4 Electromagnetic waves in material

Let's let everything move!

4.1 Displacement current

Conservation of charge

$$abla \cdot \mathbf{J_s} = -rac{\partial
ho_f}{\partial t}$$

However, this is incompatible with

$$abla imes \mathbf{H} = \mathbf{J}_f$$

Lets take the divergence for both sides, we get

$$abla \cdot (
abla imes \mathbf{H}) = 0 =
abla \cdot \mathbf{J} + rac{\partial}{\partial t} \underbrace{
abla \cdot \mathbf{D}}_{
ho_{\mathbf{f}}}$$

 \Rightarrow add an additional term to the current density $\mathbf{J_f} = \nabla imes \mathbf{H}$

$$ightarrow
abla imes \mathbf{H} = \mathbf{J_f} + \underbrace{rac{\partial \mathbf{D}}{\partial t}}_{ ext{displacement curren}}$$

LHS:
$$\nabla imes \left(\frac{\mathbf{B}}{\mu_0} - \mathbf{M} \right) = \frac{1}{\mu_0} \nabla imes \mathbf{B} - \underbrace{\nabla imes \mathbf{M}}_{\mathbf{J_b}}$$

Where $J_{\rm b}$ is the bound current density.

$$\text{RHS} = \mathbf{J_s} + \tfrac{\partial \mathbf{D}}{\partial t} = \mathbf{J_s} + \tfrac{\partial \mathbf{P}}{\partial t} + \epsilon_0 \tfrac{\partial \mathbf{E}}{\partial t}$$

$$\Rightarrow$$
 we could write $abla imes {f B} = \mu_0 \left({f J_f} + {f J_b} + {f J_p}
ight) + \mu_0 \epsilon_0 rac{\partial {f E}}{\partial t}$

where J_p is the polarization current density, which equals $\frac{\partial \mathbf{P}}{\partial t}$

Note that $abla \cdot \mathbf{J_p} = -rac{\partial
ho_p}{\partial t}$ from conservation of charge.

Thus the polarization current responds to changes to bound charge, and hence in ${f P}$

4.2 Maxwell's equations in insulating linear dielectrics

Since it is insulating linear dielectrics, we have ${f J}_f=0$ and ${f J}_b=0$

Hence, we could get Maxwell's equation

$$abla \cdot \mathbf{D} = 0$$
 $\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$

$$\nabla \cdot \mathbf{B} = 0$$
 $\nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t}$

remember, ${f D}=\epsilon_0\epsilon_r{f E}+{f P}$ and ${f B}=\mu_0\mu_r{f H}$ which gives

$$abla \cdot \mathbf{E} = 0$$
 $\qquad \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$

$$abla \cdot \mathbf{B} = 0$$
 $\nabla \times \mathbf{B} = \mu_0 \mu_r \epsilon_0 \epsilon_r \frac{\partial \mathbf{E}}{\partial t}$

Consider

$$egin{aligned}
abla imes (
abla imes \mathbf{E}) &=
abla (
abla \cdot \mathbf{E}) -
abla^2 \mathbf{E} = -rac{\partial}{\partial t}
abla imes \mathbf{B} \end{aligned}$$
 $\Rightarrow
abla^2 \mathbf{E} = \underbrace{\mu_0 \mu_r \epsilon_0 \epsilon_r}_{rac{1}{2}} rac{\partial^2 \mathbf{E}}{\partial t^2}$

which is wave equation.

 $\Rightarrow v = rac{c}{n}$ where c = $rac{1}{\sqrt{\epsilon_0 \mu_0}}$ and n = $\sqrt{\epsilon_r \mu_r}$ where n is also called *refractive index*

Plane waves solutions

Lets choose propagation parallel to z, and hence

$$\frac{\partial \Psi}{\partial \mathbf{x}} = \frac{\partial \Psi}{\partial \mathbf{y}} = 0$$

remember that
$$\nabla \cdot \mathbf{E} = 0 \Rightarrow \frac{\partial E_z}{\partial z} = 0$$
 similarly, $\nabla \cdot \mathbf{B} = 0 \Rightarrow \frac{\partial B_z}{\partial z} = 0$

we also have
$$abla imes \mathbf{E} = -rac{\partial \mathbf{B}}{\partial t} \Rightarrow rac{\partial B_z}{\partial t} = 0$$

And
$$abla extbf{X} extbf{B} = \mu_0 \mu_r \epsilon_0 \epsilon_r rac{\partial \mathbf{E}}{\partial t} \Rightarrow rac{\partial E_z}{\partial t} = 0$$

Hence, E_z and B_z are constant in z and t, they are not part of wave motion now analyze the x,y components of curl:

$$-\frac{\partial E_y}{\partial z} = -\frac{\partial B_x}{\partial t}, -\frac{\partial B_y}{\partial z} = \frac{1}{v^2} \frac{\partial E_x}{\partial t}$$

 $\Rightarrow E_x, B_y$ are solutions

Lets then take

$$egin{align} rac{\partial^2 E_x}{\partial t^2} &= rac{1}{v^2} rac{\partial^2 E_x}{\partial t^2} \ \Rightarrow E_x(z,t) &= E_{x0} e^{i(\pm kz - \omega t)} \mathbf{\hat{x}} \end{aligned}$$

Then, we could have

$$A\Rightarrow B(z,t)=B_0e^{i(\pm kz-\omega t)}\mathbf{\hat{y}}$$

And then we could get the wave travelling in $\pm \mathbf{z}$ direction

$$\Rightarrow \mp kE_0 = -\omega B_0$$
 and $\pm kB_0 = rac{\omega}{v^2}E_0$ $\Rightarrow rac{E_0}{B_0} = \pm rac{\omega}{k} = \pm v$

Define Impedance Z as

$$Z = \left|rac{E_0}{H_0}
ight| = \sqrt{rac{\mu_0 \mu_r}{\epsilon_0 \epsilon_r}}$$

remember that $H_0=rac{B_0}{\mu_0\mu_r}$

The motivation of doing so is that $v = -\int \mathbf{E} \cdot d\mathbf{l}$ and $I = \oint \mathbf{H} \cdot d\mathbf{l}$

So dimension would work

For free space, then,
$$\epsilon_r=\mu_r=1$$
 and $Z=\sqrt{rac{\mu_0}{\epsilon_0}}=377\Omega$

Remember that $abla imes {f E} = -{f \dot B}$, and use E, B $\propto e^{i({f k}\cdot{f r}-\omega t)}$, we could get

$$egin{aligned} i\mathbf{k} imes\mathbf{E} &= -(-i\omega)\mathbf{B} \ &= i\omega\mu_0\mu_r\mathbf{H} \ \Rightarrow z &= \left|rac{\mathbf{E}}{\mathbf{H}}
ight| = \sqrt{rac{\mu_0\mu_r\omega}{k}} \end{aligned}$$

Which gives the same answer because $v=rac{c}{n}=rac{\omega}{k}=rac{1}{\sqrt{\epsilon_0\epsilon_r\mu_0\mu_r}}$ which is this wave

4.3 conductors

For conductors, we have

 $ho_f=0$ since there are no free charges in equilibrium

 $\mathbf{J}_f = \sigma \mathbf{E}$ from Ohm's law where σ is the conductivity

$$\mathbf{D} = \epsilon_0 \epsilon_r \mathbf{E}$$
 and $\mathbf{B} = \mu_0 \mu_r \mathbf{H}$ from linearity

Then we could get Maxwell's equation in conductors

$$\nabla \cdot \mathbf{E} = 0$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{B} = \underbrace{\mu_0 \mu_r \sigma \mathbf{E}}_{\text{conduction } \mathbf{J}} + \underbrace{\mu_0 \mu_r \sigma_0 \sigma_r \frac{\partial \mathbf{E}}{\partial t}}_{\text{dispalcement } \mathbf{J}}$$

Free charge will decay to zero in a short time au, and it is easy to prove (said Blundell)

$$abla \cdot \mathbf{J} = rac{\partial
ho}{\partial t}$$

Where $\nabla \cdot \mathbf{J}$ is equal to $\sigma \cdot \nabla \cdot \mathbf{E}$ from Ohm's law

and $abla \cdot \mathbf{E}$ is equal to $rac{
ho}{\epsilon_0 \epsilon_r}$ from Gauss's law

$$\Rightarrow
ho(f) =
ho(0) e^{-rac{t}{ au}}$$

Where
$$au = rac{\epsilon_0 \epsilon_r}{\sigma}$$

If the metal has great conductivity, then τ is very small, and hence $\rho(f)$ is very small.

Let's consider the electromagnetic wave having frequency ω , so we would like to compare $\frac{1}{\omega}$ with τ :

Condition	Conductor Type	Charge Response	Conductivity
$\omega au \ll 1$	Good conductor	Charges respond very quickly	$\sigma\gg\epsilon_0\epsilon_r\omega$ Conduction current dominates
$\omega au\gg 1$	Bad conductor	Charges respond very slowly	$\sigma \ll \epsilon_0 \epsilon_r \omega$ Displacement current dominates

Take real life examples

	$\sigma(\Omega m)$	ϵ_r	$rac{\sigma}{\epsilon_0\epsilon_r}(S^{-1})$
metal	10^{7}	1	10^{19}
Silicon	$4\cdot 10^{-4}$	11.7	10^{7}
Glass	10^{-10}	5	10

Note that visible light would have frequency ~ $5\cdot 10^{14}~\mathrm{Hz}$

Let's now do some electromagnetism

$$\nabla \times (\nabla \times \mathbf{E}) = \underbrace{\nabla (\nabla \cdot \mathbf{E})}_{0} - \nabla^{2} \mathbf{E}$$

$$= -\frac{\partial}{\partial t} \nabla \times \mathbf{B}$$

$$\nabla^{2} \mathbf{E} = \mu_{0} \mu_{r} \sigma \frac{\partial \mathbf{E}}{\partial t} + \mu_{0} \mu_{r} \sigma_{0} \sigma_{r} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}$$

