Experiment-3B: Decision Tree

Source Code:

```
import java.util.*; class Atr{
String name;
String val[]; int
count[];
Atr(String name, String val[]){
this.name=name; this.val=val;
count=new int[val.length];
}
} class
DT1{
   String table[][]={
         {"1","Youth","High","No","Fair","No"},
         {"2","Youth","High","No","Excel","No"},
         {"3","MidAge","High","No","Fair","Yes"},
         {"4","Senior","Medium","No","Fair","Yes"},
         {"5", "Senior", "Low", "Yes", "Fair", "Yes"},
         {"6", "Senior", "Low", "Yes", "Excel", "No"},
         {"7", "MidAge", "Low", "Yes", "Excel", "Yes"},
         {"8","Youth","Medium","No","Fair","No"},
         {"9","Youth","Low","Yes","Fair","Yes"},
         {"10", "Senior", "Medium", "Yes", "Fair", "Yes"},
         {"11","Youth","Medium","Yes","Excel","Yes"},
         {"12","MidAge","Medium","No","Excel","Yes"},
         {"13","MidAge","High","Yes","Fair", "Yes"},
```

```
{"14", "Senior", "Medium", "No", "Excel", "No"},
  };
Atr arr[];
String s1[]={"Youth","MidAge","Senior"};
String s2[]={"High","Medium","Low"};
String s3[]={"Yes","No"};
String s4[]={"Fair","Excel"};
String s5[]={"Yes","No"}; int
barred[];
DT1(){
  System.out.println("TABLE:");
  System.out.println("RID\tAge\tIncome\tStudent\tCredit\tclass:buys_computer");
  System.out.println(); for(int i=0;i<table.length;i++){
     for(int j=0;j<6;j++)
        System.out.print(table[i][j]+"\t");
     System.out.println();
  }
  System.out.println(); arr=new
  Atr[5]; arr[0]=new
  Atr("Age",s1); arr[1]=new
  Atr("Income",s2); arr[2]=new
  Atr("Student",s3); arr[3]=new
  Atr("Credit_Rating",s4);
  arr[4]=new
  Atr("buys_computer",s5);
  barred=new int[5];
  solve(table); }
void solve(String table[][]){
  int yc=0,nc=0;
  double cI=0;
```

```
double gain[]=new double[4]; for(int
i=0;i<table.length;i++)
if(table[i][5].equals("Yes"))
     yc++;
  else
     nc++;
cl=inf(yc,nc); for(int
i=1;i<5;i++)
  if(barred[i-1]!=1) gain[i-1]=gain(i,cl,table,yc,nc);
double max=0,pos=-1; for(int
i=0;i<gain.length;i++)
  if(gain[i]>max){
     max=gain[i];
     pos=i;
  }
                                                   if(pos==-1){
     System.out.println(table[0][5].toUpperCase()); return;
}
barred[(int)pos]=1;
System.out.println();
System.out.println("CHOSEN ATTRIBUTE : "+arr[(int)pos].name);
if(check()==false){ int cc[]=new int[arr[(int)pos].val.length]; for(int
i=0;i<arr[(int)pos].val.length;i++){ for(int j=0;j<table.length;j++)
if(table[j][(int)(pos+1)].equals(arr[(int)pos].val[i])) cc[i]++;
  }
  String tab[][];
  int k=0;
  for(int i=0;i<arr[(int)pos].val.length;i++){</pre>
     k=0;
     tab=new String[cc[i]][6]; for(int j=0;j<table.length;j++)
     if(table[j][(int)(pos+1)].equals(arr[(int)pos].val[i]))
     tab[k++]=table[j];
```

```
System.out.println("FOR ATTRIBUTE AND VALUE: "+arr[(int)pos].name+"
"+arr[(int)pos].val[i]);
            solve(tab);
            System.out.println("BACK TO ATTRIBUTE: "+arr[(int)pos].name);
         }
   } else
    return;
   }
    boolean check(){ for(int
         i=0;i<barred.length;i++)
         if(barred[i]==0)
               return false;
         return true;
    }
    double gain(int attr,double Inf,String table[][],int yc,int nc){
      double gain=0;
      gain=Inf-entropy(attr,table,yc,nc); return
      gain;
    }
    double entropy(int a,String table[][],int yc,int nc){
       double t1[][]=new double[arr[a-1].val.length][3]; for(int
      i=0;i<arr[a-1].val.length;i++){
         for(int j=0;j<table.length;j++)</pre>
            if(table[j][5].equals("Yes") && table[j][a].equals(arr[a-1].val[i]))
               t1[i][0]++;
                 else if(table[j][5].equals("No") && table[j][a].equals(arr[a-1].val[i]))
               t1[i][1]++;
         t1[i][2]=inf(t1[i][0],t1[i][1]);
      } double e=0; for(int
      i=0;i<t1.length;i++)
         e=e+(((t1[i][0]+t1[i][1])/(yc+nc))*t1[i][2]);
```

```
return
   e; }
   double inf(double p,double n){ if(p==n)
           return 1;
         if(p==0 | | n==0)
            return 0;
         double r=0;
         r = -(((p/(p+n))*Math.log((p/(p+n)))) + ((n/(p+n))*Math.log((n/(p+n)))));
         r=r/Math.log(2); return r;
   }
}
public class DecisionTree { public static
   void main(String[] args) {
DT1 obj=new DT1();
   }
}
```

Output:

TABLE:			SNS - 224 - 10	250	127
RID	Age	Income	Student	Credit	class:buys_computer
1	Youth	High	No	Fair	No
2	Youth	High	No	Excel	No
3	MidAge	High	No	Fair	Yes
4	Senior	Medium	No	Fair	Yes
5	Senior	Low	Yes	Fair	Yes
6	Senior	Low	Yes	Excel	No
7	MidAge	Low	Yes	Excel	Yes
8	Youth	Medium	No	Fair	No
9	Youth	Low	Yes	Fair	Yes
10	Senior	Medium	Yes	Fair	Yes
11	Youth	Medium	Yes	Excel	Yes
12	MidAge	Medium	No	Excel	Yes
13	MidAge	High	Yes	Fair	Yes
14	Senior	Medium	No	Excel	No