Fixed and random effects in HMSC

Prof. Otso Ovaskainen

University of Jyväskylä, Finland University of Helsinki, Finland NTNU Trondheim, Norway

Overview of the structure of HMSC

HMSC is a multivariate hierarchical generalized linear mixed model fitted with Bayesian inference

Table 4.1 Definitions of statistical frameworks as used in this book.

Name of the statistical framework as used in this book	Number of explanatory variables	Types of explanatory variables	Number of response variables	Types of response variables	Random effects	Introduced in
Linear model	Zero or more	Continuous or categorical	One	Only normally distributed	Does not include	Section 5.2
Generalised linear model	Zero or more	Continuous or categorical	One	Can be non- normally distributed	Does not include	Section 5.3
Linear mixed model	Zero or more	Continuous or categorical	One	Only normally distributed	Can include	Section 5.4
Generalised linear mixed model	Zero or more	Continuous or categorical	One	Can be non- normally distributed	Can include	Section 5.4
Multivariate linear model	Zero or more	Continuous or categorical	One or more	Only normally distributed	Does not include	Section 6.1
Multivariate generalised linear model	Zero or more	Continuous or categorical	One or more	Can be non- normally distributed	Does not include	Section 6.1
Multivariate linear mixed model	Zero or more	Continuous or categorical	One or more	Only normally distributed	Can include	Section 7.3
Multivariate generalised linear mixed model	Zero or more	Continuous or categorical	One or more	Can be non- normally distributed	Can include	Section 7.3

Table 4.1 Definitions of statistical frameworks as used in this book.

Name of the statistical framework as used in this book	Number of explanatory variables	Types of explanatory variables	Number of response variables	Types of response variables	Random effects	Introduced in
Linear model	Zero or more	Continuous or categorical	One	Only normally distributed	Does not include	Section 5.2

Table 4.1 Definitions of statistical frameworks as used in this book.

Name of the statistical framework as used in this book	Number of explanatory variables	Types of explanatory variables	Number of response variables	Types of response variables	Random effects	Introduced in
Generalised linear model	Zero or more	Continuous or categorical	One	Can be non- normally distributed	Does not include	Section 5.3

OR

Table 4.1 Definitions of statistical frameworks as used in this book.

Name of the statistical framework as used in this book	Number of explanatory variables	Types of explanatory variables	Number of response variables	Types of response variables	Random effects	Introduced in
Multivariate generalised linear model	Zero or more	Continuous or categorical	One or more	Can be non- normally distributed	Does not include	Section 6.1
Species 1 Species 2 Species 3 Species n	Species occurrence	1. 0.8 0.8 0.8 0.6 0.8 0.6 0.4 0.9 0.4 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0				
		Explanatory	variable x			

Table 4.1 Definitions of statistical frameworks as used in this book.

Name of the statistical framework as used in this book	Number of explanatory variables	Types of explanatory variables	Number of response variables	Types of response variables	Random effects	Introduced in
Multivariate generalised linear mixed model	Zero or more	Continuous or categorical	One or more	Can be non- normally distributed	Can include	Section 7.3

Random effects defined at hierarchically structured, spatially structured or temporally structured units

HMSC as a directed acyclic graph

What data matrices HMSC takes as input and what are their dimensions?

traits

species

Index and its range	Refers to
$i=1,\ldots,n$	Sampling unit
$j=1, \ldots, n_s$	Species
$k=1, \ldots, n_c$	Environmental covariate
$l=1, \ldots, n_t$	Species trait
$h=1, \ldots, n_f$	Latent factor
$u=1,\ldots,n_u$	Hierarchical unit
q = 1,, d	Spatial coordinate in \mathbb{R}^d
$r=1,\ldots,n_r$	Random effect

Table 4.3 Data matrices and their dimensions in the core HMSC model. The spatial coordinates are defined separately for each random effect r.

