NASA Technical Memorandum 102780

9.062 9.062

Pre-Integrated Structures for Space Station Freedom

(NASA-IM-102780) PRE-INTEGRATED STRUCTURES FOR SPACE STATION FREFURM (NASA) 268 P CSCL 228 N91-21214

93/18 0007622

National Aeronautics and Space Administration

Langley Research Center Hampton, Virginia 23665-5225 February 1991

	-	

Table of Contents

Introduction
Pre-integrated Truss Structural Description
and Mechanisms
Packaging and Meenaments 37 Packaging options
Packaging options
Station assembly mechanisms and attachment methods
Subsystem mounting concepts
Structural Analysis
Structural Analysis
Thermal Analysis
Assembly
Summary and Recommendations
Acknowledgments
Acknowledgments

– This Page Intentionally Left Blank –

- This Page Intentionally Left Blank -

Introduction

The assembly of Space Station Freedom has always presented a significant challenge to its design engineers. Never before had a spacecraft the size of Freedom been required to be delivered to orbit in such a comparably small launch vehicle (the space shuttle). This size difference dictated numerous shuttle launches and on-orbit assembly. In 1986, one half of Freedom's transverse boom along with a pressurized node was manifested on the shuttle as the first assembly flight. This included 18.75 KW of power, ten bays of erectable five meter truss and its assembly equipment, RCS and fuel, full communications and avionics. By the time the program reached the PDR stage in 1990, the items manifested on the first assembly flight were reduced to one 18.75 Kw PV unit, a few bays of truss and associated assembly devices.

The reduction of station hardware on the first assembly flight is due to many factors. Shuttle performance decreases, station system and support hardware mass increases, a more conservative understanding of shuttle packaging and C.G. constraints, increases in flight support equipment (FSE) and large increases in EVA estimates have made it increasingly difficult to launch and assemble the station with a limited number of shuttle flights. At PDR it took four shuttle flights to launch and assemble what was manifested on the first flight in 1986. The prime benefit on an erectable space structure – the ability to construct a large spacecraft from a small launch package – was no longer being realized for Freedom assembly.

The shuttle with its 60 foot cargo bay is capable of delivering to orbit long pre-integrated sections of truss using only a limited amount of FSE since there would be only one large cargo element in the cargo bay. Based on length alone, three shuttle flights can bring up one half of the transverse boom in pre-integrated sections with the added benefits of ground integration, ground verification and a substantial reduction in EVA as compared to using erectable truss. In July of 1990 the LaRC Space Station Freedom Office (SSFO) began to study the technical feasibility of using pre-integrated structure in the assembly of Freedom with the objective being to maximize ground integration and minimize on-orbit integration/verification functions. The concept was based on utilizing an isogrid tube as part of the pre-integrated structure. The feasibility of the structural concept was evaluated with respect to system/structural interfaces, dynamic and thermal loads, assembly manifesting/operations and station orbital characteristics.

Ground Rules/Assumptions

capability. Weights used for manifesting were provided by Level II to be more compatible with the current design status, The study was based on a given isogrid form which is described in the following section, "Pre-integrated Truss Structural Description." Baseline data were used for the subsystems definitions (number, size, etc. of ORU's) and the STS launch and a margin of 15% was added to allow for uncertainties.

.

Ground Rules/Assumptions

Erectable truss replaced with isogrid tube structure with 22-inch node spacing

Assume baseline STS capability

Baseline subsystems requirements will not change

 Utilize Level II – provided weights –add 15% structural margin - This Page Intentionally Left Blank -

r

State of the state of

Isogrid Structural Features

structure which exhibits isotropic behavior and has a Poisson's ratio of 1/3. This design is efficient in carrying compression Isogrid is a lattice of stiffening ribs which intersect to form an array of equilateral triangles. This arrangement creates a and bending loads, acting similar to a beam-column.

provides a standard pattern (every 22 inches in this case) for attachment. These attachment nodes allow for a wide variety manufacturing and the attachment nodes allow for reinforcement at concentrated load points and around cutouts. Isogrid behavior. The method of manufacturing isogrid allows for optimization for a wide range of loading intensities. Isogrid There are several advantages to using isogrid in structural applications. It is easily analyzed by virtue of its isotropic of equipment to be mounted to the structure with minimum impact to the basic isogrid structure. The method of

Isogrid Structural Features

· A lattice of intersecting ribs forming an array of equilateral triangles

Characteristics:

- Isotropic (no directions of instability or weakness)
- Efficient in compression and bending

Advantages:

- Easily analyzed
- Can be optimized for wide range of loading intensities
- Standard pattern for attachment (nodes accomodate equipment mounting without change)
- Readily reinforced for concentrated loads and cutouts
- Redundant load paths

LaRC SSFO

Integrated Structure Dimension Drivers

requirements that impact the structure's dimensions. A length of 44 feet was chosen to provide sufficient clearance between requirements. A maximum diameter of 14.5 feet is allowed in the orbiter bay. A slightly diameter (13.3 feet) was chosen for overall assembly efficiency by reducing the total number of flights. This may require exceeding some orbiter constraints and structure to stay within the orbiter C.G. constraints and lift capability. Increasing the length of the structure would improve the isogrid structure so that some external packaging of elements (mobile transporter rails, berthing mechanisms, etc.) was thus was not considered for this feasibility study. The diameter of the isogrid truss was also driven by orbiter packaging the isogrid structure, the aft bulkhead camera and the orbiter to station docking module. This length also allowed the The length and diameter of the isogrid structure were driven by numerous factors. The orbiter imposes the most

ORIGINAL PAGE IS OF POOR QUALITY

Integrated Structure Dimension Drivers

RMS reach limits, packaging requirements, EVA access Length - Transverse boom clearances, number of assembly flights, orbiter C.G. constraints, orbiter clearances, and weight. Diameter - Orbiter clearances, internal vs external packaging of some elements, EVA access and weight.

LaRC SSFO

Isogrid Configuration

The cylindrical structure is constructed in the form of an aluminum isogrid, which is fabricated by using several machined segments welded together along the longeron members. Each grid has a dimension of 22 inches between adjacent nodes.

Typical Segment of Isogrid

In a single segment of isogrid the structure can be seen to be very open, hence its light weight. The incorporation of attachment points at each node provides flexibility for the location of system hardware, and shielding materials.

Isogrid Node With Insert(s)

At each node, a threaded insert facilitates attachment of subsystems, utilities, payloads, etc., on either the inside or the outside of the structure. Extremely flexible as systems change or grow.

EVA Access Hole

The access apertures required for EVA and other automated maintenance activities may be reinforced by using longerons on each side of the hole, and/or by locally adding structure as shown. A similar approach may be used for subsystems/payloads having elements which pass through to the outside and require an aperture greater than a single isogrid element (such as beta joints). The concept shown may be modified for the various

Shielding Options

Isogrid lends itself to incorporating shielding for debris and micrometeoroid protection.

Large areas can be covered as may be necessary for utility protection, and smaller areas can be selectively shielded for subsystem/payload protection. In addition, shielding may be attached to, or incorporated in, the utility support rail structure. The isogrid may be fabricated with integral shielding at selected grids, or by attaching separate shielding elements at any of the nodes.

Pre-Integrated Structure Isogrid Skin and Added Support

Hybrid section showing longerons and structural rings as used in the structural analysis.

Dimensions of Structural Elements

material used was aluminum 2219-T87. Both 1-beam and C-channel sections were used- the type used is indicated in the The cross-sectional dimensions of the isogrid and stiffening structure members are tabulated in the following chart. The

. LaRC SSFO

-NSV

Dimensions of Structural Elements

MAT'L: AL 2219-T87

Web Thicknes	(E)
Width	ji)
Height	(ii)

	(in)	Wiath (in)	(in)
sogrid Element	1.5	1.0	0.200
	6.0	6.0	0.313
ron	5.0	3.0	0.125
Top Longeron (C)	5.0	2.0	0.156

|--|

NOTE: (C) indicates C-Channel; all others are I-Beams

- This Page Intentionally Left Blank -

26

LaRC SSFO

NSV

Orbiter Interfaces

- Four Trunnion Fittings:
- Forward pair react Z-axis loads only
- Aft pair react both X-axis and Z-axis loads
- One Keel Fitting:
- Reacts Y-axis loads only

Orbiter Interface Design Loads

The maximum reaction loads at the orbiter interface points are summarized below. The load cases from which these were obtained are presented in the Structural Analysis section of this paper.

ORIGINAL PAGE IS OF POOR QUALITY

Orbiter Interface Design Loads

 R_z (lbf) -27500 Ry (lbf) R_{x} (lbf)

Attach Point

1 - Stabilizing

2 - Primary

3 - Keel

41200

-100000

-50000

LARC SSFO

reactions

Trunnion Fitting

Four trunnion fittings support the integrated truss elements in the STS cargo bay. The aft (primary) pair of trunnions provide support in the X and Z axes, and the forward (stabilizing) pair provide support in the Z axis only. Each trunnion spreads the load through seven nodes of the isogrid, as well as directly into the major longerons. The aft trunnions weigh 100 lbs. each, and the forward trunnions weigh 80 lbs. each.

Keel Fitting

The keel fitting provides lateral support and distributes the load through five isogrid nodes, and into the keel longeron. This fitting weighs 80 lbs.

LaRC SSFO

- This Page Intentionally Left Blank -

Packaging Options

SSRMS accessibility) compensate for the weight penalty. The packaging approach used for this study is a hybrid of all of the payload volume in the orbiter that could be used for additional structure length thus leading to an increase in the number of An approach to get around these problems is to put the major subsystems in large removable sections of the structure. This small modular containers that are removed through access holes in the structure. Larger subsystems, such as RCS tanks and above. Some equipment such as docking mechanisms and mobile transporter guide rails are mounted on the outside of the systems into small units requires more interfaces and volume leading to additional weight and increased EVA requirements. structure. Appendages such as thrusters, solar arrays, radiators and antennas are brought up stowed inside of the structure require all ORUs to removed through small access holes in the structure via small containerized systems. Breaking up the then EVA attached on orbit. Some subsystems, such as data processors and communications electronics, are packaged in removed but the advantage of having major subsystems located in one removable section (less distribution, less EVA and could be to package the systems on the exterior of the structure. This approach enhances accessibility but requires some approach requires additional structural weight to reinforce areas of the structure where the the container sections can be Several approaches can be taken with respect to packaging of the subsystems in the integrated structure. One approach amount of EVA required. The systems that need attachment on orbit (RCS tanks, N2O2 carriers, etc.) take up valuable assembly flights. Another approach is to package all the systems in the interior of the structure. This approach would systems to be attached to the structure while on orbit which reduces the amount of pre-integration and increases the mechanical joints, are packaged in large removable structural sections.

Packaging Options

External Packaging

Major ORUs and some systems mounted outside of structure.

- Increases number of assembly flights.
- Requires EVA assembly and on orbit integration.

Internal Packaging

All ORUs and systems mounted inside of structure.

- Requires all ORUs to be removed through small access holes resulting in increased EVA, weight, volume and additional interfaces.
- Limits SSRMS accessibility.

Internal Packaging with Removable Container Sections

Major ORUs mounted inside of removable structural sections. Requires additional structural weight to reinforce areas

- of structure where container sections can be removed.
 - Allows SSRMS access of major ORUs (such as hydrazine tanks) without requiring them to be mounted external to the structure.

The selected packaging concept is a hybrid of all three options.

. LaRC SSFO

Pre-Integrated Hybrid Isogrid Structure Packaging (Large Container Section)

externally mounted rails and docking mechanisms. The bottom half of the structure is a removable container section for housing large subsystems. The upper half of the structure is used as an EVA access corridor and includes utility lines, a An end view of the integrated structure is shown. The diameter of the structure is 13.33 feet which allows room for the CETA device and access holes. Minor ORU access to the subsystem container is done via the EVA corridor.

Pre-Integrated Hybrid Isogrid Structure Packaging (Radial Container Section)

externally mounted rails and docking mechanisms. The bottom half of the structure contains radial system containers that can be removed through the access hole in the upper part of the structure. The upper half of the structure is used as an An end view of the integrated structure is shown. The diameter of the structure is 13.33 feet which allows room for the EVA access corridor and includes utility lines and a CETA device.

Pre-Integrated Hybrid Isogrid Structure Packaging (SIDE VIEW)

container section. Each section is 7 feet long with 4 feet of EVA access/utility interface space available on one side. The upper half of the structure is used as an EVA access corridor and includes utility lines, a CETA device and an access hole. A side view of the integrated structure is shown. The length of the structure is 44 feet which maintains orbiter clearance and center of gravity requirements. A typical section would have several removable container sections and one radial

External Attachment Capability

logistics carriers can be mounted in a similar fashion. An aft SSRMS attach fixture will be required on some sections of the isogrid with utility interfaces running through the open triangular sections into the structure. The MSC rails and additional the pre-drilled holes located at the intersections of the beam members. Attached payloads can be mounted directly to the The methods for attaching external elements are shown. The isogrid skin provides a large number of attach points due to station to accommodate reach requirements for items such as radiators and the JEM module

Major ORU Container Replacement

for example). For some applications, removal of the container section may not be necessary since the SSRMS may be able station, then places the section in the orbiter cargo bay. The procedure is reversed with a replacement section (RCS tanks Major subsystem ORUs are accessed through the use of removable container sections. The structural container section is rotated 90 degrees outward to expose the interior. The SSRMS grabs a grapple fixture, lifts the section away from the to remove specific subcomponents from container section while in the rotated position.

