Physics 158 Circuits Problem Bank

Time Independent Circuits

Problem 15

Created by Tyler Wilson 2023

Difficulty: ★☆☆

For the following resistor configuration, find the equivalent resistance.

$$R_1 = 2\,\Omega,\, R_2 = 8\,\Omega,\, R_3 = 3\,\Omega,\, R_4 = 10\,\Omega,\, R_5 = 12\,\Omega,\, R_6 = 7\,\Omega,\, R_7 = 4\,\Omega.$$

Solution:

We can recognize that R_2 and R_3 are in parallel and so we can compute the equivalent as

$$\frac{1}{R_{23}} = \frac{1}{R_2} + \frac{1}{R_3} = \frac{1}{8} + \frac{1}{3} = \frac{11}{24} \Rightarrow R_{23} = \frac{24}{11}\Omega = 2.18\Omega$$

 R_4 and R_5 are also in parallel and can be combined

$$\frac{1}{R_{45}} = \frac{1}{R_4} + \frac{1}{R_5} = \frac{1}{10} + \frac{1}{12} = \frac{11}{60} \Rightarrow R_{54} = \frac{60}{11}\Omega = 5.45\Omega$$

We can then recognize that R_{45} and R_{6} are in series and we can compute

$$R_{456} = R_{45} + R_6 = \frac{60}{11} + 7 = \frac{137}{11} \Omega = 12.45 \Omega$$

Then we get that R_{23} and R_{456} are in parallel and get

$$\frac{1}{R_{23456}} = \frac{1}{R_{23}} + \frac{1}{R_{456}} \Rightarrow R_{23456} = \frac{1}{\frac{11}{24} + \frac{11}{137}} = 1.86\,\Omega$$

The remaining resistors will all be in series which gives

$$R_{\text{eq}} = R_1 + R_{23456} + R_7 = 2 + 1.86 + 4 = 7.86 \,\Omega$$

Problem 16

Created by Tyler Wilson 2023

Difficulty: $\star \Leftrightarrow \Leftrightarrow$ If the switch is open,

a) Find all currents and potentials at the labelled points.

If the switch is then closed,

b) Find all currents and potentials at the labelled points.

$$E = 12 \text{ V}, R_1 = 7 \Omega, R_2 = 4 \Omega, R_3 = 10 \Omega$$

Solution:

a) When the switch is open, there is a short circuit in the branch with R_3 so the circuit will act as a series circuit containing R_1 , R_2 , and E. The potential and voltage at point c will be 0. The equivalent resistance will be $R_{\rm eq} = R_1 + R_2$. The current can be computed from Ohm's law:

$$E = I_a R_{eq}$$

$$I_a = I_b = \frac{E}{R_{ea}} = \frac{E}{R_1 + R_2} = \frac{12 \text{ V}}{11 \Omega} = \boxed{1.09 \text{ A}}$$

Point b is connected to ground so the potential of point b will be 0 V. The potential of point a can be computed as the voltage drop across R_2 .

$$V_{R_2} = V_{ab} = V_a - V_b = V_a$$

 $V_{R_2} = I_a R_2 = \frac{12}{11} \text{ A} \cdot 4 \Omega = \boxed{4.36 \text{ V}}$

b) When the switch is closed, R_2 and R_3 will be in parallel. We can compute the equivalent resistance for the circuit as

$$\frac{1}{R_{23}} = \frac{1}{R_2} + \frac{1}{R_3} = \frac{1}{4} + \frac{1}{10} = \frac{7}{20} \Rightarrow R_{23} = \frac{20}{7} \Omega = 2.67 \Omega$$

$$R_{\text{eq}} = R_1 + R_{23} = 7 + \frac{20}{7} = \frac{69}{7} \Omega$$

Then we can compute the total current as

$$E = I_a R_{eq} \Rightarrow I_a = \frac{E}{R_{eq}} = \frac{12 \text{ V}}{\frac{69}{7} \Omega} = \boxed{1.22 \text{ A}}$$

We can use this to compute the volatge across R_1

$$V_{R_1} = I_a R_1 = 8.52 \,\text{V}$$

Then we can use Kirchoff's voltage law to find the remaining voltages

$$V_{R_2} = V_{R_3}$$

 $V_E = V_{R_1} + V_{R_2} \Rightarrow V_{R_2} = V_{R_3} = V_E - V_{R_1} = 3.48 \,\text{V}$

From this we can get that the potential at c and the potential at a will be $V_a = V_c = \boxed{3.48 \text{ V}}$ while the potential at b will be 0 V as in part a.

We can also use the voltages across the resistors to compute the currents in each branch.

$$I_b = \frac{V_{R_2}}{R_2} = \frac{3.48}{4} = 0.87 \,\text{A}$$

$$I_c = \frac{V_{R_3}}{R_2} = \frac{3.48}{10} = 0.35 \,\text{A}$$

Problem 17

Created by Tyler Wilson 2023

Difficulty: ★☆☆

If the total power dissipated in the circuit is 15W, what is the value of R?

