CHEM 571A - Problem Set #3

Due Friday September 7th

1. $McQuarrie\ 4-11$: Evalutate the commutator $[\hat{A},\hat{B}]$, where \hat{A} and \hat{B} are given below

$$\hat{A}$$
 \hat{E}

(a)
$$\frac{d^2}{dx^2}$$
 x

(b)
$$\frac{d}{dx} - x$$
 $\frac{d}{dx} + x$

(c)
$$\int_0^x dx \qquad \frac{d}{dx}$$

(d)
$$\frac{d^2}{dx^2} - x \quad \frac{d^2}{dx^2} + x^2$$

- 2. McQuarrie~5-14: The force constant of $^{35}\mathrm{C}^{35}\mathrm{Cl}$ is 319 N·m⁻¹. Calculate the fundamental vibrational frequency and the zero-point energy of $^{35}\mathrm{C}^{35}\mathrm{Cl}$ (in the harmonic approximation).
- 3. McQuarrie 5-19: The vibrational term of a diatomic molecule is given to good approximation by

$$G(\nu) = \left(\nu + \frac{1}{2}\right)\tilde{\omega}_e - \left(\nu + \frac{1}{2}\right)^2 \tilde{x}_e \tilde{\omega}_e$$

where ν is the vibrational quantum number. Show that the spacing between adjacent levels ΔG is given by

$$\Delta G = \tilde{\omega}_e \{ 1 - 2\tilde{x}_e(\nu + 1) \}$$

Also show that the maximum vibrational quantum number is given by

$$\nu_{max} = \frac{1}{2\tilde{x}_e} - 1$$

Use the above result to compute the dissociation energy, D_e , of the molecule.

4. McQuarrie 5-22: Show that $\psi_0(x)$ and $\psi_1(x)$ for the harmonic oscillator are orthogonal.

1