Solution Q1:

Small Step Sizes (e.g., 0.0001, 0.001, 0.01)

• Smooth Descent & Convergence

For small learning rates, the spiral-like function appears to be minimized steadily. The plots show a slow but stable decrease in the objective y, often reaching values near 10–^3 or lower.

• Longer Time to Converge

The algorithm takes many iterations to get close to the minimum, but it does so without blowing up.

Medium Step Size (e.g., 0.1)

Mixed Behavior

Some seeds show a partial descent and then the function value skyrockets, while others might converge slowly or in a somewhat erratic pattern.

• Occasional Divergence

The plots where x1 and x2 blow up to very large magnitudes and the function value grows extremely large indicate divergence.

• Sensitivity to Initial Conditions

The difference in behavior across seeds suggests that with λ =0.1, some initial points still allow partial descent, while others cause large jumps and overshooting.

Large Step Size (e.g., 1.0)

• Frequent or Immediate Divergence

Most seeds cause the updates to overshoot drastically. x1 and x2 move rapidly to very large absolute values, and the objective y can jump orders of magnitude upward.

• Minimal or No Convergence

The few seeds that don't immediately diverge tend to hover around large values or eventually blow up. You rarely see stable decreases in y.

Conclusion:

- **Small λ**: Stable, slow, eventually convergent.
- Moderate λ : Can be effective but sometimes diverges, depends heavily on the starting point.
- Large λ: High likelihood of divergence—parameters explode to large values, and y becomes huge.

Step size: 0.0001, seed: 1

Step size: 0.0001, seed: 2

Step size: 0.0001, seed: 3

Step size: 0.0001, seed: 4

Step size: 0.0001, seed: 5

Step size: 0.001, seed: 1

Step size: 0.001, seed: 2

Step size: 0.001, seed: 3

Step size: 0.001, seed: 4

Step size: 0.01, seed: 1

Step size: 0.01, seed: 2

Step size: 0.01, seed: 4

Step size: 0.01, seed: 5

Step size: 0.1, seed: 1

Step size: 0.1, seed: 2

Step size: 0.1, seed: 3

Step size: 1, seed: 1

Step size: 1, seed: 3

Solution Q2:

