

WAL TR 405/2-15

SCREENING AND SELECTION OF CANDIDATE SHEET ALLOYS

Final Report, Part II

by

D. B. Hunter

December 1966

TITANIUM METALS CORPORATION OF AMERICA
233 Broadway
New York, New York

Contract DA-30-069-ORD-3743

Distribution of This Document is Unlimited

ARCHIVE COPY

U. S. ARMY MATERIALS RESEARCH AGENCY WATERTOWN, WASSACHUSETTS 02172

Best Available Copy

Alloys, titanium

WAL TR 405/2-15

SCREENING AND SELECTION OF CANDIDATE SHEET ALLOYS

Final Report, Part II

by

D. B. Hunter

December 1966

TITANIUM METALS CORPORATION OF AMERICA 233 Broadway New York, New York

Contract DA-30-059-ORD-3743

Distribution of This Document is Unlimited

U. S. ARMY MATERIALS RESEARCH AGENCY WATERTOWN, MASSACHUSETTS 02172

ABSTRACT

Research under this contract was divided into four stages:
Phase I, a screening of stable beta base alloys using sheet produced from pound ingots; Phase II, the addition of elements to selected stable beta bases to bring about precipitation hardening; Phase III, the evaluation of the most promising of the Phase II alloys, using sheet produced from 30 pound ingots; and Phase IV the evaluation of mill-produced sheet from a 500 pound ingot of the best alloy from Phase III. Phases I to III are covered in this Final Report, Part 2.

Phase I research consisted of addition of eutectoid form ing elements Fe, Cr and Mn to bases Ti 17V-3A1, Ti 8Mo-8V-3A1 and Ti 15Mo-3A1, to produce stable beta bases. From the 39 alloys so produced, three alloys were selected as being suitable bases for addition of elements designed to bring about precipitation hardening: Ti 17V 10Cr 3A1, Ti-8Mo 8V-7.5Fe-3A1 and Ti 15Mo-5Fe-3A1. These alloys did not undergo a strength increase of more than 10% after aging for 8 hours at 900F in the solution treated condition and therefore were regarded as stable

Phase II work consisted of additions of Cu Co, Ni, Si Fe, Be, Si and rare earths to the above bases in increasing amounts to bring about precipitation hardening. However, the fabrication properties of such alloys deteriorated before enough of the above elements could be added to bring about precipitation hardening. As an exception, addition of 0.5 1%Si to Ti 17V 10Cr-SA1 followed by water quenching from solution temperatures of around 2000F and aging at 1150 1250F, produced Vickers hardness increases of up to 100 points upon aging without visible microstructural change. Although precipitation hardening of a stable beta alloy was thus achieved, grain growth and embrittlement were encountered because of the high temperatures required to dissolve the silicide.

Because of these findings, Phase III work was redirected toward development of two other types of alloy: a moderate strength stable beta alloy, and a high strength metastable beta alloy hardenable by alpha precipitation. Two stable beta alloys, Ti-17V-10Mn-3A1 and Ti-8Mo-8V-6Fe-3A1, and two metastable beta alloys, Ti-17V-4Fe-3A1 and Ti 8Mo-8V-2Fe-3A1 were evaluated.

However, the stable beta alloys had brittle welds, and work on these was discontinued. They were replaced by "stabilized" alloys, metastable alloys aged at 1100-1200F to suppress the maximum aging response and reach a strength plateau. Four such alloys Ti 8Mo 8V-5Co-3A1, Ti 17V-7.5Co 3A1, Ti-17V 2Fe-2Co 3A1 and Ti 8Mo 8V 2Fe 3A1 were evaluated in this condition, of which the last was found to be best. This same alloy also proved to be best of the high strength metastable beta candidates. On a basis of smooth and notched tensile properties at room temperature and 600F, creep stability and stress corrosion resistance, Ti 8Mo-8V-2Fe 3A1 was selected for mill production and evaluation under Phase IV. (Phase IV is covered by Part 1 of this Final Report.)

INTRODUCTION

This final report has been prepared by personnel of Henderson Technical Laboratories of the Titanium Metals Corporation of America, Henderson, Nevada, covering research and development of beta titanium sheet alloys in accordance with terms of United States Army Contract DA-30-069-ORD-3743 sponsored by the Army Materials Research Agency, Watertown, Massachusetts, and under the technical supervision of Mr. S. V. Arnold.

The original objective of this contracted program was development of a stable beta sheet alloy hardenable by compound precipitation. Part II of the final report, which follows, sets forth (1) the philosophy of this alloy development as it affected screening criteria, (2) the experimental sequence which was followed, (3) results which were obtained in test and evaluation of various candidate alloys, and (4) reasons for selecting metastable alloy Ti-8Mo-8V-2Fe-3Al for further development. Part I of the final report details such further development of this alloy to establish mill processing procedures and provide design data information.

It was also planned that the developmental alloy(s) be (1) amenable to state-of-the-art melting, conversion and fabrication practices and (2) comparable in cost to competitive titanium-based compositions. Accordingly, screening criteria were established for reference throughout the program.

It was desired that any new alloy developed should have a basic ingot cost of not more than about ten percent greater than Ti-13V-11Cr-3Al. This of necessity excluded addition of certain elements which might otherwise have seemed promising additions from the metallurgical standpoint. For example, the systems of Ti with Au, Ag and U; might seem to effer possibilities for inducing precipitation hardening, but because of the cost of these elements, they were not used. Similarly, all alloys should be meltable by normal techniques, that is by consumable-electrode vacuum-arc double melting without excessive loss of alloying elements by volatilization or formation of high density inclusions.

In all phases of the contact, producibility and fabrication qualities of the alloys were of prime importance. All test compositions were hot rolled to a certain gage (usually 0.080-inch), then given a substantial cold reduction to attain the final gage, (usually 0.050-inch). In this process those alloys which possessed marginal rollability were detected as edge cracking tended to occur. Fabrication properties, such as weldability and bendability, were also evaluated.

Pursuant to the above aims and considerations, this program was divided into four phases. Phase I consisted of a survey of alloy limits necessary to assure a stable beta base composition, using various combinations of beta isomorphous and beta eutectoid elements that reject compound sluggishly. Phase II dealt with the addition of various elements to selected stable beta alloys, with the object of bringing about hardening by compound precipitation. In these first two phases, one-half pound button ingots were employed. Although compound precipitation hardening was achieved in Phase II, it was not found possible to overcome the attendant embrittlement. Phase III effort employing 30-lb. ingots was therefore expanded in scope to develop (1) a work-hardenable (non-heat treatable) stable beta alloy and (2) an improved metastable beta alloy based on the Phase I results. Ultimately, a metastable composition was developed during Phase III, which

BACKGROUND AND PHILOSOPHY OF APPROACH

Commercial alpha beta alloys, such as Ti 6A1-4V, and metastable beta alloys, such as Ti 13V-11Cr-3A1, are hardened only by making use of the allotropic transformation, that is, by precipitation of beta from alpha prime, or by rejection of alpha phase from metastable beta. However, thus far no titanium alloys have been developed analogous to the precipitation hardenable stainless steels, or nickel based super alloys which are hardened by co herent precipitation of intermetallic compounds.

Several attempts have been made to develop such a class of titanium alloys, but these have been confined to using commercially pure titanium or complex alpha titanium alloys as base materials. Ti 2Cu is an example of an alloy where hardening has been achieved by taking advantage of the decreasing solubility of Cu in alpha titanium⁽¹⁾ and relatively excellent short-time strengths to 1000F have been achieved through additions of Cu to a complexed Ti-Al-Zr base. (2) However, these alloys snow little promise of displacing either the conventional high strength metastable beta or creepresistant alpha alloys at higher temperatures.

This program was originally based on the premise that it should be possible to select a relatively strong, ductile and stable solid-solution-strengthened beta titanium base alloy to which selected amounts of eutectoid or compound forming elements could be added so that, on suitable heat-treatment, combinations of strength and useful ductility would be produced by aging at moderate temperatures to promote precipitation hardening.

"Stability" for the base allow was arbitrarily defined as complete retention of beta in a 2 inch thick plate on cooling in still air from 1350F solution temperature. Such stability was intended to simplify heat treatment by obviating the need to quench from solution temperature.

⁽¹⁾ M. K. McQuillan, U. S. Patent No. 2,977,251.

⁽²⁾ R. F. Burniss and H. Margolin, "Development of Active-Eutectoid and Alloys", WADC Technical Report 58 328, October 1958.

It was also planned that the developmental alloy(s) be (1) amenable to state-of-the-art melting, conversion and fabrication practices and (2) comparable in cost to competitive titanium-based compositions. Accordingly, screening criteria were established for reference throughout the program.

It was desired that any new alloy developed should have a basic ingot cost of not more than about ten percent greater than Ti-13V-11Cr-3Al. This of necessity excluded addition of certain elements which might otherwise have seemed promising additions from the metallurgical standpoint. For example, the systems of Ti with Au, Ag and U; might seem to offer possibilities for inducing precipitation-hardening, but because of the cost of these elements, they were not used. Similarly, all alloys should be maltable or normal techniques, that is by consumable-electrode vacuum-arc double malting without excessive loss of alloying elements by volatilization or formation of high density inclusions.

In all phases of the contact, producibility and fabrication qualities of the alloys were of prime importance. All test compositions were hot rolled to a certain gage (usually 0.080-inch), then given a substantial cold reduction to attain the final gage, (usually 0.050-inch). In this process those alloys which possessed marginal rollability were detected as edge cracking tended to occur. Fabrication properties, such as weldability and bendability, were also evaluated.

Pursuant to the above aims and considerations, this program was divided into four phases. Phase I consisted of a survey of alloy limits necessary to assure a stable beta base composition, using various combinations of beta isomorphous and beta eutectoid elements that reject compound sluggishly. Phase II dealt with the addition of various elements to selected stable beta alloys, with the object of bringing about hardening by compound precipitation. In these first two phases, one-half pound button ingots were employed. Although compound precipitation hardening was achieved in Phase II, it was not found possible to overcome the attendant embrittlement. Phase III effort employing 30-1b. ingots was therefore expanded in scope to develop (1) a work-hardenable (non-heat treatable) stable beta alloy and (2) an improved metastable beta alloy based on the Phase I results. Ultimately, a metastable composition was developed during Phase III, which

could also be "stabilized" by suitable heat treatment. This composition, Ti-8Mo-8V-2Fe-3Al, as more fully evaluated in Phase IV, which consisted of the conversion of a 500-pound ingot to plate and sheet using standard mill processing, and the evaluation of plate and sheet products. The Phase IV effort is reported in Part I of this final report.

MATERIALS

Major alloying additions of normal purity were used in formulating the experimental base alloys melted during Phase I of this program. The analyses of these additions are listed in Table I.

Standard A.S.T.M. methods of analysis were employed. (1) No analyses of hardening agents, added in Phase II, were performed.

PROCEDURES

Melting

For button melts of 250 gm size, compacts of nominal composition (additions weighed to 0.1 gram) were pressed in a 2 inch circular die, under a 50 ton pressure, from blended alloy components. Compacting pressure was about 31,800 psi. Vanadium was added as a master alloy with aluminum. Inasmuch as aluminum was to be added to each alloy, this method represented a convenient and economical procedure. Molybdenum was added in two ways:

(1) as a low melting master alloy with aluminum, and (2) where necessary, as a fine elemental powder. The technical problem of alloying titanium with a material of considerably higher melting point was thus obviated. Otherwise, elemental alloy additions were used.

The compacts were then are melted under an atmosphere of gettered argon with an inert tungsten electrode on a water cooled copper hearth. Suitable precautions were taken so that button

⁽¹⁾ Am rican Society for Testing & Materials, ASTM Methods for Chamical Analysis of Metals, Philadelphia, 1964 Edition.

melts were not contaminated with volatile constituents or residues from buttons previously in the furnace. All buttons were turned over and remelted several times in order that each would be homo geneous. Analyses of selected Phase I alloys are given in Table II.

All ingots were vacuum melted by the consumable electrode vacuum arc melting process. For primary melting compacts of blended titanium sponge and alloying material were welded together and consumably melted into a copper heat sink crucible. The primary ingots were then lathe turned, welded together (for ingots of more than 10-pound final weight) and arc melted the second time into a copper crucible. After melting, the ingots were sampled for analyses at top, middle and bottom positions. The average analyses are reported in Table III, but for acceptance all three analyses were taken into consideration.

Fabrication

Buttons used in Phases I and II were hot rolled at 1750F (except where otherwise noted) to 0.080-inch thickness on a two-high Waterbury Farrell rolling mill with roll diameters of 8-inches. Each allowwas reheated to temperature between passes. Upon reaching hot rolled gage, the sheets were allowed to cool and the surfaces were then conditioned by sandblasting and pickling in a solution of 35% HNO₃-5%HF-balance water. Each sheet was then cold rolled to 0.050 inch.

Ingots in the 10-30 pound range (Phase III) were processed by forging at 2,000F to 3"x3"xlength; slices 1-inch thick were then cut from this billet after cropping off ends, and these slices were hot rolled at 1750F into 0.080-inch sheets. These sheets were cold rolled to 0.050-inch, with the exception of sheets used in welding studies which were rolled to 0.060-inch. Warm rolling, where required, was done at 500F.

Heat Treatment

All solution treatments up to 1850F and aging treatments were carried out in air in an air recirculating furnace having a tolerance to +15F. For solution temperatures above 1850F an electric muffle furnace was used. During this contract, three different cooling rates after solution treatment were used: Plate

cocl, air cool and water quench. For plate cooling, samples were held between two titanium plates, each plate being 6-inch square and 1-inch thick. About 30 minutes were required for the specimen blank within the sandwich to reach temperature. After holding at temperature for the required time (15 minutes), the assemblage was removed from the furnace and allowed to cool in air on a laboratory rack. After about 20 minutes on the rack, the specimen blanks had cooled to 700F. This cooling rate was used in Phase I to simulate cooling rates to be expected in production of 2-inch plate. Figure 1 illustrates the cooling rate at the center of a 2"x6"x 6" plate observed between 1400-700F, compared with that in the center of a titanium sandwich 6-inch square, 2-inches thick. By suitable control of draft conditions, the specimen cooling rates were readily controllable within the limits shown. 1 represents duplicate runs, and the initial temperatures observed were used to calibrate the furnace temperature controller during subsequent heat treatments.

In air cooling, samples were pulled out of the furnace and allowed to cool in air while lying on an asbestos surface. Samples so cooled were separated on the surface to assist in producing a uniform cooling rate. For air quenching to a given temperature, which was used on certain alloys in Phase II, after being in one furnace for the desired length of time, samples were pulled out of this furnace and held in air until their color matched that of a second furnace, and they were then inserted into that furnace.

In water quenching, samples were pulled straight out of the furnace into a bucket of cold water.

Mechanical Testing Procedures

For all of Phase I and II work, tensile specimens were machined from sheet blanks 4 inches long and 9/16-inch wide. A drawing of the tensile sample is shown in Figure 2. In Phase I work, samples were cut parallel to the rolling direction, but in all subsequent work, all tensile samples were cut transverse to the rolling direction. For evaluation of ingots in Phase III, a larger tensile specimen of a similar general configuration was used, so that total elongation was measured over a 2 inch gage length.

In preparing a sheet tensile specimen for test, the thickness and width were measured to the nearest 0.001 inch and the

cross sectional area was reported as the minimum product of thickness and width obtainable along the length of the specimen. The gage length of the sheet specimen was then coated with layout dye and markings 0.1-inch apart were lightly scribed along the gage length of the specimen.

With this preparation the specimen was placed in a 60,000 pound Riehle screw-type testing machine. An extensometer was attached and testing proceeded, using a paced strain rate of 0.005-inch per inch per minute through 0.2% offset yield strain. Beyond the yield point, the strain rate was increased to 0.05-inch per inch per minute to rupture. Stress-strain curves were obtained through about 2% total strain. Beyond 2% strain only stress was recorded.

After a specimen was broken, it was carefully fitted together so that measurements of ductility could be obtained.

Local elongation was obtained by determining the percent change in length of the two adjacent scribed spaces which included the fracture. Uniform elongation was calculated from the length change over those four adjoining scribed spaces lying farthest removed in the gage length from the fracture. Total elongation was obtained by determining the percent change in length over all ten spaces or full gage length.

Samples for notch tensile testing were machined to the configuration shown in Figure $3\,$

Creep stability tests were performed upon samples having the same configuration as Figure 2. Creep tests were carried out in CR 12 Riehle frames. After creep exposure, the amount of deformation was measured by means of a travelling microscope using hardness impressions for reference. Samples were then tensile tested at room temperature.

Impact tests upon sheet samples were carried out using laminated Charpy V samples as shown in Figure 4. Samples of sheet were bolted together at each end, to give the approximate width of a standard Charpy V impact sample, the whole laminate was then machined to a configuration similar to that of a Charpy V sample before testing. For correlation purposes, actual test

values were adjusted to conform with those which would have been obtained from a standard specimen on the basis of relative areas.

Rend tests were performed on samples of sheet generally 3/4-inch wide, and 6-inches long. While the width to length ratio of samples varied, no samples having a sample width of less than ten times sheet gage were used.

Bend and tensile tests upon welded samples were carried out on samples machined to the configurations shown in Figure 5.

Hardness tests were carried out on a standard Vickers hardness machine, using a 10 Kg load. At least three, and normally five, impressions were made on each sample, and the average of these taken for the hardness reading.

Determination of hot rolling pressures was made using a 2-hi Birdsboro Mill with 22-inch face rolls fifteen-inches in diameter. Roll separating force was measured by two SR-4 load cells which have a capacity of 150,000 pounds on each screw. Load results were read from a high speed Sanborn Recorder. Samples of starting gage 0.8-inch were given six passes through the mill, the opening being reduced for each successive pass, mill openings were 0.60, 0.45, 0.30, 0.20, 0.10 and 0.04-inches for passes 1-6 respectively. A mill speed of 200 ft/min. was employed.

For determination of cold rolling pressure tests, samples with a starting gage of 0.13-inch were rolled using a 2-High Stannat Mill with rolls of 8 inches in diameter and 10-inch face. Roll separating force was measured by SR-4 type load cells, signals from which were fed to a high speed recorder. To compensate for slight differences in the starting gage, the initial mill opening was set at 10% below the thickness of the panel to be rolled. A series of four passes was made at this initial setting; the opening was then decreased 0.01-inch and a second series of four passes made. A third and final series was taken after decreasing the mill opening by another 0.01-inch.

Metallography

For metallographic examination, bakelite mounted samples were ground on silicon carbide papers of increasing fineness to

600 grit, and then electropolished at 20 volts using a solution containing 600 mls methanol, 60 mls of perchloric acid, 360 mls butyl cellosolve, and 2 mls of solvent "X". Samples were etched in a solution of 1% HF in saturated oxalic acid.

Density Determinations

These were carried out upon sand blasted and pickled portions of sheet, which were weighed in air and then in deaerated water. A precision balance capable of weighing to 0.1 milligram was employed. The precision of densities obtained this way was better than 0.01 gm/cc.

Oxidation Resistance

In Phase I work, the "total weight loss" method was employed. For this, sheet samples 1-inch square were weighed before testing, then given 2 hours exposure in an open crucible at the selected temperatures; after cooling, samples were sandblasted to remove oxide, then again weighed. Results were determined as grams of weight lost per square centimeter of surface. In subsequent work, to attain more uniform results, the method of "total weight gain" was used. For this, weighed samples were exposed in covered crucibles containing holes to permit access of air, and were again weighed after exposure.

Analytical Techniques

Standard A S.T.M. methods were used for all analyses of experimental alloy compositions.

Stress Corrosion Tests

These were carried out during Phase III of the contract Samples 3"x½"wide x gage were bent around a die to produce free bend samples of known radii These bends ranged from 2T to 9T, depending upon the heat-treatment of the alloys Samples were then coated with a saturated salt solution, air-dried, then exposed for two hours at 800F in still air. Samples were then removed and the salt washed off with water, and examined under a low power lens, they were then flattened out. During this flattening operation, samples most susceptible to stress-corrosion broke. All samples were then examined again under a

low power lens, and finally sections through the fracture were subjected to metallographic examination.

X-Ray Diffraction Studies

For X-ray examinations carried out in this work, 1-inch square pieces of sheet were given appropriate heat treatments. They were then mounted and polished on a series of silicon carbide papers of increasing fineness and then electropolished using a solution containing 600 mls methanol, 360 mls butyl cellosolve, 60 mls of perchloric acid, and 2 mls of Solvent "X". Samples were X-rayed using a Norelco 12045 diffractometer, employing Cu K a radiation with a nickel filter at 40 KV and 20 Ma, using a special device to rotate the sheet specimens about the sheet normal.

Welding Methods

Weldability tests were first performed upon hand welded specimens, but for all subsequent work, machine-welded samples were used.

Hand-welding was performed using the tungsten arc inert gas shielded process, without filler; argon was used for the inert gas and copper back-up plates were used as a heat sink. All specimens from hand welded blanks were machined, one specimen from each blank; beads were not ground flush with the base metal. Sheet gage was 0.050-inch. Welding was carried out using a current of 60 amps at 10 volts; speed of welding was 8 inches/minute.

Machine welding was carried out using 0.060-inch gage sheet which was welded together, without filler, in a welding machine at a speed of 20 inches/minute. Welding current was 100-150 amps at 9 volts, using an electrode of 2% thoriated tungsten, 3/32-inch diameter, using argon as the inert gas for protection. Welds were ground flush before testing of all tensile samples.

PHASE I: SCREENING BASE ALLOYS

To establish a stable beta base to which subsequent addition of compound forming elements might be made, it was deemed desirable to employ only beta-isomorphous elements which do not form compounds with titanium. However, all such elements are relatively weak beta stabilizers and large amounts would be required. For example, the amounts of Mo, V, Cb and Ta which would be required to retain the beta phase upon water quenching are: (1)

Element	Amount Required (Wt %)	Amount Required (Acomic %)
Мо	11	6
V	15	15
СЬ	36	22,5
T <i>a</i>	40	15

Considerably larger percentages would be required for a beta alloy which would be phase stable upon cooling in air in practical section sizes. This would render such alloys excessively dense.

For the above reasons, the relatively strong beta stabilizing elements Cr, Mn and Fe, which form the beta eutectoid type of phase diagram with titanium, were used in Phase I, in conjunction with Mo and V, singly or together. In addition, all compositions were formulated with 3% Al, since Al tends to suppress the formation of the brittle omega phase in beta titanium alloys. Use of Al also means decreased density, price reductions when Al-V master alloys can be used in formulation, and improved melting assimilation of Mo when added as an Al-Mo master alloy.

Unfortunately, little is known regarding the phase relationships throughout quaternary alloys such as Ti-Mo Cr-Al, or Ti-V Fe Al. Even the ternary diagrams such as Ti-Cr-V

⁽¹⁾ DMIC Report No. 136A, "The Effects of Alloying Elements in Titanium".

are not determined. However, from the Ti-Cr-Mo beta surface isotherms shown in Figure 6, it is possible to choose a Mo composition which will allow the formation of TiCr, through beta eutectoid decomposition at reduced temperatures. (1) By the use of tie lines and analogy with the Ti-Cr-Mo diagram, the beta surface isotherms were constructed for the Ti-Cr-V system, Figure 7. From these figures, Mo and V levels were chosen such that the eutectoid decomposition would occur at about 1000F (550C) so that beta would be retained during air cooling of thick sections. It is not known how the Mn and Fe eutectoid compositions or temperatures move with V and Mo additions, but by analogy with the foregoing, one would expect that the eutectoid temperature would lower and the composition would shift to lower values with increasing V or Mo.

Based on the foregoing, Cr was added to Ti-17V-3A1, Ti-8Mo-8V-3A1 and Ti-15Mo-3A1 base alloys in 2.5 wt. % increments calculated to bracket the eutectoid compositions and to explore the effect of additions at higher levels. To simplify comparisons, Mn was added in the same amounts. As Fe is known to be a stronger beta stabilizer than either Cr or Mn, it was added in lesser amounts. In this way, Phase I compositions were derived. The resulting alloys were then screened by room temperature tensile testing for marginal stability with respect to hypoeutectoid decomposition to alpha, and hypereutectoid decomposition by compound precipitation.

RESULTS

Processing

In general, allows were hot rolled to 0.080 inch sheet at 1700F without trouble, though shight edge cracking was noted in allows of all three bases containing more than 10% Cr. During cold rolling from 0.080 to 0.050 inch more cracking occurred. This was mainly confined to those alloys containing the higher percentages of Fe, Cr and Mn, the severity of cracking being

⁽¹⁾ Ibid, Page 200.

greatest with Fe and least with Mn. The presence of Mo in the base alloy aggravated this effect. Appearance of the sheet after hot and cold rolling is shown in Figures 8a to 8c. No difficulties were encountered during heat treatment or specimen preparation.

Tensile Properties

Tensile properties of all Phase I alloys are given in Tables IV to VI. All alloys tested were found to be mechanically stable, that is, the yield to ultimate strength ratio was above 0.90, Table VII. Mechanical instability in beta alloys is shown by an extreme ability to work harden, there being in such alloys a large difference between yield and ultimate strengths. This behavior is characteristic of marginally stable beta titanium alloys.

The trends of solution treated yield strengths with composition are summarized in Table VIII. Yield strength generally increased with Mo content in the base materials, although this difference tended to decrease as the amount of Cr, Mn or Fe increased. Fe was the most potent solid-solution strengthener while Cr was the least. This difference corresponds with the relative positions of these elements in the periodic table, the element farthest removed from Ti having the greater strengthening effect.

Table IX gives the ratios of aged to solution treated strength for the Phase I alloys. Those alloys containing the lesser amounts of Fe, Cr and Mn strengthened considerably on aging at 900F for 8 hours. These alloys were not considered further in this phase of the contract as only thermally stable base compositions were sought, and alloys showing a strength increase exceeding 10% of the solution treated strength were arbitrarily classified as thermally unstable.

From evaluation of rolling behavior and tensile test results, the least amount of Fe, Cr or Mn necessary to stabilize the bases, and the most that could be tolerated from a processing standpoint, were determined as follows:

Paga Matanial	Minimum Stabilizing Addition	Maximum Amount For Rollability
Base Material	(To Nearest 2.5%)	(To Nearest 2.5%)
Ti-17V-3A1	10 .0 Cr	12.5Cr
	7-; 5Mn	10.0Mn
	7.5 F e	7.5Fe
Ti-8Mc-8V-3A1	7.5Cr	10.0Cr
	7.5Mn	10.0Mn
	5.0Fe	7.5Fe
Ti-15Mo-3A1	5.0Cr	10.0Cr
	5.0Mn	10.0Mn
	5.0Fe	5.0Fe

The limits for Fe are rather narrower than for the other two elements. The onset of poor cold-rollability with increasing alloy content may be related to probable changes in transition temperature of the B.C.C. beta structure. Warm rolling instead of cold rolling was found to improve the fabrication properties of marginal alloys.

There was no evidence of precipitation hardening upon aging the hypereutectoid group of alloys. Such alloys, after aging, did not show any marked increase in strength over that of the solutionized material.

Modulus values were estimated from stress-strain curves and are summarized for two conditions of heat treatment in Tables X and XI. In the solution treated condition, the elastic moduli consistently increased with the Mo content of the base, and with additions of beta eutectoid elements. On a direct weight percent basis, Fe exhibited the greatest effect on modulus, and Cr the least. Similar relationships are apparent for the alloys in the aged condition, though the compositional effects are much less pronounced.

Ductility trends with compositional variation are shown in Tables XII and XIII. Total elongation values at first cended to increase with the amount of beta stabilization; then, with further increase in alloying content, fell abruptly to lower values.

Metallography

Metallographic examination of the alloys was undertaken to determine the recrystallization temperature and beta transes for solution treatment purposes. Samples which had been previously hot rolled to 0.080 inch gage, then cold rolled to 0.050 inch gage were used Figure 9 illustrates extensive slip and elongated grains typical of the as-rolled condition. ally extensive cracking was observed, mostly in alloys containing the greater amounts of alloying elements. Usually, after heat treating for 1/2-hour at 1250F a precipitate was present in the grain boundaries, as in Figure 10, which gradually dissolved on heating at temperatures of 1450F and above Recrystallization began at 1350F. Some grain growth was evident in many alloys at 1550F Exceptions to these generalizations were the 15% Mo alloys containing 12.5 and 15% Mn, in which little precipitate appeared at any temperature This lack of precipitate may be caused by the sluggish eutectoid reaction of Mn

Examination revealed that a good correlation existed between the tensile properties and microstructures of these alloys. Figure 11 shows Ti 15Mo 7.5Mn-3Al after solution treatment, and Figure 12 shows the same alloy solution treated and aged. This alloy had a solution treated yield strength of 141 Kpsi, and an aged yield strength of 143 Kpsi, with 25% elongation both before and after aging, and was therefore regarded as stable. The two photomicrographs indicate that little precipitate appeared upon aging. By contrast, Ti-17V-2.5Fe-3Al, a thermally unstable alloy, solution treated had a yield strength of 115 Kpsi with 15% elongation, and an aged yield strength of 185 Kpsi with 6% elongation. Comparison of Figures 13 and 14 shows a darkening of grains after aging in this alloy that is characteristic of alpha precipitation.

Oxidation Studies

These tests were carried out at five temperatures, samples being given two hours exposure. Tests were carried out in open crucibles, using a still air electric furnace and sheet samples 1-inch square. Results were determined as grams of weight lost per square centimeter after sandblasting, and are listed in Table XIV, being shown graphically in Figures

15 to 17. The greatest loss in weight was found among alloys in the 17%V group, and the least among the 15%Mo group. In all cases additions of Cr to these alloys reduced the amount of oxidation.

Densii Determinations

Densities of the Phase I alloys ranged from 0.171 to 0.191 lbs/cu. in, and are listed in Table XV.

Analytical Determinations

To check button analyses against target compositions and assure that no unusual formulation difficulties would be encountered in melting of alloys selected for Phase II, selected alloys were analyzed. Results in Table II show that with exceptions of Fe and Mn contents, all values are close to those calculated. Some loss of Mn is normal due to its volatility.

SELECTION OF ALLOYS FOR PHASE II

Selection of the base alloys for Phase II was made on a basis of stability, fabrication and tensile properties, with other factors such as density, ease of melting and cost also taken into account. Using these criteria, three alloys were selected from ten most promising alloys. Table XVI

> Ti-8Mo-8V 7 5Fe 3Al Ti-17V-10Cr 3Al Ti-15Mo-5Fe 3Al

Each base composition was represented in the three alloys chosen to uncover the relative advantages of each system

The Ti-8Mo-8V 7 5Fe 3Al allow had a vield strength of over 160 kpsi, total elongation over 30%, a uniform elongation of 10%, density of 0.180 lbs/cu in., fair oxidation resistance, but borderline cold rellability. Although some cracking of the material did occur during rolling, this was not too serious and the sheet had the smoothly rounded outline characteristic of those allows with good fabricability. During analysis of the material it was found that the Fe content was

\$% higher than planned, which no doubt contributed to the rolling problem. This alloy from the all-around point of view was the best stable alloy developed during Phase I.

Ti 17V 10Cr 3Al had a yield strength of 135 Kpsi, total elongation over 14%, uniform elongation of 10%, good rolling properties, a density similar to Ti 13V 11Cr-3Al (0.175 lbs/cu. in.) and fair oxidation resistance. This alloy, though not having the strength of some of the other alloys in the 17%V group, had greater ductility.

Ti-15Mo 5Fe 3Al had a yield strength of 140 Kpsi, total elongation of almost 20%, uniform elongation of at least 10%, a density of 0.183 lbs/cu. in., and good oxidation resistance. It was judged to be the best representative from the 15% Mo group, having a good combination of strength and uniform elongation (though a lower strength/weight ratio than alloys in the other two groups).

Selection of Precipitation-Hardening Elements

"Precipitation hardening" as a means of strengthening titanium alloys is presently used in several commercial alloys; well known amongst them are Ti-6Al 4V and Ti-13V-11Cr-3Al. Hardening occurs by precipitation of beta from martensitic alpha, or by rejection of alpha from metastable beta. The purpose of this phase of the contract was to explore a third method of precipitation-hardening: precipitation of an intermetallic compound or a phase other than alpha from a stable beta solid solution.

A literature survey was therefore undertaken of the alloying elements having retrograde solid solubilities in beta Ti. A list of the elements considered, with their atomic size factors, solubilities in alpha and beta titanium, electronegativity, valency, and type of intermetallic compound formed is given in Table XVII. The relationships of the atomic size factors and electronegativities to the solubilities of the elements in alpha and beta titanium are shown graphically in Figures 18 and 19. Also included in the table is the respective cost, in dollars/pound, of each element, and; based on this figure, the maximum amount which could be added without raising the cost of the alloy more than 10%. The figures are relative to the time the study began

Alloying elements may be divided into beta-eutectoid, compound formers, and peritectoid categories. They are considered next under these headings in discussing the reasons for their acceptance or rejection.

Elements Forming Beta Eutectoids

A group of beta eutectoid elements that have extensive beta titanium solubility (but restricted solubility in alpha) are: Cu, Ag, Fe, Cr, Mn, Co, U, Ni, Au, Bi, Pb, and Tl. Cu has a large solubility in beta titanium, with a retrograde beta/Ti₂Cu solvus curve. Cu stabilized beta titanium decomposes actively, that is, beta eutectoidal decomposition kinetics

are quite fast compared with those of Fe or Mn stabilized beta. The premise was made that, if eutectoid decomposition is rapid, then Ti₂Cu ought to be rejected actively and cause hardening as material is aged below the solvus. This element was selected in preference to either Ag and Au on cost grounds. Large amounts of Fe, Cr and Mn were found to cause rollability problems in Phase I without commensurate increases in hardenability. They were therefore not considered further as hardening agents.

U has a high density and is relatively costly. However, Ni and Co are cheap, readily available, and have medium densities. These two elements were also selected for use in Phase II.

The other three elements, Bi, Pb and Tl, were considered unsuitable becaue of their high volatility. Bi and Tl boil below the melting point of titanium and the boiling point of rb is only slightly higher.

Elements Forming Compounds

These are elements with limited solubility in both alpha and beta titanium and which form compounds. The rather similar elements Si and Ge form isomorphous compounds Ti_sSi_s and Ti_sGe_s. Ge has the greater solubility in Ti, but, on account of its limited availability, was considered to be a less desirable hardening agent than Si. Si has a maximum solubility of about 0.4% in alpha, and about 3% in beta. Both Si and Ge were employed in Phase II work.

