine resistance and  
32      G418 resistance which would characterize a desired  
33      gene.

-68-

1 recombinant (Table 6). This finding demonstrates that some  
2 random integration is occurring.

3 If, however, a vector is employed which lacks the  
4 polyadenylation site of exon 9 (i.e. Vector 9), random  
5 integration does not result in expression of a functional  
6 nptII transcript. Thus, the frequency of G418 resistant  
7 colonies is low ( $1.4 \times 10^{-5}$ ). Since the number of colonies  
8 evidencing random integration is suppressed, the overall  
9 frequency of recovery of the desired recombinants is  
10 enhanced (i.e. an overall efficiency of 1/100 for the dual  
11 resistant colonies (Table 6). Thus, the poly A selection  
12 results in an approximate increase of overall efficiency of  
13 nearly 10 fold. Poly A selection may therefore be  
14 advantageously used in situations where one desires to  
15 minimize or avoid the screening of colonies to identify  
16 random versus homologous recombinants.

17

| 21 | VECTOR | SIZE | G418 <sup>R</sup>    | TG <sup>R</sup>      | TG <sup>R</sup> /G418 <sup>R</sup> |
|----|--------|------|----------------------|----------------------|------------------------------------|
| 22 | #      | (kb) | ( $\times 10^{-5}$ ) | ( $\times 10^{-7}$ ) |                                    |
| 23 | 6      | 5.0  | 24                   | 2.5                  | 1/941                              |
| 24 | 9      | 3.0  | 1.4                  | 1.4                  | 1/100                              |
| 25 | 10     | 3.5  | 21                   | 2.7                  | 1/770                              |

26  
27  
28  
29  
30       EXAMPLE 7  
31       INTRODUCTION OF SUBTLE MUTATIONS IN THE C-SRC LOCUS  
32

33       The methods of the present invention were further  
34       illustrated by their use to produce cells having precise and  
35       subtle mutations in the c-src locus of ES cells. The c-src  
36       locus contains several exons, which are designated as  
37       "boxed" regions 2 and 3' in Figure 11. As shown in Figure

-69-

1 11A, the natural allele of exon 3' does not contain a  
2 HindIII site.

3 The sequence of a portion of exon 3' is shown in Figure  
4 11C. As shown in Figure 11C, a 9 bp insertion into this  
5 exon will result in the formation of a HinDIII site.

6 To accomplish this change in the sequence of exon 3', a  
7 vector (src 14) was prepared. As shown in Figure 11B, the  
8 src 14 vector is homologous to a region of the c-src locus.  
9 The exon 3' sequence of the vector, however, has been  
10 altered to contain the 9 base pair insertion needed to  
11 create a HindIII site (Figure 11C).

12 The src 14 vector was introduced into ES cells by co-  
13 electroporation with a second vector (PGKneo) that contained  
14 the nptII gene, at a total DNA concentration of 25 µg/ml and  
15 a molar ratio of 1:5 (neo vector to targeting vector) in the  
16 manner described above.

17 Cells were cultured in the presence of G418 for 12 days  
18 in order to select for recombinant cells in which the nptII  
19 gene had integrated. These recombinant cells were then  
20 screened, using PCR, for cells which had undergone a  
21 recombinational event resulting in the replacement of the  
22 natural exon 3' locus with the HinDIII site-containing exon  
23 3' sequence of the src 14 vector.

24 Southern analysis of the colonies identified by PCR  
25 screening using probes B and C (Figure 11B) demonstrated  
26 that the natural exon 3' locus had been altered, as desired,  
27 to contain a HinDIII site. This experiment demonstrated  
28 that subtle insertions can be introduced into any cellular  
29 gene.

30 To further illustrate the capacity of the present  
31 invention to introduce complex, predetermined mutations into  
32 the genome of a recipient cell, exon 3" of the c-src gene of

-70-

1 an ES cell was mutated to contain two different substitution  
2 mutations.

3 As shown in Figure 12A, the natural allele of exon 3" does not contain either an NheI site or an EcoRI site. As  
4 shown in Figure 12C, however, the replacement of the natural  
5 sequence ACC TGG TTC of exon 3" with the sequence TAG CTA  
6 GCT will result in the formation of an NheI site. Similarly,  
7 replacement of ACA with GAA in exon 3" will  
8 create an EcoRI site (Figure 12C).

9  
10 To accomplish these changes in the sequence of exon ",  
11 a vector (src 33) was prepared. As shown in Figure 12B, the  
12 src 33 vector is homologous to a region of the c-src locus.  
13 The exon 3" sequence of the vector, however, has been  
14 altered to contain the substitutions indicated above (Figure  
15 12C).

