《概率论与数理统计》 SPSS22 的应用

王学民

读者可从

https://anyshare.sufe.edu.cn/#/link/B9F2F217DF9A179950462AF6B590145F?path=下载《概率论与数理统计》配书资料,下载的资料中有一个"《概率论与数理统计》SPSS 数据"文件夹,本文均从该文件夹中打开数据表。启动 SPSS22 软件。

第一部分 第二章

一、例 2.2.4 中的(1)和(2)

在 SPSS22 的空白数据编辑器窗口中,选择<u>编辑→插入变量</u>; <u>编辑→插入个案</u> ⇒ <u>转换</u> ⇒ <u>计算变量...</u>,出现"计算变量"对话框(见图 1. 1)⇒ 在"目标变量"列表框中输入<u>例 2. 2. 4</u> (1),在"数字表达式"列表框中输入 <u>PDF. BINOM (4, 6, 0. 3)</u> → <u>确定</u>;在"目标变量"列表框中输入<u>例 2. 2. 4 (2)</u>,在"数字表达式"列表框中输入 <u>CDF. BINOM (3, 6, 0. 3)</u> (见图 1. 2) → <u>确定</u>;在"目标变量"列表框中输入<u>例 2. 2. 4 (3)</u>,在"数字表达式"列表框中输入 <u>1-PDF. BINOM (0, 6, 0. 3)</u> (见图 1. 3) → <u>确定</u>。随即在数据编辑器窗口中,出现三个概率计算的结果,如图 1. 4 所示。

图 1.1

图 1.2

图 1.4

二、例 2.2.6 中的(1)和(3)

对例 2. 2. 6 中的 (1) 和 (3), 作类似上述操作,并在"变量视图"中将各变量的小数点位数由缺省时的"2"改为"4"。在"计算变量"对话框的"数字表达式"列表框中分别输入函数"CDF. BINOM(2, 50, 0. 05)"、"CDF. POISSON(2, 2. 5)"、"PDF. BINOM(3, 50, 0. 05)"和"PDF. POISSON(3, 2. 5)",得到如图 1. 5 所示的结果。

图 1.5

三、例 2.4.7 中的 *P(X<*130)

对例 2. 2. 8 中的 (1),作上述类似操作,在"计算变量"对话框的"数字表达式"列表框中输入函数"CDF. NORMAL (130, 140, 12. 2)",可得 P(X<130)=0.2062。

四、常用分布的分位数

在图 1.6 的对话框中,可根据给定的分布函数值,容易得到许多常用分布的分位数。

图 1.6

第二部分 第六章和第七章的 § 7.1- § 7.3

一、对例 6.4.2 中的数据进行统计推断

在 SPSS22 的数据编辑器窗口中,选择<u>文件</u>⇒<u>打开</u>>⇒<u>数据...</u>,即出现如图 2.1 所示的"打开数据"窗口⇒在"查找范围"列表框中选择"《概率论与数理统计》SPSS 数据"所在的文件夹。

打开 <u>examp6.4.2.sav</u> 数据表(见图 2.2) \Rightarrow <u>分析</u> \Rightarrow <u>比较平均值</u> \Rightarrow <u>单样本 T 检验...</u>,随即出现"单样本 T 检验"对话框(见图 2.3) \Rightarrow 将<u>压力读数[x]</u>选入"检验变量"列表框中,在"检验值"框中填入 <u>4.2</u> \Rightarrow <u>选项...</u> \Rightarrow 在出现的图 2.4 的框中填入 <u>95</u>(这是缺省值,已有) \Rightarrow 继续 \Rightarrow 确定,生成图 2.5。

图 2.2

图 2.3

图 2.4

单样本统计

		数字	平均值(E)	标准偏差	标准误差平均 值
I	压力读数	8	4.0100	.30346	.10729

单样本检验

		检验值 = 4.2								
			显著性(双		差值的 95% 置信区间					
	t	自由度	尾)	平均差	下限	上限				
压力读数	-1.771	7	.120	19000	4437	.0637				

图 2.5

二、对例 7.3.4 中的数据进行比较推断

打开 <u>examp7.3.4sav</u> 数据表 \Rightarrow <u>分析</u> \Rightarrow <u>比较平均值</u> \Rightarrow <u>独立样本 T 检验...</u>,出现"独立样本 T 检验"对话框(见图 2.6) \Rightarrow 将<u>袋茶重量[x]</u>选入"检验变量"列表框中;将<u>机器[g]</u> 选入"分组变量"列表框中 \Rightarrow <u>定义组...</u> \Rightarrow 在"定义组"对话框中(见图 2.7),"组 1"列表框内填入<u>日</u>,"组 2"列表框内填入<u>乙</u> \Rightarrow <u>继续</u>;选择<u>选项...</u> \Rightarrow 在出现的图 2.8 的框中填入 <u>95</u> \Rightarrow <u>继续</u> \Rightarrow <u>确定</u>,生成图 2.9。

图 2.6

图 2.7

图 2.8

组统计

	机器	数字	平均值(E)	标准偏差	标准误差平均 值
袋茶重量	甲	25	3.3124	.13374	.02675
	Z	22	3.2782	.07682	.01638

独立样本检验

				平均位	直相等性的 t	金 验				
					显著性(双			差值的 95%	6 置信区间	
		F	显著性	t	自由度	尾)	平均差	标准误差差值	下限	上限
袋茶重量	已假设方差齐性	6.572	.014	1.056	45	.297	.03422	.03241	03106	.09950
	未假设方差齐性			1.091	39.091	.282	.03422	.03136	02922	.09765

图 2.9

三、对例 7.3.3 中的成对数据进行比较推断

打开 <u>examp7.3.3sav</u> 数据表 \Rightarrow <u>分析</u> \Rightarrow <u>比较平均值</u> \Rightarrow <u>配对样本 T 检验...</u>,即出现"配对样本 T 检验"对话框(见图 **2.10**) \Rightarrow 将<u>种子 A 种植的谷物产量[x]</u>选入 "Variable1"列表框中,将<u>种子 B 种植的谷物产量[y]</u>选入 "Variable2"列表框中(\Rightarrow <u>选项...</u>,在出现的图 2.11 的框中填入 <u>95</u> \Rightarrow <u>继续</u>) \Rightarrow <u>确定</u>,生成图 **2.12**。

图 2.10

图 2.11

配对样本统计

		平均值(E)	数字	标准偏差	标准误差平均 值
配对 1	种子A种植的谷物产量	31.10	10	5.763	1.822
	种子B种植的谷物产量	33.30	10	6.567	2.077

配对样本相关性

		数字	相关系数	显著性
配对 1	种子A种植的谷物产量 & 种子B种植的谷物产量	10	.748	.013

配对样本检验

			配对差值						
				标准误差平均	差值的 959	6 置信区间			显著性(双
		平均值(E)	标准偏差	值	下限	上限	t	自由度	尾)
配对 1	种子A种植的谷物产量 - 种子B种植 的谷物产量	-2.200	4.442	1.405	-5.378	.978	-1.566	9	.152

图 2.12

第三部分 第八章的 § 8.1 和 § 8.2

一、例 8.1.2 中的单因素方差分析

打开 <u>examp8.1.1sav</u> 数据表 \Rightarrow <u>比较平均值</u> \Rightarrow <u>单因素 ANOVA...</u>,随即出现"单因素方差分析"对话框(见图 3.1) \Rightarrow 将<u>混合原料所需时间[y]</u>选入"因变量列表"框中,将<u>机器[A]</u>选入"因子"列表框中 \Rightarrow <u>确定</u>,生成图 3.2。

图 3.1

ANOVA

混合原料所需时间

	平方和	df	均方	F	显著性
组之间	48.111	2	24.056	6.745	.008
组内	53.500	15	3.567		
总计	101.611	17			

图 3.2

二、例 8.2.2 中的两因素方差分析

打开 <u>examp8.2.1.sav</u> 数据表 \Rightarrow <u>分析</u> \Rightarrow <u>一般线性模型</u> \Rightarrow <u>单变量...</u>,出现"单变量"对话框(见图 3.3) \Rightarrow 将合成纤维抗断强度[y]选入"因变量"列表框中,将操作员[A] 和机器

[B]选入"固定因子"列表框中⇒确定,生成图 3.4。

图 3.3

主体间因子

		数字
操作员	1	8
	2	8
	3	8
机器	Α	6
	В	6
	С	6
	D	6

主体间效应的检验

因变量: 合成纤维抗断强度

源	Ⅲ类平方和	自由度	均方	F	显著性
校正的模型	217.458 ^a	11	19.769	5.214	.004
截距	302626.042	1	302626.042	79813.462	.000
Α	160.333	2	80.167	21.143	.000
В	12.458	3	4.153	1.095	.389
A*B	44.667	6	7.444	1.963	.151
错误	45.500	12	3.792		
总计	302889.000	24			
校正后的总变异	262.958	23			

a. R 平方=.827 (调整后的 R 平方=.668)

图 3.4

三、例 8.2.3 中的两因素方差分析

打开 <u>examp8.2.3sav</u>数据表 \Rightarrow <u>分析</u> \Rightarrow <u>一般线性模型</u> \Rightarrow <u>单变量...</u> \Rightarrow 在"单变量"对话框中,将<u>粘合剂的抗剪强度[y]</u>选入"因变量"列表框中,将<u>压强[A]</u>和<u>温度[B]</u>选入"固定因子"列表框中 \Rightarrow <u>模型...</u>,即出现"单变量:模型"对话框(见图 3.5) \Rightarrow 作图 3.5 中的选择 \Rightarrow 继续 \Rightarrow 确定,生成图 3.6。

图 3.5

主体间因子

		数字
压强	60	3
	65	3
	70	3
	75	3
温度	130	4
	140	4
	150	4

主体间效应的检验

因变量 粘合剂抗剪强度

源	Ⅲ 类平方和	自由度	均方	F	显著性
校正的模型	5.238 ^a	5	1.048	2.918	.112
截距	1158.957	1	1158.957	3228.468	.000
Α	.581	3	.194	.539	.673
В	4.658	2	2.329	6.487	.032
错误	2.154	6	.359		
总计	1166.349	12			
校正后的总变异	7.392	11			

a. R 平方= .709 (调整后的 R 平方= .466)

图 3.6

第四部分 第八章的 § 8.3 和 § 8.4

一、对例 8.3.1 中的数据进行一元回归分析

打开 <u>examp8.3.1.sav</u>数据表 \Rightarrow <u>分析</u> \Rightarrow <u>回归</u> \Rightarrow <u>线性...</u> \Rightarrow 在"线性回归"对话框中(见图 4.1),将<u>每月家庭消费支出[y]</u>选入"因变量"列表框中,将<u>每月家庭收入[x]</u>选入"自变量"列表框中 \Rightarrow <u>保存...</u> \Rightarrow 在弹出的"线性回归:保存"对话框中(见图 4.2),作图中的选择 \Rightarrow **继续** \Rightarrow **确定**,生成如图 4.3 所示的输出结果和如图 4.4 所示的保存结果。

图 4.1

图 4.2

已输入/除去变量^a

模型	已输入变量	已除去变量	方法
1	每月家庭收入 b		输入

a. 因变量:每月家庭消费支出 b. 已输入所有请求的变量。

模型摘要^b

模型	R	R 平方	调整后的 R 平 方	标准估算的错 误
1	.938ª	.880	.872	368.958

a. 预测变量:(常量),每月家庭收入

b. 因变量:每月家庭消费支出

ANOVA^a

模型		平方和	自由度	均方	F	显著性
1		14010659.11	1	14010659.11	102.921	.000b
	残差	1905820.328	14	136130.023		
	总计	15916479.44	15			

