Essentials of Geology, 8e

Frederick K. Lutgens & Edward J. Tarbuck

Matter and Minerals Chapter 2

Essentials of Geology, 8e

Stan Hatfield and Ken Pinzke Southwestern Illinois College

Minerals: Building blocks of rocks

- Definition of a mineral:
 - Naturally occurring
 - Inorganic solid
 - Ordered internal molecular structure
 - Definite chemical composition
- Definition of a rock:
 - A solid aggregate or mass of minerals

Composition of minerals

- Elements
 - Basic building blocks of minerals
 - Over 100 are known (92 naturally occurring)
- Atoms
 - Smallest particles of matter
 - Retains all the characteristics of an element

The periodic table

Composition of minerals

Atomic structure

- Central region called the nucleus
 - Consists of protons (positive charges) and neutrons (neutral charges)

■ Electrons

- Negatively charged particles that surround the nucleus
- Located in discrete energy levels called shells

Idealized structure of an atom

Composition of minerals

- Chemical bonding
 - Formation of a compound by combining two or more elements
- Ionic bonding
 - Atoms gain or lose outermost (valence) electrons to form ions
 - Ionic compounds consist of an orderly arrangement of oppositely charged ions

Halite (NaCl) – An example of ionic bonding

Composition of minerals

- Covalent bonding
 - Atoms share electrons to achieve electrical neutrality
 - Covalent compounds are generally stronger than ionic bonds
 - Both ionic and covalent bonds typically occur in the same compound (bonds are seldom 100% ionic or covalent in character)

Covalent bonding – sharing of valence electrons

Composition of minerals

- Other types of bonding
 - **Metallic bonding**
 - Valence electrons are free to migrate among atoms
 - Weaker and less common than ionic or covalent bonds

Composition of minerals

- Isotopes and radioactive decay
 - Mass number is the sum of neutrons plus protons in an atom
 - An isotope is an atom that exhibits variation in its mass number
 - Some isotopes have unstable nuclei that emit particles and energy in a process known as radioactive decay

Structure of minerals

- Minerals consist of an orderly array of atoms chemically bonded to form a particular crystalline structure
- For ionic compounds, the internal atomic arrangement is primarily determined by the size of ions involved

Structure of minerals

- Polymorphs
 - Two or more minerals with the same chemical composition but different crystalline structures
 - Diamond and graphite are good examples of polymorphs
 - The transformation of one polymorph to another is called a phase change

Diamond and graphite – polymorphs of carbon

Physical properties of minerals

- Crystal Form
 - **External expression of the orderly internal arrangement of atoms**
 - Crystal growth is often interrupted because of competition for space and rapid loss of heat

The mineral quartz often exhibits good crystal form

Physical properties of minerals

- Luster
 - Appearance of a mineral in reflected light
 - **Two basic categories**
 - Metallic
 - Nonmetallic
 - Other terms are used to further describe luster such as vitreous, silky, or earthy

Pyrite (fool's gold) displays metallic luster

Physical properties of minerals

Color

- Generally an unreliable diagnostic property to use for mineral identification
- Often highly variable for a given mineral due to slight changes in mineral chemistry
- Exotic colorations of some minerals produce gemstones

Quartz (SiO₂) exhibits a variety of colors

Physical properties of minerals

■ Streak

- Color of a mineral in its powdered form
- Helpful in distinguishing different forms of the same mineral

Hardness

- Resistance of a mineral to abrasion or scratching
- All minerals are compared to a standard scale called the Mohs scale of hardness

TABLE 2.2 Mohs Scale of Hardness

Relative	Scale	Mineral	Hardness of Some Common Objects
Hardest	10 9 8 7 6 5	Diamond Corundum Topaz Quartz Potassium Feldspa Apatite	ar 5.5 Glass,
Softest	4 3 2 1	Fluorite Calcite Gypsum Talc	Pocketknife 3 Copper Penny 2.5 Fingernail

Physical properties of minerals

- Cleavage
 - Tendency to break along planes of weak bonding
 - Produces flat, shiny surfaces
 - Described by resulting geometric shapes
 - Number of planes
 - Angles between adjacent planes

Three examples of perfect cleavage – fluorite, halite, and calcite

Physical properties of minerals

■ Fracture

Absence of cleavage when a mineral is broken

Specific Gravity

- Ratio of the weight of a mineral to the weight of an equal volume of water
- Average value is approximately 2.7

Conchoidal fracture

Physical properties of minerals

- Other properties
 - **■** Magnetism
 - Reaction to hydrochloric acid
 - Malleability
 - **Double refraction**
 - **■** Taste
 - **■Smell**
 - Elasticity

Classification of Minerals

- Nearly 4000 minerals have been identified on Earth
- Rock-forming minerals
 - **Common minerals that make up most of the rocks of Earth's crust**
 - Only a few dozen members
 - Composed mainly of the 8 elements that make up over 98% of the continental crust

Table 2.3 Relative abundance of the most common elements in the continental crust

Element	Approximate Percentage by Weight	
Oxygen (O)	46.6	
Silicon (Si)	27.7	
Aluminum (Al)	8.1	
Iron (Fe)	5.0	
Calcium (Ca)	3.6	
Sodium (Na)	2.8	
Potassium (K)	2.6	
Magnesium (Mg)	2.1	
All others	1.5	
Total	100	

Source: Data from Brian Mason.

