ADAMAS UNIVERSITY PURSUE EXCELLENCE	ADAMAS UNIVERSITY END SEMESTER EXAMINATION (Academic Session: 2020 – 21)				
Name of the Program:	BCA Hons. In In Banking, Financial	Semester:	II		
	Services and Insurance				
Paper Title:	Design of Logic Circuit	Paper Code:	CSE11405		
Maximum Marks:	50	Time Duration:	3 Hrs		
Total No. of Questions:	17	Total No of	2		
		Pages:			
(Any other information for the student may be mentioned here)	1. At top sheet, clearly mention Name, Univ. Roll No., Enrolment No., Paper Name & Code, Date of Exam.				
	2. All parts of a Question should be answered consecutively. Each Answer should start from a fresh page.				
	3. Assumptions made if any, should be stated clearly at the beginning of your answer.				

	Group A		
	Answer All the Questions $(5 \times 1 = 5)$		
1	Convert $(110110100011)_2$ to $()_{16}$.	Ap	CO1
2	What is the full form of CMOS?	R	CO2
3	Moore model uses only Entry Actions. True or False?	U	CO3
4	What is the full form of EEPROM?	R	CO4
5	ROMs are much faster than dedicated logic circuits. True or False?	U	CO4
	Group B		
	Answer All the Questions $(5 \times 2 = 10)$		
6 a)	Using the Karnaugh map, obtain the Boolean expression for	Ap	CO1
	$F(A, B, C, D) = \sum_{m} (0,4,7,9,13,15) + \sum_{d} (3,5)$	-	
	(OR)		
6 b)	Draw the logic diagram and derive the Boolean expression of a half-	U	CO1
	subtractor.		
7 a)	Define Fan-in and Fan-out.	R	CO2
	(OR)		
7 b)	What is the utility of CMOS?	R	CO2
8 a)	Define Mealy Machines.	R	CO3
	(OR)		
8 b)	Describe the universal logic gates.	R	CO3
9 a)	Describe the different laws of Boolean algebra.	R	CO1
	(OR)		
9 b)	Draw the logic circuit and truth table of a 2×4 decoder.	Ap	CO1
10 a)	Give the logic diagram and state transition table of a T F/F.	U	CO4
	(OR)		
10 b)	Give the logic diagram and state transition table of an S-R F/F.	U	CO4
	Group C		
	Answer All the Questions $(7 \times 5 = 35)$		
11 a)	Using the Karnaugh map, minimise the following Boolean expression:	Ap	CO1
,	$F(A, B, C, D) = \sum_{m} (1,2,3,8,9,10,11,14) + \sum_{d} (7,15)$ and draw the	-	
	logic circuit for the minimized expression		
	(OR)		
11 b)	Draw the logic circuit diagram of a 2:1 MUX and by using it, design a	Ap	CO1
•			

	4:1 MUX.		
12 a)	Briefly describe the family of logic gates	R	CO2
	(OR)		
12 b)	Write short note on CMOS.		CO2
13 a)	Explain the functionality of Moore machine.	U	CO3
	(OR)		
13 b)	Differentiate between Moore & Mealy machine.	R	CO3
14 a)	Write short note on ROM	U	CO4
	(OR)		
14 b)	Explain how ROM is used as a PLD.	Ap	CO4
15 a)	Explain Full Adder with logic circuit diagram, truth table and Boolean	U	CO1
	expression		
	(OR)		
15 b)	Explain XOR and XNOR with logic diagrams and truth tables.	U	CO1
16 a)	Realize $f(A, B, C) = (a + bc)(b + c'a)$ using only NOR gates.	Ap	CO1
	(OR)		
16 b)	Differentiate between K-map and Quine-McCluskey method	R	CO1
17 a)	Describe the different shift registers.	U	CO4
	(OR)		
17 b)	Differentiate between S-R latch and S-R Flip-Flop	U	CO4

Note: The Sample prepared by assuming 5 COs in a course, considering one CO for one Module.

- If the COs are higher in numbers that can be managed by equating sub-divisional questions If the COs are lower in numbers, the questions can be increased by equating the number of ii) COs