



## Quantum Invariant and Equivariant Graph Neural Networks for HEP Analysis

Google Summer of Code (GSOC) Contributor under the Machine Learning for Science (ML4SCI) Organization

#### Roy T. Forestano

ML4SCI Quantum Machine Learning for HEP (QMLHEP) Group University of Florida Department of Physics

#### **Overview**







- 1. Data Structure
- 2. Model Theory: Invariance and Equivariance
- 3. Model Theory: Graph Neural Networks
- 4. Model Implementation
- 5. Results and Analysis
- 6. Resources, Software, and Code

## Dataset [7]







#### Graphically Structured Data $\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$



( Jet (n), Multiplicity (m), Feature (l) )

## Dataset [7]







#### Graphically Structured Data $\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$

Multiplicity  $(m) \equiv \text{Nodes with Features (/)}$  $\mathbf{x}_{\alpha}^{(il)} \in \{\mathbf{p}_{T}, \eta, \phi, \mathbf{m}_{p}\}$ 

(1)



( Jet (n), Multiplicity (m), Feature (/) )

## Dataset [7]







#### Graphically Structured Data $\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$



 $(1, m_1, l)$ 

#### Multiplicity $(m) \equiv$ Nodes with Features (/)

$$x_{\alpha}^{(il)} \in \{p_T, \eta, \phi, m_p\}$$
 (1)

#### $\mathbf{Jet}(n) \equiv \mathbf{Graph} \ \mathbf{with} \ \mathbf{Labels} \ \mathbf{(not \ shown)}$

 $y_n \in \{0,1\}$  for Binary Classification (2)







( Jet (n), Multiplicity (m), Feature (/) )

(1,1,l) (1,2,l)

## Data Distributions & Feature Engineering @







## Data Distributions & Feature Engineering







## Data Distributions & Feature Engineering







Feature set  $h_{\alpha}^{(il)}$  with  $l = 0, 1, 2, \dots, 7$ :  $h_{\alpha}^{(il)} \equiv \{p_{T,\alpha}^{(i)}, y_{\alpha}^{(i)}, \phi_{\alpha}^{(i)}, \phi_{\alpha}^{(i)}$  $m_{T,\alpha}^{(i)} = \sqrt{m_{\alpha}^{(i)2} + p_{T,\alpha}^{(i)2}},$  $E_{\alpha}^{(i)} = m_{T,\alpha}^{(i)} \cosh(y_{\alpha}^{(i)}),$  $p_{x,\alpha}^{(i)} = p_{T,\alpha}^{(i)} \cos(\phi_{\alpha}^{(i)}),$  $p_{\mathbf{v},\alpha}^{(i)} = p_{T,\alpha}^{(i)} \sin(\phi_{\alpha}^{(i)}),$  $p_{Z,\alpha}^{(i)} = m_{T,ii} \sinh(y_{\alpha}^{(i)}) \}$ 

## Data Distributions & Feature Engineering







Feature set 
$$h_{\alpha}^{(il)}$$
 with  $l=0,1,2,\ldots,7$ :

$$egin{aligned} h_{lpha}^{(il)} &\equiv \{ m{p}_{T,lpha}^{(i)}, m{y}_{lpha}^{(i)}, m{\phi}_{lpha}^{(i)}, \ m_{T,lpha}^{(i)} &= \sqrt{m_{lpha}^{(i)2} + m{p}_{T,lpha}^{(i)2}}, \ E_{lpha}^{(i)} &= m_{T,lpha}^{(i)} \mathrm{cosh}(m{y}_{lpha}^{(i)}), \ m{p}_{x,lpha}^{(i)} &= m{p}_{T,lpha}^{(i)} \mathrm{cos}(m{\phi}_{lpha}^{(i)}), \ m{p}_{y,lpha}^{(i)} &= m{p}_{T,lpha}^{(i)} \mathrm{sin}(m{\phi}_{lpha}^{(i)}), \ m{p}_{z,lpha}^{(i)} &= m_{T,ij} \mathrm{sinh}(m{y}_{lpha}^{(i)}) \} \end{aligned}$$

#### Edge Connections a<sub>ij</sub>

$$\Delta R_{lpha}^{(jj)} = \sqrt{\left(\phi_{lpha}^{(i)} - \phi_{lpha}^{(j)}
ight)^2 + \left(y_{lpha}^{(i)} - y_{lpha}^{(j)}
ight)^2}$$







• Only consider jets with at leat 10 particles  $\implies$  N=2 million to 1,997,445 jets.







- Only consider jets with at leat 10 particles  $\implies$  N=2 million to 1,997,445 jets.
- Sort the particles per jet by largest to smallest transverse momentum  $p_T$ .







- Only consider jets with at leat 10 particles  $\implies$  N=2 million to 1,997,445 jets.
- Sort the particles per jet by largest to smallest transverse momentum  $p_T$ .
- Quantum entangled state scales as  $2^n \implies$  choose  $n_\alpha = 3$  with  $\mathbf{h}_\alpha \in \mathbb{R}^{3 \times 8}$







- Only consider jets with at leat 10 particles  $\implies$  N=2 million to 1,997,445 jets.
- Sort the particles per jet by largest to smallest transverse momentum  $p_T$ .
- Quantum entangled state scales as  $2^n \implies$  choose  $n_\alpha = 3$  with  $\mathbf{h}_\alpha \in \mathbb{R}^{3 \times 8}$
- Choose a subset to test the models: N = 12,500







- Only consider jets with at leat 10 particles  $\implies$  N=2 million to 1,997,445 jets.
- Sort the particles per jet by largest to smallest transverse momentum  $p_T$ .
- Quantum entangled state scales as  $2^n \implies$  choose  $n_\alpha = 3$  with  $\mathbf{h}_\alpha \in \mathbb{R}^{3 \times 8}$
- Choose a subset to test the models: N = 12,500

#### **Data Splits**

|            | N      | $N_{quark:1}$ | $N_{gluon:0}(0)$ |
|------------|--------|---------------|------------------|
| Training   | 10,000 | 4,982         | 5,018            |
| Validation | 1,250  | 658           | 592              |
| Testing    | 1,250  | 583           | 667              |

## **Invariance and Equivariance**







#### **Definition**

A function  $\varphi: X \to Y$  is **equivariant** with respect to a set of group transformations  $T_g: X \to X$ ,  $g \in G$ , acting on the input vector space X, if there exists a set of transformations  $S_g: Y \to Y$  which similarly transform the output space Y, i.e.

$$\varphi(T_g x) = S_g \varphi(x). \tag{3}$$

A function is said to be **invariant** when for all  $g \in G$ ,  $S_g$  becomes the set containing only the trivial mapping, i.e.  $S_g = \{\mathbb{I}_G\}$ , where  $\mathbb{I}_G \in G$  is the identity element of the group G.







#### **Invariance**

#### Invariance

A function  $\varphi$  is invairant with respect to a group G transformation  $g \in T_a \subset G$  if

$$\varphi(g \cdot x) = \varphi(x) \tag{4}$$

best for









#### Invariance

#### **Invariance**

A function  $\varphi$  is invairant with respect to a group G transformation  $g \in T_a \subset G$  if

$$\varphi(g \cdot x) = \varphi(x) \tag{4}$$

best for





## **Input Embedding**

Classical

#### Quantum

$$\mathbf{m}_{ij}(\mathbf{h}_i^I,\mathbf{h}_j^I,a_{ij}) 
ightarrow \underline{\hspace{1cm}}$$

$$\mathcal{U}_{ij}(x_i,x_j) \rightarrow$$

$$\mathbf{m}_{ij}(\mathbf{h}_i^I,\mathbf{h}_j^I,\sigma_{ij},\boxed{|\mathbf{x}_i-\mathbf{x_j}|})$$









#### **Invariance**

#### **Invariance**

A function  $\varphi$  is invairant with respect to a group G transformation  $g \in T_a \subset G$  if

$$\varphi(g \cdot x) = \varphi(x) \tag{4}$$

best for



# $\begin{array}{ll} \textbf{Input Embedding} \\ & \textbf{Classical} & \textbf{Quantum} \\ & \mathbf{m}_{ij}(\mathbf{h}_i^l, \mathbf{h}_j^l, a_{ij}) \rightarrow & \mathcal{U}_{ij}(\mathbf{x}_i, \mathbf{x}_j) \rightarrow \\ & \mathbf{m}_{ij}(\mathbf{h}_i^l, \mathbf{h}_j^l, a_{ij}, \boxed{|\mathbf{x}_i - \mathbf{x_j}|}) & \mathcal{U}_{ij}(\boxed{|\mathbf{x}_i - \mathbf{x_j}|}) \end{array}$

#### **Equivariance**

#### Equivariance

A function  $\varphi$  is equivariant with respect to group G, G' transformations  $g \in T_g \subset G, g' \in S_g \subset G'$  if

$$\varphi(g \cdot x) = g' \cdot \varphi(x) \tag{5}$$

best for









#### **Invariance**

#### **Invariance**

A function  $\varphi$  is invairant with respect to a group G transformation  $g \in T_g \subset G$  if

$$\varphi(g \cdot x) = \varphi(x) \tag{4}$$

best for



# $\begin{tabular}{ll} \textbf{Input Embedding} \\ \hline \textbf{Classical} & \textbf{Quantum} \\ \textbf{m}_{ij}(\textbf{h}_i^l,\textbf{h}_j^l,a_{ij}) \rightarrow & \mathcal{U}_{ij}(\textbf{x}_i,\textbf{x}_j) \rightarrow \\ \textbf{m}_{ij}(\textbf{h}_i^l,\textbf{h}_j^l,a_{ij}, \boxed{|\textbf{x}_i-\textbf{x}_{\mathbf{j}}|}) & \mathcal{U}_{ij}(\boxed{|\textbf{x}_i-\textbf{x}_{\mathbf{j}}|}) \\ \hline \end{tabular}$

#### **Equivariance**

#### Equivariance

A function  $\varphi$  is equivariant with respect to group G,G' transformations  $g\in T_g\subset G, g'\in \mathcal{S}_g\subset G'$  if

$$\varphi(g \cdot x) = g' \cdot \varphi(x) \tag{5}$$

best for



#### **Layer Structure**

| Classical                                                          | Quantum                                            |
|--------------------------------------------------------------------|----------------------------------------------------|
| $gx_i^I 	o$                                                        | $\mathcal{U}(gx)  ightarrow$                       |
| $gx_i^l + C\sum_{i\neq j}(gx_i^l - gx_j^l)\phi_X(\mathbf{m}_{ij})$ | $\mathcal{U}_g\mathcal{U}(x)\mathcal{U}_g^\dagger$ |

## **Equivariant coordinate update function**







#### **Proposition**

Let  $T_g:X \to X$  be the set of translational and rotational group transformations with elements  $g \in T_g \subset G$  which act on the vector space X. The function  $\varphi:X \to X$  defined by

$$\varphi(x) = x_i + C \sum_{j \neq i} (x_i - x_j)$$
 (6)

is equivariant with respect to  $T_g$ .

## **Equivariant coordinate update function**







#### **Proposition**

Let  $T_g:X \to X$  be the set of translational and rotational group transformations with elements  $g \in T_g \subset G$  which act on the vector space X. The function  $\varphi:X \to X$  defined by

$$\varphi(x) = x_i + C \sum_{j \neq i} (x_i - x_j)$$
 (6)

is equivariant with respect to  $T_g$ .

#### Proof

Let a general transformation  $g \in T_g$  of this form act on X by gX = RX + T,

$$\varphi(gx) = (gx_i) + C \sum_{j \neq i} (gx_i - gx_j)$$

$$= (Qx_i + T) + C \sum_{j \neq i} (Qx_i + T - Qx_j - T)$$

$$= Qx_i + C \sum_{j \neq i} Q(x_i - x_j) + T$$

$$= Q[x_i + C \sum_{j \neq i} (x_i - x_j)] + T$$

$$= g\varphi(x),$$

where  $\varphi(gx)=g\varphi(x)$  shows  $\varphi$  transforms equivariantly under transformations  $g\in T_a$  acting on X.

## **Graph Neural Network Theory [3, 2, 6]**







#### **Graph Neural Network (GNN)**

#### Message Passing GCNN Layer

Nodes  $v_i \in \mathcal{V}$ , edges  $e_{ij} \in \mathcal{E}$ 

$$\mathbf{m}_{ij} = \phi_{\Theta}(\mathbf{h}_i^I, \mathbf{h}_j^I, a_{ij}) \tag{7}$$

$$\mathbf{m}_{i} = \sum_{j \in \mathcal{N}(i)} \mathbf{m}_{ij} \tag{8}$$

$$\mathbf{h}_{i}^{\prime+1} = \phi_{h}(\mathbf{h}_{i}^{\prime}, \mathbf{m}_{i}) \tag{9}$$

where  $\mathbf{h}_i$  are node features,  $\alpha_{ij}$  are edge attributes,  $\mathcal{N}(i)$  is the set of neighbors of node  $v_i$ , and  $\phi_e$ ,  $\phi_h$  are edge and node operations typically approximated using Multiplayer Perceptrons (MLPs) (Kipf & Welling 2016, Gilmer et al. 2017).

## **Graph Neural Network Theory [3, 2, 6]**







#### **Graph Neural Network (GNN)**

#### Message Passing GCNN Layer

Nodes  $v_i \in \mathcal{V}$ , edges  $e_{ij} \in \mathcal{E}$ 

$$\mathbf{m}_{ij} = \phi_{\mathbf{e}}(\mathbf{h}_i^I, \mathbf{h}_j^I, \mathbf{a}_{ij}) \tag{7}$$

$$\mathbf{m}_{i} = \sum_{j \in \mathcal{N}(i)} \mathbf{m}_{ij} \tag{8}$$

$$\mathbf{h}_{i}^{\prime+1} = \phi_{h}(\mathbf{h}_{i}^{\prime}, \mathbf{m}_{i}) \tag{9}$$

where  $\mathbf{h}_i$  are node features,  $\alpha_{ij}$  are edge attributes,  $\mathcal{N}(i)$  is the set of neighbors of node  $v_i$ , and  $\phi_e$ ,  $\phi_h$  are edge and node operations typically approximated using Multiplayer Perceptrons (MLPs) (Kipf & Welling 2016, Gilmer et al. 2017).

#### **SE(2) Equivariant GNN (EGNN)**

#### Message Passing EGCNN Layer

Nodes  $v_i \in \mathcal{V}$ , edges  $e_{ij} \in \mathcal{E}$ 

$$\mathbf{m}_{ij} = \phi_{\Theta}(\mathbf{h}_i^l, \mathbf{h}_j^l, \alpha_{ij}, |\mathbf{x}_i^l - \mathbf{x}_j^l|)$$
 (10)

$$\mathbf{m}_{i} = \sum_{j \in \mathcal{N}(i)} \mathbf{m}_{ij} \tag{11}$$

$$\mathbf{x}_{i}^{l+1} = \mathbf{x}_{i}^{l} + C \sum_{j \neq i} (\mathbf{x}_{i}^{l} - \mathbf{x}_{j}^{l}) \phi_{x}(\mathbf{m}_{ij})$$
 (12)

$$\mathbf{h}_{i}^{\prime+1} = \phi_{h}(\mathbf{h}_{i}^{\prime}, \mathbf{m}_{i}) \tag{13}$$

where we update the coordinates via  $x_i^{l+1}$ , include the invariant distance  $|\mathbf{x}_i^l - \mathbf{x}_j^l|$  in  $\phi_e$ , and  $\phi_x$  is the coordinate MLP. The equivariant regularization parameter C(n) < 1.

## **Quantum GNN Theory [8]**







#### **Quantum GNN (QGNN)**

#### **QGCNN Layer**

Nodes  $v_i \in \mathcal{V}$ , edges  $e_{ii} \in \mathcal{E}$ 

$$H(\mathcal{W}_{ij}, \mathcal{M}_{i}, \mathcal{Q}_{0}) = \underbrace{\sum_{(i,j) \in \mathcal{E}} \mathcal{W}_{ij} \sigma_{i}^{z} \sigma_{j}^{z} + \sum_{i} \mathcal{M}_{i} \sigma_{i}^{z}}_{\text{Interactions}} + \mathcal{Q}_{0} \underbrace{\sum_{i} \sigma_{i}^{x}}_{\text{Transverse}}$$

$$\underbrace{\sum_{i} \mathcal{M}_{i} \sigma_{i}^{z}}_{\text{Nodes}} + \underbrace{\sum_{i} \mathcal{M}_{i} \sigma_{i}^{z}}_{\text{Quibits}} + \underbrace{\sum_{i} \mathcal{M}_{i} \sigma_{i}^{z}}_{\text{Transverse}}$$

$$\underbrace{\sum_{i} \sigma_{i}^{x}}_{\text{Transverse}}$$
(14)

$$U_{ij} = \phi_u(\mathcal{W}_{ij}, \mathcal{M}_i, \mathcal{Q}_0) = e^{-i\sum_{q=1}^{Q} \gamma_{iq} H_q(\mathcal{W}_{ij}, \mathcal{M}_i, \mathcal{Q}_0)},$$
(15)

$$|\psi'^{+1}\rangle = \phi_{|\psi\rangle}(|\psi'\rangle, U_{ij}) = U'_{\theta}U_{ij}U^{\dagger}_{\theta}|\psi'\rangle \tag{16}$$

where  $\mathcal{W}, \mathcal{M}, \mathcal{Q}$  are pre-determined or learned,  $\gamma_{lq}$  is a learnable infinitesimal parameter,  $|\psi_l^l(\mathbf{h}_l)\rangle$  is the quantum state at layer l, and  $U_\theta^l$  is a trainable unitary matrix. Applying this transformation Q times will correspond to running our network over P layers, thus, building up a full trainable unitary parameter transformation (Verdon et al. 2019).

## **Equivariant Quantum GNN Theory [4]**







#### **Equivariant Quantum GNN (EQGNN)**

#### **EOGCNN Laver**

Nodes  $v_i \in \mathcal{V}$ , edges  $e_{ii} \in \mathcal{E}$ 

$$H(A_{ij}, \mathcal{M}_{i}, \mathcal{Q}_{0}) = \underbrace{\sum_{(i,j) \in \mathcal{E}} A_{ij} \sigma_{i}^{z} \sigma_{j}^{z}}_{\text{Interactions}} + \underbrace{\sum_{i} \mathcal{M}_{i} \sigma_{i}^{z}}_{\text{Node}} + \mathcal{Q}_{0} \underbrace{\sum_{i} \sigma_{i}^{x}}_{\text{Transverse}}$$

$$\underbrace{\sum_{i} N_{i} \sigma_{i}^{z}}_{\text{Uniteractions}} + \underbrace{\sum_{i} \mathcal{M}_{i} \sigma_{i}^{z}}_{\text{Uniteractions}} +$$

$$U_{ij} = \phi_u(A_{ij}, \mathcal{M}_i, \mathcal{Q}_0) = e^{-i\sum_{q=1}^{Q} \gamma_{lq} H_q(A_{ij}, \mathcal{M}_i, \mathcal{Q}_0)},$$
(18)

$$|\psi'^{+1}\rangle = \phi_{|\psi\rangle}(|\psi'\rangle, U_{ij}) = U_{\theta}'U_{ij}U_{\theta}^{\dagger}|\psi'\rangle \tag{19}$$

$$U_{ij}(\mathcal{U}_g A_{ij} \mathcal{U}_g^{\dagger}) = \tilde{\mathcal{U}}_{g'} U_{ij}(A_{ij}) \tilde{\mathcal{U}}_{g'}^{\dagger} \implies U_{ij}(A_{ij}) = \tilde{\mathcal{U}}_{g'}^{\dagger} U_{ij}(\mathcal{U}_g A_{ij} \mathcal{U}_g^{\dagger}) \tilde{\mathcal{U}}_{g'}$$
(20)

where we restrict the trainable interaction matrix to the adjacency matrix of the graph, i.e.  $\mathcal{W}_{ij} \to A_{ij}$ , such that  $\mathcal{U}_g \in \mathbb{C}^{n \times n}$  and  $\tilde{\mathcal{U}}_{g'} \in \mathbb{C}^{2^n \times 2^n}$  are different representations of group  $\mathcal{T}_g \cong \mathcal{S}_g$  elements  $\mathcal{U}_g \in \mathcal{T}_g, \tilde{\mathcal{U}}_{g'} \in \mathcal{S}_g$ .

## A Note on Permutation Equivariance







#### **Fact**

A GNN is permutation equivariant with respect to the sum of the graphically transformed node features corresponding to each graph. This can be written as a map  $\varphi: V^{m \times n} \to V^n$  which takes the node feature matrix of each graph to a single feature vector such that  $\varphi(\mathbf{h}^P) = \sum_i \mathbf{h}_i^P$ .

#### **Proposition**

For V a commutable vector space, the product state  $\bigotimes_{i=1}^m \mathbf{v}_i : V^n \times \cdots \times V^n \to V^{n^m}$  is permutation equivariant with respect to the sum of its entries. We prove the n=2 case for all  $m \in \mathbb{Z}_{>0}$ .

Note: Here, m is the number of nodes per graph and n is the number of features.

### **Hamiltonian and its General Linear Form**







With inspiration from quantum unconstrained binary optimization (QUBO) problems which utilize Ising Hamiltonians, we choose a Hamiltonian which best exploits the properties of a graph by mapping the classical scalar form to the quantum operator form

$$H(a_{ij}) = \underbrace{\sum_{(i,j)\in\mathcal{E}} a_{ij} \left(\frac{\hat{\mathbb{I}}_i - \sigma_i^z}{2} - \frac{\hat{\mathbb{I}}_j - \sigma_j^z}{2}\right)^2}_{H_C} + \underbrace{\sum_{i\in\mathcal{V}} \sigma_i^x}_{H_T}$$
(21)









#### **GNN**





























#### **EGNN**



## 

#### **EQGNN**















































#### **Results**







Table: Metric comparison between the classical and quantum graph models.

| Model        | $ \Theta $ | $N_h$ | Р | Train ACC | Val ACC | Test AUC       |
|--------------|------------|-------|---|-----------|---------|----------------|
| GNN          | 5122       | 10    | 5 | 74.25%    | 74.80%  | <b>63.36</b> % |
| <b>EGNN</b>  | 5252       | 10    | 4 | 73.66%    | 74.08%  | <b>67.88</b> % |
| QGNN         | 5156       | 8     | 6 | 74.00%    | 73.28%  | <b>61.43</b> % |
| <b>EQGNN</b> | 5140       | 8     | 6 | 74.42%    | 72.56%  | <b>75.17</b> % |



#### **Conclusion and Outlook**







#### **Takeaways**

- Statement: Quantum GNNs exhibit enhanced classifier performance over their classical GNN
  counterparts based on the best test AUC scores produced after the training of the models
  while relying on a similar number of parameters, hyperparameters, and model structures.
- However, the community requires a significant improvement in quantum APIs.
  - E.g. Pennylane does not support broadcastable operators, i.e. train on one graph at a time.
  - Quantum algorithms took nearly 100 times as long to train.
  - Difficult to construct the quantum layers with enough trainable parameter flexibility.
- Model improvements include
  - Further theoretical foundations for complex quantum algorithms.
  - More general equivariance, e.g. unitary SU(2), Lorentz SO(1,3) etc.
  - Greater complexity, e.g. quantum attention mechanism (AT).
  - Testing among different tasks, e.g. classification, regression, etc.
  - Improved quantum optimizers and API integration.

#### **Resources and Code**









Figure: Code (left) and website (right).

#### **Resources and Software**







#### **Developing and Documentation**













**Computing and Testing** 







#### **Blogging and Connecting**





#### References I







- [1] El Amine Cherrat et al. "Quantum Vision Transformers". In: (2022). arXiv: 2209.08167 [quant-ph].
- [2] Justin Gilmer et al. "Neural Message Passing for Quantum Chemistry". In: (2017). arXiv: 1704.01212 [cs.LG].
- [3] Thomas N. Kipf and Max Welling. "Semi-Supervised Classification with Graph Convolutional Networks". In: (2017). arXiv: 1609.02907 [cs.LG].
- [4] Peter Mernyei, Konstantinos Meichanetzidis, and Ismail Ilkan Ceylan. "Equivariant Quantum Graph Circuits". In: Proceedings of the 39th International Conference on Machine Learning. Ed. by Kamalika Chaudhuri et al. Vol. 162. Proceedings of Machine Learning Research. PMLR, 2022, pp. 15401–15420. URL: https://proceedings.mlr.press/v162/mernyei22a.html.

#### References II







- [5] Johannes Jakob Meyer et al. "Exploiting Symmetry in Variational Quantum Machine Learning". In: *PRX Quantum* 4.1 (2023). DOI:
  - 10.1103/prxquantum.4.010328. URL:
  - https://doi.org/10.1103%2Fprxquantum.4.010328.
- [6] Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. "E(n) Equivariant Graph Neural Networks". In: (2022). arXiv: 2102.09844 [cs.LG].
- [7] Jonathan Shlomi, Peter Battaglia, and Jean-Roch Vlimant. "Graph neural networks in particle physics". In: Machine Learning: Science and Technology 2.2 (2021), p. 021001. DOI: 10.1088/2632-2153/abbf9a. URL: https://doi.org/10.1088%2F2632-2153%2Fabbf9a.
- [8] Guillaume Verdon et al. "Quantum Graph Neural Networks". In: (2019). arXiv: 1909.12264 [quant-ph].