Kabinet výuky obecné fyziky, UK MFF

Fyzikální praktikum 2

Úloha č. XVIII

Název úlohy: Prechodové javy v RLC obvode

Jméno: Filip Maxin (maxinfilip@gmail.com)

Datum měření: 6.12.2021

Připomínky opravujícího:

	Možný počet bodů	Udělený počet bodů
Teoretická část	0 - 2	
Výsledky a zpracování měření	0 - 9	
Diskuse výsledků	0 - 4	
Závěr	0 - 1	
Seznam použité literatury	0 - 1	
Celkem	max. 17	

 dne:	
 ••	
	dne:

Pracovná úloha

- 1. Pro sériový RLC obvod v periodickém stavu změřte závislost doby kmitu T na velikosti zařazené kapacity alespoň pro pět hodnot z intervalu ($C = 0,1 10 \mu F$, $R = 20 \Omega$). Výsledky měření zpracujte graficky a vyhodnoťte velikost indukčnosti L zařazené v obvodu.
- 2. Stanovte hodnoty aperiodizačních odporů pro pět hodnot kapacit zařazeného kondenzátoru. I v tomto případě stanovte velikost indukčnosti *L*.
- 3. Změřte závislost relaxační doby sériového obvodu RC na velikosti odporu a na velikosti kapacity v obvodu. Výsledky měření zpracujte graficky a porovnejte s teoretickými.

Teória

Sériový RLC obvod a priebeh jeho prúdu charakterizuje rovnica vyplývajúca z 2. Kirchoffovho zákona [1]:

$$L\frac{d^2I}{dt^2} + R\frac{dI}{dt} + \frac{I}{C} = 0 \tag{1}$$

Z riešení tejto rovnice rozlišujeme 3 stavy, ktoré popisujú rôzne situácie v obvode: periodický, medzne aperiodický a aperiodický stav [1].

Periodický priebeh prúdu sa zachováva pri podmienke

$$\frac{1}{LC} > \frac{R^2}{4L^2} \tag{2}$$

Pri medze aperiodickom stave, kedy platí $A^2 = (LC)^{-1}$, pozorujeme postupné tlmenie kmitov prúdu.

V aperiodickom stave platí podmienka $A^2 > (LC)^{-1}$, prúd dosiahne maximum veľmi rýchlo a pomaly klesá k nule.

Periódu kmitu periodického stavu RLC obvodu vieme teda odvodiť ako [1]:

$$T = \frac{2\pi}{\sqrt{\frac{1}{LC} - \left(\frac{R}{2L}\right)^2}}\tag{3}$$

Dostatočným zvýšením tlmenie dosiahneme hranicu aperiodizácie, kedy pre aperiodizačný odpor R_{ap} platí:

$$R_{ap} = 2\sqrt{\frac{L}{C}} \tag{4}$$

Bez indukčnosti L v obvode dochádza k vybíjaniu kondenzátora a prúd sa mení úmerne funkcii $exp(-t/\tau)$, kde τ je časová konštanta rovná súčinu kapacity a odporu [2].

Meranie

Presnosť odporovej dekády: 0.1 % Presnosť kapacitnej dekády: 1 %

V prvej časti experimentu meriame periodický stav RLC obvodu. Zapájame obvod na Obr. 1 a z programu ISES pri zmene kapacity na dekáde a konštantnom odpore odčítavame veľkosť periódy kmitov [2].

Obr. 1: Zapojenie RLC obvodu s rozhraním ISES

Následne skúmame medzný aperiodizačný stav, kedy pri rôznych hodnotách zaradenej kapacity hľadáme vhodné nastavenie odporovej dekády tak, aby sme sa priblížili hranici aperiodizácie [2]. V tretej časti merania sme po zapojení RC obvodu (Obr. 2) skúmali relaxačnú dobu. Najskôr pri konštantnej kapacite $C=10~\mu\text{F}$, kedy meníme odpor R a z parametru b z fitu programu ISES odvodzujeme τ ako [2]:

Obr. 2: Zapojenie RC obvodu

Analogicky postupujeme pre konštantný odpor R=4 k Ω a niekoľko vybraných hodnôt kapacity. Výsledky porovnávame so známou závislosťou časovej konštanty $\tau=RC$.

