Introduction to machine learning

Fatemeh Seyyedsalehi

This lecture: the learning problem

- Example of machine learning problem
- Component of learning
- A simple model
- Paradigms in machine learning

Example

- Predicting the risk of heart attack
 - Is this a risky person for heart attack? (yes or no)

age	59		
gender	Female		
diabetes	Yes		
weight	90		
•••	•••		

- The essence of machine learning
 - A pattern exist
 - We do not know it mathematically
 - We have data on it

Components of learning

Solution component

- ▶ The learning model:
 - The hypothesis set

$$\mathcal{H} = \{h\} \qquad g \in \mathcal{H}$$

- The learning algorithm
 - Search the hypothesis set to find the best estimate of the target function

A simple hypothesis set

- Predicting the risk of heart attack
 - ▶ Is this a risky person for heart attack? (yes (+1) or no (-1))
- For input vector $\mathbf{x} = [x_1, ..., x_d]$, a person attributes

<i>x</i> ₁ :	age	59	
<i>x</i> ₂ :	gender	Female	
<i>x</i> ₃ :	diabetes	Yes	
x_4 : weight		90	
	•••	•••	

▶ A simple hypothesis set: The perceptron

A simple hypothesis set

A case with a high risk of heart attack

A risky person: if
$$\sum_{i=1}^{a} w_i x_i > threshold$$

Our hypothesis set:

$$h(x) = sign\left(\sum_{i=1}^{d} w_i x_i - threshold\right)$$

A learning algorithm for perceptron

$$h(x) = sign\left(\sum_{i=1}^{a} w_i x_i - w_0\right)$$

• Considering $x_0 = 1$, $h(x) = sign(\mathbf{w}^T x)$

- Given a training set: $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ...$
 - Attributes of a set of normal or case of heart attack persons

A learning algorithm for perceptron

Repeat

Pick a misclassified point $(x^{(i)}, y^{(i)})$ from training data $sign\left(\mathbf{w}^{T}\mathbf{x}^{(i)}\right) \neq y^{(i)}$

Update w:

$$\mathbf{w} = \mathbf{w} + y^{(i)} \mathbf{x}^{(i)}$$

Until all training data points are correctly classified by g

Generalization

- We don't intend to memorize data but want to distinguish the pattern.
- ▶ A core objective of learning is to generalize from the experience.
 - Generalization: ability of a learning algorithm to perform accurately on new, unseen examples after having experienced?

Experience in ML

- Basic premise of learning:
 - Using a set of observations to uncover an underlying process
- We have different types of (getting) observations in different types or paradigms of ML methods

A definition of ML

- ▶ Tom Mitchell (1998):
 - A computer program is said to learn a task from experience if its performance improves with experience
- Using the observed data to make better decisions
 - Generalizing from the observed data

Paradigms of machine learning

- Supervised learning (input, correct output)
- Unsupervised learning (input, ?)
- Reinforcement learning (input, some output, grade for this output)

 Other paradigms: semi-supervised learning, online learning, active learning, etc

Supervised learning

Supervised learning

(input, correct output)

- Our risky heart attack identifier
- Predicting the function of protein sequences

Supervised learning

- Extract useful information as features
 - Represent a protein sequence in a vectorized format
 - Proteins with a length of 1000 amino-acids
 - Each amino-acid is represented as a one hot vector

x_1	x_2	•••	x_{999}	x_{1000}
I	0		0	0
0	I	_	I	0
•••	•••	_	•••	•••
0	0	_	0	0
0	0	_	0	I

Unsupervised learning

- Revealing structure in the observed data (input, ?)
 - Clustering: partitioning of data into groups of similar data points.
 - Customer segmentation in marketing
 - Community detection in social networks

□ Users are represented with the

Reinforcement learning

- Partial (indirect) feedback, no explicit guidance (input, some output, grade for this output)
 - AlphaZero
 - DeeepMind chess player
 - Autonomous driving

Some Learning Application Areas

- Computer Vision (Photo tagging, face recognition,...)
- Natural language processing (e.g., machine translation)
- Robotics
- Speech recognition
- Autonomous vehicles
- Social network analysis
- Web search engines
- Medical outcomes analysis
- Marketing (stock prediction)
- Computational biology
- Self-customizing programs (recommender systems)