BLG435E Artificial Intelligence

Lecture 4: Constraint Satisfaction Problems

Outline

- CSP problem formulation
- CSP examples
- Backtracking search for CSPs
- Problem structure and problem decomposition
- Local search for CSPs

Constraint Satisfaction Problems

- Search algorithms so far:
 - state is a "black box"
 - domain specific heuristics
 - states are accessible by problem specific routines

CSP:

- stuctured and simple representation
- general purpose algorithms

Constraint Satisfaction Problem

- Defined by
 - n variables X_i which define a state
 - Each variable has a domain D_i of possible values
 - m constraints C_i
 - Each constraint involves some subset of variables
 - Specifies the allowable combinations of values

• A state of the problem: assignment of values to some or all of X_i s

Constraint Satisfaction Problem

Consistent or legal assignment does not violate constraints

Complete assignment that satisfies all constraints is a solution

A complementary objective function may be defined

Example: Map-Coloring

Variables WA, NT, Q, NSW, V, SA, T

Domains $D_i = \{red, green, blue\}$

Constraints: adjacent regions must have different colors

e.g., $WA \neq NT$ (if the language allows this), or

 $(WA, NT) \in \{(red, green), (red, blue), (green, red), (green, blue), \ldots\}$

Example: Map-Coloring

Solutions are assignments satisfying all constraints, e.g., $\{WA=red, NT=green, Q=red, NSW=green, V=red, SA=blue, T=green\}$

Constraint graph

- Constraint graph: nodes are variables, arcs show constraints
- General-purpose CSP algorithms use the graph structure
 - to speed up search. e.g., Tasmania

Standard search formulation

- States are defined by the values assigned so far
 - Initial state: the empty assignment, {}
 - Successor function: assign a value to an unassigned variable that does not conflict with the current assignment
 - fail if no legal assignments (not fixable!)
 - Goal test: the current assignment is complete
 - Path cost: a constant cost for every step

Standard search formulation

- The search formulation is the same for all CSPs!
- What is the depth of solution?
 - Which type of search?
- Path is irrelevant, so can also use complete-state formulation
- The number of leaves! vs possible assignments
 - Commutativity
 - Consider only a single variable at each node

Varieties of CSPs

- Discrete variables
 - finite domains; size $d \rightarrow O(d^n)$ complete assignments
 - e.g., Boolean CSPs including Boolean satisfiability (NP-complete)
 - infinite domains (integers, strings, etc.)
 - e.g., job scheduling, variables are start/end days for each job
 - need a constraint language, e.g., $StartJob1 + 5 \le StartJob3$
 - linear constraints solvable, nonlinear undecidable

Varieties of CSPs

- Continuous variables
 - e.g., start/end times for Hubble Telescope observations
 - linear constraints solvable in polynomial time by LP methods

Varieties of constraints

- Unary constraints involve a single variable
 - $-SA \neq green$

- Binary constraints involve pairs of variables
 - $-SA \neq WA$

A binary CSP has only binary constraints, constraint graphs

Varieties of constraints

- Global constraints involve an arbitrary number of variables: cryptarithmetic column constraints
 - constraint hypergraph
 - can be reduced to binary constraints

- Preferences (soft constraints)
 - red is better than green
 - often encoded using costs againts the overall objective function
 - constrained optimization problems

Example: Cryptarithmetic

Variables: $F T U W R O X_1 X_2 X_3$

Domains: $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

Constraints

alldiff(F, T, U, W, R, O) $O + O = R + 10 \cdot X_1$, etc.

Real-world CSPs

- Assignment problems
 - who teaches what class
- Timetabling problems
 - which class is offered when and where?
- Hardware configuration
- Spreadsheets
- Transportation scheduling
- Factory scheduling
- Floorplanning

Benefits of modeling as a CSP

Representation of states conforms to a standard pattern

 The successor function and goal test can be written in a generic way

Devising generic heuristics

 The structure of the constraint graph can be used to simplify the solution process

Backtracking search

- Variable assignments are commutative
 - [WA=red then NT =green] same as [NT =green then WA=red]

- Only need to consider assignments to a single variable at each node
 - b=d and there are dⁿ leaves

Backtracking search

Depth-first search with single-variable assignments

The basic uninformed algorithm for CSPs

• Can solve n-queens for $n \approx 25$

Backtracking search


```
function BACKTRACKING-SEARCH(csp) returns a solution, or failure
  return BACKTRACK(\{\}, csp)
function BACKTRACK(assignment, csp) returns a solution, or failure
  if assignment is complete then return assignment
  var \leftarrow Select-Unassigned-Variable(csp)
  for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
      if value is consistent with assignment then
         add \{var = value\} to assignment
         inferences \leftarrow Inference(csp, var, value)
         if inferences \neq failure then
            add inferences to assignment
            result \leftarrow BACKTRACK(assignment, csp)
           if result \neq failure then
              return result
     remove \{var = value\} and inferences from assignment
  return failure
```


Improving backtracking efficiency

- General-purpose methods can give huge gains in speed:
 - Which variable should be assigned next?
 - In what order should its values be tried?
 - Can we detect inevitable failure early?
 - Can we take advantage of problem structure?

