Topic: CPCTC

Question: Given that $\triangle ABC \cong \triangle EFD$, which of these can be proven by CPCTC?

Answer choices:

- $\mathsf{A} \qquad \angle A \cong \angle D$
- $\mathsf{B} \qquad \overline{AC} \cong \overline{ED}$
- C Both A and B
- D Neither A nor B

Solution: B

We know that $\triangle ABC \cong \triangle EFD$.

The order of the letters for the vertices tells you that the triangles match up as shown above, and the congruences of angles are as follows:

$$\angle A \cong \angle E$$

$$\angle B \cong \angle F$$

$$\angle C \cong \angle D$$

That rules out answer choice A, which also rules out answer choice C.

Likewise, the congruences of sides are as follows:

$$\overline{AB} \cong \overline{EF}$$

$$\overline{BC} \cong \overline{FD}$$

$$\overline{AC} \cong \overline{ED}$$

This third side congruency statement matches answer choice B.

Topic: CPCTC

Question: We've written a proof showing that $\overline{AB} \cong \overline{ED}$ in the figure. Which column in the table shows the last three steps of the proof?

Α	В	С	D
CPCTC	Vertical angles are congruent	CPCTC	Vertical angles are congruent
Vertical angles are congruent	CPCTC	ASA	ASA
ASA	ASA	Vertical angles are congruent	CPCTC

Answer choices:

- A Column A
- B Column B
- C Column C

D Column D

Solution: D

The proof is using ASA to prove triangles congruent. CPCTC is used only after triangles have been proven congruent, which means it must come after ASA.

Only answer choice D has ASA and CPCTC in the correct order.

Topic: CPCTC

Question: Given trapezoid ABCD, and $\overline{AC} \cong \overline{BD}$ and $\angle DAC \cong \angle BDA$, assuming we're trying to prove that ABCD is isosceles, which is the missing step in the proof?

1. Segment AC congruent to segment BD	Given	
2. Segment AD congruent to segment AD	Reflexive	
3. Angle DAC congruent to angle BDA	Given	
4		
5. Segment AB congruent to segment CD	CPCTC	
6. Trapezoid <i>ABCD</i> is isosceles	Definition of isosceles trapezoid	

Answer choices:

A $\triangle BAD \cong \triangle CAD$ by SAS

B $\triangle ABE \cong \triangle DCE$ by ASA

	$\triangle BCA \cong A$	Λ and	
($/ \setminus R \cap A \simeq$	$/\setminus$ (RI)	$\Delta \Delta $
\sim	$\Delta DCn =$		

D
$$\triangle ABD \cong \triangle DCA$$
 by SAS

Solution: D

Answer choice A is ruled out, because it indicates that sides \overline{BA} and \overline{CA} are congruent. It's clear from the figure that that's false.

Answer choice B is ruled out because a proof of triangle congruence by ASA would include two statements of congruence of angles, whereas the given proof includes just one statement of congruence of angles. Similarly, answer choice C is ruled out because a proof of triangle congruence by AAS would include two statements of congruence of angles.

Now we'll investigate answer choice D. Separating the overlapping triangles $\triangle ABD$ and $\triangle ACD$ and marking the congruent parts indicated in the first three steps of the proof gives us

It's clear from this figure that the triangles are congruent by SAS. In $\triangle ABD$ the included angle of sides \overline{BD} and \overline{AD} is $\angle BDA$, and in $\triangle ACD$ the

included angle of sides \overline{AC} and \overline{AD} is $\angle DAC$. This means that answer choice D is indeed correct.

