Pulls of the observables in Scenario II

	Observable	NP prediction	NP pull	SM pull
0	a_{μ}	0.0011659	4.3σ	4.3σ
1	$\langle \frac{d\overline{\mathrm{BR}}}{dq^2} \rangle (B_s \to \phi \mu^+ \mu^-)^{[2.5, 4.0]}$	4.5349×10^{-8}	3.1 σ	4 σ
2	$\langle F_L \rangle (B^+ \to K^{*+} \mu^+ \mu^-)^{[2.5, 4]}$	0.76718	3.2 σ	3.3 σ
3	$R_{\tau\ell}(B\to D^*\ell^+\nu)$	0.29444	0.11 σ	3.3 σ
4	$\langle P_2 \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[0.1, 0.98]}$	-0.13088	3.3σ	3.3 σ
5	$\langle R_{\mu e} \rangle (B^{\pm} \to K^{\pm} \ell^{+} \ell^{-})^{[1.1, 6.0]}$	0.83564	0.25σ	3.2σ
6	$\langle \frac{d\overline{\mathrm{BR}}}{L^2} \rangle (B_s \to \phi \mu^+ \mu^-)^{[1.1, 2.5]}$	4.9232×10^{-8}	2.5σ	3.2σ
7	$ \frac{\langle \frac{d\overline{\text{BR}}}{dq^2} \rangle (B_s \to \phi \mu^+ \mu^-)^{[4.0, 6.0]}}{\langle \frac{dR}{d\theta} \rangle (e^+ e^- \to W^+ W^-)^{[198.38, 0.8, 1.0]}} $	4.7857×10^{-8}	2.2 σ	3.1 σ
8	$\left\langle \frac{dR}{dQ} \right\rangle (e^+e^- \to W^+W^-)^{[198.38, 0.8, 1.0]}$	7.236	3 σ	3 σ
9	$\langle P_5' \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[4, 6]}$	-0.61471	1.8 σ	2.8 σ
10	$\langle \frac{d\overline{BR}}{da^2} \rangle (B_s \to \phi \mu^+ \mu^-)^{[0.1, 0.98]}$	1.0947×10^{-7}	2.4 σ	2.7 σ
11	$BR(W^{\pm} \to \tau^{\pm} \nu)$	0.10837	2.6 σ	2.6 σ
12	$\langle R_{\mu e} \rangle (B^0 \to K^{*0} \ell^+ \ell^-)^{[1.1, 6.0]}$	0.84252	1.4σ	2.5 σ
13		-2.4922×10^{-5}	2.5σ	2.5 σ
14	$R_{\tau\mu}(B \to D^* \ell^+ \nu)$	0.29506	0.57σ	2.5σ
15	$A_{ m FB}^{0,b}$	0.10307	2.4σ	2.4 σ
16	$\frac{\epsilon'/\epsilon}{R_{\tau\mu}(B \to D^*\ell^+\nu)}$ $\frac{A_{\rm FB}^{0,b}}{A_{\rm FB}^{0,b}}$ $\langle R_{\mu e}\rangle(B^0 \to K^{*0}\ell^+\ell^-)^{[0.045, \ 1.1]}$ $\frac{\langle BR \rangle}{BR}(B \to D^*\tau^+\nu)^{[10.4, \ 10.93]}$ A_e $\langle \frac{dBR}{dq^2}\rangle(B^+ \to K^{*+}\mu^+\mu^-)^{[15.0, \ 19.0]}$	0.88458	2.1σ	2.4σ
17	$\frac{\langle BR \rangle}{BR} (B \to D^* \tau^+ \nu)^{[10.4, 10.93]}$	0.018511	2.3σ	2.3σ
18	A_e	0.14703	2.2σ	2.2 σ
19	$\langle \frac{dBR}{da^2} \rangle (B^+ \to K^{*+} \mu^+ \mu^-)^{[15.0, 19.0]}$	5.4963×10^{-8}	1.4σ	2.2σ
20	$\frac{\langle \frac{dR}{d\theta} \rangle (e^{+}e^{-} \to W^{+}W^{-})^{[189.09, 0.8, 1.0]}}{\langle P'_{4} \rangle (B^{0} \to K^{*0}\mu^{+}\mu^{-})^{[4, 6]}}$ $\tilde{B}_{n}^{[0.591]}$	6.253	2.2 σ	2.2 σ
21	$\langle P_4' \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[4, 6]}$	-0.49053	2 σ	2.1 σ
22	$ ilde{B}_n^{[0.591]}$	0.98894	2.2 σ	2.2 σ
23	$\langle P_{\circ}' \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[1.1, 2.5]}$	-0.012211	2.2 σ	2.1 σ
24	$\langle P_1 \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[1.1, 2.5]}$	0.022867	2.2 σ	2.2 σ
25	$ \langle P_1 \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[1.1, 2.5]} $ $ \langle P_3 \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[1.1, 2.5]} $	0.0028863	2.2 σ	2.1 σ
26	F TZ	0.0016583	2.6σ	2.1 σ
27	$\langle \frac{dBR}{dq^2} \rangle (B^+ \to K^{*+} \mu^+ \mu^-)^{[4.0, 6.0]}$	4.7359×10^{-8}	1.6σ	2.1 σ
28	$\frac{\langle BR \rangle}{BB} (B \to D^* \tau^+ \nu)^{[5.07, 5.6]}$	0.063084	2.1σ	2.1 σ
29	$\langle \frac{d B R}{d q^2} \rangle (B^{\pm} \to K^{\pm} \mu^{+} \mu^{-})^{[4.0, 5.0]}$	2.9582×10^{-8}	1.2σ	2.1 σ
30	$\mathrm{BR}(K_L \to e^+e^-)$	1.7487×10^{-13}	2.1 σ	2.1 σ
31	$BR(B^{\pm} \to K^{\pm} \tau^+ \tau^-)$	5.7453×10^{-5}	2 σ	2 σ
32	$(\frac{dBR}{dq^2})(B^0 \to K^{*0}\mu^+\mu^-)^{[15.0, 19.0]}$	5.0724×10^{-8}	0.93σ	2.1σ
33	$\langle P_5' \rangle (B^+ \to K^{*+} \mu^+ \mu^-)^{[15, 19]}$	-0.56699	1.9 σ	2 σ
34	$\langle A_{\rm FB}^{\ell h} \rangle (\Lambda_b \to \Lambda \mu^+ \mu^-)^{[15, 20]}$	0.15534	2.2σ	2.1 σ
35	$\langle A_{\rm FB}^{\ell h} \rangle (\Lambda_b \to \Lambda \mu^+ \mu^-)^{[15, 20]} $ $\langle P_2 \rangle (B^+ \to K^{*+} \mu^+ \mu^-)^{[4, 6]}$	0.16362	1.5σ	2.1σ
36	$\langle \frac{d\overline{\mathrm{BR}}}{dq^2} \rangle (B_s \to \phi \mu^+ \mu^-)^{[1.0, 6.0]}$	4.7692×10^{-8}	1.7σ	2σ
37	$\langle P_3 \rangle (B^+ \to K^{*+} \mu^+ \mu^-)^{[0.1, 0.98]}$	0.0013649	2 σ	2 σ
38	$\mathrm{BR}(\tau^- \to \mu^- \nu \bar{\nu})$	0.17278	2.2σ	2 σ
39	$\overline{\rm BR}(B_s \to \mu^+ \mu^-)$	3.6616×10^{-9}	1.9σ	1.9 σ
40	$\frac{\text{BR}(\tau^- \to \mu^- \nu \bar{\nu})}{\text{BR}(B_s \to \mu^+ \mu^-)}$ $\langle P_2 \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[4, 6]}$	0.16155	0.65σ	1.9σ
41	$\langle \frac{dBR}{dq^2} \rangle (B^0 \to K^0 \mu^+ \mu^-)^{[4.0, 6.0]}$	2.7333×10^{-8}	1.3σ	1.9 σ
42	a_e	0.0011597	1.9σ	1.9σ
43	$\langle P_5' \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[2.5, 4]}$	-0.29333	0.79σ	1.9σ
44	$\langle \frac{dBR}{dq^2} \rangle (B^0 \to K^0 \mu^+ \mu^-)^{[15.0, 22.0]}$	1.1833×10^{-8}	1 σ	1.9σ
45	$\frac{\langle \text{BR} \rangle}{\langle \text{BR} \rangle} (B \to D\tau^{+}\nu)^{[7.73, 8.27]} \\ \langle \frac{d \text{BR}}{d q^{2}} \rangle (B^{\pm} \to K^{\pm}\mu^{+}\mu^{-})^{[5.0, 6.0]}$	0.091527	1.9σ	1.9 σ
46	$(\frac{dBR}{dq^2})(B^{\pm} \to K^{\pm}\mu^{+}\mu^{-})^{[5.0, 6.0]}$	2.9353×10^{-8}	1 σ	1.9σ
47	$\frac{\langle \text{BR} \rangle}{\langle \text{BR} \rangle} (B \to D^* \tau^+ \nu)^{[7.2, 7.73]} \\ \langle \frac{d \text{BR}}{d q^2} \rangle (B^{\pm} \to K^{\pm} \mu^+ \mu^-)^{[1.1, 2.0]}$	0.10189	1.9σ	1.9 σ
48	$\langle \frac{dBR}{dq^2} \rangle (B^{\pm} \rightarrow K^{\pm} \mu^+ \mu^-)^{[1.1, 2.0]}$	3.0075×10^{-8}	1.1σ	1.9σ
49	$\langle \frac{dR}{40} \rangle (e^+e^- \to W^+W^-)^{[198.38, -0.6, -0.4]}$	0.835	1.9σ	1.9 σ
50	$\langle P_1 \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[4.3, 6]}$	-0.16703	1.9σ	1.9σ
51	$\frac{\mu_{Zh}(h \to c\bar{c})}{\left\langle \frac{dR}{d\theta} \right\rangle (e^+e^- \to W^+W^-)^{[198.38, 0.6, 0.8]}}$	1	1.8σ	1.8 σ
52	$\left\langle \frac{aR}{d\theta} \right\rangle (e^+e^- \to W^+W^-)^{[198.38, 0.6, 0.8]}$	4.428	1.8 σ	1.8 σ

