Poznámka

Stručný obsah: Diferencovatelnost v Banachových prostorech; Asplundovy prostory; slabé Asplundovy prostory; fragmentovanost a oddělovací spojitost; atd.

1 Diferencovatelnost

1.1 Základní pojmy

Poznámka

Většina by fungovala i pro NLP, ale my se pro jednoduchost zaměříme na Banachovy prostory.

Definice 1.1

X,Y reálné Banachovy prostory, $U \subset X$ otevřená, $f:U \to Y, x \in U, h \in X$:

$$\partial_h^+ f(x) = \lim_{t \to 0_+} \frac{f(x+t \cdot h) - f(x)}{t} \in Y$$
, pokud existuje,

$$\partial_h f(x) = \lim_{t \to 0} \frac{f(x+t \cdot h) - f(x)}{t} \in Y$$
, pokud existuje.

 $\partial_{\mathbf{o}}^+ f(x) = \partial_{\mathbf{o}} f(x) = 0$. Pokud ||h|| = 1, pak je to směrová derivace.

Pokud $\alpha > 0$, pak $\partial_{\alpha h}^+ f(x) = \alpha \partial_h^+ f(x)$, má-li alespoň jedna strana smysl. Podobně pro $\alpha \in \mathbb{R} \setminus \{0\}$ je $\partial_{\alpha h} f(x) = \alpha \partial_h f(x)$, má-li alespoň jedna strana smysl (speciálně $\alpha = -1$).

$$\exists \partial_h f(x) \Leftrightarrow \exists \partial_{-h}^+ f(x) = -\partial_h^+ f(x).$$

Definice 1.2 (Gateauxova derivace)

X,Y reálné Banachovy prostory, $U \subset X$ otevřená, $f:U \to Y, x \in U, h \in X$: Pokud $\exists L \in \mathcal{L}(X,Y)$, že $\forall h \in X: L(h) = \partial_h f(x)$, značíme $f'_g(x) = L$.

Poznámka

Stačí, aby $\forall h \in X: L(h) = \partial_u^+ f(a)$. Znamená to, že $h \mapsto \partial_h^{(+)} f(x)$ je omezený lineární operátor.

Definice 1.3 (Fréchetova derivace)

f má v bodě $x \in U$ Fréchetovu derivaci, pokud $\exists L \in \mathcal{L}(X,Y)$:

$$\lim_{h \to 0} \frac{f(x+h) - f(x) - L(h)}{\|h\|} = 0.$$

Poznámka

Pokud takové L existuje, nutně platí $L=f_g'(x)$. Fréchetovu derivaci značíme $f_F'(x)$.

Poznámka

$$\exists f_F'(x) \Leftrightarrow \exists f_g'(x) \land \lim_{t \to 0} \frac{f(x+th) - f(x)}{t} = \partial_h f(x) \text{ stejnoměrně pro } h \in B_X \text{ (resp. } h \in S_X).$$

 $D\mathring{u}kaz$

 $f_F'(x)$ existuje \Leftrightarrow

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall h \in X, \|h\| < \delta : \|f(x+h) - f(x) - \partial_h f(x)\| \leqslant \varepsilon \cdot \|h\|$$

Existenci $f_g'(x)$ máme, tedy: $\varepsilon > 0$... najdeme to $\delta > 0$: $h \in B_x$, $t \in \mathbb{R}$, $0 < |t| < \delta$ $\implies ||t \cdot h|| < \delta$:

$$||f(x+th) - f(x) - \partial_{t \cdot h} f(x)|| \le \varepsilon ||t \cdot h|| = \varepsilon \cdot |t|$$

$$||\frac{f(x+th) - f(x)}{t} - \partial_h t(x)|| \le \varepsilon$$

to dává stejnoměrnou konvergenci " \Longrightarrow ".

 $,, \longleftarrow \text{``: Necht } \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall h \in \{x | \forall t \in P(\mathbf{o}, \delta)\}:$

$$\left\|\frac{f(x+t\cdot h)-f(x)}{t}-\partial_h f(x)\right\|\leqslant \varepsilon.$$

 $\varepsilon>0$... najdeme to $\delta>0$: Zvolíme $h\in X,\ 0<\|h\|<\delta\implies \frac{h}{\|h\|}\in S_X$

$$\implies \|\frac{f(x+h)-f(h)}{\|h\|} - \frac{\partial_h f(x)}{\|h\|}\| \leqslant \varepsilon \implies$$

$$\implies \frac{\|f(x+h) - f(x) - \partial_h f(x)\|}{\|h\|} < \varepsilon.$$

Poznámka

1. $X = \mathbb{R}$, pak je F. derivace, G. derivace a běžná derivace to samé.

- 2. TODO?
- 3. TODO?

Tvrzení 1.1

 $\dim X < \infty, \ U \subset X \ otevřená; \ f: U \to Y \ lipschitzovská, \ x \in U, \ f'_g(x) \ existuje \implies f'_F(x)$ existuje.

