REMARKS

Applicants gratefully acknowledge the indication that Claims 6-11 are allowed and that Claims 5 and 17-23 are objected to as being dependent upon a rejected base claim but would be allowable if rewritten in proper independent form. Because Applicants maintain for the reasons set forth below that Claim 1 should also be allowed and therefore have not amended Claims 5 and 17-23 as kindly suggested by the Examiner.

Rejection under 35 U.S.C. 103

Claims 1-4, 12, 14, and 15 stand rejected under 35 U.S.C. 103(a) as being unpatentable over the admitted prior art disclosed at page 5 of their specification and EP 528,156 (which corresponds to U.S. Patent 5,262,383). Applicants respectfully traverse.

Applicants first acknowledge the Examiner's request under 37 C.F.R. 1.105 (see page 4 of the Final Office Action) for documents from the EP application that corresponds to EP 528,156 and discloses the compound identified as compound I-a-79. Applicants enclose a copy of the correspondence (in German) from Bayer AG to the European Patent Office dated April 29, 1994 (with a date stamp of May 2, 1994) and accompanying "Enclosure 3." Compound I-a-79 is specifically identified at page 3 of Enclosure 3.

As pointed out in Applicants' previous Response dated December 1, 2003, EP 528,156 discloses insecticidally, acaricidally, herbicidally, and fungicidally active 3-aryl-4-hydroxy- Δ^3 -dihydrofuranones having a very broadly defined scope within the general formula

$$\begin{array}{c|c}
G & X & Z_n \\
B & & & & \\
\hline
O & X & & & \\
\end{array}$$

in which the various substituents are defined as shown in the U.S. '383 counterpart at columns 1-2 and elsewhere. Among the multitude of compounds disclosed in the European application are those in which A and B together represent a spiro cycle that is optionally substituted. Among the many possible disclosed substituents for such spiro moieties are halogenoalkyl groups such as the trifluoromethyl group. E.g.,

Mo-7025

U.S. '383 at column 10, lines 26-32, column 12, lines 7-14, and column 13, lines 61-69. As previously pointed out, however, the cited patent does not provide biological data for compounds having trifluoromethyl substitution and does not suggest that compounds having trifluoromethyl substitution would exhibit significantly different properties from any other disclosed compound.

Applicants previously pointed out that they had compared compounds of their invention with known compounds that differ only in having methyl-substituted cyclohexyl spiro groups instead of trifluoromethyl-substituted cyclohexyl spiro groups and found that in every case their trifluoromethyl-substituted compounds exhibit significantly greater activity than the corresponding methyl-substituted compounds of the prior art. The Final Office Action, however, discounted such data as not comparing the closest prior art represented by compound I-a-79 of EP 528,156.

Applicants therefore provide direct comparative data in the form of a Declaration under 37 C.F.R. 1.132 of Dr. Christian Arnold. Dr. Arnold's Declaration compares the pesticidal activity of compound I-a-79 of EP 528,156 in several tests with trifluoromethyl-substituted compounds of the invention I-2-a-3 (Myzus dip test, Aphis gossypii systemic test, Tetranychus dip test, and Tetranychus systemic test), I-2-a-1 (Aphis gossypii systemic test), and I-2-a-2 (Tetranychus systemic test). All three of Applicants' trifluoromethyl-substituted compounds exhibited significantly improved activity compared to compound I-a-79 of EP 528,156. Applicants therefore respectfully submit that they have presented comparative test data consistent with the patentability of their claimed compounds under the principles set forth in *U.S. v. Adams*, 383 U.S. 39, 148 U.S.P.Q. 479 (1966); *Ex parte Strobel and Catino*, 160 U.S.P.Q. 352 (P.O. Bd. App. 1968); *In re Baird*, 29 U.S.P.Q.2d 1550, 1552 (Fed. Cir. 1994); and other such decisions (as discussed in Applicants' previous Response at pages 20-21).

Applicants therefore respectfully submit that their Claims 1-4, 12, 14, and 15 are not rendered obvious by EP 528,156.

Mo-7025

In view of the preceding amendments and remarks, allowance of the claims is respectfully requested.

Respectfully submitted,

Ву

Richard E. L. Henderson Attorney for Applicants

Reg. No. 31,619

Bayer CropScience LP 100 Bayer Road Pittsburgh, Pennsylvania 15205-9741 (412) 777-3809 FACSIMILE PHONE NUMBER: (412) 777-3902 Io/HENDERSON/relh093

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants

Reiner Fischer, et al.

Serial No.

10/088,979

Filed

March 26, 2002

For

TRIFLUOROMETHYL SUBSTITUTED SPIROCYCLIC

KETOENOLS

Group Art Unit

1616

Examiner:

Powers, Fiona

DECLARATION

Dr. Christian Arnold hereby declares:

- that he is a biologist having studied at the University of Bonn, Germany;
- that he received his diploma's degree in biology at the University of Bonn in 1996;
- that he received his doctor's degree in agriculture at the University of Bonn in 2003;
- that he entered the employ of Aventis CropScience in 2001 (the aquisition of Aventis CropScience by Bayer in 2002 lead to Bayer CropScience);
- that he has specialized in plant protection (entomology);

that the following tests have been carried out under his supervision and direction.

LeA33923-US

Example A

Myzus test (dip test)

Solvent:

7 parts by weight of dimethylformamide

Emulsifier:

2 part by weight of alkylaryl polyglycolether

To produce a suitable preparation of active compound, 1 part by weight of active compound is mixed with the stated amount of solvent and emulsifier, and the concentrate is diluted with emulsifier-containing water to the desired concentration.

Cabbage leaves (*Brassica oleracea*) which are heavily infested by the green peach aphid (*Myzus persicae*) are treated by being dipped into the preparation of the active compound of the desired concentration.

After the specified period of time, mortality in % is determined. 100 % means that all the aphids have been killed; 0 % means that none of the aphids have been killed.

In this test, for example, the following compounds from the preparation examples show a superior level of activity compared to the prior state of the art:

Tabelle A

plant damaging insects Myzus -Test (dip test)

active compound	active con	pound- ion in ppm	mortality in % after 7 ^d
Ex. I-a-79 HOH3C CH3		·	
F CH ₃			
known from EP-A-528156		20	70
Ex. I-2-a-3			
F OH		1.	
CH ₃			
H₃C CH₃			
according to the invention		20	85
_			

Example B

Aphis gossypii test (systemic test)

Solvent:

7 parts by weight of dimethylformamide

Emulsifier:

2 part by weight of alkylaryl polyglycolether

To produce a suitable preparation of active compound, 1 part by weight of active compound is mixed with the stated amount of solvent and emulsifier, and the concentrate is diluted with emulsifier-containing water to the desired concentration.

Cotton plants (Gossypium hirsutum) which are heavily infested by the cotton aphid (Aphis gossypii) are treated by being drenched with the preparation of the active compound of the desired concentration.

After the specified period of time, mortality in % is determined. 100 % means that all the aphids have been killed; 0 % means that none of the aphids have been killed.

In this test, for example, the following compounds from the preparation examples show a superior level of activity compared to the prior state of the art:

according to the invention

Tabelle B

plant damaging insects Aphis gossypii –Test (systemic test)

active compound	active compound- concentration in ppm	mortality in % after 10 ⁰
Ex. I-a-79 HO H3 CH3 CH3		· · · · · · · · · · · · · · · · · · ·
O known from EP-A-528156	20	70
Ex. I-2-a-1		
F OH CH ₃		
ĊН ₃		
	20	85

Example C

Tetranychus test (OP-resistant/dip test)

Solvent:

7 parts by weight of dimethylformamide

Emulsifier:

2 part by weight of alkylaryl polyglycolether

To produce a suitable preparation of active compound, 1 part by weight of active compound is mixed with the stated amount of solvent and emulsifier, and the concentrate is diluted with emulsifier-containing water to the desired concentration.

Bean plants (*Phaseolus vulgaris*) which are heavily infested with all stages of the two-spotted spider mite (*Tetranychus urticae*) are treated by being dipped into the preparation of the active compound of the desired concentration.

After the specified period of time, mortality in % is determined. 100 % means that all the spider mites have been killed; 0 % means that none of the spider mites have been killed.

In this test, for example, the following compounds from the preparation examples show a superior level of activity compared to the prior state of the art:

Tabelle C

plant damageing mites Tetranychus-Test (OP-resistent/dip test)

active compound	active compound concentration in ppm	mortality in % after 7 ^d
Ex. I-a-79 HO CH ₃ CH ₃		.
known from EP-A-528156	100	0
Ex. I-2-a-3 F OH CH ₃ CH ₃ CH ₃	100	70
according to the invention	100	70

Example D

Tetranychus test (OP-resistant/systemic test)

Solvent:

7 parts by weight of dimethylformamide

Emulsifier:

2 part by weight of alkylaryl polyglycolether

To produce a suitable preparation of active compound, 1 part by weight of active compound is mixed with the stated amount of solvent and emulsifier, and the concentrate is diluted with emulsifier-containing water to the desired concentration.

Bean plants (*Phaseolus vulgaris*) which are heavily infested with all stages of the two-spotted spider mite (*Tetranychus urticae*) are treated by being drenched with the preparation of the active compound of the desired concentration.

After the specified period of time, mortality in % is determined. 100 % means that all the spider mites have been killed; 0 % means that none of the spider mites have been killed.

