

Deep Learning Beginner Track BITS Pilani Goa Campus

Lecture - 1
Learning Problem and Data

Instructor: Shangeth Rajaa

What is Learning?

Learning is any process by which a system improves performance from experience.

Learning as an Iterative Process

What is Machine Learning?

Machine Learning is the study of algorithms that improves their performance P, at task T, with experience E.

Example:

- T : Differentiate/classify images of cars and dogs.
- E: Many images with labels.
- P: Metric of classification(percentage of correctly classified images)

How is ML different from Programming?

```
def f(x):

y = 2*x+1

return y

Input

Computation

Program

y = f(x=2)

Traditional programming

Computation

Results
```


Machine Learning

```
def ML(x, y):
    # do something

# and find y = f(x)
return f

Desired
result

Machine learning

Computation

Program
```

Where is Machine Learning used?

Almost everywhere!

Applications are endless, slides won't be enough to talk about every applications.

Autonomous Vehicles (Cars, Underwater, Air)

Speech Recognition, Conversational Agents

Medical Diagnosis

Machine learning makes the diagnosis of many diseases cheaper, faster and more accurate than it used to be.

Source

So can we use machine learning everywhere?

- Some simple tasks doesn't need Machine learning like addition, counting, ..., etc.
- No Machine learning without Experience E. (X, y) are needed to get f: X-> y.
 So if you can't get the data, then ML cannot help you.

Framing the Learning Task - 1

You have an email in your inbox, frame a learning task for a ML model to classify your email as spam or not.

- T : Classify email as Spam or Not Spam.
- P : Percentage of emails correctly classified.
- E: Lots of emails with labels(Spam or Not Spam)

Framing the Learning Task - 2

Frame a ML task for Stock Prediction. Given past 20 days stock values, predict the next day stock price.

- T : Predict Stock Price at T+1 time
- P: How close if the predicted price to True price.
- E : Sets of stock prices with past 20 days price and the next day price.

Types of Learning:

- 1. Supervised Learning
- 2. Unsupervised Learning
- 3. Semi-supervised Learning
- 4. Reinforcement Learning
- 5. Some new type of learning may be added soon, at this rate of research in Al.

Supervised Learning

- Given Data X and Target y
- Find relation y = f(X)

Unsupervised Learning

Training Data X without the Target y.

Unsupervised Learning (Clustering Algorithm)

Semi-supervised Learning

Training Data X with few target y.

Reinforcement Learning

Agent gets rewards from sequence of best actions.

Learning System

- Choose a training experience or training data.
- Choose the target to learn.
- Representation of training data and target.
- Learning algorithm to infer/predict the target from data.

Learning System Example - Handwritten Digits Recognition

- Training data (X) = Images of handwritten digits of all 10 classes.
- Target (y) = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} respectively.
- Representation of X(each example) = array or tensor of shape (28, 28, 1).
- Representation of y(each example) = array of shape (1,1) from one of {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

Learning System Example - Email Spam Classification

- Training data (X) = Text Emails of both spam and not spam
- Target (y) = {0,1} respectively.
- Representation of X(each example) = array or tensor of shape (28, 28, 1).
- Representation of y(each example) = array of shape (1,1) from one of {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

Thank You!