Pré-Cálculo

Thiago de Paula Oliveira

February 1, 2018

Algebra 1

a) Avalie cada expressão sem utilizar uma calculadora

(a)
$$(-4)^2$$

(b)
$$-4$$

(c)
$$3^{-4}$$

(d)
$$\frac{8^{15}}{8^{17}}$$

(e)
$$\frac{7^{-15}}{7^{-18}}$$

(a)
$$(-4)^2$$
 (b) -4^2 (c) 3^{-4} (d) $\frac{8^{15}}{8^{17}}$ (e) $\frac{7^{-15}}{7^{-18}}$ (f) $\left(\frac{2}{3}\right)^{-2}$

(g)
$$\left(\frac{4}{16}\right)^{-\frac{1}{2}}$$
 (h) $\left(\frac{36}{4}\right)^{\frac{1}{2}}$

(h)
$$\left(\frac{36}{4}\right)^{\frac{1}{2}}$$

b) Simplique cada expressão

(a)
$$(a+b)^2 - (2a-b)^2$$
 (b) $(4a^3b)(c-a^{1/2})^2$

(b)
$$(4a^3b)(c-a^{1/2})^2$$

$$(c) \left(\frac{x^3 y^2}{x^2 y^2}\right)^{-2}$$

(d)
$$\left(\frac{x^4 + y^2}{x^2}\right)^{\frac{1}{2}}$$

(f)
$$s^2 + t - 4st + (-2s + t)^2$$
 (g) $\frac{\sqrt{10}}{\sqrt{5}-2}$

(g)
$$\frac{\sqrt{10}}{\sqrt{5}-2}$$

(h)
$$\frac{\sqrt{4+h}-2}{h}$$

c) Fatore cada expressão

(a)
$$4x^2 - 25$$

(b)
$$x^2 - 2xy + y^2$$
 (c) $\frac{x^2 + y^2 - 4xy}{x^3 + y^2 + 2xy}$

(c)
$$\frac{x^2+y^2-4xy}{x^3+y^2+2xy}$$

(d)
$$x^4y^2 - 4x^2y$$

(e)
$$\frac{ry+(ry)^2}{r^4+y^3-4ry}$$

(d)
$$x^4y^2 - 4x^2y$$
 (e) $\frac{ry + (ry)^2}{r^4 + y^3 - 4ry}$ (f) $3x^{3/2} - 9x^{1/2} + 6x^{-1/2}$

(g)
$$\frac{\text{tg}(t)(x^2y^2-2xy)}{\text{tg}(xy)+y^2-x^2}$$

(g)
$$\frac{\operatorname{tg}(t)(x^2y^2-2xy)}{\operatorname{tg}(xy)+y^2-x^2}$$
 (h) $\operatorname{sen}^2(x) + \cos^2(x) + 3x$

d) Resolva a equação considerando apenas soluções reais

(a)
$$x + 5 = x - 3$$

(a)
$$x + 5 = x - 3$$
 (b) $2x^2 - 4x = 15$ (c) $\frac{x+1}{x-1} = 4$

(c)
$$\frac{x+1}{x-1} = 4$$

(d)
$$\frac{x+1}{x^2+4x} = \frac{1}{x}$$

(e)
$$|x+5| = 4$$

(d)
$$\frac{x+1}{x^2+4x} = \frac{1}{x}$$
 (e) $|x+5| = 4$ (f) $\sqrt{x+4} + 5x = \sqrt{7}$

(g)
$$|x^2 + 2x| = 12$$

(g)
$$|x^2 + 2x| = 12$$
 (h) $x^4 + x^3 + x^2 = 12x$

e) Resolva as inequações. Escreva as soluções utilizando a notação de intervalos.

(a)
$$7 \le x + 3 \le 10$$

(a)
$$7 \le x + 3 \le 10$$
 (b) $1 \le x^2 + 3^2 \le 50$ (c) $(x + 3)^2 \le 15$

(c)
$$(x+3)^2 \le 15$$

(d)
$$7 \le \frac{x+2}{x+1} \le 10$$

(d)
$$7 \le \frac{x+2}{x+1} \le 10$$
 (e) $5 \le \frac{x^2+2}{x} \le 10$ (f) $|x+4| \le 3$

(f)
$$|x+4| \le 3$$

(g)
$$\pi \le \text{sen}(x^2) + 2 \le 2\pi$$
 (h) $|x^2 + x| \ge 15$

(h)
$$|x^2 + x| \ge 15$$

$\mathbf{2}$ Geometria analítica

- 1. Encontre a equação da reta que passa através do ponto (1,-5) e tem coeficiente angular -5.
- 2. Encontre a equação do círculo cujo centro está em (-2,2) e passa pelos pontos (4,3).
- 3. Ache o centro e o raio da circunferência cuja equação é $x^2 + y^2 6(x + 2y) -$
- 4. Encontre a equação da reta que passa pelos pontos (-1,10) e (10,-5).
- 5. Faça o gráfico das equações/inequações a seguir sombreando a região delimitada entre elas e pelo plano xy.

(a)
$$3 \le y \le 8$$

(b)
$$y \ge 10 \text{ e } x \le 4$$

(b)
$$y \ge 10 \text{ e } x \le 4$$
 (c) $|y| > 5 \text{ e } |x| < 10$

(d)
$$8x^2 + 5y^2 = 144$$
 (e) $x^2 - y^2 < 10$

(e)
$$x^2 - y^2 < 10$$

Funções 3

Figure 1: Figura para o exercício 4

1. Responda a partir do gráfico de f representado na Figura 1.

- (a) Estime f(0).
- (b) Estime o valor de f(-8) e de f(10).
- (c) Estime f(x) = 500.
- (d) Defina o domínio e imagem da função f.

2. Considere a função $f(x)=x^4,$ calcule $\frac{f(a+h)-f(a)}{a+h}.$

3. Encontre o domínio das seguintes funções.

(a)
$$f(x) = \frac{x+2}{x-1}$$

(b)
$$f(x) = \frac{\sqrt{x}}{x^2 + 2x - 1}$$

(b)
$$f(x) = \frac{\sqrt{x}}{x^2 + 2x - 1}$$
 (c) $f(x) = \log(x) + \sqrt{x}$

(d)
$$f(x) = \sqrt{x+2} + \sqrt{x^2 + x}$$
 (e) $f(x) = \log x^2 + \frac{3x}{x^2 + 2x}$

(e)
$$f(x) = \log x^2 + \frac{3x}{x^2 + 2x}$$

Trigonometria 4

1. Converta de graus para radianos.

- (a) 269°
- (b) -50°
- (c) 180°
- (d) -18°

2. Converta de radianos para graus

- (a) $\pi/2$
- (b) $\frac{2\pi}{12}$
- (c) 2
- (d) 2π

3. Calcule os valores

- (a) $tg(\pi/3)$
- (b) $sen(\pi + 2)$
- (c) $\cos(0)$
- (d) $\cos(\pi/4)$

4. Prove as identidades

- (a) $tg\theta sen\theta + cos\theta = sec\theta$
- (b) $\sin^2 \theta + \cos^2 \theta = 1$ (c) $\frac{2 \lg x}{1 + \lg^2 x} = \sin 2x$

Caso tenha dificuldades em resolver qualquer um desses exercícios você consultar livros sobre revisão de algebra.