CNN visualization with Grad-CAM

Ruihao Wang, Liujun Zhang, Yijie Zhou, Yu Guo

Abstract

Convolutional Neural Network (CNN) is one of the popular deep learning methods today. It has been applied in many areas such as image classification, object segmentation, natural language processing and reinforcement learning. Researches have studied in visualizing the CNN model to characterize its classes and features during the training with different algorithms. Here we involve one paper "Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization" about Gradient-weighted Class Activation Mapping (Grad-CAM). This paper introduces an approach to use the gradients of any target concept, flowing into the final convolutional layer to produce a coarse localization map highlighting the important regions in the image for predicting the concept. We reproduced this approach by vgg-16 model with a 4class animal images dataset. During the work, we discover that the visualized features/classes from Grad-CAM can be reproduced with a higher resolution by removing the pooling layers in the CNN model. Hence, we retrain the model with non-pooling layer structure to prove our discovery. To make the demonstration concise, we replace the Fully Connected Layers by Global Average Pooling (GAP) to simplify the model. GAP is an effective approach in CNN model that can reduce the dimension of feature maps. It is also stated in the paper "Learning Deep Features for Discriminative Localization" which introduces the basic idea of CAM.

Part 1: Summary of the original paper

In the paper, authors provide a mapping approach to highlight the region in the image where the prediction replies on. In the CNN model, feature maps are the product of convolutional layers. These feature maps correspond different features, textures and patterns. The core of Grad-CAM is to use the gradient of the score for the target class to be predicted, with respect to each feature maps to generate the weight "a", The weight "a" represents a partial linearization of the deep

network downstream from overall feature maps and captures the 'importance' of each feature map for the target class. After the weighted combination based on weight "a" and feature maps, the ReLU activation function is used to obtain the heat-map of desired class. Coordinate with the heat-map, the Guided Backpropagation is used by multiplication to perform the fine-grained importance like pixel-space gradient visualization with a relatively high resolution.

Part 2: Reproduce Result

We search online to build our own dataset. In this dataset, we have 4 classes images: dog, cat, horse and bird. The number of images in each class is: 12500, 12500, 8452, 8671. We use vgg-16 to classify the images in our dataset and then use grad-cam approach to generate the heatmaps. We run our model on the desktop with Nvidia RTX 2080 with the IDE PyCharm. The code is implemented inspired by this tutorial(https://github.com/insikk/Grad-CAM-tensorflow). The TensorFlow is used as the machine learning library. Here are some examples in the reproduce results:

Class: Dog

Class: Cat

Class: Horse

Class: Bird

Part 3: Discovery and Demonstration

During the work, we find that the grad-cam generate the heat-map with relatively low resolution, which means that it only provides a rough region in the image. Although by fusing the Guided Backpropagation and the heat-map, the resolution is improved to show detail information, we think we can achieve a similar performance by removing the pooling layers inside the CNN model. In this case, the heat-map has the same size as original input. It is not needed to "forcedly" increase the size of heat-map to the original input anymore. We run a demo based on this approach. First, we build the CNN model without any pooling layer after the convolutional layers. Second, we use Global Average Pooling (GAP) to replace the fully connected layers. Third, we train this model with our 4-class dataset and get the final model and weights with an accuracy as 90%. Forth, the weights between the GAP and final output are picked up to generate the weighted combination of each feature map. The final heat-map is done by summing these

weighted feature maps. The code is already uploaded to the project website. Here are some examples from the demo:

Class: Dog

Class: Cat

Class: Horse

Class: Bird

Part 4: Discussion and Reference

The Grad-CAM is an update version of normal CAM in CNN visualizing task. In the CAM paper, author provides the approach that combines the GAP weights and feature maps to show the Area of Interest (AOI) when CNN classify the image. However, this approach must change the structure of original CNN model. It is not suitable for some structure-fixed model like VGG. In this case, the Grad-CAM solves this problem perfectly. In Grad-CAM, the model structure remains. Based on the mathematical prove, the weights "a" in Grad-CAM is proportional to the

weights in CAM so that we can better understand how the gradients of target class with respect to feature maps will represent the importance of each feature maps for the target class.

Here is the list of relevant papers:

B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. Learning Deep Features for Discriminative Localization. CVPR'16 (arXiv:1512.04150, 2015).

M. Lin, Q. Chen, and S. Yan. Network in network. International Conference on Learning Representations, 2014.

Part 5: Conclusion

Based on our reproduced results, we find that it corroborates the claims of the original paper. With a well-trained model, Grad-CAM generate the heat-map for different target class and the heat-map contain the independent and specific features of the target class. It is a good approach for visualizing the CNN model.