

PROBLEMA 02:

ESTUDO COMPARATIVO DE SISTEMAS FIR PELO MÉTODO DE JANELA

TEC513 - MI - PROCESSAMENTO DIGITAL DE SINAIS

Aurelio Barreto aurelionadjabarreto@gmail.com

Kevin Gomes kevingomes.uefs@gmail.com

Roberto Maia romaiajr5@gmail.com

SUMÁRIO

- 1. INTRODUÇÃO;
- 2. FUNDAMENTAÇÃO TEÓRICA;
- 3. METODOLOGIA
- 4. RESULTADOS
- 5. CONCLUSÃO

1. INTRODUÇÃO

INTRODUÇÃO

Contextualização

- Importância da filtragem de sinais no processamento digital;
- Aplicações da filtragem de sinais em comunicação e análise de áudio;
- Vantagens dos filtros FIR, como estabilidade e resposta em fase linear.

Objetivo do Estudo

- Explorar a eficácia de várias funções-janela na implementação de filtros FIR;
- Foco em sinais de voz.

Método de Janela

- Explicação breve sobre o método de janela;
- Funções-janela populares: Retangular, Hamming, Hanning, Blackman e Kaiser.

• Implementação e Validação

- Uso de Octave para implementações;
- Avaliação prática através de testes com sinais de voz amostrados;
- o Discussão sobre eficiência espectral e quantidade de coeficientes.

2. FUNDAMENTAÇÃO TEÓRICA

FILTROS FIR

- Filtros FIR (Finite Impulse Response)
 - Definição e características principais.
 - Vantagens: estabilidade incondicional e resposta linear de fase.

Fonte: FPGA Key

• Janela Retangular

Lóbulos altos -> maior ripple na PB e SB

$$w[n] = \begin{cases} 1, & 0 \le n \le N - 1 \\ 0, & \text{caso contrário} \end{cases}$$

Fonte: Autor

• Janela de Hamming

Atenuação dos lóbulos -> menor ripple

$$w[n] = 0.54 - 0.46 \cos\left(\frac{2\pi n}{N-1}\right), \quad 0 \le n \le N-1$$

- Janela de Hanning (ou Hann)
 - o Suavização das bordas -> reduz ainda mais a atenuação dos lóbulos

$$w[n] = 0.5 \left(1 - \cos \left(\frac{2\pi n}{N - 1} \right) \right), \quad 0 \le n \le N - 1$$

$$w[n] = 0.42 - 0.5 \cos\left(\frac{2\pi n}{N-1}\right) + 0.08 \cos\left(\frac{4\pi n}{N-1}\right),$$

$$0 \le n \le N - 1$$

Janela de Blackman

$$w[n] = 0.42 - 0.5 \cos\left(\frac{2\pi n}{N-1}\right) + 0.08 \cos\left(\frac{4\pi n}{N-1}\right),$$

$$0 \le n \le N-1$$

• Janela de Bartlett (ou Triangular):

$$w[n] = \begin{cases} \frac{2n}{N-1}, & 0 \le n \le \frac{N-1}{2} \\ 2 - \frac{2n}{N-1}, & \frac{N-1}{2} < n \le N-1 \end{cases}$$

• Janela de Kaiser

$$w[n] = \frac{I_0 \left(\pi \beta \sqrt{1 - \left(\frac{2n}{N-1} - 1 \right)^2} \right)}{I_0(\pi \beta)}, \quad 0 \le n \le N - 1$$

3. METODOLOGIA

VISÃO GERAL

PROCESSO DE FILTRAGEM

- Definição de Filtragem:
 - o Remoção de elementos de frequência, como ruidos, ou equalização de um sinal.
- Diagrama de Filtragem:

Operação de Convolução:

$$y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} h[k] \cdot x[n-k]$$

$$Y(e^{j\Omega}) = X(e^{j\Omega}) \cdot H(e^{j\Omega})$$

PROJETO DE FILTRO FIR POR JANELAMENTO

Truncando d[n]

$$h_d[n] = d[n - \frac{M}{2}]$$

$$h_d[n] = \frac{sen((n - \frac{M}{2}) \cdot \Omega_{cN})}{\pi(n - \frac{M}{2})}$$

$$h[n] = h_d[n] \cdot w[n]$$

$$DTFT\{h[n]\} = DTFT\{h_d[n] \cdot w[n]\}$$

$$H(e^{j\Omega}) = H_d(e^{j\Omega}) * W(e^{j\Omega})$$

$$w[n] = \begin{cases} 1, & 0 \le n \le M - 1 \\ 0, & c.c. \end{cases}$$

4. RESULTADOS

CONFIGURAÇÕES DO FILTRO PASSA BAIXA

Parâmetros:

- Frequência de passagem: fp = 1500 Hz
- Frequência de rejeição: fs = 2000 Hz
- Frequência de amostragem: Fa = 44100 HZ
- Faixa de transição: $ft = fr fp \Rightarrow ft = 500 \text{ Hz}$
- Frequência de corte: $fc = (fr + fp) / 2 \Rightarrow fc = 1750 \text{ Hz}$

• Discretizar ($\omega = 2\pi f/fs$)

- \circ Wp = 2* π *fp/ Fa = 0.213 rad
- \circ Ws = 2* π */s / Fa = 0.284 rad
- \circ Wt = 2* π *ft / Fa = 0.0712 rad
- \circ Wc = 2* π *fc / Fa = 0.249 rad
- \circ Tamanho da janela *N* = const / (wt / 2π)
- Ordem do filtro: M = N 1
- Frequência de amostragem: *Fa* = **44100 HZ**

Janela	$\Delta\omega/2\pi$	R_p [dB]	R_s [dB]	LL [dB]	δ
Retangular	0.9/N	0.7416	21	13	0.089137
Hanning	3.1/N	0.0546	44	31	0.006306
Hamming	3.3/N	0.0194	53	41	0.002236
Blackman	5.5/N	0.0017	74	57	0.000196
Kaiser ($\beta = 4.54$)	2.93/N	0.0274	50	34	0.003156
Kaiser ($\beta = 6.76$)	4.32/N	0.0027	70	49	0.000316
Kaiser ($\beta = 8.96$)	5.71/N	0.000274	90	66	0.000031

Fonte: Material do Professor

HAMMING (PB)

HANNING (PB)

BARTLETT (PB)

RETANGULAR (PB)

BLACKMAN (PB)

ÁUDIOS (PB)

- Aúdio Original
- Aúdio Filtrado Hamming

CONFIGURAÇÕES DO FILTRO PASSA ALTA

• Parâmetros:

- Frequência de passagem: fp = 4500 Hz
- Frequência de rejeição: fs = 4000 Hz
- Frequência de amostragem: Fa = 44100 HZ
- Faixa de transição: ft = fr fp => ft = 500 Hz
- Frequência de corte: $fc = (fr + fp) / 2 \Rightarrow fc = 4250 \text{ Hz}$

• Discretizar ($\omega = 2\pi f/fs$)

- \circ Wp = 2* π *fp/Fa = 0,693 rad
- \circ Ws = 2* π *fr / Fa = 0,569 rad
- \circ Wt = 2* π *ft / Fa = 0,071 rad
- \circ Wc = 2* π *fc / Fa = 0,605 rad
- \circ Tamanho da janela *N* = const / (wt/ 2π)
- Ordem do filtro: M = N 1
- Frequência de amostragem: Fa = 44100 HZ

Janela	$\Delta\omega/2\pi$	R_p [dB]	R_s [dB]	LL [dB]	δ
Retangular	0.9/N	0.7416	21	13	0.089137
Hanning	3.1/N	0.0546	44	31	0.006306
Hamming	3.3/N	0.0194	53	41	0.002236
Blackman	5.5/N	0.0017	74	57	0.000196
Kaiser ($\beta = 4.54$)	2.93/N	0.0274	50	34	0.003156
Kaiser ($\beta = 6.76$)	4.32/N	0.0027	70	49	0.000316
Kaiser ($\beta = 8.96$)	5.71/N	0.000274	90	66	0.000031

Fonte: Material do Professor

HAMMING (PA)

HANNING (PA)

BARTLETT (PA)

RETANGULAR (PA)

BLACKMAN (PA)

ÁUDIOS (PA)

- Aúdio Original
- Aúdio Filtrado Hamming

COMPARATIVO ENTRE AS JANELAS

	Resolução em Frequência	Supressão de Vazamento	Recomendação	
Hamming	Moderada	Moderada	Geral	
Hanning	Moderada	Moderada	Geral	
Retangular	Alta	Baixa	Resolução Crítica	
Blackman	Baixa	Alta	Supressão Crítica	
Bartlett	Moderada	Moderada	Simplificação	
Kaiser	Depende de β	Depende de β	Flexibilidade	

5. CONCLUSÃO

CONCLUSÃO

- Escolha do melhor filtro;
- Escolha do N de amostras;
- Usos reais: Equalização de áudios;
- Considerações finais.

OBRIGADO

ALGUMA PERGUNTA?

CREDITS: This presentation template was created by <u>Slidesgo</u>, and includes icons by <u>Flaticon</u>, and infographics & images by <u>Freepik</u>

REFERÊNCIAS

OPPENHEIM, Alan V.; SCHAFER, Ronald W. **Processamento em tempo discreto de sinais**. Tradução Daniel Vieira. 3ª ed.-São Paulo: Pearson Education do Brasil, 2012.

