Assignment-05-Multiple Linear Regression-1

Q1.Consider only the below columns and prepare a prediction model for predicting Price.

Corolla<-Corolla[c("Price","Age_08_04","KM","HP","cc","Doors","Gears","Quarterly_Tax","Weight")]

In [1]:

```
# Import Libraries
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import statsmodels.formula.api as smf
import statsmodels.api as sm
from statsmodels.graphics.regressionplots import influence_plot
```

In [2]:

Import dataset

toyo=pd.read_csv("C:/Users/LENOVO/Documents/Custom Office Templates/ToyotaCorolla.csv",enco
toyo

Out[2]:

										_
	ld	Model	Price	Age_08_04	Mfg_Month	Mfg_Year	KM	Fuel_Type	HP	Met_
0	1	TOYOTA Corolla 2.0 D4D HATCHB TERRA 2/3- Doors	13500	23	10	2002	46986	Diesel	90	
1	2	TOYOTA Corolla 2.0 D4D HATCHB TERRA 2/3- Doors	13750	23	10	2002	72937	Diesel	90	
2	3	TOYOTA Corolla 2.0 D4D HATCHB TERRA 2/3- Doors	13950	24	9	2002	41711	Diesel	90	
3	4	TOYOTA Corolla 2.0 D4D HATCHB TERRA 2/3- Doors	14950	26	7	2002	48000	Diesel	90	
4	5	TOYOTA Corolla 2.0 D4D HATCHB SOL 2/3- Doors	13750	30	3	2002	38500	Diesel	90	
1431	1438	TOYOTA Corolla 1.3 16V HATCHB G6 2/3- Doors	7500	69	12	1998	20544	Petrol	86	
1432	1439	TOYOTA Corolla 1.3 16V HATCHB LINEA TERRA 2/3	10845	72	9	1998	19000	Petrol	86	

	ld	Model	Price	Age_08_04	Mfg_Month	Mfg_Year	KM	Fuel_Type	HP	Met_
1433	1440	TOYOTA Corolla 1.3 16V HATCHB LINEA TERRA 2/3	8500	71	10	1998	17016	Petrol	86	
1434	1441	TOYOTA Corolla 1.3 16V HATCHB LINEA TERRA 2/3	7250	70	11	1998	16916	Petrol	86	
1435	1442	TOYOTA Corolla 1.6 LB LINEA TERRA 4/5- Doors	6950	76	5	1998	1	Petrol	110	
1436 r	rows ×	38 columr	าร							
4										

EDA

In [3]:

```
toyo.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1436 entries, 0 to 1435
Data columns (total 38 columns):

Data # 	columns (total 38 Column	Columns): Non-Null Count	Dtype
0	Id	1436 non-null	int64
1	Model	1436 non-null	object
2	Price	1436 non-null	int64
3	Age_08_04	1436 non-null	int64
4	Mfg_Month	1436 non-null	int64
5	Mfg_Year	1436 non-null	int64
6	KM	1436 non-null	int64
7	Fuel_Type	1436 non-null	object
8	HP	1436 non-null	int64
9	Met_Color	1436 non-null	int64
10	Color	1436 non-null	object
11	Automatic	1436 non-null	int64
12	CC	1436 non-null	int64
13	Doors	1436 non-null	int64
14	Cylinders	1436 non-null	int64
15	Gears	1436 non-null	int64
16	Quarterly_Tax	1436 non-null	int64
17	Weight	1436 non-null	int64
18	Mfr_Guarantee	1436 non-null	int64
19	BOVAG_Guarantee	1436 non-null	int64
20	Guarantee_Period	1436 non-null	int64
21	ABS	1436 non-null	int64
22	Airbag_1	1436 non-null	int64
23	Airbag_2	1436 non-null	int64
24	Airco	1436 non-null	int64
25	Automatic_airco	1436 non-null	int64
26	Boardcomputer	1436 non-null	int64
27	CD_Player	1436 non-null	int64
28	Central_Lock	1436 non-null	int64
29	Powered_Windows	1436 non-null	int64
30	Power_Steering	1436 non-null	int64
31	Radio	1436 non-null	int64
32	Mistlamps	1436 non-null	int64
33	Sport_Model	1436 non-null	int64
34	Backseat_Divider	1436 non-null	int64
35	Metallic_Rim	1436 non-null	int64
36	Radio_cassette	1436 non-null	int64
37	Tow_Bar	1436 non-null	int64

dtypes: int64(35), object(3) memory usage: 426.4+ KB

In [4]:

toyo.isnull().sum()

Out[4]:

0 Ιd Model 0 Price 0 Age_08_04 0 Mfg_Month 0 Mfg_Year 0 0 ΚM Fuel_Type 0 0 Met_Color 0 0 Color 0 Automatic 0 cc0 Doors Cylinders 0 0 Gears Quarterly_Tax 0 0 Weight Mfr_Guarantee 0 BOVAG_Guarantee 0 Guarantee_Period 0 0 **ABS** 0 Airbag_1 0 Airbag_2 Airco 0 Automatic_airco 0 Boardcomputer 0 CD_Player 0 Central_Lock 0 Powered_Windows 0 Power_Steering 0 Radio 0 Mistlamps 0 Sport_Model 0 Backseat_Divider 0 0 Metallic_Rim Radio_cassette 0 0 Tow_Bar dtype: int64

Inference:

No NA values

In [5]:

toyo2=pd.concat([toyo.iloc[:,2:4],toyo.iloc[:,6:7],toyo.iloc[:,8:9],toyo.iloc[:,12:14],toyo
toyo2

Out[5]:

	Price	Age_08_04	KM	HP	СС	Doors	Gears	Quarterly_Tax	Weight
0	13500	23	46986	90	2000	3	5	210	1165
1	13750	23	72937	90	2000	3	5	210	1165
2	13950	24	41711	90	2000	3	5	210	1165
3	14950	26	48000	90	2000	3	5	210	1165
4	13750	30	38500	90	2000	3	5	210	1170
1431	7500	69	20544	86	1300	3	5	69	1025
1432	10845	72	19000	86	1300	3	5	69	1015
1433	8500	71	17016	86	1300	3	5	69	1015
1434	7250	70	16916	86	1300	3	5	69	1015
1435	6950	76	1	110	1600	5	5	19	1114

1436 rows × 9 columns

In [6]:

