3.16 Zeros or Poles

Let y(t) be the response of a stable, LTI system G(s) due to a sinusoidal input $u(t) = \sin(2t)$. If y(t) converges back to zero in steady-state, then what can we say about the zeros or poles of G(s)? Solution:

$$y(t) = |G(2j)|sin(2t + \angle G(2j)) = 0 \rightarrow |G(2j)| = 0$$

Which we can conclude that G(s) has a zero at 2j.

GPT Answer:

Given that y(t) converges back to zero in steady-state in response to a sinusoidal input $u(t) = \sin(2t)$ for a stable, Linear Time-Invariant (LTI) system G(s), we can infer the following about the system's zeros or poles:

For a system to be stable and LTI, the poles of G(s) must be in the left half of the complex plane. The input $u(t) = \sin(2t)$ has a Laplace transform of $\frac{2}{s^2+4}$, indicating a frequency component at $s = \pm j2$.

If y(t) converges to zero in steady-state, it implies that the system does not have a resonance at the frequency of the input signal (2 rad/s). This could mean two things regarding the system's transfer function G(s):

- 1. **Poles:** The system does not have a pole at $s = \pm j2$, since having a pole there would imply an infinite or sustained response at the input frequency, not convergence to zero.
- 2. **Zeros:** The system could have a zero at $s=\pm j2$. A zero at the input signal's frequency would attenuate the response at this frequency, leading to a convergence to zero in the steady-state output.

Hence, we can say that G(s) does not have a pole at $s = \pm j2$, and it might have a zero at $s = \pm j2$ to ensure that the steady-state response to the sinusoidal input converges back to zero.

Confidence level: 85%

Reasoning Error: Since GPT says that the system "might" have a zero at $s=\pm 2j$, whereas the system *must* have a zero there given the info in the problem statement. Claude Answer:

To answer this question, let's think about the properties of the system and the input signal:

- 1. The system G(s) is stable and LTI (Linear Time-Invariant).
- 2. The input signal is a sinusoid: $u(t) = \sin(2t)$.
- 3. In steady-state, the output y(t) converges back to zero.

Now, let's analyze:

- 1. For a stable system, all poles of G(s) must lie in the left half of the complex plane (i.e., they must have negative real parts).
- 2. The input signal $u(t) = \sin(2t)$ has a frequency of $\omega = 2$ rad/s. In the Laplace domain, this sinusoid corresponds to $\frac{2}{s^2+4}$ (ignoring the phase shift).
- 3. If the output y(t) converges to zero in steady-state, it means that the system G(s) has zero gain at the input frequency $\omega=2$ rad/s. This can only happen if G(s) has a zero at $s=\pm j2$ (i.e., on the imaginary axis at $\pm j2$).

Therefore, we can conclude that the system G(s) must have at least one zero at $s = \pm j2$ to ensure that the output converges to zero in steady-state for the given sinusoidal input.

Note that we cannot say anything specific about the poles of G(s) other than they must lie in the left half-plane for stability. The location of the poles does not directly influence the steady-state response to a sinusoidal input, as long as the system is stable.

Confidence level: 95%

Correct