行列式と正則性

行列式は、正則性の判定にも利用できる

→ 正則性と行列式の非零性

A が正則行列 \iff $\det(A) \neq 0$

ref: 行列と行列式の基

礎 p164

ref: 長岡亮介 線形代数 入門講義 p132~133

☎ 証明

 \Longrightarrow

A が正則であることから、

$$AA^{-1} = E$$

両辺の行列式をとって、

$$\det(AA^{-1}) = \det(E)$$

左辺には行列式の乗法性を適用し、右辺は単位行列の行列式 の値が 1 であることから、

$$\det(A)\det\left(A^{-1}\right)=1$$

もし $\det(A)=0$ だと仮定すると、0=1 という矛盾した式になる

よって、 $det(A) \neq 0$ でなければならない

 \leftarrow

 $\det(A) \neq 0$ であることから、行列 A の列ベクトルは線型独立である

そして、*A* の列ベクトルが線型独立であることと、*A* が正則であることは同値である ■

この定理の派生として、行列式を次の形で使うことが多い

・ 消去法の原理 A を正方行列とするとき、

 $A\mathbf{x} = \mathbf{0}$ に非自明解が存在する \iff $\det(A) = \mathbf{0}$