Конспект по алгебре за I семестр бакалавриата Чебышёва СПбГУ (лекции Степанова Алексея Владимировича)

Тамарин Вячеслав

December 3, 2019

Contents

Chapter 1

Линейная алгебра. Векторные пространства

1.1 Лекция 1

X - множество $*: X \times X \to X$ $(x,y) \mapsto x * y$

Аксиомы:

- 1. $\forall x, y, z \in X : x * (y * z) = (x * y) * z$ (ассоциативность)
- 2. $\exists e \in X \ \forall a \in X : e * a = a * e = a \ ($ нейтральный элемент)
- 3. $\forall a \in X \; \exists a' \in X : a*a' = a'*a = e \; \; (\text{обратный элемент})$
- 4. $\forall a, b \in X : a * b = b * a$ (коммутативность)

Def 1. Множество X с операцией * , удовлетворяющее аксиоме 1, называется **полугруппой**

Def 2. Множество X с операцией * , удовлетворяющее аксиомам 1-2, называется моноидом

Def 3. Множество X с операцией * , удовлетворяющее аксиомам 1-3, называется группой

Def 4. Множество X с операцией * , удовлетворяющее аксиомам 1-4, называется коммутативной или абелевой группой

Exs.

- 1. $(\mathbb{Z}, +)$ группа
- 2. $(\mathbb{N},+)$ полугруппа

3.
$$(\mathbb{N}_0, +)$$
 – моноид

4.
$$(\mathbb{R}\setminus\{0\},\cdot)$$
 – группа

$$5.$$
 Пусть A - множество

X:= множество биективных отображений $A \to A$ id_{A} — нейтральный элемент Если f(x)=y, то $\tilde{f}(y)=x$ — обратная функция $(f\circ \tilde{f}=\tilde{f}\circ f=id_{A})$. $f(x)=x+1,\ g(x)-2x,\ id_{A}(x)=x$ $f\circ g(x)=f(g(x))=f(2x)=2x+1$ $g\circ f(x)=g(f(x))=g(x+1)=2x+2\neq 2x+1$

Следовательно, (X, \circ) – не коммутативная группа

Designation.

- \cdot мультипликативность, 1, x^{-1}
- + аддитивность, 0, -x
- $\bullet\,$ о относительно композиции, $id,\,x^{-1}$
- * абстрактная операция, e, x^{-1}

Пусть (R, +) – абелева группа Определим отображение

$$\cdot: R \times R \to R$$

 $(a,b) \mapsto a \cdot b$

Для $(R,+,\cdot)$ могут быть верны следующие аксиомы:

5.
$$a(b+c) = ab + ac$$

 $(b+c)a = ba + ca$ (дистрибутивность)

6. a(bc) = (ab)c (ассоциативность)

7. $\exists 1_R \, \forall a \in R : 1_R \cdot a = a \cdot 1_R = a \; ($ нейтральный элемент)

8. ab = ba (коммутативность)

9. $0_R \neq 1_R$

10. $\forall a \neq 0_R \, \exists a^{-1} : a \cdot a^{-1} = a^{-1} \cdot a = 1_R$ (обратный элемент)

Def 5. $(R, +, \cdot)$, удовлетворяющее аксиоме 5, называется **не ассоциативным кольцом без единицы**.

Def 6. $(R, +, \cdot)$, удовлетворяющее аксиомам 5-6, называется **ассоциативным кольцом без единицы**.

Def 7. $(R, +, \cdot)$, удовлетворяющее аксиоме 5-7, называется **ассоциативным кольцом с единицей**.

Def 8. $(R, +, \cdot)$, удовлетворяющее аксиомам 5-8, называется **коммутативным кольцом**.

Exs.

- 1. \mathbb{Z} –коммутативное кольцо
- $2. \mathbb{Q}, \mathbb{R}, \mathbb{C}$ поля
- 3. Рассмотрим $\mathbb{Z}_n = 0, \dots, n-1$ с операциями $+_n, \cdot_n$: $a +_n b = (a + b)\% n$ $a \cdot_n b = (a \cdot b)\% n$ Обратимые элементы:

ax = 1 + ny

$$ax - ny = 1$$

Если (a,n)=1, есть решение, иначе – нет. \mathbb{Z}_p – поле $\Leftrightarrow p\in\mathbb{P}$

1.2 Лекция 2

Def 9. V – векторное пространство над полем F , если (V,+) – абелева группа, задано отображение $V \times F \to V$

 $(x,\alpha)\mapsto x\cdot\alpha$, удовлетворяющее аксиомам $\forall x,y\in V, \forall a,b\in F$:

5.
$$x \cdot (\alpha \cdot \beta) = (x \cdot \alpha) \cdot \beta$$

6.
$$(x + y) \cdot \alpha = x \cdot \alpha + y \cdot \alpha$$

 $x \cdot (\alpha + \beta) = x \cdot \alpha + x \cdot \beta$

7.
$$x \cdot 1_F = x$$

$$A \in M_n(F), \alpha \in F$$

$$(A,\alpha)_{ij} = a_{ij} \cdot \alpha$$

$$(AB)\alpha = A(B\alpha)$$

Exs.

1. Множество векторов в \mathbb{R}^3

2.
$$F^{n} = \left\{ \begin{pmatrix} a_{1} \\ a_{2} \\ \vdots \\ a_{n} \end{pmatrix} \mid a_{i} \in F \right\}$$
$$\begin{pmatrix} a_{1} \\ \vdots \\ a_{n} \end{pmatrix} + \begin{pmatrix} b_{1} \\ \vdots \\ b_{n} \end{pmatrix} = \begin{pmatrix} a_{1} + b_{1} \\ \vdots \\ a_{n} + b_{n} \end{pmatrix}$$

3.
$$X$$
 - множество, $F^X=\{f\mid f:X\to F\}$ $f,g:X\to F$ $(f+g)(x)=f(x)+g(x)$ $(f\alpha)(x)=f(x)\alpha$

- 4. F[t] многочлены от одной переменной t
- 5. V абелева группа, в которой $\forall a \in V: \underbrace{a+a+\ldots+a}_{n \in \mathbb{P}} = 0$ Тогда V векторное пространство над $\mathbb{Z}_p \ k \cdot a = \underbrace{a + \ldots + a}_k$

1.3 Лекция 3

Def 10. Алгебра A над полем F – кольцо, являющееся векторным пространством над F("+" - операция в кольце и в векторном пространстве), такое что $(ab)\alpha = a(b\alpha)$ $A, \alpha \in F$

Ex. $(\mathbb{R}^3, +, \times)$ - не ассоциативная алгебра на \mathbb{R}

Def 11. Матрица размера $I \times J$ (I, J - множества индексов) над множеством X - это функция

$$A: I \times J \to X, \qquad (i,j) \to a_{ij}.$$

Пусть определено умножение $X \times Y \to Z, \qquad (x,y) \to xy$ (Z - коммутативный моноид относительно "+")

Def 12. Строка - матрица размера $\{1\} \times J$

Столбец - матрица размера $J \times \{1\}$

A - строка длины J над X

B - строка длины J над Y

Тогда произведение $AB = \sum\limits_{j \in J} a_{1j} b_{j1} \in Z$

 $x \to x_e$ - координаты вектора x

$$x \cdot y = x_e^T \cdot y_e$$

 $\underbrace{x \cdot y}_{\text{скалярное произведение}}$

Def 13. Транспонирование матрицы.

D - матрица $I \times J$ над X

$$D^{T}$$
 - матрица $J \times I$ над $X : (D^{T})_{ij} = (D)_{ji}$

Note. Пусть в X есть элемент $0:0\cdot y=0\quad \forall y\in Y$. Все кроме конечного числа $a_i=0$. Тогда AB имеет смысл, даже когда $|J| = \infty$.

"почти все" = кроме конечного количества

Designation.

 a_{i*} - i-я строка матрицы A a_{*j} - j-й столбец матрицы A

1.3.1 Произведение матриц

$$A$$
 - матрица $I \times J$ над X .

$$B$$
 - матрица $J \times K$ над Y .

$$AB$$
 - матрица $I \times K$ над $Z = X \cdot Y$, $(AB)_{ik} = a_{i*} \cdot b_{*k} = \sum_{j \in J} a_{ij} \cdot b_{jk}$.

$$(x_1, \dots x_n) \cdot \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = va, \qquad v \in V, a \in F.$$

1.4 Лекция 4

Def 14. (G,*), (H,#)– группа $\varphi: G \to H$ - гомоморфизм, если:

$$\varphi(g_1 * g_2) = \varphi(g_1) \# \varphi(g_2)$$

Def 15. R, S -кольца $\varphi: R \to S$ - гомоморфизм, если:

$$\varphi(r_1 + r_2) = \varphi(r_1) + \varphi(r_2)$$

$$\varphi(r_1 \cdot r_2) = \varphi(r_1) \cdot \varphi(r_2)$$

Для колец с $1:\varphi(1)=1$

Def 16. U, V - векторные пространства над F $\varphi: U \to V$ - линейное отображение, если:

$$\varphi(u_1 + u_2) = \varphi(u_1) + \varphi(u_2)$$
$$\varphi(u\alpha) = \varphi(u)\alpha$$

Note. Изоморфизм – биективный гомоморфизм.

Def 17. V - векторное пространство над полем F v - строка элементов "длины" I над V a - столбец "высоты" I, почти все элементы которого равны 0. Тогда va - линейная комбинация набора v с коэффициентами .

Note. $U \subset V$

Uявляется векторным пространством относительно тех же операций, которые заданы в V. Тогда U - подпространство V

Lemma. $U \subseteq V$

 $\forall u_1, u_2 \in U, \alpha \in F$:

 $u_1+u_2\in U, u_1\alpha\in U$ Тогда U - подпространство. Если U - подпространство в V, то пишут $U\subseteq V$.

Def 18. $v = \{v_i | i \in I\}$, где $v_i \in V \ \forall i \in I$

 $\langle v \rangle$ - наименьшее подпространство, содержащее все v_i

Lemma. $< v >= \{ va | a - \ c$ толбец высоты I над F, где почти всюду элементы равны нулю $\} = U$

Proof. $v_i \in \langle v \rangle \Rightarrow v_i a_i \in \langle v \rangle$

 $\Rightarrow v_{i_1}a_{i_1}a + \ldots + v_{i_k}a_{i_k} \in \langle v \rangle$

 $\Rightarrow < v >$ содержит все варианты комбинаций. $va + vb = v(a + b) \in U$

 $(va)\alpha = v(a\alpha) \in U$

 \Rightarrow множество линейных комбинаций – подпространство U - подпространство, содержащее $v_i \forall i \in I$

< v >а – наименьшее подпространство, содержащее v_i

 $\Rightarrow < v > \subseteq U$ тогда < v > = U

Def 19. Если < v >= V, то v – система образующих пространство V Базис – система образующих.

 ${\bf Designation.}\ F^I$ — множество функций из I в F= множество столбцов высоты I V— множество строк длины I

Набор элементов из V , заиндексирванных множеством I – это функция $f:I\to V$ $i\mapsto f_c$

Def 20. $v \in I V$

v – **линейно независим**, если $\forall a \in F^I, a \neq 0 \Rightarrow va \neq 0$

Theorem 1.4.1. $v \subseteq V$ (можно считать, что v - строка длины v Следующие утверждения эквивалентны:

- 1. v линейно независимая система образующих
- 2. v максимальная линейно-независимая система
- 3. v минимальная система образующих
- 4. $\forall x \in V \exists ! a \in F^v : x = va = \sum_{t \in v} t \cdot a_t$ (почти все элементы равны 0)

```
Proof. (1)\Rightarrow (4) – доказали ранее (1)\Rightarrow (2) x\in V\setminus v x=va(a\in F^v) va=x\cdot 1=0 – линейная зависимость набора v\cup x Т.о. любой набор , строго содержащий v, линейно зависим \Rightarrow v – максимальный. (1)\Rightarrow (2) x\in V\setminus v\subseteq V\cup x—линейно зависим va+xa_x=0 a\neq 0 Если a_x=0\Rightarrow va=0\Rightarrow a=0?! Значит a_x\neq 0 va=c\cdot (-a_x) va=c\cdot (-a_x)
```

Lemma. (Цорн) Пусть \mathbb{A} – набор подмножеств (не всех) множества X.

Eсли объединение любой цепи из $\mathbb A$, принадлежащей $\mathbb A$, то в $\mathbb A$ существует максимальный элемент.

