

Insuffisance Rénale Chronique

H.ARZOUR
Service de Néphrologie-Transplantation
CHU-Mustapha ALGER

À quoi servent les reins?

À quoi servent les reins?

et quand ils s'arrêtent de fonctionner ? C'est grave ?

Rétention de déchets: Créatinine, Urée!!!

Déséquilibre
-Hydroélectrolytique
(Hyperkaliémie!!)
-Acidobasique(Acidose)

Maladies rénales chroniques: Un diagnostic biologique tardif!!!

- L'IRC est définie par une <u>baisse progressive et irréversible</u> du DFG (Débit de filtration glomérulaire) l'IRA: <u>Baisse brutale et REVERSIBLE</u>

Le diagnostic de l'IRC est essentiellement biologique ++++
 Retard au diagnostic fréquent .

- -HTA et diabète :Principales causes d'IRC.
- Intérêt de la Nephroprotection.

Introduction- définition:

- Maladie rénale chronique (MRC)= existence de:
 - soit des marqueurs de l'atteinte rénale: anomalie rénale fonctionnelle ou structurelle évoluant depuis au moins 3 mois
 - Anomalie morphologique
 - Anomalie histologique
 - Anomalie de la composition du sang ou des urines secondaire à l'atteinte rénale
 - \Box et/ou DFG < 60ml/1,73m² (IRC)

Formules d'estimation du débit de filtration glomérulaire (DFG)

DFG normal: 120 ml/min

*2 formules actuellement utilisées pour estimer le DFG: MDRD et CKD-epi.

* Utilisent les mêmes paramètres:

Age, sexe, origine ethnique, valeur de créatinémie (mg/dl).

*Ces données seront introduite dans des applications dans les smatphones: Qx Calculate, Med Qualc

Formule aMDRD (2000)

Débit de filtration glomérulaire estimé (eDFG) en ml/min/1,73m²

eDFG = $186,3 \times (\hat{a}ge)^{-0,203} \times (Pcr)^{-1,154}$ (x 1,212 si afro-américain et x K

Avec K = I chez l'homme = 0,742 chez la femme

Pcr = créatininémie en mg/dl

The CKD-EPI Creatinine Equation (2009)

GFR = 141 X min(Scr/ κ , 1)^{α} X max(Scr/ κ , 1)^{α} X 0.993^{Age} X 1.018[if female] X 1.159 [if black]

 $\kappa = 0.7$ if female

 $\kappa = 0.9$ if male

 α = -0.329 if female

 $\alpha = -0.411$ if male

Formules d'estimation du débit de filtration glomérulaire (DFG)

DFG normal: 120 ml/min

		calculateurs			
		MDRDs - CKD-EPI - Cockcroft			
	DFG	Estimation du débit de filtration glomérulaire			A
	Age :	36 ans	ans		
Créatinine : 50 (si décimales, utilisez des points au lieu				s au lieu de virgules)	
	Unité :	⊙ μmol/l	⊙ mg/l		
	IDMS :	Onon	• mesure standardisée		0
	Sexe :	homme	⊙ femme		
	Ethnie:	Ethnie : • non africain		O africain-américain	
7	MDRDs :	10 ml/min/1	.,73 m ²	stade MRC 5	0
	CKD-EPI:	10 ml/min/1	.,73 m ²	stade MRC 5	0

Estimer le débit de filtration glomérulaire

formule de Cockcroft et Gault (1976)

140 - âge x poids x k créatinine

K = 1.23 pour l'homme K = 1.04 pour la femme

formule MDRD (1999-2002) (Modification of Diet Renal Disease)

Formule MDRD simplifiée:

DFG = $175 \times (\text{créatininémie en mg/dl})-1,154 \times (\text{âge})-0,203 \times (0,742 \text{ si femme})$

Classification:

K/DOQI CKD classification (Kidney Disease Outcomes quality initiative).					
	stade	DFG (ml/min)	description	actions	
	1	>90	Marqueurs d'atteinte rénale avec DFG normal ou augmenté	-dépistage :réduction du risque de MRC -diagnostic et traitement :des comorbidités, diminution de la progression, diminution des FDRCV (traiter l'hypertension artérielle, la dyslipidémie, sevrage tabagique)	
	2	60 à 89	Marqueurs d'atteinte rénale avec DFG légèrement diminuée	Evaluation de la progression	
	3A 3B	45 à 59 30 à 44	Insuffisance rénale chronique modérée	Evaluer et traiter les complications	
	4	15 à 29	Insuffisance rénale chronique sévère	Préparation pour traitement de substitution rénale (en Néphrologie)	
	5	<15 ou en dialyse	Insuffisance rénale chronique terminale	Substitution rénale (en Néphrologie)	

Physiopathologie de L'IRC

Rein malade Rein sain Régulation de l'eau et du Na HTA Élévation de l'urée Créatinine Elimination des déchets Ac urique Potassium, B2 microglibulines ☐ Hyperparathyroïdie **Production d'hormones** secondaire **Déficit en EPO** ☐ Hypersécrétion en angiotensine II

80% des glomérules atteins

Manifestations cliniques!!

IRC: Symptomatologie

IRC: Symptomatologie

Quels sont les signes au début?

- Le plus souvent asymptomatique
- Absence de signes spécifiques
- Polyurie, nycturie.

- Protéinurie,
- hématurie microscopique.
- HTA ou OMI peuvent se présenter.

Conséquences de l'urémie chronique

Anémie +++
Thrombopathie urémique:
Tendance hémorragique
Risque infectieux

Troubles du Métabolisme Mineral et osseux: (Osteodystrophie rénale)

Hyperparathyroidie II aire

-Douleurs , fractures osseuses

Dénutrition

Complications Cardio vasculaires:

HVG+++
Athérome Accéléré ++
Calcifications Vasculaires
Péricardite.

Troubles Neurologiques

Polynévrite Urémique. Encéphalopathie urémique.

6 C

Troubles Sexuels:

Dysfonction érectile, Troubles du Cycle Infertilité. Troubles Cutanés:

Prurit.
Xérose cutanée
Hyperpigmentation,.

Troubles du Métabolisme Minéral et osseux

Anomalies du Bilan phosphocalcique

...Et plus tardivement

- Grande fatigue;
- Perte de l'appétit, dégoût des viandes, nausées, vomissements
- Crampes,
- Insomnie,
- Amaigrissement

COMPLICATIONS A LONG TERME DE L'HEMODIALYSE

Vieillissement

Athérosclérose accélérée

Calcifications vasculaires et valvulaires

Cardiopathie hypertrophique et/ou dilatée

Hypertension artérielle

Amylose-β-2-microglobuline

Maladie osseuse

Hyperparathyroïdie secondaire floride

Ostéomalacie

Ostéopathie adynamique

Dénutrition caloricoprotidique

Virose hépatotrope

HVC-HVB

Traitement conservateur de l'IRC????????

- Autrefois : Traitement palliatif
- -A l'heure actuelle:

- •Ralentir la progression de l'IRC
 - Néphroprotection
- Eviter les complications cardiovasculaires
 - Cardioprotection
- Prévention de la rétention azotée
 - Préserver l'état nutritionnel
 - •Respecter la qualité de vie

TRT nutritionnel

- Apport protéique
- •Eau/Sel
- Apport Calorique

•TRT Médicamenteux

- Diurétiques
- •Anti-HTA
- •TRT martial
- Calcium
- Vitamines
- •ASE

Prévention des accidents iatrogènes

- Ajustement thérpeutique
- •AINS
- •PCI

Traitement de la rétention azotée

Apport protéique optimal: Exemple:

- Réduire la génération des déchets azotées
- Prévention de toute malnutrition
- Prévention des plaques d'athéromes
- Préserver la qualité de vie
- 0.7-0.8g/Kg/j de protéines

- ½ des ces protéines (Haute valeur biologique)
- 70kg (0.7g/j)= 25g de protéines /j soit 120g de viande