Again, this would yield transverse plane waves with ${f E, B} \perp$ to each others

$$\Rightarrow \mathbf{E} = \mathbf{E}_0 \hat{\mathbf{x}} e^{i(\hat{\mathbf{k}} \cdot \mathbf{z} - \omega t)}$$

with
$$\widetilde{\mathbf{k}}=\mathbf{k}+i\kappa$$

$$ightarrow \widetilde{k}^2 = i \underbrace{\mu_0 \mu_r \sigma \omega}_{\mu} + \underbrace{\mu_0 \mu_r \epsilon_0 \epsilon_r}_{\epsilon} \omega^2$$

$$(k+i\kappa)^2 = k^2 - \kappa^2 + 2ik\kappa$$

$$k^2 - \kappa^2 = \mu_0 \epsilon_0 \omega^2$$

$$2k\kappa = \mu\sigma\omega \Rightarrow k = rac{\mu\sigma\omega}{2\kappa} \ 0 = \left(rac{\mu\sigma\omega}{2}
ight)^2rac{1}{k^2} - k^2 - \mu\epsilon_0\omega^2$$

$$0=(k^2)^2+\mu\epsilon\omega^2(k^2)-\left(rac{\mu\sigma\omega}{2}
ight)^2$$

$$\kappa^2 = -rac{\mu\epsilon\omega^2}{2} \pm \sqrt{\left(rac{\mu\epsilon\omega^2}{2}
ight)^2 + \left(rac{\mu\sigma\omega}{2}
ight)^2}$$

$$\kappa^2 = rac{\mu\epsilon\omega^2}{2} \left[\pm \sqrt{1+\left(rac{\sigma}{\epsilon\omega}
ight)^2} - 1
ight]$$

Taking the positive root

$$ightarrow \kappa = \sqrt{rac{\mu\epsilon}{2}}\omega\sqrt{\sqrt{1+\left(rac{\sigma}{\epsilon\omega}
ight)^2}-1}$$

Sub into origional equation

$$k = rac{\mu\sigma\omega}{2\kappa} = \sqrt{rac{\mu\epsilon}{2}}\omega\sqrt{\sqrt{1+\left(rac{\sigma}{\epsilon\omega}
ight)}+1} \ \Rightarrow \mathbf{E} = \mathbf{E}_0\hat{\mathbf{x}}\underbrace{e^{-\kappa z}}_{e^{-rac{z}{\delta}}}e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)}$$

Where $\delta=\frac{1}{\kappa}$ is the skin depth

Reminder. Good conductors have $\sigma\gg\epsilon\omega$

$$k=\kappa=\sqrt{rac{\mu\epsilon}{2}}\omega\sqrt{rac{\sigma}{\epsilon\omega}}=\sqrt{rac{\mu\omega\sigma}{2}}$$

We could therefore have

$$abla^2 \mathbf{E} = \mu \sigma rac{\partial \mathbf{E}}{\partial t} + \mu \epsilon rac{\partial^2 \mathbf{E}}{\partial t^2}$$

We could also neglect the last term, since $\frac{\partial^2 \mathbf{E}}{\partial t^2} \ll \frac{\partial \mathbf{E}}{\partial t}$

$$egin{aligned} & \Rightarrow \widetilde{k}^2 = i\mu\sigma\omega \ & \Rightarrow \widetilde{k} = rac{1+i}{\sqrt{2}} sqrt\mu\sigma\omega \ & \Rightarrow \widetilde{k} = \kappa = \sqrt{rac{\mu\sigma\omega}{2}} \end{aligned}$$

Hence, we could have

$$\delta = \frac{1}{k} = \sqrt{\frac{2}{\mu\sigma\omega}}$$

For a typical metal, δ is

 $\begin{cases} \text{few nm - visible light} \\ \text{few} \mu m \text{ - microwave} \\ \text{few mm - radio waves} \end{cases}$

Lets go to poor conductors

Poor conductors has $\sigma \ll \epsilon \omega$, hence

$$kpprox\sqrt{rac{\mu\epsilon}{2}}\omega\sqrt{2}=\sqrt{\mu\epsilon}\omega \ \kappa=\sqrt{rac{\mu\epsilon}{2}}\omega\Big(1+rac{1}{2}ig(rac{\sigma}{\epsilon\omega}ig)^2+\cdots-1\Big)^{rac{1}{2}}$$

which equals to $\frac{\sigma}{2}\sqrt{\frac{\mu}{\epsilon}}$ which is independent to ω

In an insulating dielectric, $\sigma=0$, hence $\kappa=0$, and hence $k=\frac{\omega}{v}$ as expected.

