Linguaggi Formali e Traduttori

3.4 Automi a pila

- Sommario
- Esempio informale
- Automi a pila
- Esempio: riconoscitore di stringhe anbn
- Descrizioni istantanee
- Mosse di un automa a pila
- Esempio
- Linguaggio accettato da un automa a pila
- Esempio: riconoscitore di stringhe ww^R
- Esercizi

È proibito condividere e divulgare in qualsiasi forma i materiali didattici caricati sulla piattaforma e le lezioni svolte in videoconferenza: ogni azione che viola questa norma sarà denunciata agli organi di Ateneo e perseguita a termini di legge.

Sommario

Motivazione

• Le grammatiche libere forniscono un approccio generativo per la descrizione di linguaggi liberi.

In questa lezione

- Studiamo un <u>approccio riconoscitivo</u> gli **automi a pila** per la descrizione di linguaggi liberi.
- Definiamo due nozioni di linguaggio riconosciuto da un automa a pila, il linguaggio riconosciuto **per stato finale** ed il linguaggio riconosciuto **per pila vuota**.
- Mostriamo che le due nozioni sono equivalenti.

Esempio informale

Inizializzazione

• La pila contiene un unico simbolo Z_0 usato come "sentinella" (Z_0 = la pila finisce qui).

Stato q_0 : conteggio delle a.

- L'automa <u>accumula sulla pila</u> le *a*.
- L'automa può "scommettere" di aver letto tutte le a e passare a q_1 .

Stato q_1 : conteggio delle b.

- ullet L'automa controlla che, per ogni ullet della stringa, vi sia una ullet sulla pila e la rimuove.
- ullet Se l'automa vede la sentinella Z_0 sulla pila deve aver raggiunto la fine della stringa e passa a q_2 .

Stato q_2 : accettazione.

Automi a pila

Definizione

Un automa a pila (detto anche PDA, da PushDown Automaton) è una settupla $A=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,F)$ dove:

- Q è un insieme finito di stati
- Σ è l'alfabeto di input (simboli che possono comparire nella stringa da riconoscere)
- Γ è l'alfabeto della pila (simboli che possono comparire sulla pila)
- $\delta:Q imes(\Sigma\cup\{arepsilon\}) imes\Gamma o\wp(Q imes\Gamma^*)$ è la funzione di transizione
- $q_0 \in Q$ è lo stato iniziale
- ullet $Z_0\in\Gamma$ è il **simbolo iniziale** presente sulla pila all'inizio del riconoscimento
- $F \subseteq Q$ è l'insieme di stati finali

Interpretazione di $(p,\gamma)\in\delta(q,lpha,Z)$

- ullet Quando l'automa si trova nello stato $oldsymbol{q}$ e il simbolo in cima alla pila è $oldsymbol{Z}$...
- ullet ... l'automa può leggere il simbolo lpha dalla stringa (o nulla se lpha=arepsilon) ...
- ullet ... spostandosi nello stato p ...
- ullet ... rimuovendo (pop) $oldsymbol{Z}$ dalla cima della pila ...
- ... e inserendo (push) tutti i simboli γ sulla pila.

Esempio: riconoscitore di stringhe aⁿbⁿ

Definiamo il PDA $(\{q_0,q_1,q_2\},\{a,b\},\{a,Z_0\},\delta,q_0,Z_0,\{q_2\})$ dove

Transizione			Etichetta	Azione sulla pila
$\overline{\delta(q_0,a,Z_0)}$	=	$\{(q_0,aZ_0)\}$	$a,Z_0/aZ_0$	$\overline{\text{push }a}$
$\delta(q_0,a,a)$	=	$\{(q_0,aa)\}$	a,a/aa	$\mathrm{push}\ a$
$\delta(q_0,arepsilon,Z_0)$	=	$\{(q_1,Z_0)\}$	$arepsilon, Z_0/Z_0$	_
$\delta(q_0,\varepsilon,a)$	=	$\{(q_1,a)\}$	arepsilon,a/a	_
$\delta(q_1,b,a)$	=	$\{(q_1,\varepsilon)\}$	$b,a/\varepsilon$	$\operatorname{pop} a$
$\delta(q_1,arepsilon,Z_0)$	=	$\{(q_2,Z_0)\}$	$arepsilon, Z_0/Z_0$	_

Descrizioni istantanee

Definizione

Dato un automa a pila $P=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,F)$, una descrizione istantanea di P (talvolta abbreviata con D.I.) è una tripla (q,w,α) in cui:

- $q \in Q$ è lo stato in cui si trova l'automa
- ullet $w\in oldsymbol{arSigma}^*$ è ciò che rimane da riconoscere della stringa di input
- $lpha \in arGamma^*$ è il contenuto della pila dalla cima (sinistra di lpha) al fondo (destra di lpha)

Intuizione

La descrizione istantanea è intesa a specificare completamente la configurazione di un automa a pila in un momento durante il processo di riconoscimento di una stringa.

Mosse di un automa a pila

Definizione

Dato un automa a pila $P=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,F)$, definiamo la relazione \vdash_P come segue

$$egin{array}{lll} (q,aw,Xeta) & dash_P & (p,w,lphaeta) & \sec{(p,lpha)} \in \delta(q,a,X) \ (q,w,Xeta) & dash_P & (p,w,lphaeta) & \sec{(p,lpha)} \in \delta(q,arepsilon,X) \end{array}$$

e diciamo che P fa una mossa da I a J (dove I e J sono descrizioni istantanee) se $I \vdash_P J$.

Definizione

Scriviamo \vdash_P^* per la chiusura riflessiva e transitiva di \vdash_P . Ovvero, \vdash_P^* è la relazione tale che

- $I \vdash_P^* I$
- se $I \vdash_P K$ e $K \vdash_P^* J$, allora $I \vdash_P^* J$

Convenzione

Scriviamo semplicemente \vdash e \vdash * laddove l'automa P di riferimento è chiaro dal contesto.

Esempio

Tutte le mosse dell'automa in slide 5 partendo dalla descrizione istantanea $(q_0, aabb, Z_0)$:

Note

- Le mosse "verticali" (T) corrispondono alla lettura di un simbolo dalla stringa di input.
- Le mosse "orizzontali" () corrispondono a transizioni spontanee.
- C'è una sequenza di mosse che porta alla consumazione completa dell'input *aabb*.

Linguaggio accettato da un automa a pila

Definizione

Dato $P=(Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$, il linguaggio accettato da P per stato finale è

$$L(P) \stackrel{\mathsf{def}}{=} \{ w \in \Sigma^* \mid (q_0, w, Z_0) dash_P^* (q, arepsilon, lpha), q \in F \}$$

mentre il **linguaggio accettato da** P per pila vuota è

$$N(P) \stackrel{\mathsf{def}}{=} \{ w \in \Sigma^* \mid (q_0, w, Z_0) dash_P^* (q, arepsilon, arepsilon) \}$$

Note

- Nell'accettazione per stato finale, il contenuto della pila nella D.I. finale è irrilevante.
- Nell'accettazione per pila vuota, lo stato nella D.I. finale può non essere finale.
- In entrambi i casi, la stringa di input deve essere consumata completamente.

Esempio: riconoscitore di stringhe ww^R

Esercizi

- 1. Definire PDA per riconoscere i seguenti linguaggi. Usare l'accettazione per stato finale o per pila vuota, a seconda di cosa è più conveniente.
 - 1. $\{a^nb^{2n} \mid n \ge 0\}$ 2. $\{a^{2n}b^n \mid n \ge 0\}$
 - 3. $\{a^mb^n\mid 0\leq m\leq n\}$
 - 4. $\{a^m b^n \mid 0 \le n \le m\}$
 - 5. $\{w2w^R \mid w \in \{0,1\}^*\}$
- 2. Determinare tutte le mosse possibili dell'automa mostrato in slide 10 a partire dalla D.I. $(q_0, 0110, Z_0)$. Usare uno schema analogo a quello della slide 8.