4.3 스케일링

이 절에서는 회귀분석에 있어 필수적인 스케일링의 목적과 방법에 대해 공부한다.

조건수

보스턴 집값 데이터 예측문제를 statsmodels 패키지로 풀어 summary 리포트를 출력해보자.

In [1]:

```
from sklearn.datasets import load_boston

boston = load_boston()

dfX = pd.DataFrame(boston.data, columns=boston.feature_names)
dfy = pd.DataFrame(boston.target, columns=["MEDV"])
df = pd.concat([dfX, dfy], axis=1)

model1 = sm.OLS.from_formula("MEDV ~ " + "+".join(boston.feature_names), data=df)
result1 = model1.fit()
print(result1.summary())
```

OLS Regression Results

Dep. Variab Model: Method: Date: Time: No. Observa Df Residual Df Model: Covariance	Sutions: s:	Least Squa un, 05 Jul 2 13:20 nonrob	OLS Adj. tres F-st 2020 Prob 3:08 Log- 506 AIC: 492 BIC:	uared: R-squared: atistic: (F-statistic Likelihood:	c):	0.741 0.734 108.1 6.72e-135 -1498.8 3026. 3085.
	coef	std err	t	P> t	[0.025	0.975]
Intercept CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT	36.4595 -0.1080 0.0464 0.0206 2.6867 -17.7666 3.8099 0.0007 -1.4756 0.3060 -0.0123 -0.9527 0.0093 -0.5248	5. 103 0.033 0.014 0.061 0.862 3.820 0.418 0.013 0.199 0.066 0.004 0.131 0.003 0.051	7.144 -3.287 3.382 0.334 3.118 -4.651 9.116 0.052 -7.398 4.613 -3.280 -7.283 3.467 -10.347	0.000 0.001 0.001 0.738 0.002 0.000 0.000 0.958 0.000 0.000 0.001 0.000	26.432 -0.173 0.019 -0.100 0.994 -25.272 2.989 -0.025 -1.867 0.176 -0.020 -1.210 0.004 -0.624	46.487 -0.043 0.073 0.141 4.380 -10.262 4.631 0.027 -1.084 0.436 -0.005 -0.696 0.015 -0.425
Omnibus: Prob(Omnibu Skew: Kurtosis:	s):	1.	000 Jarq 521 Prob	in-Watson: ue-Bera (JB) (JB): . No.	:	1.078 783.126 8.84e-171 1.51e+04

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly spe cified.
- [2] The condition number is large, 1.51e+04. This might indicate that there are strong multicollinearity or other numerical problems.

가장 하단에 다음과 같은 경고 메세지를 볼 수 있다.

[2] The condition number is large, 1.51e+04. This might indicate that there are strong multicollinearity or other numerical problems.

해석하면 다음과 같다.

조건수(conditiona number)가 15100으로 너무 큽니다. 강한 다중공선성(multicollinearity)이나 다른 수치적 문제가 있을 수 있습니다.

행렬의 **조건수**(conditional number)는 가장 큰 고유치와 가장 작은 고유치의 비율을 뜻한다. 회귀분석에서는 공분산행렬 X^TX 의 가장 큰 고유치와 가장 작은 고유치의 비율이 된다.

condition number =
$$\frac{\lambda_{\text{max}}}{\lambda_{\text{min}}}$$

여기에서는 다음 연립방정식을 예로 들어 설명을 하겠다.

$$Ax = b$$

이런 연립방정식이 있을 때 행렬 A의 조건수가 크면 계수행렬 A와 상수벡터 b에 대한 해 x의 민감도가 커지고 따라서 계수행렬이나 상수벡터에 존재하는 오차가 해에 미치는 영향이 커진다.

조건수는 가장 작은 경우의 예는 행렬 A가 단위 행렬인 경우다. 이 때 조건수의 값은 1이다.

$$cond(I) = 1$$

In [2]:

A = np.eye(4)

이 행렬 A와 곱해져서 상수 벡터 b가 되는 벡터 x를 역행렬 A^{-1} 을 사용하여 계산할 수 있다. 이 예에서는 상수 벡터 b가 1-벡터이다.

