Mathematical Analysis Vol.1

@Souez3

22.11.2024

1 Билет 1

1.1 Последовательность

f(n) - последовательность задана на множестве N Когда каждому $n \in N$ поставлено в соответствие некоторого закона $a(n) \in R$, тогда говорят, что задана числовая последовательность a_n^{\inf}

Примеры: n-ный член арифметической прогрессии: $a_n = a_1 + \alpha(n-1)$ геометрическая прогрессия: $b_n = b_1 * q^(n-1)$

1.2 Предел числовой последовательности

Определение: Число A называют пределом числовой последовательности X_n , если $\forall \epsilon > 0 \exists N(\epsilon)$: $\forall n > N(\epsilon)$ выполняется $|X_n - A| < \epsilon$

Определение: Сходящаяся последовательность - последовательность, которая имеет конечный предел

Определение: Расходящаяся последовательность - последовательность, которая имеет бесконечный предел либо предела не существует.

Последовательноть ограничена, если $\exists M>0: \forall n\in N$ выполняется $a_n <= M$ (существует такое число M, что для любого номера последовательности все члены последовательности не превосходят это число по модулю.

2 Билет 2

2.1 Теорема о единственности предела последовательности

Теорема: Если у последовательности есть предел, то он единственный **Доказательство:** Докажем от противного. Допустим существует 2 предела.

$$\exists \lim_{x\to\infty} X_n = A \ \exists \lim_{x\to\infty} X_n = B$$
, при этом $B! = A$ (1)

Тогда возьмем
$$\epsilon = (B-A)/3 > 0, \ (\epsilon_A \cap \epsilon_B! = 0)$$

Следовательно

$$n>=N$$
 $\exists N_1: \forall n>N$ выполняется $|X_n-A|<\epsilon$ (2)

 $\exists N_2 \forall_n >= N_2$ и тоже выполняется, что $|X_n - B| < \epsilon$ (3)

Тогда $|a-b|=|a-X_n+X_n-b|<=|X_n-A|+X_n-B|<\epsilon+\epsilon=2\epsilon=\frac{2*|A-B|}{3},$ тогда получим $|A-B|<=\frac{2}{3}*|B-A|$ Получим противорчие

3 Билет 3

Определение: Последовательность ограничена, если $\exists M>0: \forall b\in N$ выполняется $|a_n|<=M$ Теорема об ограниченности сходящейся последовательности: Всякая сходящаяся последовательность ограничена!

Доказательство: $\Box A = \lim_{n \to \infty} X_n \in R$, тогда и только тогда, когда $\forall \epsilon > 0 \exists N(\epsilon) \in mathdsN$ такое что $\forall n \in mathdsN : n > N(\epsilon)$ выполняется $|X_n - A| < \epsilon \forall n > N(\epsilon)X_n \in (A - \epsilon; A + \epsilon)$ содержит конечное число $\mathbf{x}_1, \mathbf{x}_2, ... \mathbf{x}_k \Box m = minX^-; A - \epsilon M = maxA - \epsilon; x^+$ Тогда на отрезке [m; M] находятся $\mathbf{x}_1, \mathbf{x}_2, ... \mathbf{x}_k (A - \epsilon; A + \epsilon)[m; M] \mathbf{x}_n, \forall n \in mathdsN \mathbf{x}_n <= m\mathbf{x}_n >= M$ Примеры:

1)

 $1_{\overline{n^2=1;\frac{1}{4},\frac{1}{4};\frac{1}{9};\frac{1}{16}...}}$ $\lim \frac{1}{n^2}=0$ - ограничена сверху 2) $\frac{n^2}{n+1}=\frac{1}{2};\frac{4}{3};\frac{9}{4};\frac{16}{5};...$ $\lim \frac{n^2}{n+1}>=\frac{1}{2}$ - ограничена снизу (4)

