Papers Review

Contents lists available at ScienceDirect

Sustainable Energy, Grids and Networks

journal homepage: www.elsevier.com/locate/segar

Intelligent charging and discharging of electric vehicles in a vehicle-to-grid system using a reinforcement learning-based approach $\,$

Julie Maeng ¹³, Daiki Min ¹³, Yuncheol Kang ¹⁵, ¹⁴

² Rightas Analytics in Graduate School, Ewha Womans University, South Korea

³ School of Business. Buku Womans University. South Korea

Contents lists available at ScienceDirect

Applied Energy
journal homepage: www.elsevier.com/locate/ape

Uncertainty analysis of the electric vehicle potential for a household to enhance robustness in decision on the EV/V2H technologies

Jide Niu 5, Xiaoyuan Li 5, Zhe Tian 5, Hongxing Yang 5,

⁶ Renewable Energy Research Group (RERG), Department of Budding Endrouneur and Energy Engineering, The Hong Kong Polytechnic University, Hong Kong, China
⁵ Department of Budding Environment and Durgy Engineering, Timph University, Tamph, China

김상훈 shkim@ds.seoultech.ac.kr

Abstract_First Paper

Sustainable Energy, Grids and Networks 36 (2023) 101224

Contents lists available at ScienceDirect

Sustainable Energy, Grids and Networks

journal homepage: www.elsevier.com/locate/segan

Intelligent charging and discharging of electric vehicles in a vehicle-to-grid system using a reinforcement learning-based approach

^a Bigdata Analytics in Graduate School, Ewha Womans University, South Korea
^b School of Business, Ewha Womans University, South Korea

- individual EV charging/discharging is formulated as sequential decision-making problem
- DDPG is implemented and compared with other baseline models

Motivation

- 1. Recent studies that employed RL with V2G tended to focus on multiple EV, rather than individual EV V2G
- 2. **mathematical model** that optimizes V2G operation **may not adequately** describe a system owing to **the presence of random parameters**

Sequential decision-making frameowrk

- Sequential decisions must be made based on factors such as
 - electricity price
 - EV SoC
 - battery degradation
 - driving distance

MDP settings

State

The state at each time step t is defined as $S_t = \{p_t, e_t\}$

- p_t : The electricity price at time t
- ullet e_t : SoC at time t.

Action

The action a_t at each time step t:

$$-A \le a_t \le A$$

where:

• A: The maximum capacity of charging or discharging

MDP settings

Reward

The reward function r_t at each time step t is defined as:

$$r_t = \begin{cases} -\frac{C}{T} & \text{if } s_t = \text{terminal} \\ -p_t \times a_t - \kappa_t & \text{otherwise} \end{cases}$$

where:

- C: The cost of the battery
- T: The total time steps

At the end of episode when the battery capacity reaches end-of-life (80%) a penalty of $-\frac{C}{T}$ is applied, indicating that longer episodes incur a smaller penalty

agent tends to select actions that maximize battery usage

MDP settings

Reward

$$r_t = \begin{cases} -\frac{C}{T} & \text{if } s_t = \text{terminal} \\ -p_t \times a_t - \kappa_t & \text{otherwise} \end{cases}$$

- p_t : price of electricity at time t
- a_t : amount of energy charged or discharged at time t
- ullet κ_t : penalty for when the EV cannot complete the required trip

The term $-p_t \times a_t$ calculates charging costs or discharging revenue at time t, while κ_t penalizes for untraveled distances

Results_DDPG

DDPG was implemented to solve problem

- red lines : hourly electricity prices
- light blue bar : amount of energy spent during driving
- dark blue bar: charged/discharged amount of energy by the RL agent

Baseline models

evaluate the performance of RL agent with two baselines: (1) random operation and (2) heuristic-based selection

(1) random operation

- does not consider factors such as the electricity price and reamining SoC
- ullet randomly selected from the range of -A and A

(2) heuristic-based selection

Classification	Time Period		Energy Charge (KRW/kWh)		
			Summer	Spring/Fall	Winter
Low-voltage (≤380 V)	Off-peak	23:00-09:00	57.5	58.6	80.6
	Mid-peak	09:00-10:00	145.2	70.4	128.1
		12:00-13:00			
		17:00-23:00			
	On-peak	10:00-12:00	232.4	75.3	190.7
		13:00-17:00			
High-voltage	Off-peak	23:00-09:00	52.4	53.4	69.8
(≥3300 V)	Mid-peak	09:00-10:00	110.6	64.2	100.9
		12:00-13:00			
		17:00-23:00			
	On-peak	10:00-12:00	163.6	68.1	138.7
		13:00-17:00			

- heuristic-based selection are aware of real-time electricity prices
 - Low Price : opts to charge
 - Medium Price: randomly select
 - High Price : decides to discharge

Case Study_Total Costs and Battery usage

• RL had the lowest cost (left) and longest usage of EV battery (right)

limitations

1. 매 타임 스템마다 0.8의 확률로 driving, 0.2의 확률로 parking 으로 전이한다고 가정함

RL Environment Data	Value/Distribution		
Electricity prices (\$10)	KEPCO's EV charging tariff (as of April 2022)		
Maximum battery capacity E _{max} (kWh)	24		
Initial energy ($\times E_{max}$)	$N(0.5, 0.01^2)$		
Required distance (km)	0, 5, 10, 15, 20, 25, 30		
Cost of battery	800		
Event probabilities $P_{driving}$, $P_{station}$	0.8, 0.2		

