C) Operaciones sobre pilas

Dar ecuaciones que definan las siguientes operaciones sobre los tipos de datos Pila Int o Pila t según el caso:

1) volcar --

Función que, dadas dos pilas, obtiene la que resulta de volcar una sobre la otra: volcar.

Ejemplo: (los *ti* son elementos de tipo t)

volcar:: (Pila t, Pila t) \rightarrow Pila t

volcar(Pvacia, q) = q

volcar(Apilar(x, p), q) = volcar(p, Apilar(x, q))

2) pinv --

Función que, dada una pila, obtiene la pila inversa: pinv.

Ejemplo: (los *ti* son elementos de tipo t)

t10	
t6	
t5	
t14	
t8	
p	

t8	
t14	
t5	
t6	
t10	
pinv(p)	

En este ejercicio se va a utilizar la función del ejercicio 1 (volcar)

pinv:: (Pila t)
$$\rightarrow$$
 Pila t
pinv (Pvacia) = Pvacia
pinv (Apilar(x, p)) = volcar(Apilar(x, p), Pvacia)

Como la función pinv no es recursiva, realmente se puede dar la siguiente definición en la que no se distinguen la pila vacía y la no vacía:

3) colocar --

Función que, dadas dos pilas, obtiene la que resulta de colocar una sobre la otra: colocar.

Ejemplo: (los *ti* son elementos de tipo t)

colocar:: (Pila t, Pila t)
$$\rightarrow$$
 Pila t
colocar (Pvacia, q) = q
colocar (Apilar(x, p), q) = Apilar(x, colocar(p, q))