EPC2234 — Automotive 160 V Enhancement Mode Power Transistor

 V_{DS} , 160 V $R_{DS(on)} \,, \, 8 \, m\Omega$ $I_D \,, \, 48 \, A$

Revised April 23, 2024

Gallium Nitride's exceptionally high electron mobility and low temperature coefficient allows very low $R_{DS(on)}$, while its lateral device structure and majority carrier diode provide exceptionally low Q_G and zero Q_{RR} . The end result is a device that can handle tasks where very high switching frequency, and low on-time are beneficial as well as those where on-state losses dominate.

Application Notes:

- Easy-to-use and reliable gate, Gate Drive ON = 5 V typical, OFF = 0 V (negative voltage not needed)
- Top of FET is electrically connected to source

Recommended dead time (half-bridge circuit) ≤ 30 ns for best efficiency

Questions: Ask a GaN Expert

Maximum Ratings					
	PARAMETER VALUE UNIT				
$V_{\rm DS}$	Drain-to-Source Voltage (Continuous)	160	V		
ı	Continuous (T _A = 25°C)	48	Α		
I_{D}	Pulsed (25°C, T _{PULSE} = 300 μs)	213			
V	Gate-to-Source Voltage	5.5	V		
V_{GS}	Gate-to-Source Voltage	-4	V		
T _J	Operating Temperature	-40 to 150	°C		
T_{STG}	Storage Temperature	-40 to 150			

Thermal Characteristics					
	PARAMETER TY				
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	0.3			
$R_{\theta JB}$	Thermal Resistance, Junction-to-Board	4	°C/W		
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (Note 1)	45			

Note 2: $R_{\theta JA}$ is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board. See https://epc-co.com/epc/documents/product-training/Appnote_Thermal_Performance_of_eGaN_FETs.pdf for details

Static Characteristics (T _J = 25°C unless otherwise stated)						
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
BV _{DSS}	Drain-to-Source Voltage	$V_{GS} = 0 \text{ V, I}_{D} = 0.6 \text{ mA}$	160			V
I _{DSS}	Drain-Source Leakage	$V_{DS} = 160 \text{ V}, V_{GS} = 0 \text{ V}$		0.03	0.4	mA
	Gate-to-Source Forward Leakage	$V_{GS} = 5 V$		0.002	4	mA
I _{GSS}	Gate-to-Source Forward Leakage#	$V_{GS} = 5 \text{ V}, T_J = 125^{\circ}\text{C}$		0.03	9	mA
	Gate-to-Source Reverse Leakage	$V_{GS} = -4 V$		0.03	0.4	mA
$V_{GS(TH)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 7 \text{ mA}$	0.8	1.1	2.5	V
R _{DS(on)}	Drain-Source On Resistance	$V_{GS} = 5 \text{ V}, I_{D} = 20 \text{ A}$		6	8	mΩ
V _{SD}	Source-Drain Forward Voltage#	$I_S = 0.5 \text{ A}, V_{GS} = 0 \text{ V}$		1.7		V

Defined by design. Not subject to production test.

Die Size: 4.6 x 2.6 mm

EPC2234 eGaN® FETs are supplied only in passivated die form with solder bumps.

Applications

- High frequency DC/DC conversion
- · Wireless power
- · Class-D audio
- Low inductance motor drives
- AEC-0101 (Note 1)

Note 1: Waiving $5x I_{GSS}$ shift requirement

Scan QR code or click link below for more information including reliability reports, device models, demo boards!

https://l.ead.me/EPC2234

Dynamic Characteristics * $(T_j = 25^{\circ}C)$ unless otherwise stated)						
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
C _{ISS}	Input Capacitance			1155	1386	
C _{RSS}	Reverse Transfer Capacitance	$V_{DS} = 100 \text{ V}, V_{GS} = 0 \text{ V}$		3.1		
C _{OSS}	Output Capacitance			641	962	pF
C _{OSS(ER)}	Effective Output Capacitance, Energy Related (Note 3)	V 0+- 100V/V 0V		755		
C _{OSS(TR)}	Effective Output Capacitance, Time Related (Note 4)	$V_{DS} = 0$ to 100 V, $V_{GS} = 0$ V		969		
R_G	Gate Resistance			0.5		Ω
Q_{G}	Total Gate Charge	$V_{DS} = 100 \text{ V}, V_{GS} = 5 \text{ V}, I_{D} = 20 \text{ A}$		11.1	13.8	
Q _{GS}	Gate to Source Charge			3.8		
Q_{GD}	Gate to Drain Charge	$V_{DS} = 100 \text{ V}, I_{D} = 20 \text{ A}$		2.0]
Q _{G(TH)}	Gate Charge at Threshold			2.1		nC
Q _{OSS}	Output Charge	$V_{DS} = 100 \text{ V}, V_{GS} = 0 \text{ V}$		96	144]
Q _{RR}	Source-Drain Recovery Charge			0		

[#] Defined by design. Not subject to production test.

