

Faire face aux limitations algorithmiques

Aperçu du chapitre

- Que fait-on lorsque notre problème à résoudre est NP-difficile?
- Deux principales options s'offrent à nous pour les problèmes d'optimisation:
 - Tenter de trouver la solution optimale par une méthode d'exploration de type « branch and bound »
 - Le temps d'exécution sera nécessairement exponentiel (ou plus) en pire cas mais il peut être « raisonnable » pour plusieurs instances qui ne font pas partie des pires cas.
 - Tenter de trouver une bonne solution sans qu'elle soit optimale à l'aide d'un algorithme d'approximation dont le temps d'exécution est polynomial en pire cas.
- Nous examinerons ces deux approches dans ce chapitre.
- Il n'existe pas de solution approximative pour les problèmes de décision.
- Cependant, la méthode d'exploration du retour arrière (« backtracking »)
 permet parfois d'obtenir une solution en un temps « raisonnable » pour des
 instances « faciles » des problèmes NP-complets.
 - Examinons d'abord cette approche.

Le retour arrière (« backtracking »)

- C'est une version « intelligente » d'une recherche exhaustive.
- L'idée principale est de construire des solutions partielles en ajoutant une composante à la fois de la manière suivante:
 - Si la prochaine composante de disponible peut-être ajoutée à notre solution partielle sans violer les contraintes du problème, nous l'ajoutons à notre solution partielle et continuons.
 - S'il n'existe pas une telle composante de disponible, alors aucune solution ne peut être obtenue à partir de cette solution partielle.
 - L'algorithme fait alors un retour arrière (« backtrack ») et remplace la dernière composante (de notre solution partielle) avec la prochaine composante légitime de disponible.
 - Légitime signifie ici que cette nouvelle solution partielle ne viole pas les contraintes du problème.

Le retour arrière (suite)

- Nous avons alors un arbre de solutions partielles à explorer.
- La racine de cet arbre contient habituellement 0 composante.
- Les nœuds du premier niveau sont les choix possibles pour la première composante.
- Les nœuds du k-ième niveau sont les choix possibles pour la k-ième composante.
- Chaque nœud de l'arbre représente donc une solution partielle: celle obtenue en concaténant les composantes obtenues en parcourant l'arbre de la racine au nœud en question.
 - Un nœud est qualifié de prometteur si sa solution partielle peut supporter l'ajout d'une autre composante.
 - Autrement, le noeud est qualifié de non prometteur.
- Un nœud non prometteur est donc soit un 'cul-de-sac' (« dead end »)
 ou une solution complète du problème.

Retour arrière et fouille en profondeur

- Dans la majorité des cas, l'arbre des solutions partielles est parcouru en profondeur (« depth-first »).
 - Si le nœud courant est prometteur, un enfant est généré en ajoutant la prochaine composante légitime et nous explorons ensuite cette nouvelle solution partielle (à une composante de plus).
 - Si le nœud courant est non prometteur, l'algorithme retourne en arrière au nœud parent et l'on remplace l'enfant par la prochaine composante légitime.
 - Si cette prochaine composante légitime n'existe pas, alors l'algorithme retourne en arrière un niveau de plus dans l'arbre...
- Lorsqu'une solution complète est trouvée, l'algorithme peut continuer (si on le désire) pour trouver d'autres solutions complètes.
 - Dans ce cas, l'algorithme termine uniquement lorsqu'il retourne jusqu'à la racine (et qu'il a 'épuisé' le niveau 1).

Exemple: le problème des n reines

- Nous devons positionner n reines sur un jeu d'échecs n × n de manière à ce qu'aucune reine n'en attaque une autre.
- Résolvons le cas n = 4 par la technique du retour arrière.
- Puisque chaque reine doit être sur une rangée distincte, il ne reste qu'à assigner une colonne à chaque reine.

FIGURE 11.1 Board for the four-queens problem

Le problème des n reines (suite)

- La racine représente le jeu vide avec 0 reine de positionnée.
- Au niveau 1 on retrouve les colonnes possibles pour la reine 1
- Au niveau k on retrouve les colonnes possibles pour la reine k
- Après avoir positionné la reine 1 en colonne 1, on positionne la reine 2 en colonne 3 (après avoir refusé les colonnes 1 et 2)
 - Cette solution conduit à un cul-de-sac. (voir figure page suivante)
 - Alors on retourne en arrière d'un niveau et nous positionnons la reine 2 en colonne 4.
 - La reine 3 est ensuite positionnée en colonne 2 (c'est sa seule position légitime).
 - Cela conduit également à un cul-de-sac
- Alors : retour arrière pour positionner la reine 1 en colonne 2
 - Ensuite la reine 2 en colonne 4
 - Puis la reine 3 en colonne 1
 - Finalement la reine 4 en colonne 3. Solution!

Le problème des n reines (suite)

FIGURE 11.2 State-space tree of solving the four-queens problem by back-tracking. × denotes an unsuccessful attempt to place a queen in the indicated column. The numbers above the nodes indicate the order in which the nodes are generated.

Exemple: trouver un cycle hamiltonien

- Sans perte de généralité, nous pouvons supposer que si un cycle hamiltonien existe, alors il doit commencer au nœud A.
 - Le nœud A occupera donc la racine de l'arbre.
- La première composante, si elle existe, sera un nœud adjacent à A.
 - S'il y en a plusieurs, alors on utilise le premier selon l'ordre alphabétique. Nous choisirons alors B.
 - Ensuite nous irons à C, puis D, E et F. Cul-de sac!
 - Il faut alors retourner jusqu'à C.
- L'arbre d'exploration est illustré à la page suivante.

Trouver un cycle hamiltonien (suite)

FIGURE 11.3 (a) Graph. (b) State-space tree for finding a Hamiltonian circuit. The numbers above the nodes of the tree indicate the order in which the nodes are generated.

Retour arrière : remarques générales

- De manière générale, la sortie d'un algorithme de retour arrière est un n-tuple (x₁, x₂, ..., x_n) où chaque composante x_i appartient à un ensemble fini et ordonné S_i. Indice = reine, la valeur = numéro de colonne
 - Pour les n reines: chaque S_i = {1,...,n} = ensemble des numéros de colonne satisfaisant les contraintes définies par la position des reines précédentes x₁,...x_{i-1}.
 - Pour cycle hamiltonien: S_i = ensemble des nœuds adjacents à x_{i-1}.
- Un algorithme de retour arrière génère explicitement ou implicitement un arbre de solutions partielles (x₁, x₂, ..., x_i) selon le pseudo-code suivant :

```
Algorithme Backtrack(X[1..i]) //premier appel avec i=0 
//Entrée: X[1..i] = solution partielle constituée des i premières composantes. 
//X[1..0] est le n-tuple vide. 
// Backtrack(X[1..0]) affiche toutes les solutions. 
if X[1..i] est une solution write X[1..i] // ok si le n-tuple est une solution 
else // on suppose qu'une solution n'est jamais préfixe d'une autre solution. 
for each x \in S_{i+1} satisfaisant les contraintes définies par X[1..i] do 
X[i+1] \leftarrow x 
Backtrack(X[1..i+1])
```


Retour arrière : remarques générales (suite)

- Cette méthode est typiquement utilisée pour résoudre des problèmes combinatoires difficiles.
 - Le temps d'exécution sera exponentiel en pire cas, mais cette technique d'exploration est suffisamment intelligente pour espérer obtenir des temps d'exécution raisonnables sur plusieurs instances pas trop « difficiles ».
 - De plus, il est souvent possible d'exploiter une certaine symétrie pour diminuer la taille de l'arbre de recherche
 - Ex: pour les n reines, nous pouvons restreindre la position de la reine 1 aux ln/2 premières colonnes car les solutions où la reine 1 occupe les autres colonnes sont obtenues par réflexion autour de la colonne (ou l'axe) centrale.

- Un problème d'optimisation consiste à trouver un objet (ou point) qui optimise (minimise ou maximise) une fonction (souvent appelée fonction objectif)
 - L'objet (ou point) doit satisfaire certaines contraintes spécifiées par le problème
- Exemple: le commis voyageur. Ayant un graphe où chaque paire de nœuds est reliée par une arête possédant une distance, trouver le circuit de longueur minimale.
 - Chaque objet (ou point) est ici un cycle qui doit satisfaire la contrainte d'être un cycle hamiltonien : c.-à-d., passer par chaque nœud une seule fois.
- Un objet (ou point) satisfaisant les contraintes du problème est appelé une solution réalisable (« feasible solution »).
- L'objectif d'un problème d'optimisation est de trouver une solution optimale: une solution réalisable qui optimise la fonction objectif.

