Санкт-Петербургский политехнический университет Петра Великого Кафедра компьютерных систем и программных технологий

Отчёт по лабораторной работе

Дисциплина: Теория вероятностей

Тема: Статистическая обработка случайных последовательностей. Идентификация законов распределения.

Выполнил студент гр. 3530901/10001	 Д.Л. Симоновский
Преподаватель	 К.В. Никитин

"22" мая 2023 г.

Оглавление

1.	Стат	истическая обработка экспериментальных данных	3
	1.1.	Выборочная функция распределения	3
	1.2.	Определение точечных оценок	5
	1.3.	Интервальные оценки с доверительной вероятностью Q=0.8	
	Интер	вальный оценки мат. ожидания и дисперсии	5
	1.4.	Интервальные оценки интерквантильного промежутка для $P=0.95\dots$	6
2.	Иден	тификация закона	9
	2.1.	Начальный выбор распределения	9
	2.2.	Определение параметров теоретических распределений	9
	2.3.	Проверка гипотез	. 12
3.	Выво	од	. 12
4	Лист	чинг	12

1. Статистическая обработка экспериментальных данных

1.1. Выборочная функция распределения

По исходным данным, находящимся в файле *Task_2.txt* построена функция распределения и гистограмма.

Рис. 1.1.1 Гистограмма распределения

Рис. 1.1.2 Совокупная функция распределения Relative Histogram

Рис. 1.1.3 Относительная гистограмма

Входные данные были перемешаны, после чего список был поделен на 10 равных частей. Далее по полной выборке и по подвыборкам были посчитаны точечные оценки. Результаты представлены в таблице.

	$\bar{x}(M(X))$	X _{med}	X _{cp}	Variance (s^2)	m ₃	m ₄	As	Ex
N	9.99442	9.98424	11.262585	4.035378	0.19583	48.96789	0.06878	3.007065
N / 10 (1)	10.0109	9.91712	9.745925	3.853424	0.10405	46.00749	0.01376	3.098382
N / 10 (2)	9.92934	9.87636	10.11656	4.005962	1.34916	44.52259	0.16827	2.774384
N / 10 (3)	10.03639	10.00475	9.997075	3.474467	0.09208	34.13239	0.01422	2.827419
N / 10 (4)	9.899728	9.99735	9.955115	4.344519	-0.56667	55.73525	-0.06258	2.952882
N / 10 (5)	10.06335	9.988235	9.565795	4.006424	-0.55283	47.45719	-0.06894	2.956571
N / 10 (6)	9.941617	9.96253	9.572335	4.047901	-0.63412	49.91667	-0.07786	3.046392
N / 10 (7)	9.902762	9.922195	11.7154	4.281758	0.672247	61.35895	0.075874	3.346829
N / 10 (8)	10.07878	10.01685	9.78214	4.043132	0.091777	50.79762	0.011289	3.107475
N / 10 (9)	10.07297	10.0979	10.109065	3.930781	0.1648001	43.90589	0.021146	2.841614
N / 10 (10)	10.00832	9.91637	10.23747	4.372656	1.4840816	54.96061	0.162308	2.874489

1.2. Определение точечных оценок

Границы интерквантильного промежутка для P = 0.95:

J (значения) = (8.6334, 11.3214)

По номерам точек

J (номера значений) = (1750, 5250)

Графики точечных оценок:

1.3. Интервальные оценки с доверительной вероятностью Q=0.8

Интервальный оценки мат. ожидания и дисперсии

Значения функции распределения Xu-квадрат также посчитаны в MATLAB, с помощью функций:

```
chi2inv(0.9, 7000) = 7,1521e+03
chi2inv(0.1, 7000) = 9,8488e + 03
```

Выборка	Мат. ож	кидание	Дисперсия				
	Левая	Правая	Левая	Правая			
Full	(9.9636502	239727205,	(2.315439	(2.3154393156810924,			
	10.0251928	311701366),	2.3933435289547558),				
1	(9.8686967	751748313,	(0.26183615739056754,				
	10.0757839	05394545),	0.2706457	7710720916),			
2	(9.841229	47416036,	(0.239932	21546721422,			
	10.0394654	97268212),	0.2480048	30232142424),			
3	(9.9211079	949649294,	(0.23862	2131569758,			
	10.1188020	50350705),	0.246650	7027802967),			
4	(9.9091551	94554533,	(0.2267676214259632,				
	10.101876	11973118),	0.23439734120461916),				
5	(9.8693568	330490045,	(0.218088	14274533525,			
	10.0583535	98081386),	0.22542583675002226),				
6	(9.945669	51846008,	(0.22826723347647626,				
	10.1390266	524397063),	0.2359474085169997),				
7	(9.8697030	003552459,	(0.21820176218191778,				
	10.0587489	96447541),	0.22554327897425447),				
8	(9.8671242	201607371,	(0.23726601096067917,				
	10.064255	74124977),	0.24524895475682656),				
9	(10.019300	992921883,	(0.21559935221707807,				
	10.2072162	64220973),	0.22285330951279855),				
10	(9.8598520)24158458,	(0.22944136716111246,				
	10.0537057	775841541)	0.2371610465671186)				

Табл. 1.3.1 Таблица интервальных оценок

Графики интервальных оценок мат. ожидания и дисперсии:

1.4. Интервальные оценки интерквантильного промежутка для P=0.95

Непараметрические толеранные пределы для всей выборки симметричные относительно среднего значения. Кол-во отбрасываемых точек k было найдено с помощью биномиального распределения:

$$k = 366$$

Толерантные пределы всей выборки симметричные относительно среднего значения: [6.10691, 13.9387]

