第八讲:图论最短路径问题

本讲将简要介绍图论中的基本概念,并主要讲解图论中的最短路径问题。根据图的不同,我们将学习两种不同的算法: 迪杰斯特拉Dijkstra算法和Bellman-Ford(贝尔曼-福特)算法。

温馨提示

(1) 视频中提到的附件可在售后群的群文件中下载。

包括讲义、代码、我视频中推荐的资料等。

- 拓展资料(暂时不需要下载,视频中用到了再来下载)
- 赠品(有需要的同学可以下载)
- 播放器和帮助文档(进群后先下载帮助文档观看)
- 上课用的课件和代码(下载后记得解压,所有视频配套的都在里面)
- 免费更新的视频_下载后解压了才能用播放器打开
- (2) 关注我的微信公众号《数学建模学习交流》,后台发送"软件"两个字,可获得常见的建模软件下载方法;发送"数据"两个字,可获得建模数据的获取方法;发送"画图"两个字,可获得数学建模中常见的画图方法。另外,也可以看看公众号的历史文章,里面发布的都是对大家有帮助的技巧。
- (3) **购买更多优质精选的数学建模资料**,可关注我的微信公众号《数学建模学习交流》, 在后台发送"买"这个字即可进入店铺进行购买。
- (4) 视频价格不贵,但价值很高。单人购买观看只需要**58元**,和另外两名队友一起购买人均仅需**46元**,视频本身也是下载到本地观看的,所以请大家**不要侵犯知识产权**,对视频或者资料进行二次销售。

图的基本概念

图论中的图 (Graph) 是由若干给定的点及连接两点的线 所构成的图形,这种图形通常用来描述某些事物之间的某种 特定关系,用点代表事物,用连接两点的线表示相应两个事 物间具有这种关系。

一个图可以用数学语言描述为G(V(G),E(G))。V(vertex)指的是图的顶点集,E(edge)指的是图的边集。

根据边是否有方向, 可将图分为有向图和无向图。

另外,有些图的边上还可能有权值,这样的图称为有权图。

在线做图

https://csacademy.com/app/graph_editor/

如果网站进不去就换个网络试试

Matlab帮我们作图

% 函数graph(s,t): 可在 s 和 t 中的对应节点之间创建边, 并生成一个图 G1 = graph(s1, t1); plot(G1)

% 函数graph(s,t,w): 可在 s 和 t 中的对应节点之间以w的权重创建边,并生成一个图 G2 = graph(s2, t2);

plot(G2, 'linewidth', 2) % 设置线的宽度 % 下面的命令是在画图后不显示坐标 set(gca, 'XTick', [], 'YTick', []);

上面都是无向图 要做出有向图,只需要将graph改为digraph就行了。

注: (1) Matlab做出来的图不是很漂亮,要是节点比较少,还是推荐大家使用在线作图。 (2) 该函数在2015b之后的版本才支持,如果运行出错请下载新版本Matlab。

低版本Matlab报错提示:未定义与 'double' 类型的输入参数相对应的函数 'graph'。

无向图的权重邻接矩阵

带权重的四个节点的无向图

$$D = egin{bmatrix} 0 & Inf & 3 & 3 \ Inf & 0 & Inf & 5 \ 3 & Inf & 0 & 2 \ 3 & 5 & 2 & 0 \end{bmatrix}$$

无向图对应的权重邻接矩阵

	1	2	3	4
1	0	Inf	3	3
2	Inf	0	Inf	5
3	3	Inf	0	2
4	3	5	2	0

结论:

- (1) 无向图对应的权重邻接矩阵D是一个对称矩阵;
 - (2) 其主对角线上元素为0.
 - (3) D_{ij} 表示第i个节点到第j个节点的权重。

有向图的权重邻接矩阵

带权重的四个节点的有向图

$$D = egin{bmatrix} 0 & Inf & 8 & 3 \ Inf & 0 & Inf & 5 \ 8 & Inf & 0 & 2 \ Inf & Inf & Inf & 0 \end{bmatrix}$$

