# Graphical Abstract

# Uma demonstração de que o jogo Sid Meier's Civilization: Beyond Earth é Turing Completo

Nicholas Wojeicchowski, Lucas Gonçalves Brach



# Highlights

# Uma demonstração de que o jogo Sid Meier's Civilization: Beyond Earth é Turing Completo

Nicholas Wojeicchowski, Lucas Gonçalves Brach

- Uma máquina de Turing é o modelo computacional mais poderoso conhecido
- Para afirmar que um modelo de computação é Turing Completo devemos construir uma máquina de Turing Universal para ele
- A partir das regras internas do jogo Sid Meier's Civilization: Beyond Earth podemos simular uma máquina de Turing[1]
- Há diversos exemplos de aplicativos que são Turing completos, como o jogo de cartas Magic: The Gathering[2], o Microsoft PowerPoint[3], entre outros
- O modelo de computação criado a partir do jogo Sid Meier's Civilization: Beyond Earth é menos eficiente que uma máquina de Turing tradicional

# Uma demonstração de que o jogo Sid Meier's Civilization: Beyond Earth é Turing Completo

Nicholas Wojeicchowski<sup>a</sup>, Lucas Gonçalves Brach<sup>a</sup>

<sup>a</sup>Departamento de Ciência da Computação - Universidade do Estado de Santa Catarina, R. Paulo Malschitzki - 200, Joinville, 89219-710, Santa Catarina, Brasil

#### Abstract

No contexto da ciência da computação, um modelo de computação é dito Turing Completo, ou universalmente computável se e somente se pode ser usado para manipular qualquer máquina de Turing. Em outras palavras podemos definir que um modelo de computação é Turing completo se é possível simular uma máquina de Turing a partir dele e se a partir de uma Máquina de Turing podemos simulá-lo também. O presente trabalho trata-se de uma análise do jogo digital Sid Meier's Civilization: Beyond Earth e a prova da sua Turing Completude, bem como uma explicação superficial das mecânicas do jogo, exemplos de algoritmos construídos com a partir das regras de computação definidas pelo jogo e uma comparação entre uma Máquina de Turing tradicional e o modelo de computação construído a partir do jogo.

Keywords: Turing Completude, Máquina de Turing Universal, Sid Meier's Civilization, Simulação, Teoria da Computação

### 1. Introdução

Nos dias atuais é quase impossível realizar qualquer tarefa do dia a dia sem o auxílio de um computador, seja ele um Desktop ou até mesmo um dispositivo móvel como um smartfone ou tablet, mas ouve um tempo em que o conceito de computador era apenas uma ideia abstrata e teórica, e é sobre essa ideia que o presente trabalho fala a respeito. Os nossos atuais computadores surgiram de um modelo de computação muito simples, a Máquina de Turing, uma Máquina de Turing é um dispositivo que é essencialmente um autômato finito com uma fita de dimensões infinitas em que é possível ler e escrever dados [4].

Em 1936, Alan Turing propôs a máquina de Turing como um modelo capaz de computar qualquer computação possível [5], entretanto vale ressaltar que esse não é o único modelo de computação capaz de fazer isso, todas as propostas sérias para um modelo de computação possuem o mesmo poder computacional (como a Máquina de Post e o Cálculo Lambda). A tese de Church-Turing diz que qualquer forma de computação permite computar apenas as funções  $\mu$ -recursivas [4].

Quando um modelo possui a capacidade de computar qualquer computação possível ele é chamado de Turing Completo, a seção 3 abordará esse tema novamente com mais detalhes.

O modelo de proposto por Turing consiste um controlador finito e uma fita infinita dividida em células, em que cada célula armazena um único símbolo de um conjunto finito de símbolos possíveis, sendo uma célula a posição corrente do cabeçote de leitura e escrita. Além disso, faz movimentos baseados no estado atual da máquina e no símbolo lido da fita pelo cabeçote, de forma que a cada movimento, o estado possivelmente é alterado, um símbolo é sobrescrito na posição corrente do cabeçote e este move uma célula para esquerda ou direita. A computação inicia com a palavra de entrada, que consiste de uma sequência finita de símbolos disposta na fita, sendo as demais células preenchidas com o símbolo especial de branco. A máquina para aceitando assim que atinge um estado de aceitação, e para rejeitando assim que atinge um estado de aceitação formal e mais aprofundada sobre esse dispositivo será dada na seção 3.