 $M \in \mathbb{C}$ - максимальная, если $M \subseteq M' \subseteq \mathbb{A} \Rightarrow M = M'$

Theorem 1.4.2. (о существовании базиса) V – векторное пространства

X – линейное независимое подмножество V

Y – cucmema образующих V

 $X \leq Y$

Тогда существует базис Z пространства $V:X\leq Z\leq Y$

Proof. \mathbb{A} -множество всех линейно независимых подмножеств, лежащих между X и Y.

 $X \in \mathbb{A}$

 $\mathbb{C} \leq \mathbb{A}$

 $X < \cup C \in \mathbb{C} < Y$

Пусть $\cup C \in \mathbb{C}$ – линейно зависимый. То есть $\exists u_1, ..., u_2 \in /...$

. . .

Пусть v - базис V.

$$\forall x \in V \; \exists ! x_v \in F^v : x = v \cdot x_v$$
 $v = (v_1, \dots, v_n), \; x_v = \;$ матрица столцов альфа;

$$x = v_1 \alpha_1 + \ldots = v \cdot x_v$$

1.5 Лекция 5

1.6 Лекция 6

1.7 Лекция 7

Statement.

$$U < W \quad \exists V < W : W = U \oplus V$$

Proof. Выберем базис u в U. Дополним до базиса $u \cup v$ пространства W и положим V = < v >.

$$< u >= U < v >= V < u \cup v >= < u > + < v >= U \oplus V = W$$

 $x \in U \cap V \Rightarrow x = ua = vb \Leftrightarrow ua - vb = 0 \Rightarrow a = 0, b = 0 (u \cup v -$ линейно независимый

Corollary.

$$u$$
 — базис U, v — базис $V, U, V \leq W$ $u \cup v$ — базис $W \Leftrightarrow U \oplus V$

25.09.2019

1.8 Лекция 8

$$v - (v_1, v_2, \dots v_n) \in n^V$$

 $M_n(F)$ — алгебра матриц размера $n \times n$ над F

 $GL_n(F) = M_n(F)^*$ — полная линейная группа степени n над F

Lemma.

$$v \in n^V, A \in GL_n(F)$$

v- линейно независимый $\Leftrightarrow vA-$ линейно независимый

$$< v > = < vA >$$

 $Proof.\ (vA)A^{-1}=v(AA^{-1})=vE=v,$ поэтому можно доказывать только в одну строну. v - линейно независимый.

 $vAb=0\Rightarrow A^{-1}Ab=0\Rightarrow b=0,$ т.е vA - линейно независимый.

$$(vA)b = v(Ab) \in \langle v \rangle, \langle vA \rangle \leq \langle v \rangle$$

Statement. u, v - $\partial \varepsilon a$ разных базиса пространства V.

Тогда $\exists !$ матрица $A \in GL_n(F) : u = vA$

При этом $a_{*k} = (u_k)_v$ $\forall k = 1, \dots n$. Такая матрица обозначается $C_{v \to u}$ и называется матрицей перехода от v κ u.

$$C_{v \to u} C_{u \to v} = C_{v \to u} C_{u \to v} = E$$

Proof. Положим $a_{*k} = (a_k)_v \Rightarrow u_k = va_{*k} \Rightarrow u = vA.$ $vA = vB \Leftrightarrow A = B$ то есть A - единственно. Далее:

$$u = vC_{v \to u}$$

$$v = uC_{u \to v}$$

$$uE - uC_{v \to u}C_{v \to u}$$

$$E = C_{u \to v}C_{v \to u}$$

Corollary. v - базис V

 $f:GL_n(F) o$ множество базисов пространства V f(A)=vA - биекция.

Proof.

$$|F|=q \qquad \dim V=u$$

$$(q^n-1)(q^n-q)\dots (q^n-q^{n-1})-\text{количество базисов}$$

 \mathbb{F} - поле из q элементов.

Statement. Если матрица двусторонне обратима, то она квадратная.

Corollary. u, v - базисы V

$$x = C_{u \to v} x_v$$

Proof.

$$x = ux_u = vx_v$$

$$v = uC_{u \to v}$$

$$ux_u = uC_{u \to v}x_v \Rightarrow x_u = C_{u \to v}x_v$$

Corollary. (Матричные линейные отображения)

$$L: U \to V$$
, u — базис U, v — базис V

Тогда $\exists !$ матрица $L_{v,u}(L_u^v: \forall x \in UL(x)_v = L_u^v x_u$ При этом $(L_u^v)_{*k} = L(u_k)_v$

Note.

$$u = (u_1, \dots u_n) \in n^U$$

$$L : U \to V$$

$$L(a) := (L(u_1), \dots, L(u_n))$$

$$L(ua) = L(u)a \qquad a \in F^n$$

$$\varphi_v: V \to F^n$$

$$\varphi_v(g) = y_v \qquad \forall q \in V$$

 $arphi_v$ - линейно $\Rightarrow (L(u)a)_v = L(u)_v a$

$$L(u)_v := (L(u_1)_v, \dots L(u_n))v)$$

Proof.

$$x = ux_u$$

$$L(x) = L(u)x_u$$

$$L(x)_v = L(u)_v x_u$$

Положим $L_u^v := L(u)_v$.

$$\forall x\in U: L(x)_v=L_u^vx_u$$
 При $x=u_k:L(u_k)_v=L_u^v(u_k)_u=(L_u^v)_k$
$$Note. \ \text{Если}\ Ax=Bx\quad \forall x\in F^n,\ \text{то}\ A=B$$

$$26.09.2019$$

1.9 Лекция 9

Exs.

1. $V=\mathbb{R}[t]_3$ - многочлены степени не более 3

$$D(p) = p' V \to V$$

$$v = (1, t, t^2, t^3).$$

$$D(1) = 0, D(t) = 1, D(t^2) = 2t.$$

$$D_v = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

$$v^{(1)} = (1, \frac{t}{1!}, \frac{t^2}{2!}, \frac{t^3}{3!}).$$

2.
$$V = \mathbb{R}[t]$$

$$v = (1, t, \frac{t^2}{2}, \dots, \frac{t^n}{n!}, \dots).$$

$$D(v_0) = 0, D(v_k) = v_{k-1}.$$

$$\begin{pmatrix} 0 & 1 & \dots \\ 0 & 1 & \dots \\ & 0 & 1 \\ \vdots & \vdots & \ddots \end{pmatrix}$$

3.
$$V = \mathbb{R}^3$$

$$|L(a)| = |a|$$

$$L(a)$$

$$e_1$$

$$\overrightarrow{a}$$

$$a$$

$$a$$

$$A$$

$$e_2$$

$$a$$

$$a$$

$$e_2$$

$$a$$

$$e_1$$

$$e_2$$

$$a$$

$$e_2$$

$$a$$

$$e_2$$

$$e_3$$

$$e_2$$

$$e_3$$

$$e_2$$

$$e_3$$

$$e_4$$

$$e_2$$

$$e_3$$

$$e_4$$

$$e_2$$

$$e_3$$

$$e_4$$

$$e_4$$

$$e_4$$

$$e_5$$

$$e_7$$

$$e_8$$

$$L(e_1)_e = \begin{pmatrix} \cos \varphi \\ \sin \varphi \end{pmatrix}$$

$$L(e_2)_e = \begin{pmatrix} -\sin \varphi \\ \cos \varphi \end{pmatrix}$$

$$L_e = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}.$$

$$a_e = \begin{pmatrix} \cos \psi \\ \sin \varphi \end{pmatrix}$$

$$L(a)_e = \begin{pmatrix} \cos(\psi + \varphi) \\ \sin(\psi + \varphi) \end{pmatrix}.$$

$$L(a)_e = L_e \cdot a_e = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix} \cdot \begin{pmatrix} \cos \psi \\ \sin \psi \end{pmatrix} = \begin{pmatrix} \cos \varphi \cos \psi - \sin \varphi \sin \psi \\ \cos \varphi \sin \psi + \sin \varphi \cos \psi \end{pmatrix}.$$

Statement. $L:U\to V$

u, u' - базис U

v, v' — базис V

Tогда $L_{u'}^{v'} = C_{v' o v} \quad L_u^v C_{u o u'}$

Proof.

$$L(x)_{v} = L_{u}^{v} x_{u}.$$

$$C_{v' \to v} L(x)_{v} = L(x)_{v_{1}} = L_{u'}^{v'} x_{u'} = L_{u'}^{v'} C_{u' \to u} x_{u}.$$

 $\forall x_u \in F^{dimU}$

$$L(x)_{v} = C_{v \to v'} L_{u'}^{v'} C_{u' \to u} x_{k}.$$

$$L_{u}^{v} = C_{v \to v'} L_{u'}^{v'} C_{u' \to u}.$$

Note.

Если
$$U = V$$
 $u = v, u' = v'.$
$$L_{u'} = C_{u' \to u} L_u C_{u \to u'}.$$

Statement. Линейное отображение однозначно определяется образом базисных векторов. $u = (u_1, \dots u_n) -$ базис U Для любого векторного пространства V:

$$\forall v_1, \dots v_n = V$$

 $\exists !$ линейное отображение (*) $L: U \to V: L(u_k) = v_k \ \forall k$

Proof.

$$L(ua) := va$$

$$\forall L^* : L(ua) = L(u)a = va$$

При этом L - инъективно тогда и только тогда, когда v - линейно независимый L - сюрьективно тогда и только тогда, когда v - система образующих L - изоморфизм тогда и тоько тогда, когда v - базис.

Statement. V, v, v' - basuc V

L:V o V-линейно

$$L(v_k) = v'_k \qquad \forall k$$

$$(L_v)_k = L(v_k)_v = (v_k')_v$$

$$L_v = C_{v \to v'}$$
.

по другому

$$(Id_{v'}^v)_k = Id(v_k')_v = (v_k')_v.$$

Тогда $L_v = C_{v \to v'} = Id_{v'}^v$

$${f Def\ 21.}\ f: X o Y \ Imf = \{f(x) \mid x \in X\} \ L: U o V$$
 - линейное отображение $ImL = \{L(x) \mid x \in U\} \ KerL = L^{-1}(0) = \{x \in U \mid L(x) = 0\}$

Lemma.

 $ImL \leq V$ $KerL \leq U$ $\Pi ycmb \ L(x) = y$

$$\forall y \in V : L^{-1} = x + KerL$$

$$L^{-1}(y) = \{z \in U \mid L(z) = y\}$$

$$x + KerL = \{x + z \mid z \in KerL\}$$

1.10 Лекция 10

Theorem 1.10.1. $L: U \rightarrow V$

$$\dim U = \dim KerL + \dim ImL.$$

 $Proof.\ u=(u_1,\ldots u_k)$ — базис KerL $v=(v_1,\ldots U_m)$ Дополним базис ядра до базиса U: $u\cup v$ - базис U $L(v)=(L(v_1),L(v_2),\ldots L(v_m))$ - базис образа. $\vartriangleleft x\in ImL$ $\exists y\in U:L(y)=x.$ $y=ua+vb, a\in F^k,b\in F^m$

$$x = L(y) = \underbrace{L(u)}_{(L(u_1), \dots L(u_k)) = (0, \dots 0)} + L(v).$$

Следовательно, L(v) - система образующих.

$$L(v)c = 0, \qquad c \in F^m.$$

 $L(vc) = 0 \Rightarrow vc \in KerL \Rightarrow vc = ud$ для некоторого $d \in F^k$.

Тогда vc-ud=0, но v и u - два базисных вектора. Следовательно, c=d=0 и L(v) - линейно незвисимый.

Theorem 1.10.2. (формула Грассмана о размерности суммы и пересечения) $U, V \leq W$

$$\dim U \cap V + \dim U + V = \dim U + \dim V.$$

Proof. \triangleleft внешнюю сумму $U \oplus V$, L(u,v) = u + v

Тогда ImL = U + V. $(u, v) \in KerL \Leftrightarrow u + v = 0 \Leftrightarrow u = -v \subset U \cap V$

 $KerL = (u, -u) \mid u \in U \cap V \cong U \cap V$

 $\dim(U \oplus V = \dim KerL + \dim ImL = \dim U \cap V + \dim U + V$

08.10.2019

1.11 Лекция 11

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 1 \\ \vdots \\ 0 \end{pmatrix} \cdot x_1 + \dots + \begin{pmatrix} 0 \\ \vdots \\ 1 \end{pmatrix} \cdot x_n = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & 0 & & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & 0 & 1 & 0 \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

Простейший базис:

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \dots e_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}.$$

 $x = vx_v, \quad x = ex_e = Ex_e$

$$eC_{e \to v} = v$$
 — из столбцов v .

