Package 'fungible'

November 8, 2016

Version 1.5 **Date** 2016-11-08

Title Fungible Coefficients and Monte Carlo Functions

Author N	Niels G. Waller <nwaller@umn.edu> and Jeff Jones <jeff.jones@kornferry.com></jeff.jones@kornferry.com></nwaller@umn.edu>
Maintain	er Niels G. Waller <nwaller@umn.edu></nwaller@umn.edu>
Depends	R (>= 3.0)
-	e1071, lattice, MASS, mvtnorm, R2Cuba, stringr, nleqslv, hods
Unc Wal Wal Psy A M Mo Jon cov	derlying theory for these functions is described in the following publications: ller, N. (2008). Fungible Weights in Multiple Regression. Psychometrika, 73(4), 691-703. ller, N. & Jones, J. (2009). Locating the Extrema of Fungible Regression Weights. chometrika, 74(4), 589-602. Waller, N. G. (2016). Fungible Correlation Matrices: Method for Generating Nonsingular, Singular, and Improper Correlation Matrices for inte Carlo Research. Multivariate Behavioral Research, 51(4), 554-568. es, J. A. & Waller, N. G. (2015). The normal-theory and asymptotic distribution-free (ADF) ariance matrix of standardized regression coefficients: theoretical extensions finite sample behavior. Psychometrika, 80, 365378.
	GPL (>=2)
	mpilation no
R topi	cs documented:
ä	adfCor
ä	adfCov
1	bigen 5
(corSample
(corSmooth
(d2r
	eigGen
(enhancement
f	fungible
i	
1	fungibleExtrema
	tungibleExtrema
	- -
1	fungibleL 14
1	fungibleL

2 adfCor

Index		52
	vnorm	50
	vcos	50
	tetcorQuasi	48
	tetcor	47
	summary.monte1	46
	summary.monte	45
	skew	44
	seBetaFixed	
	seBetaCor	
	seBeta	40
	rMAP	38
	rGivens	
	rellipsoid	
	rcor	
	rcone	
	rarc	
	r2d	
	plot.monte	
	normalCor	
	monte1	
	monte	22

adfCor

Asymptotic Distribution-Free Covariance Matrix of Correlations

Description

Function for computing an asymptotic distribution-free covariance matrix of correlations.

Usage

```
adfCor(X, y = NULL)
```

Arguments

X Data matrix.

y Optional vector of criterion scores.

Value

adfCorMat Asymptotic distribution-free estimate of the covariance matrix of correlations.

Author(s)

Jeff Jones and Niels Waller

adfCov 3

References

Browne, M. W. (1984). Asymptotically distribution-free methods for the analysis of covariance structures. *British Journal of Mathematical and Statistical Psychology*, *37*, 62–83.

Steiger, J. H. and Hakstian, A. R. (1982). The asymptotic distribution of elements of a correlation matrix: Theory and application. *British Journal of Mathematical and Statistical Psychology, 35*, 208–215.

Examples

```
## Generate non-normal data using monte1
set.seed(123)
## we will simulate data for 1000 subjects
N <- 1000
\#\# R = the desired population correlation matrix among predictors
R \leftarrow matrix(c(1, .5, .5, 1), 2, 2)
## Consider a regression model with coefficient of determination (Rsq):
Rsq < - .50
## and vector of standardized regression coefficients
Beta <- sqrt(Rsq/t(sqrt(c(.5, .5))) %*% R %*% sqrt(c(.5, .5))) * sqrt(c(.5, .5))
## generate non-normal data for the predictors (X)
## x1 has expected skew = 1 and kurtosis = 3
## x2 has expected skew = 2 and kurtosis = 5
X \leftarrow monte1(seed = 123, nvar = 2, nsub = N, cormat = R, skewvec = c(1, 2),
            kurtvec = c(3, 5))$data
## generate criterion scores
y <- X %*% Beta + sqrt(1-Rsq)*rnorm(N)
## Create ADF Covariance Matrix of Correlations
adfCor(X, y)
               12
                            13
#> 12 0.0012078454 0.0005331086 0.0004821594
#> 13 0.0005331086 0.0004980130 0.0002712080
#> 23 0.0004821594 0.0002712080 0.0005415301
```

adfCov

Asymptotic Distribution-Free Covariance Matrix of Covariances

Description

Function for computing an asymptotic distribution-free covariance matrix of covariances.

Usage

```
adfCov(X, y = NULL)
```

4 adfCov

Arguments

X Data matrix.

y Optional vector of criterion scores.

Value

adfCovMat Asymptotic distribution-free estimate of the covariance matrix of covariances

Author(s)

Jeff Jones and Niels Waller

References

Browne, M. W. (1984). Asymptotically distribution-free methods for the analysis of covariance structures. *British Journal of Mathematical and Statistical Psychology*, *37*, 62–83.

```
## Generate non-normal data using monte1
set.seed(123)
## we will simulate data for 1000 subjects
N <- 1000
\#\# R = the desired population correlation matrix among predictors
R \leftarrow matrix(c(1, .5, .5, 1), 2, 2)
## Consider a regression model with coefficient of determination (Rsq):
Rsq < -.50
## and vector of standardized regression coefficients
## generate non-normal data for the predictors (X)
## x1 has expected skew = 1 and kurtosis = 3
## x2 has expected skew = 2 and kurtosis = 5
X \leftarrow monte1(seed = 123, nvar = 2, nsub = N, cormat = R, skewvec = c(1, 2),
          kurtvec = c(3, 5))$data
## generate criterion scores
y <- X %*% Beta + sqrt(1-Rsq)*rnorm(N)
## Create ADF Covariance Matrix of Covariances
adfCov(X, y)
#>
          11
                   12
                           13
                                    22
                                             23
                                                     33
#> 11 3.438760 2.317159 2.269080 2.442003 1.962584 1.688631
#> 12 2.317159 3.171722 2.278212 3.349173 2.692097 2.028701
#> 13 2.269080 2.278212 2.303659 2.395033 2.149316 2.106310
#> 22 2.442003 3.349173 2.395033 6.275088 4.086652 2.687647
#> 23 1.962584 2.692097 2.149316 4.086652 3.287088 2.501094
#> 33 1.688631 2.028701 2.106310 2.687647 2.501094 2.818664
```

bigen 5

bigen

Generate Correlated Binary Data

Description

Function for generating binary data with population thresholds.

Usage

```
bigen(data, n, thresholds, seed = NULL)
```

Arguments

data Either a matrix of binary (0/1) indicators or a correlation matrix.

n The desired sample size of the simulated data.

thresholds If x is a correlation matrix, thresholds must be a vector of threshold cut points.

seed Default = NULL. Optional seed for random number generator.

Value

data Simulated binary data

r Input or calculated (tetrachoric) correlation matrix

Author(s)

Niels G Waller

```
## Example: generating binary data to match
## an existing binary data matrix
##
## Generate correlated scores using factor
## analysis model
\#\# X <- Z *L' + U*D
## Z is a vector of factor scores
## L is a factor loading matrix
## U is a matrix of unique factor scores
## D is a scaling matrix for {\sf U}
N <- 5000
# Generate data from a single factor model
# factor patter matrix
L \leftarrow matrix(rep(.707, 5), nrow = 5, ncol = 1)
# common factor scores
Z <- as.matrix(rnorm(N))</pre>
# unique factor scores
U <- matrix(rnorm(N *5), nrow = N, ncol = 5)</pre>
D <- diag(as.vector(sqrt(1 - L^2)))
```

6 corSample

```
# observed scores
X <- Z %*% t(L) + U %*% D
cat("\nCorrelation of continuous scores\n")
print(round(cor(X),3))
# desired difficulties (i.e., means) of
# the dichotomized scores
difficulties <-c(.2, .3, .4, .5, .6)
# cut the observed scores at these thresholds
# to approximate the above difficulties
thresholds <- qnorm(difficulties)</pre>
Binary <- matrix(0, N, ncol(X))</pre>
for(i in 1:ncol(X)){
 Binary[X[,i] <= thresholds[i],i] <- 1</pre>
cat("\nCorrelation of Binary scores\n")
print(round(cor(Binary), 3))
## Now use 'bigen' to generate binary data matrix with
## same correlations as in Binary
z <- bigen(data = Binary, n = N)</pre>
cat("\n\nnames in returned object\n")
print(names(z))
cat("\nCorrelation of Simulated binary scores\n")
print(round(cor(z$data), 3))
cat("Observed thresholds of simulated data:\n")
cat(apply(z$data, 2, mean))
```

corSample

Sample Correlation Matrices from a Population Correlation Matrix

Description

Sample correlation (covariance) matrices from a population correlation matrix (see Browne, 1968; Kshirsagar, 1959)

Usage

```
corSample(R, n)
```

Arguments

R A population correlation matrix.

n Sample correlation (covariance) matrices will be generated assuming a sample size of n.

corSmooth 7

Value

cov.sample Sample correlation matrix.
Sample covariance matrix.

Author(s)

Niels Waller

References

Browne, M. (1968). A comparison of factor analytic techniques. *Psychometrika*, 33(3), 267-334. Kshirsagar, A. (1959). Bartlett decomposition and Wishart distribution. *The Annals of Mathematical Statistics*, 30(1), 239-241.

Examples

```
R <- matrix(c(1, .5, .5, 1), 2, 2)
# generate a sample correlation from pop R with n = 25
out <- corSample(R, n = 25)
out$cor.sample
out$cov.sample</pre>
```

corSmooth

Smooth a Non PD Correlation Matrix

Description

A function for smoothing a non-positive definite correlation matrix by the method of Knol and Berger (1991).

Usage

```
corSmooth(R, eps = 1E8 * .Machine$double.eps)
```

Arguments

R A non-positive definite correlation matrix.

eps Small positive number to control the size of the non-scaled smallest eigenvalue

of the smoothed R matrix. Default = 1E8 * .Machine\$double.eps

Value

Rsmoothed A Smoothed (positive definite) correlation matrix.

Author(s)

Niels Waller

References

Knol, D. L., and Berger, M. P. F., (1991). Empirical comparison between factor analysis and multi-dimensional item response models. *Multivariate Behavioral Research*, 26, 457-477.

8 eigGen

Examples

```
## choose eigenvalues such that R is NPD
1 <- c(3.0749126, 0.9328397, 0.5523868, 0.4408609, -0.0010000)

## Generate NPD R
R <- genCorr(eigenval = 1, seed = 123)
print(eigen(R)$values)

#> [1] 3.0749126 0.9328397 0.5523868 0.4408609 -0.0010000

## Smooth R
Rsm<-corSmooth(R, eps = 1E8 * .Machine$double.eps)
print(eigen(Rsm)$values)

#> [1] 3.074184e+00 9.326669e-01 5.523345e-01 4.408146e-01 2.219607e-08
```

d2r

Convert Degrees to Radians

Description

A simple function to convert degrees to radians

Usage

d2r(deg)

Arguments

deg

Angle in degrees.

Value

Angle in radians.

Examples

d2r(90)

eigGen

Generate eigenvalues for R matrices with underlying component structure

Description

Generate eigenvalues for R matrices with underlying component structure

Usage

```
eigGen(nDimensions = 15, nMajorFactors = 5, PrcntMajor = 0.8, threshold = 0.5)
```

enhancement 9

Arguments

nDimensions Total number of dimensions (variables).

nMajorFactors Number of major factors.

PrcntMajor Percentage of variance accounted for by major factors.

threshold Minimm difference in eigenvalues between the last major factor and the first

minor factor.

Value

A vector of eigenvalues that satisfies the above criteria.

Author(s)

Niels Waller

Examples

```
## Example
set.seed(323)
nDim <- 25 # number of dimensions
nMaj <- 5
          # number of major components
pmaj <- 0.70 # percentage of variance accounted for</pre>
            # by major components
thresh <- 1 # eigenvalue difference between last major component
            # and first minor component
L <- eigGen(nDimensions = nDim, nMajorFactors = nMaj,
           PrcntMajor = pmaj, threshold = thresh)
maxy <- max(L+1)
"\n % Variance Major Factors = ", pmaj*100,
   "%", sep = "")
plot(1:length(L), L,
    type = "b",
    main = plotTitle,
    ylim = c(0, maxy),
    xlab = "Dimensions",
   ylab = "Eigenvalues",
  cex.main = .9)
```

enhancement

Find OLS Regression Coefficients that Exhibit Enhancement

Description

Find OLS regression coefficients that exhibit a specified degree of enhancement.

10 enhancement

Usage

```
enhancement(R, br, rr)
```

Arguments

R Predictor correlation matrix.

br Model R-squared = b' r. That is, br is the model coefficient of determination:

b'Rb = Rsq = br

rr Sum of squared predictor-criterion correlations (rxy). That is, $rr = r'r = Sum(rxy^2)$

Value

b Vector of standardized regression coefficients.

r Vector of predictor-criterion correlations.

Author(s)

Niels Waller

References

Waller, N. G. (2011). The geometry of enhancement in multiple regression. *Psychometrika*, 76, 634–649.

```
## Example: For a given predictor correlation matrix (R) generate
## regression coefficient vectors that produce enhancement (br - rr > 0)
## Predictor correlation matrix
R <- matrix(c( 1, .5, .25,
              .5, 1, .30,
              .25, .30, 1), 3, 3)
## Model coefficient of determination
Rsq <- .60
output < -enhancement(R, br = Rsq, rr = .40)
r <- output$r
b <- output$b
##Standardized regression coefficients
print(t(b))
##Predictor-criterion correlations
print(t(r))
##Coefficient of determinations (b'r)
print(t(b) %*% r)
##Sum of squared correlations (r'r)
print(t(r) %*% r)
```

fungible	Generate Fungible Regression Weights	

Description

Generate fungible weights for OLS Regression Models.

Usage

```
fungible(R.X, rxy, r.yhata.yhatb, sets, print = TRUE)
```

Arguments

R.X	p x p Predictor correlation matrix.
rxy	p x 1 Vector of predictor-criterion correlations.
r.yhata.yhatb	Correlation between least squares (yhatb) and alternate-weight (yhata) composites.
sets	Number of returned sets of fungible weights.
print	Logical, if TRUE then print 5-point summaries of alternative weights.

Value

a	Number of sets x p matrix of fungible weights.
k	Number of sets x p matrix of k weights.
b	p x 1 vector of LS weights.
u	p x 1 vector of u weights.
r.yhata.yhatb	Correlation between yhata and yhatb.
r.y.yhatb	Correlation between y and yhatb.
cov.a	Expected covariance matrix for a.
cor.a	Expected correlation matrix for a.

Author(s)

Niels Waller

References

Waller, N. (2008). Fungible weights in multiple regression. *Psychometrika*, 73, 69–703.

12 fungibleExtrema

```
## OLS standardized regression coefficients
b <- solve(R.X) %*% rxy

## Coefficient of determination (Rsq)
OLSRSQ <- t(b) %*% R.X %*% b

## theta controls the correlation between
## yhatb: predicted criterion scores using OLS coefficients
## yhata: predicted criterion scores using alternate weights
theta <- .01

## desired correlation between yhata and yhatb
r.yhata.yhatb <- sqrt( 1 - (theta)/OLSRSQ)

## number of returned sets of fungible weight vectors
Nsets <- 50

output <- fungible(R.X, rxy, r.yhata.yhatb, sets = Nsets, print = TRUE)</pre>
```

fungibleExtrema

Locate Extrema of Fungible Regression Weights

Description

Locate extrema of fungible regression weights.

Usage

```
fungibleExtrema(R.X, rxy, r.yhata.yhatb, Nstarts, MaxMin)
```

Arguments

R.X p x p Predictor variable correlation matrix. rxy p x 1 Vector of predictor-criterion correlations.

r.yhata.yhatb Correlation between least squares (yhatb) and alternate-weight (yhata) compos-

ites.

Nstarts Maximum number of (max) minimizations from random starting configurations.

MaxMin Character: "Max" = maximize cos(a,b); "Min" = minimize cos(a,b).

Value

cos . ab cosine between OLS and alternate weights.

a extrema of fungible weights.

k k weights.

z z weights: a normalized random vector.

b OLS weights.

u p x 1 vector of u weights.

r.yhata.yhatbr.y.yhatbgradientCorrelation between y and yhatb.Gradient of converged solution.

fungibleExtrema 13

Author(s)

Niels Waller and Jeff Jones

References

Koopman, R. F. (1988). On the sensitivity of a composite to its weights. *Psychometrika*, 53(4), 547–552.

Waller, N. & Jones, J. (2009). Locating the extrema of fungible regression weights in multiple regression. *Psychometrika*, 74, 589–602.

```
## Not run:
## Example
## This is Koopmnan's Table 2 Example
R.X \leftarrow matrix(c(1.00, .69, .49, .39,
                 .69, 1.00, .38, .19,
                 .49, .38, 1.00, .27,
                 .39, .19, .27, 1.00),4,4)
b <- c(.39, .22, .02, .43)
rxy <- R.X %*% b
OLSRSQ <- t(b) %*% R.X %*% b
## theta <- .02
## r.yhata.yhatb <- sqrt( 1 - (theta)/OLSRSQ)</pre>
r.yhata.yhatb <- .90
set.seed(5)
output <- fungibleExtrema(R.X, rxy, r.yhata.yhatb, Nstarts = 500,</pre>
                         MaxMin = "Min")
## Scale to replicate Koopman
a <- output$a
a.old <- a
aRa <- t(a) %*% R.X %*% a
## Scale a such that a' R a = .68659
## vc = variance of composite
vc <- aRa
## sf = scale factor
sf <- .68659/vc
a <- as.numeric(sqrt(sf)) * a</pre>
cat("\nKoopman Scaling\n")
print(round(a,2))
## End(Not run)
```

14 fungibleL

fungibleL	Generate Fungible Logistic Regression Weights	

Description

Generate fungible weights for Logistic Regression Models.

Usage

Arguments

An n by nvar matrix of predictor scores without the leading column of ones.
An n by 1 vector of dichotomous criterion scores.
The desired number of fungible coefficient vectors.
Character: "LLM" = Log-Likelihood method. "EM" = Ellipsoid Method. Default: method = "LLM".
The desired decrement in the pseudo-R-squared - used when method = "LLM".
The desired correlation between the logits - used when method = "EM".
Scale factor for random deviates. s controls the range of random start values for the optimization routine. Recommended $0 \le s \le 1$. Default: $s = 0.3$.
Boolean (TRUE/FALSE) for printing output summary.

Details

fungibleL provides two methods for evaluating parameter sensitivity in logistic regression models by computing fungible logistic regression weights. For for additional information on the underlying theory of these methods see Jones and Waller (in press).

