U5A1-K-means_clustering

December 3, 2020

```
U5A1 - K-means clustering
Author: Sreejith S
```

Dataset: https://archive.ics.uci.edu/ml/datasets/wine

```
[39]: import numpy as np
      import pandas as pd
      import seaborn as sns
      import matplotlib.pyplot as plt
      from matplotlib.patches import ConnectionPatch
      from mpl_toolkits.mplot3d import Axes3D
      from sklearn.preprocessing import StandardScaler
      from sklearn.model_selection import train_test_split
      from sklearn.cluster import KMeans
      %reload_ext autoreload
      %matplotlib inline
      %autoreload 2
      %config InlineBackend.figure_format = 'retina'
      #set pd display options
      pd.set_option('display.max_columns', 15)
      pd.set_option('display.width', 80)
```

12.1 Try to understand the features and the type of features (continuous values, categorical).

Use pandas dataframe attributes such as df.info(), df.head(), df.describe() to understand the data.

```
[40]: columns = ["Cultivar", "Alcohol", "Malic acid", "Ash", "Alcalinity of ash", ⊔

→"Magnesium",

"Total phenols", "Flavanoids", "Nonflavanoid phenols", ⊔

→"Proanthocyanins",

"Color intensity", "Hue", "OD280/OD315", "Proline"]
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 178 entries, 0 to 177
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	Cultivar	178 non-null	int64
1	Alcohol	178 non-null	float64
2	Malic acid	178 non-null	float64
3	Ash	178 non-null	float64
4	Alcalinity of ash	178 non-null	float64
5	Magnesium	178 non-null	int64
6	Total phenols	178 non-null	float64
7	Flavanoids	178 non-null	float64
8	Nonflavanoid phenols	178 non-null	float64
9	Proanthocyanins	178 non-null	float64
10	Color intensity	178 non-null	float64
11	Hue	178 non-null	float64
12	OD280/OD315	178 non-null	float64
13	Proline	178 non-null	int64

dtypes: float64(11), int64(3)

memory usage: 19.6 KB

[41]: df.head(5)

Cultivar	Alcohol	Malic acid	Ash	Alcalinity of ash	Magnesium
1	14.23	1.71	2.43	15.6	127
1	13.20	1.78	2.14	11.2	100
1	13.16	2.36	2.67	18.6	101
1	14.37	1.95	2.50	16.8	113
1	13.24	2.59	2.87	21.0	118

Flavanoids	Nonflavanoid phenols	Proanthocyanins	Color intensity
3.06	0.28	2.29	5.64
2.76	0.26	1.28	4.38
3.24	0.30	2.81	5.68
3.49	0.24	2.18	7.80
2.69	0.39	1.82	4.32

Hue	OD280/OD315	Proline
1.04	3.92	1065
1.05	3.40	1050
1.03	3.17	1185
0.86	3.45	1480
1.04	2.93	735

