Deep Learning and Spatial Statistics for determining Winter Road Surface Condition

Presented by Juan Carrillo Candidate for MASc. in Computer Engineering Department of Electrical & Computer Engineering University of Waterloo

Source: thestar.com

Agenda

- 1. Introduction
- 2. Data integration
- 3. Automated determination of Winter Road Condition
- 4. Conclusions

Winter road maintenance: Safety and resource optimization

Ontario. 50% of the total highway maintenance budget is spent on winter maintenance operations. <u>MTO</u>

Toronto. Annual budget of \$90 million to ensure that roads and sidewalks are clear and safe during the winter. theweathernetwork.com

Ottawa. The budget for winter operations in 2018 was \$68.3 million, \$2.3-million more than the previous year. *OttawaCitizen.com*

Winter road conditions

Road is bare
All wheels of a vehicle
are on a bare surface.

Road is partly covered Two wheels of a vehicle are on a bare surface.

Road is covered

All wheels of a vehicle

are on snow or ice.

Winter road maintenance: Current approach

Road Weather Information Systems (RWIS)

Road patrolling visual inspection

Limited geographic coverage

Research goals

1. Evaluate the integration of additional sources of data to increase geographic coverage of Winter road monitoring

2. Compare Deep Learning models for automated classification of Road Surface Condition (RSC) from roadside camera images and weather data

Winter road maintenance: Suggested approach

Add **6x** more input data

(RWIS) + other MTO Cams + Env. Can Weather 84°0'0"W 78°0'0"W Data collection systems Ecoregions Lake Erie Lowland RWIS stations Manitoulin-Lake Simcoe St-Laurent Lowlands Other MTO cameras

Automated monitoring

Efficient decision making

Deep Learning for detecting road surface condition **Evaluate** & improve

Better resource allocation, improved operations

Integration of roadside camera images and weather data for monitoring winter road surface conditions

Placed 1st in this year's CARSP Student Paper Competition

Road Weather Information System (RWIS)

Image source

139 stations in Ontario

Image source

- Roadside camera
- Weather sensors
- ✓ Embedded pavement sensors

Station NWR-06

Other MTO camera stations

Image source

439 cameras in Ontario

- Roadside camera
- Weather sensors
- Embedded pavement sensors

Environment Canada weather stations

Image source

- Roadside camera
- Weather sensors
- Embedded pavement sensors

99 stations in Ontario

Image source

Area of study

Ecoregion	Population density inhabitants/km²	Rank across Canada		
Lake Erie Lowland	344	2 nd		
St. Lawrence Lowlands	179	3 rd		
Manitoulin-Lake Simcoe	66	6 th		

Table 1. The three most densely inhabited ecoregions in Southern Ontario, StatCan 2016.

Nearest neighbor NN

Nearest neighbor NN analysis

Туре	# of locations in Ontario	Avg. distance to NN (km)	# of locations in three populous ecoregions			
RWIS	139	38.4	68			
Other MTO	439	7.2	364			
RWIS + MTO	578	9.4	432			

Table 2. Adding other MTO roadside cameras to increase the number of images.

Туре	# of locations in Ontario	Avg. distance to NN (km)	# of locations in three populous ecoregions			
RWIS	139	38.4	68			
Env. Canada	99	35.8	45			
RWIS + Env. Can	238	25.7	113			

Table 3. Adding Environment Canada stations to interpolate weather data.

K-Function

L-Function analysis

Figure 3. Multi-distance spatial cluster (L-Function) plots for: (a) RWIS stations, (b) other MTO cameras, and (c) Environment Canada stations.

Weather interpolation for all other MTO cameras

Sample of weather data

- 40 RWIS + 40 Env. Canada = 80 stations
- Three weather variables
- No-snow and snowy days
- 480 observations in total

- Roadside camera
- Weather sensors
- Embedded pavement sensors

Summary statistics	T1 - No s	snow - 2017/11/	07 08:00	T2 - Snow - 2017/12/25 08:00				
	air temp. (°C)	wind speed pressure (km/h) (kPa)		air temp. (°C)	wind speed (km/h)	pressure (kPa)		
Mean	-1.921	4.912	99.950	-12.186	13.587	98.518		
Std. dev.	5.195	6.419	2.809	9.509	11.128	2.782		
CV%		131%	3%		82%	3%		

Table 4. Summary statistics of three weather variables for a no-snow day and a snowy day.

Spatial statistics: Interpolation methods

Neighborhood for selected point

Image source

Example Inverse Distance Weighted (IDW) profile

Example Radial Basis Function (RBF) profile

Intermediate slide here

Neighborhood for selected point

Image source

Example Inverse Distance Weighted (IDW) profile

Example Radial Basis Function (RBF) profile

Weather interpolation for all other MTO cameras

Interpolation methods

- Inverse distance weighted (IDW)
- Radial Basis Function (RBF)
- Ordinary Kriging (OK)

- Roadside camera
- Weather sensors
- Embedded pavement sensors

Internalation	T1 - No s	now - 2017/11/0	07 08:00	T2 - Snow - 2017/12/25 08:00				
Interpolation Method	Air temp. (°C)	Wind speed (km/h)	Pressure (kPa)	Air temp. (°C)	Wind speed (km/h)	Pressure (kPa)		
IDW	2.054	6.073	3.094	4.139	8.761	3.053		
RBF	1.971	6.156	3.001	3.898	8.718	2.963		
Ord. Kriging	1.868	5.660	2.992	3.921	8.654	2.999		

Table 5. Root Mean Square of three interpolation methods applied on a no-snow and snowy day.

Comparison of Deep Learning models for Determining Road Surface Condition from Roadside Camera Images and Weather Data

Why "Deep" Learning?

Baseline Deep Learning models for image classification

Image source

Advanced Deep Learning model for image classification

Concat Dropout Fully connected

Softmax

Image source

Computation cost versus accuracy

Transfer learning

Image source

Previous research

Title	Year	Data source	Method
Evaluation of Alternative Pre-trained Convolutional Neural Networks for Winter RSC Monitoring Winter Road Surface Condition Recognition Using a Pre-trained Deep CNN Connected Vehicle Solution for Winter Road Surface Condition Monitoring Winter Road Surface Condition Monitoring Field Evaluation of a Smartphone-Based System	2018 2016	Dash and roadside camera Dash camera Dash camera Dash camera	Pre-trained DNN Pre-trained DNN ANN RTrees RF SVM
An automatic image recognition system for winter road surface condition classification	2010	Dash camera	SVM
Road Condition Imaging: Model Development Road Surface Status Classification Using Spectral Analysis of NIR Camera Images Road condition discrimination using weather data and camera images	2015 2015 2011	Stations IR cam Vehicle mounted NIR Stations IR cam	Bayesian net KNN SVM NN PCA between vars
Assessment of Deep Convolutional Neural Networks for Road Surface Classification Evaluating features and classifiers for road weather condition analysis	2018 2016		ResNet Inception Legacy image methods

Image dataset

- 40 RWIS stations across Ontario
- 14.000 images in total
- 3 classes: bare, partial, and full snow cover
- 70% training
- 20% validation
- 10% testing

- Summary of images in the train/validation set - Total images: 12600
Bare pavement 5691 Approx. 45%
Partial snow coverage 5114 Approx. 40%
Full snow coverage 1795 Approx. 14%

- Summary of images in the test set -

Total images: 1400
Bare pavement 648 Approx. 46%
Partial snow coverage 558 Approx. 39%
Full snow coverage 194 Approx. 13%

