

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 14 Sep 2022 1 of 8

Sample Information

Patient Name: 吳炳坤 Gender: Male ID No.: M100921961 History No.: 35766177

Age: 71

Ordering Doctor: DOC3109L 邱昭華

Ordering REQ.: C2F6PHL Signing in Date: 2022/09/14

Path No.: S111-97885 **MP No.:** F22095

Assay: Oncomine Focus Assay

Sample Type: FFPE Block No.: \$109-75440D Percentage of tumor cells: 40%

Reporting Doctor: DOC5466K 葉奕成 (Phone: 8#5466)

Note:

Sample Cancer Type: Non-Small Cell Lung Cancer

Table of Contents	Page
Variants (Exclude variant in Taiwan BioBank with >1% allele frequency)	2
Biomarker Descriptions	2
Relevant Therapy Summary	3
Relevant Therapy Details	3
Clinical Trials Summary	6

Report Highlights

- 1 Relevant Biomarkers
- 1 Therapies Available
- 1 Clinical Trials

Relevant Non-Small Cell Lung Cancer Variants

Gene	Finding	Gene	Finding	
ALK	None detected	NTRK1	None detected	
BRAF	None detected	NTRK2	None detected	
EGFR	None detected	NTRK3	None detected	
ERBB2	None detected	RET	None detected	
KRAS	None detected	ROS1	None detected	
MET	None detected			

2 of 8

Date: 14 Sep 2022

Relevant Biomarkers

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IIC	PIK3CA p.(C420R) c.1258T>C	None	alpelisib + hormone therapy 1, 2	1
	phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha			
	Allele Frequency: 24.41%			

Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

Variants (Exclude variant in Taiwan BioBank with >1% allele frequency)

DNA Sequence Variants								
Gene	Amino Acid Change	Coding	Variant ID	Locus	Allele Frequency	Transcript	Variant Effect	Coverage
PIK3CA	p.(C420R)	c.1258T>C	COSM757	chr3:178927980	24.41%	NM_006218.4	missense	1999

Biomarker Descriptions

PIK3CA (phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha)

Background: The PIK3CA gene encodes the phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha of the class I phosphatidylinositol 3-kinase (PI3K) enzyme¹. PI3K is a heterodimer that contains a p85 regulatory subunit, which couples one of four p110 catalytic subunits to activated tyrosine protein kinases^{2,3}. The p110 catalytic subunits include p110α, β, δ, γ and are encoded by genes PIK3CA, PIK3CB, PIK3CD, and PIK3CG, respectively². PI3K catalyzes the conversion of phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2) into phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) while the phosphatase and tensin homolog (PTEN) catalyzes the reverse reaction^{4,5}. The reversible phosphorylation of inositol lipids regulates diverse aspects of cell growth and metabolism^{4,5,6,7}. Recurrent somatic alterations in PIK3CA are frequent in cancer and result in the activation of PI3K/AKT/MTOR pathway, which can influence several hallmarks of cancer including cell proliferation, apoptosis, cancer cell metabolism and invasion, and genetic instability^{8,9,10}.

Alterations and prevalence: Recurrent somatic activating mutations in PIK3CA are common in diverse cancers and are observed in 20-30% of breast, cervical, and uterine cancers and 10-20% of bladder, gastric, head and neck, and colorectal cancers^{11,12}. Activating mutations in PIK3CA commonly cluster in two regions corresponding to the exon 9 helical (codons E542/E545) and exon 20 kinase (codon H1047) domains, each having distinct mechanisms of activation^{13,14,15}. PIK3CA resides in the 3q26 cytoband, a region frequently amplified (10-30%) in diverse cancers including squamous carcinomas of the lung, cervix, head and neck, and esophagus, and in serous ovarian and uterine cancers^{11,12}.

Potential relevance: The PI3K inhibitor, alpelisib 16 , is FDA approved (2019) in combination with fulvestrant for the treatment of patients with PIK3CA-mutated, hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative, advanced or metastatic breast cancer. Additionally, a phase lb study of alpelisib with letrozole in patients with metastatic estrogen receptor (ER)-positive breast cancer, the clinical benefit rate, defined as lack of disease progression \geq 6 months, was 44% (7/16) in PIK3CA-mutated tumors and 20% (2/20) in PIK3CA wild-type tumors 17 . Specifically, exon 20 H1047R mutations were associated with more durable clinical responses in comparison to exon 9 E545K mutations 17 . However, alpelisib did not improve response when administered with letrozole in patients with ER+ early breast cancer with PIK3CA mutations 18 . Case studies with MTOR inhibitors sirolimus and temsirolimus report isolated cases of clinical response in PIK3CA mutated refractory cancers 19,20 .

Date: 14 Sep 2022 3 of 8

Relevant Therapy Summary

Ir	n this cancer type	O In other cancer type	In this cancer type and other cancer types	✗ No evidence
----	--------------------	------------------------	--	---------------

PIK3CA p.(C420R) c.12581>C					
Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
alpelisib + fulvestrant	0	×	0	0	×
inavolisib	×	×	×	×	(II)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Relevant Therapy Details

Current FDA Information

	In this cancer type	O In other cancer t	ype ①	In this cance	er type and other	cancer types
--	---------------------	---------------------	--------------	---------------	-------------------	--------------

FDA information is current as of 2022-07-13. For the most up-to-date information, search www.fda.gov.