```
# rename columns
toyo3=toyo2.rename({'Age_08_04':'Age','cc':'CC','Quarterly_Tax':'QT'},axis=1)
toyo3
```

Out[6]:

	Price	Age	KM	HP	CC	Doors	Gears	QT	Weight
0	13500	23	46986	90	2000	3	5	210	1165
1	13750	23	72937	90	2000	3	5	210	1165
2	13950	24	41711	90	2000	3	5	210	1165
3	14950	26	48000	90	2000	3	5	210	1165
4	13750	30	38500	90	2000	3	5	210	1170
1431	7500	69	20544	86	1300	3	5	69	1025
1432	10845	72	19000	86	1300	3	5	69	1015
1433	8500	71	17016	86	1300	3	5	69	1015
1434	7250	70	16916	86	1300	3	5	69	1015
1435	6950	76	1	110	1600	5	5	19	1114

1436 rows × 9 columns

In [7]:

toyo3[toyo3.duplicated()]

Out[7]:

	Price	Age	KM	HP	CC	Doors	Gears	QT	Weight
113	24950	8	13253	116	2000	5	5	234	1320

In [8]:

toyo4=toyo3.drop_duplicates().reset_index(drop=True)
toyo4

Out[8]:

	Price	Age	KM	HP	CC	Doors	Gears	QT	Weight
0	13500	23	46986	90	2000	3	5	210	1165
1	13750	23	72937	90	2000	3	5	210	1165
2	13950	24	41711	90	2000	3	5	210	1165
3	14950	26	48000	90	2000	3	5	210	1165
4	13750	30	38500	90	2000	3	5	210	1170
1430	7500	69	20544	86	1300	3	5	69	1025
1431	10845	72	19000	86	1300	3	5	69	1015
1432	8500	71	17016	86	1300	3	5	69	1015
1433	7250	70	16916	86	1300	3	5	69	1015
1434	6950	76	1	110	1600	5	5	19	1114

1435 rows × 9 columns

In [9]:

toyo4.describe()

Out[9]:

	Price	Age	KM	HP	CC	Doors	
count	1435.000000	1435.000000	1435.000000	1435.000000	1435.000000	1435.000000	143
mean	10720.915679	55.980488	68571.782578	101.491986	1576.560976	4.032753	ţ
std	3608.732978	18.563312	37491.094553	14.981408	424.387533	0.952667	(
min	4350.000000	1.000000	1.000000	69.000000	1300.000000	2.000000	:
25%	8450.000000	44.000000	43000.000000	90.000000	1400.000000	3.000000	ţ
50%	9900.000000	61.000000	63451.000000	110.000000	1600.000000	4.000000	ţ
75%	11950.000000	70.000000	87041.500000	110.000000	1600.000000	5.000000	ţ
max	32500.000000	80.000000	243000.000000	192.000000	16000.000000	5.000000	(
4							•

Correlation Analysis

In [10]:

toyo4.corr()

Out[10]:

	Price	Age	KM	НР	СС	Doors	Gears	QT	
Price	1.000000	-0.876273	-0.569420	0.314134	0.124375	0.183604	0.063831	0.211508	
Age	-0.876273	1.000000	0.504575	-0.155293	-0.096549	-0.146929	-0.005629	-0.193319	-
KM	-0.569420	0.504575	1.000000	-0.332904	0.103822	-0.035193	0.014890	0.283312	-
HP	0.314134	-0.155293	-0.332904	1.000000	0.035207	0.091803	0.209642	-0.302287	
СС	0.124375	-0.096549	0.103822	0.035207	1.000000	0.079254	0.014732	0.305982	
Doors	0.183604	-0.146929	-0.035193	0.091803	0.079254	1.000000	-0.160101	0.107353	
Gears	0.063831	-0.005629	0.014890	0.209642	0.014732	-0.160101	1.000000	-0.005125	
QT	0.211508	-0.193319	0.283312	-0.302287	0.305982	0.107353	-0.005125	1.000000	
Weight	0.575869	-0.466484	-0.023969	0.087143	0.335077	0.301734	0.021238	0.621988	
4									•

In [11]:

```
sns.set_style(style='darkgrid')
sns.pairplot(toyo4)
```

Out[11]:

<seaborn.axisgrid.PairGrid at 0x74dd8e9760>

Model Building

In [12]:

```
model=smf.ols("Price~Age+KM+HP+CC+Doors+Gears+QT+Weight",data=toyo4).fit()
```

In [13]:

```
# Finding coefficient parameters
model.params
```

Out[13]:

Intercept -5472.540368 -121.713891 KM -0.020737 HP 31.584612 CC-0.118558 Doors -0.920189 597.715894 Gears QΤ 3.858805 16.855470 Weight

dtype: float64

In [14]:

```
# Finding tvalues and pvalues
model.tvalues , np.round(model.pvalues,5)
```

Out[14]:

(Intercept -3.875273 -46.551876 Age KM -16.552424 ΗP 11.209719 CC-1.316436 Doors -0.023012 Gears 3.034563 QΤ 2.944198 Weight 15.760663 dtype: float64, 0.00011 Intercept

0.00000 Age KM 0.00000 ΗP 0.00000 CC0.18824 0.98164 Doors Gears 0.00245 QΤ 0.00329 0.00000 Weight

dtype: float64)

Inference:

CC and Doors are insignificant

```
In [15]:
# Finding rsquared values
model.rsquared ,model.rsquared_adj
Out[15]:
(0.8625200256947, 0.8617487495415146)
Inference:
R_Squared value is 0.86 model is a Good model
In [16]:
# Build SLR and MLR for insignificant variables 'CC' and 'Doors'
# Also find their tvalues and pvalues
In [17]:
slr_c=smf.ols("Price~CC",data=toyo4).fit()
slr_c.tvalues, slr_c.pvalues # CC has significant pvalue
Out[17]:
(Intercept
              24.879592
               4.745039
 CC
 dtype: float64,
 Intercept
              7.236022e-114
 CC
               2.292856e-06
 dtype: float64)
In [18]:
slr_d=smf.ols("Price~Doors",data=toyo4).fit()
slr_d.tvalues, slr_d.pvalues # Doors has significant value
Out[18]:
              19.421546
(Intercept
 Doors
               7.070520
 dtype: float64,
 Intercept
              8.976407e-75
 Doors
              2.404166e-12
 dtype: float64)
In [19]:
mlr_cd=smf.ols("Price~CC+Doors",data=toyo4).fit()
mlr_cd.tvalues, mlr_cd.pvalues # CC and Doors have significant pvalue
Out[19]:
              12.786341
(Intercept
 CC
               4.268006
               6.752236
 Doors
 dtype: float64,
 Intercept
              1.580945e-35
 CC
              2.101878e-05
              2.109558e-11
 Doors
```

dtype: float64)

Model Validation Techniques

Two Techniques: 1. Collinearity Check & 2. Residual Analysis

In [20]:

```
# 1) Collinearity problem Check
# Calculate VIF = 1/(1-Rsquare) For all independent variables
rsq_age=smf.ols("Age~KM+HP+CC+Doors+Gears+QT+Weight",data=toyo4).fit().rsquared
vif_age=1/(1-rsq_age)
rsq_km=smf.ols("KM~Age+HP+CC+Doors+Gears+QT+Weight",data=toyo4).fit().rsquared
vif_km=1/(1-rsq_km)
rsq_hp=smf.ols("HP~Age+KM+CC+Doors+Gears+QT+Weight",data=toyo4).fit().rsquared
vif hp=1/(1-rsq hp)
rsq cc=smf.ols("CC~Age+KM+HP+Doors+Gears+QT+Weight",data=toyo4).fit().rsquared
vif_cc=1/(1-rsq_cc)
rsq_dr=smf.ols("Doors~Age+KM+HP+CC+Gears+QT+Weight",data=toyo4).fit().rsquared
vif dr=1/(1-rsq dr)
rsq_gr=smf.ols("Gears~Age+KM+HP+CC+Doors+QT+Weight",data=toyo4).fit().rsquared
vif_gr=1/(1-rsq_gr)
rsq_qt=smf.ols("QT~Age+KM+HP+CC+Doors+Gears+Weight",data=toyo4).fit().rsquared
vif_qt=1/(1-rsq_qt)
rsq_wt=smf.ols("Weight~Age+KM+HP+CC+Doors+Gears+QT",data=toyo4).fit().rsquared
vif_wt=1/(1-rsq_wt)
# Putting the values in DataFrame
d1={'Vriables':['Age','KM','HP','CC','Doors','Gears','QT','Weight'],
    'VIF':[vif_age ,vif_km,vif_hp,vif_cc,vif_dr,vif_gr,vif_qt,vif_wt]}
Vif df=pd.DataFrame(d1)
Vif_df
```

Out[20]:

	Vriables	VIF
0	Age	1.876236
1	KM	1.757178
2	HP	1.419180
3	CC	1.163470
4	Doors	1.155890
5	Gears	1.098843
6	QT	2.295375
7	Weight	2.487180

equation

In [21]:

```
# 2) Residual Analysis
# Test for normality of residuals (Q-Q Plot) using residual model (model.resid)
sm.qqplot(model.resid,line='q') # 'q' - A line is fit through the quartiles # line= '45'-
plt.title("Normal Q-Q plot of residuals")
plt.show()
```


In [22]:

list(np.where(model.resid>6000)) # oulier detection from above Q-Q plot of residual

Out[22]:

[array([109, 146, 522], dtype=int64)]

In [23]:

list(np.where(model.resid<-6000))</pre>

Out[23]:

[array([220, 600, 959], dtype=int64)]

In [24]:

Test for Homoscedasticity or heteroscedasticity (plotting model's standardized fitted val def standard_values(vals) : return (vals-vals.mean())/vals.std() # user defined z = (x-mu)/(y-mu)

In [25]:

```
plt.scatter(standard_values(model.fittedvalues), standard_values(model.resid))
plt.title('Residual Plot')
plt.xlabel('standardized fitted values')
plt.ylabel('standardized residual values')
plt.show()
```


In [26]:

Test for error or Residuals Vs Regressors or Independent 'x'vaiables or predictors
Using Residual Regression plot code graphics.plot_regress_exog(model,'x',fig) # exog = x-

In [27]:

```
fig=plt.figure(figsize=(15,8))
sm.graphics.plot_regress_exog(model,'Age',fig=fig)
plt.show()
```


In [28]:

```
fig=plt.figure(figsize=(15,8))
sm.graphics.plot_regress_exog(model,'KM',fig=fig)
plt.show()
```


In [29]:

```
fig=plt.figure(figsize=(15,8))
sm.graphics.plot_regress_exog(model, 'HP', fig=fig)
plt.show()
```


In [30]:

```
fig=plt.figure(figsize=(15,8))
sm.graphics.plot_regress_exog(model,'CC',fig=fig)
plt.show()
```


In [31]:

fig=plt.figure(figsize=(15,8))
sm.graphics.plot_regress_exog(model,'Doors',fig=fig)
plt.show()

In [32]:

```
fig=plt.figure(figsize=(15,8))
sm.graphics.plot_regress_exog(model,'Gears',fig=fig)
plt.show()
```


In [33]:

```
fig=plt.figure(figsize=(15,8))
sm.graphics.plot_regress_exog(model,'QT',fig=fig)
plt.show()
```


In [34]:

```
fig=plt.figure(figsize=(15,8))
sm.graphics.plot_regress_exog(model,'Weight',fig=fig)
plt.show()
```


Model Deletion Diagnostics (checking outliers or influencers)

Two Techniques: 1.Cook's Distance & 2. Leverage value

In [35]:

```
# Cook's Distance: If Cook's distance > 1, Then it's an outlier
# Get influencers using cook's distance
(c,_)=model.get_influence().cooks_distance
c
```

Out[35]:

```
array([7.22221054e-03, 3.94547973e-03, 5.44224039e-03, ..., 8.04110550e-07, 6.99854767e-04, 1.08408002e-02])
```

In [36]:

```
# Plot the influencer using the stem plot
fig=plt.figure(figsize=(20,7))
plt.stem(np.arange(len(toyo4)),np.round(c,3))
plt.xlabel('Row Index')
plt.ylabel('Cooks Distance')
plt.show()
```


In [37]:

```
# Index and value of influncer where C>0.5
np.argmax(c),np.max(c)
```

Out[37]:

(80, 78.7295058224916)

In [38]:

2.Leverage Value using High Influncer Points: Points beyond Leverage_cutoff value are inf
fig,ax=plt.subplots(figsize=(20,20))
fig=influence_plot(model,ax = ax)

In [39]:

```
# Levarge Cutoff value = 3*(k+1)/n; k= no.of features/columns & n=no.of datapoints
k=toyo4.shape[1]
n=toyo4.shape[0]
leverage_cutoff=(3*(k+1))/n
leverage_cutoff
```

Out[39]:

0.020905923344947737

In [40]:

```
toyo4[toyo4.index.isin([80])]
```

Out[40]:

	Price	Age	KM	HP	CC	Doors	Gears	QT	Weight
80	18950	25	20019	110	16000	5	5	100	1180

improving the model

In [41]:

Creating a copy lof data so that original dataset is not affected
toyo_new=toyo4.copy()
toyo_new

Out[41]:

	Price	Age	KM	HP	CC	Doors	Gears	QT	Weight
0	13500	23	46986	90	2000	3	5	210	1165
1	13750	23	72937	90	2000	3	5	210	1165
2	13950	24	41711	90	2000	3	5	210	1165
3	14950	26	48000	90	2000	3	5	210	1165
4	13750	30	38500	90	2000	3	5	210	1170
1430	7500	69	20544	86	1300	3	5	69	1025
1431	10845	72	19000	86	1300	3	5	69	1015
1432	8500	71	17016	86	1300	3	5	69	1015
1433	7250	70	16916	86	1300	3	5	69	1015
1434	6950	76	1	110	1600	5	5	19	1114

1435 rows × 9 columns

In [42]:

Discard the data points which are influencers and reassign the row number (reset_index(dr
toyo5=toyo_new.drop(toyo_new.index[[80]],axis=0).reset_index(drop=True)
toyo5

Out[42]:

	Price	Age	KM	HP	CC	Doors	Gears	QT	Weight
0	13500	23	46986	90	2000	3	5	210	1165
1	13750	23	72937	90	2000	3	5	210	1165
2	13950	24	41711	90	2000	3	5	210	1165
3	14950	26	48000	90	2000	3	5	210	1165
4	13750	30	38500	90	2000	3	5	210	1170
1429	7500	69	20544	86	1300	3	5	69	1025
1430	10845	72	19000	86	1300	3	5	69	1015
1431	8500	71	17016	86	1300	3	5	69	1015
1432	7250	70	16916	86	1300	3	5	69	1015
1433	6950	76	1	110	1600	5	5	19	1114

1434 rows × 9 columns

Model Deletion Diagnostics and Final Model