Station Assembly Mechanisms and Attachment Methods

Each tubular section is assembled to the next by manipulating it with the arm on the STS until it is aligned.

joint. The first pin to engage is longer than the other two. This allows initial engagement followed by rotation of the tube The two sections are brought together, and three guide pins provide the final alignment and accept shear loads across the for final alignment and docking.

docked condition. After it has been established that this connection is secure, two mechanisms are simultaneously operated (EVA) to provide final alignment and docking. Once final docking is complete, the bolts around the interface are secured At each guide pin location, there is also a latch which automatically secures the two sections together axially in a soft (EVA) to accept operational loading.

Mechanisms and Attachment Methods

Mechanisms are incorporated in the end of each truss section to assist in the alignment during assembly. Initial engagement of the two sections is made by automatic latches to provide a secure condition (soft docking) prior to EVA.

Final docking is established when the two sections are pulled fully together, and the final attachment is made with bolts to

adjoining tube with quick disconnect (OD) fittings. The pre-integration of the utilities in the tube permits the use of rigid Once the mechanical assembly is complete the utilities, which are integrated within the tube section are connected to the sections of fluid lines with flexible segments at the QD interfaces.

-NSV

Mechanisms and Attachment Methods

Isogrid Section Interface:

- Alignment and soft docking
- Final docking (EVA)
- Final attachment (EVA)

• Utilities:

- Quick disconnects (EVA)
- Use of flexible and rigid sections possible
- Flexibility in choice of support locations
- Individual and group retainer system to optimize maintenance procedures

Soft Docking Alignment Pin and Latch

Docking alignment is facilitated by the tapered section of the pins.

The latch is designed with free play along the axis of the tube section during initial engagement to ensure operation of all

Attachment Bolt Detail

During the docking/latching sequence, the bolts are retracted to prevent interference. Once latched securely, the bolts are inserted into the adjacent isogrid section and tightened.

Tube/Tube Attachment Bolt

Final attachment of each tube section is made using retained bolts through the ends of the isogrid.

Final Position of Attachment Bolt for Two Mated Sections (Typical)

The bolts are shown within the thickness of the isogrid.

Final Position of Attachment Bolt For Two Mated Sections (Typical)

LARC SSFO.

Utility Interconnection

Within the isogrid, utility lines can be rigid or semirigid, to the extent that service replacement will allow.

A section at one end of each truss element will be flexible to allow the lines to be retracted during launch, and extended to connect to the rigid lines in the adjacent truss element during assembly.

baseline. Each line is equipped with a quick disconnect for ease of assembly. Electrical lines use the same mounting The extendable section of the lines can be achieved in several ways including methods/materials used in the current concept.

Utility Line Attachment

Attachment may be with hard clamps applied to each line individually, or with soft clamps with a retainer providing security for a group of lines or cables. The retainer locks the soft clamps and provides structural support during launch loads.

Utility Support Locations

Utilities are supported on rails which offer numerous options for attachment to the isogrid.

A circumferential ring (or partial) can be situated at 11 inch increments, or diagonal rails can be mounted following the contours of the isogrid members. The latter may permit closer spacing of the utility lines, while allowing access to the

Subsystem Mounting Concepts

Internally mounted ORUs may be pre-integrated. Externally mounted ORUs must be stowed inside during launch, and assembled on the exterior of the truss on orbit.

Smaller ORUs are mounted on trays and may be removed from the tray and transported through an EVA access hole during Larger ORUs (such as an RCS tank farm) are in the form of removable semicircular segments of the isogrid structure. service operations. Each type of mounting method may be used exclusively within a particular section of truss, or a combination of both types may be used as required.

Attached payloads may be secured directly to the nodes with similar "feet", or mounted on struts as required. PV arrays and External attachments to the isogrid may be single point attachments to an individual node for small items such as UHF antennas, or using a "foot" to distribute the load over several nodes as would be required for a large antenna assembly. radiators are mounted on beta joints, which are accessible through enlarged openings in the isogrid.

Subsystem Mounting Concepts

Internal Attachments:

- Major ORU container replaceable as a unit or serviceable for subsystem element replacements (tanks, etc.)
- Container is retained as an integral part of the structure during launch and operation
- Smaller subsystems on trays inside a contiguous tube section

• External attachments:

- Single point attachments to nodes
- Attached payloads to nodes via struts or load spreading brackets
- Antennas/radiators to similar mounts or through isogrid to subsystem

. LaRC SSFO

Subsystem Integration Approach

The First Element Launch (FEL) is used as a representative truss section since it was found to be one of the heaviest launch payloads. It also has a relatively small margin for the location of the center of gravity with respect to the orbiter payload

The configuration of the system/subsystem hardware in this flight is varied in that it incorporates several types of mounting requirements. These include large ORUs in removable containers, smaller ORUs mounted on trays, and some directly mounted to the isogrid, as well as fixed and movable external system elements. - FREEDOM III -

Subsystem Integration Approach

Use First Element Launch (FEL) as representative example.

- FEL is one of the more critical flights with regard to:
- a) Total mass to orbit
- b) Center of gravity location within the STS cargo bay

FEL feature:

- a) Mounting of large and small ORU's in containers, on trays, and directly on isogrid
 - b) Attachment of external ORU's

First Element Launch - Flight TR1 Assembled Configuration

mounting external elements is addressed in the case of RCS thruster pods, TCS radiator, and C&T antenna assemblies; 3.) reinforcement of the isogrid and the mounting of the subsystem elements. This flight was studied because: 1.) It contains This is one of the more critical flights in regard to payload mass and center of gravity requirements for the NSTS launch both large removable containers (RCS and TCS and smaller ORUs (C&T, DMS, and EPS elements); 2.) The need for The first element launch was selected for a more detailed evaluation of the structures and mechanisms used in the

The standard cargo interface trunnions are shown for attaching the 44' integrated truss section within the orbiter cargo bay. In addition a set of trunnions is shown on each of the removable containers. These may be in place during initial launch of Replacement containers will have trunnions permanently attached for use when launching/returning the container as an the integrated section if clearances permit, or attached on orbit in preparation for returning the container to earth.

First Element Launch - Flight TR1 Assembled Configuration - End View

In this end view the relative locations of the antenna assembly. RCS thrusters, and TCS beta joint can be seen.

First Element Launch - Flight TRI

Assembled Configuration - end view

Space Station

Packaging - First Element Launch

As far as possible systems are integrated prior to launch. Exceptions to this are externally mounted items which are stowed inside the tube section for launch, and assembled on the exterior of the isogrid during EVA, or by using robotics

Packaging-First Element Launch

Integrated Items

- RCS Tank Farms
- GN&C Star Trackers & ISA's
- TCS-baseline pallet mounted ORU's
- C&T-baseline pallet mounted ORU's for C&T, DMS, and EPS systems
- Temporary Power System

Items Stowed for Launch

- RCS Thruster Assemblies
- SGS Ku-Band Antenna and Support Structure
- Antenna mounted C&T ORU's

First Element Launch - Flight TR1 Launch Configuration

directly on the isogrid (GN&C elements and utilities), ORU trays (C&T, DMS and EPS system elements and the temporary In the launch configuration, the integrated systems hardware is located in containers (RCS and TCS system elements).

The temporary power system and its associated PV array are also pre-integrated. The electronics and batteries are on an ORU mounting tray, and the solar panel blanket is directly "wrapped" around an available area of the main isogrid tube

The stowed items are the RCS thruster pods and the Ku-Band antenna with its support structure. Some antenna mounted C&T system elements are also stowed on one of the mounting trays.

container. The thruster pod assemblies are on extended booms to provide the necessary reaction torque moments. There are containers are ORUs for the purpose of refueling, and maintenance, and may be configured as either: One container serving both thruster pods. The other set of tanks is to be used when the first is being replaced/refueled, or one container dedicated four tanks (type V075) in each RCS container providing a total capacity of 4255 lbs of fuel per container. The RCS tank The propulsion system conceived for this structural configuration features a tank farm assembly in each removable RCS to each of the upper and lower thruster assemblies, as in the baseline station.

A special consideration for these configurations is that the fuel lines between the tanks and the thrusters must be connected and disconnected on orbit. Quick disconnect technology (Fairchild poppet valve type) has been developed for on-orbit refueling of the GRO spacecraft, and this may be applied to this concept. Alternatively a ball valve type (Moog design tested, but not yet qualified) may offer the increased flow rates which may be necessary for this application.

First Element Launch - Flight TRI

Launch Configuration

LANC SSFO.

RCS Container - Side View

containers are retractable pin and latch mechanisms which are tapered for alignment purposes, and are capable of reacting loads in the orbiter Y and Z axes. On orbit, the reduced load requirements may permit replacement containers to be This view shows the location of the attachment fittings which retain the container. The keel fittings between the two secured by a subset of the six attachment fittings described, the balance to be used for alignment purposes only.

79

RCS Container - End View

The fuel tanks are mounted between two end frames in a manner similar to that used in the baseline. The aft frame (launch orientation) provides primary support in three axes, while the forward, somewhat lighter, frame provides secondary support in the Y and Z axes only. The upper extension of these end frames forms a support for a platform used to mount the

Container Attachment Fittings at Keel

The two pin fittings at the keel are operated by a cam/lever mechanism. They can react loads in the Y and Z axes, and alone are sufficient to react the reboost loads in these directions.

Container Attachment Fittings Conical

The four conical fittings provide alignment and attachment of the container into the main tube structure. These are designed replacement of the container. A simple (light) latch may be attached to the exterior to facilitate installation of replacement provide the mechanism for pulling the container fully into the load carrying attachment as well as carrying Z axis loads in containers. Further study is required to determine the feasibility of these details, and the specifics of connecting the fuel to react loads in the orbiter X and Y axes through the main longerons to the orbiter attachment trunnions. The bolts tension. The bolts may not be required for the lighter on-orbit loads, and may be left undone after the first service

Container Attachment Fittings

Conical

LLANC SSFOL

Alternate Propulsion System Configuration

Alternate configurations have been considered to eliminate the on orbit hypergolic connections. However, no detailed study has yet been made of the structures and mechanisms for these options. In this scheme, the complete propulsion system is a thruster pod assemblies fold out from the container after it has been rotated outward to its operating position. A structural single ORU (as in the baseline). The container in this case is a quarter section of isogrid and is twice the length of the semicircular containers. It is hinged at the keel, and stabilized by struts between it and the main isogrid structure. The feature of this scheme is that the integrity of the keel longeron can be retained between the two RCS containers.

Alternate Propulsion System Configuration

TCS Container - Side View

TCS and distributed systems ORUs are mounted on both sides of the central framework, which also supports the beta joint. The Beta joint is located with its axis coincident with an isogrid node point. The isogrid node itself and adjacent members are removed and the opening reinforced in a similar manner to that used for the EVA access aperture (view A-A). Other The radiator is delivered to the station, installed, and deployed on a subsequent flight.

TCS Container - End View

The Beta joint and other ORUs are mounted on a pallet-like framework, which is integral to the container. The aft end (launch orientation) of the antenna support structure is attached to this framework when it is in the stowed position.

Subsystem Trays

section of the tube structure. The subsystem elements which were on the baseline C&T pallet are located on two of the trays (except for the antenna mounted and GN&C components). The first tray, immediately below the antenna assembly, contains Smaller subsystems and/or ORUs are mounted on both sides of trays which are positioned radially in a non-removable the C&T system elements. The second, adjacent to the first contains distributed system elements of the DMS and EPS

Subsystem Tray Attachment

Tray mounting brackets and support struts are attached directly to the isogrid nodes. The tray may be fixed, or utilize sliding and/or hinged rails to orient the ORUs for easier access for servicing.

Subsystem Tray Attachment

LLANC SSFO.

Alternate Subsystem Mounting Assembly

container, may be mounted on this type of tray. It is suitable for system elements up to 80"x36"x41.5" and weighing up to ORU's which are too large for the previous subsystem tray mounting method, but not large enough to require a complete

The system element is mounted on a tray (depending on specific requirements), which is supported on the isogrid via a pair of mounting brackets. The load is thereby distributed over eight isogrid nodes. The mounting assembly weighs 65 lbs.

Subsystem Mounting Bracket

A typical mounting bracket to support the alternate subsystem tray spans 22" (between adjacent node points) by 38" (twice the height of a single isogrid segment) to spread its load over four nodes.

Subsystem Mounting Bracket

2 per subsystem (typical)

LARC SSFO.

GN&C ORUS

The navigation base is attached to the isogrid within the central EVA access area, this location permits viewing angles which avoid obstruction by the Ku-Band antenna. The star tracker's view is through the isogrid openings. The collocation of star trackers and ISAs on a single navigation base is retained, but they are mounted on opposite sides for ease of replacement and to minimize incursion into the EVA access volume.

