Visualización de Información Codificación Visual

Daniela Opitz dopitz@udd.cl

Data Science Institute, Universidad del Desarrollo Edición 2023

El Cómo

A partir de ahora el curso se enfocará en el diseño e implementación de visualizaciones en base a lo siguiente:

La **codificación visual** que utilizaremos, a través de marcas y canales.

¿Desagregaremos los datos en facetas de alguna manera en la imagen?

¿Los reduciremos para poder mostrar más con menos?

Direction, Rate, Frequency, ...

Reduce

Codificación Visual

Codificación Visual

La codificación visual es el proceso en el que asignamos propiedades gráficas (formas, colores) a los atributos de nuestros datos.

Este proceso se hace a través de marcas y canales.

Marcas

Elemento geométrico básico o primitivas que sirven de **bloques de construcción** de elementos gráficos.

Canales

Los canales son una manera de controlar la **apariencia** de las marcas.

Pueden ser **combinados**: a una misma marca se pueden aplicar múltiples canales.

Interactúan con las marcas, es decir, el tipo de marca determina los canales que se pueden utilizar:

- Un punto solamente tiene posición (es OD), pero puede tener un tamaño o forma específica. No puede, por ejemplo, tener inclinación.

Marcas y Canales

2 canales:
posición horizontal
Largo vertical

2 canales: posición vertical posición horizontal 3 canales: posición vertical posición horizontal tono de color (hue) 4 canales:
posición vertical
posición horizontal
tono de color (hue)
tamaño (área)

marca: línea

marca: punto

marca: punto

marca: punto

Principios de Diseño

Efectividad

"Codificar los atributos más importantes de los datos con los canales más efectivos"

Expresividad

"Debe haber coherencia entre el tipo de canal (magnitud, identidad) con la semántica del atributo (cuantitativo, ordinal, categórico)"

Pregunta

Revisemos un ejemplo: de los canales usados para cuantificar la altura de una persona en centímetros, ¿cuál es el más efectivo para comprender la cantidad que se intenta transmitir?

Percepción de Canales

¿Cómo se determina que un canal es más efectivo que otro?

A través de estudios de:

- Precisión
- Discriminabilidad
- Separabilidad
- Saliencia

1- Precisión

Tiene que ver con cuánto se asemeja la percepción de una persona a otra mediante estímulos visuales.

1-Precisión

Imagen: <u>Ley de Steven</u> sobre percepción de estímulos (precisión).

Steven's Psychophysical Power Law: S= I^N

2- Discriminabilidad

¿Cuánto podemos distinguir un valor de otro?

En el mapa, el grosor de cada línea codifica el tamaño del flujo entre un lugar y otro.

Se utilizan tres grosores distintos, fácilmente identificables.

¿Qué pasaría si fuesen 10 grosores? ¿Diferenciaríamos valores intermedios?

3- Separabilidad

4-Saliencia o Pop-Out

La detectabilidad o pop-out nos indica cuán fácil es detectar cambios de cierto canal a simple vista, que no solo depende del canal, sino también del contexto de uso. Y de lo que rodea a la visualización y al canal mismo.

Expresividad y Efectividad

Los canales se dividen de acuerdo a lo que expresan: **magnitud** o **identidad**.

Podemos ordenarlos de acuerdo a su efectividad para realizar tareas.

Podemos clasificarlos de acuerdo a su expresividad para datos ordinales o categóricos.

Tipo (expresividad)

Expresividad y Efectividad

Razonamiento relativo / absoluto

Nuestro sistema de percepción opera mayoritariamente con razonamiento relativo (<u>Ley de Weber</u>), no absoluto.

Por eso la precisión aumenta cuando se utiliza una escala o un marco común, y los ítemes están alineados.

No todas las diferencias son percibidas igual:

<u>Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods</u>. Cleveland and McGill. Journ. American Statistical Association 79:387 (1984), 531–554.

Pregunta

Revisemos un ejemplo: de los canales usados para cuantificar la altura de una persona en centímetros, ¿cuál es el más efectivo para comprender la cantidad que se intenta transmitir?

Algunos Ejemplos

Barcharts

En este gráfico de barras el eje superior permite alinearlas y comparar fácilmente sus largos, puesto que tienen una base común.

Por otro lado, sabemos que una barra que mide el doble que otra es porque codifica un valor proporcional a esa diferencia.

Fuente: perceptualedge.com

Aquí se aprecia la diferencia en la percepción de proporciones entre círculos (áreas) y barras (largo).

Pie Charts

Los ángulos y las áreas no son fáciles de diferenciar.

Estos pie charts o gráficos de torta son comunes y se parecen entre sí, sin embargo, codifican datos con distribuciones distintas.

Fuente: https://en.wikipedia.org/wiki/Pie_chart

Pie Charts

Ahora bien, cuando hay pocas categorías y se quiere entregar un mensaje específico, un pie chart puede ser una buena elección.

Gráfico: https://xkcd.com/290/

PORTALPYME El punto de encuentro de las Pymes chilenas

Éxitos y Fracasos Emprendedoras Capacitación Y Financiamiento Herramientas ➤

Inicio > Éxito > ¿Sabes cuál es el tamaño de las grandes empresas tecnológicas? Este gráfico te dejará con la boca abierta

¿Sabes cuál es el tamaño de las grandes empresas tecnológicas? Este gráfico te dejará con la boca

abierta m 06 de Agosto de 2018 **G** Compartir 0

Visualizaciones Circulares

Este mapa muestra cómo una visualización también puede ser una marca (hablaremos de esto después).

En estos casos los pie charts u otras visualizaciones circulares, si son bien usados, pueden ser efectivos para comunicar un mensaje.

¡Este mapa es de 1858! Lo hizo Charles Minard.

¿Preguntas?

Esta clase incluye material del libro **Visualization Analysis & Design** de Tamara Munzner.

http://www.cs.ubc.ca/~tmm/vadbook/