useful?

Is the model valid?

```
Describing Relationships Between Variables (Ch. 4)
```

۲ifan Zhu ۲i, ۹i

Iowa State University

1=1.... n

Outline

Describing Relationships Between Variables (Ch. 4)

Yifan Zhu

Introduction

Fitting a regressior line

useful?

Is the model valid?

Introduction

Fitting a regression line

Is the model useful?

Pressing pressures and specimen densities for a ceramic compound

A mixture of Al_2O_3 , polyvinyl alcohol, and water was prepared, dried overnight, crushed, and sieved to <u>obtain 100 mesh size grains</u>. These were pressed into cylinders at pressures from 2,000 psi to 10,000 psi, and cylinder densities were calculated.

\times (pressure in psi)	y (density in g/cc)
2000.00	2.49
2000.00	2.48
2000.00	2.47
4000.00	2.56
4000.00	2.57
4000.00	2.58
6000.00	2.65
6000.00	2.66
6000.00	2.65
8000.00	2.72
8000.00	2.77
8000.00	2.81
10000.00	2.86
10000.00	2.88
10000.00	2.86

Describing Relationships Between Variables (Ch. 4)

Yifan Zhu

Introduction

Fitting a regression line

useful?

Fitting a regressio line

useful?

The line, $\sqrt{2.375 + 4.867 \times 10^{-5}}x$, is the **regression** line fit to the data.

Describing Relationships Between Variables (Ch. 4)

Yifan Zhu

Introduction

Fitting a regression

useful?

- 1. To predict unobserved values of y based on x.
 - ▶ I.e., a new ceramic under pressure (x = 5000') pt should have a density of $2.375 + 4.867 \times 10^{-5}$ 5000 = 2.618 g/cc.
- To characterize the relationship between x and y in terms of strength, direction, and shape.
 - ▶ In the ceramics data, density has a strong, positive, linear association with x.
 - On average, the density increases by 4.867×10^{-5} g/cc for every increase in pressure of 1 psi.

only for [2000,10000]

Outline

Describing Relationships Between Variables (Ch. 4)

Yifan Zhu

Introduc

Fitting a regression line

useful?

Is the model valid?

Introduction

Fitting a regression line

ls the model useful?

► For a response variable *y* and a predictor variable *x*, we declare:

$$y \approx b_0 + b_1 x$$

- ▶ and then calculate the intercept b₀ and slope b₁ using least squares.
 - We apply the **principle of least squares**: that is, the best-fit line is given by minimizing the **loss function** in terms of b_0 and b_1 :

$$S(b_0, b_1) = \sum_{i=1}^n (y_i - \widehat{y}_i)^2$$

 $\blacktriangleright \text{ Here, } \widehat{y_i} = b_0 + b_1 x_i$

Minimize $\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$ to get the line as close as possible to the points.

Describing Relationships Between Variables (Ch. 4)

Yifan Zhu

Introdu

Fitting a regression line

useful?

Yifan Zhu Iowa State University 9 / 31

$$= \sum_{i=1}^{n} (b_{i} - (b_{0} + b_{1}x_{i}))^{2}$$

$$= \sum_{i=1}^{n} (b_{i} - (b_{0} + b_{1}x_{i}))^{2}$$

$$= \sum_{i=1}^{n} (b_{i} - (b_{0} + b_{1}x_{i}))^{2}$$

$$= \sum_{i=1}^{n} 2(b_{i} - (b_{0} + b_{1}x_{i})) \cdot (-1) = 0$$

$$= \sum_{i=1}^{n} 2(b_{i} - (b_{0} + b_{1}x_{i})) \cdot (-x_{i}) = 0$$

$$= \sum_{i=1}^{n} 2(b_{i} - (b_{0} + b_{1}x_{i})) \cdot (-x_{i}) = 0$$

 $S(b_0,b_1) = \sum_{i=1}^{n} (y_i - \hat{y_i})^2$

W Normal Equations:

$$\frac{n}{\sum_{i=1}^{n} y_i} = nb_0 + b_1 \frac{\sum_{i=1}^{n} x_i}{\sum_{i=1}^{n} x_i}$$
 $\sum_{i=1}^{n} x_i y_i = b_0 \sum_{i=1}^{n} x_i + b_1 \sum_{i=1}^{n} x_i$

