

Precision Operational Amplifier

FEATURES

■ Guaranteed Low Offset Voltage LT1001AM 15µV max

LT1001C 60μV max

Guaranteed Low Drift

LT1001AM 0.6μV/°C max LT1001C 1.0μV/°C max

Guaranteed Low Bias Current

LT1001AM 2nA max LT1001C 4nA max

Guaranteed CMRR

LT1001AM 114dB min LT1001C 110dB min

Guaranteed PSRR

LT1001AM 110dB min LT1001C 106dB min

Low Power Dissipation

LT1001AM 75mW max LT1001C 80mW max

■ Low Noise 0.3µV_{P-P}

APPLICATIONS

- Thermocouple amplifiers
- Strain gauge amplifiers
- Low level signal processing
- High accuracy data acquisition

DESCRIPTION

The LT®1001 significantly advances the state-of-theart of precision operational amplifiers. In the design, processing, and testing of the device, particular attention has been paid to the optimization of the entire distribution of several key parameters. Consequently, the specifications of the lowest cost, commercial temperature device, the LT1001C, have been dramatically improved when compared to equivalent grades of competing precision amplifiers.

Essentially, the input offset voltage of all units is less than 50µV (see distribution plot below). This allows the LT1001AM/883 to be specified at 15µV. Input bias and offset currents, common-mode and power supply reiection of the LT1001C offer quaranteed performance which were previously attainable only with expensive. selected grades of other devices. Power dissipation is nearly halved compared to the most popular precision op amps, without adversely affecting noise or speed performance. A beneficial by-product of lower dissipation is decreased warm-up drift. Output drive capability of the LT1001 is also enhanced with voltage gain guaranteed at 10mA of load current. For similar performance in a dual precision op amp, with guaranteed matching specifications, see the LT1002. Shown below is a platinum resistance thermometer application.

T, LTC and LT are registered trademarks of Linear Technology Corporation.

TYPICAL APPLICATION

Linearized Platinum Resistance Thermometer with $\pm 0.025^{\circ}C$ Accuracy Over 0 to 100°C

* ULTRONIX 105A WIREWOUND ** 1% FILM † PLATINUM RTD 118MF (ROSEMOUNT, INC.)

trim linearity (35°C = 1138.7 Ω), trim gain (100°C = 1392.6 Ω). Repeat until all three points are fixed with ± 0.025 °C.

Typical Distribution of Offset Voltage $V_S = \pm 15V$, $T_A = 25^{\circ}C$

ABSOLUTE MAXIMUM RATINGS

(Note 1)

Supply Voltage	±22V
Differential Input Voltage	±30V
Input Voltage	±22V
Output Short Circuit Duration	Indefinite

Operating Temperature Range		
LT1001AM/LT1001M (OBSOLETE)	−55°C t	o 150°C
LT1001AC/LT1001C	0°C t	o 125°C
Storage: All Devices	−65°C t	o 150°C
Lead Temperature (Soldering, 10 sec.)	300°C

PACKAGE/ORDER INFORMATION

Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^{\circ}C$. $V_S = \pm 15V$, unless otherwise noted

			LT1001AM/883 LT1001AC			LT1001M/LT1001C				
SYMBOL	PARAMETER	CONDITI	ONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Vac	Input Offset Voltage	Note 2	LT1001AM/883		7	15		18	60	μV
V_{OS}			LT1001AC		10	25		10	60	μν
ΔV _{OS}	Long Term Input Offset Voltage									
ΔTime	Stability	Notes 3	and 4		0.2	1.0		0.3	1.5	μV/month
I _{OS}	Input Offset Current				0.3	2.0		0.4	3.8	nA
I _b	Input Bias Current				±0.5	±2.0		±0.7	±4.0	nA
e _n	Input Noise Voltage	0.1Hz to	10Hz (Note 3)		0.3	0.6		0.3	0.6	μV _{p-p}
e _n	Input Noise Voltage Density	f ₀ = 10H	z (Note 6)		10.3	18.0		10.5	18.0	nV√Hz
		$f_0 = 100$	OHz (Note 3)		9.6	11.0		9.8	11.0	nV√Hz
A _{VOL}	Large Signal Voltage Gain	$R_L \ge 2k\Omega$	$V_0 = \pm 12V$	450	800		400	800		V/mV
		$R_L \ge 1k\Omega$	$2 V_0 = \pm 10 V$	300	500		250	500		V/mV
CMRR	Common Mode Rejection Ratio	V _{CM} = ±	13V	114	126		110	126		dB
PSRR	Power Supply Rejection Ratio	V _S = ±3\	/ to ±18V	110	123		106	123		dB
R _{in}	Input Resistance Differential Mode			30	100		15	80		MΩ
	1	1					1			1001fb

