

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

Fakulta informačních technologií

Projekt z MSP

Zpracoval:XXXX Čísla zadání:31, 33

Cvičení – skupina: úterý, 12:00

Datum:25. 11. 2020

Zadání projektu z předmětu MSP

Každý student obdrží na cvičení konkrétní data (čísla ze seznamu), pro které vypracuje projekt. K vypracování můžete použít libovolné statistické programy.

- 1. Při kontrole výrobků byla sledována odchylka X [mm] jejich rozměru od požadované velikosti. Naměřené hodnoty tvoří statistický soubor v listu Data_př. 1.
- a) Proveďte roztřídění statistického souboru, vytvořte tabulku četností a nakreslete histogramy pro relativní četnosti a relativní kumulativní četnosti.
- b) Vypočtěte aritmetický průměr, medián, modus, rozptyl a směrodatnou odchylku.
- c) Vypočtěte bodové odhady střední hodnoty, rozptylu a směrodatné odchylky.
- d) Testujte předpoklad o výběru z normálního rozdělení Pearsonovým (chí-kvadrát) testem na hladině významnosti 0,05.
- e) Za předpokladu (bez ohledu na výsledek části d)), že statistický soubor byl získán náhodným výběrem z normálního rozdělení, určete intervalové odhady střední hodnoty, rozptylu a směrodatné odchylky se spolehlivostí 0,95 a 0,99.
- f) Testujte hypotézu optimálního seřízení stroje, tj. že střední hodnota odchylky je nulová, proti dvoustranné alternativní hypotéze, že střední hodnota odchylky je různá od nuly, a to na hladině významnosti 0,05.
- g) Ověřte statistickým testem na hladině významnosti 0,05, zda seřízení stroje ovlivnilo kvalitu výroby, víte-li, že výše uvedený statistický soubor 50-ti hodnot vznikl spojením dvou dílčích statistických souborů tak, že po naměření prvních 20-ti hodnot bylo provedeno nové seřízení stroje a pak bylo naměřeno zbývajících 30 hodnot.

Návod: Oba soubory zpracujte neroztříděné. Testujte nejprve rovnost rozptylů odchylek před a po seřízení stroje. Podle výsledku pak zvolte vhodný postup pro testování rovnosti středních hodnot odchylek před a po seřízení stroje.

- 2. Měřením dvojice (*Výška*[cm], *Váha*[kg]) u vybraných studentů z FIT byl získán dvourozměrný statistický soubor zapsaný po dvojicích v řádcích v listu Data_př. 2.
- a) Vypočtěte bodový odhad koeficientu korelace.
- b) Na hladině významnosti 0,05 testujte hypotézu, že náhodné veličiny Výška a Váha jsou lineárně nezávislé.
- c) **Regresní analýza -** data proložte přímkou: $V \acute{a} h a = \beta_0 + \beta_1 \cdot V \acute{y} \check{s} k a$
 - 1) Bodově odhadněte β_0 , β_1 a rozptyl s^2 .
 - 2) Na hladině významnosti 0,05 otestujte hypotézy:

$$H: \beta_0 = -100, \quad H_A: \beta_0 \neq -100,$$

 $H: \beta_1 = 1, \quad H_A: \beta_1 \neq 1,$

3) Vytvořte graf bodů spolu s regresní přímkou a pásem spolehlivosti pro individuální hodnotu výšky.

Termín pro odevzdání práce je 11 týden výuky zimního semestru ve cvičení.

Vypracování:

1. Při kontrole výrobků byla sledována odchylka X [mm] jejich rozměru od požadované velikosti. Naměřené hodnoty tvoří statistický soubor v listu Data_př. 1.

Statistický soubor						
1	-1,89	26	-4,19			
2	-2,37	27	-0,37			
3	-2,06	28	-1,76			
4	-4,46	29	-3,47			
5	-1,9	30	-1,52			
6	-2,4	31	0,25			
7	-1,09	32	-0,68			
8	-2,53	33	-1,73			
9	-1,49	34	-1,51			
10	-1,73	35	-1,76			
11	-1,96	36	-2,13			
12	-2,11	37	-0,68			
13	-2,66	38	-1,28			
14	-1,21	39	-2,02			
15	-0,09	40	-0,35			
16	-1,37	41	-2,86			
17	-1,43	42	-0,85			
18	-2,89	43	-2,79			
19	-1,55	44	-3,29			
20	-0,29	45	-1,28			
21	-1,92	46	-3,3			
22	-0,73	47	-1,28			
23	-2,53	48	-1,8			
24	-2,44	49	-2,81			
25	-2,66	50	-3,16			

