DISTRIBUTION OF TRUE SCORES IN THE SELECTED POPULATION AFTER TWO STAGES OF SELECTION

рÀ

J. K. GUPTA

Department of Phychological Foundations (National Council of Educational Research and Training)

1 1 3

CONTRICE

HRAN AND VARIANCES

2.

		Page
	Asknowledgement	
1.	INTRODUCTION	1
2.	REVIEW OF THE PAST WORK	6
8.	MESTIMATION OF MEAN, VARIANCE AND OTHER	
	MONESTS - An Extension of Firmey's	
	Formlas.	10
4.	RESULTS AND INTERPRETATION	26
6.	SUMMARY	22
	:	
	APPENDIGE	
1.	BYBLIOGRAPHY	

LEXX. QUALLO GARAGE

I feel pround in acknowledging the able, expert, and efficient, guidence that my guide Shri H.K. Mathur, Department of Psychological Foundations extended to me.

Even at the moment of his departure to the States he was consions of this project and gave necessary suggestions. I wish to thank him, fer, he even now remains to be a philosopher, friend and guide of mine.

I also wish to thank Shri M.B. delhar and Shri H.K.L. Chugh who really helped a lot in completing this research project.

My heart-felt thanks are due to Dr. S.K. Mitra, Med of the Department, who offered novel and valuable suggestions through his discourses in the class.

Lest, but not least, I wish to extend my gratefulness to Dr. S.S.Mulkarni, who highly helped in improving the quality of the research work, through timely appreciations and exitinizes.

J.L. CHIPA

CHAPTER-I

INTRODUCTION

A person may confront a situation where out of several alternative courses of action, one is to be selected. Such a situation gives rise to a problem of decision. The intricacies of the process of decision making has given rise to a statistical theory of decision making. Even though it is of recent origin, it is closely related to the long standing problems of educationists, psychologists, elinicians, sociologists and economists. The origin of the stantistical decision theory can be traced back to, Abraham wald, some 18 years ago. It is he who extended the statistical theory of testing hypothesis to a general type of decision theory.

Our main interest is not in the decision theory as such, but in the stratagles with which decisions are made. Any kind of decision making requires adequate information about the individual, or situation, about which decision is to be taken. The society of ours continually makes people confront to the problems of decision making, about which only inadequate information is available. It is for this reason, that is to provide adequate information with regard to the problem under consideration, that the medern psychological tests exists.

A problem of selection is also a problem of decision making. The decision is with regard to who is to be selected and an what basis. This meets two binds of infor-

mation. One is what is required of the individual who is going to be selected, so as to fulfil the purpose of selection. The other is that whether a particular individual is possessing this or not, or of the 'n' number of individual duals how many are possessing the required minimum of the characteristic essential. With regard to the former, i.e. information regarding what is required of the individual can be obtained by a previous analysis of the job, or work, or duties. But with regard to the latter, information gathering is difficult. As said early, it is here that, tests are to be made use of. In a problem of selection, when we speak of tests, the real interest is in any information gathering procedure including items like physical and physiological measurements, biographical enquiries, clinical tests and interviews.

The usual test theory assumes that a final decision is made on the basis of the results obtained. This
is what is usually called a single stage selection strategy.
This is a fit procedure of selection only in cases where,
the mumber of individuals from whom selection is to made
is small. But take a case where out of thousands of candidates, only a few hundreds are to be selected. Here the
problem is a little different. In such cases, it is possible
to approach decisions with regard to selections in sequential
ender, where at each stage of this sequence, eliminating
a few who are at the lowest order and at each subsequent
stage, administering the next treatment or test only to
the remaining one. Such a selection procedure is called.

