

Greatest common divisor

- You are given an array $a_1, a_2, ..., a_n$ consisting of n integers and q queries $g_1, ..., g_q$ on it. For each query g_i you have to count the number of pairs (l, r) such that $1 \le l \le r \le n$ and $gcd(a_l, a_{l+1}, ..., a_r) = g_i$.
- With $gcd(v_1, v_2, ..., v_n)$ is a greatest common divisor of $v_1, v_2, ..., v_n$, that is equal to a largest positive integer that divides all v_i .

You are given a string S that is guaranteed to be a beautiful binary string. Let N be the length of S. Consider the lexicographically sorted list of all beautiful binary strings of length N. Compute and return the string that comes immediately after S in this list. If S happens to be the last string in the list, return an empty string instead.

Input

The first line of the input contains integer n, $(1 \le n \le 10^5)$. The next line contains n space separated integers $a_1, ..., a_n, (1 \le a_i \le 10^9)$.

The third line of the input contains integer q, $(1 \le q \le 3 \times 10^5)$, denoting the number of queries. Then follows q lines, each contain an integer g_i , $(1 \le g_i \le 10^9)$.

Output

For each query print the result in a separate line.

Examples

Standard Input	Standard Output
4	2
2463	4
5	2
1	1
2	1
3	
4	
6	
6	10
10 20 3 15 60 16	0
6	3
1	1
2	0
3	2
4	
5	
15	