Complex-Valued Signals

Digital Signal Processing

January 28, 2025

Complex Numbers

The standard form for $z \in \mathbb{C}$:

$$z = a + bi$$

where
$$i = \sqrt{-1}$$
.

Notation for real and imaginary parts:

$$Re(z) = a$$
, $Im(z) = b$.

Complex Addition

Adding two complex numbers:

$$z_1 = a_1 + b_1 i,$$

$$z_2 = a_2 + b_2 i.$$

Complex Addition

Adding two complex numbers:

$$z_1 = a_1 + b_1 i,$$

$$z_2 = a_2 + b_2 i.$$

Just add the real parts and imaginary parts, respectively:

$$z_1 + z_2 = (a_1 + a_2) + (b_1 + b_2)i.$$

Multiplying two complex numbers:

$$z_1 = a_1 + b_1 i,$$

$$z_2 = a_2 + b_2 i.$$

Multiplying two complex numbers:

$$z_1 = a_1 + b_1 i,$$

$$z_2 = a_2 + b_2 i.$$

Multiplying two complex numbers:

$$z_1 = a_1 + b_1 i,$$

$$z_2 = a_2 + b_2 i.$$

$$z_1 z_2 = (a_1 + b_1 i)(a_2 + b_2 i)$$

Multiplying two complex numbers:

$$z_1 = a_1 + b_1 i,$$

 $z_2 = a_2 + b_2 i.$

$$z_1 z_2 = (a_1 + b_1 i)(a_2 + b_2 i)$$

= $a_1 a_2 + a_1 b_2 i + b_1 a_2 i + b_1 b_2 i^2$

Multiplying two complex numbers:

$$z_1 = a_1 + b_1 i,$$

 $z_2 = a_2 + b_2 i.$

$$z_1 z_2 = (a_1 + b_1 i)(a_2 + b_2 i)$$

= $a_1 a_2 + a_1 b_2 i + b_1 a_2 i + b_1 b_2 i^2$
= $(a_1 a_2 - b_1 b_2) + (a_1 b_2 + a_2 b_1) i$

Polar Form

The polar form for $z \in \mathbb{C}$:

$$z = r\cos\phi + ir\sin\phi$$

r is the **modulus** or **magnitude** ϕ is the **argument**

Polar Form

The polar form for $z \in \mathbb{C}$:

$$z = r\cos\phi + ir\sin\phi$$

r is the **modulus** or **magnitude** ϕ is the **argument**

Equations:

$$r = |z| = \sqrt{\operatorname{Re}(z)^2 + \operatorname{Im}(z)^2}$$
$$\phi = \operatorname{atan2}\left(\operatorname{Im}(z), \operatorname{Re}(z)\right)$$

Any complex number $z \in \mathbb{C}$ can be written as an exponential:

$$z = re^{i\phi} = r\cos\phi + ir\sin\phi$$

Any complex number $z \in \mathbb{C}$ can be written as an exponential:

$$z = re^{i\phi} = r\cos\phi + ir\sin\phi$$

Why?

Any complex number $z \in \mathbb{C}$ can be written as an exponential:

$$z = re^{i\phi} = r\cos\phi + ir\sin\phi$$

$$e^{i\phi} = 1 + \frac{i\phi}{1!} + \frac{(i\phi)^2}{2!} + \frac{(i\phi)^3}{3!} + \cdots$$

Any complex number $z \in \mathbb{C}$ can be written as an exponential:

$$z = re^{i\phi} = r\cos\phi + ir\sin\phi$$

$$e^{i\phi} = 1 + \frac{i\phi}{1!} + \frac{(i\phi)^2}{2!} + \frac{(i\phi)^3}{3!} + \cdots$$
$$= 1 + \frac{i\phi}{1!} - \frac{\phi^2}{2!} - \frac{i\phi^3}{3!} + \cdots$$

