DATA SCIENCE WITH R

HYPOTHESIS TESTING

Introduction to Hypothesis Testing

Basic Framework of a Hypothesis Test

Distance Measures

Central Limit Theorem

Types of Hypothesis Tests

Example: IQ Testing

We test the IQs of a random sample of 40 Jigsaw students. We find average IQ is 104 with a std deviation of 12.

Example: IQ Testing

We test the IQs of a random sample of 40 Jigsaw students. We find average IQ is 104 with a std deviation of 12.

IQ tests are standardized such that mean = 100.

Example: IQ Testing

We test the IQs of a random sample of 40 Jigsaw students. We find average IQ is 104 with a std deviation of 12.

IQ tests are standardized such that mean = 100.

Would you be able to state with certainty that this group of people (Jigsaw) are more intelligent than average?

Example: IQ Testing

We test the IQs of a random sample of 40 Jigsaw students. We find average IQ is 104 with a std deviation of 12.

IQ tests are standardized such that mean = 100.

Would you be able to state with certainty that this group of people (Jigsaw) are more intelligent than average?

Population Std Deviation is unknown:

Example: IQ Testing

We test the IQs of a random sample of 40 Jigsaw students. We find average IQ is 104 with a std deviation of 12.

IQ tests are standardized such that mean = 100.

Would you be able to state with certainty that this group of people (Jigsaw) are more intelligent than average?

Population Std Deviation is unknown:

1. If population std deviation is not known, sample std deviation $\bf s$ can be substituted for pop std deviation $\bf \sigma$

Example: IQ Testing

We test the IQs of a random sample of 40 Jigsaw students. We find average IQ is 104 with a std deviation of 12.

IQ tests are standardized such that mean = 100.

Would you be able to state with certainty that this group of people (Jigsaw) are more intelligent than average?

Population Std Deviation is unknown:

- 1. If population std deviation is not known, sample std deviation $\bf s$ can be substituted for pop std deviation $\bf \sigma$
- 2. The distribution of sample means will follow **T** (μ , **s**/(\sqrt{n})

Essentially, we need to calculate -

What is the probability that, purely by random chance, we picked a sample that gave us an average of 104 when the actual population average is 100?

Essentially, we need to calculate -

What is the probability that, purely by random chance, we picked a sample that gave us an average of 104 when the actual population average is 100?

Null Hypothesis:

Jigsaw students IQ is the same as the general population

Essentially, we need to calculate -

What is the probability that, purely by random chance, we picked a sample that gave us an average of 104 when the actual population average is 100?

Null Hypothesis:

Jigsaw students IQ is the same as the general population

Alternate Hypothesis:

Jigsaw students IQ is > than the general population

Essentially, we need to calculate -

What is the probability that, purely by random chance, we picked a sample that gave us an average of 104 when the actual population average is 100?

Null Hypothesis:

Jigsaw students IQ is the same as the general population

Alternate Hypothesis:

Jigsaw students IQ is > than the general population

Significance Level: 5%

Essentially, we need to calculate -

What is the probability that, purely by random chance, we picked a sample that gave us an average of 104 when the actual population average is 100?

Null Hypothesis:

Jigsaw students IQ is the same as the general population

Alternate Hypothesis:

Jigsaw students IQ is > than the general population

Significance Level: 5%

Test Statistic: $T = (104 - 100)/(12/40)^{0.5} = 2.10$

Essentially, we need to calculate -

What is the probability that, purely by random chance, we picked a sample that gave us an average of 104 when the actual population average is 100?

Null Hypothesis:

Jigsaw students IQ is the same as the general population

Alternate Hypothesis:

Jigsaw students IQ is > than the general population

Significance Level: 5%

Test Statistic: $T = (104 - 100)/(12/40)^{0.5} = 2.10$

P- Value = 1 - T.DIST(2.10,39,true) = 0.02

Essentially, we need to calculate -

What is the probability that, purely by random chance, we picked a sample that gave us an average of 104 when the actual population average is 100?