График
Толерантные пределы для интерквантильного промежутка относительно среднего значения

Рис. 1.4.1. Толерантные пределы для интерквантильного промежутка относительно среднего значения Толерантные пределы всей выборки симметричные относительно нуля [-13.29, 13.29]

Толерантные пределы относительно нуля

Рис. 1.4.2. Толерантные пределы относительно нуля

Параметрические толерантные пределы для подвыборок:

Таблица результатов:

ibiaiob.	
Номер подвыборки	(Левый, Правый)
1	[5.782609506951021, 14.161871150191837]
2	[5.929786049407495, 13.950908922021076]
3	[6.020357328354483, 14.019552671645517]
4	[6.106531515081526, 13.904499799204187]
5	[6.140215414590589, 13.787495013980841]
6	[6.130493200909731, 13.954202941947413]
7	[6.139590311153239, 13.788861688846762]
8	[5.977473610069071, 13.95390633278807]
9	[6.311498844703993, 13.915018412438862]
10	[6.034876268001687, 13.878681531998312]

Табл. 1.4.1. Параметрически пределы для подвыборок

Красные точки на графиках – это математические ожидания подвыборок.

Как видно из графика толерантного предела интерквантильного промежутка всей выборки толерантные пределы шире, чем интерквантильный промежуток.

А также на всех графиках мат. ожидания лежат посередине толерантного отрезка за исключением толерантного отрезка симметричного относительно нуля.

2. Идентификация закона

2.1. Начальный выбор распределения

В качестве распределений-кандидатов (учитывая точечные показатели и форму гистограммы) были выбраны следующие: Нормальное, Гамма, Лапласа.

2.2. Определение параметров теоретических распределений

```
Для нормального распредления

с = 9.994421525714285 s = 2.0088252926371784

Для распределения Лапласа

а = 9.994421525714285 lambda = 0.7040002769561513

Для Гамма-распредления

к = 24.753179376483732 lambda = 0.4037631438654417
```

Рис. 2.2.1 Метод моментов

```
Для нормального распределения

с = 9.994421525714262 s = 2.0086817999913538

Для распределения Лапласа

а = 9.994421525714285 lambda = 0.6261052429673818

Для Гамма-распределения

к = 23.37606306225524 theta = 0.4275493909773032
```

Рис. 2.2.2. Метод максимального правдоподобия

Для минимизации была написана функция, использующая метод бисекции. Точки, при которых функция принимала положительное и отрицательное значения подбирались вручную.

Графики сравнения результатов:

Рис. 2.2.4. Сравнение с нормальным распределением. Сравнение с плотностью распределения Лапласа

Рис. 2.2.5. Сравнение с плотностью распределения Лапалса. Сравнение с распределением Лапласа

Рис. 2.2.6. Сравнение с распределнием Лапласа

Рис. 2.2.7. Сравнение с плотностью Гамма-распределения Сравнение с Гамма-распределением

Рис. 2.2.8. Сравнение с Гамма-распределением

На некоторых графиках не видно кривой полученной методом моментов. Это связано с тем, что метод моментов и ММП дали очень близкие значения параметров и одна кривая находится под другой.

2.3. Проверка гипотез

Название	Норм. распре	еделение	Гамма-распр	еделение	Распределение Лапласа		
	Метод моментов	ММП	Метод моментов	ММП	Метод моментов	ММП	
Хи-квадрат статистика	59.0763	58.6628	568.968	476.8604	465.9427	3158.577	
Хи-квадрат критич. знач.		46.1730					
Хи-квадрат вывод	Близко	Близко	Нет	Нет	Нет	Нет	
Колм Смирн. статистика	0.008907	0.008896	0.026762	0.031152	0.0598538	0.040475	
Колм Смирн. критич. знач.		0.0162086					
Колм Смирн. вывод	Да	Да	Нет	Нет	Нет	Нет	
Мизеса - статистика	0.070566	0.070381	1.70912	2.03717	11.4671	4.69408	
Мизеса критич. знач.		0.2415					
Мизеса вывод	Да	Да	Нет	Нет	Нет	Нет	

3. Вывод

В ходе данной лабораторной работы был осуществлен анализ выборки случайных величин с вычислением точечных и интервальных оценок. С использованием этих результатов и гистограмм были сформулированы гипотезы о различных распределениях. Затем были применены различные критерии для проверки данных гипотез.

После анализа результатов можно с уверенностью утверждать, что только гипотеза о нормальном распределении была подтверждена двумя критериями из трех. В то время как другие гипотезы не прошли ни одной проверки. Это позволяет сделать вывод о том, что исходная выборка действительно имеет нормальное распределение.