Para afirmar que dois modelos computacionais são equivalentes em poder computacional é preciso que eu consiga simular um modelo no outro. Variantes do modelo da máquina de Turing, como multi-fita, movimento estacionário ou não-determinismo apresentam todos o mesmo poder computacional, ou seja, aceitam a mesma classe de linguagens [6].

A proposta desse artigo é justamente provar que o jogo Sid Meier's Civilization: Beyond Earth é equivalente em poder computacional a uma máquina de Turing, e portanto afirmar que o jogo é Turing Completo, para isso é apresentado uma forma de simular uma máquina de Turing usando as mecânicas e regras internas do jogo, tais regras serão acuradas na seção 2.

As seções 4, 5 e 6 apresentam respectivamente, exemplos de uma máquina de Turing mapeada para o jogo, uma comparação entre a máquina de Turing tradicional e a máquina de Turing simulada no jogo e uma conclusão final sobre o trabalho.

# 2. Sobre o jogo

Desenvolvido por Sid Meier e Firaxis Games e publicado em 2014 pela Take-Two Interactive, Civilization: Beyond Earth é um spin-off da série de jogos digitais Civilization, caracterizada pelo gênero de estratégia baseada em turnos e nas mecânicas de 4X (explorar, expandir, extrair e exterminar), sendo o mais longevo e popular jogo multijogador de simulação de alta estratégia com vasto detalhamento histórico [7]. A ideia essencial dos jogos principais da série é construir um império capaz de resistir ao tempo, iniciando com o estabelecimento de uma civilização na Idade da Pedra e liderando o desenvolvimento até a Era da Informação, atravessando guerras, diplomacia e evolução tecnológica, econômica e cultural.

#### 2.1. Enredo e características

Sid Meier's Civilization: Beyond Earth é tematizado em ficção científica e se passa num futuro incerto em que eventos globais levaram à desestabilização e consequente colapso da sociedade contemporânea, sujeitando a humanidade a buscar um novo início na imensidão do espaço e na colonização e desenvolvimento em planetas extraterrestres.

Os jogadores são responsáveis por uma colônia e têm o objetivo de atingir alguma das condições de vitória, como Contato, Dominação e Afinidade, evidenciando a boa gestão dos recursos e relacionamento com as demais colônias, visto que há também o combate, que ocorre entre duas entidades políticas que estão em guerra entre si, mais precisamente, uma colônia pode estar em guerra com outra colônia.

O mapa do jogo é finito e composto por divisórias hexagonais, podendo manifestar-se como diversos tipos de terreno: desertos, planícies, pradarias, colinas, e outros. Os hexágonos podem ainda ter modificadores como florestas, neve, rios, pântanos, e até contaminação alienígena.

As cidades são vitais para o sucesso da sua civilização. Elas permitem a pesquisa de novas tecnologias e acúmulo de riqueza, além da construção de Unidades, Edificações e Maravilhas: Unidades são elementos que podem se mover pelo mapa, podem ser classificadas em combatentes ou não combatentes, nesta última destacam-se os Trabalhadores, que encarregam-se de construções e plantações; cidades possuem mais que apenas casas, Edificações podem ser laboratórios, instalações, galpões e outros que representam as melhorias feitas à cidade; e Maravilhas que são edificações, invenções e conceitos especiais que requerem mais esforços para serem completados. [7]

### 2.2. Regras básicas

O jogo é multi jogador, e é separado em turnos, onde que em cada turno, o jogador executa todas ou algumas das ações disponíveis, como construir melhorias (Unidades, Edificações e Maravilhas), pesquisar tecnologias, melhorar políticas sociais e se concentrar na gestão geral da sua civilização.

Para cada melhoria construída é necessário uma quantidade determinada de turnos, além disso cada melhoria produz um recurso relacionado a ela, e esses recursos são utilizados para manter as unidades e edifícios que o jogador possui, além de possibilitar a aquisição de tecnologias e políticas sociais mais avançadas. Alguns exemplos desses recursos são Alimentos, Produção, Cultura e Ciência.

