Определение 1. *Многочленом степени п от одной переменной х* называется любое выражение вида $a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0$,

где $n \in \mathbb{N} \cup \{0\}$, а коэффициенты a_n, \ldots, a_0 — любые числа (даже комплексные), причём $a_n \neq 0$. Краткое обозначение: A(x) или A. Коэффициент a_n называют *старшим*. Степень ненулевого многочлена A обозначают deg A. Число 0 называют *нулевым* многочленом, его степень не определена. Множества всех многочленов с целыми, рациональными, действительными, комплексными коэффициентами обозначаются соответственно $\mathbb{Z}[x], \mathbb{Q}[x], \mathbb{R}[x], \mathbb{C}[x]$.

Задача 1. Определите сумму и произведение многочленов.

Задача 2. а) Пусть $\deg A = 10$, $\deg B = \deg C = 7$. Какими могут быть $\deg(A + B)$ и $\deg(B + C)$? 6) Докажите, что $\deg AB = \deg A + \deg B$. в) Докажите, что $\deg A(B(x)) = \deg A \cdot \deg B$.

Задача 3. Может ли произведение нескольких ненулевых многочленов быть нулевым многочленом?

Определение 2. Многочлен A(x) задаёт функцию, которая сопоставляет каждому числу s число A(s) (результат подстановки в выражение A(x) числа s вместо переменной x).

Задача 4. Найдите сумму всех коэффициентов многочлена:

- a) $(x-1)^n$; 6) $(x+1)^n$; B) $(x-2)^n$; r) $(x+2)^n$; Д) $(1-x+x^4)^{1000}$.
- е) Найдите сумму коэффициентов при нечётных степенях у многочлена из пункта д).

Число корней многочлена

Определение 3. Число s называется *корнем* многочлена A, если A(s)=0.

Задача 5. Докажите, что если многочлен A делится на многочлен B, то есть существует такой многочлен C, что A = BC, то все корни B являются корнями A. Верно ли обратное утверждение?

Задача 6. Делится ли многочлен x^9-1 на многочлен x? А на многочлен x^2-1 ?

Задача 7. Произвольный многочлен A(x) домножили на (x-1). Могут ли у получившегося многочлена все коэффициенты быть положительными?

Задача 8. Докажите, что число s — корень многочлена A(x) если и только если A(x) делится на x-s.

Задача 9. Пусть A(1) = A(2) = 0. Докажите, что A(x) делится на (x-1)(x-2).

Задача 10. Докажите, что число различных корней многочлена A не больше $\deg A$.

Задача 11. Могут ли разные многочлены задавать одну и ту же функцию?

Задача 12. Пусть многочлен A(x) таков, что A(x) = A(-x) при любом x. Докажите, что существует такой многочлен P(x), что $A(x) = P(x^2)$ при любом x.

Задача 13. Можно ли задать многочленом функцию $\sin x$?

Задача 14. Пусть значения многочленов A и B совпадают при n различных значениях переменной, и степени этих многочленов меньше n. Докажите, что тогда A=B.

Задача 15. В скольких точках прямая может пересекать параболу?

Задача 16. а) Докажите, что любой многочлен степени 3 представляется в виде

$$a + bx + cx(x - 1) + dx(x - 1)(x - 2)$$
.

б) Найдите такой многочлен P(x) степени 3, что P(0) = -8, P(1) = 5, P(2) = 6, P(3) = 1.

Задача 17. Даны различные числа a_1, a_2, \ldots, a_n и любые числа b_1, b_2, \ldots, b_n .

- а) Найдите многочлен степени n-1, который равен b_1 при $x=a_1$ и равен 0 при $x\in\{a_2,\ldots,a_n\}$.
- **б**) Докажите, что существует единственный многочлен P(x) степени меньше n такой, что $P(a_1) = b_1$, ..., $P(a_n) = b_n$.