Data matrix	Dimension	Refers to
\mathbf{Y} , element y_{ij}	$n \times n_s$	Community data
\mathbf{X} , element x_{ik}	$n \times n_c$	Environmental data
\mathbf{T} , element t_{il}	$n_s \times n_t$	Species trait data
C , element $c_{j_1j_2}$	$n_s \times n_s$	Phylogenetic data
Π , element π_{iu}	$n \times n_u$	Study design
S , element s_{uq}	$n_u \times d$	Spatial coordinates

What parameters are estimated in an HMSC model?

Table 4.4 Parameters and their interpretations in the core HMSC model. The 'Category' column indicates whether the parameter is related to the fixed effect (F), random effect (R), or data model (D) part of HMSC. The parameters of the random effect part are defined separately for each random effect r.

Category	Parameter	Type	Interpretation
F	\mathbf{L}^{F} , element L_{ii}^{F}	$n \times n_s$ matrix	Linear predictor of fixed effects
F	B , element β_{kj}		Species niches
F	\mathbf{M} , element μ_{kj}		Expected species niches based on traits
F	ρ	scalar	Phylogenetic signal in species niches
F	Γ , element γ_{kl}	$n_c \times n_t$ matrix	Influence of traits on niches
F	V , element V_{k_1k2}	$n_c \times n_c$ matrix	Residual covariance of species niches
R	\mathbf{L}^{R} , element L^{R}_{ii}	$n \times n_s$ matrix	Linear predictor of random effects
R	H , element η_{uh}	$n_u \times n_f$ matrix	Site loadings
R		vector of length n_f	Spatial scale of site loadings
R	Λ , element λ_{hj}		Species loadings
R	$\mathbf{\Omega}$, element Ω_{j_1j2}		Species associations
R	Φ , element ϕ_{hj}	$n_f \times n_s$ matrix	Local shrinkage of species loadings
R	$\boldsymbol{\delta}$, element δ_l	vector of length n_f	Global shrinkage of species loadings
D	L , element L_{ij}	$n \times n_s$ matrix	Linear predictor
D	~	$n_s \times n_s$ diagonal matrix	Residual variance

How does HMSC link to ecological theory?

Closer look at the fixed effects

Full HMSC

Spatio-temporal context

2000

1980

2020

Environment Occurrence sampling units sampling unit species covariates Phylogeny **Traits** species

species

Single-species HMSC

Let's first look at the single-species case

traits

Back to basics: the linear model

The linear model: $y_i = \alpha + \beta x_i + \varepsilon_i$

Index for data points: i = 1,2,3,...,n

Response (or dependent) variable: y

Explanatory (or independent or predictor) variable:

Residual: $\varepsilon_i \sim N(0, \sigma^2)$

Intercept: α

Slope: /

Several explanatory variables and the linear predictor

The linear model with two variables: $y_i = \alpha + \beta_1 x_{i1} + \beta_1 x_{i2} + \varepsilon_i$

Can also be parameterized as: $y_i = \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \varepsilon_i$

where $x_{i1} = 1$ for all sampling units i

Can be written more compactly as $y_i = L_i + \varepsilon_i$ where

$$L_i = \sum_{k=1}^{n_c} \beta_k x_{ik}$$
 is the linear predictor and n_c is the number of covariates (including the intercept)

Continuous versus categorical predictors

In the basic linear model $y_i = \alpha + \beta x_i + \varepsilon_i$ x is a continuous explanatory variable (covariate)

Often x is a categorical explanatory variable (factor), e.g. habitat type classified as coniferous forest, broadleaved forest, or mixed forest.

