Package 'SECP'

October 12, 2022

Type Package

Version 0.1.5

Title Statistical Estimation of Cluster Parameters

Author Pavel V. Moskalev
Maintainer Pavel V. Moskalev <moskalefff@gmail.com></moskalefff@gmail.com>
Description Estimating parameters of site clusters on 2D & 3D square lattice with various lattice sizes, relative fractions of open sites (occupation probability), iso- & anisotropy, von Neumann & Moore (1,d)-neighborhoods, described by Moskalev P.V. et al. (2011) <arxiv:1105.2334v1>.</arxiv:1105.2334v1>
License GPL-3
Encoding UTF-8
Depends SPSL
NeedsCompilation no
Repository CRAN
Date/Publication 2022-05-11 08:30:02 UTC
R topics documented:
SECP-package
asc2s
asc3s
fdc2s
fdc3s
fds2s
isc2s
isc3s
19659
Index 20

2 asc2s

SECP-package

Statistical Estimation of Cluster Parameters (SECP)

Description

Estimating parameters of site clusters on 2D & 3D square lattice with various lattice sizes, relative fractions of open sites (occupation probability), iso- & anisotropy, von Neumann & Moore (1,d)-neighborhoods, and weighted distribution, described by Moskalev P.V. (2011) <arXiv:1105.2334v1>.

Details

Package: SECP
Type: Package
Version: 0.1.5
Date: 2022-05-10
License: GPL-3

asc2s() and asc3s() functions calculates the boundary coordinates for the anisotropic set cover on a 2D & 3D square lattice with a fixed edge & face along the lattice boundary.

isc2s() and isc3s() functions calculates the boundary coordinates for the isotropic set cover on the 2D & 3D square lattice with a fixed point in the lattice center.

fdc2s() and fdc3s() functions use a linear regression model for statistical estimation of the mass fractal dimension of a site cluster on 2D & 3D square lattice.

fds2s() and fds3s() functions use a linear regression model for statistical estimation of the mass fractal dimension of sampling clusters on 2D & 3D square lattice.

Author(s)

Pavel V. Moskalev <moskalefff@gmail.com>

References

Moskalev P.V., Grebennikov K.V. and Shitov V.V. (2011) Statistical estimation of percolation cluster parameters. *Proceedings of Voronezh State University. Series: Systems Analysis and Information Technologies*, No.1 (January-June), pp.29-35, arXiv:1105.2334v1; in Russian.

asc2s

Anisotropic set cover on the 2D square lattice

Description

asc2s() function calculates the boundary coordinates for the anisotropic set cover on the 2D square lattice with a fixed edge along the lattice boundary.

asc2s 3

Usage

```
asc2s(k=12, x=rep(95, times=2), dir=2, r=(x[dir]-3)^(seq(k)/k))
```

Arguments

```
    k a maximal set cover size: k>2.
    x a vector of lattice sizes: all(x>5).
    dir a variable component index: x) dir=1; y) dir=2; z) dir=3.
    r a variable length of set cover elements: all((0<r)&(r<x)).</li>
```

Details

The percolation is simulated on 2D square lattice with uniformly weighted sites and the constant parameter p.

The percolation cluster is formed from the accessible sites connected with initial sites subset.

If an initial cluster subset in the lattice center, to estimate the mass fractal dimension requires an anisotropic set cover with a fixed edge along the lattice boundary.

The anisotropic set cover on 2D square lattice is formed from scalable rectangles with a variable length r+1 and a fixed edge along the lattice boundary.

Value

A list of boundary coordinates and sizes for the anisotropic set cover on a 2D square lattice with a fixed edge along the lattice boundary.

Author(s)

Pavel V. Moskalev

See Also

```
fdc3s, fds2s, fds3s
```

4 asc3s

```
rect(bnd["x1",], bnd["y1",], bnd["x2",], bnd["y2",])
abline(v=ss, lty=2)
```

asc3s

Anisotropic set cover on the 3D square lattice

Description

asc3s() function calculates the boundary coordinates for the anisotropic set cover on the 3D square lattice with a fixed face along the lattice boundary.

Usage

```
asc3s(k=12, x=rep(95, times=3), dir=3, r=(x[dir]-3)^(seq(k)/k))
```

Arguments

k	a maximal set cover size: k>2.
х	a vector of lattice sizes: all(x>5).
dir	a variable component index: x) dir=1; y) dir=2; z) dir=3.
r	a variable length of set cover elements: $all((0 < r) & (r < x))$.

Details

The percolation is simulated on 3D square lattice with uniformly weighted sites and the constant parameter p.

The percolation cluster is formed from the accessible sites connected with initial sites subset.

If an initial cluster subset in the lattice center, to estimate the mass fractal dimension requires an anisotropic set cover with a fixed face along the lattice boundary.

The anisotropic set cover on 3D square lattice is formed from scalable cuboids with a variable length r+1 and a fixed face along the lattice boundary.

Value

A list of boundary coordinates and sizes for the anisotropic set cover on a 3D square lattice with a fixed face along the lattice boundary.

