

ML Bootcamp 2021

Table of contents

What & Why EDA?

Why can't I just run model.fit() and be done with it?

O2 How to actually do it?

How to think about what kind of exploration I need to do?

O3 Feature Engineering

Features, features and more features.....that's how you improve your model

O4 Common packages available for FE

Available libraries for automatic feature engineering

O5 Hand-crafted features

Building features based on you domain knowledge

06 Hands-on

Lets start practicing!

Slido: #gdg_ml_bootcamp_w3

Exploratory Data Analysis

- Just as the title says, it is all about exploring your data
- You will have lots of data: numerical, categorical, text etc.
- Each data needs to be explored in a different way based on the type of the data

Slido: #gdg_ml_bootcamp_w3

EDA is about creating a story...

- Exploring the data is all about asking questions
- You need to investigate and "Explore" the data
- For Example:
 - How many people survived/didn't survive?
 - What is Pclass?
 - Is there a relationship between Pclass and Survived?
 - How is age related to the survival rate?
- These questions help us move on to the task of Feature Engineering

Dimensionality Reduction Techniques

- The data that we collect usually has large number of columns. Each column is called a feature
- Visualizing beyond 3D is beyond the scope of any human being as of today.
 Hence, we resort to visualizing data in 1,2 or 3D
- Dimensionality reduction allows us to better understand very high dimensional data and helps us deal with the issue of "Curse of Dimensionality"

Feature Engineering

- "Features" are nothing but the characteristics that define your data.
- For example
 - Height, weight, age are three features that describe a human being or an animal.
 - Number of pages, color, paperback or hardcover are features that describe a book
- Curse of dimensionality is one reason for Feature Engineering or Dimensionality

ReductioSample Image

Sample Review

The earphones that I purchased were working very well at first but later stopped working completely

Features: ?

Different Methods of Feature Engineering

Feature Extraction

- Derive/create new features from existing features
- These features are either derived from existing features based on calculations or dimensionality reduction techniques such as PCA(although originally intended to reduce the dimensions for better visualization) may be used
- One hot encoding is another example of generating new features based on existing ones.

Feature Selection

- This process involves select a subset of the features from your existing set of features
- Various statistical techniques, regularization and feature importance techniques can be used here
- SelectKBest and Recursive Feature Elimination(RFE) provided by scikit-learn are a good start

Domain knowledge specific features

This category of feature engineering comes from domain knowledge

Slipp Studge of Investment when the expert in that field and will be

Dealing with Data

 A Machine Learning algorithm can only accept number, and hence we need to convert all our data into numbers that the machine can understand

Numerical data:

- Since this data is already in the form of numbers some of the work is done
- However, looking across different numerical features, sometimes you will notice an imbalance in the scale of the data
- Example: Age and Salary.

Categorical data:

- This data consists of categories. Eg: Gender, T-shirt size, Weather Condition etc.
- All this data is in the form of strings.
- You would need to convert it into numbers using techniques such as encoding the categories as numbers(One hot encoding, label encoding etc.)

Text data:

- Free text data is also very commonly collected. Eg: Emails, Survey responses, Chats from chatbots etc.
- All this text needs to be converted into numbers for the machine to be able to understand it.

 Slide: #9f9irf9lthesterems Wising techniques such as Word Embeddings, TF-IDF and CountVectorizer

Lets start Practicing!

Thanks

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, infographics & images by **Freepik**

slidesgo