Value

model	A glm model object.
call	The function call to glm().
ftable	A data frame with the mle estimates and the minimum and maximum fungible coefficients.
lnLML	The maximum likelihood log likelihood value.
lnLf	The decremented, fungible log likelihood value.
pseudoRsq	The pseudo R-squared.
fungibleRsq	The fungible pseudo R-squared.
fungiblea	The Nsets by Nvar + 1 matrix of fungible (alternate) coefficients.
rLaLb	The correlation between the logits.
maxPosCoefChange	
	The maximum positive change in a single coefficient holding all other coeffi-

The maximum negative change in a single coefficient holding all other coefficients constant.

Author(s)

Jeff Jones and Niels Waller

References

Jones, J. A. & Waller, N. G. (in press). Fungible weights in logistic regression. *Psychological Methods*.

```
# Example: Low Birth Weight Data from Hosmer Jr, D. W. & Lemeshow, S.(2000).
\# low : low birth rate (0 >= 2500 grams, 1 < 2500 grams)
# race: 1 = white, 2 = black, 3 = other
\mbox{\tt\#} ftv : number of physician visits during the first trimester
library(MASS)
attach(birthwt)
race <- factor(race, labels = c("white", "black", "other"))</pre>
predictors <- cbind(lwt, model.matrix(~ race)[, -1])</pre>
# compute mle estimates
BWght.out <- glm(low ~ lwt + race, family = "binomial")
# compute fungible coefficients
fungible.LLM <- fungibleL(X = predictors, y = low, method = "LLM",</pre>
                          Nsets = 10, RsqDelta = .005, s = .3)
# Compare with Table 2.3 (page 38) Hosmer Jr, D. W. & Lemeshow, S.(2000).
# Applied logistic regression. New York, Wiley.
print(summary(BWght.out))
print(fungible.LLM$call)
print(fungible.LLM$ftable)
                               = ", fungible.LLM$lnLML,
cat("\nMLE log likelihod
    "\nfungible log likelihood = ", fungible.LLM$lnLf)
                             = ", round(fungible.LLM$pseudoRsq, 3))
cat("\nPseudo Rsq
                            = ", round(fungible.LLM$fungibleRsq, 3))
cat("\nfungible Pseudo Rsq
fungible.EM <- fungibleL(X = predictors, y = low, method = "EM" ,</pre>
                         Nsets = 10, rLaLb = 0.99)
print(fungible.EM$call)
print(fungible.EM$ftable)
cat("\nrLaLb = ", round(fungible.EM$rLaLb, 3))
```

Description

Generate fungible correlation matrices. For a given vector of standardized regression coefficients, Beta, and a user-define R-squared value, Rsq, find predictor correlation matrices, R, such that Beta' R Beta = Rsq. The size of the smallest eigenvalue (Lp) of R can be defined.

Usage

```
fungibleR(R, Beta, Lp = .00, eps = 1e-08, Print.Warnings = TRUE)
```

Arguments

R A p x p predictor correlation matrix.

Beta A p x 1 vector of standardized regression coefficients.

Lp Controls the size of the smallest eigenvalue of RstarLp.

eps Convergence criterion.

Print. Warnings Logical, default = TRUE. When TRUE, convergence failures are printed.

Value

R Any input correlation matrix that satisfies Beta' R Beta = Rsq.

Beta Input vector of std reg coefficients.

Rstar A random fungible correlation matrix.

RstarLp A fungible correlation matrix with a fixed minimum eigenvalue (RstarLp can be

PD, PSD, or ID).

s Scaling constant for Rstar. sLp Scaling constant for RstarLp.

Delta Vector in the null space of vecp(Beta Beta').

Q Left null space of Beta.

FrobNorm Frobenius norm ||R - Rstarl| F.

FrobNormLp Frobenius norm ||R - RstarLp||_F given random Delta.

converged An integer code. 0 indicates successful completion.

Author(s)

Niels Waller

References

Waller, N. (2016). Fungible Correlation Matrices: A method for generating nonsingular, singular, and improper correlation matrices for Monte Carlo research. Multivariate Behavioral Research.

```
library(fungible)
## ===== Example 1 =====
## Generate 5 random PD fungible R matrices
## that are consistent with a user-defined predictive
```

```
## structure: B' Rxx B = .30
set.seed(246)
## Create a 5 x 5 correlation matrix, R, with all r_i = .25
R.ex1 <- matrix(.25, 5, 5)
diag(R.ex1) <- 1
## create a 5 x 1 vector of standardized regression coefficients,
Beta.ex1 <- c(-.4, -.2, 0, .2, .4)
cat("\nModel Rsq = ", t(Beta.ex1) %*% R.ex1 %*% Beta.ex1)
## Generate fungible correlation matrices, Rstar, with smallest
## eigenvalues > 0.
Rstar.list <- list(rep(99,5))</pre>
i <- 0
while(i \le 5){
 out <- fungibleR(R = R.ex1, Beta = Beta.ex1, Lp = 1e-8, eps = 1e-8,
                  Print.Warnings = TRUE)
 if(out$converged==0){
   i < -i + 1
   Rstar.list[[i]] <- out$Rstar</pre>
}
## Check Results
cat("\n *** Check Results ***")
for(i in 1:5){
 cat("\nRstar", i,"\n")
 print(round(Rstar.list[[i]], 2),)
 cat("\neigenvalues of Rstar", i,"\n")
 print(eigen(Rstar.list[[i]])$values)
 cat("\nBeta' Rstar",i, "Beta = ",
     t(Beta.ex1) %*% Rstar.list[[i]] %*% Beta.ex1)
}
## ===== Example 2 =====
## Generate a PD fungible R matrix with a fixed smallest
## eigenvalue (Lp).
## Create a 5 x 5 correlation matrix, R, with all r_{ij} = .5
R \leftarrow matrix(.5, 5, 5)
diag(R) <- 1
## create a 5 x 1 vector of standardized regression coefficients, Beta,
## such that Beta_i = .1 for all i
Beta <- rep(.1, 5)
## Generate fungible correlation matrices (a) Rstar and (b) RstarLp.
## Set Lp = 0.12345678 so that the smallest eigenvalue (Lp) of RstarLp
## = 0.12345678
out <- fungibleR(R, Beta, Lp = 0.12345678, eps = 1e-10, Print.Warnings = TRUE)
```

```
## print R
cat("\nR: a user-specified seed matrix")
print(round(out$R,3))
## Rstar
cat("\nRstar: A random fungible correlation matrix for R")
print(round(out$Rstar,3))
cat("\nCoefficient of determination when using R\n")
print( t(Beta) %*% R %*% Beta )
cat("\nCoefficient of determination when using Rstar\n")
print( t(Beta) %*% out$Rstar %*% Beta)
## Eigenvalues of R
cat("\nEigenvalues of R\n")
print(round(eigen(out$R)$values, 9))
## Eigenvalues of Rstar
cat("\nEigenvalues of Rstar\n")
print(round(eigen(out$Rstar)$values, 9))
## What is the Frobenius norm (Euclidean distance) between
## R and Rstar
\verb|cat("\nFrobenious norm || R - Rstar|| \n")|
print( out$FrobNorm)
## RstarLp is a random fungible correlation matrix with
## a fixed smallest eigenvalue of 0.12345678
cat("\nRstarLp: a random fungible correlation matrix with a user-defined
smallest eigenvalue\n")
print(round(out$RstarLp, 3))
## Eigenvalues of RstarLp
cat("\nEigenvalues of RstarLp")
print(eigen(out$RstarLp)$values, digits = 9)
cat("\nCoefficient of determination when using RstarLp\n")
print( t(Beta) %*% out$RstarLp %*% Beta)
## Check function convergence
if(out$converged) print("Falied to converge")
## ===== Example 3 =====
## This examples demonstrates how fungibleR can be used
## to generate improper correlation matrices (i.e., pseudo
## correlation matrices with negative eigenvalues).
library(fungible)
## We desire an improper correlation matrix that
## is close to a user-supplied seed matrix. Create an
## interesting seed matrix that reflects a Big Five
## factor structure.
set.seed(123)
minCrossLoading <- -.2
```

```
maxCrossLoading <- .2</pre>
F1 <- c(rep(.6,5),runif(20,minCrossLoading, maxCrossLoading))
F2 <- c(runif(5,minCrossLoading, maxCrossLoading), rep(.6,5),
      runif(15,minCrossLoading, maxCrossLoading))
F3 <- c(runif(10,minCrossLoading,maxCrossLoading), rep(.6,5),
      runif(10,minCrossLoading,maxCrossLoading) )
F4 <- c(runif(15,minCrossLoading,maxCrossLoading), rep(.6,5),
      runif(5,minCrossLoading,maxCrossLoading))
F5 <- c(runif(20,minCrossLoading,maxCrossLoading), rep(.6,5))
FacMat <- cbind(F1,F2,F3,F4,F5)</pre>
R.bfi <- FacMat %*% t(FacMat)</pre>
diag(R.bfi) <- 1
## Set Beta to a null vector to inform fungibleR that we are
## not interested in placing constraints on the predictive structure
## of the fungible R matrices.
Beta \leftarrow rep(0, 25)
## We seek a NPD fungible R matrix that is close to the bfi seed matrix.
## To find a suitable matrix we generate a large number (e.g., 50000)
## fungible R matrices. For illustration purposes I will set Nmatrices
## to a smaller number: 10.
Nmatrices<-10
## Initialize a list to contain the Nmatrices fungible R objects
RstarLp.list <- as.list( rep(0, Nmatrices ) )</pre>
## Initialize a vector for the Nmatrices Frobeius norms ||R - RstarLp||
FrobLp.vec <- rep(0, Nmatrices)</pre>
## Constraint the smallest eigenvalue of RStarLp by setting
## Lp = -.1 (or any suitably chosen user-defined value).
## Generate Nmatrices fungibleR matrices and identify the NPD correlation
## matrix that is "closest" (has the smallest Frobenious norm) to the bfi
## seed matrix.
BestR.i <- 0
BestFrob <- 99
i <- 0
set.seed(1)
while(i < Nmatrices){</pre>
  out<-fungibleR(R = R.bfi, Beta, Lp = -.1, eps=1e-10)
  ## retain solution if algorithm converged
  if(out$converged == 0)
    i < -i + 1
  ## print progress
    cat("\nGenerating matrix ", i, " Current minimum ||R - RstarLp|| = ",BestFrob)
    tmp <- FrobLp.vec[i] <- out$FrobNormLp #Frobenious Norm ||R - RstarLp||</pre>
    RstarLp.list[[i]]<-out$RstarLp</pre>
    if( tmp < BestFrob )</pre>
      BestR.i <- i
                       # matrix with lowest ||R - RstarLp||
      BestFrob <- tmp # value of lowest ||R - RstarLp||
    }
```