Chyby sme vyhodnocovali metódou prenosu chýb a vzhľadom na systematickú chybu tohto experimentu v niektorých prípadoch odhadom. U grafov už ju automaticky vyhodnocoval program Origin.

Pre použitú referenčnú hodnotu časovej konštanty:

$$\sigma_{\text{tteor}} = \sqrt{\left(\frac{\partial \tau}{\partial R}\right)^2 (\sigma_R)^2 + \left(\frac{\partial \tau}{\partial C}\right)^2 (\sigma_C)^2}$$
 (6)

Výsledky a spracovanie meraní

Zapojili sme RLC obvod na Obr. 1, spolu s rozhraním pre program ISES. Pri odpore $R = 20 \Omega$ sme sledovali závislosť periódy kmitov na kapacite zaradenej cez kapacitnú dekádu. Použili sme vždy 3 kmity a výsledok vydelili. Namerané dáta zobrazujeme v grafe 1. Chybu T odhadujeme na 3 %.

Graf 1: Závislosť periódy na kapacite s fitom podľa (3)

Takto nameranú závislosť T(C) sme v programe Origin nafitovali vzťahom (3) a získali z neho parameter $L = (0.321 \pm 0.013) H$.

Následne sme zaznamenali závislosť aperiodizačného odporu na zaradenej kapacite (graf 2) . Chybu R_{ap} vzhľadom na citlivosť dekády a technické problémy programu odhadujeme na 5 %.

Graf 2: Závislosť aperiodizačného odporu na kapacite s fitom podľa (4)

Fitovaním vzťahu (4) stanovujeme hodnotu indukčnosti $L = (0.231 \pm 0.009) H$.

Pri štúdiu relaxačných kmitov RC obvodu sme merali závislost relaxačnej doby na zaradenom odpore a v programe ISES vyhodnotili fit. Kapacitu sme ponechali konštantnú na $10~\mu F$. Z parametru b fitu programu ISES sme určili τ a výsledky v grafe 3 preložili aj teoreticky predpokladanou hodnotou. Tieto parametre udávame v tabuľke 1.

Tabuľka 1: Merania relaxačných kmitov s parametrom b fitovania ISES a odvodenej hodnoty au

C = 10 μF			R = 4 kΩ				
R [Ω]	b	τ _b [ms]	τ_{teor} [ms]	C [μF]	b	τ _b [ms]	τ _{teor} [ms]
1000	-384.38	10.2 ± 0.5	10	5.0	-46.94	21.3 ± 1.1	20
2000	-97.62	20.6 ± 1.0	20	6.5	-37.53	26.6 ± 1.3	26
4000	-48.52	39.7 ± 2.0	40	7.5	-32.88	30.4 ± 1.5	30
5000	-25.20	50.0 ± 2.5	50	8.5	-28.82	34.7 ± 1.7	34
400	-19.99	4.2 ± 0.2	4	10.0	-25.00	40.0 ± 2.0	40

Graf 3: Závislosť relaxačnej doby na zaradenom odpore pri $C = 10 \,\mu\text{F}$ preložená lineárnym fitom Lineárny fit $\tau_b(R)$ sa v rámci presnosti zhoduje s fitom teoretických dát na $\tau_b(C) = (0.010 \pm 0.009)C + (0.19 \pm 0.08)$.

Ďalej sme postupovali analogicky a pri konštantnom odpore R=4 k Ω vyhodnotili závislosť τ na zaradenej kapacite. Graf z dôvodu odchýlky od teoretických predpokladom dopĺňame o fit závislosti $\tau_{teor}(C)$.

Graf 4: Závislosť relaxačnej doby na zaradenej kapacite pri $R = 4 \text{ k}\Omega$, dáta aj teoretický predpoklad preložené lineárnymi fitmi

Predpis lineárneho fitu namernej závislosti $\tau_b(C) = (3.76 \pm 0.6)C + (2.4 \pm 0.5)$ Predpis lineárneho fitu teoretickej závislosti $\tau_{teor}(C) = (4.00 \pm 0.04)C + (0.00 \pm 0.05)$

Diskusia

Nami vyhodnotené závislosti súhlasia s teoretickými predpokladmi. Grafy 1 a 2 sme v programe Origin fitovali priamo teoretickými vzťahmi (3) a (4). Z dôvodu menšieho počtu meraní pozorujeme pri vyššej kapacite v grafe 1 výraznejší rozptyl dát, no je zjavné, že ďaľšie body ležia vždy v okolí predpísaného fitu a dané vzťahy ich teda dobre popisujú.

Indukčnosť L sme získali z fitu pre závislosť periódy na kapacite ako $L=(0.321\pm0.013)~H$ a pomocou $R_{ap}(C)$ ako $L=(0.231\pm0.009)~H$. Za dôveryhodnejšie vyhodnocujeme prvé meranie, pretože hľadanie aperiodizačného odporu R_{ap} sa ukázalo byť relatívne problematické. Okrem úplne fatálnych problémov programu uvedieme napríklad nejednoznačné rozlíšenie aperiodizačného stavu - aperiodický priebeh kmitov v programe ISES bolo ťažké rozlíšit, a stanoviť tak presný aperiodizačný odpor. Chybu R_{ap} sme preto odhadli na 5 %. Odporovú dekádu sme menili po $10~\Omega$ a chyba 5 % uvažuje teda odchýlku až $62~\Omega$, no napriek tomu sa ukazuje, že sme chybu neprecenili, v prípade chybových úsečiek grafu 1 dokonca mierne podcenili. V grafe 4 sme pozorovali viditeľné odchýlenie závislosti $\tau(C)$, preto do grafu vnášame aj fit podľa $\tau=RC$. Túto nezrovnalosť pripisujeme nedokonalému odčítaniu hodnôt z merania a najmä malému počtu bodov. Vzhľadom na precíznosť prístrojov a odporovej/kapacitnej dekády je ale vidieť, že tento spôsob odčítania relaxačných dôb z programu ISES zavádza do merania relatívne vysokú nepresnosť a okrem toho časté technické problémy. Inak sú ale závislosti lineárne, čo zodpovedá známej povahe časovej konštanty v takýchto obvodoch.

Záver

Pre RLC obvod sme odmerali závislosť periódy kmitov na zaradenej kapacite a pomocou teoretického vzťahu určili hodnotu indukčnosti $L = (0.321 \pm 0.013)~H$. Pre závislosť aperiodizačného odporu na kapacite sme túto indukčnosť získali ako: $L = (0.231 \pm 0.009)~H$. Pozorovali sme tiež lineárny priebeh relaxačnej doby pri konštantnej kapacite a pri konštantnom odpore v RC obvode. Výsledky sme reflektovali s teoretickými vzťahmi a zhodnolili zhodu.

Literatúra

- [1] KVOF MFF UK: Študijný text k úlohe XVIII: Prechodové javy v RLC obvode [online] [cit. 2022-01-11]. Dostúpné z: https://physics.mff.cuni.cz/vyuka/zfp/_media/zadani/texty/txt_218.pdf
- [2] KVOF MFF UK: Fotodokumentácia k úlohe XVIII: Prechodové javy v RLC obvode [online] [cit. 2021-01-12]. Dostúpné z: https://physics.mff.cuni.cz/vyuka/zfp/_media/zadani/foto/foto_218.pdf

Dodatok A

Fotografie z merania, zhotovené 6.12.2021

Fotografia A1: Príklad fitovania v programe ISES