HIT, Shenzhen DIFFERENTIAL GEOMETRY AND TOPOLOGY Spring 2018

Exercise Collection

zhaofeng-shu33 May 7, 2018

Exercise 1.

1.1 Show that the signed curvature k_s of any regular planar curve $\gamma(t)$ is smooth. Use this to prove that the curvature k(t) is smooth if k(t) > 0 for any t. Give an example to show that k(t) may not be smooth if k(t) = 0 for some t.

Solution : Proof. Without loss of generality, we assume $\gamma(t)$ is unit-speed, otherwise by reparametrization (which is smooth transformation) we can get a unit-speed representation of the curve. Since $\gamma''(t) = k_s N \Rightarrow k_s = \gamma''(t) \cdot N \Rightarrow k_s$ is smooth. $k = |k_s|$, if k(t) > 0, then k_s can not change sign by continuity. $\Rightarrow k(t) = -k_s(t) \forall t$ or $k(t) = k_s(t) \forall t$ and k is smooth.

Counterexample: Let $\gamma(t) : (t, t^3) \Rightarrow k(t) = \frac{6|t|}{(1+9t^4)^{3/2}}$. Since abs function is not smooth at t = 0, k(t) is not smooth.

1.2 Describe all curves in \mathbb{R}^3 which have constant curvature $\kappa > 0$ and constant torsion τ

Solution : Let $\gamma(t)=(a\cos t,b\sin t,bt)$, which is circular helix. We know that $\kappa=\frac{|a|}{a^2+b^2}$ and $\tau=\frac{b}{a^2+b^2}$, which gives $|a|=\frac{\kappa}{\kappa^2+\tau^2}, b=\frac{\tau}{\kappa^2+\tau^2}$, by the fundamental theorem of curves, all curves with constant curvature $\kappa>0$ and constant torsion τ can be obtained by translating and rotating the helix with parameter a,b.

1.3 Let $\gamma(t)$ be a regular plane curve and let λ be a constant. The parallel curve γ^{λ} of γ is defined by

$$\gamma^{\lambda}(t) = \gamma(t) + \lambda \mathbf{n}_s(t) \tag{1}$$

Show that, if $\lambda \kappa_s(t) \neq 1$ for all values of t, then γ^{λ} is a regular curve and that its signed curvature is $\frac{\kappa_s}{|1-\lambda \kappa_s|}$.

Solution : Proof. Let T be the tangent vector of γ , \boldsymbol{n}_s the vector obtained by rotating \boldsymbol{n}_t anti-clockwise 90°. Also \tilde{T} be the tangent vector of γ^{λ} and $\tilde{\boldsymbol{n}}_s$ is obtained from \tilde{T} . For curve γ^{λ} , we choose the arc length parameter $\tilde{s} = \int_{t_0}^t \|\gamma(v)\| dv \Rightarrow \frac{\mathrm{d}s}{\mathrm{d}t} = |1 - \lambda \kappa_s| \|\gamma'(t)\|$, and the arc length parameter for γ is

denoted by s, then we have $\tilde{s}(t) = |1 - \lambda \kappa_s(t)| s(t)$.

$$\frac{\mathrm{d}\gamma^{\lambda}(t)}{\mathrm{d}t} = \gamma'(t) + \lambda \frac{\mathrm{d}\boldsymbol{n}_s(t)}{\mathrm{d}t} = \gamma'(t) + \lambda \frac{\mathrm{d}\boldsymbol{n}_s}{\mathrm{d}s} \frac{\mathrm{d}s}{\mathrm{d}t}$$
$$= \gamma'(t) - \lambda \kappa_s \frac{\mathrm{d}s}{\mathrm{d}t} T = (1 - \lambda \kappa_s) \frac{\mathrm{d}\gamma}{\mathrm{d}s} \frac{\mathrm{d}s}{\mathrm{d}t}$$
$$= (1 - \lambda \kappa_s)\gamma'(t) \neq 0$$

Hence γ^{λ} is regular.

$$\tilde{T} = \frac{\mathrm{d}\gamma^{\lambda}}{\mathrm{d}\tilde{s}} = \frac{\frac{\mathrm{d}\gamma^{\lambda}(t)}{\mathrm{d}t}}{|1 - \lambda \kappa_{s}| \frac{\mathrm{d}s}{\mathrm{d}t}} = \mathrm{sgn}\{1 - \lambda \kappa_{s}\} \frac{\gamma'(t)}{\|\gamma'(t)\|}$$