16 The src 33 vector was introduced into ES cells by  
17 electroporation, in concert with a second vector that  
18 contained the nptII gene, in the manner described above.  
19 Cells were cultured in the presence of G418 in order to  
20 select for recombinant cells in which the nptII gene had  
21 integrated. These recombinant cells were then screened,  
22 using PCR, for cells which had undergone a second  
23 recombinational event resulting in the replacement of the  
24 natural exon 3" locus with the exon 3" sequence of the src  
25 33 vector.

26 Southern analysis of the colonies identified by PCR  
27 screening using probes A and C (Figure 12C) demonstrated  
28 that the natural exon 3" locus had been altered, as desired,  
29 to contain both the NheI and the EcoRI sites. This  
30 experiment demonstrated that subtle substitutions can be  
31 introduced into any cellular gene.

32 While the invention has been described in connection  
33 with specific embodiments thereof, it will be understood

-71-

1       that it is capable of further modifications and this  
2       application is intended to cover any variations, uses, or  
3       adaptations of the invention following, in general, the  
4       principles of the invention and including such departures  
5       from the present disclosure as come within known or  
6       customary practice within the art to which the invention  
7       pertains and as may be applied to the essential features  
8       hereinbefore set forth and as follows in the scope of the  
9       appended claims.

1

WHAT IS CLAIMED IS:

2

3

4       1. A method for obtaining a desired animal or non-fungal  
5       plant cell which contains a desired non-selectable gene  
6       sequence inserted within a predetermined gene sequence of  
7       said cell's genome, which method comprises:

8

9           A. incubating a precursor cell with a DNA molecule  
10          containing said desired non-selectable gene sequence,  
11          wherein said DNA molecule additionally contains two regions  
12          of homology which flank said desired gene sequence, and  
13          which are sufficient to permit said desired gene sequence to  
14          undergo homologous recombination with said predetermined  
15          gene sequence of said genome of said precursor cell;

16

17           B. causing said DNA molecule to be introduced into  
18          said precursor cell;

19

20           C. permitting said introduced DNA molecule to  
21          undergo homologous recombination with said predetermined  
22          gene sequence of said genome of said precursor cell to  
23          thereby produce said desired cell wherein said desired non-  
24          selectable gene sequence has been inserted into said  
25          predetermined gene sequence; and

26

27           D. recovering said desired cell.

28

29

30       2. The method of claim 1 wherein said DNA molecule  
31          contains a detectable marker gene sequence.

32

33

34       3. The method of claim 1 wherein said DNA molecule is  
35          introduced into said precursor cell by subjecting said  
36          precursor cell and said DNA molecule to electroporation.

37

38

39

40       4. The method of claim 3 wherein in step B, said  
41          precursor cell is simultaneously subjected to

-73-

1       electroporation with a second DNA molecule, said second DNA  
2       molecule containing a detectable marker gene sequence.

3

4       5. The method of claim 1 wherein said desired cell is a  
5       non-fungal plant cell.

6

7       6. The method of claim 1 wherein said desired cell is an  
8       animal cell.

9

10      7. The method of claim 6 wherein said animal cell is a  
11       somatic cell.

12

13      8. The method of claim 7 wherein said animal cell is of  
14       an animal selected from the group consisting of a chicken,  
15       a mouse, a rat, a hamster, a rabbit, a sheep, a goat, a  
16       fish, a pig, a cow or bull, a non-human primate and a human.

17

18      9. The method of claim 6 wherein said animal cell is a  
19       pluripotent cell.

20

21      10. The method of claim 9 wherein said animal cell is of  
22       an animal selected from the group consisting of a chicken,  
23       a mouse, a rat, a hamster, a rabbit, a sheep, a goat, a  
24       fish, a pig, a cow or bull, and a non-human primate.

25

26      11. The method of claim 9 wherein said pluripotent cell  
27       is an embryonic stem cell.

