L'ordre dans : \mathbb{R}

Lecon L'ordre dans \mathbb{R} Présentation globale le

- I) L'ordre dans : \mathbb{R}
- II) L'ordre et les opérations dans $\mathbb R$
- III)La valeur absolue et propriétés
- IV)Intervalles dans l'ensemble des nombres réels
- IV)L'encadrement et la valeur approché

I) L'ordre dans : \mathbb{R}

Comparer deux nombres réels a et b, c'est chercher à savoir quel est le plus grand (ou s'ils sont égaux).

1) **Définition**: soient a et b deux réels.

 $a \le b$ se lit « a inférieur ou égal à b » ce qui équivaut à $(b-a) \in \mathbb{R}^+$ ou $b-a \ge 0$

 $b \ge a$ se lit « a supérieur ou égal à b » ce qui équivaut à $(b-a) \in \mathbb{R}^+$ ou $b-a \ge 0$

a < b se lit « a strictement inférieur à b » ce qui équivaut à b-a>0

a > b se lit « a strictement supérieur à b » ce qui équivaut à

Ainsi, comparer a et b revient à étudier le signe de a - b.

Exemple1: comparer $\frac{101}{102} et \frac{100}{101}$

SOLUTION:

$$\frac{101}{102} - \frac{100}{101} = \frac{101 \times 101 - 100 \times 102}{101 \times 102} = \frac{10201 - 10200}{101 \times 102}$$

$$\frac{101}{102} - \frac{100}{101} = \frac{1}{101 \times 102} \in \mathbb{R}^+ \ \text{donc} : \frac{101}{102} \ge \frac{100}{101}$$

Exemple2: comparer a et b

$$a = 2 + \sqrt{3}$$
 et $b = 2\sqrt{3}$

SOLUTION:

 $a-b=2-\sqrt{3}$ nombre positif

cad: $a-b \in \mathbb{R}^{*+}$ donc: $a \succ b$

Exemple3: comparer 2a et $a^2 + 1$ avec $a \in \mathbb{R}$ **SOLUTION:**

$$(a^2+1)-2a=a^2-2a+1=(a-1)^2 \ge 0$$

Donc: $a^2 + 1 \ge 2a$ si $a \in \mathbb{R}$

2) Activités : I) comparer les réels suivants :

1)
$$\frac{8}{11}$$
 et $\frac{5}{11}$

2)
$$\frac{13}{9}$$
 et $\frac{13}{6}$

1)
$$\frac{8}{11}$$
 et $\frac{5}{11}$ 2) $\frac{13}{9}$ et $\frac{13}{6}$ 3) $\frac{-15}{7}$ et $\frac{-15}{4}$

4)
$$\frac{-12}{7}$$
 et $\frac{15}{4}$

4)
$$\frac{-12}{7}$$
 et $\frac{15}{4}$ 5) $2\sqrt{5}$ et $5\sqrt{2}$

II) soient a et b deux réels tel que : $a \le b$

comparer: 1) 5a et 5b2) -13a et -13b

III) soient a et b deux réels strictement positifs tel que :

$$a \le b$$
 comparer: 1) a^2 et b^2 2) \sqrt{a} et \sqrt{b}

2)
$$\sqrt{a}$$
 et \sqrt{b}

3)
$$\frac{1}{a}$$
 et $\frac{1}{b}$

IV) soient a et b deux réels négatifs tel que : $a \le b$

comparer: a^2 et b^2

SOLUTION: Comparer a et b revient à étudier

le signe de : a-b.

1) on compare
$$\frac{8}{11}$$
 et $\frac{5}{11}$

$$\frac{8}{11} - \frac{5}{11} = \frac{8-5}{11} = \frac{3}{11} \ge 0$$
 donc $\frac{8}{11} \ge \frac{5}{11}$

2) on compare
$$\frac{13}{9}$$
 et $\frac{13}{6}$

$$\frac{13}{6} - \frac{13}{9} = \frac{39 - 26}{18} = \frac{13}{18} > 0$$
 donc $\frac{13}{6} > \frac{13}{9}$ ou $\frac{13}{6} \ge \frac{13}{9}$

3) on compare
$$\frac{-15}{7}$$
 et $\frac{-15}{4}$

$$\frac{-15}{7} - \left(-\frac{15}{4}\right) = \frac{-15}{7} + \frac{15}{4} = \frac{-60 + 105}{28} = \frac{45}{28} > 0$$

donc
$$\frac{-15}{7} > -\frac{15}{4}$$
 ou $\frac{-15}{7} \ge -\frac{15}{4}$

4) on compare
$$\frac{-12}{7}$$
 et $\frac{15}{4}$

$$\frac{-12}{7} - \frac{15}{4} = \frac{-48 - 105}{7} = \frac{-165}{28} < 0 \quad \text{donc} \quad \frac{-12}{7} < \frac{15}{4}$$
ou $\frac{-12}{7} \le \frac{15}{4}$

5) on compare
$$2\sqrt{5}$$
 et $5\sqrt{2}$

On a $(2\sqrt{5})^2 = 20$ et $(5\sqrt{2})^2 = 50$ et

50-20=30>0 et puisque $2\sqrt{5}$ et $5\sqrt{2}$ sont positifs alors $5\sqrt{2}>2\sqrt{5}$

II) soient a et b deux réels tel que : $a \le b$

1) on compare 5a et 5b

On a: 5a-5b=5(a-b) et puisque $a \le b$ alors $a-b \le 0$

Et on a: 5 > 0 donc $5a \le 5b$

2) on compare -13a et -13b

On a:
$$-13a - (-13b) = -13a + 13b = -13(a - b)$$
 et

puisque $a \le b$ alors $a - b \le 0$

Et on a: -13 < 0 donc $-13a \ge -13b$

 ${f III}$) soient a et b deux réels strictement positifs tel que : $a \le b$

1)on compare: a^2 et b^2

$$a^2-b^2=(a-b)(a+b)$$

On a : a et b deux réels strictement positifs donc $a+b \ge 0$ et puisque $a \le b$ alors $a-b \le 0$

alors: $(a-b)(a+b) \le 0$

D'où $a^2 \le b^2$

2) on compare : \sqrt{a} et \sqrt{b}

$$\sqrt{a} - \sqrt{b} = \frac{\left(\sqrt{a} - \sqrt{b}\right)\left(\sqrt{a} + \sqrt{b}\right)}{\sqrt{a} + \sqrt{b}} = \frac{\sqrt{a^2} - \sqrt{b^2}}{\sqrt{a} + \sqrt{b}} = \frac{a - b}{\sqrt{a} + \sqrt{b}}$$

