Thévenin Equivalent Circuits

Thévenin equivalent circuit

Thévenin Equivalent Circuits

We can apply Thevenin's theorem to any part of the circuit

Thévenin Equivalent Circuits

What is V_t ?

circuit

Thévenin Equivalent Circuits

What is R_t?

$$R_t = \frac{V_t}{i_{sc}} = \frac{v_{oc}}{i_{sc}}$$

Thévenin equivalent circuit

circuit

Examples

$$V_t = v_{oc}$$

$$V_{t} = \frac{R_{2}}{R_{2} + R_{1}} \times 15 = 5$$

$$i_{sc} = \frac{v_s}{R_1} = 0.15A$$

$$R_{t} = \frac{v_{oc}}{i_{sc}} = 33.3\Omega$$

$$V_t = 5$$

$$R_t = 33.3\Omega$$

Currents and voltages in the circuit are only due to Independent Sources

Finding the Thévenin Resistance Directly

Suppose we make all independent sources zero in the circuit

Finding the Thévenin Resistance Directly

- 1. Turn off independent sources in the original network:
 - -A voltage source becomes a short circuit
 - -A current source becomes an open circuit

2. Compute the resistance between the terminals

Find Thevenin resistance for each of the circuits shown below

$$V_{OC} = V_t = \frac{20}{20 + 5} \times 10 = 8$$

$$i_{sc} = \frac{10}{5 + (10 \parallel 20)} \cdot \frac{20}{20 + 10} = \frac{20}{35}$$

$$R_{t} = \frac{v_{oc}}{i_{sc}} = \frac{8 \times 35}{20} = 14$$

Find Thevenin resistance for each of the circuits shown below

Find Thevenin resistance for each of the circuits shown below

$$R_{\rm t} = ((20||5)+6)||10) = 5$$

Circuit with dependent Sources

How do we find I_N ?

How do we find R_N ?

Example: Find the Norton equivalent for the following circuit

$$\frac{v_x}{4} + \frac{v_{oc} - 15}{R_1} + \frac{v_{oc}}{R_2 + R_3} = 0$$

$$v_x = \frac{R_3}{R_2 + R_3} v_{oc} = 0.25 v_{oc}$$

 $v_{\rm oc} = 4.62 {\rm V}$

$$i_{sc} = \frac{v_s}{R_1} = \frac{15 \text{ V}}{20\Omega} = 0.75 \text{A}$$

$$R_t = \frac{v_{oc}}{i_{co}} = \frac{4.62 \text{V}}{0.75 \text{A}} = 6.15 \Omega$$

$$v_{\rm oc} = 4.62 \mathrm{V}$$

$$R_t = 6.15 \Omega$$

Examples

$$I_n = 1.67 \text{A}, R_t = 9.375 \Omega$$

Solve for Rt

$$I_n = 2A, R_t = 15\Omega$$

Using Thevenin's theorem, find the equivalent circuit to the left of the terminals in the circuit shown below. Hence find i.

Use Superposition

$$v_{oc} = 6V$$

$$V_{oc} = V_{oc1} + V_{oc2} = 6$$

$$V_{oc1} = \frac{4}{4+12} \times 12 = 3$$

$$V_{oc2} = 4 \times \left(2 \times \frac{6}{6+10}\right) = 3$$

Source Transformation

Use source transformation to solve for the indicated currents

Maximum Power Transfer for dc circuits

What value of R_L will give rise to maximum load power?

$$I = \frac{V_S}{R + R_L}$$

$$P_{L} = I^{2}R_{L} = V_{S}^{2} \times \frac{R_{L}}{(R + R_{L})^{2}}$$

$$\frac{\partial P_L}{\partial R_L} = 0$$

$$R_L = R$$

$$P_{L\max} = \frac{V_S^2}{4R_L}$$

$R_L = 1K \Longrightarrow P_L = 6.25 mW$

$$R_L = 10K \Longrightarrow P_L = 2mW$$

$$R_L = 0.2K \Longrightarrow P_L = 3.47 mW$$

Maximum power is delivered to the load when $R_L = R$

General Case

Maximum power is delivered to the load when $R_L = R_t$

Summary

Series/Parallel resistances

$$i_2 = \frac{v}{R_2} = \frac{R_1}{R_1 + R_2} i_{\text{total}}$$

Current division

- Identify and number the nodes
- Choose a reference node
- Write KCL for each node such that

Sum of currents leaving a node is

Mesh Analysis

- Assign mesh currents i_1 , i_2 , , in to the n meshes.
- 2. Apply KVL to each of the n meshes. Use Ohm's law to express the voltages in terms of the mesh currents.
- 3. the Solve resulting simultaneous n equations to get the mesh currents.

Source Transformation

The superposition principle states that the total response is the sum of the responses to independent sources 33acting each of the individually.

 $R_{\text{eq}} = \frac{1}{1/R_1 + 1/R_2 + 1/R_3}$

Super node R