Name:

Solutions

Student No.:

Part III:

(19 points) The differential amplifier below, with $V_{CC}=5$ V, $R_E=50\,\Omega$, and $R_L=800\,\mathrm{k}\Omega$, has the following quiescent state: $I_{C3}=1\,\mathrm{mA},\ I_{C1}=I_{C2}=500\,\mu\mathrm{A},\ V_{GS1}=V_{GS2}=1.5\,\mathrm{V},\ \mathrm{and}\ V_x=0.5\,\mathrm{V}.$ All the BJTs have $|V_{CE,sat}|=0.2\,\mathrm{V},\ \mathrm{with}\ r_{o,Q1}=r_{o,Q2}=200\,\mathrm{k}\Omega,\ \mathrm{and}\ r_{o,Q3}=100\,\mathrm{k}\Omega.$ The MOSFETs are identical, with $V_{TH}=1\,\mathrm{V},\ \mathrm{and}\ \lambda=0$. The bias voltage V_{B1} is a constant, while an external circuit (not shown) automatically adjusts V_{B2} to maintain $V_o^+=V_o^-=2.5\,\mathrm{V}.$ Assume $V_T=\frac{kT}{q}=26\,\mathrm{mV}.$

1. Determine the minimum input common mode voltage, $V_{IC,min}$. (3 points)

 $V_{IC,\min} = \bigvee_{i} \mathcal{T}_{i} \mathcal{T}_{i}$

2. Determine the maximum input common mode voltage, $V_{IC,max}$. (2 points)

Vosymin =
$$V_0^+ - V_{xmax}$$
 but $V_{xmax}^- V_{icmax}$ $V_{icmax}^- V_{GS_1}$

Vosat = $V_0^+ - V_{icmax}$ + V_{GS_1}
 $V_{GC_1}^- - V_{TA} = V_0^+ - V_{icmax}$ + V_{GS_1}
 $V_{IC,max} = 3.5V$
 $V_{IC,max} = V_0^+ + V_{TA}$
 $V_{IC,max} = V_0^+ + V_{TA}$
 $V_{IC,max} = V_0^+ + V_{TA}$

3. What is the maximum symmetric differential output voltage swing? (4 points)

If
$$V_{0}^{+} = V_{0}^{-} = 2.5V$$
, the max. swing of V_{0}^{+} is $V_{0}^{-} = V_{0}^{-} = 5V - 0.2V = 4.8V$.

The min. swing is set by V_{0}^{+} in $-V_{0}^{-} > 0$ Dest.

I V_{0}^{+} in $= V_{0}$ Dest. $+V_{0}^{-} = V_{0}$ $+V_{0}^{-} = V_{0}^{-} = V_{0}^{-} + V_{0}^{-} = V_{0}^{-} =$

To get the input swing, we reed the diff. voltage gain.

Diff. half circuit:

$$Adm = \frac{Vod}{Vid} = -\frac{qm_{Ri}}{Vid} \left(\frac{R_{i}}{V_{i}} \right) \left(\frac{$$

$$= -\frac{(2)500 \text{ pA}}{1.5 \text{ V} - \text{ V}} \left(200 \text{ KD} || \infty || 400 \text{ KD} \right)$$

$$= -\frac{(2)500 \text{ pA}}{1.5 \text{ V} - \text{ V}} \left(200 \text{ KD} || \infty || 400 \text{ KD} \right)$$

$$= -\frac{(2)500 \text{ pA}}{1.5 \text{ V} - \text{ V}} \left(200 \text{ KD} || \infty || 400 \text{ KD} \right)$$

$$= -\frac{(2)500 \text{ pA}}{1.5 \text{ V} - \text{ V}} \left(200 \text{ KD} || \infty || 400 \text{ KD} \right)$$

$$= -(33.3(2) - 266.0$$
1. Videwing = $\frac{Vod_{swing}}{|Adm|} = \frac{6}{266.6} = 22.5 \text{ mV}$

$$v_{id,swing,max} = 22.5 \text{ mV}$$

Acm =
$$-\frac{9m}{1+9m}$$
, $\frac{1}{287}$
= $-\frac{2(900\mu\text{A})}{1.5V-1V}$, $\frac{200\mu\text{A}}{1+\frac{2(500\mu\text{A})}}$, $\frac{2}{2}$, $\frac{292\mu\text{A}}{2}$

:
$$CMPR = \left| \frac{Adm}{Acm} \right| = \frac{206.6}{0.171} = 1539$$