# parrol Data Science

7<sup>th</sup> Session – Neural Network(ANN, CNN)

# Contents



Introduction

What is Neural Network?

Tensor

Convolutional Neural Network(CNN)



이번 세션에 대한 간략한 소개

# Introduction. Schedule



MNIST mini project 4/9 ~ Simpson image classification project

5월 예정

# Introduction. Computer Vision





어떤 영상에서 장면이나 특징들을 "이해 (Understanding)" 하는 컴퓨터를 프로그래밍하는 것이 목적

- 영상에서 물체의 detection, segmentation
- •같은 장면이나 물체에 대한 다른 관점 (view) 의 등록 (registration)
- •연속 영상에서 물체를 추적
- •어떤 장면을 3차원 모델로 mapping
- •인간의 자세와 팔다리 움직임을 3차원으로 추정 (estimation)

# Introduction. Computer Vision

컴퓨터가 사람의 시각 시스템이 하는 작업을 동일하게 수행할 수 있을까?

대용량의 데이터: 연산 속도와 메모리 사용량의 제약다양한 프로그래밍 스킬로 높은 정확도 확보해야 함



# Deep Learning

"여러 층을 가진 인공신경망(Artificial Neural Network, ANN)을 사용해 머신러닝 학습 수행"

→ 층 기반 표현 학습(layered representations learning) 또는 계층적 표현 학습(hierarchical representations learning)

# What is Neural Network?

인공신경망에 대한 개괄

#### 두뇌의 신경세포, 즉 뉴런이 연결된 형태를 모방한 모델

: 인공신경망 뉴런 모델은 생물학적인 뉴런을 수학적으로 모델링한 것

#### Neuron (Nerve cell) Anatomy





#### 활성화 함수(Activation function)?

입력 신호의 총합을 출력 신호로 변환하는 함수로, 입력 받은 신호를 얼마나 출력할지 결정하고 네트워크에 층을 쌓아 비선형성을 표현할 수 있도록 해준다.

\* 딥러닝 네트워크에서는 노드에 들어오는 값들에 대해 곧바로 다음 layer로 전달하지 않고 주로 비선형인 활성화 함수를 통과시킨 후 전달한다 왜 비선형? → 선형함수를 사용할 시 층을 깊게 하는 의미가 줄어들기 때문

#### **Activation Functions**







- **순전파** *Forwardpropagation* 입력층 → 은닉층 → 출력층
- **역전파** *Backpropagation* 출력층 → 은닉층 → 입력층 순의 가중치 업데이트(경사하강법 이용)

#### (1) 순전파



- 바이어스 생략
- 2개의 입력층 뉴런, 2개의 은닉층 뉴런, 2개의 출력층 뉴런
- 활성화 함수 : sigmoid
- 학습률 알파는 임의의 수인 0.5로 설정

$$s(z)=rac{1}{1+e^{-z}}$$

#### 원송의 원령 함

$$Z_1 = W_1 X_1 + W_2 X_2 = 0.3 \times 0.1 + 0.25 \times 0.2 = 0.08$$
  
 $Z_2 = W_3 X_1 + W_4 X_2 = 0.4 \times 0.1 + 0.35 \times 0.2 = 0.11$   
 $C_1 = C_2 = C_3 = C_4 = C_4 = 0.35 \times 0.2 = 0.11$   
 $C_1 = C_2 = C_3 = C_4 = C_4 = 0.35 \times 0.2 = 0.11$   
 $C_2 = C_3 = C_4 = 0.35 \times 0.2 = 0.11$   
 $C_3 = C_4 = 0.35 \times 0.2 = 0.11$   
 $C_4 = C_5 = C_6 = 0.35 \times 0.2 = 0.11$   
 $C_4 = C_5 = C_6 = 0.35 \times 0.1 + 0.25 \times 0.2 = 0.11$   
 $C_4 = C_5 = C_6 = 0.35 \times 0.1 + 0.25 \times 0.2 = 0.11$   
 $C_4 = C_5 = C_6 = 0.35 \times 0.1 + 0.25 \times 0.2 = 0.11$   
 $C_4 = C_6 = 0.35 \times 0.1 + 0.25 \times 0.2 = 0.11$   
 $C_5 = C_6 = 0.11$   
 $C_6 = 0.11$   
 $C_6 = C_6 = 0.11$   
 $C_6 =$ 

#### इंट्राइंटा रिपये केरे

$$E_{01} = \frac{1}{2} (Y_1 - O_1)^2 = 0.02193$$

$$E_{02} = \frac{1}{2} (Y_2 - O_2)^2 = 0.00204$$

$$E_{101} = E_{01} + E_{02} = 0.02397$$

#### (1) 역전파 1단계



맨 마지막 층부터!



$$\frac{\partial \text{Etotal}}{\partial W^{2}} = \frac{\partial \text{Etotal}}{\partial O_{1}} \times \frac{\partial O_{1}}{\partial Z_{3}} \times \frac{\partial Z_{3}}{\partial W^{2}}$$

$$\frac{1}{0} \quad \stackrel{1}{\textcircled{2}} \quad \stackrel{1}{\textcircled{3}}$$

- ① Etotal =  $\frac{1}{2}(y_1 0_1)^2 + \frac{1}{2}(y_2 0_2)^2$  organity

  DEtotal =  $0_1 y_1 = 0_1$  20944
- 2 Sigmoid 349 012 4  $\rightarrow$  f(x) (1-f(x)) 4014 2013  $\rightarrow$   $\frac{\partial O_1}{\partial Z_3} = 0. (1-O_1) = 0.60944 (1-0.60944) = 0.23802$
- ③ 글 > 3 → 01개는 위에 순전파 개반할때 공 구하는 식으로 개년 그냥 hi의 값임을 알수 있음 = 0.51998

경사항강법을 통해 가장되 업단에(트 
$$\rightarrow NeW_-W_j = W_j - d$$
  $\frac{\partial Etotal}{\partial W_j}$  제 제 보트 확인해구세월  $NeW_-W_5 = W_5 - d$   $\frac{\partial Etotal}{\partial W_5} = 0.45 - 0.5 \times 0.02592 = 0.43703$  이건식으로  $W_6, W_7, W_8 = 34$  상유면 된다!  $\frac{\partial Etotal}{\partial W_6} = \frac{\partial Etotal}{\partial O_1} \times \frac{\partial O_1}{\partial Z_3} \times \frac{\partial Z_3}{\partial W_6} \rightarrow NeW_-W_6 = 0.38685$   $\frac{\partial Etotal}{\partial W_7} = \frac{\partial Etotal}{\partial O_2} \times \frac{\partial O_2}{\partial Z_4} \times \frac{\partial Z_4}{\partial W_7} \rightarrow NeW_-W_7 = 0.69629$ 

 $\frac{\partial \text{Etotal}}{\partial \text{Ws}} = \frac{\partial \text{Etotal}}{\partial 02} \times \frac{\partial 02}{\partial 24} \times \frac{\partial 24}{\partial Ws} \rightarrow \text{New. Ws} = 0.59624$ 

#### (1) 역전파 2단계



- 위에서 했던 것과 똑같은 방법으로 W1, W2, W3, W4를 업데 이트 해주면 됨
- 모든 가중치에 대한 업데이트가 끝났으면 다시 순전파 방향으로 o1, o2를 계산해 실제값과 예측값의 오차제곱합을 구해 총 오차합 Etotal을 구해준다

newE\_total은 기존의 E\_total보다 작음
→ 다시 또 순전파와 역전파를 통해 가중치를 업데이트

이렇게 순전파와 역전파를 반복함으로써 오차를 최소화하는 가중치를 찾아간다!!

