PAT-NO:

JP407323428A

DOCUMENT-IDENTIFIER: JP 07323428 A

TITLE:

STAMPER FOR MANUFACTURE OF PHOTO-SHEET, AND

MANUFACTURE

OF PHOTO-SHEET USING THE **STAMPER**

PUBN-DATE:

December 12, 1995

INVENTOR-INFORMATION:

NAME

KUSANO, KENJI

ASSIGNEE-INFORMATION:

NAME

COUNTRY

NIPPON ZEON CO LTD

N/A

KK OPUTESU

N/A

APPL-NO:

JP06142546

APPL-DATE:

June 1, 1994

INT-CL (IPC): B29C033/38, B29C039/26, B29C045/26

ABSTRACT:

PURPOSE: To provide a **stamper** for the manufacture of a photo-sheet required for liquid crystal display as a back light by thermally melting a resist layer consisting of a mottled or striped stereopattern obtained by a resist method to make the layer curved, then forming a metal layer on the resist layer, and taking out the metal layer.

CONSTITUTION: When manufacturing a stamper, first a photoresist formation solution is applied to the surface of a substrate 1 to form a resist layer 2, then a **photomask** 5 consisting of a light shielding layer 3 formed on a sheet glass 4 is placed on the resist layer 2, and the photomask 5 is exposed to light by emitting an active beam such as ultraviolet ray. Next, a spot exposed to light is melted out by image development, while a spot unexposed to light is thermally fused as a resist layer 2 to form a pattern of convex lens-shaped groups (microlens array shape) on the resist layer 2' by surface tension. After the cooling of the pattern, its surface is coated by the evaporation of an electroconductive metal to form a electroconductive metal layer 6. Further,

6/25/05, EAST Version: 2.0.1.4

a metal layer 7 is formed on the electroconductive metal layer 6 by electrocasting, and then a laminate of the metal layers 6, 7 is peeled off the substrate 1 to finish the <u>stamper</u>.

COPYRIGHT: (C)1995,JPO

DERWENT-ACC-NO:

1996-065154

DERWENT-WEEK:

199607

COPYRIGHT 2005 DERWENT INFORMATION LTD

TITLE:

Stamper for prodn. of optical sheet - has patterned resist layer with electroconductive metal surface coating

to form optical sheet when heated '

PATENT-ASSIGNEE: NIPPON ZEON KK[JAPG], OPTES KK[OPTEN]

PRIORITY-DATA: 1994JP-0142546 (June 1, 1994)

PATENT-FAMILY:

PUB-NO

PUB-DATE

LANGUAGE

PAGES

MAIN-IPC

JP 07323428 A

December 12, 1995

N/A

006

B29C 033/38

APPLICATION-DATA:

PUB-NO

APPL-DESCRIPTOR

APPL-NO

APPL-DATE

JP 07323428A

N/A

1994JP-0142546

June 1, 1994

B29K101:12, B29L011:00

INT-CL (IPC): B29C033/38, B29C039/26, B29C045/26, B29K101:10,

<u>.</u>

ABSTRACTED-PUB-NO: JP 07323428A

BASIC-ABSTRACT:

A three dimensional pattern (resist layer) composed of spots and stripes formed with a photoresist material having heat-flowable properties on a substrate is heated to melt where the pattern has curved surfaces. Onto the surface of the pattern, an electroconductive metal is coated, and a metal layer is formed thereon by electroforming. The metal layer is sepd. whereby a metal stamper for producing an optical sheet is obtd.

Also claimed is prodn. of a metal (sic) optical sheet. A transparent thermoplastic resin sheet is hot pressed with the above stamper, so that the rugged pattern of the stamper is transferred onto the resin sheet.

Pref. with the stamper used as a mould, a transparent thermoplastic resin compsn. is injection moulded. A photopolymerisable resin-forming material and a polymerisation initiator are cast into mould having the above stamper as a base and polymerised by irradiation of light.

USE - The optical sheet, which is a microlens array, is useful as a collective sheet for the back light in a LCD, a reflection sheet in a display sheet for

6/25/05, EAST Version: 2.0.1.4

warning at night, etc.

