MATHEMATICS OF CRYPTOGRAPHY PART II ALGEBRAIC STRUCTURES

ALGEBRAIC STRUCTURES

- Cryptography requires sets of integers and specific operations that are defined for those sets.
- The combination of the set and the operations that are applied to the elements of the set is called an algebraic structure.
- Three common algebraic structures: groups, rings, and fields.

ALGEBRAIC STRUCTURES(cont.)

Common algebraic structure

Groups

- A group (G) is a set of elements with a binary operation (•) that satisfies four properties (or axioms).
 - Closure
 - Associativity
 - Existence of identity
 - Existence of inverse

Closure

- If a and b are elements of G, then c = a•b is also an element of G.
- Associativity
 - If a, b and c are elements of G, then (a•b) •c=a•(b•c)
- Existence of identity
 - For all a in G, there exist an element e, called the identity element, such that e•a=a•e=a
- Existence of inverse
 - For each a in G, there exists an element a', called the inverse of a, such that a a' = a' a = e

- A Commutative group (Abelian group) is group in which the operator satisfies four properties plus an extra property that is commutativity.
 - For all a and b in G, we have a \bullet b = b \bullet a

- Application
 - Although a group involves a single operation, the properties imposed on the operation allow the use of a pair of operations!!!!
 - How???

Example

The set of residue integers with the addition operator,

$$G = \langle Zn, + \rangle$$

is a commutative group.

Check the properties.....

• Example:

— The set Zn* with the multiplication operator, G = <Zn*, ×>, is also an abelian group.

Example:

– Let us define a set G = < {a, b, c, d}, ●> and the operation as shown in Table.

•	а	b	С	d
а	а	b	c	d
b	b	c	d	а
c	С	d	а	b
d	d	а	b	С

Example:

- A very interesting group is the permutation group.
- The set is the set of all permutations, and the operation is composition: applying one permutation after another.
- Check for properties....
 - Is the group abelian?????

• Example(cont.):

0	[1 2 3]	[1 3 2]	[2 1 3]	[2 3 1]	[3 1 2]	[3 2 1]
[1 2 3]	[1 2 3]	[1 3 2]	[2 1 3]	[2 3 1]	[3 1 2]	[3 2 1]
[1 3 2]	[1 3 2]	[1 2 3]	[2 3 1]	[2 1 3]	[3 2 1]	[3 1 2]
[2 1 3]	[2 1 3]	[3 1 2]	[1 2 3]	[3 2 1]	[1 3 2]	[2 3 1]
[2 3 1]	[2 3 1]	[3 2 1]	[1 3 2]	[3 1 2]	[1 2 3]	[2 1 3]
[3 1 2]	[3 1 2]	[2 1 3]	[3 2 1]	[1 2 3]	[2 3 1]	[1 3 2]
[3 2 1]	[3 2 1]	[2 3 1]	[3 1 2]	[1 3 2]	[2 1 3]	[1 2 3]

Operation table for permutation group

- In the previous example, we showed that a set of permutations with the composition operation is a group.
- This implies that using two permutations one after another cannot strengthen the security of a cipher.
- Because we can always find a permutation that can do the same job because of the closure property.

Finite Group

If the set has a finite number of elements;
 otherwise, it is an infinite group.

Order of a Group |G|

- The number of elements in the group.
- If the group is finite, its order is finite

Subgroups

A subset H of a group G is a subgroup of G if H itself is a group with respect to the operation on G

- Subgroups(cont.)
 - If G=<S, •> is a group, H=<T, •> is a group under the same operation, and T is a nonempty subset of S, then H is a subgroup of G
 - If a and b are members of both groups, then c=a•b is also member of both groups
 - The group share the same identity element
 - If a is a member of both groups, the inverse of a is also a member of both groups
 - The group made of the identity element of G, H=<{e}, ●>, is a subgroup of G
 - Each group is a subgroup of itself

• Exercise:

- Is the group $H = \langle Z_{10}, + \rangle$ a subgroup of the group $G = \langle Z_{12}, + \rangle$?

• Exercise:

- Is the group $H = \langle Z_{10}, + \rangle$ a subgroup of the group $G = \langle Z_{12}, + \rangle$?

Solution:

The answer is no. Although H is a subset of G, the operations defined for these two groups are different. The operation in H is addition modulo 10; the operation in G is addition modulo 12.

