Introducerende Statistik og Dataanalyse med R

Homogenitetstest

Jens Ledet Jensen

I DAG

Sammenligne to (eller flere) sæt multinomialfordelte data

Dagens spørgsmål: er der lige mange der dropper ud af studiet på matematik som på matematik-økonomi og som på datavidenskab?

Søndagsavisen

Fedmetallene

Periode	Antal på session	Antal med BMI $>$ 30	procent
1. halvdel 2003	11527	796	6.9%
2. halvdel 2003	12259	825	6.7%

Har søndagsavisen ret ?

Umiddelbare formulering: er der forskel mellem de to halvår?

Formulering

Hvad mener vi med spørgsmålet: er der forskel mellem de to halvår ?

Vi har procentvis observeret færre med højt BMI i andet halvår, men er dette blot en tilfældighed ?

eller: er dette udtryk for forskel i bagvedliggende populationer?

Hvad betyder egentligt "bagvedliggende population"?

Som et tankeeksperiment kan vi godt forestille os de 12000 unge skiftet ud med 12000 andre unge:

forskelle i genetik og opvækst vil give et andet antal med BMI>30

Vender nu spørgsmålet om:

er data i overensstemmelse med en hypotese om ingen forskel ? hypotese: der er samme andel med højt BMI i de to halvår

Statistisk model

Data:

	Kasse 1	Kasse 2	Total
Gruppe 1	a_1	$n_1 - a_1$	n_1
Gruppe 2	a_2	$n_{2} - a_{2}$	n_2
Sum	a∙	n — a•	n

Statistisk Model (model M_0):

$$A_1 \sim \mathsf{binomial}(n_1, p_1), \qquad A_2 \sim \mathsf{binomial}(n_2, p_2)$$

Hypotese: $p_1 = p_2$

Svarer til model
$$M_1$$
: $A_1 \sim \text{binomial}(n_1, p), \ A_2 \sim \text{binomial}(n_2, p)$

Parameterskøn under
$$M_0$$
: $\hat{p}_1=rac{A_1}{n_1}$, $\hat{p}_2=rac{A_2}{n_2}$

Parameterskøn under
$$M_1$$
: $\hat{p} = \frac{A_{\bullet}}{n}$ $A_{\bullet} = A_1 + A_2$

Likelihoodratio test

Likelihoodfunktion:
$$L(p_1, p_2) = \binom{n_1}{A_1} p_1^{A_1} (1 - p_1)^{n_1 - A_1} \binom{n_2}{A_2} p_2^{A_2} (1 - p_2)^{n_2 - A_2}$$

$$Q = \frac{\max_{p} L(p,p)}{\max_{p_{1},p_{2}} L(p_{1},p_{2})} = \frac{\hat{p}^{A_{1}}(1-\hat{p})^{n_{1}-A_{1}}\hat{p}^{A_{2}}(1-\hat{p})^{n_{2}-A_{2}}}{(\frac{A_{1}}{n_{1}})^{A_{1}}(1-\frac{A_{1}}{n_{1}})^{n_{1}-A_{1}}(\frac{A_{2}}{n_{2}})^{A_{2}}(1-\frac{A_{2}}{n_{2}})^{n_{2}-A_{2}}}$$

$$= \frac{1}{(\frac{A_{1}}{n_{1}\hat{p}})^{A_{1}}(\frac{n_{1}-A_{1}}{n_{1}(1-\hat{p})})^{n_{1}-A_{1}}(\frac{A_{2}}{n_{2}\hat{p}})^{A_{2}}(\frac{1-A_{2}}{n_{2}(1-\hat{p})})^{n_{2}-A_{2}}}$$

Teststørrelse: $G = -2 \log Q$:

$$G = 2\sum_{\text{4 celler}} \text{observeret} \cdot log\left(\frac{\text{observeret}}{\text{forventet}} \right)$$

Forventede:
$$e_{11}=n_1\hat{p},\;e_{12}=n_1(1-\hat{p}),\;e_{21}=n_2\hat{p},\;e_{22}=n_2(1-\hat{p})$$

