MEMS1045 Automatic control

Lecture 8
Steady state error

Objectives

- Describe relationships between static error constants and steady state errors
- Determine the steady state errors to step, ramp and parabola inputs based on system types
- Determine the steady state errors for disturbances and non-unity feedback systems
- Analyze the sensitivity of a function to changes in parameter

Steady state error

In the previous lecture:

• For step input
$$R(s) = k/s$$
,

• For ramp input
$$R(s) = k/s^2$$
,

• For parabola input
$$R(s) = k/s^3$$
,

$$e_{step}(\infty) = \frac{k}{1 + \lim_{s \to 0} G(s)}$$

$$e_{step}(\infty) = \frac{k}{1 + \lim_{s \to 0} G(s)}$$
$$e_{ramp}(\infty) = \frac{k}{\lim_{s \to 0} G(s)}$$

❖ For parabola input
$$R(s) = k/s^3$$
, $e_{parabola}(\infty) = \frac{k}{\lim_{s \to 0} s^2 G(s)}$

Static error constants

Defined the following static error constants:

$$\diamond$$
 Position constant K_p where

$$K_p = \lim_{s \to 0} G(s)$$

• Velocity constant
$$K_v$$
 where $K_v = \lim_{s \to 0} sG(s)$

$$K_{v} = \lim_{s \to 0} sG(s)$$

$$\diamond$$
 Acceleration constant K_a where

$$K_a = \lim_{s \to 0} s^2 G(s)$$

Then the steady state error can be specified as

• For step input
$$R(s) = k/s$$
,

$$e_{step}(\infty) = \frac{k}{1 + \lim_{s \to 0} G(s)} = \frac{k}{1 + K_p}$$

• For ramp input
$$R(s) = k/s^2$$
,

$$e_{ramp}(\infty) = \frac{k}{\lim_{s \to 0} sG(s)} = \frac{k}{K_v}$$

• For parabola input
$$R(s) = k/s^3$$
,

❖ For parabola input
$$R(s) = k/s^3$$
, $e_{parabola}(\infty) = \frac{k}{\lim_{s \to 0} s^2 G(s)} = \frac{k}{K_a}$

System types

Forward transfer function expressed in poles-zero format:

- S^n indicates the number of poles at the origin for the open-loop transfer function, where n = system type
- Important:
- a) Do not mix up the poles and zeros of the open-loop forward transfer function with that of the closed-loop transfer function. They are NOT the same
- b) System stability depends on the location of the closed-loop poles and NOT on the locations of the open-loop poles
- c) System step responses are determined by the locations of the closed-loop poles and zeros and NOT on the locations of the open-loop poles

System type 0

• For type 0 or $s^0 = 1$;

$$K_p = \lim_{s \to 0} G(s)$$
 =constant; $K_v = \lim_{s \to 0} sG(s) = 0$; and $K_a = \lim_{s \to 0} s^2G(s) = 0$; which implies that

For step input R(s) = k/s,

For step input
$$R(s) = k/s$$
, $e_{step}(\infty) = \frac{k}{1+K_p}$

For ramp input $R(s) = k/s^2$,

$$e_{ramp}(\infty) = \frac{k}{K_v} = \infty$$

For parabola input $R(s) = k/s^3$, $e_{parabola}(\infty) = \frac{k}{K_a} = \infty$

System type 1

• For type 1 or $s^1 = s$;

$$K_p = \lim_{s \to 0} G(s) = \infty$$
; $K_v = \lim_{s \to 0} sG(s) = \text{constant}$; and $K_a = \lim_{s \to 0} s^2G(s) = 0$; which implies that

a) For step input
$$R(s) = k/s$$
,

$$e_{step}(\infty) = \frac{k}{1 + K_p} = 0$$

b) For ramp input
$$R(s) = k/s^2$$
,

$$e_{ramp}(\infty) = \frac{k}{K_v}$$

c) For parabola input
$$R(s) = k/s^3$$
, $e_{parabola}(\infty) = \frac{k}{K_a} = \infty$

$$e_{parabola}(\infty) = \frac{k}{K_a} = \infty$$

System type 2

- For type 2 or $s^2 = s^2$; $K_p = \lim_{s \to 0} G(s) = \infty$; $K_v = \lim_{s \to 0} S(s) = \infty$; and $K_a = \lim_{s \to 0} S(s) = 0$ which implies that
- a) For step input R(s) = k/s, $e_{step}(\infty) = \frac{k}{1+K_n} = 0$
- b) For ramp input $R(s) = k/s^2$, $e_{ramp}(\infty) = \frac{k}{K_v} = 0$
- c) For parabola input $R(s) = k/s^3$, $e_{parabola}(\infty) = \frac{k}{K_a}$

