Co-Debruijn: Everybody's Got To Be Somewhere^[2] From Debruijn to co-Debruijn using Category Theory

Marius Weidner

Chair of Programming Languages, University of Freiburg

January 25, 2024

Outline

- Getting Started: Scopes and Binders Categorically
 - The Category of Scopes
 - Intrinsically Scoped Debruijn Syntax
- 2 Going Further: Stronger Intrinsic Invariants over Scopes and Binders
 - The Slice Category of Subscopes
 - A Monad Over Sets Indexed by Scopes
 - Monoidal Structure of Scopes
 - Intrinsically Scopes co-Debruijn Syntax
 - Translating Debruijn Syntax to Codebruijn Syntax
- Wrapping Up: What I've (Not) Told You
 - This Is Actually an Agda Paper (!)
 - Abstracting over Arbitrary Syntaxes

The Category of Scopes: Δ_+^X

Definition

Let Δ_+^X be the category of scopes.

- Objects: $\bar{x}, \bar{y}, \bar{s} \in |\Delta_+^X| = X^*$
- Morphisms: $f,g \in \Delta^X_+(\bar{x},\bar{y})$ for $\bar{x},\bar{y} \in X^*$ are inductively defined:

$$\frac{\bar{x} \sqsubseteq \bar{y}}{\bar{x}x \sqsubseteq \bar{y}x} \ 1 \qquad \qquad \frac{\bar{x} \sqsubseteq \bar{y}}{\bar{x} \sqsubseteq \bar{y}y} \ 0$$

Corollary

The initial object of the Δ^X_+ category is the empty scope ε with the $\bar 0$ as the unique morphism.

Remark

Morphisms in Δ_+^X can be represented by bit vectors $\bar{b} \in \{0,1\}^*$ with one bit per variable of the target scope telling whether it has been mapped to or skipped by the source scope.

Objects & Morphisms in Δ_+^\top

Example

Let $X = \top$ (where \top is the set with exactly one element $\langle \rangle$).

Thus, Objects $\bar{x} \in X^*$ represents numbers.

Identity and Composition in Δ_+^\top

Δ_+^X is in Fact a Category

Lemma

In Δ_+^X every object $\bar{x} \in X^*$ has an identity morphism, i.e. we can construct an identity morphism for \bar{x} using the inference rules.

Proof.

$$\begin{array}{ll} id & : \; (\bar{x}:X^*) \to \bar{x} \sqsubseteq \bar{x} \\ id \; \varepsilon & = \; \cdot \\ id \; \bar{x}x \; = \; (\mathrm{id} \; \bar{x})1 \end{array}$$

Corollary

$$id - l$$
 : $id; f = f$
 $id - r$: $f; id = f$

Lemma

In Δ_+^X two morphisms $f: \bar x \sqsubseteq \bar y$ and $g: \bar y \sqsubseteq \bar z$ compose to a morphism $f; g: \bar x \sqsubseteq \bar z$, i.e. we can construct a morphism f; g from f and g using the inference rules.

Proof.

$$\begin{array}{lll} \underline{};\underline{} & : \ \bar{x} \sqsubseteq \bar{y} \to \bar{y} \sqsubseteq \bar{z} \to \bar{x} \sqsubseteq \bar{z} \\ \cdot & : \cdot & = \cdot \\ f1 \ ; \ g1 \ = \ (f;g)1 \\ f0 \ ; \ g1 \ = \ (f;g)0 \\ f \ ; \ g0 \ = \ (f;g)0 \end{array}$$

Corollary

$$\begin{array}{ll} \mathit{assoc} & : & f; (g;h) = (f;g); h \\ \mathit{antisym} & : & (f:\bar{x} \sqsubseteq \bar{y}) \to (g:\bar{y} \sqsubseteq \bar{z}) \to \bar{x} = \bar{y} \land f = g = \mathit{id} \; \bar{x} \end{array}$$

Intrinsically Scoped Debruijn Syntax via $\Delta_+^ op$

Definition

Let $Tm: |\Delta_+^\top| \to Set$ be inductively defined:

$$\frac{\langle\rangle\sqsubseteq\bar{x}}{Tm\;\bar{x}}\;\#$$

$$\frac{Tm\ \bar{x}\quad Tm\ \bar{x}}{Tm\ \bar{x}}\ \$$$

$$\frac{Tm \ \bar{x}\langle\rangle}{Tm \ \bar{x}} \ \lambda$$

Example

Lifting Scope Indexed Terms using Composition in $\Delta_+^{ op}$

Lemma

Given an intrinsically scoped term $t \in Tm \ \bar{x}$ we can lift t to a $Tm \ \bar{y}$, if there exists a morphism $\bar{x} \sqsubseteq \bar{y} \in \Delta_+^{\top}(\bar{x}, \bar{y})$, i.e. \bar{x} is a subscope of \bar{y} .

Proof.

$$\begin{array}{lll} \underline{} \uparrow \underline{} & : Tm \ \bar{x} \to \bar{x} \sqsubseteq \bar{y} \to Tm \ \bar{y} \\ (\# \ v) & \uparrow \ f \ = \ \# \ (v; f) \\ (t_1 \ \$ \ t_2) \uparrow f \ = \ (t_1 \uparrow f) \ \$ \ (t_2 \uparrow f) \\ (\lambda \ t) & \uparrow \ f \ = \ \lambda \ (t \uparrow S f) \end{array}$$

The Slice Category of Subscopes: $\Delta^X_+ \setminus \bar{s}$

Definition

Let $\Delta^X_+ \setminus \bar{s}$ be the category of subscopes for a given $\bar{s} \in X^*$.

- $\bullet \ \mbox{Objects:} \ \bar{b}, (\bar{x},f) \in |\Delta^X_+ \smallsetminus \bar{s}| = \left(\bar{x}: X^* \times \Delta^X_+(\bar{x},\bar{s})\right)$
- \bullet Morphisms: $h \in [\Delta^X_+ \smallsetminus \bar{s}]((\bar{x},f),(\bar{y},g))$ such that f=h;g

Corollary

The initial object of the $\Delta^X_+ \setminus \bar{s}$ category is the empty subscope $(\varepsilon, \bar{0})$.

Remark

Objects in $\Delta_+^X \setminus \bar{s}$ can be represented by *bit vectors* $\bar{b} \in \{0,1\}^*$ with one bit per variable of scope \bar{s} , telling whether it has been selected.

Objects & Morphisms in $\Delta_{\perp}^{T} \setminus 5$

$$4 \xrightarrow{11110} 5$$

$$3 \xrightarrow{\quad 0111 \quad } 4 \qquad \qquad 4 \xrightarrow{\quad 11110 \quad } 5 \qquad \qquad 3 \xrightarrow{\quad 01110 \quad } 5$$

- $(3,01110) \xrightarrow{0111} (4,11110)$
- $01110 \xrightarrow{0111} 11110$

Coproducts in $\Delta^X_+ \setminus \bar{s}$

Theorem

Objects in the slice category $\bar{b}_1, \bar{b}_2 \in |\Delta_+^X \setminus \bar{s}|$ have a coproduct object $\bar{b}_1 + \bar{b}_2$ if there exist morphisms $l \in [\Delta_+^X \setminus \bar{s}](\bar{b}_1, \bar{b}_1 + \bar{b}_2)$ and $r \in [\Delta_+^X \setminus \bar{s}](\bar{b}_2, \bar{b}_1 + \bar{b}_2)$. Then for every $f \in [\Delta_+^X \setminus \bar{s}](\bar{b}_1, \bar{b}_3)$ and $g \in [\Delta_+^X \setminus \bar{s}](\bar{b}_2, \bar{b}_3)$, there exists a unqiue $h \in [\Delta_+^X \setminus \bar{s}](\bar{b}_1 + \bar{b}_2, \bar{b}_3)$ such that f = l; h and g = r; h.

Remark

The coproduct $\bar{b}_1 + \bar{b}_2$ of two subscopes \bar{b}_1, \bar{b}_2 corresponds to the minimal subscope covering both \bar{b}_1 and \bar{b}_2 . The coproduct $\bar{b}_1 + \bar{b}_2$ can be computed by pointswise disjunction of \bar{b}_1 and \bar{b}_2 .

Category of Sets Indexed by Scopes

Definition

Let Set_X be the category of sets indexed by scopes $\bar{x} \in X^*$.

