BEST AVAILABLE COPY

PCT/JP 2004/011080

日本国特許庁 JAPAN PATENT OFFICE

08.09.2004

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年 8月 7日

出 願 番 号 Application Number:

人

特願2003-288547

[ST. 10/C]:

[JP2003-288547]

出 願
Applicant(s):

本田技研工業株式会社

REC'D 2 9 OCT 2004

WIPO PCT

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年10月14日

)· "

【書類名】 特許願 【整理番号】 PCG17649HM

【提出日】平成15年 8月 7日【あて先】特許庁長官殿【国際特許分類】F16D 3/22

【国際特許分類】 【発明者】

【住所又は居所】 栃木県真岡市松山町19 本田技研工業株式会社 栃木製作所内

【氏名】 五十嵐 正彦

【発明者】

【住所又は居所】 栃木県真岡市松山町19 本田技研工業株式会社 栃木製作所内

【氏名】 望月 武志

【発明者】

【住所又は居所】 栃木県真岡市松山町19 本田技研工業株式会社 栃木製作所内

【氏名】 小杉 雅紀

【特許出願人】

【識別番号】 000005326

【氏名又は名称】 本田技研工業株式会社

【代理人】

【識別番号】 100077665

【弁理士】

【氏名又は名称】 千葉 剛宏

【選任した代理人】

【識別番号】 100116676

【弁理士】

【氏名又は名称】 宮寺 利幸

【選任した代理人】

【識別番号】 100077805

【識別番号】 【弁理士】

【氏名又は名称】 佐藤 辰彦

【手数料の表示】

【予納台帳番号】 001834 【納付金額】 21,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

【物件名】 明細書 1 【物件名】 図面 1 【物件名】 要約書 1 【包括委任状番号】 9711295 【包括委任状番号】 0206309

【請求項1】

シャフトに形成されたシャフト歯部と、前記シャフトの外周側に配置されたハブのハブ 歯部とが係合することにより、前記シャフト及びハブ間で相互にトルク伝達が可能に結合 された機構において、

前記シャフト歯部は、歯厚が一定の直線状からなり且つ軸線方向に沿って一定の外径からなる山部を有し、

前記ハブ歯部は、歯厚が一定の直線状からなり且つ端部からシャフトシャンク側に向かって内径が変化する山部と、軸線方向に沿って一定の径からなる谷部とを有することを特徴とするシャフト及びハブの動力伝達機構。

【請求項2】

シャフトに形成されたシャフト歯部と、前記シャフトの外周側に配置されたハブのハブ 歯部とが係合することにより、前記シャフト及びハブ間で相互にトルク伝達が可能に結合 された機構において、

前記シャフト歯部は、歯厚が一定の直線状からなり且つ軸線方向に沿って一定の外径からなる山部と、端部からシャフトシャンク側に向かって径が変化する谷部とを有し、

前記ハブ歯部は、歯厚が一定の直線状からなり且つ端部からシャフトシャンク側に向かって内径が変化する山部と、軸線方向に沿って一定の径からなる谷部とを有し、

前記シャフト歯部の谷部には、前記ハブ歯部側に向かって所定の曲率で延在する円弧部が形成され、前記ハブ歯部の山部には、前記円弧部に臨み、該シャフト歯部側と反対方向に窪んだ段差部が形成されることを特徴とするシャフト及びハブの動力伝達機構。

【請求項3】

請求項1記載の機構において、

前記シャフト歯部の谷部に連続する円弧部の起点と、前記ハブ歯部の山部に連続する段差部の起点とは、それぞれ所定距離だけオフセットした位置に設定されることを特徴とするシャフト及びハブの動力伝達機構。

【書類名】明細書

【発明の名称】シャフト及びハブの動力伝達機構

【技術分野】

[0001]

本発明は、シャフト及びハブからなる2部材間で回転トルクを円滑に伝達することが可能なシャフト及びハブの動力伝達機構に関する。

【背景技術】

[0002]

