Analog Electronics

Fengchun Zhang

fz@es.aau.dk

Agenda

- Recap Frequency response analysis and nonlinear systems
- Solutions of the assignments
- Feedback system

High-frequency response Approach I: finding poles by inspection

Apply Miller's theorem to C_{XY}

$$|\omega_{p,in}| = \frac{1}{R_{Thev}[C_{in} + C_{XY}(1 + g_m R_L)]}$$

$$|\omega_{p,out}| = \frac{1}{R_L[C_{out} + C_{XY}(1 + \frac{1}{g_m R_L})]}$$

$$CS Stage$$

$$V_{Thev} = V_{in}$$

$$R_{Thev} = R_{S}$$

$$C_{X} = C_{GD} (1 + g_{m}R_{L})$$

$$C_{Y} = C_{GD} (1 + \frac{1}{g_{m}R_{L}})$$

Approach II: exact analysis

$$R_{Thev}R_{L}[C_{in}C_{XY} + C_{out}C_{XY} + C_{in}C_{out}]s^{2} + [R_{Thev}C_{XY}(1 + g_{m}R_{L}) + R_{Thev}C_{in} + R_{L}(C_{XY} + C_{out})]s + 2r_{Thev}R_{L}[C_{in}C_{XY} + C_{out}C_{XY} + C_{in}C_{out}]s^{2} + [R_{Thev}C_{XY}(1 + g_{m}R_{L}) + R_{Thev}C_{in} + R_{L}(C_{XY} + C_{out})]s + 2r_{Thev}R_{L}[C_{in}C_{XY} + C_{out}C_{XY} + C_{in}C_{out}]s^{2} + [R_{Thev}C_{XY}(1 + g_{m}R_{L}) + R_{Thev}C_{in} + R_{L}(C_{XY} + C_{out})]s + 2r_{Thev}R_{L}[C_{in}C_{XY} + C_{out}C_{XY} + C_{out}C_{in}]s^{2} + [R_{Thev}C_{XY}(1 + g_{m}R_{L}) + R_{Thev}C_{in}]s^{2} + 2r_{Thev}R_{L}[C_{XY} + C_{out}C_{XY} + C_{out}C_{XY}]s^{2} + 2r_{Thev}R_{L}[C_{XY} + C_{out}C_{XY} + C_{out}C_{XY}]s^{2} + 2r_{Thev}R_{L}[C_{XY} + C_{out}C_{XY}]s^{2} + 2r_{Thev}R_{L}[C_{XY}$$

- If s = 0, $\frac{V_{out}}{V_{Thev}}(s) = -g_m R_L$ If $s = \infty$, $\frac{V_{out}}{V_{Thev}}(s) = 0$, C_{in} and C_{out} as short circuits $\Rightarrow V_{out} = V_{Thev} = 0$
- One zero: $\omega_z = \frac{g_m}{C_{YY}}$, e.g., $g_m \sim 0.01$, $C_{XY} \sim 10^{-12}$ $\rightarrow \omega_z \sim 10$ GHz, very high frequency, so typically not important
- Two poles: dominant pole approximation, i.e., $\omega_{p_1} \ll \omega_{p_2}$

$$\Rightarrow \omega_{p_1} = \frac{1}{[R_{Thev}C_{XY}(1+g_mR_L)+R_{Thev}C_{in}+R_L(C_{XY}+C_{out})]}$$

Low-frequency response-BJT

$$\begin{split} &\frac{V_{o}}{V_{sig}} = A_{M} \frac{s}{s + \omega_{p1}} \frac{s + \omega_{z}}{s + \omega_{pE}} \frac{s}{s + \omega_{p2}} \\ &\omega_{p1} = \frac{1}{\tau_{c1}} = \frac{1}{C_{C1}(R_{B}||r_{\pi} + R_{sig})} \\ &\omega_{pE} = \frac{1}{\tau_{cE}} = \frac{1}{C_{E}[R_{E}||\left(\frac{1}{g_{m}} + \frac{R_{B}||R_{sig}}{\beta + 1}\right)\right]} \quad \text{Dominant pole} \\ &\omega_{p2} = \frac{1}{\tau_{c2}} = \frac{1}{C_{C2}(R_{C} + R_{L})} \\ &\omega_{z} = \frac{1}{C_{E}R_{E}} \end{split}$$

$$R_B = R_{B1} || R_{B2}$$
 $r_\pi = \frac{\beta}{g_m} = \beta r_e$

Short-circuit time constant method:

- Short other capacitors
- turn off sources:
 - Voltage source → short circuit
 - Current source → open circuit

The role of capacitors

Figure 10.1 Sketch of the magnitude of the gain of a discrete-circuit BJT or MOS amplifier versus frequency. The graph delineates the three frequency bands relevant to frequency-response determination.

