Proving Isomorphism Using Indexing

by Sven Nilsen, 2020

In this paper I present a technique in Path Semantical Logic to prove isomorphism.

An isomorphism^[1] is the existence of a map between two collections of objects such that each object in the two collections has a partner object in the other collection. When using indexing to prove an isomorphism, each end point of a pair is assigned a unique number.

In normal propositional logic^[2], proving an isomorphism is very difficult. The reason is that uniqueness requires adding many axioms.

In Path Semantical Logic with level 1 and 0, there are two groups of propositions. An equality in level 1 propagates into an equality in level 0 between uniquely associated propositions. Although this is difficult to wrap your head around, one can think of level 0 as types and 1 as members:

Members (Level 1)	Types (Level 0)
a_0, a_1, a_2	A
b_0, b_1, b_2	В
i_0, i_1	

The two propositions i_0 and i_1 are used for indexing, encoding the index like a binary number:

Using the Index Theorem^[3], one can at the same time set type membership and an index:

$$(A \land 0) = a_0$$
 $(B \land 0) = b_0$
 $(A \land 1) = a_1$ $(B \land 1) = b_1$
 $(A \land 2) = a_2$ $(B \land 2) = b_2$

That is all! This is sufficient for isomorphism and does not include e.g. $a_0 = a_1$.

Q.E.D.

References:

- [1] "Isomorphism"
 Wikipedia
 https://en.wikipedia.org/wiki/Isomorphism
- [2] "Propositional calculus"
 Wikipedia
 https://en.wikipedia.org/wiki/Propositional calculus
- [3] "Index Theorem"
 Sven Nilsen, 2020
 https://github.com/advancedresearch/path_semantics/blob/master/papers-wip/index-theorem.pdf