Author(s)

Pavel V. Moskalev

See Also

```
fdc2s, fds2s, fds3s
```

fdc2s 5

Examples

```
# # # # # # # # # # # # # # # # #
# Example: Anisotropic set cover, dir=3
# # # # # # # # # # # # # # # # #
pc <- .311608
p2 < -pc + .03
1x <- 33; ss <- (1x+1)/2; ssz <- seq(1x^2+1x+2, 2*1x^2-1x-1)
set.seed(20120627); ac2 <- ssi30(x=lx, p=p2, set=ssz, all=FALSE)
bnd \leftarrow asc3s(k=9, x=dim(ac2), dir=3)
x <- z <- seq(1x); y2 <- ac2[,ss,]
image(x, z, y2, cex.main=1,
      main=paste("Anisotropic set cover and\n",
                 "a 3D cluster of sites in the y=",ss," slice with\n",
                 "(1,0)-neighborhood and p=",
                 round(p2, digits=3), sep=""))
rect(bnd["x1",], bnd["z1",], bnd["x2",], bnd["z2",])
abline(v=ss, lty=2)
```

fdc2s

Mass fractal dimension of a 2D cluster

Description

fdc2s() function uses a linear regression model for statistical estimation of the mass fractal dimension of a cluster on 2D square lattice with iso- & anisotropic sets cover.

Usage

```
fdc2s(acc=ssi20(x=95), bnd=isc2s(k=12, x=dim(acc)))
```

Arguments

acc an accessibility matrix for 2D square percolation lattice.

bnd bounds for the iso- or anisotropic set cover.

Details

The mass fractal dimension for a cluster is equal to the coefficient of linear regression between log(n) and log(r), where n is an absolute frequency of the total cluster sites which are bounded elements of iso- & anisotropic sets cover.

The isotropic set cover on 2D square lattice is formed from scalable squares with variable sizes 2r+1 and a fixed point in the lattice center.

The anisotropic set cover on 2D square lattice is formed from scalable rectangles with variable sizes r+1 and a fixed edge along the lattice boundary.

The percolation is simulated on 2D square lattice with uniformly weighted sites and the constant parameter p.

The isotropic cluster is formed from the accessible sites connected with initial sites subset.

6 fdc2s

If acc[e]<p then e is accessible site; if acc[e]==1 then e is non-accessible site; if acc[e]==2 then e belong to a sites cluster.

Value

A linear regression model for statistical estimation of the mass fractal dimension of a cluster on 2D square lattice with iso- & anisotropic sets cover.

Author(s)

Pavel V. Moskalev

References

Moskalev P.V., Grebennikov K.V. and Shitov V.V. (2011) Statistical estimation of percolation cluster parameters. *Proceedings of Voronezh State University. Series: Systems Analysis and Information Technologies*, No.1 (January-June), pp.29-35, arXiv:1105.2334v1; in Russian.

See Also

```
fdc3s, fds2s, fds3s
```

```
# # # # # # # # # # # # # # # # #
# Example 1: Isotropic set cover
# # # # # # # # # # # # # # # # #
pc <- .592746
p1 < -pc - .03
p2 < -pc + .03
1x <- 33; ss <- (1x+1)/2
set.seed(20120627); ac1 <- ssi20(x=lx, p=p1)
set.seed(20120627); ac2 <- ssi20(x=lx, p=p2)
bnd <- isc2s(k=9, x=dim(ac1))
fd1 <- fdc2s(acc=ac1, bnd=bnd)
fd2 <- fdc2s(acc=ac2, bnd=bnd)
n1 <- fd1$model[,"n"]; n2 <- fd2$model[,"n"]</pre>
r1 \leftarrow fd1\model[,"r"]; r2 \leftarrow fd2\model[,"r"]
rr <- seq(min(r1)-.2, max(r1)+.2, length=100)
nn1 <- predict(fd1, newdata=list(r=rr), interval="conf")</pre>
nn2 <- predict(fd2, newdata=list(r=rr), interval="conf")</pre>
s1 <- paste(round(confint(fd1)[2,], digits=3), collapse=", ")</pre>
s2 <- paste(round(confint(fd2)[2,], digits=3), collapse=", ")</pre>
x \leftarrow y \leftarrow seq(1x)
par(mfrow=c(2,2), mar=c(3,3,3,1), mgp=c(2,1,0))
image(x, y, ac1, cex.main=1,
      main=paste("Isotropic set cover and a 2D cluster of\n",
                  "sites with (1,0)-neighborhood and p=",
                  round(p1, digits=3), sep=""))
rect(bnd["x1",], bnd["y1",], bnd["x2",], bnd["y2",])
abline(h=ss, lty=2); abline(v=ss, lty=2)
image(x, y, ac2, cex.main=1,
```