	Observable	NP prediction	NP pull	SM pull
53	$\langle rac{d\mathrm{BR}}{dq^2} angle (B^0 ightarrow K^{*0} \mu^+ \mu^-)^{[1.1,\ 2.5]}$	4.2691×10^{-8}	1.3σ	1.8σ
54	$\frac{\left\langle \frac{dq}{d\theta} \right\rangle (e^{+}e^{-} \to W^{+}W^{-})^{[182.66, -1.0, -0.8]}}{\left\langle \frac{dBR}{dq^{2}} \right\rangle (B^{0} \to K^{*0}\mu^{+}\mu^{-})^{[4.3, 6]}}$	0.702	1.8 σ	1.8 σ
55	$\langle \frac{d\theta}{d\theta} \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[4.3, 6]}$	4.4203×10^{-8}	1.1 σ	1.7 σ
56	$(\frac{d BR}{dq^2})(B^0 \to K^{*0} \mu^+ \mu^-)^{[4.0, 6.0]}$	4.3783×10^{-8}	0.99 σ	1.7 σ
57	$\left(\frac{dR}{d\theta}\right)(e^{+}e^{-} \to W^{+}W^{-})^{[198.38, -1.0, -0.8]}$	0.542	1.7 σ	1.7 σ
58		80.359	$\frac{1.7 \sigma}{1.7 \sigma}$	1.7 σ
59	$m_W \over \left\langle \frac{dR}{d\theta} \right\rangle (e^+e^- \to W^+W^-)^{[182.66, 0.0, 0.2]}$	1.731	1.7 σ	1.7 σ
60	$\langle \frac{dBR}{dq^2} \rangle (B^0 \to K^0 \mu^+ \mu^-)^{[2.0, 4.0]}$	2.7695×10^{-8}	1.1 σ	1.7 σ
61	$\mu_{Wh}(h \to \tau^+ \tau^-)$	1	1.7 σ	1.7 σ
62	$\frac{\mu_{Wh}(h \to \tau^+ \tau^-)}{\left\langle \frac{dR}{d\theta} \right\rangle (e^+ e^- \to W^+ W^-)^{[205.92, 0.2, 0.4]}}$	2.056	1.7 σ	1.7 σ
63	$\left\langle \frac{dR}{d\theta} \right\rangle (e^+e^- \to W^+W^-)^{[205.92, -0.6, -0.4]}$	0.77	1.7 σ	1.7 σ
64	$\mu_{t\bar{t}h}(h \to W^+W^-)$	1	1.7 σ	1.7 σ
65	$\frac{\mu_{t\bar{t}h}(h \to W^+W^-)}{\left(\frac{dBR}{dq^2}\right)(\Lambda_b \to \Lambda \mu^+\mu^-)^{[15, 20]}}$ $R(e^+e^- \to W^+W^-)^{[182.7]}$	6.0653×10^{-8}	2.1σ	1.7 σ
66	$R(e^+e^- \to W^+W^-)^{[182.7]}$	1	1.6 σ	1.6 σ
67	$A_{\Delta\Gamma}(B_s \to \phi \gamma) $ $\langle \frac{d \text{BR}}{dq^2} \rangle (B^{\pm} \to K^{\pm} \mu^+ \mu^-)^{[15.0, 22.0]}$	0.03051	1.7σ	1.7 σ
68	$\langle \frac{d \text{BR}}{d a^2} \rangle (B^{\pm} \to K^{\pm} \mu^+ \mu^-)^{[15.0, 22.0]}$	1.2845×10^{-8}	0.41σ	1.6σ
69	$BR(K_S \to \pi^+ e^+ \nu)$	0.00071986	1.6σ	1.6σ
70	$\langle P_5' \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[0.1, 0.98]}$ $\frac{\langle BR \rangle}{BR} (B \to D \tau^+ \nu)^{[9.0, 9.5]}$ $R_{\tau\ell} (B \to D \ell^+ \nu)$	0.73931	2.1σ	1.6σ
71	$\frac{\langle \mathrm{BR} \rangle}{\mathrm{BR}} (B \to D \tau^+ \nu)^{[9.0, 9.5]}$	0.066851	1.6σ	1.6 σ
72	$R_{ au\ell}(B o D\ell^+ u)$	0.3573	0.35σ	1.6σ
73	$\langle P_6' \rangle (B^+ \to K^{*+} \mu^+ \mu^-)^{[15, 19]}$ $\langle F_L \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[1.1, 2.5]}$	-0.002583	1.5σ	1.5σ
74	$\langle F_L \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[1.1, 2.5]}$	0.70778	0.79σ	1.6σ
75	$ au_{B_s o \mu\mu}$	2.4506×10^{12}	1.6σ	1.6 σ
76	$\frac{\tau_{B_s \to \mu\mu}}{\text{BR}(K_L \to \pi^+ e^+ \nu)} \\ \langle D_{P_g}^{\mu e} \rangle (B^0 \to K^{*0} \ell^+ \ell^-)^{[14.18, 19.0]}$	0.41115	1.6σ	1.6 σ
77	$\langle D_{P_5'}^{\mu e} \rangle (B^0 \to K^{*0} \ell^+ \ell^-)^{[14.18, 19.0]}$	0.0070533	1.5σ	1.5σ
78	$\langle \frac{d BR}{d q^2} \rangle (B^{\pm} \to K^{\pm} \mu^{+} \mu^{-})^{[3.0, 4.0]}$	2.9773×10^{-8}	0.7σ	1.5σ
79	$\langle P_6' \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[4, 6]}$	-0.034085	1.5σ	1.5 σ
80	$\langle P_5' \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[1.1, 2.5]}$	0.29796	0.47σ	1.5σ
81	$ \begin{array}{c} \langle P_6' \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[4, \ 6]} \\ \langle P_5' \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[1.1, \ 2.5]} \\ A_{\rm FB}^{0, \tau} \end{array} $	0.016236	1.5σ	1.5σ
82	$(\frac{d\overline{\rm BR}}{dq^2})(B_s \to \phi \mu^+ \mu^-)^{[15.0, 19.0]}$ R^0_μ	4.753×10^{-8}	0.21σ	1.5σ
83	R_{μ}^{0}	20.735	1.5σ	1.5σ
84	$\langle \frac{dBR}{da^2} \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[2.5, 4.0]}$	3.9895×10^{-8}	0.84σ	1.5 σ
85	$BR(B^- \to \pi^- \tau^+ e^-)$	2.0924×10^{-9}	1.5σ	1.5 σ
86	$\left\langle \frac{dR}{d\theta} \right\rangle (e^{+}e^{-} \to W^{+}W^{-})^{[182.66, 0.2, 0.4]}$	2.189	1.5σ	1.5 σ
87	$\langle \overline{S_4} \rangle (B_s \to \phi \mu^+ \mu^-)^{[15.0, 19.0]}$	-0.30161	1.5 σ	1.5 σ
88	$F_L(B^0 o D^{*-} au^+ u_ au)$	0.46989	1.5σ	1.5σ
89	$BR(B^+ \to K^+ \nu \bar{\nu})$	5.943×10^{-6}	1 σ	1.4 σ
90	$\mathrm{BR}(K_S \to \mu^+ \mu^-)$	5.1619×10^{-12}	1.4 σ	1.4 σ
91	$\frac{\langle BR \rangle}{BR} (B \to D^* \tau^+ \nu)^{[6.0, 6.5]}$	0.080351	1.4 σ	1.4 σ
92	$BR(W^{\pm} \to \mu^{\pm} \nu)$	0.10842	1.4 σ	1.4 σ
93	$\begin{array}{c} \text{BR}(W^{\pm} \to \mu^{\pm} \nu) \\ R_e^0 \\ \langle A_9 \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[15, 19]} \\ R_{e\mu}(K^+ \to \ell^+ \nu) \end{array}$	20.734	1.4σ	1.4 σ
94	$\langle A_9 \rangle (B^{\circ} \to K^{\circ} \mu_{\perp} \mu^{-})^{[10, 10]}$	4.1214×10^{-5}	1.4 σ	1.4 σ
95	$R_{e\mu}(K^+ o \ell^+ u) $	2.4755×10^{-5}	$\frac{1.4 \sigma}{0.07 \sigma}$	1.4 σ
96	$/\text{RR} \setminus (R \rightarrow X_{\rho} + \rho^{-})[14.2, 25.0]$	-0.62316 3.182×10^{-7}	$\begin{array}{c} 0.97 \ \sigma \\ \hline 1.4 \ \sigma \end{array}$	1.3 σ 1.4 σ
98	$\langle \text{BR} \rangle (B \to X_s e^+ e^-)^{[14.2, 25.0]}$	3.182×10^{-4} 4.6665×10^{27}	1.4σ 1.4σ	1.4σ 1.4σ
99	$\frac{\mathcal{F}t(^{10}C)}{\mathcal{F}t(^{40}C)}$ $\langle \frac{dBR}{dq^2} \rangle (B^{\pm} \to K^{\pm}\mu^{+}\mu^{-})^{[0, 2]}$	3.0119×10^{-8}	0.63σ	1.4σ 1.3σ
100	$\frac{\langle \frac{dR}{dq^2} / (B^- \to K^+ \mu^-)^{-1} \rangle}{\langle \frac{dR}{d\theta} \rangle (e^+ e^- \to W^+ W^-)^{[189.09, -0.2, 0.0]}}$	1.403	1.3σ	1.3σ 1.3σ
100	$\frac{ A\theta }{ BR(B^+ \to e^+ \nu)}$	9.8005×10^{-12}	1.3 σ	1.3 σ
102	$\frac{\text{BR}(B^+ \to e^+ \nu)}{\langle D_{P_5'}^{\mu e} \rangle (B^0 \to K^{*0} \ell^+ \ell^-)^{[1.0, 6.0]}}$	0.080606	$\frac{1.3 \sigma}{1.2 \sigma}$	1.3 σ
103	$S_{\phi\gamma}$	-0.00023221	1.3 σ	1.3 σ
103	$\overline{{ m BR}}(B_s o e^+e^-)$	1.0087×10^{-13}	$\frac{1.3 \sigma}{1.3 \sigma}$	1.3σ 1.3σ
