Semaine du 9 septembre - Planche nº 1

Exercice no 1:

(Questions de cours):

- 1. Compléter et démontrer $(A \cup B) \setminus (A \cap B) = ?$
- 2. Compléter et démontrer les formules trigonométriques d'additions suivantes :

$$cos(a-b) = ?$$
 et $sin(a-b) = ?$

Solution:

- 1. Montrons $(A \cup B) \setminus (A \cap B) = (A \setminus B) \cup (B \setminus A)$ par double inclusion.
 - * Considérons $x \in (A \cup B) \setminus (A \cap B)$. Alors x appartient à A ou à B. Supposons sans perte de généralité que $x \in A$. On a aussi que $x \notin A \cap B$. donc $x \notin B$, c'est à dire $x \in A \setminus B$, et donc $x \in (A \setminus B) \cup (B \setminus A)$.
 - * Considérons $x \in (A \setminus B) \cup (B \setminus A)$, supposons sans perte de généralité que $x \in (A \setminus B)$, alors x appartient à A mais n'appartient pas à B. C'est à dire que $x \in A \cup B$ et $x \notin A \cap B$, ce qui revient à dire que $x \in (A \cup B) \setminus (A \cap B)$.
- 2. Dans un repère orthonormé direct (O, \vec{i}, \vec{j}) , on considère deux vecteurs unitaires \vec{u} et \vec{v} tels que $(\vec{i}, \vec{u}) = b$ et $(\vec{i}, \vec{v}) = a$. On sait alors que les coordonées de \vec{u} et \vec{v} dans ce repère sont respectivement $\vec{u} = (\cos(b), \sin(b))$ et $\vec{v} = (\cos(a), \sin(a))$. En particulière, en utilisant l'expression du produit scalaire dans un repère on a :

$$\vec{u} \cdot \vec{v} = \cos(a)\cos(b) + \sin(a)\sin(b)$$

Mais on a aussi que : $\vec{u} \cdot \vec{v} = \cos(\vec{u}, \vec{v})$ car \vec{u} et \vec{v} sont unitaires Or, par la relation de Chasles, on a :

$$(\vec{u}, \vec{v}) = (\vec{u}, \vec{i}) + (\vec{i}, \vec{v}) = -(\vec{i}, \vec{u}) + (\vec{i}, \vec{v}) = a - b$$

Finalement on a donc:

$$\cos(a - b) = \cos(a)\cos(b) + \sin(a)\sin(b)$$

On a $\sin(a-b) = \sin(a)\cos(b) - \sin(b)\cos(a)$ en utilisant la formule pour $\cos(a-b)$ et en se rappelant que $\sin(x) = \cos(\frac{\pi}{2} - x)$

Exercice no 2:

(Trigonométrie):

- 1. Résoudre l'équation trigonométrique suivante : trouver les $\theta \in \mathbb{R}$ tels que : $\cos(3\theta) = \cos(\theta)$
- 2. Résoudre l'équation trigonométrique suivante : trouver les $\theta \in \mathbb{R}$ tels que : $\sin(\theta) = \tan(\theta)$

Solution:

1. On utilise la propriété suivante : $\cos(p) = \cos(q) \Longleftrightarrow p = \pm q[2\pi]$ Ainsi :

$$\cos(3\theta) = \cos(\theta) \iff 3\theta = \theta[2\pi] \text{ ou } 3\theta = -\theta[2\pi]$$

$$\iff 2\theta = 0[2\pi] \text{ ou } 4\theta = 0[2\pi]$$

$$\iff \theta = 0[\pi] \text{ ou } \theta = 0[\frac{\pi}{2}]$$

$$\iff \theta = 0[\frac{\pi}{2}]$$

En effet, un multiple entier de π , est aussi un multiple entier de $\frac{\pi}{2}$ Ainsi θ est solution si, et seulement, si θ congru à $0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}$ modulo 2π

2.

$$\sin(\theta) = \tan(\theta) \iff \sin(\theta) = \frac{\sin(\theta)}{\cos(\theta)}$$

$$\iff \frac{\sin(\theta)(\cos(\theta) - 1)}{\cos(\theta)} = 0$$

$$\iff \sin(\theta) = 0 \text{ ou } \cos(\theta) = 1 \text{ (et bien sûr } \cos(\theta) \neq 0)$$

$$\iff \sin(\theta) = 0 \iff x \in \pi\mathbb{Z}$$

Ainsi les solutions dans \mathbb{R} sont les $x \in \pi \mathbb{Z}$

Exercice nº 3:

(Sommes): Donnez une expression simple des sommes suivante:

$$\sum_{k=1}^{n} \frac{1}{\sqrt{k+1} + \sqrt{k}} \text{ et } \sum_{1 \le i, j \le n} \min(i, j)$$

