An Investigation on Fraud Detection Using Machine Learning Algorithms

Vishal Jain

Roll No: 2017IMT-090 ABV-IIITM Gwalior Gwalior-474 010, MP, India

November 8, 2020

Table of Contents

- ► Introduction
- Background Information/Motivation/Literature
- Project Objectives and Deliverables
- Salient Features of your work
- System Architecture/Methodology
- Progress Made so far
- Work/Tasks to be completed
- ► Gantt Chart
- ► References

Introduction

- ► Fraud detection have become a painful task for banking, ecommerce and medical.
- According to cyber source 83% businesses conduct manual reviews.
- ▶ India is among top 5 country with regard to credit/debit fraud detection.
- ▶ In 2007 credit/debit fraud cases jumped by 42%.
- ▶ As of 2019 there are around 52 million credit cards in India.

- ▶ USA is the most prone country with 38.6%cases in 2018
- Identity theft is identified as one of the main reason
- Lack of consumer awareness.
- Use of skimmers to get information and later use them to produce fake cards
- ▶ 30-50 age group is the most vulnerable to these frauds.
- ► Leads to many health problem like sleep problems, increased stress, anger and frustration.

Background

- Credit card is a physical payment card provided by bank which allows users to pay after certain time.
 - ► Types of credit card:
 - Travel Credit Card
 - ► Fuel Credit Card
 - Reward Credit Card
 - Shopping Credit Card
 - Secured Credit Card

- ▶ In 1994 fraudsters used fake names for fraud.
- ▶ In 1996 online status check of stolen cards.
- ▶ In 1999 hackers started using social engineering, honeypot etc to commit fraud.
- ► Introduction of ecommerce has lead to surge in demands and frauds.
- ► Al can play a key role by training it on a set of inputs to generalize in real world.

Motivation

- ▶ Problems with manual review in Fraud detection are:
 - ► Costly
 - Labour intensive task
 - ▶ Time consuming
 - ► High false positive
- Traditional approaches failed due to:
 - ▶ Increase in data
 - Variations in types of transactions.
 - Example: Rule based approaches.

Objective

- ► To study and analyze how machine learning algorithms perform on balance and unbalance dataset.
- ► Regression examples:
 - Logistic Regression
 - ► Logistic Regression with minmaxscaler
- ► Ensemblers example:
 - Decision Tree
 - ► Random Forest
- ▶ Boosting example:
 - Adaboost
 - Catboost
 - Xgboost
 - ► Lightgbm
- Class balancing algorithms:
 - Smote
 - Adasyn
 - Allknn

Literature

- Both supervised and unsupervised are used in real world scenario.
- ▶ Problem with supervised algorithms:
 - ► Requires accurate labelling of transactions.
 - Built to differentiate between legitimate and previous known frauds.
- Issues with dataset:
 - Evolving data
 - Changing data
 - ► May contain fraudster entry as legitimate due to similarity.

Dataset description

- ▶ Dataset contains 284,807 transactions.
- ▶ 0.172% transactions are fraudulent transactions.
- Most of the features in the dataset are transformed using principal component analysis (PCA).
- ▶ V1, V2, V3,..., V28 are PCA applied features.
- Other features include time, amount and class are non-PCA applied features.

Deliverables

- ► Analyze models on the basis of metrics such as accuracy, precision, recall, f1score, mcc and roc.
- ► Analyzing various machine learning algorithms like ensemblers, boosting, regression techniques etc
- ▶ Using 20% dataset as test data in all algorithms.
- ► To study effect of smote, allknn and adasyn on machine learning algorithms.

Salient Features

- Only supervised machine learning algorithms are used for analysis purpose.
- Decision trees take decisions at each step and random forest take account of various decision trees while making a conclusion.
- ► Most of the algorithms used for the analysis requires pretraining on a dataset to generate an output.

System architecture

- ► It is divided into 4 steps:
 - ▶ Data Acquisition Collecting data from various resources. For our use we have used Kaggle credit card fraud detection.
 - Data Preprocessing It involves cleaning and organizing of raw data to make it meaningful for the model to feed.
 - ► Feature Extraction It's a way of representing data in a condensed form thus reducing data for computation and preserving description of data.
 - ► This step involves classification of a data point into legal and illegal by use of a trained model.

Requirements

REQUIREMENTS	SPECIFICATIONS
jupyter notebook	environment
python 3	programming language
sklearn	library used for machine learning algorithms
matplotlib/Seaborn	used to visual and plot the outputs
imblearn	library for data balancing
pandas/numpy	used for data analysis and manipulation
intel i5/8GB RAM	hardware used for computation work

Methodology

- ► Aims to answer how we can deal with unbalanced dataset in fraud detection.
- ▶ Plan to analyze how ensemblers, boosting and regression along with smote, adasyn, allknn effects unbalanced dataset.
- ► Metrics used for evaluation include accuracy, recall, precision, f1score, mcc and roc score.

Metrics used

Metrics used for evaluation, (these parameters are used as base parameters for evaluation):

- ▶ Accuracy = TP + TN / TP + TN + FP + FN
- ► Precision = TP / TP + FP
- ightharpoonup Recall = TP / TP + FN
- ► F1score = 2 * precision * recall / precision + recall
- Mcc = TP * TN FP * FN / sqrt((TP + FP) * (TP + FN) * (TN + FP) * (TN + FN))
- ► Roc = Area under curve between false positive rate and true positive rate
- ► TP True Positives
- ► TN True Negatives
- ► FN False Negatives
- ► FP False Positives

Results

► Results for test cases without using any machine learning algorithm

- ▶ Boosting algorithms generally performed better than bagging in terms of accuracy.
- Random forest and xgboost are found to perform better in terms of precision
- ➤ Xgboost and random forest were found to perform best in terms of mcc and logistic regression worst

▶ Results for test cases using smote as data balancing algorithm

- Performance degraded the most in logistic regression with minmaxscaler.
- ► Random forest and xgboost were found to perform better in terms of accuracy, precision, f1score and mcc.
- ► Logistic regression registered highest recall and roc value.

▶ Results for test cases using adasyn as data balancing algorithm

- ► Logistic regression with minmaxscaler performed worst.
- Random forest and xgboost were found to perform better in terms of accuracy, precision, f1score and mcc.
- Adaboost performed dominated precision and roc metrics.

Values

0

Accur-Xab

▶ Results for test cases using allknn as data balancing algorithm

Metric-machine learning algorithm

F1-Xab

Mcc-Xab

Rec-Adab

Prec-Rf

Roc-Adab

- ► Logistic regression with minmaxscaler performed worst in all metrics except recall where a perfect score of 1 is observed.
- ► Random forest and xgboost were found to perform better in terms of accuracy, precision, recall, f1score and mcc.
- Decision tree outperformed all other algorithms in terms of roc score.

Conclusion

▶ Results for all machine learning algorithms on all metrics.

- ► The dataset is highly imbalanced, according to observation 99.83% belongs to class 0 and 0.17% to class 1.
- ► Highest accuracy was observed for xgboost using allknn
- ► Highest recall was observed for logistic regression with minmaxscaler using allknn
- ► Highest precision and f1-score was observed for xgboost using allknn
- ► Highest roc and mcc score was observed for logistic regression using smote
- ► True positive was found to be zero for logistic regression with smote and adasyn
- ► True negative and false negative for logistic regression with minmaxscaler and logistic regression with minmaxscaler along with allknn is found to be 0

- ➤ 'V14' is found to be the most dominating feature when smote and adasyn are used as data balancing algorithm
- ➤ 'V17' is found to be the most dominating feature when no data balancing algorithm is used

Future Work

- Performance improvement can be made by hyperparameter tuning techniques like grid searchCV, randomized searchCV, bayesian optimization.
- Study on comparison between machine learning techniques, neural network, hidden markov model and bayesian belief network could be done to built a better combined model.
- More data balancing techniques can be included like borderline-smote and other hybrid approaches to study the effect on metrics.

References

- R. Patidar, L. Sharma et al., Credit card fraud detection using neural network, International Journal of Soft Computing and Engineering (IJSCE), vol. 1, no. 3238, 2011
- S. Panigrahi, A. Kundu, S. Sural, and A. K. Majumdar, Credit card fraud detection: A fusion approach using dempstershafer theory and bayesian learning, Information Fusion, vol. 10, no. 4, pp. 354363, 2009.
- ▶ P. K. Chan, W. Fan, A. L. Prodromidis, and S. J. Stolfo, Distributed data mining in credit card fraud detection, IEEE Intelligent Systems and Their Applications, vol. 14, no. 6, pp. 6774, 1999.
- ▶ J. Jurgovsky, M. Granitzer, K. Ziegler, S. Calabretto, P.-E. Portier, L. He-Guelton, and O. Caelen, Sequence classification for credit-card fraud detection, Expert Systems with Applications, vol. 100, pp. 234245, 2018.

Thank You