Mini summary

Input	Steady-state error formula	Type 0		Type 1		Type 2	
		Static error constant	Error	Static error constant	Error	Static error constant	Error
Step, $u(t)$	$\frac{1}{1+K_p}$	$K_p =$ Constant	$\frac{1}{1+K_p}$	$K_p = \infty$	0	$K_p = \infty$	0
Ramp, tu(t)	$\frac{1}{K_{\nu}}$	$K_v = 0$	∞	$K_{\nu} =$ Constant	$\frac{1}{K_{\nu}}$	$K_{\nu} = \infty$	0
Parabola, $\frac{1}{2}t^2u(t)$	$\frac{1}{K_a}$	$K_a = 0$	∞	$K_a = 0$	∞	$K_a =$ Constant	$\frac{1}{K_a}$

A unity feedback system has the following forward transfer function

$$G(s) = \frac{1000(s+8)}{(s+7)(s+9)}$$

- Evaluate system type, K_p , K_v , and K_a a)
- Use your answers find the steady-state errors for the standard step, ramp, and parabolic inputs
- Determine the system closed-loop transfer function
- Determine the system stability
- Describe the unit step response of the system
- **Using the forward transfer function, the system is type 0:**

$$K_p = \lim_{s \to 0} G(s) = \text{constant};$$

$$K_v = \lim_{s \to 0} sG(s) = 0$$
; and $K_a = \lim_{s \to 0} s^2G(s) = 0$;

$$K_a = \lim_{s \to 0} s^2 G(s) = 0$$

$$K_p = \lim_{s \to 0} G(s) = \lim_{s \to 0} \frac{1000(s+8)}{(s+7)(s+9)} = \frac{1000(8)}{(7)(9)}$$

$$K_p = 127;$$

$$K_v = \lim_{s \to 0} G(s) = \lim_{s \to 0} \frac{1000(s+8)}{(s+7)(s+9)} = 0$$

$$K_a = \lim_{s \to 0} {}^2G(s) = \lim_{s \to 0} {}^2\frac{1000(s+8)}{(s+7)(s+9)} = 0$$

b) For step input u(t)=1, R(s)=1/s, $e_{step}(\infty)=\frac{1}{1+K_p}=0.008$ For ramp input $e_{ramp}(\infty)=\infty$ and for parabola input, $e_{parabola}(\infty)=\infty$

c) Closed-loop transfer function

$$T(s) = \frac{G(s)}{1+G(s)} = \frac{\frac{1000(s+8)}{(s+7)(s+9)}}{1+\frac{1000(s+8)}{(s+7)(s+9)}} = \frac{1000(s+8)}{(s+7)(s+9)+1000(s+8)}$$
$$T(s) = \frac{1000(s+8)}{s^2+1016s+8063}$$

Closed loop transfer function

$$T(s) = \frac{1000(s+8)}{s^2 + 1016s + 8063}$$

For 2nd order system, no need to use Routh's criterion as roots are:

$$s_{1,2} = \frac{-1016 \pm \sqrt{(1016)^2 - 4(1016)(8063)}}{2} = -7.999 \text{ and } -1008$$

Hence, system is stable

Forward transfer function:

$$\frac{1000(s+8)}{(s+7)(s+9)}$$

Closed-loop transfer function

$$T(s) = \frac{C(s)}{R(s)} = \frac{1000(s+8)}{(s+7.999)(s+1008)}$$

The system poles are at s=-7.999 and s=-1008 (and NOT at s=-7 and s=-9) e) This is an overdamped 2nd order system. The dominant pole is at s=-7.999; There could be a pole-zero cancellation effect and the zero at s=-8 will affect the initial magnitude of the response. The worst case settling time is about 0.5 sec. Steady state value to a unit step response is 0.992 (hence a steady state error of 0.008 to a unit step input).