In this test, for example, the following compounds from the preparation examples show a superior level of activity compared to the prior state of the art:

Tabelle D

plant damageing mites Tetranychus-Test (OP-resistent/systemic test)

active compound	active compound- concentration in ppm	mortality in % after 10 ^d
Ex. I-a-79 HO CH ₃ CH ₃		
O known from EP-A-528156	20	. 0
Ex. I-2-a-2 F CH ₃ CH ₃ according to the invention	20	60
Ex. I-2-a-3 F CH ₃ CH ₃ according to the invention	20	90

The undersigned declarant hereby declares that all statements made herein of his own knowledge are true and that all statements made on informationand belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

M.O4. 2004

Date

Dr. Christian Arnold

EUROPÄISCHES PATENTAMT - Generaldirektion 2 -

80298 MÜNCHEN

Ihre Zeichen

Ihre Nachricht

01.12.93

Unsere Zeichen Ba/MH

Telefon-Durchwahl (02 14) 361 192

Le A 28 446-EP

SEP 528156

Bayer AG

Konzernzentrale RP Patente Konzern

D-51368 Leverkusen Telefon: (02 14) 30-1 (Vermittlung) Telefax: (02 14) 30 34 82 Telex: 85 101-265 by d Telegramme: Bayerpatent Leverkusen Postbank Niederlassung Köln 37 82-501 BLZ 370 100 50 Landeszentralbank Leverkusen 37 508001 BLZ 37500000

2. Mai 1994

29. April 1994

Europäische Patentanmeldung Nr. 92 111 324.7-2399

Auf den Bescheid vom 1. Dezember 1993.

Gemäß Formalbescheid vom 5. April 1994 wurde die Frist zur Beantwortung des Bescheids auf insgesamt 6 Monate verlängert.

Es wird beantragt, dem weiteren Prüfungsverfahren das als *Anlage 1* in dreifacher Ausfertigung überreichte neue Schutzbegehren, bestehend aus 9 Patentansprüchen, zugrunde zu legen.

Der jetzt geltende Patentanspruch 1 entspricht dem alten Anspruch 3, wobei jedoch in den Definitionen von A und B die Bedeutung "Hetaryl" gestrichen wurde und die Begriffe "Aryl" bzw. "Aryl- C_1 - C_6 -alkyl" durch "Phenyl" bzw. "Phenyl- C_1 - C_6 -alkyl" ersetzt wurden.

Weiter wurde in der Definition von R¹ die Bedeutung "gegebenenfalls durch Halogen und/oder C₁-C₅-Alkyl substituiertes Hetaryl" anhand des auf Seite 31, Zeilen 15 und 16 tatsächlich Offenbarten präzisiert und die Bedeutung "gegebenenfalls durch

Europäisches Patentamt

- Generaldirektion 2 -

Unsere Zeichen

Ba/MH

Tag 29.04.94

Blatt 2

Le A 28 446-EP

Halogen, Amino und C_1 - C_6 -Alkyl substituiertes Hetaryloxy- C_1 - C_6 -alkyl" gestrichen. Entsprechende Änderungen wurden in den neuen Ansprüchen 3 und 4 vorgenommen, die sonst den bisherigen Ansprüchen 4 und 5 entsprechen.

Der jetzt geltende Anspruch 2 ist mit dem bisherigen Anspruch 2 identisch.

Der alte Herstellungs-Verfahrens-Anspruch 6 wurde gestrafft und findet sich als neuer Anspruch 5 wieder.

Die jetzt geltenden Ansprüche 6 bis 9 sind mit den alten Ansprüchen 7 bis 10 identisch.

Zur besseren Orientierung liegt ein Anspruchssatz bei, in dem die Korrekturen handschriftlich vorgenommen wurden (Anlage 2).

Enclosure 3

Als Anlage 3 werden zur Stützung unserer Ansprüche weitere Beispiele von Verbindungen

der Formel (Ia) (Fortsetzung der Tabelle 8 auf Seite 157),

der Formel (Ib) (Fortsetzung der Tabelle 9 auf Seite 173),

der Formel (Ic) (Fortsetzung der Tabelle 10 auf Seite 181),

der Formel (Id) (Fortsetzung der Tabelle 11 auf Seite 182),

der Formel (le) (Fortsetzung der Tabelle 12 auf Seite 186),

der Formel (Ig) (Fortsetzung der Tabelle 13 auf Seite 187) und

der Formel (II) (Fortsetzung der Tabelle auf Seite 190) überreicht.

In diesen Verbindungen sind Alkylreste geradkettig, sofern nichts anderes angegeben ist.

BAYER AG

Europäisches Patentamt

- Generaldirektion 2 -

Unsere Zeichen

Ba/MH

Tag 29.04.94

Blatt 3

Le A 28 446-EP

In der Formel (II) auf Seite 190 des Anmeldungstextes wurde versehentlich in para-Stellung des Phenylrestes ein Substituent X anstelle des Substituenten Y eingezeichnet. Dieser offentsichtliche Fehler sollte bei der Anpassung der Beschreibung korrigiert werden.

Anmeldung keine Überlappung mit der in D2 beschriebenen generischen Formel (I), da der Rest R¹ in D2 die in der vorliegenden Anmeldung für c) in Frage kommenden Bedeutungen, wie beispielsweise Alkoxycarbonyl, nicht annehmen kann.

Von der allgemeinen Formel (I) in D2 werden in der Tat einige der erfindungsgemäßen Verbindungen umfaßt, in denen der Rest G für die Gruppe - COR^1 steht. Es werden aber in D2 <u>keine</u> 5H-Furan-2-on-Derivate offenbart, die am Sauerstoff in 4-Position acyliert sind (d. h. R^1 = Alkylcarbonyl) und bei denen in 3-Position <u>gleichzeitig</u> ein <u>ortho</u>-substituierter Phenylring direkt an den Furanonring gebunden ist (d. h. q = 0).

Es handelt sich daher um den klassischen Fall einer Auswahlerfindung, der darin besteht, aus einer generell bekannten Stoffgruppe eine eng umrissene neue Gruppe von Verbindungen mit herausragenden Eigenschaften gefunden zu haben. Der jetzt beanspruchte Gegenstand ist daher auch im Hinblick auf die durch die Entscheidung T 12/90 der Technischen Beschwerdekammer 3.3.1 gesetzten Maßstäbe zweifellos neu.

Als Anlage 4 werden Ergebnisse biologischer Vergleichsversuche überreicht. Wie aus diesen Daten hervorgeht, besitzen die erfindungsgemäßen Stoffe deutlich

BAYER AG

Europäisches Patentamt

- Generaldirektion 2 -

Unsere Zeichen

Ba/MH

Tag 29.04.94

Blatt 4

Le A 28 446-EP

bessere herbizide Eigenschaften als die konstitutionell ähnlichsten Verbindungen (Beispiele 42 und 46), die aus D2 bekannt sind. Da die unerwartete Überlegenheit für zahlreiche Stoffe gezeigt wird, dürfte eine erfinderische Tätigkeit für den gesamten beanspruchten Gegenstand in ausreichendem Maße glaubhaft gemacht sein.

Zu Punkt 3.4 des Bescheids:

Auf den Seiten 5, 23, 28 und 32 der <u>Beschreibung</u> sind in den Ausnahmebestimmungen, die aus D3 bekannte Verbindungen vom Schutzbegehen ausschließen, jeweils die erste und dritte Verbindung identisch (3-(2-<u>Methoxy</u>phenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2). Es wird gebeten, die erste Verbindung zu streichen.

In den <u>Ansprüchen</u> wurde aus einer der doppelt genannten Verbindungen aus nicht mehrnachvollziehbarenGründen3-(2-<u>Methyl</u>phenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2. Da diese Verbindung nicht aus D3 bekannt ist, sollte sie gestrichen werden.

Zu Punkt 3.5 des Bescheids:

Durch ein Versehen bilden in Beispiel la-10 der Tabelle 8 auf Seite 152 die Reste X und Y den Ring und nicht, wie es richtig gewesen wäre und auch dem Anspruch 1 entspricht, die Reste X und Z. Sollte eine Korrektur dieses Fehlers nicht möglich sein, ist das Beispiel la-10 zu streichen.

Zu Punkt 3.6 des Bescheids:

Bei der Abfassung des beim EPA eingereichten Textes wurde in den biologischen

Europäisches Patentamt

- Generaldirektion 2 -

Unsere Zeichen

Ba/MH

Tag 29.04.94

Blatt 5

Le A 28 446-EP

Beispielen versehentlich die in der ersten Prioritätsanmeldung benutzte Numerierung der Herstellungsbeispiele beibehalten.

Verbindung 2 müßte lauten: Verbindung la-2,

Verbindung 3 müßte lauten: Verbindung lb-1 und

Verbindung 4 müßte lauten: Verbindung lb-2.

Eine Anpassung der Beschreibung an das Schutzbegehren sollte zweckmäßigerweise erst dann vorgenommen werden, wenn Einigkeit über die gewährbare Anspruchsfassung besteht.

Falls auch nach Berücksichtigung dieser Eingabe die Erteilung eines Patents noch nicht in Aussicht gestellt werden kann, wird hiermit um den Erlaß eines weiteren Bescheides oder ersatzweise um Rücksprache gebeten.

