Klausur zur Mathematik für Ingenieure und Physiker am 03.02.97

Aufgabe 1. Zeigen Sie, daß für $n \ge 10$ $(n \in |N)$ die Ungleichung $2^n > n^3$ gilt.

Aufgabe 2. Für welche $x \in \mathbb{R}$ ist $f(x) = \ln(\sqrt{1-e^x})$ definiert? Bilden sie die Ableitung dort, wo es möglich ist.

Aufgabe 3. Untersuchen Sie die folgenden unendlichen Reihen auf Konvergenz

a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{2n+3}$$
, b) $\sum_{n=1}^{\infty} \frac{3^n}{n!}$.

Aufgabe 4. Existieren die folgenden Grenzwerte? Bestimmen Sie ggf. ihren Wert.

a)
$$\lim_{x \to \infty} \frac{3x+10}{6x+25}, \quad b) \quad \lim_{x \to 0} \left(\frac{1}{x} - \frac{\sin x}{x^2}\right).$$

Aufgabe 5. We ist die Funktion $f(x) = \frac{x^3}{\ln x}$ definiert? Skizzieren Sie ihren Verlauf und bestimmen Sie ihre Extremwerte.

Aufgabe 6. Berechnen Sie die Integrale

a)
$$\int_{1}^{5} x^{2} \ln x \, dx$$
, b) $\int x^{3} \cos (x^{2}) \, dx$.

Aufgabe 7. Berechnen Sie den Abstand des Punktes $P = (1, -1, 3) \in \mathbb{R}^3$ von der durch den Vektor $\overrightarrow{v} = (3, 0, -3)$ induzierten Geraden durch den Nullpunkt.

Aufgabe 8. Zeigen Sie, das lineare Gleichungssystem

$$\begin{cases} 2x_1 - 2x_2 &= b_1 \\ 3x_1 &+ x_3 &= b_2 \\ 4x_2 - 2x_3 &= b_3 \end{cases}$$

für jedes Tripel (b₁, b₂, b₃)∈ |R³ lösbar ist. Bestimmen Sie die Lösungen für

$$b_1 = 1$$
, $b_2 = -1$, $b_3 = 2$.

Es werden etwa 50% der erreichbaren Punkte erwartet. Bitte verwenden Sie für jede Aufgabe ein extra Blatt. Dies erleichtert die Korrektur.

Wir wünschen viel Erfolg!