Reguli pentru schiţarea diagramelor Bode

Factor	${\bf Amplitudine}, M^{dB}$	Fază, ϕ^{deg}	Schiţa
$\frac{K}{s^n}$	• linie dreaptă $\bullet \ M^{dB} _{\omega=1}=K^{dB}$ $\bullet \ \omega _{M^{dB}=0}=K^{1/n}$ • panta: $-20n\ \mathrm{dB/dec}$		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$T \cdot s + 1$	 Asimptota la pulsaţii joase la 0dB Asimptota la pulsaţii înalte: panta = 20dB/dec Pulsaţia de frângere ω_c = ½ 	 arctangentă φ ∈ (0, 90°) inflexiune (ω_c, 45°) 	$\begin{array}{c c} M^{dB} & 20dB/dec \\ \hline 0 & \omega_{c} = \frac{1}{T} & (log scale) \\ \hline \phi^{deg} & \\ 90 & \\ \hline 45 & & \\ \hline 0 & \omega_{c} = \frac{1}{T} & (log scale) \\ \hline \end{array}$
$\frac{1}{T \cdot s + 1}$	• Asimptota la pulsații joase la 0dB $ \label{eq:addb} \bullet \text{ Asimptota la pulsații } \\ $	 arctangentă φ ∈ (0, −90°) inflexiune (ω_c, −45°) 	$0 \qquad \omega_{C} = \frac{1}{T} \qquad \omega^{rad/sec}$ $0 \qquad 0 \qquad$
$\frac{1}{\omega_n^2} s^2 + \frac{2\zeta}{\omega_n} s + 1$	 Asimptota la pulsaţii joase la 0dB Asimptota la pulsaţii înalte: panta = 40dB/dec Pulsaţia de frângere ω_c = ω_n 	 arctangentă φ ∈ (0, 180°) inflexiune (ω_c, 90°) 	M^{dB} $A0dB/dec$ O
$\frac{1}{\frac{1}{\omega_n^2}s^2 + \frac{2\zeta}{\omega_n}s + 1}$	 Asimptota la pulsaţii joase la 0dB Asimptota la pulsaţii înalte: panta = -40dB/dec Pulsaţia de frângere ω_c = ω_n 	 arctangentă φ ∈ (0, -180°) inflexiune (ω_c, -90°) 	M^{dB} 0 0 0 0 0 0 0