自動車等の車両において、エンジンからの駆動力を車軸に伝達するためにシャフトを介して一組の等速ジョイントが用いられている。この等速ジョイントは、アウタ部材とインナ部材との間に配設されたトルク伝達部材を介してアウタ部材・インナ部材間のトルク伝達を行うものであり、シャフトに形成されたシャフト歯部とハブに形成されたハブ歯部とが係合した歯部組立体を有するシャフト及びハブのユニットを含む。

[0003]

ところで、近年、騒音、振動等の動力伝達系のガタに起因して発生する等速ジョイントの円周方向のガタを抑制することが要求されている。従来では、内輪とシャフトとのガタを抑制するために、等速ジョイントの軸セレーションにねじれ角を設けたものがあるが、前記ねじれ角の方向とトルクの負荷方向によって、内輪及びシャフトの強度、寿命にばらつきが生じるおそれがある。

[0004]

また、歯車等の技術分野において、例えば、特許文献1~3に示されるように、その歯 面部にクラウニングを設ける技術的思想が開示されている。

[0005]

本出願人は、スプラインが形成されたスプラインシャフトのクラウニングトップの位置を、スプラインシャフトと等速ジョイントとの嵌合部位に回転トルクが付与された際に最小となるように設けることにより、所定部位に応力が集中することを抑制するとともに、装置の全体構成を簡素化することを提案している(特許文献4参照)。

[0006]

【特許文献1】特開平2-62461号公報

【特許文献2】特開平3-69844号公報

【特許文献3】特開平3-32436号公報

【特許文献4】特開2001-287122号公報

【発明の開示】

【発明が解決しようとする課題】

[0007]

本発明は、前記の提案に関連してなされたものであり、所定部位に対する応力集中を抑制して、より一層、静的強度及び疲労強度を向上させることが可能なシャフト及びハブの動力伝達機構を提供することを目的とする。

【課題を解決するための手段】

[0008]

前記の目的を達成するために、本発明は、シャフトに形成されたシャフト歯部と、前記シャフトの外周側に配置されたハブのハブ歯部とが係合することにより、前記シャフト及びハブ間で相互にトルク伝達が可能に結合された機構において、

前記シャフト歯部は、歯厚が一定の直線状からなり且つ軸線方向に沿って一定の外径からなる山部を有し、

前記ハブ歯部は、歯厚が一定の直線状からなり且つ端部からシャフトシャンク側に向かって内径が変化する山部と、軸線方向に沿って一定の径からなる谷部とを有することを特徴とする。

[0009]

本発明によれば、例えば、段差部等からなる内径が変化する山部をハブ歯部に形成する

ことにより、前記内径が変化したシャフト歯部とハブ歯部との係合部位における応力が分散され、応力集中が緩和される。

[0010]

さらに、本発明は、シャフトに形成されたシャフト歯部と、前記シャフトの外周側に配置されたハブのハブ歯部とが係合することにより、前記シャフト及びハブ間で相互にトルク伝達が可能に結合された機構において、

前記シャフト歯部は、歯厚が一定の直線状からなり且つ軸線方向に沿って一定の外径からなる山部と、端部からシャフトシャンク側に向かって径が変化する谷部とを有し、

前記ハブ歯部は、歯厚が一定の直線状からなり且つ端部からシャフトシャンク側に向かって内径が変化する山部と、軸線方向に沿って一定の径からなる谷部とを有し、

前記シャフト歯部の谷部には、前記ハブ歯部側に向かって所定の曲率で延在する円弧部が形成され、前記ハブ歯部の山部には、前記円弧部に臨み、該シャフト歯部側と反対方向に窪んだ段差部が形成されることを特徴とする。

[0011]

この場合、前記シャフト歯部の谷部に連続する円弧部の起点と、前記ハブ歯部の山部に 連続する段差部の起点とを、それぞれ所定距離だけオフセットした位置に設定するとよい

[0012]

本発明によれば、シャフト歯部とハブ歯部とが係合した状態において、前記シャフト及びハブの間に回転トルクが付与された場合、前記シャフト歯部に形成された所定の曲率半径からなる円弧部と前記ハブ歯部に形成された段差部との共働作用下にシャフト歯部とハブ歯部との係合部位に付与される応力が分散され、応力集中が緩和される。