```
In [43]:
```

```
while np.max(c)>0.5:
    model=smf.ols("Price~Age+KM+HP+CC+Doors+Gears+QT+Weight",data=toyo5).fit()
    (c,_)=model.get_influence().cooks_distance
    c
    np.argmax(c),np.max(c)
    toyo5=toyo5.drop(toyo5.index[[np.argmax(c)]],axis=0).reset_index(drop=True)
    toyo5
else:
    final_model=smf.ols("Price~Age+KM+HP+CC+Doors+Gears+QT+Weight",data=toyo5).fit()
    final_model.rsquared, final_model.aic
    print("Thus model accuracy is improved to",final_model.rsquared)
```

Thus model accuracy is improved to 0.8882395145171204

In [44]:

```
if np.max(c)>0.5:
    model=smf.ols("Price~Age+KM_HP+CC+Doors+Gears+QT+Weight",data=toyo5).fit()
    (c,_)=model.get_influence().cooks_distance
    c
    np.argmax(c),np.max(c)
    toyo5=toyo5.drop(toyo5.index[[np.argmax(c)]],axis=0).reset_index(drop=True)
    toyo5
else:
    final_model=smf.ols("Price~Age+KM+HP+CC+Doors+Gears+QT+Weight",data=toyo5).fit()
    final_model.rsquared, final_model.aic
    print("Thus model accuracy is improved to",final_model.rsquared)
```

Thus model accuracy is improved to 0.8882395145171204

In [45]:

```
final_model.rsquared
```

Out[45]:

0.8882395145171204

Creation of model using Lasso

```
In [46]:
```

```
x=toyo5[['Age','Weight','KM','HP','CC','Doors','QT','Weight']]
y=toyo5['Price']
from sklearn.model_selection import train_test_split
from sklearn.linear_model import Lasso
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.25,random_state=10)
reg=Lasso(alpha=0.5)
reg.fit(x_train, y_train)
print('Lasso Regression: R^2 score on training set',reg.score(x_train, y_train)*100)
print('Lasso Regression: R^2 score on test set',reg.score(x_test, y_test)*100)
lambdas=(0.001,0.01,0.1,0.5,1,2,10)
1 \text{ num}=7
pred_num=x.shape[1]
# prepare data for enumerate
coeff_a = np.zeros((l_num, pred_num))
train_r_squared =np.zeros(l_num)
test_r_squared =np.zeros(1_num)
# enumerate through lambdas with index and i
for ind, i in enumerate(lambdas):
    reg = Lasso(alpha =1)
    reg.fit(x_train, y_train)
    coeff_a[ind,:]=reg.coef_
    train_r_squared[ind] = reg.score(x_train, y_train)
    test_r_squared[ind] = reg.score(x_test, y_test)
```

Lasso Regression: R^2 score on training set 88.74698071262482 Lasso Regression: R^2 score on test set 88.77836439214997

Creation of model using Ridge

```
In [47]:
```

```
from sklearn.linear model import Ridge
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.25,random_state=10)
reg=Ridge(alpha=0.5)
reg.fit(x_train, y_train)
print('Ridge Regression: R^2 score on training set',reg.score(x_train, y_train)*100)
print('Ridge Regression: R^2 score on test set',reg.score(x_test, y_test)*100)
lambdas=(0.001,0.01,0.1,0.5,1,2,10)
1 \text{ num}=7
pred_num=x.shape[1]
# prepare data for enumerate
coeff_a = np.zeros((l_num, pred_num))
train_r_squared =np.zeros(l_num)
test r squared =np.zeros(1 num)
# enumerate through Lambdas with index and i
for ind, i in enumerate(lambdas):
    reg = Ridge(alpha =1)
    reg.fit(x_train, y_train)
    coeff a[ind,:]=reg.coef
    train_r_squared[ind] = reg.score(x_train, y_train)
    test_r_squared[ind] = reg.score(x_test, y_test)
```

Ridge Regression: R^2 score on training set 88.74698328222092 Ridge Regression: R^2 score on test set 88.77884476539593

Model Predictions

```
In [48]:
```

```
# say New data for prediction is
new_data=pd.DataFrame({"Age":12,"KM":40000,"HP":80,"CC":1300,"Doors":4,"Gears":5,"QT":69,"Work new_data
```

Out[48]:

```
        Age
        KM
        HP
        CC
        Doors
        Gears
        QT
        Weight

        0
        12
        40000
        80
        1300
        4
        5
        69
        1012
```

```
In [49]:
```

```
# Manual prediction of price
final_model.predict(new_data)
```

Out[49]:

0 14341.570181 dtype: float64

```
In [50]:
```

```
# Auotamatioc precdiction of price with 90.02% accuracy
pred_y=final_model.predict(toyo5)
pred_y
```

Out[50]:

```
16345.352610
1
        15886.635544
2
        16328.224968
3
        15996.318854
        15883.424182
1426
        9161.230587
1427
         8536.091326
1428
         8681.531063
1429
        8793.668694
        10860.695492
1430
Length: 1431, dtype: float64
```

Table Containig R^2 value for each prepared model

```
In [51]:
```

```
d2={'Prep_Models':['Model','Final_Model'],'Rsquared':[model.rsquared,final_model.rsquared]}
table=pd.DataFrame(d2)
table
```

Out[51]:

	Prep_Models	Rsquared
0	Model	0.883968
1	Final Model	0.888240