ADVANTAGE - The prodn. is efficient and inexpensive. The curved surfaces are fine, that is, have a size of 50 mum or lower.

CHOSEN-DRAWING: Dwg.0/6

TITLE-TERMS: STAMP PRODUCE OPTICAL SHEET PATTERN RESIST LAYER ELECTROCONDUCTING

METAL SURFACE COATING FORM OPTICAL SHEET HEAT

DERWENT-CLASS: A32 A89 U14

CPI-CODES: A11-B11; A12-L02A; A12-L03;

EPI-CODES: U14-K01A4;

ENHANCED-POLYMER-INDEXING:

Polymer Index [1.1]

018; H0317; P0862 P0839 F41 F44 D01 D63; S9999 S1581; S9999 S1434

Polymer Index [1.2]

018; B9999 B4397 B4240; J9999 J2915*R; N9999 N7001; J9999 J2904; ND05; Q9999 Q8286*R Q8264; Q9999 Q8322 Q8264; B9999 B4400*R B4240; Q9999 Q7283; Q9999 Q8264*R; N9999 N6484*R N6440

Polymer Index [2.1]

018; H0317

Polymer Index [2.2]

018; J9999 J2904; ND01; Q9999 Q8684 Q8673 Q8606; K9847*R K9790; B9999 B5425 B5414 B5403 B5276; K9552 K9483; N9999 N7125 N7103 N7034 N7023; N9999 N6177*R

Polymer Index [3.1]

018; H0000; H0011*R; L9999 L2573 L2506; L9999 L2528 L2506; K9847*R K9790

Polymer Index [3.2]

018; B9999 B4397 B4240; J9999 J2915*R; N9999 N7001; J9999 J2904; ND05; Q9999 Q8286*R Q8264; Q9999 Q8322 Q8264; B9999 B4400*R B4240; Q9999 Q7283; Q9999 Q8264*R; N9999 N6484*R N6440

Polymer Index [3.3] 018; N9999 N5743

Polymer Index [3.4]

018; C999 C000*R

SECONDARY-ACC-NO:

CPI Secondary Accession Numbers: C1996-021070 Non-CPI Secondary Accession Numbers: N1996-054836

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-323428

(43)公開日 平成7年(1995)12月12日

(51) Int.Cl. ⁶	設別記号	庁内整理番号	FΙ			•	技術表示箇所
B 2 9 C 33/38		8823-4F					
39/26		2126-4F					
45/26		9350-4F					
// B 2 9 K 101:10							
101: 12							
		來讀查審	未請求	請求項の数4	FD	(全 6 頁)	最終頁に続く

(21)出願番号 特願平6-142546

(22)出願日 平成6年(1994)6月1日

(71)出顧人 000229117

日本ゼオン株式会社

東京都千代田区丸の内2丁目6番1号

(71)出願人 591135750

株式会社オプテス

栃木県佐野市小中町234番地1

(72)発明者 草野 資次

杨木県佐野市小中町234番地1 株式会社

オプテス内

(74)代理人 弁理士 友松 英賀 (外1名)

(54) 【発明の名称】 光学シート製造用スタンパーおよびそれを用いた光学シートの製造方法

(57)【要約】

【目的】 液晶表示部のバックライト等として輝度が高く、かつ均一で、視野角の制限の少ない照明が可能な光学シートを効率良く製造するためのスタンパーとその使用法である光学シートの製造法の提供。

【構成】 基体上に加熱流動性フォトレジスト材料により形成された斑点または縞模様の立体パターン(レジスト層)を、加熱流動化することにより曲面化し、この表面に、導電性金属を被覆し、更にこの上に電鋳により金属層を形成した後、該金属層を分離して得られたことを特徴とする金属製の光学シート製造用スタンパー。

【特許請求の範囲】

【請求項1】 基体上に加熱流動性フォトレジスト材料により形成された斑点または縞模様の立体パターン(レジスト層)を、加熱流動化することにより曲面化し、この表面に、導電性金属を被覆し、更にこの上に電鋳により金属層を形成した後、該金属層を分離して得られたことを特徴とする金属製の光学シート製造用スタンパー。 【請求項2】 透明性の熱可塑性樹脂シートに、請求項1記載のスタンパーを用いて熱プレス法により該スタンパーの凹凸を樹脂シートに転写することを特徴とする金 10 属製の光学シートの製造方法。

