Digital Image Processing

Two Dimensional Signals Processing

Emad Fatemizadeh

Distance/online Course: Session 03

Date: 21 February 2021, 3rd Esfand 1399

Two Dimensional Systems:

> General Definition:

System Properties:

> Linearity:

$$\mathcal{H}\{af_1(x,y) + bf_2(x,y)\} = a\mathcal{H}\{f_1(x,y)\} + b\mathcal{H}\{f_2(x,y)\}$$

> Spatial Invariant:

$$\mathcal{H}\{f(x-x_0,y-y_0)\} = g(x-x_0,y-y_0)$$

- > Causality: We do not care about it!
- > Stability: Same as before.

Unit Impulse (pinhole)

> Mathematical Definition:

$$\delta(x,y) = \begin{cases} 0, & (x,y) \neq (0,0) \\ \infty, & (x,y) = (0,0) \end{cases}$$

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \delta(x, y) dx dy = 1$$

> Approximation:

Point Spread Function (PSF)

> Definition:

$$H(x, y; x_0, y_0) = \mathcal{H}\{\delta(x - x_0, y - y_0)\}\$$

> Linear Shift Invariant (LSI):

$$H(x, y; x_0, y_0) = \mathcal{H}\{\delta(x - x_0, y - y_0)\} = H(x - x_0, y - y_0)$$

$$H(x, y) = \mathcal{H}\{\delta(x, y)\}$$

Convolution and Correlation

> Discrete Convolution:

$$(f \star h)(x,y) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m,n)h(x-m,y-n)$$

> Discrete Correlation:

$$(f \approx h)(x,y) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m,n)h(x+m,y+n)$$

Discrete Fourier Transform (DFT):

> Forward Transform

$$F(u,v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi(ux/M + vy/N)}$$

> Inverse Transform:

$$f(x,y) = \frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v) e^{j2\pi(ux/M + vy/N)}$$

DFT (Definitions)

> Useful definitions:

	Name	Expression(s)
1)	Discrete Fourier transform (DFT) of $f(x,y)$	$F(u,v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi(ux/M + vy/N)}$
2)	Inverse discrete Fourier transform (IDFT) of $F(u,v)$	$f(x,y) = \frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v) e^{j2\pi(ux/M + vy/N)}$
3)	Spectrum	$ F(u,v) = [R^2(u,v) + I^2(u,v)]^{1/2}$ $R = \text{Real}(F); I = \text{Imag}(F)$
4)	Phase angle	$\phi(u,v) = \tan^{-1} \left[\frac{I(u,v)}{R(u,v)} \right]$
5)	Polar representation	$F(u,v) = F(u,v) e^{j\phi(u,v)}$
6)	Power spectrum	$P(u,v) = F(u,v) ^2$
7)	Average value	$\overline{f} = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) = \frac{1}{MN} F(0, 0)$
8)	Periodicity (k_1 and k_2 are integers)	$F(u,v) = F(u + k_1 M, v) = F(u, v + k_2 N)$ $= F(u + k_1, v + k_2 N)$ $f(x,y) = f(x + k_1 M, y) = f(x, y + k_2 N)$ $= f(x + k_1 M, y + k_2 N)$

DFT Pairs

> Useful Pairs:

	Name	DFT Pairs
1)	Symmetry properties	See Table 4.1
2)	Linearity	$af_1(x,y) + bf_2(x,y) \Leftrightarrow aF_1(u,v) + bF_2(u,v)$
3)	Translation (general)	$f(x,y)e^{j2\pi(u_0x/M+v_0y/N)} \Leftrightarrow F(u-u_0,v-v_0)$ $f(x-x_0,y-y_0) \Leftrightarrow F(u,v)e^{-j2\pi(ux_0/M+vy_0/N)}$
4)	Translation to center of the frequency rectangle, $(M/2, N/2)$	$f(x,y)(-1)^{x+y} \Leftrightarrow F(u-M/2,v-N/2)$ $f(x-M/2,y-N/2) \Leftrightarrow F(u,v)(-1)^{u+v}$
5)	Rotation	$f(r,\theta + \theta_0) \Leftrightarrow F(\omega,\varphi + \theta_0)$ $r = \sqrt{x^2 + y^2} \qquad \theta = \tan^{-1}(y/x) \qquad \omega = \sqrt{u^2 + v^2} \qquad \varphi = \tan^{-1}(v/u)$
6)	Convolution theorem [†]	$f \star h)(x,y) \Leftrightarrow (F \cdot H)(u,v)$ $(f \cdot h)(x,y) \Leftrightarrow (1/MN)[(F \star H)(u,v)]$
7)	Correlation theorem [†]	$(f \stackrel{\wedge}{\sim} h)(x, y) \Leftrightarrow (F^* \cdot H)(u, v)$ $(f^* \cdot h)(x, y) \Leftrightarrow (1/MN)[(F \stackrel{\wedge}{\sim} H)(u, v)]$

DFT Pairs

> Useful Pairs:

8) Discrete unit $\delta(x,y) \Leftrightarrow 1$ impulse $1 \Leftrightarrow MN\delta(u,v)$

9) Rectangle $\operatorname{rec}[a,b] \Leftrightarrow ab \frac{\sin(\pi ua)}{(\pi ua)} \frac{\sin(\pi vb)}{(\pi vb)} e^{-j\pi(ua+vb)}$

10) Sine $\sin(2\pi u_0 x/M + 2\pi v_0 y/N) \Leftrightarrow \frac{jMN}{2} \left[\delta(u + u_0, v + v_0) - \delta(u - u_0, v - v_0) \right]$

11) Cosine $\cos(2\pi u_0 x/M + 2\pi v_0 y/N) \Leftrightarrow \frac{1}{2} [\delta(u + u_0, v + v_0) + \delta(u - u_0, v - v_0)]$

The following Fourier transform pairs are derivable only for continuous variables, denoted as before by t and z for spatial variables and by μ and ν for frequency variables. These results can be used for DFT work by sampling the continuous forms.

12) Differentiation (the expressions on the right assume that $f(\pm \infty, \pm \infty) = 0$. $\left(\frac{\partial}{\partial t}\right)^m \left(\frac{\partial}{\partial z}\right)^n f(t,z) \Leftrightarrow (j2\pi\mu)^m (j2\pi\nu)^n F(\mu,\nu)$ $\frac{\partial^n f(t,z)}{\partial z^m} \Leftrightarrow (j2\pi\mu)^m F(\mu,\nu); \frac{\partial^n f(t,z)}{\partial z^m} \Leftrightarrow (j2\pi\nu)^n F(\mu,\nu)$

13) Gaussian $A2\pi\sigma^2 e^{-2\pi^2\sigma^2(t^2+z^2)} \Leftrightarrow Ae^{-(\mu^2+\nu^2)/2\sigma^2} \quad (A \text{ is a constant})$

DFT Centering

> From DSP:

DFT Centering

> For DIP (fftshift):

- $= M \times N$ data array computed by the DFT with f(x, y) as input
- $= M \times N$ data array computed by the DFT with $f(x,y)(-1)^{x+y}$ as input
- ---- = Periods of the DFT

DFT Centering

> Example:

The Importance of Phase

> Let swap phase and magnitude of DFT of two images:

The Importance of Phase

> Let swap phase and magnitude of DFT of two images:

 π

The End

>AnY QuEsTiOn?