First Element Launch - Flight TR1 Stowed Items

structure. The thrusters themselves, being within the EVA access area placing their mass toward the aft end of the orbiter payload. The Ku-Band antenna assembly is mounted axially within the tube at the forward end with the deployable booms The RCS thruster pods are stowed on top of the RCS containers one on each side of the center line of the main tube folded along its length.

Stowed Items RCS Thruster Assembly – Stowed

This figure shows the thruster assemblies stowed for launch. They are attached to the RCS container tank support structure by means of brackets and latches (FSE). In operation the booms are attached to the outside of the isogrid (after on-orbit assembly), and the thruster pods at the ends of the booms may be separate ORUs.

Stowed Items Antenna Assembly - Stowed

The base of the stowed antenna assembly is secured to central framework of the TCS Container by four brackets brackets and latches (FSE). The forward end is similarly secured on four struts attached to the ORU mounting tray supports.

Stowed Items Antenna Assembly - Operational

member (possibly an isogrid structure) to support the Ku-Band parabolic antenna with five deployable booms incorporated later flight. Each of the booms is secured and deployed using a system of latches and hinges similar to the baseline system. in the assembly. The two upper booms accommodate the Ku-Band Space to Ground System (SGS) transmit/receive units. transmit/receive units. The third is an accommodation for the Global Positioning System components to be installed on a The base of the antenna assembly is attached at six isogrid nodes. The antenna support structure includes a main tubular Two of the three lower booms provide attachment points for the S-Band Assembly Contingency System (ACS)

The above mentioned antenna mounted ORUs are attached to an unused subsystem tray during the launch phase. These are mounted on the antenna structure in the baseline, but in this design, are integrated on a subsystem tray located at the base the same ORUs as are antenna mounted in the baseline station with one exception. The SGS antenna controllers are of the antenna support structure along with the other C&T ORUs.

Packaging Mechanisms for FEL Summary

This study of system configurations and mounting methods demonstrates the following advantages and disadvantages.

Advantages:

- Many options exist for methods of mounting system hardware.
- A degree of modularity is possible for the mounting methods creating the opportunity to design common elements.
- The numerous attachment points (one at every isogrid node), permit flexibility in the location of subsystem hardware. Micrometeoroid/debris shielding may readily be attached over the isogrid, or integrated into the structure itself.

Disadvantages:

- The precise location of attachment points is fixed at the grid nodes. Optimization of the grid size and reinforcing structure could minimize this effect.
- reacted at the fixed orbiter attachment points. The distribution of these loads requires significant reinforcement of the The system hardware generally appears as concentrated loads, which during launch (the highest load condition), are

Packaging Mechanisms for FEL

Summary

Advantages

- Flexibility of attachment methods
- Numerous attachment points
- Ease of attaching micrometeroid/debris shielding

Disadvantages

- Isogrid restricts precise location of attachment points for subsystems to predefined nodes
- Relies heavily on reinforcement rings and longerons to distribute concentrated launch loads

Comments

- particularly the grid size relative to the various ORU's, trunnion Further studies are required to fully optimize this concept, ocations, etc.
- A "strongback" truss structure is also worthy of further study

- LaRC SSFO

Further Study

Isogrid Optimization

payloads. It provides numerous attachment points for subsystem elements, although the fixed spacing of the isogrid does The isogrid structure offers flexibility of attachment methods, which may be applied to many types of ORUs and/or

The optimum isogrid spacing may be other than 22 inches, and may result in better load distribution and/or improved ORU attachments. For example, it may be advantageous for the isogrid used for the container shells to be a different grid size than that of the main truss section, or for the section above the main longerons to be other than that for the sections

Strongback Approach

handle launch loads, which are concentrated at the orbiter attachment trunnions. A strongback truss structure comprised of longerons at the trunnion locations may provide the basis of an optimal structure for reacting launch loads, as well as more This study has focused on the isogrid as a primary structure, and has shown that significant reinforcement is required to readily utilizing existing hardware mounting configurations.

distributed loads. This approach may result in a lighter isogrid form, which could be applied in selected areas. These areas The isogrid may be viewed as a secondary structure, and incorporated as required to provide torsional rigidity and to carry would benefit from the addition of a torsional stiffening structure, and/or from the positive attributes of the isogrid for mounting items such as utilities and micrometeoroid shielding.

Further Study

Optimization of grid size relative to the various ORU's, trunnion locations, etc. A "strongback" truss structure is also worthy of further study.

. LARC SSFO

- This Page Intentionally Left Blank -

Isogrid Truss Finite Element Model

Here are three orthographic views and an isometric view of the finite element model created to represent the analysis case. included in removable containers that will simplify changeout on-orbit. The container attachments to the rest of the truss are modeled here by rigid body elements that are constrained only in selected directions to simulate the actual attachment The model contains 919 nodes and 2489 beam elements and rigid body elements. All internal subsystems are included as non-structural mass, so they provide no structural rigidity to the model though their mass effects are included. Trunnion fittings used for the interface with the orbiter are modeled as rigid bodies to simulate a stiff plate used to distribute the rigid body elements, but are connected to the structure with flexible beam elements. The TCS and RCS systems are devices that are presented in the Packing and Mechanisms section of this addendum. Utilities are included as

ISOGRID TRUSS FINITE ELEMENT MODEL

Primary Structural Mass Breakdown

The total structure required to support the payloads and withstand the expected loads has been divided into two classesprimary structure and secondary structure. The primary structure, which includes the isogrid itself as well as additional major structure needed to stiffen the isogrid, is itemized in the following table.

ı	
1	
M	
2	
	֡

Primary Structural Mass Breakdown

- FREEDON

2768 (lbm) 2768 (lbm)	208 382 80 181 362 294 13 440	g structure 2160
Isogrid (44 ft section)	Primary Stiffening Structure Trunnion longeron (2) Keel longeron (2) End Ring (2) Isogrid stiffening ring (adjacent to containers) Center ring (3) EVA access stiffener (4) Isogrid trunnions (5) Connecting hardware	Total primary stiffening structure

Total primary structural mass 4928 lbm

- LaRC SSFO

Secondary Structural Mass Breakdown

primary structure and secondary structure. The secondary structure, which is used to attach the payloads to the isogrid. Is The total structure required to support the payloads and withstand the expected loads has been divided into two classes. itemized in the following table.

Secondary Structural Mass Breakdown

420	200	100	460	
Container stiffener	Tank support (fore)	Tank support (aft)	Trunnions (10)	

1180

Subtotal

Thermal Control System

•••			
Aperture reinforcement	Container stiffener	ORU support	Trunnions (5)

10 210 425

230

875

C&T System

Rack structure

Temporary Power System

Rack structure

Total secondary structural mass 2295 lbm

9

9

875

180

180

- LARC SSFO

secondary mass

Structural Analysis Summary

Volume 14). This worst case load was found in Table 4.1.3-4: Landing of Non-Returnable Cargo. A factor of safety of 1.4 Three static load cases and a normal modes analysis were used in the structural analysis. The first two cases shown were minimum natural frequency of the entire model (this was done to ensure that the requirement that the minimum natural obtained from MSFC, and represent the worst case loads they expected for module-sized payloads in the orbiter during ultimate loads. The third loadcase used was the worst case presented in Attachment 1 (ICD-2-19001) (also known as was also applied to this case in order to use ultimate loads. A normal modes analysis was performed to determine the liftoff and landing, respectively. A factor of safety of 1.4 was applied to the loads received from MSFC to make them frequency for FEL must be greater than or equal to 8 Hz was met).

Structural Analysis Summary

	Load F	actors (l (g's)	Load Factors (Ultimate) (g's)	Max Princ Stress	Max Disp
Loadcase	××	Ny	Nz	(isd)	(in)
*_	-6.2	1.8	-2.7	-24410	1.430
*	+4.1	+0.5	+1.4	+11670	0.709
# °C	-1.7	+0.8	+3.0	-12360	0.764
4	Normal	Normal Modes Analysis	nalysis	Min. Freq. = 14.17 H	= 14.17 }

Min. Freq. = 14.17 Hz

- Note: The load factors above include a 1.4 factor of safety.

(within orbiter PLB)

MSFC Liftoff/Landing loads *

Attachment 1 (ICD-2-19001) Table 4.1.3-4 Landing of Non-Returnable Cargo #

LaRC SSFO

loads

Deformed Structure-Launch Loads

occurs in the isogrid along the stiffening ring between the two removable pallets, is only 1.43 inches. The maximum stress within the structure is -24410 psi, which, when considering an ultimate strength of 69000 psi, provides a factor of safety of The deformations have been magnified by a factor of 25 to be able to see them. The actual maximum deflection, which This is the deformed shape of the structure when it is exposed to the launch loads listed as Case 1 on the previous chart.

DEFORMED STRUCTURE - LAUNCH LOADS

- Ultimate Load Factors:

$$Nx = -6.2 g$$

$$Ny = -1.8 g$$

$$Nz = -2.7 g$$

- Max. Principal Stress = -24410 psi

- Max. Displacement = 1.43 in

- Note: Scale of Deformation = 25:1

LARC SSFO

Deformed Structure- Landing Loads

Here is the deformed shape of the structure when the landing loads listed as Case 2 on the summary sheet are applied to it. occurs along the keel between the two removable pallets, is only 0.709 inches. The maximum stress within the structure is The deformations have been magnified by a factor of 25 to be able to see them. The actual maximum deflection, which 11670 psi, which provides a factor of safety of 5.9.

DEFORMED STRUCTURE - LANDING LOADS

- Ultimate Load Factors:

$$Nx = +4.1 g$$

$$Ny = +0.5 g$$

$$Nz = +1.4$$

- Max. Principal Stress = +11670 psi

- Max. Displacement = 0.709 in

- Note: Scale of Deformation = 25:1

LARC SSFO

Deformed Structure - Abort Landing Loads

The deformed shape shown here occurs when the loads listed as Case 3 are applied to the structure. The deformation have been magnified by a factor of 25 to be able to see them. The actual maximum deflection, which occurs along the keel between the two removable pallets, is only 0.764 inches. The maximum stress within the structure is 12360 psi, which

DEFORMED STRUCTURE - ABORT LANDING LOADS

- Ultimate Load Factors:

$$Nx = -1.7 g$$

$$Ny = +0.8 g$$

$$Nz = +3.0 g$$

- Max. Principal Stress = -12360 psi

- Max. Displacement = 0.764 in

- Note: Scale of Deformation = 25:1

Larc SSFO

Stiffness of Isogrid vs. SSF Box Truss

The lengths were similar- the box truss was slightly longer. Both ends of each truss section were rigidized, and one end was A stiffness comparison analysis was performed between the isogrid truss structure and three bays of 5-meter SSF box truss. truss section: a tensile force (T), a bending force (F), and a torsional moment (M). The deflections at the ends of the two fixed in place to cantilever the truss sections. Three different loads were then separately applied to the free end of each truss sections were then compared, with the deflections being normalized to the SSF box truss.

The isogrid truss was considerably stiffer in all respects to the SSF box truss. When stiffeners were added to the isogrid truss, overall stiffness was more than doubled when compared to isogrid alone. The stiffness of the isogrid is, in some respects, less than that of the isogrid in the original study due to the fact that three removable container sections have been created in the model used for the study in this addendum.

LARC SSFO

- FREEDOM E Stiffness of Isogrid vs. SSF Box Truss

-NSV

	Ratio	Ratios of stiffness in:	in:
	Tension (T)	Torsion (M)	Bending (F)
Isogrid only	5.0	2.6	3.4
Isogrid with stiffeners 13.2	13.2	5.7	7.3
SSF Box Truss	1	1	1

Stiffness of Isogrid with Container Section Removed vs. SSF Box Truss

three bays of 5-meter SSF box truss. The container section removed was seven feet long and slightly over half the cylinder's A stiffness comparison analysis was performed between the isogrid truss structure with a container section removed and

The removal of the container section makes a big difference in the stiffness of the isogrid truss, but it still remains more stiff The end conditions and loadings used were identical to those used on the previous chart with the container section in place. than the SSF box truss. The model used in the analysis was originally created without the removable container concept in mind, so the strongest stiffener is running along the bottom of the cylinder, which is the part that is removed. If stronger stiffeners are used in areas remaining when the container is removed, the stiffness of the structure should increase.

Stiffness of Isogrid with Container Section Removed

-NSVN-

vs. SSF Box Truss

5.6 1.3	
Isogrid with 7 ft.	

5.3

Removed

. LaRC SSFO

Structural Analysis Conclusions

additional stiffening structure would provide a good framework for the space station. The isogrid is stronger, stiffer, and From this analysis of the feasibility of using isogrid as the primary truss of the space station, it appears that isogrid with undergoes smaller deflections and stresses under given loads than the current baseline truss.

Structural Analysis Conclusions

- Isogrid has a greater axial, torsional, and bending stiffness than the current baseline truss
- Additional stiffening structure (ie. longerons, ring stiffeners, etc.) is needed to carry launch and abort landing loads
- The load cases analyzed produce small deflections and principal stresses
- Based upon this preliminary analysis, the use of isogrid as truss appears to be a viable option

. LaRC SSFO

Analysis Approach

thermal nodes, which in turn serve as input load sets for the linear-static distortion analysis. The results of the distortion Spacecraft) CAE analysis package, was first converted to a finite-difference thermal model using the Thermal Model Generator (TMG) analysis package. Analysis of the thermal model determined the temperature profiles for all of the The objective was to perform a thermal distortion analysis of the preintegrated truss structure. To do so, the finite element structural model (MB1-806), created using the I-DEAS (Interactive Design and Evaluation of Advanced analysis are nodal displacements and rotations. This diagram illustrates the described analysis approach.