```
[42]: df.drop(columns=["Cultivar"]).describe()
```

[42]:	2]: di.drop(columns=["Cultivar"]).describe()									
[42]:		Alcohol Ma	alic acid		Ash	Alcal	inity o	of ash	Magnesium	\
	count	178.000000 17	78.000000	178.	000000		178.0	00000	178.000000	
	mean	13.000618	2.336348	2.	366517		19.4	194944	99.741573	
	std	0.811827	1.117146	0.	274344		3.3	339564	14.282484	
	min	11.030000	0.740000	1.	360000		10.6	300000	70.000000	
	25%	12.362500	1.602500	2.	210000		17.2	200000	88.000000	
	50%	13.050000	1.865000	2.	360000		19.5	500000	98.000000	
	75%	13.677500	3.082500	2.	557500		21.5	500000	107.000000	
	max	14.830000	5.800000	3.	230000		30.0	000000	162.000000	
		Total phenols	Flavanoi	ds N	onflavaı	noid pl	henols	Proar	nthocyanins	\
	count	178.000000	178.0000	00		178.0	000000		178.000000	
	mean	2.295112	2.0292	70		0.3	361854		1.590899	
	std	0.625851	0.9988	59		0.	124453		0.572359	
	min	0.980000	0.3400	00		0.	130000		0.410000	
	25%	1.742500	1.2050	00		0.5	270000		1.250000	
	50%	2.355000	2.1350	00		0.3	340000		1.555000	
	75%	2.800000	2.8750	00		0.4	437500		1.950000	
	max	3.880000	5.0800	00		0.0	660000		3.580000	
		Color intensit	у	Hue	OD280/0	DD315	Pı	roline		
	count	178.00000	00 178.00	0000	178.00	00000	178.0	000000		
	mean	5.05809	0.95	7449	2.63	11685	746.8	393258		
	std	2.31828	36 0.22	8572	0.70	09990	314.9	907474		
	min	1.28000	0.48	0000	1.27	70000	278.0	000000		
	25%	3.22000	0.78	2500	1.93	37500	500.5	500000		
	50%	4.69000	0.96	5000	2.78	30000	673.5	500000		
	75%	6.20000	0 1.12	0000	3.17	70000	985.0	000000		
	max	13.00000	00 1.71	0000	4.00	00000	1680.0	000000		

- 12.2 [8 Marks] Create your google collab notebook to use k-mean clustering to try and cluster this dataset.
- a. Plot a Pearson correlation matrix to see the correlation among the features. Put down the figure below, and your interpretation of it.

Observation:

On prelimanary observation, it can be noted that there are several strong correlations between variables. We will list the ones with abs(corr_coeff) in (0.6, 1) using the code below.

It can be observed that Flavinoids, OB280, Total phenols, Proline and Hue has strong negative correlation coefficient. Amino acid Proline has postive correlation with Alchol content.

```
[44]: c = corr_mat
c[(c.abs()>0.6) & (c.abs()< 1)].unstack().sort_values().dropna().
→drop_duplicates()
```

```
[44]: Flavanoids
                    Cultivar
                                      -0.847498
     OD280/OD315
                    Cultivar
                                      -0.788230
                                      -0.719163
     Total phenols Cultivar
     Cultivar
                    Proline
                                      -0.633717
     Hue
                    Cultivar
                                      -0.617369
     Total phenols Proanthocyanins
                                      0.612413
     Alcohol
                 Proline
                                      0.643720
     Flavanoids
                    Proanthocyanins
                                      0.652692
     Total phenols OD280/OD315
                                      0.699949
                    OD280/OD315
     Flavanoids
                                      0.787194
     Total phenols Flavanoids
                                      0.864564
     dtype: float64
```

b. What is the optimum number of clusters? Write down the number and the corresponding plot.

```
[45]: # using StandardScaler
X = df.drop('Cultivar', axis=1).values
X_ss = StandardScaler().fit_transform(X)
```

We'll use the elbow method on *no. of clusters vs WCSS* plot to find the optimal number of clusters. Selecting intial centroids using init='k-means++ speeds up convergence. [doc]

WCSS =
$$\sum_{C_k}^{C_n} (\sum_{d_i in C_i}^{d_m} distance(d_i, C_k)^2)$$

Where,

C is the cluster centroids and d is the data point in each Cluster.

Once the *no. of clusters vs WCSS* relationship is plotted, value of *K* can be found by looking the "elbow". ie; the point where the discrete difference becomes gradual.

