Journal Report 19 2/24/20-2/28/20 Kevin Fu Computer Systems Research Lab Period 1, White

Daily Log

Monday February 24

Out sick.

Tuesday February 25

Scrapped extended orthophoto idea. Tried implementing CLAHE, as Kevin Chung has in board detection, to up the contrast for better orthophoto results. Found his parameters don't work well for rounder shapes, nor do they work on color images.

Thursday February 27

Successfully implemented CLAHE on color image input by converting the color space from BGR to LAB, then running CLAHE on the L channel. This produces a much better orthophoto. Began relabelling training data.

Timeline

Date	Goal	Met
Feb 10	Fix chess-logic implementation, label	Done, not returning
	new images, then return to Feb 3rd	
	goal	
Feb 17	Finish slanted square segmentation,	Done
	return to piece labelling	
Feb 24	Finalize orthophoto tweaks, begin	Done
	piece labelling (March 6th)	
Mar 2	Finish piece labelling, train new	Not started
	model for States (March 6th)	
Mar 9	Test and integrate new model for	Not started
	States (March 6th)	

Reflection

I increased the accuracy of the orthophoto empty/non-empty guesses, particularly with black pieces on dark squares, by bumping the contrast of the original image up, which produced a better Canny image. It took me a while to figure out how to apply Contrast-Limited Adaptive Histogram Equalization, or CLAHE, to a color image, as my partner only applies it to grayscale images for board detection. However, I eventually stumbled on a Stack Overflow thread where someone converted an image to the LAB color space, and applied CLAHE to the L, or luminosity, channel. This increased the contrast in the brightness while largely preserving the color.

Note the black rook on c3 and black knight on h6 in the images below:

Figure 1: Before

I also began relabelling my dataset, which I need to do because I'm now shearing every chess piece to normal, and I trained my original CNN on unsheared pieces. However, Kevin Chung decided he could modify his final UI slightly to help with data labelling, so I'm planning to wait for him to implement that before I continue labelling.

Figure 2: After

1 Year-End Goal Statement

Grade	Research	UI	GitHub	Final	TJStar
				Paper	
A	Have meaningful research on	Functional UI that	Detailed,	Detailed.	Strong
	transfer learning with ResNet,	allows user to track	allows		presen-
	data augmentation and pre-	chess moves in a	user to run		tation.
	processing, and computer vi-	video or get the board	UI.		
	sion to mitigate the effect of	state of a still image.			
	occlusion on image classifica-	0			
	tion.				
В	Have meaningful research on	No functional UI.	Detailed,	Detailed	Strong
	transfer learning with ResNet,		allows		presen-
	data augmentation and pre-		user to see		tation.
	processing, and computer vi-		backend.		
	sion to mitigate the effect of				
	occlusion on image classifica-				
	tion.				
С	Attempted research on com-	Attempted to write	Repo	Written.	Presented
	puter vision, image classifica-	program that tracks	exists.		
	tion with ResNet.	chess moves.			