线性代数-13

主讲: 吴利苏

wulisu@sdust.edu.cn

2024年10月16日

本次课内容

1. 向量空间

2. 向量的内积: 欧式空间

向量空间的定义

● 设 $V \neq \emptyset$ 为 n 维向量的集合 (向量组), 若 V 对向量的加法和数乘两种运算封闭: $\forall \alpha, \beta \in V, \lambda \in \mathbb{R}$, 有

- (1). $\alpha + \beta \in V$;
- (2). $\lambda \cdot \alpha \in V$.

则称 V 为一个向量空间.

向量空间的定义

• 设 $V \neq \emptyset$ 为 n 维向量的集合 (向量组), 若 V 对向量的加法和数乘两种运算封闭: $\forall \alpha, \beta \in V, \lambda \in \mathbb{R}$, 有

- (1). $\alpha + \beta \in V$;
- (2). $\lambda \cdot \alpha \in V$.

则称 V 为一个向量空间.

• 条件 (1) 和 (2) 与下面描述等价:

 $\star \ \forall \boldsymbol{\alpha}, \boldsymbol{\beta} \in V, \forall k, l \in \mathbb{R}, \ \mathbb{N} \ k\boldsymbol{\alpha} + l\boldsymbol{\beta} \in V.$

向量空间的定义

- 设 $V \neq \emptyset$ 为 n 维向量的集合 (向量组), 若 V 对向量的加法和数乘两种运算封闭: $\forall \alpha, \beta \in V, \lambda \in \mathbb{R}$, 有
 - (1). $\alpha + \beta \in V$;
 - (2). $\lambda \cdot \alpha \in V$.

则称 V 为一个向量空间.

- 条件 (1) 和 (2) 与下面描述等价:
 - $\star \ \forall \boldsymbol{\alpha}, \boldsymbol{\beta} \in V, \forall k, l \in \mathbb{R}, \ \mathbb{N} \ k\boldsymbol{\alpha} + l\boldsymbol{\beta} \in V.$
- 向量空间必包含零向量. 所以,若0 ∉ V,则 V 不是向量空间.

向量空间

- 上述加法和数乘两种运算称为向量空间 V 上的线性结构.
- 向量组 ^{+线性结构} 一向量空间.
- 集合 ^{+线性结构} 线性空间. Chapter 6 (选学).
- 向量空间/线性空间 ^{+内积} 欧式空间.

例

下列哪些向量组构成向量空间,

- 1. n 维向量全体 \mathbb{R}^n ;
- 2. $A = \{X = \{0, x_2, \cdots, x_n\}^T \mid x_2, \cdots, x_n \in \mathbb{R}\};$
- 3. $A = \{X = (1, x_2, \dots, x_n)^T \mid x_2, \dots, x_n \in \mathbb{R}\};$
- 4. 齐次线性方程组 AX = 0 的解集 $S = \{X \mid AX = 0\}$;
- 5. 非齐次线性方程组 $AX = \beta$ 的解集 $S = \{X \mid AX = \beta\}$;
- 6. α , β 为两个 n 维向量,集合 $L = \{\lambda \alpha + \mu \beta \mid \lambda, \mu \in \mathbb{R}\}.$

例

下列哪些向量组构成向量空间,

- 1. n 维向量全体 \mathbb{R}^n ; $\sqrt{}$
- 2. $A = \{X = \{0, x_2, \cdots, x_n\}^T \mid x_2, \cdots, x_n \in \mathbb{R}\}; \checkmark$
- 3. $A = \{X = (1, x_2, \dots, x_n)^T \mid x_2, \dots, x_n \in \mathbb{R}\}; \times$
- 4. 齐次线性方程组 AX = 0 的解集 $S = \{X \mid AX = 0\};$ √
- 5. 非齐次线性方程组 $AX = \beta$ 的解集 $S = \{X \mid AX = \beta\}$; ×
- 6. α, β 为两个 n 维向量,集合 $L = \{\lambda \alpha + \mu \beta \mid \lambda, \mu \in \mathbb{R}\}.$