28

-74-

1       12. The method of any one of claims 1-3 wherein said  
2       desired gene sequence is substantially homologous to said  
3       predetermined gene sequence of said precursor cell.  
4

5       13. The method of claim 12 wherein said desired gene  
6       sequence is an analog of said predetermined sequence of said  
7       precursor cell.  
8

9       14. The method of claim 12 wherein said desired gene  
10      sequence is a human analog of said predetermined sequence of  
11      said precursor cell.  
12

13       15. The method of claim 12 wherein said desired cell is  
14      a non-human cell which expresses said desired gene sequence.  
15

16       16. The method of claim 12 wherein said desired gene  
17      sequence encodes a protein selected from the group  
18      consisting of: a hormone, an immunoglobulin, a receptor  
19      molecule, a ligand of a receptor molecule, and an enzyme.  
20

21       17. A non-fungal plant cell which contains an introduced  
22      recombinant DNA molecule containing a desired gene sequence,  
23      said desired gene sequence being flanked by regions of  
24      homology which are sufficient to permit said desired gene  
25      sequence to undergo homologous recombination with a  
26      predetermined gene sequence of the genome of said cell.  
27

28       18. A non-human animal cell which contains an introduced  
29      recombinant DNA molecule containing a desired gene sequence,  
30      said desired gene sequence being flanked by regions of  
31      homology which are sufficient to permit said desired gene  
32      sequence to undergo homologous recombination with a  
33      predetermined gene sequence of the genome of said cell.

-75-

1

2       19. The desired cell produced by the methods of any one  
3 of claims 1-3.

4

5       20. The desired cell produced by the method of claim 11.

6

7       21. The desired cell produced by the method of claim 12.

8

9       22. A non-human animal containing a cell derived from the  
10 desired cell of claim 19, wherein said animal is either a  
11 chimeric or a transgenic animal.

12

13       23. The non-human animal of claim 22, wherein said animal  
14 and said desired cell are of the same species, and wherein  
15 said species is selected from the group consisting of: a  
16 chicken, a mouse, a rat, a hamster, a rabbit, a sheep, a  
17 goat, a fish, a pig, a cow or bull, and a non-human primate.

18

19       24. A non-human animal containing a cell derived from the  
20 desired cell of claim 20, wherein said animal is either a  
21 chimeric or a transgenic animal.

22

23       25. The non-human animal of claim 24, wherein said animal  
24 and said desired cell are of the same species, and wherein  
25 said species is selected from the group consisting of: a  
26 chicken, a mouse, a rat, a hamster, a rabbit, a sheep, a  
27 goat, a fish, a pig, a cow or bull, and a non-human primate.

28

29       26. A non-human animal containing a cell derived from the  
30 desired cell of claim 21, or a descendant thereof, wherein  
31 said animal is either a chimeric or a transgenic animal.

32

1        27. The non-human animal of claim 26, wherein said animal  
2        and said desired cell are of the same species, and wherein  
3        said species is selected from the group consisting of: a  
4        chicken, a mouse, a rat, a hamster, a rabbit, a sheep, a  
5        goat, a fish, a pig, a cow or bull, and a non-human primate.  
6

7        28. A non-fungal plant containing a cell derived from the  
8        desired cell of claim 5, or a descendant thereof, wherein  
9        said non-fungal plant is either a chimeric or a transgenic  
10      plant.

11      29. A method of gene therapy which comprises introducing  
12      to a recipient in need of such therapy, a desired non-  
13      selectable gene sequence, said method comprising:

14            A. providing to said recipient an effective amount  
15      of a DNA molecule containing said desired non-selectable  
16      gene sequence, wherein said DNA molecule additionally  
17      contains two regions of homology which flank said desired  
18      gene sequence, and which are sufficient to permit said  
19      desired gene sequence to undergo homologous recombination  
20      with a predetermined gene sequence present in a precursor  
21      cell of said recipient;

22            B. permitting said DNA molecule to be introduced  
23      into said precursor cell;

24            C. permitting said introduced DNA molecule to  
25      undergo homologous recombination with said predetermined  
26      gene sequence of said genome of said precursor cell to  
27      thereby produce a desired cell wherein said desired non-  
28      selectable gene sequence has been inserted into said  
29      predetermined gene sequence; and wherein the presence or  
30      expression of said introduced gene sequence in said cell of  
31      said recipient comprises said gene therapy.

32

33

-77-

1           30. The method of claim 29 wherein said recipient is a  
2           non-fungal plant.

3  
4           31. The method of claim 29 wherein said recipient is an  
5           animal.

6  
7           32. The method of claim 31 wherein said animal is  
8           selected from the group consisting of: a chicken, a mouse,  
9           a rat, a hamster, a rabbit, a sheep, a goat, a fish, a pig,  
10          a cow or bull, a non-human primate and a human.

11  
12          33. The method of claim 32, wherein said animal is a  
13          human.

