### Nichtlineare Optimierung - 4. Hausaufgabe

 $\begin{array}{ll} {\rm Claudia\ Wohlgemuth} & 366323 \\ {\rm Thorsten\ Lucke} & 363089 \\ {\rm Felix\ Thoma} & 358638 \end{array}$ 

Tutor: Mathieu Rosière

17. Juni 2017

| 4.1 | 4.2 | 4.3 | 4.4 | 4.5 | $\sum$ |
|-----|-----|-----|-----|-----|--------|
|     |     |     |     |     |        |

Anmerkungen:

Es sei  $K \subset \mathbb{R}^d$  ein konvexer Kegel mit  $0 \in K$ .

(i) Wir zeigen, dass  $K^*$  abgschlossen ist. Sei dazu  $(x_n)_n \subset K^*$  eine in  $\mathbb{R}^d$  konvergente Folge mit Grenzwert  $x \in \mathbb{R}^d$ . Sei  $y \in K$  beliebig. Nach Definition des Dualkegels gilt

$$\langle x_n, y \rangle \le 0$$

und mit der Stetigkeit der dualen Paarung folgt

$$\langle x, y \rangle = \lim_{n \to \infty} \langle x_n, y \rangle \le 0.$$

Weil y beliebig war, ist  $x \in K^*$ .

- (ii) Wir zeigen, dass K genau dann abgeschlossen ist, wenn  $K = K^{**}$  ist.
  - $\Leftarrow$  Wegen  $K^{**} = (K^*)^*$  folgt mit (i) die Abgeschlossenheit von  $K^{**} = K$ .
  - $\Rightarrow$  Für jeden Kegel gilt  $K \subset K^{**}$ , denn ist  $x \in K$  beliebig, so gilt für alle  $s \in K^*$

$$\langle x, s \rangle \le 0,$$

d.h.  $x\in K^{**}$ . Bleibt noch die zweite Inklusion  $K\supset K^{**}$  zu zeigen. Angenommen, es gäbe  $y\in K^{**}\backslash\{K\}$ . Nach dem Trennungssatz gibt es ein  $s\in\mathbb{R}^d$  mit

$$\langle s, y - x \rangle > 0$$

für alle  $x \in K$ . Isbesondere ist also

$$\langle s, y \rangle > 0.$$

Für  $\lambda > 0$  und  $x \in K$  gilt

$$0 < \langle s, y - \lambda x \rangle = \langle s, y \rangle - \lambda \langle s, x \rangle.$$

Weil  $\lambda$ beliebig war, folgt  $\langle s,x\rangle \leq 0$  für alle  $x\in K.$  Damit ist  $s\in K^*.$  Dann müsste aber auch

$$\langle s, y \rangle \le 0$$

sein, was uns den ersehnten Widerspruch liefert. Folglich ist  $K \supset K^{**}$ .

(iii) Es sei  $f \in K^*$  und es gelte  $\langle f, x_0 \rangle \leq 0$  für einen einen inneren Punkt  $x_0 \in K$ . Wir zeigen mittels Widerspruchsbeweis, dass f = 0 ist. Sei also  $f \neq 0$ . Da  $x_0$  ein innerer Punkt von K ist, gibt es ein  $\varepsilon > 0$  mit  $U_{\varepsilon}(x_0) \subset K$ . Damit ist insbesondere  $x_0 + \frac{\varepsilon}{\|f\|} f \in K$  und es gilt

$$0 \ge \langle f, x_0 + \frac{\varepsilon}{\|f\|} f \rangle = \langle f, x_0 \rangle + \langle f, \frac{\varepsilon}{\|f\|} f \rangle = 0 + \varepsilon \|f\|.$$

Dies kann aber nur gelten, wenn  $\|f\|=0$  ist, was im Widerspruch zur Annahme  $f\neq 0$  steht.

2

(iv) Diese Aussage ist falsch. Dazu betrachten wir für d=2den Kegel

$$K \coloneqq \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} : 0 < x_1 \land 0 < x_2 \right\} \cup \{0\}$$

und

$$K^* = \left\{ \begin{pmatrix} s_1 \\ s_2 \end{pmatrix} : 0 \ge s_1 \land 0 \ge s_2 \right\}.$$

Dass K und  $K^*$  Kegel sind, ist offensichtlich. Außerdem gilt für jedes  $s \in K^*$ 

$$\langle s, x \rangle = s_1 x_1 + s_2 x_2 \le 0$$

für alle  $x\in K$ . Andererseits ist für  $y\in\mathbb{R}^2\backslash K^*$  entweder  $y_1>0$  oder  $y_2>0$ ; sei o.B.d.A.  $y_1>0$ . Dann gilt für  $x:=(y_1+|y_2|,\frac{y_1}{2})^T\in K$ 

$$\langle x, y \rangle \ge y_1^2 + \frac{|y_2|y_1}{2} > 0.$$

Damit ist gezeigt, dass  $K^*$  tatsächlich der Dualkegel von K ist. Offensichtlich ist der erste Einheitsvektor nicht in K enthalten, dennoch gilt

$$\langle e_1, s \rangle \leq 0$$

für alle  $s \in K^*$ .

Es sei  $A \colon \mathbb{R}^n \to \mathbb{R}^n$  symmetrisch und positiv de nit sowie  $b \in \mathbb{R}^n$ . Ferner bezeichne  $\|\cdot\|_A$  die von A induzierte Norm und  $\|\cdot\|_{A^{-1}}$  die von  $A^{-1}$  induzierte Norm. Es sei  $x \in \mathbb{R}^n$  die Lösung von Ax = b und sei  $\tilde{x} \in \mathbb{R}^n$  ein völlig beliebiger Vektor.

Dann gilt

$$||x - \tilde{x}||_A^2 = (x - \tilde{x})^T A (x - \tilde{x})$$

$$= (A^{-1}b - \tilde{x})^T (b - A\tilde{x})$$

$$= (A^{-1}(b - A\tilde{x}))^T (b - A\tilde{x})$$

$$= ||b - A\tilde{x}||_{A^{-1}}^2.$$

Mit der Dreiecksungleichung folgt dann für beliebiges  $w \in \mathbb{R}^n$ 

$$||x - \tilde{x}||_A = ||b - (w - w) - A\tilde{x}||_{A^{-1}} \le ||b - w||_{A^{-1}} + ||A\tilde{x} - w||_{A^{-1}}.$$

Wir betrachten nun n=1und  $A=\mathrm{id}.$  Dann gilt z.B. für  $x=0,\,\tilde{x}=1$ und w=0 die Gleichheit

$$|x - \tilde{x}| = |0 - 1| = 1 = |0 - 0| + |1 - 0| = |b - w| + |A\tilde{x} - w|.$$