ensemble learning

Carlos Soares (based on materials kindly provided by João Mendes Moreira)

plan & goals

- introduction
- categories of methods
- popular methods
- issues

- understand the basic principles of ensemble learning
- understand the intuition and high-level algorithm of some of the most common ensemble methods

definition

- multiple models
 - base models
- ... each of them obtained by applying a learning process to a given problem
 - e.g. same algorithm applied to different samples of the data
- ... combined to make a single prediction
 - e.g. in classification, each model makes a prediction
 - then combined to obtain the final prediction of the ensemble

intuition

- aggregation of multiple learned models with the goal of improving model quality
 - e.g. expert panel in a human decision-making process
 - ... or the popular concept of "the wisdom of the crowds"

ensemble learning process

discussion

why should ensemble methods work? [even better, when...?]

what's the catch?

pros & cons

+

accuracy

 majority compensates for individual errors

diversity is key

- individual models specialize in different areas of the data space
 - how?
- ... but must be reasonably accurate
 - ... and by "reasonable" we mean...?

complexity

- understanding the global model
- explaining decisions
- computational

remember Occam's Razor

- simplicity leads to greater accuracy
- identifying the best model requires identifying the proper "model complexity"

gps

- introduction
- categories of methods
 - homogeneous
- popular methods
- issues

ensembles methods for...

our focus

- classification
- regression
- clustering
 - aka consensual clustering
- label ranking
- . . .
 - anything, really

types of ensembles: how to generate models

- homogeneous
 - single induction algorithm

- heterogeneous
 - multiple induction algorithms

where does diversity come from?

our focus

types of ensembles: how to combine models

regression

- average
- weighted average
- sum
- weighted sum
- product
- maximum
- minimum
- median

classification

- majority voting
- weighted majority voting
- borda count
 - base models rank candidates in order of preference
 - e.g. remember scoring?
 - points assigned to each position
 - prediction is class with more points

homogeneous ensembles: how to generate different models?

- Data manipulation
 - training set

- Modeling process manipulation
 - · induction algorithm
 - parameter set
 - model
 - uncommon

data manipulation

Manipulating the input features

Sub-sampling from the training set

modeling process manipulation

Manipulating the parameter sets

Manipulating the induction algorithm

gps

- introduction
- categories of methods
- popular methods
 - bagging
 - boosting
 - random forest
 - negative correlation
- issues

bagging: Bootstrap AGGregatING

- diagnosis analogy
 - diagnosis based on the majority vote of multiple doctors
 - trained in slightly different contexts
- training
 - given a set D of d tuples
 - at each iteration i
 - training set D_i of d tuples is sampled with replacement from D
 - i.e. bootstrap
 - model M_i is learned for training set D_i

ML

- prediction
 - given an observation X
 - for each classifier M_i
 - make a prediction
 - an aggregation of the predictions is the prediction of the bagged model M* for X

http://en.wikibooks.org/wiki/File:DTE_Bagging.png

bagging

- accuracy
 - often significantly better than a single classifier derived from D
 - robust to noise
- ... if classifier is unstable!
 - unstable means a small change to the training data may lead to major decision changes
 - decision trees
 - neural networks

boosting

training

- equal weights are assigned to each training example
- learn model M₁
- learn additional k-1 models
 - give more weight to the examples that were incorrectly predicted by M_i
 - learn model M_{i+1}

prediction

- given an observation X
- for each classifier M_i
 - make a prediction
- an aggregation of the predictions is the prediction of the bagged model M* for X
 - the weight of each classifier's vote is a function of its accuracy

boosting: discussion

- boosting vs. bagging
 - differences
 - independent sampling vs. error-dependent sampling
 - uniform aggregation vs. weighted aggregation
- ... SO
 - boosting tends to achieve greater accuracy
 - ... but it also risks overfitting the model to misclassified data

random forest

training

- learn k models
- ... with changed algorithm
 - at each split
 - randomly select a subset of the original features during the process of tree generation

prediction

- given an observation X
- for each classifier M_i
 - make a prediction
- an aggregation of the predictions is the prediction of the bagged model M* for X

random forest: discussion

- RF vs adaboost
 - comparable in accuracy
 - more robust to errors and
 - ... outliers
- ... vs bagging and adaboost
 - RF is insensitive to the number of attributes selected for consideration at each split and
 - faster

