Binomial Models of Reference Read Counts

Attila Gulyás-Kovács

February 19, 2016

1 Preliminaries

We have i = 1, ..., I individuals and g = 1, ..., G genes. I start with the simplest but unrealistic case that there is 0 or 1 SNP for each (i, g) pair for which i is heterozygous. Later I will generalize to allow more than 1 such SNPs. Let Y_{ig} be the read count for the reference allele and n_{ig} the total read count (by adding alternative alleles to Y_{ig}).

For each (i,g) we test \mathcal{H}_0 of biallelic expression against \mathcal{H}_1 of monoallelic expression. Let us denote $(i,g) \in \mathcal{H}_h$ that (i,g) conforms to \mathcal{H}_h (h=0) in the biallelic case and h=1 in the monoallelic case).

2 Andy's model

In my understanding, in Andy's general model $\{Y_{ig}\}_{ig}$ are independent random variables and

$$Y_{iq} \sim \text{Binom}(q_h \text{ or } 1 - q_h, n_{iq}) \text{ under } \mathcal{H}_h, \ h = 0, 1$$
 (1)

Let $p_h = \max(q_h, 1 - q_h)$. In Andy's specific model $p_0 = 1/2$ and $p_1 = 9/10$. To specify the model more completely, suppose $p_h = q_h$ with 1/2 probability a priori. Then for each (i, g) the probability mass function (p.m.f.) of Y_{ig} 's sampling distribution is

$$f(y|p_h, n_{ig}) = \frac{1}{2} \frac{n_{ig}!}{y!(n_{ig} - y)!} \left[p_h^y (1 - p)^{n_{ig} - y} + p^{n_{ig} - y} (1 - p)^y \right]. \tag{2}$$

Note that for homozygous (i, g) pairs $f(y = n_{ig}|p_h, n_{ig}) = 1$ for h = 0, 1 because all reads must surely come from a single variant regardless allelic exclusion.

For the observation $Y_{ig} = y_{ig}$ the p-value is

$$\sum_{y=y_{ig}}^{n_{ig}} f(y|p_0, n_{ig}). \tag{3}$$

Set classification threshold $n_{ig}t$ for any Y_{ig} . For instance, t=0.9 means that we classify those pairs (i,g) for which at least 9/10 of the reads come from the reference allele. Let π_0 and π_1 be the fraction of (i,g) pairs when $(i,g) \in \mathcal{H}_0$ and when $(i,g) \in \mathcal{H}_1$, respectively. Note that $\pi_0 + \pi_1 = 1$.

The expected number of (i, g) pairs called monoallelic is then

$$\sum_{i,g} \pi_0 \sum_{y=t}^{\text{false positive rate}} f(y|p_0, n_{ig}) + \pi_1 \sum_{y=t}^{n_{ig}} f(y|p_1, n_{ig}). \tag{4}$$

So, given t, there are two ways to learn about the expected number of positives