14  
15          34. A method for obtaining a desired animal or non-fungal  
16          plant cell which contains a desired non-selectable gene  
17          sequence inserted within a predetermined gene sequence of  
18          said cell's genome, which method comprises:

19           A. incubating a precursor cell under non-selective  
20          culture conditions, or under a first set of selective  
21          culture conditions, with a DNA molecule containing:

22           i) said desired non-selectable gene sequence,  
23           wherein said DNA molecule additionally contains  
24           two regions of homology which flank said desired  
25           gene sequence, and which are sufficient to permit  
26           said desired gene sequence to undergo homologous  
27           recombination with said predetermined gene  
28           sequence of said genome of said precursor cell;  
29           and

30           ii) a selectable gene sequence whose presence or  
31           expression in said precursor cell can be selected  
32           for by culturing said cell under said first set  
33           of selective culture conditions, and whose

1 presence or expression in said precursor cell can  
2 be selected against by culturing said cell under  
3 a second set of selective culture conditions;

4 B. permitting said DNA molecule to be introduced  
5 into said precursor cell;

6 C. permitting said introduced DNA molecule to  
7 undergo homologous recombination with said predetermined  
8 gene sequence of said genome of said precursor cell to  
9 thereby produce said desired cell wherein said desired non-  
10 selectable gene sequence has been inserted into said  
11 predetermined gene sequence; and

12 D. recovering said desired cell by culturing said  
13 cell under said first set of selective culture conditions,  
14 by then permitting said cell to undergo intrachromosomal  
15 recombination under non-selective culture conditions, and by  
16 then incubating said cell under said second set of selective  
17 culture conditions.

18  
19 35. The method of claim 34, wherein said cell is  
20 deficient in HPRT enzyme, and wherein said selectable gene  
21 sequence expresses an active HPRT enzyme, and wherein said  
22 first set of selective culture conditions comprises  
23 incubation of said cell under conditions in which the  
24 presence of an active HPRT enzyme in said cell is required  
25 for growth, and wherein said second set of selective culture  
26 conditions comprises incubation of said cell under  
27 conditions in which the absence of an active HPRT enzyme in  
28 said cell is required for growth.

29  
30 36. The method of claim 34, wherein said cell is  
31 deficient in APRT enzyme, and wherein said selectable gene  
32 sequence expresses an active APRT enzyme, and wherein said  
33 first set of selective culture conditions comprises

-79-

1       incubation of said cell under conditions in which the  
2       presence of an active APRT enzyme in said cell is required  
3       for growth, and wherein said second set of selective culture  
4       conditions comprises incubation of said cell under  
5       conditions in which the absence of an active APRT enzyme in  
6       said cell is required for growth.

7

8       37. The method of claim 34, wherein said cell is  
9       deficient in TK enzyme, and wherein said selectable gene  
10      sequence expresses an active TK enzyme, and wherein said  
11      first set of selective culture conditions comprises  
12      incubation of said cell under conditions in which the  
13      presence of an active TK enzyme in said cell is required for  
14      growth, and wherein said second set of selective culture  
15      conditions comprises incubation of said cell under  
16      conditions in which the absence of an active TK enzyme in  
17      said cell is required for growth.

- 1 / 17

1A Replacement vectors: 6.8kb Homology which target the hprt locus



1B Insertion Vectors : 6.8kb homology



FIGURE 1

- 2 / 17

A. Insertion vectors with heterology at the insertion site: 2kb  
insertion at the linearization site



2B. Insertion vectors with heterology at the insertion site: 26bp  
insertion at the linearization site



FIGURE 2

2c Insertion vectors with added heterology: Internal to the homology



FIGURE 2 (continued)

- 4 / 17

# Genetic Replacement Technology

FIGURE 3



- 5 / 17

A Step#1, homologous recombination: Adding the human replacement with an insertion vector.



FIGURE 4

- 6 / 17

Step#2: Reconstruct junction, remove duplicated promoter, add additional 3' human sequences. Select in  
- FIAU (100%)



FIGURE 4 (continued)

- 7 / 17

## Selective introduction of small and large genomic changes

### Step 1 - Standard Replacement vector



### Step 2 A - Introduction of small mutations



Step 2 B complete or partial replacement with homologous or heterologous sequences.



FIGURE 5

[- 8 / 17

6A

**Step #1 Set up the initial target**

6B

**Step#2, homologous recombination: Adding the contiguous clone: Selection in HAT****FIGURE 6**

- 9 / 17

6C

**Step#3: Repair A-B junction. Select in - 6TG (100%)****FIGURE 6 (continued)**

10 / 17

6D

**Step #4: Addition of contiguous clone**

6E

**Step #5: Repair with B+C junctional clone. Select in - 6TG (100%)**

FIGURE 6 (continued)

11/17

## Co-Electroporation

Targetting vector  
Hprt 6.5kb



Selection vector  
1.5kb

[PGK neo bpA]