BAYER AG

1. Willel

Anlagen

1: Neuer Anspruchssatz

2: Korrekturexemplar (für neuen Anspruchssatz)

3: Weitere Beispiele

4: Biologische Beispiele

Anlage 3 zum Schreiben vom 29. April 1994 Europäische Anmeldung Nr. 92 111 324.7-2399

205-206 188-189 145-148 199-201 >250 >220 245 206 (I_a) 3-Cl, 6-CH₃ 6-CH₃ 6-CH₃ 6-CI $Z_{\rm n}$ Η H \mathbb{H} CH_3 CH_3 CH_3 CH_3 \Box H \Box H Versindungen der Formel CH_3 CH_3 CH_3 CH_3 \Box \Box ರ × $\overline{\mathbf{C}}$ —(сн₂)₂—сн – (сн₂)₂– CH₃ CH_3 CH_3 -(CH₂)5g Ή \mathbb{H} CH2 Fortsetzung Tabelle 8 (D=0) -CH₂- CH_3 ¥ H H Beispiel Ia-66 Ia-64 Ia-65 Ia-63 Ia-68 Ia-69 Ia-70 Ia-67

Le A 28 446-EP

Beispiel Nr.	A	В	X	Y	$Z_{\rm n}$	Fp.[°C]
Ia-71	-(CH ₂) ₂ CH-(CH ₂) ₂ - C ₂ H ₅	H ₂) ₂ —	сн ₃	СН3	6-CH ₃	154-157
Ia-72	-CH ₂ -CH-CH-(CH ₂) ₂ CH ₃ CH ₃	.(CH ₂) ₂ —	СН3	сн ₃	6-СН ₃	215-221
Ia-73	—сн ₂ —с(сн ₃) ₂ —сн ₂ ——с(сн ₃) ₂ -сн ₂ —		СН3	СН3	6-СН3	160-161
Ia-74	—СН ₂ —СН ——СН ₂ СН ₃	—сн — сн ₂ — сн ₃	$ m CH_3$	СН3	6-СН3	208-210
Ia-75	—(CH ₂) ₂ —C(CH ₃) ₂ —(CH ₂) ₂ —	.—(CH ₂) ₂ —	СН3	СН3	6-СН ₃	225-227
Ia-76	i-C ₃ H ₇	СН3	Cl	Cl	Н	157-158

Le A 28 446-EP

Beispiel A B X Y Z_n Nr. Nr. CH3 CH3 CH3 CH3 CH3 CH3 CCH3 Ia-77 $-(CH_2)_2 - CH$ $-(CH_$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Beispiel Nr.	А	В	X		$Z_{\rm n}$	Fp.[°C]
$-(CH_{2})_{2} - CH - (CH_{2})_{2} - CH_{3} $ $-(CH_{2})_{2} - CH_{3} - CH_{3} $ $-(CH_{2})_{2} - CH_{3} - CH_{3$	Ia-77	$\overline{\ }$	сн3	сн ₃	СН3	6-СН ₃	180-182
$-(CH_2)_2 - CH - (CH_2)_2 - CH_3 \qquad CH_3$ $-(CH_2)_2 - CH - (CH_2)_2 - CH_3 \qquad CH_3$	Ia-78	—(СН ₂)2—СН — i — С ₃ Н ₇	—(СН ₂)2—	СН3		6-CH ₃	63-64
$-(CH_2)_2 - CH_3 - CH_3$ CH_3 CH_3	Ia-79		-(CH ₂) ₂	СН3	СН3	е-сн3	225-228
	Ia-80		-(CH ₂) ₂	CH_3	снз	6-CH ₃	Harz

Le A 28 446-EP

Beisniel						
Nr.	A	В	×	Y	$Z_{\rm n}$	Fp.[°C]
[a-8]	—(СН ₂)2—СН — С ₆ Н ₁₁	–(cH ₂) ₂ —–	сн3	СН3	6-CH ₃	Oel
Ia-82	—снсн ₃ —(сн ₂) ₃		СН3	СН3	6-CH ₃	181-190
Ia-83	—сн ₂ —сн —с(сн ₂) ₂ — сн ₃	(сн ₂) ₂ —	СН3	СН3	6-CH ₃	214-216
Ia-84	—CH ₂ —CH — CH ₂ — CF ₃	2	СН3	СН3	6-СН ₃	211-215
Ia-85	—(CH ₂)3—		СН3	СН3	6-CH ₃	221-223
Ia-86	C_8H_{17}	СН3	СН3	СН3	6-CH ₃	140-142
Ia-87	—(СН ₂) ₂ —СН — СН ₃	—(сн ₂) ₂ —	СН3	СН3	Н	178-179

Le A 28 446-EP

Beispiel Nr.	А	В	×	Y	$Z_{\rm n}$	Fp.[°C]
Ia-88	lD)——	-(CH ₂) ₄	СН3	CH_3	Н	193-194
Ia-89	CH ₂ CH ₃ CH ₃	—(CH ₂) ₂ —	СН3	СН3	Н	99-59
Ia-90	i-C ₃ H ₇	CH ₃	СН3	CH ₃	Н	134-135
Ia-91	(CH ₂) ₂)2(CH ₂)2	СН3	СН3	6-CH ₃	>235
Ia-92	——(CH ₂) ₄ —	1 ₂) ₄ —	CI	CI	Н	220-223
Ia-93		—(CH ₂) ₃ —	ט	ت ت	Н	168-169
Ia-94	CH ₂ ——CH——C	=c (cH ₂) ₂ cH ₃	СН3	СН3	6-СН3	>230
Ia-95	— CH2—— CH — CH3	—(СН ₂) ₃ —	$ m CH_3$	СН3	Н	Wachs

Le A 28 446-EP

	A	В	×	¥	Z_{n}	Fp.[°C]
· .		-сн—-(сн ₂) ₂ — СН ₃ сн ₃		СН3	Н	212-215
	— CH ₂ —— CH —— CH —	-сн(сн ₂) ₂ СІ СН ₃	CI	CI	Н	225

Le A 28 446-EP

Fortsetzung Tabelle 9 (D = 0)

Beispiel Nr.	А	В	Х	Y	Z_n	\mathbb{R}^{1}	Fp.[°C]
Ib-124	(c)	—(CH ₂) ₅ —	Cl	CI	Н	СН3	159
lb-125	lo) —	— (CH ₂) ₅ —	CI	CI	Н	c_3H_7	92
Ib-126	D)—	—(СН ₂) ₅ —	CI	CI	Н	i-C ₃ H ₇	103
Ib-127	lo)	—(CH ₂) ₅ —	CI	CI	Н	i-C ₄ H ₉	127
Ib-128	(0)—	-(CH ₂) ₅	CI	CI	Н	T T	152
Ib-129	lo)—	—(CH ₂) ₅ —	CI	CI	Н	C_4H_9	72
Ib-130	ID) —	—(CH ₂) ₅ —	CI	CI	Н	C_5H_{11}	83
Ib-131	D) —	–(СН ₂) ₅ —	CI	CI	Н	C_2H_5	123

Le A 28_446-EP

Beispiel A Nr.							
		В	X	Y	Z_{n}	\mathbb{R}^{1}	Fp.[°C]
Ib-132	—(СН ₂) ₅ —	1 ₂) 5 —	CI	Ü	Н	CI CL ₃ CH ₃	137
Ib-133	—(CH ₂) ₅ —	12)5—	CI	CI	Н	H ₇ C ₃ -C(CH ₃) ₂ -	75
Ib-134	—— (CH ₂) ₅ —		CI	CI	Н	СН, Н,СО — СН, — С СН,	66
Ib-135	——(СН ₂) ₅ —		CI	CI	Н	H,CO—CH, C— H,CO—CH, C—	58
Ib-136	—(CH ₂) ₅ —	12)5	CI	CI	Н	(H³со—сн ₂)³с—	108

Le A 28 446-EP

Beispiel Nr.	Ą	В	×	Y	$Z_{\rm n}$	\mathbb{R}^{l}	Fp.[°C]
Ib-137	5)—	—(СН ₂) ₅ —	CI	ū	Н	CI-CH2 CI-CH2 CI-CH3 CH3	119
Ib-138	10) —	—(СН ₂) ₅ —	СН3	CH ₃	Н	(СН ₃)3С-	87
Ib-139	—CH ₂ ——CH— CH ₃	— сн —— (сн ₂) ₂ — сн ₃	СН3	СН3	Н	(сн ³)с-	0el
Ib-140	— CH ₂ —— CH — CH ₃	—сн(сн ₂) ₂ сн ₃	CI	CI	Н	(СН ₃)3С-	Oel
Ib-141	()—сн ₂	СН3	СН3	СН3	6-СН ₃	СН3	118-119
Ib-142	CH ₂	СН3	СН3	СН3	6-CH ₃	(СН ₃)3С-	111-112

Le A= 28 446-EP

Beispiel Nr.	А	В	×	Ā	$Z_{\rm n}$	\mathbb{R}^1	Fp.[°C]
D-143	\rightarrow	СН3	СН3	СН3	6-СН ₃	СН3	83-85
Ib-144		СН3	СН3	СН3	6-CH ₃	(CH ₃) ₃ C	Oel
Ib-145	—(CH ₂) ₂ —CH-(CH ₂) ₂ — CH ₃		CI	CI	н	СН3	113-115
Ib-146	—(CH ₂) ₂ —CH – (CH ₂) ₂ — CH ₃	.н ₂) <u>-</u> -	IJ	IJ	н	(СН ₃)3С	110-112
Ib-147	—сн ₂ ——сн—(сн ₂) ₃ — сн ₃	7H ₂)3—	CI	CI	Н	СН3	Oel

Le A-28 446-EP

Beispiel Nr.	A B	X	Y	$Z_{ m n}$	\mathbb{R}^{1}	Fp.[°C]
Ib-148	—сн ₂ ——сн—(сн ₂) ₃ —	CI	ט	Н	(CH ₃) ₃ C	0e1
	ch³	·				
Ib-149	$-(CH_2)_2$ $-(CH_2)_2$ $-(CH_2)_2$	CH ₃	СН3	6-СН3	CH ₃	Oel
	Ċ2H5					
Ib-150	$(CH_2)_2$ CH $(CH_2)_2$	CH ₃	СН3	6-CH ₃	(CH ₃) ₃ C	96-16
	C ₂ H ₅					
Ib-151	-CH2-CH-CH-(CH2)2-	СН3	СН3	6-CH ₃	СН3	119-124
	5					
Ib-152	-CH ₂ -CH-CH-CH ₂) ₂ -	CH ₃	CH ₃	6-CH ₃	Э ^ε (сн ³)	Oel
	сн, сн,		• .			
Ib-153	—сн ₂ -с(сн ₃) ₂ -сн ₂ -с(сн ₃) ₂ -сн ₂	- CH ₃	СН3	6-CH ₃	снз	177

