University of Warsaw

Faculty of Mathematics, Informatics and Mechanics

Katarzyna Kowalska

Student no. 371053

Approximation and Parametrized Algorithms for Segment Set Cover

Master's thesis in COMPUTER SCIENCE

Supervisor: dr Michał Pilipczuk Instytut Informatyki

10 Supervisor's statement

- Hereby I confirm that the presented thesis was prepared under my supervision and that it fulfils the requirements for the degree of Master of Computer Science.
- Date Supervisor's signature

$_{14}$ Author's statement

Hereby I declare that the presented thesis was prepared by me and none of its contents was obtained by means that are against the law.

The thesis has never before been a subject of any procedure of obtaining an academic degree.

Moreover, I declare that the present version of the thesis is identical to the attached electronic version.

21 Date Author's signature

22	${f Abstract}$
23 24	The work presents a study of different geometric set cover problems. It mostly focuses on segment set cover and its connection to the polygon set cover.
25	${f Keywords}$
26 27	set cover, geometric set cover, FPT, W[1]-completeness, APX-completeness, PCP theorem, NP-completeness
28	Thesis domain (Socrates-Erasmus subject area codes)
29 30	11.3 Informatyka
31	Subject classification
32 33 34	D. Software D.127. Blabalgorithms D.127.6. Numerical blabalysis
35	Tytuł pracy w języku polskim
36	Algorytmy parametryzowania i trudność aproksymacji problemu pokrywania zbiorów

odcinkami na płaszczyźnie

38 Contents

39	1.	Introduction					
40	2.	Definitions	7				
41	3.	Geometric Set Cover with segments	9				
42		3.1. FPT for segments	9				
43		3.1.1. Segments parallel to one of the axis	9				
44		3.1.2. Segments in d directions	9				
45		3.1.3. Segments in arbitrary direction	9				
46			10				
47			10				
48		\	11				
49			12				
50		9 0	 13				
51		0 0	$\frac{1}{14}$				
52		9 9	16				
53		- ·- <i>U</i>	16				
54			$17 \\ 17$				
55							
		0 0	$\frac{1}{17}$				
56		9 9	11 19				
57		[] [13 21				
58		5.5.5. What is missing	41				
59	4.	Geometric Set Cover with lines	23				
60			 23				
61		r	- 3				
62		v	$\frac{23}{23}$				
63		2-approximation for arbitrary lines					
		11	24				
64		4.0. Connection with general set cover	≟ 4				
65	5.	Geometric Set Cover with polygons	25				
66		1 00	25				
	G	Conclusions	97				

$_{ ilde{ \omega}}$ Chapter 1

Introduction

The Set Cover problem is one of the most common NP-complete problems. [tutaj referencja]
We are given a family of sets and have to choose the smallest subfamily of these sets that cover
all their elements. This problem naturally extends to settings were we put different weights
on the sets and look for the subfamily of the minimal weight. This problem is NP-complete
even without weights and if we put restrictions on what the sets can be. One of such variants
is Vertex Cover problem, where sets have size 2 (they are edges in a graph).

In this work we focus on another such variant where the sets correspond to some geometric shapes and only some points of the plane have to be covered. When these shapes are rectangles with edges parallel to the axis, the problem can be proven to be W[1]-complete (solution of size k cannot be found in $n^o(k)$ time), APX-complete (for suffciently small $\epsilon > 0$, the problem does not admit $1 + \epsilon$ -approximation scheme) [refrencje].

Some of these settings are very easy. Set cover with lines parallel to one of the axis can be solved in polynomial time.

There is a notion of δ -expansions, which loosen the restrictions on geometric set cover. We allow the objects to cover the points after δ -expansion and compare the result to the original setting. This way we can produce both FPT and EPTAS for the rectangle set cover with δ -extensions [referencie].

Our contribution. In this work, we prove that unweighted geometric set cover with segments is fixed parameter tractable (FPT).

Moreover, we show that geometric set cover with segments is APX-complete for unweighted axis-parallel segments, even with 1/2-extensions. So the problem for very thin rectangles also can't admit PTAS. Therefore, in the efficient polynomial-time approximation scheme (EPTAS) for *fat polygons* by [Har-Peled and Lee, 2009], the assumption about polygons being fat is necessary.

Finally, we show that geometric set cover with weighted segments in 3 directions is W[1]-complete. However, geometric set cover with weighted segments is FPT if we allow δ -extension.

This result is especially interesting, since it's counter-intuitive that the unweighed setting is FPT and the weighted setting is W[1]-complete. Most of such problems (like vertex cover or [wiecej przykladow]) are equally hard in both weighted and unweighted settings.

Chapter 2

Definitions

```
Some definitions what geometric set cover is. \mathcal{P} – set of objects, \mathcal{C} – set of points. Choose \mathcal{R} \subset \mathcal{P} such that every point in \mathcal{C} is inside some element from \mathcal{R} and |\mathcal{R}| is minimal.

In parametrized setting we only look among |\mathcal{R}| \leq k. In weighted settings there is some f: \mathcal{P} - \mathbb{R} and we minimize \sum_{R \in \mathcal{R}} f(R).
```

Chapter 3

111

112

114

125

126

127

130

131

132

133

134

Geometric Set Cover with segments

3.1. FPT for segments

3.1.1. Segments parallel to one of the axis

110 You can find this in Platypus book.

We'll show $\mathcal{O}(2^k)$ branching algorithm. Let's take point K that hasn't been covered yet with the smallest coordinate in lexicograpical order. We need to cover K with some of the remaining segments.

We choose one of the 2 directions on which we will cover this point. In this direction we take greedly the segment that will cover the most points (there are points in \mathcal{C} only on one side of K in this direction, so all segments covering K in this direction create monotone sequence of sets – zbiory zstępujące).

