Nucleation Nucleation Mode Sulfates Simple Sulfates Soil Sulfat

Lecture 3 Module B/Air Quality:

Particles Size & Composition Measurement Methods

Harish C. Phuleria CESE, IIT Bombay

Email: phuleria@iitb.ac.in

ES 200/ 31.Oct.2017

Recap 1

Prabir Mallik/The World Bank

Recap 3

Spatial variation:

- Local/urban
- state or national
- regional or global

- hourly
- daily
- weekday
- seasonal
- annual
- diurnal

India

ES 200/31.Oct.2017

Indoor air pollution across the globe

Spatial distribution on global scale

The boundaries and names shown and the designations used on this map do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement.

Data Source: World Health Organization Map Production: Public Health Information and Geographic Information Systems (GIS) World Health Organization

Indoor air pollution across the globe: Rural areas

Spatial distribution on global scale

The boundaries and names shown and the designations used on this map do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement.

Data Source: World Health Organization Map Production: Public Health Information and Geographic Information Systems (GIS) World Health Organization

Today's Learning Objectives!

To understand particle composition & size distribution

 To learn about monitoring methods and thus able to quantify pollutants' concentrations

Particles - size matters!

Particles - size matters!

http://www.particlesciences.com/news/technical-briefs/2012/glossary-of-drug-nanotechnology.html

Particle size distribution: Ambient aerosols

ES 200/ 31.Oct.2017

Particle size distribution: Ambient aerosols

ES 200/31.Oct.2017

Particle size distribution: Diesel exhaust

https://www.dieselnet.com/tech/dpm_size.php

Class exercise!

Q. How many 0.2 μ m particles will have the same mass as that of one 10 μ m particle (assume same density)??

http://www.smokemachines.net/smoke-particle-size.shtml

Particle deposition in lungs

Husain et al., Health, 2011

Figure 1: ICRP¹ anatomical regions and airway generation model; Tracheobronchial region (generations 0-16) and pulmonary region (generations 17-23). (modified 19)

Particle deposition in lungs

Figure 2: Major mechanisms of particle deposition in the respiratory tract. ²⁰

Figure 6: Average predicted total and regional lung deposition based on ICRP ¹ deposition model for nose breathing for light exercise breathing condition. Highest deposition (ET region for 0.001 and 10 μm particles, bronchi region for 0.005 to 0.007 μm particles and alveolar region for 0.01 to 0.05 μm particles).

Husain et al., Health, 2011

Aerodynamic diameter

 $PM_{10} / PM_{2.5}$?

Mass concentration of all particles having aerodynamic diameter $\leq 10 / 2.5 \mu m$

ES 200/ 31.Oct.2017 Hinds, **1999** 16

Aerodynamic diameter

- Diameter of a unit density sphere (i.e., $\rho_p=1$, similar to a water droplet) with the same settling velocity as the particle in question

Aerodynamic size characterizes particle deposition in human lungs and filtration

ES 200/ 31.Oct.2017 Hinds, **1999** 17

Particles composition

- PM a complex mixture of particles that can be solid/ liquid or both
- vary in size composition and origin

Complex Mixture Bulk composition:
EC, OC, Nitrate, Sulfate,
EC, oc, Nitrate, Sulfate,
Ammonium, dust
Ammonium, dust
Ammonium, dust
Heavy metals, PAHs, ...

PM₁₀ chemical a composition across Indian cities

PM₁₀ sources in cities across the globe

Particle shape & size

ES 200/31.Oct.2017

Air quality monitoring network

How to manage air quality

- ... in a city, region or countrywide ???
 - NAMP (National Air Monitoring Program): >680 stations in 300 cities/areas (http://www.cpcb.nic.in/air.php)
 - Typically SO₂, NO₂, PM_{2.5}, PM₁₀ measured
 - Monitoring is conducted twice a week for 24 hours (resulting in 104 daily measurements /year)

Air quality monitoring network

How to manage air quality ... in a city, region or countrywide ???

- To monitor state of environment:
 - to enforce regulations, and
 - to evaluate success of control measures
- For use in scientific studies (e.g. in investigating environmental and/or health effects of air pollution)

Air quality in Indian citie

TOXIC AIR QUALITY IN INDIA SKIES CITIES IS FAST DETER

Moderate

Very Poor

Severe

Poor

401-500 The Hindu @7.Apr.2015

Violations of Air Quality standards (on the basis of average levels at all stations)

			SECTION AND DESCRIPTION OF
City	Days with data	% of days exceeding standards	
		Apr-Jun	Jul-Nov
Mumbai	142	NA	33
Hyderabad	232	44	45
Navi Mumbai	217	57	FAQ
Agra	211	mber	251
Chandrapur,	igher no	ADYAJU	54
Navi Mumbai Agra Chandrapur Pure are here viola dardsbad	tions in	NA	57
theredviols	180	63	60
dardabad	179	79	69
Bangalore	235	77	70
Varanasi	218	86	76
Chennai	233	99	71
Kanpur	220	89	81
Lucknow	232	99	83
Delhi	236	100	93
Dellii	230	100	73

Times of India @16.Dec.2015

Bengaluru

310

Monitoring networks & data sources

- **Central Pollution Control Board (CPCB)** http://www.cpcb.nic.in/air.php
- Maharashtra Pollution Control Board (MPCB) http://mpcb.gov.in/envtdata/envtair.php
- US Environmental Protection Agency (USEPA) http://www.epa.gov/gateway/science/air.html
- California Air Resources Board (CARB) http://www.arb.ca.gov/agmis2/agdselect.php
- European Environmental Agency (EEA) http://www.eea.europa.eu/themes/air/airbase/airbase

- Clean Air World/ National Association of Clean Ai http://www.cleanairworld.org/
- World Health Organization (WHO) http://www.who.int/topics/air_pollution

Home work !!!

- Do you have an air quality monitoring station in your city? If not, in the nearest city? What is the current status of air quality there?
- In the last 5 years or decade has the air quality improved or worsened? Why?

Please do this **by Mon, 6.11**; we will then discuss!

http://www.cpcb.gov.in/CAAQM/frmUserAvgReportCriteria.aspx www.cpcb.gov.in/CAAQM/

Use the resources mentioned in the lecture, OR simply Google !!