4. Листинг

```
import math
import matplotlib.pyplot as plot
import statistics as stat
import scipy.stats as stats
import numpy as np
import random
import help
from scipy.stats.distributions import chi2
# https://matplotlib.org/api/_as_gen/matplotlib.pyplot.plot.html
relay SDVIG = 0
f = open("Task_2a.txt" 'r')
line = f.readline().split(" ")
data = []
data2 = [[] [] [] [] [] [] [] [] []
numOfPoints = int(line[2])
numOfPointsInOneUnderArray = numOfPoints / 10
for t in f.readline().split(' '):
    if t.replace("." "" 1).isdigit() or (t.startswith("-") and t[1:].replace("." "" 1).isdigit()):
       data.append(float(t))
# создание 10 подвыборок
random.shuffle(data)
for i in range(numOfPoints):
    j = int(i // numOfPointsInOneUnderArray)
    res += data[i]
    data2[j].append(data[i])
# сортировка значений
list.sort(data)
for 1 in data2:
   list.sort(1)
# ======== функция распределения и гистограммы ========== функция распределения и
m = 40 # кол-во интервалов
numbers = []
for number in data:
    if number < 200:
       numbers.append(number)
for i in data:
   print(i)
min_value = min(numbers) # минимальное значение в выборке max_value = max(numbers) # максимальное значение в выборке
distribution_fun = np.zeros(m)
print(max_value)
h = (max_value + 0.00000000001 * max_value - min_value) / m # шаг с которым идут интервалы
steps = [] # массив точек с шагом h
for t in range(1 m+1):
    steps.append(t * h + min_value)
index = 0
print(numbers)
for value in numbers:
    if value > steps[index]:
        p = int(abs(steps[index] - value) / h) + 1
        for i in range(1 p):
            distribution_fun[index + i] = distribution_fun[index]
        distribution_fun[index] = distribution_fun[index - 1]
        index += p
    distribution_fun[index - 1] += 1
print(distribution_fun)
plot.title("Cumulative distribution function")
plot.xlim([min(numbers) max(numbers)]) # CHANGE
plot.bar(steps distribution_fun / len(numbers) h color=(0.2 0.6 0.3 1.0))
plot.show()
plot.close()
plot.title("Histogram")
plot.xlim([min(numbers) max(numbers)]) # CHANGE
```

```
plot.hist(numbers steps color=(0.2 0.6 0.3 1.0))
plot.show()
plot.close()
# !!!!!!!Для относительной гистограммы
index = 0
for_relative = np.zeros(m)
steps = [] # массив точек с шагом h
for t in range(1 m+1):
    steps.append(min_value+t * h)
for value in numbers:
    if value > steps[index]:
        p = int(abs(steps[index] - value) // h) + 1
        for_relative[index] = for_relative[index] / (h * len(numbers))
        index += p
    for_relative[index] += 1
for_relative[m - 1] = for_relative[m - 1] / (h * len(numbers))
# Проверка плошади под гистограммой
          = 0
for v in for_relative:
             __ += v * h
    SSSS
print('Area under an histogram : ' str(ssss____))
# Конец проверки площади
plot.bar(steps for_relative width=h color=(0.2 0.6 0.3 1.0))
plot.title("Relative Histogram")
plot.xlim([min(numbers) max(numbers)]) # CHANGE
plot.show()
plot.close()
plot.bar(steps for_relative width=h)
plot.title("Относительная гистограмма (до 22)")
plot.xlim([min(numbers) max(numbers)]) # CHANGE
plot.show()
plot.close()
# !!!!!!!!!!!!Относительная гистограмма построена
max_value = max(data)
# ============ ТОЧЕЧНЫЕ ОЦЕНКИ ============
print("======= TOYEYHЫE OLEHKW ==========")
empty = np.zeros(11)
median = [stat.median(data)] # медианы
mean = [stat.mean(data)] # среднее арифметическое (мат. ожидание)
mid_range = [(min_value + max_value) / 2] # средина размаха
dispersion = [help.dispersion(data mean[0])] # дисперсия s^2
root_of_dispersion = [math.sqrt(dispersion[0])] # корень из дисперсии s
third_central_moment = [help.central_moment(data 3 mean[0])] # 3-ий центральный момент fourth_central_moment = [help.central_moment(data 4 mean[0])] # 4-ый центральный момент
asymmetry = [help.asymmetry(third_central_moment[0] root_of_dispersion[0])] # асимметрия
kurtosis = [help.kurtosis(fourth_central_moment[0] dispersion[0])] # эксцесса
interquantile_interval = help.interquantile_interval(numOfPoints 0.5) # интерквантильный интервал
index = 1
for n in data2:
    median.append(stat.median(n))
    mean.append(stat.mean(n))
    mid_range.append((min(n) + max(n)) / 2)
    dispersion.append(help.dispersion(n mean[index]))
    root_of_dispersion.append((math.sqrt(dispersion[index])))
    third_central_moment.append(help.central_moment(n 3 mean[index]))
    fourth_central_moment.append(help.central_moment(n 4 mean[index]))
    asymmetry.append(third_central_moment[index] / pow(root_of_dispersion[index] 3))
kurtosis.append(help.kurtosis(fourth_central_moment[index] dispersion[index]))