Use of the element In was ruled out because of its high price, and the large amount needed for any potential hardening.

The Ti Be system is largely unknown; however, Be lowers the melting point of Ti. On the possibility that a favorable retrograde solvus might exist, Be was also included in the list of hardening agents for Phase II.

Peritectoid Elements

The solubility of the rare earths in Ti is limited, mainly because of their low electronegativity values and relative size factors. The only phases co-existing in the Ti-rare earth phase diagrams are the respective terminal solid solutions. However, because of retrograde solubilities in the beta phase, they were

considered potential hardening agents. Owing to the complexity of the alloys employed in this program, compounds of the rare earths, as with Al, might also form the basis for precipitation hardening. On these grounds, misch metal (a mixture of rare earths high in Ce) was selected for evaluation as a hardening agent, along with pure Nd, which has a higher melting point.

Selection of Levels

The elements selected for use as hardening agents in Phase II were thus Cu, Ni, Co, Si, Ge. Be, musch metal and Nd. To bracket the eutectoid compositions, Cu, Ni and Co were first added to base compositions in quantities of 1, 3 and 5% with later adjustments as required. Si, Ge and Be were first added in lesser amounts: 0.5, 1 and 2% of Si and Be, and 2% or Ge. Misch metal and Nd were added in amounts of 1, 2 and 3% to bracket the minimum beta solubilities.

The above elements were added to the base alloys selected from Phase I: Ti 17V-10Cr 3A1, Ti-8Mo 8V 7.5Fe-3A1, and Ti-15Mo-5Fe 3A1. Ingots weighing some 250 grams each were melted, there being eighty-six resulting alloys.

Rollability Screening of Phase II Alloys

Practical work on Phase II was begun by melting and rolling the above one-half pound ingots to sheet. The ingots were break down rolled at 1750F and hot rolled to 0.080-inch gage, then sand blasted and pickled, and cold rolled to 0.050-inch gage. The initial pass of hot rolling was a 5% or less reduction, and each subsequent pass did not exceed a 10% reduction.

All alloys containing misch metal and Nd, and most of those with Be, cracked up during hot rolling. In addition, all samples containing 5% Ni, Co and Cu, with the exception of Ti-17V-10Cr-3Al-5Cu, also cracked up on rolling. In general, the hot rolling performance of the alloys grew progressively worse with increasing "hardener" as well as Mo content. Results of rolling are given in Table XVIII and examples of the sheet produced are shown in Figures 20 to 23.

Several ways to overcome the hot shortness of the alloys containing misch metal were tried. As the solubility of the rare

earths in the beta phase is alleged to be greater at higher temperatures, an attempt was made to hot roll the alloys at 2100F, but they again cracked on the first pass. The rolling temperature was then lowered to 1400F, below the melting point of Ce (1470F), with no improvement in the results. No melts at 1880F, but alloys containing it behaved similarly in rolling. The rare earths were therefore not used further in this project.

Results with alloys containing Be were little better. Reduction of the Be content to 0.1, 0.2 and 0.3% (below the original 0.5 - 2% range) was undertaken, but; with the exception of alloys with the Ti-17V-10Cr-3Al base, cracking again took place on hot rolling. However, small specimens of sheet were salvaged and heat treated to determine any hardening response.

As Phase I results had shown large additions of Fe led to poor rolling characteristics, the Fe and Cr contents of the base alloys were reduced in the supposition that by so doing the tolerance of the base alloy for Cu, Ni and Co would be increased. The Fe content of Ti-15Mo-5Fe-3Al was reduced to 3 and 2% and that of Ti 8Mo-8V-7.5Fe-3Al, to 5 and 4%. The Cr content of Ti-17V-10Cr-3Al was cut back to 8 and 7%. The "hardener" contents remained the same. Hot rolling performances improved only slightly. Alloys containing Cu showed greater hot rollability than those with Ni or Co.

Several other alloys, which had been hot rolled satisfactorily to 0.080 inch gage, cracked during cold rolling to 0.050 inch gage. Usually the cracks extended inwards from the sides of the sheet. Figure 21 shows examples of sheet, containing equal amounts of Cu, Ni, and Co, which were rated as good, poor and fair rolling quality respectively. Figure 21 also shows typical behavior of alloys containing Be; about 0.3% is the maximum tolerated. Figure 23 is characteristic of alloys containing rare earths; disintegration on the first pass of hot rolling was consistently observed.

In summation of rollability screening tests. sheet produced from eleven alloys was good; fifteen alloys produced fair sheet, and twenty five alloys gave poor sheet. Thirty-five alloys were so hot short as to be unworkable.

The hot shortness of alloys containing Ni, Co, Nd and Be was studied metallographically, Figure 24. Specimens in the

as-rolled condition showed cracks occurring along grain boundaries at which there were fine, almost continuous, networks of second phase in all but the alloys containing Be. These latter alloys evidently contained grain boundary eutectic that caused hot shortness.

Heat Treatment Response of Alloys

Five heat treatments were used in screening aging response of the experimental alloy sheet:

- (1) Solution treatment at 1350F for ½ hour, plate cooled, aged at 950F for various times;
- (2) Solution treated as above, and aged at 1050F for various times;
- (3) Solution treated at 1500F for ½ hour, "plate cooled", aged at 850F for various times;
- (4) Solution treated at 1350F for ½ hour, quenched, aged at 950F for various times;
- (5) Aged at 850F directly from the cold-rolled condition.

The response of various types of alloys as indicated by hardness* and tensile properties will now be discussed.

Results of the first evaluations are contained in Tables XIX to XXVII. Additions forming beta eutectoids generally suppressed, rather than enhanced, aging response, indicating increased beta stabilization without useful precipitation of compound. Although Cu additions seemed to provide some response, it was not enough to be of interest within the rollability limits. These generalizations seemed to hold for all combinations of heat treatment and for all bases containing beta eutectoid additions.

^{*} Values were obtained with a Vickers hardness tester using a 10 Kg load, as previously described.

At this point, the proportions of beta eutectoid elements in the alloys were increased, in the hope of inducing precipitation hardening. Two main approaches were used: first, increasing Cu at the expense of the non-hardening elements in the base alloys, and second, adding Ni at the expense of Cr. As with the earlier results, increasing Cu degraded rollability, particularly in the presence of Mo, see Table XXVIII. The alloys containing increased Ni content could not be rolled to sheet and no further work was done with these alloys.

Tensile properties were determined for those high Cu alloys which could be rolled to good sheet. Results in Table XXIX show the alloys have low solution treated ductility and, though high strengths were attained by a few compositions on aging, these materials were exceedingly brittle. Metallographic studies showed that alpha precipitation accompanied aging in all alloys. Because of this, and the embrittlement tendency, Cu containing alloys were not pursued further.

At this point, attention turned to the possibility that the active eutectoid elements Ni and Co might produce precipitation hardening in the beta alloys containing only beta eutectoid additions. Preliminary rolling studies of ½ pound ingots proved that hypereutectoid binary alloys containing up to 10Ni or 13Co could be hot rolled to sheet. Five percent of each of Fe and Mn was therefore added to the Ti-Ni and Ti-Co alloys at two levels of Ni and Co to provide increased beta stabilization. The alloys could be hot rolled readily, but cold rolled only with difficulty. Primary compound existed in all hot rolled alloys. After solutionizing the compound, the alloys exhibited the aging responses illustrated in Table XXX.

The Ni containing alloys aged up at least 100 VHN in minutes without a significant metallographic change. Such rapid hardness changes suggest omega formation. In any case, alpha appeared upon everaging. Since eutectic melting also occurred in most alloys at the 1750 or 1850F temperatures required to achieve solution, these alloys were not studied further.

The alloys containing Si did not respond to the heat treatments shown in Tables XIX to XXVII. However, metallographic study showed that not all silicides were dissolved at the solution temperatures employed. Additional a pound ingots were therefore prepared to more systematically study the solvus and aging parameters.

The effects of Si additions on the tensile properties of Ti-17V-10Cr-3Al are shown in Table XXXI. Strengths are good and ductility is useful up to at least 0.5% Si.

The aging responses of alloys containing 0.5 and 1% Si are shown in Table XXXII. All silicides were dissolved at the solution temperatures used. An aging response of about 80 VHN was achieved in the 1% Si alloy after quenching and aging at 1050 - 1150F. Since no metallographic changes could be associated with the response, the hardening phenomenon was presumed to be true precipitation hardening.

Silicide hardening, however, seemed to be quite rapid as the data in Table XXXIII shows. Plate cooling, instead of water quenching, from solution temperature caused as-solution-treated hardness to increase 30 VHN with a consequent decrease in aging response.

In any case, the specimens solution treated and quenched from 1950 or 2050F were hopelessly brittle. Since extensive grain growth occurred during solutionizing, the cause of the brittleness was not immediately clear. The next experiments, therefore, studied the aging mechanism as well as the effects of grain growth.

Ti 17V 10Cr-3Al-1Si and the same alloy with Si (as a control) were chosen for the mechanism study. X ray diffraction techniques were used to follow the solutionizing and aging phenomena. The results are given in Table XXXIV. The alloys were solution treated both above and below the silicide solvus illustrated in Figure 25 and aged at 1250F so that any phases coming out would be coarse enough to detect.

The X ray diffraction data confirmed metallographic interpretations of the silicide solvus. Ti₈Si₈ was identified after a 1750F solution treatment, but only beta was present after quenching from 2050F. Aging after a 2050F solution treatment produced both alpha and Ti₈Si₈ diffraction peaks. Aging also caused the beta defraction peaks tobroaden, indicative of lattice strain, and low angle scattering to increase. Lattice strain was the only feature observed in this study that might reduce ductility

The grain growth aspect of the situation was approached in three ways:

- (1) By solutionizing at 2050F and down quenching to progressively lower temperatures for times of ½ and 15 minutes, then quench and aging to ambient temperatures. (This was intended to show whether step quench sequence could minimize the embrittlement while maintaining aging response.)
- (2) By quenching from 2050F directly off the hot rolls to minimize grain growth.
- (3) By varying the solution time so as to minimize grain growth.

Results of these experiments are given in Tables XXXV and XXXVI.

Conclusions derived are that step quenching destroys the silicide contribution to the aging response. The same is true for quenching off the rolls, even though bend tests on as-quenched material implied reasonably fine grain size. Since longer solution times and higher solution temperatures also decreased tensile ductility, see Table XXXVI, grain size undoubtedly contributed substantially to the brittleness, though solid solution of Si and silicide distribution were also important.

In view of the shallow depth of hardening, together with difficulties attending effective solution treatment, Si additions were not pursued further. It should be mentioned again, however, that compound precipitation hardening was achieved in this portion of the contract.

Ge proved to be an ineffective hardener as the data in Table XXXVII shows. The 20-30 VHN increase is assignable entirely to alpha hardening.

The use of Be produced results similar to those from Ge, though their alloying behaviors are quite different. Data shown in Table XXXVIII is also explainable on the basis of alpha hardening. Neither Ge nor Be were studied further.

At this point in the program the scope of the contract was expanded to include development of medium strength, formable stable beta alloys as well as conventionally metastable beta alloys ageable by alpha precipitation. The stable beta target was a formable and weldable alloy which would possess a strength ratio of approximately 8 x 10⁵ inches as delivered from the mill (thereby obviating problems of heat treatment for the manufacturer). The metas able beta target was an alloy which would:

- (1) Be low in strength and readily formable as solution treated;
- (2) Age to a strength/density ratio of 1 x 10⁶ inches with useable ductility;
- (3) Be capable of developing strong and ductile fusion welds and;
- (4) Insofar as possible be superior to the commercial metastable beta alloy, Ti-13V 11Cr-3A1.

Toward that end, a number of Phase II alloys displaying stable behavior were tensile tested. Alloys selected were those from which better sheet was produced in rollability screening. Results given in Tables XXXIX to XLI show that quite respectable combinations of strength and ductility were found among the alloys. Exploring the stability of these alloys, by aging for 8 hours at 950F, indicated that many underwent little change in either strength or ductility. Base alloys containing Mn, Fe or Co additions displayed the most attractive properties. Bend tests performed on selected alloys also confirmed that formability of most could be judged excellent, Table XLII even after "aging" at 950F for 8 hours.

Based on the above findings, and additional data obtained in Phase I (Tables IV to XIII), Ti-17V-(10-12)Mn 3A1 and Ti-8Mo-8V-(6-7)Fe-3A1 were selected for Phase III study. Because certain Phase II alloys containing Co had shown high ductility, further investigation of this additive was planned under Phase III.

Phase I work had also shown that base alloys containing less than about 5% Fe, Cr or Mn displayed a marked aging response after aging for 8 hours at 900F. Several could be aged to strength/weight ratios exceeding 1,000,000⁻¹ inches. These alloys were therefore examined with regard to producing an ageable beta alloy hardening by alpha precipitation. It was observed that samples containing Fe showed the greatest amount of ductility consistent with a high aging response. On this basis, Ti 17V (1.5-4)Fe-3A1 and Ti-8Mo 8V (1-3)Fe-3A1 were selected for Phase III study as ageable beta alloys.

PHASE III - EVALUATION OF STABLE AND METASTABLE BETA SHEET ALLOYS

The foregoing work indicated that the prospects of developing a useful precipitation-hardened stable beta alloy, analogous to the stainless steels, were remote. However, as previously described in the conclusion of the Phase IT work, two other types of alloy showed promise: (1) Non hardening stable beta alloys; (2) Metastable beta alloys hardening by means of conventional alpha precipitation. These alloy types were therefore evaluated in Phase III.

In both Phase I and II work, soble bota alloys were developed which possessed reasonable fabrication properties and had strength/weight ratios exceeding 800,000-1. From that work, two stable beta alloy ranges were selected for study. Ti-8Mo-8V-(6-7)Fe-3Al and Ti-17V-(10-12)Mn-3Al. Both compatitions gave annealed tensile strengths of 160 Kpsi, YS/UTS ratios of 0.9 or higher, uniform elongations of 10%, and elastic moduli exceeding 16.0x10-61b/in². Optimization of these compositions based on fabrication and tensile properties was planned. Partial or complete substitution of Co for Fo was found to improve uniform elongation in Phase II work, so ostensibly stable beta compositions containing Co, with and without Fe, were also evaluated in Phase III.

Also Phase I alloys containing less than 5% additions of Cr, Mn, or Fe displayed marked strengthening after aging for 8 hours at 900F. Several could be aged to strength/weight ratios exceeding 1,000,000 inch⁻¹. The greatest amount of ductility, consistent with high aging response, was found in those alloys containing small amounts of Fe. Ti-17V-(1.5-4)Fe-3Al and Ti 8Mo-8V-(1-3)Fe-3Al were selected on that basis for Phase III study of metastable alloys. Because of potential ductility improvements, three metastable alloys containing Co were also selected for evaluation.

The evaluation of the stable beta alloys will be discussed first, followed by the metastable, or ageable, alloys.

Stable Beta Sheet Alleys

(a) Optimization of Compositional Range

One half pound button ingots of Ti-8Mc 8V-6Fe-3Al, Ti 8Mo 8V-7Fe-3Al, Ti 17V-11Mn-3Al and Ti-17V-12Mn-3Al were used in this evaluation. Alloys were hot rolled at 1750F to 0.080-inch gage sheet, sandblasted and pickled, then cold rolled to 0.050-inch gage. However, during the cold rolling of Ti-8Mo 8V-6Fe-3Al, edge cracking occurred. The remaining sheet of this composition and all Ti-8Mo 8V 7Fe-3Al sheet were therefore rolled at 250F, which greatly reduced edge cracking. Examples of sheet after cold rolling are shown in Figure 26.

Tensile, bend and impact data were obtained from each alloy; tensile samples were either solution treated (1450Fhr-AC) or solution treated and aged (1450F-hr AC+900F 8hrs-AC). Tensile results are listed in Table XLIII. These indicate that increasing the Fe or Mn contents respectively of both alloys by 1% produced an increase in ultimate tensile strength of about 5 Kpsi, with a slightly higher gain in yield strength. No change in strength upon aging was found; however, bend data showed that a drop in the bendability of Ti-17V-12Mn-3Al occurred, Table XLIV. Uniform elongation was erratic in all alloys, but local elongation was 30 - 50%.

Metallographic examination of Ti-17V-(11-12)Mn-3A1 did not reveal any microstructural change upon aging, but Ti-8Mo-8V-(6.7) Fe-3Al displayed a thickening of some grain boundaries after aging. Examination of sections through broken bend samples failed to reveal any evidence that this led to intergranular rather than transgranular fracture.

Laminated impact specimens from an experimental alloy sheet were tested in both solution treated (1450F ½hr-AC) and in aged conditions (1450F-½hr-AC+900F-8hrs-AC). The specimen configuration was illustrated in Figure 4; dimensions of the laminate were similar to those of a Charpy V notch impact sample. Actual test values were adjusted to conform with those which would have been obtained from a standard speciment Samples were tested at -80F, room temperature and 300F. Results of tests are listed in Table XLV.

In both annealed and aged conditions a sharp decline in impact strength with decreasing temperature was found, characteristic of BCC crystal structures. For example, at -80F Ti-17V 11Mn-3Al in the solution treated condition had an impact value of only 2.25 ft/lbs, which rose to 14.75 ft/lbs at room temperature, and to 28 ft/lbs at 300F. Similar results were found on the other three alloys; aging generally decreased impact values. In both groups of alloys, lower impact values at -80F and room temperature resulted with increase in the total beta content of the alloys.

The tensile, bend and impact data thus indicated that the lower percentages of Fe or Mn are preferable. Inasmuch as previous Phase I data indicated that Ti-17V-10Mn-3Al was also a stable composition, this alloy was selected for further study over Ti-17V-11Mn-3Al as a conservative measure.

(b) Evaluation of Ti-3Mo-8V-6Fe-3A1 and Ti 17V-10Mn-3A1

Thirty-pound ingots were used to evaluate the properties of these two alloys. Analyses are listed in Table III. Forging to 1½-inch thick slabs was carried out at 2100F. No unusual difficulties were encountered. The slabs were rolled to 0.8 inch thick plate at 2100F, for determination of hot rolling pressures. In this test the commercial Ti-13V-11Cr-3Al composition was used as a control. The techniques used in these tests are described in "Materials and Procedures".

Hot rolling pressures were obtained for all three alloys, using initial rolling temperatures of 2100 and 2250F. Panels were heated for 45 minutes before rolling. Results are given in Table XLVI, and shown graphically in Figure 27. Ti-17V-10Mn-3Al and Ti-8Mo-8V-6Fe-3Al were no more difficult to hot roll at 2100F than Ti-13V-11Cr-3Al, and were somewhat easier to hot roll at 2250F than that alloy.

Cold rolling pressure tests were then made; details of this are also described in the "Materials and Procedures" section. Results are listed in Table XLVII. Both alloys had a similar resistance to cold rolling and both were somewhat more difficult to deform than Ti-13V-11Cr-3Al. This no doubt reflects the higher strengths of these stable beta alloys. Reductions were not as heavy as planned because roll separating forces in several passes exceeded the 300,000 pounds rated capacity of the mill.

Mechanical properties were next determined on the alloys, samples being solution annealed for ½ hour at 1450F. Room temp erature and 600F notched tensile properties, and 600F smooth tensile properties, creep stability tests, oxidation character istics, stress corrosion resistance, and weldability were assessed.

A notched configuration of $K_t=8$ was used for all notched tensile tests. Results, Table XLVIII, indicate that both alloys had NTS/UTS ratios above unity, and that Ti-17V-10Mn-3Al had slightly higher notch strengths. There was little difference in the 600F tensile properties of the alloys; yield strengths of 106-116 Kpsi were found. Thus, about 75% of their room temperature yield strength, was retained at 600F, Table XLIX.

Creep stability tests were performed at 600F for 150 hours, using loads of 90% of the yield stress at 600F. Creep deformations of around 0.2% resulted, Table L. After creep exposure, samples were tensile tested at room temperature. Compared to the unexposed specimens there were decreases in both local and uniform elongation accompanied by considerable increases in strength.

Oxidation studies were performed on samples of sheet exposed for 2 hours at 1500F; details of the method employed (total weight gain) are described in "Materials and Procedures". Table LI shows that Ti-17V 10Mn-3Al had the lowest weight gain of the two alloys under these conditions, 0.0104 gms/sq.cm. of sheet surface.

To determine the relative susceptibilities of the two stable beta alloys to stress corrosion, samples of each alloy were subjected to unrestrained bend tests. This method is described under "Materials and Procedures". Results are given in Table LII. Low power optical examination of the broken surfaces revealed that Ti-8Mo-8V-6Fe-3Al was the more resistant alloy.

Welded tensile and bend samples of Ti-17V-10Mn-3A1 and Ti-8Mo-8V-6Fe-3A1 were prepared using methods described under "Materials and Procedures". Tensile results in Table LIII show that these alloys broke before reaching yield stress. Metallographic examination of the alloys failed to reveal any reason

for this. Excellent bend radii were found with the base metal, but welded samples were also brittle in bending, Table LIV. Weldments aged 500 hours at 650F were also brittle.

This lack of weldability constituted a major impedement to the further development of these stable beta alloys. Work on them was therefore discontinued while efforts continued in other directions.

(c) Use of Co in Stable Beta Sheet Alloys

In the course of earlier work it was found that substitution of an equivalent weight percent of Co for Fe produced ageable beta alloys having annealed yield strengths of up to 150 Kpsi. Because such alloys might be weldable in an overaged or "stabilized" condition, they were evaluated as possible equivalents for stable beta compositions.

Tensile tests of Phase II alloys suggested that use of Co produced good strengths and increased uniform elongation. To further explore this, three alloys of potentially stable beta compositions were formulated as ½ pound button ingots: Ti 17V-7.5Co 3A1, Ti 8Mo 8V-5Co-3A1 and Ti 8Mo 8V-4Fe-4Co 3A1. Fabrication to sheet by hot and cold rolling methods identical to those employed for Phase I and II alloys, showed that Ti-8Mo-8V-4Fe-3A1 had marginal rollability. Room temperature tensile tests, carried out in both the solution treated and aged conditions, showed that only Ti-8Mo-8V 4Fe-4Co-3A1 behaved as a stable beta alloy; the other two alloys displayed strength increases upon aging, Table LV.

Since stability after solution at nealing was not achieved in a rollable alloy, attention was turned toward the possibility of overaging these alloys at temperatures sufficiently high to suppress any aging response at potential exposure temperatures. Ti-17V-7.5Co-3Al was used to assess this possibility. Specimens were solution treated 15 minutes at 1350F, air cooled, then aged at 1100F for times of up to 16 hours. Results are shown in Table LVI. Aging at 1100F for 16 hours produced only a 13 point hardness increase that was accompanied by precipitation of coarse alpha phase in the microstructure. In this condition the alloy could behave in a manner similar to an otherwise stable became composition.

Tensile tests of Ti-17V-7.5Co-3Al solution treated and aged at 1100F for 10 and 30 minutes, and 16 hours, were then made. These results confirm the hardness findings in that there was no significant change in strength after aging for 10 or 30 minutes, and only a small strength increase after aging for 16 hours at 1100F, Table LVI. A sharp rise in uniform elongation upon aging for short times appeared to be a useful feature of the treatment. "Stabilization" was thus established in an alloy at yield strength levels on the order of 150 Kpsi.

This technique was then used on the other Phase III alloys then candidates for selection as high strength metastable beta alloys. Samples of Ti-8Mo-8V-5Co-3A1, Ti-17V-7.5Co 3A1, Ti-8Mo-8V-2Fe-3A1 and Ti-17V-2Fe-2Co-3A1 were solution treated for 10 minutes at 1500F, air cooled, and then aged at 950, 1000, 1100 and 1250F for 8 hours to determine proper "stabilization" treatments. Minimum bend radii determinations showed that after aging for 8 hours at 1100F, all alloys, except possibly Ti-17V-7.5Co-3A1, could pass a 3T bend, Table LVII. A stabilization treatment of 1100F for 8 hours thus allowed adequate formability. With this encouraging result, additional mechanical property tests were carried out.

Tensile and notched tensile test results listed in Tables LVII to LIX show Ti 17V-7.5Co-3A1 and Ti-8Mo-8V-5Co-3A1 were the stronger alloys at both room temperature and 600F. However, they had low room temperature NTS/UTS ratios of 0.78 and 0.66 respectively. By contrast, Ti-8Mo-8V-2Fe-3A1 and Ti-17V-2Fe 2Co-3A1 had somewhat lower smooth tensile strengths, but notch tensile properties ratios of 1.16 and 1.07 at room temperature respectively. At 600F the NTS/UTS ratio of all four alloys exceeded unity. These results are probably indicative of transition behavior in the higher Co alloys.

Creep stability tests, Table LX, showed that the higher Co alloys were rather unstable, judging by ductility retained after 600F-150 hour creep exposures. In sharp contrast, Ti-8Mo-8V-2Fe-3Al and Ti-17V-2Fe-2Co-3Al exhibited good ductility after 150 hours exposure. Ti 8Mo-8V-2Fe-3Al was the only alloy providing good stability after 500 hours exposure. The Co containing alloys were thus not sufficiently promising to be considered for further scale-up. Their instability may well be related to rejection of compound.

The stable beta alloys evaluated in this contract proved quite capable of reaching annealed yield strengths on the order of 150 Kpsi with good ductility, but rollability, weldability and/or stability were not adequate. Since the metastable beta alloy Ti 8Mo 8V-2Fe 3Al could be "stabilized" to exhibit substantially the same strength levels without compromising other properties, the stable beta alloys were not considered for Phase IV evaluation.

The next section discusses the further development of metastable beta alloys.

Metastable Beta Sheet Alloys

(a) Optimization of Composition

In Phase I studies, Ti 17V 2.5Fe 3Al and Ti 8Mo 8V 2.5Fe 3Al gave particularly good combinations of aged strengths and ductility, Tables IV and V In order to optimize further their Fe content, four alloys, Ti-17V-1.5Fe-3Al, Ti 17V-4Fe-3Al, Ti-8Mo-8V-1Fe-3Al and Ti-8Mo-8V-3Fe-3Al were melted as 30-pound ingots, processed to sheet, and evaluated for aging response by hardness and room temperature tensile tests, Tables LXI and LXII. From these results, Ti 17V 4Fe-3Al gave better aged ductility than did Ti 17V 1.5Fe-3Al and was evaluated further. Higher Fe had slowed aging response of Ti 8Mo-8V-1Fe 3Al, but increased uniform ductility. The Fe level in this alloy was optimized at 2%. (1) Ti-17V-4Fe-3Al and Ti-8Mo-8V-2Fe-3Al were then given more extensive property evaluations.

The effects of various aging times and temperatures on the room temperature tensile properties of each of the selected alloys were then determined. Results, Tables LXIII and LXIV, show that both alloys had solution treated yield strengths of about 120 Kpsi, but that Ti 8Mo 8V-2Fe-3Al had a faster aging response in a given time at all aging temperatures employed

⁽¹⁾ Results of compositional variations on Ti-8Mo 8V-2Fe-3Al, varying the amount of Fe, Al and O are included in Tables A4 and A5 in the Appendix to the Final Report, Part 1

For example, after aging for 8 hours at 900F, the yield strengths of Ti-8Mo-8V-2Fe-3Al and Ti-17V-4Fe-3Al were 180 and 148 Kpsi respectively. Ti 8Mo-8V-2Fe-3Al also appeared to have somewhat higher uniform elongations at yield strengths of 185 Kpsi and above.

To obtain a correlation between room temperature tensile properties and Vickers hardness of these two alloys, hardness results were obtained from broken tensile specimens and were used to calculate a linear regression line for each alloy. Vickers hardness was plotted as the independent variable, and ultimate tensile strength as the dependent variable*. For Ti 8Mo 8V 2Fe 3Al the relationship between Vickers hardness and ultimate tensile strength was expressed by the following equation:

UTS = (Vickers hardness x 613) - 48,500;

and for Ti-17V-4Fe 3A1:

UTS = (Vickers hardness x 621) - 44,360,

where UTS is given in Kpsi. The slopes of these plots are practically identical, Figures 28 and 29, so that 17 Vickers points are equivalent to 10,000 Kpsi. Confidence limits of 95% were also plotted on Figures 28 and 29; the degree of scatter being much smaller with Ti-8Mo-8V 2Fe-3A1.

Both alloys thus seemed to be contenders for scale-up in Phase IV. However, since Co seemed to promise improved tensile ductility from Phase II studies, the potential of Co was studied in three additional ageable beta alloys melted for that purpose. Toward this end, Co was substituted for Fe in alloys Ti-17V-4Fe 3Al and Ti-8Mo-8V-2Fe-3Al. The alloys were: Ti-17V-7.5Co 3Al, Ti-8Mo-8V-5Co-3Al and Ti-17V 2Fe 2Co-3Al. The first two of these were also evaluated as "stabilized" beta alloys, discussed in the previous section. The above three alloys were evaluated as ageable beta alloys, using hardness data and tensile properties to develop heat treatments. Hardness response to aging is shown

^{*} The method for calculation is given by Brownlee, "Industrial Experimentation".

in Tables LXV to LXVII. As shown in Tables LXVIII to LXX, partial or complete substitution of Co for Fe did not confirm earlier Phase II results, in that uniform elongation was not improved. Aged tensile properties, however, were generally good. Substitution of Co for Fe increased the aging response, thus suggesting that Co was a weaker beta stabilizer than Fe.

Other generalizations are: (1) aging response becomes more rapid with increasing aging temperature; (2) the strengths of the alloys do not decrease with overaging up to 24 hours; (3) aging temperatures above 900F result in lower fully aged strengths. Ti 17V-2Fe-2Co-3Al, containing less Co, exhibited generally better strength/cuctility combinations.

Results of 600F smooth tensile tests, Table LXXI, show that Ti-17V-7.5Co-3Al retained most strength at 600F, and Ti-8Mo-8V-5Co-3Al retained the least. The former displayed a yield strength/density ratio of 1x10⁶ inches. Percentages of room temperature yield strength retained at 600F varied from 73 -88%, depending upon the alloy and heat treatment condition, Table LXXII. The tensile properties of Co containing alloys at this temperature looked rather good in contrast to their room temperature data. Again, this may be due to a type of transition behavior.

Notched tensile tests at room temperature and 600F using a notch configuration of K_t = 8, were performed on the five alloys. Results, Table LXXIII, show that in room temperature tests Ti \$Mo-8V\$ \$ZFe-3A1\$ and Ti \$17V-4Fe-3A1\$ had superior NTS/UTS ratios, varying from 0.72-1.01. At 600F, Ti-8Mo-8V-2Fe-3A1 was the superior alloy with ratios of 1.10. Evidently, the use of Co tends to increase notch sensitivity in these alloys.

All five alloys were creep stability tested in two aged conditions (900F for 8 or 24 hours). Exposures were 600F for 150 and 500 hours at 90% of the 600F yield stress. Results, Table LXXIV, indicate that, although Ti 8Mo 8V 5Co-3Al had the lowest amounts of creep deformation after either exposure time, it lost ductility after the 500 hour exposure. Ti 8Mo 8V 2Fe-3Al provided the best combination of creep resistance and subsequent ductility. These results confirm earlier results from studies of "stabilized" alloys in the previous section.

Hot salt stress corrosion tests, carried out as described in "Materials and Procedures", indicated that Ti 8Mo-8V 2Fe-3Al and Ti-17V-4Fe-3Al were the most resistant to hot salt stress corrosion, Table LXXV. The results are good enough to establish an order of merit, but cannot be considered quantitative.

Tests for oxidation resistance, Table LXXVI, showed that Ti-8Mo 8V-2Fe-3Al and Ti-8Mo-8V-5Co 3Al had the lowest weight gains after exposure in open crucibles at 1500F for 2 hours. This is consistent with earlier results indicating the Ti-8Mo-8V-3Al base to be more oxidation resistant than the Ti 17V-3Al base.

Room temperature tensile tests were performed on welded specimens of Ti-8Mo-8V-2Fe-3A1, Ti-8Mo-8V-5Co-3A1 and Ti-17V-7.5Co-3A1, Table LXXVII. Ti-8Mo-8V-2Fe-3A1 displayed a good combination of strength and ductility.

Selection of Ageable Beta Alloy for Phase IV

Pertinent properties of the five candidate alloys have been summarized for easy comparison in Table LXXVIII. Ties 8Mo-8V-2Fe-3Al produced the best all-around combination of properties and was selected for Phase IV scale-up and evaluation. Phase IV consisted of the melting and processing to plate and sheet of a 500-pound ingot of Ti-8Mo-8V-2Fe-3Al, using standard mill production equipment and techniques. Both plate and sheet products were evaluated, not only by tests as described herein, but also by additional techniques to determine such properties as K_{ic} , notch fatigue life, and a quantitative measure of stress corrosion resistance. Part I of this Final Report covers the Phase IV evaluation of Ti-8Mo 8V-2Fe-3Al.

TABLE I

	Other Elements	99.7T1, 0.109C1	0.0034* 0.001N1*	0.001Sn*, 0.001Co*	1 1	i !	,	0.0611	0.0012r*, 99.7co*	<pre><0.01W*, 0.02N1* 0.003Cu*, 0.034S* 60I1</pre>
	S1.	***************************************	0.27	1 ; 1		0.04*	0.34	0.14	0.002*	1 1 1 1
	O 14	0.022	0.001*	0.009	0.017	0.022*	0.1	0.026	0.034*	8 8 1 8
•	2 H	0.007	0.613	 	0.00\$	0.014*	0.055	0.008	# # #	
Analyses of Materials Used in Formulation of Alloys	011	0.072	0.005*	0.044	0.178	0.020*	0.181	0.059	0.073	07
ormulatio	H N	;	: :	† † !	8.66	:		i 0 T	† !	! ! !
Used in F	Cr.	1 3 6 9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	;	: : :	99.3*	!!!	; ; ;	;	;
aterials	74 Pe	0.085	0.01 0.001*	0.016	! ! !	0.038*	99+* 0.34	0.17	0.02*	8 8 9 6
lyses of H	N N	3 E 1 E 2	99.8*	97.7	1 1 1	† ! !	· · · · · · · · · · · · · · · ·	47.08	:	i
Ana	> 14	; ; ;	; ·	8 8 8	† • •	t 1	84.2	i i i	† ‡ 1	2 1 1
	<u> </u>			0.001	: : : :	1 t : :	13.4	52.3	[1 1 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1 1 1 1
	Material	117 8. H. N.	Mo Powder <40 Micron	740 Micron	-10 Kar	- 10 Mean	V/Al Master Alloy	MO/Al Paster Alloy	# F F F F F F F F F F F F F F F F F F F	TiO, Powder

*Suppliers Analysis.

