LOESS

Week 4: LOcally weighted regrESSion

Problem

- We can fit straight lines well
- Curves—not so much

What to do

- Variable change
 - $\chi -> \chi^2$

Go ahead: transform this one

- If we cannot transform, what do we do?
- Piece wise regression

LOESS

- Essentially a spline fit
- Fit local data
- Use a polynomial (essentially variable transforms)
 - DO NOT USE HIGH ORDER POLYNOMIALS
 - Overfit
- Using distance weighting
 - kNN

Hyperparameters

- Order
 - This is your variable transform
 - 0—weighted mean
 - 1—linear
 - 2—Quadratic
 - 3—Cubic
- Span (α)
 - How many points (fraction of total)
 - 0 < α < 1
- Weighting
 - Default: $(1 |d|^3)^3$
 - Scaled to be between 0-1

Weights

• Small α increases time/complexities overfit

• Large α increases locality

I tire of your differentiable functions (Change Points)

What if slope changes at a certain point?

Discussion

- Have you been doing the Videos?
- How do we detect a change point
- How do we detect more than one change point?
- What methods are used?
- What R packages are used?

This is a reminder

- Value in the Videos
- I do check to see who has viewed them
 - I'm also smarter than an automated system

Homework Example

- Getting the men's data
- How to solve issues