Le A 28 446-EP

Beispiel Nr.	А	В	×	}	$Z_{\rm n}$	\mathbb{R}^1	Fp.[°C]
Ib-154	—сн ₂ —с(сн ₃) ₂ —с	-сн ₂ -с(сн ₃) ₂ -сн ₂ -с(сн ₃) ₂ -сн ₂	СН3	СН3	6-CH ₃	(CH ₃) ₃ C	154-160
Ib-155	—сн ₂ —сн —сн ₂	2—СН—СН ₂ — СН ₃	СН3	СН3	6-СН3	СН3	112-118
lb-156		CH — CH ₂ —	СН3	СН3	6-СН ₃	(CH ₃) ₃ C	120-122
Ib-157	-(CH ₂) ₂ C(CH ₃) ₂	,2(CH ₂)2	СН3	СН3	6-CH ₃	снз	115-116
lb-158	-(CH ₂) ₂ C(CH ₃) ₂	2(CH ₂)2	CH_3	CH_{3}	6-СН3	(СН ₃)3С	123-125
Ib-159	i-C ₃ H,	СН3	CI	Cl	Н	CH ₃	68-88
Ib-160	i-C ₃ H ₇	СН3	CI	CI	Н	(CH ₃) ₃ C	45-48
lb-161	-CH ₂ —CH — (CH ₃	. ₂)3—	СН3	СН3	6-CH ₃	C ₃ H ₇	Oel

Le A 28 446-EP

Beispiel Nr.	A	В	×	Y	Z _n	R ¹	Fp.[°C]
Ib-162	-сн ₂ —сн — (сн ₂) ₃ — сн ₃		СН3	СН3	6-CH ₃	С4Н9	60-63
Ib-163	-сн ₂ сн(сн ₂₎₃ сн ₃	3-	СН3	СН3	6-CH ₃	i-C ₃ H,	72-76
Ib-164	-сн ₂ —сн — (сн ₂) ₃ — сн ₃	3	СН3	СН3	6-CH ₃	H ₃ C ₄ −CH C ₂ H ₅	Oel
Ib-165	-сн ₂ — сн— (сн ₂) ₃ — сн ₃	3	СН3	СН3	6-CH ₃	CH ₂	88-92
Ib-166	-сн ₂ —сн — (сн ₂) ₃ — сн ₃	3_	СН3	СН3	6-СН3	(CH ₃) ₃ C-CH ₂	62-63
Ib-167	-сн ₂ —сн — (сн ₂) ₃ - сн ₃	_E	СН3	СН3	6-CH ₃	CI-CH ₂	77-80

Le A 28 446-EP

Beispiel Nr.	А	B	×	λ	Z _n	\mathbb{R}^1	Fp.[°C]
Ib-168	-сн ₂ —сн — (сн ₂) ₃ — сн ₃	2)3—	СН3	СН3	6-CH ₃	H ₅ C ₂ — C H ₃ C CH ₃	104-107
Ib-169	-сн ₂ —сн — (сн ₂) ₃ — сн ₃	2)3—	СН3	СН3	6-CH ₃	i-C ₃ H ₇ C CH ₃	75-79
Ib-170	-сн ₂ —сн — (сн ₂) ₃ — сн ₃	2)3—	СН3	СН3	6-CH ₃		Oe!
Ib-171	—(СН ₂) ₂ – сн — (с	(CH ₂) ₂ —	СН3	СН3	6-СН3	C_2H_5	Oel
Ib-172	—(СН ₂)2—СН —(С	(СН ₂) 2	СН3	СН3	6-CH ₃	С3Н,	74-76
Ib-173	—(CH ₂) ₂ – CH — (C	(CH ₂) ₂ —	СН3	СН3	6-CH ₃	i-C ₃ H ₇	Oel

Beispiel Nr.	А В	X	Y	Z_{n}	\mathbb{R}^{1}	Fp.[°C]
Ib-174	—(сH ₂) ₂ —сн —(сH ₂) ₂ — сH ₃	СН3	СН3	6-СН ₃	H _s C ₄ −CH C ₂ H ₅	Oel
Ib-175	—(СН ₂) ₂ —СН — (СН ₂) ₂ — СН ₃	СН3	СН3	6-CH ₃	CH2	91-94
Ib-176	—(сн ₂) ₂ – сн —(сн ₂) ₂ — сн ₃	СН3	СН3	6-СН ₃	(СН ₃)3С-СН ₂	103-105
Ib-1 <i>77</i>	—(СН ₂) ₂ —СН — (СН ₂) ₂ — СН ₃	СН3	СН3	е-сн3	CI—CH ₂ —C H ₃ C CH ₃	127-128
Ib-178	—(СН ₂)2 <mark>— С</mark> Н—(СН ₂)2— СН ₃	СН3	СН3	6-СН ₃	H ₅ C ₂ —C CH ₃	88-91
Ib-179	—(сH ₂) ₂ —сH—(сH ₂) ₂ — сH ₃	СН3	СН3	6-CH ₃	i—С ₃ H,—С Н ₃ С СН ₃	89-93

Le A 28 446-EP

Beispiel Nr.	A	В	×	Y	$Z_{ m n}$	\mathbb{R}^1	Fp.[°C]
Ib-180	—(сн ₂) ₂ —сн ₃ ——(сн ₂) ₂ —	СН ₂)2—	СН3	СН3	6-СН ₃		120-122
Ib-181	<u></u>	СН3	СН3	СН3	6-CH ₃	СН3	132
Ib-182		СН3	СН3	СН3	6-СН3	(сн ₃)3с	0el
Ib-183	—(сH ₂) ₂ —сH — (сH ₂) ₂ — i — с ₃ H ₇	CH ₂) ₂ —	CH ₃	СН3	6-CH ₃	СН3	92-94
Ib-184	$-(CH_2)_2 - CH - (CH_2)_2 - I - C_3H_7$	ΟΗ ₂) ₂ —	СН3	CH ₃	6-СН3	(CH ₃) ₃ C	123-125
Ib-185	—(сн ₂) ₂ – сн — (сн ₂) ₂ – С ₃ н,	CH ₂) ₂ —	СН3	СН3	6-СН ₃	СН3	115-117

<u>Le № 28 446-EP</u>

Fp.[°C]	79-81	144-146	130-131	132-134	Oel
\mathbb{R}^1	(CH ₃) ₃ C	СН3	(CH ₃) ₃ C	СН3	(CH ₃) ₃ C
$Z_{\rm n}$	6-СН ₃	6-CH ₃	6-CH ₃	6-СН ₃	6-CH ₃
Y	СН3	GH,	СН3	СН3	СН3
X	СН3	СН3	СН3	СН3	СН3
A B	—(сн ₂) ₂ —сн —(сн ₂) ₂ — с ₃ н ₇	—(CH ₂) ₂ —CH – (CH ₂) ₂ —	—(CH ₂) ₂ —CH – (CH ₂) ₂ —	—сн–(сн ₂) ₃ — сн ₃	—сн-(сн ₂) <u>з</u> — сн ₃
Beispiel Nr.	Ib-186	Ib-187	Ib-188	Ib-189	Ib-190

Le № 28 446-EP

Beispiel Nr.	A	В	×	Ϋ́	$Z_{ m n}$	\mathbb{R}^{1}	Fp.[°C]
Ib-191	—сн ₂ —сн—(сн ₂)2— сн ₃	-22-	СН3	СН3	6-CH ₃	СН3	91-93
Ib-192	—сн ₂ —сн—(сн ₂) сн ₃	-2/2_	CH ₃	СН3	6-CH ₃	(сн ₃)3с	Oel
Ib-193	—сн ₂ -сн-сн ₂ -сн-сн ₂ - сг ₃ сг ₃	н-сн ₂ — F ₃	СН3	СН3	6-СН3	СН3	178-180
Ib-194	-CH ₂ -CH-CH ₂ -CH-CH ₂ - CF ₃ CF ₃	н-сн ₂ — F ₃	$ m CH_3$	СН3	6-СН3	(CH ₃) ₃ C	118-120
Ib-195	-(CH ₂) ₅ -	₁₂) ₅ -	CH ₃	CH_3	6-CH ₃	CI-CH ₂	155-158
Ib-196	-(CH ₂) ₅ -	-5/5-	СН3	СН3	6-CH ₃	CI N	144-146

Le A-28 446-EP

			T				Ī		l	·
Fp.[°C]	126-128	·	Oel	Oel	171-173		124-125		198-199	
\mathbb{R}^{1}	CI-CH-CH-C	H ₃ C CH ₃	CH ₃	(CH ₃) ₃ C	CI—CH ₂	ci—ch2 cH3	F—CH ₂	F-CH ₂ CH ₃	ō	Z o
$Z_{\rm n}$	6-CH ₃	A A	6-CH ₃	6-CH ₃	6-CH ₃		6-CH ₃		6-CH ₃	
>	СН3		СН3	СН3	СН3		СН3		СН3	
×	СН3		СН3	CH_3	CH ₃		CH ₃		сН3	
В	-(CH ₂) ₅ -		CH ₃	CH ₃	-(CH ₂) ₅ -		-(CH ₂) ₅ -		-(CH ₂) ₅ -	
А	(C)		C_8H_{17}	C_8H_{17}	-(CF		-(CF		(CF	
						-				
Beispiel Nr.	Ib-197		Ib-198	Ib-199	Ib-200		Ib-201	·	Ib-202	

Le A 28 446-EP

Beispiel Nr.	Y	В	X	Y	$Z_{\rm n}$	\mathbb{R}^1	Fp.[°C]
Ib-203	D)-	-(CH ₂) ₅ -	СН3	СН3	6-CH ₃	F-CH ₂ CC— H ₃ C CH ₃	123-125
Ib-204	(D)-	-(CH ₂) ₅ -	СН3	СН3	6-CH ₃	D N D D	147-148
Ib-205	(C)	-(CH ₂)5-	СН3	СН3	6-CH ₃	H ₃ CO-CH ₂ -CH- CH ₃	77-78
Ib-206	:C)-	-(CH ₂) ₅ -	СН3	СН3	Н	CI-CH2-CH3	85-87
Ib-207	—(CH ₂) ₂ ——CH – (CH ₂) ₂ — CH ₃	(CH ₂) ₂ —	СН3	СН3	Н	$ m CH_3$	Oel

