Namma Kalvi www.nammakalvi.in

(ACTC) ADVANCED CHEMISTRY TUITION CENTRE, 41/1 PWD ROAD, NAGERCOIL, 9952340892.

Unit 1 Basic Concepts of Chemistry and Chemical Calculations

Matter is defined as anything that has mass and occupies space. All matter is composed of atoms.

Physical Classification of Matter:

Matter can be classified as solids, liquids and gases based on their physical state.

Page | 1

Chemical Classification:

Matter can be classified into mixtures and pure substances based on chemical compositions.

Mixtures classified as homogeneous or heterogeneous mixtures based on their physical appearance.

An **element** consists of only one type of atom.

Monatomic unit – Gold (Au), Copper (Cu) & Inert gases

Polyatomic unit - Hydrogen (H_2), Phosphorous (P_4) and Sulphur (S_8)

Compounds are made up of molecules which contain two or more atoms of different elements.

Example : Carbon dioxide (CO₂), Glucose (C₆H₁₂O₆), Hydrogen Sulphide (H₂S), Sodium Chloride (NaCl)

Average atomic mass is defined as the average of the atomic masses of all atoms in their naturally occurring isotopes.

Example:

₁₇Cl³⁵ and ₁₇Cl³⁷ in the ratio 77 : 23, the average relative atomic mass of chlorine is

$$= (35 \times 77) + (37 \times 23)$$

$$100$$

= 35.46 u

Empirical formula

Empirical formula of a compound is the formula written with the **simplest ratio** of the number of different atoms present in one molecule of the compound as subscript to the atomic symbol.

Molecular formula

Molecular formula of a compound is the formula written with the **actual number** of different atoms present in one molecule as a subscript to the atomic symbol.

Example:

The molecular formula of acetic acid (CH₃COOH) is C₂H₄O₂

The ratio of C: H: O is 1:2:1 and hence the empirical formula is CH_2O .

Oxidation Number: (oxidation state)

It is defined as the imaginary charge left on the atom when all other atoms of the compound have been removed in their usual oxidation states that are assigned according to set of rules.

General rules of oxidation Number:

1) The oxidation state of a free element (i.e. in its uncombined state) is zero.

Example : each atom in H_2 , Cl_2 , Na, S_8 have the oxidation number of zero.

2) For a monatomic ion, the oxidation state is equal to the net charge on the ion.

E.MUTHUSAMY MSc._(Che), MSc._(Psy), MEd., MPhil., MA_(Tam), MA_(Eng), MA_(Soc)., MA_(P.Admin)., BLISc., DMLT, PGDCA Whatsapp: 9940847892 +1 CHEMISTRY VOL UME 1 MATERIAL email: e.muthusamy@gmail.com

Dedication! Determination!! Distinction!!!

(ACTC) ADVANCED CHEMISTRY TUITION CENTRE, 41/1 PWD ROAD, NAGERCOIL, 9952340892.

Example: The oxidation number of sodium in Na⁺ is +1.

The oxidation number of chlorine in $C1^{-}$ is -1.

3) The algebraic sum of oxidation states of all atoms in a molecule is equal to zero, while in ions, it is equal to the net charge on the ion.

Example:

In H_2SO_4 , = 0. In SO_4^{2-} =+ 4

4) Hydrogen has an oxidation number of +1 in all its compounds except in metal hydrides where it has -1 value.

Example:

Oxidation number of hydrogen in hydrogen chloride (HCl) is + 1.

Oxidation number of hydrogen in sodium hydride (Na \mathbf{H}) is -1.

- 5) **Fluorine** has an oxidation state of -1 in all its compounds.
- 6) The oxidation state of **oxygen** in most compounds is **-2**. Exceptions are peroxides, super oxides and compounds with fluorine.

Example: Oxidation number of oxygen, i) in water (H_2O) is -2.

- ii) in **hydrogen peroxide** (H_2O_2) is -1.
- iii) in super oxides such as KO_2 is -1/2
- iv) in **oxygen difluoride** (OF₂) is + 2.
- 7) Alkali metals have an oxidation state of + 1 and alkaline earth metals have an oxidation state of + 2 in all their compounds.

Limiting reagent

when a reaction is carried out using non-stoichiometric quantities of the reactants, the product yield will be determined by the reactant that is completely consumed. It limits the further reaction from taking place and is called as the limiting reagent.

(Limiting Reagent- The reactant which gets consumed first or limits the amount of product formed is known as limiting reagent)

The other reagents which are in excess are called the excess reagents.

Example: $S + 3F_2 \rightarrow SF_6$

Sulphur is the limiting reagent and fluorine is the excess reagent.

A reaction in which oxidation number of the element **increases** is called oxidation.

A reaction in which oxidation number of the element **decreases** is called reduction.

Redox reactions in which

- two substances combine to form compound(s) are called combination reaction.
- a compound breaks down into two (or) more components is called decomposition reaction
- a compound is replaced by an ion (or atom) of another element are called displacement reactions
- the same compound can undergo both oxidation and reduction and the oxidation state of one and the same element is both increased and decreased called disproportionate reactions.
- competition for electrons occurs between various metals is called competitive electron transfer reaction.

E.MUTHUSAMY MSc._(Che), MSc._(Psy), MEd., MPhil., MA_(Tam), MA_(Eng), MA_(Soc)., MA_{(P.Admin)*}, BLISc., DMLT, PGDCA Whatsapp: 9940847892 +1 CHEMISTRY VOL UME 1 MATERIAL email: e.muthusamy@gmail.com

Page | 2

The equation of redox reaction is balanced either by oxidation number method or by ionelectron method.