Any complex number $z \in \mathbb{C}$ can be written as an exponential:

$$z = re^{i\phi} = r\cos\phi + ir\sin\phi$$

$$e^{i\phi} = 1 + \frac{i\phi}{1!} + \frac{(i\phi)^2}{2!} + \frac{(i\phi)^3}{3!} + \cdots$$

$$= 1 + \frac{i\phi}{1!} - \frac{\phi^2}{2!} - \frac{i\phi^3}{3!} + \cdots$$

$$= \left(1 - \frac{\phi^2}{2!} + \cdots\right) + i\left(\frac{\phi}{1!} - \frac{\phi^3}{3!} + \cdots\right)$$

Any complex number $z \in \mathbb{C}$ can be written as an exponential:

$$z = re^{i\phi} = r\cos\phi + ir\sin\phi$$

$$e^{i\phi} = 1 + \frac{i\phi}{1!} + \frac{(i\phi)^2}{2!} + \frac{(i\phi)^3}{3!} + \cdots$$

$$= 1 + \frac{i\phi}{1!} - \frac{\phi^2}{2!} - \frac{i\phi^3}{3!} + \cdots$$

$$= \left(1 - \frac{\phi^2}{2!} + \cdots\right) + i\left(\frac{\phi}{1!} - \frac{\phi^3}{3!} + \cdots\right)$$

$$= \cos\phi + i\sin\phi$$

$$z_1 = re^{i\phi}, \quad z_2 = se^{i\theta}$$

$$z_1 = re^{i\phi}, \quad z_2 = se^{i\theta}$$

$$z_1 z_2 = \left(r e^{i\phi} \right) \left(s e^{i\theta} \right)$$

$$z_1 = re^{i\phi}, \quad z_2 = se^{i\theta}$$

$$z_1 z_2 = (re^{i\phi}) (se^{i\theta})$$
$$= (rs) (e^{i\phi}e^{i\theta})$$

$$z_1 = re^{i\phi}, \quad z_2 = se^{i\theta}$$

$$z_1 z_2 = (re^{i\phi}) (se^{i\theta})$$
$$= (rs) (e^{i\phi}e^{i\theta})$$
$$= (rs)e^{i\phi+i\theta}$$

$$z_1 = re^{i\phi}, \quad z_2 = se^{i\theta}$$

$$z_1 z_2 = (re^{i\phi}) (se^{i\theta})$$
$$= (rs) (e^{i\phi}e^{i\theta})$$
$$= (rs)e^{i\phi+i\theta}$$
$$= (rs)e^{i(\phi+\theta)}$$

Let's multiply again:

$$z_1 = re^{i\phi}, \quad z_2 = se^{i\theta}$$

$$z_1 z_2 = (re^{i\phi}) (se^{i\theta})$$
$$= (rs) (e^{i\phi}e^{i\theta})$$
$$= (rs)e^{i\phi+i\theta}$$
$$= (rs)e^{i(\phi+\theta)}$$

Notice:

$$|z_1 z_2| = rs = |z_1||z_2|,$$

 $Arg(z_1 z_2) = \phi + \theta = Arg(z_1) + Arg(z_2)$

Moduli multiply Arguments add

Exponentiation in Euler Form

Take $z=re^{i\phi}$ to the power $x\in\mathbb{R}$:

$$z^x = \left(re^{i\phi}\right)^x$$
$$= r^x e^{i\phi x}$$

Inversion in Euler Form

The inverse of $z \in \mathbb{C}$ is just exponentiation by -1:

Inversion in Euler Form

The inverse of $z \in \mathbb{C}$ is just exponentiation by -1:

$$z^{-1} = (re^{i\phi})^{-1} = \frac{1}{r}e^{-i\phi}.$$

Inversion in Euler Form

The inverse of $z \in \mathbb{C}$ is just exponentiation by -1:

$$z^{-1} = (re^{i\phi})^{-1} = \frac{1}{r}e^{-i\phi}.$$

We can verify $zz^{-1} = z^{-1}z = 1$.

The conjugate of z = a + bi is

$$\bar{z} = a - bi$$
.