Traitement de la rétention azotée

- Apport calorique et vitaminique:
- 30cal/kg/j
- Vitamines hydrosolubles (B1-B6)

Préservation de l'équilibre hydro sodé

Apport Hydrique:

- Equilibre=Pesée régulière
- Capacité du rein à concentrer et diluer les urines
- Aucune restriction ne s'impose(Sd néphrotiques/ICC)
- Na+ (140-145μmol/l

Apport en Sodium

- Natriurèse quotidienne(120mmo/l)
- Apport en Na cl(7g/j)
- Néphropathies perdeuses de sel (12g Nacl/j)

En conclusion:

L'IR n'impose jamais, par elle même, un régime « sans sel » La seule situation exigeant une restriction stricte de l'apport sodé serait -la coexistence d'œdémes, un syndrome néphrotique, HTA sévère et IC

Prévention de l'acidose

- IRC=Acidose métabolique de degré croissant (constante)
- Catabolisme musculaire et de la déminéralisation osseuse
- TRT doit être préventif

- 2à4g/j de Bicarbonate de Na+
- 4g=50mmol/l de Na+ et 50mmol/l d'ions HCO3-
- [Hco3-]plasmatique > 21mmol/l sans dépasser 25mmol/l

Prévention de l'hyperkaliémie

- DFG<30ml/mn
- Limiter les apports en K+ Kaliurèse < 50 mmol/l et tendance à l'hyperkaliémie
- Rechercher les autres causes D'Hyperkaliémie
- épargneurs de K+: Aldactone
- Acidose(sortie du K+ __secteur extracellulaire)
- K+>5mmol/l = Résine échangeuse d'ions K+(contre Na+)
- Furosémide
- Diabète sucré(Hyporéninisme)
- Kaliémie menaçante >6mmol/l (IV: SGH+10UI d'IO)

Prévention de l'atteinte cardiovasculaire

- Elle représente la complication clinique la plus sévère
- Responsable de la morbidité et d'une surmortalité importantes
- <u>Composantes de l'atteinte</u> <u>cardiovasculaires:</u>
- Athérosclérose
- Cardiomyopathie urémique
- Artériosclérose
- Médiacalcose
- Calcifications valvulaires

Objectifs et moyens de la cardioprotection

- Contrôle stricte de l'HTA
- Prévention de l'athérome (Dyslipidémie, Diabète)
- Prévention de l'HVG(TA, Surcharge hydrosodée et l'anémie)
- Prévention des calcifications vasculaires et valvulaires (Contrôle de l'hyperparathyroïdie secondaire)
- Détection et traitement des athéromes
 (Athérome carotidien, artérite des membres inferieurs)

Troubles phosphocalciques

 Temps fondamental du traitement de l'IRC et doit être précocement instauré

4- Anomalies Phospho-calciques

Cinacalcet: Mimpara^R

Parathyroidectomie

Supplémentation Calcique à distance des repas

Hypocalcémie

Hyperpai Régime

Régime pauvre en Phosphore Chélateurs de Phosphore:

* Carbonnate de Ca++: Milieu des repas :Max 2g/J.

*Non calciques:

Sevelamer: Renagel^R

∠1,25 OH 2 D3

Analogue Actif de la vitamine D:

1,25(OH D 3:Un alfa R

Hyperphosphorémie

Supplémentation calcique

- DFG> 30ml/mn:
 supplémentation
 modérée de calcium au
 milieu des repas(500mg
 à 1g/j + alimentation)
- DFG<< :prescription de carbonate de calcium
- Apport en calcium n'excédant pas 2g/j

(Calcifications artérielles)

• Stade avancé de L'IRC:

- Mesure insuffisante
- Restrictions d'apports en produits laitiers
- Hyperphosphorémie rebelle (complexe non calcique du phosphore : Sévelamer-Renagel)

Déficit en vitamine D:

