Documentation:

The Grammar class is designed to represent a formal grammar and provide functionality for reading the grammar from a file, checking if it is context-free, and retrieving information about its structure.

The Grammar class has the following attributes:

filename: the name of the file from which the grammar is read

terminals: a list of terminals

nonterminals: a list of non-terminals

productions: a dictionary of productions

start_symbol: the start symbol

EPSILON: the epsilon symbol string representation

The Grammar class has the following methods:

```
__init__(self, filename): the constructor of the Grammar class
```

read_grammar(self): reads the grammar from the file. It also checks if the symbols from the productions are already defined terminals/non-terminals, depending on the context.

The file must have the following structure:

```
#Nonterminals
<nonterminal1> <nonterminal2> ...

#Terminals
<terminal1> <terminal2> ...

#Productions
```

<left1> ::= <right1> | <right2> | ...

```
<left2> ::= <right3> | <right4> | ...
...
#StartSymbol
<start symbol>
```

terminal_representation(self): returns a string representation of the terminals nonterminal_representation(self): returns a string representation of the non-terminals productions_representation(self): returns a string representation of the productions start_symbol_representation(self): returns a string representation of the start symbol cfg_check(self): checks if the grammar is context-free

productions_for_nonterminal(self, nonterminal): returns a string representation of the productions for a given non-terminal

__str__(self): returns a string representation of the entire grammar

g1.txt:

GRAMMARS

1. Given the grammar $G = (N, \Sigma, P, S)$ $N = \{S, C\}$ $\Sigma = \{a, b\}$ $P: S \rightarrow ab \mid aCSb$ $C \rightarrow S \mid bSb$ $CS \rightarrow b$, prove that $w = ab(ab^2)^2 \in L(G)$.

It has been extracted from a seminar. Another one will be used in the latter laboratories.