Introduction to Bioinformatics

JTMS-19

Marc-Thorsten Hütt

mhuett@constructor.university

Felix Jonas

fjonas@constructor.university

session Wed, 6. Nov. 2024 Hidden Markov models I

What is this session about?

Hidden Markov models (HMMs) are introduced. Viterbi algorithm of HMMs is discussed. First ideas of posterior decoding are introduced.

How can you revise the material after the session?

Read Durbin et al. chapters 3.2, 3.3, 3.4
Read Baxevanis/Oullette pages 208 – 210
alternative reading: Hütt/Dehnert chapters 2.8.1 – 2.8.4

Markov chains as a tool for studying CpG islands

+	A	C	G	T	-	A	C	G	T
A	0.180	0.274	0.426	0.120	A	0.300	0.205	0.285	0.210
C	0.171	0.368	0.274	0.188	C	0.322	0.298	0.078	0.302
G	0.161	0.339	0.375	0.125	G	0.248	0.246	0.298	0.208
T	0.079	0.355	0.384	0.182	T	0.177	0.239	0.292	0.292

$$S(x) = \log\left(\frac{P(x \mid \text{model } +)}{P(x \mid \text{model } -)}\right) = \log\left(\frac{P(B)\prod_{i=1}^{L} a_{x_{i-1}x_{i}}^{+}}{P(B)\prod_{i=1}^{L} a_{x_{i-1}x_{i}}^{-}}\right) = \sum_{i=1}^{L} \log\left(\frac{a_{x_{i-1}x_{i}}^{+}}{a_{x_{i-1}x_{i}}^{-}}\right) = \sum_{i=1}^{L} \beta_{x_{i-1}x_{i}}$$

a number for each sequence x

→ histogram of score values S(x)

for many sequences x

a number for each dinucleotide

→ table of "log-likelihoods"

Markov chains as a tool for studying CpG islands

$\mathcal{B}(\log_2)$	А	С	G	Т
А	-0.740	0.419	0.580	-0.803
С	-0.913	0.302	1.812	-0.0685
G	-0.624	0.461	0.331	-0.730
Т	-1.169	0.573	0.393	-0.679

table of "log-likelihoods"

histogram of scores

Hidden Markov model (HMM) for CpG islands

internal state: A_+ , C_+ , G_+ , T_+ , A_- , C_- , G_- , T_-

emitted state: A C G T A C G T

general properties of HMM

simulation of a sequence

joint probability of the path and the sequence

$$P(x, \pi) = a_{\pi_0 \pi_1} \prod_{i=1}^{L} e_{\pi_i}(x_i) a_{\pi_i \pi_{i+1}}$$

elementary example: casino with two dice

$$S_{HMM} = \{ F, U \}$$

- emission prob's are 0 or 1
- transition prob's are products

(e.g.
$$a_{2U,1U} = P_U p_{U1}$$
)

Training:

parameter estimation from an ensemble of sequences with a given internal structure

Evaluation:

obtaining the sequence x out of a given internal sequence (path) p

Decoding:

finding the internal path p behind an observed sequence x

Casino: results

Rolls	315116246446644245321131631164152133625144543631656626566666
Die	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Viterbi	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls	651166453132651245636664631636663162326455235266666625151631
Die	LLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Viterbi	LLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls	222555441666566563564324364131513465146353411126414626253356
Die	FFFFFFFFLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFF
Viterbi	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls	366163666466232534413661661163252562462255265252266435353336
Die	LLLLLLEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Viterbi	LLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls	233121625364414432335163243633665562466662632666612355245242
Die	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Viterbi	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

Finding the genes in genomic DNA Christopher B Burge* and Samuel Karlin†

Addresses

*Center for Cancer Research and Department of Biology,
Massachusetts Institute of Technology, 40 Ames Street, E17-526
Cambridge, MA 02139, USA; e-mail: cburge@mit.edu
†Department of Mathematics, Stanford University, 450 Serra Mall,
Stanford, CA 94305, USA; e-mail: sam@galois.stanford.edu
Correspondence: Samuel Karlin

Current Opinion in Structural Biology 1998, 8:346-354

The GenScan HMM

GENSCAN (Burge & Karlin)

Yeh, Lim, and Burge, Genome Research 11:803-816, 2001.

Casino: results

Summary of the Viterbi algorithm

$$v_0(0) = 1$$
 , $v_k(0) = 0$ $\forall k \in \Sigma_{HMM}$

initialization

$$v_l(i+1) = e_l(x_{i+1}) \max_k \{v_k(i) \, a_{kl}\}$$

recursion

$$\max_{k} \{v_k(L) \, a_{k0}\} = P(x, \pi^*)$$
 termination

$$a_{k0} = \frac{1}{|\Sigma_{HMM}|} \quad \forall k \in \Sigma_{HMM}$$

$$\pi_{L-1}^* = Z_{L-1}(\pi_L^*)$$

traceback

:

$$\pi_{i-1}^* = Z_{i-1}(\pi_i^*)$$

: