Section 03 : Extensions au modèle linéaire simple (Séance 5)

GSF-6053: Économétrie Financière

Simon-Pierre Boucher¹

¹Département de finance, assurance et immobilier Faculté des sciences de l'administration Université Laval

8 février 2022

Références

Obligatoires:

- Notes de cours: Section 3 (Professeure: Marie-Hélène Gagnon)
- ▶ Woolridge: chapitres 3, 8, 12.

Complémentaires:

- ▶ **Gujarati et Porter:** chapitres 10, 11, 12, 13 et appendice C.
- ► **Greene:** chapitres 2, 3, 4, 5, 9, 14, 20 C et D

Plan de la séance

Multicolinéarité

Problèmes de spécification

Erreurs non-sphériques

Les Moindres carrés généralisés

Problèmes de spécification

Erreurs non-sphériques

Les Moindres carrés généralisés

- Une des hypothèses du modèle linéaire classique est qu'il n'y a pas de colinéarité parfaite entre les variables explicatives dans la matrice X.
- Supposons le modèle suivant:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_k X_{ki} + \epsilon_i$$

Multicollinéarité parfaite (ou exacte)

$$\lambda_1 X_{1i} + \lambda_2 X_{2i} + \dots + \lambda_k X_{ki} = 0$$

Multicollinéarité imparfaite

$$\lambda_1 X_{1i} + \lambda_2 X_{2i} + \dots + \lambda_k X_{ki} + v_i = 0$$

- Dans le cas de la multicolinéarité parfaite
 - Alors la matrice (X'X) n'est plus de plein rang colonne et n'est pas inversible, car une des colonnes peut être écrite en fonction linéaire des autres.
 - Il survient alors un problème majeur au niveau de l'identification des paramètres.
- Dans le cas de la multicolinéarité imparfaite
 - Les régresseurs ne sont pas parfaitement corrélés, mais fortement corrélés à un choc près.

Les conséquences de la multicolinéarité

- La multicolinéarité imparfaite ne viole pas les hypothèses du théorène de Gauss-Markov.
 - Les estimateurs des MCO en cas de multicolinéarité gardent la propriété BLUE.
- Les variances et les erreurs standard des estimations des coefficients de régression vont augmenter.
 - Cela signifie des t-statistiques plus faibles.
- L'ajustement global de l'équation de régression ne sera pas affecté par la multicollinéarité.
 - Cela signifie également que la prévision et la prédiction ne seront pas affectées.
- Les coefficients de régression seront sensibles aux spécifications.
 - Les coefficients de régression peuvent changer considérablement lorsque des variables sont ajoutées ou supprimées.

La détection de la multicolinéarité

- Coefficients de corrélation élevés
 - Les corrélations par paires entre les variables indépendantes peuvent être élevées (en valeur absolue).
 - Règle générale : si la corrélation est > 0.8, il peut y avoir une forte multicollinéarité.
- ▶ R² élevé avec des valeurs de la t-statistiques faibles
 - Il est possible que les coefficients de régression individuels ne soient pas significatifs mais que l'ajustement global de l'équation soit élevé.
- Facteurs d'inflation de la variance (VIF) élevés
 - VIF quantifie dans quel mesure la multicollinéarité a augmenté la variance d'un coefficient estimé.
 - ▶ Il examine dans quelle mesure une variable explicative peut être expliquée par toutes les autres variables explicatives de l'équation.

Remèdes contre la multicolinéarité

- ► Ne rien faire
- Abandon d'une variable redondante
 - Si une variable est redondante, elle n'aurait jamais dû être incluse dans le modèle en premier lieu. Ainsi, l'abandonner ne fait que corriger une erreur de spécification.
 - Utilisez la théorie économique pour guider votre choix de la variable à supprimer.
- Transformer les variables multicollinéaires
 - Vous pouvez réduire la multicollinéarité en respécifiant le modèle, par exemple, en créant une combinaison des variables multicollinéaires.
- Augmenter la taille de l'échantillon
 - L'augmentation de la taille de l'échantillon améliore la précision d'un estimateur et réduit les effets négatifs de la multicollinéarité.
 - En général, l'ajout de données n'est pas possible.

Problèmes de spécification

Erreurs non-sphériques

Les Moindres carrés généralisés

- Le modèle des OLS postule que nous avons la forme vraie fonctionnelle qui définit la relation entre Y et des régresseurs X.
- Comment savoir si nous avons les bons X?
- Quels sont les impacts de se tromper dans le choix de X?
- De façon générale, nous avons les guides suivants pour choisir les variables explicatives :
 - Le modèle doit être admissible et possible à tester.
 - Le modèle doit être cohérent avec la théorie économique et financière.
 - Choisir des régresseurs exogènes au terme d'erreur.
 - Les paramètres estimés doivent être stables empiriquement.
 - Les résidus de régression. Sinon, on peut revisiter la spécification de X ou si elle est correcte corriger pour la non-sphéricité des erreurs.

Omission d'une variable explicative importante

On suppose le vrai modèle suivant:

$$Y_t = \beta_1 X_{1t} + \beta_2 X_{2t} + u_t$$

▶ Cependant, vous avez effectuer l'estimation d'un modèle en omettant la variable indépendante X_2 .

$$Y_t = \beta_1 X_{1t} + u_t$$

ightharpoonup Étant donné que X_2 n'est pas inclus dans la régression, nous allons uniquement obtenir un solution pour estimateur de β_1

$$\hat{\beta}_1 = X_1' Y (X_1' X_1)^{-1} = \frac{X_1' Y}{X_1' X_1}$$

Omission d'une variable explicative importante

Afin de voir les effets de l'omission de la variable X_2 , nous allons substituer dans l'équation de l'estimateur $\hat{\beta}_1$, l'équation du vrai modèle.

$$\hat{\beta}_{1} = \frac{X_{1}'Y}{X_{1}'X_{1}} = \frac{X_{1}'(\beta_{1}X_{1t} + \beta_{2}X_{2t} + u_{t})}{X_{1}'X_{1}}$$

$$= \frac{\beta_{1}X_{1}'X_{1} + \beta_{2}X_{1}'X_{2} + X_{1}'u}{X_{1}'X_{1}}$$

$$= \frac{\beta_{1}X_{1}'X_{1}}{X_{1}'X_{1}} + \frac{\beta_{2}X_{1}'X_{2}}{X_{1}'X_{1}} + \frac{X_{1}'u}{X_{1}'X_{1}}$$

$$= \beta_{1} + \frac{\beta_{2}X_{1}'X_{2}}{X_{1}'X_{1}} + \frac{X_{1}'u}{X_{1}'X_{1}}$$

Omission d'une variable explicative importante

Nous allons maintenant prendre l'espérance de chaque coté de l'équation de $\hat{\beta}_1$

$$E(\hat{\beta}_1) = \beta_1 + E\left(\frac{\beta_2 X_1' X_2}{X_1' X_1}\right) + E\left(\frac{X_1' u}{X_1' X_1}\right)$$

Sachant que $E\left(\frac{X_1'u}{X_1'X_1}\right) = 0$ et que $\frac{X_1'X_2}{X_1'X_1}$ est le coefficient de régression de X_2 sur X_1 , que nous représenterons par b_{21} .

$$E(\hat{\beta}_1) = \beta_1 + \beta_2 \hat{b}_{21}$$

 $\hat{\beta}_1$ sera un estimateur biaisé de β_1 : Le biais dépend du coefficient de la variable omise et du coefficient de la régression de la variable omise sur les variables incluses

Inclusion d'une variable non pertinente

On suppose le vrai modèle suivant:

$$Y_t = \beta_1 X_{1t} + u_t$$

▶ Cependant, vous avez effectuer l'estimation d'un modèle en ajoutant la variable indépendante X₂, qui est non pertinente au modèle..

