

เอกสารข้อเสนอโครงการ (Project Design Document)

รายละเอียดโครงการ					
	239 MW Combined-Cycle Co-Generation Power Plant at Sriracha				
ชื่อโครงการ	Chonburi by TOPSPP				
	โครงการโรงไฟฟ้าพลังงานร่วมขนาด 239 เมกะวัตต์ ณ อำเภอศรีราชา				
	จังหวัดชลบุรี ของบริษัท ท็อป เอสพีพี จำกัด				
	🗹 การเพิ่มประสิทธิภาพพลังงาน 🔲 การจัดการในภาคขนส่ง				
ประเภทโครงการ	พลังงานทดแทน ป่าไม้และพื้นที่สีเขียว				
T 3 2 2 2 1 1 1 2 4 1 1 1 3	🗌 การจัดการของเสีย				
	อื่นๆ				
ที่ตั้งโครงการ	42/7 หมู่ที่ 1 ถนนสุขุมวิท กม.124 ตำบลทุ่งสุขลา อำเภอศรีราชา				
	จังหวัดชลบุรี 20230				
พิกัดที่ตั้งโครงการ	13.104950, 100.898987				
เงินลงทุนทั้งหมดของ	มูลค่าโครงการ 11,805,690,000 บาท				
โครงการ					
ปริมาณก๊าซเรือน					
กระจกที่คาดว่าจะลด/	335,674 ตันคาร์บอนไดออกไซด์เทียบเท่าต่อปี (เฉลี่ย 7 ปี)				
ดูดกลับได้					
ระยะเวลาคิดคาร์บอน	7 ปี				
เครดิตของโครงการ	01/04/2561 - 31/03/2568				

รายละเอียดการจัดทำเอกสาร		
วันที่จัดทำเอกสารแล้วเสร็จ 18/03/2562		
เอกสารฉบับที่	1	

รายละเอียดผู้พัฒนาโครงการ (กรณีมีผู้พัฒนาโครงการมากกว่า 1 ราย ให้เพิ่มรายชื่อ)				
ผู้พัฒนาโครงการ	บริษัท ท็อปเอสพีพี จำกัด			
ชื่อผู้ประสานงาน (1)	นางพัทธ์ศิกานต์ รัตนสุวรรณ			
ตำแหน่ง	ผู้ประสานงานรัฐกิจสัมพันธ์			
ที่อยู่	สำนักงานกรุงเทพฯ:			
	555/1 ศูนย์เอนเนอร์ยี่คอมเพล็กซ์ อาคารเอ ชั้น 11 ถนนวิภาวดีรังสิต			
	แขวงจตุจักร เขตจตุจักร กรุงเทพฯ 10900			
โทรศัพท์	02-797-2999			
โทรสาร	02-797-2974			
E-mail	patsikarn@thaioilgroup.com			
ชื่อผู้ประสานงาน (2)	นายณัฐกุล อินดี			
ตำแหน่ง	ผู้ชำนาญการสิ่งแวดล้อม			
ที่อยู่	โรงกลั่นไทยออยล์:			
	42/1 หมู่ที่ 1 ถนนสุขุมวิท กิโลเมตรที่ 124			
	ตำบลทุ่งสุขลา อำเภอศรีราชา จังหวัดชลบุรี 20230			
โทรศัพท์	0-3840-8500, 0-3835-9000, 0-3835-1555			
โทรสาร	0-3835-1554, 0-3835-1444, 0-3835-9019			
E-mail	natthakun@thaioilgroup.com			

รายละเอียดเจ้าของโครงการ (กรณีเจ้าของโครงการมากกว่า 1 ราย ให้เพิ่มรายชื่อ)			
เจ้าของโครงการ	บริษัท ท็อปเอสพีพี จำกัด		
ชื่อผู้ประสานงาน (1)	นางพัทธ์ศิกานต์ รัตนสุวรรณ		
ตำแหน่ง	ผู้ประสานงานรัฐกิจสัมพันธ์		
ที่อยู่	สำนักงานกรุงเทพฯ:		
	555/1 ศูนย์เอนเนอร์ยี่คอมเพล็กซ์ อาคารเอ ชั้น 11 ถนนวิภาวดีรังสิต		
	แขวงจตุจักร เขตจตุจักร กรุงเทพฯ 10900		
โทรศัพท์	02-797-2999		
โทรสาร	02-797-2974		
E-mail	patsikarn@thaioilgroup.com		

รายละเอียดเจ้าของโครงการ (กรณีเจ้าของโครงการมากกว่า 1 ราย ให้เพิ่มรายชื่อ)				
ชื่อผู้ประสานงาน (2)	นายณัฐกุล อินดี			
ตำแหน่ง	ผู้ชำนาญการสิ่งแวดล้อม			
ที่อยู่	โรงกลั่นไทยออยล์:			
	42/1 หมู่ที่ 1 ถนนสุขุมวิท กิโลเมตรที่ 124			
	ตำบลทุ่งสุขลา อำเภอศรีราชา จังหวัดชลบุรี 20230			
โทรศัพท์	0-3840-8500, 0-3835-9000, 0-3835-1555			
โทรสาร	0-3835-1554, 0-3835-1444, 0-3835-9019			
E-mail	natthakun@thaioilgroup.com			

สารบัญ	หน้า
ส่วนที่ 1 รายละเอียดโครงการ	5
ส่วนที่ 2 ระเบียบวิธีการลดก๊าซเรือนกระจก	11
ส่วนที่ 3 การคำนวณการดูดกลับ/การลดการปล่อยก๊าซเรือนกระจก	12
ส่วนที่ 4 แผนการติดตามผลการดำเนินโครงการ	17
ภาคผนวก เอกสาร/หลักฐานประกอบ	25

ส่วนที่ 1 รายละเอียดโครงการ

1.1 รายละเอียดและกิจกรรมของโครงการ

บริษัท ท็อป เอสพีพี จำกัด ประกอบธุรกิจโรงไฟฟ้าขนาดเล็กที่ก่อสร้างขึ้นใหม่ เป็นโรงไฟฟ้า ขนาดเล็ก แบบพลังงานร่วม (Cogeneration) ตั้งอยู่บริเวณพื้นที่บริษัท ไทยออยล์ จำกัด (มหาชน) โดย มีวัตถุประสงค์เพื่อผลิตและจำหน่ายไฟฟ้าให้กับการไฟฟ้าฝ่ายผลิตแห่งประเทศไทย (กฟผ.) สำหรับ โครงการโรงไฟฟ้าขนาดเล็ก (Small Power Plant: SPP) และกระแสไฟฟ้าส่วนเหลือใช้สนับสนุนความ มั่นคงด้านไฟฟ้าให้กับบริษัทในกลุ่มไทยออยล์ ทั้งนี้ โรงไฟฟ้าของบริษัทฯ ได้นำพลังงานร่วมที่เกิดขึ้น มาผลิตไอน้ำด้วย เพื่อจำหน่ายให้กับบริษัท ไทยออยล์ จำกัด (มหาชน) ซึ่งเป็นการเพิ่มมูลค่า และใช้ พลังงานอย่างมีประสิทธิภาพ รวมถึงลดปัญหาด้านการปล่อยก๊าซเรือนกระจกของโครงการนอกจากนี้ โรงไฟฟ้าดังกล่าวเป็นโครงการที่ได้รับการส่งเสริมการลงทุนจากสำนักคณะกรรมการส่งเสริมการลงทุน ตามบัตรส่งเสริมเลขที่ 2015(2)/2557 ลงวันที่ 26 สิงหาคม พ.ศ. 2557 ประเภทกิจการสาธารณูปโภค และบริการพื้นฐาน

