Part 1 - Doppler and Chirped Radar: Q1 (a)

Calculate the Doppler shift given: v = 300 m/s, f■ = 1 GHz

Using $f_d = (2v/c) * f = (2 * 300 / 3e8) * 1e9 = 2000 Hz$

Q1 (b)

What is the minimum recording time needed to resolve the Doppler shift?

 $T_min = 1 / f_d = 1 / 2000 = 0.0005 sec (0.5 ms)$

Q1 (c)

If we sample at 2 GHz, how many samples are required?

N = 0.0005 * 2e9 = 1,000,000samples

Q2 (a)

Derive the equation: $R = (c * \Delta f) / (2k)$

Start with $\Delta f = k * \tau \rightarrow \tau = \Delta f / k \rightarrow R = (c * \tau) / 2 \rightarrow R = (c * \Delta f) / (2k)$

Q2 (b)

Use $\Delta f = 25$ MHz, k = 1 MHz/ μ s, c = 3e8 m/s to find range.

R = (3e8 * 25e6) / (2 * 1e12) = 3.75 km

Q3

Use Octave to compute the spectrogram of doppler_shift.dat.

We estimated fs \approx 2 GHz, used a Hanning window with nperseg = 512, overlap = 256. Spectrogram shows two distinct chirps, suggesting multiple aircraft.

Spectrogram of Radar Signal from doppler_shift.dat

Q4 (a-c)

From the spectrogram, identify the two strongest chirp peaks and their ranges.

Peaks at 6.25 MHz \rightarrow 0.94 km Peaks at 7.81 MHz \rightarrow 1.17 km Thus, we detect at least 2 aircraft.

Part 2 - Image Processing: Q1-Q3 + Bonus

Apply a 3x3 kernel to enhance the image and identify visible cockpit number.

The filtered image reveals the cockpit number: '054'. The aircraft model is likely Sukhoi Su-57 Felon based on nose, camo, and silhouette.

Filtered Aircraft Image Showing Cockpit Area