Laurent expansion, Z transform

Yinan Huang

The purpose of this note is to review basic concepts in complex function (Cauchy intergal theorem, laurent expansion), and introduce Z transform, a useful tool in signal processing. Since Z transform is simply laurent expansion, by studying concept of laurent expansion, we can have a better understanding of Z transform.

1 Analytic function and Laurent expansion

1.1 Review of analytic function

Def: We say a complex function $f(z): Z \to Z$ is **analytic** in region D, if f(z) is differential in D.

For example, f(z) = z is analytic in the whole complex plane except $z = \infty$, and f(z) = 1/z is analytic in the whole complex plane except z = 0.

Theorem (Cauchy intergal theorem): If f(z) is an analytic function in D, then

$$\oint_{\partial D} f(z)dz = 0,\tag{1}$$

where ∂D is the boundary of D in a counter-clock direction. We are not going to prove this, but a simple argument is, if there is no singularity in D, then because we integrate f(z) with the same starting point and the ending point, the integral must be 0.

Theorem (Cauchy intergal formula): If f(z) is analytic in D, then for all points $z_0 \in D$, we can express $f(z_0)$ as

$$f(z_0) = \frac{1}{2\pi i} \oint_{\partial D} \frac{f(z)}{z - z_0} dz. \tag{2}$$

Proof: We can see that $f(z)/(z-z_0)$ is analytic in $D/\{z_0\}$. According to Cauchy intergral theorem, the integral path can be done at the boundary of $z=z_0$:

$$\oint_{\partial D} \frac{f(z)}{z - z_0} dz = \lim_{\delta \to 0} \oint_{|z| = z_0 + \delta} \frac{f(z)}{z - z_0} dz = f(z_0) \lim_{\delta \to 0} \oint_{|z| = z_0 + \delta} \frac{1}{z - z_0} dz = 2\pi i f(z_0), \quad (3)$$

which proves the theorem. In the last step we have $\oint_{|z|=z_0+\delta} \frac{1}{z-z_0} dz = 2\pi i$ through simple calculation.

With Cauchy intergral formula, we can finally turn to laurent expansion, a generalized and more powerful version of taylor expansion. When we studied taylor expansion, which expands f(x) near x_0 , we know that the ROC (range of convergence) is limited to the nearest singularity around x_0 . But laurent expansion is so powerful that we can expand f(z) in form of z_0 , even given that f(z) is not well-defined at z_0 .

Theorem (Laurent expansion): If f(z) is analytic in a ring area $D = \{z : r < |z - z_0| < R\}$, then it can be expanded as

$$f(z) = \sum_{n = -\infty}^{+\infty} a_n (z - z_0)^n = \sum_{n = -\infty}^{+\infty} \left(\frac{1}{2\pi i} \oint_L \frac{f(z')}{(z' - z)^{n+1}} dz' \right) (z - z_0)^n, \tag{4}$$

where L is a closed curve within D.

Proof: From Cauchy integral formula we have

$$f(z) = \frac{1}{2\pi i} \oint_{|z'-z_0|=R} \frac{f(z')}{z'-z} dz' - \frac{1}{2\pi i} \oint_{|z'-z_0|=r} \frac{f(z')}{z'-z} dz'.$$
 (5)

For the first term, we try to express it in terms of z_0 :

$$\oint_{|z'-z_0|=R} \frac{f(z')}{z'-z} dz' = \oint_{|z'-z_0|=R} \frac{f(z')}{z'-z_0 - (z-z_0)} dz' = \oint_{|z'-z_0|=R} \frac{1}{z'-z_0} \frac{f(z')}{1 - \frac{z-z_0}{z'-z_0}} dz'.$$
(6)

Note that since $|z'-z_0|=R$ and $r<|z-z_0|< R$, so we can use taylor expansion to expand $\frac{1}{1-(z-z_0)/(z'-z_0)}$ near $(z-z_0)/(z'-z_0)=0$, obtaining

$$\frac{1}{1 - \frac{z - z_0}{z' - z_0}} = \sum_{n=0}^{\infty} \left(\frac{z - z_0}{z' - z_0}\right)^n. \tag{7}$$

Therefore the first integral term is now in form of the polynomials of $z-z_0$, which is

$$\oint_{|z'-z_0|=R} \frac{f(z')}{z'-z} dz' = \sum_{n=0}^{\infty} \left(\oint_{|z'-z_0|=R} \frac{f(z')}{(z'-z_0)^{n+1}} dz' \right) (z-z_0)^n = \sum_{n=0}^{\infty} \left(\oint_L \frac{f(z')}{(z'-z_0)^{n+1}} dz' \right) (z-z_0)^n.$$
(8)