Důkaz

f lipschitzovská \Longrightarrow existuje $L>0: \|f(x)-f(y)\| \leqslant L\cdot \|x-y\|$ $(x,y\in U)$. Nechť existuje $f_g'(x)$. Potom $\forall \varepsilon>0$ existuje $h_1,\ldots,h_N\in S_X$ ε -síť. Nechť $\delta>0$ je takové, že $B(x,\delta)\subset U$ a $0<|t|<\delta \implies \|\frac{f(x+th_i)-f(x)}{t}-f_g'(x)(h_i)\|<\varepsilon$.

Vezmeme $h \in S_X$ libovolné, $0 < |t| < \delta$. Existuje i, že $||h - h_i|| < \varepsilon$:

$$\left\| \frac{f(x+t\cdot h) - f(x)}{t} - f'_g(x)(h) \right\| \leq \left\| \frac{f(x+t\cdot h) - f(x+t\cdot h_i)}{t} \right\| + \left\| \frac{f(x+t\cdot h_i) - f(x)}{t} - f'_g(x) \right\| + \left\| f'_g(x) - f'_g$$

– Poznámka

Stačí lokálně lipschitzovská.

Tvrzení 1.2

 $f:(a,b) \to \mathbb{R}$ konvexní $\Longrightarrow f'(x)$ existuje v každém bodě (a,b) až na spočetně mnoho.

 $D\mathring{u}kaz$

1) $\forall x \in (a,b)$ existuje vlastní $f'_+(x)$, nebot $f'_+(x) = \lim_{y \to x_+} \frac{f(y) - f(x)}{y - x}$, což je neklesající funkce v $y \in (x,b)$ a zdola omezená hodnotou $\frac{f(z) - f(x)}{z - x}$ pro $z \in (a,x)$.

2) $x \mapsto f'_+(x)$ je neklesající na (a,b). 3) Podobně pro f'_- . Tedy f je spojitá na (a,b). 4) f'(x) neexistuje $\Leftrightarrow f'_+$ má v bodě x skok. $(f'_+$ je spojitá v $x \implies f'_x(x) = \lim_{y \to x_-} f'_+(y) = \lim_{y \to x_-} f'_-(y), f'_-(y) \leqslant f'_-(z)$ pro z > y).

Tvrzení 1.3

f convex and bounded from above on B(x,r), $x \in X$, $r > 0 \implies f$ is Lipschitz on $B\left(x,\frac{1}{2}\right)$.

1)
$$,f\leqslant M$$
 on $B(x,r)\Longrightarrow f\geqslant 2f(x)-M$ on $B(x,r)$ ": $y\in B(x,r),\ z:=x+(x-y)\Longrightarrow z\in B(x,r),\ x=\frac{1}{2}(y+z).$ $f(x)\leqslant \frac{1}{2}(f(y)+f(z)),\ f(y)\geqslant 2f(x)-f(z)\geqslant 2f(x)-M.$

2) Assume $|f| \leq M$ on B(x,r). Take $v, w \in B(x, \frac{r}{2}), v \neq w, z := w + \frac{z}{2} \frac{w-v}{\|w-v\|} \implies z \in B(x,r). \ w(1+\frac{z}{2\|w-v\|}) = z + \frac{z}{2\|w-v\|}v,$

$$f(w) \le \frac{f(z) + \frac{z}{2\|w - v\|} f(v)}{1 + \frac{z}{2\|w - v\|}}$$

$$f(w) - f(v) \le \frac{f(z) + f(v)}{1 + \frac{z}{2\|w - v\|}}$$

$$\frac{f(w) - f(v)}{\|w - v\|} \leqslant \frac{f(z) - f(v)}{\|w - v\| + 1/2} \leqslant \frac{2M}{\frac{r}{2}} = \frac{4M}{r}$$

 $\implies f \text{ is } \frac{4M}{r}\text{-lipschitz on } B(x, \frac{y}{2}).$

Dusledek

- dim $X < \infty$, $U \subset X$ open convex, $f: U \to \mathbb{R}$ convex $\Longrightarrow f$ is locally lipschitz on U. (WLOG: $X = (\mathbb{R}^n, \|\cdot\|_1)$. $x \in U \Longrightarrow \exists r > 0 \overline{B_{\|\cdot\|_1}(x,r)} \subset U$. $\overline{B_{\|\cdot\|_1}(x,r)} = \frac{\text{conv}\{x \pm re_i | i \in [n]\}}{B_{\|\cdot\|_1}(x,\frac{r}{2})}$)
- dim $X < \infty$, $U \subset X$ open convex, $f: U \to \mathbb{R}$ convex, $x \in U \Longrightarrow f'_F(x)$ exists if and only if f'_g (,, \Longrightarrow " always, ,, \Longleftarrow " from first item and tyrzeni above).
- X Banach space, $U \subset X$ open convex, $f: U \to \mathbb{R}$ continuous convex, then f is locally Lipschitz on U (f continuous \Longrightarrow f is locally bounded \Longrightarrow f is locally Lipschitz).

Věta 1.4

$$X = l_1, f: X \to \mathbb{R}, f(x) = ||x|| = \sum_{n=1}^{\infty} |x_n|.$$

$$\exists f'_g(x) \Leftrightarrow \forall n \in \mathbb{N} : x_n \neq 0. \implies f'_g(x) = (\operatorname{sgn} x_n)_{n=1}^{\infty} \in l_{\infty},$$

$$\forall x \in l_1 \not \equiv f_F'(x).$$

1) $x \in l_1, n \in \mathbb{N}, x_n = 0$. Take $h = e_n \sum_{k \neq n} |x_k| + |t|$. $\partial_h f(x) = \lim_{t \to 0} \frac{\|x + t \cdot e_n\| - \|x\|}{t} = \lim_{t \to \infty} \frac{|t|}{t}$ doesn't exist. This prove $n \Longrightarrow n$.

