Decision and Estimation in Data Processing

Chapter II. Elements of Signal Detection Theory

Introduction

- Signal detection = the problem of deciding which signal is present from 2 or more possibilities
 - one possibility may be that there is no signal
- ▶ Based on **noisy** observations
 - signals are affected by noise

The model for signal detection

Figure 1: Signal detection model

Contents:

- ▶ Information source: generates messages a_n with probabilities $p(a_n)$
- ▶ Modulator: transmits a signal $s_n(t)$ for message a_n
- Channel: adds random noise
- ▶ Sampler: takes samples from the signal $s_n(t)$
- \triangleright Receiver: **decides** what message a_n has been transmitted

Practical scenarios

- Data transmission
 - ▶ binary voltage levels (e.g. $s_n(t) = constant$)
 - ▶ PSK modulation (Phase Shift Keying): $s_n(t) = \text{cosine}$ with same frequency but various initial phase
 - ► FSK modulation (Frequency Shift Keying): $s_n(t) = \text{cosines with}$ different frequencies
- Radar
 - ▶ a signal is emitted; if there is an obstacle, the signal gets reflected back
 - the receiver waits for possible reflections of the signal and must decide
 - no reflection is present -> no object
 - reflected signal is present -> object detected

Generalizations

- ▶ Decide between more than two signals
- Number of observations:
 - use only one sample
 - use multiple samples
 - observe the whole continuous signal for some time T

II.2 Detection of constant signals

Detection of a constant signal, white normal noise, 1 sample

- ► Simplest case: detection of a constant signal contaminated with white normal noise, using 1 sample
 - two messages a_0 and a_1
 - messages are encoded as constant signals
 - for a_0 : send $s_0(t) = 0$
 - for a_1 : send $s_1(t) = A$
 - over the signals there is white noise, normal distribution $\mathcal{N}(0, \sigma^2)$
 - ▶ receiver takes just 1 sample
 - decision: compare sample with a threshold

Decision

- ▶ The value of the sample taken is r = s + n
 - s is the true underlying signal ($s_0 = 0$ or $s_1 = A$)
 - n is a sample of the noise
- ▶ *n* is a (continuous) random variable, with normal distribution
- r is a random variable also
 - what distribution does it have?
- Decision is taken by comparing with a threshold T:
 - ▶ if r < T, take decision D_0 : decide the true signal is s_0
 - ▶ if $r \ge T$, take decision D_1 : decide the true signal is s_1

Hypotheses

- Receiver chooses between two hypotheses:
 - ▶ H_0 : true signal is s_0 (a_0 has been transmitted)
 - $ightharpoonup H_1$: true signal is s_1 (a_1 has been transmitted)
- Possible results
 - 1. No signal present, no signal detected.
 - ▶ Decision D_0 when hypothesis is H_0
 - ▶ Probability is $P(D_0 \cap H_0)$
 - 2. False alarm: no signal present, signal detected (error)
 - ▶ Decision S_1 when hypothesis is H_0
 - ▶ Probability is $P(D_1 \cap H_0)$
 - 3. **Miss**: signal present, no signal detected (error)
 - ▶ Decision D_0 when hypothesis is H_1
 - ▶ Probability is $P(D_0 \cap H_1)$
 - 4. Signal detected correctly: signal present, signal detected
 - ▶ Decision D_1 when hypothesis is H_1
 - ▶ Probability is $P(D_1 \cap H_1)$

Maximum likelihood criterion

- Choose the hypothesis that seems most likely given the observed sample r
- ▶ The **likelihood** of an observation r = the probability density of r given a hypothesis H_0 or H_1
- Likelihood in case of hypothesis H_0 : $w(r|H_0)$
 - r is only noise, so value is taken from the noise distribution
- ▶ Likelihood in case of hypothesis H_1 : $w(r|H_1)$
 - ightharpoonup r is A + noise, so value is taken from the distribution of (A + noise)
- ▶ Likelihood test:

$$\frac{w(r|H_1)}{w(r|H_0)} \underset{H_0}{\overset{H_1}{\geqslant}} 1$$

Graphical interpretation

- Consider noise having a normal distribution
- ▶ Plot the two density functions for H_0 , H_1

