

SDS 321: Introduction to Probability and Statistics Lecture 5: Independence

Purnamrita Sarkar
Department of Statistics and Data Science
The University of Texas at Austin

www.cs.cmu.edu/~psarkar/teaching.html

We know that
$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
. In general this is not the same as $P(A)$.

- ▶ What if P(A|B) = P(A)?
- ▶ So, any evidence about *B* does not affect our belief about *A*.

- ▶ What if P(A|B) = P(A)?
- ▶ So, any evidence about B does not affect our belief about A.
- ▶ Say two fair coins are tossed together. We say H_i for $i \in \{1, 2\}$ is the event that the i^{th} coin gives H. Similarly define T_1 and T_2 .

- ▶ What if P(A|B) = P(A)?
- ▶ So, any evidence about B does not affect our belief about A.
- ▶ Say two fair coins are tossed together. We say H_i for $i \in \{1,2\}$ is the event that the i^{th} coin gives H. Similarly define T_1 and T_2 .
 - What is P(H₁|H₂)?

- ▶ What if P(A|B) = P(A)?
- ▶ So, any evidence about B does not affect our belief about A.
- Say two fair coins are tossed together. We say H_i for $i \in \{1,2\}$ is the event that the i^{th} coin gives H. Similarly define T_1 and T_2 .
 - What is $P(H_1|H_2)$?
 - $P(H_1|H_2) = \frac{P(H_1 \cap H_2)}{P(H_2)}$

- ▶ What if P(A|B) = P(A)?
- ▶ So, any evidence about B does not affect our belief about A.
- Say two fair coins are tossed together. We say H_i for $i \in \{1,2\}$ is the event that the i^{th} coin gives H. Similarly define T_1 and T_2 .
 - ▶ What is $P(H_1|H_2)$?
 - $P(H_1|H_2) = \frac{P(H_1 \cap H_2)}{P(H_2)} = \frac{1/4}{1/2} = 1/2 = P(H_1).$
 - ▶ Knowing H_2 does not give me additional information about H_1 .

Pairwise Independence

- ▶ If P(A|B) = P(A), we say the events A and B are **independent**.
- In other words, knowing B tells us nothing about the probability of event A!
- ▶ We can rewrite our definition by writing $P(A|B) = P(A \cap B)/P(B)$:

$$P(A \cap B) = P(A)P(B)$$

- ▶ We generally prefer this definition... why?
- ▶ We know that $P(A \cap B) = P(B \cap A)$... so if A is independent of B, then B is independent of A.
- ▶ **Definition** Two events *A* and *B* are independent if $P(A \cap B) = P(A)P(B)$.

- ▶ Each roll is independent. Let X_i denote the event that there is no six in the i^{th} roll.
- ► P(at least 1 six in 4 rolls) =

- ▶ Each roll is independent. Let X_i denote the event that there is no six in the i^{th} roll.
- ▶ P(at least 1 six in 4 rolls) = 1 P(no sixes in 4 rolls)

- ▶ Each roll is independent. Let X_i denote the event that there is no six in the i^{th} roll.
- P(at least 1 six in 4 rolls) = 1 P(no sixes in 4 rolls)= $1 - P(X_1 \cap X_2 \cap X_3 \cap X_4)$

- ► Each roll is independent. Let X_i denote the event that there is no six in the ith roll.
- ▶ P(at least 1 six in 4 rolls) = 1 P(no sixes in 4 rolls)= $1 - P(X_1 \cap X_2 \cap X_3 \cap X_4)$ = $1 - P(X_1)P(X_2)P(X_3)P(X_4)$

A gambler is rolling 4 fair dice. What is the probability that there is at least one 6 in 4 rolls.

