Introdução Programação em R com GitHub, ChatGPT e Claude

Vinícius Silva Junqueira

2025-10-08

Sumário

1	Dia 3 — Transformação, I/O e Visualização	1
	1.1 Revisão Rápida do Dia 2 ($10~{\rm min})$	2
2	Parte 1: Transformação e I/O de Dados (19h00 - 20h30)	2
	2.1 1.1 Tidyr: Transformando estruturas de dados	2
	2.2 1.2 Tratamento de Valores Ausentes (NA)	5
	2.3 1.3 Leitura e Escrita de Dados (I/O)	8
	2.4 1.4 Ferramentas Úteis	13
3	INTERVALO (20h30 - 20h50)	15
4	Parte 2: Visualização com ggplot2 (20h50 - 22h00)	16
	4.1 2.1 Gramática de Gráficos	16
	4.2 2.2 Tipos de Gráficos (geoms)	17
	4.3 2.3 Personalização	22
	4.4 2.4 Combinando Gráficos (patchwork)	26
	4.5 2.5 Salvando Gráficos (ggsave)	27
	4.6 2.5 Salvando Gráficos (ggsave)	
	4.7 Exercícios Práticos	
	4.8 Commit do Dia	32
	4.9 Checklist de Encerramento	32
	4.10 Referências Rápidas	

1 Dia 3 — Transformação, I/O e Visualização

Objetivos do dia

- Transformar dados com tidyr (pivot, separate, unite)
- Tratar valores ausentes adequadamente
- Ler e escrever dados de diferentes formatos (CSV, Excel)
- Organizar projetos com here::here()
- Criar visualizações profissionais com ggplot2
- Combinar gráficos e personalizar temas

Tempo previsto: 19h00–22h00 (intervalo 20h30–20h50)

1.1 Revisão Rápida do Dia 2 (10 min)

```
library(tidyverse)
library(palmerpenguins)

# Pipeline básico com dplyr (revisão)
penguins %>%
    filter(!is.na(bill_length_mm)) %>%
    select(species, island, bill_length_mm, body_mass_g) %>%
    mutate(massa_kg = body_mass_g / 1000) %>%
    group_by(species) %>%
    summarize(
    n = n(),
    media_bico = mean(bill_length_mm),
    media_massa = mean(massa_kg)
) %>%
    arrange(desc(media_massa))
```

2 Parte 1: Transformação e I/O de Dados (19h00 - 20h30)

2.1 1.1 Tidyr: Transformando estruturas de dados

2.1.1 O que é Tidyr?

 ${f tidyr}$ é o pacote para reorganizar a estrutura dos seus dados. É essencial porque muitas vezes recebemos dados em formatos "bagunçados" (como planilhas do Excel) e precisamos transformá-los em formato "tidy" para análise.

Principais funções:

- pivot_longer() / pivot_wider(): converter entre formatos wide long
- separate() / unite(): dividir ou unir colunas
- drop_na(), replace_na(), fill(): tratar valores ausentes

2.1.2 pivot_longer(): Wide para Long

O que faz: Transforma múltiplas colunas em duas novas colunas: uma com os nomes das colunas originais e outra com seus valores.

Quando usar: Quando você tem múltiplas colunas que na verdade representam valores de uma mesma variável. Por exemplo, se você tem colunas "jan_2024", "fev_2024", "mar_2024", elas na verdade representam valores de uma variável "mês".

Por que usar: Dados no formato long (tidy) facilitam muito análises com dplyr e visualizações com ggplot2.

```
# Dados em formato WIDE (comum em planilhas)
vendas_wide <- tibble(</pre>
  produto = c("Notebook", "Mouse", "Teclado"),
  jan_2024 = c(150, 320, 180),
  fev_2024 = c(180, 350, 200),
 mar_2024 = c(160, 380, 190)
vendas_wide
# Transformar para LONG (formato tidy)
vendas_long <- vendas_wide %>%
  pivot_longer(
    cols = jan_2024:mar_2024,  # Columnas para transformar
   names_to = "mes_ano",
                                     # Nome da nova coluna de categorias
    values_to = "quantidade"
                                     # Nome da nova coluna de valores
  )
vendas_long
# Limpar a coluna mes_ano
vendas_long <- vendas_long %>%
  separate(mes_ano, into = c("mes", "ano"), sep = "_") %>%
  mutate(
   mes = case when(
      mes == "jan" ~ "Janeiro",
     mes == "fev" ~ "Fevereiro",
     mes == "mar" ~ "Março"
    ),
    ano = as.numeric(ano)
  )
vendas_long
# Agora análises ficam fáceis!
vendas_long %>%
  group_by(produto) %>%
  summarize(
    total = sum(quantidade),
    media = mean(quantidade)
```

2.1.3 pivot_wider(): Long para Wide

O que faz: Transforma duas colunas (uma de categorias e outra de valores) em múltiplas colunas, onde cada categoria vira uma coluna.

Quando usar: - Para criar tabelas de resumo mais legíveis (formato "planilha") - Quando você

precisa de uma coluna separada para cada categoria - Para preparar dados para certas análises ou relatórios

É o inverso do pivot_longer()!

```
# Reverter para wide
vendas_long %>%
  unite("periodo", mes, ano, sep = "_") %>% # Unir mês e ano
  pivot_wider(
    names_from = periodo,
    values_from = quantidade
  )
# Exemplo prático: notas de alunos
notas_long <- tibble(</pre>
  aluno = rep(c("Ana", "Bruno", "Carla"), each = 3),
  disciplina = rep(c("Matemática", "Português", "História"), 3),
  nota = c(8.5, 9.0, 7.5, 7.0, 8.0, 8.5, 9.5, 8.5, 9.0)
)
notas_long
# Transformar: disciplinas viram colunas
notas_wide <- notas_long %>%
  pivot_wider(
    names_from = disciplina,
    values_from = nota
  )
notas_wide
```

2.1.4 separate() e unite()

separate(): Divide uma coluna em múltiplas colunas usando um separador.

Quando usar separate(): - Quando você tem informações combinadas em uma única coluna (ex: "São Paulo-SP") - Para extrair partes específicas de um texto (ex: dia, mês, ano de uma data) - Para limpar dados mal formatados

Argumentos principais: - col: coluna a ser dividida - into: vetor com nomes das novas colunas - sep: separador (pode ser um caractere ou regex) - extra: o que fazer com pedaços extras ("warn", "drop", "merge")

unite(): Combina múltiplas colunas em uma única coluna.

