

SMALLCAP: Lightweight Image Captioning Prompted with Retrieval Augmentation

Rita Ramos, Bruno Martins, Desmond Elliott, Yova Kementchedjhieva

INESC-ID, Instituto Superior Tecnico, University of Lisbon Department of Computer Science, University of Copenhagen, Pioneer Center for Al

2023/CVPR

2024.04.15 이상민

1. Introduction

- 최근 이미지 캡서닝 분야는 데이터와 모델 사이즈 증가에 집중하고 있다
- 모델 사이즈가 커지면서 모델을 Pre-train, fine-tune할 때 학습이 오래 걸리고 실용적으로 모델을 사용하기 어렵다
- large model의 대안으로 경량 파라미터의 모델들이 연구 되었지만, 유의미한 성능 향상은 얻지 못했다.
- 본 연구에서는 대안으로 SMALLCAP, image captioning model을 새롭게 제안

• SMALLCAP

- 사전학습 된 CLIP vision encoder, GPT-2 모델을 freezing해서, 인코더 디코더로 사용
- 입력 이미지와 유사한 caption으로 구성된 prompt를 디코더의 입력으로 사용

Prompting with Retrieved Captions

Prompting with Retrieved Captions

- 입력 이미지와 데이터스토어의 내용을 인코딩
- 이후 코사인 유사도를 기반으로 이미지와 가장 유사한 K개의 텍스트를 datastore에서 검색
- K개의 텍스트는 prompt template에 삽입

Similar images show {caption1} ... {captionk}. This image shows . [Prompt template]


```
Similar images show
a man working some levers at a train yard
a train engineer preparing the engine of a train
a train being worked on in a train manufacturer
a man wearing a safety vest standing by a train.
This image shows
```

- Image Encoding
- CLIP vision encoder를 사용해 이미지의 patch들을 각각 embedding의 형태로 변환

• SMALLCAP

- 최종적으로 디코더는 image features와 prompt를 통해 caption을 생성한다.
- 인코더와 디코더를 freezing했기 때문에 실질적으로 cross-attention layer만 학습

- ●학습 방법
 - 전체 모델 구조에서 cross-attention layer만 cross-entropy loss를 최소화 하는 방향으로 학습

$$L_{\theta} = -\sum_{i=1}^{M} \log P_{\theta}(y_i|y_{< i}, \mathbf{X}, \mathbf{V}; \theta).$$

V: image feature

X: prompt

heta: cross-attention layer prameters

• Benchmark Results

COCO test 데이터 셋에 대한 성능 결과, 아래 모든 모델은 COCO dataset을 학습 했다.

Model	$ \theta $	B@4	M	CIDEr	S			
Large Models with V&L pre-training								
LEMON _{Huge} [11]	675	41.5	30.8	139.1	24.1			
SimVLM _{Huge} [42]	632	40.6	33.7	143.3	25.4			
OSCAR _{Large} [19]	338	37.4	30.7	127.8	23.5			
BLIP _{CapFilt-L} [18]	224	39.7	-	133.3	-			
Lightweight-training models								
I-Tuning _{Large} [22]	95	34.8	29.3	119.4	22.4			
CaMEL [5]	76	39.1	29.4	125.7	22.2			
I-Tuning _{Medium} [22]	44	35.5	28.8	120.0	22.0			
ClipCap [25]	43	33.5	27.5	113.1	21.1			
I-Tuning _{Base} [22]	14	34.8	28.3	116.7	21.8			
SMALLCAP	7	37.0	27.9	119.7	21.3			
SMALLCAP _{d=16} , Large	47	37.2	28.3	121.8	21.5			
SMALLCAP _{d=16, Med}	22	36.5	28.1	120.7	21.6			
SMALLCAP _{d=8, Base}	3.6	36.7	27.8	119.1	21.1			
SMALLCAP _{d=4} , Base	1.8	36.0	27.4	117.4	21.0			

Table 1. Results on the COCO test set with cross-entropy training. $|\theta|$: number of trainable parameters in the model (in millions).

• Benchmark Results

- Nocaps 데이터의 IN-domain, Near-domain, out-of-domain, entire-domain에서의 CIDEr 점수
- In-domain을 제외한 모든 도메인에서 성능이 가장 높다.

Model	In	Near	Out	Entire
OSCAR _{Large} \$\displaystyle{\partial}\$	84.8	82.1	73.8	80.9
CaMEL*	88.1	79.1	54.6	75.9
ClipCap*	74.5	65.6	47.1	63.4
SMALLCAP	83.3	77.1	65.0	75.8
$SMALLCAP_{+W+H}$	87.9	84.6	84.4	85.0

Table 2. CIDEr results on the nocaps test set. \diamond : Results copied from the respective publications. \star : Results computed by us. +W+H: datastore with additional Web and Human-labeled data.

SMALLCAP + W+H: datastore에 Web, Human-labeled data를 추가한 모델

Qualitative Examples

- Retrieving된 caption 들은 입력 이미지와 유사하고 생성된 caption과도 의미론적으로 비슷하다
- 두번째 이미지를 보면 Closeup of a person 과 같이 이미지와 유사하지 않는 정보에도 robust하게 예측한다

Figure 3. Examples generated by SMALLCAP, together with the retrieved predictions from the COCO datastore. • denotes the retrieved captions, highlighted as green or red to indicate correct and mismatch captions, respectively. • denotes the generated caption.

Qualitative Examples

- COCO 데이터로 학습된 모델을 추론 시점에 data store의 구성을 COCO에서 새로운 도메인으로 변경 했을 때 새로운 도메인에 적응하는 것을 보여준다
- 입력이미지와비슷한 도메인의 데이터로 구성된 datastore를 사용하면 처음 보는 이미지에 대해서도 강건한 예측이 가능하다.

Figure 5. Examples of captions generated for Flickr30k, VizWiz and MSR-VTT, with retrieval either from COCO or in-domain data. The captions use words retrieved from the in-domain datastores which were rarely seen in the COCO training data (tutu, swanson, pokemon).

• The Impact of Retrieval

- Retrieval 적용 유무에 따른 SMALLCAP 모델 성능 평가 결과.
- Retrieval을 적용하지 않고 prompt로 "this image show" 만 사용한 결과 성능이 현저히 떨어졌다.

4. Conclusion

- 학습이 빠르고 재학습 없이 다양한 도메인에 적용 될 수 있는 retrieval augmented image caption 모델인 SMALLCAP을 제안
- 학습 파라미터가 다른 모델들에 비해 훨씬 적음에도 높은 성능을 보임

5. Open questions

• datastore를 news dataset으로 변경한다면 SMALLCAP 모델은 Entity가 포함된 news dataset에 대해서도 robust하게 예측할까?