МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра САУ

ОТЧЕТ

по лабораторным работам по дисциплине «Основы промышленной цифровизации»

Студент гр. 9492	E	Викторов А.Д.
Преподаватель	Be	йнмейстер А.В

Санкт-Петербург

Цель работы.

В данной работе изучается:

- 1) Создание проекта PCS 7
- 2) Создание аппаратной конфигурации для S7 станции
- 3) Создание конфигурации оборудования для ПК станции с WinCC
- 4) Объединяем в сеть станции S7 и станции ПК

Содержание работы.

1) Создание проекта РСЅ 7

На рисунке 1 представлены Component view и Plant view.

Рисунок 1 - Component view и Plant view

На рисунке 2 представлены свойства проекта.

Рисунок 2 – Свойства проекта

2) Создание аппаратной конфигурации для S7 – станции На рисунке 3 представлены свойства сети Ethernet.

Рисунок 3 – Свойства сети Ethernet

На рисунке 4 представлена аппаратная конфигурация.

Рисунок 4 – Аппаратная конфигурация

3) Создание конфигурации оборудования для ПК — станции с WinCC

На рисунке 5 представлена конфигурации оборудования для $\Pi K-$ станции.

Рисунок 5 - Конфигурации оборудования для ПК – станции.

4) Объединяем в сеть станции S7 и станции ПК

На рисунке 6 представлены компоненты и сети проекта.

Рисунок 6 - Компоненты и сети проекта.

Вывод.

Данная работа была посвящена созданию мультипроекта. Процесс создания мультипроекта включал в себя: создание аппаратной конфигурации для S7 — станции, создание конфигурации оборудования для ПК — станции с WinCC, объединение в сеть станции S7 и станции ПК.

Цель работы.

В данной работе изучается:

- 1) Представление иерархии завода [Plant View] проекта PCS7
- 2) Основные настройки для иерархии завода
- 3) Объединяем в сеть станции S7 и станции ПК

Содержание работы.

1) Представление иерархии завода [Plant View] проекта PCS7 На рисунке 1 представлена иерархия завода.

Рисунок 1 - Иерархия завода

2) Основные настройки для иерархии завода На рисунке 2 настройки для иерархии завода.

Рисунок 2 - Настройки для иерархии завода

3) Объединяем в сеть станции S7 и станции ПК

На рисунке 3 настройки для иерархии завода.

Рисунок 3 - Настройки для иерархии завода

Вывод.

Данная работа была посвящена созданию мультипроекта. Процесс создания мультипроекта включал в себя: создание аппаратной конфигурации для S7 — станции, создание конфигурации оборудования для ПК — станции с WinCC, объединение в сеть станции S7 и станции ПК.

Цель работы.

В данной работе изучается:

- 1) Создание и импорт символов через таблицу символов
- 2) Использование библиотек основных данных
- 3) Создание и редактирование СFC диаграмм
- 4) Централизованная компиляция и загрузка проекта
- 5) Тестирование программы с использованием функций управления в CFC

Содержание работы.

1) Создание и импорт символов через таблицу символов На рисунке 1 представлена таблица символов.