4 Билет 4

Арифметические операции над сходящимися последовательностями

 $\Box X_n; Y_n$ - две сходящиеся последовательности. Тогда $\exists \lim_{n \to \infty} X_n = A; \lim_{n \to \infty} Y_n = B$ Свойства 1) $X_n + = Y_n; X_n * Y_n; \frac{X_n}{Y_n}$ - тоже сходящиеся последовательности. 2) $\lim_{n \to \infty} (X_n + Y_n) = A + B$ 3) $\lim_{n \to \infty} (X_n - Y_n) = A - B$ 4) $\lim_{n \to \infty} (X_n * Y_n) = A * B$ 5) $\lim_{n \to \infty} \frac{X_n}{Y_n} = \frac{A}{B}$ Доказательство: 1) $\forall N > 0_0$: $\forall n > N_0$ выполняется $|X_n - A| < \frac{\epsilon}{2}() \exists N_1$: $\forall n > N_1$ выполняется $|Y_n - B| < \frac{\epsilon}{2}$ Пусть $N = \max(N_2; N_1), n > N \forall n > N | (X_n + Y_n) - (A + B) | = |X_n - A + Y_n - B| < = |X_n - A| + |Y_n - B| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$

5 Билет 5

5.1 Понятие функции через последовательность

Если каждому $x \in X$ по некоторому закону поставлен в соответствии единственный у, то говорят что на множестве X задана функция f

$$\forall x \in X \exists ! y \in R : f(x) = y$$
 (5)

5.2 Предел функции в точке

Определение по Гейне: $\Box f(x)$ - определена в некоторой проколотой окрестности точки х

 $\lim_{x\to x_0} f(x) = A$ если $\forall x_n \exists \mathring{U}_{x0} > 0$ $\lim_{x\to x_0} f(x) - g(x) > 0 => f(x) - g(x) > 0$ по теореме если f(x) имеет предел A и в окрестности (а) принимает значения больше нуля, то A>=0 (6)

5.3 Теорема о единственности предела

Если функция имеет предел в точке, то он единственнй.

Доказательство от противного: $\exists X_n = \lim_{n \to \infty} X_n = A$ и $\lim_{n \to \infty} X_n = B$, A! = B; $A, B \in R$ Возьмем $\epsilon_n \cap \epsilon_b! =$, тогда $|f(x) - A| < \frac{\epsilon}{2}; |f(x) - B| < \frac{\epsilon}{2} |A - B| = |A - B + f(x) - f(x)| = |A - f(x) + f(x) - B| < = |A - f(x)| + |B - f(x)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$ То есть получили $\forall \epsilon > 0 - > |A - B| < \epsilon$

6 Билет 6

6.1 Ограниченная функция

Определение: Функция ограничена, если $\exists M>0: \forall x\in X$ выполняется |f(x)|<=M

Определение: Функция называется ограниченной сверху на х если $\exists M: \forall x \in X$ выполняется F(x) < M

Определение: Функция называется ограниченной снизу на х если $\exists M: \forall x \in X$ выполняется F(x) > M

6.1.1 Теорема об ограниченности функции, имеющей предел (конечный)

Если функция f(x) определена в точке x_0 и имеет в точке конечный предел, то она ограничена в некоторой окрестности этой точки.

$$\exists \lim_{x \to x_0} f(x) = A \iff \forall \varepsilon > 0 \,\exists \delta > 0 : \forall x \in \dot{U}(\delta),$$
$$|x - x_0| < \delta \implies |f(x) - A| < \varepsilon.$$

Пусть $\varepsilon = 1$, тогда $\forall x \in \dot{U}(\delta)$:

$$|f(x) - A| < 1$$
,

раскрыв модуль:

$$-1 < f(x) - A < 1.$$

Отсюда:

$$A-1 < f(x) < A+1 \implies f(x)$$
 ограничена.