La méthode « branch and bound »

- C'est une méthode d'exploration (de solutions) pour problèmes d'optimisation
- L'idée de base est de construire des solutions en ajoutant une composante à la fois et en évaluant chaque solution partielle ainsi obtenue.
 - Une solution partielle n'est habituellement pas une solution réalisable: elle ne satisfait pas nécessairement les contraintes
- Nous débutons avec une solution partielle contenant 0 composante
 - Ce sera la racine d'un arbre de solutions partielles
- Ensuite nous générons toutes les solutions partielles à une composante
 - C'est le niveau 1 de l'arbre des solutions partielles
- Pour chaque nœud (solution partielle) du niveau 1 nous pourrons générer des solutions partielles à deux composantes où la première composante est celle du nœud du niveau 1

Arbre des solutions partielles

- Pour chaque solution partielle nous calculons une borne sur la meilleure valeur possible de la fonction objectif atteignable à partir de ce noeud.
 - C'est une borne inférieure pour un problème de minimisation
 - C'est une borne supérieure pour un problème de maximisation
- La borne est une valeur de la fonction objectif qui est impossible d'améliorer avec les solutions construites à partir de cette solution partielle. (la valeur de la borne n'est pas nécessairement atteignable)

4

Terminaison d'une branche de l'arbre

- Cette méthode maintient, en tout temps, la valeur f_m (de la fonction objectif) de la meilleure solution obtenue jusqu'à maintenant.
- Une branche est terminée lorsque la valeur B de la borne d'une solution partielle n'est pas meilleure que f_m
 - Car, dans ce cas, il est impossible d'obtenir une solution qui est meilleure que celle que nous avons déjà en générant des solutions à partir de cette solution partielle
 - Pour un problème de minimisation: la branche est terminée lorsque B ≥ f_m
 - Pour un problème de maximisation: la branche est terminée lorsque B ≤ f_m
- Une branche de l'arbre est également terminée lorsque la solution partielle ne peut plus générer d'autres solutions réalisables.
 - Cas 1: une solution réalisable est obtenue et nous ne pouvons plus en obtenir d'autres (à partir de ce nœud)
 - Cas 2: une des contraintes du problème est violée par cette solution partielle (et donc par toutes les autres issues de ce nœud)

Exemple: le problème de l'assignation de tâches

- Il faut assigner n tâches à n personnes (1 personne par tâche)
- Chaque instance de ce problème est représentée par une matrice C de coûts.
- C[p,t] indique le coût d'assigner la personne p à la tâche t.
- Chaque rangée de C représente une personne
- Chaque colonne de C représente une tâche
- Pour chaque rangée p il faut choisir une seule colonne t telle que la somme des coûts est minimal.
- Exemple:

$$C = \begin{bmatrix} 9 & 2 & 7 & 8 \\ 6 & 4 & 3 & 7 \\ 5 & 8 & 1 & 8 \\ 7 & 6 & 9 & 4 \end{bmatrix} \begin{array}{c} Person \ a \\ Person \ b \\ Person \ d \\ Person \ d \end{array}$$

- Chaque composante d'une solution partielle sera l'assignation d'une tâche à une personne. Exemple b → 3.
- Chaque solution partielle sera constituée d'une séquence de composantes avec la contrainte que chaque personne et chaque tâche n'apparaisse qu'une seule fois dans une solution partielle.
- Cette contrainte est satisfaite en ayant un arbre de solutions partielles où chaque niveau assigne des tâches à une seule personne
 - Le niveau 1 pour la personne a, le niveau 2 pour la personne b ...
 - Pour une instance de n personnes (et n tâches), l'arbre des solutions partielles aura donc n + 1 niveaux
 - Le niveau 0 contient uniquement la racine avec aucune assignation de tâches

- C'est un problème de minimisation: la fonction objectif à minimiser est le coût d'une solution (assignation d'une tâche à chaque personne)
 - la valeur de la borne pour chaque solution partielle sera donc une borne inférieure au coût des solutions que nous pouvons obtenir à partir de cette solution partielle
 - En d'autres mots: il est impossible d'obtenir, à partir de ce point, une solution dont le coût est inférieure à la borne
- Comment choisir une borne pour une solution partielle?
- Le coût de chaque solution réalisable doit être supérieur ou égal à la somme des plus petits éléments de chaque rangée
 - Pour notre exemple, cette valeur est = 2 + 3 + 1 + 4 = 10
- Ce sera notre borne initiale: celle de la racine de l'arbre (qui contient aucune assignation de tâches)

