2022 春-实变函数

一、填空题

- 2. 设 C 为 Cantor 集, 则 $m(C) = _____$,闭包 $\overline{C} = _____$.
- 3. 设 $E \subset \mathbb{R}^n$, 若______, 则称 E 是闭集. 此外闭集的等价条件还有:_____.
- 4. 设 $\{f_n(x)\}$ 是可测集 E 上几乎处处有限的实函数,则 $E[f_n \to 0] = ____.$

二、选择题

1. 设 $f: \mathbb{R}^n \to \mathbb{R}$, $A, B \subset \mathbb{R}^n$, 则下列集合关系成立的是:

A.
$$f(A \cup B) = f(A) \cup f(B)$$

B.
$$(A \backslash B) \cup B = A$$

C.
$$(B \setminus A) \cup A \subset A$$

D.
$$f(A \cap B) = f(A) \cap f(B)$$

2. 设 $E = \{(x, y) \in \mathbb{R}^2 : 0 < x < 1, y \in \mathbb{Q}\}$, 则下列命题成立的的是:

A.
$$m(E) = 1$$

B.
$$m(E) = 0$$

 $C. E 是 \mathbb{R}^2$ 中闭集

D. $E \in \mathbb{R}^2$ 中开集

- 3. 设 f(x) 是可测集 E 上的实函数, 则下列命题不成立的是:
 - A. f(x) 在 E 上可测当且仅当 |f(x)| 在 E 上可测
 - B. 若 f(x) 在 E 上可测, 则 f(x) 在 E 的任意子集上可测
 - C. 若 f(x) 在 E 上可测, 则 f(x) 在 E 的任意测度为零的子集上可积
 - D. 若 f(x) 在 E 上可测, 则 f(x) 在 E 上几乎处处有限
- 4. 设 f_k , f 均为可测集 E 上的可测函数, 当 $k \to \infty$ 时下列命题成立的是:
 - A. 若 f_k 在 E 上几乎处处收敛到 f, 则 f_k 在 E 上近乎一致收敛到 E.
 - B. 若 f_k 在 E 上几乎处处收敛到 f, 则 $\lim_{k\to\infty}\int_E f_k(x)\mathrm{d}x = \int_E f(x)\mathrm{d}x$.
 - C. 若 f_k 在 E 上近乎一致收敛到 f, 则 f_k 在 E 上依测度收敛到 f.
 - D. 若 f_k 在 E 上依测度收敛到 f, 则 $\lim_{k\to\infty}\int_E f_k(x)\mathrm{d}x = \int_E f(x)\mathrm{d}x$.
- 5. 下列命题成立的是:
 - A. 若 $E \subset \mathbb{R}^n$ 测度为 0, 则 E 为至多可数集.
 - B. 设 $E \subset \mathbb{R}^n$, 存在包含 E 的开集 G, $m(G \setminus E) = 0$
 - C. 若 $G \subset \mathbb{R}^n$ 是开集, 则 ∂G 是零测集.

D. 零测集是可测集.

三、解答题

- 1. 定义函数 $f(x) = \begin{cases} x^2, & x \in \mathbb{Q} \\ 1 + x, & x \in \mathbb{R} \backslash \mathbb{Q} \end{cases}$, 回答下列问题:
- (1) f(x) 在 [0,1] 上是否 R 可积? 简单说明理由.
- (2) f(x) 在 [0,1] 上是否 L 可积? 简单说明理由.
- 2. 设 f 为可测集 E 上的可积函数, 记 $E_k = E\left[|f| < \frac{1}{k}\right]$, 计算 $\lim_{k \to +\infty} \int_{E_k} |f(x)| \mathrm{d}x$.

四、证明题

- 1. 设 f(x) 是 E 上的可测函数, 证明 $\forall a>0, m(E\left[f\geqslant a\right])\leqslant \mathrm{e}^{-a}\int_{E}\mathrm{e}^{f(x)}\mathrm{d}x.$
- 2. 设 f(x) 是 E 上的可积函数, $\{A_k\}$ 是 E 的一列可测子集且 $\lim_{k\to\infty} m(A_k)=0$, 证明 $\lim_{k\to\infty}\int_{A_k} f(x)\mathrm{d}x=0$.