Complexification

Daniel Miller

$2\ {\rm September}\ 2016$

So far we have only considered real Lie groups, even though some of our examples, like $GL(n, \mathbf{C})$, seem like they should be "complex" objects in some way. So, without further ado, we make a definition.

Definition 1. A *complex Lie group* is a group which is also a complex manifold, such that all the group operations are analytic maps.

With this definition, it is easy to see that $GL(n, \mathbb{C})$ is a complex Lie group, as is $Sp(2n, \mathbb{C})$. Clearly, every complex Lie group can be made into a real Lie group in a trivial way, by forgetting the complex structure. That is, we have a kind of map (a functor, for those in the know)

 $(-)^{\text{real}}$: {complex Lie groups} \rightarrow {real Lie groups}.