一、选择或填空

(数理逻辑部分)

(数理这样部分)
1、下列哪些公式为永真蕴含式?()
(1) $\neg Q = > Q \rightarrow P$ (2) $\neg Q = > P \rightarrow Q$ (3) $P = > P \rightarrow Q$ (4) $\neg P_{\land} (P \lor Q) = > \neg P$
答: (1), (4)
2、下列公式中哪些是永真式?()
$(1) (\neg P_{\wedge} Q) \rightarrow (Q \rightarrow \neg R) (2) P \rightarrow (Q \rightarrow Q) (3) (P_{\wedge} Q) \rightarrow P \qquad (4) P \rightarrow (P_{\vee} Q)$
答: (2), (3), (4)
3、设有下列公式,请问哪几个是永真蕴涵式?()
(1) $P=>P \land Q$ (2) $P \land Q=>P$ (3) $P \land Q=>P \lor Q$
$(4) P_{\wedge} (P \rightarrow Q) = >Q (5) \neg (P \rightarrow Q) = >P (6) \neg P_{\wedge} (P \lor Q) = >\neg P$
答: (2), (3), (4), (5), (6)
4、公式∀x((A(x)→B(y, x))∧ ∃z C(y, z))→D(x)中,自由变元是(),
约束变元是()。
答: x, y, x, z
5、判断下列语句是不是命题。若是,给出命题的真值。()
(1) 北京是中华人民共和国的首都。(2) 陕西师大是一座工厂。
(3) 你喜欢唱歌吗? (4) 若 7+8>18, 则三角形有 4 条边。
(5) 前进! (6) 给我一杯水吧!
答: (1) 是, T (2) 是, F (3) 不是
(4) 是, T (5) 不是 (6) 不是
6、命题"存在一些人是大学生"的否定是(),而命题"所有的人都
是要死的"的否定是()。

答: 所有人都不是大学生, 有些人不会死

7、设 P: 我生病, Q: 我去学校, 则下列命题可符号化为()。

(1) 只有在生病时,我才不去学校(2)若我生病,则我不去学校

(3) 当且仅当我生病时,我才不去学校(4) 若我不生病,则我一定去学校
答: (1) $\neg Q \rightarrow P$ (2) $P \rightarrow \neg Q$ (3) $P \leftrightarrow \neg Q$ (4) $\neg P \rightarrow Q$
8、设个体域为整数集,则下列公式的意义是()。
$(1) \forall x \exists y (x+y=0) \qquad (2) \exists y \forall x (x+y=0)$
答: (1) 对任一整数 x 存在整数 y 满足 x+y=0 (2) 存在整数 y 对任一整数 x 满足 x+y=0
9、设全体域 D 是正整数集合,确定下列命题的真值:
(1) $\forall x \exists y (xy=y)$ () (2) $\exists x \forall y (x+y=y)$ ()
(3) $\exists x \forall y (x+y=x)$ () (4) $\forall x \exists y (y=2x)$ ()
答: (1) F (2) F (3) F (4) T
10、设谓词 P(x): x 是奇数, Q(x): x 是偶数, 谓词公式 ∃x(P(x)∨Q(x))
在哪个个体域中为真?()
(1) 自然数 (2) 实数 (3) 复数 (4) (1)(3)均成立
答: (1)
11、命题"2是偶数或-3是负数"的否定是()。
答: 2 不是偶数且-3 不是负数。
12、永真式的否定是 ()
(1) 永真式 (2) 永假式 (3) 可满足式 (4) (1)(3)均有可能
答: (2)
13、公式(¬P∧Q)∨(¬P∧¬Q)化简为 (), 公式 Q→(P∨(P∧Q))可化简
为()。
答: ¬P , Q→P
14、谓词公式∀x (P(x)∨∃yR(y))→Q(x)中量词∀x 的辖域是 ()。
答: P(x)∨ ∃yR(y)
15、令R(x):x 是实数,Q(x):x 是有理数。则命题"并非每个实数都是有理
数"的符号化表示为()。
答: $\neg \forall x (R(x) \rightarrow Q(x))$

(集合论部分)

16、设 A={a, {a}}, 下列命题错误的是 ()。
$(1) \ \{a\} \in P(A) (2) \ \{a\} \subseteq P(A) (3) \ \{\{a\}\} \in P(A) (4) \ \{\{a\}\} \subseteq P(A)$
答: (2)
17、在0() Φ之间写上正确的符号。
$(1) = (2) \subseteq (3) \in (4) \notin$
答: (4)
18、若集合 S 的基数 S =5,则 S 的幂集的基数 P (S) = ()。
答: 32
19、设 $P=\{x \mid (x+1)^2 \le 4$ 且 $x \in R\}$, $Q=\{x \mid 5 \le x^2 + 16$ 且 $x \in R\}$, 则下列命题哪个正
确 ()
(1) $Q \subset P$ (2) $Q \subseteq P$ (3) $P \subset Q$ (4) $P = Q$
答: (3)
20、下列各集合中,哪几个分别相等()。
(1) $A1=\{a,b\}$ (2) $A2=\{b,a\}$ (3) $A3=\{a,b,a\}$ (4) $A4=\{a,b,c\}$
(5) $A5=\{x \mid (x-a) (x-b) (x-c)=0\}$ (6) $A6=\{x \mid x^2-(a+b) x+ab=0\}$
答:A1=A2=A3=A6, A4=A5
21、若 A-B=Φ,则下列哪个结论不可能正确?()
(1) $A = \Phi$ (2) $B = \Phi$ (3) $A \subset B$ (4) $B \subset A$
答: (4)
22、判断下列命题哪个为真?()
(1) A-B=B-A => A=B (2) 空集是任何集合的真子集
(3) 空集只是非空集合的子集 (4) 若 A 的一个元素属于 B, 则 A=B
答: (1)
23、判断下列命题哪几个为正确?()
(1) $\{\Phi\} \in \{\Phi, \{\{\Phi\}\}\}\$ (2) $\{\Phi\} \subset \{\Phi, \{\{\Phi\}\}\}\$ (3) $\Phi \in \{\{\Phi\}\}\$

(4) $\Phi \subseteq \{\Phi\}$ (5) $\{a,b\} \in \{a,b,\{a\},\{b\}\}$
答: (2), (4)
24、判断下列命题哪几个正确?()
 所有空集都不相等(2) {Φ}≠Φ (4) 若 A 为非空集,则 A ⊂ A 成立。
答: (2)
25、设 A \cap B=A \cap C, \overline{A} \cap B= \overline{A} \cap C, 则 B()C。
答:=(等于)
26、判断下列命题哪几个正确?()
(1) 若 A∪B=A∪C, 则 B=C (2) {a,b}={b,a}
(3) P(A∩B)≠P(A)∩P(B) (P(S)表示S的幂集)
(4) 若 A 为非空集,则 A≠AUA 成立。
答: (2)
27、A, B, C是三个集合,则下列哪几个推理正确:
(1) $A \subseteq B$, $B \subseteq C \Rightarrow A \subseteq C$ (2) $A \subseteq B$, $B \subseteq C \Rightarrow A \in B$ (3) $A \in B$, $B \in C \Rightarrow A \in C$
答: (1)
(二元关系部分)
28、设A = {1,2,3,4,5,6}, B={1,2,3}, 从A到B的关系R = { < x,y >
$ x=y^2 $, $x(1)R$ (2) R^{-1} .
答: (1) R={<1,1>,<4,2>} (2) R ⁻¹ ={<1,1>,<2,4>}
29、举出集合 A 上的既是等价关系又是偏序关系的一个例子。()
答: A 上的恒等关系
30、集合 A 上的等价关系的三个性质是什么?()
答: 自反性、对称性和传递性
31、集合 A 上的偏序关系的三个性质是什么?()
答: 自反性、反对称性和传递性
32、设 S={1,2,3,4}, A上的关系R={\langle 1,2 \rangle, \langle 2,1 \rangle, \langle 2,3 \rangle,

 $\langle 3, 4 \rangle \}$

求(1) R ⊔ R (2) R⁻¹。

答: RUR = { <1,1>, <1,3>, <2,2>, <2,4> }

 $R^{-1} = \{\langle 2, 1 \rangle, \langle 1, 2 \rangle, \langle 3, 2 \rangle, \langle 4, 3 \rangle\}$

33、设A = {1, 2, 3, 4, 5, 6}, R是A上的整除关系, 求R= {()}。

答: R={<1, 1>, <2, 2>, <3, 3>, <4, 4>, <5, 5>, <6, 6>, <1, 2>, <1, 3>, <1, 4>,

<1, 5>, <1, 6>, <2, 4>, <2, 6>, <3, 6>}

34、设A = {1,2,3,4,5,6}, B={1,2,3}, 从A到B的关系R = {〈x,y〉 | x=2y}, 求(1)R (2) R⁻¹。

答: (1) R={<1,1>,<4,2>,<6,3>} (2) R⁻¹={<1,1>,<2,4>,(36>}

35、设A = {1,2,3,4,5,6}, B={1,2,3}, 从A到B的关系R = {⟨x,y⟩ | x=y²}, 求R和R⁻¹的关系矩阵。

答: R 的关系矩阵=
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 R⁻¹的关系矩阵=
$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- 36、集合 A= {1, 2, ···, 10} 上的关系 R= {<x, y> | x+y=10, x, y∈A}, 则 R 的性质为 ()。
- (1) 自反的 (2) 对称的 (3) 传递的, 对称的 (4) 传递的 答: (2)

(代数结构部分)

37、设 A={2,4,6}, A 上的二元运算*定义为: a*b=max{a,b},则在独异点 <A,*>中,单位元是()。

答: 2, 6

38、设 A={3,6,9}, A 上的二元运算*定义为: a*b=min{a,b},则在独异点

<A,*>中,单位元是(),零元是(); 答: 9, 3 (半群与群部分) 39、设〈G,*〉是一个群,则 (1) 若 a, b, x ∈ G, a * x=b, 则 x=(); (2) 若 a, b, x ∈ G, a * x=a * b, 则 x=()。 答: (1) a⁻¹*b (2) b 40、设 a 是 12 阶群的生成元, 则 a^2 是 () 阶元素, a^3 是 () 阶元素。 答: 6,4 41、代数系统〈G,*〉是一个群,则G的等幂元是()。 答:单位元 42、设 a 是 10 阶群的生成元, 则 a⁴ 是() 阶元素, a³ 是() 阶元素。 答: 5, 10 43、群〈G,*〉的等幂元是(),有()个。 答:单位元,1 44、素数阶群一定是()群,它的生成元是()。 答:循环群,任一非单位元 45、设〈G,*〉是一个群, a,b,c∈G, 则 (1) 若 c*a=b, 则 c=(); (2) 若 c*a=b*a, 则 c=()。 答: (1) b*a⁻¹ (2) b 46、〈H,,*〉是〈G,,*〉的子群的充分必要条件是(答: $\langle H, , * \rangle$ 是群 或 \forall a, b \in G, a*b \in H, a $^{-1}$ \in H 或 \forall a, b \in G, a*b $^{-1}$ \in H 47、群 < A, * > 的等幂元有() 个, 是(), 零元有() 个。

48、在一个群〈G,*〉中,若 G 中的元素 a 的阶是 k,则 a^{-1} 的阶是()。答: k

答: 1, 单位元, 0

49、在自然数集 N 上, 下列哪种运算是可结合的? ()
(1) $a*b=a-b$ (2) $a*b=max{a,b}$ (3) $a*b=a+2b$ (4) $a*b= a-b $
答: (2)
50、任意一个具有 2 个或以上元的半群, 它 ()。
(1) 不可能是群 (2) 不一定是群
(3) 一定是群 (4) 是交换群
答: (1)
51、6 阶有限群的任何子群一定不是 ()。
(1) 2 阶 (2) 3 阶 (3) 4 阶 (4) 6 阶
答: (3)
(格与布尔代数部分)
52、下列哪个偏序集构成有界格()
(1) (N, \leq) (2) (Z, \geq)
(3) ({2,3,4,6,12}, (整除关系)) (4) (P(A), ⊆)
答: (4)
53、有限布尔代数的元素的个数一定等于()。
(1) 偶数 (2) 奇数 (3) 4的倍数 (4) 2的正整数次幂
答: (4)
(图论部分)
54、设 G 是一个哈密尔顿图,则 G 一定是()。
(1) 欧拉图 (2) 树 (3) 平面图 (4) 连通图
答: (4)
55、下面给出的集合中,哪一个是前缀码?()
(1) {0, 10, 110, 101111} (2) {01, 001, 000, 1}

(3) {b, c, aa, ab, aba} (4) {1, 11, 101, 001, 0011}
答: (2)
56、一个图的哈密尔顿路是一条通过图中()的路。
答: 所有结点一次且恰好一次
57、在有向图中,结点 v 的出度 deg+(v)表示(),入度 deg-(v)表示
()。
答:以 V 为起点的边的条数, 以 V 为终点的边的条数
58、设G是一棵树,则G的生成树有()裸。
(1) 0 (2) 1 (3) 2 (4) 不能确定
答: 1
59、n 阶无向完全图 K _n 的边数是(),每个结点的度数是()。
答: $\frac{n(n-1)}{2}$, n-1
60、一棵无向树的顶点数 n 与边数 m 关系是()。
答: m=n−1
61、一个图的欧拉回路是一条通过图中()的回路。
答: 所有边一次且恰好一次
62、有 n 个结点的树, 其结点度数之和是()。
答: 2n-2
63、下面给出的集合中,哪一个不是前缀码()。
(1) {a, ab, 110, a1b11} (2) {01, 001, 000, 1}
(3) {1, 2, 00, 01, 0210} (4) {12, 11, 101, 002, 0011}
答: (1)
64、n 个结点的有向完全图边数是(), 每个结点的度数是()。
答: n(n-1), 2n-2
65、一个无向图有生成树的充分必要条件是()。

答:它是连通图

66、设 G 是一棵树, n, m 分别表示顶点数和边数, 则
(1) n=m (2) m=n+1 (3) n=m+1 (4) 不能确定。
答: (3)
67、设 T= 〈V, E〉是一棵树, 若 V >1, 则 T 中至少存在() 片树叶。
答: 2
68、任何连通无向图 G 至少有() 棵生成树, 当且仅当 G 是(),
G的生成树只有一棵。
答: 1, 树
69、设G是有n个结点m条边的连通平面图,且有k个面,则k等于:
(1) m-n+2 (2) n-m-2 (3) n+m-2 (4) m+n+2.
答: (1)
70、设 T 是一棵树,则 T 是一个连通且()图。
答: 无简单回路
71、设无向图 G 有 16 条边且每个顶点的度数都是 2,则图 G 有()个顶点
(1) 10 (2) 4 (3) 8 (4) 16
答: (4)
72、设无向图 G 有 18 条边且每个顶点的度数都是 3,则图 G 有()个顶点
(1) 10 (2) 4 (3) 8 (4) 12
答: (4)
73 、 设 图 G= <v ,="" e=""> , V={a , b , c , d , e} ,</v>
E={ <a, b="">, <a, c="">, <b, c="">, <c, d="">, <d, e="">},则 G 是有向图还是无向图?</d,></c,></b,></a,></a,>
答: 有向图
74、任一有向图中, 度数为奇数的结点有()个。
答: 偶数

边围成? (1) 2 (2) 4 (3) 3 (4) 5

75、具有 6 个顶点, 12 条边的连通简单平面图中, 每个面都是由()条

答: (3)

76、在有 n 个顶点的连通图中, 其边数 ()。

- (1) 最多有 n-1 条 (2) 至少有 n-1 条
- (3) 最多有 n 条 (4) 至少有 n 条

答: (2)

77、一棵树有2个2度顶点,1个3度顶点,3个4度顶点,则其1度顶点 为()。

(1) 5 (2) 7 (3) 8 (4) 9

答: (4)

78、若一棵完全二元(叉)树有 2n-1 个顶点,则它()片树叶。

(1) n (2) 2n (3) n-1 (4) 2

答: (1)

79、下列哪一种图不一定是树()。

- (1) 无简单回路的连通图 (2) 有 n 个顶点 n-1 条边的连通图
- (3) 每对顶点间都有通路的图 (4) 连通但删去一条边便不连通的图

答: (3)

80、连通图 G 是一棵树当且仅当 G 中 ()。

- (1) 有些边是割边 (2) 每条边都是割边
- (3) 所有边都不是割边 (4) 图中存在一条欧拉路径

答: (2)

(数理逻辑部分)

二、求下列各公式的主析取范式和主合取范式:

1, $(P \rightarrow Q) \land R$

解: $(P \rightarrow Q) \land R \Leftrightarrow (\neg P \lor Q) \land R$

⇔ (¬P∧R) ∨ (Q∧R) (析取范式)

 $\Leftrightarrow (\neg P \land Q \land R) \lor (P \land \neg Q \land \neg R) \lor (P \land Q \land \neg R) \lor (P \land \neg Q \land R) \lor (P \land Q \land R)$

