Dans tout le problème, \mathbf{K} est un sous-corps du corps \mathbf{R} des réels, et $\mathbf{K}[X]$ est l'algèbre des polynômes à une indéterminée sur \mathbf{K} . Par définition, un réel α est dit *algébrique* sur \mathbf{K} si α est racine d'un polynôme non nul à coefficients dans \mathbf{K} . Dans le cas contraire, α est dit *transcendant* sur \mathbf{K} . Dans le cas où \mathbf{K} est le corps \mathbf{Q} des rationnels, on se contente généralement de parler de *nombre transcendant* (sans préciser sur quel corps).

Le but de ce problème est d'établir des propriétés simples des nombres algébriques et transcendants sur un corps **K**, d'en donner des exemples lorsque **K** est le corps **Q** des rationnels, puis d'appliquer les résultats obtenus pour caractériser les points du plan constructibles "à la règle et au compas".

Partie I

Soit α un réel algébrique sur \mathbf{K} , sous-corps de \mathbf{R} . On désigne par $I(\alpha)$ l'ensemble des polynômes P de $\mathbf{K}[X]$ dont α est racine.

- 1. a. Démontrer que $I(\alpha)$ est un idéal de K[X]. En déduire l'existence d'un polynôme unitaire unique π_{α} , tel que $I(\alpha)$ soit l'ensemble des polynômes multiples de π_{α} .
- **b.** Démontrer que pour qu'un polynôme P, appartenant à K[X], unitaire et irréductible dans K[X], soit le polynôme π_{α} , il faut et il suffit que α soit racine de P.

Par définition, le polynôme π_{α} est le *polynôme minimal* de α sur \mathbf{K} . Le degré de ce polynôme sera noté $\deg(\alpha, \mathbf{K})$, et il sera dit $\operatorname{degr\acute{e}}$ de α sur \mathbf{K} .

On note désormais $\mathbf{K}[\alpha] = \{P(\alpha), P \in \mathbf{K}[X]\}$, et on admet, c'est évident, que $\mathbf{K}[\alpha]$ est un anneau pour l'addition et la multiplication usuelle des réels.

- 2. Le réel α et le corps K étant donnés, prouver l'équivalence des trois assertions suivantes :
 - i. α est un élément de K.
 - ii. le degré de α sur **K** est égal à 1.
 - iii. $K[\alpha]$ est égal à K.
- 3. Dans cette question, le degré de α sur K est égal à 2.

On dit dans ce cas que $K[\alpha]$ est une extension quadratique de K.

- a. Préciser la dimension de $K[\alpha]$, et prouver que c'est un corps.
- **b.** Démontrer qu'il existe un élément positif k du corps \mathbf{K} tel que les deux corps $\mathbf{K}[\alpha]$ et $\mathbf{K}[\sqrt{k}]$ soient égaux.

4. Dans cette question, le degré de α sur **K** est un entier n supérieur ou égal à 2.

- a. Démontrer qu'à tout réel x appartenant à l'espace vectoriel $\mathbf{K}[\alpha]$ est associé de manière unique un polynôme R de degré inférieur ou égal à n-1 appartenant à $\mathbf{K}[X]$, tel que $x = R(\alpha)$. En déduire une base de l'espace $\mathbf{K}[\alpha]$, ainsi que sa dimension sur \mathbf{K} .
- **b.** Démontrer que pour tout réel x non nul de $\mathbf{K}[\alpha]$, le polynôme R ainsi associé est premier avec π_{α} . En déduire que l'anneau $\mathbf{K}[\alpha]$ est un corps.
 - **c.** Retrouver le résultat précédent en envisageant l'application de **K** dans **K** : $y \mapsto xy$.
 - **d.** Démontrer que $K[\alpha]$ est le plus petit corps intermédiaire entre K et R qui contienne α .

Le corps K est maintenant le corps Q des rationnels. Considérons la suite des polynômes définis par :

$$P_0 = 1, \ P_1 = 2X + 1, \ \forall n \ge 0, \ P_{n+2} = 2XP_{n+1} - P_n \ .$$

Soit enfin Q_n le polynôme défini par $Q_n(X) = P_n(\frac{X}{2})$.