sequential strategy or multistage strategy. Such a selection procedure makes the length of the testing programme adjusted to the individual on the basis of the information about him as it is received. This strategy, makes terminal decisions after the first or a next few stages, when as for others decision is made, at the end of all the different stages. Thus such a testing process distributes efforts very efficiently. But at times the cost may go high. It is here that the question of constraints come: the constraint may be cost, the level of mean, variance or time factor. Evaluation of such a procedure is sequential procedure, can be done on the basis of expected value of the trait in the selected population and it can be studied on the basis of the proportion of misclassification. It is the first criterion that is soing to be considered in the present study. The strategy is a two stage one: For example consider a common selection problem say, the selection for selence talent search scheme. The six is to select the best of all the higher secondary students of India, who are have ing seignes aptitude i.e. a particular proportion of the total pupils. How to decide an amount of talent in an individual? The enswer is administer a test which measures telent. But is it possible to administer a test to all the higher secondary students of India with the same test, that too every year. This difficulty brings in the need of making a preliminary selection of a larger proportion of individuals.

through a crude measure of science aptitude, say the individuals' science score in the public examination, and then selecting the required proportion from this group. In such a case, the efficiency of the decision takers can be defined in three points:

- (a) the group mean is the highest possible,
- (b) they variance is the minimum possible and
- (e) the cost is minimum possible.

If efficiency is defined as this, and most funetion is kept constant, then the efficiency of the decision made will depend on factors namely the reliability of the first test, reliability of the second test, and the first and second proportions, the product of which always remains the same as the final required proportion.

The aim of the present study is to find out the effect of these four factors namely the reliabilities of the two tests, and the final and initial proportions of selection, in a two stage selection problem, on the efficiency of the decision made. That is to arrive at a distribution of secres and variances when different reliabilities, and different proportions are used.

Dut the observed scores as such do not give a real picture of the individuals ability, as they are composed of two components namely the Wib score and the error score, and it is essential to eliminate the contribution of the error score from the observed scene. This is especially important in case of problem of classification. Thus the present study aims of arriving at a distribution of true.

secres, in case of a two stages selection, when the propartions at the two stages, and the reliabilities of the two tests vary through ertain values.

Problems such as the selection for science talent search scheme, are numerous in ducation, military and industries, and even in public administration. Such a distribution will be of great help provided the final proportion required is decided and the reliabilities of the two tests are known.

CHAPTER - II

REVIEW OF THE PAST WORK

commonly known. The true score of a particular individual may be some numerical value other than the one actually observed. The individual examines might have responded differently in a different situation, or might have been examined by a more lemiant or strict examiner or the test—ing conditions might have been more donducive to his motivation for taking the test or vice versa. All these kinds of disturbance, are there in any kind of testing situation. However, one is not interested in each of the different observed scores that an examinee might have obtained under different conditions. But one will be really interested in that one score, which has been approximated by these scores. This one score may be known as the true score on the test.

ordinarily the observed test scores can be used, without separating them into what must be legically, their economent parts, namely, true score and error of measurement. However from a scientific point of view, the entire concern should be with the true scores, and the observed score can be only of interest in that, it leads to inferences and generalization regarding true scores. The frequency distribution of true scores is necessary to establish the

True group norm and true dispersion about the group norm.

Various attempts have been made to infer the frequency

distribution of observed scores, (1) Lord (1969) derived formulae

for deliving unbiased sample estimates of any raw or central

moment of the frequency distribution of true scores. (2)

Mathur (1964) gave an expression for the distribution of

true scores under the assumptions of the Gaussian error

model and non-normal distribution of observed scores.

In the above studies, the concern had been on the distribution of true scores of the entire population. Semetimes, however, the distribution of true scores in a truncated population is of interest. This trumented population may be obtained either by a single stage selection or by a bi or multistage selection. Pinney (1986) conducted one such study. His study was on the distribution of true scores in the selected population, after a single stage of selection. His assumptions were that, the distribution of the observed score before selection is a normal one, and the mean of the observed score is zero. He also assumed that the error component is independent and is normally distributed with mean sero, and a given variance. The first few moments obtained by Finney are as follows:

**
$$(x)$$
 ** $\rho \omega \nu$

** (p) ** $p^3 \omega^3 \nu''$

** (x) ** $-\rho^4 \omega^4 \nu'''$

** (x) ** $\rho^5 \omega^5 \nu^{17}$

where w is the standard deviation of observed scores in the unselected population ρ is the reliability of the test,

$$\nu = \frac{\chi}{\rho} \quad \text{when} \quad \chi = \frac{1}{J_{2K}} e^{-\frac{1}{2}T^2}$$

$$\rho = \int_{T}^{\infty} \frac{1}{J_{2K}} e^{-\frac{1}{2}t} dt$$

$$T = \frac{\eta}{\omega}, \eta \text{ is the point of truncation.}$$

$$\nu', \nu'', \nu''' \quad \text{and} \quad \nu'' \text{ are the differential coefficients.}$$
of ν with respect to T_*

greater than zero. Pinney assumed this mean equal to zero in the sense that, he shifted the origin at mean. In order to take the distribution of observed scores with certain given quantity as a mean, the origin will have to be shifted at zero and thus the mean will have to be added to the expected value estimated by the formula derived by Pinney. Since variance is independent of mean his formula can be used withest any change. In his study, Pinney derived a general expression for estimating the first four moments of the distribution.

A similar study, but differing in certain assumption, was conducted by Curnew (1960). His study differs from that of Finney in two respects. One is that in Finney's study, the general method gives the moments as a function of P directly, whereas in the study of Curnew, the momentagine meded to be applied to a range of values of η followed by interpolation, firstly to obtain the value of η for the given value of P and secondly, to evaluate the moments for that particular value of η as The moments can also be eval-

uated by mumerical integration of the expression (2.2) given by Curnow.

Second difference of Carnow's study from Firmey's is that the former, instead of the assumption of normality. assumed three different kinds of population, mamply rectangular distribution, game distribution, and & distribution. This study has an advantage over that of Finney is that the results obtained can be expressed failly shaply in terms of well tabulated functions. Another advantage of Curnows study is that the computation is simple in comparison to Finney's general expression. The only difficulty in comparison to Finney's study, is that Curnow's expressions, can not be used in case of sequential selection, unlike that of Finney. This is because, pumerical integration also suffers from the disadventage of expressing the moments in terms of η instead of Pa

However, mumerical results regarding the distribution of true scores after two stages of selection are not available. It is hoped that the present work will throw some light on two stage selection procedure.

CHAPTER-III

PRINCY'S FORMULAR

ption of normality of distribution of true scores in the unselected population, Firmey (1956) has worked out the first few moments of the distribution of the scores in the selected population after single stage of selection. He has also worked out the first four moments under the assumption of nonnormality. In this study, with the help of these results, these ferminals have been extended for estimating the first few moments of the distribution of true scores in the selected population after two stages of selection.

The first few mements obtained by Finney (1966) are as follows:

where ℓ_i was and ν_i have the same meaning as defined in the previous chapters ν_i , ν_i'' , ν_i''' and ν_i''' are the differentials of ν_i with respect to T_0

The above formulae have been obtained on the assumption that the mean of observed score in the unselected popullation is zero. But in this study no assumption has been make

regarding the mean. The same formula can be used by shifting the origin at zero instead at mean. Therefore the
expected value of true sources in the selected population
after one stage of selection can be estimated from the
formula given below:

where μ is the mean of unselected population.

Since the variance and higher order moments are independent of mean; these can be estimated from the same formulae worked out by Finney.

New, in order to find out the distribution of true scores in the selected population after two stages of selection, the unselected/population will emaist of the parameters estimated from the observed scores by above mentioned formulae. By applying Finney's results for general case where no assumption of normality has been made, the first four memonts can be estimated by the following expressions:

let x represents the true variate in the finally selected population.

where we is the standard deviation of observed seems in the selected population after one stage of selection and is calculated by the concepts of reliabilities. If I a the reliabilities of Education National Institute of Education

. 4

•		

bility of second test and true variance xg(X) is calculated them.

$$P_{2} = \frac{x_{2}(x)}{x_{3}(x)}$$

$$= \frac{x_{3}(x)}{x_{3}(x)}$$

$$= \frac{x_{3}(x)}{x_{3}(x)}$$

$$E(x^{13}) = c \omega_{x}^{3} + \omega_{x}^{3} U_{2} \left[3 f_{2}^{1} + f_{2}^{3} (T_{2}^{1} - 1) + \frac{1}{2} c \left\{ 9 f_{2}^{1} T_{2} + f_{2}^{1} (3 T_{2}^{3} - 1) T_{2} \right\} \right]$$

$$-2 \beta_{x}^{3} (T_{2}^{1} - 2 T_{2})$$

$$+ \frac{1}{8} d \left\{ 8 + 16 f_{2} (T_{2}^{2} - 1) + f_{2}^{1} (4 T_{2}^{4} - 2 7 T_{2}^{2} + 15) \right\}$$

$$- f_{2}^{3} (3 T_{2}^{4} - 12 T_{2}^{2} + 5)$$

$$+ \frac{1}{24} c^{3} \left\{ 36 (T_{2}^{2} - 1) + 18 f_{2} (T_{2}^{4} - 10 T_{2}^{2} + 5) \right\}$$

$$- 2 f_{2}^{2} (24 T_{2}^{4} - 1/8 T_{2}^{2} + 41) + 2 f_{2}^{3} (14 T_{2}^{4} - 47 T_{2}^{2} + 13)$$

$$+ - - - - - -$$

and $E(x^{14}) = \omega_{2}^{4} \left(3 P_{2}^{2} + d \right) + \omega_{2}^{2} \upsilon_{2} \left[6 P_{2}^{3} \tau_{2} + P_{2}^{4} \left(\tau_{2}^{3} - 3 \tau_{2} \right) \right. \\ + \frac{1}{3} c \left\{ 30 P_{2} + 36 P_{2}^{2} \left(\tau_{2}^{2} - 1 \right) + 6 P_{2}^{3} \left(\tau_{2}^{4} - 8 \tau_{2}^{2} + 4 \right) \right. \\ - 2 P_{2}^{4} \left(2 \tau_{2}^{4} - 9 \tau_{2}^{2} + 3 \right) \left. \right\} \\ + \frac{1}{6} d \left\{ 42 P_{2} \tau_{2} + 30 P_{2}^{2} \left(\tau_{2}^{3} - 3 \tau_{2} \right) + P_{2}^{3} \left(4 \tau_{2}^{5} - 4 \Gamma_{2}^{3} + 78 \tau_{2} \right) \right. \\ - 3 P_{2}^{4} \left(\tau_{2}^{5} - 7 \tau_{2}^{3} + 8 \tau_{2} \right) \left. \right\} \\ + \frac{1}{20} c^{2} \left\{ 360 \tau_{2} + 60 P_{2} \left(9 \tau_{2}^{3} - 31 \tau_{2} \right) + 108 P_{2}^{4} \left(\tau_{2}^{5} - 18 \tau_{2}^{3} + 31 \tau_{2} \right) \right. \\ - 24 P_{2}^{3} \left(10 \tau_{2}^{5} - 92 \tau_{2}^{3} + 107 \tau_{2} \right) + 8 P_{2}^{4} \left(16 \tau_{2}^{5} - 101 \tau_{2}^{3} + 90 \tau_{2} \right) \right\} \\ + - - - - - - - - - - \right]$

In the present study, the mean of the observed scores in the unselected population is assumed to be 40 and standard deviation 12. In actual practice, the mean and standard deviation will be calculated from the observed scores obtained by the students in a given test whose reliability is known, say ℓ_i . A proportion P_1 will be selected from the total population of students. The second test, measuring the same trait which the first test measures, will be administered on the students selected on the basis of first test. The reliability of the second test is also known say ℓ_i . A proportion P_2 of students from the proportion P_1 will be selected for a given value of final preportion P of the total populations

The mean, variance and higher order mements of true scores will be calculated for the selected population after one stage of selection by above mentioned formulae, with thehelp of observed scores in the first test. Similar-ly, the first few moments will be calculated for the selected population after two stages of selection. In this study, these moments have been calculated for different proportion combination for a given proportion (? * P; P; * .01) and for different reliability combinations.

gines the mean and standard deviation of observed scores in the unselected population will very from test to test. Therefore, the results obtained are applicable only to the population whose mean and variance are 40 and 12 respectively. These results can not be generalised to all

populations. But on the basis of these results, a trend regarding the optional combination of two proportions P_1 and P_2 can be established.