Uma ou mais unidades controladas pelo jogador, conhecidas como Trabalhadores, geralmente são encarregadas de construir melhorias em um terreno, o que implica diretamente no rendimento de recursos desse jogador. Por exemplo, para adquirir novas tecnologias precisa-se de uma certa quantidade do recurso ciência, para isso os Trabalhadores constroem melhorias nos terrenos (por exemplo, uma universidade) para aumentar o rendimento de ciência.

Vale ressaltar que os Trabalhadores só podem construir melhorias em terrenos pertencentes a uma Cidade. As cidades produzem mais cidadãos para trabalhar os terrenos e suas melhorias. Os jogadores são capazes de gerenciar a colocação de cidadãos para alterar seu rendimento de recursos. [7]

# 3. Demonstrando a Turing Completude do jogo

#### 3.1. Definição da Máquina de Turing

O modelo de computação de propósito geral concebido por Turing é como um autômato finito que executa uma série de instruções predefinidas, porém dispõe de memória infinita e capacidade tanto de ler quanto escrever em qualquer posição desejada. Sipser [6] define a máquina de Turing como uma 7-tupla  $(Q, \Sigma, \Gamma, \delta, q_0, q_a, q_r)$ , de forma que:

- 1. Q é o conjunto de estados,
- 2.  $\Sigma$  é o alfabeto de entrada, tal que  $\sqcup \notin \Sigma$ ,
- 3.  $\Gamma$  é o alfabeto da fita, tal que  $\sqcup \in \Gamma$  e  $\Sigma \subset \Gamma$ ,
- 4.  $\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{E, D\}$  é a função programa,
- 5.  $q_0 \in Q$  é o estado inicial,

6.  $q_a \in Q$  é o estado de aceitação,

7.  $q_r \in Q$  é o estado de rejeição, sendo  $q_a \neq q_r$ .

Uma máquina de Turing  $M = (Q, \Sigma, \Gamma, \delta, q_0, q_a, q_r)$  recebe como entrada uma palavra  $w = w_1 w_2 ... w_n \in \Sigma^*$  nas n células mais à esquerda, o resto da fita é preenchida pelo símbolo especial de branco  $\sqcup$ . Para iniciar o processo de computação o cabeçote é posicionado na célula mais à esquerda da fita, em sequência ocorrem as transições de acordo com as regras da função programa  $\delta$ , em que o símbolo lido da fita e o estado interno atual da máquina descrevem o estado seguinte, o símbolo a ser escrito na posição atual e o sentido do movimento para esquerda ou direita, continuando assim até atingir um estado de aceitação ou rejeição, podendo inclusive continuar infinitamente.

# 3.2. Máquinas de Turing Universais

Alan Turing argumenta que uma máquina U é dita universal quando essa recebe como entrada um outra máquina de Turing codificada M, e uma palavra w e faz-se o processamento de M com entrada w. Logo a máquina U é capaz de simular qualquer outra máquina de Turing.[5]

Observe que para criar uma máquina de Turing universal eu preciso de somente 2 símbolos (0 e 1 por exemplo, além do símbolo branco), pois qualquer outro símbolo pode ser convertido para binário.

Segundo Rogozhin[8], a definição formal de uma máquina de Turing  $\,U\,$  pode ser dada por:

$$M(c) = h(U(f(g(M, c))))$$

Onde M é qualquer máquina de Turing, c é a configuração de M, g é o número de Gödel<sup>1</sup> para o par (M,c), f é uma função que mapeia g(M,c) para uma configuração de U e por último h que mapeia a configuração de U para a configuração de M.

Além disso, a função f é injetiva e a função h é total e sobrejetiva. Vale ressaltar que, a função de codificação f e a função de decodificação h são ambas recursivas. Este último requisito, garante que a universalidade esteja na máquina que afirmamos ser universal e não nas funções de codificação ou decodificação.

<sup>&</sup>lt;sup>1</sup>O número de Gödel é um função que para cada simbolo ou fórmula de uma determinada linguagem atribui-se um número natural [9]

Atualmente há diversos estudos para a definição de máquinas de Turing com símbolos e estados mínimos, chegando a máquinas com apenas 2 símbolos e 2 estados [10], o presente trabalho irá usar a máquina de Turing Universal definida por Rogozhin [8] que possui 3 símbolos e 10 estados, chamada de  $U_{mt}(3:10)$ , a figura 2 mostra o diagrama completo dessa máquina

3.3. Construindo uma máquina de Turing Universal com as regras do jogo

Para simular uma máquina de Turing com as regras do jogo, primeiramente deve-se fazer duas suposições[1]:

Suposição 1. No jogo há infinitos turnos e somente um jogador na partida

Suposição 2. O mapa cresce infinitamente para todos os lados

A suposição 1 deve-se ao fato de não limitar o jogo ao um número finito de turnos, pois uma máquina de Turing pode eventualmente entrar em *loop*. E não pode haver mais de um jogador na partida pois não pode haver influência externa durante a computação de uma máquina de Turing. A suposição 2 precisa ser considerada pois o mapa servirá como fita para a máquina de Turing que será simulada no jogo.

Conforme as mecânicas e regras de Sid Meier's Civilization: Beyond Earth, dentre as atividades possíveis que podem ser desenvolvidas por Trabalhadores, destacam-se a construção e destruição de Estradas, a Pilhagem, e a construção e destruição de Terrascapes, que trata-se de um tipo de fazenda otimizada para alta eficiência e capaz de fornecer Cultura[7]. Mais adiante veremos a importância destas características para a simulação de uma máquina de Turing.

A construção da Máquina de Turing Universal $(U_{mt})$  é baseada na ação de dois Trabalhadores: um é responsável pela alternância de estados e o outro pela operação na fita, ou seja, o cabeçote. A dupla desenvolve seu trabalho em seções disjuntas do mapa. Para a fita é considerada a infinitude dos hexágonos que não são propriedade do jogador, já os hexágonos que demarcam os estados precisam estar em sua posse para permitir a construção das melhorias avançadas, nesse caso os Terrascapes. Vale ressaltar que as operações de construção, reparação ou remoção de melhorias consome possivelmente alguns turnos.[1]

## 3.3.1. Simulando a fita

A fita constitui-se de uma sequência contínua de hexágonos pelo mapa. Tendo em vista que terrenos irregulares, como por exemplo morros e montanhas, requerem mais pontos para atravessar, assumiremos que o mapa é composto apenas de planícies. As unidades Trabalhador são dotadas da capacidade de construir/reparar, remover e pilhar Estradas, desta forma o conjunto  $\Gamma$  de símbolos da fita corresponde à situação do hexágono, ou seja,  $\Gamma$  = {Pilhada, Estrada, Vazio}. Para a construção da  $U_{mt}$  teremos a respectiva correspondência:  $\Gamma = \{0, 1, \sqcup\}.[1]$ 

#### 3.3.2. Simulando os estados

O estado atual é formado pelo número de hexágonos com a melhoria Terrascape em posse do jogador, desta forma, a cada transição são construídas ou removidas tantas melhorias quantas forem necessárias para corresponder ao estado indicado pela função programa  $\delta$ . Para a construção da  $U_{mt}$  assumimos que o jogador possui ao menos nove hexágonos disponíveis para manutenção das Terrascapes, portanto  $Q = \{0, ..., 9\}$ . Uma forma equivalente de identificar o estado é através da quantidade de Cultura normalizada gerada no turno, visto que este recurso é obtido pelas Terrascapes.[1]

A figura 1 mostra como fica o mapa do jogo simulando uma máquina de Turing. Repare na figura que os terrenos hexagonais destacados em preto mostram a fita com o simbolo "Estrada", a célula destacada em verde, mostra a posição do cabeçote, e o hexágono em vermelho mostra a célula com o simbolo □. No canto inferior direito temos uma área roxa, essa área é a área de posse do jogador e os hexágonos em cinza são os hexágonos com a melhoria Terrascape, ou seja, o estado atual da máquina é o estado q₂, o terreno em amarelo mostra o trabalhador responsável pelo controle dos estados, que irá construir/destruir os Terrascapes. A configuração em um Máquina de Turing correspondente a imagem seria 11111111q₂11□1111.



