Thin air	iful the	wry				0 0		• •	• •		• •	•			
he hav	re se	en th	at .	Cp =	$\frac{2\theta}{\sqrt{M^2}}$	<u> </u>	under	. the	as	surp	tion	7	θ .b	eing	, <u>\$</u>
This re								• •		• •		•			
Let us					airfoi			• •							
				2			(n)			• •	Į.	t(n)			
		• • •		o A						• •			hick		
						• •	• •	• •		• •		•			
• • • • •	G.	• • •		PAOA		0 0	Cpc	in ber	• •	• •	ť. :	Cρ	thic	kne:	sy .
Another	way at	- lookin	g at	the 1	perible	•	منر	•			• •	•		0 0	
	ر - بـ (dy · ·	(for	small		0 0		ooo	• •	• •	• •	•		0 0	,
			2 du		• • •	• •	• •	• •	• •		• •	•		• •	
			$\sqrt{M^2}$	-]				• •	• •	• •	• •	•	• •	• •	
	Cpu.	= <u> </u>	$\frac{2}{n^2-1}$	dyn da				• •				•		0 0	
	CPL.	• • • •	$\frac{-2}{\sqrt{M^2-1}}$	dy					• •	• •	• •		•	0 0	
			JM2-1							• •		•	• •		
Ç le	eerly,	$\frac{dv}{d}$	ly =	X	t dt		de (• •	• •	• •	•		0 0	, .

 $\frac{dy_1}{dx} = -\lambda - \frac{dt(n)}{dn} + \frac{dc(n)}{dn}$

Consider small elements of upper surface df = P(n) dxM al de $= (p(n) - P_1) dn + P_1 dn$ = 9, Cpudr + Pida $dL_{yz} - df \cos \theta \approx -df = -q_1 C_{yu} dn - P_1 dn$ $dD_{yz} - df \sin \theta \approx df \theta - df \cdot \frac{dy_{yz}}{dn} = q_1 C_{yz} \frac{dy_{yz}}{dn} \cdot dn + P_7 \frac{dy_{yz}}{dn} dn$ Similarly, lower surface dLi= df= q, cp,dx+P,dx $dD_{L} = -dF\theta = -Cp_{L}\frac{dy_{1}}{dx}dx - P_{1}\frac{dy_{L}}{dx}dx$ Total lift c L= (dLu+dLL) = 9, (CP, - CPu) dr $D = q_1 \int \left(C_{p_1} \frac{dy_n}{dx} - C_{p_2} \frac{dy_n}{dx} \right) dx + |P_1| \int \left(\frac{dy_n}{dx} - \frac{dy_n}{dx} \right) dx$ After putting in the values of $C_{p_1} \& C_{p_2}$, we get $= \frac{4 \times a_1 \cdot c}{\sqrt{M^2 - 1}} \Rightarrow c_L = \frac{L}{a_1 \cdot c} = \frac{4 \times a_2 \cdot c}{\sqrt{M^2 - 1}}$ Note: Here are assumption of t(n=0)=0, $\ell(n=0)=0$ has been $\ell(n=0)=0$. $\ell(n=0)=0$ made. For a supersonic tein airfail, App is the only deciding factor Similarly, after a lot of algebra (which you should carry out) $D = 9, \int \frac{2}{\sqrt{M^2 - 1}} \left[\frac{dy_u}{dx} + \left(\frac{dy_x}{dx} \right)^2 \right] dx + P, \int \frac{dy_u}{dx} - \frac{dy_x}{dx} dx$ = 0 as t(n=0) = t(a=c) = 0

 $\frac{2q_1}{\sqrt{m^2-1}} \int_{\infty}^{\infty} \left\{ \left[-\lambda + \frac{dt(n)}{dn} + \frac{d(cn)}{dn} \right]^2 + \left[-\lambda - \frac{dt(n)}{dn} + \frac{d(cn)}{dn} \right]^2 \right\} dn$

$$= \frac{27}{\sqrt{M^2-1}} \left\{ \int_{0}^{\infty} \left[2\chi^2 + 2\left(\frac{dt(w)}{dn}\right)^2 + 2\left(\frac{d(ew)}{dn}\right)^2 \right] dn - \int_{0}^{\infty} 4\chi \frac{d(cw)}{dn} dn \right\}$$

$$= \int_{0}^{\infty} \left[\frac{dt}{dn} \right]^2 dn - \left(\frac{dt}{dn}\right)^2 dn - \left(\frac{dc}{dn}\right)^2 dn - \left(\frac{dc}{dn}\right)^2$$

Reference: Section 13.6 of John & Keith 6.15 of Rathakrishnan.