โรงไฟฟ้าขนาดเล็กของบริษัทฯ ประกอบด้วย หน่วยผลิตกระแสไฟฟ้าจำนวน 2 โครงการ ได้แก่ TOP SPP Block 1 และ TOP SPP Block 2 สำหรับผลิตกระแสไฟฟ้าด้วยเครื่องกำเนิดไฟฟ้าชนิด กังหันก๊าซ และชนิดกังหันไอน้ำ โดยใช้ก๊าซธรรมชาติเป็นเชื้อเพลิงชนิดเดียว มีกำลังการผลิต กระแสไฟฟ้าสูงสุด (Gross Capacity) ประมาณ 238.920 เมกะวัตต์ และมีกำลังผลิตไอน้ำทั้งสิ้น 496.452 ตัน/ชั่วโมง โดยโรงงานเดินเครื่องตลอด 24 ชั่วโมง

ปริมาณก๊าซเรือนกระจกที่คาดว่าจะลดได้จากโครงการในกรณีเดินเครื่องปกติเท่ากับ 335,674 tCO₂/y หรือคิดเป็น 2,349,718 tCO₂ ตลอดระยะเวลาคิดคาร์บอนเครดิตของโครงการ 7 ปี

รูปที่ 1 แสดงตำแหน่งที่ตั้งโครงการ

1.2 ขอบเขตการดำเนินโครงการ

โครงการโรงไฟฟ้าขนาดเล็กเป็นโรงไฟฟ้าพลังงานร่วม (Cogeneration) ใช้ก๊าซธรรมชาติเป็น เชื้อเพลิงหลักเพียงประเภทเดียว โดยมีรูปแบบและหลักการผลิตกระแสไฟฟ้า ดังนี้

- 1. หน่วยผลิตไฟฟ้ากังหันก๊าซ (Gas Turbine Generator, GTG) ทำหน้าที่ผลิตกระแสไฟฟ้า เริ่มต้นจากอัดอากาศให้มีความดันสูงแล้วนำไปผสมกับก๊าซธรรมชาติในห้องเผาไหม้ (Combustion Chamber) เมื่อส่วนผสมระหว่างก๊าซธรรมชาติและอากาศเกิดการเผาไหม้แล้ว จะกลายเป็นก๊าซร้อนที่มี การขยายตัวและถูกนำไปขับดันในใบพัด (Blade) ของเครื่องกังหันก๊าซ (Gas Turbine) โดยใบพัด ดังกล่าวจะส่งกำลังไปหมุนแกนเพลาซึ่งเชื่อมติดอยู่กับชุดเพืองส่งกำลัง (Load Gear) ไปขับโรเตอร์ของ เครื่องกำเนิดไฟฟ้าให้หมุน และเหนี่ยวนำทำให้เกิดกระแสไฟฟ้าขึ้น
- 2. หน่วยผลิตใอน้ำจากก๊าซร้อน (Heat Recovery Steam generator: HRSG) ทำหน้าที่ผลิตใอ น้ำจากก๊าซร้อนเหลือจากเครื่องกำเนิดไฟฟ้าชนิดกังหันก๊าซ (GT) จะผ่านมายังระบบผลิตใอน้ำจากก๊าซ ร้อน (HRSG) เพื่อถ่ายเทพลังงานความร้อนให้กับน้ำป้อนหม้อไอน้ำ (Boiler Feed water) จนทำให้น้ำ ป้อนหม้อไอน้ำกลายเป็นไอน้ำ กระบวนการนี้เป็นการนำความร้อนที่เหลือใช้จากการผลิตไฟฟ้าในหน่วย ผลิตไฟฟ้ากังหันก๊าซ (GTG) กลับมาใช้ให้เป็นประโยชน์อีกครั้ง โดยไอน้ำที่ผลิตได้จากเครื่อง HRSGs มีไอน้ำความดัน 2 ระดับ ได้แก่ ไอน้ำความดันสูงมาก (High-High Pressure Steam: HHP) ผลิตไอน้ำ สูงสุดประมาณ 137 ตัน/ชม./เครื่อง และไอน้ำความดันปานกลาง (Medium Pressure Steam: MP) ผลิต ไอน้ำสูงสุดประมาณ 14 ตัน/ชม./เครื่อง
- 3. หน่วยผลิตไฟฟ้าแบบกังหันไอน้ำ (Steam Turbine Generator, STG) ทำหน้าที่ผลิต กระแสไฟฟ้าจากเครื่องกังหันไอน้ำ (Steam Turbine) โดยไอน้ำจะถูกส่งเข้าไปหมุนเครื่องกังหันไอน้ำ (Steam Turbine) ที่มีเพลาเชื่อมต่ออยู่กับชุดเฟืองส่งกำลัง (Load Gear) ไปขับเครื่องกำเนิดไฟฟ้า ทำ ให้โรเตอร์หมุนเกิดการเหนี่ยวนำเป็นกระแสไฟฟ้าขึ้น

ตารางที่ 1 สรุปอุปกรณ์เครื่องกำเนิดไฟฟ้า

			SPP Block 1		SPP Block 2	
อุปกรณ์หลัก	ยี่ห้อ	ประเทศที่ ผลิต	กำลังการ ผลิต (MW)	จำนวน	กำลังการ ผลิต (MW)	จำนวน
เครื่องกำเนิดไฟฟ้าชนิด	กังหันก๊าซ (Gas Turbine	Generator, G	STG)			
	GE Frame 6B	Italy	38.200	1	-	-
	GE Frame 6B	Italy	36.600	2	-	-
Gas Turbine	Siemens SGT-800	Sweden	-	-	42.410	2
Generator	● Block 1: จำนวน GTG รวม 3 ตัว/ กำลังการผลิตพลังงานไฟฟ้ารวมประมาณ 111.400 MW					
	● Block 2: จำนวน GTG รวม 2 ตัว/ กำลังการผลิตพลังงานไฟฟ้ารวมประมาณ 84.820 MW					
	จำนวน GTG รวมทั้งหมด 5 ตัว /กำลังการผลิตพลังงานไฟฟ้ารวมประมาณ 196.220 MW					
เครื่องกำเนิดไฟฟ้าชนิด	กังหันไอน้ำ (Steam Turb	ine Generato	r, STG)			
Steam Turbine	MES	Japan	12.800	1	29.900	1
Generator	Block 1: จำนวน STG รวม 1 ตัว/ กำลังการผลิตพลังงานไฟฟ้ารวมประมาณ 12.800 MW					
	Block 2: จำนวน STG รวม 1 ตัว/ กำลังการผลิตพลังงานไฟฟ้ารวมประมาณ 29.900 MW					
	จำนวน STG รวมทั้งหมด 2 ตัว/ กำลังการผลิตพลังงานไฟฟ้ารวมประมาณ 42.700 MW					

ตารางที่ 2 สรุปอุปกรณ์เครื่องกำเนิดไอน้ำจากก๊าซร้อน

			SPP Block 1		SPP Block 2			
อุปกรณ์หลัก	ยี่ห้อ	ประเทศที่ ผลิต	กำลังการผลิต			กำลังการผลิต		
			HHP (T/H)	MP (T/H)	จำนวน	HHP (T/H)	MP (T/H)	จำนวน
เครื่องกำเนิดไอน้ำจากก๊าซร้อน (Heat Recovery Steam Generator, HRSG)								
	ALSTOM	Indonesia	60.012	11.016	1	64.200	8.400	2
	RCR Energy	Australia	137.016	3.096	2	-	-	-
Heat Recovery Steam Generator	 Block 1: จำนวน HRSG รวม 3 ตัว/ กำลังการผลิตพลังงานไอน้ำรวมประมาณ 351.252 T/H Block 2: จำนวน HRSG รวม 2 ตัว/ กำลังการผลิตพลังงานไอน้ำรวมประมาณ 145.200 T/H จำนวน HRSG รวมทั้งหมด 5 ตัว/ กำลังการผลิตพลังงานไอน้ำรวมประมาณ 496.452 T/H 							

