3. Обобщенная модель Эрдёша—Реньи и случайные дистанционные графы

В этой главе мы расскажем об одном важном обобщении модели Эрдёша—Реньи и его приложениях в задачах комбинаторной геометрии.

3.1. Определение модели

Пусть дано число $n\in\mathbb{N}$ и множество $V=\{1,...,n\}$. Положим, как и в параграфе 2.2, $N=C_n^2$ и обозначим через $e_1,...,e_N$ ребра полного графа на множестве вершин V. Раньше мы отбирали ребра в случайный граф в соответствии со схемой из N испытаний Бернулли, в каждом из которых вероятность успеха (взятия ребра в граф) равнялась одному и тому же $p\in[0,1]$. Теперь же мы станем проводить ребро между вершинами i и j с вероятностью p_{ij} , зависящей от указанных вершин. В остальном все будет по-прежнему, т.е. испытания будут независимыми: у нас как бы N монеток с разными центрами тяжести, и в испытании с номером v мы бросаем v-ю монетку. При этом мы, опять-таки как и раньше, считаем величины p_{ij} зависящими, вообще говоря, от n. Иными словами, мы снова осуществляем серии независимых испытаний. Только на сей раз вероятности различных ребер различны.

Обозначим описанную модель через $G(n, p_{ij})$. По сути это вероятностное пространство

$$G(n, p_{ij}) = (\Omega_n, \mathscr{F}_n, P_{n,p_{ii}}),$$

в котором

$$|\Omega_n|=2^N, \quad P_{n,p_{ij}}(G)=\prod_{(i,j)\in E}p_{ij}\cdot\prod_{(i,j)\notin E}(1-p_{ij}).$$

В такой общности с моделью работать довольно муторно. Имеется, конечно, масса соответствующих результатов, но они чересчур громоздки (см., например, [1]). Намного естественнее и мотивированнее следующий частный случай модели.

Пусть для каждого натурального числа n (или для каждого n из произвольной бесконечной последовательности натуральных чисел) задан некоторый граф $\mathscr{G}_n = (\mathscr{V}_n, \mathscr{E}_n)$, у которого $\mathscr{V}_n = V$, а $\mathscr{E}_n \subseteq \{e_1, \dots, e_N\}$. Рассмотрим $p = p(n) \in [0, 1]$ и положим $p_{ii} = p$, коль скоро

 $(i,j)\in\mathscr{E}_n$, и $p_{i,j}=0$, коль скоро $(i,j)\not\in\mathscr{E}_n$. Иными словами, ребра графа \mathscr{G}_n появляются в случайном графе независимо друг от друга с одной и той же вероятностью, а ребра, которых в графе \mathscr{G}_n нет, не возникают в случайном графе вовсе.

Новую модель принято обозначать

$$G(\mathcal{G}_n, p) = (\Omega_n, \mathcal{F}_n, P_{n,p}).$$

Здесь

$$|\Omega_n| = 2^{|\mathscr{E}_n|}, \quad P_{n,p}(G) = p^{|E|} (1-p)^{|\mathscr{E}_n| - |E|}.$$

Очевидно, при $\mathscr{E}_n = \{e_1, ..., e_N\}$ мы возвращаемся к классической модели Эрдёша — Реньи: $G(K_n, p) = G(n, p)$.

Смысл новой модели абсолютно прозрачен. Помните «стратегическую» интерпретацию задачи о связности случайного графа (см. п. 2.5.1 и п. 2.5.4)? Тогда предположение об изначальной полноте графа железных дорог казалось крайне надуманным. Зато теперь для каждого набора стратегически важных объектов мы вольны рассматривать свой граф связывающих их путей \mathcal{G}_n и именно для него вычислять вероятности связности. Снова получится задача о надежности сети, и в такой постановке эта задача охватывает все возможные ситуации (в предположении, что связи в сети возникают/уничтожаются с равными вероятностями независимо друг от друга).

В настоящей главе мы рассмотрим два типа сетей (последовательностей графов \mathscr{G}_n) — «кубы» и «дистанционные графы».

3.2. Случайные подграфы куба

Обозначим через \mathcal{C}_n граф, у которого вершины — это n-мерные векторы с координатами 0 и 1 (всего 2^n вершин), то есть вершины n-мерного куба $[0,1]^n$, а ребрами соединены те и только те пары вершин, между которыми проходит ребро куба. Иными словами, ребра — это пары (0,1)-векторов, отстоящих друг от друга на расстояние 1 в пространстве \mathbb{R}^n . Например,

$$\mathcal{C}_2 = (\{(0,0),(0,1),(1,0),(1,1)\},$$

$$\{((0,0),(0,1)),((0,0),(1,0)),((1,1),(0,1)),((1,1),(1,0))\}).$$

Будем рассматривать модель $G(\mathscr{C}_n,p)$. Ю. Д. Буртин в 1977 году получил относительно этой модели результаты, аналогичные тем, которым мы посвятили параграф 2.5. Здесь аналогом «пороговой» вероятности $\frac{\ln n}{n}$ служит константа $\frac{1}{2}$. Иначе говоря, справедлива

Теорема 29. Если $p < \frac{1}{2}$, то почти наверное случайный граф в модели $G(\mathcal{C}_n, p)$ не является связным. Если $p > \frac{1}{2}$, то почти наверное случайный граф в модели $G(\mathcal{C}_n, p)$ связен.

Теорему 29 мы доказывать не станем, так как она стоит немного в стороне от основной линии этой главы. Тем не менее она весьма любопытна. На «пороге», т. е. при $p=\frac{1}{2}$ вероятность связности стремится к e^{-1} . Это буквально тот же самый результат, что и при $p=\frac{\ln n}{n}$ в модели Эрдёша—Реньи G(n,p).

Здесь имеется и аналог теоремы 16.

Теорема 30. Пусть $p=\frac{c}{n}$. Тогда при любом c<1 почти наверное все компоненты случайного графа в модели $G(\mathscr{C}_n,p)$ имеют размер $o(2^n)$. Для каждого c>1 найдется такая $\gamma=\gamma(c)\in(0,1)$, что почти наверное в случайном подграфе куба есть компонента размера не меньше $\gamma 2^n$.

Смысл очень простой: $o(2^n)$ — это мелочь по сравнению с числом вершин всего куба, каковое есть, разумеется, 2^n . Таким образом, при $p\leqslant \frac{c}{n},\ c<1,$ мы опять имеем дело с феодализмом, при $p\geqslant \frac{c}{n},\ c>1,$ возникает империя, а при $p>\frac{1}{2}$ — мировое господство. Может показаться странным, что пороги для связности отличают-

Может показаться странным, что пороги для связности отличаются в двух моделях (и существенно!), тогда как пороги для перехода от феодализма к империи, на первый взгляд, совпадают. Ан нет! Дело в том, что n в модели G(n,p) (и даже n в описании модели $G(\mathcal{G}_n,p)$) и n в модели $G(\mathcal{G}_n,p)$ суть совершенно разные вещи. В первом случае n—это число вершин случайного графа, во втором же—это двоичный логарифм от числа его вершин: $n = \log_2 2^n$. В дальнейшем мы постараемся соблюсти единообразие и станем все вероятности (функции типа p = p(n)) записывать в терминах именно количества вершин нашего случайного графа. В данном случае можно ввести обозначение $m = 2^n$ и сказать так: порогом для перехода от феодализма к империи служит функция $p = p(m) = \frac{1}{\log_2 m}$; порогом для перехода от империи к мировому господству служит функция $p = \frac{1}{2}$. И в такой записи все становится на свои места: как $\frac{1}{2}$ куда больше, нежели $\frac{\ln n}{n}$, так и $\frac{1}{\log_2 n}$ значительно превосходит $\frac{1}{n}$.

Доказательства теорем 29 и 30 следует искать в [1].

3.3. Случайные дистанционные графы

Пусть k — натуральное число. Положим n=4k. Обозначим через $\mathcal{G}_n=(\mathcal{V}_n,\,\mathcal{E}_n)$ граф, у которого

$$\mathcal{Y}_n = \{ \mathbf{x} = (x_1, ..., x_n) : x_i \in \{0, 1\}, \ x_1 + ... + x_n = 2k \},$$

$$\mathcal{E}_n = \{ (\mathbf{x}, \mathbf{y}) : |\mathbf{x} - \mathbf{y}| = \sqrt{2k} \},$$

где через $|\mathbf{x}-\mathbf{y}|$, в свою очередь, обозначено обычное евклидово расстояние между векторами $\mathbf{x},\mathbf{y}\in\mathbb{R}^n$. Иными словами, вершины графа \mathcal{G}_n —это снова (0,1)-векторы, у которых, правда, на сей раз ровно половина единичных и половина нулевых координат. И эти векторы соединены ребрами в графе \mathcal{G}_n тогда и только тогда, когда расстояние между ними есть $\sqrt{2k}$. Последнее условие равносильно тому, что множества единичных координат векторов, образующих ребро, пересекаются в аккурат по k элементам. Это условие можно записать в терминах скалярного произведения, которое для данных векторов $\mathbf{x}=(x_1,...,x_n), \ \mathbf{y}=(y_1,...,y_n)$ мы будем обозначать $<\mathbf{x},\mathbf{y}>=x_1y_1+...+x_ny_n$:

$$|\mathbf{x} - \mathbf{y}| = \sqrt{2k} \iff \langle \mathbf{x}, \mathbf{y} \rangle = k.$$

Граф \mathscr{G}_n мы будем называть *полным дистанционным графом*. Смысл слова «дистанционный» понятен: ребра графа задаются парами точек, отстоящих друг от друга на данное расстояние — «дистанцию». Полнота понимается в том смысле, что мы провели в графе все ребра, какие только могли: было между двумя векторами расстояние $\sqrt{2k}$, мы эти векторы и связали ребром. Просто *дистанционным* мы будем называть любой подграф в полном дистанционном графе.

Разумеется, бывает и масса других графов, которые стоило бы называть дистанционными. Вообще, дистанционный граф (или еще $\mathit{граф}$ расстояний) — это любой граф с вершинами в точках \mathbb{R}^n и ребрами, порожденными за счет данного расстояния (данных расстояний). Позже мы столкнемся с рядом соответствующих примеров. Да и подграфы куба, о которых мы говорили выше, вполне дистанционные. Однако пока мы будем работать именно с \mathscr{G}_n , и именно его мы будем называть полным дистанционным графом (полным графом расстояний).

