HW1

Shariq Mian

10/9/2022

In this assignment we will explore two data set. One is the Chicago Crime Data and the other one is 2018 Flight Delays Data. The Chicago Crime Data consist of 466 rows 13 columns while 2018 flight consist 7.2 million rows and 28 columns of data. Both the data were from Kaggle and al culoms have labels except one column in the Flight Delays data, which is called Unnamed Column 27.

Chicago Crime Data

For the Crime data, While the data set contains many variables, the target variable is our actual target variable or dependent variable. Here its either a 0 meaning that the crime rate is above the median crime rate or a 1 which is below the median crime rate. Here we can apply two different type of classification algorithm. First a Logistic Regression, because the data is bounded by a probability between 0 and 1 we can apply the binary logistic regression, where the .5 mark is divider for the classification for high crime risk and low crime risk. The other regression I think we can apply here is KNN. Because since there are binary outcomes, we can define the target variable the same way less than .5 and greater than .5 as 0 and 1 outcomes and then apply the KNN algorithm where based on similar attributes its able to predict whether the area is median crime rate or not. Also, since it's a classification problem, the confusion matrix is a very helpful table, which can help us determine some of the classification metrics such as accuracy, precision, error rate, sensitivity and F1 score.

Below we have a heat map of the correlation matrix to see whether we have to remove any variable due to multi collinearity. This is important if we want to choose our model to remove any overfitting. Some of the high correlated variables are in dus vs nox and age vs nox. Since there are highly correlated independent variables, we will remove 2 out of 3 of these variables for our model

In our model we remove all the variables with P value greater than .05. Our model turns out to be target \sim nox + age + rad + tax + ptratio + lstat. Here our AIC score is 228.35 with only lstat having a P value less than .05 and insignificant. With nox has the biggest effect on the model with the lowest P value and coefficient of 34.05.

The reason to choose Logistic Regression for this Data Set instead of the KNN here was that because the data set is small thus KNN will be very sensitive to the size of the data or any irrelevant features. Also because the data set is small, with Logistic Regression can derive the confident level while in KNN we can only output the results, thus making it the right choice for this data set where it would be the right algorithm to use for business decision.

2018 Flight Delays

For the second data set, the data set is much larger 7.2 million rows, and while I was able to run the data set in R, I was unbale to run it as RMD file because the computation time was too much for my R to handle the and would crash. The structure of dataset indicates that there are 2 variables, that consists of a variety of categorical and continuous variables.

Based on the data set the to best choice of algorithm here would have been KNN and Naïve Bias. Once again, KNN seemed like the right choice because it's a classification problem, based on certain attributes we are predicting whether flight will be delayed or not. Here the data set is large enough where we don't have to worry about the effect of specific attribute like in our other dataset which was too small. The other choice was Naïve Bias, which very similar to KNN is a classification algorithm but historically yields better accuracy percentage compare to KNN and Decision trees.

After looking at the pros and cons for both the algorithm, Naïve Bias was the right choice of algorithm for this data set because, we have ~ 7.2 million rows and Naïve Bias tends to perform faster on big volume of data compare to KNN. Because I am working on my local machine this was important, especially because Naïve Bias also gave me challenges with the computation time on my computer knowing that its faster than KNN. Also one important thing to note it that Naïve Bias is not effected by the Curse of Dimensionality and large features. These were enough for us to to choose Naïve Bias over KNN for this data set.

After conducting the missing data analysis, we found that CARRIER_DELAY, WEATHER_DELAY, NAS_DELAY, SECURITY_DELAY, LATE_AIRCRAFT_DELAY had over 80% missing data thus we felt it was appropriate to remove the data. In addition to these four variables, the last variable Unnamed.27 will need to be removed from the dataset since the missing data percentage is 100%. We know that cancelled flights take 2% of the data thus it was not considered especially, Since we are using naive Bayes, an exhaustive algorithm to build a classification model, thus its best we save computation power by reducing any features.

The result of the algorithm that 81% accuracy in classification of delayed flights is obtained with the Naive Bayes model. Cross validation and confusion matrix of training models were not generated as the computation power was not sufficient for the data set however code is provided to obtain such information.

I think its important to take into account Specific algorithms based on the dataset size. In one case we has a data set which was small and KNN model wouldn't make sense while in the second scenario the data set was too large and once again KNN classification model didn't make sense and instead a more computation friendly Naive Bias algorithm was chosen. Choices like these are relevant when choosing models for big data.

Appendix: Crime Data

```
library(ggcorrplot)
## Warning: package 'ggcorrplot' was built under R version 4.1.2
## Loading required package: ggplot2
library(caret)
## Loading required package: lattice
library(recipes)
## Loading required package: dplyr
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
       filter, lag
##
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
##
## Attaching package: 'recipes'
## The following object is masked from 'package:stats':
##
##
       step
library(dplyr)
library(heatmaply)
## Warning: package 'heatmaply' was built under R version 4.1.2
## Loading required package: plotly
## Warning: package 'plotly' was built under R version 4.1.2
```

```
##
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
##
##
       last_plot
## The following object is masked from 'package:stats':
##
      filter
##
## The following object is masked from 'package:graphics':
##
      layout
## Loading required package: viridis
## Warning: package 'viridis' was built under R version 4.1.2
## Loading required package: viridisLite
##
## =========
## Welcome to heatmaply version 1.3.0
## Type citation('heatmaply') for how to cite the package.
## Type ?heatmaply for the main documentation.
##
## The github page is: https://github.com/talgalili/heatmaply/
## Please submit your suggestions and bug-reports at: https://github.com/talg
alili/heatmaply/issues
## You may ask questions at stackoverflow, use the r and heatmaply tags:
    https://stackoverflow.com/questions/tagged/heatmaply
## ==========
library(GGally)
## Warning: package 'GGally' was built under R version 4.1.2
## Registered S3 method overwritten by 'GGally':
##
    method from
           ggplot2
##
    +.gg
library(MASS)
##
## Attaching package: 'MASS'
## The following object is masked from 'package:plotly':
##
##
      select
```

```
## The following object is masked from 'package:dplyr':
##
##
      select
train = read.csv("https://github.com/mianshariq/SPS/raw/1b2ce2794a0d14f2d5dea
debc971a643c7cec104/Data%20621/HW1/crime-training-data modified.csv")
eval = read.csv("https://github.com/mianshariq/SPS/raw/1b2ce2794a0d14f2d5dead
ebc971a643c7cec104/Data%20621/HW1/crime-evaluation-data modified.csv")
glimpse(train)
## Rows: 466
## Columns: 13
## $ zn
            <dbl> 0, 0, 0, 30, 0, 0, 0, 0, 0, 80, 22, 0, 0, 22, 0, 0, 100, 2
0,0~
## $ indus
            <dbl> 19.58, 19.58, 18.10, 4.93, 2.46, 8.56, 18.10, 18.10, 5.19,
3.6~
            ## $ chas
, 0,~
            <dbl> 0.605, 0.871, 0.740, 0.428, 0.488, 0.520, 0.693, 0.693, 0.
## $ nox
515,~
            <dbl> 7.929, 5.403, 6.485, 6.393, 7.155, 6.781, 5.453, 4.519, 6.
## $ rm
316,~
            <dbl> 96.2, 100.0, 100.0, 7.8, 92.2, 71.3, 100.0, 100.0, 38.1, 1
## $ age
9.1,~
## $ dis
            <dbl> 2.0459, 1.3216, 1.9784, 7.0355, 2.7006, 2.8561, 1.4896, 1.
6582~
            <int> 5, 5, 24, 6, 3, 5, 24, 24, 5, 1, 7, 5, 24, 7, 3, 3, 5, 5,
## $ rad
24, ~
            <int> 403, 403, 666, 300, 193, 384, 666, 666, 224, 315, 330, 398
## $ tax
, 66~
## $ ptratio <dbl> 14.7, 14.7, 20.2, 16.6, 17.8, 20.9, 20.2, 20.2, 20.2, 16.4
, 19~
## $ lstat
            <dbl> 3.70, 26.82, 18.85, 5.19, 4.82, 7.67, 30.59, 36.98, 5.68,
9.25~
## $ medv
            <dbl> 50.0, 13.4, 15.4, 23.7, 37.9, 26.5, 5.0, 7.0, 22.2, 20.9,
24.8~
## $ target <int> 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1
, 0,~
summary(train)
                        indus
##
                                          chas
                                                           nox
         zn
                    Min.
                          : 0.460
## Min.
         : 0.00
                                     Min.
                                            :0.00000
                                                      Min.
                                                             :0.3890
## 1st Qu.: 0.00
                    1st Qu.: 5.145
                                     1st Qu.:0.00000
                                                       1st Qu.:0.4480
## Median : 0.00
                    Median : 9.690
                                     Median :0.00000
                                                      Median :0.5380
##
   Mean
         : 11.58
                    Mean
                           :11.105
                                     Mean
                                            :0.07082
                                                       Mean
                                                             :0.5543
   3rd Qu.: 16.25
                    3rd Ou.:18.100
                                     3rd Ou.:0.00000
                                                       3rd Ou.:0.6240
## Max.
          :100.00
                    Max.
                           :27.740
                                     Max.
                                            :1.00000
                                                       Max.
                                                             :0.8710
##
         rm
                                         dis
                                                         rad
                        age
```

```
Min. :3.863
                    Min. : 2.90
                                      Min. : 1.130
                                                        Min. : 1.00
##
    1st Qu.:5.887
                    1st Qu.: 43.88
                                      1st Qu.: 2.101
                                                        1st Qu.: 4.00
   Median :6.210
                    Median : 77.15
                                      Median : 3.191
                                                        Median: 5.00
##
##
   Mean
           :6.291
                    Mean
                           : 68.37
                                      Mean
                                             : 3.796
                                                        Mean
                                                               : 9.53
##
    3rd Qu.:6.630
                    3rd Qu.: 94.10
                                      3rd Qu.: 5.215
                                                        3rd Qu.:24.00
##
           :8.780
                            :100.00
                                      Max.
                                             :12.127
                                                        Max.
                                                               :24.00
    Max.
                    Max.
                       ptratio
##
         tax
                                        1stat
                                                           medv
##
    Min.
           :187.0
                    Min.
                            :12.6
                                    Min.
                                           : 1.730
                                                      Min.
                                                             : 5.00
    1st Qu.:281.0
                                    1st Qu.: 7.043
                                                      1st Qu.:17.02
##
                    1st Qu.:16.9
    Median :334.5
                    Median :18.9
                                    Median :11.350
                                                      Median :21.20
##
##
    Mean
           :409.5
                           :18.4
                                          :12.631
                                                      Mean
                                                             :22.59
                    Mean
                                    Mean
##
    3rd Qu.:666.0
                    3rd Qu.:20.2
                                    3rd Qu.:16.930
                                                      3rd Qu.:25.00
##
    Max.
           :711.0
                    Max.
                            :22.0
                                    Max.
                                           :37.970
                                                     Max.
                                                             :50.00
##
        target
##
    Min.
           :0.0000
##
    1st Qu.:0.0000
##
   Median :0.0000
##
   Mean
           :0.4914
##
    3rd Qu.:1.0000
##
    Max.
           :1.0000
library(ggplot2)
ggplot(train, aes(x=target))+geom_bar()
```



```
corr=round(cor(train),2)
corr
```

```
##
             zn indus chas nox rm
                                         age
                                             dis
                                                     rad tax ptratio lsta
t
           1.00 -0.54 -0.04 -0.52 0.32 -0.57 0.66 -0.32 -0.32
## zn
                                                                -0.39 -0.4
3
## indus
          -0.54 1.00 0.06 0.76 -0.39 0.64 -0.70 0.60 0.73
                                                                 0.39 0.6
1
## chas
          -0.04
                 0.06 1.00 0.10 0.09 0.08 -0.10 -0.02 -0.05
                                                                -0.13 -0.0
          -0.52 0.76 0.10 1.00 -0.30 0.74 -0.77 0.60 0.65
                                                                 0.18 0.6
## nox
0
           0.32 -0.39 0.09 -0.30 1.00 -0.23 0.20 -0.21 -0.30
## rm
                                                               -0.36 -0.6
3
## age
          -0.57 0.64 0.08 0.74 -0.23 1.00 -0.75 0.46 0.51
                                                                 0.26 0.6
1
## dis
           0.66 -0.70 -0.10 -0.77 0.20 -0.75 1.00 -0.49 -0.53
                                                                -0.23 - 0.5
1
## rad
          -0.32 0.60 -0.02 0.60 -0.21 0.46 -0.49 1.00 0.91
                                                                 0.47 0.5
0
          -0.32 0.73 -0.05 0.65 -0.30 0.51 -0.53 0.91 1.00
## tax
                                                                 0.47 0.5
6
## ptratio -0.39 0.39 -0.13 0.18 -0.36 0.26 -0.23 0.47 0.47
                                                                 1.00 0.3
## lstat
          -0.43 0.61 -0.05 0.60 -0.63 0.61 -0.51 0.50 0.56
                                                                 0.38 1.0
## medv
           0.38 -0.50 0.16 -0.43 0.71 -0.38 0.26 -0.40 -0.49
                                                                -0.52 - 0.7
## target -0.43 0.60 0.08 0.73 -0.15 0.63 -0.62 0.63 0.61
                                                                 0.25 0.4
7
##
           medv target
           0.38
                 -0.43
## zn
## indus
          -0.50
                  0.60
## chas
           0.16
                  0.08
## nox
          -0.43
                  0.73
                 -0.15
## rm
           0.71
## age
          -0.38
                  0.63
## dis
           0.26
                 -0.62
          -0.40
                  0.63
## rad
## tax
          -0.49
                  0.61
## ptratio -0.52
                  0.25
## lstat
          -0.74
                  0.47
## medv
           1.00
                 -0.27
## target -0.27
                  1.00
p.train=cor_pmat(train)
head(p.train)
##
                            indus
                                       chas
                  zn
                                                     nox
        0.000000e+00 2.319176e-36 0.38703901 3.238655e-33 1.528592e-12
## indus 2.319176e-36 0.000000e+00 0.18735258 9.752376e-89 1.238277e-18
## chas 3.870390e-01 1.873526e-01 0.00000000 3.545359e-02 5.086704e-02
```

```
3.238655e-33 9.752376e-89 0.03545359 0.000000e+00 7.641839e-11
## nox
         1.528592e-12 1.238277e-18 0.05086704 7.641839e-11 0.000000e+00
## rm
         6.040999e-42 5.733837e-55 0.08895386 2.347629e-80 3.730213e-07
## age
##
                                 dis
                                                rad
                                                                        ptratio
                   age
                                                              tax
## zn
         6.040999e-42 1.220397e-59 3.151098e-12 1.671074e-12 1.782358e-18
## indus 5.733837e-55 7.377362e-71 5.047931e-47 1.997555e-79 8.034926e-19
## chas 8.895386e-02 3.715218e-02 7.320938e-01 3.137655e-01 5.410667e-03
         2.347629e-80 3.603637e-92 4.049854e-46 3.513041e-58 1.308313e-04
## nox
         3.730213e-07 1.504750e-05 5.690434e-06 6.118602e-11 9.806780e-16
## rm
         0.000000e+00 1.225525e-85 8.132680e-26 1.616172e-32 2.236915e-08
## age
##
                 lstat
                                medv
                                            target
         1.021425e-22 3.680497e-17 1.415603e-22
## zn
## indus 2.864171e-48 2.482578e-30 7.845651e-48
## chas 2.679367e-01 4.628588e-04 8.434811e-02
## nox
         3.390324e-46 2.083171e-22 1.680131e-77
         2.448543e-53 2.413698e-71 9.542249e-04
## rm
## age
         5.572184e-48 2.733223e-17 6.245736e-53
ggcorrplot(corr, hc.order = TRUE, lab=TRUE, p.mat =p.train, insig = "blank" )
     dis -0.230.620.490.530.540.750.70.770.1 0.20.260.66 1
     zn -0.390.430.320.320.430.570.540.52 0.320.38 1 0.66
  medv -0.520.270.40.490.740.380.50.430.160.71 1 0.380.26
     rm -0.360.150.210.30.630.230.390.30.09 1 0.710.320.2
                                                       Corr
   chas -0.13
                                     1 0.090.16
                                                           1.0
    nox 0.180.730.60.650.60.740.76 1 0.1-0.30.430.520.77
                                                            0.5
  indus 0.390.6 0.60.730.610.64 1 0.76
                                    -0.390.50.540.7
                                                            0.0
    age 0.260.630.460.510.61 1 0.640.74
                                     -0.230.380.570.75
                                                            -0.5
    Istat 0.380.470.50.56 1 0.610.610.6
                                      -0.630.740.430.51
     tax 0.470.610.91 1 0.560.510.730.65
                                                           -1.0
                                     -0.30.490.320.53
    rad 0.470.63 1 0.910.50.460.6 0.6
                                    -0.210.40.320.49
  target 0.25 1 0.630.610.470.630.60.73 -0.150.270.430.62
         1 0.250.470.470.380.260.390.180.130.360.520.390.23
       OH SHOOL COO COL FE OF SON THE LOT LOS LILON IL SE
train df=train
```

ggpairs(train_df[0:6], title='correlogram with ggpairs')

correlogram with ggpairs

ggpairs(train_df[6:13], title='correlogram with ggpairs')

correlogram with ggpairs


```
train$chas<-factor(train$chas)
train$target<-factor(train$target)</pre>
eval$chas<-factor(eval$chas)</pre>
Model1 <- glm(target ~ ., data = train, family = 'binomial')</pre>
summary(Model1)
##
## Call:
## glm(formula = target ~ ., family = "binomial", data = train)
## Deviance Residuals:
##
      Min
                10
                     Median
                                 3Q
                                         Max
## -1.8464 -0.1445 -0.0017
                             0.0029
                                      3.4665
##
## Coefficients:
##
                Estimate Std. Error z value Pr(>|z|)
## (Intercept) -40.822934 6.632913 -6.155 7.53e-10 ***
               -0.065946
                          0.034656 -1.903 0.05706 .
## zn
## indus
              -0.064614   0.047622   -1.357   0.17485
## chas1
               0.910765
                          0.755546 1.205 0.22803
               49.122297
                          7.931706 6.193 5.90e-10 ***
## nox
## rm
               -0.587488
                          0.722847 -0.813 0.41637
                0.034189
                          0.013814 2.475 0.01333 *
## age
## dis
                          0.230275 3.208 0.00134 **
                0.738660
                0.666366
                          0.163152 4.084 4.42e-05 ***
## rad
## tax
              -0.006171
                          0.002955 -2.089 0.03674 *
               0.402566
                          0.126627 3.179 0.00148 **
## ptratio
## lstat
                0.045869
                          0.054049
                                     0.849 0.39608
                ## medv
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 645.88 on 465 degrees of freedom
## Residual deviance: 192.05 on 453 degrees of freedom
## AIC: 218.05
## Number of Fisher Scoring iterations: 9
In second model
Model2 <- glm(target ~ nox + age + rad + tax + ptratio + lstat,
              data = train,
              family = 'binomial')
```

glm(formula = target ~ nox + age + rad + tax + ptratio + lstat,

summary(Model2)

##

Call:

```
family = "binomial", data = train)
##
## Deviance Residuals:
                                      3Q
       Min
                  10
                        Median
                                               Max
## -1.99446 -0.22115 -0.01487
                                 0.00280
                                           2.77983
##
## Coefficients:
                Estimate Std. Error z value Pr(>|z|)
                           3.632470 -6.740 1.58e-11 ***
## (Intercept) -24.483088
               34.052772
                                      6.512 7.39e-11 ***
## nox
                           5.228865
## age
                0.020264
                           0.009997
                                      2.027 0.042652 *
                                      5.431 5.60e-08 ***
## rad
                0.763304
                           0.140540
               -0.009953
                           0.002603 -3.824 0.000132 ***
## tax
## ptratio
                0.219358
                           0.090802 2.416 0.015701 *
                           0.037437 -0.336 0.736940
## lstat
               -0.012575
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 645.88
                            on 465 degrees of freedom
## Residual deviance: 214.35
                             on 459 degrees of freedom
## AIC: 228.35
##
## Number of Fisher Scoring iterations: 9
Model3 <- Model1 %>% stepAIC(direction = "backward", trace = FALSE)
summary(Model3)
##
## Call:
## glm(formula = target ~ zn + nox + age + dis + rad + tax + ptratio +
      medv, family = "binomial", data = train)
##
##
## Deviance Residuals:
##
      Min
                10
                     Median
                                  3Q
                                          Max
## -1.8295 -0.1752
                   -0.0021
                              0.0032
                                       3.4191
##
## Coefficients:
##
                 Estimate Std. Error z value Pr(>|z|)
## (Intercept) -37.415922
                         6.035013 -6.200 5.65e-10 ***
                           0.032019 -2.144 0.03203 *
               -0.068648
## zn
                           6.678692 6.410 1.46e-10 ***
## nox
               42.807768
                0.032950
                           0.010951
                                      3.009
                                             0.00262 **
## age
                0.654896
                           0.214050
                                      3.060 0.00222 **
## dis
                                      4.841 1.29e-06 ***
## rad
                0.725109
                           0.149788
               -0.007756
                           0.002653 -2.924 0.00346 **
## tax
## ptratio
                0.323628
                           0.111390 2.905 0.00367 **
## medv
                0.110472
                           0.035445
                                      3.117 0.00183 **
## ---
```

```
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 645.88 on 465 degrees of freedom
##
## Residual deviance: 197.32 on 457 degrees of freedom
## AIC: 215.32
## Number of Fisher Scoring iterations: 9
preds1 =predict(Model1, newdata = train)
preds2 =predict(Model1, newdata = train)
preds3 =predict(Model1, newdata = train)
preds1[preds1 >= 0.5] \leftarrow 1
preds1[preds1 < 0.5] <- 0
preds1 = as.factor(preds1)
preds2[preds2 >= 0.5] \leftarrow 1
preds2[preds2 < 0.5] <- 0
preds2 = as.factor(preds2)
preds3[preds3 >= 0.5] \leftarrow 1
preds3[preds3 < 0.5] <- 0
preds3 = as.factor(preds3)
train CM1 <- confusionMatrix(preds1, train$target, mode = "everything")
## Registered S3 methods overwritten by 'proxy':
##
     method
                          from
##
     print.registry_field registry
##
     print.registry_entry registry
train_CM2 <- confusionMatrix(preds2, train$target, mode = "everything")</pre>
train CM3 <- confusionMatrix(preds3, train$target, mode = "everything")
train_CM1
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                0
            0 225 35
##
##
            1 12 194
##
##
                  Accuracy : 0.8991
##
                    95% CI: (0.8681, 0.9249)
##
       No Information Rate: 0.5086
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                     Kappa: 0.7979
##
##
   Mcnemar's Test P-Value: 0.001332
##
```

```
##
               Sensitivity: 0.9494
##
               Specificity: 0.8472
            Pos Pred Value: 0.8654
##
##
            Neg Pred Value: 0.9417
                 Precision: 0.8654
##
##
                    Recall: 0.9494
##
                        F1: 0.9054
                Prevalence: 0.5086
##
##
            Detection Rate: 0.4828
##
      Detection Prevalence: 0.5579
##
         Balanced Accuracy: 0.8983
##
##
          'Positive' Class: 0
##
train_CM2
## Confusion Matrix and Statistics
##
             Reference
##
## Prediction
                0
                    1
##
            0 225
                   35
##
            1 12 194
##
##
                  Accuracy : 0.8991
##
                    95% CI: (0.8681, 0.9249)
##
       No Information Rate: 0.5086
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                     Kappa: 0.7979
##
##
    Mcnemar's Test P-Value: 0.001332
##
##
               Sensitivity: 0.9494
##
               Specificity: 0.8472
##
            Pos Pred Value: 0.8654
            Neg Pred Value: 0.9417
##
##
                 Precision: 0.8654
##
                    Recall: 0.9494
##
                        F1: 0.9054
##
                Prevalence: 0.5086
##
            Detection Rate: 0.4828
##
      Detection Prevalence: 0.5579
##
         Balanced Accuracy: 0.8983
##
##
          'Positive' Class: 0
##
train_CM3
```

```
## Confusion Matrix and Statistics
##
             Reference
##
## Prediction 0
                     1
            0 225 35
##
            1 12 194
##
##
##
                  Accuracy : 0.8991
##
                     95% CI: (0.8681, 0.9249)
##
       No Information Rate: 0.5086
       P-Value [Acc > NIR] : < 2.2e-16
##
##
##
                      Kappa: 0.7979
##
##
    Mcnemar's Test P-Value: 0.001332
##
##
               Sensitivity: 0.9494
##
               Specificity: 0.8472
            Pos Pred Value : 0.8654
##
##
            Neg Pred Value: 0.9417
##
                 Precision: 0.8654
                     Recall: 0.9494
##
##
                         F1: 0.9054
##
                 Prevalence: 0.5086
##
            Detection Rate: 0.4828
##
      Detection Prevalence: 0.5579
##
         Balanced Accuracy: 0.8983
##
##
          'Positive' Class : 0
##
getROC <- function(model) {</pre>
    name <- departse(substitute(model))</pre>
    pred.prob1 <- predict(model, newdata = train)</pre>
    p1 <- data.frame(pred = train$target, prob = pred.prob1)</pre>
    p1 <- p1[order(p1$prob),]</pre>
    rocobj <- pROC::roc(p1$pred, p1$prob)</pre>
    plot(rocobj, asp=NA, legacy.axes = TRUE, print.auc=TRUE,
         xlab="Specificity", main = name)
}
par(mfrow=c(3,3))
getROC(Model2)
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
```



```
getROC(Model3)
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases</pre>
```



```
eval$chas <- as.factor(eval$chas)</pre>
prediction = predict(Model1, newdata = eval)
prediction[prediction >= 0.5] <- 1</pre>
prediction[prediction < 0.5] <- 0</pre>
prediction = as.factor(prediction)
prediction
                            9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
##
   1 2 3
                         8
26
##
  0 1 1
                                           1 0 0 0 1
                                                          0
                                                                0
                                                                      0
1
## 27 28 29 30 31 32 33 34 35 36 37 38 39 40
## 0 1 1 1 1 1 1 1 1
                               1
## Levels: 0 1
title: "Data 622 HW1"
author: "Shariq Mian"
date: "10/9/2022"
output:
html_document: default
```

```
word_document: default
 pdf_document: default
"\fr setup, include=FALSE}
knitr::opts chunk$set(echo = TRUE)
In this data, we will work on 2018 flight delays dataset, where we have about 7.2 million fli
ghts.
We will explore the data, conduct a data preparation, and decide variables that could be use
d for naive Bayes classifier.
##Data Preparation
"\fr DP, echo=FALSE,message = FALSE, warning = FALSE
library(dplyr)
library(ggplot2)
flightdata.df <- read.csv("~/GitHub/SPS/Data 622/2018.csv")
#Reorder the columns in respective of preferred use (e.g. unnamed..27 string variable will
most probably not going to be used)
col.order <- c("FL_DATE","OP_CARRIER","ORIGIN","DEST","CRS_DEP_TIME","CRS_ARR_TIM
E","CRS_ELAPSED_TIME","ACTUAL_ELAPSED_TIME","DEP_TIME","ARR_TIME","DEP_DELA
Y","ARR_DELAY","CARRIER_DELAY","WEATHER_DELAY","NAS_DELAY","SECURITY_DELAY
","LATE_AIRCRAFT_DELAY","CANCELLED","DIVERTED","TAXI_OUT","TAXI_IN","WHEELS_
OFF", "WHEELS_ON", "CANCELLATION_CODE",
"AIR_TIME","DISTANCE","OP_CARRIER_FL_NUM","Unnamed..27")
flightdata.df <- flightdata.df[,col.order]</pre>
str(flightdata.df)
```

```
The structure of dataset indicates that there are 28 variables, that consists of a variety of ca
tegorical and continous variables.
```{r}
#Lets remove the variables with high missing data percentages >50% from our focus of ana
lysis.
#flightdata.updated <- flightdata.df[,-c("CARRIER_DELAY","WEATHER_DELAY","NAS_DELA
Y", "SECURITY DELAY", "LATE AIRCRAFT DELAY", "Unnamed...27")]
flightdata.updated <- subset(flightdata.df, select = -c(CARRIER DELAY, WEATHER DELAY, N
AS DELAY, SECURITY DELAY, LATE AIRCRAFT DELAY, Unnamed...27)
str(flightdata.updated)
#Data manipulation: Conversion of Minutes to Hours and creation of Output Variable
"\fr dm1, echo=FALSE, message = FALSE, warning = FALSE}
#Lets define the carrier, origin and destination as factors
flightdata.updated$ORIGIN <- as.factor(flightdata.updated$ORIGIN)
flightdata.updated$DEST <- as.factor(flightdata.updated$DEST)</pre>
flightdata.updated$OP CARRIER <- as.factor(flightdata.updated$OP CARRIER)
flightdata.updated$DIVERTED <- as.factor(flightdata.updated$DIVERTED)
#Analyzing and Creating the output variable
delay.breaks <- c(-150,0,15,3000)
delay.brackets <- c("Early", "Ontime", "Late")
FlightStatus <- cut(flightdata.updated$ARR_DELAY, breaks = delay.breaks, labels = delay.br
ackets)
```

```
#Lets create a variable to indicate whether a flight is delayed or not
flightdata.updated$delayed <- as.factor(ifelse(flightdata.updated$ARR_DELAY>15,1,0))
#Lets convert the unit of delay from minutes to hours and round it to 1 decimal units
flightdata.updated$ARR_DELAY_HRS <- round(flightdata.updated$ARR_DELAY/60,digits =
1)
#Lets do the same for departure delays
flightdata.updated$DEP_DELAY_HRS <- round(flightdata.updated$DEP_DELAY/60,digits =
1)
num.cf<- sum(flightdata.updated$CANCELLED)</pre>
per.cf <- 100*num.cf/nrow(flightdata.updated)</pre>
cf.df <- subset(flightdata.updated, flightdata.updated$CANCELLED>0)
#head(cf.df)
#Lets create morning, afternoon, evening, and redeye flight groups as dep_slot variable.
flightdata.updated$dep_slot <- NA
#define break points
flight.times <- c(0,600,1200,1700,2400)
flight.types <- c("Redeye", "Morning", "Afternoon", "Evening")</pre>
flightdata.updated$dep_slot <- cut(flightdata.updated$DEP_TIME, breaks = flight.times, lab
els = flight.types)
#Lets group the arrival of flights by the same time slots
flightdata.updated$arr_slot <- NA
flightdata.updated$arr_slot <- cut(flightdata.updated$ARR_TIME, breaks = flight.times, labe
ls = flight.types)
```

```
#convert fl_date character to date class
flightdata.updated$FL_DATE<-as.Date(flightdata.updated$FL_DATE)
class(flightdata.updated$FL_DATE)
#Lets create a variable that will keep the month
flightdata.updated$month <- months(flightdata.updated$FL_DATE)</pre>
#Lets create a variable that will keep the day of the week
flightdata.updated$day <- weekdays(flightdata.updated$FL_DATE)</pre>
#define the day and month variables as factors (categorical variable)
flightdata.updated$month<-as.factor(flightdata.updated$month)
flightdata.updated$day<- as.factor(flightdata.updated$day)
#DATA VISUALIZATION
" {r Data Vis,echo=FALSE, message = FALSE, warning = FALSE}
#Cont. table of flights by flight status (early, ontime, delayed)
prop.table(round(table(FlightStatus), digits=2))
#Contingency table of delayed(1) and nondelayed (0) flights
ct.Delayed <- prop.table(table(flightdata.updated$delayed))
ct.Delayed <- as.data.frame(100*round(ct.Delayed,digits = 2))
rownames(ct.Delayed) <- c("Ontime or Early", "Delayed")</pre>
colnames(ct.Delayed) <- c("Code", "Percentage")</pre>
ct.Delayed
#CANCELLED FLIGHTS
"Percent of Cancelled Flights:"
round(per.cf,digits=2)
```

```
"``{r data split,echo=FALSE, message = FALSE, warning = FALSE}
flightdata.expdata <- flightdata.updated[,c("OP_CARRIER","ORIGIN","DEST","DIVERTED","
month", "day", "dep_slot", "arr_slot", "delayed")]
#Lets tabularize the structure of flightdata.expdata
library(knitr)
library(magrittr)
data.frame(variable = names(flightdata.expdata),
 class = sapply(flightdata.expdata, typeof),
 First_values = sapply(flightdata.expdata, function(x) paste0(head(x), collapse = ", ")),
 row.names = NULL) %>%
 kable()
Create training and validation sets.
set.seed(1905)
split <- sample(nrow(flightdata.expdata),nrow(flightdata.expdata)*0.75) #75-25 split is us
ed.
flightdata.data.train <- as.data.frame(flightdata.expdata[split,])
flightdata.data.test <- as.data.frame(flightdata.expdata[-split,])
...
#Building Naive Bayes: naive Bayes classifier model will be developed with the train data.
"\"{r nb model,echo=FALSE, message = FALSE, warning = FALSE}
library(e1071)
library(FNN)
library(caret)
```

```
flightdata.naive <- naiveBayes(delayed~.,data=flightdata.data.train)
flightdata.naive
#Below is a memory exhaustive and would take a good amount of time to check the conf. m
atrix of train data. Left for the future experimentation.
#pred.class.train <- predict(flightdata.naive, newdata = flightdata.data.train, type = "class")</pre>
#train.cf <- confusionMatrix(pred.class.train, flightdata.data.train$delayed)</pre>
#train.cf
#Following (caret approach with trainControl includes cross validation)
#However, this training with 10 fold CV takes exponentially higher time
#Therefore, its left here for future experimentation
#train_control <- trainControl(method="cv", number=10)</pre>
#flightdata.naive.model = train(x=flightdata.data.train[, c(1:9)],y=flightdata.data.train[, 10],
method ='nb',trControl=train control)
#str(flightdata.data.train)
Lets take a look at the naive Bayes classification model performance with the test data
"``{r prob and class mem,echo=FALSE, message = FALSE, warning = FALSE}
library(caret)
#probabilities
pred.prob.fd <- predict(flightdata.naive, newdata = flightdata.data.test, type = "raw")</pre>
predict class membership
pred.class <- predict(flightdata.naive, newdata = flightdata.data.test, type = "class")</pre>
test.cf <- confusionMatrix(pred.class, flightdata.data.test$delayed)
test.cf
```

```

"``{r predicting a new flight,echo=FALSE, message = FALSE, warning = FALSE}
#Define the new passenger data
new.pass.data <- c("AA", "ABQ","JFK",0,"October", "Wednesday","Redeye","Morning","")
#Get the first row from the experiment data to have the column names and structure
new.passenger <- flightdata.expdata[1,]</pre>
#Update the passenger data with the new passenger data
new.passenger[,c(1:9)] <- new.pass.data
#Predict the probability of delay
pred.prob.fd <- predict(flightdata.naive, newdata = new.passenger, type = "raw")</pre>
pred.prob.fd
predict class membership
pred.class <- predict(flightdata.naive, newdata = new.passenger, type = "class")</pre>
pred.class
#Prediction of new passenger
print(pred.class)
```

### ##Data Preparation

```
: int 1517 1115 1335 1546 630 2241 750 1324 2224 16
$ CRS DEP TIME
01 ...
 : int 1745 1254 1649 1756 922 14 916 1619 638 1813
##
 $ CRS ARR TIME
. . .
 268 99 134 190 112 93 206 115 314 252 ...
##
 $ CRS ELAPSED TIME
 : num
 250 83 126 182 106 79 193 102 299 237 ...
##
 $ ACTUAL ELAPSED TIME: num
 1512 1107 1330 1552 650 ...
##
 $ DEP TIME
 : num
 1722 1230 1636 1754 936 ...
##
 $ ARR TIME
 : num
##
 $ DEP DELAY
 : num
 -5 -8 -5 6 20 3 -3 -6 13 -2 ...
##
 $ ARR DELAY
 : num
 -23 -24 -13 -2 14 -11 -16 -19 -2 -17 ...
##
 $ CARRIER DELAY
 : num NA NA NA NA NA NA NA NA NA ...
##
 $ WEATHER DELAY
 : num NA NA NA NA NA NA NA NA NA ...
 $ NAS DELAY
 : num NA NA NA NA NA NA NA NA NA ...
##
##
 $ SECURITY DELAY
 : num NA NA NA NA NA NA NA NA NA ...
 $ LATE AIRCRAFT DELAY: num NA ...
##
##
 $ CANCELLED
 0 0 0 0 0 0 0 0 0 0 ...
 : num
 $ DIVERTED
 0 0 0 0 0 0 0 0 0 0 ...
##
 : num
 $ TAXI OUT
 : num
 15 11 15 19 13 15 14 11 10 12 ...
##
 $ TAXI IN
 10 7 5 6 10 2 6 6 9 8 ...
##
 : num
 $ WHEELS OFF
 1527 1118 1345 1611 703 ...
##
 : num
##
 $ WHEELS ON
 1712 1223 1631 1748 926 ...
 : num
 $ CANCELLATION CODE : chr

##
 225 65 106 157 83 62 173 85 280 217 ...
##
 $ AIR TIME
 : num
 1605 414 846 1120 723 ...
##
 $ DISTANCE
 : num
 2429 2427 2426 2425 2424 2422 2421 2420 2419
 $ OP CARRIER FL NUM : int
2418 ...
$ Unnamed..27
 : logi NA NA NA NA NA ...
```

The structure of dataset indicates that there are 28 variables, that consists of a variety of categorical and continous variables.

```
#Lets remove the variables with high missing data percentages >50% from our f
ocus of analysis.

#fd.updated <- fd.df[,-c("CARRIER_DELAY","WEATHER_DELAY","NAS_DELAY","SECURIT
Y_DELAY","LATE_AIRCRAFT_DELAY","Unnamed..27 ")]

fd.updated <- subset(fd.df, select = -c(CARRIER_DELAY,WEATHER_DELAY,NAS_DELAY,SECURITY_DELAY,LATE_AIRCRAFT_DELAY,Unnamed..27))
str(fd.updated)</pre>
```

```
'data.frame': 7213446 obs. of 22 variables:
 : chr "2018-01-01" "2018-01-01" "2018-01-01" "2018-
$ FL DATE
01-01" ...
 : chr "UA" "UA" "UA" "UA" ...
 $ OP CARRIER
 : chr "EWR" "LAS" "SNA" "RSW" ...
 $ ORIGIN
 : chr "DEN" "SFO" "DEN" "ORD" ...
 $ DEST
##
$ CRS_DEP_TIME : int 1517 1115 1335 1546 630 2241 750 1324 2224 16
01 ...
##
 $ CRS ARR TIME
 : int 1745 1254 1649 1756 922 14 916 1619 638 1813
. . .
##
 $ CRS ELAPSED TIME : num 268 99 134 190 112 93 206 115 314 252 ...
##
 $ ACTUAL ELAPSED TIME: num 250 83 126 182 106 79 193 102 299 237 ...
 : num 1512 1107 1330 1552 650 ...
##
 $ DEP TIME
 : num 1722 1230 1636 1754 936 ...
 $ ARR TIME
##
##
 $ DEP DELAY
 : num -5 -8 -5 6 20 3 -3 -6 13 -2 ...
 : num -23 -24 -13 -2 14 -11 -16 -19 -2 -17 ...
 $ ARR DELAY
##
##
 $ CANCELLED
 : num 0 0 0 0 0 0 0 0 0 ...
 $ DIVERTED
 : num 0 0 0 0 0 0 0 0 0 ...
 $ TAXI_OUT
 : num 15 11 15 19 13 15 14 11 10 12 ...
##
 $ TAXI IN
 : num 10 7 5 6 10 2 6 6 9 8 ...
##
 : num 1527 1118 1345 1611 703 ...
 $ WHEELS OFF
##
 : num 1712 1223 1631 1748 926 ...
##
 $ WHEELS ON
 $ CANCELLATION CODE : chr "" "" "" ...
 $ AIR TIME
##
 : num 225 65 106 157 83 62 173 85 280 217 ...
 $ DISTANCE
 : num 1605 414 846 1120 723 ...
##
 $ OP CARRIER FL NUM : int 2429 2427 2426 2425 2424 2422 2421 2420 2419
2418 ...
```

### #Data manipulation: Conversion of Minutes to Hours and creation of Output Variable

```
[1] "Date"
```

#### **#DATA VISUALIZATION**

```
FlightStatus

Early Ontime Late

0.6444452 0.1711120 0.1844428

Code Percentage
```

```
Ontime or Early 0 82
Delayed 1 18
[1] "Percent of Cancelled Flights:"
[1] 1.62
```

.

#Data Partition In this section, we will look at the final structure of the data and partition it into train and test subsets.

variable	class	First_values
OP_CARRIER	integer	UA, UA, UA, UA, UA
ORIGIN	integer	EWR, LAS, SNA, RSW, ORD, ORD
DEST	integer	DEN, SFO, DEN, ORD, ALB, OMA
DIVERTED	integer	0, 0, 0, 0, 0
month	integer	January, January, January, January, January
day	integer	Monday, Monday, Monday, Monday, Monday
dep_slot	integer	Afternoon, Morning, Afternoon, Afternoon, Morning, Evening
arr_slot	integer	Evening, Afternoon, Afternoon, Evening, Morning, Redeye
delayed	integer	0, 0, 0, 0, 0

#Building Naive Bayes: naive Bayes classifier model will be developed with the train data.

```
##
Naive Bayes Classifier for Discrete Predictors
##
Call:
naiveBayes.default(x = X, y = Y, laplace = laplace)
##
A-priori probabilities:
```

```
Y
0 1
0.8156407 0.1843593
##
Conditional probabilities:
 OP CARRIER
Y
 9E AA
 AS B6 DL E
V
 0 0.033509736 0.125575403 0.035528022 0.037867173 0.142062884 0.02705639
##
##
 1 0.032856533 0.133540665 0.029342869 0.060518199 0.096071810 0.03090551
OP CARRIER
Y
 F9 G4 HA MQ NK O
 0 0.014611031 0.012942948 0.013055216 0.039723756 0.024862547 0.03669759
7
##
 1 0.025520560 0.015858497 0.006205632 0.042206883 0.023264988 0.04151907
2
 OP CARRIER
##
 VX
Y
 OO UA
 WN
 YV
Χ
##
 0 0.107715756 0.086564758 0.002417231 0.187388959 0.029024785 0.04339580
2
 1 0.106216261 0.088638747 0.002555020 0.191103217 0.031628079 0.04204745
##
##
##
 ORIGIN
 ABI ABQ ABR
 ABE
Y
 0 5.770491e-04 2.781294e-04 3.437115e-03 1.108821e-04 1.344446e-04
 1 5.815225e-04 2.800302e-04 3.005725e-03 7.154055e-05 1.543232e-04
##
 ORIGIN
Y
 ACK ACT ACV ACY ADK
 0 1.196603e-04 2.275394e-04 1.951988e-04 4.853403e-04 1.155022e-05
 1 1.911155e-04 1.890715e-04 2.422159e-04 3.352186e-04 2.146217e-05
##
 ORIGIN
 AEX
Y
 ADQ
 AGS
 AKN
 ALB
 0 9.586685e-05 4.781792e-04 6.186299e-04 7.623147e-06 1.736460e-03
```

```
##
 1 5.110040e-05 4.445734e-04 6.264909e-04 1.022008e-05 1.564694e-03
 ORIGIN
Y
 ANC
 APN
 ALO
 AMA
 ART
##
 0 8.593365e-05 7.777920e-04 2.864686e-03 8.986073e-05 2.310044e-06
##
 1 9.913477e-05 6.162708e-04 1.217211e-03 6.745252e-05 4.088032e-06
##
 ORIGIN
Y
 ASE
 ATL
 ATW
 AUS
 AVL
 0 8.725038e-04 5.619507e-02 6.050006e-04 8.947495e-03 1.055921e-03
##
##
 1 1.039382e-03 4.733021e-02 5.294001e-04 8.241472e-03 1.122165e-03
##
 ORIGIN
Y
 AVP
 AZA
 AZO
 BDL
 BET
##
 0 4.680150e-04 7.486854e-04 4.007927e-04 4.034262e-03 1.286695e-04
##
 1 3.944951e-04 6.653272e-04 3.290865e-04 3.329702e-03 5.518843e-05
##
 ORIGIN
Y
 BFF
 BFL
 BGM
 BGR
 BHM
 0 8.339261e-05 3.386525e-04 1.302865e-04 5.306172e-04 2.563918e-03
##
##
 1 5.723244e-05 2.371058e-04 9.709075e-05 6.316009e-04 2.377190e-03
##
 ORIGIN
Y
 BIL
 BIS
 BJI
 BKG
 BLT
 0 6.287941e-04 5.269211e-04 1.094961e-04 8.547165e-06 3.361115e-04
##
##
 1 4.006271e-04 4.118692e-04 7.665059e-05 1.941815e-05 2.033796e-04
##
 ORIGIN
Y
 BLV BMI
 BNA
 BOI BOS
 0 1.277455e-04 4.264342e-04 1.024990e-02 2.854522e-03 1.942978e-02
##
 1 2.074676e-04 4.476395e-04 1.049193e-02 1.945903e-03 2.432788e-02
##
##
 ORIGIN
Y
 BPT
 BQK
 BQN
 BRD
 0 1.198913e-04 1.533870e-04 2.601110e-04 9.540484e-05 3.880875e-04
##
 1 8.891469e-05 1.154869e-04 3.444167e-04 6.336449e-05 2.575460e-04
##
 ORIGIN
Y
 BTM
 BTR
 BTV
 BRW
 BUF
 0 1.101891e-04 1.032590e-04 1.056383e-03 1.300786e-03 3.652180e-03
##
 1 4.701236e-05 3.679229e-05 1.047558e-03 1.420591e-03 3.421683e-03
##
##
 ORIGIN
```

```
Y
 BUR
 BWI
 BZN
 CAE
 CAK
 0 3.684290e-03 1.468241e-02 8.309230e-04 9.898541e-04 9.813069e-04
 1 3.536147e-03 1.483138e-02 7.092735e-04 7.338017e-04 1.212101e-03
##
##
 ORIGIN
Y
 CDC
 CDV CGI
 CHA
 CHO
 0 9.448082e-05 1.108821e-04 8.293060e-05 1.171193e-03 7.387522e-04
##
 1 6.132048e-05 6.438650e-05 7.358457e-05 1.245828e-03 8.748388e-04
##
 ORIGIN
Y
 CHS
 CID
 CIU
 CKB
 0 3.328543e-03 1.297321e-03 8.708868e-05 1.064930e-04 6.768430e-03
##
 1 2.889216e-03 1.239696e-03 1.011788e-04 1.226410e-04 6.240380e-03
##
 ORIGIN
Y
 CLL CLT CMH
 CMI CMX
 0 3.240992e-04 3.109204e-02 6.357473e-03 3.252543e-04 8.731968e-05
##
 1 2.391499e-04 3.609732e-02 6.311921e-03 2.882062e-04 1.236630e-04
##
 ORIGIN
Y
 CNY
 COD
 COS
 COII
 0 6.029216e-05 1.212773e-04 1.414209e-03 3.125490e-04 1.573140e-04
##
##
 1 4.803437e-05 7.256256e-05 1.550386e-03 2.984263e-04 5.723244e-05
##
 ORIGIN
Y
 CRP
 CRW
 CSG
 CVG
 CWA
 0 7.814880e-04 6.246360e-04 1.734843e-04 6.771202e-03 4.019477e-04
##
##
 1 6.888333e-04 6.939434e-04 1.768074e-04 7.072295e-03 3.331746e-04
##
 ORIGIN
 DAY
 DBO
Y
 CYS
 DAB
 DAL
##
 0 7.854151e-06 5.128299e-04 9.278294e-03 1.880607e-03 1.328276e-04
##
 1 1.022008e-05 4.067592e-04 1.253186e-02 2.041972e-03 1.297950e-04
##
 ORIGIN
Y
 DCA
 DEN
 DFW
 DHN
 DLG
 0 1.801742e-02 3.278392e-02 3.695678e-02 1.878066e-04 1.108821e-05
##
 1 1.869763e-02 3.431392e-02 4.581764e-02 2.279078e-04 1.022008e-05
##
##
 ORIGIN
Y
 DLH DRO DRT
 DSM
 DTM
 0 3.936316e-04 4.317473e-04 1.663232e-05 2.203089e-03 2.263266e-02
```

```
1 3.474827e-04 4.363974e-04 1.430811e-05 1.986783e-03 1.885298e-02
 ORIGIN
Y
 EAU
 ECP
 DVL
 EAR
 EGE
 0 8.547165e-05 3.303364e-05 1.007179e-04 7.951173e-04 2.862145e-04
##
##
 1 5.927646e-05 1.022008e-05 9.709075e-05 6.101387e-04 3.485047e-04
##
 ORIGIN
Y
 EKO
 ELM
 ELP
 ERI
 0 1.081101e-04 4.897294e-05 2.427395e-03 1.515389e-04 8.570265e-05
##
##
 1 3.168225e-05 4.803437e-05 2.061390e-03 1.185529e-04 7.358457e-05
##
 ORTGIN
Y
 EUG
 EVV
 EWN
 EWR
 EYW
##
 0 5.715050e-04 6.442714e-04 3.046949e-04 1.817658e-02 6.881622e-04
 1 5.416642e-04 5.508623e-04 2.381278e-04 2.598353e-02 5.253121e-04
##
 ORIGIN
Y
 FAI
 FAR
 FAT
 FAY
 FCA
 0 7.154208e-04 8.050505e-04 1.570830e-03 5.417054e-04 3.481237e-04
##
##
 1 2.647001e-04 7.235816e-04 1.460449e-03 4.936298e-04 2.422159e-04
##
 ORIGIN
Y
 FLG
 FLL
 FLO
 FNT
 0 1.732533e-04 1.317003e-02 2.425547e-05 5.782041e-04 8.628016e-04
##
##
 1 1.134429e-04 1.557438e-02 2.657221e-05 5.273561e-04 9.770396e-04
##
 ORIGIN
Y
 FSM FWA GCC GCK GEG
 0 2.829804e-04 9.753008e-04 1.252044e-04 1.030280e-04 1.863282e-03
##
 1 2.953603e-04 1.055734e-03 7.256256e-05 7.256256e-05 1.236630e-03
##
##
 ORIGIN
Y
 GFK
 GGG
 GJT
 GNV
 0 3.171691e-04 1.101891e-04 5.705810e-04 6.343382e-04 6.255600e-04
##
 1 2.054236e-04 1.001568e-04 2.790082e-04 6.019627e-04 4.415074e-04
##
 ORIGIN
Y
 GRI
 GRB
 GRK
 GRR
 GSO
 0 6.948614e-04 1.284385e-04 4.324403e-04 2.400598e-03 1.783585e-03
##
 1 5.682364e-04 1.665873e-04 3.587248e-04 2.356750e-03 1.702665e-03
##
##
 ORIGIN
```

```
Y
 GSP
 GST GTF
 GTR
 GUC
 0 1.935124e-03 1.362926e-05 2.802084e-04 1.453018e-04 3.626770e-05
 1 1.573892e-03 5.110040e-06 1.573892e-04 1.195749e-04 3.168225e-05
##
##
 ORIGIN
Y
 GUM
 HDN
 HGR
 HHH
 HIB
 0 9.147776e-05 1.258974e-04 1.501529e-05 7.345941e-05 9.910091e-05
##
 1 6.234248e-05 1.226410e-04 2.963823e-05 6.847453e-05 3.270425e-05
##
 ORIGIN
Y
 HLN
 HNL
 HOB
 HOU
 HPN
 0 2.850595e-04 7.755050e-03 1.062620e-04 7.732874e-03 1.244421e-03
##
 1 1.216189e-04 3.358318e-03 6.336449e-05 9.235886e-03 1.738435e-03
##
 ORIGIN
Y
 HRL
 HSV HTS HVN HYA
 0 4.767932e-04 1.240494e-03 1.092651e-04 1.284385e-04 1.155022e-05
##
##
 1 4.721677e-04 9.749956e-04 1.737413e-04 1.389931e-04 1.533012e-05
##
 ORIGIN
Y
 HYS
 TAD
 TAG
 TAH
 0 1.506149e-04 9.556654e-03 1.064930e-04 2.475051e-02 1.526939e-03
##
##
 1 1.400151e-04 9.314580e-03 1.318390e-04 2.193331e-02 1.257070e-03
##
 ORIGIN
Y
 IDA
 IFP
 ILM
 IMT
 IND
 0 3.307984e-04 5.775111e-06 9.189357e-04 9.540484e-05 6.828029e-03
##
 1 2.299518e-04 1.022008e-05 7.419777e-04 6.540851e-05 6.364043e-03
##
##
 ORIGIN
 ISN
 ISP
Y
 INL
 ITH
 ITO
##
 0 9.886990e-05 2.018979e-04 8.424732e-04 1.397577e-04 1.015496e-03
##
 1 6.438650e-05 1.676093e-04 8.809708e-04 1.205969e-04 3.055804e-04
##
 ORIGIN
Y
 JAC
 JAN
 JAX
 JFK
 0 5.754321e-04 1.093575e-03 4.401328e-03 1.737939e-02 1.002559e-04
##
 1 6.234248e-04 9.668195e-04 4.146286e-03 1.932924e-02 1.430811e-04
##
##
 ORIGIN
Y
 JMS JNU KOA KTN
 LAN
 0 1.432228e-04 6.777670e-04 2.352318e-03 3.543608e-04 5.058997e-04
```

```
##
 1 1.062888e-04 3.566808e-04 9.985017e-04 2.493699e-04 4.231113e-04
 ORTGIN
Y
 LAW
 LAS
 LAX
 LAR
 LBB
 0 8.893671e-05 2.270150e-02 1.783354e-04 3.175133e-02 9.133916e-04
##
##
 1 8.380465e-05 2.215815e-02 1.829394e-04 2.739799e-02 7.859241e-04
##
 ORIGIN
Y
 LBE
 LBF
 LBL
 LCH
 0 1.607791e-04 9.193977e-05 8.269959e-05 2.873695e-04 1.386027e-04
##
##
 1 9.095870e-05 2.350618e-05 5.212240e-05 1.941815e-04 2.289298e-04
##
 ORIGIN
Y
 LEX
 LFT
 LGA
 LGB
 T.TH
##
 0 1.406355e-03 6.401133e-04 2.231341e-02 2.411455e-03 2.216026e-03
##
 1 1.413437e-03 5.590383e-04 2.650986e-02 2.031752e-03 1.035294e-03
##
 ORIGIN
Y
 LIT
 LNK
 LRD
 LSE
 LWB
 0 1.938127e-03 2.520259e-04 3.446586e-04 2.986887e-04 7.253540e-05
##
##
 1 1.520748e-03 2.371058e-04 2.851402e-04 2.463039e-04 1.083328e-04
##
 ORIGIN
Y
 LWS
 LYH
 MAF
 MBS
 MCT
 0 1.173503e-04 1.395267e-04 1.240494e-03 4.151150e-04 8.201813e-03
##
##
 1 3.577028e-05 1.665873e-04 1.138517e-03 3.239765e-04 6.308855e-03
##
 ORIGIN
Y
 MCO MDT MDW MEI MEM
 0 1.881832e-02 8.815130e-04 1.119655e-02 1.411437e-04 3.216275e-03
##
 1 2.138041e-02 8.135183e-04 1.532296e-02 2.033796e-04 3.073178e-03
##
##
 ORIGIN
Y
 MFE
 MFR
 MGM
 MHK
 0 6.551286e-04 6.384963e-04 5.680399e-04 2.598800e-04 1.400580e-03
##
 1 5.784565e-04 7.205156e-04 5.835665e-04 2.187097e-04 9.790836e-04
##
 ORIGIN
Y
 MKE
 MKG
 MIA
 MT.B
 MT.T
0 1.201801e-02 4.590982e-03 9.748388e-05 3.668351e-04 6.870072e-04
 1 1.313996e-02 3.981743e-03 9.913477e-05 2.330178e-04 7.123395e-04
##
##
 ORIGIN
```

```
Y
 MLU
 MMH
 MOB
 MOT
 MOT
 0 4.439905e-04 1.709433e-05 9.062304e-04 3.730722e-04 1.785664e-04
 1 3.873410e-04 3.679229e-05 8.543986e-04 2.687881e-04 2.115556e-04
##
##
 ORIGIN
Y
 MRY
 MSN
 MSO
 MSP
 MSY
 0 5.521006e-04 1.868133e-03 5.077478e-04 2.297547e-02 7.845835e-03
##
 1 5.539283e-04 1.510528e-03 3.679229e-04 1.896642e-02 7.677323e-03
##
 ORIGIN
Y
 MTJ
 MVY
 MYR
 OAJ
 0 2.058250e-04 6.075417e-05 1.601785e-03 4.225071e-04 7.439036e-03
##
 1 2.207537e-04 8.687067e-05 1.445119e-03 3.863190e-04 6.774890e-03
##
 ORIGIN
Y
 OGD OGG OGS OKC OMA
 0 1.478428e-05 3.869555e-03 1.686332e-05 3.371279e-03 3.552617e-03
##
##
 1 2.452819e-05 2.283166e-03 2.759421e-05 2.723651e-03 3.143696e-03
##
 ORIGIN
Y
 OME
 ONT
 ORD
 ORF
 0 1.120372e-04 3.095460e-03 4.277301e-02 3.098463e-03 1.090341e-04
##
 1 4.701236e-05 2.440555e-03 5.984470e-02 3.133476e-03 2.227977e-04
##
##
 ORIGIN
 OTH
 OTZ
Y
 OWB
 PAH
 PBG
 0 3.950176e-05 1.069551e-04 1.339826e-05 9.540484e-05 1.321345e-04
##
##
 1 1.022008e-04 6.132048e-05 2.759421e-05 1.042448e-04 1.471691e-04
##
 ORIGIN
 PBI
 PDX
 PGD
 PGV
Y
 PHF
##
 0 3.357650e-03 9.385480e-03 7.422173e-04 1.064930e-04 3.686831e-04
##
 1 4.002183e-03 6.492816e-03 6.632831e-04 1.502352e-04 3.658788e-04
##
 ORIGIN
Y
 PHL
 PHX
 PIA
 PIB
 PIE
 0 1.550594e-02 2.457287e-02 7.357492e-04 1.032590e-04 1.092189e-03
##
 1 1.838899e-02 2.301766e-02 7.041635e-04 8.176063e-05 8.727948e-04
##
##
 ORIGIN
Y
 PIH PIT PLN PNS
 PPG
 0 1.931197e-04 6.846279e-03 1.496909e-04 1.656302e-03 1.455328e-05
```

```
1 9.504674e-05 6.409012e-03 9.709075e-05 1.233564e-03 2.963823e-05
##
 ORIGIN
 PSC
 PRC
 PSE
 PSG
 PSM
Y
 0 3.349564e-05 4.298993e-04 1.067241e-04 1.106511e-04 3.742272e-05
##
##
 1 3.679229e-05 2.933163e-04 1.287730e-04 6.336449e-05 6.234248e-05
##
 ORIGIN
Y
 PSP
 PUB
 PVU
 0 1.514003e-03 1.349066e-04 2.622824e-03 7.276640e-05 1.610332e-03
##
##
 1 1.268312e-03 1.022008e-04 2.296452e-03 8.380465e-05 1.657697e-03
##
 ORIGIN
Y
 RAP
 RDD
 RDM
 RDU
 RFD
##
 0 5.999185e-04 1.556970e-04 5.227631e-04 8.082846e-03 9.586685e-05
##
 1 5.948086e-04 1.921375e-04 5.416642e-04 9.438243e-03 9.504674e-05
##
 ORIGIN
Y
 RHI
 RIC
 RKS
 RNO
 ROA
 0 1.071861e-04 3.080444e-03 1.014110e-04 2.580782e-03 3.224822e-04
##
##
 1 5.927646e-05 3.541257e-03 6.029847e-05 2.371058e-03 4.404854e-04
##
 ORIGIN
Y
 ROC
 ROW
 RST
 RSW
 SAF
 0 1.983635e-03 1.977398e-04 4.333643e-04 4.580356e-03 2.037459e-04
##
##
 1 1.875385e-03 1.665873e-04 4.782997e-04 4.140154e-03 1.614773e-04
##
 ORIGIN
Y
 SAN SAT SAV SBA SBN
 0 1.288011e-02 5.705348e-03 2.206554e-03 9.930881e-04 9.549724e-04
##
 1 1.152621e-02 4.757447e-03 2.024598e-03 9.228732e-04 9.780616e-04
##
##
 ORIGIN
 SCC
Y
 SBP
 SCE
 SCK
 0 6.479675e-04 1.464568e-04 1.977398e-04 8.177557e-05 3.163144e-03
##
 1 7.399337e-04 5.927646e-05 1.788514e-04 2.248417e-04 3.198885e-03
##
 ORIGIN
Y
 SFB
 SFO
 SGF
 SEA
 SGII
 0 2.018424e-02 1.305175e-03 2.345758e-02 1.162414e-03 5.024347e-04
##
##
 1 1.727296e-02 1.506440e-03 2.902298e-02 1.294884e-03 2.575460e-04
##
 ORIGIN
```

```
Y
 SHD
 SHV
 SIT
 SJC
 SJT
 0 9.609785e-05 9.392641e-04 2.065180e-04 7.824814e-03 2.104451e-04
 1 8.891469e-05 8.666627e-04 1.093548e-04 6.843365e-03 1.522792e-04
##
##
 ORIGIN
Y
 SJU
 SLC
 SLN
 SMF
 SMX
 0 3.376823e-03 1.686979e-02 8.500964e-05 6.946304e-03 2.333145e-05
##
 1 3.630172e-03 1.158242e-02 1.277510e-04 5.120260e-03 2.963823e-05
##
 ORIGIN
Y
 SNA
 SPI
 SPN
 SPS
 SRO
 0 6.089277e-03 2.432477e-04 3.603669e-05 1.545420e-04 9.018414e-04
##
 1 4.664444e-03 2.677661e-04 2.861622e-05 9.913477e-05 7.777480e-04
##
 ORIGIN
Y
 STC
 STL
 STS
 STT
 STX
 0 1.917337e-05 9.085174e-03 2.141411e-04 3.541298e-04 1.605481e-04
##
##
 1 2.452819e-05 9.389187e-03 1.911155e-04 3.117124e-04 1.410371e-04
 ORIGIN
##
Y
 SUN
 SUX
 SWF
 SWO
 SYR
 0 1.677092e-04 1.392957e-04 2.162202e-04 1.201223e-04 1.889154e-03
##
##
 1 1.287730e-04 2.248417e-04 3.740549e-04 8.482666e-05 1.868230e-03
##
 ORIGIN
 TOL
 TTN
Y
 TLH
 TPA
 TRI
 0 8.808200e-04 2.876005e-04 1.038758e-02 4.354434e-04 3.019228e-04
##
##
 1 6.980314e-04 2.790082e-04 1.039893e-02 3.791649e-04 6.193368e-04
##
 ORIGIN
 TUL
 TUS
 TVC
 TWF
Y
 TXK
##
 0 2.428550e-03 2.693512e-03 5.696570e-04 1.998188e-04 1.690953e-04
##
 1 2.102270e-03 1.910133e-03 4.507055e-04 1.195749e-04 1.338830e-04
##
 ORIGIN
Y
 TYR
 TYS
 UIN
 USA
 0 1.965848e-04 2.229193e-03 1.138852e-04 1.235874e-04 4.781792e-05
##
 1 1.635213e-04 2.066500e-03 1.604552e-04 2.013356e-04 2.963823e-05
##
##
 ORIGIN
Y
 VLD VPS WRG WYS
 XNA
 0 1.552350e-04 1.122682e-03 1.113441e-04 3.996377e-05 1.741774e-03
```

```
##
 1 1.032228e-04 9.341152e-04 6.540851e-05 1.533012e-05 1.757854e-03
##
 ORIGIN
 YNG
 YUM
Y
 YAK
##
 0 1.129612e-04 0.000000e+00 2.189922e-04
##
 1 5.212240e-05 1.022008e-06 8.891469e-05
##
##
 DEST
Y
 ABE
 ABI
 ABO
 ABR
##
 0 5.654989e-04 2.866765e-04 3.302902e-03 1.161952e-04 1.420677e-04
 1 5.968526e-04 2.647001e-04 3.598490e-03 6.847453e-05 1.297950e-04
##
 DEST
##
Y
 ACK
 ACT
 ACV
 ACY
 ADK
 0 1.316725e-04 2.273084e-04 1.945057e-04 4.620089e-04 1.386027e-05
 1 1.287730e-04 1.860054e-04 1.931595e-04 4.455955e-04 1.022008e-05
##
 DEST
Y
 ADO
 AEX
 AGS
 AKN
 ALB
##
 0 9.540484e-05 4.938875e-04 6.188609e-04 1.016420e-05 1.656302e-03
 1 5.314441e-05 3.914290e-04 6.990534e-04 5.110040e-06 1.834504e-03
##
##
 DEST
 APN
Y
 ALO
 AMA
 ANC
 ART
##
 0 9.355680e-05 7.422173e-04 2.742716e-03 9.332580e-05 3.003058e-06
 1 8.891469e-05 7.562859e-04 1.847790e-03 4.803437e-05 5.110040e-06
##
##
 DEST
 ASE
 ATL
 ATW
 AUS
Y
 AVT.
 0 8.494034e-04 5.694213e-02 5.809762e-04 8.862717e-03 1.030511e-03
##
##
 1 1.034272e-03 4.465561e-02 5.314441e-04 8.848545e-03 1.209035e-03
##
 DEST
Y
 AVP
 AZA
 AZO
 BDL
 0 4.511517e-04 6.967094e-04 3.873945e-04 3.831209e-03 1.321345e-04
 1 4.946518e-04 9.504674e-04 3.638348e-04 4.175924e-03 4.190232e-05
##
##
 DEST
Y
 BFF BFL BGM
 BGR BHM
 0 7.738649e-05 3.247923e-04 1.291315e-04 5.467875e-04 2.468976e-03
##
 1 7.051855e-05 3.158004e-04 1.175309e-04 5.743685e-04 2.858556e-03
##
```

```
##
 DEST
 BIL
 BIS BJI BKG BLI
 0 6.119308e-04 5.287692e-04 1.085721e-04 7.623147e-06 3.245612e-04
##
##
 1 4.374194e-04 4.323093e-04 7.256256e-05 1.430811e-05 2.289298e-04
##
 DEST
Y
 BLV
 BMI
 BNA
 BOI
 BOS
##
 0 1.395267e-04 4.234312e-04 1.035778e-02 2.810400e-03 1.919116e-02
 1 1.645433e-04 4.547935e-04 1.019760e-02 2.235131e-03 2.573109e-02
##
##
 DEST
Y
 BPT
 BQK
 BQN
 BRD
 BRO
 0 1.198913e-04 1.455328e-04 2.340075e-04 9.702187e-05 3.633700e-04
##
##
 1 1.042448e-04 1.042448e-04 4.466175e-04 5.518843e-05 3.188665e-04
##
 DEST
 BRW
 BTM
 BTR
 BTV
 BUF
##
 0 1.129612e-04 1.021040e-04 1.051070e-03 1.283692e-03 3.535061e-03
 1 4.905638e-05 3.168225e-05 1.029162e-03 1.493154e-03 3.887718e-03
##
##
 DEST
 BUR
 RWT
 CAE
Y
 R7N
 0 3.711548e-03 1.504624e-02 8.450143e-04 9.441152e-04 9.290999e-04
##
 1 3.613820e-03 1.323602e-02 7.368677e-04 8.819928e-04 1.448185e-03
##
##
 DEST
 CDC
 CDV
Y
 CGI
 CHA
 CHO
 0 9.078475e-05 1.055690e-04 7.992754e-05 1.135387e-03 7.200409e-04
##
 1 7.256256e-05 6.540851e-05 8.278264e-05 1.395041e-03 8.860809e-04
##
##
 DEST
Y
 CHS
 CID
 CIU
 CKB
 CLE
 0 3.286962e-03 1.295242e-03 9.193977e-05 1.000249e-04 6.637220e-03
##
##
 1 3.099750e-03 1.258092e-03 7.358457e-05 1.461471e-04 6.875047e-03
 DEST
##
Y
 CLL
 CLT
 CMH
 CMI
 0 3.328774e-04 3.313736e-02 6.327443e-03 3.095460e-04 7.969653e-05
##
##
 1 2.953603e-04 2.733667e-02 6.480552e-03 3.485047e-04 1.594332e-04
##
 DEST
Y
 CNY
 COD
 COS
 COU
 CPR
```

```
##
 0 6.283321e-05 1.226634e-04 1.362695e-03 2.876005e-04 1.584691e-04
 1 5.518843e-05 6.643051e-05 1.746612e-03 3.617908e-04 6.234248e-05
##
 DEST
Y
 CRP
 CRW
 CSG
 CVG
 CWA
##
 0 7.436033e-04 6.149338e-04 1.801835e-04 6.797999e-03 4.019477e-04
 1 8.850589e-04 7.225596e-04 1.624993e-04 7.046745e-03 3.382846e-04
##
 DEST
Y
 CYS
 DAB
 DAL
 DAY
##
 0 6.468125e-06 4.957355e-04 9.759707e-03 1.882455e-03 1.293625e-04
##
 1 7.154055e-06 4.885198e-04 1.003407e-02 2.085918e-03 1.522792e-04
 DEST
##
Y
 DCA
 DEN
 DFW
 DHN
 DLG
 0 1.796868e-02 3.381882e-02 3.835875e-02 1.887306e-04 1.247424e-05
 1 1.831234e-02 2.932958e-02 3.890171e-02 2.044016e-04 7.154055e-06
##
 DEST
Y
 DLH
 DRO
 DRT
 DSM
 DTW
##
 0 3.825434e-04 4.317473e-04 1.801835e-05 2.123855e-03 2.308566e-02
 1 3.924510e-04 4.108472e-04 6.132048e-06 2.236153e-03 1.713192e-02
##
##
 DEST
Y
 DVL
 EAR
 EAU
 ECP
 EGE
##
 0 8.801269e-05 3.095460e-05 9.401881e-05 7.503024e-04 2.850595e-04
 1 7.562859e-05 1.737413e-05 1.175309e-04 7.797920e-04 3.280645e-04
##
##
 DEST
 EKO
 ELP
 ESC
Y
 F.T.M
 ERT
 0 1.048760e-04 5.174500e-05 2.311199e-03 1.499219e-04 9.055374e-05
##
##
 1 2.963823e-05 2.963823e-05 2.674595e-03 1.073108e-04 6.029847e-05
##
 DEST
Y
 EUG
 EVV
 EWN
 EWR
 0 5.819002e-04 6.378033e-04 2.776673e-04 1.677901e-02 6.994815e-04
 1 5.498403e-04 6.172928e-04 3.638348e-04 3.215850e-02 4.793217e-04
##
##
 DEST
Y
 FAI
 FAY
 FCA
 FAR
 FAT
 0 6.680649e-04 8.119806e-04 1.602709e-03 5.204530e-04 3.608289e-04
##
 1 4.006271e-04 7.123395e-04 1.435921e-03 5.580163e-04 2.565240e-04
##
```

```
##
 DEST
 FLG
 FLL FLO FNT
 FSD
 0 1.737153e-04 1.325088e-02 2.356245e-05 5.941434e-04 8.706558e-04
##
##
 1 1.267290e-04 1.510426e-02 3.270425e-05 4.895418e-04 9.453573e-04
##
 DEST
Y
 FSM
 FWA
 GCC
 GCK
 GEG
##
 0 2.732783e-04 9.411121e-04 1.185053e-04 1.071861e-04 1.787281e-03
 1 3.321526e-04 1.155891e-03 9.811276e-05 8.176063e-05 1.507462e-03
##
##
 DEST
 GGG
 GJT
Y
 GFK
 CMV
 GPT
 0 3.197102e-04 1.180433e-04 5.731220e-04 6.068487e-04 5.851343e-04
##
##
 1 1.992915e-04 9.198071e-05 3.086464e-04 6.643051e-04 6.080947e-04
##
 DEST
 GRB
 GRI
 GRK
 GRR
 GSO
##
 0 6.687579e-04 1.434538e-04 4.215831e-04 2.380963e-03 1.731378e-03
 1 6.499970e-04 1.441031e-04 3.597468e-04 2.503919e-03 2.050148e-03
##
##
 DEST
 GSP
 GST
 GTF
Y
 GTR
 0 1.841105e-03 1.224324e-05 2.859835e-04 1.478428e-04 2.979957e-05
##
##
 1 2.116578e-03 8.176063e-06 1.584112e-04 1.205969e-04 2.759421e-05
##
 DEST
 GUM
Y
 HDN
 HGR
 HHH
 HIB
 0 8.269959e-05 1.245114e-04 1.778734e-05 7.322841e-05 9.586685e-05
##
 1 8.891469e-05 1.308170e-04 2.452819e-05 5.723244e-05 3.577028e-05
##
##
 DEST
Y
 HLN
 HNL
 HOB
 HOU
 HPN
 0 2.802084e-04 7.596581e-03 1.021040e-04 7.858540e-03 1.221783e-03
##
##
 1 1.829394e-04 3.933708e-03 6.132048e-05 8.698309e-03 1.877429e-03
 DEST
##
Y
 HRL
 HSV
 HTS
 HVN
 0 4.742521e-04 1.204457e-03 1.138852e-04 1.263594e-04 1.201223e-05
##
 1 5.161140e-04 1.139539e-03 1.492132e-04 1.502352e-04 1.839614e-05
##
##
 DEST
Y
 HYS
 IAD
 IAG
 IAH
 ICT
```

```
0 1.425297e-04 9.628034e-03 1.201223e-04 2.466481e-02 1.456021e-03
##
 1 1.645433e-04 8.984472e-03 9.095870e-05 2.211932e-02 1.447163e-03
##
 DEST
Y
 IDA
 IFP
 ILM
 IMT
 IND
##
 0 3.314914e-04 7.161138e-06 8.819750e-04 9.609785e-05 6.791762e-03
 1 2.064456e-04 7.154055e-06 8.881249e-04 4.905638e-05 6.811683e-03
##
 DEST
Y
 INL
 ISN
 ISP
 ITH
##
 0 1.011799e-04 2.014359e-04 7.904972e-04 1.457638e-04 1.041137e-03
##
 1 5.212240e-05 1.481911e-04 1.034272e-03 1.083328e-04 3.055804e-04
 DEST
##
Y
 JAC
 JAN
 JAX
 JFK
 JLN
 0 5.851343e-04 1.086414e-03 4.252330e-03 1.710958e-02 1.044140e-04
 1 5.621044e-04 9.974797e-04 4.708390e-03 2.043914e-02 1.185529e-04
##
 DEST
Y
 JMS
 JNU
 KOA
 KTN
 LAN
##
 0 1.321345e-04 6.752260e-04 2.352318e-03 3.622150e-04 4.968906e-04
 1 9.811276e-05 3.914290e-04 9.586434e-04 2.391499e-04 4.047151e-04
##
##
 DEST
 LAS
Y
 LAR
 LAW
 LAX
 LBB
##
 0 8.593365e-05 2.286367e-02 1.824935e-04 3.136116e-02 8.630326e-04
 1 8.176063e-05 2.121586e-02 1.747634e-04 2.918344e-02 9.729515e-04
##
##
 DEST
 LBE
 LBF
 LCH
Y
 T.BT.
 LCK
 0 1.487669e-04 8.708868e-05 7.715549e-05 2.827494e-04 1.526939e-04
##
 1 1.430811e-04 6.540851e-05 7.051855e-05 2.432379e-04 1.716973e-04
##
##
 DEST
Y
 LEX
 LFT
 LGA
 LGB
 LIH
 0 1.391802e-03 6.465814e-04 2.152037e-02 2.324829e-03 2.230810e-03
 1 1.429789e-03 5.590383e-04 2.997243e-02 2.467127e-03 9.177631e-04
##
##
 DEST
Y
 LIT
 LSE
 LNK LRD
 LWB
 0 1.845726e-03 2.561839e-04 3.393455e-04 2.966097e-04 7.322841e-05
##
 1 1.803844e-03 2.084896e-04 3.178445e-04 2.820742e-04 1.042448e-04
##
```

```
##
 DEST
 LWS LYH MAF
 MBS
 MCI
Y
 0 1.145782e-04 1.289005e-04 1.201685e-03 3.931696e-04 7.944012e-03
##
##
 1 2.963823e-05 2.146217e-04 1.294884e-03 3.852970e-04 7.035503e-03
##
 DEST
Y
 MCO
 MDT
 MDW
 MEI
##
 0 1.869912e-02 8.720418e-04 1.208407e-02 1.420677e-04 3.157831e-03
 1 2.147750e-02 8.319144e-04 1.137495e-02 1.819174e-04 3.415550e-03
##
##
 DEST
 MFE
Y
 MFR
 MGM
 MHK
 МНТ
 0 6.017666e-04 6.588247e-04 5.518696e-04 2.386276e-04 1.320652e-03
##
##
 1 7.470878e-04 6.459090e-04 6.346669e-04 2.963823e-04 1.359271e-03
##
 DEST
 MIA
 MKE
 MKG
 MLB
Y
 MLI
##
 0 1.233541e-02 4.535310e-03 9.886990e-05 3.555158e-04 6.994815e-04
 1 1.190128e-02 4.486615e-03 1.113989e-04 2.994483e-04 7.000754e-04
##
##
 DEST
 MLU
 MOB
Y
 MMH
 MOT
 0 4.257412e-04 1.570830e-05 8.824370e-04 3.786163e-04 1.725603e-04
##
##
 1 4.180012e-04 2.350618e-05 9.688635e-04 2.555020e-04 2.146217e-04
##
 DEST
 MRY
 MSN
 MSP
Y
 MSO
 0 5.345443e-04 1.844108e-03 4.927325e-04 2.340699e-02 7.772838e-03
##
 1 5.539283e-04 1.744568e-03 3.944951e-04 1.704505e-02 7.889901e-03
##
##
 DEST
Y
 MTJ
 MVY
 MYR
 OAJ
 OAK
 0 2.074420e-04 6.814631e-05 1.632277e-03 3.940936e-04 7.519426e-03
##
##
 1 1.911155e-04 5.518843e-05 1.350072e-03 5.150920e-04 6.653272e-03
 DEST
##
Y
 OGD
 OGG
 OGS
 OKC
 0 1.755634e-05 3.937471e-03 1.848036e-05 3.184165e-03 3.488629e-03
##
 1 2.248417e-05 2.010290e-03 8.176063e-06 3.484025e-03 3.435991e-03
##
##
 DEST
Y
 ONT
 ORD
 ORF
 OME
 ORH
```

```
0 1.083411e-04 2.994511e-03 4.498881e-02 3.006985e-03 1.148092e-04
##
 1 4.496835e-05 3.026165e-03 4.975237e-02 3.503443e-03 2.074676e-04
##
 DEST
 OWB
Y
 OTH
 OTZ
 PAH
 PBG
##
 0 4.111879e-05 1.113441e-04 1.270524e-05 8.847470e-05 1.432228e-04
 1 9.504674e-05 3.577028e-05 2.146217e-05 1.287730e-04 1.062888e-04
##
 DEST
Y
 PBI
 PDX
 PGD
 PGV
##
 0 3.275181e-03 9.182427e-03 6.907033e-04 1.018730e-04 3.425796e-04
 1 4.344556e-03 7.333929e-03 9.576214e-04 2.033796e-04 4.108472e-04
##
 DEST
##
Y
 PHL
 PHX
 PIA
 PIB
 PIE
 0 1.562791e-02 2.434764e-02 7.329771e-04 9.170877e-05 9.940121e-04
##
 1 1.779725e-02 2.392010e-02 7.797920e-04 1.400151e-04 1.267290e-03
##
 DEST
Y
 PIH
 PIT
 PLN
 PNS
 PPG
##
 0 1.975088e-04 6.785987e-03 1.501529e-04 1.617262e-03 1.455328e-05
 1 8.789268e-05 6.672690e-03 8.278264e-05 1.407305e-03 2.350618e-05
##
##
 DEST
 PRC
 PSC
 PSG
Y
 PSE
 PSM
##
 0 3.557468e-05 4.051818e-04 9.471182e-05 1.127302e-04 4.204281e-05
 1 2.555020e-05 3.842750e-04 1.890715e-04 7.869461e-05 4.292433e-05
##
##
 DEST
 PSP
 PUB
 PVD
 PVU
 PWM
Y
 0 1.505918e-03 1.365236e-04 2.491845e-03 7.507645e-05 1.577991e-03
##
##
 1 1.331676e-03 1.022008e-04 2.927031e-03 6.029847e-05 1.871296e-03
##
 DEST
Y
 RAP
 RDD
 RDM
 RDU
 0 5.946054e-04 1.580070e-04 5.257661e-04 8.163235e-03 1.014110e-04
 1 5.815225e-04 1.604552e-04 4.752337e-04 9.122443e-03 6.438650e-05
##
##
 DEST
Y
 RHI RIC
 RNO
 RKS
 ROA
 0 1.111131e-04 3.054803e-03 9.886990e-05 2.539663e-03 3.400385e-04
##
 1 4.394634e-05 3.820266e-03 7.971662e-05 2.657221e-03 3.566808e-04
##
```

```
##
 DEST
 ROC
 ROW
 RST RSW
 SAF
Y
 0 1.934662e-03 2.037459e-04 4.275892e-04 4.482179e-03 2.012049e-04
##
##
 1 2.062412e-03 1.471691e-04 5.273561e-04 4.612322e-03 1.819174e-04
##
 DEST
Y
 SAN
 SAT
 SAV
 SBA
 SBN
##
 0 1.298222e-02 5.498137e-03 2.177448e-03 9.884680e-04 9.254038e-04
 1 1.155278e-02 5.812159e-03 2.183009e-03 9.596654e-04 1.083328e-03
##
##
 DEST
 SBP
 SCC
 SCE
 SCK
Y
 SDF
 0 6.398823e-04 1.492289e-04 1.942747e-04 8.939872e-05 3.126645e-03
##
##
 1 7.399337e-04 6.234248e-05 1.778294e-04 1.604552e-04 3.375692e-03
##
 DEST
 SEA
 SFB
 SFO
 SGF
 SGU
Y
##
 0 1.958687e-02 1.178123e-03 2.260494e-02 1.183436e-03 4.950425e-04
 1 1.985455e-02 2.147239e-03 3.240481e-02 1.201881e-03 2.902502e-04
##
##
 DEST
 SHV
 SIT
 SJC
Y
 SHD
 0 8.801269e-05 9.295619e-04 1.963538e-04 7.837057e-03 2.088280e-04
##
##
 1 1.073108e-04 8.850589e-04 1.481911e-04 6.746274e-03 1.563672e-04
##
 DEST
 SJU
 SLC
Y
 SLN
 SMF
 SMX
 0 3.142584e-03 1.696820e-02 9.286379e-05 6.747871e-03 2.356245e-05
##
 1 4.712479e-03 1.147102e-02 1.165089e-04 5.950130e-03 2.044016e-05
##
##
 DEST
Y
 SNA
 SPI
 SPN
 SPS
 SRQ
 0 6.079113e-03 2.497158e-04 3.557468e-05 1.501529e-04 9.193977e-04
##
##
 1 4.746205e-03 2.810522e-04 2.555020e-05 9.811276e-05 7.757040e-04
 DEST
##
Y
 STC
 STL
 STS
 STT
 0 2.286944e-05 9.380860e-03 2.092900e-04 3.488167e-04 1.543110e-04
##
 1 1.533012e-05 8.511282e-03 1.992915e-04 3.638348e-04 1.778294e-04
##
##
 DEST
Y
 SUN
 SUX
 SWF
 SWO
 SYR
```

```
0 1.734843e-04 1.483049e-04 2.289254e-04 1.157332e-04 1.826321e-03
##
 1 1.236630e-04 2.105336e-04 3.219325e-04 8.278264e-05 2.172789e-03
##
 DEST
 TLH TOL TPA TRI
Y
 TTN
##
 0 8.561025e-04 2.774363e-04 1.022472e-02 4.146530e-04 2.986887e-04
 1 7.757040e-04 3.198885e-04 1.111740e-02 4.588816e-04 5.753905e-04
##
 DEST
 TUL
 TUS
Y
 TWF
##
 0 2.304731e-03 2.520259e-03 5.477115e-04 1.831865e-04 1.785664e-04
 1 2.520272e-03 2.678683e-03 4.926078e-04 7.358457e-05 1.308170e-04
##
##
 DEST
Y
 TYR
 TYS UIN USA
 VEL
##
 0 1.928887e-04 2.146031e-03 1.145782e-04 1.335206e-04 4.874194e-05
 1 1.819174e-04 2.540712e-03 1.502352e-04 1.553452e-04 3.474827e-05
##
 DEST
Y
 VLD
 VPS
 WRG
 WYS
 XNA
##
 0 1.540800e-04 1.093113e-03 1.069551e-04 3.580569e-05 1.714284e-03
 1 9.709075e-05 1.048580e-03 8.891469e-05 2.044016e-05 1.883561e-03
##
 DEST
##
 YAK
 YNG
 YUM
Y
 0 1.104201e-04 2.310044e-07 2.129861e-04
##
 1 5.621044e-05 1.022008e-06 1.124209e-04
##
##
 DIVERTED
##
Y 0 1
 0 1 0
##
 1 1 0
##
##
##
 month
 April August December February January July
Y
 0 0.08456888 0.08513345 0.08338106 0.07212028 0.07922690 0.08548366
##
 1 0.07667410 0.10649016 0.08013973 0.07195549 0.07227129 0.10590046
##
 month
##
Y
 June March May November October September
```

```
##
 0 0.08382019 0.08639751 0.08537485 0.08166053 0.08888081 0.08395187
 1 0.09906527 0.07269031 0.08766171 0.08242800 0.07460045 0.07012303
##
##
##
 day
Y
 Friday Monday Saturday Sunday Thursday Tuesday Wednesday
 \begin{smallmatrix} 0 & 0.1454081 \end{smallmatrix} \ 0.1489022 \ 0.1267447 \ 0.1436591 \ 0.1452403 \ 0.1437268 \ 0.1463187
 1 0.1665607 0.1581997 0.1025145 0.1359087 0.1603765 0.1394530 0.1369869
##
##
 dep slot
 Redeye Morning Afternoon Evening
Y
 0 0.05639627 0.39635581 0.28737508 0.25987284
##
##
 1 0.02758502 0.22890116 0.30727894 0.43623488
##
##
 arr_slot
 Redeye Morning Afternoon Evening
##
 0 0.02589444 0.31483226 0.30297896 0.35629433
 1 0.09452551 0.13901454 0.24971230 0.51674764
```

## #Pivot tables of classifications on train data

```
[1] "#Contingency table for delayed % by destination"
[1] "The Worst 10 destination with highest delay probability"
 Destination Delay_Probability
1
 YNG
 0.50
2
 OTH
 0.34
3
 CMX
 0.31
 0.31
4
 PGV
5
 0.31
 PSE
 0.30
 BKG
 BON
 0.30
 EWR
 0.30
 TTN
 0.30
9
10
 ORH
 0.29
[1] "Top 10 origin with lowest delay probability"
 Destination Ontime Probability
##
```

```
0.94
1
 EKO
 ITO
 0.94
##
 LWS
 0.94
 0.93
 BET
 BTM
 0.93
 0.93
 DRT
 OTZ
 0.93
 0.92
 CPR
 0.92
 HIB
 KOA
 0.92
 [1] "The Worst 10 origin with highest delay probability"
 Origin Delay_Probability
 1.00
1
 YNG
 0.38
 SCK
 OTH
 0.37
 0.34
 BKG
 MMH
 0.33
 ORH
 0.32
 0.32
 OWB
 0.32
 PPG
##
 TTN
 0.32
10
 HGR
 0.31
[1] "Top 10 origin with lowest delay probability"
##
 Origin Ontime_Probability
1
 LBF
 0.95
##
 EKO
 0.94
 ITO
 0.94
 0.94
 LWS
 BTM
 0.93
 EAR
 0.93
 HIB
 0.93
 CPR
 0.92
 0.92
9
 FAI
10
 GST
 0.92
```

```
[1] "#Contingency Probability Table by Month"
##
 Non-delayed Delayed
##
 April
 0.83
 0.17
##
 August
 0.78 0.22
##
 December
 0.82 0.18
##
 February
##
 0.82
 0.18
##
 January
 0.83 0.17
 0.78 0.22
 July
##
 0.79 0.21
##
 June
##
 March
 0.84
 0.16
##
 May
 0.81
 0.19
 November
 0.81 0.19
##
##
 October
 0.84 0.16
 September
 0.84 0.16
##
[1] "#Contingency Probability Table by Day"
##
##
 Non-delayed Delayed
##
 Friday
 0.79 0.21
##
 Monday
 0.81 0.19
##
 Saturday
 0.85
 0.15
##
 Sunday
 0.82 0.18
##
 Thursday
 0.80 0.20
##
 Tuesday
 0.82 0.18
##
 Wednesday
 0.83 0.17
```

## Lets take a look at the naive Bayes classification model performance with the test data

```
Confusion Matrix and Statistics

##

Reference

Prediction 0 1

0 1396704 288457

1 45589 38269

##
```

```
##
 Accuracy: 0.8112
 95% CI: (0.8106, 0.8117)
##
 No Information Rate: 0.8153
##
 P-Value [Acc > NIR] : 1
##
##
##
 Kappa : 0.12
##
 Mcnemar's Test P-Value : <2e-16
##
##
 Sensitivity: 0.9684
##
 Specificity: 0.1171
##
##
 Pos Pred Value: 0.8288
##
 Neg Pred Value: 0.4564
 Prevalence: 0.8153
##
 Detection Rate: 0.7895
##
 Detection Prevalence: 0.9526
##
 Balanced Accuracy: 0.5428
##
 'Positive' Class : 0
##
##
```

Lets assume that we are flyign with American Airlines (AA), from ABQ to JFK, no diversion, on a Wednesday, October 28, 2020, scheduled to be at 1:00AM (Redeye) and arriving at 6:30AM (Morning)

```
0 1

[1,] 0.9591261 0.04087387

[1] 0

Levels: 0 1

[1] 0

Levels: 0 1
```