Digital VLSI Circuits and HDL

Mazad S. Zaveri, PhD

What can we implements using the three modeling methods?

- For Combinational Circuits
 - We can use:
 - Gate level modeling
 - Data flow modeling
 - Behavioral modeling

- For Sequencing Elements
 - We can use only:
 - Behavioral modeling
 - (We may have some readymade modules for sequencing elements; But if we use that, then it becomes more like "structural" modeling (similar to gate level modeling)

Writing Comments

```
a = b && c; // This is a one-line comment
/* This is a multiple line
   comment */
/* This is /* an illegal */ comment */
```

Signal Values

Table 3-1 Value Levels

Value Level	Condition in Hardware Circuits
0	Logic zero, false condition
1	Logic one, true condition
x	Unknown value
z	High impedance, floating state

Gate Primitives in Verilog

buf b1(OUT1, IN);
not n1(OUT1, IN);

```
out
                                                                                         out
wire OUT, IN1, IN2;
                                                           buf
                                                                                not
// basic gate instantiations.
                                                                -out
                                                                                           out
and al(OUT, IN1, IN2);
                                                        and
nand na1(OUT, IN1, IN2);
                                                                                   nand
or or1(OUT, IN1, IN2);
nor nor1(OUT, IN1, IN2);
xor x1(OUT, IN1, IN2);
xnor nx1(OUT, IN1, IN2);
                                                        or
                                                                                    nor
// More than two inputs; 3 input nand gate
                                                               ·out
                                                                                           out
nand na1_3inp(OUT, IN1, IN2, IN3);
                                                        xor
                                                                                   xnor
// gate instantiation without instance name
and (OUT, IN1, IN2); // legal gate instantiation
 // basic gate instantiations
```

Truth-tables for the gate primitives

- z means floating
- x means undefined

		il								
	and	0	1	х	z					
i2	0	0	0	0 x	0	_				
	0	0 0	1		x					
	x			x	x					
	z	0	x	x	x					

		i1							
	nand	0	1	х	z				
i2	0	1	1 0	1	1				
	1	1	0	х	x				
	х	1		x	x				
	z	1	x	x	x				

			0 1 x z						
	or	0	1	x	z				
	0	0	1	х	x				
i2	1	1	1	1	1				
12	x	x	1 1 1	x	x				
	z	x	1	x	x				

		i1						
	nor	0	1	х	z			
i2	0	1	0	х	х			
	1	0	0	х 0	0			
	x	x	0	x	x			
	z	x	0	x	x			

buf	in	out
	0	0
	1	1
	x	x
	z	x
	!	

	ı				i1						
ot	in	out		xor	0	1	x	z			
	0	1	i2	0	0	1	x	x			
	1	0		1	1	0	x	x			
	x	x		x	v	×	x x x	x			
	z	x			^	^	^				
	I			z	х	x	x	x			

		ļ i1							
	xnor	0	1	х	Z				
i2				x	x				
	1	0	0 1	X	x				
	x	1 0 x	x	x	x				
	z	x	x	x	x				