Thermal Analysis Scheme

complex thermal models. This issue dictated an analysis scheme that both simplified the thermal model and exploited the occurrence of symmetry in the structure. The analysis approach chosen selects a small subsection of the complete surfaces, any reflected flux can: (1) impinge on other isogrid members, (2) escape through openings in the side of the structure, or (3) be reflected again by the opposing mirror. This achieves an approximation of an infinite length of the This exploded view illustrates an analysis scheme driven by the excessive computational times typically required ty thermal model and closes it between planar, inward reflecting surfaces. Once an incident flux is reflected at these

subsection. To exploit the symmetry of the truss structure, it is assumed that all identically oriented thermal nodes with isogrid members outside of the analyzed subsection are assigned temperature profiles identical to their like-oriented identical material and physical properties will have essentially the same net heat flux and temperature profiles. All counterpart in the analyzed subsection. The results of the analysis are considered to be worst case for the orbital Performing a thermal analysis on the subsection determines the temperature profiles of all thermal nodes in the

Assumptions

Several characteristics representative of the isogrid truss structure and its orbital environment serve as assumptions for the analysis process.

Thermal Analysis Assumptions

Only the thermal mass in the isogrid members and longerons modelled

 α_{solar} / $\epsilon_{\text{thermal}}$ = 0.3/0.2 with no degredation (LDEF analogy)

Orbit inclination = 28.5°

Orbit altitude = 380 km (205-n miles)

Orbit beta angle = 0°

Earth declination = 0° (Equinox)

Earth albedo = 0.35

No subsystems mounted internal to isogrid section

Structural members modelled as hexagonal tubes

At time t=0, model is fully deployed and isothermal at 0 °C

Orbital Configurations

stages, while the **Assembly Complete** orientation represents the LVĽH attitude of the structure during later assembly Two orbital configurations were studied. The Gravity Gradient configuration is applicable during the early assembly stages through Assembly Complete. The analysis results are characterized in three parts:

- (1) Net flux on representative elements,
- (2) Temperature profiles for selected representative elements,
- (3) Maximum thermal distortions for an end ring of the isogrid structure.

These results are presented for both orbital configurations.

-NSW-

Relative Orientation Of Pre-integrated Truss Structure In Two Orbital Configurations

Note: The orientation of the configurations are shown for illustration, and are not shown to scale. Both orientations were analyzed with identical orbit parameters. LARC SSFO

Incident Flux Profiles (GG)

approximately 90 degrees apart around the isogrid tube. This chart relates to the Gravity Gradient configuration and the The similar plots illustrated in this and the next chart depict the total incident flux on representative elements as a function of time in orbit. The representative elements were chosen based on their relative orientations, and are spaced

- Both configurations have constant low flux periods lasting approximately 2000 (2K) seconds. This correlates to the period of time these low earth orbit (LEO) configurations spend traversing Earth's shadow during each orbital $\widehat{\Xi}$
 - The flux profiles exhibit sharp changes in magnitudes that correlate with points on the orbit where sunward isognid members cast brief episodes of shadowing on others behind them as orbit-relative solar angles change. (2)
 - (3) Flux profiles are symmetrical and repetitive.

Incident Flux Profile Gravity Gradient Configuration

-FREEDOM 美木宝

Total Incident Flux (Watts/m^2)

Incident Flux Profiles (AC)

In comparing the two configurations as they are represented in these two charts, it can be seen that incident flux for the **Gravity Gradient** configuration is higher than for the **Assembly Complete** configuration. Orbital flux profiles determine temperature profiles for the analysis section.

-FREEDOM 美大学

Incident Flux Profile Assembly Complete Configuration

Time in Orbit (seconds)

Total Incident Flux (Watts/m^2)

Temperature Profiles (GG)

intermediate and minimum temperatures of the structure for each of the analyzed configurations. The first presents the In this and the next chart, temperature profiles are depicted for three thermal nodes, representing the maximum, profile as given for the Gravity Gradient configuration and the second represents the same for the Assembly Complete configuration.

Both configurations achieve a steady-state orbital temperature profile in approximately ten (10) orbits, as illustrated by the recurring maxima and minima on the curves. The time required to reach a steady-state profile is within the time frame anticipated for proposed deployment scenarios.

Temperature Profiles (AC)

Note that temperatures for the **Gravity Gradient** configuration are considerably higher than those for the **Assembly** Complete configuration. This corresponds with the higher fluxes noted previously for the **Gravity Gradient** configuration. Temperatures serve as load sets for the linear-static distortion analysis.

Nodal Distortions (GG)

The worst case end ring nodal distortions for both configurations were in the X direction. The curves shown in this and the following chart reveal that the end-ring distortion is in the X-Y plane, which best illustrates the X-direction distortions. As illustrated in this first chart depicting the Gravity Gradient configuration, the worst case distortion was found in the X direction where the differential displacement between opposing nodes was 1.0 cm.

Nodal Distortions (AC)

In the **Assembly Complete** configuration depicted in this chart, the greatest distortion was in the X direction just as it was for the **Gravity Gradient** configuration, but was only 0.5 cm.

Conclusions

approximately 1.0 cm. This distortion is not considered excessive and should allow soft-docking to occur in a very few orbits after rendezvous. To obtain the thermal profile, it was conservatively assumed that the model would initially be should allow hard-docking to be performed during the second day on orbit. It is anticipated that once the soft-docked This preliminary thermal analysis indicates that the isogrid truss has a maximum thermal distortion in the end ring of condition has been achieved, thermal coupling between the mating surfaces of the two sections will accelerate the isothermal at 0°C (32°F) and that the starting time would correlate to an isogrid structure deployed from the orbiter payload bay. This results in a time of approximately 15 hours to reach the steady-state temperature profile, which change toward steady-state conditions. The calculated maximum temperatures of 112°C (234°F) and maximum temperature gradient of 38°C (67°F) are higher than desired. However, as further analysis can verify, the temperatures can be substantially reduced by optimizing the material surface properties, such as decreasing the $lpha \epsilon$ ratio. In addition, any further analysis should be more detailed so as to include the thermal mass and shadowing effects of the internally mounted subsystems.

725/21

Thermal Analysis Conclusions

- he calculated maximum thermal distortion in the isogrid structure end ring is not anticipated to preclude soft-docking under possible deployment time frames.
- The time to reach steady-state orbital temperature profile is compatible with hard-docking during second day on orbit.
- of the structure can be substantially decreased by optimizing the The calculated maximum temperatures and maximum gradients radiative properties (i.e., decreased α/ϵ).
- Any further analysis should include the thermal mass and added shadowing of internal systems.

- This Page Intentionally Left Blank -

Manifesting Assumptions

growth since the hybrid isogrid structure will act as secondary support structure (universal pallet) and debris protection. An maintain a direct comparison with the baseline assembly sequence. On flights involving the integrated truss portions of the additional weight reserve of twenty percent was placed on the basic integrated structure to account for design uncertainties. transverse boom (designated as "truss" flights), a fifteen percent managers reserve was added as compared to the baseline debris protection weights were not deleted from cargo element weights thus providing some additional margin for design significantly higher than PDRD target weights. This built in conservatism should make the integrated assembly sequence sequence's five percent to account for uncertainties associated with the new packaging philosophy. Universal pallet and Manifesting was performed to see how many flights it would take to build the integrated space station and to assess its functionality at each stage of the build up. PDRD target weights were assumed for all manifesting factors in order to The weight conservatism was implemented knowing that actual weight estimates for assembly cargo elements are less sensitive to weight growth as compared to the baseline assembly sequence

Manifesting Assumptions

- Cargo element weights ground ruled as PDRD target weights.
- All comparisons and assumptions based on December 1989 baseline assembly sequence.
- packaging and hardware modification uncertainties on truss Manager's reserve was increased to 15% to account for structure flights.
- Universal pallet and debris protection weights were not deleted from cargo element weights resulting in additional potential weight reserve.
- An additional weight reserve of 20% was placed on the basic integrated structure to account for design uncertainties.

Although PDRD target weights were used in the manifest, there should be sufficient weight margin available to accommodate current weight estimates. . LARC SSFO

Locations and Assumptions for C.G. Calculations

Center of Gravity (C.G.) calculations were done in accordance with shuttle specifications that were the same as used for the bulkhead camera was assumed not to be a problem since the structural section was only 13.3' in diameter. Since the SPDS baseline assembly sequence. The 44' structural section was assumed to be located with its end at the 1278 inch position in could provide an additional 12 inches of C.G. margin. All C.G. calculations were based on actual payload weight and did was not used in the baseline assembly sequence its use was not assumed for the integrated assembly sequence although it the orbiter payload bay. This allows two feet of clearance from the end of the structure to the aft bulkhead. The aft not add in managers reserve. - FHEEDOM !!

NSV

Locations and Assumptions for C.G. Calculations

- C.G. limits based on Kohrs memo, NSTS-JSC TD-88-035.

- Use of SPDS not factored into calculations, reserved to increase future margins. - Limits calculated based on managers reserve subtracted from payload weight.

Integrated Assembly Sequence Features

such as the Assembly Work Platform (AWP). A direct benefit is realized on the first assembly flight since payload space and required to assemble the station. The ability to reduce theses factors also eliminates the need for some support equipment The primary feature of the integrated assembly sequence relates to the great reduction in EVA and on orbit integration weight that is normally required for the support equipment is made available for station system elements. As a result, everything required for an active spacecraft can be brought up on the first assembly flight.

container sections. A module pattern consisting of six identical "common" modules was assumed in this sequence as a place to alpha joint before any modules were brought up. This focus could be adjusted depending on the priorities involved with appendages such as RCS thrusters, the Mobile Transporter (MT), the Mobile Servicing Center (MSC), PV arrays, radiators holder for the station's pressurized volume with the primary focus being to complete the transverse boom from alpha joint and antennas are attached external to the structural sections. The RCS fuel tanks were assumed to be in removable The assembly sequence assumes that 44' structural elements are used for constructing the transverse boom. Only early utilization of station.

. LaRC SSFO -

Integrated Assembly Sequence Features

- "Active" first assembly flight.

Maximizes interior packaging by using system containers. - Only RCS thrusters, MT/MSC, PV arrays, radiators and

antennas external.

- Fuel tanks are in removable containers.

- Uses 44 foot length hybrid Isogrid structural section.

EVA Tasks for the Integrated Assembly Sequence

with RMS assistance was assumed for connection and check out of external appendages. EVA with RMS assistance was also Although most of the station systems and elements are pre-integrated on the ground in the 44' structural section, there are Deployable mechanisms or robotic assembly can be used to erect these appendages but for the purpose of this study EVA still some components such as antennas and radiators that must either deploy from or be attached to the structure. assumed to be required for all structural and utility connections between each 44' structural element.

EVA Tasks for the Integrated Assembly Sequence

EVA is assumed for all structural and utility connections between two 44 foot integrated elements. Additional EVA is assumed for connection and check out of external attached components such as antennas and solar arrays. LaRC SSFO

Integrated Configuration

flights used for the pressurized modules. Four pre-integrated sections make up the portion of the transverse boom between The integrated configuration is assembled using eight NSTS launches for the transverse boom with the remaining assembly the alpha joints (54 meters) and one pre-integrated section is used for each of the four PV power units. Proper separation (17 meters) is maintained between the solar arrays to prevent shadowing.

.

Integrated Assembly Sequence Summary

brought up (module flights are designated by "MD#") along with a combination flight, MT1, that brings up the airlock, the mobile transporter and the MSC. The last two PV power units are then delivered followed by the international modules. bring up all but two sections of the transverse boom. These flights are designated as "TR#." The U.S. modules are then Lighteen NSTS flights are needed to assemble the integrated Space Station equivalent of Freedom. The first six flights

LaRC SSFO

Integrated Assembly Sequence Summary

- FREEDOM 🎬 📲

딢

- TR1 Stbd TCS Equipment, two RCS tank containers, RCS thruster arms, antenna assembly, GN&C subcontainer, EPS subcontainer, temporary power unit, utilities and structure.
- TR2 IEA, solar arrays, beta gimbals, radiator, alpha joint, utilities and structure.
- CMGs (6), Stbd TCS panels and condensers, upper APAE, PMAD container, FMAD container, module interface, utilities and structure. TR3 -
- Module support truss, N2O2 repressure tanks, port TCS panels and condenser, FTS with shelter, MMD with SPDM, upper APAE, module interface, utilities and structure. TR4
- Port TCS equipment, two RCS tank containers, RCS thruster arms, antenna assembly, DMS/antenna subcontainer, EPS subcontainer, lower APAE, utilities and structure. TR5 -

S

4

ന

- TR6 IEA, solar arrays, beta gimbals, radiator, alpha joint, utilities and structure. 9
- MD1 U.S. Lab Module (17 racks), Pressurized Docking Module MTC
 - MT1 Airlock, Mobile Transporter, MSC phase 1, Cupola ø
- MD2 U.S. CHCS Module (18 racks)
- MD3 U.S. Lab Module (17 racks), Pressurized Docking Module 10
- MD4 U.S. Galley Module (18 racks) =
- MD5 U.S. Hab Module (18 racks) 12
- MD6 U.S. Hab Module (15 racks), Cupola 73

PMC

L1 - Logistics Module

- TR7 IEA, solar arrays, beta gimbals, radiator, utilities and structure. 4
- TR8 IEA, solar arrays, beta gimbals, radiator, utilities and structure. 15
- MD7 JEM Module 16
- MD8 Columbus Module 17
- MD9 JEM ELM PS, JEM ELM ES, Exposed Facility #1 & #2 18 AC

TR1 Packaging

The first assembly flight brings up the elements that are located just inside the starboard alpha joint. All elements required to enable a minimally active/reboostable spacecraft are included on this flight. Hydrazine fuel tanks loaded with a total of 9(00) structure contain systems for communications, GN&C, power conditioning and power storage. Packaged internally are two pounds of fuel are located at one end of the integrated structure in removable container sections. The starboard TCS equipment (including the starboard radiator beta joint) is located in container section three. Radial containers at the other end of the thruster pods with extension arms and the antenna assembly. The exterior of the integrated structure is covered with a sufficient amount of solar cells to power the spacecraft once the structure is deployed. This configuration differs in some ways from the detailed structural analysis discussed earlier, but total weight and functionality are essentially the same.

