

REDES DE COMPUTADORES

GLEDSON SCOTTI

Arquitetura de Redes Locais – Ethernet – 802.3

- Mais usada em redes locais;
- Camadas 1 e 2 do OSI;
- Função de pegar os dados entregue pelos protocolos de alto nível e inseri-los dentro dos quadros que serão enviados através da rede.
- Define como os dados serão transmitidos fisicamente;
- Duas camadas: LLC e MAC;

• LLC – Controle de Link Lógico (IEEE 802.2): inclui informações de protocolo de alto nível, operando na camada dois do Modelo OSI. Com isso, a máquina receptora tem como saber qual o protocolo de alto nível deve-se entregar os dados de um quadro que ele acabou de receber.

 MAC – Media Access Control (IEEE 802.3): monta o quadro de dados a ser transmitido pela camada física, incluindo cabeçalhos próprios dessa camada aos dados recebidos da camada de LLC. Verifica ainda se o meio físico está pronto para ser usado (CSMA/CD, entre outros).

• PHY – Physical: transmite os quadros entregues pela camada MAC. Define como os dados são transmitidos através do meio físico e também o formato dos conectores usados pela placa de rede.

 CSMA/CD – Carrier Sense Multiple **Access With** Collision Dectect (Hub): Acesso Múltiplo para detecção de portadora com Detecção de Colisão;

- Broadcast;
- Unicast;
- Multicast;

- MAC Address (Identificador Único);
- Gravado na ROM da Plcaca de Rede;
- MAC Broadcast: FF-FF-FF-FF;
- Têm 48 bits expressos em hexadecimal;
- Os 3 primeiros octetos(24 bits) identificam o fabricante (OUI) e os 3 últimos(24 bits) a placa de rede propriamente dita.

- https://regauth.standards.ieee.org/standards-ra-web/pub/view.html#registries
- http://www.coffer.com/mac_find/

- Níveis Lógicos: 0 e 1 com 0V e 5V respectivamente;
- Uma placa de rede recebe:
 - 01001010100101001010101110101011101010
 1010101

- Para cada taxa de transferência, tem um padrão de codificação diferente:
 - 10 Mbps (Ethernet): Codificação Manchester para todos os tipos de cabos;
 - 100 Mbps (FastEthernet): é usada codificação
 4B/5B para todos os tipos de cabos;
 - 1 Gbps (Gigabit Ethernet): usa codificação 4D-PAM-5 quando em uso com os cabos UTP e 8B/10B com Fibras;
 - 10Gbps (10G Ethernet): usa codificação chamada
 64B/66B quando em uso com fibras e DSQ128/PAM 16 quando em uso com cabos UTP;

Arquitetura Ethernet (802.3) - Manchester

- Ocorrem transições de níveis lógicos;
- Utiliza o DPLL (Digital Phase Locked Loop) que verifica essas transições;

Arquitetura Ethernet (802.3) – 4B/5B

- 4B/5B, separa-se em blocos de 4 bits;
- NRZI (Non-Return do Zero Inverted);

Data Input	Data Output		
0000	11110		
0001	01001		
0010	10100		
0011	10101		
0100	01010		
0101	01011		
0110	01110		
0111	01111		
1000	10010		
1001	10011		
1010	10110		
1011	10111		
1100	11010		
1101	11011		
1110	11100		
1111	11101		

Arquitetura Ethernet (802.3) – 4-D-PAM-5

- Usadas por redes Gigabit Ethernet;
- São usados 4 pares de fios para transmissão simultaneamente;
- Transmissão de Modulação por Amplitude de Pulso (PAM – Pulse Amplification Modulation);
- Vários níveis de tensão:
 - 00 = -2V;
 - 01 = -1V;
 - 10 = 0V;
 - 11 = +1V;
 - +2V para controle (correção de erros);

• 8B/10B:

- Usadas por redes Gigabit Ethernet em Fibra ou FIBRE Channel (FC);
- Cada grupo de 8bits é convertido em 10 bits;

• DSQ128/PAM-16

- Usadas em rede 10G Ethernet;
- Cada grupo de 4 é convertido em um símbolo;
- Possui 16 símbolos diferentes;
- DSQ significa Modulação de Amplitude em quadratura de raiz quadrada dupla de 128 símbolos ou DSQ128;

- Network Interface Card (NIC):
 - Papel principal é receber quadros enviados pela Camada MAC, e transmitir através do meio físico;
 - É responsável pela codificação dos sinais;

[Taxa de Transmissão Máxima][Transmissão] [Cabo]

- Taxa de Transmissão: em Mbps;
- Transmissão: Banda Base;
- Cabo:
 - Coaxial: 2 coaxial fino e 5 coaxial grosso;
 - Par-trançado: T;
 - Fibra: F, sendo S (short = 850nm) e L (long = 1300nm);

