Linear Algebra Notes

Stanley Li

April 25, 2025

Contents

1	Vec	etors and Spaces	1
	1.1	Parametric representations of lines	1
	1.2	Linear dependence	2
	1.3	Linear subspaces	9

1 Vectors and Spaces

1.1 Parametric representations of lines

Example 1.1. Suppose that L_1 and L_2 are lines in the plane, that the x-intercepts of L_1 and L_2 are 5 and -1, respectively, and that the respective y-intercepts are 5 and 1. Find the point of intersection of L_1 and L_2 .

Solution 1.1. Pick two points on L_1 , i.e. (5,0) and (0,5). Let $\mathbf{a} = \langle 5, 0 \rangle$ and $\mathbf{b} = \langle 0, 5 \rangle$. Now, L_1 can be represented by the following:

$$L_1 = \{ (\mathbf{a} - \mathbf{b})t + \mathbf{b} \mid t \in \mathbb{R} \}$$
$$= \left\{ \begin{bmatrix} 5t \\ -5t + 5 \end{bmatrix} \middle| t \in \mathbb{R} \right\}$$

The $(\mathbf{a} - \mathbf{b})t$ represents L_1 parameterized through the origin, so we apply a translation of \mathbf{a} or \mathbf{b} . Similarly, let $\mathbf{c} = \langle -1, 0 \rangle$ and $\mathbf{d} = \langle 0, 1 \rangle$.

$$L_2 = \{ (\mathbf{c} - \mathbf{d})s + \mathbf{d} \mid s \in \mathbb{R} \}$$
$$= \left\{ \begin{bmatrix} -s \\ -s+1 \end{bmatrix} \middle| s \in \mathbb{R} \right\}$$

The point of intersection is where $L_{1x} = L_{2x}$ and $L_{1y} = L_{2y}$, allowing us to define a system of equations.

$$5t = -s$$
 $-5t + 5 = -s + 1$

$$s = -2$$

$$x = -s = 2$$

$$y = -s + 1 = 3$$

The point of intersection is (2, 3). \square

1.2 Linear dependence

Definition 1.1 (Linear combination). Let $V = \{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_k}\}$ where $\mathbf{v_i} \in \mathbb{R}^n$. A linear combination of V is defined to be $c_1\mathbf{v_1} + c_2\mathbf{v_2} + \dots + c_k\mathbf{v_k}$ where $c_i \in \mathbb{R}$.

Definition 1.2 (Linearly dependent). Let $V = \{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_k}\}$ where $\mathbf{v_i} \in \mathbb{R}^n$. V is linearly dependent if and only if $c_1\mathbf{v_1} + c_2\mathbf{v_2} + \dots + c_k\mathbf{v_k} = \mathbf{0}$ where $c_i \in \mathbb{R}$ and there exists at least one c_i such that $c_i \neq 0$. In other words, V is linearly independent if and only if $c_1, c_2, \dots, c_k = 0$ is the only solution.

Definition 1.3 (Span). Given a set S of vectors, the span of S, denoted span(S), is the set of all linear combinations of S.

Example 1.2. Let
$$S = \left\{ \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix} \right\}$$
. Is S linearly dependent?

Solution 1.2.

$$\begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} c_1 + \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} c_2 + \begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix} c_3 = 0$$

$$c_1 + 2c_2 - c_3 = 0$$
$$-c_1 + c_2 = 0$$
$$2c_1 + 3c_2 + 2c_3 = 0$$

Solving this system, we find that the only solution is $c_1 = c_2 = c_3 = 0$. Thus, S is linearly independent. \square

We can go further by saying that the span of S is \mathbb{R}^3 . This can be proven by setting the linear combination of S to an arbitrary 3-dimensional vector and isolating for the scalars c_1 , c_2 , and c_3 , which tells us that any given vector in \mathbb{R}^3 can be represented in a specific linear combination of S. This can be thought of intuitively as well: if S is linearly independent, each vector of S introduces new directionality; there is no vector in S that can be defined as a linear combination of the other vectors.

1.3 Linear subspaces

Definition 1.4 (Linear subspace). A set of vectors $V \subseteq \mathbb{R}^n$ is defined to be a linear/vector *subspace* of \mathbb{R}^n if and only if it contains $\mathbf{0}$, it is closed under scalar multiplication, and it is closed under addition:

$$\begin{aligned} \mathbf{0} \in & V \\ \forall \ c \in \mathbb{R}, \ c\mathbf{v} \in & V \\ \forall \ \mathbf{v_1}, \mathbf{v_2} \in & V, \mathbf{v_1} + \mathbf{v_2} \in & V \end{aligned}$$

Theorem 1.1. Let $V = \{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}\}$. It holds true that $\operatorname{span}(V)$ is a subspace of \mathbb{R}^n .

Proof. If span(V) is a valid linear subspace, it must contain the zero vector, it must be closed under scalar multiplication, and it must be closed under addition.

By definition, the span of V is the set of all linear combinations of V:

$$\operatorname{span}(V) = \{c_1 \mathbf{v_1} + c_2 \mathbf{v_2} + \dots + c_n \mathbf{v_n} \ \forall \ c_i \in \mathbb{R}\}$$
 (1)

1. Inclusion of zero vector:

Let
$$c_1, c_2, \dots, c_n = 0$$
.
 $\implies c_1 \mathbf{v_1} + c_2 \mathbf{v_2} + \dots + c_n \mathbf{v_n} = \mathbf{0}$
 $\implies \mathbf{0} \in \operatorname{span}(V)$

2. Closure under scalar multiplication:

Let
$$\mathbf{a} \in \operatorname{span}(V)$$
.
 $\iff c_1 \mathbf{v_1} + c_2 \mathbf{v_2} + \dots + c_n \mathbf{v_n} = \mathbf{a}$
 $d(c_1 \mathbf{v_1} + c_2 \mathbf{v_2} + \dots + c_n \mathbf{v_n}) = d\mathbf{a}$ where $d \in \mathbb{R}$
 $\implies dc_1 \mathbf{v_1} + dc_2 \mathbf{v_2} + \dots + dc_n \mathbf{v_n} = d\mathbf{a}$

 dc_i is just a scalar, meaning $d\mathbf{a}$ is another linear combination of V:

$$d\mathbf{a} \in \operatorname{span}(V)$$

3. Closure under addition:

Let
$$\mathbf{a}, \mathbf{b} \in \operatorname{span}(V)$$
.

$$c_1 \mathbf{v_1} + c_2 \mathbf{v_2} + \dots + c_n \mathbf{v_n} = \mathbf{a}$$

$$d_1 \mathbf{v_1} + d_2 \mathbf{v_2} + \dots + d_n \mathbf{v_n} = \mathbf{b}$$

$$(c_1 + d_1) \mathbf{v_1} + (c_2 + d_2) \mathbf{v_2} + \dots + (c_n + d_n) \mathbf{v_n} = \mathbf{a} + \mathbf{b}$$

Again, $(c_i + d_i)$ is just a scalar, meaning $\mathbf{a} + \mathbf{b}$ is another linear combination of V:

$$\mathbf{a} + \mathbf{b} \in \operatorname{span}(V)$$

Definition 1.5 (Basis). Let $S = \{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}\}$ be linearly independent. It follows that S is a basis for the subspace $V = \operatorname{span}(S)$.