ECE 468 / CS 519: Digital Image Processing

Histogram Equalization & Specification

Prof. Sinisa Todorovic

sinisa@eecs.oregonstate.edu

Outline

• Histogram equalization (Textbook: 3.3.1);

Histogram specification (Textbook: 3.3.2);

Histogram of Intensity Values

x axis: intensity values

y axis: frequency

- Increases local contrast by spreading out the intensity histogram
- Produces artifacts

intensity-level histogram (red) cumulative histogram (black)

$$h(r_i \leq r < r_{i+1}) = \frac{n_i}{n} \\ \underbrace{\qquad \qquad }_{\text{total number of pixels}}$$

output pixel
$$s=T(r)$$

$$h(r_1 < r \le r_2) = h(T(r_1) < s \le T(r_2))$$

output pixel
$$s=T(r)$$

$$h(r)\Delta r = h(s)\Delta s$$

output pixel
$$s=T(r)$$

$$h(r)\Delta r = h(s)\Delta T(r)$$

output pixel
$$s=T(r)$$

$$h(r)\Delta r = h(s)\Delta T(r)$$

output pixel
$$s=T(r)$$

$$h(r)\Delta r = h(s)\Delta T(r)$$

$$\Delta T(r) = \frac{h(r)}{h(T(r))} \Delta r$$

output pixel
$$s=T(r)$$

$$h(r)\Delta r = h(s)\Delta T(r)$$

$$T(r) = \sum_{i=0}^{r} h(i)$$

output pixel
$$s=T(r)$$

Key condition so as to keep the image content intact:

$$h(r)\Delta r = h(s)\Delta T(r)$$

$$s = T(r) = 255 \sum_{i=0}^{r} h(i)$$

for pixel values in [0,255]

$$T(r) = c \sum_{i=0}^r h_{ ext{input}}(i)$$

histogram

intensity-level histogram (red); cumulative histogram (black)

Example: Histogram Equalization

Example: Histogram Specification

Histogram of Pixel Intensities

input image

Example: Histogram Specification

Histogram Equalization

Example: Histogram Specification

Histogram Specification

$$s = T(r) = ?$$

Solving two equalization problems:

$$z=T_1(r)$$

$$z^\prime = T_2(s)$$

equalize input r to z

equalize output s to z'

Histogram Specification

$$s = T(r) = ?$$

Solving two equalization problems:

$$z=T_1(r)$$

$$z^\prime = T_2(s)$$

equalize input r to z

equalize output s to z'

it must be that: z = z'

Histogram Specification

$$s = T(r) = ?$$

Solving two equalization problems:

$$z=T_1(r)$$

$$z^\prime = T_2(s)$$

equalize input r to z

equalize output s to z'

$$s = T_2^{-1}(T_1(r))$$

MATLAB

• g = imadjust(f,[low_in; high_in],[low_out; high_out],gamma)

If high_out < low_out, the output is a photographic negative.

• h = imhist(f, num_bins);% histogram

• p = imhist(f, num_bins)/numel(f);% normalized histogram

• g = histeq(f, hspec), Of g = histeq(f, 256)

hspec - counts of equally spaced intensity values in [0,255]

Next Class

- Spatial convolution and correlation (Textbook: 3.4.2);
- Smoothing and sharpening spatial filters (Textbook: 3.5)
- Matlab tutorial