

March 1988

MM54C89/MM74C89 64-Bit TRI-STATE® Random Access Read/Write Memory

General Description

The MM54C89/MM74C89 is a 16-word by 4-bit random access read/write memory. Inputs to the memory consist of four address lines, four data input lines, a write enable line and a memory enable line. The four binary address inputs are decoded internally to select each of the 16 possible word locations. An internal address register latches the address information on the positive to negative transition of the memory enable input. The four TRI-STATE data output lines working in conjunction with the memory enable input provide for easy memory expansion.

Address Operation: Address inputs must be stable t_{SA} prior to the positive to negative transition of memory enable. It is thus not necessary to hold address information stable for more than t_{HA} after the memory is enabled (positive to negative transition of memory enable).

Note: The timing is different than the DM7489 in that a positive to negative transition of the memory enable must occur for the memory to be selected.

Write Operation: Information present at the data inputs is written into the memory at the selected address by bringing write enable and memory enable low.

Read Operation: The complement of the information which was written into the memory is non-destructively read out at the four outputs. This is accomplished by selecting the desired address and bringing memory enable low and write enable high

When the device is writing or disabled the output assumes a TRI-STATE (Hi-z) condition.

Features

■ Wide supply voltage range	3.0V to 15V
■ Guaranteed noise margin	1.0V
■ High noise immunity	0.45 V _{CC} (typ.)
■ Low power	fan out of 2
TTL compatibility	driving 74L
■ Low power consumption	100 nW/package (typ.)

■ Fast access time 130 ns (typ.) at V_{CC} = 10V

■ TRI-STATE output

Logic and Connection Diagrams

Order Number MM54C89 or MM74C89

TRI-STATE® is a registered trademark of National Semiconductor Corporation

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

 $-0.3\mbox{V}$ to $\mbox{V}_{\mbox{CC}} + 0.3\mbox{V}$ Voltage at any Pin

Operating Temperature Range

MM54C89 -55°C to +125°C

MM74C89 -40°C to $+85^{\circ}\text{C}$

-65°C to +150°C Storage Temperature Range (T_S)

Power Dissipation (PD) Dual-In-Line

700 mW Small Outline 500 mW Operating V_{CC} Range 3.0V to 15V 18V

Absolute Maximum V_{CC} Lead Temperature (T_L)

(Soldering, 10 seconds) 260°C

DC Electrical Characteristics Min/Max limits apply across temperature range, unless otherwise noted

Symbol	Parameter	Conditions	Min	Тур	Max	Units
CMOS TO	CMOS					
V _{IN(1)}	Logical "1" Input Voltage	$V_{CC} = 5.0V$ $V_{CC} = 10V$	3.5 8.0			V
V _{IN(0)}	Logical "0" Input Voltage	$V_{CC} = 5.0V$ $V_{CC} = 10V$			1.5 2.0	V V
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 5.0V, I_{O} = -10 \mu A$ $V_{CC} = 10V, I_{O} = -10 \mu A$	4.5 9.0			V
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 5.0V, I_{O} = +10 \mu A$ $V_{CC} = 10V, I_{O} = +10 \mu A$			0.5 1.0	V
I _{IN(1)}	Logical "1" Input Current	V _{CC} = 15V, V _{IN} = 15V		-0.005	1.0	μΑ
I _{IN(0)}	Logical "0" Input Current	$V_{CC} = 15V, V_{IN} = 0V$	-1.0	-0.005		μΑ
l _{OZ}	Output Current in High Impedance State	$V_{CC} = 15V, V = 15V$ $V_{CC} = 15V, V_{O} = 0V$	-1.0	0.005 -0.005	1.0	μA μA
Icc	Supply Current	V _{CC} = 15V		0.05	300	μΑ
CMOS/LP	TTL INTERFACE					
V _{IN(1)}	Logical "1" Input Voltage	54C, V _{CC} = 4.5V 74C, V _{CC} = 4.75V	V _{CC} - 1.5 V _{CC} - 1.5			V
V _{IN(0)}	Logical "0" Input Voltage	54C, V _{CC} = 4.5V 74C, V _{CC} = 4.75V			0.8 0.8	V V
V _{OUT(1)}	Logical "1" Output Voltage	54C, $V_{CC} = 4.5V$, $I_{O} = -360 \mu A$ 74C, $V_{CC} = 4.75V$, $I_{O} = -360 \mu A$	2.4 2.4			V
V _{OUT(0)}	Logical "0" Output Voltage	54C, $V_{CC} = 4.5V$, $I_{O} = +360 \mu A$ 74C, $V_{CC} = 4.75V$, $I_{O} = +360 \mu A$			0.4 0.4	V
OUTPUT D	ORIVE (See 54C/74C Family Ch	aracteristics Data Sheet) (Short Circu	it Current)	•		
ISOURCE	Output Source Current (P-Channel)	$V_{CC} = 5.0V, V_{OUT} = 0V$ $T_A = 25^{\circ}C$	-1.75	-3.3	-	mA
ISOURCE	Output Source Current (P-Channel)	$V_{CC} = 10V, V_{OUT} = 0V$ $T_A = 25^{\circ}C$	-8.0	-15		mA
I _{SINK}	Output Sink Current (N-Channel)	$V_{CC} = 5.0V, V_{OUT} = V_{CC}$ $T_A = 25^{\circ}C$	1.75	3.6		mA
I _{SINK}	Output Sink Current (N-Channel)	V_{CC} = 10V, V_{OUT} = V_{CC} T_A = 25°C	8.0	16		mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

AC Electrical Characteristics* $T_A = 25^{\circ}C$, $C_L = 50$ pF, unless otherwise noted

Symbol	Parameter Conditions Min		Тур	Max	Units	
t _{pd}	Propagation Delay from Memory Enable	$V_{CC} = 5V$ $V_{CC} = 10V$	270 100	500 220	ns ns	
t _{ACC}	Access Time from Address Input	$V_{CC} = 5V$ $V_{CC} = 10V$		350 130	650 280	ns ns
t _{SA}	Address Setup Time	$V_{CC} = 5V$ $V_{CC} = 10V$	150 60			ns ns
t _{HA}	Address Hold Time	$V_{CC} = 5V$ $V_{CC} = 10V$	60 40			ns ns
t _{ME}	Memory Enable Pulse Width	$V_{CC} = 5V$ $V_{CC} = 10V$	400 150	250 90		ns ns

AC Electrical Characteristics* T _A = 25°C, C _L = 50 pF, unless otherwise noted (Continued)							
Symbol	Parameter	Conditions	Min	Тур	Max	Units	
t _{SR}	Write Enable Setup Time for a Read	V _{CC} = 5V V _{CC} = 10V	0			ns ns	
t _{WS}	Write Enable Setup Time for a Write	V _{CC} = 5V V _{CC} = 10V			t _{ME}	ns ns	
t _{WE}	Write Enable Pulse Width	$V_{CC} = 5V, t_{WS} = 0$ $V_{CC} = 10V, t_{WS} = 0$	300 100	160 60		ns ns	
t _{HD}	Data Input Hold Time	V _{CC} = 5V V _{CC} = 10V	50 25			ns ns	
t _{SD}	Data Input Setup	V _{CC} = 5V V _{CC} = 10V	50 25			ns ns	
t _{1H} , t _{0H}	Propagation Delay from a Logical "1" or Logical "0" to the High Impedance State from Memory Enable	$V_{CC} = 5V, C_L = 5 \text{ pF}, R_L = 10k$ $V_{CC} = 10V, C_L = 5 \text{ pF}, R_L = 10k$		180 -85	300 120	ns ns	
t _{1H} , t _{0H}	Propagation Delay from a Logical "1" or Logical "0" to the High Impedance State from Write Enable	$V_{CC} = 50V, C_L = 5 pF, R_L = 10k$ $V_{CC} = 10V, C_L = 5 pF, R_L = 10k$		180 85	300 120	ns ns	
C _{IN}	Input Capacity	Any Input (Note 2)		5		pF	
C _{OUT}	Output Capacity	Any Output (Note 2)		6.5		pF	
C _{PD}	Power Dissipation Capacity	(Note 3)		230		pF	

^{*}AC Parameters are guaranteed by DC correlated testing.

