FOURTH SEMESTER

B.Tech. (COE/SW)

END SEMESTER EXAMINATION

MAY-2012

COE/SW-213 OPERATING SYSTEMS DESIGN

Time: 3:00 Hours Max, Marks: 70

Note: Answer any FIVE questions.

Assume suitable missing data, if any.

- 1[a] What are the basic functions of an operating system? Explain each in brief and also discuss different states of a process with the help of state transition diagram.
 6
 - [b] What do you understand by race condition? Give example of arising of race condition in concurrent processing.
 - [c] Compare and contrast real time and time sharing operating system with example.
- 2[a] Consider a system with a set of processes P₁, P₂ and P₃ and their CPU burst times, priorities and arrival times being mentioned as below:-

Process	CPU burst time	Arrival time	Priority
P ₁	5	0	2
P ₂	15	1	3
P ₃	10	2	1

assuming I to be highest priority, calculate the following:-

- Average waiting time using FCFS, SJF (Preemptive and non preemptive) and priority (Preemptive and non preemptive) scheduling mechanism.
- (ii) Assume time quantum to be 2 units of time. Calculate average waiting time and average turn around time using Round-Robin scheduling.
- [b] What are the necessary conditions to hold dead lock in a system? Explain the resource allocation graph algorithm to deal with dead lock problem.
- 3[a] What are semaphores? What is the role of critical section in process synchronization? Describe producer consumer problem with its possible solution.

- [b] What is page fault? Given references to the following pages by a program 7, 0, 1, 2, 0, 3, 4, 2, 3, 0, 3 and there are three frames available in the memory, by using following page replacement algorithm
 - (i) FIFO (ii) LRU (iii) Optimal how many page faults will occur?

7

- 4[a] Discuss the Contigous, Linked and Indexed file allocation schemes. Which allocation scheme will minimize the amount of space required in directory structure and why?
 7
 - [b] Describe the Banker's algorithm for safe allocation. Consider a system with 5 processes P₀ to P₄ and three resource types A, B, C resource A has 7 instances, B has 2 and C has 6 instances suppose at t₀ time we have following state:-

Process	Allocation		Request		Available				
	1	B	C	A	B	C	A	В	C
P ₀	0	1	0	0	0	0	0	0	0
P ₁	2	0	0	2	0	2			
P ₂	3	0	3	0	0	0			
P ₃	2	1	1	1	0	0		High	
P ₄	0	0	2	0	0	2			-

- (i) Is the given system in dead lock state?
- (ii) Suppose P₂ makes an additional request (0,0,1) what will be the effect of this request to the system?
- 5[a] Compare and contrast paging and segmentation and also discuss the cause of thrashing and what steps are taken by system to eliminate this problem?
 7
 - [b] Suppose the moving head disk with 200 tracks is currently serving a request for track 143 and has just finished a request for track 125 if the queue of requests is kept in FIFO order: 86, 147, 91, 177, 94, 150.

What is the total head movement for following scheduling schemes:-

- (i) FCFS
- (ii) SSTF
- (iii) C-SCAN.

7

6[a] Explain various types of schedulers available. Write the differences among them also. What are the objectives of CPU scheduling?

[b]	Describe the segmented paging scheme of memory management	t and
200	the hardware required to support the system.	7
7	Write short notes on following:-	14
(i)	Dead lock avoidance and Dead lock prevention	
(ii)	Multilevel queue and multilevel feedback queue scheduling.	
(iii)	CPU bound and I/O bound processes,	TO BE
9/102		