

Topic: Naive Bayes

1.) Prepare a classification model using Naive Bayes for Salary data

•	age [‡]	workclass	education [‡]	educationno [‡]	maritalstatus [‡]	occupation	relationship [‡]	race ‡	sex [‡]	capital
1	39	State-gov	Bachelors	13	Never-married	Adm-clerical	Not-in-family	White	Male	2174
2	50	Self-emp-not-inc	Bachelors	13	Married-civ-spouse	Exec-managerial	Husband	White	Male	0
3	38	Private	HS-grad	9	Divorced	Handlers-cleaners	Not-in-family	White	Male	0
4	53	Private	11th	7	Married-civ-spouse	Handlers-cleaners	Husband	Black	Male	0
5	28	Private	Bachelors	13	Married-civ-spouse	Prof-specialty	Wife	Black	Female	0
6	37	Private	Masters	14	Married-civ-spouse	Exec-managerial	Wife	White	Female	0
7	49	Private	9th	5	Married-spouse-absent	Other-service	Not-in-family	Black	Female	0
8	52	Self-emp-not-inc	HS-grad	9	Married-civ-spouse	Exec-managerial	Husband	White	Male	0
9	31	Private	Masters	14	Never-married	Prof-specialty	Not-in-family	White	Female	14084
10	42	Private	Bachelors	13	Married-civ-spouse	Exec-managerial	Husband	White	Male	5178
11	37	Private	Some-college	10	Married-civ-spouse	Exec-managerial	Husband	Black	Male	0
12	30	State-gov	Bachelors	13	Married-civ-spouse	Prof-specialty	Husband	Asian-Pac-Islander	Male	0
13	23	Private	Bachelors	13	Never-married	Adm-clerical	Own-child	White	Female	0
14	32	Private	Assoc-acdm	12	Never-married	Sales	Not-in-family	Black	Male	0
15	34	Private	7th-8th	4	Married-civ-spouse	Transport-moving	Husband	Amer-Indian-Eskimo	Male	0

2.) Build a Naive Bayes model on the data set for classifying the ham and spam

•	type [‡]	text
1	ham	Hope you are having a good week. Just checking in
2	ham	Kgive back my thanks.
3	ham	Am also doing in cbe only. But have to pay.
4	spam	complimentary 4 STAR Ibiza Holiday or å£10,000 cash needs
5	spam	okmail: Dear Dave this is your final notice to collect your 4*
6	ham	Aiya we discuss later lar Pick u up at 4 is it?
7	ham	Are you this much buzy
8	ham	Please ask mummy to call father
9	spam	Marvel Mobile Play the official Ultimate Spider-man game (
10	ham	fyi I'm at usf now, swing by the room whenever
11	ham	Sure thing big man. i have hockey elections at 6, shouldn‰
12	ham	I anything lor
13	ham	By march ending, i should be ready. But will call you for sure
14	ham	Hmm well, night night
15	ham	K I'll be sure to get up before noon and see what's what
16	ham	Ha ha cool cool chikku chikku: \t DR \

Hints:

- 1. Business Problem
 - 1.1. Objective
 - 1.2. Constraints (if any)
- 2. Data Pre-processing
 - 2.1 Data cleaning, Feature Engineering etc.
- 3. Model Building
 - 3.1 Partition the dataset
 - 3.2 Model(s) Reasons to choose any algorithm
 - 3.3 Model(s) Improvement steps
 - 3.4 Model Evaluation
 - 3.5 Python and R codes
- 4. Deployment
 - 4.1 Deploy solutions using R shiny and Python Flask.
- 5. Result Share the benefits/impact of the solution how or in what way the business (client) gets benefit from the solution provided.

Note:

- 1. For each assignment the solution should be submitted in the format
- 2. Research and Perform all possible steps for improving the model(s) accuracy
 - Ex: Feature Engineering, Hyper Parameter tuning etc.
- 3. All the codes (executable programs) are running without errors
- 4. Documentation of the module should be submitted along with R & Python codes, elaborating on every step mentioned here