Ex) 완전 연결 층 (Fully connected layer)



위 경우는 입력 뉴런이 3개, 출력 뉴런이 5개 = 연결선은 3\*5=15개가 됨 각 연결선은 가중치를 포함 - 가중치가 높을수록 해당 입 력 뉴런이 출력 뉴런에 미치는 영향이 큼 "16개의 은닉 유닛을 가진 2개의 완전 연결층과, 스칼라 값의 예측을 출력하는 세 번째 층을 쌓아보자"

```
from keras import models
from kears import layers

model = models.Sequential()
model.add(layers.Dense(16, activation='relu', input_shape=(1000,)))
model.add(layers.Dense(16, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
```

Dense층에 전달한 매개변수(16)는 은닉 유닛의 개수

- → 가중치 행렬 W의 크기가 (input\_dimension, 16)이라는 뜻
- → 입력 데이터와 W를 점곱하면 입력 데이터가 16차원으로 표현된 공간으로 투영

즉, 은닉 유닛을 늘린다

- =표현 공간을 더 고차원으로 만든다
- =신경망이 더 복잡한 표현을 학습할 수 있다

But, 계산 비용이 커지고 원하지 않는 패턴을 학습함(과적합 주의)

#### 신경망 훈련에 관련되어 있는 요소들

- 네트워크(또는 모델)를 구성하는 충
- 입력 데이터와 그에 상응하는 타깃
- 학습에 사용할 피드백 신호를 정의하는 손실 함수
- 학습 진행 방식을 결정하는 **옵티마이저**



#### Q. 손실 함수(Loss function)?

A. 예측과 타깃을 비교하여 네트워크의 예측이 기댓값에 얼마나 잘 맞는지를 측정하는 손실 값을 만든다. 즉, 훈련하는 동안 최소화될 값!

#### Q. 옵티마이저(Optimizer)?

A. 손실 함수를 기반으로 네트워크가 어떻게 업데이트될지를 결정한다. 손실 값을 사용하여 네트워크의 가중치를 업데이트!



Input 값을 어떻게 매핑할 것인가

#### Tensor 신경망을 위한 데이터 표현



#### 데이터를 위한 수치형 컨테이너(container)

#### 스칼라(OD 텐서)

하나의 숫자만 담고 있는 텐서(0차원)

→ float32, float64 타입의 숫자 array scalar

#### 벡터(1D 텐서)

숫자의 배열

#### 행렬(2D 텐서)

벡터의 배열

#### 3D 텐서와 고차원 텐서

행렬들을 배열로 만들면 직육면체 형태로 해석할 수 있는 3D 텐서가 만들어짐

# Tensor 신경망을 위한 데이터 표현

#### Image는 (samples, height, width, channels) 크기의 4D 텐서이다.

이미지는 픽셀*pixel*로 이루어져 있음.

→ 컬러 사진은 천연색을 표현하기 위해서 각 픽셀을 RGB 3개의 실수로 표현한 데이터

- 축의 개수(랭크): 3D 텐서에는 3개의 축이 있고, 2D 텐서에는 2개가 있다.
- 크기*shape*: 텐서의 각 축을 따라 얼마나 많은 차원이 있는지 를 나타낸 python tuple
- 데이터 타입: dtype(혹은 dtypes)로 확인할 수 있음. float32, uint8, float64 등등









이미지 출처: https://en.wikipedia.org/wiki/Channel\_(digital\_image)

# Tensor 신경망을 위한 데이터 표현

| 데이터 타입                  | 속성                                                   |
|-------------------------|------------------------------------------------------|
| 벡터 데이터                  | (samples, features) 크기의 2D 텐서                        |
| 시계열 데이터 (Sequence data) | (samples, timestamps, features) 크기의 3D 텐서            |
| 이미지                     | (samples, height, width, channels) 크기의 4D 텐서         |
| 동영상                     | (samples, frames, height, width, channels) 크기의 5D 텐서 |



#### 텐서의 변환

tensor reshaping → 데이터를 preprocessing 할 때 사용함 : 특정 크기에 맞게 행과 열을 재배치 Convolutional Neural Network (CNN)

합성곱 신경망의 소개

층*layer*마다 적절한 텐서 포맷과 데이터 처리 방식이 다르다!