I. Choose the best answer.

1. 40 ml of methane is completely burnt using 80 ml of oxygen at room temperature. The volume of gas left after cooling to room temperature is Page | 3

(a) 40 ml CO₂ gas

(b) 40 ml CO₂ gas and 80 ml H₂O gas

(c) 60 ml CO₂ gas and 60 ml H₂O gas

(d) 120 ml CO₂ gas

2. An element X has the following isotopic composition $^{200}X = 90 \%$, $^{199}X = 8 \%$ and $^{202}X = 2$ %. The weighted average atomic mass of the element X is closest to

(a) 201 u

(b) 202 u

(c) 199 u

3. Assertion: Two mole of glucose contains 12.044×10^{23} molecules of glucose Reason: Total number of entities present in one mole of any substance is equal to 6.02×10^{22}

(a) both assertion and reason are true and the reason is the correct explanation of assertion

(b) both assertion and reason are true but reason is not the correct explanation of assertion

(c) Assertion is true but reason is false (d) both assertion and reason are false

4. Carbon forms two oxides, namely carbon monoxide and carbon dioxide. The equivalent mass of which element remains constant?

(a) Carbon (b) oxygen (c) both carbon and oxygen (d) neither carbon nor oxygen

5. The equivalent mass of a trivalent metal element is 9 g eq⁻¹ the molar mass of its anhydrous (c) 270 g oxide is (a) 102 g (b) 27 g (d) 78 g

6. The number of water molecules in a drop of water weighing 0.018 g is

(a) 6.022×10^{26}

(b) 6.022×10^{23}

(c) 6.022×10^{20}

(d) 9.9×10^{22}

7. 1 g of an impure sample of magnesium carbonate (containing no thermally decomposable impurities) on complete thermal decomposition gave 0.44 g of carbon dioxide gas. The percentage of impurity in the sample is

(a) 0 %

(b) 4.4 %

(c) 16 %

(d) 8.4 %

8. When 6.3 g of sodium bicarbonate is added to 30 g of acetic acid solution, the residual solution is found to weigh 33 g. The number of moles of carbon dioxide released in the (b) 0.75reaction is (a) 3 (c) 0.075

9. When 22.4 litres of H₂ (g) is mixed with 11.2 litres of Cl₂ (g), each at 273 K at 1 atm the moles of HCl (g), formed is equal to

(a) 2 moles of HCl(g) (b) 0.5 moles of HCl(g) (c) 1.5 moles of HCl(g)(d) 1 moles of HCl(g)

10. How concentrated sulphuric acid is a moderately strong oxidising agent. Which of the following reactions does not show oxidising behaviour?

(a) $Cu + 2H_2SO_4$ \rightarrow CuSO₄ + SO₂+2H₂O

(b) C+ $2H_2SO_4 \rightarrow CO_2 + 2SO_2 + 2H_2O$

(c) $BaCl_2 + H_2SO_4 \rightarrow BaSO_4 + 2HCl$

(d) none of the above

11. Choose the disproportionation reaction among the following redox reactions.

(a) $3Mg_{(s)} + N_{2(g)} \rightarrow Mg_3N_{2(s)}$ (b) $P_4(s) + 3NaOH + 3H_2O \rightarrow PH_{3(g)} + 3NaH_2PO_{2(aq)}$

(c) $Cl_{2(g)} + 2KI_{(ag)} \rightarrow 2KCl_{(ag)} + I_2$ (d) $Cr_2O_{3(s)} + 2Al_{(s)}$

 \rightarrow Al₂O_{3(s)} + 2Cr_(s)

E.MUTHUSAMY MSc.(Che), MSc.(Psy), MEd., MPhil., MA(Tam), MA(Eng), MA(Soc)., MA(P.Admin)., BLISc., DMLT, PGDCA Whatsapp: 9940847892 +1 CHEMISTRY VOL UME 1 MATERIAL email: e.muthusamy@gmail.com

