Конспект по матанализу I семестр (лекции Кислякова Сергея Витальевича)

November 27, 2019

Contents

1	Непрерывные функции			
	1.1	Определения, свойства		
	1.2	Теоремы		
		1.2.1 Теоремы Вейерштрасса		
		1.2.2 Теорема о промежуточном значении		
	1.3	Степени с рациональным показателем		
	1.4	Равномерная непрерывность		
		1.4.1 Теорема Кантора		
2	Дифференцирование			
	2.1	Определения		
	2.2	Правила дифф		
	2.3	Сходимость последовательностей		
	2.4	Первообразные		
	2.5	Интеграл		

[section]

Chapter 1

Непрерывные функции

- 1.1 Определения, свойства
- 1.2 Теоремы
- 1.2.1 Теоремы Вейерштрасса
- 1.2.2 Теорема о промежуточном значении
- 1.3 Степени с рациональным показателем
- 1.4 Равномерная непрерывность
- 1.4.1 Теорема Кантора

Chapter 2

Дифференцирование

- 2.1 Определения
- 2.2 Правила дифф
- 2.3 Сходимость последовательностей

Theorem 2.3.1. $f_n, f: A \to \mathbb{R}, f_n \to f$ Следующие условия эквивалентны:

1.
$$\exists M : |f_n(x)| \leq M \quad \forall n, x \longrightarrow |f(x)| \leq M$$

2.
$$f$$
 – ограничена: $|f(n)| \le M \forall x \to \exists N \exists A : |f_n(x)| \le A \quad \forall n \le N \forall x$

Proof. Очевидно

Theorem 2.3.2. $f_n \Rightarrow f, g_n \rightarrow g$ на A. Пусть $\exists M : \forall x \in A \forall n | f_n) x) | <math>\leq M$. Тогда $f_n g_n \Rightarrow fg$

Proof.

$$|f(x)g(x)-f_n(x)g_n(x)| \le |f(x)||g(x)-g_n(x)|+|g_n(x)||f(x)-f_n(x)| \le M|g(x)-f_n(x)|+|f(x)-f_n(x)|.$$

Theorem 2.3.3. Критерий Коши для равномерной сходимости Пусть f_n – последовательность функций на множестве A. Она равномерно сходится тогда и только тогда, когда

$$\forall \varepsilon > 0 \exists N \forall k, j > N \forall x : |f_k(x) - f_j(x)| < \varepsilon.$$

Proof. Необходимость.

Пусть $f_n \rightrightarrows f, \quad \varepsilon > 0$ найдем $N: \forall n > N \quad |f_n(x) - f(x)| < \varepsilon \forall x in A.$

$$\forall k, l > N \quad |(f_k(x) - f_l(x))| \le |f_k(x) - f(x)| + |f(x) - f_l(x)| < 2\varepsilon \forall x \in A.$$

Достаточность.

Пусть 2.3.3 выполнено. $x \in A$ - фиксировано. Тогда $\{f_n(x)\}_{n \in \mathbb{N}}$ есть последовательность Коши (см 2.3.3). Следовательно,

$$\forall x \exists \lim_{n \to \infty} f_n(x) \stackrel{def}{=} f(x).$$

 $\varepsilon>0$. Нашли $N:|f_k(x)-f_j(x)|<\varepsilon\quad \forall x\in A \forall k,j>N$ Зафиксируем k,x, перейдем к пределу по j :

$$|f_n(x) - f(x)| < \varepsilon.$$

Что верно для $\forall x \in A, \forall k > N$.

Example. Функция на \mathbb{R} , непрерывная всюду, но не дифференцируемая на в одной точке.

(Вейерштрасс):
$$f(x) = \sum_{j=1}^{\infty} b^j \cos l^j \pi x$$
, $|b| < 1$.

Theorem 2.3.4 (Вейерштрасс). Пусть f_n – функция на множестве A.

$$\forall x: |f_n(x)| \leq a_n$$
, где ряд $\sum a_n$ сходится.

Тогда $\sum_{0}^{\infty} f_n(x)$ сходится равномерно.

Note. Из этой теоремы следует, что функция из примера непрерывна.

