Seminar 8 Analiză complexă

Funcții complexe

Următoarele noțiuni sînt elementare și introduc conceptele de bază din studiul analizei complexe, începînd cu funcțiile de variabile complexe.

Definiție 1: Fie $A \subseteq \mathbb{C}$. Se numește *funcție complexă* orice funcție de forma $f : A \to \mathbb{C}$.

Dată fiind scrierea algebrică a unui număr complex, putem separa părțile și pentru funcții. Astfel, dacă w = f(z), iar $z = x + iy \in A$, $w = u + iv \in C$, putem scrie f = P + iQ, cu P = Ref și Q = Imf. Am pus în evidență două funcții $P, Q : A \subseteq \mathbb{R}^2 \to \mathbb{R}$, iar egalitatea w = f(z) devine echivalentă cu două egalități reale u = P(x, y), v = Q(x, y), funcția în sine fiind echivalentă cu o transformare punctuală:

$$A \to \mathbb{R}^2$$
, $(x,y) \mapsto (P(x,y), Q(x,y))$.

De aceea, unele proprietăți le putem analiza pe componente:

Definiție 2: Fie $A \subseteq \mathbb{C}$ o mulțime deschisă și $f : A \to \mathbb{C}$ o funcție complexă.

Funcția este *continuă* în punctul $z_0 = x_0 + iy_0$ dacă și numai dacă P și Q sînt simultan continue în punctul (x_0, y_0) .

Următoarea noțiune este legată de derivabilitate.

Definiție 3: Fie $A \subseteq \mathbb{C}$ o mulțime deschisă și $f : A \to \mathbb{C}$ o funcție complexă.

Funcția f se numește *olomorfă* în punctul $z_0 \in A$ (echivalent, \mathbb{C} -derivabilă sau monogenă) dacă există și este finită limita:

$$\ell = \lim_{\substack{z \to z_0 \\ z \neq z_0}} \frac{f(z) - f(z_0)}{z - z_0}.$$

În caz afirmativ, $\ell = f'(z_0)$ se numeste derivata complexă a lui f în z_0 .

Similar cu cazul real, avem:

Observație 1: Dacă funcția $f: A \to \mathbb{C}$ este olomorfă în $z_0 \in A$, atunci ea este continuă în z_0 .

Noțiunile se pot extinde pentru întreg deschisul în mod evident: funcția se numește *continuă* (respectiv *olomorfă*) pe A dacă are această proprietate în orice punct din A.

O condiție de derivabilitate care ține cont de descompunerea funcțiilor complexe este următoarea:

Teoremă 1: *Fie* $A \subseteq \mathbb{C}$ *o mulțime deschisă.*

Funcția $f:A\to C$, f=P+iQ este olomorfă în $z_0\in A$ dacă și numai dacă $P,Q:A\to \mathbb{R}$ sînt diferențiabile în $z_0=(x_0,y_0)$, iar derivatele lor parțiale în (x_0,y_0) verifică condițiile Cauchy-Riemann, adică:

$$\begin{cases} \frac{\partial P}{\partial x} &= \frac{\partial Q}{\partial y} \\ \frac{\partial Q}{\partial x} &= -\frac{\partial P}{\partial y} \end{cases}$$

Următoarea noțiune ne ajută să găsim o condiție echivalentă cu ecuațiile Cauchy-Riemann:

Definiție 4: Dacă $f: A \to \mathbb{C}$ este o funcție complexă, definim:

$$\begin{cases} \frac{\partial f}{\partial z} &= \frac{1}{2} \left(\frac{\partial f}{\partial x} - \frac{\partial f}{\partial y} \right) \\ \frac{\partial f}{\partial \overline{z}} &= \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right) \end{cases}$$

Dintre acestea, $\frac{\partial f}{\partial \overline{z}}$ se numește *derivata areolară* a lui f.

Avem, atunci:

Corolar 1: Relația $\frac{\partial f}{\partial \overline{z}} = 0$ este echivalentă cu condițiile Cauchy-Riemann.

