Convolution for text

A Recurrent Neural Network may be an ideal mechanism for dealing with sequential data like text.

But a one dimensional CNN may be an even simpler mechanism.

We briefly introduce the idea as it may deepen our understanding of the particular issues of text.

An n-gram is a sequence of n consecutive tokens that encapsulates a single concept (phrase) such as:

"New York City" versus ["New", "York", "City"]

An n-gram can also capture subtleties of ordering

• ["hard", "not", "easy"] versus ["easy", "not", "hard"]

The first is statistical

- The joint frequency of consecutive tokens being higher than the frequency assuming independence
- p("New York City") > p("New")p("York")p("City")

The second way: use Machine Learning!

We have spoken about convolutions as

- Identifying the presence/absence of a feature
- At a spatial location

The one-dimensional convolution, when applied to a sequence of tokens

- Identifies the presence/absence of a feature
- At a *temporal* location (index within the sequence)

This is just an ordinary convolution, applied to a sequence.
It is only able to capture <i>local</i> relationships that occur within the width of the convolutional kernel.

Here is a picture:

- ullet A kernel of size 2 (blue) recognizing the pattern "Machine Learning"
- Being slid over the input sequence
- Producing a high output (red) when the consecutive tokens match the pattern

One dimensional convolution Slide blue kernel over input

Pattern: "Machine Learning"

	ĺ	1	1	
Machine Learning	Learning is	is easy	easy not	not hard
Learning	IS	easy	not	nar

Using one dimensional convolution with kernel size $n_{\left(l\right)}$

- ullet The convolution creates an $n\mbox{-}\mathrm{gram}$ feature
- At each (temporal) location in the sequence

As with any other CNN, we can apply multiple kernels

- Each matching a different pattern
- To identify a different feature (n-gram)
- At each location in the sequence

One dimensional convolution multiple kernels

Machine Learning	is	easy	not	hard
------------------	----	------	-----	------

Machine Learning	Learning	is	easy not	not hard
Learning	IS	easy	HOL	naru

Pattern: "Machine Learning"

,..

Machine Learning is easy not hard

Pattern: "Is easy"

Pattern: "not hard"

Machine	Learning	is	easy	not
Learning	is	easy	not	hard

```
In [ ]: Convolutional Layer $\\l$\text{thus produces $\\y_\\lp$
- Of the same temporal/spatial dimension as $\\y_{(\\l-1)}$
- With $\n_\\lp$ features
```

After constructing n-gram features at layer l

- ullet We get $\mathbf{y}_{(l)}$
- Of the same shape as $\mathbf{y}_{(l-1)}$

That is: we transform a sequence of tokens into an equal sequence of n-grams

Here is a picture

- ullet Using 3 kernels of width 2 to identify
- ullet 3 synthetic features ("2-gram") at each location in the sequence
- Followed by Global Poolin to reduce the sequence for each feature
- To a single value per feature

Global Pooling 3 features over spatial locations to 3 features over one location

Where does feature occur in input

Kernel 1	Machine Learning	Learning is	is easy	easy not	not hard
Pattern: "Machine Learning"					
Kernel 2	Machine Learning	Learning is	is easy	easy not	not hard
Pattern: "Is easy"					
Kernel 3	Machine Learning	Learning is	is easy	easy not	not hard
Pattern: "not hard" Feature exists <u>somewhere</u>	in input		Global Pod	bling	
Machine Learning Machine Learning is easy not hard					
is easy Machine Learning is easy not hard					
not hard Machine Learning is easy not hard					

The resulting vector of 3 features can then be fed into a Classical ML layer Classification.	such as
Our notebook will demonstrate code for the entire process.	

Conclusion

Ordering of tokens is important for understanding text.

Convolutional Layers

- By capturing temporally local relationships
- May create features ("n-grams") that are more useful
- Than isolated tokens

This is important in general, but particularly when a subsequent layer (e.g., Global Pooling) loses ordering.

```
In [2]: print("Done")
```

Done