Restanță la TEORIA MĂSURII ȘI INTEGRĂRII 1 an II, sem. I, grupele 201, 202, 221, 222

5.06.2021

Numele şi prenumele
Grupa
Punctaj seminar

Subiectul 1. Calculați:

$$\lim_{n\to\infty}\int_{(\frac{1}{2},\infty)}\left(\frac{\sin x}{x}\right)^nd\lambda,$$

unde λ este măsura Lebesgue pe \mathbb{R}

Subiectul 2. a) Considerăm mulțimile

$$A = [-2, 2] \cap \mathbb{Q} \subseteq \mathbb{R}; \qquad B = \{(0, x) \in \mathbb{R}^2 | x \in [-1, 1] \setminus \mathbb{Q}\} \subseteq \mathbb{R}^2$$

Decideți dacă mulțimile A și B sunt măsurabile Lebesgue și, dacă este posibil, calculați $\lambda(A)$ și $\lambda(B)$.

b) Pentru orice $A \in \mathcal{M}_{\lambda^*}(\mathbb{R})$ definim $\mu(A) = \int_A \frac{x}{x+1} 1_{[0,\infty)} d\lambda(x)$. Demonstrați că $(\mathbb{R}, \mathcal{M}_{\lambda^*}(\mathbb{R}), \mu)$ este un spațiu cu măsură și calculați $\mu(\mathbb{R})$.

Subiectul 3. Considerăm funcția $f:[0,2]\longrightarrow \mathbb{R}$,

$$f(x) = \begin{cases} e^x, & \text{dacă} \ x \in (1,2] \cup \{0\} \\ \\ 2n, & \text{dacă} \ x \in (\frac{1}{(n+1)^4}, \frac{1}{n^4}], \text{ pentru} \ n \in \mathbb{N}^*. \end{cases}$$

- a) Decideți dacă funcția f este măsurabilă Lebesgue
- b) Decideți dacă funcția f este integrabilă Lebesgue.

Subiectul 4. Calculați integrala curbilinie următoare în două moduri (direct și folosind teorema lui Green):

$$I = \int_{C} (2x+1)dx + (2xy+3)dy,$$

unde γ este conturul triunghiului OAB, O(0,0), A(-2,2) și B(4,4), parcurs în sens trigonometric.

Subiectul 5. Cosiderăm X o mulțime cu cel puțin două elemente și (X, \mathcal{N}) un spațiu măsurabil.

- a) Demonstrați că pentru orice funcție $f: X \longrightarrow \mathbb{R}^*$ măsurabilă, funcția |f| este măsurabilă.
- b) Dați exemplu de σ -algebră \mathcal{N} și funcție $f: X \longrightarrow \mathbb{R}^*$ cu proprietatea că |f| este măsurabilă, dar funcția f nu este măsurabilă.
- c) Determinați toate σ -algebrele \mathcal{N} ale mulțimii X care au proprietatea că pentru orice funcție $f: X \longrightarrow \mathbb{R}^*$, f este măsurabilă dacă și numai dacă |f| este măsurabilă.

¹Toate subiectele sunt obligatorii. Toate răspunsurile trebuie justificate. Timp de lucru 2h. Fiecare subiect se noteaza se la 1 la 10. Rezolvările trebuie scanate şi trimise împreună cu subiectul primit sub forma unui singur fişier pdf in formularul Google corespunzător. Succes!