a. 因变量:每月家庭消费支出

b. 预测变量: (常量),每月家庭收入

系数^a

		非标准	化系数	标准系数		
模型		В	标准错误	贝塔	t	显著性
1	(常量)	946.184	237.155		3.990	.001
	每月家庭收入	.424	.042	.938	10.145	.000

a. 因变量:每月家庭消费支出

残差统计数据^a

	最小值	最大值(X)	平均值	标准偏差	数字
预测值	1725.76	5160.72	3162.69	966.459	16
标准预测值	-1.487	2.067	.000	1.000	16
预测值的标准误差	92.961	217.477	126.182	34.168	16
调整后的预测值	1751.19	5336.26	3174.53	984.162	16
残差	-493.178	653.540	.000	356.447	16
标准残差	-1.337	1.771	.000	.966	16
学生化残差	-1.386	1.840	014	1.024	16
删除的残差	-530.151	705.014	-11.844	402.077	16
学生化剔除残差	-1.438	2.036	005	1.059	16
马氏距离(D)	.015	4.274	.937	1.112	16
Cook's 距离	.002	.326	.066	.079	16
居中杠杆值	.001	.285	.063	.074	16

a. 因变量:每月家庭消费支出

图 4.4

二、对例 8.4.1 中的数据进行多元回归分析

打开 examp8.4.1.sav 数据表 \Rightarrow 分析 \Rightarrow 回归 \Rightarrow 线性… \Rightarrow 在 "线性回归"对话框中,将<u>产量[y]</u>选入"因变量"列表框中,将<u>所施肥料[x1]</u>和<u>土质指数[x2]</u>选入"自变量"列表框中 \Rightarrow 保存… \Rightarrow 在弹出的"线性回归:保存"对话框(见图 4.2)中,作与图 4.2 中相同的选择 \Rightarrow 继续;选择 绘图… \Rightarrow 在出现的"线性回归:图"对话框(见图 4.5)中,将"*ZRESID"(标准化残差)选入"Y"列表框,将"*ZPRED"(标准化预测值)选入"X"列表框,如图 4.5 所示 \Rightarrow 继续 \Rightarrow 确定,生成图 4.6 和图 4.7。

图 4.5

已输入/除去变量^a

模型	已输入变量	已除去变量	方法
1	土质指数,所 施肥料 b		输入

a. 因变量:产量

b. 已输入所有请求的变量。

模型摘要^b

模型	R	R 平方	调整后的 R 平 方	标准估算的错 误
1	.990ª	.980	.975	1.215

a. 预测变量: (常量),土质指数,所施肥料

b. 因变量:产量

ANOVA^a

模型		平方和	自由度	均方	F	显著性
1	回归	512.571	2	256.286	173.688	.000b
	残差	10.329	7	1.476		
	总计	522.900	9			

a. 因变量:产量

b. 预测变量: (常量),土质指数,所施肥料

系数^a

		非标准	化系数	标准系数		
模型		В	标准错误	贝塔	t	显著性
1	(常量)	-30.575	5.031		-6.078	.001
	所施肥料	1.041	.191	.482	5.457	.001
	土质指数	.839	.132	.562	6.364	.000

a. 因变量:产量

残差统计数据^a

	最小值	最大值(X)	平均值	标准偏差	数字
预测值	50.92	71.39	62.10	7.547	10
标准预测值	-1.482	1.231	.000	1.000	10
预测值的标准误差	.435	.898	.654	.128	10
调整后的预测值	51.41	72.25	62.10	7.535	10
残差	-1.391	2.328	.000	1.071	10
标准残差	-1.145	1.916	.000	.882	10
学生化残差	-1.456	2.353	001	1.076	10
删除的残差	-2.249	3.509	002	1.599	10
学生化剔除残差	-1.614	4.765	.218	1.749	10
马氏距离(D)	.255	4.021	1.800	1.053	10
Cook's 距离	.000	.937	.172	.300	10
居中杠杆值	.028	.447	.200	.117	10

a. 因变量:产量

图 4.6

散点图

图 4.6 (续)

图 4.7