หมายเหตุ รูปนี้เพื่อแสดงข้อมูล Capacity และ และการจำหน่ายไฟฟ้าและไอน้ำไปยังหน่วยงานต่างๆ ในภาพรวม ซึ่งปริมาณการผลิตและ ปริมาณการจำหน่ายไฟฟ้าและไอน้ำอาจเปลี่ยนแปลงไปในแต่ละปี

รูปที่ 2 แสดงแผนผังการส่งไฟฟ้าและไอน้ำให้หน่วยงานต่างๆ

รูปที่ 3 แสดง Flow Diagram ของโครงการ

รูปที่ 4 แสดงแผนที่ขอบเขตของโครงการและจุดรับ-จุดจ่ายพลังงาน

จากรูปที่ 4 แสดงแผนที่ขอบเขตของโครงการและจุดรับ-จุดจ่ายพลังงาน แสดงท่อผ่านสถานี ก๊าซและระบบรับพลังงานไฟฟ้าเข้าที่สถานีไฟฟ้า (กรณีมีการใช้ไฟฟ้าสำรอง) และระบบจ่ายพลังงาน ไฟฟ้าผ่านสถานีไฟฟ้า และพลังงานความร้อนในรูปไอน้ำผ่านท่อให้กับลูกค้า ซึ่งจุดรับและจ่ายพลังงาน ได้แก่ จุดรับก๊าซธรรมชาติที่สถานีก๊าซธรรมชาติของโรงไฟฟ้าตามลูกศรหมายเลข 1 จุดจำหน่ายไฟฟ้า ให้กับลูกค้าบริษัทในกลุ่มไทยออยล์ผ่านสถานีไฟฟ้าและสายส่งใต้ดินตามลูกศรหมายเลข 2 จุดซื้อขาย ไฟฟ้าระหว่างบริษัทฯ กับ EGAT ผ่านสถานีไฟฟ้าตามลูกศรหมายเลข 3 และจุดซื้อขายไอน้ำระหว่าง บริษัทฯ กับ บริษัท ไทยออยล์ จำกัด (มหาชน) ผ่านทางท่อตามลูกศรหมายเลข 4

1.3 การนับซ้ำ

ไม่มี เนื่องจากโครงการโรงไฟฟ้าขนาดเล็ก ไม่เคยรับการรับรองปริมาณก๊าซเรือนกระจก และ มาตรฐานอื่น

1.4 การพิสูจห์การดำเนินงานเพิ่มจากการดำเนินงานตามปกติ (Additionality)
☐ <u>ไม่ต้อง</u>พิสูจน์การดำเนินงานเพิ่มจากการดำเนินงานตามปกติ
 <u>ต้อง</u>พิสูจน์การดำเนินงานเพิ่มจากการดำเนินงานตามปกติ
☐ มีการดำเนินงานเพิ่มจากการดำเนินงานตามปกติ (Additionality)
☐ ไม่มีการดำเนินงานเพิ่มจากการดำเนินงานตามปกติ (Additionality)

โครงการต้องพิสูจน์การดำเนินงานเพิ่มเติมจากการดำเนินงานตามปกติ (Additionality) เนื่องจากเป็นโครงการขนาดใหญ่ที่มีการลงทุนรวมทั้งสิ้น 11,805,690,000 บาท ระยะเวลาคืนทุนของ โครงการอยู่ที่ 6 ปี 4 เดือน โดยอ้างอิง งบการเงินประจำปี พ.ศ. 2560 และแผน Business Plan ของ บริษัทฯ ตามลำดับ

ส่วนที่ 2 ระเบียบวิธีการลดก๊าซเรือนกระจก

2.1 ระเบียบวิธีการลดก๊าซเรือนกระจกที่ใช้

ระเบียบวิธีการคำนวณการลดก๊าซเรือนกระจกที่ใช้คือ T-VER-METH-EE-04 VERSION 02 การติดตั้งระบบผลิตพลังงานร่วมใหม่ทั้งระบบ (New Installation of Cogeneration System)

2.2 เงื่อนไขของกิจกรรมโครงการ

เงื่อนไขของกิจกรรมโครงการ	เหตุผลของโครงการ
1. ติดตั้งระบบผลิตพลังงานร่วมใหม่ทั้งระบบ โดย	โครงการนี้ได้ติดตั้งระบบผลิตพลังงานร่วมใหม่ทั้ง
ผลิตพลังงานความร้อนและไฟฟ้าร่วมกัน	ระบบ โดยผลิตพลังงานไฟฟ้าเพื่อจำหน่ายให้การ
(โคเจนเนอเรชั่น) เพื่อจำหน่ายหรือใช้เอง	ไฟฟ้าฝ่ายผลิตแห่งประเทศไทย (กฟผ.) และกลุ่ม
	ไทยออยล์
2. ระบบผลิตพลังงานร่วมต้องใช้เชื้อเพลิงฟอสซิล	โครงการนี้ใช้ก๊าซธรรมชาติเท่านั้น
เป็นเชื้อเพลิงหลัก	

2.3 ข้อมูลกรณีฐาน

แหล่งดูดกลับ/ปล่อย	ชนิดของก๊าซเรือน	รายละเอียดของกิจกรรมโครงการ				
ก๊าซเรือนกระจก	กระจก	1 15 d ~ (6 5 M T 6 A H 4 H 1 1 1 1 1 W (6 1 1 A H 1 1 1 1				
การดูดกลับ/การปล่อยก๊าซเรือนกร	การดูดกลับ/การปล่อยก๊าซเรือนกระจกจากกรณีฐาน (Baseline Sequestration/Emission)					
1. การผลิตพลังงานความร้อน		กรณีฐานใช้ระบบที่มีการผลิตพลังงาน				
า. การผลงานลง กลงกามรอน - จากเชื้อเพลิงฟอสซิล	CO_2	ความร้อนจากก๊าซธรรมชาติ (natural				
ุ ม การบอรพลง พอลาก		Gas)				
2. การผลิตพลังงานไฟฟ้าจาก	60	กรณีฐานใช้ระบบที่มีการใช้พลังงานไฟฟ้า				
เชื้อเพลิงฟอสซิล	CO_2	จากระบบสายส่ง				
การปล่อยก๊าซเรือนกระจกจากการ	รดำเนินโครงการ (Projec	ct Sequestration/Emission)				
1. การใช้เชื้อเพลิงฟอสซิล	60	โครงการมีการใช้ก๊าซธรรมชาติ (natural				
า. การเบเบยเพลงพยลขล	CO_2	Gas) ในการผลิตพลังงาน				
2.การใช้พลังงานไฟฟ้าจากระบบ		ระบบมีการรับไฟฟ้าจากระบบสายส่ง				
2.การเขพผงงานเพพางากระบบ สายส่ง	CO_2	ภายนอกในกรณีที่มีการหยุดซ่อมบำรุง				
ี ผายผง		เครื่องจักร				
การปล่อยก๊าซเรือนกระจกนอกขอบเขตโครงการ (Leakage Emission)						
ไม่เกี่ยวข้อง						

ส่วนที่ 3 การคำนวณการดูดกลับ/การลดการปล่อยก๊าซเรือนกระจก

3.1 การคำนวณการดูดกลับ/การลดการปล่อยก๊าซเรือนกระจกกรณีฐาน (Baseline Sequestration/Emission)

การปล่อยก๊าซเรือนกระจกจากกรณีฐาน สามารถคำนวณได้ดังนี้

ปริมาณการปล่อยก๊าซ เรือนกระจกจาก กรณี ฐานในปี y ปริมาณการปล่อยก๊าซเรือน กระจกจากการผลิตพลังงาน ความร้อนในปี γ + ปริมาณการปล่อยก๊าซเรือน กระจกจากการผลิตพลังงาน ไฟฟ้าในปี y

