

Dr. rer. nat. Johannes Riesterer

Infinitessimalrechnung

### Sir Isaac Newton



/12

Infinitessimalrechnung

#### Konvergenz erfahrungsgemäß

Etwas konvergiert gegen einen Grenzwert, wenn es sich diesem Grenzwert beliebig nahe annähert.



Figure: Konvergente Schienen

Infinitessimalrechnung

### Infinitessimalrechnung

Wie kann man damit rechnen und braucht man das?

Limes

#### Achilles und die Schildkröte



Figure: Quelle: Wikipedia:

Mehr hier im Video

#### Paradoxon der Antike

Obwohl Achilles schneller ist, kann er die Schildkröte niemals einholen.

Limes

#### Achilles und die Schildkröte infinitessimal betrachtet

Sei  $s_0$  der Vorsprung der Schildkröte zu Beginn des Rennens,  $t_0$  die Zeit, die Achilles benötigt, um  $s_0$  zurückzulegen. Die Schildkröte sei q-mal langsamer als Achilles. Dann ist Achilles bei der Zeit  $t_0 \cdot q$  ein weiteres Mal dort, wo die Schidlkröte vorher war. Nach der Zeit  $(t_0 \cdot q) \cdot q = t_0 \cdot q^2$  ein drittes Mal usw. Mit  $q^0 = 1$  ist die Summe aller betrachteten Zeiten, die Achilles zurücklegt:

$$t = t_0 \cdot \sum_{n=0}^{\infty} q^n = t_0 \cdot \lim_{n \to \infty} \sum_{k=0}^n q^k = t_0 \cdot \lim_{n \to \infty} \frac{1 - q^{n+1}}{1 - q} = \frac{t_0}{1 - q}.$$

## Infinitessimalrechnung Limes

### Folge

Eine reelle Folge ist eine Abbildung

$$a: \mathbb{N} \to \mathbb{R}^n$$

Für  $n \in \mathbb{N}$  bezeichnen wir  $a_n := a(n)$  als n tes Folgenglied.

Limes

#### Konvergenz

Eine Folge  $a_n$  in  $\mathbb{R}^n$  heißt konvergent gegen den Grenzwert  $a \in \mathbb{R}^n$ , wenn gilt:

$$\forall \varepsilon > 0 \; \exists \; N \in \mathbb{N} \; \forall \; n > N : \; d(a, a_n) < \varepsilon$$

in Worten: Es gibt für jedes beliebige (noch so kleine)  $\varepsilon$  einen Index N derart, dass für alle Indizes n > N, alle weiteren Folgenglieder, gilt: der Abstand  $d(a, a_n)$  ist kleiner als  $\varepsilon$ .



## Definition: Topologischer Raum

Ein topologischer Raum ist ein Paar  $(X, \mathcal{T})$ , wobei X eine Menge und  $\mathcal{T}$  eine Familie von Teilmengen von X ist, die folgende Eigenschaften erfüllt:

- $\emptyset \in \mathcal{T}$  und  $X \in \mathcal{T}$  (Die leere Menge und die Gesamtheit X gehören zur Topologie).
- ② Wenn  $A, B \in \mathcal{T}$ , dann gilt  $A \cap B \in \mathcal{T}$  (Schnittstabilität von endlichen Mengen).
- ③ Wenn  $\{A_i\}_{i \in I}$  eine beliebige Familie von Mengen in  $\mathcal{T}$  ist, dann gilt  $\bigcup_{i \in I} A_i \in \mathcal{T}$  (Vereinigungsstabilität von beliebigen Mengen).

Die Familie  $\mathcal{T}$  heißt die *Topologie* auf der Menge X. Die Mengen in  $\mathcal{T}$  werden als *offene Mengen* bezeichnet.

## Beispiel: Standardtopologie durch den Abstand

Sei (X,d) ein *metrischer Raum* mit Abstandsfunktion  $d: X \times X \to \mathbb{R}_{\geq 0}$ . Die *Standardtopologie*  $\mathcal{T}_d$  auf X wird durch den Abstand d induziert, indem als offene Mengen die folgenden Teilmengen  $U \subseteq X$  gewählt werden:

$$U \in \mathcal{T}_d \quad \Leftrightarrow \quad \forall x \in U, \ \exists \epsilon > 0 \text{ sodass } B_{\epsilon}(x) \subseteq U,$$

wobei  $B_{\epsilon}(x) = \{ y \in X \mid d(x,y) < \epsilon \}$  eine *offene Kugel* um den Punkt x mit Radius  $\epsilon$  ist.

## Definition: Filter

Ein Filter  $\mathcal{F}$  auf einer Menge X ist eine nicht-leere Familie von Teilmengen von X, die folgende Eigenschaften erfüllt:

- $\emptyset \notin \mathcal{F}$
- 2 Falls  $A, B \in \mathcal{F}$ , dann gilt  $A \cap B \in \mathcal{F}$
- **3** Falls  $A \in \mathcal{F}$  und  $A \subseteq B \subseteq X$ , dann gilt  $B \in \mathcal{F}$

## Beispiel: Umgebungsfilter

Sei X ein topologischer Raum und  $x \in X$ . Der Umgebungsfilter  $\mathcal{U}(x)$  besteht aus allen Teilmengen  $U \subseteq X$ , für die es eine offene Menge V gibt, sodass  $x \in V \subseteq U$ .