Рассмотрение графа \mathcal{G}_n и его аналогов глубоко мотивировано задачами комбинаторной геометрии — задачей Нелсона — Эрдёша — Хадвигера о хроматическом числе пространства, проблемой Борсука и др. (см. [31,44–53]). В дальнейшем мы подробнее расскажем об этих мотивировках.

Сейчас важно отметить, что мы будем работать с моделью $G(\mathcal{G}_n, p)$. И снова смысл индекса n здесь не вполне такой же, как в описании модели в параграфе 3.1: там через n мы обозначали число вершин в графе \mathcal{G}_n , а здесь — размерность пространства, в котором живут вершины-векторы. Дабы устранить несоответствие, положим $m = C_n^{n/2} = |\mathcal{V}_n|$ и станем впредь говорить исключительно о модели $G(\mathcal{G}_m, p(m))$ (более того, даже \mathcal{V}_n мы переобозначим через \mathcal{V}_m и аналогично поступим с \mathcal{E}_n). Параметр m у нас будет стремиться к бесконечности вместе с ростом параметра n, и в такой асимптотике мы будем изучать вероятности свойств случайного дистанционного графа (т. е. случайного подграфа G полного графа расстояний \mathcal{G}_m).

Впоследствии мы изучим ряд свойств случайных дистанционных графов, подобных тем, которые мы изучили в модели Эрдёша — Реньи. Однако даже полный дистанционный граф устроен куда более нетривиально, нежели обычный полный граф K_n . И без понимания его устройства мы не сможем добиться серьезных продвижений в нашей науке. Поэтому следующий параграф (разбитый на пункты) мы посвятим обсуждению нужных нам свойств графа \mathcal{G}_m . И лишь затем перейдем, собственно, к случайным графам расстояний.

3.4. Вспомогательные факты и свойства полного дистанционного графа

В этом параграфе мы обсудим основные свойства полного дистанционного графа и приведем ряд смежных аналитических фактов.

3.4.1. Немного простой аналитики

Нам понадобится асимптотическое выражение для m = m(n) при $n \to \infty$. Воспользуемся формулой Стирлинга (см. § 2.8):

$$m = C_n^{n/2} = \frac{n!}{((n/2)!)^2} \sim \frac{\sqrt{2\pi n} n^n e^{-n}}{\pi n (n/2)^n e^{-n}} = \sqrt{\frac{2}{\pi}} \cdot \frac{2^n}{\sqrt{n}}.$$

Можно написать так:

$$m = \sqrt{\frac{2}{\pi}} \cdot \frac{2^n}{\sqrt{n}} (1 + \delta_1(n)),$$

где δ_1 — некоторая функция, стремящаяся к нулю при $n \to \infty$. Прологарифмируем последнее равенство:

$$\ln m = \ln \left(\sqrt{\frac{2}{\pi}} (1 + \delta_1(n)) \right) + n \ln 2 - \ln \sqrt{n}.$$

Получается, что

$$n = \frac{\ln m}{\ln 2} (1 + \delta_2(m)), \quad \delta_2 = o(1).$$

3.4.2. О числе независимости полного графа расстояний

Справедливы следующие три утверждения.

Лемма 3. Имеет место неравенство

$$\alpha(\mathscr{G}_m) \geqslant \frac{4^{n+2}}{\pi n 3^{\frac{3n}{4}+5}} (1+\delta_3(n)), \quad \delta_3(n) \to 0, \quad n \to \infty.$$

Лемма 4. При $n = 4\rho^a$, где ρ — простое, справедлива оценка

$$\alpha(\mathcal{G}_m) \leqslant \sqrt{\frac{2}{3\pi n}} \cdot \frac{4^n}{27^{n/4}} \cdot (1 + \delta_4(n)),$$

где $\delta_4(n) \to 0$, $n \to \infty$.

Лемма 5. При любом п справедлива оценка

$$\alpha(\mathcal{G}_m) \leq (1,99 + o(1))^n.$$

Вместе леммы говорят о том, что точное значение числа независимости полного дистанционного графа не найдено; однако оценки для этого числа достаточно близки друг к другу. А именно, при загадочном условии $n=4\rho^a$ (т. е. при условии того, что k— это степень простого числа) верхняя оценка из леммы 4 практически совпадает с универсальной нижней оценкой из леммы 3. В результате можно написать

$$\alpha(\mathcal{G}_m) = \left(\frac{4}{3^{3/4}} + o(1)\right)^n = (1,754... + o(1))^n.$$

Если же n произвольно, то зазор между известными оценками (леммы 3 и 5) куда больше:

$$(1,754...+o(1))^n \le \alpha(\mathcal{G}_m) \le (1,99+o(1))^n.$$

Перейдем к доказательствам.

Доказательство леммы 3. Рассмотрим множество

$$F = \left\{ \mathbf{x} = (x_1, ..., x_n) \in \mathcal{V}_m : \sum_{i=1}^{n/2} x_i = \left[\frac{n}{8} \right] - 1 \right\}.$$

Практически очевидно, что F — независимое множество вершин графа \mathcal{G}_m . Просто скалярное произведение любых двух векторов из F строго больше величины $\frac{n}{4}$, которая у нас порождает ребро (см. рис. 10).

Рис. 10

Положим

$$q = \sum_{i=\frac{n}{2}+1}^{n} x_i = \frac{n}{2} - \left(\left[\frac{n}{8} \right] - 1 \right).$$

Поскольку $\left\lceil \frac{n}{8} \right\rceil = \frac{n}{8} - \varepsilon$, $\varepsilon \in [0, 1)$,

$$q = \frac{n}{2} - \left(\left[\frac{n}{8} \right] - 1 \right) = \frac{n}{2} - \frac{n}{8} + 1 + \varepsilon = \frac{3n}{8} + 1 + \varepsilon.$$

Имеем

$$|F| = C_{n/2}^{[n/8]-1} C_{n/2}^q = (C_{n/2}^{[n/8]-1})^2.$$

Теперь, применив формулу Стирлинга и введя обозначение $\varepsilon_1 = 1 + \varepsilon$, получаем, что

$$\begin{split} &\alpha(\mathcal{G}_{m})\geqslant |F| = \left(\frac{\frac{n}{2}!}{\left(\left[\frac{n}{8}\right]-1\right)!q!}\right)^{2} = \left(\frac{\frac{n}{2}!}{\left(\frac{n}{8}-\varepsilon_{1}\right)!\left(\frac{3n}{8}+\varepsilon_{1}\right)!}\right)^{2} = \\ &= \left(\frac{\sqrt{\pi n}\left(\frac{n}{2}\right)^{\frac{n}{2}}e^{-\frac{n}{2}}}{\sqrt{\left(\frac{n}{4}-2\varepsilon_{1}\right)\pi}\left(\frac{n}{8}-\varepsilon_{1}\right)^{\frac{n}{8}-\varepsilon_{1}}e^{-\frac{n}{8}+\varepsilon_{1}}\sqrt{\left(\frac{3n}{4}+2\varepsilon_{1}\right)\pi}\left(\frac{3n}{8}+\varepsilon_{1}\right)^{\frac{3n}{8}+\varepsilon_{1}}e^{-q}}\right)^{2} \times \\ &\times (1+\delta_{3}^{1}(n)) = \frac{\pi n\left(\frac{n}{2}\right)^{n}}{\frac{3}{16}n^{2}\pi^{2}\left(\frac{n}{8}-\varepsilon_{1}\right)^{\frac{n}{4}-2\varepsilon_{1}}\left(\frac{3n}{8}+\varepsilon_{1}\right)^{\frac{3n}{4}+2\varepsilon_{1}}(1+\delta_{3}^{2}(n)) = \\ &= \frac{\left(\frac{n}{2}\right)^{n}}{\frac{3}{16}\pi n\left(\frac{n}{8}\right)^{\frac{n}{4}-2\varepsilon_{1}}\left(1-\frac{8\varepsilon_{1}}{n}\right)^{\frac{n}{4}-2\varepsilon_{1}}\left(\frac{3n}{8}\right)^{\frac{3n}{4}+2\varepsilon_{1}}\left(1+\frac{8\varepsilon_{1}}{3n}\right)^{\frac{3n}{4}+2\varepsilon_{1}}(1+\delta_{3}(n)) = \\ &= \frac{\left(\frac{1}{2}\right)^{n}}{\frac{3}{16}\pi n\left(\frac{1}{8}\right)^{\frac{n}{4}-2\varepsilon_{1}}\left(\frac{3}{8}\right)^{\frac{3n}{4}+2\varepsilon_{1}}(1+\delta_{3}(n)) = \frac{4^{n+2}}{\pi n3^{\frac{3n}{4}+5}}(1+\delta_{3}(n)). \end{split}$$

П

Здесь все величины типа δ стремятся к нулю с ростом n, и по ходу дела мы использовали тот факт, что $\left(1+\frac{1}{n}\right)^n \sim e$. Лемма доказана.

Доказательство леммы 4. С помощью линейно-алгебраического метода в комбинаторике удается показать, что $\alpha(\mathscr{G}_m) \leqslant 2C_{n-1}^{k-1}$ (именно для корректного применения линейной алгебры требуется простота k). Этот факт подробно изложен в книге [31], и мы его не доказываем. Мы лишь аккуратно применяем формулу Стирлинга:

$$\begin{split} \alpha(\mathcal{G}_m) & \leq 2C_{n-1}^{n/4-1} = \frac{2(n-1)!}{\left(\frac{n}{4}-1\right)!\left(\frac{3n}{4}\right)!} = \\ & = \frac{2\sqrt{2\pi(n-1)}(n-1)^{n-1}e^{-n+1}}{\sqrt{\pi\frac{n-4}{2}}\left(\frac{n}{4}-1\right)^{\frac{n}{4}-1}e^{-\frac{n}{4}+1}\sqrt{\pi\frac{3n}{2}}\left(\frac{3n}{4}\right)^{\frac{3n}{4}}e^{-\frac{3n}{4}}} (1+\delta_4^1(n)) = \\ & = \frac{4\sqrt{2(n-1)}(n-1)^{n-1}}{\sqrt{3n\pi(n-4)}\left(\frac{n}{4}-1\right)^{\frac{n}{4}-1}\left(\frac{3n}{4}\right)^{\frac{3n}{4}}} (1+\delta_4^1(n)) = \sqrt{\frac{2}{3\pi n}} \cdot \frac{4^n}{27^{n/4}} \cdot (1+\delta_4(n)). \end{split}$$

У леммы 5 весьма сложное доказательство. Мы не станем приводить его здесь, но лишь отошлем читателя к оригинальной работе [54].

