Fallstudien II

Laura Kampmann, Christian Peters, Alina Stammen 18. Dezember 2020

Inhalt

Task I - Vorhersage der Datenrate
 Extreme Gradient Boosting
 Regression mit ARMA-Fehlern

Modellvergleich

- 2. Task II Handover Vorhersage und Link Lifetime Feature Importance
- 3. Ausblick

Task I - Vorhersage der Datenrate

Extreme Gradient Boosting

Extreme Gradient Boosting

- · Additives Training eines Ensembles aus "schwachen " Lernern
 - ⇒ In unserem Fall einfache CART-Bäume
- Jeder neue Baum versucht, die Schwächen seiner Vorgänger auszugleichen
 - ⇒ Mit jedem neuen Baum sinkt der Training-Error
- Implementiert in XGBoost Bibliothek
 - Sehr gut skalierbar, funktioniert noch problemlos mit mehreren Milliarden Samples
 - Lässt sich aber auch hervorragend auf ressourcenbegrenzten Systemen einsetzen [1]

Features

Abbildung 1: Modellfeatures [4].

Validierung

Abbildung 2: Einteilungen in Trainings- und Testdatensätze bei der Kreuzvalidierung für Zeitreihen.

Tuning

Suchraum der Hyperparameter:

- Anzahl der Boosting Runden $n_rounds \in [100, 1000]$
- "Shrinkage " Faktor (Lernrate) $\eta \in [0.01, 1]$
- · Strafterm für Anzahl Baumblätter $\gamma \in [0, 10]$
- · Strafterm für Vorhersagen der Baumblätter $\lambda \in [0, 10]$

⇒ Randomisierte Gittersuche

- · 20 Gitterpunkte in jeder Dimension
 - \Rightarrow Insgesamt 20⁴ = 160.000 Gitterpunkte
- · Ausgewertet an 50 zufälligen Stellen
- Berechnung des MAE mit Zeitreihenkreuzvalidierung für die Fahrten 1-7

Out-of-Sample Vorhersagen Upload

Abbildung 3: XGBoost Out-of-Sample Vorhersagen der Upload-Rate

Out-of-Sample Vorhersagen Download

Abbildung 4: XGBoost Out-of-Sample Vorhersagen der Download-Rate

Task I - Vorhersage der Datenrate

Regression mit ARMA-Fehlern

Gegeben:

- Beobachtungen $(y_1, ..., y_T)$ der Zeitreihe $(y_t)_t$
- Beobachtungen $(x_1^{(i)},...,x_T^{(i)})$ der Zeitreihen $(x_t^{(i)})_t$ für i=1,...,k

Modellgleichung: Regression mit ARMA(p, q)-Fehlern [3]

$$\begin{aligned} y_t &= c + \sum_{j=1}^k \beta_j x_t^{(j)} + \eta_t \text{ mit} \\ \eta_t &= \sum_{k=1}^p \phi_p \eta_{t-p} + \sum_{l=1}^q \theta_l \epsilon_{t-q} + \epsilon_t \\ \text{vergangene Fehler: LM} & \text{vergangene Fehler: ARMA} \end{aligned}$$

Vorarbeit:

- · Überprüfung Autokorrelation der Zielvariablen (Acf, pAcf)
- · Standardisierung Train, Skalierung Test

Überprüfung der Voraussetzungen:

- · Stationarität aller Variablen (Augmented Dickey-Fuller Test)
- · keine Multikollinearität vorhanden (VIF)
- Normalverteilung der Residuen (Scatterplot, Histogramm, QQ-Plot)

Bestimmung des Grids für die AR-Ordnung - Uplink

Abbildung 5: Partielle

Autokorrelationsfunktion der Residuen des linearen Modells in Richtung Uplink.

Bestimmung des Grids für die MA-Ordnung - Uplink

Abbildung 6: Autokorrelationsfunktion der Residuen des linearen Modells in Richtung Uplink.