- -Une supplémentation en Vit D est recommandée pour augmenter l'absorption du calcium.
- -IR modérée: Calcifédiol(Dedrogyl en gouttes 5à10gouttes/j)
- -IRC avancée: les dérivés hydroxylés en 1^{α} (Calcitriol ou alfacalcidiol à la dose $0.25 \mu g/j$)
- -Maintenir la Calcémie entre 2.3-2.5mmol/l-Phosphorémie<1.7mmol/l Avec PTH à un niveau optimal 1.5-3fois la normale

Traitement de l'anémie

- L'une des complications majeures de l'IRC
- Constante(IRC modérée à chronique)
- Mécanisme: déficit de sécrétion en érythropoïétine
- Déficit en vit et en fer
- Erythropoïétine recombinante /agents stimulants de l'erythropoïèse (ASE)/biosimilaires
- Traitement martial (Fer injectable)

Traitement de l'anémie de l'IRC

Transfusions

-Risque infectieux¹

-Ac Anti HLA classe I 1,2

Agents stimulant l'erythropoeïse : ASE (Erythropoïétine:EPO)

Chez l'IRC,Un agent stimulant l'erythrpoise(ASE) est indiqué en cas d'Anémie: HAS 2013

- Taux d'hémoglobine<10 g/dl
- Anémie Symptomatique
- Exclusivement liée à l'IRC

Les Guidelines recommandent l'usage des ASE / FER IV pour limiter au Maximum les transfusions³⁻⁴

- 1 .Mak G et al. Curr Treat Options Cardiovasc Med 2008;10:455–464;
- 2. Weiss G & Goodnough LT. N Engl J Med 2005;352:1011–1023;
- 3. Locatelli F et al. Nephrol Dial Transplant 2004;19(suppl 2):ii6-ii15;
- 4. NKF/KDOQI[™]. Am J Kidney Dis 2006;47(suppl 3):58–70

Anémie de l'IRC

Autres complications

- Troubles neurologiques:
- Encéphalopathie urémique/polynévrite
- Hyper uricémie symptomatique:
- Allopurinol

- Préventions des accidents iatrogènes:
- Néphrotoxicité médicamenteuse
- P.C.I
- AINS
- ARAII

ça se soigne comment ?

L'HEMODIALYSE: Principes généraux

ça se soigne comment ?

L'HEMODIALYSE:
Principes
généraux

La Diffusion

ça se soigne comment ? on faisait comment AVANT ?

Première dialyse chez l'homme

Willem Kolff (1911-2009)

PIONEER OF ARTIFICIAL ORGANS

ψ

"THE exciting thing is to see somebody who is doomed to die, live and be happy."

- Inducted: 1971 -

......

"I wanted to make an artificial kidney that would save people. I was convinced that I could do it, and I clung to it until it was done".

ça se soigne comment ? on faisait comment AVANT ?

« rein artificiel à tambour rotatif » mars 1943- juillet 1944

ça se soigne comment ? on faisait comment AVANT ?

 Le 03 septembre 1945 la première patiente « Sofia Maria » qui a survécu à une IRA suite à une septicémie grâce à l'hémodialyse par le rein artificiel du Dr Kolff.

ça se soigne comment? de nos jours en 2016!

AVANT

EN 2020!!!

IRC CHEZ L'ENFANT

Dr H.GAOUA
FACULTE DE MEDECINE ALGER
SERVICE NEPHROLOGIE
CHU H.DEY

Plan

- Définitions et classification
- Étiologies
- Épidémiologie
- Conséquences de l'IRC
- Pronostic

NKF-K/DOQI guidelines (adultes et enfants > 2 ans)

Stades	Définitions	DFG (ml/min/1,73 m ²)
1	Atteinte rénale* sans IRC	≥ 90
2	Atteinte rénale * avec IRC légère	60-89
3	IRC modérée	30-59
4	IRC sévère	15-29
5	IR terminale	< 15 (ou ttt de suppléance)

^{*} Anomalies urinaires, morphologiques ou histologiques > 3 mois

Classification de l'ANAES 2002 (adultes)

Stades	Définitions	DFG (ml/min/1,73 m ²)
1	Maladie rénale* sans IRC	≥ 60
2	IRC modérée	30-59
3	IRC sévère	15-29
4	IR terminale	< 15 (ou dialyse)

