Name: Cem Meriç Şefikoğulları

ID: 2448850

Q1)

Figure of machine

Initial state: 000111,q0

End state: _,accept state accepted

Initial state:0000111,q0

End state: 0,q5 rejected

Initial state: 000011111,q0

End state: 1,q0 rejected

Initial state: 0001110, q0

End state: 0001110, q1 rejected

Initial state:001101, q0

End state: 001101,q1 rejected

Initial state: 100011, q0

End state: 100011, q0 rejected

Description of the states:

Start State q0:

If symbol 0 move right go to the q5 state

If symbol blank move right go to accept state

State q1:

If symbol q1 move right stay in the q1 state

If symbol blank move left go to the q2 state

State q2:

If symbol 1 replace it by blank move left go to the q3 state

State q3:

If symbol 1 or 0 move left stay in the q3 state

If symbol blank move right go to the q4 state

State q4:

If symbol 0 replace it by blank move right go to the q0 state

State q5:

If symbol 0 move right stay in the q5 state

If symbol 1 move right go to the state q1

Accept state:

Accept the string

Q2)

Figure of Machine

Initial state 1011

End state: 10111101

Initial state:1110

End state: 11100111

Initial state: 0101

Initial state:1010

Initial State: 00111

Initial State: 1010001

Description of states:

Start State:

If symbol 1 or 0 move right, stay in the start sate

If symbol blank move left, go to state last

Last State:

If symbol is 1, replace it by X and move right go to the haveA state

If symbol is 0, replace it by Y and move right go to the haveB state

If symbol X or Y move to the left stay in the last state

haveA state:

If symbol 1,0,X or Y move right, stay in the haveA state

If symbol blank replace it by 1 move left and go to the beginning state

haveB state:

If symbol 1,0,X or Y move right, stay in the haveB state

If symbol blank replace it by 0 move left and go to the beginning state

Beginning state:

If symbol 1 or 0 move left stay in the beginning state

If symbol is X or Y move left go to the inter state

Inter state:

If symbol 1 or 0 move right go tot the last state

If symbol X or Y, move left stay in the inter state

If symbol blank move right go to the write_op state

Write_op state:

If symbol X replace it by 1 move right stay in the write_op state

If symbol Y replace it by 0 move right stay in the write op state

If symbol 1 or 0 move right, go to the Accept state

Q3)

Turing machine with two dimensional tape, have one finite control, one read-write head and one two dimensional tape. It has top and left ends, and they goes like right and down. The machine has subparts as rows of small squares.

V	V	v	V	••••
h	1	2	6	
h	3	5	8	
h	4	9	13	

This machine is a pentuple $M=(K,\Sigma,\delta,s,H)$,

 δ function is from K x Σ to K x ($\Sigma \cup \{ \rightarrow, \downarrow, \leftarrow, \uparrow \}$), and $\delta(q1, \triangleright) = (q2, \rightarrow)$, $\delta(q1, \Delta) = (q2, \uparrow)$ for all q1

Configuration is : $K \times N \times N \times T$ where S is set of functions form $N \times N$ to Σ

Configuration is represented by current state, current head position, list of all non-blank squares on the tape.

 $(q1,a1,b1,z1) \vdash M (q2,a2,b2,z2)$ This holds

if $\delta(q1,z1(a1,b1)) = (q2,\#)$ and one of the below

a1=a2, b1+1= b2, z1=z2, and # = \rightarrow

a1=a2, b1-1= b2, z1=z2, and $\# = \leftarrow$

a1+1=a2, b1=b2, z1=z2, and $\# = \uparrow$

a1-1 = a2, b1=b2, z1=z2, and $\# = \downarrow$

a1=a2, b1=b2, z2(a1,b1)= #, z2(a, b)=z1(a, b) for all other pairs (a, b), and # \notin { \rightarrow , \downarrow , \leftarrow , \uparrow } given a string w lets take $z_w \in T$ be a function which z(i+1,1) = w(i) for $0 < i \le |w|$, $z(0,b) = \triangleright$ for $b \in N$, $z(a,0) = \Delta$ for all a>0, and z(a,b) ="", in different situation. If machine as two halting states y and n such that for any string w

 $(s,1,1,z_w) \vdash_M^* (y,i,j,z')$ or $(s,1,1,z_w) \vdash_M^* (n,i,j,z')$ For such a machine deciding a language is the set of strings for which halts in the y state.

Standard Turing machines can simulate every move of a Turing machine with two dimensional tape. Hence they are at least as powerful as Turing machines with a two dimensional tape.

Since we have two dimensional tape it requires a quadratic time to find the coordinates that we do our operations and we can do our operations in constant time let's say. If we operate t times we will have $O(t^3)$. So we can say that can be simulated by a standard Turing machine in time that is polynomial in t and n.