KVADRATICKÉ NEROVNICE

(ukážkové príklady a domáca úlohy)

Zo začiatku sa riešia úplne ako kvadratické rovnice. Takže vzorový príklad zo včera si vezmeme v tvare nerovnice (musíme to mať upravené na všeobecný tvar a $x^2 + bx + c - ak$ nemáme, najprv upravíme). Takže včerajší príklad:

Pr.1:
$$4x^2 - 8x - 32 > 0$$

$$D = b^2 - 4.a.c = 64 - 4.4.(-32) = 64 + 512 = 576$$

 $X_{1,2} = -2$; 4 a parabola je konvexná, lebo a > 0

Nakreslíme si graf konvexnej paraboly prechádzajúcej bodmi x_1 a x_2 a keďže znak nerovnosti v nerovnici je **väčší ako 0**, vyznačíme všetky x, ktoré majú **kladnú funkčnú hodnotu** (viď zelené čiary v grafe) ----- teda $x \in (-\infty; -2) \cup (4; \infty)$. V bodoch - 2 a 4 dáme <u>prázdny krúžok</u>, lebo hľadáme len hodnoty väčšie ako 0 (znak nerovnosti v nerovnici nepripúšťa rovnosť nule). A preto sú pri bodoch - 2 a 4 otvorené intervaly.

$$\mathbf{K} = (-\infty; -2) \cup (4; \infty)$$

Pr.2: $3x^2 + 3x - 60 \le 0$

 $D = b^2 - 4$.a.c = 9 - 4.3. (-60) = 9 + 720 = 729

 $X_{1,2} = -5$; 4 a parabola je konvexná

Nakreslíme si graf konvexnej paraboly prechádzajúcej bodmi x_1 a x_2 a keďže znak nerovnosti v nerovnici je **menší alebo rovný 0**, vyznačíme všetky x, ktoré majú **zápornú funkčnú hodnotu alebo rovnú 0** (viď zelené čiary v grafe) —---- teda $x \in \langle -5 ; 4 \rangle$. V bodoch -5 a 4 dáme <u>plný krúžok</u>, lebo hľadáme hodnoty menšie alebo aj rovné 0 (znak nerovnosti v nerovnici pripúšťa rovnosť nule). A preto sú pri bodoch -5 a 4 uzavreté intervaly.

$$K = \langle -5 ; 4 \rangle$$

Pr.3:
$$-2x^2 - 8x - 6 \ge 0$$

 $D = b^2 - 4.a.c = 64 - 4.(-2).(-6) = 64 - 48 = 16$

 $X_{1,2} = -3$; -1 a parabola je konkávna

Nakreslíme si graf konkávnej paraboly prechádzajúcej bodmi x_1 a x_2 a keďže znak nerovnosti v nerovnici je **väčší alebo rovný 0**, vyznačíme všetky x, ktoré majú **kladnú funkčnú hodnotu** (viď zelené čiary v grafe) —— a v bodoch -3 a -1 dáme <u>plné</u> krúžky, interval uzavretý. Teda $x \in \langle -3; -1 \rangle$.

$$\mathsf{K} = \langle -3 ; -1 \rangle$$

Pr.4:
$$-5x^2 + 20x + 105 < 0$$

$$D = b^2 - 4.a.c = 400 - 4. (-5).105 = 400 + 2100 = 2500$$

 $X_{1,2} = -3$; 7 a parabola je konkávna

Nakreslíme si graf konkávnej paraboly prechádzajúcej bodmi x_1 a x_2 a keďže znak nerovnosti v nerovnici je **menší ako 0**, vyznačíme všetky x, ktoré majú **zápornú funkčnú hodnotu** (viď zelené čiary v grafe) ----- a v bodoch – 3 a – 1 dáme <u>prázdne</u> krúžky, interval otvorený. Teda $x \in (-\infty; -3) \cup (7; \infty)$.

$$K = (-\infty; -3) \cup (7; \infty)$$

Porozumeli ste?

Domáce zadania:

Úloha 1.
$$x^2 + 6x - 7 < 0$$
 (D.ú.)

Úloha 2.
$$-4x^2 - 32x - 48 \le 0$$

Úloha 3.
$$3x^2 - 18x + 15 ≥ 0$$

Úloha 4.
$$-2x^2 - 2x + 12 > 0$$