^{*} Anomalies urinaires, morphologiques ou histologiques > 3 mois

Clairance de la créatinine (ml/min/1,73 m²)

Formule de Schwartz

k x taille (cm)

Créatinémie (µmol/l)

Age k
Préma. 29
0-2 ans 40
2-12 ans 48
13-21 ans 48 (♀) ou 62 (♂)

Attention si

- -méthode de dosage de la créatinine 'enzymatique'
- -masse musculaire anormale
- Formule de Cockroft (après la puberté)

(140 – âge) x poids x 1,23 (
$$\circlearrowleft$$
) ou 1,04 (\updownarrow)

Créatinémie (µmol/l)

Clairance de la créatinine (ml/min/1,73 m²)

Formule de Schwartz 2009

$$\frac{\text{k x taille (cm)}}{\text{Créatinémie (µmol/l)}}$$
 K= 36,5

DFG normal chez l'enfant et l'adolescent

Age (sexe)	DFG moyen ± ET (ml/min/1,73 m ²)
1ere semaine (♀ et ♂)	41 ± 15
2-8 semaines (♀ et ♂)	66 ± 25
2 mois-2 ans (\bigcirc et \bigcirc)	96 ± 22
2-12 ans (♀ et ♂)	133 ± 27
13-21 ans (♂)	140 ± 30
(字)	126 ± 22

En général

Etiologies de l'IRT chez l'enfant

- >1/2 Néphro/Uropathies malformatives (CAKUT)
- CAKUT (Congenital Anomalies of the kidney and Urinary Tract) probablement sous-diagnostiqué chez l'adulte
- Le groupe de patients en IRC sans diagnostic établi (30%) contient bcp de CAKUT

Étiologies IRT chez l'adulte en France

Néphropathies vasculaires 23%

—— Adulte ≠ Pédiatrie

- Diabète 20%
- Glomérulopathies primitives (IgA ++) 17%
- Néphropathies interstitielles 15%
- PKR 10%
- Autres 15%

Étiologies de l'IRT chez l'enfant

Expérience lyonnaise : Maladie initiale % - N = 250 (1987-2007)

Épidémiologie de l'IRC (Europe)

Incidence sous estimée

- Incidence IRC
 - Peu de données précises
 - DFG < 30 : 6 à 10 / million d'enfants par an
- Incidence IRT
 - Adultes ~ 75-120 / million d'habitants par an
 - Enfants 6 à 10 / million d'enfants par an

Épidémiologie de l'IRC

DFG < 30 ml/min/1,73 m²

	Deleau 1994 France	Esbjorner 1997 Suède	Lagomarsino 1999 Chili	Madani 2001 Iran
Age	< 16 ans	< 16 ans	< 18 ans	< 16 ans
Effectif	127	215	227	166
Période	1975-90	1986-94	1996	1991-99
Incidence IRC/10 ⁶	7,4	7,7 (5,2-10,7)	5,7	-
Hypo/dysplasie, RVU et uropathies, %	53,4	37,8	51,5	47,0
Glomérulopathies	22,5	14,4	16,3	10,2
Autres Maladie Héréditaires	16,5	30,2	11,0	21,1

Complications de l'IRC

Complications de l'IRC ou de la néphropathie initiale ?

En cas de réduction néphronique

Hyperfiltration + Hypertension intraglomérulaire

accélèrent la sclérose glomérulaire

Paris

altération progressive de la fonction rénale

Anémie et métabolisme du Fer

- Défaut de sécrétion d'érythropoïétine (DFG < 30 ml/min/1,73 m²)
 - Taux d'EPO N ou limite inférieure de la N en IRC
 - 10 à 100 X plus élevées chez témoins avec Hb comparable
- Raccourcissement durée de vie des hématies
- Présence d'inhibiteurs de l'érythropoïèse (Qualité de dialyse +++)