5. Propriétés générales des polynômes P_n .

- a. Donner le degré du polynôme P_n , préciser son coefficient dominant ainsi que son terme constant. Déterminer les polynômes P_n pour n = 1, 2, 3, et prouver que, pour tout n, les coefficients des polynômes Q_n sont des entiers relatifs.
- **b.** Démontrer que les seules racines rationnelles possibles du polynôme Q_n sont les entiers 1 et -1. Exprimer le polynôme $Q_{n+3} + XQ_n$ en fonction de Q_{n+1} . En déduire que les racines rationnelles éventuelles des polynômes Q_{n+3} et Q_n sont les mêmes. Préciser les polynômes P_n possédant une racine rationnelle.

6. Racines du polynôme P_n .

Soit θ un réel donné compris strictement entre 0 et π . Considérons la suite (u_n) définie par la donnée de u_0 et de u_1 et la relation de récurrence :

$$\forall n \geq 0, u_{n+2} = 2u_{n+1}\cos\theta - u_n$$
.

- **a.** Déterminer l'expression du terme général u_n de la suite définie ci-dessus.
- **b.** Utiliser les résultats précédents pour exprimer le réel $v_n = P_n(\cos\theta)$ en fonction des réels n et θ . En déduire toutes les racines $x_{k,n}$ $(1 \le k \le n)$ du polynôme P_n .
- c. Démontrer que les trois réels $\cos(\frac{2\pi}{5})$, $\cos(\frac{2\pi}{7})$ et $\cos(\frac{2\pi}{9})$ sont algébriques sur \mathbf{Q} , et déterminer pour chacun son polynôme minimal.

7. Existence de nombres transcendants.

Il s'agit ici de donner un argument simple prouvant l'existence de nombres transcendants (sur **Q**) ; cette preuve présente toutefois un léger inconvénient : elle aboutit à la conclusion que "presque tous" les réels sont transcendants, sans toutefois en exhiber un seul !

- a. Prouver que les réels algébriques (sur \mathbf{Q}) sont les racines des polynômes non nuls de $\mathbf{Z}[X]$.
- **b.** Pour tout polynôme non nul à coefficients entiers, on définit son "poids" comme étant égal à son degré plus la somme des valeurs absolues de ses coefficients : si $P \in \mathbf{Z}[X]$, $P = \sum_{k=0}^{\deg P} a_k X^k \neq 0$, $v(P) = \deg P + \sum_{k=0}^{\deg P} |a_k|$.

Prouver que pour tout entier k, l'ensemble des polynômes de poids égal à k est fini.

- c. Prouver que l'ensemble des réels algébriques est dénombrable.
- d. Rappeler une preuve de la non-dénombrabilité de R (qui permet alors de conclure aisément, grâce à la question
 c., à l'existence de nombres transcendants).

8. Un exemple explicite de nombre transcendant sur **Q**.

Soit S un polynôme irréductible de $\mathbb{Q}[X]$, de degré n supérieur ou égal à 2.

- a. Prouver que S ne saurait posséder de racine rationnelle. En déduire qu'il existe un entier naturel non nul C_S tel que pour tout rationnel $r = \frac{p}{q}$ (p et q entiers, q positif), on ait $\left|S(r)\right| \ge \frac{1}{C_r q^n}$.
- **b.** Soit α une racine de S. Déduire du résultat précédent, et avec l'aide de l'inégalité des accroissements finis, l'existence d'une constante strictement positive K telle que, pour tout rationnel $r = \frac{p}{q}$ appartenant à l'intervalle $[\alpha 1, \alpha + 1]$, on ait l'inégalité $|\alpha r| \ge \frac{K}{q^n}$.
- c. Soient les réels $L_n = \sum_{k=0}^n 10^{-k!}$, et $L = \sum_{k=0}^{+\infty} 10^{-k!}$ (L en l'honneur de Liouville, découvreur de ce nombre transcendant). Prouver que L est irrationnel. Établir l'inégalité $|L L_n| \le 2.10^{-(n+1)!}$. En déduire la transcendance de L.

Partie II

Le but de cette partie est d'appliquer les résultats précédents pour caractériser les points du plan qui peuvent être construits "à la règle et au compas".

Soit \mathcal{P} le plan euclidien orienté. Considérons un repère orthonormé Oxy et \mathbf{K} un sous-corps de \mathbf{R} . On adopte les notations suivantes :

K est l'ensemble des points du plan dont chaque coordonnée appartient à K.

D est l'ensemble des droites du plan qui joignent deux points de K.

 \mathcal{C} est l'ensemble des cercles du plan centrés en un point de \mathcal{K} et de rayon égal à la distance entre deux points de \mathcal{K} .

1. Intersection de droites et de cercles appartenant à D ou C

Démontrer les résultats suivants :

K.

a. Toute droite de $\mathfrak D$ et tout cercle de $\mathfrak C$ admettent au moins une équation cartésienne dont les coefficients sont dans

- **b.** Le point commun à deux droites sécantes de D appartient à K.
- **c.** Un point commun à une droite de \mathfrak{D} et à un cercle de \mathfrak{C} est soit un point de l'ensemble \mathfrak{K} , soit un point dont les coordonnées appartiennent toutes deux à une même extension quadratique de K.
 - **d.** Que peut-on dire d'un point commun à deux cercles de \mathcal{C} ?

Points et réels constructibles

Soit \mathcal{F} un ensemble fini de points du plan \mathcal{F} . Considérons toutes les droites passant par deux points de \mathcal{F} , et tous les cercles centrés en un point de \mathcal{F} et de rayon égal à la distance de deux points quelconques de \mathcal{F} . Les points d'intersection de ces droites et cercles sont dits *points construits à partir de* \mathcal{F} à la règle et au compas ou plus brièvement points construits à partir de \mathcal{F} .

Considérons deux points O et I du plan \mathcal{P} . Un point M du plan sera dit constructible à partir des points O et I s'il existe une suite finie de points $M_1, M_2, \ldots, M_n = M$ telle que :

 M_1 est construit à partir des deux points O et I;

$$\forall j \in \{2,3,\ldots,n\}, M_j \text{ est construit à partir de l'ensemble } \{O,I,M_1,\ldots,M_{j-1}\}$$

Dans la suite, seuls le point O et le point I seront donnés, I étant le point de coordonnées (1,0). Un point M constructible à partir des points O et I sera simplement dit *constructible*.

Un réel est dit constructible si c'est l'abscisse ou l'ordonnée d'un point constructible.

2. Exemples de points construits et de points constructibles

Démontrer, en justifiant par un dessin effectué à la règle et au compas, les propriétés suivantes :

a. Soit \mathcal{F} un ensemble constitué de trois points A, B et C du plan \mathcal{F} , deux à deux distincts et non alignés. Démontrer que le quatrième sommet D du parallélogramme ABCD est un "point construit" à partir de l'ensemble \mathcal{F} .

En déduire que si A et Δ sont un point et une droite donnés de \mathcal{P} , la parallèle à Δ passant par A peut être construite à la règle et au compas.

- **b.** Démontrer que le point J, symétrique du point I par rapport à O, est constructible, ainsi que le point K porté par l'axe Oy d'ordonnée égale à 1.
- c. Soient α et β deux réels strictement positifs constructibles. Prouver que les réels $\alpha + \beta, \frac{\alpha}{\beta}$ et $\alpha\beta$ sont constructibles.

On admettra, à partir de là, que tous les points dont les coordonnées sont des entiers relatifs sont constructibles.

d. Soit α un réel strictement positif constructible. Démontrer que $\sqrt{\alpha}$ est constructible (on pourra considérer le cercle dont un diamètre est le segment joignant les points J et A $(\alpha,0)$.

Une suite finie $(\mathbf{K}_i)_{0 \le i \le p}$ de sous-corps de \mathbf{R} est dite avoir la propriété "TEQ" (comme *tour d'extensions quadratiques*) si cette suite est croissante au sens de l'inclusion, si \mathbf{K}_0 est \mathbf{Q} , et si pour tout entier i, le corps \mathbf{K}_i est une extension quadratique du corps \mathbf{K}_{i-1} .