In [3]:

```
b = np.ones(4)
x = sp.linalg.solve(A, b)
x
```

Out[3]:

array([1., 1., 1., 1.])

만약 상수 벡터에 약간의 오차가 있었다면 연립방정식의 해에도 동일한 수준의 오차가 발행한다. 다음 코드과 실행결과는 행렬 A에 1/10000 오차가 있으면 해 x에도 유사한 정도의 오차가 생기는 것을 보이고 있다.

In [4]:

```
x_error = sp.linalg.solve(A + 0.0001 * np.eye(4), b)
x_error
```

Out [4]:

array([0.99990001, 0.99990001, 0.99990001, 0.99990001])

이번에는 다음과 같은 행렬을 생각하자.

In [5]:

```
A = sp.linalg.hilbert(4)
A
```

Out [5]:

```
array([[1. , 0.5 , 0.333333333, 0.25 ], [0.5 , 0.333333333, 0.25 , 0.2 ], [0.333333333, 0.25 , 0.2 , 0.16666667], [0.25 , 0.2 , 0.16666667, 0.14285714]])
```

이 행렬은 4차 힐버트 행렬(Hilbert matrix)이라는 행렬로 조건수가 15000이 넘는다.

In [6]:

```
np.linalg.cond(A)
```

Out[6]:

15513.738738929038

이렇게 연립방정식을 이루는 행렬의 조건수가 커지면 상수항 오차가 작은 경우에도 해의 오차가 커지게 된다. 오차가 없는 경우의 해 x는 다음과 같다.

In [7]:

```
sp.linalg.solve(A, b)
```

Out[7]:

```
array([-4., 60., -180., 140.])
```

하지만 이 경우에는 계수행렬이나 상수벡터에 약간의 오차만 있어도 해가 전혀 다른 값을 가진다. 다음 코드는 계수행렬에 1/10000의 오차가 있을 때 해의 값이 전혀 달라지는 것을 보인다.

In [8]:

```
sp.linalg.solve(A + 0.0001 * np.eye(4), b)
```

Out[8]:

array([-0.58897672, 21.1225671 , -85.75912499, 78.45650825])

따라서 공분산행렬 X^TX 의 조건수가 크면 회귀분석을 사용한 예측값도 오차가 커진다.

회귀분석과 조건수

회귀분석에서 조건수가 커지는 경우는 크게 두 가지가 있다.

1. 변수들의 단위 차이로 인해 숫자의 스케일이 크게 달라지는 경우. 이 경우에는 스케일링(scaling)으로 해결한다.

- 2. 다중 공선성 즉, 상관관계가 큰 독립 변수들이 있는 경우, 이 경우에는 변수 선택이나 PCA를 사용한 차원 축소 등으로 해결한다.
- 이를 독립변수의 분포모양으로 설명하면 다음 그림과 같다.

In [9]:

%load_ext tikzmagic

In [10]:

```
%%tikz -p kotex,pgfplots -l arrows.meta,calc -s 2000,1200 -f png
\forallcoordinate (leftbottom) at (0,0);
₩coordinate (righttop) at (17,7);
₩fill[white,use as bounding box] (leftbottom) rectangle (righttop);
₩draw[help lines, white] (leftbottom) grid (righttop);
₩tikzset{
          >=stealth,font={\tfamily\large}
₩node at (4.5,6.5) {(1) 스케일링이 안된 경우};
\forall draw[->] (0.5,1) -- (8,1);
\forall draw[->] (1,0.5) -- (1,5);
Whode at (8,0.7) {x_1};
Wnode at (0.7,5) {x_2};
\forall draw (4.5,3) circle (1cm and 0.1cm);
₩draw (4.5,3) circle (2cm and 0.2cm);
₩draw (4.5.3) circle (3cm and 0.3cm);
₩draw (4.5,3) circle (4cm and 0.4cm);
\forall draw[->, line width=2pt] (4.5,3) -- (8,3);
\forall draw[->, line width=2pt] (4.5,3) -- (4.5,3.4);
\forallnode at (8,3.5) {$\mathbb{W}|ambda_{\max}\$};
₩node at (4.5,3.8) {$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\ext{$\ext{$\ext{$\ext{$\text{$\ext{$\ext{$\ext{$\ext{$\ext{$\exitt{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\exitt{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\exitte{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\exitt{$\exitt{$\ext{$\exitt{$\ext{$\exitt{$\exitt{$\exitt{$\ext{$\ext{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\ex
₩node at (12.5,6.5) {(2) 다중공선성이 있는 경우};
\forall draw[->] (8.5,1) -- (16,1);
\forall draw[->] (9,0.5) -- (9,5);
Wnode at (16,0.7) {x_1};
Whode at (8.7.5) {$x 2$};
\forall begin{scope}[shift={(12.5,3)},rotate=30]
\forall draw (0,0) circle (1cm and 0.1cm);
\forall draw (0,0) circle (2cm and 0.2cm);
\foralldraw (0,0) circle (3cm and 0.3cm);
\forall draw (0,0) circle (4cm and 0.4cm);
\forall draw[->, line width=2pt] (0,0) -- (3.5,0);
\forall draw[->, line width=2pt] (0,0) -- (0,0.4);
₩end{scope}
\forallnode at (15,5.2) {\forall1ambda_{max}};
Wnode at (12,3.7) {$₩Iambda_{min}$};
```

(1) 스케일링이 안된 경우

(2) 다중공선성이 있는 경우

보스턴 집값 문제의 경우 각 독립변수들이 0.1 수준부터 100 수준까지 제각각의 크기를 가지고 있기 때문이다.

In [11]:

```
dfX.describe().loc["std"]
```

Out[11]:

CRIM	8.601545					
ZN	23.322453					
INDUS	6.860353					
CHAS	0.253994					
NOX	0.115878					
RM	0.702617					
AGE	28.148861					
DIS	2.105710					
RAD	8.707259					
TAX	168.537116					
PTRAT I O	2.164946					
В	91.294864					
LSTAT	7.141062					
Name: std,	dtype: float64					

이렇게 독립변수가 스케일링 안되면 조건수가 커져서 예측 오차가 증폭될 가능성이 커진다. 이 효과를 확실하게 보기 위하여 일부러 다음처럼 TAX 변수를 크게 만들어 조건수를 증폭시켜 보았다.

In [12]:

```
dfX2 = dfX.copy()
dfX2["TAX"] *= 1e13
df2 = pd.concat([dfX2, dfy], axis=1)

model2 = sm.OLS.from_formula("MEDV ~ " + "+".join(boston.feature_names), data=df2)
result2 = model2.fit()
print(result2.summary())
```

OLS Regression Results

Dep. Variable:	MEDV	R-squared:	0.333
Model:	0LS	Adj. R-squared:	0.329
Method:	Least Squares	F-statistic:	83.39
Date:	Sun, 05 Jul 2020	Prob (F-statistic):	8.62e-44
Time:	13:20:18	Log-Likelihood:	-1737.9
No. Observations:	506	AIC:	3484.
Of Residuals:	502	BIC:	3501.
Df Model:	3		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-0.0038	0.000	-8.543	0.000	-0.005	-0.003
CRIM	-0.1567	0.046	-3.376	0.001	-0.248	-0.066
ZN	0.1273	0.016	7.752	0.000	0.095	0.160
INDUS	-0.1971	0.019	-10.433	0.000	-0.234	-0.160
CHAS	0.0034	0.000	12.430	0.000	0.003	0.004
NOX	-0.0023	0.000	-9.285	0.000	-0.003	-0.002
RM	0.0267	0.002	14.132	0.000	0.023	0.030
AGE	0.1410	0.017	8.443	0.000	0.108	0.174
DIS	-0.0286	0.004	-7.531	0.000	-0.036	-0.021
RAD	0.1094	0.018	6.163	0.000	0.075	0.144
TAX	1.077e-15	2.66e-16	4.051	0.000	5.55e-16	1.6e-15
PTRAT I O	-0.1124	0.011	-10.390	0.000	-0.134	-0.091
В	0.0516	0.003	19.916	0.000	0.046	0.057
LSTAT	-0.6569	0.056	-11.790	0.000	-0.766	-0.547
Omnibus:		39.	.447 Durbi	 n-Watson:		0.863
Prob(Omnibu	ıs):	0.	.000 Jarqu	e-Bera (JB)	:	46.611
Skew:		0.	.704 Prob(JB):		7.56e-11
Kurtosis:		3.	479 Cond.	No.		1.19e+17

