Homework 1

ECON 441: Introduction to Mathematical Economics

Exercise 2.3

1. Write the following in set notation:

(a) The set of all real numbers greater than 34.

(b) The set of all real numbers greater than 8 but less than 65.

2. Given the sets $S_1 = \{2, 4, 6\}$, $S_2 = \{7, 2, 6\}$, $S_3 = \{4, 2, 6\}$, and $S_4 = \{2, 4\}$, which of the following statements are true?

a) $S_1 = S_3$

b) $S_1 = \mathbb{R}$

c) $8 \in S_2$

d) $3 \notin S_2$

e) $4 \notin S_3$

f) $S_4 \subset \mathbb{R}$

g) $S_1 \supset S_4$

h) $\emptyset \subset S_2$

i) $S_3 \supset \{1, 2\}$

Instructor: Div Bhagia

Note that \mathbb{R} denotes the set of real numbers.

Exercise 2.4

- 5. If the domain of the function y = 5 + 3x is the set $\{x | 1 \le x \le 9\}$, find the range of the function and express it as a set.
- 7. In the theory of the firm, economists consider the total cost C to be a function of the output level Q: C = f(Q).
 - (a) According to the definition of a function, should each cost figure be associated with a unique output level?
 - (b) Should each level of output determine a unique cost figure?
- 8. If an output level Q_1 can be produced at a cost of C_1 , then it must also be possible (by being less efficient) to produce Q_1 at a cost of $C_1 + \$1$, or $C_1 + \$2$, and so on. Thus it would seem that output Q does not uniquely determine total cost C. If so, to write C = f(Q) would violate the definition of a function. How, in spite of this reasoning, would you justify the use of the function C = f(Q)?

Exercise 2.5

1. Graph the following functions and find their inverse functions.

(a)
$$y = 16 + 2x$$

(b)
$$y = 8 - 2x$$

(c)
$$y = 2x + 12$$

Exercise 4.2

6. Expand the following summation expressions:

(a)
$$\sum_{i=2}^{5} x_i$$

(b)
$$\sum_{i=5}^{8} a_i x_i$$

(c)
$$\sum_{i=1}^{4} bx_i$$

(a)
$$\sum_{i=2}^{n} x_i$$

(d) $\sum_{i=1}^{n} a_i x^{i-1}$

(b)
$$\sum_{i=5}^{8} a_i x_i$$

(e) $\sum_{i=0}^{3} (x+i)^2$

8. Show that the following are true:

(a)
$$\left(\sum_{i=0}^{n} x_i\right) + x_{n+1} = \sum_{i=0}^{n+1} x_i$$

(b)
$$\sum_{j=1}^{n} ab_{j}y_{j} = a \sum_{j=1}^{n} b_{j}y_{j}$$

(c)
$$\sum_{j=1}^{n} (x_j + y_j) = \sum_{j=1}^{n} x_j + \sum_{j=1}^{n} y_j$$

Exercise 5.1

1. In the following paired statements, let p be the first statement and q the second. Which is true for each case: $p \Rightarrow q, p \Leftarrow q$, or $p \Leftrightarrow q$?

- (a) It is a holiday; it is Thanksgiving Day.
- (b) A geometric figure has four sides; it is a rectangle.
- (c) Two ordered pairs (a, b) and (b, a) are equal; a is equal to b.
- (d) A number is rational; it can be expressed as a ratio of two integers.
- (e) A 4×4 matrix is nonsingular; the rank of the 4×4 matrix is 4. (skip for now)
- (f) The gasoline tank in my car is empty; I cannot start my car.
- (g) The letter is returned to the sender with the marking "addressee unknown"; the sender wrote the wrong address on the envelope.