3.1.2. Segments in d directions

The same algorithm as before but in complexity $\mathcal{O}(d^k)$.

20 3.1.3. Segments in arbitrary direction

Theorem 3.1.1 (FPT for segment cover). There exists an algorithm that given a family \mathcal{P} of n segments (in any direction), a set of m points \mathcal{C} and a parameter k, runs in time $f(k) \cdot (nm)^c$ for some computable function f and constant c, and outputs a subfamily $\mathcal{R} \subseteq \mathcal{P}$ such that $|\mathcal{R}| \leq k$ and \mathcal{R} covers all points in \mathcal{C} .

Proof. We will show such algorithm in FPT.

If there exist two segments a and b in \mathcal{P} , such that any point covered by a is also covered by b, then without loss of generality we can remove segment a from \mathcal{P} . We repeat this process until no such (a, b) pair exists.

Let us first assume that we reduced our instance to a kernel, where any line contains no more than k points.

Since any segment covers a set of colinear points, for such a kernel k segments can cover only at most k^2 points. Therefore, for the answer to be positive, the number of points has to be at most k^2 . The number of segments is now bounded by k^4 , since if we consider two extreme points covered by a given segment, then these pairs must be distinct, otherwise two segments would contain the same set of points. Since both the number of points and the

number of segments is bounded by a function of k, this instance can be easily solved in time O(f(k)).

In remains to show how to construct the kernel.

138

139

140

141

142

143

146

150

161

162

163

164

165

166

167

168

Assume there exists a line l containing points $x_1, \ldots x_t$, where $t \geq k+1$. Note that a segment that does not lie on l can cover only at most one of the points x_i . Therefore, out of points x_1, \ldots, x_{k+1} , at least one has to be covered by a segment that lies on l, let us fix x_i to be the first such point. Then, we can greedily choose a segment that lies on l, covers x_i , and also covers the largest number of points x_i for i > i.

Since we have at most k+1 choices to branch over and each choice adds a segment to the constructed solution, we obtain an algorithm with complexity $O(k^k)$.

3.2. APX-completeness for segments parallel to axis

Let's analyze approximation of set cover with rectangles.

The question on the table is if there exists $(1+\epsilon)$ -approximation scheme for set cover with rectangles.

Let's restict this problem to some very easy setting: segments parallel to axes and allow (1/2)-extension. Segments are basically degenerated rectangles with one side very narrow.

Theorem 3.2.1 (axis-parallel segment set cover with 1/2-extension is APX-hard). For sufficiently small $\epsilon > 0$, there does not exist an $(1 + \epsilon)$ -approximation scheme for unweighted geometric set cover with axis-parallel segments in 2D (even with 1/2-extension) (problem is APX-hard).

The problem of rectangle set cover doesn't have $(1+\epsilon)$ -approximation scheme even in the above setting (so every less restriced setting also doesn't have apporixmation scheme).

Theorem 3.2.2 (rectangle set cover is APX-hard). For sufficiently small $\epsilon > 0$, there does not exist an $(1 + \epsilon)$ -approximation scheme for unweighted geometric set cover with rectangles (even with 1/2-extension) (problem is APX-hard).

We will prove it by taking a problem that is APX-complete (doesn't have $(1+\epsilon)$ -approximation scheme). Such problem in this section will be is MAX-(3,3)-SAT that we will define in detail below.

Given an instance I of MAX-(3,3)-SAT, we will construct an instance J of axis-parallel segment set cover problem, such that $(1+c\epsilon)$ -approximation of J will approximate an I with $(1+\epsilon)$ scheme for some constant c>1. Therefore if there would exist general approximation scheme of the axis-parallel segment set cover problem, we would produce a general approximation scheme of MAX-(3,3)-SAT (that doesn't exist).

3.2.1. Definition of MAX-(3,3)-SAT problem

170 Here we define MAXSAT problem.

171 Theorem 3.2.3 [Håstad, 2001]

For any $\epsilon > 0$, it is NP-hard to distinguish satisfiable (3,3)-SAT formulas from (7/8+ ϵ)-satisfiable (3,3)-SAT formulas. Said equivalently, MAX-(3,3)-SAT is nonapproximable beyond the random assignment threshold on satisfiable instances.

Lemma 3.2.1 Given an instance of MAX-(3,3)-SAT with n variables and optimal result k, we can construct an instance of axis-parallel segments in 2D, which optimal result (even with 1/2-extension) is exactly 15n - k.

Proof. Take any $0 < \epsilon < 1/(15 \cdot 8)$. Choose n sufficiently large, so that $\epsilon'(n)$ from Theorem 3.2.3 is not greater than ϵ .

Let's assume that there exists an $(1 + \epsilon)$ -approximation scheme for unweighted geometric set cover with axis-pararell segments in 2D. We will construct an algorithm distinguishing instances of MAX-(3,3)-SAT in Theorem 3.2.3. Take two instances to be distinguished and using Lemma 3.2.1 and name them satisfiable – S_1 and unsatisfiable – S_2 . Let's construct two instances of geometric set cover and name them respectively I_1 and I_2 .

Use $(1+\epsilon)$ -approximation scheme for instances of geometric set cover, let's name the result of this approximation for an instance of problem I as approx(I).

From defintion of S_1 and S_2 we have:

$$OPT(S_1) = n$$

$$OPT(S_2) \le (\frac{7}{8} + \epsilon'(n))n$$

From Lemma 3.2.1 we have:

178

179

180

183

184

185

186

187

188

201

$$OPT(I_1) = 14n$$

$$OPT(I_2) = 15n - (\frac{7}{8} + \epsilon'(n))n$$

Let's prove that $approx(I_2) > approx(I_1)$:

$$approx(I_2) \ge OPT(I_2) = 15n - (\frac{7}{8} + \epsilon'(n))n = 14n + (\frac{1}{8} - \epsilon'(n))n > 14n + (\frac{1}{8} - \epsilon)n >$$

$$> 14n + (15\epsilon - \epsilon)n = 14n + (14\epsilon)n = 14n(1+\epsilon) = OPT(I_1)(1+\epsilon) > approx(I_1)$$

Therefore, by using out supposed $(1 + \epsilon)$ approximation, it's possible to distinguish S_1 from S_2 , since the approximation scheme will always return a smaller value for I_1 than for I_2 .

This is a contradiction, hence the approximation scheme cannot exist.

192 3.2.2. Reduction construction

We will show reduction from MAX-(3,3)-SAT problem to geometric set cover with segments parallel to axis. Moreover the instance of geometric set cover will be robust to 1/2-extensions (have the same optimal solution after 1/2-extension).

The construction will be composed of 3 types of gadgets: variable gadgets, or gadgets, clause gadgets.

We define:

$$\mathcal{C} := \bigcup_{1 \le i \le n} C_variable_i \cup C_clause_i$$

$$\mathcal{P} := \bigcup_{1 \leq i \leq n} P_variable_i \cup P_clause_i$$

We will prove some properties of different gadgets. Every segment for gadget will only cover points in this gadget (won't interact with any different gadget), so we can prove lemmas locally.

TODO: y axis is increasing values downward on figures (not upwards like in normal).

Figure 3.1: Choose variable value gadget. We denote set of points marked with black circle as $C_variable_i$ and need to be covered (are part of set C). We denote set of red segments as x_i^{false} and set of blue segments as x_i^{true} .

02 3.2.2.1. Variable gadget

203 Points. Define points:

TODO: inline L = 12n after finishing these formulas

$$a_{i} = (-L, 4i) b_{i} = (-\frac{2}{3}L, 4i) c_{i} = (-\frac{1}{3}L, 4i) d_{i} = (-L, 4i + 1)$$

$$e_{i} = (-\frac{2}{3}L, 4i + 1) f_{i} = (-\frac{2}{3}L, 4i + 2) g_{i} = (L, 4i) h_{i} = (L, 4i + 2)$$

Let's define

$$C_variable_i = \{a_i, b_i, c_i, d_i, e_i, f_i\}$$

206 **Segments.** Let's define

$$x_i^{true} = \{(a_i, d_i), (b_i, f_i), (c_i, g_i)\}$$

$$x_i^{false} = \{(a_i, c_i), (d_i, e_i), (f_i, h_i)\}$$

$$P_variable_i = x_i^{true} \cup x_i^{false}$$

Lemma 3.2.2 For any $1 \le i \le n$, points $C_variable_i$ can be covered using 3 segments from $P_variable_i$.

Proof. We can use set x_i^{true} or x_i^{false} .

Lemma 3.2.3 For any $1 \le i \le n$, points $C_variable_i$ can not be covered with less than 3 segments from $P_variable_i$.

Proof. There is independent set $\{d_i, f_i, c_i\}$ of size 3, therefore it can not be covered with less than 3 sets (segments).

Lemma 3.2.4 If both segments (c_i, g_i) and (f_i, h_i) are chosen, then the remaining points from C variable i must be covered with 2 different segments from P variable i.

Proof. There is an independent set $\{a_i, e_i\}$ of size 2 in $P_variable_i$ - $\{(c_i, g_i), (f_i, h_i)\}$, therefore it can not be covered with less than 2 sets (segments).

Figure 3.2: **Or gadget.** We denote these point as $or_gadget_{i,j}$. We denote set of red segments as $or_{i,j}^{false}$, set of blue segments as $or_{i,j}^{true}$, green and yellow segments as $or_move_variable_{i,j}$.

218 3.2.2.2. Or gadget

Points.

220

$$l_0 = (0,0)$$
 $m_0 = (0,1)$ $n_0 = (0,2)$ $o_0 = (0,3)$
 $p_0 = (0,4)$ $q_0 = (1,1)$ $r_0 = (1,3)$ $s_0 = (2,1)$
 $t_0 = (2,2)$ $u_0 = (2,3)$ $v_0 = (3,2)$

$$vec_{i,j} = (10i + 3 + 3j, 4n + 2j)$$

Define $\{l_{i,j}, m_{i,j} \dots v_{i,j}\}$ as $\{l_0, m_0 \dots v_0\}$ shifted by $vec_{i,j}$ Note that $v_{i,0} = l_{i,1}$ (see Figure 3.3)

$$C_or_gadget_{i,j} = \{l_{i,j}, m_{i,j}, n_{i,j}, o_{i,j}, p_{i,j}, q_{i,j}, r_{i,j}, s_{i,j}, t_{i,j}, u_{i,j}\}$$

223 Segments. We define names subsets of segments, to refer to them in lemmas.

$$or_{i,j}^{false} = \{(q_{i,j}, r_{i,j}), (s_{i,j}, u_{i,j})\}$$
$$or_{i,j}^{true} = \{(m_{i,j}, s_{i,j}), (o_{i,j}, u_{i,j}), (t_{i,j}, v_{i,j})\}$$

$$or_move_variable_{i,j} = \{(l_{i,j}, n_{i,j}), (n_{i,j}, p_{i,j})\}$$

Segments in or gadget:

$$P_or_gadget_{i,j} = or_{i,j}^{false} \cup or_{i,j}^{true} \cup or_move_variable_{i,j}$$

- **Lemma 3.2.5** For any $1 \le i \le n, j \in \{0,1\}$ and $x \in \{l_{i,j}, p_{i,j}\}$ we can cover points in $C_{or} = adget_{i,j} \{x\} \cup \{v_{i,j}\}$ with 4 segments.
- Proof. We can do that using one segment from $or_move_variable_{i,j}$ (chosen depending on the value of x) and all segments from $or_{i,j}^{true}$.
- Lemma 3.2.6 For any $1 \le i \le n, j \in \{0,1\}$, we can cover points in $C_or_gadget_{i,j}$ with 4 segments from $P_or_gadget_{i,j}$.
- Proof. We can do that using $or_move_variable_{i,j}$ and $or_{i,j}^{false}$.

232 3.2.2.3. Clause gadget

Figure 3.3: Clause gadget. We denote set of these points as C_clause_i . Every green rectangle is an or gadget. y-coordinates of $x_{i,0}$, $y_{i,0}$ and $z_{i,0}$ depend on the values of variables in the i-th clause.

Points. TODO: Rephrase it

236

Assuming clause $C_i = x_i \vee y_i \vee z_i$, function idx(w) is returning index of the variable w, function neg(w) is returning whether variable w is negated in a clause.

$$\begin{aligned} x_{i,0} &= (10i+1, 4 \cdot idx(x_i) + 2 \cdot neg(x_i)) & x_{i,1} &= (10i+1, 4n) \\ y_{i,0} &= (10i+2, 4 \cdot idx(y_i) + 2 \cdot neg(y_i)) & y_{i,1} &= (10i+2, 4n+4) \\ z_{i,0} &= (10i+3, 4 \cdot idx(z_i) + 2 \cdot neg(z_i)) & z_{i,1} &= (10i+3, 4n+6) \end{aligned}$$

$$move_variable_i = \{x_{i,j} : j \in \{0,1\}\} \cup \{y_{i,j} : j \in \{0,1\}\} \cup \{z_{i,j} : j \in \{0,1\}\}$$

$$C_clause_i = move_variable_i \cup C_or_gadget_{i,0} \cup C_or_gadget_{i,1} \cup \{v_{i,1}\}$$

Segments.

$$P_clause_i = \{(x_{i,0}, x_{i,1}), (y_{i,0}, y_{i,1}), (z_{i,0}, z_{i,1}), (x_{i,1}, l_{i,0}), (y_{i,1}, p_{i,0}), (z_{i,1}, p_{i,1}), \} \cup \\ \cup P_or_gadget_{i,0} \cup P_or_gadget_{i,1}$$

Lemma 3.2.7 For any $1 \le i \le n$ and $a \in \{x_{i,0}, y_{i,0}, z_{i,0}\}$, points $C_clause_i - \{a\}$ can be covered using 11 segments from P_clause_i .

Proof. For $a = x_{i,0}$ (analogous proof for $y_{i,0}$): First we use Lemma 3.2.5 twice with excluded $x = l_{i,0}$ and $x = l_{i,1} = v_{i,0}$, resulting with 8 segments $or_{i,0}^{true} \cup or_{i,1}^{true}$ which cover all required points apart from $x_{i,1}, y_{i,0}, y_{i,1}, z_{i,0}, z_{i,1}, l_{i,0}$. We cover those using additional 3 segments: $\{(x_{i,1}, l_{i,0}), (y_{i,0}, y_{i,1}), (z_{i,0}, z_{i,1})\}$

For $a=z_{0,i}$: Using Lemma 3.2.6 and Lemma 3.2.5 with $x=p_{i,1}$, resulting with 8 segments $or_{i,0}^{false} \cup or_{i,1}^{true}$ which cover all required points apart from $x_{i,0}, x_{i,1}, y_{i,0}, y_{i,1}, z_{i,1}, p_{i,1}$. We cover those using additional 3 segments: $\{(x_{i,0}, x_{i,1}), (y_{i,0}, y_{i,1}), (z_{i,1}, p_{i,1})\}$.

Lemma 3.2.8 Points C_clause_i can be covered with 12 segments from P_clause_i .

Proof. Using Lemma 3.2.6 twice we can cover $or_gadget_{i,0}$ and $or_gadget_{i,1}$ with 8 segments.

To cover the remaining points we additionally use: $\{(x_{i,0}, x_{i,1}), (y_{i,0}, y_{i,1}), (z_{i,0}, z_{i,1}), (t_{i,1}, v_{i,1})\}$

Lemma 3.2.9 For any $1 \le i \le n$, points $C_clause_i - \{x_{i,0}, y_{i,0}, z_{i,0}\}$ can not be covered using less than 11 segments from P_clause_i .

All points C_clause_i can not be covered with less than 12 segments from P_clause_i .

Proof of no cover with less than 12 segments. There is independent set of 12 points in $C_clause_i \supseteq \{x_{i,0}, y_{i,0}, z_{i,0}, l_{i,0}, p_{i,0}, q_{i,0}, u_{i,0}, v_{i,0} = l_{i,1}, p_{i,1}, q_{i,1}, u_{i,1}, v_{i,1}\}.$

Proof of no cover with less than 11 segments. We can choose disjoint sets X, Y, Z such that $X \cup Y \cup Z \subseteq C_clause_i - \{x_{i,0}, y_{i,0}, z_{i,0}\}$ and there are no segments covering points from different sets. And we will prove lower bounds for each of these sets.

$$X = \{x_{i,1}, y_{i,1}, z_{i,1}\}$$

Set X is an indendent set, so it must be covered with 3 segments.

$$Y = or_gadget_{i,0} - \{l_{i,0}, p_{i,0}\}$$
$$Z = or_gadget_{i,1} - \{l_{i,1}, p_{i,1}\}$$

For both Y and Z we can check all of the subsets of 3 segments with brutforce that none of them cover, so they have to be covered with 4 segments.

