2006----2007 学年第二学期线性代数期终试卷 B (06级)

4.
$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}^{2007} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}^{2006} = \underline{\hspace{2cm}}$$

5. 设向量组
$$\bar{\alpha}_1 = \begin{bmatrix} a \\ 0 \\ c \end{bmatrix} \bar{\alpha}_2 = \begin{bmatrix} b \\ c \\ 0 \end{bmatrix} \bar{\alpha}_3 = \begin{bmatrix} 0 \\ a \\ b \end{bmatrix}$$
线性相关,则 a,b,c 必满足关系式______.

6. 若向量组 $B_1:\bar{\alpha}_1,\bar{\alpha}_2,\bar{\alpha}_3$ 线性相关,向量组 $B_2:\bar{\beta}_1,\bar{\beta}_2,\cdots,\bar{\beta}_4$ 可由向量组 B_1 线性表出,且 $\bar{\beta}_1$ 与 $\bar{\beta}_4$ 正交,则向量组 B_2 的秩为_____。

7.
$$2 \neq A = \begin{bmatrix} 5 & -1 & 3 \\ -1 & 5 & -3 \\ 3 & -3 & c \end{bmatrix}$$
, $R(A) = 2$, $\Re c = 2$.

8. 已知
$$\bar{\alpha} = \begin{bmatrix} 1 \\ -1 \\ 0 \\ 2 \end{bmatrix}$$
, $\bar{\beta} = \begin{bmatrix} 2 \\ 1 \\ -1 \\ 4 \end{bmatrix}$, 是四元线性方程组 $A\bar{x} = \bar{b}$ 的特解, $R(A) = 3$,则 $A\bar{x} = \bar{b}$

的通解 $\bar{x} =$ ____

9. 已知
$$A = 2$$
 是 A 的一个特征值,则 $A^2 + 2A - I$ 的一个特征值为_____。

三、计算(4×6分)

1.
$$A = \begin{bmatrix} -1\\2\\1 \end{bmatrix}, B = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$
 $A = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$

1.
$$A = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $A = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $A = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$, $A = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$, $A = \begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix}$, $A = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$, $A = \begin{bmatrix} -1$

3. 已知矩阵方程
$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 4 & 2 & 1 \end{bmatrix}$$
 $X = \begin{bmatrix} 1 & 1 \\ -1 & 1 \\ 2 & 1 \end{bmatrix}$, 求矩阵 X .

4. 已知
$$A = \begin{bmatrix} 2 & -1 & 0 \\ 1 & x & 0 \\ -1 & 1 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} y & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$, 且矩阵 $A = B$ 相似,求 $|A|$.

三、求向量组
$$\vec{\alpha}_1 = \begin{bmatrix} 0 \\ 3 \\ 1 \\ 2 \end{bmatrix}$$
 $\vec{\alpha}_2 = \begin{bmatrix} 1 \\ -1 \\ 2 \\ 4 \end{bmatrix}$ $\vec{\alpha}_3 = \begin{bmatrix} 3 \\ 0 \\ 7 \\ 14 \end{bmatrix}$ $\vec{\alpha}_4 = \begin{bmatrix} 1 \\ -1 \\ 2 \\ 0 \end{bmatrix}$ $\vec{\alpha}_5 = \begin{bmatrix} 2 \\ 1 \\ 5 \\ 6 \end{bmatrix}$ 的秩和它的一个极大线性无

关组。并用该极大线性无关组表示其余向量。(12分)

四、a,b 为何值时,线性方程组 $\begin{cases} x_1+x_2=1\\ x_1-x_3=1 \end{cases}$ 无解?有惟一解?有无穷多解?在 $\begin{cases} x_1+x_2=1\\ x_1-x_3=1 \end{cases}$

有无穷多解时,求出其通解。(12分)

五、
$$(1)$$
 求 $A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$ 的特征值与特征向量; (2) 求一正交矩阵 T ,使 T^TAT 为 对角阵。 $(12 \, \mathcal{G})$

六、 已知向量组 $I: \bar{\alpha}_1, \bar{\alpha}_2, \bar{\alpha}_3$ 的秩为 3,向量组 $II: \bar{\alpha}_1, \bar{\alpha}_2, \bar{\alpha}_3, \bar{\alpha}_4$ 的秩为 3,向量组 $III: \bar{\alpha}_1, \bar{\alpha}_2, \bar{\alpha}_3, \bar{\alpha}_5$ 的秩为 4,证明: 向量组 $\bar{\alpha}_1, \bar{\alpha}_2, \bar{\alpha}_3, \bar{\alpha}_5 - \bar{\alpha}_4$ 的秩为 4。 (10分)