"МОДЕЛЮВАННЯ ПЛОЩИНИ ЗАГАЛЬНОГО ПОЛОЖЕННЯ"

Після вивчення тем «Метод заміни площин проекцій» та «Площина» для закріплення матеріалу виконується розрахунково графічна робота, в якій необхідно побудувати коло, описане чи вписане в трикутник, що лежить в площині загального положення.

Цю роботу слід виконувати спочатку на чернетці, а після редагування з метою оптимізації компоновки кресленика, перенести розв'язок на чистовик. Виконується робота в наступній послідовності:

Етап 1

Відповідно до номеру варіанту будуємо проекції трикутника, заданого координатами його вершин.

Етап 2

Знайти центр кола і побудувати його можливо тільки на такій проекції, де трикутник відображається в натуральну величину, а для цього треба виконати 2 перетворення площин проекцій.

1. Будуємо в заданій площині лінію рівня (у даному прикладі фронталь \mathbf{f}). Горизонтальна проекція фронталі $\mathbf{f_1}$ паралельна осі \mathbf{X} , а фронтальну проекцію $\mathbf{f_2}$ будуємо за допомогою точки $\mathbf{1}$, в якій фронталь перетинає сторону трикутника.

Задаємо нову систему площин проекцій, в якій задана площина буде проекцюючою, для чого проводимо нову вісь $\mathbf{X_1}$ перпендикулярно фронтальній проекції фронталі $\mathbf{f_2}$ і будуємо проекцію трикутника на площині проекцій $\mathbf{\Pi_4}$. При правильній побудові всі точки трикутника розташуються на одній прямій.

Звертаємо увагу на те, що при побудові зображення на площині проекцій Π_4 від осі \mathbf{X}_1 відкладаються відстані, виміряні від осі \mathbf{X} до проекцій точок на Π_1 — на малюнку показано фігурною дужкою, при цьому лінії проекційного зв'язку обов'язково перпендикулярні до осі, яку перетинають.

На цьому ж етапі визначають кут нахилу заданої площини до площини проекцій Π_2 .

2. Щоб перетворити задану площину трикутника в площину рівня задаємо нову площину проекцій Π_5 паралельну до заданої площини, для чого проводимо нову вісь X_2 паралельно сліду заданої площини $A_4B_4C_4$.

Для побудови натуральної величини трикутника відкладаємо від осі $\mathbf{X_2}$ вздовж ліній проекційного зв'язку відстані, виміряні від осі $\mathbf{X_1}$ до відповідних проекцій точок на $\mathbf{\Pi_2}$ (на малюнку позначено фігурною дужкою).

На площині проекцій Π_5 трикутник зображено в натуральну величину, тому можливо визначити розташування центру кола $\mathbf{O_5}$ за допомогою двох серединних перпендикулярів.

Центр кола O_5 проекцюємо послідовно в Π_4 (на слід площини), в Π_2 (відкладаючи відповідну координату, позначену фігурною дужкою та рисочкою) і в Π_1 (відкладаючи відповідну координату, позначену фігурною дужкою та двома рисочками).

Етап 3

Велику і малу вісі еліпсу на Π_2 побудуємо за допомогою спряжених діаметрів (23) і (45). На Π_2 через проекцію центра кола O_2 проводимо велику вісь еліпса паралельно f_2 і відкладаємо вздовж неї від проекції центра кола O_2 натуральну величину радіусу, яку визначаємо на проекції кола на I_5 . Малу вісь еліпса проводимо через проекцію центра кола I_5 перпендикулярно великій осі. Довжина малої осі ($I_2 I_3$) визначається проекціюванням на неї одного з спряжених діаметрів ($I_4 I_4$) з площини проекцій I_4 .

Для побудови великої та малої осі еліпсу на Π_1 необхідно через центр кола побудувати горизонталь заданої площини.

Проводимо фронтальну проекцію горизонталі $\mathbf{h_2}$ через $\mathbf{O_2}$ паралельно осі **X**. Горизонтальну проекцію горизонталі проводимо через проекцію центра кола $\mathbf{O_1}$ та проекцію точки $\mathbf{6_1}$, яка належить заданій площині.

Від проекції центру кола $\mathbf{O_1}$ вздовж горизонталі $\mathbf{h_1}$ відкладаємо в обидві сторони натуральну величину радіусу кола і отримуємо відрізок $(\mathbf{7_18_1})$, який є великою віссю еліпсу.

Для побудови малої вісі еліпсу проводимо через проекцію центра кола $\mathbf{O_1}$ перпендикуляр до горизонталі $\mathbf{h_1}$. А для визначення довжини малої вісі необхідно виконати ще одну заміну площин проекцій.

Задаємо нову систему площин проекцій, в якій задана площина буде проекцюючою, для чого проводимо нову вісь X_3 перпендикулярно горизонтальній проекції горизонталі $\mathbf{h_1}$ і будуємо проекцію трикутника на площині проекцій $\mathbf{\Pi_6}$. Оскільки площина спроекцюється в пряму, достатньо побудувати проекції тільки двох точок ($\mathbf{O_6}$ і $\mathbf{B_6}$). На цій проекції визначається також кут нахилу заданої площини до горизонтальної площини проекцій $\mathbf{\Pi_1}$.

Від проекції центра кола \mathbf{O}_6 в обидва боки відкладаємо натуральну величину радіусу кола і отримуємо проекції точок $\mathbf{9}_6$ і $\mathbf{10}_6$, які визначають проекцію кола на $\mathbf{\Pi}_6$ а також довжину малої вісі еліпсу на $\mathbf{\Pi}_{\mathbf{1}}$. (на малюнку проекції $\mathbf{9}_6$ та $\mathbf{8}_6$ знаходяться на дуже маленькій відстані одна від одної)

Етап 4

Тепер, коли на обох проекціях побудовані вісі еліпсів будуємо самі еліпси. Для цього з проекції центру кола будуємо два допоміжних кола, діаметри яких дорівнюють розмірам великої та малої вісі відповідної проекції. Через проекцію центра кола проводимо декілька прямих. Для кожної прямої виконуємо наступні побудови: а) з точки перетину з меншим колом проводимо пряму, паралельну великій осі; б) з точки перетину з більшим колом проводимо пряму, паралельну малій осі; в) позначаємо точку перетину проведених прямих; г) побудувавши достатню кількість таких точок, сполучаємо їх плавною кривою.

Етап 5

Оформляємо кресленик, вимірюємо та записуємо в табличку координати центру кола та кути нахилу заданої площини до площин проекцій. В результаті отримуємо зображення, аналогічне зразку в робочому зошиті.