Figura 1: Exemplo de uma simulação no mapa do jogo, adaptado de [1]

Com base nas regras definidas nas subseções 3.3.1 e 3.3.2 podemos criar uma função programa para  $U_{mt}(3:10)$  e dessa forma provar que a partir das suposições 1 e 2 Sid Meier's Civilization: Beyond Earth é Turing completo. A tabela 1 mapeia cada função programa da máquina  $U_{mt}(3:10)$  definida no diagrama da figura 2 para uma determinada ação no jogo.



Figura 2: Diagrama de uma máquina de Turing Universal com 10 estados e com 3 símbolos, adaptado de [1]

| Civ:BE $(Q, \Gamma)$ | Comando $(Q, \Gamma, \{E, D\})$ | $U_{mt}(3:10)$                |
|----------------------|---------------------------------|-------------------------------|
| 0, Pilhada           | c. 3 T, na, D                   | $q_0, 0, 0, D, q_3$           |
| 0, Estrada           | c. 1 T, r. Melhoria, E          | $q_0, 1, \sqcup, E, q_1$      |
| 0, Vazio             | na, c. Estrada, D               | $q_0, \sqcup, 1, D, q_0$      |
| 1, Pilhada           | na, na, E                       | $q_1, 0, 0, E, q_1$           |
| 1, Estrada           | na, r. Melhoria, E              | $q_1, 1, \sqcup, E, q_1$      |
| 1, Vazio             | c. 1 <i>T</i> , <i>na</i> , E   | $q_1, \sqcup, \sqcup, E, q_2$ |
| 2, Pilhada           | r. 2 <i>T</i> , <i>na</i> , D   | $q_2, 0, 0, D, q_0$           |
| 2, Estrada           | c. 3 T, pilha Estrada, E        | $q_2, 1, 0, E, q_5$           |
| 2, Vazio             | r. 1 <i>T</i> , <i>na</i> , E   | $q_2, \sqcup, \sqcup, E, q_1$ |
| 3, Pilhada           | na, repara Estrada, E           | $q_3, 0, 1, E, q_3$           |
| 3, Estrada           | c. 1 <i>T</i> , <i>na</i> , D   | $q_3, 1, 1, D, q_4$           |
| 3, Vazio             | r. 3 T, c. Estrada, D           | $q_3, \sqcup, 1, D, q_0$      |
| 4, Pilhada           | na, na, D                       | $q_4, 0, 0, D, q_4$           |
| 4, Estrada           | na, na, D                       | $q_4, 1, 1, D, q_4$           |
| 4, Vazio             | r. 2 T, c. e pilha Estrada, E   | $q_4, \sqcup, 0, E, q_2$      |
| 5, Pilhada           | $na,\ na,\ { m E}$              | $q_5, 0, 0, E, q_5$           |
| 5, Estrada           | $na,\ na,\ { m E}$              | $q_5, 1, 1, E, q_5$           |
| 5, Vazio             | c. 1 T, c. Estrada, E           | $q_5, \sqcup, 1, E, q_6$      |
| 6, Pilhada           | c. 2 <i>T</i> , <i>na</i> , E   | $q_6, 0, 0, E, q_8$           |
| 6, Estrada           | c. 4 <i>T</i> , <i>na</i> , D   | $q_6, 1, 1, D, q_a$           |
| 6, Vazio             | c. 1 <i>T</i> , <i>na</i> , D   | $q_6, \sqcup, \sqcup, D, q_7$ |
| 7, Pilhada           | na, na, D                       | $q_7, 0, 0, D, q_7$           |
| 7, Estrada           | na, na, D                       | $q_7, 1, 1, D, q_7$           |
| 7, Vazio             | r. 2 T, c. Estrada, E           | $q_7, \sqcup, 1, E, q_5$      |
| 8, Pilhada           | r. 5 T, r. Melhoria, E          | $q_8,0,\sqcup,E,q_3$          |
| 8, Estrada           | c. 1 <i>T</i> , r. Melhoria, D  | $q_8, 1, \sqcup, D, q_9$      |
| 8, Vazio             | c. 1 T, c. Estrada, E           | $q_8, \sqcup, 1, E, q_9$      |
| 9, Pilhada           | r. 1 <i>T</i> , <i>na</i> , D   | $q_9, 0, 0, D, q_8$           |
| 9, Estrada           | na, r. Melhoria, D              | $q_9, 1, \sqcup, D, q_9$      |
| 9, Vazio             | r. 5 <i>T</i> , <i>na</i> , D   | $q_9, \sqcup, \sqcup, D, q_4$ |

Tabela 1: Mapeamento da função programa da máquina  $U_{mt}(3:10)$ , adaptada de [8]. A primeira coluna corresponde ao estado atual, símbolo lido no mapeamento da MT para o jogo. A segunda coluna corresponde ao comando estado seguinte, símbolo escrito, movimento fornecido aos Trabalhadores, em que c., r., T e na significam respectivamente constrói, remove, Terrascape e não altera. A terceira coluna corresponde à função programa de  $U_{mt}(3:10)$  na disposição estado atual, símbolo lido, símbolo escrito, movimento, estado seguinte. O estado de aceitação  $q_a$  foi definido como  $q_{10}$ .

## 4. Exemplos

Essa seção é dedicada a exemplos de máquinas de Turing e seu mapeamento para as regras do jogo, como na seção acima já foi provado que o jogo pode simular qualquer máquina de Turing, essa seção serve apenas para complementar o entendimento.

Seja MT A uma máquina de Turing que reconhece a linguagem  $L = \{0^n1^n \mid n \in \mathbb{N} \}$ , a figura 3 mostra do diagrama dessa máquina de Turing e a tabela 2 mostra o mapeamento para as regras do jogo.



Figura 3: Diagrama da MT A

| Civ:BE $(Q, \Gamma)$ | Comando $(Q, \Gamma, \{E, D\})$ | MT A                          |
|----------------------|---------------------------------|-------------------------------|
| 0, Pilhada           | c. 1 T, r. Melhoria, D          | $q_0, 0, \sqcup, D, q_1$      |
| 0, Vazio             | c. 10 <i>T</i> , <i>na</i> , D  | $q_0, \sqcup, \sqcup, D, q_a$ |
| 1, Pilhada           | na, na, D                       | $q_1, 0, 0, D, q_1$           |
| 1, Estrada           | na, na, D                       | $q_1, 1, 1, D, q_1$           |
| 1, Vazio             | c. 1 <i>T</i> , <i>na</i> , E   | $q_1, \sqcup, \sqcup, E, q_2$ |
| 2, Estrada           | c. 1 T, r. Melhoria, E          | $q_2, 1, \sqcup, E, q_3$      |
| 3, Pilhada           | na, na, E                       | $q_3, 0, 0, E, q_3$           |
| 3, Estrada           | na, na, E                       | $q_3, 1, 1, E, q_3$           |
| 3, Vazio             | r. 3 <i>T</i> , <i>na</i> , D   | $q_3, \sqcup, \sqcup, D, q_0$ |

Tabela 2: Mapeamento das funções programas para a máquina de Turing A

Seja MT B uma máquina de Turing que reconhece a linguagem  $L = \{\text{todos os números pares em binário}\}$ . A figura 4 mostra o diagrama da máquina e a tabela 3 mostra o mapeamento correspondente para o jogo.



Figura 4: Diagrama da MT B

| Civ:BE $(Q, \Gamma)$ | Comando $(Q, \Gamma, \{E, D\})$ | MT B                          |
|----------------------|---------------------------------|-------------------------------|
| 0, Pilhada           | na, na, D                       | $q_0, 0, 0, D, q_0$           |
| 0, Estrada           | na, na, D                       | $q_0, 1, 1, D, q_0$           |
| 0, Vazio             | c. 1 <i>T</i> , <i>na</i> , E   | $q_0, \sqcup, \sqcup, E, q_1$ |
| 1, Pilhada           | c. 9 T, na, D                   | $q_1, 0, 0, D, q_a$           |

