RC4 וצופן WEP פרוטוקול

One time pad

 שיטת הצפנה מושלמת שייחודה בכך שקיימת הוכחה מתמטית לכך שאם המפתח המשמש להצפנה נבחר באקראי והשימוש בו הוא חד-פעמי, ההצפנה בלתי ניתנת לשבירה אפילו ליריב בעל עוצמת חישוב בלתי מוגבלת.

- מפתח בגודל ההודעה לפחות.
- מפתח רנדומלי (מתפלג בצורה אחידה בהינתן כל המפתחות האפשריים ולא תלוי בהודעה).
 - שימוש חד פעמי.
 - שני צדדים בלבד מחזיקים במפתח הסודי.

One time pad

$$\frac{E_{k}(m) = m\Theta k = c}{D_{k}(k, c) = k\Theta c = k\Theta m\Theta k = m}$$

```
1010 (A - הודעה)

(מפתח - 1100 (B - מפתח - 1100)
------

0110 (C - טקסט מוצפן)
```

```
0110 (C - טקסט מוצפן)

⊕ 1100 (B - מפתח )
------

1010 (A - חזרנו להודעה המקורית!)
```

צופן זרם

- . מצפין כל סיבית של ההודעה באמצעות XOR שם זרם מפתח
- ב- ○□□ זרם המפתח הוא אקראי לחלוטין וחד-פעמי. בצופן זרם, זרם המפתח מיוצר מתוך מפתח קצר יותר ע"י פונקציה פסאודו-אקראית.
- מחולל אקראי בלתי ניתן לשחזור, מצריך מקור חיצוני (חום, זרימת מים, קרינה)
- מחולל פסאודו אקראי נראה אקראי, אבל מיוצר באמצעות אלגוריתם מתמטי דטרמיניסטי. אם יודעים את מצב המחולל (Seed) ניתן לשחזר את הזרם כולו.

צופן זרם

- עבור כל הצפנה נשתמש במפתח אחר!
- אפשר לחלץ מידע XOR אפשר לחלץ מידע באשר משתמשים באותו מפתח פעמיים בהצפנה עם אפשר לחלץ מידע מההודעות המוצפנות.
 - . אם לתוקף יש את ${
 m c1}$, ${
 m c1}$ שהוצפנו ע"י אותו מפתח

• מתקבל XOR של ההודעות המקוריות. לכן כל הודעה חייבת להיות מוצפנת ע"י זרם מפתח שונה.

צופן RC4

- צופן זרם, כלומר מחולל בתים מקריים
- ההצפנה מתבצעת באמצעות ביצוע XOR של בית מקרי עם בית ההודעה
 - כך גם הפיענוח
 - באתחול מקבל מפתח סודי ויוצר מצב פנימי
 - בכל פעם שמבקש לחולל בית מקרי
 - נעזר במצב הפנימי
 - ומשנה את המצב הפנימי

- כמות מסוימת של בתים מקריים ו<u>לא סודיים</u>
- הם משורשרים למפתח הסודי ומתקבל מפתח מורחב
 - המפתח המורחב משמש כמפתח של RC4
 - וקטור האתחול מוגרל מחדש בהצפנה של כל הודעה
- הוא משורשר לפני תחילת ההודעה המוצפנת כדי לאפשר פענוח
 - מבטיח שהודעות שונות תוצפננה באמצעות מפתחות שונים

למה צריך וקטור אתחול

- יש לנו מפתח סודי K. ממנו RC4 מחולל רצף בתים מקריים •
- Y-ı X ו-B והתקבלו שתי הודעות B ו-B והתקבלו שתי הודעות מוצפנות
 - התוקף
 - R ,K ,B ,A לא יודע
 - Y ,X כן יודע •
 - ?מה הוא יכול לעשות
- $Z = X \oplus Y = (A \oplus R) \oplus (B \oplus R) = A \oplus B \oplus (R \oplus R) = A \oplus B$
 - $Z \oplus$ התוקף יכול לעבור על כל המילים במילון ולעשות מילה lacktriangle
 - B-ו A ו-Bאם מה שמתקבל זה גם מילה, אז התוקף מצא את ההתחלה של
 - הוא ממשיך באותו האופן

• ∨⊥ לבדו לא נותן אבטחה. הוא רק משתנה לכל הודעה כדי להבטיח שכל הודעה תוצפן עם זרם מפתח ייחודי.

אם לתוקף יש ∇ אבל אין לו את K- הוא לא יכול לשחזר את זרם ∇ המפתח.

אם לתוקף יש גם את □ עוד וגם את - K הוא יכול לשחזר בדיוק את אותו זרם מפתח ולקבל את ההודעה המקורית.

פרוטוקול WEP

- משמש להצפנת תעבורה אלחוטית
 - משתמש בצופן RC4
 - לא בטוח לשימוש •
 - התגלו חולשות בRC4
 - פרוטוקול WEP משתמש ב•
- כל חבילה שנושאת מידע מתחילה בכותרת קבועה
- זה והחולשות ביחד מאפשרות לגלות את המפתח (פרטים אצל המרצה)

פרטים טכניים

מפתח

- אורך המפתח הסודי של 5 WEP בתים. נסמן
 - אורך וקטור האתחול 3 בתים. נסמן XYZ
- XYZABCDE אורך המפתח המורחב 8 2 בתים. בסדר הזה

• סוגי חבילות

- יש כמה סוגי חבילות
- רק חבילות נושאות מידע מוצפנות
- בכל חבילה יש וקטור אתחול שונה, אבל המפתח הסודי נשאר זהה
 - בכל חבילה נושאת מידע, ארבעת הבתים הראשונים זהים