Uspořádaný statistický soubor

		Soubor	
(1)	-4,46	(26)	-1,8
(2)	-4,19	(27)	-1,76
(3)	-3,47	(28)	-1,76
(4)	-3,3	(29)	-1,73
(5)	-3,29	(30)	-1,73
(6)	-3,16	(31)	-1,55
(7)	-2,89	(32)	-1,52
(8)	-2,86	(33)	-1,51
(9)	-2,81	(34)	-1,49
(10)	-2,79	(35)	-1,43
(11)	-2,66	(36)	-1,37
(12)	-2,66	(37)	-1,28
(13)	-2,53	(38)	-1,28
(14)	-2,53	(39)	-1,28
(1)	-2,44	(40)	-1,21
(16)	-2,4	(41)	-1,09
(17)	-2,37	(42)	-0,85
(18)	-2,13	(43)	-0,73
(19)	-2,11	(44)	-0,68
(20)	-2,06	(45)	-0,68
(21)	-2,02	(46)	-0,37
(22)	-1,96	(47)	-0,35
(23)	-1,92	(48)	-0,29
(24)	-1,9	(49)	-0,09
(25)	-1,89	(50)	0,25

a) Proveďte roztřídění statistického souboru, vytvořte tabulku četností a nakreslete histogramy pro relativní četnosti a relativní kumulativní četnosti.

$$x_{(1)} = \min_{i} x_{i} = -4,46$$

$$x_{(n)} = \max_{i} x_{i} = 0.25$$

Variační obor:
$$\langle x_{(1)}, x_{(n)} \rangle = \langle -4,46; 0,25 \rangle$$

Rozpětí:
$$x_{(n)} - x_{(1)} = 4,71$$

Počet tříd
$$m = 11$$
 (zvoleno)

Délka třídy =
$$\frac{x_{(n)} - x_{(1)}}{m} = 0,42818$$

třída	xi-	xi+	střed třídy	Kumulat čet.	četnost	Relat. Čet.	Relat. Kum. Čet.
1	-4,4600	-4,0318	-4,2459	2	2	0,04	0,04
2	-4,0318	-3,6036	-3,8177	2	0	0	0,04
3	-3,6036	-3,1755	-3,3895	5	3	0,06	0,1
4	-3,1755	-2,7473	-2,9614	10	5	0,1	0,2
5	-2,7473	-2,3191	-2,5332	17	7	0,14	0,34
6	-2,3191	-1,8909	-2,1050	24	7	0,14	0,48
7	-1,8909	-1,4627	-1,6768	34	10	0,2	0,68
8	-1,4627	-1,0345	-1,2486	41	7	0,14	0,82
9	-1,0345	-0,6064	-0,8205	45	4	0,08	0,9
10	-0,6064	-0,1782	-0,3923	48	3	0,06	0,96
11	-0,1782	0,2500	0,0359	50	2	0,04	1

b) Vypočtěte aritmetický průměr, medián, modus, rozptyl a směrodatnou odchylku.

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = -1,8876$$

medián: $\tilde{x} = -1,845$

modus: $\hat{x} = -1,676818182$

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = 1,00545424$$

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = 1,00545424$$

$$s = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} = 1,002723412$$

c) Vypočtěte bodové odhady střední hodnoty, rozptylu a směrodatné odchylky.

Bodový odhad střední hodnoty:
$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = -1,8876$$

Bodový odhad rozptylu:
$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 = 1,025973714$$

Bodový odhad směrodatné odchylky:
$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2} = 1,012903606$$

d) Testujte předpoklad o výběru z normálního rozdělení Pearsonovým (chí-kvadrát) testem na hladině významnosti 0,05.

třída	xi-	xi+	střed třídy	Kumulat čet.	četnost	Teor. Čet	roz^2/teor čet
1	-1000	-3	-501,5	6	6	6,802613877	0,094697281
2	-3	-2,529	-2,7645	14	8	6,361987875	0,421736692
3	-2,529	-2,058	-2,2935	20	6	8,495471785	0,733023379
4	-2,058	-1,587	-1,8225	30	10	9,173884945	0,074392265
5	-1,587	-1,116	-1,3515	40	10	8,011115501	0,493771629
6	-1,116	-0,645	-0,8805	45	5	5,657202043	0,076347728
7	-0,645	1000	499,6775	50	5	5,497723974	0,045060311

Testovací kritérium:
$$t = \sum_{j=1}^{m} \frac{(f_j - \hat{f}_j)^2}{\hat{f}_j} = 1,939029286,$$

$$\chi^2_{1-\alpha}$$
 pro k = 7-2-1 stupňů volnosti: 9,487729037,

doplněk kritického oboru:
$$\overline{W}_{\alpha} = \left<0, \chi^2_{\text{I}-\alpha}\right> = \left<0, 9,487729037\right>$$
.

Protože $t \in \overline{W}_{\alpha}$, tedy hypotéza: $X \sim N(-1,8876; 1,025973714)$ se **nezamítá.**

e) Za předpokladu (bez ohledu na výsledek části d)), že statistický soubor byl získán náhodným výběrem z normálního rozdělení, určete intervalové odhady střední hodnoty, rozptylu a směrodatné odchylky se spolehlivostí 0,95 a 0,99.

Předpoklad:
$$X \sim N(\mu, \sigma^2)$$
, σ^2 - neznámé

Bodový odhad střední hodnoty:
$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = -1,8876$$

Bodový odhad rozptylu:
$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2 = 1,025973714$$

Bodový odhad směrodatné odchylky:
$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2} = 1,012903606$$

Intervalový odhad parametru μ :

0,975 kvantil Studentova rozdělení $t_{1-\alpha/2}$ s k=n-1=50-1=49 stupni volnosti = 2,009575237 0,995 kvantil Studentova rozdělení $t_{1-\alpha/2}$ s k=n-1=50-1=49 stupni volnosti = 2,679951964

$$\alpha = 0.05: \left\langle \overline{x} - t_{1-\alpha/2} \frac{s}{\sqrt{n}}; \overline{x} + t_{1-\alpha/2} \frac{s}{\sqrt{n}} \right\rangle = \left\langle -2.17546402; -1.59973598 \right\rangle$$

$$\alpha = 0.01: \left\langle \overline{x} - t_{1-\alpha/2} \frac{s}{\sqrt{n}}; \overline{x} + t_{1-\alpha/2} \frac{s}{\sqrt{n}} \right\rangle = \left\langle -2.271492939; -1.503707061 \right\rangle$$

Intervalový odhad parametru σ^2 :

0,975 kvantil Pearsova rozdělení $\chi^2_{\alpha/2}$ s k=n-1=50-1=49 stupni volnosti = 31,55491646 0,975 kvantil Pearsova rozdělení $\chi^2_{1-\alpha/2}$ s k=n-1=50-1=49 stupni volnosti = 70,22241357 0,995 kvantil Pearsova rozdělení $\chi^2_{\alpha/2}$ s k=n-1=50-1=49 stupni volnosti = 27,24934921 0,995 kvantil Pearsova rozdělení $\chi^2_{1-\alpha/2}$ s k=n-1=50-1=49 stupni volnosti = 78,23070806

$$\alpha = 0.05: \left\langle \frac{(n-1)s^2}{\chi^2_{1-\alpha/2}}; \frac{(n-1)s^2}{\chi^2_{\alpha/2}} \right\rangle = \left\langle 0.715906923; 1.593181591 \right\rangle$$

$$\alpha = 0.01: \left\langle \frac{(n-1)s^2}{\chi_{1-\alpha/2}^2}; \frac{(n-1)s^2}{\chi_{\alpha/2}^2} \right\rangle = \left\langle 0.642621206; 1.844914226 \right\rangle$$

Intervalový odhad parametru σ :

$$\alpha = 0.05: \left\langle \sqrt{\frac{(n-1)s^2}{\chi_{1-\alpha/2}^2}}; \sqrt{\frac{(n-1)s^2}{\chi_{\alpha/2}^2}} \right\rangle = \left\langle \sqrt{0.715906923}; \sqrt{1.593181591} \right\rangle = \left\langle 0.8461128; 1.2622129 \right\rangle$$

$$\alpha = 0.01: \left\langle \sqrt{\frac{(n-1)s^2}{\chi_{1-\alpha/2}^2}}; \sqrt{\frac{(n-1)s^2}{\chi_{\alpha/2}^2}} \right\rangle = \left\langle \sqrt{0.642621206}; \sqrt{1.844914226} \right\rangle = \left\langle 0.801636; 1.3582762 \right\rangle$$

f) Testujte hypotézu optimálního seřízení stroje, tj. že střední hodnota odchylky je nulová, proti dvoustranné alternativní hypotéze, že střední hodnota odchylky je různá od nuly, a to na hladině významnosti 0,05.

Studentův jednovýběrový test:

Testujeme hypotézu $H_0: \mu = 0$:

testovací kritérium:
$$t = \frac{\overline{x} - \mu_0}{s} \sqrt{n} = \frac{\overline{x} - 0}{s} \sqrt{n} = -13,17731275$$

doplněk kritického oboru:
$$\overline{W}_{\alpha} = \left\langle -t_{1-\alpha/2}, t_{1-\alpha/2} \right\rangle$$
 pro alternativní hypotézu: $H_A: \mu \neq \mu_0$,

0,975 kvantil Studentova rozdělení
$$t_{1-\alpha/2}$$
 s $k=n-1$ =50-1=49 stupni volnosti = 2,009575237

$$\overline{W}_{\alpha} = \langle -t_{1-\alpha/2}, t_{1-\alpha/2} \rangle = \langle -2,0095752, 2,0095752 \rangle$$

Protože $t\notin \overline{W}_{\alpha}$, tak hypotéza $H_{0}:\mu=0$ se **zamítá** a alternativní hypotéza $H_{A}:\mu\neq0$ se nezamítá.

g) Ověřte statistickým testem na hladině významnosti 0,05, zda seřízení stroje ovlivnilo kvalitu výroby, víte-li, že výše uvedený statistický soubor 50-ti hodnot vznikl spojením dvou dílčích statistických souborů tak, že po naměření prvních 20-ti hodnot bylo provedeno nové seřízení stroje a pak bylo naměřeno zbývajících 30 hodnot.

x1:20 - X
-1,89
-2,37
-2,06
-4,46
-1,9
-2,4
-1,09
-2,53
-1,49
-1,73
-1,96
-2,11
-2,66
-1,21
-0,09
-1,37
-1,43
-2,89
-1,55
-0,29

	x21:50 - Y
1	-1,92
2	-0,73
3	-2,53
4	-2,44
5	-2,66
6	-4,19
7	-0,37
8	-1,76
9	-3,47
10	-1,52
11	0,25
12	-0,68
13	-1,73
14	-1,51
15	-1,76
16	-2,13
17	-0,68
18	-1,28
19	-2,02
20	-0,35
21	-2,86
22	-0,85
23	-2,79
24	-3,29

25	-1,28
26	-3,3
27	-1,28
28	-1,8
29	-2,81
30	-3,16

	X	Υ
n =	20	30
průměr =	-1,874	-1,896667
rozptyl $s^2 =$	0,843034	1,113529
směr_odch =	0,9181688	1,055239

Test rovnosti rozptylů – F-test:

Testujeme hypotézu $H_0: \sigma_X^2 = \sigma_Y^2$:

testovací kritérium:
$$t = \frac{s^2(X)}{s^2(Y)} = \frac{0.843034}{1,113529} = 0.757083187$$

doplněk kritického oboru: $\overline{W}_{\alpha} = \langle F_{\alpha/2}(n-1,m-1), F_{1-\alpha/2}(n-1,m-1) \rangle$ pro $H_A: \sigma_X^2 \neq \sigma_Y^2$,

 $F_{\alpha/2}(k_1,k_2), F_{1-\alpha/2}(k_1,k_2)$ jsou kvantily Fischerova-Snedecorova rozdělení s $k_1=n-1$ a

 $k_2 = m - 1$ stupni volnosti.

$$F_{\alpha/2}(19, 29) = 0,416329667$$

 $F_{1-\alpha/2}(19, 29) = 2,231274$

$$\langle F_{\alpha/2}(n-1,m-1), F_{1-\alpha/2}(n-1,m-1) \rangle = \langle 0,416329667, 2,231274 \rangle$$

Protože $t \in \overline{W}_{\alpha}$, tedy hypotéza: $H_0: \sigma_X^2 = \sigma_Y^2$ se **nezamítá.**