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^{\circ}C$. $V_S = \pm 15V$, $T_A = 25^{\circ}C$, unless otherwise noted

			LT1001AM/883 LT1001AC		LT1001M/LT1001C				
SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
	Input Voltage Range		±13	±14		±13	±14		V
V _{OUT}	Maximum Output Voltage Swing	$\begin{aligned} R_L &\geq 2k\Omega \\ R_L &\geq 1k\Omega \end{aligned}$	±13 ±12	±14 ±13.5		±13 ±12	±14 ±13.5		V
S _R	Slew Rate	$R_L \ge 2k\Omega$ (Note 5)	0.1	0.25		0.1	0.25		V/µs
GBW	Gain-Bandwidth Product	(Note 5)	0.4	0.8		0.4	0.8		MHz
$\overline{P_d}$	Power Dissipation	No load		46	75		48	80	mW
		No load, $V_S = \pm 3V$		4	6		4	8	mW

$V_S = \pm 15V$, $-55^{\circ}C \le T_A \le 125^{\circ}C$, unless otherwise noted

SYMBOL	PARAMETER	CONDITIONS		LT1 MIN	001AM/	883 MAX	MIN	LT1001I TYP	Л МАХ	UNITS
STWIDUL	PANAIVIETEN	COMPLITONS		IVIIIV	IIF	IVIAA	IVIIIV	H	IVIAA	UNITS
V_{OS}	Input Offset Voltage		•		30	60		45	160	μV
ΔV_{OS}	Average Offset Voltage Drift		•		0.2	0.6		0.3	1.0	μV/°C
$\Delta Temp$										
I _{OS}	Input Offset Current		•		0.8	4.0		1.2	7.6	nA
I _B	Input Bias Current		•		±1.0	±4.0		±1.5	±8.0	nA
A _{VOL}	Large Signal Voltage Gain	$R_L \ge 2k\Omega$, $V_0 = \pm 10V$	•	300	700		200	700		V/mV
CMRR	Common Mode Rejection Ratio	V _{CM} = ±13V	•	110	122		106	120		dB
PSRR	Power Supply Rejection Ratio	$V_S = \pm 3 \text{ to } \pm 18V$	•	104	117		100	117		dB
	Input Voltage Range		•	±13	±14		±13	±14		V
V _{OUT}	Output Voltage Swing	$R_L \ge 2k\Omega$	•	±12.5	±13.5		±12.0	±13.5		V
$\overline{P_d}$	Power Dissipation	No load	•		55	90		60	100	mW

$V_S=\pm 15 V,~0^{\circ}C \leq T_A \leq 70^{\circ}C,~unless~otherwise~noted$

				L	T1001A	С		LT1001C	;	
SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	UNITS
V_{0S}	Input Offset Voltage		•		20	60		30	110	μV
$\frac{\Delta V_{OS}}{\Delta Temp}$	Average Offset Voltage Drift		•		0.2	0.6		0.3	1.0	μV/°C
I _{OS}	Input Offset Current		•		0.5	3.5		0.6	5.3	nA
I _B	Input Bias Current		•		±0.7	±3.5		±1.0	±5.5	nA
A _{VOL}	Large Signal Voltage Gain	$R_L \ge 2k\Omega$, $V_0 = \pm 10V$	•	350	750		250	750		V/mV
CMRR	Common Mode Rejection Ratio	$V_{CM} = \pm 13V$	•	110	124		106	123		dB
PSRR	Power Supply Rejection Ratio	$V_S = \pm 3V \text{ to } \pm 18V$	•	106	120		103	120		dB
	Input Voltage Range		•	±13	±14		±13	±14		V
V _{OUT}	Output Voltage Swing	$R_L \ge 2k\Omega$	•	±12.5	±13.8		±12.5	±13.8		V
P_d	Power Dissipation	No load	•		50	85		55	90	mW

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

Note 2: Offset voltage for the LT1001AM/883 and LT1001AC are measured after power is applied and the device is fully warmed up. All other grades are measured with high speed test equipment, approximately 1 second after power is applied. The LT1001AM/883 receives 168 hr. burn-in at 125°C. or equivalent.

Note 3: This parameter is tested on a sample basis only.

Note 4: Long Term Input Offset Voltage Stability refers to the averaged trend line of V_{OS} versus Time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, changes in V_{OS} during the first 30 days are typically $2.5\mu V$.

Note 5: Parameter is guaranteed by design.

Note 6: 10Hz noise voltage density is sample tested on every lot. Devices 100% tested at 10Hz are available on request.