Similarly we can show that $T = \frac{\gamma'(t)}{\|\gamma'(t)\|} \Rightarrow \tilde{\boldsymbol{n}}_s = \operatorname{sgn}\{1 - \lambda \kappa_s\} \boldsymbol{n}_s$

$$\frac{\mathrm{d}\tilde{T}}{\mathrm{d}\tilde{s}} = \frac{\frac{\mathrm{d}\tilde{T}}{\mathrm{d}t}}{|1 - \lambda \kappa_s| \frac{\mathrm{d}s}{\mathrm{d}t}}$$

Since $\kappa_s(t)$ is continuous and $\lambda \kappa_s(t) \neq 1$, $1 - \lambda \kappa_s(t)$ has constant sign. therefore $\frac{\mathrm{d}\tilde{T}}{\mathrm{d}t} = \mathrm{sgn}\{1 - \lambda \kappa_s\} \frac{\mathrm{d}T}{\mathrm{d}t} \Rightarrow \frac{\mathrm{d}\tilde{T}}{\mathrm{d}s} = \frac{\mathrm{sgn}\{1 - \lambda \kappa_s\}}{|1 - \lambda \kappa_s|} \frac{\mathrm{d}T}{\mathrm{d}s}$ Let κ_s be the signed curvature of γ and $\tilde{\kappa}_s$ be the signed curvature of γ^{λ} . Then

$$\tilde{\kappa}_s = \frac{\mathrm{d}\tilde{T}}{\mathrm{d}s} \cdot \tilde{\boldsymbol{n}}_s = \frac{\mathrm{sgn}^2 \{1 - \lambda \kappa_s\}}{|1 - \lambda \kappa_s|} \frac{\mathrm{d}T}{\mathrm{d}s} \cdot \boldsymbol{n}_s = \frac{1}{|1 - \lambda \kappa_s|} \kappa_s$$

1.4 Another approach to the curvature of a unit-speed plane curve γ at a point $\gamma(s_0)$ is to look for the 'best approximating circle' at this point. We can then *define* the curvature of γ to be the reciprocal of the radius of this circle.

Carry out this programme by showing that the center of the circle which passes through three nearby points $\gamma(s_0)$ and $\gamma(s_0 \pm \delta_s)$ on γ approaches the point

$$\epsilon(s_0) = \gamma(s_0) + \frac{1}{\kappa_s(s_0)} \mathbf{n}_s(s_0) \tag{2}$$

as δ_s tends to zero. The circle \mathcal{C} with center ϵ passing through $\gamma(s_0)$ is called the osculating circle to γ at the point $\gamma(s_0)$, and $\epsilon(s_0)$ is called the centre of curvature of γ at $\gamma(s_0)$. The radius of \mathcal{C} is $1/|\kappa_s(s_0)| = 1/\kappa(s_0)$, where κ is the curvature of γ - this is called the radius of curvature of γ at $\gamma(s_0)$.

Solution: The line segment bisector of $\gamma(s_0)$, $\gamma(s_0 + \delta_s)$ has the parametrized form $(t_1$ is the parameter):

$$\ell_1(t_1): \frac{1}{2}(\gamma(s_0) + \gamma(s_0 + \delta_s)) + t_1(\gamma(s_0 + \delta_s) - \gamma(s_0)) \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

Similarly, the line segment bisector of $\gamma(s_0)$, $\gamma(s_0 - \delta_s)$ has the parametrized form $(t_2 \text{ is the parameter})$:

$$\ell_2(t_2): \frac{1}{2}(\gamma(s_0) + \gamma(s_0 - \delta_s)) + t_2(\gamma(s_0 - \delta_s) - \gamma(s_0)) \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

The intersection of $\ell_1(t_1)$ and $\ell_2(t_2)$ is the center of the approximating circle To simplify the notation, let