Лемма доказана.

3.4.3. О кликовом числе полного графа расстояний

Тут тоже весьма любопытная ситуация. Что такое клика в полном дистанционном графе? Да это просто правильный симплекс размерности не больше n. (Определение правильного симплекса можно найти в книге [31].) Иными словами, клик с более чем n+1 вершинами в графе \mathcal{G}_m точно нет. На самом деле нет там и клик на n+1 и на n вершинах. Это можно показать разными способами, например, посредством линейно-алгебраического метода (см. [31]).

Совершенно удивительно другое: до сих пор нет ответа на вопрос, всегда ли в \mathcal{G}_m присутствует (n-1)-клика! Это одна из самых старых нерешенных проблем комбинаторики. Обычно ее формулируют в терминах так называемых матриц Адамара. Матрицей Адамара называется квадратная матрица (таблица) размера $n \times n$, в которой все элементы суть ± 1 и любые две строки ортогональны (т. е. их скалярное произведение как векторов в \mathbb{R}^n равно нулю). Легкое упражнение состоит в том, чтобы убедиться в равносильности требования попарной ортогональности строк матрицы Адамара требованию попарной ортогональности ее столбцов.

Поскольку при домножении на -1 любой строки (любого столбца) матрицы свойство ортогональности ее столбцов (ее строк) остается неизменным, можно считать, что вся первая строка матрицы Адамара состоит из одних единиц. Если n>1 (что естественно...), то всякая строка матрицы Адамара, отличная от первой, содержит половину единиц и половину минус единиц. Это во всяком случае означает четность n. Иначе матрица Адамара и не возникнет. Далее, при n>3 любые две строки матрицы Адамара, которые не совпадают с первой из ее строк, будучи ортогональными друг другу, должны быть устроены так, как показано на рис. 11, т. е. множества их единичных координат обязаны пересекаться ровно по $\frac{n}{4}$ элементам. Таким образом, n обязано делиться на 4.

1 1 1
$$-1$$
 -1 1 ... 1 -1 ... -1 ... -1 ... -1 ... -1

Проблема в том, что по-прежнему науке не известно, существуют ли матрицы Адамара при всех n, делящихся на 4. При этом ясно, что последние n-1 строк матрицы Адамара устроены в точности так же, как и векторы из какой-либо (n-1)-клики в графе \mathcal{G}_m . Известно, впрочем, довольно много. Например, мы знаем, что для любого $\varepsilon>0$ найдется такое n_0 , что при всех $n>n_0$ между n и $(1+\varepsilon)n$ есть число n', для которого матрица Адамара размера $n'\times n'$ существует.

Массу других результатов о матрицах Адамара можно найти в книгах [12] и [55]. Для наших целей они, однако, не слишком важны, и потому мы подробнее на них не останавливаемся.

Итак, мы знаем, что $\omega(\mathcal{G}_m) \leq n-1$ и при бесконечно многих (и довольно часто встречающихся) значениях n=4k справедливо точное равенство $\omega(\mathcal{G}_m)=n-1$.

3.4.4. О хроматическом числе полного графа расстояний

Прежде всего заметим, что ввиду неравенства $\chi(G)\geqslant \frac{|V|}{\alpha(G)}$, результатов пункта 3.4.2 и формулы Стирлинга мы при $n=4\rho^a$ имеем

$$\chi(\mathcal{G}_m) \geqslant \frac{C_n^{n/2}}{2C_{n-1}^{n/4-1}} = \left(\frac{2}{1,754...} + o(1)\right)^n = (1,139...+o(1))^n.$$

При других n мы получаем лишь оценку

$$\chi(\mathcal{G}_m) \geq (1,01...+o(1))^n.$$

Что касается верхних оценок, то при любых n они имеют вид

$$\chi(\mathcal{G}_m) \leq (1,139...+o(1))^n.$$

Доказательство приведенного неравенства можно найти в книге [56]. В итоге

$$\chi(\mathcal{G}_m) = (1,139 + o(1))^n,$$

коль скоро n имеет вид учетверенной степени простого числа.

Оценки хроматического числа полного графа расстояний играют огромную роль в комбинаторной геометрии. Первая из задач, которые напрямую используют данные оценки, — это проблема Нелсона — Эрдёша — Хадвигера о хроматическом числе евклидова пространства \mathbb{R}^n . Напомним, что *хроматическим числом пространства* называется величина $\chi(\mathbb{R}^n)$, равная наименьшему количеству цветов, в которые можно так покрасить все точки \mathbb{R}^n , чтобы между точками одного цвета не было расстояния 1:

$$\chi(\mathbb{R}^n) = \min\{\chi : \mathbb{R}^n = V_1 \sqcup \ldots \sqcup V_{\chi}, \ \forall i \ \forall \mathbf{x}, \mathbf{y} \in V_i \ |\mathbf{x} - \mathbf{y}| \neq 1\}.$$

Про хроматические числа имеется обширная литература. Приведем лишь книги [31, 44, 51] и обзоры [49, 50]. Нас сейчас интересуют только оценки $\chi(\mathbb{R}^n)$ при $n \to \infty$. В работе [57] было показано, что

$$\gamma(\mathbb{R}^n) \leq (3+o(1))^n$$
.

А что же с нижними оценками? Так ведь ясно, что если G — граф расстояний в \mathbb{R}^n , то $\chi(\mathbb{R}^n) \geqslant \chi(G)$. Значит, при $n = 4\rho^a$ выполнено

$$\chi(\mathbb{R}^n) \geqslant \chi(\mathcal{G}_m) = (1,139...+o(1))^n.$$

На самом деле отсюда нетрудно вывести и точно такую же оценку для $\chi(\mathbb{R}^n)$ при произвольном n (поменяется лишь вид o(1), который нас пока не волнует). Для этого надо воспользоваться законами распределения простых и их степеней в натуральном ряде (см. [31]).

Таким образом,

$$(1,139...+o(1))^n \le \chi(\mathbb{R}^n) \le (3+o(1))^n.$$

Это довольно сильные оценки. Из них нижняя подлежит некоторому дальнейшему уточнению за счет оптимизации по множеству дистанционных графов в \mathbb{R}^n . Сейчас наилучшая цепочка неравенств выглядит так:

$$(1,239...+o(1))^n \le \chi(\mathbb{R}^n) \le (3+o(1))^n.$$

Дистанционный граф, с помощью которого удается заменить 1,139 на 1,239, устроен примерно так же, как и наш «полный дистанционный граф». Разница лишь в том, что у каждой из его вершин есть не только

нулевые и единичные, но еще и минус единичные координаты (подробности см. в [31]).

Подчеркнем, что экспоненциальные нижние оценки хроматических чисел долгое время никому не удавалось обосновать. Лишь в 1981 году П. Франкл и Р. М. Уилсон сделали это (см. [31,58]).

Еще одна проблема комбинаторной геометрии, которая связана с изучением дистанционных графов, — это проблема Борсука о разбиении множеств на части меньшего диаметра. Эта проблема состоит в отыскании величины f(n), равной минимальному числу f, для которого существует разбиение произвольного ограниченного множества в \mathbb{R}^n на f частей меньшего диаметра. Напомним, что диаметр множества — это супремум расстояний между парами его точек. Мы не станем описывать результаты в проблеме Борсука, но лишь отошлем читателя к книгам [31, 45, 52, 53] и статьям [46–48].

3.4.5. О числе ребер в произвольном подмножестве множества вершин полного графа расстояний

Положим $\alpha = \alpha(\mathscr{G}_m)$. Понятно, что при любом $\beta \leqslant \alpha$ бывают множества вершин $W \subset \mathscr{V}_m$, имеющие мощность β и не содержащие ребер. А что, если $\beta > \alpha$? Разумеется, тут также очевидно, что в соответствующем W ребра непременно найдутся. Но может ли их быть мало?

Обозначим через r(W) количество ребер графа \mathcal{G}_m на множестве вершин W. Иными словами, r(W) = |F|, где

$$F = \{(\mathbf{x}, \mathbf{y}) \in \mathcal{E}_m \colon \mathbf{x} \in W, \ \mathbf{y} \in W\}.$$

Известная теорема Турана (см., например, [13,59]) утверждает следующее.

Теорема 31. Если
$$|W| = l > \alpha$$
, то $r(W) \ge \frac{l^2}{2\alpha} - \frac{l}{2}$.

В специфическом случае полного дистанционного графа оценку из теоремы 31 можно слегка уточнить.

Теорема 32. Если $|W| = l \geqslant (n+1)\alpha$, то существует такая функция $\sigma(n) \to 0$, $n \to \infty$, что

$$r(W) > \frac{l^2 - nl\alpha + \frac{1}{2}n^2\alpha^2}{\alpha}(1 + \sigma(n)).$$

Заметим, что при $l\sim n\alpha$ теорема 32 дает практически тот же результат, что и теорема 31, а при $n\alpha=o(l)$ оценка из теоремы 32 становится асимптотически вдвое точнее.

Доказательство теоремы 32. Начнем с того, что в W есть независимое множество A вершин графа G = (W, F), имеющее максимальную мощность. Положим $\beta = |A|$. Ясно, что $\beta \leqslant \alpha$. Кроме того, ввиду

максимальности A, каждая вершина из $W \setminus A$ соединена ребром (принадлежащим F) хотя бы с одной вершиной из A.

Разобьем $W \setminus A$ на две непересекающиеся части L и K. Здесь K — это такое множество вершин, что для любой вершины $x \in K$ существует ровно одна вершина $y \in A$ со свойством $(x, y) \in F$ (см. рис. 12). Формально,

$$K = \{x \in W \setminus A : |\{y \in A : (x, y) \in F\}| = 1\},\$$

 $L = (W \setminus A) \setminus K = \{x \in W \setminus A : |\{y \in A : (x, y) \in F\}| \ge 2\}.$

Рис. 12

Покажем, что $|K| \le n\beta$. Предположим противное. Тогда по принципу Дирихле найдется такая вершина $x \in A$, что

$$|\{y \in K : (x, y) \in F\}| \ge n + 1.$$

Рассмотрим произвольные

$$y_1, ..., y_{n+1} \in \{y \in K : (x, y) \in F\}.$$

Выберем из них любые две различные вершины y_i, y_j . Положим $M = (A \setminus \{x\}) \cup \{y_i, y_j\}$. Поскольку |M| > |A|, в M есть ребра графа G. Наша конструкция устроена так, что с необходимостью $(y_i, y_j) \in F$. Значит, вершины $y_1, ..., y_{n+1}$ дистанционного графа в \mathbb{R}^n попарно соединены ребрами, т. е. образуют правильный n-мерный симплекс. Однако (0,1)-векторы, с которыми мы имеем дело, полномерных симплексов, очевидно, образовывать не могут (ср. п. 3.4.3). Противоречие.