```
In [ ]:
```

Assignment-05-Multiple Linear Regression-2

In [52]:

#Import dataset

data=pd.read_csv("C:/Users/LENOVO/Documents/Custom Office Templates/50_Startups.csv")
data

Out[52]:

	R&D Spend	Administration	Marketing Spend	State	Profit
0	165349.20	136897.80	471784.10	New York	192261.83
1	162597.70	151377.59	443898.53	California	191792.06
2	153441.51	101145.55	407934.54	Florida	191050.39
3	144372.41	118671.85	383199.62	New York	182901.99
4	142107.34	91391.77	366168.42	Florida	166187.94
5	131876.90	99814.71	362861.36	New York	156991.12
6	134615.46	147198.87	127716.82	California	156122.51
7	130298.13	145530.06	323876.68	Florida	155752.60
8	120542.52	148718.95	311613.29	New York	152211.77
9	123334.88	108679.17	304981.62	California	149759.96
10	101913.08	110594.11	229160.95	Florida	146121.95
11	100671.96	91790.61	249744.55	California	144259.40
12	93863.75	127320.38	249839.44	Florida	141585.52
13	91992.39	135495.07	252664.93	California	134307.35
14	119943.24	156547.42	256512.92	Florida	132602.65
15	114523.61	122616.84	261776.23	New York	129917.04
16	78013.11	121597.55	264346.06	California	126992.93
17	94657.16	145077.58	282574.31	New York	125370.37
18	91749.16	114175.79	294919.57	Florida	124266.90
19	86419.70	153514.11	0.00	New York	122776.86
20	76253.86	113867.30	298664.47	California	118474.03
21	78389.47	153773.43	299737.29	New York	111313.02
22	73994.56	122782.75	303319.26	Florida	110352.25
23	67532.53	105751.03	304768.73	Florida	108733.99
24	77044.01	99281.34	140574.81	New York	108552.04
25	64664.71	139553.16	137962.62	California	107404.34
26	75328.87	144135.98	134050.07	Florida	105733.54
27	72107.60	127864.55	353183.81	New York	105008.31
28	66051.52	182645.56	118148.20	Florida	103282.38
29	65605.48	153032.06	107138.38	New York	101004.64
30	61994.48	115641.28	91131.24	Florida	99937.59
31	61136.38	152701.92	88218.23	New York	97483.56
32	63408.86	129219.61	46085.25	California	97427.84

	R&D Spend	Administration	Marketing Spend	State	Profit
33	55493.95	103057.49	214634.81	Florida	96778.92
34	46426.07	157693.92	210797.67	California	96712.80
35	46014.02	85047.44	205517.64	New York	96479.51
36	28663.76	127056.21	201126.82	Florida	90708.19
37	44069.95	51283.14	197029.42	California	89949.14
38	20229.59	65947.93	185265.10	New York	81229.06
39	38558.51	82982.09	174999.30	California	81005.76
40	28754.33	118546.05	172795.67	California	78239.91
41	27892.92	84710.77	164470.71	Florida	77798.83
42	23640.93	96189.63	148001.11	California	71498.49
43	15505.73	127382.30	35534.17	New York	69758.98
44	22177.74	154806.14	28334.72	California	65200.33
45	1000.23	124153.04	1903.93	New York	64926.08
46	1315.46	115816.21	297114.46	Florida	49490.75
47	0.00	135426.92	0.00	California	42559.73
48	542.05	51743.15	0.00	New York	35673.41
49	0.00	116983.80	45173.06	California	14681.40

In [53]:

```
# EDA
data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50 entries, 0 to 49
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	R&D Spend	50 non-null	float64
1	Administration	50 non-null	float64
2	Marketing Spend	50 non-null	float64
3	State	50 non-null	object
4	Profit	50 non-null	float64

dtypes: float64(4), object(1)

memory usage: 2.1+ KB

In [54]:

```
data.isnull().sum()
```

Out[54]:

R&D Spend 0
Administration 0
Marketing Spend 0
State 0
Profit 0
dtype: int64

Inference:

No NA values

In [55]:

data1=data.rename({'R&D Spend':'RDS','Administration':'ADMS','Marketing Spend':'MKTS'},axis
data1

Out[55]:

	RDS	ADMS	MKTS	State	Profit
0	165349.20	136897.80	471784.10	New York	192261.83
1	162597.70	151377.59	443898.53	California	191792.06
2	153441.51	101145.55	407934.54	Florida	191050.39
3	144372.41	118671.85	383199.62	New York	182901.99
4	142107.34	91391.77	366168.42	Florida	166187.94
5	131876.90	99814.71	362861.36	New York	156991.12
6	134615.46	147198.87	127716.82	California	156122.51
7	130298.13	145530.06	323876.68	Florida	155752.60
8	120542.52	148718.95	311613.29	New York	152211.77
9	123334.88	108679.17	304981.62	California	149759.96
10	101913.08	110594.11	229160.95	Florida	146121.95
11	100671.96	91790.61	249744.55	California	144259.40
12	93863.75	127320.38	249839.44	Florida	141585.52
13	91992.39	135495.07	252664.93	California	134307.35
14	119943.24	156547.42	256512.92	Florida	132602.65
15	114523.61	122616.84	261776.23	New York	129917.04
16	78013.11	121597.55	264346.06	California	126992.93
17	94657.16	145077.58	282574.31	New York	125370.37
18	91749.16	114175.79	294919.57	Florida	124266.90
19	86419.70	153514.11	0.00	New York	122776.86
20	76253.86	113867.30	298664.47	California	118474.03
21	78389.47	153773.43	299737.29	New York	111313.02
22	73994.56	122782.75	303319.26	Florida	110352.25
23	67532.53	105751.03	304768.73	Florida	108733.99
24	77044.01	99281.34	140574.81	New York	108552.04
25	64664.71	139553.16	137962.62	California	107404.34
26	75328.87	144135.98	134050.07	Florida	105733.54
27	72107.60	127864.55	353183.81	New York	105008.31
28	66051.52	182645.56	118148.20	Florida	103282.38
29	65605.48	153032.06	107138.38	New York	101004.64
30	61994.48	115641.28	91131.24	Florida	99937.59
31	61136.38	152701.92	88218.23	New York	97483.56
32	63408.86	129219.61	46085.25	California	97427.84
33	55493.95	103057.49	214634.81	Florida	96778.92

	RDS	ADMS	MKTS	State	Profit
34	46426.07	157693.92	210797.67	California	96712.80
35	46014.02	85047.44	205517.64	New York	96479.51
36	28663.76	127056.21	201126.82	Florida	90708.19
37	44069.95	51283.14	197029.42	California	89949.14
38	20229.59	65947.93	185265.10	New York	81229.06
39	38558.51	82982.09	174999.30	California	81005.76
40	28754.33	118546.05	172795.67	California	78239.91
41	27892.92	84710.77	164470.71	Florida	77798.83
42	23640.93	96189.63	148001.11	California	71498.49
43	15505.73	127382.30	35534.17	New York	69758.98
44	22177.74	154806.14	28334.72	California	65200.33
45	1000.23	124153.04	1903.93	New York	64926.08
46	1315.46	115816.21	297114.46	Florida	49490.75
47	0.00	135426.92	0.00	California	42559.73
48	542.05	51743.15	0.00	New York	35673.41
49	0.00	116983.80	45173.06	California	14681.40

