Lab2: Superposition theorem

A. Objective

The objective of this experiment aims to analyze electric circuit using Superposition theorem. At the end of this experiment, the student will be able to construct and know how to analyze electric circuit.

B. Instruments and Materials

•	Adju	stable	DC	power supply ((1))

- Breadboard (1)
- DMM (Digital Multimeter) (1)
- ½ watt resistors (1)

C. Theory

• Superposition: According to this theorem, if there are two or more sources of EMFs acting simultaneously in a linear bilateral network, the current flowing through any section is the algebraic sum of all the currents that should flow in that section if each source of emf were considered separately and all other sources are replaced, for the time being, by their internal resistances.

D. Circuit testing

a. Nodal and loop analysis

Fig 1: Given network with V2 source removed Fig 2: Given network with VI source removed

E. Nodal and Loop Analysis

- 1. Connect the circuit in Fig 1 with the given values;
- 2. Turn on the DC power supply and use DMM to measure the applied voltage (V1) 11V and (V2) 9V note the voltmeter readings;
- 3. Turn off the power supply and connect the circuit in Fig 1 with the DC power supply;

- 4. Turn on the power supply and measure the voltage on a node by using DMM. Record the results in Table 1;
- 5. Measure the value of current by using the ammeter. Note the readings of Ammeters and record the results in Table 1;

Table1:

V-1t(V)	V1 alone Present(Fig.1)			X7-14(X7)	V2 alone Present(Fig.2)		
Voltage(V)	Theoretical	Multisim	Experiment	Voltage(V)	Theoretical	Multisim	Experiment
v_{R_1}	3.586V		3.87V	v_{R_1}	0.447		0.87V
v_{R_2}	1.414V		1.13V	v_{R_2}	0.447		0.37V
v_{R_3}	1.064V		0.85V	v_{R_2}	1.323		0.73V
v_{R_4}	0.35V		0.28V	v_{R_4}	1.77		1.47V
v_{R_5}	0.35V		0.3V	v_{R_5}	6.23		6.46V
I_{R1}	0.88 mA		0.0069A	I_{R1}	8.9 mA		0.0015A
I_{R2}	2.03 mA		0.0051A	I_{R2}	6.42 mA		0.0016A
I_{R3}	2.91 mA		0.0018A	I_{R3}	2.48 mA		0.0015A
I_{R4}	8.85 mA		0.0013A	I_{R4}	1.75 mA		0.0072A
I_{R5}	11.76 mA		0.00044A	I_{R5}	1.75 mA		0.0096A

	V3 alone Present(Fig.3)					
Voltage(V)	Theoretical	Multisim	Experiment			
v_{R_1}	2.93		5.83V			
v_{R_2}	2.07		2.03V			
v_{R_3}	0.19		0.74V			
v_{R_4}	2.26		1.38V			
v_{R_5}	5.74		3.55V			
I_{R1}	5.2 mA		0.01051A			
I_{R2}	9.4 mA		0.00922A			
I_{R3}	0.4 mA		0.0016A			
I_{R4}	11.3 mA		0.00684A			
I_{R5}	8.44 mA		0.00531A			

- 6. Verify the principle of superposition with the measured current. Will the principle of superposition apply to currents through each of the resistors?
- 7. Make the report using (Theoretical Vs Multisim Vs Experiment) results. Discuss the results of nodal and loop analysis with superposition.

Discuss the result: The experiment aimed to validate circuit analysis techniques, specifically nodal and loop analysis with the principle of superposition. While the tables present data for different voltage source configurations (V1, V2, and V3 alone, and presumably the combined case), a comprehensive conclusion requires comparing these individual contributions to the results when all sources are active.