Time-Resolved Shadow Tomography of Open Quantum Systems

Joseph Barreto¹, Onkar Apte², Arman Babakhani^{1,5}, Daniel Lidar^{1,2,3,4}

¹Department of Physics, University of Southern California, CA, USA

²Department of Electrical Engineering, University of Southern California, CA, USA ³Department of Chemistry, University of Southern California, CA, USA

⁴Center for Quantum Information Science & Technology, University of Southern California, CA, USA ⁵Information Sciences Institute, University of Southern California, Marina del Rey, California, USA

Motivation for Open Quantum Systems (OQS)

The time evolution of an expectation value in an OQS is

$$S(t) = \langle O, \rho(t) \rangle = Tr(O\rho(t)) = Tr(Oe^{\mathcal{L}t}(\rho_0))$$
$$= \langle \langle O|e^{\mathcal{L}t}|\rho_0 \rangle \rangle = \sum_k e^{\lambda_k t} \langle \langle O|v_k \rangle \rangle \langle \langle v_k|\rho \rangle \rangle$$

- \diamond How efficiently can we estimate S(t) and extract some of the λ_k s?
- Applications include spectroscopy, device characterization, algorithm verification, etc.

Prior Work – Compressed Sensing (CS)

- **&** CS poses that a signal $x \in \mathcal{R}^n$, the measurement $y \in \mathcal{R}^m$ of x, and the sparse representation $\alpha \in \mathcal{R}^d$ of x, are related via
 - $y = \Phi x = \Phi \mathcal{D} \alpha \equiv \Psi \alpha$ where $\mathcal{D} \in \mathcal{R}^{n \times D}$ is the dictionary matrix, $\Phi \in \mathcal{R}^{m \times n}$ is the measurement matrix, and we are given that α is k-sparse
- Recovery of α (or x) from y is possible if $\Psi \in \mathcal{C}^{m \times D}$ obeys the restricted isometry property (RIP) of order k and some constant δ_K , which means that for every k-sparse vector $\alpha \in \mathcal{C}^D$, we have $(1 \delta_k)||\alpha||_2^2 \le ||\Psi\alpha||_2^2 \le (1 + \delta_k)||\alpha||_2^2$
- If x_k is the restriction of x to its k largest values (in magnitude) and y = Ax + e is a noisy measurement of x obeying $||e||_2 \le \epsilon$, then^[2] the solution x^* to the l_1 -minimization

$$\min ||x||_1 \ s.t. \ ||Ax - y||_2 \le \epsilon$$

• obeys $||x^* - x||_2 \le C_{1k}\epsilon + C_{2k} \cdot ||x^* - x||_1/\sqrt{k}$ If the signal is exactly k-sparse and noiseless, then this works perfectly

Prior Work – Shadow Tomography (ST)

- ST^[3] is an efficient method for estimating an arbitrary set of expectation values from a classical dataset of shadows which approximate a given quantum state
- ST promises that given $N \cdot K$ shadows of ρ , we can estimate a set of M expectation values $Tr(\rho O_i) \equiv o_i$ such that

$$|\hat{o}_i - o_i| \le \epsilon \text{ if } K = 2\log(2M/\delta), N = \frac{34}{\epsilon^2} \cdot 4^W$$

where O_i is a Pauli string of max weight w, δ is the probability that at least one error exceeds ϵ , and each estimate is produced via median-of-means (MoM) over K sets of N shadows each.

• Other than its size and max weight, the shadow dataset is independent of the the observable set $\{O_i\}$

Data processing pipeline

For time-domain signals of length n which are k-sparse in frequency space, it is known that for a unitary matrix $U \in \mathcal{C}^{n \times n}$ and a sufficiently small $\delta_k > 0$, the following holds^[4]:

For some $q = O\left(\delta_k^{-4} \cdot k \cdot \log^2(k/\delta_k) \cdot \log n\right)$, let $\Psi \in \mathcal{C}^{q \times n}$ be a matrix whose q rows are chosen uniformly and independently from the rows of U. Then, with probability $1 - 2\exp[-\Omega\left(\delta_k^{-2} \cdot \log n \cdot \log(k/\delta_k)\right)]$, the matrix Ψ satisfies the restricted isometry property of order k with constant δ_k

- * Thus, with $\mathcal{D} = U$ (the $n \times n$ DFT transform), and Φ a subset of the rows of the identity matrix, we can compose them to obtain a subsampled Fourier matrix $\Psi = \Phi U$ which obeys the RIP
- 1) Perform ST at random times

2) Solve the CS problem with a subsampled Fourier sensing matrix

- Components beyond the Nyquist limit are recoverable
- Shot noise from ST is mitigated by enforcing sparsity
- Some weak components are missed

Summary & next steps

* Total number of shots needed to reconstruct all M signals of length n which are at most k-sparse

 $N_{tot} \sim O(k \log M \log^2 k \log n / \epsilon^2)$ where the l_2 -reconstruction error is bounded by $O(\epsilon \sqrt{n})$ for decayless signals of weight-w Pauli strings

- ❖ Use a harmonic inversion algorithm to fit the reconstructed signal to a sum of decaying sinusoids to extract the evolution parameters, and quantify the effect of shot noise from ST on these estimates^[5]
- Combine the various observable signals in a clever way to process more components in parallel^[6]
- \diamond Can we upper bound the number of components λ_k given ρ_0 ? Are there better sensing matrices for weakly-decaying signals?

References

- [1] Compressed sensing, ITIT, RWTH Aachen. URL: https://www.ti.rwth-aachen.de/research/applications/cs.php
- [2] Candes, Romberg, and Tao. "Stable signal recovery from incomplete and inaccurate measurements" (2006).
- [3] Huang, Kueng, and Preskill. "Predicting many properties of a quantum system from very few measurements".
- Nature Physics 16.10 (Oct. 2020).
 [4] Haviv and Regev. "The Restricted Isometry Property of Subsampled Fourier Matrices" (2015).
- [5] Mandelshtam and Taylor. "Harmonic inversion of time signals and its applications". The Journal of Chemical
- Physics 107.17 (Nov. 1997)
 [6] Chen et al. "Algorithmic Shadow Spectroscopy" (2023)