this model predicts the price of used cars according to diffrent factors!

importing libraries

```
In [1]: import numpy as np
    import pandas as pd
    import statsmodels.api as sm
    import matplotlib.pyplot as plt
    from sklearn.linear_model import LinearRegression
    import seaborn as sns
    sns.set()
```

1.loading the data

```
In [2]: data = pd.read_csv("cars_data.csv")
#the top 5 rows of the df
data.head()
```

\sim	+1	Γn:	1.
υu	ı	_	Ι.

	Brand	Price	Body	Mileage	EngineV	Engine Type	Registration	Year	Model
0	BMW	4200.0	sedan	277	2.0	Petrol	yes	1991	320
1	Mercedes-Benz	7900.0	van	427	2.9	Diesel	yes	1999	Sprinter 212
2	Mercedes-Benz	13300.0	sedan	358	5.0	Gas	yes	2003	S 500
3	Audi	23000.0	crossover	240	4.2	Petrol	yes	2007	Q7
4	Toyota	18300.0	crossover	120	2.0	Petrol	yes	2011	Rav 4

data preprocessing

Exploring the descriptive statistics of the variables

In [3]: # Descriptive statistics are very useful for initial exploration of the variables
By default, only descriptives for the numerical variables are shown
To include the categorical ones, you should specify this with an argument
data.describe(include = 'all')

Out[3]:

	Brand	Price	Body	Mileage	EngineV	Engine Type	Registration	Year
count	4345	4173.000000	4345	4345.000000	4195.000000	4345	4345	4345.000000
unique	7	NaN	6	NaN	NaN	4	2	NaN
top	Volkswagen	NaN	sedan	NaN	NaN	Diesel	yes	NaN
freq	936	NaN	1649	NaN	NaN	2019	3947	NaN
mean	NaN	19418.746935	NaN	161.237284	2.790734	NaN	NaN	2006.550058
std	NaN	25584.242620	NaN	105.705797	5.066437	NaN	NaN	6.719097
min	NaN	600.000000	NaN	0.000000	0.600000	NaN	NaN	1969.000000
25%	NaN	6999.000000	NaN	86.000000	1.800000	NaN	NaN	2003.000000
50%	NaN	11500.000000	NaN	155.000000	2.200000	NaN	NaN	2008.000000
75%	NaN	21700.000000	NaN	230.000000	3.000000	NaN	NaN	2012.000000
max	NaN	300000.000000	NaN	980.000000	99.990000	NaN	NaN	2016.000000

In [4]: data = data.drop(['Model'], axis = 1)
 data.describe(include = 'all')

Out[4]:

	Brand	Price	Body	Mileage	EngineV	Engine Type	Registration	Year
count	4345	4173.000000	4345	4345.000000	4195.000000	4345	4345	4345.000000
unique	7	NaN	6	NaN	NaN	4	2	NaN
top	Volkswagen	NaN	sedan	NaN	NaN	Diesel	yes	NaN
freq	936	NaN	1649	NaN	NaN	2019	3947	NaN
mean	NaN	19418.746935	NaN	161.237284	2.790734	NaN	NaN	2006.550058
std	NaN	25584.242620	NaN	105.705797	5.066437	NaN	NaN	6.719097
min	NaN	600.000000	NaN	0.000000	0.600000	NaN	NaN	1969.000000
25%	NaN	6999.000000	NaN	86.000000	1.800000	NaN	NaN	2003.000000
50%	NaN	11500.000000	NaN	155.000000	2.200000	NaN	NaN	2008.000000
75%	NaN	21700.000000	NaN	230.000000	3.000000	NaN	NaN	2012.000000
max	NaN	300000.000000	NaN	980.000000	99.990000	NaN	NaN	2016.000000

In [5]: # data.isnull() # shows a df with the information whether a data point is null
Since True = the data point is missing, while False = the data point is not missing
This will give us the total number of missing values feature-wise
data.isnull().sum()

Out[5]: Brand Price 172 Body 0 Mileage 0 EngineV 150 Engine Type 0 Registration 0 Year 0 dtype: int64

removing null values as it is less that 5% of the total data, due to rule of thumb

In [6]: data = data.dropna(axis = 0)

In [7]: data.describe(include = 'all')

Out[7]:

	Brand	Price	Body	Mileage	EngineV	Engine Type	Registration	Year
count	4025	4025.000000	4025	4025.000000	4025.000000	4025	4025	4025.000000
unique	7	NaN	6	NaN	NaN	4	2	NaN
top	Volkswagen	NaN	sedan	NaN	NaN	Diesel	yes	NaN
freq	880	NaN	1534	NaN	NaN	1861	3654	NaN
mean	NaN	19552.308065	NaN	163.572174	2.764586	NaN	NaN	2006.379627
std	NaN	25815.734988	NaN	103.394703	4.935941	NaN	NaN	6.695595
min	NaN	600.000000	NaN	0.000000	0.600000	NaN	NaN	1969.000000
25%	NaN	6999.000000	NaN	90.000000	1.800000	NaN	NaN	2003.000000
50%	NaN	11500.000000	NaN	158.000000	2.200000	NaN	NaN	2007.000000
75%	NaN	21900.000000	NaN	230.000000	3.000000	NaN	NaN	2012.000000
max	NaN	300000.000000	NaN	980.000000	99.990000	NaN	NaN	2016.000000

as shown in count raw, all the counts of the data are the same,

exploring PDSs

In [8]: # A great step in the data exploration is to display the probability distribution fun
The PDF will show us how that variable is distributed
This makes it very easy to spot anomalies, such as outliers
The PDF is often the basis on which we decide whether we want to transform a featur
sns.distplot(data['Price'])

C:\Users\pc\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarnin
g: `distplot` is a deprecated function and will be removed in a future version. Plea
se adapt your code to use either `displot` (a figure-level function with similar fle
xibility) or `histplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

Out[8]: <AxesSubplot:xlabel='Price', ylabel='Density'>

dealing with outliers

```
In [9]: q = data['Price'].quantile(0.99)
```

In [11]: data_1.describe(include = 'all')

Out[11]:

	Brand	Price	Body	Mileage	EngineV	Engine Type	Registration	Year
count	3984	3984.000000	3984	3984.000000	3984.000000	3984	3984	3984.000000
unique	7	NaN	6	NaN	NaN	4	2	NaN
top	Volkswagen	NaN	sedan	NaN	NaN	Diesel	yes	NaN
freq	880	NaN	1528	NaN	NaN	1853	3613	NaN
mean	NaN	17837.117460	NaN	165.116466	2.743770	NaN	NaN	2006.292922
std	NaN	18976.268315	NaN	102.766126	4.956057	NaN	NaN	6.672745
min	NaN	600.000000	NaN	0.000000	0.600000	NaN	NaN	1969.000000
25%	NaN	6980.000000	NaN	93.000000	1.800000	NaN	NaN	2002.750000
50%	NaN	11400.000000	NaN	160.000000	2.200000	NaN	NaN	2007.000000
75%	NaN	21000.000000	NaN	230.000000	3.000000	NaN	NaN	2011.000000
max	NaN	129222.000000	NaN	980.000000	99.990000	NaN	NaN	2016.000000

In [12]: sns.distplot(data_1['Price'])

C:\Users\pc\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarnin
g: `distplot` is a deprecated function and will be removed in a future version. Plea
se adapt your code to use either `displot` (a figure-level function with similar fle
xibility) or `histplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

Out[12]: <AxesSubplot:xlabel='Price', ylabel='Density'>

In [13]: sns.distplot(data_1['Mileage'])

C:\Users\pc\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarnin
g: `distplot` is a deprecated function and will be removed in a future version. Plea
se adapt your code to use either `displot` (a figure-level function with similar fle
xibility) or `histplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

Out[13]: <AxesSubplot:xlabel='Mileage', ylabel='Density'>


```
In [14]: q = data_1['Mileage'].quantile(0.99)
```

```
In [15]: data_2 = data_1[data_1['Mileage']<q]</pre>
```

In [16]: sns.distplot(data_2['Mileage'])

C:\Users\pc\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarnin
g: `distplot` is a deprecated function and will be removed in a future version. Plea
se adapt your code to use either `displot` (a figure-level function with similar fle
xibility) or `histplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

Out[16]: <AxesSubplot:xlabel='Mileage', ylabel='Density'>

In [17]: sns.distplot(data_2['EngineV'])

