Project analysis

Yichi Zhang

2023-04-21

```
## raw dataset
data("HolzingerSwineford1939")
data <- HolzingerSwineford1939[157:301, -c(1:6)]</pre>
rownames(data) <- 1:nrow(data)</pre>
datasummary_skim(data)
# CFA
path <- '
f1 = x1 + x2 + x3
f2 = x4 + x5 + x6
f3 = x7 + x8 + x9
model <- cfa(path, data = data, estimator = "MLM")</pre>
summary(model, fit.measures = TRUE)
## lavaan 0.6.15 ended normally after 34 iterations
##
##
     Estimator
                                                         ML
##
     Optimization method
                                                     NLMINB
##
     Number of model parameters
                                                         21
##
##
     Number of observations
                                                         145
##
## Model Test User Model:
                                                   Standard
                                                                  Scaled
##
##
     Test Statistic
                                                     51.542
                                                                  49.373
##
     Degrees of freedom
                                                         24
                                                                      24
```

	Unique (#)	Missing (%)	Mean	SD	Min	Median	Max	
x1	30	0	4.9	1.2	1.8	5.0	8.5	
x2	20	0	6.2	1.1	2.2	6.2	9.2	
x3	32	0	2.0	1.0	0.4	1.9	4.5	
x4	18	0	3.3	1.1	0.3	3.0	6.3	
x5	22	0	4.7	1.2	1.0	4.8	7.0	
x6	35	0	2.5	1.1	0.3	2.3	5.9	
x7	71	0	3.9	1.0	1.3	3.9	6.5	
x8	69	0	5.5	1.0	3.0	5.5	10.0	
x9	85	0	5.3	1.0	3.1	5.3	9.2	

## ## ## ##	P-value (Chi-square) Scaling correction factor Satorra-Bentler correction	0.001	0.002 1.044
	Model Test Baseline Model:		
## ## ##	Test statistic Degrees of freedom	505.767 36	398.008 36
##	P-value	0.000	0.000
##	Scaling correction factor		1.271
	User Model versus Baseline Model:		
##			
##	Comparative Fit Index (CFI)	0.941	0.930
##	Tucker-Lewis Index (TLI)	0.912	0.895
##	Robust Comparative Fit Index (CFI)		0.942
##	Robust Tucker-Lewis Index (TLI)		0.914
##			
##	Loglikelihood and Information Criteria:		
##	Loglikelihood user model (HO)	-1734.889	-1734.889
##	Loglikelihood unrestricted model (H1)	-1709.118	
##			
##	Akaike (AIC)	3511.778	
## ##	Bayesian (BIC) Sample-size adjusted Bayesian (SABIC)	3574.289 3507.838	
##	bampic bize adjusted bayesian (babio)	0007.000	0007.000
##	Root Mean Square Error of Approximation:		
##	21/22		
##	RMSEA 90 Percent confidence interval - lower	0.089 0.055	0.085 0.052
##	90 Percent confidence interval - upper	0.033	0.032
##	P-value H_0: RMSEA <= 0.050	0.031	0.043
##	P-value H_0: RMSEA >= 0.080	0.695	0.633
##	Dahuat DMCEA		0.007
##	Robust RMSEA 90 Percent confidence interval - lower		0.087 0.052
##	90 Percent confidence interval - upper		0.122
##	P-value H_0: Robust RMSEA <= 0.050		0.042
##	P-value H_0: Robust RMSEA >= 0.080		0.661
##	Standardized Root Mean Square Residual:		
##	btandardized hoot hean square hesiduar.		
##	SRMR	0.072	0.072
##			
##	Parameter Estimates:		
##	Standard errors	Robust.sem	
##	Information	Expected	
##	Information saturated (h1) model	Structured	
##	Latent Variables:		
##		lue P(> z)	

```
##
     f1 = ~
##
                          1.000
       x1
                                                       0.000
##
       x2
                          0.736
                                    0.162
                                             4.532
##
                                    0.179
                                                       0.000
       xЗ
                          0.925
                                             5.155
##
     f2 =~
##
                          1.000
       x4
##
                          0.990
                                    0.088
                                            11.309
                                                       0.000
       x5
                                    0.091
                                            10.639
##
       x6
                          0.963
                                                       0.000
##
     f3 =~
##
       x7
                          1.000
##
       8x
                          1.226
                                    0.162
                                             7.563
                                                       0.000
##
                          1.058
                                    0.142
                                             7.442
                                                       0.000
       x9
##
## Covariances:
##
                       Estimate Std.Err z-value P(>|z|)
##
     f1 ~~
##
                          0.408
                                    0.105
                                             3.883
                                                       0.000
       f2
##
       f3
                          0.276
                                    0.082
                                             3.357
                                                       0.001
##
     f2 ~~
##
       f3
                          0.222
                                    0.094
                                             2.367
                                                       0.018
##
## Variances:
##
                       Estimate Std.Err z-value P(>|z|)
##
                          0.715
                                    0.167
                                             4.270
                                                       0.000
      .x1
##
      .x2
                          0.899
                                             6.443
                                                       0.000
                                    0.140
##
      .x3
                          0.557
                                    0.107
                                             5.201
                                                       0.000
##
      .x4
                          0.315
                                    0.066
                                             4.781
                                                       0.000
##
                                    0.071
                                             5.867
      .x5
                          0.419
                                                       0.000
##
      .x6
                          0.406
                                   0.076
                                             5.358
                                                       0.000
##
      .x7
                          0.600
                                   0.080
                                             7.543
                                                       0.000
##
      .x8
                          0.401
                                    0.112
                                             3.593
                                                       0.000
      .x9
##
                          0.535
                                    0.084
                                             6.344
                                                       0.000
##
       f1
                          0.604
                                    0.180
                                             3.352
                                                       0.001
##
       f2
                          0.942
                                    0.162
                                             5.799
                                                       0.000
##
       f3
                          0.461
                                    0.108
                                             4.253
                                                       0.000
resid <- resid(model)</pre>
## builtin function from lavaan to extract lambda matrix
Lambda <- lavaan::inspect(model, what = "est")$lambda</pre>
## extract factor variance covariance matrix directly
Phi <- lavaan::inspect(model, what = "est")$psi
# ## focus on one factor first
mod1 \leftarrow 'f1 = x1 + x2 + x3'
## add sex as a grouping variable
data_gp <- cbind(data, "sex" = HolzingerSwineford1939[157:301,]$sex)</pre>
## fit a one factor cfa model
fit_dat1 <- cfa(mod1, data = data_gp,</pre>
                 group = "sex",
                 estimator = "MLM",
                std.lv = TRUE)
summary(fit_dat1, fit.measures = TRUE)
```