Solution:

$$\sum_{k=1}^{n} \frac{1}{\sqrt{k+1} + \sqrt{k}} = \sum_{k=1}^{n} \frac{\sqrt{k+1} - \sqrt{k}}{(\sqrt{k+1} - \sqrt{k})(\sqrt{k+1} + \sqrt{k})}$$

$$= \sum_{k=1}^{n} \frac{\sqrt{k+1} - \sqrt{k}}{k+1-k}$$

$$= \sum_{k=1}^{n} (\sqrt{k+1} - \sqrt{k})$$

$$= \sqrt{n+1} - \sqrt{1} = \sqrt{n+1} - 1$$

$$\begin{split} \sum_{1 \leq i,j \leq n} \min{(i,j)} &= \sum_{j=1}^{n} \sum_{i=1}^{n} \min{(i,j)} = \sum_{j=1}^{n} \left(\sum_{i=1}^{j} \min{(i,j)} + \sum_{i=i+1}^{n} \min{(i,j)} \right) \\ &= \sum_{j=1}^{n} \left(\sum_{i=1}^{j} i + \sum_{i=j+1}^{n} j \right) \\ &= \sum_{j=1}^{n} \left(j \left(n + \frac{1}{2} \right) - \frac{j^{2}}{2} \right) \\ &= \left(n + \frac{1}{2} \right) \frac{n(n+1)}{2} - \frac{1}{2} \sum_{j=1}^{n} j^{2} \\ &= \left(n + \frac{1}{2} \right) \frac{n(n+1)}{2} - \frac{1}{2} \frac{n(n+1)(2n+1)}{6} \\ &= \frac{(2n+1)n(n+1)}{4} - \frac{n(n+1)(2n+1)}{12} \\ &= \frac{n(n+1)(2n+1)}{6} \end{split}$$

Semaine du 9 septembre - Planche nº 2

Exercice no 1:

(Questions de cours):

- 1. Énoncer et démontrer la formule du triangle de Pascal
- 2. Donnez la formule trigonométrique de transformation d'une somme en produits suivante et prouvez la :

$$cos(p) + cos(q) = ?$$

Solution:

1. Soit $k, n \in \mathbb{N}$ tel que $k \leq n - 1$, on a

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

$$\binom{n-1}{k-1} + \binom{n-1}{k} = \frac{(n-1)!}{(k-1)!(n-k)!} + \frac{(n-1)!}{k!(n-1-k)!}$$

$$= \frac{k(n-1)! + (n-k)(n-1)!}{k!(n-k)!}$$

$$= \frac{n(n-1)!}{k!(n-k)!} = \frac{n!}{k!(n-k)!}$$

$$= \binom{n}{k}$$

2. On a d'une part :

$$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b) \text{ et } \cos(a-b) = \cos(a)\cos(b) + \sin(a)\sin(b)$$

Donc en effectuant la somme des deux égalites, on a $\cos(a)\cos(b) = \frac{\cos(a+b)+\cos(a-b)}{2}$. En posant p=a+b et q=a-b, on a donc que $a=\frac{p+q}{2}$ et $b=\frac{p-q}{2}$, ainsi en remplaçant, on obtient

$$\cos(p) + \cos(q) = 2\cos(\frac{p+q}{2})\cos(\frac{p-q}{2})$$

Exercice nº 2:

(Trigonométrie):

- 1. Montrer que pour tout $x \in \mathbb{R}$, $\sin(x \frac{2\pi}{3}) + \sin(x) + \sin(x + \frac{2\pi}{3}) = 0$
- 2. Résoudre sur \mathbb{R} , puis sur $I = [0, 2\pi]$, l'équation trigonométrique suivante : $\cos(2x) = \cos(x)^2$

Mathématiques

Solution:

1. Soit $x \in \mathbb{R}$, On utilise les formules d'additions trigonométriques, on a :

$$\sin(x - \frac{2\pi}{3}) = \sin(x)\cos(\frac{2\pi}{3}) - \sin(\frac{2\pi}{3})\cos(x) \text{ et } \sin(x + \frac{2\pi}{3}) = \sin(x)\cos(\frac{2\pi}{3}) + \sin(\frac{2\pi}{3})\cos(x)$$

et les valeurs suivantes : $\sin(\frac{2\pi}{3}) = \frac{\sqrt{3}}{2}$ et $\cos(\frac{2\pi}{3}) = \frac{-1}{2}$

En regardant la somme des trois termes, on obtient une somme nulle d'où l'égalité.

