Feuille d'Exercices nº 5:

STATISTIQUES SIMPLES

Exercice 5.1 : Compléments de cours

Pour définir la variance, on avait choisi de calculer la moyenne des carrées des écarts par rapport à la moyenne; le résultat suivant donne une bonne raison de faire ce choix.

Prouver que la fonction $g: t \mapsto \frac{1}{n} \sum_{i=1}^{p} n_i (x_i - t)^2$ admet un minimum atteint en $t = \bar{x}$ (la moyenne de la série) et ce minimum vaut V (la variance de la série).

Exercice 5.2 : Caractère quantitatif discret

Sur un échantillon de cent familles, on a relevé le nombre d'enfants par famille. Ce caractère discret est noté X, les résultats obtenus sont groupés dans le tableau suivant :

Valeurs x_i	0	1	2	3	4	5	6	7	Sommes
Effectifs n_i	5	15	23	22	16	9	5	5	

- 1) Dresser puis compléter le tableau précédent en rajoutant 3 lignes associées respectivement aux effectifs cumulés, les valeurs $n_i x_i$ et $n_i x_i^2$.
- 2) Tracer le diagramme en bâtons des effectifs et celui des effectifs cumulés.

Comment obtenir des diagrammes précédents les diagrammes en bâtons des fréquences et des fréquences cumulées ?

3) Déterminer les paramètres statistiques suivants : moyenne, médiane, mode, l'étendue, les quartiles, l'écart interquartile, la variance et l'écart-type.

Exercice 5.3 : Caractère quantitatif continu

Le taux de triglycérides X est observé chez 250 hommes de 20 à 30 ans. L'unité de X est le en g/l. On relève les résultats suivants :

Classes de X	[0.4; 0.6[[0.6; 0.8[[0.8; 1.0[[1.0; 1.2[[1.2; 1.4[[1.4; 1.6[
Effectifs n_i	5	32	86	89	32	6

- 1) Faire un changement de variable convenable puis compléter le tableau statistique précédent(en rajoutant 6 lignes associées respectivement aux x_i , y_i , fréquences, fréquences cumulées, les valeurs $n_i y_i$ et $n_i y_i^2$ où x_i est le centre de la i ème classe et où $y_i = \frac{x_i a}{b}$ avec a et b à choisir).
- 2) Représenter l'histogramme des fréquences cumulées croissantes de cette série statistique puis le polygone correspondant.
 - 3) Déterminer le mode, la moyenne \bar{x} et l'écart-type σ de cette série.
- 4) Déterminer la médiane, les quartiles, l'écart interquartile et la dispersion à l'intérieur de l'intervalle interquartile.
- 5) Déterminer approximativement le pourcentage d'hommes dont le taux de triglycérides est supérieur à 1.3 g/l.

Exercice 5.4: Questions d'application

- 1) Donner deux séries listées de même médiane mais de moyennes "très" différentes.
- 2) Donner deux séries listées de même moyenne mais de médianes "très" différentes.

3) Comparer la moyenne et la médiane des séries suivantes :

$$(x_i) = 9, 9, 9, 10, 19, 19, 19$$
 et $(y_i) = 0, 0, 0, 10, 11, 11, 11$ d'un côté; $(z_i) = 0, 0, 0, 0, 20, 20, 20$ et $(t_i) = 0, 0, 0, 15, 15, 15$ d'un autre côté.

4) Compléter les tableaux suivants et déterminer la médiane de chacune des trois séries suivantes :

x_i	2	3	4	5
n_i	20	30	35	15
N_i				

x_i	2	3	4	5
n_i	52	28	15	5
N_i				

x_i	2	3	4	5
n_i	12	13	22	53
N_i				

Que peut-on remarquer?

5) Utiliser un changement de variable convenable pour donner "à la main" la variance de la série (x) = (2000, 2001, 2002, 2003, 2004, 2005, 2006).

Exercice 5.5: Sous-populations

Soit X un caractère défini sur une population d'effectif N tel que $\forall w \in \Omega \ 0 \le X(w) \le 1$. Soient Ω_1 et Ω_2 2 sous-populations d'effectifs N_1 et N_2 telles que $\Omega = \Omega_1 \cup \Omega_2$ et $\Omega_1 \cap \Omega_2 = \emptyset$.

- Soient $X_1 = X_{|\Omega_1}$ et $X_2 = X_{|\Omega_2}$. 1) Montrer que : $\bar{X} = \frac{N_1 \bar{X}_1 + N_2 \bar{X}_2}{N_1 + N_2}$ et $V(X) = \frac{N_1 V(X_1) + N_2 V(X_2)}{N_1 + N_2} + \frac{N_1}{N} (\bar{X}_1 \bar{X})^2 + \frac{N_2}{N} (\bar{X}_2 \bar{X})^2$.
 - **2)** Montrer que $0 \le \bar{X}_1 \le 1$ et $0 \le \bar{X}_2 \le 1$, $|\bar{X}_2 \bar{X}_1| \le 1$ et $|\bar{X} \bar{X}_1| \le \frac{N_2}{N}$.

 - 3) Montrer que $0 \le V(X_1) \le 1$ et $0 \le V(X_2) \le 1$, $|V(X_2) V(X_1)| \le 1$. 4) Montrer que $V(X) V(X_1) = \frac{N_2(V(X_2) V(X_1))}{N} + \frac{N_1}{N}(\bar{X}_1 \bar{X})^2 + \frac{N_2}{N}(\bar{X}_2 \bar{X})^2$.

Exercice 5.6 : Comparaison de paramètres de position et de dispersion

Deux étudiants A et B ont obtenu au huit modules de la première année de la licence filière BCG les séries de notes suivantes : A: (13, 14, 7, 13, 9, 7, 11, 12) et B: (13, 13, 4, 10, 8.5, 7.5, 13, 17).

- 1) Calculer les modes, les moyennes, les médianes et les quartiles de ces deux séries, puis comparer ces résultats.
- 2) Calculer, pour chacune de ces deux séries, l'étendue, l'écart-interquartile, la variance et l'écart-type, commenter ces résultats.