 $C_{e o v} = v$ — матрица из столбцов $(v_1, \dots v_n)$.

$$L: F^m \to F^n, \qquad A \in M_{n \times m}(F) \ L(x) = Ax$$

$$L(x)_e = L_0^e x_e, L(x)_e = L(x) = Ax = L_e^e x_e.$$

 $Hom(F^n, F^m) \cong M_{m \times n}(F)$ - изоморфизм векторных пространств. В дальнейшем A отождествляется с L , пишем A^v_u вместо L^v_u (A в базисе u-v).

 ${\bf Def~22.}$ Линейный оператор из V в V называется эндоморфизмом V . Множество эндоморфизмов V=End(V) - ассоциативная алгебра над f

 $+,*\alpha$ - поточечные операции, * - композиция.

$$L,M,N\in End(V): \quad L\circ (M+N)=L\circ M+L\circ N$$
 - следует из линейности L

$$v$$
 - базис $V, u = \dim V$ $\theta_v : End(V) \to M_n(F)$ $\theta_v = L_v$

Statement. θ_v - биективно.

Practice. Построить обратное θ_v

Lemma. $(M \circ L)_v = M_v \circ L_v$

Statement. θ_v - изоморфизм

F - алгебра $EndV \cong M_n(F)$

15

Theorem 1.11.1. $U \leq V$

 $\forall L: V \to V, \quad U \leq KerL, \exists !\tilde{L}: V \backslash U \to W$

$$\tau: \begin{array}{c} V \backslash U \longrightarrow W \\ \tau: & \uparrow \pi_U \\ V \stackrel{L}{\longrightarrow} W \end{array}.$$

 $\tau \circ \pi_U = L$

L - эпиморфизм $\Rightarrow \tau$ - эпиморфизм

 $KerL = U \Rightarrow \tau$ - мономорфизм

Proof. Диаграмма коммутативна, следовательно, \tilde{L} строится однозначно. Пусть $\tilde{L}(x+U):=L(x).y\in U\in KerL: L(x+y)=L(x)+L(y)=L(x)$ \tilde{L} задано корректно (легко проверить, что оно линейно, единственность следует из коммутативности диаграммы. $\tilde{L}(x+U)=L(x)$ - необходимо и достаточно коммутативности диаграммы.

$$L(x+U)=0_W\Leftrightarrow L(x)=0\Leftrightarrow x\in KerL=U\Leftrightarrow x+U=0+U=O_{V\setminus U}$$
 Для инъективности : $Ker\tilde{L}=0_{V\setminus U}$

Theorem 1.11.2 (О гомоморфизме). $L: V \to W$

$$VKerL \cong ImL$$
.

Ргооf. Возьмем U = KerL и заменим W на $ImL\ n = \dim\langle a_{*1}, \dots a_{*n} \rangle \leq \dim F^m = m$. Из линейной независимости строк следует, что $m \leq n$ Таким образом m = n. n линейно независимых столбцов (строк) в n-мерном пространстве - базис и матрица A - матрица перехода $C_{e \to a}$, где $a = (a_{*1}, \dots a_{*n})$ - набор столбцов A . Следовательно, $A \in GL_n(F)$ – множество обратных матриц. \square

Def 23. Ранг:

 $rk(v_1, v_2, \dots, v_n) = \dim \langle v_1, \dots v_n \rangle,$ $rkL = \dim ImL$ $u_1, \dots u_n$ - базис $U, L: U \to V$ $rkL = rk((L(u)) = \dim \langle L(u_1), \dots L(u_n) \rangle$ $A \in M_{m \times n}(f)$ Столбцовый ранг $A: rkA - rk(a_{*1}, \dots a_{*m})$ Строчный ранг : $rkA = rk(a_{1*}, \dots a_{n*})$ или наибольшее количество независимых столбцов (строк).

Lemma. $A \in M_{m \times n}$

- 1. столбиы A линейно независимы \Leftrightarrow столбиовый rkA=n
- 2. столбиы A система образующих в $F^m \Leftrightarrow$ столбиовый rkA = m
- 3. строки A линейно независимы \Leftrightarrow строчной rkA=m

- 4. строки A система образующих в ${}^mF \Leftrightarrow$ строчной rkA=n
- 5. столбиы являются базисом $F^n \Leftrightarrow m=n=c$ трочной rkA
- 6. если столбцы и строки A линейно независимы $\Leftrightarrow n = m$, строки и столбцы базисы, A обратима.

Proof. (6) из $(1) \Rightarrow c.rkA = n$ $n = \dim\langle a_{*1}, \dots a_{*n} \rangle$ \square 10.10.2019

1.12 Лекция 12

Lemma. $L:U\to V$ - линейное отображение. $rkL=c.L_U^V$ Для любых базисов u,v пространств U,V.

Proof.

$$\begin{array}{ccc} U & \stackrel{L}{\rightarrow} & V \\ \downarrow \varphi_n & \downarrow \varphi_v \\ F^n & \stackrel{L_U^V}{\rightarrow} & F^m \end{array}$$

 $A \in M_{m \times n}(F)$

$$ImA = \{Ax \mid x \in F^m\} = \{a_{*1}x_1 + \dots a_{*n}x_n \mid x_i \in F\} = \langle a_{*1}, \dots a_{*n} \rangle.$$

rkA=c.rkA- ранг оператора умножения на А. Из диаграммы $ImL\cong ImL_U^V\Rightarrow rkL=c.rkL_U^V$

Lemma. $A \in M_{m \times n}(F)$ $B \in GL_m(F), C \in GL_n(F)$ rkA = rkBAC - строчной или столбцовый.

 $Proof.\ L: F^n \to F^m$ - оператор умножения на $A.\ A = L_e^e.$ $B = C_{e \to v}, C = C_{e \to u},$ где u, v- базисы пространств $F^m, F^n.$

 $BAC=L_v^u$ Тогда c.rkA=c.rkBAC=rkL. Со столбцами все хорошо. Теперь со строками: $r.rkA^T=c.rkA$

 $r.rk(BAC)^T = r.rk(A^TB^TC^T) \ r.rk(BAC)^T = c.rkBAC$

Тогда $r.rkA^T = r.rkC^TA^TB^T$. (Заметим, что $(B^T)^{-1} = ((B^{-1})^T)$ Следовательно, B^T, C^T - произвольные обратимые матрицы.

Practice. $(AB)^T = B^T A^T$

Theorem 1.12.1 (PDQ - разложение, равенство базисов). $L: U \to V$ - линейное отображений,

1. Существуют базисы u, v пространств U, V такие что

$$L_u^v = \left(\begin{array}{cc} E & 0 \\ 0 & 0 \end{array}\right).$$

Pазмер E = rkL.

2.
$$\forall A \in M_{m \times n}(F) \exists P \in GL_m(F), Q = \in GL_n(F) : A = PDQ, \text{ ide } D = \begin{pmatrix} E & 0 \\ 0 & 0 \end{pmatrix}$$

3. c.rkA = r.rkA

Proof. $(f_1, \dots f_k)$ - базис KerL. Дополним до базиса на пространства $U: g \cup f = u$. Тогда (см. Теорему о ядре и о,разе). L(g) - базис Im L. Дополним его до базиса v пространства V.

$$v = (L(g_1), \dots, L(g_l), v_{l+1}, \dots, v_n).$$

$$L(g_1)_v = \begin{pmatrix} 1\\0\\\vdots\\0 \end{pmatrix}$$

:

$$L(g_l)_v = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix}$$

:

$$L(f_i)=0$$
 таким образом $L_u^v=\left(egin{array}{cc} E & 0 \\ 0 & 0 \end{array}
ight)$

Def 24. W - множество матриц-перестановок (группа Вейля).

$$a_{*i}=e_{\sigma(k)},$$
 где $\sigma:\{1,\ldots n\} o\{1,\ldots n\}$ -биекция.

B= - множество обратимых верхнетреугольных матриц.(борелевская подгруппа) B^- - множество обратимых нижнетругольных матриц.

Theorem 1.12.2 (разложение Брюа).

$$GL_n(F) = BWB = \{b_1wb_2 \mid b_1, b_2 \in B, w \in W\}.$$

 $w \in W : BwB$ - клетка Брюа.

Proof.
$$a \in GL_n(F)$$

$$\exists b, c \in B : bac \in W$$
.

Индукция по n

В первом столбце а выберем низший ненулевой элемент.

$$\begin{pmatrix} 1 & * \\ 0 & 1 & \end{pmatrix}.$$

$$ua = ()$$

Пусть a' - матрица, полученная из uav вычеркиванием i-ого столбца и j-строки. Легко видеть, что ее столбцы линейно независимы. Следовательно, a' - обратима. Тогда по ПИ $\exists b',c':b'a'c'\in W_{n-1}$. Все получилось!

Proof. см конспект $GL_n(F) = BWB$ $a \in GL_n(F)$

Theorem 1.12.3 (разложение Гаусса).

$$GL_n(F) = WB^-B.$$

 $w \in W : wB^-B$ - клетка Гаусса.

Proof. Докажем, что $\forall w \in W: BwB \subset wB^-B$ $BWB = \bigcup_{w \in W} BwB \subset ...$

Lemma (1). $D = D_n(F)$ - множество обратимых диагональных матриц. $U = U_n(F)$ - множество унитреугольных матриц. Тогда B = DU = UD.

$$Practice. \ a = \left(\begin{array}{ccc} \alpha_i & \cdots & 0 \\ & \ddots & \\ 0 & \cdots & 0 \end{array} \right), \qquad \alpha_i \neq \alpha_j, \text{если } i \neq j \ \Rightarrow \ ab = ba \Rightarrow b \in D$$

Proof.

$$\begin{pmatrix} \frac{1}{b_{11}} & \cdots & 0 \\ & \ddots & \\ 0 & \cdots & \frac{1}{b_{nn}} \end{pmatrix}$$

Lemma (2). $U = \prod_{i < j} X_{ij}$, причем произведение берется в любом наперед заданном порядке.

Proof. Будет в теории групп □

Designation. $w \in W: U_w := \prod_{i < j, \sigma(i) > \sigma(J)} X_{ij}$, где σ - перестановка соответствующая w. То есть $w^{-1}X_{ij}w = X_{\sigma(i)\sigma(j)}$.

Theorem 1.12.4 (Приведенной разложение Брюа). $B = \bigcup_{w \in W} U_w w D U$ При этом w, а также элеметны из U_w, D, U определены по элементам из B из единственным образом.

Corollary. $BwB \subset wB^{-1}B = w(w^{-1}U_ww)B \subset wU^-B \subset wB^-B$

Proof.
$$BwB = U_w wB$$

Statement.

$$BwB \cap Bw'B = \emptyset, \ \forall w \neq w'.$$

1.13 Лекция 13

15.10.2019 Доказательство теорем

1.14 Лекция 14

17.10.2019

Pазложение Γ аусса. Идея доказательства: $a \in GL_n(F)$, $wa \in U^-B$. Найдем такое w.

Def 25. Главная подматрица матрицы A- подматрица $k \times k$ стоящая в левом верхнем углу матрицы A.

Lemma. Обратимость любой главной подматрицы не зависит от умножения на U^- слева и на U справа.

 $\textit{Proof.}\ a^{(k)}$ - главная подматрица $k\times k$ в a.

$$\left(\begin{array}{cc} b & 0 \\ c & d \end{array}\right) \left(\begin{array}{cc} a^{(k)} & * \\ * & * \end{array}\right) = \left(\begin{array}{cc} ba^{(k)} & * \\ * & * \end{array}\right).$$

Где $b \in U^- F$ Обратимость $a^{(k)}$ равносильно обратимости $ba^{(k)}$, так как b - обратима. \square

Lemma. $a \in U^-B \Leftrightarrow \mathit{все}$ главные подматрицы обратимы.

Proof. Доказываем следствие влево. Индукция по n. База: n=1 - очевидно Переход:

$$a = \left(\begin{array}{cc} a^{(n-1)} & * \\ * & a_{nn} \end{array}\right).$$

$$\begin{pmatrix} 1 & 0 \\ -xa^{(n-1)} & 1 \end{pmatrix} \begin{pmatrix} a^{(n-1)} & * \\ x & a_{nn} \end{pmatrix} = \begin{pmatrix} a^{(n-1)} & * \\ 0 & * \end{pmatrix}.$$

Дальше применим предположение индукции к $a^{(n-1)}$. Она раскладывается в произведение верхне- и нижнетреугольной.

В обратную сторону следует из прошлой леммы. Действительно, у обратимой верхнетреугольной матрицы все главные подматрицы обратимы, а умножение слева на обратимые нижнетреугольные не меняет их обратимость.

Lemma. $\forall a \in GL_n(F) \exists w \in W : \textit{все подматрицы в wа обратимы. По условию <math>a^{(n-1)}$ обратима,

Proof. Индукция по k. Докажем, что существует перестановка $a \in GL_n(F)$ такая, что главные подматрицы размера не более $k \times k$ обратимы. k = 1

$$a_{*1} = 0 \Rightarrow \exists i : a_{ij} \neq 0.$$

Меняем *i*- строку с первой.

