АВТОМАТИЗИРОВАННАЯ СИСТЕМА МОНИТОРИНГА КРУПНОГАБАРИТНЫХ ЭНЕРГЕТИЧЕСКИХ КОМПЛЕКСОВ

кафедра «Проектирование и технология производства ЭА» МГТУ им. Н.Э. Баумана

Цель работы: исследование области виброанализа и вибродиагностики и создание автоматизированной системы мониторинга крупногабаритных энергетических комплексов.

Решаемые задачи:

- изучение области применения вибрационного анализа и диагностики;
- создание программной базы комплекса мониторинга с поддержкой модульной структуры для возможного наращивания комплекса;
- разработка множества модулей для съема данных с датчиков, для генерации полей, а также модулей визуализации;
- адаптация разработанного комплекса для задач мониторинга крупногабаритных комплексов;
- создание экспертной системы на базе СУБД.

Задачи анализа по вибрации

• вибрационный мониторинг машин и оборудования

Назначение: обнаружение изменений вибрационного состояния контролируемого объекта в процессе эксплуатации

• вибрационная диагностика

Назначение: обнаружение изменений и прогноз развития технического состояния каждого из элементов объекта, для которого существует реальная вероятность отказа в период между ремонтами

балансировка роторов по вибрации

Назначение: уравновешивание ротора и, тем самым, снижение низкочастотной вибрации машины

обнаружение источников вибрации (шума)

Назначение: поиск источника повышенной вибрации среди большого количества объектов, недоступных для установки датчиков вибрации, по шуму, излучаемому этим источником

• обнаружение источников акустической эмиссии

Назначение: обнаружение дефектов на ранней стадии развития по утечкам, обнаруживаемым по акустической эмиссии дефектных участков нагруженных оболочек и конструкций

◆ вибрационный модальный анализ

Назначение: отработка новых конструкций машин и оборудования и выходной контроль серийно выпускаемых изделий

◆ ультразвуковая дефектоскопия

Назначение: обнаружение и локализация дефектных участков внутри деталей или их заготовок

Структура исследуемого объекта

Методы мониторинга и диагностики

Методы мониторинга и диагностики

Методы мониторинга и диагностики подходы к решению диагностический задач

а) диагностика после обнаружения изменений вибрационного состояния машины средствами мониторинга с целью является интерпретация этих

изменений

б) использовании тех методов и средств диагностики, которые обнаруживают основные виды дефектов на этапе их зарождения еще до того, как произойдут существенные энергетические изменения в сигнале вибрации машины в целом

Схема экспериментальной установки мониторинга и диагностики электрической машины

Экспериментальная установка

Программный комплекс мониторинга и диагностики

Аналоговые регистраторы

Объект мониторинга и блок датчиков

Схема экспериментальной установки мониторинга и диагностики электрической машины

Структурная схема комплекса мониторинга и диагностики

Программная подсистема Функциональная схема ПО

Программная подсистема Модульная модель ПО

Пояснение:

МСД – модуль сбора данных;

ОСД – объект сбора данных;

ЯДРО – «сердце» АПК, осуществляющее взаимодействие всех частей комплекса.

Принцип работы АПК анализа по вибрации

МГТУ им. Н.Э. Баумана, кафедра "Проектирование и технология производства ЭА", 2003

Аппаратная подсистема Датчики вибрации

Таблица 1. Сравнительные характеристики виброизмерительных систем

1 иолица 1. Сравнительные характеристики виороизмерительных систем									
Название	Производитель	Диапазон измерения, Гц	Виброскорости, мм/с	Тип	Цена, \$				
Vibro Vision	ООО «Вибро- Центр»	10 000	100	Аналоговый	560				
Лазерный виброметр LV-2	ООО «ЛАЗЕРНАЯ ТЕХНИКА»		200	Аналоговый	3000				
Викинг-2	ООО «Аурис»	0.1 - 23000		Программно- аппаратный	10000				
Атлант-8	ООО «Вибро- Центр»	5 - 5000		Программно- аппаратный	7200				
Kopcap+	ООО «Вибро- Центр»	10 - 1000	0,3 - 100	Программно- аппаратный	1200				
Диана-С	ООО «Вибро- Центр»	1000		Программно- аппаратный	2000				

Аппаратная подсистема

Аналого-цифровые преобразователи, цифро-аналоговые преобразователи

Таблица 1. Сравнительные характеристики АЦП/ЦАП плат расширения

Таолица 1. Сравнительные характеристики лидти длят плат расширения									
ирма производитель	Название платы	Установлен- ный DSP	Число ка- налов	Разряд- ность АЦП	Частота оцифровки, кГц	Цена, \$			
ЗАО «Л-Кард»	L-154	без DSP	32/16 диф	12	до 70	135			
ЗАО «Л-Кард»	L-761	ADSP-2185	32/16 диф	14	до 125	390			
ЗАО «Л-Кард»	L-780	ADSP-2185	32/16 диф	14	до 400	390			
ЗАО «Л-Кард»	L-783	ADSP-2186	32/16 диф	12	до 3000	430			
ЗАО «Л-Кард»	L-1450	без DSP	32/12 диф	14	до 400	280			
ЗАО «Руднев- Шиляев»	ЛА-70	без DSP	16/8 диф	12	до 14	95			
ЗАО «Руднев- Шиляев»	ЛА-7*	без DSP	16/8 диф	16	до 142	400			
ЗАО «Руднев- Шиляев»	ЛА-2М5	без DSP	16/8 диф	12	до 500	250			

Программная подсистема

Математическое обеспечение

Быстрое преобразование Фурье

$$X(2k) = \sum_{n=0}^{\frac{N}{2}-1} (x_1(nT) + x_2(nT)) W_{\frac{N}{2}}^{nk}$$

$$X(2k+1) = \sum_{n=0}^{\frac{N}{2}-1} (x_1(nT) + x_2(nT)) W_{\frac{N}{2}}^{n} W_{\frac{N}{2}}^{nk}$$

$$X_{m+1}(p) = X_m(p) + X_m(q)$$

 $X_{m+1}(q) = (X_m(p) - X_m(q))W_N^r$

алгоритм с прореживанием по частоте с основанием 2

- Одноканальные методы оценки спектральной плотности мощности
 - а) Оценивание автокорреляции и взаимной корреляции
 - б) Коррелограммный метод оценки СПМ $P_{XX}(f) = T \sum_{i=1}^{\infty} r_{XX}[m] \exp(-j2\pi fmT)$

$$P_{XX}(f) = T \sum_{m=-\infty}^{\infty} r_{XX}[m] \exp(-j2\pi fmT)$$

в) Периодограммный метод оценки СПМ

Математическое обеспечение

 Многоканальные алгоритмы спектрального оценивания

Задачей многоканального спектрального анализа данных в т каналах является оценивание матрицы спектральной плотности мощности

$$P(f) = \begin{cases} P_{11}(f) & \dots & P_{1m}(f) \\ P_{m1}(f) & \dots & P_{mm}(f) \end{cases}$$

- а) многоканальный периодограммный метод
- б) многоканальный авторегрессионный метод

Обобщенная структура АПК

Программное обеспечение

Реализация модульной структуры

- IUnknown
- IOption
- IOptionReverse

IGraphics

- IGetData
- IPutData
- IExchanger

Программное обеспечение Расширяемость

ВЫВОДЫ:

- Исследованы и классифицированы методы вибрационного анализа и диагностики конструктивных элементов электрических машин.
- Разработан масштабируемые программно-аппаратный комплекс;
- Создан набор библиотек для построения комплекса мониторинга и диагностики электрических машин

Дальнейшее развитие работ

- На основе результатов экспериментов создать БД видов неисправностей и отказов;
- Разработать БД для учета и регистрации неисправностей;
- Разработать экспертную систему по мониторингу диагностике неисправностей электрических машин.