Initial models for optimisation

R. Kuipers

July 21, 2020

1/16

Initial model for installation

$$\max_{\substack{O_p,N_p\in\mathbb{Z}^*\\s_{ait}\in\{0,1\}}}\sum_{p\in P}[DIS^p(O_p\cdot v_p-\sum_{r\in R}N_{rp}\cdot C_{rp})] \tag{1}$$

$$s_{ait} \le s_{ai(t+1)} \qquad \forall a \in A, \forall i \in I, \forall t \in T \qquad (2)$$

$$ig_{ait} \ge 1 \qquad \forall a \in A, \forall i \in I \qquad (3)$$

$$s_{ai\sigma_{it_N}} \ge 1$$
 $\forall a \in A, \forall i \in I$

$$s_{ajt} \leq s_{ai\sigma_{it}}$$
 $\forall a \in A, \forall (i,j) \in IP, \forall t \in T$ (4)

$$N_{rp} \ge \sum_{a \in A} \sum_{i \in I} (\rho_{ir} \cdot (s_{ait} - s_{ai\sigma_{it}})) \qquad \forall r \in R, \forall p \in P, \forall t \in T_p$$
 (5)

$$O_p = \sum_{a \in A} s_{ai_N \sigma_{i_N t_p}} \qquad \forall p \in P \tag{6}$$

$$N_{rp} \le m_{rp}$$
 $\forall r \in R, \forall p \in P$ (7)

Installation Model Explanation

- (1) Objective function, sums up profits from energy made, subtracts money used on resources (vessels), and multiplies it all with a discount factor
- (2) Makes every task that is started stay started
- (3) Forces every task to be starded and finished by the final timestep
- (4) For every precedence relation (i,j), ensures that i is finished before j is started
- (5) Counts up the resources needed in a time period by adding the resources needed by all tasks started, and subtracting the resources needed by all tasks finished
- (6) Counts the number of turbines which finished installing by the end of a period
- (7) Sets a limit on the amount of vessels that can be charatered in a given period

Sets:

- P: All time periods (large scale)
- T: All time intervals (small scale)
 [t₀,...,t_N]
- $T_p \in T$: All time intervals (small scale) in period p
- R: All resources
- I: All tasks per asset $[1, ..., i_N]$
- IP: All precedency pairs (i, j)
- A: All assets

Decision variables:

- O_p: Number of online turbines after period p
- N_{rp}: Number of resources r used in period p
- s_{ait} : Binary variable, 1 if task $i \in I$ for asset a has started at or before time t

- DIS: The discount factor per period
- v_p: The value of energy a single turbine produces in period p
- C_{rp}: The cost of chartering resource r in period p
- σ_{it}: Indicates the timestep at which task i should have been started for it to be finished by timestep t, taking into account the duration and the weather conditions
- ρ_{ir} : The amount of resource r used by task i
- t_p: The final time interval (from T) before period p
- m_{rp}: The maximum amount of resources r that can be charatered in period p

Initial model for maintenance

$$\max_{\substack{O_t, N_{rp} \in \mathbb{Z}^* \\ s_{ait}, b_{at} \in \{0,1\}}} \sum_{p \in P} [DIS^p (\sum_{t \in \mathcal{T}_p} (O_t \cdot v_t) - \sum_{r \in R} (N_{rp} \cdot C_{rp}))]$$
(8)

$$s_{ait} \leq s_{ai(t+1)} \qquad \forall a \in A, \forall i \in M, \forall t \in T$$
 (9)

$$s_{ai\sigma_{it_N}} \ge 1 \qquad \forall a \in A, \forall i \in M^M \qquad (10)$$

$$N_{rp} \ge \sum_{a \in A} \sum_{i \in M} (\rho_{ir} \cdot (s_{ait} - s_{ai\sigma it})) \qquad \forall r \in R, \forall p \in P, \forall t \in T_p$$
 (11)

$$b_{at} > \sum_{i \in M} [s_{ai\sigma_{i(t-\lambda_a)}} - s_{ai\sigma_{it}}] \qquad \forall a \in A, \forall t \in T$$
 (12)

$$O_t = |A| - \sum_{a \in A} b_{at} \qquad \forall t \in T \qquad (13)$$

$$N_{rp} \le m_{rp}$$
 $\forall r \in R, \forall p \in P$ (14)