[0013]

また、前記シャフト歯部の谷部にハブ歯部側に向かって所定の曲率で延在する円弧部を 形成することにより、応力が集中する部位であるシャフト歯部の谷部の径を増大させるこ とができ、軸強度を向上させることができる。

[0014]

さらに、シャフト歯部の谷部に連続する円弧部の起点とハブ歯部の山部に連続する段差部の起点とが所定間隔だけオフセットしているため、前記シャフト歯部に付与された応力が一方の起点と他方の起点とにそれぞれ分散されることにより、より一層応力集中が緩和される。この結果、シャフト歯部とハブ歯部との係合部位に対する静的強度及び疲労強度を向上させることができる。

【発明の効果】

[0015]

本発明によれば、以下の効果が得られる。

[0016]

すなわち、例えば、段差部等からなる内径が変化する山部をハブ歯部に形成することにより、前記内径が変化したシャフト歯部とハブ歯部との係合部位における応力が分散され、応力集中が緩和される。この結果、シャフト歯部とハブ歯部との係合部位に対する静的強度及び疲労強度を向上させることができる。

[0017]

また、シャフト歯部に形成された所定の曲率半径からなる円弧部と前記ハブ歯部に形成された段差部との共働作用下に、シャフト歯部とハブ歯部との係合部位に付与される応力がそれぞれ分散されることにより、応力の集中を緩和してシャフト歯部とハブ歯部との係合部位に対する静的強度及び疲労強度をより一層向上させることができる。

【発明を実施するための最良の形態】

[0018]

本発明に係るシャフト及びハブの動力伝達機構について好適な実施の形態を挙げ、添付の図面を参照しながら以下詳細に説明する。

[0019]

図1は、本発明の実施の形態に係る動力伝達機構が適用されたシャフト及びハブのユニ ット10を示す。このユニット10は、等速ジョイントの一部を構成するものであり、シ ャフト12は、駆動力伝達軸として機能し、ハブ14は、図示しないアウタ部材の開口部 内に収納され図示しないボールが係合する案内溝15を有するインナリングとして機能す るものである。

[0020]

このユニット10におけるシャフト12の一端部及び他端部には、それぞれ、ハブ14 の軸孔16に嵌合する嵌合部18が形成される。ただし、図1では、シャフト12の一方 の端部のみを示し、他方の端部は図示を省略している。前記嵌合部18は、シャフト12 の軸線に沿って所定の歯長からなり、周方向に沿って形成された複数のスプライン歯20 を有するシャフト歯部22を備える。前記シャフト歯部22は、凸状の山部22aと凹状 の谷部22bとが周方向に沿って交互に連続して構成される。前記シャフト歯部22の山 部22aは、図2に示されるように、略同一の歯厚からなり、シャフト12(図1参照) の軸線と略平行となるように形成されている。

前記シャフト12の中心側の前記シャフト歯部22に近接する部位には、シャフトシャ ンク24が設けられ、また、シャフト12の端部側には、前記ハブ14の抜け止め機能を 有する図示しない止め輪が環状溝(図示せず)を介して装着される。

[0022]

前記ハブ14の軸孔16の内周面には、前記シャフト12の嵌合部18に嵌合する複数 の直線状のスプライン歯26を有するハプ歯部28が形成される。前記ハブ歯部28は、 凸状の山部28aと凹状の谷部28bとが周方向に沿って交互に連続して構成され、前記 ハブ歯部28の山部28aは、図2に示されるように、略同一の歯厚からなり、シャフト 12 (図1参照)の軸線と略平行となるように形成されている。

[0023]

図3は、シャフト歯部22の谷部22bとハブ歯部28の山部28aとが係合した状態 におけるシャフト12の軸線方向に沿った一部拡大縦断面図である。図3中において、P 0は、シャフト歯部22の軸線方向に沿った中央点に対応する位置を示す。

[0024]

