"波动率选股因子"系列研究(一)

寻找特质波动率中的纯真信息

——剔除跨期截面相关性的纯真波动率因子

研究结论

- ■前言: 东吴金工推出"波动率选股因子"系列研究,尝试在目前已被广泛使用的传统波动率因子的基础上,进行一系列新的探索。作为系列研究第一篇,本报告受到"波动率聚集现象"的启发,从波动率因子的跨期截面相关性入手,对传统的特质波动率因子,提出一种简单朴素而又效果优秀的改进方案。
- 传统特质波动率因子:基于 Fama-French 三因子模型,构建特质波动率因子。回测结果显示,传统特质波动率因子已经具备不错的选股能力,其月度 IC 均值为-0.059,年化 ICIR 为-1.78,5 分组多空对冲的信息比率为 1.48,月度胜率为 70.65%;但它与换手率因子相关性较高,且选股能力不如换手率因子,在正交化换手率之后,选股效果大幅下降。
- 波动率聚集现象——波动率因子的跨期截面相关性: 学术研究表明, 金融资产收益的时间序列数据, 通常表现出波动率聚集现象。该现象存在于个股层面, 就导致股票的波动率因子具有较强的跨期截面相关性。在利用传统波动率因子进行每月选股时, 由于这种相关性而被重复利用的过往因子信息, 会给我们带来干扰, 削弱当期因子的选股效果。
- **纯真波动率因子:** 只需在传统因子计算的过程中,增加一个简单的回归步骤,就能有效剔除波动率因子的跨期截面相关性,提炼纯真的选股信息。在回测期 2005/01/01-2020/04/30 内,以全体 A 股为研究样本,纯真波动率因子的月度 IC 均值为-0.055, RankIC 均值为-0.077, 年化 ICIR 为-2.16,年化 RankICIR 为-3.00;5 分组多空对冲的年化收益为 18.89%,信息比率为 2.17,月度胜率为 78.26%,最大回撤为 8.29%。另外,纯真波动率因子与换手率因子的相关性降低,且在剔除换手率因子后,仍然具有一定的选股能力。

纯真波动率因子的5分组及多空对冲净值走势

数据来源: Wind 资讯, 东吴证券研究所

■ 风险提示:本报告所有统计结果均基于历史数据,未来市场可能发生重大变化;单因子的收益可能存在较大波动,实际应用需结合资金管理、风险控制等方法。

2020年05月28日

证券分析师 高子剑 执业证号: S0600518010001 021-60199793 gaozj@dwzq.com.cn 研究助理 沈芷琦 021-60199793 shenzhq@dwzq.com.cn

内容目录

1.	前言	4
	传统特质波动率因子	
	2.1. 特质波动率因子的计算与回测	
	2.2. 特质波动率因子与换手率因子的相关性	
	2.3. 特质波动率因子小结	
3.	波动聚集:波动率因子的时序和截面相关性	
	剔除跨期截面相关性: 纯真波动率因子	
	4.1. 纯真波动率因子的构建与回测	
	4.2. 纯真波动率因子与换手率因子的相关性	
	4.3. 纯真波动率因子小结	
5.	其他重要讨论	
	5.1. 纯真波动率因子的参数敏感性	
	5.2. 新旧因子的多头、空头超额对比	
	5.3. 新旧因子的月度换仓率对比	
	5.4. 其他样本空间的情况	
6.	总结	
	风险提示	