negative correlation learning

training

- learn k models
- ... with changed algorithm
 - trained to minimize the error function of the ensemble
 - i.e., it adds to the error function a penalty term with the average error of the models already trained

prediction

- given an observation X
- for each classifier M_i
 - make a prediction
- an aggregation of the predictions is the prediction of the bagged model M* for X

negative correlation learning: discussion

- only regression
 - algorithms that try to minimize/maximize a given objective function
 - e.g., neural networks, support vector regression
- models negatively correlated with the averaged error of the previously generated models

popular ensemble methods: summary

bagging

- base models: train algorithm on different bootstrap samples
- prediction: average/majority
- task: classification and regression

boosting

- base models: sequence of training processes, with more weight given to instances incorrectly classified by previous model
- prediction: weighted vote
- task: classification

random forest

- base models: train algorithm on different samples of attributes
- prediction: average/majority
- task: classification and regression

negative correlation learning

- base models: sequence of training processes, with new models forced to be more negatively correlated with the existing ones
- prediction: average
- task: regression

gps

- introduction
- categories of methods
- popular methods
- issues

characteristics of the base models: classification

- base classifiers should be as accurate as possible and
 - although there is "the strength of weak classifiers"
 - R.E. Schapire. 1990. The Strength of Weak Learnability. Mach. Learn. 5, 2 (July 1990), 197-227
- having diverse errors
 - Brown, G. & Kuncheva, L., "Good" and "Bad" Diversity in Majority Vote Ensembles, Multiple Classifier Systems, Springer, 2010, 5997, 124-133

characteristics of the base models: regression

- more amenable to theoretical analysis
 - the error of an ensemble \hat{f}_F with K base learners in relation to the true values given by f is:

•
$$E(\hat{f}_F - f)^2 = \overline{bias}^2 + \frac{1}{K} \times \overline{var} + \left(1 - \frac{1}{K}\right) \times \overline{covar}$$

- · ... assuming the integration function is the average
- the goal is to minimize $E(\hat{f}_F f)^2$, so
 - the average bias of the base learners should be as small as possible
 - i.e. the base learners should be as accurate (on average) as possible
 - the average variance of the base learners should be as small as possible
 - i.e. the base learners should be as robust to small changes on the training data (on average) as possible
 - the average covariance of the base learners should be as low as possible
 - i.e. the base learners should have negative correlation

summary

- combination of multiple models
 - majority compensates for individual errors
- individual models specialize in different areas of the data space
 - diversity is key
- today
 - focused on homogeneous
 - but essentially applicable to heterogeneous ensembles

Introductory References

- 'Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations', Ian H. Witten and Eibe Frank, 1999
- 'Data Mining: Practical Machine Learning Tools and Techniques second edition', Ian H. Witten and Eibe Frank, 2005
- Todd Holloway, 2008, "Ensemble Learning Better Predictions Through Diversity", power point presentation
- Leandro M. Almeida, "Sistemas Baseados em Comitês de Classificadores"
- Cong Li, 2009, "Machine Learning Basics 3. Ensemble Learning"
- R. Polikar, "Ensemble based systems in decision making," *IEEE Circuits and Systems Magazine*, vol. 6, no. 3, pp. 21–45, Quarter 2006.
- João Mendes-Moreira, Carlos Soares, Alípio Jorge, Jorge Freire de Sousa, "Ensemble approaches for regression: a survey", ACM Computing surveys, 45(1), article 10, 2012.

Core References

- Wolpert, D. H., Stacked generalization, Neural Networks, 1992, 5, 241-259
- Breiman, L., Bagging predictors, *Machine Learning*, **1996**, *26*, 123-140
- Freund, Y. & Schapire, R., Experiments with a new boosting algorithm, International Conference on Machine Learning, 1996, 148-156
- Breiman, L., Random forests, *Machine Learning*, **2001**, *45*, 5-32
- Liu, Y. & Yao, X., Ensemble learning via negative correlation, Neural Networks, 1999, 12, 1399-1404
- Rodríguez, J. J.; Kuncheva, L. I. & Alonso, C. J., Rotation forest: a new classifier ensemble, *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2006, 28, 1619-1630