Midterm 1 Form A

The point value of each problem is indicated. To obtain full credit you must have the correct answers along with **the supporting work**. Answers without supporting work will receive no credit, except for multiple choice problems. **CIRCLE YOUR ANSWERS**.

- 1. (20 points) Circle your answer, or fill in the blank.
  - (a) Find the degree measure of the angle with the radian measure  $\frac{19\pi}{12}$ .
    - i) 570 ii) 285 iii) 0.087 iv) not listed  $\frac{19\pi}{13}\left(\frac{150}{17}\right) = 385^{\circ}$
  - (b) Find the radian measure of the angle with the degree measure  $-130^{\circ}$ .

i) 
$$-2.269$$
 ii)  $-7448$  iii)  $-1.134$  iv) not listed  $-130\left(\frac{97}{180}\right) = -\frac{13}{16}\pi$ 

(c) The measures of two angles in standard position are:  $\frac{5\pi}{7}$  and  $\frac{40\pi}{7}$ . Are these two angles coterminal?





- (d) The measure of an angle in standard position is  $-500^{\circ}$ . A positive angle which is coterminal with the given angle is:
  - i)  $-140^{\circ}$  ii)  $40^{\circ}$  iii)  $580^{\circ}$  iv) not listed -500 + 360 + 360 = 420 + 360 = 580
- (e) Find an angle between  $0^{\circ}$  and  $360^{\circ}$  that is coterminal with  $1560^{\circ}$ .

(a) (12 points) **Sketch** a triangle that has an acute angle  $\theta$ , and find the other trigonometric ratios of  $\theta$ , if  $\sin(\theta) = \frac{5}{7}$ .  $5^2 + X^2 = 7^2$ 

$$\csc(\theta) = \underline{\begin{array}{c} \mathbf{7} \\ \mathbf{5} \end{array}}$$

$$\cos(\theta) = \frac{2\sqrt{6}}{7}$$

$$\sec(\theta) = \frac{7\sqrt{\xi}}{1\lambda}$$

$$\tan(\theta) = \frac{5\sqrt{6}}{12}$$

$$\cot(\theta) = 5$$

25+x2=49





$$2.6 = 12$$

(b) (8 points) How tall is a building if the angle of elevation from the ground is 25° at a distance of 80m from the base of the building.



$$tan(25) = \frac{x}{80}$$
.  
80 tan(25) =  $x$ 

80 tan (25) = X

plug in calculator











(b) Find the quadrant in which an angle  $\theta$  lies, if  $\sin(\theta) < 0$  and  $\cos(\theta) > 0$ .





i) 
$$\frac{1}{5}$$

ii) 
$$\frac{-3}{5}$$

iii) 
$$\frac{3}{5}$$



- $\dot{d}$ ) Find the area of an equilateral triangle with sides of length 5 in.
  - i) 21.6
- ii) 6.25
- iii) 10.8
- iv) not listed

## Not on this midterm

(e) Write  $tan(\theta)$  in terms of  $sin(\theta)$ , where  $\theta$  is an angle in quadrant II.

i) 
$$\frac{-\sin(\theta)}{\sqrt{1-\sin^2(\theta)}}$$
 ii)  $\frac{\sin(\theta)}{\sqrt{1-\sin^2(\theta)}}$  iii)  $\frac{-\sqrt{1-\sin^2(\theta)}}{\sin(\theta)}$  iv) not listed

ii) 
$$\frac{\sin(\theta)}{\sqrt{1-\sin^2(\theta)}}$$

iii) 
$$\frac{-\sqrt{1-\sin^2(\theta)}}{\sin(\theta)}$$



- - (a) Find the terminal point P(x,y) on the unit circle determined by  $t=\frac{5\pi}{3}$ .
- - $\begin{array}{c}
     \text{(0.5, -0.87)} \\
     \text{(0.5, -0.87)}
    \end{array}$ 
    - ii) (-0.87, 0.5)
- iii) (0.99, 0.09)
- iv) not listed



- (b) The terminal point on the unit circle determined by t is the point  $P = (\frac{2}{3}, \frac{\sqrt{5}}{3})$ . Find the terminal point determined by  $t - \pi$ .

  - i)  $(\frac{-2}{3}, \frac{\sqrt{5}}{3})$  ii)  $(\frac{-2}{3}, \frac{-\sqrt{5}}{3})$  iii)  $(\frac{2}{3}, \frac{-\sqrt{5}}{3})$
- iv) not listed





A

5

i) Positive

ii) Negative



$$-3^{2} + x^{2} = 4^{2} \quad x^{2} = 7$$

$$-3^{2} + x^{2} = 4^{2} \quad x^{2} = 7$$

$$-3^{2} + x^{2} = 4^{2} \quad x^{2} = 7$$

$$x^{2} = 7$$
  
 $x = 57$ 

- i)  $\frac{3}{\sqrt{7}}$
- ii)  $\frac{-3}{\sqrt{7}}$
- iii) 3
- iv) not listed



- (e) Determine whether the function  $f(x) = 3x^2 + \cos(x)$  is even, odd, or neither.
- ii) Odd

cren { odd properties All other are odd

5. (a) (8 points) A sector of a circle has an angle of 50°. Find the area of the sector if the radius of the circle is 6 ft. Round your answer to two decimal places.



(b) (12 points) Given  $y = 3\sin(\frac{\pi}{4}x + \frac{\pi}{2})$ , fill in the blank:

Amplitude: \_\_\_\_\_\_

To lary use calculator

Period:

Phase shift:

An appropriate interval on which to graph one complete period:

Graph one complete period, clearly indicating the x-intercepts.



## Formula Sheet

• Area of a triangle with sides of length a, b, and incuded angle  $\theta$ :

$$A = \frac{1}{2}ab\sin(\theta)$$

• Trigonometric identities:

$$\sin^{2}(\theta) + \cos^{2}(\theta) = 1$$
$$1 + \tan^{2}(\theta) = \sec^{2}(\theta)$$
$$1 + \cot^{2}(\theta) = \csc^{2}(\theta)$$

,