TIN - Domáca úloha č. 1

Roman Dobiáš - xdobia11@stud.fit.vutbr.cz

14. januára 2019

Úloha č.1

1. $D\hat{o}kaz$. Nech $L_1, L_2 \in \mathcal{L}_3$. Pomocou axiomu doplnku z teórie množín je možné previesť nasledujúcu úpravu:

$$L_1 \setminus L_2 = L_1 \cap \overline{L_2}$$

Z vety 3.23 (skripta, str. 50) vieme, že trieda jazykov \mathcal{L}_3 je uzavretá voči \cup a \cap voči triede \mathcal{L}_3 , a doplnku ku Σ^* . Nakoľ ko doplnok aj prienik sú uzavreté operácie v \mathcal{L}_3 , potom $L_1 \cap \overline{L_2} \in \mathcal{L}_3$, a vzhľ adom na úpravu potom aj $L_1 \setminus L_2 \in \mathcal{L}_3$.

- 2. $D\hat{o}kaz$. Nech $L_1 \in \mathcal{L}_3, L_2 \in \mathcal{L}_2^D$. Z vety 4.27 (skriptá) vieme, že trieda \mathcal{L}_2^D je uzavretá voči prieniku s jazykom triedy \mathcal{L}_3 a voči doplnku. Preto $\overline{L_2} \in \mathcal{L}_2^D$ a zrejme $L_1 \cap \overline{L_2} \in \mathcal{L}_2^D$. Zároveň vieme, že L_1 aj L_2 sú množiny a platí pre ne vzť ah $L_1 \setminus L_2 = L_1 \cap \overline{L_2}$. Preto nutne $L_1 \setminus L_2 \in L_2^D$.
- 3. $D\hat{o}kaz$. Nech je daná ľubovoľná abeceda Σ a jazyk $L_1 = \Sigma^*$. Zjavne $L_1 \in \mathcal{L}_3$, keďže pre neho existuje deterministický konečný automat $M = (\{q_0\}, \Sigma, \delta, q_0, \{q_0\})$, kde $\forall a \in \Sigma : \delta(q_0, a) = q_0$ taký, že $L(M) = L_1$. Zároveň nech $L_2 \in \mathcal{L}_2$. Predpokladajme, že $\Sigma^* \setminus L_2 \in \mathcal{L}_2$. Potom nasledujúcou úpravou z definície operácie \setminus a definície doplnku dostávame:

$$\Sigma^* \setminus L_2 = \{ w | w \in \Sigma^* \land w \notin L_2 \} = \overline{L_2}$$

Z predpokladu $\Sigma^* \setminus L_2 \in \mathcal{L}_2$ dostávame $\overline{L_2} \in \mathcal{L}_2$, čo je spor, pretože z uzáverových vlastností bezkontextových jazykov vieme, že operácia doplnku nie je uzavretá (napr. doplnok ku jazyku $\overline{\{a^nb^nc^n|n\geq 1\}}$ je kontextový jazyk). Preto neplatí predpoklad a obecne neplatí, že $L_1 \setminus L_2 \in \mathcal{L}_2$.

Úloha č.2

Nech $P=(\{q_0,q_1,q_2,q_3\},\{0,1,2\},\{a,Z\},\delta,q_0,Z,\{q_3\})$ je deterministický zásobníkový automat, kde δ je definované nasledovne:

$\delta(q_0, 1, Z) = (q_0, aZ)$	$\delta(q_0, 1, a) = (q_0, aa)$
$\delta(q_0, 2, Z) = (q_0, aaZ)$	$\delta(q_0, 2, a) = (q_0, aaa)$
$\delta(q_0, 0, Z) = (q_0, Z)$	$\delta(q_0, 0, a) = (q_0, a)$
$\delta(q_0, \#, a) = (q_1, a)$	$\delta(q_0,\#,Z)=(q_1,Z)$
$\delta(q_1, a, a) = (q_1, \epsilon)$	$\delta(q_1, b, a) = (q_2, \epsilon)$
$\delta(q_1, 0, a) = (q_1, a)$	$\delta(q_2,\epsilon,a)=(q_1,\epsilon)$
$\delta(q_1, \epsilon, Z) = (q_3, Z)$	$\delta(q_3, 0, Z) = (q_3, Z)$

Diagram výsledného automatu je znázornený na obrázku . Výsledný DZA prijíma reť azec prechodom do koncového stavu a prečítaním celého vstupného reť azca.

