Grammatik aus Automat

Sei $A=(\{z_0,z_1,z_2\},\{a,b\},\delta,\{z_2\},z_0)$ ein endlicher Automat. Die Übergangsfunktion sei wie in dem unten abgebildeten Diagramm definiert.

flaci.com/Apk0iyqyg

(a) Gebe eine reguläre Grammatik G an, sodass L(G) = L(M) gilt.

$$G=(\{Z_0,Z_1,Z_2\},\{a,b\},P,Z_0)$$
 mit folgender Produktionsmenge $P=\{$
$$Z_0\to bZ_1\,|\,aZ_2$$

$$Z_1\to aZ_1\,|\,bZ_2$$

$$Z_2\to bZ_0\,|\,aZ_1\,|\,\varepsilon$$
 $\}$

(b) Überlegen Sie sich ein systematisches Verfahren, um einen deterministischen endlichen Automaten in eine reguläre Grammatik umzuwandeln.

Analog zu obigem Beispiel folgender Algorithmus benutzt werden:

- Setze $V = \{Z_0, Z_1, \dots Z_n\}$ und S auf den Startzustand des Automaten.
- Für jeden Übergang $\delta(Z_i,a)=Z_j$ füge die Produktion $\{Z_i\to aZ_j\}$ zu P hinzu.
- Für jeden Zustand $Z_i \in Z$ füge die Produktion $\{Z_i \to \varepsilon\}$ zu P