104	$\langle P_8' \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[4, 6]}$	-0.010099	$\frac{1.3 \sigma}{1.3 \sigma}$	1.3 σ
106	$\langle P_4' \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[2, 4]}$	-0.3251	$\frac{1.3 \sigma}{1.3 \sigma}$	1.3σ 1.3σ
107	$\frac{(14/(B-7)R-\mu-\mu^{-})^{3}}{\mathrm{BR}(K_S \to e^+e^-)}$	1.6155×10^{-16}	1.3σ	1.3σ 1.3σ
108	$BR(B^0 \to e^+e^-)$	2.5204×10^{-15}	$\frac{1.3 \sigma}{1.3 \sigma}$	1.3 σ
109	$BR(K_L \to \pi^0 \nu \bar{\nu})$	3.537×10^{-11}	1.3 σ	1.3 σ
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			

	Observable	NP prediction	NP pull	SM pull
110	$\langle BR \rangle (R \rightarrow D^* \tau^+ \nu) [8.27, 8.8]$	0.10324	$\frac{1.3 \sigma}{}$	1.3 σ
111	$\frac{-\frac{1}{BR}(B \to \rho^0 \nu \bar{\nu})}{BR(B^0 \to \rho^0 \nu \bar{\nu})}$	1.9904×10^{-7}	$\frac{1.3 \sigma}{1.3 \sigma}$	1.3 σ
112	$BR(B^- \to \pi^- e^+ \tau^-)$	2.0924×10^{-9}	1.3 σ	1.3 σ
113	$\langle R_{\mu e} \rangle (B^0 \to K^0 \ell^+ \ell^-)^{[4.0, 8.12]}$	0.83657	0.86σ	1.3 σ
114	$BR(K^+ \to \pi^0 e^+ \nu)$	0.051558	1.3 σ	1.3 σ
115	$\left\langle \frac{dR}{d\theta} \right\rangle (e^{+}e^{-} \to W^{+}W^{-})^{[205.92, 0.0, 0.2]}$	1.561	1.3σ	1.3 σ
116	${ m BR}(B^0 o K^{*0} uar u)$	1.2895×10^{-5}	1.6σ	1.3 σ
117	$\langle F_L \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[2, 4]}$	0.76366	0.98σ	1.3σ
118	$\mu_{t\bar{t}h}(h \to VV)$ $BR(K_S \to \pi^+ \mu^+ \nu)$	1	1.3σ	1.3 σ
119	$BR(K_S \to \pi^+ \mu^+ \nu)$	0.00047682	1.3σ	1.3σ
120	$\frac{\langle \mathrm{BR} \rangle}{\mathrm{BR}} (B o D au^+ u)^{[9.86, 10.4]}$	0.052842	1.2σ	1.2σ
121	$\langle P_3 \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[0.1, 0.98]}$	0.0013074	1.2σ	1.2 σ
122	$S_{\psi K_S}$	0.7251	0.6σ	1.2σ
123	$\mu_{\mathrm{VBF}}(h \to bb)$	0.99999	1.2σ	1.2σ
124	$\left\langle \frac{dR}{d\theta} \right\rangle (e^+e^- \to W^+W^-)^{[182.66, 0.6, 0.8]}$	3.806	1.2σ	1.2σ
125	$BR(\tau^+ \to K^+ \bar{\nu})$	0.0071474	1.3σ	1.2σ
126	$\frac{\langle \mathrm{BR} \rangle}{\mathrm{BR}} (B \to D^* \tau^+ \nu)^{[4.0, 4.5]}$	0.026461	1.2σ	1.2σ
127	$\langle \frac{dBR}{dq^2} \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[2, 4.3]}$	4.0108×10^{-8}	0.56σ	1.2σ
128	$\langle F_L \rangle (B^+ \to K^{*+} \mu^+ \mu^-)^{[1.1, 2.5]}$	0.71563	0.9σ	1.2 σ
129	$\frac{\mu_{Zh}(h \to b\bar{b})}{\mathrm{BR}(B^+ \to K^{*+}\nu\bar{\nu})}$	1	1.1 σ	1.1 σ
130		1.3883×10^{-5}	0.83σ	1.1 σ
131	$\mu_{Zh}(h \to W^+W^-)$	1	1.1 σ	1.1 σ
132	$\langle P_4' \rangle (B^+ \to K^{*+} \mu^+ \mu^-)^{[15, 19]}$	-0.63437	1.1 σ	1.1 σ
133	$\mu_{Wh}(h \to W^+W^-)$	1	1.1 σ	1.1 σ
134	$\frac{a_{\tau}}{\mathrm{R}_{\mu e}(W^{\pm} \to \ell^{\pm} \nu)}$	0.0011772	1.1 σ	1.1 σ
135	$R_{\mu e}(W^{\pm} \to \ell^{\pm} \nu)$	1	1.1 σ	1.1 σ
136	$\frac{\Delta M_s}{\langle \frac{d \text{BR}}{dq^2} \rangle (B^{\pm} \to K^{\pm} \mu^+ \mu^-)^{[2.0, 3.0]}}$	1.2465×10^{-11}	1.1 σ	1.1 σ
137	$\langle \frac{a B R}{dq^2} \rangle (B^{\pm} \to K^{\pm} \mu^{+} \mu^{-})^{[2.0, 3.0]}$	2.9936×10^{-8}	0.27σ	1.1σ
138	$\langle P_4' \rangle (B^+ \to K^{*+} \mu^+ \mu^-)^{[1.1, 2.5]}$	-0.07051	1.1 σ	1.1 σ
139	$\langle P_{0}' \rangle (B^{0} \to K^{*0} \mu^{+} \mu^{-})^{[1.1, 2.5]}$	-0.069814	1 σ	1 σ
140	$\langle BR \rangle (B \to X_s \mu^+ \mu^-)^{[1.0, 6.0]}$	1.495×10^{-6}	0.87 σ	1.1 σ
141	$\langle \frac{dR}{d\theta} \rangle (e^+e^- \rightarrow W^+W^-)^{[182.66, -0.8, -0.6]}$	0.841	1.1 σ	1.1 σ
142	$\langle P_8' \rangle (B^+ \to K^{*+} \mu^+ \mu^-)^{[0.1, 0.98]}$	-0.030051	1.1 σ	1.1 σ
143	$BR(K^+ \to \pi^0 \mu^+ \nu)$	0.034039	1 σ	1 σ
144	$\langle P_5' \rangle (B^+ \to K^{*+} \mu^+ \mu^-)^{[1.1, 2.5]}$ $\mathcal{F}t(^{46}\text{V})$	0.27169	0.87 σ	1.1 σ
145	$ft({}^{(3)}V)$	4.6665×10^{27}	1.1 σ	1.1 σ
146	$\langle P_1 \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[4, 6]}$	-0.1637	0.97 σ	1 σ
147	$\langle S_3 \rangle (B_s \to \phi \mu^+ \mu^-)^{[15.0, 19.0]}$ $\langle P_1 \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[2, 4]}$	-0.2098	1 σ	1 σ
148	, , ,	-0.073287	$\frac{1 \sigma}{1 - 1}$	1 σ
149	$\frac{\mu_{t\bar{t}h}(h\to\gamma\gamma)}{\mu_{gg}(h\to Z\gamma)}$	1	$\frac{1 \sigma}{1 \sigma}$	1σ 1σ
151	$\mu_{gg}(n \to Z \gamma)$ $\langle \frac{dR}{dQ} \rangle (e^+e^- \to W^+W^-)^{[182.66, -0.6, -0.4]}$	1.011	$\frac{1 \sigma}{1 \sigma}$	1σ
152	$ \langle u \theta \rangle \rangle$	1.011	0.99σ	0.99σ
153	$\frac{\mu_{Wh}(h \to \gamma \gamma)}{\langle P_3 \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[15, 19]}}$	-0.00052873	$\frac{0.99 \ \sigma}{1 \ \sigma}$	1σ
154	$\langle P_5' \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[15, 19]}$	-0.56403	$\frac{1 \sigma}{1.4 \sigma}$	0.99σ
155	$\langle P_1 \rangle (B^+ \to K^{*+} \mu^+ \mu^-)^{[0.1, 0.98]}$	0.042389	0.96σ	0.95σ
156	$\frac{\langle \text{BR} \rangle}{\langle \text{BR} \rangle} (B \to D^* \tau^+ \nu)^{[10.5, 11.0]}$	0.0098782	0.96σ	0.96σ
157	$\frac{1}{\langle \frac{dR}{d\theta} \rangle} (B^+e^- \to W^+W^-)^{[189.09, -0.8, -0.6]}$	0.0098782	0.96σ 0.95σ	0.96σ 0.95σ
158	$A_{\mathrm{CP}}(B o X_{s+d}\gamma)$	0.781	0.93σ 0.93σ	0.93σ 0.93σ
159	$\mu_{\text{VDD}}(h \to W^+W^-)$	1	0.93σ 0.94σ	0.93σ 0.94σ
160	$\frac{\mu_{\text{VBF}}(h \to W^+W^-)}{\langle A_7 \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[1.1, 6]}}$	0.0025767	0.94σ 0.94σ	0.94σ 0.94σ
161	$\langle P_1 \rangle \langle R^+ \rightarrow K^{*+} \mu^+ \mu^- \rangle [4, 6]$	-0.16215	0.94σ 0.92σ	0.94σ 0.91σ
162	$ \langle \frac{dR}{d\theta} \rangle (e^+e^- \to W^+W^-)^{[189.09, -0.6, -0.4]} $	0.928	0.92σ 0.94σ	0.91σ 0.94σ
	$\frac{\langle \overline{d\theta} \rangle \langle \overline{c} \overline{c} \overline{c} \overline{c} \overline{c} \overline{c} \overline{c} \overline{c}$			1
163	$\frac{\langle \text{BR} \rangle}{\text{BR}} (B \to D^* \tau^+ \nu)^{[7.73, 8.27]} \langle P_4' \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[0.1, 0.98]}$	0.10629	0.94 σ	0.94 σ