Quando usar unite(): - Para criar identificadores únicos combinando campos (ex: "SP_001") - Para formatar datas ou textos de maneira específica - Para reverter um separate() anterior

Argumentos principais: - col: nome da nova coluna - . . . : colunas a combinar - sep: separador para usar na união

```
# Dados com informação combinada
dados <- tibble(</pre>
  nome_completo = c("Ana Silva", "Bruno Costa", "Carla Dias"),
  data_nasc = c("15/03/1995", "22/07/1998", "10/11/1993"),
  cidade_estado = c("São Paulo-SP", "Rio de Janeiro-RJ", "Belo Horizonte-MG")
)
dados
# SEPARATE: dividir colunas
dados_separados <- dados %>%
  separate(nome_completo, into = c("nome", "sobrenome"), sep = " ") %>%
  separate(data nasc, into = c("dia", "mes", "ano"), sep = "/") %>%
  separate(cidade_estado, into = c("cidade", "estado"), sep = "-")
dados_separados
# UNITE: combinar colunas
dados_unidos <- dados_separados %>%
  unite("nome_completo", nome, sobrenome, sep = " ") %>%
  unite("data_nascimento", dia, mes, ano, sep = "/")
dados_unidos
# Exemplo prático: limpar dados de telefone
telefones <- tibble(</pre>
  cliente = c("João", "Maria", "Pedro"),
  telefone = c("11-98765-4321", "21-99876-5432", "31-97654-3210")
)
telefones %>%
  separate(telefone, into = c("ddd", "numero"), sep = "-", extra = "merge")
```

2.2 1.2 Tratamento de Valores Ausentes (NA)

O que são NAs?

NA (Not Available) representa valores ausentes ou desconhecidos em R. Eles aparecem por diversos motivos: - Dados não coletados - Informação não disponível - Erros na coleta - Junção de tabelas sem correspondência

Por que tratar NAs é importante?

- Muitas funções retornam NA se houver qualquer NA nos dados
- NAs podem distorcer análises estatísticas
- Alguns modelos não aceitam NAs
- É importante decidir conscientemente o que fazer com dados ausentes

Três estratégias principais: 1. Identificar: entender onde e quantos NAs existem 2. Remover: excluir linhas/colunas com NAs (quando apropriado) 3. Imputar: substituir NAs por valores estimados

2.2.1 Identificar NAs

Funções úteis: - is.na(): retorna TRUE/FALSE para cada elemento - sum(is.na()): conta quantos NAs existem - mean(is.na()): proporção de NAs - complete.cases(): identifica linhas sem nenhum NA

```
# Criar dados com NA para exemplo
dados_na <- tibble(</pre>
  id = 1:10,
  nome = c("Ana", "Bruno", NA, "Diego", "Elena", "Felipe", NA, "Hugo", "Iris", "João"),
  idade = c(25, NA, 30, 28, NA, 35, 22, NA, 27, 29),
  salario = c(3000, 4500, NA, 5000, 3500, NA, 4000, 4800, NA, 5200)
)
dados_na
# Contar NAs por coluna
dados na %>%
  summarize(across(everything(), ~sum(is.na(.))))
# Proporção de NAs
dados_na %>%
  summarize(across(everything(), ~mean(is.na(.)) * 100))
# Identificar linhas com qualquer NA
dados_na %>%
  filter(if_any(everything(), is.na))
# Identificar linhas completas (sem NA)
dados_na %>%
  filter(if_all(everything(), ~!is.na(.)))
```

2.2.2 Remover NAs

Quando remover NAs: - Quando representam uma porção pequena dos dados (< 5%) - Quando são aleatórios (não há padrão sistemático) - Quando você tem dados suficientes mesmo após remoção

Cuidado: Remover NAs pode introduzir viés se eles não forem aleatórios!

Funções: - drop_na(): remove linhas com qualquer NA (ou em colunas específicas) - na.omit(): similar ao drop_na (base R) - filter(!is.na()): remove NAs de colunas específicas

```
# Remover linhas com QUALQUER NA
dados_na %>%
drop_na()
```

```
# Remover linhas com NA em colunas específicas
dados_na %>%
    drop_na(idade, salario)

# Manter apenas linhas completas
dados_na %>%
    na.omit() # base R
```

2.2.3 Substituir NAs

Métodos de imputação (substituição):

- 1. Valor fixo: substituir por 0, "Desconhecido", etc.
 - Use quando o NA tem significado específico (ex: ausência = zero)
- 2. Medida central: substituir por média, mediana ou moda
 - Use para variáveis numéricas quando NAs são poucos e aleatórios
 - Mediana é mais robusta a outliers que média
- 3. Forward/Backward fill: usar valor anterior ou posterior
 - Use para séries temporais ou dados sequenciais
 - fill(.direction = "down"): preenche para baixo
 - fill(.direction = "up"): preenche para cima
- 4. Interpolação: estimar baseado em valores próximos
 - Use para séries temporais quando há padrão
 - Mais sofisticado que fill

Funções: - replace_na(): substitui por valor específico - ifelse() + mean()/median(): substitui por estatística - fill(): preenche com valores adjacentes

```
# Substituir por valor específico
dados_na %>%
  mutate(
    nome = replace_na(nome, "Desconhecido"),
    idade = replace_na(idade, 0)
  )
# Substituir por medida central
dados na %>%
  mutate(
    idade = ifelse(is.na(idade), median(idade, na.rm = TRUE), idade),
    salario = ifelse(is.na(salario), mean(salario, na.rm = TRUE), salario)
  )
# Preencher com valor anterior/posterior (fill)
dados sequencial <- tibble(</pre>
 mes = 1:12,
  vendas = c(100, 120, NA, NA, 150, NA, 170, 180, NA, 200, 210, NA)
dados_sequencial
```

```
# Preencher para baixo (forward fill)
dados_sequencial %>%
  fill(vendas, .direction = "down")

# Preencher para cima (backward fill)
dados_sequencial %>%
  fill(vendas, .direction = "up")

# Interpolação linear (mais sofisticado)
dados_sequencial %>%
  mutate(vendas = zoo::na.approx(vendas, na.rm = FALSE))
```

2.3 1.3 Leitura e Escrita de Dados (I/O)

I/O = Input/Output (Entrada/Saída)

A capacidade de ler e escrever arquivos é fundamental para qualquer análise de dados. Você precisará: - Importar dados de diversas fontes (CSV, Excel, bancos de dados) - Exportar resultados para compartilhar ou usar em outras ferramentas

2.3.1 Por que usar readr em vez de funções base do R?

readr (parte do tidyverse) é melhor porque: - Mais rápido (até 10x) - Produz tibbles em vez de data.frames - Não converte strings em fatores automaticamente - Melhor tratamento de encoding (acentos!) - Mensagens mais claras sobre tipos de colunas - Sintaxe consistente e intuitiva

2.3.2 Leitura de arquivos CSV

CSV = Comma-Separated Values (Valores Separados por Vírgula)

É o formato mais comum para dados tabulares. Mas atenção: existem variações!

read_csv(): Para arquivos com separador vírgula (padrão internacional) - Exemplo: 1,2,3 Decimal com ponto: 3.14

read_csv2(): Para arquivos com separador ponto-e-vírgula (padrão brasileiro) - Exemplo:
1;2;3 - Decimal com vírgula: 3,14