Итак, $|K| \leq n\beta \leq n\alpha$. Ясно, далее, что

$$F = \{(x, y) : x \in K, y \in A\} \cup \{(x, y) : x \in L, y \in A\} \cup \cup \{(x, y) : x \in W \setminus A, y \in W \setminus A\}.$$

Иными словами, полагая

$$F_1 = \{(x, y) : x \in W \setminus A, y \in W \setminus A\},\$$

имеем

$$|F| = |\{(x, y) : x \in K, y \in A\}| + |\{(x, y) : x \in L, y \in A\}| + |F_1| \ge 2(l - \beta) - |K| + |F_1| \ge 2(l - \beta) - n\beta + |F_1| \ge 2(l - \alpha) - n\alpha + |F_1| = 2l - \alpha(n + 2) + |F_1|.$$

Теперь осуществим ту же схему действий, заменяя W на $W_1=W\setminus A$, A на A_1 (независимое множество вершин в W_1 , имеющее максимальную мощность), β на $\beta_1=|A_1|\leqslant \alpha$, L и K на L_1 и K_1 , так что $W_1\setminus A_1=L_1\cup K_1$, и т. д. Полагая $l_1=|W_1|\geqslant l-\alpha$ и

$$F_2 = \{(x, y) : x \in W_1 \setminus A_1, y \in W_1 \setminus A_1\},\$$

имеем

$$|F_1| = |\{(x, y) : x \in K_1, y \in A_1\}| + |\{(x, y) : x \in L_1, y \in A_1\}| + |F_2| \geqslant 2(l_1 - \beta_1) - |K_1| + |F_2| \geqslant 2(l_1 - \beta_1) - n\beta_1 + |F_2| \geqslant 2(l - 2\alpha) - n\alpha + |F_2| = 2l - \alpha(n+4) + |F_2|.$$

Описанную процедуру мы итерируем $k=\left[\frac{l-n\alpha}{\alpha}\right]$ раз. В результате получаем оценку

$$|F| \ge \sum_{i=1}^{k} (2l - \alpha(n+2i)) + |F_k|,$$

где

$$F_k = \{(x, y) : x \in W_{k-1} \setminus A_{k-1}, y \in W_{k-1} \setminus A_{k-1}\}.$$

Все шаги процедуры корректны, так как для каждого $i \in \{1,...,k\}$ выполнено

$$|W_i| = |W_{i-1} \setminus A_{i-1}| \ge l - i\alpha \ge l - k\alpha \ge n\alpha$$

а значит, всякий раз рассмотрение множества L_i , дающего «удвоенный вклад» в оценку числа ребер графа G, оправдано с учетом неравенства $|K_i| \le n\beta_i \le n\alpha$. При этом формально $W_0 = W$, $A_0 = A$ и т.д. Более того, за счет условия $l \ge (n+1)\alpha$ получаем $k \ge 1$, вследствие чего хотя бы один шаг процедуры мы непременно осуществим и тем подтвердим корректность суммирования по i от единицы до k.

Остается оценить величину $|F_k|$. Это, по сути, количество ребер графа G на множестве вершин W_k . Как и прежде, выделим в W_k подмножество A_k , имеющее максимальную мощность среди всех подмножеств в W_k , свободных от ребер G. Ясно, опять-таки, что каждая

вершина из $W_k \setminus A_k$ соединена ребром хотя бы с одной вершиной в A_k . Таким образом, рассмотрение A_k дает вклад размера не меньше $|W_k| - |A_k| \geqslant l - k\alpha - \alpha$ в величину $|F_k|$.

Снова итерируем описанную процедуру. Каждый раз мы удаляем не более α вершин из W_k . И каждый раз мы добавляем не менее $l-k\alpha-i\alpha$ (i—номер итерации) в оценку величины $|F_k|$. Вспоминая о том, что $|W_k| \geqslant n\alpha$, приходим к выводу, что итераций можно провести как минимум n. В итоге

$$|F_k| \geqslant \sum_{i=1}^n (l - k\alpha - i\alpha),$$

а стало быть,

$$|F| \geqslant \sum_{i=1}^{k} (2l - \alpha(n+2i)) + \sum_{i=1}^{n} (l - k\alpha - i\alpha) \geqslant$$

$$\geqslant \sum_{i=1}^{k} (2l - \alpha(n+2i)) + \sum_{i=1}^{n} (n\alpha - i\alpha) =$$

$$= k(2l - n\alpha) - k(k+1)\alpha + \frac{n(n-1)}{2}\alpha \geqslant$$

$$\geqslant \left(\frac{l - n\alpha}{\alpha} - 1\right) (2l - n\alpha) - \frac{l - n\alpha}{\alpha} \left(\frac{l - n\alpha}{\alpha} + 1\right)\alpha + \frac{n(n-1)}{2}\alpha =$$

$$= \frac{2l^2 - 3ln\alpha + n^2\alpha^2}{\alpha} - (2l - n\alpha) - \frac{(l - n\alpha)^2 + (l - n\alpha)\alpha}{\alpha} + \frac{\alpha^2(n^2 - n)}{2\alpha} =$$

$$= \frac{l^2 - nl\alpha + \frac{1}{2}n^2\alpha^2 + \frac{1}{2}n\alpha^2 - l\alpha}{\alpha} - (2l - n\alpha) = \frac{l^2 - nl\alpha + \frac{1}{2}n^2\alpha^2}{\alpha} (1 + \sigma(n)).$$
Теорема доказана.

3.4.6. «Олимпиадный» комментарий к предыдущему пункту

На Московской математической олимпиаде 2010 года в варианте 10-го класса была задача, предложенная автором этой книги. Вот она: пусть G = (V, E) — дистанционный граф на *плоскости* (с длиной каждого ребра 1), причем у него |V| = 4n, $n \in \mathbb{N}$, а $\alpha(G) \leq n$; докажите, что $|E| \geq 7n$.

Опять-таки, применение аналога теоремы 31 сразу дает нам оценку

$$|E| \geqslant \frac{16n^2}{2n} - \frac{4n}{2} = 6n.$$

Оценка же величиной 7n — это в точности результат реализации идеи из доказательства теоремы 32. Для пущей наглядности воспроизведем все рассуждение заново (ср. также [60]). Сперва докажем неравенство $|E| \ge 6n$, а затем и неравенство $|E| \ge 7n$.

Итак, пусть G=(V,E) — наш граф. Тогда |V|=4n и для любого $W\subset V,\ |W|\geqslant n+1,$ найдутся $x,y\in W,$ образующие ребро $(x,y)\in E.$ Возьмем произвольное множество $Q_1\subset V,$ которое не содержит ребер и имеет максимальную мощность среди всех подмножеств множества V, которые не содержат ребер. Ясно, что $|Q_1|\leqslant n.$ Кроме того, ввиду максимальности множества Q_1 каждая вершина из $V\setminus Q_1$ имеет хотя бы одного соседа в $Q_1.$ Значит, в E по крайней мере S0 элементов.

Удалим из V множество Q_1 . Останется граф $G_1=(V_1,E_1)$, у которого $|V_1|\geqslant 3n$ и для любого $W\subset V_1$, $|W|\geqslant n+1$, найдутся $x,y\in W$, образующие ребро $(x,y)\in E_1$. Опять возьмем произвольное множество $Q_2\subset V_1$, которое не содержит ребер и имеет максимальную мощность среди всех подмножеств множества V_1 , которые не содержат ребер. Ясно, что $|Q_2|\leqslant n$. Кроме того, ввиду максимальности множества Q_2 каждая вершина из $V_1\setminus Q_2$ имеет хотя бы одного соседа в Q_2 . Значит, в E_1 по крайней мере 2n элементов. Поскольку ребра, найденные на первом шаге поиска, заведомо отличны от ребер, найденных только что, в E уже не менее 5n элементов.

Делаем еще один полностью аналогичный шаг и убеждаемся, что $|E|\geqslant 6n$.

Воспользуемся теперь тем, что G — дистанционный граф. Иными словами, вершины — это точки на плоскости, а ребра — все возможные пары точек, удаленных друг от друга на расстояние 1. Будем делать в точности ту же процедуру, что и прежде. Отличие будет только на первом шаге. Мы уже знаем, что каждая вершина из $V \setminus Q_1$ имеет хотя бы одного соседа в Q_1 . Давайте разобьем $V \setminus Q_1$ на две части — W_1 и W_2 . В W_1 будут те вершины, у каждой из которых ровно один сосед в Q_1 , в W_2 — те вершины, у каждой из которых не менее двух соседей. Если мы докажем, что $|W_1| \leqslant 2n$, то мы увидим, что на первом шаге вклад в |E| не величины 3n, как это было раньше, а величины 4n или более. Это и даст нам в итоге оценку 7n.

Предположим, $|W_1| > 2n$. Тогда в Q_1 есть вершина q, смежная с тремя вершинами x_1, x_2, x_3 из W_1 . Если между какими-то x_i, x_j нет ребра, то мы можем удалить q из Q_1 и добавить к этому множеству x_i, x_j . Получится множество, в котором нет ребер и у которого мощность строго больше $|Q_1|$. Значит, x_1, x_2, x_3, q попарно соединены ребрами. Но полный граф на четырех вершинах нельзя реализовать отрезками длины 1 на плоскости. Противоречие, и задача решена.

Здесь любопытны еще несколько моментов. Во-первых, никто не умеет пока улучшить в условиях задачи оценку $|E| \geqslant 7n$. А это было бы крайне интересно! Во-вторых, задачам о количестве ребер в дистан-

ционных графах посвящена огромная литература. Например, изучают максимальное число ребер e_n у дистанционного графа на n вершинах. В случае плоскости известно лишь, что $e_n \leqslant c n^{4/3}$ с некоторой константой c>0 и что

$$e_n \geqslant ne^{\frac{c'\ln n}{\ln \ln n}}, \quad c' > 0.$$

Зазор огромен! Подробности можно прочесть в книге [51].