TYPICAL PERFORMANCE CHARACTERISTICS

200

220

2

TYPICAL PERFORMANCE CHARACTERISTICS

Open Loop Voltage Gain Frequency Response

125°C = 57°

PHASE MARGIN -55°C = 63°

 $V_S = \pm 15V$

Common Mode Limit vs Temperature

Common Mode Rejection Ratio vs Frequency

Power Supply Rejection Ratio vs Frequency

Supply Current vs Supply Voltage

Output Swing vs Load Resistance

Output Short-Circuit Current vs Time

TYPICAL PERFORMANCE CHARACTERISTICS

Small Signal Transient Response

 $A_V = +1, C_L = 50pF$ 1001 G19

Voltage Follower Overshoot vs Capacitive Load

Small Signal Transient Response

 $A_V = +1, C_L = 1000pF$

1001 G21

Large Signal Transient Response

Maximum Undistorted Output vs. Frequency

Closed Loop Output Impedance

APPLICATIONS INFORMATION

Application Notes and Test Circuits

The LT1001 series units may be inserted directly into OP-07, OP-05, 725, 108A or 101A sockets with or without removal of external frequency compensation or nulling components. The LT1001 can also be used in 741, LF156 or OP-15 applications provided that the nulling circuitry is removed.

1001 G22

The LT1001 is specified over a wide range of power supply voltages from $\pm 3V$ to $\pm 18V$. Operation with lower supplies is possible down to $\pm 1.2V$ (two Ni-Cad batteries). However, with $\pm 1.2V$ supplies, the device is stable only in closed loop gains of +2 or higher (or inverting gain of one or higher).

Unless proper care is exercised, thermocouple effects caused by temperature gradients across dissimilar metals at the contacts to the input terminals, can exceed the inherent drift of the amplifier. Air currents over device leads should be minimized, package leads should be short, and the two input leads should be as close together as possible and maintained at the same temperature.

Test Circuit for Offset Voltage and its Drift with Temperature

APPLICATIONS INFORMATION

Offset Voltage Adjustment

The input offset voltage of the LT1001, and its drift with temperature, are permanently trimmed at wafer test to a low level. However, if further adjustment of Vos is necessary, nulling with a 10k or 20k potentiometer will not degrade drift with temperature. Trimming to a value other than zero creates a drift of $(Vos/300)\mu V/^{\circ}C$, e.g., if Vos is

Improved Sensitivity Adjustment

adjusted to 300 μ V, the change in drift will be 1 μ V/°C. The adjustment range with a 10k or 20k pot is approximately ± 2.5 mV. If less adjustment range is needed, the sensitivity and resolution of the nulling can be improved by using a smaller pot in conjunction with fixed resistors. The example below has an approximate null range of $\pm 100~\mu$ V.

0.1Hz to 10Hz Noise Test Circuit

The device under test should be warmed up for three minutes and shielded from air currents.

DC Stabilized 1000v/µsec Op Amp

Microvolt Comparator with TTL Output

Photodiode Amplifier

Precision Current Source

Precision Current Sink

Strain Gauge Signal Conditioner with Bridge Excitation

Large Signal Voltage Follower With 0.001% Worst Case Accuracy

The voltage follower is an ideal example illustrating the overall excellence of the LT1001. The contributing error terms are due to offset voltage, input bias current, voltage gain, common mode and power-supply rejections. Worst-case summation of guaranteed specifications is tabulated below.

	OUTPUT ACCURACY								
	LT1001AM /883	LT1001C	LT1001AM /883	LT1001C					
Error	25°C Max.	25°C Max.	–55 to 125°C Max.	0 to 70°C Max.					
Offset Voltage	15μV	60μV	60μV	110μV					
Bias Current	20μV	40μV	40μV	55μV					
Common Mode Rejection	20μV	30μV	30μV	50μV					
Power Supply Rejection	18μV	30μV	36μV	42μV					
Voltage Gain	22μV	25μV	33μV	40μV					
Worst-case Sum	95μV	185μV	199μV	297μV					
Percent of Full Scale									
(=20V)	0.0005%	0.0009%	0.0010%	0.0015%					

Thermally Controlled NiCad Charger

Precision Absolute Value Circuit

Precision Power Supply with Two Outputs (1) 0V to 10V in $100\mu V$ STEPS (2) 0V to 100V in 1mV STEPS

Dead Zone Generator

BIPOLAR SYMMETRY IS EXCELLENT BECAUSE ONE DEVICE, Q2, SETS BOTH LIMITS

TINEAR LINEAR

Instrumentation Amplifier with $\pm 300V$ Common Mode Range and CMRR > 150dB

SCHEMATIC DIAGRAM

N8 Package 8-Lead PDIP (Narrow .300 Inch)

(Reference LTC DWG # 05-08-1510)

*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)

\$8 Package 8-Lead Plastic Small Outline (Narrow .150 Inch)

(Reference LTC DWG # 05-08-1610)

- *DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE
- **DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE