# RSSI를 이용한 거리 측정 최적화 방안 연구

수학과 201621120 최동헌 수학과 201621136 이재협 수학과 201621138 허창현 수학과 201621148 백현규

# Contents

1 Blutooth Beacon and RSSI

Calculating RSSI/Distance with Python

### 1. Blutooth Beacon and RSSI



### 1. Blutooth Beacon and RSSI

$$RSSI = -10n\log_{10}(d) + A,$$

- RSSI를 통해 거리를 측정하는 데 노이즈로 인해 정확도가 낮음.

- RSSI값이 1만 변해도 거리는 몇 m씩 변함

- 정확도를 높일 수 있는 방법을 연구하고자 함.

#### 측정된 RSSI값

e2c56db5-dffb-48d2-b060-d0f5a71096e0]

e2c56db5-dffb-48d2-b060-d0f5a71096e0]





|       |          |       |   |           |      | _    |    |            |     |          |           |           |           |     |
|-------|----------|-------|---|-----------|------|------|----|------------|-----|----------|-----------|-----------|-----------|-----|
| н     | 1        | J     | K | L         | М    | 1    |    | 0          | Р   | Q        | R         | S         | Т         |     |
| major | 100      | minor | 3 | proximity | near | rssi |    | -70 u      | ıid | e2c56db5 | -dffb-48d | 2-b060-d0 | )f5a71096 | e0] |
| major | 100      | minor | 3 | proximity | near | rssi |    | -73 u      | ıid | e2c56db5 | -dffb-48d | 2-b060-d0 | )f5a71096 | e0] |
| major | 100      | minor | 4 | proximity | near | rssi |    | -61 u      | ıid | e2c56db5 | -dffb-48d | 2-b060-d0 | )f5a71096 | e0] |
| major | 100      | minor | 2 | proximity | near | rssi |    | -64 u      | ıid | e2c56db5 | -dffb-48d | 2-b060-d0 | )f5a71096 | e0] |
| major | 100      | minor | 3 | proximity | near | rssi |    | -66 u      | ıid | e2c56db5 | -dffb-48d | 2-b060-d0 | )f5a71096 | e0] |
| major | 100      | minor | 3 | proximity | near | rssi |    | -67 u      | ıid | e2c56db5 | -dffb-48d | 2-b060-d0 | )f5a71096 | e0] |
| major | 100      | minor | 2 | proximity | near | rssi |    | -62 u      | ıid | e2c56db5 | -dffb-48d | 2-b060-d0 | )f5a71096 | e0] |
| major | 100      | minor | 2 | proximity | near | rssi |    | -61 u      | ıid | e2c56db5 | -dffb-48d | 2-b060-d0 | )f5a71096 | e0] |
| major | 100      | minor | 2 | proximity | near | rssi |    | -60 u      | ıid | e2c56db5 | -dffb-48d | 2-b060-d0 | )f5a71096 | e0] |
| major | 100      | minor | 3 | proximity | near | rssi |    | -66 u      | ıid | e2c56db5 | -dffb-48d | 2-b060-d0 | )f5a71096 | e0] |
| major | 100      | minor | 3 | proximity | near | rssi |    | -67 u      | ıid | e2c56db5 | -dffb-48d | 2-b060-d0 | )f5a71096 | e0] |
| major | 100      | minor | 3 | proximity | near | rssi |    | -67 u      | ıid | e2c56db5 | -dffb-48d | 2-b060-d0 | )f5a71096 | e0] |
| major | 100      | minor | 2 | proximity | near | rssi |    | -61 u      | ıid | e2c56db5 | -dffb-48d | 2-b060-d0 | )f5a71096 | e0] |
| major | 100      | minor | 3 | proximity | near | rssi |    | -65 u      | ıid | e2c56db5 | -dffb-48d | 2-b060-d0 | )f5a71096 | e0] |
| major | 100      | minor | 2 | proximity | near | rssi |    | -64 u      | ıid | e2c56db5 | -dffb-48d | 2-b060-d0 | )f5a71096 | e0] |
| major | 100      | minor | 3 | proximity | near | rssi |    | -70 u      | ıid | e2c56db5 | -dffb-48d | 2-b060-d0 | )f5a71096 | e0] |
| major | 100      | minor | 3 | proximity | near | rssi |    | -70 u      | ıid | e2c56db5 | -dffb-48d | 2-b060-d0 | )f5a71096 | e0] |
| major | 100      | minor | 3 | proximity | near | rssi |    | -73 u      | ıid | e2c56db5 | -dffb-48d | 2-b060-d0 | )f5a71096 | e0] |
| major | 100      | minor | 4 | proximity | near | rssi |    | -61 u      | ıid | e2c56db5 | -dffb-48d | 2-b060-d0 | )f5a71096 | e0] |
| major | 100      | minor | 3 | proximity | near | rssi |    | -67 u      | ıid | e2c56db5 | -dffb-48d | 2-b060-d0 | )f5a71096 | e0] |
|       |          |       |   |           |      |      |    |            | d   | e2c56db5 | -dffb-48d | 2-b060-d0 | )f5a71096 | e0] |
| 로이드   | <br>: 人ロ | ᆙᇀᇴ   |   | lo D      | CCL  | HU   | FŁ | 르 저        | d   | e2c56db5 | -dffb-48d | 2-b060-d0 | )f5a71096 | e0] |
| エリニ   |          |       |   |           | 22I  |      |    | <b>2</b> 0 | d   | e2c56db5 | -dffb-48d | 2-b060-d0 | )f5a71096 | e0] |

