Mathematics for Computing - IT1030

Lecture 02 Boolean Algebra

Boolean Algebra

- A variable used in an **algebraic formula** so far, is assumed to take *a set of numerical values*.
- All variables in **boolean equations** can take only one of *two possible values*.
- Used symbols for the two values are **0** and **1**.
- Rules first defined for logic by George Boole (1854), were adapted for the use in designing electronic circuits.
 - The circuits in computers and other electronic devices have inputs, each of which is either a 0 or a 1.

Boolean Algebra (cont'd.)

- One major advantage in using these rules is to simplify an electronic circuit.
- Boolean algebra provides the operations and the rules for working with boolean variables.
- Three (3) boolean operators are discussed.
 - Complement
 - Boolean sum
 - Boolean product
- Ten (10) rules are also discussed (aka Boolean Identities).

Boolean Operators

Complement

- Defined as the opposite of the value that a boolean variable takes.
- Denoted with a bar (E.g.: \overline{A}).
- $\overline{0} = 1$ and $\overline{1} = 0$.

Boolean Sum

- Defined as the output to be 1 if at least one variable is 1.
- Denoted with the symbol + or by OR. • •
- 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1 and 1 + 1 = 1.

Boolean Operators (cont'd.)

Boolean Product

- Defined as the output to be 0 if at least one variable is 0.
- Denoted with the symbol (·) or by AND.
- $0 \cdot 0 = 0$, $0 \cdot 1 = 0$, $1 \cdot 0 = 0$ and $1 \cdot 1 = 1$.
- When there is no danger of confusion, the symbol · can be omitted.
- Order of boolean operators,
 - 1. Complement.
 - 2. Boolean products.
 - 3. Boolean sums.

Boolean Identities

•
$$\overline{\overline{A}} = A$$

2. Idempotent Laws

$$\bullet A + A = A$$

$$\bullet A \cdot A = A$$

3. Identity Laws

•
$$A + 0 = A$$

•
$$A \cdot 1 = A$$

4. Domination/Null/Universal Bound Laws

•
$$A + 1 = 1$$

$$\bullet A \cdot 0 = 0$$

Boolean Identities (cont'd.)

$$\bullet$$
 A + B = B + A

$$\bullet A \cdot B = B \cdot A$$

6. Associative Laws

•
$$A + (B + C) = (A + B) + C$$

•
$$A \cdot (B \cdot C) = (A \cdot B) \cdot C$$

7. Distributive Laws

$$\bullet A \cdot (B + C) = (A \cdot B) + (A \cdot C)$$

$$\bullet A + B \cdot C = (A + B) \cdot (A + C)$$

Boolean Identities (cont'd.)

•
$$\overline{(A \cdot B)} = \overline{A} + \overline{B}$$

•
$$\overline{(A + B)} = \overline{A} \cdot \overline{B}$$

9. Absorption Laws

$$\bullet A \cdot (A + B) = A$$

$$\bullet A + A \cdot B = A$$

10. Inverse Laws / Unit & Zero Properties . .

•
$$A + \overline{A} = 1$$

• A ·
$$\overline{A} = 0$$

Examples

- 1. Find the values of the following expressions.
 - i. $1 \cdot \overline{0}$
 - ii. $1 + \bar{1}$
- iii. $\overline{(1+0)}$
- 2. Prove both variants of the absorption law using other boolean identities.
- 3. Simplify the following expressions.
 - i. $A\overline{B}D + A\overline{B}\overline{D}$
 - ii. $(\overline{A} + B)(A + B)$
 - iii. $M = \overline{W}\overline{X}\overline{Y}\overline{Z} + \overline{W}X\overline{Y}\overline{Z} + WX\overline{Y}\overline{Z} + W\overline{X}\overline{Y}\overline{Z}$

Truth Tables

- To verify the above rules, a **truth table** can be used.
- It's also known as a **Table of Combinations**.
- It's a table displaying all possible values for the variables and the outcomes for a boolean expression.
 - If there are n number of variables, there will be 2^n number of rows in the truth table.
 - If the truth table for two boolean expressions shows the same outcomes for the same values for the variables, it can be concluded that the expressions are the same/equal.

Examples

$$i$$
. $\overline{A}B$

ii.
$$M = x\overline{y} + \overline{(xyz)}$$

iii.
$$F(x, y, z) = \overline{y}(xz + \overline{x}\overline{z})$$

2. Using a truth table, show that,

$$x\overline{y} + y\overline{z} + \overline{x}z = \overline{x}y + \overline{y}z + x\overline{z}$$

Sum of Products (SoP)

- In some cases, the truth table might be known and we might want to know the expression that gives the truth table.
- This can be done by representing as a **Sum of Products (SoP)** of the variables and their complements.
 - Steps:-
 - 1. Select the rows in the truth table that gives 1 as the outcome.
 - 2. Write how we can obtain 1 for the first selected row by using the **product** of the variables.
 - 3. Repeat step two for all selected rows and use the **sum** to combine all results.

Example

Find the boolean expression for F from the given truth table.

The state of the s			
A	В	С	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Product of Sums (PoS)

- Used for the same reason as a SoP.
- Product of Sums (PoS) has opposite steps of SoP.
- Steps:-
 - 1. Select the rows in the truth table that gives 0 as the outcome.
 - 2. Write how we can obtain **0** for the first selected row by using the **sum** of the variables.
- 3. Repeat step two for all selected rows and use the **product** to combine all results.
 - Conversion can be done between the two using De Morgan's rule.

Duality Principle

• In a boolean expression, if all the sums (+) and products (·) are exchanged as well as if 1's and 0's are exchanged, the resulting expression is the opposite of the initial expression.

- This property is observed between SoP and PoS.
- The duel of the complement of one form is equal to the expression in the other form.

Summary

- Students should be able to,
 - Understand the boolean expressions.
 - Learn laws and rules of boolean algebra.
 - Simplify boolean expressions using boolean identities.
 - Use Sum of Products (SoP) and Product of Sums (PoS) to find boolean expressions.
 - Understand similarities and differences between boolean variables as opposed to regular variables.

End of Lecture 02

Next Lecture:-Logic Gates

