

Softversko inženjerstvo Elektronski fakultet Niš

Arhitekturni modeli

Arhitekturni model (stil)

- Arhitekturni modeli (stilovi) predstavljaju projektne obrasce za arhitekturu SW-a.
- Oni definišu komponente i konektore koji čine arhitekturu sistema.
- Na ovaj način, arhitektura sistema se može predstaviti kao graf čiji su čvorovi sledeće komponente:
 - Procedure;
 - Moduli;
 - Procesi:
 - Alati:
 - Baze podataka;

Elektronski fakultet u Nišu

Arhitekturni model (stil)

- Grane (potege) grafa čine konektori koji mogu biti:
 - Pozivi procedura;
 - Prenosi događaja (evenata);
 - Upiti baze podataka;
 - Protočne obrade.

Elektronski fakultet u Nišu

Osnovni arhitekturni modeli

- Repository (Skladište)
- Pipe and Filter (Protočna obrada)
- OO model
- Client/Server model
- Slojeviti model (Layered)
- Event-driven model (Implicitno pozivanje)
- Control model

Repository model

- Ovaj model se koristi kod sistema kod kojih je neophodno deljenje velikih količina podataka.
- Tada se organizuje centralno skladište podataka kome pristupaju podsistemi.
- Komponente:
 - Centralna baza podataka.
 - Skup SW komponenti koje pristupaju centralnoj bazi.

Repository model

- Konektori:
 - Pozivi procedura.
 - Direktan pristup bazi podataka.

Elektronski fakultet u Nišu

Elektronski fakultet u Nišu

Repository model

Repository model - karakteristike

- Prednosti
 - Efikasan način za deljenje velike količine podataka;
 - Podsistemi ne moraju da brinu o nekim aspektima upravljanja podacima kao što su backup, sigurnost,...
 - Model deljenja podataka je prikazan u obliku šeme skladišta podataka.
- Nedostaci
 - Podsistemi moraju da se slože oko skladišta podataka.
 Kompromis je neizbežan;
 - Evolucija podataka je skupa;
 - Otežana je distribucija podataka.

Repository model - primeri

- Informacioni sistemi
- Okruženja za razvoj SW-a
- Grafički editori
- Baze znanja u VI
- Sistemi za reverse engineering

Elektronski fakultet u Nišu

Pipe and Filter model (protočna obrada)

- Ovaj model se koristi kod sistema kod kojih je neophodno izvršiti unapred definisane serije nezavisnih obrada nad podacima.
- Komponente prihvataju tokove podataka na ulazu i generišu tokove podataka na izlazu.
- Komponente:
 - Komponente se često zovu i filtri koji vrše određene transformacije ulaznih podataka.

Elektronski fakultet u Nišu

Pipe and Filter model

- Konektori:
 - Konektori se često zovu pipe (cevovod) jer povezuju tokove i filtre (izlaz jednog filtra vode na ulaz drugog filtra).

Pipe and Filter model

Elektronski fakultet u Nišu

Pipe and Filter model - primeri

- Unix shell skriptovi cat file | grep Erroll | wc -l
- Tradicionalni kompajleri (prevodioci)

lexical analysis + *parsing* + *semantic analysis* + code generation

Pipe and Filter model - karakteristike

Prednosti

- Lako razumevanje ulazno-izlaznog ponašanja celokupnog sistema kao skupa individualnih ponašanja filtera u sistemu;
- Lako je ponovno korišćenje filtera (reuse), jer je između dva filtra već definisan format razmene podataka.
- Laka je izmena ili proširenje sistema (zamenom postojećih ili dodavanjem novih filtera).
- Prirodno je podržano konkurentno izvršenje.

Nedostaci

- Nije najbolji izbor kod interaktivnih sistema zbog velikog broja transformacija;
- Povećava kompleksnost sistema i smanjuje efikasnost;

Elektronski fakultet u Nišu

Pipe and Filter model - primer

OO model

- Ovaj model se koristi kod sistema kod kojih je neophodno izvršiti zaštitu i enkapsulaciju podataka.
- Podaci i pridružene operacije su enkapsulirane u apstraktne tipove podataka (klase i objekte).
- Komponente:
 - Objekti
- Konektori:
 - Metodi (servisi) objekata.

OO model - karakteristike

Prednosti

- Zbog skrivanja informacija od klijenata, moguće je promeniti implementaciju objekata bez uticaja na klijente;
- Moguće je projektovanje sistema kao skupa autonomnih agenata.
- Moguće je direktno mapiranje entiteta iz realnog sveta u objekte.

Nedostaci

- Neophodno je poznavanje indentiteta objekata. Ukoliko se izmeni identitet nekog objekta, moraju se izvršiti izmene i kod svih objekata koji ga pozivaju;
- Mogućnost pojave "bočnih efekata";

Elektronski fakultet u Nišu

OO model - primer

Client-Server Model

- Ovaj model se koristi kod distribuiranih sistema.
- Sastoji se od skupa stand-alone servera koji obezbeđuju specifične servise (štampa, Web, baza podataka,...), skupa klijenata koji pozivaju te servise i mreže koja omogućuje udaljeni pristup.
- Komponente:
 - Serveri, klijenti.
- Konektori:
 - Mreža, servisi servera.

