測度論メモ

基礎工学研究科システム創成専攻修士 1 年 学籍番号 29C17095 百合川尚学

2017年12月6日

第1章

関数空間

1.1 $\mathcal{L}^p \succeq L^p$

 \mathbb{K} を $\mathbb{K} = \mathbb{R}$ 或は $\mathbb{K} = \mathbb{C}$ とおく. 測度空間を (X, \mathcal{F}, m) とし、可測 $\mathcal{F}/\mathfrak{B}(\mathbb{K})$ 関数 f に対して

$$||f||_{\mathcal{L}^{p}} := \begin{cases} \inf \{ r \in \mathbb{R} ; & |f(x)| \le r, \text{ a.e.} x \in X \} & (p = \infty) \\ \left(\int_{X} |f(x)|^{p} m(dx) \right)^{\frac{1}{p}} & (0$$

と定め,

$$\mathcal{L}^{p}(X,\mathcal{F},m) \coloneqq \{ f: X \to \mathbb{K} \; ; \quad f: \exists \mathbb{M} \; \mathcal{F}/\mathfrak{B}(\mathbb{K}), \; \|f\|_{\mathcal{L}^{p}} < \infty \; \} \quad (1 \le p \le \infty)$$

として空間 $\mathcal{L}^p(X,\mathcal{F},m)$ を定義する. この空間は \mathbb{K} 上の線形空間となるが、そのことを保証するために次の二つの不等式が成り立つことを証明する.

定理 1.1.1 (Hölder の不等式). $1 \le p, q \le \infty$, p+q=pq $(p=\infty$ なら q=1) とする. このと き任意の可測 $\mathcal{F}/\mathfrak{B}(\mathbb{K})$ 関数 f,g に対して次が成り立つ:

$$\int_{X} |f(x)g(x)| \, m(dx) \le \|f\|_{\mathcal{L}^{p}} \|g\|_{\mathcal{L}^{q}}. \tag{1.1}$$

まず次の補助定理を証明する.

補題 1.1.2. $f \in \mathcal{L}^{\infty}(X,\mathcal{F},m)$ ならば

$$|f(x)| \le ||f||_{\mathscr{L}^{\infty}}$$
 (a.e. $x \in X$).

証明 (補題 1.1.2). $\mathscr{L}^{\infty}(X,\mathcal{F},m)$ の定義により、任意の実数 $\alpha>\|f\|_{\mathscr{L}^{\infty}}$ に対して

$$m(\{x \in X; |f(x)| > \alpha\}) = 0$$

である. これにより

$$\{x \in X; |f(x)| > ||f||_{\mathcal{L}^{\infty}}\} = \bigcup_{n=1}^{\infty} \{x \in X; |f(x)| > ||f||_{\mathcal{L}^{\infty}} + 1/n\}$$

証明(定理1.1.1). 定理の証明に入る.

 $p=\infty,\ q=1$ の場合 $\|f\|_{\mathscr{L}^{\infty}}=\infty$ 又は $\|g\|_{\mathscr{L}^{1}}=\infty$ の場合は明らかに不等式 (1.1) が成り立つから, $\|f\|_{\mathscr{L}^{\infty}}<\infty$ かつ $\|g\|_{\mathscr{L}^{1}}<\infty$ の場合を考える.補助定理により,或る m-零集合 $A\in\mathcal{F}$ を除いて $|f(x)|\leq \|f\|_{\mathscr{L}^{\infty}}$ が成り立つから,

$$|f(x)g(x)| \le ||f||_{\mathscr{L}^{\infty}} |g(x)| \quad (\forall x \in X \backslash A).$$

従って

$$\int_X |f(x)g(x)| \ m(dx) = \int_{X \setminus A} |f(x)g(x)| \ m(dx) \le \|f\|_{\mathcal{L}^\infty} \int_{X \setminus A} |g(x)| \ m(dx) = \|f\|_{\mathcal{L}^\infty} \|g\|_{\mathcal{L}^1}$$

となり不等式 (1.1) が成り立つ.

 $1 < p,q < \infty$ の場合 $\|f\|_{\mathcal{L}^p} = \infty$ 又は $\|g\|_{\mathcal{L}^q} = \infty$ の場合は明らかに不等式 (1.1) が成り立つから, $\|f\|_{\mathcal{L}^p} < \infty$ かつ $\|g\|_{\mathcal{L}^q} < \infty$ の場合を考える. $\|f\|_{\mathcal{L}^p} = 0$ であるとすると

$$B := \{ x \in X \mid |f(x)| > 0 \}$$

は m-零集合となるから,

$$\int_{X} |f(x)g(x)| \ m(dx) = \int_{B} |f(x)g(x)| \ m(dx) + \int_{X \setminus B} |f(x)g(x)| \ m(dx) = 0$$

となり不等式 (1.1) が成り立つ. $\|g\|_{\mathscr{L}_q} = 0$ の場合も同じである.

最後に $0 < \|f\|_{\mathcal{L}^p}, \|g\|_{\mathcal{L}^q} < \infty$ の場合を示す. $-\log t$ (t>0) は凸関数であるから, 1/p+1/q=1 に対して

$$-\log\left(\frac{s}{p} + \frac{t}{q}\right) \le \frac{1}{p}(-\log s) + \frac{1}{q}(-\log t) \quad (\forall s, t > 0)$$

が成り立ち, 従って

$$s^{1/p}t^{1/q} \le \frac{s}{p} + \frac{t}{q} \quad (\forall s, t > 0)$$

が成り立つ. この不等式を用いれば

$$F(x) := |f(x)|^p / ||f||_{\omega_p}^p, \quad G(x) := |g(x)|^q / ||g||_{\omega_q}^q \quad (\forall x \in X)$$

とした *F*, *G* に対し

$$F(x)^{1/p}G(x)^{1/q} \le \frac{1}{p}F(x) + \frac{1}{q}G(x) \quad (\forall x \in X)$$

となり, 両辺を積分して

$$\begin{split} \int_X F(x)^{1/p} G(x)^{1/q} \ m(dx) & \leq \frac{1}{p} \int_X F(x) \ m(dx) + \frac{1}{q} \int_X G(x) \ m(dx) \\ & = \frac{1}{p} \frac{1}{\|f\|_{\mathcal{L}^p}^p} \int_X |f(x)|^p \ m(dx) + \frac{1}{q} \frac{1}{\|g\|_{\mathcal{L}^q}^q} \int_X |g(x)|^q \ m(dx) \\ & = \frac{1}{p} + \frac{1}{q} = 1 \end{split}$$

が成り立つ. 最左辺と最右辺を比べて

$$1 \ge \int_X F(x)^{1/p} G(x)^{1/q} \ m(dx) = \int_X \frac{|f(x)|}{\|f\|_{\mathcal{L}^p}} \frac{|g(x)|}{\|g\|_{\mathcal{L}^q}} \ m(dx)$$

から不等式

$$\int_{X} |f(x)g(x)| \, m(dx) \le \|f\|_{\mathcal{L}^{p}} \|g\|_{\mathcal{L}^{q}}$$

が示された.

定理 1.1.3 (Minkowski の不等式). $1 \le p \le \infty$ とする. このとき任意の可測 $\mathcal{F}/\mathfrak{V}(\mathbb{K})$ 関数 f,g に対して次が成り立つ:

$$||f + g||_{\mathcal{L}_p} \le ||f||_{\mathcal{L}_p} + ||g||_{\mathcal{L}_p}.$$
 (1.2)

証明.

