ECON 6170 Section 6

TA: Patrick Ferguson

October 11, 2024

The Relative Topology

The Correspondence notes use the concepts of relative closedness and relative openness. Let $S \subseteq \mathbb{R}^d$.

Definition 1. A set $U \subseteq S$ is open relative to S if every point $x \in U$ is contained in a relatively open ball $B_{\varepsilon}(x) \cap S \subseteq U$.

Example 1.

- (i) Consider $\mathbb{R}_+ \subseteq \mathbb{R}$. [0,1) is open relative to \mathbb{R}_+ . For if $x \in [0,1)$ then $(x \varepsilon, x + \varepsilon) \cap \mathbb{R}_+ \subseteq [0,1)$ for sufficiently small ε . In particular $(-\varepsilon, \varepsilon) \cap \mathbb{R}_+ = [0, \varepsilon) \subseteq [0,1)$.
- (ii) Consider $\mathbb{N} \subseteq \mathbb{R}$. {1} is open relative to \mathbb{N} . For $(1 \varepsilon, 1 + \varepsilon) \cap \mathbb{N} = \{1\} \subseteq \{1\}$ for $\varepsilon < 1$.
- (iii) Consider $X := \mathbb{R} \times \{0\} \subseteq \mathbb{R}^2$. $U := (a, b) \times \{0\}$ is open relative to X. For if $x \in U$, then $B_{\varepsilon}(x) \cap X = (x \varepsilon, x + \varepsilon) \times \{0\} \subseteq U$ for sufficiently small ε .

Remark 1. If it is clear we are using the relative topology of S, $B_{\varepsilon}(x)$ is often used in place of $B_{\varepsilon} \cap S$. For example in (i), $B_{\varepsilon}(0)$ would be $[0, \varepsilon)$. This is the case in the Correspondence notes.

Definition 2. A set $V \subseteq S$ is closed relative to S if for any sequence (x_n) in V that converges to $x \in S$ has $x \in V$.

Example 2. Consider $\mathbb{R}_{++} \subseteq \mathbb{R}$. (0,1] is closed relative to \mathbb{R}_{++} , because $0 \notin \mathbb{R}_{++}$.

Remark 2. If it is clear we are using the relative topology of S, if (x_n) is a sequence in S such that $x_n \to x \notin S$, we sometimes say that (x_n) diverges. That is, convergence means convergence to a point in S. In the previous example, the sequence $(\frac{1}{n})$ would be said to diverge.

Remark 3. The following results about open and closed sets generalise to relatively open and relatively closed sets:

- \triangleright *A* is relatively open in *S* iff $S \setminus A$ is relatively closed in *S*.
- > The union of relatively open sets is also relatively open.
- > The intersection of relatively closed sets is also relatively closed.
- > The finite intersection of relatively open sets is also relatively open.
- > The finite union of relatively closed sets is also relatively closed.

Remark 4. Some results don't generalise to the relative topology:

- ➤ Heine-Borel may not hold. That is, some sets that are bounded and relatively closed are not compact (in the sense of sequential or covering compactness). For example, (0,1] is relatively closed in \mathbb{R}_{++} but $\frac{1}{n}$ has no subsequence that converges in (0,1].
- \succ Cauchy sequences may not converge. For example, $(\frac{1}{n})$ is Cauchy but doesn't converge in the relative topology of R_{++} .

Remark 5. Compactness is not relative: a set is (sequentially or covering) compact iff it is compact in every relative topology.

Correspondences

Definition 3. We define the power set of X to be the set of all subsets of X, and denote it by 2^{X} .

Definition 4. A correspondence $F: X \rightrightarrows Y$, from a nonempty set X to another nonempty set Y, is a function from X to 2^Y .

- (i) The domain of F is X.
- (ii) The codomain of *F* is *Y*.
- (iii) The range of F is $\bigcup \{F(x) \in 2^Y \mid x \in X\}$.

In our course, *X* and *Y* will always be subsets of Euclidean space.

Definition 5. A correspondence is p-valued if the sets it maps to all have property p.

Remark 6. We can think of functions as a singleton-valued correspondences, in the sense that every function with values f(x) uniquely specifies a correspondence with values $\{f(x)\}$, and *vice versa*.

Section Exercise 1. Determine whether the following correspondences are closed-valued, compact-valued, singleton-valued, and/or convex-valued:

(i) A budget correspondence, $B: \mathbb{R}^{n+1}_{++} \rightrightarrows \mathbb{R}^n_+$, given by $B(p,w) := \{x \in \mathbb{R}^n_+ \mid p \cdot x \leq w\}$. $p \cdot 0 \leq w$, so $0 \in B$. For fixed p, w the set B(p, w) is the intersection of the closed half-space $p \cdot x \leq w$, with the nonnegative orthant \mathbb{R}^n_+ . It is therefore the intersection of closed sets, and so closed itself. Given $p \gg 0$ and $x \geq 0$, it is also bounded, and so compact. If $p \cdot x \leq w$ and

 $p \cdot y \le w$, then $p \cdot (\alpha x + (1 - \alpha)y) \le \alpha w + (1 - \alpha)w = w$, so it is convex. Therefore, B is a nonempty-valued, compact-valued and convex-valued correspondence.

- (a) What happens if we let some of the prices be 0? *B* is no longer bounded-valued, and thus no longer compact-valued.
- (ii) A Walrasian demand correspondence, $X : \mathbb{R}^{n+1}_{++} \rightrightarrows \mathbb{R}^n_+$, given by $X(p,w) := \arg\max\{u(x) \mid x \in B(p,w)\}$
 - (a) ... without restrictions on u.

 $X(p,w) \subseteq B(p,w)$, so X is bounded-valued. But it may be neither closed nor convex. Take, for example, the utility function $u : \mathbb{R}^2_+ \to \mathbb{R}$ given by

$$u(x_1, x_2) = \mathbf{1}_{\{x_1 \neq x_2\}}$$

Then $(0, \frac{1}{n})$ is a sequence that is (eventually) in X(p, w), but the limit, $(0, 0) \notin X(p, w)$, so X is not closed-valued. Moreover, $(\varepsilon, 0)$ and $(0, \varepsilon)$ are in X(p, w) for sufficiently small $\varepsilon > 0$, but $\frac{1}{2}(\varepsilon, 0) + \frac{1}{2}(0, \varepsilon) = (0, 0) \notin X(p, w)$, so it is not convex-valued either.

- (b) ... where u is continuous. Continuity of u and compactness of B(p,w) imply that u attains a maximum on B(p,w), so X is nonempty-valued. Let (x_i) be an arbitrary sequence in X(p,w). Then $u(x_i) = u^*$ for all $i \in \mathbb{N}$, so by continuity of u, $u(\lim x_i) = \lim u(x_i) = u^*$. Therefore, X is closed-valued, and because it is bounded-valued, compact-valued.
- (c) ... where u is continuous and quasiconcave. Continuity implies that u attains a maximum on B(p,w). Quasiconcavity implies $X(p,w) = \{x \in B(p,w) \mid u(x) \ge \max_{y \in B(p,w)} u(y)\}$ is convex, so X is convex-valued.
- (d) ... where u is continuous and *strictly* quasiconcave. X is singleton-valued. For if $x \neq x'$ and $u(x) = u(x') \geq u(y)$ for all $y \in B(p, w)$, then $u\left(\frac{1}{2}x + \frac{1}{2}x'\right) > u(x)$ by strict quasiconcavity, a contradiction.
- (iii) An upper contour correspondence, $R : \mathbb{R}^n_+ \rightrightarrows \mathbb{R}^n_+$, given by

$$R(x) := \{ y \in \mathbb{R}^n_+ \mid u(y) \ge u(x) \}$$

where u is continuous?

R is nonempty-valued, for $x \in R(x)$. R is closed-valued, for if $(y_i)_{i=1}^{\infty}$ is a convergent sequence in R(x), then $u(y_i) \ge u(x)$ for all i. By continuity of u, this implies that $u(\lim_i y_i) \ge u(x)$, so $\lim_i y_i \in R(x)$.

Section Exercise 2. Consider the following static game

$$\begin{array}{cccc} & L & R \\ U & 1,1 & 0,0 \\ D & 0,1 & 1,1 \end{array}$$

where player 1 chooses the row and player 2 chooses the column. The ordered-pair entries are the payoffs, (v_1, v_2) , to player 1 and player 2, respectively. Define the best response correspondence of

player 1 BR₁ : $\{L, R\} \Longrightarrow \{U, D\}$ by

$$x \in BR_1(y) \iff v_1(x,y) \ge v_1(x',y) \text{ for } x' \in \{U,D\}$$

Define the best response correspondence of player 2 similarly. Which player has a singleton-valued best response correspondence?

Player 1. $BR_1(L) = \{U\}$ and $BR_1(R) = \{D\}$. In contrast, $BR_2(D) = \{L, R\}$.

Definition 6. The graph of a function $f: X \to Y$ is the set of points $\{(x,y) \in X \times Y \mid y = f(x)\}$.

Definition 7. The graph of a correspondence $F : X \rightrightarrows Y$ is the set of points $\{(x,y) \in X \times Y \mid y \in F(x)\}$.

Remark 7. As with functions, graphs of correspondences $F: X \subseteq \mathbb{R} \rightrightarrows \mathbb{R}$ are easy to visualize. The difference is that for correspondences, a vertical line can intersect the graph more than once.