BE _y	=	$BE_{HG,y}$	+	$BE_{EG,y}$
tCO ₂ /year		tCO₂/year		tCO ₂ /year
1,343,804	=	425,115.9	+	918,688.5

ปริมาณการปล่อยก๊าซเรือนกระจกจากการผลิตพลังความร้อนในปี y (CO₂/year): BE_{нс,у}

$$BE_{HG,y}$$
 = $(HG_{PJ,y}/EF_{BL,y}) \times EF_{CO2,I,y} \times 10^{-3}$ = 425,115.9 tCO₂/year

พารามิเตอร์	ความหมาย	หน่วย	ค่าที่ใช้
HG _{PJ,y}	ปริมาณพลังงานความร้อนที่ผลิตได้จากการดำเนิน โครงการในปี y (คิดจาก ปริมาณไอน้ำ x เอ็นทาลปี)	MJ/year	6,441.1 x 10 ⁶
EF _{BL,y}	ประสิทธิภาพของอุปกรณ์ผลิตพลังงานความร้อนจาก เชื้อเพลิงฟอสซิลสำหรับกรณีฐาน ในปี y (Default Efficiency = 0.85)	-	0.85

EF _{CO2,I,y}	ค่าสัมประสิทธิ์การปล่อยก๊าซเรือนกระจกจากเชื้อเพลิง	kgCO ₂ /MJ	0.0561
	ฟอสซิลประเภท เ ในปี y (2006 IPCC Guideline for		
	National GHG Inventories)		

ปริมาณการปล่อยก๊าซเรือนกระจกจากการผลิตพลังงานไฟฟ้าในปี y (CO₂/year): BE_{εc,y}

BE _{EG,y} =	$(EG_{PJ,y} \times 10^{-3}) \times EF_{Elec} = 918,688.5$	5 tCO ₂ /year	
พารามิเตอร์	ความหมาย	หน่วย	ค่าที่ใช้
EG _{PJ,y}	ปริมาณพลังงานไฟฟ้าที่ผลิตได้จากการดำเนินโครงการ ในปี y	kWh/year	1,622.0 x 10 ⁶
EF _{Elec}	ค่าการปล่อยก๊าซเรือนกระจกจากการผลิตพลังงานไฟฟ้า	tCO ₂ /MWh	0.5664

หมายเหตุ ข้อมูลกรณีฐาน ใช้ข้อมูลเดือน ม.ค.-ธ.ค. 2561

3.2 การคำนวณการดูดกลับ/การปล่อยก๊าซเรือนกระจกจากการดำเนินโครงการ (Project Sequestration/Emission)

ปริมาณการปล่อยก๊าซ	= ปริมาณ	การปล่อยก๊าซเรือน	+	ปริมาณการปล่อยก๊าซเรือน		
เรือนกระจกรวมจากการ	กระจกจ	ากการใช้เชื้อเพลิง		กระจกจากการใช้พลังงาน		
ดำเนินโครงการในปี y	ฟอสซิล	ฟอสซิลในการดำเนินโครงการ		ไฟฟ้าในการดำเนินโครงการ		
	ใหปี y			ในปี y		
PE _y	=	$PE_{FF,y}$	+	$PE_{EL,y}$		
tCO₂/year		tCO ₂ /year		tCO₂/year		
1,008,130	=	1,008,130.1	+	0.0		

ปริมาณการปล่อยก๊าซเรือนกระจกจากการใช้เชื้อเพลิงฟอสซิลในการดำเนินโครงการในปี y (CO₂/year): PE_{FF.v}

$$PE_{FF,y}$$
 = $\sum_{(FC_{PJ,l,y} \text{ x NCV}_{i,y} \text{ x } EF_{CO2,l,y}) \text{ x } 10^{-3}}$ = 1,008,130.1 tCO₂/year

พารามิเตอร์	ความหมาย	หน่วย	ค่าที่ใช้
FC _{PJ,i,y}	ปริมาณการใช้เชื้อเพลิงฟอสซิลประเภท i สำหรับการ ดำเนินโครงการในปี y	SCF/year	17,617.8 x 10 ⁶
NCVi,y	ค่าความร้อนสุทธิ์ (Net Calorific Value) ของเชื้อเพลิง ฟอสซิลประเภท i ในปี y	MJ/SCF	1.02
EF _{CO2,I,y}	ค่าการปล่อยก๊าซเรือนกระจกจากการเผาไหม้เชื้อเพลิง ฟอสซิล (2006 IPCC Guideline for National GHG Inventories)	kgCO₂/MJ	0.0561

ปริมาณการปล่อยก๊าซเรือนกระจกจากการใช้พลังงานไฟฟ้าในการดำเนินโครงการในปี y (CO₂/year): PE_{EL,y}

$$PE_{EL,y}$$
 = $(EC_{PJ,y} \times 10^{-3}) \times EF_{Elec}$ = 0.0 tCO₂/year

พารามิเตอร์	ความหมาย	หน่วย	ค่าที่ใช้
EC _{PJ,y}	ปริมาณการใช้พลังงานไฟฟ้าจากระบบสายส่งที่ใช้ดำเนิน โครงการในปี y	kWh/year	0
EF _{Elec}	ค่าสัมประสิทธิ์การปล่อยก๊าซเรือนกระจกจากการผลิต พลังงานไฟฟ้า	tCO ₂ /MWh	0.5664

หมายเหตุ

- 1. ข้อมูลการปล่อยก๊าซเรือนกระจกจากการดำเนินโครงการ ใช้ข้อมูลเดือน ม.ค.-ธ.ค. พ.ศ.2561
- 2. ปี พ.ศ. 2561 ไม่มีการนำเข้าพลังงานไฟฟ้าจากภายนอกขอบเขตโครงการหรือระบบสายส่ง โดยหาก ในช่วงการติดตามประเมินผลมีการนำเข้าพลังงานไฟฟ้าจากภายนอกขอบเขตโครงการหรือระบบสายส่ง มาใช้ในโครงการ จะดำเนินการประเมินการปล่อยก๊าซเรือนกระจกในส่วนนี้เพิ่มเติม
- 3.3 การคำนวณการปล่อยก๊าซเรือนกระจกนอกขอบเขตโครงการ (Leakage Emission)
 ไม่มีการดำเนินงานที่เกี่ยวข้อง

3.4 การคำนวณการดูดกลับ/การปล่อยก๊าซเรือนกระจกที่ได้จากการดำเนินโครงการ (Carbon Sequestration/Emission)

การลดการปล่อยก๊าซเรือนกระจกจากโครงการ สามารถคำนวณได้ดังนี้

การลดการปล่อยก๊าซ = การปล่อยก๊าซเรือนกระจก - การปล่อยก๊าซเรือนกระจกจาก เรือนกระจกในปี y จากกรณีฐาน ในปี y การดำเนินโครงการในปี y

ER _y	=	BE _y	-	PE_y	
tCO₂/year		tCO₂/year		tCO ₂ /year	
335,674	=	1,343,804	-	1,008,130	

ดังนั้น โครงการนี้จะสามารถลดการปล่อยก๊าซเรือนกระจกได้ 335,674 tCO₂/year

3.5 สรุปปริมาณก๊าซเรือนกระจกที่คาดว่าจะลดได้

- 3.5.1 วันที่เริ่มเดินระบบหรือดำเนินกิจกรรมของโครงการที่ก่อให้เกิดการลดก๊าซเรือนกระจก: บริษัท ท็อปเอสพีพี จำกัด ดำเนินการซื้อ-ขาย เชิงพาณิชย์ (COD) เมื่อวันที่ 11 เมษายน พ.ศ. 2559
- 3.5.2 วันที่เริ่มคิดเครดิต: วันที่ 1 เมษายน พ.ศ. 2561
- 3.5.3 ระยะเวลาการคิดเครดิต: ตั้งแต่วันที่ 1 เมษายน พ.ศ. 2561 ถึงวันที่ 31 มีนาคม พ.ศ. 2568

