МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №2 по дисциплине «Организация ЭВМ и систем»

Тема: Изучение режимов адресации и формировании исполнительного адреса

Студент гр. 1303		Чернуха В.В.
Преподаватель		Ефремов М.А.
	Санкт-Петербург	

2022

Цель работы.

Изучить виды адресации, принцип их работы в языке Ассемблера.

Задание.

Лабораторная работа 2 предназначена для изучения режимов адресации, использует готовую программу lr2_comp.asm на Ассемблере, которая в автоматическом режиме выполняться не должна, так как не имеет самостоятельного функционального назначения, а только тестирует режимы адресации. Поэтому ее выполнение должно производиться под управлением отладчика в пошаговом режиме.

В программу введен ряд ошибок, которые необходимо объяснить в отчете по работе, а соответствующие команды закомментировать для прохождения трансляции.

Необходимо составить протокол выполнения программы в пошаговом режиме отладчика по типу таблицы 1 предыдущей лабораторной работы и подписать его у преподавателя.

На защите студенты должны уметь объяснить результат выполнения каждой команды с учетом используемого вида адресации. Результаты, полученные с помощью отладчика, не являются объяснением, а только должны подтверждать ваши объяснения.

Порядок выполнения работы.

- 1. Получить у преподавателя вариант набора значений исходных данных (массивов) vec1, vec2 и matr из файла lr2.dat, приведенного в каталоге Задания и занести свои данные вместо значений, указанных в приведенной ниже программе.
- 2. Протранслировать программу с созданием файла диагностических сообщений; объяснить обнаруженные ошибки и закомментировать соответствующие операторы в тексте программы.
- 3. Снова протранслировать программу и скомпоновать загрузочный модуль.
- 4. Выполнить программу в пошаговом режиме под управлением отладчика с фиксацией содержимого используемых регистров и ячеек памяти до и после выполнения команды.
- 5. Результаты прогона программы под управлением отладчика должны быть подписаны преподавателем и представлены в отчете.

Выполнение работы.

1. Согласно 6 варианту были взяты следующие значения:

- 2. Программа была протранслированна и были выявлены следующие ошибки:
 - mov mem3,[bx]

lr2.asm(45): error A2052: Improper operand type

Мы не можем напрямую перемещать значения из одного сегмента памяти в другой.

mov cx,vec2[di]

lr2.asm(53): warning A4031: Operand types must match

Мы не можем поместить в двухбайтный регистр однобайтое значение.

mov cx,matr[bx][di]

lr2.asm(57): warning A4031: Operand types must match

Ситуация аналогична — попытка поместить однобайтное значение в двухбайтный регистр.

mov ax,matr[bx*4][di]

lr2.asm(58): error A2055: Illegal register value

На наборе инструкций 086 мы не можем масштабировать содержимое регистра.

mov ax,matr[bp+bx]

lr2.asm(78): error A2046: Multiple base registers

Мы не можем использовать несколько базовых регистров в операнде

mov ax,matr[bp+di+si]

lr2.asm(79): error A2047: Multiple index registers

Мы не можем использовать несколько индексных регистров в операнде

- 3. Исправленная программа была протранслированна и слинкована
- 4. Программа запущена в пошаговом режиме в отладчике AFDPRO.

Начальные значения регистров:

AX = 0000	SI = 0000	CS = 1A0A	IP = 0000
BX = 0000	DI = 0000	DS = 19F5	HS = 19F5
CX = 00B0	BP = 0000	ES = 19F5	FS = 19F5
DX = 0000	SP = 0018	SS = 1A05	

Пошаговая работа программы

Адрес Команды	Символический код команды	-	Содержимое репамяти	егистров и ячеек
			До выполнения	После выполнения
0000	push DS	1E	SP = 0018 IP = 0000 Stack +0 0000	SP = 0016 IP = 0001 Stack +0 19F5
0001	sub AX, AX	2BC0	IP = 0001 AX = 0000	IP = 0003 AX = 0000
0003	push AX	50	SP = 0016 IP = 0003 Stack +0 19F5	SP = 0014 IP = 0004 Stack +0 0000 Stack +2 19F5
0004	mov AX, 1A07	B8071A	AX = 0000 IP = 0004	AX = 1A07 IP = 0007
0007	mov DS, AX	8ED8	DS = 19F5 IP = 0007	DS = 1A07 IP = 0009

0009	mov AX, 01F4	B8F401	AX = 1A07 IP = 0009	AX = 01F4 IP = 000C
000C	mov CX, AX	8BC8	CX = 00B0 IP = 000C	CX = 01F4 IP = 000E
000E	mov BL, 24	B324	BX = 0000 IP = 000E	BX = 0024 IP = 0010
0010	mov BH, CE	B7CE	BX = 0024 IP = 0010	BX = CE24 IP = 0012
0012	mov [0002], FFCE	C7060200C EFF	IP = 0012 DS:0002 = 00 DS:0003 = 00	IP = 0018 DS:0002 = CE DS:0003 = FF
0018	mov BX, 0006	BB0600	BX = CE24 IP = 0018	BX = 0006 IP = 001B
001B	mov [0000], AX	A30000	IP = 001B DS:0000 = 00 DS:0001 = 00	IP = 001E DS:0000 = F4 DS:0001 = 01
001E	mov AL, [BX]	8A07	AX = 01F4 IP = 001E	AX = 0112 IP = 0020
0020	mov AL, [BX+03]	8A4703	AX = 0112 IP = 0020	AX = 010F IP = 0023
0023	mov CX, [BX+03]	8B4F03	CX = 01F4 IP = 0023	CX = 0B0F IP = 0026
0026	mov DI, 0002	BF0200	DI = 0000 IP = 0026	DI = 0002 IP = 0029
0029	mov AL, [000E+DI]	8A850E00	AX = 010F IP = 0029	AX = 01E2 IP = 002D
002D	mov BX,0003	BB0300	BX = 0006 IP = 002D	BX = 0003 IP = 0030

0030	mov AL,[0016+BX+DI]	8A811600	AX = 01E2 IP = 0030	AX = 01FF IP = 0034
0034	mov AX, 1A07	B8071A	AX = 01FF IP = 0034	AX = 1A07 IP = 0037
0037	mov ES,AX	8EC0	ES = 19F5 IP = 0037	ES = 1A07 IP = 0039
0039	mov AX.ES:[BX]	268B07	AX = 1A07 IP = 0037	AX = 00FF IP = 003C
003C	mov AX,0000	B80000	AX = 00FF IP = 003C	AX = 0000 IP = 003F
003F	mov ES,AX	8EC0	ES = 1A07 IP = 003F	ES = 0000 IP = 0041
0041	push DS	1E	SP = 0014 IP = 0041 Stack +0 = 0000 Stack +2 = 19F5 Stack +4 = 0000	SP = 0012 IP = 0042 Stack +0 = 1A07 Stack +2 = 0000 Stack +4 = 19F5
0042	pop ES	07	SP = 0012 IP = 0042 ES = 0000 Stack +0 = 1A07 Stack +2 = 0000 Stack +4 = 19F5	SP = 0014 IP = 0043 ES = 1A07 Stack +0 = 0000 Stack +2 = 19F5 Stack +4 = 0000
0043	mov CX,ES:[BX-01]	268B4FFF	CX = 0B0F $IP = 0043$	CX = FFCE IP = 0047

0047	xchg AX,CX	91	CX = FFCE AX = 0000 IP = 0047	CX = 0000 AX = FFCE IP) = 0048
0048	mov DI,0002	BF0200	DI = 0002 IP = 0048	DI = 0002 IP = 004B
004B	mov ES:[BX+DI],AX	268901	DS:0005 = 00 DS:0006 = 12 IP = 004B	DS:0005 = CE DS:0006 = FF IP = 004E
004E	mov BP,SP	8BEC	BP = 0000 IP = 004E	BP = 0014 IP = 0050
0050	push [0000]	FF360000	SP = 0014 IP = 0050 Stack +0 = 0000 Stack +2 = 19F5 Stack +4 = 0000	SP = 0012 IP = 0054 Stack +0 = 01F4 Stack +2 = 0000 Stack +4 = 19F5
0054	push [0002]	FF360200	SP = 0012 IP = 0054 Stack +0 = 01F4 Stack +2 = 0000 Stack +4 = 19F5 Stack +6 = 0000	SP = 0010 IP = 0058 Stack +0 = FFCE Stack +2 = 01F4 Stack +4 = 0000 Stack +6 = 19F5
0058	mov BP,SP	8BEC	BP = 0014 IP = 0058	BP = 0010 IP = 005A
005A	mov DX,[BP+02]	8B5602	DX = 0000 IP = 005A	DX = 01F4 IP = 005D

005D ret Far 0002	CA0200	SP = 0010 CS = 1A0A IP = 005D Stack +0 = FFCE Stack +2 = 01F4 Stack +4 = 0000 Stack +6 = 19F5	SP = 0016 CS = 01F4 IP = FFCE Stack +0 = 19F5 Stack +2 = 0000 Stack +4 = 0000 Stack +6 = 0000
-------------------	--------	---	---

Выводы.

В результате были изучены виды адресации, их принцип работы, распространённые ошибки при работе с адресацией.

ПРИЛОЖЕНИЕ 1

```
lr2.asm
```

EOL EQU '\$' ind EQU 2 n1 EQU 500 n2 EQU -50

; Стек программы

AStack SEGMENT STACK

DW 12 DUP(?)

AStack ENDS

; Данные программы

DATA SEGMENT

; Директивы описания данных

mem1DW 0

mem2DW 0

mem3DW 0

vec1 DB 18,17,16,15,11,12,13,14

vec2 DB 30,40,-30,-40,10,20,-10,-20

matr DB -4,-3,1,2,-2,-1,3,4,5,6,7,8,-8,-7,-6,-5

DATA ENDS

; Код программы

CODE SEGMENT

ASSUME CS:CODE, DS:DATA, SS:AStack

; Головная процедура

Main PROC FAR

push DS

sub AX,AX

push AX

mov AX, DATA

mov DS,AX

; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ СМЕЩЕНИЙ

; Регистровая адресация

mov ax,n1

mov cx,ax

mov bl,EOL

mov bh,n2

; Прямая адресация

mov mem2,n2

```
mov bx,OFFSET vec1
mov mem1,ax
; Косвенная адресация
mov al,[bx]
;mov mem3,[bx]
; Базированная адресация
mov al, [bx]+3
mov cx,3[bx]
; Индексная адресация
mov di,ind
mov al, vec2[di]
;mov cx,vec2[di]
; Адресация с базированием и индексированием
mov bx,3
mov al,matr[bx][di]
mov cx,matr[bx][di]
;mov ax,matr[bx*4][di]
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ СЕГМЕНТОВ
; Переопределение сегмента
     вариант 1
mov ax, SEG vec2
mov es, ax
mov ax, es:[bx]
mov ax, 0
     вариант 2
mov es, ax
push ds
pop es
mov cx, es:[bx-1]
xchg cx,ax
     вариант 3
mov di,ind
mov es:[bx+di],ax
     вариант 4
mov bp,sp
;mov ax,matr[bp+bx]
;mov ax,matr[bp+di+si]
; Использование сегмента стека
push mem1
push mem2
mov bp,sp
mov dx,[bp]+2
ret
     2
Main ENDP
```

```
CODE
          ENDS
END Main
lr2.lst
#Microsoft (R) Macro Assembler Version 5.10
                                                 10/6/22 01:37:04
                                Page
                                       1-1
= 0024
                          EOL EQU '$'
= 0002
                          ind EQU 2
= 01F4
                          n1 EQU 500
=-0032
                          n2 EQU -50
                     ; Стек программы
0000
                     AStack
                                SEGMENT STACK
0000 000C[
                          DW 12 DUP(?)
       ????
                1
0018
                     AStack
                                ENDS
                     ; Данные программы
0000
                     DATA
                                SEGMENT
                     ; Директивы описания даннύ
                     X
0000 0000
                     mem1DW 0
0002 0000
                     mem2DW 0
0004 0000
                     mem3DW 0
0006 12 11 10 0F 0B 0C
                          vec1 DB
                                     18,17,16,15,11,12,13,14
   0D 0E
000E 1E 28 E2 D8 0A 14
                          vec2 DB
                                     30,40,-30,-40,10,20,-10,-20
   F6 EC
0016 FC FD 01 02 FE FF
                          matr DB
                                     -4,-3,1,2,-2,-1,3,4,5,6,7,8,-8,
                     -7,-6,-5
   03 04 05 06 07 08
   F8 F9 FA FB
0026
                     DATA
                                     ENDS
                     ; Код программы
0000
                     CODE
                                SEGMENT
                     ASSUME CS:CODE, DS:DATA, SS:AStack
                     ; Головная процедура
0000
                     Main PROC FAR
0000 1E
                     push DS
0001 2B C0
                          sub AX,AX
0003 50
                     push AX
```

```
0004 B8 ---- R
                     mov AX, DATA
0007 8E D8
                           mov DS,AX
                      ; ПРОВЕРКА РЕЖИМОВ АДРЕСА
                      ИИ НА УРОВНЕ СМЕЩЕНИЙ
                      ; Регистровая адресация
0009 B8 01F4
                           mov ax,n1
000C 8B C8
                           mov cx,ax
000E B3 24
                           mov bl,EOL
0010 B7 CE
                           mov bh,n2
                      ; Прямая адресация
0012 C7 06 0002 R FFCE
                           mov mem2,n2
0018 BB 0006 R
                     mov bx,OFFSET vec1
001B A3 0000 R
                     mov mem1,ax
                     ; Косвенная адресация
001E 8A 07
                           mov al,[bx]
#Microsoft (R) Macro Assembler Version 5.10
                                                  10/6/22 01:37:04
                                       1-2
                                 Page
                      ;mov mem3,[bx]
                      ; Базированная адресация
0020 8A 47 03
                           mov al, [bx]+3
0023 8B 4F 03
                           mov cx, 3[bx]
                      ; Индексная адресация
0026 BF 0002
                           mov di,ind
0029 8A 85 000E R
                           mov al, vec2[di]
                      ;mov cx,vec2[di]
                      ; Адресация с базирование
                      и индексированием
002D BB 0003
                           mov bx,3
                           mov al,matr[bx][di]
0030 8A 81 0016 R
                      ;mov cx,matr[bx][di]
                     ;mov ax,matr[bx*4][di]
                      ; ПРОВЕРКА РЕЖИМОВ АДРЕСА
                      ИИ С УЧЕТОМ СЕГМЕНТОВ
                      ; Переопределение сегмент
                     a
                           вариант 1
0034 B8 ---- R
                     mov ax, SEG vec2
0037 8E C0
                           mov es, ax
0039 26:8B 07
                     mov ax, es:[bx]
003C B8 0000
                           mov ax, 0
```

