Day 4: More Counting

Scribe: Caroline Jin

Date: Tuesday, February, 5 2019

1 Partitions

A partition of a set S is a subset of $S_1, ... S_k$ such that

- (i) $\bigcup_{i=1}^{k} S_i$. The subsets 'cover' the set S
- (ii) $S_i \cap S_j = \emptyset$. The subsets are pairwise disjoint.
- (iii) $S_i \neq \emptyset$

Problem 1. Let S be the set of all integers composed of digits in $\{1,3,5,7\}$ at most one.

- (i) Find |S|
- (ii) $\sum_{x \in S} x$

Solution

(i) Let $S = S_1 \cup S_2 \cup S_3 \cup S_4$ where S_1 is the number of one digit numbers, S_2 is the number of two-digit numbers, and so on.

$$|S_1| = {}^{4}P_1 = 4$$

$$|S_2| = {}^{4}P_2 = 12$$

$$|S_3| = {}^{4}P_3 = 24$$

$$|S_4| = {}^{4}P_4 = 24$$

$$|S| = |S_1| + |S_2| + |S_3| + |S_4| = \boxed{64}$$

(ii) Let $\alpha = \alpha_1 + 10\alpha_2 + 100\alpha_3 + 1000\alpha_4$ where α_1 is the sum of all units digits of all numbers in S, α_2 is the sum of all the tens digits of all the numbers, and so on. We will find the value of α_1 using the following:

$$S_1 \to s_1 = (1+3+5+7)$$

$$S_2 \to s_2 = (1+3+5+7) \times (3)$$

$$S_3 \to s_3 = (1+3+5+7) \times (3\times 2)$$

$$S_4 \to s_4 = (1+3+5+7) \times (3\times 2\times 1)$$

$$\alpha_1 = 16 \times (1+3+6+6) = 256$$

Note that α_2 is the sum of the same values, excluding s_1 as S_1 is the set of only one digit numbers. α_3 is the sum of the same values as α_2 , excluding s_2 as S_2 is the set of only two digit numbers, and so on.

$$\alpha_2 = \alpha_1 - s_1 = 240$$
 $\alpha_3 = \alpha_2 - s_2 = 192$
 $\alpha_4 = \alpha_3 - s_3 = 96$

Thus,
$$\alpha = \alpha_1 + 10\alpha_2 + 100\alpha_3 + 1000\alpha_4 = \boxed{117,856}$$

An easier solution is the following:

$$1+3+5+7=(1+7)+(3+5)=8(\frac{4}{2})=16$$

$$13+\ldots+75=(13+75)+\ldots+(35+53)=88(\frac{12}{2})=528$$
 etc

Since each $x \in S_i$ pairs with $\bar{x} \in S_i$ to sum to 88...8. We find $\alpha = 8\frac{|S_1|}{2} + 88\frac{|S_2|}{2} + 888\frac{|S_3|}{2} + 8888\frac{|S_4|}{2} = \boxed{117,856}$

2 Cyclic Permutation

Consider the set T of 3 permutations of (s_1, s_2, s_3, s_4) or (1, 2, 3, 4). We know that $T = \{123, 132, 234, 214, ...\}$ and |T| = P(4, 3) = 24.

We define $x \cong y \iff x + y$ are cyclically equivalently

Problem 1. Given $123 \cong x$, how many solutions are there for $x \in T$?

Solution The x values are 123, 231, 312, so there are 3 solutions. Thus, we see any sequence of length $n \cong n$ sequences

Theorem 2.1. If Q(n,r) is the number of cyclic permutations of length r from a set of n elements, $Q(n,r) = \frac{P(n,r)}{r}$.

Theorem 2.2. There are (n-1)! ways to seat n people around a round table.

Proof. Each ordering $\cong n$ orderings. Thus, $\frac{n!}{n} = (n-1)!$

Problem 2. There are 5 boys and 3 girls seated around a round table.

- (i) There are no restrictions.
- (ii) B_1 and G_1 are not adjacent
- (iii) No girls are adjacent to other girls

Solution

- (i) Using theorem 2.1, there are 7! ways.
- (ii) We first place B_1 in any of the 7 seats and set B_1 as our reference point. There are then 5 places for G_1 to sit not adjacent to B_1 and 6! ways for the remaining 6 people to sit. The total number of ways if $6! \cdot 5$. We can also consider the number of ways for B_1 and G_1 to sit next to each other, which is $2 \cdot 6!$. Subtracting that from arranging without restrictions, the total number of ways is $7! 2 \cdot 6!$
- (iii) We first arrange all the 5 boys, which is 4! ways. There are 5 spaces between each boy, so we can choose 3 of the seats and then arrange the 3 girls, $\binom{5}{3} \cdot 3!$. The total number of ways is $\boxed{4! \cdot \binom{5}{3} \cdot 3!}$

3 Recursion

Exercise 1. Find the recursive definition of P(n, r).

Solution We know that the closed form of $P(n,r) = \frac{n!}{(n-r)!}$. Our goal is to define P(n,r) = f(P(< n, < r)).

Let $S = \{s_1, ..., s_n\}$, r be given $0 \le r \le n$, and T be the set of all r-permutations of S. We can partition T into $T = T_1 \cup T_2$ where

$$t = T_1 \Leftrightarrow s_1 \notin t \text{ (no } s_1)$$

 $t = T_2 \Leftrightarrow s_1 \in t \text{ (yes } s_1)$

We can find the $|T_1|$ in terms of $P(\leq n, \leq r)$

$$|T_1| = P(n-1,r)$$

 $|T_2| = r \cdot P(n-1,r-1)$

For $|T_2|$, we can order r-1 elements from $\{s_2,...,s_n\}$ and place s_1 in any of the r locations. Thus, $P(n,r) = P(n-1,r) + r \cdot P(n-1,r-1)$

Exercise 2. Find a recursive definition of C(n, r)

Solution Again, let T be the subset of $S = \{s_1, ..., s_n\}$ of size r. To find |T|, let $T = T_1 \cup T_2$ where T_1 has no set containing s_1 and T_2 has every set containing s_1 .

$$|T_1|=C(n-1,r)$$
 we can choose r from $s_2,...s_n$ $|T_2|=C(n-1,r-1)$ we choose $r-1$ from $s_2,...s_n$ and add in s_1

Thus,
$$C(n,r) = C(n-1,r) + C(n-1,r-1)$$

Problem 1. Given 2n tennis players. How many ways are there to arrange n games/pairings?

Solution There are several solutions to this problem:

- 1. We can match P_1 with another 2n-1 players. For the next player P_2 who hasn't been matched, we can choose 2n-3 players, and so on. The solution is just $(2n-1)(2n-3)...(1) = \boxed{(2n-1)!!}$
- 2. We can choose each pair and divide by n! to remove the ordering of the pairs. There are $\left[\frac{\binom{2n}{n}\binom{2n-2}{2}...\binom{2}{2}}{n!}\right]$ ways.
- 3. We can permute all 2n players and divide by n! (the number of ways to order the game doesn't matter) and 2^n (the order of the partners doesn't matter). There are $\boxed{\frac{(2n)!}{n!2^n}}$