

Algoritmo por definição é uma sequência finita de passos ou instruções, ordenadas de forma lógica, que levam à execução de uma tarefa ou à solução de um problema.

Exemplo:

- 250 g de farinha
- 150 g de margarina
- 5 ovos
- 2 colheres de fermento
- 200 gramas de açúcar
- Misturar os ingredientes
- 2. Cozinhar o bolo

 Refinamento melhora a sequência do algoritmo de modo a obter a solução ou o resultado pretendido.

Exemplo:

- Misturar os ingredientes:
 - Juntar a margarina e a farinha e bater até obter um creme
 - Juntar os ovos e mexer
 - Juntar o fermento
- Cozinhar o bolo
 - Aquecer o forno a 180 °
 - Cozer o bolo durante 45 min

- Diariamente criamos algoritmos nas nossas rotinas:
 - Resolver uma operação matemática
 - Tomar medicamentos segundo as orientações médicas
 - Cozinhar seguindo as receitas
- Os algoritmos são capazes de realizar tarefas como:
 - Ler e escrever dados
 - Avaliar expressões algébricas, relacionais e lógicas
 - Tomar decisões com base nos resultados das expressões avaliadas
 - Repetir um conjunto de ações de acordo com uma condição

- Os algoritmos são mais importantes que as linguagens de programação ou que o computador. A linguagem de programação é um meio para expressar um algoritmo e um computador é um meio para executá-lo.
- Os algoritmos devem ser:
 - Precisos e indicar a ordem de realização de cada passo
 - Eficazes e contemplar diferentes problemas
 - Eficiente utilizando o menor número de passos possível
 - Finitos, ou seja, deve terminar em algum momento incorporando um número finito de passos.
- Um algoritmo é constituído por três partes:
 - Entrada
 - Processamento
 - Saída

Componentes de um Algoritmo

Problema

- Conjunto de possíveis entradas
- A saída pretendida
- Conjunto de operações válidas

PROCESSAMENTO **ENTRADA** SAÍDA Percepção das impressões sensoriais Saída do resultado Processo de dos processos Pensamento : de pensamento Com o auxílio da nossa memória executamos diversos procesos, como controlar, comparar,combinar, deduzin, etc.

- Solução algorítmica
 - Conjunto ordenado de operações que transformam o conjunto de entradas na saída desejada

IMP.GE.190.0 6 DEPARTAMENTO CIÊNCIA E TECNOLOGIA

Entrada $2\pi r$ Saída

- O algoritmo não é a solução de um problema mas o caminho para a solução.
- Não se aprende:
 - a copiar algoritmos
 - ler algoritmos terminados
 - a decorar algoritmos
- Aprende-se:
 - Construindo
 - Testando
 - Praticando o pensamento

IMP.GE.190.0

BEPARTAMENTO CIÊ
E TECNOLOGIA

Algoritmia: Conceitos

- Dados correspondem à porção da informação a ser processada pelo computador
- Variável representa uma entidade na qual é possível guardar temporariamente valores processados durante a execução de um programa.

	Endereço	Conteúdo
a	1100	40
Z	1101	35
С	1102	5930
g	1103	68

Neste exemplo, o valor da variável z é 35 que está armazenado no endereço 1101.

- Os dados não são todos do mesmo tipo e para os programas torna-se necessário diferenciar os vários tipos de dados.
- Tipo de dados primitivos ou básicos:

IMP.GE.190.0

DEPARTAMENTO CIÊNCI E TECNOLOGIA

- Inteiro: valores inteiros, e.g., 13.
- **Real:** valores reais, *e.g.*, 5.14356
- Cadeia de carateres: valores alfanuméricos, e.g., "Fatima Leal"
- Lógico: valores booleanos, e.g., FALSO.
- Apontador: endereços de memória
- Cada variável irá guardar um tipo de dados. Deverá ter um nome de preferência indicativo.
- O valor da variável fica alterado depois de uma atribuição.
- Exemplos: Atribuição
 nomeProfessor <- "Fatima Leal"
 disciplina <- "Fundamentos Programação Computadores"
 classificação <- 17

