Geometria Computacional

Claudio Esperança Paulo Roma Cavalcanti

Estrutura do Curso

- Aspectos teóricos e práticos
 - Construção e análise de algoritmos e estruturas de dados para a solucionar problemas geométricos
 - Implementação
 - Programas em C++ / STL
 - Uso da biblioteca CGAL (www.cgal.org)

O que é Geometria Computacional?

- Origem do termo
 - (?) Livro "Perceptron" de Marvin Minsky
 - Usado para denotar algoritmos de modelagem de sólidos
- Campo da teoria de algoritmos
 - Entradas são coleções de objetos geométricos
 - Normalmente, objetos "planos" tais como pontos, retas, polígonos, poliedros
 - Saídas são estruturas de dados geométricos
- Surgiu do campo dos algoritmos discretos
 - Até hoje há ênfase em problemas de matemática discreta (conjuntos de objetos, grafos)
 - Componente geométrica pode oferecer subsídios para soluções mais eficientes

Exemplo: Caminho mais curto

- Pode ser reduzido ao problema de encontrar o caminho mais curto em um grafo (grafo de visibilidade)
 - Resolve-se com algoritmos não geométricos
 - Ex.: Algoritmo de Dijkstra
- Algoritmos geométricos podem dar uma solução mais eficiente

Eficiência dos Algoritmos

- Complexidade assintótica de pior caso
 - Problema do Caminho mais curto
 - Algoritmo simples $O(n^2 \log n)$
 - Algoritmo complexo *O* (*n* log *n*)
- Casos médios
 - Dificeis de se caracterizar
 - Requerem que se estipule uma distribuição "típica"
- Muitas estruturas de dados e algoritmos que se conjectura serem eficientes para casos típicos
 - Quadtrees em geral
 - BSP trees

Limitações da Geometria Computacional

- Dados discretos
 - Aproximações de fenômenos contínuos
 - Funções quantizadas ao invés de funções contínuas (e.g. imagens)
- Objetos geométricos "planos"
 - Aproximações de geometrias "curvas"
- Dimensionalidade
 - Normalmente, 2D e um pouco de 3D
 - Problemas *n*-dimensionais são pouco abordados

Técnicas usadas em GC

- Técnicas convencionais de desenho de algoritmos
 - Dividir para conquistar
 - Programação dinâmica
- Técnicas próprias para algoritmos geométricos
 - Varredura (plane sweep)
 - Construções randomizadas incrementais
 - Transformações duais
 - Fractional Cascading

Tendências

- Muitas soluções "ótimas" foram obtidas mas as implementações ...
 - Muito complicadas
 - Muito sensíveis a casos degenerados
 - Problemas de precisão
 - Complexidade inaceitável para problemas pequenos
- Foco em obter soluções práticas
 - Algoritmos simples
 - Freqüentemente randomizados
 - Tratamento de casos degenerados
 - Engenharia de software

Problemas – Fecho Convexo

 Menor polígono (poliedro) convexo que contém uma coleção de objetos

(pontos)

Problemas - Interseções

• Determinar interseções entre coleções de objetos

Problemas – Triangulações

• Dividir domínios complexos em coleções de objetos simples (simplexes)

Problemas – Prog. Linear em 2d e 3d

- Problemas de otimização
 - Ex.: menor disco que contém um conjunto de pontos

Problemas – Arranjos de Retas

- Dada uma coleção de retas, é o grafo formado pelos pontos de interseção e segmentos de reta entre eles
 - Problemas sobre pontos podem ser transformados em problemas sobre retas (dualidade)

Problemas – Diagramas de Voronoi e Triangulações de Delaunay

- Dada uma coleção de pontos S
 - Diagrama de Voronoi delimita as regiões de pontos mais próximos
 - Triangulação de Delaunay é o dual do D. V.

Problemas – Busca Geométrica

- Algoritmos e estruturas de dados para responder consultas geométricas. Ex.:
 - Todos os objetos que interceptam uma região
 - Polígono
 - Disco
 - Par de pontos mais próximos
 - Vizinho mais próximo
 - Caminho mais curto

Geometria Afim

- Composta dos elementos básicos
 - escalares
 - pontos denotam posição
 - vetores denotam deslocamento (direção e magnitude)
- Operações
 - escalar · vetor = vetor
 - vetor + vetor ou vetor vetor = vetor
 - ponto ponto = vetor
 - ponto + vetor ou ponto vetor = ponto

Combinações Afim

Maneira especial de combinar pontos

$$\alpha_1 P_1 + \alpha_2 P_2 + \dots + \alpha_n P_n$$
onde
$$\sum_{i=1}^{n} \alpha_i = 1$$

• Para 2 pontos P e Q poderíamos ter uma combinação afim R = $(1-\alpha)P + \alpha Q$ = $P + \alpha(P-Q)$

Combinações Convexas

- Combinações afim onde se garante que todos os coeficientes α_i são positivos (ou zero)
- Usa-se esse nome porque qualquer ponto que é uma combinação convexa de *n* outros pontos pertence à <u>envoltória convexa</u> desses pontos

Geometria Euclidiana

- Extensão da geometria afim pela adição de um operador chamado produto interno
- Produto interno é um operador que mapeia um par de vetores em um escalar. Tem as seguintes propriedades:
 - Positividade : $(u,u) \ge 0$ e (u,u) = 0 sse u=0
 - Simetria: (u,v) = (v,u)
 - Bilinearidade: (u,v+w)=(u,v)+(u,w) e $(u,\alpha v)=\alpha(u,v)$

Geometria Euclidiana

 Normalmente usamos o produto escalar como operador de produto interno:

$$\vec{u} \cdot \vec{v} = \sum_{i=1}^{a} u_i v_i$$

• Comprimento de um vetor é definido como:

$$\left| \vec{v} \right| = \sqrt{\vec{v} \cdot \vec{v}}$$

• Vetor unitário (normalizado):

$$\hat{v} = \frac{\vec{v}}{|\vec{v}|}$$

Geometria Euclidiana

- Distância entre dois pontos $P \in Q = |P Q|$
- O ângulo entre dois vetores pode ser

determinado por
$$\hat{a}ngulo(\vec{u}, \vec{v}) = \cos^{-1}\left(\frac{\vec{u} \cdot \vec{v}}{|\vec{u}||\vec{v}|}\right) = \cos^{-1}(\hat{u} \cdot \hat{v})$$

• Projeção ortogonal: dados dois vetores *u* e *v*, deseja-se decompor u na soma de dois vetores u_1 e u_2 tais que u_1 é paralelo a v e u_2 é perpendicular a *v*

$$\vec{u}_1 = \frac{\vec{u} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} \vec{v} \qquad \vec{u}_2 = \vec{u} - \vec{u}_1$$

Produto Vetorial (3D)

- Permite achar um vetor perpendicular a outros dois dados
- Útil na construção de sistemas de coordenadas

$$\vec{u} \times \vec{v} = \begin{bmatrix} u_y v_z - u_z v_y \\ u_z v_x - u_x v_z \\ u_x v_y - u_y v_x \end{bmatrix} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ u_x & u_y & u_z \\ v_x & v_y & v_z \end{vmatrix}$$

- Propriedades (assume-se *u*, *v* linearmente independentes):
 - Antisimetria: $u \times v = -v \times u$
 - Bilinearidade: $u \times (\alpha v) = \alpha (u \times v)$ e $u \times (v + w) = (u \times v) + (u \times w)$
 - $u \times v$ é perpendicular tanto a u quanto a v
 - O comprimento de $u \times v$ é igual a área do paralelogramo definido por u e v, isto é, $|u \times v| = |u| |v| \sin \theta$

Sistemas de coordenadas

- Um sistema de coordenadas para \mathbb{R}^n é definido por um ponto (origem) e n vetores
- Ex. Seja um sistema de coordenadas para
 R² definido pelo ponto O e os vetores X e
 Y. Então,
 - Um ponto P é dado por coordenadas x_P e y_P tais que

$$P = x_P.X + y_P.Y + O$$

• Um vetor V é dado por coordenadas x_V e y_V tais que

$$V = x_V . X + y_V . Y$$

Coordenadas Homogêneas

- Coordenadas homogêneas permitem unificar o tratamento de pontos e vetores
- Problema é levado para uma dimensão superior:
 - Coordenada extra w= 0 para vetores e =1 p/ pontos
 - O significado da coordenada extra é levar ou não em consideração a origem do sistema
- Coordenadas homogêneas têm diversas propriedades algébricas interessantes
 - Ex. Subtração de dois pontos naturalmente resulta em um vetor

Orientação

- Orientação de 2 pontos em 1D
 - $P_1 < P_2$, $P_1 = P_2$ ou $P_1 > P_2$
- Orientação de 3 pontos em 2D
 - O percurso P_1 , P_2 , P_3 é feito no sentido dos ponteiros do relógio, no sentido contrário ou são colineares

Orientação

- Orientação de 4 pontos em 3D
 - lacktriangle O percurso P_1 , P_2 , P_3 , P_4 define um parafuso segundo a regra da mão direita, mão esquerda ou são coplanares

Or
$$(P_1, P_2, P_3, P_4) = +1$$

 O conceito pode ser estendido a qualquer número de dimensões ...

Computando Orientação

• A orientação de n+1 pontos em um espaço n-dimensional é dado pelo sinal do determinante da matriz cujas colunas são as coordenadas homogêneas dos pontos com o 1 vindo primeiro

$$\operatorname{Or}_{2}(P_{1}, P_{2}, P_{3}) = \operatorname{sign} \begin{pmatrix} \begin{vmatrix} 1 & 1 & 1 \\ x_{1} & x_{2} & x_{3} \\ y_{1} & y_{2} & y_{3} \end{vmatrix} \end{pmatrix}$$

$$\operatorname{Or}_{2}(P_{1}, P_{2}, P_{3}) = \operatorname{sign} \begin{pmatrix} \begin{vmatrix} 1 & 1 & 1 \\ x_{1} & x_{2} & x_{3} \\ y_{1} & y_{2} & y_{3} \end{vmatrix} \end{pmatrix} \qquad \operatorname{Or}_{3}(P_{1}, P_{2}, P_{3}, P_{4}) = \operatorname{sign} \begin{pmatrix} \begin{vmatrix} 1 & 1 & 1 & 1 \\ x_{1} & x_{2} & x_{3} & x_{4} \\ y_{1} & y_{2} & y_{3} & y_{4} \\ z_{1} & z_{2} & z_{3} & z_{4} \end{pmatrix}$$