164	$(P_4)(D^* \to K^* \mu^+ \mu^-)^{[0.1]}, \dots $ $D(c+c-) MV+MV-[204.9]$	0.20359	0.56σ	0.95σ
165	$R(e^+e^- \to W^+W^-)^{[204.9]}$	1	0.94σ	0.94 σ
166	$R(e^+e^- \to W^+W^-)^{[188.6]}$ /PD\/P \ Y \ \(\delta + \dots - \sum \)[14.2, 25.0]	$\frac{1}{3.0603 \times 10^{-7}}$	0.92σ	0.92 σ
167	$\langle \text{BR} \rangle (B \to X_s \mu^+ \mu^-)^{[14.2, 25.0]}$	3.0003 × 10	1 σ	0.88σ

	Observable	NP prediction	NP pull	SM pull
168	$\langle P' \rangle (B^+ \to K^{*+} \mu^+ \mu^-) [0.1, 0.98]$	0.19845	0.75σ	0.85σ
169	$\langle P_4' \rangle (B^+ \to K^{*+} \mu^+ \mu^-)^{[0.1, 0.98]}$ $\langle D_{P_4'}^{\mu e} \rangle (B^0 \to K^{*0} \ell^+ \ell^-)^{[1.0, 6.0]}$	0.025677	0.85σ	0.91 σ
	$\frac{\langle BR \rangle}{BR} (B \to D\tau^{+}\nu)^{[10.93, 11.47]}$			
170	$\frac{\frac{1}{BR^2}(B \to D\tau^+\nu)^{[10.00]}}{\left\langle \frac{dR}{d\theta} \right\rangle (e^+e^- \to W^+W^-)^{[205.92, -0.4, -0.2]}}$	0.023168	0.9 σ	0.9 σ
171		0.972	0.9 σ	0.9 σ
172	A_{τ}	0.14723	0.95σ	0.9 σ
173	$\frac{\langle \mathrm{BR} \rangle}{\mathrm{BR}} (B \to D \tau^+ \nu)^{[6.67, 7.2]}$	0.095702	0.89σ	0.89σ
174	$\langle A_7 \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[15, 19]}$	0.0001129	0.89σ	0.89σ
175	$\frac{\langle A_7 \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[15, 19]}}{\tilde{a}_n^{[0.695]}}$	-0.09921	0.89σ	0.89σ
176	$\mu_{gg}(h \to \mu^+ \mu^-)$	1	0.89σ	0.89σ
177	$\mu_{Zh}(h \to \gamma \gamma)$	1	0.88σ	0.88σ
178	$\langle \overline{S_4} \rangle (B_s \to \phi \mu^+ \mu^-)^{[2.0, 5.0]}$	-0.14749	0.87σ	0.87 σ
179	$\mu_{gg}(h \to ZZ)$	1	0.88σ	0.88 σ
180	$\langle F_L \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[1, 2]}$	0.66878	0.35σ	0.85σ
181	$\langle \overline{F_L} \rangle (B_s \to \phi \mu^+ \mu^-)^{[2.0, 5.0]}$	0.7851	0.71σ	0.88σ
182	$\frac{\langle \mathrm{BR} \rangle}{\mathrm{BR}} (B o D au^+ u)^{[10.0, 10.5]}$	0.046209	0.87σ	0.87σ
183	$\left(\frac{dR}{d\theta}\right) (e^{+}e^{-} \to W^{+}W^{-})^{[198.38, 0.4, 0.6]}$	3.003	0.87σ	0.87σ
184	$BR(B^- \to K^- e^+ \tau^-)$	5.896×10^{-7}	0.91σ	0.87σ
185	$\left\langle \frac{dR}{d\theta} \right\rangle (e^+e^- \to W^+W^-)^{[182.66, 0.4, 0.6]}$	2.822	0.87σ	0.87σ
186	$\frac{\langle BR \rangle}{BR} (B \to D\tau^+ \nu)^{[8.8, 9.33]}$	0.074315	$0.86 \ \sigma$	0.86σ
187	$\mu_{Vh}(h o b ar{b})$	1	0.86σ	0.86σ
188	$\frac{\langle \mathrm{BR} \rangle}{\mathrm{BR}} (B o D au^+ u)^{[5.5, 6.0]}$	0.081066	$0.86 \ \sigma$	0.86σ
189	$BR(\tau^- \to e^- \nu \bar{\nu})$	0.17765	1.1 σ	0.84σ
190	$\frac{\langle \text{BR} \rangle}{\text{BR}} (B \to D^* \tau^+ \nu)^{[8.8, 9.33]}$ $\langle \text{BR} \rangle (B \to D^* \tau^+ \nu)^{[5.5, 6.0]}$	0.097951	0.85σ	0.85σ
191	$\frac{\overline{BR}}{BR}(D \to D + V)$	0.069889	0.84σ	0.84σ
192	$\frac{\langle BR \rangle}{BR} (B \to D \tau^+ \nu)^{[7.2, 7.73]}$	0.094208	0.84σ	0.84σ
193	$\mathcal{F}t(^{22}\mathrm{Mg})$	4.6665×10^{27}	0.82σ	0.81 σ
194	$\frac{\langle BR \rangle}{BR} (B \to D^* \tau^+ \nu)^{[6.13, 6.67]}$	0.089674	0.83σ	0.83σ
195	$\frac{\langle BR \rangle}{BR} (B \to D\tau^+ \nu)^{[9.5, 10.0]}$	0.05713	0.83σ	0.83 σ
196	$\frac{\langle BR \rangle}{\langle BR \rangle} (B \to D\tau^+ \nu)^{[10.4, 10.93]}$	0.038397	0.83σ	0.83 σ
197	$A_{ m FB}^{0,c}$	0.07361	0.83σ	0.83 σ
198	$\langle A_8 \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[1.1, 6]}$	0.00056089	0.82σ	0.83 σ
199	$BR(W^{\pm} \rightarrow e^{\pm}\nu)$	0.10842	0.83σ	0.82σ
200	$\frac{(BR)}{BR}(B \to D\tau^+\nu)^{[6.13, 6.67]}$	0.095556	0.82σ	0.82 σ
201	$\left\langle \frac{dR}{d\theta} \right\rangle (e^{+}e^{-} \to W^{+}W^{-})^{[189.09, 0.4, 0.6]}$	2.946	0.81 σ	0.81 σ
202	$\mathcal{F}t(^{26m}\mathrm{Al})$	4.6665×10^{27}	0.81σ	0.81 σ
203	$\langle P_6' \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[15, 19]}$	-0.0025886	0.81σ	0.81 σ
204	$\langle P_6' \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[15, 19]}$ $\langle A_9 \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[1.1, 6]}$	7.3603×10^{-5}	0.8 σ	0.8 σ
205	$\langle A_{\rm FB}^{\ell} \rangle (\Lambda_b \to \Lambda \mu^+ \mu^-)^{[15, 20]}$	-0.33481	1.2 σ	0.8 σ
206	$\mu_{\rm VBF}(h \to \tau^+ \tau^-)$	0.99999	0.8 σ	0.8 σ
207	$\langle A_{\rm FB} \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[4.3, 6]}$	0.08224	0.45σ	0.77 σ
208	$\frac{\langle BR \rangle}{BR} (B \to D^* \tau^+ \nu)^{[6.67, 7.2]}$	0.096421	0.8 σ	0.8 σ
209	${ m BR}(K_L o \pi^+ \mu^+ u)$	0.27234	0.77 σ	0.77 σ
210	(BR) (B B +)[6.0.65]	0.087333	0.78 σ	0.78 σ
211	$\frac{\langle BR \rangle}{\langle P_1 \rangle} (B \to D \tau^+ \nu)^{[0.0, 0.5]} $ $\langle P_1 \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[2.5, 4]} $ $\tilde{A}_n^{[0.586]}$	-0.092975	0.7 σ	0.76σ
212	$ ilde{A}_n^{[0.586]}$	-0.11027	0.78 σ	0.78 σ
213	$(P' \setminus (B') \rightarrow K^* \mid \mu \mid \mu \mid (E, \emptyset)$	-0.48861	0.8 σ	0.77 σ
214	$\langle P_1 \rangle (B^0 \to K^{*0} e^+ e^-)^{[0.000784, 0.257]}$	0.03227	0.78σ	0.77 σ
215	$\left\langle \frac{dR}{d\theta} \right\rangle (e^+e^- \to W^+W^-)^{[189.09, -1.0, -0.8]}$	0.661	0.77 σ	0.77 σ
216	$\langle P_2 \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[2.5, 4]}$	-0.20976	0.12σ	0.78 σ
217	$\left\langle \frac{dR}{d\theta} \right\rangle (e^{+}e^{-} \to W^{+}W^{-})^{[205.92, 0.8, 1.0]}$	7.783	0.77 σ	0.77 σ
218	$R(e^{+}e^{-} \to W^{+}W^{-})^{[199.5]}$	1	0.76σ	0.76 σ
219	$\langle F_L \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[0, 2]}$	0.34491	0.52σ	0.8 σ
220	$/P_{c} \setminus (R^{+} \rightarrow K^{*+} + \mu^{+} \mu^{-})[2.5, 4]$	0.0030891	0.74 σ	0.74 σ
221	$\frac{\langle BR \rangle}{\langle BR \rangle} (B \to D\tau^{+}\nu)^{[7.5, 8.0]}$ $\tilde{A}_{n}^{[0.559]}$	0.086998	0.75σ	0.75σ
222	$\widetilde{A}_{n}^{[0.559]}$	-0.11027	0.75σ	0.75 σ
223	$\left\langle \frac{dR}{d\theta} \right\rangle (e^+e^- \to W^+W^-)^{[198.38, -0.4, -0.2]}$	1.021	0.75σ	0.75σ
	$ \cdot \cdot \cdot \cdot \cdot \cdot $	1.021	0.100	0.100

	Observable	NP prediction	NP pull	SM pull
224	$\langle P_3 \rangle (B^+ \to K^{*+} \mu^+ \mu^-)^{[4, 6]}$	0.002185	0.7σ	0.7 σ
225	$\left(\frac{dR}{d\theta}\right)(e^+e^- \to W^+W^-)^{[205.92, 0.4, 0.6]}$	2.903	0.74σ	0.74σ
226	$\langle P_1 \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[2, 4.3]}$	-0.083388	0.79σ	0.74σ
227	R_b^0	0.21581	0.73σ	0.73σ
228	$\mu_{\mathrm{VBF}}(h \to \gamma \gamma)$	0.99999	0.72σ	0.72σ
229	$\langle \overline{F_L} \rangle (B_s \to \phi \mu^+ \mu^-)^{[15.0, 19.0]}$	0.34101	0.69σ	0.69σ
230	$\langle F_L \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[4, 6]}$	0.69525	0.44σ	0.71σ
231	$\langle F_L \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[4, 6]}$ $\tau_n^{[0.655]}$	1.3795×10^{27}	0.71σ	0.71σ
232	$(A_{\rm FB})(B^0 \to K^{*0} \mu^+ \mu^-)^{[1, 2]}$	-0.18814	0.51σ	0.7 σ
233	$ \frac{\left\langle \frac{dR}{d\theta} \right\rangle (e^{+}e^{-} \to W^{+}W^{-})^{[198.38, 0.2, 0.4]}}{\left\langle \frac{dR}{d\theta} \right\rangle (e^{+}e^{-} \to W^{+}W^{-})^{[189.09, 0.0, 0.2]}} $	2.161	0.71σ	0.71σ
234	$\left\langle \frac{dR}{d\theta} \right\rangle (e^+e^- \to W^+W^-)^{[189.09, 0.0, 0.2]}$	1.715	0.7σ	0.7σ
235	R_{uc}^{0} $\mathcal{F}t(^{34}\mathrm{Ar})$	0.17225	0.69σ	0.69σ
236	$\mathcal{F}t(^{34}\mathrm{Ar})$	4.6665×10^{27}	0.72σ	0.73σ
237	$\langle P_2 \rangle (B^+ \to K^{*+} \mu^+ \mu^-)^{[0.1, 0.98]}$	-0.13427	0.69σ	0.7σ
238	$\langle F_L \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[0.1, 0.98]}$	0.25971	0.076σ	0.67σ
239	$A_{ m FB}^{0,e}$	0.016214	0.69σ	0.69σ
240	$\mu_{gg}(h o bar{b})$	1	0.68σ	0.68σ
241	$\frac{\langle \mathrm{BR} \rangle}{\mathrm{BR}} (B \to D \tau^+ \nu)^{[8.5, 9.0]}$	0.075222	$0.68 \ \sigma$	0.68σ
242	$BR(B^+ \to \pi^+ \nu \bar{\nu})$	1.2435×10^{-7}	0.68σ	0.68σ
243	$\frac{\langle \mathrm{BR} \rangle}{\mathrm{BR}} (B \to D^* \tau^+ \nu)^{[7.5, 8.0]}$	0.097746	$0.68 \ \sigma$	0.68σ
244	$\frac{\langle \text{BR} \rangle}{\text{BR}} (B \to D \tau^+ \nu)^{[10.5, 11.0]}$	0.034069	0.68σ	0.68σ
245	$\left(\frac{dR}{d\theta}\right)(e^{+}e^{-} \to W^{+}W^{-})^{[189.09, 0.6, 0.8]}$	4.122	0.68σ	0.68σ
246	$BR(B^+ \to \rho^+ \nu \bar{\nu})$	4.2883×10^{-7}	0.67σ	0.68σ
247	$\langle P_6' \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[0.1, 0.98]}$ $\xrightarrow{\text{BR}(B^0 \to K^{*0} \gamma)}$	-0.057819	0.72σ	0.69σ
248	$\frac{\mathrm{BR}(B^0 \to K^{*0}\gamma)}{\overline{\mathbb{R}^3}}$	1.0404	0.66σ	0.66σ
249	$egin{array}{c} \overline{ ext{BR}}(B_s ightarrow \phi \gamma) \ \mu_{tar{t}h}(h ightarrow ZZ) \end{array}$	1	0.67 σ	0.67 σ
250	$\langle BR \rangle (R \rightarrow D_{\pi} + \nu) [4.0, 4.53]$	0.039797	0.67 σ	0.67 σ
251	$\frac{\langle BR \rangle}{\langle BR \rangle} (B \to D^* \tau^+ \nu)^{[10.0, 10.5]}$	0.05616	$\frac{0.66 \sigma}{0.66 \sigma}$	0.66σ
251	$\frac{-\frac{1}{BR}(D \to D + \nu)^{1}}{\mathcal{F}t(^{38}Ca)}$	4.6665×10^{27}	0.68σ	0.60σ
253	$\langle P_5' \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[4.3, 6]}$	-0.63167	$\frac{0.08 \ \sigma}{1.2 \ \sigma}$	0.67 σ
254	$\left\langle \frac{dR}{d\theta} \right\rangle (e^+e^- \to W^+W^-)^{[182.66, -0.2, 0.0]}$	1.402	0.65σ	0.65σ
255	$\frac{\operatorname{d}\theta}{\operatorname{R}_{\tau e}(W^{\pm} \to \ell^{\pm} \nu)}$	0.99953	0.64σ	0.65σ
256	$\langle A_{\rm FB} \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[2, 4.3]}$	-0.076594	0.25σ	0.65σ
257	$\langle F_L \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[2.5, 4]}$	0.76472	0.14σ	0.64 σ
258	$BR(B^0 \to \mu^+\mu^-)$	1.0213×10^{-10}	0.65σ	0.65σ
259	$\left\langle \frac{dR}{d\theta} \right\rangle (e^+e^- \to W^+W^-)^{[205.92, -1.0, -0.8]}$	0.532	0.64 σ	0.64σ
260	$BR(B^0 \to \pi^0 \nu \bar{\nu})$	5.7879×10^{-8}	0.63σ	0.63σ
261	$S_{K^*\gamma}$	-0.023305	0.64σ	0.63σ
262	$\frac{S_{K^*\gamma}}{S_{K^*\gamma}}$ $\frac{\langle \text{BR} \rangle}{\text{BR}} (B \to D\tau^+\nu)^{[4.0, 4.5]}$	0.03694	0.63σ	0.63σ
263	$\mu_{Wh}(h o bb)$	1	0.62 σ	0.62 σ
264	$R_{\tau\mu}(W^{\pm} \to \ell^{\pm}\nu)$	0.99953	0.58σ	0.61 σ
265	$\mu_{Wh}(h \to bb)$ $R_{\tau\mu}(W^{\pm} \to \ell^{\pm}\nu)$ $R(e^{+}e^{-} \to W^{+}W^{-})^{[195.5]}$ $\frac{\langle BR \rangle}{BR}(B \to D^{*}\tau^{+}\nu)^{[4.53, 5.07]}$ $\langle \frac{dR}{d\theta} \rangle (e^{+}e^{-} \to W^{+}W^{-})^{[205.92, -0.8, -0.6]}$	1	0.61σ	0.61σ
266	$\frac{\langle {\rm BR} \rangle}{{\rm BR}} (B \to D^* \tau^+ \nu)^{[4.53, 5.07]}$	0.047598	0.61σ	0.61 σ
267	$\left\langle \frac{dR}{d\theta} \right\rangle (e^+e^- \to W^+W^-)^{(205.92, -0.8, -0.6]}$	0.642	0.61σ	0.61σ
268	$ \begin{array}{c} \langle P_3 \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[4, 6]} \\ \langle P_1 \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[4, 3, 6]} \\ \mu_{Zh} (h \to \tau^+ \tau^-) \\ \text{BR} (B^0 \to \pi^- \tau^+ \nu_\tau) \end{array} $	0.0022292	0.6σ	0.6 σ
269	$\langle F_L \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[4.3, 6]}$	0.68834	0.48σ	0.6 σ
270	$\mu_{Zh}(h o au^+ au^-)$	1	0.6σ	0.6 σ
271	$BR(B^0 \to \pi^- \tau^+ \nu_{\tau})$	0.00010418	0.63σ	0.63σ
272	1 Z	2.494	0.66σ	0.6σ
273	$\mathcal{F}t(^{54}\mathrm{Co})$	4.6665×10^{27}	0.57σ	0.57σ
274	$\langle R_{\mu e} \rangle (B^+ \to K^{*+} \ell^+ \ell^-)^{[15.0, 19.0]}$	0.83103	0.83σ	0.59σ
275	$\langle A_{\rm FB} \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[0, 2]}$	-0.11537	0.65σ	0.61σ
276	$\langle R_{\mu e} \rangle (B^{\pm} \to K^{\pm} \ell^{+} \ell^{-})^{[4.0, 8.12]}$	0.83656	1σ	0.59σ
277	D_{n} A_{b} $\mu_{gg}(h \to W^{+}W^{-})$ $\langle P_{5}'\rangle(B^{0} \to K^{*0}\mu^{+}\mu^{-})^{[0.04, 2]}$	2.8379×10^{-25}	0.6σ	0.6σ
278	A_b	0.93471	0.59σ	0.59σ
279	$\mu_{gg}(h \to W^+W^-)$	1	0.58 σ	0.58σ
280	$ \langle P_5' \rangle (B^{\circ} \to K^{*\circ} \mu^+ \mu^-)^{[0.04, 2]}$	0.60523	0.19σ	0.49σ