3.5. Хроматическое и кликовое числа дистанционного графа

В этом параграфе мы изучим случайные дистанционные графы с точки зрения соотношения между их хроматическими и кликовыми числами. По существу речь пойдет о задаче, которая в «дистанционном» случае крайне похожа на задачу из параграфа 2.9. Основное утверждение содержится в теореме 33, которую мы прямо сейчас сформулируем, сразу затем прокомментируем, а потом и докажем.

Теорема 33. Существует такая функция $\delta(n) = o(1)$, что для любого $n \in \mathbb{N}$ найдется граф расстояний G в \mathbb{R}^n с хроматическим числом $\chi(G) \geqslant (1,0005 + \delta(n))^n$ и кликовым числом $\omega(G) \leqslant 11$.

В чем пафос теоремы? А в том, что, оказывается, можно найти графы в \mathbb{R}^n , у которых экспоненциально большие хроматические числа и которые не содержат клик фиксированного размера. Говоря геометрическим языком, нам не нужно, чтобы в графе присутствовали симплексы размерности 11 и более, дабы этот граф было $mpy\partial ho$ раскрасить. Ведь, по идее, именно наличие больших симплексов в графе заставляет нас использовать много цветов для правильной покраски графа, а вот поди ж ты: можно и без симплексов обойтись. Для обычных графов подобное удивительное обстоятельство мы уже наблюдали в теореме 19. Там было даже более сильное утверждение, но и сейчас у нас не обычные, а дистанционные графы. Так что сложно сказать, что здесь производит большее впечатление.

Неискушенного читателя может смутить тот факт, что, на первый взгляд, для малых n теорема несколько странная. Но дело в том, что хотя функция $\delta(n)$ и стремится к нулю с ростом размерности, тем не менее при конкретных n ничто не мешает ей быть очень большой по модулю. Например, вполне может статься, что $\delta(1000) = -0,0005$, в результате чего при n=1000 утверждение теоремы тривиально: ясно же, что бывают графы с хроматическим числом 1 и даже без треугольников. Достижение носит именно асимптотический харак-

тер. По-другому можно сказать так: найдется такое $n_0 \in \mathbb{N}$, что для каждого $n \geqslant n_0$ в пространстве \mathbb{R}^n существует дистанционный граф G, у которого $\chi(G) \geqslant (1,0004)^n$ и $\omega(G) \leqslant 11$. Вероятно, так яснее, хотя и слабее (на одну десятитысячную в основании экспоненты).

Теорема допускает ряд улучшений, но на них мы в этой книге не останавливаемся (см. [61]).

Доказательство теоремы 33. Положим $\tau = \frac{4}{3^{3/4}} = 1,754...$ (см. пункт 3.4.2), c = 1,999 и зафиксируем произвольное число $c' \in (c,2)$. Нам достаточно убедиться в существовании такой функции $\delta(n) = o(1)$, что при каждом n найдется граф расстояний G = (V, E) в \mathbb{R}^n , у которого одновременно $\omega(G) \leq 11$ и

$$\chi(G) \geqslant \left(\frac{2}{c'} + \delta(n)\right)^n.$$

Суть в том, что при c' = 1,9990001 или типа того

$$\frac{2}{c'} \ge 1,0005,$$

и все в порядке. Здесь, однако, важно, что c' > c. Пусть, для определенности, c' = 1,9990001.

Сперва докажем заявленное утверждение при всех $n=4\rho^a$, где ρ простое. Для полной строгости заменим в текущем случае $\delta(n)$ на $\delta'(n)=o(1)$.

Рассмотрим случайный дистанционный граф $G(\mathcal{G}_m, p)$, полагая $p = \gamma^n$, где $\gamma = 0.88$. Заметим, что

$$\gamma \in \left(\frac{\tau}{c'}, 1\right)$$
.

Всюду далее считаем, что n достаточно велико (при малых n, как мы знаем, все тривиально).

На пространстве $G(\mathscr{G}_m,p)$ определим случайные величины X_l , равные числу независимых множеств мощности l в случайном графе G. Аналогично зададим Y_m как число клик размера m в случайном графе. Положим $l = [(c')^n]$. Ясно, что при больших n мы имеем $l < |\mathscr{V}_m| = (2 + o(1))^n$, и, стало быть, величина X_l определена корректно.

Допустим, мы показали, что

$$P_{m,p}(X_l=0) > \frac{1}{2}, \quad P_{m,p}(Y_{12}=0) > \frac{1}{2}.$$

Тогда существует граф G в \mathbb{R}^n с $\omega(G) \leq 11$ и $\alpha(G) \leq l$. Последняя оценка означает, что

$$\chi(G) \geqslant \frac{|\mathcal{Y}_m|}{l} = \left(\frac{2}{c'} + \delta'(n)\right)^n,$$

и теорема доказана. Что ж, будем оценивать вероятности.

Воспользуемся неравенством Маркова:

$$P_{m,p}(X_l = 0) \ge 1 - MX_l, \quad P_{m,p}(Y_{12} = 0) \ge 1 - MY_{12}.$$

Покажем, стало быть, что

$$MX_l < \frac{1}{2}, \quad MY_{12} < \frac{1}{2}.$$

Начнем с MX_l . За счет линейности математического ожидания, имеем (см. п. 3.4.5)

$$MX_l = \sum_{W \subset \mathcal{V}_m, |W|=l} (1-p)^{r(W)}.$$

Ясно, что, поскольку $c'>\tau$, то $l>\alpha=\alpha(\mathscr{G}_m)$ (см. п. 3.4.2) при всех достаточно больших n, и, следовательно, для каждого $W\subset \mathscr{V}_m, \, |W|=l,$ выполнено $r(W)\geqslant \frac{l^2}{2\alpha}-\frac{l}{2}$ (см. теорему 31).

Заметим сперва, что

$$\frac{l^2}{2\alpha} - \frac{l}{2} \geqslant \frac{((c')^2 + \kappa_1(n))^n}{(\tau + \kappa_2(n))^n} = \left(\frac{(c')^2}{\tau} + \kappa_3(n)\right)^n,$$

$$\kappa_1(n) = o(1), \quad \kappa_2(n) = o(1), \quad \kappa_3(n) = o(1).$$

Таким образом, полагая

$$A_l = \frac{l^2}{2\alpha} - \frac{l}{2},$$

имеем (с некоторыми $\kappa_i(n) = o(1)$)

$$\begin{split} MX_l &\leqslant C_m^l \cdot (1-p)^{A_l} \leqslant \left(\frac{em}{l}\right)^l \cdot (1-p)^{A_l} \leqslant \\ &\leqslant \left(\frac{2}{c'} + \kappa_4(n)\right)^{(c' + \kappa_5(n))^n} \cdot e^{-p\left(\frac{(c')^2}{\tau} + \kappa_3(n)\right)^n} = e^{(c' + \kappa_6(n))^n - \left(\frac{\gamma \cdot (c')^2}{\tau} + \kappa_7(n)\right)^n}. \end{split}$$

У нас $\gamma > \frac{\tau}{c'}$. Значит, $\frac{\gamma \cdot (c')^2}{\tau} > c'$, т. е.

$$(c' + \kappa_6(n))^n - \left(\frac{\gamma \cdot (c')^2}{\tau} + \kappa_7(n)\right)^n \to -\infty,$$

a

$$e^{(c'+\kappa_6(n))^n-\left(\frac{\gamma\cdot(c')^2}{\tau}+\kappa_7(n)\right)^n}\to 0.$$

Следовательно, при всех достаточно больших n выполнено $MX_l < \frac{1}{2}$, и нам остается обосновать оценку $MY_{12} < \frac{1}{2}$.

За счет линейности математического ожидания имеем

$$MY_{12} \le C_m^{12} p^{C_{12}^2} = C_m^{12} p^{66} \le m^{12} \cdot \gamma^{66n} = (2 + \kappa_8(n))^{12n} \gamma^{66n},$$

 $\kappa_8(n) = o(1).$

Явный расчет показывает, что

$$2^{12} \cdot (0.88)^{66} < 0.9$$
.

Значит, при больших п

$$MY_{12} \le (2 + \kappa_8(n))^{12n} \gamma^{66n} < (0.9 + \kappa_9(n))^n < \frac{1}{2}, \quad \kappa_9(n) = o(1).$$

Нужные неравенства верны при всех достаточно больших n (скажем, $n>n_0$) вида $n=4\rho^a$, и для завершения доказательства теоремы остается разобрать случай произвольного n.

Зафиксируем произвольное n. Выберем максимальное простое число ρ , удовлетворяющее условию $4\rho \leqslant n$. Положим $n'=4\rho$. Мы знаем, что в $\mathbb{R}^{n'}$ есть дистанционный граф G с $\chi(G) \geqslant (1,0005+\delta'(n'))^{n'}$ и $\omega(G) \leqslant 11$. Поскольку $\mathbb{R}^{n'} \subseteq \mathbb{R}^n$, мы можем рассматривать G как граф расстояний в \mathbb{R}^n . С кликовым числом у него автоматически все в порядке. А что с хроматическим?

А вот что. С помощью сложных методов аналитической теории чисел доказывается, что n-n'=o(1) (см. [62,63]). Следовательно,

$$\chi(G) \geqslant (1,0005 + \delta'(n'))^{n'} = (1,0005 + \delta'(n - \delta''(n)))^{n - \delta''(n)},$$

$$\delta''(n) = o(1).$$

Очевидно, что

$$\delta'(n - \delta''(n)) = o(1), \quad (1,0005 + o(1))^{-\delta''(n)} = 1 + o(1),$$

т.е.

$$\chi(G) \ge (1,0005 + \delta(n))^n, \quad \delta(n) = o(1).$$

П

как нам и нужно. Теорема доказана.

Небольшое замечание по истории. Подобно теоремам 31 и 32, которые мы прокомментировали в пункте 3.4.6, теорема 33 имеет естественные аналоги в малых размерностях. Например, что можно сказать про плоскость? Хорошо известно, что хроматическое число плоскости (см. п. 3.4.4 и [44]) заключено в пределах от четырех до семи. Иными словами, мы точно знаем, что на плоскости есть дистанционные графы с хроматическим числом 4. Простейшие из этих графов

(см. [44]) содержат треугольники, что ожидаемо. В 1976 году Эрдёш поставил вопрос: а обязаны ли подобные графы содержать треугольники? Сейчас мы знаем, что ответ на этот вопрос отрицателен: для любого k существуют графы расстояний на плоскости с обхватом k и хроматическим числом 4. Этот удивительный факт в популярной форме изложен в статье [64].

