

1

ALAPFOGALMAK I – SZIGETELŐ ALAPÚ INTEGRÁLT ÁRAMKÖRÖK

A szigetelő alapú integrált áramköri hordozókon az elemek összekötésére szolgáló vezetékmintázatot, az ellenállások jelentős részét és egyes további passzív elemeket a szigetelő lemez felületén integrált formában rétegtechnológiával állítjuk elő.

Az alkalmazott **technológia alapján** kétféle hordozót különböztetünk meg: **vastagréteg** és **vékonyréteg IC**.

Ha további alkatrészeket (ún. hibrid elemeket) is beültetünk a szigetelő alapú integrált áramkörbe, akkor az áramkört **hibrid IC**-nek nevezzük.

🂸 BMEETT

Vastagréteg technológia

2

ALAPFOGALMAK II - VASTAGRÉTEG Vastagréteg: 5-70 μm vastagságú réteg, amelyet szitanyomtatással és hőkezeléssel paszta állagú anyagból hoznak létre általában kerámiára (ritkábban üvegre, szilíciumra, passzivált fémfelületre), vagy műanyag hordozóra. Tokozás Vastagréteg hibrid IC Vastagréteg technológia

2/52

ALAPANYAGOK I

- Vastagréteg paszták: kolloid szuszpenzió típusú anyagok a következő összetevőkkel
 - funkcionális fázis (amely a vastagréteg alaptulajdonságait szabja meg: vezető, ellenállás v. szigetelő réteg),
 - szervetlen és/vagy szerves kötőanyagok,
 - · oldószerek.
- A rétegben visszamaradó kötőanyag típusa szerint megkülönböztetünk:
 - szervetlen (üveg/üveg-kerámia, ill. reaktív kötőanyagú) vastagréteg pasztákat,
 - szerves (polimer) vastagréteg pasztákat.

5/52

३ BME**ETT**

Vastagréteg technológia

SZERVETLEN VASTAGRÉTEG PASZTÁK

Alapanyagok (paszták) összetétele:

- · Funkcionális fázis:
 - · Vezetőréteghez Ag-Pd, Au, Cu, W
 - Ellenállásréteghez: ruténium, iridium valamint rénium oxidja (RuO₂)
- Kötőanyag:
 - Alacsony olvadáspontú üveg (SiO₂) (olvadáspont csökkentése B, Ba, régebben Pb)
- Oldószer

🂸 BME**ett**

Vastagréteg technológia

5

Térhálós polimer lánc **POLIMER VASTAGRÉTEG PASZTÁK** Alapanyagok (paszták) összetétele: · Funkcionális fázis: Vezetőnél Ag v. Cu · Kontaktus ill. ellenálláspasztánál C Polimer kötőanyag: Hőre lágyuló (termoplasztik): lineáris láncok · Hőre keményedő (termoset): térhálósodó • UV-re keményedő Oldószer Lineáris polimer lánc 🔻 **३** BME**ETT**

_				
-				
_				
_				
_				
	·	-		
_				
_				

ALAPANYAGOK II

- Vastagréteg hordozók: vastagréteg áramköröket előre elkészített hordozókon hozzuk létre:
- kerámiák (szervetlen és polimer rétegekhez),
 - alumínium-oxid (alumina) (Al₂O₃)
 - berilium-oxid (BeO)
 - alumínium-nitrid (AlN)
- passzivált fémhordozók, zománcozott acél (szervetlen és polimer rétegekhez),

- epoxi alapú flexibilis vagy merev (pl. üvegszál erősítésű FR4) hordozók
- poliimid fólia
- poliészter fólia

7

INTEGRÁLT ALKATRÉSZEK

- Vastagréteg integrált alkatrészek: a vastagréteg áramkörökben megvalósítható elemek és passzív alkatrészek a következők:
 - · huzalozási pályák,
 - huzalkereszteződések és szigetelő rétegek,
 - · kontaktus felületek,
 - kondenzátorok,
 - induktivitások,
 - ellenállások (állandó értékű, hőmérsékletfüggő NTC és PTC, feszültségfüggő típusok),

teg technológia

8/52

8

A VASTAGRÉTEG TECHNOLÓGIA LÉPÉSEI I: SZITANYOMTATÁS A szitanyomtatás lépései: 0. a paszta felkenése a szitára, a hordozó elhelyezése és pozicionálása 1. a nyomtatókés végig 1. görgeti a pasztát a szitán 2. a szita felemelkedése a hordozóról. 3. Pihentetés szobahőmérsékleten, a paszta terülése Felnvomtatott 3. **३** BME**ETT**

6			Ī
ı			ı
ı	L	1	

10

13

SZITA- VS. STENCILNYOMTATÁS Amiben a két technológia megegyezik: Mind a kettővel valamilyen pasztaállagú anyagot viszünk fel egy felületre, maszkon keresztül. A két technológia különbözik: 1. A stencil egy összefüggő fém lemez, amelyen apertúrákat nyitunk, míg a szita egy fém (műanyag) szálakból szőtt szövet, amelyet a megfelelő helyeken maszkolunk. 2. A stencil apertúrák teljesen nyitottak, a szita apertúrák NEM 3. A stencil felfekszik a hordozóra, a szita NEM. 4. A stencilek fő felhasználási területe a forraszpaszta nyomtatás, míg a szitáké a vastagréteg paszta nyomtatás. 5. Az (emulziós) sziták a maszk eltávolítása után újra hasznosíthatók, a stencilek NEM.

16

३ BME**ETT**

19

20

22

25

28

31

34

A KERÁMIA VASTAGRÉTEGEK FELHASZNÁLÁSI TERÜLETEI 1. Jó hővezetés: nagyáramú és teljesítmény elektronika 2. Jó hőállóság: magas hőmérsékletű alkalmazások 3. Kicsi dielektromos állandó: nagyfrekvenciás alkalmazások 4. Ellenállás érték állíthatóság: speciális alk., pl. aktív szűrők **BMEETT Vastagréteg technológia 35/52

37

40

VASTAGRÉTEGEK JELLEMZŐI						
Paraméter	Kerámia alapú vastagréteg	Polimer vastagréteg				
TK, ppm/°C	±50 ±100	±200 ±500				
Szórás, R, %	±20 ±30	±70 ±100				
Stabilitás (1000h)	<0,5%(150°C)	<35%(80°C)				
Vonalfelbontás	0,20,1mm	0,50,3mm				
Előáll. költség	Drága, közepes	Nagyon olcsó				

A TÖBBRÉTEGŰ KERÁMIÁK TÍPUSAI

- 1. MLC (MultiLayer Ceramic):
 - anyaga kerámia, főként Al₂O₃
 - technológiája a kerámia tokoktól származik
 - hőkezelése magas, kerámia színterelési hőmérsékleten >1500 C°-on
 - integrált alkatrészek nem készíthetők
 - más néven: HTCC (High Temperature Cofired Ceramic)
- 2. MLGC (MultiLayer Glass Ceramic):
 - anyaga üveg-kerámia
 - technológiája vastagréteg kompatibilis
 - hőkezelése alacsony, vastagréteg beégetési hőmérsékleten
 - integrált és eltemetett R, L, C elemek készíthetők
 - más néven: LTCC (Low Temperature Cofired Ceramic)

🗞 BME**ett**

Vastagréteg technológia

43/52

43

46