$\textbf{AC Electrical Characteristics*} \ \ \text{Guaranteed across the specified temperature range, C}_L = 50 \ \text{pF}$

Parameter	Conditions	$\begin{array}{l} \text{MM54C89} \\ \text{T}_{\text{A}} = -55^{\circ}\text{C to } + 125^{\circ}\text{C} \end{array}$					
		Min	Max	Min	Max		
t _{PD}	$V_{CC} = 5V$ $V_{CC} = 10V$ $V_{CC} = 15V$		700 310 250		600 265 210	ns ns ns	
t _{ACC}	$V_{CC} = 5V$ $V_{CC} = 10V$ $V_{CC} = 15V$		910 400 320		780 345 270	ns ns ns	
t _{SA}	$V_{CC} = 5V$ $V_{CC} = 10V$ $V_{CC} = 15V$	210 90 70		180 80 60		ns ns ns	
t _{HA}	$V_{CC} = 5V$ $V_{CC} = 10V$ $V_{CC} = 15V$	80 55 45		70 50 40		ns ns ns	
t _{ME}	$V_{CC} = 5V$ $V_{CC} = 10V$ $V_{CC} = 15V$	560 210 170		480 180 150		ns ns ns	
t _{WE}	$V_{CC} = 5V$ $V_{CC} = 10V$ $V_{CC} = 15V$	420 140 110		360 120 100		ns ns ns	
t _{HD}	$V_{CC} = 5V$ $V_{CC} = 10V$ $V_{CC} = 15V$	70 35 30		60 30 25		ns ns ns	

^{*}AC Parameters are guaranteed by DC correlated testing.

Note 2: Capacitance is guaranteed by periodic testing.

Note 3: C_{PD} determines the no load AC power consumption of any CMOS device. For complete explanation see 54C/74C Family Characteristics application note, AN-90.

AC Electrical Characteristics* Guaranteed across the specified temperature range, $C_L = 50 \ pF$ (Continued)

Parameter	Conditions	$\begin{aligned} \mathbf{MM54C89} \\ \mathbf{T_A} &= -\mathbf{55^{\circ}C} \text{ to } + \mathbf{125^{\circ}C} \end{aligned}$		$T_{A} = -40^{\circ}$	Units	
		Min	Max	Min	Max	
t _{SD}	V _{CC} = 5V V _{CC} = 10V	70 35		60 30		ns ns
t _{1H} , t _{0H}	$V_{CC} = 15V$ $V_{CC} = 5V$	30	420	25	360	ns
-111, -011	$V_{CC} = 10V, C_L = 5 \text{ pF}$ $V_{CC} = 15V, R_L = 10 \text{ k}\Omega$		170 135		145 115	ns ns

^{*}AC Parameters are guaranteed by DC correlated testing.

Truth Table

ME	WE	Operation	Condition of Outputs
L	L	Write	TRI-STATE
L	Н	Read	Complement of Selected Word
Н	L	Inhibit, Storage	TRI-STATE
Н	Н	Inhibit, Storage	TRI-STATE

TL/F/5888-4

AC Test Circuits

TL/F/5888-3

Switching Time Waveforms

Physical Dimensions inches (millimeters)

Ceramic Dual-In-Line Package (J) Order Number MM54C89J or MM74C89J NS Package Number J16A

Molded Dual-In-Line Package (N) Order Number MM54C89N or MM74C89N NS Package Number N16E

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor

National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Fax: (+49) U-18U-35U oo oo Email: onjwege tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tei: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 National Semiconductor

Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor

Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408