3.6. Хроматическое число случайного дистанционного графа

В параграфе 2.6 мы развили мощную технику, которая, в частности, позволила нам найти асимптотику для хроматического числа почти всякого графа с данным числом вершин. Для случайного дистанционного графа такой техники пока нет. Впрочем, нетрудно доказать, например, следующую теорему.

Теорема 34. При любом постоянном p для модели $G(\mathcal{G}_m, p)$ найдутся такие $\kappa_1(n) = o(1)$ и $\kappa_2(n) = o(1)$, что почти наверное

$$\chi(G) \ge (1,139... + \kappa_1(n))^n$$
, $\chi(G) \le (1,139... + \kappa_2(n))^n$.

Разумеется, теорему можно уточнять, явно указывая функции κ_1 и κ_2 . Мы, однако, этого делать не станем, поскольку, с одной стороны, зазор все равно довольно велик, а с другой стороны, — это требует весьма скучной технической возни.

3.7. Дистанционные числа Рамсея

В этом параграфе мы поговорим об одном естественном «дистанционном» аналоге классических чисел Рамсея (см. § 2.8).

3.7.1. Постановка задачи

Напомним, что в одном из определений классическое число Рамсея R(s,t) представляло собой наименьшее натуральное m, при котором для любого графа G на m вершинах либо $\omega(G)\geqslant s$, либо $\alpha(G)\geqslant t$. Сейчас мы еще немного модифицируем это определение, дабы затем было понятнее, насколько новый объект, который мы собираемся ввести, близок к старому. Опишем соответствующую терминологию.

Пусть G=(V,E) — некоторый граф. Если H=(W,F) является подграфом в G, то будем писать $H\subseteq G$. Если, сверх того, H-остовный подграф в G (т. е. W=V), то, желая подчеркнуть этот факт, напишем $H\preceq G$. Если $G=(V,F)\preceq K_m$ (т. е., попросту говоря, G — произвольный

граф на m вершинах), то его *дополнением* (до полного графа) назовем граф $[G] = (V, F') \preceq K_m$, у которого $(x, y) \in F'$ тогда и только тогда, когда $(x, y) \notin F$.

В новых обозначениях можно определить R(s,t) следующим образом: это минимальное m, такое что для любого $G \preceq K_m$ либо G содержит изоморфную копию K_s , либо [G] содержит изоморфную копию K_t .

Поскольку всякий индуцированный подграф K_m представляет собой изоморфную копию некоторого K_s , можно сказать еще и так: R(s,t) — это минимальное $m\in\mathbb{N}$, такое что для любого $G \preceq K_m$ либо G содержит некоторый индуцированный подграф K_m на s вершинах, либо [G] содержит некоторый индуцированный подграф K_m на t вершинах.

Теперь пусть $G \preceq \mathscr{G}_m$. Тогда его *дополнением* (до полного дистанционного графа) назовем граф $[G]_{\text{dist}} \preceq \mathscr{G}_m$, у которого любые две вершины соединены ребром тогда и только тогда, когда они не соединены ребром в G, но соединены ребром в \mathscr{G}_m . Например, для $G = (\mathscr{V}_m, \varnothing)$ имеем $[G]_{\text{dist}} = \mathscr{G}_m$.

Мы видели в параграфе 3.4, что свойства полных дистанционных графов сильно зависят от того, считаем мы величину k в их определении равной степени простого числа или нет. Поэтому разумно отдельно рассматривать последовательность всех \mathscr{G}_m и подпоследовательность $\{\mathscr{G}_m^{\text{prime}}\}\subset \{\mathscr{G}_m\}_{k=1}^\infty$ тех \mathscr{G}_m , у которых $k=\rho^a$ с некоторыми ρ и a.

Для данных $s,t\in\mathbb{N}$ положим $R_{\mathrm{dist}}(s,t)$ равным минимальному $m\in\mathbb{N}$, такому что корректно определен граф \mathscr{G}_m и для любого $G\preceq\mathscr{G}_m$ либо G содержит некоторый индуцированный подграф \mathscr{G}_m на s вершинах, либо $[G]_{\mathrm{dist}}$ содержит некоторый индуцированный подграф \mathscr{G}_m на t вершинах.

Иначе говоря, величина $R_{\rm dist}(s,t)$ полностью аналогична величине R(s,t), коль скоро мы K_m и дополнение в нем заменяем на \mathcal{G}_m и дополнение в нем.

Точно так же введем, наконец, $R_{\rm dist}^{\rm prime}(s,t)$ как минимум из всех $m\in\mathbb{N}$, при которых корректно определен граф $\mathcal{G}_m\in\{\mathcal{G}_m^{\rm prime}\}$ и для любого $G\preceq\mathcal{G}_m$ либо G содержит некоторый индуцированный подграф \mathcal{G}_m на s вершинах, либо $[G]_{\rm dist}$ содержит некоторый индуцированный подграф \mathcal{G}_m на t вершинах.

При всей близости классического и нового определений очевидны и существенные различия между ними. Главное из них состоит в том, что если раньше индуцированный подграф полного графа K_m всегда имел ту же структуру, что и сам полный граф (был изоморфен некото-

рому K_s), то теперь индуцированные подграфы «полных» графов \mathcal{G}_m вовсе не обязаны быть изоморфными какому-либо \mathcal{G}_s . В частности, ничто не мешает таким подграфам оказаться даже «пустыми» (т. е. свободными от ребер), ведь, как мы видели в п. 3.4.2, в графах \mathcal{G}_m есть весьма большие независимые множества вершин. В случае K_m подобным свойством обладал исключительно K_1 .

В следующем пункте мы сформулируем некоторые результаты относительно величин $R_{\rm dist}(s,t)$ и $R_{\rm dist}^{\rm prime}(s,t)$. Они будут разительно отличаться от классических.

3.7.2. Формулировки результатов

Желая уменьшить громоздкость изложения, обсудим лишь «диагональный случай», т. е. случай s=t.

Теорема 35. Пусть

$$c = \frac{4}{3^{3/4}}, \quad \xi = \frac{\ln 2}{\ln c}, \quad b = \frac{3^5 \pi}{4^2} = \frac{243}{16} \pi.$$

Тогда для любого $\beta > 0$ при всех достаточно больших $s \in \mathbb{N}$ выполнено

$$R_{dist}(s,s) \leq 16\sqrt{\frac{2}{\pi}}(\ln c)^{\frac{1}{2}-\xi}b^{\xi}s^{\xi}(\ln s)^{\xi-\frac{1}{2}}(1+\beta).$$

Иными словами, если классическое число Рамсея росло экспоненциально, то «дистанционное», по сути, ограничено сверху полиномом.

С числами $R_{\rm dist}^{\rm prime}(s,s)$ дела обстоят несколько хуже.

Теорема 36. Существует такая функция φ , что $\varphi(s) = o(1)$ при $s \to \infty$ и

$$R_{dist}^{prime}(s,s) \leq s^{\xi+\varphi(s)}$$
.

Такое ухудшение оценки связано со спецификой распределения простых чисел в натуральном ряде (ср. § 3.5).

Теперь обсудим нижние оценки.

Теорема 37. Положим

$$c = \frac{4}{3^{3/4}}, \quad \xi = \frac{\ln 2}{\ln c}, \quad d = \sqrt{\frac{2}{3\pi}},$$

$$\theta_1 = \frac{1}{\xi}, \quad \theta_2 = \frac{1}{2\xi} - \frac{1}{2}, \quad \theta_3 = \frac{d}{\left(\frac{2}{\pi}\right)^{\theta_1/2} (\ln 2)^{\theta_2}}, \quad \theta_4 = \left(\frac{\ln 2}{2\theta_3 \xi^{\theta_2} (\xi - 1)}\right)^{\xi}.$$

Тогда для любого $\beta > 0$ существует бесконечно много натуральных чисел s, таких что

$$R_{dist}^{prime}(s,s) \geqslant \theta_4 s^{\xi}(\ln s)^{\frac{-\xi-1}{2}}(1-\beta).$$

Теорема 37 представляет своего рода «омега-результат». Интересно понять, что будет, если «бесконечно много натуральных s» заменить, например, на «все достаточно большие s. К сожалению, это можно сделать лишь за счет довольно значимых потерь в качестве оценки — потерь, подобных тем, с которыми мы столкнулись при переходе от теоремы 35 к теореме 36. Это также связано с особенностями распределения простых чисел среди натуральных.

Теорема 38. Существует такая функция ψ , что $\psi(s) = o(1)$ при $s \to \infty$ и

$$R_{dist}^{prime}(s,s) \geqslant s^{\xi+\psi(s)}$$
.

Неожиданно слабой выходит следующая теорема.

Теорема 39. Положим $\eta = \frac{\ln 2}{\ln 1,99}$. Существует такая функция μ , что $\mu(s) = o(1)$ при $s \to \infty$ и

$$R_{dist}(s,s) \geqslant s^{\eta+\mu(s)}$$
.

Иными словами, зазор между оценками числа $R_{\rm dist}(s,s)$ сверху и снизу имеет порядок степени s. Такая неприятность обусловлена существенной разницей между утверждениями лемм 4 и 5 (см. п. 3.4.2).

Теорему 35 мы докажем в следующем пункте. Теореме 37 мы посвятим пункт 3.7.4. Другие теоремы, ввиду их меньшей показательности, мы доказывать не станем, отсылая читателя к оригинальной работе [65].

3.7.3. Доказательство теоремы 35

Предположим, что для данного натурального s и для некоторого m корректно определен граф \mathscr{G}_m и $\alpha(\mathscr{G}_m)\geqslant s$. Тогда для любого $G=(\mathscr{V}_m,E)\preceq\mathscr{G}_m$ также выполнено $\alpha(G)\geqslant s$. Пусть $W,\ |W|=s,-$ любое из соответствующих независимых множеств в \mathscr{V}_m . Значит, граф $H=(W,E|_W)=(W,\varnothing)$ является индуцированным подграфом в \mathscr{G}_m и одновременно подграфом в G. Таким образом, в описанной ситуации и G, и $[G]_{\mathrm{dist}}$ содержат индуцированный подграф графа \mathscr{G}_m на s вершинах, а это даже больше, чем требовалось.