Apply a display filter ... <Ctrl-/>

No.	Time	Source	Destination	Protocol	Length Info
	1 0.000000	Tp-LinkT_1f:73:b0	Broadcast	802.11	149 Beacon fra
	2 1.413691	Tp-LinkT_1f:73:b0	Shenzhen_72:87:5c	802.11	258 Probe Resp
	3 1.416251	Tp-LinkT_1f:73:b0	Shenzhen_72:87:5c	802.11	258 Probe Resp
	4 1.418303	Tp-LinkT_1f:73:b0	Shenzhen_72:87:5c	802.11	258 Probe Resp
	5 1.420864	Tp-LinkT_1f:73:b0	Shenzhen_72:87:5c	802.11	258 Probe Resp
	6 2.551417	HuaweiTe_ea:b5:1e	Broadcast	802.11	108 Data, SN=1
	7 2.635347	ChinaDra_2b:54:d7 (…	. Avm_0b:2e:35 (34:81	802.11	16 Request-to
	8 4.122323	AskeyCom_bf:0b:0b (…	. Azurewav_b2:e1:b7 (802.11	16 Request-to
	9 4.122324		AskeyCom_bf:0b:0b (802.11	10 Clear-to-s
	10 4.140286	Tp-LinkT_1f:73:b0	IPv4mcast_7f:ff:fa	802.11	332 Data, SN=1
	11 4.242173	Tp-LinkT_1f:73:b0	IPv4mcast_7f:ff:fa	802.11	341 Data, SN=1
	12 4.342526	Tp-LinkT_1f:73:b0	IPv4mcast_7f:ff:fa	802.11	404 Data, SN=1

.000 0000 0000 0000 = Duration: 0 microseconds Receiver address: Broadcast (ff:ff:ff:ff:ff:ff)

Transmitter address: Tp-LinkT_1f:73:b0 (00:23:cd:1f:73:b0)

Destination address: Broadcast (ff:ff:ff:ff:ff)

Source address: HuaweiTe_ea:b5:1e (8c:eb:c6:ea:b5:1e)

BSS Id: Tp-LinkT_1f:73:b0 (00:23:cd:1f:73:b0)
STA address: Broadcast (ff:ff:ff:ff:ff)
.... 0000 = Fragment number: 0

0100 0100 0110 = Sequence number: 1094

▼ WEP parameters

Initialization Vector: 0xcea26f

Key Index: 0

WEP ICV: 0xcd24ff64 (not verified)

0000	08	42	00	90	ff	ff	ff	ff	ff	ff	00	23	cd	1f	73	b0	·B··		· · · # · · s ·
0010	8c	eb	с6	ea	b5	1e	60	44	ce	a2	6f	00	fc	98	7d	dd		· · `D	••••
0020	ca	59	74	19	2a	a5	79	b6	20	bc	61	89	75	е3	31	ec	·Yt·	* · y ·	· a · u · 1 ·
0030	27	e8	2d	6d	28	Зе	87	1b	25	41	0a	a5	f5	21	сb	11	' · -m	1(>··	%A · · · ! · ·
0040	d2	57	ff	09	69	48	6c	41	69	37	87	98	30	f9	a2	34	- W	iHlA	i7··0··4
0050	38	fc	5c	7e	f3	fb	db	03	6b	68	25	за							kh%:····
0060	ed	af	98	8c	23	25	28	91	cd	24	ff	64						#%(-	-\$-d

קצת על Wireshark

FISM JOL JUM JUHK HV C- NI 3 G Vair MEGN

Wirshark install

Windows •

Download from here https://www.wireshark.org/download.html

Wireshark Interface

http vs https

- http vs https •
- Filter query -> http •
- From browser -> http://httpforever.com/ •

,,				Ωr	<pre>https://example.com/</pre>
GET /ncc.txt HTTP/1.1 136	HTTP	213.57.24.144	192.168.5.164	173.815607- 824	1
HTTP/1.1 200 OK (text/html) 205	HTTP	192.168.5.164	213.57.24.144	173.804641- 825	
072 Len=0 [FIN, ACK] 80 → 64287 54	TCP	213.57.24.144	192.168.5.164	173.804126- 826	
in=64256 Len=0 [ACK] 64287 → 80 54	TCP	192.168.5.164	213.57.24.144	173.803398- 827	C ' 1 1
31072 Len=0 [TCP Dup ACK 826#1] 54	TCP	213.57.24.144	192.168.5.164	173.803295- 828	from wireshark '
256 Len=0 [FIN, ACK] 64287 → 80 54	TCP	192.168.5.164	213.57.24.144	173.789471- 829	
n=131072 Len=0 [ACK] 80 → 64287 54	TCP	213.57.24.144	192.168.5.164	173.789362- 830	

```
ace \Device\NPF {116C7AED-614D-44A2-934D-2C6D14E1B2F7}, id 0
··V·@·8· 6··9···
                                            (08:40:f3:db:b7:b8), Dst: Intel_85:eb:ed (b0:3c:dc:85:eb:ed) <
· · · P · · · { · ! · " · aP ·
                                            t Protocol Version 4, Src: 213.57.24.144, Dst: 192.168.5.164 <
·····HT TP/1.1 2
                                            ol, Src Port: 80, Dst Port: 64287, Seq: 1, Ack: 83, Len: 151 <
 00 OK ⋅ C ontent-T
                                                                              Hypertext Transfer Protocol
 ype: tex t/html··
 Content- Length:
                                                                Line-based text data: text/html (1 lines) >
 26··Date : Sat, 2
                                                                            Network Connectivity Check
8 Dec 20 24 18:25
```