图表目录

图 1:	传统特质波动率因子 ID_Vol 的 5 分组及多空对冲净值走势	5
图 2:	ID_Vol_deTurn20的5分组及多空对冲净值走势	6
图 3:	万得全A指数每日收益率:波动聚集性(2005/01/01-2020/04/30)	7
图 4:	特质波动率因子 ID_Vol 的平均时序、截面相关系数(2005/01/01-2020/04/30)	8
图 5:	纯真波动率因子的5分组及多空对冲净值走势	9
图 6:	新旧因子正交换手后的5分组多空对冲净值走势	10
图 7:	传统、纯真波动率因子多空对冲的信息比率、月度胜率 (滞后阶数 N 不同取值)	11
图 8:	新旧因子多头换仓率对比	13
图 9:	新旧因子空头换仓率对比	13
表 1:	传统特质波动率因子 ID Vol 的分年度表现	5
	ID_Vol、Turn20、ID_Vol_deTurn20 因子的选股效果对比	
	纯真波动率因子的分年度表现	
	纯真因子、传统因子的选股效果对比	
表 5:	传统、纯真波动率因子的选股效果(滞后阶数N不同取值)	12
	传统、纯真波动率因子正交换手后的选股效果(滞后阶数 N 不同取值)	
	新旧因子的多头、空头超额对比	
表 8:	沪深 300、中证 500 成分股中新旧因子的选股效果对比	14

1. 前言

Ang et al. [1]于 2006 年公开发表论文 The Cross-Section of Volatility and Expected Returns,提出股票的特质波动率与未来收益之间存在显著的负相关性,且该现象不能被规模、价值、动量和流动性等市场已知因子所解释。这篇论文的实证结果,颠覆了传统金融学中"风险越大,收益越高"的经典理论,被称为"低波动率异常现象"。此后,众多国内外学者前赴后继,围绕"低波异象"展开了一系列研究,时至今日,该异象仍然是金融实证研究领域的热点问题。

东吴金工借鉴前人研究经验,开拓创新,推出"波动率选股因子"系列研究,试图在目前已被广泛使用的传统波动率因子的基础上,进行一系列新的探索。作为系列研究第一篇,本文受到"波动率聚集现象"的启发,对传统因子提出一种简单朴素的改进方案。在报告最后,各位读者将看到,这种简单朴素的方案,竟有着令人意想不到的效果。

2. 传统特质波动率因子

2.1. 特质波动率因子的计算与回测

本文选取一种目前广泛使用的构造方法,计算传统的特质波动率因子。具体地,以全体A股为研究样本(剔除其中的ST股、停牌股以及上市不足60个交易日的次新股),以2005/01/01-2020/04/30为回测时间段,实施以下操作:

(1) 每月月底,回溯所有股票过去 20 个交易日的数据,每只股票都根据 Fama-French 三因子模型进行回归,得到每日的特质收益率,即

$$r_{i,t} = \alpha_{i,t} + \beta_{i,t}MKT_t + \eta_{i,t}SMB_t + \lambda_{i,t}HML_t + \varepsilon_{i,t}$$

其中, t取值为 1,2,3,......,20; MKT_t 为t日万得全 A 指数收益率; SMB_t 为市值因子,取t日流通市值最小的 1/3 部分股票按照流通市值加权构建小市值股票组合,取流通市值最大的 1/3 部分股票按照流通市值加权构建大市值股票组合,当日小市值组合收益率与大市值组合收益率之差,即为市值因子; HML_t 为估值因子,取t日市净率 PB 最低的 1/3 部分股票按照流通市值加权构建低估值股票组合,取市净率 PB 最大的 1/3 部分股票按照流通市值加权构建低估值股票组合,取市净率 PB 最大的 1/3 部分股票按照流通市值加权构建高估值股票组合,当日低估值组合收益率与高估值组合收益率之差,即为估值因子; 上述回归得到的残差 $\varepsilon_{i,t}$, 即为第i个股票t日的特质收益率;

(2) 计算每只股票 20 个特质收益率的标准差,即为股票剔除 Fama-French 三因子后的特质波动率,记为 ID_Vol(Idiosyncratic Volatility)。

回测结果显示,传统特质波动率因子的月度 IC 均值为-0.059, 年化 ICIR 为-1.78, 5 分组多空对冲的年化收益为 17.93%,信息比率为 1.48,月度胜率为 70.65%,月度最大回撤为 14.49%。整体来看,目前被广泛使用的特质波动率因子确实具备不错的选股能力,但其 2013 年、2020 年(截至 4 月底)的表现较差,月度多空对冲的累积收益为负。