Describing Relationships Between Variables (Ch. 4)

Yifan Zhu

From the principle of least squares, one can derive the normal equations:

$$nb_0 + b_1 \sum_{i=1}^n x_i = \sum_{i=1}^n y_i$$

$$b_0 \sum_{i=1}^n x_i + b_1 \sum_{i=1}^n x_i^2 = \sum_{i=1}^n x_i y_i$$

▶ and then solve for b_0 and b_1 :

$$b_1 = \underbrace{\sum (x_i - \overline{x})(y_i - \overline{y})}_{X \to X} \qquad b_0 = \overline{y} - b_1 \overline{x}$$

Introdu

Fitting a regression line

useful?

$$b_{1} = \frac{\sum (xi - \bar{x}) |b_{1} - \bar{g}|}{\sum (xi - \bar{x})^{2}} = \frac{\sum xig_{1} - n\bar{x}g_{2}}{\sum x_{1}^{2} - n\bar{x}g_{2}}$$

$$= \frac{\sum (xi - \bar{x})(g_{1} - \bar{g})}{\sum (xig_{1} + \bar{x}g_{2} - xig_{2} - \bar{x}g_{1})}$$

$$= \frac{\sum (xig_{1} + \bar{x}g_{2} - xig_{2} - \bar{x}g_{1})}{\sum (xig_{1} + \bar{x}g_{2} - xig_{2} - \bar{x}g_{1})}$$

$$= \sum_{i=1}^{n} x_i y_i + n \overline{x_j} - \overline{y} \left[\sum_{i=1}^{n} x_i \right] - \overline{x} \left[\sum_{i=1}^{n} \underline{y_i} \right] - n \overline{y}$$

= xry; - nxg

$$\sum_{i=1}^{N} (x_i - \bar{x})^2$$

$$= \sum_{i=1}^{N} (x_i^2 + \bar{x}^2 - 2x_i \bar{x})$$

$$= \sum_{i=1}^{N} x_i^2 + n \bar{x}^2 - 2\bar{x} \sum_{i=1}^{N} x_i^2$$

= Z xi - nx2

Example: plastics hardness data

Eight batches of plastic are made. From each batch one test item is molded. At a given time (in hours), it hardness is measured in units (assume freshly-melted plastic has a hardness of 0 units). The following are the 8 measurements and times.

U	
time	hardness
32.00	230.00
72.00	323.00
64.00	298.00
48.00	255.00
16.00	199.00
40.00	248.00
80.00	359.00
56.00	305.00

Describing Relationships Between Variables (Ch. 4)

Yifan Zhu

Introduc

Fitting a regression line

useful?

Yifan Zhu

Fitting the line

- $\overline{x} = 51$
- $\overline{y} = 277.125$

×	у	$x_i - \overline{x}$	$y_i - \overline{y}$	$(x_i - \overline{x})(y_i - \overline{y})$	$(x_i - \overline{x})^2$
32.00	230.00	-19.00	-47.12	895.38	361.00
72.00	323.00	21.00	45.88	963.38	441.00
64.00	298.00	13.00	20.88	271.38	169.00
48.00	255.00	-3.00	-22.12	66.38	9.00
16.00	199.00	-35.00	-78.12	2734.38	1225.00
40.00	248.00	-11.00	-29.12	320.38	121.00
80.00	359.00	29.00	81.88	2374.38	841.00
56.00	305.00	5.00	27.88	139.38	25.00

$$\sum (x_i - \overline{x})(y_i - \overline{y}) = 895.38 + 963.38 + \cdots 139.38 = 7765$$

$$b_1 = \frac{7765}{3192} = 2.43$$

$$b_0 = \overline{y} - b_1 \overline{x} = 277.125 - 2.43 \cdot 51 = 153.19$$

Describing Relationships Between Variables (Ch. 4)

Yifan Zhu

Introduc

Fitting a regression line

useful?