This can be incorporated as:

$$L_i = \sum_{k=1}^{n_c} \beta_k x_{ik}$$
 $x_{i1} = 1$ for all sampling units
$$x_{i2} = 1$$
 if i is in broadleaved forest, otherwise $x_{i2} = 0$
$$x_{i3} = 1$$
 if i is in mixed forest, otherwise $x_{i3} = 0$

Full HMSC

Spatio-temporal context

2000

1980

2020

Single-species HMSC

Let's now look at the multi-species case

Full HMSC

$$L_{ij} = \sum_{k=1}^{n_c} \beta_{kj} x_{ik}$$

Single-species HMSC

$$L_i = \sum_{k=1}^{n_c} \beta_k x_{ik}$$

Variation in species niches among the species

Figure 6.1 Illustration of variation in species niches. In both panels, each dot corresponds to one species in a community of 100 species. In panel A, there is continuous variation among species niches, whereas in panel B the species niches form three clusters.

Variation in species niches among the species

Figure 6.1 Illustration of variation in species niches. In both panels, each dot corresponds to one species in a community of 100 species. In panel A, there is continuous variation among species niches, whereas in panel B the species niches form three clusters.

Variation in species niches among the species

A simple statistical model for variation in species niches:

$$\boldsymbol{\beta}_{\cdot j} \sim N(\boldsymbol{\mu}, \mathbf{V})$$

How to utilize data on species traits?

species

covariates

Traits

traits

Modelling the influence of species traits on their niches

Species-specific expected value:

$$\boldsymbol{\beta}_{\cdot j} \sim N(\boldsymbol{\mu}_{\cdot j}, \mathbf{V})$$

Modelled as regression to species traits:

$$\mu_{kj} = \sum_{l=1}^{n_t} t_{jl} \gamma_{kl}$$

The trait l of species j

The influence of trait l on how the species is expected to respond to covariate k

How to utilize data on phylogenetic relationships?

Modelling the influence of phylogeny on species niches

Evolutionary time

Modelling the influence of phylogeny on species niches

Ilustration of systematic variation in species niches across the phylogeny

Modelling the influence of phylogeny on species niches

The basic model in matrix notation:

$$\boldsymbol{\beta}_{\cdot j} \sim N(\boldsymbol{\mu}, \mathbf{V})$$

$$vec(\mathbf{B}) \sim N(vec(\mathbf{M}), \mathbf{I} \otimes \mathbf{V})$$

Phylogenetically structured model in matrix notation:

$$vec(\mathbf{B}) \sim N(vec(\mathbf{M}), \mathbf{W} \otimes \mathbf{V})$$

$$\mathbf{W} = \rho \mathbf{C} + (1 - \rho)\mathbf{I}$$

The parameter ρ measures the strength of phylogenetic signal in species niches

Modelling the joint influence of species traits and phylogeny on species niches

Distribution of species niches, as estimated with HMSC (BetaPlot)

Closer look at the random effects

Full HMSC

Spatio-temporal context

2000

1980

2020

Environment Occurrence sampling units sampling unit species covariates Phylogeny **Traits** species

species

Single-species HMSC

Let's first look at the single-species case

traits

Hierarchical study design:

Linear model with fixed effects only:
$$y_i = L_i + \varepsilon_i$$

$$L_i = \sum_{k=1}^{n_c} \beta_k x_{ik} \qquad \qquad \begin{array}{c} \text{iid} \\ \varepsilon_i \sim N(0, \sigma^2) \end{array}$$

Hierarchical study design:

Linear model with fixed and random effects: $y_i = L_i + a_{p(i)} + \varepsilon_i$

$$L_i = \sum_{k=1}^{n_c} \beta_k x_{ik}$$

iid
$$a_p \sim N(0, \sigma_P^2)$$

iid iid
$$a_p \sim N(0, \sigma_P^2) \qquad \qquad \varepsilon_i \sim N(0, \sigma^2)$$

Spatial study design:

Figure 5.9 An illustration of environmental and species data used in this example. The panels show spatial variation in habitat type (A), climatic conditions (B), and the counts of the target species across Finland (C).