- Cyclic subgroups
 - If a subgroup of a group can be generated using the power of an element, the subgroup is called the cyclic subgroup.

$$a^n \to a \bullet a \bullet \dots \bullet a \quad (n \text{ times})$$

- Four cyclic subgroups can be made from the group $G = \langle Z_6, + \rangle$.
- They are $H_1 = \langle \{0\}, + \rangle$, $H_2 = \langle \{0, 2, 4\}, + \rangle$, $H_3 = \langle \{0, 3\}, + \rangle$, and $H_4 = G$.

$$0^0 \bmod 6 = 0$$

$$1^{0} \mod 6 = 0$$

 $1^{1} \mod 6 = 1$
 $1^{2} \mod 6 = (1 + 1) \mod 6 = 2$
 $1^{3} \mod 6 = (1 + 1 + 1) \mod 6 = 3$
 $1^{4} \mod 6 = (1 + 1 + 1 + 1) \mod 6 = 4$
 $1^{5} \mod 6 = (1 + 1 + 1 + 1 + 1) \mod 6 = 5$

$$2^0 \mod 6 = 0$$

 $2^1 \mod 6 = 2$
 $2^2 \mod 6 = (2 + 2) \mod 6 = 4$

$$3^0 \mod 6 = 0$$

 $3^1 \mod 6 = 3$

$$4^0 \mod 6 = 0$$

 $4^1 \mod 6 = 4$
 $4^2 \mod 6 = (4 + 4) \mod 6 = 2$

$$5^{0} \mod 6 = 0$$

 $5^{1} \mod 6 = 5$
 $5^{2} \mod 6 = 4$
 $5^{3} \mod 6 = 3$
 $5^{4} \mod 6 = 2$
 $5^{5} \mod 6 = 1$

- Exercise:
 - Find out the cyclic subgroups for group $G = \langle Z_{10} *, \times \rangle$.

• Three cyclic subgroups can be made from the group $G = \langle Z_{10}^*, \times \rangle$. G has only four elements: 1, 3, 7, and 9. The cyclic subgroups are $H_1 = \langle \{1\}, \times \rangle$, $H_2 = \langle \{1, 9\}, \times \rangle$, and $H_3 = G$.

$$1^0 \mod 10 = 1$$

$$3^0 \mod 10 = 1$$

 $3^1 \mod 10 = 3$
 $3^2 \mod 10 = 9$
 $3^3 \mod 10 = 7$

$$7^0 \mod 10 = 1$$
 $7^1 \mod 10 = 7$
 $7^2 \mod 10 = 9$
 $7^3 \mod 10 = 3$

$$9^0 \mod 10 = 1$$

 $9^1 \mod 10 = 9$

- Cyclic group
 - A cyclic group is a group that is its own cyclic subgroup.

$$\{e, g, g^2, \dots, g^{n-1}\}\$$
, where $g^n = e$

- Cyclic group(cont.)
- Example:
 - Three cyclic subgroups can be made from the group $G = < Z10*, \times>$.
 - The cyclic subgroups are $H1 = \langle \{1\}, \times \rangle$, $H2 = \langle \{1, 9\}, \times \rangle$, and H3 = G.
 - The group $G = \langle Z_{10} *, \times \rangle$ is a cyclic group with two generators, g = 3 and g = 7.
 - The group $G = \langle Z_6, + \rangle$ is a cyclic group with two generators, g = 1 and g = 5.

- Lagrange's Theorem
 - Assume that G is a group, and H is a subgroup of G. If the order of G and H are |G| and |H|, respectively, then, based on this theorem, |H| divides |G|.
- Order of an Element
 - The order of an element is the order of the cyclic group it generates.

Example:

– In the group $G = \langle Z_6, + \rangle$, the orders of the elements are:

- In the group $G = \langle Z_{10}^*, \times \rangle$, the orders of the elements are: ord(1) = 1, ord(3) = 4, ord(7) = 4, ord(9) = 2.

Ring

- A ring, R = <{...}, •,■>, is an algebraic structure with two operations.
- First operation must satisfy all five properties
- Second operation must satisfy only the first two
- In addition, second operation must be distributed over first
 - i.e. for all a, b, and c elements of R, we have, $a \blacksquare (b \bullet c) = (a \blacksquare b) \bullet (a \blacksquare c)$ and $(a \bullet b) \blacksquare c = (a \blacksquare c) \bullet (a \blacksquare c)$

Ring(cont.)