Solution:

The total power dissipated in the circuit will be the sum of the power dissipated in each resistor. We know that the power dissipated across a resistor is P = IV. We also know V = IR and can rearrange to get $P = \frac{V^2}{R}$. The voltage across the 8 Ω resistor is 8 V so power across that resistor will be

$$P_1 = \frac{(8 \,\mathrm{V})^2}{8 \,\Omega} = 8 \,\mathrm{W}$$

The sum of the power across the remaining two resistors will be $P_{\text{total}} - P_1 = 15 \text{ W} - 8 \text{ W} = 7 \text{ W}$. We can combine resistor R and the 6Ω to get an equivalent resistor with value R + 6. The volatge across this equivalent resistor will be 8 V and will have a power usage of 7 W. We can then solve for R as

$$7 W = \frac{(8 V)^2}{R + 6 \Omega}$$

$$R = \frac{(8 V)^2}{7 W} - 6 \Omega = \boxed{3.14 \Omega}$$

Time Dependent Circuits

Problem 1

2023 PHYS 158 Tutorial 3 Question 1

Difficulty: ★☆☆

Each of the two 25 μ F capacitors shown is initially uncharged. How many coulombs of charge pass through the ammeter A after the switch S is closed?

Solution:

When the switch is closed the two capacitors and power supply are all at 4000V.

The charge on each capacitor is q = CV which in this case is

$$q = (25 \mu F)(4000 V) = 0.1 C$$

for each capacitor so a total of 0.2 C flows through the ammeter

Problem 3

2023 PHYS 158 Tutorial 4 Question 1

Difficulty: ★☆☆

In the circuit shown, both resistors have the same value R. Suppose switch S is initially closed for a very long time.

- a) Find all the currents initially.
- b) Find all currents the instant after the switch is opened.
- c) Find the time constants for both case switch open and switch closed.

Solution:

- a) The switch has been closed for a long time so we can assume that the capacitor is fully charged. This will mean that it acts as a short-circuit so it will have no current flowing through it. So the current through branch 1 is $I_1 = 0$ A and the current through branch 2 is $I_2 = \frac{E}{R}$
- b) The instant before the switch is opened we can use Kirchoff's loop law to state that the large outer loop must have a volatge that sums to 0. We know the current through the upper resistor is 0 from part a so then we can say that the voltage of the capacitor must equal that of the battery.When the switch is opened, it removes the battery from the circuit so we just have the loop on the left. Using Kirchoff's law agian, we know that the voltage must sum to 0 so we can say that the voltage of the resistors must equal the voltage of the capacitor.

$$V_C = V_{R_1} + V_{R_2}$$

We know the resistors are the same and we know $V_C = E$ so we get $E = 2V_R = 2IR$. We can solve for the current to get that the current in the left loop is $I = \frac{E}{2R}$ and there is no current through the battery.

- c) We can break this down into two cases:
 - Charging the capacitor (after the switch is closed)
 When the switch is closed, take the loop through the battery and C. This gives $\tau = RC$
 - Discharging the capacitor (after the switch is opened)
 When the switch is open, only the loop not containing the battery has current which gives a time constant of $\tau = 2RC$ because both resistors are included.

Problem 4

2023 PHYS 158 Tutorial 4 Question 2

Difficulty: ★★☆

The circuit below has the switch S is opened for a long time. $R_1 = 2\Omega$, $R_2 = 4\Omega$, C = 2 F

- a) The switch S is now closed. Find all currents just after the switch is closed.
- b) Find all currents after the switch has been closed for a very long time.
- c) After the switch was closed for a very long time it is opened again find the current through R_2 as a function of time.

Solution:

a) The capacitor will want to initially act as a wire so we can analyze the circuit as two resistors in parallel. Due to Kirchoff's loop law, we can say that each resistor must have a voltage drop of 12 V and we can get the current of each from Ohm's law:

$$I_1 = \frac{\varepsilon}{R_1} = \frac{12}{2} = \boxed{6 \,\mathrm{A}}$$

$$I_2 = \frac{\varepsilon}{R_2} = \frac{12}{4} = \boxed{3 \,\text{A}}$$

b) After the switch has been closed for a long time, the capacitor will be fully charged and act as a short circuit. The circuit can then be analyzed as the loop going through the battery and R_1

$$I_1 = \frac{\varepsilon}{R_1} = \frac{12}{2} = \boxed{6 \,\text{A}}$$

$$I_2 = 0 \,\mathrm{A}$$

c) After the switch is opened the current will flow through the loop containing R_1 , R_2 , and C. We can write the voltage loop equation as

6

$$0 = V_C + V_{R_1} + V_{R_2}$$

$$0 = \frac{q}{C} + iR_1 + iR_2$$

We know that $i = \frac{dq}{dt}$ and can take the derivative of both sides to get a 1st order differential equation and solve for i(t)

$$0 = \frac{i}{C} + \frac{di}{dt}(R_1 + R_2)$$

$$\frac{di}{dt} = -\frac{i}{(R_1 + R_2)C}$$

$$\frac{di}{i} = -\frac{dt}{(R_1 + R_2)C}$$

$$\int \frac{di}{i} = -\int \frac{dt}{(R_1 + R_2)C}$$

$$\ln|i| = -\frac{t}{(R_1 + R_2)C} + \text{Constant}$$

$$i = i_0 e^{-\frac{t}{(R_1 + R_2)C}}$$

We can solve for the initial current by using our same voltage loop equation and knowing that the initial voltage across the capacitor is 12 V from the charge stored on it. The capacitor will be discharging so the potential in the equation can be thought of as negative.

$$0 = V_C + i_0(R_1 + R_2)$$

$$0 = -12 + 6i_0 \Rightarrow i_0 = 2 \text{ A}$$

Plugging this all in we get,

$$i(t) = 2e^{-\frac{t}{12}} \text{ Amps}$$

Problem 5

2023 PHYS 158 Tutorial 4 Question 4

Difficulty: ★☆☆

When the switch S in the circuit shown is closed, the time constant for the growth of current in R_2 is?