【請求項3】 透明性の熱可塑性樹脂の組成物を、請求項1記載のスタンパーを金型に用いて射出成形することを特徴とする光学シートの製造方法。

【請求項4】 請求項1記載のスタンパーを底面とする 金型に光重合性の樹脂形成材料及び重合開始剤を注入し た後、これを光照射により重合することを特徴とする光 学シートの製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、光学シート製造用スタンパーおよびそれを用いた光学シートの製造方法に関する。

[0002]

【従来の技術】パーソナルコンピューターの液晶表示部を背面から照らすバックライトは、表示部が薄型化されるに伴い、それ迄の直下型に代ってサイドライト(エッジライトともいう)型が多く使われるようになった。サイドライト型バックライトにおいては、側面にあるランプの光を導光板で液晶表示部全面に導き、裏面の反射板の作用も加えて液晶側を照らすものである。光源の光をより有効に利用するため、種々の工夫と改良が行われている。例えば、導光板としてアクリル樹脂製の板の裏面に白色顔料が入ったインクを用いて点を全面に印刷したものや、V字形状の平行溝を施したもの等が使用されている。

【0003】また、ランプの消費電力を増加させずに更にバックライトを明るくするために集光シートが用いられている。従来の集光シートにはポリカーボネートなどのプラスチックのシートの前面に頂角90~100度の40プリズムをアレイにしたものが知られている。これはシートの平面側から入った光をシートから出すときプリズムによって狭い範囲の角度に集めるので輝度を増すが、視野角が狭い不便がある。

【0004】一方、大型計算機や通信機器における大容量情報伝送手段としての光並列伝送や、カメラー体型ビデオテープレコーダの電子の目としての小型CCDには画素ピッチに対応したマイクロレンズアレイが用いられている。

【0005】本発明者は、マイクロレンズアレイまたは 50

バー状レンズアレイをシート状に形成することにより集 光機能を持つ素材として液晶表示部のバックライト等の 集光シートに使用でき、曲率を選択することにより集光 度と視野角のバランスを調節することができると考え た。

【0006】マイクロレンズアレイの製造法としては、 光学ガラス基板の表面にレジストパターンを形成した後 にエッチングして円柱形の突部の配列を作成し、レジスト層を除去して加熱して凸部を球面状に変形させる方法 (特開昭58-185445号、特開平5-16490 4号)、半導体材料に対してフォトレジストパターンを 施してAr+イオンエッチングしてレンズアレイを形成 する方法(Journal of the elect rochemical soc., vol. 131, p p. 2373~2380, 1984)、等が知られている。

【0007】しかし、これら従来の製法によるマイクロレンズアレイは、無機材料であるので可撓性や軽量化に難があり、また生産性が低いという問題がある。

【0008】一方、レーザ等のスポットを形成させるために用いられる多数の角部をもった凹凸を同心円状に設けた1個の直径0.4mmといったマイクロフレネルレンズの製法としてガラス、プラスチックス、金属板などの基板の平滑表面にレジストを塗布し、これに同心円状のパターンをあてて露光、現像し、同心円状の凸部と凹部を形成後、この表面にスパッタリング、蒸着などの方法で導電層を形成し、これを電極としてニッケルを電鋳し、その後、ニッケル層を剥離し、これをスタンパーとして、合成樹脂製のマイクロフレネルレンズを製造する方法が特開昭60-103308号公報に開示されている。

【0009】しかしながら、この方法はあくまでも図6に占めすように、多数の角部をもった凹凸を同心円状に設けた1個のマイクロフレネルレンズを製造することを目的とするものであり、シート面全域における輝度の向上を達成するのに必要な凸レンズの、しかもその集合体よりなる光学シートを製造するものではない。

[0010]

【発明が解決しようとする課題】本発明の目的は、液晶表示部のバックライト等に用いて輝度が高く、かつ均一で、視野角の制限の少ない照明が可能な光学シートを効率良く製造するためのスタンパーとその使用法である光学シートの製造法を提供する点にある。