Arquitetura de Redes Locais -Wi-Fi - 802.11

•Ad-hoc:

- Conecta um número pequeno de hosts;
- Não possui um WAP
- Compartilhamento de Redes (Bridge);

- •BSS (Basic Service Set):
 - Utiliza um WAP;
 - Possui um SSID (Service Set Identification);
 - BSSID: MAC do SSID;

- •ESS (Extended Service Set):
 - Vários AP´s com o mesmo SSID;
 - 10% da área do próximo;

- •ESS (Extended Service Set) Serviços às Estações:
 - Autenticação: permitir ou impedir acessos;
 - Desautenticação: quando um estação pretende se desconectar da rede sem fio;
 - **Privacidade**: WEP, WPA, WPA2, WPA-Enterprise, outros;
 - Entrega de dados: enviar os dados de um dispositivo a outro;

- ESS (Extended Service Set) Serviços do WAP:
 - Associação: ligação entre a estação e um WAP;
 - Desassociação: pode ser feito pelo AP ou estação;
 - Reassociação: em arquiteturas ESS, permite roaming entre WAP;
 - Distribuição: acesso a outras estações;
 - Integração: troca de dados entre 802.11 e 802.3;

- •Rádios 2.4 GHz e 5.8 GHz;
- Abertos não exigindo licença;
- Métodos de Transmissão:
 - FHSS Frequency Hopping Spread Spectrum;
 - DSSS Direct Sequence Spread Scpectrum;
 - OFDM Orthogonal Frequency-Division Multiplexing;

- 802.11
 - 2 Mbps e 1 Mbps;
 - DSSS e FHSS;
 - 2.4 GHz;
 - Canais: 3;
- •802.11b
 - 11 Mbps e 5,5 Mbps;
 - DSSS;
 - 2.4 GHz;
 - Canais: 3

- •802.11a
 - 6 Mbps a 54 Mbps;
 - OFDM;
 - 5.8 GHz;
 - Canais: 12;
- •802.11g
 - 6 Mbps a 54 Mbps;
 - OFDM;
 - 2.4 GHz;
 - Canais: 12;

- 802.11n
 - 65 Mbps a 600 Mbps;
 - MIMO-OFDM;
 - 2.4 GHz e 5.8 GHz;

Taxa de Transferência	Antena	Tamanho do Canal	Intervalo de Guarda
65 Mbps	1 x 65 Mbps	20 MHz	800 ns
72,2 Mbps	1 x 65 Mbps	20 MHz	400 ns
130 Mbps	2 x 65 Mbps	20 MHz	800 ns
135 Mbps	1 x 135 Mbps	40 MHz	800 ns
144,4 Mbps	2 x 72,2 Mbps	20 MHz	400 ns
150 Mbps	1 x 150 Mbps	40 MHz	400 ns
195 Mbps	3 x 65 Mbps	20 MHz	800 ns
216,7 Mbps	3 x 72,2 Mbps	20 MHz	400 ns
260 Mbps	4 x 65 Mbps	20 MHz	800 ns
270 Mbps	2 x 135 Mbps	40 MHz	800 ns
288,9 Mbps	4 x 72,2 Mbps	20 MHz	400 ns
300 Mbps	2 x 150 Mbps	40 MHz	400 ns
405 Mbps	3 x 135 Mbps	40 MHz	800 ns
450 Mbps	3 x 150 Mbps	40 MHz	400 ns
540 Mbps	4 x 135 Mbps	40 MHz	800 ns
600 Mbps	4 x 150 Mbps	40 MHz	400 ns

- 802.11ac
 - Até 1300
 Mbps;
 - Até 8 antenas;
 - Obrigatorieda de do beamforming;

	802.11n	802.11ac	802.11ad
Throughput	600 Mbps	3.2 Gbps	Up to 7 Gbps
Coverage	Home, 70 m	Home, 30 m	Room, <5m
Freq. Band	2.4/5 GHz	5 GHz	2.4/5/60 GHz
Antennas	4 x 4 MIMO	8 x 8 MIMO	>10 x 10 MIMO
Applications	Data, Video	Video	Uncompressed Video

Arquitetura Token Ring (802.5)

- Padrão proprietário IBM;
- Ainda utilizado em Mainframes;
- Não existem colisões;
- Passagem de Token;
- Tamanho de quadro:
 1.500 bytes contra
 17.800 bytes;

Arquitetura FDDI (802.5)

- Primeira arquitetura a utilizar fibras;
- Duas camadas físicas, uma para codificação e outra chamada PMD (Physical Media Dependent) que define conectores, transmissores e receptores;
- Pode trabalhar com anéis duplos;
- Várias fichas rodando pela rede.