Dedication!	Determina	ation!!		Distinction!!!
(ACTC) ADVANCED	CHEMISTRY TUITION	CENTRE, 41/1 PWD	ROAD, NAGERCOIL	, 9952340892.
12. The equivalent	mass of potassium pe	rmanganate in alka	aline medium is	
MnO_4 + 2H	$c_2O + 3e^- \rightarrow MnO_2 + 4$	4OH⁻		
(a) 31.6	(b) 52.7	(c) 79	(d) None of the	iese
13. Which one of th	ne following represent	ts 180g of water?		
(a) 5 Moles of water	er	(b) 90 moles of	of water	Page 4
(c) $\frac{6.022 \times 10^{23}}{180}$ molec	culesof water	(d) 6.022×10^2	²⁴ molecules of wat	er
14.7.5 g of a gas of	ecupies a volume of 5	5.6 litres at 0° C and	d 1 atm pressure. Th	ne gas is
(a) NO	(b) N_2O	(c) CO	$(d) CO_2$	2
15. Total number of	f electrons present in	1.7 g of ammonia i	is	
(a) 6.022×10^{23}	$(b) \frac{6.022 \times 10^{22}}{1.7}$	(c) $\frac{6.02}{}$	$\frac{22 \times 10^{24}}{1.7}$ (d) $\frac{6.02}{1.7}$	$\frac{2 \times 10^{23}}{1.7}$
16. The correct incr	reasing order of the or	xidation state of su	lphur in the anions	
SO_4^{2-} , SO_3^{2-} , $S_2O_4^{2-}$	2 , $S_2O_6^{2}$ is			*
(a) $SO_3^{2-} < SO_4^{2-} <$		(b) SO ₂	$_{4}^{2^{2}} < S_{2}O_{4}^{2^{2}} < S_{2}O_{6}^{2^{2}} < S_{2}O_{4}^{2^{2}} < SO_{4}^{2}$	$S SO_3^{2-}$
(c) $S_2O_4^{2-} < SO_3^{2-}$	$< S_2 O_6^{2-} < SO_4^{2-}$	(d) S2C	$O_6^{2-} < S_2 O_4^{2-} < SO_4^{2}$	SO_3^{2-}
	mass of ferrous oxala			
(a) $\frac{Molar\ mass\ of\ fea}{1}$	$\frac{rrous\ oxalate}{b}$ b) $\frac{Molar}{b}$	mass of ferrous oxa	$\frac{late}{\mathbf{c}}$ \mathbf{c}) $\frac{Molar\ mass\ of}{\mathbf{c}}$	ferrous oxalate
(d) none of these		2)	3
• /	mber were changed fr	rom 6.022×10^{23} to	6.022×10^{20} , this	would change
	mical species to each			
	nents to each other in		1	
	f mass in units of grai	-	of one mole of car	bon
	containers A and B c			
and 1 atm press				,
•	ecules in A and B are	e same		
	ecules in B is more th			
	een the number of n		number of molecul	es in B is 2:1
	ecules in B is three ti			
	ss of precipitate form	_		
	1.865 % potassium ch		,	
(a) 3.59 g	-	(c) 14 g	g (d) 28 g	т
	as that occupies a vol	` ′	` '	
	tm pressure) is 1.1g.		-	uno prossoro
(a) 66.25 g mol^{-1}	_		5 g mol ⁻¹ d) 662.	5 g mol ⁻¹
• •	e following contain sa		,	
(a) 7.5 g ethane	_	e (c) both (a) ar	•	
` '	following compound			
ethylene (C_2H_4)	• •	•	(c) benzene (d) etha	
	llowing is/are true wi	, and the second	` '	ne $m{4}_{ m age}$
		r		

email: e.muthusamy@gmail.com

- (a) relative atomic mass is 12 u (b) oxidation number of carbon is +4 in all its compounds.
- (c) 1 mole of carbon-12 contain 6.022×10^{22} carbon atoms.
- (d) all of these
- 25. Which one of the following is used as a standard for atomic mass.
- (a) $_{6}C^{12}$

- (b) ${}_{7}C^{12}$
- (c) ${}_{6}C^{13}$

(d) $_{6}C^{14}$

Answer the following

Page | 5

26.Define relative atomic mass

The relative atomic mass is defined as the ratio of the average atomic mass factor to the unified atomic mass unit.

Relative atomic mass $(A_r) = \frac{Average\ mass\ of\ the\ atom}{Unified\ atomic\ mass}$

27. What do you understand by the term mole.

One mole is the amount of substance of a system, which contains as many elementary particles as there are atoms in 12 g of carbon -12 isotope. The elementary particles can be molecules, atoms, ions, electrons or any other specified particles.

28. Define equivalent Mass

Equivalent mass of an element, compound or ion is the number of parts of mass of an element combines or displaces 1.008 g hydrogen or 8 g oxygen or 35.5g chlorine.

29. What do you understand by the term oxidation number.

When all other atoms of the compound have been removed in their usual oxidation states that are assigned according to set of rules.

30. Distinguish between oxidation and reduction

	Oxidation	Reduction
(i)	Addition of oxygen and removal of	Additional of hydrogen and removal of
	hydrogen	oxygen
(ii)	This process involves loss of electrons	This process involves gain electrons.
	$Fe^{2+} \rightarrow Fe^{3+} + e^{-}$	$Cu^{2+} + 2e - \rightarrow Cu$
(iii)	Oxidation number increases	Oxidation number decreases
(iv)	Addition of non-metal	Removal of non-metal
		$2HgCl2 + SnCl2 \rightarrow Hg2Cl2 + SnCl4$
(v)	Removal of metal	Addition of metal
	$2KI + H_2O_2 \rightarrow 2KOH + I_2$	$HgCl_2 + Hg \rightarrow Hg_2Cl_2$

(iii) boric acid [H₃BO₃] (iv) sulphuric acid [H₂SO₄]

31. Calculate the molar mass of the following compounds

(i) urea $[CO(NH_2)_2]$

(ii) acetone [CH₃COCH₃] (i) urea $[CO(NH_2)_2]$

 $C: 1 \times 12.01 = 12.01$

 $O: 1 \times 16 = 16.00$

 $N: 2 \times 14.01 = 28.02$

 $H: 4 \times 1.01 = 4.04$

60.07 g mol⁻¹

email: e.muthusamy@gmail.com

E.MUTHUSAMY MSc.(Che), MSc.(Psy), MEd., MPhil., MA(Tam), MA(Eng), MA(Soc)., MA(P.Admin)., BLISc., DMLT, PGDCA Whatsapp: 9940847892 +1 CHEMISTRY VOL UME 1 MATERIAL

(ii) acetane [CH₃COCH₃]