 $J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, a = \gamma(s_0 + \delta_s) - \gamma(s_0), b = \gamma(s_0 - \delta_s) - \gamma(s_0).$ The intersection point satisfies $\ell_1(t_1) = \ell_2(t_2) \Rightarrow \frac{1}{2}(a-b) = t_2bJ - t_1aJ.$ Since aJ is perpendicular with a (J is counterclockwise 90° rotation matrix), dot product both sides by a. we can solve t_2 as: $t_2 = \frac{(a-b)\cdot a}{2bJ\cdot a}.$ Then the center of circle can be expressed by a,b,J as:

$$\epsilon(s_0, \delta_s) = \gamma(s_0) + \frac{b}{2} + \frac{(a-b) \cdot a}{2bJ \cdot a}bJ$$

Since δ_s is small, we can expand a, b as:

$$a = \gamma'(s_0)\delta_s + \gamma''(s_0)\frac{\delta_s^2}{2} + o(\delta_s^2)$$
(3a)

$$b = -\gamma'(s_0)\delta_s + \gamma''(s_0)\frac{\delta_s^2}{2} + o(\delta_s^2)$$
(3b)

By the definition of \mathbf{n}_s, k_s , we have $\mathbf{n}_s(s_0) = \gamma'(s_0)J, \gamma''(s_0) = \kappa_s \mathbf{n}_s(s_0)$, from (3b) we have

$$bJ = -\frac{k_s \delta_s^2}{2} \gamma'(s_0) - \frac{\delta_s}{k_s} \gamma''(s_0) + o(\delta_s^2)$$
 (4)

Since $\gamma'(s_0)$ is perpendicular with $\gamma''(s_0), 2bJ \cdot a = -2\delta_s^3 \kappa_s + o(\delta_s^3)$ and $\frac{1}{2bJ \cdot a} = \frac{1}{-2\delta_s^3 \kappa_s} (1 + o(1))$, also from $||\delta_s|| = 1$ we can compute $(a-b) \cdot a = 2\delta_s^2 + o(\delta_s^3) \Rightarrow \frac{(a-b) \cdot a}{2bJ \cdot a} bJ = \frac{\gamma''(s_0)}{\kappa_s^2} + o(1) \Rightarrow \epsilon(s_0, \delta_s) = \gamma(s_0) + \frac{1}{\kappa_s(s_0)} \boldsymbol{n}_s(s_0)$. It follows that $\epsilon(s_0) = \epsilon(s_0, \delta_s)$ as $\delta_s \to 0$.

Exercise 2.

2.1 How many topologies could be defined on the two-element set $X = \{a, b\}$?

Solution:

$$-T = \{X, \emptyset\}
-T = \{X, \emptyset, \{a\}\}
-T = \{X, \emptyset, \{b\}\}
-T = \{X, \emptyset, \{a\}, \{b\}\}$$

2.2 Find the closure of $\{(x, \sin \frac{1}{x} | 0 < x \le 1)\}$ in the 2-dimensional Euclidean space \mathbb{R}^2

Solution : Proof. We show that the closure \bar{A} of $A = \{(x, \sin \frac{1}{x} | 0 < x \le 1)\}$ is $\{(0,y)|-1 \le y \le 1\} \cup A$. For $(0,y), |y| \le 1$, we can find $(x_n, \sin \frac{1}{x_n})$, where $x_n = \frac{1}{2\pi n + \arcsin y}$ such that $(x_n, \sin \frac{1}{x_n}) \to (0,y)$.

- **2.3** Prove that $\mathbb{R}^2 \setminus \{(0,0)\}$ (as a subspace of \mathbb{R}^2) and $\{(x,y,z)|x^2+y^2=1\}$ (as a subspace of \mathbb{R}^2) are homeomorphic.
- **Solution :** Proof. We can construct a homeomorphic mapping from $(0, \infty)$ to $(-\infty, +\infty)$, such as $x \to x \frac{1}{x}$. Then consider the polar coordinate representation of the plane without the origin. For $(r, \theta) \in \mathbb{R}^2 \setminus \{(0, 0)\}$, use mapping $(\cos \theta, \sin \theta, r \frac{1}{r})$ and we get a point on the cylinder $\{(x, y, z) | x^2 + y^2 = 1\}$. It is easy to check that the mapping is a homeomorphic.
 - **2.4** Let (X,d) be a metric space and $A \subseteq X$ a closed subset. Define $f: X \to \mathbb{R}$ by $f(x) = \inf_{a \in A} d(x,a)$. Prove that f is continuous and that f(x) = 0 if and only if $x \in A$.

