Math 623: Problem set 1

This problem set (as well as the next ones) will contain several problems meant to refresh your memory about a number of facts you should know from your undergraduate analysis class. Go back to your favorite book as needed!

1. (About \limsup and \liminf). Let $\{x_n\}_{n\geq 1}$ be a bounded sequence of real numbers (i.e., there exists M>0 such that $|x_n|\leq M$ for all $n\geq 1$. Recall that b is an accumulation point of the sequence $\{x_n\}$ if there exists a subsequence $\{x_{n_j}\}_{j\geq 1}$ such that $\lim_{j\to\infty} x_{n_j} = b$

Consider the sets

 $X = \left\{x\,; \text{ infinitely many } x_n \text{ are } > x\right\}, \quad Y = \left\{x\,; \text{ infinitely many } x_n \text{ are } < x\right\}.$

and define

$$\xi := \sup X$$
, $\eta := \inf Y$.

(a) Prove that ξ is the largest accumulation point of $\{x_n\}$ and that η is the smallest accumulation point of $\{x_n\}$. We then write

$$\xi = \limsup_{n \to \infty} x_n$$
 the limit superior of the sequence $\{x_n\}$.

$$\eta = \liminf_{n \to \infty} x_n$$
 the limit inferior of the sequence $\{x_n\}$.

(b) Show the formulas

$$\limsup_{n\to\infty} x_n \ = \ \lim_{n\to\infty} \sup_{k\ge n} x_k \ = \ \inf_{n\ge 1} \sup_{k\ge n} x_k \, .$$

$$\liminf_{n\to\infty} x_n = \lim_{n\to\infty} \inf_{k\geq n} x_k = \sup_{n\geq 1} \inf_{k\geq n} x_k.$$

(c) Prove that

$$\lim \sup (x_n + y_n) \le \lim \sup x_n + \lim \sup y_n$$

$$\lim\inf(x_n+y_n)\geq \liminf x_n+\liminf y_n$$

and show that the inequalities can be strict (find such examples).

- (d) Exhibit a sequence $\{x_n\}$ with $0 \le x_n \le 1$ such that any number in [0,1] is an accumulation point of $\{x_n\}$. *Hint:* The rational are dense in [0,1].
- 2. (Closed sets) Let us define a set $E \subset \mathbb{R}^d$ to be closed if its complement E^c is open. Show that the following are equivalent.
 - (a) E is closed

- (b) E contains all its limit points (x is a limit point of E is
- (c) For any convergent sequence $\{x_n\}$ with $x_n \in E$ and the limit $\lim_{n\to\infty} x_n = x$ belongs to E.
- 3. (Compact sets) Let us define a set $E \subset \mathbb{R}^d$ to be compact if E is closed and bounded. Show that the following are equivalent.
 - (a) E is compact
 - (b) Any cover of E by open sets i.e., $E \subset \bigcup_{\alpha} O_{\alpha}$ with O_{α} open for all α contain a finite subcover $E \subset \bigcup_{i=1}^{M} O_{i}$.
 - (c) Any sequence $\{x_n\}$ with $x_n \in E$ contains a convergent subsequence.
- 4. Show that a countable union of set of exterior measure 0 has exterior measure 0 using directly the definition. In particular any countable set has measure 0, e.g. the rational numbers in [0, 1].
- 5. Exercise 1, p. 37
- 6. Exercise 2, p. 37
- 7. Exercise 3, p. 38
- 8. Exercise 4, p. 38
- 9. Exercise 9, p. 40
- 10. Exercise 11, p. 41