 $p = \infty$ の場合

$$|f(x) + g(x)| \le |f(x)| + |g(x)| \quad (\forall x \in X)$$

である. 従って $\|f\|_{\mathscr{L}^\infty}=\infty$ 又は $\|g\|_{\mathscr{L}^\infty}=\infty$ の場合に不等式 (1.2) が成り立つことは明らかである. $\|f\|_{\mathscr{L}^\infty}<\infty$ かつ $\|g\|_{\mathscr{L}^\infty}<\infty$ の場合は

$$C := \{ \ x \in X \quad | \quad |f(x)| > \| \ f \|_{\mathcal{L}^{\infty}} \ \} \left[\quad \left| \{ \ x \in X \quad | \quad |g(x)| > \| \ g \|_{\mathcal{L}^{\infty}} \ \right\} \right]$$

がm-零集合となり、 $\|\cdot\|_{\mathcal{L}^{\infty}}$ の定義と

$$|f(x) + g(x)| \le ||f||_{\varphi_{\infty}} + ||g||_{\varphi_{\infty}} \quad (\forall x \in X \setminus C)$$

の関係により不等式 (1.2) が成り立つ.

p = 1 の場合

$$|f(x) + g(x)| \le |f(x)| + |g(x)| \quad (\forall x \in X)$$

の両辺を積分することにより不等式 (1.2) が成り立つ.

1 の場合 <math>p + q = pq が成り立つように q > 1 を取る.

$$|f(x) + g(x)|^p = |f(x) + g(x)||f(x) + g(x)|^{p-1} \le |f(x)||f(x) + g(x)|^{p-1} + |g(x)||f(x) + g(x)|^{p-1}$$

の両辺を積分すれば、Hölder の不等式により

$$\begin{split} \|f+g\|_{\mathcal{L}^{p}}^{p} &= \int_{X} |f(x)+g(x)|^{p} \, m(dx) \\ &\leq \int_{X} |f(x)||f(x)+g(x)|^{p-1} \, m(dx) + \int_{X} |g(x)||f(x)+g(x)|^{p-1} \, m(dx) \\ &\leq \left(\int_{X} |f(x)|^{p} \, m(dx)\right)^{1/p} \left(\int_{X} |f(x)+g(x)|^{q(p-1)} \, m(dx)\right)^{1/q} \\ &+ \left(\int_{X} |g(x)|^{p} \, m(dx)\right)^{1/p} \left(\int_{X} |f(x)+g(x)|^{q(p-1)} \, m(dx)\right)^{1/q} \\ &= \left(\int_{X} |f(x)|^{p} \, m(dx)\right)^{1/p} \left(\int_{X} |f(x)+g(x)|^{p} \, m(dx)\right)^{1/q} \\ &+ \left(\int_{X} |g(x)|^{p} \, m(dx)\right)^{1/p} \left(\int_{X} |f(x)+g(x)|^{p} \, m(dx)\right)^{1/q} \\ &= \|f\|_{\mathcal{L}^{p}} \|f+g\|_{\mathcal{L}^{p}}^{p/q} + \|g\|_{\mathcal{L}^{p}} \|f+g\|_{\mathcal{L}^{p}}^{p/q} \\ &= \|f\|_{\mathcal{L}^{p}} \|f+g\|_{\mathcal{L}^{p}}^{p-1} + \|g\|_{\mathcal{L}^{p}} \|f+g\|_{\mathcal{L}^{p}}^{p-1} \end{split}$$

が成り立つ. $\|f+g\|_{\mathcal{L}^p}=0$ の場合は明らかに不等式 (1.2) が成り立つ. $\|f+g\|_{\mathcal{L}^p}=\infty$ の場合,

$$|f(x) + g(x)| \le |f(x)| + |g(x)| \le 2 \max(|f(x)|, |g(x)|) \quad (\forall x \in X)$$

より

$$|f(x) + g(x)|^p \le 2^p \max(|f(x)|^p, |g(x)|^p) \le 2^p (|f(x)|^p + |g(x)|^p) \quad (\forall x \in X)$$

から両辺を積分して

$$||f + g||_{\mathcal{L}^p}^p \le 2^p (||f||_{\mathcal{L}^p}^p + ||g||_{\mathcal{L}^p}^p)$$

という関係が出るから、上式右辺も ∞ となり不等式 (1.2) が成り立つ。 $0<\|f+g\|_{\mathcal{L}^p}<\infty$ の場合, $\|f\|_{\mathcal{L}^p}+\|g\|_{\mathcal{L}^p}=\infty$ なら不等式 (1.2) は明らかに成り立ち, $\|f\|_{\mathcal{L}^p}+\|g\|_{\mathcal{L}^p}<\infty$ の場合は

$$||f + g||_{\varphi_p}^p \le ||f||_{\mathscr{L}^p} ||f + g||_{\varphi_p}^{p-1} + ||g||_{\mathscr{L}^p} ||f + g||_{\varphi_p}^{p-1}$$

の両辺を $\|f+g\|_{\mathscr{L}^p}^{p-1}$ で割って不等式 (1.2) が成り立つと判る.

以上の結果より $\mathcal{L}^p(X,\mathcal{F},m)$ が線形空間をなすことが判る. 加法について閉じていることは Minkowski の不等式により従い, 加法について可換群となりスカラ倍について (閉じていてかつ) 分配的であることは積分の性質から従うからである. 以下にこの線形空間に関する重要な性質を載せる.

補題 1.1.4 (\mathcal{L}^p のセミノルムについて). $\|\cdot\|_{\mathcal{L}^p}$ は線形空間 \mathcal{L}^p (X,\mathcal{F},m) においてセミノルムとなる.

証明. 正値性 これは明らかである.

同次性

$$\left(\int_X |\alpha f(x)|^p \ m(dx)\right)^{1/p} = \left(|\alpha|^p \int_X |f(x)|^p \ m(dx)\right)^{1/p} = |\alpha| \left(\int_X |f(x)|^p \ m(dx)\right)^{1/p} \quad (1 \le p < \infty)$$

と

$$\inf\{r \in \mathbb{R} \mid |\alpha f(x)| \le r, \text{ a.e.} x \in X\} = |\alpha|\inf\{r \in \mathbb{R} \mid |f(x)| \le r, \text{ a.e.} x \in X\}$$

により、任意の $\alpha \in \mathbb{K}$ と任意の $f \in \mathcal{L}^p(X,\mathcal{F},m)$ $(1 \le p \le \infty)$ に対して

$$\|\alpha f\|_{\varphi_p} = |\alpha| \|f\|_{\varphi_p}$$

が成り立つ.

三角不等式 Minkowski の不等式による.

しかし $\|\cdot\|_{\mathscr{L}^p}$ は $\mathscr{L}^p(X,\mathcal{F},m)$ のノルムとはならない. $\|f\|_{\mathscr{L}^p}=0$ であっても f(x)=0 ($\forall x\in X$) とは限らず,m-零集合の上で $1\in\mathbb{K}$ を取るような関数 g でも $\|g\|_{\mathscr{L}^p}=0$ を満たすからである. ここで次のものを考える. 可測関数の集合を

$$\mathcal{M} \coloneqq \{ f : X \to \mathbb{K} \mid f : 可測 \mathcal{F}/\mathfrak{B}(\mathbb{K}) \}$$

と表すことにする.

$$f, g \in \mathcal{M}, \quad f \sim g \stackrel{\text{def}}{\Leftrightarrow} f(x) = g(x) \quad \text{a.e.} x \in X$$

と定義した関係 ~ は M における同値関係となり、この関係で M を割った商を M:=M/ ~ と表す。M の元を [f] (f は同値類の代表元) と表し、M における加法とスカラ倍を次のように定義すれば M は \mathbb{K} 上の線形空間となる:

$$\begin{split} [f] + [g] &\coloneqq [f+g] & (\forall [f], [g] \in M), \\ \alpha[f] &\coloneqq [\alpha f] & (\forall [f] \in M, \ \alpha \in \mathbb{K}). \end{split}$$

そしてこの表現は well-defined である. つまり代表元に依らずに値がただ一つに定まる.

証明.

任意の $f' \in [f]$ と $g' \in [g]$ に対して,[f'] = [f],[g'] = [g] であるから

$$[f + g] = [f' + g'], \quad [\alpha f'] = [\alpha f]$$

をいえばよい.

$$(f \neq g) := \{ x \in X \mid f(x) \neq g(x) \}$$

と簡略した表記を使えば

$$(f+g \neq f'+g') \subset (f \neq f') \cup (g \neq g'),$$

$$(\alpha f \neq \alpha f') = (f \neq f')$$

であり、どちらも右辺は m-零集合であるから [f+g]=[f'+g'], $[\alpha f']=[\alpha f]$ である.

次に商空間 M におけるノルムを定義する.

補題 1.1.5 (商空間 L^p におけるノルムの定義).

$$\|[f]\|_{L^p} \coloneqq \|f\|_{\mathscr{L}^p} \quad (1 \le p \le \infty)$$

として $\|\cdot\|_{L^p}$ を定義すればこれは well-defined である.つまり代表元に依らずに値がただ一つに定まる.

証明. $f \in \mathcal{L}^p(X,\mathcal{F},m)$ とし、任意に $g \in [f]$ で $f \neq g$ となるものを選ぶ. 示すことは $\|f\|_{\mathcal{L}^p}^p = \|g\|_{\mathcal{L}^p}^p$ が成り立つことである.

$$A := \{ \ x \in X \quad | \quad f(x) \neq g(x) \ \} \quad \in \mathcal{F}$$

とおけば、f,g は同じ同値類の元同士であるから m(A)=0 である.

 $p = \infty$ の場合 A^c の上で f(x) = g(x) となるから

$$\{ x \in X \mid |g(x)| > ||f||_{\mathscr{L}^{\infty}} \} \subset A + A^{c} \cap \{ x \in X \mid |g(x)| > ||f||_{\mathscr{L}^{\infty}} \}$$

$$= A + A^{c} \cap \{ x \in X \mid |f(x)| > ||f||_{\mathscr{L}^{\infty}} \}$$

$$\subset A + \{ x \in X \mid |f(x)| > ||f||_{\mathscr{L}^{\infty}} \}$$

が成り立ち、最右辺は 2 項とも m-零集合であるから最左辺も m-零集合となる.すなわち $\|g\|_{\mathscr{L}^\infty} \leq \|f\|_{\mathscr{L}^\infty}$ が示された.逆向きの不等号も同様に示されるから $\|g\|_{\mathscr{L}^\infty} = \|f\|_{\mathscr{L}^\infty}$ となる.

 $1 \le p < \infty$ の場合 m(A) = 0 により

$$\|f\|_{\mathscr{L}^p}^p = \int_X f(x) \ m(dx) = \int_{A^c} f(x) \ m(dx) = \int_{A^c} g(x) \ m(dx) = \int_X g(x) \ m(dx) = \|g\|_{\mathscr{L}^p}^p$$
 が成り立つ。

補題 1.1.6 (商空間 L^p はノルム空間となる).

$$\mathsf{L}^p(X,\mathcal{F},m) \coloneqq \{ [f] \in M \quad | \quad \|[f]\|_{\mathsf{L}^p} < \infty \} \quad (1 \le p \le \infty)$$

を定義すると、 $L^p(X,\mathcal{F},m)$ は $\|\cdot\|_{L^p}$ をノルムとしてノルム空間となる.

証明. 任意の [f], $[g] \in L^p(X, \mathcal{F}, m)$ と $\alpha \in \mathbb{K}$ に対して, $\|[f]\|_{L^p} \ge 0$ であることは $\|\cdot\|_{\mathscr{L}^p}$ の正値性による. また関数が 0 でない $x \in X$ の集合の測度が正となるとノルムは正となるから, $\|[f]\|_{L^p} = 0$ であるなら [f] は零写像 (これを 0 と表す) の同値類 (線形空間の零元),つまり [f] = [0] である. 逆に [f] = [0] なら $\|[f]\|_{L^p} = 0$ である. $\|\cdot\|_{\mathscr{L}^p}$ の同次性と Minkowski の不等式から

$$\begin{split} \|\alpha[f]\|_{\mathsf{L}^p} &= \|[\alpha f]\|_{\mathsf{L}^p} = \|\alpha f\|_{\mathscr{L}^p} = |\alpha| \|f\|_{\mathscr{L}^p} = |\alpha| \|[f]\|_{\mathsf{L}^p} \\ \|[f] + [g]\|_{\mathsf{L}^p} &= \|[f + g]\|_{\mathsf{L}^p} = \|f + g\|_{\mathscr{L}^p} \le \|f\|_{\mathscr{L}^p} + \|g\|_{\mathscr{L}^p} = \|[f]\|_{\mathsf{L}^p} + \|[g]\|_{\mathsf{L}^p} \end{split}$$

も成り立つ. 以上より $\|\cdot\|_{L^p}$ は $L^p(X,\mathcal{F},m)$ におけるノルムとなる.

命題 1.1.7 (L^p の完備性). 上で定義したノルム空間 $L^p(X,\mathcal{F},m)$ は Banach 空間である. ($1 \le p \le \infty$)

証明. 任意に $L^p(X,\mathcal{F},m)$ の Cauchy 列 $[f_n] \in L^p(X,\mathcal{F},m)$ $(n=1,2,3,\cdots)$ を取る. Cauchy 列であるから 1/2 に対して或る $N_1 \in \mathbb{N}$ が取れて, $n > m \geq N_1$ ならば $\|[f_n] - [f_m]\|_{L^p} = \|[f_n - f_m]\|_{L^p} < 1/2$ となる. ここで $m = n_1$ と表記することにする. 同様に $1/2^2$ に対して或る $N_2 \in \mathbb{N}$ $(N_2 > N_1)$ が取れて, $n' > m' \geq N_2$ ならば $\|[f_{n'} - f_{m'}]\|_{L^p} < 1/2^2$ となる. 先ほどの n について, $n > N_2$ となるように取れるからこれを $n = n_2$ と表記し,更に $m' = n_2$ ともしておく. 今のところ

$$||[f_{n_1} - f_{n_2}]||_{L^p} < 1/2$$

と表示できる。再び同様に $1/2^3$ に対して或る $N_3 \in \mathbb{N}$ $(N_3 > N_2)$ が取れて, $n'' > m'' \ge N_2$ ならば $\|[f_{n''} - f_{m''}]\|_{L^p} < 1/2^3$ となる。先ほどの n' について $n' > N_3$ となるように取れるからこれを $n' = n_3$ と表記し,更に $m'' = n_3$ ともしておく.今までのところで

$$|| [f_{n_1} - f_{n_2}] ||_{\mathbf{L}^p} < 1/2$$

$$|| [f_{n_2} - f_{n_3}] ||_{\mathbf{L}^p} < 1/2^2$$

が成り立っている. 数学的帰納法により

$$||[f_{n_k} - f_{n_{k+1}}]||_{L^p} < 1/2^k \quad (n_{k+1} > n_k, \ k = 1, 2, 3, \cdots)$$
(1.3)

が成り立つように自然数の部分列 $(n_k)_{k=1}^{\infty}$ を取ることができる.