 一分组1
 一分组2
 一分组3
 一分组4
 一分组5
 -----分组1-分组5(右轴)
 15

 28 12

 21 14 6

 图 1: 传统特质波动率因子 ID_Vol 的 5 分组及多空对冲净值走势

数据来源: Wind 资讯, 东吴证券研究所

表 1: 传统特质波动率因子 ID_Vol 的分年度表现

		年化收	益率	分组1对冲分组5绩效指标					
年份	分组1	分组 5	分组1对冲分组5	年化波动率	信息比率	月度胜率	最大回撤率		
2005	-9.46%	-17.88%	8.11%	9.08%	0.89	50.00%	6.49%		
2006	91.33%	64.57%	16.42%	12.27%	1.34	66.67%	5.52%		
2007	233.98%	136.89%	42.34%	9.57%	4.42	91.67%	1.39%		
2008	-46.81%	-61.47%	30.11%	8.78%	3.43	83.33%	1.96%		
2009	172.08%	110.46%	28.54%	8.40%	3.40	83.33%	3.66%		
2010	13.32%	5.97%	5.80%	9.86%	0.59	66.67%	4.86%		
2011	-24.95%	-40.21%	21.94%	8.72%	2.52	75.00%	2.09%		
2012	5.01%	-8.43%	12.09%	8.48%	1.43	66.67%	3.37%		
2013	25.28%	26.30%	-1.64%	12.63%	-0.13	50.00%	12.00%		
2014	56.39%	35.75%	13.93%	16.27%	0.86	75.00%	2.62%		
2015	110.74%	55.45%	24.79%	21.77%	1.14	50.00%	9.25%		
2016	1.23%	-20.05%	22.24%	12.11%	1.84	83.33%	2.44%		
2017	-9.28%	-30.27%	28.31%	5.99%	4.73	91.67%	0.51%		
2018	-23.58%	-38.91%	23.48%	8.57%	2.74	66.67%	3.12%		
2019	28.67%	13.35%	9.67%	14.72%	0.66	75.00%	8.67%		
2020(至4月底)	13.10%	8.83%	-3.43%	29.03%	-0.12	25.00%	6.81%		

2.2. 特质波动率因子与换手率因子的相关性

多项实证研究表明,波动率与换手率包含的价量信息重叠度较高,因此两个因子往往高度相关。此处,我们每月月底取每只股票过去 20 个交易日换手率的平均值,再做市值中性化处理,定义为换手率因子 Turn20。经检验,特质波动率因子 ID_Vol 与换手率因子 Turn20 的平均月度相关系数为 0.51。若更进一步,每月月底将特质波动率因子 ID_Vol 对换手率因子 Turn20 做横截面正交化处理,即:

$$ID_{Vol_i} = a + bTurn20_i + \xi_i$$

将残差视为波动率剔除换手率线性信息之后的选股因子,记为 ID_Vol_deTurn20。同样以全体 A 股为研究样本,以 2005/01/01-2020/04/30 为回测时间段,ID_Vol_deTurn20 因子的月度 IC 均值为-0.030,年化 ICIR 为-1.05,5 分组多空对冲的年化收益为 6.08%,信息比率降至 0.61,月度胜率 59.78%,最大回撤 17.70%。下图 2 展示了 ID_Vol_deTurn20 因子 5 分组及多空对冲的净值走势,表 2 则汇总对比了 ID_Vol、Turn20、ID_Vol_deTurn20 因子的月度 IC 均值、年化 ICIR 及多空对冲的各项绩效指标。