	Observable	NP prediction	NP pull	SM pull
281	$BR(\tau^- \to e^- \mu^+ e^-)$	2.1035×10^{-89}	0.58σ	0.58σ
282	$BR(B^- \to K^- \tau^+ \mu^-)$	1.6205×10^{-20}	0.57 σ	0.57 σ
283	$\langle P_8' \rangle (B^+ \to K^{*+} \mu^+ \mu^-)^{[15, 19]}$	0.00077581	0.56σ	0.56σ
284	$R_{\mu e}(B \to D^* \ell^+ \nu)$	0.99583	0.53σ	0.56σ
285	$\frac{\langle \mathrm{BR} \rangle}{\mathrm{BR}} (B \to D \tau^+ \nu)^{[8.27, 8.8]}$	0.083047	0.56σ	0.56σ
286	$\langle P_3 \rangle (B^+ \to K^{*+} \mu^+ \mu^-)^{[15, 19]}$	-0.00052625	0.52 σ	0.52σ
287	$\langle P_5' \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[1, 2]}$	0.42384	0.91σ	0.52σ
288	$\langle P_6' \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[2.5, 4]}$	-0.055302	0.54σ	0.56σ
289	$\langle P_5' \rangle (B^+ \to K^{*+} \mu^+ \mu^-)^{[0.1, 0.98]}$	0.73584	0.76σ	0.59σ
290	$\frac{\langle \text{BR} \rangle}{\text{RP}} (B \to D \tau^+ \nu)^{[4.53, 5.07]}$	0.0622	0.53σ	0.53σ
291	$\langle R_{\mu\nu}\rangle(B^0\to K^0\ell^+\ell^-)^{[14.18,\ 19.0]}$	0.83977	0.7σ	0.53σ
292	$\lambda_{AB}^{[0.581]} \ A_{\mathrm{FB}}^{[0.581]}$	-1.251	0.53σ	0.53σ
293	$A_{ m FB}^{0,\mu}$	0.016214	0.53σ	0.53σ
294	$\langle P_1 \rangle (B^+ \to K^{*+} \mu^+ \mu^-)^{[1.1, 2.5]}$	0.02184	0.53σ	0.53σ
295	$\langle A_8 \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[15, 19]}$	5.4076×10^{-5}	0.52σ	0.52σ
296	$\frac{\langle BR \rangle}{RR} (B \to D \tau^+ \nu)^{[11.5, 12.0]}$	0.0018997	0.52σ	0.52σ
297	$\langle \frac{dR}{dq^2} \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[0, 2]}$	7.9467×10^{-8}	0.68σ	0.53σ
298		8.6274×10^{-59}	0.51σ	0.51 σ
299	$\frac{\mathrm{BR}(\tau^- \to \mu^- e^+ \mu^-)}{\mathrm{BR}(\pi^+ \to e^+ \nu)}$	0.0001234	0.51σ	0.51 σ
300	$\langle \frac{dBR}{da^2} \rangle (B^+ \to K^{*+} \mu^+ \mu^-)^{[2.0, 4.0]}$	4.3362×10^{-8}	0.8 σ	0.49σ
301	$R(e^+e^- \to W^+W^-)^{[206.6]}$	1	0.5σ	0.5σ
302	$\langle R_{\mu e} \rangle (B^0 \to K^0 \ell^+ \ell^-)^{[0.1, 4.0]}$	0.83503	0.66σ	0.5σ
303	$\frac{\langle BR \rangle}{BR} (B \to D^* \tau^+ \nu)^{[4.5, 5.0]}$	0.042537	0.5 σ	0.5σ
304	$\mu_{t\bar{t}h}(h \to \tau^+\tau^-)$	1	0.49σ	0.49σ
305	$\left\langle \frac{dR}{d\theta} \right\rangle (e^{+}e^{-} \to W^{+}W^{-})^{[182.66, -0.4, -0.2]}$	1.181	0.49σ	0.49σ
306	$BR(\tau^- \to \mu^- e^+ e^-)$	7.1088×10^{-26}	0.49σ	0.49σ
307	$\langle F_L \rangle (B^+ \to K^{*+} \mu^+ \mu^-)^{[15, 19]}$	0.33762	0.5σ	0.5σ
308	$\langle P_2 \rangle (B^+ \to K^{*+} \mu^+ \mu^-)^{[1.1, 2.5]}$	-0.4585	0.5σ	0.48σ
309	$BR(B^0 \to K^0 \nu \bar{\nu})$	5.5029×10^{-6}	0.33σ	0.48σ
310	$\langle \frac{d\mathrm{BR}}{dq^2} \rangle (B^0 \to K^0 \mu^+ \mu^-)^{[0, 2]}$	2.7943×10^{-8}	0.19σ	0.47σ
311	$\langle F_L \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[0.04, 2]}$	0.34491	0.79σ	0.43σ
312	$\mathrm{BR}(B_c \to \tau^+ \nu)$	0.028435	0.56σ	0.46σ
313	$\frac{\langle {\rm BR} \rangle}{{\rm BR}} (B \to D^* \tau^+ \nu)^{[7.0, 7.5]}$	0.094377	0.45σ	0.45σ
314	A_s	0.93552	0.45 σ	0.45σ
315	$BR(B^- \to K^{*-}e^+\mu^-)$	2.8849×10^{-22}	0.45σ	0.45σ
316	$\left\langle \frac{dR}{d\theta} \right\rangle \left(e^+e^- \rightarrow W^+W^- \right)^{[198.38, -0.8, -0.6]}$	$0.664 \\ 4.0162 \times 10^{-5}$	0.45σ	0.45σ
317	$\overline{BR}(B_s \to \phi \gamma)$		0.42 σ	0.43 σ
318	$\frac{\langle \text{BR} \rangle}{\text{BR}} (B \to D^* \tau^+ \nu)^{[9.86, 10.4]} \\ \langle P_2 \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[15, 19]}$	0.067671	0.44 σ	0.44 σ
319	$(P_2)(B^0 \to K^{*0}\mu^+\mu^-)^{[10, 10]}$ $(P_2)(P_0 \to V^{*0}+)[15, 19]$	0.35191	0.24 σ	0.43σ
320	$\langle P_1 \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[15, 19]}$ $\langle P_2 \rangle (B^0 \to K^{*0} e^+ e^-)^{[0.000784, 0.257]}$	-0.62265 -0.013205	$0.42 \ \sigma$ $0.41 \ \sigma$	0.43σ 0.43σ
321	$\frac{(12)(D \rightarrow K e \cdot e)^{c}}{\mu_{\text{TM}}(h \rightarrow ZZ)}$	-0.015205 1	0.41σ 0.43σ	0.43σ 0.43σ
323	$\frac{\mu_{Wh}(h \to ZZ)}{\frac{\langle BR \rangle}{BR} (B \to D\tau^{+}\nu)^{[11.0, 11.5]}}$ $\frac{\langle \frac{dBR}{dq^{2}} \rangle (B^{\pm} \to K^{\pm}\mu^{+}\mu^{-})^{[2, 4.3]}}$	0.019884	0.43σ 0.43σ	0.43σ 0.43σ
324	$\frac{(dBR)(B^{\pm} \rightarrow K^{\pm} \mu^{+} \mu^{-})[2, 4.3]}{(dBR)(B^{\pm} \rightarrow K^{\pm} \mu^{+} \mu^{-})[2, 4.3]}$	0.019834 2.9828×10^{-8}	$\frac{0.43 \ \sigma}{0.22 \ \sigma}$	0.43σ 0.41σ
325	$\frac{(dq^2/(2 + m^2)^2)^2}{(m^2 + m^2)^2}$	2.3626 × 10	0.42σ	0.41 σ
326	$\frac{\mu_{gg}(h \to \gamma \gamma)}{\langle BR \rangle (B \to X_s e^+ e^-)^{[1.0, 6.0]}}$	1.8341×10^{-6}	0.42σ 0.28σ	0.42σ 0.42σ
327	$\frac{\langle DI_{4} \rangle (B^{0} \to X_{s}^{*0} e^{-t})^{[0.04, 2]}}{\langle P_{4} \rangle (B^{0} \to K^{*0} \mu^{+} \mu^{-})^{[0.04, 2]}}$	0.12201	0.26σ	0.42σ 0.45σ
328	$\frac{(Y_4/(B^-)^+ H^- \mu^-)}{BR(K_L \to \mu^+ \mu^-)}$	7.3597×10^{-9}	0.42σ	0.43 σ
329	$\left\langle \frac{dR}{d\theta} \right\rangle (e^+e^- \to W^+W^-)^{[189.09, -0.4, -0.2]}$	1.137	0.41σ	0.41σ
330	$\langle P_{4}' \rangle (B^{+} \to K^{*+} \mu^{+} \mu^{-})^{[2.5, 4]}$	-0.36596	0.43 σ	0.41 σ
331	$\langle F_L \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[2, 4.3]}$	0.76007	0.024σ	0.4 σ
332	$\mathcal{F}t(^{74}\mathrm{Rb})$	4.6665×10^{27}	0.39σ	0.39σ
333		-0.09921	0.39σ	0.39σ
334	$\frac{a_n}{(\frac{d \text{BR}}{dq^2})(B^0 \to K^0 \mu^+ \mu^-)^{[2, 4.3]}}$	2.767×10^{-8}	0.13σ	0.39σ
335	$\langle P_1 \rangle (R^0 \to K^{*0} \mu^+ \mu^-) [0.1, 0.98]$	0.041514	0.4σ	0.38σ
336	$\left\langle \frac{dR}{d\theta} \right\rangle (e^{+}e^{-} \to W^{+}W^{-})^{[198.38, 0.0, 0.2]}$	1.666	$0.38 \ \sigma$	0.38σ
337	$R_{ au}^0$	20.777	0.27σ	0.37σ

	Observable	NP prediction	NP pull	SM pull
338	$\langle P_2 \rangle (B^+ \to K^{*+} \mu^+ \mu^-)^{[15, 19]}$	0.35346	0.13σ	0.36σ
339	$\frac{\mathcal{F}t(^{34}\text{Cl})}{\mathcal{F}}$	4.6665×10^{27}	0.39σ	0.39 σ