Остается показать, что при всяком достаточно большом s существует $m = C_n^{n/2}$ с n = 4k и

$$m \leq 16\sqrt{\frac{2}{\pi}}(\ln c)^{\frac{1}{2}-\xi}b^{\xi}s^{\xi}(\ln s)^{\xi-\frac{1}{2}}(1+\beta), \quad \alpha(\mathcal{G}_m) \geq s.$$

Положим

$$h(s) = \frac{\ln\left(\frac{bs(\ln s)(1+\beta')}{\ln c}\right)}{\ln c}, \quad 0 < \beta' < \beta.$$

Ясно, что при больших s величина h(s) неотрицательна и, следовательно, есть натуральное n вида n=4k, не превосходящее h(s)+4 и большее либо равное h(s). По лемме 3 для соответствующего m имеем

$$\begin{split} \alpha(\mathcal{G}_m) \geqslant \frac{4^{n+2}}{\pi n 3^{\frac{3n}{4}+5}} (1 + \delta_3(n)) &= \frac{1}{b} \cdot \frac{c^n}{n} (1 + \delta_3(n)) = \\ &= \frac{1}{b} \cdot \frac{e^{n \ln c}}{n} (1 + \delta_3(n)) \geqslant \frac{1}{b} \cdot \frac{e^{h(s) \ln c}}{h(s) + 4} (1 + \delta_3(n)). \end{split}$$

С ростом s растет и n, а значит, можно написать $\delta_3(n)=\gamma(s)$, где $\gamma(s)\to 0,\, s\to \infty$. Таким образом,

$$\alpha(\mathcal{G}_m) \geqslant \frac{1}{b} \cdot \frac{e^{h(s)\ln c}}{h(s)+4} (1+\gamma(s)) = \frac{1}{b} \cdot \frac{bs(\ln s)(1+\beta')}{(\ln c)\left(\frac{\ln\left(\frac{bs(\ln s)(1+\beta')}{\ln c}\right)}{\ln c}+4\right)} (1+\gamma(s)) = \frac{1}{b} \cdot \frac{bs(\ln s)(1+\beta')}{(\ln c)\left(\frac{\ln\left(\frac{bs(\ln s)(1+\beta')}{\ln c}\right)}{\ln c}+4\right)} (1+\gamma(s)) = \frac{1}{b} \cdot \frac{bs(\ln s)(1+\beta')}{(\ln c)\left(\frac{\ln\left(\frac{bs(\ln s)(1+\beta')}{\ln c}\right)}{\ln c}+4\right)} (1+\gamma(s)) = \frac{1}{b} \cdot \frac{bs(\ln s)(1+\beta')}{(\ln c)\left(\frac{\ln\left(\frac{bs(\ln s)(1+\beta')}{\ln c}\right)}{\ln c}+4\right)} (1+\gamma(s)) = \frac{1}{b} \cdot \frac{bs(\ln s)(1+\beta')}{(\ln c)\left(\frac{\ln\left(\frac{bs(\ln s)(1+\beta')}{\ln c}\right)}{\ln c}+4\right)} (1+\gamma(s)) = \frac{1}{b} \cdot \frac{bs(\ln s)(1+\beta')}{(\ln c)\left(\frac{\ln\left(\frac{bs(\ln s)(1+\beta')}{\ln c}\right)}{\ln c}+4\right)} (1+\gamma(s)) = \frac{1}{b} \cdot \frac{bs(\ln s)(1+\beta')}{(\ln c)\left(\frac{\ln\left(\frac{bs(\ln s)(1+\beta')}{\ln c}\right)}{\ln c}+4\right)} (1+\gamma(s)) = \frac{1}{b} \cdot \frac{bs(\ln s)(1+\beta')}{(\ln c)\left(\frac{\ln\left(\frac{bs(\ln s)(1+\beta')}{\ln c}\right)}{(\ln c)\left(\frac{\ln(bs(\ln s)(1+\beta')}{(\ln c)\left(\frac{bs(\ln s)(1+\beta')}{(\ln c)\left(\frac{\ln(bs(\ln s)(1+\beta')}{(\ln c)\left(\frac{bs(\ln s)(1+\beta')}{(\ln c)(1+\beta')}(\frac{bs(\ln s)(1+\beta')}{(\ln c)(1+\beta')}(\frac{bs(\ln s)(1+\beta')}{(\ln c)($$

$$= \frac{s(\ln s)(1+\beta')}{\ln \frac{c^4 b s(\ln s)(1+\beta')}{\ln c}} (1+\gamma(s)) = \frac{s(\ln s)(1+\beta')}{(\ln s)(1+\gamma'(s))} (1+\gamma(s)), \quad \gamma'(s) \to 0, \ s \to \infty.$$

Поскольку $\beta' > 0$, окончательно получаем (при достаточно больших s) $\alpha(\mathcal{G}_m) > s$.

Теперь, воспользовавшись результатами пункта 3.4.1, получим следующую цепочку соотношений:

$$\begin{split} m &= \sqrt{\frac{2}{\pi}} \cdot \frac{2^{n}}{\sqrt{n}} (1 + \delta_{1}(n)) \leq \sqrt{\frac{2}{\pi}} \cdot \frac{2^{h(s)+4}}{\sqrt{h(s)}} (1 + \delta_{1}(n)) = \\ &= 16\sqrt{\frac{2}{\pi}} \cdot \frac{1}{\sqrt{h(s)}} \cdot 2^{\frac{\ln\left(\frac{bs(\ln s)(1+\beta')}{\ln c}\right)}{\ln c}} (1 + \delta_{1}(n)) = \\ &= 16\sqrt{\frac{2}{\pi}} \cdot \frac{1}{\sqrt{h(s)}} \cdot \left(\frac{bs(\ln s)(1+\beta')}{\ln c}\right)^{\xi} (1 + \delta_{1}(n)). \end{split}$$

Заметим, что $h(s) \geqslant \frac{\ln s}{\ln c}$ при больших s. Стало быть,

$$\begin{split} m &\leqslant 16\sqrt{\frac{2}{\pi}} \cdot \frac{1}{\sqrt{\frac{\ln s}{\ln c}}} \cdot \left(\frac{bs(\ln s)(1+\beta')}{\ln c}\right)^{\xi} (1+\delta_1(n)) \leqslant \\ &\leqslant 16\sqrt{\frac{2}{\pi}} (\ln c)^{\frac{1}{2}-\xi} b^{\xi} s^{\xi} (\ln s)^{\xi-\frac{1}{2}} (1+\beta), \end{split}$$

коль скоро β' и s таковы, что

$$(1+\beta')^{\xi}(1+\delta_1(n)) \leq 1+\beta.$$

Теорема доказана.

3.7.4. Доказательство теоремы 37

Переформулируем сперва лемму 4 в обозначениях нашей теоремы. А именно, справедлива

Лемма 4'. Пусть c, ξ , d, θ_1 , θ_2 , θ_3 — такие же, как в формулировке теоремы 37. Тогда при $n = 4\rho^a$ справедлива оценка

$$\alpha(\mathcal{G}_m) \leq \theta_3 (\ln m)^{\theta_2} m^{\theta_1} (1 + \delta_4'(m)),$$

где $\delta_4'(m) \rightarrow 0$, $m \rightarrow \infty$.

Доказательство леммы 4'. Ввиду результатов пункта 3.4.1

$$m = \sqrt{\frac{2}{\pi}} \cdot \frac{2^n}{\sqrt{n}} (1 + \delta_1(n)).$$

Значит, $\ln m \sim n \ln 2$. Имеем

$$\theta_3(\ln m)^{\theta_2}m^{\theta_1} \sim \theta_3 n^{\theta_2}(\ln 2)^{\theta_2} \left(\frac{2}{\pi}\right)^{\theta_1/2} \frac{c^n}{n^{1/(2\xi)}} = \frac{d \cdot c^n}{\sqrt{n}}.$$

Нетрудно видеть, что, в свою очередь, по лемме 4

$$\alpha(\mathcal{G}_m) \leqslant \frac{d \cdot c^n}{\sqrt{n}} (1 + \delta_4(n)).$$

Завершение доказательства очевидно.

Зафиксируем все параметры, фигурирующие в формулировке теоремы, и $\beta>0$ в том числе. Упорядочим по возрастанию величины все числа вида $4\rho^a$, где ρ — простое, a — натуральное. Получится множество

$$\mathcal{N} = \{8, 12, 16, 20, 28, 32, 36, 44, 52, 64, \ldots\}.$$

Для каждого $n \in \mathcal{N}$ определим m по известной формуле. Сохраняя порядок чисел, образуем множество

$$\mathcal{M} = \{70, 924, 12870, 184756, \ldots\}.$$

Для каждого $m \in \mathcal{M}$ найдем s' из соотношения

$$m = \left[\theta_4(s')^{\xi}(\ln s')^{\frac{-\xi-1}{2}}(1-\beta')\right], \quad \beta' = \frac{\beta}{2}.$$

Положим $s = \lceil s' \rceil$. Возникнет бесконечная последовательность $\mathscr S$ натуральных чисел s, упорядоченных по возрастанию. При этом всякому $s \in \mathscr S$ однозначно отвечает m = m(s), и наоборот. Наконец,

$$m(s) \sim \theta_4 s^{\xi} (\ln s)^{\frac{-\xi-1}{2}} (1 - \beta'),$$

т. е. при достаточно больших s выполнено

$$m(s) > \theta_4 s^{\xi} (\ln s)^{\frac{-\xi-1}{2}} (1-\beta).$$

Сейчас мы покажем, что начиная с некоторого s_0 все $s \in \mathscr{S}$ таковы, что

$$R_{\text{dist}}^{\text{prime}}(s,s) > m = m(s),$$

и этого хватит для завершения доказательства теоремы 37.

Итак, пусть s достаточно велико. Для соответствующего m=m(s) рассмотрим граф \mathcal{G}_m . Нам необходимо убедиться в том, что найдется такой $G \preceq \mathcal{G}_m$, для которого ни в нем самом, ни в его дополнении нет индуцированных подграфов графа \mathcal{G}_m , имеющих s вершин. Рассмотрим случайный дистанционный граф $G(\mathcal{G}_m, 1/2)$.

