Introduction to

Algorithm Design and Analysis

[10] Union-Find

Jingwei Xu
https://cs.nju.edu.cn/ics/people/jingweixu/
index.html
Institute of Computer Software
Nanjing University

In the last class ...

- Hashing
 - Basic idea
- Collision handling for hashing
 - Closed address
 - Open address
- Amortized analysis
 - Array doubling
 - Stack operations
 - Binary counter

Union-Find

- Dynamic Equivalence Relation
 - Examples
 - Definitions
 - Brute force implementations
- Disjoint Set
 - Straightforward Union-Find
 - Weighted Union + Straightforward Find
 - Weighted Union + Path-compressing Find

Minimum Spanning Tree

- Kruskal's algorithm, greedy strategy:
 - Select one edge
 - With the minimum weight
 - Not in the tree
 - Evaluate this edge
 - This edge will NOT result in a cycle
- Critical issue:
 - How to know "NO CYCLE"?

Maze Generation

Black Pixels

- Maximum black pixel component
 - Let α be the size of the component
- Color one pixel black
 - How α changes?
 - How to choose the pixel, to accelerate the change in

Jigsaw Puzzle

- Multiple pieces may be glued together
- From "one player" to "two players"
 - Each group can only be moved in mutual exclusive way
 - How to decide the relation of "in the same group"

Dynamic Equivalence Relations

Equivalence

- Reflexive, symmetric, transitive
- Equivalent classes forming a partition
- Dynamic equivalence relation
 - Changing in the process of computation
 - IS instruction: yes or no (in the same equivalence class)
 - MAKE instruction: combining two equivalent classes, by relating two unrelated elements, and influencing the results of subsequent IS instructions.
 - Starting as equality relation

Implementation: How to Measure

- The number of basic operations for processing a sequence of m MAKE and/or IS instructions on a set S with n elements.
- An example: S={1, 2, 3, 4, 5}
 - 0. [create] {{1}, {2}, {3}, {4}, {5}}

• 4. MAKE
$$2=5$$
. {{1}, {2, 3, 5}, {4}}

• 6. MAKE
$$4=1$$
. $\{\{1, 4\}, \{2, 3, 5\}\}$

• 7. is
$$2 = 4$$
?

Union-Find based Implementation

The maze problem

- Randomly delete a wall and union two cells
- Loop until you find the inlet and outlet are in one equivalent class

The Kruskal algorithm

- Find whether u and v are in the same equivalent class
- If not, add the edge and union the two nodes

The black pixels problem

- Find two black pixels not in the same group
- How the union will increase α

Implementation: Choices

- Matrix (relation matrix)
 - Space in Θ(n²), and worst-case cost in Ω(mn) (mainly for row copying for MAKE)
- Array (for equivalence class ID)
 - Space in Θ(n), and worst-case cost in Ω(mn) (mainly for search and change for MAKE)
- Forest of rooted trees
 - A collection of disjoint sets, supporting Union and Find operations
 - Not necessary to traverse all the elements in one set

Union-Find ADT

- Constructor: Union-Find create(int n)
 - sets = create(n) refers to a newly created group of sets {1}, {2}, ..., {n} (n singletons)
- Access Function: int find(UnionFind sets, e)
 - find(sets, e) = <e>
- Manipulation Procedures
 - void makeSet(UnionFind sets, int e)
 - void union(UnionFind sets, int s, int t)

Using Rooted Tree

- IS $s_i \equiv s_j$:
 - \circ t=find(s_i);
 - \circ $u = find(s_i);$
 - \circ (t==u)?
- MAKE $s_i \equiv s_j$:
 - \circ *t*=find(s_i);
 - $\circ u = find(s_i);$
 - \circ union(t,u);

implementation by inTree

Union-Find Program

- A union-find program of length m
 - is (a create(n) operation followed by) a sequence of m union and/or find operations in any order
- A union-find program is considered an input
 - The object on which the analysis is conducted
- The measure: number of accesses to the parent
 - assignments: for union operations
 - lookups: for find operations

Worst-case Analysis for Union-Find Program

- Assuming each lookup/assignment take O(1)
- Each makeSet or union does one assignment, and each find does d+1 lookups, where d is the depth of the node.

Weighted Union: for Short Trees

Weighted union (wUnion)

satisfying the

requirement

always have the tree with fewer nodes as subtree

```
To keep the Union valid, each Union operation is replaced by:

t = find(i);
u = find(j);
union(t, u)
The order of (t, u)
```

Cost for the program: n+3(n-1)+2(m-n+1)

Upper Bound of Tree Height

 After any sequence of Union instructions, implemented by wUnion, any tree that has k nodes will have height at most Llogk]

T₁

Proof by induction on k:

- base case: k=1, the height is 0
- by inductive hypothesis:
 - $h_1 \le \lfloor \lg k_1 \rfloor$, $h_2 \le \lfloor \lg k_2 \rfloor$
- $h=max(h_1,h_2+1) k=k_1+k_2$
- if $h=h_1$, $h_1 \le \lfloor \lg k_1 \rfloor \le \lfloor \lg k \rfloor$

• if $h=h_2+1$, note: $k_2 \le k/2$, so $h_2+1 \le \lfloor \lg k_2 \rfloor +1 \le \lfloor \lg k \rfloor$

Upper Bound for Union-Find Program

 A Union-Find program of size m, on a set of n elements, performs O(n+mlogn) link operations in the worst case if wUnion and straight find are used

• Proof:

- At most n-1 wUnion can be done, building a tree with height at most \[\logn \],
- Then, each *find* costs at most \[\logn \] +1.
- There do exist programs requiring $\Omega(n+(m-n)\log n)$ steps.