 $C: 3 \times 12.01 = 36.03$

 $H: 6 \times 1.01 = 6.06$

 $O: 1 \times 16 = 16.00$

58.09 g mol⁻¹

Page | 6

(iii) boric acid [H₃BO₃]

$$H: 3 \times 1.01 = 3.03$$

$$B: 1 \times 11 = 11.00$$

$$O: 3 \times 16 = 48.00$$

62.03 g mol⁻¹

(iv) sulphuric acid [H₂SO₄]

$$H: 2 \times 1.01 = 2.02$$

$$S: 1 \times 32.06 = 32.06$$

$$O: 4 \times 16 = 64.00$$

32. The density of carbon dioxide is equal to 1.965 kgm⁻³ at 273 K and 1atm pressure. Calculate the molar mass of CO₂

The density of CO_2 at 273K and 1 atm pressure = 1.965 kgm⁻³ At 273 K and 1 atm Given: pressure, 1 mole of CO₂ occupies a volume of 22.4L

Mass of 1 mole of
$$CO_2 = \frac{1.965 Kg}{1m^3} \times 22.4L = \frac{1.965 \times 10^3 g \times 22.4 \times 10^{-3} m^3}{1m^3}$$

Molar mass of $CO_2 = 44 \text{ gmol}^{-1}$

ANOTHER METHOD:

Molecular mass = Density x Molar mass

Molar volume of $CO_2 = 2.24 \times 10^{-2} \text{ m}^3$

Density of $CO_2 = 1.965 \text{kgm}^{-3}$

Molecular mass of
$$CO_2 = 1.965 \times 10^3 \text{gm}^{-3} \times 2.24 \times 10^{-2} \text{m}^3$$

$$=1.965 \times 10^{1} \times 2.24$$

$$=$$
 44g

33. Which contains the greatest number of moles of oxygen atoms (i) 1 mol of ethanol

(ii) 1 mol of formic acid (iii) 1 mol of H₂O

Compound	Given no. of moles	No. of oxygen atoms
Ethanol (C ₂ H ₅ OH)	1	$1 \times 6.022 \times 10^{23}$
Formic acid (HCOOH)	1	$2 \times 6.022 \times 10^{23}$
Water (H ₂ O)	1	$1 \times 6.022 \times 10^{23}$

34. Calculate the average atomic mass of naturally occurring magnesium using the following data

Isotope	Isotopic atomic mass	Abundance (%)
Mg^{24}	23.99	78.99

www.nammakalvi.in

Dedication! Distinction!!!

(ACTC) ADVANCED CHEMISTRY TUITION CENTRE, 41/1 PWD ROAD, NAGERCOIL, 9952340892.

Mg^{26}	24.99	10.00
Mg^{25}	25.98	11.01

Average atomic mass

$$=\frac{(78.99\times23.99)+(10\times24.99)+(11.01\times25.98)}{100}$$

$$=\frac{2430.9}{100}=24.31u.$$

35.In a reaction $x + y + z_2 \rightarrow xyz_2$ identify the Limiting reagent if any, in the following reaction mixtures

Q	Number o	of moles	of reactants	Number	of moles	of reactants	Limiting
	allowed to react			consumed during reaction			reagent
	X	Y	\mathbf{z}_2	X	y	\mathbf{z}_2	
(a	200 atoms	200atoms	50 molecules	50 atoms	50atoms	50 molecules	\mathbf{z}_2
b	1 mol	1mol	3 mol	1 mol	1 mol	1mol	x and y
(c	50atom	25atom	50 molecules	25atom	25atom	25 molecules	y
d	2.5 mol	5 mol	5 mol	2.5mol	2.5 mol	2.5 mol	X

- (a) 200 atoms of x + 200 atoms of y + 50 molecules of z_2
- (b) 1 mol of x + 1 mol of y + 3 mol of z_2
- (c) 50 atoms of x + 25 atoms of y + 50 molecules of z_2
- (d) 2.5 mol of x + 5 mol of y + 5 mol of z_2

Reaction : $x + y + z_2 \rightarrow xyz_2$

36. Mass of one atom of an element is 6.645×10^{-23} g. How many moles of element are there in 0. 320 kg.

Mass of one atom = 6.645×10^{-23} g Given:

∴ mass of 1 mole of atom =
$$6.645 \times 10^{-23}$$
 g × 6.022×10^{23}
= 40 g

 \therefore number of moles of element in 0.320 kg (number of moles = mass/atomic mass)

$$= \frac{1mole}{40g} \times 0.320 \text{kg}$$
$$= \frac{1mol \times 320g}{40g} = 8 \text{ mol}.$$

37. What is the difference between molecular mass and molar mass? Calculate the molecular mass and molar mass for carbon monoxide

	Molecular mass	Molar mass
	Molecular mass is defined as the ratio of the	Molar mass is defined as the mass of one
	mass of a molecule to the unified this is	mole of a substance.
	relative molecular mass atomic mass unit	
4	The relative molecular mass of any	The molar mass of a compound is equal to
	compound is calculated by adding the	the sum of the relative atomic masses of its
	relative atomic masses of its constituent	constituents
	atoms	

e | 8

(ACTC) ADVANCED CHEMISTRY TUITION CENTRE, 41/1 PWD ROAD, NAGERCOIL, 9952340892

Ι,	ACIC, ADVANCED CHEMISTRI TOTTION CENTRE,	41/1 PWD ROAD, NAGERCOIL, 33323400321
	3 Its unit is u or amu	Its unit is g mol ⁻¹
	4 Molecular mass of CO:	Molar mass of CO:
	$(1 \times \text{at.mass of C}) + (1 \times \text{at. Mass of O}) 1 \times$	1×12.01+ 1× 16
	$12.01 \text{ amu} + 1 \times 16 \text{ amu}$	$1 \times 12.01 + 1 \times 16$ = 28.01g mol ⁻¹
	= 28. 01 am	Pag

- 38. What is the empirical formula of the following?
- (i) Fructose (C₆H₁₂O₆) found in honey
- (ii) Caffeine (C₈H₁₀N₄O₂) a substance found in tea and coffee.

