- Recall that top-down parsing reflected a leftmost derivation of the grammar
- Bottom-Up Parsing reflects a rightmost derivation
 - The parse tree produced is the result of a rightmost derivation
 - The order of the reductions performed reflects this
- Top-down parsers have to make production decisions based on a small lookahead
- In contrast, bottom-up parsers push incoming tokens onto a stack and only make reduction decisions after they gain enough information
 - As a result, they are more powerful (can parse tougher grammars

- Compare the order the parse trees are created for leftmost versus rightmost derivations
 - For top-down parsers, productions are done corresponding to a leftmost derivation
 - For bottom-up parsers, reductions are done in reverse of the rightmost derivation
- Example: a + b + c * d

```
expr -> term expr2
expr2 -> addop term expr2 | ε
term -> factor term2
term2 -> mulop factor term2 | ε
factor -> ( expr ) | IDENT | NUM
addop -> + | -
mulop -> * | /
```

```
expr -> expr addop term | term term -> term mulop factor | factor factor -> ( expr ) | IDENT | NUM addop -> + | - mulop -> * | /
```

- Like an LL(1) parser, a bottom-up parser uses a stack
 - Holds both terminals and non-terminals
 - Also holds state information (like a DFA)
- The stack starts out empty, and ends up after a successful parse with just the Start symbol; i.e., the code reduces to just the Start symbol
- The parser uses the state information, plus possibly the next token(s) in the incoming string, to make one of 4 decisions
 - Accept just the Start symbol remains, and the code is correct
 - 2. Shift move a token from the incoming string onto the stack
 - 3. Reduce take a set of symbols from the stack (a production RHS) and reduce it to a single non-terminal (the LHS)
 - Symbols on stack replaced by non-terminal
 - 4. Error
- Bottom-up parsers sometimes called shift-reduce parsers

- The grammar used by a bottom-up parser is always augmented to contain a new Start symbol
 - New production from new Start Symbol to old start symbol
 - Prevents us from ever having a start symbol on stack until the incoming token stream is empty
- Common bottom-up parsers include LR(0) and LR(1)
 - Left-to-right scan, rightmost derivation, 0 or 1 character lookahead
 - Because a character which has already been shifted on the stack is not considered lookahead, it is feasible to build a bottom-up parser which does not need a lookahead symbol
 - Uses just the state information
 - Not as powerful as LR(1), and can't handle some language constructs well

- Example: matching parens
 - Note new start symbol
 - Note this is rightmost derivation

$$\begin{array}{l} S' -> S \\ S -> (\ S\)\ S \mid \epsilon \end{array}$$

<u>Stack</u>	<u>Input</u>	Action
(S) (S)S SS'S	()\$)\$)\$ \$ \$ \$ \$ \$	shift reduce $S \rightarrow \epsilon$ shift reduce $S \rightarrow \epsilon$ reduce $S \rightarrow (S)S$ reduce $S \rightarrow S$ accept

Example: rudimentary expressions

$$S' -> E$$

 $E -> E + n \mid n$

<u>Stack</u>	<u>Input</u>	<u>Action</u>
n E E+ E+n E S'	n+n\$ +n\$ +n\$ n\$ \$ \$	shift reduce E -> n shift shift reduce E -> E + n reduce S' -> E accept

Note: 3rd and 6th line identical except for lookahead – This grammar is not an LR(0) grammar, since it cannot be parsed without lookahead

The derivation used on previous slide was

- Each set of terminals/non-terminals formed during the rightmost derivation is a right sentential form
 - Part of this right sentential form will be on stack, part in string
 - The set of symbols on stack is known as a viable prefix of the right sentential form
 - A shift-reduce parser will continue to shift tokens until the entire RHS of a production is on the stack
 - At this point, a reduction may change the present right sentential form to another one
 - The complete viable prefix, plus the production which can be used to reduce it, is known as the handle of the right sentential form
 - Determining when a handle exists on the stack (and thus recognizing if it is time to make a reduction) is the primary task of a parser

- In our example of a simple expression grammar, we had E on top of the stack, which was the rhs of S' -> E
 - But we chose to shift instead of reduce at that point
 - So, just because the symbols on top of the stack happen to match a production rhs doesn't mean that we have a handle on the stack and it is time for a reduction
 - The lookahead symbols seem to be important
 - We will see that the state we are in is also important
- In the matching parens example, we had $S \rightarrow \epsilon$ as a production
 - Certainly ε is always on the top of the stack, but we don't always choose this reduction

- We said that a right sentential form can be split between the stack and the input string
 - Consider the production E -> E + n
 - There are 4 possible ways this could be split
 - Nothing on stack, just E on stack, etc.
 - We call each of these possibilities an LR(0) item or just item
 - We show the dividing point (stack vs string) with a period
 (.) a metasymbol
 - The items for this production are:

```
E -> . E + n
E -> E . + n
E -> E + . n
F -> F + n
```

For the grammar we saw before, the items are:

$$S' \rightarrow S$$
.

$$S \rightarrow .(S)S$$

$$S \rightarrow (.S)S$$

$$S \rightarrow (S.)S$$

$$S \rightarrow (S).S$$

$$S \rightarrow (S)S$$
.

$$S' \rightarrow S$$

 $S \rightarrow (S)S \mid \varepsilon$

- Each of the items possible for a grammar could be thought of as a state the parser is currently in
 - In fact, this is what we do
 - The items are states of a finite automata, specifically an NFA
 - If I am in state S -> (S.) S, and I decide to shift, bringing a) from the input string, I transition to S -> (S). S
 - It's a bit more complicated when the symbol following the period is a non-terminal, as in S -> (. S) S
 - There aren't any S tokens in the incoming string
 - The only way we're going to get an S on stack is as the result of a reduction

- So, in the case of S -> (. S) S, we will have to go do some reduction to S, and then we can move to S -> (S .) S
 - We show this in NFA by showing that state S -> (. S) S
 makes e-transition to states from which we can build an S
 - States with S on lhs, and period as first symbol on rhs
 - We can then show the transition on S in the NFA, realizing we can only make this transition immediately following a reduction

- Here is NFA for the grammar:
 - No accepting state
 - Purpose isn't to accept string, but to define state transitions

$$S' \rightarrow S$$

 $S \rightarrow (S)S \mid \varepsilon$

- We can now construct a DFA, using subset construction
 - Just as before, the DFA states consist of sets of states of the NFA; i.e., sets of items
 - What would the DFA look like for this NFA?

- For the following grammar:
 - Construct list of items
 - Construct the NFA
 - Construct the DFA

$$S' -> E$$

 $E -> E + n \mid n$

- The basic LR(0) parsing algorithm uses a stack, an input string of tokens, and a transition table (formed from DFA)
 - The stack contains not just symbols, but also current state
 - We show it as alternating symbols and states
 - In reality, the state captures the symbol information and only the states have to be stored
 - Input string terminated by \$
 - Transition table shows states vs symbols
 - Typically, columns in table containing non-terminals are in separate section of table called goto section
 - Columns containing terminals reflect action on a shift
 - Columns in goto section reflect transition following a reduction

- Basic LR(0) algorithm
 - If your current state contains a production like A -> B . b C, such that the symbol after the period is a terminal, then the required action is to shift
 - Shift next character onto stack
 - This character must be b, or an error has occurred
 - Change to state containing A -> B b . C
 - If your current state contains A -> B . such that the period is after the last symbol (called a complete item), then you should do a reduction by the rule
 - Entire rhs of production must be on the stack
 - Remove all of rhs from stack (including associated states), push A onto the stack
 - If A is Start symbol, then accept (if input empty)
 - The current stack state must contain D -> E . A F
 - Transition to state containing D -> E A . F

- Basic LR(0) algorithm (cont)
 - If A -> B . b C, shift
 - If A -> B., reduce
 - If neither, then your parser isn't working correctly
- If the above rules can be executed unambiguously for a particular grammar, the grammar is said to be an LR(0) grammar
 - If a particular state contains both a shift form and a reduce form, then the parser has a shift-reduce conflict cause by an ambiguity in the grammar
 - If a particular state contains 2 different complete items, then a reduce-reduce conflict has occurred due to ambiguity
- Thus, a grammar is LR(0) iff every state either contains only shift items, or contains a single complete item

- Look at DFA on page 205
 - Is the grammar represented an LR(0) grammar?

- Look at DFA on page 206
 - Is this an LR(0) grammar?

- Example: grammar A -> (A) | a
 - What are the items?
 - What does the NFA look like?
 - We can build DFA directly from items, without needing NFA
 - This is what most parser generators do
 - State 0 includes A' -> . A
 - Any time a period comes before non-terminal, all items which are productions on that terminal (with period before all symbols) are added to the state
 - So, state 0 also includes A -> . (A) and A -> . a
 - State including A -> (. A) also must contain above 2
 - Each of other items must also be in the DFA
 - We will look at an algorithm for building DFA without even having to enumerate items following this example

- Example (cont): grammar A -> (A) | a
 - Given DFA, what does the parsing table look like?
 - What does a parse of the string ((a)) look like?

State	Action	Rule	Input		GoTo	
			(а)	А
0	Shift		3	2		1
1	Accept	A' -> A				
2	Reduce	A -> a				
3	Shift		3	2		4
4	Shift				5	
5	Reduce	A -> (A)				

- Next we will look at the technique for determining the DFA states directly from the grammar, and thus building the parse table directly
 - Called sets of items construction, which is logical name
- Before we look at algorithm, need to define 2 functions:
 - closure (I) (where I is a set of items) very similar to εclosure; closure (I) includes:
 - All items in I
 - If a item in I has period before non-terminal A, include all items of form A -> . B
 - Apply this recursively to B if it is a non-terminal

- Another definition goto (I, X) where I is a set of items and X is a grammar symbol (either terminal or non-terminal)
 - If I contains A -> B . a C , then goto (I,a) contains closure(A -> B a . C)
 - Thus, we move period past the symbol, and take closure
- Set of Items Construction
 - Create start state containing closure (S'-> . S)
 - For each grammar symbol X, if goto (start state, X) is nonempty and is not identical to an existing state, add a new state containing goto (start state, X)
 - Repeat above for all newly created states

Example: matching parens

$$S' \rightarrow S$$

 $S \rightarrow (S)S \mid \varepsilon$

Start state contains closure (S'-> . S)

- Only goto which makes sense are on S and '('
 - goto (s₀, '(')

Example (cont)

$$S' \rightarrow S$$

 $S \rightarrow (S)S \mid \varepsilon$

• Goto (s_0, S) is:

 Done with s₀, work on s₁ ... continue iterating until no more new states created

- OK, a marathon example
 - Find DFA

E'-> E

$$E -> E + T | T$$

 $T -> T * F | F$
 $F -> (E) | ID$

- I'll get you started
 - Start state is closure (E' -> . E)

E'->. E
E->. E+T
E->. T
T->. T*F
T->. F
F->. (E)
F->. ID
$$s_0$$

Can we create an LR(0) parse table from this grammar?

- We saw that there were some very trivial grammars we couldn't parse using the LR(0) technique
 - Hey, bottom-up was supposed to be a more powerful technique
- Well, there are some obvious things we could have done to improve the technique
 - We made the decision on whether or not to shift based solely on what state we are in
 - We have tokens from the input string handy, but just ignored them
 - If we decided to reduce, we tried to make the decision based solely on what state we are in
 - Only allowed one complete item per state
 - Lookahead might help distinguish which reduction is appropriate

- The Simple LR(1) Parsing or SLR(1) Parsing method uses lookahead to eliminate some of the shift-reduce and reducereduce conflicts
 - SLR(1) Parsing uses a more powerful parse table
 - Associates shift/reduce decisions with lookahead token

State	Action	Rule	Input		GoTo	
			(а)	А
0	Shift		3	2		1
1	Reduce	A' -> A				
2	Reduce	A -> a				
3	Shift		3	2		4
4	Shift				5	
5	Reduce	A -> (A)				

State	Input			GoTo	
	(а)	\$	Α
0	s3	s2			1
1				acc	
2			A -> a	A -> a	
3	s3	s2			4
4			s5		
5			A ->(A)	A->(A)	

- SLR(1) Algorithm
 - If your current state contains a production like A -> B . b C, and the nextToken is b, then the required action is to shift and go to state containing A -> B b . C
 - If your current state contains A -> B . and the nextToken is in Follow (A), then reduce by this production (popping rhs of production off stack) and Goto appropriate state for lhs
 - The current stack state must contain D -> E . A F
 - Transition to state containing D -> E A . F
 - If the two above rules can be followed unambiguously, I.e., no shift-reduce or reduce-reduce conflicts, then the grammar is an SLR(1) grammar
- Note that from same state you could either shift or reduce, based on nextToken
- Note that from same state you could do 2 different reductions, based on nextToken

- Other than parse table changes, everything else stays same
- Example: matching parens
 - Not LR(0) grammar
 - Look at pg 205

$$S' \rightarrow S$$

 $S \rightarrow (S)S \mid \varepsilon$

State	Input			GoTo
	()	\$	S
0	s2	S -> ε	S -> ε	1
1			accept	
2	s2	S-> ε	S-> ε	3
3		s4		
4	s2	S-> ε	S-> ε	5
5		S -> (S)S	S -> (S)S	

- Example: rudimentary expressions
 - Not LR(0)
 - See pg 206
 - Follow (E) = ?
 - Parse n + n + n

E' -> E	
$E \rightarrow E + n \mid n$	

State	Input			GoTo
	n	+	\$	Е
0				
1				
2				
3				
4				

- SLR(1) parsing is powerful, but not perfect
 - Still has problems with shift-reduce and reduce-reduce conflicts
 - Typically most parser generators will default to performing the shift rather than the reduce
 - Fixes dangling else
 - Reduce-reduce occur infrequently in programming languages, and can probably be avoided
- An example of a problem grammar
 - Follow set of both S and V contains \$

$$S' -> S$$

 $S -> id \mid V := E$
 $V -> id$
 $E -> V \mid n$

Grammar

$$S' \rightarrow .S$$

$$S \rightarrow .id$$

$$S \rightarrow .V := E$$

$$V \rightarrow .id$$

$$id$$

$$V \rightarrow id$$

$$V \rightarrow id$$

Start state – only partial DFA shown

- How could SLR(1) Parsing be improved?
 - Once it has a parse table, it used lookahead as effectively as possible
 - However, it doesn't really use lookahead while building the parse table
 - Essentially it uses an LR(0) DFA, and applies lookahead
- LR(1) parsing builds a more advanced DFA, and then uses the same parse table and lookahead techniques as SLR(1) to conduct the parse
 - LR(1) DFA states (and thus parse table) are built keeping track of legal lookahead chars
 - If I am parsing if (expr) stmt else stmt, and am starting to parse expr, I know that the follow-on token when the expr is done has to be a)
 - Maybe I can benefit from this knowledge

- Consider the problem grammar below
 - Both the follow set of V and S contain \$, but we can see that the V→. id item was only added to the Start State because of the S->. V := E item
 - Thus, in this state, the follow-on character to V can only be :=, not \$
 - So, when I hit state where it's time to make a reduction, I could reduce S→id. if lookahead is \$ and reduce V→id. if the lookahead is :=
 - But SLR(1) doesn't track this info, LR(1) does

$$S' -> S$$

 $S -> id \mid V := E$
 $V -> id$
 $E -> V \mid n$

Grammar

Start state – only partial DFA shown

- Essentially what LR(1) Parsing does is eliminate some of the reduce-reduce conflicts which we would find in an SLR(1) parser
 - In practice, almost all language constructs can be expressed by an LR(1) grammar
 - You can certainly design a non-ambiguous language which would not be LR(1), but it would likely be contrived
- Approach
 - We define a new type of item, an LR(1) item
 - Consists of an LR(0) item and a lookahead char/set
 - Build a DFA, or do Sets of LR(1) Items Construction, using slightly modified rules
 - From this DFA or Sets of Items, we can build the parse table
 - Format is the same as SLR(1), just has more states
 - Use parse table as we did in SLR(1)

- Building Sets of Items
 - Start with $S' \rightarrow . S, \$$
 - Take closure similar to before
 - For every item of form S→B.CD, x, we create a closure containing all productions on C, with each terminal in First(D) - if First(D) contains ϵ, then add x as lookahead
 - If C->E|F and First (D) = { +, (}, then we add following LR(1) items

```
C → .E, +
C → .E, (
```

- C → .F. +
- C → .F, (
- Compute goto and shift same as before
 - S \rightarrow B.CD, x transitions to S \rightarrow BC.D, x

Below is the non-SLR(1) grammar

$$S' -> S$$

 $S -> id \mid V := E$
 $V -> id$
 $E -> V \mid n$

Grammar

Old start state – only partial DFA shown

- With LR(1) Sets of Items
 - Now I can properly choose between reductions

LR(1) start state – only partial DFA shown

- Again, if we can build a non-ambiguous parse table from our
 Sets of Items, we say that the grammar was an LR(1) grammar
- So, LR(1) is the most powerful parser of the 6 we will study
 - However, it has a problem ... state explosion
 - Remember, we have to have epsilon-transitions (or closure) for every terminal character in the First set of the next symbol
 - In a full-size programming language, this could be a large set of characters and a huge number of states
 - Not practical to build a compiler this way
- LALR(1) Parsing (the last one, I promise) solves this problem
 - This is the one YACC and most other parser generators use

- We are only going to take a brief look at LALR(1)
 - More powerful than SLR(1)
 - Almost as powerful as LR(1)
- Key concept is to look for multiple states that are identical in their LR(0) core, differing only in the lookahead portion of their items
 - If two states have same core, their nature is such that they must transition to states which also have same core
- If we combine states with the same core, and have a set of lookahead chars, we dramatically reduce # of states
 - In fact, will be identical to # of LR(0) states
- In practice, rarely lose any of the power of LR(1)
- Compare Fig 5-7 and Fig 5-9 (pgs 220, 225)

- Next we will look briefly at YACC, as an example of a parser generator or compiler-compiler
 - Stands for "Yet Another Compiler-Compiler"
 - Due to time, we will only look quickly at YACC
- YACC is a LALR(1) parser generator, created for the Unix environment
 - There are numerous implementations of YACC, and those included with the latest GNU release are called Bison
- Similar to Lex, you specify your grammar in an input file in YACC language, and then run YACC
 - It creates a .c file which can be compiled into your compiler
 - Typically called y.tab.c or ytab.c

- Typically, a YACC source file uses a .y suffix
- It is divided into 3 sections, with a %% (like Lex) dividing the sections
 - 1st section is used for preprocessor directives and definitions
 - % token LPAREN_TOKEN 258 defines a token used later and assigns a numeric value
 - % start stmt says that the start symbol for grammar is stmt – defaults to first production listed in section 2
 - 2nd section contains grammar rules
 - A → B | C would be:

```
A : B { code for B } | C { code for C } :
```

 Inside the braces, you put C code that we want executed when the production is selected

- The C code allowed inside braces allows a special set of pseudo-variables
 - \$\$ refers to the lhs of the production
 - \$1 refers to the 1st symbol on rhs of production

```
    A: B addop C { $$ = $1 + $3 } [for calculator]
    A: B addop C { $$ = new BinaryExpression (PLUS); $$->IChild = $1; $$->rChild = $3; } [for compiler]
```

- 3rd section contains top-level C routines
 - Need to specify a yyerror() routine
 - YACC will create yyparse() which is entry point for parser
 - YACC assumes a routine yylex() will be available

- When you run YACC, it tries to do LALR(1) parsing on the grammar you specify
 - It will produce an output file which shows the states it creates
 - It will show results of whether it found shift-reduce or reducereduce conflicts
 - If it found conflicts, it lets you know, but takes its best guess
 - Shift-reduce conflicts resolved in favor of shift
 - Fixes dangling else problem
 - Reduce-reduce resolved in favor of production listed first
 - Likely there is a problem with the grammar
- Look at YACC input file for Tiny on pg 539

- So, your LALR(1) parser is cooking away at the tokens in your program, and it hits a state where there is no shift or reduction specified in the table entry corresponding to the current lookahead
 - We don't want to just abort the parse
 - Need a method to get synced back up
- Options for things we could do (will do some combo)
 - Add some new state onto the stack
 - Start deleting states from the stack until you could press on
 - Start removing tokens from input stream until you can press on
- Must ensure that method will not infinite loop, even if it means consuming tokens and never recover

- YACC approach is pretty good
 - They add error productions at locations where they want to recover
 - Define an error token
 - Look at line 4047 on pg 539
 - Don't have to recover for all possible non-terminals
 - If you find an error somewhere in a statement, report it, and can press on parsing the next statement, that's pretty good recovery
 - When an error occurs, start popping states until get to state which contains error as a valid lookahead
 - Basically throwing away tokens we have already seen until we hit a sync point
 - Since parser is in error recovery mode, consider error to be the next token

- YACC approach (cont)
 - We are in state now where error is a valid lookahead, and error is the nextToken
 - Can just press on
 - Shift error onto stack
 - Do reduction of error to lhs non-terminal
 - Stack is in a stable state, but now the input string may contain residue from the production we reduced from error
 - Parser stays in error mode, and starts examining input tokens
 - If input makes sense, continue parsing
 - If input doesn't make sense, silently discard input
 - Once 3 input tokens have been shifted without another error occurring, parser exits error mode

- YACC approach isn't perfect, and may result in quite a bit input being discarded
 - Consider if [a == b) …
 - The entire if_stmt will be discarded, which may be hundreds of lines of code
- You would prefer to get error checking on the discarded code
- No magic solutions
 - You can tweak your grammar to add more of the error productions at critical locations
 - If you set up certain scenarios, you would probably be able to cause Netbeans or Visual C++ to miss errors
 - Of course, Visual has so many bugs of its own that it has trouble distinguishing your errors