Truss Flight One Operations

The general sequence is shown for the assembly operations. No detailed study of EVA vs robotics has been attempted.

STEPS 3 TO 7

STEPS 1 AND 2

Active First Element Launch

assuming a design atmosphere of Ap = 400 and a flux of 2.30. The average ballistic coefficient was 77 kg/m**2 which would showed this configuration to oscillate at most + 45 degrees per axis with no RCS attitude control. Using RCS thrusters to A flight characteristics analysis was performed on the first element launch configuration. The station has all the necessary give the station an orbit lifetime of 282 days if the reboost thrusters were to fail. There is sufficient reboost fuel on board functionality at this point to be an active spacecraft. The flight mode is gravity gradient stable with antennas and thruster arms aligned along the velocity vector and the longitudinal axis of the structure aligned along nadir. Stability simulations hold the configuration to within a maximum deviation of 30 degrees required 2.5 kilograms of fuel a day at 190 nmi to maintain altitude for many years should the orbiter be grounded for some reason.

Active First Element Launch

TR1 Manifest

location for the combined payload is 13.6 inches within allowable limits. There is 1077 pounds of unused STS lift capability The assembly elements, weights, associated FSE and C.G. locations for the first assembly flight are listed. The overall C.G. and 4544 pounds of managers reserve available. The numbers used in this list are based on PDRD target weights and secondary structural weight estimates. Later in the study, a more detailed analysis was done on this flight with actual system weights and structural weights derived from finite element analysis. The resulting detailed mass breakdown and center of gravity calculations are presented in the following four charts.

. LARC SSFO

- HALLUCIN ENTE

-NZV

Integrated Assembly Sequence Manifest

FLIGHT 1 TR-1 STS ELEMENT	MASS	ក ស ភ	ATTACH	LOCATION	່ງວ
ENEXOTION SOF CORES	3018			CON#3	924
	2000	200		TUBE	1104
ITH 4500# OF	6500			CON#1	1188
IM)	6500			CON#2	1104
ASSEMBLY	608	09		TUBE	1254
/AN	399	100		RC#1	840
	811	100		RC#2	840
SOLAR CELLS/BATTERIES	1000	100		RC#4	840
STRUCTURE	8260		1100		1014
UTILITIES	1200				1014
	30296	260	1100		
HARDWARE	30296				
15% RESERVE	4544				
FSF	260				
	1100				
STRUCTURAL DOCKING MAST	1550				
EVA RESERVE	2873				
SUBTOTAL	40923			NOI	1023.1
MARGIN	1077		CG MARGIN	Z	13.6
STS CAPABILITY TO 190 NMI	42000		ALLOWABLE	E CG LIMIT	1009.5

Mass Breakdown Flight TR1

requested PDRD weight rather than the target weight. In cases where a breakdown to smaller ORUs has been made, data The mass data used for subsystems is from the Distributed Systems Deliverable listing date 05/04/90, and is the center from the subsystem PDR package was used. The summary mass breakdown shows a total mass to orbit of 38460 lbs. Assuming 42000 lbs load capacity for a 190 nmi orbit, this results in a margin of 3540 lbs.

Detailed mass breakdown is shown following the chart entitled "Center of Gravity Flight TR1".

•
<
Ŋ
\leq
2

Mass Breakdown Flight TRI

- FHEEDOM

COMPONENT OF MASS	MASS	rse	2
ISOGRID TUBE STRUCTURE	4928		1015.8
PROPULSION SYSTEM	15380	200	1146.4
THERMAL CONTROL SYSTEM	3315		920.8
COMM. AND TRACKING SYSTEM	2144	160	848.7
(incl. DMS, and EPS elements) GUIDANCE NAVIGATION AND CONTROL	241		1003.0
TEMPORARY POWER SYSTEM	1120		849.0
UTILITIES	1200		1014.0
TOTALS	28328	360	1055.6
FLIGHT 1 MASS TOTALS			
Hardware	28328		
15% Reserve	4249		
FSE Attach Filtings	360		
Structural Docking Mast	1550		
EVA Reserve	2873		
FLIGHT TOTAL	38460		
MARGIN	3540		
STS Capability to 190 NMI	42000		

Center of Gravity Flight TR1

to the total mass of 32.338 used for the center of gravity calculation. It should be noted that the 15% reserve and part of the The center of gravity summary shows a margin of 13.5 inches from the STS forward limit of 1005 inches. This corresponds EVA reserve are not included in the total mass for calculation of the center of gravity.

Center of Gravity Flight TRI

Summary

,	Mass	ပ္ပ
Hardware + FSE	28688	1055.6
Attach Fittings	1100	1014.0
Structural Docking Mast	1550	643.0
EVA Res (part)	006	545.0
EVA Res (part)	100	475.0
TOTAL MASS for CG	32338	
CG LOCATION (see notes)		1018.4
CG MARGIN		13.5
STS CG LIMIT		1005.0
NOIES:	incl.	not incl.
• 15% reserve: not in CG calc.		4249
** EVA Reserve:	006	
Nitroden	100	
Crew 2x500# (not in CG calc.) +1 day mission (not in CG calc.)		1000 873

Detailed Mass Breakdown and Center of Gravity Table

This table provides a detailed tabulation of the preceding summary charts.

Detailed Mass Breakdown and Center of Gravity Table

17 31

Code: P = Preintegrated		1 - Internally .	mounted		S . Stated for Launch	i E	R externally mounted during annually	Postunce	dur tur m	
Flight Slement	Code HASS		PSE ATTACH	د	Flight Element	Code	Code HASS	E C	ATTACT	٤
ISOSEIO TURE STRUCTURE	:		Sched ees		A THE STATE OF THE		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	:	:	
1200214 (44(1)		3768		•101	IN Mass Container 82	7.	1010			
tuto arguents incl. in 3 containers	Conta	lnera]			and detail above					
Longerone itrunmion) (2)		30 8		101	fiff, Container #2		1255			-
Longeron (keml) (11)	_	383		¥101						
Longatone (forward)	_	<u>.</u>		101						
Ring (end & container) (6)	_	35			_		7,125			1106
Ming Icenter (3)	_	***		101						
EVA Access Stiffenst (1)	_	=		9 4 6	PCS Thruster Anny 61					
Trunntons (5)		•		1018	Thenes Assesbles	w F.	-			133
Connecting Hardware	•	200		101	tines etc. (incl. in container)	contains				
	•				Thruster Pod Structure	ĸ.	23			1235
Total Tube Structure Mana		4 2 4		a . \$ 10 -	# CC#	er.	5			
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					Liber . extra Flect Harney, R	A. N. H	- 2			-
OTHER STRUCTUPE					Allohe Merrort Merceture			<u>-</u>		=
	•				Total Mara Thomater Fod	=	3.65	100		1113
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		c				;				
100 M					RCS Thruster Assy 62					
TOTAL STRUCTURE		4434		1015 #	are detail above	m	365			
				•	Co And research man Intol		36.5	001		1117 3
PROFULSION SYSTEM									,	
ACS Container 41					TOTAL MASS BUS PLEMENTS		15.180	300		
Tanks 4es V075 2	:	C # S		-	**************************		, , , , , , , , , , , , , , , , , , , ,		,	•
	•	4 4 7 4		4/6	Maraya Cotton Interior					
		•		-						
	: :									
Tank Support (fore)		2				•				
Tank support left!		2			es ibus i	:				
Trunctone					PRESENTATION AND AND AND AND AND AND AND AND AND AN		- ;			•
. Die Gewies, Valves ale.	:					: :				
Mingerteriols Protection					Leading mad					
Brenetter Technolis	_	273		5111	• = = = = = = = = = = = = = = = = = = =	-	2			•
HQH.	-	3		0071	141 - 141 - 140 -	2	ο :			•
DC-DC load Conv. (RCA)	-	•		9671	ANDUNAN ANTICOM	-	•			
				4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Gishal Support	_	= ;			
DRY Mans Container 81		30.00		A. 0811	TOTAL PROPERTY OF THE PROPERTY	:	3			
					Airiameterials Tratection		•			
PURI. Container II	-			7	HOME A COUNTY					:
					TOTAL CARRE	:				:
						•				•
Total Mass PCS Container UI	=	51.				: :	•			
*****************	:	•		,	Attended to the section companies		-			•
						•				

Detailed Mass Breakdown and Center of Gravity Table (Continued)

This table provides a detailed tabulation of the preceding summary charts.

Detailed Mass Breakdown and Center of Gravity Table (Continued)

	460	Code HASS	181	ATTACH	22	Flight Element	Code HASS		484	ATTACE	ť
COMM. AND THE STATE OF STATEM	• • •					· · · · · · · · · · · · · · · · · · ·					
TOTAL POST A STATE OF		c			4		1	Ç			:
Carpette of Contract	:					1,000	-	161			•
(1) year And Pres. (1)		131			7.7	BFC Hodule 110A (14)	_	143			:
Flight Support Structure			001		2 E E	RFC Hadule 10A (23)	-	2:3			:
Upper Ant Support (1)	8. R.	300			-	SFOA(1)		:			
(incl joints & Ku T-R booms)	-	,			•		;				
Upper UHF Omni Antill GPS Boom & Attachments	en •••	- ç				P FLEE EVEL MAN		5			
Total Hasa Antenna Assembly		627	001		860.1	MA SVATEN					
RACK 1 (TAT OPUS)	:	04		,	=	Mat K. J. Date And Conne. Higher Hild	::	**			
d Sto Frar. (-	2			146			1 1 1			•
Std Tibou Transponder T. E	1.1.	2.2				N MICHAEL PERSON NAMED					•
Total Mass Rack 1	!	386			7 1 5 8	Total Hass Rack 2		1041			:
PACF 3 (Antenna mounted ORU's)						TOT, MASS CAT "FALLIET FUNCTIONS"		2385	140		B K t
Mank Structure	-		Ç		7 .	医医检验多中枢 医多角医子宫 医自己 医水中 医中心中 医中心中 医中心中枢					
ACS T Be s/antennes	es (•									
かいし かんきゅう かい いかい かりかい かんかん かんかん かんしゅう かんしゅう	, e	-									
Upper MMD Fratection	₩.	2			474	Barriotes Mean	-	04			::
Total Mass Rack J	:		69	: • !	8 96 B	M. T.	lankar.	6 4 4			: :
GHLC SYSTEM						TOTAL MASS TEMP. FWR. SYST.		1130			•
Nounted on Isogrid	,	;				**********************					
Star Tracker (3) Unper Hex Mass	::	5.5			1001	UTILITIES	1				
Institut Sameon Assy (3) Structure	::	2 -				TOTAL MANN FOR 44	-	1200			
Total Mana Nav. Base. Assy			•		1001	FLIGHT TOTAL		28128	16.0		10.4
	;	, , , , , , ,					•				

. LARC SSFO

TR2 Packaging

elements required to produce 18.75 KW of power are included on this flight. The Integrated Equipment Assembly (IEA) is The second assembly flight brings up the power system elements that are located just outside the starboard alpha joint. All container section two. Packaged internally are two PV arrays and the deployable radiator. An alpha joint is located at the packaged in two container sections at one end of the integrated structure. The PV array beta gimbals are located in IEA end of the integrated structure.

TR2 Operations

The operations involved in deploying and assembling the second integrated structural element of the space station result in internally stored appendages with EVA assistance. After all assembly and check out is complete, the orbiter detaches from station element. The TR2 integrated structure is then removed from the orbiter cargo bay with the RMS and attached to an addition of 10 KW of power while the arrays operate in a feathered mode. The orbiter must first attach to the TR1 the structure but remains in close proximity until all systems are verified operational. A malfunction would require the TR1. The orbiter then detaches from TR1 and attaches to TR2. From this position the RMS removes and anaches orbiter to berth to the structure and facilitate repairs.

