

Examen réparti du mercredi 2 novembre 2016

Durée de l'épreuve : 2 heures. Aucun document, ni calculatrice ne sont autorisés. Les téléphones portables doivent être impérativement éteints. Il sera tenu compte du soin apporté à la présentation des résultats et à la rédaction des interprétations. Les deux parties sont indépendantes. Le barème approximatif est de 12 points pour la partie 1 et 8 pour la partie 2.

Partie 1 : Cinématique

On considère le mouvement suivant caractérisé par la donnée de la vitesse eulérienne relativement au repère cartésien $(0, \underline{e}_1, \underline{e}_2, \underline{e}_3)$:

$$\underline{v}(\underline{x},t) = l \omega \left[\sin(\varphi(x_3,t)) \underline{e}_1 - \cos(\varphi(x_3,t)) \underline{e}_2 \right],$$

où la fonction $\varphi(x_3,t)$ est donnée par $\varphi(x_3,t)=k\,x_3-\omega\,t$, l,k,ω étant des constantes données strictement positives, et où $\underline{x}=(x_1,x_2,x_3)$ représente la position d'un point d'un milieu continu à l'instant t.

On notera (X_1, X_2, X_3) la position à l'instant t = 0 de la particule qui occupe la position (x_1, x_2, x_3) à l'instant t.

- 1.1 Déterminer, par deux méthodes différentes, l'expression de l'accélération $\underline{\gamma}(\underline{x},t)$ dans la représentation eulérienne du mouvement.
- 1.2 Etablir les équations des lignes de courant à l'instant $t = t^*$.

Quelles sont leur nature?

Les représenter dans le plan $x_3=0$ en précisant leur sens de parcours pour des valeurs de t^* telles que $0<\omega\,t^*<\pi/2$ et $\omega\,t^*=\pi/2$.

- 1.3 Etablir la représentation lagrangienne du mouvement.
- 1.4 Montrer que la trajectoire d'une particule qui occupait à l'instant t = 0 la position $(X_1, X_2, X_3 = 0)$ est un cercle, dont on précisera le rayon et le centre.

Représenter la trajectoire et préciser le sens de parcours pour des instants t tels que $0 < t\omega < \pi/2$.

1.5 Déterminer les expressions de la vitesse et de l'accélération dans la représentation lagrangienne du mouvement.

Commenter le résultat en lien avec la question 1.1.

1.6 Soit $b(\underline{x},t)$ une grandeur scalaire donnée en variable eulérienne par $b(\underline{x},t) = \delta x_1 t$, où δ est une constante donnée.

Déterminer la dérivée particulaire $\frac{db}{dt}$ de la grandeur $b(\underline{x},t)$.

Donner l'expression B(X,t) de la fonction b(x,t) en variables lagrangiennes.

Calculer la dérivée particulaire $\frac{d\,B}{dt}.$ Commenter.

1.7 Calculer les composantes du tenseur des taux de déformations $\underline{d}(\underline{x},t)$.

En déduire les taux de dilatation linéique dans les trois directions $\underline{e}_1, \underline{e}_2, \underline{e}_3$ et les taux de glissement $\frac{d\gamma_{12}}{dt}, \frac{d\gamma_{13}}{dt}, \frac{d\gamma_{23}}{dt}$.

Calculer le taux de dilatation volumique.

Intrepréter les résultats.

1.8. Question Bonus Calculer les composantes du tenseur des taux de rotation $\underline{\Omega}(\underline{x},t)$.

En déduire l'expression du vecteur dual $\underline{\Omega}(\underline{x},t)$ défini par $\underline{\Omega}(\underline{x},t)$. $\underline{x}=\underline{\Omega}(\underline{x},t)\wedge\underline{x}$.

Vérifier le calcul par rapprochement avec la vitesse eulérienne.