(主析取范式)

$$4 \cdot Q \rightarrow (P \vee \neg R)$$

$$\neg (Q \rightarrow (P \lor \neg R))$$

$$\Leftrightarrow (\neg P \lor \neg Q \lor \neg R) \land (\neg P \lor \neg Q \lor R) \land (\neg P \lor Q \lor \neg R) \land (\neg P \lor Q \lor R)$$

$$\land (P \lor \neg Q \lor R) \land (P \lor Q \lor \neg R) \land (P \lor Q \lor R)$$
(原公式否定的主合取范式)

$$Q \rightarrow (P \vee \neg R)$$

$5, P \rightarrow (P \land (Q \rightarrow P))$

解:
$$P \rightarrow (P \land (Q \rightarrow P))$$

$$\Leftrightarrow \neg P \lor (P \land (\neg Q \lor P))$$

$$\Leftrightarrow \neg P \lor P$$

$$6, \neg (P \rightarrow Q) \lor (R \land P)$$

$$\mathbb{M}$$
: ¬ (P→Q) ∨ (R∧P) ⇔ ¬ (¬P∨Q) ∨ (R∧P)

$$\Leftrightarrow$$
 (P $\wedge \neg Q$) \vee (R \wedge P) (析取范式)

$$\Leftrightarrow (P \land \neg Q \land (R \lor \neg R)) \lor (P \land (\neg Q \lor Q) \land R)$$

$$\Leftrightarrow (P \land \neg Q \land R) \lor (P \land \neg Q \land \neg R) \lor (P \land \neg Q \land R) \lor (P \land Q \land R)$$

$$\neg (\neg (P \rightarrow Q) \lor (R \land P)) \Leftrightarrow (P \land Q \land \neg R) \lor (\neg P \land Q \land R) \lor (\neg P \land \neg Q \land R)$$

$$\vee$$
 ($\neg P \land \neg Q \land \neg R$) \vee ($\neg P \land Q \land \neg R$) (原公式否定的主析取范式)

$$\neg \ (P {\rightarrow} Q) \lor (R \land P) \Leftrightarrow (\neg P \lor \neg Q \lor R) \land (P \lor \neg Q \lor \neg R) \land (P \lor Q \lor \neg R)$$

7, $P_{\vee}(P \rightarrow Q)$

$$\mathfrak{M}: \mathsf{P} \vee (\mathsf{P} \rightarrow \mathsf{Q}) \Leftrightarrow \mathsf{P} \vee (\neg \mathsf{P} \vee \mathsf{Q}) \Leftrightarrow (\mathsf{P} \vee \neg \mathsf{P}) \vee \mathsf{Q}$$

$8 \cdot (R \rightarrow Q) \wedge P$

解:
$$(R \rightarrow Q) \land P \Leftrightarrow (\neg R \lor Q) \land P$$

$$\Leftrightarrow (\neg R \land (Q \lor \neg Q) \land P) \lor ((\neg R \lor R) \land Q \land P)$$

$$\Leftrightarrow (\neg R \land Q \land P) \lor (\neg R \land \neg Q \land P) \lor (\neg R \land Q \land P) \lor (R \land Q \land P)$$

$$\neg ((R \rightarrow Q) \land P) \Leftrightarrow (\neg P \land \neg Q \land \neg R) \lor (\neg P \land Q \land \neg R) \qquad \lor (P \land \neg Q \land R)$$

$$\vee$$
($\neg P \land Q \land R$) \vee ($\neg P \land \neg Q \land R$)(原公式否定的主析取范式)

$$(R \rightarrow Q) \land P \Leftrightarrow (P \lor Q \lor R) \land (P \lor \neg Q \lor R) \land (\neg P \lor Q \lor \neg R)$$

$9 \cdot P \rightarrow Q$

$$\Leftrightarrow (\neg P \land (Q \lor \neg Q)) \lor ((\neg P \lor P) \land Q)$$

$$\Leftrightarrow (\neg P \land Q) \lor (\neg P \land \neg Q) \lor (\neg P \land Q) \lor (P \land Q)$$

10, $P \vee \neg Q$

$$\Leftrightarrow (P \land (\neg Q \lor Q)) \lor ((\neg P \lor P) \land \neg Q)$$

$$\Leftrightarrow (P \land \neg Q) \lor (P \land Q) \lor (\neg P \land \neg Q) \lor (P \land \neg Q)$$

11, $P \wedge Q$

解:
$$P \land Q$$
 (主析取范式) \Leftrightarrow $(P \lor (Q \land \neg Q)) \land ((P \land \neg P) \lor Q)$

$$\Leftrightarrow (P \lor \neg Q) \land (P \lor Q) \land (P \lor Q) \land (\neg P \lor Q)$$

12, $(P \vee R) \rightarrow Q$

解:
$$(P \lor R) \to Q$$

$$\Leftrightarrow \neg (P \lor R) \lor Q$$

$$\Leftrightarrow (\neg P \land \neg R) \lor Q$$

$$\Leftrightarrow (\neg P \lor Q \lor (R \land \neg R)) \land ((\neg P \land P) \lor Q \lor \neg R)$$

$$\Leftrightarrow (\neg P \lor Q \lor R) \land (\neg P \lor Q \lor \neg R) \land (\neg P \lor Q \lor \neg R) \land (P \lor Q \lor \neg R)$$

$$\Leftrightarrow (\neg P \lor Q \lor R) \land (\neg P \lor Q \lor \neg R) \land (\neg P \lor Q \lor \neg R) \land (P \lor Q \lor \neg R)$$

$$\neg (P \lor R) \rightarrow Q$$

$$(P \vee R) \rightarrow Q$$

$$\Leftrightarrow (P \land Q \land \neg R) \lor (P \land Q \land R) \lor (\neg P \land \neg Q \land \neg R) \lor (\neg P \land Q \land \neg R)$$

13,
$$(P \rightarrow Q) \rightarrow R$$

解:
$$(P \rightarrow Q) \rightarrow R$$

$$\Leftrightarrow \neg (\neg P \lor Q) \lor R$$

$$\Leftrightarrow (P \land \neg Q \land (R \lor \neg R)) \lor ((P \lor \neg P) \land (Q \lor \neg Q) \land R)$$

$$\Leftrightarrow (P \land \neg Q \land R) \lor (P \land \neg Q \land \neg R) \lor (P \land Q \land R) \lor (P \land \neg Q \land R) \lor (\neg P \land Q \land R)$$
$$\lor (\neg P \land \neg Q \land R)$$

$$\Leftrightarrow (P \land \neg Q \land R) \lor (P \land \neg Q \land \neg R) \lor (P \land Q \land R) \lor (\neg P \land Q \land R)$$

$$(P \rightarrow Q) \rightarrow R$$

$$\Leftrightarrow \neg (\neg P \lor Q) \lor R$$

$$\Leftrightarrow (P \lor (Q \land \neg Q) \lor R) \land ((P \land \neg P) \lor \neg Q \lor R)$$

$$\Leftrightarrow (P \lor Q \lor R) \land (P \lor \neg Q \lor R) \land (P \lor \neg Q \lor R) \land (\neg P \lor \neg Q \lor R)$$

14,
$$(P \rightarrow (Q \land R)) \land (\neg P \rightarrow (\neg Q \land \neg R))$$

解:
$$(P \rightarrow (Q \land R)) \land (\neg P \rightarrow (\neg Q \land \neg R))$$

$$\Leftrightarrow (\neg P \lor (Q \land R)) \land (P \lor (\neg Q \land \neg R))$$

$$\Leftrightarrow$$
 (¬P \vee Q) \wedge (¬P \vee R) \wedge (P \vee ¬Q) \wedge (P \vee ¬R) (合取范式)

$$\Leftrightarrow (\neg P \lor Q \lor (R \land \neg R)) \land (\neg P \lor (Q \land \neg Q) \lor R) \land (P \lor \neg Q \lor (R \land \neg R))$$
$$\land (P \lor (Q \land \neg Q) \lor \neg R)$$

$$\Leftrightarrow (\neg P \lor Q \lor R) \land (\neg P \lor Q \lor \neg R) \land (\neg P \lor Q \lor R) \land (\neg P \lor \neg Q \lor R)$$

$$\land (P \lor \neg Q \lor R) \land (P \lor \neg Q \lor \neg R) \land (P \lor Q \lor \neg R) \land (P \lor \neg Q \lor \neg R)$$

$$\Leftrightarrow (\neg P \lor Q \lor R) \land (\neg P \lor Q \lor \neg R) \land (\neg P \lor \neg Q \lor R) \land (P \lor \neg Q \lor R)$$

$$\neg (P \rightarrow (Q \land R)) \land (\neg P \rightarrow (\neg Q \land \neg R))$$

$$(P \rightarrow (Q \land R)) \land (\neg P \rightarrow (\neg Q \land \neg R))$$

15,
$$P \lor (\neg P \rightarrow (Q \lor (\neg Q \rightarrow R)))$$

解:
$$P \lor (\neg P \rightarrow (Q \lor (\neg Q \rightarrow R)))$$

$$\Leftrightarrow P \lor (P \lor (Q \lor (Q \lor R)))$$

$$\neg (P \lor Q \lor R)$$

$$\Leftrightarrow (\mathsf{P} \vee \neg \mathsf{Q} \vee \mathsf{R}) \wedge (\mathsf{P} \vee \neg \mathsf{Q} \vee \neg \mathsf{R}) \wedge (\mathsf{P} \vee \mathsf{Q} \vee \neg \mathsf{R}) \wedge (\neg \mathsf{P} \vee \mathsf{Q} \vee \mathsf{R})$$

$$\wedge \ (\neg P \lor Q \lor \neg R) \land (\neg P \lor \neg Q \lor R) \land (\neg P \lor \neg Q \lor \neg R)$$

(原公式否定的主合取范式)

$$(P \lor Q \lor R)$$

$$\Leftrightarrow (\neg P \land Q \land \neg R) \lor (\neg P \land Q \land R) \lor (\neg P \land \neg Q \land R) \lor (P \land \neg Q \land \neg R)$$

16,
$$(P \rightarrow Q) \land (P \rightarrow R)$$

解、
$$(P \rightarrow Q) \land (P \rightarrow R)$$

$$\Leftrightarrow (\neg P \lor Q \lor (R \land \neg R) \land (\neg P \lor (\neg Q \land Q) \lor R)$$

$$\Leftrightarrow (\neg P \lor Q \lor R) \land (\neg P \lor Q \lor \neg R) \land (\neg P \lor \neg Q \lor R) \land (\neg P \lor Q \lor R)$$

$$(P \rightarrow Q) \land (P \rightarrow R)$$

$$\Leftrightarrow (\neg P \lor Q) \land (\neg P \lor R)$$

$$\Leftrightarrow (\neg P \land (Q \lor \neg Q) \land (R \lor \neg R)) \lor ((\neg P \lor P) \land Q \land R)$$

$$\Leftrightarrow (\neg P \land Q \land R) \lor (\neg P \land \neg Q \land R) \lor (\neg P \land Q \land \neg R) \lor (\neg P \land \neg Q \neg R)$$

$$\vee (\neg P \wedge Q \wedge R) \vee (P \wedge Q \wedge R)$$

三、证明:

1,
$$P \rightarrow Q$$
, $\neg Q \lor R$, $\neg R$, $\neg S \lor P \Rightarrow \neg S$

证明:

(3)
$$\neg Q$$
 (1), (2)

(5)
$$\neg P$$
 (3), (4)

(7)
$$\neg S$$
 (5), (6)

$2 \land A \rightarrow (B \rightarrow C)$, $C \rightarrow (\neg D \lor E)$, $\neg F \rightarrow (D \land \neg E)$, $A = \gt B \rightarrow F$

证明:

(3)
$$B \rightarrow C$$
 (1), (2)

(5)
$$C$$
 (3), (4)

(7)
$$\neg D \lor E$$
 (5), (6)

(10) B→F CP

3, $P \lor Q$, $P \rightarrow R$, $Q \rightarrow S \Rightarrow R \lor S$

证明:

- (1) ¬R 附加前提
- (2) P→R 前提
- (3) $\neg P$ (1), (2)
- (4) P \ Q 前提
- (5) Q (3), (4)
- (6) Q→S 前提
- (7) S (5), (6)
- (8) $R \vee S$ CP, (1), (8)

4、(P→Q)∧(R→S), (Q→W)∧(S→X), ¬(W∧X), P→R => ¬P 证明:

- (1) P 假设前提
- (2) P→R 前提
- (3) R (1), (2)
- (4) (P→Q) ∧ (R→S) 前提
- $(5) \quad P \rightarrow Q \qquad (4)$
- $(6) \quad R \rightarrow S \qquad (5)$
- (7) Q (1), (5)
- (8) S (3), (6)
- (9) (Q→W) ∧ (S→X) 前提
- $(10) \quad Q \rightarrow W \qquad (9)$
- $(11) \quad S \rightarrow X \tag{10}$
- (12) W (7), (10)
- (13) X (8), (11)
- (14) $W_{\wedge}X$ (12), (13)
- (15) ¬(W∧X) 前提
- $(16) \quad \neg (W \land X) \land (W \land X) \qquad (14), (15)$

5, $(U \lor V) \rightarrow (M \land N)$, $U \lor P$, $P \rightarrow (Q \lor S)$, $\neg Q \land \neg S =>M$

证明:

(1) ¬Q∧¬S 附加前提

- (2) P→(Q∨S) 前提
- (3) $\neg P$ (1), (2)
- (4) UVP 前提
- (5) U (3), (4)
- $(6) \qquad \mathsf{U}_{\vee}\mathsf{V} \qquad \qquad (5)$
- (7) (U∨V)→(M∧N) 前提
- (8) $M \wedge N$ (6), (7)
- (9) M (8)

 $6, \neg B \lor D, (E \rightarrow \neg F) \rightarrow \neg D, \neg E = \triangleright \neg B$

证明:

- (1) B 附加前提
- (2) ¬B∨D 前提
- (3) D (1), (2)
- (4) (E→¬F)→¬D 前提
- (5) $\neg (E \rightarrow \neg F)$ (3), (4)
- (6) $E \wedge \neg F$ (5)
- (7) E (6)
- (8) ¬E 前提
- (9) $E \wedge \neg E$ (7), (8)

 $7, P \rightarrow (Q \rightarrow R), R \rightarrow (Q \rightarrow S) \Rightarrow P \rightarrow (Q \rightarrow S)$

证明:

- (1) P 附加前提
- (2) Q 附加前提
- (3) P→(Q→R) 前提
- (4) $Q \rightarrow R$ (1), (3)
- (5) R (2), (4)

- (6) R→(Q→S) 前提
- (7) $Q \rightarrow S$ (5), (6)
- (8) S (2), (7)
- (9) $Q \rightarrow S$ CP, (2), (8)
- (10) $P \rightarrow (Q \rightarrow S)$ CP, (1), (9)
- $8, P \rightarrow \neg Q, \neg P \rightarrow R, R \rightarrow \neg S \Rightarrow S \rightarrow \neg Q$

证明:

- (1) S 附加前提
- (2) R→¬S 前提
- (3) $\neg R$ (1), (2)
- (4) ¬P→R 前提
- (5) P (3), (4)
- (6) P→¬Q 前提
- (7) $\neg Q$ (5), (6)
- (8) $S \rightarrow \neg Q$ CP, (1), (7)
- 9, $P \rightarrow (Q \rightarrow R) = (P \rightarrow Q) \rightarrow (P \rightarrow R)$

证明:

- (1) P→Q 附加前提
- (2) P 附加前提
- (3) Q (1), (2)
- (4) P→(Q→R) 前提
- $(5) \qquad Q \rightarrow R \qquad (2), (4)$
- (6) R (3), (5)
- (7) $P \rightarrow R$ CP, (2), (6)
- (8) $(P \rightarrow Q) \rightarrow (P \rightarrow R)$ CP, (1), (7)
- 10, $P \rightarrow (\neg Q \rightarrow \neg R)$, $Q \rightarrow \neg P$, $S \rightarrow R$, $P \Rightarrow \neg S$

证明:

- (1) P 前提
- (2) P→(¬Q→¬R) 前提

- $(3) \qquad \neg Q \rightarrow \neg R \qquad (1), \quad (2)$
- (4) Q→¬P 前提
- (5) $\neg Q$ (1), (4)
- (6) $\neg R$ (3), (5)
- (7) S→R 前提
- (8) $\neg S$ (6), (7)

11, A, A \rightarrow B, A \rightarrow C, B \rightarrow (D \rightarrow \neg C) => \neg D

证明:

- (1) A 前提
- (2) A→B 前提
- (3) B (1), (2)
- (4) A→C 前提
- (5) C (1), (4)
- (6) B→(D→¬C) 前提
- $(7) \quad D \rightarrow \neg C \qquad (3), \quad (6)$
- (8) $\neg \underline{D}$ (5), (7)