". Assume $\forall n \in \mathbb{N}: x_n \neq 0, h \in l_1, h \neq 0, \varepsilon > 0$:

$$\left| \frac{f(x+t\cdot h) - f(x)}{t} - \sum_{n=1}^{\infty} h_n \cdot \operatorname{sgn} x_n \right| = \left| \frac{1}{t} \sum_{n=1}^{\infty} \left(|x_n + t \cdot h_n| - |x_n| - th_n \operatorname{sgn} x_n \right) \right| \leqslant \left| \frac{1}{t} \sum_{n=1}^{N} \left(\dots \right) \right| + \left| \frac{1}{t} \sum_{n>N} \left(|x_n + t \cdot h_n| - |x_n| - th_n \operatorname{sgn} x_n \right) \right|$$

TODO?

2 Subdiferential

Definice 2.1

X Banach, $U \subset X$ open + convex, $f: U \to \mathbb{R}$ convex + continuous (\Longrightarrow locally Lipschitz). $x \in U$,

$$\partial f(x) := \{x^* \in X^* | \forall y \in U : x^*(y - x) \le f(y) - f(x) \}.$$

Poznámka

$$\forall h \in X \; \exists \partial_h^+ f(x)$$

$$x^* \in \partial f(x) \Leftrightarrow \forall h \in X : x^*(h) \leqslant \partial_h^+ f(x)$$

 $(,,\Longrightarrow\text{``: Fix }h\in X,\,\text{find }\delta>0\text{: }\forall|t|<\delta:x+t\cdot h\in U.\,\,\text{Then }\forall t\in(0,\delta):x^*(x+t\cdot h-x)\leqslant f(x+t\cdot h)-f(x),\,\,x^*(h)\leqslant\frac{f(x+t\cdot h)-f(x)}{t}\to\partial_h^+f(x).\,\,,,\Longleftrightarrow\text{``: Fix }y\in X,\,\,\text{put }h:=y-x.\,\,\text{Then }x^*(y-x)=x^*(h)\leqslant\partial_h^+f(x)\leqslant\frac{f(x+h)-f(x)}{1}=f(y)-f(x).)$

$$U = X, f(x) = ||x|| \implies \partial f(x) = \{x^* \in B_{X^*} | x^*(x) = ||x|| \}.$$

("⊆" Let $x^* \in \partial f(x)$. Then $x^*(x) \leq ||x+x|| - ||x|| = ||x||$, $x^*(-x) \leq ||0|| - ||x|| = -||x||$. Thus $x^*(x) = ||x||$. And for $h \in X : x^*(h) \leq ||x+h|| - ||x|| \leq ||h||$, therefore $||x^*|| \leq 1$. "⊇": Let $x^* \in B_{X^*}$, $||x|| = x^*(x)$. Then $\forall y \in X : x^*(y-x) = x^*(y) - x^*(x) \leq ||y|| - ||x||$.)

Tvrzení 2.1

 $\forall x \in U : \partial f(x) \neq \emptyset$, convex, w^* -compact.

 $h\mapsto \partial_h^+f(x)$ is sublinear functional $(t\cdot\partial_h^+f(x)=\partial_{t\cdot h}^+f(x),\,t>0,$ and

$$\partial_{h_1+h_2}^+ f(x) = \lim_{t \to 0_+} \frac{f(x+t \cdot (h_1+h_2)) - f(x)}{t} \le \lim_{t \to 0_+} \left(\frac{f(x+2 \cdot t \cdot h_1) - f(x)}{2t} + \frac{f(x+2 \cdot t \cdot h_2) - f(x)}{2t} \right)$$

so it is sublinear functional).

By Hahn–Banach theorem, $\exists x^* \in X^\# : x^*(h) \leqslant \partial_h^+ f(x), h \in X$. Moreover x^* is continuous $(x^* \in X^*)$, because f is locally Lipschitz, so $\exists r > 0 \ \exists L > 0 : f|_{B(x,r)}$ is L–Lipschitz, so $\left|\frac{f(x+t\cdot h)-f(x)}{t}\right| \leqslant L \cdot \|h\|$ and so $x^*(h) \leqslant \partial_h^+ f(x) \leqslant L \cdot \|h\|$, $h \in X$.

So by remark $x^* \in \partial f(x)$. Thus $\partial f(x) \neq \emptyset$. And also $\forall y^* \in \partial f(x)$. $||?x|| \leq L$. Thus $\partial f(x)$ is bounded, so $\subseteq R(B_{X^*}, w^*)$ for some R > 0, which is w^* -compact. So since $\partial f(x)$ is w^* -closed, it is w^* -compact. (It is closed, because $\partial f(x) = \bigcap_{y \in U} \{x^* \in X^* | x^*(y - x) \leq f(y) - f(x)\}$).

