Algorithme de Backtrack:

un outil de base pour résoudre de nombreux problèmes d'IA

Cours de GMIN101

ML Mugnier

Rappel des cours précédents

- A de nombreux problèmes on peut associer un espace de recherche défini par :
 - un état initial
 - des **actions** permettant de passer d'un état à ses successeurs
 - la définition de ce qu'est un état but
 - éventuellement : une fonction de coût d'une action
- Résoudre le problème : déterminer une **séquence d'actions** (un chemin dans el graphe associé) menant de l'état **initial** à un état **but**, en minimisant éventuellement le coût de cette séquence
- On peut explorer un espace en construisant une arborescence (« arbre de recherche ») :
 - dont la racine est associée à l'état initial
 - avec différents types d'exploration : profondeur, largeur, mixte, ...

Une famille de problèmes fréquente en IA

- Problèmes définis sous la forme (X,D,C) :
 - X : ensemble de variables
 - **D** : ensemble de **domaines** (valeurs possibles)
 - C : ensemble de **conditions** sur la compatiblité des valeurs que peuvent prendre simultanément des variables
- Une assignation sur Y ⊆ X est une application qui associe à chaque variable de Y une valeur de son domaine
- Elle est totale si Y = X
- Elle est **consistante** si elle satisfait les conditions qui portent sur les variables de Y (« **solution partielle** »)
- Une solution est une assignation totale consistante
- Exemple : **CSP** (« Constraint Satisfaction Problem »)

On va en voir d'autres!

C3

x1

x2

х3

EXEMPLE DE CSP

Réseau de contraintes

- Ensemble de variables **X**={x1,x2,x3,x4}
- Ensemble de contraintes **C**={C1,C2,C3}
 - hypergraphe

Domaines des variables D1=D2=D3=D4={a,b}
 (D : union des Di)

• Définitions des contraintes

a b a

b a a

Une assignation f sur $Y \subseteq X$ est **consistante** si : pour tout Ci sur (y1,...,yk), (f(y1),...,f(yk)) appartient à la définition de Ci

Un espace de recherche particulier ...

- Un état contient une assignation (pas forcément totale)
- Etat initial: assignation vide
- Action : assigner une nouvelle variable
- Etat but : si assignation totale et consistante
- **Remarque 1**: le chemin qui permet d'atteindre une solution n'est pas important
- Remarque 2 : on ne peut pas « réparer » une assignation inconsistante en l'étendant
 - → ne considérer qu'une seule variable pour générer les successeurs d'un noeud
 - → ne considérer que des états qui satisfont les conditions tronquer l'arbre de recherche

dès qu'on arrive à une assignation inconsistante

→ algorithme de backtrack

ALGORITHME DE BACKTRACK (EXISTENCE D'UNE SOLUTION)

```
Fonction BacktrackingSearch(): Booléen // accès aux données du problème // retourne vrai ssi il existe une solution

Début

Prétraitements;
retourner BT({});
Fin

Fonction BT(Assignation a): Booléen // accès aux données du problème // retourne vrai ssi il existe une solution étendant a

Début

si |a| = |X| alors retourner vrai; //solution trouvée
x ← ChoixVariableNonAssignée(a);
pour tout v ∈ Domaine(x) faire

si Consistant(a∪{(x,v)}) alors
si BT(a∪{(x,v)}) alors retourner vrai
retourner faux;

Fin
```

IMPLÉMENTATION DES SOUS-FONCTIONS

ChoixVariableNonAssignée?

- 1) si ordre « **statique** » sur les variables : la prochaine selon cet ordre comment calculer un « bon » ordre ?
 - idée : détecter les échecs au plus tôt
 - (a) par une descente dans le graphe des variables
 - (b) par taille croissante des domaines
 - (c) par nombre décroissant de conditions sur les variables
- 2) si ordre « dynamique » sur les variables :
 - (b), puis (c) pour départager les ex-aequos

Test Consistant?

Méthode simple si ordre statique sur les variables :

- rang d'une condition (contrainte) : rang de sa plus grande variable
- quand on assigne la ième variable, on vérifie les conditions de rang i.

EXEMPLE DE CSP

Réseau de contraintes

- Ensemble de variables **X**={x1,x2,x3,x4}
- Ensemble de contraintes **C**={C1,C2,C3}
 - hypergraphe
- Domaines des variables D1=D2=D3=D4={a,b}
 (D : union des Di)
- Définitions des contraintes