Lets return to previous equation

Lets consider the curl equation in the conductor

$$egin{aligned} rac{\partial \mathbf{E}_x}{\partial z} &= rac{\partial B_y}{\partial t} \ i(k+k)\mathbf{E}_0 &= i\omega \mathbf{B}_0 \ z &= rac{\mu E_0}{B_0} &= rac{\mu \omega}{k+i\kappa} \ \widetilde{k} &= rac{\mu \omega}{\sqrt{k^2 + \kappa^2}} e^{i\phi} \end{aligned}$$

If we expand, ϕ would be

$$\phi = an^{-1} \left(rac{\sqrt{1 + (Q/\epsilon\omega)^2} - 1}{\sqrt{1 + (Q/\epsilon\omega)^2} + 1}
ight)^{rac{1}{2}}$$

For a good conductor, $\sigma\gg\epsilon\omega$, hence $\phi o an^{-1}1=rac{\pi}{4}$

So this means that B lags behind E in a metal

Poyting vectors

Work done on charge

$$egin{aligned} \delta q &=
ho = delta au \ \delta F &= \delta q(\mathbf{E} + \mathbf{V} imes \mathbf{B}) \ \delta \mathbf{F} \cdot \mathbf{dl} &= \delta q(\mathbf{E} + \mathbf{V} imes \mathbf{B}) \cdot \mathbf{v} \delta t \ &= \mathbf{E} \cdot \mathbf{J_f} \delta au \delta t \end{aligned}$$

where \mathbf{J}_f eaquals to $\rho \mathbf{v}$

Rate of work on charges

$$egin{aligned} \mathbf{F} &= rac{dw}{dt} \ &= \mathbf{E} \cdot \mathbf{J_f} d au \ &= rac{d}{dt} \int \underbrace{u_{mech}}_{ ext{Energy density}} d au \end{aligned}$$

From Maxwell's equation:

$$\mathbf{J}_f =
abla imes \mathbf{H} - rac{\partial \mathbf{D}}{\partial t}$$

We have

$$\mathbf{E} \cdot \mathbf{J_f} = \mathbf{E} \cdot \nabla \times \mathbf{H} - \mathbf{E} \cdot \frac{\partial \mathbf{D}}{\partial \mathbf{t}}$$

By dotting everything, and then

$$egin{aligned}
abla \cdot (\mathbf{E} imes \mathbf{H}) &= \mathbf{H} \cdot
abla imes \mathbf{E} - \mathbf{E} \cdot
abla imes \mathbf{H} \\ \mathbf{E} \cdot \mathbf{J_f} &= \mathbf{H} \cdot \underbrace{
abla imes \mathbf{E}}_{-rac{\partial \mathbf{B}}{\partial t}} - \mathbf{E} \cdot rac{\partial \mathbf{D}}{\partial t} -
abla \cdot (\mathbf{E} imes \mathbf{H}) \end{aligned}$$

Where we call $\mathbf{H} \cdot \underbrace{\nabla \times \mathbf{E}}_{-\frac{\partial \mathbf{B}}{\partial t}} - \mathbf{E} \cdot \frac{\partial \mathbf{D}}{\partial t}$ " $\frac{\partial}{\partial t} u_{EM}$ " (remember that

 $u_{EM} = \frac{1}{2} (\mathbf{B} \cdot \mathbf{H} + \mathbf{E} \cdot \mathbf{D})$ which equals to Energy stored in EM field per unit volume) and $\nabla \cdot (\mathbf{E} \times \mathbf{H})$ as " $\mathbf{S} = \mathbf{E} \times \mathbf{H}$ " or poyting vector.

How is this working?

Assume that we are using a linear media:

$$\mathbf{E} \cdot \frac{\partial \mathbf{D}}{\partial t} = \frac{1}{2} \mathbf{E} \cdot \frac{\partial (\mathbf{E} \cdot \mathbf{D})}{\partial t}$$
$$\mathbf{H} \cdot \frac{\partial \mathbf{B}}{\partial t} = \frac{1}{2} \mathbf{H} \cdot \frac{\partial (\mathbf{B} \cdot \mathbf{H})}{\partial t}$$

Remember that

$$\frac{1}{2}\epsilon_0 E^2 = \frac{1}{2}DE$$

$$\frac{B^2}{2\mu_0} = \frac{1}{2}BH$$
In free space

Brining everything together, we could get

$$\Rightarrow rac{d}{dt}(u_{
m mech}+u_{
m EM})+
abla\cdot{f S}=0$$

Where ${f S}$ is the poyting vector, or equiviantly,

$$\frac{d}{dt}\int (u_{\mathrm{mech}} + u_{\mathrm{EM}})d\tau + \oint \mathbf{S} \cdot d\mathbf{a} = 0$$

We could say that, therefore S is the energy flux density, or the rate of flow of energy per unit area in the direction of S.

Example: a capacitor

The stored energy increase at rate

$$\dot{U} = \frac{Q}{C} \frac{dQ}{dt} \quad U = \frac{Q^2}{2C}$$

also:

Hence, we have

$$\dot{U} = S \cdot 2\pi r d = rac{Q}{c} rac{dQ}{dt}$$

where
$$S=EH=rac{Q}{dc}rac{rac{dQ}{dt}}{2\pi r}$$

There is another example

$$H \cdot S\pi a = I$$

$$E = \frac{V}{l}$$

$$\Rightarrow S = \frac{V}{l} \frac{I}{2\pi a}$$

$$\int \mathbf{S} \cdot \mathbf{da} = -IV = -I^2 R$$

4.5 Radiation pressure

EM waves are made up of photons, and hecne they have momentum

$$E = pc$$

⇒ Transport of energy is appoinated by transport of momentum

$$P_{rad} = \frac{\langle S \rangle}{c}$$

For a perfect absorber, where P_{rad} is the radiation pressure

Example For a plane EM wave in free space, we have

$$U=rac{1}{2}\epsilon_0E^2+frac12rac{B^2}{\mu_0}$$
 but $E=cB$ $\Rightarrow U=\epsilon_0E^2$ $\mathbf{E}=rac{1}{2}E_0\cos(kz-\omega t)\hat{\mathbf{x}}$ $=E_0\cos^2(kz-\omega t)$ $< E^2>=rac{1}{2}E_0^2$ $\Rightarrow < u>=rac{1}{2}\epsilon_0E_0^2$ $< S>=rac{1}{2}\epsilon_0E_0^2c=I$

Where I is the intensity of wave

$$\Rightarrow P_r ad = egin{cases} rac{1}{2} \epsilon_0 E_0^2 & ext{perfect absorber} \ \epsilon_0 E_0^2 & ext{perfect reflector} \end{cases}$$

Sunlight: I~
$$1kWm^{-2}$$

$$\Rightarrow P_{rad} = 10^{-5} Pa$$

FYI,
$$P_{atm}=10^5 Pa$$

Example Consider a star which is growing by accretion

i.e. matter is falling onto it uniformly in all directions

The star has luminosity L

4.6 EM waves - reflection and refraction

Left:

$$E_i e^{i(k_1 x - \omega t)} + E_r e^{i(-k_1 - \omega t)}$$

Right:

$$E_t e^{i(k_2 x - \omega t)}$$

Using electrom boundery conditions, we could get

 E^{\parallel} is continuous

$$E_i^\parallel + E_r^\parallel = E_t^\parallel$$

 H^{\parallel} is continuous

$$\frac{E_i}{Z^1} - \frac{E_r}{Z_1} = \frac{E_f}{Z_2}$$

Putting two equations together

$$\frac{E_r}{E_i} = \frac{Z_2 - Z_1}{Z_2 + Z_1}$$
 $\frac{E_t}{E_i} = \frac{2Z_2}{Z_2 + Z_1}$

Where
$$Z=\sqrt{rac{\mu}{\epsilon}}$$

|Poyting vector|
$$=S=|\mathbf{E} imes\mathbf{H}|=rac{E^2}{Z}$$

We expect $S_{incident} = S_{reflected} + S_{transmitted}$

Where they equal to

$$\frac{E_i^2}{Z_1} + \frac{E_r^2}{Z_1} = \frac{E_t^2}{Z_2}$$

separately

Lets now have angles

$$E_r e^{i(\mathbf{k_r} \cdot \mathbf{r} - \omega t)}$$

$$\mathbf{E_i}e^{i(\mathbf{k_i}\cdot\mathbf{r}\omega t)}$$

$$E_t e^{i(\mathbf{k_t} \cdot \mathbf{r} - \omega t)}$$

Choose \mathbf{k}_i in x-z plane

At z = 0, E_{\parallel} is cointinuous and this holds for all x y and t $\Rightarrow \omega$ must be the same

$$\Rightarrow {f k_i \cdot r} = {f k_r \cdot r} = {f k_t \cdot r}$$
 for all x, y at z=0

Take
$${\bf r} = (0, y, 0)$$

 $\Rightarrow \mathbf{k_i}, \mathbf{k_r}$ and \mathbf{k}_t all lie iin the xz plane

(the plane of incidence)

Take
$$\mathbf{r}=(x,0,0)$$
 so $\mathbf{k_i}\cdot\mathbf{r}=k\sin\theta_x$

$$egin{aligned} |\mathbf{k_i}| &= \mathbf{k_r}| = k_1 \ |\mathbf{k_t}| &= k_2 \end{aligned} \ \Rightarrow \underbrace{k_1 \sin heta_i = k_1 \sin heta_r}_{ heta_i = heta_r, ext{ law of reflection}} = k_2 \sin heta_t$$

Remember that $\frac{\omega}{k}=\frac{c}{n}$, And the last two would lead to

$$\frac{\sin \theta_t}{\sin \theta_i} = \frac{k_1}{k_2} = \frac{n_2}{n_1}$$
-law of refraction, or snell's law

Where
$$n=\sqrt{\epsilon_r\mu_r}$$

Fresnel equations

Worring about polarization directions

We work in those steps

$1.\ E$ in the plane of incidence

"parallel-like" = parallel

Remid that ${f E}, {f H}$ and ${f k}$ form a right-handed system

	incident	reflected	transmitted
E_x	$E_i\cos heta_i$	$E_r\cos heta_r$	$E_t\cos heta_t$
E_z	$-E_i\sin heta_i$	$E_r \cos \theta_r$	$-E_t\sin heta_t$
H_y	$rac{E_i}{Z_1}$	$-rac{E_r}{Z_1}$	$rac{E_t}{Z_2}$

$$E_{\parallel}$$
 continuous $\Rightarrow E_x$ continuous $\Rightarrow E_i \cos heta_i + E_r \cos heta_i = E_t \cos heta_t$

$$egin{split} rac{E_r}{E_i} &= rac{Z_2 \cos_t het a_i - Z_1 \cos heta_i}{Z_2 \cos heta_1 + Z_1 \cos heta_i} \ rac{E_t}{E_i} &= rac{2Z_2 \cos heta_i}{Z_2 \cos heta_i + Z_1 \cos heta_i} \end{split}$$

