2023 NOIP 提高组模拟试题 (五)

2023.8.25

题目名称	游戏	数字	清理	分组	旅行	排序
英文名称	game	number	clear	group	travel	sort
输入文件	game.in	number.in	clear.in	group.in	travel.in	sort.in
输出文件	game.out	number.out	clear.out	group.out	travel.out	sort.out
时间限制	1s	1s	1s	1s	1s	1s
内存限制	256MB	256MB	256MB	256MB	256MB	256MB
比较方式	全文比较	全文比较	全文比较	全文比较	全文比较	全文比较
题目类型	传统	传统	传统	传统	传统	传统

测试说明:

- 1. 测试时间: 8:30~11:30。
- 2. 文件名(程序名和输入输出文件名)必须使用小写。
- 3. C++中函数 main()的返回值类型必须是 int,程序正常结束时返回 值必须是 0。
- 4. 每道题都必须单独建立文件夹。
- 5. 使用 C++14, 开启 02 优化,最后一题为 CSP 或 NOIP 原题。

游戏(game)

【问题描述】

Alice 准备和 Bob 玩一个游戏,他们先拿出若干堆石子,每一堆里面都有一定数量的石子。Alice 和 Bob 轮流操作,Alice 先手,每次操作需要选择一堆石子数量大等于2的石子,把这堆石子分成两堆。假设这堆石子中有x个石子,那么可以分成一堆 $y(1 \le y < x)$ 个石子和一堆x - y个石子。如果轮到一个人操作时没有可选的石子堆,这个人就输了。

Alice 有n堆石子,其中第i堆有 a_i 个石子,他打算选出其中连续一段石子跟 Bob 玩,你需要回答m次询问,每次查询取出第l堆到第r堆石子进行游戏,双方都选择最优策略时谁会获胜。

【输入格式】

第一行两个正整数n, m。

第二行n个正整数,表示 a_i 。

接下来m行,每行两个正整数l,r,表示一个询问。

【输出格式】

对于每个询问输出一行"Alice"或"Bob",表示答案。

【样例输入】

2 3

1 2

1 1

2 2

1 2

【样例输出】

Bob

Alice

Alice

【数据范围】

对于 20%的数据, l=r。

对于 60%的数据, $n, m, a_i \leq 2000$ 。

对于 100%的数据, $n, m, a_i \le 10^5$, $l \le r$ 。

数字(number)

【问题描述】

小 D 最近在研究 A+B 问题,可是这个问题对他来说太棘手了,因为他连读入都不会。

小D开了两个变量a和b,并且把它们的初值设为1,接下来他可以添加若干行代码,每一行可以是a=a+b或b=a+b。已知 A+B 问题的样例输出是n,小 D 想知道自己至少需要添加多少行代码才能让a和b中至少有一个等于n以通过样例呢?

【输入格式】

一行一个正整数n。

【输出格式】

输出一个整数,表示答案。

【样例输入】

5

【样例输出】

3

【数据范围】

对于 30%的数据, $n \leq 1000$ 。

对于 60%的数据, $n \leq 20000$ 。

对于 100%的数据, $n \le 10^6$ 。

清理(clear)

【问题描述】

小 C 最近自己开发了一款云盘软件,目前已有n个用户。小 C 的云盘上的文件会被后台分成两种类型,活动文件和非活动文件,活动文件即可能常用的文件,会被放在高速服务器上给用户提供高速下载服务。用户上传一个文件时,这个文件会被设置为活动文件。由于高速服务器内存大小有限,小 C 需要把一些文件设为非活动文件,有以下两种设置方式: 1. 把上传时间前x早的文件全部设为非活动文件,2. 把第x个用户上传的文件全部设为非活动文件。注意这两种方式操作的对象都是所有文件,也就是说非活动文件可以被重复设为非活动文件。