In [56]:

data1[data1.duplicated()] # No duplicated data

Out[56]:

RDS ADMS MKTS State Profit

In [57]:

data1.describe()

Out[57]:

	RDS	ADMS	MKTS	Profit
count	50.000000	50.000000	50.000000	50.000000
mean	73721.615600	121344.639600	211025.097800	112012.639200
std	45902.256482	28017.802755	122290.310726	40306.180338
min	0.000000	51283.140000	0.000000	14681.400000
25%	39936.370000	103730.875000	129300.132500	90138.902500
50%	73051.080000	122699.795000	212716.240000	107978.190000
75%	101602.800000	144842.180000	299469.085000	139765.977500
max	165349.200000	182645.560000	471784.100000	192261.830000

Correlation Analysis

In [58]:

data1.corr()

Out[58]:

	RDS	ADMS	MKTS	Profit
RDS	1.000000	0.241955	0.724248	0.972900
ADMS	0.241955	1.000000	-0.032154	0.200717
MKTS	0.724248	-0.032154	1.000000	0.747766
Profit	0.972900	0.200717	0.747766	1.000000

In [59]:

sns.set_style(style='darkgrid')
sns.pairplot(data1)

Out[59]:

<seaborn.axisgrid.PairGrid at 0x74e7940310>

Model Building

```
In [60]:
model=smf.ols("Profit~RDS+ADMS+MKTS",data=data1).fit()
In [61]:
# Model Testing
# finding coefficient parameters
model.params
Out[61]:
             50122.192990
Intercept
RDS
                 0.805715
ADMS
                 -0.026816
MKTS
                 0.027228
dtype: float64
In [62]:
# finding tvalues and pvalues
model.tvalues, np.round(model.pvalues,5)
Out[62]:
(Intercept
               7.626218
              17.846374
 RDS
 ADMS
              -0.525507
MKTS
               1.655077
 dtype: float64,
 Intercept
              0.00000
 RDS
              0.00000
 ADMS
              0.60176
MKTS
              0.10472
 dtype: float64)
Inference:
ADMS and MKTS has insignificant values
In [63]:
# Finding rquared values
model.rsquared, model.rsquared_adj # Model accuracy is 94.75%
Out[63]:
(0.9507459940683246, 0.9475337762901719)
In [64]:
# Build SLR and MLR models for insignificant variables 'ADMS' and 'MKTS'
# Also find their tvalues and pvalues
```

```
In [65]:
slr_a=smf.ols("Profit~ADMS", data=data1).fit()
slr_a.tvalues, slr_a.pvalues # ADMS has insignificant pvalue
Out[65]:
(Intercept
              3.040044
 ADMS
              1.419493
 dtype: float64,
              0.003824
 Intercept
 ADMS
              0.162217
 dtype: float64)
In [66]:
slr_m=smf.ols("Profit~MKTS", data=data1).fit()
slr_m.tvalues, slr_m.pvalues #MKTS has significant pvalue
Out[66]:
(Intercept
              7.808356
              7.802657
MKTS
 dtype: float64,
             4.294735e-10
 Intercept
MKTS
              4.381073e-10
 dtype: float64)
In [67]:
mlr_am=smf.ols("Profit~ADMS+MKTS", data=data1).fit()
mlr_am.tvalues, mlr_am.pvalues # variables have significant pvalues
Out[67]:
(Intercept
              1.142741
              2.467779
 ADMS
 MKTS
              8.281039
 dtype: float64,
 Intercept
              2.589341e-01
 ADMS
              1.729198e-02
 MKTS
              9.727245e-11
```

Model Validation

dtype: float64)

Two Techniques: 1. Collinearity Check & 2. Residual Analysis

In [68]:

```
# 1) Collinearity Problem Check
# Calculate VIF =1/(1-Rsquare) for all independent varaibles

rsq_r=smf.ols("RDS~ADMS+MKTS",data=data1).fit().rsquared
vif_r=1/(1-rsq_r)

rsq_a=smf.ols("ADMS~RDS+MKTS",data=data1).fit().rsquared
vif_a=1/(1-rsq_a)

rsq_m=smf.ols("MKTS~RDS+ADMS",data=data1).fit().rsquared
vif_m=1/(1-rsq_m)

# Putting the values in DataFrame
d1={'Variables':['RDS','ADM','MKTS'], 'VIF':[vif_r,vif_a,vif_m]}
Vif_df=pd.DataFrame(d1)
Vif_df
```

Out[68]:

	Variables	VIF
0	RDS	2.468903
1	ADM	1.175091
2	MKTS	2.326773

In [69]:

None variable has Vif>20, No Collinearity, so cosider all variables in Regression equatio

In [70]:

```
# 2) Residual analysis
# Test for Normality of Residual (Q-Q Plot) using residual model(model.resid)
sm.qqplot(model.resid,line='q')
plt.title('Normal Q-Q plot of Residual')
plt.show()
```


In [71]:

```
list(np.where(model.resid<-30000))</pre>
```

Out[71]:

[array([49], dtype=int64)]

In [72]:

Test for Homoscedasticity or heteroscedasticity (plotting model's standardized fitted val def standard_values(vals) : return (vals-vals.mean())/vals.std() # user defined z = (x-mu)/(y-u)

In [73]:

```
plt.scatter(standard_values(model.fittedvalues),standard_values(model.resid))
plt.title('Residual Plot')
plt.xlabel('standardized fitted values')
plt.ylabel('standardized residual values')
plt.show()
```


In [74]:

Test for error or Residuals Vs Regressors or Independent 'x'vaiables or predictors # Using Residual Regression plot code graphics.plot_regress_exog(model,'x',fig) # exog = x-

In [75]:

```
fig=plt.figure(figsize=(15,8))
sm.graphics.plot_regress_exog(model,'RDS',fig=fig)
plt.show()
```


In [76]:

```
fig=plt.figure(figsize=(15,8))
sm.graphics.plot_regress_exog(model,'ADMS',fig=fig)
plt.show()
```


In [77]:

```
fig=plt.figure(figsize=(15,8))
sm.graphics.plot_regress_exog(model,'MKTS',fig=fig)
plt.show()
```


Model Deletion Diagnostics (checking outliers or influencers)

Two Techniques: 1.Cook's Distance & 2. Leverage value

```
In [78]:
```

```
# Cook's Distance: If Cook's distance > 1, Then it's an outlier
# Get influencers using cook's distance
(c,_)=model.get_influence().cooks_distance
c
```

