Школа "Състезателно програмиране" Състезание, 12 ноември 2016 г.

А. Замервания

Двама приятели предприели дълго пътуване към морето. За съжаление километража в колата им не работи и те не знаят колко мили са изминали. За щастие, единият от тях има хронометър, с помощта на който записват скоростта си и общото време, което са карали. За съжаление стратегията им на водене на записки е меко казано странна и сега на вас се пада честта да изчислите общото пропътувано разстояние. Примерни техни записки са:

Скорост – мили в час	Общо изминало време в часове от началото на пътуването им		
20	2		
30	6		
10	7		

Първите два часа са се движили с 20 мили в час, следващите 6 - 2 = 4 часа с 30 мили в час, а последния 7 - 6 = 1 час с 10 м/ч. Следователно изминатото разстоянието е 2 * 20 + 4 * 30 + 1 * 10 = 40 + 120 + 10 = 170 мили. Забележете, че общото изминало време е винаги спрямо началото на пътуването.

Всеки тест започва с ред, съдържащ цялото N, $1 \le N \le 10$. Следват N двойки цели числа - скоростта в мили в час S, $1 \le S \le 100$ и общото изминалото време T, $1 \le T \le 12$. Двойките са винаги подредени във възходящ ред на T. -1 маркира края на входа.

За всеки тестов пример извеждайте на отделен ред на стандартния изход търсеното изминато разстояние в мили. Спазвайте показания изходен формат.

Вход	Изход
3	170 miles
20 2	180 miles
30 6	90 miles
10 7	
2	
60 1	
30 5	
4	
15 1	
25 2	
30 3	
10 5	
-1	

София 1635, ул. Монтевидео 21 тел.: 55 81 37, 55 21 35, факс: 957 19 30

Департамент Информатика

Школа "Състезателно програмиране" Състезание, 12 ноември 2016 г.

В. Суми от степени на 2

Вчера Иван видя във Facebook, че 2016 може да се запише като сума от степени на двойката по следния начин: $2016 = 2^{10} + 2^9 + 2^8 + 2^7 + 2^6 + 2^5$. Той се замисли дали няма и други такива представяния и ако има, колко са те. За числата от 2 до 5 той откри следните представяния:

$$2 = 2^{1} \text{ if } 2 = 2^{0} + 2^{0}$$

$$3 = 2^{0} + 2^{1} \text{ if } 3 = 2^{0} + 2^{0} + 2^{0}$$

$$4 = 2^{2}, 4 = 2^{1} + 2^{1}, 4 = 2^{1} + 2^{0} + 2^{0} \text{ if } 4 = 2^{0} + 2^{0} + 2^{0} + 2^{0}$$

$$5 = 2^{2} + 2^{0}, 5 = 2^{1} + 2^{1} + 2^{0}, 5 = 2^{1} + 2^{0} + 2^$$

Нататък обаче му е трудно да продължи, а за 2016 очевидно сметките няма да станат само с лист и химикал. Поради тази причина Иван ви моли да напишете програма, която да пресмята броя на начините, по които цяло положително число N може да се запише като сбор от естествени числа, всяко от които е степен на двойката. Обърнете внимание, че редът на събираемите в сумите не е от значение (например сумите $2^1 + 2^1 + 2^0$, $2^1 + 2^0 + 2^1$ и $2^0 + 2^1 + 2^1$ са едно и също представяне на числото 5 като сбор от естествени числа, които са степени на двойката).

За всеки тестов пример от стандартния вход се въвежда цялото число N ($1 \le N \le 3000$).

За всеки тестов пример извеждайте на отделен ред на стандартния изход броя на начините, по които *N* може да се запише като сбор от естествени числа, всяко от които е степен на двойката.

Вход	Изход
6	6

София 1635, ул. Монтевидео 21 тел.: 55 81 37, 55 21 35, факс: 957 19 30

Департамент Информатика

Школа "Състезателно програмиране" Състезание, 12 ноември 2016 г.

С. Скоби

Даден ви е низ от скоби - тоест низ, съставен от символите {'(', ')', '{', '}', '[', ']'}. Пита се дали зададеният низ е валиден низ от скоби - тоест ако се поставят числа и аритметични знаци между скобите би могло да се получи валиден аритметичен израз.

Напишете програма, която по зададен символен низ проверява дали синтаксисът на скобите е правилен — т.е. дали за всяка отваряща скоба има съответна затваряща и обратно, както и дали са правилно разположени.

Примерни валидни скобни низове са "()()", и "({{[]([])}}())[[{}]]", докато невалидни са "((", ")(", "([})", "({})}", и "(){}[()]]".

Всеки тест ще се състои от един непразен стринг, зададен на отделен ред на стандартния вход и ще съдържа не повече от 3000 символа.

За всеки тест извеждайте на нов ред на стандартния изход "yes", прочетен низ е валиден низ от скоби и "no", в противен случай.

Вход	Изход
({{[]([])}}())	yes
() { } [()]]	no
({)}	no
{	no
[]	yes
{}{}	yes

meл.: 55 81 37, 55 21 35, факс: 957 19 30

Департамент Информатика

Школа "Състезателно програмиране" СЪСТЕЗАНИЕ, 12 ноември 2016 г.

