27/10/22

PRIMER EXAMEN PARCIAL

- 1. Resuelva los siguientes problemas dejando constancia de todas sus operaciones.
- 2. No está de más decir que el examen es individual.
- 3. Suba su examen identificado manuscrito resuelto en formato pdf con buena calidad para evaluar el procedimiento.
- 4. *El tiempo para resolverlo es de 3 horas*. Sé penalizará si es entregado después de transcurrido ese tiempo.
- 1. Una estrella de neutrones es una colección de neutrones unidos por su gravedad mutua con una densidad comparable a la de un núcleo atómico (aproximadamente 10^{12} g/cm³). Asuma que las estrella de neutrones es una esfera y muestre que la máxima frecuencia con que puede rotar, si queremos que la masa no salga volando fuera del ecuador, es $f = (\rho G/3\pi)^{1/2}$, donde ρ es la densidad. Calcule f para una densidad de 10^{12} g/cm³.
- 2. Una partícula de masa m está sujeta a una fuerza constante F. En t=0 tiene una velocidad cero. Use el teorema de momentum $\Delta p = \int F dt$ para calcular la velocidad un tiempo t más tarde. Calcule la energía de la partícula usando los teoremas de energía cinética $\Delta T = \int F v dt$ y $\Delta T = \int F dx$ y verifique que los resultados concuerdan.
- 3. Una partícula de masa m esta sujeta a una fuerza, $F = -kx + kx^3/a^2$, donde k y a son constantes. (a) Calcule V(x). (b) Muestre que si $E = ka^2/4$ la integral en la metodología para fuerzas dependientes de la posición se puede evaluar por métodos elementales. Encuentre x(t) para este caso, escogiendo x_0 y t_0 en una forma conveniente.