PIK3CA p.(C420R) c.1258T>C

alpelisib + fulvestrant

Cancer type: Breast Cancer Label as of: 2022-05-04 Variant class: PIK3CA C420R mutation

Other criteria: ERBB2 negative, Hormone receptor positive

Indications and usage:

PIQRAY® is a kinase inhibitor indicated in combination with fulvestrant for the treatment of postmenopausal women, and men, with hormone receptor (HR)- positive, human epidermal growth factor receptor 2 (HER2)-negative, PIK3CA-mutated, advanced or metastatic breast cancer as detected by an FDA-approved test following progression on or after an endocrine-based regimen.

Reference:

 $https://www.access data.fda.gov/drugsatfda_docs/label/2022/212526s006lbl.pdf$

Date: 14 Sep 2022 4 of 8

Current EMA Information

In this cancer type

O In other cancer type

In this cancer type and other cancer types

EMA information is current as of 2022-07-13. For the most up-to-date information, search www.ema.europa.eu/ema.

PIK3CA p.(C420R) c.1258T>C

O alpelisib + fulvestrant

Cancer type: Breast Cancer Label as of: 2021-10-11 Variant class: PIK3CA C420R mutation

Other criteria: ERBB2 negative, Hormone receptor positive

Reference:

 $https://www.ema.europa.eu/en/documents/product-information/piqray-epar-product-information_en.pdf$

Date: 14 Sep 2022 5 of 8

Current ESMO Information

In this cancer type

O In other cancer type

In this cancer type and other cancer types

ESMO information is current as of 2022-07-01. For the most up-to-date information, search www.esmo.org.

PIK3CA p.(C420R) c.1258T>C

O alpelisib + fulvestrant

Cancer type: Breast Cancer Variant class: PIK3CA exon 7 mutation

Other criteria: ERBB2 negative, ER positive

ESMO Level of Evidence/Grade of Recommendation: I / B

Population segment (Line of therapy):

■ Luminal A; Advanced, Metastatic (Second-line therapy); ESMO-MCBS v1.1 score: 2

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Breast Cancer [Ann Oncol (2021) VOLUME 32, ISSUE 12, P1475-1495, DECEMBER 01, 2021; DOI:https://doi.org/10.1016/j.annonc.2021.09.019]

Date: 14 Sep 2022 6 of 8

Clinical Trials in Taiwan region:

Clinical Trials Summary

PIK3CA p.(C420R) c.1258T>C

NCT ID	Title	Phase
NCT04589845	Tumor-Agnostic Precision Immunooncology and Somatic Targeting Rational for You (TAPISTRY) Phase II Platform Trial	II

Date: 14 Sep 2022 7 of 8

Signatures

Testing Personnel: Laboratory Supervisor: Pathologist:

References

- Volinia et al. Molecular cloning, cDNA sequence, and chromosomal localization of the human phosphatidylinositol 3-kinase p110 alpha (PIK3CA) gene. Genomics. 1994 Dec;24(3):472-7. PMID: 7713498
- 2. Whale et al. Functional characterization of a novel somatic oncogenic mutation of PIK3CB. Signal Transduct Target Ther. 2017;2:17063. PMID: 29279775
- 3. Osaki et al. PI3K-Akt pathway: its functions and alterations in human cancer. Apoptosis. 2004 Nov;9(6):667-76. PMID: 15505410
- 4. Cantley. The phosphoinositide 3-kinase pathway. Science. 2002 May 31;296(5573):1655-7. PMID: 12040186
- 5. Fruman et al. The PI3K Pathway in Human Disease. Cell. 2017 Aug 10;170(4):605-635. PMID: 28802037
- 6. Engelman et al. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet. 2006 Aug;7(8):606-19. PMID: 16847462
- 7. Vanhaesebroeck et al. PI3K signalling: the path to discovery and understanding. Nat. Rev. Mol. Cell Biol. 2012 Feb 23;13(3):195-203. PMID: 22358332
- 8. Yuan et al. PI3K pathway alterations in cancer: variations on a theme. Oncogene. 2008 Sep 18;27(41):5497-510. PMID: 18794884
- Liu et al. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov. 2009 Aug;8(8):627-44. PMID: 19644473
- 10. Hanahan et al. Hallmarks of cancer: the next generation. Cell. 2011 Mar 4;144(5):646-74. PMID: 21376230
- 11. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877
- 12. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- 13. Miled et al. Mechanism of two classes of cancer mutations in the phosphoinositide 3-kinase catalytic subunit. Science. 2007 Jul 13;317(5835):239-42. PMID: 17626883
- 14. Burke et al. Synergy in activating class I PI3Ks. Trends Biochem. Sci. 2015 Feb;40(2):88-100. PMID: 25573003
- 15. Burke et al. Oncogenic mutations mimic and enhance dynamic events in the natural activation of phosphoinositide 3-kinase p110α (PIK3CA). Proc. Natl. Acad. Sci. U.S.A. 2012 Sep 18;109(38):15259-64. PMID: 22949682
- 16. https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/212526s006lbl.pdf
- 17. Mayer et al. A Phase Ib Study of Alpelisib (BYL719), a PI3Kα-Specific Inhibitor, with Letrozole in ER+/HER2- Metastatic Breast Cancer. Clin. Cancer Res. 2017 Jan 1;23(1):26-34. PMID: 27126994
- 18. Mayer et al. A Phase II Randomized Study of Neoadjuvant Letrozole Plus Alpelisib for Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Breast Cancer (NEO-ORB). Clin. Cancer Res. 2019 Feb 5. PMID: 30723140
- 19. Jung et al. Pilot study of sirolimus in patients with PIK3CA mutant/amplified refractory solid cancer. Mol Clin Oncol. 2017 Jul;7(1):27-31. PMID: 28685070
- 20. Janku et al. PIK3CA mutations in patients with advanced cancers treated with PI3K/AKT/mTOR axis inhibitors. Mol. Cancer Ther. 2011 Mar;10(3):558-65. PMID: 21216929