有向图对应的权重邻接矩阵

	1	2	3	4
1	0	Inf	8	3
2	Inf	0	Inf	5
3	8	Inf	0	2
4	Inf	Inf	Inf	0

- 结论: (1) 有向图对应的权重邻接矩阵D是一般不 再是对称矩阵;
 - (2) 其主对角线上元素为0.
 - (3) D_{ij} 表示第i个节点到第j个节点的权重。

迪杰斯特拉算法

图中有0-8共九个地点,地点之间若用直线连接则表明两地可直接到达,直线旁的数值表示两地的距离。

问题: 起点为0,终点为4,怎么走路程最短。

(假设出行方式相同, 例如都为步行)

玩一个APP

算法动画图解(安卓有破解版 苹果需要购买)

看视频演示

在线观看:

https://www.bilibili.com/video/av54668527

节点	0	1	2	3	4	5	6	7	8
Visited	0	0	0	0	0	0	0	0	0
Distance	Inf								
Parent	-1	-1	-1	-1	-1	-1	-1	-1	-1

节点	0	1	2	3	4	5	6	7	8
Visited	1	0	0	0	0	0	0	0	0
Distance	0	Inf							
Parent	0	-1	-1	-1	-1	-1	-1	-1	-1

节点	0	1	2	3	4	5	6	7	8
Visited	1	0	0	0	0	0	0	0	0
Distance	0	4	Inf	Inf	Inf	Inf	Inf	8	Inf
Parent	0	0	-1	-1	-1	-1	-1	0	-1

节点	0	1	2	3	4	5	6	7	8
Visited	1	1	0	0	0	0	0	0	0
Distance	0	4	Inf	Inf	Inf	Inf	Inf	8	Inf
Parent	0	0	-1	-1	-1	-1	-1	0	-1

节点	0	1	2	3	4	5	6	7	8
Visited	1	1	0	0	0	0	0	0	0
Distance	0	4	12	Inf	Inf	Inf	Inf	7	Inf
Parent	0	0	1	-1	-1	-1	-1	1	-1

™数学建模学习交流

节点	0	1	2	3	4	5	6	7	8
Visited	1	1	0	0	0	0	0	1	0
Distance	0	4	12	Inf	Inf	Inf	Inf	7	Inf
Parent	0	0	1	-1	-1	-1	-1	1	-1

节点	0	1	2	3	4	5	6	7	8
Visited	1	1	0	0	0	0	0	1	0
Distance	0	4	12	Inf	Inf	Inf	13	7	8
Parent	0	0	1	-1	-1	-1	7	1	7

节点	0	1	2	3	4	5	6	7	8
Visited	1	1	0	0	0	0	0	1	1
Distance	0	4	12	Inf	Inf	Inf	13	7	8
Parent	0	0	1	-1	-1	-1	7	1	7

节点	0	1	2	3	4	5	6	7	8
Visited	1	1	0	0	0	0	0	1	1
Distance	0	4	10	Inf	Inf	Inf	13	7	8
Parent	0	0	8	-1	-1	-1	7	1	7

节点	0	1	2	3	4	5	6	7	8
Visited	1	1	1	0	0	0	0	1	1
Distance	0	4	10	Inf	Inf	Inf	13	7	8
Parent	0	0	8	-1	-1	-1	7	1	7

节点	0	1	2	3	4	5	6	7	8
Visited	1	1	1	0	0	0	0	1	1
Distance	0	4	10	17	Inf	14	13	7	8
Parent	0	0	8	2	-1	2	7	1	7

节点	0	1	2	3	4	5	6	7	8
Visited	1	1	1	0	0	0	1	1	1
Distance	0	4	10	17	Inf	14	13	7	8
Parent	0	0	8	2	-1	2	7	1	7

节点	0	1	2	3	4	5	6	7	8
Visited	1	1	1	0	0	0	1	1	1
Distance	0	4	10	17	Inf	14	13	7	8
Parent	0	0	8	2	-1	2	7	1	7

节点	0	1	2	3	4	5	6	7	8
Visited	1	1	1	0	0	1	1	1	1
Distance	0	4	10	17	Inf	14	13	7	8
Parent	0	0	8	2	-1	2	7	1	7

节点	0	1	2	3	4	5	6	7	8
Visited	1	1	1	0	0	1	1	1	1
Distance	0	4	10	17	24	14	13	7	8
Parent	0	0	8	2	5	2	7	1	7