图 2: ID Vol deTurn20 的 5 分组及多空对冲净值走势

数据来源: Wind 资讯, 东吴证券研究所

表 2: ID_Vol、Turn20、ID_Vol_deTurn20 因子的选股效果对比

	IC 均值	年化 ICIR	年化收益率	年化波动率	信息比率	月度胜率	最大回撤率
ID_Vol	-0.059	-1.78	17.93%	12.13%	1.48	70.65%	14.49%
Turn20	-0.071	-1.99	23.89%	13.72%	1.74	69.57%	12.70%
ID_Vol_deTurn20	-0.030	-1.05	6.08%	9.95%	0.61	59.78%	17.70%

2.3. 特质波动率因子小结

根据上述结果, 我们可以对传统特质波动率因子作如下总结:

- (1) 整体来看, 传统特质波动率因子 ID Vol 具备不错的选股效果;
- (2) 特质波动率因子 ID_Vol 与换手率因子 Turn20 的信息重叠度较高,但 ID_Vol 的选股效果不如 Turn20;
- (3) 特质波动率因子正交化换手率因子后, 残差 ID_Vol_deTurn20 的选股效果大幅下降。

因此,即使传统的特质波动率因子已经具有不错的选股能力,但也仍然存在改进空间。下文我们将逐步深入探索,寻找改进波动率因子的有效方案。

3. 波动聚集:波动率因子的时序和截面相关性

Cont[2]通过实证研究发现,金融资产收益的时间序列数据,通常表现出波动率聚集现象 (Volatility Clustering),即价格的大幅变化往往倾向于聚集在一起。该现象也明显存在于A股市场中,如下图 3 展示了万得全 A 指数日收益率的变化情况,我们可以发现,万得全 A 指数的大幅波动确实具有聚集性。

图 3: 万得全 A 指数每日收益率: 波动聚集性 (2005/01/01-2020/04/30)

数据来源: Wind 资讯, 东吴证券研究所

更进一步,若波动率聚集现象也存在于个股层面,则会导致个股的波动率因子具有 较强的时序和截面相关性。我们在全体 A 股样本内,计算了传统特质波动率因子 ID_Vol 的平均时序、截面相关系数,具体结果如下图 4 所示。对图中结果做简要说明:

- (1) 横坐标为计算相关系数时的滞后阶数 N, 以滞后阶数 N=1 为例;
- (2) 平均时序相关系数的计算方法为,对样本内每只股票,都各自计算其波动率因子时间序列滞后一阶的自相关系数,再对样本内所有股票取平均值;
- (3) 平均截面相关系数的计算方法为,对每一期时间 t,都计算 t 时刻与 t-1 时刻, 所有股票波动率因子的横截面相关系数.再对所有时间取平均值。

图 4: 特质波动率因子 ID Vol 的平均时序、截面相关系数 (2005/01/01-2020/04/30)

数据来源: Wind 资讯, 东吴证券研究所

由图 4 可得,在滞后阶数较小时,波动率因子的时序、截面相关系数都较大,如滞后阶数为 1 时,月频特质波动率因子的平均时序相关系数为 0.33,平均截面相关系数为 0.38,说明个股层面确实存在波动率聚集现象。随着滞后阶数的增加,时序、截面相关系数都逐渐减小,滞后阶数为 7 时,平均时序相关系数下降至 0.03,已小于 0.05,平均截面相关系数为 0.16。

4. 剔除跨期截面相关性: 纯真波动率因子

4.1. 纯真波动率因子的构建与回测

上一节的结果证明,特质波动率因子具有较强的时序和截面相关性。对于选股模型,若因子具有较强的跨期截面相关性,则会导致我们在 t 时刻选股时,虽然表面上只参考了 t-1 时刻的因子值,却不可避免地连带使用了 t-2 时刻、t-3 时刻、甚至 t-4 时刻的因子信息,而这些早期的因子值,无疑被多次重复使用了。这就意味着我们每一期获得的因子信息,其实都不够纯净。

基于上述分析, 我们提出一种"**剔除跨期截面相关性**, **寻找纯真选股信息**"的方案, 具体实施以下操作:

- (1) 根据第二节所述步骤, 每月月底计算得到传统特质波动率因子 ID Vol;
- (2) 暂取滞后阶数 N=6, 每月月底将本月因子值对过去 6 个月的因子值做多元线性回归.即

 $ID_Vol_{i,t} = \nu + \theta_1 ID_Vol_{i,t-1} + \theta_2 ID_Vol_{i,t-2} + \dots + \theta_6 ID_Vol_{i,t-6} + \mu_{i,t}$ 每次回归, 时间 t 固定, i=1,2,3,......,k (k 为个股数量), 因此该回归是多期横截面回归;

(3) 取残差向量 $\mu_{i,t}$,即为该月所有股票剔除截面相关性之后的波动率因子值,记为**纯真波动率因子** ID Vol deCorr。

以全体 A 股为研究样本,回测期 2005/01/01-2020/04/30 内,相邻两期纯真波动率因子之间的平均时序相关系数下降至 0.044,平均截面相关系数下降至 0.007。就选股能力而言,纯真波动率因子的月度 IC 均值为-0.055,RankIC 均值为-0.077,年化 ICIR 为-2.16,年化 RankICIR 为-3.00。下图 5 展示了纯真波动率因子 5 分组及多空对冲的净值走势,因子多空对冲的年化收益为 18.89%,信息比率为 2.17,月度胜率为 78.26%,最大回撤为 8.29%。表 3 则汇报了纯真波动率因子各年度的表现情况,虽然 2019 年 8 月以来,因子表现仍然不够稳定,但相比于传统特质波动率因子,新因子的表现已经有了大幅提升,如 2013 年、2020 年(截至 4 月底),传统因子月度多空对冲的累积收益为负,而新因子均录得了正收益。

图 5: 纯真波动率因子的 5 分组及多空对冲净值走势

表 3: 纯真波动率因子的分年度表现

		年化收	益率	分组 1 对冲分组 5 绩效指标					
年份	分组1	分组5	分组1对冲分组5	年化波动率	信息比率	月度胜率	最大回撤率		
2005	-10.09%	-16.40%	7.08%	6.13%	1.16	50.00%	4.44%		
2006	98.73%	68.25%	18.45%	12.25%	1.51	66.67%	4.22%		
2007	247.08%	134.05%	50.38%	7.75%	6.50	100.00%	0.00%		
2008	-49.54%	-59.72%	21.78%	7.20%	3.02	83.33%	2.50%		
2009	181.58%	108.16%	36.18%	6.34%	5.71	91.67%	1.77%		
2010	20.60%	6.64%	12.50%	8.98%	1.39	75.00%	3.17%		
2011	-28.23%	-38.08%	14.60%	4.32%	3.38	83.33%	0.63%		
2012	7.06%	-9.58%	17.70%	2.76%	6.40	91.67%	0.68%		
2013	28.45%	25.75%	2.84%	8.27%	0.34	58.33%	6.65%		
2014	56.40%	36.42%	14.87%	8.88%	1.68	83.33%	2.82%		
2015	125.22%	45.19%	48.52%	14.72%	3.30	83.33%	3.53%		
2016	-3.51%	-20.27%	19.47%	7.95%	2.45	83.33%	1.16%		
2017	-16.15%	-27.42%	15.19%	5.14%	2.95	83.33%	0.43%		
2018	-26.99%	-36.20%	14.11%	5.15%	2.74	75.00%	1.34%		
2019	28.31%	17.41%	7.66%	8.12%	0.94	75.00%	4.35%		
2020(至4月底)	21.42%	12.50%	3.76%	18.52%	0.20	50.00%	4.42%		

数据来源: Wind 资讯, 东吴证券研究所

4.2. 纯真波动率因子与换手率因子的相关性

相比于传统特质波动率因子, 纯真波动率因子与换手率因子的相关性更低, 平均月度相关系数为 0.41。同样将纯真波动率因子对换手率因子做正交化处理, 检验残差的选股能力, 并与传统因子进行对比。下图 6 展示了新旧因子分别正交换手后, 5 分组多空对冲的净值走势, 可以发现剔除换手率因子后, 新因子的表现也明显优于传统因子。

图 6: 新旧因子正交换手后的 5 分组多空对冲净值走势

4.3. 纯真波动率因子小结

本节内容利用简单的线性回归,从传统特质波动率因子中提炼出"纯真"的选股信息。回测结果证明,剔除跨期截面相关性后的纯真波动率因子,选股效果显著优于传统因子,说明在每月选股时,由于跨期截面相关性而被重复利用的过往因子信息,确实带来了干扰,削弱了当期因子的选股效果。而我们提出的这种简单朴素的回归方案,能有效去除这些干扰,找到选股能力更为稳定的信息,达到了"去伪存真"的目的。

对于本节涉及的几个主要因子,下表 4 汇总比较了它们的月度 IC 均值、年化 ICIR、 多空对冲绩效指标等相关信息。

表 4: 纯真因子、传统因子的选股效果对比

	IC 均值	年化 ICIR	年化收益	年化波动	信息比率	月度胜率	最大回撤	与换手率相关系数
传统因子	-0.059	-1.78	17.93%	12.13%	1.48	70.65%	14.49%	0.51
纯真因子	-0.055	-2.16	18.89%	8.70%	2.17	78.26%	8.29%	0.41
传统因子正交换手	-0.030	-1.05	6.08%	9.95%	0.61	59.78%	17.70%	-
纯真因子正交换手	-0.032	-1.47	9.25%	7.46%	1.24	67.93%	7.56%	-

数据来源: Wind 资讯, 东吴证券研究所

5. 其他重要讨论

5.1. 纯真波动率因子的参数敏感性

前文构造纯真波动率因子时,暂将回归滞后阶数 N 取为 6。这一小节,我们对纯真波动率因子做参数敏感性检验。下图 7 展示了 N 取值为 0 至 24 时,波动率因子的 5 分组多空对冲信息比率和月度胜率的变化情况;表 5 则详细汇报了部分取值下,波动率因子的月度 IC 均值、年化 ICIR 以及多空对冲的各项绩效指标。其中,"N=0"所对应的,即为传统特质波动率因子的回测结果。

图 7: 传统、纯真波动率因子多空对冲的信息比率、月度胜率 (滞后阶数 N 不同取值)

表 5: 传统、纯真波动率因子的选股效果 (滞后阶数 N 不同取值)

	IC 均值	年化 ICIR	年化收益率	年化波动率	信息比率	月度胜率	最大回撤率
N=0	-0.0586	-1.78	17.93%	12.13%	1.48	70.65%	14.49%
N=1	-0.0538	-2.02	17.48%	9.77%	1.79	76.63%	9.97%
N=3	-0.0542	-2.11	18.07%	8.81%	2.05	77.72%	9.43%
N=6	-0.0554	-2.16	18.89%	8.70%	2.17	78.26%	8.29%
N=9	-0.0540	-2.13	17.59%	8.56%	2.06	76.09%	7.88%
N=12	-0.0537	-2.10	17.10%	8.36%	2.05	76.63%	7.39%
N=18	-0.0550	-2.17	18.96%	8.80%	2.15	76.63%	7.13%
N=24	-0.0553	-2.24	17.87%	8.64%	2.07	76.63%	7.36%

数据来源: Wind 资讯, 东吴证券研究所

可以发现,剔除不同阶数截面相关性后的纯真波动率因子,选股效果均优于传统的特质波动率因子。另外,随着滞后阶数 N 的增大,由于波动率因子的高阶截面相关性逐渐减弱,因此纯真因子的选股效果也逐渐趋于平稳。

更进一步, 我们也检验了不同参数取值下, 纯真波动率因子正交换手率因子之后的 选股能力, 具体结果如下表 6 所示。可以发现, 各 N 取值下, 剔除换手率因子后, 纯真因子的选股效果也都能显著优于传统因子。

