SecuRobot

Projet CIEL 2025 :
Alexandre Bertrand-Biscarat
Andy Losange
Arththihan Nithiyakumar
Jonathan Ning

Contexte du Projet

Le projet vise à développer une interface permettant de visualiser les mesures des capteurs et de contrôler un robot à distance. L'objectif est d'offrir une interaction intuitive pour l'utilisateur.

Visualisation des Données :

- -Affichage en temps réel des mesures des capteurs.
- -Graphiques et tableaux pour une compréhension rapide.

Contrôle à Distance :

-Commande du robot via une application mobile. -Modes de contrôle manuel et automatique.

Interface Utilisateur:

- -Design ergonomique et navigation intuitive.
- -Options de personnalisation pour l'utilisateur.

Technologies Utilisées

Interface Homme-Machine (IHM)

Technologie: QT

Description: Développement d'interfaces graphiques pour interagir avec l'utilisateur.

Base de Données

Technologie: MySQL

Description: Gestion des mesures des capteurs.

Communication Sans Fil

Bluetooth:

Application: Contrôle de la caméra et échange de données en temps réel.

Wi-Fi

Application : Déplacement du robot et communication à distance.

Systèmes de Capteurs

Fonction: Mesurer la température et les niveaux de gaz/CO2.

Intégration: Affichage des mesures sur l'IHM.

Fonctionnalités du Robot

Déplacement: Commandé à distance via l'IHM.

Caméra Intégrée

Fonctionnalité: Pilotage depuis l'IHM.

Archivage des Données

Fonction: Stockage des mesures pour consultation ultérieure.

Diagramme des Exigences

Le diagramme présente les exigences du projet sous la forme hiérarchique

Exigence Principale (ID: 1.0)

Description : Interface permettant de visualiser les mesures des capteurs et de contrôler le robot à distance.

Sous-exigences

Contrôle Robot (ID: 1.1)

Description : Système de contrôle dédié à la mesure et à la transmission des données de télémétrie du robot.

Contrôle/Commande Caméra (ID: 1.2)

Description: Système de gestion de la caméra et des capteurs, permettant de mesurer des grandeurs physiques et de transmettre les données associées pour une analyse approfondie.

Application Mobile (ID: 1.3)

Description : Application mobile conçue pour contrôler le robot, visualiser l'environnement en temps réel et archiver des photos, tout en offrant une interface utilisateur pratique et accessible.

Diagramme de Classe

 IHM

Attributs: Température : float, gazCo2 : float

Méthodes: recevoirMesures(), afficherMesures(), envoyerOrdres(), piloterCamera(),

archiverDonnees(), documenterProjet()

Capteur

Attributs: type: string, valeur: float

Méthodes: LireTemperature(), LireGazCo2()

Robot

Attributs: Position: string

Méthodes: deplacer(), recevoirOrdre()

Caméra

Attributs: angle : float, position : string

Méthodes: piloter()

Archivage

Attributs: mesures: string

Méthodes: Archiver()

Projet

Attributs: nom: string, description: string

Méthodes: Operation()

Relations

IHM → lié à Capteur et Robot

Capteur → **lié à Caméra**

Robot → lié à Archivage

Projet → relie toutes les autres

classes

Diagramme de Gantt

iches		
Nom	Date de début	Date de fin
Analyse et préparation -Lire la fiche projet et les différents documents mis à notre disposition Comprendre nos taches respective avec des diagrammes Plannification du projet.	04/02/2025	05/03/2025
Développement initiale - Programmation Arduino et Raspberry - Début IHM PC et application mobile.	05/03/2025	18/03/2025
Intégration capteurs/moteurs Capteurs (température, CO2, ultra-son, moteurs et tests)	18/03/2025	01/04/2025
Développement caméra/IHM Caméra Raspberry, finalisation IHHM PC et appli mobile	01/04/2025	22/04/2025
Revue 2	06/05/2025	06/05/2025
Tests et optimisation Test en environnement simulé et optimisation du projet.	14/05/2025	06/06/2025
Documentation et finalisation Dossier commun (10 pages) et individuel (20pages/étudiant) et préparation de la soutenance	09/06/2025	30/06/2025
Soutenance finale	30/06/2025	30/06/2025
Revue 3	03/06/2025	03/06/2025
Revue 1 Revue de la phase d'analyse	05/03/2025	05/03/2025

Diagramme de Séquence

Utilisateur

Commande : Afficher mesures <u>Demand</u>e : Ordres de déplacement

Pilotage : Caméra

Archivage: Demander archivage mesures

IHM (Interface Homme-Machine)

Interroge capteurs: Envoyer mesures

Envoie ordres : Au robot Confirme les actions

Capteurs

Mesures envoyées à l'IHM

Robot

Recoit commandes : Confirme exécution des ordres

Caméra

Pilotée par l'utilisateur via l'IHM

Base de données MySQL

Enregistre mesures Confirme archivage

Points Clés

Interactions : Utilisateur \leftrightarrow IHM \leftrightarrow Capteurs \leftrightarrow Robot \leftrightarrow Caméra \leftrightarrow Base de données

Fonctionnalités : Pilotage, affichage, archivage Confirmation : Essentielle à chaque étape

Question sur la Physique

Quelles sont les caractéristiques de votre capteur de température (plage d'utilisation, précision, étalonnage) et quel est le format des données qu'il envoie ? Pourquoi avez-vous choisi l'USB et le Bluetooth pour la communication, plutôt que le Wi-Fi ?