340	$\langle R_{uo} \rangle (B^0 \to K^{*0} \ell^+ \ell^-)^{[0.1, 8.0]}$	0.85895	0.022σ	0.37 σ
341	$\langle R_{\mu e} \rangle (B^0 \to K^{*0} \ell^+ \ell^-)^{[15.0, 19.0]}$	0.83104	0.79σ	0.36 σ
342	$\frac{\mu_{\text{VBF}}(h \to ZZ)}{\mu_{\text{VBF}}(h \to ZZ)}$	1	0.35σ	0.35σ
343	$\langle A_{\rm FB}^h \rangle (\Lambda_b \to \Lambda \mu^+ \mu^-)^{[15, 20]}$	-0.31831	0.31σ	0.31 σ
344	A_{μ}	0.14703	0.34σ	0.34σ
345	$\frac{\overline{BR}(B_s \to \tau^+ \tau^-)}{BR(B_s \to \tau^+ \tau^-)}$	0.00026434	0.42σ	0.33σ
346	$\mu_{t\bar{t}h}(h o b\bar{b})$	1	0.32σ	0.32σ
347	$\langle F_L \rangle (B^+ \to K^{*+} \mu^+ \mu^-)^{[4, 6]}$	0.69599	0.17 σ	0.29σ
348	$\frac{\langle BR \rangle}{BR} (B \to D\tau^+ \nu)^{[6.5, 7.0]}$	0.090073	0.32σ	0.32 σ
349	$\langle P_8' \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[2.5, 4]}$	-0.013804	0.26σ	0.28 σ
350	$\langle P_8' \rangle (B^+ \to K^{*+} \mu^+ \mu^-)^{[4, 6]}$	-0.010087	0.28σ	0.28 σ
351	$\frac{\langle BR \rangle}{\langle BR \rangle} (B \to D\tau^+ \nu)^{[4.5, 5.0]}$	0.055942	0.3 σ	0.3 σ
352	$\frac{\overline{BR} (B \to B \to b)^{(1)}}{\langle P_1 \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[0.04, 2]}}$	0.040328	0.33σ	0.34σ
353	$\langle F_L \rangle (B^+ \to K^{*+} \mu^+ \mu^-)^{[0.1, 0.98]}$	0.040328	$\frac{0.53 \sigma}{0.57 \sigma}$	0.34σ
354	$\frac{(\Gamma_L/(D^+ \to K^- \mu^+ \mu^-)^2)^{-1}}{\sigma^0}$	0.00010655	0.37σ 0.47σ	0.3σ
355	$\sigma_{ m had}^0$ $\mathcal{F}t(^{42}{ m Sc})$	4.6665×10^{27}	0.47σ 0.33σ	0.3σ 0.32σ
356	$BR(\bar{B}^0 \to K^{*0}\mu^+e^-)$	2.6796×10^{-22}	0.35σ	0.32σ 0.3σ
357	$\frac{BR(B \to K \ \mu \ e)}{\langle P_2 \rangle (B^+ \to K^{*+} \mu^+ \mu^-)^{[2.5, 4]}}$	-0.20266	0.3σ 0.77σ	0.3σ 0.28σ
358	$\frac{(\Gamma_2/(D-\gamma R-\mu-\mu)^{\gamma})^{\gamma}}{R_n}$	9.7994×10^{-21}	0.33σ	0.28σ 0.33σ
359	$\langle R_{\mu e} \rangle (B^{\pm} \to K^{\pm} \ell^{+} \ell^{-})^{[14.18, 19.0]}$	0.83975	0.87σ	0.39σ
360	$\langle R_{\mu e} \rangle (B^{\pm} \rightarrow K^{\pm} \ell^{+} \ell^{-})^{[0.1, 4.0]}$	0.83503	0.35σ	0.28σ
361	$\langle P_5' \rangle (B^+ \to K^{*+} \mu^+ \mu^-)^{[2.5, 4]}$	-0.31369	0.41 σ	0.26 σ
362	$\frac{\langle \overline{S_3}\rangle(B_s \to \phi\mu^+\mu^-)^{[2.0, 5.0]}}{\langle \overline{S_3}\rangle(B_s \to \phi\mu^+\mu^-)^{[2.0, 5.0]}}$	-0.0072466	0.26σ	0.25σ
363	$\langle P_3 \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[2.5, 4]}$	0.0031278	0.23σ	0.22σ
364	$\frac{\Gamma(\pi^+ \to \mu^+ \nu)}{\Gamma(\pi^+ \to \mu^+ \nu)}$	2.5202×10^{-17}	0.25σ	0.25σ
365	$S_{\psi\phi}$	0.037986	0.14 σ	0.23 σ
366	$S_{\psi\phi}$ $\langle P_4' \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[2.5, 4]}$	-0.36793	0.39σ	0.25σ
367	$R(W^+ \to cX)$	0.50001	0.25σ	0.25σ
368	$x_{12}^{\mathrm{Im},D}$	4.2076×10^{-18}	0.24σ	0.24σ
369	$BR(B^- \to K^{*-}\mu^+e^-)$	2.8849×10^{-22}	0.25σ	0.25σ
370	$\mu_{\rm VBF}(h \to \mu^+ \mu^-)$	0.99999	0.24σ	0.24σ
371	$\langle P_5' \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[2, 4.3]}$	-0.24463	0.8σ	0.26σ
372	$\mu_{Zh}(h o ZZ)$	1	0.23σ	0.23σ
373	$\langle P_5' \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[2, 4]}$	-0.20115	0.35σ	0.24σ
374	$(\frac{dBR}{dq^2})(B^+ \to K^{*+}\mu^+\mu^-)^{[0, 2]}$	8.315×10^{-8}	0.17σ	0.24σ
375	$\mu_{Vh}(h o ZZ)$	1	0.23σ	0.23σ
376	$BR(K^+ \to \mu^+ \nu)$	0.63364	0.22σ	0.22σ
377	$\langle P_6' \rangle (B^+ \to K^{*+} \mu^+ \mu^-)^{[1.1, 2.5]}$	-0.054332	0.24σ	0.24σ
378	$\frac{\langle BR \rangle}{BR} (B \to D^* \tau^+ \nu)^{[5.6, 6.13]}$ $\langle BR \rangle (B \to D \tau^+ \nu)^{[11.47, 12.0]}$	0.076832	0.22σ	0.22σ
379	$\frac{\overline{BB}}{DD}(D \to D' \cap V)$	0.002539	0.22σ	0.22σ
380	$R(e^+e^- \to W^+W^-)^{[191.6]}$	1	0.21σ	0.21σ
381	$\langle F_L \rangle (B^0 \to K^{*0} e^+ e^-)^{[0.000784, 0.257]}$	0.05191	0.24σ	0.21σ
382	$\frac{\langle \mathrm{BR} \rangle}{\mathrm{BR}} (B \to D^* \tau^+ \nu)^{[8.5, 9.0]}$	0.095922	0.2σ	0.2 σ
383	$\frac{\mu_{Vh}(h \to \gamma \gamma)}{\left\langle \frac{dR}{d\theta} \right\rangle (e^+e^- \to W^+W^-)^{[189.09, 0.2, 0.4]}}$	1	0.2σ	0.2σ
384		2.187	0.2σ	0.2 σ
385	$BR(B^- \to K^- \tau^+ e^-)$	5.896×10^{-7}	0.14σ	0.2σ
386	$\langle P_1 \rangle (B^+ \to K^{*+} \mu^+ \mu^-)^{[15, 19]}$	-0.61926	0.18σ	0.18σ
387	$\left\langle \frac{dR}{d\theta} \right\rangle (e^{+}e^{-} \to W^{+}W^{-})^{[205.92, 0.6, 0.8]}$	4.445	0.19σ	0.19σ
388	$\langle P_1 \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[1, 2]}$	0.038646	0.16σ	0.15σ
389	$\langle A_T^{\text{Im}} \rangle (B^0 \to K^{*0} e^+ e^-)^{[0.000784, 0.257]}$	0.00026076	0.21σ	0.21σ
390	$\langle P_8' \rangle (B^+ \to K^{*+} \mu^+ \mu^-)^{[1.1, 2.5]}$	-0.022549	0.19σ	0.19 σ
391	$BR(B^- \to \pi^- \tau^+ \mu^-)$	5.7464×10^{-23}	0.18σ	0.18 σ
392	$BR(B \to X_s \gamma)$	0.00033107	0.16σ	0.18 σ
393	$BR(\tau^+ \to \pi^+ \bar{\nu})$	0.10837	$0.12 \ \sigma$	0.18 σ
394	$BR(K^+ \to \pi^+ \nu \bar{\nu})$	8.3437×10^{-11}	0.19 σ	0.16σ
395	$\frac{\langle \mathrm{BR} \rangle}{\mathrm{BR}} (B \to D^* \tau^+ \nu)^{[6.5, 7.0]}$	0.088536	0.17σ	0.17σ

	Observable	NP prediction	NP pull	SM pull
396	$\frac{\langle \text{BR} \rangle}{\text{RR}} (B \to D \tau^+ \nu)^{[7.0, 7.5]}$	0.089808	0.17σ	0.17σ
397	$\frac{1}{\operatorname{BR}}(B \to D \gamma + \nu)^{1-(\gamma+\gamma)}$ $\operatorname{BR}(B^0 \to K^{*0} \gamma)$	4.1783×10^{-5}	0.17σ 0.18σ	0.17σ 0.16σ
398	17	2.0917	0.16σ	$0.16 \ \sigma$
399	$\frac{\Gamma_W}{\langle \frac{d \text{BR}}{dq^2} \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[1, 2]}}$	4.4957×10^{-8}	$0.10 \ \sigma$ $0.21 \ \sigma$	$0.16 \ \sigma$
	$\frac{\langle \overline{dq^2} \rangle (D^1 \to K^- \mu^+ \mu^-)^{1/2}}{\langle D^1 \rangle \langle D^0 \rangle \langle D$			
400	$\langle P'_{\bullet} \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[15, 19]}$	0.00077655	0.14 σ	0.14 σ
401	$\left\langle \frac{dR}{d\theta} \right\rangle (e^+e^- \to W^+W^-)^{[182.66, 0.8, 1.0]}$	5.434	0.15σ	0.15 σ
