北京交通大学

2012-2013 学年第一学期研究生随机过程试题(A)

姓名:	_学院:	_任课教师:
专业:	_班 级:	_ 学号:

(注:本试卷满分100分,共五道大题.请在<u>答卷纸</u>上写清楚 姓名、学院、专业、班级、学号、题号.)

- **1.** (15分) 设随机变量 X 的概率分布是服从参数为 $\lambda(\lambda > 0)$ 的指数分布. (1) 写出 X 的概率密度函数; (2) 求出指数分布的矩母函数(写出计算过程); (3) 利用其矩母函数求出 X 的期望和方差(写出计算过程).
- **2.** (15分) 考虑强度为 λ 的齐次 Poisson 过程 $\{N_t, t \geq 0\}$, 计算前三个事件到来的时刻 S_1, S_2, S_3 的联合密度.
 - 3. (20分) 设 $Y_t = \sum_{n=1}^{N_t} \xi_n$ 是一个复合 Poisson 过程, $t \ge 0$.
- (1) 若 $\varphi_{\xi}(u) \triangleq Ee^{iu\xi}(其中 i = \sqrt{-1})$ 是随机变量 ξ_n 的特征函数, 试求 Y_t 的特征函数 $\varphi_{Y_t}(u)$.
- (2) 若 $E(\xi^2) < \infty$, 试求 $E(Y_t)$, $Var(Y_t)$.

(注: $Var(Y_t) = E[Var(Y_t|N_t)] + Var[E(Y_t|N_t)].$)

4. (20分) 记 Z_i , $i=1,2,\cdots$ 为一串独立同分布的离散随机变量. $P\{Z_1=k\}=p_k\geq 0,\ k=0,1,2,\cdots,\sum_{k=0}^{\infty}p_k=1.$

- (1) 令 $X_n = \sum_{i=1}^n Z_i$, $n = 1, 2, \dots$, 并约定 $X_0 = 0$. 试证 X_n 为 Markov 链, 并求其一步转移概率矩阵. (请将转移概率矩阵完整写出)
- (2) 令 $X_n = \max\{Z_1, \dots, Z_n\}$, $n = 1, 2, \dots$, 并约定 $X_0 = 0$. 试证 X_n 为 Markov 链, 并求其一步转移概率矩阵. (请将转移概率矩阵完整写出)

5. (30分)

(I) 设马氏链 $\{X_n\}$ 的状态空间 $E = \{0, 1, 2\}$, 转移矩阵为

$$P = \left(\begin{array}{ccc} 1/2 & 1/2 & 0\\ 1/4 & 1/2 & 1/4\\ 0 & 3/4 & 1/4 \end{array}\right),$$

初始分布 $p_0=p_1=p_2=\frac{1}{3}$,其中 $p_i=P(X_0=i)$,i=0,1,2. 试求 $P(X_0=0,X_1=1,X_2=2)$ 和 $P(X_0=1,X_1=1,X_3=1)$.

(II) 设 Markov 链 X_n , $n \ge 0$ 的状态空间 $E = \{0, 1, 2, 3\}$ 和一步转移概率矩阵

$$P = \left(\begin{array}{cccc} 0 & 1/5 & 4/5 & 0\\ 0 & 0 & 1/2 & 1/2\\ 1 & 0 & 0 & 0\\ 1 & 0 & 0 & 0 \end{array}\right).$$

- (1) 试分析该 Markov 链: 画出状态转移图; 常返性; 周期.
- (2) 该链是否具有平稳分布? 为什么? 若有则求出.
- (III) 设马氏链 $\{X_n\}$ 的状态空间 $E = \{0, 1, 2, 3, 4\}$, 转移矩阵为

$$P = \begin{pmatrix} 0 & 1/5 & 4/5 & 0 & 0 \\ 0 & 0 & 0 & 1/2 & 1/2 \\ 0 & 0 & 0 & 2/5 & 3/5 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

- (1) 试分解此链, 画出状态转移图, 并指出其非常返集和基本常返闭集;
- (2) 说明常返闭集中的状态是否为正常返态,并计算其周期.