D. Нарушения

В един град всички улици са еднопосочни. В града има n кръстовища, номерирани с целите числа от 1 до n. Даден е списък на двойки кръстовища p и q, които са свързани с еднопосочна отсечка от улица, така че по тази отсечка от улица няма други кръстовища. За всеки две кръстовища р и д съществува най-много една еднопосочна отсечка от улица в посока от p към q, или в посока от q към p.

Опитваме се да спазваме правилата за движение в града, но невинаги е възможно да отидем с кола от кръстовище a до кръстовище b. С колко най-малко нарушения, обаче, може да се придвижим от a до b? Всяко навлизане в посока обратна на разрешената в еднопосочна отсечка от улица се брои за едно нарушение.

Напишете програма, която намира минималния брой на нарушенията.

На първия ред на стандартния вход е зададен броят на тестовете. Всеки тест започва с целите n, m, a и b, където $n, 1 \le n \le 200\,000$ е броят на кръстовищата, $m, 1 \le m \le 100$ $400\ 000\ e$ броят на еднопосочните отсечки, a е номерът на кръстовището, от което тръгваме и b е номерът на кръстовището, в което трябва да отидем. Следват m реда, като на всеки от тези редове са дадени по две числа p и q — номерата на кръстовищата, за които съществува еднопосочна отсечка от улица с посока от p към q.

За всеки тест програмата трябва да изведе на отделен ред на стандартния изход едно цяло число – намерения минимален брой. Ако е възможно да се премине без нарушения – програмата трябва да изведе 0. Ако въобще не е възможно да се премине – програмата трябва да изведе главната латинска буква Х.

Вход	Изход
2	1
4 4 1 4	X
4 3	
3 2	
1 2	
4 2	
4 3 1 4	
4 3	
3 2	
4 2	

Школа "Състезателно програмиране" Състезание, 12 ноември 2016 г.

Е. Дълбочина на дърво

Дадено е двоично дърво с N, $3 \le N \le 99999$ върха, номерирани с числата от 1 до N. Всеки връх на дървото има 0 или 2 наследници, като дължината на свързващите ги ребра е 1. Коренът на дървото е с номер 1. Той е свързан с фиктивен възел с номер 0, като разстоянието между тях е 1.

Да се намерят разстоянията от фиктивния възел до всички върхове на дървото, т.е. да се намери дълбочината (depth) на всеки възел, ако допуснем, че коренът на дървото е с дълбочина 1. Например:

Връх 1 е на разстояние 1 от фиктивния възел. Върхове 2 и 3 са на разстояние 2, а върхове 4 и 5 – на разстояние 3.

Всеки тестов пример започва с числата N и C, $1 \le C \le N$. N е броят на върховете, а C е броят на зададените тройки — връх, ляв и десен наследник. Следват C реда с по три числа E_i ($1 \le E_i \le N$), L_i и R_i ($2 \le L_i \le N$; $2 \le R_i \le N$). E_i е номер на връх с наследници върховете L_i и R_i . За край на входа служат две нули.

За всеки тестов пример трябва да се отпечатат по N числа, всяко на отделен ред, като i-то число е дължината от фиктивния връх до върха с номер i, $1 \le i \le N$.

Вход	Изход
5 2	1
3 5 4	2
1 2 3	2
7 3	3
1 3 7	3
7 5 2	1
3 4 6	3
0 0	2
	3
	3
	3
	2

Школа "Състезателно програмиране" Състезание, 12 ноември 2016 г.

F. Garbage

Навярно не много от вас знаят, че скоро ще бъде отворен първият завод за преработване на боклук в България. Част от работата, която ще се върши там е да се компресира боклукът. За да се прави това, той се поставя в правоъгълна "стая", като всяка от четирите стени е бутало, което може да натисне боклука от съответната страна. Боклукът, от друга страна, е разнороден и се нуждае от различно количество енергия за натискане, за да се компресира.

Можете да си представите боклука и стаята като правоъгълна матрица с N реда и M колони. Във всяка клетка на матрицата има по едно число A_{ij} между 0 и 9, включително - какъв "натиск" се изисква, за да бъде компресирана тя. Когато някоя от четирите стени "натиска" оставащия боклук, е нужна енергия, равна на най-голямото число в съответната страна на матрицата - краен ред за горната и долната стена, и крайна колона за лявата и дясната.

Например, нека имаме компресираща стая с 3 реда и 4 колони, като боклукът в нея е със следната "твърдост":

Ако натиснем с горната стена (ред с числа 6, 8, 7, 2) ще ни е нужна сила 8, тъй като това е най-твърдата клетка в този ред. Аналогично, за долната стена ще ни е нужна сила 9, за лявата - сила 6, а за дясната - сила 2. След натискане въпросният ред или колона изчезва - вече се счита за компресиран и не играе роля в следващи натискания. Целта е целият боклук (тоест всички клетки) да бъдат компресирани. За да е

6	8	7	2
3	0	9	1
4	2	9	1

ефективен заводът, се изисква това да стане с минимална обща използвана сила.

Оказва се, че има значение кои бутала и в какъв ред ползваме. Ако, например, ползваме само горното бутало ще са ни нужни 8 + 9 + 9 = 26 единици сила. Ако вместо това ползваме горното, дясното, дясното, лявото, долното за 8 + 1 + 9 + 4 + 2 = 24.

София 1635, ул. Монтевидео 21 тел.: 55 81 37, 55 21 35, факс: 957 19 30

Чувайки за вече легендарната креативност на Ели (най-вече в това да предоставя сложните си проблеми на вас), шефовете на завода са я назначили за ръководител на отдела по натискането. Разбира се, момичето ви дава възможността да блеснете, като напишете програма, която намира с колко най-малко енергия може да бъде компресиран целият боклук.

Вход

От първия ред на стандартния вход се въвежда броя тестовите примери. Всеки от тях започва с две цели, положителни числа, разделени с интервал - броя редове N и броя колони M на стаята. Следват N на брой реда, всеки съдържащ по M едноцифрени числа, разделени с интервали - твърдостта на боклука във всяка от клетките.

Изход

За всеки тестов пример извеждайте на стандартния изход едно цяло число - минималната енергия, нужна за компресирането на всичкия боклук.

Ограничения:

- **❖** $1 \le N$, $M \le 100$
- \bullet $0 \le A_{ii} \le 9$

Вход	Изход
2	24
3 4	62
6 8 7 2	
3 0 9 1	
4 2 9 1	
8 7	
9 5 9 9 8 9 1	
1 3 7 0 1 7 7	
6 0 7 3 7 0 3	
2 2 6 1 5 4 8	
6 9 9 2 3 2 7	
4 6 7 3 1 1 3	
1 6 7 1 2 6 7	
4 4 7 3 9 8 9	

Школа "Състезателно програмиране" Състезание, 12 ноември 2016 г.

G. Прости числа

Да се напише програма, която намира броя на простите числа в даден затворен интервал.

Първото число от входа е броят на примерите на входа. Следващите двойки числа а и b, (a < b < 1000000) задават интервала, в който ще се търси. Двете числа са цели и положителни.

За всеки пример от входа се извежда на отделен ред намерения брой.

Вход	Изход
3	3
1 5	1
13 14	0
20 22	

Школа "Състезателно програмиране" Състезание, 12 ноември 2016 г.

Н. Анаграма

Низът X е анаграма на низа Y, ако X може да бъде получен от разместването на символите на Y в някакъв ред. Не е позволено премахването или добавянето на никакви символи. Например всеки от низовете "baba", "abab", "aabb" и "abba" е анаграма на "aabb", а низовете "aaab", "aab" и "aabc" на са анаграма на "aabb".

По зададено множество от низове S се интересуваме от най-голямото му подмножество, в което няма два или повече низа, които да са анаграми един на друг. S може да се счита за подмножество, ако отговаря на горното условието.

Всеки тестов пример е зададен на един не празен ред, съдържащ низовете от S, разделени с един или няколко интервала. Всяко S съдържа между 1 и 50 низа, всеки от които с дължина между 1 и 50.

За всеки тестов пример на стандартния изход да се изведе по едно число – броя на низовете в исканото подмножеството.

Вход						Изход
abcd	abac	aabc			bacd	2
						10
						1
						1
wlrb m bhc arz	wk yhi	dqs dxr	mowfr		sjyb	
ab				ba		
Z						

София 1635, ул. Монтевидео 21 тел.: 55 81 37, 55 21 35, факс: 957 19 30

Департамент Информатика

Школа "Състезателно програмиране" Състезание, 12 ноември 2016 г.

І. Различни стойности

Нека са дадени числата a_1 , a_2 , ..., a_n . След поставяне на операции "+" и "-" между числата a_i и a_{i+1} за i=1,2,...,n-1 може да се пресметне стойността на получения аритметичен израз.

Колко различни стойности може да получим по този начин?

На стандартния входа се задават редици от числа - всяка редица на отделен ред.

За всяка редица от входа се отпечатва на нов ред едно число - броят на различните стойности на получените изрази.

Ограничения:

- ❖ Всички числа редиците са цели в интервала [1, 100].
- $4 \le n \le 20$.

Вход	Изход
1 1	2
1 2 3 4 5 6 7 8	34
30 20 40 10	8

София 1635, ул. Монтевидео 21 тел.: 55 81 37, 55 21 35, факс: 957 19 30

Департамент Информатика

Школа "Състезателно програмиране" Състезание, 12 ноември 2016 г.

J. Прави

Разглеждаме точките с целочислени координати (x, y), за които $0 \le x \le a$ и $0 \le y \le b$. Напишете програма, която намира колко прави минават през поне две от тези точки.

Програмата трябва да обработи няколко тестови примера, всеки зададен на отделен ред на стандартния вход, съдържащ числата \mathbf{a} и \mathbf{b} (0 < \mathbf{a} , \mathbf{b} < 3000).

За всеки тестов пример изведете на отделен ред на стандартния изход броя на търсените прави.

Вход	Изход
2 2	20
10 10	3296