Public Key Cryptography

- ➤ Operations: Addition, Multiplication, and exponentiation
- Security is based on complexity of mathematical functions (intractable problems)
- Examples: RSA, Diffie Hellman, Rabin, ElGamal, Elliptic curve cryptography etc.

Confidentiality without authentication

Confidentiality with Authentication

Intractable problems

- ➤ Integer factorization: n = p * q. Finding primes p and q, given n. Eg: RSA (Soln: NFS with subexponetial running time)
- ➤ Discrete Logarithmic Problem: $x = y^z$ % p. Finding z, given x, y and p. Eg: Diffie Hellman alg, ElGamal Alg, DSA. (Soln:Pollard rho with Fully Exp, NFS with sub exponential time)
- ➤ ECDLP: P= nQ, where P and Q are points on elliptic curve. Finding n, given P and Q. Eg: ECC (Soln: Pollard rho having Fully exponential time)

Asymmetric Key Algorithms

- >RSA Algorithm
- ➤ Diffie Hellman Algorithm
- ➤ DSA-Digital Signature Algorithm
- ➤ Elliptic Curve Cryptography

RSA Algorithm

> Key Generation:

- Select any two distinct prime numbers p & q.
- Compute n=p*q and $\varphi(n)=(p-1)*(q-1)$
- Select a random number 'e' such that $1 < e < \phi(n)$ and gcd(e, $\phi(n)$) =1.
- Compute e's inverse $d=e^{-1} \mod \varphi(n)$
- Public Key = (n,e); Private Key = (p,q,d)

RSA...

- Encryption: Let x<n be a plain text (number)
 - $y = E_{Pub}(x) = x^e \mod n$
- > Decryption:
 - $x = D_{pvt}(y) = y^d \bmod n$
- Note: Message is represented as a seqn of 0's and 1's. Find a no k such that $2^k < n$ (i.e., $k=\log_2 n$). Then k bits of message (whose integer value is x) is encrypted. For better speed, take k s.t, $2^k < n <= 2^{k+1}$
- ➤ Above encr/decr provides confidentiality. Swap(Pub, Pvt) keys in the above for providing authentication

RSA Example.

- >Assume the following:
 - Sender: A Receiver: B
 - B's (pub, pvt) pair generation:
 - B selects primes p=17, q=11 and computes n=p*q=187 and $\varphi(n) = (p-1)*(q-1)=160$
 - B selects a random no e=7 satisfying the reqd condition and calculates its inverse d as 23 using extended Euclid's algorithm.
 - B's public Key=(n,e)=(187,7) and private key = (p,q,d) = (17,11,23). B announces its public key to all

- >A wants to send encrypted message to B
 - 'A' generates a message and say its integer value is x=88 (<n)
 - 'A' encrypts the plain text x with B's public key as: y=88⁷ mod 187 = 11 and transmits it to B
 - 'B' decrypts the cipher text 11 as $x=11^{23}$ mod 187 = 88.

Diffie-Hellman Key Exchange Alg

> Global Public Elements:

- Select prime: q
- Find primitive root of q: α (<q)

> Sender A:

- Select a random no X_A (Private of A)
- Find $Y_A = \alpha^{\wedge} X_A \%$ q (Public of A)

> Receiver B:

- Select a random no X_B (Private of B)
- Find $Y_B = \alpha^* X_B \%$ q (Public of B)
- ➤ Secret Key Generation at A:
 - $K = (Y_B \wedge X_A) \% q$
- Secret Key Generation at B:
 - $K = (Y_A \wedge X_B) \% q$

Drawback of Public Key Crypt

- Time Consumption for Encryption and decryption.
- A Secret key algorithm is at least 1000 times faster than a public key algorithm.
- **Solution:** Hybrid cryptosystem.
- Use public key algorithm for key sharing and secret key algorithm for encryption & decryption.
 Used in IBM.

Key sizes for equivalent security levels

Symmetric	ECC	DH/DSA/RSA
80	160	1024
128	256	3072
192	384	7680
256	512	15360

Key sizes for equivalent security levels

Symmetric	ECC	DH/DSA/RSA
80	160	1024
128	256	3072
192	384	7680
256	512	15360

Computational Efforts for Cryptanalysis

Computing power needed to compute ECDLP using Pollard rho method.

Key size	MIPS – years
160	8.5×10^{11}
186	7.0×10^{15}
234	1.2×10^{23}
354	1.4×10^{11}
426	9.2×10^{51}

Computing power needed to compute integer factorization using NFS method.

Key size	MIPS – years
512	3×10^4
768	2×10^{8}
1024	3×10^{11}
1280	1×10^{14}
1536	3×10^{16}
2048	3×10^{20}

ECC Challenges

- ➤ Ref:http://www.certicom.com/index.php/the -certicom-ecc-challenge
- Announced in 1997.
- ➤ Solved 109 bits key in 2002 and 2004
- ➤ Unsolved for keys131, 163, 191, 239, 359 bits
- > Prizes \$ 20K, 30K, 40K, 50K, 100K

Top International Cryptography Conferences

- ➤ ASIACRYPT
- > CRYPTO
- **EUROCRYPT**
- > INDOCRYPT
- > CHES- Cryptographic h/w & embd systems
- ➤ PKC Workshop on practice & theory in Public Key Crypt
- > ANTS- Algorithmic Number theory symposium
- ➤ Proceedings of above conferences are published by springer LNCS

Some Useful S/W

➤ LiDIA/LC 2.0.x. It is a C++ library for computational number theory which provides a collection of highly optimized implementations of various multi-precision data types and time-intensive algorithms. The entire LiDIA functionality can be used interactively through LiDIA's LC interpreter. LC implements a subset of C++ and provides in addition to standard programming facilities, function overloading and automatic coercions. Functions and statements are treated as ordinary objects and may be manipulated at run-time. Because of the interpreted language, LC functions can be easily transformed to C++ programs which can then be compiled.

➤ Pari-GP 2.1.x. It is a Calculator for number theory. The PARI system is a package which is capable of doing formal computations on recursive types at high speed; it is primarily aimed at number-theorists, but can be used by people whose primary need is speed. It is possible to use PARI in two different ways: (1) as a library, which can be called from any upper-level language application, (2) as a sophisticated programmable calculator, named GP, which contains most of the standard control instructions of a standard language like C.

- >GAP
- >KANT/KASH
- > Magma
- **≻**Maple
- **≻** Mathematica
- > MuPAD
- > Cryptlib

- ➤ Crypto++
- >GNU MP
- **≻**Libgcrypt
- > MIRACL
- >NTL
- **≻**OpenSSL
- > SAGE