Anémie et métabolisme du Fer

- Carence martiale
 - Augmentation des pertes : prélèvements, saignements occultes, fuites en HD
 - 2. Absorption diminuée (accumulation de l'hépcidine)
 - 3. Insuffisance d'apport (Régime pauvre en viande)
 - 4. Déficit fonctionnel : ↓ mobilisation des stocks tissulaires (captation du fer par le système réticulo-endothélial)
- Facteurs potetiels associés
 - Carence en folates, B12
 - Inflammation
 - Hyper PTH

Métabolisme du Fer en IRC

Compartiment de stockage 30% ~1500 mg

Augmenté en IR

Lieu : SRE, rate, foie, MO

Circulant : Ferritine

Dépôts:

Hémosidérine

♥-pathie

HTA

Anémie

Acidose

↑PTH 2nd

Anorexie

Croissance

Cible hémoglobine: 10 – 12 g/dl

Fer (IV > per os) \rightarrow 0,5 – 1 mg/kg/sem \rightarrow

Sat TF: 20%

Ferritine: >300 ng/mL

- Neorecormon (Epoetine beta) (80-120 UI/kg)
- Aranesp (Darbepoetine alpha) (0,3-0,5 mcg/kg
- Mircera (Methoxy-polyéthylène glycol epoetin beta (0,6 mcg/kg)

- Neorecormon (Epoetine beta) (80-120 UI/kg)
- Aranesp (Darbepoetine alpha) (0,3-0,5 mcg/kg
- Mircera (Methoxy-polyéthylène glycol epoetin beta (0,6 mcg/kg)

Prise en charge de l'anémie de l'IRC chez l'enfant

CRI POTASSIUM INTAKE

Potassium-Intako

Croat-Clearance

ml/min/1,73 m ²	Polassium-make	Attention
> 20	Free	- Aldosterone-Antagonists - ACE-inhibitor
10-20	1-2 mmol/kg/jour	Restriciton bananas, Oil seeds and oleaginous fruit dry fruits, muesli* dry vegetables Chocolat (K = 10-12 mmol/100g
< 10	1 mmol/kg/jour	'Dialyse' potatoes Reduce fruits and fresh vegetables Avoid potatoes (rather use pas t a, rice, etc).

All categories: No K in infusions

Attention

^{*}permitted cereals: Smacks, Honeyloops, Rice Crispies, Honey Pops (Kellog's), Crousty Honey (Quaker)

High Potassium

HYPERKALIEMIE

Si K + > 5.8 - 6 mmol/l

- → Restriction d'apport
- → Résine échanseuse d'ions

Kayexalate® (1 g = 1 mmol Na) 0.5 à 1 g/kg après les repas

CALCIUM

Apports de Calcium

< 5 ans : 500 mg/j

5 - 12 ans : 800 mg/j

> 12 ans : 1 000 - 1 200 mg/j

→ supplementation: carbonate de calcium

Apports de Phosphate

400 à 800 mg/j (50% des besoins)

Besoins énergétiques et protéiques des enfants seins AFSSA 2001

Age	Calories Kcal	protéines g	
0 - 6 months	92/kg (400-650)	1.2 - 2.2/kg ou 10 g	
6 - 12 months	92/kg (700-950)	1 - 1.1/kg ou 10 g	
1 - 3 yrs	84/kg (1100-1200)	12 g	
4 - 6 yrs	75/kg (1200-1400)	16.5 g	
7 - 10 yrs	1700-2000	22 g	
Garçon			
10 - 12 yrs	2000-2100	29 g	
13 - 15 yrs	2400-2800	41.5 g	
16 - 18 yrs	2800-3100	50 g	
Filles			
10 - 12 yrs	1900-2100	29.5 g	
13 - 15 yrs	2400-2500	40.5 g	
16 - 18 yrs	2500-2600	43.5 g	

Apports énergétiques

- Généralement, apport calorique spontané insuffisant, 60-80% (anorexie)
- Si <70 % des recommandations → retard de croissance
- •Traitement: 100-120 % des recommandations jusqu'à 6 ans 100 % après 6 ans