Useful tricks with conjugate:

The conjugate of z = a + bi is

$$\bar{z} = a - bi$$
.

Useful tricks with conjugate:

• Magnitude is $|z| = \sqrt{z\bar{z}} = \sqrt{a^2 + b^2}$

The conjugate of z = a + bi is

$$\bar{z} = a - bi$$
.

Useful tricks with conjugate:

- Magnitude is $|z| = \sqrt{z\overline{z}} = \sqrt{a^2 + b^2}$
- Inverse is $z^{-1} = \frac{\bar{z}}{|z|^2}$

The conjugate of z = a + bi is

$$\bar{z} = a - bi$$
.

Useful tricks with conjugate:

- Magnitude is $|z| = \sqrt{z\overline{z}} = \sqrt{a^2 + b^2}$
- Inverse is $z^{-1} = rac{ar{z}}{|z|^2}$
- Argument is $Arg(\bar{z}) = -Arg(z)$

Roots in Euler Form

The kth root of $z \in \mathbb{C}$ is just exponentiation by $\frac{1}{k}$:

Roots in Euler Form

The kth root of $z \in \mathbb{C}$ is just exponentiation by $\frac{1}{k}$:

$$\sqrt[k]{z} = z^{\frac{1}{k}} = (re^{i\phi})^{\frac{1}{k}} = r^{\frac{1}{k}}e^{\frac{i\phi}{k}}.$$

Roots in Euler Form

The kth root of $z \in \mathbb{C}$ is just exponentiation by $\frac{1}{k}$:

$$\sqrt[k]{z} = z^{\frac{1}{k}} = (re^{i\phi})^{\frac{1}{k}} = r^{\frac{1}{k}}e^{\frac{i\phi}{k}}.$$

Again, we can verify $(\sqrt[k]{z})^k = z$.

Remember our exponential signal:

$$x[n] = A\alpha^n$$

Remember our exponential signal:

$$x[n] = A\alpha^n$$

Now let A and α both be **complex numbers**.

$$A = |A|e^{i\phi}, \quad \alpha = |\alpha|e^{i\omega_0}$$

$$A = |A|e^{i\phi}, \quad \alpha = |\alpha|e^{i\omega_0}$$

$$x[n] = A\alpha^n$$

$$A = |A|e^{i\phi}, \quad \alpha = |\alpha|e^{i\omega_0}$$

$$x[n] = A\alpha^{n}$$
$$= |A|e^{i\phi}|\alpha|^{n}e^{i\omega_{0}n}$$

$$A = |A|e^{i\phi}, \quad \alpha = |\alpha|e^{i\omega_0}$$

$$x[n] = A\alpha^{n}$$

$$= |A|e^{i\phi}|\alpha|^{n}e^{i\omega_{0}n}$$

$$= |A||\alpha|^{n}e^{i(\omega_{0}n+\phi)}$$

$$A = |A|e^{i\phi}, \quad \alpha = |\alpha|e^{i\omega_0}$$

$$x[n] = A\alpha^{n}$$

$$= |A|e^{i\phi}|\alpha|^{n}e^{i\omega_{0}n}$$

$$= |A||\alpha|^{n}e^{i(\omega_{0}n+\phi)}$$

$$= |A||\alpha|^{n}(\cos(\omega_{0}n+\phi)+i\sin(\omega_{0}n+\phi))$$

Let's write that using Euler notation:

$$A = |A|e^{i\phi}, \quad \alpha = |\alpha|e^{i\omega_0}$$

$$x[n] = A\alpha^{n}$$

$$= |A|e^{i\phi}|\alpha|^{n}e^{i\omega_{0}n}$$

$$= |A||\alpha|^{n}e^{i(\omega_{0}n+\phi)}$$

$$= |A||\alpha|^{n}(\cos(\omega_{0}n+\phi) + i\sin(\omega_{0}n+\phi))$$

This is a sinusoid, with frequency ω_0 , phase ϕ , and exponential weighting by $|\alpha|^n$.