SC 617

Quiz-Week1

Gyandev Satyaram Gupta, 190100051

1. The statement is false, $\lim_{t\to\infty} \dot{f}(t) = 0$ implies that $\lim_{t\to\infty} f(t)$ converges to a finite value. Provide a function to prove the given statement wrong

Solution: Let's take a simple function $f(t) = \ln(t)$, where t>0 so $\dot{f}(t) = \frac{1}{t}$

$$\lim_{t\to\infty} \dot{\mathbf{f}}(\mathbf{t}) = \lim_{t\to\infty} \frac{1}{t} = 0$$

But,

$$\lim_{t\to\infty} f(t) = \lim_{t\to\infty} \ln(t) = \infty$$

doesn't converge to a finite value

So the statement is proven to be false.

2. What is the definition of supremum?

Let S be a subset of \mathbb{R} . An element $M \in \mathbb{R}$ is called a supremum or a least upper bound of the set S if

- (i) M is an upper bound of S, that is, $x \leq M$ for all $x \in S$, and
- (ii) $M \le \alpha$ for every upper bound α of S.

OR

Let S be a subset of \mathbb{R} . An element $M \in \mathbb{R}$ is called a supremum or a least upper bound of the set S if and only if $\forall \epsilon > 0$, $M - \epsilon$ is not an upper bound.