- 완전 연결 층(fully connected layer)
- 밀집 연결 층(densely connected layer)
- 순환층(recurrent layer) LSTM, RNN

. . .

# 합성곱 층(convolutional layer)

완전 연결 층이나 밀집 연결 층은 1차원 데이터의 처리에만 한정 이미지를 1차원으로 변형을 시키면 데이터의 형상이 소실되는 단점이 있어 **이미지 인식에 CNN을 사용**하게 되었음

- → 이미지의 텐서는 4D이기 때문에 2D로 변형시키면 정확한 예측을 하기 어려움!
- → 합성곱을 사용하면 3차원 데이터의 공간적인 정보를 유지한 채 다음 레이어로 보낼 수 있음

tensorflow.keras.layers에 속해있는 Conv2D 클래스로 구현

```
1 model = tf.keras.models.Sequential()
 3 model.add(tf.keras.layers.experimental.preprocessing.Rescaling(1./255, input_shape=(img_height, img_width, 3)),)
 4 model.add(tf.keras.layers.Conv2D(32, (3, 3), input_shape=(28,28,1),padding='same', activation ="relu"))
 5 model.add(tf.keras.layers.BatchNormalization())
 6 model.add(tf.keras.layers.Conv2D(32, (3, 3), input_shape=(28,28,1),padding='same', activation ="relu"))
 7 model.add(tf.keras.layers.BatchNormalization())
9 model.add(tf.keras.lavers.MaxPool2D())
10 model.add(tf.keras.layers.Dropout(0.4))
12 model.add(tf.keras.layers.Conv2D(64, (3, 3), input_shape=(28,28,1).padding='same', activation ="relu"))
13 model.add(tf.keras.layers.BatchNormalization())
14 model.add(tf.keras.layers.Conv2D(64, (3, 3), input_shape=(28,28,1),padding='same', activation ="relu"))
15 model.add(tf.keras.layers.BatchNormalization())
17 model.add(tf.keras.lavers.MaxPool2D())
18 model.add(tf.keras.lavers.Dropout(0.4))
20 model.add(tf.keras.layers.Flatten())
21 model.add(tf.keras.layers.Dense(128, activation='relu'))
22 model.add(tf.keras.layers.Dense(num_classes, activation='softmax'))
24 model.compile(loss='binary_crossentropy', optimizer='adam',metrics=['accuracy'])
```



합성곱 층, 풀링 층, 완전 연결 층 등으로 구성

#### 완전 연결 신경망



#### VS

#### 합성곱 신경망



#### 점과 선, 질감을 충분히 배우고, 조금 떨어져서 보자.





점과 선이 질감이 합쳐져 삼각형, 동그라미, 북실함이 보인다.

출처 : 하용호님 자료 @kakao

핵심 특징:

합성곱 층은 **지역 패턴**을 학습한다. 이미지일 경우 작은 2D window로 입 력에서 **패턴**을 찾음

Ex) 이미지는 에지(edge), 질감(texture) 등의 지역 패턴으로 분해됨

#### 삼각형, 원, 사각형, 북실함등을 조합해서 보니



뾰족귀와 땡그란눈과 복실한 발을 배웠다.

출처:하용호님 자료@kakao

#### <공간적 계층 구조를 학습>

1st - edge 같은 작은 지역 패턴을 학습 2nd - 첫 번째 층의 특성으로 구성된 더 큰 패턴을 학습

...

복잡하고 추상적인 시각적 개념을 효과적으로 학습

#### How?

Conv2D layer의 filter, stride, padding 파라미터
Pooling layer의 추가 (Maxpooling, AveragePooling…)
Dropout과 BatchNormalization layer의 추가