$$Y_t = \beta_1 X_{1t} + \beta_2 X_{2t} + u_t$$

- Nous avons donc les régresseurs X_1 et X_2 dans notre modèle.
- On peut représenter les deux régresseurs dans la matrice X

$$X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$$

Inclusion d'une variable non pertinente

- Nous avons donc les régresseurs X_1 et X_2 dans notre modèle.
- On peut représenter les deux régresseurs dans la matrice X

$$X = \begin{pmatrix} X_1 & X_2 \end{pmatrix}$$

Sachant que dans le vrai modèle nous avons uniquement 1 comme régresseur, on peut écrire le régresseur du vrai modèle comme suit

$$X \times \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} X_1 & X_2 \end{pmatrix} \times \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Inclusion d'une variable non pertinente

Maintenant, nous allons substituer Y dans l'équation de l'estimateur $\hat{\beta}$, par le vrai modèle.

$$\hat{\beta} = (X'X)^{-1}X'Y$$

$$= (X'X)^{-1}X'(\beta_1X_1 + u)$$

$$= (X'X)^{-1}X'(\beta_1X \times \begin{pmatrix} 1\\0 \end{pmatrix} + u)$$

$$= (X'X)^{-1}X'\beta_1X \times \begin{pmatrix} 1\\0 \end{pmatrix} + (X'X)^{-1}X'u$$

$$= \beta_1 \times \begin{pmatrix} 1\\0 \end{pmatrix} + (X'X)^{-1}X'u$$

Inclusion d'une variable non pertinente

 \blacktriangleright On applique l'espérance de chaque coté de l'équation de l'estimateur $\hat{\beta}$

$$E(\hat{\beta}) = \beta_1 \times \begin{pmatrix} 1 \\ 0 \end{pmatrix} + (X'X)^{-1}X'E(u)$$

Sachant
$$E(u) = 0$$

$$E(\hat{\beta}) = \beta_1 \times \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \beta_1 \\ 0 \end{pmatrix} = \beta_1$$

Inclusion d'une variable non pertinente

- L'estimateur de $\hat{\beta}$ restera un estimateur sans biais.
- Pour cette raison, la littérature a souvent suggéré d'inclure plus de variables dans le doute pour ne pas en omettre.
- ► Il n'est donc pas recommandé d'ajouter des variables sans avoir un indice économique sérieux qu'elles doivent être incluses dans le modèle.

Problèmes de spécification

Erreurs non-sphériques

Les Moindres carrés généralisés

- Le modèle linéaire comporte des hypothèses très strictes sur la matrice de variance covariance des erreurs du modèle.
- Celle-ci est diagonale et de forme

$$E(uu') = V = \sigma^2 I_t$$

- Cela implique que les erreurs du modèle sont dites homoscédastiques, c'est-à-dire que sa variance est constante dans le temps, ne dépend pas de variables exogènes et n'est pas autocorrélée.
- C'est une hypothèse distributionnelle très forte surtout en coupe transversale.
- Raisons pour rencontrer des erreurs non-sphériques sont nombreuses:
 - Meilleure collection des données dans le temps (l'erreur devrait donc diminuer)
 - Présence d'observations aberrantes ou d'outliers
 - Mauvaise spécification du modèle

Estimateurs pour des formes de matrices variance covariance des erreurs plus générales:

► Soit le modèle suivant :

$$Y = X\beta + u$$

Avec

$$E(uu') = V = \sigma^2 \Omega$$

Où Ω est une matrice symétrique et inversible, mais n'est pas égale à la matrice d'identité.

Matrice Ω

- Cette formulation permet l'hétéroscédasticité des erreurs de plusieurs formes.
 - Hétéroscédasticité groupée de différentes formes.
 - Corrélation sérielle des erreurs.
 - ▶ Variance qui varie en fonction de variables exogènes.
 - Effets arch.

