PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-240493

(43) Date of publication of application: 04.09.2001

(51)Int.Cl.

C30B 29/06 C30B 15/36

(21)Application number: 2000-049667

(71)Applicant: UNIV SHINSHU

(22)Date of filing:

25.02.2000

(72)Inventor: HOSHIKAWA KEIGO

KO CHIKAAKI FUKAMI TATSUO TAISHI TOSHINORI

(54) MANUFACTURING METHOD OF NON-DISLOCATIONAL. SINGLE CRYSTAL SILICON

(57)Abstract:

PROBLEM TO BE SOLVED: To manufacture a non-dislocational, single crystal silicon in no need of a necking process.

SOLUTION: When manufacturing the non-dislocational, single crystal silicon in the CZ method or the FZ method, a non-dislocational single crystal added with boron at 1 × 1018 atoms/cm3 or more is used as seed crystal. The difference in born density between the seed crystal and the grown crystal is controlled to 7×1018 atoms/cm3 or more.

LEGAL STATUS

[Date of request for examination]

25.02.2000

[Date of sending the examiner's decision of

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3446032

[Date of registration]

04.07.2003

[Number of appeal against examiner's decision of

rejection]

[Date of requesting appeal against examiner's

decision of rejection]

[Date of extinction of right]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-240493 (P2001-240493A)

(43)公開日 平成13年9月4日(2001.9.4)

(51) Int.Cl.'

識別記号

FΙ

テーマコード(参考)

C30B 29/06

502 501 C30B 29/06

502F 4G077

501A

15/36

15/36

審査請求 有 請求項の数1 OL (全 5 頁)

(21)出願番号

特顧2000-49667(P2000-49667)

(71)出願人 597100974

信州大学長

(22)出願日

平成12年2月25日(2000.2.25)

長野県松本市旭 3 - 1 - 1 (72)発明者 干川 圭吾

長野県長野市稲田1658番地

(72)発明者 黄 新明

長野県長野市上松1丁目3番地17号

(72)発明者 深海 龍夫

長野県須坂市田の神町23-5

(72)発明者 太子 敏則

長野県更埴市稲荷山2161-7

(74)代理人 100058479

弁理士 鈴江 武彦 (外5名)

最終頁に続く

(54) 【発明の名称】 無転位シリコン単結晶の製造方法

(57)【要約】

【課題】 ネッキング工程の不要な無転位シリコン単結 晶製造方法を提供する。

【解決手段】 C Z 法またはF Z 法による無転位シリコン単結晶の製造方法であって、種子結晶として 1×10 1 atoms/cm 以上のボロンが添加された無転位単結晶を用い、種子結晶と成長結晶との間のボロン濃度の差が 7×10 1 atoms/cm 以下であることを特徴とする無転位シリコン単結晶の製造方法。

【特許請求の範囲】

【請求項1】 CZ法またはFZ法による無転位シリコ ン単結晶の製造方法であって、種子結晶として1×10 ¹゚atoms/cm³以上のボロンが添加された無転位単結晶を 用い 種子結晶と成長結晶との間のボロン濃度の差が7 ×10¹⁸ atoms/cm 以下であることを特徴とする無転位 シリコン単結晶の製造方法。

1

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、大規模集積回路 (LSI) 製造に用いられる半導体シリコン(Si)単 結晶の製造技術に関する。

[0002]

【従来の技術】現在、LSI製造に用いられるSi単結 晶は、引き上げ (Czochralski:CZ) 法、 または浮遊帯 (Floating Zone: FZ) 法 によって製造されており、特にCZ法によってSi単結 晶の大部分が製造されている。CZ法は、種子結晶をS i 融液へ接触(種子付け)させたのち引き上げてSi単 結晶を成長させる方法である。FZ法は、種子結晶を多 結晶Siの原料棒の一端に融着させた後、長さに沿って 溶融帯を移動させてSi単結晶を成長させる方法であ

【0003】CZ-Si単結晶成長では、無転位単結晶 を育成するために、1959年にW. C. Dashによ り提案されたネッキング法が用いられている。ネッキン グ工程は、種子付け後に直径3-5mmの細くて長いネ ック部を形成するものである。この工程によって、種子 付け時の熱ショックによって種子結晶中に発生した転位 法は無転位単結晶を育成するための有効な方法である が、無転位成長の確率が100%ではなく、製造工程に 常に不安が残っていた。また、最近、数100kg以上 の大形単結晶の育成が必要になり、細いネック部で成長 結晶を支えることが出来なくなるという大きな問題点も 明らかになってきている。また、FZ法を用いたSi単 結晶成長においても、やはりネッキング工程を用いてい るため、同様の問題が生じていた。

[0004]

キング工程の不要な無転位シリコン単結晶の製造方法を 提供することである。

[0005]

【課題を解決するための手段】本発明は上記課題を解決 するためのものであり、現在LSIに用いられる全Si 結晶の約2割ほどに当たるエピタキシャルウェハの下地 基板に用いる高濃度 B (ボロン)添加結晶の育成技術の 研究の過程でなされた。より詳細には、本発明はこの研 究中に明らかになった以下の2つの実験事実に基づく。 【0006】(1) 不純物Bを101°atoms/cmi以上添

加した無転位単結晶を種子結晶に用いると、種子付け時 に、この種子結晶中に熱ショックによる転位が発生しな

【0007】(2)種子結晶と成長結晶(特に種子付け 直後の成長結晶)との間で不純物Bの濃度差があると、 一般には格子不整合(ミスフィット)による新たな転位 が発生するが、両者のB濃度の差を7×1018 atoms/cm ³以下にすることで、上記ミスフィット転位も発生しな

【0008】これらの2つの事実を組み合わせること で、ネッキング工程を必要とせずに無転位シリコン単結 晶を成長させることができる。また、種子結晶と成長結 晶との間にある程度のB濃度差が許容されることから、 種子結晶にはBを添加しながらも、B無添加の無転位S i単結晶を成長させることができる。

【0009】すなわち本発明によれば、CZ法またはF 乙法による無転位シリコン単結晶の製造方法であって、 種子結晶として1×101° atoms/cm 以上のボロンが添 加された無転位単結晶を用い、種子結晶と成長結晶との 間のボロン濃度の差が7×101atoms/cm引以下である ことを特徴とする無転位シリコン単結晶の製造方法が提 供される。

[0010]

【発明の実施の形態】本発明を実施する際には、CZ法 においては、たとえば所定のB濃度の種子結晶およびS i融液を用意した後、この種子結晶をSi融液に接触さ せて引き上げて結晶成長させる。FZ法においては、た とえば所定のB濃度の種子結晶および多結晶Si原料棒 を用意して両者を融着させた後、長さに沿って溶融帯を が成長結晶へと引き継がれることが防止される。この方 30 移動させて結晶成長させる。両方法においてネッキング 工程は行わない。

【0011】種子結晶中のB濃度は、1~7×1018at oms/cm であることが好ましい。この範囲であれば、B が無添加のSi単結晶を無転位で成長させられるからで ある。特に、種子結晶中のB濃度は、3~5×1013at oms/cm であることが好ましい。この範囲であれば、B 無添加の無転位Si単結晶を、より確実に転位の発生を 防いで成長させられるからである。なお、B無添加のS i単結晶には、B濃度が一般的なドーパント濃度たとえ 【発明が解決しようとする課題】本発明の課題は、ネッ 40 ば1×10¹⁵ atoms/cm³以上、好ましくは1~9×10 15 atoms/cm3、より好ましくは1~3×1015 atoms/cm3 のSi単結晶が含まれる。また、B以外の他のドーパン トたとえばP、As、Sbを上記濃度で含むSi単結晶 も含まれる。

[0012]

【実施例】以下、CZ法による本発明の実施例について 述べるが、FZ法についても本発明は同様に適用でき

【0013】CZ法に従って、種子結晶としてB添加無 50 転位単結晶を用いてSi融液からSi単結晶を製造し

た。ただしネッキング工程は行わなかった。また、種子 結晶中のB濃度とSi融液中の初期B濃度とを変化させ て、種子結晶と成長結晶中の転位の発生状況を調べた。* * 各結晶製造条件と結果を下表1に示す。

[0014]

【表1】

	種子結晶		Si被被		成長結晶		石英るつ		
実施例 /比較例	B濃度	断面形状 (mm×mm)	初期日濃度	融液重量(9)	过光 (mm)	長さ (mm)	(mm)	種子結晶 仮位	成長結晶 「転位
実施例 1	(atoms/cm ³) 4 × 10 ¹⁹	(Jami > Main)	(atoms/cm ³) 4×10 ¹⁹	197	(1.5.1.)	(11017)	(,	なし	なし
実施例2	8×10 ¹⁸	7×7	1×10 ¹⁹	2000	70 70	50~100	150	なし	なし
火施例3	8×10 ¹⁸		3×10 ¹⁸					なし	なし
実施例 4	8×10 ¹⁸		1×10 ¹⁸					なし	なし
实施例 5	3×10 ¹⁸		8×10 ¹⁸					なし	なし
実施例 6	<u> </u>		3×10 ¹⁸					なし	なし
	3×10 ¹⁸		0					なし	なし
実施例7	3×10 ¹⁸								
実施例8	1×10 ¹⁸		8×10 ¹⁸					なし	なし
実施例 9	1×10 ¹⁸		1×10 ¹⁸					なし	なし
実施例 10	1×10 ¹⁸	12.5 ø	1×10 ¹⁸	2000			150	なし	なし
実施例 11	5×10 ¹⁸	12.5 ø	5×10 ¹⁸	45000	150	810	400	なし	なし
実施例 12	3×10 ¹⁸	7×7	0(P:5×10 ¹⁵)	2000	70	80	150	なし	なし
比較例 1	4×10 ¹⁹	7×7	1×10 ¹⁹	2000	70	50~100	150	なし	あり
比較例 2	4×10 ¹⁹		1×10 ¹⁸					なし	あり
比較例3	4×10 ¹⁹		0					なし	あり
比較例 4	8×10 ¹⁸		8×10 ¹⁷					なし	あり
比較例 5	3×10 ¹⁸		4×10 ¹⁹					なし	あり
比較例6	1×10 ¹⁸		1×10 ¹⁹					なし	あり
比較例7	8×10 ¹⁷		8×10 ¹⁸					あり	あり
比較例8	8×10 ¹⁷		7×10 ¹⁷					あり	なし

【0015】上表1において、実施例7および比較例3 ではSi融液にBを添加しないで初期B濃度をOにし た。また実施例12では、Si融液にBを添加せずにP (リン)を5×10¹⁵ atoms/cm³だけ添加した。

【0016】上表1に示したように、各実施例において 種子結晶中に熱ショックによる転位が発生せず、また成 30 分かる。 長結晶中にミスフィット転位が発生しなかった。このよ うに、本発明によりネッキング法を行わずに無転位結晶 成長を行えることが確認できた。一方、比較例では、両 結晶の少なくともいずれか一方に転位が発生して、無転 位結晶成長は行われなかった。

【0017】図1は、表1の実施例1~9と比較例1~ 8の各結果をまとめた図である。図1のハッチ線で囲ま れた種子結晶中および成長結晶中のB濃度(無添加も含 む)の範囲で、ネッキング無しで無転位Si単結晶成長 が行えることが分かる。

【0018】図2と図3は、CZ法で製造したSi単結 晶の転位の発生状況を観察したX線トポグラフ写真の一 例である。図2(a)は、比較のために示した従来のC Z技術で製造したSⅰ単結晶の例であり、図2(b)と 図2(c)、および図3は上記比較例および実施例で製 造したSi単結晶の例である。なお、図2(a)~

(c) は種子結晶と成長結晶の境界近傍を観察した例で あり、図の矢印が境界を示し、矢印から上が種子結晶、 下が成長結晶である。図3は製造結晶全体を観察した例 である。また、各図の上部の数値は種子結晶のB濃度を 50 できるため結晶部分の長い結晶製造が可能になる。

示し、下部の数値はSi融液の初期B濃度を示す。

【0019】図2(a)の従来技術では、種子結晶に熱 ショックによる多量の転位が発生して成長結晶中に引き 継がれるが、その後のネッキング操作(写真下部)によ って無転位化が図られ、無転位結晶が製造されることが

【0020】図2(b)は上述の比較例3で製造した単 結晶であり、種子結晶には転位が発生していないが成長 結晶中にはミスフィット転位が発生しているのが分か

【0021】図2(c)は上述の実施例4で製造した単 結晶であり、種子結晶および成長結晶の何れにおいても 転位が発生せず 無転位結晶が成長していることが分か

【0022】図3は、上述の実施例1で製造した無転位 単結晶の全体を示す写真であり、やはり無転位単結晶が 成長していることが分かる。

[0023]

【発明の効果】以上詳述したように、本発明によれば、 ネッキング工程の不要な無転位シリコン単結晶の製造方 法が提供される。その結果、以下の効果が得られる。

(1)ネック部の機械的強度が増大し、大直径、大重量 の結晶製造が可能になる。(2)細くて長いネック部を 成長させる時間が不必要になるため結晶製造の効率が上 がり、またネック部の無くなった分だけ結晶を有効利用

5

(3)ネッキング操作において、従来のように無転位化 が達成されたか否かを特定の専門家が判断する必要がな くなるため、無転位結晶製造を誰でも(素人でも)簡単 に行えるようになる。

【0024】また本発明においては、B無添加の無転位シリコン単結晶を成長させることもできるため、LSI製造プロセスでの用途が非常に広い。

【図面の簡単な説明】

【図1】

○ 無転位● 熱ショックによる転位□ ミスフィット転位■ 熱ショックおよびミスフィット転位

*【図1】本発明の実施例および比較例で得られた種子結 晶中のB濃度と成長結晶中のB濃度との間の関係を示す 図

【図2】従来技術と本発明の実施例および比較例で得られたSi単結晶の結晶構造の一例を示す写真。

【図3】本発明の実施例で得られたSi単結晶の結晶構造の他の例を示す写真。

【図3】

 4×10^{19} atoms/cm³

4×10¹⁹ atoms/cm³

矢印は種子づけ界面を示す。矢印より上部は種子結晶を、下部 は成長結晶を示し、上下の数字は結晶中のボロン濃度を示す。

フロントページの続き

F ターム(参考) 4G077 AA02 BA04 CE03 CF10 ED01 PJ01

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ other:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.