Satisfabilidad Lógica

Carlos Linares López

Grupo de Planificación y Aprendizaje (PLG)
Departamento de Informática
Escuela Politécnica Superior
Universidad Carlos III de Madrid

10 de enero de 2014

Definiciones

 Una fórmula proposicional está en Forma Normal Conjuntiva (CNF) si es de la forma:

$$igwedge_{i=1}^{N}igvee_{j=1}^{k_{i}}I_{ij}$$

- Un literal I consiste en una variable x afirmada (x) o negada (\overline{x})
- Un literal I es puro en F si \overline{I} no ocurre en ninguna cláusula de F
- Una tautología es una fórmula proposicional siempre cierta para cualquier asignación de sus expresiones atómicas.

Problema de satisfabilidad

Definición 1

El problema de satisfabilidad consiste en encontrar un modelo M que satisfaga F, $M \models F$

Método de resolución

Si F es un conjunto de cláusulas y l es pura en F entonces
 F − l es satisfacible si y sólo si F es satisfacible

Definición 2

$$Res(F,x) = \begin{cases} F - x & \text{si } x \text{ es pura en } F \\ C_1 \lor C_2 & (x \lor C_1) \in F, (\overline{x} \lor C_2) \in F \\ & y (C_1 \lor C_2) \text{ no es tautologia} \\ C \in F & x \notin F \end{cases}$$

Propiedades

 El modelo de resolución asegura que el número de variables decrementa:

$$\frac{(p \lor r), (\overline{p} \lor s)}{(r \lor s)} \quad \frac{p, \overline{p}}{\{\varnothing\}}$$

pero no necesariamente el número de cláusulas

- Si resulta la cláusula vacía, $\{\emptyset\}$, F no es satisfacible
- Si $F = \emptyset$, F es satisfacible
- La resolución no genera modelos, pero preserva la satisfabilidad del problema resultante
- La aplicación directa del método de resolución da lugar al algoritmo de Davis-Putnam

Algoritmo de Davis-Putnam

- Elegir un literal $I \in F$
- Aplicar Res(F, I) y anotar la variable usada y las cláusulas involucradas
- Si resulta la cláusula vacía, detenerse. PROBLEMA NO SATISFACIBLE
- **9** Si resulta $F = \emptyset$ ir a 5. En otro caso, volver a 1
- **PROBLEMA** SATISFACIBLE. Considerar la lista de variables y cláusulas en orden inverso, calculando un valor \top ó \bot para todas las variables involucradas¹

 $^{^1} op$ y \perp significan cierto y falso respectivamente $\stackrel{\longleftarrow}{\longleftarrow}$ $\stackrel{\longleftarrow}{\longleftarrow}$ $\stackrel{\longleftarrow}{\longleftarrow}$ $\stackrel{\longleftarrow}{\longleftarrow}$ $\stackrel{\longleftarrow}{\longrightarrow}$ $\stackrel{\longleftarrow}{\longrightarrow}$ $\stackrel{\longleftarrow}{\longrightarrow}$ $\stackrel{\longleftarrow}{\longrightarrow}$

Ejemplo I

Considerar el problema de satisfabilidad lógica con las siguientes cláusulas:

$$C_1:(p \lor q)$$

 $C_2:(\overline{p} \lor r)$
 $C_3:(q \lor \overline{r})$
 $C_4: \overline{q}$

y encontrar un modelo M que la satisfaga con el algoritmo de Davis-Putnam (DP)

Ejemplo II

Paso 0

Ejemplo III

Paso 1

$$G_1 = \{C_i\}_{i=3}^5$$

varSelect[1] = r
layerSeq[1] = $G_1 \setminus \text{Res}(G_1, r) =$
 $G_1 \setminus \{C_4, C_6 : q\} =$
 $\{C_3, C_5\}$

Cláusulas pendientes se escoge rnótese que la resolución de C_3 con C_5 genera la clausula C_6

Ejemplo IV

Paso 2

$$G_2 = \{C_4, C_6\}$$

varSelect[2] = q
layerSeq[2] = $G_2 \setminus \text{Res}(G_2, q)$

Cláusulas pendientes Se escoge la última variable q Problema no Satisfacible

• La no factibilidad se detecta al intentar resolver C_4 : (\overline{q}) con la variable q que da la cláusula vacía $\{\emptyset\}$

Ejemplo I

Considerar el problema de satisfabilidad lógica con las siguientes cláusulas:

$$C_1:(p \lor q) \quad C_5: \quad (\overline{r} \lor \overline{s})$$

$$C_2:(\overline{p} \lor \overline{r}) \quad C_6: \quad (u \lor w)$$

$$C_3:(q \lor \overline{r}) \quad C_7:(s \lor \overline{u} \lor \overline{w} \lor x)$$

$$C_4: \quad \overline{q}$$

y encontrar un modelo M que la satisfaga con el algoritmo de Davis-Putnam (DP)

Ejemplo II

Paso 0

$$G_0 = \{C_i\}_{i=1}^7 \qquad \qquad \text{Inicialmente se consideran}$$

$$\text{varSelect}[0] = p \qquad \qquad \text{almacena la selección de p}$$

$$\text{layerSeq}[0] = G_0 \backslash \text{Res}(G_0, p) = \qquad \text{y las clausulas implicadas}$$

$$G_0 \backslash \{C_3, C_4, C_5, C_6, C_7\} =$$

$$\{C_1, C_2\}$$

• La resolución de las cláusulas C_1 y C_2 genera exactamente la cláusula C_3 : $(q \lor \overline{r})$