Studentův dvouvýběrový test:

Testujeme hypotézu $H_0: \mu_X - \mu_Y = 0$ za podmínky $\sigma_X^2 = \sigma_Y^2$

testovací kritérium:
$$t = \frac{\overline{x} - \overline{y} - \mu_0}{\sqrt{(n-1)s^2(X) + (m-1)s^2(Y)}} \sqrt{\frac{n \cdot m(n+m-2)}{n+m}} = 0,076728971$$

doplněk kritického oboru: $\overline{W}_{\alpha} = \left\langle -t_{1-\alpha/2}, t_{1-\alpha/2} \right\rangle \text{ pro } H_A : \mu_X - \mu_Y \neq 0$,

 $t_{1-\alpha/2}$ - kvantil Studentova rozdělení s k=n+m-2=20+30-2=48 stupni volnosti.

 $t_{1-\alpha/2} = 2,010634758$

$$\overline{W}_{\alpha} = \langle -t_{1-\alpha/2}, t_{1-\alpha/2} \rangle = \langle -2,010634758; 2,010634758 \rangle$$

Protože $t \in \overline{W}_{\alpha}$, tedy hypotéza: $H_0: \mu_X - \mu_Y = 0$ se **nezamítá.**

2. Měřením dvojice (*Výška*[cm], *Váha*[kg]) u vybraných studentů z FIT byl získán dvourozměrný statistický soubor zapsaný po dvojicích v řádcích v listu Data_př. 2.

3	3					
Př. 2						
X - Výška [cm]	Y - Váha [kg]					
164	34,12832					
180	77,23918					
181	76,90206					
192	91,80698					
151	40,85764					
173	75,13385					
191	75,25298					
154	32,43271					
199	82,5216					
153	44,21184					
176	63,445					
167	51,78598					
199	90,55767					
183	65,89153					
172	73,02255					
151	33,52231					
177	65,67131					
154	37,84813					
153	43,55024					
175	50,8951					

$$n = 20$$

$$\overline{x} = 172,2500$$

$$\overline{y} = 60,3338$$

$$\sum_{i=1}^{n} x_i^2 = 598277$$

$$\sum_{i=1}^{n} y_i^2 = 80204,53159$$

$$\sum_{i=1}^{n} x_i y_i = 208122,8958$$

a) Vypočtěte bodový odhad koeficientu korelace.

$$r = \frac{\sum_{i=1}^{n} x_i y_i - n\overline{x}\overline{y}}{\sqrt{\left(\sum_{i=1}^{n} x_i^2 - n\overline{x}^2\right)\left(\sum_{i=1}^{n} y_i^2 - n\overline{y}^2\right)}} = 0,908209289$$

b) Na hladině významnosti 0,05 testujte hypotézu, že náhodné veličiny Výška a Váha jsou lineárně nezávislé.

Testujeme hypotézu $H_0: \rho = 0$:

testovací kritérium:
$$t = \frac{|r|\sqrt{n-2}}{\sqrt{1-r^2}} = 9,206823617$$

doplněk kritického oboru:
$$\overline{W}_{\alpha} = \left\langle 0, t_{1-\alpha/2} \right\rangle$$
 pro alternativní hypotézu: $H_{\scriptscriptstyle A}: \rho \neq 0$,

$$t_{1-\alpha/2}(n-2) = t_{0.975}(20-2) = 2,100922037$$

Protože $t \notin \overline{W}_{\alpha}$, tedy hypotéza: $H_0: \rho = 0$ se **zamítá.**

c) **Regresní analýza -** data proložte přímkou: $V \acute{a}ha = \beta_0 + \beta_1 \cdot V \acute{y} \check{s}ka$

Pomocné výpočty:

xi	yi	xi^2	yi^2	xi*yi
164	34,12832	26896	1164,742	5597,044
180	77,23918	32400	5965,891	13903,05
181	76,90206	32761	5913,927	13919,27
192	91,80698	36864	8428,521	17626,94
151	40,85764	22801	1669,347	6169,504
173	75,13385	29929	5645,096	12998,16
191	75,25298	36481	5663,011	14373,32
154	32,43271	23716	1051,881	4994,638
199	82,5216	39601	6809,814	16421,8
153	44,21184	23409	1954,687	6764,412
176	63,445	30976	4025,267	11166,32
167	51,78598	27889	2681,788	8648,259
199	90,55767	39601	8200,691	18020,98
183	65,89153	33489	4341,693	12058,15
172	73,02255	29584	5332,293	12559,88
151	33,52231	22801	1123,745	5061,868
177	65,67131	31329	4312,721	11623,82
154	37,84813	23716	1432,481	5828,613
153	43,55024	23409	1896,623	6663,187
175	50,8951	30625	2590,311	8906,642
3445	1206,677	598277	80204,53	213305,9
172,25	60,33385			

Suma průměr

Tedv:

$$n = 20, \sum_{i=1}^{n} x_i = 3445, \sum_{i=1}^{n} y_i = 1206,677, \sum_{i=1}^{n} x_i^2 = 598277, \sum_{i=1}^{n} y_i^2 = 80204,53, \sum_{i=1}^{n} x_i y_i = 213305,9.$$

$$\det(\boldsymbol{H}) = n \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2 = 97515,$$

1) Bodově odhadněte β_0 , β_1 a rozptyl s^2 .

$$b_{2} = \frac{1}{\det(\boldsymbol{H})} \left(n \sum_{i=1}^{n} x_{i} y_{i} - \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i} \right) = 1,118954309$$

$$b_{1} = \overline{y} - b_{2} \overline{x} = -132,406031$$

$$y = b_{1} + b_{2} x = -132,406031 + 1,118954309 x$$

$$S_{\min}^{*} = \sum_{i=1}^{n} y_{i}^{2} - b_{1} \sum_{i=1}^{n} y_{i} - b_{2} \sum_{i=1}^{n} x_{i} y_{i} = 1296,340216$$

$$s^{2} = \frac{S_{\min}^{*}}{n-2} = \frac{S_{\min}^{*}}{20-2} = 72,01890091$$

2) Na hladině významnosti 0,05 otestujte hypotézy:

$$\begin{split} H: \beta_0 &= -100, \quad H_A: \beta_0 \neq -100, \\ h^{11} &= \frac{\sum_{i=1}^n x_i^2}{\det(H)} = 6,135230477 \\ t &= \frac{b_1 - (-100)}{s\sqrt{h^{11}}} = 0,140554362 \\ t_{1-\alpha/2}(n-2) &= t_{0.975}(20-2) = 2,100922037 \\ t &\in \overline{W} = \left\langle -2,100922037, 2,100922037 \right\rangle, \text{ a tedy } H: \beta_1 = -100 \text{ se } \mathbf{nezamítá} \end{split}$$

$$\begin{split} H: \beta_1 = 1, \quad & H_A: \beta_1 \neq 1, \\ h^{22} = \frac{n}{\det(H)} = 0,000205097 \\ t = \frac{b_2 - 1}{s\sqrt{h^{22}}} = 0,34066954 \\ t_{1-\alpha/2}(n-2) = t_{0,975}(20-2) = 2,100922037 \\ t \in \overline{W} = \left\langle -2,100922037, 2,100922037 \right\rangle, \text{ a tedy } H: \beta_2 = 1 \text{ se nezamítá} \end{split}$$

3) Vytvořte graf bodů spolu s regresní přímkou a pásem spolehlivosti pro individuální hodnotu výšky.

	Výpočet pásu spolehlivosti						
				individuální			
		střední y		\mathbf{y}			
xi	yi	dolni	horni	dolni	horni	h*	
150	35,43712	28,49662	42,37761	16,30461	54,56962	0,151536	

155	41,03189	35,091	46,97278	22,2389	59,82488	0,111029
160	46,62666	41,55934	51,69397	28,09129	65,16203	0,080777
165	52,22143	47,82586	56,617	33,85833	70,58453	0,06078
170	57,8162	53,78828	61,84413	39,53762	76,09478	0,051038
175	63,41097	59,36287	67,45908	45,12794	81,69401	0,051551
180	69,00574	64,5549	73,45659	50,62934	87,38215	0,062319
185	74,60052	69,45342	79,74762	56,04317	93,15786	0,083341
190	80,19529	74,15914	86,23144	61,37197	99,01861	0,114618
195	85,79006	78,74468	92,83544	66,61925	104,9609	0,15615
200	91,38483	83,25467	99,51499	71,78938	110,9803	0,207937