Obr. 1: Diagram DZA z úlohy č.2. Automat prijíma prechodom do koncového stavu.

Úloha č.3

Dôkaz je prevedený pomocou Pumping Lemma.

 $D\hat{o}kaz$. Predpokládajme, že jazyk L je nekonečným regulárnym jazykom. Potom existuje k>0 a reť azec $w=a^k\#a^k$ z jazyka L, pre ktorý platí |w|=2k+1, teda $|w|\geq k$, a platí nasledujúce tvrdenie:

$$\exists x, y, z \in (N \cup \Sigma)^* : w = xyz \land |xy| \le k \land y \ne \epsilon : \forall i \in \mathbb{N}_0 : xy^iz \in L$$

Zvoľ me ľ ubovoľ né $l,n\in\mathbb{N}_0$ také, že platí $x=a^n\wedge y=a^l\wedge z=a^{k-l-n}\#a^k\wedge l>0 \wedge n\geq 0 \wedge l+n\leq k.$ Potom musí platiť , že $\forall i\in\mathbb{N}_0: xy^iz\in L.$

Uvažujme prípad i=0. Potom by podľa prepokladu malo platiť $xz\in L$, lenže zjavne platí $a^na^{k-l-n}\#a^k=a^{k-l}\#a^k\notin L$, čo je v spore s predpokladom, že L je regulárny jazyk. Preto L nie je regulárny jazyk.

Úloha č.4

Neformálna idea (myšlienka) algoritmu spočíva v generovaní reť azcov "odzadu". Namiesto budovania prefixu z terminálov, ako to pomyslene robí pravá lineárna gramatika, vybudujeme terminálový suffix prijímaného reť azca.

Algoritmus prevodu PLG na LLG

Vstup: Pravá lineárna gramatika $G_P = (N, \Sigma, P, S)$ taká, že P obsahuje len pravidlá typu $A \to xB, x \in \Sigma^*, A, B \in N$ a typu $A \to x, x \in \Sigma^*, A \in N$

Výstup: L'avá lineárna gramatika $G_L=(N_1,\Sigma,P_1,S_1)$ taká, že P_1 obsahuje len pravidlá typu $A\to Bx,x\in\Sigma^*,A,B\in N$ a typu $A\to x,x\in\Sigma^*,A\in N$

Metóda:

- 1. $N_1 = N \cup \{S_1\}$
- 2. Pre každé pravidlo z množiny P typu $A \to xB, A, B \in N, x \in \Sigma^*$ pridaj do množiny pravidlo:

$$B \to Ax$$

3. Pre každé pravidlo z množiny P typu $A \to x, A \in N, x \in \Sigma^*$ pridaj do množiny pravidlo:

$$S_1 \to Ax$$

4.
$$P_1 = P_1 \cup \{S \to \epsilon\}$$

Demonštrácia algoritmu

Pomocou vyžšie definovaného algoritmu predvedieme príklad transformácie gramatiky $G = (\{S,A,B\},\{a,b\},P,S), P = \{S \to abA|bS,A \to bB|S|ab,B \to \epsilon|aA\}$:

- 1. $N_1 = \{S, A, B\} \cup \{S_1\}$
- 2. Do množiny P_1 pridáme nasledujúce pravidlá (konvencia $p \in P \Longrightarrow p \in P_1$):

$$S o abA \Longrightarrow A o Sab$$
 $S o bS \Longrightarrow S o Sb$ $A o bB \Longrightarrow B o Ab$ $A o S \Longrightarrow S o A$ $A o S \Longrightarrow S o A$