表 6: 传统、纯真波动率因子正交换手后的选股效果 (滞后阶数 N 不同取值)

	IC 均值	年化 ICIR	年化收益率	年化波动率	信息比率	月度胜率	最大回撤率
N=0	-0.0305	-1.05	6.08%	9.95%	0.61	59.78%	17.70%
N=1	-0.0309	-1.34	7.60%	7.83%	0.97	64.13%	10.52%
N=3	-0.0325	-1.46	8.92%	7.38%	1.21	67.39%	9.23%
N=6	-0.0324	-1.47	9.25%	7.46%	1.24	67.93%	7.56%
N=9	-0.0303	-1.40	8.76%	7.45%	1.17	63.04%	7.28%
N=12	-0.0297	-1.37	8.33%	7.59%	1.10	64.13%	9.78%
N=18	-0.0306	-1.42	10.12%	8.39%	1.21	65.22%	9.43%
N=24	-0.0303	-1.43	9.09%	8.07%	1.13	63.59%	9.40%

5.2. 新旧因子的多头、空头超额对比

前文汇报因子的选股效果时,只关注了多空对冲的整体绩效,这一小节将多空绩效 拆分为多头超额和空头超额,进一步详细对比新旧因子的表现,具体结果如下表7所示。 由表中结果,我们可以发现纯真波动率因子在多头超额上的提升效果更为明显。

表 7: 新旧因子的多头、空头超额对比

		年化收益率	年化波动率	信息比率	月度胜率	最大回撤率
多空对冲	传统特质波动率因子	17.93%	12.13%	1.48	70.65%	14.49%
夕至八个	纯真波动率因子	18.89%	8.70%	2.17	78.26%	8.29%
夕 川 切 郊	传统特质波动率因子	5.41%	6.25%	0.87	60.87%	10.55%
多头超额	纯真波动率因子	6.80%	4.23%	1.61	68.48%	5.01%
总生物 药	传统特质波动率因子	12.29%	6.53%	1.88	73.37%	5.61%
空头超额	纯真波动率因子	11.55%	5.20%	2.22	78.80%	4.18%

数据来源: Wind 资讯, 东吴证券研究所

5.3. 新旧因子的月度换仓率对比

本篇报告提出的波动率因子改进方案,需要将每期因子值回归剔除过去几期因子值的信息,自然降低了相邻两期因子之间的相关性,也就不可避免地提高了策略的换仓率。下图 8、9 分别展示了新旧因子多头、空头的每月换仓率,多头组合中,传统因子平均每月换仓率为 57.39%,改进后的纯真因子平均每月换仓率为 80.32%,增加了 22.93%;空头组合中,传统因子平均每月换仓率为 60.91%,纯真因子平均每月换仓率为 75.99%,增加了 15.08%。在需要考虑交易费用的实际操作中,由于我们讨论的是月频选股模型,因此换仓率提高上述幅度而额外增加的交易费用,对策略绩效的影响较小。

图 8: 新旧因子多头换仓率对比

数据来源: Wind 资讯, 东吴证券研究所

图 9: 新旧因子空头换仓率对比

5.4. 其他样本空间的情况

最后,检验本篇报告提出的波动率因子改进方案在不同样本空间内的效果,具体仍以滞后阶数 N=6 为例。在沪深 300 成分股中,传统特质波动率因子的 5 分组多空对冲信息比率为 0.33,月度胜率为 55.06%,最大回撤为 27.72%;纯真波动率因子的 5 分组多空对冲信息比率为 0.61,月度胜率为 56.33%,最大回撤为 19.79%。在中证 500 成分股中,传统因子 5 分组多空对冲信息比率为 1.31,月度胜率为 67.09%,最大回撤为 26.60%;纯真因子 5 分组多空对冲信息比率为 1.65,月度胜率为 65.82%,最大回撤为 15.20%。可见在沪深 300 和中证 500 成分股中,新因子的选股效果均有不同程度的提升。