Now look for Fresned equations for p-polarizations

2. ${f E}$ perpendicular to the plane of incidence

"s-like" s = senkrecht = perpendicular

	incident	reflected	transmitted
E_y	E_i	E_r	E_t
H_x	$-rac{E_i}{Z_1}{\cos heta_i}$	$rac{E_r}{Z_1}{\cos heta_r}$	$-rac{E_t}{Z_2}{\cos heta_t}$
H_z	$rac{E_i}{Z_1}{\sin heta_i}$	$rac{E_r}{Z_1}{\sin heta_r}$	$rac{E_t}{Z_2}{ m sin} heta_t$

 E_{\parallel} continuous

$$\Rightarrow E_y \text{continuous} \quad E_i + E_r = E_t$$

 H_{\parallel} continuous

$$\Rightarrow H_x continuous \quad -rac{E_i}{Z_1} cos \, heta_i + rac{E_r}{Z_1} cos \, heta_r = -rac{E_t}{Z_2} cos \, heta_t$$

Remember that

$$Z=\sqrt{rac{\mu_r\mu_0}{\epsilon_r\epsilon_0}}=rac{Z_0}{n}\quad n=\sqrt{\epsilon_r}$$
while $\mu_r=1$

Let's set
$$\mu_r=1$$

Then,
$$Z=\sqrt{rac{\mu_r\mu_0}{\epsilon_r\epsilon_0}}=rac{Z_0}{n}\quad n=\sqrt{\epsilon_r}$$

So we can replace Z_i with $\frac{1}{n_i}$ in expressions involving ratios of Z's.

e.g. Fresnel equations for p-polarization

$$egin{aligned} r = rac{E_r}{E_i} = rac{rac{1}{n_2}\cos heta_t - rac{1}{n_1}\cos heta_i}{rac{1}{n_2}\cos heta_t + rac{1}{n_1}\cos heta_i} \ = rac{n_1\cos heta_t - n_2\cos heta_i}{n_1\cos heta_t + n_2\cos heta_i} \end{aligned}$$

Use Snell's law

$$n_1 \sin heta_i = n_2 \sin heta_t \ \Rightarrow r = rac{\sin 2 heta_t - \sin 2 heta_i}{\sin 2 heta_t + \sin 2 heta_i} \ t = rac{4 \sin_t het a_t \cos heta_i}{\sin 2 heta_t + \sin 2 heta_i}$$

For s-polarization, we have

$$r = rac{\sin(heta_t - heta_i)}{\sin(heta_t + heta_i)} \ t = rac{2\sin heta_t\cos heta_i}{\sin(heta_t + heta_i)}$$

We also have

$$egin{aligned} n_1 \sin heta_i &= n_2 \sin heta_t \ \sin heta_t &= rac{n_1}{n_2} \sin heta_i \ \cos heta_t &= \sqrt{1 - \sin^2 heta_t} = \sqrt{1 - rac{n_1^2}{n_2^2} \sin^2 heta_i} \end{aligned}$$

Fresnel equations:

/ $n_1\cos\theta_i$ on top and bottom

$$lpha = rac{\cos heta_t}{\cos heta_i} = rac{1}{\cos heta_i}\sqrt{1-(rac{n_1}{n_2}\!\sin heta_i)^2} \ eta = rac{n_2}{n_1}$$

	E^{\parallel} (p)	E^{\perp} (s)
r	$\frac{\alpha-\beta}{\alpha+\beta}$	$\frac{1-\alpha\beta}{1+\alpha\beta}$
t	$\frac{2\alpha}{\alpha+eta}$	$\frac{2}{1+lphaeta}$

Remember, EM waves have an energy flux given by

$$S = |\mathbf{E} imes \mathbf{H}| = rac{E^2}{Z}$$

Intensify coefficients

$$T=rac{I_r}{I_i}=|r|^2=egin{cases} (rac{lpha-eta}{lpha+eta})^2 & (p)\ (rac{1-lphaeta}{1+lphaeta})^2 & (s) \end{cases}$$

$$T=rac{I_t}{I_i}=|t|^2rac{n_2}{n_1}rac{\cos heta_t}{\cos heta_i}$$

where $\frac{n_2}{n_1}$ is due to waves at ifferent speeds. And $\frac{\cos\theta_t}{\cos\theta_i}$ is due to the wavesfronts at different angles.

$$T = |t|^2 lpha eta = egin{cases} lpha eta (rac{2}{lpha + eta})^2 & (p) \ lpha eta (rac{2}{1 + lpha eta})^2 & (s) \end{cases}$$

