Goldbach conjecture

Every even integer greater than 2 can be written as the sum of two primes

Abstract

This is an approach (not full proof), to be easier to deal with the conjecture.

Just using parity rules, to know which values are ok. So valid numbers are even+even, and odd+odd

A	В	A+B
Even	Odd	Odd
Odd	Even	Odd
Even	Even	Even
Odd	Odd	Even

So, we only want even+even, or odd+odd, because those are the ones that summed give even.

EXAMPLE

Suppose even number 12.

We start by, 12 = 11 + 1.

Then subtract 1 to 11, and add one to 1 ...we get

$$12 = 10 + 2$$

Subtract 1 to ten and add one to 2

$$12 = 9 + 3$$

$$12 = 8 + 4$$

$$12 = 7 + 5$$

and keep doing that, until we get

12 = 6 + 6 (the same summand..after this it repeats the sequences)

e.g, next sequence is,

A)
$$12 = 5 + 7$$

But it has already been verified.

We can only use odd+odd, since primes are odd. So no need to calculate even + even numbers.

Other information

Considering numbers, 4,6,8,10

4 is divisible by 2, 6 is divisible by 3, 8 is divisible by 4

2k, for k=1, it always divide evens.

for k=2, which even does it divide? 8

for k=3, divides 6, and 12, and 18, 6k, for k=1.

2k = sum of two equal numbers

2k = k + k

If k is prime, then conjecture holds...as in

2*3 = 3+3

2*5 = 5+5

2*4 = 4+4 (doesnt hold)

2*6 = 6+6 (doesnt hold)

2*7 = 7+7 (holds).

2*9 = 9+9 (doesnt hold, because nine isnt prime).

even A + even A = even ...doesnt hold. (its the sum of two evens, not primes, so k=4 and k=6, don't hold).

We need to have the following odd + odd = even

André Albergaria Coelho andrealbergaria@gmail.com