シャフト歯部 2 2 における谷部 2 2 b (谷部径 ø 1) の前記シャフト歯部 2 2 の中央点 P 0 からシャフトシャンク 2 4 側に向かって水平方向に所定距離L 1 だけ移動した点 P 1 を設定し、水平方向に沿った谷部22bに対して前記点P1を起点としてハブ歯部22側 に向かって所定の曲率半径Cで延在する円弧部30を形成する。換言すると、前記円弧部 30は、点P1からハブ歯部28側に向かって略直交して形成される基線D上の点P3を 中心として形成されている。すなわち、前記円弧部30は、その中心である点P3を基線 D上に設けるようにすれば、任意の曲率半径でよい。

[0025]

ハプ歯部28の山部28a側では、前記シャフト歯部22の点P1からシャフトシャン ク24と反対側に水平方向に沿った距離L2だけオフセットした位置に点P2を設定し、 前記点P2からハブ歯部28の山部28aの山部径42を山部径43に変化させた段差部 32を形成し、さらに、所定距離L3だけ山部径φ3を延在させて形成する。

[0026]

この場合、シャフト歯部22側と反対側に窪んで形成されるハプ歯部28側の前記段差 部32は、例えば、傾斜面または所定の曲率半径からなる円弧状の曲面または複合面等に よって形成するとよい。前記点P2を起点とする段差部32の傾斜角度は、円弧部30に 対応して任意に設定される。なお、ハブ歯部28側の形状は、前記段差部32に対応した 形状に限定されるものではなく、例えば、所定の曲率半径を有するR形状、テーパ形状等 を含む形状であってもよい。また、ハブ歯部28の谷部28bの内径は、一定で変化しな いものとする。

[0027]

前記谷部径 ϕ 1 は、それぞれ、シャフト12の軸芯からシャフト歯部22の谷部22bの底面までの離間距離を示したものであり、前記山部径 ϕ 2、 ϕ 3 は、シャフト12の軸芯からハブ歯部28の山部28aの歯先までの離間距離を示したものである。

[0028]

図3から諒解されるように、シャフト歯部22の円弧部30の立ち上がりの起点となる点P1と、ハブ歯部28の段差部32の立ち上がりの起点となる点P2とが離間距離(所定距離)L2だけ略水平方向にオフセットした位置に設定されている。

[0029]

従って、シャフト歯部22とハブ歯部28とが係合したシャフト12及びハブ14のユニット10に対して回転トルクが付与された場合、シャフト歯部22側の点P1と、ハブ歯部28側の点P2とが所定距離L2だけオフセットしているため、前記ユニット10に付与された応力が円弧部30によってシャフト歯部22におけるa0部とa1部とにそれぞれ分散され、応力集中を緩和して応力値のピークを低減することができる。その結果、シャフト歯部22とハブ歯部28との係合部位に対する静的強度及び疲労強度を向上させることができる。

[0030]

さらに、図4に示されるように、シャフト歯部22側の円弧部30の起点となる点P1とハブ歯部28の段差部32の起点となる点P2とをオフセットさせることなく、鉛直線上に前記点P1及び点P2とが一致するように設定してもよい。この場合、シャフト歯部22側に形成された円弧部30とハブ歯部28側に形成された段差部32の共働作用下に、シャフト歯部22の円弧部30に付与される応力が分散されて応力集中を緩和することができる。

[0031]

ここで、ハブ歯部28に段差部32が形成されていない比較例に係る応力値の特性曲線Aと、所定距離だけオフセットした点P1及びP2を有し、前記点P2を起点とした段差部32を設定したときの応力値の特性曲線Bを、それぞれ図5示す。特性曲線Aと特性曲線Bとを比較すると、図3に示す構造からなる特性曲線Bでは、応力値のピークをa0部とa1部とに分散させることにより前記a1部における前記応力値のピークが減少していることが諒解される。すなわち、特性曲線Bにおけるa0部の応力値は、前記特性曲線Aにおけるa0部の応力値と比較して増加しているが、特性曲線A及び特性曲線Bにおける最大応力値であるa1部の応力値は、特性曲線Aに比べて減少しているため、シャフト12に発生する最大応力値のピークを低減することができる。