402	$\langle P_{6}' \rangle (B^{+} \to K^{*+} \mu^{+} \mu^{-})^{[4, 6]}$	-0.031992	0.13 σ	0.14 σ
403	$\langle F_L \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[15, 19]}$	0.33989	0.14σ	0.13σ
404	$\frac{\langle \mathrm{BR} \rangle}{\mathrm{BR}} (B \to D^* \tau^+ \nu)^{[5.0, 5.5]}$	0.05722	0.14σ	0.14σ
405	$\langle P_1 \rangle (B^+ \to K^{*+} \mu^+ \mu^-)^{[2.5, 4]}$	-0.093246	0.12σ	0.1σ
406	$R_T(K^+ \to \pi^0 \mu^+ \nu)$	1.5878×10^{-36}	0.1σ	0.1σ
407	$\langle P_6' \rangle (B^+ \to K^{*+} \mu^+ \mu^-)^{[2.5, 4]}$	-0.04655	0.12σ	0.12σ
408	$\mathcal{F}t(^{50}\mathrm{Mn})$	4.6665×10^{27}	0.12σ	0.12σ
409	$\frac{\langle \mathrm{BR} \rangle}{\mathrm{BR}} (B \to D \tau^+ \nu)^{[8.0, 8.5]}$	0.082028	0.13σ	0.13σ
410	$\sigma_{ m trident}/\sigma_{ m trident}^{ m SM}$	1	0.13σ	0.13σ
411	$\frac{\langle \mathrm{BR} \rangle}{\mathrm{BR}} (B o D^* au^+ u)^{[9.33, \ 9.86]}$	0.087022	$0.13 \ \sigma$	0.13σ
412	$R(e^+e^- \to W^+W^-)^{[201.6]}$	1	0.12σ	0.12σ
413	$\langle P_4' \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[1.1, 2.5]}$	-0.071117	0.073σ	0.12σ
414	$\left\langle \frac{dR}{d\theta} \right\rangle (e^+e^- \to W^+W^-)^{[198.38, -0.2, 0.0]}$	1.265	0.1σ	0.1σ
415	$\langle R_{\mu e} \rangle (B^+ \to K^{*+} \ell^+ \ell^-)^{[0.1, 8.0]}$	0.85835	0.32σ	0.1σ
416	$\frac{\langle BR \rangle}{BR} (B \to D \tau^+ \nu)^{[5.07, 5.6]}$	0.07714	0.1 σ	0.1 σ
417	$\langle P_6' \rangle (B^+ \to K^{*+} \mu^+ \mu^-)^{[0.1, 0.98]}$	-0.050366	0.087σ	0.079σ
418	$\frac{\langle \text{BR} \rangle}{\text{BR}} (B \to D \tau^+ \nu)^{[5.6, 6.13]}$	0.087798	0.1 σ	0.1 σ
419	$BR(\tau^- \to e^- e^+ e^-)$	3.8425×10^{-12}	0.1 σ	0.1 σ
420	$\langle P_3 \rangle (B^+ \to K^{*+} \mu^+ \mu^-)^{[1.1, 2.5]}$	0.0029324	0.084σ	0.085σ
421	$\left\langle \frac{dR}{d\theta} \right\rangle (e^+e^- \to W^+W^-)^{[205.92, -0.2, 0.0]}$	1.231	0.097σ	0.097σ
422	A_c	0.66752	0.092σ	0.092σ
423	$\ln(C)(K^+ \to \pi^0 \mu^+ \nu)$	0.19988	0.084σ	0.084σ
424	$\frac{\langle \mathrm{BR} \rangle}{\mathrm{BR}} (B o D^* au^+ u)^{[8.0, 8.5]}$	0.098402	0.084σ	0.084σ
425	$\frac{\langle \overline{ m BR} \rangle}{ m BR} (B o D^* au^+ u)^{[9.0, 9.5]}$	0.089545	0.082σ	0.082σ
426	$\langle D_{P'_4}^{\text{BR}} \rangle (B^0 \to K^{*0} \ell^+ \ell^-)^{[14.18, 19.0]}$	-7.9298×10^{-5}	0.072σ	0.072σ
427	$\mathcal{F}t(^{14}\mathrm{O})$	4.6665×10^{27}	0.041σ	0.043σ
428	$\frac{\langle \mathrm{BR} \rangle}{\mathrm{BR}} (B o D au^+ u)^{[5.0, 5.5]}$	0.070732	0.066σ	0.066σ
429	$BR(B^+ \to K^{*+}\gamma)$	4.2462×10^{-5}	0.04 σ	0.055σ
430	$\langle P_2 \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[1.1, 2.5]}$	-0.45667	0.12σ	0.074σ
431	$\langle BR \rangle (B \rightarrow D^* \tau^+ \nu) [9.5, 10.0]$	0.077734	0.053σ	0.053σ
432	R_c^0	0.17223	0.042σ	0.041σ
433	$\frac{R_c^0}{\langle P_4' \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[15, 19]}}$	-0.63499	0.04σ	0.038σ
434	$\langle P_8' \rangle (B^+ \to K^{*+} \mu^+ \mu^-)^{[2.5, 4]}$	-0.015318	0.028σ	0.029σ
435	$\langle P_8' \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[0.1, 0.98]}$	-0.001826	0.036σ	0.0032σ
436	$\mathcal{F}t(^{38m}\mathrm{K})$	4.6665×10^{27}	0.017σ	0.014σ
437	$\frac{\langle \mathrm{BR} \rangle}{\mathrm{BR}} (B \to D^* \tau^+ \nu)^{[4.0, 4.53]}$	0.028569	0.026σ	0.026σ
438	$\mu_{qq}(h \to \tau^+ \tau^-)$	1	0.025σ	0.025σ
439	$\mathcal{F}t(^{62}\mathrm{Ga})$	4.6665×10^{27}	0.016σ	0.017σ
440	$\frac{\langle \mathrm{BR} \rangle}{\mathrm{BR}} (B \to D \tau^+ \nu)^{[9.33, 9.86]}$	0.063887	0.016σ	0.016σ
441	$BR(B^+ \to \mu^+ \nu)$	4.1832×10^{-7}	0.17σ	0.013σ
442	$\langle \frac{d \text{BR}}{d q^2} \rangle (B^+ \to K^{*+} \mu^+ \mu^-)^{[2, 4.3]}$	4.356×10^{-8}	0.14σ	0.0085σ
443	$BR(B^0 \to \tau^+ \tau^-)$	1.0176×10^{-6}	0.031σ	0.0045σ
444	$BR(\bar{B}^0 \to \bar{K}^{*0} e^+ \mu^-)$	2.6796×10^{-22}	$8.4 \times 10^{-8} \ \sigma$	0 σ
445	$BR(B^- \to K^- e^+ \mu^-)$	1.2368×10^{-22}	0 σ	0 σ
446	$BR(B^- \to K^- \mu^+ e^-)$	1.2368×10^{-22}	$8.4 \times 10^{-8} \ \sigma$	0 σ
447	$BR(B^- \to K^- \mu^+ \tau^-)$	1.6205×10^{-20}	0 σ	0 σ
448	$BR(B^- \to \pi^- \mu^+ \tau^-)$	5.7464×10^{-23}	0 σ	0 σ
449	$BR(\bar{B}^0 \to e^{\pm}\mu^{\mp})$ $BR(\bar{B}^0 \to e^{\pm}\pi^{\mp})$	2.3614×10^{-27}	0 σ	0 σ
450	$BR(\bar{B}^0 \to e^{\pm}\tau^{\mp})$ $RR(\bar{B}^0 \to e^{\pm}\tau^{\mp})$	3.9357×10^{-9} 1.0858×10^{-22}	$0.00026 \ \sigma$	0 σ
451 452	$\frac{\mathrm{BR}(\bar{B}^0 \to \mu^{\pm} \tau^{\mp})}{\mathrm{BR}(\bar{B}_s \to e^{\pm} \mu^{\mp})}$	$\frac{1.0858 \times 10^{-22}}{6.77 \times 10^{-25}}$	0 σ 0 σ	0 σ 0 σ
402	$DIL(D_s \to e^-\mu^+)$	0.11 × 10 ==	0.0	0.0

	Observable	NP prediction	NP pull	SM pull
453	$BR(\bar{B}_s \to \mu^{\pm} \tau^{\mp})$	3.1385×10^{-20}	0 σ	0 σ
454	$BR(B^0 \to \pi^0 e^{\pm} \mu^{\mp})$	3.4752×10^{-25}	0 σ	0 σ
455	$BR(B^- \to \pi^- e^{\pm} \mu^{\mp})$	7.4665×10^{-25}	0 σ	0 σ
456	$BR(K_L \to e^{\pm}\mu^{\mp})$	2.5388×10^{-24}	0 σ	0 σ
457	$BR(\mu^- \to e^- e^+ e^-)$	3.0781×10^{-27}	0 σ	0 σ
458	$BR(\mu \to e\gamma)$	2.4192×10^{-36}	0 σ	0 σ
459	$BR(\tau \to \mu \gamma)$	7.6018×10^{-35}	0 σ	0 σ
460	$BR(\tau^- \to \mu^- \mu^+ \mu^-)$	1.0555×10^{-25}	0 σ	0 σ
461	$BR(\tau^- \to e^- \mu^+ \mu^-)$	2.5878×10^{-12}	0 σ	0 σ
462	$BR(\tau \to e\gamma)$	2.787×10^{-21}	0 σ	0 σ
463	$BR(\tau^+ \to \rho^0 e^+)$	2.4383×10^{-12}	$0.00022 \ \sigma$	0 σ
464	$BR(\tau^+ \to \rho^0 \mu^+)$	6.6168×10^{-26}	0 σ	0 σ
465	$BR(\tau^+ \to \phi e^+)$	9.6464×10^{-9}	0.51σ	0 σ
466	$BR(\tau^+ \to \phi \mu^+)$	2.6082×10^{-22}	0 σ	0 σ
467	$CR(\mu - e)$ in $^{48}_{22}$ Ti	4.598×10^{-26}	0 σ	0 σ
468	$CR(\mu - e)$ in $^{197}_{79}$ Au	5.4131×10^{-26}	0 σ	0 σ
469	$BR(Z^0 \to e^{\pm}\mu^{\mp})$	1.0657×10^{-27}	0 σ	0 σ
470	$\mathrm{BR}(Z^0 \to e^{\pm} \tau^{\mp})$	8.0094×10^{-12}	0.0026σ	0 σ
471	$\mathrm{BR}(Z^0 \to \mu^{\pm} \tau^{\mp})$	2.2002×10^{-25}	0 σ	0 σ