Kritiske værdier: Q lille eller $G = -2 \log(Q)$ stor

Approksimation: $G \approx \chi^2(1)$

Sessionstal

Observeret

Forventet

	BMI < 30	BMI > 30	Total
2003-1	11527	796	12323
2003-2	12259	825	13084
Sum	23786	1621	25407

$$e_{11} = 12323 \cdot \frac{23786}{25407} = 11536.78$$

$$G = 2\left[11527 \cdot \log\left(\frac{11527}{11536.78}\right) + 796 \cdot \log\left(\frac{796}{786.2236}\right) + 12259 \cdot \log\left(\frac{12259}{12249.22}\right) + 825 \cdot \log\left(\frac{825}{834.7764}\right)\right] = 0.2520978$$

Prøv webbogen

```
Gå til den sidste "Beregning i R" i afsnit 1.6 
Erstat Obs=rbind(c(6,28,38),c(13,56,10)) med 
Obs=rbind(c(11527,796),c(12259,825))
```

Sceneskift

Homogenitetstest er vist for 2×2 tabel

Næste: Homogenitetstest for generel $r \times k$ tabel

General formularing

 A_{ij} : Antal i kasse j i den i'te række

	kasse					
	1	2		k	sum	
række 1	a ₁₁	a ₁₂		a_{1k}	n_1	
række 2	a ₂₁	a ₂₂	• • •	a_{2k}	n_2	
:						
række r	a _{r1}	a_{r2}		a_{rk}	n _r	
sum	a _{•1}	a _{•2}		a₀k	n	

Række
$$i$$
: $a_{i*} = (a_{i1}, a_{i2}, \dots, a_{ik})$

Søjlesum:
$$a_{\bullet j} = a_{1j} + a_{2j} + \cdots + a_{rj}$$

Homogenitetshypotesen

Rækker er uafhængige, sandsynligheder er vilkårlige i hver række

Homogenitetshypotesen: alle grupperne (eller rækkerne) har det samme sæt sandsynligheder $(\pi_1, \pi_2, \dots, \pi_k)$ (model M_1):

Eller:
$$\pi_{1*} = \pi_{2*} = \cdots = \pi_{r*}$$

Homogenitetshypotesen

		kasse				
		1	2		k	sum
	række 1	π_{11}	π_{12}		π_{1k}	1
Fulde model (M_0) :	række 1 række 2	π_{21}	π_{22}	• • •	π_{2k}	1
	:					
	række r	π_{r1}	π_{r2}		$\pi_{\it rk}$	1

kasse k sum række 1 π_1 π_2 π_k Hypotese (model M_1): række 2 π_1 π_2 π_k række r π_1 π_2 π_k

Estimation

Vi kender estimaterne i en multinomialmodel med frie parametre: under M_0 : $\hat{\pi}_{ii} = \frac{a_{ij}}{n}$

Under model M_1 er likelihoodfunktionen

$$L_{M_1}(\pi_1, \dots, \pi_k) = \prod_i \binom{n_i}{a_{i*}} \pi_1^{a_{i1}} \cdots \pi_k^{a_{ik}}$$
$$= \frac{\prod_i \binom{n_i}{a_{i*}}}{\binom{n}{a_{\bullet 1} \dots, a_{\bullet k}}} \binom{n}{a_{\bullet 1} \dots, a_{\bullet k}} \pi_1^{a_{\bullet 1}} \cdots \pi_k^{a_{\bullet k}}$$

Estimation af $(\pi_1 \dots \pi_k)$ under model M_1 svarer til at bruge

$$(A_{\bullet 1} \ldots, A_{\bullet k}) \sim \mathsf{multinom}(n, (\pi_1 \ldots \pi_k))$$

Forventede

Under hypotesen estimeres den fælles π ved de observerede frekvenser for de k kasser

$$\hat{\pi}_j = \frac{\sum_i x_{ij}}{n} = \frac{x_{\bullet j}}{n}, \ j = 1, \dots, k, \qquad n = n1 + \dots + n_k$$

De forventede i kasse j for den i'te gruppe: $e_{ij} = n_i \hat{\pi}_j = \frac{n_i x_{\bullet j}}{n}$

antal i gruppe i gange skøn over sandsynlighed for kasse j

rækkesum gange søjlesum divideret med samlede antal

Likelihood ratio

Likelihoodratio teststørrelse Q:

$$\begin{split} Q &= \frac{\max_{M_1} L}{\max_{M_0} L} = \frac{\prod_i \binom{n_i}{a_{i*}} \hat{\pi}_1^{a_i^{i}} \cdots \hat{\pi}_k^{a_{ij}^{i}}}{\prod_i \binom{n_i}{a_{i*}^{i}} \hat{\pi}_{i1}^{a_i^{i}} \cdots \hat{\pi}_{ik}^{a_{ik}^{i}}} \\ &= \prod_i \prod_j \frac{\hat{\pi}_j^{a_{ij}^{i}}}{\hat{\pi}_{ij}^{a_{ij}^{i}}} = \prod_i \prod_j \frac{1}{\binom{a_{ij}}{(n_i a_{si})/n_{\bullet}})^{a_{ij}^{i}}} \end{split}$$

Små værdier af Q er det samme som store værdier af $G=-2\log(Q)$

$$G = 2\sum_{i=1}^{r} \sum_{j=1}^{k} a_{ij} \log\left(\frac{a_{ij}}{e_{ij}}\right), \quad e_{ij} = \frac{n_i a_{\bullet j}}{n}$$

P-værdi

Teststørrelse:
$$G = 2 \cdot \sum_{i=1}^{r} \sum_{j=1}^{k} a_{ij} \log(\frac{a_{ij}}{e_{ij}})$$

Approksimativ p-værdi: Hvis $e_{ij} \geq 5$, for alle i, j:

$$p$$
-værdi $pprox 1-\chi^2_{\mathsf{cdf}}(\mathcal{G},(r-1)(k-1))=1-\mathsf{pchisq}(\mathcal{G},(r-1)(k-1))$

$$df = (r-1)(k-1)$$
: antal rækker minus 1 gange antal søjler minus 1

Nakkesmerter ved brug af smartphone

Observeret antal:

	Nakkesmerter				
Tidsforbrug	Nej	Ja	Total		
Lav	16	4	20		
Medium	15	19	24		
Høj	7	30	37		
sum	38	53	91		

$$Pers_{ij}$$
 $i = L, M, H$ (lav, medium, høj), $j = Nej, Ja$

$$\begin{split} (\mathsf{Pers}_{\mathsf{L},\mathsf{Nej}},\mathsf{Pers}_{\mathsf{L},\mathsf{Ja}}) &\sim \mathsf{multinom}(20,(\pi_{\mathsf{L},\mathsf{Nej}},\pi_{\mathsf{L},\mathsf{Ja}})) \\ &\qquad \qquad \pi_{\mathsf{L},j} \geq 0, \ \pi_{\mathsf{L},\mathsf{Nej}} + \pi_{\mathsf{L},\mathsf{Ja}} = 1 \\ (\mathsf{Pers}_{\mathsf{M},\mathsf{Nej}},\mathsf{Pers}_{\mathsf{M},\mathsf{Ja}}) &\sim \mathsf{multinom}(24,(\pi_{\mathsf{M},\mathsf{Nej}},\pi_{\mathsf{M},\mathsf{Ja}})) \\ &\qquad \qquad \pi_{\mathsf{M},j} \geq 0, \ \pi_{\mathsf{M},\mathsf{Nej}} + \pi_{\mathsf{M},\mathsf{Ja}} = 1 \\ (\mathsf{Pers}_{\mathsf{H},\mathsf{Nej}},\mathsf{Pers}_{\mathsf{H},\mathsf{Ja}}) &\sim \mathsf{multinom}(37,(\pi_{\mathsf{H},\mathsf{Nej}},\pi_{\mathsf{H},\mathsf{Ja}})) \\ &\qquad \qquad \pi_{\mathsf{H},j} \geq 0, \ \pi_{\mathsf{H},\mathsf{Nej}} + \pi_{\mathsf{H},\mathsf{Ja}} = 1 \end{split}$$

Hypotese:
$$(\pi_{\mathsf{L},\mathsf{Nej}},\pi_{\mathsf{L},\mathsf{Ja}})) = (\pi_{\mathsf{M},\mathsf{Nej}},\pi_{\mathsf{M},\mathsf{Ja}})) = (\pi_{\mathsf{H},\mathsf{Nej}},\pi_{\mathsf{H},\mathsf{Ja}}))$$

Beregning i R

```
obs=rbind(c(16,4),c(15,19),c(7,30))
ex=outer(rowSums(obs),colSums(obs))/sum(obs)
obs1=ifelse(obs==0,1,obs)
G=2*sum(obs*log(obs/ex))
pval=1-pchisq(G,(dim(obs)[1]-1)*(dim(obs)[2]-1))
list(Forventede=ex,G=G,Pvaerdi=pval)
rowSums: rækkesummer; colSums: søjlesummer
outer(x,y): 3 \times 2 matriks indgange x_i y_i
```

R-leg

	Nakke	smerter	
Tidsforbrug	Nej	Ja	Total
Lav	16	4	20
Medium	15	19	24
Høj	7	30	37
sum	38	53	91

- 1. Prøv: chisq.test(obs) (obs er matriks med data)
- 2. Lav 95%-konfidensinterval for sandsynlighed for "Ja" for hver række

Benyt: prop.test(x,n)\$conf.int

3. Lav eventuelt figur med de tre konfidensintervaller (errorbar)

Simuleringseksperiment

Simulere fordeling af G-teststørrelse for 3×2 tabel

```
dataObs=rbind(c(16,4),c(15,19),c(7,30))
p0=(16+15+7)/(20+34+37)
simFct=function(p){
x=rbinom(3,c(20,34,37),p)
return(cbind(x,c(20,34,37)-x))
}
testFct=function(obs){
ex=outer(rowSums(obs),colSums(obs))/sum(obs)
obs1=ifelse(obs==0,1,obs)
gTest=2*sum(obs*log(obs1/ex))
return(gTest)
Gobs=testFct(dataObs)
```

Simuleringseksperiment

```
nSim=10^4-1
gTest=rep(0,nSim)
for (i in 1:nSim){
dataSim=simFct(p0)
gTest[i]=testFct(dataSim)
c(100*sum(gTest)=qchisq(0.95,2))/nSim,
100*(1+sum(gTest>=Gobs))/(1+nSim))
hist(gTest,probability=TRUE,ylim=c(0,0.04))
curve(dchisq(x,df=2),from=0,to=20,add=TRUE)
abline (v=qchisq(0.95,2),col=2)
hist(log(gTest),probability=TRUE)
curve(dchisq(exp(x), df=2)*exp(x), from=-6, to=3, add=TRUE)
abline (v=log(qchisq(0.95,2)), col=2)
```

Baggrund: Antal frihedsgrader i χ^2 -fordeling generelt

Data \sim model M_1

Hypotese: Data \sim model M_2

Test:
$$Q=rac{\max_{M_2}L}{\max_{M_1}L}, \qquad G=-2\log(Q)$$
 p værdi $pprox 1-\chi^2_{cds}(G,df)$

df= antal frie parametre i M_1 - antal frie parametre i M_2

Goodness of fit:
$$df = (k-1) - d$$

Homogenitetstest:
$$df = r(k-1) - (k-1) = (r-1)(k-1)$$

Baggrund

Hvorfor er $G \approx \chi^2(df)$?

 $Svar: \ Taylorudvikling + centrale \ grænseværdisætning$

Sceneskift

Vi har indført test for homogenitet af r multinomialfordelinger

Næste: Simpsons paradox

Berkeley: kønsdiskriminering

Data:

Køn	Optaget	lkke optaget	n
mænd	3714 (44%)	4728	8442
kvinder	1512 (35%)	2809	4321
sum	5226	7537	12763

Model:
$$(3714, 4728) \sim \text{multinomial}(8442, (\pi_{11}, \pi_{12}))$$

 $(1512, 2809) \sim \text{multinomial}(4321, (\pi_{21}, \pi_{22}))$

Hypotese: samme procentdel optages af kvinder og mænd: $\pi_{11}=\pi_{21}$ eller $\pi_{\text{mænd.optaget}}=\pi_{\text{kvinder,optaget}}$

Kørsel i R:

```
Obs=rbind(c(3714,4728),c(1512,2809)) ...
```

Berkeley: kønsdiskriminering

```
$Forventede

[,1] [,2]

[1,] 3456.702 4985.298

[2,] 1769.298 2551.702

$G

[1] 96.69686

$Pvaerdi

[1] 0
```

Bemærk: Alle forventede er ≥ 5

$$p$$
værdi = $1 - \chi_{cdf}^2(96.70, 1) = 8.07 \cdot 10^{-23}$

Data peger tydeligt på en forskel i optagelsesprocent for mænd og kvinder, og dog:

Berkeley: ingen kønsdiskriminering

	mænd		kv		
Afdeling	antal	optaget	antal	optaget	pval
А	825	62%	108	82%	0.00
В	560	63%	25	68%	0.61
C	325	37%	593	34%	0.39
D	417	33%	375	35%	0.59
E	191	28%	393	24%	0.32
F	272	6%	341	7%	0.56

Simpsons paradox!

Årsag: mænd og kvinder vælger forskellige studiefag og der er forskel i adgangskrav mellem studier

Simulere Simpsons paradoks

```
n11=50; n21=10
n12=10; n22=50
p1=0.8; p2=0.2
x1=rbinom(1,n11,p1)+rbinom(1,n12,p2)
x2=rbinom(1,n21,p1)+rbinom(1,n22,p2)

obs=rbind(c(x1,(n11+n12)-x1),c(x2,(n21+n22)-x2))
ex=outer(rowSums(obs),colSums(obs))/sum(obs)
gTest=2*sum(obs*log(obs/ex))
pval=1-pchisq(gTest,(dim(obs)[1]-1)*(dim(obs)[2]-1))
list(Forventede=ex,G=gTest,Pvaerdi=pval)
```

Simpson's paradoks

Sceneskift

Simpsons paradoks er illustreret

Næste: Cochrans regel

Cochrans regel

Contingency tables with more than 1 d.f. If relatively few expectations are less than 5 (say in 1 cell out of 5 or more, or 2 cells out of 10 or more), a minimum expectation of 1 is allowable in computing X^2 . (Cochran 1954, p. 420).

Alle forventede skal være større end eller lig med 1

højst 20 procent må være under 5

Lad os vende tilbage til GOF fra sidste forelæsning

Cochrans regel

Index	1	2	3	4	5
Værdi	0	1	2	3	≥ 4
A_j	144	91	32	11	2
e_j	139.04	97.33	34.07	7.95	1.61

Slår to sidste kasser sammen: G = 1.84, p-værdi = 0.399

Slår ikke sammen: G = 1.86, p-værdi = 0.603

Kasse	1	2	3	4	5	6	7	8	9	10	11	12
a _j	1	2	9	23	34	47	37	24	12	9	0	1
ej	1.0	3.2	9.5	20.9	34.6	42.6	39.2	27.0	13.8	5.3	1.5	0.4

Slår to første og tre sidste kasser sammen: G = 2.73, p-værdi = 0.84

Slår to første og to sidste kasser sammen: G=3.57, p-værdi =0.83

Sceneskift

Cochrans regel er omtalt

Næste: G-test eller χ^2 -test (MSRR: C-test)

χ^2 -test

I webbogen bruges teststørrelsen: $G=2\sum$ observeret \cdot log $\left(\frac{\text{observeret}}{\text{forventet}}\right)$

Ude i verden (og i MSRR) bruges ofte af historiske grunde:

$$C = \sum \frac{(\text{observeret} - \text{forventet})^2}{\text{forventet}}$$

For store datasæt er der ikke forskel. For små datasæt kan χ^2 -approksimationen være lidt bedre for G end for C

Gå til webbo afsnit 1.6 og tilføj i sidste skjulte punkt inde i list:

Sammenlige G og C ved simulering

nsim=1000000

Teste $p = p_0$ i binomialmodel (= multinomialmodel)

```
p0=0.3
n = 100
x1=rbinom(nsim,n,p0)
x2=n-x1
phat=rep(p0,nsim)
e1=n*phat
e2=n*(1-phat)
x11=ifelse(x1==0,1,x1)
x22=ifelse(x2==0,1,x2)
G=2*(x1*log(x11/e1)+x2*log(x22/e2))
Ctest=(x1-e1)^2/e1+(x2-e2)^2/e2
100*c(sum(G>3.8415), sum(Ctest>3.8415))/nsim
```

Sceneskift

 χ^2 -test er omtalt

Næste: Fishers eksakte test

Tea party

En person bliver givet 8 kopper med te og mælk blandet sammen. De 4 af kopperne er lavet ved at der først er hældt te i koppen og dernæst mælk, og de 4 andre kopper er lavet ved at mælk er hældt i først og dernæst te. Personen ved ikke noget om hvordan de 8 kopper er fordelt på de to typer.

Hypotese: Person kan ikke kende forskel (= vælger tilfældigt)

 X_1 antal gange der siges "te først" blandt de 4 med te først X_2 antal gange der siges "mælk først" blandt de 4 med mælk først Model: $X_1 \sim \mathsf{binom}(4, p_1), \quad X_2 \sim \mathsf{binom}(4, p_2)$

Hypotese $p_1 = p_2$

Tea party

	Observerede					
	Siger te	Siger mælk				
Te først	4	0				
Mælk først	0	4				

	Forventede				
	Siger te	Siger mælk			
Te først	2	2			
Mælk først	2	2			

Kan ikke bruge Cochran regel

Der er 25 kombinationer af x_1 og x_2 med $n_1 = n_2 = 4$ men kun 7 forskellige værdier af G

G	0.00	0.54	1.53	2.09	3.45	6.09	11.09
P, p = 0.5	0.273	0.375	0.062	0.125	0.094	0.062	800.0
P, p = 0.1	0.518	0.029	0.383	0.002	0.064	0.005	0.000
$\chi^{2}(1), \geq$	1.000	0.462	0.216	0.148	0.063	0.014	0.001

Fishers eksakte test

Hvis
$$p_1 = p_2$$
 så er $X_1 + X_2 \sim \mathsf{binom}(n_1 + n_2, p)$, $\hat{p} = \frac{X_1 + X_2}{n_1 + n_2}$

vi er ikke interesseret i p, kun i spørgsmålet $p_1=p_2$

Betinge med værdien af $X_1 + X_2$:

P-værdi fra betingede test = 0.014 + 0.014 = 0.028

Betinge i 2×2 tabel

Model: $X_1 \sim \text{binom}(n_1, p)$, $X_2 \sim \text{binom}(n_2, p)$, betinge med $X_1 + X_2$

$$P(X_{1} = x_{1}, X_{2} = x_{2} | X_{1} + X_{2} = k)$$

$$= \frac{\binom{n_{1}}{x_{1}} p^{x_{1}} (1-p)^{n_{1}-x_{1}} \binom{n_{2}}{k-x_{1}} p^{k-x_{1}} (1-p)^{n_{2}-(k-x_{1})}}{\binom{n}{k} p^{k} (1-p)^{n-k}}, \quad x_{1} + x_{2} = k, \ n_{1} + n_{2} = n$$

$$= \frac{\binom{n_{1}}{x_{1}} \binom{n_{2}}{k-x_{1}}}{\binom{n_{1}}{x_{1}}}$$

Afhænger IKKE af p derfor "eksakt" test

Beregning af betingede sandsynlighed i R: dhyper(x,b,c,d)

$$\begin{array}{c|ccc} x & b-x & b \\ \hline d-x & c-d+x & c \\ \hline d & n-d & n=b+c \\ \end{array}$$

Kritisk område

Hvad er "mere kritisk" i betingede fordeling?

R, fisher.test: alle udfald hvor betingede sandsynlighed er \leq sandsynlighed for faktiske observation

Alternativ: alle udfald i betingede fordeling med $G(x) \ge G(x_{obs})$

Se eksempel i afsnit 1.8.1

Generelt: I skal blot bruge fisher.test medmindre jeg beder jer om andet

Betinge i 2×3 tabel

Sceneskift

Slut for i dag