- Lorsque notre solution partielle assigne 1 tâche à une personne (ex: a → 3) la borne sera égale au coût de cette assignation + somme des plus petits éléments de chaque rangée excluant la rangée et la colonne correspondant à cette assignation.
 - Pour a \rightarrow 3, cela donne 7 + 4 + 5 + 4 = 20
- Les 2 premiers niveaux de l'arbre sont donc comme suit:

- Pour chaque nœud (solution partielle) du niveau 1, il faudrait, en principe construire une solution partielle avec une assignation de tâche à la personne b
- Au lieu de faire cela systématiquement pour tous les nœuds du niveau
 1, nous considérons d'abord la solution partielle la plus prometteuse :
 - Pour un problème de minimisation: c'est la solution partielle qui possède la borne la plus petite
 - Pour un problème de maximisation: c'est la solution partielle qui possède la borne la plus grande
- Et nous explorons les autres solutions partielles générées à partir de ce nœud.
- La solution partielle la plus prometteuse de la figure précédente se trouve au nœud 2, car c'est le nœud actif ayant la plus petite borne.
- En générant les solutions partielles à partir de ce nœud, nous obtenons alors l'arbre de solutions partielles illustré à la page suivante.

FIGURE 11.6 Levels 0, 1, and 2 of the state-space tree for the instance of the assignment problem being solved with the best-first branch-and-bound algorithm

- À tout moment nous avons un certain nombre de solutions partielles actives (c.-à-d., non-terminées)
- La stratégie d'exploration normalement utilisée est celle qui consiste à générer d'autres nœuds à partir de la solution partielle la plus prometteuse (« best-first branch-and-bound »)
 - Il n'est pas assuré que ce soit la meilleure stratégie, car il est possible que la solution optimale soit obtenue à partir d'une solution partielle ayant une moins bonne borne.
- La solution partielle la plus prometteuse de la figure précédente se trouve au nœud 5 (car c'est le nœud actif ayant la plus petite borne)
- Les solutions partielles générées à partir de ce nœud seront des solutions réalisables, car les 4 personnes seront affectées à des tâches. Nous obtenons alors l'arbre de la figure suivante.

FIGURE 11.7 Complete state-space tree for the instance of the assignment problem solved with the best-first branch-and-bound algorithm

- Après avoir obtenu une solution réalisable (ici, c'est en fait deux solutions), nous terminons toutes les solutions partielles dont la borne excède le coût de notre meilleure solution (obtenue jusqu'ici).
 - Ceci est indiqué par un « X » à la figure précédente.
- Nous terminons l'algorithme lorsqu'il ne reste aucune solution partielle active.
 - La meilleure solution réalisable obtenue est alors la solution optimale à notre problème.
- Ce problème d'assignation de tâche illustre bien la méthode du « branch-and-bound », mais ce problème est, en fait, résoluble en temps polynomial ...
- Cela n'est pas le cas pour le problème suivant: le sac à dos. Celui-là est vraiment NP-difficile.

Le problème du sac à dos

- Il s'agit de trouver le sous-ensemble de n objets de valeur maximale dont le poids total n'excède pas la capacité W du sac à dos.
- Chaque objet i possède un poids w_i et une valeur v_i.
- Il est naturel d'ordonner les objets par ordre décroissant de leur valeur par unité de poids. Nous avons alors:

$$V_1/W_1 \ge V_2/W_2 \ge ... \ge V_n/W_n$$

- Après ce ré-ordonnement, l'objet 1 est celui nous donnant le plus de valeur par unité de poids et l'objet n est celui nous donnant le moins de valeur par unité de poids.
- L'arbre des solutions partielles sera l'arbre binaire suivant:
 - Le niveau 0, constituée de la racine, est une solution où aucun objet est choisi (l'ensemble vide)
 - Le niveau 1 possède 2 nœuds: le nœud gauche identifie une solution partielle qui inclut l'objet 1 et le nœud droit identifie une solution partielle qui n'inclut pas l'objet 1

Le problème du sac à dos (suite)