```
random_state=0)
kmeans.fit(X_ss)
wcss.append(kmeans.inertia_)
f3, ax = plt.subplots(figsize=(12, 6))
plt.plot(range(1,11),wcss)
#plt.plot(range(1,10),diff(wcss))
plt.scatter(3, wcss[2], marker='X', c='r')
plt.title('The Elbow Method')
plt.xlabel('Number of clusters')
plt.ylabel('WCSS')
plt.show()
```


In the above plot it can be noted that optimal number of clusters is 3.

c. Using the optimum number of clusters, try to use k-means to cluster the dataset and plot a 2D and 3D plots of the clusters below.

Building model with n_cluster=3

```
print("Predicted Clusters")
print("="*74)
print(df["pred_cluster"].values)
print("True Clusters")
print("="*74)
print(df['Cultivar'].values)
```

Predicted Clusters

2D Plot

```
[48]: def cluster2D(x_label, y_label):
          fig, (ax1, ax2) = plt.subplots(1, 2, sharey=True, figsize=(12, 5))
          sns.scatterplot(x=x_label, y=y_label, data=df, hue='pred_cluster',u
       →palette="Set2", ax=ax1)
          wrong_cluster = df[df['pred_cluster'] != df['Cultivar']]
          sns.scatterplot(x=x_label, y=y_label, data=df, hue='Cultivar',_
       →palette="Set2", ax=ax2)
          ax1.title.set_text('Predicted Cluster')
          ax2.title.set_text('True Cluster')
          ax1.scatter(wrong_cluster[x_label], wrong_cluster[y_label], s=80,_
       →facecolors='none', edgecolors='r')
          ax2.scatter(wrong_cluster[x_label], wrong_cluster[y_label], s=80,__
       →facecolors='none', edgecolors='r')
          \#ax1.scatter(k\_means.cluster\_centers\_[:, 0], k\_means.cluster\_centers\_[:, 1],
                       s=100, c='cyan', label = 'Centroids')
          for i, row in wrong_cluster.iterrows():
              xy = (row[x_label], row[y_label])
              con = ConnectionPatch(xyA=xy, xyB=xy, coordsA="data", coordsB="data",
                                    axesA=ax2, axesB=ax1, color="red")
              ax2.add_artist(con)
          super_title = x_label + " vs " + y_label
          super_title += f"\nWrongly clustered = {len(wrong_cluster)}/{len(df)}"
          fig.suptitle(super_title)
```

```
cluster2D('Alcohol', 'OD280/OD315')
cluster2D('Alcohol', 'Flavanoids')
cluster2D('Alcohol', 'Proline')
```


Observation

From the plots it can be observed that all the wrong clustering happened to Cultivar #2.

3D Plot

```
Plot 'Alcohol', 'OD280/OD315', 'Proline'

[58]: def cluster3D(x_label, y_label, z_label):
    f4 = plt.figure(1, figsize=(10, 8))
    plt.clf()
    ax = Axes3D(f4, rect=[0, 0, .95, 1], elev=48, azim=134)

    plt.cla()
    ax.set_xlabel(x_label)
    ax.set_ylabel(y_label)
    ax.set_zlabel(z_label)
    ax.set_zlabel(z_label)

    ax.scatter(df[x_label], df[y_label], df[z_label], c=df['pred_cluster'], s=80)

cluster3D('Alcohol', 'OD280/OD315', 'Proline')
```



```
Plot "Malic acid", "Ash", "Alcalinity of ash"

[53]: cluster3D("Malic acid", "Ash", "Alcalinity of ash")
```


Plot "Color intensity", "Hue", "OD280/OD315"

[55]: cluster3D("Color intensity", "Hue", "OD280/OD315")

The clustering was done in a 13-dimensional space. We try to represent a few subsets of those 13 features in the 2D and 3D plots above. It can be observed that while some of these plots have clear separation between clusters (eg. Alcohol, OD280/OD315, Proline) others don't (eg. Color intensity, Hue, OD280/OD315).

From this it can be infered that the clustering algorithm might provide similar results even with a fewer number of features.

12.3 [2 MARKS] What are the new things that you learned by doing this assignment. List down at least 3 bullet points.

- To implement k-mean clustering with scikit learn Kmeans()
- Selecting the correct value of K (the number of clusters) using the *elbow method*
- Intuition behind the *elbow method*
- Various methods to intialize centroids (k-means++, random etc)