Machine Learning

Lecture 6
Linear Regression

Chen-Kuo Chiang (江 振 國) *ckchiang@cs.ccu.edu.tw*

中正大學 資訊工程學系

The Storyline

How Can Machines Learn?

Linear Regression

- Linear Regression Problem
- Linear Regression Algorithm
- Linear Regression for Binary Classification

Credit **Limit** Problem

 $\mathcal{Y}=\mathbb{R}$: regression 結果為實數區間

Linear Regression Hypothesis

age	23 years
annual salary	NTD 1,000,000
year in job	0.5 year
current debt	200,000

• For $\mathbf{x} = (x_0, x_1, x_2, \dots, x_d)$ 'features of customer', approximate the desired credit limit with a weighted sum:

$$y \approx \sum_{i=0}^{d} \mathbf{w}_i x_i$$

• linear regression hypothesis: $h(\mathbf{x}) = \mathbf{w}^T \mathbf{x}^{+-1}$

 $h(\mathbf{x})$: like perceptron, but without the sign

Illustration of Linear Regression

linear regression: find lines/hyperplanes with small residuals

The Error Measure

popular/historical error measure:

squared error
$$err(\hat{y}, y) = (\hat{y} - y)^2$$

in-sample

$$E_{in}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \underbrace{(h(\mathbf{x}_n) - y_n)^2}_{\mathbf{w}^T \mathbf{x}_n}$$

out-of-sample

$$E_{\text{out}}(\mathbf{w}) = \underset{(\mathbf{x}, y) \sim P}{\mathcal{E}} (\mathbf{w}^{\mathsf{T}} \mathbf{x} - y)^2$$

next: how to minimize $E_{in}(\mathbf{w})$?

Fun Time

Consider using linear regression hypothesis $h(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$ to predict the credit limit of customers \mathbf{x} . Which feature below shall have a positive weight in a **good** hypothesis for the task?

- 1 birth month
- 2 monthly income
- 3 current debt
- number of credit cards owned

Matrix Form of $E_{in}(\mathbf{w})$

$$E_{in}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{w}^{T} \mathbf{x}_{n} - y_{n})^{2} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_{n}^{T} \mathbf{w} - y_{n})^{2}$$

$$= \frac{1}{N} \begin{vmatrix} \mathbf{x}_{1}^{T} \mathbf{w} - y_{1} \\ \mathbf{x}_{2}^{T} \mathbf{w} - y_{2} \\ \dots \\ \mathbf{x}_{N}^{T} \mathbf{w} - y_{N} \end{vmatrix}^{2}$$

$$= \frac{1}{N} \begin{vmatrix} -\mathbf{x}_{1}^{T} - - \\ -\mathbf{x}_{2}^{T} - - \\ \dots \\ -\mathbf{x}_{N}^{T} - - \end{vmatrix} \mathbf{w} - \begin{bmatrix} y_{1} \\ y_{2} \\ \dots \\ y_{N} \end{bmatrix} \begin{vmatrix} 2 \\ \dots \\ y_{N} \end{vmatrix}$$

$$= \frac{1}{N} \| \underbrace{\mathbf{x}_{N \times d+1}}_{N \times d+1} \underbrace{\mathbf{w}_{N+1 \times 1}}_{d+1 \times 1} - \underbrace{\mathbf{y}_{N \times 1}}_{N \times 1} \|^{2}$$

$$\min_{\mathbf{w}} E_{in}(\mathbf{w}) = \frac{1}{N} ||\mathbf{X}\mathbf{w} - \mathbf{y}||^2$$

- E_{in}(w): continuous, differentiable, convex
- necessary condition of 'best' w

$$abla E_{\mathsf{in}}(\mathbf{w}) \equiv \left[egin{array}{c} rac{\partial E_{\mathsf{in}}}{\partial w_0}(\mathbf{w}) \ rac{\partial E_{\mathsf{in}}}{\partial w_1}(\mathbf{w}) \ rac{\partial E_{\mathsf{in}}}{\partial w_d}(\mathbf{w}) \end{array}
ight] = \left[egin{array}{c} 0 \ 0 \ rac{\partial E_{\mathsf{in}}}{\partial w_d}(\mathbf{w}) \end{array}
ight]$$

—not possible to 'roll down'

task: find \mathbf{w}_{LIN} such that $\nabla E_{in}(\mathbf{w}_{LIN}) = \mathbf{0}$

The Gradient $\nabla E_{in}(\mathbf{w})$

$$E_{in}(\mathbf{w}) = \frac{1}{N} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2 = \frac{1}{N} \left(\mathbf{w}^T \underbrace{\mathbf{X}^T \mathbf{X}}_{\mathbf{A}} \mathbf{w} - 2 \mathbf{w}^T \underbrace{\mathbf{X}^T \mathbf{y}}_{\mathbf{b}} + \underbrace{\mathbf{y}^T \mathbf{y}}_{\mathbf{c}} \right)$$

one w only

simple! :-)

$$E_{\text{in}}(w) = \frac{1}{N} \left(aw^2 - 2bw + c \right)$$
$$\nabla E_{\text{in}}(w) = \frac{1}{N} \left(2aw - 2b \right)$$

vector w

$$E_{in}(\mathbf{w}) = \frac{1}{N} \left(\mathbf{w}^T \mathbf{A} \mathbf{w} - 2 \mathbf{w}^T \mathbf{b} + c \right)$$
$$\nabla E_{in}(\mathbf{w}) = \frac{1}{N} \left(2 \mathbf{A} \mathbf{w} - 2 \mathbf{b} \right)$$

similar (derived by definition)

$$\nabla E_{\mathsf{in}}(\mathbf{w}) = \frac{2}{N} \left(\mathbf{X}^\mathsf{T} \mathbf{X} \mathbf{w} - \mathbf{X}^\mathsf{T} \mathbf{y} \right)$$

