Université libre de Bruxelles

INFO-F-409 - Learning Dynamics

Assignment One

Raymond Lochner - 000443637 raymond.lochner@ulb.ac.be

Contents

1	The Hawk-Dove game	1
2	Which social dilemma?	1
3	Sequential truel	2
$\mathbf{R}_{\mathbf{c}}$	eferences	3

1 The Hawk-Dove game

The Hawk-Dove game was first formulated by John Maynard Smith and Georg Prince in 1973 [1]. The aim of the game is to gain a better understanding of conflicts in the animal kingdom. It consits of two players {Player One, Player Two} who have each two actions {Hawk, Dove}. The resulting payoff matrix can be seen in Table 1 where:

- V = fitness value of winning resources in fight
- D = fitness costs of injury
- T = fitness costs of wasting time and we assume that $V,D,T \geq 0$.

Table 1: Hawk-Dove Payoff Matrix

		Player Two			
		Hawk	Dove		
Player One	Hawk	(V-D)/2	V		
	Dove	V	V/2-T V/2-T		

In a mixed strategy game, we consider each player performing his action with a certain probability p, which results in the following payoff matrix displayed in Table 2.

Table 2: Hawk-Dove Probability Payoff Matrix

		Player	r Two
		P(Hawk) = q	P(Dove) = 1-q
Player One	P(Hawk) = p	(V-D)/2	V
	P(Dove) = 1-p	V	V/2-T

2 Which social dilemma?

Player A is confronted with one of three social dilemma's - the corresponding payoff matrix is shown in tables 3, 4 and 5. The player has to decide whether to cooperate (C) or to defect (D) without knowing which game he is actually facing. Each dilemma has the same probability 1/3 of being played. Opponent B knows the game.

Table 3: Prisonners dilemma Table 4: Stag-Hunt game

\mathbf{C}		D	
	2		5
2		0	
	0		1
5		1	
	2	2 2 0	2 0 0

100	10 1. Duag	tranic Same
	С	D
С	5 5	$\begin{bmatrix} 2 \\ 0 \end{bmatrix}$
D	0	1

Table 5: Snowdrift game

	С	D
\overline{C}	2	5
C	2	1
D	1	0
	5	0

with this information we can calculate the expected payoff for player A for every possible strategy of Player B - Table 6.

From this table we can select the best response for Player A for each strategy of Player B - cells marked red in Table 7.

Table 6: Expected payoff for Player A

			Dlavan D						
	Player B								
		(C,C,C)	(C,C,D)	(C,D,C)	(C,D,D)	(D,C,C)	(D,C,D)	(D,D,C	(D,D,D)
Player A	С	9/3	8/3	4/3	3/3	7/3	6/3	2/3	1/3
Player A	D	12/3	7/3	11/3	6/3	8/3	3/3	7/3	2/3

Table 7: Best responses for Player A

			Player B						
		(C,C,C)	(C,C,D)	(C,D,C)	(C,D,D)	(D,C,C)	(D,C,D)	(D,D,C)	(D,D,D)
Player A	С	9/3	8/3	4/3	3/3	7/3	6/3	2/3	1/3
1 layer A	D	12/3	7/3	11/3	6/3	8/3	3/3	7/3	2/3

Now we have to determine the best responses of Player B against Player A of the three different strategies - marked by green cells in Tables 8, 9 and 10.

Table 8: Prisonners dilemma Table 9: Stag-Hunt game

	С	D
С	2	5
D	0	1

_	o. Duag Ham					
		С	D			
	С	5	2			
	D	0	1			

Table 10: Snowdrift game

	\mathbf{C}	D
С	2	5
D	1	0

The pure strategy Nash Equilibria can now be determined by matching these results. We find two Nash Equilibria at $\{C,(D,C,D)\}$ and $\{D,(D,D,C)\}$.

3 Sequential truel

This scenario considers three persons A,B and C, each of whom has a gun with a single bullet. If alive, each person may shoot at any surviving person. The order in which the scenario is played out is A, then B and then C. The probability that player i hits her target is denoted by p_i where $0 \le p_i \le 1$.

References

[1] J. Maynard Smith and G. R. Price. The logic of animal conflict. *Nature*, 246(5427):15–18, 1973.