- Nomes de variáveis:
 - NUM
 - N_ALUNO
 - NOMEALUNO
 - NOME_ALUNO
 - X1
 - Y2
- Nomes Inválidos
 - 7NUM
 - Y-Z
 - U*Z
 - DUAS PALAVRAS
 - DUAS-PAL

- Na construção de algoritmos é inevitável o recurso a operadores:
 - Aritméticos
 - Relacionais
 - Lógicos
- Operadores Aritméticos

Operador	Descrição	а	b	X
+	Adição	4	5	4 + 5 = 9
-	Subtração	4	5	4 - 5 = -1
*	Multiplicação	4	5	4 * 5 = 20
/	Divisão	18	3	18 / 3 = 6
%	Resto de divisão	20	3	20 % 3 = 2

IMP.GE.190.0 13 IPI DCT DEPAI

Operadores Relacionais

Operador	Descrição	а	b	x
==	Verifica uma igualdade	4	5	4 == 5 R:
!=	Verifica se é diferente	4	5	4 != 5 R:
>	Verifica se é Maior	4	5	4 > 5 R:
<	Verifica se é Menor	4	5	4 < 5 R:
>=	Verifica se é Maior ou igual	4	4	4 >= 4 R:
<=	Verifica se é Menor ou igual	3	4	3 <= 4 R:

Operadores Lógicos

Operador	Descrição
&&	E / and
	Ou / or
<u>!</u>	Não / not

Exemplo:

Se
$$(x > y \&\& y > 0)$$

entao y <- x +1

Neste exemplo encontramos:

Variáveis

Operadores: aritméticos, relacionais e lógicos

Atribuição

- Atribuição é uma operação utilizada para armazenar um valor numa determinada variável
- Em algoritmia representa-se por uma seta:
- x ← 23 a variável x vai ficar com o valor 23
- x ← y a variável x vai ficar com o conteúdo de y
- x ← x + 1 a variável x é incrementada de uma unidade
- Na maioria das linguagens de programação atribuição é realizada pelo = .

IMP.GE.190.0

DEPARTAMENTO CIÊNCI E TECNOLOGIA

- Tipos de dados não primitivos são definidos através de conjuntos ou estruturas de dados.
- Vetores permitem representar um conjunto de valores de diferentes tipos (inteiros, reais, carateres). Têm um nome, um índice e uma dimensão. É apresentado através de um nome e de um índice entre parêntesis retos.

Exemplo...

DEPARTAMENTO CIÊNCIA E TECNOLOGIA

I = 1 ... 8

1

N = 8

2

3

5

6

7

8

VNUM [I]

 34
 121
 7
 78
 0
 90
 3
 15

VNUM[2] = 121

VNUM[7] = 3

VNUM [12] - indefinido

 $I \leq -5$

VNUM[I] = 0

 $I \leq 1$

VNUM[I] = 32

DEPARTAMENTO CIÊNCIA E TECNOLOGIA

Matrizes pode ser interpretada como um vetor bidimensional (com dimensão 2).
Uma matriz é representada através de um nome e dois índices que permitem indexar e aceder os elementos que constam na matriz.

Exemplo ...

DEPARTAMENTO CIÊNCIA E TECNOLOGIA

IMP.GE.190.0

DEPARTAMENTO CIÊNCIA E TECNOLOGIA

- Os algoritmos podem ser descritos em diferentes formalismos:
 - Linguagem natural
 - Linguagem gráfica Fluxogramas
 - Pseudocódigo
- Construção de algoritmos implica conhecer um conjuntos de instruções:
 - **Leitura e escrita -** "ponte do exterior" para dentro do algoritmo e do algoritmo para o "exterior", respetivamente.
 - Decisão permite alterar o fluxo de controlo (ordem pela qual as instruções de um algoritmo são executadas).
 - Repetição mecanismo de repetição de instruções que também permite alterar o fluxo de controlo do algoritmo.
 - Atribuição é uma operação elementar que permite alterar o valor de uma variável.

Algoritmia: Conceitos

- Resumindo...
- Os algoritmos contêm:
 - Instruções
 - Variáveis
 - Operadores
 - Atribuições
 - Dados

DEPARTAMENTO CIÊNCIA E TECNOLOGIA

Programa

Programa = Algoritmo + dados

Pseudocódigo

- Pseudocódigo é uma notação algorítmica muito próxima da linguagem natural.
- Para traduzir o pseudocódigo para uma linguagem de programação, basta conhecer o vocabulário e regras sintáticas da linguagem.