Le-A_28 446-EP

Beispiel Nr.	A B	X	Y	$Z_{ m n}$	\mathbb{R}^1	Fp.[°C]
Ib-208	-(ch2)2-q(ch2)2-	СН3	СН3	Н	(CH ₃) ₃ C	95-97
	Off3					
Ib-209	$(CH_2)_2^ CH(CH_2)_2^-$	CH_3	СН3	Н	CI-CH ₂	108-110
·	Ch ₃				H ² CH ³	
Ib-210	-(CH ₂) ₄ -	CH ₃	CH ₃	Н	CH3	107-108
Ib-211	-(CH ₂) ₄ -	СН3	СН3	Н	(CH ₃) ₃ C	Oel
Ib-212	-(CH ₂) ₄ -	СН3	СН	Н	CI-CH ₂	114-115
					rho orn	
Ib-213	—сн ₂ —сн-(сн ₂) ₂ — сн ₃	СН3	СН3	Н	СН3	Oel
Ib-214	—сн ₂ —сн – (сн ₂) ₂ — сн ₃	СН3	СН3	Н	CI-CH ₂	Oel

Le A 28 446-EP

Fp.[°C]	128-129	0el	88-89	73-75	155	167	103	66
R¹	СН3	(CH ₃) ₃ C	CI-CH ₂ -C- H ₃ C CH ₃	(СН ₃)3С	CI-CH2-C- H3C CH3	CI — CH ₂ — CH ₃	н,со—сн ₂ -с- н,с сн,	H,CO—CH,C— H,CO—CH,CH,
$Z_{\rm n}$	Н	Н	Н	6-СН ₃	6-СН ₃	6-СН ₃	6-CH ₃	6-СН ₃
Y	CH_3	CH_3	$ m CH_3$	СН3	СН3	СН3	СН3	СН3
×	CH ₃	СН3	СН3	СН3	СН3	СН3	СН3	СН3
В	СН3	СН3	CH_3	₂ —(CH ₂) ₂ —	–(сH ₂) ₂ —–	—(СН ₂) ₂ ——	—(сн ₂) ₂ ——	—(сн ₂) ₂ ——
A	i-C ₃ H,	i-C ₃ H ₇	i-C ₃ H,	$-(CH_2)_2$ $-C(C_3H_7)_2$ $-(CH_2)_2$	—(СН ₂) ₂ —СН — СН ₃	—(сн ₂₎₂ —сн— сн ₃	—(сн ₂) ₂ —сн— сн ₃	—(сн ₂) ₂ —сн — сн ₃
Beispiel Nr.	Ib-215	Ib-216	Ib-217	Ib-218	Ib-219	Ib-220	Ib-221	Ib-222

Le A-28-446-EP

Beispiel	A	В	×	Ϋ́	$Z_{\rm n}$	R1	Fp.[°C]
Nr.							
Ib-223	HD)-	-(CH ₂) ₄ -	CI	CI	Н	CH ₃	118-120
Ib-224	H)-	-(CH ₂) ₄ -	Cl	CI	Н	(сн ₃)3с	99-100
Ib-225	-∱(CH2)+	1 ₂) ₄ -	CI	IJ	Н	сі——сн ₂ —с Н ₃ сн ₃	122-124
Ib-226	-(CH ₂) ₄ -	-5/6-1	C	C	Н	H ₅ C ₂ C CH ₃	100-102
Ib-227	— CH ₂ —— CH —— CH3	–(CH ₂) ₃ —–	CI	CI	Н	СН3	Oel

Le A 28 446-EP

Beispiel Nr.	Ą	В	X	Y	Z_{n}	R ¹	Fp.[°C]
Ib-228	—сн ₂ ——сн —н2	—(CH ₂) ₃ ——	CI	Cl	Н	i-C ₃ H,	Oel
Ib-229	—сн ₂ ——сн - сн ₃	—(сH ₂) ₃ ——	CI	CI	Н	(CH ₃) ₃ C	Oel
Ib-230	—сн ₂ ——сн— сн ₃	—(сH ₂) ₃ ——	CI	CI	Н	cl-ch, c, h,	Oel
Ib-231	—сн ₂ ——сн—с — (сн ₂) ₂ — сн ₃	=C — (CH ₂) ₂ — CH ₃	СН3	сн, сн,	6-СН ₃	(CH ₃) ₃ C	94-95

Le A-28-446-EP

Beispiel Nr.	A	В	×	Y	Z _n	\mathbb{R}^1	Fp.[°C]
lb-232		-(CH ₂) ₃	СН3	СН3	H	СН3	109-111
Ib-233	— CH ₂ —— CH — CH3	—(сH ₂) ₃ —	СН3	СН3	Н	i-C ₃ H,	Oel
Ib-234		-(cH ₂) ₃	СН3	СН3	Н	(CH ₃) ₃ C	102-104
Ib-235	— CH ₂ —— CH—— CH ₃	–(cH ₂) ₃ –	СН3	СН3	н	CI—CH ₂ —C— H ₃ C CH ₃	Oel
Ib-236	— сн ₂ —— сн — сн ₃	–(сн ₂) ₃ –	СН3	СН3	6-СН3	CI — CH ₂ — C — CI — CH ₃	104-106
Ib-237	— CH ₂ — CH — CH — CH — CH — CH ₃	–(сH ₂) ₃ –	СН3	СН3	6-СН ₃	н,с-о-сн,—с н,с-о-сн, Сн,	86-87

Le A 28 446-EP

Beispiel Nr.	A	В	×	Y	$Z_{\rm n}$	\mathbb{R}^1	Fp.[°C]
Ib-238	— CH ₂ —— CH — CH ₃	-(CH ₂) ₃ -	СН3	СН3	6-CH ₃	CH ₃	116-118
Ib-239	—сн ₂ ——сн Сн ₃	-(cH ₂) ₃	СН3	СН3	6-СН ₃	H ₃ C H,C	117-119
Ib-240	—(CH ₂) ₂ —CH — CH ₃	-(CH ₂) ₂	СН3	СН3	6-CH ₃		Oel
Ib-241	—(сн ₂) ₂ —сн— сн ₃	–(CH ₂) ₂ –	СН3	СН3	6-СН ₃	X	110-112
Ib-242	—(сн ₂) ₂ —сн—	(CH ₂) ₂	СН3	CH ₃	6-СН ₃	H ₃ C H ₃ C	66-86
Ib-243	—(сн ₂) ₂ —сн сн ₃	–(CH ₂) ₂ –	СН3	СН3	6-СН ₃		129-131

Le A 28 446-EP

Beispiel Nr.	А	В	Х	Y	$Z_{\rm n}$	\mathbb{R}^{1}	Fp.[°C]
Ib-244	—(СН ₂)2—СН—— (СН ₃	—(СН ₂) ₂ —	сн3	СН3	6-СН3	CH ₃	94-96
Ib-245	—(СН ₂)2—СН—— СН ₃	–(сн ₂) ₂ –	СН3	СН3	6-CH ₃	CH ₃	138-140
Ib-246	—(СН ₂) ₂ —СН— СН ₃	–(CH ₂) ₂ –	СН3	СН3	6-CH ₃	Adamantyl	114-116
Ib-247	—(сн ₂) ₂ —сн—- сн ₃	−(CH ₂) ₂ −	СН3	СН3	6-СН3		107-108
Ib-248	—(CH ₂) ₂ —CH — CH ₃	–(CH ₂) ₂ –	СН3	СН3	6-CH ₃	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Oel
Ib-249	—(сН ₂)2—сн— сН ₃	–(CH ₂) ₂ –	СН3	СН3	6-CH ₃	CI	Oel

Le A 28 446-EP

Beispiel Nr.	A	В	×	>	$Z_{\rm n}$	\mathbb{R}^{1}	Fp.[°C]
Ib-250	—(сн ₂) ₂ —сн — сн ₃	–(CH ₂) ₂ –	$ m CH_3$	CH ₃	6-СН ₃	CI-CH ₂	Oel
Ib-251	— CH ₂ —— CH — — CH ₃	-сн(сн ₂) ₂ сн ₃	сн, сн,		6-CH ₃	i-C ₃ H ₇	128-130
Ib-252	—сн ₂ ——сн - сн ₃	-сн(сн ₂) ₂ сн ₃	СН3	CH ₃	6-СН ₃	CI-CH ₂	Oel
Ib-253	—сн ₂ ——сн——(CH ₂) ₂ —	СН3	СН3	Н	СН ₃)3С	0el

Le_A 28 446-EP

lookindunger du tormel 3 + XX

Beispiel Nr.	A B	×	>	Z_{n}	\mathbb{R}^2	Fp.[°C]
Ic-66	-(CH ₂) ₅ -	CI	[]	H	i-C _a H _o	105
Ic-67	-(CH ₂) ₅ -	CI	C	Н	i-C ₃ H,	82
Ic-68	-(CH ₂) ₅ -	CI	ご	Н	С,Н,	54
Ic-69	-(CH ₂) ₅ -	נו	CI	Н		89
		· .			CH ₂	
Ic-70	-(CH ₂) ₅ -	כו	CI	H	C,H,	59
Ic-71	-(CH ₂) ₅ -	ご	CI	Н	C_AH_Q	95
Ic-72	-(CH ₂) ₅ -	ご	CI	Н) H	107
					ਲੂ- ਜੁ	
Ic-73	-(CH ₂) ₅ -	CI	CI	Н	C ₈ H ₁₇	62

Le A 28 446-EP

Fortsetzung: Tabelle 10 (D=0, L=0, M=0)