Apports Nutritionnel Conseillés

Macronutriment	Enfant 1–3 ans	Enfant 4–18 ans
Glucides	45-65 %	45-65 %
Lipides	30-40 %	35-35 %
Protéines	5-20 %	10-30 %

Apports en protéine recommandés en fonction du degré d'IR

Âge	ANC (g/kg/j)	IR grade 3 (g/kg/j) 100–140 % ANC	IR grade 4–5 (g/kg/j) 100–120 % ANC	IR en HD (g/kg/j)	IR en DP (g/kg/j)
0–6 mois	1,5	1,5-2,1	1,5-1,8	1,6	1,8
7–12 mois	1,2	1,2-1,7	1,2-1,5	1,3	1,5
1–3 ans	1,05	1,05–1,5	1,05-1,25	1,15	1,3
4-13 ans	0,95	0,95-1,35	0,95-1,15	1,05	1,1
14-18 ans	0,85	0,85-1,2	0,85-1,05	0,95	1

Facteurs impliqués dans le retard pubertaire et le retard de croissance lié à l'IRC	Autres facteurs qui contri- buent au retard pubertaire et au retard de croissance
Âge du diagnostic de l'IRC	Taille parentale
Fonction résiduelle en dialyse	Syndromes associés (WT1, syndrome de Denys-Drash et syndrome de Fraser; cystinose)
Anémie	Prématurité
Acidose métabolique	Retard de croissance intra- utérin (RCIU)
Ostéodystrophie rénale	Glucocorticoïdes
Malnutrition	Facteurs génétiques
Métabolisme de la PTH et vitamine D	
Modifications hormonales (axe somatotrope et gonadotrope)	

Fonction rénale et hormones sexuelles

	Sexe féminin	Sexe masculin	
Hypothalamus	↑ Prolactine	↑ Prolactine	
Hypophyse	 — ↓ Clairance des gonadotrophines avec FSH et LH normales ou ↑ — Perte de pics sécrétoires et perte des cycles 	 — ↓ Clairance des gonadotrophines avec FSH et LH normales ou ↑ 	
Gonades	 Dysménorrhée, ménopause ↓ Œstradiol et progestérone Cycles anovulatoires 	 Atrophie des cellules de Sertoli → ↓ Nombre de spermatozoïdes matures — Aplasie des cellules germinales — Oligo-azoospermie 	

Hypertension

- Fréquente, possible dès IRC modérée
- Mécanismes
 - Hypervolémie
 - Activation système rénine-angiotensine
 - Activation système sympathique
 - Facteurs vasculaires périphériques
 - Inhibition NO synthétase
 - Augmentation Ca intracellulaire
 - Facteurs vasodilatateurs rénaux

 ♥-pathie
 HTA
 Anémie
 Acidose
 ↑PTH 2nd
 Anorexie

Cause de décès No 1

Facteurs de risque cardio-vasculaires chez l'enfant IRT

HTA

Dyslipidémie

Anémie

HyperPTH

Hyperhomocystéinémie

Inflammation (↑ CRP)

Hypoalbuminémie

Maladie cardio-vasculaire chez l'enfant en IRT

Etude	N sujets	Complications	Prévalence
Goodman, 2000	39	Calcifications coronaires	36%
Oh, 2002	37	Calcifications coronaires Calcifications valve aortique	92% 32%
Gruppen, 2003	30	Calcifications valve aortique	30%
Mitsnefes, 2000	64 (26 HD, 38 DP)	Hypertrophie ventriculaire G	75% HD 68% DP

Facteurs de risque cardio-vasculaires

« Traditionnels »

- ↑ âge
- Sexe masculin
- Hypertension
- ↑ LDL cholesterol
- ↓ HDL cholesterol
- Diabète
- Tabac
- Inactivité physique
- Obésité
- Ménopause
- Stress
- ATCD familiaux

Associés à l'IRC

- ↓ DFG
- Protéinurie
- Surcharge hydrosodée
- Activité du SRAA
- Produit phospho-calcique
- Dyslipidémie
- Hyperuricémie
- Anémie
- Hyperhomocystéinémie
- Thrombophilie
- Inflammation
- Stress oxydatif
- Toxines urémiques