12, $A \rightarrow (C \lor B)$, $B \rightarrow \neg A$, $D \rightarrow \neg C \Rightarrow A \rightarrow \neg D$

证明:

- (1) A 附加前提
- (2) A→(C∨B) 前提
- (3) $C \vee B$ (1), (2)
- (4) B→¬A 前提
- (5) $\neg B$ (1), (4)
- (6) C (3), (5)
- (7) D→¬C 前提
- (8) $\neg D$ (6), (7)
- (9) $A \rightarrow \neg D$ CP, (1), (8)

13, $(P \rightarrow Q) \land (R \rightarrow Q) \Leftrightarrow (P \lor R) \rightarrow Q$

$$(P \rightarrow Q) \land (R \rightarrow Q)$$

$$\Leftrightarrow (\neg P \lor Q) \land (\neg R \lor Q)$$

$$\Leftrightarrow (\neg P \land \neg R) \lor Q$$

$$\Leftrightarrow \neg (P \lor R) \lor Q$$

$$\Leftrightarrow (P \lor R) \to Q$$

14,
$$P \rightarrow (Q \rightarrow P) \Leftrightarrow \neg P \rightarrow (P \rightarrow \neg Q)$$

证明、

$$P \rightarrow (Q \rightarrow P)$$

$$\Leftrightarrow \neg P \lor (\neg Q \lor P)$$

$$\Leftrightarrow \neg (\neg P) \lor (\neg P \lor \neg Q)$$

$$\Leftrightarrow \neg P \rightarrow (P \rightarrow \neg Q)$$

15,
$$(P \rightarrow Q) \land (P \rightarrow R), \neg (Q \land R), S \lor P \Rightarrow S$$

证明、

(1)
$$(P \rightarrow Q) \land (P \rightarrow R)$$
 前提

$$(2) P \rightarrow (Q \land R)$$

(4)
$$\neg P$$
 (2), (3)

(1)

16, $P \rightarrow \neg Q$, $Q \lor \neg R$, $R \land \neg S \Rightarrow \neg P$

(3)
$$\neg Q$$
 (1), (2)

(5)
$$\neg R$$
 (3), (4)

(7)
$$R$$
 (6)

(8)
$$R \land \neg R$$
 (5), (7)

17、用真值表法证明 $P \leftrightarrow Q \Leftrightarrow (P \to Q) \land (Q \to P)$ 证明、

列出两个公式的真值表:

Р	Q	$P \leftrightarrow Q$	$(P \rightarrow Q) \land (Q \rightarrow P)$
F	F	T	Т
F	Т	F	F
Т	F	F	F
Т	Т	Т	Т

由定义可知, 这两个公式是等价的。

18,
$$P \rightarrow Q \Rightarrow P \rightarrow (P \land Q)$$

证明、

设 $P \rightarrow (P \land Q)$ 为 F,则 P 为 T, $P \land Q$ 为 F。所以 P 为 T, Q 为 F , 从而 $P \rightarrow Q$ 也为 F。

19、用先求主范式的方法证明(P→Q) ∧ (P→R) ⇔ (P→ (Q∧R) 证明、

先求出左右两个公式 的主合取范式

$$(P {\rightarrow} Q) \wedge (P {\rightarrow} R) \Leftrightarrow (\neg P \vee Q) \wedge (\neg P \vee R)$$

$$\Leftrightarrow (\neg P \lor Q \lor (R \land \neg R))) \land (\neg P \lor (Q \land \neg Q) \lor R)$$

$$\Leftrightarrow (\neg P \lor Q \lor R) \land (\neg P \lor Q \lor \neg R) \land (\neg P \lor Q \lor R) \land (\neg P \lor \neg Q \lor R)$$

$$\Leftrightarrow (\neg P \lor Q \lor \neg R) \land (\neg P \lor Q \lor R) \land (\neg P \lor \neg Q \lor R)$$

$$(P \rightarrow (Q \land R)) \Leftrightarrow (\neg P \lor (Q \land R))$$

$$\Leftrightarrow (\neg P \lor Q) \land (\neg P \lor R)$$

$$\Leftrightarrow (\neg P \lor Q \lor (R \land \neg R)) \land (\neg P \lor (Q \land \neg Q) \lor R)$$

$$\Leftrightarrow (\neg P \lor Q \lor R) \land (\neg P \lor Q \lor \neg R) \land (\neg P \lor Q \lor R) \land (\neg P \lor \neg Q \lor R)$$

$$\Leftrightarrow (\neg P \lor Q \lor \neg R) \land (\neg P \lor Q \lor R) \land (\neg P \lor \neg Q \lor R)$$

它们有一样的主合取范式, 所以它们等价。

20,
$$(P \rightarrow Q) \land \neg (Q \lor R) \Rightarrow \neg P$$

设 $(P \to Q) \land \neg (Q \lor R)$ 为 T,则 $P \to Q$ 和 $\neg (Q \lor R)$ 都为 T。即 $P \to Q$ 和 $\neg Q \land \neg R$ 都为 T。故 $P \to Q$, $\neg Q$ 和 $\neg R$)都为 T,即 $P \to Q$ 为 T,Q 和 R 都为 F。从而 P 也为 F,即 $\neg P$ 为 T。从而 $(P \to Q) \land \neg (Q \lor R) \Rightarrow \neg P$

21、为庆祝九七香港回归祖国,四支足球队进行比赛,已知情况如下,问结论是否有效?

前提: (1) 若A队得第一,则B队或C队获亚军;

- (2) 若 C 队获亚军,则 A 队不能获冠军;
- (3) 若 D 队获亚军,则 B 队不能获亚军;
- (4) A 队获第一;

结论: (5) D 队不是亚军。

证明、

设 A: A 队得第一;B: B 队获亚军;C: C 队获亚军;D: D 队获亚军;则前提符号化为 A \rightarrow (B \lor C), C \rightarrow ¬A, D \rightarrow ¬B, A; 结论符号化为 ¬D。

本题即证明 $A \rightarrow (B \lor C), C \rightarrow \neg A, D \rightarrow \neg B, A \Rightarrow \neg D$ 。

- (1) A 前提
- (2) A→ (B∨C) 前提
- (3) $B \vee C$ (1), (2)
- (4) C→¬A 前提
- (5) $\neg C$ (1), (4)
- (6) B (3), (5)
- (7) D→¬B 前提
- (8) $\neg D$ (6), (7)
- 22、用推理规则证明 $P \rightarrow Q$, ¬(Q∨R), P∧R 不能同时为真。

- (1) P∧R 前提
- (2) P (1)
- (3) P→Q 前提
- (4) Q (2), (3)

- (5) ¬(Q∨R) 前提
- $(6) \qquad \neg \mathbf{Q} \wedge \neg \mathbf{R} \qquad (5)$
- $(7) \qquad \neg \mathbf{Q} \qquad (6)$
- (8) $\neg Q \land Q$ (4), (7)

(集合论部分)

四、设A, B, C是三个集合, 证明:

1,
$$A \cap (B-C) = (A \cap B) - (A \cap C)$$

证明:

$$(\mathsf{A} \cap \mathsf{B}) - (\mathsf{A} \cap \mathsf{C}) = (\mathsf{A} \cap \mathsf{B}) \cap \overline{A \cap C} = (\mathsf{A} \cap \mathsf{B}) \cap (\overline{A} \cup \overline{C})$$

$$= (\mathsf{A} \cap \mathsf{B} \cap \overline{A}) \cup (\mathsf{A} \cap \mathsf{B} \cap \overline{C}) = \mathsf{A} \cap \mathsf{B} \cap \overline{C} = \mathsf{A} \cap (\mathsf{B} \cap \overline{C})$$

$$= \mathsf{A} \cap (\mathsf{B} - \mathsf{C})$$

2,
$$(A-B) \cup (A-C) = A - (B \cap C)$$

证明:

$$(A-B) \cup (A-C) = (A \cap \overline{B}) \cup (A \cap \overline{C}) = A \cap (\overline{B} \cup \overline{C})$$
$$= A \cap \overline{B \cap C} = A - (B \cap C)$$

3、 $A \cup B = A \cup C$, $\overline{A} \cup B = \overline{A} \cup C$, 则 C = B

证明:

$$B=B\cup (\overline{A}\cap A)=(B\cup \overline{A})\cap (B\cup A)$$
$$=(C\cup \overline{A})\cap (C\cup A)=C\cup (\overline{A}\cap A)=C$$

 $4 \cdot A \cup B = A \cup (B - A)$

证明:

$$A \cup (B-A) = A \cup (B \cap \overline{A}) = (A \cup B) \cap (A \cup \overline{A})$$

= $(A \cup B) \cap U = A \cup B$

5, $A=B \Leftrightarrow A \oplus B=\Phi$

证明:

$$\Rightarrow$$
设 A=B,则 A \oplus B=(A-B) \cup (B-A)= $\Phi\cup\Phi$ = Φ 。

 \leftarrow 设 A \oplus B= Φ ,则 A \oplus B=(A \oplus B) \cup (B \oplus A)= Φ 。故 A \oplus B= Φ ,B \oplus A= Φ ,

从而 A⊂B, B⊂A, 故 A=B。

6、A \cap B = A \cap C, A \cup B=A \cup C, 则 C=B

证明:

$$B=B \cap (A \cup B) = B \cap (A \cup C) = (B \cap A) \cup (B \cap C)$$

$$= (A \cap C) \cup (B \cap C) = C \cap (A \cup B)$$

$$= C \cap (A \cup C)$$

$$= C$$

7、 $A \cap B = A \cap C$, $\overline{A} \cap B = \overline{A} \cap C$, 则 C = B

证明:

$$B=B \cap (A \cup \overline{A}) = (B \cap A) \cup (B \cap \overline{A})$$
$$= (C \cap A) \cup (C \cap \overline{A}) = C \cap (A \cup \overline{A})$$
$$= C$$

8,
$$A - (B \cup C) = (A - B) - C$$

证明:

$$A - (B \cup C) = A \cap \overline{B \cup C}$$

$$= A \cap (\overline{B} \cap \overline{C}) = (A \cap \overline{B}) \cap \overline{C}$$

$$= (A - B) \cap \overline{C} = (A - B) - C$$

9.
$$(A-B) \cap (A-C)=A-(B \cup C)$$

证明:

$$(A-B) \cap (A-C)$$

$$= (A \cap \overline{B}) \cap (A \cap \overline{C})$$

$$= (A \cap A) \cap (\overline{B} \cap \overline{C})$$

$$= A \cap \overline{B \cup C} = A - (B \cup C)$$

10、A-B=B, 则 A=B=Φ

证明:

因为 B=A-B,所以 B=B \cap B=(A-B) \cap B= Φ 。从而 A=A-B=B= Φ 。

11 \land A=(A-B) \cup (A-C) \Leftrightarrow A \cap B \cap C= Φ

证明:

- - ← 因为 A∩B∩C=Φ, 所以 A−(B∩C)=A。而 A−(B∩C)=(A−B) ∪ (A−C),

 所以 A=(A−B) ∪ (A−C)。
- 12, $(A-B) \cap (A-C) = \Phi \Leftrightarrow A \subseteq B \cup C$

证明:

- ⇒ 因为 $(A-B) \cap (A-C) = (A \cap \overline{B}) \cap (A \cap \overline{C}) = A \cap (\overline{B} \cap \overline{C})$ $= A \cap \overline{B \cup C} = A - (B \cup C)$,且 $(A-B) \cap (A-C) = \Phi$, 所以 $\Phi = A - (B \cup C)$,故 $A \subset B \cup C$ 。
- ← 因为 A⊆B∪C, 所以 A-(B∪C)=A。而 A-(B∪C)=(A-B) ∩ (A-C),

 所以 A=(A-B) ∩ (A-C)。
- 13, $(A-B) \cup (B-A)=A \Leftrightarrow B=\Phi$

证明:

- ⇒ 因为(A-B) ∪ (B-A)=A, 所以 B-A⊆A。但(B-A) ∩ A=Φ, 故 B-A=Φ。 即 B⊂A, 从而 B=Φ (否则 A-B⊂A, 从而与(A-B) ∪ (B-A)=A 矛盾)。
- ← 因为 B=Φ, 所以 A-B=A 且 B-A=Φ。从而(A-B) ∪ (B-A)=A。
- $14 \cdot (A-B) C \subseteq A (B-C)$

证明:

 $\forall x \in (A-B)-C$, $f(x) \in A-B \perp x \notin C$, $f(x) \in A$, $f(x) \notin C$.

从而 $x \in A$, $x \notin B-C$, 故 $x \in A-(B-C)$ 。从而 $(A-B)-C \subset A-(B-C)$

15、P(A)∪P(B) ⊆P(A∪B) (P(S)表示S的幂集)

证明:

 $\forall S \in P(A) \cup P(B)$, 有 $S \in P(A)$ 或 $S \in P(B)$, 所以 $S \subseteq A$ 或 $S \subseteq B$ 。

从而 $S \subset A \cup B$, 故 $S \in P(A \cup B)$ 。即 $P(A) \cup P(B) \subset P(A \cup B)$

16、P(A) ∩P(B)=P(A∩B) (P(S)表示S的幂集)

证明:

 $\forall S \in P(A) \cap P(B)$, 有 $S \in P(A)$ 且 $S \in P(B)$, 所以 $S \subset A$ 且 $S \subset B$ 。

从而 $S \subset A \cap B$, 故 $S \in P(A \cap B)$ 。即 $P(A) \cap P(B) \subset P(A \cap B)$ 。

 $\forall S \in P(A \cap B)$, 有 $S \subset A \cap B$, 所以 $S \subset A \perp B \subset B$ 。

从而 $S \in P(A)$ 且 $S \in P(B)$, 故 $S \in P(A) \cap P(B)$ 。即 $P(A \cap B) \subset P(A) \cap P(B)$ 。

故 $P(A \cap B) = P(A) \cap P(B)$

17、(A-B) ∪B= (A∪B) -B 当且仅当 B=Φ。

证明:

← 当 B=Ф时, 因为(A-B) ∪ B= (A-Ф) ∪ Ф=A, (A∪B)-B= (A∪Ф)-Ф
=A, 所以 (A-B) ∪ B= (A∪B) -B。

⇒ 用反证法证明。假设 $B \neq \Phi$,则存在 $b \in B$ 。因为 $b \in B$ 且 $b \in A \cup B$,所以 $b \notin (A \cup B) - B$ 。而显然 $b \in (A - B) \cup B$ 。故这与已知 $(A - B) \cup B = (A \cup B) - B$ 看。

五、证明或解答:

(数理逻辑、集合论与二元关系部分)

- 1、设个体域是自然数,将下列各式翻译成自然语言:
 - (1) $\exists x \forall y (xy=1)$; (2) $\forall x \exists y (xy=1)$;
 - (3) $\forall x \exists y (xy=0);$ (4) $\exists x \forall y (xy=0);$
 - (5) $\forall x \exists y (xy=x);$ (6) $\exists x \forall y (xy=x);$
 - (7) $\forall x \forall y \exists z (x-y=z)$

答:

- (1) 存在自然数 x, 对任意自然数 v 满足 xv=1;
- (2) 对每个自然数 x. 存在自然数 v 满足 xv=1:
- (3) 对每个自然数 x. 存在自然数 v 满足 xv=0:
- (4) 存在自然数 x, 对任意自然数 y 满足 xy=1;
- (5) 对每个自然数 x, 存在自然数 y 满足 xy=x;
- (6) 存在自然数 x, 对任意自然数 y 满足 xy=x;
- (7) 对任意自然数 x, v, 存在自然数 z 满足 x-v=z。

- 2、设 A(x, y, z): x+y=z, M(x, y, z): xy=z, L(x, y): x<y, G(x, y): x>y, 个体域为自然数。将下列命题符号化:
 - (1) 没有小于 0 的自然数:
 - (2) x<z 是 x<y 且 y<z 的必要条件;
 - (3) 若 x<y,则存在某些 z, 使 z<0, xz>yz;
 - (4) 存在 x, 对任意 v 使得 xv=v;
 - (5) 对任意 x, 存在 y 使 x+y=x。

答:

- (2) $\forall x \forall y \forall z ((L(x,y) \land L(y,z)) \rightarrow L(x,z))$
- (3) $\forall x \forall y ((L(x, y) \rightarrow \exists z (L(z, 0) \land G(xz, yz)))$
- (4) $\exists x \forall y M (x, y, y)$
- (5) $\forall x \exists y A(x, y, x)$
- 3、列出下列二元关系的所有元素:
 - (1) $A = \{0, 1, 2\}$, $B = \{0, 2, 4\}$, $R = \{\langle x, y \rangle | x, y \in A \cap B\}$;
 - (2) $A = \{1, 2, 3, 4, 5\}$, $B = \{1, 2\}$, $R = \{\langle x, y \rangle | 2 \le x + y \le 4 \perp x \in A \perp y \in B\}$;
- (3) $A=\{1,2,3\}$, $B=\{-3,-2,-1,0,1\}$, $R=\{\langle x,y\rangle | |x|=|y| \perp x \in A \perp y \in B\}$; $A=\{1,2,3\}$, $A=\{1,2,3\}$, A=
 - (1) $R=\{\langle 0, 0 \rangle, \langle 0, 2 \rangle, \langle 2, 0 \rangle, \langle 2, 2 \rangle\}$
 - (2) $R=\{\langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 2, 1 \rangle, \langle 2, 2 \rangle, \langle 3, 1 \rangle\};$
 - (3) $R=\{\langle 1, 1 \rangle, \langle 1, -1 \rangle, \langle 2, -2 \rangle, \langle 3, -3 \rangle\}$
- 4、对任意集合 A, B, 证明: 若 A×A=B×B, 则 B=B。

