

Business Understanding

Demonstrate how data-driven forecasting using U.S. hospitalization data can help Kenya anticipate respiratory virus surges, improve resource allocation, and strengthen public health response once local data systems are in place.

Problem Statement

Kenya lacks real-time surveillance for respiratory virus hospitalizations.

This project uses U.S. data to demonstrate how forecasting can guide future public health response and planning once local data systems are established.

Objectives

- Monitor, model, and forecast respiratory virus-related hospitalizations across U.S. regions
- Support healthcare planning, outbreak response, and policy-making
- Detect seasonal patterns in hospitalization trends
- Forecast future spikes or declines in respiratory cases
- Provide real-time dashboards for public health decisionmaking

Stakeholders

- 1. MOH and local health departments
- 2. Hospital administrators and planners
- 3. Epidemiologists and public health researchers
- 4. Policy-makers and emergency response teams

Data Understanding

- This project leverages a dataset derived from publicly available U.S. health records on the US.gov repository.
- Weekly COVID-19 hospital admissions used as the primary target variable.
- Handling missing values and skewness of the dataset through imputation using the mean and median.

EDA (Explorative Data Analysis)

EDA Cont...

EDA cont...

EDA cont...

Feature Engineering and preprocessing

Comprehensive preprocessing included:

- Date time indexing
- ADF test Check for stationarity for modeling (p-value < 0.05)
- PACF and ACF test for determining the correct lag features and guide towards ARIMA/SARIMA and the parameters to be used in modeling
- Lag features (1 through to 5)
- Moving averages & Exponential smoothing capture short term, medium term & long-term trends and filter out the noise.

Modeling

Modeling Cont...

SARIMA Forecast vs Actual Test Data

Evaluation Metrics

- The main evaluation metric is MAE which is complemented by RMSE.
- MAE still registers the error without letting it dominate overall metrics.
- RMSE heavily penalizes mispredictions during surges and this gives extra weight to bigger mistakes.

Deployment

 Increasing q smooths out noise by averaging more past errors, but too large can lag sudden changes.

easonal ARIMA Parameters

P (Seasonal AR) • Number of seasonal lag terms (e.g. how many years/weeks back). • Higher P lets model revisit seasonal spikes further in the past but may overfit seasonal noise.

D (Seasonal Diff) • Seasonal differencing order to remove seasonal trends. • Increasing D flattens seasonality more aggressively—helpful if patterns drift over time.

Q (Seasonal MA) • Movingaverage on seasonal errors. • Larger Q smooths seasonal fluctuations, at the risk of missing sharp spikes.

S (Seasonal Period) • Length of

SARIMA COVID Admissions Forecasting Dashboard

This application uses a SARIMA (Seasonal AutoRegressive Integrated Moving Average) model to forecast weekly COVID-19 hospital admissions. Upload your data or use sample data to generate forecasts.

Upload a CSV to get started.

Tip: Run this in Colab with ngrok to share!

:

Deployment Cont...

SARIMA COVID Admissions Forecasting Dashboard

This application uses a SARIMA (Seasonal AutoRegressive Integrated Moving Average) model to forecast weekly COVID-19 hospital admissions. Upload your data or use sample data to generate forecasts.

B Data Preview

	collection_date	average_admissions_all_covid_confirmed
0	2020-08-02	101.007
1	2020-08-09	93.7131
2	2020-08-16	84.008
3	2020-08-23	83.3097
4	2020-08-30	77.7247
5	2020-09-06	76.6271
6	2020-09-13	68.9356
7	2020-09-20	65.2441

Deployment Cont...

Deployment Cont...

Conclusion & Recommendations Signature

Conclusion

Successfully integrated monitoring, modeling, and forecasting of COVID-19 hospitalizations.

Developed real-time dashboards for timely communication with public health stakeholders.

Produced short- and medium-term forecasts to support healthcare resource planning and policy decisions.

Identified seasonal patterns and trends across U.S. states.

Recommendations

- Kenya should prioritize developing a centralized, real-time health data collect
- Institutionalize Seasonal Surveillance and Early Warning Systems
- Optimize Resource Allocation Based on Forecast Insights
- Training for Local Public health agencies

THANK YOU!

