Russian School of Math: Lesson 8

James & Patrick

Revised: November 4, 2024

Abstract

This note reviews a small number of problems from the Russian School of Math test. Written for personal use.

1

How many odd positive factors does 30^{10} have?

- (a) 121
- (b) 1331
- (c) 665
- (d) 666
- (e) 667

Solution

$\mathbf{2}$

Let x and y be random numbers such that $x, y \in [0, 1]$. Find the probability that

$$|x - 0.5| + |y - 1.5| \le 1$$

- (a) $\frac{1}{4}$
- (b) $\frac{3}{4}$
- (c) $\frac{1}{6}$
- (d) $\frac{5}{6}$
- (e) $\frac{1}{2}$

Solution

3

The figure shows 22 circles, 21 of which have radius 1. Any two neighboring circles are tangent, and so share a common point. What is the circumference of the largest circle?

- (a) $\frac{2\pi}{3} \left(10\sqrt{3} + 3 \right)$
- (b) $\frac{20\pi}{3}$
- (c) $\frac{20\sqrt{3}\pi}{3}$
- (d) 13π
- (e) 20π

Solution

4

Complex numbers a and b are such that $(x^2 - 2x + 3)(x^2 - 4x + 12) = (x^2 + ax + 6)(x^2 + bx + 6)$ for all values of x. What is |a - b|?

- (a) $2\sqrt{2}$
- (b) $3\sqrt{2}$
- (c) $6\sqrt{2}$
- (d) 12
- (e) 2

Solution

5

How many 8-digit numbers have the following property: the number is divisible by 11 and its digits are $1, 2, \ldots, 8$ without repetitions?

- (a) 3456
- (b) 1152
- (c) 5040
- (d) 40320
- (e) 4608

Solution

6

A rectangular 2×10 grid is randomly covered by ten 1×2 rectangles (dominoes). What is the probability that the two squares in the fifth column from the left will be covered by different dominoes?

- (a) $\frac{64}{89}$
- (b) $\frac{49}{89}$
- (c) $\frac{25}{89}$
- (d) $\frac{40}{89}$
- (e) $\frac{1}{2}$

Solution

7

Let (a_n) be a number sequence defined as follows:

$$a_1 = 1$$
, $a_2 = 1$, $a_3 = \frac{1}{2}$ and $a_{n+1} = \frac{a_n^3 a_{n-2}}{a_{n-1}^3 + a_{n-2} a_{n-1} a_n}$

where $n = 3, 4, \dots$

Calculate

$$S_{10} = \frac{a_1}{a_2} + 2\frac{a_2}{a_3} + 3\frac{a_3}{a_4} + \dots + 10\frac{a_{10}}{a_{11}}$$

- (a) 11!
- (b) 11! 1
- (c) 10! + 3
- (d) 10! + 11
- (e) $10 \cdot 11$

Solution