fdc2s 7

```
main=paste("Isotropic set cover and a 2D cluster of\n",
                  "sites with (1,0)-neighborhood and p=",
                 round(p2, digits=3), sep=""))
rect(bnd["x1",], bnd["y1",], bnd["x2",], bnd["y2",])
abline(h=ss, lty=2); abline(v=ss, lty=2)
plot(r1, n1, pch=3, ylim=range(c(n1,n2)), cex.main=1,
     main=paste("0.95 confidence interval for the mass\n",
                 "fractal dimension is (",s1,")", sep=""))
matlines(rr, nn1, lty=c(1,2,2), col=c("black","red","red"))
plot(r2, n2, pch=3, ylim=range(c(n1,n2)), cex.main=1,
     main=paste("0.95 confidence interval for the mass\n",
                 "fractal dimension is (",s2,")", sep=""))
matlines(rr, nn2, lty=c(1,2,2), col=c("black","red","red"))
## Not run:
# # # # # # # # # # # # # # # # #
# Example 2: Anisotropic set cover, dir=2
# # # # # # # # # # # # # # # # #
pc <- .592746
p1 < -pc - .03
p2 < -pc + .03
lx <- 33; ss <- (lx+1)/2; ssy <- seq(lx+2, 2*lx-1)
set.seed(20120627); ac1 <- ssi20(x=lx, p=p1, set=ssy, all=FALSE)</pre>
set.seed(20120627); ac2 <- ssi20(x=lx, p=p2, set=ssy, all=FALSE)
bnd <- asc2s(k=9, x=dim(ac1), dir=2)
fd1 <- fdc2s(acc=ac1, bnd=bnd)
fd2 <- fdc2s(acc=ac2, bnd=bnd)
n1 \leftarrow fd1\mbox{model[,"n"]; } n2 \leftarrow fd2\mbox{model[,"n"]}
r1 <- fd1$model[,"r"]; r2 <- fd2$model[,"r"]
rr <- seq(min(r1)-.2, max(r1)+.2, length=100)
nn1 <- predict(fd1, newdata=list(r=rr), interval="conf")</pre>
nn2 <- predict(fd2, newdata=list(r=rr), interval="conf")</pre>
s1 <- paste(round(confint(fd1)[2,], digits=3), collapse=", ")</pre>
s2 <- paste(round(confint(fd2)[2,], digits=3), collapse=", ")
x \leftarrow y \leftarrow seq(1x)
par(mfrow=c(2,2), mar=c(3,3,3,1), mgp=c(2,1,0))
image(x, y, ac1, cex.main=1,
      main=paste("Anisotropic set cover and a 2D cluster of\n",
                  "sites with (1,0)-neighborhood and p=",
                 round(p1, digits=3), sep=""))
rect(bnd["x1",], bnd["y1",], bnd["x2",], bnd["y2",])
abline(v=ss, lty=2)
image(x, y, ac2, cex.main=1,
      main=paste("Anisotropic set cover and a 2D cluster of\n",
                  "sites with (1,0)-neighborhood and p=",
                 round(p2, digits=3), sep=""))
rect(bnd["x1",], bnd["y1",], bnd["x2",], bnd["y2",])
abline(v=ss, lty=2)
plot(r1, n1, pch=3, ylim=range(c(n1,n2)), cex.main=1,
     main=paste("0.95 confidence interval for the mass\n",
                 "fractal dimension is (",s1,")", sep=""))
matlines(rr, nn1, lty=c(1,2,2), col=c("black","red","red"))
plot(r2, n2, pch=3, ylim=range(c(n1,n2)), cex.main=1,
```

8 fdc3s

fdc3s

Mass fractal dimension of a 3D cluster

Description

fdc3s() function uses a linear regression model for statistical estimation of the mass fractal dimension of a cluster on 3D square lattice with iso- & isotropic sets cover.

Usage

```
fdc3s(acc=ssi30(x=95), bnd=isc3s(k=12, x=dim(acc)))
```

Arguments

acc an accessibility matrix for 3D square percolation lattice.

bnd bounds for the iso- or anisotropic set cover.

Details

The mass fractal dimension for a cluster is equal to the coefficient of linear regression between log(n) and log(r), where n is an absolute frequency of the total cluster sites which are bounded elements of iso- & anisotropic sets cover.

The isotropic set cover on 3D square lattice is formed from scalable cubes with variable sizes 2r+1 and a fixed point in the lattice center.

The anisotropic set cover on 3D square lattice is formed from scalable cuboids with variable sizes r+1 and a fixed face along the lattice boundary.

The percolation is simulated on 3D square lattice with uniformly weighted sites and the constant parameter p.

The isotropic cluster is formed from the accessible sites connected with initial sites subset.

If acc[e]<p then e is accessible site; if acc[e]==1 then e is non-accessible site; if acc[e]==2 then e belong to a sites cluster.

Value

A linear regression model for statistical estimation of the mass fractal dimension of a cluster on 3D square lattice with iso- & anisotropic sets cover.