Out[78]:

```
array([3.21825244e-05, 3.27591036e-03, 3.23842699e-02, 2.17206555e-02, 1.44833032e-02, 1.17158463e-02, 2.91766303e-03, 3.56513444e-03, 4.04303948e-05, 4.86758017e-03, 1.51064757e-02, 1.63564959e-02, 1.15516625e-02, 4.01422811e-03, 6.12934253e-02, 3.40013448e-02, 8.33556413e-03, 3.30534399e-03, 2.16819303e-03, 4.07440577e-02, 4.25137222e-04, 1.09844352e-02, 2.91768000e-03, 2.76030254e-04, 5.04643588e-03, 3.00074623e-03, 3.41957068e-03, 2.98396413e-02, 1.31590664e-03, 1.25992620e-04, 4.18505125e-05, 9.27434786e-06, 7.08656521e-04, 1.28122674e-04, 2.09815032e-02, 6.69508674e-03, 5.55314705e-02, 6.55050578e-05, 5.61547311e-02, 1.54279607e-03, 1.84850929e-03, 1.97578066e-03, 1.36089280e-04, 2.05553171e-02, 1.23156041e-04, 9.03234206e-02, 5.45303387e-02, 5.33885616e-03, 1.90527441e-01, 2.88082293e-01])
```

In [79]:

```
# Plot the influencer using the stem plot
fig=plt.figure(figsize=(20,7))
plt.stem(np.arange(len(data1)),np.round(c,5))
plt.xlabel('Row Index')
plt.ylabel('Cooks Distance')
plt.show()
```


In [80]:

```
# Index and value of influncer where C>0.5
np.argmax(c),np.max(c)
```

Out[80]:

(49, 0.28808229275432634)

In [81]:

```
# 2. Leverage Value using High Influence Points : Points beyond Leverage_cutoff value are i
influence_plot(model)
plt.show()
```


In [82]:

```
# Levarge Cutoff value = 3*(k+1)/n; k= no.of features/columns & n=no.of datapoints
k=data1.shape[1]
n=data1.shape[0]
leverage_cutoff=(3*(k+1))/n
leverage_cutoff
```

Out[82]:

0.36

In [83]:

data1[data1.index.isin([49])]

Out[83]:

	RDS	ADMS	MKTS	State	Profit
49	0.0	116983.8	45173.06	California	14681.4

In [84]:

Discard the data points which are influencers and reassign the row number (reset_index(dr
data2=data1.drop(toyo_new.index[[49]],axis=0).reset_index(drop=True)
data2

Out[84]:

	RDS	ADMS	MKTS	State	Profit
0	165349.20	136897.80	471784.10	New York	192261.83
1	162597.70	151377.59	443898.53	California	191792.06
2	153441.51	101145.55	407934.54	Florida	191050.39
3	144372.41	118671.85	383199.62	New York	182901.99
4	142107.34	91391.77	366168.42	Florida	166187.94
5	131876.90	99814.71	362861.36	New York	156991.12
6	134615.46	147198.87	127716.82	California	156122.51
7	130298.13	145530.06	323876.68	Florida	155752.60
8	120542.52	148718.95	311613.29	New York	152211.77
9	123334.88	108679.17	304981.62	California	149759.96
10	101913.08	110594.11	229160.95	Florida	146121.95
11	100671.96	91790.61	249744.55	California	144259.40
12	93863.75	127320.38	249839.44	Florida	141585.52
13	91992.39	135495.07	252664.93	California	134307.35
14	119943.24	156547.42	256512.92	Florida	132602.65
15	114523.61	122616.84	261776.23	New York	129917.04
16	78013.11	121597.55	264346.06	California	126992.93
17	94657.16	145077.58	282574.31	New York	125370.37
18	91749.16	114175.79	294919.57	Florida	124266.90
19	86419.70	153514.11	0.00	New York	122776.86
20	76253.86	113867.30	298664.47	California	118474.03
21	78389.47	153773.43	299737.29	New York	111313.02
22	73994.56	122782.75	303319.26	Florida	110352.25
23	67532.53	105751.03	304768.73	Florida	108733.99
24	77044.01	99281.34	140574.81	New York	108552.04
25	64664.71	139553.16	137962.62	California	107404.34
26	75328.87	144135.98	134050.07	Florida	105733.54
27	72107.60	127864.55	353183.81	New York	105008.31
28	66051.52	182645.56	118148.20	Florida	103282.38
29	65605.48	153032.06	107138.38	New York	101004.64
30	61994.48	115641.28	91131.24	Florida	99937.59
31	61136.38	152701.92	88218.23	New York	97483.56
32	63408.86	129219.61	46085.25	California	97427.84

	RDS	ADMS	MKTS	State	Profit
33	55493.95	103057.49	214634.81	Florida	96778.92
34	46426.07	157693.92	210797.67	California	96712.80
35	46014.02	85047.44	205517.64	New York	96479.51
36	28663.76	127056.21	201126.82	Florida	90708.19
37	44069.95	51283.14	197029.42	California	89949.14
38	20229.59	65947.93	185265.10	New York	81229.06
39	38558.51	82982.09	174999.30	California	81005.76
40	28754.33	118546.05	172795.67	California	78239.91
41	27892.92	84710.77	164470.71	Florida	77798.83
42	23640.93	96189.63	148001.11	California	71498.49
43	15505.73	127382.30	35534.17	New York	69758.98
44	22177.74	154806.14	28334.72	California	65200.33
45	1000.23	124153.04	1903.93	New York	64926.08
46	1315.46	115816.21	297114.46	Florida	49490.75
47	0.00	135426.92	0.00	California	42559.73
48	542.05	51743.15	0.00	New York	35673.41

Model Deletion Diagnostics and Final Model

In [85]:

```
while np.max(c)>0.5:
    model=smf.ols("Profit~RDS+ADMS+MKTS",data=data2).fit()
    (c,_)=model.get_influence().cooks_distance
    c
    np.argmax(c),np.max(c)
    data2=data2.drop(data2.index[[np.argmax(c)]],axis=0).reset_index(drop=True)
    data2
else:
    final_model=smf.ols("Profit~RDS+ADMS+MKTS",data=data2).fit()
    final_model.rsquared, final_model.aic
    print("Thus model accuracy is improved to",final_model.rsquared)
```

Thus model accuracy is improved to 0.9613162435129847

In [86]:

```
final_model.rsquared
```

Out[86]:

0.9613162435129847

Creation of model using Lasso

```
In [87]:
```

```
x=data2[['RDS','ADMS','MKTS']]
y=data2['Profit']
from sklearn.model_selection import train_test_split
from sklearn.linear_model import Lasso
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.25,random_state=10)
reg=Lasso(alpha=0.5)
reg.fit(x_train, y_train)
print('Lasso Regression: R^2 score on training set',reg.score(x_train, y_train)*100)
print('Lasso Regression: R^2 score on test set',reg.score(x_test, y_test)*100)
lambdas=(0.001,0.01,0.1,0.5,1,2,10)
1 \text{ num}=7
pred_num=x.shape[1]
# prepare data for enumerate
coeff_a = np.zeros((l_num, pred_num))
train_r_squared =np.zeros(l_num)
test_r_squared =np.zeros(1_num)
# enumerate through lambdas with index and i
for ind, i in enumerate(lambdas):
    reg = Lasso(alpha =1)
    reg.fit(x_train, y_train)
    coeff_a[ind,:]=reg.coef_
    train_r_squared[ind] = reg.score(x_train, y_train)
    test_r_squared[ind] = reg.score(x_test, y_test)
```

