Fonctions usuelles - un problème supplémentaire, corrigé

1) a) Soit $\forall x \in \mathbb{R}$, $-1 \leqslant \cos \leqslant 1$ donc $1 \leqslant 5 - 4\cos x \leqslant 9$. Ainsi, f est définie sur $[0, \pi]$. Elle y est aussi dérivable comme composée et quotient de fonctions dérivables (dont le dénominateur ne s'annule pas). On obtient alors

$$f'(x) = \frac{(5 - 4\cos x)\cos x - 2\sin^2 x}{(5 - 4\cos x)^{3/2}}$$

$$= \frac{-2\cos^2 x + 5\cos x - 2}{(5 - 4\cos x)^{3/2}}$$

$$= 2\frac{(\cos x - \frac{1}{2})(2 - \cos x)}{(5 - 4\cos x)^{3/2}}.$$
Le facteur $2 - \cos x$ étant tou-

jours positif, f'(x) est du signe de $\cos x - \frac{1}{2}$.

b) On en déduit que f est croissante sur $[0, \pi/3]$ et décroissante sur $[\pi/3, \pi]$.

Elle atteint donc un maximum en $\frac{\pi}{3}$, qui vaut $\frac{1}{2}$.

De plus, f'(0) = 1 et $f'(\pi) = -\frac{1}{3}$. La courbe représentative de f est tracée dans la figure 1.

FIGURE 1 – Courbe représentant f.

2) a) Soit $x \in \mathbb{R}$, on sait déjà que $5 - 4\cos x > 0$. Il reste à prouver que $-1 \leqslant \frac{4 - 5\cos x}{5 - 4\cos x} \leqslant 1$. Or,

$$-1 \leqslant \frac{4 - 5\cos x}{5 - 4\cos x} \leqslant 1 \iff \left(\frac{4 - 5\cos x}{5 - 4\cos x}\right)^2 \leqslant 1$$
$$\iff (4 - 5\cos x)^2 \leqslant (5 - 4\cos x)^2$$
$$\iff 9 - 9\cos^2 x \geqslant 0$$
$$\iff 9\sin^2 x \geqslant 0,$$

ce qui est toujours vrai. Ainsi, g est bien définie.

b) Soit $x \in [0, \pi]$, alors, directement par la définition de l'arc cosinus,

$$\cos g(x) = \frac{4 - 5\cos x}{5 - 4\cos x}.$$

De là, on déduit

$$\sin^2 g(x) = 1 - \cos^2 g(x) = \frac{9\sin^2 x}{(5 - 4\cos x)^2} ,$$

puis, sachant que $g(x) \in [0, \pi]$ (définition de la fonction arc cosinus), $\sin g(x) \ge 0$,

on obtient
$$\sin g(x) = \sqrt{\frac{9\sin^2 x}{(5 - 4\cos x)^2}} = \frac{3\sin x}{5 - 4\cos x}.$$

c) Le théorème de dérivation d'une fonction composée permet d'affirmer que g est dérivable en tout point x pour lequel $-1 < \frac{4-5\cos x}{5-4\cos x} < 1$, ce qui oblige a priori à exclure les points 0 et π (reprendre les calculs de la question 2)a) avec des inégalités strictes). Prenons donc $x \in]0,\pi[$: en dérivant la relation $\cos g(x) = \frac{4-5\cos x}{5-4\cos x}$, on obtient :

$$\forall x \in]0, \pi[\qquad -g'(x) \cdot \sin g(x) = \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{4 - 5\cos x}{5 - 4\cos x} \right) = \frac{9\sin x}{(5 - 4\cos x)^2} ,$$

donc

$$\forall x \in]0, \pi[\qquad g'(x) = \frac{9\sin x}{(5 - 4\cos x)^2} \times \frac{-1}{\sin g(x)} = -\frac{3}{5 - 4\cos x} .$$

d) En utilisant la question 2)b), si $x \in [0, \pi]$, (à vous de détailler ce calul)

$$g \circ g(x) = \operatorname{Arccos}\left(\frac{4 - 5\cos g(x)}{5 - 4\cos g(x)}\right) = \operatorname{Arccos}(\cos x) = x$$

car $x \in [0, \pi]$. Ainsi, $g \circ g = \mathrm{Id}_{[0,\pi]}$ (on dit que g est une bijection involutive de $[0,\pi]$ sur lui-même), donc g est bijective et g est la réciproque de g.

Dans un repère orthonormal, (Γ) est donc symétrique par rapport à la droite d'éq. y=x.

e) On voit que la dérivée de g est strictement négative, qu'elle tend vers -3 en 0 et $-\frac{1}{3}$ et π . Comme $g(0) = \pi$ et $g(\pi) = 0$, cela permet de tracer la courbe de g (voir figure 2).

FIGURE 2 – Courbe représentant g.