

SIN110 Programação Roteiro Aula Prática 3 26-27/05/2022

Estruturas de Repetição em Linguagem C

ATENÇÃO: Todos os exercícios deverão ser resolvidos e serão enviados via **PVANet**, a partir de agora apenas o código .c de cada exercício.

Objetivos

Praticar os conceitos de estruturas de repetição na linguagem de programação C.

Os exercícios estão organizados de uma outra forma para representar uma **entrada** e **saída** de informação para cada programa. Na coluna **entrada** representa os valores que o usuário digitaria ao executar o programa, e na coluna **saída** a representação da **tela esperada** ao executar o programa.

1. Professor

1.1 – Elabore um programa que mostre na tela todos os números de 1 a 10, usando as três estruturas de repetição (**while**, **do..while** e **for**). Depois altere seu programa para mostrar todos os número de 1 a N.

Exemplos:

Entrada

A entrada é composta por um número inteiro positivo N.

Saída

A saída de seu programa mostra todos os números de 1 a N, separados por um espaço entre eles, com pulo de linha no final da sequência.

Como mostrado no exemplo abaixo:

ENTRADA	SAÍDA
6	123456
	123456
	123456

1.2 - O número 3025 tem uma propriedade interessante:

$$30 + 25 = 55$$
, e $55^2 = 3025$.

Faça um programa para mostrar todos os **números de 4 algarismos** que possuem essa propriedade.

1.3 Retorne ao programa que leia o código do produto escolhido do cardápio de uma lanchonete e a quantidade. Porém, agora, permita o cliente digitar vários códigos e quantidades até que se digite um código "flag" para concluir o pedido. Por fim, o programa deve calcular o valor a ser pago por aquele lanche completo. O cardápio da lanchonete segue o padrão abaixo:

Especificação	Código	Preço (R\$)
Cachorro Quente	Α	1.20
Bauru Simples	В	1.30
Bauru com Ovo	С	1.50
Hamburguer	D	1.20
Cheeseburguer	Е	1.70
Suco	F	2.20
Refrigerante	G	2.00

Exemplos: Entrada

A entrada é composta por várias linhas contendo um codigo e uma quantidade cada e termina com um valor "flag" (Z neste exemplo).

Saída

Seu programa vai gerar uma linha de saída falando o preço que o cliente pagará pelo pedido completo. Todas as saídas devem estar com quebra de linha no final da sentença.

Como mostra abaixo:

Entrada	Saída
A 5	O valor do pedido e: R\$ 9.00
C 2	
Z	

2. Roteiro

2.1 - Faça um programa que dado um número n inteiro, mostre todos os divisores de n. Por exemplo: se n = 10, os divisores são: 1, 2, 5, 10;

Exemplos:

Entrada

A entrada é composta por um número inteiro positivo.

Saída

A saída de seu programa será todos os divisores do número de entrada, separados por um espaço entre eles e sem pulo de linha no final.

Como mostrado no exemplo abaixo:

ENTRADA	SAÍDA
2	1 2
10	1 2 5 10

2.2 - Um número natural é triangular se puder se representado na forma de um triângulo:

Faça um algoritmo que imprima os n primeiros números triangulares, onde n é um valor digitado pelo usuário.

Exemplos:

Entrada

A entrada é composta por um número inteiro positivo.

Saída

A saída de seu programa será todos os N primeiros números triângulares separados por um espaço entre eles e sem pulo de linha no final.

ENTRADA	SAÍDA
4	1 3 6 10
1	1
5	1 3 6 10 15

2.3 - O quadrado de um número natural n é dado pela soma dos n primeiros números ímpares consecutivos. Por exemplo:

 $1^2 = 1$

 $2^2 = 1+3$

 $3^2 = 1+3+5$

 $4^2 = 1+3+5+7$

Dado um número n, calcule seu quadrado usando a soma de ímpares ao invés do produto.

Exemplos:

Entrada

A entrada é composta por um número inteiro positivo.

chic?

A saída de seu programa será o quadrado inteiro positivo do número de entrada, calculado através da soma dos ímpares. Ou seja, por exemplo: o quadrado de 4 será 1+3+5+7 que tem como resultado 16.

Como mostrado abaixo:

ENTRADA	SAÍDA
4	16
1	1

2.4 - Codifique, compile e execute um programa em C que calcule o fatorial de um número inteiro qualquer. (ex. $3! = 1 \times 2 \times 3$)

Exemplos:

Entrada

Seu programa terá como entrada um número inteiro positivo.

Saída

Sua saída deverá ser o fatorial do número de entrada. Lembrando que fatorial deve ser o produto de todos os números inteiros e positivos menores e iguais que o número de entrada, ou seja, por exemplo, o fatorial de 3 é calculado através de 3 * 2 * 1 que é igual a 6.

Como mostrado no exemplo abaixo:

ENTRADA	SAÍDA
10	3628800
2	2

- 2.5 Deseja-se fazer uma pesquisa a respeito das notas de alunos de uma turma, que possui 15 alunos. Para isto, deve ser lida a seguinte informação:
- a nota de cada aluno, sendo esta um valor real.

A pesquisa termina após a leitura das notas para os 15 alunos e, em seguida calcula e exibe os seguintes dados:

- a nota média do conjunto de alunos
- a maior nota do conjunto de alunos
- a menor nota do conjunto de alunos

Exemplos:

Entrada

Seu programa deve ter como entrada as notas, do tipo float, de cada um dos 15 alunos da turma.

Saída

Seu programa deve ter como saída a nota média, em float e limitado a duas casas decimais; a maior nota, em float e limitado a duas casas decimais e a menor nota, também em float e limitado a duas casas decimais.

Como mostrado no exemplo abaixo:

ENTRADA	SAÍDA
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00
1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00	8.00 15.00 1.00

Bonus: 2.6 - Faça um programa imprima na tela um quadrado N X N **oco** formado apenas por uma letra qualquer. O tamanho do quadrado é dado pelo usuário. Dica: Faça o quadrado cheio primeiro para depois tentar o oco.

Exemplos:

Entrada

A entrada é composta por uma letra e por um número inteiro e positivo.

Saída

A saída de seu programa será formada pela borda do quadrado.

Como mostrado abaixo:

ENTRADA	SAÍDA
A 2	АА
	AA
B 1	В
C 3	ссс
	СС
	CCC
D 10	DDDDDDDDD
	D D
	D D
	D D
	D D
	D D
	D D
	D D
	D D
	DDDDDDDDD

Bonus: 2.7 - Codifique, compile e execute um programa que receba uma quantidade indeterminada de números reais até que o número digitado seja zero. Calcule e mostre na tela o resultado de MA usando a seguinte fórmula:

$$MA = \frac{1}{N} \sum_{i=1}^{N} x_i$$