20 genCorr

```
}
# CloseR is an improper correlation matrix that is close to the seed matrix.
CloseR<-RstarLp.list[[BestR.i]]</pre>
plot(1:25, eigen(R.bfi)$values,
     type = "b",
     1wd = 2,
     main = "Scree Plots for R and RstarLp",
     cex.main = 1.5,
     ylim = c(-.2,6),
     ylab = "Eigenvalues",
     xlab = "Dimensions")
points(1:25,eigen(CloseR)$values,
       type = "b",
       lty = 2,
       1wd = 2,
       col = "red")
   abline(h = 0, col = "grey")
legend(legend=c(expression(paste(lambda[i]~" of R",sep = "")),
                expression(paste(lambda[i]~" of RstarLp",sep = ""))),
       lty=c(1,2),
       x = 17, y = 5.75,
       cex = 1.5,
       col=c("black","red"),
       text.width = 5.5,
       1wd = 2
```

genCorr

Generate Correlation Matrices with User-Defined Eigenvalues

Description

Uses the Marsaglia and Olkin (1984) algorithm to generate correlation matrices with user-defined eigenvalues.

Usage

```
genCorr(eigenval, seed='rand')
```

Arguments

eigenval

A vector of eigenvalues that must sum to the order of the desired correlation matrix. For example: if you want a correlation matrix of order 4, then you need 4 eigenvalues that sum to 4. A warning message will display if sum(eigenval) != length(eigenval)

seed

Either a user supplied seed for the random number generator or 'rand' for a function generated seed. Default seed='rand'.

kurt 21

Value

Returns a correlation matrix with the eigen-stucture specified by eigenval.

Author(s)

Jeff Jones

References

Jones, J. A. (2010). GenCorr: An R routine to generate correlation matrices from a user-defined eigenvalue structure. *Applied Psychological Measurement*, 34, 68-69.

Marsaglia, G., & Olkin, I. (1984). Generating correlation matrices. *SIAM J. Sci. and Stat. Comput.*, 5, 470-475.

Examples

kurt

Calculate Univariate Kurtosis for a Vector or Matrix

Description

Calculate univariate kurtosis for a vector or matrix (algorithm G2 in Joanes & Gill, 1998).

Usage

kurt(x)

Arguments

Х

Either a vector or matrix of numeric values.

Value

Kurtosis for each column in x.

Author(s)

Niels Waller

References

Joanes, D. N. & Gill, C. A. (1998). Comparing measures of sample skewness and kurtosis. *The Statistician*, 47, 183-189.

See Also

skew

Examples

```
x <- matrix(rnorm(1000), 100, 10)
print(kurt(x))</pre>
```

monte

Simulate Clustered Data with User-Defined Properties

Description

Function for simulating clustered data with user defined characteristics such as: within cluster indicator correlations, within cluster indicator skewness values, within cluster indicator kurtosis values, and cluster separations as indexed by each variable (indicator validities).

Usage

Arguments

seed	Required: An integer to be used as the random number seed.
nvar	Required: Number of variables to simulate.
nclus	Required: Number of clusters to simulate. <i>Note</i> that number of clusters must be equal to or greater than 2.
clus.size	Required: Number of objects in each cluster.
eta2	Required: A vector of indicator validities that range from 0 to 1. Higher numbers produce clusters with greater separation on that indicator.
cor.list	Optional: A list of correlation matrices. There should be one correlation matrix for each cluster. The first correlation matrix will represent the indicator correlations within cluster 1. The second correlation matrix will represent the indicator correlations for cluster 2. Etc.
random.cor	Optional: Set to TRUE to generate a common within cluster correlation matrix.

skew.list	Optional: A list of within cluster indicator skewness values.
kurt.list	Optional: A list of within cluster indicator kurtosis values.
secor	Optional: If 'random.cor = TRUE' then 'secor' determines the standard error of the simulated within group correlation matrices.
compactness	Optional: A vector of cluster compactness parameters. The meaning of this option is explained Waller et al. (1999). Basically, 'compactness' allows users some control over cluster overlap without changing indicator validities. See the example below for an illustration.
sortMeans	Optional: A logical that determines whether the latent means will be sorted by taxon. Default = TRUE

Value

data The simulated data. The 1st column of 'data' denotes cluster membership.

1mn The cluster indicator means.

fl The factor loading matrix as described in Waller, et al. 1999.

fs The unique values of the linearized factor scores.

call The call.

nclus Number of clusters. nvar Number of variables.

cor.list The input within cluster correlation matrices.
skew.list The input within cluster indicator skewness values.

kurt.list The input within cluster indicator kurtosis values.

clus.size The number of observations in each cluster.

eta2 Vector of indicator validities. seed The random number seed.

Author(s)

Niels Waller

References

Fleishman, A. I (1978). A method for simulating non-normal distributions. *Psychometrika*, 43, 521-532.

Vale, D. C., & Maurelli, V. A. (1983). Simulating multivariate nonnormal distributions. *Psychometrika*, 48, 465-471.