Proof. Рассмотрим $\varepsilon>0.$ Найдем $N:\sum\limits_{n=k+1}^{l}a_{n}<\varepsilon\quad \forall k,l>N.$

$$S_j(x) = \sum_{n=0}^j f_n(x).$$

$$|S_j(x) - S_k(x)| = |f_{k+1} \dots + f_k(x)| \le |f_{k+1}(x)| + \dots + |f_l(x)| \le a_{k+1} + \dots + a_l < \varepsilon.$$

Example (Ван дер Варден). $f_1(x) = |x|, |x| < \frac{1}{2}$; продолжим с периодом 1. $f_n = \frac{1}{4^{n-1}} f(4^{n-1}x, g(x)) = \sum_{n=1}^{\infty} f_n$ – непрерывна, но нигде не дифференцируема, так как:

$$|f_n(x)| \le \frac{1}{2 \cdot 4^{n-1}}.$$

5

Figure 2.1: График функции Ван дер Вардена

$$h \neq 0, \ h_k = \pm \frac{1}{4^{n-1}}: \quad \frac{g(x+h) - g(x)}{h} = \sum_{j=1}^{\infty} (f_j(x+h_k) - f_j(x))h_k = \sum_{j=1}^{k-1} \frac{f_j(x+h_k) - f_j(x)}{h_k}.$$

Будем выбирать знак в h_k (\pm), чтобы во всех слагаемых значение лежал в одинаковых частях графика. Тогда при четном и нечетном j значение будет разных знаков.

Name. Ряд из функций $\sum_{n=1}^{\infty} h_n(x)$ – сходится обозначает, что функции $S_j(x) = h_1(x) \dots h_j(x)$ сходятся в соответствующем смысле.

Example.
$$f_n(x) = \sqrt{x^2 + \frac{1}{n}} \rightarrow |x|$$

$$\sqrt{x^2 + \frac{1}{n}} - |x| = \frac{x^2 + \frac{1}{n} - x^2}{\sqrt{x^2 + \frac{t}{n} + |x|}} = \frac{1}{n} \cdot \frac{1}{\sqrt{x^2 + \frac{1}{n} + |x|}} \le \frac{1}{n}, \quad \text{при } |x \ge 1|.$$

Theorem 2.3.5. $f_n, f, g_n: \langle a, b \rangle \to \mathbb{R}$ Предположим, что $f_n \to f$ поточечно. f_n дифференцируемы $u f_n \rightrightarrows g$ равномерно. Тогда f дифференцируемая на $\langle a, b \rangle$ u f' = g.

Proof. Запишем определение равномерной сходимости:

$$\forall eps > 0 \exists N : k, l > N \to \forall x \in \langle a, b \rangle : |f_k(x)' - f_l(x)'| < \varepsilon.$$
$$u_{k,l} - f_k(x) - f_l(x).$$

Теперь рассмотрим для $xy \in \langle a, b \rangle$:

$$\frac{u_{k,l}(x) - u_{k,l}(y)}{x - 1} = u'k, l(c), \quad c$$
 между $x, y...$

$$\forall x, y \in \langle a, b \rangle : \left| \frac{u_{k,l}(x) - u_{k,l}(y)}{x - y} \right| < \varepsilon \iff \forall x \in \langle a, b \rangle, \forall k, l > N : \left| \frac{f_k(x) - f_k(y)}{x - y} - \frac{f_l(x) - f_l(y)}{x - y} \right\rangle \right| < \varepsilon \right|.$$

Фиксируем $k, l \to \infty$.

$$\left| \frac{f_k(x) - f_k(y)}{x - y} - \frac{f(x) - f(y)}{x - 1} \right| < \varepsilon, \quad \forall x, y \in \langle a, b \rangle.$$

Оценим разность. Зафикируем x.

$$\exists \delta > 0 : |x - y| < \delta \land x \neq y \to \left| \frac{f_k(x) - f_k(y)}{x - y} f'_k(x) \right| < \varepsilon.$$

Объединяем неравенства: для данных k, x:

$$|y-x|<\delta, y\neq x \to |f_k'(x)-\frac{f(x)-f(y)}{x-y}|\leq 2\varepsilon.$$

Следовательно,

$$|x-y| < \delta \to |g(x) - \frac{f(x) - f(y)}{x - y}| \le 3\varepsilon.$$

2.4 Первообразные

Пусть все происходит на $\langle a,b \rangle$. $g:\langle a,b \rangle \to \mathbb{R}$

Def 1. Говорят, что f есть первообразная для g, если f дифференцируема на $\langle a,b\rangle y$ и f'=g всюду.