Amintim din cazul funcțiilor reale:

Definiție 5: Fie $u: A \to \mathbb{R}$ o funcție de clasă \mathbb{C}^2 pe deschisul A. Funcția u se numește *armonică* dacă pentru orice punct $a \in A$ are loc:

$$\frac{\partial^2 u}{\partial x^2}(\alpha) + \frac{\partial^2 u}{\partial y^2}(\alpha) = 0,$$

adică $\Delta u = 0$ în orice punct $a \in A$.

Putem folosi această noțiune în următorul context, de exemplu:

Corolar 2: Fie $A \subseteq \mathbb{C}$ o mulțime deschisă și $f: A \to \mathbb{C}$, f = P + iQ, cu $P, Q \in \mathbb{C}^2(A)$. Dacă f este olomorfă pe A, atunci P și Q sînt armonice pe A.

Pentru rezultatul reciproc, avem nevoie de:

Definiție 6: O mulțime deschisă $D \subseteq \mathbb{C}$ se numește *conexă* dacă pentru orice două puncte $z_1, z_2 \in D$ există un drum $\gamma : [a, b] \to D$ care să unească cele două puncte, i.e. $\gamma(a) = z_1, \gamma(b) = z_2$.

Domeniul se numeste simplu conex dacă frontiera lui este conexă.

Cu aceasta, avem:

Teoremă 2: Fie $D \subseteq \mathbb{R}^2$ un domeniu simplu conex.

Dacă funcția $P:D\to\mathbb{R}$ este armonică pe D, atunci există funcția $Q:D\to\mathbb{R}$ armonică pe D astfel încît funcția complexă $f:D\to\mathbb{C}$, f=P+iQ să fie olomorfă.

Funcții particulare

În continuare, vom vedea cum funcții reale elementare, precum funcția exponențială, radical, funcții trigonometrice etc. pot fi extinse pentru a fi definite ca funcții complexe.

Definiție 7: Se numește *exponențiala complexă* funcția $\exp : \mathbb{C} \to \mathbb{C}$ definită prin:

$$\exp z = e^z = \sum_{n>0} \frac{z^n}{n!}.$$

Ca în cazul real, se pot demonstra ușor proprietățile:

- (a) $\exp(0) = 1$;
- (b) $\exp(z_1 + z_2) = \exp(z_1) \cdot \exp(z_2), \forall z_1, z_2 \in \mathbb{C};$
- (c) $\exp(iy) = \cos y + i \sin y, \forall y \in \mathbb{R}$ (Euler);
- (d) Funcția exponențială este olomorfă și periodică de perioadă $T=2\pi$.

Pentru funcția logaritmică, dacă vrem să rezolvăm ecuația $\exp(w) = z$, unde $w = u + iv \in \mathbb{C}$, putem scrie în formă polară $z = re^{i\theta}$ și atunci, ținînd cont și de periodicitatea funcției exponențiale, găsim că:

$$\begin{cases} u = \ln |z| \\ v = \operatorname{Arg} z + 2k\pi, k \in \mathbb{Z} \end{cases}$$

Astfel, avem:

Definiție 8: Se numește *logaritmul numărului complex* $z \in \mathbb{C}^*$ mulțimea de numere complexe:

$$Lnz = \{ \ln |z| + i(Argz + 2k\pi) \mid k \in \mathbb{Z} \}.$$

Această funcție este multiformă, adică asociază unei valori z mai multe valori numerice (o infinitate de ramuri, de fapt). Iar pentru k=0, obținem $valoarea\ principală$ a logaritmului:

$$ln z = ln |z| + iArgz.$$

Putem acum defini și funcția putere și în particular, funcția radical:

Definiție 9: Funcția putere de exponent complex:

$$z^{\mathfrak{m}} = \exp(\mathfrak{m} \operatorname{Lnz}) = \{ \exp(\mathfrak{m}(\ln|z| + i(\operatorname{Arg}z + 2k\pi))) \mid k \in \mathbb{Z} \}, \mathfrak{m} \in \mathbb{C}.$$

Funcția radical, de argument complex:

$$\sqrt[n]{z} = z^{\frac{1}{n}} = \exp\left(\frac{1}{n}\operatorname{Lnz}\right)
= \left\{ \exp\left(\frac{1}{n}(\ln|z| + i(\operatorname{Arg}z + 2k\pi))\right) \mid k \in \mathbb{Z} \right\}
= \left\{ \exp\left(\frac{1}{n}\ln|z|\right) \cdot \exp\left(i\frac{\theta + 2k\pi}{n}\right) \mid k \in \mathbb{Z} \right\}
= \left\{ \sqrt[n]{r} \cdot \exp\left(i\frac{\theta + 2k\pi}{n}\right) \mid k \in \mathbb{N} \right\}$$

Din funcția exponențială putem extrage și funcțiile trigonometrice complexe:

Definiție 10: Pentru orice $z \in \mathbb{C}$, definim:

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}$$

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}$$

$$\tan z = -i\frac{e^{iz} - e^{-iz}}{e^{iz} + e^{-iz}}$$

$$\cot z = i\frac{e^{iz} + e^{-iz}}{e^{iz} - e^{-iz}}$$

Observație 2: Funcțiile trigonometrice complexe sînt *uniforme* (adică nu sînt multiforme), iar toate formulele din cazul real rămîn adevărate.

Avem, de asemenea, și funcții trigonometrice hiperbolice:

Definiție 11:

$$\sinh z = \frac{e^z - e^{-z}}{2}$$
$$\cosh z = \frac{e^z + e^{-z}}{2}$$
$$\tanh z = \frac{\sinh z}{\cosh z}.$$

Remarcăm că au loc legăturile:

$$sinh z = -i sin(iz), cosh z = cos(iz).$$

Rezolvarea unor ecuații trigonometrice ne conduce la introducerea funcțiilor trigonometrice inverse:

$$z = \sin w \Rightarrow z = \frac{e^{iw} - e^{-iw}}{2i} \Leftrightarrow e^{2iw} - 2ize^{iw} - 1 = 0,$$

pe care o rezolvăm ca pe o ecuația de gradul al doilea și obținem:

$$w = \operatorname{Arcsin} z = -i\operatorname{Ln}(iz \pm \sqrt{1 - z^2}).$$

Similar, obtinem si:

$$\begin{aligned} &\operatorname{Arccos}z = \mathrm{i} \operatorname{Ln}(z \pm \sqrt{z^2 - 1}) \\ &\operatorname{Arctan}z = -\frac{\mathrm{i}}{2} \operatorname{Ln}\frac{\mathrm{i} - z}{\mathrm{i} + z}. \end{aligned}$$

Exerciții

1. Arătați că funcția $f: \mathbb{C} \to \mathbb{C}$, f(z) = |z| nu e olomorfă în niciun punct din \mathbb{C} .

Indicație: Pentru satisfacerea condițiilor Cauchy-Riemann, avem nevoie de z=0, dar în z=0, partea reală a lui f nu are derivate parțiale.

2. Arătați că funcția:

$$f: \mathbb{C} \to \mathbb{C}, \quad f(z) = \sqrt{|z - \overline{z}^2|}$$

este continuă în z=0, satisface condițiile Cauchy-Riemann în acest punct, dar nu este olomorfă. *Indicație*: Partea reală a lui f nu este diferențiabilă în z=0. Într-adevăr, ar trebui să avem:

$$P(x,y) - P(0,0) = 0 \cdot (x-0) + 0 \cdot (y-0) + P_1(z)|z-0|,$$

de unde $\lim_{z\to 0} P_1(z)=0$. Dar $P_1(z)=\frac{P(z)}{|z|}$ și luînd două șiruri $z=\frac{1}{n},z'=\frac{1}{n}+i\frac{1}{n}$, ambele tinzînd la 0, avem $P_1(z_n)=0$, dar $P_1(z_n')=\sqrt{2}$, deci P_1 nu are limită în origine.

3. Să se determine funcția olomorfă f=P+iQ pe $\mathbb C$, dacă $Q(x,y)=\phi(x^2-y^2)$, $\phi\in \mathbb C^2$. Soluție: Fie $\alpha=x^2-y^2$. Atunci:

$$\begin{split} \frac{\partial Q}{\partial x} &= 2x\phi'(\alpha) \\ \frac{\partial Q}{\partial y} &= -2y\phi'(\alpha) \\ \Rightarrow \frac{\partial^2 Q}{\partial x^2} &= 2\phi'(\alpha) + 4x^2\phi''(\alpha) \\ \frac{\partial^2 Q}{\partial y^2} &= -2\phi'(\alpha) + 4y^2\phi''(\alpha). \end{split}$$

Deoarece Q trebuie să fie armonică, avem $\Delta Q = 0$, $\forall x, y$, de unde:

$$\varphi''(\alpha) = 0 \Rightarrow \varphi(\alpha) = c\alpha + c_1.$$

Din condițiile Cauchy-Riemann pentru P și Q, obținem acum:

$$\begin{cases} \frac{\partial P}{\partial x} = \frac{\partial Q}{\partial y} & = -2cy \\ \frac{\partial P}{\partial y} = -\frac{\partial Q}{\partial x} & = -2cx \end{cases}$$

Integrăm a doua ecuație și înlocuim în prima, pentru a obține:

$$P(x,y) = -2cxy + k.$$

În fine:

$$f(z) = -2cxy + k + i(c(x^2 - y^2) + c_1) \Rightarrow f(z) = ciz^2 + d, c, d \in \mathbb{R}.$$

4. Fie $P(x,y)=e^{2x}\cos 2y+y^2-x^2$. Să se determine funcția olomorfă f=P+iQ pe $\mathbb C$ astfel încît f(0)=1.

Soluție: Verificăm că P este armonică. Verificăm condițiile Cauchy-Riemann:

$$\frac{\partial P}{\partial x} = \frac{\partial Q}{\partial y} = 2e^{2x}\cos 2y - 2x$$
$$-\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} = 2e^{2x}\sin 2y - 2y.$$

Integrăm a doua ecuație în raport cu x, înlocuim în prima și obținem:

$$f(z) = e^{2x} \cos 2y + y^2 - x^2 + i(e^{2x} \sin 2y - 2xy + k)$$

= $e^{2x} (\cos 2y + i \sin 2y) - (x + iy)^2 + ki$
 $\Rightarrow f(z) = e^{2z} - z^2 + ki$.

Folosind condiția din enunț, găsim k = 0.

- 5. Determinați soluțiile $w \in \mathbb{C}$ ale ecuației $e^w = -2i$.
- 6. Rezolvati ecuatia $z^3 + 2 2i = 0$.
- 7. Calculati:
- (a) $\sin(1+i)$;
- (b) sinh(1-i);
- (c) $\tan \left(\frac{\pi}{4} i \ln 3\right)$;
- (d) $\tanh \left(\ln 2 + \frac{\pi i}{4} \right)$;
- (e) $Arccos(i\sqrt{3})$.
 - 8. Rezolvați ecuația $\sin z = 2$.

9. Fie funcțiile:

- (a) f(z) = zRez;
- (b) $f(z) = z^2 + z \cdot \overline{z} + 3z 2\overline{z}$.

Determinați punctele în care f este derivabilă și să se calculeze f'(z) în aceste puncte.

10. Să se studieze olomorfia funcțiilor:

- (a) f(z) = z;
- (b) $f(z) = \overline{z}$;
- (c) $f(z) = \exp(z)$;
- (d) $f(z) = \exp(\overline{z});$
- (e) f(z) = |z|;
- (f) $f(z) = 2z + z^2$.

11. Să se determine funcția olomorfă f(z) = u(x, y) + iv(x, y) dacă:

- (a) $u(x,y) = x^2 y^2 2y$;
- (b) $u(x,y) = x^4 6x^2y^2 + y^4$;
- (c) $u(x,y) = (x \cos y y \sin y)e^x$.