Hopfield 人工神经网络

Hopfield 利用模拟电路构造了反馈型人工神经网络的电路模型,通过在网络中引入能量函数以构造动力学系统,并使网络的平衡态与能量函数的极小值相对应.建立的能量函数表达式为

$$E(y) = -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} y_{i} y_{j} + \sum_{i=1}^{n} \frac{1}{R_{i}} \int_{0}^{y_{i}} f_{i}^{-1}(y) dy - \sum_{i=1}^{n} I_{i} y_{i}$$

其中, $y_i = f_i(z_i)$, f_i 为 Sigmoid 或线性函数; w_{ij} 为电导参数,是 i 和 j 两个神经元的权数, $w_{ij} = w_{ji}$; R_i 是模拟电子线路电阻的大小; z_i 为第 i 个神经元的接收值; I_i 为外部偏置电路电流输入值; $\sum_{i=1}^n \frac{1}{R_i} \int_0^{y_i} f_i^{-1}(y) dy$ 称为增益值.

能量函数对应一个动力系统

$$\begin{cases} \frac{dz_i}{dt} = -A_i z_i + \sum_{j=1}^n w_{ij} y_j + I_i \\ y_i = f_i(z_i), \quad i = 1, 2, \dots, n \end{cases}$$

其中,
$$A_i=1/R_i'$$
, $1/R_i'=1/R_i+\sum_j w_{ij}$, $w_{ij}=w_{ji}$. 并且有
$$-\frac{dz_i}{dt}=\frac{\partial E}{\partial v_i}$$

计算得到

$$\frac{dE}{dt} = \sum_{i=1}^{n} \frac{\partial E}{\partial y_i} \frac{dy_i}{dt} = -\sum_{i=1}^{n} \frac{dz_i}{dt} \frac{dy_i}{dt}$$
$$= -\sum_{i=1}^{n} \frac{df_i^{-1}(y_i)}{dy_i} \left(\frac{dy_i}{dt}\right)^2 \le 0$$

特别当
$$\frac{dz_i}{dt}=0$$
, $i=1,2,\cdots,n$ 时, $\frac{dE}{dt}=0$.

动力系统微分方程组可简记为

$$\frac{dz(t)}{dt}=g(z,t)$$

- 如果 $g(z_e, t) = 0$, 则称 z_e 是动力系统的平衡点.
- 满足下列条件的平衡点 z_e 称为稳定点: 任给 $\varepsilon > 0$ 和 $t_0 \ge 0$, 存在 $\delta(\varepsilon, t_0) > 0$, 当 $t \ge t_0$, $||z_0 z_e|| < \delta(\varepsilon, t_0)$ 时,

$$||z(t;z_0,t_0)-z_e||<\varepsilon$$

其中, $z(t; z_0, t_0)$ 表示以 z_0 为起始点, t_0 为起始时间满足微分方程组的一条参数曲线. 此时称动力系统在点 z_e 稳定.

• 满足下列条件的稳定点 ze 称为是渐近稳定点

$$\lim_{t\to\infty}z(t;z_0,t_0)=z_e$$

称动力系统在点 ze 渐近稳定.

定理

- 若能量函数是正定的, 即 $\forall z \neq z_e$,有 E(z) > 0,且 满足 $\frac{dE(z)}{dt} \leq 0$,则动力系统的任何一个平衡点 z_e 是稳定的.
- 若 S 是一个有界闭集, 动力系统满足下面条件: 对于 $z(t_0; z_0, t_0) \in S$,有 $z(t; z_0, t_0) \in S$, $t \ge t_0$,且 S 上存在能量函数 $E(z) \in C^1$,使得 $\frac{dE(z)}{dt} \le 0$, $z \in S$. 则 $z(t; z_0, t_0) \to Z_e = \{z \mid \frac{dE(z)}{dt} = 0, z \in S\}$, $t \to \infty$,当 Z_e 中只有一个点时, 这一点是渐近稳定的.

Hopfield 神经网络的计算步骤

- Step 1. 针对实际的组合优化问题构造能量函数 E,使原问题的解为 E 的极值点,且能量函数有好的稳定性,如满足定理条件;
- **Step 2**. 由能量函数, 写出动力系统方程,该动力系统的平 衡点恰好是 E 的极值点;
- Step 3. 用数值的方法求解动力系统方程, 其数值解即为 *E* 的极值点的近似解.

常微分方程数值解法

对常微分方程

$$\frac{dx}{dt} = f(x, t)$$

可用数值迭代格式求解

$$x_k = x_{k-1} + f(x,t)\Delta t$$

其中 Δt 为迭代步长, $x_0 = x_{t_0}$

TSP

用一个矩阵表示 TSP 的一个解, 第 i 行表示商人到达城市的顺序, 第 i 行由 0,1 数字组成一个 n 维向量,其中只能有一个分量为 1, 1 所在的序数表示商人到达的序数. 如向量 (00010) 表示商人第四个访问该城市.

例: 四个城市TSP的解

	1	2	3	4
城市 1 城市 2 城市 3 城市 4	0	1	0	0
城市 2	0	0	0 1 0	0
城市 3	1	0	0	0
城市 4	0	0	0	1

表示商人访问城市的顺序为: $3 \rightarrow 1 \rightarrow 2 \rightarrow 4$.

构造一个有 $n \times n$ 个神经元的神经网络. 对应 (i,j) 位置的神经元, 接收到的值为 z_{ij} , 其输出值为 y_{ij} ,激活函数采用 Sigmoid 函数. 记两个城市 x 和 y 的距离是 d_{xy} . 期望每一行的和为 1, 也就是希望

$$E_1 = \sum_{u=1}^{n} \sum_{i=1}^{n} \sum_{j \neq i} y_{ui} y_{uj}$$

越小越好.

期望每一列的和为 1, 也就是希望

$$E_2 = \sum_{i=1}^n \sum_{u=1}^n \sum_{v \neq u} y_{ui} y_{vi}$$

越小越好.

要保证每一行每一列正好有一个 1, 理想状态是

$$E_3 = \left(\sum_{i=1}^n \sum_{j=1}^n y_{ij} - n\right)^2$$

为零.

要得到最短路, 当 $d_{uv} = d_{vu}$ 时, 希望

$$E_4 = \sum_{u=1}^n \sum_{v \neq u} \sum_{i=1}^n d_{uv} y_{ui} (y_{vi-1} + y_{vi+1})$$

最小, 其中 $y_{u0} = y_{un}, y_{un+1} = y_{u1}$

能量函数为

$$E = \frac{A}{2}E_1 + \frac{B}{2}E_2 + \frac{C}{2}E_3 + \frac{D}{2}E_4 + \alpha E_5$$

其中 A, B, C, D, α 为非负常数. 而

$$E_5 = \sum_{i,j} \int_0^{y_{ij}} f_{ij}^{-1}(y) dy$$

能量函数 E 满足的动力系统为

$$\begin{cases} \frac{dz_{ui}}{dt} = -\frac{\partial E}{\partial y_{ui}} \\ = -\alpha z_{ui} + \sum_{v=1}^{n} \sum_{j=1}^{n} w_{ui,vj} y_{vj} + I_{ui} \\ y_{ui} = f(z_{ui}) \end{cases}$$

其中

$$\begin{cases} w_{ui,vj} = -A\delta_{uv}(1-\delta_{ij}) - B\delta_{ij}(1-\delta_{uv}) - C \\ -Dd_{uv}(\delta_{j,i+1}+\delta_{j,i-1}), \end{cases}$$

$$I_{ui} = nC$$

而

$$\delta_{ii} = 1$$
 if $i = j$, $= 0$ if $i \neq j$.

其数值迭代格式为

$$\begin{cases} z_{ui}(t+\Delta t) = z_{ui}(t) + \Delta t \left[-\alpha z_{ui}(t) + \sum_{v=1}^{n} \sum_{j=1}^{n} w_{ui,vj} y_{vj}(t) + nC \right] \\ y_{ui}(t) = f(z_{ui}(t)) \end{cases}$$

Hopfield 在求解 10 个城市的 TSP 问题时, 数值计算的 参数选取如下

$$\alpha = 1$$
, $A = B = D = 500$, $C = 200$

Sigmoid 函数为

$$y_{ui} = f(z_{ui}) = \frac{1}{1 + e^{-\frac{2z_{ui}}{\mu_0}}}$$

其中 $\mu_0 = 0.02$.

初始设置 y_{ui} 都相等, 使得

$$\sum_{u=1}^{10} \sum_{i=1}^{10} y_{ui} = 10$$

用初始相等的 y_{ui} 可以解出 $z_{00} = -\frac{\mu_0}{2} \ln 9$. 给 z_{00} 一个扰动

$$z_{ui} = z_{00} + \delta z_{ui}, \quad -0.1\mu_0 \le \delta z_{ui} \le 0.1\mu_0$$

其中 δz_{ui} 为 $[-0.1\mu_0, 0.1\mu_0]$ 上的均匀分布, 为动力系统开始数值计算的初始点.

Hopfield 人工神经网络解 TSP 实例