Problem 1.

Proof. Let X be a space such that all paths having the same endpoints are fixed-endpoint homotopic. Then given a loop α based as some point x_0 this loop is homotopic to the constant map at x_0 which implies that $\pi_1(X, x_0)$ is trivial for all X. Therefore X is simply connected.

Now suppose that X is a simply connected space. Let α, β be loops from x_0 to x_1 . For a fixed $t' \in [0,1]$ using path connectedness we can construct a loop $l_{t'}$ such that $l_{t'}(0) = l_{t'}(1) = \alpha(t')$, $l_{t'}(\frac{1}{2}) = \beta(t)$ and that the function $p(t) = l_t(\frac{1}{2})$ is a path **Why?**. Since X is simply connected there is a homotopy $L_{t'}$ from $l_{t'}$ to the constant map at $\alpha(t')$. Then we can construct a homotopy H from H to H as

$$H(t,s) = L_t(\frac{1}{2},s)$$

which will be continuous because of the continuity of the $L_{t'}$ s and that we choose $l_{t'}$ such that as we vary over t there is a path.

Therefore a space X is simply connected if and only if all paths with the same endpoints are fixed endpoint homotopic.

Problem 2.

Proof. Let $f:(X,x_0)\to (Y,y_0)$ and $g:(Y,y_0)\to (Z,z_0)$. For a continuous map h we have h_* defined as $h_*([\gamma])=[h\circ\gamma]$. Then if we consider $(g\circ f)_*$:

$$(g\circ f)_*([\gamma])=[(g\circ f)\circ \gamma]=[g\circ (f\circ \gamma)]=g_*([f\circ \gamma])=g_*\circ f_*([\gamma])$$

Therefore $(g \circ f)_* = g_* \circ f_*$.

Problem 3.

Proof.

Problem 4.

Proof.

Problem 5.

Proof.

Problem 6.

Proof.