

BRAC University

Dept. of Computer Science and Engineering

Assessment: Assignment 2 Due: 11:59 AM 17 October 2023 Full Marks:

Semester:	Fall 2023	Name:	
Course Code:	CSE251		
Section:	15	Student ID:	
Course Name:	Electronic Devices and Circuits		

Write down your student ID on the top right corner of each of the pages.

- Clearly write the solutions, along with the questions, on white paper with black ink (no need to use color pen, don't use pencils).
- Use CamScanner, or Adobe Scan, or Microsoft Office Lens, or any other software to scan the pages and make a single PDF file.
- After creating the PDF, make sure that (a) there are no pages missing, (b) all of the pages are legible, (c) your student ID on each page are visible.
- Please note, collaboration \neq copying. You are allowed to discuss the questions and clear confusion you might have, but you have to write your solutions independently and be able to explain your answers during a random viva.
- [Very Important] Rename the PDF in the following format: "A1_StudentID_FullNameWithoutSpace.pdf". For example, if my student ID is 12345678 and my name is Shadman Shahid, the filename should be "A1_12345678_ShadmanShahid.pdf".
- Submission Link: https://forms.gle/j81vXAmKcUwarxZy8

[CO3] Question 1:

14 Marks

a) Design a circuit using **op-amp** that has the voltage transfer characteristics as shown in the figure below. 4 $v_0(V)$ is the output voltage and $v_I(V)$ is the input voltage.

b) A valve is used to release (when valve is OPEN,) or maintain (when valve is CLOSED,) water pressure 10 in a water tank. The valve operates on ACTIVE LOW logic. (i.e., the valve is OPENED when given a LOW voltage of 1 V, but remains CLOSED when provided a HIGH voltage of 6 V.)

A pressure sensor is installed in the water tank that outputs a voltage linearly proportional to pressure, as shown in the table below.

At 0.5 atm pressure	At 1 atm pressure	At 1.5 atm pressure
$v_{0.5 atm} = 0.5 \text{ V}$	$v_{1 atm} = 3 \text{ V}$	$v_{low, 1.5 atm} = 5.5 \text{ V}$

The pressure in the water tank can be measured by the formula $P = h \rho g$, where P, (in **Pascals (Pa)** unit) is the water pressure, h is the height of water in the tank (in metres), $\rho (= 1000 \text{ kgm}^{-3})$ is the density of water and g is the acceleration due to gravity (in ms^{-2}).

[1 atm = 101325 Pa]

- Design a circuit using Op-Amp comparator to automatically turn OPEN the valve if water level
- **Draw** the voltage transfer characteristics (VTC) of the designed Op-Amp. ii.

Answer 1(b)

From the table: find the exact voltage at this pressure.

$$\frac{\sqrt{0.96 \text{ atm}} - \sqrt{0.5 \text{ atm}}}{0.967 - 0.5} = \frac{\sqrt{1 \text{ atm}} - \sqrt{0.5 \text{ atm}}}{1 - 0.5}$$

$$= > \sqrt{0.960 \text{ dm}} = \frac{3-0.5}{0.5} \times (0.967-0.5)$$

$$\sqrt{0.960 \text{ dm}} = 0.5 \text{ V} + 5 \times (0.967-0.5)$$

$$\sqrt{0.960 \text{ dm}} = 2.836 \text{ V}$$

So, the comparator is in inverting configuration

[CO3] 3

a) Draw the voltage transfer characteristic (VTC) curve $(v_0 \text{ vs } v_I)$ from the adjacent waveform graph. Also draw the **Op-Amp Circuit** that would give rise to such a VTC.

v(t) V 2.5 1.0 0.5 $v_O(t)$ $v_I(t)$ $t_{(ms)}$

b) Draw the voltage transfer characteristic (VTC) curve (v_0 vs v_I) from the adjacent Op-Amp circuit.

c) **Design** an op-amp circuit to transform the sinusoidal voltage, $v_I = 5 \cdot \sin(\frac{2\pi}{5} \cdot t)$ (- t is in units of **ms**, and time-period T is 5 ms), to:

2

[CO3] 5

units of ms, and time-period T is 5 ms [You must evaluate V_{REF}]

- i. A square wave with a duty cycle of 50%.
- ii. A square wave with a duty cycle of **25**%.