    index += 1
print('\tMin: ' min_value ' Max: ' max_value)
print('\tx_med :' median)
print('\tM[x] :' mean)
print('\tx_cp :' mid_range)
print('\ts^2 :' dispersion)
print('\ts :' root_of_dispersion)
```

```
print('\to\u00c4_3 :' third_central_moment)
print('\to\u00c4_4 :' fourth_central_moment)
print('\tAs :' asymmetry)
print('\tEx :' kurtosis)
print('\tJ (номера значений) :' interquantile_interval)
plot.figure()
ax1 = plot.subplot(9 1 1)
ax1.set_ylim(-0.1 0.1)
ax1.set_yticks([])
ax1.set_yticklabels([])
plot.title('Медианы')
plot.plot(median empty 'r+')
plot.plot(median[0] 0 'rp')
ax2 = plot.subplot(9 1 3)
ax2.set_yticklabels([])
ax2.set_yticks([])
plot.title('Среднее арифметическое (мат ожидание)')
plot.plot(mean empty 'b+')
plot.plot(mean[0] 0 'bp')
ax3 = plot.subplot(9 1 5)
ax3.set_yticks([])
ax3.set_yticklabels([])
plot.title('Средина размаха')
plot.plot(mid_range empty 'g+')
plot.plot(mid_range[0] 0 'gp')
ax4 = plot.subplot(9 1 7)
ax4.set_yticks([])
ax4.set_yticklabels([])
plot.title('Дисперсия')
plot.plot(dispersion empty 'g+')
plot.plot(dispersion[0] 0 'gp')
ax5 = plot.subplot(9 1 9)
ax5.set_yticks([])
ax5.set_yticklabels([])
plot.title('Среднеквадратичное отклонение')
plot.plot(root_of_dispersion empty 'g+')
plot.plot(root_of_dispersion[0] 0 'gp')
plot.show()
plot.close()
plot.figure()
ax1 = plot.subplot(7 1 1)
ax1.set_ylim(-0.1 0.1)
ax1.set_yticks([])
ax1.set_yticklabels([])
plot.title('Третий центральный момент')
plot.plot(third_central_moment empty 'r+')
plot.plot(third_central_moment[0] 0 'rp')
ax2 = plot.subplot(7 1 3)
ax2.set_yticklabels([])
ax2.set_yticks([])
plot.title('Четвертый центральный момент')
plot.plot(fourth_central_moment empty 'b+')
plot.plot(fourth_central_moment[0] 0 'bp')
ax3 = plot.subplot(7 1 5)
ax3.set_yticks([])
ax3.set_yticklabels([])
plot.title('Асимметрия')
plot.plot(asymmetry empty 'g+')
plot.plot(asymmetry[0] 0 'gp')
```

```
ax4 = plot.subplot(7 1 7)
ax4.set_yticks([])
ax4.set_yticklabels([])
plot.title('Эκсцесса')
plot.plot(kurtosis empty 'g+')
plot.plot(kurtosis[0] 0 'gp')
plot.show()
plot.close()
             ======= ГРАФИКИ ТОЧЕЧНЫХ ПОКАЗАТЕЛЕЙ НАЧЕРЧЕНЫ ==========
# ==========!!! Часть 1.4 . Интервальные оценки !!!==========
print("========!!! Часть 1.4 . Интервальные оценки !!!========")
Q = 0.8 # доверительная вероятность
\label{eq:left_chi2inv} $$ \begin{array}{ll} $ \left( 1 + Q \right) / 2 $ $ df=11999 \right) $ \\ $ right\_chi2inv = chi2.ppf((1 - Q) / 2 $ df=11999 ) $ \\ \hline \end{tabular} 
tinv = 1.2816 # посчитано в MATLAB функцией tinv(0.9 n-1) 0.9 = (1+q)/2 где q=0.8 CHANGE
mean_interval = [help.mean_interval(numOfPoints mean[0] root_of_dispersion[0] tinv)]
dispersion_interval = [help.dispersion_interval(numOfPoints dispersion[0] left_chi2inv right_chi2inv)]
for i in range(1 11):
    mean_interval.append(help.mean_interval(numOfPointsInOneUnderArray mean[i] root_of_dispersion[i]
    {\tt dispersion\_interval.append(help.dispersion\_interval(numOfPointsInOneUnderArray\ dispersion[i])}
left_chi2inv right_chi2inv))
print("\t Интервальные оценки для мат. ожидания" + str(mean_interval))
print("\t Интервальные оценки для дисперсии" + str(dispersion_interval))
# =========== Чертим ИНТЕРВАЛЬНЫЕ ОЦЕНКИ МАТ ОЖИДАНИЯ М ДИСПЕРСИИ
# Для мат. ожидания
plot.figure()
axes = [plot.subplot(11 1 1)]
axes[0].set_yticks([])
axes[0].set_ylabel('Full')
plot.title('Интервальные оценки мат. ожидания')
plot.setp(axes[0].get_xticklabels() visible=False)
plot.plot(mean[0] 0 'rp')
plot.plot(mean_interval[0][0] 0 'b<')</pre>
plot.plot(mean_interval[0][1] 0 'b>')
for i in range(1 11):
    axes.append(plot.subplot(11 1 i + 1 sharex=axes[0]))
    axes[i].set_yticks([])
    axes[i].set_ylabel(str(i))
    if i < 10: plot.setp(axes[i].get_xticklabels() visible=False)</pre>
    plot.plot(mean[i] 0 'r+')
    plot.plot(mean_interval[i][0] 0 'b<')</pre>
    plot.plot(mean_interval[i][1] 0 'b>')
mat_razmach = max(mean) - min(mean)
axes[0].set_xlim([min(mean) - 0.5 * mat_razmach max(mean) + 0.5 * mat_razmach]) # CHANGE
plot.show()
plot.close()
# Для дисперсии
plot.figure()
axes = [plot.subplot(11 1 1)]
axes[0].set_yticks([])
axes[0].set_ylabel('Full')
plot.title('Интервальные оценки дисперсии')
plot.setp(axes[0].get_xticklabels() visible=False)
plot.plot(dispersion[0] 0 'rp')
plot.plot(dispersion_interval[0][0] 0 'b<')</pre>
plot.plot(dispersion_interval[0][1] 0 'b>')
for i in range(1 11):
    axes.append(plot.subplot(11 1 i + 1 sharex=axes[0]))
    axes[i].set_yticks([])
    axes[i].set_ylabel(str(i))