Waller, N. G., Underhill, J. M., & Kaiser, H. A. (1999). A method for generating simulated plasmodes and artificial test clusters with user-defined shape, size, and orientation. *Multivariate Behavioral Research*, *34*, 123–142.

```
## Example 1
## Simulating Fisher's Iris data
# The original data were reported in:
# Fisher, R. A. (1936) The use of multiple measurements in taxonomic
# problems. Annals of Eugenics, 7, Part II, 179-188.
```

```
# This example includes 3 clusters. Each cluster represents
# an Iris species: Setosa, Versicolor, and Virginica.
# On each species, four variables were measured: Sepal Length,
# Sepal Width, Petal Length, and Petal Width.
# The within species (cluster) correlations of the flower
# indicators are as follows:
# Iris Type 1:
       [,1] [,2] [,3] [,4]
# [1,] 1.000 0.743 0.267 0.178
# [2,] 0.743 1.000 0.278 0.233
# [3,] 0.267 0.278 1.000 0.332
# [4,] 0.178 0.233 0.332 1.000
# Iris Type 2
      [,1] [,2] [,3] [,4]
# [1,] 1.000 0.526 0.754 0.546
# [2,] 0.526 1.000 0.561 0.664
# [3,] 0.754 0.561 1.000 0.787
# [4,] 0.546 0.664 0.787 1.000
# Iris Type 3
      [,1] [,2] [,3] [,4]
# [1,] 1.000 0.457 0.864 0.281
# [2,] 0.457 1.000 0.401 0.538
# [3,] 0.864 0.401 1.000 0.322
# [4,] 0.281 0.538 0.322 1.000
# 'monte' expects a list of correlation matrices
#create a list of within species correlations
data(iris)
cormat <- cm <- lapply(split(iris[,1:4], iris[,5]), cor)</pre>
# create a list of within species indicator
# skewness and kurtosis
 sk.lst \leftarrow list(c(0.120, 0.041, 0.106, 1.254),
                c(0.105, -0.363, -0.607, -0.031),
                c(0.118, 0.366, 0.549, -0.129))
 kt.lst \leftarrow list(c(-0.253, 0.955, 1.022, 1.719),
                c(-0.533,-0.366, 0.048, -0.410),
                c( 0.033, 0.706, -0.154, -0.602) )
#Generate a new sample of iris data
my.iris <- monte(seed=123, nvar = 4, nclus = 3, cor.list = cormat,
                clus.size = c(50, 50, 50),
                eta2=c(0.619, 0.401, 0.941, 0.929),
                random.cor = FALSE,
                skew.list = sk.lst,
                kurt.list = kt.lst,
                secor = .3, compactness=c(1, 1, 1),
```

```
sortMeans = TRUE)
summary(my.iris)
plot(my.iris)
# Now generate a new data set with the sample indicator validities
# as before but with different cluster compactness values.
my.iris2<-monte(seed = 123, nvar = 4, nclus = 3,</pre>
              cor.list = cormat, clus.size = c(50, 50, 50),
              eta2 = c(0.619, 0.401, 0.941, 0.929), random.cor = FALSE,
              skew.list = sk.lst ,kurt.list = kt.lst,
              secor = .3,
              compactness=c(2, .5, .5),
              sortMeans = TRUE)
summary(my.iris2)
# Notice that cluster 1 has been blow up whereas clusters 2 and 3 have been shrunk.
plot(my.iris2)
### Now compare your original results with the actual
## Fisher iris data
library(lattice)
data(iris)
super.sym <- trellis.par.get("superpose.symbol")</pre>
splom(~iris[1:4], groups = Species, data = iris,
     #panel = panel.superpose,
      key = list(title = "Three Varieties of Iris",
                columns = 3,
                points = list(pch = super.sym$pch[1:3],
                col = super.sym$col[1:3]),
                text = list(c("Setosa", "Versicolor", "Virginica"))))
## Example 2
## Simulating data for Taxometric
## Monte Carlo Studies.
## In this four part example we will
## generate two group mixtures
## (Complement and Taxon groups)
## under four conditions.
##
## In all conditions
## base rate (BR) = .20
## 3 indicators
## indicator validities = .50
## (This means that 50 percent of the total
## variance is due to the mixture.)
##
##
```

```
## Condition 1:
## All variables have a slight degree
## of skewness (.10) and kurtosis (.10).
## Within group correlations = 0.00.
##
##
## Condition 2:
## In this conditon we generate data in which the
## complement and taxon distributions differ in shape.
## In the complement group all indicators have
## skewness values of 1.75 and kurtosis values of 3.75.
## In the taxon group all indicators have skewness values
## of .50 and kurtosis values of 0.
## As in the previous condition, all within group
## correlations (nuisance covariance) are 0.00.
##
##
## Conditon 3:
## In this condition we retain all previous
## characteristics except that the within group
## indicator correlations now equal .80
## (they can differ between groups).
##
##
## Conditon 4:
## In this final condition we retain
## all previous data characteristics except that
## the variances of the indicators in the complement
## class are now 5 times the indicator variances
## in the taxon class (while maintaining indicator skewness,
## kurtosis, correlations, etc.).
##-----
library(lattice)
Condition 1
in.nvar <- 3 ##Number of variables
in.nclus <-2 ##Number of taxa
in.seed <- 123
BR <- .20
            ## Base rate of higher taxon
## Within taxon indicator skew and kurtosis
in.skew.list <- list(c(.1, .1, .1), c(.1, .1, .1))
in.kurt.list <- list(c(.1, .1, .1), c(.1, .1, .1))
## Indicator validities
in.eta2 <- c(.50, .50, .50)
## Groups sizes for Population
BigN <- 100000
```

```
in.clus.size <- c(BigN*(1-BR), BR * BigN)
## Generate Population of scores with "monte"
sample.data <- monte(seed = in.seed,</pre>
                nvar=in.nvar,
                nclus = in.nclus,
                clus.size = in.clus.size,
                eta2 = in.eta2,
                skew.list = in.skew.list,
                kurt.list = in.kurt.list)
output <- summary(sample.data)</pre>
z <- data.frame(sample.data$data[sample(1:BigN, 600, replace=FALSE),])</pre>
z[,2:4] \leftarrow scale(z[,2:4])
names(z) <- c("id","v1","v2","v3")
#trellis.device()
trellis.par.set( col.whitebg() )
print(
cloud(v3 \sim v1 * v2,
       groups = as.factor(id),data=z,
       subpanel = panel.superpose,
       zlim=c(-4, 4),
       xlim=c(-4, 4),
       ylim=c(-4, 4),
      main="",
       screen = list(z = 20, x = -70),
   position=c(.1, .5, .5, 1), more = TRUE)
##
        Condition 2
## Within taxon indicator skew and kurtosis
in.skew.list <- list(c(1.75, 1.75, 1.75), c(.50, .50, .50))
in.kurt.list <- list(c(3.75, 3.75, 3.75), c(0, 0, 0))
## Generate Population of scores with "monte"
sample.data <- monte(seed = in.seed,</pre>
               nvar = in.nvar,
               nclus = in.nclus,
               clus.size = in.clus.size,
               eta2 = in.eta2,
               skew.list = in.skew.list,
               kurt.list = in.kurt.list)
output <- summary(sample.data)</pre>
z <- data.frame(sample.data$data[sample(1:BigN, 600, replace=FALSE),])</pre>
z[,2:4] \leftarrow scale(z[, 2:4])
names(z) <-c("id", "v1","v2", "v3")
```

```
print(
 cloud(v3 \sim v1 * v2,
       groups = as.factor(id), data = z,
       subpanel = panel.superpose,
       zlim = c(-4, 4),
       xlim = c(-4, 4),
       ylim = c(-4, 4),
       main="".
       screen = list(z = 20, x = -70),
       position = c(.5, .5, 1, 1), more = TRUE)
Condition 3
## Set within group correlations to .80
cormat <- matrix(.80, 3, 3)</pre>
diag(cormat) <- rep(1, 3)</pre>
in.cor.list <- list(cormat, cormat)</pre>
## Generate Population of scores with "monte"
sample.data <- monte(seed = in.seed,</pre>
               nvar = in.nvar,
               nclus = in.nclus,
               clus.size = in.clus.size,
               eta2 = in.eta2,
               skew.list = in.skew.list,
               kurt.list = in.kurt.list,
               cor.list = in.cor.list)
output <- summary(sample.data)</pre>
z <- data.frame(sample.data$data[sample(1:BigN, 600,</pre>
                replace = FALSE), ])
z[,2:4] \leftarrow scale(z[, 2:4])
names(z) \leftarrow c("id", "v1", "v2", "v3")
##trellis.device()
##trellis.par.set( col.whitebg() )
print(
  cloud(v3 \sim v1 * v2,
       groups = as.factor(id),data=z,
       subpanel = panel.superpose,
       zlim = c(-4, 4),
       xlim = c(-4, 4),
       ylim = c(-4, 4),
       main="",
       screen = list(z = 20, x = -70)),
position = c(.1, .0, .5, .5), more = TRUE)
######################################
        Condition 4
######################################
## Change compactness so that variance of
```

```
## complement indicators is 5 times
## greater than variance of taxon indicators
 v \leftarrow (2 * sqrt(5))/(1 + sqrt(5))
 in.compactness <- c(v, 2-v)
## Generate Population of scores with "monte"
sample.data <- monte(seed = in.seed,</pre>
               nvar = in.nvar,
               nclus = in.nclus,
               clus.size = in.clus.size,
               eta2 = in.eta2,
               skew.list = in.skew.list,
               kurt.list = in.kurt.list,
               cor.list = in.cor.list,
               compactness = in.compactness)
output <- summary(sample.data)</pre>
z <- data.frame(sample.data$data[sample(1:BigN, 600, replace = FALSE), ])</pre>
z[, 2:4] \leftarrow scale(z[, 2:4])
names(z) <- c("id", "v1", "v2", "v3")
print(
  cloud(v3 \sim v1 * v2,
       groups = as.factor(id),data=z,
       subpanel = panel.superpose,
       zlim = c(-4, 4),
       xlim = c(-4, 4),
       ylim = c(-4, 4),
       main="",
       screen = list(z = 20, x = -70),
 position = c(.5, .0, 1, .5), more = TRUE)
```

monte1

Simulate Multivariate Non-normal Data by Vale & Maurelli (1983) Method

Description

Function for simulating multivariate nonnormal data by the methods described by Fleishman (1978) and Vale & Maurelli (1983).

Usage

```
monte1(seed, nvar, nsub, cormat, skewvec, kurtvec)
```

Arguments

seed	An integer to be used as the random number seed.
nvar	Number of variables to simulate.
nsub	Number of simulated subjects (response vectors).
cormat	The desired correlation matrix.
skewvec	A vector of indicator skewness values.
kurtvec	A vector of indicator kurtosis values.

Value

data The simulated data.

call The call.

nsub Number of subjects.

nvar Number of variables.

cormat The desired correlation matrix.

skewvec The desired indicator skewness values. kurtvec The desired indicator kurtosis values.

seed The random number seed.

Author(s)

Niels Waller

References

Fleishman, A. I (1978). A method for simulating non-normal distributions. *Psychometrika*, 43, 521-532.

Vale, D. C., & Maurelli, V. A. (1983). Simulating multivariate nonnormal distributions. *Psychometrika*, 48, 465-471.

See Also

```
monte, summary.monte, summary.monte1
```

normalCor 31

normalCor

Compute Normal-Theory Covariances for Correlations

Description

Compute normal-theory covariances for correlations

Usage

```
normalCor(R, Nobs)
```

Arguments

R a p x p matrix of correlations.

Nobs Number of observations.

Value

A normal-theory covariance matrix of correlations.

Author(s)

Jeff Jones and Niels Waller

References

Nel, D.G. (1985). A matrix derivation of the asymptotic covariance matrix of sample correlation coefficients. *Linear algebra and its applications*, 67, 137–145.

See Also

adfCor

Examples

```
data(Harman23.cor)
normalCor(Harman23.cor$cov, Nobs = 305)
```

plot.monte

Plot Method for Class Monte

Description

```
plot method for class "monte"
```

Usage

```
## S3 method for class 'monte' plot(x, ...)
```

32 rarc

Arguments

x An object of class 'monte', usually, a result of a call to monte.

. . . Optional arguments passed to plotting function.

Value

The function plot. monte creates a scatter plot of matrices plot (a splom plot). Cluster membership is denoted by different colors in the plot.

Examples

```
#plot(monte.object)
```

r2d

Convert Radians to Degrees

Description

Convert radian measure to degrees.