证明:

若 B=Φ,则 B×B=Φ。从而 A×A =Φ。故 A=Φ。从而 B=A。

若 B≠Φ、则 B×B≠Φ。从而 A×A≠Φ。

对 $\forall x \in B$ 、 $\langle x, x \rangle \in B \times B$ 。 因 为 $A \times A = B \times B$, 则 $\langle x, x \rangle \in A \times A$ 。 从 而 $x \in A$ 。 故 $B \subseteq A$ 。

同理可证, A⊆B。

故 B=A。

5、对任意集合 A, B, 证明: 若 A≠Φ, A×B=A×C, 则 B=C。

证明:

若 B=Φ,则 A×B=Φ。从而 A×C =Φ。因为 A \neq Φ,所以 C=Φ。即 B=C。

若 B≠Φ,则 A×B≠Φ。从而 A×C≠Φ。

 $\forall x \in B$,因为 $A \neq \Phi$, 所以存在 $y \in A$, 使 $\langle y, x \rangle \in A \times B$ 。 因为 $A \times B = A \times C$,则 $\langle y, x \rangle \in A \times C$ 。从而 $x \in C$ 。故 $B \subseteq C$ 。

同理可证, C⊆B。

故 B=C。

- 6、设 A={a,b}, B={c}。求下列集合:
 - (1) $A \times \{0, 1\} \times B$; (2) $B^2 \times A$;
 - (3) $(A \times B)^2$; (4) $P(A) \times A_\circ$

解:

- (1) $A \times \{0, 1\} \times B = \{\langle a, 0, c \rangle, \langle a, 1, c \rangle, \langle b, 0, c \rangle, \langle b, 1, c \rangle\};$
- (2) $B^2 \times A = \{\langle c, c, a \rangle, \langle c, c, b \rangle\};$
- (3) $(A \times B)^2 = \{ \langle a, c, a, c \rangle, \langle a, c, b, c \rangle, \langle b, c, a, c \rangle, \langle b, c, b, c \rangle \};$
- (4) $P(A) \times A = \{ \langle \Phi, a \rangle, \langle \Phi, b \rangle, \langle \{a\}, a \rangle, \langle \{a\}, b \rangle, \langle \{b\}, a \rangle, \langle \{b\}, b \rangle \}$, $\langle A, a \rangle, \langle A, b \rangle \}$ o
- 7、设全集 U={a,b,c,d,e}, A={a,d}, B={a,b,c}, C={b,d}。求下列各集合:
 - (1) $A \cap B \cap \overline{C}$; (2) $\overline{A \cap B \cap C}$; (3) $(A \cap \overline{B}) \mathbb{I} C$;
 - (4) P(A)-P(B); (5) $(A-B) \mathbb{I} (B-C)$; (6) $(A \oplus B) \cap C$;

解:

- (1) $A \cap B \cap \overline{C} = \{a\};$ (2) $\overline{A \cap B \cap C} = \{a, b, c, d, e\};$
- (3) $(A \cap \overline{B}) \subseteq C=\{b,d\};$ (4) $P(A)-P(B)=\{\{d\},\{a,d\}\};$
- (5) $(A-B) \ [(B-C) = \{d, c, a\} ; (6) (A \oplus B) \cap C = \{b, d\} .$
- 8、设A,B,C是任意集合,证明或否定下列断言:
 - (1) 若 A⊆B, 且 B⊆C, 则 A⊆C;
 - (2) 若 A⊆B, 且 B⊆C, 则 A∈C;

- (3) 若 A∈B, 且 B∈C, 则 A∈C;
- (4) 若 A∈B, 且 B⊆C, 则 A∈C;

证明:

(1) 成立。

对 \forall x∈A, 因为A \subset B, 所以x∈B。又因为B \subset C, 所以x∈C。即A \subset C。

- (2) 不成立。反例如下: A={a}, B={a,b}, C={a,b,c}。虽然 A⊆B, 且 B⊆C, 但 A∉C。
- (3) 不成立。反例如下: A={a}, B={{a},b},C={{{a},b},c}。虽然 A∈B,且B∈C,但A≠C。
- (4) 成立。因为 $A \in B$, 且 $B \subseteq C$, 所以 $A \in C$ 。
- 9、A上的任一良序关系一定是A上的全序关系。

证明:

 \forall a, b \in A, 则 $\{a,b\}$ 是 A 的一个非空子集。 $\|$ \leq 是 A 上的良序关系, \therefore $\{a,b\}$ 有最小元。若最小元为 a,则 a \leq b;否则 b \leq a。从而 \leq 为 A 上的的全序关系。

10、若R和S都是非空集A上的等价关系,则R∩S是A上的等价关系。 证明:

 \forall a \in A,因为R和S都是A上的等价关系,所以xRx且xSx。故xR \cap Sx。从而R \cap S是自反的。

∀a, b∈A, aR∩Sb, 即 aRb 且 aSb。因为 R 和 S 都是 A 上的等价关系, 所以 bRa 且 bSa。故 bR∩Sa。从而 R∩S 是对称的。

∀a, b, c∈A, aR∩Sb 且 bR∩Sc, 即 aRb, aSb, bRc 且 bSc。因为 R 和 S 都是 A 上的等价关系, 所以 aRc 且 aSc。故 aR∩Sc。从而 R∩S 是传递的。

故R○S是A上的等价关系。

11、设R⊂A×A, 则R自反 ⇔I_A⊂R。

证明:

⇒ \forall x ∈ A, \parallel R 是自反的, ∴ xRx。即 \langle x, x \rangle ∈R, 故 \mid _A \subset R。

12、设 A 是集合, R⊆A×A, 则 R 是对称的⇔R=R⁻¹。

证明:

⇒ \forall $\langle x,y \rangle \in R$, \exists R 是对称的,∴yRx 。即 $\langle y,x \rangle \in R$,故 $\langle x,y \rangle \in R^{-1}$ 。从而 R \subset R⁻¹ 。

反之 \forall $\langle y,x \rangle \in R^{-1}$,即 $\langle x,y \rangle \in R$ 。 』R 是对称的, ∴ yRx 。即 $\langle y,x \rangle \in R$, $R^{-1} \subset R$ 。

故 R=R⁻¹。

 $\leftarrow \forall x, y \in A, 若 \langle x, y \rangle \in R$, 即 $\langle y, x \rangle \in R^{-1}$ 。』 R=R⁻¹, ∴ $\langle y, x \rangle \in R$ 。即 yRx,故 R 是对称的。

- 13、设A,B,C和D均是集合,R⊂A×B,S⊂B×C,T⊂C×D,则
- (1) $R_{\parallel}(S \cup T) = (R_{\parallel}S) \cup (R_{\parallel}T)$;
- (2) $R \sqcup (S \cap T) \subset (R \sqcup S) \cap (R \sqcup T)$;

证明:

(1) $\forall \langle x, z \rangle \in R \amalg (S \cup T)$,则由合成关系的定义知 $\exists y \in B$,使得 $\langle x, y \rangle \in R \amalg \langle y, z \rangle \in S \cup T$ 。从而 $\langle x, y \rangle \in R \coprod \langle y, z \rangle \in S$ 或 $\langle x, y \rangle \in R \coprod \langle y, z \rangle \in T$,即 $\langle x, z \rangle \in R \amalg S$ 或 $\langle x, z \rangle \in R \amalg T$ 。故 $\langle x, z \rangle \in (R \amalg S) \cup (R \amalg T)$ 。从而 $R \amalg (S \cup T) \subseteq (R \amalg S) \cup (R \amalg T)$ 。

同理可证 (RUS) ∪ (RUT) ⊂RU(S∪T)。

故 R □ (S∪T) = (R □ S) ∪ (R □ T)。

(2) ∀⟨x, z⟩∈R□(S∩T),则由合成关系的定义知∃y∈B,使得⟨x, y⟩∈R 且 ⟨y, z⟩∈S∩T。从而⟨x, y⟩∈R 且⟨y, z⟩∈S 且⟨y, z⟩∈T,即⟨x, z⟩∈R□S 且⟨x, z⟩ ∈R□T。故⟨x, z⟩∈ (R□S) ∩ (R□T)。从而 R□(S∩T)⊆(R□S) ∩ (R□T)。

14、设〈A, ≤〉为偏序集,Φ ≠ B ⊆ A,若 B 有最大(小)元、上(下)确界,则它们是惟一的。

证明:

设 a,b 都是 B 的最大元,则由最大元的定义 $a \le b$, $b \le a$ 。 $\| \le B$ A 上的偏序关系, \therefore a = b。即 B 如果有最大元则它是惟一的。

15、设 A={1,2,3},写出下列图示关系的关系矩阵,并讨论它们的性质:

解:

(1) R={<2,1>,<3,1>,<2,3>};
$$M_R = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$
; 它是反自反的、反对称的、传递的;

(2) R={<1, 2>, <2, 1>, <1, 3>, <3, 1>, <2, 3>, <3, 2>};
$$M_R = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
; 它是反自反的、

对称的:

(3) R={<1,2>,<2,1>,<1,3>,<3,3>};
$$M_R = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
; 它既不是自反的、反自反的、

也不是对称的、反对称的、传递的。

16、设 A={1,2,…,10}。下列哪个是 A 的划分?若是划分,则它们诱导的等价关系是什么?

- (1) $B=\{\{1,3,6\},\{2,8,10\},\{4,5,7\}\};$
- (2) $C=\{\{1,5,7\},\{2,4,8,9\},\{3,5,6,10\}\};$
- (3) $D=\{\{1,2,7\},\{3,5,10\},\{4,6,8\},\{9\}\}$

解:

- (1) 和 (2) 都不是 A 的划分。
- (3) 是 A 的划分。其诱导的等价关系是
 I_A ∪ {<1, 2>, <2, 1>, <1, 7>, <7, 1>, <2, 7>, <7, 2>, <3, 5>, <5, 3>, <3, 10>,
 <10, 3>, <10, 5>, <5, 10>, <4, 6>, <6, 4>, <4, 8>, <8, 4>, <6, 8>, <8, 6>}。

17、R 是 A={1, 2, 3, 4, 5, 6}上的等价关系,

$$R=I_{A} \cup \{\langle 1, 5 \rangle, \langle 5, 1 \rangle, \langle 2, 4 \rangle, \langle 4, 2 \rangle, \langle 3, 6 \rangle, \langle 6, 3 \rangle\}$$

求R诱导的划分。

解:

R诱导的划分为{{1,5}, {2,4}, {3,6}}。

18、A上的偏序关系≤的 Hasse 图如下。

- (1) 下列哪些关系式成立: $a \le b$, $b \le a$, $c \le e$, $e \le f$, $d \le f$, $c \le f$;
- (2) 分别求出下列集合关于≤的极大(小)元、最大(小)元、上(下)界及上(下)确界(若存在的话):
 - (a) A; (b) $\{b, d\}$; (c) $\{b, e\}$; (d) $\{b, d, e\}$

解:

- (1) $b \le a, c \le e, d \le f, c \le f$ 成立;
- (2) (a)的极大元为 a, e, f, 极小元为 c; 无最大元, c 是最小元; 无上界, 下界是 c; 无上确界, 下确界是 c。
 - (b)的极大元为 b, d, 极小元为 b, d; 无最大元和最小元; 上界是 e, 下界是 c; 上确界是 e, 下确界是 c。
 - (c)的极大元为 e, 极小元为 b;最大元是 e, b 是最小元; 上界是 e, 下界是 b;上确界是 e, 下确界是 b。
 - (d)的极大元为 e, 极小元为 b, d;最大元是 e, 无最小元; 上界是 e, 下界是 c;上确界是 e, 下确界是 c。

(半群与群部分)

19、求循环群 C_{12} ={e, a, a², ···, a¹¹} 中 H={e, a⁴, a⁸} 的所有右陪集。

解:

因为 $|C_{12}|=12$, |H|=3 ,所以 H 的不同右陪集有 4 个:H , $\{a,a^5,a^9\}$, $\{a^2,a^6,a^{10}\}$, $\{a^3,a^7,a^{11}\}$ 。

20、求下列置换的运算:

解:

$$(1) \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix} \sqcup \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{pmatrix}$$

$$(2) \quad \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 5 & 2 & 6 & 3 & 1 \end{pmatrix}^{3} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 5 & 2 & 6 & 3 & 1 \end{pmatrix} \quad \coprod \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 5 & 2 & 6 & 3 & 1 \end{pmatrix}^{2}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 5 & 2 & 6 & 3 & 1 \end{pmatrix} \ \sqcup \ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 3 & 5 & 1 & 2 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix}$$

21、试求出8阶循环群的所有生成元和所有子群。

解:

设 G 是 8 阶循环群, a 是它的生成元。则 $G=\{e,a,a^2,..,a^7\}$ 。由于 a^k 是 G 的生成元的充分必要条件是 k 与 8 互素. 故 $a.a^3.a^5.a^7$ 是 G 的所有生成元。

因为循环群的子群也是循环群,且子群的阶数是 G 的阶数的因子,故 G 的子群只能是 1 阶的、2 阶的、4 阶的或 8 阶的。因为 |e|=1, $|a|=|a^3|=|a^5|=8$, $|a^2|=|a^6|=8$, $|a^4|=2$,且 G 的子群的生成元是该子群中 a 的最小正幂,故 G 的所有子群除两个平凡子群外,还有 $\{e,a^4\}$, $\{e,a^2,a^4,a^6\}$ 。

22、I 上的二元运算*定义为: ∀a, b∈ I, a*b=a+b-2。试问<I, *>是循环群吗? 解:

<1,*>是循环群。因为<1,*>是无限阶的循环群,则它只有两个生成元。1和3是它的两个生成元。因为 $a^n=na-2(n-1)$,故 $1^n=n-2(n-1)=2-n$ 。从而对任一个 $k \in I$, $k=2-(2-k)=1^{2-k}$,故 1 是的生成元。又因为 1 和 3 关于* 互为逆元,故 3 也是 <1,*>的生成元。

23、设〈G, • 〉是群, a∈G。 令 H= {x∈G | a • x=x • a} 。试证: H 是 G 的子群。证明:

 \forall c , d∈H , 则 对 \forall c , d∈HK , c • a=a • c,d • a=a • d 。 故 (c • d) • a=c • (d • a)=c • (a • d)=(c • a) • d=(a • c) • d=a • (c • d)。从而 c • d ∈ H。

由于 $c \cdot a = a \cdot c$, 且 \cdot 满足消去律,所以 $a \cdot c^{-1} = c^{-1} \cdot a$ 。故 $c^{-1} \in H$ 。从而 $H \neq G$ 的子群。

24、证明: 偶数阶群中阶为 2 的元素的个数一定是奇数。证明:

设<G, •>是偶数阶群,则由于群的元素中阶为1的只有一个单位元,阶大于2的元素是偶数个,剩下的元素中都是阶为2的元素。故偶数阶群中阶为2的元素一定是奇数个。

25、证明:有限群中阶大于2的元素的个数一定是偶数。证明:

设 $\langle G, \bullet \rangle$ 是有限群,则 $\forall a \in G$,有 $|a| = |a^{-1}|$ 。且当 a 阶大于 2 时, $a \neq a^{-1}$ 。故 阶数大于 2 的元素成对出现,从而其个数必为偶数。

26、试求〈N₆,+₆〉中每个元素的阶。

解:

0 是<N₆,+₆>中关于+₆的单位元。则|0|=1; |1|=|5|=6, |2|=|4|=3, |3|=2。
27、设<G, •>是群, a,b∈G, a≠e, 且 a⁴ • b=b • a⁵。试证 a • b≠b • a。 证明:

用反证法证明。

假设 $a \cdot b = b \cdot a$ 。则 $a^4 \cdot b = a^3 \cdot (a \cdot b) = a^3 \cdot (b \cdot a) = (a^5 \cdot b) \cdot a$

$$= (a^{2} \cdot (a \cdot b)) \cdot a = (a^{2} \cdot (b \cdot a)) \cdot a = ((a^{2} \cdot b) \cdot a) \cdot a = (a \cdot (a \cdot b)) \cdot (a \cdot a)$$

$$= (a \cdot (b \cdot a)) \cdot a^{2} = ((a \cdot b) \cdot a) \cdot a^{2} = ((b \cdot a) \cdot a) \cdot a^{2} = (b \cdot a^{2}) \cdot a^{2}$$

$$= b \cdot (a^{2} \cdot a^{2}) = b \cdot a^{4}.$$

因为 a⁴ • b= b • a⁵, 所以 b • a⁵= b • a⁴。由消去律得, a=e。

这与已知矛盾。

28、 | 上的二元运算*定义为: ∀a,b∈ |, a*b=a+b-2。试证: ⟨|,*⟩为群。证明:

- (1) ∀ a, b, c∈ I, (a*b)*c=(a*b)+c-2=(a+b-2)+c-2=a+b+c-4, a*(b*c) =a+(b*c)-2=a+(b+c-2)-2=a+b+c-4。故(a*b)*c= a*(b*c), 从而*满足结合律。
- (2) 记 e=2。对∀a∈I, a*2=a+2-2=a=2+a-2=2*a.。故 e=2 是 I 关于运算*的单位元。
- (3) 对∀a∈I, 因为a* (4-a) =a+4-a-2=2=e=4-a+a-2=(4-a)*a。故 4-a 是 a 关于运算*的逆元。

综上所述, <1,*>为群。

29、设⟨S, • >为半群, a∈S。令 S_a={aⁱ | i∈I₊}。试证⟨S_a, • >是⟨S, • >的

子半群。

证明:

∀b, c∈S_a,则存在 k, l∈I₊,使得 b=a^k, c=a^l。从而 b•c=a^k•a^l=a^{k+l}。因为 k+l∈I₊,所以 b•c∈S_a,即 S_a关于运算•封闭。故⟨S_a,•⟩是⟨S,•⟩的子半群。
 30、单位元有惟一逆元。

证明:

设<G,*>是一个群, e 是关于运算*的单位元。

若 e₁, e₂ 都是 e 的逆元,即 e₁*e=e 且 e₂*e=e。

因为 e 是关于运算*的单位元, 所以 $e_1=e_1*e=e_2*e=e_2*e$

即单位元有惟一逆元。

31、设 e 和 0 是关于 A 上二元运算*的单位元和零元,如果 |A|>1,则 $e \neq 0$ 。证明:

用反证法证明。假设 e=0。

对A的任一元素a,因为e和O是A上关于二元运算*的单位元和零元,

则 a=a*e=a*0=0。即 A 的所有元素都等于 0, 这与已知条件 |A|>1 矛盾。

从而假设错误。即 e≠0。

32、证明在元素不少于两个的群中不存在零元。

证明: (用反证法证明)

设在素不少于两个的群 $\langle G, * \rangle$ 中存在零元 θ 。对 \forall $a \in G$,由零元的定义有 $a * \theta = \theta$ 。

』〈G,*〉是群, ∴关于*消去律成立。∴ a=e。即 G 中只有一个元素, 这与 | G | ≥2 矛盾。故在元素不少于两个的群中不存在零元。

33、证明在一个群中单位元是惟一的。

证明:

设 e_1 , e_2 都是群 $\langle G, * \rangle$ 的单位元。 则 $e_1 = e_1 * e_2 = e_2$ 。 所以单位元是惟一的。

34、设 a 是一个群〈G, *〉的生成元,则 a-1 也是它的生成元。

证明:

 \forall x ∈ G, 因为 a 是 \langle G, * \rangle 的生成元, 所以存在整数 k, 使得 x=a^k。

故 $x=((a^k)^{-1})^{-1}=((a^{-1})^k)^{-1}=(a^{-1})^{-k}$ 。从而 a^{-1} 也是〈G, *〉的生成元。 35、在一个偶数阶群中一定存在一个 2 阶元素。 证明:

群中的每一个元素的阶均不为 0 且单位元是其中惟一的阶为 1 的元素。因为任一阶大于 2 的元素和它的逆元的阶相等。且当一个元素的阶大于 2 时,其逆元和它本身不相等。故阶大于 2 的元素是成对的。从而阶为 1 的元素与阶大于 2 的元素个数之和是奇数。

因为该群的阶是偶数,从而它一定有阶为2的元素。

36、代数系统〈G,*〉是一个群,则G除单位元以外无其它等幂元。

证明:

设 e 是该群的单位元。若 a 是〈G,*〉的等幂元,即 a*a=a。

因为 a*e=a, 所以 a*a=a*e。由于运算*满足消去律, 所以 a=e。

即G除单位元以外无其它等幂元。

37、设<G, *>是一个群,则对于 a, b∈G,必有唯一的 x∈G,使得 a*x=b。证明:

因为 a⁻¹*b∈G, 且 a*(a⁻¹*b)=(a*a⁻¹)*b=e*b=b, 所以对于 a, b∈G, 必有 x∈G, 使得 a*x=b。

若 x₁, x₂ 都满足要求。即 a*x₁=b 且 a*x₂=b。故 a*x₁=a*x₂。

由于*满足消去律,故 x1=x2。

从而对于 $a,b \in G$, 必有唯一的 $x \in G$, 使得 a * x = b。

38、设半群<S, •>中消去律成立,则<S, •>是可交换半群当且仅当 ∀a,b∈S, (a•b) ²=a² • b²。

证明:

 $\Rightarrow \forall a, b \in S, (a \cdot b)^2 = (a \cdot b) \cdot (a \cdot b) = ((a \cdot b) \cdot a) \cdot b$ $= (a \cdot (a \cdot b)) \cdot b = ((a \cdot a) \cdot b) \cdot b = (a \cdot a) \cdot (b \cdot b) = a^2 \cdot b^2;$

← ∀a,b∈S, 因为 (a · b) ²=a² · b², 所以(a · b) · (a · b)=(a · a) · (b · b)。
故 a · ((b · a) · b)=a · (a · (b · b))。由于 · 满足消去律,所以(b · a) · b=a · (b · b),即(b · a) · b=(a · b) · b。从而 a · b=b · a。故 · 满足交换律。

39、设群〈G, *>除单位元外每个元素的阶均为 2, 则〈G, *>是交换群。证明:

对任一 a∈G, 由已知可得 a*a=e, 即 a⁻¹=a。 对任一 a, b∈G, 因为 a*b=(a*b)⁻¹=b⁻¹*a⁻¹=b*a, 所以运算*满足交换律。 从而<G.*>是交换群。

- 40、设*是集合 A 上可结合的二元运算,且∀a,b∈A,若 a*b=b*a,则 a=b。 试证明:
 - (1) ∀a∈A, a*a=a, 即a是等幂元;
 - (2) \forall a, b \in A, a*b*a=a;
 - (3) \forall a, b, c \in A, a*b*c=a*c.

证明:

- (1) ∀a∈A, 记b=a*a。因为*是可结合的,故有b*a=(a*a)*a=a*(a*a)=a*b。
 由已知条件可得 a=a*a。
 - (2) ∀a,b∈A,因为由(1), a*(a*b*a)=(a*a)*(b*a)=a*(b*a),
 (a*b*a)*a=(a*b)*(a*a)=(a*b)*a=a*(b*a)。
 故a*(a*b*a)=(a*b*a)*a、从而a*b*a=a。
- (3) $\forall a, b, c \in A$, (a*b*c) * (a*c) = ((a*b*c) *a) *c = (a*(b*c)*a)*c $\mathbb{L}(a*c)*(a*b*c) = a*(c*(a*b*c)) = a*(c*(a*b)*c))$.

由 (2) 可知 a*(b*c)*a=a 且 c*(a*b)*c=c.

故 (a*b*c)*(a*c)=(a*(b*c)*a)*c=a*c

且(a*c)*(a*b*c) = a*(c*(a*b)*c)) = a*c.

即 (a*b*c) * (a*c) = (a*c)*(a*b*c)。

从而由已知条件知,a*b*c=a*c。

41、设<**G**, •>是群, 作 **f**:**G**→**G**, **a** □ **a** ⁻¹。证明: **f** 是 **G** 的自同构 ⇔ **G** 是交换 群。

证明:

⇒ 设 f 是 G 的 自 同 构 。 对 \forall a , b∈G , a • b=(b⁻¹ • a⁻¹)⁻¹=(f(b) • f(a))⁻¹=(f(b • a))⁻¹=((b • a)⁻¹)⁻¹=b • a。故运算 • 满足

交换律,即G是可交换群。

对 $\forall a$, $b \in G$, 因 为 G 是 可 交 换 群 , 故 $f(a \cdot b) = (a \cdot b)^{-1} = (b \cdot a)^{-1} = a^{-1} \cdot b^{-1} = f(a) \cdot f(b)$ 。故 f 满足同态方程。

从而f是G的自同构。

42、若群<G, *>的子群<H, *>满足 | G | = 2 | H | , 则<H, *>一定是群<G, *>的 正规子群。

证明:

由已知可知,G 关于 H 有两个不同的左陪集 H, H_1 和两个不同的右陪集 H, H_2 。 因为 $H \cap H_1 = \Phi$ 且 $H \cup H_1 = G$, $H \cap H_2 = \Phi$ 且 $H \cup H_2 = G$, 故 $H_1 = G - H = H_2$ 。

对 \forall a∈G, 若a∈H, 则aH=H, Ha=H。否则因为a∈G-H, 故aH≠H, Ha≠H。从而aH=Ha=G-H。故 H 是 G 的不变子群。

43、设H和K都 是G的不变子群。证明: H∩K也是G的不变子群。证明:

因为 H 和 K 都 是 G 的不变子群,所以 H \cap K 是 G 的子群。对 \forall a \in G,h \in H \cap K,有 a \cdot h \cdot a $^{-1}$ \in a \cdot H \cdot a $^{-1}$ \in a \cdot K \cdot a $^{-1}$ 。因为 H 和 K 都 是 G 的不变子群,所以 a \cdot h \cdot a $^{-1}$ \in H 且 a \cdot h \cdot a $^{-1}$ \in K 。从而 a \cdot h \cdot a $^{-1}$ \in H \cap K 。故 H \cap K 是 G 的不变子群。

44、设群 G 的中心为 C (G) = {a∈G| ∀x∈G, a • x=x • a}。证明 C (G) 是 G 的不变子群。

证明:

先证 C(G)是G的子群。

 \forall a, b \in C (G), 对 \forall x \in G, 有 a \cdot x = x \cdot a , b \cdot x = x \cdot b 。故(a \cdot b) \cdot x = a \cdot (b \cdot x) = a \cdot (x \cdot b) = (a \cdot x) \cdot b = (x \cdot a) \cdot b = x \cdot (a \cdot b), a $^{-1}$ \cdot x = x \cdot a $^{-1}$ \cdot M \cap a \cdot b, a $^{-1}$ \in C (G) \cap D \cap D

再证 C(G)是 G的不变子群。

对 $\forall a \in G$, $\forall h \in C(G)$, 记 $b=a \cdot h \cdot a^{-1}$ 。下证 $b \in C(G)$ 。因为 $h \in C(G)$,所以

 $b=(a \cdot h) \cdot a^{-1}=(h \cdot a) \cdot a^{-1}=h \cdot (a \cdot a^{-1})=h \in C(G)$

故 C (G) 是 G 的不变子群。

45、设〈G, •〉是没有非平凡子群的有限群。试证: G 是平凡群或质数阶的循环群。

证明:

若 G 是平凡群,则结论显然成立。

否则设 $\langle G, \bullet \rangle$ 的阶为 n。任取 $a \in G$ 且 $a \neq e$,记 H=(a)(由 a 生成的 G 的子群)。显然 $H \neq \{e\}$,且 G 没有非平凡子群,故 H=G。从而 G 一定是循环群,且 a 是 G 的生成元。

若 n 是 合 数 ,则 存 在 大 于 1 的 整 数 k,m , 使 得 n=mk 。 记 H= $\{e, a^k, (a^k)^2, \cdots, (a^k)^{m-1}\}$, 易证 H 是 G 的 子 群 ,但 1<|H|=m< n, 故 H 是 G 的 非 平 凡 子 群 。 这 与 已 知 矛 盾 。 从 而 n 是 质 数 。

故G是质数阶的循环群。

综上所述, G是平凡群或质数阶的循环群。

46、设 H 和 K 都是 G 的有限子群,且|H|与|K|互质。试证: $H \cap K = \{e\}$ 。证明:

用反证法证明。

若 $H \cap K \neq \{e\}$ 。则 $H \cap K$ 是一个元素个数大于 1 的有限集。

先证H∩K也是G的子群,从而也是H和K的子群。

 $\forall a,b \in H \cap K$, 则 $a,b \in H \perp A$, $b \in K$ 。因为 $H \cap K$ 都 是 G 的子群,故 $a \cdot b$, $a^{-1} \in H \perp A$ 化 $A \cdot b$ 是 $A \cdot b$ 的子群,从而 也是 $A \cdot b$ 和 $A \cdot b$ 的子群。

由拉格朗日定理可知, H∩K | 是 | H | 和 | K | 的因子, 这与已知矛盾。

47、素数阶循环群的每个非单位元都是生成元。

证明:

设〈G,*〉是p阶循环群,p是素数。

对 G 中任一非单位元 a。设 a 的阶为 k,则 k≠1。

由拉格朗日定理, k是p的正整因子。因为p是素数,故k=p。即a的阶就是p,即群G的阶。故a是G的生成元。

48、若<S, ◆>是可交换独异点, T为S中所有等幂元的集合,则<T, ◆>是<S, ◆>的子独异点。

证明:

■ e • e=e, :.e ∈ T, 即 T 是 S 的非空子集。

∀ a, b ∈ T. 』 〈S. ◆〉是可交换独异点,

$$(a \bullet b) \bullet (a \bullet b) = ((a \bullet b) \bullet a) \bullet b$$

$$=(a \bullet (b \bullet a)) \bullet b = (a \bullet (a \bullet b)) \bullet b$$

$$=((a \bullet a) \bullet b) \bullet b = (a \bullet a) \bullet (b \bullet b)$$

=a • b, 即 a • b ∈ T。

故<T, ●>是<S, ●>的子独异点。

49、设〈G, •〉是群,且 a \in G 的阶为 n, k \in I, 则 $|a^k| = \frac{n}{(k,n)}$,其中 (k,n) 为 k 和 n 的最大公因子。

证明:

记 $p = \frac{n}{(k,n)}$, $q = \frac{k}{(k,n)}$, $|a^k| = m$ 。由 n 和 p 的定义,显然有 $(a^k)^{p=e}$ 。故 $m \le p$ 且 $m \mid p$ 。

又由于 $a^{km}=e$,所以由定理 5.2.5 知, $n \mid km$ 。即 $p \mid qm$ 。但 p 和 q 互质,故 $p \mid m$ 。

由于 p 和 m 都是正整数,所以 p=m。即 $|a^k| = \frac{n}{(k,n)}$ 。

50、设〈G, ◆〉是有限群, |G|=n, 则∀a∈G, |a|≤n。

证明:

 \forall a \in G,由封闭性及 | G| =n 可知 a, a², …, aⁿ, aⁿ⁺¹ 中必有相同的元素,不妨设为 | a^k=a^m, k \leq m。 由消去律得 | a^{m-k}=e。从而 | a| \leq m-k \leq n。

51、设 G=(a), 若 G 为无限群,则 G 只有两个生成元 a 和 a-1;

证明:

∀ b∈G=(a),则∃n∈I,使 b=aⁿ。故 b=(a⁻ⁿ)⁻¹=(a⁻¹)⁻ⁿ,从而 a⁻¹ 也是 G 的生成元。

若 c 是 G 的生成元,则∃k,m∈ l,分别满足 c=a^k和 a=c^m。从而 c= (c^m)^k= c^{mk}。

若 km ≠ 1,则由消去律可知 c 的阶是有限的,这与 |G| 无限矛盾。从而 km=1,即 k=1,m=1 或 k=-1,m=-1。故 c=a 或 c=a⁻¹。

从而G只有两个生成元a和a-1。

52、设 G=(a), $\{e\} \neq H \leq G$, $a^m \neq H$ 中 a 的最小正幂,则

- (1) $H=(a^m)$:
- (2) 若 G 为无限群,则 H 也是无限群;

证明:

(1) ∀b∈H, ∃k∈I, 使得b=a^k。令k=mq+r, 0≤r<m。

则 $a^r = a^{k-mq} = a^k \bullet a^{-mq} = b \bullet (a^m)^{-q}$ 。

因为 b, a^m ∈H, 且 H ≤ G, 所以 a^r ∈ H。

由于0≤r√m,且a^m是H中a的最小正幂,故r=0,即k=mg。

从而 b=(a^m)^q。故 a^m是 H 的生成元。

- (2) 因为{e}≠H,故H的生成元为 a^m (m≠0)。因为 G 是无限群,所以 a 的 阶是无限的,从而 a^m的阶也是无限的,故 H 也是无限群。
- 53、设 G=(a), |G|=n,则对于n的每一正因子d,有且仅有一个d 阶子群。因此n 阶循环群的子群的个数恰为 n的正因子数。证明:

 \Rightarrow 对 n 的每一正因子 d, \diamondsuit k= $\frac{n}{d}$, b=a^k, H={e, b, b², ···, b^{d-1}}。

因为 | a | =n, 所以 b d = (ak) d = akd = an = e 且 | b | =d。

从而 H 中的元素是两两不同的, 易证 H≤G。

故|H|=d。所以是G的一个d阶子群。

设 H_1 是 G 的任一 d 阶子群。则由定理 5.4.4 知, H_1 = (a^m) ,其中 a^m 是 H_1 中 a 的最小正幂,且 $|H| = \frac{n}{m}$ 。因为|H| = d,所以 $m = \frac{n}{d} = k$,即 $H = H_1$ 。从而 H 是 G 的惟一 G 阶子群。

 \leftarrow 设 H 是 G 的惟一的 d 阶子群。若 d=1 ,则结论显然成立。否则 H= (a^m), 其中 a^m 是 H 中 a 的最小正幂。由定理 5. 4. 4 知, d= $\frac{n}{m}$ 。故 d 是 n 的一个正因子。

54、设h是从群 $\langle G_1, * \rangle$ 到 $\langle G_2, \bullet \rangle$ 的群同态, G_1 和 G_2 的单位元分别为 e_1 和

e₂,则

- (1) $h(e_1)=e_2$;
- (2) $\forall a \in G_1, h(a^{-1}) = h(a)^{-1};$
- (3) 若 H_≤ G₁,则 h(H)_≤ G₂;
- (4) 若 h 为单一同态,则∀a∈G₁, |h(a)|=|a|。

证明:

- (1) 因为 h(e₁) h(e₁) = h(e₁ e₁) = h(e₁) = e₂ h(e₁), 所以 h(e₁) = e₂。
- (2) $\forall a \in G_1$, $h(a) \bullet h(a^{-1}) = h(a \bullet a^{-1}) = h(e_1) = e_2$, $h(a^{-1}) \bullet h(a) = h(a^{-1} \bullet a) = h(e_1) = e_2$, $b h(a^{-1}) = h(a)^{-1}$.
- (3) ∀ c, d∈h(H), ∃a, b∈H, 使得 c=h(a), d=h(b)。故 c d=h(a) h(b) =h(a*b)。因为 H≤G, 所以 a*b ∈H, 故 c d∈h(H)。又 c⁻¹=(h(a))⁻¹=h(a⁻¹) 且 a⁻¹∈H, 故 c⁻¹∈h(H)。由定理 5.3.2 知 h(H) ≤ G₂。
- (4) 若 | a | =n, 则 aⁿ=e₁。故 (h (a)) ⁿ=h (aⁿ) =h (e₁) =e₂。从而 h (a) 的阶也有限, 且 | h (a) | ≤ n。

设 |h(a) |=m, 则 h(a^m)= (h(a))^m= h(e₁)=e₂。因为 h 是单一同态,所以 a^m=e₁。即 |a | ≤ m。

故|h(a)|=|a|。

若 a 的阶是无限的,则类似于上述证明过程可以得出,h(a)的阶也是无限的。

故结论成立。

55、有限群 G 的每个元素的阶均能整除 G 的阶。

证明:

设|G|=n, $\forall a \in G$, 则|a|=m。 令 H= $\{e, a, a^2, \dots, a^{m-1}\}$ 。

则 $H \neq G$ 的子群且|H|=m。由 Lagrange 定理知|H|能整除|G|,故 a 的阶能整除 G 的阶。

56、证明:在同构意义下,只有两个四阶群,且都是循环群。

证明:

在 4 阶群 G中,由 Lagrange 定理知,G中的元素的阶只能是 1,2 或 4。 阶为

1 的元素恰有一个, 就是单位元 e.

若 G 有一个 4 阶元素,不妨设为 a,则 G=(a),即 G 是循环群 ,从而是可交换群。

若 G 没有 4 阶元素,则除单位元 e 外,G 的其余 3 个阶均为 2。不妨记为 a, b, c。因为 a, b, c 的阶均为 2,故 $a^{-1}=a$, $b^{-1}=b$, $c^{-1}=c$ 。从而 $a \bullet b \neq a$, $a \bullet b \neq a$

57、在一个群 $\langle G, * \rangle$ 中,若 G 中的元素 a 的阶是 k,即|a|=k,则 a^{-1} 的阶也是 k。

证明:

因为 | a |=k, 所以 a^k=e。即 (a⁻¹) ^k=(a^k)⁻¹=e。

从而 a^{-1} 的阶是有限的,且 $|a^{-1}| \le k$ 。

同理可证, a的阶小于等于|a-1|。

故 a-1 的阶也是 k。

58、在一个群⟨G,*⟩中, 若 A 和 B 都是 G 的子群。若 A∪B=G, 则 A=G 或 B=G。

证明:

用反证法证明。

因为 a∈A, 所以 a⁻¹ ∈A。若 a*b∈A, 则 b= a⁻¹*(a*b)∈A, 这与 a∉B 矛盾。 从而 a*b∉A。

同理可证 a*b ∉B。

综合可得 $a*b \not\in A \cup B=G$,这与已知矛盾。从而假设错误,得证 A=G 或 B=G。 59、设 e 是奇数阶交换群 $\langle G, * \rangle$ 的单位元,则 G 的所有元素之积为 e。 证明:

设 G=<{e,a₁,a₂,...,a_n},*>, n 为正整数。

因为 G 的阶数为奇数 2n+1, 所以由拉格朗日定理知 G 中不存在 2 阶元素,即除了单位元 e 以外, G 的所有元素的阶都大于 2。故对 G 中的任一非单位元 a, 它的逆元 a⁻¹ 不是它本身,且 G 中不同的元素有不同的逆元。

由此可见, G 中的 2n 个非单位元构成互为逆元的 n 对元素。因为 G 是交换群,故 G 的所有元素之积可变成单位元和 n 对互为逆元的元素之积的积,从而结果为 e。 $60、设 S=Q\timesQ, Q$ 为有理数集合,*为 S 上的二元运算:对任意 (a,b),(c,d) $\in S$,有

$$(a, b)*(c, d)=(ac, ad+b),$$

求出 S 关于二元运算*的单位元,以及当 a≠0 时, (a, b) 关于*的逆元。解:

设 S 关于*的单位元为(a,b)。根据*和单位元的定义,对∀(x,y)∈S,有(a,b)*(x,y)=(ax,ay+b)=(x,y),(x,y)*(a,b)=(ax,xb+y)=(x,y)。

即 ax=x, ay+b=y, xb+y=y 对 ∀ x, y ∈ Q 都成立。解得 a=1, b=0。

所以 S 关于*的单位元为(1,0)。

当 a≠0 时,设(a,b)关于*的逆元为(c,d)。根据逆元的定义,有

$$(a, b)*(c, d) = (ac, ad+b) = (1, 0)$$

$$(c, d)*(a, b) = (ac, cb+d) = (1, 0)$$

即 ac=1, ad+b=0, cb+d=0。解得 c= $\frac{1}{a}$, d= $-\frac{b}{a}$ 。

所以(a, b) 关于*的逆元为(
$$\frac{1}{a}$$
, $-\frac{b}{a}$)。

61、设 $\langle G, * \rangle$ 是一个群,H、K 是其子群。定义 G 上的关系 R: 对任意 a, b \in G, aRb \Leftrightarrow 存在 h \in H, k \in K, 使得 b=h*a*k,则 R 是 G 上的等价关系。证明:

 \forall a \in G , 因为 H 、K 是 G 的子群,所以 e \in H 且 e \in K 。 \Diamond h=k=e,则 a=e*a*a=h*e*k,从而 aRa。即 R 是自反的。

 \forall a, b \in G, 若 aRb,则存在 h \in H, k \in K,使得 b=h*a*k。因为 H、K 是 G 的子群,所以 h⁻¹ \in H 且 k⁻¹ \in K。故 a=h⁻¹*a*k⁻¹,从而 bRa。即 R 是对称的。

∀a,b,c∈G, 若aRb,bRc,则存在h,g∈H, k, l∈K, 使得b=h*a*k, c=g*b*l。 所以c=g*b*l=g*(h*a*k)*l=(g*h)*a*(k*l)。因为H、K 是 G 的子群, 所以g*h∈H 且 k*l∈K。从而aRc。即 R 是传递的。

综上所述, R是G上的等价关系。

- 62、设H是G的子群,则下列条件等价:
 - (1) H是G的不变子群:
 - (2) $\forall a \in G, a \cdot H \cdot a^{-1} \subset H;$
 - $(3) \quad \forall a \in G, \ a^{-1} \bullet H \bullet a \subset H;$
 - (4) $\forall a \in G, \forall h \in G, a \bullet h \bullet a^{-1} \subset H_{\bullet}$

证明:

- (1) \Rightarrow (2) \forall $a \in G$,则对 $h \in H$,令 $h_1 = a \bullet h \bullet a^{-1}$,因为 $a \bullet h \in a \bullet H$ 且 $H \bullet a = a$ \bullet H ,所以 $\exists h_2 \in H$,使得 $a \bullet h = h_2 \bullet a$ 。故 $h_1 = (h_2 \bullet a) \bullet a^{-1} = h_2 \in H$ 。故 $a \bullet H \bullet a^{-1} \subset H$ 。
- (2) ⇒ (3) ∀a∈G, 对h∈H, 令h₁=a⁻¹•h•a, 则 (h₁)⁻¹= a•h⁻¹•a⁻¹。因为h⁻¹ ∈H, 所以 (h₁)⁻¹= a•h⁻¹•a⁻¹∈a•H•a⁻¹。由(2)可知(h₁)⁻¹∈H, 从而 h₁∈H。 故 a⁻¹•H•a⊆H。
 - (3) ⇒ (4) 类似于 (2) ⇒ (3)的证明。
- (4) ⇒ (1) ∀a∈G, 对∀b∈a●H, 则∃h∈H, 使得 b=a●h。故 b=(a●h) (a⁻¹
 ●a)=(a●h●a⁻¹) ●a。由于 a●h●a⁻¹∈H, 所以 b∈H●a。即 a●H⊂H●a。

反之对∀b ∈ H•a ,则∃h ∈ H ,使得 b=h•a 。故 b=(a•a⁻¹)
• (h•a)=a•(a⁻¹•h•a)=a•(a⁻¹•h•(a⁻¹)⁻¹)。由于 a⁻¹•h•(a⁻¹)⁻¹∈H,所以 b∈
a•H。即H•a⊂a•H。

即 H●a=a●H。从而 H 是 G 的不变子群。

63、在半群⟨G, *>中, 若对∀a, b∈G, 方程 a*x=b 和 y*a=b 都有惟一解. 则⟨G. *>是一个群。

证明:

任意取定 $a \in G$, 记方程 $a \times x = a$ 的惟一解为 e_R 。即 $a \times e_R = a$ 。

下证 er 为关于运算*的右单位元。

对 \forall b∈G, 记方程 y*a=b 的惟一解为 y。

Ⅱ 〈G,*〉是半群, ∴运算*满足结合律。

 $\therefore b*e_R=(v*a)*e_R=v*(a*e_R)=v*a=b_o$

类似地、记方程 v*a=a 的唯一解为 e_i 。即 $e_i*a=a$ 。

下证 eL 为关于运算*的左单位元。

对 \forall b∈G. 记方程 a*x=b 的惟一解为 x。

Ⅱ〈G,*〉是半群, ::运算*满足结合律。

 $\therefore e_1 *b = e_1 * (a*x) = (e_1 *a) *x = a*x = b_0$

从而在半群〈G,*〉中,关于运算*存在单位元,记为 e。

现证G中每个元素关于运算*存在逆元。

对 \forall b \in G,记 c 为方程 b*x=e 的惟一解。下证 c 为 b 关于运算的逆元。记 d=c*b。则 b*d=(b*c)*b=e*b=b。

□ b*e=b, 且方程 b*x=b 有惟一解, :.d=e。

∴b*c=c*b=e。从而 c 为 b 关于运算的逆元。

综上所述, 〈G,*〉是一个群。

64、设〈G, *>是群, H和K都是G的子群, 令HK={h*s | s∈K, h∈H}, KH={s*h | s∈K, h∈H}, 〈HK, *>, 〈KH, *>是G的子群的充分必要条件是HK=KH。证明:

⇒HK 是 G 的子群。 \forall c ∈ HK,则 c $^{-1}$ ∈ HK,故存在 a ∈ H, b ∈ K,使得 c $^{-1}$ = a $^{-1}$ b 。 因为 c = (a $^{-1}$ b) $^{-1}$ = b $^{-1}$ • a $^{-1}$ 。 因为 H 和 K 都是 G 的子群,所以 a $^{-1}$ ∈ H, b $^{-1}$ ∈ K ,即 c ∈ KH 。从而 HK \subseteq KH 。 \forall c ∈ KH ,则存在 a ∈ H, b ∈ K ,使得 c $^{-1}$ b $^{-1}$ ∈ B $^{-1}$ • a 。 因为 c = (a $^{-1}$ • b $^{-1}$) $^{-1}$ 。 因为 H 和 K 都是 G 的子群,所以 a $^{-1}$ ∈ H, b $^{-1}$ ∈ K ,即 a $^{-1}$ • b $^{-1}$ ∈ HK。因为 HK 是 G 的子群,所以 c = (a $^{-1}$ • b $^{-1}$) $^{-1}$ ∈ HK。从而 KH \subset HK。

故 HK=KH。

 \leftarrow HK=KH。对 \forall c,d \in HK,有 a₁, a₂ \in H, b₁, b₂ \in K,使得 c=a₁·b₁,d=a₂·b₂。则 c·d=(a₁·b₁)·(a₂·b₂)=((a₁·b₁)·a₂)·b₂=(a₁·(b₁·a₂))·b₂。因为 b₁·a₂ \in KH=KH , 所 以 存 在 a₃ \in H, b₃ \in K , 使 得 b₁ · a₂ =a₃ · b₃ 。 从 而 c·d=(a₁·(b₁·a₂)·b₂=(a₁·(a₃·b₃))·b₂=(a₁·a₃)·(b₃·b₂)。因为 H 和 K 都是 G 的子群,故 a₁·a₃ \in H,b₃·b₂ \in K。从而 c·d \in HK。

又 $c^{-1}=(a_1 \cdot b_1)^{-1}=b^{-1}_1 \cdot a^{-1}_1$ 。因为 H 和 K 都是 G 的子群,故 $a^{-1}_1 \in H$, $b^{-1}_1 \in K$ 。从而 $c^{-1} \in KH$ 。因为 HK=KH,所以 $c^{-1} \in HK$ 。

综上所述, HK 是 G 的子群。

65、设 H 和 K 都 是 G 的不变子群。证明: HK 也是 G 的不变子群。

证明:

先证 HK 是 G 的子群。

对 $\forall a \in HK$,有 $h \in H$, $k \in K$,使得 $a=h \cdot k$ 。因为 $a=h \cdot k=(h \cdot k \cdot h^{-1}) \cdot h$,且K是G的不变子群,所以 $h \cdot k \cdot h^{-1} \in K$ 。故 $a \in KH$ 。从而 $HK \subset KH$ 。

同理可证, KH⊂HK。

故 HK=KH。从而 HK 是 G 的子群。

下证 HK 是 G 的不变子群。

对 $\forall a \in G$, $b \in HK$, 有 $h \in H$, $k \in K$, 使 得 b = h • k 。 故 $a \cdot b \cdot a^{-1} = a \cdot (h \cdot k) \cdot a^{-1} = (a \cdot h \cdot a^{-1}) \cdot (a \cdot k \cdot a^{-1})$ 。因为 $H \cap K$ 都是 G 的不变 子群,所以 $a \cdot h \cdot a^{-1} \in H$ 且 $a \cdot k \cdot a^{-1} \in K$ 。从而 $a \cdot b \cdot a^{-1} \in HK$ 。故 HK 是 G 的不变子群。

再由 b*c=c*b 及 b 的阶为 n 得

$$a=a*b^n = (c*b)^n *a=(c^n*b^n)*a=c^n*a$$

所以 c"=e。故由元素阶的定义有 k n。

由 a*b=c*b*a, a*c=c*a, b*c=c*b 得 a*b=b*a*c, 两边同时左乘 a^{m-1}, 再由 a*b=b*a*c 得

$$a^{m}*b=a^{m-1}*(b*a*c)=a^{m-2}*(a*b)*(a*c)=a^{m-2}*(b*a*c)*(a*c)$$

$$=a^{m-2}*b*(a*c)^{2}=a^{m-3}*(a*b)*(a*c)^{2}=a^{m-3}*(b*a*c)*(a*c)^{2}$$

$$=a^{m-3}*b*(a*c)^{3}=\cdots=b*(a*c)^{m}.$$

再由 a*c=c*a 及 a 的阶为 m 得

$$b= a^m *b= b* (a*c)^m =b* a^m * c^m =b*c^m,$$

所以 $c^m = e$ 。故由元素阶的定义有 $k \mid m$ 。

由此可见, k是m和n的公因子, 从而能整除m和n的最大公因子(m,n)。

(格与布尔代数)

67、当 n 分别是 24, 36, 110 时, <S_n, |>是布尔代数吗?若是,则求出其原子集。

解:

因为 $|S_{24}|$ =8, $|S_{36}|$ =9, $|S_{110}|$ =8, 故<S₃₆, |>不是布尔代数。在<S₂₄, |>中 12 没有补元, 故它也不是布尔代数。<S₁₁₀, |>是布尔代数,其原子集为 $\{2,5,11\}$ 。

68、设 L 是有界格, 且 | L | >1。证明: 0≠1。

证明:

用反证法证明。

69、设(L, ≤) 是格, 若 a, b, c∈L, a≤b≤c, 则

 $a \oplus b = b \odot c$, $(a \odot b) \oplus (b \odot c) = (a \oplus b) \odot (a \oplus c)$

证明:

因为 a≤b≤c,所以 a*b=a,a⊕b=b=b,且 b=b*c,以 c=b⊕c。从而 a⊕b=b*c。

$$(a*b) \oplus (b*c) = a \oplus (b*c) = a \oplus (a \oplus b) = (a \oplus a) \oplus b = a \oplus b = b,$$

$$(a \oplus b) * (a \oplus c) = (b*c) * (a \oplus c) = b * (c * (a \oplus c)) = b * c = b.$$

70、在布尔代数中,证明恒等式 a⊕ (a'*b)=a⊕b

证明:

$$a \oplus (a' *b) = (a \oplus a') * (a \oplus b) = 1 * (a \oplus b) = a \oplus b$$

71、设<L, ≤>是格, a₁, a₂, ..., a_n∈L。试证: a₁*a₂*...*a_n= a₁⊕a₂⊕...⊕a_n 当且仅当 a₁=a₂=...=a_n。

证明:

⇐显然是成立的。

 \Rightarrow 对任一 k=1, 2, ..., n, $a_1 * a_2 * \cdots * a_n \le a_k$, $a_k < a_1 \oplus a_2 \oplus \cdots \oplus a_n$.