2. Soit $x \in \mathbb{R}$, on a que $\cos(x)^2 = \frac{1}{2}(1 + \cos(2x))$. Donc notre équation trigonométrique revient à résoudre l'équation $\cos(2x) = 1$.

$$\cos(2x) = 1 \Longleftrightarrow 2x \in 2\pi\mathbb{Z}$$
$$\iff x \in \pi\mathbb{Z}$$

Une autre manière de résoudre est cette fois d'écrire dans l'autre sens $\cos(2x) = 2\cos(x)^2 - 1$. Notre équation revient à résoudre l'équation $\cos(x)^2 = 1$, c'est à dire $\cos(x) = 1$ ou $\cos(x) = -1$. Donc $x \in \pi\mathbb{Z}$. En restreignant sur $I = [0, 2\pi]$, on a que les solutions sont $\{0, \pi, 2\pi\}$

Exercice nº 3:

(Sommes): Calculer les sommes suivantes:

$$\sum_{k=0}^{n} \frac{k}{(k+1)!} \text{ et } \sum_{k=1}^{n} \sqrt{1 + \frac{1}{k^2} + \frac{1}{(k+1)^2}}$$

Solution:

$$\sum_{k=0}^{n} \frac{k}{(k+1)!} = \sum_{k=0}^{n} \frac{k+1-1}{(k+1)!}$$

$$= \sum_{k=0}^{n} \frac{k+1}{(k+1)!} - \frac{1}{(k+1)!}$$

$$= \sum_{k=0}^{n} \frac{1}{k!} - \frac{1}{(k+1)!}$$

$$= 1 - \frac{1}{(n+1)!}$$

Pour la deuxième somme, on étudie tout d'abord le terme de la somme :

$$1 + \frac{1}{k^2} + \frac{1}{(k+1)^2} = \frac{k^2(k+1)^2 + (k+1)^2 + k^2}{k^2(k+1)^2}$$
$$= \frac{k^4 + 2k^3 + 3k^2 + 2k + 1}{k^2(k+1)^2}$$
$$= \frac{(k^2 + k + 1)^2}{k^2(k+1)^2}$$

Donc on a:

$$\sum_{k=1}^{n} \sqrt{1 + \frac{1}{k^2} + \frac{1}{(k+1)^2}} = \sum_{k=1}^{n} \frac{(k^2 + k + 1)}{k(k+1)}$$

$$= \sum_{k=1}^{n} \frac{k^2}{k(k+1)} + \frac{k+1}{k(k+1)}$$

$$= \sum_{k=1}^{n} \left(\frac{k}{k+1} + \frac{1}{k}\right)$$

$$= \sum_{k=1}^{n} \left(\frac{k+1-1}{k+1} + \frac{1}{k}\right)$$

$$= \sum_{k=1}^{n} \left(1 - \frac{1}{k+1} + \frac{1}{k}\right)$$

$$= n - \frac{1}{n+1} + 1$$

$$= \frac{n^2 + 2n}{n+1}$$

Semaine du 9 septembre - Planche nº 3

Exercice no 1:

(Questions de cours):

- 1. Énoncer et démontrer la formule du binome de Newton.
- 2. Donnez sans démonstration trois expressions de $\left(\sum_{i=1}^{n} a_i\right)^2$

Solution:

1. On souhaite montrer par réccurence que : Pour tout réels (a,b) et $n \in \mathbb{N}$, on a :

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

Pour se faire, on pose le prédicat P(n): " $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$ " n=0: évident. Supposons que le résultat soit vérifié jusqu'au rang n (P(n)) et vérifions P(n+1)

$$(a+b)^{n+1} = (a+b)(a+b)^n = (a+b)\left(\sum_{k=0}^n \binom{n}{k}a^kb^{n-k}\right)$$

$$= \sum_{k=0}^n \binom{n}{k}a^{k+1}b^{n-k} + \sum_{k=0}^n \binom{n}{k}a^kb^{n+1-k}$$

$$= \sum_{k=1}^{n+1} \binom{n}{k-1}a^kb^{n-(k-1)} + \sum_{k=0}^n \binom{n}{k}a^kb^{n+1-k}$$

$$= \sum_{k=1}^n \binom{n}{k-1}a^kb^{n-k+1} + \sum_{k=1}^n \binom{n}{k}a^kb^{n+1-k} + a^{n+1} + b^{n+1}$$

$$= \sum_{k=1}^n \binom{n}{k-1} + \binom{n}{k}a^kb^{n+1-k} + a^{n+1} + b^{n+1}$$

$$= \sum_{k=1}^n \binom{n+1}{k}a^kb^{n+1-k} + a^{n+1} + b^{n+1}$$

$$= \sum_{k=0}^{n+1} \binom{n+1}{k}a^kb^{n+1-k}$$

Ce qui démontre P(n+1) et ce qui achève donc la récurrence.