안드로이드 스마트폰이 받은 RSSI 데이터를 정리하기 위해 만들어진 어플리케이션임.

```
class Beacon:
    x, y, N, M_{Power} = 0, 0, 0, 0
    mu_RSS, sigma_RSS = 0, 0
    dataset = []
    def __init__(self, x, y, N, M_Power):
        self.N = N
        self.M_Power = M_Power
    def RSSI_to_distance(self, RSSI):
        return math.pow(10, ((self.M_Power - RSSI) / (10 * self.N)))
    def Dist_to_RSSI(self, Dist):
        return ((-10) * self.N * math.log(Dist, 10) + self.M_Power)
    def set_mu_sigma_RSS(self, a, b, c):
        temp = []
        temp.append(a)
        temp.append(b)
        temp.append(c)
        self.mu_RSS, self.sigma_RSS = np.mean(temp), np.std(temp)
    def add_RSS(self, RSS):
        self.dataset.append(RSS)
        self.mu_RSS = np.mean(self.dataset)
        self.sigma_RSS = np.std(self.dataset)
```

1. RSSI를 통해서 거리를 구하는 함수

2. 거리를 이용해서 RSSI를 구하는 함수

3. 평균, 표준편차

| 실제 거리 | 이론상 RSSI(평균) | 실제 RSSI(평균) | RSSI로 측정한 거리 |
|-------|--------------|-------------|--------------|
| 0.5m  | -57.97       | -61.37      | 0.73         |
| 0.8m  | -62.06       | -63.19      | 0.91         |
| 1.2m  | -65.58       | -65.98      | 1.25         |
| 1.6m  | -68.08       | -65.22      | 1.15         |
| 2.0m  | -70.02       | -65.80      | 1.23         |
| 2.4m  | -72.94       | -70.29      | 2.06         |
| 2.8m  | -75.12       | -66.72      | 1.36         |

1.2M일 때, 이론 상 RSSI





$$\overline{x}_k = \alpha \overline{x}_{k-1} + (1-\alpha)x_k$$

- 1차 저주파 필터

- α는 weight를 뜻함.



- 일정 기간 주가의 산술 평균값을 이어서 만든 선
- 주식에서 일정기간의 평균을의미 있는 보조 지표로 활용







- 1. 한 센서로 러프하게 추정값 계산
- 2. 추정 오차를 최소화 하는 칼만 상수 계산
- 3. 다른 센서의 값을 칼만 상수를 통해 반영하여 보정
- 4. 보정하고 나서 줄어든 추정 오차의 분포 계산

- N개의 데이터를 기반으로 예측
  - $\Rightarrow$  N이 너무 작으면 정확도  $\downarrow$ , N이 너무 크면 실시간성  $\downarrow$

- Capping: Outlier를 제거(큰 Noise 방지)
- => Cut ratio를 0%~10% 정도로 사용

### 3. Kalman Filter - MatLab Library

| 1.AvgFilter    | 2021-06-30 오후 2:59 | 파일 폴더 |
|----------------|--------------------|-------|
| 2.MovAvgFilter | 2021-06-30 오후 2:59 | 파일 폴더 |
| 3.LPF          | 2021-06-30 오후 2:59 | 파일 폴더 |
| 8.SimpleKalman | 2021-09-14 오후 6:59 | 파일 폴더 |
| 9.DvKalman     | 2021-06-30 오후 2:59 | 파일 폴더 |
| 10.TrackKalman | 2021-06-30 오후 2:59 | 파일 폴더 |
| 11.ARS         | 2021-06-30 오후 2:59 | 파일 폴더 |
| 12.EKF         | 2021-06-30 오후 2:59 | 파일 폴더 |
| 13.UKF         | 2021-06-30 오후 2:59 | 파일 폴더 |
| 14.PF          | 2021-06-30 오후 2:59 | 파일 폴더 |
| 15.HPF         | 2021-06-30 오후 2:59 | 파일 폴더 |
| 16.CompFilter  | 2021-06-30 오후 2:59 | 파일 폴더 |

```
TestSimpleKalman2.m × Kalman_RSS.m × +
     ☐ function rss = Kalman_RSS(arr)
       persistent A H Q R
       persistent y P
       persistent flagRun
8
       if isempty(flagRun)
        A = 1; % 칼만 필터에서 필요한 parameter를 정의함.(A, H, Q, R)
10 —
11 —
        H = 1;
12
13 —
         0 = 1:
14 —
        R = 1000;
15
        length = size(arr,2) % arr 함수의 열의 갯수를 반환
16 —
17 —
         cut_ratio 💂 0.10
18 —
         num_of_cut 💂 fix(length * cut_ratio) % 전체 열 갯수 중에서 cut_ratio 비율 만큼 잘라냄.
20 —
     白 for a=1:num_of_cut % for문을 돌면서 최대, 최솟값을 없앰
21 —
            min num = min(arr)
명령 창
  ans =
    -66.8940
```

### 4. To Do List

```
□ function rss = Kalman_RSS(arr)
2
      🗀 %
       persistent A H Q R
        persistent v P
        persistent flagRun
        if isempty(flagRun)
                     칼만 필터에서 필요한
10 —
          A = 1
          H = 1;
12
          Q = 1;
          R = 1000;
```

Kalman Filter에서 사용하는 A,H,Q,R 값
 을 조정

- Cut Ratio 조정

- 결과 Data 정리 및 오차 측정