    if i < 10: plot.setp(axes[i].get_xticklabels() visible=False)</pre>
    plot.plot(dispersion[i] 0 'r+')
    plot.plot(dispersion_interval[i][0] 0 'b<')</pre>
```

```
plot.plot(dispersion_interval[i][1] 0 'b>')
disp_razmach = max(dispersion) - min(dispersion)
axes[0].set_xlim([min(dispersion) - 0.5 * disp_razmach max(dispersion) +0.5 * disp_razmach])
plot.show()
plot.close()
# ========= графики ИНТЕРВАЛЬНЫХ ОЦЕНКИ МАТ ОЖИДАНИЯ М ДИСПЕРСИИ напечатаны!
# =========== ТОЛЕРАНТНЫЕ ПРЕДЕЛЫ ==========
print("======== ТОЛЕРАНТНЫЕ ПРЕДЕЛЫ ============")
р = 0.95 # вероятность для интерквантильного промежутка
q = 0.8 # доверительная вероятность
tolerant_interval_average = [0 0] # массив для толерантных пределов
k = help.find_k(numOfPoints p q) # кол-во отбрасываемых точек print("\t\Предел k : " + str(k) + " Значение биномиального распределения : " + str(
       stats.binom.cdf(numOfPoints - k numOfPoints p)))
# Для всей выборки относительно среднего арифметического
if k % 2 == 0:
       left_lim = int(k / 2)
       right_lim = int(numOfPoints - k / 2)
       tolerant_interval_average[0] tolerant_interval_average[1] = data[left_lim] data[right_lim]
      left_lim = int((k - 1) / 2)
right_lim = int(numOfPoints - (k - 1) / 2)
       tolerant_interval_average[0] tolerant_interval_average[1] = data[left_lim] data[right_lim]
# Для всей выборки относительно нуля
# Для этого возьмем модули отрицательных значений и пересортируем выборку
data_abs = np.sort(abs(np.array(data)))
tolerant_interval_zero = [-data_abs[numOfPoints - k + 1] data_abs[numOfPoints - k + 1]]
print("\tTолерантные пределы для всей выборки относительно среднего: " + str(tolerant_interval_average))
print("\tTолерантные пределы для всей выборки относительно нуля" + str(tolerant_interval_zero))
# ЧЕРТИМ
plot.title("Толерантные пределы для интерквантильного \nпромежутка относительно среднего значения")
plot.yticks([])
plot.plot(tolerant_interval_average[0] 0 'b<')</pre>
plot.plot(tolerant_interval_average[1] 0 'b>')
plot.plot(data[interquantile_interval[0]] 0 'ro')
plot.plot(data[interquantile_interval[1]] 0 'ro')
plot.legend(("Левый толерантный предел" "Правый толерантный предел" "Интерквантильный промежуток")
loc='upper right')
plot.show()
plot.close()
plot.title("Толерантные пределы относительно нуля")
plot.yticks([])
plot.plot(tolerant_interval_zero[0] 0 'b<')</pre>
plot.plot(tolerant_interval_zero[1] 0 'b>')
plot.legend(("Левый толерантный предел" "Правый толерантный предел") loc='upper right')
plot.show()
plot.close()
# Считаем параметрические толерантные пределы подвыборок
k_tolerant_multiplier = 1.96
parametric_tolerant_interval = [[0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0]
for i in range(10):
       parametric\_tolerant\_interval[i][\emptyset] = mean[i+1] - k\_tolerant\_multiplier * root\_of\_dispersion[i+1]
       parametric\_tolerant\_interval[i][1] = mean[i+1] + k\_tolerant\_multiplier * root\_of\_dispersion[i+1] + k\_tolerant\_multiplier * root\_of\_dispersion[i+
print("\tПараметрические толерантные интервалы для подвыборок:")
print("\t\t" + str(parametric_tolerant_interval))
axes = []
plot.title("Параметрические толерантные пределы для подвыборок")
for i in range(10):
       if i == 0:
             axes.append(plot.subplot(10 1 i + 1))
             axes.append(plot.subplot(10 1 i + 1 sharex=axes[0]))
       axes[i].set_yticks([])
       axes[i].set_ylabel(str(i + 1))
```

```
if i < 9: plot.setp(axes[i].get xticklabels() visible=False)</pre>
    plot.plot(parametric_tolerant_interval[i][0] 0 'b<')</pre>
    plot.plot(parametric_tolerant_interval[i][1] 0 'b>')
    plot.plot(mean[i + 1] 0 'ro')
plot.show()
plot.close()
# ================== METOA MOMEHTOB =========================
# Для нормального распредления
print("\tДля нормального распредления")
print("\t\tc = " + str(mean[0]) + " s = " + str(root_of_dispersion[0]))
a_for_laplace_moment_method = mean[0]
laplace_lambda_moment_method = math.sqrt(2 / dispersion[0])
print("\tДля распределения Лапласа")
print("\t\ta = " + str(a_for_laplace_moment_method) + " lambda = " + str(laplace_lambda_moment_method))
k_for_gamma_moment_method = (mean[0] ** 2) / dispersion[0]
theta_for_gamma_moment_method = dispersion[0] / mean[0]
print("\tДля Гамма-распредления")
print("\t\k = " + str(k_for_gamma_moment_method) + " lambda = " + str(theta_for_gamma_moment_method))
k_for_chi_square_method = mean[0]
print("\tДля распределения Хи-квадрат")
print("\t\tk = " + str(k_for_chi_square_method))
lamda_for_exp_moment = 1/mean[0]
print("\tДля экспоненциального распределения")
print("\tlambda = " + str(lamda_for_exp_moment))