On a: $a \le b$ alors $a - b \le 0$

et puisque $\sqrt{a} + \sqrt{b} \ge 0$ car c'est la somme de deux nombres positifs

donc
$$\frac{a-b}{\sqrt{a}+\sqrt{b}} \le 0$$
 D'où $\sqrt{a} \le \sqrt{b}$

3) on compare : $\frac{1}{a}$ et $\frac{1}{b}$

$$\frac{1}{a} - \frac{1}{b} = \frac{b - a}{ab}$$

On a : $a \le b$ alors $b - a \ge 0$

et puisque a et b deux réels strictement positifs alors ab > 0 car c'est la produit de deux nombres positifs

donc
$$\frac{b-a}{ab} \ge 0$$
 D'où $\frac{1}{a} \ge \frac{1}{b}$

 ${f IV}$) soient a et b deux réels strictement négatifs tel que : $a \le b$

on compare: a^2 et b^2

$$a^2 - b^2 = (a - b)(a + b)$$

On a : a et b deux réels négatifs donc $a+b \le 0$

et puisque $a \le b$ alors $a - b \le 0$ alors : $(a - b)(a + b) \ge 0$

D'où $a^2 \ge b^2$

II) L'ordre et les opérations dans $\,\mathbb{R}\,$

1)L'ordre et l'addition

Propriété : Soient a et b et c trois nombres réels

 \checkmark Si $a \le b$ alors $a+c \le b+c$ et $a-c \le b-c$

 \checkmark Si $a \le b$ et $c \le d$ alors $a + c \le b + d$

(On peut ajouter membre a membre deux inégalités de même sens)

Remarque: on ne peut pas retrancher membre a membre deux inégalités de même sens

Exemple:

On a: $4 \le 6$ et $2 \le 6$ mais 4 - 2 > 6 - 6

2)L'ordre et la multiplication Propriétés :

1) $ab \ge 0$ ssi $a \ge 0$ ou $b \ge 0$ ou $a \le 0$ ou $b \le 0$ (le produit de deux réel de même signe et toujours positifs)

2) si $a \le b$ et $c \ge 0$ alors $ac \le bc$

si $a \le b$ et $c \le 0$ alors $ac \ge bc$

3) si $0 \le a \le b$ et $0 \le c \le d$ alors $ac \le bd$

si $0 \le a \le b$ alors $a^2 \le b^2$ et $\sqrt{a} \le \sqrt{b}$

4) si $a \le b \le 0$ alors $a^2 \ge b^2$

5) si ab > 0 on a : si $a \le b$ alors $\frac{1}{a} \ge \frac{1}{b}$ (Autrement dit,

deux nombres strictement positifs ou strictement négatifs sont rangés dans l'ordre contraire de leur inverse.

Application 1:

Soit a est un réel strictement positif.

1. montrer que : Si a > 1, alors $a^3 > a^2 > a$

2. montrer que : si a < 1, alors $a^3 < a^2 < a$.

SOLUTION:

De l'hypothèse a > 1, on déduit d'une part que $a^2 > a$ (on multiplie les deux membres par

a > 0) et d'autre part que $a^3 > a^2$ (on multiplie par $a^2 > 0$). Donc $a^3 > a^2 > a$.

De la même façon, lorsque 0 < a < 1, on démontre que : $a^3 < a^2 < a$.

Remarque: pour a = 0 et a = 1, $a = a^2 = a^3$.

Exercice 1 : comparer a et b :

$$a = \sqrt{6}$$
 et $b = \sqrt{3} + \sqrt{2} - 1$

SOLUTION:

$$a-b = \sqrt{3} \times \sqrt{2} - \sqrt{3} - \sqrt{2} + 1 = \sqrt{3} \times (\sqrt{2} - 1) - (\sqrt{2} - 1)$$

$$a-b = (\sqrt{2}-1)(\sqrt{3}-1)$$

on compare : $\sqrt{2}$ et 1

On a
$$(\sqrt{2})^2 = 2 \text{ et}(1)^2 = 1$$
 donc $\sqrt{2} > 1$

par suite $(\sqrt{2}-1) \in \mathbb{R}^{+*}$

On a
$$(\sqrt{3})^2 = 3$$
 et $(1)^2 = 1$ donc $\sqrt{3} > 1$

par suite $(\sqrt{3}-1) \in \mathbb{R}^{+*}$ Donc

$$a-b = (\sqrt{2}-1)(\sqrt{3}-1) \in \mathbb{R}^{+*}$$
 D'où $a > b$

Exercice 2: soit $x \in \mathbb{R}^{*+}$

1)Comparer: $\sqrt{x+1} + \sqrt{x}$ et $\sqrt{x+1} + \sqrt{x+2}$

2) En déduire une comparaison de : $\sqrt{x+1} - \sqrt{x}$

et $\sqrt{x+2} - \sqrt{x+1}$

SOLUTION: 1) On a $x+2 \ge x$ car $(x+2)-x \ge 0$

Donc $\sqrt{x+2} \ge \sqrt{x}$

On a journant $\sqrt{x+1}$ au deux membres on trouve :

 $\sqrt{x+2} + \sqrt{x+1} \ge \sqrt{x} + \sqrt{x+1}$

2) $\sqrt{x+2} - \sqrt{x+1} = \frac{\left(\sqrt{x+2} - \sqrt{x+1}\right)\left(\sqrt{x+2} - \sqrt{x+1}\right)}{\sqrt{x+2} - \sqrt{x+1}}$ (le conjugué)