IMP.GE.190.0

DEPARTAME
E TECNOLO

Pseudocódigo

 Algoritmo é a palavra que indica o início da definição de um algoritmo em forma de pseudocódigo.

- <declaração_de_variáveis> é uma forma opcional onde são declaradas as variáveis globais usadas no algoritmo
- Início e Fim são respetivamente as palavras que delimitam o início e o fim do conjunto de instruções do corpo do algoritmo.

IMP.GE.190.0

DEPARTAMENTO CIÊNCI E TECNOLOGIA

Pseudocódigo: Variáveis

 Declaração de variáveis: todas as variáveis que serão utilizadas pelo algoritmo devem ser declaradas entre as palavras reservadas Variaveis (ou Var) e Inicio

```
Algoritmo Exemplo
Variaveis

a: Inteiro;
b: Real;
Inicio
<bloco de comandos>
Fim
```

■ Atribuição: <variável> ← <valor>

■ Exemplos: salario ← 1000;

nome ← fatima :

DEPARTAMENTO CIÊNCIA E TECNOLOGIA

Pseudocódigo: Comando de Entrada e Saída

- Entrada: sempre que precisamos que o usuário introduza algum dado para ser processado, teremos uma entrada de dados. O comando usado para receber essa entrada de dados em pseudocódigo é o comando Ler.
 - Exemplo:
 - Ler (nome)
 - Ler (num1, num2)
- Saída: usado para exibir ou retornar qualquer valor ou mensagem ao usuário. O comando utilizado para produzir essa saída de dados em pseudocódigo é o comando Escrever.
 - Exemplo
 - Escrever ("Olá Mundo")

Fluxogramas

- Fluxogramas são representações gráficas de algoritmos
- Utilizam formas geométricas para representar o início, o fim e as instruções a serem executadas. As setas indicam o fluxo das ações

DEPARTAMENTO CIÊNCIA E TECNOLOGIA

Estruturas de Programação

Estruturas de Programação

- Instruções de Sequência as instruções de sequência são instruções atómicas (simples) permitem a leitura/escrita de dados, bem como o cálculo e atribuição de valores;
- Instruções de Decisão as instruções de decisão, ou seleção, permitem a seleção em alternância de um ou outro conjunto de ações após a avaliação lógica de uma condição;
- Instruções de Repetição as instruções de repetição, ou ciclos, permitem a execução, de forma repetitiva, de um conjunto de instruções. Esta execução depende do valor lógico de uma condição que é testada em cada iteração para decidir se a execução do ciclo continua ou termina.

Representação de algoritmos

Pseudocódigo

INÍCIO ou FIM

LER()

ESCREVER()

SE...ENTÃO...SENÃO

PARA...ATÉ...FAZER

ENQUANTO...FAZER

FAZER...ENQUANTO

PROCEDIMENTO/FUNÇÃO

Fluxograma

DEPARTAMENTO CIÊNCIA E TECNOLOGIA

Conceitos fundamentais

Estrutura do algoritmo

- (1) Declaração das variáveis necessárias
- (2) Leitura dos dados
- (3) Processamento ...
- (4) Escrita dos resultados

```
INICIO

ED:

variavel1, variavel2 INTEIRO

variavel3, variavel4 REAL

LER (variavel1, variavel2)

variavel3 ← variavel1 + variavel2

ESCREVER (variavel3)

FIM

(1)

(2)
```

Exemplo 1

 Elabora um algoritmo que receba 2 números inteiros do utilizador e apresenta a sua soma.

Pseudocódigo INICIO ED: numero1, numero2, soma INTEIRO LER (numero1, numero2) soma ← numero1 + numero2 ESCREVER (soma) FIM

inicio numero1 numero2 soma ← numero1 + numero2 soma fim

Fluxograma

Exemplo 2

■ Dois atletas fizeram uma corrida solidária. Por cada quilómetro era doado 1,5€ para uma instituição. Elabora um algoritmo que calcule o total de dinheiro angariado.

IMP.GE.190.0

DEPARTAMENTO CIÊNCI E TECNOLOGIA

Do conhecimento à prática.