Tabela 3: Mapeamento da MT B para as regras do jogo

# 5. Comparando os modelos de computação

A seção 3 mostra que podemos simular qualquer máquina de Turing no jogo, com isso podemos afirmar que ambas possuem o mesmo desempenho computacional [6]. Entretanto o mesmo não é valido para desempenho de tempo, por isso essa análise torna-se relevante. A tabela 1 nos mostra que a máquina de Turing  $U_{mt}(3:10)$  vai do estado  $q_9$  para o estado  $q_4$ , sendo essa transição a de maior diferença entre os estados. Como cada estado  $q_i$  da máquina é simulado no jogo com  $q_i$  sendo o número de  $q_i$  de mossa posse, sabemos que para essa máquina devemos construir/remover até 5  $q_i$   $q_i$ 

Suponto que cada Terrascapes necessite de t turnos e cada estrada necessite de n para serem construídos/removidos, o tempo máximo para cada instrução será de no máximo 5m+n turnos, fazendo com que a  $U_{mt}(3:10)$  do jogo seja temporalmente menos eficiente do que a  $U_{mt}(3:10)$  tradicional por um fator constante. [1]

## 6. Considerações finais

Este artigo procurou trabalhar em cima da seguinte questão, "O jogo *Sid Meier's Civilization: Beyond Earth* é Turing completo?" As principais colocações para essa questão foi de que sim, é Turing Completo, é possível

representar qualquer máquina de Turing com as regras do jogo, inclusive uma máquina de Turing Universal, que irá simular qualquer outra máquina de Turing. Dada a afirmação anterior podemos concluir que se a suposição 2 da seção 3 for válida o jogo Sid Meier's Civilization: Beyond Earth é indecidível, visto que se fosse decidível, implicaria que o problema da parada é decidível, o que é um absurdo [6]. Este trabalho se limita quando refere-se a aplicação prática de seus conceitos, visto que a ideia da construção de uma máquina de Turing usando o jogo não passa de um ideia teórica e hipotética, pois não é possível de fato construir algoritmos com o jogo, sem contar que a Turing completude do jogo só é possível a partir de duas suposições que na prática são impossíveis de se alcançar no jogo. Apesar disso, é de extrema importância o estudo de ideias como a apresentada nesse trabalho, pois mostra que é possível associar conceitos teóricos da computação, com várias coisas do nosso dia a dia, seja uma ferramenta de trabalho, um software de edição de imagens ou até mesmo um jogo digital.

#### Referências

- [1] A. de Wynter, Turing completeness and sid meier's civilization, CoRR (2021).
  - URL https://arxiv.org/abs/2104.14647
- [2] A. Churchill, S. Biderman, A. Herrick, Magic: The gathering is turing complete, CoRR (2019).
   URL http://arxiv.org/abs/1904.09828
- [3] T. Wildenhain, On the turing completeness of ms powerpoint, The Official Proceedings of the Eleventh Annual Intercalary Workshop about Symposium on Robot Dance Party in Celebration of Harry Q Bovik's (2017).
- [4] J. E. Hopcroft, R. Motwani, J. D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley Publishing Company, 2000.
- [5] A. M. Turing, On computable numbers, with an application to the entscheidungsproblem, Proceedings of the London Mathematical Society s2-42 (1) (1937) 230–265.

- [6] M. Sipser, Introduction to the Theory of Computation, PWS Publishing Company, 1997.
- [7] FiraxisGames, Sid meier's civilization beyond earth manuals (2014). URL https://www.2k.com/manual/civbe/index.html
- [8] Y. Rogozhin, Small universal turing machines, Bulletin of Symbolic Logic (2003).
- [9] R. Zach, Kurt gödel, 'über formal unentscheidbare sätze der principia mathematica und verwandter systeme i' (1931), in: Monatshefte fur Mathematik und Physik, 2003, pp. 4–5.
- [10] S. Cooper, B. Löwe, A. Sorbi, Computation and Logic in the Real World: Third Conference on Computability in Europe, CiE 2007, Siena, Italy, June 18-23, 2007, Proceedings, Springer Berlin, Heidelberg, 2007.