For sake of convenience, in the last step we choose an intergal path L within D instead of $|z'-z_0|=R$, and they have the same integral value because $\frac{f(z')}{(z'-z_0)^{n+1}}$ is analytic in D. We then do the same to the second integral term:

$$\oint_{|z'-z_0|=r} \frac{f(z')}{z'-z} dz' = \oint_{|z'-z_0|=r} \frac{f(z')}{z'-z_0 - (z-z_0)} dz' = -\oint_{|z'-z_0|=r} \frac{1}{z-z_0} \frac{f(z')}{1 - \frac{z'-z_0}{z-z_0}} dz'.$$
(9)

Since $|z'-z_0| = r$, we expand $\frac{1}{1-(z'-z_0)/(z-z_0)}$ near $(z'-z_0)/(z-z_0) = 0$, then we have

$$\frac{1}{1 - \frac{z' - z_0}{z - z_0}} = \sum_{n=0}^{\infty} \left(\frac{z' - z_0}{z - z_0}\right)^n = \sum_{n=-\infty}^{-1} \left(\frac{z' - z_0}{z - z_0}\right)^{-n-1}.$$
 (10)

Thus

We then finish the proof by adding these two terms up.

1.2 ROC of laurent expansion

The laurent expansion of region D is unique, but it can be different for different regions (ROCs). For instance, $f(z) = \frac{1}{1-z}$ is analytic in $\mathbb{Z}/\{1\}$, but the singularity z=1 (we call it poles) implies that we can not have a uniform expansion on $\mathbb{Z}/\{1\}$, so we have to do laurent expansion on |z| < 1 and |z| > 1. Let $z_0 = 0$ be our expansion point. We have

$$\frac{1}{1-z} = z + z^2 + z^3 + \dots {12}$$

when |z| < 1, and

$$\frac{1}{1-z} = -\frac{1}{z} \left(\frac{1}{z} + \frac{1}{z^2} + \frac{1}{z^3} + \dots \right) \tag{13}$$

when |z| > 1.

2 Z transform

We are going to first have a review of discrete time system, and show the relation between Z transform and laurent transform.

A LTI (Linear time invariant) system is defined by its impulse response:

$$S(\delta[n]) = h[n], \quad S(x[n]) = x[n] * h[n].$$
 (14)

We find that $x[n] = z^n$ are the eigenstates of the system, whose eigenvalues are H(z)

$$S(z^{n}) = z^{n} * h[n] = z^{n} \sum_{k=-\infty}^{\infty} h[k]z^{-k} \equiv H(z)z^{n}.$$
 (15)

We find that the system function H(z) is a complex function and impulse response h[n] are simply the coefficients of laurent expansion of H(z) (almostly, there is a sign different). Thus we get such an inverse point of view, that we first have H(z), and then we expand H(z) in laurent series to study the signal h[n] in time domain. Then some properties of H(z) are pretty clear.

Property: Two different signals can have the same expression of H(z).

It is obvious, because H(z) with splited ROC have different expansion coefficients. generally, to specify a system, we need both H(z) and ROC. H(z) = 1/(1-z) is a typical example. And we should see that if h[n] has finite length, then H(z) does not have singularities in $\mathbb{Z}/\{0,\infty\}$, so H(z) is unique for this h[n].

Property: If a signal h[n] is right-side signal, then its ROC expands to $z = \infty$; If a signal h[n] is left-side signal, then its ROC contracts to z = 0.

A right-side signal means h[n]=0 when $n< n_0$. In the point of view laurent expansion, it means H(z) has finite polynomials with positive exponent. Therefore H(z) must converge when $z\to\infty$ (except $z=\infty$). In a word, a larger z make it easy for H(z) to converge. The similar analysis can be applied to left-side signal. A special case for this is a causal signal. Since it does only hava terms like z^{-k} , k>0, so its ROC expands to $z=\infty$ and contains $z=\infty$. If ROC of H(z) does not contains $z=\infty$, it cannot be causal.

Property: Z transform at |z| = 1 is fourier transform.

According to the expression of laurent expansion, we have the inverse Z transform

$$h[n] = \oint_I H(z)z^{n-1}dz,\tag{16}$$

which is difficult to calculate. But if the ROC contains |z| = 1, we can let $L = \{z : |z| = 1\}$. This give us a easy way to switch from H(z) to h[n], and backward:

$$h[n] = \frac{1}{2\pi} \int_0^{2\pi} H(e^{i\omega}) e^{i\omega n} d\omega, \quad H(e^{i\omega}) = \sum_n h[n] e^{-i\omega n}.$$
 (17)

This integral is easier to calculate. So if ROC contains |z| = 1, using fourier transform is a great idea. But sometimes |z| = 1 is not in the ROC, then we need Z transform to make analysis of the system.

In conclusion,

- Z transform is a laurent expansion at $z_0 = 0$, with H(z) being the complex function, and h[n] being the expansion coefficients.
- From this point of view, it is understandable that a system is specified by its system function H(z) and ROC (because of the uniqueness of laurent expansion).

• Z transform at |z|=1 is discrete time fourier transform (DTFT). If ROC does not contain |z|=1, DTFT will not converge.