Lets check in certain cases

$$egin{align} ullet heta_i &= 0 \Rightarrow lpha = 1 \ r_s &= r_p = rac{1-eta}{1+eta} = rac{n_1-n_2}{n_1+n_2} \ t_s &= t_p = rac{2}{1+eta} = rac{2n_1}{n_1+n_2} \ R_s &= R_p = (rac{n_1-n_2}{n_1+n_2})^2 \ T_s &= T_p - rac{n_2}{n_1} rac{4n_1^2}{(n_1+n_2)^2} = rac{4n_1n_2}{(n_1+n_2)^2} \end{aligned}$$

Example: air/glass interface

$$n_1 = 1$$
 $n_2 = 1.5$ $r_s = r_p = -0.2$ $T_s = T_p = 0.8$ $R_s = R_p = 0.04$ $T_s = T_p = 0.96$

 \Rightarrow 4% of light is reflected, 96% is transmitted

[If n_2 , for example, = 1.75, $R_s=R_p=0.074$, which is sa problem]

Lets take another go at differnet angle

$$egin{aligned} ullet & heta_i = 90^\circ ext{, and set } eta > 1 \ & \sin heta_i = 1 & \cos heta_i = 0 \ & \Rightarrow lpha o \infty \ & r_p = 1 & r_s = -1 \ & t_p = 0 & t_s = 0 \end{aligned}$$

• now consider $\beta<1$, we cna have total interal reflection for $\theta_i>\theta_c$ where θ_c is the critical angle = $\beta=\frac{n_2}{n_1}$

At
$$heta_c=\sin^{-1}eta$$
, $lpha=rac{1}{\cos heta_c}\sqrt{1-(rac{\sin heta_c}{eta})^2}=0$

Hence, we have

$$r_p = -1$$
 $r_s = 1$ $t_p = \frac{2}{eta}$ $t_s = 2$

$$\sin \theta_c = \beta$$

 r_p vanishes at the certain angle called **"Brewster's angle"** $heta_B$

$$r_p=rac{lpha-eta}{lpha+eta}=0$$
 when $lpha=eta=rac{n_2}{n_1}$ $rac{1}{cos heta_B}\sqrt{1-(rac{\sin heta_B}{eta})^2}=eta$

square both sides:

$$\sec^2 heta_B - rac{1}{eta^2} an^2 heta_B = eta^2$$
 $(1 - rac{1}{eta^2}) an^2 heta_B = eta^2 - 1$
 $rac{(eta^2 - 1)}{eta^2} an^2 heta_B = (eta^2 - 1)$
 $\Rightarrow an heta_B = eta$

Method of producing polarized light

Reflectted light polarized with ${f E}$ perpendicular to the plane of incidence

Polarizing sunglasses with transmission axis vertical reduce glare because reflected light is mainly horizontally polarized.

Total internal reflection

$$n_1 \sin \theta_i = n_2 \sin \theta_t$$

 $\sin \theta_t = \frac{\sin \theta_i}{n_2/n_1}$

Since $n_2 < n_1$, there will be total internal reflection when $\sin heta_t > 1$

For transmitted wave, its like

$$\begin{array}{l} \bullet \quad e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)} \text{ in medium} \\ = e^{i(k_2[x\sin\theta_t+z\cos\theta_t]-\omega t)} \\ \text{ since } z\cos\theta t = 1-\sin^2\theta_t = \underbrace{e^{i(k_2x\sin\theta_t-\omega_t)}e^{-(\sin^2\theta_t-1)^{\frac{1}{2}}k_2z}}_{wave} \text{ where} \\ \delta = \frac{\lambda_2}{2\pi}\frac{1}{(\sin^2\theta_t-1)^{\frac{1}{2}}} \end{array}$$

This is called an evanescent wave

Lets now consider the Plane travelling wave

$$egin{aligned} E_x &= E_0 e^{i(kz-\omega t)} \
abla imes \mathbf{E} &= -\mathbf{\dot{B}} = i\omega B \ & \mathbf{B} &= rac{1}{i\omega} igg| egin{aligned} \mathbf{\dot{i}} & \mathbf{\dot{j}} & \mathbf{\dot{k}} \ \partial x & \partial y & \partial z \ E_x & 0 & 0 \ \end{aligned} \ &= rac{1}{i\omega} igg(egin{aligned} \partial_z E_x \ -\partial_y E_x \ \end{pmatrix} \ &= rac{1}{i\omega} igg(egin{aligned} 0 \ ik E_x \ 0 \ \end{aligned} igg) \ &= rac{E_x}{\omega/k} \mathbf{\hat{y}} \ &= rac{E_x}{a} \mathbf{\hat{y}} \end{aligned}$$