Implication si $\Omega \neq I$

- Vérifions si l'estimateur des OLS reste sans biais et convergent lorsque la variance du terme d'erreur n'est plus homoscédastique.
- Biais de l'estimateur OLS si l'hypothèse que Ω = I n'est pas respecté.

$$\hat{\beta}_{OLS} = (X'X)^{-1}X'Y$$

$$= (X'X)^{-1}X'[X\beta + u]$$

$$= (X'X)^{-1}X'X\beta + (X'X)^{-1}X'u$$

$$= \beta + (X'X)^{-1}X'u$$

Implication si $\Omega \neq I$

$$E(\hat{\beta}_{OLS}) = \beta + (X'X)^{-1}X'E(u)$$

= \beta

- On voit que comme la matrice de variance covariance des erreurs n'intervient pas dans le calcul de l'espérance de l'estimateur OLS.
- L'estimateur des OLS est toujours sans biais.

Implication si $\Omega \neq I$

Variance de l'estimateur OLS.

$$V(\hat{\beta}) = E[(\hat{\beta} - \beta)(\hat{\beta} - \beta)']$$

$$= E[(X'X)^{-1}X'uu'X(X'X)^{-1}]$$

$$= (X'X)^{-1}X'E(uu')X(X'X)^{-1}$$

$$= \sigma^{2}(X'X)^{-1}X'\Omega X(X'X)^{-1}$$

- Cet estimateur est problématique, car on ne peut pas le comparer à l'estimateur des OLS.
 - On ne peut pas dire s'il est plus grand, plus petit
- On ne peut donc pas appliquer la preuve du théorème de Gauss-Marcov ni regarder la borne de Cramer-Rao.

Problèmes de spécification

Erreurs non-sphériques

Les Moindres carrés généralisés

- Transformation du modèle contenant des erreurs sphériques, pour le rendre optimal et compatible avec les hypothèses des MCO.
- Pour tous Ω inversible, il existe une matrice P tel que

$$P'P = PP' = \Omega$$

Si on inverse les deux cotés de la denière équation

$$\Omega^{-1} = [PP']^{-1} = [P']^{-1}P^{-1}$$

où P n'est pas aléatoire

Modèle transformé:

$$P^{-1}Y = P^{-1}X\beta + P^{-1}u$$

Variance des erreurs:

$$E[(P^{-1}u)(P^{-1}u)'] = E(P^{-1}uu'P^{-1'})$$

$$= P^{-1}E(uu')P^{-1}$$

$$= P^{-1}\sigma^{2}\Omega P^{-1'}$$

$$= \sigma^{2}P^{-1}\Omega P^{-1'}$$

$$= \sigma^{2}P^{-1}PP'P^{-1'}$$

$$= \sigma^{2}I$$

Donc, l'estimateur OLS appliqué au modèle transformé sera optimal!

Modèle transformé:

Estimateur GLS

$$\hat{\beta}_{GLS} = [(P^{-1}X)'(P^{-1}X]^{-1}(P^{-1}X)'(P^{-1}Y)$$

$$= [X'P^{-1'}P^{-1}X]^{-1}X'P^{-1'}P^{-1}Y$$

$$= [X'\Omega^{-1}X]^{-1}X'\Omega^{-1}Y$$

Modèle transformé:

Estimateur FGLS

Si Ω (ou P) n'est pas connu, on le remplace par un estimé convergent $\hat{\Omega}(\hat{P})$.

$$\hat{\beta}_{FGLS} = [(\hat{P}^{-1}X)'(\hat{P}^{-1}X]^{-1}(\hat{P}^{-1}X)'(\hat{P}^{-1}Y)$$

$$= [X'\hat{\Omega}^{-1}X]^{-1}X'\hat{\Omega}^{-1}Y$$

$$= PLIM\hat{\beta}_{FGLS} = \beta$$

- ightharpoonup Ce résultat demande que $\hat{\Omega}$ soit convergent.
- Cet estimateur n'est pas optimal au sensde Cramer-Rao, il est optimal asymptotiquement.