Null Hypothesis:

Jigsaw students IQ is the same as the general population

Alternate Hypothesis:

Jigsaw students IQ is > than the general population

Significance Level: 5%

Test Statistic: $T = (104 - 100)/(12/40)^{0.5} = 2.10$

P- Value = 1 - T.DIST(2.10,39,true) = 0.02

Conclusion – Reject Null Hypothesis

Directional Tests

An alternate hypothesis can be set up in two ways:

An alternate hypothesis can be set up in two ways:

Ho: IQ of Jigsaw students is same as general population

An alternate hypothesis can be set up in two ways:

Ho: IQ of Jigsaw students is same as general population

H1: IQ of Jigsaw students > general population

An alternate hypothesis can be set up in two ways:

Ho: IQ of Jigsaw students is same as general population

H1: IQ of Jigsaw students > general population

OR

H1: IQ of Jigsaw students is **different from the general population**

An alternate hypothesis can be set up in two ways:

Ho: IQ of Jigsaw students is same as general population

H1: IQ of Jigsaw students > general population

OR

H1: IQ of Jigsaw students is **different from the general population**

Which is appropriate?

If you have strong reason to believe that IQ is greater then you should use a one tail test

If you have strong reason to believe that IQ is greater then you should use a one tail test

For example:

A manufacturer testing packaged weight of a product

If you have strong reason to believe that IQ is greater then you should use a one tail test

For example:

A manufacturer testing packaged weight of a product

 You could be liable for fines if your packaged weight is < what is printed on the package.

If you have strong reason to believe that IQ is greater then you should use a one tail test

For example:

A manufacturer testing packaged weight of a product

- You could be liable for fines if your packaged weight is < what is printed on the package.
- You are not interested in testing if packaged weight is greater

If you have strong reason to believe that IQ is greater then you should use a one tail test

For example:

A manufacturer testing packaged weight of a product

- You could be liable for fines if your packaged weight is < what is printed on the package.
- You are not interested in testing if packaged weight is greater
- Use a one tail test

If, however, you do not have a strong reason for believing that sample outcome has to be either greater than or less than an expected population mean, use a two tail test

If, however, you do not have a strong reason for believing that sample outcome has to be either greater than or less than an expected population mean, use a two tail test

For example:

A manufacturing process has to generate auto parts with weights of exactly 0.8 lbs. If you were running a quality check, you will want to check if the process is producing units of exactly 0.8 lbs or different from 0.8 lbs.

If, however, you do not have a strong reason for believing that sample outcome has to be either greater than or less than an expected population mean, use a two tail test

For example:

A manufacturing process has to generate auto parts with weights of exactly 0.8 lbs. If you were running a quality check, you will want to check if the process is producing units of exactly 0.8 lbs or different from 0.8 lbs.

Your alternate hypothesis therefore will be:

H1: Process producing weights different from 0.8 lbs

If, however, you do not have a strong reason for believing that sample outcome has to be either greater than or less than an expected population mean, use a two tail test

For example:

A manufacturing process has to generate auto parts with weights of exactly 0.8 lbs. If you were running a quality check, you will want to check if the process is producing units of exactly 0.8 lbs or different from 0.8 lbs.

- Your alternate hypothesis therefore will be:
 H1: Process producing weights different from 0.8 lbs
- This would therefore be a two tail test

Another example:

You are testing efficacy of a drug, and you cannot be sure if it is better or worse than the existing protocol

Another example:

You are testing efficacy of a drug, and you cannot be sure if it is better or worse than the existing protocol

Use a two tail test

Another example:

You are testing efficacy of a drug, and you cannot be sure if it is better or worse than the existing protocol

Use a two tail test

What are the implications of one tail v/s two tail?

- If you are testing $X > \mu$ or $X < \mu$, rejection region will fall on one side of the distribution curve
- If you are testing $X <> \mu$, then rejection region will fall symmetrically on both sides of the curve

In terms of practical application to hypothesis tests,

If using a two tail test, the rejection criteria for a 5% level of significance:

Two tests at the same probability level (95%)

In terms of practical application to hypothesis tests,

If using a two tail test, the rejection criteria for a 5% level of significance:

Reject Null if p-value is less than 0.025: (0.05/2)

So for any pre-determined significance level, adjust rejection criteria if using a two tail test

Two tests at the same probability level (95%)

In terms of practical application to hypothesis tests,

If using a two tail test, the rejection criteria for a 5% level of significance:

Reject Null if p-value is less than 0.025: (0.05/2)

So for any pre-determined significance level, adjust rejection criteria if using a two tail test

Which is a stricter test, one-tail or two-tail?

Two tests at the same probability level (95%)

Coming Up

Types of Hypothesis Tests:

Two Sample Tests

THANK YOU