C477: Computing for Optimal Decisions Constrained Optimisation – Algorithms

Panos Parpas
Department of Computing
Imperial College London

www.doc.ic.ac.uk/~pp500 p.parpas@imperial.ac.uk

Outline

1. Projected Methods

- Reminder: Descent Methods
- Projected Gradient Methods
- Projected Gradient with Linear Constraints

2. Lagrangian Methods

- Lagrangian Methods with Equality Constraints
- Lagrangian Methods with Inequality Constraints

3. Penalty Methods

Additional material:

- Chapter 22 in An Introduction to Optimization, Chong & Zhak, Third Edition.
- Chapter 12, 13 in Linear and Nonlinear Programming, Luenberger & Ye, Third Edition.

Problem Formulation

$$\min f(x)$$
s.t. $h(x) = 0$

$$g(x) \le 0$$

- Where $f: \mathbb{R}^n \to \mathbb{R}$, $g: \mathbb{R}^n \to \mathbb{R}^p$, $m \le n$ and $h: \mathbb{R}^n \to \mathbb{R}^m$
- As before $h_i(x) = 0$, i = 1, ..., m are equality constraints
- $g_i(x) \le 0$, i = 1, ..., p are inequality constraints
- The feasible region is $\Omega = \{x \in \mathbb{R}^n \mid h(x) = 0, \ g(x) \leq 0\}.$

Reminder: Descent Methods – Unconstrained

- Given a point x_k .
- Transition to the next point,

$$x_{k+1} = x_k + \alpha_k d_k$$

3 where $\alpha_k \in \arg\min f(x_k + \alpha_k d_k)$ (if an exact step-size strategy is used)

$$d_k = -\nabla f(x_k)$$
 (steepest descent)
 $d_k = -\nabla^2 f(x_k)^{-1} \nabla f(x_k)$ (Newton Raphson)

But x is required to stay within some feasible set Ω ?

Projection Methods

Basic idea: Project point back into feasible set.

$$x_{k+1} = egin{cases} x_{k+1} & \text{if } x_{k+1} \in \Omega \\ \Pi[x_{k+1}] & \text{otherwise} \end{cases}$$

$$\bullet x_k$$

 Ω

Projection Methods

Basic idea: Project point back into feasible set.

$$x_{k+1} = \begin{cases} x_{k+1} & \text{if } x_{k+1} \in \Omega \\ \Pi[x_{k+1}] & \text{otherwise} \end{cases}$$

 Ω

Projection Methods

Example: Box constraints

Suppose that the constraint set is, $\Omega = \{x \in \mathbb{R}^n \mid l_i \leq x_i \leq u_i\}$ Define $y = \Pi[x]$ as follows,

$$y_i = \begin{cases} u_i & \text{if } x_i > u_i \\ x_i & \text{if } l_i \le x_i \le u_i \\ l_i & \text{if } x_i < l_i \end{cases}$$

A concise way to write the above is $y_i = \min\{u_i, \max\{l_i, x_i\}\}$

The point $\Pi[x]$ is called the projection of x into y. In general the projection operator is defined as,

$$\Pi[x] = \arg\min_{z \in \Omega} \frac{1}{2} ||z - x||^2$$

Interpretation: $\Pi[x]$ is the closest point in Ω to x

Practical Remarks on Projection Methods

$$\Pi[x] = \arg\min_{z \in \Omega} \frac{1}{2} ||z - x||^2$$

Projection problem can be as hard as the original problem

Suppose the original problem is:

$$\min \frac{1}{2} ||x||^2$$

s.t. $x \in \Omega$.

If $0 \notin \Omega$, $\Pi[0]$ is as difficult as the original problem.

Projection not always well defined

If $\boldsymbol{\Omega}$ is convex then projection is well defined.

But for some Ω the $\arg\min$ may not be well defined.

Projected Gradient Methods

- Given a point x_k .
- Transition to the next point,

$$x_{k+1} = \prod [x_k - \alpha_k \nabla f(x_k)]$$

3 Where $\alpha_k \in \arg\min f(\prod [x_k - \alpha_k \nabla f(x_k)])$ (if an exact step-size strategy is used)

Example: Projected Gradient Methods

Consider the problem

$$\min \frac{1}{2} x^{\top} Q x$$

s.t. $||x||^2 = 1$

where $Q \in \mathbb{R}^{n \times n}$ is a symmetric positive definite matrix. Suppose that a projected gradient method with fixed step size strategy is applied to this problem.

- a. Derive a formula for the update equation for the algorithm (i.e. write an explicit formula for x_{k+1} as a function of x_k , Q, and fixed step size α). You may assume that the argument in the projection operator is never zero.
- b. Is it possible for the algorithm to not converge to an optimal solution even if the step size $\alpha>0$ is arbitrarily small?

Example: Projected Gradient Methods

a. Derive a formula for the update equation for the algorithm (i.e. write an explicit formula for x_{k+1} as a function of x_k , Q, and fixed step size α). You may assume that the argument in the projection operator is never zero.

Example: Projected Gradient Methods

b. Is it possible for the algorithm to not converge to an optimal solution even if the step size $\alpha>0$ is arbitrarily small?

Projected Gradient with Linear Constraints

$$\min f(x)$$

s.t. $Ax = b$

Where

- \bullet $f: \mathbb{R}^n \to \mathbb{R}$
- ullet $A \in \mathbb{R}^{m \times n}$, m < n and $\operatorname{rank}(A) = m$, $b \in \mathbb{R}^m$.

Derivation of the projection matrix

Suppose that

- x_k is feasible i.e. $Ax_k = b$
- d_k is a descent but not a feasible direction.

Direction will be feasible if,

$$Ax_{k+1} = A(x_k + \alpha_k d_k) = b$$
$$Ax_k + \alpha_k Ad_k = b$$

So if,

$$Ad_k = 0$$

then $Ax_{x+1} = b$.

Derivation of the projection matrix

The projection problem is,

$$\min \frac{1}{2} ||d - d_k||^2$$

s.t. $Ad = 0$

The projection operator is the matrix $P = I - A^{\top} (AA^{\top})^{-1} A$.

Derivation of the projection matrix

The projection problem is,

$$\min \frac{1}{2} ||d - d_k||^2$$

s.t. $Ad = 0$

The projection operator is the matrix $P = I - A^{\top} (AA^{\top})^{-1} A$. To see this note that the first order conditions for this problem are,

$$d - d_k + A^{\top} \lambda = 0$$

Therefore $\lambda = (AA^{\top})^{-1}Ad_k$. Substituting this relationship back into the first order condition we obtain that the optimum solution is,

$$d = (I - A^{\top} (AA^{\top})^{-1} A) d_k$$

Properties of the projection matrix

Given a set of linear constraints,

$$Ax = b$$

with $A \in \mathbb{R}^{m \times n}$, m < n and $\operatorname{rank}(A) = m$, $b \in \mathbb{R}^m$. Then,

$$P = I - A^{\top} (AA^{\top})^{-1} A$$

is called the projection matrix.

Exercise: Show that the following statements are true for the projection matrix defined above.

- $P^\top = P$

Projected Gradient with Linear Constraints

General Iterative algorithm:

$$x_{k+1} = \Pi[x_k - \alpha_k \nabla f(x_k)]$$

If projection is on the set $\Omega = \{x \in \mathbb{R}^n \mid Ax = b\}$ then,

$$x_{k+1} = x_k - \alpha_k P \nabla f(x_k)$$

where $P = I - A^{\top} (AA^{\top})^{-1} A$, and x_0 was assumed to be in Ω .

Projected Gradient with Linear Constraints

Theorem (Feasibility)

In the projected gradient algorithm with linear constraints, if x_0 is feasible, then $Ax_k = b$, k > 0.

Proof.

Proof is by induction. Assume that $Ax_k = b$ we show that $Ax_{k+1} = b$. First note that,

$$AP\nabla f(x_k) = A(I - A^{\top}(AA^{\top})^{-1}A)\nabla f(x_k) = (A - A)\nabla f(x_k) = 0.$$

Therefore,

$$Ax_{k+1} = A(x_k - \alpha_k P \nabla f(x_k))) = Ax_k - \alpha_k A P \nabla f(x_k) = b,$$

as required.

Projected Gradient and Descent Property

$$x_{k+1} = x_k - \alpha_k P \nabla f(x_k)$$

where $P = I - A^{\top} (AA^{\top})^{-1} A$, and x_0 was assumed to be in Ω .

So far we know that if x_0 is feasible then all the iterates x_k will also be feasible.

But is this a descent algorithm?

Projected Gradient and Descent Property

Theorem

If $\{x_k\}$ is the sequence of points generated by the projected gradient algorithm (with the exact step-size strategy). If $P\nabla f(x_k) \neq 0$ then $f(x_{k+1}) < f(x_k)$.

Proof.

Projected Gradient and Convergence

The convergence of the algorithm is based on the previous Theorem and the following result.

Theorem

Let x^* be a feasible point then $P\nabla f(x^*)=0$ if and only if x^* satisfies the Lagrange condition.

Proof.

Summary Projected Gradient Methods

- Fast and easy algorithm to implement.
- All the algorithms (including Newton method) can be used in conjunction with projection.

Lagrangian Algorithms

Equality Constrained Problem

$$\min f(x)$$

s.t. $h(x) = 0$

Where $f: \mathbb{R}^n \to \mathbb{R}$, $h: \mathbb{R}^n \to \mathbb{R}^m$ and $m \le n$.

First Order Conditions

$$L(x,\lambda) = f(x) + \lambda^{\top} h(x)$$
 (Lagrangian)
$$\nabla f(x) + \nabla h(x) \lambda = 0$$
 (First Order Conditions)
$$h(x) = 0$$

Lagrangian Algorithms

Lagrangian Algorithm

$$x_{k+1} = x_k - \alpha_k (\nabla f(x_k) + \nabla h(x_k) \lambda_k)$$

$$\lambda_{k+1} = \lambda_k + \beta_k h(x_k)$$

- **Update equation for** x: same as applying the steepest descent method for minimising $L(x, \lambda)$ over x with no constraints
- **Update equation for** λ : same as applying the steepest descent method for maximising $L(x, \lambda)$ over λ
- Only gradients are used so method is called first order method.

The General Case

Equality Constrained Problem

$$\min f(x)$$
s.t. $h(x) = 0$

$$g(x) \le 0$$

First Order Conditions

$$L(x,\lambda) = f(x) + \lambda^\top h(x) + \mu^\top g(x) \qquad \text{(Lagrangian)}$$

$$\nabla f(x) + \nabla h(x)\lambda + \nabla g(x)\mu = 0 \qquad \text{(First Order Conditions)}$$

$$\mu_i g_i(x) = 0$$

$$\mu \geq 0$$

$$h(x) = 0$$

$$g(x) \leq 0$$

Lagrangian Algorithm – Inequality constraints

Lagrangian Algorithm

$$x_{k+1} = x_k - \alpha_k (\nabla f(x_k) + \nabla h(x_k) \lambda_k + \nabla g(x_k) \mu_k)$$

$$\lambda_{k+1} = \lambda_k + \beta_k h(x_k)$$

$$\mu_{k+1} = P_+ [\mu_k + \gamma_k g(x_k)]$$

- P_+ is the projection to the positive part of \mathbb{R}^p applied component wise.
- **Update equation for** x: same as applying the steepest descent method for minimising $L(x, \lambda, \mu)$ with no constraints
- **Update equation for** λ : same as applying the steepest descent method for maximising $L(x, \lambda, \mu)$ over λ
- Update equation for μ : same as applying the projected steepest descent method for maximising $L(x, \lambda, \mu)$ over μ
- Only gradients are used so method is called first order method.

Lagrangian Algorithm Theory

- Can be shown that method converges to a KKT point.
- Complementarity condition also satisfied.
- Rate of convergence is linear (since it is based on steepest descent method)
- No guarantees it will converge to the global minimum or that second order conditions will be satisfied.

Basic Idea: Convert the constrained optimisation problem to an unconstrained problem

Original constrained problem:

$$\min_{x} f(x)$$
$$x \in \Omega$$

Modified unconstrained problem:

$$\min_{x} f(x) + \gamma P(x)$$

Where:

- ullet γ is a positive scalar called the **penalty parameter.**
- $P: \mathbb{R}^n \to \mathbb{R}$ is called the penalty function. The aim of this function is to penalise points outside Ω

Basic Idea: Convert the constrained optimisation problem to an unconstrained problem

Original constrained problem:

$$\min_{x} f(x)$$
$$x \in \Omega$$

Modified unconstrained problem:

$$\min_{x} f(x) + \gamma P(x)$$

Where:

- ullet γ is a positive scalar called the **penalty parameter.**
- $P: \mathbb{R}^n \to \mathbb{R}$ is called the penalty function. The aim of this function is to penalise points outside Ω

Original constrained problem:

$$\min_{x} f(x)$$
s.t. $g_i(x) \le 0$ $i = 1, \dots, p$.

Penalty Function:

$$P(x) = \sum_{i=1}^{p} g_i^+(x)$$

where

$$g_i^+(x) = \max\{0, g_i(x)\} = \begin{cases} 0 & \text{if } g_i(x) \le 0\\ g_i(x) & \text{if } g_i(x) > 0 \end{cases}$$

The penalty function defined above is also called the <u>absolute value</u> penalty function since it is equal to $\sum_{i=1}^{p} |g_i(x)|$

Example

Suppose the feasible region is given by,

$$g_1(x) = x - 2 \le 0.$$

 $g_2(x) = -(x+1)^3 \le 0$

The penalty function is defined as follows,

$$g_1^+(x) = \max\{0, g_1(x)\} = \begin{cases} 0 & \text{if } x \le 2\\ x - 2 & \text{otherwise} \end{cases}$$

$$g_2^+(x) = \max\{0, g_2(x)\} = \begin{cases} 0 & \text{if } x \ge -1 \\ -(x+1)^3 & \text{otherwise} \end{cases}$$

So,

$$P(x) = g_1^+(x) + g_2^+(x) = \begin{cases} x - 2 & \text{if } x > 2\\ 0 & \text{if } -1 \le x \le 2\\ -(x + 1)^3 & \text{if } x < -1 \end{cases}$$

Example

The absolute value penalty function may not be differentiable everywhere (e.g. last example P(x) is not differentiable at x=2). Some differentiable & widely used alternatives are:

• The Courant-Beltrami penalty function

$$P(x) = \sum_{i=1}^{p} (g_i^+(x))^2$$

Logarithmic Barrier function

$$P(x) = -\sum_{i=1}^{p} \log(-g_i(x))$$

Inverse Barrier function

$$P(x) = -\sum_{i=1}^{p} \frac{1}{g_i(x)}$$

For the two barrier functions the convention is to let the penalty parameter γ go to zero

The Logarithmic Barrier Function associated with the constraint,

$$-1 \le x \le 1$$

The Inverse Barrier Function associated with the constraint,

$$-1 \le x \le 1$$

Penalty Methods Summary

- Penalty methods convert the problem into an unconstrained problem and use unconstrained algorithms (e.g. Steepest Descent, Newton Method etc..)
- Logarithmic Barrier Methods are very popular for solving convex optimisation problems (these are polynomial time algorithms)
- Convergence results exists that guarantee that these methods will converge to a KKT point as $\gamma \to \infty$ (or zero in the case of barrier penalty functions)
- Because of the penalty parameter problem becomes ill conditioned