$p = \infty$ の場合

 $[f_{n_k}]$ の代表元 f_{n_k} について,

$$A_{k} := \left\{ x \in X \mid |f_{n_{k}}(x)| > \left\| f_{n_{k}} \right\|_{\mathcal{L}^{\infty}} \right\},$$

$$A^{k} := \left\{ x \in X \mid |f_{n_{k}}(x) - f_{n_{k+1}}(x)| > \left\| f_{n_{k}} - f_{n_{k+1}} \right\|_{\mathcal{L}^{\infty}} \right\}$$

とおけば Hölder の不等式の証明中の補助定理より $m(A_k) = m(A^k) = 0$ であり,

$$A := \left(\bigcup_{k=1}^{\infty} A_k\right) \bigcup \left(\bigcup_{k=1}^{\infty} A^k\right)$$

として m-零集合を定め

$$\hat{f}_{n_k}(x) = \begin{cases} f_{n_k}(x) & (x \notin A) \\ 0 & (x \in A) \end{cases} \quad (\forall x \in X)$$

と定義した \hat{f}_{n_k} もまた $[f_{n_k}]$ の元となる.代表元を f_{n_k} に替えて \hat{f}_{n_k} とすれば, \hat{f}_{n_k} は X 上の 有界可測関数であり

$$\|\hat{f}_{n_k} - \hat{f}_{n_{k+1}}\|_{\mathscr{L}^{\infty}} = \sup_{x \in X} |\hat{f}_{n_k}(x) - \hat{f}_{n_{k+1}}(x)| < 1/2^k \quad (k = 1, 2, 3, \dots)$$
 (1.4)

が成り立っていることになるから、各点 $x\in X$ で $\left(\hat{f}_{n_k}(x)\right)_{k=1}^\infty$ は $\mathbb K$ の Cauchy 列となる.(これは $\sum_{k>N}1/2^k=1/2^N\longrightarrow 0$ $(N\longrightarrow\infty)$ による.) 従って各点 $x\in X$ で極限が存在するからこれを $\hat{f}(x)$ として表す.一般に距離空間に値を取る可測関数列の各点収束の極限関数は可

測関数であるから \hat{f} もまた可測 $\mathcal{F}/\mathfrak{B}(\mathbb{K})$ である.また \hat{f} は有界である.これは次のように示される.式 (1.4) から任意の l>k に対し

$$|\hat{f}_{n_k}(x) - \hat{f}_{n_l}(x)| \le \sum_{j=k}^{l-1} |\hat{f}_{n_j}(x) - \hat{f}_{n_{j+1}}(x)| \le \sum_{j=k}^{l-1} \sup_{x \in X} |\hat{f}_{n_j}(x) - \hat{f}_{n_{j+1}}(x)| < 1/2^{k-1}$$

が成り立つから、極限関数 $\hat{f}(x)$ も

$$\sup_{x \in X} |\hat{f}_{n_k}(x) - \hat{f}(x)| \le 1/2^{k-1} \tag{1.5}$$

を満たすことになる.なぜなら,もし或る $x\in X$ で $\alpha:=|\hat{f}_{n_k}(x)-\hat{f}(x)|>1/2^{k-1}$ となる場合,任意の l>k に対し

$$0 < \alpha - 1/2^{k-1} < |\hat{f}_{n_k}(x) - \hat{f}(x)| - |\hat{f}_{n_k}(x) - \hat{f}_{n_l}(x)| \le |\hat{f}_{n_l}(x) - \hat{f}(x)|$$

となり各点収束に反するからである. 不等式 (1.5) により任意の $x \in X$ において

$$|\hat{f}(x)| < |\hat{f}_{n_k}(x)| + 1/2^{k-1} \le \|\hat{f}_{n_k}\|_{\varphi_{\infty}} + 1/2^{k-1}$$

が成り立ち \hat{f} の有界性が判る. 以上で極限関数 \hat{f} が有界可測関数であると示された. \hat{f} を代表元とする $[\hat{f}] \in L^\infty(X,\mathcal{F},m)$ に対し,不等式 (1.5) により

$$\left\| \left[f_{n_k} \right] - \left[\hat{f} \right] \right\|_{\mathcal{L}^{\infty}} = \left\| \hat{f}_{n_k} - \hat{f} \right\|_{\mathcal{L}^{\infty}} = \sup_{x \in X} \left| \hat{f}_{n_k}(x) - \hat{f}(x) \right| \longrightarrow 0 \ (k \longrightarrow \infty)$$

が成り立つから、Cauchy 列 $([f_n])_{n=1}^\infty$ の部分列 $([f_{n_k}])_{k=1}^\infty$ が $[\hat{f}]$ に収束すると示された、Cauchy 列の部分列が収束すれば、元の Cauchy 列はその部分列と同じ収束先に収束するから $L^\infty(X,\mathcal{F},m)$ は Banach 空間である.

$1 \le p < \infty$ の場合

 $[f_{n_k}]$ の代表元 f_{n_k} に対して

$$f_{n_k}(x) := f_{n_1}(x) + \sum_{i=1}^k (f_{n_i}(x) - f_{n_{i-1}}(x))$$
 (1.6)

と表現できるから, これに対して

$$g_k(x) := |f_{n_1}(x)| + \sum_{j=1}^k |f_{n_j}(x) - f_{n_{j-1}}(x)|$$

として可測関数列 $(g_k)_{k=1}^\infty$ を用意する. Minkowski の不等式と式 (1.3) より

$$\|g_{k}\|_{\mathcal{L}^{p}} \leq \|f_{n_{1}}\|_{\mathcal{L}^{p}} + \sum_{j=1}^{k} \|f_{n_{j}} - f_{n_{j-1}}\|_{\mathcal{L}^{p}} < \|f_{n_{1}}\|_{\mathcal{L}^{p}} + \sum_{j=1}^{k} 1/2^{j} < \|f_{n_{1}}\|_{\mathcal{L}^{p}} + 1 < \infty$$

が成り立つ. 各点 $x \in X$ で $g_k(x)$ は k について単調増大であるから、単調収束定理より

$$\|g\|_{\mathcal{L}^{p}}^{p} = \lim_{k \to \infty} \|g_{k}\|_{\mathcal{L}^{p}}^{p} < \|f_{n_{1}}\|_{\mathcal{L}^{p}} + 1 < \infty$$

となるので $g \in L^p(X,\mathcal{F},m)$ である. 従って

$$B_n := \{ x \in X \mid g(x) \le n \} \in \mathcal{F},$$

$$B := \bigcup_{n=1}^{\infty} B_n$$

とおけば $m(X \setminus B) = 0$ であり、式 (1.6) の級数は B 上で絶対収束する (各点).

$$f(x) := \begin{cases} \lim_{k \to \infty} f_{n_k}(x) & (x \in B) \\ 0 & (x \in X \setminus B) \end{cases}$$

として可測 $\mathcal{F}/\mathfrak{B}(\mathbb{R})$ 関数 f を定義すれば, $|f(x)| \leq g(x)$ ($\forall x \in X$) と g^p が可積分であることから f を代表元とする同値類 [f] は $L^p(X,\mathcal{F},m)$ の元となる. 関数列 $((f_{n_k})_{k=1}^{\infty})$ は f に概収束し, $|f_{n_k}(x) - f(x)|^p \leq 2^p (|f_{n_k}(x)|^p + |f(x)|^p) \leq 2^{p+1} g(x)^p$ ($\forall x \in X$) となるから Lebesgue の収束定理により

$$\lim_{k \to \infty} \| [f_{n_k}] - [f] \|_{L^p}^p = \lim_{k \to \infty} \| f_{n_k} - f \|_{\mathscr{L}^p}^p = \lim_{k \to \infty} \int_X |f_{n_k}(x) - f(x)|^p \, m(dx) = 0$$

が成り立ち、Cauchy 列 $([f_n])_{n=1}^\infty$ の部分列 $([f_{n_k}])_{k=1}^\infty$ が [f] に収束すると示された.Cauchy 列の部分列が収束すれば,元の Cauchy 列はその部分列と同じ収束先に収束するから $\mathbf{L}^p(X,\mathcal{F},m)$ は Banach 空間である.

次節への準備として、ノルム空間における線型作用素の拡張定理と Hilbert 空間における射影定理を載せておく.

定理 1.1.8 (線型作用素の拡張). 係数体を \mathbb{K} とする. X,Y を Banach 空間とし,ノルムをそれぞれ $\|\cdot\|_X$, $\|\cdot\|_Y$ と表記する. X の部分空間 X_0 が X で稠密なら,X から Y への任意の有界線型作用素 T (T の定義域は X_0) に対し,作用素ノルムを変えない T の拡張 \tilde{T} (定義域 X) で,X から Y への有界線型作用素となるものが一意に存在する.

証明. 作用素ノルムは $\|\cdot\|$ と表記する. X_0 が X で稠密であるということにより、任意の $x \in X$ に対して $x_n \in X_0$ $(n=1,2,\cdots)$ で $\|x_n-x\|_X \longrightarrow 0$ $(k \longrightarrow +\infty)$ となるものを取ることができる. 任意の $m,n \in \mathbb{N}$ に対して

$$||Tx_m - Tx_n||_Y \le ||T|| ||x_m - x_n||_X$$

が成り立つから、右辺が X_0 の Cauchy 列をなすことにより $(Tx_n)_{n=1}^{+\infty}$ も Y の Cauchy 列となる. Y の完備性から $(Tx_n)_{n=1}^{+\infty}$ は或る $y \in Y$ に収束し、y は $x \in X$ に対して一意に定まる. なぜならば、x への別の収束列 $z_n \in X_0$ $(n=1,2,\cdots)$ を取った場合の $(Tz_n)_{n=1}^{+\infty}$ の収束先が $u \in \mathbb{C}$ であるとして、任意の $n,m \in \mathbb{N}$ に対して

$$||y - u||_{Y} = ||y - Tx_{n} + Tx_{n} - Tz_{m} + Tz_{m} - u||_{Y}$$

$$\leq ||y - Tx_{n}||_{Y} + ||Tx_{n} - Tz_{m}||_{Y} + ||Tz_{m} - u||_{Y}$$

$$\leq ||y - Tx_{n}||_{Y} + ||T|| ||x_{n} - z_{m}||_{X} + ||Tz_{m} - u||_{Y}$$

$$\leq ||y - Tx_{n}||_{Y} + ||T|| (||x_{n} - x||_{X} + ||x - z_{m}||_{Y}) + ||Tz_{m} - u||_{Y}$$

となるから $n,m \to +\infty$ で右辺は 0 に収束し、y = u が示されるためである. つまり x に y を対応させる関係は $X \mapsto Y$ の写像となり、この写像を \tilde{T} と表すことにする. T の線型性も次のよう

に示される. 任意の x, $z \in X$, α , $\beta \in \mathbb{K}$ に対して, x, z への収束列 $(x_n)_{n=1}^{+\infty}$, $(z_n)_{n=1}^{+\infty}$ $\subset X_0$ を取れば $(\alpha x_n + \beta z_n)_{n=1}^{+\infty}$ が $\alpha x + \beta z$ への収束列となるから

$$\begin{split} \left\| \tilde{T}(\alpha x + \beta z) - \alpha \tilde{T}x - \beta \tilde{T}z \right\|_{Y} &= \left\| \tilde{T}(\alpha x + \beta z) - T(\alpha x_{n} + \beta z_{n}) + \alpha Tx_{n} + \beta Tz_{n} - \alpha \tilde{T}x - \beta \tilde{T}z \right\|_{Y} \\ &\leq \left\| \tilde{T}(\alpha x + \beta z) - T(\alpha x_{n} + \beta z_{n}) \right\|_{Y} + \left\| \alpha Tx_{n} - \alpha \tilde{T}x \right\|_{Y} + \left\| \beta Tz_{n} - \beta \tilde{T}z \right\|_{Y} \\ &\leq \left\| \tilde{T}(\alpha x + \beta z) - T(\alpha x_{n} + \beta z_{n}) \right\|_{Y} + |\alpha| \left\| Tx_{n} - \tilde{T}x \right\|_{Y} + |\beta| \left\| Tz_{n} - \tilde{T}z \right\|_{Y} \\ &\longrightarrow 0 \quad (n \longrightarrow +\infty) \end{split}$$

が成り立つ. ゆえに $\tilde{T}(\alpha x + \beta z) = \alpha \tilde{T} x + \beta \tilde{T} z \ (\forall x, z \in X, \alpha, \beta \in \mathbb{K})$ である. また \tilde{T} は有界な線型作用素である. なぜなら,任意に $x \in X$ と x への収束列 $x_n \in X_0 \ (n = 1, 2, \cdots)$ を取れば,任意の $\epsilon > 0$ に対し或る $K \in \mathbb{N}$ が存在して全ての k > K について

$$\|\tilde{T}x\|_{Y} < \|Tx_{n}\|_{Y} + \epsilon, \quad \|x\|_{X} < \|x_{n}\|_{X} + \epsilon/\|T\|$$

が成り立つようにできるから, この下で

$$\left\| \tilde{T}x \right\|_{Y} < \left\| Tx \right\|_{Y} + \epsilon < \left\| T \right\| \left\| x \right\|_{X} + 2\epsilon$$

となり $\|\tilde{T}\| \le \|T\|$ が判るからである. さらに

$$\left\| \tilde{T} \right\| = \sup_{\substack{x \in X \\ \|x\|_X = 1}} \left\| \tilde{T}x \right\|_Y \ge \sup_{\substack{x \in X_0 \\ \|x\|_X = 1}} \left\| \tilde{T}x \right\|_Y = \sup_{\substack{x \in X_0 \\ \|x\|_X = 1}} \|Tx\|_Y = \|T\|$$

も成り立つから結局 $\|\tilde{T}\| = \|T\|$ であると判る.以上より任意の有界線型作用素 T がノルムを変えないまま或る有界線型作用素 \tilde{T} に拡張されることが示された.拡張が一意であることは X_0 が X で稠密であることと T の連続性による.

定理 1.1.9 (射影定理).

証明.

射影の存在 $f \in H \setminus C$ として

$$\delta \coloneqq \inf_{h \in C} \| f - h \|$$

とおく. C が閉集合で f が C の外にあるから $\delta > 0$ となる. 下限の性質から $h_n \in C$ ($n = 1, 2, 3, \cdots$) を取って

$$\delta = \lim_{n \to \infty} \|f - h_n\|$$

となるようにできるから、任意の $\epsilon>0$ に対して或る $N\in\mathbb{N}$ が存在して n>N ならば $\|f-h_n\|^2<\delta+\epsilon/4$ が成り立つ.この N に対し n,m>N ならば、内積空間の中線定理と $(h_n+h_m)/2\in C$ であることにより

$$||h_n - h_m||^2 = 2(||f - h_m||^2 + ||f - h_n||^2) - ||2f - (h_n + h_m)||^2$$

$$= 2(||f - h_m||^2 + ||f - h_n||^2) - 4||f - \frac{h_n + h_m}{2}||^2$$

$$< 2\delta + \epsilon - 4\delta = \epsilon$$

とできるから $(h_n)_{n=1}^\infty$ は C の Cauchy 列であると判る. H が Hilbert 空間であり C が H で閉だから, $(h_n)_{n=1}^\infty$ の極限 $y \in H$ が存在し $y \in C$ である.

$$\left|\delta - \|f - y\|\right| \le \left|\delta - \|f - h_n\|\right| + \left|\|f - h_n\| - \|f - y\|\right| \le \left|\delta - \|f - h_n\|\right| + \|h_n - y\| \longrightarrow 0 \quad (n \longrightarrow \infty)$$

によって $\delta = \|f - y\|$ が成り立つこと、すなわち射影の存在が示された。 $f \in C$ の場合は f が自身の射影である。

射影の一意性 $z \in C$ もまた $\delta = ||f - z||$ を満たすとすれば, C の凸性により

$$2\delta \le 2 \left\| f - \frac{y+z}{2} \right\| \le \|f-y\| + \|f-z\| = 2\delta$$

が成り立つから, 中線定理より

$$||y - z||^2 = 2(||f - z||^2 + ||f - y||^2) - 4||f - \frac{y + z}{2}||^2 = 0$$

となってy=zが判る. すなわちfの射影はただ一つに決まる.

C が閉部分空間の場合 $f \in H \setminus C$ に対して f の C への射影を $y \in C$ (存在は C が凸の場合と全く同様に示される.) とする. ($f \in C$ の場合は y = f である.) 或る $h \in C$ に対して

$$\langle f - y, h \rangle \neq 0$$

となると仮定すれば $(f \neq y$ より $h \neq 0)$, C の元 $\hat{y} \coloneqq y + (\langle f - g, h \rangle / ||h||^2) h$ に対して

$$\begin{aligned} \|f - \hat{y}\|^2 &= \left\langle f - y - \frac{\langle f - g, h \rangle}{\|h\|^2} h, \ f - y - \frac{\langle f - g, h \rangle}{\|h\|^2} h \right\rangle \\ &= \|f - y\|^2 - \frac{|\langle f - g, h \rangle|^2}{\|h\|^2} \\ &< \|f - y\|^2 \end{aligned}$$

が成り立つから y が射影であることに反する. 従って射影 y に対しては

$$\langle f - y, h \rangle \neq 0 \quad (\forall h \in C)$$
 (1.7)

が成り立つ. 逆に $y \in C$ に対して式 (1.7) が成り立っているとすれば y が f の射影であることも示される. 任意の $h \in C$ に対して

$$||f - h||^{2} = \langle f - y + y - h, f - y + y - h \rangle$$

$$= ||f - y||^{2} + 2\Re [\langle f - y, y - h \rangle] + ||y - h||^{2}$$

$$= ||f - y||^{2} + ||y - h||^{2}$$

$$\geq ||f - y||^{2}$$

となることにより $||f - y|| = \inf_{h \in C} ||f - h||$ であることが示された.

第2章

Lebesgue-Radon-Nikodym の定理

2.1 複素測度

(X, M) を可測空間、 λ を M 上の複素測度 (complex measure) とする。 λ は複素数値であるから、任意の $E \in M$ に対して $|\lambda(E)| < \infty$ となっていることに注意する。測度としての性質から、どの二つも互いに素な集合列 $E_i \in M$ $(i=1,2,\cdots)$ と

$$E := \sum_{i=1}^{\infty} E_i$$

に対して

$$\lambda(E) = \sum_{i=1}^{\infty} \lambda(E_i)$$

が成り立つが、左辺が $\mathbb C$ 値であるから右辺の級数は収束していなくてはならない. $\sigma:\mathbb N\to\mathbb N$ を任意の並び替え*1として、 $(E_i)_{i=1}^\infty$ に対して

$$E = \sum_{i=1}^{\infty} E_{\sigma(i)}$$

が成り立つから、測度の性質を持つ λ は

$$\lambda(E) = \sum_{i=1}^{\infty} \lambda(E_{\sigma(i)})$$

を満たす. つまり複素数列 $(\lambda(E_i))_{i=1}^\infty$ は任意の並び替えに対し総和が不変で収束していることになり、Riemann の級数定理よりこの列は絶対収束している:

$$\sum_{i=1}^{\infty} |\lambda(E_i)| < \infty.$$

 λ に対し、或る M上の測度 μ で λ を支配する、つまり

$$|\lambda(E)| \le \mu(E) \quad (\forall E \in \mathcal{M})$$
 (2.1)

 $^{^{*1}}$ σ は $\mathbb N$ から $\mathbb N$ への全単射である.

を満たすものを、できるだけ小さいものとして取ろうと考える *2 . このような μ は次を満たすことになる:

$$\sum_{i=1}^{\infty} |\lambda(E_i)| \le \sum_{i=1}^{\infty} \mu(E_i) = \mu(E)$$

を満たすことになり, ゆえに

$$\mu(E) \ge \sup \sum_{i=1}^{\infty} |\lambda(E_i)|$$
 (2.2)

でなくてはならず (上限は E のあらゆる分割 $E = \sum_i E_i$ に対して取るものである),ここで M 上の 関数として $|\lambda|$ を

$$|\lambda|(E) := \sup \sum_{i=1}^{\infty} |\lambda(E_i)| \quad (\forall E \in \mathcal{M})$$
 (2.3)

として置いてみるとよさそうである. E に対し E 自体を一つの分割と見做せば,(2.3) より $|\lambda|$ は λ を支配していることになり,更に $|\lambda|$ は M 上の測度となる (後述) から,(2.2) と併せて当座の問題の解となる.

定義 2.1.1 (総変動・総変動測度). 可測空間 (X, M) 上の複素測度 λ に対し、上で定めた測度 $|\lambda|: M \longrightarrow [0, \infty)$ を λ の総変動測度 (total variation measure) といい、 $|\lambda|(X)$ を λ の総変動 (total variation) という。特に λ が正値有限測度である場合は $\lambda = |\lambda|$ が成り立つ。*3

以降で | λ| の性質

- (1) | | は測度である.
- (2) $|\lambda|(X) < \infty$ が成り立つ.

を証明する. 特に (2) により任意の $E \in M$ に対し

$$|\lambda(E)| \le |\lambda|(E) \le |\lambda|(X) < \infty$$

が従うから、複素測度は有界であると判明する.

定理 2.1.2 ($|\lambda|$ は測度となる). 可測空間 (X, M) 上の複素測度 λ に対し (2.3) で定義する $|\lambda|$ は (X, M) において測度となる.

$$\mu(E) \le \mu'(E) \quad (\forall E \in \mathcal{M})$$

を満たすものを選べるかどうかを考える.

*3 複素測度の虚部が 0 であるものとして考えれば $0 \le \lambda(E) \le \lambda(X) < \infty$ ($\forall E \in M$) が成り立つ. また実際任意の $E \in M$ とその分割 $(E_i)_{i=1}^{\infty}$ に対して

$$|\lambda|(E) = \sup \sum_{i=1}^{\infty} |\lambda(E_i)| = \sup \sum_{i=1}^{\infty} \lambda(E_i) = \sup \lambda(E) = \lambda(E)$$

が成り立つ.

 $^{^{*2}}$ つまり (2.1) を満たす μ のうちから、同様に (2.1) を満たす任意の測度 μ' に対し

証明. (2.3) により $|\lambda|$ は正値であるから,ここで示すことは $|\lambda|$ が完全加法的であるということである.任意に $\epsilon>0$ とどの二つも互いに素な集合列 $E_i\in \mathcal{M}$ $(i=1,2,\cdots)$ を取る.示すことは $E\coloneqq\sum_{i=1}^\infty E_i$ に対して

$$|\lambda|(E) = \sum_{i=1}^{\infty} |\lambda|(E_i)$$

が成り立つことである. (2.3) により E_i の分割 $(A_{ij})_{i=1}^{\infty} \subset M$ を

$$|\lambda|(E_i) \ge \sum_{i=1}^{\infty} |\lambda(A_{ij})| > |\lambda|(E_i) - \epsilon/2^i$$

となるように取ることができる.また $E = \sum_{i,j=1}^{\infty} A_{ij}$ でもあるから

$$|\lambda|(E) \ge \sum_{i,i=1}^{\infty} |\lambda(A_{ij})| \ge \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} |\lambda(A_{ij})| > \sum_{i=1}^{\infty} |\lambda|(E_i) - \epsilon$$

が成り立つ. $\epsilon > 0$ は任意であるから

$$|\lambda|(E) \ge \sum_{j=1}^{\infty} |\lambda|(E_j)$$

が従う.逆向きの不等号について,E の任意の分割 $(A_j)_{j=1}^\infty \subset M$ に対し

$$\sum_{j=1}^{\infty} |\lambda(A_j)| = \sum_{j=1}^{\infty} \left| \sum_{i=1}^{\infty} \lambda(A_j \cap E_i) \right| \le \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} |\lambda(A_j \cap E_i)| \le \sum_{i=1}^{\infty} |\lambda(E_i)|^{*4}$$

が成り立つから、左辺の上限を取って

$$|\lambda|(E) \le \sum_{i=1} |\lambda|(E_i)$$

を得る.

定理 2.1.3 (総変動測度は有界). 可測空間 (X, M) 上の複素測度 λ の総変動測度 $|\lambda|$ について次が成り立つ:

$$|\lambda|(X) < \infty$$
.

先ずは次の補題を示す.

$$\sum_{j=1}^{\infty} \sum_{i=1}^{\infty} |\lambda(A_j \cap E_i)| = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} |\lambda(A_j \cap E_i)|$$

が成り立つ. これと (2.3) を併せれば最後の不等号が従う.

^{*4} 正項級数は和の順序に依らないから

補題 2.1.4. z_1, \cdots, z_N を複素数とする.これらの添数集合の或る部分 $S \subset \{1, \cdots, N\}$ を抜き取れば次が成り立つ:

$$\left| \sum_{k \in S} z_k \right| \ge \frac{1}{2\pi} \sum_{k=1}^N |z_k|.$$

証明 (補題). $z_k = |z_k|e^{i\alpha_k}$ $(-\pi \le \alpha_k < \pi, \ k=1,\cdots,N)$ となるように α_1,\cdots,α_N を取る.ここで i は虚数単位である.また $-\pi \le \theta \le \pi$ に対し

$$S(\theta) := \{ k \in \{1, \dots, N\}; \cos(\alpha_k - \theta) > 0 \}$$

とおく. このとき

$$\left| \sum_{k \in S(\theta)} z_k \right| = |e^{-i\theta}| \left| \sum_{k \in S(\theta)} z_k \right| = \left| \sum_{k \in S(\theta)} |z_k| e^{i(\alpha_k - \theta)} \right|$$

$$\geq \Re \left[\sum_{k \in S(\theta)} |z_k| e^{i(\alpha_k - \theta)} \right] = \sum_{k \in S(\theta)} |z_k| \cos(\alpha_k - \theta) = \sum_{k=1}^N |z_k| \cos^+(\alpha_k - \theta)^{*5}$$

が成り立ち、最右辺は θ に関して連続となるから $[-\pi,\pi]$ 上で式を最大にする θ_0 が存在する. $S:=S(\theta_0)$ とおき、 θ_0 と任意の $\theta\in[-\pi,\pi]$ に対して

$$\left| \sum_{k \in S} z_k \right| \ge \sum_{k=1}^N |z_k| \cos^+(\alpha_k - \theta_0) \ge \sum_{k=1}^N |z_k| \cos^+(\alpha_k - \theta)$$

が成り立つから, 左辺右辺を積分して

$$\left| \sum_{k \in S} z_k \right| \ge \sum_{k=1}^N |z_k| \frac{1}{2\pi} \int_{[-\pi,\pi]} \cos^+(\alpha_k - \theta) \ d\theta = \frac{1}{2\pi} \sum_{k=1}^N |z_k|$$

が成り立つ*6.

証明 (定理 2.1.3).

第一段 或る $E \in \mathcal{M}$ に対し $|\lambda|(E) = \infty$ が成り立っていると仮定する. $t := 2\pi(1 + |\lambda(E)|)$ とおけば (() $|\lambda|(E) > t$ となるから, (2.3) より E の分割 $(E_i)_{i=1}^{\infty}$ を

$$\sum_{i=1}^{\infty} |\lambda(E_i)| > t$$

$$\int_{[-\pi,\pi]} \cos^+(\alpha - \theta) d\theta = \int_{[\alpha - \pi,\alpha + \pi]} \cos^+ \theta d\theta = \int_{[-\pi,\pi]} \cos^+ \theta d\theta = 1$$

が成り立つ.

^{*} $^{5}\cos^{+}x=0\lor\cos x\,(x\in\mathbb{R})$ である.

 $^{^{*6}}$ 最後の積分について、実際三角関数の周期性を使えば任意の $\alpha\in\mathbb{R}$ に対して

となるように取ることができる. 従って或る $N \in \mathbb{N}$ を取れば

$$\sum_{i=1}^{N} |\lambda(E_i)| > t$$

が成り立つ. $z_i\coloneqq \lambda(E_i)~(i=1,\cdots,N)$ として補題 2.1.4 を使えば、或る $S\subset\{1,\cdots,N\}$ に対し

$$\left| \sum_{k \in S} \lambda(E_k) \right| \ge \frac{1}{2\pi} \sum_{k=1}^{N} |\lambda(E_k)| > \frac{t}{2\pi} > 1$$

となる. $A := \sum_{k \in S} E_k$ とおいて B := E - A とすれば

$$|\lambda(B)| = |\lambda(E) - \lambda(A)| \ge |\lambda(A)| - |\lambda(E)| > \frac{t}{2\pi} - |\lambda(E)| = 1$$

が成り立つから、つまり $|\lambda|(E) = \infty$ の場合、E の直和分割 A, B で

$$|\lambda(A)| > 1$$
, $|\lambda(B)| > 1$

を満たすものが取れると示された. そして [\lambda] の加法性から

$$|\lambda|(E) = |\lambda|(A) + |\lambda|(B)$$

も成り立つから、この場合右辺の少なくとも一方は∞となる.

第二段 背理法により定理の主張することを証明する. 今 $|\lambda|(X)=\infty$ と仮定すると、前段の結果より X の或る直和分割 A_1,B_1 で

$$|\lambda|(B_1) = \infty$$
, $|\lambda(A_1)| > 1$, $|\lambda(B_1)| > 1$

を満たすものが取れる. B_1 についてもその直和分割 A_2, B_2 で

$$|\lambda|(B_2) = \infty$$
, $|\lambda(A_2)| > 1$, $|\lambda(B_2)| > 1$

を満たすものが取れる.この操作を繰り返せば,どの二つも互いに素な集合列 $(A_j)_{j=1}^\infty$ で $|\lambda(A_j)|>1$ $(j=1,2,\cdots)$ を満たすものを構成できる. $A:=\sum_{j=1}^\infty$ について, $|\lambda(A)|<\infty$ でなくてはならないから,Riemann の級数定理より

$$\lambda(A) = \sum_{j=1}^{\infty} \lambda(A_j)$$

の右辺は絶対収束する.従って $0<\epsilon<1$ に対し或る $N\in\mathbb{N}$ が存在して n>N なら $|\lambda(A_n)|<\epsilon$ が成り立つはずであるが,これは $|\lambda(A_n)|>1$ であることに矛盾する.背理法により $|\lambda|(X)<\infty$ であることが示された.

定義 2.1.5 (複素測度の空間・ノルムの定義). 可測空間 (X, M) 上の複素測度の全体を CM と表す. $\lambda, \mu \in CM, c \in \mathbb{C}, E \in M$ に対し

$$(\lambda + \mu)(E) := \lambda(E) + \mu(E),$$

$$(c\lambda)(E) := c\lambda(E)$$
(2.4)

を線型演算として CM は線形空間となり、特に定理 2.1.3 により $\lambda \in CM$ に対して $|\lambda| \in CM$ が成り立つ。また $\|\cdot\|: CM \to \mathbb{R}$ を

$$\|\lambda\| := |\lambda|(X) \quad (\lambda \in CM)$$

と定義すればこれは CM においてノルムとなる.

上で定義した ||·|| がノルムとなることを証明する.総変動の正値性からノルムの正値性が従うから,以下示すのは同次性と三角不等式である.

同次性 総変動測度の定義 (2.3) とスカラ倍の定義 (2.4) より、任意の $\lambda \in CM$ と $c \in \mathbb{C}$ に対し

$$||c\lambda|| = \sup \sum_{i} |(c\lambda)(E_i)| = \sup \sum_{i} |c\lambda(E_i)| = |c| \sup \sum_{i} |\lambda(E_i)| = |c| ||\lambda||$$

が成り立つ.

三角不等式 任意の $\lambda, \mu \in CM$ に対し

$$||\lambda + \mu|| = |\lambda + \mu|(X) = \sup \sum_{i} |(\lambda + \mu)(E_i)| = \sup \sum_{i} |\lambda(E_i) + \mu(E_i)|$$

となるが、ここで

$$\sum_i |\lambda(E_i) + \mu(E_i)| \le \sum_i |\lambda(E_i)| + \sum_i |\mu(E_i)| \le ||\lambda|| + ||\mu||$$

が成り立つから

$$\|\lambda + \mu\| = \sup \sum_{i} |\lambda(E_i) + \mu(E_i)| \le \|\lambda\| + \|\mu\|$$

が従う.

定義 2.1.6 (正変動と負変動・Jordan の分解). 可測空間 (X, M) 上の複素測度の全体を CM とし、実数値の $\mu \in CM$ を取る (このような μ を符号付き測度 (signed measure) という).

$$\mu^+ := \frac{1}{2}(|\mu| + \mu), \quad \mu^- := \frac{1}{2}(|\mu| - \mu)$$

とおけば μ^+ , μ^- はどちらも正値有限測度となる*⁷. μ^+ を μ の正変動 (positive variation) とい μ^- を μ の負変動 (negative variation) という. また

$$\mu = \mu^+ - \mu^-, \quad |\mu| = \mu^+ + \mu^-$$

が成り立ち、ここで示した符号付き測度の正変動と負変動による表現を Jordan の分解という.

^{*&}lt;sup>7</sup> M 上で $|\mu|(E) \ge |\mu(E)|$ であることと定理 2.1.3 による.

定義 2.1.7 (絶対連続・特異). (X, M) を可測空間, μ を M 上の正値測度*8, $\lambda, \lambda_1, \lambda_2$ を M 上の任意の測度 ($_{\text{正値測度或は複素測度}}$) とする.

• λ が μ に関して絶対連続である (absolutely continuous) ということを

$$\lambda \ll \mu$$

と書き、その意味は、「 $\mu(E) = 0$ となる全ての $E \in M$ について $\lambda(E) = 0$ 」である.

• 或る $A \in M$ があって $\lambda(E) = \lambda(A \cap E)$ ($\forall E \in M$) が成り立っているとき, λ は A に集中している (concentrated on A) という. λ_1, λ_2 に対し或る $A_1, A_2 \in M$ があって, λ_1 が A_1 に集中, λ_2 が A_2 に集中しかつ $A_1 \cap A_2 = \emptyset$ を満たしているとき,これを互いに特異である (mutually singular) といい

 $\lambda_1 \perp \lambda_2$

と書く.

命題 2.1.8 (絶対連続性と特異性に関する性質). (X, M) を可測空間, μ を M 上の正値測度, $\lambda, \lambda_1, \lambda_2$ を M 上の複素測度とする. このとき以下に羅列する事柄が成り立つ.

- (1) λ が $A \in M$ に集中しているなら $|\lambda|$ も A に集中している.
- (2) $\lambda_1 \perp \lambda_2$ $\lambda_3 \mid \lambda_1 \mid \lambda_2 \mid \lambda_2 \mid \lambda_3 \mid \lambda_4 \mid \lambda_5 \mid$
- (3) $\lambda_1 \perp \mu \text{ bol} \lambda_2 \perp \mu \text{ cold } \lambda_1 + \lambda_2 \perp \mu.$
- (4) $\lambda_1 \ll \mu \text{ in } \lambda_2 \ll \mu \text{ to if } \lambda_1 + \lambda_2 \ll \mu.$
- (5) $\lambda \ll \mu \text{ cosi} |\lambda| \ll \mu$.
- (6) $\lambda_1 \ll \mu \text{ bol} \lambda_2 \perp \mu \text{ cold } \lambda_1 \perp \lambda_2.$

2.2 Lebesgue-Radon-Nikodym の定理

補題 2.2.1.

定理 2.2.2 (Lebesgue-Radon-Nikodym).

^{*8} 正値測度という場合は ∞ も取りうる. 従って正値測度は複素測度の範疇にはない. μ として例えば k 次元 Lebesgue 測度を想定している.