Author(s)

Pavel V. Moskalev

fdc3s

See Also

fdc2s, fds2s, fds3s

```
# # # # # # # # # # # # # # # # #
# Example 1: Isotropic set cover
# # # # # # # # # # # # # # # # #
pc <- .311608
p1 <- pc - .02
p2 <- pc + .02
lx <- 33; ss <- (lx+1)/2
set.seed(20120627); ac1 <- ssi30(x=lx, p=p1)
set.seed(20120627); ac2 <- ssi30(x=lx, p=p2)
bnd <- isc3s(k=9, x=dim(ac1))
fd1 <- fdc3s(acc=ac1, bnd=bnd)
fd2 <- fdc3s(acc=ac2, bnd=bnd)
n1 <- fd1$model[,"n"]; n2 <- fd2$model[,"n"]</pre>
r1 <- fd1$model[,"r"]; r2 <- fd2$model[,"r"]
rr <- seq(min(r1)-.2, max(r1)+.2, length=100)
nn1 <- predict(fd1, newdata=list(r=rr), interval="conf")</pre>
nn2 <- predict(fd2, newdata=list(r=rr), interval="conf")</pre>
s1 <- paste(round(confint(fd1)[2,], digits=3), collapse=", ")</pre>
s2 <- paste(round(confint(fd2)[2,], digits=3), collapse=", ")</pre>
x \leftarrow z \leftarrow seq(1x)
y1 <- ac1[,ss,]; y2 <- ac2[,ss,]
par(mfrow=c(2,2), mar=c(3,3,3,1), mgp=c(2,1,0))
image(x, z, y1, cex.main=1,
      main=paste("Isotropic set cover and\n",
                  "a 3D cluster in the y=",ss," slice with\n",
                 "(1,0)-neighborhood and p=",
                 round(p1, digits=3), sep=""))
rect(bnd["x1",], bnd["z1",], bnd["x2",], bnd["z2",])
abline(h=ss, lty=2); abline(v=ss, lty=2)
image(x, z, y2, cex.main=1,
      main=paste("Isotropic set cover and\n",
                  "a 3D cluster in the y=",ss," slice with\n",
                 "(1,0)-neighborhood and p=",
                 round(p2, digits=3), sep=""))
rect(bnd["x1",], bnd["z1",], bnd["x2",], bnd["z2",])
abline(h=ss, lty=2); abline(v=ss, lty=2)
plot(r1, n1, pch=3, ylim=range(c(n1,n2)), cex.main=1,
     main=paste("0.95 confidence interval for the mass\n",
                "fractal dimension is (",s1,")", sep=""))
matlines(rr, nn1, lty=c(1,2,2), col=c("black","red","red"))
plot(r2, n2, pch=3, ylim=range(c(n1,n2)), cex.main=1,
     main=paste("0.95 confidence interval for the mass\n",
                "fractal dimension is (",s2,")", sep=""))
matlines(rr, nn2, lty=c(1,2,2), col=c("black","red","red"))
## Not run:
# # # # # # # # # # # # # # # # #
```

10 fds2s

```
# Example 1: Anisotropic set cover, dir=3
# # # # # # # # # # # # # # # #
pc <- .311608
p1 <- pc - .02
p2 < -pc + .02
lx <- 33; ss <- (lx+1)/2
ssz \leftarrow seq(1x^2+1x+2, 2*1x^2-1x-1)
set.seed(20120627); ac1 <- ssi30(x=lx, p=p1, set=ssz, all=FALSE)
set.seed(20120627); ac2 <- ssi30(x=lx, p=p2, set=ssz, all=FALSE)</pre>
bnd <- asc3s(k=9, x=dim(ac1), dir=3)
fd1 <- fdc3s(acc=ac1, bnd=bnd)
fd2 <- fdc3s(acc=ac2, bnd=bnd)
n1 <- fd1$model[,"n"]; n2 <- fd2$model[,"n"]</pre>
r1 <- fd1$model[,"r"]; r2 <- fd2$model[,"r"]
rr <- seq(min(r1)-.2, max(r1)+.2, length=100)
nn1 <- predict(fd1, newdata=list(r=rr), interval="conf")</pre>
nn2 <- predict(fd2, newdata=list(r=rr), interval="conf")</pre>
s1 <- paste(round(confint(fd1)[2,], digits=3), collapse=", ")</pre>
s2 <- paste(round(confint(fd2)[2,], digits=3), collapse=", ")</pre>
x \leftarrow z \leftarrow seq(1x)
y1 <- ac1[,ss,]; y2 <- ac2[,ss,]
par(mfrow=c(2,2), mar=c(3,3,3,1), mgp=c(2,1,0))
image(x, z, y1, cex.main=1,
      main=paste("Anisotropic set cover and\n",
                  "a 3D cluster in the y=",ss," slice with\n",
                 "(1,0)-neighborhood and p=",
                 round(p1, digits=3), sep=""))
rect(bnd["x1",], bnd["z1",], bnd["x2",], bnd["z2",])
abline(v=ss, lty=2)
image(x, z, y2, cex.main=1,
      main=paste("Anisotropic set cover and\n",
                 "a 3D cluster in the y=",ss," slice with\n",
                 "(1,0)-neighborhood and p=",
                 round(p2, digits=3), sep=""))
rect(bnd["x1",], bnd["z1",], bnd["x2",], bnd["z2",])
abline(v=ss, lty=2)
plot(r1, n1, pch=3, ylim=range(c(n1,n2)), cex.main=1,
     main=paste("0.95 confidence interval for the mass\n",
                "fractal dimension is (",s1,")", sep=""))
matlines(rr, nn1, lty=c(1,2,2), col=c("black","red","red"))
plot(r2, n2, pch=3, ylim=range(c(n1,n2)), cex.main=1,
     main=paste("0.95 confidence interval for the mass\n",
                "fractal dimension is (",s2,")", sep=""))
matlines(rr, nn2, lty=c(1,2,2), col=c("black","red","red"))
## End(Not run)
```

fds2s 11

Description

fds2s() function uses a linear regression model for statistical estimation of the mass fractal dimension of sampling clusters on 2D square lattice with iso- & anisotropic sets cover.

