Aufgabe P 1. Modulare Arithmetik

Wir betrachten ganzzahlige Division durch 13.

(a) Bestimmen Sie $\ 42 \mod 13 \ \text{ sowie} \ 18 \mod 13$. Wählen Sie hierzu jeweils die Darstellu

$$x \ = \ a \cdot 13 \ + \ r \quad \text{mit} \quad 0 \le r < 13.$$

(b) Listen Sie einige negative und positive Elemente der Restklassen $[42]_{\equiv}$ und $[18]_{\equiv}$ auf, darunter

- $\text{(c) Die Zahl } 16 \hspace{0.2cm} \text{liegt in der Restklasse} \hspace{0.2cm} [3]_{\stackrel{\square}{=}_{0}}, \hspace{0.2cm} \text{die Zahl } 18 \hspace{0.2cm} \text{liegt in der Restklasse} \hspace{0.2cm} [5]_{\stackrel{\square}{=}_{0}}. \hspace{0.2cm} \text{Berechnen}$ Sie $16\cdot 18$ und überzeugen Sie sich davon, dass $(16\cdot 18) \mod 13 = 2$ gilt.
- (d) Verfizieren Sie, dass $225 \equiv 4$ sowie $225 \equiv 264$ gilt.
- (e) Bestimmen Sie (42 · 18)2 mod 13.

e)
$$(42.18)$$
 mod $13 = ((42.18) (42.18))$ mod $13 = ((3.5) (3.5))$ mod $13 = (2.2)$ mod $13 = 4$

Aufgabe P 2. Eulersche φ-Funktion

- (a) Ermitteln Sie die Menge E(30) derjenigen ganzen Zahlen x im Bereich $\{1,2,3,\ldots,29,30\}$ die zu 30 teilerfremd sind (für die also $\mbox{ggT}(x,30) = 1$ gilt), sowie deren Elementeanzahl |E(30)| "von Hand".
- (b) Lesen Sie den folgenden, in der Vorlesung behandelten Satz:

Wenn $p,\ q$ und r drei (paarweise) voneinander verschiedene Primzahlen sind, so gilt

$$\varphi(p \cdot q) = (p-1) \cdot (q-1)$$

 $\varphi(p \cdot q \cdot r) = (p-1) \cdot (q-1) \cdot (r-1).$

(c) Verwenden Sie die jeweils einschlägige Formel zur Berechnung der folgende Werte:

(i)
$$\varphi(30)$$
 (ii) $\varphi(9)$

(30) (ii)
$$\varphi(91)$$
 (iii) $\varphi(100)$

$$E(30) = \{1,7,11,13,17,19,23,29\}$$

 $(E(30)) = \{(30) = 8\}$

c)
$$\mathcal{G}(30) = \mathcal{G}(2 \cdot 3 \cdot 5) = (2 - 1)(3 - 1)(5 - 1)$$

$$f(91) = f(7.13) = (7-1)(13-1)$$

$$= (3.1) = (7-1)(13-1)$$

Pz

(a) Berechnen Sie $87^{27} \mod 103$. Hinweis: Sie können z.B. ausnutzen, dass $87 \equiv -16$ ist.

Wir 5 Nrieben 27 als Summe von Derlor

Lookup-Tabelle 2-cr Potensen

$$87 = (97^2)^2 = 50^2 = 28$$

$$87^8 = (87^4)^2 = 28 = 63$$

$$37^{16} = (37^{8})^{2} = 63^{2} = 55$$

(b) Berechnen Sie $87^{43} \mod 103$.

$$87^{32} = (87^{10})^2 = 55^2 = 38$$