Maintenance Model Explanation

- (8) Objective function, sums up profits from energy made, subtracts money used on resources (vessels), and multiplies it all with a discount factor
- (9) Makes every task that is finished stay finished
- (10) Forces every mandatory maintenance task to be done at some point
- (11) Counts up the resources needed in a time period by adding the resources needed by all tasks started, and subtracting the resources needed by all tasks finished
- (12) If no maintenance tasks have finished in the past λ_a timesteps this asset is broken
- (13) The number of active (online) turbines is equal to everything that isn't broken
- (14) Sets a limit on the amount of vessels that can be charatered in a given period

Sets:

- P: All time periods (large scale)
- T: All time intervals (small scale)
 [t₀,..., t_N]
- $T_p \in T$: All time intervals (small scale) in period p
- R: All resources
- A: All assets
- $M = M^M \cup M^O$: All (mandatory and optional) maintenance tasks

Decision variables:

- O_t: Number of active turbines at timestep t
- N_{rp}: Number of resources r used in period p
- s_{ait}: Binary variable, 1 if maintenance task i for asset a has started at or before time t
- b_{at}: Binary variable, 1 if asset a is broken at timestep t

- DIS: The discount factor per time period
- v_t: The value of energy a single turbine produces at timestep t
- C_{rp}: The cost of chartering resource r in period p
- λ_a: The number of timesteps after the last maintenance before asset a fails
- σ_{it} : Indicates the timestep at which task i should have been started for it to be finished by timestep t, taking into account the duration and the weather conditions
- ρ_{ir}: The amount of resource r used per task for maintenance task i
- m_{rp}: The maximum amount of resources r that can be charatered in period p

Initial 2-mixed model

$$\max_{\substack{O_t, N_{rp} \in \mathbb{Z}^* \\ s_{ait}, o_{at} \in \{0,1\}}} \sum_{p \in P} [DIS^p (\sum_{t \in T_p} (O_t \cdot v_t) - \sum_{r \in R} (N_{rp} \cdot C_{rp}))]$$
(15)

$$s_{ait} \le s_{ai(t+1)}$$
 $\forall a \in A, \forall i \in \mathcal{I}, \forall t \in \mathcal{T}$ (16)

$$s_{ai\sigma_{it_N}} \ge 1$$
 $\forall a \in A, \forall i \in I \cup M^M$ (17)

$$s_{ajt} \le s_{ai\sigma_{it}}$$
 $\forall a \in A, \forall (i,j) \in IP, \forall t \in T$ (18)

$$N_{rp} \ge \sum_{s \in A} \sum_{i \in \mathcal{I}} (\rho_{ir} \cdot (s_{sit} - s_{ai\sigma_{it}})) \qquad \forall r \in R, \forall p \in P, \forall t \in T_p$$
 (19)

$$o_{at} \leq \frac{1}{2} \cdot (s_{ai_N \sigma_{i_N t}} + \sum_{i \in M \cup \{i_N\}} [s_{ai\sigma_{it}} - s_{ai\sigma_{i(t-\lambda_a)}}]) \qquad \forall a \in A, \forall t \in T$$
 (20)

$$O_t = \sum_{a \in A} o_{at} \qquad \forall t \in T \qquad (21)$$

$$N_{rp} \le m_{rp}$$
 $\forall r \in R, \forall p \in P$ (22)

2-Mixed Model Explanation

- (15) Objective function, sums up profits from energy made, subtracts money used on resources (vessels), and multiplies it all with a discount factor
- (16) Makes every task that is started stay started
- (17) Forces every installation and mandatory maintenance task to be starded and finished by the final timestep
- (18) For every precedence relation (i,j), ensures that i is finished before j is started
- (19) Counts up the resources needed in a time period by adding the resources needed by all tasks started, and subtracting the resources needed by all tasks finished
- (20) Sets an asset to be online if it installed and had work done on it recently
- (21) Counts how many assets are online
- (22) Sets a limit on the amount of vessels that can be charatered in a given period

