Chapter 11 Statistics – (Study) Formula Sheet

11.1 - Statistical Studies

Observational Study vs Experiment

- **Observational study** Observes existing data.
 - Can reveal association or correlation between variables, but not causation.
- Experiment Generates data to help identify cause-and-effect relationships.
 - <u>Imposes</u> treatments and controls randomly to groups.

Principles of Experimental Design

- 1. Randomize the control and treatment groups.
- 2. Control for outside effects on the variable.
- 3. Replicate the experiment a significant number of times to see meaningful patterns.

11.2 - Displaying Data

Frequency Tables

 Summarize datasets by counting the number of observations for each category, distinct value or interval.

Frequency	Percent
11	11/50 = 22%
23	23/50 = 46%
9	9/50 = 18%
7	7/50 = 14%
	11 23 9

Number of Pets	Frequency	
1-2	7	
3-4	3	
5-6	3	
7-8	2	
Total = 15		

Number of Students

Graphical Displays of Data

- Pie charts (categorical data)
 - Compare parts to a whole (slices are proportion of a category).

Examples

a) What percent of observations have between 1 and 4 pets inclusive?

$$\frac{7+3}{15} = \frac{10}{13} = \frac{66.7\%}{1}$$

b) What percent of students prefer Football or Hockey?

- Bar graphs (categorical data) and Histograms (numeric data)
 - Height of bar represents amount of data in each category (counts or relative frequencies).

- Line graph
 - Shows changes in a numerical variable over time.

c) Bar graph - Which season has the highest frequency?

d) Histogram - How many items cost between \$11 and \$40 inclusive?

e) How many days was the temperature between 55 and 60 °F?

11.3 - Describing and Analyzing Data

Measures of Center

Mean (average) =
$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

- NOT resistant → Affected by outliers
- Median (middle)
 - The middle value in an ordered list.
 - Resistant → NOT affected by outliers.
- Mode (most common)
 - The most frequently occurring value(s).
 - Resistant → NOT affected by outliers.
 - Only measure of center that can be used with categorical data.

Measures of Spread

- Standard deviation
 - Measures average distance from the mean.
 - (Don't calculate by hand).

calculator to possible !!!

Example

Dataset: 1, 2, 7, 3, 6, 9, 1, 0, 4, 7

(Data in L₁)

b) Find the median. Med = 3.5

c) Find the mode.

d) Find the range.

Ronge =
$$Max - Min$$

 $V = Q - O = Q$

e) Find the sample standard deviation.

$$from calc$$

$$S_{x} = 3.091$$

$$V$$
Sample

- A **percentile** tells you the percent of observations/individuals you are higher than.
- Quartiles are specific percentiles.
 - Q₁ is the 25th Percentile.
 - Q₃ is the 75th Percentile.
 - Q₂ is the 50th Percentile = Median.
- Inner Quartile Range (IQR)

$$- \boxed{\mathsf{IQR} = \mathsf{Q}_3 - \mathsf{Q}_1}$$

5-number summary

Min, Q_1 , Med, Q_3 , Max \Rightarrow Points of a boxplot

- <u>Example</u>: Calculate the 5-number summary and sketch a boxplot for the following dataset.

Med = 9

11.4 – The Normal Distribution

 $^{\circ}$ of the data lies within 1 st dev of the mean.

95% of the data lies within 2 st devs of the mean.

99.7% of the data lies within 3 st devs of the mean.

12

75

- Finding probabilities using the Empirical Rule.
 - Step 1 → **Draw** and **label** curve.
 - Step 2 → Shade curve.
 - Step 3 → Use empirical rule.

Example

Oak tree heights are normally distributed with mean 60 m and st dev 5 m.

a) Find the percent of trees between 50 m and 70 m tall.

b) Find the percent of trees greater than 65 m

$$0 + 5 : de = \frac{10 \cdot 100}{100 \cdot 10} - \frac{10.5 \cdot 10}{6.6.70} = 32\%$$

$$0 \times 17 = 32\%$$

$$100 \times 17 = 32\%$$

$$100 \times 17 = 32\%$$

$$100 \times 17 = 32\%$$

- Step 1 → Standardize using the z-score.

- Ex) X has a normal distribution with mean 10 and st dev 2. Find the z-score for X = 13.
- Step 2 → **Draw**, **label** and **shade** curve.
 - This is how you show your work!!!

