OVER ALL VIEW OF ALTERNATIVE FUELS

IS THERE LIFE AFTER PETROLEUM?

Manoj Kumar Assistant Professor School of Mechanical Engineering Galgotias University, Greater Noida

HUBBERT'S PEAK THEORY

For any given geographical area, from an individual oil field to the planet as a whole, the rate of oil production tends to follow a bell-shaped curve

In <u>1956</u>, Hubbert proposed that crude oil production in a given region over time would follow a bell-shaped curve without giving a precise formula. The idea is that after oil reserves are discovered, oil production increases exponencially at first as more efficient facilities are installed. At some unique point, a peak is reached and oil production begins an exponential decline.

US oil production peaked in 1971.

WHEN WILL THE PEAK TAKE PLACE?

- U.S oil production peak
- Peak of world oilified discoveries
- Hubbert's estimation for world peak
- Nowadays, the facts are
 - Oil production in decline in 33 out of 48
 - 2 out of 3 largest oil fields have peaked

CLASSIFICATION OF ALTERNATIVE FUELS

- Gasoline type biofuels
- Diesel type biofuels
- Other types of internal combustion
- External combustion
- No combustion

GASOLINE TYPE BIOFUELS

- Ethanol
- Buthanol: Alcohol, can be fermented from Biomass,
- Methanol: Easy to facturate from methane but highly toxic and volatile
- P-Series: Mixture derived from natural gas, not widely used
- Hydrogen

DIESEL TYPE BIOFUELS

- Vegetable oils
 - Waste vegetable oils
 - Straight vegetable oils
- Biodiesel

OTHER TYPES OF INTERNAL COMBUSTION

- Liquefied Natural Gas (LNG)
- Compressed Natural Gas (CNG)
- Propane
- Synfuel: Liquied obtained from natural gas or coal

EXTERNAL COMBUSTION

• Steam: Based upon the rankine cycle

Organic waste

NO COMBUSTION

- Electric: Interesting alternative but dont forget electricity comes from combustion
- Solar cell cars: At first too large for consumer cars, but smaller with time

BIOETHANOL

Alcohol product produced from corn, sorghum, potatoes, wheat, sugar cane, even biomass such as cornstalks and vegetable waste.

BIOETHANOL

- Use in combustion engines
 - Hydrous ethanol

- Anhydrous (or dehydrated) ethanol
- ETBE

BIOETHANOL - E100

- Modifications in the engine to use the BioEthanol as pure fuel
 - To increase the relation of compression.
 - To change the mixture of fuel / air.
 - To place spark plugs resistant to major temperatures and pressures.
 - To place conduits resistant to the assault of tar after caulking.
 - To add a mechanism that should facilitate the take-off in cold.

BIOETHANOL - PROS

- Domestically produced
- Burns 10 % more efficiently than gasoline
- FFVs are available and becoming more affordable.

BIOETHANOL - CONS

- Less energy content than gasoline.
- Fueling stations yet difficult to find.
- Production is yet limited.
- Infraestructure for fueling and distribution is yet insufficient.

EXAMPLE OF BIOETHANOL: FOCUS FFV

- 1.8-litre engine
- Produces 70 % less carbon dioxide than its petrol equivalent.
- It develops 123 bhp.
- Fuel E85 is a mixture of ethanol (85%) and petrol (15%).
- Price: 193 973 SEK

HYDROGEN

- Is the lightest element
- Is the most abundant element in the Universe
- Is not a direct energy source
- It can be obtained by means of solar energy, eolic or hidraulic electricity.
- Nowadays 95% is obtained from fossil fuels

OBTAINING HYDROGEN

Reformed with steam

•
$$CH_4 + H_2O$$

•
$$CO + H_2O$$

$$CO + 3H_2$$

$$\longrightarrow$$
 CO₂ + H₂

Water electrolysis

•
$$H_2O + Power$$

$$\longrightarrow$$
 H₂ + 1/2O₂

Photoelectrolysis

OBTAINING HYDROGEN

- Using the biomas
 - Biomass gasification
 - Pyrolysis
- Photobiologic production

OBTAINING HYDROGEN

- Hydrogen production on board the vehicle
 - Using methanol as fuel

$$CH_3OH + \frac{1}{2}O_2$$
 $CO_2 + 2H_2$

• Using ethanol as fuel

$$CH_3CH_2OH + 3H_2O$$
 $CO + CO_2 + 6H_2$

PRODUCTION COST OF HYDROGEN

- 1 Gas Natural-CO₂
- 2 Carbón-CO₂
- 3 Biomasa
- 4 Energía Nuclear
- 5 Rector de gas de alta temperatura (HTGR)

- ó Energía eólica onshore
- 7 Energía eólica offshore
- 8 Energía solar térmica
- 9 Energía solar fotovoltaica

USE OF HYDROGEN IN AUTOMOTION

Hydrogen combustion in a MCIA

Fuel batteries

HYDROGEN COMBUSTION IN A MCIA

Mazda Rx8 Hydrogen

HYDROGEN COMBUSTION IN A MCIA

BMW 7 Series Hydrogen

FUEL BATTERIES

• Electrochemical systems where energy from a chemical reaction is directly turned into electricity.

• Hydrogen + Oxigen =>Electricity + Water

ADVANTAGES OF USING HYDROGEN AS A FUEL

- Abundant element in the Universe
- High efficiency
- Emission zero of pollutants
- Low working temperatures and pressures
- Silent functioning

DISADVANTAGES OF USING HYDROGEN AS A FUEL

- It is not a primary source.
- Obtaining pure hydrogen is really expensive.
- High storage and supply costs.
- High weight of fuel cells for the current prototypes
- High energetic expense to liquefy the hydrogen

BIODIESEL

- Diesel equivalent, processed fuel derived from biological sources.
- It is composed by mono-alkyl esters made from the transesterification of both vegetable oils and animal fats.
- Glicerine is produced as a second product.

OBTAINING BIODIESEL

SOURCES FOR BIODIESEL

- Vegetable oils
- Genetically modified vegetable oils
- Waste vegetable oils
- Bad quality vegetable oils

COMPARISON TO PETROLEUM

- Carbon monoxide: -50%
- Carbon dioxide: -78%
- Nitrogen oxide: +20%
 - BUT catalyc converters
- Biodegradable and non-toxic
- The U.S. Department of Energy confirms that biodiesel is less toxic than table salt and biodegrades as quickly as sugar.

NATURAL GAS

• Natural gas is a mixture of hydrocarbons, mainly methane (CH₄).

• Other components: ethane, propane, nitrogen, helium, carbon dioxide, hydrogen sulfide, water vapour,...

PRODUCTION OF NATURAL GAS

- Water or sewage treatment.
- Gas wells.
- Crude oil production

USE OF NATURAL GAS AS A FUEL

- Light-duty applications
 - Natural gas vehicles
- Heavy-duty and medium-duty applications
 - Natural gas engines

ADVANTAGES OF NATURAL GAS

- Carbon monoxide 90 %
- Nitrogen oxide 60 %
- Carbon dioxide (greenhouse gas) 30-40%
- CO and particulate matter > 90 %
- NOx > 50 %

Advantages of natural gas vehicles compared to gasoline vehicles

CONCLUSIONS

Our ignorance is not so vast as our failure to use what we know

Marion King Hubbert (1903-1989)