For s-polarization, $\theta_i > \theta_c$, we have

$$\sin \theta_t = \frac{\sin \theta_i}{n_2/n_1} > 1$$

$$\cos \theta_t = i\sqrt{\sin^2 \theta_t - 1}$$

$$r_s = \frac{n_1 \cos \theta_i - n_2 \cos \theta_t}{n_1 \cos \theta_i + n_2 \cos \theta_t}$$

$$= \frac{A - iB}{A + iB}$$

$$\Rightarrow R_s = |r_s|^2 = \frac{A^2 + B^2}{A^2 + B^2} = 1$$

$$t_s = \frac{2n_1 \cos \theta_i}{n_1 \cos \theta_i + n_2 \cos \theta_t} = \frac{2A}{A + iB}$$

$$egin{aligned} &\Rightarrow \mathbf{E}_t = \hat{\mathbf{y}} t_s E_i e^{i(k_2[x\sin heta_t-\omega t])} e^{-z/\delta} \ & ext{where} \ \delta = rac{\lambda_2}{2\pi} rac{1}{(\sin^2 heta_t-1)^{rac{1}{2}}} \ &
abla imes \mathbf{E} = -\dot{\mathbf{B}} = i\omega\mathbf{B} \ & \mathbf{B} = rac{1}{i\omega} egin{bmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \ \partial_x & \partial_y & \partial_z \ 0 & E_t & 0 \ \end{pmatrix} \ & = rac{1}{i\omega} egin{bmatrix} -\partial_z E_t \ 0 \ \partial_x E_t \ \end{pmatrix} \ & = egin{bmatrix} rac{iE_t}{\omega\delta} \ 0 \ \end{pmatrix} \ & = egin{bmatrix} rac{iE_t}{\omega\delta} \ 0 \ \end{pmatrix} \ & = egin{bmatrix} \frac{iE_t}{\omega\delta} \ 0 \ \end{pmatrix} \ & = egin{bmatrix} e^{iE_t} \ \omega\delta \ \end{bmatrix} \$$

- $\Rightarrow B_z$ is in phase with E_y
 - \Rightarrow transport of energy along x
 - B_x is out of phase with E_y
 - \Rightarrow no transport of energy along z

$$<\mathbf{S}>=<\mathbf{E}\times\mathbf{H}^*>$$

 \mathbf{H}^* is the complex conjugate of H

Reminder on conductors

$$\nabla \times (\nabla \times \mathbf{E}) = \nabla (\nabla \cdot \mathbf{E}) - \nabla^{2} \mathbf{E} - \frac{\partial}{\partial t} \nabla \times \mathbf{B}$$

$$\mu_{0}\mu_{r}\sigma\mathbf{E} + \mu_{0}\mu_{r}\sigma_{0}\sigma_{r}\frac{\partial \mathbf{E}}{\partial t} = 0 \quad \text{if good conductor}$$

$$\nabla^{2} \mathbf{E} = \mu_{0}\sigma\frac{\partial \mathbf{E}}{\partial t}$$

$$-\tilde{k}^{2} = i\omega\mu_{0}\sigma$$

$$\Rightarrow \tilde{k} = k + i\kappa \quad k = \kappa = \sqrt{\frac{\mu_{0}\sigma\omega}{2}}$$

$$\nabla \times \mathbf{E} = -\dot{\mathbf{B}}$$

$$-\frac{\partial B_{y}}{\partial t} = (\nabla \times \mathbf{E})_{y} = \frac{\partial E_{x}}{\partial z}$$

$$i\omega B_{0} = = i(k + i\kappa)E_{0}$$

$$Z = \frac{E_{0}}{H_{0}} = \frac{E_{0}}{B_{0}/\mu_{0}} = \frac{\mu_{0}\omega}{k + i\kappa}$$

$$= \sqrt{\frac{2\mu_{0}\omega}{\sigma}} \frac{1}{1 + i}$$

$$\Rightarrow Z = \sqrt{\frac{\mu_{0}\omega}{2\sigma}} (1 - i)$$

Reflection from a meatal surface

air	metal
$Z_1=\sqrt{rac{\mu_0}{\epsilon_0}}$	$Z_2 = \sqrt{rac{\mu_0 \omega}{2\sigma}} (1-i)$

 $|z_2| \ll |Z_1|$ for a good conductor because $\sigma \gg \epsilon_0 \epsilon_r \omega$

$$\begin{aligned} &\text{write } \alpha = \frac{\sqrt{\frac{\mu_0 \omega}{2\sigma}}}{\sqrt{\frac{\mu_0}{\epsilon_0}}} = \sqrt{\frac{\omega \epsilon_0}{2\sigma}} \ll 1 \\ &r = \frac{E_r}{E_i} \quad \text{normal incidence} \\ &= \frac{Z_2 - Z_1}{Z_2 + Z_1} \\ &= \frac{Z_2 / Z_1 - 1}{Z_2 / Z - 1 + 1} \\ &= \frac{\alpha(1-i) - 1}{\alpha(1-i) + 1} \\ &\approx \frac{1 - 2\alpha + \cdots}{1 + 2\alpha + \cdots} \end{aligned}$$

$$pprox rac{1-2lpha+\cdots}{1+2lpha+\cdots}$$

$$= 1 - 4\alpha + O(\alpha^{2})$$

$$= 1 - \frac{2\omega\delta}{c} + O(\alpha^{2})$$

$$=1-rac{4\pi\delta}{\lambda}+O(lpha^2)$$

where
$$\delta = \sqrt{\frac{2}{\omega \mu_0 \sigma}}$$
 is the skin depth

- \Rightarrow most of the EM wave intensity is reflected
- \Rightarrow metals are shiny!