节点	0	1	2	3	4	5	6	7	8
Visited	1	1	1	1	0	1	1	1	1
Distance	0	4	10	17	24	14	13	7	8
Parent	0	0	8	2	5	2	7	1	7

节点	0	1	2	3	4	5	6	7	8
Visited	1	1	1	1	0	1	1	1	1
Distance	0	4	10	17	24	14	13	7	8
Parent	0	0	8	2	5	2	7	1	7

节点	0	1	2	3	4	5	6	7	8
Visited	1	1	1	1	1	1	1	1	1
Distance	0	4	10	17	24	14	13	7	8
Parent	0	0	8	2	5	2	7	1	7

节点	0	1	2	3	4	5	6	7	8
Visited	1	1	1	1	1	1	1	1	1
Distance	0	4	10	17	24	14	13	7	8
Parent	0	0	8	2	5	2	7	1	7

4 ← 5

节点	0	1	2	3	4	5	6	7	8
Visited	1	1	1	1	1	1	1	1	1
Distance	0	4	10	17	24	14	13	7	8
Parent	0	0	8	2	5	2	7	1	7

 $4 \leftarrow 5 \leftarrow 2$

节点	0	1	2	3	4	5	6	7	8
Visited	1	1	1	1	1	1	1	1	1
Distance	0	4	10	17	24	14	13	7	8
Parent	0	0	8	2	5	2	7	1	7

 $4 \leftarrow 5 \leftarrow 2 \leftarrow 8$

节点	0	1	2	3	4	5	6	7	8
Visited	1	1	1	1	1	1	1	1	1
Distance	0	4	10	17	24	14	13	7	8
Parent	0	0	8	2	5	2	7	1	7

 $4 \leftarrow 5 \leftarrow 2 \leftarrow 8 \leftarrow 7$

节点	0	1	2	3	4	5	6	7	8
Visited	1	1	1	1	1	1	1	1	1
Distance	0	4	10	17	24	14	13	7	8
Parent	0	0	8	2	5	2	7	1	7

 $4 \leftarrow 5 \leftarrow 2 \leftarrow 8 \leftarrow 7 \leftarrow 1$

节点	0	1	2	3	4	5	6	7	8
Visited	1	1	1	1	1	1	1	1	1
Distance	0	4	10	17	24	14	13	7	8
Parent	0	0	8	2	5	2	7	1	7

 $4 \leftarrow 5 \leftarrow 2 \leftarrow 8 \leftarrow 7 \leftarrow 1 \leftarrow 0$

迪杰斯特拉算法的一个缺点

可以用于有向图

但不能处理负权重

1是起点; 2是终点

节点	1	2	3
Visited	0	0	0
Distance	Inf	Inf	Inf
Parent	-1	-1	-1
	(1)		

节点	1	2	3	
Visited	1	0	0	
Distance	0	2	3	
Parent	1	1	1	
(3)				

节点	1	2	3	
Visited	1	1	0	
Distance	0	2	0	
Parent	1	1	2	
(5)				

节点	1	2	3
Visited	1	0	0
Distance	0	Inf	Inf
Parent	1	-1	-1
(2)			

节点	1	2	3
Visited	1	1	0
Distance	0	2	3
Parent	1	1	1
(4)			

节点	1	2	3
Visited	1	1	1
Distance	0	2	0
Parent	1	1	2
(6)			

如何修复该缺点?

1是起点; 2是终点

Bellman-Ford(贝尔曼-福特)算法

刚刚改变访问状态的节点为0号节点(A) 我们要更新与0号节点相邻的节点信息(B),注意, 这里的B节点是未访问的哦 更新的规则如下:

如果(A与B的距离+ A列表中的距离)小于(B列表中的距离),那么我们就将B列表中的距离更新为较小的距离,并将B的父亲节点更新为A

事实上,贝尔曼-福特算法不再将节点区分为是否已访问的状态,因为贝尔曼-福特模型是利用循环来进行更新权重的,且每循环一次,贝尔曼福特算法都会更新所有的节点的信息。

贝尔曼-福特算法不支持含有负权回路的图。 (视频中提到的Floyd(弗洛伊德)算法也不可以)

有兴趣的同学可以参考下面两份资料弄懂其实现原理:

https://blog.csdn.net/a8082649/article/details/81812000

https://www.bilibili.com/video/av43217121

什么是负权回路?