Note 4: $C_{OSS(TR)}$ is a fixed capacitance that gives the same charging time as C_{OSS} while V_{DS} is rising from 0 to 100 V.

Figure 3: Typical $R_{DS(on)}\, vs.\, V_{GS}$ for Various Drain Currents

Figure 2: Typical Transfer Characteristics

Figure 4: Typical $R_{DS(on)}$ vs. V_{GS} for Various Temps.

All measurements were done with substrate connected to source.

Note 3: $C_{OSS(ER)}$ is a fixed capacitance that gives the same stored energy as C_{OSS} while V_{DS} is rising from 0 to 100 V.

Figure 5a: Typical Capacitance (Linear Scale)

Figure 5b: Typical Capacitance (Log Scale)

Figure 6: Typical Output Charge and Coss Stored Energy

Figure 7: Typical Gate Charge

Figure 8: Typical Reverse Drain-Source Characteristics

Figure 9: Typical Normalized On-State Resistance vs. Temp.

Note: Negative gate drive voltage increases the reverse drain-source voltage. EPC recommends 0 V for OFF.

Figure 10: Typical Normalized Threshold Voltage vs. Temp.

Figure 11: Safe Operating Area

Figure 12: Typical Transient Thermal Response Curves

t₁, Rectangular Pulse Duration, seconds

t₁, Rectangular Pulse Duration, seconds

TAPE AND REEL CONFIGURATION

	Dimension (mm)		
EPC2234 (Note 1)	Target	MIN	MAX
a	12.00	11.90	12.30
b	1.75	1.65	1.85
c (Note 2)	5.50	5.45	5.55
d	4.00	3.90	4.10
е	8.00	7.90	8.10
f (Note 2)	2.00	1.95	2.05
q	1.50	1.50	1.60

Die is placed into pocket solder bump side down (face side down)

Note 1: MSL 1 (moisture sensitivity level 1) classified according to IPC/ JEDEC industry standard.

Note 2: Pocket position is relative to the sprocket hole measured as true position of the pocket, not the pocket hole.

DIE MARKINGS

Dona		Laser Markings	
Part Number	Part # Marking Line 1	Lot_Date Code Marking Line 2	Lot_Date Code Marking Line 3
EPC2234	2234	YYYY	ZZZZ

DIM	Micrometers			
DIM	MIN	Nominal	MAX	
Α	4570	4600	4630	
В	2570	2600	2630	
C	1000	1000	1000	
d	500	500	500	
e	285	300	315	
f	332	369	406	

Pads 1 and 2 are Gate;

Pads 5, 6, 7, 8, 9, 15, 16, 17, 18, 19 are Drain;

Pads 3, 4, 10, 11, 13, 14, 20, 21, 22, 23, 24 are Source;

Pad 12 is Substrate*

*Substrate pin should be connected to Source

Seating plane

280+/-28

RECOMMENDED LAND PATTERN

(units in μ m)

Land pattern is solder mask defined.

Pads 1 and 2 are Gate;

Pads 5, 6, 7, 8, 9, 15, 16, 17, 18, 19 are Drain;

Pads 3, 4, 10, 11, 13, 14, 20, 21, 22, 23, 24 are Source;

Pad 12 is Substrate*

*Substrate pin should be connected to Source

RECOMMENDED STENCIL DRAWING

(units in μ m)

Option 1 : Intended for use with SAC305 Type 4 solder.

Recommended stencil should be 4 mil (100 μ m) thick, must be laser cut, openings per drawing.

RECOMMENDED STENCIL DRAWING

(units in µm)

Option 2: Intended for use with SAC305 Type 3 solder.

Recommended stencil should be 4 mil (100 μ m) thick, must be laser cut, openings per drawing.

Additional assembly resources available at https://epc-co.com/epc/design-support/assemblybasics

Efficient Power Conversion Corporation (EPC) reserves the right to make changes without further notice to any products herein to improve reliability, function or design. EPC does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

eGaN $^{\circ}$ is a registered trademark of Efficient Power Conversion Corporation. EPC Patent Listing: https://epc-co.com/epc/about-epc/patents

Information subject to change without notice.