Partie 2: Etude de la transformation

On considère la transformation caractérisée par la représentation lagangienne suivante relativement au repère cartésien $(0, \underline{e}_1, \underline{e}_2, \underline{e}_3)$:

$$x_1(t) = \Phi_1(X, t) = l \cos(k X_3 - \omega t) - l \cos(k X_3) + X_1$$

$$x_2(t) = \Phi_2(\underline{X}, t) = l \sin(kX_3 - \omega t) - l \sin(kX_3) + X_2, \quad x_3(t) = \Phi_3(\underline{X}, t) = X_3,$$

où (X_1, X_2, X_3) désigne la position à l'instant t = 0 de la particule qui occupe la position (x_1, x_2, x_3) à l'instant t et où (l, k, ω) sont des constantes données strictement positives.

2.1 Préciser les unités des constantes k, l et ω .

Calculer les composantes du tenseur gradient de déformations $\underline{F}(\underline{X},t)$.

La transformation est-elle homogène? Commenter.

Est-elle toujours définie?

Soit un volume élémentaire $d\Omega_0$ centré au point M_0 de coordonnées \underline{X} à l'instant initial t = 0, $d\Omega_t$ son transformé à l'instant t, calculer la variation de volume subie par cet élément. Commenter.

2.2 Exprimer les composantes des tenseurs de dilatation $\underline{\underline{C}}(\underline{X},t)$ et de déformations de Green-Lagrange $\underline{e}(\underline{X},t)$ en fonction des composantes F_{13} et F_{23} du tenseur gradient de déformations $\underline{F}(\underline{X},t)$.

Vérifier que la composante e_{33} du tenseur de dilatation $\underline{e}(\underline{X},t)$ est donnée par :

$$e_{33} = l^2 k^2 (1 - \cos(\omega t)).$$

On rappelle la formule trigonométrique suivante : $\cos(a-b) = \cos a \cos b + \sin a \sin b$.

2.3 Soient les vecteurs élémentaires de matière \underline{dX} , \underline{dX}' et \underline{dX}'' issus du point M_0 de coordonnées (X_1, X_2, X_3) à l'instant initial t=0, portés respectivement par les directions \underline{e}_1 , \underline{e}_2 et \underline{e}_3 et de longueur respective dl_0 , dl_0' et dl_0'' , soient :

$$\underline{dX} = dl_0 \underline{e}_1, \qquad \underline{dX}' = dl_0' \underline{e}_2, \qquad \underline{dX}'' = dl_0'' \underline{e}_3.$$

Les transformés de ces vecteurs sont notés $\underline{dx}, \, \underline{dx}'$ et \underline{dx}'' à un instant t fixé.

Exprimer les longueurs $||\underline{dx}||$, $||\underline{dx}'||$ et $||\underline{dx}''||$ des transformés de ces vecteurs en fonction de dl_0, dl_0', dl_0'' . Commenter.

Donner l'expression de l'angle $\theta_{12}(t)$ à l'instant t fixé entre les vecteurs transformés \underline{dx} et \underline{dx}' , de l'angle θ_{13} entre \underline{dx} et \underline{dx}'' et de l'angle θ_{23} entre \underline{dx}' et \underline{dx}'' .

Commenter la nature de la transformation subie par des points de coordonnées $(X_1, X_2, X_3 = 0)$ à un temps t tel que $0 < \omega t < \pi/2$.

2.4 Déterminer le vecteur déplacement $\xi(\underline{X},t)$.

Exprimer les composantes du tenseur gradient de déplacement $\underline{\nabla}\underline{\xi}(\underline{X},t)$ et du tenseur des déformations linéarisées $\underline{\underline{\epsilon}}(\underline{X},t)$ en fonction des composantes F_{13} et F_{23} du tenseur gradient de déformations $\underline{F}(\underline{X},t)$.

On suppose à partir de maintenant que les constantes l et k vérifient l'hypothèse $l k \ll 1$.

Interpréter cette hypothèse en comparant les expressions des tenseurs $\underline{e}(\underline{X},t)$ et $\underline{\epsilon}(\underline{X},t)$.

Que devient dans ce cas la longueur du vecteur infinitésimal $||\underline{dx}''||$?

Commenter la nature de la transformation dans ce cas.

2.5 Sous l'hypothèse $lk \ll 1$, comparer les résultats des questions 1.7 et 2.4.

Commenter.