MLS			PLS(AICc)	PLS(BIC) I	PLS(HQIC) F	
Ridge	automobile	17.65(4)	17.60(3)	17.34 (1)	17.65(4)	17.34(1)
	fertility	104.75(2)	105.73(5)	104.75(2)	104.75(2)	104.75(2)
	flow	68.36(4)	68.36(4)	64.46 (1)	68.36(4)	64.46(1)
	forest	101.49(3)	101.49(3)	101.49(3)	101.49(3)	101.49(3)
	servo	60.01(2)	60.01(2)	61.79(4)	60.01 (2)	61.79(4)
	slump	86.68(2)	90.71(5)	86.68(2)	86.68(2)	86.68(2)
	traffic	44.10(2)	43.42(1)	44.47(4)	44.10(2)	44.47(4)
	wine_red	65.93 (3)	65.93 (3)	65.93(3)	65.93(3)	65.93(3)
	wine_white	73.91(3)	73.91(3)	73.91(3)	73.91(3)	73.91(3)
Avg. Rank		(3.00)	(3.22)	(2.89)	(3.00)	(2.89)
SVR	automobile	20.27(1)	22.73(5)	20.54(2)	22.17(4)	20.68(3)
	fertility	119.83(3)	127.47(5)	119.83(3)	119.83(3)	107.00(1)
	flow	247.34(4)	247.34(4)	66.91 (1)	247.34(4)	70.72(2)
	forest	109.60(3)	109.60(3)		109.60(3)	109.60(3)
	servo	16.76(3)	16.49 (1)	16.76(3)	16.76(3)	18.05(5)
	slump	81.24(4)	81.24(4)	77.99(1)	81.24(4)	77.99(1)
	traffic	46.74(3)	46.60(1)	47.11(5)	46.74(3)	46.65(2)
	wine_red	58.82(1)	58.82(1)	60.62(4)	60.62(4)	60.62(4)
	wine_white	59.79(3)	58.99 (1)	59.79(3)	59.79(3)	59.79(3)
Avg. Rank		(2.94)	(2.83)	(2.89)	(3.56)	(2.78)
RF	automobile	18.92(3)	21.63(4)	18.11(2)	21.63(4)	15.66(1)
	fertility	113.98(4)	113.98(4)	99.36(2)	113.98(4)	98.27(1)
	flow	77.71(4)	83.91(5)	63.68(2)	73.75(3)	59.79 (1)
	forest	118.57(3)		108.17 (1)	118.57(3)	118.57(3)
	servo	21.18(4)	19.41(2)	21.18(4)	19.13 (1)	19.67(3)
	slump	84.99(3)	87.86(5)	79.54(1)	84.99(3)	80.62(2)
	traffic	53.58(5)	52.33(4)	50.01(2)	50.01(2)	46.89(1)
	wine_red	60.12(3)	59.26 (1)	60.12(3)	60.12(3)	60.12(3)
	wine_white	60.29(2)	60.29(2)	66.12(4)	60.29(2)	66.12(4)
Avg. Rank		(3.67)	(3.44)	(2.56)	(3.06)	(2.28)
Mean Rank		(3.20)	(3.17)	(2.78)	(3.20)	(2.65)

Table 3: The 3-fold cross validation relative mean squared error and Friedman ranks for all the datasets when PLS, using several stop criteria (AIC, AICc, BIC, HQIC and GMDL), taking into account some baseline systems (Ridge, SVR and RF) and the GS sampling strategy.