Eletromagnetismo EE - Universidade do Minho

M. I.: Engª Telecomunicações e Informática, Materiais e Polímeros - 2º Teste: 19/01/2017

Nome:______Nº:_____

Dados: $\mu_0 = 4\pi \times 10^{-7}$ (SI)

1 – Considerar a associação de resistências representada na figura. Calcular a **resistência equivalente** entre os pontos A e B.

2 - O gráfico da figura mostra a **diferença de potencial nos terminais de três fios de cobre (A, B e C), em função da intensidade de corrente que as percorre**. As áreas da seção reta e os comprimentos dos três fios, são dados na tabela. Compare a resistência dos três fios fazendo a correspondência entre os fios e as linhas do gráfico. **Justificar**.

Fio	Área	Comprimento	Linhas do gráfico
1	2A	4L	
2	A	3L	
3	Α	L	

3 – Numa torradeira elétrica, o elemento de aquecimento é de Níquel-Crómio e tem uma resistência de $80~\Omega$, quando se liga o interruptor à temperatura de $20~^{\circ}$ C. Nessa situação a corrente elétrica que o percorre é de 1.5~A. Quando o elemento de aquecimento atinge a sua temperatura normal de aquecimento do pão, a intensidade de corrente que percorre o elemento de aquecimento é 1.3~A. Qual a temperatura final do elemento de aquecimento?

Nota: Admita que a fonte de tensão que alimenta a torradeira mantém as características elétricas e que o elemento de aquecimento não altera significativamente as dimensões na gama de temperaturas assinaladas. **Dados**: $\rho_{\rm NiCr} = 100 \times 10^{-8} \Omega \cdot {\rm m}$; $\alpha_{\rm NiCr} (a~20~{}^{\circ}{\rm C}) = 0.4 \times 10^{-3} {\rm K}^{-1}$

4 -A figura ao lado representa um circuito elétrico. Na situação representada, o voltímetro indica uma tensão de 9 V. Quando se fecha o interruptor, o voltímetro passa a indicar uma tensão de 8.4 V e o amperímetro uma corrente de 0.8 A.

Calcule a resistência interna da fonte de tensão.

5 - Duas partículas carregadas, X e Y, com massa diferente, mas com carga elétrica de módulo igual, deslocam-se com a mesma velocidade, numa região onde existe um campo magnético uniforme. Indique qual o sinal da carga das partículas e qual das partículas possui maior massa. **Justificar**.

Nota: as trajetórias representadas são arcos de circunferências.

6 - A figura mostra dois condutores retilíneos muito longos e paralelos, percorridos por correntes I e 2I, em sentidos opostos.

- a) Qual dos fios exerce uma força magnética de maior magnitude sobre o outro? Justificar.
- b) Essa interação é atrativa ou repulsiva? Justificar.
- c) Qual dos fios cria um campo magnético cujas linhas de campo têm sentido horário quando observados do sentido positivo para o sentido negativo do eixo z? Justificar.
- d) Indique a alternativa que completa corretamente a proposição: *A força entre os fios é ...*

	independente da distância entre d	os fios;
--	-----------------------------------	----------

proporcional à	distância	entre	os fios	
proporcionara	uistaiitia	ciitie	03 1103	,

Resolva o problema 7 numa folha de prova independente:

7 - Num automóvel, os faróis estão ligados a uma bateria. Esta bateria descarregar-se-ia se não fosse constantemente carregada pelo alternador em paralelo com esta, quando o motor automóvel está em funcionamento. Quer a bateria ($\varepsilon_B=12.00$ V), quer o alternador ($\varepsilon_A=14.00$ V), têm uma força eletromotriz e resistências internas, indicadas no esquema ao lado. Os faróis têm uma resistência de $1.20~\Omega$.

- **a)** Determinar as intensidades de corrente elétrica nos ramos do alternador (I_A) , bateria (I_B) e faróis (I_F) .
- **b)** Determinar a diferença de potencial entre os nodos.
- c) Determinar a energia dissipada nos faróis, por efeito Joule, numa viagem de 1h com os faróis ligados.

Resolva o problema 8 noutra folha de prova independente:

8. Uma espira quadrada move-se para a direita com velocidade inicialmente constante (ver figura). Quando a parte da frente da espira entra numa região onde existe um campo magnético uniforme (e antes da parte de trás entrar nessa região):

- a) Calcular o valor da corrente induzida na espira.
- b) A força magnética sobre a espira fá-la acelerar, travar ou não afeta a velocidade? **Justificar**.
- c) Quando a espira estiver totalmente dentro da região onde há o campo magnético, quais serão as respostas às duas alíneas anteriores? **Justificar**.

Dados: v = 1.5 m/s; lado da espira: 10 cm; $R_{\text{espira}} = 0.2 \Omega$; B = 0.4 T;