CHAPTER-IV

MESULTS AND INCERPRETATION

oted population after two stages of selection is a function of two proportions P_1 and P_2 where P_1 P_2 = P_1 and the pure punktime reliabilities of the two tests or two tests batteries that are administered on the students, one at each stage, in order to know the true ability of students in a particular trait. In term, the efficiency of a selection procedure, as mentioned earlier, depends on the proportion combination. The optimal proportion combination is such that, the reliabilities being fixed, the mean of the true scores will be the highest possible, the variance of the distribution of true scores will be the lowest, and finally, cost of the procedure of selection will be minimum. The optimal proportion combination varies from tests of one particular reliability to emother.

A large proportion should be selected from the population on the basis of a test whose reliability is low in comparison to the test/shope reliability is high. This is just obvious because the variation in the observed scores of students selected on the basis of a test of law valiability will be large and this large variance in turn increases the possibilities of larger misclassifications in individual of lower shility than the specified minimal shility may

variance, and thus be selected, whereas, another student with an ability higher than the minimal one, may be discarded due to low score obtained in the test, due to the same reason, namely, low test reliability. This will in turn affect the expected value as well as the variance of the true scores in the finally selected population, in that the former will tend to decrease and the latter increase.

As described in the previous chapter of the study, the mean was assumed to be 40 and standard deviation 10. Final proportion P was fixed to be 1 %. Hypothetically, the value of P_1 proportion of the first stage selection, and hence P_2 proportion of the second stage selection (because $P_1 \times P_2 = P$), and the reliability co-efficients of the two tests namely P_1 and P_2 were changed; and the expected value of true scores and variance were calculated. About 72 different combination of P_1 , P_2 and P_3 were taken into account.

The appendices 1 and 2 represent, the expected values and variances of the true scores in the selected population after a two stage selection, where, selection is made through tests of a particular reliability. A dose examination of the tables reveal certain clear cut trends. Firstly the trend is that, that there are different proportion combinations for the combinations of tests of different reliabilities. If the reliability of the first test is very low say 0.5, a large proportion of individuals is to be selected

in the first stage. But since the efficacy of the selection procedure depends also upon the reliability of the second test, if its is also low, say 0.6 then it does not matter much, which are the two different proportions of selection as far as the expected value and the variance of the true secres is concerned. But if a test of higher reliability is available for administration on the individuals, for the second stage selection, then it will be worthwhile to keep in mind what proportion is to be selected at the first stage of selection, so that the final selection will be most effective.

Generally, on the basis of the table, it can be said that if the reliability of the first test is fixed, the expected value of true scores at different proportion combinations increases, as the reliability of the second test increases. At the same time, the variance of the same decreases.

within a reliability combination itself, the variance and mean of the true scores of the selected population
ability on a particular trait varies from a particular propertion combination to another. For example for the reliability combination .5 and .0, the expected values of true
scores when the proportion of first stage selection is .5,
.4, .8, .1, .05 and .08, are 51.7968, 61.8187, 61.7968,
61.8600, 60.96600 and 50.8068 respectively. For this reliability combination, the highest mean is for propertion combination .4 to first stage and .086 in the second stage.

But this position will not be the same for each of the reliability combinations.

The table directly gives data about the mean and variance at different proportion combinations, for different test reliability combinations. It also indirectly gives the indication of cost trend also. As the initial selection proportion increases, the cost of administration the test also increases. For example in the first stage selecting 2% and then rejecting 1% of total population by second stage selection is less costly than, selecting 50% in the first stage, and then rejecting 40% of total population in the second stage,

namely higher mean, smaller variance and least cost, it is seen that there is one and only one optional proportion acceptantion for a particular reliability combination. For example, take the reliability combination 45 and 48 (let stagend End test respectively). There the proportion combination 46 (lat stage) and 4086 (End stage) has the maximum mean value. But its variance is not the least, and also cost is higher. But the next proportion combination, in which mean is highest is 42 (let stage) and 466 (End stage). Here the variance is the lest of all; and cost is least. So this is the only combination which is the most suitable one for that particular reliability combinations. The the different the most desirable proportion combinations for the different

TABLE-I.

Most desirable proportion combination
for the different reliability combinations.

	P3	.6	.7	.8	.0
•	.8	(.10,.10)	(.10,.10)	(480,,05)	(.80, .06)
	.6	.65, .20)	.10 ₅ .10)	.10, .00)	(,20,,05)
	.9	,02, ,5)	.ce, .5)	(.06, .80)	(.05, .80)

reliability combinations, similarly, there are least desirable proportion combinations. For example, for the same reliability combination .6 and .8 mentioned above, the proportion combination .02 (lat stage) and .5 (mod stage) has the minimum mean value and maximum variance. Though, the cost will be least for this proportion combination, yet it would not be appropriate to take such proportion combination at the cost of higher mean value and lew variance. Recembe by increasing the cost a little more, the proportion combination .66 (let stage) and .30 (And stage) will give higher mean value and low variance in comparison to that of minimal proportion combination. Table 2 gives the least desirable proportion combination. Table 2 gives the least desirable proportion combination for the different reliability combinations.

Least desirable properties combination for the different reliability combination.

7	46			.9
, ,8	(.50,.02)	(.CE, .S)	(.02, .5)	(3, ,20,)
6	(.80, .00	(,50,,02)	(.OR , .5)	(.CR, .5)
.9	(.50, .02)	(.50, .02)	(.80, .02)	(.50, .00)

may be two conditions of melection. One may be that there are only two specified test with specific reliabilities for let and find stage selection respectively. In such a case, it is better to use the most desirable proportion combination for that particular reliability combination. The second situation may be that there is a variety of tests with different reliabilities. In such a case select the two tests which have the highest reliabilities, and select the best suited proportion combinations. The afficiency will be the highest.

CHAPTER-Y

STMMARY

ving at the distribution of true scores in the selected population after a selection through two stages. The efficiency of this kind of selection depends upon four factors namely reliability of the first test, reliability of the second test, P₁ first stage selection proportion and P₂ second stage selection proportion, such that P₁ x P₂ x P₃ this final proportion { more than term efficiency comprises three factors namely mean, variance and cost, The efficiency of a particular selection procedure is said to be high when the mean is high, warrance is small and cost is less,

The main win of the study is to find which proportion combination for a particular reliability combinetion will give the maximum efficient selection.

PROCEDURE

Aphitrarily, a situation was considered whem the observed mean ability of the non-selected population is 40, and standard deviation is 18. The final properties of makes etion was fixed to be 15. Certain reliability combinerious were selected arbitrarily.

d. San D. . d. steet 1)

IN tents .6, .7, .8 and .9)

Resping the initial properties as one of the six namely of

ed, .2, .1, .05 and .02, the mean and variance of true scores at each combination were found out. For finding out this distribution, the formulae developed by Finney for one stage selection were extended to a two stage selection problem was extended by the researcher himself.

CONCLUSIONS

- A large proportion should be selected from the population on the basis of a test whose reliability is lev, in comparison to the test whose reliability is high. Consequently the cost will be high in the former case.
- Hean and variance of the true scores in the seleoted population change for one reliability combination to another. As reliability increases, the mean value of true scores in the finally selected population increases.
- Within one reliability combination, the mean and variance changes from one initial properties to another.
- 4. The cost increases as the first properties incre-
- 5. By taking into consideration all the three factors namely mean, variance and cost simultaneously one and only one combination of proportions will be desirable to be used, when the reliabilities are fixed.

Finally, when a large number of test with different reliabilities are available, it is better to season the test of high reliability.

STATE OF THE RELATIONS AND ASSESSED TO STATE OF THE STATE

This study is not much comprehensions. The same

ean be conducted with different initial population means, and variances, and reliability co-efficients and it can be seen whether there is any specific trend of change in size of mean and variance pelated to change in proportions, irrespective of the population means and variances.

It can also be extended to a situation of three stage selection and the results may be compared.

Finally, empirical validation of the findings may be done.

海中海州南州南州市

APPENDILLI

BIBLICERAPAY

1.	Gronbach, Lee J. Gleser Seldine C (1965).
	Psychological Tests and Personnel Decisions.
2.	Curnov, R.H. (1960). "The Consequences of
	Errors of Measurement for selection from
	certain non-normal distributions". Belletin
	Institute of International Statistics.
2.	Firmer, D.F. (1966)." The consequences of
and and	relection for a variety subject to errors
	of measurement". Device Institute of Inter-
	mational Statistics, 24, 1-10.
	Finney, D.J. (1961). The transfermation of
4.	e variate under selection. Sanktyn, Ser. A.
	28, 209-824.
	Gullikson, H. (1962). Theory of Montal Tosts.
5.	
6.	Mathur, R.E. (1964).

APPENDIE 411

TABL. SHOWING THE MEANS AND VARIANCES FOR DIFFERENT PROPORTION COMBINATIONS FOR A GIVEN RELIABILITY COMBINATIONS

	P2_	.6		.7	
	Ψ,	MRABS	ARIANCE	KEAN	AVELVACE
1	-50	58.8578	26.4780	89, 9884	21,2768
* d'	.40	59.0297	25.6268	60.0546	20,7808
	*50	59.4047	23,6625	60,2768	19.4888
	.10	59.5565	22.8710	60.2722	19.0993
	-05	59,3940	22,9438	59,9580	19,6218
	.02	68.4278	25,3879	58.7434	22,4689
	.80	60,9080	30.6440	62,0264	24,4786
	.40	61,1109	29.3747	68,1788	28,7974
4	.80	61,6159	26.4192	62,5063	21,7605
%	,10	61,9815	24,7689	68,6610	20.7571
4.	.05	61,9821	34, 3453	62,5467	20.7979
	*08	61.8417	26.0720	61,6861	22.8661
	.50	66,6417	89.8186	67,7652	31,4894
	.40	66,9486	87.0495	67.9764	29-7478
	-20	67.6487	81.5109	48-4665	86-6877
Q~	.10	68,1880	27.4103	68.8418	20,0040
	.06	68,6795	94. 0774	69.1795	20.5077
	-02	69, 1879	20, 9944	69,4343	15,7404

	Pr			.0	
- · ·	.50	60.9111	16.4412	61.7988	11,6996
	.40	60.9786	21.2968	61.8187	11,6168
	. 20	61.0664	18.3265	61.7986	11.2628
	.10	60.9280	15,4941	61,8400	11.7174
	.05.	60.4685	16.3404	61.9599	13.0630
	.02	95.0322	20.2533	59.3068	17,6826
• * 'd	.50	68,0434	18,9864	63,9465	12.1345
	.40	68,1310		63,9820	14,3909
	.20	63,8112	17,2126	64,0420	12,8027
	,30	68,8912	16,7125	68,9410	12,2961
	+05	63.0665	17.868	68,5546	18.9394
	.oa	61, 3815	25,6741	68.2178	18.2259
	.50	68.7295	23,6960	40.6831	17. 1420
0	.40	68,8815		65.000	
	. 20	65,8594	23,674	60,7837	28,462.0
2	.10	6014069	15,0010	69.8970	11.10
	.64	69.6070	27,0400	69 BOOS	18,000
	.00	p.000		m.essa	
12.	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	Charach this sail is a sensity	A 11 Marie 1 Marie Park (All Marie 2 Arrige A 2	ر ال ين المواجع المراجع معد معد ين ال	R may a p to