Stacking Method

Allen.Huang

堆叠模型

参考了cross-validation的原理

双训练集法

一个Stacking过程

		A		
XO	x1	x2	xn	У
0.17	0.25	0.93	0.79	1
0.35	0.61	0.93	0.57	. 0
0.44	0.59	0.56	0.46	0
0.37	0.43	0.74	0.28	1
0.96	0.07	0.57	0.01	1

		В		
X0	x1	x2	xn	У
0.89	0.72	0.50	0.66	0
0.58	0.71	0.92	0.27	1
0.10	0.35	0.27	0.37	0
0.47	0.68	0.30	0.98	0
0.39	0.53	0.59	0.18	1

С						
X0	x1	x2	xn	У		
0.29	0.77	0.05	0.09	?		
0.38	0.66	0.42	0.91	?		
0.72	0.66	0.92	0.11	?		
0.70	0.37	0.91	0.17	?		
0.59	0.98	0.93	0.65	?		

Consider datasets A,B,C. Target variable (y) is known for A,B

一个Stacking过程

		Α		
X0	x1	x2	xn	У
0.17	0.25	0.93	0.79	1
0.35	0.61	0.93	0.57	0
0.44	0.59	0.56	0.46	0
0.37	0.43	0.74	0.28	1
0.96	0.07	0.57	0.01	1

		В		
X0	x1	x2	xn	У
0.89	0.72	0.50	0.66	0
0.58	0.71	0.92	0.27	1
0.10	0.35	0.27	0.37	0
0.47	0.68	0.30	0.98	0
0.39	0.53	0.59	0.18	1

		C		
X0	x1	x2	xn	У
0.29	0.77	0.05	0.09	?
0.38	0.66	0.42	0.91	?
0.72	0.66	0.92	0.11	?
0.70	0.37	0.91	0.17	?
0.59	0.98	0.93	0.65	?

Train algorithm 0 on A and make predictions for B and C and save to B1, C1

Train algorithm 1 on A and make predictions for B and C and save to B1, C1

Train algorithm 2 on A and make predictions for B and C and save to B1, C1

B1						
pred0	pred1	pred2	У			
0.24	0.72	0.70	0			
0.95	0.25	0.22	1			
0.64	0.80	0.96	0			
0.89	0.58	0.52	0			
0.11	0.20	0.93	1			

	C	1	
pred0	pred1	pred2	у
0.50	0.50	0.39	?
0.62	0.59	0.46	?
0.22	0.31	0.54	?
0.90	0.47	0.09	?
0.20	0.09	0.61	?

一个Stacking过程

A					
X0	x1	x2	xn	У	
0.17	0.25	0.93	0.79	1	
0.35	0.61	0.93	0.57	0	
0.44	0.59	0.56	0.46	0	
0.37	0.43	0.74	0.28	1	
0.96	0.07	0.57	0.01	1	

		В		
X0	x1	x2	xn	У
0.89	0.72	0.50	0.66	0
0.58	0.71	0.92	0.27	1
0.10	0.35	0.27	0.37	0
0.47	0.68	0.30	0.98	0
0.39	0.53	0.59	0.18	1

		С		
X0	x1	x2	xn	У
0.29	0.77	0.05	0.09	?
0.38	0.66	0.42	0.91	?
0.72	0.66	0.92	0.11	?
0.70	0.37	0.91	0.17	?
0.59	0.98	0.93	0.65	?

Train algorithm 0 on A and make predictions for B and C and save to B1, C1
Train algorithm 1 on A and make predictions for B and C and save to B1, C1
Train algorithm 2 on A and make predictions for B and C and save to B1, C1

	B1						
pred0	pred1	pred2	У				
0.24	0.72	0.70	0				
0.95	0.25	0.22	1				
0.64	0.80	0.96	0				
0.89	0.58	0.52	0				
0.11	0.20	0.93	1				

C1			
pred0	pred1	pred2	У
0.50	0.50	0.39	?
0.62	0.59	0.46	?
0.22	0.31	0.54	?
0.90	0.47	0.09	?
0.20	0.09	0.61	?

Train algorithm 3 on B1 and make predictions for C1

0.45 0.23 0.99 0.34 0.05

优缺点

优点:

准确预测底层模型之间关系

缺点:

对于数据量的要求比较大, 因为需要平衡第一层和第二层

K-Fold法

优缺点

优点:

节省数据, 在数据量小的时候可以运行

缺点:

抖动的比较大, 不一定能够比单个模型好

总结

Stacking以一种集成算法

Stacking可以提升算法的稳定性

然而Stacking在测试中的错误率未必是最低的,需要调整参数

必要时需要将Stacking与高正确率的单个算法进行bagging集成

