How Powerful are *K*-hop Message Passing Graph Neural Networks

Jiarui Feng, Yixin Chen, Fuhai Li, Anindya Sarkar, Muhan Zhang February 5, 2025

Washington University; Peking University; Beijing Institute for General Artificial Intelligence

Presented by: George Giapitzakis

Setup

- → Graph G = (V, E). Vertex set $V = \{1, 2, ..., n\}$, edge set $E \subseteq V \times V$ and adjacency matrix $A \in \{0, 1\}^{n \times n}$.
- $\rightarrow x_u$: feature of node u.
- \rightarrow e_{uv} : feature of edge joining u and v.
- $ightarrow Q^1_{v,G}$: set of 1-hop neighbors of node v in G and $\mathcal{N}^1_{v,G} \triangleq \{v\} \cup Q^1_{v,G}$.
- → 1-hop message passing framework:

$$m_{v}^{\ell} = \mathsf{MES}^{\ell}\left(\left\{\!\!\left\{\left(h_{u}^{l-1}, \mathsf{e}_{uv}\right) \mid u \in Q_{v,G}^{1}\right\}\!\!\right\}\right), h_{v}^{\ell} = \mathsf{UPD}^{\ell}(m_{v}^{\ell}, h_{v}^{\ell-1})$$

and

$$h_G = \mathsf{READOUT}\left(\left\{\!\!\left\{h_v^L \mid v \in V\right\}\!\!\right\}\right)$$

2

Setup

- → Shortest path distance (spd) kernel
 - * $\mathcal{N}_{v,G}^{k,spd}$: set of nodes at distance at most k from v.
 - $\star Q_{v,G}^{k,spd}$: set of nodes at distance **exactly** k from v.
- → Graph diffusion (gd) kernel
 - * $\mathcal{N}_{v,G}^{k,gd}$: set of nodes that can diffuse information to v within k walk steps from v.
 - * $Q_{v,G}^{k,spd}$: set of nodes that can diffuse information to v with k walk steps from v.
- → K-hop message passing framework ($t \in \{spd, gd\}$):

$$\begin{split} & m_{v}^{\ell,k} = \mathsf{MES}_{k}^{\ell} \left(\left\{ \left(h_{u}^{\ell-1}, e_{uv} \right) \mid u \in Q_{v,G}^{k,t} \right\} \right\} \right) \\ & h_{v}^{\ell,k} = \mathsf{UPD}_{k}^{\ell} (m_{v}^{\ell,k}, h_{v}^{\ell-1}) \\ & h_{v}^{\ell} = \mathsf{COMBINE}^{I} \left(\left\{ \left\{ h_{v}^{\ell,k} \mid k = 1, 2, \dots, K \right\} \right\} \right) \end{split}$$

Example

Figure 1: Example of 1-hop and K-hop neighbors for spd and gd kernels (K = 2).

Theoretical results

- → Definition. A proper K-hop message passing GNN is a GNN model where the message, update, and combine functions are all injective given the input from a countable space.
- → **Proposition 1.** A proper K-hop message passing GNN is strictly more powerful than 1-hop message passing GNNs when K > 1.
- **→ Theorem 1.** Consider all pairs of *n*-sized *r*-regular graphs, let $3 \le r < (2 \log 2n)^{1/2}$ and ϵ be a fixed constant. With at most

$$K = \left\lfloor \left(\frac{1}{2} + \epsilon\right) \frac{\log 2n}{\log(r-1)} \right\rfloor,$$

there exists a 1 layer K-hop message passing GNN using the shortest path distance kernel that distinguishes almost all $1-o(n^{-1/2})$ such pairs of graphs.

Theoretical results

→ Theorem 2. The expressive power of a proper K-hop message passing GNN of any kernel is bounded by the 3-WL test.

Figure 2: Example demonstrating Theorem 1.

KP-GNN: Improving *K*-hop message passing

- \rightarrow $E(Q_{v,G}^{k,t})$: set of edges connecting nodes from $Q_{v,G}^{k,t}$.
- $\rightarrow G_{v,G}^{k,t} = (Q_{v,G}^{k,t}, E(Q_{v,G}^{k,t}))$: peripheral subgraph induced by $Q_{v,G}^{k,t}$.
- → **KP-GNN:** Augment MES with peripheral subgraph information:

$$m_{v}^{\ell,k} = \mathsf{MES}_{k}^{\ell} \left(\left\{ \left(h_{u}^{\ell-1}, e_{uv} \right) \mid u \in Q_{v,G}^{k,t} \right\} \right\}, G_{v,G}^{k,t} \right)$$

→ In particular,

$$\mathsf{MES}_{k}^{\ell} = \mathsf{MES}_{k}^{\ell,\mathsf{normal}} \left(\left\{ \left\{ (h_{u}^{\ell-1}, e_{uv}) \mid u \in Q_{v,G}^{k,t} \right\} \right\} \right) + f(G_{v,G}^{k,t})^{t}$$

where

$$f(G_{v,G}^{k,t}) = \mathsf{EMB}((E(Q_{v,G}^{k,t}), \textcolor{red}{C_k^{k'}}))$$

Analysis of KP-GNN

- → Proposition 2 (omitted) shows that there exist pairs of isomorphic graphs that 3-WL fails to distinguish but KP-GNN can do so.
- → Space complexity: $\mathcal{O}(n)$ for both K-hop GNN and KP-GNN with spd kernel.
- → Time complexity: $\mathcal{O}(n^2)$ for both K-hop GNN and KP-GNN with *spd* kernel (compare to $\mathcal{O}(m)$ for MPNN).
- → **Limitation:** Increased receptive field (use information from K-hop neighbors instead of 1-hop) hurts learning.

Experiments

→ Datasets:

- * Synthetic: EXP, SR25, CSL.
- * Real-world: MUTAG, QM9, ZINC.

→ Results:

- * K-hop GNNs outperform 1-hop GNNs on synthetic datasets.
- * KP-GNN achieves superior results on distinguishing non-isomorphic graphs and graph property prediction.
- * Competitive performance on real-world datasets.

Experiments with synthetic data

	-				-	_	
Method	K	EXP (ACC)		SR (ACC)		CSL (ACC)	
		SPD	GD	SPD	GD	SPD	GD
K-GIN	K=1	50	50	6.67	6.67	12	12
	K=2	50	50	6.67	6.67	32	22.7
	K=3	100	66.9	6.67	6.67	62	42
	K=4	100	100	6.67	6.67	92.7	62.7
KP-GIN	K=1	50	50	100	100	22	22
	K=2	100	100	100	100	52.7	52.7
	K=3	100	100	100	100	90	90
	K=4	100	100	100	100	100	100

(a) Expressivity experiment.

Method	Node Properties (log ₁₀ (MSE))			Graph Properties (log ₁₀ (MSE))			Counting Substructures (MAE)			
	SSSP	Ecc.	Lap.	Connect.	Diameter	Radius	Tri.	Tailed Tri.	Star	4-Cycle
GIN	-2.0000	-1.9000	-1.6000	-1.9239	-3.3079	-4.7584	0.3569	0.2373	0.0224	0.2185
PNA	-2.8900	-2.8900	-3.7700	-1.9395	3.4382	-4.9470	0.3532	0.2648	0.1278	0.2430
PPGN	-	-	-	-1.9804	-3.6147	-5.0878	0.0089	0.0096	0.0148	0.0090
GIN-AK+	-	-	-	-2.7513	-3.9687	-5.1846	0.0123	0.0112	0.0150	0.0126
K-GIN+	-2.7919	-2.5938	-4.6360	-2.1782	-3.9695	-5.3088	0.2593	0.1930	0.0165	0.2079
KP-GIN+	-2.7969	-2.6169	-4.7687	-4.4322	-3.9361	-5.3345	0.0060	0.0073	0.0151	0.0395

(b) Graph properties experiment.

Experiments with real-world data

Method	MUTAG	D&D	PTC-MR	PROTEINS	IMDB-B
WL	90.4±5.7	79.4±0.3	59.9±4.3	75.0±3.1	73.8±3.9
GIN	89.4±5.6		64.6±7.0	75.9±2.8	75.1±5.1
DGCNN	85.8±1.7	79.3 ± 0.9	58.6 ±2.5	75.5±0.9	70.0±0.9
GraphSNN	91.24±2.5	82.46±2.7	66.96±3.5	76.51±2.5	76.93±3.3
GIN-AK+	91.30±7.0		68.20±5.6	77.10±5.7	75.60±3.7
KP-GCN	91.7±6.0	79.0±4.7	67.1±6.3	75.8±3.5	75.9±3.8
KP-GraphSAGE	91.7±6.5	78.1±2.6	66.5±4.0	76.5±4.6	76.4±2.7
KP-GIN	92.2±6.5	79.4 ± 3.8	66.8±6.8	75.8 ± 4.6	76.6±4.2
GIN-AK+*	95.0±6.1	OOM	74.1±5.9	78.9±5.4	77.3±3.1
GraphSNN*	94.70±1.9	83.93±2.3	70.58±3.1	78.42±2.7	78.51±2.8
KP-GCN*	96.1±4.6	83.2±2.2	77.1 ± 4.1	80.3±4.2	79.6±2.5
KP-GraphSAGE*	96.1±4.6	83.6±2.4	76.2±4.5	80.4 ± 4.3	80.3±2.4
KP-GIN*	95.6±4.4	83.5±2.2	76.2±4.5	79.5±4.4	80.7±2.6

Method	# param.	test MAE
MPNN	480805	0.145±0.007
PNA	387155	0.142 ± 0.010
Graphormer	489321	0.122 ± 0.006
GSN	~500000	0.101 ± 0.010
GIN-AK+	-	0.080 ± 0.001
CIN	-	0.079±0.006
KP-GIN+	499099	0.111±0.006
KP-GIN'	488649	0.093±0.007

(a) TU dataset.

(b) ZINC dataset.

Target	DTNN	MPNN	Deep LRP	PPGN	N-1-2-3-GNN	KP-GIN+	KP-GIN'
μ	0.244	0.358	0.364	0.231	0.433	0.367	0.358
α	0.95	0.89	0.298	0.382	0.265	0.242	0.233
$\varepsilon_{ ext{HOMO}}$	0.00388	0.00541	0.00254	0.00276	0.00279	0.00247	0.00240
$\varepsilon_{\text{LUMO}}$	0.00512	0.00623	0.00277	0.00287	0.00276	0.00238	0.00236
$\Delta arepsilon$	0.0112	0.0066	0.00353	0.00406	0.00390	0.00345	0.00333
$\langle R^2 \rangle$	17.0	28.5	19.3	16.7	20.1	16.49	16.51
ŻPVE	0.00172	0.00216	0.00055	0.00064	0.00015	0.00018	0.00017
U_0	2.43	2.05	0.413	0.234	0.205	0.0728	0.0682
U	2.43	2.00	0.413	0.234	0.200	0.0553	0.0696
H	2.43	2.02	0.413	0.229	0.249	0.0575	0.0641
G	2.43	2.02	0.413	0.238	0.253	0.0526	0.0484
C_v	0.27	0.42	0.129	0.184	0.0811	0.0973	0.0869

Questions?

Thank you! Any Questions?