Parâmetros importantes: - col_types: especificar tipos das colunas (evita surpresas) - locale: controlar encoding e formatos regionais - skip: pular linhas iniciais (cabeçalhos, notas) - n_max: ler apenas primeiras linhas (para testar) - na: definir quais valores representam NA

```
library(readr)
library(here)

# Ler CSV com separador virgula (padrão internacional)
# dados <- read_csv(here("data", "raw", "dados.csv"))

# Ler CSV com separador ponto-e-virgula (padrão brasileiro)</pre>
```

```
# dados <- read_csv2(here("data", "raw", "dados.csv"))</pre>
# Especificar encoding (importante para acentos!)
# dados <- read csv(
   here("data", "raw", "dados.csv"),
    locale = locale(encoding = "UTF-8")
# )
# Para arquivos com encoding Windows (latin1)
# dados <- read csv(
  here("data", "raw", "dados.csv"),
    locale = locale(encoding = "latin1")
# )
# Especificar tipos de colunas
# dados <- read_csv(
   here("data", "raw", "dados.csv"),
   col_types = cols(
#
     id = col_integer(),
#
     nome = col_character(),
     data = col_date(format = "%d/%m/%Y"),
#
#
     valor = col_double()
#
# )
# Pular linhas iniciais
# dados <- read_csv(here("data", "raw", "dados.csv"), skip = 2)
# Ler apenas primeiras linhas (para testar)
# dados_preview <- read_csv(here("data", "raw", "dados.csv"), n_max = 100)
```

2.3.3 O problema do encoding (acentuação)

Encoding define como caracteres especiais (acentos, ς , etc.) são armazenados.

Problemas comuns: - Arquivo criado no Windows \rightarrow ler no Mac/Linux \rightarrow acentos aparecem como - Excel salva em encoding diferente \rightarrow R lê errado \rightarrow "São Paulo" vira "São Paulo"

Soluções: - UTF-8: padrão universal moderno - SEMPRE use para novos arquivos - latin1 (ISO-8859-1): comum em arquivos Windows antigos - Use locale (encoding = "...") para especificar

Como descobrir o encoding? 1. Abra o arquivo no RStudio e veja se acentos estão corretos 2. Teste UTF-8 primeiro, depois latin1 3. Use guess_encoding() do readr para ajudar

2.3.4 Leitura de arquivos Excel

Por que ler Excel? - Formato muito usado em empresas e pesquisas - Pode conter múltiplas planilhas - Formatação e fórmulas (que precisamos extrair)

readxl vs writexl: - readxl: LER arquivos Excel (.xlsx, .xls) - writexl: ESCREVER arquivos Excel

Vantagens do readxl: - Não precisa de Java ou Excel instalado - Funciona em Windows, Mac e Linux - Lê .xlsx (novo) e .xls (antigo) - Preserva tipos de dados

Parâmetros úteis: - sheet: qual planilha ler (por nome ou número) - range: ler apenas parte da planilha (ex: "A1:E100") - skip: pular linhas iniciais - col_names: se primeira linha tem nomes das colunas - na: valores que devem ser tratados como NA

```
library(readxl)
# Ler primeira planilha
# dados <- read excel(here("data", "raw", "planilha.xlsx"))
# Especificar planilha por nome ou número
# dados <- read excel(here("data", "raw", "planilha.xlsx"), sheet = "Vendas")
# dados <- read_excel(here("data", "raw", "planilha.xlsx"), sheet = 2)
# Especificar intervalo de células
# dados <- read_excel(</pre>
    here("data", "raw", "planilha.xlsx"),
    range = "A1:E100"
#
# )
# Pular linhas
# dados <- read excel(here("data", "raw", "planilha.xlsx"), skip = 3)
# Ver nomes das planilhas
# excel_sheets(here("data", "raw", "planilha.xlsx"))
```

2.3.5 Escrita de dados

Por que exportar dados? - Compartilhar resultados com colegas - Backup de dados processados - Usar em outras ferramentas (Excel, Power BI, Python) - Guardar resultados intermediários de análises longas

Formatos e quando usar:

- 1. **CSV** (write_csv, write_csv2):
 - Universal abre em qualquer programa
 - Tamanho pequeno (texto simples)
 - Não preserva formatação
 - Problems com encoding
 - Use para: compartilhar dados simples
- 2. Excel (write_xlsx):
 - Fácil para não-programadores abrirem
 - Mantém formatação básica
 - Tamanho maior que CSV
 - Use para: relatórios para stakeholders

- 3. RDS (saveRDS, readRDS):
 - Preserva tipos de dados perfeitamente
 - Comprimido (tamanho pequeno)
 - Rápido para ler/escrever
 - Só abre no R
 - Use para: dados intermediários, objetos R complexos

Dica: Sempre salve dados originais em data/raw/ e processados em data/processed/

2.3.6 Organização de Projetos com here()

O problema dos caminhos:

```
Caminho absoluto ( NÃO USAR):
```

```
dados <- read_csv("C:/Users/vinicius/Documents/projeto/data/dados.csv")</pre>
```

Problema: Só funciona no SEU computador!

Caminho relativo com setwd() (EVITAR):

```
setwd("C:/Users/vinicius/Documents/projeto")
dados <- read_csv("data/dados.csv")</pre>
```

Problema: Frágil, não funciona em scripts executados de outros lugares

```
A solução: here() ( SEMPRE USAR)
```

```
dados <- read_csv(here("data", "dados.csv"))</pre>
```

Vantagens do here(): - Funciona em Windows, Mac e Linux - Funciona independente de onde você executa o script - Colaboração: código funciona para todos - Raiz do projeto é detectada automaticamente (.Rproj)

Como funciona: 1. here() encontra a raiz do projeto (onde está o .Rproj) 2. Constrói caminhos a partir dessa raiz 3. Usa separadores corretos para cada sistema operacional

Estrutura recomendada de projeto:

```
meu-projeto/
  meu-projeto.Rproj
                        ← here() usa isso como raiz
  data/
                       ← Dados originais (NUNCA modificar!)
      raw/
                       ← Dados processados/limpos
      processed/
  scripts/
                        ← Scripts de análise
  output/
                       ← Gráficos salvos
      figures/
                       ← Tabelas exportadas
      tables/
                        ← Relatórios e documentação
  docs/
  README.md
                        ← Descrição do projeto
```

Boas práticas: - Sempre use projetos . Rproj - Sempre use here() para caminhos - Nunca modifique dados em data/raw/ - Documente estrutura no README.md

```
# Criar dados de exemplo
dados_exemplo <- tibble(</pre>
  id = 1:5,
 nome = c("Ana", "Bruno", "Carla", "Diego", "Elena"),
 nota = c(8.5, 7.0, 9.0, 6.5, 8.0)
)
# Salvar como CSV (UTF-8)
# write_csv(dados_exemplo, here("output", "tables", "notas.csv"))
# Salvar como CSV com separador ponto-e-vírgula
# write_csv2(dados_exemplo, here("output", "tables", "notas.csv"))
# Salvar como Excel (requer writexl)
# library(writexl)
# write_xlsx(dados_exemplo, here("output", "tables", "notas.xlsx"))
# Salvar como RDS (formato nativo R - preserva tipos)
# saveRDS(dados_exemplo, here("output", "tables", "notas.rds"))
# Ler RDS
# dados <- readRDS(here("output", "tables", "notas.rds"))</pre>
```

2.3.7 Organização de Projetos com here()

Por que usar here()?