7 Билет 7

7.1 Арифметические действия с пределами функции

$$\lim_{x \to x_0} f(x) = A \quad \text{if} \quad \lim_{x \to x_0} \varphi(x) = B.$$

Тогда:

1.

$$\lim_{x \to x_0} (f(x) + \varphi(x)) = A + B.$$

2.

$$\lim_{x \to x_0} C \cdot f(x) = C \cdot A, \quad \text{где } C = \text{const.}$$

3.

$$\lim_{x \to x_0} (f(x) \cdot \varphi(x)) = A \cdot B.$$

4. Если $B \neq 0$, то:

$$\lim_{x \to x_0} \frac{f(x)}{\varphi(x)} = \frac{A}{B}.$$

Условие: $\forall x \in \text{Dom}(\varphi) \quad \varphi(x) \neq 0.$

Доказательство: Арифметическое свойство предела (Сумма)

Условие

$$\lim_{x\to x_0} f(x) = A \quad \text{if} \quad \lim_{x\to x_0} \varphi(x) = B.$$

Доказательство

По определению предела:

$$\lim_{x \to x_0} f(x) = A \iff \forall \varepsilon_1 > 0 \,\exists \delta_1 > 0 : \forall x \in \dot{U}(\delta_1),$$
$$|x - x_0| < \delta_1 \implies |f(x) - A| < \varepsilon_1.$$

$$\lim_{x \to x_0} \varphi(x) = B \iff \forall \varepsilon_2 > 0 \,\exists \delta_2 > 0 : \forall x \in \dot{U}(\delta_2),$$
$$|x - x_0| < \delta_2 \implies |\varphi(x) - B| < \varepsilon_2.$$

Пусть $\varepsilon = \varepsilon_1 + \varepsilon_2$, и $\delta = \min(\delta_1, \delta_2)$. Тогда:

$$|f(x) + \varphi(x) - (A+B)| = |f(x) - A + \varphi(x) - B| \le |f(x) - A| + |\varphi(x) - B|.$$

Из условий следует:

$$|f(x) - A| < \varepsilon_1$$
 и $|\varphi(x) - B| < \varepsilon_2$.

Таким образом:

$$|f(x) + \varphi(x) - (A+B)| < \varepsilon_1 + \varepsilon_2 = \varepsilon.$$

Вывод

$$\lim_{x \to x_0} (f(x) + \varphi(x)) = A + B.$$

Теорема о суперпозиции

- 1) f(x) u g(x) : F(x) = F(f(g(x)))
 - $2) \lim_{x \to x_0} g(x) = A$
 - $3) \lim_{x \to x_0} f(x) = B$

Следовательно:

$$\lim_{x \to x_0} F(f(g(x))) = B$$

Доказательство: $\exists x = Dom(g); y = Dom(f)$ Тогда по определению предела $\lim_{x \to x_0} g(x) = A \iff \forall \varepsilon_1 > 0 \exists \delta_1 > 0 : \forall x \in \dot{U}(\delta_1) \ |g(x) - A| < \varepsilon \lim_{y \to A} f(y) = B \iff \forall \varepsilon_2 > 0 \exists \varepsilon_1 > 0 : \forall y \in \dot{U}(A) \ |f(y) - B| < \varepsilon_2$ Следовательно: $\forall \varepsilon_2 > 0 \exists \dot{U}_\delta(x_0) > 0 : \forall x \in \dot{U}_\delta(x_0) \implies f(g(x)) \in \dot{U}_{\varepsilon_2}(B) \implies B = \lim_{x \to x_0} f(g(x)) \ |f(g(x)) - B| < \varepsilon_2 \implies B = \lim_{x \to x_0} f(g(x))$

8 Билет 8

Теоремы о пределах функции: о предельном переходе в неравенство

Рассмотрим неравенство:

$$a_n \le b_n$$

Пусть $\lim_{n\to\infty}a_n=A$ и $\lim_{n\to\infty}b_n=B$. Тогда, если $a_n\leq b_n$ для всех n, то по свойству пределов:

$$\lim_{n \to \infty} a_n \le \lim_{n \to \infty} b_n$$

Следовательно:

$$A \le B$$

Доказательство от противного: $\Box A>B$ Тогда $\lim_{x\to x_0}(f(x)-g(x))=A-B>0$ Из арифметических свойств пределов следует: $f(x)-g(x)>0 \implies f(x)>g(x)$ Это противоречит условию f(x)<=g(x)

