

Printed Page: 1 of 2
Subject Code: KEE301
Roll No:

B.TECH (SEM III) THEORY EXAMINATION 2020-21 ELECTROMAGNETIC FIELD THEORY

Time: 3 Hours Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 10 = 20$

Q no.	Question	Marks	CO
a.	Transform the point $P(-2, 3, 4)$ into cylindrical coordinate system.	2	1
b.	Given two vectors as, $P = (0,6,-9)$ and $Q = (-2,0,3)$. Find projection of	2	1
	P on Q.		
c.	Derive Poisson and Laplace equations.	2	2
d.	What are the time varying fields? Give example.	2	2
e.	Given, $V = 4x3y2 - 3xyz$. Determine the E at $(3,-4,5)$.	2	3
f.	Define relaxation time.	2	3
g.	What is Lorentz force?	2	4
h.	Why the closed surface integration of magnetic flux density is zero and of electric flux density is equal to flux.	2	4
i.	Define skin depth.	2	5
j.	Given, $\eta 1 = 100 \Omega$, $\eta 2 = 300 \Omega$, $= 100 \text{ V/m}$. Find .	2	5

SECTION B

2. Attempt any three of the following:

Q no.	Question	Marks	СО
a.	Verify the divergence theorem for the $D = \rho 2 \cos 2 \phi \ a\rho + z \sin \phi \ a\phi$	10	1
	over the closed surface of the cylinder $0 \le z \le 1$, $\rho = 4$.		
b.	A wire of diameter 1 mm and conductivity 5 x 107 S/m has 1029 free	10	2
	electrons per cubic meter when an electric field of 10 mV/m is applied.		
	Find:-		
	(i) Charge density of free electrons		
	(ii) Current density		
	(iii) Current in the wire		
c.	State Biot – Savart law and derive an expression for the magnetic field	10	3
	intensity due to infinite straight line current carrying conductor.		
d.	Derive the expression for inductance per unit length of coaxial	10	4
	conductors.		
e.	Show that the intrinsic impedance of free space is 377 or 120π .	10	5

SECTION C

3. Attempt any *one* part of the following:

Q no.	Question	Marks	CO
a.	Given, four point charges of 1 μ C each at (0,0,0), (0,1,0), (0,1,1), (0,0,1)	10	1
	respectively. Find \mathbf{E} at $(1,1,1)$.		

				Printed Page: 2 of 2					of 2
				Subject Code: KEE301					301
Roll No:									

b.	Derive the expression for energy and energy density in an electric field.	10	1	Ī
----	---	----	---	---

4. Attempt any *one* part of the following:

Q no.	Question	Marks	СО
a.	Given the current density, $J = \frac{1}{r^2}(2 \cos \theta \ a_r + \sin \theta \ a_\theta) \ A/m^2$, find current	10	2
	through a spherical shell of $r = 10$ cm.		
b.	Derive electrostatic boundary conditions for conductor-dielectric interface.	10	2

5. Attempt any *one* part of the following:

Q no.	Question	Marks	CO
a.	A current of 10 A is flowing from origin to negative infinity along x axis.	10	3
	Find the magnetic field produced by it at (-2, 3, 0).		
b.	Explain the significance of displacement current density.	10	3

6. Attempt any *one* part of the following:

Q no.	Question	Marks	CO
a.	Derive the expression for magnetic force on a current carrying loop, kept within the magnetic field.	10	4
b.	Write a note on classification of magnetic materials.	10	4

7. Attempt any *one* part of the following:

Q no.	Question	Marks	CO
a.	What is Poynting vector? Derive the Poynting theorem & explain the physical meaning of each integral involved in it.	10	5
b.	The E of an EM wave in free space is given by $E = E_{y_0} e^{\int dt \left(\frac{\pi}{v} - \frac{N}{v}\right)} a_y$. Find the expression for the H by using Maxwell equations.	10	5