在一个图里每条边都有一个权值(有正有负)

如果存在一个环(从某个点出发又回到自己的路径),而且这个环上所有权值之和是负数,那这就是一个负权环,也叫负权回路。

存在负权回路的图是不能求两点间最短路的,因为只要在负权回路上不断兜圈子,所得的最短路长度可以任意小。

含有负权重的无向图都是负权回路。例如左图,可以在2-3之间无限循环。

注意:

贝尔曼-福特算法实际上处理的是具有负权重的有向图。

(且该有向图也不能含有负权回路)

庆幸的是,含有负权重的图特别少见,且一旦出现负权重,也往往是在有向图中。 因此大家不用担心算法求解不出来的问题。

Matlab计算最短路径

[P,d] = shortestpath(G,start,end [,'Method',algorithm])

功能: 返回图G中start节点到end节点的最短路径

输入参数:

- (1) G 输入图 (graph 对象 | digraph 对象)
- (2) start 起始的节点
- (3) end 目标的节点
- (4) [,'Method',algorithm]是可选的参数,表示计算最短路径的算法。一般我们不用手动设置,默认使用的是"auto",具体可设置的参数见下一页课件。

输出参数:

- (1) P-最短路径经过的节点
- (2) d-最短距离

注意:该函数matlab2015b之后才有哦

可选的算法

选项	说明
'auto' (默认值)	'auto' 选项会自动选择算法: •'unweighted' 用于没有边权重的 graph 和 digraph 输入。 •'positive' 用于具有边权重的所有 graph 输入,并要求权重为非负数。此选项还用于具有非负边权重的 digraph 输入。 •'mixed' 用于其边权重包含某些负值的 digraph 输入。图不能包含负循环。
'unweighted'	广度优先计算,将所有边权重都视为1。
'positive'	Dijkstra 算法,要求所有边权重均为非负数。
'mixed' (仅适用于 digraph)	适用于有向图的 Bellman-Ford 算法,要求图没有负循环。 尽管对于相同的问题,'mixed' 的速度慢于 'positive',但 'mixed' 更为通用,因为它允许某些边权重为负数。

Matlab演示

- %注意哦, Matlab中的图节点要从1开始编号, 所以这里把0全部改为了9
- %编号最好是从1开始连续编号,不要自己随便定义编号

返回任意两点的距离矩阵

d = distances(G [,'Method',algorithm])


```
>> D = distances(G)

D =

0 6 13 20 10 9 3 4 4 6 0 7 14 4 6 3 2 10 13 7 0 9 11 13 10 9 17 20 14 9 0 10 12 17 16 24 10 4 11 10 0 2 7 6 14 9 6 13 12 2 0 6 6 13 3 3 10 17 7 6 0 1 7 4 2 9 16 6 6 6 1 0 8 4 10 17 24 14 13 7 8 0
```

注意:该函数matlab2015b之后才有哦

找给定范围内所有的点

[nodeIDs,dist] = nearest(G,s,d [,'Method',algorithm])

返回图形 G 中与节点 s 的距离在 d 之内的所有节点。

nodelDs是符合条件的节点 Dist是这些节点与s的距离

注意:该函数matlab2016a之后才有哦

```
>> [nodelDs,dist] = nearest(G, 2, 10)
nodeIDs =
   8
dist =
  10
```


课后作业

代码作业(选做):

自己实现迪杰斯特拉算法,可定义一个函数。 [P,d] = Dijkstra(D,start,end)

输入参数:

- (1) D是权重邻接矩阵
- (2) start 起始的节点
- (3) end 目标的节点

输出参数:

- (1) P-最短路径经过的节点
- (2) d-最短距离

课后作业

论文作业(提交时请附上单独的代码文件打包一起提交)

下图为单行线交通网,每弧旁的数字表示通过这条线所需的费用。现在某人要从v1出发,通过这个交通网到v8去,求使总费用最小的旅行路线。

答案:对应的最短距离为12,路径为: $v_1 \rightarrow v_3 \rightarrow v_2 \rightarrow v_5 \rightarrow v_8$

