Práctico 1

Vectores en \mathbb{R}^n

Objetivos.

- Aprender las operaciones básicas de \mathbb{R}^2 y \mathbb{R}^3 (suma de vectores, multiplicación por escalares, producto escalar, calcular normas y ángulos).
- Familiarizarse con los conceptos de ortogonalidad y paralelismo.
- Aprender a describir rectas y planos de forma impícita y paramétrica.

EJERCICIOS

Los ejercicios con el símbolo (a) tiene una ayuda al final del archivo para que recurran a ella después de pensar un poco.

Vectores y producto escalar.

- (1) Dados v = (-1, 2, 0), w = (2, -3, -1) y u = (1, -1, 1), calcular:
 - (a) 2v + 3w 5u,
 - (b) 5(v+w),
 - (c) 5v + 5w (y verificar que es igual al vector de arriba).
- (2) Calcular los siguientes productos escalares.
 - (a) $\langle (-1,2,0), (2,-3,-1) \rangle$,
 - (b) $\langle (4, -1), (-1, 2) \rangle$.
- (3) Dados v = (-1, 2, 0), w = (2, -3, -1) y u = (1, -1, 1), verificar que:

$$\langle 2v + 3w, -u \rangle = -2\langle v, u \rangle - 3\langle w, u \rangle$$

- (4) Probar que
 - (a) (2, 3, -1) y (1, -2, -4) son ortogonales.
 - (b) (2,-1) y (1,2) son ortogonales. Dibujar en el plano.
- (5) Encontrar
 - (a) un vector no nulo ortogonal a (3, -4),
 - (b) un vector no nulo ortogonal a (2, -1, 4),
 - (c) vectores $w_2, w_3 \in \mathbb{R}^3$ tal que $\{w_1, w_2, w_3\}$ es una base ortogonal de \mathbb{R}^3 donde $w_1 = (1, 1, 1)$, utilizar el proceso de ortogonalización de Gram-Schmidt.
- (6) Encontrar la longitud de los vectores.
 - (a) (2,3),
- (b) (t, t^2) ,
- (c) $(\cos \phi, \sin \phi)$.
- (7) Calcular $\langle v, w \rangle$ y el ángulo entre v y w para los siguientes vectores.

(a)
$$v = (2, 2), w = (1, 0),$$

(b)
$$v = (-5, 3, 1), w = (2, -4, -7).$$

(8) Sean $e_1 = (1, 0, 0)$, $e_2 = (0, 1, 0)$ y $e_3 = (0, 0, 1)$ los vectores de la base canónica de \mathbb{R}^3 . Sea $v = (x_1, x_2, x_3) \in \mathbb{R}^3$. Verificar que

$$v = x_1 e_1 + x_2 e_2 + x_3 e_3 = \langle v, e_1 \rangle e_1 + \langle v, e_2 \rangle e_2 + \langle v, e_3 \rangle e_3.$$

- (9) Probar, usando sólo las propiedades **P1**, **P2**, y **P3** del producto escalar, que dados $v, w, u \in \mathbb{R}^n$ y $\lambda_1, \lambda_2 \in \mathbb{R}$,
 - (a) se cumple:

$$\langle \lambda_1 v + \lambda_2 w, u \rangle = \lambda_1 \langle v, u \rangle + \lambda_2 \langle w, u \rangle.$$

(b) Si $\langle v, w \rangle = 0$, es decir si v y w son ortogonales, entonces

$$\langle \lambda_1 v + \lambda_2 w, \lambda_1 v + \lambda_2 w \rangle = \lambda_1^2 \langle v, v \rangle + \lambda_2^2 \langle w, w \rangle.$$

Rectas.