Теорема о сжатой функции

Теорема о сжатой функции

Пусть f(x), g(x) и h(x) — функции, определенные на множестве $E \subset \mathbb{R}$ и выполняется неравенство

$$f(x) \le h(x) \le g(x),$$

и при этом

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = b,$$

то

$$\lim_{x \to a} h(x) = b.$$

Доказательство:

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = C \tag{7}$$

Тогда:

$$\forall \varepsilon_1 > 0 \exists \dot{U}_f(x_0) : \forall x \in \dot{U}_f(x_0) \tag{8}$$

$$|f(x) - C| < \varepsilon_1 \implies -\varepsilon_1 < f(x) - C < \varepsilon_1 \implies C - \varepsilon_1 < f(x) < \varepsilon_1 + C \tag{9}$$

$$\lim_{x \to x_0} h(x) = C \tag{10}$$

$$\forall \varepsilon_2 > 0 \exists \dot{U}_h(x_0) : \forall x \in \dot{U}_h(x_0) \tag{11}$$

$$|h(x) - C| < \varepsilon_2 \implies -\varepsilon_2 < h(x) - C < \varepsilon_2 \implies C - \varepsilon_2 < h(x) < \varepsilon_2 + C \tag{12}$$

$$f(x) \le g(x) \le h(x) \implies C - \varepsilon_1 < f(x) \le g(x) \le h(x) < \varepsilon_2 + C \tag{13}$$

Отсюда:

$$-\varepsilon_1 < g(x) < \varepsilon_2 + C - \varepsilon_1 < g(x) - C < \varepsilon_2 \tag{14}$$

Пересечём окрестности ε_1 и ε_2 и возьмем $min(-\varepsilon_2; \varepsilon_2)$ Тогда

$$-\varepsilon_2 < g(x) - < \varepsilon_2 \implies |g(x) - C| < \varepsilon_2 \implies \lim_{x \to x_0} g(x) = C$$
 (15)

1 замечательный предел

Рассмотрим предел:

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

Доказательство:

Рассмотрим односторонние пределы и докажем, что они равны 1. Рассмотрим случай $x \to +0$. Отложим этот угол на единичной окружности так, чтобы его вершина совпадала с началом координат, а одна сторона совпадала с осью OX. Пусть A — точка пересечения второй стороны угла с единичной окружностью, а точка B — с касательной к этой окружности в точке A. Точка C — проекция точки A на ось OX. Очевидно, что:

$$S_{\triangle OAC} < S_{\text{cektopa }OAC} < S_{\triangle OAB}$$

где S — площадь. Поскольку $|OC| = \cos x$, $|AC| = \sin x$, $|AB| = \tan x$, то:

$$\frac{\sin x}{2} < \frac{x}{2} < \frac{\tan x}{2}$$

Так как при $x \to +0$: $\sin x > 0$, x > 0, $\tan x > 0$:

$$\frac{1}{\tan x} < \frac{1}{x} < \frac{1}{\sin x}$$

Умножаем на $\sin x$:

$$\cos x \le \frac{\sin x}{x} \le 1$$

Переходя к пределу:

$$\lim_{x\to +0}\cos x \leq \lim_{x\to +0}\frac{\sin x}{x} \leq 1$$

Так как $\lim_{x\to+0}\cos x=1$, то:

$$\lim_{x \to +0} \frac{\sin x}{x} = 1$$

Аналогично доказывается для $x \to -0$. Следовательно:

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

9 Билет 9

Предел функции на бесконечности

Определение: Число A называется пределом функции f(x) при $x \to \infty$ если $\forall \varepsilon > 0 \exists \delta = \delta(\varepsilon) > 0$: $\forall x \in Dom(f)$ из $|x| > \Rightarrow |f(x) - A| < \varepsilon$.

10 Билет 10

Бесконечно большие функции.

Функция f(x) называется бесконечно большой при $x \to x_0$, если

$$\forall M > 0 \,\exists \delta > 0 \,$$
такое, что $0 < |x - x_0| < \delta \Rightarrow |f(x)| > M$

Пример: Функция $f(x) = \frac{1}{x}$ является бесконечно большой при $x \to 0$.