Statistical inference practice

Joris LIMONIER

October 28, 2021

Contents

1	2021 October 28 lecture																			1
	1.1	Exercise 1	(Student t)																	1

1 2021 October 28 lecture

1.1 Exercise 1 (Student t)

If T has 4 degrees of freedom, find t such that $\mathbb{P}(T \leq t) = 0.8$ Since $0.8 \geq 0.5$, we know that t is positive.

$$\begin{split} \mathbb{P}(T \leq t) &= 0.8 \\ \Longrightarrow \mathbb{P}(T > t) &= 0.2 \end{split}$$
 by symmetry
$$\Longrightarrow \mathbb{P}(|T| > t) = 0.4$$
 by the table
$$\Longrightarrow t = 0.941$$

If T has 4 degrees of freedom, find t such that $\mathbb{P}(T \leq t) = 0.1$ Since $0.1 \leq 0.5$, we know that t is negative.

$$\begin{split} \mathbb{P}(T \leq t) &= 0.1 \\ \Longrightarrow \mathbb{P}(T > -t) &= 0.1 \end{split}$$
 by symmetry
$$\Longrightarrow \mathbb{P}(|T| > -t) = 0.2$$
 by the table
$$\Longrightarrow -t = 1.533$$

$$\Longrightarrow t = -1.533$$

If T has 4 degrees of freedom, find t such that $\mathbb{P}(T \geq t) = 0.8$ Since $0.8 \geq 0.5$, we know that t is negative.

$$\begin{split} \mathbb{P}(T \geq t) &= 0.8 \\ \Longrightarrow \mathbb{P}(T < t) &= 0.2 \\ \Longrightarrow \mathbb{P}(T > -t) &= 0.2 \end{split}$$
 by symmetry
$$\Longrightarrow \mathbb{P}(|T| > -t) = 0.4$$
 by the table
$$\Longrightarrow -t = 0.941$$

$$\Longrightarrow t = -0.941$$

If T has 4 degrees of freedom, find t such that $\mathbb{P}(-t \le T \le t) = 0.9$

$$\mathbb{P}(-t \leq T \leq t) = 0.9$$

$$\Longrightarrow \mathbb{P}(T \geq t) = 0.1$$
 by the table
$$\Longrightarrow t = 2.132$$

If T has 4 degrees of freedom, find the probability of $\mathbb{P}(T \leq -0.134)$

$$\mathbb{P}(T \le -0.134) = \frac{1}{2} \mathbb{P}(|T| \ge 0.134)$$
$$= \frac{0.9}{2}$$
$$= 0.45$$

If T has 4 degrees of freedom, find the probability of $\mathbb{P}(T \geq -0.271)$

$$\begin{split} \mathbb{P}(T \geq -0.271) &= 1 - \mathbb{P}(T \leq -0.271) \\ &= 1 - \mathbb{P}(T \geq 0.271) \\ &= 1 - \frac{1}{2}\mathbb{P}(|T| \geq 0.271) \\ &= 1 - \frac{0.8}{2} \\ &= 0.6 \end{split}$$

If T has 4 degrees of freedom, find the probability of $\mathbb{P}(T \leq 0.941)$

$$\begin{split} \mathbb{P}(T \leq 0.941) &= 1 - \mathbb{P}(T \geq 0.941) \\ &= 1 - \frac{1}{2} \mathbb{P}(|T| \geq 0.941) \\ &= 1 - \frac{0.4}{2} \\ &= 0.8 \end{split}$$

If T has 4 degrees of freedom, find the probability of $\mathbb{P}(-0.414 \le T \le 1.533)$

$$\begin{split} \mathbb{P}(-0.414 \leq T \leq 1.533) &= \mathbb{P}(T \leq 1.533) - \mathbb{P}(T \leq -0.414) \\ &= 1 - \mathbb{P}(T \geq 1.533) - \mathbb{P}(T \leq -0.414) \\ &= 1 - \frac{0.2}{2} - \frac{0.7}{2} \\ &= 0.55 \end{split}$$