

Dense Embeddings

Dense Embeddings

Getting word embeddings

Weights after training

W 3 X 5

w00	w01	w02	w03	w04
w10	w11	w12	w13	w14
w20	w21	w22	w23	w24

Word Vector for hope = W 3 X 5 X V 5 X 1

w00	w01	w02	w03	w04
w10	w11	w12	w13	w14
w20	w21	w22	w23	w24

0 0 0

 1
 0
 0
 0
 0

 0
 1
 0
 0
 0

 0
 0
 0
 0
 0

 0
 0
 0
 0
 0

 0
 0
 0
 1
 0

 0
 0
 0
 0
 1

 Hope
 can
 set
 you
 free

AI Bootcamp

Convolutional Neural Networks (CNNs)

- DL applies a multi-layer process for learning rich hierarchical features (i.e., data representations)
 - Input image pixels → Edges → Textures → Parts → Objects

- Convolutional neural networks (CNNs) were primarily designed for image data
- CNNs use a convolutional operator for extracting data features
 - Allows parameter sharing
 - Efficient to train
 - Have less parameters than NNs with fully-connected layers
- CNNs are robust to spatial translations of objects in images
- A convolutional filter slides (i.e., convolves) across the image

Convolutional Neural Networks

- Convolutional Layers
 - A convolution layer has several filters that perform the convolution operation.
 - Every image is considered as a matrix of pixel values.

AI Bootcamp

Convolutional Neural Networks (CNNs)

Convolutional Neural Networks

- Convolutional Layers
 - When the convolutional filters are scanned over the image, they capture useful features
 - E.g., edge detection by convolutions
 - Convolution later is typically followed by an activation layer (ReLU being most used activation layer)

Filter

$$\begin{pmatrix}
 0 & 1 & 0 \\
 1 & -4 & 1 \\
 0 & 1 & 0
 \end{pmatrix}$$

Convolutional Neural Networks

Number of Parameters for one feature map = 4

Number of Parameters for 100 feature map = 4*100

Convolutional Neural Networks

- In CNNs, hidden units in a layer are only connected to a small region of the layer before it (called local receptive field)
 - The depth of each feature map corresponds to the number of convolutional filters used at each layer

Convolutional Neural Networks

- *Pooling Layer* is a down-sampling operation that reduces the dimensionality of the feature map. The rectified feature map now goes through a pooling layer to generate a pooled feature map.
- Type of Pooling Layers
 - *Max pooling*: reports the maximum output within a rectangular neighborhood
 - *Average pooling*: reports the average output of a rectangular neighborhood
- Pooling layers reduce the spatial size of the feature maps
 - Reduce the number of parameters, prevent overfitting

1	3	5	3
4	2	3	1
3	1	1	3
0	1	0	4

MaxPool with a 2×2 filter with stride of 2

4	5
3	4

Output Matrix

Input Matrix

Convolutional Neural Networks

- Feature extraction architecture
 - After 2 convolutional layers, a max-pooling layer reduces the size of the feature maps (typically by 2)
 - A fully convolutional and a softmax layers are added last to perform classification

A 1D convolution for text

tentative	0.2	0.1	-0.3	0.4
deal	0.5	0.2	-0.3	-0.1
reached	-0.1	-0.3	-0.2	0.4
to	0.3	-0.3	0.1	0.1
keep	0.2	-0.3	0.4	0.2
government	0.1	0.2	-0.1	-0.1
open	-0.4	-0.4	0.2	0.3

t,d,r	-1.0
d,r,t	-0.5
r,t,k	-3.6
t,k,g	-0.2
k,g,o	0.3

Apply a filter (or kernel) of size 3

3	1	2	-3
-1	2	1	-3
1	1	-1	1

1D convolution for text with padding

Ø	0.0	0.0	0.0	0.0
tentative	0.2	0.1	-0.3	0.4
deal	0.5	0.2	-0.3	-0.1
reached	-0.1	-0.3	-0.2	0.4
to	0.3	-0.3	0.1	0.1
keep	0.2	-0.3	0.4	0.2
government	0.1	0.2	-0.1	-0.1
open	-0.4	-0.4	0.2	0.3
Ø	0.0	0.0	0.0	0.0

Ø,t,d	-0.6
t,d,r	-1.0
d,r,t	-0.5
r,t,k	-3.6
t,k,g	-0.2
k,g,o	0.3
g,o,Ø	-0.5

Apply a **filter** (or **kernel**) of size 3

3	1	2	-3
-1	2	1	-3
1	1	-1	1

3 channel 1D convolution with padding = 1

Ø	0.0	0.0	0.0	0.0
tentative	0.2	0.1	-0.3	0.4
deal	0.5	0.2	-0.3	-0.1
reached	-0.1	-0.3	-0.2	0.4
to	0.3	-0.3	0.1	0.1
keep	0.2	-0.3	0.4	0.2
government	0.1	0.2	-0.1	-0.1
open	-0.4	-0.4	0.2	0.3
Ø	0.0	0.0	0.0	0.0

Ø,t,d	-0.6	0.2	1.4
t,d,r	-1.0	1.6	-1.0
d,r,t	-0.5	-0.1	0.8
r,t,k	-3.6	0.3	0.3
t,k,g	-0.2	0.1	1.2
k,g,o	0.3	0.6	0.9
g,o,Ø	-0.5	-0.9	0.1

Apply 3 **filters** of size 3

3	1	2	-3
-1	2	1	-3
1	1	-1	1

1	0	0	1
1	0	-1	-1
0	1	0	1

1	-1	2	-1
1	0	-1	3
0	2	2	1

Could also use (zero) padding = 2Also called "wide convolution"

AI Bootcamp

conv1d, padded with max pooling over time

Ø	0.0	0.0	0.0	0.0
tentative	0.2	0.1	-0.3	0.4
deal	0.5	0.2	-0.3	-0.1
reached	-0.1	-0.3	-0.2	0.4
to	0.3	-0.3	0.1	0.1
keep	0.2	-0.3	0.4	0.2
government	0.1	0.2	-0.1	-0.1
open	-0.4	-0.4	0.2	0.3
Ø	0.0	0.0	0.0	0.0

Ø,t,d	-0.6	0.2	1.4
t,d,r	-1.0	1.6	-1.0
d,r,t	-0.5	-0.1	0.8
r,t,k	-3.6	0.3	0.3
t,k,g	-0.2	0.1	1.2
k,g,o	0.3	0.6	0.9
g,o,Ø	-0.5	-0.9	0.1
max p	0.3	1.6	1.4

Apply 3 **filters** of size 3

3	1	2	-3
-1	2	1	-3
1	1	-1	1

1	0	0	1
1	0	-1	-1
0	1	0	1

1	-1	2	-1
1	0	-1	3
0	2	2	1

conv1d, padded with ave pooling over time

Ø	0.0	0.0	0.0	0.0
tentative	0.2	0.1	-0.3	0.4
deal	0.5	0.2	-0.3	-0.1
reached	-0.1	-0.3	-0.2	0.4
to	0.3	-0.3	0.1	0.1
keep	0.2	-0.3	0.4	0.2
government	0.1	0.2	-0.1	-0.1
open	-0.4	-0.4	0.2	0.3
Ø	0.0	0.0	0.0	0.0

Ø,t,d	-0.6	0.2	1.4
t,d,r	-1.0	1.6	-1.0
d,r,t	-0.5	-0.1	8.0
r,t,k	-3.6	0.3	0.3
t,k,g	-0.2	0.1	1.2
k,g,o	0.3	0.6	0.9
g,o,Ø	-0.5	-0.9	0.1
ave p	-0.87	0.26	0.53

Apply 3 **filters** of size 3

3	1	2	-3
-1	2	1	-3
1	1	-1	1

1	0	0	1
1	0	-1	-1
0	1	0	1

1	-1	2	-1
1	0	-1	3
0	2	2	1

Classification with convolution and pooling

Convolutional Neural Networks

Efficacy of CNNs in NLP

Convolutional Neural Networks

- In computer vision
 - Effectiveness of deep CNNs can be very well explained
 - Primary conv. layers detect the edges of an object
 - As we go deeper, more complex features of an image are learnt
- In NLP
 - Not much understanding

Why Sequence Models?

to model sequences, we need:

- to deal with variable-length sequences
- 2. to maintain sequence order
- 3. to keep track of long-term dependencies
- 4. to share parameters across the sequence

Recurrent Neural Networks (RNNs)

Rationale:

- Rather than fixing the amount of history our network can handle, we allow it to accumulate a representation over time.
- This can work over arbitrary sequences.
- Hopefully, it will also encode similar things in similar ways (less representational redundancy).
- In the accumulated representation, it should also capture dependencies between elements at different (possibly distant) time-steps.

Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs)

We can process a sequence of vectors **x** by applying a **recurrence formula** at every time step:

Notice: the same function and the same set of parameters are used at every time step.

Recurrent Neural Networks (RNNs)

The state consists of a single "hidden" vector **h**:

RNN Computational Graph

Initial hidden state Either set to all 0, Or learn it

h_o

 x_1

RNN Computational Graph

RNN Computational Graph

RNN Computational Graph

RNN Computational Graph

Re-use the same weight matrix at every time-step

RNN Computational Graph (Many to Many)

RNN Computational Graph (Many to One)

RNN Computational Graph (One to Many)

Recurrent Neural Networks (RNNs)

Use cases for RNNs

Example: Language Modeling

Given characters 1, 2, ..., t, model predicts character t

Training sequence: "hello"

Example: Language Modeling

Given characters 1, 2, ..., t, model predicts character t

$$h_t = anh(W_{hh}h_{t-1} + W_{xh}x_t)$$

Training sequence: "hello"

Example: Language Modeling

Given characters 1, 2, ..., t, model predicts character t

$$\left|h_t= anh(W_{hh}h_{t-1}+W_{xh}x_t)
ight|$$

Training sequence: "hello"

Example: Language Modeling

At test-time, **generate** new text: sample characters one at a time, feed back to model

Training sequence: "hello"

Example: Image Captioning

Recurrent Neural Network

Convolutional Neural Network

Example: Image Captioning

