The next generation sequencing technology

TRANSCRIPTOMICS

BIGNAUD AMAURY 22/02/2023

Denaturation - 95°C

Denaturation - 95°C

 $Annealing-68^{\circ}C$

Denaturation - 95°C

Annealing – 68°C

Elongation – 72°C

Denaturation - 95°C

Annealing – 68°C

Elongation – 72°C

Denaturation – 95°C

Annealing – 68°C

Elongation – 72°C

Limitations

At the origin, only electrophoresis gene reading:

- Fragmented DNA were first needed to be clone in one bacteria
- 1kb of DNA per run of 6-8 hours.
- Radioactive label on the primer to read the gel.
- You have to manually read the gel.
- ➤ It took two days to sequence one kilobase of DNA.

Now Sanger sequencing is still used:

- No need to clone it in bacteria first, we can directly do PCR on it.
- 300kb of DNA per run of 3 hours (Fragments of 1-3kb maximum).
- Radioactive label have been replaced by four different fluorescent dice (one PCR and one migration instead of four in glass capillary)
- Machine read automatically the sequence.
- > Useful to sequence few kilobases sequences used to genetically modified genomes or in synthetic biology.

Next Generation sequencing (NGS)

The Illumina sequencing machine

NGS – DNA library preparation

Fragmentation

End repair and A-tailing

Ligation

PCR amplification

NGS – Cluster amplification

Flow cell and cluster detection

NGS – Paired end sequencing

> Pair-end sequencing allows to sequence both extremities of your fragment.

NGS – Paired end sequencing

> Pair-end sequencing allows to sequence both extremities of your fragment.

NGS – Paired end sequencing

> Pair-end sequencing allows to sequence both extremities of your fragment.

Sequence ID

@NS500150:681:HWJNLBGXK:1:11101:3526:1073 1:N:0:CGGCTATG+NTTCGCCT

AAGGCAGCGACGAGTCTGACGATGCGAAAACTGAA

+

AAAAAEEE/E/EEEEEE6EE/EEA<EEE/EEEE

@NS500150:681:HWJNLBGXK:1:11101:20163:1075 1:N:0:CGGCTATG+NTTCGCCT

GATCCCATACGTACCTCAAGTGGTTTAGCAGTGTA

+

AAAAAEEEEEEEEEEEEEEEEEEEEEE

plus

AAAAAEEEEEEEEEEEEEEEEEEEEEE

A quality score

Sequencing output and price

	iSeq 100	MiniSeq	MiSeq Series •	NextSeq 550 Series •	NextSeq 1000 & 2000
Run Time	9.5–19 hrs	4-24 hours	4-55 hours	12-30 hours	11-48 hours
Maximum Output	1.2 Gb	7.5 Gb	15 Gb	120 Gb	360 Gb *
Maximum Reads Per Run	4 million	25 million	25 million [†]	400 million	1.2 billion *
Maximum Read Length	2 × 150 bp	2 × 150 bp	2 × 300 bp	2 × 150 bp	2 × 300 bp
	800\$/Gb	80\$/Gb	80\$/Gb	25\$/Gb	15\$/Gb

- > Others sequencing companies now (MGI).
- > Others sequencing technologies with long reads output with PacBio and Nanopore.

Opening on long reads sequencing

Oxford Nanopore Sequencing

Oxford Nanopore Sequencing

- ➤ Long reads (around 25kb and up to 2Mb)
- \triangleright Low fidelity (1 error every 10bp 1 error every 10,000bp for Illumina)
- > Around 50\$/Gb

Pacific Bioscience technology

- Long reads (around 10kb)
- ➤ Higher fidelity (1 error every 1000bp 1 error every 10,000bp for Illumina)
- ➤ Quite expensive 200\$/Gb