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.19e+17. This might indicate that there are strong multicollinearity or other numerical problems.

조건수가 1000조 수준으로 증가한 것을 볼 수 있다. R-squared 로 표시되는 성능지표도 크게 감소하였다. 이 성능지표에 대해서는 추후 분산분석에서 자세히 다룬다.

statsmodels에서는 모형지정 문자열에서 scale() 명령을 사용하여 스케일링을 할 수 있다. 이 방식으로 스케일을 하면 스케일링에 사용된 평균과 표준편차를 저장하였다가 나중에 predict() 명령을 사용할 때도 같은 스케일을 사용하기 때문에 편리하다. 카테고리 더미변수인 CHAS 는 스케일을 하지 않는다는 점에 주의한다.

In [13]:

```
feature_names = list(boston.feature_names)
feature_names.remove("CHAS")
feature_names = ["scale({})".format(name) for name in feature_names] + ["CHAS"]
model3 = sm.OLS.from_formula("MEDV ~ " + "+".join(feature_names), data=df2)
result3 = model3.fit()
print(result3.summary())
```

OLS Regression Results

Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Sun, C	MEDV OLS st Squares 5 Jul 2020 13:20:19 506 492 13 nonrobust	R-squared: Adj. R-squ F-statisti Prob (F-st Log-Likeli AIC: BIC:	nared: c: atistic):	6.72 -1	0.741 0.734 108.1 1e=135 498.8 3026. 3085.
	coef	std err	t	P> t	[0.025	0.975
Intercept	22.3470	0.219	101.943	0.000	21.916	22.77

	coef	std err	t	P> t	[0.025	0.975]
Intercept	 22.3470	0.219	 101.943	0.000	21.916	22.778
scale(CRIM)	-0.9281	0.282	-3.287	0.001	-1.483	-0.373
scale(ZN)	1.0816	0.320	3.382	0.001	0.453	1.710
scale(INDUS)	0.1409	0.421	0.334	0.738	-0.687	0.969
scale(NOX)	-2.0567	0.442	-4.651	0.000	-2.926	-1.188
scale(RM)	2.6742	0.293	9.116	0.000	2.098	3.251
scale(AGE)	0.0195	0.371	0.052	0.958	-0.710	0.749
scale(DIS)	-3.1040	0.420	-7.398	0.000	-3.928	-2.280
scale(RAD)	2.6622	0.577	4.613	0.000	1.528	3.796
scale(TAX)	-2.0768	0.633	-3.280	0.001	-3.321	-0.833
scale(PTRATIO)	-2.0606	0.283	-7.283	0.000	-2.617	-1.505
scale(B)	0.8493	0.245	3.467	0.001	0.368	1.331
scale(LSTAT)	-3.7436	0.362	-10.347	0.000	-4.454	-3.033
CHAS	2.6867	0.862	3.118	0.002	0.994	4.380
Omnibus:		178.041	 Durbin-Watson:			1.078
Prob(Omnibus):		0.000	Jarque-Bera (JB):		78	3.126
Skew:		1.521	Prob(JB):		8.84	e-171

Kurtosis: 8.281 Cond. No. 10.6

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly spe cified.

스케일링만으로 조건수가 10.6이 된 것을 확인할 수 있다.