\mathcal{R} obert \mathcal{S} tańczy

http://www.math.uni.wroc.pl/~stanczr/A/12.pdf

Zadanie 151. Rozwiązać zagadnienie początkowo-brzegowe z równaniem ciepła: $u_t = u_{xx}, \quad u(0,x) = sgn(x), x \in (-1,1) \quad u(t,0) = u(t,1) = 0, t > 0$ rozwijając funkcję znaku sgn(x) w szereg Fouriera na (-1,1) (ew. równoważnie na przedziale (0,1) względem sinusów funkcję stale równą jeden) i przedłużając zagadnienie okresowo ze względu na x z okresem 2. Wykazać, że rozwiązanie jest dwukrotnie różniczkowalne dla t > 0, wykorzystując zbieżność jednostajną odpowiednich szeregów pochodnych. Zinterpretować efekt regularyzacji parabolicznej tzn. poprawiania regularności rozwiązania startującego z funkcji nieciągłej.

Zadanie 152. Rozwiązać zagadnienie początkowo-brzegowe z równaniem ciepła: $u_t = u_{xx}, \quad u(0,x) = \frac{1}{2} - |x - \frac{1}{2}|, x \in (-1,1) \quad u(t,0) = u(t,1) = 0, t > 0$ przedłużając zagadnienie okresowo ze względu na x z okresem 2. Wykazać, że rozwiązanie jest dwukrotnie różniczkowalne dla t > 0, a ciągłe dla $t \geq 0$. Zinterpretować efekt regularyzacji parabolicznej tzn. poprawiania regularności rozwiązania startującego z funkcji ciągłej.

Zadanie 153. Rozwiń w szereg Fouriera następujące funkcje f określone na przedziale (0,1) przedłużając je do funkcji

- (i) parzystej na (-1,1),
- (ii) nieparzystej na (-1,1),
- a następnie na całą prostą:

a) x^2 , b) x, c) |x|, d) $\sin(\pi x)$, e) $\cos(\pi x)$, f) 1, a następnie wykorzystaj to do rozwiązania równania ciepła i fali z warunkiem początkowym f(x) dla $x \in (0,1)$ dla t = 0 (dla równania falowego załóż dodatkowo, że $u_t(0,x) = 0$) oraz warunkiem brzegowym zerowym u(t,0) = u(t,1) = 0 dla t > 0. Uzasadnij, że okresowo przedłużone u odpowiada rozwiązaniu w postaci d'Alamberta na prostej.

Zadanie 154. Sprawdź, że $u_n(x,y) = \sinh nx \sin ny$ jest rozwiązaniem równania $u_{xx} + u_{yy} = 0$. Jakie równanie spełniają funkcje $z_n(x)$ jeśli poszukujemy rozwiązań tego równania w postaci $u_n(x,y) = \sin nyz_n(x)$, a jakie gdy $u_n(x,y) = \sinh nyz_n(x)$. Sformułuj odpowiednie warunki brzegowe dla x=0 i $x=\pi$ tak aby u było rozwiązaniem odpowiedniego zagadnienia brzegowego w wyżej wymienionych przypadkach. Jakie warunku początkowe na u(x,0) i $u_y(x,0)$ dla $x \in (0,\pi)$ należy sformułować aby jedna z funkcji u_n była rozwiązaniem zagadnienia początkowo-brzegowego dla równania Laplace'a? Podobne pytanie można sformułować dla kombinacji fukcji u_n oraz nieskończonej kombinacji u_n czyli opdowiedniego szeregu Fouriera ze względu na jedną zmienną.

Zadanie 155. Rozwiązać zagadnienie początkowo-brzegowe z równaniem falowym (struny): $u_{tt} = u_{xx}, \quad u(0,x) = f(x), u_t(x,0) = 0, x \in (-1,1) \quad u(t,0) = u(t,1) = 0, t > 0$ rozwijając funkcję f(x) = sgn(x) w szereg Fouriera na (-1,1) (ew. równoważnie na przedziale (0,1) względem sinusów funkcję stale równą jeden) i przedłużając zagadnienie okresowo ze względu na x z okresem 2. Analogicznie dla f(x) = 1/2 - |x-1/2|. Wykazać, że rozwiązanie jest dwukrotnie różniczkowalne, ale nie wszędzie dla t > 0. Pokazać, że nieciągłości warunku początkowego czy też jego pochodnej zadanego dla t = 0 przenoszą się wewnątrz obszaru wzdłuż charakterystyk dla t > 0 na rozwiązanie i nie mamy tu efektu regularyzacji parabolicznej rozwiązania jak w równaniu ciepła.

Zadanie 156. Sprowadzić równanie Blacka-Scholesa

$$v_{\tau} = \frac{1}{2}\sigma^2 s^2 v_{ss} + (r - \delta)sv_s - rv = 0$$

przez zamianę zmiennych $Ku(t,x)=v(T-\frac{2t}{\sigma^2},Ke^x)=v(\tau,s),\ \tau=T-\frac{2t}{\sigma^2},s=Ke^x$ do równania o stałych współczynnikach $u_t=u_{xx}+(\frac{2(r-\delta)}{\sigma^2}u_x-\frac{2r}{\sigma^2}u=0,$ które przez podstawienie $w(t,x)=\exp(at+bx)u(t,x)$ sprowadza się do równania ciepła z rozwiązaniem danym przez wzór $w(x,t)=\frac{1}{\sqrt{4\pi t}}e^{-x^2/4t}$ (sprawdzić!). Więcej szczegółów znajdziecie w: Rafat Ciesielski "Model Blacka-Scholesa"