Esercitazione 9

Geometria e Algebra Lineare GE110 - AA 2022–2023

8-10 Maggio 2023

Esercizio 1. Si consideri il seguente sottospazio affine di $\mathbb{A}^3(\mathbb{R})$:

$$S = \{(x_1 \ x_2 \ x_3) \in \mathbb{R}^3 : x_1 - x_2 + 3 = 2x_2 - x_1 = 0\}$$

- 1. Desrcivere S e determinare la sua giacitura;
- 2. Trovare un punto $P \in S$ e un punto $Q \notin S$;
- 3. Se possibile, trovare un piano π_1 che contiene S;
- 4. Se possible, trovare un piano π_2 che incontra S in un punto;
- 5. Se possibile, trovare un piano π_3 disgiunto da S;
- 6. Se possibile, trovare una retta r_1 che incontra S in esattamente un punto;
- 7. Se possibile, trovare una retta r_2 disgiunta da r_2 .

Esercizio 2. Siano P=(3,2,1), sia $W\subset\mathbb{R}^3$, il sottospazio generato dai vettori $v_1=(1,0,-1)$, $v_2=(0,1,1)$ e $v_3=(1,1,0)$, e sia $S=\mathcal{S}_{P,W}$ il sottospazio affine di $\mathbb{A}^3(\mathbb{R})$.

- (a) Determinare giacitura e dimensione di S;
- (b) Determinare equazioni cartesiane e parametriche di S;
- (c) Determinare equazioni cartesiane e parametriche della giacitura di S;
- (d) Stabilire se $Q \in S$;
- (e) Determinare $S \cap \mathcal{S}_{Q,W}$;
- (f) Sia T il sottospazio affine di equazioni cartesiane $x_1 x_0 = x_3 + x_1 + 2 = 0$. Determinare $S \cap T$.

Esercizio 3. Si consideri il seguente sottospazio affine di \mathbb{A}^5 :

$$S := \{(x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5 : x_1 + x_2 + 3 = x_2 - x_1 - 2 = 2x_1 + 1 = 0\}.$$

- (a) Determinare dimensione, giacitura e equazioni parametriche di S;
- (b) Per ognuna delle seguenti condizioni trovare un piano π in \mathbb{A}^5 che le soddisfa, o argomentare perchè tale piano non esiste:
 - [1] π contiene S;
 - [2] $\pi \cap S$ consiste di un solo punto;

- [3] π è disgiunto da S;
- [4] π è contenuto in S;
- [5] $\pi \cap S$ consiste di una retta;
- [6] π è parallelo a S.
- (c) Per ognuna delle seguenti condizioni trovare una retta r in \mathbb{A}^5 che le soddisfa, o argomentare perchè tale retta non esiste:
 - [1] r contiene S;
 - [2] $r \cap S$ consiste di un solo punto;
 - [3] r è disgiunta da S;
 - [4] r è contenuta in S;
 - [5] r è parallela a S.
- (d) Per ognuna delle seguenti condizioni trovare un iperpiano T in \mathbb{A}^5 che le soddisfa, o argomentare perchè tale piano non esiste:
 - [1] T contiene S;
 - [2] $T \cap S$ consiste di un solo punto;
 - [3] T è disgiunto da S;
 - [4] T è contenuto in S;
 - [5] $T \cap S$ consiste di una retta;
 - [6] T è parallelo a S.
 - [7] $T \cap S$ consiste di una piano.

Esercizio 4. Sia data, in $\mathbb{A}^3(\mathbb{R})$ la retta r di equazioni parametriche (con $t \in \mathbb{R}$)

$$r: \begin{cases} x_1 = 1 + t \\ x_2 = -t \\ x_3 = 2. \end{cases}$$

Determinare due sottospazi affini di $\mathbb{A}^3(\mathbb{R})$ la cui intersezione è r.

Esercizio 5. Sia $k \in \mathbb{R}$ e sia \mathbb{A} uno spazio affine di dimension 4 con riferimento affine $\{0, e_1, e_2, e_3, e_4\}$ e coordinate X, Y, Z, W. Siano r_k la retta passante per il punto Q(1, 1, 1, 0) e parallela al vettore $v = e_1 + e_2 - ke_4$, e T_k il sottospazio affine con le seguenti equazioni:

$$T_k = \begin{cases} X - kY + W = 0 \\ X + Y + kZ = 0 \\ Z - W = k. \end{cases}$$

1. Determinare i valori di k per i quali T_k e $r_k \cap T_k$ sono sottospazi affini di \mathbb{A} e calcolare la dimensione di T_k ;

- 2. Determinare per quali valori di k, se esistono, r_k è parallela a ${\cal T}_k;$
- 3. Determiare per quali valori di k, se esistono, esiste un piano π di $\mathbb A$ tale che p è parallelo a T_k ed a r_k .