Solution:

To find the time constant for the current through R_2 , we can write out the voltage equation for a loop containing R_2 . Let's choose the loop that contains the battery, L, and R_2 . The equation will be

$$\varepsilon = -\frac{di}{dt}L + iR_2$$

If we isolate the $\frac{di}{dt}$ term then the coefficient of the *i* term will be $\frac{1}{\tau}$

$$\frac{di}{dt} = -\frac{\varepsilon}{L} + i\frac{R_2}{L}$$

$$\frac{R_2}{L} = \frac{1}{\tau}$$

$$\Rightarrow \boxed{\tau = \frac{L}{R_2}}$$

Problem 6

Created by Tyler Wilson 2023

Difficulty: ★★☆

Using their newfound knowledge of LR circuits, a Phys 158 student came up with a clever idea for a prank. They want to design an alarm clock that will continue to ring for 10 seconds after the battery is removed. The alarm clock can be thought of as a $1\,\mathrm{k}\Omega$ resistor which requires at least 1 Watt to operate. They designed the following circuit to achieve this.

- a) What value should the battery be such that the power supplied to the alarm clock does not exceed 3 Watts?
- b) What value of inductor should they use so that the alarm clock remains on for 10 seconds after the battery is disconnected?

Solution:

a) For maximum power to be supplied to the clock, $P_c = 3 \text{ W}$

$$\begin{split} P_C &= i_C^2 R_C \Rightarrow i_C = \sqrt{\frac{P_C}{R_C}} \\ \varepsilon &= V_C = i_C R_C = \sqrt{\frac{P_C}{R_C}} \cdot R_C = \sqrt{P_C R_C} = \sqrt{(3\,\mathrm{W})(1000\,\Omega)} = 54.8\,\mathrm{V} \end{split}$$

b) We can start by writing out Kirchoff's loop voltage law for the circuit and then solving the resulting differential equation by separation of variables to get an expression for the current as a function of time:

$$\begin{split} iR + iR_C + L\frac{di}{dt} &= 0 \\ L\frac{di}{dt} &= -i(R + R_C) \\ \frac{di}{dt} &= -\frac{R + R_C}{L} i \\ \frac{di}{i} &= -\frac{R + R_C}{L} dt \\ \int \frac{di}{i} &= -\frac{R + R_C}{L} \int dt \\ \ln|i| &= -\frac{R + R_C}{L} t + \text{Constant} \\ i(t) &= e^{-\frac{R + R_C}{L} t + \text{Constant}} = i_0 e^{-\frac{R + R_C}{L} t} \end{split}$$

Alternatively, we can get the same expression by thinking about it conceptually and computing the time constant.

We know that the current will initially want to stay the same because of the inductor and it will slowly decay to 0 so we know that the equation of the current should look like exponential decay and be of the form

$$i(t) = i_0 e^{-t/\tau}$$

We can then compute the time constant for an RL circuit as

$$\tau = \frac{L}{R_{eq}} = \frac{L}{R + R_C}$$

Plugging this in will yield the same expression as above.

The initial current, i_0 , will be the current that was initially flowing through the inductor. We computed this in part (a) to be

$$i_0 = i_C = \sqrt{\frac{P_C}{R_C}} = \sqrt{\frac{3 \text{ W}}{1000 \,\Omega}} = 54.8 \text{ mA}$$

Now we have a complete expression for the current as a function of time. We can get the power as a function of time as

$$P(t) = i^{2}R_{C} = i_{0}^{2}R_{C}e^{-\frac{2(R+R_{C})}{L}t}$$

$$i_{0}^{2}R_{C} = \frac{P_{C}}{R_{C}} \cdot R_{C} = P_{C}$$

$$P(t) = P_C e^{-\frac{2(R+R_C)}{L}t}$$

We are told that the clock must have a minimum of 1 Watt and we want it to last for 10 seconds so we can set P = 1 and t = 10 and solve for L.

$$\begin{split} \frac{P}{P_C} &= e^{-\frac{2(R+R_C)}{L}t} \\ \ln\left(\frac{P}{P_C}\right) &= -\frac{2(R+R_C)}{L}t \\ L &= -\frac{2(R+R_C)t}{\ln\left(\frac{P}{P_C}\right)} = -\frac{2(100\,\Omega + 1000\,\Omega)(10\,\mathrm{s})}{\ln\left(\frac{1\,\mathrm{W}}{3\,\mathrm{W}}\right)} = 20,025\,\mathrm{H} \end{split}$$

Problem 7

2023 PHYS 158 Homework 3 Question 1

Difficulty: ★★☆

The switch has been open a very long time and the 18V power supply has been attached for a very long time.

- a) Find the voltage difference between a and b when the switch S is open.
- b) Find the final charge on the two capacitors.

The switch is now closed

- c) After a long time calculate the final charge on each of the capacitors.
- d) How much charge will flow through the switch in 300 seconds?