ตารางที่ 3 สรุปปริมาณก๊าซเรือนกระจกที่คาดว่าจะลดได้

ปี	ปริมาณการ ปล่อยก๊าซเรือน กระจกจากกรณี ฐาน	ปริมาณการ ปล่อยก๊าซเรือน กระจกจากการ ดำเนินโครงการ	ปริมาณการ ปล่อยก๊าซเรือน กระจกนอก ขอบเขต โครงการ	ปริมาณการลด การปล่อยก๊าซ เรือนกระจก
2561 (เม.ยธ.ค.)	1,007,853	756,098	-	251,756
2562	1,343,804	1,008,130	-	335,674
2563	1,343,804	1,008,130	-	335,674
2564	1,343,804	1,008,130	-	335,674
2565	1,343,804	1,008,130	-	335,674
2566	1,343,804	1,008,130	-	335,674
2567	1,343,804	1,008,130	-	335,674
2568 (ม.คมี.ค.)	335,951	252,033	-	83,919
รวม	9,406,628	7,056,910	-	2,349,718
(tCO ₂)				
จำนวนปี	7 ปี			
เฉลี่ยปีละ	1,343,804	1,008,130	-	335,674
(tCO ₂ /y)				

ส่วนที่ 4 แผนการติดตาผลการดำเนินโครงการ

4.1 สรุปแนวทางการติดตามผล

บริษัท ท็อป เอสพีพี จำกัด (TOP SPP) ซึ่งเป็นผู้พัฒนาโครงการได้มีการจัดตั้งคณะทำงานที่ได้รับ การอบรมเพื่อเข้าใจถึง วัตถุประสงค์ ขั้นตอนในการดำเนินงาน การติดตามผล และประเมินผลของ โครงการ โดยจะมีการประเมินปริมาณการปล่อยก๊าซเรือนกระจกจากการดำเนินโครงการในแต่ละเดือน โดยใช้ข้อมูลที่มีความน่าเชื่อถือจากมิเตอร์ที่มีการบันทึกผลอย่างเป็นระบบและใช้เป็นมาตรวัดในการซื้อ ขายโดยมีการสอบเทียบ ดังนี้

ตารางที่ 4 แสดงรายละเอียดมิเตอร์ซื้อขายไฟฟ้าและความร้อน (ไอน้ำ)

		รายละเอียดมิ	เตอร์	ระยะเวลา	
บริษัทคู่ค้า	วัตถุประสงค์	หน่วยการ ผลิต/ โครงการที่	Serial/Tag No.	สอบเทียบ มิเตอร์	ผู้สอบเทียบมิเตอร์
		TOP SPP Block 1: Run A	10521810	ทุกๆ 3 ปี	
บริษัท ปตท.	มิเตอร์	TOP SPP Block 1: Run B	10521811		บริษัท ปตท. จำกัด
จำกัด (มหาชน)	ซื้อ-ขาย ก๊าซ — ธรรมชาติ	TOP SPP Block 2: Run A	10521812		(มหาชน)
		TOP SPP Block 2: Run B	1051813		
การไฟฟ้าฝ่าย ผลิตแห่ง ประเทศไทย (EGAT)	มิเตอร์ ซื้อ-ขายไฟฟ้า	EGAT	50074384/5 (MB1) 50074386/7 (MB2) 50743317/18 (MD1) 50743319/20 (MD2) 50743322/21 (ME1)	ทุกๆ 1 ปี	การไฟฟ้าฝ่ายผลิต แห่งประเทศไทย (EGAT)
บริษัท ไทยออยล์	มิเตอร์	HDS 2/3	MN-1411A015-01 MN-1411A004-01	ทุกๆ Major Turnaround	บริษัท ท็อป เอสพีพี
เทยออยล จำกัด (มหาชน)	ซื้อ-ขายไฟฟ้า	EIPSA-3	MN-1411A001-01 MN-1411A016-01	ตามแผนของ ลูกค้า*้	จำกัด

		รายละเอียดมิ	เตอร์	ระยะเวลา	
บริษัทคู่ค้า	วัตถุประสงค์	หน่วยการ ผลิต/ โครงการที่	Serial/Tag No.	สอบเทียบ มิเตอร์	ผู้สอบเทียบมิเตอร์
		HCC-2	MN-1411A020-01 MN-1410A023-01		
		Offsite &	MN-1501A007-01 MN-1501A011-01		
		Offsite & Movement	MN-1501A004-01 MN-1501A006-01		
บริษัท ลาบิกซ์ จำกัด	มิเตอร์ ซื้อ-ขายไฟฟ้า	LABIX	MN-1410A016-01 MN-1502A013-01	ทุกๆ Major Turnaround ตามแผนของ ลูกค้า*	บริษัท ท็อป เอสพีพี จำก ั ด
บริษัท ไทยออยล์ จำกัด (มหาชน)	มิเตอร์ ชื้อ-ขาย ไอน้ำ	TOP	841FQI001A/B (HHP Steam) 841FQI006 (HP Steam) 841FQI009A/B (MP Steam) 841FQI013A/B (LP Steam)	์ ทุกๆ 1 ปี [*]	บริษัท ท็อป เอสพีพี จำกัด

หมายเหตุ

* คือ การตรวจสอบการซื้อขายไฟฟ้าตามสัญญาหรือการตรวจสอบมิเตอร์ไอน้ำเมื่อลูกค้าร้องขอ

ข้อมูลปริมาณการซื้อขาย ก๊าซเชื้อเพลิงธรรมชาติ ไฟฟ้า และไอน้ำ มีหลักฐานในการติดตามผล เป็นไปตามใบเรียกเก็บเงิน (Billing) ดังต่อไปนี้

- 1. ปริมาณการใช้เชื้อเพลิงก๊าซธรรมชาติ ที่ซื้อจาก บริษัท ท็อปเอสพีพี จำกัด (PTT)
- ปริมาณการขายไฟฟ้าให้กับ บริษัท ไทยออยล์ จำกัด (มหาชน) (TOP) บริษัท ลาบิกซ์ จำกัด (LABIX) และ การไฟฟ้าฝ่ายผลิตแห่งประเทศไทย (EGAT)
- 3. ปริมาณการขายไอน้ำให้กับ บริษัท ไทยออยล์ จำกัด (มหาชน) (TOP)

เนื่องจากต้องมีการปันส่วนการผลิตไฟฟ้าที่ผลิตได้จากพลังงานความร้อน (ไอน้ำ) ที่ผลิตได้เองจาก โครงการฯเท่านั้น โดยไม่นับรวมปริมาณไฟฟ้าที่ผลิตได้จากพลังงานความร้อนที่ซื้อมาจากภายนอก โครงการฯ จึงต้องมีการใช้ข้อมลเพิ่มเติมเพื่อประกอบการปันส่วน จากมิเตอร์ดังต่อไปนี้

- 1. มิเตอร์ตรวจวัดปริมาณไอน้ำที่ผลิตเองได้จาก HRSG ของ บริษัท ท็อป เอสพีพี จำกัด
- 2. มิเตอร์ตรวจวัดปริมาณไอน้ำที่เข้าเครื่องกำเนิดไฟฟ้าชนิดกังหันไอน้ำของ บริษัท ท็อป เอสพีพี จำกัด
- 3. มิเตอร์ไฟฟ้าที่ผลิตได้จาก Gas Turbine Generator และ Steam Turbine Generator ของ บริษัท ท็อป เอสพีพี จำกัด

