BRIEF CONTENTS

Foreword
Acknowledgments
Introduction
Chapter 1: Basic Static Malware Analysis
Chapter 2: Beyond Basic Static Analysis: x86 Disassembly
Chapter 3: A Brief Introduction to Dynamic Analysis
Chapter 4: Identifying Attack Campaigns Using Malware Networks
Chapter 5: Shared Code Analysis
Chapter 6: Understanding Machine Learning–Based Malware Detectors 89
Chapter 7: Evaluating Malware Detection Systems
Chapter 8: Building Machine Learning Detectors
Chapter 9: Visualizing Malware Trends
Chapter 10: Deep Learning Basics
Chapter 11: Building a Neural Network Malware Detector with Keras
Chapter 12: Becoming a Data Scientist
Appendix: An Overview of Datasets and Tools
Index

CONTENTS IN DETAIL

FOREWORD by Anup Ghosh	xvii
ACKNOWLEDGMENTS	xix
INTRODUCTION	xxi
What Is Data Science?	xxii xxiii xxiv xxiv
1 BASIC STATIC MALWARE ANALYSIS	1
The Microsoft Windows Portable Executable Format. The PE Header The Optional Header Section Headers Dissecting the PE Format Using pefile Examining Malware Images Examining Malware Strings Using the strings Program Analyzing Your strings Dump Summary	3 4 5 7 8 8
2 BEYOND BASIC STATIC ANALYSIS: X86 DISASSEMBLY	11
Disassembly Methods Basics of x86 Assembly Language CPU Registers Arithmetic Instructions Data Movement Instructions Disassembling ircbot.exe Using pefile and capstone Factors That Limit Static Analysis Packing Resource Obfuscation Anti-disassembly Techniques Dynamically Downloaded Data Summary	12 13 15 20 21 21 22 22

3
A BRIEF INTRODUCTION TO DYNAMIC ANALYSIS 25
Why Use Dynamic Analysis?
Dynamic Analysis for Malware Data Science
Basic Tools for Dynamic Analysis
Typical Malware Behaviors
Loading a File on malwr.com
Analyzing Results on malwr.com
Limitations of Basic Dynamic Analysis
Summary
4
IDENTIFYING ATTACK CAMPAIGNS
USING MALWARE NETWORKS 35
Nodes and Edges
Bipartite Networks
Visualizing Malware Networks
The Distortion Problem
Force-Directed Algorithms
Building Networks with NetworkX
Adding Nodes and Edges
Adding Attributes
Saving Networks to Disk
Network Visualization with GraphViz
Using Parameters to Adjust Networks
The GraphViz Command Line Tools
Adding Visual Attributes to Nodes and Edges
Building a Shared Image Relationship Network
Summary
odillinary
5
SHARED CODE ANALYSIS 59
Preparing Samples for Comparison by Extracting Features
How Bag of Features Models Work
What are N-Grams?
Using the Jaccard Index to Quantify Similarity
Using Similarity Matrices to Evaluate Malware Shared Code Estimation Methods 66
Instruction Sequence–Based Similarity
Strings-Based Similarity
Import Address Table–Based Similarity
Dynamic API Call–Based Similarity
Building a Similarity Graph
Minhash in a Nutshell
Minhash in Depth
Building a Persistent Malware Similarity Search System
Running the Similarity Search System
Summary

6	
UNDERSTANDING MACHINE LEARNING-BASED MALWARE DETECTORS	89
Steps for Building a Machine Learning–Based Detector	90
Gathering Training Examples	
Extracting Features	
Designing Good Features	
Training Machine Learning Systems	92
Testing Machine Learning Systems	
Understanding Feature Spaces and Decision Boundaries	
What Makes Models Good or Bad: Overfitting and Underfitting	
Major Types of Machine Learning Algorithms	
Logistic Regression	
K-Nearest Neighbors	
Decision Trees	
Random Forest	
Summary	11/
7	
EVALUATING MALWARE DETECTION SYSTEMS	119
Four Possible Detection Outcomes	120
True and False Positive Rates	120
Relationship Between True and False Positive Rates	121
ROC Curves	
Considering Base Rates in Your Evaluation	
How Base Rate Affects Precision	
Estimating Precision in a Deployment Environment	
Summary	126
8	
BUILDING MACHINE LEARNING DETECTORS	127
Terminology and Concepts	128
Building a Toy Decision Tree-Based Detector	
Training Your Decision Tree Classifier	
Visualizing the Decision Tree	
Complete Sample Code	133
Building Real-World Machine Learning Detectors with sklearn	
Real-World Feature Extraction	
Why You Can't Use All Possible Features	
Using the Hashing Trick to Compress Features	
Building an Industrial-Strength Detector	
Extracting Features	
Training the Detector	
Running the Detector on New Binaries	
What We've Implemented So Far	
Evaluating Your Detector's Performance	
Using ROC Curves to Evaluate Detector Efficacy	
Computing ROC Curves	
opining bala into training and tool ocio	0

Computing the ROC Curve	
Cross-Validation	
Next Steps	
Summary	134
9	
VISUALIZING MALWARE TRENDS	155
Why Visualizing Malware Data Is Important	
Understanding Our Malware Dataset	
Loading Data into pandas	
Working with a pandas DataFrame	
Using matplotlib to Visualize Data	
Plotting the Relationship Between Malware Size and Detection	
Plotting Ransomware Detection Rates	
Plotting Ransomware and Worm Detection Rates	
Using seaborn to Visualize Data	
Plotting the Distribution of Antivirus Detections	
Creating a Violin Plot	
Summary	1/4
10	
DEEP LEARNING BASICS	1 <i>7</i> 5
What Is Deep Learning?	176
How Neural Networks Work	177
Anatomy of a Neuron	
A Network of Neurons	
Universal Approximation Theorem	
Building Your Own Neural Network	
Automatic Feature Generation	
Training Neural Networks	
Using Backpropagation to Optimize a Neural Network	
Path Explosion	
Vanishing Gradient	
Types of Neural Networks	
Feed-Forward Neural Network	
Convolutional Neural Network	
Autoencoder Neural Network	105
Recurrent Neural Network	
ResNet	
Summary	
,	
11	
BUILDING A NEURAL NETWORK MALWARE DETECTOR WITH KERAS	199
Defining a Model's Architecture	
Compiling the Model	

Training the Model	. 203
Extracting Features	. 203
Creating a Data Generator	. 204
Incorporating Validation Data	
Saving and Loading the Model	
Evaluating the Model	. 209
Enhancing the Model Training Process with Callbacks	
Using a Built-in Callback	. 212
Using a Custom Callback	
Summary	. 214
12	
BECOMING A DATA SCIENTIST	215
Paths to Becoming a Security Data Scientist	. 216
A Day in the Life of a Security Data Scientist	. 216
Traits of an Effective Security Data Scientist	. 218
Open-Mindedness	
Boundless Curiosity	
Obsession with Results	
Skepticism of Results	
Where to Go from Here	. 219
APPENDIX	
AN OVERVIEW OF DATASETS AND TOOLS	221
Overview of Datasets	. 222
Chapter 1: Basic Static Malware Analysis	
Chapter 2: Beyond Basic Static Analysis: x86 Disassembly	
Chapter 3: A Brief Introduction to Dynamic Analysis	
Chapter 4: Identifying Attack Campaigns Using Malware Networks	
Chapter 5: Shared Code Analysis	
Chapter 6: Understanding Machine Learning–Based Malware Detectors	
and Chapter 7: Evaluating Malware Detection Systems	. 223
Chapter 8: Building Machine Learning Detectors	. 224
Chapter 9: Visualizing Malware Trends	
Chapter 10: Deep Learning Basics	
Chapter 11: Building a Neural Network Malware Detector with Keras	
Chapter 12: Becoming a Data Scientist	
Tool Implementation Guide	
Shared Hostname Network Visualization	
Shared Image Network Visualization	
Malware Similarity Visualization	
Malware Similarity Search System	
Machine Learning Malware Detection System	. 230
INDEX	233