Usage

```
r2d(radian)
```

Arguments

radian

Radian measure of an angle

Value

Degree measure of an angle

Examples

r2d(.5*pi)

rarc

Rotate Points on the Surface on an N-Dimensional Ellipsoid

Description

Rotate between two points on the surface on an n-dimensional ellipsoid. The hyper-ellipsoid is composed of all points, B, such that B' Rxx B = Rsq. Vector B contains standardized regression coefficients.

Usage

```
rarc(Rxx, Rsq, b1, b2, Npoints)
```

rarc 33

Arguments

Rxx	Predictor correlation matrix.
Rsq	Model coefficient of determination.
b1	First point on ellipsoid. If $b1$ and $b2$ are scalars then choose scaled eigenvectors $v[b1]$ and $v[b2]$ as the start and end vectors.
b2	Second point on ellipsoid. If b1 and b2 are scalars then choose scaled eigenvectors v[b1] and v[b2] as the start and end vectors.
Npoints	Generate "Npoints" +1 OLS coefficient vectors between b1 and b2.

Value

b N+1 sets of OLS coefficient vectors between b1 and b2.

Author(s)

Niels Waller and Jeff Jones.

References

Waller, N. G. & Jones, J. A. (2011). Investigating the performance of alternate regression weights by studying all possible criteria in regression models with a fixed set of predictors. *Psychometrika*, 76, 410-439.

```
## Example
## GRE/GPA Data
##----##
R \leftarrow Rxx \leftarrow matrix(c(1.00, .56, .77,
                       .56, 1.00, .73,
                       .77, .73, 1.00), 3, 3)
## GPA validity correlations
rxy <- c(.39, .34, .38)
b <- solve(Rxx) %*% rxy
Rsq <- t(b) %*% Rxx %*% b
N <- 200
b \leftarrow rarc(Rxx = R, Rsq, b1 = 1, b2 = 3, Npoints = N)
## compute validity vectors
r <- Rxx %*% b
N < - N + 1
Rsq.r <- Rsq.unit <- rep(0, N)
for(i in 1:N){
## eval performance of unit weights
 Rsq.unit[i] \leftarrow (t(sign(r[,i])) %*% r[,i])^2 /
             (t(sign(r[,i])) %*% R %*% sign(r[,i]))
## eval performance of correlation weights
  Rsq.r[i] \leftarrow (t(r[,i]) %*% r[,i])^2 /(t(r[,i]) %*% R %*% r[,i])
```

rcone rcone

```
}
cat("\nAverage relative performance of unit weights across elliptical arc:",
      round(mean(Rsq.unit)/Rsq,3) )
cat("\n\nAverage relative performance of r weights across elliptical arc:",
      round(mean(Rsq.r)/Rsq,3) )
plot(seq(0, 90, length = N), Rsq.r, typ = "1",
          ylim = c(0, .20),
          xlim = c(0, 95),
          1wd = 3,
          ylab = expression(R^2),
          xlab = expression(paste("Degrees from ",b[1]," in the direction of ",b[2])),
          cex.lab = 1.25, lab = c(10, 5, 5))
 points(seq(0, 90, length = N), Rsq.unit,
          type = "1",
          1ty = 2, 1wd = 3)
 legend(x = 0,y = .12,
        legend = c("r weights", "unit weights"),
        1ty = c(1, 2),
        1wd = c(4, 3),
        cex = 1.5)
```

rcone

Generate a Cone of Regression Coefficient Vectors

Description

Compute a cone of regression vectors with a constant R-squared around a target vector.

Usage

```
rcone(R,Rsq,b,axis1,axis2,deg,Npoints=360)
```

Arguments

R	Predictor correlation matrix.
Rsq	Coefficient of determination.
b	Target vector of OLS regression coefficients.
axis1	1st axis of rotation plane.
axis2	2nd axis of rotation plane.
deg	All vectors b.i will be 'deg' degrees from b.
Npoints	Number of rotation vectors, default = 360.

Value

b. i Npoints values of b.i

Author(s)

Niels Waller and Jeff Jones

rcor 35

References

Waller, N. G. & Jones, J. A. (2011). Investigating the performance of alternate regression weights by studying all possible criteria in regression models with a fixed set of predictors. *Psychometrika*, 76, 410-439.

Examples

```
R <- matrix(.5, 4, 4)
diag(R) <- 1

Npoints <- 1000
Rsq <- .40
NumDeg <- 20
V <- eigen(R)$vectors

## create b parallel to v[,3]
## rotate in the 2 - 4 plane
b <- V[,3]
bsq <- t(b) %*% R %*% b
b <- b * sqrt(Rsq/bsq)
b.i <- rcone(R, Rsq,b, V[,2], V[,4], deg = NumDeg, Npoints)

t(b.i[,1]) %*% R %*% b.i[,1]
t(b.i[,25]) %*% R %*% b.i[,25]</pre>
```

rcor

Generate Random PSD Correlation Matrices

Description

Generate random PSD correlation matrices.

Usage

rcor(Nvar)

Arguments

Nvar

An integer that determines the order of the random correlation matrix.

Details

rcor generates random PSD correlation matrices by (1) generating Nvar squared random normal deviates, (2) scaling the deviates to sum to Nvar, and then (3) placing the scaled values into a diagonal matrix L. Next, (4) an Nvar x Nvar orthogonal matrix, Q, is created by performing a QR decomposition of a matrix, M, that contains random normal deviates. (5) A PSD covariance matrix, C, is created from Q L Q^T and then (6) scaled to a correlation metric.

Value

A random correlation matrix.

36 rellipsoid

Author(s)

Niels Waller

See Also

```
genCorr
```

Examples

```
R <- rcor(4)
print( R )</pre>
```

rellipsoid

Generate Uniformly Spaced OLS Regression Coefficients that Yield a User-Supplied R-Squared Value

Description

Given predictor matrix R, generate OLS regression coefficients that yield a user-supplied R-Squared value. These regression coefficient vectors will be uniformly spaced on the surface of a (hyper) ellipsoid.

Usage

```
rellipsoid(R, Rsq, Npoints)
```

Arguments

R A p x p predictor correlation matrix.

Rsq A user-supplied R-squared value.

Npoints Desired number of generated regression vectors.

Value

b A p x Npoints matrix of regression coefficients

Author(s)

Niels Waller and Jeff Jones.

References

Waller, N. G. and Jones, J. A. (2011). Investigating the performance of alternate regression weights by studying all possible criteria in regression models with a fixed set of predictors. *Psychometrika*, 76, 410-439.

rGivens 37

Examples

```
## generate uniformly distributed regression vectors
## on the surface of a 14-dimensional ellipsoid
N <- 10000
Rsq < - .21
# Correlations from page 224 WAIS-III manual
# The Psychological Corporation (1997).
wais3 <- matrix(</pre>
 c(1,\ .76,\ .58,\ .43,\ .75,\ .75,\ .42,\ .54,\ .41,\ .57,\ .64,\ .54,\ .50,\ .53,
      1, .57, .36, .69, .71, .45, .52, .36, .63, .68, .51, .47, .54,
           1, .45, .65, .60, .47, .48, .43, .59, .60, .49, .56, .47,
 .43, .36, .45,
                1, .37, .40, .60, .30, .32, .34, .35, .28, .35, .29,
 .75, .69, .65, .37,
                      1, .70, .44, .54, .34, .59, .62, .54, .45, .50,
 .75, .71, .60, .40, .70, 1, .42, .51, .44, .53, .60, .50, .52, .44,
 .42, .45, .47, .60, .44, .42, 1, .46, .49, .47, .43, .27, .50, .42,
 .54, .52, .48, .30, .54, .51, .46, 1, .45, .50, .58, .55, .53, .56,
 .41, .36, .43, .32, .34, .44, .49, .45, 1, .47, .49, .41, .70, .38,
 .57, .63, .59, .34, .59, .53, .47, .50, .47, 1, .63, .62, .58, .66,
 .64, .68, .60, .35, .62, .60, .43, .58, .49, .63, 1, .59, .50, .59,
 .54, .51, .49, .28, .54, .50, .27, .55, .41, .62, .59, 1, .48, .53,
 .50, .47, .56, .35, .45, .52, .50, .53, .70, .58, .50, .48, 1, .51,
 .53, .54, .47, .29, .50, .44, .42, .56, .38, .66, .59, .53, .51, 1),
 nrow = 14, ncol = 14)
R <- wais3[1:6,1:6]
b <- rellipsoid(R, Rsq, Npoints = N)</pre>
b <- b$b
plot(b[1,],b[2,])
```

rGivens

Generate Correlation Matrices with Specified Eigenvalues

Description

rGivens generates correlation matrices with user-specified eigenvalues via a series of Givens rotations by methods described in Bendel & Mickey (1978) and Davis & Higham (2000).

Usage

```
rGivens(eigs, Seed = NULL)
```

Arguments

eigs A vector of eigenvalues that must sum to the order of the desired correlation matrix. A fatal error will occur if sum(eigs) != length(eigs).

Seed Either a user supplied seed for the random number generator or 'NULL' for a

function generated seed. Default Seed = 'NULL'.

38 rMAP

Value

R A correlation matrix with desired spectrum.

Frob The Frobenius norm of the difference between the initial and final matrices with

the desired spectrum.

convergence (Logical) TRUE if rGivens converged to a feasible solution, otherwise FALSE.

References

Bendel, R. B. & Mickey, M. R. (1978). Population correlation matrices for sampling experiments, Commun. Statist. Simulation Comput., B7, pp. 163-182.

Davies, P. I, & Higham, N. J. (2000). Numerically stable generation of correlation matrices and their factors, BIT, 40 (2000), pp. 640-651.

```
## Example
## Generate a correlation matrix with user-specified eigenvalues
out <- rGivens(c(2.5, 1, 1, .3, .2), Seed = 123)
#> eigen(out$R)$values
#[1] 2.5 1.0 1.0 0.3 0.2
print(out)
#$R
           [,1]
                     [,2]
                                [,3]
                                           [,4]
                                                      [,5]
#[1,] 1.0000000 -0.1104098 -0.24512327 0.46497370 0.2392817
#[2,] -0.1104098 1.0000000 0.33564370 -0.46640155 -0.7645915
#[3,] -0.2451233   0.3356437   1.00000000   -0.02935466   -0.2024926
#[4,] 0.4649737 -0.4664016 -0.02935466 1.00000000 0.6225880
#[5,] 0.2392817 -0.7645915 -0.20249261 0.62258797 1.0000000
#$Frob
#[1] 2.691613
##$S0
           [,1]
                      [,2]
                                 [,3]
                                            [,4]
                                                       Γ.57
#[1,] 1.0349665 0.22537748 -0.46827121 -0.10448336 -0.24730565
#[2,] 0.2253775 0.31833805 -0.23208078 0.06591368 -0.14504161
#[3,] -0.4682712 -0.23208078 2.28911499
                                      0.05430754 0.06964858
#[5,] -0.2473056 -0.14504161 0.06964858 -0.14439623 0.40873606
#$convergence
#[1] TRUE
```

rMAP 39

Description

rMAP uses the method of alternating projections (MAP) to generate correlation matrices with specified eigenvalues.

Usage

```
rMAP(eigenval, eps, maxits, Seed = NULL)
```

Arguments

eigenval	A vector of eigenvalues that must sum to the order of the desired correlation matrix. A fatal error will occur if sum(eigenval) != length(eigenval).
eps	Convergence criterion. Default = 1e-12.
maxits	Maximm number of iterations of MAP.
Seed	Either a user supplied seed for the random number generator or 'NULL' for a

function generated seed. Default Seed = 'NULL'.

Value

R A correlation matrix with the desired spectrum.

evals Eigenvalues of the returned matrix, R.

convergence (Logical) TRUE if MAP converged to a feasible solution, otherwise FALSE.

Author(s)

Niels Waller

References

Waller, N. G. (2016). Generating correlation matrices with specified eigenvalues using the method of alternating projections.

seBeta

Description

Computes Normal Theory and ADF Standard Errors and CIs for Standardized Regression Coefficients

Usage

```
seBeta(X, y, cov.x = NULL, cov.xy = NULL, var.y = NULL, Nobs = NULL, alpha = 0.05, estimator = "ADF", digits = 3)
```

Arguments

Χ	Matrix of predictor scores.
У	Vector of criterion scores.
cov.x	Covariance or correlation matrix of predictors.
cov.xy	Vector of covariances or correlations between predictors and criterion.
var.y	Criterion variance.
Nobs	Number of observations.
alpha	Desired Type I error rate; default = .05.
estimator	'ADF' or 'Normal' confidence intervals - requires raw X and raw y ; default = 'ADF'.
digits	Number of significant digits to print; default = 3.

Value

cov.Beta	Normal theory or ADF covariance matrix of standardized regression coefficients.
se.Beta	standard errors for standardized regression coefficients.
alpha	desired Type-I error rate.
CI.Beta	Normal theory or ADF (1-alpha)% confidence intervals for standardized regression coefficients.
estimator	estimator = "ADF" or "Normal".

Author(s)

Jeff Jones and Niels Waller

References

Jones, J. A, and Waller, N. G. (2015). The Normal-Theory and Asymptotic Distribution-Free (ADF) covariance matrix of standardized regression coefficients: Theoretical extensions and finite sample behavior. *Psychometrika*, 80, 365-378.

seBetaCor 41

Examples

```
library(MASS)
set.seed(123)
R < - matrix(.5, 3, 3)
diag(R) <- 1
X \leftarrow mvrnorm(n = 200, mu = rep(0, 3), Sigma = R, empirical = TRUE)
Beta <- c(.2, .3, .4)
y <- X%*% Beta + .64 * scale(rnorm(200))
seBeta(X, y, Nobs = 200, alpha = .05, estimator = 'ADF')
# 95% CIs for Standardized Regression Coefficients:
         lbound estimate ubound
# beta_1 0.104
                  0.223 0.341
# beta_2 0.245
                   0.359 0.473
# beta_3 0.245
                   0.360 0.476
```

seBetaCor

Standard Errors and CIs for Standardized Regression Coefficients from Correlations

Description

Computes Normal Theory and ADF Standard Errors and CIs for Standardized Regression Coefficients from Correlations

Usage

```
seBetaCor(R,rxy, Nobs, alpha=.05, digits=3, covmat = 'normal')
```

Arguments

R A p x p predictor correlation matrix.

rxy A p x 1 vector of predictor-criterion correlations

Nobs Number of observations.

alpha Desired Type I error rate; default = .05.

digits Number of significant digits to print; default = 3.

covmat String = 'normal' (the default) or a $(p+1)p/2 \times (p+1)p/2$ covariance matrix of

correlations. The default option computes an asymptotic covariance matrix under the assumption of multivariate normal data. Users can supply a covariance matrix under asymptotic distribution free (ADF) or elliptical distributions when

available.

Value

cov.Beta	Covariance matrix of standardized regression coefficients.
se.Beta	Vector of standard errors for the standardized regression coefficients.

alpha Type-I error rate.

CI.Beta (1-alpha)% confidence intervals for standardized regression coefficients.

42 seBetaFixed

Author(s)

Jeff Jones and Niels Waller

References

Jones, J. A, and Waller, N. G. (2013). The Normal-Theory and asymptotic distribution-free (ADF) covariance matrix of standardized regression coefficients: Theoretical extensions and finite sample behavior. Technical Report (052913)[TR052913]

Nel, D.A.G. (1985). A matrix derivation of the asymptotic covariance matrix of sample correlation coefficients. *Linear Algebra and its Applications*, 67, 137-145.

Yuan, K. and Chan, W. (2011). Biases and standard errors of standardized regression coefficients. *Psychometrika*, 76(4), 670–690.

Examples

seBetaFixed

Covariance Matrix and Standard Errors for Standardized Regression Coefficients for Fixed Predictors

Description

Computes Normal Theory Covariance Matrix and Standard Errors for Standardized Regression Coefficients for Fixed Predictors

Usage

```
seBetaFixed(X, y, cov.x = NULL, cov.xy = NULL, var.y = NULL, var.error = NULL,
Nobs = NULL)
```

Arguments

Χ	Matrix of predictor scores.
у	Vector of criterion scores.
COV.X	Covariance or correlation matrix of predictors.
COV.XV	Vector of covariances or correlations between predictors and criterion.

seBetaFixed 43

var.y Criterion variance.

var.error Optional argument to supply the error variance: var(y - yhat).

Nobs Number of observations.

Value

cov.Beta Normal theory covariance matrix of standardized regression coefficients for fixed

predictors.

se.Beta Standard errors for standardized regression coefficients for fixed predictors.

Author(s)

Jeff Jones and Niels Waller

References

Yuan, K. & Chan, W. (2011). Biases and standard errors of standardized regression coefficients. *Psychometrika*, 76(4), 670-690.

See Also

seBeta

```
## We will generate some data and pretend that the Predictors are being held fixed
library(MASS)
R \leftarrow matrix(.5, 3, 3); diag(R) \leftarrow 1
Beta <- c(.2, .3, .4)
rm(list = ".Random.seed", envir = globalenv()); set.seed(123)
X \leftarrow mvrnorm(n = 200, mu = rep(0, 3), Sigma = R, empirical = TRUE)
y <- X %*% Beta + .64*scale(rnorm(200))</pre>
seBetaFixed(X, y)
# $covBeta
               b1
                            b2
# b1 0.003275127 -0.001235665 -0.001274303
# b2 -0.001235665  0.003037100 -0.001491736
# b3 -0.001274303 -0.001491736 0.002830157
# $seBeta
         b1
                     b2
# 0.05722872 0.05510989 0.05319922
## you can also supply covariances instead of raw data
seBetaFixed(cov.x = cov(X), cov.xy = cov(X, y), var.y = var(y), Nobs = 200)
# $covBeta
               b1
                             b2
# b1 0.003275127 -0.001235665 -0.001274303
# b2 -0.001235665   0.003037100 -0.001491736
```

44 skew

skew

Calculate Univariate Skewness for a Vector or Matrix

Description

Calculate univariate skewness for vector or matrix (algorithm G1 in Joanes & Gill, 1998).

Usage

skew(x)

Arguments

Х

Either a vector or matrix of numeric values.

Value

Skewness for each column in x.

Author(s)

Niels Waller

References

Joanes, D. N. & Gill, C. A. (1998). Comparing measures of sample skewness and kurtosis. *The Statistician*, 47, 183-189.

See Also

kurt

```
x <- matrix(rnorm(1000), 100, 10)
skew(x)</pre>
```

summary.monte 45

summary.monte

Summary Method for an Object of Class Monte

Description

summary method for class "monte"

Usage

```
## S3 method for class 'monte'
summary(object, digits = 3, compute.validities = FALSE, Total.stats=TRUE, ...)
```

Arguments

object An object of class monte, usually, a result of a call to monte.

digits Number of digits to print. Default = 3.

compute.validities

Logical: If TRUE then the program will calculate the indicator validities (eta^2)

for the generated data.

