Colle MP 17: Variables aléatoires + séries entières

16 janvier 2020

Colle 1

Mélanie (14) : écrit une inégalité entre complexes. Bien sinon. CECE Gaetan (14) : ne se souvient pas bien du critère des séries alternées ni du DSE de $\ln(1+x)$. Bien sinon.

Exercice 1. Cours

Exercice 2. Quels sont les z pour lesquels $\sum \frac{z^n}{n}$ converge?

Exercice 3.

- 1. Mq $E(X) = \sum_{k=1}^{\infty} P(X \ge k)$
- 2. Si X,Y sont uniformes sur $\{1,...,n\},$ quelle est l'espérance de $\min(X,Y)$ et $\max(X,Y)$?

Colle 2

Damien (10) : pense que \mathcal{P} et \mathbb{P} désignent la même chose. Se trompe dans le DSE et le rayon de convergence de ln. Écrit $\ln(-2)$. Léa DEFRAME (16) : très bien.

Exercice 1. Cours : Si X est une v.a.d., alors pour tout $A \in \mathcal{P}(X(\Omega))$, $X^{-1}(A) \in \mathcal{T}$

Exercice 2. DSE et rayon de CV de $\ln(1 + x - 2x^2)$?

Exercice 3. Une variable aléatoire X suit une loi binomiale de taille n et de paramètre p. Quelle est la loi suivie par la variable Y=n - X?

Exercice 4. Soit X une variable aléatoire suivant une loi géométrique de paramètre p. Calculer $E(\frac{1}{X})$.

Colle 3

Charlotte (16) : quelques erreurs de calcul. TB sinon. Lucas (13) : correct mais assez lent dans les exercices Exercice 1. Cours

Exercice 2. Calculer $\sum_{n=0}^{\infty} \frac{n}{3^n}$ (en utilisant une série entière dérivée).

Exercice 3. Mq la somme de 2 variables de Poisson indépendantes est une variable de Poisson.

Exercice 4. Soit X et Y deux variables aléatoires indépendantes suivant des lois de Bernoulli de paramètres p et q . Déterminer la loi de la variable $Z=\max(X,\,Y\,)$.