lavaan 0.6.15 ended normally after 27 iterations

##			
##	Estimator	ML	
##	Optimization method	NLMINB	
##	Number of model parameters	18	
##	N 1 6 1		
##	Number of observations per group:	70	
##	1 2	72 73	
##	2	13	
	Model Test User Model:		
##	nodel lest obel nodel.	Standard	Scaled
##	Test Statistic	0.000	0.000
##	Degrees of freedom	0	0
##	Test statistic for each group:		
##	1	0.000	0.000
##	2	0.000	0.000
##			
##	Model Test Baseline Model:		
##			
##	Test statistic	70.660	60.735
##	Degrees of freedom	6	6
##	P-value	0.000	0.000
##	Scaling correction factor		1.163
##	Hann Madal manage Danalina Madal.		
##	User Model versus Baseline Model:		
##	Comparative Fit Index (CFI)	1.000	1.000
##	Tucker-Lewis Index (TLI)	1.000	1.000
##	rucker hewib index (Ihr)	1.000	1.000
##	Robust Comparative Fit Index (CFI)		NA
##	Robust Tucker-Lewis Index (TLI)		NA
##			
##	Loglikelihood and Information Criteria:		
##			
##	Loglikelihood user model (HO)	-620.061	-620.061
##	Loglikelihood unrestricted model (H1)	-620.061	-620.061
##	4.5		
##	Akaike (AIC)	1276.122	1276.122
##	Bayesian (BIC)	1329.703	
##	Sample-size adjusted Bayesian (SABIC)	1272.745	1272.745
##	Root Mean Square Error of Approximation:		
##	moot mean square Error or approximation.		
##	RMSEA	0.000	NA
##	90 Percent confidence interval - lower	0.000	NA
##	90 Percent confidence interval - upper	0.000	NA
##	P-value H_0: RMSEA <= 0.050	NA	NA
##	P-value H_0: RMSEA >= 0.080	NA	NA
##			
##	Robust RMSEA		0.000
##	90 Percent confidence interval - lower		0.000
##	90 Percent confidence interval - upper		0.000
##	P-value H_0: Robust RMSEA <= 0.050		NA
##	P-value H_0: Robust RMSEA >= 0.080		NA

```
##
## Standardized Root Mean Square Residual:
##
##
     SRMR
                                                      0.000
                                                                   0.000
##
## Parameter Estimates:
##
                                                 Robust.sem
##
     Standard errors
##
     Information
                                                   Expected
##
     Information saturated (h1) model
                                                 Structured
##
##
## Group 1 [1]:
##
## Latent Variables:
##
                       Estimate Std.Err z-value P(>|z|)
##
     f1 =~
                          0.500
##
       x1
                                   0.233
                                             2.146
                                                      0.032
                          0.403
##
       x2
                                   0.139
                                             2.904
                                                      0.004
                          1.004
                                   0.337
                                             2.979
##
       xЗ
                                                      0.003
##
## Intercepts:
##
                      Estimate Std.Err z-value P(>|z|)
##
                          4.975
                                   0.136
                                           36.697
                                                      0.000
      .x1
      .x2
##
                          6.226
                                   0.128
                                           48.543
                                                      0.000
##
      .x3
                          2.139
                                   0.126
                                           16.976
                                                      0.000
##
       f1
                          0.000
##
## Variances:
##
                      Estimate Std.Err z-value P(>|z|)
                                   0.294
##
      .x1
                          1.073
                                             3.656
                                                      0.000
##
      .x2
                          1.022
                                   0.196
                                             5.213
                                                      0.000
##
                          0.135
                                   0.663
                                             0.204
      .x3
                                                      0.838
##
       f1
                          1.000
##
##
## Group 2 [2]:
##
## Latent Variables:
##
                      Estimate Std.Err z-value P(>|z|)
##
     f1 =~
##
       x1
                          0.795
                                   0.131
                                             6.081
                                                      0.000
##
       x2
                          0.783
                                   0.147
                                             5.307
                                                      0.000
##
                          0.695
                                   0.122
                                                      0.000
       хЗ
                                             5.718
## Intercepts:
                      Estimate Std.Err z-value P(>|z|)
##
##
                          4.886
                                   0.134
                                            36.467
                                                      0.000
      .x1
##
                          6.175
                                   0.132
                                                      0.000
      .x2
                                            46.877
##
                          1.854
                                   0.115
      .x3
                                            16.134
                                                      0.000
##
       f1
                          0.000
##
## Variances:
                      Estimate Std.Err z-value P(>|z|)
##
```

```
##
                          0.679
                                   0.194
                                             3.506
                                                      0.000
      .x1
##
      . x2
                          0.654
                                   0.178
                                             3.682
                                                      0.000
                                   0.124
##
      .x3
                          0.481
                                             3.864
                                                      0.000
                          1.000
##
       f1
## original data
res1 <- alignment(fit_dat1, group_name = c("female", "male"))</pre>
Here is the second dataset with good leverage points.
# Data set 2 -- Good leverage points
h = c(0.3881, 1.3762, 5.6153, 2.4312, 1.7442)
bartlett_predict <- lavPredict(model, method = "Bartlett")</pre>
data2_new_ob \leftarrow foreach(i = 141:145, j = 1:5) %do%{
 data[i, ] + h[[j]]*Lambda%*%bartlett_predict[i, ]
data2_new_ob <-data.frame(t(sapply(data2_new_ob,c)))</pre>
#replace the last 5 observations and the whole data set 2 is:
data2 <- rbind(data, data2 new ob)</pre>
data2 <- data2[-(141:145), ]
rownames(data2) <- 1:nrow(data2)</pre>
data2 <- data.frame(matrix(unlist(data2), ncol=length(data2), byrow=FALSE))</pre>
data2 <- cbind(data2, "sex" = HolzingerSwineford1939[157:301,]$sex)
data2 fe <- data2 %>% filter(sex == 1)
data2_ma <- data2 %>% filter(sex == 2)
mve
res_mve <- robalign(method = "mve_mah", data_g1 = data2_fe[,1:3], data_g2 = data2_ma[,1:3],
                    mod = mod2, group_name = c("female", "male"))
##
## Attaching package: 'MASS'
## The following object is masked _by_ '.GlobalEnv':
##
##
       ltsreg
## The following object is masked from 'package:dplyr':
##
##
       select
mcd
res_mcd <- robalign(method = "mcd_mah", data_g1 = data2_fe[,1:3], data_g2 = data2_ma[,1:3],
                    mod = mod2, group_name = c("female", "male"))
# mean rob mcd <- mcd mahalanobis(data2[,1:3])$weighted.mean
# cov_rob_mcd <- mcd_mahalanobis(data2[,1:3])$weighted.covariance</pre>
# fit_dat3 <- cfa(mod2,
#
                   sample.cov = cov_rob_mcd,
#
                  sample.mean = mean rob mcd,
#
                   sample.nobs = 145,
                   group = "sex",
```

```
# std.lv = TRUE)
# coef(fit\_dat3)
# res3 <- alignment(fit\_dat3)
```

projection mve

```
res_pro_mve <- robalign(method = "pro_mve", data_g1 = data2_fe[,1:3], data_g2 = data2_ma[,1:3],
                    mod = mod2, group_name = c("female", "male"))
\# mean_rob_pmve <- projection_mve(x = data2[,1:3])$weighted.mean
# cov_rob_pmve <- projection_mve(data2[,1:3])$weighted.covariance
# fit_dat4 <- cfa(mod2,
                  data = data2.
#
                  sample.cov = cov_rob_pmve,
#
                  sample.mean = mean_rob_pmve,
#
                  sample.nobs = 145,
                  group = "sex",
#
#
                  std.lv = TRUE)
# # summary(fit_dat2, fit.measures = TRUE)
# res4 <- alignment(fit_dat4)</pre>
```

projection mcd

```
res_pro_mcd <- robalign(method = "pro_mcd", data_g1 = data2_fe[,1:3], data_g2 = data2_ma[,1:3],
                     mod = mod2, group_name = c("female", "male"))
# mean\_rob\_pmcd \leftarrow projection\_mcd(x = data2[,1:9])$weighted.mean
# cov_rob_pmcd <- projection_mcd(data2[,1:9])$weighted.covariance</pre>
# fit dat5 <- cfa(mod2,
                   data = data2,
#
                   sample.cov = cov_rob_pmcd,
#
                   sample.mean = mean_rob_pmcd,
#
                   sample.nobs = 145,
#
                   group = "sex",
                   std.lv = TRUE)
# # summary(fit_dat2, fit.measures = TRUE)
# res5 <- alignment(fit_dat5)</pre>
```

outpro mve

```
res_outmve <- robalign(method = "outpro_mve", data_g1 = data2_fe[,1:3], data_g2 = data2_ma[,1:3], mod =
# mean_rob_omve <- outpro_mcd(data2[,1:9])$weighted.mean</pre>
# cov_rob_omve <- outpro_mcd(data2[,1:9])$weighted.covariance
# fit_dat6 <- cfa(mod2,
                   data = data2,
#
                   sample.cov = cov_rob_omve,
#
                  sample.mean = mean_rob_omve,
#
                   sample.nobs = 145,
#
                   group = "sex",
                   std.lv = TRUE)
# # summary(fit_dat2, fit.measures = TRUE)
# res6 <- alignment(fit_dat6)</pre>
```

outpro mcd

```
res_outmcd <- robalign(method = "outpro_mcd", data_g1 = data2_fe[,1:3], data_g2 = data2_ma[,1:3], mod =
# mean_rob_omcd <- outpro_mve(data2[,1:9])$weighted.mean</pre>
# cov_rob_omcd <- outpro_mve(data2[,1:9])$weighted.covariance</pre>
# fit_dat7 <- cfa(mod2,
                   data = data2,
#
                   sample.cov = cov_rob_omcd,
#
                   sample.mean = mean_rob_omcd,
#
                   sample.nobs = 145,
                   group = "sex",
#
                   std.lv = TRUE)
# # summary(fit_dat2, fit.measures = TRUE)
# res7 <- alignment(fit_dat7)</pre>
```

comparison

```
## factor means and variances
list(res1$pars,
   res_mve$align_res$pars, res_mcd$align_res$pars,
   res_pro_mve$align_res$pars, res_pro_mcd$align_res$pars,
   res_outmve$align_res$pars, res_outmcd$align_res$pars)
## [[1]]
                         psi0
              alpha0
## female 0.000000 1.000000
          -0.1659235 1.631462
## male
##
## [[2]]
##
              alpha0
                         psi0
## female 0.000000 1.000000
         -0.1016879 1.536574
## male
##
## [[3]]
##
              alpha0
                         psi0
## female 0.0000000 1.000000
## male
         -0.1145397 1.211929
## [[4]]
                         psi0
              alpha0
## female 0.000000 1.000000
## male
         -0.8115563 1.153057
##
## [[5]]
              alpha0
## female 0.000000 1.000000
         -0.7601359 1.008565
## male
##
## [[6]]
##
              alpha0
                         psi0
## female 0.0000000 1.000000
         -0.2026377 1.739594
## male
##
## [[7]]
```

```
##
              alpha0
                         psi0
## female 0.0000000 1.000000
## male
        -0.2026376 1.667647
# ## factor loadings
list(res1$lambda.aligned,
     res_mve$align_res$lambda.aligned, res_mcd$align_res$lambda.aligned,
     res_pro_mve$align_res$lambda.aligned, res_pro_mcd$align_res$lambda.aligned,
     res_outmve$align_res$lambda.aligned, res_outmcd$align_res$lambda.aligned)
## [[1]]
##
                            x2
                 x1
## female 0.4998331 0.4028319 1.0039360
          0.4872053 0.4797327 0.4262364
##
## [[2]]
                                      VЗ
##
                            V2
                 ۷1
## female 0.4728559 0.3212712 0.7791798
          0.4663781 0.4398348 0.4182736
##
## [[3]]
##
                 V1
                            V2
                                      VЗ
## female 0.5575191 0.3465450 0.8122413
         0.5536329 0.5171441 0.4851572
##
  [[4]]
##
##
                 V1
                            V2
                                      VЗ
## female 0.3235331 0.2615937 0.6683662
          0.3216403 0.2745031 0.2829121
##
## [[5]]
##
                                      VЗ
                 V1
                            V2
## female 0.3480609 0.2776676 0.7136026
##
  male
          0.3420345 0.2984976 0.3105619
##
## [[6]]
                 V1
                            V2
                                      VЗ
## female 0.5226324 0.3916314 1.0355731
          0.5115216 0.4764864 0.4335098
## male
##
## [[7]]
##
                 V1
                            V2
                                      VЗ
## female 0.5226324 0.3916314 1.0355731
## male
         0.5115216 0.4764864 0.4335098
## factor intercepts
list(res1$nu.aligned,
     res_mve$align_res$nu.aligned, res_mcd$align_res$nu.aligned,
     res_pro_mve$align_res$nu.aligned, res_pro_mcd$align_res$nu.aligned,
     res_outmve$align_res$nu.aligned, res_outmcd$align_res$nu.aligned)
## [[1]]
##
                         x2
                                   xЗ
                x1
## female 4.974537 6.225694 2.138889
```

4.966684 6.254256 1.925175

```
##
## [[2]]
##
                V1
                        V2
## female 4.859567 6.034272 2.077100
## male 4.853830 6.131473 1.837711
##
## [[3]]
##
                ۷1
                         V2
                                  ٧3
## female 4.860159 6.027849 2.067091
## male 4.854595 6.123279 1.844412
## [[4]]
                V1
                                  VЗ
##
                         V2
## female 4.921436 6.170343 2.106988
         4.947723 6.165212 1.983767
## male
##
## [[5]]
##
                ۷1
                                  VЗ
## female 4.928407 6.179101 2.109541
        4.951294 6.176175 1.992370
##
## [[6]]
##
                         V2
                                  V3
                ۷1
## female 4.953455 6.210175 2.119392
## male 4.946127 6.239284 1.902188
## [[7]]
                ۷1
                         ٧2
## female 4.953455 6.210175 2.119392
        4.946127 6.239284 1.902188
## male
covariance matrix
cov(data_gp[1:3])
             x1
                       x2
                                 xЗ
## x1 1.3278044 0.4171875 0.5374561
## x2 0.4171875 1.2348958 0.4817708
## x3 0.5374561 0.4817708 1.0808190
res_outmve$rob_est_g1$weighted.covariance
##
             V1
                       ٧2
                                 VЗ
## V1 1.2335465 0.2075621 0.5488470
## V2 0.2075621 1.0397231 0.4112751
## V3 0.5488470 0.4112751 1.1369259
res_outmve$rob_est_g2$weighted.covariance
##
                       ٧2
             V1
## V1 1.5115165 0.7478262 0.6803761
## V2 0.7478262 1.3805430 0.6337757
## V3 0.6803761 0.6337757 1.0664843
```