Path Compression

Challenges for the Analysis

Analysis: the Basic Idea

- cFind may be an expensive operation
 - in the case that find(i) is executed and the node i has great depth.
- However, such cFind can be executed only for limited times
 - Path compressions depends on previous unions
- So, amortized analysis applies

Co-Strength of wUnion and cFind

- O((n+m)log*(n))
 - Link operations for a Union-Find program of length m on a set of n elements is in the worst case.
 - Implemented with wUnion and cFind

- What's log*(n)?
 - Define the function H as following:

$$H(0) = 1$$

 $H(i) = 2^{H(i-1)}$

 Then, log*(j) for j≥1 is defined as:

$$log^*(j) = \min\{k \mid H(k) \ge j\}$$

Definitions with a Union-Find Program P

- Forest F: the forest constructed by the sequence of union instructions in P, assuming:
 - wUnion is used;
 - the finds in the P are ignored
- Height of a node v in any tree: the height of the subtree rooted at v
- Rank of v: the height of v in F

Note: cFind changes the height of a node, but the rank for any node is invariable.

Constraints on Ranks in F

- The upper bound of the number of nodes with rank r(r≥0) is n/2^r
 - Remember that the height of the tree built by wUnion is at most \[\logn \], which means the subtree of height r has at least 2^r nodes.
 - The subtrees with root at rank r are disjoint.
- There are at most Llogn J different ranks.
 - There are altogether n elements in S, that is, n nodes in F.

Increasing Sequence of Ranks

- The ranks of the nodes on a path from a leaf to a root of a tree in F form a strictly increasing sequence.
- When a cFind operation changes the parent of a node, the new parent has higher rank than the old parent of that node.
 - Note: the new parent was an ancestor of the previous parent.

A function Growing Extremely Slowly

• Function H:

$$H(0)=1$$

$$H(i)=2^{H(i-1)}$$

$$2 \text{ k 2's}$$
 That is:
$$H(k)=2^{2}$$

Note:

H grows extremely fast:

$$H(4) = 2^{16} = 65536$$

$$H(5) = 2^{65536}$$

Function log-star

log*(j) is defined as the least i such that:

$$H(i) \ge j$$
 for j>0

 log-star grows extremely slowly

$$\lim_{n \to \infty} \frac{\log^*(n)}{\log^{(p)} n} = 0$$

p is any fixed nonnegative constant

For any x: $2^{16} \le x \le 2^{65536} - 1$, $\log^*(x) = 5$

Grouping Nodes by Ranks

- Node v∈s_i (i≥0) iff. log*(1+rank of v)=i
 - which means that: if node v is in group i, then r_v≤H(i)-1, but not in group with smaller labels
- So,
 - Group 0: all nodes with rank 0
 - Group 1: all nodes with rank 1
 - Group 2: all nodes with rank 2 or 3
 - Group 3: all nodes with its rank in [4, 15]
 - Group 4: all nodes with its rank in [16, 65535]
 - Group 5: all nodes with its rank in [65535, ???]

Group 5 exists only when n is at least 265536. What is that?

Very Few Groups

- Node v∈S_i (i≥0) iff.
 log*(1 + rank of v)=i
- Upper bound of the number of distinct node groups is log*(n+1)
 - The rank of any node in F is at most ⌊logn⌋, so the largest group index is log*(1+ ⌊logn⌋)=log* (⌈logn+1⌉) = log*(n+1)-1

Amortized Cost of Union-Find

- Amortized Equation Recalled
 - amortized cost = actual cost + accounting cost
- The operations to be considered:
 - n makeSets
 - m union & find (with at most n-1 unions)

One Execution of cFind(w₀)

Amortizing Scheme for wUnion-cFind

makeSet

- Accounting cost is 4log*(n+1)
- So, the amortized cost is 1+4log*(n+1)

wUnion

- Accounting cost is 0
- So the amortized cost is 1

cFind

- Accounting cost is describes as in the previous page.
- Amortized cost ≤ 2k-2((k-1)-(log*(n+1)-1))=2log*(n+1)
 (Compare with the worst case cost of cFind, 2logn)

Validation of the Amortizing Scheme

- We must be assure that the sum of the accounting costs is never negative.
- The sum of the negative charges, incurred by cFind, does not exceed 4nlog*(n+1)
 - We prove this by showing that at most 2nlog*(n+1) withdrawals on nodes occur during all the executions of cFind.

Key Idea in the Derivation

- For any node, the number of withdrawal will be less than the number of different ranks in the group it belongs to
 - When a cFind changes the parent of a node, the new parent is always has higher rank than the old parent.
 - Once a node is assigned a new parent in a higher group, no more negative amortized cost will incurred for it again.
- The number of different ranks is limited within a group.

Derivation

Bounding the number of withdrawals

The number of withdrawals from all $w \in S$ is:

a loose upper bound of ranks in a group

$$\sum_{i=0}^{\log^*(n+1)-1} (H(i)) \text{ number of nodes in group } i)$$

The number of nodes in group i is at most:

$$\sum_{r=H(i-1)}^{H(i)-1} \frac{n}{2^r} \le \frac{n}{2^{H(i-1)}} \sum_{j=0}^{\infty} \frac{1}{2^j} = \frac{2n}{2^{H(i-1)}} = \frac{2n}{H(i)}$$

So,

$$\sum_{i=0}^{\log^*(n+1)-1} H(i) \frac{2n}{H(i)} = 2n \log^*(n+1)$$

Conclusion

- The number of link operations done by a Union-Find program implemented with wUnion and cFind, of length m on a set of n elements is in O((n+m)log*(n)) in the worst case.
 - Note: since the sum of accounting cost is never negative, the actual cost is always not less than amortized cost. The upper bound of amortized cost is: (n+m)(1+4log*(n+1))

•

Thank you! Q & A