Question 1

Construct the field of 9 elements. Write out the addition and multiplication tables.

Solution: Consider the set $\{0,1,2,i,1+i,2+i,2i,2+i,2+2i\}$ of 9 elements with the following tables.

+	0	1	2	i	1+i	2+i	2i	1+2i	2+2i
0	0	1	2	i	1+i	2+i	2i	1 + 2i	2+2i
1	1	2	0	1+i	2+i	i	1+2i	2+2i	2i
2	2	0	1	2+i	i	1+i	2+2i	2i	1+2i
i	i	1+i	2+i	2i	1+2i	2+2i	0	1	2
1+i	1+i		i	1+2i	2+2i	2i	1	2	0
2+i	2+i	i		2+2i		1+2i	2	0	1
2i	2i	1+2i	2+2i	0	1	2	i	1+i	2+i
1+2i	1+2i	2+2i	2i	1	2	0	1+i	2+i	i
2+2i	2+2i	2i	1+2i	2	0	1	2+i	i	1+i

and

×	0	1	2	i	1+i	2+i	2i	1+2i	2+2i
0	0	0	0	0	0	0	0	0	0
1	0	1	2	i	1+i	2+i	2i	1+2i	2+2i
2	0	2	1	2i	2+2i	1+2i	i	2+i	1+i
i	0	i	2i	2	2+i	2+2i	1	1+i	1+2i
1+i	0	1+i	2+2i	2+i	2i	1	1+2i	2	i
2+i	0	2+i	1+2i	2+2i	1	i	1+i	2i	2
2i	0	2i	i	1	1+2i	1+i	2	2+2i	2+i
1+2i	0	1+2i	2+i	1+i	2	2i	2+2i	i	1
2+2i	0	2+2i	1+i	1+2i	i	2	2+i	1	2i

Since the field is unique up to isomorphism, the field of 9 elements is as described in the table.

Question 2

Determine whether or not two fields $\mathbb{F}_3[x]/(x^2-2)$ and $\mathbb{F}_3[x]/(x^2-2x-1)$ are isomorphic. If they are isomorphic, find an isomorphism.

Solution: Notice that since there are 3 irreducible linear polynomials over \mathbb{F}_3 which are x, x-1, and x+1, and $x^3-x=x(x+1)(x-1)$ Next, since

$$\gcd(x^2 - 2, x^3 - x) = \gcd(x^2 - 2, x^2 - 1) = 1$$

and

$$\gcd(x^2 - 2x - 1, x^3 - x) = \gcd(x^2 - 2x - 1, x^2 - 1) = \gcd(x^2 - 2x - 1, 2x) = \gcd(x^2 - 1, 2x$$

it follows that, $x^2 - 2$ and $x^2 - 2x - 1$ are both irreducible, thus

$$\mathbb{F}_{3^2} \simeq \mathbb{F}_3[x]/(x^2-2) \simeq \mathbb{F}_3[x]/(x^2-2x-1)$$

Note that since the polynomials are irreducible, these two are fields.

Now, for the isomorphism, consider that for any $f(x) \in \mathbb{F}_3[x]$, there exists r(x) such that $f(x) = q(x)(x^2 - 2x - 1) + r(x)$ where $\deg(r) \leq 1$ by the euclidean algorithm. Thus, for any $f(x) \in \mathbb{F}_3[x]/(x^2 - 2x - 1)$, f(x) = r(x) for some linear or constant r(x). Moreover, there exists $r'(x) \in \mathbb{F}_3[x]/(x^2 - 2)$ such that $\phi(r') = r$ when

$$\phi: \mathbb{F}_3[x]/(x^2-1) \hookrightarrow \mathbb{F}_3[x] \twoheadrightarrow \mathbb{F}_3[x]/(x^2-2x-1)$$

by the natural embedings.

And if $\phi(r)(x) = 0 \in \mathbb{F}_3[x]/(x^2 - 2x - 1)$, then the corresponding polynomial in $\mathbb{F}_3[x]$ (in the middle step of ϕ) should only be $q(x)(x^2 - 2x - 1)$ for some q(x). Then, as the $\mathbb{F}_3[x]/(x^2 - 2) \hookrightarrow \mathbb{F}_3[x]$ is the natural embeding, we have that r = 0, as there is no polynomial of degree greater than 1 in $\mathbb{F}_3[x]/(x^2 - 2)$ and the natural embeding preserves degree.

Therefore, ϕ is injective and surjective, thus it is an isomorphism.

Question 3

Let \mathbb{F}_q be a finite field and let n be a positive integer. Show that there exists an irreducible polynomial over \mathbb{F}_q of degree n.

Solution:

Claim 1 Existence of \mathbb{F}_{q^n}

 \mathbb{F}_q must have characteristic p for some prime p as it is finite. Thus, $\mathbb{F}_p \subset \mathbb{F}_q$. Then, the degree $[\mathbb{F}_q : \mathbb{F}_p] = k$ for some integer, so $q = p^k$. Therefore, there exists a field $\mathbb{F}_{q^n} = \mathbb{F}_{p^{kn}}$.

Since there is such field, consider $E = \mathbb{F}_{q^n}$ and that $[E : \mathbb{F}_q] = n$ and E is a finite extension, thus $E = \mathbb{F}_q(\alpha)$ for some $\alpha \in E$. But since the degree of $[E : \mathbb{F}_q] = n$, then the minimal polynomial $m_{\alpha} \in \mathbb{F}_q[x]$ is of degree n. Since m_{α} is minimal, it is irreducible.

Question 4

Find a splitting field of $x^6 - 3$ over \mathbb{F}_7 and the degree of the splitting field.

Solution: Notice that if there is a linear or quadratic irreducible element that divides $x^6 - 3$, then it must divides $x^{7^2} - x$ since $x^{7^2} - x$ is the product of all irreducible polynomial degree 1 and 2.

Note that over a field of characteristic 7,

$$(x^6 - 3)^7 = x^{67} - 3^7$$

and

$$((x^6 - 3)^7 + 3^7)(x^6 - 3) = (x^{42})(x^6 - 3) = (x^{48} - 3x^{42})$$

Then, if something divides $x^6 - 3$ and $x^{7^2} - x$, then it must divides $gcd(x^6 - 3, x^{49} - x)$. But

$$\begin{split} \gcd(x^6-3,x^{49}-x) &= \gcd(x^6-3,x^{48}-1) \\ &= \gcd(x^6-3,x^{48}-1-x^{48}+3x^{42}) \\ &= \gcd(x^6-3,3x^{42}-1-3(x^{42}-3^7) \\ &= \gcd(x^6-3,3^8-1) \\ &= 1 \end{split}$$

Thus, there is none.

Next, if there is a cubic irreducible polynomial dividing $x^6 - 3$, then it must divides $x^{7^3} - x$ since $x^{7^3} - x$ is the product of all irreducible polynomial degree dividing 3.

Note that $7^3 = 343$,

$$((x^6-3)^7)^7 = (x^{42}-3^7)^7 = (x^{294}-3^{49})$$

and

$$(x^{48})(x^6-3)^{49} = (x^{48})(x^{294}-3^{49}) = x^{342}-3^{49}x^{48}$$

So,

$$\begin{split} \gcd(x^6-3,x^{343}-x)&=\gcd(x^6-3,x^{342}-1)\\ &=\gcd(x^6-3,x^{342}-1-x^{342}+3^{49}x^{48})\\ &=\gcd(x^6-3,3^{49}(x^{48}-1)+3^{49}-1)\\ &=\gcd(x^6-3,3^{49}(3^8-1)+3^{49}-1)\\ &=1 \end{split}$$

Thus, there is none.

If there is no irreducible divisor of degree less than 4, there is no irreducible divisor. Thus, x^6-3 is irreducible. Let E be the splitting field of f over \mathbb{F}_7 . Then since $\mathbb{F}_7 \subset E$, $E=\mathbb{F}_{7^k}$ for some k. If $k \leq 5$, it is already shown that x^6-3 is irreducible, thus, does not divide $x^{7^k}-x$ which is the product of irreducible degree dividing k. As \mathbb{F}_{7^k} is the splitting field of $x^{7^k}-x$, then it is not the splitting field of f.

However, $x^6 - 3$ divides $x^{7^6} - x$ since it is the product of all irreducible polynomials degree dividing 6. So, \mathbb{F}_{7^6} splits $x^{7^6} - x$, thus it splits f. Therefore, the spliting field of f over \mathbb{F}_7 is \mathbb{F}_{7^6} , which gives that $[\mathbb{F}_{7^6} : \mathbb{F}_7] = 6$.

Question 5

Let $f \in \mathbb{F}_q[x]$. Show that if f is irreducible, then f divides $x^{q^{\deg(f)}} - x$.

Solution: Let α be a root of f, then $[\mathbb{F}_q(\alpha):\mathbb{F}_q] = \deg(f) = n$. As $q = p^k$ and there exists a field $\mathbb{F}_{q^n} = \mathbb{F}_{p^{nk}}$ (as per claim 1). Then, $\mathbb{F}_q(\alpha) = \mathbb{F}_{q^n} = \mathbb{F}_{p^{nk}}$.

Now, $\mathbb{F}_{p^{nk}}$ is the splitting field of $x^{p^{nk}} - x$ over \mathbb{F}_p and α is an element in the splitting field with $\alpha \notin \mathbb{F}_q$. (because $\mathbb{F}_q(\alpha) = \mathbb{F}_{q^n}$). Therefore, α is a root of x^{q^n} . Hence, it follows that $f \mid x^{q^n} - x$.

Question 6

Let p be a prime integer. Find the smallest integer n such that \mathbb{F}_{p^n} contains two subfields isomorphic to \mathbb{F}_{p^r} and \mathbb{F}_{p^s} .

Solution: Notice that $\mathbb{F}_{p^r} \subset \mathbb{F}_{p^n}$ if and only if $r \mid n$ and similarly for s. If $n = \operatorname{lcm}(r, s)$ be the smallest integer that is divisible by r and s, then, $\mathbb{F}_{p^r} \subset \mathbb{F}_{p^n}$ and $\mathbb{F}_{p^s} \subset \mathbb{F}_{p^n}$. And by definition, $\operatorname{lcm}(r, s)$ is the least number, thus $n = \operatorname{lcm}(r, s)$.

Question 7

Prove that every finite extension of a finite field is normal.

Solution: Let $F = \mathbb{F}_q$ be an arbitrary finite field and E/F be a finite extension with [E : F] = n. Then, $q = p^k$ and that there exists \mathbb{F}_{q^n} as from claim 1.

Since $[E:F] = [\mathbb{F}_{q^n}:F]$ is finite over finite field F, then $|E| = |\mathbb{F}_{q^n}|$, which means that they are isomorphic due to the uniqueness of finite fields.

Now, as \mathbb{F}_{q^n} is the splitting field of $x^{p^{nk}} - x$ over \mathbb{F}_p , then it is normal over \mathbb{F}_p . Moreover, ad \mathbb{F}_q is an extension of \mathbb{F}_p , then \mathbb{F}_{q^n} is also normal over \mathbb{F}_q . Lastly, as $E \simeq \mathbb{F}_{q^n}$, E is normal over $\mathbb{F}_q = F$.

Question 8

Let F be a field of char(F) = p. Prove that the quotient field of the polynomial ring F[x] over $F(x^p)$ is normal.

Solution: Consider that x^p is transcendental in F because if not, then there is a polynomial $a_0 + a_1 x^p + \cdots + a_n x^{pn} = 0$ where $a_i \in F$. But that means x is also algebraic over F, which contradicts that F[x] is a polynomial ring.