Elektronski fakultet u Nišu

Client-Server model - karakteristike

- Prednosti
 - Efikasno korišćenje mrežnih sistema;
 - Omogućava korišćenje slabijeg HW-a za klijente, obzirom da server odrađuje većinu posla.
 - Lako dodavanje novih servera i upgrade postojećih.
- Nedostaci
 - Neefikasna razmena podataka između klijenata (moraju da idu preko servera);
 - Redundantnost podataka.
 - Ne postoji centralni registar imena servera i servisa; Nije lako otkriti koji serveri i servisi su na raspolaganju.

Client-Server Model - primer

Elektronski fakultet u Nišu

Slojeviti (Layered) Model

- Ovaj model se koristi kod modeliranja interfejsa među podsistemima.
- Sistem se organizuje u skup slojeva (lavera) od kojih svaki obezbeđuje jedan skup funkcionalnosti sloju iznad i služi kao klijent sloju ispod.
- Omogućava inkrementalni razvoj podkomponenti u različitim slojevima.
- Komponente:
 - Slojevi.
- Konektori:
 - Interfejsi.

Layered model – primer sistema za kontrolu verzija

Configuration management system layer

Object management system layer

Database system layer

Operating system layer

Layered model – primer OS Unix

Elektronski fakultet u Nišu

Layered model - karakteristike

Prednosti

- Promena interfejsa jednog sloja može da utiče na maksimalno još dva sloja;
- Laka zamena jednog sloja drugim ukoliko su im interfejsi identični.
- Baziran je na visokom nivou apstrakcije.

Nedostaci

- Ne mogu svi sistemi da se lako organizuju po ovom modelu:

Elektronski fakultet u Nišu

Event driven model (Implicitno pozivanje)

- Ovaj model se koristi kod sistema koji su upravljani eksterno generisanim događajima (events).
- Postoje dve osnovne grupe ovih modela:
 - Broadcast modeli
 - Interrupt-driven modeli
- Komponente:
 - Komponente i podsistemi koji generišu ili obrađuju evente.
- Konektori:
 - Broadcast sistem i event procedure.

Broadcast modeli

- Kod ove grupe modela, generisani događaj (event) se prosleđuje svim komponentama i podsistemima u sistemu. Svaka komponenta koja upravlja generisanim događajem može da obradi događaj.
- Efikasni su kod integracije podsistema koji se nalaze na različitim računarima u mreži.
- Podsistemi neznaju da li će i kada eventi biti obrađeni.
- Podsistemi se registruju za određene događaje i kada se oni generišu, upravljanje se prenosi na podsistem koji upravlja tim događajem.

Broadcast model – primer

Elektronski fakultet u Nišu

Broadcast model - primer razvojnog okruženja

- Ovaj model se često koristi kod razvojnih okruženja za integraciju alata:
 - Debager se zaustavi na prekidnoj tački i generiše događaj da je to uradio.
 - Editor odgovara na taj događaj tako što skroluje sadržaj koda na liniju gde je postavljena prekidna tačka.

Elektronski fakultet u Nišu

Interrupt-driven modeli (modeli upravljani prekidima)

- Koriste se kod sistema za rad u realnom vremenu gde je osnovna stvar brzi odgovor sistema na neki događaj.
- Obezbeđuju brzu reakciju sistema na događaje, ali su komplikovani za realizaciju i pogotovo za testiranje i validaciju sistema.

Interrupt-driven model – primer

Elektronski fakultet u Nišu

Control model

- Koristi se kod sistema gde je potrebna centralizovana kontrola.
- Kontrolni podsistem upravlja tokom informacija između ostalih podsistema.
- Postoje četiri osnovne grupe ovih modela:
 - Call-return modeli
 - Manager modeli
 - Feed-back modeli
 - Open-loop modeli
- Komponente:
 - Kontrolni algoritam i podsistemi.
- Konektori:
 - Relacije između tokova podataka.

Prednosti

- Podrška višestrukom korišćenju SW-a (reuse);
- Laka evolucija sistema.
- Lako uvođenje nove komponente u sistem (jednostavno se registruje za neki event).

Nedostaci

 Kada komponenta generiše događaj ona ne može da zna da li će neka komponenta da odgovori na njega i kada će obrada događaja biti završena;

Elektronski fakultet u Nišu

Call-return modeli

- Kod ove grupe modela, kontrola kreće od vršnih podsistema i proteže se naniže (top-down pristup).
- Pogodni su za sekvencijalne sisteme.

Elektronski fakultet u Nišu

cc & cis La

Call-return model – primer

Call-return model - primer sistema za rad u

Elektronski fakultet u Nišu

Manager modeli

- Ova grupa modela se primenjuje kod konkurentnih sistema.
- Jedna sistemska komponenta određuje početak, zaustavljanje i koordinaciju rada svih procesa u sistemu.

Elektronski fakultet u Nišu

Feed-back modeli

realnom vremenu

 Kod ove grupe modela, neke promenljive sistema se kontrolišu i njihove vrednosti se koriste za podešavanje sistema.

Elektronski fakultet u Nišu

Open-loop modeli

 Kod ove grupe modela, neke promenljive sistema se kontrolišu ali se njihove vrednosti ne koriste za podešavanje sistema.