因为 $a_1*a_2*\cdots*a_n=a_1\oplus a_2\oplus\cdots\oplus a_n$,且 \leq 是 L 上的偏序关系,故 $a_k=a_1\oplus a_2\oplus\cdots\oplus a_n$ 。从而 $a_1=a_2=\cdots=a_n$ 。

72、在布尔代数中,证明恒等式(a*c)⊕(a'*b)⊕(b*c)=(a*c)⊕(a'*b) 证明:

$$((a*c) \oplus (a'*b))*(b*c)=((a*c)*(b*c)) \oplus ((a'*b)*(b*c))$$

= $(a*b*c) \oplus (a'*b*c)=(a \oplus a')*b*c=1*b*c=b*c,$
故 $b*c \le (a*c) \oplus (a'*b)$,从而
 $(a*c) \oplus (a'*b) \oplus (b*c)=(a*c) \oplus (a'*b)$ 。

73、在布尔代数中,证明恒等式(a*b)⊕(a'*c)⊕(b'*c)=(a*b)⊕c 证明:

$$(a*b) \oplus (a'*c) \oplus (b'*c) = (a*b) \oplus ((a' \oplus b')*c)$$

= $(a*b) \oplus ((a*b)'*c) = (a*b) \oplus c$.

74、设<L, ≤>是格, a, b, c, d∈L。试证:若a≤b且c≤d,则a*c≤b*d

证明:

75、当 n 分别是 10, 45 时, 画出 < S_n, | >的哈斯图。

解:

76、在布尔代数中,证明恒等式

$$(a \oplus b') * (b \oplus c') * (c \oplus a') = (a' \oplus b) * (b' \oplus c) * (c' \oplus a)$$
证明:

 $(a \oplus b') * (b \oplus c') * (c \oplus a')$

 $=(a*b*c) \oplus (a*b*a') \oplus (a*c'*a') \oplus (a*c'*c) \oplus (b'*b*c)$

 $\oplus (b'*c'*c) \oplus (b'*c'*a') \oplus (b'*b*a') = (a*b*c) \oplus (b'*c'*a'),$ $(a'\oplus b)*(b'\oplus c)*(c'\oplus a)$

 $=(a'*b'*c') \oplus (a'*b'*a) \oplus (a'*c*c') \oplus (a'*c*a) \oplus (b*b'*c')$

 \oplus (b*b'*a) \oplus (b*c*c') \oplus (b*c*a)=(a*b*c) \oplus (a'*b'*c'), 故 (a \oplus b')*(b \oplus c')*(c \oplus a')=(a' \oplus b)*(b' \oplus c)*(c' \oplus a)。

77、设〈L, ≤〉是格, a, b ∈ L, 且 a ≤ b, 记

 $I[a,b] = \{x \in L \mid a \leq x \leq b\}$

则〈I[a,b], ≤〉是〈L, ≤〉的子格。

证明:

 $\forall x, y \in I[a, b], a \leq x \leq b$ 且 $a \leq y \leq b$ 。由定理 6.1.1 有 $a \leq x * y \leq b$ 且 $a \leq x \oplus y$ $\leq b$ 。从而 $x * y \in I[a, b]$ 且 $x \oplus y \in I[a, b]$ 。故 I[a, b] 关于*和 \oplus 是封闭的,从而 $\langle I[a, b], \leq \rangle$ 是 $\langle L, \leq \rangle$ 的子格。

78、设 A= {a, b, c}, 求〈P(A), ⊆>的子格(P(A)表示 A 的幂集)。

解:

 $P(A) = \{\Phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, A\}$ 。在 P(A)的所有非空子集中,只要它关于 \cap 和 \cup 是封闭的,则它就是 $\langle P(A), \subseteq \rangle$ 的子格。

显然 $\langle P(A), \subseteq \rangle$ 和 $\langle \{\Phi\}, \subseteq \rangle$ 是 $\langle P(A), \subseteq \rangle$ 的子格。

 $\langle \{\Phi, \{a\}\}, \subseteq \rangle$ 、 $\langle \{\Phi, \{b\}\}, \subseteq \rangle$ 、 $\langle \{\Phi, \{c\}\}, \subseteq \rangle$ 、 $\langle \{\Phi, \{a, b\}\}, \subseteq \rangle$ 、 $\langle \{\Phi, \{a, c\}\}, \subseteq \rangle$ 、 $\langle \{\Phi, \{b, c\}\}, \subseteq \rangle$ 、 $\langle \{\Phi, A\}, \subseteq \rangle$ 、 $\langle \{\Phi, \{c\}, \{a, c\}, \{b, c\}, A \}, \subseteq \rangle$ 等都是 $\langle P(A), \subseteq \rangle$ 的子格。

79、证明:在同构意义下, 4阶格只有2个。

证明:

若≤是 L 上的全序关系,则它一定是良序关系(因为任一有限的全序集一定是良序集)。若设 L={a,b,c,d},则 L 的四个元素满足: a≤b≤c≤d。

若≤不是 L 上的全序关系,则 L 中一定存在两个元素(不妨设为 b, c),b≤c和 c≤b 都不成立。因此 b*c 和 b⊕c 既不可能相等,也不可能是 b 和 c。不妨记

a=b*c, $d=b\oplus c$ 。故〈L, <〉的四个元素 a, b, c, d 满足 a<a, b<b, c<c, d<d, a<b, a <c, a<d, b<d, c<d。

80、设<A, ≤>是有界格, ≤是 A 上的全序关系。若 | A | > 2,则 ∀ a ∈ A - {0,1}, a 无补元。

证明:

用反证法证明。

若∃ $a \in A - \{0,1\}$, a 有补元 a'。即 $a \oplus a' = 1$, a * a' = 0。因为≤是 A 上的全序关系,所以 $a \le a'$ 或 $a' \le a$ 。若 $a \le a'$,则 a = a * a' = 0。若 $a' \le a$,则 $a = a \oplus a' = 1$ 。 无论如何,这与 $a \ne 0$, $a \ne 1$ 矛盾。

81、格⟨L,*,⊕⟩是模格⇔ ∀a,b,c∈L,有

$$a \oplus (b_* (a \oplus c)) = (a \oplus b)_* (a \oplus c)$$

证明:

- ⇒ $\forall a, b, c \in L$, 记 $d=a \oplus c$ 。所以 $a \le d$,从而 $a \oplus (b*(a \oplus c)) = a \oplus (b*d) = (a \oplus b)*d = (a \oplus b)*(a \oplus c)$ 。
- $\leftarrow \forall a, b, c \in L, 若 a \le c, 则 c = a \oplus c. 所以$ $(a \oplus b) * c = (a \oplus b) * (a \oplus c) = a \oplus (b * (a \oplus c)) = a \oplus (b * c).$
- 82、设<L,*,⊕>是分配格, a,b,c∈L。若(a*b) = (a*c)且(a⊕b) = (a⊕c),则b=c。

证明:

由吸收律、分配律和交换律有

$$b=b\oplus(a*b)=b\oplus(a*c)=(b\oplus a)*(b\oplus c)$$

 $=(a \oplus c) * (b \oplus c) = c \oplus (a * b) = c \oplus (a * c) = c.$

83、证明:在有补分配格中,每个元素的补元一定惟一。

证明:

设 $\langle L, \leq \rangle$ 是一个有补分配格。 $\forall a \in L$,设b和 c 都是 a 的补元,即 a \oplus b=1, a \oplus c=1, a \star b=0, a \star c=0。

由吸收律、分配律和交换律有

 $b=b\oplus 0=b\oplus (a*c)=(b\oplus a)*(b\oplus c)=1*(b\oplus c)=b\oplus c,$

 $c=c\oplus 0=c\oplus (a*b)=(c\oplus a)*(c\oplus b)=1*(c\oplus b)=c\oplus b.$

故 b=c。从而每个元素的补元是惟一的。

84、设<L,*,⊕>是格,则 L 是分配格当且仅当∀a,b,c∈L,有(a⊕b)*c≤a⊕(b*c)

证明:

⇒设 L 是分配格。对 \forall a, b, c∈L, 有

 $(a \oplus b) * c = (a * c) \oplus (b * c)$

因为 a*c≤a, 故(a*c)⊕(b*c) ≤a⊕(b*c)。从而

 $(a \oplus b) * c \le a \oplus (b * c)$

从而(a*c)⊕(b*c)≤(a⊕b)*c。

又由已知有

 $(a \oplus b) *c = ((b \oplus a) *c) *c \le (b \oplus (a*c)) *c = ((a*c) \oplus b) *c \le (a*c) \oplus (b*c).$ 故 $(a \oplus b) *c = ((a*c) \oplus b) *c \le (a*c) \oplus (b*c).$

从而L是分配格。

85、设 $\langle S, \oplus, \odot, ', 0, 1 \rangle$ 是一布尔代数,则 $\langle S, + \rangle$ 是一个交换群,其中+定义为

 $a+b=(a\odot b')\oplus (a'\odot b)$.

证明:

 $\forall a, b \in S, \parallel \langle S, \oplus, \odot, ', 0, 1 \rangle$ 是一布尔代数,

 \therefore a+b=(a \bigcirc b') \bigoplus (a' \bigcirc b)= (b \bigcirc a') \bigoplus (b' \bigcirc a)=b+a \bigcirc

:. 运算+满足交换律。

 $\forall a, b, c \in S, (a+b)+c=((a \odot b') \oplus (a' \odot b))+c$

- $= (((a \odot b') \oplus (a' \odot b)) \odot c') \oplus (((a \odot b') \oplus (a' \odot b))' \odot c)$
- $= (a \odot b' \odot c') \oplus (a' \odot b \odot c') \oplus ((a' \oplus b) \odot (a \oplus b') \odot c)$
- $= (a \odot b' \odot c') \oplus (a' \odot b \odot c') \oplus (((a' \odot b') \oplus (b \odot a))) \odot c)$
- $= (a \odot b' \odot c') \oplus (a' \odot b \odot c') \oplus (a' \odot b' \odot c) \oplus (a \odot b \odot c)$ a + (b + c) = (c + b) + a
- $= (c \odot b' \odot a') \oplus (c' \odot b \odot a') \oplus (c' \odot b' \odot a) \oplus (c \odot b \odot a)$
- $= (a \odot b' \odot c') \oplus (a' \odot b \odot c') \oplus (a' \odot b' \odot c) \oplus (a \odot b \odot c)$
- =(a+b)+c
 - :. 运算+满足结合律。

 $\forall a \in S, \parallel \langle S, \oplus, \odot, ', 0, 1 \rangle$ 是一布尔代数,

- \therefore a+0=(a \odot 0') \oplus (a' \odot 0)= (a \odot 1) \oplus 0=a \circ
- :. 0 关于运算+的单位元。

 $\forall a \in S, \parallel \langle S, \oplus, \odot, ', 0, 1 \rangle$ 是一布尔代数,

- \therefore a+a=(a \bigcirc a') \bigoplus (a' \bigcirc a)=0 \bigoplus 0=0.
- :. a是a关于运算+的逆元。

综上所述, <S, +>是一个交换群。

86、设<S, ⊕, ⊙, ′, 0, 1>是一布尔代数, 则 R={<a, b> | a⊕b=b} 是 S 上的偏序关系。

证明:

 $\forall a \in S$, 』 ⊕满足等幂律, ∴ $a \oplus a = a$, 故 aRa。即 R 是自反的。

∀a,b∈S, 若aRb 且 bRa, 』 ⊕满足交换律, ∴ b=a⊕b=b⊕a=a。即 R 是反对称的。

∀a,b,c∈S, 若aRb且bRc, 』 ⊕满足结合律, ∴ c=c⊕b=c⊕ (b⊕a) =(c⊕b)⊕a=c⊕a,故aRc。即R是反对称的。

综上所述, R={<a,b> | a⊕b=b}是 S 上的偏序关系。

87、设<S, ⊕, ⊙, ′, 0, 1>是一布尔代数,则关系≤={<a, b> | a⊙b=a} 是 S

上的偏序关系。

证明:

 $\forall a \in S$, 因为⊙满足等幂律, 所以 a⊙a=a, 故 a≤a。即≤是自反的。

 \forall a, b \in S, 若 a \leq b 且 b \leq a, 因为 \odot 满足交换律,所以 a=a \odot b=b \odot a=b。即 \leq 是反对称的。

∀a, b, c∈S,若 a≤b 且 b≤c, 因为⊙满足结合律,因为 a=a⊙b=a⊙(b⊙c)=(a⊙b) ⊙c=a⊙c, 故 a≤c。即≤是反对称的。

综上所述, ≤={ $\langle a,b\rangle \mid a⊙b=a$ } 是 S 上的偏序关系。

(图论部分)

88、证明在有 n 个结点的树中, 其结点度数之和是 2n-2。

证明:

设 T=<V, E>是任一棵树,则|V|=n,且|E|=n-1。

由欧拉握手定理, 树中所有结点的度数之和等于 2 | E |.

从而结点度数之和是 2n-2。

88、任一图中度数为奇数的结点是偶数个。

证明:

设 G= 〈V, E〉是任一图。设 | V | =n。

由欧拉握手定理可得 $\sum_{v \in V} \deg(v) = 2|E|$ 可得,图中所有结点度数之和是偶数。

显然所有偶数度结点的度数之和仍为偶数,从而所有奇数度结点的度数之和也是偶数。因此,图中度数为奇数的结点一定为偶数个。

89、连通无向图 G 的任何边一定是 G 的某棵生成树的弦。这个断言对吗?若是对的请证明之, 否则请举例说明。

证明:

不对。

反例如下: 若 G 本身是一棵树时,则 G 的每一条边都不可能是 G 的任一棵生成树(实际上只有惟一一棵)的弦。

90、设 T=<V, E>是一棵树, 若 | V | >1, 则 T 中至少存在两片树叶。

证明:

(用反证法证明)设|V|=n。

因为 T= 〈V, E〉是一棵树, 所以 |E|=n-1。

由欧拉握手定理可得 $\sum_{v \in V} deg(v) = 2|E| = 2n-2$ 。

假设 T 中最多只有 1 片树叶,则 $\sum_{v \in V} deg(v) \ge 2(n-1)+1>2n-2$ 。

得出矛盾。

- 91、画一个使它分别满足:
- (1) 有欧拉回路和哈密尔顿回路;
- (2) 有欧拉回路, 但无条哈密尔顿回路;
- (3) 无欧拉回路, 但有哈密尔顿回路;
- (4) 既无欧拉回路, 又无哈密尔顿回路。

解

92、设无向图 G=<V, E>, |E|=12。已知有6个3度顶点,其他顶点的度数均小于3。问 G 中至少有多少个顶点?