- Step 3 \rightarrow Use 'Standard Normal Distribution' table to find the probability for Z.
 - Table ALWAYS gives probability LESS THAN Z: P(Z < z).
 - <u>Examples</u> (How tous sotable)
 - Left probability = TABLE (Directly)

$$P(Z < 1.20) = 0.8849$$

Right probability = 1 - LEFT

$$P(Z > -0.65) = | P(Z \ge -0.65) > (-0.757)^{2}$$

- Between probability = LEFT Z₂ - LEFT Z₁

$$P(-1.13 < Z < 0.75) = (0.75) - (0.75)$$

11.5 - Confidence Intervals

Point Estimates (PE)

- Using a statistic to estimate a parameter
 - Proportions: $\hat{p} = \frac{x}{n}$ and Means: \bar{x}

Margin of error

- C.I. = Point Estimate ± Margin of Error
 - *E* is the distance we extend our guess in both directions to form an interval

- Rule of thumb for margin of error in a survey
 - With 95% confidence, the margin of error, E, is approximately

for a sample of size n

- Interpretation (general structure)
 - I am C% confident that the true/population parameter + context is between (lower bound) and (upper bound).
- Comparing confidence intervals

 When comparing confidence intervals to a particular value, or other intervals, we need to look at the ENTIRE interval to see if it is COMPLETELY below or above our comparison.

Comparisons

A << 60
B ?? 60
C >> 60

A ?? B

- Example: Out of 688 randomly selected students, 223 are members of at least one school club.
 - a) Find the point estimate
 - b) Find the lower and upper bounds of a 95% CI using the rule of thumb to calculate the margin of error.

a)
$$p' = \frac{x}{n} = \frac{323}{688} \approx 0.324 \longrightarrow * 100\% = 32.4\%$$

b) $E = \frac{1}{\sqrt{m}} \times 100\% = \frac{1}{\sqrt{688}} \times 100\% \approx 3.8\% \Longrightarrow 95\% CT = 32.4\% \pm 2.8\% = [28.6, 36.2]$

$$p' = \frac{1}{\sqrt{m}} \times 100\% = \frac{1}{\sqrt{688}} \times 100\% \approx 3.8\% \Longrightarrow 95\% CT = 32.4\% \pm 2.8\% = [28.6, 36.2]$$

$$p' = \frac{1}{\sqrt{m}} \times 100\% = \frac{1}{\sqrt{688}} \times 100\% \approx 3.8\% \Longrightarrow 95\% CT = 32.4\% \pm 2.8\% = [28.6, 36.2]$$

$$p' = \frac{1}{\sqrt{m}} \times 100\% = \frac{1}{\sqrt{688}} \times 100\% \approx 3.8\% \Longrightarrow 95\% CT = 32.4\% \pm 2.8\% = [28.6, 36.2]$$

$$p' = \frac{1}{\sqrt{m}} \times 100\% = \frac{1}{\sqrt{688}} \times 100\% \approx 3.8\% \Longrightarrow 95\% CT = 32.4\% \pm 2.8\% \approx 100\% \cos 2.8\% \cos 2$$

12.3 - Data Exploration

Scatterplots:

- **Form**: Linear, curved, or random scatter

- **Direction**: Positive, negative or no association

- Strength: Weak, moderate or strong

Correlation (r):

- Interpreting correlation (LINEAR)
 - Sign = Direction
 - Absolute value |r| = Strength
- Calculate using calculator
 - LinReg(ax+b) or 2-Var Stats
 - $L_1 = X, L_2 = Y$

<u>Example</u>

Dataset:

ĺ	Х	3	5	4	7	6	10
	Υ	24	40	34	32	17	18
ļ !							

Regression:

- Step 1 → Determine if there is a significant correlation (linear relationship).
 - Compare |r| and Critical Value (CV) for n (sample size) and significance level α . If $|r| > CV \rightarrow$ statistically significant.

Pearson Correlation Coefficient			
n	$\alpha = 0.05$	$\alpha = 0.01$	
4	0.950	0.990	
5	0.878	0.959	
6	0.811	0.917	
7	0.754	0.875	

 Step 2 → Once we have a significant correlation, we can find the regression line.

 $\hat{y} = ax + b$ (get results from correlation calculation) = slope · x + intercept

- Step 3 → Make **predictions** using the regression line.
 - Just plug in the new *X* value to our equation and this will give us the predicted *Y*.

a) Calculate the correlation r.

2 - var stats (x, v)

b) Determine if r is significant for $\alpha = 0.01$.

$$N=6$$
 $|V| = 0.4305 \ (0.417 = CV)$
 $\Rightarrow N=1 \ Significant$

c) Suppose we have different regression equation where $\hat{v} = 5x + 2$.

Predict
$$Y$$
 for $X = 3$: