Bonting Monday, October 25, 2021 Suppose we know how to learn h & H At it has according $\frac{1}{2} + 8$ ie. $P_{X_D}(\Lambda(x) = \ell(x)) \geqslant \frac{1}{2} + Y \quad \text{for any } D.$ Can be inprove this generically? How to combine?

Boosling.

tach example has a weight. Initially all $W_i = 1$. When example is misclessified weight green up by a factor of $\frac{1}{2} + 8$

weight greamp by a privation of $\frac{1}{3}-8$. Run for Titerations using weak learner each trie. It the end, label x by the majority rote of the T classifiers. Suppose # miotakes is \widehat{m} .

Then each of them has weight $\geq \left(\frac{1}{2} + 8\right)^{-1}$. In each round, max include in total weight. Weight is if $\frac{1}{2}-8$ examples increase their weight. $U(t+1) \leq \left(\left(\frac{1}{2}+8\right), \left(\frac{1}{2}-8\right) + \frac{1}{2}+8\right), W(t)$ = (1+28)W(t)W(0) = n. < (H28) n 50, T

So
$$\widehat{M}\left(\frac{(1+28)}{(1-28)}\right)^{\frac{7}{2}} \leq (1+28)^{\frac{7}{2}} N$$
 $\widehat{M} \leq (1-48^{2})^{\frac{7}{2}} N$

Set $T = \frac{\ln n}{28^{2}}$ then $\widehat{M} \leq 1$, i.e. $\widehat{M} = 0$.

But how large n do we need to ensure the hypothesis generalizes?

What is the VC-dimenstra of majority of T classifies?

Lema. $V(-dni(k-moj) = h \in H)$
 $\leq 2 k d \log(kd)$

where $d = VCdim(H)$.

So
$$n = 0 \left(\frac{1}{2} \left(\frac{1}{2}$$