解:

设G中度数小于3的顶点有k个,由欧拉握手定理

$$24 = \sum_{v \in V} \deg(v)$$

知, 度数小于3的顶点度数之和为6。故当其余的顶点度数都为2时, G的顶点最少。即G中至少有9个顶点。

93、设图 G=<V, E>, |V|=n, |E|=m。k 度顶点有 n_k 个, 且每个顶点或是 k 度顶点或是 k+1 度顶点。证明: n_k=(k+1)-2m。
证明:

由已知可知,
$$G$$
 中 $k+1$ 度顶点为 $n-n_k$ 个。再由欧拉握手定理可知
$$2m=\sum_{v\in V} \deg(v)=kn_k+(k+1)\,(n-n_k)=(k+1)\,n+-n_k$$

故 n_k=(k+1)-2m。

94、设 $G=\langle V, E \rangle$ 是一个连通且 |V|=|E|+1 的图,则 G 中有一个度为 1的结点。

证明:

(用反证法证明)

设|V|=n,则|E|=n-1。

由欧拉握手定理可得 $\sum_{v \in V} deg(v) = 2|E| = 2n-2$ 。

因为 G 连通,所以 \forall $v \in V$,deg $(v) \ge 1$ 。假设 G 中没有 1 片树叶,则 $\sum_{v \in V}$ deg(v) $\ge 2n > 2n - 2$ 。

得出矛盾。

95、若n阶连通图中恰有n-1条边,则图中至少有一个结点度数为1。证明:

(用反证法证明) 设 G=<V, E>有 n-1 条边且 | V | =n。

由欧拉握手定理可得 $\sum_{v \in V} deg(v) = 2|E| = 2n-2$ 。

因为 G 是连通图, 所以 G 中任一结点的度数都大于等于 1。

假设 G 中不存在度数为 1 的结点,则 G 中任一结点的度数都大于等于 2. 故 $\sum_{v \in V} deg(v) \ge 2(n-1)+1 > 2n-2,$

得出矛盾。

96、若G有n个结点,m条边,f个面,且每个面至少由k(k≥3)条边围成,则 m≤k(n-2)/(k-2)。

证明:

设连通简单无向平面图 G= (V, E, F), 则 | V | =n, | E | =m, | F | =p。

由已知对任一 $f \in F$, deg(f) ≥ k。

由公式 $\sum_{f \in F} \operatorname{deg}(f) = 2|E|$ 可得, $2|E| \ge k|F|$ 。

再由欧拉公式 | V | − | E | + | F | = 2 可得 | V | − | E | + $\frac{2}{k}$ | E | ≥ 2。

即 k (n-2) ≥ (k-2) m。

所以 $m \le k(n-2)/(k-2)$ 。

97、设 G=⟨V, E⟩是连通的简单平面图, |V|=n≥3, 面数为 k,则 k≤2n-4。 证明:

记|E|=m。因为 $G=\langle V,E \rangle$ 是连通的简单平面图,故每个面的度数都不小于 3。从而由公式 $\sum_{f \in F} \deg(f)=2|E|$ 可得

 $3k \le 2m$

再由欧拉公式 | V | - | E | + | F | = 2 有

m=n+k-2

及
$$\frac{3}{2}$$
 k \leq n+k-2

故 k≤2n-4。

98、证明对于连通无向简单平面图, 当边数 e<30 时, 必存在度数≤4的顶点。

证明:

若结点个数小于等于3时,结论显然成立。

当结点多于3个时,用反证法证明。

记|V|=n, |E|=m, |F|=k。

假设图中所有结点的度数都大于等于5。

由欧拉握手定理得 $\sum_{v \in V} deg(v) = 2|E|$ 得 $5n \le 2m$ 。

又因为 G= 〈V, E, F〉是一个连通简单无向平面图,

所以对每个面 f, deg(f) \geq 3。

由公式 $\sum_{f \in F} \operatorname{deg}(f) = 2|E|$ 可得, $2m \ge 3k$ 。

再由欧拉公式 |V|-|E|+|F|=2 可得 $2 \le \frac{2}{5}$ m-m+ $\frac{2}{3}$ m= $\frac{1}{15}$ m 从而 $30 \le m$, 这与已知矛盾。

99、在一个连通简单无向平面图 G=〈V, E, F〉中若 | V | ≥3, 则 | E | ≤3 | V | −6。

证明:

 \therefore d(f) ≥ 3 , \forall f \in F.

由公式 $\sum_{f \in F} \text{deg } (f)=2|E|$ 可得, $2|E| \ge 3|F|$ 。

再由欧拉公式 |V|-|E|+|F|=2 可得 $|V|-|E|+\frac{2}{3}|E|≥2$ 。

 $|E| \leq 3|V| - 6$

100、给定连通简单平面图 G=⟨V, E, F⟩, 且 | V | = 6, | E | = 12, 则对于任意 f ∈ F, d(f) = 3。

证明:

因为|V|=6≥3,且 G= $\langle V, E, F \rangle$ 是一个连通简单无向平面图,

所以对任一 $f \in F$, $deg(f) \ge 3$ 。

由欧拉公式 | V | - | E | + | F | = 2 可得 | F | = 8。

再由公式 $\sum_{f \in F} \operatorname{deg}(f) = 2|E|, \sum_{f \in F} \operatorname{deg}(f) = 24.$

因为对任一 $f \in F$, $deg(f) \ge 3$, 故要使上述等式成立, 对任一 $f \in F$, deg(f) = 3。

101、设 G=⟨V, E⟩ 是 n 个顶点的无向图 (n>2), 若对任意 u, v∈V, 有 d(u)+d(v)≥n,则 G 是连通图。

证明:

用反证法证明。

若 G 不连通,则它可分成两个独立的子图 G_1 和 G_2 ,其中 $|V(G_1)|+|V(G_2)|-2=n$,且 G_1 中的任一个顶点至多只和 G_1 中的顶点邻接,而 G_2 中的任一顶点至多只和 G_2 中的顶点邻接。任取 $U\in V(G_1), V\in V(G_2), 则 d(u) \leq |V(G_2)|$

 $_{1}) \mid -1, d(v) \leq \mid V(G_{2}) \mid -1.$

故 d(u)+d(v) ≤(|V(G₁)|-1)+(|V(G₂)|-1)≤|V(G₁)|+|V(G₂)|-2 =n-2<n, 这与已知矛盾。

故G是连通图。

102、一次会议有 20 人参加,其中每个人都在其中有不下 10 个朋友。 这 20 人围成一圆桌入席。有没有可能使任意相邻而坐的两个人都是朋友?为什么?

证明:

可以。

将每个人对应成相应的顶点,若两人是朋友,则对应的两个顶点间连上一条无向边,作出一个简单无向图。由已知,图中每个顶点的度数都大于等于10。即图中任两个不相邻的顶点的度数大于等于20,即顶点数。故这个图是一个哈密尔顿图,从而存在哈密尔顿回路。任取一条哈密尔顿回路,按回路经过的顶点的次序安排对应的人的座位,就可满足要求。

103、证明在任何两个或两个以上人的组内,存在两个人在组内有相同个数的朋友。

证明:

将每个人对应成相应的顶点,若两人是朋友,则对应的两个顶点间连上一条无向边,作出一个简单无向图。则原命题相当于在该无向图中一定存在两个顶点的度数相等。

设该简单无向图中有 n 个顶点,则图中 n 个顶点的度数只能为 0,1,2, …,n-1。若图中有两个或两个以上的顶点度数为 0,则结论显然成立。否则所有顶点的度数都大于等于 1。现用反证法证明该无向图中一定存在两个顶点的度数相等。

设该简单无向图中 n 个顶点中任何一对顶点的度数都不相等,即这 n 个顶点的度数两两不同。但每个顶点的度数只能是 1,2,…,n-1 这 n-1 个数中的某一种,这显然产生了矛盾。

因此该无向图中一定存在两个顶点的度数相等。从而在任何两个或两个以上人 的组内,存在两个人在组内有相同个数的朋友。

104、设有如下有向图 G=<V, E>,

- (1) 求 G 的邻接矩阵; (2) G 中 v₁ 到 v₄ 的长度为 4 的通路有多少条?
- (3) G 中经过 v_1 的长度为 3 的回路有多少条? (4) G 中长度不超过 4 的通路有多少条? 其中有多少条通路?

解:

(1)
$$A = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}, A^{2} = \begin{bmatrix} 2 & 1 & 2 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$A^{3} = \begin{bmatrix} 3 & 2 & 4 & 2 \\ 2 & 1 & 3 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}, A^{4} = \begin{bmatrix} 5 & 3 & 7 & 4 \\ 3 & 2 & 4 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- (2) G中 v₁ 到 v₄的长度为 4 的通路有 4 条;
- (3) G中经过 v₁的长度为 3 的回路有 3 条;
- (4) G中长度不超过4的通路有72条, 其中有19条回路。

105、求下列无向图中每个顶点的度数;求下列有向图中每个顶点的出度、 入度和度。

解:

在这个无向图中 d(a)=3, d(b)=6, d(c)=4, d(d)=3, d(e)=0, d(f)=0.

在这个有向图中 d(a)=3, d(b)=4, d(c)=3, $d^+(a)=2$, $d^-(a)=1$, $d^+(b)=2$, $d^-(b)=2$, $d^-(c)=1$, $d^-(a)=2$ 。

题 106 图

106、求下列无向图的子图、生成子图、由边集诱导的子图和由顶点集诱导的子图。

解:

b

由边集 {(a, b), (a, c), (a, d), (b, d)} 诱导出的子图

由顶点集{a,b,d,f}诱导出的子图

107、求下列赋权图顶点间的距离。

解:

$$\begin{array}{l} d\,(a,\,b)\,{=}\,3, \quad d\,(a,\,c)\,{=}\,3, \quad d\,(a,\,d)\,{=}\,\infty\,, \quad d\,(a,\,e)\,{=}\,8, \quad d\,(a,\,f)\,{=}\,16, \\ \\ d\,(b,\,c)\,{=}\,1, \quad d\,(b,\,d)\,{=}\,\infty\,, \quad d\,(b,\,e)\,{=}\,6, \quad d\,(b,\,f)\,{=}\,13, \\ \\ d\,(c,\,d)\,{=}\,\infty\,, \quad d\,(c,\,e)\,{=}\,5, \quad d\,(c,\,f)\,{=}\,12, \\ \\ d\,(d,\,e)\,{=}\,\infty\,, \quad d\,(d,\,f)\,{=}\,\infty\,, \\ \\ d\,(e,\,f)\,{=}\,7, \end{array}$$

108、求下列赋权图中 v₁ 到其他顶点的距离。

解:

S	$l(v_2)$	$l(v_3)$	$l(v_4)$	$l(v_5)$	$l(v_6)$	t	l(t)
$\{\mathbf v_1\}$	3	4	∞	∞	∞	\mathbf{v}_2	3
$\{v_1,v_2\}$		4	13	∞	∞	\mathbf{v}_3	4
$\{v_1, v_2, v_3\}$			7	6	∞	\mathbf{v}_5	6
$\{v_1,v_2,v_3,v_5\}$			7		10	v_4	7
$\{v_1,\!v_2,v_3,v_5,v_4\}$					9	\mathbf{v}_6	9

 $\{v_1,v_2,\,v_3,\,v_5,\,v_4,\,v_6\}$

故 v_1 到 v_2 , v_3 , v_4 , v_5 , v_6 的距离分别是 3, 4, 7, 6, 9。

109、求下图的可达矩阵。

解:

该图的邻接矩阵为

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

则

$$\mathbf{A}^{2} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}^{2} = \begin{bmatrix} 2 & 1 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{A}^{3} = \begin{bmatrix} 3 & 3 & 1 & 0 & 0 \\ 3 & 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\mathbf{A}^{4} = \begin{bmatrix} 6 & 4 & 3 & 0 & 0 \\ 4 & 5 & 1 & 0 & 0 \\ 3 & 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

故图的可达矩阵为

$$P = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

110、求下列图的生成树。

解:

下面是它的两棵生成树:

111、在一个有 n 个顶点的 $G=\langle V,E\rangle$ 中, $u,v\in V$ 。若存在一条从 u 到 v 的一条通路,则必有一条从 u 到 v 的长度不超过 n-1 的通路。证明:

设 v₀e₁v₁e₂····e₁ v₁是从 u=v₀到 v=v₁的长为 1 的通路。

若 I≤n-1,则结论显然成立。

否则因为 I+1>n,故 v_0 , v_1 ,…, v_1 中必有一个顶点是重复出现的。不妨设 $v_i=v_j$ ($0\le i< j\le I$),则新通路 $v_0e_1v_1e_2\cdots v_ie_{j+1}v_{l+1}e_{j+2}v_{j+2}\cdots e_lv_l$ 是一条从 u 到 v 的通路,且此通路长度比原通路长度至少少 1。

若新通路的长度≤n-1,则结论得证。否则对新通路重复上述过程,必可以得到一条从u到v的长为n-1的通路。

112、设简单平面图 G 中顶点数 n=7, 边数 m=15。证明: G 是连通的。证明:

设 G 具有 k 个连通分支 G_1 , G_2 , ... , G_k 。设 G_i 的顶点数为 n_i , 边数为 m_i , i=1,2,...,k 。

先证每个连通分支的顶点数都大于 1。否则说明 G 中有孤立结点。由于 G 是简单图,从而要使 G 的边数是 15,则 G 只有两个连通分支,其中一个是由孤立结点导出的,另一个是 K₆。但 K₆不是平面图,故要每个连通分支的顶点数都大于 1。

同理可证,每个连通分支的顶点数都大于2。

由此可得, G的每个连通分支至少有3个顶点。从而

$$m_i \le 3n_i - 6$$

$$\mathbb{R}^{n} = \sum_{i=1}^{k} m_{i} \le \sum_{i=1}^{k} (3n_{i} - 6) = 3n - 6k$$

从而 15≤21-6k, 即 k≤1。从而 k=1, 故 G 是连通图。

113、已知一棵无向树中有2个2度顶点、1个3度顶点、3个4度顶点, 其余顶点度数都为1。问它有多少个1度顶点? 解:

设它有 k 个 1 度顶点,则由欧拉握手定理

$$\sum_{v \in V} \operatorname{deg}(v) = 2 |E|$$

可得 2|E|=k+4+3+12=k+19。再由于它是一棵树,故|E|=k+2+1+3-1=k+5

从而 2(k+5)=k+19, k=9。故它有 9 个 1 度顶点。

114、有向图 G 是强连通的 ⇔ G 中有一回路, 它至少通过每个顶点一次。证明:

 \Rightarrow 设 G= $\langle V,E \rangle$ 是强连通图。任取 u, v \in V,则 u 和 v 相互可达,即从 u 到 v 有路径 P₁,从 v 到 u 有路径 P₁。故从 P₁和 P₂ 首尾相接可得到一条经过 u 和 v 的回路 C₁。

若 C_1 经过G中所有顶点至少一次,则 C_1 就是满足结论要求的回路。否则若 C_1 没有经过顶点w,则类似地我们可得到一条经过u和w的回路 C_2 。从 C_1 和 C_2 我们可得到一条经过更多顶点的回路 C_3 (先从u经过 P_1 到v,再从v经过 C_2 回到v,再从v经过v0。从v2000。

对C。重复上述过程,直到得到一条经过所有顶点的回路为止。

←若 G 中存在一条经过 G 中所有顶点至少一次的回路,则 G 中任意两个顶点是相互可达的,从而 G 是强连通的。

115、一个有向图是单向连通图⇔ 它有一条经过所有结点的路。证明:

⇒设 $G=\langle V,E\rangle$ 是单向连通图。任取 $u,v\in V$,则 u 可达 v 或 v 可达 u。不妨设 u 可达 v,即从 u 到 v 有路径 P_1 。

若 P_1 经过G中所有顶点至少一次,则 P_1 就是满足结论要求的路径。否则若 P_1 没有经过顶点 w,则如果 v 经过路径 T 可达 w,连接 P_1 和 T 我们可得一条经过 P_1 经过的所有顶点及 w 的更长的路径 P_2 ; 否则若 w 经过路径 S 可达 u,连接 S 和 P_1 我们也可得一条经过 w 及 P_1 经过的所有顶点的更长的路径 P_2 ; 再否则我们一定可以找到 P_1 经过的两个相邻顶点 t 和 s,t 到 s 有边,t 经过路径 T_1 可达 w,w 经过路径 T_2 可达 s(否则就与 u 可达 w,w 可达 v 矛盾),我们构造这样一条路径 P_2 :从 u 出发经过 P_1 到达 t,t 经过路径 T_1 到达 w,再从 w 出发经过路径 T_2 到达 s,然后从 s 出发经过 P_1 到达 v。这是一条经过 w 及 P_1 所经过的所有顶点的更长的路径。

 P_1 P_1

对 P₂ 重复上述过程, 直到得到一条经过所有顶点的路径为止。

←若 G 中存在一条经过 G 中所有顶点至少一次的路径,则 G 中任意两个顶点中至少有一个可达另一个,从而 G 是单向连通的。