

Lab. "Benito Mahedero" of Electrical Applications of Superconductors

Industrial Engineering School of Badajoz (Spain)

University of Extremadura

A glance at the possibilities for improving efficiency in grid energy storage by superconducting technology

Alfredo Álvarez, Pilar Suárez, and José. M. Ceballos

International Workshop on Energy Storage in the Grid:
Low, Medium and Large Scale Requirements.

Barcelona, 8th - 10th January 2014

Where we are

Spain
Extremadura
Badajoz

(1)

AAG

Outline

- Overview of energy storage technologies
 - Cycle of work
 - Round trip eficiency
 - Power / Energy applications
- SMES
 - Physic
 - Current application
 - 'Why-not' applications

$$RTE = \frac{\Delta E_{out}}{\Delta E_{in}}$$

$$\Delta E_{out} = P \cdot \Delta t$$

- Power applications
 - High power (rated grid power or more)
 - Short periods of time (seconds to few minutes)
 - A low stored energy is enough
- Energy applications
 - High power (near rated grid power)
 - Longer periods of discharge
 - A high stored energy in needed

Storage Technologies	Main Advantages (relative)	Disadvantages (Relative)	Power Application	Energy Application
Pumped Storage	High Capacity, Low Cost	Special Site Requirement		•
CAES	High Capacity, Low Cost	Special Site Requirement, Need Gas Fuel		•
Flow Batteries: PSB VRB ZnBr	High Capacity, Independent Power and Energy Ratings	Low Energy Density	•	•
Metal-Air	Very High Energy Density	Electric Charging is Difficult		•
NaS	High Power & Energy Densities, High Efficiency	Production Cost, Safety Concerns (addressed in design)	•	•

Source: ESA (http://www.electricitystorage.org)

Storage Technologies	Main Advantages (relative)	Disadvantages (Relative)	Power Application	Energy Application
Li-ion	High Power & Energy Densities, High Efficiency	High Production Cost, Requires Special Charging Circuit	•	0
Ni-Cd	High Power & Energy Densities, Efficiency		•	•
Other Advanced Batteries	High Power & Energy Densities, High Efficiency	High Production Cost	•	0
Lead-Acid	Low Capital Cost	Limited Cycle Life when Deeply Discharged	•	0
Flywheels	High Power	Low Energy density	•	0
E.C. Capacitors	Long Cycle Life, High Efficiency	Low Energy Density	•	•
SMES, DSMES	High Power	Low Energy Density, High Production Cost	•	

Source: ESA (http://www.electricitystorage.org)

SMES

$$E_{stored} = \frac{1}{2}CV^2$$

$$E_{stored} = \frac{1}{2}LI^2$$

SMES

- High power
- High velocity
- Reasonable eficiency
- Low energy density
- High production cost

Superconducting Magnetic Energy Storage State-of-the-Art of HTS SMES Development

Chubu, Japan Bridging voltage dips

Figure: Chubu Electric 0.28 kWh

1 MJ, 1 MW Bi 2212 tape 500 A, 5 K conduction cooled Voltage: 2.5 kV KERI, Korea Power quality

2.5 MJ YBCO tape, 22 km 550 A 20 K conduction cooled B_{maxII} 6.24 T Test in 2011 CNRS, France Military application

Bi 2212 tape

315 A

20 K conduction cooled

Diameter: 300/814 mm

Height: 222 mm

M. Noe

HTS Power Applications, CERN Accelerator School , May 1st 2013, Erice, Italy

78

ISTEC-TOSHIBA 100 kWh 20 kW

3600 kWh / year 10 kWh / day

x 1, 10 daysx 10, 1 dayx 30, 8 hours

Conclussions

- SMES is currently a real solution in *Power* Applications as UPS or quality solutions.
- In Energy Applications, SMES are usually rejected because of
 - High production cost (due to the superconducting tape cost and structural materials, mainly)
 - Low energy density (what is not a problem in others storage systems)
- Depending on the rated power and energy, we think that SMES can be a solution for all applications, both alone or in a hybrid storage system.

Thank you for attention

Alfredo Álvarez aalvarez@unex.es