 $\sqrt{x+2} - \sqrt{x+1} = \frac{\left(\sqrt{x+2}\right)^2 - \left(\sqrt{x+1}\right)^2}{\sqrt{x+2} - \sqrt{x+1}} = \frac{x+2-x-1}{\sqrt{x+2} - \sqrt{x+1}}$

Donc: $\sqrt{x+2} - \sqrt{x+1} = \frac{1}{\sqrt{x+2} - \sqrt{x+1}}$

Et on aussi : $\sqrt{x+1} - \sqrt{x} = \frac{\left(\sqrt{x+1} - \sqrt{x}\right)\left(\sqrt{x+1} - \sqrt{x}\right)}{\sqrt{x+1} - \sqrt{x}}$

 $\sqrt{x+1} - \sqrt{x} = \frac{\left(\sqrt{x+1}\right)^2 - \left(\sqrt{x}\right)^2}{\sqrt{x+1} - \sqrt{x}} = \frac{x+1-x}{\sqrt{x+1} - \sqrt{x}} = \frac{1}{\sqrt{x+1} - \sqrt{x}}$

Et puisque : $\sqrt{x+2} + \sqrt{x+1} \ge \sqrt{x} + \sqrt{x+1}$

On a donc: $\frac{1}{\sqrt{x+2} + \sqrt{x+1}} \le \frac{1}{\sqrt{x} + \sqrt{x+1}}$

D'où $\sqrt{x+1} + \sqrt{x} \le \sqrt{x+1} + \sqrt{x+2}$

Exercice 3:soit $a \in \mathbb{R}^{*+}$ et $b \in \mathbb{R}^{*+}$

Comparer: $x = \frac{7a + 2b}{7a}$ et $y = \frac{8b}{7a + 2b}$

SOLUTION: On a $x+2 \ge x$ car $(x+2)-x \ge 0$

 $x - y = \frac{7a + 2b}{7a} - \frac{8b}{7a + 2b}$

 $x - y = \frac{(7a + 2b)^2 - 7a \times 8b}{7a(7a + 2b)} = \frac{49a^2 + 14ab + 14ab + 4b^2 - 56a \times b}{7a(7a + 2b)}$

 $x - y = \frac{49a^2 - 28a \times b + 4b^2}{7a(7a + 2b)} = \frac{(7a)^2 - 2 \times 7a \times 2b + (2b)^2}{7a(7a + 2b)}$

 $x - y = \frac{\left(7a - 2b\right)^2}{7a\left(7a + 2b\right)} \in \mathbb{R}^+$

car $7a(7a+2b) \in \mathbb{R}^+$ et $(7a-2b)^2 \in \mathbb{R}^+$ D'où $x \ge y$

III)La valeur absolue et propriétés

1)Définition : Soit $x \in \mathbb{R}$ et soit M le point d'abscisse x sur un axe normé(gradué)

La valeur absolue de x est la distance OM et on note : |x|

et on a : OM = |x| (O l'origine de l'axe)

2)Conséquence : $x \in \mathbb{R}$

Si $x \ge 0$ alors |x| = x et Si $x \le 0$ alors |x| = -x

Exemples : calculer les expressions suivantes (éliminer le signe de valeur absolue)

|1)|-3| 2) |3| 3) $|-\frac{3}{5}|$ 4) $|\sqrt{5}-2|$ 5) $|1-\sqrt{3}|$

6) $|\pi - 4|$ 7) $|\sqrt{2} - \sqrt{7}|$ 8) $|3 - 2\sqrt{3}|$

9) $A = |4 - 2\sqrt{3}| - |5 - 3\sqrt{3}| + |9 - 5\sqrt{3}|$

SOLUTION: 1) $\left| -3 \right| = -(-3) = 3$ 2) $\left| 3 \right| = 3$ 3) $\left| -\frac{3}{5} \right| = \frac{3}{5}$

 $|4)|\sqrt{5}-2|$ on compare: $\sqrt{5}$ et 2

On a $(\sqrt{5})^2 = 5 \operatorname{et}(2)^2 = 4$ donc $\sqrt{5} > 2$ par suite

 $\left| \left(\sqrt{5} - 2 \right) \in \mathbb{R}^{+*} \text{ Donc } \left| \sqrt{5} - 2 \right| = \sqrt{5} - 2$

5) $\left| 1 - \sqrt{3} \right|$ on compare : $\sqrt{3}$ et 1

On a $\left(\sqrt{3}\right)^2 = 3 \operatorname{et}(1)^2 = 1$ donc $\sqrt{3} > 1$ par suite

 $|(1-\sqrt{3}) \in \mathbb{R}^{-*} \text{ donc } : |1-\sqrt{3}| = -(1-\sqrt{3}) = -1+\sqrt{3}$

6) $|\pi - 4| = -(\pi - 4) = -\pi + 4$ car $4 > \pi$

7) $|\sqrt{2}-\sqrt{7}|$ on compare : $\sqrt{7}$ et $\sqrt{2}$

On a $(\sqrt{7})^2 = 7 \text{ et}(\sqrt{2})^2 = 2$ donc $\sqrt{7} > \sqrt{2}$

par suite $\sqrt{2} - \sqrt{7} < 0$

Donc $|\sqrt{2} - \sqrt{7}| = -(\sqrt{2} - \sqrt{7}) = -\sqrt{2} + \sqrt{7}$

8) on a $3 < 2\sqrt{3}$ car $3^2 < (2\sqrt{3})^2$

 $Donc: 3-2\sqrt{3} \in \mathbb{R}^-$

Donc; $|3-2\sqrt{3}| = -(3-2\sqrt{3}) = -3+2\sqrt{3}$

9) on a: $\sqrt{5} > \sqrt{2}$ donc: $\sqrt{5} - \sqrt{2} \in \mathbb{R}^+$ donc: $|\sqrt{5} - \sqrt{2}| = \sqrt{5} - \sqrt{2}$

 $A = |4 - 2\sqrt{3}| - |5 - 3\sqrt{3}| + |9 - 5\sqrt{3}|$

 $A = 4 - 2\sqrt{3} - (5 - 3\sqrt{3}) + (5\sqrt{3} - 9)$

 $A = 4 - 2\sqrt{3} + 5 - 3\sqrt{3} + 5\sqrt{3} - 9 = 0$

Remarque: Si x est un nombre réel, $|x^2| = x^2 \operatorname{car} x^2 \ge 0$.

3)Définition : Soit $a \in \mathbb{R}$ et $b \in \mathbb{R}$ et soit A et B les point d'abscisses respectives a et b sur un axe normé(gradué)

La distance entre a et b c'est la distance AB et on la note AB = |a-b|

Remarque: AB = BA donc |a-b| = |b-a|

Exemples:

$$MN = |2 - (-4)| = |2 + 4| = |6| = 6$$

$$AM = |2 - (-1)| = |3| = 3$$

$$AN = |-1 - (-4)| = |-1 + 4| = |3| = 3$$

4)Propriétés: $x \in \mathbb{R}$ et $y \in \mathbb{R}^*$ et $a \in \mathbb{R}^+$

$$|x| \ge 0$$
 ; $|x^2| = |x|^2 = x^2$; $-|x| \le x \le |x|$; $|x| = |-x|$

$$\sqrt{x^2} = |x|$$
; $|xy| = |x||y|$; $|x+y| \le |x| + |y|$; $\left|\frac{x}{y}\right| = \frac{|x|}{|y|}$

|x| = a équivaut à dire que x = a ou x = -a

|x| = |y| équivaut à dire que x = y ou x = -y

Dire que |x| = 0 équivaut à dire que x = 0.

Applications : (*Résolution des équations*)

Résoudre les équations suivantes :

1)
$$|x-1| = 5$$
 2) $|2x+1| = |x-3|$ 3) $|x+2| = -1$

SOLUTION : 1) |x-1| = 5

$$|x-1| = 5$$
 ssi $x-1=5$ ou $x-1=-5$

ssi
$$x = 6$$
 ou $x = -4$ donc: $S = \{-4, 6\}$

2)
$$|2x+1| = |x-3| \operatorname{ssi} 2x + 1 = x - 3 \operatorname{ou} 2x + 1 = -(x-3)$$

ssi
$$2x+1=x-3$$
 ou $2x+1=-x+3$

ssi
$$x = -4$$
 ou $x = \frac{2}{3}$ donc : $S = \left\{-4; \frac{2}{3}\right\}$

3)
$$|x+2| = -1$$
 $S = \emptyset$ car $|x+2| \ge 0$

Exercice 4:1) calculer $(3\sqrt{2}-5)^2$

2)comparer: $3\sqrt{2}$ et 5

3)simplifier $\sqrt{43-30\sqrt{2}}$

SOLUTION: 1)

$$(3\sqrt{2}-5)^2 = (3\sqrt{2})^2 - 2\times 3\sqrt{2}\times 5 + (5)^2 = 18 - 30\sqrt{2}\times 5 + 25$$
$$(3\sqrt{2}-5)^2 = 43 - 30\sqrt{2}$$

$$\begin{array}{cccc}
& 2) & \left(3\sqrt{2}\right)^2 = 18 \\
& & & \\
\hline
& & & \\
\hline
& & & \\
\end{array}$$

$$\begin{array}{cccc}
& & \\
& & \\
\hline
& & \\
\end{array}$$
et
$$\left(5\right)^2 = 25$$

Donc $3\sqrt{2} > 5$ donc $3\sqrt{2} - 5 \in \mathbb{R}^ 3)\sqrt{43 - 30\sqrt{2}} = \sqrt{(3\sqrt{2} - 5)^2} = |3\sqrt{2} - 5| = -(3\sqrt{2} - 5)$

car $3\sqrt{2} - 5 \in \mathbb{R}^-$ donc $\sqrt{43 - 30\sqrt{2}} = -3\sqrt{2} + 5$

IV)Intervalles dans l'ensemble des nombres réels

1) définition :

a et b sont deux réels tels que a < b.

Le tableau ci-dessous résume les différents types d'intervalles.

L'intervalle noté	inégalité 	Représentation de cet intervalle sur une droite graduée
[a; b]	$a \le x \le b$	a[]b
]a; b[a < x < b	a][b
]a;b]	$a < x \le b$	a]_b
[a; b[<i>a</i> ≤ <i>x</i> < <i>b</i>	a[_b
[<i>a</i> ; +∞[$a \le x$	a[
] <i>a</i> ; +∞[a < x	a
]-∞ ; <i>b</i>]	$x \le b$]b
]-∞ ; <i>b</i> [<i>x</i> > <i>b</i>	<u>b</u>

Vocabulaire : [a;b],]a;b[,]a;b] et [a;b[sont des intervalles d'**extrémités** a et b (a < b). Le **centre** de l'intervalle est le nombre $\frac{b-a}{2}$, et sa **longueur** est b-a.

Remarques : $-\infty$ (moins l'infini) et $+\infty$ (plus l'infini) ne sont pas des nombres, ce sont des symboles.

Du côté de $-\infty$ et de $+\infty$, le crochet est toujours ouvert L'ensemble des réels \mathbb{R} se note aussi $]-\infty$; $+\infty$ [.

$$\mathbb{R}^+ = \begin{bmatrix} 0, +\infty \begin{bmatrix} \text{ et } \mathbb{R}^- = \end{bmatrix} - \infty, 0 \end{bmatrix}$$
 et $\mathbb{R}^*_+ = \begin{bmatrix} 0, +\infty \end{bmatrix}$ et $\mathbb{R}^*_+ = \begin{bmatrix} -\infty, 0 \end{bmatrix}$

2) Réunion et intersection d'intervalles

L'intersection de deux intervalles est l'ensemble des nombres réels appartenant à la fois aux deux intervalles.

La **réunion** de deux intervalles est l'ensemble des nombres réels appartenant à l'un ou l'autre de ces intervalles (les éléments de l'intersection appartiennent aussi à la réunion).

Exemples: simplifier si c'est possible

1)
$$[2;5] \cap [4;6]$$

2)
$$[2;5] \cup [4;6]$$

3)]-
$$\infty$$
; 2] \cap [-1; + ∞ [

3)
$$]-\infty$$
; 2] \cap [-1; $+\infty$ [4) $]-\infty$; 2] \cup [-1; $+\infty$ [

SOLUTION: 1) $[2;5] \cap [4;6] = [4;5]$

2)
$$[2;5] \cup [4;6] = [2;6].$$

3)
$$]-\infty$$
; 2] \cap [-1; $+\infty$ [= [-1; 2]

4)]
$$-\infty$$
; 2] \cup [-1; $+\infty$ [=] $-\infty$; $+\infty$ [

Exercice 5: calculer $I \cap J$ et $I \cup J$ dans les cas suivants

$$J = \begin{bmatrix} -1, +\infty \begin{bmatrix} \text{ et } I = \end{bmatrix} -3,7 \end{bmatrix}$$
$$J = \begin{bmatrix} 4,10 \end{bmatrix} \quad \text{et} \quad I = \begin{bmatrix} -\infty,5 \end{bmatrix}$$

$$I = \begin{bmatrix} 0.10 \end{bmatrix} \quad \text{et} \quad J = \begin{bmatrix} -5; -1 \end{bmatrix}$$

$$I = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$$
 et $J = \begin{bmatrix} -1, \frac{3}{2} \end{bmatrix}$

SOLUTION: $I \cap J = [-1, 7]$ et $I \cup J = [-3; +\infty[$

$$I \cap J = [4,5[$$
 et $I \cup J =]-\infty;10]$

$$I \cap J = \emptyset$$
 et $I \cup J = [-5;10]$

$$I \cap J = \left[-\frac{2}{3}; \frac{3}{2} \right]$$
 et $I \cup J = \left[-1, 2 \right]$

Exercice 6 : représenter chaque inégalité ou encadrement par l'intervalle qui convient; 1) $x \ge -3$ 2) x < 5

3)
$$1 \le 2x \le 4$$
 4) $0 < 6x - 2 \le 10$ 5) $-8 \le 2 - 2x \le 6$

SOLUTION: 1) $x \ge -3$ ssi $x \in [-3, +\infty]$

2)
$$x < 5$$
 ssi $x \in]-\infty, 5]$

3)
$$1 \le 2x \le 4$$
 ssi $\frac{1}{2} \times 1 \le \frac{1}{2} \times 2x \le 4 \times \frac{1}{2}$ ssi $\frac{1}{2} \le x \le 2$

ssi
$$x \in \left[\frac{1}{2}, 2\right]$$

4)
$$0 < 6x - 2 \le 10$$
 ssi $0 + 2 < 6x - 2 + 2 \le 10 + 2$ ssi $2 < 6x \le 12$

ssi
$$2 \times \frac{1}{2} < 6x \times \frac{1}{2} \le 12 \times \frac{1}{2}$$
 ssi $1 < 3x \le 6$ ssi

$$1 \times \frac{1}{3} < 3x \times \frac{1}{3} \le 6 \times \frac{1}{3} \text{ ssi} \quad \frac{1}{3} < x \le 2 \text{ ssi} \quad x \in \left[\frac{1}{3}, 2\right]$$

5)
$$-8 \le 2 - 2x \le 6$$
 ssi $-8 - 2 \le 2 - 2x - 2 \le 6 - 2$ ssi $-10 \le -2x \le 4$

$$\begin{vmatrix} \sin & -10 \times \frac{1}{2} \le -2x \times \frac{1}{2} \le 4 \times \frac{1}{2} & \sin & -5 \le -x \le 2 \text{ ssi} \end{vmatrix}$$

$$-2 \le x \le 5$$
 ssi $x \in [-2, 5]$

Exercice 7 : résoudre les systèmes suivants

1)
$$\begin{cases} x \ge -3 \\ x > 2 \end{cases}$$

$$\begin{cases} x > 5 \\ x \le 4 \end{cases}$$
 3)
$$\begin{cases} x > 7 \\ x \ge 0 \end{cases}$$
 3)
$$\begin{cases} -3 \le x \le 0 \\ -7 < x < 10 \end{cases}$$

$$1) \begin{cases} x \ge -3 \\ x > 2 \end{cases}$$

$$x \ge -3 \operatorname{ssi} \ x \in [-3, +\infty[\operatorname{et} x > 2 \operatorname{ssi} \ x \in]2, +\infty[$$

$$S =]2, +\infty[\cap [-3, +\infty[=]2, +\infty[$$

$$2) \begin{cases} x \succ 5 \\ x \le 4 \end{cases}$$

$$x \le 4 \operatorname{ssi} x \in]-\infty, 4] \operatorname{et} x > 5 \operatorname{ssi} [5, +\infty[$$

$$S =]5, +\infty[\cap]-\infty, 4] = \emptyset$$

3)
$$x > 7$$
 ssi $x \in]7, +\infty[$ et $x \ge 0$ ssi $x \in [0, +\infty[$

$$S =]7, +\infty[\cap [0, +\infty[=]7, +\infty[$$

$$4) \begin{cases} -3 \le x \le 0 \\ -7\langle x \langle 10 \rangle \end{cases}$$

$$\left(-7\langle x\langle 10\rangle\right)$$

$$x \in]-7;10[$$
 ssi $-7\langle x\langle 10$

$$-3 \le x \le 0$$
 ssi $x \in [-3;0]$

$$S =]-7;10[\cap [-3;0] = [-3;0]$$

Définition: Soient a, b et x trois nombres réels tq $a \le b$.

On pose
$$I = [a;b]$$
 ou $I =]a;b[$ ou $I = [a;b[$ ou $I =]a;b]$

(Intervalles **bornés** d'extrémités a et b.)

Le **réel**
$$\frac{a+b}{2}$$
 est le milieu de intervalle I

Le **réel** b-a est le amplitude de intervalle I

Le **réel**
$$\frac{b-a}{2}$$
 est le rayon de intervalle I

EXEMPLE: on considéré l'intervalle I = [-3; 4]

$$\frac{-3+4}{2} = \frac{1}{2}$$
 est le milieu de intervalle *I*

$$4-(-3)=7$$
 est le amplitude de intervalle *I*

$$\frac{4-(-3)}{2} = \frac{7}{2}$$
 est le rayon de intervalle *I*

3)Les intervalles et la valeur absolue

Propriété: $x \in \mathbb{R}$ et $r \in \mathbb{R}^{+*}$

$$|x| \le r$$
 ssi $-r \le x \le r$ ssi $x \in [-r; r]$

$$|x| \ge r$$
 ssi $x \ge r$ ou $x \le -r$

Applications (*Résolution des inéquations*)

Résoudre les inéquations suivantes : |2x+1| < 6

1)
$$|x-1| \le 2$$
 2) $|x+2| \ge 3$ 3) $|2x+1| < 6$

2)
$$|x+2| \ge 3$$

3)
$$|2x+1| < 6$$

SOLUTION: 1) $|x-1| \le 2$ ssi $-2 \le x - 1 \le 2$ ssi

$$-2+1 \le x-1+1 \le 2+1$$
 ssi $-1 \le x \le 3$ donc $S = [-1;3]$

2)
$$|x+2| \ge 3$$
 ssi $x+2 \ge 3$ ou $x+2 \le -3$

Ssi
$$x \ge 1$$
 ou $x \le -5$

Ssi
$$x \in [1; +\infty)$$
 ou $x \in]-\infty; -5]$

Donc
$$S =]-\infty; -5] \cup [1; +\infty[$$

3)
$$|2x+1| < 6$$
 ssi $-6 < 2x+1 < 6$

ssi
$$-6-1 < 2x+1-1 < 6-1$$
 ssi $-7 < 2x < 5$

ssi
$$-7 \times \frac{1}{2} < 2x \times \frac{1}{2} < 5 \times \frac{1}{2}$$
 ssi $\frac{-7}{2} < x < \frac{5}{2}$ donc : $S = \left[-\frac{7}{2}, \frac{5}{2} \right]$

Exercice 8: Soit x et y deux réels tq: $x \ge \frac{1}{2}$ et $y \le 1$

et
$$x - y = 3$$

1) Calculer:
$$E = \sqrt{(2x-1)^2} + \sqrt{(2y-2)^2}$$

2) Montrer que :
$$\frac{1}{2} \le x \le 4$$
 et $-\frac{5}{2} \le y \le 1$

3) Calculer:
$$F = |x + y - 5| + |x + y + 2|$$

SOLUTION: 1

$$E = \sqrt{(2x-1)^2} + \sqrt{(2y-2)^2} = |2x-1| + |2y-2|$$

On a
$$x \ge \frac{1}{2}$$
 donc $2x \ge 1$ donc $2x-1 \ge 0$

Et on a $y \le 1$ donc $2y \le 2$ donc $2y - 2 \le 0$

donc
$$E = |2x-1| + |2y-2| = 2x-1-(2y-2)$$

donc
$$E = 2x - 2y + 1 = 2(x - y) + 1$$

et on a
$$x - y = 3$$
 donc $E = 2 \times 3 + 1 = 7$

2) on montre que
$$-\frac{5}{2} \le y \le 1$$
???

On a
$$x - y = 3$$
 donc $x = y + 3$

Et on a
$$x \ge \frac{1}{2}$$
 donc $y + 3 \ge \frac{1}{2}$ donc $y \ge \frac{1}{2} - 3$ donc $y \ge \frac{-5}{2}$

Et on a
$$y \le 1$$
 donc $-\frac{5}{2} \le y \le 1$

on montre que
$$\frac{1}{2} \le x \le 4$$
 ?????

On a
$$x - y = 3$$
 donc $y = x - 3$

Et On a
$$-\frac{5}{2} \le y \le 1$$
 donc $-\frac{5}{2} \le x - 3 \le 1$

donc
$$-\frac{5}{2} + 3 \le x - 3 + 3 \le 1 + 3$$
 D'où $\frac{1}{2} \le x \le 4$

3)
$$F = |x + y - 5| + |x + y + 2|$$
 ??????
On cherche le signe de : $x + y - 5$

On cherche le signe de :
$$x + y - 5$$

On a
$$-\frac{5}{2} \le y \le 1$$
 et $\frac{1}{2} \le x \le 4$ donc $\frac{1}{2} - \frac{5}{2} \le x + y \le 1 + 4$

donc
$$-2 \le x + y \le 5$$

donc
$$-2-5 \le x+y-5 \le 5-5$$
 donc $-7 \le x+y-5 \le 0$

donc
$$x+y-5 \le 0$$

On cherche le signe de :
$$x + y + 2$$

On
$$a-2 \le x+y \le 5$$
 donc $-2+2 \le x+y+2 \le 5+2$

donc
$$0 \le x + y + 2 \le 7$$

donc
$$x + y + 2 \ge 0$$

donc
$$F = |x+y-5| + |x+y+2| = -(x+y-5) + x + y + 2$$

$$F = -x - y + 5 + x + y + 2 = -x - y + 5 + x + y + 2 = 7$$

IV)L'encadrement et la valeur approché

1)Encadrement:

Définition: Réaliser un encadrement du réel x, c'est trouver deux nombres assez proche a et b tel que, a < x < b

$$a \le x \le b$$
 ou $a < x \le b$ ou $a \le x < b$

Chacun de ces doubles égalités s'appelle un encadrement du réel x d'amplitude b-a

Plus cette amplitude est réduite et plus l'encadrement est

a s'appelle une approximation du réel x par défaut à b-a près (ou avec la précision b-a)

b s'appelle une approximation du réel x par excès à b-a près (ou avec la précision b-a)

Exemple: on a
$$(\sqrt{3} \approx 1.732050808...)$$

Donc (1)
$$1.73 \le \sqrt{3} \le 1.74$$
 et (2) $1.732 \le \sqrt{3} \le 1.733$

① est un encadrement du réel
$$\sqrt{3}$$
 à $1.74-1.73$ près

c à d à
$$10^{-2} = 0.01 \,\text{près}$$

② est un encadrement du réel
$$\sqrt{3}$$
 à $1.733-1.732$ près

c à d à
$$10^{-3} = 0.001$$
 près

Et on a 1.73 est une approximation du réel $\sqrt{3}$ par défaut à 10^{-2} près

1.74 est une approximation du réel $\sqrt{3}$ par excès à 10^{-2}

Exercice 9: x est un réel tel que -1 < x < 2. On pose

$$B = -2x - 3$$
.

Trouver un encadrement de B et trouer son amplitude

2) Encadrements et opérations

- Encadrements et additions

Considérons deux réels x et y tels que :

$$a < x < b$$
 et $c < y < d$ alors on a $a+c < x+y < b+d$.

-Problème de la soustraction

Pour encadrer le résultat d'une soustraction, on commence par la remplacer par une addition

(Soustraire c'est ajouter l'opposé)

-Encadrements et multiplications

Considérons deux nombres réels **positifs** x et y tels que :

0 < a < x < b et 0 < c < y < d.

Le produit xy est alors encadrée par ac et bd.

On a ac < xy < bd.

Il suffit de multiplier les bornes des encadrements de x et y pour obtenir un encadrement de xy.

Remarque: Pour encadrer le résultat d'une division, on commencera par la remplacer par une multiplication

(diviser c'est multiplier par l'inverse). **Applications 1**: $x \in [1;3]$ et $y \in [2;4]$

1) Trouver un encadrement de : x^2 et y^2 et 2x et 3y

et
$$-x$$
 et $-y$ et $\frac{1}{x}$ et $\frac{1}{y}$ et $\frac{x}{y}$

2)Trouver un encadrement de : $A = x^2 + y^2 + 2x - 3y$ et

 $B = \frac{2x-1}{x+1}$ et trouver les amplitudes des encadrements

SOLUTION: 1) $x \in [1;3]$ ssi $1 \le x \le 3$ et $y \in [2;4]$

ssi $2 \le y \le 4$

On a $1 \le x \le 3$ donc $1^2 \le x^2 \le 3^2$ donc $1 \le x^2 \le 9$

On a $2 \le y \le 4$ donc $2^2 \le y^2 \le 4^2$ donc $4 \le y^2 \le 16$

On a $1 \le x \le 3$ donc $2 \times 1 \le 2x \le 2 \times 3$ donc $2 \le 2x \le 6$

On a $2 \le y \le 4$ donc $3 \times 2 \le 3 \times y \le 3 \times 4$ donc

 $6 \le 3y \le 12$

On a $1 \le x \le 3$ donc $-3 \le -x \le -1$

On a $2 \le y \le 4$ donc $-4 \le -y \le -2$

On a $1 \le x \le 3$ donc $\frac{1}{3} \le \frac{1}{x} \le 1$

On a $2 \le y \le 4$ donc $\frac{1}{4} \le \frac{1}{y} \le \frac{1}{2}$

On a $\frac{x}{v} = x \times \frac{1}{v}$ donc $1 \times \frac{1}{4} \le x \times \frac{1}{v} \le 3 \times \frac{1}{2}$ donc $\frac{1}{4} \le \frac{x}{v} \le \frac{3}{2}$

2) encadrement de $A = x^2 + y^2 + 2x - 3y$

 $6 \le 3y \le 12$ donc $-12 \le -3y \le -6$

On fait la somme membre a membre on trouve :

 $1+4+2-12 \le x^2+y^2+2x-3y \le 9+16+6-6$

Donc $(1)-5 \le A \le 25$ (1) est un encadrement du réel A

à 25 - (-5) = 30 près

encadrement de $B = \frac{2x-1}{x+1}$

On a $B = \frac{2x-1}{x+1} = (2x-1) \times \frac{1}{x+1}$

et on a $1 \le x \le 3$ donc $2 \le 2x \le 6$ donc

 $2-1 \le 2x-1 \le 6-1$ donc $1 \le 2x-1 \le 5$

et on a $1 \le x \le 3$ donc $2 \le x + 1 \le 4$ donc $\frac{1}{4} \le \frac{1}{x+1} \le \frac{1}{2}$

On fait la produit membre a membre de 3 et 4 on trouve :

 $1 \times \frac{1}{4} \le (2x-1) \times \frac{1}{x+1} \le 5 \times \frac{1}{2}$

donc $\frac{1}{4} \le B \le \frac{5}{2}$ est un encadrement du réel B

d'amplitudes $r = \frac{5}{2} - \frac{1}{4} = \frac{9}{4}$

Applications2:

1) Vérifier que $14^2 < 200 < 15^2$ et en déduire que ;

 $1, 4 < \sqrt{2} < 1, 5$

2) Trouver un encadrement de : $\sqrt{5}$

3) en déduire un encadrement de : $\sqrt{2} + \sqrt{5}$ et $\sqrt{10}$

SOLUTION: 1) on a $14^2 = 196$ et $15^2 = 225$ donc

 $14^2 < 200 < 15^2$ donc $\sqrt{14^2} < \sqrt{200} < \sqrt{15^2}$

donc $\sqrt{14^2} < \sqrt{2 \times 100} < \sqrt{15^2}$ donc $14 < \sqrt{2} \times 10 < 15$

donc $14 \times \frac{1}{10} < \sqrt{2} \times 10 \times \frac{1}{10} < 15 \times \frac{1}{10}$

donc $1, 4 < \sqrt{2} < 1, 5$

2) on a $22^2 = 484$ et $23^2 = 529$ donc $22^2 < 500 < 23^2$

donc $\sqrt{22^2} < \sqrt{500} < \sqrt{23^2}$

donc $22 < \sqrt{5} \times 10 < 23$ donc

 $22 \times \frac{1}{10} < \sqrt{5} \times 10 \times \frac{1}{10} < 23 \times \frac{1}{10}$ donc $2, 2 < \sqrt{5} < 2, 3$

3)) on a $1.4 < \sqrt{2} < 1.5$ et $2.2 < \sqrt{5} < 2.3$ donc

 $1.4 + 2.2 < \sqrt{2} + \sqrt{5} < 1.5 + 2.3$

donc $3.6 < \sqrt{2} + \sqrt{5} < 3.8$

on a $1.4 < \sqrt{2} < 1.5$ et $2.2 < \sqrt{5} < 2.3$ donc

 $1,4\times2,2<\sqrt{2}\times\sqrt{5}<1,5\times2,3$ donc $3,08<\sqrt{10}<3,45$

Applications3: $x \in [-3,1]$ et $y \in [-6,-2]$

Trouver un encadrement de : 1) x+y 2) x-y 3) x^2

4) y^2 5) $x \times y$ 6) $\frac{x}{y}$

SOLUTION: 1) $x \in [-3;1]$ ssi $-3 \le x \le 1$

 $y \in [-6; -2] \text{ ssi } -6 \le y \le -2$

donc $(-3)+(-6) \le x+y \le 1+(-2)$

 $donc \quad -9 \le x + y \le -1$

2) On a x - y = x + (-y) et on a $-6 \le y \le -2$

donc $2 \le -y \le 6$

donc $(-3)+2 \le x+(-y) \le 1+6$

donc $-1 \le x - y \le 7$

3) On a $-3 \le x \le 1$ donc $0 \le x \le 1$ ou $-3 \le x \le 0$

donc $0^2 \le x^2 \le 1^2$ ou $0^2 \le x^2 \le (-3)^2$

donc $0 \le x^2 \le 1$ ou $0 \le x^2 \le 9$

donc $0 \le x^2 \le 9$

4) On a $-6 \le y \le -2$ donc $(-2)^2 \le y^2 \le (-6)^2$

donc $4 \le y^2 \le 36$

5) encadrement de : $x \times y$

$$-3 \le x \le 1$$
 et $-6 \le y \le -2$

Si $0 \le x \le 1$

on a $-6 \le y \le -2$ alors on a $2 \le -y \le 6$

donc $0 \le -xy \le 6$ donc $(1) -6 \le xy \le 0$

Si $-3 \le x \le 0$ alors $0 \le -x \le 3$ et on a $2 \le -y \le 6$

donc ② $0 \le xy \le 18$

D'après ① et ② on déduit que : $-6 \le xy \le 18$

6) encadrement de : $\frac{x}{y}$ $-3 \le x \le 1$ On

$$-6 \le y \le -2 \text{ donc } -\frac{1}{2} \le \frac{1}{y} \le -\frac{1}{6}$$

 $donc \quad \frac{1}{6} \le -\frac{1}{y} \le \frac{1}{2}$

Si
$$0 \le x \le 1$$

on a
$$\frac{1}{6} \le -\frac{1}{y} \le \frac{1}{2}$$
 alors $0 \le x \times \left(-\frac{1}{y}\right) \le \frac{1}{2}$ donc

$$0 \le -\frac{x}{y} \le \frac{1}{2}$$
 donc $3 - \frac{1}{2} \le \frac{x}{y} \le 0$

Si
$$-3 \le x \le 0$$
 alors $0 \le -x \le 3$ et on a $\frac{1}{6} \le -\frac{1}{y} \le \frac{1}{2}$

 $donc \quad \textbf{4} \quad 0 \le \frac{x}{y} \le \frac{3}{2}$

D'après **3** et **4** on déduit que : $-\frac{1}{2} \le \frac{x}{y} \le \frac{3}{2}$

3) Valeur approchée d'un nombre. Définition :

Soit a et x deux nombres et r un nombre strictement positif. On dit que a est une valeur approchée (ou approximation) du nombre x à r près (ou à la précision r) lorsque $|x-a| \le r$.

Définition : Soit a et x deux nombres et r un nombre strictement positif. On dit que a est une valeur approchée (ou approximation) du nombre x à r près (ou à la précision r), par défaut, lorsque $a \le x \le a + r$. a est une valeur approchée de x à r près, par excès, lorsque : $a - r \le x \le a$.

exemples: 1) on a $1,38 < \sqrt{2} < 1,42$ donc

$$1,40-0,02 < \sqrt{2} < 1,40+0,02$$

$$-0.02 < \sqrt{2} - 1.40 < 0.02$$
 donc $|\sqrt{2} - 1.40| < 0.02$

donc 1,40 est une valeur approchée du nombre $\sqrt{2}$ à 0,02 près

2) on a $1,40 \le \sqrt{2} < 1,40+0,02$ donc 1,40 est une valeur approchée par défaut du nombre $\sqrt{2}$ à 0,02 près

3) on a $1,42-0,02<\sqrt{2}<1,42$ donc 1,42 est une valeur approchée par excès du nombre $\sqrt{2}$ à 0,02 près

4) Approximation décimale.

Définition: Soit $x \in \mathbb{R}$ et $N \in \mathbb{Z}$ et $p \in \mathbb{N}$

Si
$$N \times 10^{-p} \le x \le (N+1) \times 10^{-p}$$
 alors:

 $N \times 10^{-p}$ s'appelle une approximation décimale du nombre x par défaut à 10^{-p} près

 $(N+1)\times 10^{-p}$ s'appelle une approximation décimale du nombre x par excès à 10^{-p} près

Exemple:

on a $0,3333333 < \frac{1}{3} < 0,333334$ donc

$$333333 \times 10^{-6} < \frac{1}{3} < (3333333 + 1) \times 10^{-6}$$

 333333×10^{-6} est une approximation décimale du nombre x par défaut à 10^{-6} près

 $(333333+1)\times10^{-6}$ est une approximation décimale du nombre x par excès à 10^{-6} près

« C'est en forgeant que l'on devient forgeron » Dit un proverbe. C'est en s'entraînant régulièrement aux calculs et exercices

Que l'on devient un mathématicien