รูปที่ 5 แสดง Flow ในการปันส่วนการผลิตไฟฟ้าที่ผลิตได้จากพลังงานความร้อน (ไอน้ำ) ที่ผลิตได้เอง จากโครงการฯเท่านั้น

วิธีการปันส่วน

1. คำนวณสัดส่วนพลังงานความร้อน (ไอน้ำ) ที่เข้า STG (ไม่รวมปริมาณไอน้ำที่ซื้อจากภายนอก)

$$= (3+6)/(7+8)$$
 _____eq.1

2. คำนวณสัดส่วนปริมาณไฟฟ้าที่ผลิตได้จาก STG ทั้งหมด (ไม่รวมพลังไฟฟ้าที่ผลิตได้จาก ปริมาณไอน้ำที่ซื้อจากภายนอก)

3. คำนวณสัดส่วนไฟฟ้าที่ผลิตได้ทั้งหมดของโครงการ (ไม่รวมพลังไฟฟ้าที่ผลิตได้จากปริมาณไอ น้ำที่ซื้อจากภายนอก)

= [(eq.2) + พลังงานไฟฟ้าที่ผลิตได้จาก GTG ทั้งหมด (MJ)] / [พลังงานไฟฟ้าที่ผลิต จาก STG ทั้งหมด หรือ + พลังงานไฟฟ้าที่ผลิตได้จาก GTG ทั้งหมด (MJ)]

ตารางที่ 5 แสดงรายละเอียดมิเตอร์ไฟฟ้าและไอน้ำเพิ่มเติม เพื่อใช้ในการปันส่วนการผลิตไฟฟ้าที่ผลิต ได้จากพลังงานความร้อน (ไอน้ำ) ที่ผลิตได้เองจากโครงการฯเท่านั้น

รายละเอียดมิเตอร์			521121222	
วัตถุประสงค์	หน่วยการ ผลิต/ โครงการที่	Serial/Tag No	ระยะเวลา สอบเทียบ มิเตอร์	ผู้สอบเทียบมิเตอร์
มิเตอร์ตรวจวัดปริมาณไอน้ำ ที่ผลิตได้ จาก HRSG	TOP SPP Block 1 TOP SPP Block 2	B-84019 HHP: 840-FI-005-TX MP: 840-FI-006-TX B-84051 HHP: 840-FI-303-B-TX MP: 840-FI-308-B-TX B-84052 HHP: 840-FI-403-B-TX MP: 840-FI-603-B-TX MP: 840-FI-623-B-TX MP: 840-FI-623-B-TX MP: 840-FI-623-B-TX MP: 840-FI-703-B-TX	ทุกๆ 2 ปี	บริษัท ท็อป เอสพีพี จำกัด
มิเตอร์ตรวจวัดปริมาณไอน้ำ ที่เข้าเครื่องกำเนิดไฟฟ้า ชนิดกังหันไอน้ำ (Steam Turbine Generator)	TOP SPP Block 1	ST-85056 HHP: 850-FI-004-TX	ทุกๆ 2 ปี	บริษัท ท็อป เอสพีพี จำกัด
	TOP SPP Block 2	ST-85055 HHP: 850-FI-019-B-TX		0 11171

ราเ	ยละเอียดมิเต	อร์	54141222	ผู้สอบเทียบมิเตอร์
วัตถุประสงค์	หน่วยการ ผลิต/ โครงการที่	Serial/Tag No	ระยะเวลา สอบเทียบ มิเตอร์	
		MP: 850-FI-021-B-TX		
		GT-85019		
		MN-1411A021-01		
	TOP SPP	GT-85051		
	Block 1	MN-1411A019-01		
มิเตอร์ไฟฟ้าที่ผลิตได้จาก		GT-85052		บริษัท ท็อป เอสพีพี
Gas Turbine Generator		MN-1411A014-01	ทุกๆ 1 ปี	จำกัด
		GT-85053		
	TOP SPP	MN-1410A022-01		
	Block 2	GT-85054		
		MN-1411A002-01		
	TOP SPP	ST-85056		
มิเตอร์ไฟฟ้าที่ผลิตได้จาก	Block 1	MN-1501A005-01	200 4 A	บริษัท ท็อป เอสพีพี
Steam Turbine Generator	TOP SPP	ST-85055	ทุกๆ 1 ปี	จำกัด
	Block 2	MN-1411A018-01		

สำหรับผลการดำเนินโครงการและการคำนวณข้อมูลการปล่อยหรือลดก๊าซเรือนกระจก ได้รับการ ตรวจสอบโดยหัวหน้างานผู้รับผิดชอบ และจะมีการเก็บข้อมูลและเอกสารทั้งหมดตลอดระยะเวลาของ โครงการ ทั้งนี้ พารามิเตอร์ที่ใช้ในการติดตามผลดำเนินโครงการตามระเบียบวิธีการคำนวณการลดก๊าซ เรือนกระจก T-VER-METH-EE-04 Version 02

แผนผังข้อมูลและการตรวจสอบความถูกต้องของข้อมูลในแต่ละเดือน ดังนี้

ปริมาณการใช้เชื้อเพลิงก๊าซธรรมชาติ จาก ใบเรียกเก็บเงิน
 (Billing) ที่ซื้อจาก PTT
 ปริมาณการขายไฟฟ้าให้กับ TOP LABIX และ E-GAT จากใบ
 เรียกเก็บเงินการซื้อขาย (Billing)
 ปริมาณการขายไอน้ำให้กับ TOP จากใบเรียกเก็บเงินการซื้อ
 ขาย (Billing)
 ส่วนงาน บัญชีการเงิน

Monthly Report
 Monthly Report
 ส่วนงาน นิ้ญชีการเงิน

4.2 พารามิเตอร์ที่ไม่ต้องติดตามผล

ข้อมูลและพารามิเตอร์ที่ไม่ต้องมีการติดตามผลรวมถึงวิธีการตรวจวัด และการประเมิน ตาม ข้อกำหนดของ อบก. T-VER-METH-EE-04 Version 02

พารามิเตอร์	Eff _{BL,y}
ค่าที่ใช้	0.85
หน่วย	-
ความหมาย	ประสิทธิภาพอุปกรณ์ผลิตพลังงานความร้อนจากเชื้อเพลิงฟอสซิลสำหรับกรณีฐาน ในปี y
แหล่งข้อมูล	กฏกระทรวง เรื่องกำหนดประเภท หรือขนาดของอาคาร และมาตรฐาน หลักเกณฑ์ และวิธีการ
	ในการออกแบบอาคารเพื่อการอนุรักษ์พลังงาน พ.ศ. 2552

พารามิเตอร์	EF _{CO2,i}
ค่าที่ใช้	56100
หน่วย	kgCO ₂ /TJ
ความหมาย	ค่าการปล่อยก๊าซเรือนกระจกจากการเผาใหม้เชื้อเพลิงฟอสซิลประเภท i
แหล่งข้อมูล	ตารางที่ 1.4 2006 IPCC Guidelines for National GHG Inventories

พารามิเตอร์	EF _{Elec}			
ค่าที่ใช้	0.5664			
หน่วย	tCO ₂ /MWh			
ความหมาย	ค่าการปล่อยก๊าซเรือนกระจกจากการผลิตพลังงานไฟฟ้า ตามที่ อบก. กำหนด			
แหล่งข้อมูล	ทางเลือกที่ 1 กรณีที่ใช้พลังงานไฟฟ้าจากระบบสายส่ง ใช้ค่าจากรายงานผลการศึกษาค่าการ			
	ปล่อยก๊าซเรือนกระจกจากการผลิตพลังงานไฟฟ้าของประเทศไทยฉบับล่าสุด โดย อบก.			
	ทางเลือกที่ 2 กรณีที่ใช้พลังงานไฟฟ้าที่ผลิตเอง ใช้ค่าที่คำนวณตามวิธีการที่ อบก. กำหนด			
	ทางเลือกที่ 3 กรณีที่ใช้พลังงานไฟฟ้าจากผู้ผลิตอื่นๆ ใช้ค่าที่คำนวณตามวิธีการที่ อบก. กำหนด			

พารามิเตอร์	NCV _{i,y}
ค่าที่ใช้	1.02
หน่วย	MJ/Unit
ความหมาย	ค่าความร้อนสุทธิ (Net Calorific Value) ของพลังงานฟอสซิลประเภท i ในปี y
แหล่งข้อมูล	รายงานสถิติพลังงานของประเทศไทย กรมพัฒนาพลังงานทดแทนและอนุรักษ์พลังงาน กระทรวง
	พลังงาน

4.3 พารามิเตอร์ที่ต้องติดตามผล

ข้อมูลและพารามิเตอร์ที่ต้องมีการติดตามผลรวมถึงวิธีการตรวจวัด และการประเมิน ตาม ข้อกำหนดของ อบก. T-VER-METH-EE-04 Version 02

พารามิเตอร์	$HG_{PJ,y}$				
หน่วย	MJ/year				
ความหมาย	ปริมาณพลังงานความร้อน (ไอน้ำ) ที่ผลิตได้สุทธิจากการดำเนินโครงการ ในปี y				
แหล่งข้อมูล	Billing การซื้อขายไอน้ำระหว่าง TOP SPP กับ TOP โดยใช้ปริมาณ Ton ตาม Billing				
วิธีการติดตามผล	ตรวจวัดพารามิเตอร์ที่ใช้ในการคำนวณพลังงานความร้อน จากมิเตอร์ซื้อขายไอน้ำระหว่างบริษัท				
	ท็อป เอสพีพี จำกัด กับบริษัท ไทยออยล์ จำกัด (มหาชน) โดยพิจารณาพลังงานไอน้ำเฉพาะ				
	HHP HP MP ที่ขาย (Export) – ปริมาณไอน้ำที่ซื้อ (Import) ของโครงการฯ และอ้างอิงค่าเอ็น				
	ทาลปี ตามรายงานประจำเดือน บริษัท ท็อป เอสพีพี จำกัด ในการแปลงหน่วยจาก Ton เป็น M.				
	โดยใช้ค่าเอ็นทาลปีที่ใช้ในการคำนวณ ดังนี้				
	HHP Steam = 3,367.60 MJ/Ton				
	HP Steam = 3,038.73 MJ/Ton				
	MP Steam = 2,895.97 MJ/Ton				
	LP Steam = 2,738.06 MJ/Ton				

0 5						
พารามิเตอร์	$EG_{PJ,y}$					
หน่วย	kWh/year					
ความหมาย	ปริมาณพลังงานไฟฟ้าที่ผลิตได้สุทธิจากการดำเนินโครงการในปี y					
แหล่งข้อมูล	-Billing การซื้อขายไฟฟ้าระหว่าง TOP SPP กับ TOP LABIX และ EGAT โดยใช้ปริมาณ kWh					
	ตาม Billing					
	-ข้อมูลการติดตามมิเตอร์ต่าง ๆดังหน้า 19-20					
วิธีการติดตามผล	ตรวจวัดจากมิเตอร์ซื้อขายไฟฟ้าระหว่าง TOP SPP กับ TOP LABIX และ EGAT จาก Billing					
	สุทธิทั้งหมด คูณสัดส่วนการปันส่วนปริมาณไฟฟ้าที่เกิดขึ้นจากโครงการะเท่านั้น (ไม่รวม					
	พลังงานไฟฟ้าที่ผลิตได้จากการ Import ไอน้ำจากนอกโครงการฯเข้า Steam Turbine Generator					
	ซึ่งคำนวณ โดยการปันส่วนดังกล่าวใช้ข้อมูลการตรวจวัดจากมิเตอร์ต่างๆดังหน้า 19-20					

พารามิเตอร์	$FC_{PJ,i,y}$
หน่วย	unit/year (unit:Volume or Weight)
ความหมาย	ปริมาณการใช้เชื้อเพลิงฟอสซิลประเภท i สำหรับการดำเนินโครงการ ในปี y
แหล่งข้อมูล	Billing ค่าก๊าซธรรมชาติ ที่ซื้อจาก ปตท.
วิธีการติดตามผล	วัดจากมิเตอร์ซื้อขายก๊าซธรรมชาติของ ปตท.

พารามิเตอร์	$EC_{PJ,y}$	
หน่วย	kWh/year	
ความหมาย	ริมาณการใช้พลังงานไฟฟ้าในการดำเนินโครงการ ในปี y	
แหล่งข้อมูล	Billing ค่าไฟฟ้าจาก EGAT และ PEA	
วิธีการติดตามผล	ตรวจวัดจากมิเตอร์ซื้อขายไฟฟ้าของ EGAT และ PEA	

ภาคผนวก

ค่าที่ใช้ในการคำนวณการปล่อยก๊าซเรือนกระจก

(หมายเหตุ 1 คือ อ้างอิง: ค่าการปล่อยก๊าซเรือนกระจกจากการผลิตพลังงานไฟฟ้าของประเทศไทย สำหรับโครงการและกิจกรรมลดก๊าซเรือนกระจก ประกาศใช้เมื่อวันที่ 28 กันยายน พ.ศ. 2560 โดย สำนักวิเคราะห์และติดตามประเมินผลองค์การบริหารจัดการก๊าซเรือนกระจก (องค์การมหาชน))

1. EF_{CO2.i}

พารามิเตอร์	EF _{CO2,i}
ค่าที่ใช้	56100
หน่วย	kgCO ₂ /TJ
ความหมาย	ค่าการปล่อยก๊าซเรือนกระจกจากการเผาไหม้เชื้อเพลิงฟอสซิลประเภท i
แหล่งข้อมูล	ตารางที่ 1.4 2006 IPCC Guidelines for National GHG Inventories

อ้างอิง¹จาก หน้า 16 ภาคผนวก ข. Default Emission Factor: EF_{co2i}

ค่าการปล่อยก๊าซเรือนกระจกจากการผลิตพลังงานไฟฟ้าของประเทศไทย สำหรับโครงการและกิจกรรมลดก๊าซเรือนกระจะ

ภาคผนวก ข. Default Emission Factor: EF_{CO2.1} (ต่อ)

TABLE 1.4 (CONTINUED) DEFAULT CO ₂ EMISSION FACTORS FOR COMBUSTION ¹						
Fuel type English description		Default carbon content (kg/GJ)	Default carbon oxidation Factor	Effective CO ₂ emission factor (kg/TJ) ²		
				Default value 95% confidence int		ence interva
		A	В	C=A+B+44/ 12+1000	Lower	Upper
Natura	l Gas	15.3	1	56 100	54 300	58 300
Munici fraction	ipal Wastes (non-biomass n)	25.0	1	91 700	73 300	121 000
Industr	ial Wastes	39.0	1	143 000	110 000	183 000
Waste	Oil	20.0	1	73 300	72 200	74 400
Peat		28.9	1	106 000	100 000	108 000
S	Wood/Wood Waste	30.5	1	112 000	95 000	132 000
iofue	Sulphite lyes (black liquor) ⁵	26.0	1	95 300	80 700	110 000
Solid Biofuels	Other Primary Solid Biomass	27.3	1	100 000	84 700	117 000
So	Charcoal	30.5	1	112 000	95 000	132 000
_ s	Biogasoline	19.3	1	70 800	59 800	84 300
Liquid Biofuels	Biodiesels	19.3	1	70 800	59 800	84 300
B B	Other Liquid Biofuels	21.7	1	79 600	67 100	95 300
ass	Landfill Gas	14.9	1	54 600	46 200	66 000
Other non- Gas biomass fossil fuels	Sludge Gas	14.9	1	54 600	46 200	66 000
	Other Biogas	14.9	1	54 600	46 200	66 000
	Municipal Wastes (biomass fraction)	27.3	1	100 000	84 700	117 000

Notes:

รูปที่ 6 แสดงค่าการปล่อยก๊าซเรือนกระจกจากการเผาไหม้เชื้อเพลิงฟอสซิล

The lower and upper limits of the 95 percent confidence intervals, assuming lognormal distributions, fitted to a dataset, based on

TJ = 1000GJ

³ The emission factor values for BFG includes carbon dioxide originally contained in this gas as well as that formed due to combustion of this gas.

