CLAIMS

- 1. A method of controlling a conductivity of a Ga₂O₃
- 2 system single crystal, characterized in that:
- 3 a desired resistivity is obtained by adding a
- 4 predetermined dopant to the Ga₂O₃ system single crystal.
- 2. A method of controlling a conductivity of a Ga₂O₃
- 2 system single crystal according to claim 1, characterized
- 3 in that:
- 4 the predetermined dopant is a group IV element which
- 5 decreases a resistance of the Ga_2O_3 system single crystal.
- 3. A method of controlling a conductivity of a Ga₂O₃
- 2 system single crystal according to claim 2, characterized
- 3 in that:
- 4 the group IV element is Si, Hf, Ge, Sn, Ti or Zr.
- A method of controlling a conductivity of a Ga₂O₃
- 2 system single crystal according to claim 2, characterized
- 3 in that:
- 4 a value of 2.0×10^{-3} to $8.0 \times 10^{2} \ \Omega \text{cm}$ is obtained as
- 5 the desired resistivity by adding a predetermined amount of
- 6 group IV element.

- 5. A method of controlling a conductivity of a Ga₂O₃
- 2 system single crystal according to claim 4, characterized
- 3 in that:

:

- a carrier concentration of the Ga_2O_3 system single
- 5 crystal is controlled to fall within a range of 5.5×10^{15}
- 6 to 2.0×10^{19} /cm³ as a range of the desired resistivity.
- 6. A method of controlling a conductivity of a Ga₂O₃
- 2 system single crystal according to claim 1, characterized
- 3 in that:
- 4 the predetermined dopant is a group II element which
- 5 increases a resistance of the Ga₂O₃ system single crystal.
- 7. A method of controlling a conductivity of a Ga₂O₃
- 2 system single crystal according to claim 6, characterized
- 3 in that:
- 4 the group II element is Mg, Be or Zn.
- 8. A method of controlling a conductivity of a Ga₂O₃
- 2 system single crystal according to claim 6, characterized
- 3 in that:
- 4 $1 \times 10^3 \, \Omega$ cm or more is obtained as the desired
- 5 resistivity by adding a predetermined amount of group II

27

6 element.