Total. stats Logical: If TRUE then the program will return the following statistics for the to-

tal sample: (1) indicator correlation matrix, (2) indicator skewness, (3) indicator

kurtosis.

.. Optional arguments.

Value

Various descriptive statistics will be computed within groups including"

- 1. clus.size Number of objects within each group.
- 2. centroids Group centroids.
- 3. var.matrix Within group variances.
- 4. Ratio of within group variances (currently printed but not saved.
- 5. cor.list Expected within group correlations.
- 6. obs.cor Observed within group correlations.
- 7. skew.list Expected within group indicator skewness values.
- 8. obs.skew Observed within group indicator skewness values.
- 9. kurt.list Expected within group indicator kurtosis values.
- 10. obs.kurt Observed within group indicator kurtosis values.
- 11. validities Observed indicator validities.
- 12. Total.cor Total sample correlation matrix.
- 13. Total.skew Total sample indicator skewness.
- 14. Total.kurt Total sample indicator kurtosis.

46 summary.monte1

Examples

```
## set up a 'monte' run for the Fisher iris data
sk.lst \leftarrow list(c(0.120, 0.041, 0.106, 1.254),
                c(0.105, -0.363, -0.607, -0.031),
                c(0.118, 0.366, 0.549, -0.129))
kt.lst \leftarrow list(c(-0.253, 0.955, 1.022, 1.719),
                c(-0.533,-0.366, 0.048, -0.410),
                c( 0.033, 0.706, -0.154, -0.602))
cormat <- lapply(split(iris[,1:4],iris[,5]), cor)</pre>
my.iris <- monte(seed = 123, nvar = 4, nclus = 3, cor.list = cormat,</pre>
              clus.size = c(50, 50, 50),
                eta2 = c(0.619, 0.401, 0.941, 0.929),
                 random.cor = FALSE,
                skew.list = sk.lst, kurt.list = kt.lst,
                secor = .3,
                compactness = c(1, 1, 1),
                sortMeans = TRUE)
summary(my.iris)
```

summary.monte1

Summary Method for an Object of Class Montel

Description

summary method for class "monte1"

Usage

```
## S3 method for class 'monte1'
summary(object, digits=3, ...)
```

Arguments

object An object of class monte1, usually, a result of a call to monte1.

digits Number of significant digits to print in final results.

Additional argument affecting the summary produced.

Value

Various descriptive statistics will be computed including"

- 1. Expected correlation matrix.
- 2. Observed correlation matrix.
- 3. Expected indicator skewness values.
- 4. Observed indicator skewness values.
- 5. Expected indicator kurtosis values.
- 6. Observed indicator kurtosis values.

tetcor 47

Examples

tetcor

Compute ML Tetrachoric Correlations

Description

Compute ML tetrachoric correlations with optional bias correction and smoothing.

Usage

```
tetcor(X, y = NULL, BiasCorrect, stderror, Smooth = TRUE, max.iter, PRINT = TRUE)
```

Arguments

X	Either a matrix or vector of (0/1) binary data.	
У	An optional(if X is a matrix) vector of (0/1) binary data.	
BiasCorrect	A logical that determines whether bias correction (Brown & Benedetti, 1977) is performed. Default = TRUE.	
stderror	A logical that determines whether standard errors are calculated. Default = FALSE.	
Smooth	A logical which determines whether the tetrachoric correlation matrix should be smoothed. A smoothed matrix is always positive definite.	
max.iter	Maximum number of iterations. Default = 50.	
PRINT	A logical that determines whether to print progress updates during calculations. Default = TRUE	

Value

If stderror = FALSE, tetcor returns a matrix of tetrachoric correlations. If stderror = TRUE then tetcor returns a list the first component of which is a matrix of tetrachoric correlations and the second component is a matrix of standard errors (see Hamdan, 1970).

Author(s)

Niels Waller

48 tetcorQuasi

References

Brown, M. B. & Benedetti, J. K. (1977). On the mean and variance of the tetrachoric correlation coefficient. *Psychometrika*, 42, 347–355.

Divgi, D. R. (1979) Calculation of the tetrachoric correlation coefficient. *Psychometrika*, 44, 169-172.

Hamdan, M. A. (1970). The equivalence of tetrachoric and maximum likelihood estimates of rho in 2 by 2 tables. *Biometrika*, *57*, 212-215.

Examples

```
## generate bivariate normal data
library(MASS)
set.seed(123)
rho <- .85
xy \leftarrow mvrnorm(100000, mu = c(0,0), Sigma = matrix(c(1, rho, rho, 1), ncol = 2))
# dichotomize at difficulty values
p1 <- .7
p2 <- .1
xy[,1] <- xy[,1] < qnorm(p1)
xy[,2] <- xy[,2] < qnorm(p2)
print( apply(xy,2,mean), digits = 2)
#[1] 0.700 0.099
tetcor(X = xy, BiasCorrect = TRUE,
       stderror = TRUE, Smooth = TRUE, max.iter = 5000)
# $r
# [,1]
            [,2]
# [1,] 1.0000000 0.8552535
# [2,] 0.8552535 1.0000000
# $se
# [,1]
                 [,2]
                 0.01458171
# [1,] NA
# [2,] 0.01458171 NA
# $Warnings
# list()
```

tetcorQuasi

Correlation between a Naturally and an Artificially Dichotomized Variable

Description

A function to compute Ulrich and Wirtz's correlation of a naturally and an artificially dichotomized variable.

tetcorQuasi 49

Usage

```
tetcorQuasi(x, y = NULL)
```

Arguments

x An N x 2 matrix or an N x 1 vector of binary responses coded 0/1.

y An optional (if x is a vector) vector of 0/1 responses.

Value

```
A quasi tetrachoric correlation
```

•••

Author(s)

Niels Waller

References

Ulrich, R. & Wirtz, M. (2004). On the correlation of a naturally and an artificially dichotomized variable. *British Journal of Mathematical and Statistical Psychology*, *57*, 235-252.

```
set.seed(321)
Nsubj <- 5000
## Generate mvn data with rxy = .5
R \leftarrow matrix(c(1, .5, .5, 1), 2, 2)
X \leftarrow MASS::mvrnorm(n = Nsubj, mu = c(0, 0), Sigma = R, empirical = TRUE)
## dichotomize data
thresholds <- qnorm(c(.2, .3))</pre>
binaryData <- matrix(0, Nsubj, 2)</pre>
for(i in 1:2){
  binaryData[X[,i] \le thresholds[i],i] <- 1
## calculate Pearson correlation
cat("\nPearson r: ", round(cor(X)[1,2], 2))
## calculate Pearson Phi correlation
cat("\nPhi r: ", round(cor(binaryData)[1,2], 2))
## calculate tetrachoric correlation
cat("\nTetrachoric r: ", round(tetcor(binaryData)$r[1,2], 2))
## calculate Quasi-tetrachoric correlation
cat("\nQuasi-tetrachoric r: ", round(tetcorQuasi(binaryData), 2))
```

50 vnorm

vcos

Compute the Cosine Between Two Vectors

Description

Compute the cosine between two vectors.

Usage

```
vcos(x,y)
```

Arguments

Value

```
Cosine between \boldsymbol{x} and \boldsymbol{y}
```

Examples

```
x <- rnorm(5)
y <- rnorm(5)
vcos(x, y)</pre>
```

vnorm

Norm a Vector to Unit Length

Description

Norm a vector to unit length.

Usage

```
vnorm(x)
```

Arguments

x An n by 1 vector.

Value

```
x scaled to unit length.
```

Author(s)

Niels Waller

vnorm 51

```
x <- rnorm(5)
v <- vnorm(x)</pre>
```

Index

*Topic Statistics	eigGen, 8
adfCor, 2	enhancement, 9
adfCov, 3	
corSmooth, 7	fungible, 11
d2r, 8	fungibleExtrema, 12
eigGen, 8	fungibleL, 14
kurt, 21	fungibleR, 15
normalCor, 31	20. 36
r2d, 32	genCorr, $20,36$
rcor, 35	kupt 21 44
seBeta, 40	kurt, 21, <i>44</i>
seBetaCor, 41	monte, 22, <i>30</i>
seBetaFixed, 42	montel, 29
skew, 44	morrer, 29
tetcor, 47	normalCor, 31
tetcorQuasi, 48	
vcos, 50	plot.monte, 31
vnorm, 50	print.summary.monte(summary.monte), 45
*Topic datagen	<pre>print.summary.monte1 (summary.monte1),</pre>
bigen, 5	46
corSample, 6	
enhancement, 9	r2d, 32
genCorr, 20	rarc, 32
monte, 22	rcone, 34
montel, 29	rcor, 35
rarc, 32	rellipsoid, 36
rcone, 34	rGivens, 37
rellipsoid, 36	rMAP, 38
rGivens, 37	
rMAP, 38	seBeta, 40, <i>43</i>
*Topic fungible	seBetaCor, 41
fungible, 11	seBetaFixed, 42
fungibleExtrema, 12	skew, 22, 44
fungibleL, 14	summary.monte, $30,45$
fungibleR, 15	summary.monte1, 30, 46
adfCan 2 21	tetcor, 47
adfCor, 2, 31 adfCov, 3	tetcorQuasi, 48
aurcov, 3	200001 (20002), 10
bigen, 5	vcos, 50
	vnorm, 50
corSample, 6	
corSmooth, 7	
d2r, 8	