

Segundo Exame

2 de Julho de 2015

15:00-17:00

1.		Para cada uma das seguintes afirmações, diga se é verdadeira ou falsa. Cada osta certa vale 0.5 valores e <i>cada resposta errada desconta 0.2 valores</i> .
	(a)	Numa lógica não completa, nenhum argumento válido é demonstrável. Resposta: Resposta: Falsa
	(b)	Se (Δ,α) é um contra-argumento para o argumento (Δ',α') , então os dois argumentos têm a mesma forma. Resposta: Resposta: Verdadeira
2.	(1.5) valo	Complete cada uma das seguintes afirmações. Cada resposta certa vale 0.5 res.
	(a)	Numa lógica correta, todos os argumentos demonstráveis são Resposta: Válidos
	(b)	Uma lógica cujo sistema dedutivo permita derivar todas as fórmulas bem formadas é Resposta: Completa
	(c)	Supondo que o argumento (Δ,α) é válido numa determinada lógica que é, então $\Delta \vdash \alpha.$ Resposta: Completa
3.		Escolha a <i>única</i> resposta <i>correcta</i> para as seguintes questões. Cada resposta a vale 1 valor e <i>cada resposta errada desconta 0.4 valores</i> .
	(a)	A base de Herbrand para o conjunto de cláusuas $\{\{P(a)\}, \{Q(f(b))\}\}$ é: A. $\{a,b,f(a),f(b),f(f(a)),f(f(b)),\ldots\}$ B. $\{P(a),Q(a),P(f(a)),Q(f(b)),P(f(f(a))),Q(f(f(b))),\ldots\}$

Número:		Pág. 2 de 10
C. $\{a, b\}$ D. $\{P(a), Q(b)\}$		
Resposta: Resposta: B.		
(b) Para as cláusulas c	de Horn	
	$Ant(x,y) \leftarrow AD(x,y)$	(1)
	$Ant(x,z) \leftarrow Ant(x,y), \ AD(y,z)$	(2)
	$AD(Marge, Bart) \leftarrow$	(3)
	$AD(Sr.B, Marge) \leftarrow$	(4)
	$\leftarrow Ant(Sr.B, Bart)$	(5)
A. (1) e (2) são re	gras.	
B. (5) é uma afirr	nação.	
C. (3) e (4) são ob	ojectivos.	

D. Nenhuma das afirmações anteriores está correcta.

Resposta: _____

Resposta:

A.

Número: _____ Pág. 3 de 10

4. (1.5) Demonstre o seguinte teorema usando o sistema de dedução natural da lógica proposicional (apenas pode utilizar as regras Hip, Prem, Rep, Reit e introdução e eliminação de cada uma das conectivas):

$$((P \vee Q) \wedge (\neg P \vee R)) \to (Q \vee R)$$

1	$(P \vee Q) \wedge (\neg P \vee R)$	Hip
2	$P \lor Q$	E∧, 1
3	$\neg P \lor R$	E∧, 1
4		Hip
5	$\neg P \lor R$ $\neg P$	Rei, 3
6	$\neg P$	Hip
7	$\neg R$ P $\neg P$	Hip
8	P	Rei, 4
9		Rei, 6
10	R	$I\neg$, $(7, (8, 9))$
11	R	E¬, 10
12	$Q \lor R$	I∨, 11
13	R	Hip
14	$Q \lor R$	I∨, 13
15	$Q \lor R$	EV, (5, (6, 12), (13, 14))
16	Q	Hip
17	$Q \lor R$	I∨, 16
18 19	$Q \lor R$ $((P \lor Q) \land (\neg P \lor R)) \to (Q \lor R)$	$E\lor$, $(2, (4, 15), (16, 17))$ $I\rightarrow$, $(1, 17)$

5. **(1.5)** Demonstre o seguinte teorema usando o sistema de dedução natural da lógica de primeira ordem (apenas pode utilizar as regras Hip, Prem, Rep, Reit e introdução e eliminação de cada uma das conectivas e quantificadores):

$$(\forall x [P(x) \to R(x)] \land \exists y [P(y)]) \to \exists z [R(z)]$$

Resposta:

6. Considere que α , β , γ e δ são proposições. Sabendo que o argumento

$$\alpha$$
 β
 $\therefore \neg \gamma$

é válido, diga, justificando, o que se pode concluir sobre a validade dos seguintes argumentos (válido, não válido, ou não se pode concluir nada):

(a) (0.5)
$$\alpha$$
 β
 $\therefore \gamma \rightarrow \delta$

Resposta:

Da validade do argumento original podemos concluir que é impossível ter α e β verdadeiras e γ verdadeira. Podemos assim concluir que sendo α e β verdadeiras o antecedente da implicação $\gamma \to \delta$ é sempre falso, pelo que a implicação é sempre verdadeira. Logo o argumento é válido.

(b) (0.5)
$$\alpha$$
 β
 γ
 \cdot δ

Resposta:

Da validade do argumento original podemos concluir que é impossível ter α e β verdadeiras e γ verdadeira. Podemos assim concluir que é impossível ter α , β e γ verdadeiras e δ falsa, logo o argumento é válido.

Vúmero:					Pág. 5 de 10
	Considere o	s seguintes passos de res r correctos.	solução (em L	ógica Proposicio	onal) que po-
	$\{\neg P, S, R\}$				
	$\{P,Q\}$				
3	$\{\neg Q, \neg R\}$	Prem			
4	$\{\neg Q, \neg R\}$ $\{\neg S\}$	Prem			
5	$\{\neg P, R\}$	Res. (1,4)			
6	$\{\neg P, \neg Q\}$	Res, (3,5)			
7	$\{\neg P, \neg Q\}$ $\{\}$	Res, (2,6)			
Resp	Responda às seguintes questões usando apenas a palavra "SIM", a palavra "NÃO", ou um dígito referente ao número da linha em questão. Cada resposta certa vale 0.5 valores e <i>cada resposta errada desconta</i> 0.2 <i>valores</i> .				
(a)	 (a) Existe ou não uma linha contendo um passo de resolução incorreto? Em caso afirmativo, indique o número da linha. Resposta: Resposta: 				
(1.)	SIM, 7	• 1	1 ~ 1.	2	
(b)		seguida uma estratégia d	ie resolução li	near?	
Resposta:					
	Resposta:				
	SIM				
(c)		seguida uma estratégia d	le resolução u	nitária?	
Resposta: Resposta:					
	NÃO				
8. (1.5)	5) Considere o seguinte conjunto de <i>fbfs</i> :				
		$\{P(x,f(b),y)\}$	P(a, f(x), c)	l	
		$(x, f(\theta), g)$	(a, f(x), c)	ſ	
Preencha as linhas que necessitar da seguinte tabela, de forma a seguir o de unificação para determinar se as <i>fbfs</i> são unificáveis. Em caso afirmativ qual o unificador mais geral, caso contrário escreva que as <i>fbfs</i> não são un				ativo indique	
		_	Conj. de		
Co	njunto de fb	ofs	Desacordo	Substituição	
_			1	I	J
Unii	ficador mais	geral (se existir):			

	Conj. de	
Conjunto de fbfs	Desacordo	Substituição
$\{P(x, f(b), y), P(a, f(x), c)\}$	$\{x,a\}$	$\{a/x\}$
$\{P(a, f(b), y), P(a, f(a), c)\}$	$\{b,a\}$	_

Unificador mais geral (se existir): As fbfs não são unificáveis.

- 9. Considere a *fbf* $\{\{\neg P, Q, R\}, \{\neg Q, R, S\}, \{\neg R, S\}, \{\neg P, \neg Q, R\}, \{\neg S\}, \{Q, \neg R\}\}\}$ e o algoritmo DP implementado recorrendo a baldes.
 - (a) (1.0) Complete a tabela que se segue:

Baldes	Cláusulas originais	Resolventes
b_P		
b_Q		
b_R		
b_S		

(b) **(0.5)** Conclui que a *fbf* é satisfazível ou não satisfazível? Justifique. No caso de a *fbf* ser satisfazível indique uma testemunha.

Resposta:

	Baldes	Cláusulas originais	Resolventes
	b_P	$\{\neg P, Q, R\} \{\neg P, \neg Q, R\}$	
(a)	b_Q	$\{\neg Q, R, S\} \{Q, \neg R\}$	
	b_R	$\{\neg R, S\}$	
	b_S	$\{\neg S\}$	

- (b) A *fbf* é satisfazível porque não foi gerada a cláusula vazia durante o processamento dos baldes. A única testemunha é: I(P) = I(Q) = I(R) = I(S) = F.
- 10. (1.5) Use o algoritmo de propagação de marcas para determinar se a $\mathit{fbf}(P \to Q) \land (\neg P \to Q)$ é satisfazível. Em caso afirmativo apresente uma testemunha.

- (a) Eliminação do símbolo \rightarrow : $\neg (P \land \neg Q) \land (\neg P \land \neg Q)$.
- (b) Obtenção do DAG da f $bf \neg (P \land \neg Q) \land (\neg P \land \neg Q)$ e propagação de marcas:

- (c) Como os nós P e Q ficaram por marcar, é aplicado o algoritmo de teste de nós. Apresentam-se as várias alternativas (uma delas seria suficiente):
 - O teste do nó P com a marca V, marca o nó Q com V. Obtém-se uma marcação completa e consistente. Assim, uma testemunha é: I(P) = V, I(Q) = V.
 - O teste do nó P com a marca F, marca o nó Q com V. Obtém-se uma marcação completa e consistente. Assim, uma testemunha é: I(P) = F, I(Q) = V.
 - O teste do nó Q com a marca V, deixa o nó P por marcar. Assim, o nó Q seria agora testado com a marca F. Este teste leva a uma contradição. Logo, o nó Q é marcado com a marca permanente V. A propagação desta marca não consegue marcar P. Logo, é novamente aplicado o algoritmo de teste de nós. O teste de P com qualquer marca leva a uma marcação completa e consistente. Assim, obteríamos uma das duas testemunhas: I(P) = V, I(Q) = V ou I(P) = F, I(Q) = V.
- 11. **(1.5)** Usando uma árvore de resolução SLD e uma função de selecção que escolhe o primeiro literal do objectivo para unificar, indique explicitamente todas as soluções para o objectivo $\leftarrow P(x)$. (Em cada ramo da árvore indique a cláusula e substituição respectivas.)

$$P(8).$$

$$P(x) \leftarrow Q(x, y).$$

$$Q(5, x) \leftarrow R(x).$$

$$Q(2, c).$$

$$R(3).$$

Número: _____ Pág. 8 de 10

As soluções são: $\{8/x\}$, $\{5/x\}$ e $\{2/x\}$.

12. (1.0) Considere o predicado penultimo/2 tal que penultimo(L, X) afirma que X é o penúltimo elemento da lista L.

Por exemplo:

```
?- penultimo([a,b,c,d],X).
X = c
```

Complete o código que se segue:

Resposta:

```
\label{eq:penultimo} \begin{array}{ll} \text{penultimo}\left([X,\_],\ X\right). \\ \text{penultimo}\left([\_,Y|Ys],\ X\right) :- \ \text{penultimo}\left([Y|Ys],\ X\right). \end{array}
```

13. (1.0) Considere o predicado retira_N/3 tal que retira_N (L1, N, L2) afirma que L1 é uma lista, N é um inteiro e L2 corresponde à lista L1 em que o N-ésimo elemento foi retirado. (O primeiro elemento da lista corresponde a N=1.)

Por exemplo:

```
?- retira_N ([a,b,c,d], 3, L).
L = [a,b,d]
```

Complete o código que se segue:

```
retira_N(L1, N, L2) :- retira_N(L1, N, L2, N).
```

Número: _____ Pág. 9 de 10

Resposta:

```
rretira_N(L1, N, L2) :- retira_N(L1, N, L2, N).

retira_N([], _, [], _).

retira_N([_|Xs], N, Ys, 1) :- Xs = Ys.

retira_N([X|Xs], N, [X|Ys], K) :- K > 1, K1 is K - 1, retira_N(Xs, N, Ys, K1).
```

14. **(1.0)** Considere o seguinte programa em PROLOG:

```
serie('Game of Thrones').
serie(galactica).
serie('csi NY').
policial('csi NY').
fantasia('Game of Thrones').
ficcaoCientifica(galactica).
gosta1('Alberto',S):-serie(S),\+policial(S).
gosta2('Alberto',S):-\+fantasia(S),serie(S).
gosta3('Alberto',S):-\+documentario(S),serie(S).
```

Indique todos os valores devolvidos para os objectivos gosta1(X, Y), gosta2(X, Y) e gosta3(X, Y).

Resposta:

```
?-gostal(X,Y).
X='Alberto',
Y='Game of Thrones';
X='Alberto',
Y=galactica.
?-gosta2(X,Y).
false.
?-gosta3(X,Y).
ERROR: gosta3/2: Undefined procedure: documentario/1
```

15. **(1.0)** Considere que está a implementar uma variante do 8-puzzle que para além de permitir jogadas horizontais e verticais, permite também fazer movimentos de peças na diagonal. Indique as linhas em PROLOG necessárias para que o predicado mov_legal (C1, M, P, C2) passe a considerar o movimento ce, que corresponde a mover uma peça na diagonal cima-esquerda, como válido. Por exemplo:

```
?-mov_legal([0,2,3,4,5,6,7,8,1], ce, 5, [5,2,3,4,0,6,7,8,1]). true.
```

Número:	Pág. 10 de 10
---------	---------------

Observação: não é necessário implementar o predicado mov_legal todo, basta implementar as regras correspondentes ao movimento ce.

```
mov_legal([0,P2,P3,P4,P5,P6,P7,P8,P9],ce,P5,[P5,P2,P3,P4,0,P6,P7,P8,P9]).
mov_legal([P1,0,P3,P4,P5,P6,P7,P8,P9],ce,P6,[P1,P6,P3,P4,P5,0,P7,P8,P9]).
mov_legal([P1,P2,P3,0,P5,P6,P7,P8,P9],ce,P8,[P1,P2,P3,P8,P5,P6,P7,0,P9]).
mov_legal([P1,P2,P3,P4,0,P6,P7,P8,P9],ce,P9,[P1,P2,P3,P4,P9,P6,P7,P8,0]).
```