Decision via threshold

- ightharpoonup Decision via ML = comparing r with a threshold T
- ▶ The threshold = the cross-over point of the two distributions

Normal noise

- lacktriangle Particular case: the noise has normal distribution $\mathcal{N}(0,\sigma^2)$
- Likelihood test is $\frac{w(r|H_1)}{r|H_0} = \frac{e^{\frac{(r-A)^2}{2\sigma^2}}}{e^{\frac{r^2}{2\sigma^2}}} \underset{H_0}{\overset{H_1}{\gtrless}} 1$
 - this ratio is usually called likelihood ratio
- ► For normal distribution, it is easier to apply *natural logarithm* to the terms
 - logarithm is a monotonic increasing function, so it won't change the comparison
 - if A < B, then log(A) < log(B)
- ► The log-likelihood of an observation = the logarithm of the likelihood value
 - usually the natural logarithm, but any one can be used

Log-likelihood test for ML

▶ For normal noise, the ML decision means the log-likelihood test

$$\frac{(r-A)^2}{r^2} \underset{H_0}{\overset{H_1}{\geqslant}} 1$$

Applying square root

$$\frac{|r-A|}{|r|} \underset{H_0}{\overset{H_1}{\geqslant}} 1$$

- |r A| = distance from r to A, |r| = distance from r to 0
- ML decision with normal noise: choose the value 0 or A which is nearest to r
 - very general principle, encountered in many other scenarios
 - also known as nearest neighbor principle / decision
 - equivalent with setting a threshold $T = \frac{A}{2}$

Generalizations

- ▶ What if the noise has another distribution?
 - ▶ Threshold *T* is still the cross-over point, whatever that is
- ▶ What if the noise distributions are different for H_0 and H_1 ?
 - ▶ Threshold *T* is the cross-over point, whatever that is
- ▶ What if the signal $s_0(t)$ (for H_0) is not 0, but another constant value B?
 - T is the crossover point, the distributions are centered on B and A
 - ► In case of normal noise, choose B or A whichever is nearest (threshold is at middle point)

Generalizations

- ▶ What if we have more than two signal levels?
 - e.g. 4 possible signals: -6, -2, 2, 6
 - ▶ Just choose the most likely hypothesis, out of 4 likelihood functions
 - ▶ Not a single threshold value, now there are more

Pitfalls of ML decision

- ► The ML is based on comparing conditional probability density functions
 - ightharpoonup conditioned by H_0 or by H_1
- ► Conditioning by H_0 and H_1 ignores the probability of H_0 or H_1 actually happening
- ▶ Reminder: the Bayes rule

$$P(A \cap B) = P(B|A) \cdot P(A))$$

- Interpretation
 - ▶ The probability P(A) is taken out from P(B|A)
 - ▶ P(B|A) gives no information on P(A), the chances of A actually happening
 - Example: P(score | shoot)
- ▶ Practical: if $p(H_0) >> p(H_1)$, we may want to move the threshold towards H_1

The minimum error probability criterion

- ▶ Takes into account the probabilities $P(H_0)$ and $P(H_1)$
- ► Goal is to minimize the total probability of error P_e
 - errors = false alarms and misses
- Consider we have a threshold T such that
 - we decide D_0 when r < T
 - we decide D_1 when $r \geq T$
- We need to find T

Probability of error

Probability of false alarm

$$P(D_{1} \cap H_{0}) = P(D_{1}|H_{0}) \cdot P(H_{0})$$

$$= \int_{T}^{\infty} w(r|H_{0})dx \cdot P(H_{0})$$

$$= (1 - \int_{-\infty}^{T} w(r|H_{0})dx \cdot P(H_{0})$$

Probability of miss

$$P(D_0 \cap H_1) = P(D_0|H_1) \cdot P(H_1)$$
$$= \int_{-\infty}^{T} w(r|H_1) dx \cdot P(H_1)$$