Ejemplo III

Paso 1

• Nótese que la resolución de las cláusulas C_6 y C_7 genera la cláusula $(s \lor w \lor \overline{w} \lor x)$ que es una tautología y, por lo tanto, no se añade

Ejemplo IV

Paso 2

$$G_2 = \{C_3, C_4, C_5\}$$

 $\mathsf{varSelect}[2] = q$
 $\mathsf{layerSeq}[2] = G_2 \backslash \mathsf{Res}(G_2, q) =$
 $G_1 \backslash \{C_5, C_8 : (\overline{r})\} =$
 $\{C_3, C_4\}$

Cláusulas pendientes Se escoge q nótese que la resolución de C₃ y C₄ genera C₈ y se almacenan las clausulas usadas

Ejemplo V

Paso 3

$$G_3 = \{C_5, C_8\}$$

 $\mathsf{varSelect}[3] = r$
 $\mathsf{layerSeq}[3] = G_3 \backslash \mathsf{Res}(G_3, r) = G_3 \backslash \varnothing = \{C_5, C_8\}$

Cláusulas pendientes Se escoge r r es pura en G₃

y se almacenan las clausulas usadas

 Puesto que r es pura, todas las clausulas que la contienen se eliminan.

Ejemplo VI

• Paso 4: Se consideran los vectores de variables y cláusulas en orden inverso:

layerSeq⁻¹ =(
$$\{C_9\}$$
, $\{C_5, C_8\}$, $\{C_3, C_4\}$, $\{C_6, C_7\}$, $\{C_1, C_2\}$)
varSelect⁻¹= $\langle s, r, q, u, p \rangle$

Ejemplo VII

y se calculan por pasos asignaciones (función h) de verdadero o falso a cada variable que satisfagan sólo las clausulas implicadas en cada paso como se muestra en la siguiente tabla:

Paso	Variable	Cláusulas	Asignación
4	$\langle s \rangle$	$\{C_9\}$	$h(s) = \bot$
3	$\langle r \rangle$	$\{C_5, C_8\}$	$h(r) = \bot$
2	$\langle q angle$	$\{C_3, C_4\}$	h(q) = ot
1	$\langle u \rangle$	$\{C_6, C_7\}$	$h(u) = \top, h(w) = \bot, h(x) = \bot$
0	$\langle oldsymbol{p} angle$	$\{C_1, C_2\}$	$\mathit{h}(\mathit{p}) = \top$

Cuadro: Generación del modelo

Algoritmo de Davis-Putnam-Logemann-Loveland

Definición 3

Resolución Unitaria: forma de resolución en la que uno de los padres es una cláusula unitaria

 Sea F un conjunto de fórmulas y p ∈ At donde At es el conjunto de literales de F. F es satisfacible si y sólo si F ∪ {p} es satisfacible o F ∪ {p̄} es satisfacible

Algoritmo de Davis-Putnam-Logemann-Loveland

Definición 4 Se denomina **reducción** de una fórmula F por un modelo parcial v a la fórmula resultante $F_v = Red(F, v)$ en la que se han propagado las asignaciones de v

 Si el modelo es completo y resulta el conjunto vacío, Ø, entonces la fórmula F es satisfacible y el modelo v lo valida

Pseudocódigo

```
DPLL (F, v)
Entrada: F es la expresión lógica en CNF a satisfacer
            v es el modelo que se construye
          Un modelo v tal que v \models F o \emptyset si no existe ninguno
Salida:
     if (\emptyset \in F)
            return Ø
      G = \text{Red}(F, v)
     if (G = \emptyset)
            return v
     else
            I = SeleccionarLiteral(G)
            return DPLL (F, v \cup \{I\}) \lor (F, v \cup \{\overline{I}\})
```

Ejemplo I

Considerar el problema de satisfabilidad lógica con las siguientes cláusulas:

$$C_1:(p \vee \overline{t})$$

 $C_2:(\overline{p} \vee q)$
 $C_3:(t \vee \overline{q})$

y encontrar un modelo M que la satisfaga con el algoritmo de Davis-Putnam-Logemann-Loveland (DPLL)

Ejemplo II

Ejemplo III

• DPLL se podría haber detenido con el primer modelo:

$$v_1 = \{p = \top, q = \top, t = \top\}$$

pero si se le permite continuar encontraría todos los modelos adicionales:

$$v_2 = \{p = \bot, q = \bot, t = \bot\}$$

Propiedades

- DPLL es un algoritmo de el primero en profundidad por lo que tiene:
 - Consumo de memoria lineal
 - Consumo de tiempo exponencial

en el número de variables

- Mejoras al algoritmo DPLL:
 - Algoritmo de selección de la próxima variable, SeleccionarLiteral(G)
 - Aprendizaje de nuevas cláusulas satisfacibles
 - Backjumping (o backtracking no cronológico)
 - Cálculo incremental de la función de reducción

Bibliografía

Marek, Victor W.
Introduction to Mathematics of Satisfiability
CRC Press, 2009