Classification of Minerals

- Silicates
 - Most important mineral group
 - Comprise most of the rock-forming minerals
 - Very abundant due to large amounts of silicon and oxygen in Earth's crust
 - Basic building block is the silicon-oxygen tetrahedron molecule
 - Four oxygen ions surrounding a much smaller silicon ion

The silicate (SiO₄)⁻⁴ molecule

Classification of Minerals

- Silicate structures
 - Single tetrahedra are linked together to form various structures including
 - Isolated tetrahedra
 - Ring structures
 - Single and double chain structures
 - Sheet or layered structures
 - Complex 3-dimensional structures

Silicate structures

Mineral		Idealized Formula	Cleavage	Silicate Structure
Olivine		(Mg, Fe) ₂ SiO ₄	None	Single tetrahedron
Pyroxene group (Augite)		(Mg,Fe)SiO ₃	Two planes at right angles	Single chains
Amphi (Hon	bole group nblende)	Ca ₂ (Fe,Mg) ₅ Si ₈ O ₂₂ (OH) ₂	Two planes at 60° and 120°	Double chains
Micas	Biotite	K(Mg,Fe) ₃ AlSi ₃ O ₁₀ (OH) ₂		Sheets
	Muscovite	KAI ₂ (AISi ₃ O ₁₀)(OH) ₂	One plane	
Feld- spars	Orthoclase (Potassium feldspar)	KAISi ₂ O ₈	Two planes at	Three-dimensional networks
	Plagioclase	(Ca,Na)AlSi ₃ O ₈	90°	
C)uartz	SiO ₂	None	

Classification of Minerals

- Common Silicate minerals
 - Olivine
 - High temperature Fe-Mg silicate
 - Individual tetrahedra linked together by iron and magnesium ions
 - Forms small, rounded crystals with no cleavage

- Common Silicate minerals
 - **■**Pyroxene Group
 - Single chain structures involving iron and magnesium
 - Two distinctive cleavages at nearly 90 degrees
 - Augite is the most common mineral in the pyroxene group

- Common Silicate minerals
 - **■** Amphibole Group
 - Double chain structures involving a variety of ions
 - Two perfect cleavages exhibiting angles of 124 and 56 degrees
 - Hornblende is the most common mineral in the amphibole group

Hornblende crystals

- Common Silicate minerals
 - Mica Group
 - Sheet structures that result in one direction of perfect cleavage
 - Biotite is the common dark colored mica mineral
 - Muscovite is the common light colored mica mineral

- Common Silicate minerals
 - **Feldspar Group**
 - Most common mineral group
 - 3-dimensional framework of tetrahedra exhibit two directions of perfect cleavage at 90 degrees
 - Orthoclase (potassium feldspar) and
 Plagioclase (sodium and calcium feldspar) are
 the two most common members

Potassium feldspar

Plagioclase feldspar

Common Silicate minerals

- Clay minerals
 - Clay is a general term used to describe a variety of complex minerals
 - Clay minerals all have a sheet or layered structure
 - Most originate as products of chemical weathering

- Important nonsilicate minerals
 - Several major groups exist including
 - Oxides
 - Sulfides
 - Sulfates
 - Native Elements
 - Carbonates
 - Halides
 - Phosphates

- Important nonsilicate minerals
 - **■** Carbonates
 - Primary constituents in limestone and dolostone
 - Calcite (calcium carbonate) and Dolomite (calcium-magnesium carbonate) are the two most important carbonate minerals

- Important nonsilicate minerals
 - Many nonsilicate minerals have economic value
 - Examples
 - Hematite (oxide mined for iron ore)
 - Halite (halide mined for salt)
 - Sphalerite (sulfide mined for zinc ore)
 - Native Copper (native element mined for copper)

Native Copper

Mineral resources

- The endowment of useful minerals ultimately available commercially
 - Mineral resources include
 - Reserves already identified deposits
 - Known deposits that are not yet economically or technologically recoverable

Mineral resources

Ore

- A useful metallic mineral that can be mined at a profit
- Must be concentrated above its average crustal abundance
- Profitability may change because of economic changes

End of Chapter 2

