ACM SUMMER CHALLENGE

Editorial - SEARCHING

Dr. Stone's Formula

Problem prepared by: KRUNAL

Key idea: every positive number can be denoted by sum of 1 or more than 1 Fibonacci numbers.

First store all Fibonacci numbers ≤ 10⁶ in an array.

For a number N find greatest element less than or equal it, say X. Subtract X from N.

Repeat process until N > 0 and count steps.

HACK THE SOLUTION

Problem prepared by: JITENDRA

Task – we have two task to do for a new element X. Finding number of element with score > X and inserting X in data structure.

First task can be solved using std::upper_bound or a simple binary search. In both way sorted array is required.

It's intuitive that we can add new element X at position found from First Task to keep array sorted. For that we can use std::vector.

ASSIGNMENTS!!

Problem prepared by: MIHIR

This problem is to introduce "binary search the answer". We have to solve problem by answer instead of question.

Key idea: Suppose that assignment can be completed in time X. then it is true that assignment can be completed in time X+1.

Hint1: for range [0,Y-1] assignment cannot be completed and for range $[y,\infty]$ assignment can be completed. We have to simply find y by binary search.

Hint2: number of assignments completed in time $T = \sum_{i=1}^{i=N} T/\alpha[i]$

If number of assignments completed in time $T \ge M$ then T belongs to $[y,\infty]$.

Hint3: start binary search from $[0,\infty]$ and check for MID element . if number of assignments completed in time MID < M then answer lies in interval [MID+1, ∞] else [0,MID].