Sets:

- P: All time periods (large scale)
- T: All time intervals (small scale) [t₀, . . . , t_N]
- $T_p \in T$: All time intervals (small scale) in period p
- R: All resources
- I: All installation tasks per asset [1, ..., i_N]
- $M = M^M \cup M^O$: all mandatory and optional maintenance tasks
- $\mathcal{I} = I \cup M$: All tasks
- IP: All precedency pairs (i, j)
- A: All assets

Decision variables:

- O_t: Number of online turbines at timestep t
- o_{at}: Binary variable, 1 if asset a is online at timestep t
- \bullet N_{rp} : Number of resources r used in period p
- $lackbox{s}_{ait}$: Binary variable, 1 if task $i \in \mathcal{I}$ for asset a has started at or before time t

- DIS: The discount factor per time period
- v_t: The value of energy a single turbine produces at timestep t
- C_{rp} : The cost of chartering resource r in period p
- λ_a: The number of timesteps after the last maintenance before asset a fails
- \(\sigma_{it}:\) Indicates the timestep at which task \(i \) should have been started for it to be finished by timestep \(t \), taking into account the duration and the weather conditions
- \bullet ρ_{ir} : The amount of resource r used for task $i \in \mathcal{I}$
- m_{rp}: The maximum amount of resources r that can be charatered in period p

Initial model for decommission

$$\max_{\substack{O_t, N_{rp} \in \mathbb{Z}^* \\ s_{ait}, o_{at} \in \{0,1\}}} \sum_{p \in P} [DIS^p (\sum_{t \in T_p} (O_t \cdot v_t) - \sum_{r \in R} (N_{rp} \cdot C_{rp}))]$$
(23)

$$s_{ait} \le s_{ai(t+1)} \qquad \forall a \in A, \forall i \in D, \forall t \in T$$
 (24)

$$s_{ai\sigma_{it_N}} \ge 1$$
 $\forall a \in A, \forall i \in D$ (25)

$$s_{ajt} \le s_{ai\sigma_{it}}$$
 $\forall a \in A, \forall (i,j) \in IP, \forall t \in T$ (26)

$$N_{rp} \ge \sum_{a \in A} \sum_{i \in I} (\rho_{ir} \cdot (s_{ait} - s_{ai\sigma_{it}})) \qquad \forall r \in R, \forall p \in P, \forall t \in T_p$$
 (27)

$$O_t = \sum_{a \in A} (1 - s_{ai_0t}) \qquad \forall t \in T$$
 (28)

$$N_{rp} \le m_{rp}$$
 $\forall r \in R, \forall p \in P$ (29)

Installation Model Explanation

- (23) Objective function, sums up profits from energy made, subtracts money used on resources (vessels), and multiplies it all with a discount factor
- (24) Makes every task that is started stay started
- (25) Forces every task to be starded and finished by the final timestep
- (26) For every precedence relation (i, j), ensures that i is finished before j is started
- (27) Counts up the resources needed in a time period by adding the resources needed by all tasks started, and subtracting the resources needed by all tasks finished
- (28) Counts the number of turbines which have not started decomissioning by a given timestep
- (29) Sets a limit on the amount of vessels that can be charatered in a given period

Sets:

- P: All time periods (large scale)
- T: All time intervals (small scale)
 [t₀,...,t_N]
- $T_p \in T$: All time intervals (small scale) in period p
- R: All resources
- D: All tasks per asset $[i_0, \ldots, i_N]$
- IP: All precedency pairs (i, j)
- A: All assets

Decision variables:

- O_t: Number of online turbines at timestep t
- N_{rp}: Number of resources r used in period p
- s_{ait} : Binary variable, 1 if task $i \in I$ for asset a has started at or before time t

- DIS: The discount factor per period
- v_t: The value of energy a single turbine produces in timestep t
- C_{rp}: The cost of chartering resource r in period p
- σ_{it}: Indicates the timestep at which task i should have been started for it to be finished by timestep t, taking into account the duration and the weather conditions
- ρ_{ir} : The amount of resource r used by task i
- t_p: The final time interval (from T) before period p
- m_{rp}: The maximum amount of resources r that can be charatered in period p

Initial 3-mixed model

$$\max_{\substack{O_t, N_{rp} \in \mathbb{Z}^* \\ s_{sit}, o_{at} \in \{0,1\}}} \sum_{p \in P} [DIS^p (\sum_{t \in T_p} (O_t \cdot v_t) - \sum_{r \in R} (N_{rp} \cdot C_{rp}))]$$
(30)

subject to:

 $s_{ait} \leq s_{ai(t+1)}$

$$s_{ai\sigma_{it_{N}}} \geq 1 \qquad \forall a \in A, \forall i \in I \cup M^{M} \cup D$$

$$(32)$$

$$s_{ajt} \leq s_{ai\sigma_{it}} \qquad \forall a \in A, \forall (i,j) \in IP, \forall t \in T$$

$$(33)$$

$$N_{rp} \geq \sum_{a \in A} \sum_{i \in T} (\rho_{ir} \cdot (s_{ait} - s_{ai\sigma_{it}})) \qquad \forall r \in R, \forall p \in P, \forall t \in T_{p}$$

 $\forall t \in T^{*}$

 $\forall a \in A, \forall i \in \mathcal{I}, \forall t \in T$

 $o_{at} \leq \frac{1}{2} \cdot \left(s_{ai_N \sigma_{i_N t}} + \sum_{i \in M \cup \{i_N\}} \left[s_{ai\sigma_{it}} - s_{ai\sigma_{i(t-\lambda_a)}} \right] - s_{ai_0^d t} \right)$

 $\forall a \in A, \forall t \in T$

(34)

(35)

3-Mixed Model Explanation

- (15) Objective function, sums up profits from energy made, subtracts money used on resources (vessels), and multiplies it all with a discount factor
- (16) Makes every task that is started stay started
- (17) Forces every installation and mandatory maintenance task to be starded and finished by the final timestep
- (18) For every precedence relation (i,j), ensures that i is finished before j is started
- (19) Counts up the resources needed in a time period by adding the resources needed by all tasks started, and subtracting the resources needed by all tasks finished
- (20) Sets an asset to be online if it installed and had work done on it recently
- (21) Counts how many assets are online
- (22) Sets a limit on the amount of vessels that can be charatered in a given period

Sets:

- P: All time periods (large scale)
- T: All time intervals (small scale) [t₀, . . . , t_N]
- T_p ∈ T: All time intervals (small scale) in period p
- R: All resources
- I: All installation tasks per asset [1, ..., i_N]
- $M = M^M \cup M^O$: all mandatory and optional maintenance tasks
- $\mathcal{I} = I \cup M$: All tasks
- IP: All precedency pairs (i, j)
- A: All assets

Decision variables:

- O_t: Number of online turbines at timestep t
- o_{at}: Binary variable, 1 if asset a is online at timestep t
- N_{rp}: Number of resources r used in period p
- $lackbox{s}_{ait}$: Binary variable, 1 if task $i \in \mathcal{I}$ for asset a has started at or before time t

- DIS: The discount factor per time period
- v_t: The value of energy a single turbine produces at timestep t
- C_{rp} : The cost of chartering resource r in period p
- λ_a: The number of timesteps after the last maintenance before asset a fails
- \(\sigma_{it}:\) Indicates the timestep at which task \(i \) should have been started for it to be finished by timestep \(t \), taking into account the duration and the weather conditions
- \bullet ρ_{ir} : The amount of resource r used for task $i \in \mathcal{I}$
- m_{rp}: The maximum amount of resources r that can be charatered in period p