a) No es LL(1) debido a que las reglas de S presenan factorización, y las reglas de 15, recursión a izquierdas. a izquierdas

(b)
$$S \rightarrow bS' \qquad B \rightarrow bB'$$

$$S' \rightarrow Ab \mid Ba \qquad B' \rightarrow CB' \mid E$$

$$A \rightarrow aS \mid CB \qquad C \rightarrow c$$

$$SIG(S) = \{4, 6\}$$

 $SIG(S') = \{4, 6\}$
 $SIG(S') = \{4, 6\}$
 $SIG(A) = \{6\}$
 $SIG(B) = \{a, 6\}$
 $SIG(B') = \{a, 6\}$
 $SIG(C) = \{a, 6\}$

	a	le	c	\$
S	-	RI	-	-
S'	2.21	23	22	-
A	RY	-	n5	4-
B	-	R6	-	2
B'	8.71	128	77	_
C	-	- 1 - 1	Rq	-

Es (L(1) porque no hay entradas milhiples

e)	s \$	6	bcas	-					
	B s' \$	6	bcat	1					
	\$'\$		beag	1					
	B a \$		beas	1	3				
b	181 a \$		6 c e \$	1	3	6			
	B' a \$		cas	1	3	6			
-	Blad		c = \$		3		7		
0	: b' a \$		c c \$	1	3	6	7	9	
	B1 a\$		a \$				7		
	a \$		4 \$					a	8
	\$		\$						

193

Porra que una fila asociada a un no-lorminal no longa di menos una acción "derivar" se ha de cumplir que todas las reglas asociadas a esle simbolo den lo siguiade:

DRIM (& . SIG(A)) = E3 o \$. Vayamos poso a paso, pora que la fomición ARIM no devulva immediala munte un valor & ha de ser E y por endi, todo recar en SIG(A).

Sim emborgo se puede demostrose que dada una promatica dein formada, VAEN, SIG(A) \$ \$ \$. Con todo osto, se conduje que no se puede cumplia la condición, por lo que la fila asociada a un no-terminal siempro ha de tener como mánimo una acción "derivar".

La demostración de VAGN (SIG(A) # des la siguiende;

A no puede ser S (axioma) ga que SIG(S)=2\$\$

S: SIG(A) = Q esto implica que vaiste una regla B> 2AB

perteneriende a las producciones en la que A forma parte
de la parte derecha 1 por lo que no sería accesible y por

tanto tampo co bien formada.