Title

Schippers, C.F.

Wednesday $20^{\rm th}$ April, 2016

Contents

1	\mathbf{The}	coretical exercises 2
	1.1	Exercise 1
	1.2	Exercise 2
		1.2.1 a
		1.2.2 b
	1.3	Exercise 3
	1.4	Exercise 4
2	Mol	lecular Dynamics of a Simple Liquid 4
	2.1	Exercise 1
	2.2	Exercise 2
		2.2.1 a
		2.2.2 b
	2.3	Exercise 3
		2.3.1 a
		2.3.2 b
		2.3.3 c
	2.4	Exercises 4
	2.5	Exercise 5
		2.5.1 a
		2.5.2 b
	2.6	Exercise 6
	2.7	Exercise 7
		2.7.1 a
		2.7.2 b
		2.7.3 c
	2.8	Problem 1
	2.9	Problem 2
	2.10	Problem 3

Todo list

opgaven maken
Figure: Figure van morse potential, taylor series en harmonic unit erop zetten
$frequencies\ door\ rekenen\ en\ gebruiken\ omega=c*golfgetal \ \dots\dots\dots\dots\dots\dots\dots$
beetje uitleg geven
choose 1 of the master exercises
maken, mass: special $== 1 -> mass = 1$, special $!= 1 -> distribution 1 \dots \dots \dots$
1.2 is voorbij cut-off, no repulsion when r>rmin
maken
slides
$T=eps/kb,getalleninvullen,slides,p=eps/sigma \hat{3}$
sigma/characteristic time
sommatie van impulsen moet 0 zijn, Vcm = sum(mi vi)/sum(mi), vi = vi - Vcm, geimple-
menteerd in loop starting at r. 235
Trivial
N*(N-1)/2
r. 348 ff
position: use L MOD R such that $0 < R < L$
interaction: use L MOD R such that $-L/2 < R < L/2$ for each of the coordinates separately.

Chapter 1

Theoretical exercises

1.1 Exercise 1

opgaven maken

1.2 Exercise 2

1.2.1 a

$$U = 4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]. \tag{1.2.1}$$

Take the derivative to r and put to zero for $r=r_{\min}$

$$\left. \frac{\partial U}{\partial r} \right|_{r=r_{\min}} = 4\varepsilon \left[-12 \frac{\sigma^{12}}{r_{\min}^{13}} + 6 \frac{\sigma^6}{r_{\min}^7} \right] = 0. \tag{1.2.2}$$

This solves to

$$r_{\min} = \sqrt[6]{2}\sigma. \tag{1.2.3}$$

Putting this in U gives

$$U\left(r = r_{\min}\right) = -\varepsilon. \tag{1.2.4}$$

1.2.2 b

 D_e is the depth of the potential well. A Taylor-expansion of the potential around $l=l_0$ gives

$$v(l) = D_e \left[1 - \exp\left(-a(l - l_0)\right)\right]^2$$
 (1.2.5a)

$$\approx a^2 D_e (l - l_0)^2 + \mathcal{O}\left((l - l_0)^3\right).$$
 (1.2.5b)

So at small deviations from l_0 the Morse potential is approximately equal to a harmonic potential $v(l) = k/2(l - l_0)^2$ with $k = 2a^2D_e$. At distances away from the equilibrium the Morse potential deviates from the harmonic potential as the Morse potential approaches the potential depth D_e asymptotically.

Figuur van morse potential, taylor series en harmonic unit erop zetten

Figure 1.1

1.3 Exercise 3

The characteristic frequency ω of a harmonic spring with two masses is given by (?,?)

$$\omega = \sqrt{\frac{k}{\mu}} \tag{1.3.1}$$

with k the spring constant and $\mu = \left(\frac{1}{m_1} + \frac{1}{m_2}\right)$ the reduced mass. $1 \text{ N/m} = 1.4393 \text{ kcal mol}^{-1} \text{Å}^{-2}$

1.4 Exercise 4

In a N dimensions the amount of periodic images is given by 3^N-1 .

frequencies door rekenen en gebruiken omega = c*golfgetal

beetje uitleg geven

Chapter 2

Molecular Dynamics of a Simple Liquid

choose 1 of the master exercises		
2.1	Exercise 1	
maken	, mass: special == 1 -> mass = 1, special != 1 -> distribution 1	
2.2	Exercise 2	
2.2.1	a	
1.2 is v	voorbij cut-off, no repulsion when r>rmin	
2.2.2	b	
maken		
2.3	Exercise 3	
2.3.1	a	
slides		
2.3.2	b	
T = ep	os/kb, getallen invullen, slides, p = eps/sigma $\hat{3}$	
2.3.3	c	
sigma/	characteristic time	

2.4 Exercises 4

sommatie van impulsen moet 0 zijn, Vcm = sum(mi vi)/sum(mi), vi = vi - Vcm, geimplementeerd in loop starting at r. 235.

- 2.5 Exercise 5
- 2.5.1 a

Trivial

2.5.2 b

N*(N-1)/2

2.6 Exercise 6

r. 348 ff

- 2.7 Exercise 7
- 2.7.1 a

position: use L MOD R such that 0<R<L

2.7.2 b

 $26 (3\hat{N}-1)$

2.7.3 c

interaction: use L MOD R such that -L/2<R<L/2 for each of the coordinates separately

- 2.8 Problem 1
- 2.9 Problem 2
- 2.10 Problem 3

Figure 2.1

Figure 2.2

Figure 2.3

Figure 2.4

Figure 2.5