Finally $\partial f(x)$ is convex": For $x^*, y^* \in \partial f(x), \lambda \in (0, 1)$:

$$\forall y \in U : (\lambda x^* + (1 - \lambda)y^*)(y - x) \leq \lambda (f(y) - f(x)) + (1 - \lambda)(f(y) - f(x)) = f(y) - f(x).$$

Tvrzení 2.2

 $x \in U$. Then following is equivalent:

- $\exists f'_G(x);$
- $|\partial f(x)| = 1$;
- $\forall h \in X : \partial_h^+ f(x) = -\partial_{-h}^+ f(x).$

Moreover $\partial f(x) = \{f'_G(x)\}\$, if one of item is true.

 $1. \implies 2.$ ": We have $\forall h \in X : f'_G(x)(h) = \partial_h^+ f(x) \implies f'_G(x) \in \partial f(x)$. Moreover

 $\forall x^* \in \partial f(x) \ \forall h \in X : x^*(h) \leqslant \partial_h^+ f(x) = f_G'(x)(h) \land -x^*(h) = x^*(-h) \leqslant f_G'(x)(-h) = -f_G'(x)(h) = -f_G'(x)(h) \land -x^*(h) = x^*(-h) \leqslant f_G'(x)(h) = -f_G'(x)(h) \land -x^*(h) = x^*(-h) \leqslant f_G'(x)(h) = -f_G'(x)(h) \land -x^*(h) = x^*(-h) \leqslant f_G'(x)(h) \land -x^*(h) \leqslant f_G'(x)(h) \land -x^*(h) \leqslant f_G'(x)(h) \leqslant f_G$

"2. \Longrightarrow 3.": Let $\exists h \in X: \partial_h^+ f(x) \neq -\partial_{-h}^+ f(x)$. Always holds $\partial_h^+ f(x) \geqslant -\partial_{-h}^+ f(x)$ ($\varphi(t) = f(x+t\cdot h)$ is convex, then $-\partial_{-h}^+ f(x) = \partial_-'(0) \leqslant \partial_+'(0) = \partial_h^+ f(x)$). So $\partial_h^+ f(x) > -\partial_{-h}^+ f(x)$.

Define $x_1^*(t \cdot h) := t \cdot \partial_h^+ f(x)$ and $x_2^*(t \cdot h) := -t \partial_{-h}^+ f(x)$, $t \in \mathbb{R}$. Then $x_1^*, x_2^* \in (LO(h))^*$. And for j = 1, 2:

$$x_i^*(t \cdot h) \le \partial_{t \cdot h}^+ f(x), \qquad t \in \mathbb{R}.$$

For $t \geq 0$: $x_1^*(t \cdot h) = t\partial_h^+ f(x) = \partial_{t \cdot h}^+ f(x)$. For t < 0: $x_1^*(t \cdot h) = t \cdot x_1^*(h) = t \cdot \partial_h^+ f(x) < -t \cdot \partial_{-h}^+ f(x) = \partial_{t \cdot h} f(x)$. Same for x_2^* . By Hahn–Banach theorem, we extend x_j^* , $j \in \{1, 2\}$ to $x_j^* \in X^\#$ satisfying $x_j^*(z) \leq \partial_z^+ f(x)$, $z \in X$. And because f is locally Lipschitz, similarly as before we have $x_1^*, x_2^* \in X^*$. Thus $x_1^*, x_2^* \in \partial f(x)$ and $x_1^* \neq x_2^*$.

"3. \Longrightarrow 2.": We know $\varphi: h \mapsto \partial_h^+ f(x)$ is sublinear and we know $\varphi(h) = -\varphi(-h)$. This implies, that φ is linear $(\varphi(t \cdot h) = t \cdot \varphi(h), t \in \mathbb{R}$ arbitrary, $\varphi(h_1 + h_2) \leqslant \varphi(h_1) + \varphi(h_2)$, $\varphi(h_1 + h_2) = -\varphi(-h_1 - h_2) \geqslant -(\varphi(-h_1) + \varphi(-h_2)) = \varphi(h_1) + \varphi(h_2)$. Moreover, φ is continuous, because $\varphi(h) \leqslant \varphi_h^+ f(x)$ and f is Lipschitz.

Důsledek

 $f(x) = ||x||, x \in X$. Then $f'_G(x)$ exists $\Leftrightarrow \exists !x^* \in Bx^* : x^*(x) = ||x||$.

TODO?

TODO?

Důsledek

 $X = \mathbb{R}^n, \ U \subset X \text{ open, } f: U \to \mathbb{R} \text{ convex, } x \in U. \text{ Then } f_F'(x) \text{ exists} \Leftrightarrow \forall i \in [n] : \frac{\partial f}{\partial x_i}(x) \text{ exists.}$

