Vectorization vs Compilation In Query Execution

汇报人: 朱道冰

目录

- **01**. Execution背景
- **02**. Vectorization
- **03**. Compilation
- **04.** Vectorization vs Compilation

(D) (Execution背景)

Execution背景

1.1 Execution所在的位置

Execution背景

1.2 传统的Execution的方案

- 1. Volcano
 - Open-Next-Close
 - 2. Tuple-at-a-time
 - 3. Pull-based model

Execution背景

- 1.5 分享背景
 - 1. 主要针对OLAP负载
 - 2. In-Memory
 - 3. 内存中以列存的形式进行计算

O 2 / Vectorization

- 2.1 为何要Vectorization
- 1. CPU的发展符合摩尔定律
 - 1. 制程工艺的提升
 - 2. Pipeline技术

Figure 1: A Decade of CPU Performance liang

2.1 为何要Vectorization

- 2. Pipeline的问题
 - 1.不同Stage指令之间如果存在数据 依赖不能交换顺序
 - 2.分支预测错误会打断流水线 流水线会对下一条指令进行预读和 操作,如果发现下一条要执行的指 令不是这一条需要回滚这条指令, 这种情况打断了cpu pipeline。
- 3. 只有避免这些情况才能更充分发挥cpu的pipeline能力。

- 2.2 Volcano架构的问题分析
- 1. 执行的查询语句 Tcp-H query 1 特征分析
 - 1. 功能:从lineitem表查询一定时间范围内按 l_returnflag和l_linestatus分组的统计信息。
 - 2. 特征
 - 1. 谓词过滤性很差, 5.9M/6M符合条件
 - 2. Group By的分组很少,只有4组,可以直接使用hash的方式进行aggregation。

```
SELECT
         l_returnflag, l_linestatus,
         sum(l_quantity) AS sum_qty,
         sum(l_extendedprice) AS sum_base_price,
         sum(l_extendedprice * (1 - l_discount))
           AS sum_disc_price,
         sum(l_extendedprice * (1 - l_discount) *
             (1 + l_tax)) AS sum_charge,
         avg(l_quantity) AS avg_qty,
         avg(l_extendedprice) AS avg_price,
         avg(l_discount) AS avg_disc,
         count(*) AS count_order
FROM
         lineitem
WHERE
         l_shipdate <= date '1998-09-02'
GROUP BY l_returnflag, l_linestatus
```

Figure 3: TPC-H Query 1

- 2.2 Volcano架构的问题分析
- 1. Volcano模型不能很好地发挥CPU的性能(MySQL)
 - 1. Tuple-at-a-time 函数调用导致函数调用太多,而且在现实中 往往是虚函数的调用,开销比普通函数的调用更大。 右图中 mysql在执行过程中只有10%的cpu时间在执行coputation。

cum.	excl .	calls	ins.	IPC	function
11.9	11.9	846M	6	0.64	ut_fold_ulint_pair
20.4	8.5	0.15M	27K	0.71	ut_fold_binary
26.2		77M			memcpy
29.3	3.1	23M	64	0.88	Item_sum_sum::update_field
32.3	3.0	6M	247	0.83	row_search_for_mysql
35.2	2.9	17M	79	0.70	Item_sum_avg::update_field
37.8		108M			rec_get_bit_field_1
40.3				0.61	row_sel_store_mysql_rec
42.7	2.4	48M			rec_get_nth_field
45.1	2.4	60			ha_print_info
47.5		5.9M			end_update
49.6					field_conv
51.6		5.9M			Field_float::val_real
53.4		5.9M			Item_field::val
54.9		42M			row_sel_field_store_in_mysql
56.3		36M			buf_frame_align
57.6		17M			Item_func_mul::val
59.0		25M			pthread_mutex_unlock
60.2		206M			hash_get_nth_cell
61.4		25M		0.65	mutex_test_and_set
62.4		102M			rec_get_1byte_offs_flag
63.4		53M			rec_1_get_field_start_offs
64.3		42M			rec_get_nth_field_extern_bit
65.3		11M			Item_func_minus::val
65.8	0.5	5.9M	38	0.80	Item_func_plus::val

Table 2: MySQL gprof trace of TPC-H Q1: +,-,*,SUM,AVG takes <10%, low IPC of 0.7

- 2.2 Volcano架构的问题分析
- 1. Volcano模型不能很好地发挥CPU的性能(MySQL)
 - 2. 不能利用loop pipeline优化
 - 1. Item_func_plus::val
 - 1. Ins 38
 - 2. IPC 0.8 (instructions per cycle)
 - 3. Total cycle: 38/0.8=49=20(操作) + 29(函数调用)

operation +(double src1, double src2)

LOAD src1, reg1

LOAD src2,reg2

ADD reg1,reg2,reg3

STOR dst,reg3

- 3. tuple不能常驻寄存器和cache,需要**物化**到内存中 next函数递归调用,下层节点给上层节点返回数据时需要**物化** 到内存再传给调用的父亲operator
- 4. tuple-at-a-time 不好利用SIMD指令

2.2 Volcano架构的问题分析 总结

- 1. 缺点
 - 1. 函数调用开销大
 - 2. Pipeline不友好
 - 1. Tuple-at-a-time 不好进行loop pipeline优化
 - 2. 虚函数打断pipeline
 - 3. Tuple不能常驻寄存器和内存
 - 4. SIMD不友好,不能利用现代CPU的SIMD特性

DSC (Lenks

- 2.3 column-at-a-time MonetDB/MIL
- 1. Column-at-a-time向量化的极端
 - 1. 向量化后计算的操作时间栈了99%。
 - 2. SF=0.001 TPC-H的表很小,所有数据能放入 cpu cache里面,最高的处理带宽高达1.5GB/s。
 - 3. SF=1时,数据不能全部放入cpu cache里面, 执行速度受限于memory 带宽,最多500MB/s。
 - 4. 这种模型需要在各种计算之间对全列数据做物化,虽然避免了大部分的interpret的成本,但也在执行中引入了大量的memory IO, 速度严重受限于memory IO bandwidth, 从而影响了CPU的执行效率。

SF=1	SF=	SF = 0.001		res	(BW = MB/s)
ms BV	us	$_{\mathrm{BW}}$	$_{\mathrm{MB}}$	size	MIL statement
127 352	150	305	45	5.9M	$s0 := select(l_shipdate).mark$
134 505	113	608	68	5.9M	$s1 := join(s0,l_returnflag)$
134 506	113	608	68	5.9M	$s2 := join(s0,l_linestatus)$
235 483	129	887			$s3 := join(s0,l_extprice)$
233 488	18	881	114	5.9M	$s4 := join(s0,l_discount)$
232 489	127	901	114	5.9M	$s5 := join(s0,l_tax)$
134 507	11	660			$s6 := join(s0,l_quantity)$
290 155	11	141			s7 := group(s1)
329 136	368	124		5.9M	s8 := group(s7,s2)
0 0		0	0		s9 := unique(s8.mirror)
206 440	11	1527	91		r0 := [+](1.0,s5)
210 432		1796	91		r1 := [-](1.0,s4)
274 498		1655	137		r2 := [*](s3,r1)
274 499		1653	137		r3 := [*](s12,r0)
165 271		378	45		$r4 := {sum}(r3,s8,s9)$
165 271		366	45	1	$r5 := {sum}(r2,s8,s9)$
163 275	11	357	45		$r6 := {sum}(s3, s8, s9)$
163 275	11	357	45	1	$r7 := {sum}(s4, s8, s9)$
144 151		214	22		$r8 := {sum}(s6,s8,s9)$
112 196	145	157	22	4	$r9 := \{count\}(s7, s8, s9)$
3724 2327		7	TO'	ΓAL	

Table 3: MonetDB/MIL trace of TPC-H Query 1

2.4 MonetDB/X100

对tuple-at-a-time和column-at-a-time的折衷

- 1. Cache
 - 1. 利用Volcano style的vectorized执行, vector是一个足够小的基本处理单元,可以 fit in cache中,减少与memory的交互,提高效率
 - 2. 函数调用次数减少, load/store开销也被均摊
 - 3. 需要实现制定type的vector primitives
 - 1. 通过模板的方式实现

Figure 6: Execution scheme of a simplified TPC-H Query 1 in MonetDB/X100

2.4 MonetDB/X100

- 1. CPU
 - 1. 由于每个vector是针对一列的切分chunk, vectorized primitives符合loop-pipeling 的优化条件,可以重复利用CPU的并行流水线。
 - 2. 针对复杂表达式,通过对vectorized primitives做组合,进一步提高执行效率。

```
load -> exec1 -> store
load -> exec1 -> reg -> exec2 -> store
```

```
map_plus_double_col_double_col(int n,
        double*__restrict__ res,
        double*__restrict__ col1, double*__restrict__ col2,
        int*__restrict__ sel)
        if (sel) {
         for(int j=0;j<n; j++) {
           int i = sel[j];
           res[i] = col1[i] + col2[i];
        } else {
          for(int i=0;i<n; i++)
           res[i] = col1[i] + col2[i];
      } }
/(square(-(double*, double*)), double*)
```


2.5 MonetDB/X100性能

- 1. Primitives需要的时间周期比较少->loop pipeline
- 2. Vector能放入cpu cache内,所以计算带宽非常高,最高达到7.5GB/s(同样的操作在MIL只有500MB/s)

input	total	time	$_{\mathrm{BW}}$	avo	X100 primitive
count	MB			cycles	_
		` /			
6M	30		3521		map_fetch_uchr_col_flt_col
6M	30		3588	I	map_fetch_uchr_col_flt_col
6M	30	8145	3683	1.9	map_fetch_uchr_col_flt_col
6M	35.5	13307	2667	3.0	select_lt_usht_col_usht_val
5.9M	47	10039	4681	2.3	map_sub_flt_val_flt_col
5.9M	71	9385	7565	2.2	map_mul_flt_col_flt_col
5.9M	71	9248	7677	2.1	map_mul_flt_col_flt_col
5.9M	47	10254	4583	2.4	map_add_flt_val_flt_col
5.9M	35.5	13052	2719	3.0	map_uidx_uchr_col
5.9M	53	14712	3602		map_directgrp_uidx_col_uchr_col
5.9M	71	28058	2530	6.5	aggr_sum_flt_col_uidx_col
5.9M	71	28598	2482	6.6	aggr_sum_flt_col_uidx_col
5.9M	71	27243	2606	6.3	aggr_sum_flt_col_uidx_col
5.9M	71	26603	2668	6.1	aggr_sum_flt_col_uidx_col
5.9M	71	27404	2590	6.3	aggr_sum_flt_col_uidx_col
5.9M	47	18738	2508	4.3	aggr_count_uidx_col
					X100 operator
0		3978			Scan
6M		10970			Fetch1Join(ENUM)
6M		10712			Fetch1Join(ENUM)
6M		10656			Fetch1Join(ENUM)
6M		15302			Select
5.9M		236443			Aggr(DIRECT)

Table 5: MonetDB/X100 performance trace of TPC-H Query 1 (Itanium2, SF=1)

2.5 MonetDB/X100性能

- 1. 与vector size的关系
 - 1. 1 (volcano) -> L1+L2 cache size大小,执行时间减少。
 - 2. L1+L2->L3 执行时间增大, L3速度比L12慢。
 - 3. 超过L3cache大小后,将所有中间结果物化 到内存,性能和MIL方案相似。

2.1 SIMD

- 1. 指单指令多数据流技术,可用一组指令对多组数据通进行并行操作。SIMD指令可以在一个控制器上控制同时多个平行的处理微元,一次指令运算执行多个数据流,这样在很多时候可以提高程序的运算速度。
- 2. 需要特殊的cpu硬件支持,右图中的bit即为需要的寄存器。
- 3. AVX512 就可以同时处理8个int64的数据。

2.2 基本操作指令

- 1. Selective load
 - 1. 根据mask从Memory->Vector(SIMD寄存器)
- 2. Selective store
 - 1. 根据mask从Vector(SIMD寄存器)->Memory

Figure 2: Selective load operation

Figure 1: Selective store operation

2.2 基本操作指令

- 1. Gather operation
 - 1. 根据index vector从Memory->Vector(SIMD寄存器)
- 2. Scatter operation
 - 1. 根据index vector从vector(SIMD)->Memory

Figure 3: Gather operation

Figure 4: Scatter operation

2.3 数据库操作

1. SELECTION SCANS Scalar(标量)

Algorithm 1 Selection Scan (Scalar - Branching)

```
\begin{array}{l} j \leftarrow 0 & > \textit{output index} \\ \textbf{for } i \leftarrow 0 \textbf{ to } |T_{keys\_in}| - 1 \textbf{ do} \\ k \leftarrow T_{keys\_in}[i] & > \textit{access key columns} \\ \textbf{if } (k \geq k_{lower}) \&\& \ (k \leq k_{upper}) \textbf{ then } > \textit{short circuit and} \\ T_{payloads\_out}[j] \leftarrow T_{payloads\_in}[i] & > \textit{copy all columns} \\ T_{keys\_out}[j] \leftarrow k \\ j \leftarrow j + 1 \\ \textbf{end if} \\ \textbf{end for} \end{array}
```

Algorithm 2 Selection Scan (Scalar - Branchless)

```
\begin{array}{ll} j \leftarrow 0 & > output \ index \\ \textbf{for} \ i \leftarrow 0 \ \textbf{to} \ | T_{keys\_in}| - 1 \ \textbf{do} \\ k \leftarrow T_{keys\_in}[i] & > copy \ all \ columns \\ T_{payloads\_out}[j] \leftarrow T_{payloads\_in}[i] \\ T_{keys\_out}[j] \leftarrow k \\ m \leftarrow (k \geq k_{lower} \ ? \ 1 : \ 0) \ \& \ (k \leq k_{upper} \ ? \ 1 : \ 0) \\ j \leftarrow j + m & > \textit{if-then-else expressions use conditional } \dots \\ \textbf{end for} & > \dots \ \textit{flags to update the index without branching} \end{array}
```


2.3 数据库操作

1. SELECTION SCANS Vector(向量)

Algorithm 3 Selection Scan (Vector)

```
i, j, l \leftarrow 0
                                     ⊳ input, output, and buffer indexes
\vec{r} \leftarrow \{0, 1, 2, 3, ..., W - 1\}
                                                   ▷ input indexes in vector
for i \leftarrow 0 to |T_{keys\_in}| - 1 step W do
                                                           \triangleright # of vector lanes
    \vec{k} \leftarrow T_{keys\_in}[i]
                                            ▶ load vectors of key columns
     m \leftarrow (\vec{k} \geq k_{lower}) \& (\vec{k} \leq k_{upper})  > predicates to mask
     if m \neq \text{false then}
                                                             ▷ optional branch
         B[l] \leftarrow_m \vec{r}
                                           ▷ selectively store indexes
         l \leftarrow l + |m|
                                                        \triangleright update buffer index
         if l > |B| - W then
                                                                   ▷ flush buffer
              for b \leftarrow 0 to |B| - W step W do
                  \vec{p} \leftarrow B[b]
                                                          \triangleright load input indexes
                  \vec{k} \leftarrow T_{keys\_in}[\vec{p}]
                                                          ▷ dereference values
                   \vec{v} \leftarrow T_{payloads\_in}[\vec{p}]
                  T_{keus\_out}[b+j] \leftarrow \overline{k}
                                                    ▷ flush to output with ...
                   T_{payloads\_out}[b+j] \leftarrow \vec{v}
                                                        ▷ ... streaming stores
              end for
              \vec{p} \leftarrow B[|B| - W]
                                                        ▷ move overflow ...
              B[0] \leftarrow \vec{p}
                                                         ▷ ... indexes to start
              j \leftarrow j + |B| - W
                                                       \triangleright update output index
              l \leftarrow l - |B| + W
                                                        \triangleright update buffer index
         end if
     end if
                                                        \triangleright update index vector
    \vec{r} \leftarrow \vec{r} + W
end for
                                           ▷ flush last items after the loop
```

- <- 读取对应column W个值
- <- 适用SIMD compare并生成match mask
- <-适用selectively store把符合条件的index存储到结果Buffer里面
- <-Flush Buffer 这边Buffer不是重点

<-下W个数据

2.3 数据库操作

1. SELECTION SCANS Vector(向量) example

2.3 数据库操作

1. Linear Probing Hash - Probe (探测) Scalar

```
Algorithm 4 Linear Probing - Probe (Scalar)
  j \leftarrow 0
                                                               \triangleright output index
  for i \leftarrow 0 to |S_{keys}| - 1 do \triangleright outer (probing) relation <-对每个要probe的seek key
      k \leftarrow S_{keys}[i]
                                                                                     <-取用于hash的key和负载列
      v \leftarrow S_{payloads}[i]
       h \leftarrow (k \cdot f) \times \uparrow |T| \quad \triangleright \text{"} \times \uparrow \text{"} : multiply & keep upper half} \quad <- 计算hash值
                                               ▷ until empty bucket <-开放寻址hash
       while T_{keys}[h] \neq k_{empty} do
           if k = T_{keys}[h] then
               RS_{R\_payloads}[j] \leftarrow T_{payloads}[h]
                                                            \triangleright inner payloads
               RS_{S\_payloads}[j] \leftarrow v
                                                             \triangleright outer payloads
               RS_{keys}[j] \leftarrow k
                                                                    \triangleright join keys
               j \leftarrow j + 1
           end if
                                                                 \triangleright next bucket
           h \leftarrow h + 1
                                                                                     <-冲突的话下一个位置+1
           if h = |T| then
                                                        \triangleright reset if last bucket
               h \leftarrow 0
           end if
       end while
  end for
```


2.3 数据库操作 1. Linear Probing Hash - Probe (探测) Vector

Algorithm 5 Linear Probing - Probe (Vector) $i, j \leftarrow 0$ \triangleright input & output indexes (scalar register) $\vec{o} \leftarrow 0$ ▷ linear probing offsets (vector register) $m \leftarrow \text{true}$ \triangleright boolean vector register while $i + W \leq |S_{keys_in}|$ do $\triangleright W$: # of vector lanes $\vec{k} \leftarrow_m S_{keys}[i]$ $\vec{v} \leftarrow_m S_{payloads}[i]$ $i \leftarrow i + |m|$ $\vec{h} \leftarrow (\vec{k} \cdot f) \times \uparrow |T|$ ightharpoonup add offsets & fix overflows $ec{h} \leftarrow ec{h} + ec{o}$ $\vec{h} \leftarrow (\vec{h} < |T|)$? $\vec{h} : (\vec{h} - |T|) \triangleright \text{"m ? } \vec{x} : \vec{y} \text{": vector blend}$ $k_T \leftarrow T_{keys}[h]$ \triangleright gather buckets $\vec{v}_T \leftarrow T_{payloads}[\vec{h}]$ $m \leftarrow \vec{k}_T = \vec{k}$ $RS_{keys}[j] \leftarrow_m \vec{k}$ $RS_{S_payloads}[j] \leftarrow_m \vec{v}$ $RS_{R_payloads}[j] \leftarrow_m \vec{v}_T$ $j \leftarrow j + |m|$ $m \leftarrow k_T = k_{empty}$ $\vec{o} \leftarrow m ? 0 : (\vec{o} + 1)$ *⊳* increment or reset offsets end while

- ▷ selectively load input tuples <-根据mask(一开始全为true) selectively load—批要probe 的keys
 - ▷ multiplicative hashing <- SIMD 计算hash函数
 - <- 根据hash地址, 从hash表中gather buckets
 - <- 判断读取的key是否相等,如果相等对应位置1
- ▷ selectively store matching tuples <- 使用selectively store把值存储到RS结果集里面

▷ discard finished tuples <-如过读取的K是empty,则结束搜索,可以读取新的 ncrement or reset offsets key进来(selectively load),如果非空且不相同, _________ 保持key不动,通过offset开放检测下一个位置

2.3 数据库操作

1. Linear Probing Hash - Probe (探测) Scalar Example

2.3 数据库操作

1. Linear Probing Hash - Probe (探测) Vector Example

2.3 数据库操作

- 1. Linear Probing Hash Probe (探测) Vector Example
 - 1.注意:下次读取新批次key时会把SIMD的比较结果作为读取mask,如果为0会+1,探测下一个位置;如果为1的说明已经找到,为了提高处理速率可以读取其他需要探测(probe)的keys到SIMD寄存器中用于下一轮探测。

2.3 数据库操作

- 1. Linear Probing Hash Probe (探测) Vector Example
 - 1.注意:下次读取新批次key时会把SIMD的比较结果作为读取mask,如果为0会+1,探测下一个位置;如果为1的说明已经找到,为了提高处理速率可以读取其他需要探测(probe)的keys到SIMD寄存器中用于下一轮探测。

2.3 数据库操作

1. Linear Probing Hash -Build Scalar Example

```
Algorithm 6 Linear Probing - Build (Scalar)
                                                ▷ inner (building) relation
  for i \leftarrow 0 to |R_{keys}| - 1 do
       k \leftarrow R_{keys}[i]
       h \leftarrow (k \cdot f) \times \uparrow |T|
                                   \triangleright multiplicative hashing
       while T_{keys}[h] \neq k_{empty} do
                                                        □ until empty bucket
           h \leftarrow h + 1
                                                                  \triangleright next bucket
           if h = |T| then
                h \leftarrow 0
                                                                  \triangleright reset if last
           end if
       end while
       T_{keys}[h] \leftarrow k
                                                           ▷ set empty bucket
       T_{payloads}[h] \leftarrow R_{payloads}[i]
   end for
```

end while

2.3 数据库操作 1. Linear Probing Hash - Build Vector

Algorithm 7 Linear Probing - Build (Vector)

 $\vec{l} \leftarrow \{1, 2, 3, ..., W\}$ \triangleright any vector with unique values per lane $i, j \leftarrow 0$, $m \leftarrow \text{true}$ $\vec{o} \leftarrow 0$ \triangleright linear probing offset while $i + W \leq |R_{keys}|$ do $\vec{k} \leftarrow_m R_{keys}[i]$ ▷ selectively load input tuples $\vec{v} \leftarrow_m R_{payloads}[i]$ $i \leftarrow i + |m|$ $\vec{h} \leftarrow \vec{o} + (k \cdot f) \times \uparrow |T|$ \triangleright multiplicative hashing $\vec{h} \leftarrow (\vec{h} < |T|) ? \vec{h} : (\vec{h} - |T|)$ \triangleright fix overflows $\vec{k}_T \leftarrow T_{keys}[\vec{h}]$ \triangleright gather buckets $m \leftarrow \vec{k}_T = k_{empty}$ *⊳* find empty buckets $T[\vec{h}] \leftarrow_m \vec{l}$ \triangleright detect conflicts $\vec{l}_{back} \leftarrow_m T_{keys}[\vec{h}]$ $m \leftarrow m \& (\vec{l} = \vec{l}_{back})$ $T_{keys}[\vec{h}] \leftarrow_m \vec{k}$ \triangleright scatter to buckets ... $T_{payloads}[\vec{h}] \leftarrow_m \vec{v}$ $\triangleright \dots if not conflicting$ $\vec{o} \leftarrow m ? 0 : (\vec{o} + 1)$ *increment or reset offsets increment or reset offsets*

<- 使用selectively store把值存储到RS结果集里面

<-根据m selectively load—批要probe 的keys

- <- SIMD 计算hash函数
- <- 根据hash地址, 从hash表中gather buckets
- <-如过读取的K是empty,则不冲突,可以直接放置,下次selectively load会读取新的值;如果非空说明冲突了则key保持不动,需要通过offset开放检测下一个位置。

 $H[i] \leftarrow \text{sum_across}(\vec{c})$

end for

2.3 数据库操作

1. Radix Partitioning - Histogram

Algorithm 11 Radix Partitioning - Histogram

rigorium 11 maan man	tioning - mstogram	
1	▷ initialize replicated histograms	<- 使用selectively store把值存储到RS结果集里面
for $i \leftarrow 0$ to $ T_{keys_in} - 1$ s	step W do	
$\vec{k} \leftarrow T_{keys_in}[i]$		<- 读取W个key
$\vec{h} \leftarrow (\vec{k} < \leq b_L) >> b_R$	ightharpoonup radix function	<- SIMD 计算radix函数值
$\vec{h} \leftarrow \vec{o} + (\vec{h} \cdot \vec{W})$	\triangleright index for multiple histograms	
$\vec{c} \leftarrow H_{partial}[\vec{h}]$	\triangleright increment W counts	<- 增加对应位置的值
$H_{partial}[\vec{h}] \leftarrow \vec{c} + 1$		
end for		
for $i \leftarrow 0$ to $P-1$ do		<- 累加
$\vec{c} \leftarrow H_{partial}[i \cdot W]$	\triangleright load W counts of partition	

 \triangleright reduce into single result

2.3 数据库操作

1. Radix Partitioning - Histogram

2.3 数据库操作

- 1. 论文还介绍了sort和hash join的向量化实现思路。
- 2. 论文附录提供了这些数据库操作更详细的代码。
- 3. 可以结合intel的指令手册进行学习。
 software.intel.com/sites/landingpage/In
 trinsicsGuide/
- 4. _mm<bit_width>_<name>_<data_type>

C. SELECTIVE LOAD & STORE

D. SELECTION SCANS

```
for (i = j = k = 0; i < tuples; i += 16) {
  /* load key column and evaluate predicates */
  key = _mm512\_load\_epi32(\&keys[i]);
  m = _mm512_cmpge_epi32_mask(key, mask_lower);
  m = _mm512_mask_cmple_epi32_mask(k, key, mask_upper);
 if (!_mm512_kortestz(m, m)) {
                                 // jkzd
   /* selectively store qualifying tuple indexes */
    _mm512_mask_packstore_epi32(&rids_buf[k], m, rid);
    k += _mm_countbits_64(_mm512_mask2int(m)); }
    if (k > buf_size - 16) {
      /* flush the buffer */
      for (b = 0; b != buf_size - 16; b += 16) {
        ptr = _mm512_load_epi32(&rids_buf[b]);
        /* dereference column values and stream */
        key_f = _mm512_i32gather_ps(ptr, keys, 4);
        pay_f = _mm512_i32gather_ps(ptr, pays, 4);
        _mm512_storenrngo_ps(&keys_out[b + j], key_f);
        _mm512_storenrngo_ps(&pays_out[b + j], pay_f);}
      /* move extra items to the start of the buffer */
      ptr = _mm512_load_epi32(&rids_buf[b]);
      _mm512_store_epi32(&rids_buf[0], ptr);
      j += buf_size - 16;
      k -= buf_size - 16; } }
  rid = _mm512_add_epi32(rid, mask_16); }
```

Compilation

3.1 手写代码

- 1. MonetDB性能基准(Baseline)
 - 1. 手写的UDF(user define function)
 - 2. Restrict关键字能够利用上loop pipeline
- 2. Hand-written 是 task specific
 - 1. 代码更加紧凑,往往是几个函数就把所有操作完成了,减少了函数调用。
 - 2. 代码具有更好的data locality, 将把一个tuple读取到cpu cache后, 会尽量把所有能做的computaion计算完成, 尽量减少与memory的交互, 以及cache misses。

```
static void tpch_query1(int n, int hi_date,
  unsigned char*__restrict__ p_returnflag,
  unsigned char*__restrict__ p_linestatus,
  double*__restrict__
                             p_quantity,
  double*__restrict__
                             p_extendedprice,
  double*__restrict__
                             p_discount,
  double*__restrict__
                             p_tax,
  int*__restrict__
                             p_shipdate,
  aggr_t1*__restrict__
                             hashtab)
 for(int i=0; i<n; i++) {
  if (p_shipdate[i] <= hi_date) {</pre>
    aggr_t1 *entry = hashtab +
      (p_returnflag[i]<<8) + p_linestatus[i];
    double discount = p_discount[i];
    double extprice = p_extendedprice[i];
    entry->count++;
    entry->sum_qty += p_quantity[i];
    entry->sum_disc += discount;
    entry->sum_base_price += extprice;
    entry->sum_disc_price += (extprice *= (1-discount));
    entry->sum_charge += extprice*(1-p_tax[i]);
}}}
```


- 3.2 为何需要Compilation
- 1. 向量化达不到hand-written代码的性能
- 2. Compilation
 - 1. 将执行计划转换成hand-written一样紧凑的代码
- 3. Aka Code Generation

Figure 1: Hand-written code vs. execution engines for TPC-H Query 1 (Figure 3 of [16])

3.2 Hyper Basic Compilation 重要概念

- 1. Pipeline
 - 1. Pipeline内tuple能一直在寄存器内
- 2. Pipeline breaker
 - 1. 需要将tuple从寄存器和cache物化到内存
 - 2. 如hash join, hash aggregation
- 3. Data-centric
 - 1.以数据为驱动,尽量提高data locality,减少cache misses
- 4. Pull -> Push
 - 底层节点生成数据并物化到内存后,再让上层节点进行 处理,数据往上层节点推。

Figure 2: Example Query

Figure 3: Example Execution Plan for Figure 2

3.3 Code Generation Example

1. example


```
initialize memory of \bowtie_{a=b}, \bowtie_{c=z}, and \Gamma_z

for each tuple t in R_1

if t.x = 7

materialize t in hash table of \bowtie_{a=b}

for each tuple t in R_2

if t.y = 3

aggregate t in hash table of \Gamma_z

for each tuple t in \Gamma_z

materialize t in hash table of \bowtie_{z=c}

for each tuple t_3 in R_3

for each match t_2 in \bowtie_{z=c}[t_3.c]

for each match t_1 in \bowtie_{a=b}[t_3.b]

output t_1 \circ t_2 \circ t_3
```


3.4 如何Compilation

- 1. Abstraction
 - produce()
 - consume(attributes, source)
- 2. 概念上的接口,主要用于code gen

with pipeline boundaries

```
join.left.produce->
filter.produce->
scan.produce->
filter.consumer->
join.consumer
```

```
⋈.produce
                   ⋈.left.produce; ⋈.right.produce;
\bowtie.consume(a,s)
                   if (s==\bowtie.left)
                    print "materialize tuple in hash table";
                   else
                    print "for each match in hashtable"
                       +a.joinattr+"]";
                    ⋈.parent.consume(a+new attributes)
\sigma.produce
                   \sigma.input.produce
\sigma.consume(a,s)
                   print "if" +\sigma.condition;
                    \sigma.parent.consume(attr,\sigma)
scan.produce
                   print "for each tuple in relation"
                   scan.parent.consume(attributes,scan)
```

Figure 5: A simple translation scheme to illustrate the *produce/consume* interaction

3.5 如何Compilation

1. 深度优先遍历

```
⋈.left.produce; ⋈.right.produce;
⋈.produce
\bowtie.consume(a,s)
                   if (s==\bowtie.left)
                    print "materialize tuple in hash table";
                    else
                    print "for each match in hashtable"
                       +a.joinattr+"]";
                    ⋈.parent.consume(a+new attributes)
\sigma.produce
                   \sigma.input.produce
\sigma.consume(a,s)
                   print "if" +\sigma.condition;
                    \sigma.parent.consume(attr,\sigma)
                    print "for each tuple in relation"
scan.produce
                   scan.parent.consume(attributes,scan)
```

Figure 5: A simple translation scheme to illustrate the produce/consume interaction


```
initialize memory of \bowtie_{a=b}, \bowtie_{c=z}, and \Gamma_z
for each tuple t in R_1
   if t.x = 7
      materialize t in hash table of \bowtie_{a=b}
for each tuple t in R_2
   if t.y = 3
      aggregate t in hash table of \Gamma_z
for each tuple t in \Gamma_z
   materialize t in hash table of \bowtie_{z=c}
for each tuple t_3 in R_3
   for each match t_2 in \bowtie_{z=c}[t_3.c]
      for each match t_1 in \bowtie_{a=b}[t_3.b]
         output t_1 \circ t_2 \circ t_3
```

Figure 4: Compiled query for Figure 3

DSG Lab

3.6 Hyper LLVM Compilation

- 1. 为何不用C++
 - 1. C++编译器转换为machine code比较慢
 - 2. C++不能对生成的machine code完全控制
- 2. 使用了更低层次的llvm
 - 1. JIT 运行时编译执行技术
 - 2. 只需要在**关键路径上**的多次调用的函数使用 llvm来实现,通过llvm将原来的c++代码串联起来。

Figure 6: Interaction of LLVM and C++

3.7与MonetDB对比的效果

- 1. data-centric,模糊了operator之间的界限,生成的代码更加紧凑,分支更少,指令数更少(pipeline内的操作一起进行了, selection -> build hash table)。
- 2. Cache 命中率更高,一个tuple可以把多个计算完成,直到下一个pipeline breaker点。

	Q1		Q2		Q3		Q4		Q5	
	LLVM	MonetDB								
branches	19,765,048	144,557,672	37,409,113	114,584,910	14,362,660	127,944,656	32,243,391	408,891,838	11,427,746	333,536,532
mispredicts	188,260	456,078	6,581,223	3,891,827	696,839	1,884,185	1,182,202	6,577,871	639	[6,726,700]
I1 misses	2,793	187,471	1,778	146,305	791	386,561	508	290,894	490	2,061,837
D1 misses	1,764,937	7,545,432	10,068,857	6,610,366	2,341,531	7,557,629	3,480,437	20,981,731	776,417	8,573,962
L2d misses	1,689,163	7,341,140	7,539,400	4,012,969	1,420,628	5,947,845	3,424,857	17,072,319	776,229	7,552,794
I refs	132 mil	1,184 mil	313 mil	760 mil	208 mil	944 mil	282 mil	3,140 mil	159 mil	2,089 mil

Table 3: Branching and Cache Locality

- 3.1 Compilation Time 很重要
- 1. 对OLTP这种本身比较小的query来说 compilation time 可能比本身的执行时间还大, compilation不太适合。
- 2. 执行只需1ms, llvm compilation 54ms

```
SELECT c.oid, c.relname, n.nspname
FROM pg_inherits i
JOIN pg_class c ON c.oid = i.inhparent
JOIN pg_namespace n ON n.oid = c.relnamespace
WHERE i.inhrelid = 16490 ORDER BY inhseqno
```


Fig. 1. Architecture of compilation-based query engines.

3.1 Compilation Time 很重要

- 1. Compilation的时间越长,生成的代码质量越高。
 - 1. LLVM IR
 - 2. LLVM bytecode 基于VM (类似于 JVM) 的bytecode 解释虚拟机
 - 3. LLVM unoptimized
 - 4. LLVM optimized
 - 5. handwritten

Fig. 2. Single-threaded query compilation and execution time for different execution modes on TPC-H query 1 on scale factor 1.

3.2 Adaptive Overview

- 1. 基于LLVM bytecode解析执行(高效),默认模式。
- 2. 基于LLVM IR做无优化的编译,生成machine code
- 3. 基于LLVM IR做有优化的编译,生成更高效的 machine code

Fig. 3. Execution modes and their compilation times.

3.3 如何方便切换

1. 对pipeline进行Morsel-driven细分调度

Fig. 4. Illustration of query plan translation to pseudo code. *queryStart* is the main function. Each of the three query pipelines is translated into a *worker* function. The lower left corner shows that the work of each pipeline is split into small morsels that are dynamically scheduled onto threads.

3.3 如何方便切换

- 2. 函数封装方便模式切换
- 1. 使用handle.fn对具体的实现方式进行封装,当需要切换模式时,只要切换handleB指向的函数指针即可。

Fig. 5. Switching on-the-fly from interpretation to execution. The dispatch code is run for every morsel.

3.3 如何方便切换

3. 切换规则

1. 解释mode:

r0: 所有进程的平均处理速度

to: w个进程处理剩余n个tuple需要

的开销

2. llvm unopt:

r1: llvm unopt执行速度

c1: llvm unopt的编译时间

t1: 编译时间 + 扣除编译期间解释

执行后的剩余tuple数量,被w个

进程处理所需要的时间

3. 切换到预期开销最小的模式

```
// f: worker function
// n: remaining tuples
// w: active worker threads
extrapolatePipelineDurations(f, n, w):
  r0 = avg(rate in threadRates)
  r1 = r0 * speedup1(f); c1 = ctime1(f)
  r2 = r0 * speedup2(f); c2 = ctime2(f)
 t0 = n / r0 / w
 t1 = c1 + max(n - (w-1)*r0*c1, 0) / r1 / w
 t2 = c2 + max(n - (w-1)*r0*c2, 0) / r2 / w
  switch min(t0, t1, t2):
    case t0: return DoNothing
    case t1: return Unoptimized
    case t2: return Optimized
```

Fig. 7. Extrapolation of the pipeline durations.

3.4 效果

- 1.4个进程
- 2. Bytecode模式:
 - 1.全部使用bytecode,就是volcano模式,耗时比较长
- 3. Llvm unopt
 - 1. 编译期间其他thread需要空等
- 4. Adaptive
 - 1. 编译期间其他thread可以使用 bytecode解释执行
 - 2. 编译完成后全部切换成编译执行
 - 3. 效果最好

Fig. 14. Execution trace of TPC-H query 11 on scale factor 1 using 4 threads. The optimized mode is not shown, as its compilation takes very long (103ms).

- 4.1 Apples-to-apples 的比较
 - 1. Pull-vectorizaton:

Vectorwize(前身是MonetDB) -> Tectorwize

2. Push-Compilation:

Hyper-> Typer

3. 不同的data type等各自优化点,会影响比较结果。

Figure 13: **Design space between vectorization and compilation** – *hybrid models integrate the advantages of the other approach.*

- 4.2 Single-Threaded Performance
 - 1. 选择对TPC-H的5条SQL进行对比分析
 - 2. Q1,Q18 计算为主 typer 性能高更好
 - 3. Q3, Q9 有hash join, hash build 是 memory bound操作, 需要从memory读取数据 Tectowice表现更好

Q1: fixed-point arithmetic, (4 groups) aggregation

Q6: selective filters

Q3: join (build: 147K entries, probe: 3.2M entries)

Q9: join (build: 320K entries, probe: 1.5M entries)

Q18: high-cardinality aggregation (1.5M groups)

Figure 3: **Performance** – TPC-HSF=1, 1 thread

- 4.2 Single-Threaded Performance (Q1,Q18)
 - 1. 以数学操作和chip in cache aggregation为主
 - 2. Tectorwise < Typer</pre>
 - 3. Instructions
 - 1. Typer模糊了operator之间的界限,指令数更少。
 - 4. L1 cach misses
 - 1. Tectorwize有很多Load和Store的开销,一批量(这个批量刚好放在cache)计算好一个expresion之后,需要通过内存传给父亲节点,导致cache misses多。如a+1+b: a+1物化到内存,再把a+1 load到寄存器,再计算a+1+b。

Table 1: **CPU Counters** – TPC-H SF=1, 1 thread, normalized by number of tuples processed in that query

		cycles	IPC	instr.	L1 miss	LLC miss	branch miss
Q1	Typer	34	2.0	68	0.6	0.57	0.01
Q1	TW	59	2.8	162	2.0	0.57	0.03
Q6	Typer	11	1.8	20	0.3	0.35	0.06
Q6	TW	11	1.4	15	0.2	0.29	0.01
Q3	Typer	25	0.8	21	0.5	0.16	0.27
Q3	TW	24	1.8	42	0.9	0.16	0.08
Q9	Typer	74	0.6	42	1.7	0.46	0.34
Q9	TW	56	1.3	76	2.1	0.47	0.39
Q18	Typer	30	1.6	46	0.8	0.19	0.16
Q18	TW	48	2.1	102	1.9	0.18	0.37

data size by a factor of 10, causes 0.5 additional cache misses per tuple").

Q1: fixed-point arithmetic, (4 groups) aggregation Q18: high-cardinality aggregation (1.5M groups)

- 4.2 Single-Threaded Performance (Q3,Q9)
 - 1. 以memory-bound的hash join为主
 - 2. Tectorwise > Typer
 - 3. Typer的Memory stall数量比Tectorwise多

Figure 4: **Memory Stalls** – *TPC-H*, 1 thread

Q3: join (build: 147K entries, probe: 3.2M entries) Q9: join (build: 320K entries, probe: 1.5M entries)

DSGLade

- 4.2 Single-Threaded Performance (Q3,Q9)
 - 1. Typer 编译执行的 hash join
 - 2. cpu对于上一个if的判断是匹配的,然后cpu可能会预测下一个if也是true会把对应的指令和数据都预加载到内存里面,如果分支预测失败的话,会有rollback的开销,并打断pipeline。

- 4.2 Single-Threaded Performance (Q3,Q9)
- 1. Tectorwise 向量化执行的 hash join
- 2. Vector大小内tuple的 probeHash_,
 findCandidates_, compareKeys_因为没有数据依赖可以乱序执行形成pipeline。
- 3.编译执行的If操作被转换成了SIMD的向量化执行,避免了分支预测。


```
class HashJoin
  Primitives probeHash_, compareKeys_, buildGather_;
int HashJoin::next()
  ... // consume build side and create hash table
  int n = probe->next()// get tuples from probe side
  // *Interpretation*: compute hashes
  vec<int> hashes = probeHash_.eval(n)
  // find hash candidate matches for hashes
  vec<Entry*> candidates = ht.findCandidates(hashes)
  // matches: int references a position in hashes
  vec<Entry*, int> matches = {}
  // check candidates to find matches
  while(candidates.size() > 0)
    // *Interpretation*
    vec<bool> isEqual = compareKeys_.eval(n, candidates)
    hits, candidates = extractHits(isEqual, candidates)
    matches += hits
  // *Interpretation*: gather from hash table into
  // buffers for next operator
  buildGather_.eval(matches)
  return matches.size()
          (b) Vectorized code that performs a hash join
```


4.2 Single-Threaded Performance

1. 总结

- 1. Typer 适合 computation 为主的 queries。
- 2. Tectorwise 的cache misses会更少,对memory-bound的queries 比如要access大的hash tablejoin效果会比更好。

4.3 其他方面

1. SIMD

- 1. 理论上vectorization能更好利用SIMD,在密集的数据上确实如此,但是实际上的分析型SQL语句的selectivity会比较稀疏,导致不会太大。
- 2. INTRA-QUERY PARALLELIZATION
 - 1. 两种方式都能很好地利用operator内的并行。
- 3. HARDWARE
 - 1. 在不同架构的cpu上两者各有胜负
- 4. Compilation Time
 - 1. 是一个问题,可以通过存储过程和udf来进行预编译
 - 2. Llvm 编译与SQL text的大小强相关,hyper对这部分做了自己的优化,优化编译算法。
 - 3. Adaptive的方式。

4.4 总结

Vectorized vs. Compiled					
Computation (<)	编译执行对computation为主的queries更适合,因 其代码更紧凑,能在寄存器中一次性把相连的计算完 成,减少了和内存的交互。				
Parallel data access (>)	向量化执行更适合需要并行访问大量data的queries (如hash join为主),因其每个vector能构建有效 的cpu pipeline。				
SIMD (=)	向量化执行的SIMD收益在实际中有限,因现实中大多数operator都是memory-bound的。				
Parallelization (=)	都能利用好多核cpu。				
Hardware platforms (=)	在不同架构的cpu上两者各有胜负				
Compile time (>)	向量化执行的primitives在编译时就完成,不需要在运行时编译,如何减少编译执行的编译时间是一个重要研究点。				

执行方式	特征	优缺点		
	Open-Next-Close	Pipeline不友好		
Volcano	Pull-based Tuple-at-a-time	函数调用开销大		
	rupie-ac-a-cime	cache命中率低		
		一次处理一批,针对memory-bound的 操作能有效形成pipeline		
Vectorization	Open-Next-Close Pull-based Vector-at-a-time	均摊了函数调用和内存访问开销		
		代码不够紧凑,向父亲节点返回结果 时需要经过内存,不适合 computaiton为主的quey		
		代码紧凑,pipeline内操作一起完成, 指令数少		
Compilation	Push-based Data-centric Tuple-at-a-time	Cache利用率高		
	-rapic-ac a -cime	Tuple-at-a-time不好形成pipeline, 不适合memory-bound的query		

- [01] Boncz P A, Zukowski M, Nes N. MonetDB/X100: Hyper-Pipelining Query Execution[C]//Cidr. 2005, 5: 225-237.
- [02] Polychroniou O, Raghavan A, Ross K A. Rethinking SIMD vectorization for in-memory databases[C]//Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data. 2015: 1493-1508.
- [03] Neumann T. Efficiently compiling efficient query plans for modern hardware[J]. Proceedings of the VLDB Endowment, 2011, 4(9): 539-550.
- [04] Kohn A, Leis V, Neumann T. Adaptive execution of compiled queries[C]//2018 IEEE 34th International Conference on Data Engineering (ICDE). IEEE, 2018: 197-208.
- [05] Kersten T, Leis V, Kemper A, et al. Everything you always wanted to know about compiled and vectorized queries but were afraid to ask[J]. Proceedings of the VLDB Endowment, 2018, 11(13): 2209-2222.
- [05] 参考博文: https://www.one-tab.com/page/LmMkDhRhRWKUxU2bRRJgQA
- [06] cmu 15-721 2020 https://15721.courses.cs.cmu.edu/spring2020/
- [07] https://www.bilibili.com/video/BV1zb411G7ay/