

Music Classification Genre

Mid-class Bootcamp - Data Analytics 2021

Enrico Cesaro

Intro

Can we predict tracks genres through their main features?

Can we predict tracks genres through their main features?

- Multiclass classification problem
- Hypothesis: influence popularity vs. genre
- Comparison between **two of main classification families**
- General findings

The dataset

229.040

0.904000 Blues

Data collected during the months of August and September 2018

Abc Spotify.csv artist_name	# Spotify.csv duration_ms	# Spotify.csv energy	Abc Spotify.csv genre	Abc Spotify.csv instrumentalness	# Spotify.csv key	Abc Spotify.csv liveness	# Spotify.csv loudness	# Spotify.csv mode
Graveyard	219.107	0,961000	Blues	0.467	6	0.1480000000000000	-4,1610	
Larkin Poe	203.267	0,974000	Blues	0.585	11	0.0403	-4,4880	
The Detroit Cobras	150.107	0,838000	Blues	0.682999999999999	12	0.192	-6,8300	
Black Mountain	371.413	0,893000	Blues	0.0279	2	0.098	-5,7280	
Phish	561.827	0,959000	Blues	0.1119999999999999	6	0.6759999999999999	-7,7090	
Joe Bonamassa	328.867	0,714000	Blues	0.019	11	0.18	-7,2170	
Clutch	207.697	0,936000	Blues	7.900000000000001	220	0017	5.0040	
Jimmy Page	533.853	0,920000	Blues	0.802	Link	:		

0.0

Link:

https://www.kaggle.com/zaheenhamidani/ultimate-spotifytracks-db

IRONHACK BOOTCAMP

the <u>Echo Nest</u>, based on their digital signatures for a number of factors, including tempo, acoustic-ness, energy, danceability, strength of the beat and emotional tone.

Can we predict tracks genres through their main features?

"subjective psychoacoustic attributes"

vast number of oblique factors: stuff like *tempo* and *duration*, but also *color*, *modernity* and *femininity*. (Interview with Genn Mcdonald, the "data alchemist") https://artists.spotify.com/blog/how-spotify-discovers-the-genres-of-tomorrow

Relationships: Features vs. Genre

KEY	TYPE		
acousticness			
A confidence measure from 0.0 to 1.0 of whether the track is acoustic.	Float		
1.0 represents high confidence the track is acoustic.			
analysis_url			
A URL to access the full audio analysis of this track. An access token is	String		
required to access this data.			
danceability			
Danceability describes how suitable a track is for dancing based on a			
combination of musical elements including tempo, rhythm stability,	Float		
beat strength, and overall regularity. A value of 0.0 is least danceable			
and 1.0 is most danceable.			
duration_ms	Integer		
The duration of the track in milliseconds.	integer		
energy			
Energy is a measure from 0.0 to 1.0 and represents a perceptual			
measure of intensity and activity. Typically, energetic tracks feel fast,			
loud, and noisy. For example, death metal has high energy, while a Bach	Float		
prelude scores low on the scale. Perceptual features contributing to this			
attribute include dynamic range, perceived loudness, timbre, onset			
rate, and general entropy.			
id			

Relationships: Features vs. Genre

IRONHACK BOOTCAMP

Relationships: Features vs. Genre

⇒ Plotting of the features for which logically and by the official Spotify's decription there's an higher probablity of finding a clear behaviour

⇒ Not always very intuitive (e.g. A capella Speechiness, Ska Loudness, Dance vs. Blues or Country Tempo)

Link: https://developer.spotify.com/documentation/web-api/reference/#objects-index

Hypothesis: Pop vs genre

Popularity

Pop 67,06	Dance 57,35	RB 48,46	Coun 44,25		Soul 43,49	Jazz 39,89
Rap 59,52	Indie 53,53	Electronic 37,59		Blues 33,68		
Rock 58,77	Alternative 50,26	Reggaeton 36,48		Ska		
НірНор	Folk	Reggae		27,44		
58,52	49,67	World		Anime 24,26		,

Correlation

Class Balance or Imbalance

Modeling

Conclusions

"subjective psychoacoustic attributes"

vast number of oblique factors: stuff like *tempo* and *duration*, but also *color*, *modernity* and *femininity*. (Interview with Genn Mcdonald, the "data alchemist") https://artists.spotify.com/blog/how-spotify-discovers-the-genres-of-tomorrow

Can we predict tracks genres through their main features?

How much larger, you ask? It turns out, what's revealed on your Spotify Wrapped is supposedly **5,071** genres the streaming service categorizes its music into, according to Every Noise https://www.nylon.com/entertainment/how-many-spotify-genres-are-there-spotify-wrapped

IR ORO HACKCIBCIBOTO TAGARMP

Next steps

Models improvement

- Data Balancing \square Oversampling vs Smote
- Elimination of highly correlated features 🖒 loudness vs. energy
- Implementation of new models
- Removing unimportant feature (built-in for Random Forest and Recusive Feature Eliminiation (RFE))

Predicting the data with a KNN predictor model and finding the most suitable number of nearest neighbours

Thanks everyone!

...and don't forget to switch on the AutoSaving in VSC!