表 8: 沪深 300、中证 500 成分股中新旧因子的选股效果对比

		IC 均值	年化 ICIR	年化收益率	年化波动率	信息比率	月度胜率	最大回撤率
沪深 300	传统特质波动率因子	-0.0221	-0.45	5.18%	15.75%	0.33	55.06%	27.72%
汇本 300	纯真波动率因子	-0.0284	-0.81	7.29%	12.01%	0.61	56.33%	19.79%
thir 500	传统特质波动率因子	-0.0499	-1.31	16.35%	12.43%	1.31	67.09%	26.60%
中证 500	纯真波动率因子	-0.0427	-1.34	15.81%	9.58%	1.65	65.82%	15.20%

数据来源: Wind 资讯, 东吴证券研究所

6. 总结

东吴金工推出"波动率选股因子"系列研究,作为系列报告第一篇,本文在构建传统特质波动率因子的基础上,基于金融时间序列的"波动聚集"理论,对传统因子进行了改进。具体地,本文提出一种回归方案,只需在传统因子的计算过程中,增加一个简单的回归步骤,就能剥离波动率因子的跨期截面相关性,从而剔除了被重复利用的过往因子信息,去伪存真,得到了选股效果更佳的"纯真波动率因子"。

7. 风险提示

本报告所有统计结果均基于历史数据,未来市场可能发生重大变化;单因子的收益可能存在较大波动,实际应用需结合资金管理、风险控制等方法。

附注: [1]Ang A, Hodrick RJ, Xing Y, et al. The Cross-Section of Volatility and Expected Returns[J]. 2006, 61(1):259-299.

[2]Cont R . Volatility Clustering in Financial Markets: Empirical Facts and Agent-Based Models.[J]. Ssrn Electronic Journal, 2005.

[3]感谢实习生陆树成为本报告做出贡献。

免责声明

东吴证券股份有限公司经中国证券监督管理委员会批准,已具备证券投资咨询业务资格。

本研究报告仅供东吴证券股份有限公司(以下简称"本公司")的客户使用。 本公司不会因接收人收到本报告而视其为客户。在任何情况下,本报告中的信息 或所表述的意见并不构成对任何人的投资建议,本公司不对任何人因使用本报告 中的内容所导致的损失负任何责任。在法律许可的情况下,东吴证券及其所属关 联机构可能会持有报告中提到的公司所发行的证券并进行交易,还可能为这些公 司提供投资银行服务或其他服务。

市场有风险,投资需谨慎。本报告是基于本公司分析师认为可靠且已公开的信息,本公司力求但不保证这些信息的准确性和完整性,也不保证文中观点或陈述不会发生任何变更,在不同时期,本公司可发出与本报告所载资料、意见及推测不一致的报告。

本报告的版权归本公司所有, 未经书面许可, 任何机构和个人不得以任何形式翻版、复制和发布。如引用、刊发、转载, 需征得东吴证券研究所同意, 并注明出处为东吴证券研究所, 且不得对本报告进行有悖原意的引用、删节和修改。

东吴证券投资评级标准:

公司投资评级:

买入: 预期未来6个月个股涨跌幅相对大盘在15%以上;

增持: 预期未来6个月个股涨跌幅相对大盘介于5%与15%之间;

中性: 预期未来 6个月个股涨跌幅相对大盘介于-5%与 5%之间:

减持: 预期未来 6个月个股涨跌幅相对大盘介于-15%与-5%之间:

卖出: 预期未来 6个月个股涨跌幅相对大盘在-15%以下。

行业投资评级:

增持: 预期未来6个月内, 行业指数相对强于大盘5%以上:

中性: 预期未来6个月内,行业指数相对大盘-5%与5%;

减持: 预期未来6个月内, 行业指数相对弱于大盘5%以上。

东吴证券研究所

苏州工业园区星阳街5号