Solution : Proof. Suppose V is open, then for any $x \in f^{-1}(V)$, $f(x) \in V$, we can find ϵ such that $(f(x) - \epsilon, f(x) + \epsilon) \subseteq V$. We show that $B(x, \frac{1}{2}\epsilon) \subseteq f^{-1}(V)$. Indeed, $\forall y \in B(x, \frac{1}{2}\epsilon), d(y, x) < \frac{1}{2}\epsilon$. Then $d(y, a) \leq d(y, x) + d(x, a) < \frac{1}{2}\epsilon + d(x, a) \Rightarrow f(y) = \inf_{a \in A} d(y, a) \leq \frac{1}{2}\epsilon + d(x, a) \Rightarrow f(y) \leq \frac{1}{2}\epsilon + \inf_{a \in A} d(x, a) < \epsilon + f(x)$. Exchange the position of x and y: $f(x) < \epsilon + f(y) \Rightarrow f(y) \in (f(x) - \epsilon, f(x) + \epsilon) \subseteq V.$ Therefore f is continuous. If $x \in A$, f(x) = 0; if f(x) = 0, there exists $\{y_n\}$ such that $d(x, y_n) \to 0$, and $x \in \overline{A} = A$

- **2.5** A topological space X is called separable if there is a countable dense subset A. Prove that if two topological spaces X_1, X_2 are separable, then the product $X_1 \times X_2$ is also separable.
- **Solution :** Proof. Let A_1, A_2 be dense countable subset of X_1, X_2 respectively. $A_1 \times A_2$ is countable. Below we show that $\overline{A_1 \times A_2} = X_1 \times X_2$. We consider $(x_1, x_2) \notin (A_1, A_2)$ and assume $x_1 \notin A_1$ for example. For $(x_1, x_2) \in X_1 \times X_2$ and an open set $V \in X_1 \times X_2$ covering (x_1, x_2) . $V = \bigcup U_i \times V_i$, where $U_i \in T_{X_1}, V_i \in T_{X_2}$.

Then
$$(x_1, x_2) \in U_i \times V_i$$
 for some i . Since A_1 is dense in X_1 and $x_1 \notin A_1$, $U_i \setminus \{x_1\} \cap A_1 \neq \emptyset$. $U_i \times V_i \setminus \{(x_1, x_2)\} \cap A_1 \times A_2 \neq \emptyset \Rightarrow V \setminus \{(x_1, x_2)\} \cap A_1 \times A_2 \neq \emptyset \Rightarrow (x_1, x_2) \in (A_1 \times A_2)'$. Therefore, $\overline{A_1 \times A_2} = X_1 \times X_2$.

Exercise 3.

- **3.1** Show that applying an isometry of \mathbb{R}^3 does not change the first fundamental form. What is the effect of a dilation (i.e. a map $\mathbb{R}^3 \to \mathbb{R}^3$ given by $x \to ax$ for some constant $a \neq 0$)?
- **Solution :** Proof. An isometry in \mathbb{R}^3 has the form $f: x \to xP + a$. $(f \circ \sigma)_u = \sigma_u P, (f \circ \sigma)_v = \sigma_v P \Rightarrow E(f \circ \sigma) = \sigma_u P P^T \sigma_v^T = \sigma_u \sigma_v^T = E(\sigma)$. Similarly, F, G are also unchanged under the isometry and the first fundamental form remains the same.
 - **3.2** Let $\gamma:(a,b)\to\mathbb{R}^3$ be a unit speed curve. The surface of tangent developable is given by $\sigma(u,v)=\gamma(u)+v\gamma'(u)$
 - (1) Compute the first fundamental form of σ ; Show that the first fundamental form is independent of the torsion of γ ;
 - (2) Show that the tangent developables of two curves γ_1, γ_2 are locally isometric if their curvature functions are the same;
 - (3) Show that the tangent developable σ is locally isometric to a plane.

Solution: Proof.

- (1) $\sigma_u = \gamma'(u) + v\gamma''(u), \sigma_v = \gamma'(u)$. Since $\gamma'_u \circ \gamma''_u = 0$, the first fundamental form is $(1 + v^2\kappa^2)du^2 + 2dudv + dv^2$, where κ is the curvature of the curve. From this expression, we see that the first fundamental form is indepedent with the torsion τ of γ .
- (2)
- (3) We construct a planar curve with $\kappa(u)$ as curvature. By fundamental theorem of curves, it is possible. Then
- **3.3** Show that Enneper's surface

$$\sigma(u,v) = \left(u - \frac{u^3}{3} + uv^2, v - \frac{v^3}{3} + vu^2, u^2 - v^2\right) \tag{5}$$

is conformally parametrized.

Solution : Proof. $\sigma_u = (1 - u^2 + v^2, 2uv, 2u), \sigma_v = (2uv, 1 - v^2 + u^2, -2v)$. The first fundamental form is $(1 + u^2 + v^2)^2 (du^2 + dv^2)$, which is proportional to the first fundamental form of plane. Therefore, the surface is conformally parametrized. \square

Exercise 4.

4.1 Prove that $S = \{(-\infty, a) | a \text{ is rational}\}\$ is a topology basis of the real line \mathbb{R} (with some appropriately defined topology).

Solution: Proof.

.1.
$$\mathbb{R} = \bigcup_{a \in Q} (-\infty, a)$$

.2. $(-\infty, a) \cap (-\infty, b) = (-\infty, \min\{a, b\})$
The topology generated by S is $T = \{(-\infty, b) | b \in \mathbb{R}\} \cup \{\varnothing, \mathbb{R}\}$

- **4.2** Let $X = \mathbb{R}$ be the real line and S the set of all irrational numbers. Define $T = \{U \setminus A | U \text{ is open in } \mathbb{R} \text{ and } A \subseteq S\}.$
 - (a) Show that T is a topology.
 - (b) Show that (X,T) has T_2 , but not T_3 property.
 - (c) Show that (X,T) is first countable.
 - (d) Prove that S is a discrete subspace of (X,T). Therefore, S is not separable.
 - (e) Prove that (X,T) is not C_2 .

Solution: *Proof.*

$$\begin{array}{ll} \text{(a)} & \text{(i)} & X,\varnothing \in T \\ & \text{(ii)} & \bigcup_{i \in I} (U_i \backslash A_i) = (\bigcup_{i \in I} U_i) \backslash B, B \subseteq \bigcup_{i \in I} A_i \subseteq S. \text{ Therefore, } \bigcup_{i \in I} (U_i \backslash A_i) \in T \\ & \text{(iii)} & (U_1 \backslash A_1) \cap (U_2 \backslash A_2) = (U_1 \cap U_2) \backslash (A_1 \cup A_2) \in T \end{array}$$

(b)
$$\forall x, y \in \mathbb{R}, x \neq y$$
. Let $d = \frac{|x-y|}{2}$, then $x \in (x-d, x+d) \in T, y \in (y-d, y+d) \in T$ and $(x-d, x+d) \cap (y-d, y+d) = \varnothing$. Therefore, the topology satisfies T_2 . Consider a rational point p and a closed set S . Suppose $U \setminus A$ is an open neighborhood containing p , then all rational points within U are in this set. Take an irrational number q from U . For any open neighborhood $Y \setminus B$ containing $S, q \in Y$, where Y is open in \mathbb{R} . We can find a rational number

within Y, sufficiently close to q such that this rational number is also in U. Therefore $(U \setminus A) \cap (V \setminus B) \neq \emptyset$ and the topology defined in this problem is not T_3 .

- (c) Let $\mathcal{N} = \{\{x\} \cup B(x, \frac{1}{n}) \setminus S, n = 1, 2, \dots\}$. For a neighborhood $U \setminus A$ of x, we can find sufficiently large n such that $B(x, \frac{1}{n}) \subseteq U \Rightarrow \{x\} \cup B(x, \frac{1}{n}) \setminus Q^c \subseteq U \setminus A$. Therefore, (X, T) is C_1 .
- (d) $\forall S_1 \subset S, S_1 = S \cap (\mathbb{R} \setminus (S \setminus S_1))$ is open in S. Thus S has discrete topology. Each single point set is open. Therefore the accumulated point set of A is empty. $\bar{A} = S \Rightarrow A = S$ and A is uncountable. Hence S cannot be separable.
- (e) Assume (X,T) is C_2 , then (S,T) is C_2 . C_2 space is separable, a contradiction.

4.3 Show that a compact metric space is separable and thus is C_2 .

Solution : Proof. $\forall n \in \mathbb{N}, X = \bigcup_{x \in X} B(x, \frac{1}{n}) = \bigcup_{i=1}^{m(n)} B(x_{n_i}, \frac{1}{n})$. We choose $A = \{x_{n_i} | n \in \mathbb{N}, i = 1, 2, \dots, m(n)\}$. Then A is countable, and we verify $\bar{A} = X$.

 $A = \{x_{n_i} | n \in \mathbb{N}, i = 1, 2, \dots, m(n)\}$. Then A is countable, and we verify $\bar{A} = X$. $\forall x \in X \setminus A$ and a neighborhood U of x, we can find sufficiently large n such that $B(x, \frac{1}{n}) \subseteq U$. For this n, there exists n_i such that $x \in B(x_{n_i}, \frac{1}{n}) \Rightarrow x_{n_i} \in B(x, \frac{1}{n}) \Rightarrow U \cap A \neq \emptyset$. Therefore, A is dense in X. And by known conclusion, separable metric space is C_2 .

- **4.4** Let $\sigma: U \to \Sigma$ be a parameterization of a regular surface Σ with an open subset $U \subset \mathbb{R}^2$.
 - (1) Prove that a surface Σ is part of a plane if and only if its second fundamental form is always zero.
 - (2) Prove that a surface Σ is part of a sphere if and only if its second fundamental form Π_p is a non-zero-constant multiple of its first fundamental form I_p , i.e. $\Pi_p = cI_p$ for some real number c and each $p \in \Sigma$.

Solution: Proof.

(1) \Rightarrow : the second partial derivative of σ with respect to u, v is zero, therefore the second fundamental form is zero.

 $\Leftarrow: \text{We know that } \sigma_u \cdot \overrightarrow{n} = 0 \Rightarrow \sigma_{uu} \cdot \overrightarrow{n} + \sigma_u \cdot \overrightarrow{n}_u = 0. \text{ Since } L = \sigma_{uu} \cdot \overrightarrow{n} = 0,$ we have $\sigma_u \cdot \overrightarrow{n}_u = 0$. Also $\sigma_{uv} \cdot \overrightarrow{n} + \sigma_u \cdot \overrightarrow{n}_v = 0 \Rightarrow \sigma_v \cdot \overrightarrow{n}_u = 0$. From $\overrightarrow{n} \cdot \overrightarrow{n} = 1 \Rightarrow \overrightarrow{n} \cdot \overrightarrow{n}_u = 0$. While $\overrightarrow{n}, \sigma_u, \sigma_v$ is an orthogonal basis of \mathbb{R}^3 , $\overrightarrow{n}_u = 0$. By the same deduction, $\overrightarrow{n}_v = 0$. Then \overrightarrow{n} is a constant unit vector and integrate $\sigma_u \cdot \overrightarrow{n} = 0$ gives $\sigma \cdot \overrightarrow{n} = c$, which is the equation of a plane in \mathbb{R}^3 .

- (2) \Rightarrow : See the next problem solution for detail. \Leftarrow : We know that $(\overrightarrow{n}_v) = -BA^{-1}\binom{\sigma_u}{\sigma_v}$. Since B = cA, $\overrightarrow{n}_u = -c\sigma_u$, $\overrightarrow{n}_v = -c\sigma_v \Rightarrow \overrightarrow{n} + c\sigma = a \Rightarrow \|\sigma - \frac{a}{c}\| = |\frac{1}{c}|$. That is, Σ is part of a sphere.
- **4.5** Compute the Gauss curvature of the sphere S^2 of radius r.

Solution: *Proof.* We provide two methods:

- .1. Use the parameterization $(u,v) \longmapsto (r\cos u\cos v, r\cos u\sin v, r\sin u)$ The first fundamental form matrix $A = \begin{pmatrix} r^2 & 0 \\ 0 & r^2\cos^2 u \end{pmatrix}$. The second fundamental form matrix B = A. Therefore the Gaussian curvature $K = \det(BA^{-1}) = \frac{1}{r^2}$
- .2. The intersection curve γ of a normal section with the sphere is always a great circle $\Rightarrow k_1 = k_2 = \pm \frac{1}{r} \Rightarrow K = \frac{1}{r^2}$.