Spatial study design:

Linear model without spatial structure: $y_i = L_i + \varepsilon_i$

$$L_i = \sum_{k=1}^{n_c} \beta_k x_{ik} \qquad \qquad \begin{array}{c} \text{iid} \\ \varepsilon_i \sim N(0, \sigma^2) \end{array}$$

Mixed models: fixed effects and random effects

Spatial study design:

Linear model with spatial structure:

$$y_i = L_i + a_i + \varepsilon_i$$

$$L_i = \sum_{k=1}^{n_c} \beta_k x_{ik}$$

$$a_i \sim N(0, \sigma_S^2)$$

$$Cov(a_i, a_j) = \sigma_S^2 \exp(-d_{ij}/\alpha)$$

iid
$$\varepsilon_i \sim N(0, \sigma^2)$$

Fitting a spatial model enables using spatial information when generating predictions

Full HMSC

Spatio-temporal context

2000

1980

2020

Single-species HMSC

Let's now look at the multi-species case

Occurrence and co-occurrence probabilities

Capercaillie (Tetrao urogallus)

Source: Wikimedia

White-backed woodpecker (Dendrocopos luecotos)

Source: Wikimedia

$$p_1 = 0.5$$

$$p_2 = 0.5$$

Co-occurrence probabilities

+

 $q_{11} = \cdots$

+

 $q_{10} = \cdots$

+

$$q_{01} = \cdots$$

$$q_{00} = \cdots$$

$$p_1 = 0.5$$

$$p_2 = 0.5$$

$$q_{11} = 0.25$$

$$q_{10}=0.25$$
 ion so No association $q_{01}=0.25$

$$q_{01} = 0.25$$

$$q_{00} = 0.25$$

$$p_1 = 0.5$$

$$p_2 = 0.5$$

Co-occurrence probabilities

$$q_{11} = 0$$

$$q_{10} = 0.5$$

$$q_{01} = 0.5$$

$$q_{00} = 0.0$$

$$p_1 = 0.5$$

$$p_2 = 0.5$$

Co-occurrence probabilities

$$q_{10}=0$$

$$q_{01}=0$$

$$q_{00} = 0.5$$

$$p_1 = 0.5$$

$$p_2 = 0.5$$

Co-occurrence probabilities

$$q_{10} = 0.4$$

$$q_{01} = 0.4$$

$$q_{00} = 0.1$$

HMSC with fixed and random effects

$$L_{ij} = L_{ij}^F + L_{ij}^R$$

Fixed effects:

$$L_{ij}^F = \sum_{k=1}^{n_c} x_{ik} \beta_{kj}$$

Random effects:

$$L_{ij}^{R} = \sum_{h=1}^{n_f} \eta_{ih} \lambda_{hj}$$

Site loadings Species loadings

HMSC with fixed and random effects (in matrix notation)

$$L_{ij} = L_{ij}^F + L_{ij}^R$$
$$\mathbf{L} = \mathbf{L}^F + \mathbf{L}^R$$

Fixed effects:

$$L_{ij}^F = \sum_{k=1}^{n_c} x_{ik} \beta_{kj}$$

$$\mathbf{L}^F = \mathbf{X}\mathbf{B}$$

Random effects:

$$L_{ij}^{R} = \sum_{h=1}^{n_f} \eta_{ih} \lambda_{hj}$$

$$\mathbf{L}^{R} = \mathbf{H}\mathbf{\Lambda}$$

Prior distributions for site and species loadings

iid
$$\eta_{ih} \sim N(0,1)$$

$$\lambda_{hj} \sim \frac{\text{Multiplicative gamma process shrinking prior}}{\text{(Bhattacharya and Dunson 2011)}}$$

Prior distributions for site and species loadings

iid

$$\eta_{ih} \sim N(0,1)$$

Multiplicative gamma process shrinking prior for λ_{hj} :

$$\lambda_{hj} \mid \phi_{hj}, \delta \sim N\left(0, \phi_{hj}^{-1} \tau_h^{-1}\right), \tau_h = \prod_{l=1}^h \delta_l$$

$$\phi_{hj} \mid v \sim \text{Ga}(v/2, v/2)$$

$$\delta_1 | a, b \sim Ga(a_1, b_1), \delta_l | a, b \sim Ga(a_2, b_2) \text{ for } l \ge 2$$

