Здесь будет титульник, листай ниже

СОДЕРЖАНИЕ

1 ПОСТАНОВКА ЗАДАЧИ	ε
1.1 Описание входных данных	7
1.2 Описание выходных данных	7
2 МЕТОД РЕШЕНИЯ	8
3 ОПИСАНИЕ АЛГОРИТМОВ	11
3.1 Алгоритм конструктора класса cl1	11
3.2 Алгоритм метода print класса cl1	11
3.3 Алгоритм конструктора класса cl2	12
3.4 Алгоритм метода print класса cl2	12
3.5 Алгоритм конструктора класса cl3	12
3.6 Алгоритм метода print класса cl3	13
3.7 Алгоритм конструктора класса cl4	13
3.8 Алгоритм метода print класса cl4	14
3.9 Алгоритм функции main	14
4 БЛОК-СХЕМЫ АЛГОРИТМОВ	16
5 КОД ПРОГРАММЫ	18
5.1 Файл cl1.cpp	18
5.2 Файл cl1.h	18
5.3 Файл cl2.cpp	19
5.4 Файл cl2.h	19
5.5 Файл cl3.cpp	19
5.6 Файл cl3.h	20
5.7 Файл cl4.cpp	20
5.8 Файл cl4.h	21
5.9 Файл main.cpp	21
6 ТЕСТИРОВАНИЕ	23

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ24

1 ПОСТАНОВКА ЗАДАЧИ

Иерархия наследования

Описать четыре класса которые последовательно наследуют друг друга, последовательными номерами классов 1,2,3,4.

Реализовать программу, в которой использовать единственный указатель на объект базового класса (номер класса 1).

Наследственность реализовать так, что можно было вызвать методы, принадлежащие объекту конкретного класса, только через объект данного класса.

В закрытом разделе каждого класса определены два свойства: строкового типа для наименования объекта и целого типа для значения определенного целочисленного выражения.

Описание каждого класса содержит один параметризированный конструктор с строковым и целочисленным параметром.

В реализации каждого конструктора объекта определяются значения закрытых свойств:

- Наименование объекта по шаблону: «значение строкового параметра»_«номер класса»;
- Целочисленного свойства значением выражения возведения в степень номера класса целочисленного значения параметра конструктора.

Еще в описании каждого класса определен метод с одинаковым наименованием для всех классов, реализующий вывод значений закрытых свойств класса.

В основной функции реализовать алгоритм:

- 1. Вводится идентификатор и натуральное число от 2 до 10.
- 2. Создать объект класса 4, используя параметризированный конструктор,

которому в качестве аргументов передаются введенный идентификатор и натуральное число.

3. Построчно, для всех объектов согласно наследственности, от объекта базового (класс 1) до производного объекта (класса 4) вывести наименование объекта класса и значение целочисленного свойства.

1.1 Описание входных данных

Первая строка:

«идентификатор» «натуральное число»

Пример ввода:

Object 2

1.2 Описание выходных данных

Построчно (четыре строки):

«идентификатор»_ «номер класса» «значение целочисленного свойства»

Разделитель - 1 пробел.

Пример вывода:

Object_1 2

Object_2 4

Object_3 8

Object_4 16

2 МЕТОД РЕШЕНИЯ

Для решения задачи используется:

- функция main для основная функция программы;
- сіп объект стандартного потока ввода с клавиатуры;
- cout объект стандартного потока вывода на экран.

Класс cl1:

- свойства/поля:
 - о поле наименование класса:
 - наименование name;
 - тип string;
 - модификатор доступа private;
 - о поле целочисленное значение класса:
 - наименование value;
 - тип int;
 - модификатор доступа private;
- функционал:
 - о метод cl1 параметризированный конструктор;
 - о метод print вывод закрытых полей на экран.

Kласс cl2:

- свойства/поля:
 - о поле наименование класса:
 - наименование name;
 - тип string;
 - модификатор доступа private;
 - о поле целочисленное значение класса:
 - наименование value;

- тип int;
- модификатор доступа private;
- функционал:
 - о метод cl2 параметризированный конструктор;
 - о метод print вывод закрытых полей на экран.

Kласс cl3:

- свойства/поля:
 - о поле наименование класса:
 - наименование name;
 - тип string;
 - модификатор доступа private;
 - о поле целочисленное значение класса:
 - наименование value;
 - тип int;
 - модификатор доступа private;
- функционал:
 - о метод cl3 параметризированный конструктор;
 - о метод print вывод закрытых полей на экран.

Kласс cl4:

- свойства/поля:
 - о поле наименование класса:
 - наименование name;
 - тип string;
 - модификатор доступа private;
 - о поле целочисленное значение класса:
 - наименование value;
 - тип int;

- модификатор доступа private;
- функционал:
 - о метод cl4 параметризированный конструктор;
 - о метод print вывод закрытых полей на экран.

Таблица 1 – Иерархия наследования классов

No	Имя класса	Классы-	Модификатор	Описание	Номер
		наследники	доступа при		
			наследовании		
1	cl1			Первый класс	
		cl2	private		2
2	cl2			Второй класс	
		cl3	private		3
3	cl3			Третий класс	
		cl4	private		4
4	cl4			Четвертый класс	

3 ОПИСАНИЕ АЛГОРИТМОВ

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

3.1 Алгоритм конструктора класса cl1

Функционал: параметризированный конструктор.

Параметры: string name, int value.

Алгоритм конструктора представлен в таблице 2.

Таблица 2 – Алгоритм конструктора класса cl1

N₂	Предикат	Действия	N₂
			перехода
1		присваивание полю пате значение параметра пате и _1	2
2		присваивание полю value значение параметра value в 1 степени	Ø

3.2 Алгоритм метода print класса cl1

Функционал: вывод закрытых полей на экран.

Параметры: нет.

Возвращаемое значение: void.

Алгоритм метода представлен в таблице 3.

Таблица 3 – Алгоритм метода print класса cl1

No	Предикат	Действия	N₂
			перехода
1		вывод на экран значений закрытых полей объекта через пробел и	Ø
		переход на новую строку	

3.3 Алгоритм конструктора класса cl2

Функционал: параметризированный конструктор.

Параметры: string name, int value.

Алгоритм конструктора представлен в таблице 4.

Таблица 4 – Алгоритм конструктора класса cl2

No	Предикат	Действия	N₂
			перехода
1		присваивание полю пате значение параметра пате и _2	2
2		присваивание полю value значение параметра value во 2 степени	Ø

3.4 Алгоритм метода print класса cl2

Функционал: вывод закрытых полей на экран.

Параметры: нет.

Возвращаемое значение: void.

Алгоритм метода представлен в таблице 5.

Таблица 5 – Алгоритм метода print класса cl2

No	Предикат	Действия	N₂
			перехода
1		вывод на экран значений закрытых полей объекта через пробел и	Ø
		переход на новую строку	

3.5 Алгоритм конструктора класса cl3

Функционал: параметризированный конструктор.

Параметры: string name, int value.

Алгоритм конструктора представлен в таблице 6.

Таблица 6 – Алгоритм конструктора класса cl3

No	Предикат	Действия	No
			перехода
1		присваивание полю пате значение параметра пате и _3	2
2		присваивание полю value значение параметра value в 3 степени	Ø

3.6 Алгоритм метода print класса cl3

Функционал: вывод закрытых полей на экран.

Параметры: нет.

Возвращаемое значение: void.

Алгоритм метода представлен в таблице 7.

Таблица 7 – Алгоритм метода print класса cl3

No	Предикат	Действия	No
			перехода
1		вывод на экран значений закрытых полей объекта через пробел и	Ø
		переход на новую строку	

3.7 Алгоритм конструктора класса cl4

Функционал: параметризированный конструктор.

Параметры: string name, int value.

Алгоритм конструктора представлен в таблице 8.

Таблица 8 – Алгоритм конструктора класса cl4

No	Предикат	Действия	No
			перехода
1		присваивание полю пате значение параметра пате и _4	2
2		присваивание полю value значение параметра value в 4 степени	Ø

3.8 Алгоритм метода print класса cl4

Функционал: вывод закрытых полей на экран.

Параметры: нет.

Возвращаемое значение: void.

Алгоритм метода представлен в таблице 9.

Таблица 9 – Алгоритм метода print класса cl4

N₂	Предикат	Действия	No
			перехода
1		вывод на экран значений закрытых полей объекта через пробел и	Ø
		переход на новую строку	

3.9 Алгоритм функции main

Функционал: основная функция программы.

Параметры: нет.

Возвращаемое значение: int - код ошибки.

Алгоритм функции представлен в таблице 10.

Таблица 10 – Алгоритм функции таіп

N₂	Предикат	Действия	N₂
			перехода
1		инициализация переменных name типа string и value типа int	2
2		ввод значений name и value с клавиатуры	3
3		создание указателя object на класс cl1 с помощьй параметризированного конструктора класса cl4	4
4		вызов метода print() указателя object	5
5		вызов метода print() указателя object, переделанного под указатель на класс cl2	6
6		вызов метода print() указателя object, переделанного под указатель на класс cl3	7

N₂	Предикат	Действия	No
			перехода
7		вызов метода print() указателя object, переделанного под указатель на	8
		класс cl4	
8		возврат значения 0	Ø

4 БЛОК-СХЕМЫ АЛГОРИТМОВ

Представим описание алгоритмов в графическом виде на рисунках 1-2.