TODO: Funny fact, neither Y nor Z doesn't have independent set of size 4.

Therefore C clause_i must be covered with at least 3 + 4 + 4 = 11 segments.

263 3.2.2.4. Summary

277

283

285

286

287

288

289

290

291

292

294

295

296

297

298

299

Add some smart lemmas that sets will be exclusive to each other.

Lemma 3.2.10 Robustness to 1/2-extensions. For every segment $s \in \mathcal{P}$, s and $s^{+1/2}$ cover the same points from \mathcal{C} .

267 3.2.3. Proofs of construction Lemma 3.2.1

Lemma 3.2.11 Given an instance of MAX-(3,3)-SAT of size n with optimal solution k. For instance of geometric cover, constructed according to Lemma 3.2.1, there exists a solution of weight 15n - k.

Proof. Let's name the assignments of the variables in MAX-(3,3)-SAT instance, that achieve the optimal solution, $y_1, y_2 \dots y_n$, Let's cover every variable gadget with solution described in Lemma 3.2.2, in the *i*-th gadget choosing the set of segments responsible for the value of y_i (true – x_i^{true} or false – x_i^{false}).

Cover every satisfied clause gadget with solution described in Lemma 3.2.7 and unsatisfied clause gadget with solution from Lemma 3.2.8.

This solution uses 3n + (11m + (m - k)) = 15n - k segments.

Lemma 3.2.12 Given an instance of MAX-(3,3)-SAT of size n, and solution of size w to the instance of geometric cover, constructed according to Lemma 3.2.1, there exists a solution to MAX-(3,3)-SAT of size at least 15n-w.

Proof. Among $x_i^{true} \cup x_i^{false}$, we need to use at least 3 segments (Lemma 3.2.3). If we have chosen both segments (c_i, g_i) and (f_i, h_i) , then we have used at least 4 segments (Lemma 3.2.4).

If we chose at most one of the segments (c_i, g_i) and (f_i, h_i) , choose the corresponding variable value to the solution. If we chose both segments, choose the value that appears in most (at least 2) clauses. If we have chosen none of the segments, choose any value.

To cover $\bigcup_{1 \leq i \leq n} C_variable_i$ we have used at least 3n+a segments, where a is the number of i such that we have chosen both values (c_i, g_i) and (f_i, h_i) .

Among the segments responsible for the clause $C_i = x \vee y \vee z$ we need to use at least 11 segments (Lemma 3.2.9) and if we can cover it with 11 segments, then we have earlier chosen segment responsible for the value of variable x, y or z that satisfies C_i .

So we have at least 11 segments for satisfied clauses and at least 12 segments for unsatisfied clauses, so we cover it with at least 11n + b segments, where b is number of clauses where none of the variables x, y, z were chosen. If the segment responsible for value of x was taken, but this variable is set to have different value, then we have chosen segments for both x and $\neg x$ for this variable, so "we cheated" and this maybe clause is not met, but we assigned the value for this x_i that meets the most clauses, so for each of such "cheated" variables, at most one of the clauses isn't met.

So there are at most a + b unsatsfied clauses in this instance, so we have shown the assignment with at least n - (a + b) satisfied clauses.

$$w \ge 3n + a + 11n + b = 14n + a + b$$
$$15n - w \le 15n - 14n - a - b = n - (a + b)$$

300 3.2.3.1. Proof of Lemma 3.2.1

Given an instance of MAX-(3,3)-SAT of size n with optimal result k. Let's construct an instance of geometric cover, constructed in aforementioned manner.

Given the Lemma 3.2.11, we know the optimal solution for the constructed geometric cover is at most 15n - k and since the k is optimal solution for MAX-(3,3)-SAT, then according to Lemma 3.2.12 there doesn't exist a solution with cost less than 15n - k.

3.6 3.3. Weighted segments

307

320

321

322

3.3.1. FPT for weighted segments with δ -extensions

Theorem 3.3.1 (FPT for weighted segment cover with δ -extensions). There exists an algorithm that given a family \mathcal{P} of n weighted segments (in any direction), a set of m points \mathcal{C} and a parameter k, runs in time $f(k) \cdot (nm)^c$ for some computable function f and constant c, and outputs a subfamily $\mathcal{R} \subseteq \mathcal{P}$ such that $|\mathcal{R}| \leq k$ and $\mathcal{R}^{+\delta}$ covers all points in \mathcal{C} .

To solve this problem we will introduce kernel for slightly different problem: Weighted segment cover of points and segments. In shortcut: WSCPS.

Lemma 3.3.1 (Algorithm for kernel of WSCPS). There exists an algorithm that given a family \mathcal{P} of n weighted segments (in any direction), a set of m_1 points \mathcal{C}_1 and m_2 segments \mathcal{C}_2 and a parameter k, runs in time $f(k) \cdot g(m_1, m_2) \cdot n^c$ for some computable functions f, g and constant c, and outputs a subfamily sol $\subseteq \mathcal{P}$ such that $|\mathcal{R}| \leq k$ and \mathcal{R} covers all points in \mathcal{C}_1 and all segments in \mathcal{C}_2 .

Proof Only sketch for now.

We can compute dynamic programming dp(A, B, z) – the best cost to cover at least whole segment A, B using at most z segments. A, B are all interesting points – ends of any segment given on the input or points given on the input. We can compute it in polynomial time.

Then we can create a new double weighted set (original weight, number of used segments from \mathcal{P}) – \mathcal{P}_2 that has only segments which never cover partially any segment from \mathcal{C}_2 (covers the whole segment or doesn't cover at all). In such \mathcal{P}_2 we can find solution \mathcal{R} where any 2 segments have empty intersection (don't cover each other and don't meet at the ends). Because if we had such solution, we can merge these two segments and such segment there's also in \mathcal{P}_2 .