Introdu

Fitting a regression line

useful?

Yifan Zhu

Introduc

Fitting a regression line

useful?

- ▶ b₁ = 2.43 means that on average, the plastic hardens 2.43 more units for every additional hour it is allowed to harden.
- ▶ $b_0 = 153.19$ means that at the very beginning of the hardening process (time = 0 hours), the plastics had a hardness of 153.19 on average, IF the model is still correct around time 0.
 - ▶ But we know that the plastics were completely molten at the very beginning, with a hardness of 0.
 - ▶ Don't **extrapolate**: i.e., predict *y* values beyond the range of the *x* data.

usetul?

- 1. Is the model useful?
 - How closely do the points cluster around the line?
 - ▶ How strong is the linear relationship between x and y?
 - ► How much variation in *y* can be explained by the fitted line?
 - ▶ How well can the fitted line predict future values of *y*?
 - ▶ Is the model *precise*?
- Is the model valid?
 - Should we really be using a straight line to explain y using x, or would some other equation (like a parabola) be better?
 - ▶ Does y deviate from the fitted line in some systematic way?
 - ▶ Is the model valid?

Outline

Describing Relationships Between Variables (Ch. 4)

Yifan Zhu

Introduc

Fitting a regression line

Is the model useful?

Is the model valid

Introduction

Fitting a regression line

Is the model useful?

Introduc

Fitting a regression line

Is the model useful?

Is the model valid?

Linear correlation:

$$r = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum (x_i - \overline{x})^2 \sum (y_i - \overline{y})^2}}$$

As it turns out:

$$r=b_1\frac{s_\chi}{s_V}$$

where s_x is the standard deviation of the x_i 's and x_y is the standard deviation of the y_i 's.

useful?

- ▶ -1 < r < 1
- ightharpoonup r < 0 means a negative slope, r > 0 means a positive slope
- ▶ High |r| means x and y have a strong linear relationship (high correlation), and low |r| implies a weak linear relationship (low correlation).

Correlation in the ceramics data

Describing Relationships Between Variables (Ch. 4)

Yifan Zhu

Introdu

Fitting a regression line

Is the model useful?

- $\overline{x} = 51$
- $\overline{y} = 277.125$

×	у	$x_i - \overline{x}$	$y_i - \overline{y}$	$(x_i - \overline{x})^2$	$(y_i - \overline{y})^2$	$\Delta x \Delta y$
32.00	230.00	-19.00	-47.12	361.00	2220.77	895.38
72.00	323.00	21.00	45.88	441.00	2104.52	963.38
64.00	298.00	13.00	20.88	169.00	435.77	271.38
48.00	255.00	-3.00	-22.12	9.00	489.52	66.38
16.00	199.00	-35.00	-78.12	1225.00	6103.52	2734.38
40.00	248.00	-11.00	-29.12	121.00	848.27	320.38
80.00	359.00	29.00	81.88	841.00	6703.52	2374.38
56.00	305.00	5.00	27.88	25.00	777.02	139.38

- $\sum (x_i \overline{x})(y_i \overline{y}) = 895.39 + 963.38 + \cdots + 139.38 = 7765$
- $\sum (x_i \overline{x})^2 = 361 + 441 + \cdots + 25 = 3192$
- $\sum (y_i \overline{y})^2 = 2220.77 + 2104.52 + \dots + 777.02 = 19682.875$
- $r = \frac{(x_i \overline{x})(y_i \overline{y})}{\sqrt{(x_i \overline{x})^2(y_i \overline{y})^2}} = \frac{7765}{\sqrt{3192 \cdot 1.9683 \times 10^4}} = 0.979635179238839$

CAUTION: the data may be highly correlated even if the *linear* correlation, r, is low.

Describing Relationships Between Variables (Ch. 4)

Yifan Zhu

Introdu

Fitting a regressio

Is the model useful?

Is the model

Coefficient of determination: another measure of the usefulness of a fitted line, defined by:

$$R^{2} = \frac{\sum (y_{i} - \overline{y})^{2} - \sum (y_{i} - \widehat{y}_{i})^{2}}{\sum (y_{i} - \overline{y})^{2}}$$

where $y_i = b_0 + b_1 x_i$.

Fortunately,

$$R^2 = r^2$$

- ▶ Interpretation: R² is the fraction of variation in the response variable (y) explained by the fitted line.
- ▶ Ceramics data: $R^2 = r^2 = 0.9911^2 = 0.98227921$, so 98.23% of the variation in density is explained by a linear equation in terms of pressure. Hence, the line is useful for predicting density from pressure.
- ▶ Plastics data: $R^2 = r^2 = 0.9796^2 = 0.95961616$, so 95.96% of the variation in hardness is explained by a linear equation in terms of time. Hence, so the line is useful for predicting hardness from time.

(Ch. 4)

Yifan Zhu

Describing

Relationships Between Variables

Introduc

Fitting a regression line

useful?

Is the model

x and y can have a true linear relationship despite a low

 R^2

Outline

Describing Relationships Between Variables (Ch. 4)

Yifan Zhu

Introduc

Fitting a regressio line

useful?

Is the model valid?

Introduction

Fitting a regression line

ls the model useful?

CAUTION: Sometimes, the true relationship between x and y is not linear, despite a high \mathbb{R}^2

Describing Relationships Between Variables (Ch. 4)

Yifan Zhu

Introduc

line

$$e_i = y_i - \widehat{y}_i$$

= $y_i - (b_0 + b_1 x_i)$

▶ Instead of:

$$y_i \approx b_0 + b_1 x_i$$

or:

$$\widehat{y}_i = b_0 + b_1 x_i$$

you can now write:

$$y_i = b_0 + b_1 x_i + e_i$$

Describing Relationships Between Variables (Ch. 4)

Yifan Zhu

Introdu

Fitting a regressio

the model seful?

What do residuals mean? (Scatterplot: heights and weights of 10 elderly men)

► Residuals are the vertical distances between the points and the fitted line.

Describing Relationships Between Variables (Ch. 4)

Yifan Zhu

Introdu

Fitting a regressio

Is the model useful?

Residuals: heights and weights of elderly men data

x_i (height in cm)	y _i (weight in kg)	\widehat{y}_i	$e_i = y_i - \widehat{y}_i$
172.70	65.00	74.19	-9.19
165.00	57.00	65.32	-8.32
172.50	77.00	73.96	3.04
182.20	89.00	85.13	3.87
177.60	93.00	79.83	13.17
181.00	73.00	83.75	-10.75
182.50	83.00	85.48	-2.48
182.50	86.00	85.48	0.52
162.80	70.00	62.79	7.21
177.80	83.00	80.06	2.94

Describing Relationships Between Variables (Ch. 4)

Yifan Zhu

Introduc

Fitting a regression line

ful?

Plots of residuals

Describing Relationships Between Variables (Ch. 4)

Yifan Zhu

Introdu

Fitting a regression line

useful?

line

useful?

- Left: data that don't fit a line
- Right: the plot of residuals on x
 - ► The residuals show a nonlinear pattern in the residual plot.
 - ▶ Hence, the fitted line is not a valid model.

All patterns are bad in plots of residual vs. fitted values, x, time, etc.

When we get to inference, we want to make sure the residuals have a bell-shaped distribution:

This normal QQ plot shows that the residuals are roughly bell-shaped, which is good.

Describing Relationships Between Variables (Ch. 4)

Yifan Zhu

Introduc

line

useful?