Lasso Regression: R^2 score on training set 95.24694195134217 Lasso Regression: R^2 score on test set 97.33570553521325

Creation of model using Ridge

In [88]:

```
from sklearn.linear model import Ridge
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.25,random_state=10)
reg=Ridge(alpha=0.5)
reg.fit(x_train, y_train)
print('Ridge Regression: R^2 score on training set',reg.score(x_train, y_train)*100)
print('Ridge Regression: R^2 score on test set',reg.score(x_test, y_test)*100)
lambdas=(0.001,0.01,0.1,0.5,1,2,10)
1 \text{ num}=7
pred_num=x.shape[1]
# prepare data for enumerate
coeff_a = np.zeros((l_num, pred_num))
train_r_squared =np.zeros(l_num)
test r squared =np.zeros(1 num)
# enumerate through Lambdas with index and i
for ind, i in enumerate(lambdas):
   reg = Ridge(alpha =1)
   reg.fit(x_train, y_train)
   coeff a[ind,:]=reg.coef
   train_r_squared[ind] = reg.score(x_train, y_train)
   test_r_squared[ind] = reg.score(x_test, y_test)
```

Ridge Regression: R^2 score on training set 95.24694195134217 Ridge Regression: R^2 score on test set 97.33570551715988

In [89]:

data2

Out[89]:

	RDS	ADMS	MKTS	State	Profit
0	165349.20	136897.80	471784.10	New York	192261.83
1	162597.70	151377.59	443898.53	California	191792.06
2	153441.51	101145.55	407934.54	Florida	191050.39
3	144372.41	118671.85	383199.62	New York	182901.99
4	142107.34	91391.77	366168.42	Florida	166187.94
5	131876.90	99814.71	362861.36	New York	156991.12
6	134615.46	147198.87	127716.82	California	156122.51
7	130298.13	145530.06	323876.68	Florida	155752.60
8	120542.52	148718.95	311613.29	New York	152211.77
9	123334.88	108679.17	304981.62	California	149759.96
10	101913.08	110594.11	229160.95	Florida	146121.95
11	100671.96	91790.61	249744.55	California	144259.40
12	93863.75	127320.38	249839.44	Florida	141585.52
13	91992.39	135495.07	252664.93	California	134307.35
14	119943.24	156547.42	256512.92	Florida	132602.65
15	114523.61	122616.84	261776.23	New York	129917.04
16	78013.11	121597.55	264346.06	California	126992.93
17	94657.16	145077.58	282574.31	New York	125370.37
18	91749.16	114175.79	294919.57	Florida	124266.90
19	86419.70	153514.11	0.00	New York	122776.86
20	76253.86	113867.30	298664.47	California	118474.03
21	78389.47	153773.43	299737.29	New York	111313.02
22	73994.56	122782.75	303319.26	Florida	110352.25
23	67532.53	105751.03	304768.73	Florida	108733.99
24	77044.01	99281.34	140574.81	New York	108552.04
25	64664.71	139553.16	137962.62	California	107404.34
26	75328.87	144135.98	134050.07	Florida	105733.54
27	72107.60	127864.55	353183.81	New York	105008.31
28	66051.52	182645.56	118148.20	Florida	103282.38
29	65605.48	153032.06	107138.38	New York	101004.64
30	61994.48	115641.28	91131.24	Florida	99937.59
31	61136.38	152701.92	88218.23	New York	97483.56
32	63408.86	129219.61	46085.25	California	97427.84
33	55493.95	103057.49	214634.81	Florida	96778.92

	RDS	ADMS	MKTS	State	Profit
34	46426.07	157693.92	210797.67	California	96712.80
35	46014.02	85047.44	205517.64	New York	96479.51
36	28663.76	127056.21	201126.82	Florida	90708.19
37	44069.95	51283.14	197029.42	California	89949.14
38	20229.59	65947.93	185265.10	New York	81229.06
39	38558.51	82982.09	174999.30	California	81005.76
40	28754.33	118546.05	172795.67	California	78239.91
41	27892.92	84710.77	164470.71	Florida	77798.83
42	23640.93	96189.63	148001.11	California	71498.49
43	15505.73	127382.30	35534.17	New York	69758.98
44	22177.74	154806.14	28334.72	California	65200.33
45	1000.23	124153.04	1903.93	New York	64926.08
46	1315.46	115816.21	297114.46	Florida	49490.75
47	0.00	135426.92	0.00	California	42559.73
48	542.05	51743.15	0.00	New York	35673.41

Model Predictions

In [90]:

```
# say new data for prediction is
new_data=pd.DataFrame({'RDS':70000,'ADMS':90000,'MKTS':140000},index=[0])
new_data
```

Out[90]:

	RDS	ADMS	MKTS
0	70000	90000	140000

In [91]:

```
# Manual Prediction of price
final_model.predict(new_data)
```

Out[91]:

0 108727.154753 dtype: float64

In [92]:

```
# Auotomatic prediction of price with 09.02% accuracy
pred_y=final_model.predict(data2)
pred_y
```

Out[92]:

```
0
      190716.676999
1
      187537.122227
2
      180575.526396
3
      172461.144642
4
      170863.486721
5
      162582.583177
6
      157741.338633
7
      159347.735318
8
      151328.826941
9
      154236.846778
10
      135507.792682
11
      135472.855621
12
      129355.599449
13
      127780.129139
14
      149295.404796
15
      145937.941975
16
      117437.627921
      130408.626295
17
18
      129129.234457
19
      116641.003121
20
      117097.731866
21
      117911.019038
22
      115248.217796
23
      110603.139045
24
      114051.073877
25
      103398.054385
26
      111547.638935
27
      114916.165026
28
      103027.229434
29
      103057.621761
30
      100656.410227
31
       99088.213693
32
      100325.741335
33
       98962.303136
34
       90552.307809
35
       91709.288672
36
       77080.554255
37
       90722.503244
38
       71433.021956
39
       85147.375646
40
       76625.510303
41
       76492.145175
42
       72492.394974
43
       62592.049718
44
       67025.731107
45
       50457.297206
46
       58338.443625
47
       49375.776655
48
       51658.096812
dtype: float64
```

Table containig R^2 value for each prepared model

```
In [93]:
```

```
d2={'Prep_Models':['Model','Final_Model'],'Rsquared':[model.rsquared,final_model.rsquared]}
table=pd.DataFrame(d2)
table
```

Out[93]:

	Prep_wodels	Rsquared
0	Model	0.950746
1	Final_Model	0.961316

In []: