2014 TAIWAN

International Olympiad in Informatics 2014

13-20th July 2014 Taipei, Taiwan Day-1 tasks

wall

Language: az-AZ

Divar (Wall)

Jian-Jia eyni ölçülü kərpicləri üst-üstə qoymaqla divar hörür. Bu divar kərpiclərin n sayda sütunundan ibatətdir və bu sütunlar soldan sağa 0-dan to n-1-dəknömrələnib. Sütunların hündürlüyü fərqli ola bilər. Sütunun hündürlüyü ondakı kərpiclərin sayına bərabərdir.

Jian-Jia divarı aşağıdakı kimi hörür. Başlanğıcda sütunlarda heç bir kərpic yoxdur. Sonra Jian-Jia kərpiclərin artırılması (adding), yaxud uzaqlaşdırılmasıından (removing) ibarət k fazalı işi yerinə yetirir. The building process completes when all k sayda fazalı iş bitdikdən sonra divarhörmə prosesi başa çatır. Hər bir fazada Jian-Jiaya kərpic sütunlarının ardıcıl sütunlarının intervalı və k hündürlüyü verilib və o, aşağıdakı proseduru yerinə yetirməlidir:

- Adding fazasında Jian-Jia kərpiclərinin sayı h-dan az olan və verilmiş intervalda yerləşən sütunlara o qədər kərpic əlavə edir ki, onlarda düz h sayda kərpic olsun. Kərpiclərin sayı h və ya daha çox olan sütunlara isə toxunmur.
- Removing fazasında Jian-Jia kərpiclərinin sayı h-dan çox olan və verilmiş intervalda yerləşən sütunlardan o qədər kərpic uzaqlaşdırır ki, onlarda düz h sayda kərpic qalsın. Kərpiclərin sayı h və ya daha az olan sütunlara isə toxunmur.

Sizə divarın son formasını müəyyənləşdirmək tapşırılır.

Örnək (Example)

Tutaq ki, 10 kərpic sütun var və 6 divarhörmə fazası var. Aşağıdakı cədvəldəki intervalların hamısına uclar da daxildir. Hər bir fazadan sonra divarın görünüşü aşağıdakı diaqramda göstərilib.

faza	növ	interval	hündürlük
0	add	columns 1 to 8	4
1	remove	columns 4 to 9	1
2	remove	columns 3 to 6	5
3	add	columns 0 to 5	3
4	add	column 2	5
5	remove	columns 6 to 7	0

Başlanğıcda bütün sütunlar boş olduğundan 0 fazasından sonra 1-dən 8-dək sütunların hər birində 4 kərpic olacaq. 0 və 9 sütunları boş qalacaq. 1 fazasında 4-dən 8-dək sütunlardan hər birində 1 kərpic qalanədək kərpiclər uzaqlaşdırılır və 9 sütunu boş qalır. Verilmiş intervaldan kənarda qalan 0-dan 3-dək sütunlar dəyişilməz qalır. 2 fazasında 3-dən 6-dək sütunlarda 5-dən çox kərpic olmadığından dəyişilməz qalır. 3 fazasından sonra 0, 4 və 5 sütunlarındakı kərpiclərin sayı 3-ə çatdırılır. 4 fazasından sonra 2 sütununda 5 kərpic olur. 5 fazasında 6 və 7 sütunlarından bütün kərpiclər uzaqlaşdırılır.

Task

Given the description of the k phases, please calculate the number of bricks in each column after all phases are finished. You need to implement the function buildWall.

- buildWall(n, k, op, left, right, height, finalHeight)
 - n: the number of columns of the wall.
 - k: the number of phases.
 - op: array of length k; op [i] is the type of phase i: 1 for an adding phase and 2 for a removing phase, for $0 \le i \le k-1$.
 - left and right: arrays of length k; the range of columns in phase i starts with column left[i] and ends with column right[i] (including both endpoints left[i] and right[i]), for $0 \le i \le k-1$. You will always have left[i] \le right[i].
 - height: array of length k; height[i] is the height parameter of phase i, for $0 \le i \le k-1$.
 - finalHeight: array of length n; you should return your results by placing the final number of bricks in column i into finalHeight[i], for $0 \le i \le n-1$.

Subtasks

For all subtasks the height parameters of all phases are nonnegative integers less or equal to 100,000

subtask	points	$m{n}$	$oldsymbol{k}$	note
1	8	$1 \leq n \leq 10,000$	$1 \leq k \leq 5,000$	no additional limits
2	24	$1 \leq n \leq 100,000$	$1 \leq k \leq 500,000$	all adding phases are before all removing phases
3	29	$1 \leq n \leq 100,000$	$1 \leq k \leq 500,000$	no additional limits
4	39	$1\leq n\leq 2,000,000$	$1 \leq k \leq 500,000$	no additional limits

Implementation details

You have to submit exactly one file, called wall.c, wall.cpp or wall.pas. This file implements the subprogram described above using the following signatures. You also need to include a header file wall.h for C/C++ program.

C/C++ program

```
void buildWall(int n, int k, int op[], int left[], int right[],
int height[], int finalHeight[]);
```

Pascal program

```
procedure buildWall(n, k : longint; op, left, right, height :
array of longint; var finalHeight : array of longint);
```

Sample grader

The sample grader reads the input in the following format:

- line 1: n, k.
- line 2 + i ($0 \le i \le k 1$): op[i], left[i], right[i], height[i].