Důkas

⇒ "? ← "·

$$x^* \in \partial f(x) \implies x^*(e_i) \leqslant \partial_{e_i}^+ f(x) = \frac{\partial f}{\partial x_i}(x) \land x^*(-e_i) \leqslant \partial_{-e_i}^+ f(x) = -\frac{\partial f}{\partial x_i}(x) \implies x^*(e_i) = \frac{\partial f}{\partial x_i}(x) \implies x^*(e_i) \leqslant \partial_{-e_i}^+ f(x) = -\frac{\partial f}{\partial x_i}(x) \implies x^*(e_i) \leqslant \partial_{-e_i}^+ f(x) = -\frac{\partial f}{\partial x_i}(x) \implies x^*(e_i) \leqslant \partial_{-e_i}^+ f(x) = -\frac{\partial f}{\partial x_i}(x) \implies x^*(e_i) \leqslant \partial_{-e_i}^+ f(x) = -\frac{\partial f}{\partial x_i}(x) \implies x^*(e_i) \leqslant \partial_{-e_i}^+ f(x) = -\frac{\partial f}{\partial x_i}(x) \implies x^*(e_i) \leqslant \partial_{-e_i}^+ f(x) = -\frac{\partial f}{\partial x_i}(x) \implies x^*(e_i) \leqslant \partial_{-e_i}^+ f(x) = -\frac{\partial f}{\partial x_i}(x) \implies x^*(e_i) \leqslant \partial_{-e_i}^+ f(x) = -\frac{\partial f}{\partial x_i}(x) \implies x^*(e_i) \leqslant \partial_{-e_i}^+ f(x) = -\frac{\partial f}{\partial x_i}(x) \implies x^*(e_i) \leqslant \partial_{-e_i}^+ f(x) = -\frac{\partial f}{\partial x_i}(x) \implies x^*(e_i) \leqslant \partial_{-e_i}^+ f(x) = -\frac{\partial f}{\partial x_i}(x) \implies x^*(e_i) \leqslant \partial_{-e_i}^+ f(x) = -\frac{\partial f}{\partial x_i}(x) \implies x^*(e_i) \leqslant \partial_{-e_i}^+ f(x) = -\frac{\partial f}{\partial x_i}(x) \implies x^*(e_i) \leqslant \partial_{-e_i}^+ f(x) = -\frac{\partial f}{\partial x_i}(x) \implies x^*(e_i) \leqslant \partial_{-e_i}^+ f(x) = -\frac{\partial f}{\partial x_i}(x) \implies x^*(e_i) \leqslant \partial_{-e_i}^+ f(x) = -\frac{\partial f}{\partial x_i}(x) \implies x^*(e_i) \leqslant \partial_{-e_i}^+ f(x) = -\frac{\partial f}{\partial x_i}(x) \implies x^*(e_i) \leqslant \partial_{-e_i}^+ f(x) = -\frac{\partial f}{\partial x_i}(x) \implies x^*(e_i) \leqslant \partial_{-e_i}^+ f(x) = -\frac{\partial f}{\partial x_i}(x) \implies x^*(e_i) \leqslant \partial_{-e_i}^+ f(x) = -\frac{\partial f}{\partial x_i}(x) \implies x^*(e_i) \leqslant \partial_{-e_i}^+ f(x) = -\frac{\partial f}{\partial x_i}(x) \implies x^*(e_i) \leqslant \partial_{-e_i}^+ f(x) = -\frac{\partial f}{\partial x_i}(x) \implies x^*(e_i) \leqslant \partial_{-e_i}^+ f(x) = -\frac{\partial f}{\partial x_i}(x) \implies x^*(e_i) \leqslant \partial_{-e_i}^+ f(x) = -\frac{\partial f}{\partial x_i}(x) \implies x^*(e_i) \leqslant \partial_{-e_i}^+ f(x) \leqslant \partial_{-e_i}^+ f($$

 $\Longrightarrow \partial f(x)$ contains at most one point $\Longrightarrow f$ contains exactly one point $\Longrightarrow f'_G(x)$ exists \Longrightarrow (locally Lipschitz, dim $\mathbb{R}^n < \infty$) $f'_F(x)$ exists.

Definice 2.2 (Monotone, upper semi-continuous (usc))

 \overline{X} Banach space, $D \subset X$, $T: D \to 2^{x^*}$ is monotone if $\forall x \in D: Tx \subset X^*$, $Tx \neq \emptyset$ and $\forall x, y \in D \ \forall x^* \in Tx \ \forall y^* \in Ty: \langle x^* - y^*, x - y \rangle \geqslant 0$.

Poznámka

 $f:(a,b) \to \mathbb{R}$ is non-decreasing $\Leftrightarrow \forall x,y \in (a,b): (f(x)-f(y))(x-y) \geqslant 0$

Let S and T be topological spaces. Then $\varphi: S \to 2^T$ is usc (upper semi-continuous) $\equiv \forall U \subset T$ open: $\{x \in S | \varphi(x) \subset U\}$ is open in S.

Poznámka (This we will not use)

lsc $\equiv \forall U \subset T$ open $\{x \in S | \varphi(x) \cap U \neq \emptyset\}$ is open.

Tvrzení 2.3

X Banach space, $U \subset X$ open convex, $f: U \to \mathbb{R}$ convex continuous. Then $\partial f: U \to 2^{X^*}$ is

- a) monotone;
- b) locally bounded;
- c) usc from $\|\cdot\|$ to w^* .