Compound	Molecular Formula	Empirical Formula
Fructose	$C_6H_{12}O_6$	CH ₂ O
Caffeine	$C_8H_{10}N_4O_2$	$C_4H_5N_2O$

39. The reaction between aluminium and ferric oxide can generate temperatures up to 3273 K and is used in welding metals. (Atomic mass of Al = 27u Atomic mass of O = 16u) $2Al + Fe_2O_3 \rightarrow Al_2O_3 + 2Fe$; If, in this process, 324 g of aluminium is allowed to react with 1.12 kg of ferric oxide. (i) Calculate the mass of Al_2O_3 formed. (ii) How much of the excess reagent is left at the end of the reaction?

Given: $2Al + Fe₂O₃ \rightarrow Al₂O₃ + 2Fe$

Given: 2111 + 1 e 2 o 3 - 7 f 1 2 o 3 + 2 i e	-			
	Reacta	nts	Products	
	Al	Fe ₂ O ₃	Al ₂ O ₃	Fe
Amount of reactant allowed to react	324 g	1.12 kg	-	-
Number of moles allowed to react	$ \frac{324}{27} \\ = 12 mol $	$\frac{1.12 \times 10^3}{160} = 7 \text{mol}$	-	-
Stoichiometric Co-efficient	2	1	1	2
Number of moles consumed during reaction	12 mol	6 mol	-	-
Number of moles of reactant unreacted and number of moles of product formed	-	1mol	6mol	12mol

Molar mass of Al₂O₃ formed

$$= 6 \text{ mol} \times 102 \text{ g mol}^{-1} \qquad \begin{bmatrix} Al_2 O_3 \\ (2 \times 27) + (3 \times 16) \\ 54 + 48 = 102 \end{bmatrix} = 612g$$

Excess reagent = Fe_2O_3

Amount of excess reagent left at the end of the reaction = $1 \text{mol} \times 160 \text{ g mol}^{-1}$

= 160 g
$$\begin{bmatrix} Fe_2O_3 \\ (2 \times 56) + (3 \times 16) \\ 112 + 48 = 160 \end{bmatrix}$$
 = 160 g

40. How many moles of ethane is required to produce 44 g of $CO_2(g)$ after combustion. Balanced equation for the combustion of ethane

E.MUTHUSAMY MSc._(Che), MSc._(Psy), MEd., MPhil., MA_(Tam), MA_(Eng), MA_(Soc), MA_(P.Admin), BLISc., DMLT, PGDCA Whatsapp: 9940847892 +1 CHEMISTRY VOL UME 1 MATERIAL email: e.muthusamy@gmail.com

$$C_2H_6 + 3\frac{1}{2}O_2 \rightarrow 2CO_2 + 3H_2O$$

 $\Rightarrow 2C_2H_6 + 7O_2 \rightarrow 4CO_2 + 6H_2O$

To produce 4 moles of CO₂, 2 moles of ethane is required

To produce 1 mole (44 g) of CO₂ required number of moles of ethane

$$=\frac{2 \ mol \ ethane}{4 \ mol \ CO_2} \times 1 \ mol \ CO_2 = \frac{1}{2}$$
 mole of ethane = 0.5 mole of ethane

Page | 9

41. Hydrogen peroxide is an oxidising agent. It oxidises ferrous ion to ferric ion and reduced itself to water. Write a balanced equation.

$$H_2O_2 \rightarrow Oxidising agent$$

$$-1 \qquad -2$$

$$H_2O_2 + Fe^{2+} \rightarrow Fe^{3+} + H_2O \text{ (Acidic medium)}$$

$$(1e^- \times 2) \quad 1e^-$$

Ferrous ion is oxidized by H_2O_2 to Ferric ion.

The balanced equation is $Fe^{2+} \rightarrow Fe^{3+} +e- X 2$

$$H_2O_2 + 2H^+ + 2e^- \rightarrow 2H_2O$$

 $2Fe^{2+} \rightarrow 2Fe^{3+} + 2e^-$
 $H_2O_2 + 2Fe^{2+} + 2H^+ \rightarrow Fe^{3+} + 2H_2O$

42. Calculate the empirical and molecular formula of a compound containing 76.6% carbon, 6.38 % hydrogen and rest oxygen its vapour density is 47.