- ► Each roll is independent. Let X_i denote the event that there is no six in the ith roll.
- ► P(at least 1 six in 4 rolls) = 1 P(no sixes in 4 rolls)= $1 - P(X_1 \cap X_2 \cap X_3 \cap X_4)$ = $1 - P(X_1)P(X_2)P(X_3)P(X_4)$ = $1 - \left(\frac{5}{6}\right)^4 = 0.518$

4

Theorem. If A and B are independent $(A \perp \!\!\! \perp B)$, then so are

 \triangleright A and B^c

- \triangleright A^c and B
- \triangleright A^c and B^c

Theorem. If A and B are independent $(A \perp \!\!\! \perp B)$, then so are

- \triangleright A and B^c
 - $ightharpoonup P(A \cap B^c)$

- \triangleright A^c and B
- \triangleright A^c and B^c

Theorem. If A and B are independent $(A \perp \!\!\! \perp B)$, then so are

- \triangleright A and B^c
 - $P(A \cap B^c) = P(A) P(A \cap B)$

- \triangleright A^c and B
- \triangleright A^c and B^c

Theorem. If A and B are independent $(A \perp \!\!\! \perp B)$, then so are

 \triangleright A and B^c

$$P(A \cap B^c) = P(A) - P(A \cap B)$$
$$= P(A) - P(A)P(B)$$

- \triangleright A^c and B
- \triangleright A^c and B^c

Theorem. If A and B are independent $(A \perp \!\!\! \perp B)$, then so are

 \triangleright A and B^c

►
$$P(A \cap B^c) = P(A) - P(A \cap B)$$

= $P(A) - P(A)P(B)$
= $P(A)(1 - P(B)) = P(A)P(B^c)$

- \triangleright A^c and B
- \triangleright A^c and B^c

Q: I have three events A, B and C, s.t. $P(A \cap B \cap C) = P(A)P(B)P(C)$. Are A, B, C mutually independent?

You are tossing two fair dice. A = {First roll is odd}, B = {First roll is ≤ 3} and C = {The sum is 9}.

- You are tossing two fair dice. A = {First roll is odd}, B = {First roll is ≤ 3} and C = {The sum is 9}.
- $A = \{ \text{First roll is } 1, 3, 5 \}. \ P(A) = 1/2.$

- You are tossing two fair dice. A = {First roll is odd}, B = {First roll is ≤ 3} and C = {The sum is 9}.
- $A = \{ \text{First roll is } 1, 3, 5 \}. \ P(A) = 1/2.$
- ▶ $B = \{ \text{First roll is } 1, 2, 3 \}. \ P(B) = 1/2.$

- You are tossing two fair dice. A = {First roll is odd}, B = {First roll is ≤ 3} and C = {The sum is 9}.
- $A = \{ \text{First roll is } 1, 3, 5 \}. \ P(A) = 1/2.$
- ▶ $B = \{\text{First roll is } 1, 2, 3\}. \ P(B) = 1/2.$
- $C = \{(3,6), (4,5), (5,4), (6,3)\}. \ P(C) = 4/36.$

- You are tossing two fair dice. A = {First roll is odd}, B = {First roll is ≤ 3} and C = {The sum is 9}.
- $A = \{ \text{First roll is } 1, 3, 5 \}. \ P(A) = 1/2.$
- ▶ $B = \{\text{First roll is } 1, 2, 3\}. \ P(B) = 1/2.$
- $C = \{(3,6), (4,5), (5,4), (6,3)\}. \ P(C) = 4/36.$
- ► $A \cap B \cap C = \{(3,6)\}. \ P(A \cap B \cap C) = 1/36.$

- You are tossing two fair dice. A = {First roll is odd}, B = {First roll is ≤ 3} and C = {The sum is 9}.
- $A = \{ \text{First roll is } 1, 3, 5 \}. \ P(A) = 1/2.$
- ▶ $B = \{\text{First roll is } 1, 2, 3\}. \ P(B) = 1/2.$
- $C = \{(3,6), (4,5), (5,4), (6,3)\}. P(C) = 4/36.$
- ► $A \cap B \cap C = \{(3,6)\}. \ P(A \cap B \cap C) = 1/36.$
- $P(A \cap B \cap C) = P(A)P(B)P(C).$

- You are tossing two fair dice. A = {First roll is odd}, B = {First roll is ≤ 3} and C = {The sum is 9}.
- $A = \{ \text{First roll is } 1, 3, 5 \}. \ P(A) = 1/2.$
- ▶ $B = \{\text{First roll is } 1, 2, 3\}. \ P(B) = 1/2.$
- $C = \{(3,6), (4,5), (5,4), (6,3)\}. P(C) = 4/36.$
- ► $A \cap B \cap C = \{(3,6)\}. \ P(A \cap B \cap C) = 1/36.$
- $P(A \cap B \cap C) = P(A)P(B)P(C).$
- ▶ How about $P(A \cap B)$?

- You are tossing two fair dice. A = {First roll is odd}, B = {First roll is ≤ 3} and C = {The sum is 9}.
- $A = \{ \text{First roll is } 1, 3, 5 \}. \ P(A) = 1/2.$
- ▶ $B = \{\text{First roll is } 1, 2, 3\}. \ P(B) = 1/2.$
- $C = \{(3,6), (4,5), (5,4), (6,3)\}. P(C) = 4/36.$
- ► $A \cap B \cap C = \{(3,6)\}. \ P(A \cap B \cap C) = 1/36.$
- $P(A \cap B \cap C) = P(A)P(B)P(C).$
- ▶ How about $P(A \cap B)$?
 - ▶ $P(A \cap B) = P(\{\text{First roll is 1 or 3}\}) =$

- You are tossing two fair dice. A = {First roll is odd}, B = {First roll is ≤ 3} and C = {The sum is 9}.
- $A = \{ \text{First roll is } 1, 3, 5 \}. \ P(A) = 1/2.$
- ▶ $B = \{\text{First roll is } 1, 2, 3\}. \ P(B) = 1/2.$
- $C = \{(3,6), (4,5), (5,4), (6,3)\}. P(C) = 4/36.$
- ► $A \cap B \cap C = \{(3,6)\}. P(A \cap B \cap C) = 1/36.$
- $P(A \cap B \cap C) = P(A)P(B)P(C).$
- ▶ How about $P(A \cap B)$?
 - ► $P(A \cap B) = P(\{\text{First roll is 1 or 3}\}) = 12/36 = 1/3.$
 - ▶ But $P(A) \times P(B) = 1/4$. So $P(A \cap B) \neq P(A)P(B)$.

$P(A \cap B \cap C) = P(A)P(B)P(C)$ is too weak for mutual independence.

- ▶ **Definition.** Events $A_1, ... A_n$ are mutually independent if for any subset S of $\{1, ..., n\}$ we have $P(\cap_{i \in S} A_i) = \prod_{i \in S} P(A_i)$.
- Also, any combination of a set of events and the complements of each the remaining events are mutually independent too. i.e. if A, B, C are mutually independent, then so are A^c, B^c, C and A, B^c, C or A^c, B, C^c etc.
- Mutual independence implies pairwise dependence.
- Does the converse hold?

You are tossing two fair coins. A = {First toss is head}, B = {Second toss is head}, and C = {The outcomes are same}

- You are tossing two fair coins. A = {First toss is head}, B = {Second toss is head}, and C = {The outcomes are same}
- $ightharpoonup A = \{HH, HT\}, B = \{HH, TH\} \text{ and } C = \{HH, TT\}.$

- You are tossing two fair coins. A = {First toss is head}, B = {Second toss is head}, and C = {The outcomes are same}
- $ightharpoonup A = \{HH, HT\}, B = \{HH, TH\} \text{ and } C = \{HH, TT\}.$
- ▶ P(A) = 1/2, P(B) = 1/2 and P(C) = 1/2.

- You are tossing two fair coins. A = {First toss is head}, B = {Second toss is head}, and C = {The outcomes are same}
- $ightharpoonup A = \{HH, HT\}, B = \{HH, TH\} \text{ and } C = \{HH, TT\}.$
- P(A) = 1/2, P(B) = 1/2 and P(C) = 1/2.
- ► $P(A \cap B) = 1/4 = P(A)P(B)$. So $A \perp \!\!\! \perp B$

- You are tossing two fair coins. A = {First toss is head}, B = {Second toss is head}, and C = {The outcomes are same}
- ▶ $A = \{HH, HT\}, B = \{HH, TH\} \text{ and } C = \{HH, TT\}.$
- P(A) = 1/2, P(B) = 1/2 and P(C) = 1/2.
- ► $P(A \cap B) = 1/4 = P(A)P(B)$. So $A \perp \!\!\! \perp B$
- ▶ $P(C \cap B) = 1/4 = P(C)P(B)$. So $C \perp \!\!\! \perp B$

- You are tossing two fair coins. A = {First toss is head}, B = {Second toss is head}, and C = {The outcomes are same}
- ▶ $A = \{HH, HT\}, B = \{HH, TH\} \text{ and } C = \{HH, TT\}.$
- P(A) = 1/2, P(B) = 1/2 and P(C) = 1/2.
- ▶ $P(A \cap B) = 1/4 = P(A)P(B)$. So $A \perp\!\!\!\perp B$
- ▶ $P(C \cap B) = 1/4 = P(C)P(B)$. So $C \perp \!\!\! \perp B$
- ► $P(A \cap C) = 1/4 = P(A)P(C)$. So $A \perp C$

- You are tossing two fair coins. A = {First toss is head}, B = {Second toss is head}, and C = {The outcomes are same}
- ▶ $A = \{HH, HT\}, B = \{HH, TH\} \text{ and } C = \{HH, TT\}.$
- P(A) = 1/2, P(B) = 1/2 and P(C) = 1/2.
- ▶ $P(A \cap B) = 1/4 = P(A)P(B)$. So $A \perp\!\!\!\perp B$
- ▶ $P(C \cap B) = 1/4 = P(C)P(B)$. So $C \perp \!\!\! \perp B$
- ► $P(A \cap C) = 1/4 = P(A)P(C)$. So $A \perp \!\!\! \perp C$
- $P(A \cap B \cap C) = 1/4 \neq P(A)P(B)P(C)$

You are tossing a coin 4 times. Let H_i indicate the event that the i^{th} toss is a head.

- ▶ We know that these are mutually independent.
- ▶ How about H_1 , $H_2 \cap H_3$ and H_4 ? Are these mutually independent as well?
- ▶ How about $H_1 \cap H_2 \cap H_3$ and H_4 ?
- ▶ How about $H_1 \cap H_2 \cap H_3$ and $H_2 \cup H_4$?

Practice problems

Q1. Bob and Alice are playing a game. They alternatively keep tossing a coin and the first one to get a H wins 5\$. The coin is fair.

- ▶ What is the sample space? Hint: the game stops the moment someone gets a head.
- ▶ What are the associated probabilities of the elements in the sample space? Do they sum to one?
- Alice insists she should toss first. Why?

Practice problem: Alice and Bob play a game

Bob and Alice are playing a game. They alternatively keep tossing a coin and the first one to get a H wins 5\$. The coin is fair.

▶ Hint 1: the game stops the moment someone gets a head.

Practice problem: Alice and Bob play a game

Bob and Alice are playing a game. They alternatively keep tossing a coin and the first one to get a H wins 5\$. The coin is fair.

- ▶ Hint 1: the game stops the moment someone gets a head.
- All outcomes have exactly one H, and stops with a H
- ▶ $\Omega = \{H, TH, TTH, TTTH, ...\}$. Its countably infinite.
- What are the probabilities of these events?
 - $P(H) = 1/2. P(TH) = (1/2)^2.P(TTH) = (1/2)^3,...$
 - ▶ But do they sum to one? $\sum_{i=1}^{\infty} (1/2)^i = 1$.
- Alice insists she should toss first. Why?

Practice problem: solution

Bob and Alice are playing a game. They alternatively keep tossing a coin and the first one to get a H wins 5\$. What is the sample space? The coin is fair.

Who should play first? Does the person who plays first have a better chance at winning?

Practice problem: solution

Bob and Alice are playing a game. They alternatively keep tossing a coin and the first one to get a H wins 5\$. What is the sample space? The coin is fair.

- Who should play first? Does the person who plays first have a better chance at winning?
- ▶ When does the first person win?
 - ▶ The sequences are *H*, *TTH*, *TTTTH*...
 - ► The probability that the first person wins is

$$(1/2) + (1/2)^3 + (1/2)^5 + \dots = 1/2 \sum_{i=1}^{\infty} (1/4)^i = 2/3.$$

- ▶ So 2 out of 3 times this game is played, Alice will win.
- We used $\sum_{i=0}^{\infty} p^i = 1/(1-p)$ for some p < 1.

Conditional Independence

Bob, and Alice mostly go to their 9am probability class when the weather is sunny. Are the events {Bob goes to class} and {Alice goes to class} independent events?

- ▶ No. If I know Bob went to class. Then its likely that its sunny. This makes it likely that Alice goes too.
- ▶ Given the event {its sunny}, {Bob went to class} does not give us any information about {Alice went to class}.
- So {Bob goes to class} and {Alice goes to class} are conditionally independent given {its sunny}.
- ► This brings us to conditional independence.
- ▶ **Definition** Two events *A* and *B* are conditionally independent given another event *C* if $P(A|B \cap C) = P(A|C)$
- ▶ We write this as $A \perp \!\!\! \perp B \mid C$

Conditional Independence

- Recall, we said two events A and B were independent if
 - ▶ P(A|B) = P(A) knowing B tells us nothing about the probability of A.
 - ▶ This means that $P(A \cap B) = P(A)P(B)$.
- We can extend this definition to conditional probabilities. We say two events A and B are conditionally independent given some event C if
 - $P(A|B \cap C) = P(A|C).$
 - We write this as $A \perp \!\!\! \perp B \mid C$.
 - ▶ Like before, this boils down to: $P(A|B \cap C) = P(A|C)P(B|C)$
 - Can you prove it?

- ► Consider two urns, each containing 100 balls.
- ▶ The first urn contains all red balls.
- ▶ The second urn contains all blue balls.
- We select an urn at random. Let A be the event that the first urn is chosen.
- ▶ We select a ball from the urn, note it's color, and put it back. We then select another ball from the urn, note it's color, and put it back.
- ▶ Let *A* be the event that the first urn was chosen, let *R*₁ be the event that the first ball was red, and let *R*₂ be the event that the second ball was red.
- \blacktriangleright Are R_1 and R_2 independent?

Think about it intuitively first.

▶ I tell you that the first ball is red.

- ▶ I tell you that the first ball is red.
- ▶ Then you know for sure that the first urn is picked.

- ▶ I tell you that the first ball is red.
- ▶ Then you know for sure that the first urn is picked.
- So the second ball has to be red as well.

- ▶ I tell you that the first ball is red.
- ▶ Then you know for sure that the first urn is picked.
- So the second ball has to be red as well.
- Knowing about the first ball tells you a lot about the color of the second ball.

- I tell you that the first ball is red.
- ▶ Then you know for sure that the first urn is picked.
- So the second ball has to be red as well.
- Knowing about the first ball tells you a lot about the color of the second ball.
- Clearly they are not independent!

- ▶ We need to compare $P(R_1 \cap R_2)$ with $P(R_1)P(R_2)$
- By the law of total probability,

- ▶ We need to compare $P(R_1 \cap R_2)$ with $P(R_1)P(R_2)$
- By the law of total probability,

$$P(R_1) = P(R_1|A)P(A) + P(R_1|A^c)P(A^c)$$

- ▶ We need to compare $P(R_1 \cap R_2)$ with $P(R_1)P(R_2)$
- By the law of total probability,

$$P(R_1) = P(R_1|A)P(A) + P(R_1|A^c)P(A^c)$$

=1 \times 0.5 + 0 \times 0.5 = 0.5

- ▶ We need to compare $P(R_1 \cap R_2)$ with $P(R_1)P(R_2)$
- By the law of total probability,

$$P(R_1) = P(R_1|A)P(A) + P(R_1|A^c)P(A^c)$$

=1 \times 0.5 + 0 \times 0.5 = 0.5

▶ What is $P(R_2)$? Its also 0.5.

- ▶ We need to compare $P(R_1 \cap R_2)$ with $P(R_1)P(R_2)$
- By the law of total probability,

$$P(R_1) = P(R_1|A)P(A) + P(R_1|A^c)P(A^c)$$

=1 \times 0.5 + 0 \times 0.5 = 0.5

- ▶ What is $P(R_2)$? Its also 0.5.
 - Again, by the law of total probability,

$$P(R_1 \cap R_2) = P(R_1 \cap R_2 | A)P(A) + P(R_1 \cap R_2 | A^c)P(A^c)$$

= 1 \times 1 \times 0.5 + 0 \times 0 \times 0.5 = 0.5

Let's compare: $P(R_1)P(R_2) = 0.5 \times 0.5 = 0.25$

- ▶ We need to compare $P(R_1 \cap R_2)$ with $P(R_1)P(R_2)$
- By the law of total probability,

$$P(R_1) = P(R_1|A)P(A) + P(R_1|A^c)P(A^c)$$

=1 \times 0.5 + 0 \times 0.5 = 0.5

- ▶ What is $P(R_2)$? Its also 0.5.
 - Again, by the law of total probability,

$$P(R_1 \cap R_2) = P(R_1 \cap R_2 | A)P(A) + P(R_1 \cap R_2 | A^c)P(A^c)$$

= 1 \times 1 \times 0.5 + 0 \times 0 \times 0.5 = 0.5

- Let's compare: $P(R_1)P(R_2) = 0.5 \times 0.5 = 0.25$
- ▶ So, $P(R_1 \cap R_2) \neq P(R_1)P(R_2)$ i.e. $R_1 \not\perp\!\!\!\perp R_2$.

► What if we condition on the chosen urn? Are the two colors now independent?

- What if we condition on the chosen urn? Are the two colors now independent?
- Our gut says yes... let's just double check the math.

$$P(R_1|A) = P(R_2|A) = 1$$

 $P(R_1 \cap R_2|A) = 1 \times 1 = 1 = P(R_1|A)P(R_2|A)$

- ▶ So, $R_1 \perp R_2 | A$
- Knowing which urn was used tells us something about how likely it is that they are both red!
- Conditional independence does not imply independence!

- What if we condition on the chosen urn? Are the two colors now independent?
- Our gut says yes... let's just double check the math.

$$P(R_1|A) = P(R_2|A) = 1$$

 $P(R_1 \cap R_2|A) = 1 \times 1 = 1 = P(R_1|A)P(R_2|A)$

- ▶ So, $R_1 \perp R_2 | A$
- Knowing which urn was used tells us something about how likely it is that they are both red!
- Conditional independence does not imply independence!
- What if both urns were identical?

Mutual independence $\stackrel{?}{\rightarrow}$ Conditional Independence

We know that two events which are conditionally independent given another event, need not be independent.

- ▶ I toss a fair coin twice. $H_i = \{i^{th} \text{toss is H}\}$. $H_1 \perp H_2$.
- Now I tell you that the two tosses have different outcomes. Call this event E. Is $H_1 \perp H_2 \mid E$ true?

Mutual independence $\stackrel{?}{\rightarrow}$ Conditional Independence

We know that two events which are conditionally independent given another event, need not be independent.

- ▶ I toss a fair coin twice. $H_i = \{i^{th} \text{toss is H}\}$. $H_1 \perp H_2$.
- Now I tell you that the two tosses have different outcomes. Call this event E. Is $H_1 \perp H_2 \mid E$ true?
- Conditioned on H₁ and E, you know that the tosses are different and the first toss is a H. Does this tell you anything about the second toss?

Mutual independence $\stackrel{?}{\rightarrow}$ Conditional Independence

We know that two events which are conditionally independent given another event, need not be independent.

- ▶ I toss a fair coin twice. $H_i = \{i^{th} \text{toss is H}\}$. $H_1 \perp H_2$.
- Now I tell you that the two tosses have different outcomes. Call this event E. Is $H_1 \perp H_2 \mid E$ true?
- Conditioned on H₁ and E, you know that the tosses are different and the first toss is a H. Does this tell you anything about the second toss?
- ▶ Of course! The second toss **has to** be a T! So intuitively, H_1 and H_2 should not be independent given E.

Announcements

- ► HW2 is now available.
- ▶ Please turn in HW1 by 4pm today.
- ► Today we will practice some problems in class!