- 이는 (1). 전기차가 대부분 주차된 상태로 있다는 사실을 반영하지 못하며, (2).
 데이터로부터 생성된 시뮬레이션과는 괴리가 있는 에피소드를 기반으로 함
 - According to Yilmaz and Krein, the average personal car in the US is only on the road approximately 4-5% of the time
- 2. EV는 이동수단이기 때문에, random하게 충전량을 선택한다는 baselines 들의 action은 현실적이지 못함

Applied Probability Lab. 11/25 semin

Abstract_Second Paper

Applied Energy 365 (2024) 123294

Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Uncertainty analysis of the electric vehicle potential for a household to enhance robustness in decision on the EV/V2H technologies

Jide Niu a,b, Xiaoyuan Li b, Zhe Tian b, , Hongxing Yang a,

- EV travel behavior stochasticity is considered
- annual costs optimization by Mixed Integer Linear Programming (MILP)

^a Renewable Energy Research Group (RERG), Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hong Kong, China
^b Department of Building Environment and Energy Engineering, Tianiin University, Tianiin, China

Motivation

- 1. As the government subsidy program for EV purchases are being withdrawn, it needs to be carefully assessed benefits to households by V2H
- 2. potential benefits of V2H is strictly related to the travel behavior
- 3. conventional approach of modeling travel behavior is to define a fixed travel pattern, insufficient consideration in the stochasticity of travel behavior

Vehicle usage model

Three uncertain sources, 1. travel behavior, 2. charging strategy, 3. battery charge state affect the potential benefits of V2H

- 1 travel behavior
- plug-in/out time
- 2. charging strategy
- charge/discharge at home/outside

- 3. battery charge state
- plug-in/out SoC
- trip distance

Uncertainty in travel behavior

- By using North China Intelligent Travel Data and Python fitter package, fitting probability distributions to plug-out time and plug-in time
 - plug-out time is expressed as lognormal distribution
 - plug-in time is expressed as Cauchy distribution

Uncertainty in charging strategy

- charging/discharging at home/outside are stochastic variables which are affected by various influences, will be determined by MILP
 - plug-in/out time
 - charge state
 - electricity price

Uncertainty in charge state

• daily trip distance is expressed as lognormal distribution

- plug-out SoC are stochastic variables, which are affected by price of electricity, travel distance, so will be determined by MILP
- plug-in SoC is determined by plug-out SoC, travel distance and charging/discharging amount at outside

Modeling of vehicle travel behavior

The study generates episodes using a 7 stochastic parameters,

- 1. parameters such as **plug-in time**, **plug-out time**, **and daily trip distance**, which have probability distributions, are generated via Monte Carlo simulations
- 2. remaining parameters, charging/discharging electricity at home/outside, and SoC at plug-in/out times, are determined through a MILP

Household test systems

 annual cost minimization under Household grid that contains solar heat collector, PV and V2H

three distinct case systems

- system A: no EV
- system B: no V2H (only charge)
- system C: V2H

Objective Function

The objective function for minimizing the Equivalent Annual Cost (EAC_s) is defined as:

$$\min EAC_s = Inv_s + RC_s^{EVB} + Op_s^{grid} + Op_s^{Tr} - Op_s^{PV}$$

where:

- ullet Inv_s : Investment cost.
- ullet RC_s^{EVB} : battery degradation cost
- ullet Op_s^{grid} : electricity purchasing cost
- ullet Op_s^{Tr} : charging cost
- ullet Op_s^{PV} : Revenue from selling excess PV power

Degardation function

The equation for battery degradation cost RC_s^{EVB} is given by:

$$RC_s^{EVB} = \left\lceil \frac{Q_s^{EVB}}{2 \cdot Cy^{EVB} \cdot Ca_s^{EVB}} - 1 \right\rceil \cdot up_j \cdot v_j$$

where:

- ullet Q_s^{EVB} : Total charge/discharge amount
- ullet Cy^{EVB} : Charge cycle
- ullet Ca_s^{EVB} : Capacity of battery
- $ullet up_j$: Unit price of battery
- v_j : capacity recovery factor

limitations in settings

- 1. **V2H를 통해 여분의 전기를 판매할 수 없으며**, 다른 저장 장치로의 방전만 허용됨
- V2H 경제적 이점 제한
- 2. degradation model 에서 충/방전량과 충전 주기의 수만을 고려함
- 온도, 충전 속도, SoC 등 degradatoin에 영향을 미치는 다른 변수들을 고려하지 않음

Results

- Scenario A
 - assumes fixed travel behavior (previous studies)
- Scenarios B and C
 - consider stochastic travel behavior (Monte Carlo)

- Given significant limitations in settings related to V2H cost optimization
- the paper concludes that the randomness of travel behavior does not impact total cost
 - This conclusion has limitations

"Thank you for listening"