- Quantile Function, Quantile Begresyon	
Mantile tanksiyonu D(t) ile veya OF ile gosterilic	
Bir X rastgele degiske ninin dagilim fonksiyenu F(X) ile	
- xe-xe-exit-ya-da-kuçuk-olması-olasılığıdır.	
$F(x) = P(x \le x) = \sum_{i=1}^{n} f(x)$	
+(x) =) Olasilik yoğunluk fonksi yonu-	
$f(x) dx = P(x \le X \le x + dx)$	
f(x) egrisinin altendoki alan 1 olmalıdıc	
-f(x)= Olasılık yayınlık forksiyonu, Kümülatif - Dağılım forksiyonunun Türevice Esittic	

//
-Quantile Regression=
- Duantile Regresyan, quantillere bagli olarak Regresyan - Katsayılarını belirler. Bu madel uç degerlere OLS'den daha - hassastic - OLS'de Hataların Karelerinin taplamı minimize ediliyar. - Hataların Kareleri yerine farklı değerlerin de minimizasyonu söz - Kanusu alabilir.
- Quantile Regression, Liner Begression sartland varsayun land - Saglanmadige durum da - Eullander (Linearity, homos ce das Holty, independence or normality)
Linear Reg Model Equation => 41 = Pat B1 Xit + ++ BpXip
P=number of Features
N= oumber of data priots 199
The best line found by minimizing the
"Mean Square Error" => MSE = 1/0 = (41-180+8) +++++++
Quantile Reg. Equation = Pr(4) = 80(T) + B1(T)X14+ + Bp(T)Xip_
Beta katsayıları Sbt değil. They are functions of
the quantile
Duntile Reg. reduce the Median absolute Deviation.
MAD = 1 & PT (y' = (BO(I) + BILIDXI1+ + BP(IDXIP))

-P=) check function
PT(u) = Tmax(u, o) = 1
"u" is eccor of single data point.
max function returns the largest value 10 parantheses.
- yani; Error positive ise I max(u, o) = function that Licheck that function
Error regative ise (1-I) max(=u,0) - Function that multiplies error that func that func
(Not: Quantile level is the probability for the proportion of the population) that is associated with a quantile)
T=0.5 iken Median Regression. T=0.10, 0.25 olabilin
The quantile q & (0,1) > splits data into people tions
g below and 1-q above.
Ornegin; 75th quantile regression fits a regression line
through the data sa that 1/075 percent of the observations
are below the regression line and %25 percent are above
X OLS 'de line %30, 1-25 herhangi birinden gegebilir
75th quantile regression ducumunda, en Küçük MAN değerini
bulmak ifin (yoni 75th durumundaki en ye line'i bulmak) pt lweigh
have to be added to errors, 75th durumunda a weight
of 0.75 is added positive ones, while 0.25 is added to
negative_ones