Planetary Atmospheres - Equation and Value Tables

Group Effort

July 1, 2025

1 Gasses and Equation of State

Mole-based Equation	Mass-based Equation
Ideal Gas Constant (R)	Specific Gas Constant (R_s)
pV = nRT (n = mol)	$pV = mR_sT (m = \text{mass})$

Table 1: Comparison of Mole-based and Mass-based Ideal Gas Equations

Symbol	Unit	Note	
p	Pa	Pressure	
V	m^3	Volume	
m	kg	Mass	
R_s	$J \cdot kg^{-1} \cdot K^{-1}$	Specific Gas Constant	
R	$J \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$	Ideal Gas Constant	
T	K	Temperature	
M	${ m kg\cdot mol^{-1}}$	Molecular Weight (Molar mass)	
n_V	m^{-3}	Number of molecules per unit volume	
ρ	${ m kg}{ m \cdot m}^{-3}$	Density	
α	$\mathrm{m^3 \cdot kg^{-1}}$	Specific Volume	
n	_	Moles	
N	${ m kg}{ m \cdot m}{ m \cdot s}^{-2}$	Newton (force)	
Pa	$\mathrm{kg}\cdot\mathrm{m}^{-1}\cdot\mathrm{s}^{-2}$	Pascal (pressure)	
J	$kg \cdot m^2 \cdot s^{-2}$	Joule (energy)	
N_A	mol^{-1}	Avogadro's Number $(6.022 \times 10^{23} \text{ particles/mol})$	

Table 2: Physical symbols, units, and associated meanings

2 Wave Symbols and Quantities

Symbol	Name	Meaning (Wave Context)
λ	Lambda	Wavelength – distance between wave crests (m)
ν	Nu	Frequency – cycles per second ($Hz = 1/s$)
$\bar{ u}$	Nu-bar	Wave number – cycles per meter (1/m)
k	k	Angular (circular) wave number – $k=2\pi/\lambda$ (rad/m)
ω	Omega	Angular (circular) frequency – $\omega = 2\pi\nu$ (rad/s)
T	Т	Period – time per cycle (s)
v_p	v-sub-p	Phase speed – speed at which wave phase propagates (m/s)

Table 3: Wave Symbols and Their Meanings

	λ	ν	$\bar{\nu}$	k	ω
λ	1	$\frac{c}{\nu}$	$\frac{1}{\bar{\nu}}$	$\frac{2\pi}{k}$	$\frac{2\pi c}{\omega}$
ν	$\frac{c}{\lambda}$	1	$c\bar{\nu}$	$\frac{2\pi k}{c}$	$2\pi\omega$
$\bar{\nu}$	$\frac{1}{\lambda}$	$\frac{\nu}{c}$	1	$\frac{2\pi}{k}$	$\frac{2\pi\omega}{c}$
k	$\frac{2\pi}{\lambda}$	$\frac{\nu c}{2\pi}$	$\frac{\bar{\nu}}{2\pi}$	1	$\frac{1}{c\omega}$
ω	$\frac{2\pi c}{\lambda}$	$\frac{\nu}{2\pi}$	$\frac{2\pi\bar{\nu}}{c}$	ck	1

Table 4: Conversion between wave parameters

3 Radiomentric Quantities

Quantity	Symbol	Units	Physical Meaning	Equation
Radiant Power (Radiative Flux)	Φ , F	W	Total radiant energy emitted, transferred, or received per second.	$\Phi = \frac{dQ}{dt}$
Radiant Energy (Thermal energy)	Q_e, E, W	J	Total electromagnetic energy accumulated over time.	$Q = \int \Phi(t) dt$
Radiant Power per Unit Area (Irradiance, Radiative Flux Density, Exitance)	E, I	$ m Wm^{-2}$	Power received per unit surface area (in, through, or out).	$E = \frac{d\Phi}{dA}$
Radiance (Specific Intensity)	$oxed{L}$	${ m W}{ m m}^{-2}{ m sr}^{-1}$	Radiant power per unit area per solid angle in a specific direction.	$L = \frac{d^2 \Phi}{dA \cos \theta d\omega}$

Table 5: Radiometric Quantities: Symbols, Units, and Definitions

Equation	Name of Equation	Units of Result
$L_{\star} = 4\pi R_{\star}^2 \sigma T_{\star}^4$ Stefan-Boltzmann Law (Star Luminosity)		W (watts)
$F = \frac{L_{\star}}{4\pi d^2}$	Solar Constant / Stellar Flux at Planet	$ m W/m^2$
$T_p = \left(\frac{(1-A)F}{\sigma}\right)^{1/4}$	Effective Temperature of a Planet	K (kelvin)

Table 6: Key equations for planetary energy balance

4 Energy Balance

<u> </u>		Units of Result
$L_{\star} = 4\pi R_{\star}^2 \sigma T_{\star}^4$	Stefan-Boltzmann Law (Star Luminosity)	W (watts)
$F = \frac{L_{\star}}{4\pi d^2}$	Solar Constant / Stellar Flux at Planet	$ m W/m^2$
$T_p = \left(\frac{(1-A)F}{\sigma}\right)^{1/4}$	Effective Temperature of a Planet	K (kelvin)

Table 7: Key equations for planetary energy balance

Definition of Values in above Equations:

- $\sigma = 5.67 \times 10^{-8} \,\mathrm{W} \cdot \mathrm{m}^{-2} \cdot \mathrm{K}^{-4}$ Stefan–Boltzmann constant
- $R_{\star} = \text{Radius of the star}$
- d = Distance from star to planet
- T_{\star} = Effective temperature of the star
- T_p = Effective temperature of the planet
- $L_{\star} = \text{Stellar luminosity}$
- F = Flux at the planet
- A = Albedo of the planet

Useful Reference Values:

- $R_{\odot} = 6.96 \times 10^8 \,\mathrm{m}$ Solar radius
- AU = 1.496×10^{11} m Astronomical unit

5 Lee

5.1 Beers Law

Gives the change of intensity of light as it passes through a medium;

$$\underline{I}_{\lambda} = I_{\lambda}(s + \underline{s}) - I_{\lambda}(s)$$

or integrating out

$$I_{\lambda}(s_2) = I_{\lambda}(s_1) \exp\left[-\int_{s_1}^{s_2} \beta_e(s) \dot{s}\right]$$
 (1)