Solution:

Open Switch Case

$$I_0 = I_1 + I_2$$

a) after a long time both Capacitors are fully charged

$$\therefore I_1 = I_2 = 0$$

$$\therefore V_a = 18V, V_b = 0 \implies V_{ab} = V_a - V_b = 18V$$

b) Hence

$$Q_{3\mu F}=C_1 V_{3\mu F}=(3\mu F)(18V)=54\mu C$$

$$Q_{6\mu F} = C_2 V_{6\mu F} = 6\mu F(18V) = 108\mu C$$

Closed Switch Case (
$$\Longrightarrow V_{ab} = 0$$
)

$$I_0 = I_3 + I_4 = I_5 + I_6$$

c) after a long time Capacitors are charged

$$\implies I_{4} = I_{5} \to 0, :: I_{0} = I_{3} = I_{6}$$

$$18V = I_{3}(6\Omega) + I_{6}(3\Omega) = I_{3}(9\Omega)$$

$$\implies I_{3} = I_{6} = I_{0} = 2 \text{Amps}$$

$$\implies V_{6} = 2(6) = 12V$$

$$V_{3} = 2(3) = 6V$$

$$:: V_{6\mu F} = V_{6\Omega} = 12V = \frac{Q_{6\mu F}}{6\mu F} \implies Q_{6\mu F} = 72\mu C$$

$$V_{3\mu F} = V_{3\Omega} = 6V = \frac{Q_{3\mu F}}{3\mu F} \implies Q_{3\mu F} = 18\mu C$$

d) the power supply (18V) is connected to the circuit all the time it can deliver current (and charge) forever.

 $Q_{Tot} = \int_0^{300} I(t)dt = (2A)(300s) = 600$ Coulombs

Problem 8

2023 PHYS 158 Homework 3 Question 2

Difficulty: ★★☆

The circuit shown below initially has no charge on the capacitors and the switch S is originally open.

- a) Just after closing the switch S, find all the currents.
- b) After the switch has been closed for a very long time, find all the currents.
- c) After the switch S has been closed for a very long time, find the potential difference across the $28.0 \,\mu\text{F}$ capacitor.

Solution:

a) just after we close the switch there is \underline{NO} charge on the Capacitors. Hence we have the following circuit:

Note the Capacitors act like a wire when uncharged

$$K_1 \implies \text{Hence } \underline{I_4 = 0}, I + 1 = I_2 + I_3, I_3 = I_4 + I_5 = I_5$$
 $K_2 \implies 50 - 10I_1 - 20I_2 = 0$
 $0 = -5I_3 + 20I_2$

You now have 3 equations and 3 unknowns. Solve

EQUIVALENT Circuit

$$\frac{1}{R_{eq}} = \frac{1}{20} + \frac{1}{5} = \frac{1}{20} + \frac{4}{20} = \frac{5}{20} = \frac{1}{4}$$

$$\to R_{eq} = 4\Omega$$

Hence $I_1 = \frac{50V}{14\Omega}$, Since $I_1 = I_2 + I_3$ and $20I_2 = 5I_3$ we have

$$I_1 = \frac{50}{14} \text{ Amps} = 3.57 A = I_2 + 4I_2 = 5I_2$$

$$\therefore I_2 = \frac{10}{14} \text{ Amps} = 0.714 A$$

and finally

$$I_3 = 4I_2 = \frac{40}{14}$$
 Amps = 2.86 A

b) after a long time the Capacitors are fully charged

$$:I_2' = 0, I_5' = 0 \implies I_1' = I_3' = I_4'$$

$$\therefore \frac{50V}{30\Omega} = I_1' = \frac{5}{3} \text{Amp}$$

c)
$$V_{28\mu F} = V_{15\Omega} = I_4'(15\Omega) = \frac{5}{3}(15) = \underline{25V}$$

Problem 9

2023 PHYS 158 Homework 3 Question 3

Difficulty: ★★★

A light bulb is connected in the circuit shown below – the switch S is initially open and the capacitor is is uncharged. The battery has no appreciable internal resistance and a voltage = 12 V. The resistance of the light bulb is 1000Ω , $R = 50 \Omega$ and $C = 100 \mu F$. The switch is closed at t = 0.

- a) Find the all of the currents at $t = 0^+$.
- b) Find all of the currents after a very long time.
- c) Find the current in the bulb as a function of time.
- d) Sketch the brightness of the bulb as a function of time.

Solution:

Light Bulb circuit:

V = 12Volts, $R_B = 1000\Omega$, $R = 50\Omega$, $C = 100 \mu F$

$$K_1 \implies I = I_B + I_C$$

$$K_2 \implies V - IR - \frac{q_C}{C} = 0$$

$$V - IR - I_R R_R = 0$$

- a) At t = 0 $q_C = 0$ so $V_C = 0$ and $V_C = V_B = 0 = I_B R_B$. Hence $I_B = 0$ and $I_C = \frac{V}{R} = \frac{12}{50} A = 0.24 A$.
- b) As $t \to \infty$, $I_C \to 0$ so $I = I_B = \frac{V}{R + R_B} = \frac{12}{1050} A = 11.43 \text{ mA}$.
- c) Now we study the time dependence of I, I_B , I_C . Consider the following equation from earlier $V IR q_C/C = 0$

$$\frac{d}{dr}\left(V - IR - \frac{1}{C}q_C\right) = 0 = 0 - R\frac{dI}{dt} - \frac{1}{C}\frac{dq}{dt}$$

