Лабораторная работа №13

Имитационное моделирование

Екатерина Канева, НФИбд-02-22

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выводы	13
Сг	исок литературы	14

Список иллюстраций

3.1	Дерево достижимости	7
3.2	Декларации системы.	8
3.3	Граф сети.	8
3.4	Граф состояний	12

Список таблиц

1 Цель работы

Выполнить задание для самостоятельной работы.

2 Задание

- 1. Используя теоретические методы анализа сетей Петри, провести анализ сети (с помощью построения дерева достижимости). Определить, является ли сеть безопасной, ограниченной, сохраняющей, имеются ли тупики.
- 2. Промоделировать сеть Петри с помощью CPNTools.
- 3. Вычислить пространство состояний. Сформировать отчёт о пространстве состояний и проанализировать его. Построить граф пространства состояний.

3 Выполнение лабораторной работы

Сначала я построила дерево достижимости. Оно получилось следующее (рис. 3.1):

Рис. 3.1: Дерево достижимости.

Сеть является безопасной, ограниченной, несохраняющей, тупиков нет.

Далее я приступила к моделированию в CPN Tools. Модель состояла из 1 листа.

Сначала я задала декларации системы (рис. 3.2):

Рис. 3.2: Декларации системы.

Далее я построила граф (рис. 3.3):

Рис. 3.3: Граф сети.

Потом я вычислила пространство состояний, начиная с нулевого шага, и сформировала отчёт. Он получился следующий:

CPN Tools state space report for:

/home/openmodelica/lab13.cpn

Report generated: Sat May 3 13:09:21 2025

Statistics

State Space

Nodes: 5

Arcs: 10

Secs: 0

Status: Full

Scc Graph

Nodes: 1

Arcs: 0

Secs: 0

Boundedness Properties

Best Integer Bounds

	Upper	Lower
net'P1 1	1	1
net'P2 1	1	0
net'P3 1	1	0
net'P4 1	1	0
net'P5 1	1	0
net'P6 1	1	0

Best Upper Multi-set Bounds net'P1 1 1`memory net'P2 1 1`storage1 net'P3 1 1`storage2 net'P4 1 1`storage1 net'P5 1 1`storage2 net'P6 1 1`(storage1,storage2) Best Lower Multi-set Bounds net'P1 1 1`memory net'P2 1 empty net'P3 1 empty net'P4 1 empty net'P5 1 empty net'P6 1 empty Home Properties Home Markings All Liveness Properties Dead Markings None

Dead Transition Instances
None

Live Transition Instances
All

Fairness Properties

.....

net'T1 1	No Fairness	
net'T2 1	No Fairness	
net'T3 1	No Fairness	
net'T4 1	No Fairness	
net'T5 1	Just	
net'T6 1	Fair	

Как мы видим, получилось всего 5 узлов и 10 переходов между ними, моделирование прошло полностью.

Тупиков нет, о чём говорит None в графе Dead Markings. В Р1 всегда была фишка, в остальных состояниях могла быть или не быть одна фишка.

В конце я построила часть графа состояний (рис. 3.4):

Рис. 3.4: Граф состояний.

4 Выводы

Выполнила задание для самостоятельной работы

Список литературы