Modellvergleich

Task I - Vorhersage der Datenrate

Modellvergleich Uplink - Kennzahlen

Modellvergleich Downlink - Kennzahlen

Modellvergleich Uplink - Feature Importance

Methodenvergleich XGBoost - Uplink

Modellvergleich Downlink - Feature Importance

Methodenvergleich XGBoost - Downlink

Datentransformation

Idee: Prädiktionsmodell XGBoost für Link Lifetime mit Einfluss des RSRP/RSRQ der verbundenen sowie der Nachbarzellen

- \rightarrow Datentransformation
 - · RSRP/RSRQ Nachbarzellen:
 - ightarrow mehrere Messungen Filtern des besten Wertes zum aktuellen
 - Zeitpunkt
 - ightarrow keine Messungen Übernehmen des letzten Wertes
 - \cdot eNodeB Wechsel o Response Variable Link Lifetime

Features

- · link_lifetime : Link-Lifetime
- rsrp_dbm/rsrq_db : Signalstärke/Signalqualität (RSRP/RSRQ) der verbundenen Zellen
- rsrp_neighbor/rsrq_neighbor: Signalstärke/Signalqualität (RSRP/RSRQ) der Nachbarzellen
- rssnr_db : Signal-Rausch-Verhältnis (RSSNR)
- eNodeB : Funkmasten im LTE-Netzwerk
- velocity_mps: Geschwindigkeit des mobilen Endgeräts
- ta : Timing Advance (TA) Wert zur Synchronisation zwischen Upund Downlink
- · cqi : Channel Quality Indicator (CQI)

Vorgehen

Wichtige Schritte:

- · Aufsplitten der Daten Training/ Test
- · Zufälliger Grid-Search
- · Tunen der Parameter Zeitreihenkreuzvalidierung
- · Validieren des Modells auf dem Testdatensatz

$\to \text{Analog zu Task I}$

Ergebnisse - Zeitreihenplot O2

Ergebnisse - Zeitreihenplot T-Mobile

Ergebnisse - Zeitreihenplot Vodafone

Ergebnisse - Scatterplot

Ergebnisse - Kennzahlen

Feature Importance

und Link Lifetime

Task II - Handover Vorhersage

Feature Importance

Ausblick

Ausblick

Verbesserung des Tuning-Verfahrens

- · Latin Hypercube Sampling statt fixes Gitter
 - Mehr Diversität innerhalb der Parameter trotz gleichmäßiger Abdeckung des Suchraumes
- Black-Box Optimization wie z.B. Evolutionäre Algorithmen anstelle von Gittersuche

Sensitivitätsanalyse der Hyperparameter

· Welche Parameter machen wirklich einen Unterschied?

Literatur i

T. Chen and C. Guestrin.

Xgboost: A scalable tree boosting system.

CoRR, abs/1603.02754, 2016.

T. Hastie, R. Tibshirani, and J. Friedman.

The elements of statistical learning: data mining, inference and prediction.

Springer, 2 edition, 2009.

R. Hyndman and G. Athanasopoulos. Forecasting: principles and practice, 2018.

B. Sliwa and C. Wietfeld.

Data-driven network simulation for performance analysis of anticipatory vehicular communication systems.

IEEE Access, 7:172638-172653, 2019.

Gradient Boosted Trees

- Kann man aus vielen "schwachen" Lernern einen starken Lerner konstruieren?
 - ⇒ Ja, Boosting ist eines der mächtigsten Konzepte des Machine Learning [2]
- Kombination von einfachen CART Bäumen zu einem starken Ensemble
 - ⇒ Ähnlich zu Random Forest
- · Der Unterschied zum Random Forest liegt im Training!

Training von Gradient Boosted Trees

- · Bäume werden nacheinander zum Ensemble hinzugefügt
- Jeder neue Baum versucht, die Schwächen seiner Vorgänger äuszubügeln"
 - ⇒ Additives Training
- Je mehr Bäume aufgenommen werden, desto geringer wird der Training-Error (das Modell wird aber komplexer)
 - ⇒ Kontrolle des Bias-Variance Tradeoffs
 - ⇒ Zusätzlich gibt es Regularisierungs-Parameter

Implementierung: XGBoost

- Liefert state-of-the-art Performance in einer Vielzahl von ML-Problemen
- In 2015 haben 19/25 Gewinner von Kaggle-Competitions XGBoost eingesetzt
- Kann problemlos auf mehrere Milliarden Training Samples skaliert werden
- Lässt sich aber auch hervorragend auf ressourcenbegrenzten Systemen einsetzen [1]