Optimal Linear Regression Weights

task: find
$$\mathbf{w}_{\mathsf{LIN}}$$
 such that $\frac{2}{N} \left(\mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w} - \mathbf{X}^{\mathsf{T}} \mathbf{y} \right) = \nabla E_{\mathsf{in}}(\mathbf{w}) = \mathbf{0}$

invertible X^TX

• easy! unique solution

$$\mathbf{w}_{LIN} = \underbrace{\left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{X}^{T}}_{pseudo-inverse\ \mathbf{X}^{\dagger}} \mathbf{y}$$

often the case because

$$N \gg d + 1$$

singular X^TX

- many optimal solutions
- one of the solutions

$$\mathbf{w}_{\mathsf{LIN}} = \mathbf{X}^{\dagger} \mathbf{y}$$

by defining X[†] in other ways

practical suggestion:
 use well-implemented \dagger routine
 instead of $(X^TX)^{-1}X^T$ for numerical stability when almost-singular

Linear Regression Algorithm

1 from \mathcal{D} , construct input matrix X and output vector y by

$$X = \underbrace{\begin{bmatrix} --\mathbf{x}_{1}^{T} - - \\ --\mathbf{x}_{2}^{T} - - \\ \cdots \\ --\mathbf{x}_{N}^{T} - - \end{bmatrix}}_{N \times (d+1)} \quad \mathbf{y} = \underbrace{\begin{bmatrix} y_{1} \\ y_{2} \\ \cdots \\ y_{N} \end{bmatrix}}_{N \times 1}$$

- 2 calculate pseudo-inverse X^{\dagger}
- 3 return $\underbrace{\mathbf{w}_{LIN}}_{(d+1)\times 1} = \mathbf{X}^{\dagger}\mathbf{y}$

simple and efficient with good † routine

Fun Time

After getting \mathbf{w}_{LIN} , we can calculate the predictions $\hat{y}_n = \mathbf{w}_{LIN}^T \mathbf{x}_n$. If all \hat{y}_n are collected in a vector $\hat{\mathbf{y}}$ similar to how we form \mathbf{y} , what is the matrix formula of $\hat{\mathbf{y}}$?

- **1** y
- $2 XX^T y$
- **3** XX[†]y
- $\mathbf{4} \mathbf{X} \mathbf{X}^{\dagger} \mathbf{X} \mathbf{X}^{\mathsf{T}} \mathbf{y}$

Linear Classification vs. Linear Regression

Linear Classification

$$\mathcal{Y} = \{-1, +1\}$$

 $h(\mathbf{x}) = \text{sign}(\mathbf{w}^T \mathbf{x})$
 $\text{err}(\hat{y}, y) = [\hat{y} \neq y]$

NP-hard to solve in general

Linear Regression

$$\mathcal{Y} = \mathbb{R}$$
 $h(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$
 $\operatorname{err}(\hat{y}, y) = (\hat{y} - y)^2$

efficient analytic solution

$$\{-1, +1\} \subset \mathbb{R}$$
: linear regression for classification?

- \bigcirc run LinReg on binary classification data \mathcal{D} (efficient)
- 2 return $g(\mathbf{x}) = \text{sign}(\mathbf{w}_{LIN}^T \mathbf{x})$

but explanation of this heuristic?

Relation of Two Errors

$$\operatorname{err}_{0/1} = \left[\operatorname{sign}(\mathbf{w}^T\mathbf{x}) \neq y\right] \quad \operatorname{err}_{\operatorname{sqr}} = \left(\mathbf{w}^T\mathbf{x} - y\right)^2$$

 $err_{0/1} \le err_{sqr}$

Linear Regression for Binary Classification

$$err_{0/1} \le err_{sqr}$$

```
classification E_{\text{out}}(\mathbf{w}) \overset{\text{VC}}{\leq} \text{ classification } E_{\text{in}}(\mathbf{w}) + \sqrt{\dots}
\leq \text{ regression } E_{\text{in}}(\mathbf{w}) + \sqrt{\dots}
```

- (loose) upper bound err_{sqr} as err to approximate err_{0/1}
- trade bound tightness for efficiency

w_{LIN}: useful baseline classifier, or as **initial PLA/pocket vector**

Fun Time

Which of the following functions are upper bounds of the pointwise 0/1 error $\lceil sign(\mathbf{w}^T \mathbf{x}) \neq y \rceil$ for $y \in \{-1, +1\}$?

- $\mathbf{0} \exp(-y\mathbf{w}^T\mathbf{x})$
- **2** $\max(0, 1 y \mathbf{w}^T \mathbf{x})$
- 3 $\log_2(1 + \exp(-y\mathbf{w}^T\mathbf{x}))$
- 4 all of the above

Summary

How Can Machines Learn?

Linear Regression

- Linear Regression Problem use hyperplanes to approximate real values
- Linear Regression Algorithm
 analytic solution with pseudo-inverse
- Linear Regression for Binary Classification

0/1 error ≤ squared error