- \bullet Objects: $T,S \in |Set_X| = X^* \to Set = \bar{X}$
- $\bullet \ \, \text{Morphisms:} \ \, f \in Set_X(T,S) = (\bar{x} \in X^*) \to T(\bar{x}) \to S(\bar{x}) = T \stackrel{\cdot}{\to} S$

Definition

Let $\underline{\ }\uparrow\underline{\ }:\bar{X}\to \bar{X}=(T,\bar{x})\mapsto (T(\bar{s})\times \bar{s}\sqsubseteq \bar{x}).$

We define $Ref: Set_X \xrightarrow{\cdot} Set_X$ to be the endofunctor induced by the mapping

- $Ref(T) = \bar{x} \mapsto T \uparrow \bar{x} \in \bar{X}$
- $Ref(f) = (t,h) \mapsto (f(t),h) \in T \xrightarrow{\cdot} S$

Remark

The set $T \uparrow \bar{x}$ packs an set $T \in \bar{X}$ indexed by $\bar{x} \in X^*$ applied to a subscope \bar{s} of \bar{x} , together with a selection $h \in |\Delta^X_+ \setminus \bar{x}|$ of the variables of T.

Δ^X_+ makes Ref a Monad!

Theorem

The functor $Ref: Set_X o Set_X$ gives rise to a monad with the two natural transformations

- $unit : Id(T) \xrightarrow{\cdot} Ref(T) = t \mapsto (t, id)$
- $\bullet \ mult: Ref(Ref(T)) \stackrel{\cdot}{\rightarrow} Ref(T) = ((t,h_1)h_2) \mapsto (t,h_1;h_2)$

Example

$$Tm \xrightarrow{unit} \bar{x} \mapsto (Tm \ \bar{x}, \bar{x} \sqsubseteq \bar{x})$$

$$\bar{y} \mapsto ([\bar{x} \mapsto (Tm \ \bar{x}, \bar{x} \sqsubseteq \bar{x})]\bar{s}, \bar{s} \sqsubseteq \bar{y}) \xrightarrow{mult} \bar{y} \mapsto (Tm \ \bar{s}, \bar{s} \sqsubseteq \bar{y})$$

The Notion of Relevant Pairs

Definition

 $\begin{array}{l} \text{Let } \underline{\quad} \times_R \underline{\quad} : \bar{X} \to \bar{X} \to \bar{X} = (T, S, \bar{x}) \mapsto ((\underline{\quad}, \bar{b}_1 : T \underset{}{\uparrow} \bar{x}) \times (\underline{\quad}, \bar{b}_2 : S \underset{}{\uparrow} \bar{x}) \times \exists \bar{b} (\bar{b} \equiv \bar{b}_1 + \bar{b}_2)). \\ \text{with } \underline{\quad},_R \underline{\quad} : T \underset{}{\uparrow} \bar{x} \to S \underset{}{\uparrow} \bar{x} \to (T \times_R S) \underset{}{\uparrow} \bar{x} = ((t_1, \bar{b}_1), (t_2, \bar{b}_2)) \mapsto ((t_1, \bar{b}_1'), (t_2, \bar{b}_2'), (\bar{b}_1 | \bar{b}_2)) \\ \text{to construct a } T \times_R S, \text{ where } \bar{b}_{1,2}' = ((\bar{b}_1 | \bar{b}_2) \& \bar{b}_{1,2}) \upharpoonright \Sigma(\bar{b}_1 | \bar{b}_2) \end{array}$

Example

Let $(t_1, \bar{b}_1): Tm \ 2 \times 2 \sqsubseteq 4 = .., 01100)$ and $(t_2, \bar{b}_2): Tm \ 2 \times 2 \sqsubseteq 4 = .., 11000)$. Then $\bar{b}: 3 \sqsubseteq 4 = \bar{b}_1 | \bar{b}_2 = 11100$. and $\bar{b}_1' =$

Example 01100 0110 11100 1100 1100 1100

References

- [1] Conor McBride. Cats and types: Best friends? Aug. 2021. URL: https://www.youtube.com/watch?v=05IJ3YL8p0s.
- [2] Conor McBride. "Everybody's Got To Be Somewhere". In: Electronic Proceedings in Theoretical Computer Science 275 (July 2018), pp. 53–69. ISSN: 2075-2180. DOI: 10.4204/eptcs.275.6. URL: http://dx.doi.org/10.4204/EPTCS.275.6.