Duty cycle
0.5

O V

1 : 1

1/2 = 50%

Duty cycle
0.25

High level

Low level

Low level

Low level

1 : 3

1/4 = 25%

[Duty Cycle: Time of positive half cycle ÷ Time period]

For more information on duty cycle, click here!

[Hint: If $y = A \cdot \sin(\theta)$ is a sinusoidal function with period of 2π then $\theta = \sin^{-1}(\frac{y}{A})$ and $\pi - \sin^{-1}(\frac{y}{A})$. So, for 25% duty cycle find the value of y for which $\Delta\theta = \left(\pi - \sin^{-1}(\frac{y}{A})\right) - \sin^{-1}\left(\frac{y}{A}\right) = \frac{\text{Time period}}{4} = \frac{\pi}{2}$

$$\begin{aligned} t_{1} &= \frac{5}{2\pi} \sin^{7} \left(\frac{V_{REF}}{5} \right) \\ t_{2} &= \frac{T}{2} - t_{1} = \frac{5}{2} - \frac{5}{2\pi} \sin^{7} \left(\frac{V_{REF}}{5} \right) \\ \therefore t_{2} - t_{1} &= \frac{T}{4} = \frac{5}{2} - 2 \cdot \frac{5}{2\pi} \sin^{7} \left(\frac{V_{REF}}{5} \right) \\ &= \frac{5}{4} = \frac{5}{2} - \frac{5 \times 2}{2\pi} \sin^{7} \left(\frac{V_{REF}}{5} \right) \\ &= \frac{5}{4} = \frac{5}{2} - \frac{5 \times 2}{2\pi} \sin^{7} \left(\frac{V_{REF}}{5} \right) \\ V_{REF} &= \frac{5}{4} = \frac{5}{4} = \frac{5}{4} = \frac{5}{4} \end{aligned}$$

[CO2] Question 3: -> Follow class lecture PDF. 10 Marks

Answer the following questions dealing with the above circuit.

- a) Using the ideal Op Amp model, derive an expression for the output voltage v_0 in terms of v_1 , v_2 , R_1 , 4 R_2 , R_3 , and R_4
- b) Does connecting a load resistor R_L between the output and ground change the previous expression 2 for v_0 ? Why?
- c) Let $v_1=v_2$ and $R_1=1$ k Ω , $R_2=30$ k Ω , and $R_2=1.5$ k Ω . Find R_4 so that $v_0=0$.
- d) Let $v_2 = 0$ and $v_1 = 1$ V. Using the preceding resistor values (including that computed for R_4), find v_0 .

[CO3] Question 4:

6 Marks

Design the circuit below such that the closed loop voltage gain is $A_{\rm CL} = -25$. The maximum current in any resistor is to be limited to $10~\mu\rm A$ with the input voltage in the range $-25 \le v_I \le 25~m\rm V$.

- a) What are the values of R_1 and R_2 ? $\longrightarrow R_1 = \frac{25}{11} = 2 \cdot 5 \text{ k} \Omega$
- b) What is the range of output voltage v_0 ?

-0.625 V & V. & 0.625 V

2

$$\frac{3(c)}{R_{1}} = \frac{R_{2}}{R_{1}} = 30; \quad \frac{R_{4}}{R_{3} + R_{4}} = \left(1 + \frac{1 \cdot \Gamma}{R_{4}}\right)^{-1}$$

$$V_{0} = -\frac{R_{2}}{R_{1}} V_{1} + \left(1 + \frac{R_{2}}{R_{1}}\right) \left(\frac{R_{4}}{R_{3} + R_{4}}\right) V_{2}$$

$$\therefore 30 \times 1 = \frac{31}{\left(1 + \frac{1 \cdot \Gamma}{R_{4}}\right)} \times \left[As \quad v_{1} = v_{2} \quad \text{when } v_{0} = 0\right]$$

$$\therefore 1 + \frac{1 \cdot \Gamma}{R_{4}} = \frac{31}{30}$$

$$3(a) V_0 = -15V$$