第六次作业

- 1. 设 V 是 所 以 次 数 小 于 n 的 实 系 数 多 项 式 组 成 的 实 线 性 空 间 , $U = \{f(x) \in V : f(1) = 0\}$ 。证明 $U \neq V$ 的子空间,并求V 的一个补空间。
- 2. 设 $U = \lceil (1,2,3,6)^T, (4,-1,3,6)^T, (5,1,6,12)^T \rceil, W = \lceil (1,-1,1,1)^T, (2,-1,4,5)^T \rceil$ 是 \mathbb{R}^4 的两个子空间,
 - (1) 求 $U \cap W$ 的基;
 - (2) 扩充 $U \cap W$ 的基, 使其成为U 的基;
 - (3) 扩充 $U \cap W$ 的基, 使其成为W 的基;
 - (4) 求U + W 的基。
- 3. 设 $U = \{(x, y, z, w): x + y + z + w = 0\}$, $W = \{(x, y, z, w): x y + z w = 0\}$ 。求 $U \cap W$,U + W的维数与基。

- 5. 分别求导数运算 ∂ : $f(x) \mapsto f'(x)$ 在标准基 $1, x, x^2, ..., x^{n-1}$ 与基 $1, (x-a), (x-a)^2, ..., (x-a)^{n-1}$ 下的矩阵。问 ∂ 的行列式与迹是多少?解释之。
- 6. 设 $V = \mathbb{R}[x]_n$, 其上的内积为

$$(f(x),g(x)) = \int_0^1 f(x)g(x)dx$$

设
$$U = \{f(x) \in V : f(0) = 0\}.$$

- (1) 证明 $U \neq V$ 的一个n-1维子空间,并求U的一组基;
- (2) 当 n=3 时,求U 的正交补 U^{\perp}
- 7. 设 α_0 是欧式空间V中的单位向量, $\sigma(\alpha) = \alpha 2(\alpha, \alpha_0)\alpha_0, \alpha \in V$ 。证明
 - (1) α 是线性变换;
 - (2) α 是正交变换。
- 8. (复数、位似与旋转矩阵)设 σ 是 \mathbb{C} 到自身的线性变换,其定义为

$$\sigma: \begin{pmatrix} x \\ y \end{pmatrix} \mapsto A \begin{pmatrix} x \\ y \end{pmatrix},$$

其中,

$$A = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$$

将 $(x,y)^T$ 记为普通复数x + yi,证明 $\sigma((x,y)^T) = (a - bi)(x + yi)$ 。请解释之。

- 9. 已知 $B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$,线性空间 $V = \{X = (x_{ij}) \in M_2(\mathbb{R}) : \text{tr}X = 0\}$ 的线性变换 σ 为 $\sigma(X) = B^T X X^T B, X \in V \text{ oil } \vec{x} V \text{ 的一个基,使得 } \sigma \text{ 在该基下的矩阵尽可能简单}.$
- 10. 设A是n阶正规矩阵,x是任意复数。证明
 - (1) A xI 也是正规矩阵;
 - (2) 对于任意向量x,向量Ax与 $A^{H}x$ 的长度相同;
 - (3) A 的任一特征向量都是 A^H 的特征向量;
 - (4) A的属于不同特征值的特征向量正交。
- 11. 设A是正规矩阵,证明
 - (1) A 是 Hermite 矩阵 \Leftrightarrow A 的特征值全为实数;
 - (2) A 是酉阵 ⇔ A 的特征值的模都是 1;
 - (3) A 是幂等阵 ⇔ A 的特征值只能是 0 与 1;
- (4) 若 A 的 全 部 特 征 值 为 $\lambda_1, \lambda_2, \dots, \lambda_n$, 则 AA^H 与 A^HA 的 全 部 特 征 值 为 $|\lambda_1|^2, |\lambda_2|^2, \dots, |\lambda_n|^2$ 。此结论对非正规矩阵成立吗?
- 12. 设A是正规矩阵,证明
 - (1) 若 A 是幂等阵,则 A 是 Hermite 矩阵;
 - (2) 若 $A^3 = A^2$, 则 $A^2 = A$:
- (3) 若 A 又是 Hermite 矩阵,而且也是一个幂幺阵(即 $A^k = I$),则 A 是对合阵(即 $A^2 = I$)。
- 13. 设变换 σ : $\sigma x = x a(x, w)w$, $\forall x \in \mathbb{R}^n$,其中w为长度为 1 的向量。问a 取何值时, σ 为正交变换?如果w是任意向量,你的结论又如何?
- 14. 设 $A \in \mathbb{C}^{m \times n}$ 的秩为r > 0,A的奇异值分解为 $A = U \operatorname{diag}(s_1, ..., s_r, 0, ..., 0)V^H$,求矩阵

$$B = \begin{pmatrix} A \\ A \end{pmatrix}$$
的奇异值分解。

- 15. 假设 $A \in \mathbb{C}^{n \times n}$ 为可逆矩阵,求 A^{-1} 的奇异值分解。
- 16. 令 A 是一个 $m \times n$ 矩阵,并且 $\lambda_1, \dots, \lambda_n$ 是矩阵 $A^H A$ 的特征值,相对应的特征向量为 u_1, \dots, u_n 。证明 A 的奇异值 σ_i 等于范数 $\|Au_i\|$,即 $\sigma_i = \|Au_i\|$, $i = 1, \dots, n$ 。
- 17. 令 λ_1 , λ_2 …, λ_n 和 u_1 , u_2 , …, u_n 分别是矩阵 A^HA 的特征值和特征向量。假定矩阵 A 有 r 个非零的奇异值,证明 $\left\{Au_1,Au_2,\cdots,Au_r\right\}$ 是列空间 col(A) 的一组正交基,并且 rank(A)=r 。
- 18. 用矩阵 $A \in \mathbb{R}^{m \times n}$ $(m \ge n)$ 的奇异向量表示 $\begin{bmatrix} O & A^T \\ A & O \end{bmatrix}$ 的特征向量。