例

下列哪些向量组构成向量空间,

- 1. n 维向量全体 \mathbb{R}^n ; $\sqrt{}$
- 2. $A = \{X = \{0, x_2, \cdots, x_n\}^T \mid x_2, \cdots, x_n \in \mathbb{R}\}; \checkmark$
- 3. $A = \{X = (1, x_2, \dots, x_n)^T \mid x_2, \dots, x_n \in \mathbb{R}\}; \times$
- 4. 齐次线性方程组 AX = 0 的解集 $S = \{X \mid AX = 0\}; \sqrt{\langle \text{解空} \rangle}$ 问 >
- 5. 非齐次线性方程组 $AX = \beta$ 的解集 $S = \{X \mid AX = \beta\}$; ×
- 6. α , β 为两个 n 维向量,集合 $L = \{\lambda \alpha + \mu \beta \mid \lambda, \mu \in \mathbb{R}\}.$ \checkmark < 向量 α , β 生成的空间 >

等价向量组生成相同向量空间

由向量组 $\alpha_1, \cdots, \alpha_m$ 生成的空间定义为

$$L = \{X = \lambda_1 \alpha_1 + \cdots + \lambda_m \alpha_m \mid \lambda_1, \cdots, \lambda_m \in \mathbb{R}\}.$$

通常可以记为 $L(\boldsymbol{\alpha}_1,\cdots,\boldsymbol{\alpha}_m)$ 或 $\operatorname{span}\{\boldsymbol{\alpha}_1,\cdots,\boldsymbol{\alpha}_m\}$.

等价向量组生成相同向量空间

由向量组 $\alpha_1, \cdots, \alpha_m$ 生成的空间定义为

$$L = \{X = \lambda_1 \alpha_1 + \cdots + \lambda_m \alpha_m \mid \lambda_1, \cdots, \lambda_m \in \mathbb{R}\}.$$

通常可以记为 $L(\boldsymbol{\alpha}_1,\cdots,\boldsymbol{\alpha}_m)$ 或 span $\{\boldsymbol{\alpha}_1,\cdots,\boldsymbol{\alpha}_m\}$.

例 (例 18)

设向量组 $\boldsymbol{\alpha}_1,\cdots,\boldsymbol{\alpha}_m$ 和 $\boldsymbol{\beta}_1,\cdots,\boldsymbol{\beta}_s$ 等价, 记

$$L_1 = \{X = \boldsymbol{\lambda}_1 \boldsymbol{\alpha}_1 + \dots + \boldsymbol{\lambda}_m \boldsymbol{\alpha}_m \mid \boldsymbol{\lambda}_1, \dots, \boldsymbol{\lambda}_m \in \mathbb{R}\}$$

$$L_2 = \{X = \boldsymbol{\mu}_1 \boldsymbol{\beta}_1 + \dots + \boldsymbol{\mu}_s \boldsymbol{\beta}_s \mid \boldsymbol{\mu}_1, \dots, \boldsymbol{\mu}_s \in \mathbb{R}\}$$

证明: $L_1 = L_2$.

等价向量组生成相同向量空间

由向量组 $\alpha_1, \cdots, \alpha_m$ 生成的空间定义为

$$L = \{X = \boldsymbol{\lambda}_1 \boldsymbol{\alpha}_1 + \cdots + \boldsymbol{\lambda}_m \boldsymbol{\alpha}_m \mid \boldsymbol{\lambda}_1, \cdots, \boldsymbol{\lambda}_m \in \mathbb{R}\}.$$

通常可以记为 $L(\boldsymbol{\alpha}_1,\cdots,\boldsymbol{\alpha}_m)$ 或 span $\{\boldsymbol{\alpha}_1,\cdots,\boldsymbol{\alpha}_m\}$.

例 (例 18)

设向量组 $\boldsymbol{\alpha}_1,\cdots,\boldsymbol{\alpha}_m$ 和 $\boldsymbol{\beta}_1,\cdots,\boldsymbol{\beta}_s$ 等价, 记

$$L_1 = \{ X = \boldsymbol{\lambda}_1 \boldsymbol{\alpha}_1 + \dots + \boldsymbol{\lambda}_m \boldsymbol{\alpha}_m \mid \boldsymbol{\lambda}_1, \dots, \boldsymbol{\lambda}_m \in \mathbb{R} \}$$

$$L_2 = \{X = \boldsymbol{\mu}_1 \boldsymbol{\beta}_1 + \dots + \boldsymbol{\mu}_s \boldsymbol{\beta}_s \mid \boldsymbol{\mu}_1, \dots, \boldsymbol{\mu}_s \in \mathbb{R}\}$$

证明: $L_1 = L_2$.

• 等价向量组生成的向量空间相同.

子空间的定义

定义

设 V_1 为向量空间 V 的一个非空子集. 若 V_1 也是一个向量空间,则称 V_1 为向量空间 V 的子空间,可记为 $V_1 < V$.

子空间的定义

定义

设 V_1 为向量空间 V 的一个非空子集. 若 V_1 也是一个向量空间,则称 V_1 为向量空间 V 的子空间,可记为 $V_1 < V$.

- 例: $V = \{X = (0, x_2, \dots, x_n)^T \mid x_2, \dots, x_n \in \mathbb{R}\}$ 为 \mathbb{R}^n 的子空间.
- 例: α , β 为两个 n 维向量,集合 $L = \{ \lambda \alpha + \mu \beta \mid \lambda, \mu \in \mathbb{R} \}$ 为 \mathbb{R}^n 的子空间.

基和维数的定义

- 向量组 ^{+线性结构} 向量空间.
- 向量组的最大无关组 —— 向量空间的基.
- 向量组的秩 —— 向量空间的维数.

基和维数的定义

- 向量组 ^{+线性结构} 向量空间.
- 向量组的最大无关组 —— 向量空间的基.
- 向量组的秩 — 向量空间的维数.

定义

设 V为向量空间, $\alpha_1, \dots, \alpha_r \in V$, 若满足

- (i) $\alpha_1, \dots, \alpha_r$ 线性无关;
- (ii) V 中的任一向量都可由 $\alpha_1, \dots, \alpha_r$ 线性表示,

则称向量组 $\alpha_1, \cdots, \alpha_r$ 为向量空间 V 的一组基,r 称为向量空间 V 的维数, 记为 $\dim V = r$. 此时称 V 为 r 维向量空间.

例

- 1. n 维向量全体 \mathbb{R}^n ;
- 2. $V = \{X = (0, x_2, \dots, x_n)^T \mid x_2, \dots, x_n \in \mathbb{R}\};$
- 3. 齐次线性方程组 AX = 0 的解空间 $S = \{X \mid AX = 0\}$;
- 4. n 维向量组 $A: \alpha_1, \dots, \alpha_m$ 的生成空间 $L = L(\alpha_1, \dots, \alpha_m)$.

例

- 1. n 维向量全体 \mathbb{R}^n ; dim $\mathbb{R}^n = n$
- 2. $V = \{X = (0, x_2, \dots, x_n)^T \mid x_2, \dots, x_n \in \mathbb{R}\};$
- 3. 齐次线性方程组 AX = 0 的解空间 $S = \{X \mid AX = 0\}$;
- 4. n 维向量组 $A: \alpha_1, \dots, \alpha_m$ 的生成空间 $L = L(\alpha_1, \dots, \alpha_m)$.

例

- 1. n 维向量全体 \mathbb{R}^n ; dim $\mathbb{R}^n = n$
- 2. $V = \{X = (0, x_2, \dots, x_n)^T \mid x_2, \dots, x_n \in \mathbb{R}\};$ $\dim V = n - 1$
- 3. 齐次线性方程组 AX = 0 的解空间 $S = \{X \mid AX = 0\}$;
- 4. n 维向量组 $A: \alpha_1, \dots, \alpha_m$ 的生成空间 $L = L(\alpha_1, \dots, \alpha_m)$.

例

- 1. n 维向量全体 \mathbb{R}^n ; dim $\mathbb{R}^n = n$
- 2. $V = \{X = (0, x_2, \dots, x_n)^T \mid x_2, \dots, x_n \in \mathbb{R}\};$ $\dim V = n - 1$
- 3. 齐次线性方程组 AX = 0 的解空间 $S = \{X \mid AX = 0\}$; dim S = n R(A)
- 4. n 维向量组 $A: \alpha_1, \dots, \alpha_m$ 的生成空间 $L = L(\alpha_1, \dots, \alpha_m)$.