Second Assembly Flight Configuration

flux of 230. The average ballistic coefficient was 37 kg/m**2 which would give the station an orbit lifetime of 150 days from 190 nmi if the reboost thrusters were to fail. There is sufficient reboost fuel on board to maintain altitude for many years deviation of 30 degrees required 3 kilograms of fuel per day at 190 nmi assuming a design atmosphere of Ap = 400 and a longitudinal axis of the structure aligned along nadir. Stability simulations showed this configuration to yaw 360 degrees once every 5 orbits with no RCS attitude control. Using RCS thrusters to hold the configuration to within a maximum A flight characteristics analysis was performed on the second assembly flight configuration. The flight mode is gravity gradient stable with the deployed solar arrays, antennas and thruster arms aligned along the velocity vector and the should the orbiter be grounded for some reason.

Second Assembly Flight Configuration

TR2 Manifest

The assembly elements, weights, associated FSE and C.G. locations for the second assembly flight are listed. The overall C.G. location for the combined payload is 10.6 inches within allowable limits. There is 4270 pounds of unused STS lift capability and 4135 pounds of managers reserve available.

LARC SSFO -

	_	•
	_	
٠.	•	
•	S]
	*	
- 1		
æ	*	-
		7
٠,		-
	_	

· FIRELUCIN ENTE

Integrated Assembly Sequence Manifest

FLIGHT 2 TR-2				
SIS ELEMENT	MASS	FSE ATTACH	CH LOCATION	ຽວ
IEA SOLAR ARRAYS BETA GIMBALS RADIATOR (UEPLOYABLE)	12144 3636 882 1104	363 136	CON#384 TUBE CON#2 TUBE TUBE	1146 882 954 840 1278
ALPHA JOINT STRUCTURE UTILITIES	8260 600	1	1100	1014
	27572	499 1	100	
HARDWARE 15% RESERVE FSE ATTACH FITTINGS EVA RESERVE DOCKING FIXTURE	27572 4136 499 1100 2873 1550			
SUBTOTAL MARGIN	37730 4270	ອນ ອນ	CG LOCATION	1014.1
STS CAPABILITY TO 190 NMI	42000	ALL	ALLOWABLE CG LIMIT	1003.6

TR3 Packaging

CMGs are in container #1, the PMAD equipment is in container #2, the FMAD equipment is in container #3 and the radial containers house the attached payload and pressurized module interfaces along with some GN&C electronics. Packaged The third truss section flight brings up the CMGs, PMAD, FMAD, one APAE and a pressurized module interface. The internally are the starboard TCS radiator panels and condenser that will be attached to the beta joint on TR1.

TR3 Operations

assembles/attaches the radiator to the beta joint on TR1 with EVA assistance. After all assembly and check out is complete. The operations involved in deploying and assembling the third integrated structural element of the space station are listed. cargo bay with the RMS and EVA secured to TR1. The orbiter then detaches from TR1 and attaches to TR3. From this position the radiator panels are removed and placed in the cargo bay. The orbiter then re-attaches to TR1 and the RMS The orbiter must first attach to the TR1 station element. The TR3 integrated structure is then removed from the orbiter the orbiter detaches from the structure but remains in close proximity until all systems are verified to be operational. A malfunction would require the orbiter to berth to the structure and facilitate repairs.

Truss Flight Three Operations

TR2

TR1

TR3

TCS Radiator

TR3 Manifest

The assembly elements, weights, associated FSE and C.G. locations for the third truss section flight are listed. The overall C.G. location for the combined payload is 0.5 inches within allowable limits. There is 2011 pounds of unused STS lift capability and 4401 pounds of managers reserve available.

THEEDOM IN	Integrated Assembly Sequence Manifest
NASA	Integrated

FLIGHT 3 TR-3				
STS ELEMENT	MASS	FSE ATTACH	LOCATION	90
		100	- # C	840
UPPER APAE	000	001	1 = ()	C F 00
Ĺ	009	100	KC#4	7.0
	4271	427	TUBE	1014
ICS PANELS &	5130		CON#1	1188
CMG'S (6)	777	100	RC#2	840
GN&C	6905	•	CON#2	1104
PMAD	2832		CON#3	924
FMAD (WET)	1007	1100		1014
STRUCTURE	0978			1014
UTILITIES	1200			1280
BALLAST	1 1			
	29338	727 1100		
напрыя	29338			
15% RESERVE	4401			
(12) (12) (14)	727			
A'TTACH FITTINGS	1100			
EVA RESERVE	2873			
DOCKING FIXTURE	1550			
14#0#4112	39989	CG LOCA	LOCATION	1008.4
MARGIN	2011	CG MARGIN	NI	0.5
				1007
STS CAPABILITY TO 190 NMI	42000	ALLOWAE	ALLOWABLE CG LIMIT	6./001

TR4 Packaging

shelter, an APAE and a pressurized module interface. The FTS and shelter are in container #2, the MMD is in container The fourth truss section flight brings up the N2O2 repressurization tanks. Mobile Maintenance Depot (MMD), FTS and module interfaces. Packaged internally are the port TCS radiator panels and condenser that will be attached to the beta #3, the repressurization tanks are in container #4 and the radial containers house the attached payload and pressurized joint on the following flight.

TR4 Operations

The operations involved in deploying and assembling the fourth integrated structural element of the space station are listed. position the RMS removes the radiator panels and stows them on TR4. After all assembly and check out is complete, the The orbiter must first attach to the TR3 station element. The TR4 integrated structure is then removed from the orbiter cargo bay with the RMS and EVA secured to TR3. The orbiter then detaches from TR3 and attaches to TR4. From this orbiter detaches from the structure but remains in close proximity until all systems are verified to be operational. A malfunction would require the orbiter to berth to the structure and facilitate repairs.

STEPS 4 TO 6

Truss Flight Four Operations

TR3

TR3

3) Berth TR4 to TR3. EVA secure TR4 to TR3.

then berth to end of TR4. 4) Release from TR3

and condenser from TR4 and store on exterior of TR4. 5) Remove TCS radiator

TR4

6) Check out systems and separate.

STEPS 1 TO 3

TR4 Manifest

The assembly elements, weights, associated FSE and C.G. locations for the fourth truss section flight are listed. The overall C.G. location for the combined payload is 14 inches within allowable limits. There is 999 pounds of unused STS lift capability and 4531 pounds of managers reserve available.

. LARC SSFO

Integrated Assembly Sequence Manifest -NSV

FLIGHT 4 TR-4 STS	MASS	FSE ATTACH	LOCATION	90
			4110	1014
ORT TRUSS	531	114	1001 1001 1001	1188
EPRESSURIZAT	8400	427	TUBE	1014
PORT ICS PANELS & CONDENSER	2232		CON#2	924
FTS/SHELTER	4112		CON#3	1104
MMD WITH SPUM	009	100	RC#4	8 8 0 4 0
APAE	009	100	K # 1	1014
STRUCTURE	8260 1200			1014
	30206	741 1100		
HARDWARE	30206			
15% RESERVE	4531 741			
ATTACH FITTINGS	1100			
EVA RESERVE PRESS. DOCKING MECH.	1550			,
SUBTOTAL	41001	CG LOCATION	TION	1023.7
STS CAPABILITY TO 190 NMI	42000	ALLOWAB	ALLOWABLE CG LIMIT	1009.6

TR5 Packaging

tanks loaded with a total of 9000 pounds of fuel are located at one end of the integrated structure in removable container The fifth truss structure flight is essentially a mirror image of TR1 without the independent power system. Hydrazine fuel sections. The port TCS equipment (including the port radiator beta joint) is located in container section two. Radial containers at the other end of the structure contain systems for communications and power conditioning. Packaged internally are two thruster pods with extension arms and the antenna assembly. This is identical to TR2.

TR5 Operations

cargo bay with the RMS and EVA secured to TR4. From this position the RMS removes the radiator panels stowed on TR4 antenna assembly and thruster arms. After all assembly and check out is complete, the orbiter detaches from the structure The operations involved in deploying and assembling the fifth integrated structural element of the space station are listed. but remains in close proximity until all systems are verified to be operational. A malfunction would require the orbiter to The orbiter must first attach to the TR4 station element. The TR5 integrated structure is then removed from the orbiter and assembles them on TR5. The orbiter then attaches to the end of TR5, where the RMS removes and attaches the berth to the structure and facilitate repairs.

STEPS 6 TO 9

Truss Flight Five Operations

2) Remove TR5 from cargo bay

Assembly Antenna

TR4

radiator and condenser from TR4 exterior and place in cargo bay. 4) Remove stowed port TCS

Thruster Arms

TR5

- 5) Use RMS to install port TCS radiator rotating beta joint 180 degrees half way through
- 6) Release from TR4 then berth to end of TR5.
- 7) Remove the antenna assembly erect the antennas in the shuttle cargo bay. Attach assembly to from TR5 using RMS then EVA
- 8) Remove and install thruster

STEPS 1 TO 5

TR5 Manifest

The assembly elements, weights, associated FSE and C.G. locations for the fifth truss section flight are listed. The overall C.G. location for the combined payload is 26.2 inches within allowable limits. There is 3045 pounds of unused STS lift capability and 4288 pounds of managers reserve available.

Integrated Assembly Sequence Manifest

- rifetuvim zi zi

-NSA-

FLIGHT 5 TR-5 STS ELEMENT	MASS	FSE AT	ATTACH	LOCATION	90
YENT(WET) ITH ARMS 5000# OF	1706 2000 6500	200		CON#2 TUBE CON#3	924 1146 1104
(WITH 5000# ASSEMBLY NNA INTERFACE	6500 608 399	100		CON TCN TCN TCN TCN TCN TCN TCN TCN TCN TC	1254 1254 840
EPS SYSTEMS LOWER APAE STRUCTURE UTILITIES	811 600 8260 1200	100	1100	RC# 7	840 1014 1014
	28584	560	1100		
HARDWARE 15% RESERVE FSE ATTACH FITTINGS STRUCTURAL DOCKING MAST EVA RESERVE	28584 4288 560 1100 1550 2873				
SUBTOTAL	38955 3045		CG LOCATION	TION	1032.1 26.2
CAPABILITY TO 190 NMI	42000	1	LLOWAB	ALLOWABLE CG LIMIT	1006.0

TR6 Packaging

container section three. Packaged internally are two PV arrays and the deployable radiator. An alpha joint is located at the elements required to produce 18.75 KW of power are included on this flight. The Integrated Equipment Assembly (IEA) is The sixth truss structure flight brings up the power system elements that are located just outside the port alpha joint. All packaged in two container sections at one end of the integrated structure. The PV array beta gimbals are located in

TR6 Operations

station element. The TR6 integrated structure is then removed from the orbiter cargo bay with the RMS and EVA secured internally stored appendages with EVA assistance. After all assembly and check out is complete, the orbiter detaches from The operations involved in deploying and assembling the sixth integrated structural element of the space station result in a total power capability of 37.5 KW while flying in a LVLH sun tracking mode. The orbiter must first attach to the TR5 to TR5. The orbiter then detaches from TR5 and attaches to TR6. From this position the RMS removes and attaches the structure but remains in close proximity until all systems are verified operational. A malfunction would require the orbiter to berth to the structure and facilitate repairs.

TR6 Manifest

The assembly elements, weights, associated FSE and C.G. locations for the sixth truss section flight are listed. The overall C.G. location for the combined payload is 10.6 inches within allowable limits. There is 4270 pounds of unused STS lift capability and 4136 pounds of managers reserve available.

- LaRC SSFO -

FLIGHT 6 TR-6 STS ELEMENT	MASS	र उ	ATTACH	LOCATION	90
				CONTRICO	1146
T T T T	12144				0 0 0
SOLAR APRAYS	3636	363		TUBE	700
SOUTH TIMES OF THE STATE OF THE	882			CON# 3	D 0
BEIA GIMBALS BARTATOR (DEPLOYABLE)	1104	136		TUBE	3278
AT DEAD TOTAL	946			TUBE END	1014
	8260		1100		1014
UTILITIES	009				* 101
	27572	499	1100		
	1				
1 A C M C A L L	27572				
15% RESERVE	4136				
(a) (b)	439				
ATTACH FITTINGS	1100				
EVA RESERVE	2873				
DOCKING FIXTURE	1550				
	27730		CG LOCA	TION	1014.1
SUBTOTAL	4270		CG MARG	MARGIN	10.6
NACE					
STS CAPABILITY TO 190 NMI	42000		ALLOWAE	ALLOWABLE CG LIMIT	1003.6

Module Pattern Assembly

Once the transverse boom has been completed from starboard to port alpha joints, the module pattern is constructed. The pressurized docking module is manifested along with the lab and is temporarily placed on the aft side of the lab module in stored on the transverse boom. The next flight brings up the CHCS module followed by a flight that brings up the second with the second cupola on subsequent flights. The pressurized docking modules and cupolas are then placed in their final lab module and another pressurized docking adapter. The galley and both habitation modules are then brought up along the -X direction. The following assembly flight brings up the airlock, mobile transporter, MSC, and a cupola which is first module brought up is a laboratory module located towards starboard directly under the transverse boom.. A positions.