In that case we can find kernel of \mathcal{P}_2 of size $k \cdot (m_1 + 2m_2)^2$, because we only need to take the best weight covering some subset of $\mathcal{C}_1 \cup \mathcal{C}_2$.

Lemma 3.3.2 Kernel in WSCPS. TODO: formulate it properly For segment cover, there is a kernel of size f(k) in WSCPS.

Claim 3.3.1 If there are more than k lines with at least k+1 points on them, then they can't be covered with k segments.

Claim 3.3.2 If there is more than k^2 points that don't lie on any line with more than k points on it, then they can't be covered with k segments.

Claim 3.3.3 For every long line L (with more than k points on them) we can choose f(k) points on them, that if we cover all of these points with at most k segments, then the rest of the points with δ -extensions will be covered by segments in the direction of line L.

Proof of Lemma 3.3.2. After applying the previous lemmas, we have at most $k^2 + k \cdot f(k)$ points that can be covered in any direction and for the rest of the points we can draw at most $k \cdot f(k)$ segments along their respective long lines that have to be covered by segments after δ -extensions.

Then we extend every available segment by δ -extension and we achieve the kernel in WSCPS for this instance of problem.

Lemma 3.3.3 If all the points are covered with k segments and the biggest $2(1 + 1/\delta)^{k+1}$ spaces between points are filled, the whole segment is filled after δ -extensions of these segments.

Proof. Let's name the $2(1+1/\delta)^{k+1}$ -st biggest space between points as y. We have guarantee that all segements of length x > y are covered without δ -extensions.

Let's take one space between points that is not covered before δ -extension and we will prove it will be covered after δ -extensions. Let's assume it isn't.

This space has length x. Since it's uncovered, $x \leq y$.

Let's take side where the sum of lengths of segments covering the points is greater (left or right). Without loss of generality, let us assume it's right.

There are at most k segments to the right of this space between points. Name their lengths $l_1, l_2 \dots l_k$. If the point is covered in the other direction, the segment is degenerated to the point and $l_i = 0$. Name the space between endpoints of l_i and $l_{i+1} - x_i$. Of course, x_i is uncovered space between two points, therefore $x_i \leq y$.

TUTAJ BEDZIE PEWNIE RYSUNEK Z TYMI SUPER RZECZAMI DO PRZERW

Let's write equations meaning that i-th segment doesn't cover space x after δ -expansion.

$$l_1 \delta < x \le y \Rightarrow l_1 < y/\delta$$

$$l_2 \delta < x + l_1 + x_1 < 2y + y/\delta \Rightarrow l_2 < 2y/\delta + y/\delta^2$$

$$l_3 \delta < x + l_1 + x_1 + l_2 + x_2 < 3y + 3y/\delta + y/\delta^2 \Rightarrow l_3 < 3y/\delta + 3y/\delta^2 + y/\delta^3$$

From this we can "guess" induction $l_i < y((1+1/\delta)^i - 1)$

Trivailly for $l_1 < y/\delta$.

344

352

353

354

355

356

357

358

359

360

361

369

Assume that for all j < i:

$$l_i < y((1+1/\delta)^j - 1)$$

363 .
$$l_i\delta < x + \sum_{j=1}^{i-1}(l_j + x_j) < iy \sum_{j=1}^{i-1}l_j < iy + \sum j = 1^{i-1}y((1+1/\delta)^j - 1) = iy - (i-1)y + \sum j = 1^{i-1}y(1+1/\delta)^j = y(1+1/\delta)^j = y(1+1/\delta)^j = y(1+1/\delta)^j = y(1+1/\delta)^j = y(1+1/\delta)^j = y(1+1/\delta)^j - 1 = y((1+1/\delta)^i - 1) = y((1+1/\delta)^i -$$

Of course we also know that (since we have chosen the side with greater sum of the width of segments):

$$\sum_{i=1}^{k} l_i \ge 1/2 \cdot y \cdot 2(1+1/\delta)^{k+1} = y \cdot (1+1/\delta)^{k+1}$$

But
$$\sum_{i=1}^{k} l_i < \sum_{i=1}^{k} y((1+1/\delta)^i - 1) = y((1+1/\delta)^{k+1}/(1-(1+1/\delta)) - k) = y((1+1/\delta)^{k+1}\delta - k) < y(1+1/\delta)^{k+1}$$

Therefore the space must have been covered after δ -expansions.

3.3.2. W[1]-completeness for weighted segments in 3 directions

Theorem 3.3.2 W[1]-completeness for weighted segments in 3 directions. Consider the problem of covering a set C of points by selecting k axis-pararell or right-diagonal weighted segments with weights from a set P with minimal weight. Assuming ETH, there is no algorithm for this problem with running time $f(k) \cdot (|C| + |P|)^{o(\sqrt{k})}$ for any computable function f.

We will show reduction from grid tiling problem.

Let's have an instance of grid tiling problem – size of the gird k, number of elements available n and k^2 sets of available pairs in every tile $S_{i,j} \subseteq \{1,n\} \times \{1,n\}$.