Usage

```
fds2s(rfq=fssi20(x=95), bnd=isc2s(k=12, x=dim(rfq)))
```

Arguments

rfq relative sampling frequencies for sites of the percolation lattice.

bnd bounds for the iso- or anisotropic set cover.

Details

The mass fractal dimension for sampling clusters is equal to the coefficient of linear regression between log(w) and log(r), where w is a relative sampling frequency of the total sites which are bounded elements of iso- & anisotropic sets cover.

The isotropic set cover on 2D square lattice is formed from scalable squares with variable sizes 2r+1 and a fixed point in the lattice center.

The anisotropic set cover on 2D square lattice is formed from scalable rectangles with variable sizes r+1 and a fixed edge along the lattice boundary.

The percolation is simulated on 2D square lattice with uniformly weighted sites and the constant parameter p.

The isotropic cluster is formed from the accessible sites connected with initial sites subset.

Each element of the matrix rfq is equal to the relative frequency with which the 2D square lattice site belongs to a cluster sample.

Value

A linear regression model for statistical estimation of the mass fractal dimension of sampling clusters on 2D square lattice with iso- & anisotropic sets cover.

Author(s)

Pavel V. Moskalev

References

Moskalev P.V., Grebennikov K.V. and Shitov V.V. (2011) Statistical estimation of percolation cluster parameters. *Proceedings of Voronezh State University. Series: Systems Analysis and Information Technologies*, No.1 (January-June), pp.29-35, arXiv:1105.2334v1; in Russian.

See Also

fds3s, fdc2s, fdc3s

12 fds2s

```
# # # # # # # # # # # # # # # # #
# Example 1: Isotropic set cover
# # # # # # # # # # # # # # # # #
pc <- .592746
p1 < -pc - .03
p2 < -pc + .03
1x < -33; ss < -(1x+1)/2
rf1 < -fssi20(n=100, x=lx, p=p1)
rf2 <- fssi20(n=100, x=lx, p=p2)
bnd <- isc2s(k=9, x=dim(rf1))
fd1 <- fds2s(rfq=rf1, bnd=bnd)
fd2 <- fds2s(rfq=rf2, bnd=bnd)
w1 <- fd1$model[,"w"]; w2 <- fd2$model[,"w"]
r1 <- fd1$model[,"r"]; r2 <- fd2$model[,"r"]
rr <- seq(min(r1)-.2, max(r1)+.2, length=100)
ww1 <- predict(fd1, newdata=list(r=rr), interval="conf")</pre>
ww2 <- predict(fd2, newdata=list(r=rr), interval="conf")</pre>
s1 <- paste(round(confint(fd1)[2,], digits=3), collapse=", ")</pre>
s2 <- paste(round(confint(fd2)[2,], digits=3), collapse=", ")</pre>
x \leftarrow y \leftarrow seq(1x)
par(mfrow=c(2,2), mar=c(3,3,3,1), mgp=c(2,1,0))
image(x, y, rf1, zlim=c(0, .7), cex.main=1,
      main=paste("Isotropic set cover and\n"
                 "a 2D clusters frequency with\n",
                 "(1,0)-neighborhood and p=",
                 round(p1, digits=3), sep=""))
rect(bnd["x1",], bnd["y1",], bnd["x2",], bnd["y2",])
abline(h=ss, lty=2); abline(v=ss, lty=2)
image(x, y, rf2, zlim=c(0, .7), cex.main=1,
      main=paste("Isotropic set cover and\n",
                  "a 2D clusters frequency with\n",
                  "(1,0)-neighborhood and p=",
                 round(p2, digits=3), sep=""))
rect(bnd["x1",], bnd["y1",], bnd["x2",], bnd["y2",])
abline(h=ss, lty=2); abline(v=ss, lty=2)
plot(r1, w1, pch=3, ylim=range(c(w1,w2)), cex.main=1,
     main=paste("0.95 confidence interval for the mass\n",
                "fractal dimension is (",s1,")", sep=""))
matlines(rr, ww1, lty=c(1,2,2), col=c("black","red","red"))
plot(r2, w2, pch=3, ylim=range(c(w1,w2)), cex.main=1,
     main=paste("0.95 confidence interval for the mass\n",
                "fractal dimension is (",s2,")", sep=""))
matlines(rr, ww2, lty=c(1,2,2), col=c("black","red","red"))
## Not run:
# # # # # # # # # # # # # # # # # #
# Example 2: Anisotropic set cover, dir=2
# # # # # # # # # # # # # # # # # #
pc <- .592746
p1 < -pc - .03
p2 < -pc + .03
```

