#### **Drag Coefficient: The Air Pocket Effect**

#### **OBJECTIVE:**

Study of dynamic forces on a solid particle moving through a liquid and comparing the Drag Coefficient of Objects with and without an Air Pocket.

#### AIM:

To determine the Drag Coefficient **Theory:** 

In fluid dynamics, the shape of an object has a significant impact on the forces that act upon it as it moves through a fluid, such as water. In particular, streamlined shapes are designed to minimize drag and turbulence in the fluid flow, while non-streamlined shapes can experience much greater resistance and other forces.

Streamlined shapes, such as the torpedo-shaped object mentioned in the previous question, are designed to have a smooth, curved surface that allows the fluid to flow smoothly around the object with minimal turbulence. This reduces the drag force, which is the force that opposes the motion of the object through the fluid. By minimizing drag, streamlined shapes allow objects to move more efficiently through the fluid, requiring less energy to achieve a given speed.

In contrast, non-streamlined shapes, such as a flat plate, sphere or cube, can experience much greater drag and other forces as they move through a fluid. These shapes create a lot of turbulence in the fluid flow, which increases the drag force and can also create other forces such as lift or side forces. These forces can make it more difficult to move the object through the fluid and can also affect its stability and maneuverability.



Overall, streamlined shapes are preferred for objects that need to move efficiently through a fluid, such as airplanes, boats, and submarines, while nonstreamlined shapes may be more appropriate for other applications where drag and other forces are not as much of a concern.

The difference in densities between a particle and a fluid under a gravitational field is what causes a particle to move through the fluid. We consider the

motion of a sphere with a diameter of  $d_p$  and a density of  $\rho_p$  that moves through a fluid with a viscosity of  $\mu$  and a density of  $\rho$ .

Various forces acting on the particle are:

- External force
- Buoyancy force
- Drag force

m = Mass of the spherical particle A<sub>p</sub>

= Projected Area

u = Particle velocity

$$F = m \left(\frac{du}{dt}\right) = F_g - F_B - F_D$$
 
$$F_g = m g$$
 
$$F_B = m \left(\frac{\rho}{\rho_P}\right) g$$

$$F_D = \frac{C_D u^2 \rho A_P}{2}$$

$$\frac{du}{dt} = g(\rho_{\rho} - \rho)\rho_{\rho} - (C_D u^2 \rho A_P)/2m$$

At terminal velocity condition

$$\left(\frac{du}{dt} = 0, u = u_t\right)$$

For a spherical particle the eqn. reduces to:

$$u_{t} = \sqrt{\frac{4g(\rho_{\rho} - \rho)d_{P}}{3C_{D}\rho}}$$
  $u_{t}^{2} = \frac{4g(\rho_{\rho} - \rho)d_{P}}{3C_{D}\rho}$   $C_{D} = \frac{4g(\rho_{\rho} - \rho)d_{P}}{3u_{t}^{2}\rho}$ 

Particle Reynolds No. is

$$\operatorname{Re}_{P} = \frac{d_{P} u_{t} \rho}{\mu}$$

Plot of C<sub>D</sub> vs R<sub>ep</sub> (log log scale) is:

for 
$$\operatorname{Re}_p \le 1$$
  $C_D = \frac{24}{\operatorname{Re}_p}$  (Stokes Law region)

# **Experiment Setup:**

We used the water column only because the lycopodium powder (Hydrophobic powder) cannot be used for other materials.



# **EXPERIMENTAL PROCEDURE:**

- (1) Select the set of balls with variety of materials and sizes.
- (2) Measure the average diameter of each ball with screw gauge.
- (3) Measure the mass of each ball with weighing balance.
- (4) Calculate the density of ball materials from the measurements.
- (5) Fill the tube with water.
- (6) Measure the density of water.
- (7) Now drop gently each object in column and note down the time taken (t) by the particle to cover a distance between two marked points on the column.
- (8) Repeat the experiment by forming the lycopodium powder layer in water column.

# **MATERIALS REQUIRED:**

• Electricity Supply: Single phase, 220V AC, 50Hz, 5–15-amp Socket with earth connection

- Floor Area Required: 1.5m \* 0.75m
- Objects-Aluminium Spherical balls, Brass Cylinder and brass cube.
- High Speed Camera with good lighting setup.

# Videos from high speed camera:

In the drive link provided below we have attached the videos recorded by the high speed camera show the streamlined (Air cavity) shape generated due to Lycopodium powder.

https://drive.google.com/drive/folders/1eeseUm9BkLHA4dFaBY5jOGfM2tKbfhZq?usp = sharing

#### **RESULTS & DISCUSSIONS:**

| Material       | Dp, (mm) | Mass, g | X, (m) | T, (ms) | Tlyco, (ms) | Ut, (m/s) | Ut,lyco (m/s) | % increase in Ut | ρ <sub>water</sub> , (kg/m3) | η, (kg/m.s) | Re        | Relyco    | CD    | CDlyco | % change in Co |
|----------------|----------|---------|--------|---------|-------------|-----------|---------------|------------------|------------------------------|-------------|-----------|-----------|-------|--------|----------------|
|                | 6.29     | 1       | 1      | 103     | 92          | 0.971     | 1.087         | 11.957           | 1053                         | 0.001       | 6430.456  | 7199.315  | 0.592 | 0.473  | 20.219         |
| Steel Ball     | 6.44     | 1.1     | 1      | 109     | 91          | 0.917     | 1.099         | 19.780           | 1053                         | 0.001       | 6221.394  | 7452.000  | 0.679 | 0.473  | 30.300         |
|                | 6.46     | 1.1     | 1      | 112     | 94          | 0.893     | 1.064         | 19.149           | 1053                         | 0.001       | 6073.554  | 7236.574  | 0.719 | 0.507  | 29.560         |
|                | 6.3      | 1.04    | 1      | 100     | 88          | 1.000     | 1.136         | 13.636           | 1053                         | 0.001       | 6633.900  | 7538.523  | 0.559 | 0.433  | 22.560         |
|                | 12.2     | 21.29   | 1      | 91      | 80          | 1.099     | 1.250         | 13.750           | 1053                         | 0.001       | 14117.143 | 16058.250 | 2.289 | 1.769  | 22.715         |
| Brass Cylender | 12.23    | 21.65   | 1      | 94      | 82          | 1.064     | 1.220         | 14.634           | 1053                         | 0.001       | 13700.202 | 15705.110 | 2.442 | 1.858  | 23.902         |
| havg = 20mm    | 12.25    | 22      | 1      | 90      | 78          | 1.111     | 1.282         | 15.385           | 1053                         | 0.001       | 14332.500 | 16537.500 | 2.239 | 1.682  | 24.889         |
|                | 12.24    | 20.62   | 1      | 89      | 80          | 1.124     | 1.250         | 11.250           | 1053                         | 0.001       | 14481.708 | 16110.900 | 2.189 | 1.769  | 19.202         |
|                | 9.76     | 4       | 1      | 94      | 72          | 1.064     | 1.389         | 30.556           | 1053                         | 0.001       | 10933.277 | 14274.000 | 0.766 | 0.449  | 31.331         |
| Steel Ball     | 9.74     | 3.98    | 1      | 95      | 73          | 1.053     | 1.370         | 30.137           | 1053                         | 0.001       | 10796.021 | 14049.616 | 0.780 | 0.461  | 30.953         |
|                | 9.76     | 4       | 1      | 92      | 76          | 1.087     | 1.316         | 21.053           | 1053                         | 0.001       | 11170.957 | 13522.737 | 0.733 | 0.500  | 31.758         |
|                | 9.8      | 4.04    | 1      | 98      | 79          | 1.020     | 1.266         | 24.051           | 1053                         | 0.001       | 10530.000 | 13062.532 | 0.835 | 0.543  | 35.017         |
|                |          | 6.9     | 1      | 115     | 96          | 0.870     | 1.042         | 19.792           | 1053                         | 0.001       | 8671.226  | 10387.406 | 1.731 | 1.206  | 30.314         |
| Brass Cube     |          | 7       | 1      | 125     | 104         | 0.800     | 0.962         | 20.192           | 1053                         | 0.001       | 7977.528  | 9588.375  | 2.045 | 1.416  | 30.778         |
| side = 9.47mm  |          | 6.94    | 1      | 129     | 100         | 0.775     | 1.000         | 29.000           | 1053                         | 0.001       | 7730.163  | 9971.910  | 2.178 | 1.309  | 29.907         |
|                |          | 7.1     | 1      | 121     | 103         | 0.826     | 0.971         | 17.476           | 1053                         | 0.001       | 8241.248  | 9681.466  | 1.916 | 1.388  | 27.539         |

#### **CONCLUSION:**

(1) The object with air cavity travels faster than the one without air cavity.





- (2) Image from camera is attached above and we can conclude the following:
  - (a) When we added Lycopodium powder which generated Hydrophobic behaviour, we get streamlined shape (teardrop like shape) around the balls due to which they travels relatively faster.
  - (b) When a normal sphere metal is dropped through water we get pressure differences and we can see from the image that the flow is detached at a point thereby creating a turbulent region. All this opposes the motion of the ball, resulting in greater drag force.

The following diagrams demonstrates how the streams pass thru each of the object and also take into consideration the wake region.

To define Wake-

In fluid mechanics, the term "wake" refers to the region of disturbed flow that forms behind an object moving through a fluid, such as air or water. When an object moves through a fluid, it creates a disturbance in the fluid flow, which results in the formation of eddies and vortices in the fluid behind the object. This region of disturbed flow is called the wake.

(i) Flow around a spherical object



# (ii)Flow around a stream-line object



The factors such as backflow, turbulent or wake region, vortices contribute in increasing the drag coefficient.

In torpedo like shape the wake region is less thus we can come to conclusion that it take less time to flow through a fluid.

We saw significant decrement in the value of drag coefficient when we used Lycopodium powder in water.

- (a) For steel balls of smaller size, the change in C<sub>D</sub> lies between 20% to 30%
- (b) For steel balls of larger size, the change in C<sub>D</sub> lies between 30% to 35%
- (c) For brass cylinder, the change in  $C_D$  lies between 20% to 25%
- (d) For brass cube, the change in  $C_D$  lies between 25% to 30 %

#### **PRECAUTIONS:**

- 1. Stopwatch must be operated carefully while eliminating any time gap that might affect the stoppage time.
- **2.** Make sure to measure the diameter of the balls at two different orientations.
- **3.** Drop the balls in the fluid very gently.
- **4.** The Angle of release should be maintained.

#### **Nomenclature**

F: Net force on body

FD: Drag Force

**F**<sub>B</sub>: Buoyant Force **F**<sub>g</sub>:

**Gravitational Force m:** 

mass of body/particle

**C**<sub>D</sub>: Drag Coefficient ρ:

Density of liquid  $\rho_p$ :

**Density of Particle** 

A<sub>p</sub>: Projected Area of particle

**U**<sub>t</sub>: Terminal Velocity

V<sub>p</sub>: Volume of particle

**Error Analysis:** 

Least Courts: Weighing machine: 0.01 gms viscometer: 0.1 mPar Times - 0.01 seconds Screwgauge: 0.01 mm Ocale used to measure dist X => 1 mm  $\frac{4q(S_{p}-P)D_{p}}{3\mu^{2}} = \frac{4q(S_{p}-P)D_{p}t^{2}}{3PX^{2}}$ Assuming quainty (g) is known accurately ( 29 =0)  $\frac{\Delta C_0}{C_0} = \frac{\Delta (S_P - S)}{(S_P - S)} + \frac{\Delta D_P}{D_P} + 2 \frac{\Delta t}{t} + \frac{\Delta S}{P} + \frac{\Delta X}{X}$  $\begin{cases} Now Sp = \frac{mp}{yp} \rightarrow \frac{\Delta Sp}{Sp} = \frac{\Delta mp}{mp} + \frac{3\Delta Dp}{Dp} \\ \frac{\pi}{6} Dp^{3} \end{cases}$ and  $\theta = \frac{m_{+}}{V_{L}} = \left\{ \frac{\Delta m_{+}}{m_{t}} + \frac{\Delta V_{+}}{V_{t}} \right\}$ Assuming that the volume of plant is known to an 0.1 ml accuracy,  $\frac{\Delta V_{t}}{V_{t}} = \frac{0.1 \text{ ml}}{10 \text{ ml}} = \frac{0.01}{10 \text{ ml}}$  $\Delta(39-3)$ :  $\Delta 8p + \Delta 9 = 0.01 + 3 \times (0.01) + 0.01 + 0.01$ mp

pp

pp

mt  $k \left( \frac{0.01}{mp} + \frac{0.03}{pp} + \frac{0.01}{mt} + 0.01 \right) + \frac{2}{pp} + \frac{0.01}{t} + \frac{2 \times 0.01}{t}$ + 2 x 6.001 ( 02) \* Was mp b mt in gms, Sp in gm/mm3, Dp in mm and t in

accords

# Formula Derivation:

Deriving for the  $C_D$  formula for cylindrical and cubical blocks We know, net force equation  $F_{net}=m(du/dt)=F_g-F_D-F_D$  Where  $F_g=mg$ ;  $F_D=C_Du^2\rho A_p/2$   $F_B=m(\rho/\rho_p)g$ 

# Case 1: For cylinder

$$V_p = \pi r^2 h$$

 $V_p = \pi r^2 h$  h = height of the cylinder

$$A_p = \pi r^2$$

 $A_p = \pi r^2$  r = radius of the cylinder

$$C_D=2gh(\rho_p-\rho)/u_t^2\rho$$

Case2: For Cube

$$V_n = a^3$$

 $V_p = a^3$  a = side of the cube

$$A_p = a^2$$

$$C_D = 2ga(\rho_p - \rho)/u_t^2 \rho$$

**Case 3: For Sphere** 

$$V_n = 4\pi r^3/3$$

 $V_p = 4\pi r^3/3$  r = radius of the sphere

$$A_p = \pi r^2$$

 $A_p = \pi r^2$  d = diameter of the sphere

$$C_D = 4gd(\rho_p - \rho)/3u_t^2\rho$$

# 2. Density of water calculation:

Weight of water: 10.53gm  $\rho$  =

mass/volume

 $= 10.53 \times 10^{-3} / 10^{-5}$ 

 $= 1053 \text{ Kg/m}^3$ 





/ change in CP

Now for same bull when passed with Lywpodlum powder in it

are get, Me = 1.087

10

CD) = 0.473

Lyco

10

(0.592-0.473) × 100 2 (20.19%)