PROBLÈMES DE GÉOMÉTRIE E06

EXERCICE N°2 Valeurs remarquables part 1 (Le corrigé)

On considère un triangle OMH rectangle en H tel que $\widehat{MOH} = 60^{\circ}$ et $OH = \frac{1}{2}$. Soit I le symétrique de O par rapport à H.

1) Montrer que le triangle *OMI* est équilatéral.

Dans le triangle *OMI* .

- (MH) est la médiane issue de M.
- OMI est équilatéral, donc c'est aussi la médiatrice de [IO].

Ainsi (MH) est un axe de symétrie de ce triangle et le triangle MHO est rectangle en H.

 \rightarrow Nous aurons aussi besoin de MH. Nous déterminons cette longueur ici afin de faciliter la lecture des questions 2 et 3. (mais vous pouviez le faire directement dans les questions précitées)

Dans le triangle MOH ,rectangle en H.

Le théorème de Pythagore nous permet d'écrire :

$$MO^2 = HM^2 + HO^2$$

On en déduit que :

$$HM^2 = MO^2 - HO^2 = 1^2 - \left(\frac{1}{2}\right)^2 = \frac{3}{4}$$

Et comme HM est une longueur : $HM = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2}$

2) En déduire la valeur exacte de $\cos(60^\circ)$ puis de $\sin(60^\circ)$.

$$\cos(60^{\circ}) = \cos(\widehat{MOH}) = \frac{HO}{OM} = \frac{\frac{1}{2}}{1} = \frac{1}{2}$$

$$\sin(60^{\circ}) = \sin(\widehat{MOH}) = \frac{HM}{MO} = \frac{\frac{\sqrt{3}}{2}}{1} = \frac{\sqrt{3}}{2}$$

3) En déduire la valeur exacte de $\cos(30^\circ)$ puis de $\sin(30^\circ)$.

$$\cos(30^{\circ}) = \cos(\widehat{HMO}) = \frac{HM}{MO} = \frac{\frac{\sqrt{3}}{2}}{1} = \frac{\sqrt{3}}{2}$$

$$\sin(30^{\circ}) = \sin(\widehat{HMO}) = \frac{HO}{OM} = \frac{\frac{1}{2}}{1} = \frac{1}{2}$$

Pour la question 3), on pouvait aussi remarquer que le cosinus d'un angle aigu est égal au sinus de son angle complémentaire...