Wykonał: Waldemar Rogoza

Informatyka II semestr I

Nr albumu: 8428

Przykład 1: Natężenie pola magnetycznego od układu prostoliniowych przewodników z prądem. Wyznaczyć natężenie pola magnetycznego w punkcie O dla układu 4 prostoliniowych przewodników z prądem. Narysować kierunek wektora natężenie pola magnetycznego od każdego przewodnika.

$$H = \frac{11}{2\pi 17} - \frac{12}{2\pi 05} + \frac{13}{2\pi 05} + \frac{14}{2\pi 17}$$

Przykład 2: Natężenie pola magnetycznego od układu prostoliniowych przewodników z prądem. Wyznaczyć natężenie pola magnetycznego w punkcie O dla układu 4 prostoliniowych przewodników z prądem. Narysować kierunek wektora natężenie pola magnetycznego od każdego przewodnika.

$$I_3 = 2A$$
 \odot \otimes $O = 2A$

$$0 = 2A$$

$$0 = 2A$$

$$0 = 2A$$

$$0 = 1$$

$$0 = 1A$$

$$0 = 1A$$

$$0 = 1A$$

Przykład 3:

Narysować zależność siły elektromotorycznej indukcji E(t) od czasu powstającej w obwodzie dla którego zależność indukcji magnetycznej od czasu przedstawia wykres:

Przykład 4: Magnes zbliża się do cewki. Zaznaczyć w którą stronę popłynie prąd w cewce.

Przykład 5: Prawo Lenza

W pętli a płynie prąd stały I_a . Zaznaczyć W którą stronę popłynie prąd I_b w pętli b przy jej oddalaniu ?

Prąd płynie w tym samym kierunku.

Przykład 6: wskaż kierunki namagnesowania dla zadanej sekwencji bitów

1	0	0	1	1	0	1
-> <-	-> ->	<- <-	-> <-	-> <-	-> ->	<>

Przykład 7: Siła Lorentza

Ramkę prostokątną w której płynie prąd stały I_r umieszczono w pobliżu przewodnika prostoliniowego w którym płynie prąd stały I_p , tak jak na rysunku. Narysować siły działające na boki ramki wywołane prądem I_p .

Boki ramki są rozpychane.

Przykład 8 (wstawić jako arkusz BIT w zadaniu FFT) : Dla zadanej sekwencji: 0 0 0 1 1 1 0 0 0 1 1 1 0 1 wyznaczyć w Excelu zależności B(t) i E(t).

Przykład 9: długość i częstotliwość fali EM

Radio ESKA Łomża nadaje na częstotliwości 88.8 MHz. Jaka jest długość tej fali ?

$$\lambda = \frac{c}{f}$$
 $\frac{3 * 10^5 \text{km/s}}{88.8 * 10^6 \text{Hz}} = 330 \text{ cm}$

Przykład 10: długość i częstotliwość fali EM

Długość fali EM dla światła o barwie filetowej jest 420 nm. Jaka jest częstotliwość tej fali w THz?

$$f = \frac{c}{\lambda}$$
 $\frac{3 * 10^5 \text{km/s}}{420 \text{ nm}} = 714 \text{ THz}$

Przykład 11: energia fotonu

Oblicz energię fotonu dla fali o długości 420 nm (barwa filetowa).

$$E = \frac{hc}{\lambda}$$

$$\frac{4,20*10^{-34}*3*10^{8}}{420*10^{-9}}*\frac{J*s*m}{m*s} = 3*10^{-19}J$$

Przykład 12: energia i pęd fotonu

Wyznaczyć energię fotonu o pędzie $2 \cdot 10^{-27} \frac{kg \cdot m}{s}$.

E = p * c $2 * 10^{-27} kg*m/s * 3 * 10^8 m/s = 6 * 10^{-19} J$