disp_for_lognorm_moment = root_of_dispersion[0]
mu_for_lognorm_moment = mean[0]
print("\tДля логнормального распределения")
print("\t\tdisp = " + str(disp_for_lognorm_moment))
print("\t\tmu = " + str(mu_for_lognorm_moment))
disp_for_relay_moment = mean[0] * np.sqrt(2/np.pi)
print("\tДля распределения Рэлея")
print("\t\tdisp = " + str(disp_for_relay_moment))
n_for_student_moment = (2 * dispersion[0]) / (dispersion[0] - 1)
print("\tДля распределения Стьюдента")
print("\t\tn = " + str(n_for_student_moment))
print("========"MM\(\Pi======="\)
# Для нормального распределения
c_for_normal_mmp = 1 / numOfPoints * sum(data)
dispersion_for_normal_mmp = 1 / numOfPoints * sum((np.array(data) - c_for_normal_mmp) ** 2)
s_for_normal_mmp = math.sqrt(dispersion_for_normal_mmp)
print("\tДля нормального распределения")
print("\t\tc = " + str(c_for_normal_mmp) + " s = " + str(s_for_normal_mmp))
# Для распределения Лапласа
a_for_laplace_mmp = mean[0]
laplace_lambda_mmp = numofPoints * (1 / sum(abs(np.array(data) - a_for_laplace_mmp)))
print("\tДля распределения Лапласа")
print("\t\ta = " + str(a_for_laplace_mmp) + " lambda = " + str(laplace_lambda_mmp))
# # Для Гамма-распределения
# # Числовые значения которые нужно посчитать
for optimize1 = 0
for_optimize2 = 0
square_sum = 0
for v in data:
    if v > 0:
        square_sum += v * v
        for_optimize1 += v
        for_optimize2 += np.log(v)
```

```
for optimize3 = for optimize1
for_optimize1 = np.log(for_optimize1 / numOfPoints)
for_optimize4 = for_optimize2
for optimize2 = for optimize2 / numOfPoints
c_mmp = for_optimize1 - for_optimize2
#Достаем градиент Гамма-функции и ищем ее минимум
gamma_gradient = help.gammaGradient(c_mmp).gamma_gradient
k_for_gamma_mmp = help.fmin_bisection(gamma_gradient 0.5 100 1e-14)
theta_for_gamma_mmp = for_optimize3 / (k_for_gamma_mmp * numOfPoints)
print("\tДля Гамма-распределения")
print("\t\tk = " + str(k_for_gamma_mmp) + " theta = " + str(theta_for_gamma_mmp))
#
# # # Для Хи-квадрат-распределения
# # # Числовые значения которые нужно посчитать
log_of_sums = for_optimize4/2
chi_gradient = help.chiGradient(log_of_sums numOfPoints).chi_gradient
k_for_chi_square_method_mmp = help.fmin_bisection(chi_gradient 1 10 1e-14)
print("\tДля Хи-квадрат-распределения")
print("\t\tk = " + str(k_for_chi_square_method_mmp))
# # Для экспоненциального распределения
lambda_for_exp_mmp = mean[∅]
lambda_for_exp_mmp = 1 / mean[0]
print("\tДля экспоненциального распределения")
print("\t\tlambda = " + str(lambda for exp mmp))
mu_for_lognorm_mmp = for_optimize2
buffer = 0
for v in data:
    if v > 0:
        buffer += (np.log(v) - mu_for_lognorm_mmp)*(np.log(v) - mu_for_lognorm_mmp)
disp for lognorm mmp = buffer/(numOfPoints * 2)
print("\tДля логнормального распределения")
print("\t\tdisp = " + str(disp_for_lognorm_mmp))
print("\t\tmu = " + str(mu_for_lognorm_mmp))
mu_for_lognorm_matlab = 0.5791
disp for lognorm matlab = 1.9999
disp_for_relay_mmp = np.sqrt(square_sum/(numOfPoints*2))
disp_for_relay_mmp = np.sqrt(square_sum/(numOfPoints*2))
print("\tДля распределения Рэлея")
print("\t\tdisp = " + str(disp_for_relay_mmp))
mu_for_student_mmp = 0.0267811
sigma_for_student_mmp = 1.03866
nu_for_student_mmp = 5.55669
# ================ Построим финции распределения и плотности вместе с гистограммой
# Для нормального распределения
# https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.norm.html#scipy.stats.norm
plot.title("Сравнение с плотностью нормального распределения")
#plot.xlim([0 100])
plot.bar(steps for_relative width=h color=(0.2 0.6 0.3 0.4))
plot.plot(data stats.norm.pdf(np.array(data) loc=mean[0] scale=root_of_dispersion[0]) 'b')
plot.plot(data stats.norm.pdf(np.array(data) loc=c_for_normal_mmp scale=s_for_normal_mmp) 'r')
plot.legend(("Метод моментов" "ММП" "Гистограмма") loc='upper right')
plot.show()
plot.close()
plot.title("Сравнение с нормальным распределением")
# plot.xlim([0 1000])
plot.bar(steps distribution_fun / numOfPoints width=h color=(0.2 0.6 0.3 0.4))
plot.plot(data stats.norm.cdf(np.array(data) loc=mean[@] scale=root_of_dispersion[@]) 'b')
plot.plot(data stats.norm.cdf(np.array(data) loc=c_for_normal_mmp scale=s_for_normal_mmp) 'r')
plot.legend(("Метод моментов" "ММП" "Эмпирическая") loc='upper right')
plot.show()
plot.close()
```

```
# Для распределения Лапласа
plot.title("Сравнение с плотностью распределения Лапласа")
# nlot xlim([0 1000])
plot.bar(steps for relative width=h color=(0.2 0.6 0.3 0.4))
plot.plot(data
         stats.laplace.pdf(np.array(data) loc=a_for_laplace_moment_method scale=1 /