Theorem 2.4.1 (Ньютон, Лейбниц). Если g – непрерывна, то у нее есть первообразная.

Note. К этой теореме мы еще вернемся.

Statement. Если f'=g, то (f+c)'=g для любой константы c.

Theorem 2.4.2. Если f_1, f_2 – первообразные для $g, mo \ f_1 - f_2 = const$

Функция	Первообразная
x^{α}	$\frac{x^{\alpha+1}}{\alpha+1}, \ \alpha \neq -1$
$\frac{1}{x}$	$\log x + c, \ \alpha \neq -1$
$\sin x$	$-\cos x + c$
$\cos x$	$\sin x + c$
$\frac{1}{x^2+1}$	$\arctan x + c$
e^x	$e^x + c$

Name. Пишут:

$$f = \int g$$
 или $f(x) = \int g(x)dx$.

Statement. $\int f'(x) \cdot g' = f \circ g \pm C$

Def 2. Линейная функция – это функция вида $\varphi(h) = ch$.

Линейная форма: $\langle a,b \rangle$; Φ – отображение отрезка $\langle a,b \rangle$ в множество линейных функций.

 $x \in \langle a, b \rangle, \ \Phi(x)$ – линейная функция.

$$\Phi(x)(h) = c(x)h.$$

Def 3 (дифференциал). f – дифференцируема на $\langle a,b \rangle$

$$df(u,h) = f'(u)h = df.$$

Example. $x: \langle a, b \rangle \to \langle a, b \rangle$ – тождественная. dx(u, h) = h

Statement. $\Phi = c \cdot dx$, $\partial e c - heras flyhruus ha <math>\langle a, b \rangle$

$$f' = g$$
$$df = f'dx = gdx$$

Задача первообразной: дана линейная форма $\varphi=gdx$; найти функцию $f:df=\varphi$

Statement.

$$d(f\circ g)=(f'\circ g)\cdot g:dx=f'\circ gdg.$$

Example.

$$\int \sqrt{1-x^2} dx, \quad x \in (-1,1).$$

Сделаем замену $x=\sin t$, пусть $t\in [-\pi,\pi]$

$$\int \sqrt{1 - \sin^2(t)} \cos t dt = \int \cos^2(t) dt =$$

$$\int \frac{1 + \cos 2t}{2} dt = \frac{1}{2} \int ((1 + \cos 2t) dt =$$

$$\frac{1}{2} (t + \frac{1}{2} \int \cos t d(2t)) = \frac{1}{2} (t + \frac{\sin 2t}{2})$$

Тогда $\int \sqrt{1-x^2} dx = \frac{1}{2}(\arcsin x + \frac{\sin 2 \arcsin x}{2})$

Statement (Формула интегрирования по частям). (fg)' = f'g + fg' Перепишем:

$$d(fg) = gdf + fdg.$$

$$gdf = -fdy + d(fg).$$

$$\int gdf = fg - \int fdg.$$

Example.

$$\int \log x dx = x \log x - \int x d \log x = x \log x - \int 1 dx = x \log x - x + C.$$

Example.

$$\int e^x \sin x dx = \int \sin x de^x = \sin x e^x - \int \cos x e^x dx.$$
$$= \sin x e^x - \int x \cos x de^x = \sin x e^x - \cos x e^x - \int \sin x e^x dx.$$

Теперь решим уравнение и получим:

$$\int e^x \sin x dx = \frac{e^x \sin x - e^x \cos x}{2} + c.$$

2.5 Интеграл

Def 4. A – множество произвольной природы. $\Phi: A \to \mathbb{R}$. Φ – функционал на A.

Def 5. Интеграл – функционал на множестве функций, заданных на отрезке [a,b]. $f \mapsto \Phi(f)$

$$\begin{split} \Phi(f+g) &= \Phi(f) + \Phi(g). \\ \Phi(\alpha f) &= \alpha \Phi. \\ f &\geq 0 \Longrightarrow \Phi(f) \geq 0. \\ \langle c, d \rangle \subset \langle a, b \rangle, f &= \Phi(\chi) \langle c, d \rangle = d - c. \end{split}$$