Nonlinear system example--BJT

Taylor series expansion:

$$e^{x/a} = 1 + \frac{1}{a}x + \frac{1}{2!*a^2}x^2 + \dots + \frac{1}{n!*a^n}x^n + \dots$$

$$I_{C} = I_{S} e^{V_{BE}/V_{T}} = I_{S} e^{(V_{BE,Q}+v_{in})/V_{T}} = I_{S} e^{V_{BE,Q}/V_{T}} e^{v_{in}/V_{T}} = I_{CQ} e^{v_{in}/V_{T}}$$

$$= I_{CQ} \left(1 + \frac{1}{V_{T}} v_{in} + \frac{1}{2! * V_{T}^{2}} v_{in}^{2} + \frac{1}{3! * V_{T}^{3}} v_{in}^{3} + ...\right)$$

$$= I_{CQ} + \frac{I_{CQ}}{V_{T}} v_{in} + \frac{I_{CQ}}{2! * V_{T}^{2}} v_{in}^{2} + \frac{I_{CQ}}{3! * V_{T}^{3}} v_{in}^{3} + ...$$

$$= \alpha_{0} + \alpha_{1} v_{in} + \alpha_{2} v_{in}^{2} + \alpha_{3} v_{in}^{3} + ...$$

DC:

$$\beta_0 = \alpha_0 + \alpha_2 \frac{A^2}{2}$$

Fundamental:

$$\beta_1 = \alpha_1 A + \alpha_3 \frac{3A^3}{4} \approx \alpha_1 A$$

$$\beta_3 = \alpha_3 \frac{A^3}{4}$$

2nd Harmonic:

$$\beta_2 = \alpha_2 \frac{A^2}{2}$$

3rd Harmonic:

$$\beta_3 = \alpha_3 \frac{A^3}{4}$$

Total harmonic distortion (THD):

$$THD = \sqrt{HD_2^2 + HD_3^2 + HD_4^2 + \cdots}$$
$$= \sqrt{\left(\frac{\beta_2}{\beta_1}\right)^2 + \left(\frac{\beta_3}{\beta_1}\right)^2 + \left(\frac{\beta_4}{\beta_1}\right)^2 + \cdots}$$

Nonlinear system example--MOSFET

$$I_{D} = \frac{1}{2}k_{n}(V_{GS} - V_{TH})^{2} = \frac{1}{2}k_{n}(V_{GS,Q} - V_{TH} + v_{in})^{2}$$

$$= \frac{1}{2}k_{n}(V_{GS,Q} - V_{TH})^{2}\left(1 + \frac{v_{in}}{V_{GS,Q} - V_{TH}}\right)^{2}$$

$$= I_{DQ}\left(1 + \frac{2}{V_{GS,Q} - V_{TH}}v_{in} + \frac{1}{(V_{GS,Q} - V_{TH})^{2}}v_{in}^{2}\right)$$

$$= I_{DQ} + \frac{2I_{DQ}}{V_{GS,Q} - V_{TH}}v_{in} + \frac{I_{DQ}}{(V_{GS,Q} - V_{TH})^{2}}v_{in}^{2}$$

$$= \alpha_{0} + \alpha_{1}v_{in} + \alpha_{2}v_{in}^{2}$$

DC

$$\beta_0 = \alpha_0 + \alpha_2 \frac{A^2}{2}$$

Fundamental:

$$\beta_1 = \alpha_1 A$$

2nd Harmonic:

$$\beta_2 = \alpha_2 \frac{A^2}{2}$$

3rd Harmonic:

$$\beta_3 = 0$$

Total harmonic distortion (THD):

$$THD = \sqrt{HD_2^2 + HD_3^2 + HD_4^2 + \cdots}$$
$$= \frac{\beta_2}{\beta_1} = HD_2$$

Some practical problems of amplifiers

- Gain variation: e.g. $A_v = -g_m R_1$
 - Temperature: $g_m = I_{C,O}/V_T$
 - Supply voltage: $g_m = I_{C,O}/V_T$
 - Manufacture: R_1 varies from sample to sample
- Nonlinear distortion
- Bandwidth
- Input and output impedance
- Some applications, e.g. analog-to-digital converters, require very precise voltage gain e.g. $A_{12} = 2.000$

General feedback system

Negative feedback system:

- X and X_F change in the same direction;
- The error signal should be minimized;
- Open-loop system: break the feedback network, K = 0
- Closed-loop system: $K \neq 0$

Transfer function of closed-loop system

$$A_{cL} = \frac{Y}{X} = \frac{A_1}{1 + KA_1}$$
 --- closed-loop gain

A₁ is the open-loop gainK is the feedback factor

$$KA_1 > 0 \rightarrow |A_{cL}| < |A_1|$$

Quiz: determine the error signal in terms of X

Example

Nominal gain of an amp: $A_1 = 100$ Actual gain in application: $A'_1 = 50$

How much does A_1 change? How much does the closed-loop gain A_{cL} change?

$$A_{cL} = A_1 / (1 + K A_1) = 100/11 = 9.09$$

 $A_{cL}' = A_1 ' / (1 + K A_1') = 50/6 = 8.33$

A_{cL} change: 8.3%

Feedback loop system

Closed-loop gain

$$A_{cL} = \frac{Y}{X} = \frac{A_1}{1 + KA_1} \approx \frac{1}{K} \text{ if } KA_1 \gg 1$$

→Closed-loop gain A_{cL} is relatively independent of the open-loop gain A_1

We still need $A_{cL} > 1 \rightarrow 0 < K \le 1$

Feedback system example

The op amp A1 performs two functions:

- substraction
- Amplification

What is the closed-loop gain?

$$A_{cL} = \frac{Y}{X} = \frac{A_1}{1 + KA_1} = \frac{A_1}{1 + \frac{R_2}{R_1 + R_2} A_1}$$

$$A_{cL} \approx \frac{R_1 + R_2}{R_2} = 1 + \frac{R_1}{R_2}, \text{ if } \frac{R_2}{R_1 + R_2} A_1 \gg 1$$

Loop-gain

- Open-loop gain: A₁
- Closed-loop gain: $A_{cL} = \frac{Y}{X} = \frac{A_1}{1 + KA_1}$
- Loop-gain: KA₁
 - Procedure to measure loop-gain
 - Set the input X to zero (X is voltage \rightarrow AC ground; if X is current \rightarrow open)
 - Break the loop at an arbitrary point
 - Apply a test signal V_{test} at one terminal and measure the signal V_F at the other terminal
 - Calculate the loop-gain $-\frac{V_F}{V_{test}} = KA_1$
 - $\frac{V_F}{V_{test}} < 0 \rightarrow \text{negative feedback}$ $\frac{V_F}{V_{test}} > 0 \rightarrow \text{positivie feedback}$

Apply feedback to transistor amplifiers

- Two input, one output
- Generates the output that proportional to the deviation of the two inputs.

Quiz: $\frac{Y}{X} = ?$

Assume R_1 and R_2 are very large

$$\rightarrow A_1 = g_m R_D$$

Summary of negative feedback concept

- Sacrifice the open-loop gain A_1 to benefit from negative feedback
- The feedback signal X_F is a good copy of input signal X
- The feedback factor K is normally independent to frequency
 - Make Y a good (scaled by 1/K) copy of X
 - Wider frequency band
 - Better linearity
- If loop-gain $KA_1 \gg 1 \Rightarrow A_{cL} \approx \frac{1}{K}$, relatively independent of A_1
 - Factors that cause A_1 to vary have less impact on the closed-loop gain
 - Factors: temperature, supply voltage, frequency, load impedance

Properties of negative feedback

- Gain desensitization
- Bandwidth extension
- Linearity improvement
- Modification of input and output impedance

Gain desensitization example

Assume the nominal gain of A_1 =100 and $\frac{R_1}{R_2}$ = 3. Due to e.g., temperature, supply voltage, frequency and loading imdedance, A_1 drops to 50.

• How does the closed-loop gain A_{cL} change?

$$A_{cL} = \frac{Y}{X} = \frac{A_1}{1 + KA_1} = \frac{A_1}{1 + \frac{R_2}{R_1 + R_2} A_1}$$

Bandwidth extension

$$A_1(s) = \frac{A_0}{1 + s/\omega_0}$$

$$A_{cL}(s) = \frac{A_1(s)}{1 + KA_1(s)}$$

Closed-loop gain = ? Closed-loop bandwidth = ?

Gain x Bandwidth is constant!

Linearity improvement

Ideal Vs. real sources

How to sense/measure voltage or current

(a)

(d)

Modification of input and output impedance Voltage-voltage FB

Modification of input and output impedance

Assume $R_1 + R_2 \gg R_D$

Feedback topologies

$$R_{in,CL} = R_{in}(1 + KA_1)$$
 $R_{in,CL} = R_{in}/(1 + KA_1)$
 $R_{out,CL} = R_{out}(1 + KA_1)$ $R_{out,CL} = R_{out}(1 + KA_1)$

Rules for breaking the feedback network(self-study)

Rules for breaking the feedback network

$$\begin{split} K &= \frac{R_2}{R_1 + R_2} \\ A_1 &= g_m [R_D || (R_1 + R_2)] \\ R_{in} &= 1/g_m \\ R_{out} &= R_D || (R_1 + R_2) \end{split}$$

Instability in FB system

Loop transmission: $\frac{Y}{X}(s) = \frac{H(s)}{1 + KH(s)}$

For a certain input frequency ω_1 ,

$$KH(j\omega_1) = -1$$

$$\frac{Y}{X}(j\omega_1) = \infty$$

Even *X* is very small, *Y* can be extremely large.

- Acting like an oscillator
- Bad for building amplifiers

Unstable system:

$$|KH(j\omega_1)| \ge 1$$

 $\angle KH(j\omega_1) = 180^{\circ}$

Stability/compensation

- Reduce $K \to \omega_1$ smaller \to more stable system but less control over the system
- Change the phase of H(s)