Hence

$$\frac{dq_C}{dt} = I_C = -RC\frac{dI}{dt}.$$

Consider the following equation from earlier $I_C = I - I_B$ so $-RC\frac{dI}{dt} = I - I_B$ and finally use the equation $I_B = \frac{V - IR}{R_B}$ so that

$$-RC\frac{dI}{dt} = I - \frac{1}{R_R}(V - IR) = \frac{-V}{R_R} + I(1 + \frac{R}{R_R}). \label{eq:equation:equation}$$

Simplifying $\implies -RR_BC\frac{dI}{dt} = -V + I(R_B + R)$ or

$$\frac{dI}{dt} = \frac{V}{RR_BC} - \frac{I}{C} \left(\frac{R_B + R}{R_BR} \right)$$

$$\frac{dI}{dt} = \frac{V}{RR_BC} - \frac{I}{C} \left(\frac{1}{R} + \frac{1}{R_B} \right)$$

this has a solution $I(t) = A \exp(-t/\tau) + B$ so

$$\frac{dI}{dt} = -\frac{A}{\tau} \exp(-t/\tau)$$

substituting and solving for A and B we find (using) $I(0) = \frac{V}{R}$

$$\implies A = \left(\frac{V}{R} - \frac{V}{R + R_R}\right), B = \left(\frac{V}{R + R_R}\right)$$

$$\therefore I(t) = V\left(\frac{1}{R} - \frac{1}{R + R_B}\right) \exp(-t/\tau) + \frac{V}{R + R_B}$$

$$I(t) = \frac{VR_B \exp(-t/\tau)}{R(R+R_B)} + \frac{V}{R+R_B}$$

 $\rightarrow \tau = \frac{RR_BC}{R+R_B}$ from found equation for rate of change of current.

Finally

$$\begin{split} I_C(t) &= I(t) - I_B(t), \text{ but } I_B(t) = \frac{V - IR}{R_B}.\\ I_B(t) &= \frac{V}{R_B} - \frac{R}{R_B} \left(\frac{V}{R + R_B} \left(1 + R_B \exp(-t/\tau) \right) \right) \end{split}$$

Inserting the values $\tau = 4.76ms$, $\frac{1}{\tau} = 210s^{-1}$

$$I_C(t) = 240 \exp(-210t) mA$$

$$I_B(t) = 11.43 mA(1 - \exp(-210t))$$

d) See sketch below

This problem is too difficult for any EXAM!!

Problem 10

2023 PHYS 158 Homework 3 Question 4

Difficulty: ★★☆

The circuit below has been open for a very long time and then the switch is closed at t = 0.

- a) Find all of the currents at $t = 0^+$.
- b) Find all of the currents after a very long time.
- c) Find all of the currents as a function of time

Solution:

a) Close switch at t=0, then $I_2(0)=0$ and the Inductor acts like a Battery $I_0(0)=I_1(0)$

$$\mathcal{E} - I_1 R_1 = 0 \implies I_1 = \frac{\mathcal{E}}{R_1} = I_0$$

b) As $t \to \infty$ the Inductor voltage $\to 0$ (becomes a wire)

Now $I'_0 = I'_1 + I'_2$:

$$I_1'R_1 = I_2'R_2 = \mathcal{E} = I$$

$$\therefore I_1' = \frac{\mathcal{E}}{R_1}, \ I_2' = \frac{\mathcal{E}}{R_2}, \ I_0' = \mathcal{E}\left(\frac{1}{R_1} + \frac{1}{R_2}\right)$$

c) At any time t we have

$$\begin{split} K_1 &\implies I_0(t) = I_1(t) + I_2(t) \\ K_2 &\implies \begin{cases} \mathcal{E} - I_1 R_1 = 0 \\ \mathcal{E} - I_2 R_2 - L \frac{dI_2}{dt} = 0 \end{cases} \end{split}$$

This last equation looks like a regular RL circuit, so its solution is $I_2(t) = A \exp(-t/\tau) + B$ with $\tau =$ time constant

$$\begin{split} I_2(\infty) &\to \frac{\mathcal{E}}{R_2} = B, \ I_2(0) = A + B = 0 \implies A = \frac{\mathcal{E}}{R_2} \end{split}$$
 so $I_2(t) = -\frac{\mathcal{E}}{R_2} \exp(-t/\tau) + \frac{\mathcal{E}}{R_2} = \frac{\mathcal{E}}{R_2} \left(1 - \exp(t/\tau)\right).$

To find τ we use the aforementioned equation that looks like a regular RL circuit

$$\mathcal{E} - R_2 \left(\frac{\mathcal{E}}{R_2} \left(1 - \exp(-t/\tau) \right) - \frac{L\mathcal{E}}{R_2} \left(\frac{1}{\tau} \exp(-t/\tau) \right) = 0.$$

$$\therefore \mathcal{E} - \mathcal{E} + \mathcal{E} \exp(-t/\tau) - \frac{L\mathcal{E}}{R_2} \frac{1}{\tau} \exp(-t/\tau) = 0,$$

and all \mathcal{E} can be divide out, resulting in

$$\left(1 - \frac{L}{R_2} \frac{1}{\tau}\right) = 0 \implies \tau = \frac{L}{R_2}$$

$$\implies I_2 = \frac{\mathcal{E}}{R_2} (1 - \exp(-tR_2/\tau))$$

$$I_1 = \frac{\mathcal{E}}{R_1} I_0 = \frac{\mathcal{E}}{R_1} + \frac{\mathcal{E}}{R_2} \left(1 - \exp(-tR_2/L)\right)$$

Problem 11

2023 PHYS 158 Homework 3 Question 5

Difficulty: ★☆☆

The switch S in has been open a very long time and then it is closed at t = 0. $Q_1 2(0) = 0$.