[0011]

【課題を解決するための手段】本発明者は、レジスト法により得た斑点状または縞状の立体パターンよりなるレジスト層を加熱溶融することによって曲面化し、更にこの上に金属層を形成した後、金属層を取り出せばプラスチック成形用のスタンパーとして使用できることを見出した。本発明はこの知見に基づいてなされたものであ

る。

【0012】即ち、本発明の第一は、基体上に加熱流動性フォトレジスト材料により形成された径または幅が0.1~100μm、好ましくは0.1~50μmの斑点または縞模様の立体パターン(レジスト層)を、加熱流動化することにより形成されたマイクロレンズアレイまたはバー状(かまぼこ状)レンズアレイのための成形用曲面に、導電性金属を被覆し、この上に電鋳により金属層を形成した後該金属層を分離して得られたことを特徴とする金属製の光学シート製造用スタンパーに関する。なお、ここでいうシートは板状のものも含む。フォトレジスト材料は加熱流動するものであれば、どれでも使用可能であるが、100~200℃で溶融して流動化するものが好ましい。

【0013】スタンパーの製造を図1を参照して説明する。図1における(a)~(i)により、本発明のスタンパーの製造工程例が示される。

【0014】(a)基体1は、たとえばシリコンウエハ、ガラス板または金属板のようなフォトレジスト形成用溶液を塗布するためのベースである。

【0015】(b)シリコン単結晶板やガラス板のような基体1上にネガ型またはポジ型のフォトレジスト形成用溶液を斑点状または縞状に塗布してフォトレジスト形成用層2を形成した(レジスト塗布工程)。

【0016】(c) ガラス板4の上にクロム膜などの遮光層3を有するフォトマスク5を、前記(b)のレジスト形成用層2の上に置き、矢印のように紫外線あるいは電子線などの活性光線を照射する(露光工程)。前記遮光層は、径(図2のaに相当する。)または幅(図4のbに相当する。)が0.1~100 μ m、好ましくは0.1~20 μ mの斑点(形状は、正方形、長方形、円形、楕円形など任意)または縞状のパターンとする。径または幅が細かいほど輝度の面内均一性が向上するので、最大でも100 μ m、好ましくは50 μ m、更に好ましくは20 μ m以下がよい。

【0017】(d)前記フォトレジスト形成用材料としてボジ型のものを使用したので、光の当った個所を現像により溶出した。光が当らなかった部分はそのまま残り、レジスト層2′となった(現像、リンス工程)。レ 40 ジスト層の厚みは0.1~100μmが好ましい。なお、ネガ型のものを用いれば、光が当った部分が残存する。現像液は、使用するレジスト材料によって選択される。

【0018】(e)レジスト層2、が熱流動する温度に加熱すると、レジスト層2、が溶融し、その表面張力によりレジスト層2、は図に示すように凸状またはかまぼこ状(山脈状)に凸出し、上に凸のレンズ形状の群(マイクロレンズアレイの形状)または断面が上に凸の曲線を有する立体縞(バー状レンズアレイの形状)のパター 50

ンが形成される(加熱凸状化工程)。加熱の温度は、レジスト層の形成材料に依存するが、通常100~200 ℃である。

【0019】(f)冷却後、前記マイクロレンズアレイの形状2′またはバー状レンズアレイの形状2′の表面を銀、ニッケル等の導電性金属を蒸着、スパッタリング等の成膜法により被覆し、導電性金属層6を形成する(成膜工程)。導電性金属層6の厚さは通常0.01~ 1μ mである。

【0020】(g)前記導電性金属層6の上に、電鋳により、ニッケル、銅などの金属層7を形成する(電鋳工程)。金属層の厚さは通常0.01~50mmであるが、これに限定されるものではない。

【0021】(h)レジスト層2′をもつ基体1と、導電性金属層6/電鋳金属層7よりなる積層体とを剥離する(剥離工程)。剥離手段に制限はなく、手でも剥離することができる。

【0022】(i)ついで、導電性金属層6は、通常、酸洗い等により除去する(導電性金属層の除去工程)。 この工程はすべての場合に必要なものではないが、導電性金属としてAgを使用した場合は、スタンパーとして用いる際汚れが転写する可能性があるので、除去することが好ましい。

