EDGE-CLOUD ARCHITECTURE DESIGN FOR INTELLIGENT PC ASSISTANT

Chen Khoon Seah chenkhoon@yahoo.com

Contents

Intelligent PC Assistant – Architecture Overview	2
1. Introduction	2
2. Core Components	2
2.1 Telemetry Collection (Edge)	2
2.2 Local Model (Edge)	3
2.3 Edge-Cloud Services	3
2.4 Config File (config.yml)	3
3. Data & Control Flow	3
Setup Phase:	3
Telemetry Ingestion:	4
Local Inference:	4
Cloud Interaction (if enabled):	4
System Response:	4

Intelligent PC Assistant – Architecture Overview

1. Introduction

This architecture outlines the design of a hybrid **Edge–Cloud AI system** for a proactive support assistant on client devices. The system leverages **local inference for responsiveness and privacy**, while utilizing **cloud intelligence** for deeper insights, updates, and scalability. Configuration and behaviour are governed by user-defined preferences at initial setup.

2. Core Components

Edge-Cloud Intelligent Assistant Workflow

2.1 Telemetry Collection (Edge)

- · Acts as the central coordinator on the device.
- Collects raw system data (e.g., CPU usage, thermal readings).
- Routes data to both the Local Model for immediate analysis and to the Edge-Cloud for further processing (based on user consent).
- Manages event triggers, user notifications, and edge-cloud communication.
- Reads user preferences from a configuration file (config.yml) at startup.

2.2 Local Model (Edge)

- Performs lightweight, real-time inference on incoming telemetry data.
- Examples include anomaly detection (e.g., overheating) or command interpretation.
- Operates **offline** with low latency and respects privacy by processing data locally.
- Returns actionable results (e.g., "thermal anomaly detected") to the Telemetry Collection module.

2.3 Edge-Cloud Services

- Performs **heavy computation** using cloud resources.
- Handles:
 - Large-scale telemetry aggregation
 - o Fleet-wide pattern detection
 - Generative support responses (via LLMs)
 - o Recommendation engines
- Sends back:
 - o Cloud-generated insights to enhance user support
 - o Model updates to improve on-device inference capabilities

2.4 Config File (config.yml)

- Stores user-defined settings including:
 - o Whether telemetry is collected
 - Whether data is sent to the cloud
 - o Whether cloud model updates are allowed
- Ensures **compliance with privacy regulations** (e.g., GDPR, PDPA).

3. Data & Control Flow

Setup Phase:

o System reads config.yml to determine telemetry, cloud, and model usage settings.

Telemetry Ingestion:

Device generates system data → captured by Telemetry Collection.

Local Inference:

- o Telemetry data is passed to Local Model for real-time analysis.
- o Inference results (e.g., detected anomaly) are returned.

Cloud Interaction (if enabled):

- o Telemetry data is sent periodically or upon trigger to Edge-Cloud services.
- Cloud returns:
 - Contextual insights (e.g., recommended user actions)
 - Model updates (e.g., improved detection logic)

System Response:

- Assistant takes appropriate action:
 - Alert user
 - Apply local optimization
 - Escalate to support (cloud integration)

4. Key Benefits

Feature	Benefit
Edge Inference	Low-latency decisions, offline operation, preserves privacy
Cloud Intelligence	Scalable insights, support automation, model retraining
User Configurability	Transparent setup, customizable privacy & control options
Modular Design	Extensible, maintainable architecture for real-world use

5. Conclusion

This hybrid architecture balances the **responsiveness and privacy of edge computing** with the **depth and scalability of cloud-based AI**. It is suitable for deployment on millions of client devices, ensuring proactive support experiences without compromising user trust or compliance requirements.