



\_\_\_\_\_

# CHN08

#### **Crazy Malvika discovers Crazy Fibonacci function**

Malvika was getting bored of the usual Fibonacci problems, and decided to add a little twist to it. She defined a new function  $\mathbf{f}()$  with the following properties:

- She'll give you two integers, A and B. f(1) is defined to be A and f(2) is B.
- And for all integers  $x \ge 2$ , f(x) = f(x-1) + f(x+1).

She'll give an integer  $\mathbf{N}$ , and you have to find out what  $\mathbf{f}(\mathbf{N})$  is. Output the answers modulo  $\mathbf{10}^9 + \mathbf{7}$ .

### Input

- The first line of input contains a single integer **T** denoting number of test cases.
- The only line of each test case contains three integers: A, B and N, denoting f(1),
  f(2) and the query.

## **Output**

 For each test case, output a line which contains a single integer, corresponding to f(N) for the given input.

#### **Constraints**

- '  $1 \le T \le 10^5$
- $-10^9 \le A$ ,  $B \le 10^9$
- '  $1 \le N \le 10^9$

#### **Example**

#### Input:

2

10 17 3



## ACM-ICPC Asia-Chennai Site, Onsite Round

# Output:

7 1000000001

## **Explanation**

In the first test case, f(3) = 7, and so that is the output.

In the second test case, f(3) = -6 and the answer modulo  $10^9+7$  is 1000000001.