"a)":
$$x,y\in U, x^*\in \partial f(x), y^*\in \partial f(y).$$
 Then $x^*(y-x)\leqslant f(y)-f(x), y^*(x-y)\leqslant f(x)-f(y).$

$$x^*(y-x) + y^*(x-y) \le 0,$$
 $(x^* - y^*)(x-y) \ge 0.$

"b)": f is locally Lipschitz:

$$x \in U \implies \exists z > 0, L > 0, B(x, z) \subset U$$

f is L-Lipschitz on $B(x,z) \implies$

$$\forall y \in B(x,z) : \partial f(y) \subset L \cdot B_{X^*}.$$

"c)" $G \subset X^*$ w^* -open, $x \in U$, $\partial f(x) \subset G$. We want: " $\exists z > 0 : B(x,r) \subset I$ and $\forall y \in B(x,z) : \partial f(y) \subset G$ ". It's enough to show " $\forall (x_n) \subset U, x_n \to x, \exists n_0 \ \forall n \geq n_0 : \partial f(x_n) \subset G$ ".

We show it by contradiction: Assume not, i.e., $\exists (y_n) \subset U, y_n \to x, \ \forall n : \partial f(y_n) \neq 0$. Fix $y_n^* \in \partial f(y_n) \backslash G$. By b) we know ? $\Longrightarrow \exists R > 0 : \forall n : y_n^* \in \overline{B(0,R)}$ (in X^*).

Let y^* be a w^* cluster point of (y_n^*) . Thus $y_n^* \in \partial f(x)$: If not, $\exists y \in U : y^*(y-x) > f(y) - f(x) \implies \varepsilon > 0 : y^*(y-x) \geq f(y) - f(x) + \varepsilon$, now $y_n^*(y-x+y_n-y_n) \leq f(y-x+y_n) - f(y_n)$ $(y-x+y_n) \in U$ for large n.

So, for n large enough:

$$y_n^*(y-x) \le f(y-x+y_n) - f(y_n)$$

with $n \to \infty$ LHS has cluster point $y^*(y-x)$ and RHS $\to f(y) - f(x)$

$$\implies y^*(y-x) \leqslant f(y) - f(x).$$

(But $y^* \in X^* \backslash S \land y^* \in \partial f(y) \subset S$.)

Definice 2.3 (Maximal monotone operator)

X Banach space, $U \subset X$. $T: U \to 2^{X^*}$ is maximal monotone operator, if T is monotone and graph T is maximal within graphs of monotone operators on U.

Definice 2.4

$$graphT:=\{(x,x^*)\in U\times X^*|x^*\in Tx\}.$$

T monotone: $x, y \in U$, $x^* \in Tx$, $y^* \in Ty$, then $\langle x^* - y^*, x - y \rangle \geqslant 0$.

Maximality: $x \in U$, $x^* \in X^*$, $\forall y \in U \ \forall y^* \in Ty : \langle x^* - y^*, x - y \rangle \geqslant 0$, then $x^* \in Tx$.

Lemma 2.4

 $U \subset X$ open, $T: U \to 2^{X^*}$ monotone usc $\|\cdot\| \to w^*$, $\forall x \in U: Tx \neq \emptyset$, convex, w^* -closed. Then T is maximal monotone.

Důkaz

 $y \in U, \ y^* \in X^*, \ \forall x \in U \ \forall x \in Tx : \langle x^* - y^*, x - y \rangle \geqslant 0$. Assume $y^* \notin Ty \implies \text{(by HB)}$ $\exists z \in X : y^*(z) > \sup \langle Ty, z \rangle$.

So
$$\forall x^* \in Ty, \ x^*(z) < y^*(z) \implies Ty \subset \{z^* \in x^* | z^*(z) < y^*(z)\} =: W \ w^* \text{ open.}$$

T usc $\Longrightarrow \exists r > 0: B(y,r) \subset U$ and $\forall x \in B(y,r): Tx \subset W$. In particular: if t > 0 is small enough, then $y + t \cdot z \in B(y,z)$ and thus $T(y + t \cdot z) \subset W$.

$$w^* \in T(y+t \cdot z) \implies w^*(z) < y^*(z) \text{ and } t \cdot \langle w^* - y^*, z \rangle = \langle w^* - y^*, y + t \cdot z - y \rangle \geqslant 0.$$

Definice 2.5

S topological space, X Banach space, $\varphi: S \to 2^{X^*}$ is a minimal convex-valued usc if

- $\forall x \in S : \varphi(x) \neq \emptyset$, convex, w^* -compact;
- φ is usco $S \to w^*$;
- φ is minimal among maps satisfying two first conditions (i.e., φ satisfies two first conditions and $\psi(x) \subset \varphi(x)$ for all $x \in S \implies \psi = \varphi$).

Věta 2.5

 $U \subset X$ open convex, $f: U \to \mathbb{R}$ convex continuous. Then $\partial f: U \to 2^{X^*}$ is a maximal monotone operator and a minimal convex valued usco.

 $D\mathring{u}kaz$

From tvrzeni above: ∂f is monotone operator. Assume $T \subset \partial f$ ($\forall x \in U : T(x) \subset \partial f(x)$) is a convex valued onto. Clearly T is monotone. Then from previous lemma T is maximal operator.

Tvrzení 2.6

 $U \subset X$ open convex, $f: U \to \mathbb{R}$ convex continuous. Then $f_F'(x)$ exists $\Leftrightarrow \partial f(x)$ is a singleton and $\partial f(x)$ is usc $\|\cdot\| \to \|\cdot\|$ at X ($\forall G \subset X^* \|\cdot\|$ -open, $\partial f(x) \subset G$, $\exists r > 0: B(x,r) \subset U \land \forall y \in B(x,r): \partial f(y) \subset G$).

" \Longrightarrow ": Assume $f_F'(x) =: x^*$. Then we know the $\partial f(x) = \{x^*\}$. Fix $\varepsilon > 0$. We want r > 0 such that $B(x,r) \subset U$ and $\forall y \in B(x,r) : \partial f(x) \subset B(x^*,\varepsilon)$. By contradiction: Assume there is $(x_n) \subset B$, $x_n \to x$, $x_n^* \in \partial f(x_n)$, $||x_n^* - x^*|| > 2\varepsilon$. Thus $\exists h_n \in X$, $||h_n|| = 1 : \langle x_n^* - x^*, h_n \rangle > 2\varepsilon$.

$$x^* = f'_F(x) \implies \exists \delta > 0 : \overline{B(x,\delta)} \subset U \ \forall h \in X, \|h\| \leqslant \delta : f(x+h) - f(x) - x^*(h) \leqslant \varepsilon \|h\|.$$
$$x_n^* \in \partial f(x_n) \implies x_n^*(x+\delta h_n - x_n) \leqslant f(x+\delta h_n) - f(x_n)$$
$$x_n^*(\delta h_n) \leqslant f(x+\delta h_n) - f(x_n) + x_n^*(x_n - x).$$

$$2\varepsilon\delta < \langle x_n^* - x^*, \delta h_n \rangle \leqslant f(x + \delta h_n) - f(x) + f(x) - f(x_n) - x^*(\delta h_n) + x_n^*(x_n - x) \leqslant$$
$$\leqslant \varepsilon\delta + f(x) - f(x_n) + x_n^*(x_n - x) \to \varepsilon\delta \implies 2\varepsilon\delta \leqslant \varepsilon\delta.$$

 $\mathfrak{g} := \mathfrak{g}(x) = \{x^*\} \implies \text{we know that } x^* = f_G'(x). \text{ We will show: } x^* = f_F'(x).$ $\varepsilon > 0 \implies \exists \delta > 0 : B(x, \delta) \subset U \land \forall y \in B(x, \delta) : \partial f(y) \subset B(x^*, \varepsilon). y \in B(x, \delta), y^* \in \partial f(y).$ Then $x^*(y - x) \leq f(y) - f(x), y^*(x - y) \leq f(x) - f(y).$ So

$$0 \leqslant f(y) - f(x) - x^*(y - x) \leqslant y^*(y - x) - x^*(y - x) = (y^* - x^*)(y - x) \leqslant ||y^* - x^*|| \cdot ||y - x|| \leqslant \varepsilon \cdot ||y - x||.$$

So,
$$x^* = f_F'(x)$$
.

Tvrzení 2.7

 $U \subset X$ open convex, $f: U \to \mathbb{R}$ convex continuous. $U_F = \{x \in U | \exists f'_F(x)\}$ is G_δ set and $f'_F: U_F \to X^*$ is continuous $\|\cdot\| \to \|\cdot\|$.

Důkaz

$$U_F = \bigcap_{n \in \mathbb{N}} \left\{ x \in U | \exists V \text{ a neighbourhood of } x : \operatorname{diam} \bigcup \left\{ \partial f(y) | y \in V \right\} \leqslant \frac{1}{n} \right\}.$$

" \subset ": $x \in U_F$, $x^* = f_F'(x)$. From previous tyrzeni $\forall n \in \mathbb{N} \exists V$ a neighbourhood of x such that $\forall y \in V : \partial f(y) \subset B(x^*, \frac{1}{2n}) \implies x^* \in RHS$.

$$\underset{B(x^*, \frac{1}{n})}{\text{...}} x \in RHS, \ n \in \mathbb{N}, \ V_n ? \ \partial f(x) = 0 \implies \partial f(x) = \{x^*\} \text{ and } \forall y \in V_n : \partial f(y) \subset B(x^*, \frac{1}{n}) \implies x \in U_F.$$

Poznámka

Continuity of f'_F on U_F : $f'_F = \partial f|_{U_F}$.

Tvrzení 2.8

 $U \subset X$ open convex, $f: U \to \mathbb{R}$ convex continuous, $U_G = \{x \in U | \exists f'_G(x)\}$. Then

- $X \ separable \implies U \ is \ G_{\delta};$
- $f'_G: U_G \to X^*$ is continuous $\|\cdot\| \to w^*$.

Důkaz

$$U_G = \{x \in U | |\partial f(x)| = 1\}.$$

 $x \in U_G \implies \partial f(x) = \{f'_G(x)\}$. We know the ∂f is usc $\|\cdot\| \to w^*$. Thus the restriction to U_G is continuous $\|\cdot\| \to w^*$.

TODO!!!

Tvrzení 2.9

M a topological space (usually Baire), X Banach space.

