Влияние десорбции водорода на механические свойства и электронную структуру алмазоподобных углеродных нанониток

© А.И. Подливаев, Л.А. Опенов

Национальный исследовательский ядерный университет «МИФИ», 115409 Москва, Россия

E-mail: AlPodlivayev@mephi.ru

(Получена 11 октября 2016 г. Принята к печати 16 октября 2016 г.)

В рамках модели сильной связи изучено влияние десорбции водорода на механическую жесткость, спектр собственных колебаний и плотность электронных состояний углеродных нанониток с алмазоподобной структурой. Показано, что жесткость слабо меняется на начальной стадии десорбции и начинает заметно уменьшаться лишь после десорбции $\sim 20\%$ атомов водорода. По мере десорбции в запрещенной зоне возникают энергетические уровни, которые в итоге формируют примесную зону.

DOI: 10.21883/FTP.2017.05.44426.8423

1. Введение

Углеродные нанотрубки (УНТ) с хиральностью (3,0) термодинамически неустойчивы: их энергии больше энергий соответствующих фрагментов графена [1]. После насыщения этих УНТ водородом до стехиометрии Н:С=1:1 они становятся устойчивыми, а в их электронной структуре появляется запрещенная зона [2] (будем использовать для таких полностью гидрированных УНТ обозначение (3,0)Н). Недавно открытые углеродные нанонитки ("nanothreads") [3] получаются из УНТ (3,0)Н путем ряда трансформаций Стоуна-Уэльса (Stone–Wales, SW [4]) — поворотов связей С-С вместе с адсорбированными атомами водорода на угол $\sim 90^{\circ}$. В нанонитках протяженные области со структурой УНТ (3,0)Н разделены компактными "дефектными" участками с двумя трансформациями SW в каждом из них. Эти участки расположены по длине нанонитки случайным образом. Повернутые связи С-С "перегораживают" полость УНТ, в результате чего формируются уникальные нанообъекты, отличные и от УНТ, и от обычных полимеров.

В нанонитках валентные орбитали всех атомов углерода sp^3 -гибридизованы, как в алмазе (в отличие от УНТ с sp^2 -гибридизацией углеродных орбиталей), а в расположении атомов углерода отчетливо прослеживается алмазоподобный тетраэдрический мотив. По этой причине нанонитки отличаются высокой прочностью и жесткостью [3,5], что сулит им разнообразные практические применения. Помимо своих выдающихся механических характеристик, нанонитки представляют интерес для приложений еще и как диэлектрические компоненты наноэлектронных приборов.

Основным каналом разрушения нанониток, особенно в устройствах с высокой рабочей температурой, является десорбция водорода, которая, как правило, предшествует развалу углеродного каркаса [6]. Цель настоящей работы заключается в расчете механической жесткости, спектров собственных колебаний и плотности электронных состояний нанониток с различным

содержанием водорода. Мы показываем, что десорбция водорода приводит к уменьшению жесткости и к формированию примесной зоны, в которой находится уровень Ферми.

2. Методы расчета

В качестве модели нанонитки мы использовали фрагмент УНТ (3,0)Н из 10 элементарных ячеек $C_{12}H_{12}$ [7] с одним дефектным участком (т.е. с двумя повернутыми на угол $\sim 90^\circ$ связями С–С) (см. рис. 1). Граничные условия выбирались периодическими в направлении оси исходной УНТ (период определялся из требования минимальности энергии нанонитки) и свободными в двух поперечных направлениях.

Межатомные взаимодействия описывались в рамках неортогональной модели сильной связи [8], которая в явном виде учитывает квантово-механический вклад электронной подсистемы в полную энергию и достаточно хорошо описывает различные углеводородные наноструктуры (см. работы [6,7,9–11] и ссылки в них). Ранее мы использовали ее для моделирования графана [9], гидрированных нанотрубок [7], термической устойчивости нанониток [6] и пр.

Поскольку для квазиодномерных систем понятие площади поперечного сечения лишено смысла, мы определяли жесткость нанонитки E как коэффициент пропорциональности между растягивающей силой F и относительным удлинением ε , т. е. $E=F/\varepsilon$ (см. [5]). Мы ограничились малыми деформациями $\varepsilon\ll 1$ (линейный режим) и для определенности во всех расчетах полагали $\varepsilon=0.001$.

Спектры собственных колебаний нанониток рассчитывались путем численной диагонализации соответствующей матрицы вторых производных потенциальной энергии по координатам атомов с учетом различия масс водорода и углерода. Эти спектры затем использовались для определения плотности фононных состояний (phonon density of states, PDOS).

Рис. 1. Модельная нанонитка $C_{120}H_{120}$ с одним дефектным участком.

Компьютерное моделирование термической устойчивости нанониток [6] указывает на то, что в первом приближении вероятность десорбции того или иного атома водорода не зависит от его конкретного расположения (в области УНТ (3,0)Н или в дефектном участке), т.е. примерно одинакова для всех атомов. По этой причине при каждой заданной стехиометрии Н:С мы удаляли из нанонитки соответствующее число атомов водорода случайным образом. При переходе от одного набора удаленных атомов к другому результаты существенно не изменяются, поэтому мы не выполняем усреднение по различным наборам, а приводим данные для одного из них (в разд. 3.2) или указываем интервал значений интересующей нас величины (в разд. 3.1). Помимо исходной бездефектной нанонитки С₁₂₀Н₁₂₀, в настоящей работе мы рассматриваем нанонитки $C_{120}H_{119}$, $C_{120}H_{108}$, $C_{120}H_{96}$, $C_{120}H_{84}$ и $C_{120}H_{72}$, что отвечает десорбции одного атома, 10, 20, 30 и 40% водорода соответственно.

3. Результаты и их обсуждение

В спектрах колебаний нанониток с различным содержанием водорода мнимые частоты отсутствуют, т.е. все

рассмотренные нами атомные конфигурации являются метастабильными и отвечают локальным минимумам поверхности потенциальной энергии. PDOS нанонитки $C_{120}H_{120}$ (рис. 2) почти не отличается от PDOS соответствующей УНТ (3,0)H (различие не превышает $\sim 5\%$). Максимумы PDOS при $f\sim 15,\,30$ и 35 ТГц обусловлены колебательными модами углеродного остова с различной поляризацией. Высокочастотный пик при $f\sim 95$ ТГц обязан своим происхождением вибрациям атомов водорода (см. также [12]). Десорбция из нанонитки 20% водорода ведет к уменьшению максимумов PDOS при $f\approx 35$ и 95 ТГц на $\sim 30\%$ (см. рис. 2). При последующей десорбции эти максимумы продолжают уменьшаться.

3.1. Механическая жесткость

Для жесткости бездефектной нанонитки $C_{120}H_{120}$ мы нашли E = 135 нH. Полагая эффективный диаметр нанонитки равным 5 Å [5], получим в привычных единицах $E \approx 700 \, \Gamma \Pi a$, что близко к модулю Юнга одностенных УНТ [13]. Десорбция одного атома водорода приводит к росту E до 139-141 нН. Причина такого (пусть и крайне незначительного) увеличения E нам не вполне ясна. После десорбции 10 и 20% водорода величина Eпонижается до 131-132 и 119-130 нН соответственно, что отчасти можно объяснить ослаблением ковалентных связей С-С из-за уменьшения числа участвующих в их формировании электронов. При десорбции 30% водорода происходит разрыв 2-3 связей С-С. Вероятность их разрыва в области УНТ (3,0)Н и в дефектном участке примерно одинакова. Жесткость таких нанониток составляет $E = 105-129 \,\mathrm{HH}$, т.е. средняя величина Eуменьшается, а разброс значений Е существенно возрастает. Последнее обстоятельство свидетельствует о

Рис. 2. Плотность фононных состояний нанонитки $C_{120}H_{120}$ до (жирная линия) и после (тонкая линия) десорбции 20% атомов водорода.

Рис. 3. Плотность электронных состояний $g(\varepsilon)$ в расчете на спин для нанониток $C_{120}H_{120}$ (a), $C_{120}H_{119}$ (b), $C_{120}H_{108}$ (c) и $C_{120}H_{96}$ (d). За начало отсчета энергии принят уровень Ферми.

сильной чувствительности E к конкретному расположению водородных вакансий и разорванных связей C–C. После десорбции 40% водорода жесткость варьирует в пределах 92-106 нH, продолжая уменьшаться.

Заметим, что полностью дегидрированные нанонитки термодинамически неустойчивы, поскольку представляют собой углеродные наноструктуры, энергия которых заведомо выше, чем у УНТ (3,0) из-за трансформаций SW, а УНТ (3,0), в свою очередь, неустойчивы относительно трансформации в графеновые фрагменты [1]. Можно ожидать, что нанонитки с низким содержанием водорода тоже неустойчивы или как минимум близки к неустойчивости. По этой причине в настоящей работе мы не рассматриваем нанонитки, у которых содержание водорода составляет 50 и менее процентов от максимальной величины.

3.2. Электронная структура

Плотность электронных состояний нанонитки $C_{120}H_{120}$ приведена на рис. 3, a. Видно, что эта нанонитка является диэлектрической. Ширина запрещенной зоны, определяемая как разность энергий нижней незаполненной (LUMO) и верхней заполненной (HOMO) молекулярной орбитали, составляет 6.0 эВ, как и в исходной УНТ (3,0)Н [7]. Десорбция одного атома водорода приводит к появлению вблизи дна запрещенной зоны изолированного "примесного" уровня энергии (рис. 3, b). По мере десорбции все новых и новых атомов водорода число таких уровней увеличивается. Таким образом, на начальной стадии десорбции нанонитки по своим электрическим характеристикам аналогичны слабо легированным полупроводникам. После десорбции 10% водорода формируется примесная зона (рис. 3, c). При дальнейшей десорбции положение этой зоны внутри диэлектрической щели и плотность электронных состояний в ней изменяются нерегулярно. Примечательно, однако, что уровень Ферми всегда находится в примесной зоне, а плотность состояний на уровне Ферми отлична от нуля (рис. 3, c, d). В силу этого частично дегидрированные нанонитки при низких температурах должны быть проводящими.

4. Заключение

- 1. При десорбции из нанониток менее 10% водорода их механическая жесткость почти не изменяется. После десорбции 20-30% водорода жесткость уменьшается на $\sim 30\%$.
- 2. По мере десорбции водорода внутри диэлектрической щели формируется примесная зона, в которой находится уровень Ферми, что может приводить к металлизации исходно непроводящих нанониток.
- 3. Десорбция 20% водорода ведет к уменьшению максимумов плотности фононных состояний при 35 и 95 ТГц на \sim 30%.

Работа выполнена в НИЯУ МИФИ при финансовой поддержке Российского научного фонда (проект 14-22-00098).

Список литературы

- L.-M. Peng, Z.L. Zhang, Z.Q. Xue, Q.D. Wu, Z.N. Gu, D.G. Pettifor. Phys. Rev. Lett., 85, 3249 (2000).
- [2] D. Stojkovic, P. Zhang, V.H. Crespi. Phys. Rev. Lett., 87, 125502 (2001).
- [3] T.C. Fitzgibbons, M. Guthrie, E. Xu, V.H. Crespi, S.K. Davidowski, G.D. Cody, N. Alem, J.V. Badding. Nature Mater., 14, 43 (2015).
- [4] A.J. Stone, D.J. Wales. Chem. Phys. Lett., 128, 501 (1986).
- [5] R.E. Roman, K. Kwan, S.W. Cranford. Nano Lett., 15, 1585 (2015).
- [6] Л.А. Опенов, А.И. Подливаев. Письма ЖЭТФ, 104, 192 (2016).
- [7] А.И. Подливаев, Л.А. Опенов. ФТП, **51**, 222 (2017).
- [8] M.M. Maslov, A.I. Podlivaev, K.P. Katin. Molecular Simulation, 42, 305 (2016).
- [9] Л.А. Опенов, А.И. Подливаев. Письма ЖТФ, 36, 69 (2010).
- [10] А.И. Подливаев, Л.А. Опенов. ФТП, 45, 988 (2011).
- [11] Л.А. Опенов, А.И. Подливаев. ФТП, 46, 210 (2012).
- [12] H. Zhan, G. Zhang, Y. Zhang, V.B.C. Tan, J.M. Bell, Y. Gu. Carbon, 98, 232 (2016).
- [13] M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson. Nature, 381, 678 (1996).

Редактор Г.А. Оганесян

Effect of hydrogen desorption on mechanical characteristics and electronic structure of diamond-like carbon nanothreads

A.I. Podlivaev, L.A. Openov

National Research Nuclear University «MEPhl», 115409 Moscow, Russia

Abstract Effects of hydrogen desorption on mechanical stiffness, vibrational spectra, and electron density of states of carbon nanothreads with diamond-like structure are studied within the framework of tight-binding model. It is shown that stiffness changes little at the initial stage of desorption and starts to decrease significantly only after desorption of $\sim 20\%$ of hydrogen atoms. Upon desorption, energy levels appear within the bandgap which finally form the impurity band.