ML 4375 – Intro to Machine Learning

R Project (200 points)

- Select 2 large data sets (minimum: 30K rows). Good sources are listed at the end of this document. One should be suitable for regression and the other for classification.
- Create an Rmd file for each data set. You will knit them to pdf as well.

For each data set, your project will be evaluated as follows:

- (10 pts) You will get more points for larger/messier data sets:
 - o 0-5 pts <30K
 - o 6-10 pts >=30K
- (10 pts) Data cleaning:
 - o provide a link where you found the data
 - describe what steps you had to do for data cleaning (more points for messier data that needed cleaning)
- (20 pts) Data exploration:
 - o use at least 5 R functions for data exploration
 - o create at least 2 informative R graphs for data exploration
- (40 pts) Run at least 3 ML algorithms on each data set, using at least 5 algorithms in all.
 - o this portion of your Rmd notebook should include:
 - code to run the algorithms
 - commentary on feature selection you selected and why
 - code to compute your metrics for evaluation as well as commentary discussing the results
- (10 pts) Results analysis
 - o rank the algorithms from best to worst performing on your data
 - o add commentary on the performance of the algorithms
 - your analysis concerning why the best performing algorithm worked best on that data
 - commentary on what your script was able to learn from the data (big picture)
 and if this is likely to be useful
- (10 pts) Project depth
 - o 0-3 project minimally meets requirements
 - 4-6 project exceeds minimum requirements
 - 7-10 project went well above the requirements

The project will be graded in part using a peer review process.

Turn in to eLearning:

- Upload the Rmd scripts and knit pdfs to eLearning, zipped together. Use one Rmd file for each data set.
- Send the knit pdfs to your 3 reviewers
- No need to upload data
- Project 2 presentations to class later (optional)

Regression algorithms: Linear regression, kNN, Decision Trees (not Random Forest/Boosting), SVM

Classification algorithms: Logistic regression, Naïve Bayes, kNN, Decision Trees (not Random Forest/Boosting), SVM

Good Sources for Data Sets

- Kaggle, free but you need to register: https://www.kaggle.com/
- UCI machine learning repository: https://archive.ics.uci.edu/ml/index.php
- Open data on AWS: https://registry.opendata.aws/
- Google data sets: https://toolbox.google.com/datasetsearch
- Microsoft research open data sets: https://msropendata.com/
- US government data: https://www.data.gov/
- Data sets by topic: https://github.com/awesomedata/awesome-public-datasets
- USAFacts public data https://usafacts.org/