C:\Users\pc\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarnin
g: `distplot` is a deprecated function and will be removed in a future version. Plea
se adapt your code to use either `displot` (a figure-level function with similar fle
xibility) or `histplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

Out[17]: <AxesSubplot:xlabel='EngineV', ylabel='Density'>


```
In [18]: data_3 = data_2[data_2['EngineV']<6.5]</pre>
```

In [19]: sns.distplot(data_3['EngineV'])

C:\Users\pc\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarnin
g: `distplot` is a deprecated function and will be removed in a future version. Plea
se adapt your code to use either `displot` (a figure-level function with similar fle
xibility) or `histplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

Out[19]: <AxesSubplot:xlabel='EngineV', ylabel='Density'>

In [20]: sns.distplot(data_3['Year'])

C:\Users\pc\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarnin
g: `distplot` is a deprecated function and will be removed in a future version. Plea
se adapt your code to use either `displot` (a figure-level function with similar fle
xibility) or `histplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

Out[20]: <AxesSubplot:xlabel='Year', ylabel='Density'>


```
In [21]: q = data_3['Year'].quantile(0.1)
```

```
In [22]: data_4 = data_3[data_3['Year']>1970]
# data_4 = data_3[data_3['Year']>1975]
```

In [23]: sns.distplot(data_4['Year'])

C:\Users\pc\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarnin
g: `distplot` is a deprecated function and will be removed in a future version. Plea
se adapt your code to use either `displot` (a figure-level function with similar fle
xibility) or `histplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

Out[23]: <AxesSubplot:xlabel='Year', ylabel='Density'>

In [24]: data = data_4.reset_index(drop=True)

In [25]: data.describe(include = 'all')

Out[25]:

	Brand	Price	Body	Mileage	EngineV	Engine Type	Registration	Year
count	3920	3920.000000	3920	3920.000000	3920.000000	3920	3920	3920.000000
unique	7	NaN	6	NaN	NaN	4	2	NaN
top	Volkswagen	NaN	sedan	NaN	NaN	Diesel	yes	NaN
freq	862	NaN	1498	NaN	NaN	1818	3558	NaN
mean	NaN	17984.081878	NaN	161.282653	2.443406	NaN	NaN	2006.415561
std	NaN	19042.148809	NaN	96.080356	0.946302	NaN	NaN	6.569588
min	NaN	600.000000	NaN	0.000000	0.600000	NaN	NaN	1978.000000
25%	NaN	7000.000000	NaN	92.000000	1.800000	NaN	NaN	2003.000000
50%	NaN	11500.000000	NaN	158.000000	2.200000	NaN	NaN	2008.000000
75%	NaN	21500.000000	NaN	229.000000	3.000000	NaN	NaN	2012.000000
max	NaN	129222.000000	NaN	435.000000	6.300000	NaN	NaN	2016.000000

checking ols assumptions

In [26]: # Here we decided to use some matplotlib code, without explaining it
 # You can simply use plt.scatter() for each of them (with your current knowledge)
 # But since Price is the 'y' axis of all the plots, it made sense to plot them side-b
 f, (ax1,ax2,ax3) = plt.subplots(1,3, sharey = True , figsize = (15,3))#sharey -> shar
 ax1.scatter(data['Year'] , data['Price'])
 ax1.set_title('Price and Year')
 ax2.scatter(data['EngineV'], data['Price'])
 ax2.set_title('engine and Price')
 ax3.scatter(data['Mileage'], data['Price'])
 ax3.set_title('mileage and Price')
 plt.show()

In [27]: # Let's transform 'Price' with a log transformation
 log_price = np.log(data['Price'])
 # Then we add it to our data frame
 data['log_Price']= log_price
 data

Out[27]:

	Brand	Price	Body	Mileage	EngineV	Engine Type	Registration	Year	log_Price
0	BMW	4200.0	sedan	277	2.0	Petrol	yes	1991	8.342840
1	Mercedes- Benz	7900.0	van	427	2.9	Diesel	yes	1999	8.974618
2	Mercedes- Benz	13300.0	sedan	358	5.0	Gas	yes	2003	9.495519
3	Audi	23000.0	crossover	240	4.2	Petrol	yes	2007	10.043249
4	Toyota	18300.0	crossover	120	2.0	Petrol	yes	2011	9.814656
3915	Toyota	17900.0	sedan	35	1.6	Petrol	yes	2014	9.792556
3916	Mercedes- Benz	125000.0	sedan	9	3.0	Diesel	yes	2014	11.736069
3917	BMW	6500.0	sedan	1	3.5	Petrol	yes	1999	8.779557
3918	BMW	8000.0	sedan	194	2.0	Petrol	yes	1985	8.987197
3919	Volkswagen	13500.0	van	124	2.0	Diesel	yes	2013	9.510445

3920 rows × 9 columns

```
In [28]: #PLOT WITH LOG OF PRICE
f, (ax1,ax2,ax3) = plt.subplots(1,3, sharey = True , figsize = (15,3))#sharey -> shar
ax1.scatter(data['Year'] , data['log_Price'])
ax1.set_title('log_Price and Year')
ax2.scatter(data['EngineV'], data['log_Price'])
ax2.set_title('engine and log_Price')
ax3.scatter(data['Mileage'], data['log_Price'])
ax3.set_title('mileage and log_Price')
plt.show()
```


now we can se a liner relationship in all 3 plots

In [30]: data

Out[30]:

	Brand	Body	Mileage	EngineV	Engine Type	Registration	Year	log_Price
0	BMW	sedan	277	2.0	Petrol	yes	1991	8.342840
1	Mercedes-Benz	van	427	2.9	Diesel	yes	1999	8.974618
2	Mercedes-Benz	sedan	358	5.0	Gas	yes	2003	9.495519
3	Audi	crossover	240	4.2	Petrol	yes	2007	10.043249
4	Toyota	crossover	120	2.0	Petrol	yes	2011	9.814656
3915	Toyota	sedan	35	1.6	Petrol	yes	2014	9.792556
3916	Mercedes-Benz	sedan	9	3.0	Diesel	yes	2014	11.736069
3917	BMW	sedan	1	3.5	Petrol	yes	1999	8.779557
3918	BMW	sedan	194	2.0	Petrol	yes	1985	8.987197
3919	Volkswagen	van	124	2.0	Diesel	yes	2013	9.510445

3920 rows × 8 columns

multicolliniarity check:

```
In [32]: data.columns.values
```

```
In [33]: from statsmodels.stats.outliers_influence import variance_inflation_factor
```

```
In [35]: # To make this as easy as possible to use, we declare a variable where we put
         # all features where we want to check for multicollinearity
         # since our categorical data is not yet preprocessed, we will only take the numerical
         variables = data[['Mileage','Year','EngineV']]
In [36]: | vif = pd.DataFrame()
In [37]: vif['VIF'] = [variance_inflation_factor(variables.values, i ) for i in range(variable
In [38]: vif['Features'] = variables.columns
In [39]: |vif
Out[39]:
                  VIF Features
             3.790463
                       Mileage
          1 10.394632
                         Year
          2 7.669290
                      EngineV
In [40]: # Since Year has the highest VIF, I will remove it from the model
         # This will drive the VIF of other variables down!!!
         # So even if EngineV seems with a high VIF, too, once 'Year' is gone that will no lon
         data_no_multicollinearity = data.drop(['Year'],axis=1)
         create dummy variables to preprocess all categorical features
In [41]: | data_dummy = pd.get_dummies(data_no_multicollinearity,drop_first = True)
In [42]: data_dummy
Out[42]:
                                                    Brand Marcadas
```

		Mileage	EngineV	log_Price	Brand_BMW	Brand_Mercedes- Benz	Brand_Mitsubishi	Brand_Renault	Bra
	0	277	2.0	8.342840	1	0	0	0	
	1	427	2.9	8.974618	0	1	0	0	
	2	358	5.0	9.495519	0	1	0	0	
	3	240	4.2	10.043249	0	0	0	0	
	4	120	2.0	9.814656	0	0	0	0	
39	915	35	1.6	9.792556	0	0	0	0	
39	916	9	3.0	11.736069	0	1	0	0	
39	917	1	3.5	8.779557	1	0	0	0	
39	918	194	2.0	8.987197	1	0	0	0	
39	919	124	2.0	9.510445	0	0	0	0	

3920 rows × 18 columns

```
variables_dummy = data_dummy[['Brand_BMW' , 'Brand_Mercedes-Benz' , 'Brand_Mitsubishi
In [44]:
         vif dummy = pd.DataFrame()
In [45]: vif_dummy['VIF'] = [variance_inflation_factor(variables_dummy.values, i ) for i in ra
         C:\Users\pc\anaconda3\lib\site-packages\statsmodels\regression\linear_model.py:1738:
         RuntimeWarning: divide by zero encountered in double_scalars
           return 1 - self.ssr/self.uncentered_tss
In [47]: vif dummy['Features'] = variables dummy.columns
In [48]: vif_dummy
Out[48]:
                VIF
                             Features
                           Brand BMW
          0 0.187302
          1 0.000000 Brand_Mercedes-Benz
          2 0.160656
                        Brand_Mitsubishi
          3 0.412844
                         Brand_Renault
          4 0.491054
                          Brand_Toyota
          5 0.109049
                      Brand_Volkswagen
In [50]: data dummy.columns.values
Out[50]: array(['Mileage', 'EngineV', 'log_Price', 'Brand_BMW',
                'Brand_Mercedes-Benz', 'Brand_Mitsubishi', 'Brand_Renault',
                'Brand_Toyota', 'Brand_Volkswagen', 'Body_hatch', 'Body_other',
                'Body_sedan', 'Body_vagon', 'Body_van', 'Engine Type_Gas',
                'Engine Type_Other', 'Engine Type_Petrol', 'Registration_yes'],
               dtype=object)
'Brand_Toyota', 'Brand_Volkswagen', 'Body_hatch', 'Body_other',
                'Body_sedan', 'Body_vagon', 'Body_van', 'Engine Type_Gas',
                'Engine Type_Other', 'Engine Type_Petrol', 'Registration_yes']
In [53]: final data = data dummy[cols]
```

```
In [55]: |final_data
Out[55]:
                                                              Brand_Mercedes-
                   log_Price Mileage EngineV Brand_BMW
                                                                                Brand Mitsubishi Brand Renault Bra
                   8.342840
               0
                                 277
                                            2.0
                                                           1
                                                                             0
                                                                                               0
                                                                                                              0
                   8.974618
                                 427
                1
                                            2.9
                                                           0
                                                                             1
                                                                                               0
                                                                                                              0
                   9.495519
                                 358
                                            5.0
                                                           0
                                                                             1
                                                                                               0
                                                                                                              0
                 10.043249
                                 240
                                            4.2
                   9.814656
                                 120
                                            2.0
                                                                                                              0
            3915
                   9.792556
                                  35
                                            1.6
                                                           0
                                                                             0
                                                                                               0
                                                                                                              0
            3916 11.736069
                                    9
                                            3.0
                                                           0
                                                                             1
                                                                                               0
                                                                                                              0
            3917
                   8.779557
                                    1
                                            3.5
                                                           1
                                                                             0
                                                                                               0
                                                                                                              0
            3918
                  8.987197
                                 194
                                            2.0
                                                                             0
                                                                                               0
                                                                                                              0
            3919
                   9.510445
                                            2.0
                                                           0
                                                                             n
                                                                                               n
                                                                                                              n
                                 124
           3920 rows × 18 columns
```

linear regression model

```
In [57]:
         #target is log price
         target = final_data['log_Price']
         inputs = final_data.drop(['log_Price'], axis = 1)
         scaling the data
In [58]:
         # Import the scaling module
         from sklearn.preprocessing import StandardScaler
         # Create a scaler object
         scaler = StandardScaler()
         # Fit the inputs (calculate the mean and standard deviation feature-wise)
         scaler.fit(inputs)
Out[58]: StandardScaler()
In [59]:
         # Scale the features and store them in a new variable (the actual scaling procedure)
         inputs_scaled = scaler.transform(inputs)
         train, test and split
```

x_train,x_test,y_train,y_test = train_test_split(inputs_scaled,target,test_size = 0.2

Import the module for the split

from sklearn.model_selection import train_test_split

In [60]:

In [61]:

```
In [62]: # Create a linear regression object
    reg = LinearRegression()
    # Fit the regression with the scaled TRAIN inputs and targets
    reg.fit(x_train,y_train)
```

Out[62]: LinearRegression()

```
In [63]: # Let's check the outputs of the regression
# I'll store them in y_hat as this is the 'theoretical' name of the predictions
y_hat = reg.predict(x_train)
```

```
In [66]: # The simplest way to compare the targets (y_train) and the predictions (y_hat) is to
# The closer the points to the 45-degree line, the better the prediction
plt.scatter(y_train,y_hat)
# Let's also name the axes
plt.xlabel('Targets (y_train)',size=18)
plt.ylabel('Predictions (y_hat)',size=18)
# Sometimes the plot will have different scales of the x-axis and the y-axis
# This is an issue as we won't be able to interpret the '45-degree line'
# We want the x-axis and the y-axis to be the same
plt.xlim(6,13)
plt.ylim(6,13)
plt.show()
```



```
In [67]: # Another useful check of our model is a residual plot
    # We can plot the PDF of the residuals and check for anomalies
    sns.distplot(y_train - y_hat)

# Include a title
    plt.title("Residuals PDF", size=18)

# In the best case scenario this plot should be normally distributed
    # In our case we notice that there are many negative residuals (far away from the mea
    # Given the definition of the residuals (y_train - y_hat), negative values imply
    # that y_hat (predictions) are much higher than y_train (the targets)
# This is food for thought to improve our model
```

C:\Users\pc\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarnin
g: `distplot` is a deprecated function and will be removed in a future version. Plea
se adapt your code to use either `displot` (a figure-level function with similar fle
xibility) or `histplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

Out[67]: Text(0.5, 1.0, 'Residuals PDF')


```
In [68]: # Find the R-squared of the model
    reg.score(x_train,y_train)

# Note that this is NOT the adjusted R-squared
    # in other words... find the Adjusted R-squared to have the appropriate measure :)
```

Out[68]: 0.7400068462570588

```
inputs
In [107]:
Out[107]:
                                           Brand_Mercedes-
                Mileage EngineV Brand BMW
                                                          Brand Mitsubishi Brand Renault Brand Toyota
                   277
              0
                            2.0
                                        1
                                                       0
                                                                      0
                                                                                   0
                                                                                               0
                   427
                                        0
                                                                                               0
              1
                            2.9
                                                       1
                                                                      0
                                                                                   0
              2
                   358
                            5.0
                                        0
                                                       1
                                                                                               0
              3
                   240
                                        0
                            4.2
                   120
                            2.0
                                        0
             ...
           3915
                    35
                            1.6
                                        0
                                                       0
                                                                      0
                                                                                   0
                                                                                               1
           3916
                     9
                            3.0
                                        0
                                                                      0
                                                                                   0
                                                                                               0
           3917
                     1
                            3.5
                                        1
                                                       0
                                                                      0
                                                                                   0
                                                                                               0
           3918
                                                                                               0
                   194
                            2.0
                                        1
                                                       0
                                                                      0
                                                                                   0
                            2.0
           3919
                                        n
                                                       0
                                                                      n
                                                                                   n
                                                                                               0
                   124
          3920 rows × 17 columns
          x_new = pd.DataFrame({'Mileage':[99] ,'EngineV':[2.5] , 'Brand_BMW' : [0],'Brand_Merc
In [111]:
           'Brand_Renault':[0],'Brand_Toyota': [0] , 'Brand_Volkswagen':[0] , 'Body_hatch' :[0
           'Body_vagon':[0] , 'Body_van':[0] , 'Engine Type_Gas' :[1],
           'Engine Type_Other':[0], 'Engine Type_Petrol':[0], 'Registration_yes':[1] })
In [112]: x_new
Out[112]:
                                        Brand_Mercedes-
              Mileage EngineV Brand_BMW
                                                       Brand_Mitsubishi Brand_Renault Brand_Toyota Br
                                                  Benz
                                                                                0
                                                                                             0
           0
                  99
                         2.5
                                     0
                                                                   0
                                                     1
In [121]:
          scaler.fit(x new)
Out[121]: StandardScaler()
In [122]:
          x_scaled = scaler.transform(x_new)
In [123]:
          x_scaled
[0.]
In [124]:
          y_pred = reg.predict(x_scaled)
          print(np.exp(y_pred))
```

the prediction for such a car is 12,022 USD

[12022.86745248]

```
In [69]:
          # Obtain the bias (intercept) of the regression
          reg.intercept_
Out[69]: 9.394565736417933
          # Obtain the weights (coefficients) of the regression
In [70]:
          reg.coef_
          # Note that they are barely interpretable if at all
Out[70]: array([-0.46616709, 0.22648636, 0.01762355, 0.00740655, -0.12760288,
                  -0.17458568, -0.05664382, -0.08939368, -0.15751762, -0.10492303,
                  -0.20419713, -0.12995513, -0.15374739, -0.12901571, -0.0276273 ,
                  -0.15068186, 0.30564701])
In [71]:
          # Create a regression summary where we can compare them with one-another
          reg_summary = pd.DataFrame(inputs.columns.values, columns=['Features'])
          reg_summary['Weights'] = reg.coef_
          reg_summary
Out[71]:
                                  Weights
                         Features
            0
                          Mileage -0.466167
            1
                         EngineV
                                  0.226486
            2
                      Brand BMW
                                  0.017624
              Brand Mercedes-Benz 0.007407
            4
                   Brand Mitsubishi -0.127603
                    Brand_Renault -0.174586
            5
            6
                     Brand_Toyota -0.056644
            7
                 Brand Volkswagen -0.089394
            8
                       Body hatch -0.157518
            9
                       Body other -0.104923
           10
                      Body_sedan -0.204197
           11
                      Body_vagon -0.129955
           12
                        Body_van -0.153747
           13
                  Engine Type_Gas -0.129016
           14
                 Engine Type Other -0.027627
           15
                 Engine Type_Petrol -0.150682
           16
                   Registration_yes 0.305647
```

testing

```
In [73]: y_hat_test = reg.predict(x_test)
```

```
In [78]: plt.scatter(y_test,y_hat_test, alpha = 0.2)
```

Out[78]: <matplotlib.collections.PathCollection at 0x15ac6292b50>


```
In [98]: # Finally, let's manually check these predictions
# To obtain the actual prices, we take the exponential of the log_price
df_pf = pd.DataFrame(np.exp(y_hat_test)), columns = ['Prediction'])
```

In [99]: df_pf

Out[99]:

Prediction

- **0** 52487.914835
- 1 9278.593572
- **2** 18862.594083
- **3** 10870.554377
- **4** 18037.162787

779 23244.225004

780 17365.406542

781 2983.876850

782 32005.415924

783 13251.348839

784 rows × 1 columns

```
In [100]: # We can also include the test targets in that data frame (so we can manually compare
    df_pf['Target'] = np.exp(y_test)
    df_pf

# Note that we have a lot of missing values
    # There is no reason to have ANY missing values, though
    # This suggests that something is wrong with the data frame / indexing
```

Out[100]: Prediction Target 0 52487.914835 51000.0 1 9278.593572 8900.0 2 18862.594083 17800.0 3 10870.554377 13900.0 4 18037.162787 10600.0 779 23244.225004 21800.0 780 17365.406542 24000.0 781 2983.876850 3100.0 782 32005.415924 23500.0 783 13251.348839 11500.0

784 rows × 2 columns

```
In [101]: # After displaying y_test, we find what the issue is
# The old indexes are preserved (recall earlier in that code we made a note on that)
# The code was: data_cleaned = data_4.reset_index(drop=True)

# Therefore, to get a proper result, we must reset the index and drop the old indexin
y_test = y_test.reset_index(drop = True)

# Check the result
y_test.head()
```

```
In [102]: df_pf['Target'] = np.exp(y_test)
           df_pf
Out[102]:
                   Prediction
                             Target
              0 52487.914835 51000.0
              1 9278.593572 8900.0
              2 18862.594083 17800.0
              3 10870.554377 13900.0
              4 18037.162787 10600.0
            779 23244.225004 21800.0
            780 17365.406542 24000.0
            781 2983.876850 3100.0
            782 32005.415924 23500.0
            783 13251.348839 11500.0
           784 rows × 2 columns
  In [ ]:
  In [ ]:
```