

An Analysis about Mutant Subsumption in First- and SecondOrder Mutation Testing

João Paulo de Freitas Diniz

LabSoft Seminar. Nov 22nd, 2024

Outline

- Mutation testing
- Mutants subsumption
- Dynamic mutant subsumption graphs
- Second-order mutants subsumption
- Study design
- Preliminary results
- Comparison with SS2OMs reduction
- Conclusion

Introduction

Mutation Testing

- Introducing artificial syntactic changes (mutations) into original source code
 - Intending to represent real common programming bugs
 - Changed programs are called mutants
- Running test cases on mutants
 - Result different from original: mutant killed
 - Otherwise: alive

Example of a mutant

Mutation place:

```
public class Taxes {
     double simpleTax(double amount) {
        return amount * 0.2;
     }
}
```

Example of a mutant

```
* -> +
public class Taxes {
     double simpleTax(double amount) {
          return amount + 0.2;
```

Mutation testing process

http://labsoft.dcc.ufmq.br/

Mutation testing process

Mutation testing drawbacks

Software Engineering Lab (LabSoft)
http://labsoft.dcc.ufmg.br/

Mutation testing drawbacks

Cost reduction techniques

- Number of test cases
- Test case prioritization
- Number of mutants
 - subsumption

Mutants subsumption

```
def greaterThan(a, b):
    return a > b # original
    return a >= b # mutant 1
    return a <= b # mutant 2</pre>
```

```
def greaterThan(a, b):
    return a > b # original
    return a >= b # mutant 1
    return a <= b # mutant 2</pre>
```

	Test	orig
t1	assertTrue(greaterThan(6, 5))	
t2	assertFalse(greaterThan(5, 5))	~
t3	assertFalse(greaterThan(5, 6))	

```
def greaterThan(a, b):
    return a > b # original
    return a >= b # mutant 1
    return a <= b # mutant 2</pre>
```

	Test	orig	m1	m2
t1	assertTrue(greaterThan(6, 5))	\checkmark	$\overline{\mathbf{Z}}$	X
t2	assertFalse(greaterThan(5, 5))	✓	X	X
t3	assertFalse(greaterThan(5, 6))		$\overline{\mathbf{V}}$	X

Killing tests

□ All test sets that kill m1 also kill m2

Conclusion

□ m1 subsumes m2

Conclusion

- If we know beforehand that
 - m1 subsumes m2
- □ Therefore,
 - m2 should not have been generated

Cost reduction: fewer mutants to run the test suite against

Dynamic mutant subsumption graphs

Example

test	m1	m2	m3	m4	m5
t1	X	X		X	X
t2	X		×	×	
t3				X	
t4		×		×	×

Subsumption relationships

test	m1	m2	m3	m4	m5
t1	X	X		X	X
t2	X		X	×	
t3				X	
t4		×		×	X

$$m1 \rightarrow m4$$

$$m2 \rightarrow m4$$

$$m3 \rightarrow m1$$

$$m3 \rightarrow m4$$

$$m5 \rightarrow m4$$

Subsumption graph

Test	m1	m2	m3	m4	m5
t1	X	X		X	X
t2	X		X	X	
t3				X	
t4		X		×	X

Conclusion

- Root nodes are kept
 - 2 minimal
 - 3 mutants
- Remaining nodes
 - are disregarded
 - (redundants)

Second-order mutants subsumption

A 20M subsumption example

Software Engineering Lab (LabSoft)
http://labsoft.dcc.ufmg.br/

Venn Diagram "shapes"

FOMs	SS2OMs
m1	[m1,m2]
m2	[m3,m4]
m3	[m5,m6]
m4	
m5	
m6	
m7	
m8	

FOMs	SS2OMs	Resulting mutants
m1	[m1,m2]	[m1,m2]
m2	[m3,m4]	[m3,m4]
m3	[m5,m6]	[m5,m6]
m4		
m5		
m6		
m7		
m8		

FOMs	SS2OMs	Resulting mutants
m1	[m1,m2]	[m1,m2]
m2	[m3,m4]	[m3,m4]
m3	[m5,m6]	[m5,m6]
m4		m7
m5		m8
m6	non-subsumed FON	
m7	non	
m8		

FOMs	SS2OMs	Resulting mutants	Reduction
m1	[m1,m2]	[m1,m2]	3 out of 8 mutants
m2	[m3,m4]	[m3,m4]	(37.5%)
m3	[m5,m6]	[m5,m6]	
m4		m7	
m5	TMS	m8	
m6	non-subsumed FOMs		
m7 🖊	non-so		
m8			

Study design

Dataset: 9 Java systems

System	Version	LOC	# Tests	JUnit	#FOMs
Vending Machine	Exceptions	~100	35	4	57
Triangle	n/a	34	12	4	138
Monopoly	n/a	1,181	124	3	866
Commons CSV	1.8	~2k	325	4	925
Commons CLI	1.4	2,699	318	4	1,082
ECal	2003.10	3,626	224	3	1,207
Commons Validator	1.6	7,409	536	4	3,197
Gson	2.9.0	> 10k	1,089	3 and 4	3,712
Chess	n/a	4,924	930	3 and 4	<u>5,</u> 287

Study steps

Compute the killing tests for each mutant

Generate the subsumption graph

Retrieve the root (minimal) nodes

Compare with SS2OMs subsumption

Preliminary results

Subsumption analysis

Overall	#FOMs	#minimal nodes	#remaining FOMs
9 systems	16,471	1,115	3,376

Highlight on Triangle

```
{91}
{65, 67, 68, 70, 75, 77, 80, 52, 85, 56, 57, 58, 59, 63}
{35, 37, 38, 39, 108, 112, 114, 115, 116, 118, 119}
{129, 130, 131, 46, 122, 123, 124, 127}
{11}
{62}
                                   #FOMs
                                                 #minimal nodes
                                                                          #remaining FOMs
{79}
                                      138
                                                          12
                                                                                   59
{5}
{96, 132, 136, 121, 106, 111}
{69}
{97, 99, 100, 101, 103, 104, 23, 24, 25, 26, 27, 28, 93}
{0}
```


Comparison with SS2OMs reduction

1st- and 2nd-order reductions

Overall	FOMs	Via subsumption graph	Via SS2OMs
9 systems	16,471	77.35%	22.37%

RQ

Considering the **FOM** subsumption graphs, how are SS2OMs formed?

 Only by FOMs inside the same minimal nodes (not by FOMs of distinct minimal nodes)

RQ

Considerihow are §

Only by FC (not by

osumption graphs, 1?

ne minimal nodes minimal nodes)

Conclusion

Can SS2OMs reduce even more mutants than the non-subsumed FOMs?

No, they do not contribute to any further reduction.

Software Engineering Lab (LabSoft)

http://labsoft.dcc.ufmq.br/

Questions?