MOD1 Manifest

location for the combined payload is 40.5 inches within allowable limits. There is 134 pounds of unused STS lift capability The assembly elements, weights, associated FSE and C.G. locations for the first module flight are listed. The overall C.G. and 1677 pounds of managers reserve available.

- LARC SSFO -

- NASA

MASS FSE ATTACH LOCATION CG	30916 250 1100 1110 2343 880 878 277 1110	33536 250 1980	33536 1677 250 1980 2873 1550	41866 CG LOCATION 1056.6 134 CG MARGIN 40.5	
FLIGHT 7 MOD-1 STS ELEMENT	U.S. MODULE 1 (LAB 17 RACKS) PRESSURIZED DOCKING MODULE FLUIDS		HARDWARE 5% RESERVE FSE ATTACH FITTINGS EVA RESERVE DOCKING FIXTURE	SUBTOTAL	1

Module/Truss (MT) Manifest

truss structure (mobile transporter, MSC) flight are listed. The overall C.G. location for the combined payload is 0.2 inches within allowable limits. There is 768 pounds of unused STS lift capability and 1547 pounds of managers reserve available. The assembly elements, weights, associated FSE and C.G. locations for a combination module pattern (airlock, cupola)

Integrated Assembly Sequence Manifest

00	1000 1000 880 776 1280	570 642.7 1015.5 0.2
LOCATION		CG LOCATION CG MARGIN ALLOWABLE CG LIMIT
E ATTACH	250 1100 660 880 700 660 950 3300	CG LOCATION CG MARGIN ALLOWABLE C
MASS FSE	12339 2 7176 5399 3317 2700	30932 1547 950 3300 80 2873 1550 41232 768
rLIGHT 8 4T-1 5TS ELEMENT	AIRLOCK MSC PHASE 1 MOBILE TRANSPORTER CUPOLA BALLAST	HARDWARE 5% RESERVE FSE ATTACH FITTINGS MSC WORKSTATION EVA RESERVE DOCKING FIXTURE SUBTOTAL MARGIN

. LARC SSFO

MOD 2 Manifest

The assembly elements, weights, associated FSE and C.G. locations for the second module flight are listed. The overall C.G. location for the combined payload is 41.6 inches within allowable limits. There are 54 pounds of unused STS lift capability and 1677 pounds of managers reserve available.

- Larc SSFO -

- NVSV

	90	1110 878 1110			1057.8 41.6	1016.3
	LOCATION				TION	ALLOWABLE CG LIMIT 1016.3
	ATTACH	880	1980		CG LOCATION	ALLOWAB
	FS E	250	250		7	0
	MASS	30916 2343 277	33536	33536 1677 250 250 1980 80 2873	41946	42000
FLIGHT 9 MOD-2	STS ELEMENT	U.S. MODULE 2 (HAB 17 RACKS) PRESSURIZED DOCKING MODULE FLUIDS		HARDWARE 5% RESERVE FSE ATTACH FITTINGS MSC WORKSTATION EVA RESERVE	DOCKING FIXIONE SUBTOTAL MARGIN	STS CAPABILITY TO 190 NMI

MOD 3 Manifest

The assembly elements, weights, associated FSE and C.G. locations for the third module flight are listed. The overall C.G. location for the combined payload is 63.1 inches within allowable limits. There are 2773 pounds of unused STS lift capability and 1589 pounds of managers reserve available.

. LaRC SSFO

LOCATION CG	1110	00		CG LOCATION 1074.9 CG MARGIN 63.1	ALLOWABLE CG LIMIT 1011.8
FSE ATTACH	250 1100	250 1100		CG LOC	ALLOW
MASS	31508 277	31785	31785 1589 250 1100 2873 1550	39227 2773	42000
FLIGHT 10 MOD-3 STS : ELEMENT	U.S. MODULE 3 (GALLEY 18 RACKS) FLUIDS		HARDWARE 5% RESERVE FSE ATTACH FITTINGS MSC WORKSTATION EVA RESERVE DOCKING FIXTURE	SUBTOTAL	STS CAPABILITY TO 190 NMI

MOD 4 Manifest

The assembly elements, weights, associated FSE and C.G. locations for the fourth module flight are listed. The overall C.G. location for the combined payload is 60.8 inches within allowable limits. There are 2773 pounds of unused STS lift capability and 1589 pounds of managers reserve available.

- LaRC SSFO -

- FHEEDOM PERF

ATTACH LOCATION CG	1100 1110 1110	1100		CG LOCATION 1074.9 CG MARGIN 60.8	ALLOWABLE CG LIMIT 1014.2
FSE ATT	250	250		9) 9)	ALI
MASS	31508	31785	31785 1589 250 1100 2873 1550	39227 2773	42000
FLIGHT 11 MOD-4 STS ELEMENT	US MODULE 4 (CHCS 18 RACKS) FLUIDS		HARDWARE 5% RESERVE FSE ATTACH FITTINGS MSC WORKSTATION EVA RESERVE DOCKING FIXTURE	SUBTOTAL	STS CAPABILITY TO 190 NMI

MOD 5 Manifest

location for the combined payload is 63.1 inches within allowable limits. There is 2773 pounds of unused STS lift capability The assembly elements, weights, associated FSE and C.G. locations for the fifth module flight are listed. The overall C.G. and 1589 pounds of managers reserve available.

Integrated Assembly Sequence Manifest

-NZVI-

FLIGHT 12 MOD-5				
STS ELEMENT	MASS	FSE ATTACH	CH LOCATION	ອວ
U.S. MODULE 5 (HAB 18 RACKS) FLUIDS	31508	250 1	100	1110
	31785	250 1	1100	
≅	31785			
5% RESERVE	1589			
FSE	250			
ATTACH FITTINGS	1100			
MSC WORKSTATION	80			
EVA RESERVE	2873			
DOCKING FIXTURE	1550			
SUBTOTAL	39227	1 90	CG LOCATION	1074.9
MARGIN	2773	M 50	CG MARGIN	63.1
STS CAPABILITY TO 190 NMI	42000	NLLC	ALLOWABLE CG LIMIT	1011.8

MOD 6 Manifest

location for the combined payload is 32.7 inches within allowable limits. There are 106 pounds of unused STS lift capability The assembly elements, weights, associated FSE and C.G. locations for the sixth module flight are listed. The overall C.G. and 1652 pounds of managers reserve available.

. LARC SSFO -

-NSV

FLIGHT 13 MOD-6					
ELEMENT	MASS	ក ភ	ATTACH	LOCATION	90
U.S. MODULE 6 (LAB 15 RACKS) CUPOLA FLUIDS	29436 3317 277	250 700	1100		1110 878 1110
	33030	950	1760		
HARDWARE 5% RESERVE FSE ATTACH FITTINGS MSC WORKSTATION EVA RESERVE DOCKING FIXTURE	33030 1652 950 1760 80 2873 1550				
SUBTOTAL MARGIN	41895 106		CG LOCATION	NO I.	1049.0
STS CAPABILITY TO 190 NMI	42000		ALLOWABI	ALLOWABLE CG LIMIT 1016.2	1016.2

Logistics Manifest

The assembly elements, weights, associated FSE and C.G. locations for a sample logistics flight are listed. The logistics brought up at this time will be driven by actual outfitting requirements in the hab and lab modules. There is sufficient room in the module flights for the required PMC logistics if full user utilization of the modules at PMC is not assumed. This may eliminate the need for a dedicated logistics flight at this point in the assembly sequence.

- LARC SSFO

- PHELDOM IK + II

LOCATION CG	1125.5			TION 1009.6	ALLOWABLE CG LIMIT 1016.7
FSE ATTACH	1100	0 2200		CG LOCATION	ALLOWAE
MASS	20616 13284	33900	33900 1477 0 2200 2873 1550	42000	42000
L-1 STS ELEMENT	PRESSURIZED LOGISTICS MODULE UNPRESSURIZED LOG. CARRIER		HARDWARE MANAGER'S RESERVE FSE ATTACH FITTINGS EVA RESERVE DOCKING FIXTURE	SUBTOTAL MARGIN	STS CAPABILITY TO 190 NMI

TR7 Packaging

KW of power are included on this flight. The Integrated Equipment Assembly (IEA) is packaged in two container sections The seventh truss structure flight brings up the outer port power system elements. All elements required to produce 18.75 at one end of the integrated structure. The PV array beta gimbals are located in container section four. Packaged internally are two PV arrays and the deployable radiator.

TR7 Operations

the orbiter cargo bay with the RMS and attached to TR6. The orbiter then detaches from TR6 and attaches to TR7. From The operations involved in deploying and assembling the seventh integrated structural element of the space station can be gradient mode and attaching the orbiter to the TR6 station element. The TR7 integrated structure is then removed from section of integrated truss out to where it will be attached. The second approach involves flying the station in a gravity approached from two directions. The first approach would involve using the station MT and MSC to translate the new this position the RMS removes and attaches internally stored appendages with EVA assistance.

STEPS 4 TO 8

STEPS 1 TO 3

Truss Flight Seven Operations

TR7 Manifest

overall C.G. location for the combined payload is 0.6 inches within allowable limits. There is 5358 pounds of unused STS The assembly elements, weights, associated FSE and C.G. locations for the seventh truss section flight are listed. The lift capability and 3994 pounds of managers reserve available.

LARC SSFO

-NSW-

LOCATION CG	CON#1&2 1146 TUBE 882 CON#4 810 TUBE 840 1014		0.6 0.6	ALLOWABLE CG LIMIT 1001.3
ATTACH	1100	1100	CG LOCATION	ALLOWABLE
ក ស គ	363	499		
MASS	12144 3636 882 1104 8260 600	26626 3994 499 1100 2873 1550	36642 5358	42000
FLIGHT 14 TR-7 STS ELEMENT	IEA SOLAR ARRAYS BETA GIMBALS RADIATOR (DEPLOYABLE) STRUCTURE UTILITIES	HARDWARE 15% RESERVE FSE ATTACH FITTINGS EVA RESERVE DOCKING FIXTURE	SUBTOTAL	STS CAPABILITY TO 190 NMI

TR8 Packaging

sections at one end of the integrated structure. The PV array beta gimbals are located in container section one. Packaged The eighth truss structure flight brings up the outer starboard power system elements. All elements required to produce 18.75 KW of power are included on this flight. The Integrated Equipment Assembly (IEA) is packaged in two container internally are two PV arrays and the deployable radiator.

TR8 Operations

the orbiter cargo bay with the RMS and attached to TR2. The orbiter then detaches from TR2 and attaches to TR8. From gradient mode and attaching the orbiter to the TR2 station element. The TR8 integrated structure is then removed from The operations involved in deploying and assembling the eighth integrated structural element of the space station can he section of integrated truss out to where it will be attached. The second approach involves flying the station in a gravity approached from two directions. The first approach would involve using the station MT and MSC to translate the new this position the RMS removes and attaches internally stored appendages with EVA assistance.

8) Check out systems, separate and deploy solar arrays.

7) Attach solar arrays to beta

6) Attach radiator to IEA manifold and deploy. **STEPS 4 TO 8**

STEPS 1 TO 3

TR8 Manifest

The assembly elements, weights, associated FSE and C.G. locations for the eighth truss section flight are listed. The overall C.G. location for the combined payload is 0.6 inches within allowable limits. There is 5358 pounds of unused STS lift capability and 3994 pounds of managers reserve available.

- Larc SSFO -

lanifest
Sednence N
Assembly 5
Integrated /

90	1146 882 810 840 1014		1001.9	1001.3
LOCATION	CON#364 TUBE CON#1 TUBE		TION	ALLOWABLE CG LIMIT
ATTACH	1100	1100	CG LOCATION	ALLOWAB
ក ខ	363	499		
MASS	12144 3636 882 1104 8260 600	26626 3994 499 1100 2873 1550	36642 5358	42000
FLIGHT 15 TR-8 STS ELEMENT	IEA SOLAR ARRAYS BETA GIMBALS RADIATOR (DEPLOYABLE) STRUCTURE UTILITIES	HARDWARE 15% RESERVE FSE ATTACH FITTINGS EVA RESERVE DOCKING FIXTURE	SUBTOTAL MARGIN	STS CAPABILITY TO 190 NMI

MOD 7 Manifest

C.G. location for the combined payload is 3.1 inches within allowable limits. All STS lift capability is used but 1716 pounds The assembly elements, weights, associated FSE and C.G. locations for the seventh module flight are listed. The overall

----VSV

- FHEEDOM ENTE

Integrated Assembly Sequence Manifest

FLIGHT 16 MOD-7 STS				ţ
ELEMENT	MASS	FSE ATTACH	LOCATION	9
JEN MODULE DDCU'S & HT	33240	435 1100		1042.1 1234.9
	34326	435 1100		
HARDWARE 5% RESERVE FSE ATTACH FITTINGS MSC WORKSTATION EVA RESERVE DOCKING FIXTURE	34326 1716 435 1100 80 2873 1550			C.
SUBTOTAL MARGIN	42080	CG LOCATION	Z O O N	3.1
STS CAPABILITY TO 190 NMI	42000	ALLOWABL	ALLOWABLE CG LIMIT 1016.4	1016.4

MOD 8 Manifest

The assembly elements, weights, associated FSE and C.G. locations for the eighth module flight are listed. The overall C.G. location for the combined payload is 3.1 inches within allowable limits. All STS lift capability is used but 1716 pounds of managers reserve is available.