fds3s 13

```
1x < -33; ss < -(1x+1)/2
ssy \leftarrow seq(1x+2, 2*1x-1)
rf1 <- fssi20(n=100, x=lx, p=p1, set=ssy, all=FALSE)
rf2 <- fssi20(n=100, x=lx, p=p2, set=ssy, all=FALSE)
bnd <- asc2s(k=9, x=dim(rf1), dir=2)
fd1 <- fds2s(rfq=rf1, bnd=bnd)
fd2 <- fds2s(rfq=rf2, bnd=bnd)
w1 <- fd1$model[,"w"]; w2 <- fd2$model[,"w"]
r1 <- fd1$model[,"r"]; r2 <- fd2$model[,"r"]
rr <- seq(min(r1)-.2, max(r1)+.2, length=100)
ww1 <- predict(fd1, newdata=list(r=rr), interval="conf")</pre>
ww2 <- predict(fd2, newdata=list(r=rr), interval="conf")</pre>
s1 <- paste(round(confint(fd1)[2,], digits=3), collapse=", ")</pre>
s2 <- paste(round(confint(fd2)[2,], digits=3), collapse=", ")</pre>
x \leftarrow y \leftarrow seq(1x)
par(mfrow=c(2,2), mar=c(3,3,3,1), mgp=c(2,1,0))
image(x, y, rf1, zlim=c(0, .7), cex.main=1,
      main=paste("Anisotropic set cover and\n",
                  "a 2D clusters frequency with\n",
                 "(1,0)-neighborhood and p=",
                 round(p1, digits=3), sep=""))
rect(bnd["x1",], bnd["y1",], bnd["x2",], bnd["y2",])
abline(v=ss, lty=2)
image(x, y, rf2, zlim=c(0, .7), cex.main=1,
      main=paste("Anisotropic set cover and\n",
                  "a 2D clusters frequency with\n",
                  "(1,0)-neighborhood and p=",
                 round(p2, digits=3), sep=""))
rect(bnd["x1",], bnd["y1",], bnd["x2",], bnd["y2",])
abline(v=ss, lty=2)
plot(r1, w1, pch=3, ylim=range(c(w1,w2)), cex.main=1,
     main=paste("0.95 confidence interval for the mass\n",
                 "fractal dimension is (",s1,")", sep=""))
matlines(rr, ww1, lty=c(1,2,2), col=c("black","red","red"))
plot(r2, w2, pch=3, ylim=range(c(w1,w2)), cex.main=1,
     main=paste("0.95 confidence interval for the mass\n",
                 "fractal dimension is (",s2,")", sep=""))
matlines(rr, ww2, lty=c(1,2,2), col=c("black","red","red"))
## End(Not run)
```

fds3s

Mass fractal dimension of sampling 3D clusters

Description

fds3s() function uses a linear regression model for statistical estimation of the mass fractal dimension of sampling clusters on 3D square lattice with iso- & anisotropic sets cover.

14 fds3s

Usage

```
fds3s(rfq=fssi30(x=95), bnd=isc3s(k=12, x=dim(rfq)))
```

Arguments

rfq relative sampling frequencies for sites of the percolation lattice.

bnd bounds for the iso- or anisotropic set cover.

Details

The mass fractal dimension for sampling clusters is equal to the coefficient of linear regression between log(w) and log(r), where w is a relative sampling frequency of the total sites which are bounded elements of iso- & anisotropic sets cover.

The isotropic set cover on 3D square lattice is formed from scalable cubes with variable sizes 2r+1 and a fixed point in the lattice center.

The anisotropic set cover on 3D square lattice is formed from scalable cuboids with variable sizes r+1 and a fixed face along the lattice boundary.

The percolation is simulated on 3D square lattice with uniformly weighted sites and the constant parameter p.

The isotropic cluster is formed from the accessible sites connected with initial sites subset.

Each element of the matrix rfq is equal to the relative frequency with which the 3D square lattice site belongs to a cluster sample.

Value

A linear regression model for statistical estimation of the mass fractal dimension of sampling clusters on 3D square lattice with iso- & anisotropic sets cover.

Author(s)

Pavel V. Moskalev

See Also

```
fds2s, fdc2s, fdc3s
```

```
# # # # # # # # # # # # # # # # #
# Example 1: Isotropic set cover
# # # # # # # # # # # # # # # # #
pc <- .311608
p1 <- pc - .01
p2 <- pc + .01
lx <- 33; ss <- (lx+1)/2
rf1 <- fssi30(n=100, x=lx, p=p1)
rf2 <- fssi30(n=100, x=lx, p=p2)
bnd <- isc3s(k=9, x=dim(rf1))</pre>
```