Minimum remaining values

- Minimum remaining values (MRV):
 - choose the variable with the fewest legal values

- Most constrained variable, fail-first heuristic

Degree heuristic

- Tie-breaker among MRV variables
- Degree heuristic:
 - choose the variable with the most constraints on remaining variables

Least constraining value

- Given a variable, choose the least constraining value:
 - the one that rules out the fewest values in the remaining variables

Combining these heuristics makes 1000 queens feasible

- Idea: Keep track of remaining legal values for unassigned variables
 - Terminate search when any variable has no legal values

- Idea: Keep track of remaining legal values for unassigned variables
 - Terminate search when any variable has no legal values

- Idea: Keep track of remaining legal values for unassigned variables
 - Terminate search when any variable has no legal values

- Idea: Keep track of remaining legal values for unassigned variables
 - Terminate search when any variable has no legal values

Constraint propagation

 Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures

Simplest form of propagation makes each arc consistent

 $X \to Y \text{ is consistent iff} \\ \text{for every value } x \text{ of } X \text{ there is some allowed } y \\ \\ \text{WA} \qquad \text{NT} \qquad \text{Q} \qquad \text{NSW} \qquad \text{V} \qquad \text{SA} \qquad \text{T} \\ \\ \text{WA} \qquad \text{NT} \qquad \text{Q} \qquad \text{NSW} \qquad \text{V} \qquad \text{SA} \qquad \text{T} \\ \\ \text{V} \qquad \qquad \text{V} \qquad \text{V} \qquad \text{SA} \qquad \text{T} \\ \\ \text{V} \qquad \qquad \text{V} \qquad \text{V$

Simplest form of propagation makes each arc consistent

 $X \to Y \text{ is consistent iff} \\ \text{for every value } x \text{ of } X \text{ there is some allowed } y \\ \\ \text{WA} \qquad \text{NT} \qquad \text{Q} \qquad \text{NSW} \qquad \text{V} \qquad \text{SA} \qquad \text{T} \\ \\ \text{WA} \qquad \text{NT} \qquad \text{Q} \qquad \text{NSW} \qquad \text{V} \qquad \text{SA} \qquad \text{T} \\ \\ \text{V} \qquad \text{V$

Simplest form of propagation makes each arc consistent

X o Y is consistent iff for every value x of X there is some allowed y was not always and the second sec

Simplest form of propagation makes each arc consistent

Arc consistency algorithm


```
function AC-3(csp) returns false if an inconsistency is found and true otherwise
  inputs: csp, a binary CSP with components (X, D, C)
  local variables: queue, a queue of arcs, initially all the arcs in csp
  while queue is not empty do
     (X_i, X_j) \leftarrow \text{REMOVE-FIRST}(queue)
     if REVISE(csp, X_i, X_j) then
       if size of D_i = 0 then return false
       for each X_k in X_i. NEIGHBORS - \{X_i\} do
          add (X_k, X_i) to queue
  return true
function REVISE(csp, X_i, X_j) returns true iff we revise the domain of X_i
  revised \leftarrow false
  for each x in D_i do
     if no value y in D_i allows (x,y) to satisfy the constraint between X_i and X_j then
       delete x from D_i
       revised \leftarrow true
  return revised
```


k-consistency

- Arc-consistency does not reveal every possible inconsistency
- k-consistency:
 - for any k-1 variables and
 - for any consistent assignment
 - A consistent value can be assigned to any kth variable
- 1-consistency: node consistency
- 2-consistency: arc consistency
- 3-consistency: path consistency
- A graph is strongly k-consistent if it is k-consistent and also (k-1)
 –consistent, ... 1-consistent

Problem structure

Problem structure

Suppose each subproblem has c variables out of n total

Worst-case solution cost is $n/c \cdot d^c$, linear in n

E.g.,
$$n=80$$
, $d=2$, $c=20$
 $2^{80}=4$ billion years at 10 million nodes/sec
 $4\cdot 2^{20}=0.4$ seconds at 10 million nodes/sec

Tree-structured CSPs

• Theorem: if the constraint graph has no loops, the CSP can be solved in $O(nd^2)$

Algorithm for tree-structured CSPs

1. Choose a variable as root, order variables from root to leaves such that every node's parent precedes it in the ordering

- 2. For j from n down to 2, apply RemoveInconsistent($Parent(X_j), X_j$)
- 3. For j from 1 to n, assign X_j consistently with $Parent(X_j)$

Nearly tree-structured CSPs

Conditioning: instantiate a variable, prune its neighbors' domains

Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree

Cutset size $c \Rightarrow \text{runtime } O(d^c \cdot (n-c)d^2)$, very fast for small c

