1 Bayes Nets: Representation

Parts (a), (b), and (c) pertain to the following Bayes' Net.

- (a) Express the joint probability distribution as a product of terms from the Bayes Nets CPTs.
- (b) Assume each node can take on 4 values. How many entries do the factors at A, D, and F have?

A: _____ D: ____ F: ____

- (c) Mark all that are guaranteed to be true:
 - \square $B \perp \!\!\! \perp C$
- $\Box F \perp \!\!\!\perp G|D$
- \square $A \perp \!\!\!\perp F$
- \square $B \perp \!\!\!\perp F|D$
- \Box $C \perp \!\!\! \perp G$
- $\Box E \perp \!\!\!\perp A|D$
- \square $D \perp \!\!\! \perp E$

Parts (d) and (e) pertain to the following CPTs.

	A	В	P(B A)	В	С	P(C B)	С	D	P(D C)
$A \mid P(A)$	+a	+b	0.9	+b	+c	0.8	+c	+d	0.25
+a = 0.8	+a	-b	0.1	+b	-c	0.2	+c	-d	0.75
-a 0.2	-a	+b	0.6	-b	+c	0.8	-c	+d	0.5
	-a	-b	0.4	-b	-с	0.2	-c	-d	0.5

- (d) State all non-conditional independence assumptions that are implied by the probability distribution tables.
- (e) Circle all the Bayes net(s) that can represent a distribution that is consistent with the tables given.

2 Variable Elimination

Using the Bayes Net shown below, we want to compute $P(Y \mid +z)$. All variables have **binary domains**. We run variable elimination, with the following variable elimination ordering: X, T, U, V, W.

After inserting evidence, we have the following factors to start out with:

$$P(T), P(U|T), P(V|T), P(W|T), P(X|T), P(Y|V, W), P(+z|X)$$

(a) When eliminating X we generate a new factor f_1 as follows,

$$f_1(+z|T) = \sum_{x} P(x|T)P(+z|x)$$

which leaves us with the factors:

$$P(T), P(U|T), P(V|T), P(W|T), P(Y|V, W), f_1(+z|T)$$

(c) When eliminating U we generate a new factor f_3 as follows, which leaves us with the factors:

(d) When eliminating V we generate a new factor f_4 as follows, which leaves us with the factors:

(e) When eliminating W we generate a new factor f_5 as follows, which leaves us with the factors:

(f) How would you obtain $P(Y \mid +z)$ from the factors left above:

(g) What is the size of the largest factor that gets generated during the above process?

(h) Does there exist a better elimination ordering (one which generates smaller largest factors)?