Integrated Assembly Sequence Manifest -NVS/\-

- FIRECUL III ES - IN ES

90	1042			1019.5	1016.4
LOCATION				rrion II N	ALLOWABLE CG LIMIT
ATTACH	1100	1100		CG LOCATION	ALLOWAB
F S E	435	435			
MASS	33240	34326	34326 1716 435 1100 2873 1550	42080	42000
FLIGHT 17 MOD-8 STS ELEMENT	ESA MODULE DDCU'S & HT		HARDWARE 5% RESERVE FSE ATTACH FITTINGS MSC WORKSTATION EVA RESERVE DOCKING FIXTURE	SUBTOTAL MARGIN	STS CAPABILITY TO 190 NMI

MOD 9 Manifest

The assembly elements, weights, associated FSE and C.G. locations for the ninth module flight are listed. The overall C.G. location for the combined payload is 2.1 inches within allowable limits. There are 11611 pounds of unused STS lift capability and 1034 pounds of managers reserve available.

-IWISA ----

Integrated Assembly Sequence Manifest

WELLOW HA

FLIGHT 18 MOD-9 STS	∪ 	11) VE 44 353	LOCATION	ن
FLEMENT	CCAL	WI IW	no i u	3
Z P	10194	1100		1186.7
SLM ES	1686	088		1049. V
SED FACILITY	4989	1100		916.4
SED FA	3803	1100		814.1
	20672	0 4180		
HARDWARE	20672			
5% RESERVE	1034			
FSF	0			
ATTACH FITTINGS	4180			
MSC WORKSTATION	80			
EVA RESERVE	2873			
DOCKING FIXTURE	1550			
SUBTOTAL	30389	CG TOCATION	LION	994.4
MARGIN	11611	CG MARGIN	Z	2.1
STS CAPABILITY TO 190 NMI	42000	ALLOWABI	ALLOWABLE CG LIMIT	992.3

Assembly Sequence Weight Comparison

lotal Flight Support Equipment (FSE) and attach fittings for the baseline assembly sequence totals 107,050 pounds over the station interface adapters for a total of 11,700 pounds. The equivalent transverse boom structure for the integrated station 18 assembly flights. This includes four outfitting flights using 10,000 pound logistics modules as module rack carriers. The assembly flights is 597,250 for the baseline sequence and 575,500 for the integrated sequence with the difference in weight station is 537,600 pounds with the increase in weight coming from the additional structural weight of the transverse boom. integrated assembly sequence requires 37,900 pounds of FSE/attach fittings for the equivalent on orbit functionality. The ratio of on orbit station mass to FSE/attach fittings for the baseline sequence is 4.5 while the corresponding ration for the baseline station including all systems, structure and modules is 490,200 pounds. The equivalent weight for the integrated integrated sequence is 14.1 indicating a gain in efficiency in manifesting and packaging. Total weight to orbit for the 18 A weight comparison between the baseline space station assembly sequence and the integrated space station assembly is made up of eight 44' hybrid isogrid sections yielding a weight of 66,000 pounds. The total spacecraft weight for the sequence is given. The weight given for the transverse boom structure for the baseline includes all the truss work and corresponding to extra weight margin for the integrated sequence.

Assembly Sequence Weight Comparison

	BASELINE	INTEGRATED ASSEMBLY
Transverse Boom Structure	11,700	000'99
Total Spacecraft	490,200	537,600
FSE / Attach Fittings	107,050	37,900
Total Weight to Orbit (excludes EVA reserve, manager reserve,	597,250	575,500

A 70,000 pound reduction in flight support equipment and attach fittings enables more weight to be allocated to on orbit station weight thus increasing the efficiency of the assembly sequence. All totals and weights based on 18 module/truss assembly flights. No logistics flights are included. Weights are in pounds.

- LaRC SSFO

ASSCORTO

Assembly Sequence Margin Comparison

percent reserve on module flights resulting in an 18 flight total of 49.810 pounds. The baseline sequence has several flights larger C.G. margin. The weight margin (unused STS lift capability) on the baseline sequence is negative on two flights with margin of 47,460 pounds. The baseline sequence consistently used a five percent managers reserve on each flight resulting where EVA and volume limits are exceeded while the integrated sequence always stays within EVA and volume margins by A comparison of Center of Gravity (C.G.), weight, reserve, EVA and volume margins between the baseline and integrated assembly sequences was made. Both sequences had positive C.G. margins but on average the integrated sequence had a in an 18 flight total of 26,359 pounds. The integrated sequence used a fifteen percent reserve on truss flights and a five a total 18 flight margin of 36,026 pounds. The integrated sequence has no negative margins allowing a total 18 flight virtue of being pre-integrated in a fixed volume.

- LaRC SSFO

Assembly Sequence Margin Comparison

Flight	C.G. Margin	irgin (in)	Weight Margin	Margin	Mngrs R	Reserve	EVA Margin	largin	Volume	Margin
Number	æ		m	_	В	_	В	1	В	
-	80	14	1731	1077	1482	4544	1	+	+	+
۰ ۵	8	F	2189	4270	878	4136	ſ	+	1	+
က	80	-	3160	2011	1335	4401	ı	+	ı	+
4	®	14	399	666	1480	4531	+	+	1	+
Ŋ	8	56	926	3045	1113	4288	1	+	1	+
9	8	F	250	4270	1371	4136	+	+	l	+
7	2	41	666	134	1665	1677	+	+	+	+
Φ	40	~	5508	892	1492	1547	+	+	ı	+
တ	2	42	2291	54	1556	1677	+	+	+	+
10	2	63	-1403	2773	1779	1589	+	+	+	+
1	2	61	-915	2773	1625	1589	+	+	1	+
12	7	63	702	2773	1595	1589	+	+	ı	+
13	7	33	0	106	1685	1652	ı	+	+	+
14	7	_	0	5358	1716	3994	+	+	+	+
15	7	_	0	5358	1716	3994	+	+	+	+
16	2	က	11691	0	1034	1716	+	+	+	+
17	∞	ო	3182	0	1446	1716	ı	+	ı	+
18	80	8	5286	11691	1391	1034	1	+	·	+
Totals			36,026	47,460	26,359	49,810				

B = Baseline, I = Integrated Assembly, Weights in pounds.

Potential Available Margin for Weight Growth

8260 pound weight for the isogrid structure when in fact the actual estimate was just under 6000 pounds resulting in 18,336 exclude structure such as universal pallets designed to absorb orbiter loads. Since the isogrid structure will be used to carry The preliminary nature of this study dictated that conservative estimates be used in planning and manifesting the assembly orbiter lift capability. Another 49,810 pounds was set aside as "managers reserve" in the manifests. The manifest used an pounds of isogrid structure margin over eight assembly flights. The weight estimates for the integrated subsystems did not sequence. There is potentially over 125,000 pounds of weight margin built into the assembly sequence to accommodate weight growth due to design maturity and overlooked hardware. 47,460 pounds of this margin is available via unused the orbiter loads, about 12,000 pounds of secondary structure can be deleted from the subsystem weights.

LaRC SSFO

Potential Available Margin for Weight Growth

Flight Margin	11	47,460
Managers Reserve	11	49,810
Structure Margin	11	18,336
Universal Pallets	11	12,000
Total Potential Margin	II	127,606

Assembly Sequence Comparison

Additional comparisons of the two sequences are given. Both sequences have the same number of flights to MTC and AC. where the baseline sequence has just 80 modules racks at AC. These extra racks can be used to eliminate the first logistics flight as described earlier. Both sequences achieve 37.5 KW capability at flight 6 while 75 KW is achieved at flight 14 for As was stated earlier, the 14 flights it takes to achieve PMC for the integrated sequence could be reduced by one flight if "truss" flight and one more "module" flight to AC as compared to the integrated sequence for a total of 18 flights. The length of the transverse boom is reduced by about 21 meters for the integrated station and would require an additional "truss" flight to get closer to the baseline dimension. The integrated sequence has 104 module racks on orbit by PMC the additional module rack volume is initially utilized for logistics instead of payloads. The baseline requires one less the baseline and flight 15 for the integrated sequence.

Assembly Sequence Comparison

	BASELINE	INTEGRATED ASSEMBLY
Flights to MTC	7	7
Flights to PMC	13	14
Flights to AC	18	18
"Truss" Flights	7.5	8.5
"Module" Flights	10.5	9.5
"Alpha to Alpha"	75 m	54 m
U.S. Racks at AC	80	104
37.5 kW Power	9	9
75 kW Power	14	15

- Larc SSFO -

Assembly Sequence Summary

approach allows an active spacecraft after the first assembly flight while the baseline design does not go active till the third The primary purpose of looking at the design and assembly of a pre-integrated space station was to reduce the amount of on orbit integration and EVA as compared to current baseline space station concept. The number of assembly flights and weight of the station were of secondary importance but it appears that the integrated approach can maintain the baseline number of flights to assembly complete while improving EVA, weight, volume and C.G. margins. The large reduction in FSE and attach fittings yield extra weight margin that can be used for future system weight growth. The integrated

LaRC SSFO

NSV

Assembly Sequence Summary

 The integrated approach can maintain the baseline number of flights to assembly complete while improving EVA, weight and C.G. margins.

- The integrated approach reduces the sensitivity of the assembly sequence to weight variations.

Growth Issues

Several issues associated with growing the integrated space station have been identified. The ability of the alpha joint to equipment initially located on the transverse boom (such as the C&T system) will be required to be moved to the upper direction is complicated by the pre-integrated nature of the beta joint and possible interference with the growth module pattern.. Addition of new utilities and where they will go is another growth issue that needs to be addressed. Some interfaces between the isogrid structure and growth structure must be developed. Growing the radiators in the +Xhandle the extra weight associated with the integrated structure and growth power systems must be evaluated. The boom. The relocation of these pre-integrated systems requires further study.

Growth Issues

- SARJ structural and power load limitations
- Isogrid / 5M Erectable Truss structural interfaces
- Restriction of forward TCS radiator growth in 6 module +/-Y option
 - Augmentation of subsystem lines on orbit vs. AC growth scars
 - Distribution of utilities to growth modules
 - Relocation of C&T pallet to upper keel

- This Page Intentionally Left Blank -

Summary and Recommendations

erectable truss, the isogrid structure is sized to withstand launch loads fully integrated, thus eliminating or reducing on-orbit integration and EVA requirements. However, additional detailed studies in the areas of structural design and configurations (including non-isogrid structures), assembly, and on-orbit operations must be conducted prior to a finalization of technical The pre-integrated isogrid structural concept that was evaluated appears to be technically feasible. Although heavier than results and recommendations.

Acknowledgments

Analysis Office manager Richard Russell. The authors also wish to acknowledge the help of the following people in the preparation of this report: Pat Cosgrove of Lockheed Engineering & Sciences Co. for his work in the thermal analysis The authors would like to acknowledge the input, guidance, and direction offered by the SSFO Systems Engineering section of this report, Ed Swanson, also of Lockheed, for his help in structural design concepts, and Laura Brewer of Analytical Mechanics Associates, Inc.. for her help in the manifesting of the assembly flights.

NASA National Accounts success Source Administration	Report Documentation Pag	e
1 Report No NASA TM-102780	2 Government Accession No	3. Recipient's Catalog No.
4. Title and Subtitle		5. Report Date
Pre-Integrated Stru	ctures for Space Station Freedom	February 1991 6. Performing Organization Code
7. Author(s)		8. Performing Organization Report No.
Jonathan N. Cruz, D	onald W. Monell, Philip Mutton,	
Patrick A. Troutman		10. Work Unit No.
9. Performing Organization Name a	and Address	476–14–15–01
NASA Langley Resear	ch Center	11. Contract or Grant No.
Hampton, Virginia	23665-5225	
	t treme	13. Type of Report and Period Covered
	s and Space Administration 0546	Technical Memorandum 14. Sponsoring Agency Code
increasing complexity	tion (erectable) approach to assembling of the station's design along with a dec years has led to an assembly sequence	rease in shuttle capability
(EVA, lift, volume, etc way to address these Freedom. A pre-inted	i.) than the shuttle can provide given a factorial issues is to adopt a "pre-integrated" approach combines station primated and check	ixed number of flights. One proach to assembling arranged in the properties and distributed are series.
section is then launch	led as a single structural entity on the siminimun of EVA. This report discusses	nuttle and attached to the
pre-integrated approa and shuttle integration	ich to assembling Freedom. The struction of discreet pre-integrated elements for	ural configuration, packaging Freedom assembly are
discussed. It is show	n that the pre-integrated approach to as	sembly reduces EVA and
increases shuttle mar	gin with respect to mass, volume and coline Freedom assembly sequence.	enter of gravity littles when
17. Key Words (Suggested by Auth	nor(s)) 18. Distribution Sta	ement
Pre-Integrated Strug Isogrid	cture Unclassif	ied - Unlimited
		Subject Category 18
19. Security Classif. (of this report)	20 Security Classif. (of this page)	21. No. of pages 22. Price

Unclassified

277

A13

Unclassified

		,