Positive control  
Hprt 6.9kb



FIGURE 7

12 / 17

Predicted structure of the hprt locus following homologous integration of the IV6.8 vector



FIGURE 8

13 / 17

Reversion of homologous recombinants generated with insertion vectors



FIGURE 9

14 / 17

## Poly A selection



FIGURE 10

15 / 17

FIGURE 11



16 / 17

FIGURE 12



# Direct selection for targeted recombination events



# INTERNATIONAL SEARCH REPORT

International Application No. PCT/US91/04006

## I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) \*

According to International Patent Classification (IPC) or to both National Classification and IPC  
 I.P.C(5): C12N 15/00, 5/00  
 U.S.CI: 435/172.3, 240.1; 935/55, 56, 70

## II. FIELDS SEARCHED

Minimum Documentation Searched ?

| Classification System | Classification Symbols         |
|-----------------------|--------------------------------|
| U.S.                  | 435/172.3, 240.1; 935/55,56 70 |

Documentation Searched other than Minimum Documentation  
to the Extent that such Documents are Included in the Fields Searched \*

APS, Chemical Abstracts, Biological Abstracts

## III. DOCUMENTS CONSIDERED TO BE RELEVANT \*

| Category * | Citation of Document, <sup>11</sup> with indication, where appropriate, of the relevant passages <sup>12</sup>                                                                                                    | Relevant to Claim No. <sup>13</sup>    |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| X          | Proceedings of the National Academy of Science, vol. 85, issued November 1988, Doetschman et al, "Targeted mutation of the <u>Hprt</u> Gene in Mouse Embryonic Stem Cells," pages 8583-8587, see entire document. | 1-4, 6-16<br><u>18-21, 34</u><br>35-37 |
| Y          | Science, Vol. 245, issued 15 September 1989, Johnson et al, "Targeting of Non expressed Genes in Embryonic Stem Cells via Homologous Recombination, pages 1234 -1236, see entire document.                        | 1-4, 6-16<br><u>18-21,</u><br>34-37    |

(Next)

- \* Special categories of cited documents: <sup>10</sup>
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&" document member of the same patent family

## IV. CERTIFICATION

Date of the Actual Completion of the International Search

28 August 1991

Date of Mailing of this International Search Report

24 SEP 1991

International Searching Authority

ISA/US

Signature of Authorized Officer

*Deborah Crouch*  
Deborah Crouch

**III. DOCUMENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)**

| Category | Citation of Document, with indication, where appropriate, of the relevant passages                                                                                                | Relevant to Claim No.                                    |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| C        | <p>Molecular and Cellular Biology, vol. 10, issued February 1990, Baur et al, "Intercellular Recombination in Plants," 492-500, see entire document.</p>                          | <p>1-5, 12, 17<br/> <u>19, 21,</u><br/> <u>34-37</u></p> |
| C        | <p>The Plant Cell, Vol. 2, issued May 1990, "Homologous Recombination in Plant Cells after <u>Agrobacterium</u> Mediated Transformation," pages 415-425, see entire document.</p> | <p>1-5, 12, 17<br/> <u>19, 21,</u><br/> <u>34-37</u></p> |

**FURTHER INFORMATION CONTINUED FROM THE SECOND SHEET**

Nature, Volume 338, issued 29 March 1989, Joyner et al, "Production of a mutation in Mouse Fo-2 Gene by Homologous Recombination in Embryonic Stem Cells," pages 153-156, see entire document.

1-4, 6-16  
18-21,  
34-37

**V.  OBSERVATIONS WHERE CERTAIN CLAIMS WERE FOUND UNSEARCHABLE<sup>1</sup>**

This international search report has not been established in respect of certain claims under Article 17(2) (a) for the following reasons:

1.  Claim numbers ..... because they relate to subject matter<sup>12</sup> not required to be searched by this Authority, namely:

2.  Claim numbers ..... because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out<sup>13</sup>, specifically:

3.  Claim numbers ..... because they are dependent claims not drafted in accordance with the second and third sentences of PCT Rule 6.4(a).

**VI.  OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING<sup>2</sup>**

This International Searching Authority found multiple inventions in this international application as follows:

**See Attachment**

1.  As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims of the international application.

2.  As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims of the international application for which fees were paid, specifically claims:

3.  No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claim numbers:

1-21 and 34-37 telephone practice

4.  As all searchable claims could be searched without effort justifying an additional fee, the International Searching Authority did not invite payment of any additional fee.

**Remark on Protest**

The additional search fees were accompanied by applicant's protest.

No protest accompanied the payment of additional search fees.

*THIS PAGE BLANK (USPTO)*