- 1. Foot 10.1 ... realistic magnetic trap numbers
- 2. Foot 10.2 ... loading a trap

Part (a) should read "...is placed instantaneously in a spherically symmetric trapping potential."

3. Foot 10.4 ... evaporative cooling

Let's make this problem more sensible by putting in the density of states for a trapped gas. We should have:

$$N_{total} = A \int_{0}^{\infty} g(E)e^{-\beta E} dE$$

and

$$E_{total} = A \int_0^\infty g(E) E \ e^{-\beta E} \ dE$$

where $g(E)=E^2$ / $2(\hbar \overline{\omega})^3$, and $\overline{\omega}$ is the geometric mean of the trap frequencies. Calculate E_{total} and the mean energy \overline{E} using this density of states. In part (d), take $R_{coll}=n_{dwd}v_{rel}\sigma=\frac{2}{\sqrt{\pi}}n_0~\bar{v}~\sigma$, where n_{dwd} is the density-weighted-density, v_{rel} is the mean relative speed, n_0 is the peak density in the trap, and \bar{v} is the mean speed.

- **4. Foot 10.5** ...*T_c*
- 5. Foot 10.8 ... expansion of a non-interacting BEC