Simulation Examples

- ~ By Hand
- ~ Using Excel

Chapter 2

Why do examples by hand or spreadsheet??

- Insight to system
- Hands-on
- Helps with programming

 Complex systems not amenable to spreadsheet simulation

Process

- Determine Characteristics of system
- Construct simulation table
- Generate & compute values

- Random Numbers
 - Number: between 0 & I
 - Variable: some quantity; perhaps from a known distribution
- Descriptive Statistics
 - Values used for describing a systems and making predictions about its behavior

Random Variable

- A quantity determined by some random experiment
- Examples
 - Number of heads obtained when flipping a coin
 10 times
 - Number of customers arriving in an hour
 - Maximum length of a queue during the day
 - Shortest service time for a customer for the day

Randomness

- True Random vs. Pseudo-Random
- Random number sequence
 - Uniformly distributed
 - Each number statistically independent of previous numbers
- Where?
 - Random Number Generators (functions)
 - Random Number Tables

1 2 5 3 8 2 5 0 8 3 7 5 2 5 8 6 2 5 9

Excel – Random numbers

- = RAND()
 - Generates real values: 0 <= val < 1
- =RANDBETWEEN (low, high)
 - Generates integers: low <= val <= high
- To use in Excel
 - IF (RAND () < 0.5, 0, I)
 - IF (A2 <= 0.33, 0, (IF A2 <= 0.66, 1, 2)
- Problem with Excel....

Other sources of random numbers

- Authors provide Visual Basic functions in the sample spreadsheets on web site.
 - We will not use these.
 - Discussed in 2.1.2 and 2.1.3
- Random Number Tables in text
 - Table A1 (p. 592) uniform
 - Table A2 (p. 593) normal
- Limitations: Excel & VB functions don't use in professional work

Random Number Generator (RNG) Features

- RNG is a mathematical function
 - Different strategies
- Period: Number of values generated before sequence repeats
- Seed: Initialization value for a RNG

Example: Coin Tossing

- Monte Carlo Simulation
- Fair coin → Head/Tail equally likely
- IF (RAND () < 0.5, "H", "T")

Example: Random Service Times

- I. Integer value I to I0, inclusive
 - I. =RANDBETWEEN (I, I0)
- 2. Integer value with given probability
 - 1. 3 @ 30%; 6 @ 45%, 10 @ 25%
 - 2. Develop cumulative probability
 - 1. $0 .3 \rightarrow 3$
 - 2. $.3 .75 \rightarrow 6$
 - 3. $.75 1 \rightarrow 10$
 - 3. IF $(A2 \le 0.3, 3, (IF A2 \le 0.75, 6, 10)$
- 4. Why not? IF $(RAND() \le 0.3, 3, (IF RAND \le 0.75, 6, 10))$

Arrival Times

- Arrival Time vs. Inter-Arrival Time
- Arrival time Clock time of arrival
- Inter-Arrival Time: time between successive arrivals
- Example: Initialize: Clock = 0

Inter-Arrival Time	Arrival Time (Clock)		
3	3		
7	10		
2	12		

Queuing(Waiting Line) Systems

- Calling population
 - Infinite vs. Finite population
- Nature of arrivals
 - Arrival Rate vs. Effective Arrival Rate
- Service mechanism
 - Single vs. Multiple vs. Sequential
- Service time
- Queue discipline

Arrivals & Services

- Generally defined by a distribution (random)
- Arrivals
 - Time between arrivals inter-arrival time
- Service
 - Service times

Arrival rate must be less than the service rate. What if it is not? Unstable, explosive

Queue Basics

- System State
 - Number & status of entities (units)
- Event
 - Circumstance that causes a change in system state
- Clock
 - Relative time

Single Server & Queue

Arrive

Queue

Server

Depart

What are the state variables?

What are the events?

Refer to flow diagrams - Pg. 42 +

Future Events List (FEL)

- Can Generate Events
 - up-front
 - Before simulation begins
 - OK for small/short simulations
 - on-the-fly
 - As needed
 - Used for professional/complex simulations
- Generate Inter-arrival times & Service times

Brief Example

Cust #	IAT	A-time	S-begin	S-time	S-end
		*Clock	*Clock		*Clock
1	0	0	0	2	2
2	2	2	2	1	3
3	4	6	6	3	9
4	3	7	9	2	11
5	2	9	11	1	12
6	6	15	15	4	19

Other simulation items

- What else can we keep track of during the simulation?
 - Wait time in queue
 - Time in system
 - Server idle time
- Calculate these for previous example.

Other simulation items

- What can we calculate at the end of simulation?
 - Average inter-arrival time
 - Average service time
 - Server utilization (% busy)
 - *Average queue length
- Calculate for previous example.

Common Stats to Calculate

Customer

- Time in queue, Time in system, Probability of waiting in queue, Inter-arrival time
- Averages, max, min

Server

Utilization, Service times (max, min, average)

Queue

Length (current, average, max, min)

System State vs. Performance Measure * Current vs. After Simulation

I. Current queue length

- I. Average, max, min queue length
- 2. Server status (busy, 2. Average, min, max idle)
- service time; utilization
- 3. Customer wait time
- 3. Average wait time, max, min

Simulation Statistics

- Numerous standard statistics of interest
- Some results calculated from parameters
 - Used to verify the simulation
- Most calculated by program

Statistics – Performance Measures

Average Wait time for a customer

= total time customers wait in queue total number of customers

Average wait time of those who wait

= total time of customers who wait in queue number of customers who wait

More Statistics

Proportion of server busy time

= <u>number of time units server busy</u> total time units of simulation

Average service Time

total service time
number of customers serviced

More Statistics

Average time customer spends in system

= total time customers spend in system total number of customers

Probability a customer has to wait in queue

= number of customers who wait total number of customers

Traffic Intensity

- A measure of the ability of the server to keep up with the number of the arrivals
- TI= (service mean)/(inter-arrival mean)
- If TI > I then system is unstable & queue grows without bound

Server Utilization

- % of time the server is busy serving customers
- If there is I server
 - SU = TI = (service mean)/(inter-arrival mean)
- If there are N servers
 - SU = I/N * (service mean)/(inter-arrival mean)

Weighted Averages

- Necessary when unequal probability of values.
- Example: Service times: 20% take 5 minutes, 38% take 8 minutes, 42% take 11 minutes.

• What is the average service time?

• Is it (5 + 8 + 11) / 3 = 8 ???

Correct Answer

20% take 5 minutes, 38% take 8 minutes, 42% take 11 minutes.

$$AST = .2 * 5 + .38 * 8 + .42 * 11$$

= 1 + 3.04 + 4.62
= 8.66

Spreadsheet Homework DUE:

Page 78+ (Show all work & document)

- # 2: Calculate expected number of customers per day & number of bagels needed: Based in these values, what is expected cost, income, & profit. Don't simulate.
- # 4: Calculate expected # of calls 9 am 5 pm. & avg. service time. What is utilization of taxi? What is utilization if 2 taxis? Complete an Excel Simulation for 9 to 5 day with I taxi. (Print off values & formulas version. Document well.)
- #51: Calculate best case, worst case, and average case scenario for the student. What are the maximum & minimum loan amounts that he will need? Don't simulate.