

CSE 3113 / CSE 3214 INTRODUCTION TO DIGITAL IMAGE PROCESSING SPRING 2024

Homework 2 Report

ikram Celal KESKiN –200316059

Submission Date: 25 April 2024

Programming Environment

Programming Language: GNU Octave, version 8.4.0

System Model: VivoBook ASUSLaptop X515DAP D515DA

Processor: AMD Ryzen 3 3250U with Radeon Graphics (4 CPUs), ~2.6GHz

Video Card name: AMD Radeon(TM) Graphics

Results

Orijinal

Orijinal Histogram

8000

6000

4000

2000

0

Modified

Modified Histogram

Orijinal

Orijinal Histogram

Modified

Modified Histogram

Orijinal

50 100 150 200 250 300

Modified

Orijinal

Modified

Orijinal Histogram

Modified Histogram

Orijinal Histogram

Modified Histogram

Orijinal

Reproduced

Modified

50 100 150 200 250 300

Reproduced

Reproduced

50 100 150 200 250 300

Modified Histogram

50 100 150 200 250 300

Reproduced Reproduced Modified Modified **Modified Histogram** Reproduced Histogram **Modified Histogram** Reproduced Histogram 7000 7000 300000 300000 6000 6000 250000 250000 5000 5000 200000 200000 4000 4000 150000 150000 3000 3000 100000 100000 2000 2000 50000 50000 1000 1000 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Discussion

A)

- Spatial Domain Technique: The modification applied here is taking the complement of the original image.
- Parameters: I did not give any parameters.
- Result: The reproduced image is exactly the same as the modified one.

B)

- Spatial Domain Technique: Histogram equalization was used.
- Parameters: I did not give any parameters.
- Result: The reproduced image is an approximation of the modified one.

C)

- Spatial Domain Technique: Blurring using an average filter.
- Parameters: The size of the blurring filter (w) is set to 15.
- Result: The reproduced image is exactly the same as the modified one.

D)

- Spatial Domain Technique: Sharpening by subtracting Laplacian of the original image from the original.
- Parameters: Laplacian filter set $f=[0.1667\ 0.6667\ 0.1667;\ 0.6667\ -3.3333\ 0.6667;\ 0.1667\ 0.6667\ 0.1667]$.
- Result: The reproduced image is an approximation of the modified one.

E)

- Spatial Domain Technique: Applying Minimum filter.
- Parameters: A 9X9 minimum filter is used.
- Result: The reproduced image is exactly the same as the modified one.

F)

- Spatial Domain Technique: Bit-plane Slicing.
- Parameters: I did not give any parameters.
- Result: The reproduced image is an approximation of the modified one.

Reflections

I tried to do it using the opency library in python, but I had to use Gnu Octave because some values caused problems. When using Gnu octave, I used normal histogram equation because there is no CLAHE(for B).

Source Code

```
originalA = imread('./Original_Photos/A_original.png');
originalB = imread('./Original Photos/B original.png');
originalC = imread('./Original_Photos/C_original.png');
originalD = imread('./Original Photos/D original.png');
originalE = imread('./Original Photos/E original.png');
originalF = imread('./Original_Photos/F_original.png');
modifiedA = imread('./Modified_Photos/A_modified.png');
modifiedB = imread('./Modified Photos/B modified.png');
modifiedC = imread('./Modified Photos/C modified.png');
modifiedD = imread('./Modified_Photos/D_modified.png');
modifiedE = imread('./Modified Photos/E modified.png');
modifiedF = imread('./Modified Photos/F modified.png');
% A's operation
reproducedA = imcomplement(originalA);
figure, subplot(1,3,1), imshow(originalA), title('Original');
subplot(1,3,2), imshow(modifiedA),title('Modified')
subplot(1,3,3), imshow(reproducedA), title('Reproduced'); %display
% A's process by taking complement
%B's operation
reproducedB= histeq(originalB);
figure, subplot(1,3,1), imshow(originalB), title('Original');
subplot(1,3,2), imshow(modifiedB),title('Modified')
subplot(1,3,3), imshow(reproducedB), title('Reproduced'); %display
```

```
%B's operation is CLAHE but i did not find in octave
%C's operation
w=15; %size of blurring filter
f=fspecial('average',w); %create a blurring filter
reproducedC=imfilter(originalC,f); %blur the original image
figure, subplot(1,3,1), imshow(originalC), title('Original');
subplot(1,3,2), imshow(modifiedC),title('Modified')
subplot(1,3,3), imshow(reproducedC), title('Reproduced'); %display
%C's operation is blurring
%D's operation
f=[0.1667 0.6667 0.1667; 0.6667 -3.3333 0.6667; 0.1667 0.6667 0.1667]
Ilap=imfilter(originalD,f);
reproducedD=imsubtract(originalD,Ilap);
figure, subplot(1,3,1), imshow(originalD), title('Original');
subplot(1,3,2), imshow(modifiedD),title('Modified')
subplot(1,3,3), imshow(reproducedD, []), title('Reproduced'); %display
%D's operation is sharpening
%E's operation
reproducedE = ordfilt2(originalE,1,true(9));
figure, subplot(1,3,1), imshow(originalE), title('Original');
subplot(1,3,2), imshow(modifiedE),title('Modified')
subplot(1,3,3), imshow(reproducedE), title('Reproduced'); %display
```

```
%E's operation is Min filtere

%F's operation

reproducedF = zeros(size(originalF));

for i = 1:6

   bit_i = double(bitget(originalF,i));

   bit_i_shifted = bit_i * 2^(i-1);

   reproducedF = reproducedF + bit_i_shifted;

end

figure, subplot(1,3,1), imshow(originalF), title('Original');

subplot(1,3,2), imshow(modifiedF),title('Modified')

subplot(1,3,3), imshow(reproducedF,[]), title('Reproduced'); %display

%F's operation is bitplane slicing
```