Beispiel Nr.	A B	×	Y	$Z_{ m n}$	\mathbb{R}^2	Fp.[°C]
Ic-74	-(CH ₂) ₅ -	CI	CI	Н	C ₆ H ₁₃	Oel
Ic-75	-(CH ₂) ₅ -	Cl	CI	H	CH ₂ =CH-CH ₂	87
Jc-76	-(CH ₂) ₅ -	Cl	CI	Н	H ₃ C	135
Ic-77	-(CH ₂) ₅ -	ij	CI	Н		106
Ic-78	-(CH ₂) ₅ -	CI	Cl	Н	£_	125
					H ₃ C + CH ₃	
Ic-79	-(CH ₂) ₅ -	Ü	ت ت	Н	H,C CH,J;	81
					•	
Ic-80	CH ₂	СН3	СН3	ш	i-C ₃ H ₇	Oel
Ic-81	—сн ₂ — сн-сн—(сн ₂) ₂ — сн ₃ сн ₃	CI	ゔ	H	i-C ₃ H,	Oel

Le A 28 446-EP

A B X		$ \times $		Υ	Z_n	\mathbb{R}^2	Fp.[°C]
<i>Ic-82</i>	CH ₂	CH_3	СН3	СН3	6-CH ₃	снз	90-91
	()—CH ₂	$ m CH_3$	СН3	СН3	6-CH ₃	i-C ₃ H,	93-94
Ic-84		$ m CH_3$	СН3	СН3	6-СН ₃	СН3	112-113
		CH_3	СН3	СН3	6-СН ₃	i-C ₃ H,	78-79
Ic-86	—(СН ₂) ₂ —СН—(СН ₂) ₂ — СН ₃	CH ₂) ₂ —	CI	CI	Н	СН3	89-90

Le_A 28 446-EP

Beispiel Nr.	A	В	×	Ā	$Z_{\rm n}$	R²	Fp.[°C]
Ic-87	—(СН ₂) ₂ —СН—(С	(CH ₂) ₂ —	CI	CI	Н	i-C ₃ H ₇	81-83
Ic-88	—сн ₂ ——сн—(сн ₃	(CH ₂) ₃ —	CI	CI	Н	сн3	Oel
Ic-89	—сн ₂ ——сн— сн ₃	(CH ₂) ₃ —	CI	CI	Н	i-C ₃ H ₇	84-86
Ic-90	—(СН ₂) ₂ —СН—(С С ₂ Н ₅	(CH ₂) ₂ —	СН3	СН3	6-СН ₃	СН3	Oel
Ic-91	—(СН ₂) ₂ —СН—(С С ₂ Н ₅	(CH ₂) ₂ —	СН3	СН3	6-СН ₃	i-C ₃ H,	Oel
Ic-92	—сн ₂ ——сн-с сн ₃ с	-сн-сн(сн ₂) ₂ сн ₃ сн ₃	СН3	CH ₃	6-CH ₃	СН3	Oel
Ic-93	— CH ₂ —— CH — C	-сн-сн(сн ₂) ₂ сн ₃ сн ₃	СН3	СН3	6-CH ₃	i-C ₃ H ₇	Oel
Ic-94	— CH ₂ — C(CH ₃) ₂ — CH ₂ — C(CH ₃) ₂ —— CH ₂ —		СН3	СН3	6-CH ₃	СН3	136-137

Le A 28 446-EP

Beispiel Nr.	A	В	×	>	$Z_{\rm n}$	R ²	Fp.[°C]
Ic-95	— сн ₂ — с(сн ₃₎₂ — с	—сн ₂ —с(сн ₃) ₂ —сн ₂ —с(сн ₃) ₂ —сн ₂ —	СН3	СН3	6-СН ₃	i-C ₃ H ₇	129-131
Jc-96	—сн ₂ —сн сн ₃	12	СН3	СН3	6-СН ₃	СН3	103-105
Ic-97	— сн ₂ — сн — сн ₂	12	СН3	СН3	6-СН ₃	i-C ₃ H ₇	84-85
Ic-98	-(CH ₂) ₂ C(CH ₃) ₂	₂ —(СН ₂) ₂ —	CH_3	CH_3	6-CH ₃	СН3	102-103
Ic-99	$-(CH_2)_2$ $-C(CH_3)_2$	₂ —(CH ₂) ₂ —	CH_3	CH_3	6-CH ₃	i-C ₃ H,	130-131
Ic-100	i-C ₃ H ₇	CH ₃	CI	Cl	Н	CH ₃	0el
Ic-101	i-C ₃ H ₇	СН3	CI	CI	Н	i-C ₃ H ₇	110-111
Ic-102	-CH ₂ CH	—(CH ₂) ₃ —	СН3	CH ₃	6-CH ₃	i-C ₄ H ₉	Oel

Le A-28 446-EP

Fp.[°C]	Oel	Oel	Oel	Oel	Oel	Oel	Oel	Oel
\mathbb{R}^2	s-C ₄ H ₉	H ₃ C ₄ —CH-CH ₂ C ₂ H ₅		(CH ₃) ₃ C	i-C ₄ H ₉	s-C ₄ H ₉	H ₅ C ₇ -CHCH ₂ C ₂ H ₅	
$Z_{ m n}$	6-CH ₃	6-СН ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-СН ₃	6-СН ₃
Ā	СН3	СН3	СН3	СН3	СН3	СН3	СН3	CH_3
×	СН3	СН3	СН3	СН3	СН3	CH_3	СН3	СН3
A B	-CH ₂	-сн ₂ сн (сн ₂) ₃ сн ₃	—сн ₂ —сн – (сн ₂) ₃ — сн ₃	CH ₂ CH-(CH ₂) ₃	$(CH_2)_2 - CH(CH_2)_2 CH_3$	$(CH_2)_2 - CH (CH_2)_2 CH_3$	—(сH ₂) ₂ —сH——(СH ₂) ₂ — сH ₃	(CH ₂) ₂ CH(CH ₂) ₂ CH ₃
Beispiel Nr.	Ic-103	Ic-104	Ic-105	Ic-106	Ic-107	Ic-108	Ic-109	Ic-110

Le A 28 446-EP

Beispiel A B X Y Z_n R² Fp.[°C] Nr. Id-111 —(CH ₂) ₂ – C_{H_1} —(CH ₂) ₂ — CH ₃ CH ₃ CCH ₃ CH ₃								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Beispiel Nr.	А	В	×	Y	$Z_{\rm n}$	\mathbb{R}^2	Fp.[°C]
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ic-111		-(CH ₂) ₂	СН3	СН3	6-СН ₃	(СН ₃)3С	91-93
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ic-112			CH ₃	СН3	6-СН ₃	сн3	Oel
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ic-113		СН3	CH_3	снз	6-СН3	i-C ₃ H ₇	Oel
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ic-114	<u> </u>	(CH ₂)2	CH ₃	СН3	6-CH ₃	CH_3	0el
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ic-115	—(СН ₂) - СН — i-С ₃ Н ₇	(CH ₂)2	СН3	СН3	6-CH ₃	i-C ₃ H ₇	Oel
$(CH_2) - CH(CH_2)_2(CH_3)_2$	Ic-116	—(СН ₂) -СН — С ₃ Н ₇	(CH ₂)2—	СН3	СН3	6-CH ₃	CH ₃	Oel
	Ic-117	—(СН ₂) – СН С ₃ Н,	(CH ₂) ₂ —	СН3	СН3	6-СН ₃	i-C ₃ H,	Oel

Le A 28 446-EP

Beispiel Nr.	A B	X	>	$Z_{\rm n}$	\mathbb{R}^2	Fp.[°C]
Ic-118	$-(CH_2)_2 - CH - (CH_2)_2 - $	СН3	CH ₃	6-CH ₃	СН3	87-89
Ic-119	$-(CH_2)_2^-CH^-(CH_2)_2^-$	СН	СН3	6-CH ₃	i-C ₃ H,	0el
Ic-120	—сн-(сн ₂) ₃ — сн ₃	СН3	СН3	6-CH ₃	СН3	Oel
Ic-121	—сн-(сн ₂) ₃ — сн ₃	СН3	СН3	6-CH ₃	i-C ₃ H ₇	Oe1
Ic-122	CH ₂ -CH-(CH ₂) ₂ CH ₃	СН3	CH ₃	6-CH ₃	сн ₃	Oel
Ic-123	CH ₂ -CH-(CH ₂) ₂ CH ₃	СН3	СН3	6-CH ₃	i-C ₃ H,	63-65

Le A 28 446-EP

Beispiel Nr	A B	X	Ā	$Z_{ m n}$	\mathbb{R}^2	Fp.[°C]
Ic-124	——(СН ₂) ₂ — СН – (СН ₂) ₂ — СН ₃	СН3	СН3	6-СН ₃	СН3	148-150
Ic-125	—сн ₂ — сн-сн ₂ сн — сн ₂ — сF ₃ сF ₃	СН3	СН3	6-СН ₃	i-C ₃ H ₇	154-156
Ic-126	-(CH ₂) ₅ -	CH ₃	CH_3	Н	i-C ₄ H ₉	Oel
Ic-127	-(CH ₂)5-	СН3	CH_3	Н	s - C_4H_9	0el
Ic-128	(CH ₂) ₂ -CH-(CH ₂) ₂ CH ₃	СН3	СН3	6-СН3	i-C ₃ H ₇	101
Ic-129	-(CH ₂) ₄ -	CI	CI	Н	і-СзН,	139-141
Ic-130	-(CH ₂) ₄ -	CI	CI	Н	i - C_4H_9	79-82

