Indian Institute of Information Technology Vadodara End-semester Examination MA 101 (Mathematics I: Linear Algebra and Matrices) Total Marks: 50

- Find the parabola $At^2 + Bt + C$ that is closest to the values b = (0,0,1,0,0) at the times t = -2, -1, 0, 1, 2, respectively. 5 Marks
 - 2. Let the matrix A be diagonalizable such that $A = S\Lambda S^{-1}$, where Λ is a diagonal matrix. Then diagonalize the block matrix $B = \begin{pmatrix} A & 0 \\ 0 & 2A \end{pmatrix}$. Find its eigenvalues and eigenvectors (block) matrices. 5 Marks
 - 3. (a) Let $A = \begin{pmatrix} 0 & 3 & 3 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$. Find a basis for Col(A) and find a basis for Null(A).
 - (b) If B is a 7×9 matrix with rank(B) = 5. Then dim(ColB) = ?, dim(NullB) = ?, $dim(NullB^T) = ?$, where dim stands for dimension.

 5 Marks
- 4. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation that takes $T \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, T \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$. Then
 - (i) Find $T \begin{pmatrix} 5 \\ 6 \end{pmatrix}$.
 - (ii) Find standard matrix representation of T.

5 Marks

5. Let $A = \begin{bmatrix} 4 & -6 \\ -8 & 12 \\ 6 & -9 \\ 2 & 6 \end{bmatrix}$. Find dimensions of Row space of A, Column

space of A and Null space of A. Is AX = b always consistent for any choice of the vector b? If yes then give reason else give b such that AX = b is not consistent.

5 Marks

6. Find an orthonormal basis for the column space of the matrix A =

$$\begin{pmatrix} 1 & -2 * j \\ 1 & 0 \\ 1 & j \\ 1 & 3 * j \end{pmatrix}$$
, where j is 1 + the last digit of your student id.

Let $b = \begin{pmatrix} -4 \\ -3 \\ 3 \\ 0 \end{pmatrix}$. Find the projection of b onto that column space of A.

- 7. Let $B = \{1, 1 + X, X + X^2, 1 + X^3\}$. Show that B is a basis of the vector space of all polynomials of degree less than or equal $3 = \mathbb{R}_3[X]$. Consider $T : \mathbb{R}_3[X] \to \mathbb{R}_3[X]$ defined as $T(f(X)) = 2X \frac{df}{dX}$. If T is a linear transformation then find a matrix representation of T with respect to a basis B else give rason.

 5 Marks
- §. Is every matrix $A \in M_n(\mathbb{R})$ with $A^3 = A$ diagonalisable over \mathbb{R} ? Give justication.
- 9. Find the SVD of the matrix $A = \begin{bmatrix} 1 & 0 & 1 & j \\ 0 & 1 & 0 & j \end{bmatrix}$, where j is 1 + the last digit of your student id. Find an orthonormal basis for Column space of A and Null space of A. 7 Marks
- 10. Let $A = \begin{bmatrix} 0 & 2 & 4 & 6 \\ 1 & 0 & 3 & 0 \\ 2 & 3 & 0 & 1 \\ 3 & 0 & 1 & 2 \end{bmatrix}$. Find the determinant of A. What can you say

about the linear transformation associated with A and A^2 ? 5 Marks