Therefore, $F[x^p]$ is a polynomial ring. Consider that x^p is irreducible $F[x^p]$, so the Eisenstein criterion applies for the $f(t) = t^p - x^p$ in $F[x^p][t]$. Hence, f(t) is irreducible over $F(x^p)$. Since x is a root of the polynomial, then $[F(x):F(x^p)] = p$ as f is the minimal polynomial of x and $F(x) = F(x^p)(x)$. Note also that p is a prime integer.

Next, notice that $f(t) = t^p - x^p = (t - x)^p$ over any field F of characteristic p. Therefore, f(t) splits over F(x). Moreover, if there is another field $F(x)/E/F(x^p)$, then $[E:F(x^p)]=1$, which is $E=F(x^p)$ or [F(x):E]=1, which is that E=F(x). Therefore, F(x) is the splitting field of f(t) over $F(x^p)$. Therefore, F(x), the quotient field of F[x], is normal over $F(x^p)$.

Question 9

Show that the polynomial $x^4 + 1$ is not irreducible over any field of nonzero characteristic.

Solution: For p = 2, consider that 1 + 1 = 0. This implies that

$$(x+1)^4 = (x^2 + x + x + 1)^2 = (x^2 + 1)^2 = (x^4 + x^2 + x^2 + 1) = (x^4 + 1)^4$$

which means $(x^4 + 1)$ is not irreducible over any field of characteristic 2.

Otherwise p is odd. Then there are 4 cases for p, which is $p \equiv 1, 3, 5, 7 \pmod{8}$.

For the case that $p \equiv 1$ or 7 (mod 8), there exist a number r such that $r^2 \equiv 2 \pmod{p}$. In other words, in the field with characteristic $p \equiv \pm 1 \pmod{8}$, there is an element r such that $r \cdot r = 2$. Then, as

$$(x^{2}-rx+1)(x^{2}+rx+1) = (x^{2}+1)^{2} - (rx)^{2} = x^{4} + 2x^{2} + 1 - r^{2}x^{2} = x^{4} + 1$$

the polynomial is reducible.

Lastly, if $p \equiv 3$ or 5 (mod 8), there exist a number r such that $r^2 \equiv -2 \pmod{p}$, which means that in the field of characteristic $p \equiv \pm 3 \pmod{8}$, there must be an element r such that $r \cdot r = -2$. Then, similarly,

$$(x^{2}-rx-1)(x^{2}+rx-1) = (x^{2}-1)^{2}-(rx^{2}) = x^{4}-2x^{2}+1-r^{2}x^{2} = x^{4}+1$$

. This implies that the polynomial is not irreducible.

Thus, the polynomial $x^4 + 1$ is not irreducible over any field of non-zero characteristic.

Question 10

Let F be a field. Show that if $a \in F \setminus F^p$ for a prime p, then $x^p - a$ is an irreducible polynomial over F.

Solution: Consider that F^p is the set $\{x^p \mid x \in F\}$, then let $a \in F$ and assume that $x^p - a$ is reducible. There must be some polynomial $g \in F[x]$ with $\deg(g) = k$ such that k < r and $g \mid f$. Let E be the splitting field of g over F, so that

$$g(x) = (x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_k)$$

As $g \in F[x]$, then g_0 , the constant term of g must be an element of F, therefore,

$$\alpha_1 \alpha_2 \cdots \alpha_k = g_0 \in F$$

Since α_i is a root of g, then it is of f, so $f(\alpha_i) = 0$ for any i. This means that $\alpha_i^p = a$ for all i. Next, consider that

$$a^k = \alpha_1^p \alpha_2^p \cdots \alpha_k^p = (\alpha_1 \alpha_2 \cdots \alpha_k)^p = q_0^p$$

Since k < p and p is prime, then there exists integer n, m making nk + mp = 1. From $a^k = g_0^p$, it could be infer that

$$a = a^{nk+mp} = a^{nk}a^{mp} = q_0^{np}a^{mp} = (q_0^n a^m)^p$$

Since $g_0^n a^m \in F$, then $a \in F^p$.

Hence, by contraposition, if $a \in F \setminus F^p$ for a prime p, then $x^p - a$ is an irreducible polynomial over F.