Le_A 28 446-EP

Beispiel Nr.	A	В	×	Y	$Z_{\rm n}$	\mathbb{R}^2	Fp.[°C]
Ic-131		2)3—	CI	C	Н	i-C ₃ H,	Oel
Ic-132	—сн ₂ -сн-(сн ₂) ₃ - сн ₃)3- -	СН3	СН3	Н	i-C ₃ H ₇	Oel
Ic-133	—сн ₂ -сн-(сн ₂) ₃ -)3_	СН3	СН3	6-CH ₃	i-C ₃ H,	Oel
Ic-134	—СН ₂ -СН-(СН ₂₎₃ - СН ₃) 3 _	СН3	СН3	6-СН3	H,C3-O-CH2-CH CH3	78-80
Ic-135	(CH ₂) ₂ -CH-(CH ₂) ₂ - CH ₃	.H ₂) ₂ —	СН3	СН3	6-CH ₃	H,C3-O-CH2-CH- CH3	Oel
Ic-136	—(сH ₂) ₂ —сH - (сH ₂) ₂ — сH ₃	Ή ₂)2—	СН3	СН3	6-CH ₃	CH ₃	127-129

Le A <u>2</u>8 446-EP

Beispiel A B X Y Z_n R ² Fp.[°C] Nr. $-(CH_2)^2 - CH^{-}(CH_2)^2 - CH^{-}(CH_2)^2$ $-(CH_2)^2 - CH^{-}(CH_2)^2$ $-(CH_3)^2 - CH_3$ $-(CH_3)^$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Beispiel Nr.	А	В	X	X		\mathbb{R}^2	Fp.[°C]
-сн2— сн — сн — сн — (сн2)2— СН3 6-СН3 -сн2— сн — сн — (сн2)2— СН3 6-СН3	Ic-137 (M=S)	—(сн ₂) ₂ -сн-(с сн ₃	H ₂) ₂ –	СН3	СН3		i-C ₃ H ₇	Oel
—сн ₂ — сн	Ic-138	— сн ⁵ —— сн — о	:H (СН ₂) ₂ :Н ₃	СН3		6-СН ₃	H ₃ C ₄	Oel
	Ic-139	-СН ₂ СНС		СН3	СН3	6-СН ₃	C_2H_5	Oel

Le A 28 446-EP

132-134 137-139 Fp.[°C] (Id) 83-85 Oel ์ กั้ กั้ 0-502-83 CH_3 \mathbb{R}^3 6-CH₃ 6-CH₃ $6-CH_3$ 6-CH₃ æ Z_n Verbindungen der Formel CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 × $-(CH_2)_2 - CH - (CH_2)_2 - CH_3$ $-(CH_2)_2 - CH - (CH_2)_2 - CH_3$ $-(CH_2)_2 - CH - (CH_2)_2 - CH_3$ \mathbf{B} Fortsetzung Tabelle 11 (D=0) Beispiel

Le A-28 446-EP

Id-7

6-bI

Id-8

Id-10

Fortsetzung Tabelle 12 (D=0, L=S; X=Y=CH3, Zn=6-CH3)

					ر ا
Beispiel Nr.	A	В	R ⁴	R ⁵	Fp. [°C]
le-34))-	-(CH ₂) ₅ -	-CH ₃	-SC ₅ H ₁₁ -n	40
Ie-35))-	-(CH ₂) ₅ -	-CH ₃	$-SC_3H_7$	102
Ie-36))-	-(CH ₂) ₅ -	-CH ₃	-0C ₂ H ₅	169
Ie-37))-	-(CH ₂) ₅ -	-CH ₃	-0C ₃ H ₇ -i	78
Ie-38)-	-(CH ₂)5-	-0C ₂ H ₅	$0C_2H_5$	86
Ie-39 L = 0)-	-(CH ₂) ₄ -	-C ₂ H ₅	-0C ₂ H ₅	58
Ie-40)-	-(CH ₂) ₅ -	CH_3	$S-(CH_2)_2-i-C_3H_7$	80
Ie-41))-	-(CH ₂) ₅ -	$0C_2H_5$	$S-s-C_4H_9$	$n_{\rm D}^{20} = 1.5408$
Ie-42))-	-(CH ₂) ₅ -	C_2H_5	$0-i-C_4H_9$	81
Ie-43))-	-(CH ₂) ₅ -	$0C_2H_5$	0-CH ₂ -C(CH ₃) ₃	120
Ie-44))	-(CH ₂) ₅ -	CH_3	0-CH ₂ -CH-C ₂ H ₅	Oel
				E D	

Beispiel Nr.	A	g	$ m R^4$	\mathbb{R}^5	Fp. [°C]
Ie-45	-(CH ₂) ₅ -	2)5-	OC ₂ H ₅	0-(CH ₂) ₂ -i-C ₃ H ₇	85
Ie-46	-{(CH ₂) ₅ -	-5(0	ос ₂ н ₅	0-CH—i—C ₄ H ₉ CH ₃	$n_{\rm D}^{20} = 1.5018$
Ie-47 L = 0	-(CH ₂) ₅ -	-5(0-i-C ₃ H ₇	S-C ₃ H ₇	$n_{\rm D}^{20} = 1.5195$
Ie-48 L = 0	-(CH ₂)5-	2)5-	СН3	S-s-C ₄ H ₉	75
Ie-49	-(CH ₂) ₅ -	-56	C ₂ H ₅	S-s-C ₄ H ₉	$n_{\rm D}^{20} = 1.5585$
Ie-50	-(CH ₂) ₅ -	-5(C_2H_5	S-CH ₂ -C(CH ₃) ₃	111
Ie-51	-(CH ₂) ₅ -	-5(C ₂ H ₅	S-CH ₂ -CH-C ₂ H ₅	56
				క్	
Ie-52	—(CH ₂) ₂ —CH —(CH ₂) ₂ — CH ₃	—(CH ₂) ₂ —	$ m CH_3$	S-s-C ₄ H ₉	$n_{\rm D}^{20} = 1.5585$
Ie-53	—сн ₂ ——сн сн ₃	CH—(CH ₂)3— CH ₃	СН3	S-s-C ₄ H ₉	$n_{\rm D}^{20} = 1.5601$
Ie-54	-(CH ₂) ₅ -	5(SCH ₃	$0-C_4H_9$	$n_{\rm D}^{20} = 1.5442$

Beispiel Nr.	А	В	\mathbb{R}^4	R ⁵	Fp. [°C
Ie-55	-(CH ₂) ₅ -	2)5-	oc ₂ H ₅	S-CH ₂ -CHC ₂ H ₅ CH ₃	$n_{\rm D}^{20} = 1.5292$
Ie-56	-(CH ₂) ₅ -	2)5-	0-i-C ₃ H ₇	S-C ₃ H ₇	$n_{\rm D}^{20} = 1.5657$
Ie-57	-(CH ₂) ₅ -	2)5-	C_2H_5		131
Ie-58	-(CH ₂)5-	2)5-	СН3.	S-i-C ₃ H ₇	$n_{\rm D}^{20} = 1.5564$
Ie-59	-(CH ₂) ₅ -	2)5-	оС ₃ Н,	S-C ₃ H ₇	$n_{\rm D}^{20} = 1.5450$
Ie-60	-(CH ₂) ₅ -	2)5-	O-i-C ₄ H ₇	S-C ₃ H ₇	76
Ie-61	-(CH ₂) ₅ -	2)5-	OC ₂ H ₅	S-CH ₂ -CH-C ₂ H ₅ CH ₃	$n_{\rm D}^{20} = 1.5446$

Le A 28 446-EP

Beispiel Nr.	Ą	В	\mathbb{R}^4	R ⁵	Fp. [°C]
Ie-62	-(CH ₂) ₅ -	-5/2-	0C ₂ H ₅	O-CH ₂ CF ₃	76
Ie-63	-(CH ₂) ₅ -	-5/5-	C_2H_5	O-CH-CF ₃	78
				ج. ع	
Ie-64	−СН ² −СН	—сн ₂ -сн-(сн ₂) ₃ -	C ₂ H ₅	S-i-C ₃ H ₇	$n_{\rm D}^{20} = 1.5600$
	CH 	3			
Ie-65	— CH ₂ -СH	-CH ₂ -CH-(CH ₂) ₃ -	C ₂ H ₅	S-s-C ₄ H ₉	$n_{\rm D}^{20} = 1.5598$
		8			-
Ie-66	-(CH ₂) ₅ -	2)5-	0C ₂ H ₅	$S-i-C_4H_9$	$n_{\rm D}^{20} = 1.5497$
Ie-67 $L = 0$	-(CH ₂) ₅ -	2)s-	$0C_2H_5$	0 -i- C_3 H $_7$	32
Ie-68	-(CH ₂) ₅ -	2)5-	C_2H_5	S-C ₃ H ₇	86

Le A 28 446-EP

Beispiel	Ą	В	R ⁴	R ⁵	F. [°C]
Nr.					
Ie-69	-(CH₂)₄-		C ₂ H ₅	S-(CH ₂) ₂ -i-C ₃ H ₇	82
le-70		-(CH ₂) ₂ —CH — (CH ₂) ₂ -	C_2H_5	S-(CH ₂) ₂ -i-C ₃ H ₇	98
	ප්	T ^e			
Ie-71	-(CH ₂) ₄ -	I ₂) ₄ -	СН3	S-C ₃ H ₇	102
le-72	$-(CH_2)_2$ $-CH$ $-(CH_2)_2$	ч—(сн ₂₎₂ –	СН3	S-C ₃ H,	88
	Ö	сн _з			
Ie-73 $L = 0$	-(CH ₂) ₅ -		0С2Н5	0-(CH ₂) ₂ -i-C ₃ H ₇	32

Le A 28 446-EP

		: · · · · ·			(A 00 E E	
Fortsetzung Tabelle 13 (D=0)	belle 13 (D=0)	red S	birdungen da	to the state	ج ج	(81) A TA	
Beispiel Nr.	A	В	×	Y	Z _n	E⊕	Fp [°C]
Ig-2	-(CH ₂) ₅ -	2)5-	CH ₃	СН3	6-CH ₃	Li [⊕]	>250
Ig-3	-(CH ₂) ₅ -	2)5-	CH_3	СН3	6-CH ₃	${ m K}^{\oplus}$	>250
Ig-4	-{(CH ₂) ₅ -	2)5-	CH_3	CH_3	6-CH ₃		50-55
			. :			CZHS	
Ig-5	-CH ₂ -CH-(CH ₂) ₃ -	H ₂)3—	СН3	СН3	6-CH ₃	Na®	>270
	<u>.</u>			·			
lg-6	(CH ₂) ₂ CH-(CH ₂) ₂ CH ₃	1-(CH ₂) ₂ —	CH ₃	СН3	6-СН3	Na [⊕]	>270
			٠				

