(X,\mathcal{O}) を位相空間とする。

近傍系

 $x \in X$ の近傍系 $\mathcal{N}(x)$ とは、 $x \in X$ の近傍全体の集合族。

$$\mathcal{N}(x) = \{ U \subset X \mid \exists O \in \mathcal{O} \ s.t. \ x \in O \subset U \}$$
 (1)

内点

 $a \in A$ に対して a の近傍 $U \in \mathcal{N}(a)$ が存在し $U \subset A$ となるとき、a は A の内点であるという。

触点

集合 A に対して $x \in X$ が A の触点であるとは次を満たすときをいう。

$$\forall U \in \mathcal{N}(x)$$
 に対して $U \cap A \neq \emptyset$

開核、内部

A の全ての内点の集合を開核や内部といい、A° と書く。

$$A^{\circ} = \{ a \in A \mid \exists U \in \mathcal{N}(a) \text{ s.t. } U \subset A \}$$
 (2)

閉包

A の触点全体の集合を A の閉包といい \bar{A} と書く。

$$\bar{A} = \{ x \in X \mid \forall U \in \mathcal{N}(x), \ U \cap A \neq \emptyset \}$$
 (3)

問題

1. (X, \mathcal{O}) を位相空間とする。部分集合 $A \subset X$ に対して、 $x \in A^\circ$ であることと、 $\exists N \in \mathcal{N}(x)$ に対して $N \subset A$ であることは同値であることを示せ。

.....

 $x \in A^{\circ} \Rightarrow N \subset A$

 $x\in A^\circ$ より $x\in U\subset A$ となる近傍 $U\in \mathcal{N}(x)$ が存在する。よって、 $\exists N\in \mathcal{N}(x)$ に対して $N\subset A$ である。

 $x \in A^{\circ} \Leftarrow N \subset A$

 $N \subset A$ となる $N \in \mathcal{N}(x)$ が存在するとする。

 $N \in \mathcal{N}(x)$ であれば、N は x の近傍であり、 $x \in N$ である。これが $N \subset A$ となるので $x \in N \subset A$ となり x は A の内点である。よって、 $x \in A^{\circ}$ である。

2. (X, \mathcal{O}) を位相空間とする。部分集合 $A \subset X$ に対して、 $x \in \bar{A}$ であることと、 $\forall N \in \mathcal{N}(x)$ に対して $N \cap A \neq \emptyset$ であることは同値であることを示せ。

.....

 $x \in \bar{A} \Rightarrow N \cap A \neq \emptyset$

 $x \in \bar{A}$ であるので x は A の触点である。触点であれば、 $\forall N \in \mathcal{N}(x)$ に対して $N \cap A \neq \emptyset$ である。

 $x \in \bar{A} \Leftarrow N \cap A \neq \emptyset$

 $\forall N \in \mathcal{N}(x)$ に対して $N \cap A \neq \emptyset$ であることは x が A の触点であることを示している。よって、 $x \in \bar{A}$ である。

3. (X, \mathcal{O}) を位相空間とする。部分集合 $A \subset X$ に対して、収束する A の点列 x_n の収束点 x は A の触点であることを示せ。

 $x_n \in A \ (n \in \mathbb{N})$ に対して $\lim_{n \to \infty} x_n = x$ である。この極限は次のように書くことができる。

$$\forall U \in \mathcal{N}(x), \ \exists N_0 \in \mathbb{N} \text{ s.t. } N > N_0 \Rightarrow x_N \in U$$
 (4)

つまり、 $N>N_0$ となる数 N に対して $x_N\in A$ は $x_N\in U$ である。 $^\forall U\in\mathcal{N}(x)$ と A について $x_N\in U\cap A$ であるので $U\cap A\neq\emptyset$ である。

よって、x は A の触点である。