- Chaque nœud gauche du niveau i indique que l'objet i est inclus dans la solution partielle et chaque nœud droit indique que l'objet i est exclus de la solution partielle.
- Ainsi, chaque chemin allant de la racine à un nœud du niveau i représente un sous-ensemble des i premiers objets
- Chaque nœud représente alors un chemin et donc un sous-ensemble d'objets
- Pour chaque nœud nous maintiendrons:
 - Le poids total du sous-ensemble (représenté par ce nœud)
 - La valeur totale du sous-ensemble (représenté par ce nœud)
 - La borne sur la valeur totale qu'il est possible d'avoir à partir de ce sousensemble des i premiers objets et, possiblement, en incluant d'autres objets parmi {i+1, ... n}
 - Puisque c'est un problème de maximisation, chaque borne sera une borne supérieure sur la valeur qu'il est possible d'obtenir à partir de ce nœud
 - Il sera impossible, à partir de ce nœud, d'obtenir une valeur supérieure à celle indiquée par la borne.

Le problème du sac à dos (suite)

- Pour le calcul des bornes, nous procédons comme suit:
 - Soit w le poids total des objets présentement sélectionnés (i.e appartenant à l'ensemble des objets représenté par le nœud)
 - Soit v la valeur totale des objets présentement sélectionnés
 - Soit un nœud situé au niveau i.
 - Puisque les objets sont énumérés par ordre décroissant de leur valeur par unité de poids, v_{i+1}/w_{i+1} est alors la valeur maximale par unité de poids que nous pouvons ajouter à la solution représentée par un nœud au niveau i.
 - Puisque la capacité résiduelle du sac à dos est = W w, la valeur maximale que nous pouvons ajouter à la solution représentée par un nœud au niveau i ne peut pas dépasser (W – w) v_{i+1}/w_{i+1}
 - Ainsi, la valeur d'une solution émergeant d'un nœud au niveau i ne peut pas excéder la borne = v + (W – w) v_{i+1}/w_{i+1}.
 - C'est ce que nous choisissons pour chaque borne.

Exemple

- Dans l'exemple suivant, nous avons ordonné les objets par ordre décroissant de valeur par unité de poids.
- La borne de la racine est donnée par W $v_1/w_1 = 100$.
- L'arbre des solutions partielles générées par la méthode « branch-andbound » est illustré à la figure de la page suivante.

	value weight	value	weight	item
	10	\$40	4	1
The knapsack's capacity W is 10	6	\$42	7	2
	5	\$25	5	3
	4	\$12	3	4

Exemple : arbre des solutions

Remarques

- Notez que pour le problème du sac à dos, chaque nœud (solution partielle) représente une solution réalisable (admissible)
- Pour chaque nœud, nous pouvons alors mettre à jour notre meilleure solution obtenue jusqu'à maintenant et, ainsi, terminer les nœuds actifs ayant une borne ≤ à la valeur de la meilleure solution obtenue jusqu'à maintenant.
- L'efficacité de la méthode « branch-and-bound » dépend grandement des bornes que nous utilisons.
 - Plus les bornes sont serrées, plus grand sera le nombre de branches que nous pourrons terminer et plus l'espace de recherche sera diminué.
 - Cependant, cela ne sera pas rentable si le calcul des bornes prend un temps prohibitif.
- En pratique, il faut choisir le bon compromis entre la qualité des bornes et le temps requis pour les obtenir.

Algorithmes d'approximations

- Un problème d'optimisation consiste à trouver la solution s* qui optimise une fonction objectif f(s)
 - (Pour chaque solution réalisable s, nous avons une valeur f(s) de la fonction objectif)
- Lorsque le problème d'optimisation est NP-difficile, il n'existe pas d'algorithme qui puisse trouver, en pire cas, la solution optimale s* en un temps polynomial (si P ≠ NP).
- Tentons alors de trouver une solution approximative s_a en temps polynomial (en pire cas) à l'aide d'un algorithme d'approximation.
- De plus, nous désirons obtenir une garantie de la qualité de la solution approximative s_a.
 - Plus précisément, nous désirons que f(s_a) ne soit pas trop différent de f(s*).

