

Graphs

Sandesh B. J & Saritha

Department of Computer Science & Engineering

Graphs

Saritha

Department of Computer Science & Engineering

Introduction to graphs

Linear data structures

DATA STRUCTURES AND ITS APPLICATIONS Introduction to Graphs

PES UNIVERSITY

Non-Linear Data Structure

Tree

Graph

In a tree with N nodes there are N-1 edges

Introduction to graph

Graphs

- A Graph is a data structure that consists of set of vertices and a set of edges that relate the node to each other.
- The set of edges represents the relationship among the vertices.
- A graph G is defined as

$$G=(V,E)$$

V: finite nonempty set of vertices

E: a set of edges

$$V = \{ v1, v2, v3, v4, v5, v6, v7, v8 \}$$

Representation of Edge

$$V = \{ v1,v2,v3,v4,v5,v6,v7,v8 \}$$

$$E = \{ (v1,v2),(v2,v3),(v2,v4),(v4,v8),(v1,v5),(v1,v6),(v6,v7),(v5,v8) \}$$

Types of Graphs

Undirected Graph:

• A graph is undirected, when the pair of vertices representing any edge is unordered.

Directed Graph:

 A graph with all directed edges is called diagraph or directed graph.

Types of Graphs

PES UNIVERSITY ONLINE

Weighted Graph:

• A weighted graph is a graph where each edge has a numerical value called weight.

Graph terminologies

PES UNIVERSITY ONLINE

Adjacent Nodes:

- •A node n is adjacent to node m if there is an edge from m to n.
- if n is adjacent to m, then n is called the **successor** of m and m is called the **predecessor** of n.

For example: a is adjacent to b

Path:

Path is a sequence of vertices that connect two nodes in a graph.

Graph terminologies

Cycle:

•A path from node to itself is called a cycle or cycle is path in which first and last vertices are same. A graph with at-least one cycle is called cyclic graph. For example the below graph are cyclic graphs

Graph terminologies

PES UNIVERSITY ON LINE

Acylic:

•A graph with no cycles is called acyclic graph. A directed acyclic graph is called dag. For example below graph is a directed acylic graph

Graph terminologies

Incident:

A node n is incident to an edge x, if node is one of the two nodes the edge connects.

Degree:

The degree of vertex i is the number of edges incident on vertex i.

degree(A)=2, degree of(D)=1

Graph terminologies

PES UNIVERSITY ONLINE

In-degree:

•In-degree of vertex i is the number of edges incident to i.

Out-degree:

•Out-degree of vertex i is the number of edges incident from i.

Out-degree(A)=2,in-degree of(A)=0 Out-degree(c)=1,in-degree of (c)=1

Properties of Graph

PES UNIVERSITY ONLINE

Directed graph:

- •The number of possible pairs in an m vertex graph is m*(m-1)
- •The number of edges in an directed graph is m*(m-1) since the edge(u, v) is not the same as the edge(v, u)
- •The number of edges in an directed graph is<=m*(m-1)

Properties of Graph

PES UNIVERSITY ONLINE

Undirected graph:

- •The number of possible pairs in an m vertex graph is m*(m-1)
- •The number of edges in an undirected graph is $m^*(m-1)/2$ since the edge(u, v) is same as the edge(v, u)

Applications of graph

PES UNIVERSITY ONLINE

Social Networking sites

THANK YOU

Saritha

Department of Computer Science & Engineering

Saritha.k@pes.edu

9844668963