- If $\Phi: M \to 2^{X^*}$ is useo (to w^* topology), then $\psi(m) = \overline{\operatorname{conv}}^{w^*} \Phi(m)$, $m \in M$, is also useo.
- If $\Psi: M \to 2^{X^*}$ minimal convex-valued usco, $\Phi: M \to 2^{X^*}$ minimal usco, $\Phi \subset \Psi$. Then $\forall m \in M: (|\Phi(m)| = 1 \Leftrightarrow |\Psi(m)| = 1)$.

Důkaz

Clearly for $m \in M$: $\Phi(m) \neq \emptyset$, $\psi(m)$ convex and w^* -compact.

" ψ is usco": $U \subset X^*$ w^* -open, $m \in M$, $\psi(m) \subset U \Longrightarrow \exists V \ w^*$ -open: $\psi(m) \subset V \subset \overline{V}^{w^*} \subset U$ (by regularity of w^* topology). $x^* \in \psi(m) \Longrightarrow \exists H \text{ TODO}!!!$

Tvrzení 2.10

X is a Banach space, X^* separable, M a Baire topological space, $\Phi: M \to 2^{X^*}$ minimal convex-valued usco. Then $G := \{m \in M \mid |\Phi(m)| = 1 \land \Phi \text{ is usco to } \|\cdot\| \text{ at } x\}$ is a dense G_{δ} subset of M.

$$A_n = \left\{ m \in M | \forall U \text{ neighbourhood of } m : \operatorname{diam} \Phi(U) > \frac{1}{n} \right\}$$

 $\implies A_n$ is closed in M and $M \setminus \bigcup_n A_n = G$.

We will check that each A_n is meager (first category). $\{x_k^*, k \in \mathbb{N}\}$ dense in $X^*, A_{n,k} := \{m \in A_n | \operatorname{dist}(\Phi(m), x_k^*) < \frac{1}{8n}\} \implies A_n = \bigcup_{k \in \mathbb{N}} A_{n,k}$. We will show that each $A_{n,k}$ is nowhere dense.

Fix $n, k, m \in A_{n,k}$, U neighbourhood of m. Choose $n^* \in \Phi(m)$ with $||m^* - x_k^*|| < \frac{1}{8n}$. $m \in A_n \implies \exists z_1, z_2 \in U, z_1^* \in \Phi(z_1), z_2^* \in \Phi(z_2), ||z_1^* - z_2^*|| > \frac{1}{2n} - \frac{1}{8n} > \frac{1}{4n} \implies \exists x \in X, ||x|| = 1, \langle z^* - x_k^*, x \rangle > \frac{1}{4n}$.

Hence $\langle z^*, x \rangle > \langle x_k^*, x \rangle + \frac{1}{4n}$.

U is neighbourhood of z. $\Longrightarrow \exists v \in U : \forall v^* \in \varphi(V) : \langle v^*, x \rangle > \langle x_k^*, x \rangle + \frac{1}{4n}$.

Assume not, i.e., $\forall v \in U$:

$$\varphi(v) \cap \left\{ y^* | y^*(x) \leqslant x_k^*(x) + \frac{1}{4n} \right\} \neq \emptyset.$$

Define $\tilde{\varphi}(m)' := \varphi(m) \cdot ?$, $m \in U$ and $\varphi(m)$, $m \in M \setminus U$. Assume the proof of P1, $\tilde{\varphi}$ is a convex-valued usco, $\tilde{\varphi} \subset \varphi \implies \tilde{\varphi} = \varphi \implies$

$$\forall v \in U : \varphi(v) \subset \left\{ y^* | y^*(x) \leqslant x_k^*(x) + \frac{1}{4n} \right\}$$

but this fault. 4.

We get $v \in U$:

$$\varphi(v) \subset \left\{ y^* | y^*(x) > x_k^*(x) + \frac{1}{4n} \right\}$$
 w*-open

 $\stackrel{\varphi \text{ is usco}}{\Longrightarrow} \exists V, \text{ a neighbourhood of } v, \, V \subset U,$

$$\varphi(V) \subset \left\{ y^* | y^*(x) > x_k^*(x) + \frac{1}{4n} \right\}.$$

Then $V \cap A_{n,k} = \emptyset$. $(w \in V \implies \forall w^* \in \varphi(w) : ||w^* - x_k^*|| \geqslant \langle w^* - x_k^*, x \rangle > \frac{1}{4n} \implies \operatorname{dist}(\varphi(w), x_k^*) \geqslant \frac{1}{4n} > \frac{1}{8n}$.)

So $A_{n,m}$ is nowhere dense, hence A_n are meager. Thus $\bigcup_n A_n$ is meager, hence $M \setminus \bigcup_n A_n$ is dense $(G_\delta$ as? are closed).

Věta 2.11

X a separable Banach space, X is Asplud? $\Leftrightarrow X^*$ is separable.

" — " Proposition above a plied to $\partial f.$

" \Longrightarrow " X separable, X^* not separable. The B_{X^*} is nonseparable \Longrightarrow $\exists M_0 \subset B_{X^*}$ uncountable such that $\exists \varepsilon > 0 \ \forall m_1, m_2 \in M_0 \ m_1 \neq m_2, \ \|m_1 - m_2\| > \varepsilon$.

 (B_{X^*}, w^*) is compact metrizable $\implies \exists M \subset M_0$ uncountable with w^* isolated points.

$$U = \{TODO!!!\}$$

_TODO!!!