Le ratio d'approximation d'un algorithme

- La solution approximative s_a est obtenue en exécutant un algorithme d'approximation A sur une instance x se taille |x|. Alors s_a = A(x).
- La solution approximative est donc fonction de x. Alors $s_a = s_a(x)$.
- La solution optimale s* dépend également de x. Alors s* = s*(x).
- Le ratio d'approximation R(x) de l'algorithme A sur l'instance x est défini par:

$$R(x) \stackrel{\text{def}}{=} \begin{cases} \frac{f(s^*(x))}{f(s_a(x))} & \text{pour problèmes de maximisation} \\ \frac{f(s_a(x))}{f(s^*(x))} & \text{pour problèmes de minimisation} \end{cases}$$

- Ainsi, avec cette définition, nous avons toujours que R(x) ≥ 1.
- Nous avons R(x) = 1 si et seulement si $f(s_a(x)) = f(s^*(x))$.

Ratio d'approximation en pire cas

Définissons alors le ratio d'approximation en pire cas R_w(n) de l'algorithme A par:

$$R_w(n) \stackrel{\text{def}}{=} \max_{x:|x|=n} R(x)$$

- Un algorithme A possède un ratio d'approximation en pire cas borné par une constance c si et seulement si R_w(n) ≤ c ∀ n (où c est une constante indépendante de n).
- Examinons maintenant un algorithme d'approximation pour un problème NP-difficile très connu: le commis voyageur.
 - Rappel: soit un graphe complètement connecté de n nœuds, trouvez le plus court cycle hamiltonien.

L'algorithme « twice-around-the-tree »

- L'algorithme « twice-around-the-tree » exploite la relation qui existe entre un cycle hamiltonien et un arbre de recouvrement minimal.
- Voici cet algorithme:
 - Étape 1: construire l'arbre de recouvrement minimal (à l'aide de l'algorithme de Prim ou celui de Kruskal).
 - Étape 2: choisir un nœud de départ (peu importe lequel) et parcourir le pourtour de l'arbre en mémorisant la séquence de nœuds visités durant ce trajet.
 - Étape 3: parcourir la séquence de nœuds obtenu à l'étape 2 et éliminez, de cette séquence, chaque répétition de nœud (à l'exception du dernier nœud de la séquence).
 - Cette étape produira forcément un cycle hamiltonien
 - Cette étape produit (possiblement) des raccourcis dans la séquence comme le montre l'exemple de la page suivante
- Cet algorithme s'exécute en un temps polynomial.

Exemple

- Pour le graphe suivant, l'étape 2 donne la séquence a,b,c,b,d,e,d,b,a.
- L'étape 3 nous donne le cycle hamiltonien: a,b,c,d,e,a.
 - Remarque: la séquence a,b,c,d,e est obtenue par un parcours en pré-ordre de l'arbre de recouvrement minimal.

FIGURE 11.11 Illustration of the twice-around-tree algorithm. (a) Graph. (b) Walk around the minimum spanning tree with the shortcuts.

Analyse de la performance de cet algorithme

- La longueur du trajet obtenu à l'étape 2 est égale à deux fois la longueur de l'arbre de recouvrement minimal.
 - (La longueur d'un arbre est la somme des distances de ses arêtes)
- Soit T un arbre de recouvrement minimal et f(T) la longueur d'un arbre de recouvrement minimal
- La longueur du trajet à l'étape 2 est égale 2f(T).
- Considérons la solution optimale s* de ce problème .i.e., le cycle hamiltonien de longueur minimale = f(s*)
- Puisque s* est un cycle hamiltonien, nous obtiendrons un arbre T' de recouvrement si nous enlevons une arête de s*.
 - La longueur f(T') doit être supérieure ou égale à celle d'un arbre de recouvrement minimale. Alors f(s*) ≥ f(T') ≥ f(T).
- La longueur du trajet à l'étape 2 est alors ≤ 2 f(s*).
- La longueur du trajet à l'étape 3 est ≤ à celui de l'étape 2 si et seulement si les nœuds que l'on enlève produisent des raccourcis.

Analyse de la performance de cet algorithme (suite)

 L'enlèvement d'un nœud dans une séquence produit un raccourci lorsque les distances des arêtes du graphe G satisfont l'inégalité du triangle:

$$d(i,j) \le d(i,k) + d(k,j) \quad \forall i,j,k \in G$$

- Un graphe G complètement connecté est dit Euclidien lorsque toutes les distances des arêtes satisfont l'inégalité du triangle.
- Ainsi, pour toute instance x qui est un graphe Euclidien, la longueur f(s_a(x)) du cycle hamiltonien s_a(x) produit par l'algorithme « twice-around-the-tree » satisfait f(s_a(x)) ≤ 2 f(s*(x)).
- Alors $R(x) = f(s_a(x))/f(s^*(x)) \le 2 \ \forall \ x.$ Alors $R_w(n) \le 2$.
- Alors, l'algorithme « twice-around-the-tree » possède un ratio d'approximation en pire cas borné par 2 pour les graphes Euclidiens.

Analyse de la performance de cet algorithme (suite)

- Cependant, si les distances ne satisfont pas à l'inégalité du triangle il est possible que l'enlèvement d'un nœud du parcourt de l'étape 2 ne produise pas un raccourci mais, au contraire, rallonge le parcourt!
- Dans ce cas, nous ne pouvons pas garantir que la longueur du cycle hamiltonien f(s_a(x)), obtenue à l'étape 3, sera inférieur ou égal à 2f(T).
- Pour les graphes non Euclidien, nous ne pouvons donc pas conclure que f(s_a(x)) ≤ 2 f(s*(x)). En fait, il est impossible de borner la longueur du parcourt obtenu à l'étape 3 pour les graphes non Euclidiens.
- Pour les graphes non Euclidien, l'algorithme « twice-around-thetree » ne possède pas un ratio d'approximation en pire cas qui soit borné par une constante.

Non existence d'un algorithme d'approximation

- En fait, pour les graphes en général (possiblement non Euclidiens), nous avons le théorème suivant.
- Théorème: si P ≠ NP, alors il n'existe pas d'algorithme, à temps polynomial, avec un ratio d'approximation en pire cas borné par une constante pour le problème du commis voyageur.

Preuve (par contradiction):

- Supposons qu'il existe un algorithme A, à temps polynomial, tel que f(s_a(x)) ≤ c f(s*(x)) ∀ x. Nous allons démontrer que A pourrait être utilisé pour résoudre le problème NP-complet du cycle hamiltonien en temps polynomial.
- Soit G une instance du problème cycle hamiltonien.
- Transformons G en un graphe complet G', instance du problème commis voyageur, de la manière suivante:
 - Assignons une distance 1 à chaque arête de G.
 - Ajoutons une arête, de distance cn +1, à chaque paire de nœuds non connectés dans G. (n = nombre de nœuds).

Non existence d'un algorithme d'approximation (suite)

- ... preuve (suite) ...
 - Si G est un graphe hamiltonien, alors G' possède un cycle hamiltonien de longueur n et, dans ce cas, l'algorithme A trouvera un circuit de longueur ≤ cn
 - Si G n'est pas un graphe hamiltonien, le plus petit circuit de G' aura une longueur ≥ cn + 1 > cn. Car ce circuit doit contenir au moins une arête de longueur cn + 1.
 - Dans ce cas, l'algorithme A trouvera forcément un circuit de longueur ≥ cn + 1.
 - Donc G est un graphe hamiltonien si et seulement si A trouve un circuit dans G' de longueur ≤ cn.
 - L'algorithme A nous informe donc, en temps polynomial, si oui ou non G possède un cycle hamiltonien.
 - Ceci contredit notre hypothèse de départ que P ≠ NP. CQFD.

Conclusion

- Il arrive souvent qu'un problème d'optimisation NP-difficile est tel qu'il n'existe pas (sous l'hypothèse P ≠ NP) d'algorithme à temps polynomial qui possède un ratio d'approximation borné par une constante comme c'est le cas pour commis voyageur.
- Nous pouvons, par contre, souvent rendre le problème un peu moins général pour qu'il puisse exister un algorithme à temps polynomial qui possède un ratio d'approximation borné par une constante.
 - C'est ce qui s'est passé en imposant au graphe d'être Euclidien
- Cette restriction peut nous satisfaire en pratique.

Conclusion (suite)

- Si nous ne sommes pas satisfaits de la borne sur l'approximation, nous pouvons utiliser la valeur f(s_a) de la solution approximative s_a = A(x) comme entrée à un algorithme « branch-and-bound » pour tenter de trouver la solution optimal s*.
 - En effet, si f(s_a) est près de f(s*), beaucoup de solutions partielles seront terminées (celles dont la borne implique que nous ne pouvons pas faire mieux que f(s_a) à partir de ce nœud).
- Une telle combinaison d'utilisation d'un algorithme d'approximation suivi d'un algorithme « branch-and-bound » est une stratégie qui, en pratique, semble justifiée lorsque nous désirons trouver une solution optimale.