[0032]

次に、シャフト歯部22側の点P1とハブ歯部28側の点P2とが所定距離だけオフセットした状態における応力値の特性曲線(実線)Mと、前記点P1と点P2とがオフセットしていない状態、すなわち水平方向に沿った離間距離が零の状態における応力値の特性曲線(破線)Nとを図9に示す。

[0033]

この場合、特性曲線M及び特性曲線Nのオフセットの有無部分(図9中のF部分参照)を比較すると、オフセットしていない特性曲線Nに対してシャフト歯部22側の起点P1とハブ歯部28側の起点P2とがオフセットした特性曲線Mが緩やかな曲線となっており、オフセットさせることにより径の変化部分における応力の集中が緩和されている。

[0034]

次に、回転トルクが付与されていない無負荷状態から、回転トルクが付与されて直線形状を有するシャフト歯部22の山部22aと直線形状を有するハプ歯部28の山部28aとが噛合した状態を図2に示す。なお、回転トルクによる荷重入力方向は、シャフト歯部22の軸線と直交する矢印Y方向に設定した。

[0035]

この場合、応力値と測定位置(図2の矢印X参照)との関係を表した図6に示されるように、入力される荷重の度合いを例えば、低荷重(破線)、中荷重(一点鎖線)、高荷重

(実線)の3段階とすると、前記段階に対応した低荷重特性曲線、中荷重特性曲線、高荷 重特性曲線より応力のピークポイントが、それぞれ点a、点b、点cのように略同一の測 定位置Eとなることがわかる。

[0036]

図7及び図8は、シャフト12とハブ14とを組み付けた際のシャフト歯部22の谷部 2 2 b とハブ歯部 2 8 の山部 2 8 a との接触状態を示す縦断面図である。なお、図 7 及び 図8中におけるゟd1~ゟd3は、それぞれシャフト12の軸芯からの離間距離を示す。

[0037]

シャフト歯部22を直線状とするとともに、ハブ歯部28を直線状とすることにより、 前記シャフト歯部22の側面とハブ歯部28の側面とが、常に面接触した状態となる(図 2、図7及び図8参照)。

[0038]

また、図7と図8とを比較して諒解されるように、シャフト歯部22及びハブ歯部28 のシャフトシャンク24に近接する部位に円弧部30及び段差部32をそれぞれ形成する ことにより、応力が集中する領域のシャフト歯部22の径φd2及びφd3をαだけ増大 させることができる。

[0039]

従って、応力が集中する領域のシャフト歯部22の径φ d 2 及びφ d 3 を α だけ増大さ せることにより、前記シャフト歯部22の谷部22bの歯底Rの曲率を大きく設定するこ とが可能となり(図8中、R′)、応力を分散させることができる。また、シャフトシャ ンク24に近接する部位の径を他の部位と比較して増大させることにより、全体応力(主 応力)を低減させることができる。

[0040]

次に、シャフト歯部22のスプライン歯26の製造方法について説明する。

[0041]

図10に示されるように、超硬材料によって略直線状に形成された上下一組の転造ラッ ク40a、40bの間に棒状の被加工物42を挿入し、相互に対向する一組の転造ラック 40a、40bによって被加工物42を押圧した状態において、図示しないアクチュエー タの駆動作用下に前記一組の転造ラック40a、40bを相互に反対方向(矢印方向)に 変位させることにより、被加工物42の外周面に対してスプライン加工が施される。

[0042]

本実施の形態では、転造成形を用いることにより、シャフト歯部22のスプライン歯2 6を簡便に成形することができる。また、転造成形を用いた場合、圧造(鍛造)成形と比 較して、成形サイクルが速く、前記転造ラック40a、40b等の成形歯具の耐久性を向 上させることができる。さらに、転造成形では、転造ラック40a、40b等の成形歯具 を再研磨して再利用することが可能である。従って、転造成形を用いた場合、圧造(鍛造)成形と比較して、寿命、成形サイクル、再利用等の点からコスト的に有利である。ただ し、転造の場合は歯先へ向かっての肉流れによって成形されるため、歯先の断面形状は必 ずしも均等でない場合がある。