Model comparison: Fine-tuning pretrained models

- Optimizer SGD
- Learning rate 0.001
- 50 epochs

	Base model (Conv.) Complete model		Fully connected		Finetuning last 5%		Finetuning last 15%			
Model	# Parameters	# Layers	# Parameters	# Layers	Train Acc	Val Acc	Train Acc	Val Acc	Train Acc	Val Acc
Baseline	392,608	10	996,019	17	94.32%	93.06%	94.32%	93.06%	94.32%	93.06%
Inception-v3	21,802,784	311	28,095,539	318	72.71%	68.65%	82.88%	74.88%	96.73%	76.27%
Inception-Resnet-v2	54,336,736	780	59,056,627	787	82.73%	50.95%	95.16%	73.17%	97.33%	63.77%
Xception	20,861,480	132	30,693,179	139	88.18%	61.15%	97.60%	67.42%	98.04%	68.41%
DenseNet169	12,642,880	595	16,557,907	602	75.95%	59.13%	80.60%	57.78%	81.08%	69.09%
MobileNetv2	2,257,984	155	2,320,723	162	68.87%	49.01%	91.01%	45.67%	98.59%	54.44%
NASNetMobile	4,269,716	769	4,321,703	776	65.53%	55.83%	91.37%	60.04%	98.86%	60.20%

Fine-tuning pretrained Inception V3 model – last 15%

-- Evaluation over the train and validation datasets --

Final train accuracy: 96.73%

Final validation accuracy: 76.27%

Baseline model - All layers trained from scratch

-- Evaluation over the train and validation datasets --

Final train accuracy: 94.32%

Final validation accuracy: 93.06%

Baseline model – Architecture

Image source

Baseline model - Architecture

```
(Conv2D(16, kernel_size=(3, 3), activation='relu', input_shape=(299, 299, 3)))
       (MaxPooling2D(pool_size=(2, 2)))
       (Conv2D(32, kernel_size=(3, 3), activation='relu'))
Feature Learning
       (MaxPooling2D(pool_size=(2, 2)))
       (Conv2D(64, kernel_size=(3, 3), activation='relu'))
       (MaxPooling2D(pool_size=(2, 2)))
       (Conv2D(128, kernel size=(3, 3), activation='relu'))
       (MaxPooling2D(pool size=(2, 2)))
       (Conv2D(256, kernel_size=(3, 3), activation='relu'))
       (MaxPooling2D(pool_size=(2, 2)))
       (Dropout(0.5))
       (Flatten())
Slassification
       (Dense(48, activation='relu'))
       (Dropout(0.5))
       (Dense(24, activation='relu'))
       (Dropout(0.5))
       (Dense(3, activation='softmax'))
```


How much can we simplify the baseline model?

François Chollet. Author of Keras, the popular Deep learning library for TensorFlow.

Ablation studies are crucial for deep learning research -- can't stress this enough.

Understanding causality in your system is the most straightforward way to generate reliable knowledge (the goal of any research). And ablation is a very loweffort way to look into causality.

François Chollet • @fchollet • 29 Jun 2018

If you take any complicated deep learning experimental setup, chances are you can remove a few modules (or replace some trained features with random ones) with no loss of performance. Get rid of the noise in the research process: do ablation studies.

Ablation experiment (I) - Reduce channels

```
(Conv2D(16, kernel_size=(3, 3), activation='relu', input_shape=(299, 299, 3)))
(MaxPooling2D(pool size=(2, 2)))
(Conv2D(32, kernel_size=(3, 3), activation='relu'))
(MaxPooling2D(pool_size=(2, 2)))
(Conv2D(64, kernel_size=(3, 3), activation='relu'))
(MaxPooling2D(pool_size=(2, 2)))
(Conv2D(128, kernel_size=(3, 3), activation='relu'))
(MaxPooling2D(pool_size=(2, 2)))
(Conv2D(256, kernel_size=(3, 3), activation='relu'))
(MaxPooling2D(pool_size=(2, 2)))
(Dropout(0.5))
(Flatten())
(Dense(48, activation='relu'))
(Dropout(0.5))
                                                                                                  - BICYCLE
(Dense(24, activation='relu'))
(Dropout(0.5))
(Dense(3, activation='softmax'))
```

Ablation experiment (I) - Reduce channels

Incremental channels factor = 2					
Layer	Channels	# parameters			
Conv2D-1	16	448			
Conv2D-2	32	4640			
Conv2D-3	64	18496			
Conv2D-4	128	73856			
Conv2D-5	256	295168			
	Total	392608			

Incremental channels factor = 1.9					
Layer	Channels	# parameters			
Conv2D-1	16	448			
Conv2D-2	30	4408			
Conv2D-3	58	15861			
Conv2D-4	110	57159			
Conv2D-5	209	206157			
	Total	284033			

Ablation experiment (I) - Reduce channels

ICF	Total parameters	Validation accuracy
1	9728	85.44%
1.1	14331	86.98%
1.2	21286	89.01%
1.3	31646	89.56%
1.4	46834	90.95%
1.5	68737	90.93%
1.6	99815	92.30%
1.7	143226	93.89%
1.8	202965	92.22%
1.9	284033	93.13%
2	392608	93.06%

Size of the circles is indicative of the number of parameters.

Ablation experiment (II) - Reduce size of fully connected layers

```
(Conv2D(16, kernel_size=(3, 3), activation='relu', input_shape=(299, 299, 3)))
(MaxPooling2D(pool size=(2, 2)))
(Conv2D(27, kernel_size=(3, 3), activation='relu'))
(MaxPooling2D(pool_size=(2, 2)))
(Conv2D(46, kernel_size=(3, 3), activation='relu'))
(MaxPooling2D(pool_size=(2, 2)))
(Conv2D(79, kernel_size=(3, 3), activation='relu'))
(MaxPooling2D(pool_size=(2, 2)))
(Conv2D(134, kernel_size=(3, 3), activation='relu'))
(MaxPooling2D(pool_size=(2, 2)))
(Dropout(0.5))
(Flatten())
(Dense(48, activation='relu'))
(Dropout(0.5))
                                                                                                  - BICYCLE
(Dense(24, activation='relu'))
(Dropout(0.5))
(Dense(3, activation='softmax'))
```

Ablation experiment (II) - Reduce size of fully connected layers

FC 1	FC 2	FC1+FC2	Total parameters	Validation accuracy
48	24	72	316467	93.06%
42	21	63	276783	92.50%
36	18	54	237135	91.23%
30	15	45	197523	92.38%
24	12	36	157947	90.95%
18	9	27	118407	89.29%
12	6	18	78903	79.40%
6	3	9	39435	80.48%

Size of the circles is indicative of the number of parameters.

Including Weather data

Including Weather data

- 40 RWIS stations across Ontario
- 14.000 images in total
- 70.000 observations from five weather variables
- Air Temp (°C)
- Relative Humidity(%)
- Pressure (kPa)
- Wind Speed (km/h)

Image source

Confusion matrix over the test set - Naïve Bayes classifier

Compressed baseline

Compressed baseline + weather

Confusion matrix over the test set – Random Forest classifier

Compressed baseline

Compressed baseline + weather

Confusion matrix over the test set – SVM classifier

Compressed baseline

Compressed baseline + weather

Conclusions

- By adding all other MTO cameras as image data sources to the RWIS system, six times more cameras are available in Southern ON.
- Adding weather stations from Environment Canada to the RWIS system increases the number of weather stations by 1.7x.
- The best experimental tradeoff between complexity and accuracy to interpolate weather variables is offered by the method Radial Basis Functions (RBF).
- For certain applications, a rather simple Deep Convolutional Neural Network (DCNN) model can perform better than heavy weight DCNN models.
- Using weather variables does not improve classification of Road Surface significantly.

Acknowledgements

Special thanks to

- Prof. Mark Crowley Machine Learning Lab
- Prof. Liping Fu and Dr. Guangyuan Pan ITSS Lab
- My colleagues at the lab
- My family and friends