Переход:

$$a = \left(\begin{array}{cc} a^{(k)} & * \\ * & * \end{array}\right).$$

По индукционному предположению все главные подматрицы в $a^{(k)}$ обратимы. Все

столбцы линейно независимы, следовательно, ранг матрицы
$$\begin{pmatrix} a_{11} & \cdots & a_{1k+1} \\ & \ddots & \\ a_{n1} & \cdots & a_{nk+1} \end{pmatrix} =$$

k+1 k+1 - мерное подпространство U в ^{k+1}F . А первые k строк этой матрицы линейно независимы. $X=b_1,\ldots b_k, Y=b_1,\ldots b_n, \quad b_i=(a_{i1},\ldots a_{ik+1}).$ X - линейно независимый, $\langle y \rangle = U$, $\dim U=k+1$.

$$\exists Z: X \geq X \geq Y$$
, где Z — базис U .. $|Z| = k + 1 \Rightarrow Z = b_1, \dots b_k, b_i, i > k$..

Переставляем i-ю строку на k+1 место. У получившейся матрицы первые k главных подматриц равны главным подматрицам в a, а строки k+1-й строки главной подматрицы линейно независимы. Следовательно, она независима.

$$wa \in B^-B$$
. Домножая на B, B^- , получим, что хотели.

Theorem 1.14.1 (Кронокера-Капелли). Система линейных уравнений Ax = b Имеет хотя бы одно решение тогда и только тогда, когда rkA = rk(Ab), где (Ab) - расширенная матрица.

Proof.

$$rkA = rk(Ab) \Leftrightarrow \langle a_{*1}, \ldots \rangle = \langle a_{*1}, \ldots a_{*n}, b \rangle \Leftrightarrow b \in \langle a_{*1}, \ldots a_{*n} \rangle \Leftrightarrow$$
 система имеет решение.

Chapter 2

Начала теории групп

2.1 Лекция 15

Def 26. Подмножество $H \subset G$ называется подгруппой, если H – группа относительно операции, заданной в G.

$$H < G$$
.

Lemma. $H \subset B$ H - $nodepynna \Leftrightarrow \forall h, g \in H : gh, g^{-1} \in H$.

Statement. G, H - spynnw.

$$G\times H=\{(g,h)\mid g\in G, h\in H\}.$$

$$(g,h)\cdot(g',h'):=(g\cdot g',h\cdot h').$$

Def 27. $\varphi X \to Y, (X, *), (Y, \cdots) - .$

 φ - гомоморфизм групп, если:

$$\varphi(x_1 * x_2) = \varphi(x_1) \cdot \varphi(x_2), \quad \forall x_1, x_2 \in X.$$

Изоморфизм - биективный гомоморфизм.

Lemma. $G, H \leq F$

- 1. $G \cap H = \{1\}$
- 2. $G \cdot H = F$
- $\textit{3. } \forall g \in G, h \in H: gh = hg$

Тогда $F \cong G \times H$.

Proof.
$$\varphi: G \times H \to F$$

 $\varphi(g,h) = g \cdot h$

$$\varphi((g,h)\cdot(g',h')) = \varphi(gg',hh') = gg'hh'.$$

$$\varphi(g,h)\cdot\varphi(g',h') = ghg'h'.$$

 $(1) \Leftrightarrow \varphi$ - сюрьективно.

$$\varphi(g,h) = \varphi(g',h') \Leftrightarrow gh = g'h' \Leftrightarrow g'^{-1}g = h'h^{-1} = 1 \Rightarrow g' = g, h' = h.$$

2.2 Лекция 16

22.10.2019

Ex. $\ln : \mathbb{R}^*_{>0} \to (\mathbb{R}, +)$ $\ln ab = \ln a + \ln b$ - гомоморфизм.

Def 28.

$$arphi G o H$$
 — гомоморфизм.
$$Im \varphi=\{\varphi(g)\mid g\in G\}.$$

$$Ker \varphi=\varphi-1=\{g\in G\mid \varphi(g)=1\}.$$

Lemma. $Im\varphi\ u\ Ker\varphi$ - nodepynnu.

Proof.

$$\begin{split} a,b \in Ker\varphi. \\ \varphi(ab) = \varphi(a)\varphi(b) = 1 \Leftrightarrow ab \in Ker\varphi. \\ \varphi(a^{-1}) = \varphi(a)^{-1} = 1 \Rightarrow a^{-1} \in Ker\varphi. \end{split}$$

Lemma.

$$\varphi(g) = h, \quad \varphi: G \to H - \ \textit{гомоморфизм}.$$

$$\varphi^{-1} = \underbrace{gKer\varphi}_{\textit{левый смеженый класс по ядру}\varphi} = \underbrace{Ker\varphi g}_{\textit{правый}}.$$

Proof.
$$\varphi(x) = h = \varphi(g)$$
) $\Leftrightarrow \varphi \varphi^{-1} = 1 \Leftrightarrow \varphi(xy^{-1}) = 1 \Leftrightarrow xg^{-1} \in Ker\varphi \Leftrightarrow x \in Ker\varphi g$

Def 29. H < G

H называется нормальной подгруппой , если $gH=Hg\quad g\in G.\ (H\unlhd G)$

Note.
$$g^{-1}Hg = H \quad \forall g \in G \Leftrightarrow g^{-1}Hg \subseteq H \quad \forall g \in G$$

Lemma. $H \leq G$

$$g_1H \cap g_2H \neq 0 \Leftrightarrow g_1H = g_2H.$$

 $Proof. \ x \in g_1H \cap g_2H \Rightarrow x = g_1h_1 = g_2h_2, \quad h_1, h_2 \in H. \$ Тогда $g_1 = g_2(h_2h_1^{-1}) \Rightarrow g_1H = g_2(h_2h-1)H.$

Corollary. $G=\bigsqcup_{g\in X}gH$, где X - множество представителей левых смежных классов по h. $g_1\overset{H}{\sim}g_2\Leftrightarrow g_1^{-1}g_2\in H$

Lemma.

$$|g_1H| = |g_2H|, \quad \forall g_1, g_2 \in G, H \leq G.$$

Proof.

$$\left(\begin{array}{c} g_1H \to g_2H \\ x \mapsto g_2g_1^{-1}x \end{array}\right).$$

Обратная $y \mapsto g_1 g_2^{-1} y$

Theorem 2.2.1 (Лагранж). G - конечна группа. Тогда |G| = |H||G:H|, где |G:H| - количество левых смежных классов G по H. |G:H| - индекс Hв G.

Proof. Из прошлой леммы и следствия

Corollary. Если $p = |G| \in \mathbb{P}$, то $\forall g \in G \backslash 1 : G = \{1, g, \dots g^{p-1}\} \cong \mathbb{Z}_p$

Proof. $\{g^n \mid n \in \mathbb{Z}\} \leq G = \langle g \rangle$.

 $|\langle g \rangle|$ делит p и больше единицы, так как содержит единицу и $g \neq 1$. Следовательно, $|\langle g \rangle| = p$.

Докажем, что все элементы $1,g,\dots g^{p-1}$ различны. Рассмотрим $0 \le k,l \le p-1$. Пусть $g^k = g^l \Rightarrow g^{k-l} = 1$. При $k-l \ne 0,\ g^n = g^{m(k-l)+r} = g^r, \quad r < k-l \le p-1$. Тогда бы $\{1,g,\dots g^{k-l-1}\} = \langle g \rangle$. Из чего следует $|\langle g \rangle| < p$. Противоречие.

Рассмотрим $k \in [0, p-1]$. $g^p = g^k \Leftrightarrow g^{p-k} = 1 \Rightarrow k = 0 \Rightarrow g^p = 1$.

Теперь проверим изоморфность. $\varphi: \mathbb{Z}_p \to G, \varphi(k) = g^k$

Def 30. Группа, порожденная одним элементом, называется циклической.

Statement. Любая циклическая группа изоморфна \mathbb{Z} или \mathbb{Z}_n .

 $\mathit{Proof.}\ G = \{g^m \mid m \in \mathbb{Z}\}.$ Разберем два случая:

1. $g^m \neq 1 \ \forall m \in \mathbb{N} \Rightarrow g^m \neq 1 \ \forall m \neq 0$.

$$\varphi \mathbb{Z} \to G, \quad \varphi(m) = g^m.$$

$$\varphi(m+k) = g^{m+k} = g^m g^k = \varphi(m)\varphi(k).$$

2. Пусть n - наименьшее натуральное число, такое что $g^n = 1$.

$$\varphi: \mathbb{Z} \to G, \quad \varphi(m) = g^m$$
 сюрьективно ..

$$g^m = 1 \Leftrightarrow g^{nk+r} = 1 \Leftrightarrow g^r = 1 \Rightarrow r = 0$$

$$Ker\varphi = \{m \mid g^m = 1\} = n\mathbb{Z}.$$

Def 31. Порядок $g \in G$ - наименьшее натуральное число, такое что $g^n = 1$. $ord(g) = |\langle g \rangle|$

Statement (из теоремы Силова). $|G|=p^m,\ p\nmid m$. Тогда $\exists H\leq G: |H|=p^k\ \forall h\in H\backslash 1.$ $ord(h\mid p^k),\ cледов ательно,\ h^{pl}=1\Rightarrow (h^{p^{l-1}})^p=1$

2.3 Лекция 17

24.10.2019

G - группа.

Def 32. $S \subseteq G$

 $\langle S \rangle$ - наименьшая подгруппа содержащая S.

Statement. $\langle S \rangle = \{S_1^{n_1} \cdot \dots S_k^{n_k} \mid k \in \mathbb{N}, S_i \in S, n_i \in \mathbb{Z}\}, \ \text{distance} \ \text{abenebout} \ : s_i \neq s_j \ \text{npu} \ j \neq j.$

Def 33. $s^g := g^{-1}sg$

Note.
$$(s^g)^h = s^{g^h}$$

 ${}^h(g_S) = {}^h g S$

Property.

1.
$$(s_1 s_2)^g = s_1^g s_2^g$$

2.
$$(s^g)^{-1} = (s^{-1})^g$$

 $s \mapsto s^g$ - автоморфизм G .

Def 34. $H \leq G$

$$H^G = \langle h^g \mid h \in H, g \in G \rangle$$
 – нормальное замыкание H в G .

Нормальное замыкание равно наименьшей нормальной подгруппе в G, содержащей H. $\langle S \rangle^G$ - наименьшая нормальная подгруппа, содержащая S. $s^g = q^{-1}sq$ - сопряженный с s при помощи q.

$$H^g = \langle h^g \mid h \in H \rangle$$
 – подгруппа, сопряженная с H при помощи g .

Def 35. $aba^{-1}b^{-1} = [a, b]$ – коммутатор элементов a, b.

Note. $ab = ba \Leftrightarrow aba^{-1}b^{-1} = 1$

Statement. $\varphi:G\to A$ - гомоморфизм в абелеву группу.

$$\varphi([g,h]) = 1$$

Тогда $[G,G] = \langle [g,h] \mid h,g \in G \rangle \subseteq Ker\varphi$ - коммутант G. $[g,h]^f = [g^f,h^f]$

Statement. $[a, b]^{-1} = [a, b]$

Def 36. Центр группы - $Center(G) = Z(G) := \{c \in G \mid cg = gc \forall g \in G \mid cg = gc \forall$

Designation.

 $G/H = \{gH \mid g \in G\}$ – множество левых смежных классов.

 $H \setminus G = \{Hg \mid g \in G\}$ – множество левых смежных классов.

$$H \le G \quad (H^g = H \forall g \in G)$$

Def 37. Фактор-группа G/H - множество смежных классов по H с операцией $(g_1H)(g_2H) = g_1g_2H$.

корректнсть определения.

$$g_1' \in g_1 H \Rightarrow g_1' h_1.$$

$$g_2' \in g_2 H \Rightarrow g_2' h_1$$
.

$$g_1 \mid +g_2 \mid = g_1 h_1 g_2 h_2 = g_1 g_2 g_2^{-1} = (g_1 g_2)(g_2^{-1} h_1 g_2) h_2 \in g_1 g_2 H.$$

Def 38. $\pi_{\rm H}: G \to G/H, \ g \mapsto gH$ $\pi_{\rm H}$ - эпиморфизм, $Ker\pi_{\rm H} = H$

Theorem 2.3.1 (универсальное свойство факторгруппы). $H \leq G$

Для любого гомоморфизма $\varphi:G\to F$, такого что $H\le Ker \varphi\exists! \bar{\varphi}:G/H\to F$ коммутативна для диаграммы

$$\begin{array}{ccc}
G & \stackrel{\pi_n}{\to} & G/H \\
\downarrow F & & \downarrow \exists! \hat{\varphi} \\
F & & F
\end{array}$$

Theorem 2.3.2. $\varphi G \to F$

$$G/Ker\varphi\cong Im\varphi.$$

Proof. Заменим F на $Im\varphi.$

$$\varphi' \to Im\varphi \quad Ker\varphi' = Ker\varphi.$$

По прошлой теореме существует единственное:

$$\begin{array}{ccc} G/Ker\varphi & \to & Im\varphi \\ \hat{\varphi}: & \uparrow \pi & & \uparrow \varphi' \\ G & & G \end{array}.$$

 φ -сюрьективно. Следовательно, φ' - сюрьективно.

 $gKer \varphi \in Ker \hat{\varphi} \Leftrightarrow p\hat{h}i(gKer \varphi) = 1 \Leftrightarrow \varphi(g) = 1 \Leftrightarrow gKer \varphi = Ker \varphi = 1_{G/Ker \varphi}$. Следовательно, $\hat{\varphi}$ - инъективно .

Ex. $\mathbb{Z} \to \mathbb{Z}_n$, $\varphi(x) = x \mod n$. $Ker \varphi = n \mathbb{Z}$ $\mathbb{Z} \cong \mathbb{Z} / n \mathbb{Z}$

2.4 Лекция 18

 $\mathbf{E}\mathbf{x}$.

$$U_n(F) = \left\{ \begin{pmatrix} 1 & & * \\ & \ddots & \\ 0 & & 1 \end{pmatrix} \right\}.$$

Обозначим

$$U_n(k) = \left\{ \begin{pmatrix} 1 & 0 & \dots & 0 & \dots & * \\ 0 & 1 & 0 & \dots & & * \\ 0 & 0 & 1 & 0 & \dots & \\ \vdots & & & & & \\ 0 & 0 & \dots & 0 & & 1 \end{pmatrix} \right\} = \{ a \mid a_{ij} = 1, a_{ij} = 0, \forall i \neq j, j - i < k \}.$$

Мартица трансвекций:

$$t_{ij}(\alpha) = \begin{pmatrix} 1 & \dots & \alpha & \dots & 0 \\ 0 & & \ddots & & 0 \\ 0 & & 0 & & 1 \end{pmatrix}.$$

Тогда $U_n^{(k)}(F) = U_n^{(k)} = \langle t_{ij}(\alpha) \mid j-i \geq k, \alpha \in F \rangle$ - группа.

Lemma. $U_n^{(k)} \setminus U_n^{(k-1)} \cong \underbrace{F \times \ldots \times F}_{n-k}$, F = (F, +). Проверим, что есть гомоморфизм, и применим теорему о гомоморфизме.

Proof.

$$\varphi: U_n^k \to F^{n-k}, \quad \varphi(a) = (a_{i k+1}, \dots, a_{n-k})^T.$$

Заметим, что φ - сюрьективна, $\varphi^{-1}(e) = U_n^{k+1}$.

$$a, b \in U_n^{(k)}, \qquad (a, b)_{i \ i+k} = \sum_{j=1}^n a_{ij} \cdot b_{i \ j+k} = b_{j \ i+k} + a_{i \ i+k}.$$

Тогда $\varphi(a \cdot b) = \varphi(a) + \varphi(b)$. Следовательно, φ - гомоморфизм.

Def 39. $[a, b] = aba^{-1}b^{-1} - \text{коммутатор}.$

 $H,K \leq G, \quad [H,K] := \langle [h,k] \mid h \in H, k \in K \rangle$ – коммутант.

Statement. $[h,k]^g = [h^g,k^g] \Rightarrow [G,G] \trianglelefteq G$.

Statement. $\varphi: G \to A$ - гомоморфизм.

 $A - aбелева \Longrightarrow [G, G] \subseteq Ker \varphi.$

Proof.

$$\varphi([g,h]) = [\varphi(g), \varphi(h)] = 1.$$

Тогда

$$[g,h] \in Ker\varphi, \quad \forall g,h \in G.$$

Из этого следует, что $[G,G] \subseteq Ker \varphi$.

Corollary. $[U_n^{(k)}, U_n^{(k)}] \le U_n^{(k+1)}$

Lemma. $[U_n^{(k)}, U_n^{(m)}] = U_n^{(m+k)}, (ecnu \ l \ge n, mo \ U_n^l := e).$

Proof.

$$[t_{ij}(\alpha), t_{jh}(\beta)] = t_{ih}(\alpha\beta), \quad i, j, h$$
 - различны.

 $\forall i, h : h - i \geq m :$

$$\exists j: j-i \geq k, h-j \geq m.$$

Следовательно, любая образующая (и сама группа) содержится: $U_n^{(m+k)} \subseteq [U_n^{(m)}, U_n^{(k)}]$. В обратную сторону:

$$[xy, z] = xyzy^{-1}x^{-1}z^{-1} = x(yzy^{-1}z^{-1}zx^{-1}z^{-1} = x[y, z]x^{-1}xzx^{-1}z^{-1} = [y, z]^{x^{-1}} \cdot [x, z]$$

Заметим, что

$$[t_{ij}(\alpha), t_{lh}(\beta)] = e$$
, если $j \neq l, h \neq i$.

Тогда

$$t_{ij}(\alpha) \in U_n^{(k)}, \ t_{hk}(\beta) \Longrightarrow [t_{ij}(\alpha), t_{lh}(\beta)] \in U^{(m+k)_n}.$$

Посчитаем

$$\underbrace{[t_{ij}(\alpha), t_{li}(\beta)]}_{j \neq l} = [t_{li}(\beta), t_{ij}(\alpha)]^{-1} = t_{lj}(\beta\alpha)^{-1} = t_{l}j(-\beta\alpha).$$

Так как $U_n^{(k+m)}$ - нормальная подгруппа, то есть трансвекцию во включении 2.4 можно заменить на произведение трансвекций, то есть на любые элементы $U_n^{(k)}, U_n^{(m)}$. Доказали обратное утверждение.

2.5 Лекция 19

2.5.1 Поговорим о комутаторах

Lemma.

$$H = \langle X \rangle \le G = \langle y \rangle.$$

Tог ∂a

$$H \le G \iff x^y \in H \quad \forall x \in X, y \in Y.$$

Proof. В правую сторону очевидно (по определению), обратно: нужно доказать, что $h^g \in H \quad \forall h \in H, g \in G$. Разложим $g = y_1 \cdot \dots \cdot y_m, \quad y_i = U \cup Y^{-1}$.

Индукция по m. При $m = 0 : g = 1 \land h^1 = h \in H$.

Переход: $m \ge 1$. По ИП $h^{y_1...y_{m-1}} \in H$, $h = x_1...x_n$, $x_i \in X \cup X^{-1}$.

$$h^y = (h^{y_1 \dots y^{m-1}})_m^y = x_1^{y_m} \dots x_n^{y_m}.$$

 $x_i \in X \Rightarrow x_i \in H$ по условию.

$$x_i \in X^{-1} \Rightarrow ((x_i)^{-1})^{y_m} = ((x^{-1})^{y_m})^{-1} \in H.$$

Note. В определении нормальной подгруппы вместо h^g такде можно написать [g,h], так так для $h\in H, g\in G$

$$[g,h] - ghg^{-1}h^{-1} = h^{g^{-1}}h \in H \iff h^{g^{-1}} \in H.$$

 g^{-1} можно заменить на g.

Аналогично в лемме можно заменить x^y на [x, y].

Property (Формулы для комутаторов). 1. $[x, y] = [y, x]^{-1}$

2.
$$[xy, z] = {}^{x}[y, z] \cdot [x, z]$$

3.
$$[x, y]^z = [x^z, y^z]$$

Lemma. $H, K \leq G, \quad [H, K] \trianglelefteq \langle H \cup K \rangle$

$$h \in H, k \in K, x \in H$$
 (для $x \in K$ аналогично).

$$[h,k]^x = {}^{x^{-1}}[h,k] = [h^{-1}h,k]^{-1} \cdot [x^{-1},k]^{-1} \in [H,K].$$

Возвращаемся к матрицам

$$U_n^{(k)}(F) = U_n^{(k)} = \{ a \in M_n(F) \mid a_{i \mid i} = 1, a_{i \mid j} \forall i \neq j, j - i < k \} = \langle t_{i \mid j}(\alpha) \mid \alpha \in F, j - i \geq k \rangle.$$

Lemma. $U_n^{(k)} \triangleleft U_n = U_n^{(1)}$

Proof. Докажем, что $a=[t_{i\ j}(\alpha),t_{h\ l}(\beta)]\in U_n^{(k)}\quad \forall j-i\geq k.\ l>h$

Первый случай $i \neq h, i \neq l \Rightarrow a = e \in U_n^{(k)}$.

Второй случай $j=h\Rightarrow i\neq j$: $a=t_{i\ l}(\alpha\beta), l-i\geq k+1$. Тогда $a\in U_{n}^{(k+1)}\leq U_{n}^{(k)}$. Третий случай $j\neq h, i=l$: $a=[t_{h\ j}(\beta), t_{i\ j}(\alpha)]^{-1}=t_{h\ j}(\beta\alpha)^{-1}=t_{h\ j}(-\beta\alpha).$ $j-h\geq k+1$. $k+1 \Rightarrow t_{h,i}(-\beta\alpha) \in U_n^{(k+1)}$.

Lemma. Пусть \preccurlyeq - отношение линейного порядка на $P = \{(i,j) \mid 1 \le i < j \le n\}.$

$$U_n(F) = \{ \prod_{(i,j)\in P} t_{ij}(\alpha_{ij}) \mid \alpha_{ij} \in F \}.$$

Note. $H \triangleleft G$, $x, y \in G$: $xH = yH \Leftrightarrow y^{-1}x \in H \Leftrightarrow x \equiv y \mod H$

Proof. Рассмотрим элемент $h \in U_n(F)$. Докажем по индукции (по k), что

$$h \equiv \prod_{\substack{(i,j) \in P \\ 0 \le j-i < k}} t_{ij}(\alpha_{ij}) \mod U_n^{(k)}.$$

При k = 1 утверждение очевидно, доказыать нечего.

Переход: $k-1 \rightarrow k$

По предположению индукции

$$h \equiv \prod_{0 < j - i < k - 1} t_{ij}(\alpha_{ij}) \mod U_n^{(k-1)} = \prod_{0 < j - i < k - 1} t_{ij}(\alpha_{ij}) \cdot \prod_{j - i = k - 1} t_{ij}(\alpha_{ij}) U_n^{(k)}$$

Так как комутатор $[u, t_{i \ i+k-1}(\alpha)] \in U_n^{(k)} \quad \forall u \in U_n$. То есть $[u, t_{i \ i+k-1}(\alpha)] \equiv 1 \mod U_n^{(k)}$. Это равосильно

$$ut_{i\ i+k-1}(\alpha) \equiv t_{i\ i+k-1} \cdot u \mod U_n^{(k)}.$$

Получаем

$$h \equiv \prod_{0 < j - i < k} t_{ij} (\alpha_{ij} \mod U_n^{(k)}.$$

Введем обозначения: w - матрица перестановки.

$$\left(\begin{array}{ccc} 1 & & * \\ & \ddots & \\ 0 & & 1 \end{array}\right) \in U.$$

$$\left(\begin{array}{ccc} \bullet & & 0 \\ & \ddots & \\ 0 & & \bullet \end{array}\right) \in D.$$

$$B_n = D_n U_n = U_n D_n \quad (\forall d \in D_n : U_n^d = U_n).$$

 $B_nwB_n=U_nD_nwB_n$, где $U_w=\langle t_{ij}(\alpha)\mid \alpha\in F, j>i,\ t_{ij}(\alpha)^w\rangle\in U_n^-$ - нижне треугольные. $U_w=\langle t_{ij}(\alpha)\mid j>1, \alpha\in F, t_{ij}(\alpha)^w\in U_n\rangle.$

Corollary. Матрица и U_n представляется в виде произведения трансвекций в любом порядке. $U_n = U_w \cdot \overline{U}_w$

Corollary (приведенное разложение Брюа). $B_n w B_{\subseteq} w B_n^- B_n$

Proof.
$$B_n w B_n = U_n w B_n = w U_w w^{-1} \overline{U}_w w B_n = w \underbrace{U_w^w}_{\subseteq U_n} \overline{U}_w^w B_n \subseteq w U_n^- B_n = w B_n^- B_n$$

2.6 Лекция 20

2.6.1 Симметрическая группа

Def 40 (Перестановка). $\sigma \in S_n \iff \sigma: \{1, \dots n\} \xrightarrow{\sim} \{1, \dots n\}$ Табличная запись перестановки:

$$\sigma = \begin{pmatrix} 1 & \dots & n \\ i_1, & \dots & i_n \end{pmatrix}, i_j \neq i_k (j \neq k).$$

Циклическая запись перестановки:

$$\tau = (j_1, \dots, j_n) \iff \tau(j_1) = j_2, \ \tau(j_2) = j_3, \ \dots, \tau(j_{n-1}) = j_n, \ \tau(j_n) = j_1, \ \tau(i) = i, \forall i \neq j_k.$$

Def 41. $(j_1...j_n)$ и $(k_1....k_m)$ независимы, если $j_h \neq j_l \quad \forall h, l.$

Lemma. Любая перестановка равна произведению независимых (композиции) циклов.

Def 42. Циклический (цикленный) тип перестановки – набор из длин независимых циклов,в произведение которых раскладывается перестановка.

Note. В определении слово "набор" подразумевает мультимножество, то есть порядок не важен, но элементы повторятся.

Ех. $(12)(345) \in S_6$ записывают 2+3.

Lemma.

$$\sigma(i_1, i_2, \dots i_k)\sigma^{-1} = (\sigma(i_1), \dots \sigma(i_k)).$$

Следовательно, сопряжение не меняет циклический тип.

Proof. $\sigma(i_1 \dots i_k) \sigma^{-1}(\sigma(t_j)) = \sigma \circ (i_1 \dots i_k) \sigma(i_{l+1 \mod 'm})$, где $\mod 'm$ - почти модуль (вместо 0 будет m).

Def 43. Отношение на группе G:

$$x \sim_c y \Leftrightarrow \exists z : x = y^z$$
.

$$x = y^z \wedge y = ab \Rightarrow x = (a^b)^z - a^{bz}$$
.

Класс эквивалентности " \sim_c " – класс сопряженных элементов.

Theorem 2.6.1. Класс сопряженных элементов в S_n состоит из всех перестановок фиксированного циклического типа.

Proof. Следует из леммы 2.6.1

Ех. Рассмотрим группу S_4 и перестановки циклического типа 2+2:

(13)(24)

$$\sigma(12)(34)\sigma^{-1} = (\sigma(1)\sigma(2))(\sigma(3)\sigma(4))$$

Еще есть нейтральный класс е и 2, 3, 4. Двумерная группа Клейна

$$K_4 = \{e, (12)(34), (13)(24), (14)(23)\}.$$

- единственная нормальная подгруппа в S_n для любого n, индекс которой более 2.

Practice. Найти S_4/K_4 . Там 6 элементов.

 $\textbf{Statement.} \ ord(ab) \ | \ \textit{HOK}(ord(a), ord(b)).$

Порядок перестановки равен НОКу порядков независимых циклов.

2.7 Лекция 21

2.7.1 Продолжаем возиться с перестановками. Четность.

Def 44 (Инверсия). $\sigma \in S_n$.

Инверсия в σ – пара $(i,j): i < j \land \sigma(i) > \sigma(j).$

Ех. Четыре инверсии:

$$\left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \end{array}\right).$$

Def 45 (Четность перестановки).

$$\varepsilon: S_n \to \mathbb{Z}/2\mathbb{Z}.$$

 $\sigma \mapsto$ количество инверсий по модулю 2.

Def 46. Транспозиция – цикл длины 2.

$$\tau(i) = \tau(j), \ \tau(j) = \tau(i), \ \tau(k) = k.$$

Lemma. Любая перестановка σ раскладывается в произведении транспозиций соседних индексов.

$$S_n = \langle (12), (23) \dots (n-1 \ n) \rangle$$
.

Proof. Индукция по количеству инверсий I в $\sigma \in S_n$.

База: I=0 Это $\sigma=id$.

Переход: I > 0. Заметим, что

$$\exists i : \sigma(i) > \sigma(i+1).$$

Тогда рассмотрим $\tau = \sigma \circ (i, i - 1)$.

$$\tau(i) = \sigma(i+1) < \tau(i+1) = \sigma(i).$$

Так как $\tau(k) = \sigma(k) \quad \forall k \notin \{i, i+1\}$, количество инверсий стало на одну меньше, чем количество инверсий в σ . Теперь по предположению индукции полученная перестановка раскладывается, а тогда и σ раскладывается.

Lemma. $\tau = \sigma(i \ i+1) \Rightarrow |I(\tau) - I(\sigma)| = 1$

Lemma. Если $\sigma = \tau_1 \cdot \tau_2 \dots \tau_k$, $\forall i : \tau_i$ - транспозиция соседних индексов, то

$$\varepsilon(\sigma) = k \mod 2.$$

Theorem 2.7.1. $\varepsilon: S_n \to \mathbb{Z}/2\mathbb{Z}$ - гомоморфизм группы.

Proof.

$$\sigma = \tau_1 \cdot \dots \tau_k$$

$$\rho = \tau_{k+1} \cdot \dots \tau_n \qquad \forall i : \tau_i = (j \ j+1).$$

$$\sigma \cdot \rho = \tau_1 \cdot \dots \tau_n$$

Проверим требуемые свойства:

$$\varepsilon = k \mod 2, \quad \varepsilon(\rho) = n - k \mod 2$$

$$\varepsilon(\sigma\rho) = m \mod 2 = \varepsilon(\sigma) + \varepsilon(\rho) \mod 2$$

$$\varepsilon(\rho^{-1}\sigma\rho) = -\varepsilon(\rho) + \varepsilon(\sigma) + \varepsilon(\rho)$$

$$\varepsilon((i_1, \dots i_k)) = \varepsilon((1, \dots k)) = k - 1 \mod 2$$

Рассмотрим кольцо $(\mathbb{Z}_n, +_n, \cdot_n)$. \mathbb{Z}_n^* - множество обратимых элементов.

 $x \in \mathbb{Z}_n$ - обратимо тогда и только тогда, когда $\gcd(x,n) = 1$.

 $\varphi|\mathbb{Z}_n^*|$ - количество чисел от 1 до n-1 взаимно простых с n. Из теоремы Лагранжа очевидно следует, что:

$$x^{\varphi(n)} \mod n = 1.$$

Statement. A – абелева группа. $a, b \in A$, ord(a) = m, ord(b) = n, h = lcm(m, n) $(ab)^k = a^k b^k = (a^m)^x (b^n)^y = 1.$

 $Tor \partial a \ ord(ab) \mid k.$

Lemma. $\langle a \rangle \cap \langle b \rangle = \{1\} \Rightarrow ord(ab) = lcm(ord(a), ord(b))$

Proof.

$$(ab)^l = 1 \Rightarrow \underbrace{a^l}_{\in \langle b \rangle} = \underbrace{b^{-l}}_{\in \langle b \rangle} = 1.$$

Тогда

$$\frac{ord(a) \mid l}{ord(b) \mid l} \right\} \Rightarrow lcm(ord(s), ord(b)) \mid l.$$

Corollary.

$$a \in A, b \in B, \quad A, B \le A \times B.$$

Тогда ord(ab) = lcm(ord(a), ord(b))

Corollary.

$$lcd(ord(a), ord(b)) = 1.$$

Tогда ord(ab) = lcm(ord(a), ord(b))

Proof. $|\langle a \rangle \cap \langle b \rangle| = h$

$$h \mid |\langle a \rangle| \land h \mid |\langle b \rangle| \Rightarrow h \mid gcd(ord(a), ord(b)) = 1 \Rightarrow h = 1.$$

Следовательно, $\langle a \rangle \cap \langle b \rangle = \{1\}.$

Corollary. Порядок перестановки равен наибольшему общему делителю полядков независимых циклв, в произведение которых она раскладывается.

Def 47 (Экспонента (показатель)). $\exp(A)$ – наименьшее натуральное число, такое что $a^n = 1 \quad \forall a \in A$.

Lemma. $\exp(A) = lcm_{a \in A}(ord(a))$

Theorem 2.7.2. A - абелева группа. $\exp(A) < \infty$.

 $Tor \partial a \; \exists a \in A : ord(a) = \exp(A)$

Proof. Разложим экспоненту на простые множители:

$$\exp A = p_1^{k_1} \cdot \dots \cdot p_m^{k_m}, \quad \forall i \in [1, m] : p_i \in \mathbb{P}, k_i \in \mathbb{NN}.$$

Так как $\exp(A) = lcm_{x \in A}(ordx)$, существует $\forall i \in [1, m]x_i : p_i^{k_i} \mid ord(x_i)$.

$$ordx_i - p_i^{k_i} \cdot n_i = ord(x_i^{n_i}) = p_i k_i.$$

Так как порядки всех $x_i^{n_i}$ взаимно просты, то

$$ord(\prod_{i=1}^{m} x_i^{n_i}) = \prod_{i=1}^{m} = \prod p_i^{k_i} = \exp(A).$$

П

2.8 Лекция 22

Statement. $\varphi: G \to h$ - гомоморфизм. $g \in G$. Тогда $ord(\varphi(g)) \mid ordg$.

Proof. Рассмотрим сужение $\tilde{\varphi}: \langle g \rangle \to \varphi(\langle g \rangle) = \langle \varphi(g) \rangle$.

$$\langle \varphi(g) \rangle \cong \langle g \rangle / Ker \tilde{\varphi}.$$

$$ord\varphi(g) = |\langle \varphi(g) \rangle| = \frac{|\langle g \rangle|}{|Ker\tilde{\varphi}|}.$$

Note. Можно использовать одну из доказанных лемм, тогда решение будет проще.

Theorem 2.8.1. $p \in \mathbb{P}$

 $(\mathbb{Z}/p^k\mathbb{Z})^*$ - циклическая, если $p \neq 2$ или $k \leq 2$. Иначе $(\mathbb{Z}/p^k\mathbb{Z})^* \cong C_2 \times C_{2^{k-2}}$

Proof. Обозначим $G = \mathbb{Z}/p^k\mathbb{Z}$

$$|(\mathbb{Z}/p^k\mathbb{Z})^*| = p^k - p^{k-1} = p^{k-1}(p-1).$$

Рассмотрим множество чисел вида 1 + px. Они не делятся на p. Чтобы эти числа были меньше $|G^*|$, ограничим x.

$$H = \{1 + px \mid x \in \{0, \dots p^{k-1} - 1\}\}.$$

Statement. H - noderpynna.

$$(1+px)(1+py) = 1 + pz \in H.$$

Если

$$(1+px)(1+py) \equiv 1 \mod p^k$$
.
 $a + apx + py + p^2xy \equiv 1 \mod p^k$.

 ${\it C}$ ледовательно , a=1+pz. Обратный элемент:

$$(1+px)^{-1} = (1+pz+py) \in H.$$

$$|H|=p^{k-1}, |G/H|=p-1$$
- циклическая (докажем позже).

$$\exists b \in G : ord(bH) = p - 1, \quad \pi(b) = bH, \pi : G \to G/H.$$

То есть $p-1 \mid ordb$. Получаем $\exists l \in \mathbb{N} : ordb^l = p-1$. (или можно сказать, $p-1 \mid \exp(G)$). По следствию из теорема Лагранжа $|H| \cdot p \cdot p^{k-1} \wedge 1 + p \in H \Rightarrow (1+p)^{p^{k-1}} \equiv 1 \mod p^k$. Тогда $ord(1+p) \mid p^{k-1}$.

Осталось доказать, что

$$(1+p)^{p^{k-2}} \not\equiv 1 \mod p^k.$$

Будем доказывать по индукции. Для k=2 - очевидно. При k>2 :

$$(1+p)^{p^{k-3}} = 1 + p^n x, \quad p \nmid p.$$

По предположению индукции $1 \le n < k-1$.

$$(1+p)^{p^{k-2}} = \left((1+p)^{p^{k-3}} \right)^p = (1+p^n x)^p = 1+p \cdot p^n + \sum_{i=2}^p C_p^i p^{ni} x^i \equiv 1+p^{n+1} x + p^{n+2} y \mod p^{n+2},$$

так как

$$(1+p)^{p^{k-2}} = 1 + p^{n+1} \underbrace{(x+py)}_{\text{не делится на } p}.$$

 $n+1 < k \Rightarrow p^k \nmid (1+p)^{p^{k-2}} - 1$

Remark.

$$C_p^i = \frac{p(p-1)!}{(p-1)! \ i!} \ \vdots \ p.$$

Remark. Если p=2, то при i=2, n=1

$$C_p^i = 1 \Rightarrow C_p^i p^2 \not/ p^3.$$

Поэтому для p=2 эти рассуждения не работыют.

Теперь разберем случай p=2.

$$|G| = 2^{k-1}, k \ge 3.$$

1. Любой элемент имеет порядок не более 2^{k-1} , то есть $(1+2x)^{2^{k-2}} \equiv 1 \mod 2^k$. Индукция по k. База k=3.

$$(1+2x)^2 = 1 + 4x + 4x^2 = 1 + 4x(x+1) \equiv 1 \mod 2^3$$
,

так как либо x, либо x + 1 четное.

Переход. По индукционному преднодожению

$$(1+2x)^{2^{k-3}} = 1 + 2^{k-1}y.$$

Дальше

$$(1+2x)^{2^{k-2}} = (1+2^{k-1}y)^2 = 1+2^ky+2^{2k-2}y^2 \equiv 1 \mod 2^k.$$

Доказано.

$$ord_{G}5 = 2^{k-2}$$
, то есть

$$5^{2^{k-3}} \not\equiv 1 \mod 2^k.$$

Индукция по k. База k=3.

$$5 \not\equiv 1 \mod 8$$
.

Переход: по индукционному предположению

$$5^{2^{k-4}} \not\equiv 1 \mod 2^{k-1}.$$

$$5^{2^{k-1}} = 1 + 2^n z$$
, $1 < n < k-1$, $2 \nmid z$.

 $Remark. \ n > 1$, так как $5 \equiv 1 \mod 2^2$

Тогда

$$5^{2^{k-3}} = (1 + 2^n \cdot z)^2 = 1 + 2 \cdot 2^n \cdot z + 2^{2n} \cdot z^2 = 1 + 2^{n+1}(z + z^2 \cdot 2^{n-1}) \not\equiv 1 \mod 2^{n+2}.$$

2.9 Лекция 23

2.9.1 Теорема о гомоморфизме для колец

Note. Воспоминания R, R' – кольца с 1 (не обязательно коммутативные). $\varphi: R \to R'$ – гомоморфизм, если

$$\varphi(r+s) = \varphi(r) + \varphi(s)$$

$$\varphi(r \cdot s) = \varphi(r) \cdot \varphi(s)$$

$$\varphi(1) = 1$$

$$Im\varphi = \{\varphi(r) \mid r \in R\}$$
 – подкольцо в R' .

$$Ker \varphi = \{r \mid \varphi(r) = 0\}$$
 – аддитивная подгруппа в $R.$

Def 48. I – аддитивная подгруппа в R. I называется двусторонним (правым, левым) идеалом в R тогда и только тогда, когда

 $\forall a \in R, t \in I : ar, ra \in I \quad \text{(соответственно для правого и левого } ra \in I, ar \in I\text{)}.$

Lemma. $Ker\varphi$ – двусторонний идеал.

Def 49. I – двусторонний идеал, R – кольцо. Аддитивная факторгруппа R/I является кольцом относительно операции (r+I)(s+I)=rs+I

Proof. Если
$$x, y \in I$$
: $(r+x)(s+y) = rs + \underbrace{xs + sy + xy}_{\in I} \in rs + I$

Ex. $2\mathbb{Z} \leq \mathbb{Z}$

$$4\mathbb{Z} \stackrel{\text{как множества}}{=} (0 + 2\mathbb{Z}) \cdot (0 + 2\mathbb{Z}) \stackrel{def}{=} 0 + 2\mathbb{Z}.$$

Designation. $\pi: R \to R/I \quad \pi(r) = r + I$

Theorem 2.9.1. Универсальное свойство I – идеал в R. $\varphi R \to R'$, $I \subseteq Ker \varphi \exists ! \psi : R/I \to R'$:

$$\begin{array}{ccc}
R & \xrightarrow{\varphi} R' \\
\downarrow \pi & \nearrow \psi \\
R/I
\end{array}$$

– коммутативна. $Ker\varphi=I\Rightarrow \psi$ – инъективна. φ – сюрьективна $\Rightarrow \phi$ – сюрьективна.

Note. Далее считаем кольца коммутативными.

Def 50. $X \subseteq R$ – кольцо. Идеал, порожденный X – наименьший идеал, содержащих X. Он равен

$$\left\{ \sum_{i=1}^{n} a_i x_i \mid a_i \in R, x_i \in X, n \in \mathbb{N} \right\}.$$

Обозначается: $\sum_{x \in X} xR = \langle X \rangle_R$

xR = (x) – главный идеал, порожденный x.

 $\mathbf{E}\mathbf{x}$. В \mathbb{Z} любой идеал главный.

 $I \subseteq \mathbb{Z}$,

$$0 < r < I, \quad r \le |s| \forall s \in I.$$

Рассмотрим $x \in I$.

$$x = rs + y, \quad 0 \le y < r.$$

 $y = x - rs \in I.$

Так как r – наименьший, то y = 0.

 $\mathbf{E}\mathbf{x}$.

$$\mathbb{Z}[\sqrt{-1}] = \{a + b\sqrt{-3} \mid a, b \in \mathbb{Z}\}.$$
$$(1 + \sqrt{-3})(1 - \sqrt{-3}) = 2 \cdot 2.$$

Идел, порожденный $1+\sqrt{-3}$ и 2 $((1+\sqrt{-3})R+2R)$, не является главным идеалом.

2.9.2 Комплексные числа

$$\mathbb{C} = \mathbb{R}[x] / (x^2 + 1)$$

$$i := x + (x^2 + 1)\mathbb{R}[x].$$

$$i^{2} + 1 = x^{2} + 1 + (x^{2} + 1)\mathbb{R}[x] = 0_{\mathbb{C}} \Longrightarrow i^{2} = -1.$$

 $\mathbb{R} \hookrightarrow \mathbb{R}[x] \to \mathbb{C}$ – инъективное отображение. Отождествляем $r \in R \longleftrightarrow r + (x^2 + 1)\mathbb{R}[x]$ и считаем, что $\mathbb{R} = \mathbb{C}$.

$$p \in \mathbb{R}[x]$$

$$p = (x^2 + 1) \cdot f + (a + bx) \in a + bx + (x^2 + 1)\mathbb{R}[x].$$

$$p + (x^2 + 1)\mathbb{R}[x] = a + bi.$$

Таким образом

$$(a + bi) + (c + di) = (a + c) + (b + d)i.$$

 $(a + bi)(c + di) = ac - bd + i(ad + bc).$

$$\overline{a+bi} = a-bi$$
$$\forall w, z \in \mathbb{C}:$$

 $\overline{\circ}:\mathbb{C}\to\mathbb{C}$ - автоморфизм.

 $a = Rez, \quad b = Imz$

 \mathbb{C} – векторное пространство над \mathbb{R} с базисом $\{1,i\}$

2.10 Лекция 24

2.10.1 Окончание комплексных чисел

$$\mathbb{C} := \mathbb{R}[x] / (x^2 + 1).$$
$$i := x + x(^2 + 1)\mathbb{R}[x]$$

Любое комплексное число представляется в виде $a+bi, \quad a,b \in \mathbb{R}$, сопряжение: $\overline{a+bi}=a-bi.$ Умножение на сопряженное: $(a+bi)(a-bi)=a^2+b^2$. Сложение с сопряженным: (a+bi)+(a-bi)=2a. Получили, что $z\cdot \overline{z},z+\overline{z}\in \mathbb{R}$.

Statement. Существует ровно два автоморфизма на комплексных числах, оставляющие вещественные на месте.

Proof. $f \in \mathbb{R}[x]$.

$$f(\varphi(i))=\varphi(f(i)),\quad \alpha\in\mathbb{C}$$

так как $\varphi(\alpha^2) = \varphi(\alpha)^n$

 $\varphi(a\alpha^n) = a\varphi(\alpha)^n, a \in \mathbb{R}$. Если $f(x) = x^2 + 1, \ f(i) = 0.$ $f(\varphi(i)) = \varphi(f(i)),$ то есть корень переходит в корень. Значит, нетривиальный только один. А второй — тривиальный. \square

$$|z| = \sqrt{a^2 + b^2} = \sqrt{z \cdot \overline{z}}.$$

 $Argz := \alpha \in \mathbb{R}/2\pi\mathbb{Z}.$

Можно выразить через аргумент:

$$\begin{array}{l} a = |z| \cdot \cos \alpha \\ b = |z| \cdot \sin \alpha \\ z = |z| \cdot (\cos \alpha + i \sin \alpha) - \text{тригонометрическая формула} \end{array} \\ Argz = \left\{ \begin{array}{ll} arctg \frac{b}{a} + 2\pi \mathbb{Z}, & a > 0 \\ \pi + arcctg \frac{b}{a} + 2\pi \mathbb{Z}, & a < 0 \\ \frac{\pi}{2} \cdot sign(b), & a = 0 \end{array} \right. .$$

Figure 2.1: Комплексное число на плоскости

Statement.

$$(\cos \alpha + i \sin \alpha)(\cos \beta + i \sin \beta) = \cos(\alpha + \beta) + i \sin(\alpha + \beta).$$

Statement. $\varepsilon: \mathbb{R}/2\pi\mathbb{Z} \to \mathbb{C}^*, \quad \varepsilon(\alpha) = \cos \alpha + i \sin \alpha)$ – это гомоморфизм.

$$Im\varepsilon=S^1:=\{z\in\mathbb{C}\mid |z|=1\}.$$

Так же:

$$\varepsilon(\alpha + \beta) = \varepsilon(\alpha)\varepsilon(\beta)$$

$$\varepsilon(-\alpha) = \varepsilon(\alpha)^{-1}$$

$$\varepsilon(\beta - \alpha) = \frac{\varepsilon(\alpha)}{\varepsilon(\beta)}$$

$$\varepsilon(n\alpha) = \varepsilon(\alpha)^{n}, \quad n \in \mathbb{Z}$$

$$(\cos \alpha + i \sin \alpha)^{n} = \cos n\alpha + i \sin n\alpha - \phi opmyna Myaepa$$

Несколько слов о комплекснопеременных функциях

Def 51. Дифференциал:

$$f(x + \delta x) = f(x) + df(\delta x) + \overline{o(\delta x)}.$$

В случае дифференцирования функции от двух переменных, x – столбец, а df – матрица 2×2 .

Note. Для комплексных коэффициентов: умножение на $\lambda + \mu i \to \begin{pmatrix} \lambda & -\mu \\ \mu & \lambda \end{pmatrix}$

Statement. Напишем степенные ряды для тригонометричеких функций:

$$e^{t} = \sum_{n=0}^{\infty} \frac{t^{n}}{n!}$$

$$\cos t = \sum_{n=1}^{\infty} \frac{t^{2k}}{(2k)!} \cdot (-1)^{k} = \sum_{k=0}^{\infty} \frac{\alpha^{2k}}{(2k)!}$$

$$\sin t = \sum_{n=1}^{\infty} \frac{t^{2k+1}}{(2k+1)!} \cdot (-1)^{k} = i \sum_{k=0}^{\infty} \frac{\alpha^{2k+1}}{(2k+1)!}$$

$$e^{i\alpha} = \sum_{n=2k} \frac{(i\alpha)^{2k}}{(2k)!} + \sum_{n=2k+1} \frac{(i\alpha)^{2k+1}}{(2k+1)!}.$$

$$e^{i\alpha} := \cos \alpha + i \sin \alpha.$$

$$\varepsilon(\alpha) = e^{i\alpha}$$

Note (Показательная форма комплексного числа).

$$z = |z| \cdot e^{i \cdot Argz}$$
$$e^{2\pi i} = \cos 2\pi + i \sin 2\pi = 1.$$

 2π – период для экспоненты.

$$e^{\alpha+2\pi i} = e^{\alpha}.$$

$$a, b \in \mathbb{R}: e^{a+bi} = e^a e^{bi} = e^{a(\cos b + i\sin a)}.$$

На языке теории групп:

$$r \in \mathbb{R}^*_{>0}, \alpha \in \mathbb{R}/2\pi\mathbb{Z} : (r, \alpha) \mapsto r \cdot e^{i\alpha}$$

To есть $\mathbb{R}^*_{>0} \times \mathbb{R}/2\pi\mathbb{Z} \to \mathbb{C}^*$ – изоморфизм.

$$\mathbb{C}^* \cong \underbrace{\mathbb{R}^*_{>0} \times \mathbb{R}/2\pi\mathbb{Z}}_{\ln} \cong \mathbb{R} \times \mathbb{R}/2\pi\mathbb{Z} \cong \mathbb{C}/2\pi\mathbb{Z}.$$

$$Ln: \mathbb{C}^* \to \mathbb{C}/3\pi\mathbb{Z}.$$

 $Ln: (r, e^{i\alpha + 2\pi\mathbb{Z}} = \ln r + i(\alpha + 2\pi\mathbb{Z}) = \ln r + i\alpha + 2\pi\mathbb{Z}.$

Statement (вычисление корня n-й степени). Вычисление корня в аддитивной группе $\mathbb{C}/2\pi\mathbb{Z}$ – решение уравнения:

$$\begin{aligned} xn &= 0 \mod 2\pi i \mathbb{Z} \\ xn &= 2\pi i n, k \in \mathbb{Z} \\ x &= \frac{2\pi i k}{n} \mod 2\pi i \mathbb{Z}, \ k \in \mathbb{Z}/n\mathbb{Z} \end{aligned}$$

 $z^n = 1$, z = Lnz, $\partial anee$

$$nx = 0 \mid 2\pi i \mathbb{Z}.$$
$$z = e^x = e^{\frac{2\pi i k}{n}}$$

2.11 Лекция 25

$$z^n \Longleftrightarrow z = e^{rac{2\pi i k}{n}}, k \in \mathbb{Z}/n\mathbb{Z}.$$
 $\Theta_n(Z) = z^k$ – гомеоморфизм $\mathbb{C} \to \mathbb{C}^*.$
 $\mu_n = Ker\Theta_n = \{e^{rac{2\pi i k}{n}} \mid k \in \mathbb{Z}/n\mathbb{Z}\}.$

Эти числа делят окружность на n равных частей.

$$\mathbb{Z}/n\mathbb{Z} o \mu_n$$
 $k+n\mathbb{Z} \mapsto e^{\frac{2\pi i k}{n}}$ – изоморфизм.

Def 52. Образующие элементы μ_n называются превообразными корнями из 1.

Corollary. $e^{\frac{2\pi ik}{n}}$ – превообразный корень тогда и только тогда, когда gcd(k,n)=1.

Statement. $z^n = w = re^{i\varphi}$. Одно из решений этого уравнения: $\left(\sqrt[n]{r} \cdot e^{\frac{i\varphi}{n}}\right)^n$. А все решения можно записать:

$$\sqrt[n]{w} = \{\sqrt[n]{r} \cdot e^{i\frac{phi + 2\pi k}{n}} \mid k \in \mathbb{Z}/n\mathbb{Z}\}, \quad z^n = w.$$

Theorem 2.11.1 (Основная теорема алгебры). $p \in \mathbb{C}[x]$, $\deg p \geq 1$ Тогда $\exists \alpha \in \mathbb{C} : p(\alpha) = 0$.

Theorem 2.11.2 (Лиувилль). Любая ограниченная дифиринцируемая функция $\mathbb{C} \to \mathbb{C}$ – константа.

2.11.1 Кольца главных идеалов

Евклидовы кольца

Def 53. Область целостности – коммутативное кольцо с единицей без делителей нуля.

Designation. R – коммутативное кольцо с 1 без делителей нуля.

Def 54. $f: R \to \mathbb{N}_0 \cup \{-\infty\}$ Обладает свойствами:

1.
$$f(0) < f(r), \forall r \in R$$

2.
$$\forall a, b \in R, b \neq 0 \ \exists c, r \in R : a = bc + r \land f(r) < f(b)$$

Тогда R – евклидова кольцо с евклидовой нормой f.

Theorem 2.11.3. Любой идеал евклидова кольца главный.

Proof. Пусть $I \triangleleft R$.

$$a \in I \setminus \{0\} : f(a) \le f(b) \quad \forall b \in I \setminus \{0\}.$$

$$b = ac + r, \quad f(r) < f(a).$$

$$r = \underbrace{b}_{\in I} - \underbrace{ac}_{\in I} \in I.$$

Если $r \neq 0$, то $f(a) \leq f(r) < f(a)$. Противоречие.

Note. На практике ищется с помощью алгоритма Евклида.

Statement.
$$b = ac + r_1$$

 $a = r_1c_1 + r_2$
 $r_1 = r_2c_2 + r_3$
:
 $f(r_{i+1}) < f(r_i)$
:
 $f(r_n) \le f(d) \quad \forall d \in I \ aR + bR = r_nR$

Statement. R – область главных идеалов. $a_i \in R$

$$\sum_{i=1}^{m} a_i R = dR.$$

 $Tor \partial a \ d := \gcd(a_i).$

Exs.
$$egin{array}{c|c} \ Kольцо & Hopma \ \hline \mathbb{Z} & & |\cdot| \ F[x], \ F-\text{поле} & \deg \ \hline \Gamma ауссовы целые числа: $\mathbb{Z}[i] = \{a+bi \mid a,b \in \mathbb{Z}\} \ |\cdot| \ \end{array}$$$

 $\mathbf{E}\mathbf{x}$ (не евклидово число). $\mathbb{Z}[\sqrt{19}]$ – не евклидово кольцо главных идеалов.

2.11.2 Китайская теорема об остатках

Theorem 2.11.4. KTO для целых чисел $x \equiv x_1 \mod n_1$ $x \equiv x \mod n_2$: $x \equiv x_m \mod n_m$

Cущействует единстваенное x по модулю произведения $n1..n_m$, удовлетворяющее данным сравнениям.

Theorem 2.11.5. KTO R – коммутативное кольцо c 1. $I_1, \ldots I_m$ – идеалы e R. $I_i + I_k = R \ \forall j \neq k$. Тогда

$$R/_{I_1} \oplus \ldots \oplus R/_{I_m} \cong R/_{I_1\ldots I_M}$$
.

 $Remark. \ A, B$ – кольца. Декартово произведение

$$A \oplus B = a \times B$$
.

с покомпонентными операциями.

$$(a_1, b_1) + \cdot (a_2, b_2) = (a_1 + \cdot a_2, b_1 + \cdot b_2).$$

Statement. Идеалы I, J взаимно простые, если I + J = R.

Proof.
$$I \cap J$$
 – идеал. $I + J = \{a + b \mid a \in I, b \in J\}$ – идеал. $I \cdot J = \{\sum_{i=1}^m a_i b_i \mid m \in \mathbb{N}, a_i in I, b_i \in J\}$

Lemma. $I \cdot J \subseteq I \cap J$ верно всегда.

Lemma.
$$I + J = R \Longrightarrow I \cdot J = I \cap J$$

$$Proof. \ \ I \cap J = (I \cap J) \cdot R = (I \cap J)(I + J) = \underbrace{(I \cap J) \cdot I}_{\in I \cdot J} + \underbrace{(I \cap J) \cdot J}_{\in I \cdot J} \subseteq I \cdot J$$

2.12 Лекция 26

I, J – идеалы в R

$$I + J = R \Leftrightarrow I, J$$
 взыаимно простые.

Lemma. I + J = R. $Tor \partial a$

$$R/_{IJ} \cong R/_{I} \oplus R/_{J}$$
.

Proof.

$$\varphi: R \to R/_I \oplus R/_J.$$

 $r \mapsto (r+I, r+J).$

$$Ker\varphi\ni r\Leftrightarrow \left\{\begin{array}{l} r+I=I\\ r+J \end{array}\right. \Leftrightarrow r\in I\cap J$$

$$Ker\varphi = I \cdot J.$$

$$\exists a \in I, b \in J : a + b = 1.$$

$$r = br_1 + ar_2 \equiv r_1 \mod I$$
.

$$r = br_1 + ar_2 \equiv r_2 \mod J$$
.

То есть $\varphi(r) = (r_1 + I, r_2 + J)$, следовательно, φ – сюрьективно. По теореме о гомоморфизме колец

$$R/_{IJ} \cong R/_{I} \oplus R/_{J}$$
.

Lemma. $J, I_1, \dots I_n - u \partial e$ anu e R.

$$J + I_n = R \forall k \Longrightarrow J + I_1 \cdot \dots I_n = R.$$

Proof. Индукция. База для k = 1. Очевидно. Переход:

По предположению индукции $J + \underbrace{I_1 + \dots I_{n-1}}_{I} = R$. Нужно доказть , что $J + I \cdot I_n = R$.

$$R = J + I \cdot R = J + I(J + I_n) = I + IJ + II_n = J + II_n$$

Theorem 2.12.1 (Китайская теорема об остатках). $I_1, \ldots I_n$ – попарно взаимнопростые идеалы, то есть $\forall j \neq k : I_j + I_k = R$. Тогда

$$\frac{R}{I_1 \cdot \dots \cdot I_n} \cong \frac{R}{I} \oplus \dots \oplus \frac{R}{I_n}.$$

Note. Здесь дробью обозначается фактор кольцо.

Proof. Индукция по n. Так как I_k взаимно просто с $I_1 \cdot \ldots I_{n-1}$

$$\frac{R}{I_1 \dots I_n} \cong \frac{R}{I_1 \dots I_{n-1}} \oplus \frac{R}{I_n}.$$

Дальше по предположению индукции получаем то, что хотим.

Statement. $x \equiv x_k \mod I_k$, $k = 1, \dots n$ равносильно тому, что

$$x \equiv \sum_{k=1}^{n} x_k c_k \mod I_1 \dots I_n, \quad c_k \in \prod_{j \neq k} I_j \cap (1 + I_k).$$

Note. В целых числах:

$$x \equiv x_k \mod m_k, \quad k = 1, \dots n.$$

Чтобы найти c_k , нужно решить диофантово уравнение:

$$y \cdot m_k + z \cdot \prod_{j \neq k} m_j = 1.$$

Statement (применение KTO). B F[t]:

$$p(x_k) = y_k \quad \forall k = 1, \dots, x_i \neq x_k \ \forall i \neq k$$

равносильно

$$p \equiv y_k \mod (t - x_k).$$

$$p(t) \equiv \sum_{k=1}^{n} y_k \prod \frac{t - x_i}{x_k - x_i} \mod (t - x_i) \dots (t - x_n).$$

2.12.1 Простые и максимальные идеалы

Все кольца будут коммутативные с единицей.

Def 55. Простой идеал $P \neq R$ кольца R называется простым, если $ab \in P \Rightarrow a \in P \lor b \in P$

Note. Другими словами $R \setminus P$ замкнуто относительно умножения

Ех. В \mathbb{Z} идеал $n\mathbb{Z}$ – простой тогда и только тогда, когда n – простое.

Ех. В F[t] идеал $f \cdot F[t]$ простой тогда и только тогда, когда f – неприводимый многочлен.

Ех. Однако в $\mathbb{Z}[\sqrt{-3}] = R$ идеал 2R – не простой, хотя 2 не приводимо.

$$(1+\sqrt{-3})(1-\sqrt{-3}) = 4 \in 2R.$$

Докажем, что элементы $2,1\pm\sqrt{-3}$ неприводимы. Обозначим их за $\alpha=\beta\gamma$. Квадраты равны 4.

$$|\alpha|^2 = 4 = |\beta|^2 \cdot |\gamma|^2.$$

 $|a + b\sqrt{-3}|^2 = a^2 + 3b^2, \ a, b \in \mathbb{Z}.$

Либо $|\beta|^2=1$, либо $|\gamma|^2=1$, то есть β или γ обратимы.

Ex.
$$F[x,y] = R$$

$$I = xR + yR$$
.

– простой.

Def 56. Максимальны идеал – максимальный собственный идеал. Что равносильно тому, что это максимальный из идеалов, не содержащих единицу.

Note. Другими словами, M – максимальный идеал, если $M \neq R$ и $M \subseteq I \subset R \Rightarrow I = M$

Theorem 2.12.2. Любой собственный идеал содержится в каком-то максимальном. Proof. $J \triangleleft R$.

 \mathcal{X} – множество всех идеалов, содержащих J и не содержащих единицу.

 \mathcal{Y} – линейно упорядоченное подмножество \mathcal{X} , то $\bigcup_{I \in \mathcal{Y}} \in \mathcal{X}$

$$a, b \in \bigcup_{I \in \mathcal{Y}} I \Longrightarrow \exists I_1, I2 \in \mathcal{Y} : a \in I_1, b \in I_2 \land (I_1 \subseteq I_2 \lor I_2 \subseteq I_1),$$

так как \mathcal{Y} – линейно упорядочено.

$$a, b \in I_k \ (k = 1, 2) : a + b \in I_k \subseteq \bigcup_{I \in \mathcal{Y}} I.$$

$$a\in\bigcup I\Longrightarrow ra\in\bigcup I,r\in R.$$

Следовательно, $\bigcup_{I \in \mathcal{Y}}$ – идеал.

$$\bigcup_{I\in\mathcal{Y}}\subseteq J\wedge\bigcup_{I\in\mathcal{Y}}\not\ni 1.$$

По лемме Цорна $\mathcal X$ содержит максимальный элемент. Пусть это M. Если $M\subset N\subset R$, $N\in\mathcal X\Rightarrow N=M$