【0023】本発明の第二は、請求項1記載のスタンパーの凹凸模様を合成樹脂層に転写することにより光学体を製造する方法に関する。

【0024】その第一は、透明性の熱可塑性樹脂、好ましくはポリカーボネート、メチルフタレート単重合体または共重合体、ポリエチレンテレフタレート、ポリスチレンおよび熱可塑性ノルボルネン樹脂からなる群から選択された樹脂よりなる厚さ0.01~5mmの樹脂シートに、請求項1記載のスタンパーを用いて熱プレス法により該スタンパーの凹凸を樹脂シートに転写することを特徴とする金属製の光学シートの製造方法である。

【0025】その第二は、透明性の熱可塑性樹脂、好ましくはポリカーボネート、メチルフタレート単重合体または共重合体、ポリエチレンテレフタレート、ポリスチレンおよび熱可塑性ノルボルネン樹脂からなる群から選択された樹脂の組成物を、請求項1記載のスタンパーを底面とする金型に射出成形することを特徴とする光学シートの製造方法である。

【0026】その第三は、請求項1記載のスタンパーを 底面とする金型に単量体および/またはオリゴマーより なる光重合性樹脂形成材料および光重合開始剤を注入し た後、これを紫外線などの光を照射することにより重合 することを特徴とする光学シートの製造方法である。

【0027】前記の樹脂成形用単量体又はオリゴマーとしては、メチルメタクリレート;エチレングリコール、1,3-プロパンジオール、トリメチロールプロパン等のポリオール類とアクリル酸又はメタクリル酸とのエス

テルである多官能(メタ)アクリレート誘導体等の単量体;メタクリレートオリゴマー、アクリレートオリゴマー、前記多官能誘導体のオリゴマーなどのオリゴマーを例示することができる。とりわけ、メチルメタクリレートに多官能(メタ)アクリレート誘導体および必要に応じてさらにこれら単量体のオリゴマーを加えたものを使用することがのぞましい。また光重合開始剤としては過酸化ベンゾイル、ベンゾイン、ベンゾインエーテル等が用いられる。

【0028】上記のスタンパーを用いる三つの方法のい 10 ずれかによっても得られる微細レンズ集合体においては、a、b、c(図3、図4に示すように高さを表わす)およびd(図2、図4に示すようにピッチを表わす)のいずれもが $0.1\sim100\mu$ m、好ましくは $0.1\sim50\mu$ m、更に好ましくは $0.1\sim20\mu$ mであることがのぞましい。a、b、cおよびdの関係は、マイクロレンズアレイシート形成用スタンパーを用いた場合【数1】d/ $2\leq a\leq d$ (1)

 $c \ge a / 4 \qquad \cdots \qquad (2)$

バー状(かまぼこ状)レンズアレイシート形成用スタン 20 パーを用いた場合

【数2】d/2≤b≤d ······(3)

 $c \ge b/4 \qquad \dots \dots (4)$

であるのが最も好都合である。前記式(1)~(4)により集光性を高くすることができる。集光シートとしての利用態様としては、例えば図2に示すように液晶などのバックライトの一構成要素として使用することができる。図2では拡散シート11の上に集光シート12を置いた形で使用しているが、拡散シートの上に集光シートを置く形でも使用できる。勿論、集光シートは複数枚使 30 用することもできる。

【0029】マイクロレンズアレイの形状としては、集 光シートにおける素レンズの占有面積率を高めるという 観点からは四角柱(正方形または矩形柱)を溶融して得 たものが好ましい。また、バー状レンズアレイの場合 は、複数枚を縦横交差して積層することにより、集光の 方向を調整することができる。

【0030】反射光を利用する場合は、警告用表示板などの表面に貼り付ければ、入射光を種々の角度に反射するので、人の注意を引くことができる。

【0031】本発明の実施態様を示せば、つぎのとおりである。

- (1) 基体上に加熱流動性フォトレジスト材料により 形成された径または幅が0.1~100μmの斑点また は縞模様の立体パターン(レンズ層)を加熱流動化して 曲面化し、この表面に、導電性金属を被覆し、更にこの 上に電鋳により金属層を形成した後、該金属層を分離し て得られたことを特徴とする金属製の光学シート製造用 スタンパー。
- (2) 前記径または幅が0.1~50μmである前項 50 のスタンパーを底面とする金型にメチルメタクリレー

