Log-concave and log-convex functions

A positive function f is Ligarithmizeally-concave or (log-concave) if $\forall x \in dom f$, light is concave. $+(\theta x + (1+\theta)y) \ge f(x) - f(y) - \theta \le \theta \le 1$. $\Rightarrow \log f(\theta x + (1+\theta)y) \ge \theta \log f(x) + (1-\theta) \log f(y)$.

f is log-convex if logf is convex.

F is log-convex if and only if $\frac{1}{4}$ is log-concave.

Lx. f(x) = aTx + b. is log-concave on f(x) = aTx + b > 0? $f(0x + (1-0)) = 0f(x) + (1-0)f(y) = f(x)^{(1-0)}$ $f(0x + (1-0)) = 0f(x) + (1-0)f(y) = f(x)^{(1-0)}$ $f(0x + (1-0)) = 0f(x) + (1-0)f(y) = f(x)^{(1-0)}$ $f(0x + (1-0)) = 0f(x) + (1-0)f(y) = f(x)^{(1-0)}$ $f(0x + (1-0)) = 0f(x) + (1-0)f(y) = f(x)^{(1-0)}$ $f(0x + (1-0)) = 0f(x) + (1-0)f(y) = f(x)^{(1-0)}$ $f(0x + (1-0)) = 0f(x) + (1-0)f(y) = f(x)^{(1-0)}$

5x, $f(x) = e^{ax}$ $light(x) = ax \Rightarrow f(x)$ is log-convex and log-convex

Tox. The cumulative distribution function of a Gaussian donsity $\phi(x) = \frac{1}{127} \int_{-\infty}^{x} e^{-u^{2}/2} du$.

is lg-concave. (Exercise.)

> Twice differentiable function of with convex domain
f: Rn R. fxxx0 Hx edonf.
D lighter = in ofus.
12 hates = - 7 fix) (2 of (x) Af(x).
f is log-concave if and only if (Second order) condition (fix) $\sqrt{2} f(x) \le \sqrt{2} f(x) = \sqrt{2} f(x) \sqrt{2} f(x)$. Hx <domf.< th=""></domf.<>
for $\nabla^2 f(x) \leq \nabla f(x) \nabla f(x)'$, $\forall x < domf$.
- The product of two log-concave functions is
- The product of two log-concave functions is $cog-concave$. $g \propto f(x) \Rightarrow log f(x) = log f(x) + log f(x)$.
- The sum of two/ log-convex functions is log-convex
Suppose. f.& g are log-anvex. F=logf & G=logg are convex.
(f+9) = bg (e+e) is convex (compusition)
P.74 of BVO4. by I e is convex in X.
(Second order condition), Jurify it

D The sum of two log-concave functions is [not always log-concave. Ex. ex 14 log-concave (log-convex). e + e $\frac{\partial^2}{\partial x^2} \left(\log e^{x} + e^{x} \right) =$ lig(extex)

Suppose that KERM is a proper cone. f: R-XR is t-mondecreasing if $x \leq y \longrightarrow f(x) \leq f(y)$. $f: \mathbb{R} \to \mathbb{R}$, f: S non decreasing, $f: \mathbb{R} \to \mathbb{R}$, $f: S \to \mathbb{R}$, f: S> A differentiable function of with convex domain 75 K-nondecreasing of and only it (7 fx) = 5 9: (y, x) = 0 +x= 6 Proof.

Proof.

Necessity) Suppose not

(+ 15 not k-non-deciensing)

The proof of t Consider f(x+t(y-x)): $(R \rightarrow R)$ which is not nondearnsing $f(x+t(y-x)) = \nabla f(x+t(y-x))^T (y-x)$ $ato + \sqrt{f(x+t_0(y+x))^T(y-x)} < 0.$ y-xek => of (x+to(y+x) & K.)
which is a contradicion that

Ex $f: S \to \mathbb{R}$ defined by f(x) = tr(WX). $W \in S^n$. If $W \ge 0$, f is matrix nondecreasing. Proof. for $X \ge Y$, $(X-Y \ge 0)$ $W(X-Y) \ge 0$. $W(X-Y) \ge 0$. $W(X-Y) \ge 0$. $W(X-Y) \ge 0$.

Gx. det X is motion increasing on Sty.

Suppose KSIR is a proper cone. f: IR") IR is K-convex if txig, $f(\theta x + (H\theta)y) \leq_{K} \theta f(x) + (H\theta) f(y)$ Tox. f: 12 mm > 5th dofined. $f(x) = xx^T$. is matrix convex. consider X (Y = R" 0 XXT+ (1-0) XXT > (0X+(1-0)) (0X+(1-0)) $\Theta = (1-4) (x-x) (x-x) = 0$