⁴ The emission factor values for OSF includes carbon dioxide originally contained in this gas as well as that formed due to combustion of this gas.

⁵ Includes the biomass-derived CO₂ emitted from the black liquor combustion unit and the biomass-derived CO₂ emitted from the kraft mill limp bile.

2. EF_{Flec}

พารามิเตอร์	EF _{Elec}					
ค่าที่ใช้	0.5664					
หน่วย	tCO ₂ /MWh					
ความหมาย	ค่าการปล่อยก๊าซเรือนกระจกจากการผลิตพลังงานไฟฟ้า ตามที่ อบก. กำหนด					
แหล่งข้อมูล	ทางเลือกที่ 1 กรณีที่ใช้พลังงานไฟฟ้าจากระบบสายส่ง ใช้ค่าจากรายงานผลการศึกษาค่าการ					
	ปล่อยก๊าซเรือนกระจกจากการผลิตพลังงานไฟฟ้าของประเทศไทยฉบับล่าสุด โดย อบก.					
	ทางเลือกที่ 2 กรณีที่ใช้พลังงานไฟฟ้าที่ผลิตเอง ใช้ค่าที่คำนวณตามวิธีการที่ อบก. กำหนด					
	ทางเลือกที่ 3 กรณีที่ใช้พลังงานไฟฟ้าจากผู้ผลิตอื่นๆ ใช้ค่าที่คำนวณตามวิธีการที่ อบก. กำหนด					

้อ้างอิง¹จาก หน้า 1 ค่าการปล่อยก๊าซเรือนกระจกจากการผลิตพลังงานไฟฟ้าของโครงการทั่วไป

ค่าการปล่อยก๊าซเรือนกระจกจากการผลิตพลังงานไฟฟ้าของประเทศไทย สำหรับโครงการและกิจกรรมลดก๊าซเรือนกระจก

ค่าการปล่อยก๊าซเรือนกระจกจากการผลิตพลังงานไฟฟ้าของประเทศไทย สำหรับโครงการและกิจกรรมลดก๊าซเรือนกระจก

(Thailand Grid Emission Factor for GHG Reduction Project/Activity)

ประกาศใช้เมื่อวันที่ 28 กันยายน พ.ศ. 2560

โดย สำนักวิเคราะห์และติดตามประเมินผล องค์การบริหารจัดการก๊าซเรือนกระจก (องค์การมหาชน)

บทคัดย่อ

ค่าการปล่อยก๊าซเรือนกระจกจากการผลิตพลังงานไฟฟ้าของประเทศไทย (Thailand Grid Emission Factor) เป็นตัวแปรที่มีความสำคัญอย่างยิ่งต่อการคำนวณปริมาณการปล่อยก๊าซเรือนกระจกของโครงการที่มีการผลิตพลังงาน ไฟฟ้าเพื่อจำหน่ายหรือทดแทน หรือใช้พลังงานไฟฟ้าจากระบบสายส่งของประเทศ (National Grid Electricity System) การคำนวณนี้มีวัตถุประสงค์เพื่อคำนวณค่าการปล่อยก๊าซเรือนกระจกจากการผลิตพลังงานไฟฟ้า หรือ Grid Emission Factor ของประเทศไทย โดยใช้ระเบียบวิธีการคำนวณ (Methodology) อ้างอิงของ United Nations Framework Convention on Climate Change (UNFCCC) คือ Methodological Tool: Tool to calculate the emission factor for an electricity system, Version 05.0 ประกาศใช้เมื่อ ปี ค.ศ. 2015 ข้อมูลที่เกี่ยวข้องกับ การผลิตพลังงานไฟฟ้าของประเทศ ที่ใช้ในการวิเคราะห์นำมาจากฐานข้อมูลของการไฟฟ้าฝ่ายผลิตแห่งประเทศไทย (กฟผ.) โดยเป็นข้อมูลของ ปี พ.ศ. 2557 ถึง พ.ศ. 2559 ผลการคำนวณพบว่าค่าการปล่อยก๊าซเรือนกระจกจากการ ผลิตพลังงานไฟฟ้าของระบบสายส่งของประเทศ ที่จะนำไปใช้ในการคำนวณปริมาณการปล่อยก๊าซเรือนกระจก สำหรับ โครงการทั่วไป มีค่าเท่ากับ 0.5664 tCO2/MWh สำหรับโครงการผลิตพลังงานไฟฟ้าจากพลังงานลมและแสงอาทิตย์ ที่เป็นการผลิตพลังงานไฟฟ้าจากพลังงานหมุนเวียน เพื่อทดแทนการผลิตไฟฟ้าของระบบสายส่งที่จะนำไปคำนวณค่าการปล่อยก๊าซเรือนกระจกจากการฉีฐาน (Baseline Emission) หรือจาก การดำเนินโครงการ (Project Emission) มีค่าเท่ากับ 0.5692 tCO2/MWh

₩	โครงการทั่วไป EF _{Grid,y} =	0.5664	tCO ₂ /M	Wh
₩	โครงการพลังงานแสงอาทิตย์และลม	EF _{Grid,y} =	0.5692	tCO ₂ /MWh

หน้าที่ 1

รูปที่ 7 แสดงค่าการปล่อยก๊าซเรือนกระจกจากการผลิตพลังงานไฟฟ้า ตามที่ อบก. กำหนด

3. NCV_{i,y}

พารามิเตอร์	NCV _{i,y}
ค่าที่ใช้	1.02
หน่วย	MJ/Unit
ความหมาย	ค่าความร้อนสุทธิ (Net Calorific Value) ของพลังงานฟอสซิลประเภท i ในปี y
แหล่งข้อมูล	รายงานสถิติพลังงานของประเทศไทย กรมพัฒนาพลังงานทดแทนและอนุรักษ์พลังงาน กระทรวง
	พลังงาน

อ้างอิง¹จาก หน้า 9 ตารางที่ 6 ผลการคำนวณค่า EF_{co2, i, y}

ค่าการปล่อยก๊าซเรือนกระจกจากการผลิตพลังงานไฟฟ้าของประเทศไทย สำหรับโครงการและกิจกรรมลดก๊าซเรือนกระจก

ตารางที่ 4 การคำนวณค่า EF_{CO2, i, y}

Fuel Type	NCV _i		EF CO₂, i, y			
	Default	Unit	Lower	Unit	Conversion Factor	Unit
Natural Gas	1.02	MJ/scf	54300	kg CO₂/TJ	55.39	tCO₂/MMscf
Coal - lignite	10.47	MJ/kg	90900	kg CO₂/TJ	0.951723	tCO₂/tonne
Coal - Bituminous	26.37	MJ/kg	89500	kg CO₂/TJ	2.360115	tCO₂/tonne
Diesel	36.42	MJ/litre	72600	kg CO₂/TJ	0.002644	tCO ₂ /litre
Bunker Oil	39.77	MJ/litre	75500	kg CO₂/TJ	0.003003	tCO ₂ /litre

รูปที่ 8 แสดงค่าความร้อนสุทธิ (Net Calorific Value) ของพลังงานฟอสซิล