Chapter 2 Section 3

Andrew Taylor

April 11 2022

Problem 1. Calculate the matrix product

$$\begin{bmatrix} 6 & 7 \\ 8 & 9 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix}$$

Solution.

$$\begin{bmatrix} 6 & 7 \\ 8 & 9 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix} = \begin{bmatrix} 6*1+7*3 & 6*2+7*5 \\ 8*1+9*3 & 8*2+9*5 \end{bmatrix}$$
$$= \begin{bmatrix} 27 & 47 \\ 35 & 61 \end{bmatrix}$$

Problem 2. Compute the products BA and AB for

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$B = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

Interpret your answers geometrically, as composites of linear transformation.

Solution. Let $T_A(\vec{x}) = A\vec{x}$ and $T_B(\vec{y}) = B\vec{y}$. We can write

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} T_A(e_1) & T_A(e_2) \end{bmatrix}$$
$$B = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} T_B(e_1) & T_B(e_2) \end{bmatrix}$$

Thus

$$T_A(\vec{e_1}) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, T_A(\vec{e_2}) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
$$T_B(\vec{e_1}) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}, T_B(\vec{e_2}) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

We see that T_A is a reflection about the line y = x. In other words, T_A is a reflection about the line spanned by the vector $\vec{w} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

We see that T_B is a reflection about the line x = 0. In other words, T_B is a reflection about the line spanned by the vector $\vec{w} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Now let's compute the products BA and AB.

$$BA = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

The product BA is a rotation matrix that rotates a vector ninety degrees counterclockwise.

$$AB = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

The product AB is a rotation matrix that rotates a vector ninety degrees clockwise.

Problem 3. Multiply the block matrices

$$\begin{pmatrix} 0 & 1 & | & -1 \\ 1 & 0 & | & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & | & 3 \\ \frac{4}{7} & 5 & | & 6 \\ \hline 7 & 8 & | & 9 \end{pmatrix}$$

Afterwards, compute the product without a partition and see if you get the same result.

Solution.

$$\begin{pmatrix}
0 & 1 & | & -1 \\
1 & 0 & | & 1
\end{pmatrix}
\begin{pmatrix}
1 & 2 & | & 3 \\
\frac{4}{5} & 5 & | & 6 \\
\hline
7 & 8 & | & 9
\end{pmatrix}$$

$$= \begin{pmatrix}
\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}
\begin{bmatrix} 1 & 2 \\ 4 & 5 \end{bmatrix}
+ \begin{bmatrix} -1 \\ 1 \end{bmatrix}
\begin{bmatrix} 7 & 8 \end{bmatrix}
\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}
\begin{bmatrix} 3 \\ 6 \end{bmatrix}
+ \begin{bmatrix} -1 \\ 1 \end{bmatrix}
\begin{bmatrix} 9 \end{bmatrix}$$

$$= \begin{pmatrix}
\begin{bmatrix} 4 & 5 \\ 1 & 2 \end{bmatrix}
+ \begin{bmatrix} -7 & -8 \\ 7 & 8 \end{bmatrix}
\begin{bmatrix} 6 \\ 3 \end{bmatrix}
+ \begin{bmatrix} -9 \\ 9 \end{bmatrix}$$

$$= \begin{pmatrix}
\begin{bmatrix} -3 & -3 \\ 8 & 10 \end{bmatrix}
\begin{bmatrix} -3 \\ 12 \end{bmatrix}$$

$$= \begin{pmatrix} -3 & -3 & | & -3 \\ 8 & 10 & | & 12
\end{pmatrix}$$

Now let's compute the product without a partition.

$$\begin{bmatrix} 0 & 1 & -1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$
$$= \begin{bmatrix} 4 - 7 & 5 - 8 & 6 - 9 \\ 1 + 7 & 2 + 8 & 3 + 9 \end{bmatrix}$$
$$= \begin{bmatrix} -3 & -3 & -3 \\ 8 & 10 & 12 \end{bmatrix}$$

We get the same result.

In the following problems, multiply the matrices and describe the linear transformations geometrically.

Problem 4.

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

Solution. The first matrix is a horizontal shear with k = 1.

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & 6 \\ 3 & 4 \end{bmatrix}$$

Problem 5.

$$\begin{bmatrix} 1 & -1 \\ 0 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 1 & 0 \end{bmatrix}$$

Solution. Let A be a n by p matrix and let B be a q by m matrix. The product of a matrix AB is defined if and only if p = q.

In the matrices below, p = q, so the product of the matrices is defined.

$$\begin{bmatrix} 1 & -1 \\ 0 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 3-1 & 2-0 \\ 2 & 0 \\ 6+1 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 2 \\ 2 & 0 \\ 7 & 4 \end{bmatrix}$$

Problem 6.

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

Solution. The matrix product is not defined, since the number of columns in the first matrix (3) does not equal the number of rows in the second matrix (2)

Problem 7.

$$\begin{bmatrix} 1 & -1 \\ -2 & 2 \end{bmatrix} \begin{bmatrix} 7 & 5 \\ 3 & 1 \end{bmatrix}$$

Solution.

$$\begin{bmatrix} 1 & -1 \\ -2 & 2 \end{bmatrix} \begin{bmatrix} 7 & 5 \\ 3 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 7 - 3 & 5 - 1 \\ -14 + 6 & -10 + 2 \end{bmatrix}$$

$$= \begin{bmatrix} 4 & 4 \\ -8 & -8 \end{bmatrix}$$

Problem 8.

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Solution.

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
$$= \begin{bmatrix} a & b \\ c & d \\ 0 & 0 \end{bmatrix}$$