PART -1

```
input [111:0] binary_input,
output reg [6:0] part_7790_0, part_7790_1, part_7790_2, part_7790_3, part_7790_4, part_7790_5,
                  part_7790_6, part_7790_7, part_7790_8, part_7790_9, part_7790_10,
                  part_7790_11, part_7790_12, part_7790_13, part_7790_14, part_7790_15
  part_7790_0 <= binary_input[6:0];
  part_7790_1 <= binary_input[13:7];
part_7790_2 <= binary_input[20:14];
  part_7790_3 <= binary_input[27:21];
  part_7790_4 <= binary_input[34:28];
  part_7790_5 <= binary_input[41:35];</pre>
  part_7790_6 <= binary_input[48:42];
  part_7790_7 <= binary_input[55:49];
  part_7790_8 <= binary_input[62:56];
  part_7790_9 <= binary_input[69:63];
part_7790_10 <= binary_input[76:70];
  part_7790_11 <= binary_input[83:77];
  part_7790_12 <= binary_input[90:84];
  part_7790_13 <= binary_input[97:91];</pre>
  part_7790_14 <= binary_input[104:98];</pre>
  part_7790_15 <= binary_input[111:105];</pre>
```

The "bintoascii" Verilog module transforms a binary input into various ASCII elements. The module is described as follows:

1. Inputs:

 binary_input (112-bit input): This is a binary input that contains the ASCII characters that need to be divided.

2. Outputs:

• part0 to part15 (7-bit outputs): These show the 16 ASCII character parts that were derived from the binary input. 7 bits are assigned to each component.

3. Behavior:

- The always @* block specifies a combinational logic that runs each time the inputs (binary_input) change.
- The individual parts (part0 to part15) are assigned values based on specific ranges of bits from the binary input.
- For example, part0 is assigned the value of binary_input[6:0], which extracts the first 7 bits from binary_input.
- Similarly, the other parts are assigned values based on different ranges of bits from binary input.

The purpose of this module is to divide a 112-bit binary input into 16 smaller parts, each representing a specific section of the ASCII characters being encoded.

I tried to do with arrays, but I couldn't make it because I was getting some errors and after searching about that errors that I knowledge that Verilog doesn't support arrays.

OUTPUT

PART -2

I implemented the same logic in my coding also.

7 BIT -BINARY	11BIT HAMMING CODE	HEXA DECIMAL
1. 1001000	00110010000	190
2. 1100101	10111000101	1C5
3. 1101100	00101011100	15C
4. 1101100	00101011100	15C
5. 1101111	10101011111	55F
6. 0100000	10011000000	4C0
7. 1000011	01100000011	303
8. 1001111	00110011111	19F
9. 1001101	01110010101	395F
10. 1010000	10110100000	5A0
11. 0110011	01001100011	263
12. 0110001	00001101001	69
13. 0110001	00001101001	69
14. 0101101	00001010101	55
15. 0110010	10001101010	46A
16. 0100001	01011001001	2C9

```
PART-2
* Igot 16 outputs from part 1 each output Contain 76it
  binary number
 I am Converting -all the 16 Outputs into hamming Code
   The Obtained hamming codeword is Converted into hexa-dec
Conversion ! -
we know that 2 -1 ZMH
 where pie no. of parity bits
 mis no of message bits
In our Case P satisfies 4
+ I am taking Hamming Code length is 11 12
           3 4 6 6
     P2 -M6 P3 m5 mu m3 P4 m2
    first output is 1001000
                           fy 0 0
              P3 0 0
     obtain Pi
     need to NOR the places
      P1 = 30 ( + 70 90 11
  for 12 = 30 60 70 100 11 =
  For P3 we need to xor
    Ps = 500 600 7
           0000
    1P3=1
 For Pq we need to xor
```

P4 = 9 + 10 + 11 | P4 = 0

The sequired 11 bit hamming Code is 00110010000

OUTPUT

```
out_77990_0 = 190
out_77990_1 = 1c5
out_77990_2 = 15c
out_77990_3 = 15c
out_77990_4 = 55f
out_77990_5 = 4c0
out_77990_6 = 303
out_77990_7 = 19f
out_77990_8 = 395
out_77990_9 = 5a0
out_77990_10 = 263
out_77990_11 = 069
out_77990_12 = 069
out_77990_13 = 055
out_77990_14 = 46a
out_77990_15 = 2c9
```

QOR

QOR	
********	******
Report : qor Design : hamming	
Version: S-2021 06-SP4	
Date : Tue May 23 12:37:	22 2023
Version: S-2021.06-SP4 Date : Tue May 23 12:37:2	 *******
Timing Path Group (none)	
	2.00
Levels of Logic: Critical Path Length:	0.43
Critical Path Slack:	uninit
Critical Path Clk Period	: n/a
Total Negative Slack:	0.00
No. of Violating Paths:	0.00
Worst Hold Violation: Total Hold Violation: No. of Hold Violations:	0.00
No. of Hold Violation:	0.00 0.00
No. of Hota Violations.	0.00
Cell Count	
Hierarchical Cell Count:	16
Hierarchical Port Count: Leaf Cell Count:	288 112
Buf/Inv Cell Count:	0
Buf/Inv Cell Count: Buf Cell Count: Inv Cell Count: CT Buf/Inv Cell Count:	Õ
Inv Cell Count:	0
CT Buf/Inv Cell Count:	0
Combinational Cell Count	: 112
Sequential Cell Count:	0
Macro Count:	0
Area	
Combinational Area:	585.547768
Noncombinational Area: Buf/Inv Area:	0.000000 0.000000
Total Buffer Area:	0.00
Total Buffer Area: Total Inverter Area:	0.00
Macro/Black Box Area:	0.000000
Net Area:	67.630114
Cell Area:	585.547768
Design Area:	653.177881
Design Rules	
Total Number of Nets:	224
Nets With Violations: Max Trans Violations:	0
Max Trans Violations: Max Cap Violations:	0 0
max cap violations:	0