Modul Verteilte Systeme

Mehrpunktübertragung

Peter Tröger Beuth Hochschule für Technik Berlin Sommersemester 2020 (Version 1)

Beobachtung?

OSI-Modell

TCP/IP-Modell

Demo: Wireshark, Traceroute - Übungsaufgabe

Verteiltes System

Netzwerktopologie

Netzwerktopologie

- Physische Topologie Netzwerkkarten, Kabel, Wellenausbreitung
- Logische Topologie Datenfluss zwischen Endgeräten zur Laufzeit
- Grad Anzahl der Kanten an einem Knoten
- Durchmesser Größter
 Abstand zwischen zwei Knoten
 - Anzahl der Hops
 - Beispiel Linie: N-1

Netzwerktopologie

	Durchmesser	Grad	Anmerkung
Bus	1	1	Konfliktbehandlung nötig
Linie	N-1	1,2	Lange Verzögerungen möglich
Ring	N/2	2	Für bidirektionalen Ring
Binärer Baum	2(Höhe-1)	1,2,3	Effizientes Routing
Stern	2	1 , Zentrum N-1	Ähnlich zum Bus, aber bessere Fehlertoleranz
Voll- vermascht	1	N-1	Hoher Grad hat Auswirkung auf Kosten

Nachrichtenübertragung vs. Topologie

Übertragungsarten

- Punkt-zu-Punkt Übertragung (unicast, point-to-point)
 - Ein Sender, ein Empfänger, kein Knoten dazwischen
- Ende-zu-Ende Übertragung (unicast, end-to-end)
 - · Ein Sender, ein Empfänger, potentiell Knoten dazwischen
- Mehrpunktübertragung (broadcast, multicast, anycast)
 - Ein Sender, mehrere Empfänger, potentiell Knoten dazwischen
- Kombinationen aus Topologie und Übertragungsart auf jeder OSI-Schicht

Beispiel: DSLP Client

OSI - Schicht	Beispiel	Topologie	Übertragungsart
1/2	WLAN Access Points in der Nähe senden ihre SSID	Bus (Wellenausbreitung)	Mehrpunkt
1/2	Laptop im WLAN kommuniziert mit Router	Bus (Wellenausbreitung)	Punkt-zu-Punkt
1/2	Laptop mit Kabel am Switch, kommuniziert mit Router	Stern	Punkt-zu-Punkt
3	IP-Pakete zum DSLP-Server	Baum (logische Topologie)	Ende-zu-Ende
4	TCP-Verbindung zum DSLP-Server	vollvermascht (logische Topologie)	Punkt-zu-Punkt
7	DSLP group notify	vollvermascht (logische Topologie)	Punkt-zu-Punkt, Mehrpunkt

Übertragungsarten

Mehrpunktübertragung

- Layer 1-4 sollen auch Mehrpunktübertragung ermöglichen
- Grundidee: Spezielle
 Empfängeradressen, um
 Übertragungsmodus festzulegen

- Keine Punkt-zu-Punkt Kommunikation, Konzept einer "Verbindung" sinnlos
 - Teilnehmende Knoten wechseln beliebig, für den Sender nicht relevant
 - Effiziente Skalierung als primäre Aufgabe
- Mehrpunktübertragung = Versand und Verteilung einzelner Nachrichten

Mehrpunktübertragung - Broadcast

Mehrpunktübertragung - Broadcast

- Rundruf innerhalb der jeweiligen Topologie
 - Alle direkt erreichbaren Knoten werden angesprochen -> kein Routing
 - Pseudo-Adresse als Empfänger, gleicher Nachrichtenkopf
- Umsetzung hängt von der Topologie ab
 - Unterliegende Schicht beherrscht kein Broadcast -> Flooding
 - Ansonsten direkter gleichzeitiger Versand an alle
 - Beispiel: Bus vs. Ring

Klassisches Beispiel: Satelliten

- Geostationäre Umlaufbahn
- Verschiedene Radio- und Mikrowellenfrequenzen
 - Latenz ca. 270ms
 - Störungen durch Regen

- Für Telefonie, Internet, Ortsbestimmung, Wetteranalyse, Geoanalyse, ...
- · Immer broadcast, daher ggf. Ende-zu-Ende Verschlüsslung notwendig
- Internet über Satellit: Nur für Download, Upload per Telefonleitung

Ethernet Broadcast

- Empfängeradresse FF:FF:FF:FF:FF
 - Bus: Alle Stationen fühlen sich angesprochen und empfangen
 - Switch: Empfangenes Paket wird an alle Ports weitergeleitet
 - Gut beobachtbar mit Wireshark (eth.dst==FF:FF:FF:FF:FF:FF)
- Menge aller erreichbaren Knoten: Broadcast Domäne
 - Signifikante Belastung f
 ür das physische Netzwerk
 - · Einschränkung der Domäne durch VLANs und Router

Beispiel: Address Resolution Protocol (ARP)

