

作业4

李子龙 123033910195

2023年11月15日

1. 解

$$A = \begin{pmatrix} 5 & 2 & 1 \\ -1 & 4 & 2 \\ 2 & -3 & 10 \end{pmatrix} = \begin{pmatrix} 5 & 4 & 10 \\ 4 & 10 \end{pmatrix} - \begin{pmatrix} 1 & 1 & 10 \\ -2 & 3 & 10 \end{pmatrix} - \begin{pmatrix} -2 & -1 & 10 \\ -2 & 3 & 10 \end{pmatrix} = \mathbf{D} - \mathbf{L} - \mathbf{U}$$

$$\mathbf{b} = \begin{pmatrix} -12 & 1 & 10 \\ 20 & 3 & 10 \end{pmatrix}$$

- (1) 由于 A 是严格占优矩阵,所以 Jacobi 迭代法和 Guass–Seidel 迭代法解这个方程组都是收敛的。
- (2) Jacobi 迭代法 对于 Jacobi 迭代法, 其迭代矩阵

$$\mathbf{B} = \mathbf{D}^{-1}(\mathbf{L} + \mathbf{U}) = \begin{pmatrix} -\frac{2}{5} & -\frac{1}{5} \\ \frac{1}{4} & -\frac{1}{2} \\ -\frac{1}{5} & \frac{3}{10} \end{pmatrix} \qquad \mathbf{f} = \mathbf{D}^{-1}\mathbf{b} = \begin{pmatrix} -\frac{12}{5} \\ 5 \\ \frac{3}{10} \end{pmatrix}$$

取迭代初值 $\mathbf{x}^{(0)} = (0,0,0)^{\mathsf{T}}$,记 $\boldsymbol{\epsilon}^{(k)} = \mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}$,有

$$\mathbf{x}^{(12)} = \mathbf{B} \mathbf{x}^{(11)} + \mathbf{f} = (-4.00122406, 3.00000859, 2.00098719)^{\mathsf{T}} \quad \|\boldsymbol{\epsilon}^{(12)}\|_{\infty} = 0.00312067$$

$$\mathbf{x}^{(13)} = \mathbf{B} \mathbf{x}^{(12)} + \mathbf{f} = (-4.00020088, 2.99920039, 2.00024739)^{\mathsf{T}} \quad \|\boldsymbol{\epsilon}^{(13)}\|_{\infty} = 0.00102319$$

$$\mathbf{x}^{(14)} = \mathbf{B} \mathbf{x}^{(13)} + \mathbf{f} = (-3.99972963, 2.99982609, 1.99980029)^{\mathsf{T}} \quad \|\boldsymbol{\epsilon}^{(14)}\|_{\infty} = 0.0006257$$

$$\mathbf{x}^{(15)} = \mathbf{B} \mathbf{x}^{(14)} + \mathbf{f} = (-3.99989049, 3.00016745, 1.99989375)^{\mathsf{T}} \quad \|\boldsymbol{\epsilon}^{(15)}\|_{\infty} = 0.00034136$$

$$\mathbf{x}^{(16)} = \mathbf{B} \mathbf{x}^{(15)} + \mathbf{f} = (-4.00004573, 3.0000805, 2.00002833)^{\mathsf{T}} \quad \|\boldsymbol{\epsilon}^{(16)}\|_{\infty} = 0.00015524$$

$$\mathbf{x}^{(17)} = \mathbf{B} \mathbf{x}^{(16)} + \mathbf{f} = (-4.00003787, 2.9999744, 2.0000333,)^{\mathsf{T}} \quad \|\boldsymbol{\epsilon}^{(17)}\|_{\infty} = 0.0001061$$

$$\mathbf{x}^{(18)} = \mathbf{B} \mathbf{x}^{(17)} + \mathbf{f} = (-3.99999642, 2.99997389, 1.99999989)^{\mathsf{T}} \quad \|\boldsymbol{\epsilon}^{(18)}\|_{\infty} = 4.14468074 \times 10^{-5}$$

总共需要18次满足要求。

Guass-Seidel 迭代法 对于 Guass-Seidel 迭代法,

$$G = (D - L)^{-1}U = \begin{pmatrix} 5 & & \\ -1 & 4 & \\ 2 & -3 & 10 \end{pmatrix}^{-1} \begin{pmatrix} -2 & -1 \\ & -2 \end{pmatrix} = \begin{pmatrix} 0 & -0.4 & -0.2 \\ 0 & -0.1 & -0.55 \\ 0 & 0.05 & -0.125 \end{pmatrix}$$
$$f = (D - L)^{-1}b = \begin{pmatrix} 5 & & \\ -1 & 4 & \\ 2 & -3 & 10 \end{pmatrix}^{-1} \begin{pmatrix} -12 \\ 20 \\ 3 \end{pmatrix} = \begin{pmatrix} -2.4 \\ 4.4 \\ 2.1 \end{pmatrix}$$

取迭代初值 $\mathbf{x}^{(0)} = (0,0,0)^{\mathsf{T}}$, 记 $\boldsymbol{\epsilon}^{(k)} = \mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}$, 有

$$x^{(1)} = Gx^{(0)} + f = (-2.4, 4.4, 2.1)^{\top} \qquad \|\boldsymbol{\epsilon}^{(1)}\|_{\infty} = 4.4$$

$$x^{(2)} = Gx^{(1)} + f = (-4.58, 2.805, 2.0575)^{\top} \qquad \|\boldsymbol{\epsilon}^{(2)}\|_{\infty} = 2.18$$

$$x^{(3)} = Gx^{(2)} + f = (-3.9335, 2.987875, 1.9830625)^{\top} \qquad \|\boldsymbol{\epsilon}^{(3)}\|_{\infty} = 0.6465$$

$$x^{(4)} = Gx^{(3)} + f = (-3.9917625, 3.01052813, 2.00151094)^{\top} \qquad \|\boldsymbol{\epsilon}^{(4)}\|_{\infty} = 0.0582625$$

$$x^{(5)} = Gx^{(4)} + f = (-4.00451344, 2.99811617, 2.00033754)^{\top} \qquad \|\boldsymbol{\epsilon}^{(5)}\|_{\infty} = 0.01275094$$

$$x^{(6)} = Gx^{(5)} + f = (-3.999931398, 3.00000274, 1.99986362)^{\top} \qquad \|\boldsymbol{\epsilon}^{(6)}\|_{\infty} = 0.00519946$$

$$x^{(7)} = Gx^{(6)} + f = (-3.99997382, 3.00007474, 2.00001718)^{\top} \qquad \|\boldsymbol{\epsilon}^{(7)}\|_{\infty} = 0.00065984$$

$$x^{(8)} = Gx^{(7)} + f = (-4.00003333, 2.99998307, 2.00000159)^{\top} \qquad \|\boldsymbol{\epsilon}^{(8)}\|_{\infty} = 9.16628308 \times 10^{-5}$$

总共需要8次满足要求。

8. 解

$$\mathbf{A} = \begin{pmatrix}
1 & 0 & -\frac{1}{4} & -\frac{1}{4} \\
0 & 1 & -\frac{1}{4} & -\frac{1}{4} \\
-\frac{1}{4} & -\frac{1}{4} & 1 & 0 \\
-\frac{1}{4} & -\frac{1}{4} & 0 & 1
\end{pmatrix} = \begin{pmatrix}
1 & & & \\
& 1 & & \\
& & 1 & \\
& & & 1
\end{pmatrix} - \begin{pmatrix}
& & \frac{1}{4} & \frac{1}{4} \\
& & \frac{1}{4} & \frac{1}{4} \\
& & \frac{1}{4} & \frac{1}{4}
\end{pmatrix} = \mathbf{D} - \mathbf{L} - \mathbf{U}$$

$$\mathbf{b} = \begin{pmatrix}
\frac{1}{2} \\
\frac{1}{2} \\
\frac{1}{2} \\
\frac{1}{2}
\end{pmatrix}$$

(1) 对于 Jacobi 迭代法,

$$\boldsymbol{B}_{0} = \boldsymbol{D}^{-1}(\boldsymbol{L} + \boldsymbol{U}) = \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & 1 & \\ & & & 1 \end{pmatrix}^{-1} \begin{pmatrix} & & \frac{1}{4} & \frac{1}{4} \\ & & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & & \\ \frac{1}{4} & \frac{1}{4} & & \end{pmatrix} = \begin{pmatrix} & & \frac{1}{4} & \frac{1}{4} \\ & & \frac{1}{4} & \frac{1}{4} \\ & & \frac{1}{4} & \frac{1}{4} \end{pmatrix}$$

求它的特征值

$$0 = |\lambda \mathbf{E} - \mathbf{B}_0| = \begin{vmatrix} \lambda & -\frac{1}{4} & -\frac{1}{4} \\ \lambda & -\frac{1}{4} & -\frac{1}{4} \\ -\frac{1}{4} & -\frac{1}{4} & \lambda \\ -\frac{1}{4} & -\frac{1}{4} & \lambda \end{vmatrix} = \lambda^2 \left(\lambda - \frac{1}{2}\right) \left(\lambda + \frac{1}{2}\right)$$

得到 $\lambda_{1,2} = 0, \lambda_3 = \frac{1}{2}, \lambda_4 = -\frac{1}{2}$,故谱半径 $\rho(\boldsymbol{B}_0) = \frac{1}{2}$ 。

(2) 对于 Guass-Seidel 迭代法,

$$\boldsymbol{B}_{0} = (\boldsymbol{D} - \boldsymbol{L})^{-1} \boldsymbol{U} = \begin{pmatrix} 1 & & & \\ 0 & 1 & & \\ -\frac{1}{4} & -\frac{1}{4} & 1 & \\ -\frac{1}{4} & -\frac{1}{4} & 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} & & \frac{1}{4} & \frac{1}{4} \\ & & \frac{1}{4} & \frac{1}{4} \\ & & & \frac{1}{4} & \frac{1}{4} \\ & & & \frac{1}{8} & \frac{1}{8} \end{pmatrix} = \begin{pmatrix} & & \frac{1}{4} & \frac{1}{4} \\ & & \frac{1}{4} & \frac{1}{4} \\ & & \frac{1}{8} & \frac{1}{8} \\ & & & \frac{1}{8} & \frac{1}{8} \end{pmatrix}$$

求它的特征值

$$0 = |\lambda \mathbf{E} - \mathbf{B}_0| = \begin{vmatrix} \lambda & -\frac{1}{4} & -\frac{1}{4} \\ \lambda & -\frac{1}{4} & -\frac{1}{4} \\ \lambda - \frac{1}{8} & -\frac{1}{8} \end{vmatrix} = \lambda^3 \left(\lambda - \frac{1}{4}\right)$$

得到 $\lambda_{1,2,3} = 0, \lambda_4 = \frac{1}{4}$,故谱半径 $\rho(\mathbf{B}_0) = \frac{1}{4}$ 。

(3) 由于谱半径都小于 1, 所以 Jacobi 迭代法和 Guass-Seidel 迭代法均收敛。

9. 解

$$\mathbf{A} = \begin{pmatrix} 4 & -1 \\ -1 & 4 & -1 \\ & -1 & 4 \end{pmatrix} = \mathbf{D} - \mathbf{L} - \mathbf{U} = \begin{pmatrix} 4 & \\ & 4 \\ & & 4 \end{pmatrix} - \begin{pmatrix} 1 & \\ & 1 \end{pmatrix} - \begin{pmatrix} & 1 \\ & & 1 \end{pmatrix}$$
$$\mathbf{b} = \begin{pmatrix} 1 \\ 4 \\ -3 \end{pmatrix}$$

对于 SOR 迭代法,松弛因子为 ω ,有

$$\boldsymbol{L}_{\omega} = (\boldsymbol{D} - \omega \boldsymbol{L})^{-1} [(1 - \omega)\boldsymbol{D} + \omega \boldsymbol{U}] = \begin{pmatrix} 4 & & \\ -\omega & 4 & \\ & -\omega & 4 \end{pmatrix}^{-1} \begin{pmatrix} 4(1 - \omega) & \omega & \\ & 4(1 - \omega) & \omega \\ & & 4(1 - \omega) \end{pmatrix}$$
$$\boldsymbol{f} = \omega (\boldsymbol{D} - \omega \boldsymbol{L})^{-1} \boldsymbol{b} = \omega \begin{pmatrix} 4 & & \\ -\omega & 4 & \\ & -\omega & 4 \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 4 \\ & -3 \end{pmatrix}$$

取迭代初值 $\mathbf{x}^{(0)} = (0,0,0)^{\mathsf{T}}$,记 $\boldsymbol{\epsilon}^{(k)} = \mathbf{x}^* - \mathbf{x}^{(k)}$,有

(1) ω = 1.03 需要 5 次迭代:

$$\mathbf{x}^{(1)} = \mathbf{L}_{\omega} \mathbf{x}^{(0)} + \mathbf{f} = (0.2575, 1.09630625, -0.49020114)^{\mathsf{T}} \qquad \|\boldsymbol{\epsilon}^{(1)}\|_{\infty} = 0.2425
\mathbf{x}^{(2)} = \mathbf{L}_{\omega} \mathbf{x}^{(1)} + \mathbf{f} = (0.53207386, 1.00789304, -0.49826151)^{\mathsf{T}} \qquad \|\boldsymbol{\epsilon}^{(2)}\|_{\infty} = 0.03207386
\mathbf{x}^{(3)} = \mathbf{L}_{\omega} \mathbf{x}^{(2)} + \mathbf{f} = (0.50107024, 1.00048646, -0.49992689)^{\mathsf{T}} \qquad \|\boldsymbol{\epsilon}^{(3)}\|_{\infty} = 0.00107024
\mathbf{x}^{(4)} = \mathbf{L}_{\omega} \mathbf{x}^{(3)} + \mathbf{f} = (0.50009316, 1.00002822, -0.49999493)^{\mathsf{T}} \qquad \|\boldsymbol{\epsilon}^{(4)}\|_{\infty} = 9.31555814 \times 10^{-5}
\mathbf{x}^{(5)} = \mathbf{L}_{\omega} \mathbf{x}^{(4)} + \mathbf{f} = (0.50000447, 1.00000161, -0.49999974)^{\mathsf{T}} \qquad \|\boldsymbol{\epsilon}^{(5)}\|_{\infty} = 4.47176785 \times 10^{-6}$$

(2) ω = 1 需要 6 次迭代:

$$\mathbf{x}^{(1)} = \mathbf{L}_{\omega} \mathbf{x}^{(0)} + \mathbf{f} = (0.25, 1.0625, -0.484375)^{\mathsf{T}} \qquad \|\boldsymbol{\epsilon}^{(1)}\|_{\infty} = 0.25
\mathbf{x}^{(2)} = \mathbf{L}_{\omega} \mathbf{x}^{(1)} + \mathbf{f} = (0.515625, 1.0078125, -0.49804688)^{\mathsf{T}} \qquad \|\boldsymbol{\epsilon}^{(2)}\|_{\infty} = 0.015625
\mathbf{x}^{(3)} = \mathbf{L}_{\omega} \mathbf{x}^{(2)} + \mathbf{f} = (0.50195312, 1.00097656, -0.49975586)^{\mathsf{T}} \qquad \|\boldsymbol{\epsilon}^{(3)}\|_{\infty} = 0.00195312
\mathbf{x}^{(4)} = \mathbf{L}_{\omega} \mathbf{x}^{(3)} + \mathbf{f} = (0.50024414, 1.00012207, -0.49996948)^{\mathsf{T}} \qquad \|\boldsymbol{\epsilon}^{(4)}\|_{\infty} = 0.00024414
\mathbf{x}^{(5)} = \mathbf{L}_{\omega} \mathbf{x}^{(4)} + \mathbf{f} = (0.50003052, 1.00001526, -0.49999619)^{\mathsf{T}} \qquad \|\boldsymbol{\epsilon}^{(5)}\|_{\infty} = 3.05175781 \times 10^{-5}
\mathbf{x}^{(6)} = \mathbf{L}_{\omega} \mathbf{x}^{(5)} + \mathbf{f} = (0.50000381, 1.00000191, -0.49999952)^{\mathsf{T}} \qquad \|\boldsymbol{\epsilon}^{(6)}\|_{\infty} = 3.81469727 \times 10^{-6}$$

(3) ω = 1.1 需要 6 次迭代:

$$\boldsymbol{x}^{(1)} = \boldsymbol{L}_{\omega}\boldsymbol{x}^{(0)} + \boldsymbol{f} = (0.275, 1.175625, -0.50170313)^{\mathsf{T}} \qquad \|\boldsymbol{\epsilon}^{(1)}\|_{\infty} = 0.225$$

$$\boldsymbol{x}^{(2)} = \boldsymbol{L}_{\omega}\boldsymbol{x}^{(1)} + \boldsymbol{f} = (0.57079688, 1.00143828, -0.49943416)^{\mathsf{T}} \qquad \|\boldsymbol{\epsilon}^{(2)}\|_{\infty} = 0.07079688$$

$$\boldsymbol{x}^{(3)} = \boldsymbol{L}_{\omega}\boldsymbol{x}^{(2)} + \boldsymbol{f} = (0.49331584, 0.99817363, -0.50055883)^{\mathsf{T}} \qquad \|\boldsymbol{\epsilon}^{(3)}\|_{\infty} = 0.00668416$$

$$\boldsymbol{x}^{(4)} = \boldsymbol{L}_{\omega}\boldsymbol{x}^{(3)} + \boldsymbol{f} = (0.50016617, 1.00007465, -0.49992359)^{\mathsf{T}} \qquad \|\boldsymbol{\epsilon}^{(4)}\|_{\infty} = 0.00016617$$

$$\boldsymbol{x}^{(5)} = \boldsymbol{L}_{\omega}\boldsymbol{x}^{(4)} + \boldsymbol{f} = (0.50000391, 1.00001462, -0.50000362)^{\mathsf{T}} \qquad \|\boldsymbol{\epsilon}^{(5)}\|_{\infty} = 1.46243508 \times 10^{-5}$$

$$\boldsymbol{x}^{(6)} = \boldsymbol{L}_{\omega}\boldsymbol{x}^{(5)} + \boldsymbol{f} = (0.50000363, 0.99999854, -0.50000004)^{\mathsf{T}} \qquad \|\boldsymbol{\epsilon}^{(6)}\|_{\infty} = 3.63040468 \times 10^{-6}$$

11. **证明** 由于 A 是对称正定矩阵,