

Группа I - Фотохромогенные медленнорастущие

непигментированные при выращивании в темноте, но приобретают ярко-желтую или желто-оранжевую пигментацию после выдерживания на свету.

Потенциально патогенные штаммы медленно растущие

(M.asiaticum, M.kansasii). Оптимальная температура роста варьирует: 25°С (M.simiae), 32-33°С (M.marinum) до 37°С (М.asiaticum). быстрорастущие (например, M.marinum) Наибольшую клиническую значимость в России имеет вид M.kansasii.

Штамм M.kansasii (M.luciflavum) выделен и описан Булер и Поллак в 1953 г. как возбудитель заболеваний людей. На яичной среде растет в виде шероховатых или гладких колоний, температурный оптимум 37°С. Морфологически бактерии умеренной длины. Описаны 2 варианта M.kansasii: оранжевый (auranticum) и белый (album).

Группа II - Скотохромогенные медленнорастущие

Образующие пигмент в темноте:

M.aquae (M.gordonae) и M.scrofulaceum.
M.scrofulaceum относится к потенциально патогенным видам.

Скорость роста - 30-60 дней. Впервые он был выделен и описан из гноя лимфатического узла ребенка с лимфаденитом.

Растут при 25 - 37°C.

III группа - Нефотохромогенные медленно растущие

Не образующие пигмента или имеющие бледно-желтую окраску, которая не усиливается под воздействием света:

Растут в течение 2 - 3-х или 5 - 6-ти недель.

•*M.avium* (микобактерии птичьего типа) растут на среде Левенштейна-Йенсена в виде пигментированных колоний при 37°C и 45°C.

Встречаются в воде, в почве.

- •*М.хепорі.* Выделен от жабы. Молодые культуры растут в виде непигментированных колоний; позднее появляется пигмент желтого цвета. Морфологически длинные нитевидные палочки. Растут при 40-45°C, патогенны для человека.
- •*M.terrae* впервые были выделены из редьки. Растут на среде *Левенштейна-Йенсена* в виде беспигментных колоний. Оптимум роста 37°C. Морфологически представлены палочками умеренной длины, сапрофиты.

IV группа - Быстрорастущие

Потенциально патогенные микобактерии *M. fortuitum*, а также сапрофиты, такие как *M.phlei*, *M.smegmatis* и др.

Рост - до 7-10 дней в виде пигментных или беспигментных колоний,

R-форма преобладает

Температура роста - 25°C.

Наиболее распространенные HTM, способные вызывать заболевание человека

Медленно растущие <i>Mycobacteria</i>	Быстро растущие <i>Mycobacteria</i>
M. avium	M. abscessus
M. intracellulare	M. chelonae
M. kansasii	M. fortuitum
M. malmoense	
M. marinum	
M. simiae	
M. szulgai	
M. ulcerans	
M. xenopi	

Дифференциация микобактерий туберкулезного комплекса

Рост на плотной среде ЛЙ, Финн 2

Бактериоскопия с окраской по Ц-Н среде
ВАСТЕС MGIT 960
Посев на кровяной агар

Рост на жидкой

- 1. Характеристика роста на среде Левенштейна-Иенсена. Финна 2
- 2. Ниациновый тест
- 3. Потребность в кислороде
- 4. Восстановление нитратов
- 5. Чувствительность к пиразинамиду
- 6. Чувствительность к ТСН 1мкг/мл, 5 мкг/мл
- 7. Чувствительность к циклосерину 40мкг/мл

Хроматографический тестBD MGIT™ TBc Identification Kit

Внутренний контроль качества?

Методы дифференциации МБТ от НТМБ

- ПЦР IS6110, выявляющая вставочную последовательность, присутствующую только у микобактерий туберкулезного комплекса.
- Иммунохроматографический метод (ID-test)

TBc ID (BD)

- Используется для идентификации M.tuberculosis.
- Основан на хроматографическом иммуноанализе.
- Обнаруживает фракцию микобактериального белка МРТ64, которая выделяется из клеток МБТ в процессе культивирования.

Преимущества:

- 1. Время проведения анализа 20 минут
- 2. Достаточная чувствительность и специфичность
- 3. Удобство использования

Идентификация НТМБ до вида

ФГБУ «Санкт-Петербургский научно =

MALDI-ToF масс-спектрометрия, позволяет получить белковые спектры, которые являются уникальными для каждого вида микобактерий.

M.tuberculosis complex

MAIS complex

Идентификация НТМ до вида

GenoType® Product Series Mycobacteria

- ДНК-стриповая технология (Hain Lifescience)
 - GenoType® Mycobacterium CM
 - M. avium ssp., M. chelonae, M. abscessus, fortuitum, M. gordonae, M. intracellulare, M scrofulaceum, M. interjectum, M. kansasii, м. таlmoense, M. peregrinum, M. marinum, M. ulcerans, M. хепорі и М. tuberculosis compleх и
 - GenoType® Mycobacterium AS
 - M.simiae, M.mucogenicum, M.goodii, M.celatum, M. smegmatis, M. genavense, M. lentiflavum, M. heckeshornense, M. szulgai, M. intermedium, M. phlei, M. haemophilum, M. kansasii, M. ulcerans, M. gastri, M. asiaticum и M. shimoidei.

Получение результата в течение 1-2 дней

Интерпретация результатов The GenoType Mycobacterium CM

Band No. 1 (CC): Conjugate Control Band No. 2 (UC): Universal Control Band No. 3 (GC): Genus Control

Идентификация HTMБ GenoType CM/AS (HAIN Lifescience)

Определение устойчивости НТМБ

- •Нетуберкулезные микобактерии резистентны к большинству противотуберкулезных препаратов.
- •Важно дифференцировать микобактериозы и MDR/XDR туберкулез.
- •Для определение лекарственной чувствительности HTM применяется планшетное титрование Sensititre TREK Diag (Magellan Biosciences)

Спектр антибактериальных препаратов (Sensititre TREK Diag, Magellan Biosciences)

• Быстрорастущие

- Триметоприм / сульфамтоксазол
- Ципрофлоксацин
- Моксифлоксацин
- Цефоксицин
- Амикацин
- Доксициклин
- Тайгециклин
- Кларитромицин
- Линезолид
- Имипенем
- Цефепим
- Амоксициллин /клавулоновая кислота
- Цефтриаксон
- Миноциклин
- Тобрамицин

• Медленнорастущие

- Кларитромицин
- Ципрофлоксацин
- Стрептомицин
- Доксициклин
- Этионамид
- Рифабутин
- Этамбутол
- Изониазид
- Моксифлоксацин
- Рифампицин
- Триметоприм
- Амикацин
- Линезолид

M.avium copmlex:

- **1-я линия:** Рифампицин, этамбутол, кларитромицин, канамицин.
- 2-я линия: фторхинолон, амикацин, этионамид, циклосерин, клофазамин (бисептол, сульфадиметоксин)
- Длительность 15-18 месяцев
- Ожидаемая эффективность 50-75%

- M.kansassi
- 1-я линия: рифампицин, этамбутол, изониазид, стрептомицин.
- 2-я линия: + фторхинолоны, линезолид
- Длительность 15-18 месяцев.
- Ожидаемая эффективность 90%

M.fortuitum

- 1-я линия: кларитромицин, доксициклин, амикацин.
- 2-я линия: фторхинолоны, имипенем,+ сульфаниламиды,
 5нок.
- Длительность по клинико-рентгенологической динамике.
- Ожидаемая эффективность 50-75%

- M.marinum
- 1-я линия: кларитромицин, доксициклин, (моноциклин).
- 2-я линия: рифампицин, этамбутол.
- Длительность 2-6 месяцев.
- Ожидаемая эффективность 80-100%

- M.xenopi, M.szylgary, M.malmoense, M.simiae.
- 1-я линия: рифампицин, этамбутол, кларитромицин, стрептомицин.
- 2-я линия: амикацин, фторхинолон, этионамид, циклосерин, клофазамин, линезолид
- Длительность 18-36 месяцев.
- Ожидаемая эффективность незначительная

Диагностический минимум лабораторного обследования.

- Клинический анализ крови.
- Общий анализ мочи.
- Биохимическое исследование крови.
- Анализ мокроты методом микроскопии с окраской по Циль-Нильсену (для обнаружения кислотоустойчивых микроорганизмов).

Клинический анализ крови

- Слабовыраженная анемия,
- Отсутствие выраженного лейкоцитоза (в пределах верхней границы нормы),
- Лимфопения,
- Моноцитоз,
- Незначительное ускорение СОЭ

Исследование мочи.

- Макро и микрогематурия один из ранних признаков туберкулеза почек. (чаще интермиттирующий характер),
- Эритроцитурия без лейкоцитурии (ранние стадии туберкулеза почек),
- Моносимптомная макрогематурия один из ранних признаков туберкулеза почки.
- Лейкоцитурия самый частый симптом туберкулеза мочевой системы.

Биохимические тесты

Наибольшее диагностическое значение – определение активности фермента аденозиндеазаминазы (АДА) в биологических жидкостях:

Для туберкулезного плеврита в экссудате:

- АДА > 35 ед/л. (чувствительность теста > 86%), Для туберкулезного менингита в ликворе:
- АДА > 7,0 ед/л. (чувствительность теста > 92%), Для туберкулезного асцита в жидкости:
- АДА > 40,0 ед/л. (чувствительность теста > 93%), Для туберкулезного перикардита:
- АДА > 40,0 ед/л. (чувствительность теста > 95%),

Исследование ликвора (туберкулезный менингит)

Диагностические критерии:

- Плеоцитоз 100-300 клеток в мм³ (норма ≤5 кл./мкл.),
- Повышение количества белка от 0,66 до 3,0 г/л (норма = 0,2-0,4 г/л),
- Снижение сахара (норма =2,78-3,89 ммоль/л) и хлоридов (норма =120-128 ммоль/л.),
- Выпадение фибриновой пленки,
- Преобладание лимфоцитов (нейтрофилы не более 8%)

Серологические методы диагностики туберкулеза

- Определение противотуберкулезных антител в комплексе серологических реакций (гуморальный иммунитет):
- РНГА с туберкулином (ППД) >1/8 (диагностический титр), эффективность не более 30%,
- РПК с ППД > 17,0 усл.ед. эффективность не более 40%,
- РГЛ с ППД > 7,0 усл.ед. эффективность не более 35%,
- ИФА с ППД > 2,0 усл.ед. эффективность не более 45%,

Кноринг Б.Е

 Постановка пула из 4-х реакций – диагностическая эффективность не более 60%

Клиническая иммунология

Оценка состояния клеточного иммунитета:

- РБТЛ с ППД > 3,0% (определяет уровень специфической сенсибилизации) диагностическая эффективность не более 40%,
- РБТЛ с ФГА < 50,0% (определяет функциональную активность лимфоцитов)
- Характерно угнетение пролиферативной активности лимфоцитов, сниженное содержание Т-хелперов, повышенное содержание В-лимфоцитов, нормальное число цитотоксических клеток, увеличение экспрессии HLA-II+ антигенов и рецепторов к IL-2