Element	Percentage	Atomic	Relative number of	Simple ratio	Whole no
		mass	atoms		
С	76.6	12	$\frac{76.6}{12} = 6.38$	6.38	6
				$\frac{6.38}{1.06} = 6$	
Н	6.38	1	$\frac{6.38}{1} = 6.38$	6.38	6
			$\frac{1}{1} = 0.38$	1.06	
O	17.02	16	$\frac{17.02}{} = 1.06$	1.06	1
			16	$\frac{1.06}{1.06} = 1$	

Empirical Formula =
$$C_6H_6O$$

n =
$$\frac{Molar \ mass}{Calculated \ empirical \ formula \ mass}$$

= $\frac{2 \times vapour \ density}{94} = \frac{2 \times 47}{94} = 1$,

since Molar mass = $2 \times \text{Vapour density}$

Molecular formula $n \times n$ empirical formula

Molecular formula $(C_6H_6O) \times 1 = C_6H_6O$

43.A Compound o analysis gave Na = 14.31 % S = 9.97% H = 6.22% and O = 69.5% calculate the molecular formula of the compound if all the hydrogen in the compound is present in combination with oxygen as water of crystallization. (molecular mass of the compound is 322).

Element	%	Relative number of atoms	Simple ratio
			-

iv)
$$KMnO_4+H_2C_2O_4+H_2SO_4 \rightarrow K_2SO_4+MnSO_4+\overline{CO}_2+H_2O_4$$

i)
$$K_2Cr_2O_7 + KI + H_2SO_4 \rightarrow K_2SO_4 + Cr_2(SO_4)_3 + I_2 + H_2O_4$$

2 × 3e⁻ $\sqrt{e^-}$

$$K_2Cr_2O_7 + 6KI + H_2SO_4 \rightarrow K_2SO_4 + Cr_2(SO_4)_3 + I_2 + H_2O_4$$

$$K_2Cr_2O_7 + 6KI + H_2SO_4 \rightarrow K_2SO_4 + Cr_2(SO_4)_3 + 3I_2 + H_2O$$

$$K_2Cr_2O_7 + 6KI + 7H_2SO_4 \rightarrow 4K_2SO_4 + Cr_2(SO_4)_3 + 3I_2 + 7H_2O_4$$

ii)
$$KMnO_4 + Na_2SO_3 \rightarrow MnO_2 + Na_2SO_4 + KOH$$

 $3e^-$

$$\Rightarrow$$
 2KMnO₄ + 3Na₂SO₃ \rightarrow MnO₂ + Na₂SO₄ + KOH

$$\Rightarrow$$
 2KMnO₄ + 3Na₂SO₃ \rightarrow 2MnO₂ + 3Na₂SO₄ + KOH

$$\Rightarrow 2KMnO_4 + 3Na_2SO_3 \rightarrow 2MnO_2 + 3Na_2SO_4 + 2KOH$$

iii)
$$Cu+HNO_3 \rightarrow Cu(NO_3)_2 + NO_2 + H_2O$$

$$Cu+ 2HNO_3 \rightarrow Cu(NO_3)_2 + NO_2 + H_2O$$

$$\text{Cu+ 2HNO}_3 + \text{2HNO}_3 \rightarrow \text{Cu(NO}_3)_2 + 2\text{NO}_2 + 2\text{H}_2\text{O}$$

E.MUTHUSAMY MSc.(Che), MSc.(PSV), MEd., MPhil., MA(Tam), MA(Eng), MA(Soc)-, MA(P.Admin)-, BLISc., DMLT, PGDCA Whatsapp: 9940847892 +1 CHEMISTRY VOL UME 1 MATERIAL email: e.muthusamy@gmail.com

Page |

10

$$Cu+ 4HNO_3 \rightarrow Cu(NO_3)_2 + 2NO_2 + 2H_2O$$

Distinction!!!

Page |

11

iv)
$$KMnO_4+H_2C_2O_4 + H_2SO_4 \rightarrow K_2SO_4 + MnSO_4 + CO_2 + H_2O_4$$

$$\downarrow$$
 \uparrow

$$5e^{-}$$
 $1e^{-} \times 2$

$$2KMnO_4 + 5H_2C_2O_4 + H_2SO_4 \rightarrow K_2SO_4 + MnSO_4 + CO_2 + H_2O_3$$

$$2KMnO_4+5H_2C_2O_4 + H_2SO_4 \rightarrow K_2SO_4 + 2MnSO_4 + 10CO_2 + H_2O_4$$

$$2KMnO_4+5H_2C_2O_4+3H_2SO_4 \rightarrow K_2SO_4+2MnSO_4+10CO_2+8H_2O_4$$

45. Balance the following equations by ion electron method.

i)
$$KMnO_4 + SnCl_2 + HCl \rightarrow MnCl_2 + SnCl_4 + H_2O + KCl$$

ii)
$$C_2O_4^{2-} + Cr_2 O_7^{2-} \rightarrow Cr^{3+} + CO_2$$
 (in acid medium)

iii)
$$Na_2S_2O_3 + I_2 \rightarrow Na_2S_4O_6 + NaI$$
 (in acid medium)

iv)
$$Zn + NO_3 \rightarrow Zn^{2+} + NO$$

(i) Half reaction are:

$$MnO_4$$
 $\longrightarrow Mn^{2+}$

And
$$\operatorname{Sn}^{2+} \to \operatorname{Sn}^{4+}$$

$$(1) \rightarrow MnO_4 + 8H^2$$

$$MnO_4^- + 8H^- + 5e^- \rightarrow Mn^{2+} + 4H_2O$$

$$\operatorname{Sn}^{2+} \to \operatorname{Sn}^{4+} + 2e^{-}$$

$$(1) \times 2 \rightarrow 2MnO_4^- + 16H^- + 10e^- \rightarrow 2Mn^{2+} + 8H_2O$$

