Regression diagnostics

Statistical Reasoning and Quantitative Methods

François Briatte & Ivaylo Petev

Session 11

Outline

Diagnostics

Diagnostics

Regression models produce **fitted** (predicted) values and residuals that hold the unexplained variance for each data point. Issues that arise in that context are:

- unreliable coefficients due to multicollinearity, i.e. interactions between independent variables
- unreliable significance tests due to heteroskedasticity, i.e. heterogeneous variance in the residuals
- unreliable predictions due to outliers and influential points in the data that either do not fit or 'overfit' the model

Note: the model still assumes a **linear, additive** relationship between Y and $X_1, X_2, \ldots X_k$. That assumption can also be violated among other matters.

Fitting a multiple linear regression model

The model also fits a **linear function** to the data, of the form:

$$Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_k X_k + \epsilon$$

where:

- *Y* is the **dependent variable** (response)
- X is a vector of independent variables (predictors)
- \blacksquare α is the **constant**
- $\beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_k X_k$ is a vector of regression coefficients
- ϵ is the **error term** (residuals)

Note: the model assumes that the relationship is linear and additive.

The estimation of regression coefficients in a k-dimensional space is computationally more intensive, but is also based on least squares.

Multiple regression output

reg births schooling log_gdpc

The reg command can take any number of **continuous** variables as arguments, and shows unstandardised coefficients by default, using their original metric and possible transformation:

. reg births schooling log_gdpc

Source	SS	df		MS		Number of obs		86
						F(2, 83)		88.51
Model	150.301883	2	75.1	509417		Prob > F	=	0.0000
Residual	70.475313	83	.849	100157		R-squared	=	0.6808
						Adj R-squared	=	0.6731
Total	220.777196	85	2.59	737878		Root MSE	=	.92147
births	Coef.	Std. I	Err.	t	P> t	[95% Conf.	In	terval]
schooling	1976117	.0724	595	-2.73	0.008	3417306		0534927
log_gdpc	4703416	.1324	501	-3.55	0.001	7337796	٠.	2069036
cons	7.950304	.6861	182	11.59	0.000	6.585642	q	.314965

Standardised coefficients

reg births schooling log_gdpc, beta

The beta option provides standardised coefficients, which use the standard deviation of regressors (or predictor, i.e. the independent variables) in order to provide coefficients with comparable units:

births	Coef.	Std. Err.	t	P> t	Beta
schooling log_gdpc _cons	1976117 4703416 7.950304	.0724595 .1324501 .6861182	-2.73 -3.55 11.59	0.008 0.001 0.000	3686479 4800156

(identical output for overall model fit omitted)

Dummies

reg births schooling i.region

Categorical variables can be used as dummies, i.e. binary recodes of each category that are tested against a **reference category** to provide regression coefficients for net effect of that category alone:

births	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
schooling log gdpc	0415563 742187	.0639718	-0.65 -5.38	0.518	1688888 -1.016876	.0857763
region	17.12107	11500057	3.30	0.000	11010070	11071373
2	6523485	.5803126	-1.12	0.264	-1.807432	.5027349
3	.3682404	.254364	1.45	0.152	1380585	.8745393
4	1.411177	.2486027	5.68	0.000	.9163457	1.906008
5	1.167491	.337383	3.46	0.001	.4959471	1.839035
_cons	8.315004	.8006456	10.39	0.000	6.721359	9.908649

(identical output for overall model fit omitted)