Modèle transformé:

Estimateur convergent

- Un estimateur est convergent (consistent en anglais) si lorsque la taille de l'échantillon augmente vers l'infini, l'estimateur se concentre (converge) sur la vraie valeur du paramètre.
- Les conditions suffisantes pour la convergence en probabilité sont :

$$\lim_{T\to\infty} E(\hat{\beta}_T) = \beta$$

$$\lim_{T\to\infty} Var(\hat{\beta}_T=0$$

▶ La convergence est une propriété qui fait intervenir la loi des grands nombres et le théorème de limite centrale qui sont des résultats statistiques asymptotiques.

Modèle transformé:

Espérance estimateur GLS

Si Ω est connu et non estimé.

$$\begin{split} \hat{\beta}_{GLS} &= [X'\Omega^{-1}X]^{-1}X'\Omega^{-1}Y \\ &= [X'\Omega^{-1}X]^{-1}X'\Omega^{-1}[X\beta + u] \\ &= [X'\Omega^{-1}X]^{-1}X'\Omega^{-1}X\beta + [X'\Omega^{-1}X]^{-1}X'\Omega^{-1}u \\ &= \beta + [X'\Omega^{-1}X]^{-1}X'\Omega^{-1}u \end{split}$$

En espérance:

$$E(\hat{\beta}_{GLS}) = \beta + [X'\Omega^{-1}X]^{-1}X'\Omega^{-1}E(u)$$

= \beta

Modèle transformé:

Variance estimateur GLS

Si Ω est connu et non estimé.

$$V(\hat{\beta}_{GLS}) = E[(\hat{\beta} - \beta)(\hat{\beta} - \beta)']$$

$$= E[(X'\Omega^{-1}X)^{-1}X'\Omega^{-1}uu'\Omega^{-1}X(X'\Omega^{-1}X)^{-1}]$$

$$= (X'\Omega^{-1}X)^{-1}X'\Omega^{-1}E(uu')\Omega^{-1}X(X'\Omega^{-1}X)^{-1}$$

$$= \sigma^{2}(X'\Omega^{-1}X)^{-1}X'\Omega^{-1}\Omega\Omega^{-1}X(X'\Omega^{-1}X)^{-1}$$

$$= \sigma^{2}(X\Omega^{-1}X)^{-1}$$

Variances des différents estimateurs

La variance des OLS sur le modèle standard sans hétéroscédasticité :

$$V(\hat{\beta}) = \sigma^2 (X'X)^{-1}$$

La variance des OLS avec hétéroscédasticité sur le modèle non transformé :

$$V(\hat{\beta}_{OLS})_{HE} = \sigma^2 (X'X)^{-1} X' \Omega X (X'X)^{-1}$$

La variance du modèle GLS transformé par la matrice P:

$$V(\hat{\beta}_{GSL}) = \sigma^2 (X'\Omega^{-1}X)^{-1}$$

Variances des différents estimateurs

- Les éléments sur la diagonale de $V(\hat{\beta}_{OLS})_{HE}$: sont plus grand que ceux de $V(\hat{\beta}_{GSL})$
- Ce n'est pas le même modèle qui est estimé, de même que les coefficients associés sont différents.
- Il n'est donc pas approprié de comparer les deux séries de résultats entre eux.
- Lorsqu'il y a hétéroscédasticité la variance des OLS standards $V(\hat{\beta}) = \sigma^2 (X'X)^{-1}$ est **FAUSSE** et elle ne peut pas être comparée aux deux autres.
- ► On ne sait pas si elle est plus petite ou plus grande, elle est simplement fausse.

Si on connait Ω

Il est préférable de prendre lestimateur GLS.

Si on ne connait pas Ω

- Il est préférable de prendre lestimateur GLS et d'estimer Ω.
- ► Le résultat de l'estimateur FGLS tient, mais en limite seulement.