3. Une condition nécessaire et suffisante de constructibilité

- a. Soit M un point constructible. Démontrer qu'il existe une suite finie $(\mathbf{K}_i)_{0 \le i \le p}$ de sous-corps de \mathbf{R} ayant la propriété "TEQ" telle que les coordonnées de M soient éléments de \mathbf{K}_p .
- **b.** Soit une suite finie $(\mathbf{K}_i)_{0 \le i \le p}$ de sous-corps de \mathbf{R} ayant la propriété "TEQ". Démontrer par récurrence que les points du plan dont les coordonnées sont dans \mathbf{K}_p sont constructibles.

4. Une condition nécessaire de constructibilité

- a. Soient F, G et H trois sous-corps emboîtés du corps des réels. On suppose que G est un F-espace vectoriel de dimension finie p, et que H est un G-espace vectoriel de dimension finie q. Montrer que H est un F-espace vectoriel de dimension finie égale à pq.
- **b.** Soit une suite finie $(\mathbf{K}_i)_{0 \le i \le p}$ de sous-corps de \mathbf{R} ayant la propriété "TEQ". Quelle est la dimension du \mathbf{Q} -espace vectoriel \mathbf{K}_p ?
- c. En déduire que si le réel α est constructible, alors α est un nombre algébrique sur \mathbf{Q} , et deg (α,\mathbf{Q}) est une puissance de 2.

Note historique: en particulier, un nombre algébrique aussi simple que $\sqrt[3]{2}$ n'est donc pas constructible à la règle et au compas: cela explique l'embarras des Grecs lorsque la Pythie leur demanda un autel deux fois plus grand dans le temple d'Appolon à Delphes. Dans le même ordre d'idée, cela prouve aussi que le fameux problème de la quadrature du cercle posé par ces mêmes Grecs n'a pas de solution: en effet, construire un carré de même aire qu'un cercle donné revient à construire le nombre $\sqrt{\pi}$. Or, Ferdinand LINDEMANN a démontré en 1882 que π , et donc aussi $\sqrt{\pi}$, est transcendant, ce qui lui interdit d'être constructible...

5. La réciproque de la question précédente est inexacte

On se propose ici de prouver qu'il existe des réels de degré 4 sur **Q**, et qui ne sont pas constructibles.

Envisageons le polynôme $P = X^4 - 4X + 2$.

- **a.** Prouver que P possède exactement deux racines réelles r_1 et r_2 , et que celles-ci sont irrationnelles.
- **b.** On factorise P dans $\mathbf{R}[X]$ sous la forme : $P = (X^2 + aX + b)(X^2 + cX + d)$. Prouver que le réel t = b + d est racine d'une équation du troisième degré que l'on explicitera. Déterminer le degré de t sur \mathbf{Q} .
- **c.** Prouver que P est irréductible sur \mathbf{Q} , et en déduire le degré des r_i sur \mathbf{Q} .
- **d.** Démontrer que l'un au moins des deux réels r_1 et r_2 n'est pas constructible.

6. Polygones réguliers constructibles

Considérons les polygones réguliers à n côtés (n entier plus grand que 3) inscrits dans le cercle unité. Désignons par A_1, A_2, \ldots, A_n leurs sommets. On supposera que le point A_1 est confondu avec le point I, et que A_2 est celui de ces points dont les coordonnées sont $\left(\cos\frac{2\pi}{n}, \sin\frac{2\pi}{n}\right)$.

Quels sont, parmi les polygones réguliers à n côtés (pour $3 \le n \le 10$), ceux qui sont constructibles ?

Note historique (deuxième): A la suite des travaux de Gauss qui, à dix-neuf ans, a prouvé la constructibilité du polygone régulier à 17 côtés, on a pu déterminer une condition nécessaire et suffisante pour que le polygone régulier à n côtés soit constructible: il faut et il suffit que n s'écrive $2^p F_1 F_2 \dots F_k$ où p et k sont des entiers quelconques, les F_i étant des nombres premiers de Fermat deux à deux distincts. Cela explique que le polygone à 17 côtés, mais aussi les polygones à 257 et 65537 côtés, soient constructibles (une construction de ce dernier existe; elle est monstrueuse...)

Le pentagone régulier

L'heptadécagone régulier

Pour mieux voir, consulter: http://www.ac-poitiers.fr/math/prof/resso/ima/sar1/