fds3s 15

```
fd1 <- fds3s(rfq=rf1, bnd=bnd)
fd2 <- fds3s(rfq=rf2, bnd=bnd)
w1 <- fd1$model[,"w"]; w2 <- fd2$model[,"w"]
r1 <- fd1$model[,"r"]; r2 <- fd2$model[,"r"]
rr <- seq(min(r1)-.2, max(r1)+.2, length=100)
ww1 <- predict(fd1, newdata=list(r=rr), interval="conf")</pre>
ww2 <- predict(fd2, newdata=list(r=rr), interval="conf")</pre>
s1 <- paste(round(confint(fd1)[2,], digits=3), collapse=", ")</pre>
s2 <- paste(round(confint(fd2)[2,], digits=3), collapse=", ")</pre>
x \leftarrow z \leftarrow seq(1x)
y1 <- rf1[,ss,]; y2 <- rf2[,ss,]
par(mfrow=c(2,2), mar=c(3,3,3,1), mgp=c(2,1,0))
image(x, z, y1, zlim=c(0, 3*mean(y1)), cex.main=1,
      main=paste("Isotropic set cover and a 3D clusters\n",
                  "frequency in the y=",ss," slice with\n",
                  "(1,0)-neighborhood and p=",
                  round(p1, digits=3), sep=""))
rect(bnd["x1",], bnd["z1",], bnd["x2",], bnd["z2",])
abline(h=ss, lty=2); abline(v=ss, lty=2)
image(x, z, y2, zlim=c(0, 3*mean(y2)), cex.main=1,
      main=paste("Isotropic set cover and a 3D clusters\n",
                  "frequency in the y=",ss," slice with\n",
                  "(1,0)-neighborhood and p=",
                  round(p2, digits=3), sep=""))
rect(bnd["x1",], bnd["z1",], bnd["x2",], bnd["z2",])
abline(h=ss, lty=2); abline(v=ss, lty=2)
plot(r1, w1, pch=3, ylim=range(c(w1,w2)), cex.main=1,
     main=paste("0.95 confidence interval for the mass\n",
                 "fractal dimension is (",s1,")", sep=""))
matlines(rr, ww1, lty=c(1,2,2), col=c("black","red","red"))
plot(r2, w2, pch=3, ylim=range(c(w1,w2)), cex.main=1,
     main=paste("0.95 confidence interval for the mass\n",
                 "fractal dimension is (",s2,")", sep=""))
matlines(rr, ww2, lty=c(1,2,2), col=c("black","red","red"))
## Not run:
# # # # # # # # # # # # # # # #
# Example 2: Anisotropic set cover, dir=3
# # # # # # # # # # # # # # # # #
pc <- .311608
p1 < -pc - .01
p2 <- pc + .01
lx <- 33; ss <- (lx+1)/2
ssz \leftarrow seq(1x^2+1x+2, 2*1x^2-1x-1)
rf1 <- fssi30(n=100, x=lx, p=p1, set=ssz, all=FALSE)
rf2 <- fssi30(n=100, x=lx, p=p2, set=ssz, all=FALSE)
bnd <- asc3s(k=9, x=dim(rf1), dir=3)
fd1 <- fds3s(rfq=rf1, bnd=bnd)
fd2 <- fds3s(rfq=rf2, bnd=bnd)
w1 \leftarrow fd1\mbox{model[,"w"]; } w2 \leftarrow fd2\mbox{model[,"w"]}
r1 <- fd1$model[,"r"]; r2 <- fd2$model[,"r"]
rr <- seq(min(r1)-.2, max(r1)+.2, length=100)
ww1 <- predict(fd1, newdata=list(r=rr), interval="conf")</pre>
```

16 isc2s

```
ww2 <- predict(fd2, newdata=list(r=rr), interval="conf")</pre>
s1 <- paste(round(confint(fd1)[2,], digits=3), collapse=", ")</pre>
s2 <- paste(round(confint(fd2)[2,], digits=3), collapse=", ")</pre>
x \leftarrow z \leftarrow seq(1x)
y1 <- rf1[,ss,]; y2 <- rf2[,ss,]
par(mfrow=c(2,2), mar=c(3,3,3,1), mgp=c(2,1,0))
image(x, z, y1, zlim=c(0, .3), cex.main=1,
      main=paste("Anisotropic set cover and a 3D clusters\n",
                  "frequency in the y=",ss," slice with\n",
                  "(1,0)-neighborhood and p=",
                 round(p1, digits=3), sep=""))
rect(bnd["x1",], bnd["z1",], bnd["x2",], bnd["z2",])
abline(v=ss, lty=2)
image(x, z, y2, zlim=c(0, .3), cex.main=1,
      main=paste("Anisotropic set cover and a 3D clusters\n",
                  "frequency in the y=",ss," slice with\n",
                  "(1,0)-neighborhood and p=",
                 round(p2, digits=3), sep=""))
rect(bnd["x1",], bnd["z1",], bnd["x2",], bnd["z2",])
abline(v=ss, lty=2)
plot(r1, w1, pch=3, ylim=range(c(w1,w2)), cex.main=1,
     main=paste("0.95 confidence interval for the mass\n",
                "fractal dimension is (",s1,")", sep=""))
matlines(rr, ww1, lty=c(1,2,2), col=c("black","red","red"))
plot(r2, w2, pch=3, ylim=range(c(w1,w2)), cex.main=1,
     main=paste("0.95 confidence interval for the mass\n",
                "fractal dimension is (",s2,")", sep=""))
matlines(rr, ww2, lty=c(1,2,2), col=c("black","red","red"))
## End(Not run)
```

isc2s

Isotropic set cover on the 2D square lattice

Description

isc2s() function calculates the boundary coordinates for the isotropic set cover on the 2D square lattice with a fixed point in the lattice center.

