Robot Programming #15

Fundamental Electronics

Dept. of Mech. Robotics and Energy Eng.

Dongguk University

Introduction

- Voltage: a measure of the electric field
- Current: the time rate of flow of charge

$$I(t) = \frac{dq}{dt}$$

- I: Current(A), q: quantity of charge(Coulomb)
- DC: direct current
- AC: alternating current

Introduction

Electric Circuit

Basic Electrical Elements

- Passive Elements:
 - Resistor(R)
 - Capacitor(C)
 - Inductor(L)
- Energy Sources:
 - Voltage source(V)
 - Current source(I)
- Schematic symbols

Resistor

Resistor: a dissipative element that converts

electrical energy into heat

• Ohm's law: V = IR

• Unit: $Ohm(\Omega)$

Resistor Packaging

Resistor Color Bands

• Resistor Value: R=ab x 10^c +/- tolerance(%)

Resistor Color Code Example

- 1. Red, brown, yellow, gold = $? \Omega$
- 2. Orange, black, red, gold = $? \Omega$
- 3. Brown, black, red, gold = $? \Omega$
- 4. Red, green, brown, silver = $? \Omega$
- 5. $100 \text{ k}\Omega = \text{color code}$?
- 6. $100 \Omega = color code$?
- 7. $470 \Omega = \text{color code}$?
- 8. 33 M Ω = color code?

Kirchhoff Voltage Law

 Kirchhoff's voltage law: The sum of voltages around a closed loop or path is zero.

Kirchhoff's voltage law:

$$\sum_{i=1}^{N} V_i = 0$$

Kirchhoff Voltage Law

• KVL Example: $I_R = ?$

 Starting at point A and progressing clockwise around the loop,

$$V_{s} - V_{R} = 0$$

- Applying Ohm's Law, $V_s I_R R = 0$
- Therefore,

$$I_R = V_s / R = 10 / 1000 A = 10 \text{ mA}$$

Kirchhoff Voltage Law

Application of KVL

- $\langle VL: \sum_{i=1}^{n} V_i = 0$
- Application of KVL: $+V_s (V_1 + V_2 + V_3) = 0$

$$+V_s - (IR_1 + IR_2 + IR_3) = 0$$
 $I = V_s / (R_1 + R_2 + R_3)$

Kirchhoff Current Law

• Kirchhoff's current law: The sum of the currents flowing into a closed surface or node is 0. For the following figure, $I_1 + I_2 - I_3 = 0$

Kirchhoff's current law:

$$\sum_{i=1}^{N} I_i = 0$$

Series Resistance Circuit

 Applying KVL to the simple series resistor shown below,

• From Ohm's Law, $V_{R_1} = IR_1$ $V_{R_2} = IR_2$ (2)

Series Resistance Circuit

Inserting Eq. (2) into Eq. (1),

$$+V_s - IR_1 - IR_2 = 0$$

• Solving for I,
$$I = \frac{V_s}{\left(R_1 + R_2\right)}$$

- Equivalent resistor, $R_{eq} = R_1 + R_2$
- In general, N resistors connected in series can be replaced by a single equivalent resistance given by

$$R_{eq} = \sum_{i=1}^{N} R_i$$

Parallel Resistance Circuit

 Applying KCL at node A of the circuit below and using Ohm's law,

$$I - I_1 - I_2 = 0$$

$$I_1 = V_s / R_1, \quad I_2 = V_s / R_2$$

Using the above Eqs.,

$$I = V_s \left(\frac{1}{R_1} + \frac{1}{R_2}\right) = \frac{V_s}{R_{eq}}$$

Parallel Resistance Circuit

• Equivalent resistance:

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2}$$

· General formula:

$$R_{eq} = 1 / \sum_{i=1}^{N} \frac{1}{R_i}$$

Practice Examples:

Calculate the current:

Ground

- Field Difference(Difference in Electrical Energy)
 - The potential and electrical energies in space cannot be defined as absolute value but can be measured by relative value.

Ground

 Can make the node have the reference voltage(0V) if it is connected to the earth.

Grounding Examples

Power

Amount of work per a given period of time(W)

$$P = \frac{\text{Work}}{\text{Time}} = \frac{\text{Work}}{\text{Unit Charge}} \times \frac{\text{Unit Charge}}{\text{Time}} = \text{Voltage} \times \text{Current}$$

$$P = VI = I^2 R = \frac{V^2}{R}$$

Power Example

120v
$$\stackrel{\mathsf{R}}{=} \overset{\mathsf{R}}{=} \overset{\mathsf{N}}{=} \overset{\mathsf{$$

(c)
$$R=?, P=?$$

Capacitor & Inductor

- Capacitor: a passive element that stores energy in the form of an electric field.
- Consists of a pair of parallel conducting plates separated by a dielectric material.
- I(t) = C dV/dt
- Inductor: a passive energy storage element that stores energy in the form of magnetic field.
- V(t) = L dI/dt

Alternating Current Analysis

- When linear circuits are excited by alternating current(AC) signals of a given frequency, the current through and voltage across every element in the circuit are AC signals of the same frequency.
- A sinusoidal AC voltage V(t) is illustrated as follows:

$$V(t) = V_m sin(\omega t + \phi)$$

 V_m : Signal Amplitude, ω : radiation frequency

 ϕ :phase angle , $\phi = \omega \Delta t$, Δt :time shift

$$f = \frac{1}{T} = \frac{\omega}{2\pi} \quad \text{(Hz)}$$

Generalized Ohms Law

Voltage and Current:

$$V(t) = V_m e^{j(\omega t + \phi)}, \quad v(t) = V_m \cos(\omega t + \phi) = \text{Re}[V(t)]$$
$$I(t) = I_m e^{j(\omega t + \psi)}, \quad i(t) = I_m \cos(\omega t + \psi) = \text{Re}[I(t)]$$

Complex Impedance:

$$Z(t) = \frac{V(t)}{I(t)} = \frac{V_m e^{j(\omega t + \phi)}}{I_m e^{j(\omega t + \psi)}} = \frac{V_m}{I_m} e^{j(\phi - \psi)}$$

Generalized Ohms Law

 Instead of resistor, capacitor, and inductor, we use impedance.

$$V = ZI$$

- for resistor: $Z_R = R$
- for inductor: $Z_L = j\omega L$
- for capacitor: $Z_C = \frac{1}{j\omega C}$

AC Circuit Analysis

 Find the steady state current I through the capacitor in the following circuit.

