202409NOIP+ 难度测试赛

题目名称	街机霸主	序列	围圈排列	数区间
题目类型	传统题	传统题	传统题	传统题
目录	game	sequence	circle	count
可执行文件名	game	sequence	circle	count
输入文件名	game.in	sequence.in	circle.in	count.in
输出文件名	game.out	sequence.out	circle.out	count.out
测试点时限	1.0 秒	1.0 秒	1.0 秒	3.0 秒
内存限制	512MB	512 MB	512 MB	512 MB
测试点数目	20	10	20	25

提交源程序文件名

对于 C++ game.cpp sequence.cpp circle.cpp count.cp
--

编译选项

对于 C++	-02 -std=c++14 -static
--------	------------------------

注意事项与提醒(请选手务必仔细阅读)

- 1. 选手提交的源程序必须存放在**已建立**好的,且**带有样例文件和下发文件的**的文件夹中,文件名称与对应试题英文名一致;
- 2. 文件名(包括程序名和输入输出文件名)必须使用英文小写。
- 3. C++ 中函数 main() 的返回值类型必须是 int, 值必须为 0。
- 4. 对于因未遵守以上规则对成绩造成的影响,相关申诉不予受理。
- 5. 若无特殊说明,结果比较方式为忽略行末空格、文末回车后的全文比较。
- 6. 程序可使用的栈空间大小与该题内存空间限制一致。
- 7. 若无特殊说明,每道题的代码大小限制为 100KB。

街机霸主 (game)

【题目描述】

一条大街上有 n 个街机游戏机和 n 枚硬币。大街是一条从左到右的射线,最左端位置记为 0,用距离最左端的路程长度表示位置。每游玩一个游戏机需要向里面投入一枚硬币。每个游戏机的位置从左到右依次为 a_1,a_2,\cdots,a_n ,每个硬币的位置从左到右依次为 b_1,b_2,\cdots,b_n 。

你一开始在大街的最左端,位置是 0,你路过硬币就会捡起来,问在每个街机游戏机游玩一次需要移动的最小距离。你可以同时携带多枚硬币,你可以在大街上自由往左或往右移动。

【输入格式】

从文件 game.in 中读入数据。

第一行输入一个整数 n。

第二行输入 n 个整数 a_1, a_2, \dots, a_n 。

第三行输入 n 个整数 b_1, b_2, \dots, b_n 。

【输出格式】

输出到文件 game.out 中。

输出一行一个整数,代表移动的最小距离。

【样例输入 1】

4

1 6 7 12

3 5 10 11

【样例输出 1】

21

【样例解释 1】

一种移动方法为 $0 \to 3 \to 1 \to 12 \to 7$ 。 总距离为 3 + 2 + 11 + 5 = 21。

【样例 2】

见选手目录下的 game/game2.in 与 game/game2.out

【样例 3】

见选手目录下的 game/game3.in 与 game/game3.out

【测试点约束】

对于 100% 的数据, $1 \le n \le 10^5$, $1 \le a_i, b_i \le 10^9$, $a_i < a_{i+1}$, $b_i < b_{i+1}$ 。每个测试点的具体限制见下表:

测试点编号	$n \leq$	特殊性质
$1 \sim 3$	10	无
$\boxed{4 \sim 6}$	20	无
$7 \sim 10$	10^{3}	无
$\boxed{11 \sim 12}$	10^{5}	$a_i \ge b_i$
$\boxed{13 \sim 20}$	10^{5}	无

序列 (sequence)

【题目描述】

小 E 正在练习一段高难度舞蹈,一段舞蹈可以视为一个长度为 n ($n \ge 3$) 的动作序列 a, 第 i 个动作的难度为整数 a_i , 且有 $1 \le a_i \le n$ 。小 E 会用 n-2 天练习这段舞蹈,第 i 天练习动作 $i \sim i+2$ 之间的衔接。

小 E 定义第 i 天的疲劳度为 $w_{max(a_i,a_{i+1},a_{i+2})}$,其中 w 为一个给定的序列。整支舞蹈的练习代价为每天疲劳度的乘积。由于最终的舞蹈动作还未确定,无聊的小 E 想先算出,对于所有本质不同的序列 a 对应的舞蹈练习代价的和对 998244353 取模的值。

注: 两个序列 a, b 是本质不同的当且仅当存在 i $(1 \le i \le n)$ 使得 $a_i \ne b_i$

【输入格式】

从文件 sequence.in 中读入数据。

第一行输入一个整数 n。

第二行输入 n 个整数 w_i 。

【输出格式】

输出到文件 sequence.out 中。

一行,一个数,表示答案对998244353取模的结果。

【样例输入 1】

3

1 2 3

【样例输出 1】

72

【样例 1 解释】

有 1 个序列满足 $max(a_1, a_2, a_3) = 1$,7 个序列满足 $max(a_1, a_2, a_3) = 2$,19 个序列满足 $max(a_1, a_2, a_3) = 3$,答案为 $1 \cdot w_1 + 7 \cdot w_2 + 19 \cdot w_3 = 72$ 。

【样例输入 2】

6

1 1 4 5 1 4

【样例输出 2】

6971872

【样例 3】

见选手目录下的 sequence/sequence3.in 与 sequence/sequence3.ans 该样例数据范围满足测试点 5。

【测试点约束】

本题共 10 个测试点,全部测试点满足 $3 \le n \le 4 \times 10^3$, $0 \le a_i < 998244353$ 。每个测试点的具体限制见下表:

测试点编号	$n \leq$	特殊性质		
$1 \sim 2$	6	无		
$3 \sim 4$	18	无		
5	100	无		
6	500	无		
7	4×10^3	$w_i = 1$		
8	4×10^3	满足 $w_i > 0$ 的 i 不超过 40 个		
9	2×10^3	无		
10	4×10^3	无		

围圈排列 (circle)

【题目描述】

有 n 个小朋友要在一个圆形操场上围成一圈做游戏,编号是 $1,2\cdots,n$ 对于两个小朋友 a,b,如果小朋友 a 沿着操场逆时针走到小朋友 b 的弧长严格小于小朋友 b 沿着操场逆时针走到小朋友 a 的弧长,那么小朋友 a 在小朋友 b 的西边,小朋友 b 在小朋友 a 的东边。如果两个小朋友走的弧长相等,那么这两个小朋友是对称的。

小朋友们需要按指定的规则围成一圈,并且小朋友 i 沿着操场逆时针走遇到的第一个人是小朋友 $(i \mod n) + 1$ 。规则可以简化为一个 $n \times n$ 的矩阵 D,矩阵正对角线上的元素 $D_{ii} = *$,其他位置上的元素 $D_{ij} \in W$ 和 E 的其中一个,如果 $D_{ij} = W$,那么小朋友 i 需要在小朋友 j 的西边,如果 $D_{ij} = E$,那么小朋友 i 需要在小朋友 j 的东边。

现在给定了一个矩阵 D,但是其中的一些非正对角线上的元素看不清,被替换成了 ?,你需要求出,对于将每个问号,如果将它们替换成 W 或 E 得到的所有矩阵中,有多少种矩阵可以让小朋友们按照相应的规则围成一圈。

由于答案可能很大,请输出对998244353取模的值。

【输入格式】

从文件 circle.in 中读入数据。

第一行输入一个整数 n。

接下来 n 行,每行输入一个长度为 n 的字符串 D_i 。

【输出格式】

输出到文件 circle.out 中。

输出一个整数,代表答案对998244353取模的值。

【样例输入 1】

3			
*W?			
E*W			
?E*			

【样例输出 1】

2

【样例输入 2】

4
*???
?*??
??*?
???*

【样例输出 2】

8

【样例输入 3】

```
5
*W???
?*W??
??*W?
???*?
```

【样例输出 3】

13

【样例 4】

见选手目录下的 circle/circle4.in 与 circle/circle4.out

【测试点约束】

对于 100% 的数据, $2 \le n \le 500$, $D_{i,j} \in \{E, W, *, ?\}$, $D_{i,i} = *$ 。每个测试点的具体限制见下表:

测试点编号	$n \leq$	特殊性质
1	2	无
$2 \sim 3$	3	无
$\phantom{00000000000000000000000000000000000$	5	无
$6 \sim 7$	8	无
$8 \sim 9$	20	无
$10 \sim 11$	100	无
$\boxed{12 \sim 14}$	500	$D_{i,j} \in \{*,?\}$
$\boxed{15 \sim 20}$	500	无

数区间 (count)

【题目描述】

数学老师和同学们在课堂上做互动,一开始老师在黑板上写下来一个长度为 n 的序列 a_1, a_2, \dots, a_n ,接下来,老师会和同学们互动 m 次,每次请同学们上来对序列中的其中一个数修改,或者询问同学有多少个区间 [l, r] $(1 \le l \le r \le n)$ 使得区间内所有数 a_l, a_{l+1}, \dots, a_r 的最小公倍数等于 v。

【输入格式】

从文件 count.in 中读入数据。

第一行输入三个整数 T, n, m, 其中 T 代表测试点编号。特别地, 对于所有样例, T = 0。 第二行输入 n 个整数 a_1, a_2, \dots, a_n 表示序列 a_i 。

接下来 m 行,每行先输入一个整数 op:

如果 op = 1,随后输入两个整数 x, y,表示同学将 a_x 修改为 y。

如果 op = 2,随后输入一个整数 v,表示同学需要回答满足题目条件的区间个数。

【输出格式】

输出到文件 count.out 中。

对于每个 op = 2 的询问,输出一行,包含一个整数,代表区间数量。

【样例输入 1】

```
0 12 9
1 1 4 5 1 4 1 9 1 9 8 10
2 20
1 11 4
2 20
1 5 14
2 20
1 9 19
2 9
1 8 10
2 20
```

【样例输出 1】

14

15

4

3

5

【样例 2】

见选手目录下的 count/count2.in 与 count/count2.out

【样例 3】

见选手目录下的 count/count3.in 与 count/count3.out

【测试点约束】

特殊限制 A: op = 2。

特殊限制 B: a_i, y 在所有可能的值中均匀随机生成。

对于所有编号为偶数的测试点, 保证 $a_i, y \leq 20$ 。

对于 100% 的数据, $2 \le n, m \le 10^5$, $op \in \{1, 2\}$, $1 \le a_i, v, y \le 10^9$, $1 \le x \le n$ 。每个测试点的具体限制见下表:

测试点编号	$n \leq$	$m \leq$	特殊性质
$1 \sim 2$	100	1	无
$3 \sim 4$	10^{3}	1	无
$5 \sim 6$	10^{4}	1	无
$7 \sim 8$	10^{5}	1	无
$9 \sim 12$	10^{5}	10^{5}	A
$13 \sim 16$	10^{5}	10^{5}	В
$17 \sim 21$	5×10^4	5×10^4	无
$22 \sim 25$	10^{5}	10^{5}	无