Введение

Аудиоанализ — область, включающая автоматическое распознавание речи (ASR), цифровую обработку сигналов, а также классификацию, тегирование и генерацию музыки — представляет собой развивающийся поддомен приложений глубокого обучения. Некоторые из самых популярных и распространенных систем машинного обучения, такие как виртуальные помощники Alexa, Siri и Google Home, — это продукты, созданные на основе моделей, извлекающих информацию из аудиосигналов.

Обзор аудиофайлов

Аудио фрагменты представлены в формате .wav. Звуковые волны оцифровываются путем выборки из дискретных интервалов, известных как частота дискретизации (как правило, 44,1 кГц для аудио с CD-качеством, то есть 44 100 семплов в секунду).

Каждый семпл представляет собой амплитуду волны в определенном временном интервале, где глубина в битах (или динамический диапазон сигнала) определяет, насколько детализированным будет семпл (обычно 16 бит, т.е. семпл может варьироваться от 65 536 значений амплитуды).

В обработке сигналов семплинг — это преобразование непрерывного сигнала в серию дискретных значений. Частота дискретизации — это количество семплов за определенный фиксированный промежуток времени. Высокая частота дискретизации приводит к меньшей потере информации, но к большим вычислительным затратам.

Звуковая волна в цифровом формате обозначена красным цветом, а синим — результат семплинга и 4-битного квантования. Справа находится результирующий массив. Приложения по обработке звука

К ним можно отнести:

Индексирование музыкальных коллекций согласно их аудиопризнакам. Рекомендация музыки для радиоканалов. Поиск сходства для аудиофайлов (Shazam). Обработка и синтез речи — генерирование искусственного голоса для диалоговых агентов. Обработка аудиоданных с помощью Python

Звук представлен в форме аудиосигнала с такими параметрами, как частота, полоса пропускания, децибел и т.д. Типичный аудиосигнал можно выразить в качестве функции амплитуды и времени.

Время/частота. Некоторые устройства могут улавливать эти звуки и представлять их в машиночитаемом формате. Примеры этих форматов:

wav (Waveform Audio File) mp3 (MPEG-1 Audio Layer 3) WMA (Windows Media Audio) Процесс обработки звука включает извлечение акустических характеристик, относящихся к поставленной задаче, за которыми следуют схемы принятия решений, которые включают обнаружение, классификацию и объединение знаний. К счастью, некоторые библиотеки Python помогают облегчить эту задачу.

! pip install librosa

```
Requirement already satisfied: librosa in /usr/local/lib/python3.6/dist-pac Requirement already satisfied: joblib>=0.12 in /usr/local/lib/python3.6/dis Requirement already satisfied: scipy>=1.0.0 in /usr/local/lib/python3.6/dis Requirement already satisfied: resampy>=0.2.0 in /usr/local/lib/python3.6/d Requirement already satisfied: decorator>=3.0.0 in /usr/local/lib/python3.6 Requirement already satisfied: numpy>=1.8.0 in /usr/local/lib/python3.6/dis Requirement already satisfied: audioread>=2.0.0 in /usr/local/lib/python3.6 Requirement already satisfied: six>=1.3 in /usr/local/lib/python3.6/dist-pa Requirement already satisfied: scikit-learn!=0.19.0,>=0.14.0 in /usr/local/Requirement already satisfied: llvmlite<0.32.0,>=0.31.0dev0 in /usr/local/l Requirement already satisfied: setuptools in /usr/local/lib/python3.6/dist-
```

Этот фрагмент возвращает звуковой временной ряд в качестве массива numpy с частотой дискретизации по умолчанию 22 кГц моно. Это поведение можно изменить с помощью повторного семплинга на частоте 44,1 кГц.

Повторный семплинг также можно отключить:

Проигрывание аудио:

import IPython.display as ipd
ipd.Audio(audio_data)

-0:04

Визуализация аудио

График массива аудио:

%matplotlib inline
import matplotlib.pyplot as plt
import librosa.display
plt.figure(figsize=(14, 5))
librosa.display.waveplot(x, sr=sr)

<matplotlib.collections.PolyCollection at 0x7f00f1c93198>

Спектограмма:

X = librosa.stft(x) # преобразует данные в кратковременное преобразование Фу # С помощью STFT можно определить амплитуду различных частот, воспроизводимых в Xdb = librosa.amplitude_to_db(abs(X)) plt.figure(figsize=(14, 5)) librosa.display.specshow(Xdb, sr=sr, x_axis='time', y_axis='hz') # отображение plt.colorbar()

<matplotlib.colorbar.Colorbar at 0x7f00f179db00>

librosa.display.specshow(Xdb, sr=sr, x_axis='time', y_axis='log') # преобразован plt.colorbar()

<matplotlib.colorbar.Colorbar at 0x7f00f0ee9ba8>

Создание аудиосигнала:

```
import numpy as np sr = 22050 # частота дискретизации T = 5.0 # секунды t = np.linspace(0, T, int(T*sr), endpoint=False) # переменная времени x = 0.5*np.sin(2*np.pi*220*t) # чистая синусоидная волна при 220 Гц # проигрывание аудио ipd.Audio(x, rate=sr) # загрузка массива NumPy # сохранение аудио librosa.output.write wav('tone 220.wav', x, sr)
```

- Извлечение признаков из аудио сигнала

Каждый аудиосигнал состоит из множества признаков.

Спектральные (частотные) признаки получаются путем преобразования временного сигнала в частотную область с помощью преобразования Фурье. К ним относятся частота основного тона, частотные компоненты, спектральный центроид, спектральный поток, спектральная плотность, спектральный спад и т.д.

Спектральный центроид

Указывает, на какой частоте сосредоточена энергия спектра или, другими словами, указывает, где расположен «центр масс» для звука. Схож со средневзвешенным значением:

$$f_c = \frac{\sum_k S(k)f(k)}{\sum_k S(k)}$$

где S(k) — спектральная величина элемента разрешения k, a f(k) — частота элемента k.

```
import sklearn
spectral_centroids = librosa.feature.spectral_centroid(x, sr=sr)[0]
spectral_centroids.shape
(775,)
# Вычисление временной переменной для визуализации
plt.figure(figsize=(12, 4))

frames = range(len(spectral_centroids))
t = librosa.frames_to_time(frames)
# Нормализация спектрального центроида для визуализации
def normalize(x, axis=0):
    return sklearn.preprocessing.minmax_scale(x, axis=axis)
# Построение спектрального центроида вместе с формой волны
librosa.display.waveplot(x, sr=sr, alpha=0.4)
plt.plot(t, normalize(spectral_centroids), color='b')
```


Спектральный спад

Это мера формы сигнала, представляющая собой частоту, в которой высокие частоты снижаются до 0. Чтобы получить ее, нужно рассчитать долю элементов в спектре мощности, где 85% ее мощности находится на более низких частотах.

```
spectral_rolloff = librosa.feature.spectral_rolloff(x+0.01, sr=sr)[0]
plt.figure(figsize=(12, 4))
```

```
librosa.display.waveplot(x, sr=sr, alpha=0.4)
plt.plot(t, normalize(spectral_rolloff), color='r')
```


Спектральная ширина

Спектральная ширина определяется как ширина полосы света на половине максимальной точки (или полная ширина на половине максимума [FWHM]) и представлена двумя вертикальными красными линиями и λSB на оси длин волн

```
spectral_bandwidth_2 = librosa.feature.spectral_bandwidth(x+0.01, sr=sr)[0]
spectral_bandwidth_3 = librosa.feature.spectral_bandwidth(x+0.01, sr=sr, p=3)[0]
spectral_bandwidth_4 = librosa.feature.spectral_bandwidth(x+0.01, sr=sr, p=4)[0]
plt.figure(figsize=(15, 9))
librosa.display.waveplot(x, sr=sr, alpha=0.4)
plt.plot(t_normalize(spectral_bandwidth_2)__color='r')
```

```
plt.plot(t, normalize(spectral_bandwidth_2), color='r')
plt.plot(t, normalize(spectral_bandwidth_3), color='g')
plt.plot(t, normalize(spectral_bandwidth_4), color='y')
plt.legend(('p = 2', 'p = 3', 'p = 4'))
```

<matplotlib.legend.Legend at 0x7f00f0e816a0>

Скорость пересечения нуля

Простой способ измерения гладкости сигнала — вычисление числа пересечений нуля в пределах сегмента этого сигнала. Голосовой сигнал колеблется медленно. Например, сигнал 100 Гц будет пересекать ноль 100 раз в секунду, тогда как «немой» фрикативный сигнал может иметь 3000 пересечений нуля в секунду.

$$zcr = \frac{1}{T-1} \sum_{t=1}^{T-1} \mathbb{I} \left\{ s_t s_{t-1} < 0 \right\}$$

Fig. 4. Formula to calculate the Zero Crossing Rate

$$s_t$$
 is the signal of length t
 $II\{X\}$ is the indicator function (=1 if X true, else =0)

Формула для расчета скорости пересечения нуля, где St — сигнал длины t, II{X} — функция-индикатор (=1 if X true, else =0). Более высокие значения наблюдаются в таких высоко ударных звуках, как в металле и роке. Теперь визуализируем этот процесс и рассмотрим вычисление скорости пересечения нуля.

```
x, sr = librosa.load(audio_data)
# Построение графика сигнала:
plt.figure(figsize=(14, 5))
librosa.display.waveplot(x, sr=sr)
```

<matplotlib.collections.PolyCollection at 0x7f00f0d43208>

Увеличение масштаба: n0 = 9000 n1 = 9100 plt.figure(figsize=(14, 5)) plt.plot(x[n0:n1]) plt.grid()


```
zero_crossings = librosa.zero_crossings(x[n0:n1], pad=False)
print(sum(zero_crossings))
```

22

Мел-частотные кепстральные коэффициенты (МFCC)

Представляют собой небольшой набор признаков (обычно около 10–20), которые кратко описывают общую форму спектральной огибающей. Они моделируют характеристики человеческого голоса.

Цветность

Признак или вектор цветности обычно представлен вектором признаков из 12 элементов, в котором указано количество энергии каждого высотного класса {C, C#, D, D#, E, ..., B} в сигнале. Используется для описания меры сходства между музыкальными произведениями.

hop_length = 12
chromagram = librosa.feature.chroma_stft(x, sr=sr, hop_length=hop_length)
plt.figure(figsize=(15, 5))
librosa.display.specshow(chromagram, x_axis='time', y_axis='chroma', hop_length=

Классификация жанров музыки с помощью ANN

Датасет - http://marsyas.info/downloads/datasets.html

Набор данных состоит из 1000 звуковых треков, длина каждого составляет 30 секунд. Он содержит 10 жанров, каждый из которых представлен 100 треками. Все дорожки — это монофонические 16-битные аудиофайлы 22050 Гц в формате .wav.

Блюз Классика Кантри

Жанры, представленные в наборе:

Регги

Рок

Поп

```
import librosa
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import os
from PIL import Image
import pathlib
import csv
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder, StandardScaler
import keras
from keras import layers
from keras import layers
import keras
from keras.models import Sequential
import warnings
warnings.filterwarnings('ignore')
# Конвертируем файлы аудиоданных в PNG или извлекаем спектрограмму для каждого а
cmap = plt.get_cmap('inferno')
plt.figure(figsize=(8,8))
genres = 'blues classical country disco hiphop jazz metal pop reggae rock'.split
for g in genres:
    pathlib.Path(f'img_data/{g}').mkdir(parents=True, exist_ok=True)
    for filename in os.listdir(f'./drive/My Drive/genres/{g}'):
        songname = f'./drive/My Drive/genres/{g}/{filename}'
        y, sr = librosa.load(songname, mono=True, duration=5)
        plt.specgram(y, NFFT=2048, Fs=2, Fc=0, noverlap=128, cmap=cmap, sides='d
        plt.axis('off');
        plt.savefig(f'img_data/{g}/{filename[:-3].replace(".", "")}.png')
        plt.clf()
    <Figure size 576x576 with 0 Axes>
# Создание заголовка для файла CSV.
header = 'filename chroma stft rmse spectral centroid spectral bandwidth rolloff
for i in range(1, 21):
    header += f' mfcc{i}'
header += ' label'
header = header.split()
```

Импортируем все необходимые библиотеки.

```
# Извлекаем признаки из спектрограммы: МГСС, спектральный центроид, частоту пере
file = open('dataset.csv', 'w', newline='')
with file:
    writer = csv.writer(file)
    writer.writerow(header)
genres = 'blues classical country disco hiphop jazz metal pop reggae rock'.split
for g in genres:
    for filename in os.listdir(f'./drive/My Drive/genres/{g}'):
        songname = f'./drive/My Drive/genres/{g}/{filename}'
        y, sr = librosa.load(songname, mono=True, duration=30)
        rmse = librosa.feature.rmse(y=y)
        chroma_stft = librosa.feature.chroma_stft(y=y, sr=sr)
        spec_cent = librosa.feature.spectral_centroid(y=y, sr=sr)
        spec_bw = librosa.feature.spectral_bandwidth(y=y, sr=sr)
        rolloff = librosa.feature.spectral_rolloff(y=y, sr=sr)
        zcr = librosa.feature.zero_crossing_rate(y)
        mfcc = librosa.feature.mfcc(y=y, sr=sr)
        to_append = f'{filename} {np.mean(chroma_stft)} {np.mean(rmse)} {np.mean
        for e in mfcc:
            to_append += f' {np.mean(e)}'
        to_append += f' \{g\}'
        file = open('dataset.csv', 'a', newline='')
        with file:
            writer = csv.writer(file)
            writer.writerow(to_append.split())
# Выполняем предварительную обработку данных, которая включает загрузку данных С
data = pd.read_csv('dataset.csv')
data.head()
# Удаление ненужных столбцов
data = data.drop(['filename'],axis=1)
# Создание меток
genre_list = data.iloc[:, -1]
encoder = LabelEncoder()
y = encoder.fit_transform(genre_list)
# Масштабирование столбцов признаков
scaler = StandardScaler()
X = scaler.fit_transform(np.array(data.iloc[:, :-1], dtype = float))
# Разделение данных на обучающий и тестовый набор
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
```

```
# Создаем модель ANN.
model = Sequential()
model.add(layers.Dense(256, activation='relu', input_shape=(X_train.shape[1],)))
model.add(layers.Dense(128, activation='relu'))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))
model.compile(optimizer='adam',
         loss='sparse_categorical_crossentropy',
         metrics=['accuracy'])
# Подгоняем модель:
classifier = model.fit(X_train,
             y_train,
             epochs=100,
             batch size=128)
   Epoch 72/100
   7/7 [============= ] - 0s 4ms/step - loss: 0.0339 - accurac
   Epoch 73/100
   7/7 [============ ] - 0s 4ms/step - loss: 0.0318 - accurac
   Epoch 74/100
   Epoch 75/100
   Epoch 76/100
   Epoch 77/100
   Epoch 78/100
   7/7 [=========== ] - 0s 4ms/step - loss: 0.0264 - accurac
   Epoch 79/100
   7/7 [============ ] - 0s 4ms/step - loss: 0.0240 - accurac
   Epoch 80/100
   7/7 [=============== ] - 0s 4ms/step - loss: 0.0273 - accurac
```

7/7 [=============] - 0s 4ms/step - loss: 0.0289 - accurac

7/7 [==============] - 0s 5ms/step - loss: 0.0246 - accurac

7/7 [============] - 0s 4ms/step - loss: 0.0208 - accurac

7/7 [============] - 0s 4ms/step - loss: 0.0175 - accurac

Epoch 81/100

Epoch 82/100

Epoch 83/100

Epoch 84/100

Epoch 85/100

Epoch 86/100

Epoch 87/100

Epoch 88/100

```
Epoch 89/100
7/7 [============== ] - 0s 4ms/step - loss: 0.0243 - accurac
Epoch 90/100
Epoch 91/100
7/7 [============== ] - 0s 4ms/step - loss: 0.0195 - accurac
Epoch 92/100
7/7 [============ ] - 0s 4ms/step - loss: 0.0196 - accurac
Epoch 93/100
Epoch 94/100
Epoch 95/100
Epoch 96/100
Epoch 97/100
Epoch 98/100
Epoch 99/100
Epoch 100/100
```