Acidose

- Charge acide quotidienne
 - Élimination sous forme d'ammonium et d'acidité titrable (H2PO4⁻)
 - Diminution excrétion avec IR
- Mécanisme dépassé quand FG < 30-40 ml/min/1,73 m²
 - Déficit sécrétion ammonium et de régénération des HCO3⁻
 - Accumulation des acides organiques
- Conséquences
 - Libération de tampons osseux (carbonate de Ca)
 - Protéolyse musculaire

Métabolisme lipidique

Dyslipidémie

- ↑ LDL cholestérol (LDL-6), ↑ Lp(a), ↓ HDL-C
- Hypertriglycéridémie, VLDL, IDL

Mécanismes

- — ↓ activité TG lipase, LP lipase, LCAT
- Fixation réduite sur les récepteurs
- Déficit en carnitine

Dyslipidémie secondaire

- Syndrome néphrotique, lupus, cystinose
- Médicaments : corticoïdes, CsA, Sirolimus, diurétiques, β bloquants...

Physiopathologie de l'hyperparathyroïdie secondaire

Os et IRC

- Masse osseuse chez adulte déterminée par pic masse osseuse à l'adolescence
- DMO basse morbidité/mortalité chez l'adulte
- Ostéodystrophie rénale
 - Principale cause d'anomalies de la densité osseuse
 - Plusieurs entités cliniques
 - Hyperparathyroïdie secondaire
 - Ostéopathie adynamique, ostéomalacie
- DMO chez l'enfant IRC : résultats très variables
 - Réduite pour certains
 - Normale si PTH et Ca x P N^x

IRC et troubles neurologiques

- Développement psycho-moteur
 - 2 premières années de vie : volume cérébral x 2
 - Retard : 20-25% dans IRT précoce
 - Malnutrition, «encéphalopathie urémique», troubles φ liés à la maladie chronique
- Fonctions cognitives
 - ↓ QI / enfants du même âge ?
 - Troubles auditifs
- Neuro-imagerie
 - Atrophie cérébrale 12-23% en IRT, lésions ischémiques
 - Risque ++ SN congénitaux, cystinose, HTA
- Anomalies EEG
 - Ondes lentes

Infections et dysimmunité

- Déficit de l'immunité cellulaire et humorale
 - → PNN et lymphocytes T (CD3+, CD45+)

 - Toxines urémiques : CD40L (inhibiteur de la réponse humorale)
- Réponse altérée aux vaccinations
- État inflammatoire chronique
- Infections = 1^{ere} cause d'hospitalisation (45% NAPRTCS 2001)

Complications dermatologiques

- Xérose
- Prurit
 - 35-85% ??? en dialyse
 - Mécanisme mal compris
- Mélanodermie
- Calcifications
 - Cristaux
 - Calciphylaxie
- Maladies bulleuses, allergies...

Complications bucco-dentaires

- Dysgueusie
- Stomatite, gingivite
- Parotidite
- Sécrétion salivaire réduite
- Xérostomie

Pronostic

- Pronostic et qualité de vie en IRC a beaucoup progressé
- Survie est de 95% à 5 ans et > 90% à 15 ans chez les plus de 2 ans
- Réserves concernant le pronostic à l'âge adulte
 - Devenir de la maladie (50% des patients en IRT avant 15 ans sont en dialyse à l'âge adulte, 50% ont un greffon fonctionnel)
 - Défaut de croissance
 - Le handicap associé
 - Scolarisation, réhabilitation : N^{ale} dans plus de la moitié des cas
 - Vie de famille, possibilité d'avoir des enfants
 - Risque cardiovasculaire

CONCLUSION

 La transplantation rénale reste le traitement de choix de l'IRC avec de bons résultats à long terme en pédiatrie. L'enjeu du néphrologue et du pédiatre est d'amener l'enfant à la greffe avec une prise en charge optimale de sa croissance, son état nutritionnel et osseux, ainsi que son bien-être psychologique personnel et familial.

MERCI