378 Construction. We construct a set \mathcal{P} of segments and a set \mathcal{C} of points.

First let's choose any ordering of n^2 elements $\{1,n\} \times \{1,n\}$ and name this sequence $a_1 \dots a_{n^2}$.

$$match_v(i,j) \iff a_i = \{x_i, y_i\} \land a_j = \{x_j, y_j\} \land x_i = x_j$$

 $match_b(i,j) \iff a_i = \{x_i, y_i\} \land a_i = \{x_i, y_i\} \land y_i = y_i$

Points. Define points:

$$h_{i,j,t} = (j \cdot (n^2 + 1) + t, (n^2 + 1) \cdot i)$$

$$v_{i,j,t} = ((n^2 + 1) \cdot i, j \cdot (n^2 + 1) + t)$$

Let's define sets H and V as:

$$H = \{h_{i,j,t} : 1 \le i, j, \le k, 1 \le t \le n^2\}$$

$$V = \{v_{i,i,t} : 1 \le i, j, \le k, 1 \le t \le n^2\}$$

Let's define $\epsilon=0.1$. For a point $\{x,y\}=p$ we define points $p^L=\{x-\epsilon,y\},$ $p^R=\{x+\epsilon,y\},$ $p^U=\{x,y-\epsilon\},$ and $p^D=\{x,y+\epsilon\}.$

Then we define:

$$\mathcal{C} := H \cup \{p^L : p \in H\} \cup \{p^R : p \in H\} \cup V \cup \{p^U : p \in V\} \cup \{p^D : p \in V\}$$

Segments. Define horizontal segments.

$$\begin{aligned} hor_{i,j,t_{1},t_{2}} &= (h_{i,j,t_{1}}^{R}, h_{i,j+1,t_{2}}^{L}) \\ ver_{i,j,t_{1},t_{2}} &= (v_{i,j,t_{1}}^{D}, v_{i,j+1,t_{2}}^{U}) \\ horbeg_{i,t} &= (h_{i,1,1}^{L}, h_{i,1,t}^{L}) \\ horend_{i,t} &= (h_{i,n,t}^{R}, h_{i,n,n^{2}}^{R}) \\ verbeg_{i,t} &= (v_{i,1,1}^{U}, v_{i,1,t}^{U}) \\ verend_{i,t} &= (v_{i,n,t}^{D}, v_{i,n,n^{2}}^{D}) \end{aligned}$$

$$HOR = \{hor_{i,j,t_1,t_2} : 1 \le i \le k, 1 \le j < k, 1 \le t_1, t_2 \le n^2, match_h(t_1, t_2)\}$$

$$\cup \{horbeg_{i,t} : 1 \le i \le k, 1 \le t \le n^2\}$$

$$\cup \{horend_{i,t} : 1 \le i \le k, 1 \le t \le n^2\}$$

$$VER = \{ver_{i,j,t_1,t_2} : 1 \le i \le k, 1 \le j < k, 1 \le t_1, t_2 \le n^2, match_v(t_1, t_2)\}$$

$$\cup \{verbeg_{i,t} : 1 \le i \le k, 1 \le t \le n^2\}$$

$$\cup \{verend_{i,t} : 1 \le i \le k, 1 \le t \le n^2\}$$

$$DIAG := \{(h_{i,j,t}, v_{j,i,t}) : 1 \le i, j \le k, 1 \le t \le n^2, a_t \in S_{i,j}\}$$

TODO: explain that these segments are in fact diagonal

$\mathcal{P} := HOR \cup VER \cup DIAG$

- Lemma 3.3.4 If there exists solution for grid tiling, then there exists solution for our construction using $2(k+1)k + k^2$ segments with weight exactly $2k \cdot (k(n^2+1) 2 2\epsilon(k-1))$.
 - Claim 3.3.4 If there exists a solution to the grid tiling $c_1 ldots c_k$ and $r_1 ldots r_k$, then there exists a solution covering all points

$$\{h_{i,i,t}: 1 \le i, j \le k, t = (c_i, r_i)\} \cup \{v_{i,i,t}: 1 \le i, j \le k, t = (c_i, r_i)\}$$

- with segments in DIAG and the rest in VER or HOR and has weight $2k \cdot (k(n^2+1)-388-2-2\epsilon(k-1))$.
- 389 **Proof.** TODO: jakiś prosty z definicji

384

- Lemma 3.3.5 If there exists solution for our construction using $2(k+1)k+k^2$ segments with weight exactly $2k \cdot (k(n^2+1)-2-2\epsilon(k-1))$, then there exists a solution for grid tiling
- Proof. This follows from Lemma 3.3.6, because we just take which points are covered with DIAG.
- Claim 3.3.5 Points p^L, p^R, p^U, p^D cannot be covered with DIAG.
- Claim 3.3.6 Points in $H \cup \{p^L : p \in H\} \cup \{p^R : p \in H\}$ cannot be covered with VER. Points in $V \cup \{p^U : p \in V\} \cup \{p^D : p \in V\}$ cannot be covered with HOR.
- Claim 3.3.7 For given i, j if none of the points $h_{i,j,t}$ $(v_{i,j,t})$ for $1 \le t \le n^2$ are covered with DIAG, then some spaces between neighbouring points were covered twice.
- Claim 3.3.8 For given i, j two points h_{i,j,t_1}, h_{i,j,t_2} $(v_{i,j,t_1}, v_{i,j,t_2})$ for $1 \le t_1 < t_2 \le n^2$ are covered with DIAG, then one of them had to be also covered with a segment from HOR (VER).

- **Proof.** Point v_{i,j,t_2}^L had to be covered with VER from Claims 3.3.5 and 3.3.6. And every segment in VER covering v_{i,j,t_2}^L , covers also v_{i,j,t_1}^L .
- Lemma 3.3.6 If there exists solution for our construction with weight at most (exactly) $2k \cdot (k(n^2+1)-2-2\epsilon(k-1))$, then for every i,j there must be exactly one t such that $h_{i,j,t}$ ($v_{i,j,t}$) is covered with DIAG and moreover if h_{i,j,t_1} and $h_{i,j+1,t_2}$ are uncovered, then $math_h(t_1,t_2)$. Analogically for v.
- **Proof.** Only k^2 points can be covered only in DIAG, the rest has to be covered with $VER \cup HOR$. Therefore every result must be at least $ALL_LINES 2k^2\epsilon$, because only $2k^2$ spaces of length ϵ can be uncovered in this axis.
- Of course if h_{i,j,t_1} and $h_{i,j+1,t_2}$ are uncovered, then there must exist a segment in HOR between h_{i,j,t_1}^R and $h_{i,j+1,t_2}^L$, so $math_h(t_1,t_2)$ must be true.

