IN THE CLAIMS:

1	1.	(Original) A semiconductor light emitting device comprising:
2		a base substrate;
3		a multilayer epitaxial structure that includes a first conductive layer, a second
4	conductive la	yer and a light emitting layer that is formed between the first conductive layer and
5	the second co	onductive layer, the multilayer epitaxial structure being formed on the base substrate
6	in such a mar	nner that the first conductive layer is positioned closer to the base substrate than the
7	second condu	active layer is; and
8		a phosphor film that covers a main surface of the multilayer epitaxial structure
9	which faces	away from the base substrate, and every side surface of the multilayer epitaxial
10	structure fron	a layer including the main surface to include at least the light emitting layer.
1	2.	(Original) The semiconductor light emitting device of Claim 1, wherein
2		the multilayer epitaxial structure is epitaxially grown on the base substrate.
1	3.	(Original) The semiconductor light emitting device of Claim 2, wherein
2		the multilayer epitaxial structure further includes a reflective layer which is
3	formed between	een the base substrate and the first conductive layer.
1	4.	(Original) The semiconductor light emitting device of Claim 3, wherein
2		the reflective layer is made of an AlGaN semiconductor.
1	5.	(Original) The semiconductor light emitting device of Claim 2, further
2	comprising:	
3		a first electrode that is formed on the first conductive layer;

4	a second electrode that is formed on the second conductive layer;
5	a first power supply terminal and a second power supply terminal that are formed
6	on a main surface of the base substrate which faces away from the multilayer epitaxial structure;
7	a first conductive member including a first through hole that is provided in the
8	base substrate, and electrically connecting the first electrode and the first power supply terminal;
9	and
10	a second conductive member including a second through hole that is provided in
11	the base substrate, and electrically connecting the second electrode and the second power supply
12	terminal.
1	6. (Original) The semiconductor light emitting device of Claim 5, wherein
2	the multilayer epitaxial structure is formed on the base substrate leaving a space
3	along each edge of a main surface of the base substrate which faces the multilayer epitaxial
4	structure, and
5	the first through hole and the second through hole are provided in a peripheral
6	portion of the base substrate, the peripheral portion corresponding to the space.
1	7. (Original) The semiconductor light emitting device of Claim 2,
2	the base substrate is made of one of SiC, AlN, GaN, BN, and Si.
1	8. (Original) The semiconductor light emitting device of Claim 2, wherein
2	the main surface of the multilayer epitaxial structure which faces away from the
3	base substrate is uneven so as to improve light extraction efficiency.

1	9.	(Original) The semiconductor light emitting device of Claim 2, wherein
2		light emitted from the light emitting layer has a wavelength component within a
3	range of 380	nm to 780 nm.
_		
1	10.	(Original) The semiconductor light emitting device of Claim 1, wherein
2		the multilayer epitaxial structure is first epitaxially grown on a single-crystal
3	substrate, and	then transferred to the base substrate.
1	11.	(Original) The semiconductor light emitting device of Claim 10, further
ı		(Original) The semiconductor light clinting device of Claim 10, larther
2	comprising:	
3		a metal reflective film that is sandwiched between the multilayer epitaxial
4	structure and	the base substrate.
1	12	(Original) The comic and veton light emitting device of Claim 10, whomin
l	12.	(Original) The semiconductor light emitting device of Claim 10, wherein
2		the first conductive layer is a p-type semiconductor layer, and
3		the second conductive layer is an n-type semiconductor layer.
ſ	13.	(Original) The semiconductor light emitting device of Claim 12, wherein
L	13.	
2		a main surface of the n-type semiconductor layer which faces away from the light
3	emitting layer	is uneven so as to improve light extraction efficiency.
Ī	14.	(Original) The semiconductor light emitting device of Claim 1, wherein
	*	
2		the multilayer epitaxial structure is shaped as a cylinder having a substantially
3	circular or N-	sided polygonal cross-section, where N is an integer equal to or larger than five.

1	15.	(Original) The semiconductor light emitting device of Claim 14, wherein
2		the phosphor film is applied at a substantially same thickness.
1	16.	(Original) The semiconductor light emitting device of Claim 14, wherein
2		the main surface of the base substrate which faces the multilayer epitaxial
3	structure is re-	ctangular.
1	17.	(Original) The semiconductor light emitting device of Claim 14, wherein
2		the multilayer epitaxial structure further includes a light reflective layer which is
3	formed betwe	en the first conductive layer and the base substrate.
1	18.	(Original) The semiconductor light emitting device of Claim 14, wherein
	10.	
2		the multilayer epitaxial structure is epitaxially grown on the base substrate.
1	19.	(Original) The semiconductor light emitting device of Claim 14, wherein
2		the multilayer epitaxial structure is divided into a plurality of portions by a
3	division groo	ve that reaches the base substrate, the plurality of portions being a plurality of
4	independent li	ght emitting elements.
1	20.	(Original) The semiconductor light emitting device of Claim 19, wherein
2		in each of the plurality of independent light emitting elements,
3		a first electrode is formed on a part of a main surface of the first conductive layer,
4	the part being	created by partially removing the second conductive layer and the light emitting
5	layer, and a se	cond electrode is formed on a main surface of the second conductive layer, and
6		the plurality of independent light emitting elements are connected with each other

5

6

- 7 in series in such a manner that a first electrode of one independent light emitting element is
- 8 connected to a second electrode of another independent light emitting element using a wiring
- 9 formed by a thin metal film.
- 1 21. (Original) The semiconductor light emitting device of Claim 20, wherein
- 2 the light emitting layer included in each independent light emitting element has a
- 3 substantially same area.
- 1 22.-28 (Cancelled)
- 1 29. (New) The semiconductor light emitting device of Claim 1 wherein the phosphor
- 2 film is formed of (Sr, Ba)₂ Sio₄:Eu²⁺.
- 1 30. (New) The semiconductor light emitting device of Claim 29 wherein a thickness
- 2 of the phosphor film is approximately 50 μm.
- 1 31. (New) The semiconductor light emitting device of Claim 1 wherein the epitaxial
- 2 structure has an uneven p-electrode surface as a first conductive layer.
- 1 32. (New) The semiconductor light emitting device of Claim 31 wherein a plurality
- 2 of depressions is formed on a surface of the p-electrode surface to improve light extraction
- 3 efficiency.
- 1 33. (New) The semiconductor light emitting device of Claim 31 wherein a Ni/An
- 2 thin film and an ITO transparent electrode form the p-electrode.

- 1 34. (New) The semiconductor light emitting device of Claim 1 includes a hole in the
- 2 base substrate.