2.

$$\left(\sum_{i=1}^{n} a_i\right)^2 = \left(\sum_{i=1}^{n} a_i\right) \left(\sum_{j=1}^{n} a_j\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j = \sum_{i=1}^{n} a_i^2 + 2 \sum_{1 \le i < j \le n} a_i a_j$$

Exercice nº 2:

(Trigonométrie):

- 1. Résoudre sur \mathbb{R} l'inéquation trigonométrique suivante : $\cos^2(x) \ge \cos(2x)$
- 2. Résoudre sur \mathbb{R} et sur $[0,\pi]$, l'équation trigonométrique suivant : $\tan(5x)=1$

Solution:

1. Pour cela, on utilise la formule : $\cos^2(x) = \frac{1}{2}(1 + \cos(2x))$. Ainsi

$$\cos^{2}(x) \ge \cos(2x) \Longleftrightarrow \frac{1}{2}(1 + \cos(2x)) \ge \cos(2x)$$
$$\iff 1 - \cos(2x) > 0$$

Or pour tout $x \in \mathbb{R}$, $\cos(2x) \le 1$, donc l'ensemble des solutions est \mathbb{R} .

2. Par ci-dessous, on obtient $S_{\mathbb{R}} = \frac{\pi}{20} + \frac{\pi}{5}\mathbb{Z}$ et $S_{[0,\pi]} = \{\frac{\pi}{20}, \frac{\pi}{4}, \frac{9\pi}{20}, \frac{13\pi}{20}, \frac{17\pi}{20}\}$

$$\tan(5x) = 1 \iff 5x \in \frac{\pi}{4} + \pi \mathbb{Z}$$
$$\iff x \in \frac{\pi}{20} + \frac{\pi}{5} \mathbb{Z}$$

Exercice no 3:

(Ensembles): Soient E un ensemble, et A, B, $C \in \mathcal{P}(E)$. Les 3 questions sont indépendantes

1. Montrer que

$$(A \cup B) \cap C \subseteq A \cup (B \cap C)$$

2. Montrer que

$$A \cap B = A \cap C \iff A \cap B^c = A \cap C^c$$

Solution:

1. On a par distributivité de \cap sur \cup que

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C) \subseteq A \cup (B \cap C)$$

 $\operatorname{car} A \cap C \subseteq A$.

2. Proposons deux méthodes : une par les ensembles globalement, puis une seconde par les éléments.

* Par les ensembles globalement : (en utilisant que $A \cap A^c = \emptyset$ et que $A \cup \emptyset = A$)

$$A \cap B = A \cap C \iff (A \cap B)^c = (A \cap C)^c$$

$$\iff A^c \cup B^c = A^c \cup C^c$$

$$\iff A \cap (A^c \cup B^c) = A \cap (A^c \cup C^c)$$

$$\iff (A \cap A^c) \cup (A \cap B^c) = (A \cap A^c) \cup (A \cap C^c)$$

$$\iff A \cap B^c = A \cap C^c$$

On a donc montré la première implication, et la deuxième est vérifié en prenant la première avec (B^c, C^c) à la place de (B, C)

* Par les éléments : On suppose tout d'abord que $A \cap B = A \cap C$ et on considère $x \in A \cap B^c$, alors $x \in A$ et $x \notin B$, supposons par l'absurde que $x \in C$ alors $x \in A \cap C = A \cap B$ donc $x \in B$ ce qui impose une contradiction. D'où $x \in C^c$ et donc $x \in A \cap C^c$. Par rôle symétrique de B et C, on a l'autre inclusion d'où l'égalité.

L'autre implication est immédiate en faisant le même raisonnement avec (B^c, C^c) à la place de (B, C).

Semaine du 9 septembre - Exercices supplémentaires

Exercice no 1:

(Ensembles) : Montrer que si on considère E un ensemble et $A, B, C \in \mathcal{P}$, on a :

$$(A \cap B) \cup (B \cap C) \cup (C \cap A) = (A \cup B) \cap (B \cup C) \cap (C \cup A)$$

Exercice nº 2:

(Ensembles): Montrer que si on considère E un ensemble et $A, B, C \in \mathcal{P}$, on a :

$$A \cup B = A \cup C \iff A \cup B^c = A \cup C^c$$

Exercice no 3:

(Sommes): Calculer la somme suivante:

$$\sum_{k=0}^{n} (-1)^k k$$

Exercice nº 4:

(Sommes) : Calculer la somme suivante :

$$\sum_{0 \le i \le j \le n} \binom{j}{i} 2^{i+j}$$