- (1)記載の金属製の光学シート製造用スタンパー。
- (3) 前記径または幅が $0.1~20\mu m$ である前項
- (1)記載の金属製の光学シート製造用スタンパー。
- (4) 径を $a\mu m$ 、幅を $b\mu m$ 、高さを $c\mu m$ 、ピッチを $d\mu m$ としたとき、a、b、c、dの関係が、マイクロレンズアレイシート形成用スタンパーのときは【数3】 $d/2 \le a \le d$

 $c \ge a/4$

バー状レンズアレイシート形成用スタンパーのときは 【数4】d/2≤b≤d

 $c \ge b/4$

を満足するものであり、a、b、c、dのいずれもが $0.1\sim100\mu$ m、好ましくは $0.1\sim50\mu$ m、更 に好ましくは $0.1\sim20\mu$ mである転写体を与える前項(1)、(2)または(3)記載の光学シート製造用 スタンパー。

- (5) 前項(1)、(2)、(3)または(4)記載の金属製の光学シート製造用スタンパーの凹凸を合成樹脂表面に転写することを特徴とする光学シートの製造方法。
- (6) 透明性の熱可塑性樹脂シートに、前項(1)、
- (2)、(3)または(4)記載のスタンパーを用いて 熱プレス法により該スタンパーの凹凸を樹脂シートに転 写することを特徴とする光学シートの製造方法。
- (7) ポリカーボネート、メチルメタクリレート単重 合体または共重合体、ポリエチレンテレフタレート、ポリスチレンおよび熱可塑性ノルボルネン樹脂からなる群から選択された樹脂よりなる厚さ 0.01~5mmの樹脂シートに、前項(1)、(2)、(3)または(4)記載のスタンパーを用いて熱プレス法により該スタンパーの凹凸を樹脂シートに転写することを特徴とする光学シートの製造方法。
- (8) 透明性熱可塑性樹脂の組成物を前項(1)、
- (2)、(3)または(4)記載のスタンパーを底面とする金型に射出成形することを特徴とする光学シートの製造方法。
- (9) ポリカーボネート、メチルメタクリレート単重 合体または共重合体、ポリエチレンテレフタレート、ポ リスチレンおよび熱可塑性ノルボルネン樹脂からなる群 から選択された樹脂の組成物を、前項(1)、(2)、
- (3)または(4)記載のスタンパーを底面とする金型に射出成形することを特徴とする光学シートの製造方法。
- (10) 前項(1)、(2)、(3)または(4)記載のスタンパーを底面とする金型に光重合性の樹脂形成材料および紫外線重合開始剤を注入した後、これを紫外線照射により重合することを特徴とする光学シートの製造方法。
- (11) 前項(1)、(2)、(3)または(4)記載の7名とパーを座面とする今刊にメチルス名の11...

ト、多官能のメタクリレートまたはアクリレートの誘導 体またはこれら単量体のオリゴマーよりなる群から選ば れた少なくとも1種の樹脂形成材料および紫外線重合開 始剤を注入した後、これを紫外線照射により重合するこ とを特徴とする光学シートの製造方法。

[0032]

【実施例】以下に本発明の実施例を示すが、本発明はこ れにより限定されるものではない。

【0033】実施例1

1-1 マスターの作製

4インチ径のシリコンウエハー上に、ノボラック系ポジ 型フォトレジスト (日本ゼオン株式会社製ZPP320 0)をスピン塗布し、ホットプレート上にて100℃で 90秒間乾燥して、膜厚2.3μmのフォトレジスト層 を設けた。次いで、フォトレジスト層に所定のパターン を有するフォトマスクを密着し、紫外線焼き付け装置 (キャノン株式会社製PLA501F、250W超高圧 水銀灯付き)にて約7秒間紫外線を照射した。この後、 - 2.38重量%のテトラメチルアンモニウムハイドロキ サイド水溶液にて90秒間現像し、次いで純水にてリン 20 スを行った。得られたパターンは、縦横各4μmの寸法 を有する略四角柱が、縦横両方向各0.5μmのスペー スを介して配列されたものであった。次に、上記レジス トパターンを有するシリコンウエハーをホットプレート 上で180℃で10分間加熱し、所望の曲面を有するレ ンズ状のパターンを得た。

【0034】1-2 スタンパーの作製

実施例1-1で作製したマスター上に、蒸着により厚さ スタンパーと、厚さ0.25mmのポリカーボネートの 2000Åの銀の層を設けた後、スルファミン酸ニッケ ルを主成分とする電解液中で厚さ1mmのニッケルを電 30 カーボネートのシートを通して紫外線を照射して重合反 着した。次いで、ニッケル層をレジスト層より分離した 後、表面の銀をクロム酸水溶液で除去して、所望のパター ーンを有するスタンパーを得た。

メチルメタクリレート

1,6-ヘキサンジオールジアクリレート ベンゾインブチルエーテル

[0039]

【発明の効果】

- 1) マイクロレンズアレイを、高生産性で低コストで 製造できる。
- 2) 本発明は、レジスト層の溶融により液状となった レジストの表面張力により発生する曲面を利用するの で、径または幅が 100μ m以下、とくに 50μ m以下 の微細、かつ均一な曲面が簡単に得られる。
- 3) 液晶表示装置などのバックライト等の照明や表示 板の集光シートとして使用すれば、高輝度で面全体の均 一性に優れ、かつ視野角の制限が少ないというすぐれた 特性を有する。
- 4) 反射シートとして夜間の警告用表示板などにも使 用できる。

*【0035】1-3 光学シートの製造

得られたスタンパーを金型表面に用い、射出成形法によ り厚さ1mmのポリカーボネート製マイクロレンズアレ イのシートを作成した。

8

【0036】実施例2

2-1 マスターの作製

4インチ径のシリコンウエハー上に、環化ポリイソプレ ン系ネガ型レジスト(日本ゼオン株式会社製乙PN10 3)をスピン塗布し、ホットプレート上にて90℃で9 O秒間乾燥して、膜厚2.5µmのフォトレジスト層を 設けた。次いで、フォトレジスト層に所定のパターンを 有するフォトマスクを密着し、実施例1-1で使用した 紫外線焼き付け装置(光学フィルターUC-20付き) にて約6秒間紫外線を照射した。この後、ノルマルヘプ タン/酢酸ノルマルブチル混合液(50/50容量%) にて1分間現像し、次いで酢酸ノルマルブチルにてリン スを行った。得られたパターンは、上方よりみて縦横各 6μmの略正方形が、縦横両方向各1.5μmのスペー スを介して配列されたものであった。次に、上記レジス トパターンを有するシリコンウエハーをホットプレート 上で160℃で2分間加熱し、所望の曲面を有するレン ズ状のパターンを得た。

【0037】2-2 スタンパーの作製

実施例2-1で作製したマスターを用いて、実施例1-2と同様にして所望のパターンを有するスタンパーを得 た。

シートの間に、下記組成の混合物を注入し、次いでポリ

応を行った。ポリカーボネートのシートと合体して硬化

した樹脂をスタンパーから剥離してマイクロレンズアレ

【0038】2-3 光学シートの製造

イのシートを得た。 81重量部

> 17重量部 2重量部

※【図面の簡単な説明】

【図1】本発明のスタンパー製造工程(a)~(i)の 概念図を示す。

40 【図2】本発明に用いる集光シートの1例であるマイク ロレンズアレイの部分平面図である。

【図3】図2の断面図である。

【図4】本発明に用いる集光シートの1例であるバー状 マイクロレンズアレイの部分的斜視図である。

【図5】バックライトの断面図である。

【図6】マイクロフレネルレンズの構造を示す断面図で ある。

【符号の説明】

1 基体

※50 2 フォトレジスト形成用層

フロントページの続き

(51) Int. Cl. ⁶ B 2 9 L 11:00 識別記号 广内整理番号

FI

技術表示箇所