Appendix 1 Equivalence of Induction Axioms

Recall the three induction axioms: Let $a \in Z$ and Z_a denote $\left\{n \in Z \middle| n \geq a\right\}$ – the universe of this discussion

Weak Induction if $S \subseteq Z_a$ such that

1')
$$a \in S$$

and 2')
$$\forall_n (n \in S \rightarrow n+1 \in S)$$

then $S = Z_a$

Strong Induction if $S \subseteq Z_a$ such that

1)
$$a \in S$$

and 2)
$$\forall_n (a, a+1, ..., n \in S \rightarrow n+1 \in S)$$

then $S = Z_n$

Well-Ordering if $T \subseteq Z_a$ and $T \neq \emptyset$ then $\exists t_0 \in T$

such that
$$\forall_n (n \in T \rightarrow t_0 \le n)$$

We shall establish the string of implications:

Strong Induction ⇒ Weak Induction ⇒ Well-Ordering ⇒ Strong Induction

Strong Induction \Rightarrow Weak Induction: Here we prove that under the assumption of the strong induction axiom, the weak axiom follows. Hence we begin by assuming the following statement to be true:

(·) if
$$S \subseteq Z_a$$
 satisfies

(1)
$$a \in S$$

and (2)
$$\forall$$
n(a, a+1,..,n \in S \rightarrow n+1 \in S)

then
$$S = Z_a$$

We want to prove the nest statement to be true:

 $(\cdot \cdot)$ if $S \in Z_a$ satisfies

$$(1')$$
 a \in S

and
$$(2') \forall n (n \in S \rightarrow n+1 \in S)$$

then $S=Z_a$

To do this we assume (1') and (2') to be true and endeavor to prove $S=Z_a$. Thus

(1') $a \in S$ is true

and (2')
$$\forall_n (n \in S \rightarrow n+1 \in S)$$
 is true

Since (1) is true we need only prove (2), i.e.

$$\forall_n (a, a+1, \dots n \in S \rightarrow n+1 \in S)$$

for then the truth of (\neg) allows us to conclude that $Z_a = S$. To prove (2) is true we assume a, a+1,..., n \in S to be true. But then n \in S is true and it follows by the truth of (2') that n+1 \in S. Hence (2) is true.

Finally then we conclude by the truth of (*) that $Z_a = S$.

<u>Weak Induction</u> \Rightarrow <u>Well</u> - <u>Ordering</u>: Here we assume the truth of ($\checkmark \circ$) and prove the following (well-ordering statement) to be true by contradiction:

(if
$$T \subseteq Z_a$$
 and $T \neq \emptyset$ then $\exists t_0 \in T$ such that $\forall_n (n \in T \rightarrow t_0 \leq n)$

Suppose (i.e.) is false, i.e. \exists T such that $T \neq \emptyset$ and $\forall t_0 \in T \exists n$ such that $n \in T$ and $n \leq t_0$. Let $S = \{n | a, a+1,..., n \notin T\}$. Observe that $a \in S$. Also suppose $n \in S$. Then, by the definition of S, a, $a+1,..., n \notin T$. If $n+1 \in T$ then it follows that $t \in T \to n+1 \leq t$ i.e. n+1 is the SMALLEST element of T-a contradiction. Hence $n+1 \notin T$ and so a, $a+1,..., n, n+1 \notin T$. Thus $n+1 \in S$ and we may conclude by $(d \neq 1)$ that $S = Z_a$. Finally we assert that the <u>contradiction</u> $T = \emptyset$ follows. Indeed, if $n \in Z_a$ then $n \in S$ and so $a,..., n \notin T$, i.e. $T = \emptyset$.

<u>Well-Ordering</u> \Rightarrow <u>Strong</u> <u>Induction</u>: Here we assume that (**) hold and we prove (*). Thus let $S \subseteq Z_a$ such that

$$(1) a \in S$$

and (2)
$$\forall n (a,..., n \in S \rightarrow n+1 \in S)$$

Our job is to conclude that $S=Z_a$ by using (i.e.). Indeed, consider $T=Z_a-S$. If $T\neq\emptyset$ then $\exists t_0\in T$ such that

$$(v \in T) \forall_n (n \in T \to t_0 \le n)$$

Case (1) $t_0 = a$ - contradiction to (1).

Case (2) $t_0 > a$. Consider $n=t_0-1 \ge a$.

Now we have a,..., $t_0 - 1 \notin T$ because of () so that a, ..., $t_0 - 1 \in S$.

But then $t_0 \in S$ by (2), i. e $t_0 \notin T$. This contradiction forces $T = \emptyset$ and $S = Z_a$ follows.