Рисунок 1 – Блок-схема алгоритма

Рисунок 2 – Блок-схема алгоритма

5 КОД ПРОГРАММЫ

Программная реализация алгоритмов для решения задачи представлена ниже.

5.1 Файл cl1.cpp

Листинг 1 – cl1.cpp

```
#include "cl1.h"
#include <iostream>

cl1::cl1(std::string name, int value)
{
    this -> name = name + "_1";
    this -> value = value;
}

void cl1::print()
{
    std::cout << name << ' ' << value << std::endl;
}</pre>
```

5.2 Файл cl1.h

Листинг 2 – cl1.h

```
#ifndef __CL1__H
#define __CL1__H

#include <iostream>

class cl1
{
   private:
       std::string name;
       int value;
   public:
       cl1(std::string name, int value);
       void print();
   };

#endif
```

5.3 Файл cl2.cpp

Листинг 3 – cl2.cpp

```
#include "cl2.h"
#include <iostream>

cl2::cl2(std::string name, int value): cl1(name, value)
{
    this -> name = name + "_2";
    this -> value = value * value;
}

void cl2::print()
{
    std::cout << name << ' ' << value << std::endl;
}</pre>
```

5.4 Файл cl2.h

Листинг 4 - cl2.h

```
#ifndef __CL2_H
#define __CL2_H

#include <iostream>
#include "cl1.h"

class cl2: private cl1
{
  private:
    std::string name;
    int value;
  public:
    cl2(std::string name, int value);
    void print();
  };

#endif
```

5.5 Файл cl3.cpp

Листинг 5 – cl3.cpp

```
#include "cl3.h"
```

```
#include <iostream>

cl3::cl3(std::string name, int value): cl2(name, value)
{
    this -> name = name + "_3";
    this -> value = value * value * value;
}

void cl3::print()
{
    std::cout << name << ' ' << value << std::endl;
}</pre>
```

5.6 Файл cl3.h

Листинг 6 - cl3.h

```
#ifndef __CL3__H
#define __CL3__H

#include <iostream>
#include "cl2.h"

class cl3: private cl2
{
  private:
    std::string name;
    int value;
  public:
    cl3(std::string name, int value);
    void print();
};

#endif
```

5.7 Файл cl4.cpp

Листинг 7 – cl4.cpp

```
#include "cl4.h"
#include <iostream>
cl4::cl4(std::string name, int value): cl3(name, value)
{
    this -> name = name + "_4";
```

```
this -> value = value * value * value;
}
void cl4::print()
{
   std::cout << name << ' ' << value << std::endl;
}</pre>
```

5.8 Файл cl4.h

Листинг 8 – cl4.h

```
#ifndef __CL4__H
#define __CL4__H

#include <iostream>
#include "cl3.h"

class cl4: private cl3
{
  private:
    std::string name;
    int value;
  public:
    cl4(std::string name, int value);
    void print();
};

#endif
```

5.9 Файл таіп.срр

Листинг 9 - main.cpp

```
#include <stdlib.h>
#include <stdio.h>
#include "cl1.h"
#include "cl2.h"
#include "cl3.h"
#include "cl4.h"

int main()
{
    std::string name; int value;
    std::cin >> name >> value;
    cl1* object = (cl1*) new cl4(name, value);
```

```
object->print();
  ((cl2*) object)->print();
  ((cl3*) object)->print();
  ((cl4*) object)->print();
  return(0);
}
```

6 ТЕСТИРОВАНИЕ

Результат тестирования программы представлен в таблице 11.

Таблица 11 – Результат тестирования программы

Входные данные	Ожидаемые выходные данные	Фактические выходные данные
Object 2	Object_1 2 Object_2 4 Object_3 8 Object_4 16	Object_1 2 Object_2 4 Object_3 8 Object_4 16
0b 5	0b_1 5 0b_2 25 0b_3 125 0b_4 625	0b_1 5 0b_2 25 0b_3 125 0b_4 625
0 10	0_1 10 0_2 100 0_3 1000 0_4 10000	0_1 10 0_2 100 0_3 1000 0_4 10000

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. ГОСТ 19 Единая система программной документации.
- 2. Методическое пособие студента для выполнения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe_posobie_dlya_laboratornyh_ra bot_3.pdf (дата обращения 05.05.2021).
- 3. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye_k_methodichke.pdf (дата обращения 05.05.2021).
- 4. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2019. 624 с.
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».
- 6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. М.: МИРЭА Российский технологический университет, 2018 1 электрон. опт. диск (CD-ROM).