TABLE I.

Analyses of Selection Phase I Buttons

HK	0133	0800	7500	0200.
ZK	024	010	110	.011
940	0.119	0.100	0.117	0.144
אט				
A 1	3.27	3.27	3.06	2.89
ž k	1 4 1 5	1 1	† 	6.98
F &	1 1 1	8.0		
> 1	16.9	8.06	! ! !	1 1 1
N X	 	7.84	15.0	15.2
ZZ	9.75	1 1 1	3 8 8	1 1 1
Hear. No.	T3322	T3307	T3315	T3318
A 110y	T1-17V-10C"-3A	Ti-8V-8Mo-7.5Fe-3A1	T1-15Mo-5Fe-3A1	Ti-15Mo-7.5Mn-3A1

TABLE III

Analyses of Ingots Used in Phase III

Ingot	To a co		X	>	7	D.	<u>2</u>	Ċ	c	z	C
	Wt. (Lbs.)	Corposition	12	2	24	м	62	14	14	7	2
V 2766	3()	T1-17V-10Mn-3A1	\$ \$ \$	16.3	2.72	0.166	9.46	† † †	0.186	0.024	0.024
V2707	æ	T1-8M0-8V-6Fe-3A1	8.03	8.24	2.99	5.96	1 1	1 1	0.183	0.017	0.025
V2729	Ş	T1-17V-4Fe-3A1	1 1	16.7	3.22	3.91	1 1	1	0.165	0.025	0.023
15.41	3 0	T1-8H0-8V-2Fe-3A1	7.66	7.88	2.97	1.88	1 f t	1 1 5	0.110	6.016	0.025
V 2785	10	T1-7.5Mo-7.5V-1.75Pe-2.5A1-0.10 0	7.17	7.36	2.46	1.72	1 1	: :	0.108	0.019	0.022
V. /85	9;	T1-7.5Mo-7.5V-1.75Fe-3.5A1-0.18 0	7.18	7.45	3.47	1.76	; ; ;	1 1	0.212	0.016	0.023
V 27 H 7	10	T1-8.5Mo-8.5V-2.25Fe-2.5A1-0.10 0	7.42	80.8	2.25	2.16	1	1 1 1	0.131	0.015	0.025
おおんさう	16	T1-8.5Mo-8.5V-2.25Fc-3.5A1-0.18 0	8.03	8.53	3.50	2.24	1 1	1 1	0.175	0.014	0.023
\$27.K	10	T(-16V-3.6Fe-2.5A1-0.10 0	3 4 2	15.5	2.55	3.59	1 1	:	0.116	0.019	0.025
0675A	01	T1-15V-3,6Fe-3,5A1-0.18 0	1 1 1	£ 6.3	3,41	3.45	f i i	1 1 1	0.172	0.024	0.023
42791	01	T1-18V-4, 4Fe-2, 5A1-0, 10 0	† † †	18.3	2.46	4.37	; ; ;	1	0.089	C.022	0.023
V2792	01	T1-18V-4,4Fe-3,5A1-0,18 0	1 1 1	19.0	3.60	4.46	i : :	1	0.195	0.030	0.035
X . 8 5 X	20	T1-17V-2Fe-2Co-3A1	1 1	16.6	3.13	1.98	† ;	1.82	9.150	0.024	
V2859	9	T1-17V-4FR-3A1	;	17.9	3.19	4.00	1	:	0.113	0.017	
V 28 60	30	T1-8Mo-8V-2Fe-3A1	7.87	7.96	3.07	2.15	;	1 :	0.125	0.016	
V 2900	33	T1-8Mo-8V-5Co-3A1	7.46	8.09	2.87	0.061	; ;	4.86	0.175	0.015	
V 2920	30	T1-17V-7, SCO-3A1	1 1	16.95	3.07	0.150	;	7.59	0.123	0.032	
V2966	30	T1-8M0-8V-5C0-3A1	8.04	8.26	2.95	0.027	\$ \$ \$	9.4	0.105	0.018	
V2967	30	T1-17V-7.5Co-3A1	: : : : : : : : : : : : : : : : : : : :	17.1	2.91	0.125	1 1	7.09	0.093	0.023	
V2971	30	T1-17V-2Fe-2CO-3A1	1 1 +	17.15	3.11	2.01	:	1.93	6.111	0.019	

TABLE IV

Room Temperature Sheet Tensile Properties of Cr. En and Fe Alloys with Ti-ITV-3Al Base Composition

rie a c			,		Tet	Tensile Properties	erties.		Elastic
No.	Composition	Heat Tre	Heat Treatment(1)	UTS Kps 1	0.27vS Kps1	Local El. %	Jeff.	Total El. 1(2)	Modulus 10-6psi
T3320	Ti-17V-5Cr-3A1	1350F-15M-SC	25	121	115	35	7.5	15	Š
=	=	=		119	114	25	'n	11	
=	*** ***	=	+900%-8Hr-AC	186	169	10	2.5	יח	16.1
=	ï	z	2	185	168	Ŋ	•	ল	
T3321	T1-17V-7.5Cr-3A1	1350F-15M-SC	žč	131	124	25	7.55	15	4
=	=	=		130	120	25	12.5	17	14.2
2	=	2	+900F-8Hr-AC	153	136	50	V *:	6	15.9
=	:	*	2	152	137	15	7.5	10	
T3322	T1-17V-10Cr-3A1	1350F-15M-SC	ည္က	140	131	35	æ	25	14.8
=	•	=		138	131	35	17.5	22	Ś
=	=	=	+900F-8Hr-AC	145	136	25	7.5	7,1	17.6
=	ŧ	=	=	146	136	35	20	23	15.6
T3495	T1-17V-12, 5Cr-3A1	1350F-15M-SC	ည္က	158	149	20	12 5	14	
=	=	=		152	148	'n	2.5	m	16.0
=	=	=	+900F-8Hr-AC	1.57	1.50	25	2.5		
=	=	:	Ξ	191	148	25	12.5	1.5	
T3496	T1-17V-15Cr-3A1	1350F-15M-SC	သ္တ	167	160	Ŋ	2.5	8	16.9
z	=	=		166	159	S	2.5	m	16.5
=	=	=	+900F-8Hr-AC	168	161	S	0	7	
=	=	=	=	169	158	10	\$	7	
T3326	T1-17V-5Mn-3A1	1350F-15M-SC	ပ္က	124	122	35	~	13	•
=	=	=		126	121	35	7.5	13	۳,
=	\$0.00 Model	•	+900F-8Hr-AC	185	169	10	2.5	٣١	16.2(4)
:	=	=	=	184	166	10	Ŋ	7	15.7
T3327	T1-17V-7.5Mn-3A1	1350F-15M-SC	ည္က	138	133	40	'n	11	9
=	•	=		139	135	35	12.5	50	15.6(3
:	-	=	⊹900F-8Hr-AC	157	145	15	7.5	10	<u>.</u> 3
;	ě	:	•		17.0	20	ر م	1.0	

Elastic	Modylus	10-6ps1		17.0	•	16.2		0.71	•	16.9	•	17 0	19.0	17.0	77.7	12.2	•	•			14.1	15.7	16.2(4)	•	16.7	15.3	16.1(5)
	otal	E1. 7(2)	0	26	91	13	•	o 6	ז ע	~ r	•	c	o c	o C) C	· ·	1 5) I~	· 10	21	10	7	· 00	15	9	13	12
rties		E1. 2	7.5	•	10	12.5	v	ט ט	•	n u	n	O	c) C	0	7.5	10	, .	2.5	10	7.5	S	'n	s.	7.5	7.5	S
Tensile Properties	Local	E1. 7	70	35	20	70	Ç	9 6	2 5	ָבְ בְּבָ	01	0	0	0	0	35	35	15	10	45	40	15	15	07	45	30	30
Tens	0.22XS	Kps1	145	145	149	148	168	891	1,58	17.2	7/7	!	;	1	1 1	114	116	184	187	132	130	163	169	152	151	153	152
	UTS	Kp81	152	151	156	157	171	171	170	180	2	128	113	74	86	1.20	121	197	201	135	133	180	186	155	15	162	157
	Hear Treatment (1)	near liearment.	1350F-15M-SC		" +900F-8Hr-AC	00 00 00 00 00 00 00 00 00 00 00 00 00	1350F-15M-SC	=	" +900F-8Hr-AC	11		1350F-15M-SC	=	" +900F-8Hr-AC	10	1350F-15M-SC	Ξ	" +900F-8Hr-AC	23	1350F-15M-SC		" +900F-8Hr-AC		1350F-15M-SC	*	" +900F-8Hr-AC	
	Composition	COMPOSITETORI	T1-17V-10Mn-3A1			•	Fi-17V-12.5Mn-3A1	-	•	=		T1-17V-15Mn-3A1			=	T1-17V-2.5Fe-3A1	₹ ;	Ξ ;	3	T1-17V-5Fe-3A1		: ;	=	T1-17V-7.5Fe-3A1	P (er u	:
1,00 H	No.		T3328	: :	: :	:	T350I	=	Ē	-	(((T3502	: :	: :	:	T3323	: :	: :	: :	T3324	: :	: 5	:	T3325	: :	- to	

M=minutes; SC=slow (plate)cooled; Hr=hour; AC=air cooled.
Total elongation is % in l-inch.
Broke on scribe mark.
Broke on extensometer mark.
Broke outside gage length.

28236

TABLE V

Room Temperature Sheet Tensile Properties of Cr. Mn and Fe Alloys with Ti-8Mo-8V-3Al Base Composition

				Ten	Tensile Prog	Properties		Elastic
Heat No.	Composition	Heat Treatment (1)	UTS Kp81	O. ZZYS Kps.1	Local El. X	Unif. El. 7	Total El. X(2)	Modulus 10-6ps1
T3302	T1-8V-8M0-5Cr-3A1	1350F-15M-SC	127	122	07	15	50	14.4
=	•			122	35	15	18	14.1
=		" +900F-8Hr-AC		149	10	2.5	‡	
•	2	=	158	149	S	0	7	15.5(3)
T3303	T1-8V-8Mo-7,5C# 3A1 1350F-15M-SC	1350F-15M-SC	131	127	30	S	12	14.9
=	=	•	132	125	25	7.5	13	14.8
:	**************************************	" 900F-8Hr-AC	AC 145	135	15	12.5	13	14.9
•	•	•		132	15	7.5	10	15.8
1.3304	TY-8V-8M0-1002-3A1	135CF-15M-SC	141	134	35	17.5	77	16.2
=	=	=	142	135	9	01	18	15.9
¥	2	" +900F-8Hr-AC	AC 151	142	25	7.5	16	15.0(3)
.	•	•	147	141	20	12.5	14	16.1
T3497	T1-8V-8Mo-12.5Cz-	1350F-15M-SC	159	153	1.5	Ŋ	7	16.5
=	3A1 "	•	160	1.54	15	Ŋ	7	17.2
=	to to	" +900F-8Hr-AC		155	10	2.5	Ś	17.1
:	•	200	162	156	2	0	7	17.1
T3498	T1-8V-8Mo-15Cr-	1350F-15M-SC	156	158	Ŋ	2.5	٣	17.4
=	3A1 "	=	167	158	S	0	2	17.2
=	5	" +900F-8Hr-AC		166	0	0	0	17.5
2	•			163	ĸ	2.5	٣	17.1
T3308	T1-8V-8Mo-5Mn-3A1	1350F-15M-SC	133	130	40	7.5	14	14.9
=	:	**	129	125	22	7.5	15	14.1(3)
=	*	" +900F-8Hr-AC		151	S	2.5	4	15.9
<u>.</u>	•	44	148	144	S	0	7	15.3(4)
T3309	T1-8V-8Mo-7.5Mn-	1350F-15M-SC	139	137	45	20.5	27	16.5
=	3A1 "	Ξ	139	138	35	7.5	15	15.8
=	***	" +900F-8Hr-AC		139	25	7.5	15	15.6(3)
=	3	2	143	140	35	12.5	18	16.1

TABLE V (Continued)

				Ten	sile Prop	erties		Elastic
Heat No.	Composition	Heat Treatment (1)	UTS Kps1	0.2%YS Kps1	0.2%YS Local Unif. Kpsi El. %. El. %	Unif. El. %	Total E1, 7(2)	Modulus
T3310	Tf-8V-8Mo-10Mn-3A1	1350F-15M-SC	152	151	10	2.5	7	14.0
=	=	=	153	152	32	7.5	15	17.3
:	=	" +900F-8Hr-AC	153	153	35	2.5	14	18.4
=	=	=	154	154	25	2.5	11	18.0(3)
T3505	T1-8V-8Mo-12.5Mn-3A1	1350F-15M-SC	114	!	0	0	ပ	!!!
=	14	=	110		0	C	C	1
=	Ξ	" +900F-8Hr-AC	135	!!!	0	0	0	17.4
=	Ξ	=	128	1 1	0	0	0	18.0
T3504	T1-8V-8Mo-15Mn-3A1	1350F-15M-SC						(5)
=	t= =-	=)=
Ξ:	z :	" +900F-8Hr-AC						=
=	.	de de la companya de						=
T3305	T1-8V-3Mo-2.5Fe-3A1	1350F-15M-SC	129	125	20	5	6	12.9
=	-	\$	130	125	30	15	19	13.0
=	:	" +900F-8Hr-AC	192	180	S	2.5	7	15.7(3)
=	:	=======================================	18	183	'n	2.5	m	17.0
T3306	T1-8V-8Mo-5Fe-3A1	1350F-15M-SC	140	138	40	10	20	15.9
=	=	Ξ	142	138	40	17.5	22	14.6
=	2	" +900F-8Hr-AC	154	147	25	15	18	15.7
=	=	=	150	144	25	7.5	12	15.8
T3307	Ti-8V-8Mo-7.5Fe-3A1	1350F-15M-SC	159	156	07	7.5	15	16.3
=	=	=	159	157	9	20.5	25	15.9
Ξ	=	" +900F-8Hr-AC	163	162	40	17.5	21	16.6
=	:		191	160	40	17.5	57	16.6

M=minutes; SC=slow (plate) cooled; Hr=hour; AC=air cooled. Total elongation is % in 1-inch. Broke outside gage length. Surface flaw in specimen. Sheet of poor quality - not tested. 56666

TABLE VI

Room Temperature Sheet Tensile Properties of Cr, Mn and Fe Alloys with Ti-15Mo-3Al Base Composition

Elastic	Modulus 10-6ps1	15.2	•	15.1	•	-	16.2	16.1		16.5	17.4	•	16.9	•	•	17.0	•	17.7	17.7	17.7	17.9	15.0		18.1	16.0	16.5	•	16.5	16.5
	Total E1. 7(2)	19	17	18	15	20	15	19	23	20	21	17	22	10	11	4	œ	ю	4	7	٣	19	11	13	13	30	22	22	28
perties	Unif.	12.5	7.5	10	7.5	10	10	12.5	22.5	12.5	15	01	15	7.5	10	2.5	7.5	2.5	2.5	0	2.5	01		7.5	2.5	25	12.5	15	22
Tensile Properties	Local El. %	35	35	35	35	35	25	35	45	35	35	35	32	15	15	S	21	2	'n	'n	ς,	35	35	25	25	45	6 0	45	45
Te	0.2%YS Kps1	123	120	128	127	129	129	130	131	139	142	138	139	150	155	153	152	158	160	159	160	130	130	141	140	141	141	14	142
	VTS Kps 1	126	124	135	134	132	132	134	135	146	148	143	145	158	191	159	159	165	167	165	165	132	132	148	145	142	143	144	142
	eatment (1)	ပ္က		+900F-8Hr-AC	=	ပ္က		+900P-8Hr-AC	=	ည္က		+900F-8Hr-4C	=	ည		+900F-8Hr-AC	=	ည္က		+900F-8Hr-AC	=	ပ္က		+900F-8Hr-AC	=	ပ္က		+900F-8Hr-AC	=
	Heat Treatment (1)	1350F-15M-SC	-			1350F-15M-SC	=		:	1350F-15M-SC	Ξ	+	-	1350F-15M-SC	=		••	1350F-15M-SC	Ξ		=	1350F-15M-SC	Ξ		=	1350F-15M-SC	=		=======================================
	Composition Heat Treatment(1)	T1-15Mo-5Cr-3A1 1350F-15M-SC	=	+		T1-15Mo-7.5Cr-3Al 1350P-15M-SC		+		T1-15Mo-10Cr-3A1 1350F-15M-SC		+ =:	-	T1-15Mo-12.5Cr-3Al 1350F-15M-SC	=	+		T1-15Mo-15Cr-3Al 1350F-15M-SC		+	= =	T1-15Mo-5Mn-3A1 1350F-15M-SC	=		= =	T1-15Mo-7.5Mn-3Al 1350P-15M-SC	=		=======================================

TABLE VI (Continued)

				Ten	Tensile Properties	erties		Elastic
No.	Composition	Heat Treatment (1)	UTS	0.2%YS Kps1	Local El. %	Unif. El. Z	Total E1. %	Modulus 10-6ps1
T3319	T1-15Mo-15Mn-3A1	1350F-15M-SC	155	7.5	25	ď	16	17 4
1 = 1	-	=	163	160	0 -	7.5	201	18.0
:	**	" +900F-8Hr-AC	155	155	01	ั้ง	_	18.1
=	=	44 31	153	152	2	0		17.2
T3505	T1-15Mo-12.5Mn-3A1	1350F-15M-SC	62	;	0	0	0	!
40- 8-	=	Ξ	11	1	0	0	0	18.5
=	•	" +96. F-8Hr-AC	95	; !	0	0	0	1 1 1
=	# # # # # # # # # # # # # # # # # # #	-	133	:	0	0	0	18.5
T3506	T1-15Mo-15Mn-3A1	1350F-15M-SC						(3)
Ξ	•	" +900F-8Hr-AC						: z
n	t	= = = = = = = = = = = = = = = = = = = =						=
T3314	T1-15Mo-2.5Fe-3A1	1350F-15M-SC	148	143	30	7.5	13	16.2
Ξ	=	5.5	145	137	15	7.5	13	14.8
Ξ	=	" +900F-8Hr-AC	200	200	2	0	-	15.7(4)
=	:	=	201	190	S	0	7	17.1
T3315	T1-15Mo-5Fe-3A1	1350P-15M-SC	149	147	35	7.5	19	16.6
=	=	2	147	145	0 7	7.5	18	15.6(4)
=	-	" +900F-8Hr-AC	143	143	45	10	19	15.8
Ξ	:	=	145	142	45	12.5	23	15.8
T3316	T1-15Mo-7.5Fe-3A1	1350F-15M-SC	150	(1)	S	0	-1	18.1(4)
=	:	=	65	•	S	0	0	18.3
Ξ	=	" +900F-8Hr-AC	74	•	5	0	0	17.6(4)
=	=	=	9/	:	0	0	0	18.2

M-minutes; S.C.-slow (plate) cocled; Hr-hours; AC-sir cooled. Total elongation is % in 1-inch. Sheet of poor quality - not tested. Broke outside gage length.

£35£

YIELD TO U.T.S. RATIOS OF ALLOYS
IN THE SOLUTION TREATED CONDITION

		Base Composition	.
Eutectoid Addition	T1-17V-3A1	T1-8Mo-8V-3A1	T1-15Mo-3A1
5Cr	0.955	0.965	0.975
7.5Cr	0.935	0.950	0.980
10Cr	0.945	0.950	0.955
12.5Cr	0.950	0.955	0.955
15Cr	0.975	0.950	0.915
5Mn	0.975	0.975	0.985
7.5Mn	0.970	0.990	0.990
10Mn	0.965	0.995	0.995
12.5Mn	0.980		
15Mn			~ ~ ~ ~ ~
2.5Fe	0.955	0.965	0.955
5Fe	0.980	0.980	0.985
7.5Fe	0.980	0.995	

TABLE VIII

SOLUTION TREATED YIELD STRENGTHS AS A FUNCTION OF COMPOSITION

		Base Composition	
Eutectoid Addition	Ti-17V-3A1	Ti-8Mo-8V-3A1	Ti-15Mo-3A1
	Kpsi	Kpsi	Kpsi
5Cr	114	122	121
7.5Cr	122	126	129
10Cr	131	134	140
12.5Cr	148	153	152
15Cr	160	158	159
5Mn	121	127	130
7.5Mn	134	137	141
10Mn	145	151	157
12.5Mn	168		
15Mn			
2.5Fe	115	125	140
5Fe	131	138	147
7.5Fe	151	156	***

TABLE IX

AGED TO SOLUTION TREATED STRENGTH
RATIOS AS FUNCTIONS OF COMPOSITION

		Base Composition	
Eutectoid Addition	Ti-17V-3A1	Ti-8Mo-8V-3A1	<u>Ti-15Mo-3A1</u>
5Cr	1.47	1.22	1.05
7.5Cr	1.11	1.06	1.01
10Cr	1.04	1.05	1.01
12.5Cr	1.00	1.01	1.00
15Cr	1.00	1.04	1.00
5Mn	1.38	1.14	1.08
7.5Mn	1.06	1.01	1.01
10Mn	1.02	1.01	0.98
12.5Mn	1.05	-	-
15Mn	-	-	-
2.5Fe	1.61	1.45	1.39
5Fe	1.27	1.05	0.97
7.5Fe	1.01	1.03	-

TABLE X

ELASTIC MODULUS VALUES OF THE VARIOUS
ALLOYS IN THE SOLUTION TREATED CONDITION (1)

		Base Composition	
Eutectoid Addition	Ti-17V-3A1	Ti-8Mo-8V-3A1.	T1-15Mo-3A1
	Kpsi	Kpsi	Kpsi
5Cr	13.7	14.2	14.9
7.5Cr	14.5	14.8	16.5
10Cr	15.1	16.0	16.7
12.5Cr	16.2	16.8	16.9
15Cr	16.7	17.3	17.7
5Mn	14.2	14.5	15.0
7.5Mn	15.6	16.1	16.2
10Mn	16.3	17.1	17.7
12.5Mn	17.7	•	18.5
15Mn	18.5	-	-
2.5Fe	12.6	12.9	15.5
5Fe	14.3	15.3	16.1
7.5Fe	16.4	16.1	18.2

⁽¹⁾ Modulus values expressed as 'E'x10-6psi.

TABLE XI

ELASTIC MODULUS VALUES OF THE VARIOUS ALLOYS IN THE AGED CONDITION (1)

		Base Compraition	
Eutectoid Addition	Ti-17V-3A1	Ti-8Mo-8V-3A1	T1-15Mo-241
5Cr	15.9	15.0	14.8
7.5Cr	15.5	15.3	16.2
10Cr	16.6	15.5	16.7
12.5Cr	16.6	17.1	17.0
15Cr	16.7	17.3	17.8
5Mn	15.9	15.6	17.0
7.5Mm	15.8	15.8	16.5
10Mn	16.3	18.2	17.6
12.5MN	17.0	17.7	17.6
15 M n	17.9	-	-
2.5Fe	16.5	16.3	16.4
5Fe	15.9	15.7	15.8
7.5Fe	15.7	16.6	17.9

(1) Modulus values expressed as 'E'x10-6psi.

TABLE XII

DUPLICATE TOTAL ELONGATION VALUES FOR ALLOYS: IN THE SOLUTION TREATED CONDITION*

			Base Com	position			
Eutectoid Addition	Ti-1	7V-3A1	Ti-8Mo-		T1-15Mo-3A1		
		7.	7			ζ	
5Cr	11	15	18	20	17	19	
7.5Cr	15	17	12	13	15	20	
10Cr	22	25	18	24	20	21	
12.5Cr	14	3	7	7	10	11	
15Cr	3	3	3	2	3	4	
5 M n	13	13	14	15	11	19	
7 5 M n	17	20	15	27	22	30	
l∪Min	19	26	4	15	10	16	
12.5Mn	6	9	0	0	5	7.5	
15 M n	0	0	-	-	-	-	
2.5Fe	15	16	9	19	13	13	
5 F e	16	21	20	22	18	19	
7.5Fe	15	19	15	25	1	0	

* Total elongation over 1.00-inch gage length.

DUPLICATE TOTAL ELONGATION VALUES FOR PHASE I ALLOYS
IN THE SOLUTION-TREATED & AGED CONDITION*

			Base (Compositio	n	
Eutectoid Addition	T1-17	V-3A1 Z	Ti-81	40-8V-3A1 %		Mo-3A1
5Cr	3	5	2	4	15	1.8
7.5Cr	9	10	10	13	19	23
10Cr	14	23	14	16	17	22
12.5Cr	7	15	5	2	4	8
15Cr	2	7	0	3	2	3
5Mn	3	7	1	4	13	13
7.5Mm	10	12	15	18	22	28
10Mn	13	16	11	14	1	7
12.5Mn	7	7	0	0	0	Ò
15Mn	0	0	-	-	-	-
2.5Fe	5	7	3	4	1	9
5Fe	7	8	12	18	19	23
7.5 F e	12	13	21	24	0	0

^{*} Total elongation over a 1.00-inch gage length.

TABLE XIV
OXIDATION RESISTANCE OF SELECTED PHASE I ALLOTS

Wt. Loss Gms/sq cm .00044 .00113 .0092	.00106 .00347 .00368 .0095	.00096 .0021 .0110 .0242	.0010 .00298 .0172 .0277	.00029	.00089 .00234 .0016 .0124
Total Wt. Loss (Cms) .0115 .0293 .1163 .2380	.0924 .0924 .0954 .2333	.0248 .0543 .2842 .6251	.0258 .0773 .4457 .5862	.0076	.0231 .0605 .0414 .3214
Wt.After Sand- Blast (Gms) 4.3467 4.2093 4.2024 4.0073 3.9729	4.3122 4.3608 4.3778 4.2571 3.9726	4.4427 4.3350 4.1075 3.7446	4.2152 4.3488 4.0235 3.9734 1/	4.5193 4.5822 4.3736 1/	4.2717 4.2209 4.1536 3.8847 4.0270
Cata (Cas) .0071 .0719 .1357 .2375	.0068 .0135 .0516 .0654	.0096 .0363 .1376 .1741	.0103 .0474 .2153 .1666	.0061 .0351 .0060 .7676 1.6084	.0057 .0130 .0267 .0385
Wt.After Exposure 4.3653 4.2581 4.4006 4.3810	4.3464 4.4667 4.5248 4.5558 4.4987	4.4771 4.4256 4.5293 4.5438 4.6808	4.2513 4.48735 4.6845 4.7262 4.9704	4 5330 4.6735 4.5474 5.4270 6.2034	4.3005 4.2944 4.2217 4.2446 4.3670
Starting Wt. (Gms) 4.3582 4.2386 4.3287 4.2453	4.3396 4.4532 4.4732 4.4904 4.3787	4.4675 4.3893 4.3917 4.3697 4.3636	4.2410 4.4261 4.4692 4.5596 4.4539	4.5269 4.6384 4.5414 4.6594 4.5950	4.2948 4.2814 4.1950 4.2061 4.3446
71me (Hrs) 2 1				:::::	::::
Exposure Temp(*F) 1200 1400 1600 1800 2000	1200 1400 1600 1800 2000	1200 1400 1600 1800 2000	1200 1400 1500 1800 2000	1200 1400 1600 1800 2000	1200 1400 1600 1800 2600
03 T1-8V-8Mc-7.5Cr-3A1	04 T1-8V-8Mo-1)Cr-3A1	06 T1-8V-4Mo-5Fe-3AI	07 T1-8V-8Mo-7.5Fe-3A1	10 II-8V-8Ho-10Hn-3A1	311 T1-15Mo-5Cr-3A1
T 330.5	13304	1305	T3307	13310	133

1/ Sample disintegrated in blast.

OXIDATION RESISTANCE OF SELECTED PHASE I ALLOYS

CTS/ 3C CT	.001t2 .00111	00 SE	0110	.00197	900	; ;		,00052	.00372	.0080	;	.00110	022	075	1	91100.	085	5	_	.00213	~ ~	, v
Total Wt. Loss (Gms)		177	3	1670.	9	•	1	.0135		· ~		82	~ .	194	,	25	.0924	495	387	10551	181	25
Wr.After Sand- Blast (Oms)	44	328	121	4.5648	36.	7	- 1	•	4.2153	•	, –,	608	260	4.3972	7	.006	7.052/	. 539	.761	4.2411	61	, e
7 (ng)	900.0	, 1255	145	.0047	7610.	053	36	90	0	$\hat{\lambda}$.1571	.0051	.0150	00000	3011		6950.	7 ·~	4 1	008	.0965	.1152
Vt. After	4.3988	434	4.4829	19	4.6144	, e	3	32	. 26	35	4.2752	647	613	.631	4.391/	150	4.1020	.327	007.			7. 4466 4. 0098
Starting Ur (Oms)			4.4949	9	4.5952	, æ	9.	.318	. 246	300	4.27.9	.637	865.	4.6246	569	.036	4.1451	7. 2. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	3	. 296	378	4.3314
Time	2 2 2	:	: :	Ξ	: :	:	:	=	Ξ	: :	: :	Ξ	: :	: :	=	.	: :	: =	:	: :	:	::
Expoeure	1200	10091	1800	1530	0071	1800	2000	1.2(10)	1,000	1490	1800 2000	0001	0077	0091	2000	1200	1,400	1,500	2000	1200	1600	1800
X e e c	733'3 T1-15Mo-10Cr-3A1	T	: :			7 :	<u> </u>			:	5 2		TANTO TELIORGENIONE	:	: :		15527 15517 V-7.1551	2	: :	73322 TI-17V-106r-3A1	z :	= =

1/ Sample disintegrated in blast. 2/ Oxide lost due to draft.

TABLE XIV (continued)
OXIDATION RESISTANCE OF SELECTED PHASE I ALLOTS

	.00279				
Total W.	.2110	.0091	4549	.0743	.6331
Wt.After Sand- Blast (Gms)	4.3296 4.1160 1/ 1/	4.1321 4.0701	3.3327 1.7 1.7	4.2421 4.2651	3.6146 1.746
Gain (Gms)	.0132 .0721 .4667 .9826	. 5425	.2761 .3200 .5295	.0102	.1679 .1579 .1566
Wt.After Exposure	4.3635 4.3991 4.7492 5.3271	4.1509	4.4970 4.5795 4.5795	4.2683 4.3206 7.3526	4.4156 4.3130
Starting Wt. (Gms)	4.3503 4.3270 4.3445 5.3445	4.1412	4.0510 4.1770 4.0500	4.2581 4.3394 4.1644	4.2477
Time (Hrs)	N= = = =	= = :	:::		: :
Exposure Temp(°F)	1200 1400 1800 2000	1200	1800 1800 2000	1200 1400 1600	1800 2000
Heat No. Alloy T3325 T1-17V-7 SPG-3A1		T3327 T1-17V-7, 5Mn-3A:	E .	T3328 T1-17V-10Mm-3A1	: 2

 $\frac{1}{2}$ / Sample disintegrated in blast. $\frac{2}{2}$ / Oxide lost due to draft.

TABLE XV

DENSITIES OF SELECTED PHASE I ALLOYS

Heat No.	Alloy	Densities g/cc No. 1 No. 2	Average Lbs/In
T3302 T3498 T3305 T3307 T3308 T3504	T1-8Mo-8V-5Cr-3A1 " " 15Cr " " " 2.5Fe " " " 7.5Fe " " " 5Mn " " " 15Mn "	4.8794.8795.1005.1014.8534.8515.0055.0034.9074.9075.1925.191	0.1763 0.1843 0.1754 0.1807 0.1774 0.1876
T3320 T3496 T3323 T3325 T3326 T3502	Ti-17V-5Cr-3A1 " " 15Cr " " " 2.5Fe " " " 7.5Fe " " " 5Mn " 15Mn "	4.751 4.749 4.974 4.970 4.724 4.724 4.870 4.869 4.774 4.776 5.048 5.046	0.1717 0.1794 0.1707 0.1760 0.1726 0.1823
T3311 T3500 T3314 T3316 T3317 T3502	Ti-15Mo-5Cr-3A1 " " 15Cr " " " 2.5Fe " " " 7.5Fe " " " 5Mn "	5.0235.0235.2285.2274.9764.9745.1435.1415.0255.0235.2885.288	0.1815 0.1888 0.1795 0.1858 0.1817 0.1912

Ti-13V-11Cr-3A1 - 0.176 1bs/cu.in.

Pure Ti - .163 lbs/cu.in.

TABLE XVI

A COMPARISON OF THE TEN MOST PROMISING ALLOYS FOUND IN PHASE I

Alloy	UTS Psi	Yield psi	Uniform Elong. %	Total Elong. %	Rolling Properties	Density Lbs/In ³	Oxidation Resistance
T1-17V-10Mn.3A1	155	150	10+	12+	Good	0.17741/	Fair
Ti-17V-7.5Fe-3A1	160	150	9	12	Fair	0.1760	Fair
Tf-17V-10Cr-3A1	145	135	10	144	Good	0.17551/	E S F I
T1-8Mo-8V-7.5Fe-3A1	160	160	17	20+	Fair	0.1807	Fa:
Ti-8Mo-8V-5Fe-3A1	150	145	10	12+	Good	0.17801/	Fair
T1-8Mo-8V-10Cr-3Ai	145	140	10	1.5	Fair	0.18031	Good
Ti-8Mo-8V-10Mn-3A1	150	150	2.5	11+	Good	$0.1825\frac{1}{2}$	Fair
Ti-15Mo-7.5Mn-3A1	140	140	17	20+	Good	$0.1864\frac{1}{1}$, poog
Ti-15Mo-5Fe-3A1	145	142	10	21	Good	0.18261/	Soco Poot
Ti-15Mo-10Cr-3A1	144	139	12	20	Fair	$0.1852\frac{1}{2}$	poog
1 1 1 1 1 1 1	1 1	1	1 1	! ! !	,		
Ti-13V-11Cr-3A1 (annealed)	125	120	!	10		0.175	; }, i i i i i i i i i i i i i i i i i i

All above Phase I alloys tested after aging for 8 hours at 900F

Fair

0.175

10

1 1

120 170

125 190

(aged)

^{1/} Calculated density.