O pacote here resolve caminhos relativos de forma portável, funcionando em qualquer sistema operacional e evitando problemas com diretórios de trabalho.

```
library(here)
# Estrutura recomendada de projeto:
# meu-projeto/
#
    meu-projeto.Rproj
#
    data/
#
        raw/
                    # Dados originais (nunca modificar!)
#
        processed/ # Dados processados
                      # Scripts R
#
    scripts/
#
    output/
#
        figures/
                      # Gráficos
#
        tables/
                      # Tabelas
#
    docs/
                      # Documentação e relatórios
    README.md
# Ver raiz do projeto
here()
```

```
# Construir caminhos portáveis
here("data", "raw", "dados.csv")
here("output", "figures", "grafico1.png")
here("scripts", "01_analise.R")

# Exemplo de uso completo
# dados <- read_csv(here("data", "raw", "vendas.csv"))
#
# dados_processados <- dados %>%
# filter(ano == 2024) %>%
# mutate(vendas_milhares = vendas / 1000)
#
# write_csv(dados_processados, here("data", "processed", "vendas_2024.csv"))
```

2.4 1.4 Ferramentas Úteis

2.4.1 janitor: Limpeza de dados

O que é janitor?

janitor é um pacote focado em **limpar dados bagunçados** - especialmente aqueles que vêm de planilhas Excel criadas por humanos (não por programas).

Problemas comuns que janitor resolve: - Nomes de colunas com espaços, acentos, caracteres especiais - Linhas e colunas completamente vazias - Linhas duplicadas - Formatação inconsistente

Principais funções:

- clean_names(): Limpa nomes de colunas automaticamente Remove espaços → substitui por
 Remove acentos e caracteres especiais Converte tudo para minúsculas Formato snake_case Use sempre que importar dados de Excel!
- 2. tabyl(): Tabelas de frequência melhoradas Mais informativa que table() do R base Funciona bem com pipes Fácil adicionar percentuais e totais
- 3. adorn_*: Funções para embelezar tabelas adorn_percentages(): adiciona percentuais adorn_pct_formatting(): formata percentuais adorn_ns(): mostra contagens junto com percentuais adorn_totals(): adiciona linha/coluna de totais
- 4. remove_empty(): Remove linhas/colunas vazias Comum em dados de Excel com células vazias fantasmas remove_empty("rows"): remove linhas vazias remove_empty("cols"): remove colunas vazias remove_empty(c("rows", "cols")): remove ambos
- 5. get_dupes(): Encontra linhas duplicadas Mostra quais linhas estão duplicadas Mais informativo que duplicated()

2.4.2 skimr: Exploração rápida

O que é skimr?

skimr fornece **resumos estatísticos completos** de forma rápida e visual - muito melhor que **summary()** do R base.

Vantagens do skim(): - Um resumo por tipo de variável (numérico, texto, data, etc.) - Mostra quantidade de dados ausentes - Histogramas inline (mini-histogramas na tabela!) - Estatísticas relevantes automaticamente - Funciona com group_by() para resumos por grupo - Output limpo e organizado

O que skim() mostra:

Para variáveis numéricas: - n_missing: quantos NAs - complete_rate: % de valores completos - mean, sd: média e desvio padrão - p0, p25, p50, p75, p100: percentis (min, Q1, mediana, Q3, max) - hist: mini-histograma visual!

Para variáveis de texto: - n_missing, complete_rate - min, max: comprimento mínimo/máximo - empty: quantas strings vazias - n_unique: quantos valores únicos

Para variáveis lógicas: - mean: proporção de TRUEs - count: contagem de TRUE/FALSE

Uso típico:

```
# Exploração inicial rápida
dados %>% skim()

# Por grupo
dados %>% group_by(categoria) %>% skim()

# Apenas numéricos
dados %>% skim() %>% filter(skim_type == "numeric")
```

Quando usar: - Primeira exploração de um dataset novo - Checagem rápida de qualidade dos dados - Identificação de outliers e problemas - Documentação de características dos dados

```
# Tabulação cruzada melhorada
penguins %>%
  tabyl(species, island) %>%
  adorn_percentages("row") %>%
  adorn_pct_formatting() %>%
  adorn_ns()

# Remover linhas/colunas completamente vazias
dados_com_vazios <- tibble(
  a = c(1, 2, NA, 4),
  b = c(NA, NA, NA, NA), # Coluna vazia
  c = c(5, 6, 7, 8)
)

dados_com_vazios %>%
  remove_empty(c("rows", "cols"))
```

2.4.3 skimr: Exploração rápida

```
library(skimr)

# Resumo estatístico completo
penguins %>%
    skim()

# Por grupo
penguins %>%
    group_by(species) %>%
    skim()

# Customizar saída
penguins %>%
    skim() %>%
    skim() %>%
    skim() %>%
    skim() %>%
    skim() %>%
    select(skim_type == "numeric") %>%
    select(skim_variable, n_missing, numeric.mean, numeric.sd)
```

3 INTERVALO (20h30 - 20h50)

Aproveite para: - Revisar conceitos de transformação - Experimentar com seus dados - Preparar para ggplot2!

4 Parte 2: Visualização com ggplot2 (20h50 - 22h00)

4.1 2.1 Gramática de Gráficos

4.1.1 O que é ggplot2?

ggplot2 é um sistema de visualização baseado na "Grammar of Graphics" (Gramática de Gráficos) - uma filosofia que trata gráficos como sentenças construídas por camadas.

Por que ggplot2 é revolucionário? - Você descreve o que quer ver, não como desenhar - Gráficos complexos são combinações de camadas simples - Consistência: mesma lógica para todos os tipos de gráficos - Flexibilidade: fácil personalizar qualquer aspecto

Analogia: É como escrever uma frase: - **Sujeito** (data): seus dados - **Verbo** (geom): o que mostrar (pontos, linhas, barras) - **Advérbios** (aes): como mapear variáveis (x, y, cor, tamanho) - **Adjetivos** (themes, scales): aparência e estilo

4.1.2 Componentes essenciais:

1. Data (dados): O dataset que você quer visualizar

```
ggplot(data = penguins) # Apenas especifica os dados
```

2. Aesthetics (aes): Mapeamento de variáveis para propriedades visuais - x, y: posição nos eixos - color: cor de pontos/linhas - fill: cor de preenchimento - size: tamanho - shape: forma (círculo, triângulo, etc.) - alpha: transparência (0 = invisível, 1 = opaco) - linetype: tipo de linha (sólida, tracejada, etc.)

```
# Exemplo de aesthetics
aes(x = flipper_length_mm,  # eixo x
    y = body_mass_g,  # eixo y
    color = species,  # cor por espécie
    size = bill_length_mm)  # tamanho por comprimento do bico
```

- 3. Geometries (geom): Tipo de representação visual geom_point(): pontos (gráfico de dispersão) geom_line(): linhas geom_bar(): barras geom_boxplot(): boxplots geom_histogram(): histogramas E muitos outros...
- 4. Scales: Controle fino de como os dados são mapeados scale_x_continuous(): escala do eixo x scale_color_manual(): cores personalizadas scale_y_log10(): escala logarítmica
- 5. Themes: Aparência geral (não afeta os dados) theme_minimal(): minimalista theme_bw(): preto e branco theme_classic(): clássico theme(): personalização completa

4.1.3 A lógica do + (soma de camadas)

Em ggplot2, você adiciona camadas com +:

```
ggplot(data = dados, aes(x = var1, y = var2)) + # Base
geom_point() + # Camada 1: pontos
geom_smooth() + # Camada 2: linha de tendência
labs(title = "Meu gráfico") + # Camada 3: títulos
theme_minimal() # Camada 4: tema
```

Importante: Use + no final da linha, não no início!

4.1.4 Aesthetics globais vs locais

Global (no ggplot()): aplica-se a todas as camadas

```
ggplot(dados, aes(x = var1, y = var2, color = grupo)) +
  geom_point() +  # Usa cor
  geom_smooth()  # Também usa cor
```

Local (dentro do geom_*()): aplica-se apenas àquela camada

```
ggplot(dados, aes(x = var1, y = var2)) +
geom_point(aes(color = grupo)) + # Apenas pontos coloridos
geom_smooth() # Linha sem cor
```

4.2 2.2 Tipos de Gráficos (geoms)

4.2.1 Escolhendo o tipo certo de gráfico

Pergunte-se: 1. Quantas variáveis quero mostrar? (1, 2, 3+) 2. Que tipo de variáveis? (categórica vs numérica) 3. Qual história quero contar? (distribuição, relação, comparação, evolução)

Guia rápido: - Relação entre 2 numéricas \rightarrow Dispersão (geom_point) - Comparar categorias \rightarrow Barras (geom_bar/geom_col) - Distribuição de 1 numérica \rightarrow Histograma ou Densidade - Comparar distribuições \rightarrow Boxplot ou Violin - Evolução temporal \rightarrow Linhas (geom_line) - Parte do todo \rightarrow Pizza (evite!) ou Barras empilhadas

4.2.2 Gráfico de Dispersão (geom_point)

Quando usar: - Mostrar relação entre duas variáveis numéricas - Identificar correlações, tendências ou padrões - Visualizar clusters ou outliers

Parâmetros úteis: - size: tamanho dos pontos (número ou mapeado a variável) - alpha: transparência (útil quando há sobreposição) - shape: forma dos pontos (círculo, triângulo, quadrado, etc.) - color: cor (fixa ou mapeada a variável categórica)

Dica: Use geom_smooth() junto para adicionar linha de tendência!

Tipos de relação que você pode identificar: - Positiva: x aumenta, y aumenta - Negativa: x aumenta, y diminui - Não-linear: curva ou padrão complexo - Sem relação: pontos dispersos aleatoriamente

4.2.3 Gráfico de Barras (geom_bar / geom_col)

Diferença importante: - **geom_bar()**: conta automaticamente (para dados brutos) - Use quando: quer contar quantas vezes cada categoria aparece - Exemplo: quantos alunos de cada curso

- **geom** col(): usa valores que já estão calculados
 - Use quando: já tem os valores agregados
 - Exemplo: vendas totais por mês (já somadas)

Quando usar barras: - Comparar quantidades entre categorias - Mostrar rankings - Visualizar composição (barras empilhadas) - Dados temporais discretos (meses, anos)

Parâmetros importantes:

position: Como organizar múltiplas barras - "stack" (padrão): empilhadas uma sobre a outra - "dodge": lado a lado - "fill": empilhadas proporcionalmente (100%)

width: Largura das barras (0-1) - Menor = barras mais finas com mais espaço

fill vs color: - fill: cor de preenchimento da barra - color: cor da borda da barra

Dicas de design: - Ordene categorias por valor (não alfabeticamente) - Use cores apenas quando necessário (não decore por decorar) - Evite 3D (distorce percepção) - Comece eixo y em zero (não engane visualmente) - Considere barras horizontais se nomes de categorias forem longos

```
# Contagem (geom_bar)
ggplot(penguins, aes(x = species)) +
  geom_bar()
# Com preenchimento por outra variável
ggplot(penguins, aes(x = species, fill = island)) +
  geom_bar()
# Barras lado a lado
ggplot(penguins, aes(x = species, fill = island)) +
  geom_bar(position = "dodge")
# Proporção (100%)
ggplot(penguins, aes(x = species, fill = island)) +
  geom_bar(position = "fill") +
  labs(y = "Proporção")
# Barras horizontais
ggplot(penguins, aes(y = species)) +
  geom_bar()
# geom_col (quando você tem valores agregados)
resumo <- penguins %>%
  group_by(species) %>%
  summarize(massa_media = mean(body_mass_g, na.rm = TRUE))
ggplot(resumo, aes(x = species, y = massa media)) +
  geom_col(fill = "steelblue")
```

4.2.4 Boxplot (geom_boxplot)

O que é um boxplot?

Um boxplot (ou diagrama de caixa) mostra a distribuição de dados através de quartis. É uma forma compacta de ver: - A mediana (linha central) - A dispersão (tamanho da caixa) - Outliers (pontos isolados)

Anatomia do boxplot:

```
máximo (ou Q3 + 1.5*IQR)

Q3 ← 75% dos dados estão abaixo
← mediana (Q2)
Q1 ← 25% dos dados estão abaixo

mínimo (ou Q1 - 1.5*IQR)
```

← outliers (pontos fora do padrão)

Quando usar: - Comparar distribuições entre grupos - Identificar outliers - Ver simetria/assimetria dos dados - Quando tem muitas categorias (mais eficiente que múltiplos histogramas)

Vantagens: - Mostra 5 estatísticas de uma vez (min, Q1, mediana, Q3, max) - Identifica outliers automaticamente - Compacto - fácil comparar muitos grupos

Desvantagens: - Não mostra a forma exata da distribuição - Pode esconder bimodalidade (duas "montanhas") - Menos intuitivo para público não-técnico

Alternativas: - Violin plot (geom_violin): mostra a forma completa da distribuição - Jitter plot (geom_jitter): mostra todos os pontos individuais - Combinação: boxplot + jitter = melhor dos dois mundos

Dicas: - Use geom_jitter() junto para mostrar pontos individuais - Ordene grupos por mediana para facilitar comparação - Use cores para distinguir grupos, mas não exagere

```
# Boxplot básico
ggplot(penguins, aes(x = species, y = body_mass_g)) +
    geom_boxplot()

# Com cores
ggplot(penguins, aes(x = species, y = body_mass_g, fill = species)) +
    geom_boxplot()

# Adicionar pontos individuais
ggplot(penguins, aes(x = species, y = body_mass_g, fill = species)) +
    geom_boxplot(alpha = 0.7) +
    geom_jitter(width = 0.2, alpha = 0.3, size = 1)

# Violin plot (alternativa)
ggplot(penguins, aes(x = species, y = body_mass_g, fill = species)) +
    geom_violin()
```

4.2.5 Gráfico de Linhas (geom_line)

Quando usar: - Dados temporais (séries temporais) - Mostrar tendências ou evolução - Dados com ordem natural (temperatura ao longo do dia) - Conectar pontos sequenciais

CUIDADO: Não use linhas para: - Dados categóricos sem ordem (espécies, nomes) - Quando não há continuidade entre pontos

Por que usar linhas em vez de barras para séries temporais? - Linhas enfatizam tendência e fluxo - Mais fácil ver mudanças ao longo do tempo - Menos "peso visual" quando há muitos pontos - Facilita comparação de múltiplas séries

Parâmetros úteis: - size: espessura da linha - linetype: tipo de linha (sólida, tracejada, pontilhada) - color: cor da linha - group: quando tem múltiplas linhas

Dica: Combine geom_line() + geom_point() para destacar valores individuais

4.2.6 Histograma e Densidade (geom histogram / geom density)

Histograma (geom_histogram)

O que mostra: A distribuição de uma variável numérica dividida em "bins" (intervalos).

