Laboratorium 8 Rozwiązywanie równań nieliniowych

Mateusz Król

07/05/2024 r.

Zadanie 1.

Dla poniższych funkcji i punktów początkowych metoda Newton'a zawodzi. Wyjaśnij dlaczego. Następnie znajdź pierwiastki.

$$f_1(x) = x^3 - 5x, \ x_0 = 1$$

$$f_2(x) = x^3 - 3x + 1, \ x_0 = 1$$

$$f_3(x) = 2 - x^5, \ x_0 = 0.01$$

$$f_4(x) = x^4 - 4.29x^2 - 5.29, \ x_0 = 0.8$$

Wykorzystałem własną funkcję newton implementującą schemat iteracyjny. Dla funkcji f_1 metoda Newton'a nie działa - wartości oscylują w cyklu między wartościami 1 i -1. W celu zwrócenia prawdziwego pierwiastka, możnaby zmienić wartość początkową na inną (np. 2).

Dla funkcji f_2 odpowiednim x_0 byłoby 1.5.

Pochodna funkcji dla $x_0=1$ przyjmuje wartość 0, przez co metoda Newton'a nie ma w tym przypadku zastosowania.

Dla funkcji f_3 lepszym wyborem x_0 byłoby 1.1.

Dla $x_0 = 0.1$ wartość pochodnej jest zbyt blisko zera.

Dla funkcji f_4 wykorzystana implementacja metody Newton'a zwróciła prawdziwą wartość pierwiastka ≈ -2.29 .

Zadanie 2.

Dane jest równanie:

$$f(x) = x^2 - 3x + 2 = 0$$

Każda z następujących funkcji definiuje równoważny schemat iteracyjny:

$$g_1(x) = \frac{(x^2 + 2)}{3}$$
$$g_2(x) = \sqrt{3x - 2}$$
$$g_3(x) = 3 - \frac{2}{x}$$
$$g_4(x) = \frac{(x^2 - 2)}{2x - 3}.$$

Funkcje pochodne funkcji $g_i(x)$:

$$g_1(x) = \frac{2x}{3}$$

$$g_2(x) = \frac{3}{2 \cdot \sqrt{3x - 2}}$$

$$g_3(x) = \frac{2}{x^2}$$

$$g_4(x) = \frac{2(x^2 - 3x + 2)}{(2x - 3)^2}$$

Tabela z wartościami rzędów zbieżności schematów iteracyjnych odpowiadających funkcjom $g_i\colon$

Function	Order of convergence
g_1	≈ 1.33
g_2	0.75
g_3	0.5
g_4	0

Wykres przedstawiający porównanie wartości błędów względnych w zależności od liczby iteracji:

Wartości bezwględne pochodnych funkcji: g_2 , g_3 , g_4 w punkcie $x_0=2$, wynoszą mniej od 1, z czego powinna wynikać zbieżność odpowiadających im schematów iteracyjnych, co pokrywa się z danymi odczytanymi z wykresu.

Tabela przedstawiająca wartości rzędów zbieżności poszczególnych schematóce iteracyjnych:

Function	Rate of convergence
g_1	≈ 0.71
g_2	≈ 1
g_3	≈ 1
g_4	≈ 2

Wartość pochodnej g_4 w punkcie x_0 wynosi 0, co świadczy o conajmniej kwadratowej zbieżności schematu iteracyjnego, co zgadza się z obliczoną wartością rzędu zbieżności ≈ 1.9997 .

Zadanie 3.

Napisz schemat iteracji wg metody Newtona dla każdego z następujących równań nieliniowych:

$$x^{3} - 2x - 5 = 0$$
$$e^{-x} = x$$
$$x \cdot \sin(x) = 1$$

Metoda *Newton*'a posiada kwadratowy rząd zbieżności, więc za każdą iteracją, wartość błędu dwukrotnie maleje, a co za tym idzie, dokładność na kolejnych bitach zwiększa się dwukrotnie.

Zaczynając od dokładności na 4 bitach, w celu uzyskania dokładności 24-bitową potrzeba wykonać 3 iteracje (4 \cdot 2³ = 32 > 24), a 53 bitach - 4 iteracje (4 \cdot 2⁴ = 64 > 53).

Zadanie 4.

Napisz schemat iteracji wg metody Newtona dla następującego układu równań nieliniowych:

$$x_1^2 + x_2^2 = 1$$
$$x_1^2 - x_2 = 0$$

Wykres przedstawiający wartości błędu względnego obliczego rozwiązania układu równań, w zależności od liczby iteracji:

