3 A student investigated the forces acting on a bracket.

The bracket of weight W was attached to a vertical wall with a hinge at point C. The bracket was held horizontally by a wire attached to the bracket at point A and to the wall at point B. The wire was at an angle θ to the bracket and exerted a force F on the bracket.

The student hung a mass from the bracket at a distance x from the hinge, as shown.

(a) Describe how the student could determine θ using a metre rule.	
	(2)

(b) Describe how the student could check that the bracket was horizontal.	
	(1)

(c) The student adjusted the position of the mass and measured x. For each value of x the student made corresponding measurements of F using a force meter. The results are shown in the table.

x/cm	Mean F/N
5	2
10	2.6
15	3.3
20	4.4
25	5.3
30	6.2
35	7
40	8.1
45	8.8

Criticise the recording of these results.

(3)

D 7 (7 0 7	Λ Λ Λ	7 2 0

(d) The student plotted a graph of F against x, as shown.

(i) The relationship between F and x is

$$F = \frac{mgx}{l\sin\theta} + \frac{W}{2\sin\theta}$$

where

l is the length of the bracket *m* is the mass hung from the bracket.

Determine a value for W using the graph.

$$\theta = 42^{\circ}$$

(3)

$$W = \dots$$

(ii) The value of g obtained from the graph is $9.64 \mathrm{ms^{-2}}$.	
The student concluded that the value of g obtained is accurate.	
Evaluate the student's conclusion.	
	(2)
(Total for Question 3 = 11 ma	rks)