Usage

```
isc2s(k=12, x=rep(95, times=2), o=(x+1)/2, r=min(o-2)^(seq(k)/k))
```

Arguments

```
    k a maximal set cover size: k>2.
    x a vector of lattice sizes: all(x>5).
    o a fixed point of set cover elements: all((0<0)&(o<x)).</li>
    r a variable radius of set cover elements: all((0<r)&(r<x)).</li>
```

isc2s 17

Details

The percolation is simulated on 2D square lattice with uniformly weighted sites and the constant parameter p.

The percolation cluster is formed from the accessible sites connected with initial sites subset.

If an initial cluster subset in the lattice center, to estimate the mass fractal dimension requires an isotropic set cover with a fixed point in the lattice center.

The isotropic set cover on 2D square lattice is formed from scalable squares with variable sizes 2r+1 and a fixed point in the lattice center.

Value

A list of boundary coordinates and sizes for the isotropic set cover on a 2D square lattice with a fixed point in the lattice center.

Author(s)

Pavel V. Moskalev

References

Moskalev, P.V., Grebennikov, K.V. and Shitov, V.V. (2011), Statistical estimation of percolation cluster parameters. *Proceedings of Voronezh State University. Series: Systems Analysis and Information Technologies*, No.1 (January-June), pp.29-35, arXiv:1105.2334v1; in Russian.

See Also

```
fdc3s, fds2s, fds3s
```

isc3s

isc3s

Isotropic set cover on the 3D square lattice

Description

isc3s() function calculates the boundary coordinates for the isotropic set cover on the 3D square lattice with a fixed point in the lattice center.

Usage

```
isc3s(k=12, x=rep(95, times=3), o=(x+1)/2, r=min(o-2)^(seq(k)/k))
```

Arguments

k	a maximal set cover size: k>2.
X	a vector of lattice sizes: all(x>5).
0	a fixed point of set cover elements: $all((0<0)&(o.$
r	a variable radius of set cover elements: $all((0 < r) & (r < x))$.

Details

The percolation is simulated on 3D square lattice with uniformly weighted sites and the constant parameter p.

The percolation cluster is formed from the accessible sites connected with initial sites subset.

If an initial cluster subset in the lattice center, to estimate the mass fractal dimension requires an isotropic set cover with a fixed point in the lattice center.

The isotropic set cover on 3D square lattice is formed from scalable cubes with variable sizes 2r+1 and a fixed point in the lattice center.

Value

A list of boundary coordinates and sizes for the isotropic set cover on a 3D square lattice with a fixed point in the lattice center.

Author(s)

Pavel V. Moskalev

See Also

```
fdc2s, fds2s, fds3s
```

isc3s 19

```
# # # # # # # # # # # # # # # # # #
# Example: Isotropic set cover
# # # # # # # # # # # # # # # #
pc <- .311608
p2 <- pc + .03
lx <- 33; ss <- (lx+1)/2
set.seed(20120627); ac2 <- ssi30(x=lx, p=p2)
bnd <- isc3s(k=9, x=dim(ac2))
x \leftarrow z \leftarrow seq(1x); y2 \leftarrow ac2[,ss,]
image(x, z, y2, cex.main=1,
      main=paste("Isotropic set cover and\n",
                   "a 3D cluster of sites in the y=",ss," slice with \ensuremath{\text{N}}^{"},
                   "(1,0)-neighborhood and p=",
                   round(p2, digits=3), sep=""))
rect(bnd["x1",], bnd["z1",], bnd["x2",], bnd["z2",])
abline(h=ss, lty=2); abline(v=ss, lty=2)
```

Index

* anisotropic set cover	isc2s, 16
asc2s, 2	isc3s, 18
asc3s, 4	* square lattice
fdc2s, 5	asc2s, 2
fdc3s, 8	asc3s, 4
fds2s, 10	fdc2s, 5
fds3s, 13	fdc3s, 8
* interval estimation	fds2s, <u>10</u>
asc2s, 2	fds3s, 13
asc3s, 4	isc2s, 16
fdc2s, 5	isc3s, 18
fdc3s, 8	asc2s, 2
fds2s, 10	asc2s, 2 asc3s, 4
fds3s, 13	asc35, 4
isc2s, 16	fdc2s, 4, 5, 9, 11, 14, 18
isc3s, 18	fdc3s, 3, 6, 8, 11, 14, 17
* isotropic set cover	fds2s, 3, 4, 6, 9, 10, 14, 17, 18
fdc2s, 5	fds3s, 3, 4, 6, 9, 11, 13, 17, 18
fdc3s, 8	
fds2s, 10	isc2s, 16
fds3s, 13	isc3s, 18
isc2s, 16	CECD (CECD mark and) 2
isc3s, 18	SECP (SECP-package), 2
* mass fractal dimension	SECP-package, 2
asc2s, 2	
asc3s, 4	
fdc2s, 5	
fdc3s, 8	
fds2s, 10	
fds3s, 13	
isc2s, 16	
isc3s, 18	
* site percolation	
asc2s, 2	
asc3s, 4	
fdc2s, 5	
fdc3s, 8	
fds2s, 10	
fds3s, 13	