1. If \vec{a} , \vec{b} and \vec{c} are the position vectors of the points A

$$(2,3,-4), B(3,-4,5)$$
 and $C(3,2,-3)$

respectively, then $|\vec{a} + \vec{b} + \vec{c}|$ is equal to

- (A) $\sqrt{113}$
- (B) $\sqrt{185}$
- (C) $\sqrt{203}$
- (D) $\sqrt{209}$
- 2. Find the distance of the point (a, b, c) from the x-axis.
- 3. (a) If $\vec{a} = 2\hat{i} \hat{j} + 2\hat{k}$ and $\vec{b} = 5\hat{i} 3\hat{j} 4\hat{k}$, then find the ratio $\frac{projection of vector\vec{d}on vector\vec{b}}{projection of vector\vec{d}on vector\vec{d}}$
 - (b) Let \hat{a} and \hat{b} be two unit vectors. If the vectors

$$\vec{c} = \hat{a} + 2\hat{b} \tag{1}$$

and

$$\vec{d} = 5\hat{a} - 4\hat{b} \tag{2}$$

are perpendicular to each other, then find the angle between the vectors \vec{a} and $\vec{b}.$

- 4. Show that $|\vec{a}|\vec{b}+|\vec{b}|\vec{a}$ is perpendicular to $|\vec{a}|\vec{b}-|\vec{b}|\vec{a}$, for any two non-zero vectors \vec{a} and \vec{b} .
- 5. Prove that three points A, B and C with position vectors \vec{a} , \vec{b} and \vec{c} respectively are collinear if and only if

$$(\vec{b} \times \vec{c}) + (\vec{c} \times \vec{a}) + (\vec{a} \times \vec{b}) = 0$$
(3)