Estimating a Modified Keynesian Consumption Function

Pranish Shinde
Affiliation: Gokhale Institute of Politics and Economics
Email: pranishshinde66@gmail.com

1. Introduction

We estimate the following consumption function on a cross-section of households:

$$consumption_i = \beta_0 + \beta_1 income_i + \beta_2 gender_i + u_i,$$

where gender = 1 for female-headed households. We compare:

- Model (1): $consumption \sim income$.
- Model (2): $consumption \sim income + gender$.

2. Results

2.1 Diagnostic Tests (Model 2)

- Breusch–Pagan (heteroskedasticity): $\chi^2 = \langle bptest\chi^2 \rangle$, $p = \langle bptestp \rangle$.
- Shapiro-Wilk (normality of residuals): $W = \langle Shapiro W \rangle$, $p = \langle Shapiro p \rangle$.
- RESET (omitted non-linearities): $F = \langle reset \, F \rangle$, $p = \langle reset \, p \rangle$.

A. R Code

Load required packages
library(readr)
library(lmtest)
library(ggplot2)

1. Import data

	(1) Income only	(2) + Gender
Intercept	$\hat{eta}_0^{(1)}$	$\hat{eta}_0^{(2)}$
	$(\operatorname{SE}_0^{(1)})$	$(SE_{\alpha}^{(2)})$
Income	$\hat{\beta}_{1}^{(1)}***$	$\hat{\beta}_{1}^{(2)}***$
	$(\operatorname{SE}_1^{(1)})$	$(\operatorname{SE}_1^{(2)})$
Gender (female $= 1$)	_	$\hat{eta}_{2}^{(2)}$
		$(\operatorname{SE}_2^{(2)})$
Observations	N	N
R^2	$R_{(1)}^2$	$R_{(2)}^2$
$Adj. R^2$	$\overline{R}_{(1)}^2$	$\overline{R}_{(2)}^2$
F-statistic	$F_{(1)}^{***}$	$F_{(2)}^{***}$

Notes: Robust (HC1) standard errors in parentheses. ***p < 0.01.

```
data <- read_csv("Data_Task_Intern.csv",</pre>
                 col_names = c("income", "consumption", "gender"))
# 2. Estimation
model1 <- lm(consumption ~ income,</pre>
                                           data = data)
model2 <- lm(consumption ~ income + gender, data = data)</pre>
# 3. Diagnostics
           <- bptest(model2)
                                                      # Breusch-Pagan
bp_test
shapiro_res <- shapiro.test(residuals(model2))</pre>
                                                      # Shapiro-Wilk
reset_res <- resettest(model2, power = 2:3, type = "fitted") # RESET</pre>
# 4. Summaries
summary(model1)
summary(model2)
bp_test
shapiro_res
reset_res
# 5. Scatter plot with fit line
ggplot(data, aes(x = income, y = consumption)) +
  geom_point() + geom_smooth(method = "lm", se = FALSE) +
  labs(title = "Consumption vs Income",
       x = "Income", y = "Consumption")
```