Commutative Ring

Ring(cont.)

- The set Z with two operations, addition and multiplication, is a commutative ring.
- We show it by $R = \langle Z, +, \times \rangle$.
- Addition satisfies all of the five properties;
 multiplication satisfies only three properties.

Field

• A field, denoted by $F = \langle \{...\}, \bullet, \blacksquare \rangle$ is a commutative ring in which the second operation satisfies all five properties defined for the first operation except that the identity of the first operation has no inverse.

Field

Finite Fields

– Galois showed that for a field to be finite, the number of elements should be p^n , where p is a prime and n is a positive integer.

A Galois field, GF(pⁿ), is a finite field with pⁿ elements.

• GF(p) Fields

- When n = 1, we have GF(p) field.
- This field can be the set Z_p , {0, 1, ..., p 1}, with two arithmetic operations.

A very common field in this category is GF(2) with the set {0, 1} and two operations, addition and multiplication.

 We can define GF(5) on the set Z₅ (5 is a prime) with addition and multiplication operators.

 We can define GF(5) on the set Z₅ (5 is a prime) with addition and multiplication operators.

GF(5) $\{0, 1, 2, 3, 4\} + \times$

+	0	1	2	3	4
0	0	1	2 3 4	3	4
1	1	2	3	4	0
2	2 3	3	4	0	1
2 3	3	4	0	1	2
4	4	0	1	2	3

Addition

×	0	1	2		4
0	0	0	0 2	0	0
1	0	1	2	3	4
2	0		4	1	3
3	0	3	1 3	4	2
4	0	4	3	2	1

Multiplication

Additive inverse

Multiplicative inverse

GF(5) field

• Summary:

Algebraic Structure	Supported Typical Operations	Supported Typical Sets of Integers
Group	$(+ -) \text{ or } (\times \div)$	\mathbf{Z}_n or \mathbf{Z}_n^*
Ring	(+ −) and (×)	Z
Field	$(+ -)$ and $(\times \div)$	\mathbf{Z}_p

GF(2ⁿ) FIELDS

- In cryptography, we often need to use four operations(addition, subtraction, multiplication and division).
- In other words, we need to use fields.
- However, when we work with computers, the positive integers are stored in the computers as n-bit words in which n is usually 8,16,32 and so on.
- Range of integers is 0 to 2ⁿ 1
- Hence modulus is ?????
- What if we want to use field?????

GF(2ⁿ) FIELDS (cont.)

Solution 1

- Use GF(p), with the set Zp, where p is the largest prime number less than 2ⁿ
- But the problem ???

Solution 2

- Use GF(2ⁿ)
- Use a set of 2ⁿ words
- The elements in this set are n-bit words
- E.g. for n=3, the set is $\{000,001,010,011,100,101,110,111\}$

GF(2ⁿ) FIELDS (cont.)

- Solution 2
 - But the problem???

GF(2ⁿ) FIELDS (cont.)

- Solution 2
 - But the problem???
 - 2ⁿ is not prime
 - Need to define operations on the set of elements in GF(2ⁿ)

GF(2ⁿ) FIELDS (cont.)

- Let us define a GF(2²) field in which the set has four 2-bit words: {00, 01, 10, 11}.
- We can redefine addition and multiplication for this field in such a way that all properties of these operations are satisfied.

Identity: 00					Ide	enti	ity:	01	
11	11	10	01	00	11	00	11	01	10
10	10	11	00	01	10	00	10	11	01
01	01	00	11	10	01	00	01	10	11
00	00	01	10	11	00	00	00	00	00
\bigoplus	00	01	10	11	\otimes	00	01	10	11
Addition					Mu	ltıp.	lica	tıon	

An example of $GF(2^2)$ field

Polynomials

A polynomial of degree n – 1 is an expression of the form

$$f(x) = a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \dots + a_1x^1 + a_0x^0$$

• where x^i is called the ith term and a_i is called coefficient of the *i*th term.

We can represent the 8-bit word (10011001) using a polynomial.

First simplification

$$1x^7 + 1x^4 + 1x^3 + 1x^0$$

Second simplification

$$x^7 + x^4 + x^3 + 1$$

- Find the 8-bit word related to the polynomial $x^5 + x^2 + x$, we first supply the omitted terms.
- Since n = 8, it means the polynomial is of degree 7. The expanded polynomial is,

$$0x^7 + 0x^6 + 1x^5 + 0x^4 + 0x^3 + 1x^2 + 1x^1 + 0x^0$$

This is related to the 8-bit word 00100110.

