Riley Zidel

Question 1

su = read.delim("Su_raw_matrix.txt")

mean(su\$Liver_2.CEL)

sd(su\$Liver_2.CEL)

colMeans(su)

colSums(su)

Question 2 ------

x <- rnorm(10000, 0, .x)

y <- rnorm(10000, 0, .5)

hist(x, main = "Sigma = .2", xlim = c(-5,5), xlab = "Value")

hist(y, main = "Sigma = .5", xlim = c(-5,5), xlab = "Value")

When sigma is .2 the histogram is much more narrow and taller. This is because
the standard deviation is smaller, which implies that the values deviate from
the mean less, causing them to be more closely bunched together.

```
#Question 3 ------
library(ggplot2)
dat <- data.frame(cond = factor(rep(c("A","B"), each=200)),
        rating = c(rnorm(200),rnorm(200, mean=.8)))
#Overlaid Histogram
ggplot(dat, aes(x=rating, fill=cond)) +
geom_histogram(binwidth=.5, alpha=.5, position="identity")
#Interleaved Histogram
ggplot(dat, aes(x=rating, fill=cond)) + geom_histogram(binwidth=.5, position="dodge")
#Density plot
ggplot(dat, aes(x=rating, colour=cond)) + geom_density()
#Density plot with semitransparent fill
ggplot(dat, aes(x=rating, fill=cond)) + geom_density(alpha=.3)
diabetes <- read.csv("diabetes_train.csv")
```

#Overlaid Histogram

ggplot(diabetes, aes(x=mass, fill=class)) +

geom_histogram(binwidth=.5, alpha=.5, position="identity")

#Interleaved Histogram

ggplot(diabetes, aes(x=mass, fill=class)) + geom_histogram(binwidth=.5, position="dodge")

Riley Zidel

#Density plot

ggplot(diabetes, aes(x=mass, colour=class)) + geom_density()

#Density plot with semitransparent fill

ggplot(diabetes, aes(x=mass, fill=class)) + geom_density(alpha=.3)


```
Riley Zidel
#Question 4 -----
library("tidyverse")
passengers = read.csv("titanic.csv")
passengers %>% drop_na() %>% summary()
# The above ignores any rows with NA under age, then prints the summary of the data
passengers %>% filter(Sex == "male")
# The above filters and prints only the rows in which the sex of the row is "male"
passengers %>% arrange(desc(Fare))
# The above sorts the rows by fare, with the highest fare at the top and lowest at the bottom
passengers %>% mutate(FamSize = Parch + SibSp)
# The above creates a new column called FamSize, which is equal to Parch + SibSp
passengers %>% group_by(Sex) %>% summarise(meanFare = mean(Fare), numSurv =
sum(Survived))
# The above groups the passengers by sex, then displays a summary of the average
# fare and number survived for each group.
```

Riley Zidel
#Question 5
quantile(diabetes\$skin, c(.10, .30, .50, .60))