laplace_lambda_moment_method)
plot.plot(data stats.laplace.pdf(np.array(data) loc=a_for_laplace_mmp scale=1 / laplace_lambda_mmp) 'r')
plot.legend(("Метод моментов" "ММП" "Гистограмма") loc='upper right')
plot.show()
plot.close()
plot.title("Сравнение с распределением Лапласа")
# plot.xlim([0 1000]
plot.bar(steps distribution_fun / numOfPoints width=h color=(0.2 0.6 0.3 0.4))
plot.plot(data stats.laplace.cdf(np.array(data) loc=mean[0] scale=1 / laplace_lambda_moment_method) 'b')
plot.plot(data stats.laplace.cdf(np.array(data) loc=a_for_laplace_mmp scale=1 / laplace_lambda_mmp) 'r')
plot.legend(("Метод моментов" "ММП" "Эмпирическая") loc='upper right')
plot.show()
plot.close()
# # Для Гамма-распределения
# # https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gamma.html
plot.title("Сравнение с плотностью Гамма-распределения")
plot.bar(steps for_relative width=h color=(0.2 0.4 0.6 0.6))
plot.plot(data stats.gamma.pdf(np.array(data) k_for_gamma_moment_method
scale=theta_for_gamma_moment_method) 'b')
plot.plot(data stats.gamma.pdf(np.array(data) k_for_gamma_mmp scale=theta_for_gamma_mmp) 'r')
plot.legend(("Метод моментов" "ММП" "Гистограмма") loc='upper right')
plot.show()
plot.close()
plot.title("Сравнение с Гамма-распределением")
plot.bar(steps distribution_fun / numOfPoints width=h color=(0.2 0.4 0.6 0.6))
plot.plot(data stats.gamma.cdf(np.array(data) k_for_gamma_moment_method
scale=theta_for_gamma_moment_method) 'b')
plot.plot(data stats.gamma.cdf(np.array(data) k_for_gamma_mmp scale=theta_for_gamma_mmp) 'r')
plot.legend(("Метод моментов" "ММП" "Эмпирическая") loc='upper right')
plot.show()
plot.close()
print("========== ПРОВЕРКА ГИПОТЕЗ ==========")
_{nk} = np.empty(m)
index = 0
for val in distribution fun:
   if index == 0:
        _{nk[index]} = val
       _nk[index] = val - distribution_fun[index - 1]
    index += 1
# ======= Хи-квадрат==================
print("======= Хи-квадрат статистика=======")
print("\tKритическое значение = 45.0763 ( 46.1730 для одного параметра )") # Значение получено в MATLAB
CHANGE
print("\tДля нормального распределения")
index = 0
chi2_stat = 0
y_pdf x_pdf = np.histogram(data bins=100)
for i in range(m):
    if i == 0:
          _Pk = stats.norm.cdf(steps[index] loc=mean[0] scale=root_of_dispersion[0]) -\
               stats.norm.cdf(min_value loc=mean[0] scale=root_of_dispersion[0])
    else:
```

```
Pk = stats.norm.cdf(steps[index] loc=mean[0] scale=root of dispersion[0]) -\
                stats.norm.cdf(steps[index - 1] loc=mean[0] scale=root_of_dispersion[0])
    chi2_stat += (numOfPoints * __Pk - _nk[index]) / (numOfPoints * __Pk)
    index += 1
print("\t\tДля метода моментов = " + str(chi2_stat))
chi2_stat = 0
for i in range(m):
    if i == 0:
          _Pk = stats.norm.cdf(steps[index] loc=c_for_normal_mmp
scale=s_for_normal_mmp)/stats.norm.cdf(min_value loc=c_for_normal_mmp scale=s_for_normal_mmp)
    else:
           Pk = stats.norm.cdf(steps[index] loc=c_for_normal_mmp scale=s_for_normal_mmp) -
stats.norm.cdf(steps[index - 1] loc=c_for_normal_mmp scale=s_for_normal_mmp)
    chi2_stat += (numOfPoints * ___Pk - _nk[index]) ** 2 / (numOfPoints *
    index += 1
print("\t\tДля ММП = " + str(chi2 stat))
print("\tДля распределения Лапласа")
index = 0
chi2 stat = 0
for i in range(m):
   if i == 0:
          _Pk = stats.laplace.cdf(steps[index] loc=a_for_laplace_moment_method
                                   scale=1 / laplace_lambda_moment_method) - \
                stats.laplace.cdf(min_value loc=a_for_laplace_moment_method scale=1 /
laplace_lambda_moment method)
    else:
           Pk = stats.laplace.cdf(steps[index] loc=a_for_laplace_moment_method
                                   scale=1 / laplace_lambda_moment_method) - \
                stats.laplace.cdf(steps[index - 1] loc=a_for_laplace_moment_method
                                   scale=1 / laplace_lambda_moment_method)
    chi2_stat += (numOfPoints * ___Pk - _nk[index]) ** 2 / (numOfPoints * _
    index += 1
print("\t\tДля метода моментов = " + str(chi2 stat))
index = 0
chi2_stat = 0
for i in range(m):
    if i == 0:
          Pk = stats.laplace.cdf(steps[index] loc=a for laplace mmp scale=1 / laplace lambda mmp) - \
                stats.laplace.cdf(min_value loc=a_for_laplace_mmp scale=1 / laplace_lambda_mmp)
    else:
          _Pk = stats.laplace.cdf(steps[index] loc=a_for_laplace_mmp scale=1 / laplace_lambda_mmp) - \
                stats.laplace.cdf(steps[index - 1] loc=a_for_laplace_mmp scale=1 / laplace_lambda_mmp)
    chi2_stat += (numOfPoints * ___Pk - _nk[index]) ** 2 / (numOfPoints * ___Pk)
    index += 1
print("\t\tДля ММП = " + str(chi2_stat))
print("\tДля Гамма-распределения")
# # Здесь мы начинаем цикл от 4 так как иначе будут взяты отрицательные значения которые в гамма
распределении
# # отсутсвуют а значит РК будет ноль и мы получим деление на ноль
index = 0
chi2_stat = 0
for i in range(0 m):
     __Pk = stats.gamma.cdf(steps[index] k_for_gamma_moment_method scale=theta_for_gamma_moment_method)
            stats.gamma.cdf(steps[index - 1] k_for_gamma_moment_method
scale=theta_for_gamma_moment_method)
    chi2_stat += (numOfPoints * ___Pk - _nk[index]) ** 2 / (numOfPoints * ___Pk)
    index += 1
print("\t\tДля метода моментов = " + str(chi2_stat))
index = 0
chi2_stat = 0
for i in range(0 m):
    ___Pk = stats.gamma.cdf(steps[index] k_for_gamma_mmp scale=theta_for_gamma_mmp) - \
    stats.gamma.cdf(steps[index - 1] k_for_gamma_mmp scale=theta_for_gamma_mmp)
chi2_stat += (numOfPoints * __Pk - _nk[index]) ** 2 / (numOfPoints * __Pk)
    index += 1
print("\t\tДля ММП = " + str(chi2_stat))
```

```
__Dcrit = np.sqrt(- (np.log(0.5 * 0.05) / (2 * numOfPoints))) - 1 / (6 * numOfPoints)
print("\tKpитическое значение = " + str(___Dcrit))
print("\tДля нормального распределения")
 D = 0
index = 1
for val in data:
      __ddd = abs(stats.norm.cdf(val loc=mean[0] scale=root_of_dispersion[0]) - index / numOfPoints)
   if ____ddd > ___D: ___D = ____ddd
   index += 1
print("\t\tДля метода моментов = " + str(___D))
 D = 0
index = 1
for val in data:
      _ddd = abs(stats.norm.cdf(val loc=c_for_normal_mmp scale=s_for_normal_mmp) - index /
numOfPoints)
        __ddd > ___D: ___D = ____ddd
   index += 1
print("\t\tДля ММП = " + str(___D))
print("\tДля распределения Лапласа")
 D = 0
index = 1
for val in data:
   ____ddd = abs(stats.laplace.cdf(val loc=a_for_laplace_moment_method
                             scale=1 / laplace_lambda_moment_method) - index / numOfPoints)
         __ddd > ___D: ___D = ___
   index += 1
print("\t\tДля метода моментов = " + str(___D))
 D = 0
index = 1
for val in data:
       numOfPoints)
         _ddd > ___D: ___D = ____ddd
  if
   index += 1
print("\t\LДля ММП = " + str( D))
print("\tДля Гамма-распределения")
 D = 0
\overline{index} = 1
for val in data:
   ____ddd = abs(stats.gamma.cdf(val k_for_gamma_moment_method
                           scale=theta_for_gamma_moment_method) - index / numOfPoints)
        __ddd > ___D: ___D = ___
   index += 1
print("\t\tДля метода моментов = " + str(___D))
 D = 0
index = 1
for val in data:
   ___ddd > ___D: ___D = ____ddd
   index += 1
print("\t\tДля ММП = " + str(___D))
# ======= критерий Мизеса =========
print("\tКритическое значение = 0.2415") # Значение взято из таблицы
print("\tДля нормального распределения")
 _w = 0
index = 1
for val in data:
    _w += (stats.norm.cdf(val <mark>loc</mark>=mean[0] scale=root_of_dispersion[0]) - (2 * index - 1) / (2 *
numOfPoints)) ** 2
  index += 1
  _w = 1 / (12 * numOfPoints) + ____w
```

```
print("\t\tДля метода моментов = " + str(__w))
  w = 0
index = 1
for val in data:
    __w += (stats.norm.cdf(val loc=c_for_normal_mmp scale=s_for_normal_mmp) - (2 * index - 1) / (
            2 * numOfPoints)) ** 2
   index += 1
  _w = 1 / (12 * numOfPoints) + __
print("\t\tДля ММП = " + str(__w))
print("\tДля распределения Лапласа")
  w = 0
\overline{index} = 1
for val in data:
    ___w += (stats.laplace.cdf(val loc=a_for_laplace_moment_method
                                 scale=1 / laplace_lambda_moment_method) - (2 * index - 1) / (2 *
numOfPoints)) ** 2
   index += 1
__w = 1 / (12 * numOfPoints) + __w
print("\t\для метода моментов = " + str(__w))
  w = 0
index = 1
for val in data:
   ___w += (stats.laplace.cdf(val loc=a_for_laplace_mmp
                                 scale=1 / laplace_lambda_mmp) - (2 * index - 1) / (2 * numOfPoints)) ** 2
   index += 1
  _w = 1 / (12 * numOfPoints) + ___w
print("\t\tДля ММП = " + str(__w))
print("\tДля Гамма-распределения")
  _w = 0
\overline{index} = 1
for val in data:
    ___w += (stats.gamma.cdf(val k_for_gamma_moment_method
                               scale=theta_for_gamma_moment_method) - (2 * index - 1) / (2 * numOfPoints))
** 2
   index += 1
__w = 1 / (12 * numOfPoints) + __w
print("\t\для метода моментов = " + str(__w))
  w = 0
\frac{1}{\text{index}} = 1
for val in data:
   __w += (stats.gamma.cdf(val k_for_gamma_mmp scale=theta_for_gamma_mmp) - (2 * index - 1) / (
             2 * numOfPoints)) ** 2
   index += 1
  w = 1 / (12 * numOfPoints) +
print("\t\tДля ММП = " + str(__w))
```