Subject: Physics Time: 3:00 hrs.

GRADE XI (SCIENCE) SET A

F.M.:75 P.M:30

Candidates are required to give their answer in their own words as far as practicable. The figures in the margin indicate full marks.

GROUP 'A'

Multiple choice questions

[11×1=11]

1. The acceleration \(\forall \) of a particle is given in terms of time t by the following relation,

 $v = \frac{b}{t+c}$, the dimensions of b and c are [a] b = T,c = LT [b] b=LT, c=L

[c] b = L,c=T. [d] b=LT, $c=T^2$

2. If the error in the measurement of the radius of a sphere is 2 %, then the maximum possible error in the measurement of its volume is [a] 6% [b] 3% [c] $\frac{1}{2}$ % [d] $\frac{4}{3}$ π %

3. If \vec{A} , \vec{B} , \vec{C} vectors have magnitude 6, 8 & 10 respectively, $\vec{A} + \vec{B} = \vec{C}$, angle between A & B is :[a] 0° [b] 90° [c] 45° [d] 180°

4. If the magnitude of the difference between two unit vectors is 3, then the magnitude of the sum of the two vectors is: $\begin{bmatrix} a \end{bmatrix} = \begin{bmatrix} b \end{bmatrix} = \begin{bmatrix}$

5. The resultant of two forces 8N and 6N is -[a] 1N [b] 10N [c] 15N [d] 20N

6. A difference of temperature of 25 °C is equivalents to difference of Kelvin scale:
(a) 45 K (b) 248 K (c) 298 K (d) 25 K

7. A hole is there in a metal plate. Upon heating the plate diameter of hole would: (a) increases (b) decrease (c) remains the same (d) may increase or decrease

8. If a bimetallic strip is heated it will: (a) towards the metal with lower thermal expansion coefficient (b) bend towards the metal with higher thermal expansion coefficient (c) twist itself into a helix (d) have no bending

9. What is the dimensional formula of permittivity of free space? (a) [M-1L-3T4A2] (b) [M-1L-3T3A-2] (c) [M-1L-2T3A2] (d) [M-1L-2T-3A2]

10.	Two charged particles are at a distance R exert F force on each other. If the medit of dielectric constant 64 is placed between them, then the distance at which the sa	im me
	force is: (a) R (b) 8R (c) $\frac{R}{8}$ (d) $\frac{R}{64}$	
11.	The number of electrons in one coulomb of charge will be: (a) 1.667×1 (b) 6.25×10^{18} (c) 6.023×10^{23} (d) 6.25×10^{19}	019
	GROUP'B'	
Sho	off anomaco areas .	101
	(a) Convert 50 joule into erg by using the dimensional method.	[2]
	(b) In Vander Waals equation, $(P + \frac{a}{V^2})$ $(V - b) = RT$ where P be the pressure, V be a volume. The the transfer of the pressure of th	he
	volume, T be the temperature and R be the universal gas constant. What are t dimensions of the constants 'a' and 'b'?	the [3]
13.	(a) Determine the area of the parallelogram whose adjacent sides are $2\hat{i} + \hat{j} + 3\hat{k}$ a $\hat{i} - \hat{j}$.	nd [2]
	(b) A spelunker is surveying a cave. She follows a passage 180 m straight west, the 210 m in a direction 45° east of south, and then 280 m at 30° east of north. After a fourth unmeasured displacement, she finds herself back where she started. Use scale drawing to determine the magnitude and direction of the fourth displacement.	en
14.	(a) What do you mean by linear expansivity? Does it depend on the original lengt	
	(b) A glass flask of volume 600 cm ³ is just filled with mercury at 10 °C. How mucmercury overflows when the temperature of the system is raised to 90°C? (Line expansivity for glass = 4 × 10 ⁻⁶ /K and cubical expansivity for mercure = 18 × 10 ⁻⁵ /K)	ch ar iry
15.	(a) Force of attraction between two-point charges at a distance x is F. What distan	[3] ce
	should they be kept in the	7 ?
		[2]
	(b) Define point of action. State and explain coulomb's law in electrostatics.	[3]

[3]

- 16. (a) Two identical particles are charged and held at a distance of 1m from each other. They are found to be attracting each other with a force of 0.027 N. Now, they are connected by a conducting wire so that charge flows between them. When the charge flow stops, they are found to be repelling each other with a force of 0.009 N. Find the initial charge on each particle. (b) Why is repulsion sure test for testing a charged body? 17. (a) What are differences between real and virtual image? 2 (b) Derive the mirror formula for a convex mirror. [3] 18. (a) Derive the relation $f = \frac{R}{2}$ for concave mirror with appropriate sign convention. [2] (b) A spherical concave shaving mirror has a radius of curvature of 32 cm. What is the magnification of a person's face when it is 12 cm to the left of the vertex of the mirror? [3] 19. (a) What do you mean by tangential acceleration? Derive an expression for maximum velocity with which vehicle can take safe turn on a leveled road. [1+2](b) At what angle should a circular road be banked so that a car running at 72 km/hr be safe to go around in the circular turn of 200 m radius? [2]
 - - (a) What do you mean by young modulus of elasticity? Does it depend on area of the wire? [2] (b) A 5 m long aluminum wire $(Y = 7 \times 10^{10} \text{ Nm}^{-2})$ of diameter 3 mm supports a 40 kg mass.
 - In order to have the same elongation in the copper wire $(Y = 12 \times 10^{10} \text{ Nm}^{-2})$ of the same length under the same weight. What should be the diameter of copper wire? [3]

GROUP 'C'

Long answers questions

 $[3 \times 8 = 24]$

- 20. (a) State parallelogram law of vector addition. Obtain an expression for the resultant of two vectors \vec{A} and \vec{B} inclined at an angle θ . [1+3]
 - (b) What is a condition to get the minimum value of the resultant?
 - (c) Three horizontal ropes pull on a large stone in the ground, producing the vector forces A (100 N), B (80 N) and C (40 N) as shown in fig. Find the magnitude and direction of the fourth force on the stone that will make the vector sum of the four forces zero.

[3]

- 21. (a) Derive an expression for the elastic energy stored in a uniform stretc.

 (b) Two wires have equal lengths and are made up of the same material. If the of one wire is twice another wire, which one has a greater extension for a load?
 - (c) The rubber catapult has a cross-sectional area 1 mm² and a total unstretched length of 10 cm. It is stretched to 12 cm and then released to project a missile of mass 5 gm. Calculate the velocity of the projection. (Young's modulus of elasticity of rubber Y = 5 × 10⁸ N/m²)

OR

[2]

[3]

- (a) What do you mean by tangential acceleration and radial acceleration?
- (b) Show that the period of oscillation of conical pendulum is given by

$$T = 2\pi \sqrt{\frac{l\cos\theta}{g}}$$
, where symbols have their usual meanings.

- (c) An object of mass 8 kg is whirled around a vertical circle of radius 2 m with a constant speed of 6 m/s. Calculate the maximum tension in the string. [3]
- 22. (b) A circular piece is cut from a flat metal sheet. The sheet is then placed in a furnace. Will the size of the hole become larger or smaller? Explain. [2]
 - (b) How can you determine the linear expansivity of a solid in the laboratory? Can cubical expansivity be derived from this value?

 [3]
 - (c) A clock which has a brass pendulum beats seconds correctly when the temperature of the room is 45°C. How many seconds will it lose or gain per day when the temperature of the room falls to 15°C? [α for brass = 1.9 × 10-5/K] [3]

Best Of Luck