0000 00 00	-	иант 2			
003F 8E C0	mov es, ax				
0041 1E	push ds				
0042 07	pop es		Π. 1 1		
0043 26: 8B 4F FF		v cx, es:	[DX-1]		
0047 91	xchg cx,a				
0040 DE 0000	_	иант 3			
0048 BF 0002		v di,ind			
004B 26: 89 01	mov es:[b		C		
004E 0D EC	_	иант 4			
004E 8B EC		v bp,sp	1. 1		
	;mov ax,r	-			
	;mov ax,r	-			
	; Исполь:	вование	сегме	нта и	
0050 FF 36 0000 R	тека	h mam1			
0050 FF 36 0000 R 0054 FF 36 0002 R	-	h mem1 h mem2			
0058 8B EC					
005A 8B 56 02		v bp,s	-		
005A 6B 50 02 005D CA 0002		v dx,[bp 2] ⁺ 2		
005D CA 0002	Main EN				
0060	CODE	END	S		
0000	END Mai		J		
#Microsoft (R) Macro A			: 10		10/6/22 01:37:04
Wivile10301t (It) Wide1071	SSCIIIDICI		ools-1		10/0/22 01:57:04
		O y III	5015 1		
Segments and Groups:					
o i					
N a m e	Length	Alig	nComl	oine Cla	SS
		J			
ASTACK	. 001	8 PAR	A	STACE	(
CODE	006	O PAR	A	NONE	
DATA	0026 PA	RA	NON	E	
Symbols:					
N a m e	Type Va	lue Attr			
EOL	NUMBE	R 0024			
IND	NIII (DEI				
LINIT)					
IND	NUMBE	X 0002			
			0000	CODE	I anath - 0000
MAIN	FP	ROC SYTE		CODE DATA	Length = 0060

MEM1	L WORD	0000 DATA
MEM2	L WORD	0002 DATA
MEM3	L WORD	0004 DATA

VEC1..... L BYTE 0006 DATA VEC2..... L BYTE 000E DATA

@CPUTEXT 0101h@FILENAMETEXT lr2ispr2@VERSIONTEXT 510

88 Source Lines

88 Total Lines

19 Symbols

47800 + 459460 Bytes symbol space free

0 Warning Errors

0 Severe Errors