SBML Model Report

Model name: "Muller2008_treshold_minimal"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by Michael Schubert¹ at May 16th 2011 at 9:49 a.m. and last time modified at October nineth 2014 at 5:24 p.m. Table 1 gives an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	3
events	0	constraints	0
reactions	0	function definitions	0
global parameters	8	unit definitions	0
rules	4	initial assignments	0

Model Notes

This model originates from BioModels Database: A Database of Annotated Published Models (http://www.ebi.ac.uk/biomodels/). It is copyright (c) 2005-2011 The BioModels.net Team. For more information see the terms of use.

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

¹EBI, schubert@ebi.ac.uk

2 Unit Definitions

This is an overview of five unit definitions which are all predefined by SBML and not mentioned in the model.

2.1 Unit substance

Notes Mole is the predefined SBML unit for substance.

Definition mol

2.2 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.3 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m^2

2.4 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.5 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
compartment_1	compartment_1		3	1	litre	Ø	

$\textbf{3.1 Compartment} \texttt{compartment}_1$

This is a three dimensional compartment with a constant size of one litre.

Name compartment_1

4 Species

This model contains three species. The boundary condition of three of these species is set to true so that these species' amount cannot be changed by any reaction. Section 7 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
x	X	${\tt compartment_1}$	$\text{mol} \cdot l^{-1}$		
y z	y z	${ t compartment_1} \ { t compartment_1}$	$egin{array}{ll} \operatorname{mol}\cdot \mathrm{l}^{-1} \\ \operatorname{mol}\cdot \mathrm{l}^{-1} \end{array}$		✓

5 Parameters

This model contains eight global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
r	r	0.200	$\overline{\hspace{1cm}}$
mu_x	mu_x	4.000	$\overline{\mathbf{Z}}$
zeta	zeta	0.500	$\overline{\mathbf{Z}}$
b	b	1.500	$\overline{\mathbf{Z}}$
$\mathtt{mu}_{-}\mathtt{z}$	mu_z	0.400	
epsilon	epsilon	0.002	\square
k	k	0.400	
mu_z_star	mu_z_star	0.400	\square

6 Rules

This is an overview of four rules.

6.1 Rule x

Rule x is a rate rule for species x:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{x} = \mathbf{r} \cdot [\mathbf{x}] \cdot [\mathbf{y}] + \mathbf{zeta} \cdot \mathbf{mu}_{-}\mathbf{x} - \mathbf{zeta} \cdot [\mathbf{x}] \tag{1}$$

6.2 Rule y

Rule y is a rate rule for species y:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{y} = \mathbf{r} \cdot [\mathbf{x}] \cdot [\mathbf{y}] - \mathbf{b} \cdot [\mathbf{y}] \cdot [\mathbf{z}] - \mathbf{zeta} \cdot [\mathbf{y}] \tag{2}$$

6.3 Rule z

Rule z is a rate rule for species z:

$$\frac{\mathrm{d}}{\mathrm{d}t}z = b \cdot [y] \cdot [z] + zeta \cdot mu z - zeta \cdot [z]$$
(3)

6.4 Rule mu_z

Rule mu_z is a rate rule for parameter mu_z:

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{mu}_{z} = \mathrm{epsilon} \cdot ([y] - k \cdot (\mathrm{mu}_{z} - \mathrm{mu}_{z} \mathrm{star})) \tag{4}$$

7 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

7.1 Species x

Name x

Initial concentration $4 \text{ mol} \cdot l^{-1}$

Involved in rule x

One rule determines the species' quantity.

7.2 Species y

Name y

Initial concentration $0.2 \text{ mol} \cdot l^{-1}$

Involved in rule y

One rule determines the species' quantity.

7.3 Species z

Name z

Initial concentration $0.4 \text{ mol} \cdot 1^{-1}$

Involved in rule z

One rule determines the species' quantity.

 $\mathfrak{BML2}^{lAT}$ EX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany