Logic Optimization:

(Quine-McCluskey)

Virendra Singh

Professor

Computer Architecture and Dependable Systems Lab
Department of Electrical Engineering
Indian Institute of Technology Bombay
http://www.ee.iitb.ac.in/~viren/

E-mail: viren@ee.iitb.ac.in

EE-224: Digital Systems

Lecture 19-A: 22 October 2020

CADSL

Quine-McCluskey

Willard V. O. Quine 1908 – 2000

Edward J. McCluskey 1929 -- 2016

Quine-McCluskey Tabular Minimization Method

- W. V. Quine, "The Problem of Simplifying Truth Functions," American Mathematical Monthly, vol. 59, no. 10, pp. 521-531, October 1952.
- E. J. McCluskey, "Minimization of Boolean Functions," Bell System Technical Journal, vol. 35, no. 11, pp. 1417-1444, November 1956. ✓

$$\frac{10}{ab} + \frac{11}{ab} = \frac{1}{a}$$

Q-M Tabular Minimization

Minimizes functions with many variables.

Begin with minterms:

22 Oct 2020

- Step 1: Tabulate minterms in groups of increasing number of true variables.
- Step 2: Conduct <u>linear searches</u> to identify all prime implicants (PI).
- Step 4: Tabulate non-essential PI's vs. minterms not covered by EPI's. Select minimum number of PI's to cover all minterms.
- MSOP contains all EPI's and selected non-EPI's.

$F(A,B,C,D) = \sum m(2,4,6,8,9,10,12,13,15)$

• Q-M Step 1: Group minterms with 1 true

variable, 2 true variables, etc.

				(40)
	Minterm	ABCD	Groups	0-10
	2	0010)	
a. 4	4	0100	1: single 1	X (2,9) 8010 X
Gp1	8	1000	_	
	6	0110		(2,19) 0010
Gp2	9	1001	2. two 1'o	V -010
	10	1010	2: two 1's	(2,12) 0610 .
	12	1100)	1100
Gp3 Gp4	13	1101	3: three 1's	(4,6) 0100
Gp4	15	1111	4: four 1's	0110
•				01-0

Q-M Step 2

- Find all implicants by combining minterms, and then combining products that differ in a single variable: For example,
 0 / 0
 0 / 0
 - 2 and 6, or \overline{A} \overline{B} \overline{C} \overline{D} and \overline{A} \overline{B} \overline{C} \overline{D} \rightarrow \overline{A} \overline{C} \overline{D} , written as 0-10.
- Try combining a minterm (or product) with all minterms (or products) listed below in the table.
- Include resulting products in the next list.
- If minterm (or product) does not combine with any other, mark it as PI. V
- Check the minterm (or product) and repeat for all other minterms (or products).

Step 2 Executed on Example

		Ç	(gm) ~ (11 CONT		7-1mp1ang 2-pmp1				
	L	ist 1		List 2			List 3			
	Minterm	ABCD	PI?	Minterms	ABCD	PI?	Minterms	ABCD	PI?	
	2 🗸	0010	X	2,6	0-10	PI_2	8,9,12,13	1-0-	PI_1	
	4 🗸	0100	X	2,10 V	-010	PI_3				
	8 🗸	1000	X	4,6 🗸	01-0	PI_4				
	6 🗸	0110	X	4,12	-100	PI_5				
	9 ~	1001	X	8,9 🗸	100-	X				
	10 ✓	1010	X	8,10 🤘	10-0	PI_6				
	12 √	1100	X	8,12 ~	1-00	Χ .				
	13 🗸	1101	X	9,13 🗸	1-01	X				
,	15 V	1111	X	12,13 _{\(\cup\)}	/110-	X				
				13,15	11-1	PI_7				

Gp1

Minimize (#P2)

Step 3: Identify EPI's

				in the second					
							1	/	V
Covered by EPI \rightarrow				X	X		X	X	×
Minterms →	2	4	6	8	9	10	12	13	15
PI_1 is EPI				X	(*)		X	X	
PI_2	X		X						
PI_3	X					X			
PI_4		X	X						
PI_5		X					X		
PI_6				X		X			
PI_7 is EPI								X	$\left(\hat{\mathbf{x}}\right)$
	*	*	7 1	x= ?	2, 4,	2	102 6		
EPI = S PI-	1, f	7 1 - 7	7 ()		4 3 x	P21			ع. 70
				seley	(0))	1 1 2 9	1	- T	

CADSL

Step 4: Cover Remaining Minterms

	Remaining minterms →	2	4	6	10
X2 -	PI_2	X		χ×	
×3 ->	PI_3	X			Χ-
X4 -	PI_4		X	X	
705-7	PI_5		X		
X6 -	- PI_6				Χ.

Integer linear program (ILP), available from MATLAB and other sources: Define integer {0,1} variables, xk = 1, select PI_k;

xk = 0, do not select PI k.

Minimize \sum_{k} xk, subject to constraints:

xk, subject to constraints:
$$x2 + x3 \ge 1$$

 $x4 + x5 \ge 1$
 $x2 + x4 \ge 1$
 $x3 + x6 \ge 1$

A solution is $x^3 = x^4 = 1$, $x^2 = x^5 = x^6 = 0$, or select(PI_3, PI

Linear Programming (LP)

- A mathematical optimization method for problems where some "cost" depends on a large number of variables.
- An easy to understand introduction is:
 - S. I. Gass, An Illustrated Guide to Linear Programming, New York: Dover Publications, 1970.
- Very useful tool for a variety of engineering design problems.
- Available in software packages like MATLAB.

Step 4: Cover Remaining Minterms

	Remaining minterms →	2	4	6	10
2-	→ PI_2	X		X	
P -	- PI_3	X			X
V-	PI_4		X	X	
8 -	PI_5		X		
n -	- PI_6				X

Patrick's Method (All mon terms must be covered

2 AP

$$y \cdot y + \delta$$
 $(x + \beta) \cdot (x + \delta) \cdot (x + \delta$

Q-M MSOP Solution and Verification

$$F(A,B,C,D) = PI_1 + PI_3 + PI_4 + PI_7$$

$$= 1-0- + -010 + 01-0 + 11-1$$

$$= A C + B C D + A B D + A B D$$

See Karnaugh map.

Non-EPI's not in MSOP

Minimized Circuit

QM Minimizer on the Web

http://quinemccluskey.com/

Thank You