3. P_1 :

$$A \to ab \Longrightarrow S_1 \to Aab$$
 $B \to \epsilon \Longrightarrow S_1 \to B\epsilon$

- 4. $P_1 = P_1 \cup \{S \to \epsilon\}$
- 5. $G_L = (N_1, \{a, b\}, P_1, S_1)$

Demonštráčná derivácia

Uvažujme reť azec abbab. V gramatikách G a G_1 je možné vygenerovať uvažovaný reť azec v nasledujúcich deriváciach:

$$S \Rightarrow_G abA \Rightarrow_G abbB \Rightarrow_G abbaA \Rightarrow_G abbabB \Rightarrow_G abbab$$

$$S_1 \Rightarrow_{G_L} B \Rightarrow_{G_L} Ab \Rightarrow_{G_L} Bab \Rightarrow_{G_L} Abab \Rightarrow_{G_L} Sabbab \Rightarrow_{G_L} abbab$$

Úloha č.5

Podľa Myhill-Nerudovej vety (veta 3.20, skriptá, str. 48) pre jazyk L existuje deterministický konečný automat M taký, že L(M) = L, práve vtedy ak prefixová ekvivalencia \sim_L má konečný index. Budeme sa teda snažiť dokázať, že jazyk L má \sim_L s konečným indexom.

Dôkaz. Vzhľadom na predikát, ktorý určtuje príslušnosť daného reťazca do jazyka L, je možné definovať reláciu prefixovej ekvivalencie na jazyku L nasledovne:

$$u \sim_L v \iff \#_a(u) \bmod 3 = \#_a(v) \bmod 3 \land ((\#_b(u) > 0 \land \#_b(v) > 0) \lor (\#_b(u) = 0 \land \#_b(v) = 0))$$

Relácia \sim_L nám definuje nasledujúce triedy rozkladu Σ^*/\sim_L :

$$\begin{split} C_1 &= \{ w \in \Sigma^* | \#_a(w) \bmod 3 = 0 \land \#_b(w) = 0 \} \\ C_2 &= \{ w \in \Sigma^* | \#_a(w) \bmod 3 = 1 \land \#_b(w) = 0 \} \\ C_3 &= \{ w \in \Sigma^* | \#_a(w) \bmod 3 = 2 \land \#_b(w) = 0 \} \end{split}$$

$$C_4 &= \{ w \in \Sigma^* | \#_a(w) \bmod 3 = 0 \land \#_b(w) > 0 \} \\ C_5 &= \{ w \in \Sigma^* | \#_a(w) \bmod 3 = 1 \land \#_b(w) > 0 \} \\ C_6 &= \{ w \in \Sigma^* | \#_a(w) \bmod 3 = 2 \land \#_b(w) > 0 \} \end{split}$$

Relácia \sim_L rozdelí množinu Σ^* na **6 tried ekvivalencie**. Počet tried vyplýva z počtu rôznych možností ohodnotenia funkcie $\#_a(x) \mod 3$, ktorých je konečne, konkrétne 3, a faktu, že buď pre reťazec platí $\#_b(x) = 0$ alebo neplatí. Výsledný počet tried je daný počtom kombinácii oboch podmienok.

Jazyk L je zjednotením tried C_5 a C_6 , pretože reťazce tíchto tried spĺňajú logickú formulu z definície jazyka L, a teda náležia jazyku L. Zároveň má rozklad Σ^*/\sim_L konečný počet tried, teda relácia \sim_L má konečný index a pre jazyk L nutne existuje nejaký DKA taký, že L(M) = L, teda jazyk L je regulárny.

Poznámka. DKA automat pre tento jazyk je znázornený na obrázku 2. Jednotlivé stavy automatu odpovedajú triedam rozkladu Σ^*/\sim_L .

Obr. 2: Diagram DKA z úlohy č.5.