Machine Learning with Python

K-Means

Naïve Bayes

KNN Algorithm

Random Forest Classification

AdaBoost

PCA

Lecture --

Dr. Sherif Eletriby

Classification (Logistic Regression)

Classification (Logistic Regression)

Machine learning algorithms

Supervised Learning

التعلم بواسطة الإشراف

Regression

- Given (x1, y1), (x2, y2), ..., (xn, yn)
- Learn a function f(x) to predict y given x
- **□ y** is real-valued

Output is **continuance** values

Classification

- Given (x1, y1), (x2, y2), ..., (xn, yn)
- Learn a function f(x) to predict y given x
- **□ y** is categorical

values نفصل values

Room#	Price	
3	50	
5	70	
4	100	
6	150	

Room#	Туре	
3	0	
5	1	
4	0	
6	1	

Classification

Room#	Туре	
3	0	
5	1	
4	0	
6	1	

If
$$h(x) \ge 0.5$$
, Then y=1
If $h(x) < 0.5$, Then y=0

Logistic Regression
$$0 \le h(x) \le 1$$

Sigmoid Function
$$g(z) = \frac{1}{1 + e^{-z}}$$

$$h(x) = \theta_0 + \theta_1 x_1$$

$$z = h(x)$$

Classification Logistic Regression التصنيف

Logistic Regression

In spite of its name, logistic regression is a model for classification not regression.

Used to model the probability of the class of x via a linear function.

It can be interpreted as the probability that an input (X) belongs to the default class (Y=1).

The probability of x belong to a class is between 0 and 1.

Sigmoid Function
$$g(z) = \frac{1}{1 + e^{-z}}$$

$$z = h(x) = \theta_j^T . x_i$$

It's an S-shaped curve that can take any real-valued number and map it into a value between 0 and 1

Probability and Odds

$$p(occurring) = \frac{outcome\ of\ interest}{all\ possible\ outcome}$$

$$p(head) = \frac{1}{2} = 0.5$$

$$p(1 \text{ or } 2) = \frac{2}{6} = 0.333$$

$$odds = \frac{p(occurring)}{p(not\ occurring)}$$

$$odds = \frac{p}{1 - p}$$

$$odds(heads) = \frac{0.5}{0.5} = 1 \text{ or } 1:1$$

$$odds(1 \text{ or } 2) = \frac{0.333}{0.666} = \frac{1}{2} = 0.5 \text{ or } 1:2$$

$$\ln(odds) = \ln\left(\frac{p}{1-p}\right) = \log(t(p))$$

Logistic Regression

$$ln(odds) = ln\left(\frac{p}{1-p}\right) = Logit(p)$$

$$logistic(x) = logit(x)^{-1}$$

$$Logistic(x) = \left(ln\left(\frac{x}{1-x}\right)\right)^{-1} \quad 0 < h(x) < 1$$

$$Logistic(x) = \frac{1}{1 + e^{-x}}$$

Sigmoid Function

$$ln(b) = log_e(b)$$
 $e = 2.718$

Example:

 $y \in \{0,1\}$

0: benign

1: malignant

x: *tumor size*

x	У	
3	1	
2	1	
1	1	
5	0	
4	0	
6	0	

h(x) = -2x + 6

z = h(x)

$$g(z) = \frac{1}{1 + e^{-(z)}}$$

when $z \ge 0$

when z < 0

Then $g(z) \ge 0.5$

Then g(z) < 0.5

 $p(y=1|x;\theta)$

Estimated probability

e = 2.718

x	Z		e^{-z}	$1+e^{-(z)}$	g(z)	у
3	0	e^0	1	2	0.5	1
2	2	$\frac{1}{e^2}$	0.13536335	1.13536335	0.8808	1
1	4	$\frac{1}{e^4}$	0.018323237	1.018323237	0.9820	1
5	-4	e^4	54.57551085	55.57551085	0.0179	0
4	-2	e^2	7.387524	8.387524	0.1192	0
6	-6	e ⁶	403.1778962	404.1778962	0.00247	0

Logistic Regression Decision Boundary

Decision Boundary

$$h(x) = \theta_j^T. x_i$$

$$h(x) = z$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$g(z) = p(y = 1|x; \theta)$$

$$p(y = 1|x; \theta) \ge 0.5$$
 Threshold

when $z \ge 0$

Then
$$p(y = 1|x; \theta) \ge 0.5$$

$$\theta_i^T$$
 , $x_i \geq 0$ Decision Boundary

$$h(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

$$\theta_j = \begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix}$$

$$h(x) = -3 + x_1 + x_2$$

$$predicty = 1, if - 3 + x_1 + x_2 \ge 0$$

$$x_1 + x_2 \ge 3$$

$$x_1 + x_2 = 3$$

$$\theta_j = \begin{bmatrix} -4 \\ 1 \\ 1 \end{bmatrix}$$

$$h(x) = -4 + x_1 + x_2$$

Decision boundary can be:

- Linear (a line).
- Higher order polynomial.
- Non-linear.

$$h(x) = x_1^2 + x_2^2 - 2$$

$$x_1^2 + x_2^2 \ge 2$$

complex decision boundary.

Logistic Regression
Cost Function

In Linear regression, to find optimal values for θ s:

1. Choose a cost function
$$j(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^2$$

2. A (2.10) by
$$= \pi \partial_i \theta$$
 is the nits Decision at f then $\theta_i = \alpha \partial_i \theta_i$ $I(\theta)$

What if we choose the same cost function for Logistic regression?

$$g(z) = \frac{1}{1 + e^{-(\theta^T x)}}$$

is a non-linear function

$$z = h(x)$$

Can we find a convex cost function?

$$j(\theta) = cost(h(x), y)$$

$$cost(h(x), y) = \begin{cases} -\log(h(x)), & if \ y = 1\\ -\log(1 - h(x)), & if \ y = 0 \end{cases}$$

Actual y	Predicted h(x)	$j(\theta)$
1	0.9	0.105
1	0.5	0.693
1	0.1	2.302
1	0.01	4.605

			$j(\boldsymbol{\theta})$
Actual Y	Predicted h(x)	$j(\theta)$	
1	0.9	- 0.105	h(x)
$j(oldsymbol{ heta})$		– log(1 –	-h(x)

h(x)

Actual y	Predicted h(x)	1-h(x)	$j(oldsymbol{ heta})$
0	0.9	0.1	2.302
0	0.5	0.5	0.693
0	0.1	0.9	0.105
0	0.01	0.99	0.01

Logistic Regression Cost Function

$$cost(h(x), y) = \begin{cases} -\log(h(x)), & if \ y = 1 \\ -\log(1 - h(x)), & if \ y = 0 \end{cases}$$
 IF/Then version

$$j(\theta) = y * -\log(h(x)) - (1-y) * \log(1-h(x))$$

$$j(\theta) = -y \log(h(x)) - (1-y)\log(1-h(x))$$

$$j(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log \left(h(x^{(i)}) \right) + (1 - y^{i}) \log (1 - h(x^{(i)})) \right]$$

Binary Cross-Entropy Cost Function

Logistic Regression Gradient Descent

Logistic Regression

$$h(x) = \theta_i^T \cdot x_i$$

Learning Model

Linear classifier

$$z = h(x)$$

$$g(z) = \frac{1}{1 + e^{-(z)}}$$

convert a real value into one that can be interpreted as a probability

$$j(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log \left(g(\mathbf{z}^{(i)}) \right) + \left(1 - y^{i} \right) \log (1 - g(\mathbf{z}^{(i)})) \right]$$
Binary Cross-Entropy Cost Function

Step 4:

 $minimize~(j(\theta))~$ Using an optimization algorithm

Gradient Descent

$$\theta_j := \theta_j - \gamma \frac{d}{d\theta_j} J(\theta)$$

Gradient Descent

Linear Regression

Logistic Regression

$$\theta_j := \theta_j - \gamma \frac{d}{d\theta_j} J(\theta)$$

$$\frac{d}{d\theta_j}j(\theta) = \sum_{i=1}^m (h(x)^i - y^i) \cdot x_j^i$$

$$\frac{d}{d\theta_j}j(\theta) = \sum_{i=1}^m \left(h(x)^i - y^i\right) \cdot x_j^i \qquad \frac{d}{d\theta_j}j(\theta) = \frac{1}{m} \sum_{i=1}^m \left(g(z)^i - y^i\right) \cdot x_j^i$$

$$\theta_j$$
: = $\theta_j - \gamma$

Repeat

Batch Gradient Descent

Stochastic Gradient Descent (SGD)

for
$$i = 1, 2, ..., m$$
:

$$\boldsymbol{\theta_j} := \boldsymbol{\theta_j} - \boldsymbol{\gamma} (g(z)^i - y^i). x_j^i$$

Gradient Descent

Linear Regression

Logistic Regression

$$\theta_j := \theta_j - \gamma \frac{d}{d\theta_j} J(\theta)$$

$$\frac{d}{d\theta_j}j(\theta) = \sum_{i=1}^m (h(x)^i - y^i) \cdot x_j^i$$

$$\frac{d}{d\theta_j}j(\theta) = \sum_{i=1}^m \left(h(x)^i - y^i\right) \cdot x_j^i \qquad \frac{d}{d\theta_j}j(\theta) = \frac{1}{m} \sum_{i=1}^m \left(g(z)^i - y^i\right) \cdot x_j^i$$

$$\boldsymbol{\theta_j} := \boldsymbol{\theta_j} - \boldsymbol{\gamma} \, \frac{1}{m} \sum_{i=1}^m (g(z)^i - y^i) \, x_j^i$$

Batch Gradient Descent

Stochastic Gradient Descent (SGD)

for
$$i = 1, 2, ..., m$$
:

$$\boldsymbol{\theta_j} := \boldsymbol{\theta_j} - \boldsymbol{\gamma} (g(z)^i - y^i). x_j^i$$

Logistic Regression Gradient Descent Cross Entropy Function Derivative

$$\theta_j := \theta_j - \gamma \frac{\partial}{\partial \theta_j} J(\theta)$$

$$j(\theta) = -y \log(g(z)) - (1 - y)\log(1 - g(z))$$

$$j(\theta) = \begin{cases} -\log(g(z)), & \text{if } y = 1\\ -\log(1 - g(z)), & \text{if } y = 0 \end{cases}$$

$$\frac{d}{d\theta_{j}}j(\theta) = \begin{cases} -\frac{1}{g(z)} \cdot \frac{d}{d\theta_{j}}g(z) & if \ y = 1\\ -\frac{1}{1 - g(z)} \cdot \frac{d}{d\theta_{j}}(-g(z)) & if \ y = 0 \end{cases}$$

$$\frac{d}{d\theta_j}j(\theta) = -y\frac{1}{g(z)}\cdot\frac{d}{d\theta_j}g(z) - (1-y)\frac{1}{1-g(z)}\cdot\frac{d}{d\theta_j}(-g(z))$$

$$\frac{d}{d\theta_j}j(\theta) = \left(-\frac{y}{g(z)} + \frac{(1-y)}{1-g(z)}\right) \cdot \frac{d}{d\theta_j}g(z)$$

$$\frac{d}{d\theta_i}g(z) = \frac{d}{d\theta_i} \frac{1}{1 + e^{-z}}$$

$$\frac{d}{d\theta_j}g(z) = \frac{d}{d\theta_j}(1 + e^{-z})^{-1}$$

$$\frac{d}{d\theta_j}g(z) = -(1 + e^{-z})^{-2} \cdot \frac{d}{d\theta_j}(1 + e^{-z})$$

$$\frac{d}{d\theta_j}g(z) = -(1 + e^{-z})^{-2} \cdot \frac{d}{d\theta_j}e^{-z}$$

$$\frac{d}{d\theta_j}g(z) = -(1 + e^{-z})^{-2} \cdot e^{-z} \cdot \frac{d}{d\theta_j} - z$$

$$\frac{d}{d\theta_j}g(z) = (1 + e^{-z})^{-2} \cdot e^{-z} \cdot \frac{d}{d\theta_j} [\theta^T \cdot x_j]$$

$$\frac{d}{d\theta_i}g(z) = (1 + e^{-z})^{-2} \cdot e^{-z} \cdot x_j$$

$$\frac{d}{d\theta_{i}}j(\theta) = \left(-\frac{y}{g(z)} + \frac{(1-y)}{1-g(z)}\right) \cdot \frac{d}{d\theta_{i}}g(z)$$

$$\frac{d}{d\theta_j}j(\theta) = \left(-\frac{y}{g(z)} + \frac{(1-y)}{1-g(z)}\right)$$

$$\frac{d}{d\theta_i}j(\theta) = \left(-y(1-g(z)) + (1-y)g(z)\right).x_j$$

$$\frac{d}{d\theta_i}j(\theta) = (-y + y.g(z) + g(z) - y.g(z)).x_j$$

$$\frac{d}{d\theta_i}j(\theta) = (-y + (g(z)).x_j$$

$$\frac{d}{d\theta_j}j(\theta) = \frac{1}{m} \sum_{i=1}^m (g(z)^i - y^i) \cdot x_j^i$$

$$\frac{d}{d\theta_i}g(z) = (1 + e^{-z})^{-2} \cdot e^{-z} \cdot x_j$$

$$\frac{d}{d\theta_j}g(z) = \frac{e^{-z}}{(1 + e^{-z})^2} \cdot x_i$$

$$= \frac{1}{1 + e^{-z}} \cdot \left(1 - \frac{1}{1 + e^{-z}}\right) \cdot x_j$$

$$\frac{d}{d\theta_j}g(z) = g(z).(1 - g(z)).x_j$$

$$\boldsymbol{\theta_j} := \boldsymbol{\theta_j} - \boldsymbol{\gamma} \frac{1}{m} \sum_{i=1}^m (g(z)^i - y^i) \cdot x_j^i$$

Logistic Regression Multi-class Classification

Multiclass Classification

Binary Classification

$$\{x_i, y\}^m$$
 $y \in \{0, 1\}$

Multiclass Classification

$$\{x_i, y\}^m$$
 $y \in \{1, 2, 3, ... N\}$

Two techniques:

- One vs. All
- One vs. One

Covid-19

Positive +

Negative —

Positive/No symptoms ∓

Class

+

+

Ŧ

One vs. One (OvO)

Binary classifier

This link of that tutorial can be a good starting point for beginners, I will use the "titanic dataset" from the famous kaggle competition

https://www.kaggle.com/c/titanic/overview

https://towardsdatascience.com/machine-learning-with-python-classification-complete-tutorial-d2c99dc524ec

Machine Learning with Python: Classification (complete tutorial) | by Mauro Di Pietro | Towards Data Science

The End