例

- 1. n 维向量全体 \mathbb{R}^n ; dim $\mathbb{R}^n = n$
- 2. $V = \{X = (0, x_2, \dots, x_n)^T \mid x_2, \dots, x_n \in \mathbb{R}\};$ $\dim V = n - 1$
- 3. 齐次线性方程组 AX = 0 的解空间 $S = \{X \mid AX = 0\}$; dim S = n R(A)
- 4. n 维向量组 $A: \alpha_1, \dots, \alpha_m$ 的生成空间 $L = L(\alpha_1, \dots, \alpha_m)$. dim $L = R_A$.

坐标的定义

定义 (定义 9)

取定向量空间的一组基 $\alpha_1, \cdots, \alpha_r$,则 V中任一向量 β 可唯一表示为

$$\boldsymbol{\beta} = \boldsymbol{\lambda}_1 \boldsymbol{\alpha}_1 + \cdots + \boldsymbol{\lambda}_r \boldsymbol{\alpha}_r,$$

数组 $\lambda_1, \cdots, \lambda_r$ 称为向量 β 在基 $\alpha_1, \cdots, \alpha_r$ 下的坐标.

坐标的定义

定义 (定义 9)

取定向量空间的一组基 $\alpha_1, \cdots, \alpha_r$,则 V中任一向量 β 可唯一表示为

$$\boldsymbol{\beta} = \boldsymbol{\lambda}_1 \boldsymbol{\alpha}_1 + \cdots + \boldsymbol{\lambda}_r \boldsymbol{\alpha}_r,$$

数组 $\lambda_1, \dots, \lambda_r$ 称为向量 β 在基 $\alpha_1, \dots, \alpha_r$ 下的坐标.

关于坐标的一些常用写法:

$$m{eta} = m{\lambda}_1 m{lpha}_1 + \dots + m{\lambda}_r m{lpha}_r = (m{lpha}_1, \dots, m{lpha}_r) \begin{pmatrix} m{\lambda}_1 \\ \vdots \\ m{\lambda}_r \end{pmatrix} = (m{lpha}_1, \dots, m{lpha}_r) X_{m{eta}}$$

例 24

例

设

$$A = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3) = \begin{pmatrix} 2 & 2 & -1 \\ 2 & -1 & 2 \\ -1 & 2 & 2 \end{pmatrix}, \quad B = (\boldsymbol{\beta}_1, \boldsymbol{\beta}_2) = \begin{pmatrix} 1 & 4 \\ 0 & 3 \\ -4 & 2 \end{pmatrix}$$

证明 $\alpha_1, \alpha_2, \alpha_3$ 为 \mathbb{R}^3 的一组基, 并求 β_1, β_2 在这组基下的坐标.

解法:解矩阵方程 AX = B. 对 (A, B) 进行初等行变换.

例 (Lecture-12, Page110-12)

设向量组 $B: \boldsymbol{\beta}_1, \cdots, \boldsymbol{\beta}_r$ 可由向量组 $A: \boldsymbol{\alpha}_1, \cdots, \boldsymbol{\alpha}_s$ 线性表示为

$$(\boldsymbol{\beta}_1,\cdots,\boldsymbol{\beta}_r)=(\boldsymbol{\alpha}_1,\cdots,\boldsymbol{\alpha}_s)K_{s\times r},$$

向量组 A 线性无关. 证明: $R_B = R(K)$.

令向量空间
$$V = L(\alpha_1, \dots, \alpha_s)$$
. 设 β_i 在基 $\alpha_1, \dots, \alpha_s$ 下的坐标为 X_i , 即

$$\boldsymbol{\beta}_i = (\boldsymbol{\alpha}_1, \cdots, \boldsymbol{\alpha}_s) X_i,$$

则

$$K = (X_1, \cdots, X_r).$$

 $R_B = R(K)$, 则 $L(\boldsymbol{\beta}_1, \cdots, \boldsymbol{\beta}_r)$ 的维数为坐标向量组的秩.