Semiconductor Physics

- Conductor: (a metal such as copper) large current can flow easily
- Insulator: (glass) the electrons do not move easily
- Semiconductor: (Silicon & Germanium) currentcarrying characteristics depend on temperature or the amount of light falling on them
- The properties of pure semiconductor crystal can be significantly changed by inserting small quantities of elements(dopants)
- Donor: enhances the electron conductivity -> n-type
- Acceptor: holes form due to missing electrons.
 Electrons move to occupy the holes. -> p-type

Junction Diode

- pn junction: p-type region of silicon is created adjacent to an n-type region.
- electrons from the n-type silicon can diffuse to occupy the holes in the p-type silicon, creating a depletion region.

Junction Diode

Silicon Diode:

similar to check valve

Types of Diodes

 Small Signal: used to transform low current AC to DC, detect(demodulate) radio signals, multiply voltage, perform logic, absorb voltage spikes.

 Power Rectifier: similar to the above, except that it can handle large current. used in power supplies, AC/DC conversion.

Types of Diodes (Continued)

 Zener: has a specific reverse breakdown voltage. used as a voltage sensitive switch, and constant current power supplies.

• LED: emit some electromagnetic radiation when

forward biased.

Photo diodes: detect light

Voltage Regulators

- Zener diode voltage regulator is cheap and simple to use. But it has drawbacks: the output voltage cannot be set to a precise value, and regulation against source ripple and changes in load is limited.
- Special semiconductor devices are designed to serve as voltage regulator

Figure 5. DC Parameters

Bipolar Junction Transistor

npn transistor

- The relationship between the base current and the collector current is given by: $I_C = \beta I_R, \ (\beta > 100)$
- Transistor functions as a current amplifier.

Bipolar Junction Transistor

 In the case of the pnp transistor, the base and the collector current flow out of the transistor and the collector-emitter voltage is reversed.

Example: Transistor in Saturation

- $I_C = (10V 0.2V) / 1k\Omega = 9.8mA$
- $I_B = I_C / \beta = 9.8 \text{mA}/100 = 0.098 \text{mA}$
- $I_B = 0.098 \text{mA} = (V_{in} 0.7 \text{V}) / 10 \text{k}\Omega$
- $V_{in} = 0.98V + 0.7V = 1.68V$

Field Effect Transistor(FET)

- easy to make and requires less silicon.
- two major FET families:
 - Junction(JFET)
 - Metal-Oxide-Semiconductor(MOSFET)
- The output current is controlled by a small input voltage and practically no current.

The channel is like a transistor that conducts current

from source to the drain.

Analog vs. Digital

 In contrast to an analog signal, a digital signal exists only at specific levels or states and changes its level in discrete steps.

- Digital signals have only two states: high and low
- Two state signals -> Boolean logic and binary number representation

Digital Representations

the base 10 decimal number system:

$$123 = 1 \times 10^2 + 2 \times 10^1 + 3 \times 10^0$$

binary number system:

$$1101_2 = 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 8_{10} + 4_{10} + 0 + 1_{10} = 13_{10}$$

bits: the digits of a binary number

Digital Representations

• Decimal to binary conversion ($123_{10} \rightarrow ?_2$)

Successive divisions	Remainder	
123/2	1	LSB
61/2	1	
30/2	0	
15/2	1	
7/2	1	
3/2	1	
1/2	1	MSB
Result	1111011	

Binary arithmetic is analogous to decimal arithmetic.

Digital Representations

Hexadecimal(base 16) number system: 0~9, A~F

Table 6.2 Hexadecimal symbols and equivalents

Binary	Hexadecimal	Decimal
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	8
1001	9	9
1010	A	10
1011	В	11
1100	C	12
1101	D	13
1110	E	14
1111	F	15

• Ex:

$$123_{10} = 01111011_2 = 7B_{16}$$

Combinational Logic

 convert binary inputs to binary outputs based on the rules of mathematical logic.

Gate	Operation	Symbol	Expression	Truth table
Inverter (INV, NOT)	Invert signal (complement)	A - C	$C = \overleftarrow{A}$	A C 0 1 1 0
AND gate	AND logic	$A \longrightarrow C$	$C = A \cdot B$	A B C 0 0 0 0 1 0 1 0 0 1 1 1
NAND gate	Inverted AND logic	A	$C = \overline{A \cdot B}$	A B C 0 0 1 0 1 1 1 0 1 1 1 0
OR gate	OR logic	$A \longrightarrow C$	C = A + B	A B C 0 0 0 0 1 1 1 0 1 1 1 1
NOR gate	Inverted OR logic	$B \longrightarrow C$	$C = \overline{A + B}$	A B C 0 0 1 0 1 0 1 0 0 1 1 0
XOR gate	Exclusive OR logic	$B \longrightarrow C$	$C = A \oplus B$	A B C 0 0 0 0 1 1 1 0 1 1 1 0
Buffer	Increase output signal current	$A \longrightarrow C$	C = A	A C 0 0 1 1