- Problem: Finden der MAC Adresse zu einer IP-Adresse im eigenen LAN
 - Computer startet zum ersten Mal nach der Netzwerkeinrichtung
 - Anwendung möchte IP-Paket in die Welt verschicken
 - Betriebssystem muss MAC des Routers bestimmen, aber nur seine IP bekannt
- Lösung: ARP-Anfrage per Ethernet Broadcast
 - Enthält die IP-Adresse der gesuchten Maschine als Teil der Anfrage
 - Antwort von Maschine mit Unicast, gesuchte MAC-Adresse als Absender
- Betriebssystem verwaltet bekannte Liste der Übersetzungen (siehe man arp)

Beispiel: ARP

- ARP entstand zusammen mit IPv4, keine Security berücksichtigt
- Problem des ARP spoofing
 - Angreifer bringt Maschine in Ethernet-Segment ein
 - Antwortet auf ARP-Anfragen mit eigener MAC-Adresse
 —> man-in-the-middle Attacke
 - Technische Lösungen überwachen Netzwerk und prüfen ARP-Paket auf Plausibilität (zeitlicher Abstand, feste MAC-Liste, vergebene IP-Adressen)

IPv4 Broadcast

- Limited broadcast Zieladresse 255.255.255.255
 - Direkte Übersetzung in Layer 1/2 Broadcast
 - Bei Ethernet entsprechend FF:FF:FF:FF:FF:als Empfänger
- Directed broadcast an alle Knoten in einem bestimmten IP-Subnetz
 - Bits der Geräte-ID in der Adresse werden auf 1 gesetzt
 - Beispiel 192.168.0.0/24 -> Broadcast-Adresse 192.168.0.255 für Subnetz
 - Routing in's Zielnetz mittlerweile untersagt (RFC 2644)
- Programmierung mit Sockets als UDP Broadcast

Beispiel: Schlumpf-Attacke

- Identifikation eines Netzwerks, welches eingehende Broadcast-Pakete am Router akzeptiert
- Senden eines Broadcast-Pakets mit gefälschter Absender-IP-Adresse
 - Beispiel Ping-Paket (ICMP Echo Request):
 Alle (!) Knoten antworten dem Absender
 - Gewähltes Opfer wird mit Antwortpaketen überflutet
 - Typische **Distributed Denial of Service** Attacke
- Directed Broadcast deshalb mittlerweile an Routern geblockt

Beispiel: Dynamic Host Configuration Protocol (DHCP)

- Standard in allen modernen Netzen, besonders bei WLAN
- · Automatische Zuweisung von IP-Adresse, Router-Adresse, DNS-Server, ...
- Falls DHCP-Server noch nicht bekannt:
 - DHCPDISCOVER: Client sendet UDP-Broadcast an 255.255.255.255.67
 - DHCPOFFER: Server antwortet mit Angebot an Port 68
 - DHCPREQUEST: Client fordert (erneute) Reservierung einer IP-Adresse
 - DHCPACK: Server bestätigt Reservierung

Beispiel: DHCP Server

```
# DHCP-Server ist die Autorität im Subnetz
authoritative;
# Definition des ersten Subnetzes
subnet 192.168.2.0 netmask 255.255.255.0 {
        range 192.168.2.10 192.168.2.40;
        default-lease-time 600;
        max-lease-time 7200;
        option domain-name "mein-tolles-netzwerk.de";
        option domain-name-servers 192.168.2.1;
        option broadcast-address 192.168.2.255;
        option subnet-mask 255.255.255.0;
        option routers 192.168.2.1;
# Zuweisung einer festen IP-Adresse, basierend auf MAC
gameserver
        hardware ethernet 00:00:0e:d2:da:be;
        fixed-address 192.168.2.5;
        option host-name "gameserver";
```

Beispiel: DHCP Server

- Erneuerung der Reservierung (renew): Client sendet periodisch DHCPREQUEST als Unicast-Nachricht nach Hälfte der Lease-Time
- Clients können freiwillig ihre Adresse aufgeben (DHCPRELEASE)
- Router kann als DHCP Relay arbeiten
 - Nimmt Broadcast-Pakete von Clients entgegen
 - Weiterleitung per Unicast an DHCP-Server in anderem Subnetz
- DHCP Clients akzeptieren jede Antwort —> Security-Problem
- · Authorative Server: Kennt alle IP-Adressen, lehnt falsche Reservierungen ab

IPv4 vs. IPv6 Broadcast

- Bei Erfindung von IPv4 existierte noch keine Alternative zu Broadcast
 - Viele klassische Protokolle enthalten "Rundruf" als essentiellen Teil
 - Bei größeren Netzen viel periodischer Datenverkehr
- IPv6 unterstützt kein direktes Broadcast mehr
 - Keine "Schnatterei" mehr auf dem Übertragungsmedium
 - Vollständig ersetzt durch Multicast
 - Multicast an Gruppe mit allen Knoten = Broadcast

