Was ist der Unterschied zwischen einem analogen Regler und einem digitalen Regler?
Was sind die am häufigsten eingesetzten Regler?

Thierry Prud'homme

Hochschule Luzern Technik & Architektur

Outline

Lernziele

Outline

- Lernziele
- 2 Analoger Regler / Digitaler Regler

Outline

- Lernziele
- 2 Analoger Regler / Digitaler Regler
- 3 2-Punkt / 3-Punkt Regler

Outline

- Lernziele
- 2 Analoger Regler / Digitaler Regler
- 3 2-Punkt / 3-Punkt Regler
- 4 PID Regler

Lernziele

- Die Studierende kennen die Unterschiede zwischen analogen Reglern und digitalen Reglern.
- Die Studierende verstehen den Prinzip von *2-Punkte* und *3-Punkte* Reglern.
- Die Studierende verstehen den Prinzip vom PID Regler.

Reglerentwurfprozess

Analoger Regler Digitaler Regler Beispiele von analogen Reglern

- 1 Lernziele
- Analoger Regler / Digitaler Regler Analoger Regler Digitaler Regler Beispiele von analogen Reglern
- 3 2-Punkt / 3-Punkt Regler
- PID Regler

Analoger Regler

Digitaler Regler

Vergleich Analoger / Digitaler Regler

Digitaler Regler

- A/D- und D/A-Wandler \rightarrow Amplitudenquantisierung und Zeitdiskretisierung (Zeitverschiebung)
- Minderung der dynamischen Leistungen
- Anpassungen der Reglerparameter durch Softwareänderung
- Platzsparende und kostengünstige Implementierung
- Der Rechner kann anderen Aufgaben übernehmen

Mögliche Implementierung eines digitalen Reglers

Mögliche hardware für die Implementierung der Regelung

- (Industrie) PC mit Echtzeitbetriebssystem Beckhoff Industrial PC
- Mikrokontroller Eingebettete Systeme TI Microcontrollers
- Speicherprogrammierbare Steuerung Siemens Simatic

Zentralisiert - Feldbus

- Zentralisiert: ADU und DAU im Mikrokontroller, AD/DA Karte für PC, I/O Modulen für SPS
- Feldbus: Profibus, CAN/CANOpen, EtherCat, usw.

Vergleich Analoger / Digitaler Regler

Analoger Regler

- Keine Amplitudenquantisierung und Zeitdiskretisierung
- Verarbeitung in Echtzeit
- Verwendung von analogen Komponenten

Thermostatventil

Thermostatventil

Thermostatventil

Spülkasten

Spülkasten

Spülkasten

- Lernziele
- 2 Analoger Regler / Digitaler Regler
- 3 2-Punkt / 3-Punkt Regler 2-Punkt Regler 3-Punkt Regler
- 4 PID Regler

2-Punkt Regler

2-Punkt Regler mit Hysterese

3-Punkt Regler

- 1 Lernziele
- 2 Analoger Regler / Digitaler Regler
- 3 2-Punkt / 3-Punkt Regler
- PID Regler
 P Regler
 PI Regler
 PID Regler

Proportional Regler - P Regler

Bermerkungen

 K_p Reglerverstärkung

Proportional Regler - P Regler

Bermerkungen

 K_p Reglerverstärkung

PI Regler

PI Regler - Ubliche Parametrisierung

Mathematische Parametrisierung

Technische übliche Parametrisierung

PI Regler - Übliche Parametrisierung

Parameter

- K_p Reglerverstärkung
- $T_i = \frac{K_p}{K_i}$ Nachstellzeit

PID Regler

PID Regler - Ubliche Parametrisierung

Mathematische Parametrisierung

Technische übliche Parametrisierung

PID Regler - Übliche Parametrisierung

Parameter

- K_p Reglerverstärkung
- $T_i = \frac{K_p}{K_i}$ Nachstellzeit
- $T_d = rac{K_d}{K_p}$ Vorhaltezeit

PID Regler - Grundprinzip

PID Regler - Grundprinzip

- P -Anteil: Je grösser e(t), umso grösser u(t).
- I -Anteil: Solange $e(t) \neq 0$ wird sich u(t) verändern.
- D -Anteil: Je grösser $\dot{e}(t) = \frac{de}{dt}(t)$, umso grösser u(t).