

CÉSAR VALLEJO

CÉSAR VALLEJO

ÁLGEBRA

FUNCIONES REALES Y GRÁFICA DE FUNCIONES I

Docente: José Luis Vásquez Carhuamaca

OBJETIVOS:

- ✓ Conocer a las funciones, sus elementos, propiedades y gráficas.
- ✓ Calcular el dominio y rango en base a su regla de correspondencia.
- ✓ Desarrollar destrezas en la resolución de problemas tipo referidos al tema.

Introducción

Al observar la naturaleza detenidamente, podemos ver que muchas de las situaciones que suceden a nuestro alrededor están relacionadas.

Una de las situaciones cotidianas es el transporte de pasajeros a los distintos departamentos del Perú.

Veamos la siguiente situación :

Una empresa de transportes cuenta con 5 unidades de buses ,para transportar pasajeros a 6 ciudades del Perú, con horario de salida a las 8 de la mañana.

El siguiente diagrama muestra una posible distribución de bus y destino

Del diagrama se observa que un bus solo puede ir a una sola ciudad

FUNCIÓN

Sean A y B conjuntos no vacíos. La función f de A en B es un conjunto de pares ordenados (x; y) tal que a $x \in A$ le corresponde un único elemento $y \in B$.

Notación: $f: A \longrightarrow B$ o $A \stackrel{f}{\longrightarrow} B$

Gráficamente

Conjunto de partida

Conjunto de llegada

Ejemplos

$$f = \{(-2, 4); (3, 9); (5, 25)\}$$

$$R = \{(4; 2); (9; 3); (9: -3)\}$$

CONDICIÓN DE UNICIDAD DE LA FUNCIÓN

Sea f una función.

Si
$$(x; y) \in f \land (x; z) \in f \rightarrow y = z$$

Ejemplos

• Sea g una función

$$g = \{(6; -3); (8; 4); (6; p)\} \rightarrow p = -3$$

Sea h una función

DOMINIO Y RANGO

Sea la función $f: A \rightarrow B$

Dominio de f

Es el conjunto formado por las primeras componentes de los pares ordenados que pertenecen a la función.

$$Dom f = \{x/(x; y) \in f\} \subseteq A$$

Rango de f

Es el conjunto formado por las segundas componentes de los pares ordenados que pertenecen la función.

$$\operatorname{Ran} f = \{y/(x; y) \in f\} \subseteq B$$

Ejemplo
$$f = \{(-2, 4); (3, 9); (5, 25)\}$$

$$Dom f = \{-2; 3; 5\} \quad Ran f = \{4; 9; 25\}$$

REGLA DE CORRESPONDENCIA

Sea $f: A \to B$ una función tal que $(x; y) \in f$. La regla de correspondencia de f es la igualdad que relaciona $x \in y$.

Notación y = f(x)

x: Var. independiente

y: Var. dependiente

Ejemplo

Luego: $y = x^2 + 5$ o $f(x) = x^2 + 5$

FUNCIÓN REAL DE VARIABLE REAL

La función $f: A \to B$ es una función real de variable real, si A y B son subconjuntos de \mathbb{R} .

Ejemplos

•
$$f: \langle -1; 6] \rightarrow \mathbb{R}$$

 $x \rightarrow 2x - 3$

De donde podemos plantear que:

$$Dom f = \langle -1; 6] \quad \land \quad f(x) = 2x - 3$$

•
$$g = \{(x; y) \in \mathbb{R} \times \mathbb{R} / -2 < x \le 5 \land y = 3x - 1\}$$

Dom $g = \langle -2; 5 \rangle \land g(x) = 3x - 1$

Nota:

Una función está bien definida si se conoce su dominio y regla de correspondencia.

INTENSIVO UNI	
CÁLCULO DE DOMINIO Y RANGO	Ejemplo:
Sea la función $f: A \rightarrow B$ $x \rightarrow f_{(x)}$	Halle el dominio de la función $f_{(x)} = \sqrt{9x - x^2} + \frac{x}{\sqrt[3]{x^2 - 1}}$
$x \rightarrow f_{(x)}$ Dominio de f	Resolución $\sqrt[3]{x^2 - 1}$
Esta dada por la variación de x, si esta no se conoce entonces:	
$Dom f = A \cap (CVA de f_{(x)})$	
Para hallar el CVA consideramos:	
$ \begin{array}{c} $	
$ \begin{array}{ccc} & \frac{P_{(x)}}{Q_{(x)}} \in \mathbb{R} & \Leftrightarrow & Q_{(x)} \neq 0 \end{array} $	
	CÉSAR VALLEJO

INTENSIVO UNI					
Ejemplo:					
Halle el dominio	de la función si				
$a_{(x)} = \int_{-\infty}^{4} x^{2}$	$\frac{x+2}{x-4} - \sqrt{9- 2x-3 }$	I D F NA /A			
\sqrt{x}	z-4	ID LIVINA			
Resolución					
					CÉSAR VALLEJO

INTENSIVO UNI			
Rango de f			
Esta dada por la	variación de $f_{(x)}$, y s	se	
obtiene a partir del	dominio.		
Ejemplo:	ACADI	EM/A	
Halle el rango d			
$f_{(x)} = 3 + \frac{1}{x}$	$\frac{10}{x+5}; x \in [-3;1)$		
Resolución			
			CÉSAR VALLEJO

INTENSIVO UNI						
• Sea la función $g:$ [$[-2;7] \rightarrow \mathbb{R}$ tal que					
$g(x) = -x^2$						
Halle el rango de la f	unción.					
Resolución	- ACADEM	/A -				
					CÉS V	ALLEJO

GRÁFICA DE FUNCIONES

La gráfica de una función f es la representación de todos sus pares ordenados (x, y) que pertenecen a la función en el plano cartesiano.

$$Graf(f) = \{(x, y) \in \mathbb{R}^2 / x \in Dom f \land y = f(x)\}$$

Ejemplo

$$f = \{(2;3), (4;-1), (-1;2), (-3;1)\}$$

Propiedad

Una gráfica corresponde a una función, si al trazarle rectas verticales, estas la intersecan a lo más en un solo punto.

La gráfica de *f* sí corresponde a una función.

La gráfica de *R* no corresponde a una función.

GRÁFICA DE FUNCIONES ESPECIALES

1.- Función constante

Regla de correspondencia:

$$f_{(x)} = k$$
 ; $k \in \mathbb{R}$

- Dom $f = \mathbb{R}$ (si no es dato)
- Rang $f = \{k\}$

Ejemplos

Grafique: $f_{(x)} = 4$, $g_{(x)} = -3$

2.- Función lineal

Regla de correspondencia:

$$f_{(x)} = ax + b$$
 ; $a \neq 0$

- Dom $f = \mathbb{R}$ (si no es dato)
- Rang $f = \mathbb{R}$

Donde:

• Raíz:
$$-\frac{b}{a}$$
 • $a = \tan \theta$

3.- Función cuadrática

Regla de correspondencia:

$$f_{(x)} = ax^2 + bx + c$$
; $a \neq 0$

- Dom $f = \mathbb{R}$ (si no es dato)
- Ran $f \subset \mathbb{R}$
- Su gráfica es una parábola vertical.

Completando cuadrados

$$f_{(x)} = a(x-h)^2 + k$$

vértice: V = (h; k)

$$h = -\frac{b}{2a} = \frac{x_1 + x_2}{2}$$
 , $k = f_{(h)}$

donde x_1 y x_2 son raíces de $f_{(x)}$

Grafiquemos considerando dos casos:

I) a > 0 Parábola cóncava hacia arriba

II) a < 0 Parábola cóncava hacia abajo

INTENSIVO UNI	
Ejemplo	• Hallemos el rango de la siguiente función
• Grafique $f(x) = x^2 - 4x + 3$	$f(x) = -2x^2 + 12x + 14$
Resolución:	Resolución:
A CA DEMI	
	CÉSAR VALLEJO

Sea
$$f(x) = ax^2 + bx + c$$
; $a \neq 0$

	$\Delta > 0$	$\Delta = 0$	$\Delta < 0$
	Raíces reales y diferentes	Raíces reales e iguales	Raíces no reales
<i>a</i> > 0	X_1 X_2 X	$x_1 = x_2$	Y
<i>a</i> < 0	$\begin{array}{c} Y \wedge \\ \hline x_1 & x_2 \\ \hline X & X \end{array}$	Y	$X \longrightarrow X$

— ACADEMIA — CÉSAR VALLEJO

GRACIAS

academiacesarvallejo.edu.pe