1 题目

(14分)铁和钛是重要的金属材料。一种利用钛铁矿 (主要成分为 $FeTiO_3$,还含有少量 Fe_2O_3 和 SiO_2)制备钛和绿矾的工艺流程如图。

已知:

- 1° $TiOSO_4$ 常温下稳定存在且不溶于水,易溶于较浓的酸,在水中受热易水解生成 $TiO_2 \cdot nH_2O$ 沉淀;
- 2° TiCl₄ 易水解, 其与 Mg 的反应通常在 800 ~ 900 °C 之间进行;
- 3° TiO₂ 被 H₂ 还原的产物与温度有如下关系:
 温度
 750 ~ 1000 °C
 1000 ~ 2000 °C
 > 2000 °C

 产物
 Ti₂O₃
 Ti₃O₅
 TiO
- 4° 无水 FeSO₄ 在隔绝空气、加强热的条件下,会发生氧化还原反应(视为彻底反应),生成物中有两种等量的气体;
- 5° 可能会用到的相对原子质量: O-16 Mg-24 Si-28 S-32 Cl-35.5 Ti-48 Fe-56。根据以上信息,回答以下问题: (除标注外每空 2 分)
- 2. 操作 i 为多步操作,包括 ii、iii_____(1分)、iv_____(1分),其中 iii 宜用试剂_____(1分),好处是_____
- 3. 写出 TiO²⁺ 水解的化学方程式:
- 4. 步骤 A 中,若制得 1.5mol Ti,则该过程中转移电子数至少为______(1分); TiCl₄ 还原为 Ti 的工艺需在密闭容器和 Ar 氛围中进行,若在空气中进行,则得到的 Ti 会含有 C、Mg₃N₂ 和反应______(写化学反应方程式)产生的 2 种杂质;
- 5. 取1.292 kg 钛铁矿进行一次上述工艺流程,测得"浸出"的废渣质量为 $60\,\mathrm{g}$,加入了 $m\mathrm{g}$ 铁屑(视为单质),生成了1.140 kg $M\mathrm{gCl}_2$,对 $FeSO_4 \cdot 7\,\mathrm{H}_2\mathrm{O}$ 隔绝空气进行热重分析,得到如下热重曲线图。假设铁元素全部转化为了 $FeSO_4 \cdot 7\,\mathrm{H}_2\mathrm{O}$,则根据以上信息,计算可知 m=____。

2 答案

- 1. 浓度 < 50% 时,易形成 $TiOSO_4$ 沉淀,使 Ti 产率降低;浓度 > 70%,硫酸会与 Fe^{2+} 反应生成 SO_2 ,污染环境且降低了硫元素的利用率
- 2. 洗涤(1分); 干燥(1分); 乙醇(1分); 可去除固体表面吸附性杂质,提高纯度;可减少洗涤时沉淀的溶解造成的损失
- 3. $\mathrm{TiOSO_4} + (\mathrm{n} + 1)\,\mathrm{H_2O} \stackrel{\triangle}{=\!\!\!=\!\!\!=} \mathrm{TiO_2} \cdot \mathrm{nH_2O} \downarrow + \mathrm{H_2SO_4}$
- 5. 168