Identifying the shared genetic signal from genome-wide association studies of externalizing and locomotor activity

Brittany S. Leger^{1,2}, Apurva S. Chitre³, Hannah Bimschleger², Katarina Cohen², Riyan Cheng², Denghui Chen³, JianJun Gao², Katie Holl⁴, Alesa Hughson⁵, Aidan Horvath⁵, Benjamin B. Johnson², Thiago Missfeldt Sanches², Celine L. St. Pierre⁶, Daniel Munro^{2,7}, Khai-Minh Nguyen², Tengfei Wang⁸, Nazzareno Cannella⁹, David Dietz¹⁰, Hao Chen⁸, Roberto Ciccocioppo⁹, Shelly B. Flagel^{5,11}, Gary Hardiman¹², Keita Ishiwari^{10,13}, Thomas Jhou¹⁴, Peter W. Kalivas¹⁴, Brittany N. Kuhn¹⁴, Suzanne H. Mitchell¹⁵, Oksana Polesskaya², Jerry B. Richards^{10,13}, Terry E. Robinson¹⁶, Leah C. Solberg Woods¹⁷, Trey Ideker^{18,19}, The Externalizing Consortium²⁰, Abraham A. Palmer^{2,18*}

¹Biomedical Sciences Program, University of California San Diego, San Diego, CA, USA. ²Department of Psychiatry, University of California San Diego, San Diego, CA, USA. ³Bioinformatics and System Biology Program, University of California San Diego, USA. ⁴Department of Physiology, Medical College of Wisconsin, Milwaukee, USA. ⁵Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA. ⁶Department of Genetics, Washington University in St Louis, MO, USA. ⁷Department of Integrative Structural and Computational Biology, Scripps Research, San Diego, CA, USA. ⁸Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA. 9School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Italy. ¹⁰Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, NY, USA. ¹¹Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA. ¹²School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland. ¹³Clinical and Research Institute on Addictions, State University of New York at Buffalo, Buffalo, NY, USA. ¹⁴Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA, ¹⁵Departments of Behavioral Neuroscience and Psychiatry, Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA, ¹⁶Department of Psychology, University of Michigan, Ann Arbor, MI. USA. ¹⁷Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA. ¹⁸Institute for Genomic Medicine, University of California San Diego, San Diego, CA, USA. ¹⁹Department of Medicine, University of California San Diego, San Diego, CA, USA. ²⁰www.externalizing.org.

In rodent models, novelty-induced exploratory locomotion has been proposed as a model of human externalizing behavior. However, there is little empirical data available that can rigorously evaluate this assertion. We used biological knowledge networks to investigate the overlapping genetic signal from these parallel traits. We use findings from a multivariate genome-wide association study (GWAS) of externalizing in \sim 1.5M human subjects, and a meta-analysis GWAS of total distance traveled in the open field in \sim 7.7K heterogeneous stock rats. After translating these data into gene-level signal using MAGMA, we found little overlap (p=0.5) between the lists of implicated genes. However, after we projected these gene lists into a network space using a random walk

approach (NetColoc), we identified a highly significant overlap between these two propagated networks (*p*=1.8x10⁻⁹). The overlapping gene sets highlighted common mechanisms, including neurological development and synaptic signaling, particularly GABAergic signaling. We also identified species-specific processes, including mitochondrial energy production and muscular and skeletal development in rats, and amino acid metabolism and histone H3K9 demethylase activity in humans. This study supports a biological relationship between locomotor activity and externalizing, and demonstrates a broadly applicable paradigm for empirically determining whether and how phenotypes measured in model species recapitulate uniquely human behavioral and psychiatric traits.