[0043]

以上のように、本実施の形態では、シャフト12における円弧部30の立ち上がりの起 点となる点P1と、ハブ14における段差部32の立ち上がりの起点となる点P2とを所 定間隔L2だけ略水平方向にオフセットさせて設定している。

[0044]

そのため、シャフト歯部22とハブ歯部28とが係合したシャフト12及びハブ14の ユニット10に対して回転トルクが付与された場合、前記ユニット10に付与された応力 が、シャフト歯部22におけるa0部とa1部とにそれぞれ好適に分散されるため応力集 中を緩和することができ、al部における応力値のピークを低減することができる。その 結果、応力の集中を緩和して分散させることができるため、シャフト歯部22とハブ歯部 28との係合部位に対する静的強度及び疲労強度を向上させることができる。

[0045]

【図1】本発明の実施の形態に係る動力伝達機構が適用されたシャフト及びハブのユニットの一部切欠斜視図を示す。

【図2】シャフト歯部とハブ歯部とが係合した状態における拡大横断面図である。

【図3】図1のシャフト歯部の谷部とハブ歯部の山部とが係合した状態におけるシャフトの軸線方向に沿った一部拡大縦断面図である。

【図4】シャフト歯部に形成された円弧部の起点である点P1とハブ歯部に形成された段差部の起点である点P2とがオフセットされることなく鉛直線上に一致した状態を示す一部拡大縦断面図である。

【図5】ハブ歯部に段差部が形成されていない場合と、前記段差部が形成された場合におけるシャフトに発生する応力値とその応力値を測定した位置との関係を示す特性曲線図である。

【図 6 】回転トルクが付与されたときの入力荷重に応じてシャフトに発生する応力値とその応力値を測定した位置との関係を示す特性曲線図である。

【図7】図3のVII-VII線に沿った拡大縦断面図である。

【図8】図3のVIII-VIII線に沿った拡大縦断面図である。

【図9】シャフト歯部の径の変化点及びハブ歯部の径の変化点がオフセットした状態とオフセットしていない状態におけるシャフトに発生する応力値とその応力値を測定した位置との関係を示す特性曲線図である。

【図10】シャフト歯部のスプライン歯を転造ラックによって転造成形する状態を示す一部省略斜視図である。

【符号の説明】

[0046]

10…ユニット

14…ハブ

18…嵌合部

22…シャフト歯部

2 2 b、2 8 b …谷部

28…ハブ歯部

3 2 …段差部

12…シャフト

16…軸孔

20、26…スプライン歯

22a、28a…山部

24…シャフトシャンク

3 0 … 円弧部

【書類名】図面 【図1】

FIG. 1

F1G. 2

【図4】

【図5】

FIG. 5

【図6】

【図7】

FIG. 7

【図8】

FIG. 8

【図9】

FIG. 9

【図10】

FIG. 10

【書類名】要約書

【要約】

【課題】シャフトの所定部位に対する応力集中を抑制して、より一層、静的強度及び疲労強度を向上させる。

【解決手段】シャフト12の端部に、複数の直線状のスプライン歯20を有するシャフト歯部22が形成され、ハブ14の軸孔16の内周面には、前記シャフト12の端部に嵌合する複数の直線状のスプライン歯26を有するハブ歯部28が形成される。そして、シャフト歯部22の点P1から所定曲率の円弧部30をハブ歯部28側に延在するように形成するとともに、ハブ歯部28の山部28a側では、前記点P1からシャフトシャンク24と反対側に水平方向に沿ってオフセットした位置に点P2を設定し、前記点P2から半径外方向に拡径した段差部32を形成する。

【選択図】図3

ページ: 1/E

特願2003-288547

出願人履歴情報

識別番号

[000005326]

1. 変更年月日

1990年 9月 6日

[変更理由]

新規登録

住所

東京都港区南青山二丁目1番1号

氏 名 本田技研工業株式会社