C3

x1

x2

х3

Une assignation f sur $Y \subseteq X$ est **consistante** si : pour tout Ci sur (y1,...,yk), avec $\{y1,...,yk\} \subseteq Y$, (f(y1),...,f(yk)) appartient à la définition de Ci

```
ALGORITHME DE BACKTRACK (CALCUL D'UNE SOLUTION)
 Fonction BacktrackingSearch(): Assignation (dont « échec » ou « null »)
    // retourne une solution s'il en existe une, sinon échec
    Début
          Prétraitements;
          retourner BT({});
    Fin
 Fonction BT(Assignation a): Assignation (ou échec)
 // retourne une solution s'il en existe une étendant a
 Début
     \underline{si} |a| = |X| \underline{alors} retourner a; //solution trouvée
    x \leftarrow ChoixVariableNonAssignée(a);
    pour tout v ∈ Domaine(x) faire
          si Consistant(a∪{(x,v)}) alors
                   Assignation b = BT(a \cup \{(x,v)\})
                   Si b ≠ échec alors retourner b
    retourner échec;
```

```
ALGORITHME DE BACKTRACK (CALCUL DE TOUTES LES SOLUTIONS)

Fonction BacktrackingSearch() : Ensemble d'Assignation

// retourne l'ensemble des solutions

Début

Prétraitements;

Ens → vide // ensemble de solutions

BT(Ens, {}) // alimente Ens

Retourner Ens

Fin

Fonction BT(Ens d'Assignation Ens, Assignation a)

// met dans Ens les solutions étendant a

Début

si |a| = |X| alors ajouter a à Ens; //solution trouvée

sinon

x ← ChoixVariableNonAssignée(a);

pour tout v ∈ Domaine(x) faire

si Consistant(a∪{(x,v)}) alors BT(Ens, a∪{(x,v)})

Fin
```

COLORATION DE GRAPHE

- Problème : étant donné un graphe G = (V,E) déterminer s'il existe une k-coloration de G
- k-coloration: assignation d'une couleur dans {1,..., k} à chaque sommet de V, telle que deux sommets adjacents n'aient pas la même couleur
- → Variables ?
- → Domaines ?
- → Conditions ?
- o Variante : colorer les arêtes

BD RELATIONNELLE (→ VUE LOGIQUE)

o **Schéma** de BD : ensemble de relations (avec leurs attributs)

ex: Film [titre, directeur, acteur]

Pariscope [salle, titre, horaire]
Coordonnées [salle, adresse, téléphone]

On peut remplacer les attributs par une numérotation : 1,2,3

- → Vue logique : Film, Pariscope, Coordonnées
 - sont des relations (prédicats) ternaires
- o Instance d'une relation : ensemble de k-uplets

(k = arité de la relation)

→ Vue logique :

valeurs : constantes

instance de relation : ensemble d'atomes

o Instance de BD : ensemble des instances de relation

Une instance de la relation Film

titre	directeur	acteur
The trouble	Hitchcock	Green
The trouble	Hitchcock	Forsythe
The trouble	Hitchcock	MacLaine
The trouble	Hitchcock	Hitchcock
Cries and Whispers	Bergman	Anderson

Vue logique :

{ film(t,h,g), film(t,h,f), film(t,h,m), film(t,h,h), film(c,b,a) }

REQUÊTES CONJONCTIVES

En SQL: « SELECT ... FROM ... WHERE conditions de jointure »

Exemple:

« trouver les noms des films où Hitchcok joue »

SELECT Film.Titre FROM Film

WHERE Film.Acteur = « Hitchcock »

Vue logique?

trouver x tel que Film(x,y,h)

Exemple:

« trouver les noms des salles dans lesquelles on joue un film de Bergman »

- Requête SQL?
- Vue logique?

Exemple:

« trouver les noms des salles dans lesquelles on joue un film de Bergman »

SELECT Pariscope.Salle
FROM Films, Pariscope
WHERE
Films.Directeur = « Bergman »
AND Films.Titre=Pariscope.Titre

Vue logique:

trouver z tel que Films(x,Bergman,y) A Pariscope(z,x,t)

Vue logique d'une requête conjonctive :

ensemble d'atomes

+ une liste de « variables réponses » (à retourner comme réponse)

Si la liste des variables est vide, on a une requête booléenne

RÉPONDRE À UNE REQUÊTE CONJONCTIVE

- Requête Q et base de données D : deux ensembles d'atomes
- Un homomorphisme h de Q dans D est une substitution des variables de Q par des constantes de D

telle que:

Pour tout atome p(x1,...,xk) de Q p(h(x1),...,h(xK)) est dans D

On considère que si xi est une constante, h(xi) = xi

• Les **réponses** à Q dans D sont obtenues en prenant les images des variables réponses par les homomorphismes de Q dans D

RECHERCHE D'HOMOMORPHISMES DE Q DANS D

Représentation sous la forme (X,D,C) ?

X = variables de Q

D = constantes de D

C = conditions à satisfaire par une assignation ?

Pour chaque atome p(x1,...,xk) de Q

p(h(x1),...,h(xK)) est dans D

Exemple: $Q = \{ p(x,y,z), s(z,t) \}$

 $D = \{ p(a,b,c), s(b,a), s(c,b) \}$

- Dérouler l'algorithme de backtrack
 - en prenant un ordre statique sur les variables : z t x y
- Quels sont les atomes à tester à chaque étape ?