- Operations on polynomials
 - Actually involves two operations
 - Operation on coefficients and operation on polynomials
 - Hence, need to define two fields
 - What for coefficient??
 - What for polynomials???

- Operations on polynomials
 - Actually involves two operations
 - Operation on coefficients and operation on polynomials
 - Hence, need to define two fields
 - What for coefficient??
 - What for polynomials???

- GF(2) and GF(2ⁿ) is the answer....

Modulus

- For the sets of polynomials in $GF(2^n)$, a group of polynomials of degree n is defined as the modulus.
- Such polynomials are referred to as irreducible polynomials.

- irreducible polynomials.
 - No polynomial in the set can divide this polynomial
 - Can not be factored into a polynomial with degree of less than n

Degree	Irreducible Polynomials
1	(x+1),(x)
2	$(x^2 + x + 1)$
3	$(x^3 + x^2 + 1), (x^3 + x + 1)$
4	$(x^4 + x^3 + x^2 + x + 1), (x^4 + x^3 + 1), (x^4 + x + 1)$
5	$(x^5 + x^2 + 1), (x^5 + x^3 + x^2 + x + 1), (x^5 + x^4 + x^3 + x + 1),$ $(x^5 + x^4 + x^3 + x^2 + 1), (x^5 + x^4 + x^2 + x + 1)$

Polynomial addition

Addition and subtraction operations on polynomials are the same operation.

- Example
- Let us do $(x^5 + x^2 + x) \oplus (x^3 + x^2 + 1)$ in GF(2⁸). We use the symbol \oplus to show that we mean polynomial addition. The following shows the procedure:

$$0x^{7} + 0x^{6} + 1x^{5} + 0x^{4} + 0x^{3} + 1x^{2} + 1x^{1} + 0x^{0} \oplus 0x^{7} + 0x^{6} + 0x^{5} + 0x^{4} + 1x^{3} + 1x^{2} + 0x^{1} + 1x^{0}$$

$$0x^{7} + 0x^{6} + 1x^{5} + 0x^{4} + 1x^{3} + 0x^{2} + 1x^{1} + 1x^{0} \to x^{5} + x^{3} + x + 1$$

- Short cut method
 - Addition in GF(2) means the exclusive-or (XOR) operation.
 - So we can exclusive-or the two words, bits by bits, to get the result.
 - In the previous example, $x^5 + x^2 + x$ is 00100110 and $x^3 + x^2 + 1$ is 00001101.
 - The result is 00101011 or in polynomial notation $x^5 + x^3 + x + 1$.

Multiplication

- The coefficient multiplication is done in GF(2).
- The multiplying x^i by x^j results in x^{i+j} .
- The multiplication may create terms with degree more than n-1, which means the result needs to be reduced using a modulus polynomial.

Example

- Find the result of $(x^5 + x^2 + x) \otimes (x^7 + x^4 + x^3 + x^2 + x)$ in GF(28) with irreducible polynomial $(x^8 + x^4 + x^3 + x + 1)$.

$$P_{1} \otimes P_{2} = x^{5}(x^{7} + x^{4} + x^{3} + x^{2} + x) + x^{2}(x^{7} + x^{4} + x^{3} + x^{2} + x) + x(x^{7} + x^{4} + x^{3} + x^{2} + x)$$

$$P_{1} \otimes P_{2} = x^{12} + x^{9} + x^{8} + x^{7} + x^{6} + x^{9} + x^{6} + x^{5} + x^{4} + x^{3} + x^{8} + x^{5} + x^{4} + x^{3} + x^{2}$$

$$P_{1} \otimes P_{2} = (x^{12} + x^{7} + x^{2}) \mod (x^{8} + x^{4} + x^{3} + x + 1) = x^{5} + x^{3} + x^{2} + x + 1$$

 To find the final result, divide the polynomial of degree 12 by the polynomial of degree 8 (the modulus) and keep only the remainder.

Polynomial division with coefficients in GF(2)

$$x^{4} + 1$$

$$x^{8} + x^{4} + x^{3} + x + 1$$

$$x^{12} + x^{7} + x^{2}$$

$$x^{12} + x^{8} + x^{7} + x^{5} + x^{4}$$

$$x^{8} + x^{5} + x^{4} + x^{2}$$

$$x^{8} + x^{4} + x^{3} + x + 1$$

Remainder
$$x^5 + x^3 + x^2 + x + 1$$

Example:

- In GF (2⁴), find the inverse of $(x^2 + 1)$ modulo $(x^4 + x + 1)$.

Solution

– The answer is $(x^3 + x + 1)$

q	r_{I}	r_2	r	t_I	t_2	t
$(x^2 + 1)$	$(x^4 + x + 1)$	$(x^2 + 1)$	(x)	(0)	(1)	$(x^2 + 1)$
(x)	$(x^2 + 1)$	(x)	(1)	(1)	$(x^2 + 1)$	$(x^3 + x + 1)$
(x)	(x)	(1)	(0)	$(x^2 + 1)$	$(x^3 + x + 1)$	(0)
	(1)	(0)		$(x^3 + x + 1)$	(0)	

Example:

– In GF(2⁸), find the inverse of (x⁵) modulo ($x^8 + x^4 + x^3 + x + 1$).

Example:

– In GF(2⁸), find the inverse of (x^5) modulo ($x^8 + x^4 + x^3 + x + 1$).

Solution

q	r_I	r_2	r	t_1	t_2	t
(x^3)	$(x^8 + x^4 + x^3 -$	$+x+1$) (x^5)	$(x^4 + x^3 + x + 1)$	(0)	(1)	(x^3)
(x+1)	(x^5) (2)	$x^4 + x^3 + x + 1$	$(x^3 + x^2 + 1)$	(1)	(x^3)	$(x^4 + x^3 + 1)$
(x)	$(x^4 + x^3 + x + 1)$	1) $(x^3 + x^2 + 1)$	(1)	(x^3)	$(x^4 + x^3 + 1)$	$(x^5 + x^4 + x^3 + x)$
$(x^3 + x^2 +$	1) $(x^3 + x^2 + 1)$	(1)	(0)	$(x^4 + x^3 + 1)$	$(x^5 + x^4 + x^3 + x)$	(0)
	(1)	(0)		$(x^5 + x^4 + x^3$	(0)	

- A better algorithm: Obtain the result by repeatedly multiplying a reduced polynomial by x.
- Example:
 - Find the result of multiplying $P_1 = (x^5 + x^2 + x)$ by $P_2 = (x^7 + x^4 + x^3 + x^2 + x)$ in $GF(2^8)$ with irreducible polynomial $(x^8 + x^4 + x^3 + x + 1)$

• Solution:

– We first find the partial result of multiplying x^0 , x^1 , x^2 , x^3 , x^4 , and x^5 by P_2 . Note that although only three terms are needed, the product of $x^m \otimes P_2$ for m from 0 to 5 because each calculation depends on the previous result.

Powers	Operation	New Result	Reduction	
$x^0 \otimes P_2$		$x^7 + x^4 + x^3 + x^2 + x$	No	
$x^1 \otimes P_2$	$x \otimes (x^7 + x^4 + x^3 + x^2 + x)$	$x^5 + x^2 + x + 1$	Yes	
$x^2 \otimes P_2$	$x \otimes (x^5 + x^2 + x + 1)$	$x^6 + x^3 + x^2 + x$	No	
$x^3 \otimes P_2$	$x \otimes (x^6 + x^3 + x^2 + x)$	$x^7 + x^4 + x^3 + x^2$	No	
$x^4 \otimes P_2$	$x \otimes (x^7 + x^4 + x^3 + x^2)$	$x^5 + x + 1$	Yes	
$x^5 \otimes P_2$	$x \otimes (x^5 + x + 1)$	$x^6 + x^2 + x$	No	
$\mathbf{P_1} \times \mathbf{P_2} = (x^6 + x^2 + x) + (x^6 + x^3 + x^2 + x) + (x^5 + x^2 + x + 1) = x^5 + x^3 + x^2 + x + 1$				

• Exercise:

Find the result of multiplying $P_1 = (x^3 + x^2 + x + 1)$ by $P_2 = (x^2 + 1)$ in GF(2⁴) with irreducible polynomial ($x^4 + x^3 + 1$)

• Exercise:

Find the result of multiplying (10101) by (10000) in $GF(2^5)$ using $(x^5 + x^2 + 1)$ as modulus.