3.3.3. What is missing

We don't know FPT for axis-pararell segments without δ -extensions.

⁴¹⁵ Chapter 4

420

421

422

423

424

425

433

Geometric Set Cover with lines

$_{^{417}}$ 4.1. Lines parallel to one of the axis

When \mathcal{R} consists only of lines parallel to one of the axis, the problem can be solved in polynomial time.

We create bipartial graph G with node for every line on the input split into sets: H – horizontal lines and V – vertical lines. If any two lines cover the same point from C, then we add edge between them.

Of course there will be no edges between nodes inside H, because all of them are pararell and if they share one point, they are the same lines. Similar argument for V. So the graph is bipartial.

Now Geometric Set Cover can be solved with Vertex Cover on graph G. Since Vertex Cover (even in weighted setting) on bipartial graphs can be solved in polynomial time.

Short note for myself just to remember how to this in polynomial time:

Non-weighted setting - Konig theorem + max matching

Weighted setting - Min cut in graph of $\neg A$ or $\neg B$ (edges directed from V to H)

4.2. FPT for arbitrary lines

You can find this is Platypus book. We will show FPT kernel of size at most k^2 .

(Maybe we need to reduce lines with one point/points with one line).

For every line if there is more than k points on it, you have to take it. At the end, if there is more than k^2 points, return NO. Otherwise there is no more than k^4 lines.

In weighted settings among the same lines with different weights you leave the cheapest one and use the same algorithm.

4.3. APX-completeness for arbitrary lines

We will show a reduction from Vertex Cover problem. Let's take an instance of the Vertex Cover problem for graph G. We will create a set of |V(G)| pairwise non-pararell lines, such that no three of them share a common point.

Then for every edge in $(v, w) \in E(G)$ we put a point on crossing of lines for vertices v and w. They are not pararell, so there exists exactly one such point and any other line don't cover this point (any three of them don't cross in the same point).

Solution of Geometric Set Cover for this instance would yield a sound solution of Vertex Cover for graph G. For every point (edge) we need to choose at least one of lines (vertices) v or w to cover this point.

Vertex Cover for arbitrary graph is APX-complete, so this problem in also APX-complete.

4.4. 2-approximation for arbitrary lines

Vertex Cover has an easy 2-approximation algorithm, but here very many lines can cross through the same point, so we can do d-approximation, where d is the biggest number of lines crossing through the same point. So for set where any 3 lines don't cross in the same point it yields 2-approximation.

The problematic cases are where through all points cross at least k points and all lines have at least k points on them. It can be created by casting k-grid in k-D space on 2D space.

Greedy algorithm yields $\log |\mathcal{R}|$ -approximation, but I have example for this for bipartial graph and reduction with taking all lines crossing through some point (if there are no more than k) would solve this case. So maybe it works.

Unfortunaly I haven't done this:(

I can link some papers telling it's hard to do.

4.5. Connection with general set cover

Problem with finite set of lines with more dimensions is equivalent to problem in 2D, because we can project lines on the plane which is not perpendicular to any plane created by pairs of (point from C, line from P).

Of course every two lines have at most one common point, so is every family of sets that have at most one point in common equivalent to some geometric set cover with lines?

No, because of Desargues's theorem. Have to write down exactly what configuration is banned.

Chapter 5

470 Geometric Set Cover with polygons

5.1. State of the art

Covering points with weighted discs admits PTAS [Li and Jin, 2015] and with fat polygons with δ -extensions with unit weights admits EPTAS [Har-Peled and Lee, 2009].

Although with thin objects, even if we allow δ -expansion, the Set Cover with rectangles is APX-complete (for $\delta = 1/2$), it follows from APX-completeness for segments with δ -expansion in Section 3.2.

Covering points with squares is W[1]-hard [Marx, 2005]. It can be proven that assuming SETH, there is no $f(k) \cdot (|\mathcal{C}| + |\mathcal{P}|)^{k-\epsilon}$ time algorithm for any computable function f and $\epsilon > 0$ that decides if there are k polygons in \mathcal{P} that together cover \mathcal{C} , Theorem 1.9 in [Marx and Pilipczuk, 2015].

- Chapter 6
- 482 Conclusions

Bibliography

- [Har-Peled and Lee, 2009] Har-Peled, S. and Lee, M. (2009). Weighted geometric set cover problems revisited. *Journal of Computational Geometry*, 3.
- ⁴⁸⁶ [Håstad, 2001] Håstad, J. (2001). Some optimal inapproximability results. J. ACM, 48(4):798-859.
- [Li and Jin, 2015] Li, J. and Jin, Y. (2015). A PTAS for the weighted unit disk cover problem. CoRR, abs/1502.04918.
- [Marx, 2005] Marx, D. (2005). Efficient approximation schemes for geometric problems? In Brodal, G. S. and Leonardi, S., editors, *Algorithms ESA 2005*, pages 448–459, Berlin, Heidelberg. Springer Berlin Heidelberg.
- [Marx and Pilipczuk, 2015] Marx, D. and Pilipczuk, M. (2015). Optimal parameterized algorithms for planar facility location problems using voronoi diagrams. *CoRR*, abs/1504.05476.