- 1. Dada la gramática:
 - $(r1) S \rightarrow B A$
- $(r4) A \rightarrow \% B A$
- (r7) A $\rightarrow \epsilon$

- (r2) $B \rightarrow D C$
- $(r5) C \rightarrow \& D C$
- (r8) C $\rightarrow \epsilon$

- $(r3) D \rightarrow (S)$
- $(r6) D \rightarrow b$

se pide:

a) Demostrad que la gramática es LL(1) y construid la tabla de análisis LL(1).

 $\begin{array}{ll} \mbox{C\'alculo de siguientes:} & \mbox{sig(S)} = \{ \; \$, \;) \; \} \\ & \mbox{sig(B)} = \{ \; \%, \; \$, \;) \; \} \\ & \mbox{sig(D)} = \{ \; \&, \; \%, \; \$, \;) \; \} \\ & \mbox{sig(C)} = \{ \; \%, \; \$, \;) \; \} \\ & \mbox{sig(A)} = \{ \; \$, \;) \; \} \\ \end{array}$

Símbolos de anticipación para cada regla:

Primeros(B A \oplus sig(S)) = { (, b)} Primeros(D C \oplus sig(B)) = { (, b)} Primeros((S) \oplus sig(D)) = { (} Primeros(b \oplus sig(D)) = { b} Primeros(% B A \oplus sig(A)) = { % } Primeros($\epsilon \oplus$ sig(A)) = sig(A) = { \$,)} Primeros($\epsilon \oplus$ sig(C)) = { & } Primeros($\epsilon \oplus$ sig(C)) = sig(C) = { %, \$,)}

de lo que se deduce que la gramática es LL(1).

Tabla de análisis LL(1)

	()	%	&	b	\$
S	$S \rightarrow B A$				$S \rightarrow B A$	
В	$B \rightarrow DC$				$B \rightarrow DC$	
D	$D \rightarrow (S)$				$D \rightarrow p$	
С		$C \rightarrow \varepsilon$	$C \rightarrow \varepsilon$	$C \rightarrow \& D C$		$C \rightarrow \varepsilon$
A		$A \rightarrow \epsilon$	A → % B A			$A \rightarrow \epsilon$
(pop					
)		pop				
%			pop			
&				pop		
b					pop	
\$						Aceptar

b) Obtened la traza de análisis sintáctico LL(1) para la cadena: ((b))

(Pila	, Cadena de entrada,	Regla aplicada	
S \$,	((b)) \$,	r1	-
I- B A \$,	((b)) \$,	r2	I-
I- D C A \$,	((b)) \$,	r3	-
I-(S)CA\$,	((b)) \$,	pop	-
I-S)CA\$,	(b)) \$,	r1	-
I- B A) C A \$,	(b)) \$,	r2	-
I- D C A) C A \$,	(b)) \$,	r3	-
I-(S)CA)CA	(b)) \$,	pop	-
I-S)CA)CA\$,	b))\$,	r1	-
I-BA)CA)CA\$,	b))\$,	r2	-
I-DCA)CA)CA\$,	b))\$,	r3	-
- b C A) C A) C A \$,	b))\$,	pop	-
I- C A) C A) C A \$,))\$,	r8	-
I- A) C A) C A \$,))\$,	r7	-
l-) C A) C A \$,))\$,	pop	-
I- C A) C A \$,) \$,	r8	-
I- A) C A \$,) \$,	r7	I-
l-) C A \$,) \$,	pop	-
I- C A \$,	\$,	r8	-
I- A \$,	\$,	r7	l-
I- \$,	\$,	Aceptar	

c) Construid la colección de conjuntos de ítems LR(0) para esta gramática.

.

d) Obtened la derivación a derechas para la cadena del apartado b) y:

$$S \rightarrow BA \rightarrow B \rightarrow DC \rightarrow D \rightarrow (S) \rightarrow (BA) \rightarrow (B) \rightarrow (DC) \rightarrow (D) \rightarrow ((S)) \rightarrow ((BA)) \rightarrow ((B)) \rightarrow ((DC)) \rightarrow ((D)) \rightarrow ((D)$$

1) Indicad los pivotes de cada paso de la derivación.

$$(S \rightarrow BA, 2), (A \rightarrow \varepsilon, 1), (B \rightarrow DC, 2), (C \rightarrow \varepsilon, 1), (D \rightarrow (S), 3), \dots$$

2) Obtened (sólo) los estados necesarios de la colección de conjuntos de ítems LR(1) que permitan reconocer al prefijo viable ((b.

3) Obtened la relación de los ítems válidos LR(1) para este prefijo viable.

Examen de Procesadores de Lenguajes

20 de junio de 2007

Solución a la 2ª pregunta

(3.5 ptos.) Diseñad un ETDS que genere código intermedio para el siguiente fragmento de una gramática independiente del contexto.

```
\begin{array}{lll} I & \to & \text{yacase E of L default I end} \\ I & \to & I \; ; \; I \\ I & \to & \text{exit} \\ L & \to & L \; ; \; \text{cte} : I \\ L & \to & \text{else I} \end{array}
```

La instrucción yacase (yet another case) es similar a la del PASCAL: si la cte coincide con la expresión E debe ejecutar la secuencia de instrucciones I asociada y terminar la búsqueda en la lista de ítems. La instrucción exit supone la salida inmediata de la instrucción yacase.

$I \Rightarrow yacase E$	L.h:=E.pos;
of L	Completalans(L.fin, Ω);
default I end	CompletaLans(Fusionalans(L.exit, I^1 .exit), Ω); I.exit:=nil;
$I \Rightarrow \overline{I;I}$	$I.exit:=Fusionalans(I^1.exit,I^2.exit);$
$I \Rightarrow \overline{\text{exit}}$	I.exit:=Crealans(Ω); Emite(goto \otimes);
$L \Rightarrow cte:$	L.false:=Crealans(Ω); Emite(if L.h \neq cte.val goto \otimes);
I	L.fin:=Crealans(Ω); Emite(goto \otimes);
	Completalans(L.false, Ω); L.exit:=I.exit;
$L \Rightarrow \overline{\text{else I}}$	$L.fin:=Crealans(\Omega); Emite(goto \otimes); L.exit:=I.exit$
$L \Rightarrow \overline{}$	$L^1.h:=L.h;$
L; cte:	L.false:=Crealans(Ω); Emite(if L.h \neq cte.val goto \otimes);
I	L.fin:=Fusionalans(L ¹ .fin, Crealans(Ω)); Emite(goto \otimes);
	Completalans(L.false, Ω); L.exit:=Fusionalans(L ¹ .exit, I.exit);