基变换公式

设向量组 $\alpha_1, \alpha_2, \alpha_3$ 和 $\beta_1, \beta_2, \beta_3$ 都为 \mathbb{R}^3 的基.

$$\mathbb{R}^3 = L(\pmb{lpha}_1, \pmb{lpha}_2, \pmb{lpha}_3) = L(\pmb{eta}_1, \pmb{eta}_2, \pmb{eta}_3)$$

• 向量组 $B: \beta_1, \beta_2, \beta_3$ 可由向量组 $A: \alpha_1, \alpha_2, \alpha_3$ 线性表示为

$$(\boldsymbol{\beta}_1,\boldsymbol{\beta}_2,\boldsymbol{\beta}_3)=(\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\boldsymbol{\alpha}_3)P.$$

上式称为 \mathbb{R}^3 从基 α_1 , α_2 , α_3 到基 β_1 , β_2 , β_3 的基变换公式.

基变换公式

设向量组 $\alpha_1, \alpha_2, \alpha_3$ 和 $\beta_1, \beta_2, \beta_3$ 都为 \mathbb{R}^3 的基.

$$\mathbb{R}^3 = L(\pmb{lpha}_1, \pmb{lpha}_2, \pmb{lpha}_3) = L(\pmb{eta}_1, \pmb{eta}_2, \pmb{eta}_3)$$

• 向量组 $B: \beta_1, \beta_2, \beta_3$ 可由向量组 $A: \alpha_1, \alpha_2, \alpha_3$ 线性表示为

$$(\boldsymbol{\beta}_1,\boldsymbol{\beta}_2,\boldsymbol{\beta}_3)=(\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\boldsymbol{\alpha}_3)P.$$

上式称为 \mathbb{R}^3 从基 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$ 到基 $\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3$ 的基变换公式.

矩阵 $P = A^{-1}B$ 称为从基 $\mathbf{\alpha}_1, \mathbf{\alpha}_2, \mathbf{\alpha}_3$ 到基 $\mathbf{\beta}_1, \mathbf{\beta}_2, \mathbf{\beta}_3$ 的过渡矩阵.

坐标变换公式

• 任意向量
$$X = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3) \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = (\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3) \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix}$$
,则

$$\begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix} = P^{-1} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$

称为两组基之间的坐标变换公式.

例 26

例

设 \mathbb{R}^3 的两组基为

$$I: \boldsymbol{\alpha}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \boldsymbol{\alpha}_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \boldsymbol{\alpha}_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix};$$
 $II: \boldsymbol{\beta}_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \boldsymbol{\beta}_2 = \begin{pmatrix} 2 \\ 3 \\ 3 \end{pmatrix}, \boldsymbol{\beta}_3 = \begin{pmatrix} 3 \\ 7 \\ 1 \end{pmatrix}$

- 1. 求从基 I 到基 II 的过渡矩阵;
- 2. 向量 X 在基 I 下的坐标为 $(-2,1,2)^T$, 求向量 X 在基 II 下的坐标.

内积的定义

定义

设 n 维向量

$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \quad Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

$$(X, Y) = x_1y_1 + \cdots + x_ny_n$$
 为向量 X 与 Y 的内积.

- 内积有时也被记为 [X, Y], < X, Y >.
- $(X, Y) = X^T Y = Y^T X$.

- 对称性: (X, Y) = (Y, X)
- 双线性性质:
 - $(\lambda X, Y) = \lambda(X, Y) = (X, \lambda Y), \lambda \in \mathbb{R};$
 - $(X_1 + X_2, Y) = (X_1, Y) + (X_2, Y);$
 - $(X, Y_1 + Y_2) = (X, Y_1) + (X, Y_2);$
- 半正定性/非负性: $(X, Y) \ge 0$
- Schwarz 不等式

$$(X, Y)^2 \le (X, X) \cdot (Y, Y)$$

- 对称性: (X, Y) = (Y, X)
- 双线性性质:
 - $(\lambda X, Y) = \lambda(X, Y) = (X, \lambda Y), \lambda \in \mathbb{R};$
 - $(X_1 + X_2, Y) = (X_1, Y) + (X_2, Y);$
 - $(X, Y_1 + Y_2) = (X, Y_1) + (X, Y_2);$
- 半正定性/非负性: $(X, Y) \ge 0$
- Schwarz 不等式

$$(X, Y)^2 \le (X, X) \cdot (Y, Y)$$

• 向量组 +线性结构

- 对称性: (X, Y) = (Y, X)
- 双线性性质:
 - $(\lambda X, Y) = \lambda(X, Y) = (X, \lambda Y), \lambda \in \mathbb{R};$
 - $(X_1 + X_2, Y) = (X_1, Y) + (X_2, Y);$
 - $(X, Y_1 + Y_2) = (X, Y_1) + (X, Y_2);$
- 半正定性/非负性: $(X, Y) \ge 0$
- Schwarz 不等式

$$(X, Y)^2 \le (X, X) \cdot (Y, Y)$$

● 向量组 ^{+线性结构} 向量空间

- 对称性: (X, Y) = (Y, X)
- 双线性性质:
 - $(\lambda X, Y) = \lambda(X, Y) = (X, \lambda Y), \lambda \in \mathbb{R};$
 - $(X_1 + X_2, Y) = (X_1, Y) + (X_2, Y);$
 - $(X, Y_1 + Y_2) = (X, Y_1) + (X, Y_2);$
- 半正定性/非负性: $(X, Y) \ge 0$
- Schwarz 不等式

$$(X, Y)^2 \le (X, X) \cdot (Y, Y)$$

● 向量组 +线性结构 向量空间 +内积

- 对称性: (X, Y) = (Y, X)
- 双线性性质:
 - $(\lambda X, Y) = \lambda(X, Y) = (X, \lambda Y), \lambda \in \mathbb{R};$
 - $(X_1 + X_2, Y) = (X_1, Y) + (X_2, Y);$
 - $(X, Y_1 + Y_2) = (X, Y_1) + (X, Y_2);$
- 半正定性/非负性: $(X, Y) \ge 0$
- Schwarz 不等式

$$(X, Y)^2 \le (X, X) \cdot (Y, Y)$$

向量组 ^{+线性结构}→ 向量空间 ^{+内积}→ 欧式空间.

- 对称性: (X, Y) = (Y, X)
- 双线性性质:
 - $(\lambda X, Y) = \lambda(X, Y) = (X, \lambda Y), \lambda \in \mathbb{R};$
 - $(X_1 + X_2, Y) = (X_1, Y) + (X_2, Y);$
 - $(X, Y_1 + Y_2) = (X, Y_1) + (X, Y_2);$
- 半正定性/非负性: $(X, Y) \ge 0$
- Schwarz 不等式

$$(X, Y)^2 \le (X, X) \cdot (Y, Y)$$

- 向量组 ^{+线性结构}→向量空间 ^{+内积}→ 欧式空间.
- 在欧式空间中可以讨论向量的长度,角度,垂直(正交)等几何概念.

长度的定义

称

$$||X|| = \sqrt{(X, X)} = \sqrt{x_1^2 + \dots + x_n^2}$$

为n维向量X的长度(或范数).

- 向量长度满足以下性质:

 - 齐次性: $||\boldsymbol{\lambda}X|| = |\boldsymbol{\lambda}| \cdot ||X||$
- 若 ||X|| = 1, 则称 X 为单位向量.
- 若 $\alpha \neq 0$, 则 $X = \frac{\alpha}{\|\alpha\|}$ 为一个单位向量,此过程称为单位化.

夹角和正交的定义

• 设X, Y为n维非零向量,则

$$\boldsymbol{\theta} = \arccos \frac{(X, Y)}{||X|| \cdot ||Y||}$$

称为向量 X, Y的夹角.

• 若 (X, Y) = 0, 则称向量 X 和 Y 正交.

小结

- 向量空间、解空间、生成空间、子空间、基、维数、坐标;
- 基变换公式、过渡矩阵、坐标变换公式;
- 内积、长度、夹角、正交.

作业

- Page₁₁₁-Page₁₁₂: 21, 23, 24
- 设向量 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 两两正交, 证明 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 线性无关.

欢迎提问和讨论

吴利苏(http://wulisu.cn)

Email: wulisu@sdust.edu.cn

2024年10月16日