Quando usar: - Entender a forma da distribuição (simétrica, assimétrica, bimodal) - Identificar moda (valor mais frequente) - Ver dispersão dos dados - Detectar outliers

Parâmetro crítico: bins (ou binwidth) - bins: número de barras (padrão = 30) - binwidth: largura de cada barra - Importante: Número de bins muda a interpretação! - Poucos bins \rightarrow padrões grosseiros, perde detalhes - Muitos bins \rightarrow muito detalhado, difícil ver padrão geral - Teste diferentes valores!

Tipos de distribuição que você pode identificar: - Normal (sino): simétrica, maioria no centro - Assimétrica positiva: cauda longa à direita - Assimétrica negativa: cauda longa à esquerda - Bimodal: duas "montanhas" (dois grupos distintos) - Uniforme: todas as barras similares (raro em dados reais)

Densidade (geom_density)

O que mostra: Uma versão "suavizada" do histograma - uma curva contínua.

Vantagens sobre histograma: - Não depende de escolha arbitrária de bins - Mais suave e fácil de interpretar - Melhor para comparar múltiplas distribuições sobrepostas - Mais "bonito" visualmente

Desvantagens: - Pode ser menos intuitivo para público não-técnico - Pode suavizar demais e esconder detalhes

Quando usar cada um: - Histograma: primeira exploração, apresentação para não-técnicos - Densidade: comparar grupos, análise mais refinada, publicações

Dica: Use alpha (transparência) quando sobrepor múltiplas distribuições!

```
# Criar dados temporais
vendas_tempo <- tibble(</pre>
  mes = 1:12,
  vendas = c(100, 120, 150, 140, 170, 190, 200, 210, 195, 220, 240, 250),
  custos = c(80, 90, 100, 95, 110, 120, 125, 130, 120, 135, 145, 150)
)
# Linha simples
ggplot(vendas_tempo, aes(x = mes, y = vendas)) +
  geom_line()
# Com pontos
ggplot(vendas_tempo, aes(x = mes, y = vendas)) +
  geom_line(color = "blue", size = 1) +
  geom_point(color = "blue", size = 3)
# Múltiplas linhas (precisa pivotear)
vendas_long <- vendas_tempo %>%
  pivot_longer(cols = c(vendas, custos), names_to = "tipo", values_to = "valor")
```

```
ggplot(vendas_long, aes(x = mes, y = valor, color = tipo)) +
  geom_line(size = 1) +
  geom_point(size = 2)
```

4.2.7 Histograma e Densidade (geom_histogram / geom_density)

```
# Histograma
ggplot(penguins, aes(x = body_mass_g)) +
  geom_histogram(bins = 30, fill = "steelblue", color = "white")

# Ajustar número de bins
ggplot(penguins, aes(x = body_mass_g)) +
  geom_histogram(bins = 15, fill = "steelblue", alpha = 0.7)

# Por grupo
ggplot(penguins, aes(x = body_mass_g, fill = species)) +
  geom_histogram(bins = 30, alpha = 0.6, position = "identity")

# Densidade
ggplot(penguins, aes(x = body_mass_g)) +
  geom_density(fill = "steelblue", alpha = 0.5)

# Densidade por grupo
ggplot(penguins, aes(x = body_mass_g, fill = species)) +
  geom_density(alpha = 0.5)
```

4.3 2.3 Personalização

4.3.1 Labels (labs) - Comunicando claramente

Por que labels são importantes?

Um gráfico sem bons labels é como um livro sem capa - ninguém sabe do que se trata! Labels transformam um gráfico técnico em uma ferramenta de comunicação.

Elementos de labs():

- title: Título principal O QUE o gráfico mostra
 - Seja descritivo: "Relação entre..." não apenas "Gráfico 1"
 - Máximo 1-2 linhas
- subtitle: Subtítulo Contexto adicional ou detalhes
 - Informação complementar sobre período, amostra, etc.
- x / y: Rótulos dos eixos SEMPRE inclua unidades!
 - "Massa"
 - "Massa Corporal (g)"
- color / fill / size / etc.: Legendas
 - Renomeie para termos claros: "Espécie" em vez de "species"
- caption: Nota de rodapé Fonte dos dados, créditos

- Exemplo: "Fonte: Palmer Archipelago LTER"

Regra de ouro: Seu gráfico deve se explicar sozinho. Uma pessoa que nunca viu seus dados deveria entender o que está sendo mostrado apenas olhando o gráfico.

4.3.2 Temas (themes) - Definindo a aparência

O que são temas?

Temas controlam a aparência **não-dados** do gráfico: cor de fundo, linhas de grade, fontes, etc. Não afetam os dados em si, apenas como são apresentados.

Temas prontos (built-in):

- theme_gray() (padrão): fundo cinza, grade branca
 - Uso: padrão, nada especial
- theme_bw(): preto e branco, fundo branco
 - Uso: impressão P&B, publicações acadêmicas
- theme_minimal(): minimalista, sem bordas
 - Uso: apresentações modernas, relatórios limpos
 - Recomendado para iniciantes!
- theme_classic(): eixos simples, sem grades
 - Uso: estilo clássico, gráficos "científicos"
- theme_dark(): fundo escuro
 - Uso: apresentações em projetores, dashboards
- theme_void(): completamente limpo
 - Uso: mapas, visualizações artísticas

Como personalizar temas?

Use theme() para ajustar elementos específicos:

```
theme(
  plot.title = element_text(size = 16, face = "bold"),
  axis.text = element_text(size = 12),
  legend.position = "bottom",
  panel.grid.minor = element_blank() # Remove grade secundária
)
```

Elementos ajustáveis: - element_text(): texto (título, eixos, legendas) - element_line(): linhas (eixos, grades) - element_rect(): retângulos (fundo, bordas) - element_blank(): remove o elemento

Dica: Combine tema pronto + ajustes finos:

```
theme_minimal() + theme(legend.position = "bottom")
```

4.3.3 Escalas (scales) - Controle fino

O que são scales?

Scales controlam **como** os dados são mapeados para propriedades visuais. Toda aesthetic (x, y, color, size, etc.) tem uma scale.

Por que ajustar scales? - Cores mais bonitas ou acessíveis - Eixos com quebras específicas - Transformações (log, sqrt) - Formatação de valores (moeda, percentual)

Tipos principais:

1. Scales de posição (eixos x e y)

```
# Controlar quebras e limites
scale_y_continuous(
  breaks = seq(0, 100, 10),
                             # Onde mostrar marcas
 limits = c(0, 100),
                              # Limite do eixo
  expand = c(0, 0)
                              # Remover espaço extra
)
# Transformações
scale_y_log10()
                               # Escala logarítmica
                               # Raiz quadrada
scale_x_sqrt()
scale_x_reverse()
                               # Inverter eixo
```

2. Scales de cor

```
# Cores manuais
scale_color_manual(values = c("red", "blue", "green"))

# Paletas viridis (acessíveis para daltônicos!)
scale_color_viridis_d()  # Discreta (categórica)
scale_color_viridis_c()  # Contínua (numérica)

# Paletas Brewer
scale_color_brewer(palette = "Set1")
```

3. Formatação com scales (pacote)

```
library(scales)

# Formatar números

scale_y_continuous(labels = label_comma())  # 1,000

scale_y_continuous(labels = label_percent())  # 50%

scale_y_continuous(labels = label_dollar())  # $100

scale_y_continuous(labels = label_number(
    prefix = "R$ ",
    decimal.mark = ",",
    big.mark = "."

))  # R$ 1.000,00
```

Cores para daltônicos:

Use paletas acessíveis! ~8% dos homens têm daltonismo.

```
Boas escolhas: - scale_color_viridis_d() (melhor!) - scale_color_brewer(palette = "Set2") - Esquemas azul-laranja (distinguíveis)
```

Evite: - Vermelho-verde (indistinguíveis para daltônicos) - Muitas cores similares

```
ggplot(penguins, aes(x = flipper_length_mm, y = body_mass_g, color = species)) +
  geom_point() +
  labs(
    title = "Relação entre Nadadeira e Massa Corporal",
    subtitle = "Dados do Arquipélago Palmer, Antártica",
    x = "Comprimento da Nadadeira (mm)",
    y = "Massa Corporal (g)",
    color = "Espécie",
    caption = "Fonte: palmerpenguins package"
)
```

4.3.4 Temas (themes)

```
grafico_base <- ggplot(penguins, aes(x = species, y = body_mass_g, fill = species)) +</pre>
  geom_boxplot() +
  labs(title = "Massa Corporal por Espécie")
# Tema padrão (gray)
grafico_base
# Tema minimalista
grafico_base + theme_minimal()
# Tema BW
grafico_base + theme_bw()
# Tema clássico
grafico_base + theme_classic()
# Tema escuro
grafico_base + theme_dark()
# Customizar tema
grafico_base +
  theme_minimal() +
  theme(
    plot.title = element_text(size = 16, face = "bold"),
    axis.text = element_text(size = 12),
    legend.position = "bottom"
  )
```

4.3.5 Escalas (scales)

```
library(scales)

# Escala de cores manual
ggplot(penguins, aes(x = bill_length_mm, y = bill_depth_mm, color = species)) +
```

```
geom_point() +
  scale_color_manual(values = c("darkorange", "purple", "cyan4"))
# Escala de cores viridis (acessível e bonita)
ggplot(penguins, aes(x = bill_length_mm, y = bill_depth_mm, color = species)) +
  geom_point() +
  scale_color_viridis_d()
# Escala de eixo
ggplot(penguins, aes(x = flipper_length_mm, y = body_mass_g)) +
  geom_point() +
  scale_y_continuous(
   labels = label_comma(), # Formatar números com vírgula
   breaks = seq(3000, 6000, 500)
  )
# Transformação logarítmica
ggplot(penguins, aes(x = flipper_length_mm, y = body_mass_g)) +
  geom_point() +
  scale_y_log10()
```

4.4 2.4 Combinando Gráficos (patchwork)

Por que combinar gráficos?

Muitas vezes você quer mostrar múltiplas visualizações relacionadas lado a lado: - Comparar diferentes aspectos dos mesmos dados - Mostrar "antes e depois" - Painéis para relatórios e apresentações - Contar uma história visual completa

patchwork vs alternativas:

- Base R (par(mfrow), layout): complexo, limitado
- gridExtra (grid.arrange): funcional mas verboso
- patchwork: simples, intuitivo, poderoso

Sintaxe básica de patchwork:

```
# + : lado a lado (horizontal)
grafico1 + grafico2

# / : um em cima do outro (vertical)
grafico1 / grafico2

# Combinar: () agrupa operações
(grafico1 + grafico2) / grafico3
```

Operadores: - + : lado a lado - / : empilhar - | : lado a lado (alternativa ao +) - () : agrupar Layouts complexos:

```
# 2x2
(g1 + g2) / (g3 + g4)

# L-shape
g1 + (g2 / g3)

# Tamanhos diferentes
g1 + g2 + plot_layout(widths = c(2, 1)) # g1 é 2x mais largo
```

Funcionalidades úteis:

1. plot_annotation(): Adicionar título geral e caption

```
(g1 + g2) / (g3 + g4) +
plot_annotation(
  title = "Análise Completa",
  subtitle = "Dados de 2024",
  caption = "Fonte: MinhaFonte",
  tag_levels = "A" # Adiciona A, B, C, D...
)
```

2. plot_layout(): Controlar layout

3. Legendas unificadas:

```
(g1 + g2) / (g3 + g4) +
plot_layout(guides = "collect") & # & aplica a todos
theme(legend.position = "bottom")
```

Dicas de design: - Mantenha escalas consistentes entre gráficos relacionados - Use cores consistentes para mesmas categorias - Não sobrecarregue - máximo 4-6 painéis - Considere se um único gráfico com facetas seria melhor

4.5 2.5 Salvando Gráficos (ggsave)

Por que usar ggsave?

Você precisa salvar gráficos para: - Incluir em relatórios, artigos, apresentações - Compartilhar com colegas - Backup de visualizações importantes - Usar em outros softwares

ggsave() é inteligente: - Detecta formato pela extensão (.png, .pdf, .jpg, etc.) - Ajusta resolução automaticamente - Salva o último gráfico por padrão (ou você especifica) - Funciona perfeitamente com here()

Sintaxe básica:

```
ggsave(
  filename = "meu_grafico.png", # Nome e formato
  plot = meu_grafico, # Qual gráfico (opcional)
  width = 8, # Largura em polegadas
  height = 6, # Altura em polegadas
  dpi = 300 # Resolução (pontos por polegada)
)
```

Formatos e quando usar:

- 1. PNG (.png) Raster (pixels) Bom para: web, apresentações, compartilhamento rápido Suporta transparência Tamanho razoável com boa qualidade Perde qualidade ao ampliar muito DPI recomendado: 300 (alta qualidade), 150 (web)
- 2. PDF (.pdf) Vetor (matemático) Bom para: publicações acadêmicas, impressão profissional
 Escala infinitamente sem perder qualidade Tamanho pequeno para gráficos simples Pode ser grande com muitos pontos Sem DPI (vetor não tem pixels)
- 3. SVG (.svg) Vetor (para web) Bom para: web, design, editável em Illustrator Escala perfeitamente Pode ser editado como código Suporte limitado em alguns contextos Sem DPI (vetor)
- **4. JPEG (.jpg) Raster** (pixels) Tamanho muito pequeno Perde qualidade (compressão) Não suporta transparência **Evite para gráficos!** (Use PNG)
- **5. TIFF** (.tiff) **Raster** (pixels) Alta qualidade sem compressão Aceito em publicações Arquivos muito grandes **Use apenas se exigido**

Configurações importantes:

DPI (Dots Per Inch) - resolução: - 72 dpi: tela de computador (baixa qualidade) - **150 dpi**: apresentações, web (qualidade média) - **300 dpi**: impressão, publicações (alta qualidade) - **600 dpi**: impressão profissional (raramente necessário)

Tamanho (width e height): - Padrão: polegadas (inches) - 1 polegada = 2.54 cm - Tamanhos comuns: - **Apresentação slide:** 10 x 7.5 polegadas (16:9) - **Artigo coluna única:** 3.5 x 3.5 polegadas - **Artigo largura total:** 7 x 5 polegadas - **Poster:** 24 x 18 polegadas

Boas práticas:

```
# Use here() para portabilidade
ggsave(
  here("output", "figures", "massa_especies.png"),
  width = 8,
  height = 6,
  dpi = 300,
  bg = "white" # Fundo branco (útil com temas transparentes)
)

# Salvar em múltiplos formatos
for (fmt in c("png", "pdf", "svg")) {
    ggsave(
```

```
here("output", "figures", paste0("grafico.", fmt)),
  plot = meu_grafico,
  width = 8,
  height = 6,
  dpi = 300
)
}
```

Resolução de problemas:

Texto muito pequeno/grande: - Ajuste width e height (não dpi) - Ou ajuste tamanhos de fonte no gráfico antes de salvar

Arquivo muito grande: - PNG: reduza DPI para 150 - PDF com muitos pontos: converta para PNG - Simplifique o gráfico (menos pontos, objetos)

Cores diferentes do RStudio: - Especifique bg = "white" (ou cor de fundo desejada) - Alguns temas têm fundo transparente por padrão

Eixos cortados: - Adicione scale_y_continuous(expand = expansion(mult = 0.05)) - Ou ajuste margens: theme(plot.margin = margin(1, 1, 1, 1, "cm"))

```
library(patchwork)
# Criar vários gráficos
g1 <- ggplot(penguins, aes(x = species, fill = species)) +
  geom_bar() +
  labs(title = "Contagem por Espécie") +
  theme_minimal()
g2 <- ggplot(penguins, aes(x = body_mass_g, fill = species)) +</pre>
  geom_density(alpha = 0.5) +
  labs(title = "Distribuição de Massa") +
  theme_minimal()
g3 <- ggplot(penguins, aes(x = flipper_length mm, y = body_mass g, color = species)) +
  geom_point() +
  labs(title = "Nadadeira vs Massa") +
  theme minimal()
g4 <- ggplot(penguins, aes(x = species, y = bill_length_mm, fill = species)) +
  geom_boxplot() +
  labs(title = "Bico por Espécie") +
  theme_minimal()
# Combinar lado a lado
g1 + g2
# Combinar em cima/embaixo
g1 / g2
```

```
# Layout complexo
(g1 + g2) / (g3 + g4)

# Com titulo geral
(g1 + g2) / (g3 + g4) +
plot_annotation(
   title = "Análise Exploratória de Pinguins",
   subtitle = "Palmer Archipelago, Antarctica",
   caption = "Dados: palmerpenguins"
)

# Coletar legendas
(g1 + g2) / (g3 + g4) +
plot_layout(guides = "collect") &
theme(legend.position = "bottom")
```

4.6 2.5 Salvando Gráficos (ggsave)

```
# Criar gráfico
meu_grafico <- ggplot(penguins, aes(x = species, y = body_mass_g, fill = species)) +</pre>
  geom_boxplot() +
 labs(
   title = "Massa Corporal por Espécie de Pinguim",
   x = "Espécie",
   y = "Massa Corporal (g)"
  ) +
  theme_minimal() +
  theme(legend.position = "none")
# Salvar como PNG
# ggsave(
# filename = here("output", "figures", "massa_especies.png"),
# plot = meu_grafico,
# width = 8,
  height = 6,
  dpi = 300
# )
# Salvar como PDF (vetorial)
# ggsave(
# filename = here("output", "figures", "massa_especies.pdf"),
# plot = meu_grafico,
# width = 8,
#
   height = 6
```

```
# Salvar último gráfico criado
# ggsave(here("output", "figures", "ultimo_grafico.png"), dpi = 300)

# Diferentes formatos
# ggsave("grafico.png") # PNG
# ggsave("grafico.pdf") # PDF
# ggsave("grafico.svg") # SVG (escalável)
# ggsave("grafico.jpg") # JPEG
```

4.7 Exercícios Práticos

4.7.1 Exercício 1: Transformação de dados

```
# Dados de temperatura (wide)
temp_wide <- tibble(
  cidade = c("São Paulo", "Rio de Janeiro", "Belo Horizonte"),
  jan = c(25, 28, 24),
  fev = c(26, 29, 25),
  mar = c(24, 27, 23),
  abr = c(22, 25, 21)
)

# a) Transforme para formato long

# b) Calcule temperatura média por cidade

# c) Qual cidade teve maior variação?

# d) Crie gráfico de linhas mostrando temperatura ao longo dos meses</pre>
```

4.7.2 Exercício 2: Limpeza e I/O

```
# a) Crie um dataset com nomes de colunas bagunçados e limpe com janitor
# b) Adicione algumas linhas com NA e trate-os adequadamente
# c) Salve o dataset limpo como CSV usando here()
# d) Leia o arquivo de volta e confirme que está correto
```

4.7.3 Exercício 3: Visualização completa

```
# Use o dataset penguins para criar:
# a) Um gráfico de dispersão relacionando duas variáveis numéricas
# b) Um boxplot comparando espécies
# c) Um histograma da distribuição de massa corporal
# d) Combine os 3 gráficos usando patchwork
# e) Personalize com temas, cores e labels apropriados
# f) Salve o resultado final com ggsave()
```

4.8 Commit do Dia

```
git add scripts/03_transformacao_viz.R
git commit -m "Dia 3: transformação, I/O e visualização com ggplot2"
git push origin main
```

4.9 Checklist de Encerramento

Ш	Dominou pivot_ionger e pivot_wider
	Entendeu separate e unite
	Sabe tratar valores ausentes
	Consegue ler CSV e Excel
	Organiza projetos com here()
	Conhece janitor e skimr
	Cria gráficos básicos com ggplot2
	Personaliza gráficos (temas, cores, labels
	Combina gráficos com patchwork
	Salva gráficos com ggsave()
	Fez commit no seu fork

4.10 Referências Rápidas

- ggplot2 cheatsheet: https://posit.co/resources/cheatsheets/
- R for Data Science Data Visualization: https://r4ds.hadley.nz/data-visualize
- tidyr documentation: https://tidyr.tidyverse.org/
- patchwork: https://patchwork.data-imaginist.com/
- R Graph Gallery: https://r-graph-gallery.com/

Amanhã no Dia 4: Integração do ChatGPT e Claude no RStudio!