现在小 C 需要你写一个程序来维护所有文件的类型,并在每次操作后输出当前活动文件的数量,假设一开始没有任何文件。

【输入格式】

第一行两个正整数n,m,其中m表示操作数。

接下来m行,每行两个正整数opt,x,若opt = 1,表示第x个用户上传了一个文件;若opt = 2,表示将第x个用户上传的文件全部设为非活动文件;若opt = 3,表示将上传时间前x早的文件设为非活动文件,保证此时x不超过当前总文件数。

【输出格式】

输出m行,表示每次操作结束后的活动文件数量。

【样例输入】

3 5

1 1

1 2

1 3

2 1

3 2

【样例输出】

1

2

3

2

1

【数据范围】

对于 40%的数据, $n, m \le 2000$ 。 对于 100%的数据, $n, m \le 3 * 10^5$ 。

分组(group)

【问题描述】

有n个人,你要把他们分成若干组,第i个人希望自己所在组内人数不少于 a_i ,求最多分成多少组。

【输入格式】

第一行一个正整数n。 接下来n行,每行一个正整数,表示 a_i 。

【输出格式】

输出一个整数,表示答案,数据保证有解。

【样例输入】

5

2

1

2

2

3

【样例输出】

2

【数据范围】

对于 20%的数据, $n \leq 10$ 。

对于 40%的数据, $n \le 1000$ 。

对于 60%的数据, $n \le 10000$ 。

对于 100%的数据, $n \le 10^6$ 。

旅行(travel)

【问题描述】

旅行家小 C 今天在一条数轴上旅游,一开始他位于x。

数轴王国接下来会依次举行n次活动,每次在区间[l_i , r_i]内举行。在每个活动开始前,小 C 可以移动任意的距离,从a移动到b会让他积攒[a-b]的疲劳值。如果一个活动开始时,小 C 不在活动范围内,他就会不开心,并且如果离活动范围越远他就越不开心,具体地说,如果小 C 当前位置到活动范围的最短距离为k,小 C 就会积攒k的疲劳值。请你求出所有活动结束后小 C 最小的疲劳值之和。

【输入格式】

第一行两个正整数n,x。接下来n行,每行两个正整数 l_i,r_i 。

【输出格式】

输出一个整数,表示答案。

【样例输入】

5 4

2 7

9 16

8 10

9 17

1 6

【样例输出】

8

【数据范围】

对于 20%的数据, $n, x, l_i, r_i \leq 10$ 。

对于 50%的数据, $n \leq 2000$ 。

对于 100%的数据, $n \le 5 * 10^5$, $x, l_i, r_i \le 10^9$ 。

排序(sort)

【问题描述】

Bob 有一个n个数的数组,下标为 $0\sim n-1$ 且数组里恰好包含了 $0\sim n-1$ 各一次。Bob 打算拿这个数组去和 Alice 玩一个游戏,Alice 和 Bob 轮流操作m轮,每轮两人各操作一次,Alice 先,操作时需要选择数组中的两个元素(可以重复)交换,一旦数组变成有序(严格递增)的,Bob 就获得胜利且游戏结束,若m轮结束后 Bob 都没有获胜,Alice 获胜。

可惜 Alice 没空,并不想陪 Bob 玩,Alice 告诉 Bob,如果有第i轮,他就选择下标为 x_i 和 y_i 的元素交换。Bob 想知道,自己最少能用几轮获胜。

【输入格式】

第一行一个正整数n。

第二行n个非负整数,表示Bob的数组。

第三行一个正整数m。

接下来m行,每行两个非负整数 x_i, y_i 。

【输出格式】

输出一个整数,表示答案,如果 Bob 不能获胜,输出-1。

【样例输入】

2

0 1

2

0 0

0 0

【样例输出】

0

【数据范围】

对于 20%的数据, $n \le 100$, $m \le 3000$, $x_i, y_i = 0$ 。

另有 20%的数据, $x_i = 0, y_i = 1$ 。

对于 70%的数据, $n \le 2000$, $m \le 15000$ 。

对于 100%的数据, $n \le 2 * 10^5$, $n \le m \le 6 * 10^5$ 。