TABLE XVII

PROPERTIES OF POTENTIAL PHASE II HARDENING ELEMENTS

Max. % Addition Consistent With Not Raising Cost of Alloy More Than 10% 3.5 0.09 0.82 23.1 2.1 33.6 43.8 100 1.55 0.12 0.12 0.30 1.55 0.14 52.2 100 32.6	1.04
Hardener Cost (\$/1b) 13.3 510.0 62.0 2.25 25.0 1.57 1.19 0.47 0.30 275.0 145.0 18.25 270.0 0.37 360.0 1.00 0.09 1.60	50.00 405.00
Compound R F.C.C. Tetragonal A15 Tetragonal F.C.C. F.C.C. F.C.C. B.C.C. B.C.C. B.C.C. Tetragonal F.C.C. B.C.C. F.C.C. B.C.C. F.C.C. B.C.C. F.C.C. B.C.C. B.C.C. B.C.C. F.C.C. Tetragonal F.C.C. PO019 Hexagonal	Hexagona 1
Ford Tight Tight Tight Tight Tight Tight Tight Tight Tight Tight Tight Tight	T1U _a None
ubility In Beta 24 42 12 13 33 4 17 100 117 25 0.3? 12 27 12 28 35	100 100
Max. Solubility In In In Alpha Beta \(\frac{\chi}{\chi} \) 14 24 6.6 42 0.1? 1? 1.5 33 0.3? 4 1 17 0.5 100 2.1 17 0.2 25 0.3? 25 0.3? 4 1 17 0.4 33 22: ? 22: ? 22: ? 22: ? 22: ? 22: ? 22: ? 22: ? 23: ? 24: 35 25: ? 26: ? 27: ? 27: ? 28: ? 28: ? 29: ? 20:	3.8
Electro- Negativity 1.9 2.4 1.5 1.9 1.1 1.8 1.1 1.1 1.2 1.3 1.8 1.1 1.1 1.8	1.7
Chemical Valency 1 3,5 3,5 3,5 3,5 4 4 4 4 4 4	4,5,6
Type System System System A A A A A A A A A A A A A A A A A A A	∢ ∪
Size Factor -2.0 -2.0 -23.0 -14.3.8 +22.0 -13.0 -13.0 -12.7 -13.0 +22.5 -5.4 +7.0 +22.5 -5.4 +7.0 +24.5 -15.0 -15.0 -15.0 -12.7 -13.0 -12.7 -13.0 -12.7 -13.0 -12.7 -13.0 -12.7 -13.0 -12.7 -13.0 -12.7 -13.0 -12.7 -13.0 -12.7 -13.0 -12.5 -13.0 -12.7 -13.0	-7.5 +23.0
tal ture d	rhombic C.P.H.
Ag Au Au Be Bar Co	>

Key to types of alloy systems;

A - Beta-eutectoid
 B - Peritectoid-compound
 C - Peritectoid-element
 * - System unknown; type thought most likely on basis of size factor and position in periodic table

C.P.H. - Close-packed hexagonal F.C.C. - Face Centered cubic B.C.C. - Body centered cubic F.C.T. - Face centered tetragonal

TABLE XVIII

ROLLING PERFORMANCE OF PHASE II ALLOYS

		Rolling Perfor	mance
Heat No.	Alloy	Hot	Cold
Ti-17V-10Cr	- 3A1-X Group		
T 3725	Ti-17V-10Cr-3A1	Good	Good
T-3726	Ti 17V 10Cr 3A1-1Cu	Good	Good
T-3727	Ti-17V-10Cr 3Al 3Cu	Good	Good
T 3728	Ti-17V-10Cr-3A1-5Cu	Fair	Fair
T-3729	Ti 17V-10Cr-3A1-1Ni	Good	Good
T- 37 30	Ti-17V-10Cr-3A1-3Ni	Good	Fair
T-3731	Ti 17V-10Cr 3A1-5Ni	Cracked 2nd Pass	
Т 3732	Ti 17V-10Cr-3A1-1Co	Good	Fair
T-3733	Ti-17V-10Cr-3A1-3Co	Fair	Fair
T-3734	Ti-17V 10Cr 3A1-5Co	Fair	Poor
T-3735	Ti-17V 10Cr-3A1 0,5Si	Good	Fair
T-3736	Ti-17V-10Cr-3A1 1Si	Good	Fair
T-3737	Ti 17V-10Cr 3A1-2Si	Fair	Fair
T-3738	Ti-17V 10Cr-3A1-0.5Be	Cracked 2nd Pass	
T-3739	Ti-17V 10Cr-3A1 1Be	Cracked 1st Pass	· · ·
T-3740	Ti-17V-10Cr-3A1-2Be	Cracked 1st Pass	
T-3741	Ti-17V-10Cr-3A1-1Misch Metal	Cracked 1st Pass	
T-3742	Ti 17V-10Cr-3Al 2Misch Metal	Cracked 1st Pass	
T-3743	Ti 17V-10Cr 3Al 3Misch Metal	Cracked 1st Pass	ي نه نه
	MODIFICATIONS OF ALLOYS IMMEDIAT	ELY ABOVE	
- 0000	m. 170 100 011 1111	a (1)	
T 3928	Ti 17V-10Cr-3A1 1Nd	Gracked 1st Pass(1)	· •• •
T 3929	Ti-17V 10Cr-3A1-1Nd	Cracked 1st Pass (2)	v - 🖛 🖦 🗯
T 3930	Ti-17V 10Cr 3A1-1Nd	Cracked 1st Pass (3)	
T 3925	Ti 17V 8Cr-3A1 3Cu	Good	Good
T 3926	Ti 17V 8Cr 3A1-3Ni	Good	Good
T-3927	Ti 17V-8Cr 3A1 3Co	Good	Good
T-3942	Ti 17V-8Cr-3A1 5Cu	Good	Good
T-3943	Ti 17V-7Cr-3A1 5Ni	Poor	Poor
T 3944	Ti-17V-7Cr 3A1 5Co	Good	Fair
T-3945	Ti-17V 10Cr 3A1-0.1Be	Good	Good
T-3946	Ti · 17V - 10Cr 3A1 - 0.2Be	Good	Fair
T-3947	Ti-17V 10Cr-3A1 0.3Be	Poor	Poor

⁽¹⁾ Rolled at 1400F

⁽²⁾ Rolled at 1750F

⁽³⁾ Rolled at 2100F

lable XVIII(Continued)

Heat No.	Alloy	Rolling Perfor	rmance
near no	ATTOY	HOC	COLG
<u>Ti 8Mo 8V-7</u>	.5Fe-3A1 X Group		
T 3813	T1-8Mo-8V-7.5Fe 3A1	Good	Fair
T 3814	Ti 8Mo-8V-7 5Fe-3A1 1Cu	Good	Fair
T-3815	Ti-8Mo-8V 7 5Fe-3A1-3Cu	Fair	Poor
T 3816	Ti 8Mo 8V-7 5Fe 3A1-5Cu	Cracked 2nd Pass	
Y 3817	Ti 8Mo 8V 7 5Fe-3Al 1Ni	Good	Poor
T 3818	Ti 8Mo 8V-7 5Fe-3A1 3Ni	Cracked 1st Pass	•
T 3819	Ti-8Mc 8V 7 5Fe 3Al 5Ni	Cracked 1st Pass	
T 3820	Ti 8Mc 8V 7 5Fe 3A1-1Co	Fair	Poor
T-3821	Ti-8Mo 8V-7 5Fe-3A1 3Co	Poor	Poor
T 3822	i-8Mo-8V-7.5Fe 3A1 5Co	Cracked 1st Pass	
T-3823	Ti-8Mo-8V-7.5Fe-3A1-0.5Si	Good	Poor
T 3824	Ti-8Mo-8V-7 5Fe 3A1-1Si	Good	Poor
T-3825	Ti-8Mo-8V-7.5Fe-3A1-2Si	Fair	Poor
T 3826	Ti 8Mo-8V-7 5Fe-3A1-0.5Be	Cracked 2nd Pass	
T-3827	Ti-8Mo-8V-7.5Fe-3A1-1Be	Cracked 1st Pass	
T-3828	Ti-8Mo-8V-7 5Fe-3A1-2Be	Cracked 1st Pacs	
T-3829	Ti-8Mo-8V-7 5Fe-3A1-1M1 ch Metal	Cracked 1st Pass	
T-3830	Ti-8Mo 8V-7.5Fe-3A1-2Misch Metal	Cracked 1st Pass	
Т 3831	Ti-8Mo 8V 7.5Fe 3A1-3Misch Metal	Cracked 1st Pass	الله سب
	MODIFICATIONS OF ALLOYS IMMEDI	ATELY ABOVE	
T - 3932	Ti-8Mo-8V 5Fe-3A1-3Cu	Good	Fair
Т 3933	Ti 8Mo-8V-4Fe-3A1-5Cu	Fair	Fair
T-3934	Ti-8Mo-8V 5Fe-3A1-3Ni	Poor	Poor
T-3935	Ti-8Mo-8V-4Fe-3A1-5Ni	Good	Poor
T-3936	Ti-8Mo-8V-5Fe-3A1-3Co	Poor	Poor
T-3937	Ti-8Mo-8V-4Fe-3A1-5Co	Poor	Poor
T 3938	Ti-8Mo-8V-7 5Fe-3A1-0 1Be	Poor	Poor
T 3939	Ti-8Mo-8V-7.5Fe-3A1-0.2Be	Cracked 2nd Pass	1001
T-3940	Ti-8Mo-8V-7 5Fe-3A1-0,3Be	Cracked 1st Pass	
Ti-15Mo-5Fe-	-3A1 X Group		
T-3874	Ti-15Mo-5Fe-3A1	Cood	Pad
T-3875	Ti-15Mo-5Fe-3A1-1Cu	Good Good	Fair
T 3876	Ti-15Mo 5Fe-3A1-1Cu		Good
T-3877	Ti-15Mo-5Fe-3A1-5Cu	Cracked 2nd Pass	
T-3878	Ti 15Mo-5Fe 3A1-1Ni	Cracked 1st Pass	
T 3879		Fair	Poor
T 3880	Ti-15Mo 5Fe 3A1 3Ni	Cracked 1st Pass	
1 3000	Ti-15Mo 5Fe-3Al-5Ni	Cracked 1st Pass	- •

TABLE XVIII (Continued)

		Rolling Peri	formanc∈
Heat No.	Alloy	Hot	Cold
Ti 15Mo 5Fe-	3A1-X Group, Continued		
T 3881 T 3882 T 3883 T-3884 T-3887 T 3886 T-3885 T-3888 T-3889 T 3890 T-3891 T 3892	Ti 15Mo-5Fe-3A1 1Co Ti 15Mo-5Fe-3A1 3Co Ti-15Mo-5Fe-3A1-5Co Ti-15Mo 5Fe-3A1-0.5Si Ti 15Mo 5Fe-3A1-1Si Ti 15Mo-5Fe-3A1-2Si Ti-15Mo-5Fe-3A1-2Si Ti-15Mo-5Fe-3A1-1Be Ti 15Mo-5Fe-3A1-1Be Ti 15Mo-5Fe-3A1-1Be Ti 15Mo-5Fe-3A1-2Be Ti-15Mo 5Fe 3A1-1Misch Meta1 Ti-15Mo 5Fe 3A1 2Misch Meta1 Ti-15Mo 5Fe 3A1 3Misch Meta1	Fair Cracked 3t Pass Cracked 1st Pass Good Good Fair Good Cracked 1st Pass	Poor Fair Poor Poor
T-3951 T-3952 T-3953 T-3954 T-3955 T-3956 T-3957 T-3958	MODIFICATIONS OF ALLOYS IMMED Ti-15Mo-3Fe-3A1-3Cu Ti 15Mo 2Fe 3A1-5Cu Ti 15Mo 3Fe-3A1-3Ni Ti 15Mo 2Fe-3A1-5Ni Ti-15Mo 3Fe-3A1-5Co Ti-15Mo 2Fe-3A1-5Co Ti-15Mo-5Fc-3A1-0.1Be Ti-15Mo-5Fe 3A1-0.3Be		Good Poor Poor Poor Poor

TABLE XIX

AGING RESPONSE OF Ti-1/V-10Gr-JA1-X GROUP ALLOYS AGED AT 950F AND 1050F

Vickers Hardness
After Solution Treatment at 1350F and Aged for
Given Hours at 950F

		G.	iven Hour	rs at 950)F	
Alloy	0	_2_	4	8	_16	_24
Ti-17V-10Cr-3A1	323	325	327	344	361	379
Ti-17V-10Cr-3A1-1Cu	330	334	335	340	357	367
Ti-17V-10Cr-3A1-3Cu	334	335	337	345	346	
Ti-17V-10Cr-3A1-5Cu	353	355	356	356	376	
Ti-17V-10Cr-3A1-1Ni	330	327	326	341	362	
Ti-17V-10Cr-3A1-3Ni	349	348	358	35 <i>6</i>	361	
Ti-17V-10Cr-3A1-1Co	334	336	345	350	371	
Ti-17V-10Cr-3A1-3Co	368	363	362	368	380	
Ti-17V-10Cr-3A1-0.5Si	346	355	354	361	377	
Ti-17V-10Cr-3A1-1Si	356	366	371	375	398	407
Ti-17V-10Cr-3A1-2Si	387	385	387	399	420	
Ti-17V-8Cr-3A1-5Cu	324	326	338	354	389	
Ti-17V-7Cr-3A1-5Ni	338	327	335	338	338	
Ti-17V 7Cr-3A1-5Co	353	328	334	349	372	
Ti-17V-10Cr-3A1-0.1Be	312	317	293	326	351	
Ti-17V-10Cr-3A1-0.2Be	329	332	319	330	322	
Ti-17V-10Cr-3A1-0.3Be	308	313	308	313	332	
Ti-17V-8Cr-3A1-3Cu	271	248	225	247	289	Par - 1887 - 1880
Ti-17V-8Cr-3A1-3Ni	314	274	295	311	267	
Ti-17V-8Cr-3A1-3Co	304	319	273	305	292	
			Aged a	t 1050F		
Ti-17V-10Cr-3A1	323	308	321	326	338	349
Ti-17V-10Cr-3A1-1Cu	330	323	325	337	342	353
Ti-17V-100r-3A1-1Si	356	358	366	367	380	387

TABLE XX

HARDNESS RESPONSE OF Ti-17V-10Cr-3A1-X CROUP OF ALLOYS AGED AT 850F

Vickers Hardness
After Solution Treatment at 1500F and Aged
for Given Hours at 850F

		101	iven not	us at o.	<u> </u>	
Alloy	0	2	4	_8_	16	24
Ti-17V-10Cr-3A1	308	308	307	310	319	326
Ti-17V-10Cr-3A1-1Cu	307	315	314	298	315	322
Ti-17V-10Cr-3A1-3Cu	313	311	312	314	308	318
Ti-17V-10Cr-3A1-5Cu	327	332	329	308	320	3 38
Ti-17V-10Cr-3A1-1Ni	320	321	325	326	331	345
Ti-17V-10Cr-3A1-3Ni	345	339	344	356	297	343
Ti-17V-10Cr-3A1-1Co	307	293	315	317	311	337
Ti-17V-10Cr-3A1-3Co	329	329	331	332	319	327
Ti-17V-10Cr-3A1-0.5Si	313	289	319	305	307	274
T-17V-10Cr-3A1-1Si	385	321	336	309	325	375
Ti-17V-10Cr-3A1-2Si	358	358	349	365	386	380

TABLE XXI

AGING RESPONSE OF T1-17V-10Cr-3A1 GRGUP OF ALLOYS, QUENCHED FROM 1350F AND AGED AT 950F, OR AGED WITHOUT SOLUTION TREATMENT AT 850F

				Vi	Vickers Hardness					
	Quenched	Quenched and Aged	For Giv	For Given Times,	Hours	Aged	in As-Ro) Tin	As-Rolled Condition Times, Hours		For Given
41102	0	2	7	∞	16		~1	171	∞	10
TI-17V-10Cr-3A1	309	306	312	327	345	349	383	405	417	+37
T1-17V-10Cr-3A1-1Cu	319	3C 6	312	319	336	348	342	380	657	S1-7
TL-17V-100r-3A1-3Ca	541	319	312	317	327	363	345	376	387	~! +
T1-17V-10Cr-3A1-5Cu	533	336	339	342	370					
T1-17V-10Cr-3A1-1N1	317	36.9	317	327	345	354	357	701	401	Da et
F1-17V-16Cr 3A1-3NJ	335	333	336	339	351	383	366	397	417	7/1
T1-17V-10Cr-3Ai-1Cc	345	(5) 1,2 (5)	319	319	336					
T1-17V-16Cr-3A1-3Co	345	333	336	342	351					
T1-17V-10Cr-3A1-0.5S1	336	333	336	348	370					
T1-17V-10Cr-3A1-1S1	348	34.5	351	360	387	394	401	421	433	* " 7
T1-17V-10Cr-3A1-2S1	366	370	37.3	383	412					
Fi-17V-8Cr-3A1-3Cu	306	304	314	319	339					
T1-1/V-8Cr-3A1-3ML	319	319	333	336	363					
Ti-17V-8Cr-3A1 3Co	333	322	319	330	345					
T1-17V-8Cr-3A1-5Cu	314	317	327	330	366					
T1-17V-7Cr-3A1-5NE	344	336	333	333	332					
11-17V-7Cr-3A1-5Co	357	356	356	359	380					
TI-17V-10Cr-3A1-0.18e	322	318	325	330	345					
T1-17V-10Cr-3A1-0.28e	327	329	327	333	343					
7. 17V-10Cr-3A1-0.3Be	336	330	330	333	342					

TABLE XXII AGING RESPONSE OF T1-8Mo-8V-7.5Fe-3A1 GROUP OF ALLOYS ACED AT 950F AND 1050F

		Vick	kers Hardi	ness	
	After	Solution	on Treatmo	ent at	1350F
	And A	ged for	Given Hou	irs at	950F
Alloy	0	2	<u>L</u> i	_8_	16
Ti-8Mo-8V-7.5Fe-3A1	358	348	358	361	361
Ti-8Mo-8V-7.5Fe-3A1-1Cu	368	368	370	368	368
Ti-8Mo-8V-7.5Fe-3A1-3Cu	370	385	383	384	386
Ti-8Mo-8V-7.5Fe-3A1-1Ni	373	379	379	377	373
Ti-8Mo-8V-7.5Fe-3A1-1Co	365	368	373	370	372
Ti-8Mo-8V-7.5Fe-3A1-3Co	414	408	400	399	418
Ti-8Mo-8V-7.5Fe-3A1-0.5Si	396	394	393	398	405
Ti-8Mo-8V-7.5Fe-3A1-1Si	413	418	401	407	419
Ti-8Mo-8V-7.5Fe-3A1-2Si	449	444	450	450	441
Ti-8Mo-8V-5Fe-3A1-3Cu	331	340	352	278	285
Ti-8Mo-8V-4Fe-3A1-5Cu	320	336	301	324	374
Ti-8Mo-8V-5Fe-3A1-3Ni	303	338	314	332	357
Ti-8Mo-8V-5Fe-3A1-3Co	315	342	343	326	326
Ti-8Mo-8V-4Fe-3A1-5Co	342	337	345	358	379
Ti-8Mo-8V-7.5Fe-3A1-0.1Be	353	327	347	347	360
		Ag	ged At 105	OF	
Ti-8Mo-8V-7.5Fe-3A1	356	356	362	355	358
Ti-8Mo-8V-7.5Fe-3A1-1Cu	356	365	364	360	377
Ti-8Mo-8V-7.5Fe-3A1-1Si	402	401	390	403	410

TABLE XXIII

AGING RESPONSE OF Ti-8Mo-8V-7.5Fe-3A1 GROUP OF ALLOYS AGED AT 850F

Vickers Hardness
After Solution Treatment At 1500F and
Aged for Given Hours at 850F

	A	ged for	Given Ho	urs at 8.	50F	
Alloy	0	2	4	8	16	24
Ti-8Mo-8V-7.5Fe-3A1	348	345	341	339	340	343
Ti 8Mo-8V-7.5Fe-1Cu	337	331	353	336	354	307
Ti-8Mo-8V-7.5Fe-3Cu	358	361	363	362	366	368
Ti-8Mo-8V-7.5Fe-1Ni	347	326	326	354	353	352
Ti-8Mo-8V-7.5Fe-1Co	364	347	363	350	354	360
T1-3Mo-8V-7.5Fe-3Co	390	390	375	385	384	395
Ti-8Mo-8V-7.5Fe-0.5Si	370	369	370	374	377	381
Ti-8Mo-8V-7.5Fe-1Si	392	392	396	37.5	389	396
Ti-8Mo-8V-7.5Fe-2Si	433	395	410	436	430	378

TABLE XXIV

AGING RESPONSE OF TI 8Mo 8V 7.5Fe 3A1 GROUP OF ALLOYS, QUENCHED FROM 1350F AND AGED AT 950F, OR AGED WITHOUT SOLUTION TREATMENT AT 850F

Por Given Times, Hours Aged in As Rolled Condition For Given Times, Hours For Given Time		!		V	C K E	ზ <u>:</u> დ	HARDN	ESS			
Alloy For Given Times, Hours Hours for Given Times, Hours 8V 7.5Fe 3A1 348 345 348 345 348 354 376 377 405 380 376 376 376 376 376 380 376 377 377 377 377			Quenc		५८६२		Age	in A		Condit	ion
8V 7. 5Fe 3A1 8V 7. 5Fe 3A1 8V 7. 5Fe 3A1 8V 7. 5Fe 3A1 8U		!	For Giv	Ç.	_	s.					urs
8V 7.5Fe 3A1 348 345 345 345 354 37 413 8V-7.5Fe 3A1 1Cu 354 357 351 348 354 37 376 376 376 376 376 376 376 376 376 376 376 377 376 377 376 377 376 377 376 377 376 377 377 377 377 377 377 377 377 377 377 377 377 377 376 377 380 377 380 387 390 390 390 390 402 390 402 390 402 390 402 390 402 390 402 390 402 390 402 390 402 390 402 390 390 342 357 357 357 357 357 357 357 357 357 357 357 357 357 357	Alloy	0	2	77	8	91	1	2		8	16
8V-7.5Fe 3A1 1Cu 354 357 351 348 354 (1) 376 380 376 8V 7.5Fe 3A1 3Cu 370 370 370 370 370 370 370 370 370 370	8V 7.5Fe	348	345	345	3/3	351	(1)	387	1	413	977
8V 7.5Fe 3A1 3Cu 370 370 373 370 373 390 397 390 8V-7.5Fe 3A1 1Ni 357 360 360 366 366 366 367 368 380 357 368 380 387 387 390 8V-7.5Fe 3A1 1Co 387 387 387 390 8V-7.5Fe 3A1 0.5Si 380 387 387 390 402 8V-7.5Fe 3A1 0.5Si 380 394 390 402 8V-7.5Fe-3A1 1Si 390 394 390 390 402 8V-7.5Fe-3A1 2Si 429 433 417 425 429 8V-7.5Fe-3A1 3Cu 348 345 342 357 354 380 360 8W-7.5Fe-3A1 3Cu 333 342 348 351 360 360 8W-7.5Fe-3A1 3Cu 357 357 358 358 358 358 358 8W-7.5Fe-3A1 3Cu 357 357 357 358 380 387 8W-7.5Fe-3A1 3Cu 357 357 357 358 380 387 8W-7.5Fe-3A1 5Cu 357 357 357 358 8W-7.5Fe-3A1 0.1Be 357 357 357 358 8W-7.5Fe-3A1 0.1Be 357 357 357 358	-8V-7.5Fe 3A1	354	357	351	3,48	354	(1)	376	380	376	390
8V-7.5Fe 3A1 1Ni 357 360 360 360 80. 7.5Fe-3A1 1Co 357 360 360 357 80 357 80 357 80 387 80. 7.5Fe 3A1-3Co 380 387 380 387 80. 7.5Fe 3A1 1S1 390 394 390 390 80. 7.5Fe-3A1 2Si 342 429 433 417 425 80. 4Fe 3A1 3Cu 333 342 348 351 360 80. 5Fe 3A1 3Ni 357 348 351 360 80. 5Fe 3A1 3Co 357 348 351 350 80. 4Fe 3A1 3Co 357 348 351 350 80. 4Fe 3A1 5Co 357 357 357 357 80. 4Fe 3A1 5Co 357 357 357 357 357 357 357 357 357 357	8V 7.5Fe 3A1	370	370	373	370	373	405	390	397	360	401
8V 7.5Fe-3Al 1Co 357 360 357 887 887 887 887 887 887 887 887 888 8	8V-7.5Fe 3A1	357	360	360	360	366					
8V 7.5Fe 3A1-3Co 380 387 387 387 887 887 887 887 880 88-7.5Fe 3A1 0.5Si 389 380 387 389 880 8V-7.5Fe-3A1 1Si 390 394 390 390 390 390 390 390 390 390 390 390	8V 7.5Fe-3A1	357	360	360	357	263					
8V-7.5Fe 3A1 0.5Si 383 380 387 380 8V-7.5Fe-3A1 1Si 390 394 390 390 8V 7.5Fe-3A1 2Si 429 433 417 425 8V 5Fe 3A1 3Cu 348 342 348 351 8V-4Fe 3A1 5Cu 333 342 348 351 8V-5Fe 3A1 3Ni 357 348 351 360 8V 5Fe-3A1 3Co 357 357 357 8V 5Fe-3A1 5Co 357 357 357 8V 7.5Fe 3A1 0.1Be 357 357 354	8V 7.5Fe 3A1	380	387	387	387	390					
8V-7.5Ye-3Al 1Si 390 394 390 390 390 80-7.5Ye-3Al 2Si 429 433 417 425 8V 7.5Ye-3Al 2Si 429 433 417 425 8V 5Ye 3Al 3Cu 333 342 348 351 360 8V-5Ye 3Al 3Co 357 357 360 357 357 8V 4Ye 3Al 3Co 357 357 357 357 8V 4Ye 3Al 5Co 373 363 370 370 8V 7.5Ye 3Al 0.1Be 357 357 357 354	8V-7.5Fe 3A1 0.5S	383	380	387	380	394					
.8V 7.5Fe-3Al 2Si 429 433 417 425 .8V 5Fe-3Al 3Cu 348 345 342 357 .8V 4Fe 3Al 5Cu 333 342 348 351 .8V 5Fe 3Al 3Ni 357 348 351 360 .8V 5Fe 3Al 3Co 357 360 357 357 .8V 4Fe 3Al 5Co 373 363 370 370 .8V 7.5Fe 3Al 0.1Be 357 357 354	8V-7.5%e-3A1	390	394	390	3.60	405					
8V 5Fe 3A1 3Cu 333 342 348 357 8V 4Fe 3A1 5Cu 333 342 348 351 8V 5Fe 3A1 3Co 357 360 357 357 8V 4Fe 3A1 5Co 373 363 370 370 8V 7.5Fe 3A1 0.1Be 357 357 354	-8V 7.5Pe-3A1 2S	429	433	417	425	4.29					
8V-4Fe 3A1 5Cu 333 342 348 351 360 8V-5Fe 3A1 3N1 357 360 357 357 357 357 357 357 357 357 357 357	8V 5Fe 3A1	348	345	34.2	357	354					
8V-5Fe 3A1 3N1 357 348 351 360 8V 5Fe-3A1 3Co 357 360 357 357 8V 4Fe 3A1 5Co 373 363 370 370 8V 7.5Fe 3A1 0.1Be 357 357 354	8V. 4Fe 3A1	333	342	348	351	397					
8V 5Fe-3A1 3Co 357 357 357 878 8V 4Fe 3A1 5Co 373 363 370 370 8V 7.5Fe 3A1 0.1Be 357 357 357 354	-8V-5Fe 3A1 3N	357	348	351	360	360					
8V 4Fe 3A1 5Co 373 363 370 370 8V 7.5Fe 3A1 0.1Be 357 357 357 354	8V 5Fe-3A1 3C	357	360	357	357	363					
8V 7.5Fe 3A1 0.1Be 357 357 357 354	3V 4Fe 341	373	363	370	370	283					
	8V 7.5Fe 3A1 0.	357	357		354	366					

⁽¹⁾ Material Exhausted.

TABLE XXV

AGING RESPONSE OF T1-15Mo-5Fe-3A1 GROUP OF ALLOYS AGED AT 950F AND 1050F

		Vicker	s Hardne	SS	
	After	Solution	Treatme	ent at	1 350F
	And Ag	ged for G	iven Hou	irs at	950F
Alloy	0	2	4	8	16
Ti5Mo-5Fe-3A1	334	333	336	338	336
Ti-15Mo-5Fe-3A1-1Cu	328	339	334	342	344
Ti-15Mo-5Fe-3A1-3Cu	361	358	361	360	366
Ti-15Mo-5Fe-3A1-1Ni	335	342	330	343	343
Ti-15Mo-5Fe-3A1-1Co	338	339	343	351	343
Ti-15Mo-5Fe-3A1-0.5Si	372	372	376	374	384
Ti-15Mo-5Fe-3A1-1Si	373	372	372	382	377
Ti-15Mo-5Fe-3A1-2Si	420	412	408	400	407
Ti-15Mo-5Fe-3A1-0,5Be	371	370	365	368	376
Ti-15Mo-3re-3A1-3Cu	283	304	289	302	301
Ti-15Mo-2Fe-3A1-5Cu	306	298	343	335	379
Ti-15Mo-3Fe-3A1-3Ni	296	. 311	290	319	(1)
Ti-15Mo-3Fe-3A1-3Co	340	328	299	318	356
Ti-15Mo-2Fe-3A1-5Co	326	333	327	313	325
Ti-15Mo-5Fe-3A1-0.1Be	298	306	294	318	312
		Age	d at 105	OF	
Ti-15Mo-5Fe-3A1	328	327	327	331	353
Ti-15Mo-5Fe-3A1-1Cu	334	343	344	341	348
Ti-15Mo-5Fe-3A1-1Si	389	377	376	379	396
Ti-15Mo-5Fe-3A1-0.5Be	365	367	373	378	376

⁽¹⁾ Sample too cracked for accurate hardness impressions. One impression only taken gave 360 D.P.N.

TABLE XXVI

AGING RESPONSE OF T1-15Mo-5Fe-3A1 GROUP OF ALLOYS AGED AT 850F

		V:	lckers	Hardne	288	
	After	r Solui	tion T	reatmei	nt at	1500F
	And A	aged for	or Give	en Hour	rs at	850F
Alloy	0	2		8	16	24
Ti-15Mo-5Fe-3A1	314	318	314	312	311	316
Ti-15Mo-5Fe-3A1-1Cu	327	330	323	331	+32	331
Ti-15Mo-5Fe-3A1-1N1	328	327	329	325	328	340
Ti-15Mo-5Fe-3A1-1Co	341	341	337	330	3.31	343
Ti-15Mo-5Fe-3A1-0,5Si	351	345	31.4	346	343	356
Ti-15Mo-5Fe-3A1-1Si	359	360	363	364	364	366
Ti-15Mo-5Fe-3A1-2Si	395	407	410	395	394	373

TABLE XXVII

AGING RESPONSE OF TI 15Mo-5Fe 3A1 GROUP OF ALLOYS QUENCHED FROM 1350F AND AGED AT 950F, OR AGED WITHOUT SOLUTION TREATMENT AT 850F

			V I C	X 円 X	SHA	ARDN	E S S			
	Quenche	סו	K	For		Ag	d i	As Rol	lled Co	Rolled Condition
	Given	n Times		Hours			For G	Given Times,		Hours
Alloy	0	2	4	8	16	1	2	7	∞	16
T1 15Mo 5Fe 3A1	319	314	322	317	327	383	376	425	433	797
Ti 15Mo-5Fe-3A1 1Cu	325	330	327	327	333	362	366	387	383	425
3A1	333		325	333	342	261	366	397	429	797
1	342	336	333	336	339					
i 15Mo 5Fe-3A1-	357	354	357	360	376					
i-15Mo-	360	366	366	370	380					
SFe 3A1-	387	394	390	390	397					
i 15Mo-3Fe	321	317	323	325	353					
Ti-15Mo-2Fe-3A1 5Cu	319.	324	340	336	474					
Ti-15Mo-3Fe-3A1-3Ni	337	334	332	343	354					
Ti 15Mo-3Fe 3Al 3Co	354	344	343	349	355					
Ti-15Mo-2Fe-3A1 5Co	338	336	339	341	344					
Ti 15Mo-5Fe-3Al 0.1Be	331	324	332	329	34.2					

TABLE XXVIII

ROLLING PERFORMANCES OF PHASE II ALLOYS WITH HIGHER ADDITIONS OF COPPER OR NICKEL

Composition	Rolling Perf	ormance
Alloys With Increased Copper Content	Hot	Cold
Ti-17V 3A1-5Cu	Good	Good
Ti 17V-3A1 7,5Cu	Good	Good
Ti-17V-3A1 10Cu	Good	Good
Ti 8Mo 8V-3A1-5Cu	Good	Good
Ti-8Mo-8V-3A1-7.5Cu	Good	Good
Ti-8Mo-8V 3A1-10Cu	Poor	Poor
Ti-6Mo-8V-3A1-7 5Fe-3Cu	Good	Poor
Ti-6Mo-8V 3A1-7 5Fe-5Cu	Poor	Poor
Ti-4Mo-4V-3A1-4Fe-5Cu	Good	Fair
Ti 4Mo 4V 3A1-4Fe-7,5Cu	Good	Fair
Ti 4Mo-4V-3A1-4Fe-10Cu	Poor	(1)
Ti 4Mo 4V-3Al 4Fe-12,5Cu	Unworkable	
Ti-15Mo-3A1-5Cu	Good	Good
Ti-15Mo-3A1-7,5Cu	Poor	Poor
Ti 15Mo-3A1-10Cu	Unworkable	
Ti-13Mo-3A1 5Fe-3Cu	Good	Poor
Ti 13Mo 3A1 5Fe-5Cu	Poor	Poor
Ti 11Mo 3A1 5Fe-3Cu	Good	Poor
Ti-11Mo-3A1-5Fe-5Cu	Poor	Poor
Alloys With Increased Nickel Content		
Ti 17V-5Cr 3A1-5Ni	Poor	(1)
Ti-17V 5Cr-3A1-7.5Ni	Unworkable	***
Ti-17V-5Cr 3A1-10Ni	Unworkable	****
Ti-17V-3 r-3A1-7,5Ni	Unworkable	
Ti 17V-3Cr-3A1-10Ni	Unworkable	24 · ·
Ti-17V-3Cr 3A1 12 5Ni	Unworkable	
Ti 17V-2Cr-3A1-10Ni	Unworkable	~ ~ •
Ti-17V-2Cr-3A1-12,5Ni	Unworkable	~

(1) These two samples were not cold rolled due to their poor condition

TABLE XXIX

TENSILE PROPERTIES OF BASE ALLOYS WITH COPPER ADDITIONS

Elastic Modujus (Ex10-6psi)	11.2	11.2	$15.2^{(1)}$	14.5	12.7	12.3	$15.7^{(1)}$	15.5(1)	13.6	13.6	16.4(1)	$15.9^{(1)}$	12.4	12.5	16.3(1)	$16.5^{(1)}$	13.6(1)	13.6(1)	17.0(1)		12.9	13.6	15.6(1)	16.9(1)
Elong.	9	7	0	0	7	7	0	0	7	٣	0	0	11	11	0	0	m	•	0		σ	11	O	0
Uniform Elong.	0	0	0	C	5.0	0	0	0	2.5	2.5	0	0	5.0	5.0	0	0	2.5	5.0	0	ning	2.5	2.5	0	0
Local Elong.	25	35	Ś	S	10	10	S	0	10	10	S	S	25	25	٥	'n	Ś	10	0	hile machi	ጽ	25	5	0
YS	103	102	1	:	128	131	217	216	146	150	•	1	131	131	1	231	150	150		broke w				:
UTS	108	107	197	210	140	140	225	219	159	165	216	177	139	138	224	233	161	162	109	Sample	142	169	211	136
Heat Treatment	1350F(15min) Plate Sool	=	" +900F(8hrs)AC	" +900F(8hrs)AC	1350F(15min) Plate Cool		" +900F(8hrs)AC	" +900F(8hrs)AC	1350F(15min)Plate Cool		" +900F(8hrs)AC	" +900F(8hrs)AC	1350F(15min)Plate Cool		" +900F(8hrs)AC	" +900F(8hrs)AC	1350F(15min)Plate Cool			" +900F(8hrs)AC	1350F(15min)Plate Cool		" +900F(8hrs)AC	
																	7							
A110y	T1~17V-3A1-5Cu	=	=	Ξ	T1-17V-3A1-7.5Cu	=	:	Ξ	T1-17V-3A1-10Cu	-	=	=	T1-8Mo-8V-3A1-5Cu	•	*	=	T1-8Mo-8V-3A1-7.5Cu	ε	.	=	T1-15Mo-3A1-5Cu	=	=	=

(') Broke outside gage length.

TABLE XXX

ROLLING FERFORMANCE AND AGING RESPONSE OF SELECTED HYPEREUTECTOID TITANIUM ALLOYS, SOLUTION TREATED AT 1750F OR 1850F AND AGED AT 900F

	121	485	200	787	530	393	503	483	667
	8	685	501	465	534	187	497	478	†64 †64
900F	4	867	530	511	230	495	492	495	466
\ged at 900	[2]	489	523	206	236	461	470	486 7.00	↑ 1 †
dness		521	539	511	555	422	429	787 707	427
Vickers Hardness	20	542	240	526	545	777	456	675	7
Vick	0]	576	579	576	77.6	420	424	408	+ r
Minu	2	580	266	287	764	\$ c	420	00°	}
	0	394	419	ر د د د د	286	77+	4 00 2 0 4	414	•
Solution	Treatment	17505(15min)WQ(3)	10 50F (15 min) M(15)	18507 (15min) WO (3)	1850F(15mtn)WO	1850F(15m4m)#(3)(4)	1750F(15min)W(3)	: ˈc	,
Nolling Performance	0100	Good			" (2)	" (2)	Poor(2)	" (2)	
Rolling	- 1	2002	: (1)	=	=	=	: C	Ξ	
V 0[[▼	Cas INS IL	TI-10NI-SFe	T1-8N1-5Mn	T1-10N1-5Mn	T1-11Co-5Fe	T1-13Co-5Fe	T1-11Co-5Mn	T1-13Co-5Mn	
Ingot No.	15220	T5221	T5222	T5223	T5224	T5225	T5226	15227	

Cracked upon stamping identification on sheet. Samples were "warm rolled" due to heating of rolls. Melting in ailoy. Primary compound present. £36£

TABLE XXXI

TENSILE RESULTS ON T1-17V-10Cr-3A1 CONTAINING 01% SI IN THREE SOLUTION TREATED AND AGED CONDITIONS

Elastic Modulus (Ex10-6psi)	13.1	•	14.5	14.3	13.4	13.9	14.6(1)	14.6	14.1	15.5	14.0	15.5	14.0	† .	17.4 27.4	14.6	13.1	14.6	15.3	14.1	14.2	13.3	13.7	15.5(1)	15.0	14.4	13.5
Elong.	16	18	19	21	54	25	ŗ	9	11	14	9	\$	21	7 6	15.	S 2	25	œ	4	æ	12	9	∞	01	12	14	19
Uniform Elong.	10.0	10.0	7.5	12.3	12	12.5	5.0	2.0	5.0	12.5	5.0	5.0	17.5	0.01	10.5	. o.	17.5	7.5	2.5	7.5	10.0	2.5	5.0	5.0	7.5	7.5	17.5
Local Elong.	25	35	ጽ	45	20	20	10	Ś	20	25	10	15	35	R :	40.	07	20	10	10	10	20	10	15	25	ጸ	30	8
YS Kps1	139	141	135	136	135	135	154	151	144	163	148	146	141	140	147	138	140	152	153	149	148	145	142	147	147	147	146
UTS Kps 1	149	148	139	141	139	140	171	169	159	178	159	155	150	152	147	146	143	167	165	191	162	155	155	157	158	154	155
,																											
Heat Treatment	1350F(\frac{1}{2}hr)AC	· -	1450F(\htimeshr)AC	Ξ	1550F(\htimeshr)AC	15	1350F(\$hr)AC+950F(8hrs)AC	=	1450F(\frac{1}{2}hr)AC "	=	1550F(3/4hr)AC "		1350F(ht)AC		14 20r (3nr) Ac	1550F(khr)AC		1 J50F(\$hr)AC+950F(8hrs)AC	=	1450P(\frac{1}{2}hr)AC "		1550F(3/4hr)AC "	=	1350F(\htimeshr)AC	•	1450F(\frac{1}{2}hr)AC	=
Alloy Heat Treatment	T1-17V-10Cr-3Al 1350F(\frac{1}{2}hr)AC		1450F(hhr)AC	=	" 1550F(\frac{1}{2}hr)AC	=	" 1350F(\frac{1}{2}\text{hr})AC+950F(\text{8hrs})AC	=======================================	" 1450F(\frac{1}{2}hr)AC	= = =	" 1550F(3/4hr)AC "		T1-17V-10Cr-3A1-0.25S1 1350F(½hr)AC		78 (30E) 40C 5T	15 SOF (Abr) AC	21.7.2.7	" 1350F(4hr)AC+950F(8hrs)AC	= =	" 1450P(4hr)AC "	2	" 1550F(3/4hr)AC "	W H	T1-17V-10Cr-3x1-0.5S1 1350F(\$hr)AC		" 1450F(hhr)AC	=

⁽¹⁾ Broke outside gage length.

TABLE XXXI (Continued)

(1) Broke outside gage length.

TABLE XXXII

AGING RESPONSE OF TI-17V-10Cr-3A1 BASE ALLOY CONTAINING 0.5 AND 1.0 PERCENT SILICON ADDITIONS

As ing	8 5 0		-	- { }		V1c	kers Har	dness A	Vickers Hardness After Aging	Hours	11	
No.	Yellay	Temp. OF	0	-	m	^	2	3	-	7	7	a
T5014	T1-17V-10Cr-3A1-0,551	959	328	340	332	325	319	323	325	327	;	1
	1950 (30min) WQ	850		335	320	335	336	336	3,50	337	1	!
	•	950		337	342	345	3 70	358	356	361	1 1	1
		1050		344	3 20	364	358	34.4	346	365	-	1
		1150		333	357	350	346	356	366	363	:	•
		1250		3%	366	369	370	366	37.1	376	1	-
		1 300		316	318	319	315	325	331	327	327	336
		1350		318	313	320	317	319	319	321	321	320
		1400		317	311	313	315	314	310	317	321	320
TS154	Tf-17V-10Cr-3A1-1S1	650	34.7	3%	352	347	350	348	362	369	;	•
	2050(30min)WQ	850		363	367	355	357	370	378	37.7	1 1	;
		950		373	380	384	380	398	403	401	•	!
		1050		363	383	380	(+03	391	707	436	1	1
		1150		386	397	398	427	977	456	195	1	•
		1250		977	452	445	456	459	453	483		
		1300		375	373	379	381	382	388	380	375	380
		1350		362	36	373	382	385	385	391	376	360
		0071		365	365	378	362	369	374	37.7	362	362

TABLE XXXIII

EFFECT OF SULUTION TREATHENT AND COOLING RATE ON THE AGING RESPONSE OF TI-17V-10CF-3A1(0.5, 1) SI ALLOY

logul			•			Vickers	He rdne	Vickers Hardness After Aging	r Aging		
N.	V 100 €		Ag1ng			Minutes	tes			Hours	1.0
		Solution ireatment	Temp. OF	o		ורי	5	07	8	-1	2
* 	11-1/V·10Cr-3 X 1-0.5S1	1950F-Mrr-"plate cooled" "	650 850 1250	364 364 364	344 326 379	321 357 353	354 341 401	334 356 369	346 373 378	350	376 346 388
15154	T1-17V-10Gr-3A1-1S1	2050F-Ahr-"plate cooled"	650 850 1250	379 379 379	382 385 387	381 387	379 373 385	364 376 385	374 377 398	369 376 398	377
T \$445	T! '-10Cr-3A1-0,5S1	1950F(10mins)WQ 1950F(30mins)WQ	1250	314 315	319 318	318 319	320 318	322 318	330 313	329 327	336 328
15155	T1-17V-10Cr-3A1-1S1	2050F-10mins-WQ 1950F-30mins-WQ	1250	321 321	353 330	361 346	357 341	362 355	358 349	362	359

TABLE XXX IV

X-RAY DIFFRACTION ANALYSIS OF T1-17V-10Cr-3A1 ALLOY WITH AND WITHOUT 1.0 PERCENT SILLCON ADDITION

					Pha se		ŧ	T1.S1	, (T1.51		r •	0 6	9 9	d 1	D (년 (፟ •	D •
TOTAL TENERAL STATEON ADDITION	104	T-7761	Quenched from 2050F	3	d Å		2.5572 20			2.2464 100	2.1440 5	1.7415 9	1.5863 17	1.4775 12	1.3462 9	1, 2971 39	_			
7.0	0Cr. 341.	62		1,1	0					100			7			79		'n	i	
****	T1-17V-10Cr-3A1-154	T-7762	Quenched from	0	V P					5.2499			1.5965			1.3017		1.1273		
		T-7760	d from		,°		,	S	•	001	S		19			51		S	9	
,		T-	Quenched from	0	V P			2.4338	,,,,,,	7. 2364	7.1483		1.5978			1.3039		1.1283	1.0099	
		T-7764	Quenche! from 2050F Aged at 1250F(5 min.)	1/1	°	,	.	7	7 0	001	,	∽ ;	7	•	~ ≠ ;	∞	4	υ'n		
		Ţ	Quenche 1	0	Y P	,	7. 34/4	7 1599	7 2/67	1047.7	,	1.7323	1.5913	1306	1.3393	1.2980	1.2511	1.1231		
	T1-17V-10Cr-3A1	63	from	1/1	°				001	700		ć	3		į	31			٠ ٥٠	91
	T1-1	T-7763	Quenched from 2050b	o	V P				2 2629				1.3493		. 300	1.303/			1.0122	0.8300
		, ,	from F	 -	0				100	,		ć	(17		,,	77	r	`		
		T-776\$	Quenched from 1750F	0	۷ ا				2.2518) ! !		0109	. 1		9,01	0.00	3111.	1.1313		
·												_								

TABLE XXXV

AGING RESPONSE OF T1-17V-10Cr-3A L-1S1 SHEET STEP QUENCHED FROM 2050F OR QUENCHED FROM 1HE HOT ROLLS

No.	Solution Treatment	No Age	Age Aged 1250F(5min)
Step-Quenching	eq.		
T-5155	2050F(\$hr)WQ	358	9777
=	Transferred to 1950F, Held 30 seconds,	357	707
=	Transferred to 1850F, Held 30 seconds,	363	607
=	, Transferred to 1750F, Held 30	369	408
=), Transferred to 1550F, Held 30 seconds,	353	107
=	(shr), Transferred to 1550F, Held 30 seconds,	355	405
Ξ.	to 1450F, Held 30 seconds,	353	707
3.6	Held 15 minutes,	366	418
z	to 1850F, Held 15	355	421
=	Held 15 minutes,	353	414
=	, Transferred to 1650F, Held 15 minutes,	350	402
Ξ	Transferred to 1550F, Held 15 minutes,	364	408
de -), Transferred to 1450F, Held 15 minutes,	357	410
Quenching Off Rolls	Rolls	Victors Hardress	(Reach Rend
T-6008	Processing Treatment	(10 Kg Load)	Radius Obtainable
2		342	1.5T
Ξ	to	380	
Ξ	to 0.050-1	87 to 18 to	1.01
:			

TABLE XXXVI

EFFECT OF SOLUTION TEMPERATURE AND TIME ON THE TENSILE PROPERTIES OF TI-17V-10Cr-3A1

R			S.E.	\$	Elor	Elongation, %		:
No.	Alloy	Heat Treatment	Kpst	Kpsi	Local	Uniform	forel fn 1"	Modulus Ex10-6psi
T-3725	T1-17V-10Cr-3A1	1350F	142	130	3	12.5	23	14.2
=	13	1350F(143	133	35	17.5	21	14.5
T-4990	=	1950F	135	132	25	2.5	11	13.8
•	**	1950F(Smin)WQ	135	134	25	5.0	14	13.6
:	en en	1950F(10min)WQ	130	130	1.5	0	•	14.0(1)
=	**	1950F(10min)WQ	132	129	10	2.5	· •	9
Ξ	Do for	1950F(20min)WQ	123	120	10	<u></u>	4	13.5
*	e e	1950F(20min)WQ	124	1.20	10	0	7	13.9
=	14	1950F(30min)WQ	109	107	5	0	-	13.8(1)
=	=	1950F(30min)WQ	108	106	'n	0	: -	13.8
:	*	2050F(5min)WQ	106	103	0	0		12.9(1)
•	-	2050F(5min)WQ	110	105	5	0	-4	12.8
=		2050F(10m1n)WQ	100	:	# !	•	•	11.1(1)
=	***	2050F(10min)WQ	110	107	0	0		14.1
=	tas Da	2050F(20min)WQ	ie	ţn	machining			! •
=	-	2050F(20min)WQ			•	•	;	10.4
=	=	2050F(30min)WQ		1 8 1	;		3 8 £	(1)
=	=	20 50F (30min)WQ	73	89	0	0	0	14.6

(1) Sample broke outside gage length.

TABLE XXXVII

AGING RESPONSE OF T1-17V-10Cr-3A1-2Ge ALLOY

D)	2	391 384 366
fng Hours	-1	371 367 376
Vickers Hardness After Aging	30	391 397 361
Hardnes	2	387 378 359
Vickers	<u>~ </u>	377 374 352
Min	<u>س</u> ا	377 364 342
	-1	367 362 341
	0	354
Aging Temp.	do	850 1050 1250
Solution	Treatment	2000F- ½ hr-¥Q "
	Alloy	Ti-17V-10Cr-3Al-2Ge " "
Ingot	NO.	T-6121 "

ACING RESPONSE OF Ti-17V-10Cr-3A1-0.2Be ALLOY QUENCHED FROM 2100F AND AGED AT 650, 850 AND 1250F

TABLE XXXVIII

	Hours	7	356	348	38
	Hor	-	337	38	361
After Aging		8	338	369	343
	!	위	328	356	343
s Hardness	tes	~ 	337	350	337
Vickers	Minu	3	345	351	365
		1	350	348	335
		0	357	357	357
		Heat Treatment	2100F(4hr)WQ+650F Age	2100F(\htimeshr)WQ+850F Age	2100F(\$hr)WQ+1250F Age
	1 1	Alloy	Ti-17V-10Cr-3A1-0.2Be	= ;	=
4000	1080r	Z	T-5228	. ;	:

TABLE XXXIX

TENSILE PROPERTIES OF T1-17V-10Cr-3A1-X STABLE BETA SHEET ALLOY CANDIDATES

Elastic Modulus (Ex10-6psi)	14.2	14.5	15.2	14.8	14.8	14.6	14.9	14.9	34.1	14.5	14.9	15.2	14.8	14.3	14.8	15.0	14.8	14.5	15.3	14.5	14.3	14.9	15.5	15.1	14.0	14.4	14.0	14.1
Elong.	23	21	12	13	17	19	. 13	12	54	23	18	17	8	20	7	~	19	18	18	16	21	20	18	18	54	21	∞	16
Uniform Elong.	12.5	17.5	10.0	10.0	12.5	17.5	10.0	10.0	17.5	17.5	12.5	10.0	10.0	12.5	2.5	2.5	10.0	10.0	17.5	12.5	12.5	12.5	12.5	12.5	15.0	15.0	7.5	10.0
Local Elong.	9	35	ଯ	5 0	30	ଛ	ន	91	45	07	ଛ	౭	9	40	ഗ	21	35	35	25	ጽ	35	35	ද	25	35	35	0	ଛ
YS Kps 1	130	133	141	141	134	133	141	140	141	140	144	144	151	150	155	156	137	134	139	139	140	138	143	143	133	132	136	138
UTS Kps i	142	143	160	159	145	144	156	158	148	149	155	156	157	158	162	167	146	146	157	160	151	150	157	157	143	143	151	124
Heat Treatment	1350F(\frac{1}{2}hr)AC	2	" +950F(8hrs)AC		1350F(\text{thr})AC		" +950F(8hrs)AC		1350F(\htimeshr)AC	I	" +950F(8hrs)AC		1350F(\frac{1}{2}hr)AC		" +950F(8hrs)AC	E .	1350F(4hr)AC		" +950F(8hrs)AC	=	1350F(½hr)AC		" +950F(8hrs)AC		1350F(\ht)AC	=	" +950F(8hrs)AC	S+
Alloy Heat Treatment	T1-17V-10Cr-3Al 1350F(hhx)AC		+950F(T1-17V-10Cr-3A1-1Cu 1350F(4hr)AC				T1-17V-10Cr-3A1-3Cu 1350F(4hr)AC	x	+950F(T1-17V-10Cr-3A1-5Cu 1350F(4hr)AC) :	" +950F(8hrs)AC		T1-17V-10Cr-3A1-1M1 1350F(hhr)AC	12	+950F		T1-17V-10Cr-3A1-1Co 1350F(4hr)AC		" +950F(8hrs)AC		T1-17V-8Cr-3A1-3Cu 1350F(\$hr)AC		" +950F(8hrs)AC	

TABLE XXXIX (Continued)

Elastic Modulus (Ex10-0psi)	14.3	14.5	14.6	14.4	15.2	15.3	15.1	15.2	14.4	14.1	14.6	15.0	15.2	14.9	15.5	14.8	15.0	15.4	15.6	16.1	16.7	15.9	16.2	17.2	15.2	14.9	15.5	14.8
Elong.	11	16	17	œ	5 %	57	19	15	ន	20	11	5	23	5 6	9	16	!	21	12	17	22	23	12	ᠬ	ឧ	19	11	4
Uniform Elong.	5.0	8.0	12.5	7.5	12.5	12.5	12.5	12.5	7.5	7.5	5.0	5.0	15.0	17.5	5.0	10.0	•	15.0	10.0	15.0	15.0	15.0	7.5	5.0	12.5	15.0	10.0	2.5
Local Elong.	40	07	25	5	45	45	35	ឧ	45	45	25	15	45	45	٠	25	1 1	35	20	25	ද	35	15	10	35	35	15	0
YS Kpsi	142	141	147	147	145	145	146	147	141	140	152	154	158	160	160	158	9	142	140	142	144	145	144	144	145	144	141	141
UTS	152	151	191	162	诗	155	159	160	150	149	164	165	165	167	169	168	:	150	153	153	153	152	153	155	158	156	156	150
est Trestment	(Ahr) AC	1=	" +950F(8hrs)AC		?(\ht) AC	12	" +950F(8hrs)AC	,= =	?(\text{khr}) AC		" +950F(8hrs)AC		?(3hr) AC	2	" +950F(8hrs)AC		?(\\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	=	" +950F(8hrs)AC		(khr) AC	•	" +950F(8hrs)AC	=	?(\psi hr) AC	=	" +950F(8hrs)AC	:
Heat Treatment	1350F(\$hr)AC	=	" +950F(8hrs)AC	=	1350F(4hr)AC	2.2	" +950F(8hrs)AC	, = =	1350F(\htimeshr)AC		" +950F(8hrs)AC	, = =	1350F(3hr)AC		" +950F(8hrs)AC	=	1350F(\$hr)A		" +950F(8hrs)AC	=	1350F(4hr)AC	Έ.	" +950F(8hrs)AC	=	: 1350F(½hr)AC	•	" +950F(8hrs)AC	=
Alloy Heat Treatment	T1-17V-8Cr-3A1-3N1 1350F(4hr)AC	12	" +950F(8hrs)AC		11-17V-8Cr-3A1-3Co 1350F(4hr)AC	! 2	" +950F(8hrs)AC	,= =	I1-17V-8Cr-3Al-5Cu 1350F(4hr)AC	=	" +950F(8hrs)AC		Ti-17V-6Cr-3Al-5Co 1350F(3hr)AC		" +950F(8hrs)AC		T1-17V-10Cr-3A1-0.1Be 1350F(\frac{1}{2}hr)AC		" +950F(8hrs)AC	=	T1-17V-10Cr-3A1-0.2Be 1350F(4hr)AC	Έ.	" +950F(8hrs)AC	=	T1-17V-10Cr-3A1-0.3Be 1350F(4hr)AC	=	" +950F(8hrs)AC	=======================================

TABLE XL

TENSILE PROPERTIES OF TI-8No-8V-xPe-X GROUP OF STABLE BETA ALLOY CANDIDATES

Elastic Modulus (Ex10-cpsi)	$15.8^{(1)}$	15.6(1)	16.2	15.1	15.8	15.4	15.7	18.0		16.1	16.1	0.4E	, , ,	15.2	37.8	13.6	1.74	15.1	5. 4. 1. 4.	15.3	15.1	16.1	15.1	15.6	15.	16.0
Elong.	10	20	12	22	23	σ	9	œ		4	19	11	1,4	αo	6	14	9 1	13	0	18	14	17	26	18	15	19
Uniform Elong.	Ö																									17.5
Local Elong.	25								_											45	20	7	45	20	8	25
YS Kps 1	159	159	160	157	162	160	159	191	on loading	165	167	147	147	149	149	151	153	153	:	191	163	162	191	162	165	163
UTS	160	162	791	162	164	162	163	162	-	169	170	150	150	156	156	154	156	170	84.4	167	166	167	166	166	171	170
Heat Treatment	50F(\$hr)AC		" +950F(8hrs)AC		50F(\(\frac{1}{2}\)hr) AC		" +950F(8hrs)AC	50F(\frac{1}{2}\text{hr})AC		" +950F(8hrs)AC		50F(4hr)AC		" +950F(8hrs)AC		50P(4hr)AC		" +950F(8hrs)AC		50F(4hr)AC		" +950F(8hrs)AC	50F(\(\frac{1}{2}\)hr)AC		" +950F(8hrs)AC	, z
Alloy Heat Treatment	I1.8Mo-8V-7.5Fe-3Al 1350F(4hr)AC	72			T1-8Mo-8V-7. SFe-3A1-1Cu 1350F(4hr)AC		" +950F(8hrs)AC	T1-8Mo-8V-7, SPe-3A1-1Co 1350F(4hr)AC		" +950F(8hrs)AC		T1-8Mo-8V-5Fe-3A1-3Cu 1350F(4hr)AC		" +950F(8hrs)AC		T1-8Mo-8V-4Fe-3A1-SCu 1350F(4hr)AC		" +950F(8hrs)AC		T1-6Mo-8V-7, SFe-3A1-3Cu 1350F(4hr)AC		" +950F(8hrs)AC	T1-8Mo-8V-5Fe-3A1-3Co 1350F(4hr)AC		" +950F(8hrs)AC	

(1) Broke outside gage length.

TABLE XLI

TENSILE PROPERTIES OF TI-15Mo-3A1-X GROUP OF ALLOTS

Elastic Modulus (Ex10-6psi)	15.3	15.4	14.9	15.5	15.3	15.5	15.6	15.9	15.5(1)	15.6(1)	15.7		15.6	16.1	15.3	16.1	15.2		15.1	15.7	14.3(1)	14.2(1)	14.4	14.9	15.3	15.3	14.6	14.8	15.7
Elong.	9	E1	ន	19	23	5 6	20	~ 4	17	16	16		17	21	21	21	19		17	'n	7	19	4	0	15	!	σ	12	7
Uniform Elong.	2.5	2.5	12.5	15.0	12.5	22.5	15.0	0	5.0	5.0	7.5	e t	10.0	15.0	29.0	17.5	10.0		12.5	0	0	12.5	0	0	12.5	•	7.5	7.5	;
Local Elong.	15	35	35	35	45	3	35	S	40	40	35	fficient sh	35	35	25	25	45	terla!	8	5	30	35	91	0	8	٠	15	30	10
Kpst	145	141	144	144	150	150	150	149	152	152	153	ole, insu	151	154	153	154	144	clent me	150	153	145	147	162	174	157	!	191	156	195
UTS Kps 1	146	145	151	151	153	153	155	150	154	154	158	No semp	155	157	158	159	147	Insuff1	160	158	150	151	171	174	160	151	165	160	20 5
Heat Treatment	1350F(\text{hr})AC	=	" +950F(8hrs)AC		1350F(4hr)AC		" +950F(8hrs)AC	. -	1350F(hhr)AC		" +950F(8hrs)AC	. =	1350F(½hr)AC		" +950F(8hrs)AC		1350F(4hr)AC	=	" +950F(8hrs)AC	=	1350F(4hr)AC		" +950P(8hrs)AC		1350F(15min)AC	" +900F(8hrs)AC		1350F(15min)AC	" +900F(8hrs)AC
Alloy Heat Treatment	T1-15Mo-5Fe-3Al 1350F(½hr)AC		+9501(8	=	T1-15Mo-5Fe-3A1-1Cu 1350F(4hr)AC		" +950F(8hrs)AC	. -			+950F(8	=	T1-15Mo-5Fe-3Al-1Co 1350F(4hr)AC		+950P(8		T1-15Mo-3Fe-3A1-3Cu 1350F(4hr)AC		" +950F(8hrs)AC		T1-15Mo-2Fe-3A1-5Cu 1350F(4hr)AC				7.1-13Mo-5Fe-3Al-3Cu 1350F(15min)AC	1, +900F(8		T1-11Mo-5Fe-3A1-3Cu 1350F(15min)AC	" +900F(8

E-2

⁽¹⁾ Broke outside gage length.

TABLE XLII

ROOM TEMPERATURE BEND RADII OF STABLE BETA SHEET ALLOY CANDIDATES

		Heat Ti	reatment
Ingot No.	Alloy	Annealed 1350F(½hr)AC	Aged 1350F(½hr)AC+ 950F(8hrs)AC
T 3732	Ti-17V-10Cr-3A1 1Co	0.80, 1.0T	1.4, 1.7T
T-3927	Ti 17V-8Cr-3A1-3Co	0.87, 0.91T	1.5T
T-3926	Ti 17V-8Cr-3A1-3Ni	0.91, 1.1T	2.1T
T-3925	Ti-17V-8Cr-3A1-3Cu	0.65T	1.5, 2.0T
T-3942	Ti 17V 8Cr-3A1-5Cu	1.1T	3.4T
T-3945	Ti-17V-10Cr 3A1-0.1Be	0.89T	1.9, 2.7T
T-3932	Ti-8Mo-8V 5Fe 3A1-3Cu	0.73T	1.4T
T-3933	Ti-8Mo-8V-4Fe-3A1-5Cu	0.98T	3.0T
T-3936	Ti 8Mo-8V-5Fe-3A1-3Co	0.95T	>9.4T
T-3874	Ti-15Mo-5Fe-3A1	0.98T	1.3T
T 3875	Ti-15Mo-5Fe-3A1-1Cu	0.83T	1.8T

TABLE XLIII

TENSILE PROPERTIES OF STABLE-BETA SHEET ALLOYS (1)

Local Uniform Total Elastic S Elong. Elong. Elong. Hodulus	45 2.5 16	838	45 7.5 16	45 15.0 24 45 2.5 13	35 17.5 24 50 5.0 17 50 12 5	45 15.0 24 45 7.5 20	50 40 25
UTS YS Kpsi Kpsi					150 146 149 148 150 149		158 158 155 153 156 154
Heat Treatment	1450P(\$hr)AC	+900F(8hrs)AC) Y C	+900F(8hrs)AC	+900F(8hrs)AC	1450F(\frac{1}{2}hr)AC	" +900F(8hrs)AC
A110y	T1-8Mo-8V-6Fe-3A1	n s T VO SMX TT	T C C - 3 2 / - A D - OLD - T -	", T1-17V-11Mn-3A1	: : :	T1-17V-12Mn-3A1	Ξ
Ingot No.	T-4669 .:	0767-I) : : : :	". T-4673	:::	T-4676	: :

(1) 0.050-inch gage sheet prepared from 4-pound ingots. (2) Sample broke on gage mark - approximate figure only.

TABLE XLIV

BEND RADII OF STABLE-BETA SHEET ALLOYS (1)

			Heat Tr	eatment
Ingot No.	Alloy	Rolling Direction	1450F(½hr)AC	1450F(½hr)AC+ 900F(8hrs)AC
T-4837	Ti-8Mo-8V-6Fe-3A1	L T	0.77T 0.75T	1.0T 1.3T
T-4840	Ti-8Mo-8V-7Fe-3A1	L	0.75T	1.0T
T-4843	Ti-17V 11Mn 3A1	T L	1.0 T 0.97T	1.3T 1.5T
" T-4846	" Ti-17V-12Mn-3A1	T L	0.94T 1.0(2)	1.7T 3.0T
11	**	T	(2)	4.7T

^{(1) 0.050} inch gage sheet prepared from 2-pound ingots.

⁽²⁾ Poor Sheet Surface.
Note: 0.015-inch pickled cff sheet surface.

TABLE XL7

AMINATED CHARPY V DAPACT STRENGTH OF STARLE-BETA SHEET ALLOYS(1)

Ingot No.	Allox	Heat Treatment	Test OF	Actual Impact (Ft-1ba)	Leminate Cross Section (2) Inches	Charpy Equivalent Impact (ft-1bs)
T-4838	T1-8Mo-8V-6Fe-3A1	1450F(4hr)AC	-80	9.0	0.390 x 0.363	R.7
=	Ξ		3	16.5	38 ×	17.9
τ	=	Ξ	300	28.75	0.390×0.363	31.0
T~5015	=	1450F(4hr)AC+900F(Blirs)AC	-80	3.25	318 x	3.75
Ξ	:	=	38	7.75	317 x	9.1
Ξ	=	*	300	17.75	314 x	19.5
T-48+1	T1-8Mo-8V-7Fe-3A1	1450F(\$hr)AC	-80	2.25	393 x	2.4
Ξ	=		\$	12.0	* \$	12.75
=	=	=	300	32.75	x x	35.25
T-7016	.	1450F(4hr) AC+900F(8hrs)AC	-80	3.25	315 x	3.85
Ξ	Ξ		8	9.75	314 x	10.1
Ξ	Ξ	**	300	18.25	318 x	19.9
T 844	T1-17V-11Mn-3A1	1450F(hhr)AC	-80	2.0	392 x	2.25
=	=	:=	3	13.0	3& ×	14.75
Ξ	:	gr. Tim	300 5	25.25	× X	28.0
T-5017	¥4	1450P(4hr)AC+900P(8hrs)AC	90	2.25	317 x	2.35
Ξ	Ξ		8	7.25	318 x	7.85
Ξ	Ξ	=	300	19.0	313 x	20.7
T-4847	T1-17V-12Mn-3A1	1450F(\$hr)AC	-80	1.50	395 x	1.70
Ξ	Ξ	1.5	8	6.50	3% × 0.	7.10
Ξ	Ξ	=	300	25.5	0.393 x 0.354	28.25
T-5018	=	1450F(Ahr)AC +900F(Shrs)AC	-80	8	314 × 0.	1.67
=	=	=	9	3.25	317 × 0.	3.35
:	:	=	300	19.0	316 x 0.	19.5

0.050-inch gage sheet prepared from 4-pound ingots. Standard Charpy V impact specimen cross section is 0.394-inch square. 33

TABLE XLVI

HOT ROLLING PRESSURE TESTS ON STABLE-BETA ALLOYS

Ingot No.	Alloy	Pass No. (1)	Total Roll Separating Force, pai	Finishing Temp. of	Final Gage (inches)
Initi	al Rolling Temperature	2100F			
	T1-13V-11Cr-3A1	1	220,000		
	**	2	270,000		
		3	360,000		
	**	4	370,000		
	11 11	5	440,000		
V-2706		6	510,000	1705	0.144
11	5 Ti-17V-10Mn-3A1	1	235,000		0.744
**	11	2	260,000		
**	**	3	320,000		
11	11	4	325,000		
11	**	5	420,000		
V-2707	Ti-8Mo-8V-6Fe-3A1	6	480,000	1595	Ú. 142
11	11 040-04-016-741	1	230,000		- 1 - 1
**	11	2	265,000		
11	**	3 4	330,000		
11	**	5	330,000		
11	H	6	430,000		
		0	490,000	1680	0.142
Initia	1 Rolling Temperature 2	250F			
	Ti-13V-11Cr-3A1	1	190 000		
	u	2	190,000 230,000		
	11	3	310,000		
	11	4	320,000		
	**	5	410,000		
	**	6	480,000	1690	0.11
V-2706	Ti-17V-10Mn-3A1	1	180,000	1090	0.141
"	**	2	200,000		
11	***	3	235,000		
11		4	260,000		
**	11 11	5	350,000		
V-2707		6	430,000	1800	0.138
11	Ti-8Mo-8V-6Fe-3A1	1	155,000		0.150
н	"	2	185,000		
11	11	3	240,000		
11	11	4	250,000		
**	**	5	340,000		
		6	430,000	1800	0.132
(1) 11	ll Openings:				
Pas	ss No, 1	2			
	ening, inches $\frac{1}{0.6}$	$\frac{2}{0.45}$	$\frac{3}{0.2}$	$\frac{5}{0.1}$	6 04
·		v.→. (0.2	0.1 0.	04

TABLE XLVII

COLD ROLLING PRESSURE TESTS ON STABLE-BET ALLOYS

Total Roll Separating Force PSI	190,000 280,000 350,000 205,000 290,000 376,000 215,000 310,000
7 Reduction	1.14 0.54 2.23 0.78 0.47 1.6 0.6
Leaving Mill	0.130 0.129 0.126 0.127 0.126 0.133 0.134
Entering Mill	0.132 0.130 0.129 0.128 0.127 0.125 0.135 0.135
Pass No.	351351351
Mill Opening Inches	0.119 0.109 0.099 0.115 0.105 0.121 0.121 0.101
A110y	T1-13V-11Cr-3A1 " T1-17V-10Mn-3A1 " T1-8Mo-8V-6Fe-3A1 "
Ingot No.	V-2706 " " V-2707

TABLE XLVIII

ROOM TEMPERATURE AND 600F NOTCH TENSILE PROPERTIES OF STABLE BETA SHEET ALLOYS(1)
(A11 Heat Treated 1450F(thr)AC)

Ratio Notched UTS/ Unnotched UTS	1.18	1.15	1.07	1.15
Notch Tensile Strength Kpsi	177) 179) 180) 178.6 178) Average 179)	2) 8) 5) 171.4 7) Average 5)	146) 141) 143.6 144) Average	9) 1) 139.3 8) Average
•		162) 168) 175) 177) 177)		139) 141) 138)
Test Temp.	09 09 09 09 09	90 90 90 90 90	009	900 900 900
Alloy	Ti 17V 10Mn 3A1 " " " "	Ti-8Mo-8V-6Fe-3Al	Ti - 17V - 10Mn - 3A1 "	T1-8Mo~8V~6Fe~3A1 "
ngot	V. 2706	V. 2707	V 2706	V. 2707

^{(1) 0.050} inch gage sheet prepared from 30 pound ingots.

TABLE XLIX

600F TENSIJE PROPERTIES OF STABLE-BETA SHEET ALLOYS(1)
(Heat Trestment 1450F(hhr)AC)

	Modulus	(Ex10-bpsi) 11.1 11.8 14.6 12.9(2) 13.4(2) 12.8
	in 1"	14 18 18 9 4 23
longation, %	Uniform	35 45 50 35 35 15 0 45 15.0
6 1	Local	64 2 5 5 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5
		107 111 116 112 106
UTS		119 123 125 122 117 117
A1100		T1-17V-10Mm-3A1 " T1-8Mo-8V-6Fe-3A1 "
Ingot No.		V-2706 " " V-2707

(1) 0.050-inch gage sheet prepared from 30-pound ingots. (2) Samples had poor sheet surface.

TABLE L

CREEP STABILITY DATA FOR STABLE-BETA ALLOYS(1)
(Heat Treatment 1450F(\$hi)AC)

	Modulus Ex10-6psi)	15.7 15.9 15.9 15.9 15.6 14.7 14.7
rties		•
Subsequent Tensile Properties	longation, 7 Uniform	5.5 5.0 5.2 5.5 5.5 5.5
went Tens	Elor Local	35 30 30 45 10 15
Subsec	YS Kpsi	145 157 158 158 147 147 151
	UTS Kps 1	151 161 161 159 148 151
i	Def.	0.220 0.220 0.196 0.204 0.204 0.180
į	Time	150 150 150 150 150 150
Ċ	Kpsi	100 100 100 100 99 99
E	oF	009
	Alloy	T1-17V-10Mn-3A1 " " T1-8Mo-8V-5Fe-3A1 "
Inpot	No.	V-2706 V-2707

(1) 0.050-inch gage sheet prepared from 30-pound ingots.

TABLE LI

OXIDATION BEHAVIOR (1) OF STABLE BETA SHEET ALLOYS

Weight Gain Gas/Sq.Cm. of Surface Area (Average)	0.0104	0.0182
Weight Gain (Gas)	0.1361 0.1461 0.1205	0.2305
Weight Exposed Sample + Crucible (Gms)	35.1492 31.5783 31.4775	35.6948 31.6628 32.1990
Weight Unexposed Sample + Crucible (Gms)	35.0131 31.4322 31.3570	35.4643 31.3860 32.0025
Weight Sample (Gms)	3.5202 3.7570 3.4833	3.9677 3.7041 4.1805
Test to.	426	354
Alloy	T1-17V-10Mm-3A1	T1-846-8V-6Fe-3A1
		V-2707

(1) All semples were exposed in open crucibles for 2 hours at 1500F. (2) 0.050-inch gags sheet.

TABLE LII

STRESS CORROSION RESISTANCE (1) OF TI-8Mo-8V-6Fe-3A1 AND TI-17V-10Mn-3A1 SHEET ALLOYS

Metallographic Examination (250x)	Cracks visible	Cracks visible.	
Reverse Bend Results and Visual Examination (9x)	Unexposed control sample broke on reverse bend. Stress corrosion cracks visible. All exposed samples broke on reverse bend.	Unexposed control sample broke on reverse bend. Some stress corrosion cracks visible. All exposed samples broke on reverse bend.	
Bend Radius of Samples	1.27	1.27	
Heat Treatment	1450F-}hr-AC	1450F-4hr-AC	7
Alloy	T1-17V-10Hm-3A1	T1-8Mo-8V-6Fe-3A1	(1) All memoles hent to redding todaces, and
Ingot No.	V-270 6	V-2707	(1) A11

All samples bent to radius indicated and exposed for 2 hours at 800F with salt coating. 0.050-inch gage sheet prepared from 30-pound ingots. 3E

TABLE LIII

TENSILE PROPERTIES OF WELDED STABLE BETA SHEET ALLOYS

Modulus (Ex10-6psi) 13.6 13.0 14.0 14.5 14.5 14.0	13.0 16.5 14.7
Total Elongation in 0.5" 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000
Total E in 0.27 0 0 0 0 0 0	00
xs (1)	; ;
WIS Kpst 46 46 61 113 70 78 78	99 137
Heat Treatment 1450F(hhr)AC+Weld "" "" 1450F(hhr)AC+Weld "" ""	: <u>-</u>
T1-17V-104m-3A1 "" "" T1-8Mo-8V-6Fe-3A1 ""	(1) All weld spectment beath to the
Ingot No. V-2706 " " V-2707	" (1) A11 ;

(1) All weld specimens broke before reaching yield stress.

TABLE LIV

BEND TESTS OF WELDED STABLE BETA ALLOYS AND WELD STABILITY TESTS

	Minimum Bend Radius	1.2T 1.2T		Broke at 12T		>13T >13T
Samples	Processing	1450F(\frac{1}{2}hr)AC		1450F(½hr)AC+Weld		1450F(½hr)AC+Weld, exposed at 650F for 500 hrs.
I Tests Control (Unwelded) Samples	Alloy	Ti 17V 10Mn 3A1 Ti-8Mo 8V 6Fe-3A1	Welded samples	Ti-17V 10Mn 3A1 Ti 8Mo 8V 6Fe 3A1	(b) Weld Stability Tests	Ti 17V 10Mn 3A1 Ti 8Mo 8V-6Fe 3A1
(a) Bend Tests (1) Contr	Ingot	V 2706 V 2737	(2)	V 2706 V 2707	(b) Weld	V 2706 V 2707

TABLE LV

TENSILE PROPERTIES OF THREE ALLOYS CONTAINING COBALT(1)

T-5495 T1-8Ho-8V-5Co-3A1 1350F(15atin)AC 145 144 145 145 12.5 24 13.4 13.4 13.0 F(15atin)AC 144 142 45 12.5 22 13.7 13.7 13.0 F(15atin)AC+900F(8hrs)AC 176 165 25 25 25 25 25 13.7 14.0 14.0 14.0 14.0 14.5 12.5 24 14.0	Ingot No.	Alloy	Heat Treatment	UTS Kps1	YS Kps.1	Local	Elongation, L Uniform	Total (2)	Modulus (Ex10-6ps1)
1350F(15min)AC	5675-	T1-8M0-8V-5C0-3A)	1350F(15min)AC	145	14	45	12.5	54	13.4
1350F(15min)Ac+900P(8hrs)AC 172 161 30 7.5 14 1350F(15min)Ac+900P(8hrs)AC 176 165 25 25 25 10 1450P(15min)Ac+900P(8hrs)AC 164 140 452 12.5 23 1450P(15min)Ac+900P(8hrs)AC 163 154 30 2.5 17 1450P(15min)Ac+900P(8hrs)AC 193 178 15 12.5 17 1450P(15min)Ac+900P(8hrs)AC 193 178 15 12.5 17 1450P(15min)Ac+900P(8hrs)AC 194 179 5 5.0 1500P(10min)Ac+900P(8hrs)AC 203 188 15 2.5 8 1500P(10min)Ac+900P(8hrs)AC 203 188 15 5.0 9 1500P(10min)Ac+900P(8hrs)AC 216 202 15 5.0 9 1500P(10min)Ac+900P(8hrs)AC 216 202 15 5.0 9 1500P(15min)Ac+900P(8hrs)AC 194 176 10 7.5 17 1350P(15min)Ac+900P(8hrs)AC 194 177 10 7.5 24 1350P(15min)Ac+900P(8hrs)AC 194 177 10 7.5 17 1350P(15min)Ac+900P(8hrs)AC 194 177 10 7.5 24 1350P(15min)Ac+900P(8hrs)AC 194 175 24 1350P(15min)Ac+900P(8hrs)AC 159 159 45 15.0 25 1350P(15min)Ac+900P(8hrs)AC 159 159 150 150 150 1350P(15min)Ac+900P(8hrs)AC 159 159 150 150 150 1350P(15min)Ac+900P(8hrs)AC 159 150 150 150 1350P(15min)Ac+900P(8hrs)AC 159 150 150 150 1350P(15min)Ac+900P(8hrs)AC 150 150 150 150 1350P(15min)Ac+900P(8hrs)AC 150 150 150 150 1350P(15min)Ac+900P(8hrs)AC 150 150 150 1350P(15min)Ac+900P(8hrs)AC 150 150 150 1350P(15min)Ac+900P(8hrs)AC 150 150 150 1350P(1	; ; ; =	=	1350F(15min)AC	144	142	45	12.5	22	13.7
1350P(15amin)Act+900P(8hrs)Ac 176 165 25 2.5 10 1450P(15amin)Act+900P(8hrs)Ac 144 140 45 12.5 23 1450P(15amin)WQt+900P(8hrs)Ac 162 152 35 12.5 17 1450P(15amin)WQt+900P(16hrs)Ac 193 178 15 7.5 11 1450P(15amin)WQt+900P(16hrs)Ac 194 179 5 5.0 8 150OP(10amin)WQt+900P(8hrs)Ac 203 188 15 2.5 23 150OP(10amin)WQt+900P(8hrs)Ac 219 204 15 5.0 9 150OP(10amin)WQt+900P(16hrs)Ac 219 204 15 5.0 9 150OP(10amin)WQt+900P(16hrs)Ac 216 202 15 5.0 9 150OP(15amin)Act+900P(8hrs)Ac 194 177 10 7.5 17 135OP(15amin)Act+900P(8hrs)Ac 194 177 10 7.5 17 135OP(15amin)Act+900P(8hrs)Ac 194 177 10 7.5 19 135OP(15amin)Act+900P(8hrs)Ac 159 159 159 150 135OP(15amin)Act+900P(8hrs)Ac 161 159 45 15.0 22 135OP(15amin)Act+900P(8hrs)Ac 161 151 45 15.0 22 135OP(15amin)Act+900P(8hrs)Ac 161 161 45 15.0 22 135OP(15amin)Act+900P(8hrs)Ac 161 161 45 15.0 22 135OP(15amin)Act+900P(8hrs)Ac 161 161 45 15.0 151 151 161 161 45 15.0 151 151 151 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 1	:	=	_	172	161	8	7.5	14	14.2
1450P(15ain)WQ	r	**	_	176	165	25	2.5	10	15.0
1450P(15adin)WQ+900P(8hrs)AC 162 152 35 12.5 17 1450P(15adin)WQ+900P(8hrs)AC 163 154 30 2.5 14 1450P(15adin)WQ+90OP(16hrs)AC 194 178 15 7.5 11 1450P(15adin)WQ+90OP(16hrs)AC 194 178 15 5.0 8 1450P(15adin)WQ+90OP(16hrs)AC 143 139 45 12.5 23 150OP(10adin)WQ+90OP(8hrs)AC 203 188 10 5.0 6 150OP(10adin)WQ+90OP(16hrs)AC 219 204 15 5.0 9 150OP(10adin)WQ+90OP(16hrs)AC 216 202 15 5.0 9 150OP(15adin)AC+90OP(8hrs)AC 156 171 10 5.0 11 135OP(15adin)AC+90OP(8hrs)AC 194 177 10 7.5 17 135OP(15adin)AC+90OP(8hrs)AC 194 177 10 7.5 17 135OP(15adin)AC+90OP(8hrs)AC 194 177 10 7.5 17 135OP(15adin)AC+90OP(8hrs)AC 194 177 10 7.5 9 135OP(15adin)AC+90OP(8hrs)AC 159 158 15 7.5 9 135OP(15adin)AC+90OP(8hrs)AC 159 159 150 150 135OP(15adin)AC+90OP(8hrs)AC 159 159 150 150 135OP(15adin)AC+90OP(8hrs)AC 159 150 150 150 135OP(15adin)AC+90OP(8hrs)AC 159 150 150 135OP(15adin)AC+90OP(8hrs)AC 159 150 150 135OP(15adin)AC+90OP(8hrs)AC 150 150 150	:	•		144	140	45	12.5	23	13.5
1450F(15min)WQ+900F(8hrs)AC 163 154 30 2.5 14 1450F(15min)WQ+900F(16hrs)AC 193 178 15 7.5 11 1450F(15min)WQ+900F(16hrs)AC 194 179 5 5.0 8 1450F(10min)WQ+900F(16hrs)AC 203 188 10 5.0 6 1500F(10min)WQ+900F(8hrs)AC 203 188 15 2.5 23 1500F(10min)WQ+900F(8hrs)AC 219 204 15 5.0 9 1500F(10min)WQ+900F(16hrs)AC 216 202 15 5.0 9 1500F(10min)WQ+900F(8hrs)AC 216 202 15 5.0 9 1500F(15min)AC+900F(8hrs)AC 194 177 10 7.5 17 1350F(15min)AC+900F(8hrs)AC 194 177 10 7.5 17 1350F(15min)AC+900F(8hrs)AC 194 177 10 7.5 19 1350F(15min)AC+900F(8hrs)AC 194 177 10 7.5 19 1350F(15min)AC+900F(8hrs)AC 156 158 15 45 17.5 25 1350F(15min)AC+900F(8hrs)AC 156 158 15 7.5 9 1350F(15min)AC+900F(8hrs)AC 156 156 156 156 156 156 1350F(15min)AC+900F(8hrs)AC 156 156 156 156 156 156 156 156 156 1350F(15min)AC+900F(8hrs)AC 156	:	**		162	152	35	12.5	17	14.0
1450P(15aIn)WQ+900P(16hra)AC 193 178 15 7.5 11 1 1 1 1 1 1 1 1	=	=		163	1%	8	2.5	14	14.0
1450P(15min)WQ+900P(16hre)AC 194 179 5 5.0 8 1		=	~	193	178	15	7.5	11	15.2
1500P(10min)WQ	:	=		18	179	~	5.0	œ	15.5
1500F(10min)WQ+900F(8hre)AC	=	=		143	139	45	12.5	23	12.6
1500F(10min)WQ+900F(8hre)AC 203 188 15 2.5 8 1 1500F(10min)WQ+900F(16hre)AC 219 204 15 5.0 9 1 1500F(10min)WQ+900F(16hre)AC 216 202 15 5.0 9 1 1500F(15min)AC+900F(16hre)AC 156 151 40 7.5 17 1 1350F(15min)AC+900F(8hre)AC 194 176 10 5.0 11 1 1350F(15min)AC+900F(8hre)AC 194 177 10 7.5 8 1 11.8Mo-8V-4Fe-3A1-4Co 1350F(15min)AC 160 159 45 10.0 19 1 1350F(15min)AC+900F(8hre)AC 150 159 45 10.0 19 1 1350F(15min)AC+900F(8hre)AC 159 158 15 7.5 9 1 1350F(15min)AC+900F(8hre)AC 161 161 45 15.0 22 1	:	***	_	203	188	10	5.0	9	15.1
1500F(10min)WQ+900F(16hrs)AC 219 204 15 5.0 9 1 1500F(10min)WQ+900F(16hrs)AC 216 202 15 5.0 9 1 1500F(10min)WQ+900F(16hrs)AC 155 150 45 15.0 25 1 1350F(15min)AC 1350F(15min)AC 194 176 10 5.0 11 1 1350F(15min)AC 1900F(8hrs)AC 194 177 10 7.5 8 1 T1-8Mo-8V-4Fe-3Al-4Co 1350F(15min)AC 900F(8hrs)AC 160 159 45 17.5 24 1 T1-8Mo-8V-4Fe-3Al-4Co 1350F(15min)AC 160 159 45 10.0 19 1 1350F(15min)AC 1350F(15min)AC 160 159 45 15.0 22 1 1350F(15min)AC 160 161 161 45 15.0 22 1	:	=	$\overline{}$	203	188	15	•	æ	15.1
T1-17V-7, SCo-3A 1350F(15min)WQ+900F(16hrs)AC 216 202 15 5.0 9 1	:	=	_	219	504	15	2.0	6	15.8
T1-17V-7,5Co-3A1 1350P(15min)AC 1350P(15min)AC 1350P(15min)AC+900P(8hrs)AC 1350P(15min)AC+900P(8hrs)AC 1350P(15min)AC+900P(8hrs)AC 1350P(15min)AC+900P(8hrs)AC 1350P(15min)AC 1350P(15min)AC+900P(8hrs)AC 1151 115	=	Ξ	$\overline{}$	216	202	15	5.0	σ.	15.7
" 1350F(15min)AC " 1350F(15min)AC+900F(8hrs)AC 194 176 10 5.0 11 1 " 1350F(15min)AC+900P(8hrs)AC 194 177 10 5.0 11 1 " 1350F(15min)AC+900P(8hrs)AC 194 177 10 7.5 8 1 " 1350F(15min)AC 15min)AC 159 45 17.5 24 1 " 1350F(15min)AC 1590F(8hrs)AC 159 158 15 7.5 9 1 " 1350F(15min)AC+900P(8hrs)AC 161 161 45 15.0 22 1	まま・	T1-17V-7, 5Co-3A1	1350F(15min)AC	155	150	45	15.0	25	13.9
" 1350F(15min)AC+900F(8hrs)AC 194 176 10 5.0 11 " 1350F(15min)AC+900F(8hrs)AC 194 177 10 7.5 8 Ti-8Mo-8V-4Pe-3A1-4Co 1350P(15min)AC " 1350P(15min)AC " 150P(15min)AC+900P(8hrs)AC 159 45 17.5 24 " 1350P(15min)AC+900P(8hrs)AC 159 158 15 7.5 9 " 1350P(15min)AC+900P(8hrs)AC 161 161 45 15.0 22	=	=	1350F(15min)AC	156	151	3	7.5	17	13.9
" 1350F(15min)AC+900P(8hrs)AC 194 177 10 7.5 8 T1-8Mo-8V-4Pe-3A1-4Co 1350P(15min)AC 160 159 45 17.5 24 " 1350P(15min)AC+900P(8hrs)AC 159 158 15 7.5 9 " 1350P(15min)AC+900P(8hrs)AC 161 161 45 15.0 22	:	=		18	176	10	5.0	11	14.7
T1-8Mo-8V-4Fe-3A1-4Co 1350F(15min)AC 161 159 45 17.5 24 19.0 1350F(15min)AC 1350P(8hrs)AC 159 159 45 10.0 19 1350P(15min)AC+900P(8hrs)AC 159 158 15 7.5 9 1350P(15min)AC+900P(8hrs)AC 161 161 45 15.0 22	£	:		18	177	10	7.5	œ	15.0
" 1350P(15atn)AC 160 159 45 10.0 19 " 1350P(15atn)AC+900P(8hrs)AC 159 158 15 7.5 9 " 1350P(15atn)AC+900P(8hrs)AC 161 161 45 15.0 22	-5463	T1-8Mo-8V-4Fe-3A1-4Co	1350F(15min)AC	191	159	45	17.5	77	13.8
" 1350P(15min)AC+900P(8hrs)AC 159 158 15 7.5 "	:	Ξ	1350P(15min)AC	160	159	45	10.0	19	13.8
" 1350P(15min)AC+900P(8hrs)AC 161 161 45 15.0	Ξ	=	1350F(15min)AC+900F(8hrs)AC	159	158	15	7.5	6	14.0
	=	×	1350F(15min)AC+900F(8hrs)AC	191	191	45	15.0	22	14.2

0.050-inch gage sheet prepared from 4-pound ingots. In 1-inch. **33**

TABLE LVI

EFFECT OF AGING AT 1100P ON THE MECHANICAL PROPERTIES OF T1-17V-7, 5Co-3A1 SHEET ALLOY(1)

	16 hrs	**		
	8 hrs	343		
	4 hrs	346	lus Psi)	
11007	2 hrs	343	Modulus (Ex10-6ps1	13.9 13.4 13.8 13.3 14.2
Aging at	1 hr	339	% E1.	14 23 23 21 21 18 13
Vickers Hardness After Aging at 1100F	30 min	333	El. Uniform	5.0 15.0 12.5 10.0 10.0
/ichers Har	25 min	335	E1. Local	1 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
	10 min	331	YS Kps 1	147 147 146 147 146 147 154
-7-	TO C	333	UTS Kps1	152 151 152 154 153 154 169
c		331	ment	(10min) AC (10min) AC (30min) AC (30min) AC (30min) AC (16hra) AC
Solution Treatment	Response	1350F(15min)AC	Heat Treatment	1350F(15min)AC 1350F(15min)AC 1350F(15min)AC+1100F(10min)AC 1350F(15min)AC+1100F(10min)AC 1350F(15min)AC+1100F(30min)AC 1350F(15min)AC+1100F(30min)AC 1350F(15min)AC+1100F(16hrs)AC
Ingot No.	Hardness Response	T-5494	Button No. Tensile Results	T-6120

(1) 0.050-inch gage sheet produced from ½-pound ingots.

TABLE LVII

BEND RADII OF "STABILIZED" METASTABLE BETA SHEET ALLOYS(1)

	1250F 8hrs	2.3T	2,5T	2.4T	2,6T
r Aging	1100F 8hrs	2.7T	2.8T	3.7T ⁽²⁾ 2.4T	3,0T
Bend Radius After Aging	1000F 8hrs	3.6T	3.7T	3.8T	4.3T
Bend Rad	950F 8hrs	4.2T	3,9T	5.2T	4.8T
	0	1.4T	1.4T	1.5T	2.1T
	Treatment	1500F 10mins AC		:	=
	Alloy	T1 8Mo 8V 2Fe-3A1	TI 8Mo 8V 5Co 3A1	T1 17V 7.5C3 3A1	T1 17V 2Fe 2Co 3A1
Ingot	NO	V 2989	V 2966	V-2967	V-2858

0.050-inch gage sheet prepared from 30-pound ingots. Anomalous figure caused by poor sheet surface. (2)

TABLE LVIII

ROOM TEMPERATURE AND 600P TENSILE PROPERTIES OF "STABILIZED" HETASTABLE BETA SHEET ALLOYS

Ingot No.	1.104	Bear Treatment	75.05 75.05 75.05	YS	Local Elong.	Uniform Elong.	Total Elong.	Modulus (Ex10-6ps1)
(e) Roo	Room Temperature							
V-2989	T1-8Mo-8V-2Fe. 3A1	1500F-10mins-AC+1100F-8hrs-AC	151	140	07	8.75	13, 5	14.9
: :	w 180	= :	15.	7.	\(\frac{1}{2}\) \(\frac{1}{2}\)	10	15	15.2
=	:	Ξ	7 °	<u> </u>	65	11 25	7.	7. 7.
=	z	Ξ	į or	139	45) ()	i	14.5
		Average	149	139	4.5	8	14	14.7
V- 2900	T1-8M0-8V-SC0-341	1500F-10mins~AC+1100F-8hrs.AC	187	173	10	\$	7.5	15,4(1)
=	:		175	1.6	20	1.25	9	15.1
:	Ξ	Ξ	174	169	10	2.5	9	$15.0^{(1)}$
:	=	Ξ	174	165	25	8.75	11	15.1
<u>:</u>	Ξ	Ξ	176		ጽ	8.75	12.5	15.2
		Average	176	168	20	5.25	8.5	15.2
V-2967	TX-17V-7, 5Co-3A1	1500F - 10mins-AC+1100F-8hrs-AC	165	- t	15	7.5	80	16.4(2)
:	÷	Ξ	167	145	15	20		17.0(2)
=	:	=	168	155	20	8,75	10	15.7
:	:	ε	168	1.57	ĸ	sy.	~	14.9
£	3	Ξ	166	12	21	v	6.5	14.9
		Average	167	150	1.5	7.5	86.55	15.8
V-2858	T1-17V-2Fe-2Co-3A1	1500F-10mins-AC+1100F-8hrs-AC	153	138	57	11.25	16.5	14.2
Ξ	=	τ	149	138	35	7.5	11	13.8
÷	=	٤	151	139	35	6.25	13.5	14.9
•	.	Ξ	K	140	35	8.75	15	13.9
=	-	=	971	134	4.5	8.75	14.5	13.8
		AV&T&X&	151	138	O.	8.5	14	13.9

(1) Sample broke outside gage length (2) Sample broke in head of finished in file grips.

TABLE LVIII (Continued)

(4) 0.050 inch gage sheet prepreduce of row of row temperature yield strength retained at 600F were;
Note: Percentage of room temperature yield strength retained at 600F were;
T1-8Mo-8V-2Fe-3Al - 78%
T1-8Mo-8V-5Co-3Al - 86%
T1-17V-7.5Co-3Al - 86%

TABLE LIX

ROOM TEMPERATUPE AND 600F NOTCH TENSILE PROPERTIES OF "STABILIZED" METASTABLE BETA SHEET ALLOYS(1)(2)

Ratio NTS/ UTS	1.16			0.66	1.64	0.78	1.04
Average	174	136		11.7	158	131	157
NTS	175 173 172	177 177 134 137	138	139 139 121 110 154	160	128 136 139 161 161	156
Test Temp OF	RT::::	600 F	RT TA	11 11 600F	= = = 6	KI 600F	=
Heat Treatment	1500F 10mins AC+1100F 8hrs AC		1500F-10mins-AC+1100F-8hrs-AC		11 11 1200 TO	1300F Louins-AC+1100F Shrs-AC	=
Alloy	Ti-8Mo-8V 2Fe 3A1		n n Ti~8Mo~8V~5Co 3A1		11 11 11 11 11 11 11 11	11	=
Ingot No.	V2989	# # # # #	u u V 2900	=====	11 11 12 12 12 12 12 12 12 12 12 12 12 1		Ξ

TABLE LIX (Continued)

Ratio NTc/ UT-		1.07
Average		162
NTS	155 157	161 160 160 158 170 139 144 137
Test Temp OF	600F	RT 600F
Heat Treatment	1500F 10mins AC+1100F 8hrs-AC	1500F-10mins AC+1100F 8hrs AC " " " " " " " " " " " " " " " " " "
Alloy	Ti 17V-7,5Co 3A1	Ti-17V 2Fe 2Co-3A1 "" "" "" "" "" "" "" "" "" "" "" "" ""
Ingot No.	V-2967	V-2971

(1) $K_t = 8$ (2) 0.050-inch gage sheet

TABLE LX

CHEEP STABILITY OF "STABILIZED" METASTABLE BETA SHEET ALLOYS (1)

			2	Ten Penel				Sur	Subsequent	Tensile Properties	Propert	**
10gut				amender daare	21	1				1 to 1		
2	Alloy	Heat Treatment	5	Ene d	1	, e	g S	X.	10001	Uniform	Total	Modulus
V 2989	T = - 8M 8U - 2E - 34 1					1	200	2	Klong	Elong.	Llong.	(Ex10-6ps1)
=	TVC =947 = 40 -010 - 7 =	1270F-10mins-AC+1100F-8hrs-AC	900	93.5	150	0.0	152	571	,	•	•	
5	=	= ;	2	2	=	0.141		7 7		12.5	8	14.6
6.		T	=	=	=	7110	3 :	3	2	01	18	14.6
•		2	:	=	8	0.110	101	142	35	2	16	14.9
: :	=	=	=	:	3:	0.180	157	142	8	10	91	15.0
•	=	=		: ;	: :	0.193	156	147	ଚ୍ଚ	10	17	15.5
			;	:	:	0.244	156	143	35	7.5	71	15.1
V 2900	T1-8Mo-8V-5Co-3A1	=	900	•						•		2.
=		=	9	119	150	0.221	165	163	•	,	4	•
=	£1	: :	=	=	=	0.178	171	168	1 u		† (15.0
=	2		=	=	=	170	11.	95	n 1	۰ د	m	15.0
:	=		:	=	Š		77.	707	^	0	-	15.1
=	: :	=	:	=	} =	9.0	007	791	:	;	:	16.8(2)
	:	=	=	=	: :	0.415	16/	7 2	'n	0	7	3 71
,				:	:	0.207	167	167	'n	2.5	۰ ۷	7 7
V2967	T1-17V-7. SCo-341	2	į)	•	•	7.7
2	=======================================	: :	8	117	150	0.176	764	150	ç		,	
=	- Çin - Çin	2 :	•	E	Ξ	192	191	150	3 4	۲.5 د د د	•	14.7
=	***************************************	=	=	£	=	5.1.0	707	130	n (2.5	•	14.2
:	: ;	2	=	=		0.130	COT	157	∽	2.5	7	74.6
: :	Str.	=	5	: 3	3	0.513	172	171	!	;		16. 0(2)
*	τ	=	: :	: ;	•	0.349	167	163	Ŋ	2	· ~	ħν
,			:	:	2	0.291	169	162	Š	2 .	יו ר	14.0
V2971	T1-17V-2Fe-2Co-3A1	8	,	,))	1	74.0
=	-	: 3	9	%		0.145	151	8	ş			
=	=	: 1	t	E		0.152	7	142	3 8		2 ;	13.8
=	•		*	E		0.141	Ş	1 20	3 8	٠.١	3 1	14.2
£	=	E ;	:	E	200	0.622	1 L	173	2 .	·.>	14	14.1
2	2	E	t	Z		0.655	19.1	177	J ,	o	4	14.8
		*		=	=	655.0	707	7/1	^ •	0	m	14.9
	USU-Inch gage sheet pr	County Linch gage sheet prepared from 30-pound ingots.		į			*/1	007	^	0	4	15.0
	mpie broze outside gas	te length.										

TABLE LXI

AGING RESPONSE OF METASTABLE BETA SHEET ALLOYS(1)

	950		369	368	375	339	356	366		283	305	358	361	366	371		324	378	393	37.1	381	396		307	303	367	366	395	406
nse at ure, ^o F	8		376	044	393	390	379	405		284	300	344	393	399	412		290	373	397	413	419	428		296	299	353	403	437	445
s Response emperature	850 900		331	401	410	417	4 28	4 28		285	285	303	335	4 20	433		279	323	405	441	454	877		288	285	304	349	454	450
41	800		282	365	454	437	428	429		288	288	301	327	391	454		280	306	377	426	448	443		5 &	294	312	350	407	432
	0	792							289							279							293						
Aging Time	Hours	0	~	2	4	œ	16	54	0	1	2	4	œ	16	24	0	 4	2	4	œ	16	77	0	7	2	4	∞	16	54
Solution	Treatment	1500F-10min WQ	:	:	:	=	=	=	1500F-10min WQ	*	:	:	**	Ξ	Ξ	1500F-15min-WQ	Ξ	=	:	Ξ	=	=	1500F-15min-WQ	=	Ξ	=	=	Ξ	=
	Alloy	Ti-17V-1.5Fe 3A1	=	-	**	**	=	=	T1-17V-4Fe-3A1	=	•	=	=	=	:	T1-8Mo-8V 1Fe-3A1	=	-	-	=	•	•	T1-8Mo-8V-3Fe 3A1	=	-	=	•	•	=
Button	No.	T-5056	=	=	=	=	=	=	T-5057	=	Ξ	=	=	=	den Tir	T.5058	=	=	=	=	Ξ	=	T-5059	=	Ξ	=	:	=	=

(1) 0.050-inch gage sheet prepared from ½ pound ingots.

TABLE LXII

TENSILE PROPERTIES OF NETASTABLE BETA SHEET ALLOTS (1)

Ingot No.	A110y	Heat Treatment	UTS Fps1	YS	Local Elong.	Uniform Elong.	Elong.	Elastic Modujus
T-4678	T1-17V-1.5Fe-3A1	15008 10=1=0	1 :				1 11 4	(EX10-vps1)
: :	=		114	107	45	10.0	15	9.77
: :	= =	" +900F(8hrs)AC	187	175	£ 8	2.5 2.5	13 S	9.18
(o) /			198	1 8 2	20	0	• •	15.4
080	T1-1/V-4Fe-3A1	1500F(10min)WQ	126	119	55	20.0	76	7
= :	Ξ	34(==48)#008+ ".	127	121	55	17.5	7 7 7 8	11.2
Ξ	Ξ) (e 1110) 1000 1	201	186 186	20 15	2.5 2.5	∞ ⊷	13.9
T-4827	T1-8Mo-8V-17e-3A1	1500F(15min)Wo	12%	9	S		1	
: :	= =	2	122	116	S &	2 r 0 v	14	9.23
:	: :	+900F(8hrs)AC	196	181	15.5	.0.0	7 v	9.63
		:	198	181	10	2.5	4	14.5
T-4829	T1-8Mo-8V-3Fe-3A1	1500P(15min)WQ	126	124	55	20	90	
ε	=	74/2248/B000+ ::	126	123	S	20.0	52 22	10.9
Ξ.	Ξ		178	157 166	15 25	2.5 5.5	vo vo	15 3(2)
(1) 0.05	0.050-inch gage sheet prepared from 1	the state of the s) •	•	13.37

(1) 0.050-inch gage sheet prepared from \$-pound ingots. (2) Sample broke outside gage length.

TABLE LXIII

TENSILE PROPERTIES OF T1-8Mo-8V-2Pe-3A1 SHEET ALLOY, HEAT V-2793

		UTS	YS		Elongation, %		Modulus
Heat 1	Heat Treatment	Kps1	Kps1	Locel	Uniform	7 tn 2"	(Ex10-6ps1)
1500F(15min)WQ	8	123	118	65	6.25	16	10.5
=		125	120	20	7.5	17	9.6
=	+800F(1hr)AC	120	115	65	10.0	21	11.2
=	=	120	116	9	7.5	16	10.8
=	+800F(8hrs)AC	129	122	20	6.25	15	11.5
=		130	125	20	8.75	16	11.2
=	+800F(24hrs)AC	212	193	15	2.5	4	14.4(2)
=		210	180	15	2.5	3.5	14.4(2)
=	+850F(1hr)AC	121	113	9	7.5	18	11.0
•		120	117	65	15.0	23	10.8
=	+850F(8hrs)AC	170	150	8	2.5	œ	12.9
=		175	154	25	2.5	6.5	12.9
•	+850F(24hrs)AC	707	191	15	3.75	5.5	15.2
=	:	208	196	10	1.25		15.0(1)(2)
=	+900F(1hr)AC	122	119	09	15.0	23	11.4
:		122	119	09	5.0	91	11.3/1/2
=	+900F(8hrs)AC	196	179	10	1.25	7	14.9(1)(7)
=	*	199	182	15	2.5	2	15.1
=	+900F(16hrs)AC	197	187	25	2.5	7.5	15.1
=	*	193	185	15	1.25	4.5	14.6(2)
=	+900F(24hrs)AC	203	81	S	2.5	4.5	15.3(1)(2)
Ξ	•	908	192	15	2.5	9	15.7
2	+900F(32hrs)AC	196	185	15	2.5	9	15.1
=	*	18	195	20	2.5	4.5	14.3(2)
=	+900F(64hrs)AC	198	188	15	3.75	7.5	15.1
:	=	197	193	10	1.25	3.5	14.3(2)

(1) Sample broke outside gage length. (2) Sample broke in head - test finished in file grips.

TABLE LXIII (Contimmed)

Modulus (Ex10-6psi)	11.3	12.2	12.1	14.4	14.8	14.8	14.7	14.9(1)(2)	14.9	14.8	15.1	15.3	15.2(2)	15.1	15.2(2)	15.2,2,	15.0(2)	15.1	15.4(2)	11.4	11.4	14.3	13.8	14.8	14.5	14.6	14.5
7 tn 2"	71	9.5	œ	7	7	7	7	6.5	7.5	8.5	^	6.5	6.5	01	7	6.5	6.5	6.5	7.5	21	16.5	9.5	91	9.5	9.5	9.5	10
Uniform	7.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	3.75	3.75	2.5	2.5	2.5	1.25	1.25	3.75	2.5	2.5	2.5	3.75	14.4(3)	6.25	5.0	5.c	6.25	5.0	4.0
Local	200	35	8	15	15	25	25	15	25	30	25	25	8	20	70	15	70	25	25	8	07	35	8	ຂ	ຂ	35	35
Kps1	120	145	137	171	175	183	178	181	178	176	175	177	178	179	179	180	188	174	174	124	127	156	153	166	162	158	155
VTS	127	151	148	185	187	187	189	192	191	187	188	188	188	188	188	193	196	185	186	130	135	169	166	179	177	172	168
Heat Treatment	1500F(15min)WQ+950F(1hr)AC	" +950F(2hrs)AC	. =	" +950F(4hrs)AC		" +950F(6hrs)AC	=	" +950F(8hrs)AC	=======================================	" +950F(12hrs)AC		" +950F(16hrs)AC	=	" +950F(20hrs)AC		" +950F(24hrs)AC		" +950F(32hrs)AC		" +1000F(lhr)AC		" +1000F(2hrs)AC		" +1000F(4hrs)AC		" +1000F(6hrs)AC	, =

(3) Sample had double neck, resulting in inability to obtain true uniform elongation result. (4) 0.050-inch gage sheet prepared from 30-pound ingot.

TABLE LXIV

TENSILE PROPERTIES OF T1-17V-4Pe-3A1 SHEET ALLOY, HEAT V-2729 (3)

		STS	YS		Elongation, %		Modulus
Heat	Heat Treatment	Kpst	Kps1	Local	Uniform	% in 2"	(Ex10-6ps1)
1500F(10min)WQ	OM (125	123	55	5.0	16	12.0
=		125	122	8	7.5	18	12.2
=	+800F(1hr)AC	125	123	9	11.25	17	12,2
2		123	122	55	6.25	17	12.5
=	+800F(8hrs)AC	126	123	55	7.5	19	12.5
=	=	126	123	8	5.0	13	12.2
2	+800F(24hrs)AC	150	142	9	0	7	13.2
=	-	151	150	01	3.75	9	12.9
=	+800F(64hrs)AC	203	188	0	ပ	0	14.1(1)
£	**	212	195	0	0	0	14.2(1)
=	+850F(1hr)AC	122	121	09	6.25	18	12.0
Ξ		125	123	8	2.5	16	12.6
=	+350F(8hrs)AC	128	125	10	2.5	7.5	12.6
=	9	129	125	45	0	ø	12.6
:	+850F(24hrs)AC	203	189	10	0	3.5	$15.1_{(1)}$
=	=	:	:	:	;	:	14.3(1)
=	+850F(64hrs)AC	195	:	1 1	:	:	14.3(1)
:	•	214	201	15	1.25	4	15.3
=	+900F(1hr)AC	125	123	55	6.25	16.5	12.7
•	** **	122	121	55	1.25	8.5	12.6
=	+900F(2hrs)AC	124	123	45	7.5	16.5	12.0(1)
=	•	126	124	45	6.25	16	11.8
=	+900F(4hrs)AC	1.38	130	07	8.75	13	12.8
*	•	130	124	3	8.75	15	12.4
=	+900F(8hrs)AC	157	144	35	6.25	11.5	13.8
Ξ	÷	167	152	20	2.5	6.5	14.0,3
=	+900F(16hrs)AC	191	175	က္က	2.5	6.5	14.7(2)
=	=	1%	174	25	3.75	6.5	14.8

335

Sample broke outside gage length.
Sample broke in head - test finished in file grips.
0.050-inch gage share prepared from 30-pound ingot.

TABLE LXIV (Continued)

		SIS	¥.		Elongation, Z		Modulus
Hear 1	Heat Treatment	Kpst	Kps 1	Local	Uniform	2 tn 2"	(Ex10-6ps1)
1500F(10min)	1500F(10min)WQ+900F(24hrs)AC	200	184	2.5	6.25	6	15.6/1
: :	· •	196	:	;	:	;	15.6(1)
Ξ	+900F(32hrs)AC	197	186	ጽ	2.5	6.5	15.0(2)
=		199	184	ຂ	2.0	8.5	15.4
Ξ	+900F(64hrs)AC	195	182	5 0	1.25	6.0	15.3
=	· ·	197	185	ន	1.25	5.0	15.7
Ξ	+950F(1hr)AC	124	122	55	6.25	15.5	12.7
=		125	123	S	7.5	17	12.7
=	+950F(2hrs)AC	126	121	ક્ષ	5.0	12.5	12.3
=		130	125	25	5.0	12.5	12.3
Ξ	+950F(4hra)AC	157	1,43	25	5.0	6	13.4
Ξ	7.2	156	143	50	3.75	7.5	13.4
Ξ	+950F(6hrs)AC	166	151	3	7.5	11	13.8
=	· •	160	971	22	7.5	10.5	13.4
Ξ	+950F(8hrs)AC	169	154	30	5.0	10.5	14.5
Ξ	*	169	· 大	ၕ	5.0	10.5	14.1
Ξ	+950F(16hrs)AC	184	170	ጽ	2.5	7.5	15.1
Ξ		184	169	20	5.0	9.5	14.8
=	+950F(20hrs)AC	179	165	25	5.0	9.5	15.0
=	=	181	167	35	8.75	13	15.3
=	+950F(24hrs)AC	182	170	35	2.5	9.5	15.5
=	+950F(25hrs)AC	181	168	35	6.25	10	15.2,
=	+950F(32hrs)AC	185	174	8	5.0	11	14.5(2)
Ξ		187	17.3	20	6.25	9.5	15.2
=	+950F(64hrs)AC	182	168	35	3.75	10.5	14.6
=	=	184	172	35	3.75	œ	15.3
Ξ	+1000F(1hr)AC	128	123	35	8.75	17	12.1
=	=	126	122	20	16,25	18	12.0
=	+1000F(2hrs)AC	135	128	07	8.75	15.5	12.6
=	=	142	132	07	6.25	14	12.7
=	+1000F(4hrs)AC	155	142	25	7.5	13	13.7
Ξ	**	159	145	ጽ	7.5	13	14.1
=	+1000F(6hrs)AC	160	141	ጽ	6.25	13	13.9
=		158	145	07	8.75	14	13.8
:	+1000F(16hrs)AC	170	149	25	2.5	7	14.7
=	Ξ	174	159	5	6 25	3 11	7 >1
			ı H	•) .)	1.41	1.77

TABLE LXV

ACE HARDENING RESPONSE FOR Ti-17V-7. SCo-3A1 SHEET ALLOY (1)

	950	362 396 405 433 446 429
er Aging	000	383 416 433 452 455
Vickers Hardness After Aging Temperature Or	8 0 5 0	344 353 412 449 649
cers Hard	800	343 343 351 417 459 411
Vict	0 %	
Aging Time	Hears	7 4 8 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
	1500F(10min)WQ	
▼	T1-17V-7, SC0-3A1	:::::
Ingot No.	V-2920	

(1) 0.050-inch gage sheet prepared from 30 pound ingots.

TABLE LXVI

AGE HARDENING RESPONSE FOR TI-8Mo-8V-5Co-3A1(1)

8 ing	950	331 328 332 357 371 426
After A	006	329 330 336 353 391 401
Vickers Hardness After Aging Temperature Or	850	335 337 337 388 404
Vickers	800	346 334 374 374 374
	0 7 7	
Aging Time	Hours 0	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
	1500P (10min) WQ	
Alloy	T1-8Mo-8V-5Co-3A1	
Ingor No.	V-2900	

(1) 0.050-inch gage sheet prepared from 30-pound ingots.

TABLE LXVII

AGING RESPONSE OF T1-17V-2Fe-2Co-3A1 SHEET ALLOY, V2858(1)

g u]	930	287	301	387 389 410
Viciers Hardness After Aging Temperature, OF	<u>&</u>	289	297 313	408 415 447
rdness /	850	289	333	387 420 435
Ciners Ha	800	286	311 %	450 413 450
		ţ		
Aging Time	Hours	; ⊶ (7 7	8 16 24
£ 1000000000000000000000000000000000000	1500F(10min)WO	= =	: :	:::
>0 [] V	T1-17V-2Fe-2Co-3A1	: :	: :	: :
Ingot No.	V 28 58	: :	: :	::

(1) 0.050-inch gage sheet prepared from 30-pound ingot.

TABLE LXVIIL

TENSILE PROPERTIES OF TI-8Mo-8V-5Cu-3A1, INCOT NO. V-2900

		UTS	YS		% Elongation		Modulus
Heat	Heat Treatment	Kpsi	Kps	Loca 1	Uniform	in 2-inches	(Ex10-6ps1)
1500F(10min)WQ	036	134	132	8	15.0	23	12.2
=		136	134	Ş	16.25	22.5	12.0
Ξ	+800F(1hr)AC	152	150	09	2.5	13.5	13.8
Ξ		148	147	65	2.5	17	13.2
:	+800F(8hra)AC	141	139	S	11,25	18.5	12.8
•	Ξ	139	136	Š	11.25	18	12.4
Ξ	:800F(16hrs)AC	168	161	v:	1.25	7	13.8(1)
Ξ		165	153	30	3.75	6	12.9
Ξ	+800F(24hrs)AC	187	172	20	1.25	6.5	13.8
ε	•	183	176	30	1.25	9	13.9
Ξ	+8507(1hr)AC	144	771	ዴ	0	œ	12.8
Ξ		151	151	45	3.75	11.5	13.5
=	+850F(4hr.)AC	151	150	30	7.5	13.5	13.5(1)
=	*	155	154	S	6.25	13.0	13.9
Ξ	+85CF(16hrs)AC	184	175	92	6.25	8.5	14.0
=	•	185	176	15	3.75	හ	13.9
:	+8.50F(34hrs)AC	226	218	Ś	0	,4	15.3(2)
Ξ		:	1 1	;	•	!!!	-
I	+900F(1hr)AC	145	144	S	1,25	12.5	13.4
Ξ	+900F(4hrs)AC	149	148	0,4	11.25	19	12.9
Ξ	**	149	147	20	10.0	20	13.0
=	+900F(8hrs)AC	161	160	25	1.25	ئ. ئ	13.1
=	**	160	156	15	7.5	11.0	13.7
•	+90%F(12hr*)AC	176	166	20	5.0	7	13.7
Ξ	Ξ	.72	167	10	1.25	7	13.8
=	+900F(16hrs)AC	92	180	01	1.25	e	14.7
Ξ	=	, , 08	172	10	0	ć.	14.0,3
=	+'00F(24hrs)AC	21,5	203	10	1.25	2.5	15.6(2)
=	=	: :	1 1	:	: :	:	15.3(1)

333

Sample broke outside gage length. Sample broke in head, test finished in file grips. 0.050-inch gage sheet prepared from 30-pound ingot.

TABLE LXVIII (Continued)

		UTS	2		Z Zlongation		Modulus
Heat T	Heat Treatment	Kpsi	×۱	Local	Uniform	in 2-inches	(Ex10-6ps1)
1500F(19min)	1500F(10min)WQ+950F(lnr)AC	147	146	45	O	3,5	13.4
=	, , ,	147	146	C4	0	7	13.4
=	+950F(2hrs)AC	147	146	8	5.0	9.5	13.3
=	er 4-	153	151	45	15.0	21.5	13.4
**	+950F(4hrs)AC	155	153	30	8.75	15.5	13.8
=	•	156	155	'n	6.25	٧.٧	13.7
=	+950F(8hrs)AC	179	169	1 1	:	1 1 9	$14.6^{(1)}$
=	-	175	172	10	1.25	47	14.3
=	+950F(16hrs)AC	201	189	20	5.0	2.5	15.5
**		188	175	15	2.5	9	14.4(1)
=	+950F(24hrs)AC	205	192	S	0	7	15.7
Ξ	=	;	1 1	: :	:	: : :	15, 3(1)
=	+1000F(1hr)AC	153	151	30	11.25	16	13.9
=	=	147	147	20	0	9	$13.6^{(1)}$
=	+1000F(2hrs)AC	153	151	25	3.75	12	13.8
=	#: ## ## ## ## ## ## ## ## ## ## ## ## #	153	150	20	2.5	7.5	13.8
=	+1000F(4hrs)AC	157	154	20	3.75	8.5	14.0
=	To the	154	146	25	11.25	16	13.4
=	+1000F(8hrs)AC	179	167	20	7.5	9.5	14.5
=	=	181	170	35	7.5	13	14.9,
=	+1000F(12hrs)AC	187	179	90	1.25	6.5	15.3(1)
=	2	185	175	30	5.0	11	15.1
:	+1000F(16hrs)AC	198	t 1	;	ŧ !	1 1	16.3(1)
:	-	197	189	25	0	S	14,9(2)

3333

Sample broke outside gage length. Sample broke in head, test finished in file grips. 0.050-inch gage sheet prepared from 30-pound ingot.

TABLE LYIX

TENSILE PROPERTIES OF T1-17V-7.5Co-3A1 SPEET ALLOY, INCOT NO. V-2920

		UIS	YS		% Elongation		Modulus
Heat Tr	Heat Treatment	Kps1	Kps1	Loca 1	Uniform	1. 2-Inches	(Ex10-5psi)
1500F(10min)WO	020	149	147	30	1.25	5.5	12.7(1)
	·	151	148	55	13.75	23	13.0,11,73
Ξ	+800F(1hr)AC	154	153	5	0	1.5	'n
=	=======================================	153	151	20	1.25	3	13.2(1)
Ξ	+800F(8hrs)AC	192	179	10	1.25	3.5	13.8(2)
=	-	193	182	10	1.25	3.5	. `
=	+800F(16hrs)AC	214	211	1 1	ŧ ţ 1	•	15.1(1)(3)
=	, = , =	224	214	S	1.25	m	_ `
Ξ	+800F(74hrs)AC	227	223	'n	0	0.5	_ `
*		222	218	S	0	0.5	_
=	+850F(1hr)AC	152	149	20	13.75	20	13, 2(1)
=	,= ,=	152	148	07	5.0	10	
=	+850F(4hrs)AC	174	172	10	0	2.5	13.9(4)(2)
=	,=	172	168	10	0	2	13.9(1)
Ξ	+850F(8hrs)AC	184	181	20	0	2.5	14.2(1)
=	***	187	180	5 C	0	3.5	14.5/1/
=	+850F(16hrs)AC	267	201	'n	0	0.5	
=	, man	206	200	20	0	e	12.3(4)(4)
=	+850F(24hrs)AC	229	217	10	1.25	က	15.2(1)
=	, 2	220	215	!!!	1 1	\$ 	
=	+900F(1hr)AC	152	148	20	7.5	14.5	13.4(1)
=	, E	155	153	20	0	9	13.3(1)
=	+900F(2hrs)AC	176	172	20	0	7	14.2(1)
=	. . .	177	171	20	0	'n	13.7(1)
=	+900F(4hrs)AC	189	180	5	1.25	2.5	14.1
z	, E	193	183	2	1.25	w. w	14.6(1)
=	+900F(6hrs)AC	193	186	20	1.25	1.5	14.6
Ξ	z	198	187	10	2.5	9	14.2(1)
=	+900F(8hrs)AC	210	199	'n	1.25	2.5	14.9(4)

Sample broke outside gage length. Sample broke in head - test finished in file grips. Five other samples given the same heat treatment, broke before reaching yield stress. **399**

TABLE LXIX (Continued)

Heat D	Heat Treatment	STU	YS		% Elongation	- (Modulus
		Tedu	Vost	Local	Unitorm	In 2-inches	(Ex10-0Ps1)
1500F(10min)	1500F(10min)WQ+900F(8hrs)AC	202	197	νſ	C	-	1/ (1)(2)
=	+900F(16hrs)AC	213	203	, v	1, 25	• 6	
-	Ξ	227	216	10)) m	15.3(2)
= :	+900F(24hrs)AC	220	207	21	3.75	ر د د	15 4(1)(2)
=	Ξ	218	207	Ś	1.25	,	15 2(2)
=	+950F(1hr)AC	149	146	20	1.25	v noo	, , , , , , , , , , , , , , , , , , ,
=	-	147	142	7 0	0.0	1.0	13.3(2)
Ξ :	+950F(2hrs)AC	167	166	. !	· :		13.6(2)
= ;	-	1.68	162	5	1.25	7	14.0
= :	+950F(4hrs)AC	168	160	20	3.75	٠ در	13.6
= :	*	167	191	5	1.25) i~	13.7(1)
: :	+950F(6hrs)AC	190	181	\$	1.25	2.3	14. 6(2)
Ξ :	=	170	164	Ŋ	C	, (
: :	+950F(8hrs)AC	198	196	'n	0) i G	14.8(2)
: :	=	206	190	20	1.25) i/	77.7
= =	+950F(16hrs)AC	213	198	10	0	3,5	14 9(2)
: :		212	199	10	1.25	4	15.0(2)
: :	+950F(24hrs)AC	195	182	15	3.75	00	14.9
: :	=	197	184	15	3.75) oc	7.6
= :	+1000F(1hr)AC	162	162	5	0	2.5	13.4(1)(2)
Ξ ;	-	157	153	2	0	5.0	13 6(1)
	+1000F(2hrs)AC	173	167	5	5.0		14 1(2)
= :	:	167	160	10	0	9 4	13 0(1)
Ξ '	+1000F(4hrs)AC	189	176	10	· v	יי	7-70-10-1
= :	₹	183	173	20	1.25)	17. 6(1)
Ξ :	+1000F(8hrs)AC	190	179	٥	1.25	i eri	15 1(2)
= :	-	189	ţ •	; !	;	1) (13 6(1)(2)
: :	+1000F(16hrs)AC	199	061	10	2.5	4	14, 9(2)
	:	•	:	!	1 1	? !	14.5(1)(2)

Sample broke outside gage length. Sample broke in head test finished in file grips. Five other samples given the same heat treatment, broke before reaching yield stress. 0.050-inch gage sheet, prepared from 30-pound ingot. £355

TABLE LXX

HARDNESS AND TENSILE PROPERTIES OF T1-17V-2Fe-2Co-3A1, HEAT NO. V-2858

Heat Tree	Heat Treatment 10min)WQ +800F(1hr)AC +800F(8hrs)AC +850F(1hr)AC +850F(1hr)AC +850F(1hr)AC +850F(24hrs)AC +850F(24hrs)AC +900F(24hrs)AC +900F(24hrs)AC +900F(24hrs)AC +900F(24hrs)AC	Vickers Hardness (10Kg (10Kg (10Kg 2086 293 290 295 421 404 439 439 414 360 444 437 284 437 284 437 284 295 302	UTS Kps1 122 125 125 125 126 123 123 123 123 123 123 123 123 123 123	XS KP81 116 120 120 121 122 123 123 123 123 123 123 123 123	E1 10 10 10 10 10 10 10 10 10 1	Elongation, 7, 11, 25 11, 25 11, 25 12, 5 2, 5 2, 5 2	11 22 22 22 22 24 4 4 5 5 5 5 5 6 5 5 5 6 5 5 5 6 5 5 5 6 5 5 6 5 5 6 5 6 5 6 5 6 6 5 6	Modulus (Ex10-6psi) 11.2 11.9 12.4 12.2 14.0 14.0 14.0 14.9 12.2 12.2 12.2 12.2 12.1 12.2 13.2 13.2 13.2 13.3 13
::::	+900F(8hrs)AC +900F(16hrs)AC	414 414 420 420	197 200 202 205	180 182 187 197	00 01 21 21	3.75 1.25 1.25 2.5	۲ د ی ی.	14.9(1) 14.6(1) 15.3(1) 14.3(1)

(1) Sample broke in head, test finished in file grips.

TABLE LXX (Continued)

Heat Treatment			Vickers						
433 218 203 435 220 204 15 2.5 5 295 120 125 30 10 14.5 16 16 14.5 16 16 2.5 16 14.5 16 16 4 16 14.5 16 4 16 14.5 16 4 16 14.5 16 4 4 30 3 4 4 30 4 4 30 4 4 4 4 30 4	天命 本代 一丁5	rea coment	Hardness (10Kg Load)	UTS	YS	Local	Uniform	in 2"	Modulus (Ex10-6pst)
435 220 204 15 5 295 130 125 30 10 14.5 295 129 124 25 12.5 16 295 129 124 25 12.5 16 308 143 135 20 0 4 303 144 135 20 0 3 376 176 158 20 6.25 8.5 370 175 173 15 4.5 6.5 395 188 173 20 6.25 9 387 189 174 30 5.0 9.5 386 190 176 25 5.0 9.5 386 190 176 25 8 2.5 8 189 176 25 6.25 8 189 176 25 6.25 8 189 179 25 6.25 11		140 - 000 - 000 A	7.30	916	202				2(1)(2)
435 220 204 15 2.5 5 295 130 125 30 10 14.5 295 129 124 25 12.5 16 308 143 135 20 0 4 308 144 135 20 0 3 376 176 158 20 6.25 8.5 370 475 173 20 6.25 9 395 188 173 20 6.25 9 387 189 174 30 5.0 9.5 386 190 176 25 5.0 9.5 386 190 176 25 5.0 9.5 394 193 179 25 6.25 11	JOL (LOMAIS,	つて (カンジナマ) いつこれ レンボー	r r	977	C 0.7	:	1 1	;	15, 37-77
295 130 125 30 10 14.5 295 129 124 25 12.5 16 308 143 135 20 0 4 303 144 135 20 0 3 376 176 158 20 6.25 8.5 370 475 173 20 6.25 9 395 188 173 20 6.25 9 387 189 174 30 5.0 9.5 386 190 176 25 5.0 9 189 176 25 2.5 8 189 176 25 6.25 11	Ξ	=	435	220	204	15	2.5	2	15.1(1)
295 129 124 25 12.5 16 308 143 135 20 0 3 303 144 139 20 0 3 376 176 158 20 6.25 8.5 370 475 173 20 6.25 9 395 188 173 20 6.25 9 387 187 183 25 2.5 6.5 385 189 174 30 5.0 9.5 386 190 176 25 5.0 9 189 176 25 2.5 8 189 179 25 6.25 11	¥	+950F(1hr)AC	295	130	125	30	10	14.5	12.0
308 143 135 20 0 303 144 139 20 0 3 376 176 158 20 6.25 8.5 370 475 173 15 4.5 6.25 8.5 395 188 173 20 6.25 9 387 187 183 25 2.5 6.5 386 190 176 25 5.0 9 189 176 25 2.5 8 189 179 25 6.25 11	:	÷.	295	129	124	25	12.5	16	12.3
303 144 135 20 0 3 376 176 158 20 6.25 8.5 370 475 173 15 4.5 6.5 395 188 173 20 6.25 9 387 187 183 25 2.5 6.5 385 189 174 30 5.0 9.5 386 190 176 25 5.0 9 189 176 25 8 394 193 179 25 6.25 11	:	+950F(2hrs)AC	308	143	135	20	0	4	12.9(2)
376 176 158 20 6.25 8.5 370 475 173 15 4.5 6.5 395 188 173 20 6.25 9 387 187 183 25 2.5 6.5 385 189 174 30 5.0 9.5 386 190 176 25 5.0 9 189 176 25 8 394 193 179 25 6.25 11	٥	:	303	144	135	20	0	m	13.1(1)
370 175 173 15 4.5 6.5 395 188 173 20 6.25 9 387 187 183 25 2.5 6.5 385 189 174 30 5.0 9.5 386 190 176 25 5.0 9 189 176 25 8 394 193 179 25 6.25 11	-	+950F(4hra)AC	376	176	158	20	6.25	80 52	13.9
395 188 173 20 6.25 9 387 187 183 25 2.5 6.5 385 189 174 30 9.5 386 190 176 25 5.0 9 189 176 25 8 394 193 179 25 6.25 11	1	:	370	175	173	15	4.5	6.5	13,8(1)
387 187 183 25 6.5 385 189 174 30 9.5 386 190 176 25 5.0 9 189 176 25 2.5 8 394 193 179 25 6.25 11	:	+950F(8nrs)AC	395	188	173	20	6.25	6	14.7
385 189 174 30 5.0 9.5 386 190 176 25 5.0 9 189 176 25 2.5 8 394 193 179 25 6.25 11	Ξ		387	187	183	25	2.5	6.5	14.7(2)
386 190 176 25 5.0 9 189 176 25 2.5 8 394 193 179 25 6.25 11	Ξ	+950F(16hrs)AC	385	189	174	30	5.0	9.5	15,3(1)
189 176 25 2.5 8 394 193 179 25 6.25 11	:	Ξ	386	190	176	25	5.0	6	15.0
193 179 25 6.25 11	:	+950F(24hrs)AC	:	189	176	25	2.5	&	15.1
	Ξ	**	394	193	179	25	6.25	11	15.3

Sample broke in head, test finished in file grips. Sample broke outside gage length. 0.050-inch gage sheet, prepared from 30-pound ingot. 333

TABLE LXXI

600F TENSILE PROPERTIES OF METASTABLE BETA SHEET ALLOYS (1)

Ingot No.	A110y	Heat Treatment	UTS	YS Kpsf	Elong.	Elongation % in 1"	Total	Modulus (Ex10-6ps1)
V-2793	T1-8Mo-8V-2Fe-3A1	1500F(15m1n)WO+900F(8hrs)AC	171	140	20	Q	v	1 1
	•		165	142	10	0	4	14.4
•	=	=	168	142	10	2.5	'n	14.8
_	=	=	166	146	5	0	٣	
•	=	1500F(15min)WQ+900F(24hrs)AC	170	154	20	1.25	3.5	13.6
=	**		172	156	20	1.25	3.5	15.3
z.	Ξ	E	169	151	8	1.25	4.5	13.7
V-2858	T1-17V-2Fe-2Co-3A1	1500F(10min)WQ+900F(8hrs)AC	159	131	70	5.0	10	13.9
=	<u>=</u>	=	191	137	20	2.5	9	13,3
=	•	=	155	129	20	2.5	7	12.4
-	=	1500F(10min)WQ+900F(24hrs)AC	193	173	10	0	4	
<u>-</u>	:	•	18	173	5	0	7	16.4
=	=	=	191	168	S	2.5	က	16.0
V-2729	T1-17V-4Fe-3A1	1500F(10mins)WO+900F(8hrs)AC	152	(2)	30	2.5	o	13.0
_	:	, =	152	120	10	2.5	• •	13.8
:	Ξ	1500P(10mins)WQ+900P(24hrs)AC	177	158	10	0	· (1)	15.0
=	=	. <u>=</u>	178	154	10	2.5	4	15.0
V-2920	T1-17V-7, SCo-3A1	1500F(10mins)WQ+900F(8hrs)AC	186	162	10	2.5	9	13.3
: :	: :	.	192	172	01	2.5	4	13.7
		= :	181	(7)	10	2.5	4	14.6
	: :		188	(2)	10	2.5	4	13.2
•	:		191	168	2	2.5	4	14.2

(1) 0.350-fach gage sheet prepared from 50-pound ingot. (2) Extensometer slipped - yield not recorded.

TABLE LXXI (Continued)

Modulus (Ex10-6ps1)	15.3 14.0 13.9	12.4	15.0 16.3 14.2 17.7
1" Total	7 7 7 7 7	13 14	9 8 14 14
Elongation in 1"	0 0 2.5	νν	8.2.2 8.5.5
Elor	5 5 10	35 40	70 70 70 70 70 70
YS	184 184 184 176	122 128	126 153 160 153
UTS Kps1	197 200 208 198	136	142 185 184 175
Heat Treatment	1500F(10min)WQ+900F(24hrs)AC " " "	1500F(10mins)WQ+900F(8hrs)AC	1500F(10mins)WQ+900F(24hrs)AC
Alloy	11-1/V-/, 5C0-3 A 1	T1-8Mo-8V-5Co-3A1	= : :
Ingot No.	0767	V-2900 "	: : :

(1) 0.050-inch gage sheet prepared from 30-pound ingot. (2) Extensometer slipped - yield not recorded.

TABLE LXXII

PERCENTAGES OF ROOM TEMPERATURE YIELD STRENGTH RETAINED AT 600F, BY ALLOY AND HEAT TREATMENT

Vield % of Strength Knei	Wetaine	10 N		120 77 156 85	142 154 79 154 81
RT Yield Strength Kosi	181 203	158 203	198 207	156 184	180 191
Heat Treatment	1500F(10min)WQ+900F(8hrs)AC " +900F(24hrs)AC	1500F(10min)WQ+900F(8hrs)AC "+900F(24hrs)AC	1500F(10min)WQ+900F(8hrs)AC '' +900F(24hrs)AC	1500F(10min)WQ+900F(8hrs)AC " +900F(24hrs)AC	1500F(10min)WQ+900F(8hrs)AC " +900F(24hrs)AC
Alloy	T1-17V-2Pe-2Co-3A1	T1-8Mo-8V-5Co-3A1	T1-17V-7.5Co-3A1	T1-17V-4Fe-3A1	T1-8Mo-8V-2Fe-3A1

TABLE LXXIII

ROOM TEMPERATURE AND 600F NOTCH TENSILE PROPERTIES OF FIVE ACEABLE METASTABLE BETA SHEET ALLOYS (1) (2)

Ingot No.	Alloy	Heat Treatment	Test Temp OF	NTS Kps1	Average	Smooth UTS	Ratio
V-2858	T1-17V-2Fe-2Co-3A1	1500F(10min)WQ+900F(8hrs)AC	RT	106)			M13/013
: : :	:::	2 2 2	: = = =	119) 127) 121) 127)	120	200	09.0
V-2858	T1-17V-2Fe-2Co-3A1	1500F(10min)WQ+900F(24hrs)AC " " " " "	M::::	127) 132) 129) 134) 126)	129.5	219	0.59
V-2900	T1-8Mo-8V-5Co-3A1	1500F(10min)WQ+900F(8hrs)Ac """"""""""""""""""""""""""""""""""""	# # ::::::	87) 98) 106) 78) 71) 83) 83)	60	160	9. 54
V-2900	T1-8Mo-8V-5Co-3A1	HOD T1-8MO-8V-5Co-3Al 1500F(10min)WQ+900F(24hrs)AC	E ::::::	107) 81) 95) 102) 100) 89) 108)	56	198	97.0

TABLE LXXIII (Continued)

Ratio NTS/UTS	0.56	67.0	1.01	0.72	0.87	0.80
Smooth UTS Kps1	\$0.5	218	175	198	198	204
Average	115	107	177.8	142.6	171.6	163.8
NTS Kps 1	117)	166) 114) 101)	180) 178) 176) 180) 175)	135) 135) 160) 143) 140)	167) 177) 172) 172) 172)	169) 155) 169) 165)
Test Temp	R: :	8 ::	g::::	Rrrrr	#::::	£::::
Heat Treatment	1500F(10min)WQ+900F(8hrs)AC	1500F(10min)WQ+900F(24hrs)AC	1500F(10min)WQ+900F(8hrs)AC " " " "	1500F(10min)WQ+900F(24hrs)AC " " "	1500F(10min)WQ+900F(8hrs)AC " " " "	1500F(10min)WQ+900F(24hrs)AC " " " " "
Alloy	1-1/V-7,5Co-3 4 1	T1-17V-7, 5Co-3A1	1.4-1/V-48e-3A1	T1-17V-4Fe-3A1	T1-8M0-8V-2Fe-3A1	11.5Mo-8V-2Pe-3A1
Ingot No.	7.7.7	V-2920 ""		6 2 2 2 2 3 2 6 2 2 2 2 2 2 2 2 2 2 2 2	56/7-	66/7=

TABLE LXXIII (Continued)

Ingot No.	A110y	Hest Treatment	Test Temp or	Free	Average	Secoth UTS Kps1	Retto NTS/UTS
	T1-17V-4Fe-3A1	1500F(10min)WQ+900F(8hrs)AC	009	141)			
	: =	: =	:	148)	145.2	152	0.95
	=	=	=	146)	 	!	•
	Ξ	•	z.	148)			
	T1-17V-4Fe-3A1	1500F(10min)WQ+900F(24hrs)AC	009	190)			
	: :	: =	:	190)	191.0	177	1.08
	£	=	=	192)		·	•
	Ξ	=	=	192)			
	T1-8Mo-8V-2Fe-3A1	1500F(10min)WQ+900F(8hrs)AC	009	186)			
	= =	: :	= =	184)	0 481	891	01 1
	=	=	:	182)		3	
	Ξ	**	=	183)			
	T1-8Mo-8V-2Fe-3A1	1500F(10min) WQ+900F(24hrs)AC	009	189)			
	Ξ	ε	=	189)			,
	:	Ξ	=	186)	187.6	170	1.10
	=	æ	:	188)			
	Ξ	Ē	=	186)			

TABLE LXXIII (Continu

Retio NTS/UTS	1.02	0.85	1.10	0.92	0.80	0.74
Smooth UTS Kps1	159	193	142	182	188	200
Average	161	164	156	167	150	148
NTS Kps 1	162) 152) 149) 167) 174)	166) 161) 165) 169) 159)	158) 154) 156)	167) 169) 164)	153) 156) 141)	146) 148) 149)
Test Textp	00::::		: : :	: : :	: : :	:::
Heat Treatment	1500F(10min)WQ+900F(8hrs)AC ''''''''''''''''''''''''''''''''''''	1500F(10min)WQ+900F(24hrs)AC	1500F(10min)WC+900F(8hrs)AC	1500F(10min)WQ+900F(24hrs)AC "	1500F(10min)WQ+900F(8hrs)AC	1500F(10min)WQ+900F(24hrs)AC
Alioy		I1-17V-2Fe-2Co-3A1	T1-8Mo-8V-5Co-3A1	T1-8Mo-8V-5Co-3A1	1-17V-7, \$Co-3A1	T1-17V-7, SC0-3A1
Ingo: No.		4- 2%5	V · 2900	9.290C ::	V-2926	V-2920

TABLE LYXIV

CREEP STABILITY PROPERTIES OF METASTABLE BETA SHEET ALLOYS IN THE AGED CONDITION

Wodu] us	(Ex10-5ps1)			15.2	15.6	16.1	15.5	15.6	15.4	15.5	17.0	15.9	15.9	15.7	(7):	16.4	,	13.9	13.5	13.4	14.1(3)	14.3(3)	14.73	15.1(2)
	in 1.	(T) S	٠,	9	9	S	7	7	7	5(1)	9	9	9	7	2	9	5	7.5(1)	7	6	;	1 3	1 1	0 0
longation	Uniform	0) i	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	0	0	5.0		5.0	2.5	2.5	! !	1 3	:) : !
1	Local	۶ کا)	15	15	15	10	10	15	10	15	15	10	10	15	Ŋ		25	10	15	1	1 1	!	!
YS	Kps1	180	2 0	196	197	18	200	200	198	191	202	201	200	201	203	197		148	151	151	† !	;	1 1	! !
UTS	Kps1	197	107	203	204	201	206	205	204	204	208	208	206	204	206	204		162	163	162	178	137	153	154
p-2	De f.	! !		0.320	0.264	0.276	0.429	0.367	0.382	;	0.292	0.288	0.248	0.364	0.407	0.396		1	0.444	0.516	0.500	2,055	2.040	1.436
1.1	Hours		1 1	150	•	=	200	=	=	t ! !	150	=	=	200	=	=		1	150	=	:	200	=	=
Exposure	Kps1	,	• •	128	=	=	=	=	=	:	138	=	=	:	=	:		1	108	2 =	=	=	:	Ξ
E	do	ı	, ,	909	Ξ	:	=	z	=	;	900	Ξ	=	=	2	Ξ			009	3:	£	=	=	=
	Heat Treatment	T1-8Mo-8V-2Fe-3A1, ngot V2793	TOOCE TOUTING A COOK - OUT SHEET	=======================================	=	=	==	=	Ξ	1500F-15mins-WQ+900F-24hrs-AC	. =	2	=		=	Ξ	T1-17V-4Fe-3A1, Ingot V-2729		1500F-IOBIDS-WC+900F-SDIS-AC	: =	Ξ	Ξ	=	=

388

[%] in 2-inches. Stress-Strain curve not linear. Broke outside gage length.

TABLE LXXIV (Continued)

^{£35£}

[%] in 2-inches. Stress-Strain curve not linear. Broke outside gage length. Broke before reaching yield stress.

TABLE LXXIV (Continued)

Kps1 Hours Def. Kps1 Lycal Uniform in 1" 160 156 15 7.5 11(1) 113 150 0.164 156 152 5 2.5 3 113 150 0.164 156 152 5 2.5 3 113 150 0.164 156 151 2.5 3 2.5 3 113 150 0.164 151 2.5 3 2.5 3 113 150 0.164 151		Temp	Exposure	Time	**	UTS	YS		7 Elongation		Modulas
600 113 150 156 155 2.5 3 13.8 (5) 600 113 150 0.164 156 152 5 2.5 3 10.8 (5) 11 15 156 156 157 161 10 2.5 3 10.8 (5) 11 15 16 15 15 15 15 14.5 (3) 11 16 15 15 15 15 15 14.5 (3) 11 16 15 17 18 17 11 15.6 (3) 12 14 15 17 18 17 15.6 (3) 14 15 18 17 15 15.6 (3) 15 18 17 17 15.6 (3) 16 18 17 17 15.6 (3) 17 18 17 17 15.6 (3) 18 18 17 17 15.6 (3) 18	eat Treatment	do.	Kps1	Hours	Def.	Kps 1	Kpsi	Local	Uniform	tn 1"	(Ex106ps1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-5Co-3Al, Ingot V-2900										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ins_WO+300F-8brs-AC) 	;	!	!	160	156	15	7.5	$^{11(1)}$	13.7 , 5,
1.		600	113	150	0.164	156	152	2	2.5	3	13.8(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24	=	=	=	0.167	156	152	S	2.5	3	10.8(5)
1,	in the	=	z	=	0.160	167	191	10	2.5	5	80
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•	=	=	500	0.164	151	1	!	† †	1	5(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	=	=	=	0,185	155	;	† † †	!	1	6
600 140 15.6 15.6 15.6 15.0 15.6 15.0 1	=	Ξ	=	:	0.240	150	:	;	t 1	(;	~
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ins-WO+:900F-24hrs-AC	1 1	!	!	!!	216	203	10	1.25	2.5(1)	9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	=	009	140	150	0.171	186	4	5	1	:	<u>ر</u>
0.200 193 190 5 0 1 11.7(5) 0.247 203 15.4(3) 0.247 203 15.9(3) 0.280 207 15.9(3)	Ξ	=	:	=	0.182	1 1	1	:	i t		14.6(4)
15.4(3)	•	:	=	:	0.200	193	190	5	0	-	11.7(5)
0.218 198 15.9(3) 209 208 5 0 1.5(1) 14.0(5) 600 150 150 0.353 206 199 1.5(1) 14.0(5) 0.240 203 199 5 0 1 15.6(5) 13.8(3) 15.1(3)		=	=	200	0.247	203	1 1	:	:	:	15,4(3)
	=	:	Ξ	=	0.218	198	!	!!!	1 1	:	15,9(3)(5)
600 150 150 0.353 206 199 15(1) 14.0(5) 600 150 150 0.353 206 199 14.9(3) 600 150 150 0.240 203 199 5 0 1 600 150 150 0.356 13.8(3) 600 150 0.415 197 15.1(3) 600 0.404 153 15.8(3) 600 0.371 162 15.8(3)	:	=	=	=	0.280	201	8 1 1	;	:	;	16,3(3)(5)
209 208 5 0 1.5(1) 14.0(5) 600 150 150 0.353 206 199 14.9(3) " " 0.240 203 199 5 0 1 15.6(5) " " 0.356 13.8(3) " 1 0.404 153 15.1(3) " " 0.371 162 15.8(3) " " 15.6(3) 15.6(3)	Co-3A1, Ingot V-2920										į
600 150 150 0.353 206 199 14.9(3) " " 0.240 203 199 5 0 1 13.6(5) " " 0.356 13.8(3) " " 0.404 153 15.1(3) " " 0.404 153 15.8(3) " " 0.404 153 15.8(3)	Ins-WO+900F-8hrs-AC	:	!	1	!	509	208	\$	0	1.5(1)	14.0(5)
" " 0.240 203 199 5 0 1 15.6(5) " " 0.356 13.8(3)(" " 500 0.415 197 15.1(3)(" " 0.404 153 15.8(3)(" " " 0.371 162 15.8(3)(=	900	150	150	0.353	206	199	:	;		(5)6.
" " 0.356 13.8(3) (" ' 500 0.415 197 15.1(3) (" " 0.404 153 15.8(3) (" " " 0.371 162 15.8(3) (=	=	=	:	0.240	203	199	5	0	-	.6(5)
" ' 500 0,415 197 15.1 ⁽³⁾ (" " 0,404 153 15.8 ⁽³⁾ (" " " 0,371 162 15.6 ⁽³⁾ (=	:	=	:	0.356	!!!	!	1 1	;		<u> </u>
" " 0.404 153 15.8 $\binom{3}{2}$?	=	=	-	200	0.415	197	1 1	:	:	!	1(3)(
" " 0.371 162 15,6'37	=	e .	=	2	0.404	153	-	; ;	1 1	:	7,7
	:	:	:	=	0.371	162	† ! †	;	† 1 8	1 1	7/6/9

Broke before reaching yield stress. Broke 1. head - test finished in file grips. @**£**9

TASI 3 LXXIV (Continued)

	Modulus (Ex10-6psi)	15.4(5) 15.5 15.8(3) 14.4(5) 16.1(3)(5) 15.9(3) 18.2(3)(5)
	n 1"	4.5(1)
	% Elongation Uniform	3.75
	Local	100 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	YS	207 213 203 203
	UTS Kps i	218 220 216 226 226
	7. De f.	0.255 0.516 0.382 0.687 0.684 0.829
	Time	150
Exposure	Stress Kps1	164
	Temp	
	Heat Treatment Ti-L V-/.5Co-3A1, Ingot V-2920	1500F-10mins-WQ+900F-24hrs-AC "" "" "" "" ""

9999

Broke outside gage length. Broke before reaching yield stress. Broke in bend - test finished in file grips. 0.050-inch gage sheet prepared from 30-pound ingots.

TABLE LXXV

STRESS CORROSION TESTS ON SIX METASTABLE BETA SHEET ALLOYS(1)(2)

Result of Reverse Bending Until Flat	No Cracks	No Cracks	Small Cracks	Small Cracks	Small Cracks	No Cracks	No Cracks	No Cracks	No Cracks	Few Small Cracks	No Cracks	No Cracks	No Cracks	No Cracks	No Cracks	No Cracks	No Cracks	Sample Broke	Sample Broke	Sample Broke	No Cracks	no Cracks	Sample Broke	Sample Broke	No Cracks	No Cracks	Numerous Small Cracks	Numerous Small Cracks	Numerous Small Cracks
Treatment	Nore (Control)	800F(2hrs), No Salt	800F(2hrs), Salt Coat	800F(2hrs), Salt Cost	800F(2hrs), Salt Coat	None (Control)	800F(2hrs), No Salt	800F(2hrs), Salt Coat	800F(2hrs), Salt Coat	800F(2hrs), Salt Coat	None (Control)	800F(2hrs), No Salt	800F(2hrs), S. 1t Coat			None (Control)	800F(2hrs), No Salt			800F(2hrs), Salt Coat	None (Control)	800F(2hrs), No Salz		800F(2hrs), Salt Coat	None (Control)	800F(2hrs), No Salt	2hrs),	800F(2hrs), Salt Coat	800F(2hrs), Salt Coat
Bend	6.2T	5.6T	5.6T	5.4T	6.2T	6.5T	6. ST	6. 5T	6. 5T	6 5T	TO. 9	F.0T	5.67	5.7T	F.0T	5.7T	6.0T	5.7T	5.8T	6.3T	6.2T	6.3T	5.7T	5.8T	5.8T	78.c	5.8T	5.8T	5.8T
Alloy	T1-1.7V-2Fe-2Co-3A1	Z	=	5 E	=	T1-17V-4Fe-3A1	:	2	2	90° 90°	T1-8Mo-8V-2Fe-3A1	2 1	44	=	Ξ	T1-8Mo-8V-5Co-3A1	₩ ₩		=	=	T1-17V-7,5Co-3A1		=	==	T1-1.3V-11Cr-3A1	=	=	=	.
Ingot No.	V-2858	=	=	=	=	V-2859	=	-	=	-	V-2860	=	=	=	=	V-2900	=	=	=	=	V-2920	:	-	=	D-3002	=	=	=	Ξ

⁽¹⁾ Ti-13V-llCr-3Al included as control.(2) 0.050-inch gage sheet.

TABLE LXXVI

OXIDATION TESTS ON METASTABLE BETA SHEET ALLOYS(1)(2)

A110y	Test No.	Wt. Sample Grams	Wt. Sample + Crucible Before Exposure Grams	Wt. Sample + Crucible After Exposure Grams	Wt. Gain Grams	Wt. Gain Grams/Sq.Cm
T1-17V-2Fe-2Co-3A1.	. : 64 55	3.6530 3.7234 3.4034	34.3589 31.4090 31.0788	34.9273 31.9685 31.6909	0.5684) 0.5795) 0.6121)	0.0450 Average
T1-17V-4Fe-3Al "'	ं .च €ा	3.0305 3.0223 3.2731	34.5307 30.7094 31.0529	34.8696 31.0484 31.3611	0.3389) 0.3390) 0.3082)	0.0255 Average
11-8Mo-8V-2E3-3A1		3.2710 3.5244 3.5167	33.9733 31.2082 31.1707	34.0494 31.3085 31.2309	0.0761) 0.1003) 0.0602)	0.0061 Average
T1-8Mo-8V-5Co-3.1	3 2 3	4.3502 5128 4.4929	35.0244 32.1921 32.0712	35,1131 32,2680 32,1278	0.0887) 0.0759) 0.0566)	0.0041 Average
T1-17V-7,5Co-3A1	354	3.6372 3.6962 3.7646	27.6895 29.0907 31.9100	27.8465 29.2646 32.1460	0.1570) 0.1739) 0.2360)	0.0147 Average

All samples were exposed in an open crucible for 2 hours at 1500F. 0.050-- inch gage sheet.

⁽F)

TABLE LXXVII

TENSILE PROPERTIES OF MACHINE WELDED SAMPLES OF THRUE METASTABLE BETA ALLOYS (1)

Mcdulus (Ex10-6ps1)	7	8	5	J	C 3	2	an.	2	ic	Į Ο ,	(-)	3	0	(1)	2	σ	æ	,	^	ألسنو	lc u	Ισ	0	2	7	4	7	101
X X	_	٠	14.	15.	7.5	15.	14.	14.	15.	15. 9	18.	16.	1.4.	14.	.† 	•	77	14.		15.	15.	1,	15.	14.5	15.	14.	15.	15.
Total Elong	16	16	18	14	16	18	16	2	14.5	10	10	9	12	10	80	œ	12	9	10	10	9.25	12	œ	ø	4	7	2	6.25
Total Elong.	3.5	3.5	•	7	4	4	3.5	•	3.5	2.5	•	2	٣	2	2	1.5	3.5	•	2.5	1.5	2.25	3	2	7	H	0	į	1.25
Uniform Elong.	0	0	0	0	0	0	ပ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Local Elong	35	35	40	25	30	35	45	5	30	25	25	15	25	20	15	20	25	15	20	20	20	25	20	20	2	u n	S.	12.5
YS	123	122	121	126	127	126	124	121	124	138	151	136	133	133	138	140	138	139	140	139	139	146	148	143	153	:	153	571
UTS	127	125	124	128	129	129	176	121	126	142	157	141	137	136	142	143	142	142	143	142	142	150	150	146	156	147	153	150
Heat Treatment	1500F-10mins-AC+900F .46hrs-AC+Weld	=	=	=	=	=	=	=	werage	1500F-10mins-AC+900F-16hrs-AC+Weld	=	2	=	=	-	Ξ	=	=	=	=	Average	1500F-10mins-AC+900F-6'rs-AC+Weld	=	=	Ξ	=	Ξ	Average
Alloy Heat Treatment	We.	=	=	=	=	=	=	=	iverage		=	2		=		=	.	=	=	=	Avetage	_		=	=	=	=	Average

(1) 0.060-inch gage sheet (2) Taken over 0.2-inch, which is approximate width of weld.

TABLE LXXVIII

COMPARISON OF PROPERTIES OF PHASE III METASTARIF RETA SHEET ATTOM

	T1-17V-7.5Cc-343	0.176	1+5-15(840,000	198 - 2% 6 %%.	1,120,0. 203 - 2% elen	1,170,03 207 - 3% elen	1,210,066	115	0.56 107 0.49	167 182
ILIOYS	Ti-8Mo-8V-5Co-3A1	0.178	130-135	740,000	158 - 9% elong	590,000 176 - 3% elong	200 - 2% elong	1,120,000	87	0.54 95 0.51	125 155
CONTRACTOR OF PROPERTY ES OF PHASE III METASTABLE BETA SHEET ALLOYS	Ti-17V-2Fe-2Co-3A;	0.172	116-120	685,000	180 - 5% elong 1.050.000	190 - 5% elong	203 - 2% elong		120	130 0.59	132 171
ES OF PHASE III ME	Ti- 17V-4Fe-3A1	6.172	120-122	705,000	148 - 8% elong 860,000	17' - 6% elong , 010,000	184 - 9% elong 1.070,600		176 1.0	143 0.72	120 156
COLUMNICA DE PROPERT	T1-8Mo-8V-2Fe-3A1	0.175	118-120	680,000	180 - 4 7 elong 1,030,000	186 - 67 elong 1,060,000	191 - 5% elong 1,090,660		172 0.87	164 0.83	142 154
A.	Properties Mensured Density	lbs/cu in Annealed Yield	Strength, Kpsi Annaled Strength/	Weight Ratio Aged Yield Strongth, Kpsi	900F-8hrs Strungth/W. fglit Ratio	900F-16hr. Strockth/Weignt Ratio	Stragelineigne Katie	Room Temperature Noteh Temstie Strengti (Kt*8), Kpsi	900Anrs Age NTS/UTS Ratio	900F-24hrs Age NIS/JTS Ratto 60°F Aged Yield Strength, Kpsi	900F-8hrs tge 900F-24hrs Age

TABLE LXXVIII (Continued)

Properties	T1-8M0-8V-2Fe-3A1	T1-17V-4Fe-3A1	A 1 1 0 y T1-17V-2Fe-2Co-3A1	T1-8Mo-8V-5Co-3A1	11-170-7, 30,- 13
500F Botch Tensile Strongth (K _E =8), Kpsi					
900F-8hrs Age NTS/UTS Ratto	184 1.10	145 0.95	158 1.02	156 1.10	150 0.80
HOOF-Pahra Age ATS/TIS Ratio	188 1.10	191 1.08	164 0.85	167 0.92	148 0.74
Greep Deformation at 600F					
SUCE-shrs 4ge 500 hrs exposure	0.29% 0.38%	0,497	0.75 % 2.39 %	0.167 0.197	0.323 0.404.0
900F-248rs Age 150 brs exposure	0.27 7. 0.40 7.	0.32 7. 0.51 7.	0.60 7 1.05 7	0.185 7. 0.25 7.	0.38% 0.73%
Stress Carroston Resistance (Sait Caled - Exposed 2 hru at 800F with bend)					
Aged moFelabre AC (varied radius)) Good	Fair	Poor	1 1 1 1	;
Amented 180F-10min-AG (6F radius)	bco5 (Cood	Good	Poci	Poor
oxidation Pepsyler (Cain on Welyht Alter 2 hrs at 1 oF, (moraqiem.)	0.0061	0.0255	0.0450	0.0041	0.0147

COMPARISON OF SPECIMEN COULING RATES TO THAT IN CENTER OF A 2" PLATE.

FIGURE 1.

Time-Minutes

FIGURE 3. NOTCHED SHEET TENSILE SPECIMEN (K + 8)

Figure 4. Face and Side Views of Laminated Charpy V Samples Showing Samples Before and After Testing.

Dimension A = 0.505" Max. To 0.495" Min. B = A + 0.003" To A + 0.005"

Weld to Be Ground Flush Using Coolant.

BUTT WELD TRANSVERSE TENSILE SPECIMEN

FIGURE 5. WELDED TENSILE AND BEND SAMPLES.

FIGURE 6. SUMMARY OF BETA SURFACE ISOTHERMS IN THE SYSTEM TI-Cr-Mo.

FIGURE 7. ESTIMATED BETA SURFACE ISOTHERMS IN THE SYSTEM TI-Cr-V. BASED ON TIE LINE CONSTRUCTION AND ANALOGY TO TI-Cr-Mo SYSTEM.

Ti-17V-5Cr-3A1

Ti-17V-7.5Cr-3Al

Ti-17V-10Cr-3A1

Ti-17V-12.5Cr-3Al

Ti-17V-15Cr-3Al

Figure 8A. Appearance Of Sheet After Cold Rolling.

Ti-17V-5Mn-3Al

Ti-17V-7.5Mn-3Al

Ti-17V-10Mn-3A1

Ti-17V-12, 5Mn-3Al

Ti-17V-15Mn-3A1

Figure 8A (cont'd.). Appearance of Sheet After Cold Rolling.

Figure 8A (cont'd.). Appearance Of Sheet After Cold Rolling.

Figure 8B. Appearance of Sheet After Cold Rolling.

Ti-8Mo-8V-12.5Cr-3Al

Ti-8Mo-8V-15Cr-3A1

Ti-8V-8110-5Mn-3A1

Ti-8V-8Nf0-7, 5Mfn-3A1

Ti-0V-0540-1034n-3A1

Figure ⁶B (cont¹d.). Appearance of Sheet After Cold Rolling.

Ti-8Mo-8V-12, 5Mn-3Al

Ti-8Mo-8V-15Mn-3A1

Ti-8V-3Mo-2, 5Fe-3A1

Ti-8V-8Mo-5Fe-3A1

Ti-3V-8Mo-7, 5Fe-3A1

Figure 3B (cont'd.). Appearance of Sheet After Cold Rolling.

Ti-15Mo-5Cr-3Al

Ti-15Mo-7, 5Cr-3Al

Ti-153/6-10Cr-3Al

Ti-15Mo-12.5Cr-3Al

Ti-15Mo-15Cr-3Al

Figure °C. Appearance of Sheet After Cold Rolling.

Ti-15Mo-5Mn-3Al

Ti-15Mo-7.5Mn-3Al

Ti-15Mo-10Mn-3A1

Ti-15Mo-12.5Mn-3A1

Ti-15Mo-15Mn-3Al

Figure 8C (cont'd.). Appearance of Sheet After Cold Rolling.

Ti-15Mo-2.5Fe-3Al

Ti-15Mo-5Fe-3Aî

Ti-15Mo-7.5Fe-3Al

Figure 8C (cont'd.) Appearance of Sheet After Cold Rolling.

Figure 9. T-3498, Ti-8Mo-8V-15Cr-3Al As-Rolled. Slip Bands In Distorted Beta Grains. A Few Particles Of Second Phase Present.

Figure 10. T-3500, Ti-15Mo-15Cr-3Al. Heat Treated ½-Hour At 1250F, Quenched. Unrecrystallized With Precipitate Mainly At Grain Boundaries.

Figure 11. T-3318, Ti-15 No-7, 5 Mn-3Al. Annealed 15 Minutes At 1350F, Slow Cooled. 60% Recrystallized Beta With Scattered Particles Of Second Phase. Uniform Flongation 25%; Total Flongation 30%; UTS 142,000 psi.

Figure 12. T-3318, Ti-15N10-7.5N1n-3Al. Heat Treated 15 Minutes At 1350F, Slow Cooled, Plus 8 Hours Age At 900F. Little Change in Microstructure. Uniform Elongation 15%: Total Elongation 22%; UTS 144,000 psi

Figure 13. T-3323, Ti-17V-2.5Fe-3Al. Annealed 15 Minutes At 1350F, Slow Cooled. Partly Recrystallized With Second Phase At Former Grain Boundaries. Uniform Elongation 7.5%: Total Flongation 15%: UTS 120,000 psi.

Figure 14. T-3323, Ti-17V-2.5Fe-3Al. Heat Treated 15 Minutes At 1350F, Slow Cooled, Flus 8 Hours Age at 900F. Heavy Precipitate (alpha + TiFe?) Within Grains. Uniform Elongation 5%; Total Elongation 7%; UTS 197,000 psi.

OXIDATION RATES FOR TI-8V-8Mg-X-3AI ALLOYS AFTER 2 HOURS EXPOSURE.

FIGURE 15.

OXIDATION RATES FOR TI-15Mo-X-3 AI ALLOYS AFTER 2 HOURS EXPOSURE.

FIGURE 16.

OXIDATION RATES FOR TI-ITV-X-3AI ALLOYS AFTER 2 HOURS EXPOSURE. FIGURE 17.

FIGURE 18. INFLUENCE OF SIZE FACTOR ON SOLID SOLUBILITY (SUBSTITUTIONAL ALLOYING) IN TITANIUM.

FIGURE 19. INFLUENCE OF ELECTRONEGATIVITY ON SOLID SOLUBILITY. (SUBSTITUTIONAL ALLOYING) IN TITANIUM.

T-3726
Ti-17V-10Cr-3A1-1Cu
Good Quality

T-3727 Ti-17V-10Cr-3A1-3Cu Good Quality

T-3728 Ti-17V-10Cr-3A1-5Cu Fair Quality

T-3814
Ti-8V-8Mo-7.5Fe-3A1-1Cu
Fair Quality

T-3815 Ti-8Mo-8V-7.5Fe-3A1-3Cu Poor Quality

Ti-8Mo-8V-7.5Fe-3A1-5Cu Unworkable

Figure 20. Appearance of Experimental Titanium Alloy Sheet After Hot Rolling to 0.080-Inch Gage and Cold Rolling to 0.050-Inch Gage.

T-3945 Ti-17V-10Cr-3A1-0.1Be Good Quality

T-3946 Ti-17V-10Cr-3A1-0.2Be Fair Quality

T-3947
Ti-17V-10Cr-3A1-0.3Be
Poor Quality

T-3942
Ti-17V-8Cr-3A1-5Cu
Good Quality

Ti-17V-7Cr-3A1-5Ni Poor Quality

Ti-17V-7Cr-3A1-5Co Fair Quality

Figure 21. Appearance of Experimental Titanium Alloy Sheet After Hot Rolling to 0.080-Inch Gage and Cold Rolling to 0.050-Inch Gage.

T-3875
Ti-15Mo-5Fe-3A1-1Cu
Good Quality

T-3876 T1-15Mo-5Fe-3A1-3Cu Poor Quality

T-3877
Ti-15Mo-5Fe-3A1-5Cu
Unworkable

T-3735 Ti-17V-10Cr-3A1-0.5Si Fair Quality

T-3736 Ti-17V-10Cr-3A1-1Si Fair Quality

 $\begin{array}{c} T-3737 \\ Ti-17V-\overline{10Cx-3}A1-2Si \\ Fair Quality \end{array}$

Figure 22. Appearance of Experimental Titanium Alloy Sheet After Hot Rolling to 0.080-Inch Gage and Cold Rolling to 0.050-Inch Gage.

T-3890
Ti-15Mo-5Fe-3Al-1Misch Metal

T-3891
Ti-15Mo-5Fe-3Al-2Misch Metal

T-3892
Ti-15Mo-5Fe-3Al-3Misch Metal

All Unworkable

Figure 23. Appearance of Experimental Titacium Alloys
After Attempted Hot Rolling To Sheet.

5426 150X Oxalic+Kroll Etch

Figure 24A. [-3731, Ti-17V-10Cr-3A1-5Ni, Cracking Along Grain Soundaries During Hot Rolling.

5461 100X Oxalic+Kroll Etch

Figure 24B. T-3882, Ti-15Mo-5Fe-3A1-3Co, Cracking Along Grain Boundaries During Hot Rolling. Considerable Forosity Also Evident In Sample.

FIGURE 25. THE TITANIUM-SILICON SYSTEM TO 3% SI WITH

SUPERIMPOSED B/B+COMPOUND BOUNDARY FOR TI-17Y-10Cr-3AI (0,5-1)SI
ALLOYS.

T-4669 Ti-8Mo-8V-6Fe-3A1

T-4670 Ti-8Mo-8V-6Fe-3A1

T-4673 Ti-17V-11Mn-3A1

T-4674 Ti-17V-11Mn-3A1

T-4675 Ti-17V-12Mn-3A1

T-4676 Ti-17V-12Mn-3A1

Figure 26. Appearance of Stable-Beta Alloy Sheets After Cold Rolling From 0.080-Inch to 0.050-Inch.

FIGURE 27. ROLL SEPARATING FORCE FOR EXPERIMENTAL STABLE BETA ALLOYS COMPARED WITH THAT OF TI-13V-11Cr-3AI, METASTABLE BETA COMMERCIAL SHEET ALLOY.

FIGURE 28. STATISTICAL RELATIONSHIP BETWEEN VICKERS HARDNESS AND ULTIMATE TENSILE STRENGTH FOR TI-8Mo-8V-2Fe-3AI.

FIGURE 29. STATISTICAL RELATIONSHIP BETWEEN VICKERS HARDNESS AND ULTIMATE TENSILE STRENGTH FOR Ti-17V-4Fe-3AI.

Security Classification

Security Classification	رستين والمناف والمراق المراق المراورة	_		
DOCUMENT CONTROL DATA - R&D				
(Security classification of title, body of abstract and ind	lexing annotation must be en	itered when	the overall report is classified)	
Titanium Metals Corporation of America 233 Broadway New York, New York 10007		Unclassified Zo group		
		3. REPORT TITLE		<u> </u>
SCREENING AND SELECTION OF CANDIDATE SHEET ALLOYS				
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)				
Final Technical Report, Part II				
5. AUTHOR(S) (Last name, first name, initial)				
Hunter, Donald B.				
6. REPORT DATE	74. TOTAL NO. OF P	AGES	78. NO. OF REPS	
December 1966	40		none	
BE. CONTRACT OR GRANT NO.	94 ORIGINATOR'S REPORT NUMBER(S) WAL TR 405/2-15			
DA-30-069-ORD-3743				
A PROJECT NO.				
D/A Project 59332008				
6. AMCMS Code 6010 11 0420051	9b. OTHER REPORT NO(5) (Any other numbers that may be easigned this report)			
AMCMS Code 5010, 11, 8430051				
10. A VAIL ABILITY/LIMITATION NOTICES				
Distribution of this document is unl	imited.			
11. SUPPLEMENTARY NOTES	17 SPONSORING MILI	MILITARY ACTIVITY		
	U. S. Army Materials Research Agency			
	Watertown, Massachusetts 02172			
watertown, massachusetts 02112				
December consisted of oddi	tion of outpotoid	Tonale	g olomonta Fo Cn and	

nametract Research consisted of addition of eutectoid forming elements Fe, Cr and Mn to bases Ti-17V-3Al, Ti-8Mo-8V-3Al & Ti-15Mo-3Al, to produce stable beta bases. Three such alloys were selected as being suitable for addition of elements designed to bring about precipitation hardening: Ti-17V-10Cr-3Al, Ti-8Mo-8V-7.5Fe-3Al and Ti-15Mo-5Fe-3Al. Additions of Cu, Co, Ni, Si, Fe, Be, and rare earths were then made to the above bases in increasing amounts to bring about precipitation hardening. However, fabrication criteria became marginal before enough of the above elements could be added to bring about precipitation hardening. As an exception, addition of 0.5-1%Si to Ti-17V-10Cx-3Al followed by water quenching from solution temperatures of around 2000F and aging at 1150-1250F, produced Vickers hardness increases of up to 100 points upon aging without visible microstructural change. Although precipitation hardening of a stable beta alloy was thus achieved, grain growth and embrittlement were encountered because of the high temperatures required to dissolve the silicide. Work was then redirected toward development of two other types of alloy: a moderate strength stable beta alloy, and a high strength metastable beta alloy hardenable by alpha precipitation. Two stable beta alloys, Ti-17V-10Mn-3Al and Ti-8Mo-8V-6Fe-3Al, and two metastable beta alloys, Ti-17V-4Fe-3Al & Ti-8Mo-8V-2Fe-3Al were evaluated. However, the stable beta alloys had brittle welds, and work on these was discontinued. They were replaced by "stabilized" alloys, metastable alloys aged at 1100-1200F to suppress the maximum aging response and reach a strength plateau. Four such alloys - Ti-8Mo-8V-5Co-3Al, Ti-17V-7.5Co-3Al, Ti-17V-2Fe-2Co-3Al & Ti-8Mc-8V-2Fe-3Al-were evaluated in this condition. Ti-8Mo-8V-2Fe-3Al proved to be best of the high strength metastable beta candidates. On a basis of smooth & notched tensile properties at room temperature and 600F, creep stability & stress corrosion resistance, Ti-8Mo-8V-2Fe-3Al was selected for mill production,

DD 5000 1473

UNCLASSIFIED

- 1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (comporate author) issuing the report.
- 2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.
- 2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.
- 3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.
- 4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.
- 5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.
- 6. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.
- 7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.
- 76. NUMBER OF REFERENCES. Enter the total number of references cited in the report,
- 8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.
- 85. Bc. & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number subproject number, system numbers, task number, etc.
- 9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.
- 9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor) also enter this number(s).

- 10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report other than those imposed by security classification, using standard statements such as:
 - "Qualified requesters may obtain copies of this report from DDC."
 - (2) "Foreign announcement and dissemination of this report by DDC is not authorized."
 - (3) "U. S. Government agencies may obtain copies of this report directly from PDC. Other qualified DDC users shall request through
 - (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
 - (5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

- 11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.
- 12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.
- 13 ABSTRACT. Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation about shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (C)

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 325 words.

14 KEY WORDS. Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for catalogony the ceport. Key words must be selected so that no security Classification is required. Identities, such as equipment model designation, trade name military project code name, graphically location, may be used as bey words but will be followed: I, as indication of technical outest. The assignment of links rules, and weights is optional