	Statu	Symbol /	Addr		Data type	Comment
l		A1.T1.A1T1S001	Q	3.0	BOOL	pump outlet educt tank B001 control signal
2		A1.T1.A1T1S002		3.1	BOOL	pump outlet educt tank B002 control signal
3		A1.T1.A1T1S003	Q	3.2	BOOL	pump outlet educt tank B003 control signal
1		A1.T1.A1T1X001		0.0	BOOL	valve inlet educt tank 8001 control signal
5		A1.T1.A1T1X002		0.1	BOOL	valve inlet educt tank 8002 control signal
5		A1.T1.A1T1X003	Q	0.2	BOOL	valve inlet educt tank B003 control signal
7		A1.T1.A1T1X004	Q	0.3	BOOL	valve outlet educt tank B001 control signal
3		A1.T1.A1T1X005	Q	0.4	BOOL	valve outlet educt tank 8002 control signal
)		A1.T1.A1T1X006	Q	0.5	BOOL	valve outlet educt tank B003 control signal
L		A1.T2.A1T2H007	Q	4.0	BOOL	reactor R001 stir status value
l		A1.T2.A1T2H008	Q	4.1	BOOL	reactor R001 heating status value
L		A1.T2.A1T2H011	Q	4.2	BOOL	reactor R001 empty status value
L		A1.T2.A1T2S003	I	1.3	BOOL	pump outlet reactor R001 feedback running
L		A1.T2.A1T2S003	Q	3.4	BOOL	pump outlet reactor R001 control signal
l		A1.T2.A1T2S004	Q	3.5	BOOL	pump outlet reactor R002 control signal
L		A1.T2.A1T2X001	Q	1.4	BOOL	valve inlet reactor R001 from educt tank B001 control signal
l		A1.T2.A1T2X002	Q	1.5	BOOL	valve inlet reactor R001 from educt tank B002 control signal
ı		A1.T2.A1T2X003		1.6	BOOL	valve inlet reactor R001 from educt tank B003 control signal
ı		A1.T2.A1T2X004	Q	1.7	BOOL	valve inlet reactor R002 from educt tank B001 control signal
2		A1.T2.A1T2X005	Q	2.0	BOOL	valve inlet reactor R002 from educt tank 8002 control signal
2		A1.T2.A1T2X006		2.1	BOOL	valve inlet reactor R002 from educt tank B003 control signal
2		A1.T2.A1T2X007	Q	2.2	BOOL	valve inlet reactor R002 from reactor R001 control signal
2		A1.T2.A1T2X008	Q	2.3	BOOL	valve inlet reactor R001 from reactor R002 control signal
2		A1.T3.A1T3X001	Q	0.6	BOOL	valve inlet product tank B001 control signal
2		A1.T3.A1T3X002	Q	0.7	BOOL	valve inlet product tank B002 control signal
2		A1.T4.A1T1X004	Q	1.3	BOOL	valve outlet rinsing reactor R002 control signal
2		A1.T4.A1T4S001	Q	3.3	BOOL	pump rinsing control signal
2		A1.T4.A1T4X001	Q	1.0	BOOL	valve inlet rinsing resource R001 control signal
2		A1.T4.A1T4X002	Q	1.1	BOOL	valve inlet rinsing reactor R002 control signal
3		A1.T4.A1T4X003	Q	1.2	BOOL	valve outlet rinsing reactor R001 control signal
3		ALARM 8P	SFB	35	SFB 35	Generate Block-Related Messages with Values for 8 Signals
3		BLKMOV	SFC	20	SFC 20	Generate bioCarrelated messages with values for a Signals Copy Variables
3		ChkREAL		260	FC 260	Cupy variables Check infinite values
3		CONEC	FB	88	FB 88	Crieck mining values Connection Function Block
3						
		CPU_RT		128	FB 128	CPU Performance Block
3		Intlk02		1824 267	FB 1824 FC 267	Interlock with 2 inputs
		LED_STAT				Processing of LED Status
3		MOD_CENTRAL		206	FB 206	Non-diagnostic Central Module Check
3		MOD_D16_PN		198	FB 198	PN Diagnostic Module Check (0 - 15 Channel)
1		MOD_D32_PN		421	FB 421	PN Diagnostic Module Check (0 - 31 Channel)
1		MotL		1850	FB 1850	Motor - Large
1		NOTIFY	SFB	36	SFB 36	Generate Block-Related Messages without Acknowledgment Display
1		OB_BEGIN_PN		130	FB 130	CPU Function Block
1		OB_END	FC	280	FC 280	Terminate OB Function Block
1		Or04	FC	364	FC 364	Logical OR with 4 inputs
1		PA_CPU	FB	16	FB 16	Process Object Diagnostic Block
1		Pcs7DiIn	FB :	1871	FB 1871	Digital input driver
1		Pcs7DiOu		1873	FB 1873	Digital output driver
1		PO_UPDAT		279	FC 279	Update Process Output
5		PS	FB	89	FB 89	Power Supply Function Block
5		RACK		107	FB 107	RACK Function Block
5		RACK PN1		415	FB 415	PROFINET RACK Function Block
5		RALRM	SFB	54	SFB 54	Receive Alarm Data
5		RD SINFO	SFC	6	SFC 6	Read OB Start Information
5		RDREC	SFB	52	SFB 52	Read a Process Data Record
5		SB DT DT BAS		292	FC 292	Nedula Frioces Data Nettru
5		SelST16		369	FC 369	Subtract of Full Output of the best or worst signal status
5		SUBNET		106	FB 106	Output or the best or worst signal status SUBNET Function Block
5			FB	82	FB 82	SUBNET FUNCTION BLOCK SUBNET FUNCTION BLOCK - PROFINET-IO
5		SUBNET_PN TEST_DB	SFC	24	FB 82 SFC 24	SUBNET FUNCTION BLOCK - PROFINET-IO Test Data Block
)		1631_08	2LC	24	5FC 24	I est Data Block

Рисунок 1 – Таблица символов

2) Использование библиотек основных данных

На рисунке 2 представлена библиотека проекта с добавленным блоком Motor Lean.

Рисунок 2 - Библиотека проекта

3) Создание и редактирование СFC диаграмм

На рисунке 3 представлена СFC диаграмма с отредактированным блоком Motor Lean.

Рисунок 3 - CFC диаграмма

4) Централизованная компиляция и загрузка проекта

На рисунке 4 представлена компиляция и загрузка проекта.

Рисунок 4 – Компиляция и загрузка проекта

6) Тестирование программы с использованием функций управления в CFC

На рисунке 5 представлено тестирование программы с использованием функций управления в CFC.

Рисунок 5 - Тестирование программы с использованием функций управления в CFC

Вывод.

Данная работа была посвящена: созданию таблицы символов, редактированию CFC диаграммы, использованию библиотек основных данных.

Цель работы.

В данной работе изучается программирование регулятора непрерывного цикла с импульсным выходом и блокировками

Содержание работы.

На рисунке 1 представлена СFС-диаграмма ручного управления.

Рисунок 1 – CFC-диаграмма ручного управления

На рисунке 2 представлена СГС-диаграмма регулятора температуры.

Рисунок 2 – CFC-диаграмма регулятора температуры

Вывод.

В данной работе был создан регулятор непрерывного цикла с импульсным выходом и блокировками.