Le A-28 446-EP

		And the second s					
Beispiel Nr.	A	В	X	Y	$Z_{\rm n}$	E.	Fp [°C]
Ig-7	-(CH ₂) ₅ -		CH ₃	CH ₃	6-CH ₃ Mg ⁽²⁺⁾		>250
Ig-8	-(CH ₂) ₅ -	₁₂) ₅ -	CI	CI	Н	Na⊕	
lg-9	но)-	-(CH ₂) ₄ -	CH ₃	CH ₃	6-CH ₃	Ca ²⁺ OH [⊕]	>220
Ig-10	-(CH ₂) ₄ -	·	СН3	CH_3	6-CH ₃ Ca ²⁺		>220

Le A 28 446-EP

Versindungen der Formet

(Th= Phenyl, Me = Methyl, Et = Ethyl, Pr = Propyl, Bu = Butyl)

Bsp	A	В	D	×	Y Y	Zn	R8	Fp
8A	Ph	Me	0	Me	Ме	6-Me	Me	Oel
9A	Ph	Ph	0	Ме	Ме	6-Me	Me	Oel
10A	C10H21	Н	0	Me	Ме	6-Me	Me	Oel
11A	-(CH2)2-	Н	0	Me	Me	6-Me	Ме	Oel
12A	-(CH2)4-	Н	0	Ме	Me	6-Me	Et	Oel
	1H-NMR (CDCl3): 1.25 (t,3H), 1	.7-2.4	(m,8	H), 2.:	3 (s,3ŀ	1), 2.4(s,6H),	3.75(s,2H),
•	4.2(q,2H), 6.9(s,2H) ppm		•					
	IR (neat): 3000(s), 1740(s), 162	0(w), 1	1580	(w), 1	440(m), 1370	(m),	1270(s), 1150(
	1070(s), 1030(s), 960(w), 850(m			• •	•	•	•	
						4		
13A	-(CH2)6-	Н	0	Me	Me	6-Me	Et	Oel
14A	Et	Et	0	Me	Ме	6-Me	Me	Oel
5A	-(CH2)2-CHtBu-(CH2)2-		0	Me	Ме	6-Me	Et	Oel
16A	C6H11	Н	0	Ме	Ме	6-Me	Me	Oel
7A -	-CH2-CHMe-(CH2)3-		0	Ме	Ме	6-Me	Et	Oel
8A	-(CH2)2-CHMe-(CH2)2-		0	Ме	Ме	6-Me	Et	Oel
9A	-(CH2)7-		0	Me	Ме	6-Me	Et	Oel
20A	-CHMe-(CH2)4-		0	Me	Me	6-Me	Et	Oel
21A .	-(CH2)2-CHPh-(CH2)2-		0	Ме	Ме	6-Me	Et	Oel
22A	Et	Me	0	Me	Me	6-Me	Мө	Oel
23A	tBu	Н	0	Ме	Me	6-Me	Ме	Oel
24A	-CH2-CMe2-CH2-CHMe-CH2-	•	0	Me	Me	6-Me	Et	Oel
25A	CH=CH2	. Me	0	Me	Me	6-Me	Et	Oel
26A	-CMe2-CMe2-	• •	0	Me	Me	6-Me	Ме	Oel
27A	iPr	Me	0	Me	Me	6-Me	Et	Oel
.8A ~	spiro-Tetralin-2-yl		0	Me '	Me	6-Me	Et	Oel
:9A	s-Bu	Me	Ο.	Ме	Ме	6-Me	Et	Oel
0A	CF3	Me	0	Me	Me	6-Me	Et	Oel
1 1A	Cyclohexen-1-yl, H	Н	0	Ме	Ме	6-Me	Et	Oel
2A	Ph-(CH2)2-	Me	0	Мө	Me	6-Мө	Et	Oel
3A	iPr	Н	0	Ме	Мө	6-Ме	Ме	Oel
4A	PhCH2 P	hCH2	0	Me	Ме	6-Me	Et	Oel
				-				

35A	÷	PhCH2	Ме	0	Me	Me	6-Me	Et	Oel
36A		C6H11	Me	0	Me	Ме	6-Me	Et	Oel
37A		-(CH2)2-CHEt-(CH2)2-		0	Ме	Me	6-Me	Et	Oel
38A	-	-CH2-CHMe-CHMe-(CH2)2-		0	Ме	Me	6-Me	Et	Oel
39A		-CH2-CMe2-CH2-CMe2-CH2-		0	Me	Ме	6-Me	Et	Oel
40A		-CH2-CHMe-CH2-CHMe-CH2-		0	Me	Ме	6-Me	Et	Oel
41A		-(CH2)2-CMe2-(CH2)2-		0	Ме	Ме	6-Me	Et	Oel
42A		C3H5	Ме	0	Me	Ме	6-Me	Et	Oel
43A		-(CH2)2-CHiPr-(CH2)2-		0	Ме	Me	6-Me	Et.	Oel
44A		-(CH2)2-CHnPr-(CH2)2-		0	Ме	Me	6-Me	Et	Oel
45A		-(CH2)2-CHCF3-(CH2)2-		0	Ме	Ме	6-Me	Et	Oel
46A		-(CH2)2-CH(C6H11)-(CH2)2-		Ö	Ме	Ме	6-Me	Et	Oei
47A		-(CH2)2-spiro-C6H11-(CH2)2-	•	0	Ме	Ме	6-Me	Et	Oel
48A		-CHMe(CH2)3-		0	Ме	Ме	6-Me	Et	Oel
49A		-CH2-CHMe-(CH2)2-		Ο.	Ме	Me	6-Me	Et	Oel
50A		-CH2-CHCF3-CH2-CHCF3-CH2-	-	0	Ме	Me	6-Me	Et	Oel
51A		-(CH2)2-S-(CH2)2-		.0	Me	Me	6-Me	Et	Oel
52A		-(CH2)3-		0	Ме	Me	6-Me	Et	Oel
53A		C8H17	Me	0	Me	Me	6-Me	Et	Oel
54A		-(CH2)2-CnPr2-(CH2)2-		0	Ме	Ме	6-Me	Et	Oel
55A		-(CH2)2-O-(CH2)2-		0	Me	Ме	6-Me	Et	Oel
56A		-CH2-CH=CMe-(CH2)2-		. 0	Me	Me	6-Me	Ме	Oel
57A		spiro-Indan-2-yl		0	Me	Ме	6-Me	Et	Oel
58A		-(CH2)2-S-CH2-		0	Me	Me	6-Me	Et	Oel
59A		CMe=CH2	Н	0	Me	Ме	6-Me	Et	Oel
60A		-(CH2)2-CH(CO2Et)-(CH2)2-		0	Me	Ме	6-Me	Et	Oel
61A		-(CH2)5-		0	Ме	Me	3-F,6-M	e Et	Oel
					٠				
62A	٠.	-(CH2)2-CHMe-(CH2)2-		0	Ме	Ме	- 1	Et	Oel
63A		-(CH2)4-		0	Ме	Me	- !	Et	Oel
64A		-CH2-CHMe-(CH2)2-		0	Ме	Me	- 1	Et	Oel
65A		iPr	Me	0	Ме	Ме	, -	Et	Oel
66A		-CH2-CHMe-(CH2)3-		0	Ме	Me	- !	Et	Oel
67A		-CH2-CHMe-CHMe-(CH2)2-		0	Me	Ме	- 1	Et	Oel
68A	3	Me	Ме	0	Ме	Ме	-, I	Et	Oel
69A		-(CH2)5-		0	Ме	Ме	- 1	Et	Oel
	•								
70A	1		Н	0	CI	CI	- 1	Et	Oel :

				•						
,71A	- 17.3	Me		Ме	0	CI	CI	-	Et	Oel
72A		Ph		н	0	CI	CI	•	Et	Oel
73A	B (2.3125)	Ph		Me	0	CI	CI		Et	Oel
74A	9.40 (K)	-(CH2)5-			0	CI	CI	•	Et	Oel
75A	C 1 %	Н	•	Н	0	CI	CI	•	Et	Oel
76A	\$.	-(CH2)2-CHMe-(CH2)2	-		0	CI	CI	-	Et	Oel
77A		-CH2-CHMe-(CH2)3-			0	CI	CI	-	Et	Oel
78A		iPr	£*	Me	0	CI	CI	-	Et	Oel
79A		-(CH2)4-		•	0	CI	CI	-	Et	Oel
80A	•	-CH2-CHMe-CHMe-(CI	H2)2-		0	CI	CI	-	Et	Oel
			·		•		•			
81A		Me		н	0	CI	-	6-CI	Et	Oel
82A		. Ph		Ме	0	CI	-	6-CI	Et	Oel
83A	:	Me		Me	0	CI	-	6-CI	Et	Oel
84A		Н		Н	0	CI	· -	6-CI	Et	Oel
85A		-(CH2)5-			0	CI		6-CI	Et	Oel
86A		Ph		Н	0	CI	-	6-CI	Et	Oel
87A	4 ·	Me		Н	0	F	-	6-CI	Et	Oel
88A	<u>.</u>	-(CH2)5-			0	F	-	6-CI	Et	Oel
89A	344 F.	Ph		Н	0	F	-	6-CI	Et	Oel
90A	24.1	Н		Н	0	F	-	6-CI	Et	Oel
91A		Me		Me	0	F	-	6-CI	Et	Oel
		•						• • •		
92A		H.	•	н	0	F	-	6-F	Et	Oel