Lab2

- ❖ Lab 2 is available on BB
- ❖ This is on application of Matlab control toolbox
- ❖ You will do this lab at your convenience but must submit the lab2 exercise by Sunday 15 Nov. through BB (lab/project folder)
- ❖ To do the lab, activate Matlab and go through commands given in lab 2 note
- ❖ The root locus and frequency response parts will be covered in the next few classes

Control response specifications

- \diamond The aim of feedback control is to regulate the output response c(t) to follow the reference input r(t) with desired response characteristics
- ❖ Desired transient response for the controlled output can be specified using damping ratio, settling time, peak time, and percent overshoot
- ❖ Desired steady-state characteristics of the controlled output can be specified using static error constants

Steady state error specifications

If a control system has the specification $K_v = 1000$, the controller to be designed must ensure the following:

- ❖ System is stable (Why?)
- ❖ The system is type 1 (why?)
- The test signal used for the input R(s) is a ramp function
- \clubsuit The steady state error to the ramp input $R(s) = k/s^2$ is

$$e_{ramp}(\infty) = \frac{k}{K_v}$$

A unity feedback system has the following forward transfer function:

$$G(s) = \frac{K(s+12)}{(s+14)(s+18)}$$

Find the value of *K* to yield a 10% error in the steady state to step input

Using the forward transfer function, the system is type 0:

- ❖ The steady state error applied to the step input
- $K_p = \lim_{s \to 0} G(s) = \frac{12K}{14(18)} = 0.0476K;$
- ❖ $e_{step}(\infty) = 0.1 = \frac{1}{1+K_p}$ (i.e. 10% error)

Hence
$$\frac{1}{1+0.0476K} = 0.1$$
; solve to get $K = 189$

Disturbances

Disturbances can enter the system as shown:

Note that the output C(s) is affected by 2 inputs:

$$C(s) = G_1(s)G_2(s)E(s) + G_2(s)D(s)$$
Where $C(s) = R(s) - E(s)$

$$G_1(s)G_2(s)E(s) + G_2(s)D(s) = R(s) - E(s)$$

$$[1 + G_1(s)G_2(s)]E(s) = R(s) - G_2(s)D(s)$$

$$E(s) = \frac{1}{1 + G_1(s)G_2(s)}R(s) - \frac{G_2(s)}{1 + G_1(s)G_2(s)}D(s)$$

Disturbances

Apply the final value theorem:

$$E(s) = \frac{1}{1 + G_1(s)G_2(s)} R(s) - \frac{G_2(s)}{1 + G_1(s)G_2(s)} D(s)$$

$$e_{ss}(\infty) = \lim_{s \to 0} sE(s) = \lim_{s \to 0} \frac{s}{1 + G_1(s)G_2(s)} R(s) - \lim_{s \to 0} \frac{sG_2(s)}{1 + G_1(s)G_2(s)} D(s)$$

$$e_{ss}(\infty) = e_R(\infty) + e_D(\infty)$$

where

 \bullet $e_R(\infty)$ is the steady state error to the input r(t):

$$e_R(\infty) = \lim_{s \to 0} \frac{s}{1 + G_1(s)G_2(s)} R(s)$$

 \bullet $e_D(\infty)$ is the steady state error to the input d(t)

$$e_D(\infty) = -\lim_{s \to 0} \frac{sG_2(s)}{1 + G_1(s)G_2(s)} D(s)$$

Non-unity feedback system

Input transducer = $G_1(s)$, Controller and plant = $G_2(s)$, Feedback = $H_1(s)$

$$e_{a1}(\infty) = \lim_{s \to 0} \frac{sR(s)G_1(s)}{1 + G_2(s)H_1(s)}$$
Where e_{a1} = actuating signal

$$G_e(s) = \frac{G(s)}{1 + G(s)H(s) - G(s)}$$

Determine the system type and proceed to find $K_p = \lim_{s\to 0} G_e(s)$, $K_v = \lim_{s\to 0} G_e(s)$; $K_a = \lim_{s\to 0} {}^2G_e(s)$; and use these to find the steady state error for step, ramp & parabola inputs

- a) Find the steady-state error for a unit step input assume input and output units are the same
- b) Find the steady-state actuating signal for the system for a unit step input

$$G_{e}(s) = \frac{G(s)}{1 + G(s)H(s) - G(s)} = \frac{\frac{100}{s(s+10)}}{1 + \frac{100}{s(s+10)}(s+5)} = \frac{\frac{100}{s(s+10)}}{1 + \frac{100}{s(s+10)(s+5)} - \frac{100}{s(s+10)}}$$

$$G_{e}(s) = \frac{G(s)}{1 + \frac{100}{s(s+10)(s+5)}} = \frac{\frac{100}{s(s+10)}}{1 + \frac{100}{s(s+10)(s+5)} - \frac{100}{s(s+10)}}$$

$$G_{e}(s) = \frac{100}{s(s+10)(s+5)}$$
Type 0 system: $K_{p} = \lim_{s \to 0} G_{e}(s) = -1.25$, and $G_{e}(s) = \frac{1}{1 + K_{p}} = -4$

- a) Find the steady-state error for a unit step input assume input and output units are the same
- b) Find the steady-state actuating signal for the system for a unit step input

Note: $G_1(s) = 1$

$$e_{a1}(\infty) = \lim_{s \to 0} \frac{sR(s)G_1(s)}{1 + G_2(s)H_1(s)}$$

$$e_{a1}(\infty) = \lim_{s \to 0} \frac{1}{1 + \frac{100}{s(s+10)(s+5)}} = \frac{s(s+10)(s+5)}{s(s+10)(s+5) + 100} = 0$$

Sensitivity

Given F = function which contains the parameter "a" The sensitivity of the function to changes in the parameter "a" is defined as:

$$S_{F,a} = \frac{a}{F} \left(\frac{\delta F}{\delta a} \right)$$

For example:

Given transfer function $F(s) = \frac{K}{s^2 + as + K}$

The sensitivity of the transfer function F(s) to changes in parameter "a" is:

$$S_{F,a} = \frac{a}{F} \left(\frac{\delta F}{\delta a} \right) = \frac{a}{\left\{ \frac{K}{s^2 + as + K} \right\}} \left(\frac{\delta}{\delta a} \left\{ \frac{K}{s^2 + as + K} \right\} \right)$$

$$S_{F,a} = \frac{a}{F} \left(\frac{\delta F}{\delta a} \right) = \frac{a}{\left\{ \frac{K}{s^2 + as + K} \right\}} \left\{ \frac{-Ks}{(s^2 + as + K)^2} \right\} = \frac{-as}{s^2 + as + K}$$

For the given system, determine the sensitivity of the steady-state error to changes in parameter K and parameter "a" with ramp inputs

Type 1 system:
$$K_v = \limsup_{s \to 0} G(s) = K/a$$
, and $e_{ramp}(\infty) = \frac{1}{K_v} = \frac{a}{K}$

$$S_{e,K} = \frac{K}{e_{ramp}(\infty)} \left(\frac{\delta e_{ramp}(\infty)}{\delta K} \right) = \frac{K^2}{a} \left(-\frac{a}{K^2} \right) = -1$$

$$S_{e,a} = \frac{a}{e_{ramp}(\infty)} \left(\frac{\delta e_{ramp}(\infty)}{\delta a} \right) = K \left(\frac{1}{K} \right) = 1$$

Mini summary

TABLE 7.2 Relationships between input, system type, static error constants, and steady-state errors

	Steady-state error formula	Type 0		Type 1		Type 2	
Input		Static error constant	Error	Static error constant	Error	Static error constant	Error
Step, u(t)	$\frac{1}{1+K_p}$	$K_p = \text{Constant}$	$\frac{1}{1+K_p}$	$K_p = \infty$	0	$K_p = \infty$	0
Ramp, $tu(t)$	$\frac{1}{K_{\nu}}$	$K_v = 0$	∞	$K_v = \text{Constant}$	$\frac{1}{K_{\nu}}$	$K_v = \infty$	0
Parabola, $\frac{1}{2}t^2u(t)$	$\frac{1}{K_a}$	$K_a = 0$	8	$K_a = 0$	8	$K_a = \text{Constant}$	$\frac{1}{K_a}$