

Signal partitioning in superfluid ⁴He: A Monte Carlo approach

Francesco Toschi on behalf of the DELight collaboration DPG Spring Meeting, Göttingen 31.03.2025

Phys. Rev. D 111, 032013

The DELight collaboration

DElight

3 institutes from Baden-Württemberg ~20 scientists

The hunt for Dark Matter

The hunt for Dark Matter

DELight detection principle

- Prompt detection of UV and IR photons
- Ballistic triplet excimer → decay at surface
- Quasiparticles propagate ballistically → quantum evaporation

DELight quasiparticle detection principle

- Noise-free gain ≥10 in the MMC as binding energy He-He is smaller than He-absorber
- MMCs in vacuum need to be ⁴He film-free → film burner

Recoil of electrons (ER) vs. helium ions (NR)

From interactions to signal quanta (ER)

From interactions to signal quanta (ER)

Signal partitioning in superfluid ⁴He

Signal correlation in superfluid ⁴He

Signal correlation in superfluid ⁴He

Comparison with available measurements

■ W is the average energy needed to produce an electron-ion pair in superfluid ⁴He

Comparison with available measurements

- Difference with measured UV light yield ratio NR/ER might come from Penning quenching model
 - Penning affects NR LY, but not W value

Penning quenching

$$He_2^* + He_2^* \rightarrow 2He + He_2^+ + e^-,$$

 $\rightarrow 3He + He^+ + e^-.$

Conclusion & outlook

- DELight is a proposed direct detection experiment using superfluid ⁴He
- Multichannel signal nature allows for ER/NR discrimination
- Signal partitioning from measured/calculated cross sections
- Implemented in our simulation framework
- Limited results for comparison L we need measurements!

Back-up slides

Dark Matter

- No electromagnetic interaction → dark;
- Evidences of gravitational nature → massive;
- No particle candidate in SM → BSM physics;
- Direct searches for DM-nucleus scattering.

Superfluid ⁴He as target

- Impurities freezing out (~20 mK)
- Multiple signals
- Unexpensive material and scalable technology

Light nuclei maximize recoil energy for LDM

etometer

J. Low Temp. Phys. 193, 365-379 (2018)

Magnetic Micro-Calorimeters (MMCs)

- Energy deposit in an *absorber* leads to a temperature increase δT changing the magnetization of the *paramagnetic* sensor δM ∝ δT
- Change in magnetization measured by a coupled SQUID as change in current δI ∝ δT
- Measured best resolution of 1.25 eV (@ 5.9 keV)

DELight detection principle

- Prompt detection of UV and IR photons
- Ballistic triplet excimer (13 s lifetime, O(m/s) speed)
 - Detected when in contact with MMC sensor

Superfluid ⁴He as target

- Total cross section measurements from He+;
- energy loss from non-relativistic collision;
- Rutherford-like angular distribution;
- large energy deposition possible (target = projectile).

- Excitation of target neutral He;
- first accessible state is 23S (1s2s) at 19.82 eV;
- cross sections form database <u>ALADDIN</u>;
- singlet/triplet ratio from cross sections.

- Ionization of the target ground He;
- fit to measured cross section;
- measurements for different projectile charge states;
- negligible double-ionization.

- Target and projectile He ions exchange electrons;
- projectile He changes charge state as it propagates;
- at low energy, projectile He is neutral.

From interactions to signal quanta

Elastic scattering goes into quasiparticles (phonons and rotons)

■ No E-field, hence the ion-e⁻ pair recombines into an excited state

Charge exchange can lead to electron emission (~ER signal) or ionization

Penning recombination significantly reduces excitation contribution for NR

$$\mathrm{He^* + He^*} \rightarrow \mathrm{He + He^+ + } e^-$$
_{subexcitationa}

HERON