- (10) En cada uno de los siguientes casos determinar si los vectores \overrightarrow{vw} y \overrightarrow{xy} son equivalentes y/o paralelos.
 - (a) v = (1, -1), w = (4, 3), x = (-1, 5), y = (5, 2).
 - (b) v = (1, -1, 5), w = (-2, 3, -4), x = (3, 1, 1), y = (-3, 9, -17).
- (11) Sea R_1 la recta que pasa por $p_1 = (2,0)$ y es ortogonal a (1,3).
 - (a) Dar la descripción paramétrica e implícita de R_1 .
 - (b) Graficar en el plano a R_1 .
 - (c) Dar un punto p por el que pase R_1 distinto a p_1 .
 - (d) Verificar si $p + p_1$ y -p pertenecen a R_1
- (12) Repetir el ejercicio anterior con las siguientes rectas.
 - (a) R_2 : recta que pasa por $p_2 = (0,0)$ y es ortogonal a (1,3).
 - (b) R_3 : recta que pasa por $p_3 = (1,0)$ y es paralela al vector (1,3).
- (13) Calcular, numérica y graficamente, las intersecciones $R_1 \cap R_2$ y $R_1 \cap R_3$.
- (14) Sea $L = \{(x, y) \in \mathbb{R}^2 : ax + by = c\}$ una recta en \mathbb{R}^2 . Sean $p \neq q$ dos puntos por los que pasa L.
 - (a) ¿Para qué valores de c puede asegurar que $(0,0) \in L$?
 - (b) ¿Para qué valores de c puede asegurar que $\lambda q \in L$? donde $\lambda \in \mathbb{R}$.
 - (c) ¿Para qué valores de c puede asegurar que $p+q \in L$?
- (15) Sea L una recta en \mathbb{R}^2 . Probar que L pasa por (0,0) si y sólo si pasa por $p + \lambda q$ para todo par de puntos p y q de L y para todo $\lambda \in \mathbb{R}$.

Observación. El Ejercicio (15) nos dice que las rectas que pasan por el origen son cerradas por la suma y la multiplicación por escalares. Los subconjuntos que satisfacen esta propiedad se llaman "subespacios vectoriales" y serán nuestro objeto de estudio más adelante.

Ejercicios de repaso. Si ya hizo los ejercicios anteriores continue a la siguiente guía. Los ejercicios que siguen son similares a los anteriores y le pueden servir para practicar antes de los exámenes.

(16) Dados $v, w \in \mathbb{R}^n$, probar que si $\langle v, w \rangle = 0$, es decir si v y w son ortogonales, entonces

$$||v + w||^2 = ||v||^2 + ||w||^2.$$

¿Cuál es el nombre con que se conoce este resultado en \mathbb{R}^2 ?

(17) (a) Sean $v, w \in \mathbb{R}^2$, probar usando solo la definición explícita del producto escalar en \mathbb{R}^2 que

$$|\langle v, w \rangle| \le ||v|| \, ||w||$$
 (Designaldad de Schwarz).

- (18) Sea $v_0 = (2, -1, 1)$.
 - (a) Describir paramétricamente el conjunto $P_1 = \{w \in \mathbb{R}^3 : \langle v_0, w \rangle = 0\}.$
 - (b) Describir paramétricamente el conjunto $P_2 = \{w \in \mathbb{R}^3 : \langle v_0, w \rangle = 1\}.$
 - (c) ¿Qué relación hay entre P_1 y P_2 ?
- (19) Escribir la ecuación paramétrica y la ecuación normal de los siguientes planos.
 - (a) π_1 : el plano que pasa por (0,0,0), (1,1,0), (1,-2,0).
 - (b) π_2 : el plano que pasa por (1, 2, -2) y es perpendicular a la recta que pasa por (2, 1, -1), (3, -2, 1).
 - (c) $\pi_3 = \{ w \in \mathbb{R}^3 : w = s(1, 2, 0) + t(2, 0, 1) + (1, 0, 0); s, t \in \mathbb{R} \}.$
- (20) ¿Cuáles de las siguientes rectas cortan al plano π_3 del ejercicio (19c)? Describir la intersección en cada caso.
 - (a) $\{w: w = (3,2,1) + t(1,1,1)\},\$ (b) $\{w: w = (1,-1,1) + t(1,2,-1)\},\$
 - (c) $\{w: w = (-1, 0, -1) + t(1, 2, -1)\},\$ (d) $\{w: w = (1, -2, 1) + t(2, -1, 1)\}.$

Ayudas

(17) Elevar al cuadrado y aplicar la definición.