Reg No.:_

В

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

First Semester B.Tech Degree Regular and Supplementary Examination December 2020 (2019 scheme)

Course Code: CYT100 Course Name: ENGINEERING CHEMISTRY

(2019-Scheme)

Max. Marks: 100 **Duration: 3 Hours**

PART A

Answer all questions, each carries 3 marks.

Marks

- What will be the standard electrode potential of Ni²⁺ / Ni electrode if the cell 1 (3) potential of the cell Ni / Ni²⁺(1M) // Cu²(0.1M) / Cu is 0.59 V at 25 °C? $E^{0}_{Cu2+/Cu} = 0.34 \text{ V}$
- 2 Briefly explain the principle of electroless plating.

(3)

3 Give the mechanism of interaction of electromagnetic radiation with oscillating (3) dipole.

4 State Beer-Lambert's law and write the differential form.

(3)

5 Write any three differences of TGA and DTA. (3)

6 Explain sol-gel method for the synthesis of nano particles (3)

7 Determine the configuration of the following alkenes as *E* or *Z*: (3)

$$H_3C$$
 CH_2OH C_6H_5 $COOH$ CH_3 CH_3 CH_3

8 Mention any three advantages of OLEDs over LED and LCD.

(3)

9 Explain disinfection by chlorination.

(3)

10 Compare BOD and COD.

(3)

PART B

Answer one full question from each module, each question carries 14 marks

Module-I

- 11 Explain the mechanism of electrochemical corrosion in different environmental (10)conditions.
 - b) How is the cell constant of a conductivity cell measured?

(4)

0000CYT100121902

12	a)	Describe the construction and working of Li-ion battery. What are the major advantages of it?	(10)
	b)	Calculate the EMF of the cell at 25°C:	(4)
		$A1/A1^{3+}(0.1M) // Sn^{4+}(0.1M)/Sn^{2+}(0.01M)$	
		$E_{Al}^{0}^{3+}/_{Al} = -1.66 \text{ V}, E_{Sn}^{0}^{4+}/_{Sn}^{2+} = 0.15 \text{ V}$	
		Module-II	
13	a)	Define chemical shift in NMR and explain the factors affecting chemical shift	(8)
		with examples.	
	b)	Calculate the force constant of H-F molecule that is showing IR absorption	(6)
		signal at 4000 cm ⁻¹ . By what factor do you expect this frequency to shift if	
		Deuterium is substituted for Hydrogen in this molecule? Given that atomic	
		masses of H and F are 1u and 19 u, respectively.	
14	a)	How many vibrational modes are possible for the molecules CO, NO, CO ₂ and	(8)
		H ₂ O? Draw the vibrational modes of CO ₂ and H ₂ O and explain their IR active	
		modes.	
	b)	Each compound gives only one signal in its 1H-NMR spectrum. Propose a	(6)
		structural formula for each. a) C_8H_{18} and b) $C_8H_{18}O$	
		Module-III	
15	a)	Describe the instrumentation, principle and working of SEM with the help of a	(10)
		labelled diagram. Give any two applications.	
	b)	Explain the visualization techniques used in thin layer chromatography.	(4)
16	a)	Describe the principle, instrumentation, procedure and applications of HPLC.	(10)
	b)	How TGA is used to analyze thermal stability of polymers?	(4)
		Module-IV	
17	a)	Discuss the conformations in butane by depicting the Newman formula about	(10)
		C2-C3 bond of all the conformers. Also draw the energy level diagram with	
		dihedral angle.	
	b)	How is ABS synthesized? Mention some applications.	(4)
18	a)	Explain the rules for assigning R-S configuration and determine the R-S	(8)
		configuration of all the asymmetric carbon atoms in the molecule after writing	
		its Fischer projection formula.	

0000CYT100121902

What is meant by doping of polymers? Describe the different types of doping.

(6)

Module-V

- Describe the steps involved in municipal water treatment. 19 (10)
 - b) The following data are obtained for a hard water sample from an EDTA (4) experiment
 - i) 20 mL standard hard water (5 g/L $CaCO_3$) = 25 mL EDTA solution
 - ii) 100 mL of hard water sample = 24 mL EDTA solution
 - iii) 100 mL of boiled hard water sample = 18 mL EDTA solution Calculate the temporary and permanent hardness.
- 20 a) With the help of a flow diagram explain the steps involved in sewage (10)treatment.
 - b) Calculate the temporary and permanent hardness of water sample containing (4) the following dissolved salts.

 $Ca(HCO_3)_2 = 28 \text{ mg/L}; CaSO_4 = 18 \text{ mg/L}; Mg(HCO_3)_2 = 32 \text{ mg/L};$ $MgCl_2 = 30 \text{ mg/L}; NaCl = 58 \text{ mg/L}.$