$$5\text{Sn}^{2+} \rightarrow 5\text{Sn}^{4+} + 10e^{-}$$

→
$$2\text{MnO}_4^- + 5\text{Sn}^{2+} + 16\text{H}^+ \rightarrow 2\text{Mn}^{2+} + 5\text{Sn}^{4+} + 8\text{H}_2\text{O}$$

$$C_2O_4^{2-} \rightarrow CO_2$$

$$\operatorname{Cr_2O_7}^{2\text{-}} \to \operatorname{Cr}^{3\text{+}}$$

$$(1) \rightarrow C_2$$

$$C_2O_4^{2-} \to 2CO_2 + 2e^{-}$$
 ---- (3

$$Cr_2O_7^{2-} + 14H^+ \rightarrow 2Cr^{3+} + 7H_2O$$
 ---- (4)

$$(2) \times 3 \rightarrow$$

$$3C_2O_4^{2-} \rightarrow 6CO_2 + 6e$$

$$3C_2O_4^2 \rightarrow 6CO_2 + 6e$$

$$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$$

$$ightharpoonup$$
 $Cr_2O_7^{2-} + 3C_2O_4^{2-} + 14H^+ \rightarrow 2Cr^{3+} + 6CO_2 + 7H_2O$

(iii)
$$S_2O_3^{2-} \to S_4O_6^{2}$$

Half reaction
$$\rightarrow$$
 I₂ \rightarrow I

$$2S_2O_3^{2-} \rightarrow S_4O_6^{2-} + 2e^{-}$$

$$I_2 + 2e^- \rightarrow 2I^-$$

$$l_2 + 2e \rightarrow 2l$$

$$(3) + (4) \implies 2S_2O_3^{2-} + I_2 \longrightarrow S_4O_6^{2-} + 2\Gamma$$

(iv) $Zn \rightarrow Zn^{2+}$

E.MUTHUSAMY MSc.(Che), MSc.(Psv), MEd., MPhil., MA(Tam), MA(Eng), MA(Soc)., MA(P.Admin)., BLISc., DMLT, PGDCA Whatsapp: 9940847892 +1 CHEMISTRY VOL UME 1 MATERIAL email: e.muthusamy@gmail.com

 $NO_3 \rightarrow NO$

$$Zn \rightarrow Zn^{2+} + 2e^{-}$$

(2) \rightarrow NO₃⁻ + 3e⁻ + 4H⁺ \rightarrow NO + 2H₂O

---- (4)

$$3Zn \rightarrow Zn^{2+} + 6e$$

$$(4) \times 2 \implies 2NO_3 + 6e^- + 8H^+ \rightarrow 2NO + 4H_2O$$

$$3Zn + 2NO_3^- + 8H^+ \rightarrow 3Zn^{2+} + 2NO + 4H_2O$$

Page | 12

2. OUANTUM MECHANICAL MODEL OF ATOM

Important Formulae

1.
$$\Delta E = hv$$
 or $v = \frac{E_2 - E_1}{h}$

6.
$$2\pi = \text{nh/mv}$$
 (or) $\text{mvr} = \text{nh/}2\pi$

2.
$$r_n = \frac{(0.529)n^2}{7} \text{ Å}$$

7.
$$\Delta x.\Delta p \ge \frac{h}{4\pi}$$
, (or) $\Delta x. m.\Delta v \ge \frac{h}{4\pi}$,

8.
$$\hat{H}\Psi = E\Psi$$

3.
$$E_n = \frac{(-13.6)Z^2}{n^2} eV atom^{-1} (or) \frac{(-1312.8)Z^2}{n^2} KJ m \mathcal{O} \frac{1}{2} \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2} + \frac{8\pi^2 m}{h^2} (E - V)\Psi = 0$$

KJ mgJ⁻¹
$$\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2} + \frac{8\pi^2 m}{h^2} (E - V)\Psi = 0$$

4.
$$E = hv$$
, $E = mc^2$

10. Angular momentum =
$$\sqrt{l(l+1)} \frac{h}{2\pi}$$

5.
$$\lambda = \frac{h}{mv} \text{ or } \frac{h}{p}$$

Important Points to Remember

- ➤ Atom The basic unit that makes up all matter
- **Planck's constant** (h) $-6.626 \times 10^{-34} \text{ Js.}$
- > Angular momentum mvr; mvr = nh/ 2π
- ➤ Bohr's atomic model The electron is revolving around the nucleus in a certain fixed circular path called stationary orbit. The energies of electrons are quantized. Electron can revolve only in orbits in which the angular momentum (mvr) of the electron must be equal to an integral multiple of $h/2\pi$
- **Radius of the nth orbit** $r_n = \frac{(0.529)n^2}{7} A$
- > Energy of the nth orbit $E_n = \frac{(-13.6)Z^2}{r^2} \text{ eV atom}^{-1} \text{ (or) } \frac{(-1312.8)Z^2}{r^2} \text{ KJ mol}^{-1}$
- ➤ Louis de Broglie All forms of matter showed dual character such as particle and wave.
- ➤ de Broglie All forms of matter showed dual character such as particle and wave.
- \triangleright de Broglie equation λ = h/mv
- \triangleright Mass of an electron 9.11 x 10^{-31} kg.
- \triangleright λ de Broglie wavelength

Dedication! Determination!! Distinction!!!