Covariance between linear predictors

Number of factors
$$L_{ij}^{R} = \sum_{h=1}^{n_f} \eta_{ih} \lambda_{hj}$$
 Site loadings Species loadings

iid
$$\eta_{ih} \sim N(0,1) \implies \text{Cov}[L_{i_1 j_1}^R, L_{i_2 j_2}^R] = \sum_{h=1}^{n_f} \lambda_{h j_1} \lambda_{h j_2} \delta_{i_1 i_2}$$

Covariance between linear predictors

Number of factors
$$L_{ij}^R = \sum_{h=1}^{n_f} \eta_{ih} \lambda_{hj}$$
 Site loadings Species loadings

iid

$$\eta_{ih} \sim N(0,1) \Rightarrow \text{Cov}[L_{i_1j_1}^R, L_{i_2j_2}^R] = \sum_{h=1}^{n_f} \lambda_{hj_1} \lambda_{hj_2} \delta_{i_1i_2}$$

$$\Rightarrow L_{i}^{R} \sim N(0, \Omega) \qquad \Omega = \Lambda^{T} \Lambda$$

Association matrix at the correlation scale

$$\mathbf{R} = \operatorname{scale}(\mathbf{\Omega})$$

$$R_{j_1 j_2} = \frac{\Omega_{j_1 j_2}}{\sqrt{\Omega_{j_1 j_1} \Omega_{j_2 j_2}}}$$

Unstructured & structured (spatial) site loadings

$$L_{ij}^{R} = \sum_{h=1}^{n_f} \eta_{ih} \lambda_{hj}$$

HmscRandomLevel(units=plots)

Un-structured site loadings:

$$\begin{array}{ccc}
\text{iid} \\
\eta_{ih} \sim N(0,1) & \Rightarrow & \text{Cov}[L_{i_1j_1}^R, L_{i_2j_2}^R] = \sum_{h=1}^{n_f} \lambda_{hj_1} \lambda_{hj_2} \delta_{i_1i_2}
\end{array}$$

HmscRandomLevel(sData=xy)

$$\eta_{\cdot h} \sim N(0, \Sigma_h), \quad \Sigma_{h, i_1 i_2} = \exp(-d_{i_1 i_2}/\alpha_h)$$

Spatial site loadings:

$$\Rightarrow \operatorname{Cov}[L_{i_1j_1}^R, L_{i_2j_2}^R] = \sum_{h=1}^{n_f} \lambda_{hj_1} \lambda_{hj_2} \exp(-d_{i_1i_2}/\alpha_h)$$

Multiple random effects in the same model

Study design

Presence-absence of 60 bryophyte species surveyed on 204 aspen trees within 14 natural forest sites and 14 logging sites.

Retention aspens on a logging site.

Radula complanata

Neckera pennata

Ovaskainen et al. 2017 (ELE), Oldén et al. (2014)

Study design

Presence-absence of 60 bryophyte species surveyed on 204 aspen trees within 14 natural forest sites and 14 logging sites.

Retention aspens on a logging site.

Multiple random effects in the same model

Species associations

Multiple random effects in the same model

Number of random effects

$$L_{ij}^R = \sum_{r=1}^{n_r} L_{ij}^{r,R}$$

$$L_{ij}^{r,R} = \sum_{h=1}^{n_f^r} \eta_{u^r(i)h}^r \lambda_{hj}^r$$

Units (e.g. plots) of random effect r

Spatial random effects / site loadings as hidden environmental covariates

Ovaskainen et al. 2016 (MEE): butterflies in UK

Fitting a multivariate spatial model enables using spatial information OF THE SAME AND OTHER SPECIES when generating predictions