▶ The sum is

$$P_e = P(H_0) + \int_{-\infty}^{T} [w(r|H_1) \cdot P(H_1) - w(r|H_0) \cdot P(H_0)] dx$$

Minimum probability of error

- We want to minimize P_e , i.e. to minimize the integral
- ▶ To minimize the integral, we choose T such that for all r < T, the term below the integral is **negative**
 - because integrating over all the interval where the function is negative ensures minimum value of integral
- So, when $w(r|H_1) \cdot P(H_1) w(r|H_0) \cdot P(H_0) < 0$ we have r < T, i.e. decision D_0
- ▶ Conversely, When $w(r|H_1) \cdot P(H_1) w(r|H_0) \cdot P(H_0) > 0$ we have r > T, i.e. decision D_1
- Therefore

$$w(r|H_1) \cdot P(H_1) - w(r|H_0) \cdot P(H_0) \underset{H_0}{\overset{H_1}{\geqslant}} 0$$

$$\frac{w(r|H_1)}{w(r|H_0)} \underset{H_0}{\overset{H_1}{\geqslant}} \frac{P(H_0)}{P(H_1)}$$

Interpretation

- Similar to ML, but threshold depends on probabilities of the two hypotheses
 - ▶ When one hypotheses is more likely than the other, the threshold is pushed in its favor, towards the other

Minimum risk (cost) criterion

- ▶ How to choose the threshold? We need criteria
 - ▶ In general: how to delimit regions R_i ?
- Minimum risk (cost) criterion: assign costs to decisions, minimize average cost
 - $ightharpoonup C_{ij} = \text{cost of decision } D_i \text{ when symbol was } a_j$
 - $C_{00} = \text{cost for good } a_0 \text{ detection}$
 - $C_{10} = \text{cost for false alarm}$
 - $ightharpoonup C_{01} = \text{cost for miss}$
- ▶ The risk = the average cost

$$R = C_{00}P(D_0 \cap a_0) + C_{10}P(D_1 \cap a_0) + C_{01}P(D_0 \cap a_1) + C_{11}P(D_1 \cap a_1)$$

Minimum risk criterion: minimize the risk R

Computations

- Proof on table:
 - Use Bayes rule
 - Notations: $w(r|a_i)$ (likelihood)
 - Probabilities: $\int_{R_i} w(r|a_j) dV$
- Conclusion, decision rule is

$$\frac{w(r|a_1)}{w(r|a_0)} \ge \frac{(C_{10} - C_{00})p(a_0)}{(C_{01} - C_{11})p(a_1)}$$
$$\Lambda(r) \ge K$$

- ▶ Interpretation: effect of costs, probabilities (move threshold)
- Can also apply logarithm (useful for normal distribution)

$$\ln \Lambda(r) \geqslant \ln K$$

Example at blackboard: random noise with $N(0, \sigma^2)$, one sample

Ideal observer criterion

- ► Minimize the probability of decision error P_e
 - \triangleright definition of P_e
- ▶ Particular case of minimum risk, with
 - $C_{00} = C_{11} = 0$ (good decisions bear no cost)
 - $ightharpoonup C_{10} = C_{01}$ (pay the same in case of bad decisions)

$$\frac{w(r|a_1)}{w(r|a_0)} \geqslant \frac{p(a_0)}{p(a_1)}$$

Maximum likelihood criterion

▶ Particular case of above, with equal probability of messages

$$\frac{w(r|a_1)}{w(r|a_0)} \ge 1$$

$$\ln \frac{w(r|a_1)}{w(r|a_0)} \ge 0$$

- **Example** at blackboard: random noise with $N(0, \sigma^2)$, one sample
- **Example** at blackboard: random noise with $N(0, \sigma^2)$, **two** samples