- a) Calculate all the voltage readings and all of the currents at $t = 0^+$.
- b) After the switch has been closed for a very long time calculate all the voltage and current values. (The circles represent voltmeters and ammeters.)

Solution:

a) At t = 0, $V_C = 0$, $I_{ind} = 0 \implies$ Equivalent Circuit where the capacitor acts like a wire and the inductor acts like a back EMF so no current flows through the inductor.

 $12.0\mu F$ capacitor shorts the second 50Ω resistor on RHS

$$40V = I_0(50\Omega) \implies \underline{I_0 = 0.8 \text{Amps}}$$
 Hence $A_1 = 0.8A = A_4, \ A_2 = A_3 = 0, \ V_1 = 40V, \ V_2 = 0 = V_3 = V_4$

b) as $t \to \infty$ Capacitors are fully charged $I_C \to 0$ and now the Inductor acts like a <u>WIRE</u>

Equivalent Circuit \Longrightarrow

$$\frac{1}{R_{eq}} = \frac{1}{100} + \frac{1}{50} = \frac{3}{100}$$

$$\to R_{eq} = 33.3\Omega$$

$$I_0 = \frac{40}{83.3} = 0.48 \text{Amps}$$
 $I_0 = I_1 + I_2 \qquad I_2 = I_3$
 $100I = 50I_3 \implies I_3 = 2I_1$
 $I_0 = I_1 + I_3 = 3I_1 = 0.48A$
 $\therefore I_1 = 0.16A \text{ and } I_3 = 0.32A$

$$\begin{split} V_1 &= I_0(50) = 24V \\ V_2 &= 0 \\ V_3 &= 0.16(100) = 16V \\ V_4 &= 0.32(50) = 16V \\ V_5 &= 16V \end{split}$$

Problem 12

2023 PHYS 158 Homework 3 Question 6

Difficulty: ★★☆

The circuit shown below initially has no charge on the capacitors and the switch S is originally open. Use $R_1 = 4\Omega$, $R_3 = 8\Omega$, $R_4 = 8\Omega$, $R_5 = 6\Omega$ $C_1 = 2\mu$ F, and $C_2 = 6\mu$ F.

- a) Just after closing the switch S, find the currents I_1 , I_2 , I_3 , I_4 , I_5 .
- b) After the switch has been closed for a very long time, find the currents I_1 , I_2 , I_3 , I_4 , I_5 .

c) After the switch S has been closed for a very long time, find the potential at points A, B, C, D, E, & F.

(Note that the directions of the arrows don't necessarily mean that the current will be flowing in that direction. Also assume that no current flows to ground and that it just serves as a 0 reference point for the voltage.)

Solution:

$$R_1 = 4\Omega, \ R_3 = 8\Omega, \ R_4 = 8\Omega, \ R_5 = 6\Omega. \ C_1 = 2\mu F, \ C_2 = 6\mu F \ {\rm at} \ t = 0: \ q_C(0) = 0 \ {\rm for} \ C_1 \ {\rm and} \ C_2 = 0$$

a) At t = 0, $V_{C_1} = 0$ and $V_{C_2} = 0$ since $q_i(0) = 0$ \Longrightarrow both capacitors can be replaced by wires.

Note $V_A = V_E = V_B$ (as they are connected by wires), R_1 and R_4 are in parallel

$$\implies \frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_4} = \frac{1}{4} + \frac{1}{8} = \frac{3}{8}$$

.

Hence
$$R_{eq} = \frac{8}{3} = 2.67A$$
, also $I_5 = I_1 + I - 2 + I_3$ but $\underline{I_3} = 0$ (shorted)

Note that
$$I_4=I_2+I_3$$
 and $I_5=I_1+I_4,\,V_{EF}=V_{AC}$ so $I_4R_4=I_1R_1$

This means that $12V = I_4R_4 + I_5R_5 = I_1R_1 + I_5R_5$

Hence
$$12V = 8I_4 + 6(2I_4 + I_4) = I_4(8 + 12 + 6) = 26I_4$$

$$\implies I_4 = 0.46A \text{ (down)}$$

$$\implies I_1 = 0.92A \text{ (to right)}$$

$$\implies I_2 = I_4 = 0.46A$$
 (to right)

$$\implies I_5 = 1.38A$$
 (to right)

b) After a long time $I_C \to 0$, $Q_{C_1} = V_{C_1}(C_1)$, and $Q_{C_2} = V_{C_2}(C_2)$. Additionally, the Capacitors will no longer allow charge to increase so $I_{C_1} = I_{C_2} = 0 \to \underline{\text{an open circuit.}}$

Redraw the circuit ⇒

Note
$$\underline{I'_2 = I'_1 = 0}$$
 and $\underline{I'_5 = I'_3 = I'_4}$

Hence:

$$12V = I_5'(R_3 + R_4 + R_5) = I_5'(8 + 8 + 6) = 22I_5'$$
$$\underline{I_5' = \frac{12}{22}A = 0.545A}$$

c) $V_A = V_B = 12$ Volts, and we have:

$$\begin{aligned} 12 - 0.545(8) &= 12 - 0.436 = 7.64V \\ V_E &= 12 - I_3' R_3 = 12 - 0.55(8) = 12 - 4.4 = 7.6V \\ V_E &= 0 + I_5' R_5 + I_4' R_4 = I_5' (R_4 + R_5) = 0.545(6 + 8) = 0.545(14) = \underline{V_E = 7.63V} \\ V_C &= V_F = I_5' R_5 = 0.545(6) = \underline{3.27V} = V_C = V_F \end{aligned}$$

LC and RLC Circuits

Problem 20

Created by Tyler Wilson 2023

Difficulty: ★☆☆

The LRC circuit below is constructed with a 12 V battery, 6Ω resistor, 5μ F capacitor, and 0.5 mH inductor.

