CS2100 - L19 - Combinational Circuits

19.1 - Design methods

19.2 - Gate-level design

- Half-adder

- Full-adder

19.3 - Block-level design

- Parallel adders

- Adder cum subtractor

19.4 - Arithmetic circuits

- Magnitude comparator

19.5 - Circuit delays

Design Methods

- Different combinational circuit design methods:
 - a. Gate-level design method (with logic gates)
 - b. Block-level design method (with functional blocks)
- Design methods make use of logic gates and useful function blocks
 - These are available as Integrated Circuit (IC) chips
 - Types of IC chips (based on packing density): SSI, MSI, LSI, VLSI, ULSI
- Main objectives of circuit design:
 - Reduce cost (number of gates for small circuits; number of IC packages for complex circuits)
 - Increase speed
 - Design simplicity (re-use blocks where possible)

Half - adder

Gate-Level (SSI) Design: Half Adder (1/2)

- Design procedure:
 - 1. State problem

Example: Build a Half Adder

2. Determine and label the inputs and outputs of circuit Example: Two inputs and two outputs labeled, as shown below

Χ	Υ	U	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

3. Draw the truth table

Gate-Level (SSI) Design: Half Adder (2/2)

4. Obtain simplified Boolean functions

Example:
$$C = X \cdot Y$$

 $S = X' \cdot Y + X \cdot Y'$

S can be further simplified to X⊕Y

Χ	Υ	U	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

5. Draw logic diagram:

Half Adder

XOR gate							
$A \oplus B$							
	A B A⊕B						
	0	0	0				
	0	1	1				
	1	0	1				
	1	1	0				

Full -adder

Gate-Level (SSI) Design: Full Adder(1/5)

- Half adder adds up only two bits
- Addition of two binary numbers need to add 3 bits
 - □ including the carry →

	1	1	1		Carry
	0	0	1	1	X
+	0	1	1	1	Υ
	1	0	1	0	S

 Need a Full Adder (so called as it can be made from two half adders)

Gate-Level (SSI) Design: Full Adder(2/5)

Truth Table:

Х	Υ	Z	С	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Note:

- **Z** carry in (to the current position)
- C carry out (to the next position)

Using K-map, simplified SOP form:

C =							
X	00	01	11	10			
0			1				
1		1	1	1			
\ V7	S	=					

Gate-Level (SSI) Design: Full Adder(3/5)

Alternatively, can you construct the full-adder using two half adders and a suitable logic gate?

■ This is an example of block level design

Gate-Level (SSI) Design: Full Adder(4/5)

If we trace the internal circuit, we get:

$$C = X \cdot Y + (X \oplus Y) \cdot Z$$

 $S = X \oplus (Y \oplus Z) = (X \oplus Y) \oplus Z$ (XOR is associative)

Block-Level Design

- More complex circuits can also be built using block-level method
- General idea for block-level design method:
 - Decomposing the main problem to sub-problems recursively
 - Until sub-problem is small enough to be directly solved by blocks of circuits
- Simple examples using 4-bit parallel adder as building blocks:
 - 1. 16-bit Parallel Adder
 - 2. Adder cum Subtractor

16-Bit Parallel Adder

- Larger parallel adders can be built from smaller ones
- Example: A 16-bit parallel adder can be constructed from four 4-bit parallel adders:

4-Bit Adder Cum Subtractor: Key Idea

Recall:

$$X - Y = X + (-Y)$$

= $X + (2s complement of Y)$
= $X + (1s complement of Y) + 1$

- Think:
 - How do we use Block Level Design using 4-bit Parallel Adder and suitable logic gate(s) to implement such a circuit?

EX: 4-Bit Adder Cum Subtractor: Circuit

Magnitude comparator

Magnitude Comparator: Insight

A₄ A₃ A₂ A₁ A
compare with

B₄ B₃ B₂ B₄ B

	1	1	U	0	Α
	CC	mpa	ıre wi	ith	
	0	1	0	1	В
ĺ		A La	rger!	!	

0	0	1	1	Α			
compare with							
0	1	1	0	В			

- Formulate the observation:
 - □ If ((A4.B4') or (A4 == B4).(A3.B3') or):
 - A is larger
 - □ Else if ((A4'.B4) or (A4 == B4).(A3'.B3) or):
 - B is larger
 - □ Else if ((A4 == B4) and (A3 == B3)):
 - A and B are the same!

Magnitude Comparator: Circuit

Let $A = A_3 A_2 A_1 A_0$ $B = B_3 B_2 B_1 B_0$ $x_i = A_i \cdot B_i + A_i \cdot B_i$

Circuit Delays: Definition & Formula

Given a logic gate with delay t. If inputs are stable at times t₁, t₂, ..., t_n, then the earliest time in which the output will be stable is:

 Repeat above rule for all gates to calculate the delays of all outputs of a combinational circuit

Circuit Delays: More Complex Example

- How about 4-bit parallel adder?
 - The last signal to be generated is _____ at time _____ 4t