Project Title: Crime Type Prediction and Pattern Analysis in Kigali

Objective

To predict crime types in Kigali and analyze patterns based on the following factors:

- Location and Month: Identify where and when each crime type occurs most frequently.
- **Gender and Age Group**: Compare crime patterns among males, females, and others, across:

Younger: 15–30Adult: 31–60Elderly: 61–80

• Role Comparison: Understand differences between victims and suspects.

Project Requirements

1. Dataset

Use the provided dataset (kigali_crime_data.csv) containing 1000 rows. Focus only on Kigali locations and exclude the weather column.

2. Preprocessing

- o Extract month and hour from datetime fields.
- o Encode categorical variables (location, gender, crime type, role).
- o Fix the previous issue with age scaling.

3. **Modeling**

- Implement Random Forest and Logistic Regression models to predict crime type.
- o Conduct pattern analysis based on location, month, gender, age group, and role.

4. Evaluation

- o Evaluate models using accuracy and classification reports.
- o Interpret demographic and location-based patterns.

5. Visualizations

 Create simple and clear charts and graphs to communicate findings to all audiences.

6. **Dashboard**

 Develop an interactive Power BI dashboard for dynamic exploration of crime trends and patterns.

7. Final Report/Presentation

o To be developed later as per presentation requirements.

Key Concepts and Terminology

- **Normalization**: Scaling numeric features for model input (e.g., age), while keeping raw values for analysis and visualization.
- Classification: Predicting categories (e.g., crime types like Theft, Assault).
- **Pattern Analysis**: Uncovering trends such as seasonal spikes or demographic-based crime patterns.
- **Dashboard**: An interactive tool (in Power BI) to filter and visualize data insights.

Step 2: Dataset Description and Adjustments

Dataset Summary

- File: kigali crime data.csv
- Fields include: crime_id, location, date, time, crime_type, gender, role, age, weather, severity, latitude, longitude.
- The column weather will be excluded.
- severity will be used to predict high-severity crimes.

Age Scaling Fix

- Keep original age values (15–80) for all analysis and visualizations.
- Use StandardScaler only within the modeling phase.

Key Python Libraries Used

Library	Use Case
pandas	Tabular data manipulation (like Excel)
numpy	Numerical computation
datetime	Date and time management
random	Random sampling
scikit-learn	Machine learning models and preprocessing
folium	Interactive mapping
matplotlib/seaborn Data visualization	

Step 3: Analysis & Modeling

Preprocessing Summary

- Extract month from date and hour from time.
- Encode categorical variables.

- Create age groups.
- Normalize features only during modeling.

Modeling Techniques

- Random Forest Classifier
- **Logistic Regression**
- Additional task: Predict high-severity crimes.

Features Used for Modeling

Encoded location, month, hour, gender, role, age, severity

Evaluation Metrics

- Accuracy
- Classification reports
- Feature importance

Visualization Outputs

- Crime by location (bar chart)
- Crime by month (bar chart)
- Crime hotspots map (interactive, with folium)
- Gender vs. location (stacked bar chart)
- Age group vs. location (stacked bar chart)
- Role vs. location (stacked bar chart)

Here's a combined, detailed explanation of the code with a focus on the machine learning models, particularly Random Forest, and all related concepts in the context of the Kigali crime dataset analysis:

🔍 1. Data Loading and Preprocessing

The dataset kigali crime data.csv is read into a Pandas DataFrame, and several preprocessing steps are applied:

Categorical Encoding:

Categorical variables (location, crime type, gender, role) are encoded using LabelEncoder, transforming them into integers for use in ML models.

```
le location = LabelEncoder()
df['location encoded'] = le location.fit transform(df['location'])
```

Temporal Features:

- Month is extracted from the date.
- **Hour** is extracted from the time.

Age Grouping:

Converts age into bins: Younger, Adult, Elderly for better demographic analysis.

Feature Scaling:

age and severity are scaled using StandardScaler to normalize values for better model performance.

2. Machine Learning Models

♦ Objective 1: Predict Crime Type (Multiclass Classification)

Features Used:

```
['location encoded', 'month', 'hour', 'gender encoded', 'role encoded',
'age scaled', 'severity scaled']
```

© Target:

crime type encoded (represents different types of crimes)

Random Forest Classifier (RFC)

What is it?

Random Forest is an ensemble machine learning algorithm based on **decision trees**. It combines multiple trees to improve accuracy and avoid overfitting.

How it works:

- Trains multiple **decision trees** on random subsets of data and features.
- Uses **majority voting** for classification.

• Offers **feature importance** scores, showing which features most influence the model.

✓ Why use Random Forest?

- Handles both numerical and categorical features.
- Robust to noise and outliers.
- Offers interpretability through feature importances.

Evaluation:

```
accuracy_score(y_test, rf_pred)
classification report (y test, rf pred)
```

Reports **precision**, **recall**, **F1-score** for each crime type.

Feature Importance Output:

Ranks features like location, role, hour, etc., based on how much they influence the predictions.

+ Logistic Regression (Baseline Model)

What it does:

A linear model that estimates probabilities using a logistic function. Used here as a **benchmark**.

```
lr clf = LogisticRegression()
```

It's generally less powerful than Random Forest for non-linear problems but good for interpretable and fast training.

© Objective 2: Predict High Severity (Binary **Classification**)

Target:

```
df['high severity'] = (df['severity'] > 5).astype(int)
```

This turns severity into a binary label: 1 = high, 0 = low.

Model:

Another **Random Forest Classifier** is trained and evaluated similarly.

2. 3. Pattern Analysis Using Grouping

Grouping and counting crimes based on:

- location and month
- location and gender
- location and age group
- location and role

These help understand **crime distribution trends**.

4. Visualizations

Seaborn and Matplotlib

Used to generate:

- Crime types by location
- Crime types by month
- Crimes by gender, age group, and location

Saved as PNGs.

5. Crime Hotspot Mapping with KMeans and Folium

KMeans Clustering:

Used to find **5 clusters** (crime hotspots) based on GPS coordinates.

```
kmeans = KMeans(n clusters=5)
```

KMeans groups similar points (latitude and longitude) into clusters.

Folium Map:

Plots clustered crime locations with colored markers based on kmeans cluster. Popup info $includes \ {\tt location}, \ {\tt crime_type}, \ and \ {\tt severity}.$

Saved as an interactive HTML map: kigali_crime_hotspots.html

Summary of Machine Learning Concepts

Concept	Explanation
Label Encoding	Converts text labels into integers.
StandardScaler	Normalizes numerical data (mean=0, std=1).
Train-Test Split	Splits data into training (80%) and test (20%) for model evaluation.
Random Forest	Ensemble of decision trees, good for both classification and regression, robust and interpretable.
Logistic Regression	A simple linear model for classification problems.
Accuracy	Proportion of correct predictions.
Classification Report	Includes precision, recall, and F1-score.
Feature Importance	Measures how useful each feature was in the model.
KMeans Clustering	Groups similar data points into clusters.
Folium	Visualizes data on maps (great for geospatial data).