Как и в пункте 3.4.5, для любого $W \subset \mathcal{V}_m$, |W| = s, обозначим через r(W) количество ребер полного дистанционного графа на вершинах из W. Пусть, в то же время, A_W — событие, состоящее в том, что либо в случайном графе G, либо в его дополнении находится индуцированный подграф графа \mathcal{G}_m с множеством вершин W. Ясно, что

$$P_{m,1/2}(A_W) = 2\left(\frac{1}{2}\right)^{r(W)},$$

причем, ввиду теоремы 31, имеем $r(W) \geqslant \frac{s^2}{2\alpha} - \frac{s}{2}$. Здесь важно, что у нас $s > \alpha = \alpha(\mathscr{G}_m)$: в самом деле, из леммы 4' мы знаем, что

$$\alpha \leq \theta_3 (\ln m)^{\theta_2} m^{\theta_1} (1 + \delta_4'(m)) \sim$$

$$\sim \theta_3(\xi \ln s)^{\theta_2} \theta_4^{\theta_1} s^{\xi \theta_1} (\ln s)^{\frac{-\xi - 1}{2} \cdot \theta_1} (1 - \beta')^{\theta_1} = O(s(\ln s)^{-1}).$$

В результате

$$P_{m,1/2}\left(\bigcup_{W\subset\mathcal{Y}_m}A_W\right)\leqslant 2C_m^s\left(\frac{1}{2}\right)^{\frac{s^2}{2a}-\frac{s}{2}}.$$

Если мы покажем, что

$$2C_m^s \left(\frac{1}{2}\right)^{\frac{s^2}{2a} - \frac{s}{2}} < 1,\tag{1}$$

то это будет означать, что

$$P_{m,1/2}\left(\overline{\bigcup_{W\subset\mathcal{Y}_m}A_W}\right)>0,$$

а нам ровно то и нужно.

Поскольку $C_m^s < \frac{m^s}{s^s e^{-s}}$, для доказательства (1) достаточно проверить справедливость оценки

$$\frac{2m^s}{s^s e^{-s}} \left(\frac{1}{2}\right)^{\frac{s^2}{2\alpha} - \frac{s}{2}} < 1.$$

Снова пользуемся леммой 4':

$$\frac{2m^{s}}{s^{s}e^{-s}}\left(\frac{1}{2}\right)^{\frac{s^{2}}{2\alpha}-\frac{s}{2}} \leqslant \frac{2m^{s}}{s^{s}e^{-s}}\left(\frac{1}{2}\right)^{\frac{s^{2}}{2\theta_{3}(\ln m)^{\theta_{2}}m^{\theta_{1}}}\left(1+\sigma_{1}(m)\right)}, \quad \sigma_{1}(m) = o(1),$$

и наша задача сводится к установлению неравенства

$$\frac{2m^s}{s^s e^{-s}} \left(\frac{1}{2}\right)^{\frac{s^2}{2\theta_3(\ln m)^{\theta_2} m^{\theta_1}} (1+\sigma_1(m))} < 1.$$

Прологарифмируем левую часть последнего неравенства и убедимся в том, что получится отрицательное число. Заметим еще раз, что

$$m \le \theta_4 s^{\xi} (\ln s)^{\frac{-\xi-1}{2}} (1-\beta'), \ln m \sim \xi \ln s.$$

Итак,

$$\begin{split} &\ln 2 + s \ln m - s \ln s + s - \frac{s^2 (\ln 2) (1 + \sigma_1(m))}{2\theta_3 (\ln m)^{\theta_2} m^{\theta_1}} \leqslant \\ &\leqslant \ln 2 + s \ln(\theta_4 (1 - \beta')) + \xi s \ln s + \frac{-\xi - 1}{2} s \ln \ln s - s \ln s + s - \\ &- \frac{s^2 (\ln 2) (1 + \sigma_2(m))}{2\theta_3 (\xi \ln s)^{\theta_2} \theta_4^{\theta_1} s^{\xi \theta_1} (\ln s)^{\theta_1 - \frac{\xi - 1}{2}} (1 - \beta_1)^{\theta_1}} = \\ &= (\xi - 1) (1 + \sigma_3(m)) s \ln s - \left(\frac{\ln 2}{2\theta_3 \xi^{\theta_2} \theta_4^{\theta_1}}\right) \cdot \frac{(1 + \sigma_2(m))}{(1 - \beta_1)^{\theta_1}} \cdot s (\ln s)^{\frac{1}{2} - \frac{1}{2\xi} + \frac{1}{2} + \frac{1}{2\xi}} = \\ &= (\xi - 1) s \ln s \left((1 + \sigma_3(m)) - \frac{(1 + \sigma_2(m))}{(1 - \beta_1)^{\theta_1}}\right) < 0 \end{split}$$

при всех достаточно больших s.

Строго говоря, мы лишь доказали пока, что

$$R_{\rm dist}^{\rm prime}(s,s) \neq m$$
.

Дело в том, что для произвольного m' < m, при котором $\mathcal{G}_{m'} \in \{\mathcal{G}_m^{\text{prime}}\}$, описанная вероятностная технология могла не сработать. В сущности, так было бы, окажись лемма 4' справедливой только для m, но не для других чисел аналогичного вида. По счастью, с леммой 4' никаких проблем нет, и мы действительно имеем

$$R_{\text{dist}}^{\text{prime}}(s,s) > m.$$

Теорема доказана.

3.8. О связности случайного дистанционного графа

С точки зрения задачи о связности, случайный дистанционный граф устроен точно так же, как и классический случайный граф. Дабы понять это, заметим, что граф \mathcal{G}_m регулярный, т. е. степень каждой его вершины равна одному и тому же числу. В данном случае степень каждой вершины есть величина

$$m_1 = (C_{n/2}^{n/4})^2.$$

В терминах этой величины имеют место следующие результаты.

Теорема 40. Пусть $p = \frac{c \ln m_1}{m_1}$. Если c > 1, то почти наверное случайный дистанционный граф связен. Если c < 1, то почти наверное случайный дистанционный граф связным не является.

Теорема 41. Пусть $p=\frac{c}{m_1}$. Тогда при любом c<1 существует такая константа $\beta=\beta(c)>0$, что почти наверное каждая компонента случайного графа имеет не более $\beta \ln m$ вершин. При любом c>1 существует такая константа $\gamma=\gamma(c)\in(0,1)$, что почти наверное среди компонент случайного графа есть одна, число вершин которой не меньше γm .

Почему теоремы 40 и 41 служат прямыми аналогами теорем 13 и 16? Да потому, что в графе Эрдёша — Реньи роль величины m_1 в аккурат выполняет величина $n-1\sim n$.

Доказательство теоремы 40 идейно практически такое же, как и доказательство теоремы 13. Однако технически оно труднее. То же самое верно и относительно доказательств теорем 16 и 41. Идейно они близки, а технически дистанционный случай, конечно, намного сложнее.

3.9. Законы нуля или единицы для случайного дистанционного графа

В параграфе 2.10 мы рассказали о законах нуля или единицы для случайного графа в модели G(n,p). Естественно поставить вопрос: а в модели $G(\mathcal{G}_m,p)$ имеют место аналогичные законы? Довольно легко понять, что ответ на вопрос отрицательный.

В самом деле, рассмотрим следующее очень простое свойство *L*, которое ничего не стоит записать на языке первого порядка: для любых трех вершин графа найдется четвертая, соединенная с каждой

из них. В виде формулы оно выглядит так:

$$\forall x_1 \ \forall x_2 \ \forall x_3 \ \exists x_4 \ \big((x_1 \sim x_4) \cap (x_2 \sim x_4) \cap (x_3 \sim x_4) \big).$$

Теперь пусть k_1 пробегает все нечетные числа, а k_2 — все четные. Положим $n_i = 4k_i, \ m_i = C_{n_i}^{n_i/2}$.

Для последовательности $\{k_1,n_1,m_1\}$ рассмотрим вершины графа \mathcal{G}_{m_1} , имеющие вид

$$\begin{aligned} \mathbf{x}_1 &= (1, ..., 1, \ 1, ..., 1, \ 0, ..., 0, \ 0, ..., 0), \\ \mathbf{x}_2 &= (1, ..., 1, \ 0, ..., 0, \ 1, ..., 1, \ 0, ..., 0), \\ \mathbf{x}_3 &= (1, ..., 1, \ 0, ..., 0, \ 0, ..., 0, \ 1, ..., 1). \end{aligned}$$

Здесь отдельные блоки координат имеют мощность k_1 , так что векторы \mathbf{x}_1 , \mathbf{x}_2 , \mathbf{x}_3 образуют треугольник. Нетрудно понять (это легкое упражнение), что для этих векторов *не существует* четвертого, который бы с каждым из них был соединен ребром в графе \mathcal{G}_{m_1} .

В то же время для последовательности $\{k_2,n_2,m_2\}$ имеем принципиально другую ситуацию. Можно показать (довольно муторным перебором), что, каковы бы ни были три вершины графа \mathscr{G}_{m_2} , существует экспоненциально много вершин \mathbf{x}_4 , каждая из которых соединена с ними всеми. Точнее, найдется такая константа $\gamma>1$, что для любых $\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3\in\mathscr{V}_{m_2}$ есть множество $A_{\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3}\subset\mathscr{V}_{m_2},$ $|A_{\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3}|>\gamma^{n_2}$, в котором любая вершина смежна с $\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3$.

В результате

$$\lim_{n_1\to\infty} P_{n_1,p}(G\in L)=0.$$

Однако

$$\begin{split} P_{n_2,p}(G\not\in L)&\leqslant C_{m_2}^3P_{n_2,p}(\text{для данных }\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3\text{ и любой }\mathbf{x}_4\in A_{\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3}\\ &((x_1\not\sim x_4)\cup(x_2\not\sim x_4)\cup(x_3\not\sim x_4)))\leqslant C_{m_2}^3(1-p^3)^{\gamma^{n_2}}\leqslant (m_2)^3e^{-p^3\gamma^{n_2}}. \end{split}$$

Допустим, вероятность ребра p ведет себя так же, как ее аналог из теоремы 20, т.е. $p(m_2)^\alpha \to \infty$ при любом $\alpha > 0$. Поскольку $m_2 = (2+o(1))^{n_2}$, это значит, что p если и стремится к нулю, то с субэкспоненциальной скоростью. Таким образом, можно сказать, например, что $p^3 \gamma^{n_2} > \gamma^{n_2/2}$, а стало быть,

$$\lim_{n_2\to\infty} P_{n_2,p}(G\in L) = 1.$$

Иными словами, предела $\lim_{n\to\infty} P_{n,p}(G\in L)$ не существует, и закона нуля или единицы действительно нет.

На этом, впрочем, все не только не заканчивается, но скорее начинается. Оказывается разумным ослабить язык первого порядка. Например, рассматривают фразы, в которых участвует один и тот же квантор (в любом количестве) или фразы с не более чем j кванторами, и т.д. Это целая отдельная область исследований, которая еще ждет своего полноценного развития.