Broadcast auf höheren Schichten

- IPv4 Broadcast nur im eigenen Subnetz
- Layer 7 IPv4 Anwendungen nutzen deshalb Flooding
- Bsp. DSLP-Server
 - Server empfängt group notify Nachricht auf TCP/IP-Verbindung
 - Schleife über Liste aller offenen TCP/IP-Verbindungen, jeweils group notify - Nachricht wieder versenden
 - Ergebnis: Broadcast auf Layer 7, Unicast auf Layer =< 4
- Effizientere globale Mehrpunktübertragung nur mit nativen IPv6 Multicast

- Generischer Begriff aus der Nachrichtenübertragung
- Versand an eine definierte Gruppe von Knoten
- Wieder spezielle Zieladressen
 - IPv4: 224.0.0.0 bis 239.255.255.255
 - IPv6: ff::/8
- Knoten muss einer Multicast-Gruppe explizit beitreten, um Daten zu erhalten
- Senden von Datenpaketen ist auch ohne Beitritt möglich (Analogie Radio)

- Protokoll zwischen Routern für Informationsaustausch über Gruppenmitgliedschaft
- Ebenfalls Protokoll zur Ermittlung optimaler Routen nötig
- Wenn ein Router nicht mitspielt, funktioniert der Ansatz nicht mehr
- Viele Forschungsprojekte zur globalen Umsetzung in IPv4
 -> als gescheitert betrachtet

Badarneh, Osamah & Kadoch, Michel. (2009). Multicast Routing Protocols in Mobile Ad Hoc Networks: A Comparative Survey and Taxonomy. EURASIP Journal on Wireless Communications and Networking. 2009. 10.1155/2009/764047.

- Internet Group Management Protocol (IGMP)
 - Router sendet Nachfrage an "All Systems Group" (224.0.0.1)
 - Alle 60-120 Sekunden
 - Ein Knoten antwortet mit "Host Membership Report", Bericht über Gruppen und deren Mitglieder
 - Nachrichten von Mitgliedern beim Betreten und Verlassen einer Gruppe
 - Ausschliesslich Regelung der Mitgliedschaft, keine Routing-Entscheidungen

- Komplexe Protokolle, damit Router Multicast-Übertragung miteinander regeln
 - Fragestellung: Hier schon verteilen, oder erst weiterleiten?
 - Broadcast an benachbarte Router (dense mode)
 - Rendezvous Router zur Verteilung (sparse mode)
- IGMP Snooping
 - Intelligenter Switch versteht IGMP Pakete
 - Ordnet Multicast Mitglieder entsprechend den Ports zu

- Multicast in IPv4 Netzen funktioniert nur verlässlich innerhalb des Subnetzes
 - Grundlage für einige Layer 7 Protokolle (ZeroConf, Bonjour, ...)
 - Interessante Ausnahme: TV Streaming im Netz der Telekom
- Alternative: Automated Multicast Tunneling (AMT)
- IPv6
 - Broadcast im Standard nicht mehr unterstützt
 - Stabile Multicast Unterstützung "aus den Fehlern gelernt"

Mehrpunktübertragung - Anycast

Mehrpunktübertragung - Anycast

- Spezielle Lösung beim Routing
- "Normale" IP-Zieladresse hat mehrere Routen und mehrere Endpunkte
- Kriterien: Anzahl der Hops, Distanz zum Ziel, Latenz, Auslastung
- Nicht speziell in IPv4 vorgesehen, aber in IPv6 (RFC 4291)
- IPv4: Kreative Nutzung des Border Gateway Protocol (BGP)
 - Dient sowieso zum Austausch von Information zwischen IPv4 Routern
 - Verschiedene Router bekommen verschiedene Routen zum gleichen Ziel

Mehrpunktübertragung - Anycast

- Grundlage f
 ür ausfallsichere skalierbare Serverdienste (z.B. YouTube)
 - Server wird an mehreren Standorten repliziert
 - Anycast Routing verteilt die Anfragen an Server-IP über mehrere Kopien
 - Beispiel DDoS-Angriff: Nur der naheliegende Server wird angegriffen
- Physischer Endpunkt kann sich mit jedem IP-Datagramm ändern, trotz gleichbleibender Zieladresse
 - Eigentlich nur sinnvoll mit UDP
 - Funktioniert trotzdem f
 ür kurzlebige TCP-Verbindungen (HTTP!)

Beispiel:

Content Delivery Network (CDN)

- Anbieter mit tausenden Servern, weltweit verteilt
- Kunden lagern statische Inhalte (Bilder, Downloads etc.) im CDN, gleichbleibende IP-Adresse via Anycast
- · Anfragen werden gleichmäßig verteilt, je nach Standort des Client
- Bsp: Cloudflare, Edgecast

Zusammenfassung

- Klassische Netzwerkprogrammierung nimmt Unicast-Übertragung an
- Alternativen: Broadcast, Multicast
 - Gruppen von Empfängern
 - Setzt Mitarbeit des Routers voraus, für Switch kein Problem
 - · Übertragung einzelner Nachrichten (UDP-Stil), mehr Arbeit für die Anwendung
 - IPv4 mit Fokus auf Broadcast (ARP, DHCP)
 - IPv6 mit Fokus auf Multicast
- Anycast: Moderner Routing-Ansatz f
 ür Lastenverteilung und Fehlertoleranz