Long Short Trader Using Deep Learning PO-237

Luiza Santos ITA, Operations Research

November 13, 2024

1. Motivation and goals

- 2. Data ingestion
- 3. Data processing and feature engineering
- 4. Model Architecture
- 5. Trading Strategy
- 6. Simulation Results
- 7. Next steps

- 1. Motivation and goals
- 2. Data ingestion
- 3. Data processing and feature engineering
- 4. Model Architecture
- 5. Trading Strategy
- 6. Simulation Results
- 7. Next steps

- Motivation and goals
- 2. Data ingestion
- 3. Data processing and feature engineering
- 4. Model Architecture
- 5. Trading Strategy
- 6. Simulation Results
- 7. Next steps

- 1. Motivation and goals
- 2. Data ingestion
- 3. Data processing and feature engineering
- 4. Model Architecture
- 5. Trading Strategy
- 6. Simulation Results
- 7. Next steps

- 1. Motivation and goals
- 2. Data ingestion
- 3. Data processing and feature engineering
- 4. Model Architecture
- 5. Trading Strategy
- 6. Simulation Results
- 7. Next steps

- 1. Motivation and goals
- 2. Data ingestion
- 3. Data processing and feature engineering
- 4. Model Architecture
- 5. Trading Strategy
- 6. Simulation Results
- 7. Next steps

- 1. Motivation and goals
- 2. Data ingestion
- 3. Data processing and feature engineering
- 4. Model Architecture
- 5. Trading Strategy
- 6. Simulation Results
- 7. Next steps

Project Motivation

- Leverage deep learning frameworks to tackle the challenges of time series data in financial markets.
- Utilize a portfolio allocation strategy to maximize profits

Project Motivation

- Leverage deep learning frameworks to tackle the challenges of time series data in financial markets.
- Utilize a portfolio allocation strategy to maximize profits

Challenges and Learning

- Time Series Complexity: Adapting LSTMs for time series analysis, which included handling dependencies and trends.
- Training using Sliding Window: Mastering the sliding window approach to split data effectively for prediction intervals on a large, real-world dataset.
- New Deep Learning Framework: Learning PyTorch from scratch to implement LSTM models, which was both challenging and rewarding due to its flexibility and control over model architecture.

Challenges and Learning

- Time Series Complexity: Adapting LSTMs for time series analysis, which included handling dependencies and trends.
- Training using Sliding Window: Mastering the sliding window approach to split data effectively for prediction intervals on a large, real-world dataset.
- New Deep Learning Framework: Learning PyTorch from scratch to implement LSTM models, which was both challenging and rewarding due to its flexibility and contro over model architecture.

Challenges and Learning

- Time Series Complexity: Adapting LSTMs for time series analysis, which included handling dependencies and trends.
- Training using Sliding Window: Mastering the sliding window approach to split data effectively for prediction intervals on a large, real-world dataset.
- New Deep Learning Framework: Learning PyTorch from scratch to implement LSTM models, which was both challenging and rewarding due to its flexibility and control over model architecture.

Process Flow

Overview

Figure: Process Flow

Data Ingestion

COMDINHEIRO API

Brazilian Stock Market

- Market data
- Fundamentalist Data

Total of 26 features

- Challenges of data serialization and memory constraints
 - Solution: batch training
 - Stocks traded in parallel per time window
 - Model weights are updated after each time-window
- Creating target variable: return direction

$$T = \mathbb{1}(P_t - P_{t-1} > 0)$$

- Dealing with missing values: forward fill
- Validation with sliding window

- Challenges of data serialization and memory constraints
 - Solution: batch training
 - Stocks traded in parallel per time window
 - Model weights are updated after each time-window
- Creating target variable: return direction

$$T = \mathbb{1}(P_t - P_{t-1} > 0)$$

- Dealing with missing values: forward fill
- Validation with sliding window

- Challenges of data serialization and memory constraints
 - Solution: batch training
 - Stocks traded in parallel per time window
 - Model weights are updated after each time-window
- Creating target variable: return direction

$$T = \mathbb{1}(P_t - P_{t-1} > 0)$$

- Dealing with missing values: forward fill
- Validation with sliding window

- Challenges of data serialization and memory constraints
 - Solution: batch training
 - Stocks traded in parallel per time window
 - Model weights are updated after each time-window
- Creating target variable: return direction

$$T = \mathbb{1}(P_t - P_{t-1} > 0)$$

- Dealing with missing values: forward fill
- Validation with sliding window

- Challenges of data serialization and memory constraints
 - Solution: batch training
 - Stocks traded in parallel per time window
 - Model weights are updated after each time-window
- Creating target variable: return direction

$$T = \mathbb{1}(P_t - P_{t-1} > 0)$$

- Dealing with missing values: forward fill
- Validation with sliding window

- Challenges of data serialization and memory constraints
 - Solution: batch training
 - Stocks traded in parallel per time window
 - Model weights are updated after each time-window
- Creating target variable: return direction

$$T = \mathbb{1}(P_t - P_{t-1} > 0)$$

- Dealing with missing values: forward fill
- Validation with sliding window

- Challenges of data serialization and memory constraints
 - Solution: batch training
 - Stocks traded in parallel per time window
 - Model weights are updated after each time-window
- Creating target variable: return direction

$$T = \mathbb{1}(P_t - P_{t-1} > 0)$$

- Dealing with missing values: forward fill
- Validation with sliding window

Model Architecture

Overview

Figure: Model Architecture

Model Architecture

Model Output

Figure: Model Output

Trading Strategy

Long Short Strategy

- New portfolio daily
- Long strategy: Choose 10 stocks with greater certainty of growth
- Short strategy: Choose 10 stocks with greater certainty of decrease
- Equal weight of the 20 stocks

Trading Strategy

Long Short Strategy

Figure: Model Output

Simulation Results

Cumulative Returns

Context: simulated over 100 trading days

Simulation Results

Cumulative Returns Volatility Matched

Figure: Cumulative Returns Volatility Matched

Simulation Results

Daily Returns

Figure: Daily Returns

Next Steps

Attempt:

- A different model architecture
- More feature engineering
- A different retraining frequency

References

Time-Series-Based Stock Market Analysis using Machine Learning.

Amruth, S. Jaya and Nigelesh, T.M. and Shruthik, V. Sai and Reddy, Valluru Sateesh and Venugopalan, Manju 15th International Conference on Computing Communication and Networking Technologies, 2024.

Multivariate LSTM-FCNs for time series classification

Fazle Karim and Somshubra Majumdar and Houshang Darabi and Samuel Harford

Neural Networks. 166, 2019.

Thank you for listening!

Luiza Santos

luizasantos@ita.br