

Digital System Design 數位系統設計

Jean Shann 單智君 Dept. of Computer Science NYCU Fall 2022

J.J. Shann

Class & Office

* 每週 兩小時實體課程 + 一小時非同步線上課程

- ♦ Class:
 - 2-hour in-person/on-site class: Thur. 56 (EC015)
 - 1-hour asynchronous on-line class: Lecture videos
- ♦ Office:

EC516, ext. 31832 jjshann@cs.nctu.edu.tw (e3 mail system)

♦ On-line Office Hours:

Wed. 2:00PM~3:00PM

Google meet: https://meet.google.com/tgh-uyjr-fpr

(or making appointments via e-mail)

Teaching Assistant & TA Hours

- ♦ 徐子瀚 教學助理
 - e-mail: hankshyu.cs08@nycu.edu.tw
 - On-line TA Hours:

Tue. 6:30PM~8:30PM

Google meet: https://meet.google.com/boi-pmmw-

psq

(or making appointments via e-mail)

3

校園實體上課防疫措施

(2022/09/02 updated)

- ◆各項課程依原排定授課方式進行。
- ◆實體上課課程若有學生屬於等候入境之境外 生、檢疫、確診、居家隔離等無法到課者, 請學生聯繫任課老師提供同步或非同步線上 上課機制,以確保學習受教權。學生可透過 E3系統課程內的寄信功能聯繫老師或助教。
- ◆ 教師及學生進行實體課程時,應全程配戴口罩,落實手部消毒,上課期間禁止飲食。
- ◆ 教室應依照相關防疫規定進行消毒及清潔, 並保持室內通風良好。

Prerequisite

- ♦ Prerequisite:
 - Digital Circuits Design 數位電路設計 (Logic Design 邏輯設計)
 - Hardware Description Language:Verilog HDL (or VHDL)

7

Textbook & References

• Textbook:

Charles Roth, Lizy Kurian John, and Byeong Kil Lee, *Digital Systems Design Using Verilog*, International Edition, 2016, Cengage Learning.

• References:

- M. Morris Mano, Charles R. Kime, and Tom Martin, *Logic and Computer Design Fundamentals*, 5th Edition, 2016, Pearson Prentice Hall.
- M. Morris Mano and Michael D. Ciletti, *Digital Design*, 6th ed., 2019, Prentice Hall.
- Charles H. Roth, Jr., and Larry L. Kinney, *Fundamentals of Logic Design*, 7th ed. (International Edition), 2014, Cengage Learning.

Course Contents (1/2)

- ◆ Review of Logic Design Fundamentals (Ch1)
- ♦ Introduction to Verilog (Ch2)
- ♦ Design Examples (Ch4)
- ◆ Introduction to Programmable Logic Devices (Ch3)
- ♦ State Machine Charts and Microprogramming (Ch5)

9

Course Contents (2/2)

- ♦ Floating-Point Arithmetic (Ch7)
- ♦ Additional Topics in Verilog (Ch8)
- ◆ Designing with Field Programmable Gate Arrays (Ch6)
- ♦ Design of a RISC Microprocessor (Ch9)
- ♦ Hardware Testing and Design for Testability (Ch10)

Course Information & Videos

- Course Information:
 - announcements, slides, class video,...
 - http://dcpc.nycu.edu.tw (e-Campus 網路教學平台)『數位系統設計 (Digital System Design)』課程

11

Grading Policy

- * Adjust flexibly in response to the epidemic of COVID-19!
- Quizzes / Homework (Lab Units): 20%~30%
- Quizzes: 2 (* in-person/on-site, close-book)
 - Homework (Lab Units): 3~4 (Verilog)
- ◆ Term Project: 20% ~ 30%
 - 1~2 students/group, project reports, demo, and oral presentation (* on-line or in-person/on-site ?)
- Examinations: $2,40\% \sim 60\%$
 - (* in-person/on-site, close-book)
 - Midterm Exam: the 8th week (11/3 Thu.56)
 - Final Exam: the 16th week (12/29 Thu.56)
- Participation/Advancement: Bonus

Review of Digital Circuits

- Combinational circuits
- ♦ Sequential circuits
 - Latches
 - Flip-Flops
 - Synchronous sequential circuits
 - Asynchronous sequential circuits

- Parallel adder, Encoder, Decoder, Multiplexer, ...

m outputs

• Analysis procedure:

Logic diagram → Output Boolean functions, a truth table, or a verbal explanation of the ckt op

- 1. Label all gate outputs that are a function of input variables w/ symbols.
- 2. Determine the Boolean function for each gate output.
- 3. Label the gates that are a function of input variables and previously labeled gates w/ other symbols.
- 4. Find the Boolean functions for these gates.
- 5. Repeat step 2 until the outputs of the ckt are obtained in terms of input variables.

18

• Design procedure:

Specification of the problem

- → Logic ckt diagram or a set of Boolean functions
- 1. Specification: From the specifications of the ckt, determine the required # of inputs and outputs and assign a symbol to each.
- 2. Formulation: Derive the truth table that defines the required relationship b/t inputs and outputs.

3. Optimization:

- Apply two-level and multiple-level optimization:
 Obtain the simplified Boolean functions for each output as a function of the input variables.
- Draw a logic diagram for the resulting ckt using ANDs, ORs, and NOTs.
- 4. Technology mapping: Transform the logic diagram to a new diagram using the available implementation technology.
- 5. Verification: Verify the correctness of the design.

Design procedure:

- 1. From the word description and specifications of the desired operation, derive a state diagram or state table for the ckt.
- 2. Reduce the # of states if necessary.
- 3. Assign binary values to the states.
- 4. Obtain the binary-coded state table.
- 5. Choose the type of flip-flops to be used.
- 6. Derive the simplified flip-flop input equations and output equations.
- 7. Draw the logic diagram with flip-flops and combinational gates.
- 8. Verify the correctness of the design.

22

An Example of Digital Systems

♦ Digital computer:

Revolution in Hardware Design

- Pervasive use of software tools to assist in the process of hardware design
 - Hardware description language (HDL)
 - Computer-aided design tools: simulation, synthesis, ...
 - * Hardware design looks like software design
- ◆ Emergence of rapid implementation circuit technology
 - Programmable logic devices (PLDs)