(ACTC) ADVANCED CHEMISTRY TUITION CENTRE, 41/1 PWD ROAD, NAGERCOIL, 9952340892. Quantization of de Broglie concept - $2\pi r = nh/mv$ (or) $mvr = nh/2\pi$

Heisenberg's uncertainty principle - $\Delta x.\Delta p \ge \frac{h}{4\pi}$, where $\Delta x =$ uncertainty in position.

 Δp = uncertainty in momentum.

- **▶** Bohr's radius of 1st orbital 0.529 Å
- > Schrödinger equation $\hat{H} \Psi$ $E \Psi$

 \hat{H} = Hamiltonian operator.

E = wave function

 Ψ = Energy of the system

- > Schrödinger wave equation $\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2} + \frac{8\pi^2 m}{h^2} (E V)\Psi = 0$
- ➤ Quantum numbers The set of four quantum number which can characterize an electron in an atom. They represent the energy level, sub, shell, number of electron in an orbit, orientation of orbitals in space and the spin of the electron.
- ➤ Atomic orbitals Permitted energy values called eigen values which are known as atomic orbitals.
- \triangleright $[\Psi]^2$ It is the probability of finding the electrons.
- ➤ **Node** The region where the probability density function reduces to zero is called nodal surface (or) a radial node.
 - ➤ Shapes of orbital -s-orbital spherical shape, p-orbital dumb bell shape d-orbital clover leaf
- **Effective nuclear charge** The net charge experienced by the electron.
- \triangleright Order of E.N.C s > p > d > f in an orbital.
- **Energy order in orbital** $-s \le p \le d \le f$.
- ➤ **Aufbau's principle** "In the ground state of the atoms, the orbitals are filled in the order of their increasing energies".
- ➤ Pauli's exclusion principle "No two electrons in an atom can have the same set of values for all four quantum numbers".
- > Types of quantum numbers Principal quantum (n), azimuthal quantum number (l), magnetic quantum number (m) and spin quantum number (s).

	Principal quantum	Azimuthal quantum	Magnetic quantum	Spin quantum
	number (n):	number (<i>l</i>)	number (m):	number (s):
1	It represents the energy	It represents the	It represents	It represents that
	level in which electron	subshell in which	different orientation	spin of the
	is present	electron is present	of orbitals in space	electron
2	Maximum number of	Maximum number	The magnitude of	Electron revolves
	electrons that can be	of electrons that can	angular momentum	in clockwise and
	accommodated in the	be accommodated in	is determined.	anti-clockwise
	shell is $2n^2$.	subshell is 2(21+1)		directions.

Page |

13

(ACTC) ADVANCE	D CHEMISTRY TUITION CENT	RE, 41/1 PWD ROAD	, NAGERCOIL,	9952340892.
		•	<u> </u>	

(70	ACIC, ADVANCED CITEMISTRY TOTTION CENTRE, 41/1 FWD ROAD, NACERCOIE, 33020-400321							
3	$E_{n} = \frac{-(1312.8)Z^{2}}{2}$	It is used to calculate	If $l = 1$, $m = -1$, 0 , $+$	S values are $+^{1}/_{2}$				
	$E_n = \frac{1}{n^2}$	the orbital angular	1	$(or) - \frac{1}{2}$.				
	kJ mol ^{−1} .	momentum by the						
		formula $\sqrt{l(l+1)} \frac{h}{2\pi}$		Pa _s				
4	It represents the	1 = 0, 1, 2, 3		14				
	distance of the electron	Subshell = s , p , d , f						
	from the nucleus.	No. of electrons = 2 ,						
		6, 10, 14						
	n = 1, 2, 3, 4 K L M N							

- ➤ Hund's rule of maximum multiplicity It states that electron pairing in the degenerate orbitals does not take place until all the available orbitals contains one electron each.
- **Electronic configuration** The distribution of electrons into various orbitals of an atom is called its electronic configuration.
- **Exchange energy** During the exchanging process of two or more electrons with the same spin present in degenerate orbitals, the amount of energy released in called exchange energy.

Quantum Mechanical Model of Atom Unit 2

Choose the best answer

1. Electronic configuration of species M²⁺ is 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁶ and its atomic weight is 56. The number of neutrons in the nucleus of species M is

a) 26

- b) 22
- c) 30

d) 24

2. The energy of light of wavelength 45 nm is

- a) 6.67×10^{15} J
- b) 6.67×10^{11} J c) 4.42×10^{-18} J

- d) 4.42×10^{-15} J
- 3. The energies E₁ and E₂ of two radiations are 25 eV and 50 eV respectively. The relation between their wavelengths ie λ_1 and λ_2 will be
- a) $\frac{\lambda_1}{\lambda_2} = 1$

- d) $2\lambda_1 = \lambda_2$

4. Splitting of spectral lines in an electric field is called

- a) Zeeman effect
- b) Shielding effect c) Compton effect
- d) Stark effect
- 5. Based on equation $E = -2.178 \times 10^{-18} J_{\frac{z^2}{n^2}}$, certain conclusions are written. Which of them is not correct ? (NEET)
- a) Equation can be used to calculate the change in energy when the electron changes orbit **b**) For n = 1, the electron has a more negative energy than it does for n = 6 which means that the electron is more loosely bound in the smallest allowed orbit
- c) The negative sign in equation simply means that the energy of electron bound to the nucleus is lower than it would be if the electrons were at the infinite distance from the nucleus.
- d) Larger the value of n, the larger is the orbit radius.