If the switch has been closed for a long time and is suddenly opened, find:

- a) How much current is flowing through the inductor just after the switch has been opened.
- b) How much charge is stored on the capacitor at the instant the switch is opened.
- c) The initial energy in the circuit.
- d) The max current in the circuit.
- e) How often the capacitor attains a max charge per second (only consider the absolute value of the charge).
- f) How much power is dissipated in the circuit after 40 seconds.

Solution:

a) When the switch is closed for a long time the capacitor is fully charged and all the current is flowing through the inductor. This current can be computed as:

$$i_L(0^-) = \frac{\varepsilon}{R} = \frac{12}{6} = 2 \,\mathrm{A}$$

The instant the switch is opened, the current through the inductor will want to stay the same so the current will be

$$i(0^+) = i(0^-) = 2 A$$

b) The capacitor was fully charged at the moment the swicth was open so the charge will be

$$q(0^+) = q(0^-) = \varepsilon C = (12)(5 \cdot 10^{-6}) = 60 \,\mu\text{C}$$

c) The total energy stored in the new circuit will be the initial energy stored in the capacitor plus the initial energy stored in the inductor.

$$\begin{split} &U_C = \frac{1}{2}C\varepsilon^2 = \frac{1}{2}(5\cdot 10^{-6})(12)^2 = 0.36\,\mathrm{mJ} \\ &U_L = \frac{1}{2}Li^2 = \frac{1}{2}(0.5\cdot 10^{-3})(2)^2 = 1\,\mathrm{mJ} \\ &U_{\mathrm{total}} = U_C + U_L = \boxed{1.36\,\mathrm{mJ}} \end{split}$$

d) The max current will occur when all of the energy is stored in the inductor.

$$U_{\text{total}} = U_L = \frac{1}{2}Li_{\text{max}}^2$$
$$i_{\text{max}} = \sqrt{\frac{2U_{\text{total}}}{L}} = \boxed{2.33 \,\text{A}}$$

e) We can solve this by using the angular frequency of the circuit which is defined to be

$$\omega = \frac{1}{\sqrt{LC}} = 2\pi f$$

$$f = \frac{1}{2\pi\sqrt{LC}} = 3183 \text{ Hz}$$

Note that this is the frequency for which the charge will attain a positive maximum. We must also account for when the current switches directions and we get a negative maximim so our frequency will be double this value.

$$f_{\text{abs}} = 6366 \,\text{Hz}$$

 $N = (6366 \,\text{Hz}) \cdot (1 \,\text{s}) = 6366 \,\text{times}$

f) This is a trick question. Power is only dissipated in an RLC circuit through resistors. Because there are no resistors connected, there will be no power dissipated.

AC Circuits

Problem 13

2023 PHYS 158 Tutorial 5 Question 1

Difficulty: ★★☆

Mystery RLC circuit: You are given an RLC circuit with elements connected in series. Values of R, L and C are unknown. You have at your disposal a source of AC voltage with $V_{\rm RMS} = 8$ V and a tunable frequency ω . You also have an Ammeter which measures the RMS current $I_{\rm RMS}$ and the power factor $\cos \phi$.

Suppose you measured $I_{\rm RMS}$ as a function of frequency and found that the maximum RMS current occurs at $\omega_0 = 12.5 \, \rm kHz$ and is equal to 40 mA.

- a) What is the resistance, R? What does this tell you about L and C?
- b) What is the power factor at $\omega = \omega_0$?
- c) In addition you find that at $\omega_1 = 17$ kHz the power factor is 0.5. Based on this information, what are the values of L and C?

Solution:

The key formulas that will help solve this problem are

$$I_{\rm RMS} = \frac{V_{\rm RMS}}{\sqrt{R^2 + (L\omega - \frac{1}{C\omega})^2}}$$

and

$$\tan \phi = \frac{L\omega - \frac{1}{C\omega}}{R}$$

a) At resonance frequency, we will have $L\omega_0 = \frac{1}{C\omega_0}$. This simplifies our above equation for the current to be $I_{\rm RMS} = \frac{V_{\rm RMS}}{R}$. Rearranging we can solve for R to be

$$R = \frac{V_{\text{RMS}}}{I_{\text{RMS}}} = \frac{8 \text{ V}}{40 \text{ mA}} = \boxed{200 \,\Omega}$$

- b) At resonance, the circuit is purely resistive so $\phi = 0$. Therefore, $\cos \phi = 1$
- c) At $\omega_1 = 17$ kHz, $\cos \phi = 0.5$ so $\phi = 60^\circ$.

$$\tan 60^{\circ} = \sqrt{3} = \frac{L\omega_1 - \frac{1}{\omega_1 C}}{R}$$

$$L\omega_1 - \frac{1}{C\omega_1} = R\sqrt{3}$$

and from part a we have $\frac{1}{C\omega_0}=L\omega_0$ Solve for L:

$$L\left(\omega_1 - \frac{\omega_0^2}{\omega_1}\right) = R\sqrt{3} \Rightarrow L = \frac{R\sqrt{3}}{\omega_1 - \frac{\omega_0^2}{\omega_1}} = 44.3 \text{ mH}$$

$$C = \frac{1}{L\omega_0^2} = 0.144 \,\mathrm{pF}$$

Problem 14

2023 PHYS 158 Tutorial 5 Question 3

Difficulty: ★★☆

A 100 Ω resistor, 0.2 μ F capacitor and 50 mH inductor are connected in **parallel** to an AC voltage source that provides instantaneous voltage according to $v(t) = V_{\text{peak}} \sin(\omega t)$. Draw the circuit, then answer the following questions:

- a) Find the instantaneous voltages $v_R(t)$, $v_L(t)$, and $v_C(t)$ on the three elements.
- b) Find the instantaneous currents $i_R(t)$, $i_L(t)$, and $i_C(t)$ flowing through the three elements.
- c) Given that $V_{\text{peak}} = 100 \text{ V}$ and $\omega = 50 \text{ kHz}$ what is the total RMS current supplied by the source? What is the phase angle ϕ ?

Solution:

a) Because they are all connected to the source by a wire,

$$v_R(t) = v_L(t) = v_C(t) = V_{\text{peak}} \sin(\omega t)$$

b)
$$i_R(t) = \frac{V_{\text{peak}}}{R} \sin(\omega t)$$
 (in phase) $i_L(t) = \frac{V_{\text{peak}}}{L\omega} \sin(\omega t - \frac{\pi}{2})$ (lags behind) $i_C = V_{\text{peak}} C\omega \sin(\omega t + \frac{\pi}{2})$ (leads)

c) The RMS current is determined from the impedence triangle

$$\begin{split} I_{\rm RMS} &= \sqrt{I_R^2 + (I_C - I_L)^2} = V_{\rm RMS} \sqrt{\frac{1}{R^2} + \left(C\omega - \frac{1}{L\omega}\right)^2} \\ \tan \phi &= \frac{I_C - I_L}{I_R} = R\left(C\omega - \frac{1}{L\omega}\right) \end{split}$$

Problem 18

Created by Tyler Wilson 2023

Difficulty: ★★☆

An AC circuit is connected in series with a resistor, capacitor, and an inductor with values of 30Ω , 2μ F, and 2 H. If the circuit has an impedence of $Z = 220 \Omega$ what are all of the possible frequency values, ω ?

Solution:

$$\begin{split} Z^2 &= R^2 + \left(L\omega - \frac{1}{C\omega}\right)^2 \\ Z^2 - R^2 &= \left(L\omega - \frac{1}{C\omega}\right)^2 = L^2\omega^2 - \frac{2L}{C} + \frac{1}{C^2\omega^2} \\ L^2\omega^2 + R^2 - Z^2 - \frac{2L}{C} + \frac{1}{C^2\omega^2} = 0 \\ L^2\omega^4 + \left(R^2 - Z^2 - \frac{2L}{C}\right)\omega^2 + \frac{1}{C^2} = 0 \end{split}$$

$$\omega^{2} = \frac{Z^{2} + \frac{2L}{C} - R^{2} \pm \sqrt{\left(Z^{2} + \frac{2L}{C} - R^{2}\right) - \frac{4L^{2}}{C^{2}}}}{2L^{2}}$$

Plugging in the values we have for Z, R, L, and C gives $\omega = \pm 2.25$ Hz and $\omega = \pm 22.25$ Hz. Because we can only have positive frequencies, the answer is $\omega = 2.25$ Hz and $\omega = 22.25$ Hz.

Problem 19

Created by Tyler Wilson 2023

Difficulty: ★☆☆

A 2 F capacitor, 0.25 H inductor, and a 100 Ω resistor are connected in series with a voltage source $v(t) = 25\cos(80t - \frac{\pi}{2})$

- a) What is the impedence of this circuit?
- b) What is the peak current?
- c) What is the peak voltage across each element?

Solution:

a) We can recognize that the frequency, ω is 80Hz. The impedence can then be computed as

$$Z = \sqrt{R^2 + \left(L\omega - \frac{1}{\omega C}\right)^2} = \sqrt{100^2 + \left((0.25)(80) - \frac{1}{(2)(80)}\right)} = \boxed{101.98\,\Omega}$$

b) The peak current can be computed using the peak voltage and the impedence to be

$$I_{\text{peak}} = \frac{V_{\text{peak}}}{Z} = \frac{25 \text{ V}}{101.98 \,\Omega} = \boxed{0.25 \text{ A}}$$

- c) The peak voltage across each element can be computed as $V = I_{\text{peak}}X$.
 - For the resistor:

$$V_R = I_{\text{peak}} R = (0.25 \,\text{A})(100 \,\Omega) = 24.51 \,\text{V}$$

• For the capacitor:

$$X_C = \frac{1}{\omega C} = \frac{1}{(80)(2)} = 0.00625 \,\Omega$$

 $V_C = I_{\text{peak}} X_C = (0.25)(0.00625) = \boxed{0.0015 \,\text{V}}$

• For the inductor:

$$X_L = \omega L = (80)(0.25) = 20 \Omega$$

 $V_L = I_{\text{peak}} X_L = (0.25)(20) = \boxed{4.90 \text{ V}}$