

Mechanics and Machines, Lecture 9

Engineering Materials:

Steel, Bronze, Aluminium, Titanium, Composites

Invited Lecturer Musa (RUS)

Video, Part 1

Invited Lecturer Musa (RUS)

Understanding Metals (ENG)

Iron - Carbon plot (RUS)

E	LEMENT	EFFECT ON STEEL	COMMON % USE IN STEEL
	Chrome (Cr)	Improves oxidation resistance and hardenability.	Usually at least 10,5% and up to 18% in stainless steels.
	Manganese (Mn)	It increases the strength of steel and assists with de-oxidation . Manganese has a milder effect on the strength of steel than carbon.	Usually at least 0,3%. Can be up to 1,5% in carbon steels.
	Molybdenum (Mo)	Improves hardenability and high temperature strength.	Usually less than 1%.
	Nickel (Ni)	Increases strength , hardness and hardenability. Also often increases ductility and toughness	Usually 8-10% in stainless steels.
	Phosphorous (P)	Increases machinability. Can increase strength but majorly reduces toughness and ductility, is generally considered as impurity.	Can be added up to 0,1% to low-alloy high-strength steels.
	Silicon (Si)	Similar to carbon and manganese. Silicon increases the strength of steel . Silicon has a milder effect on the strength than manganese and consequently than carbon.	Usually between 0,1% to 1%. Can be up to 6,5% in electrical steels.
56 —	Sulphur (S)	Can reduce toughness and ductility , is generally considered as impurity.	Should not exceed 0,05% unless the goal is to get resulfirised steel.
	Titanium (Ti)	Increases hardness and toughness . Reduces the oxygen or nitrogen in the molten steel.	Usually between 0,2% and 0,6%.
	Tungsten (W)	Improves high temperatures strength.	Can vary from 2% to even 18% in high speed steels.
04	Vanadium (V)	Improves hardenability and high temperatures strength. Extremely effective.	Usually 0,05%. Can be up to 0,25% in high speed steels.

Alloying Elements (RUS)

Влияние легирующих элементов на свойства стали

Хром (X) повышает твердость, прочность стали.

При содержании выше 13 % сталь становится коррозийно-стойкой.

Никель (H) придает стали высокие прочность, пластичность, коррозийную стойкость и повышает сопротивление удару.

Вольфрам (В) резко увеличивает твердость и красностойкость стали.

Ванадий (Ф) повышает плотность, прочность, способствует измельчению зерна, сопротивлению удару, истиранию, разрыву.

Кобальт (К) повышает жаропрочность, магнитопроницаемость.

Молибден (М) увеличивает красностойкость, упругость, прочность, сопротивление окислению при высоких температурах.

Кремний (С) в количестве более 1 % повышает прочность, упругость, кислотостойкость и магнитопроницаемость.

Марганец (Г) при содержании 1 % и более увеличивает износоустойчивость.

Алюминий (Ю) увеличивает окалиностойкость.

Титан (T) повышает прочность, уменьшает межкристаллитную коррозию.

Ниобий (Б) увеличивает сопротивление коррозии и кислостойкость.

Цирконий (**Ц**) придает прочность, способствует измельчению зерна. **Медь** (**Д**) уменьшает коррозию.

Understanding Durability of Metals (ENG)

Identifyning Steels (Расшифровка марок сталей)

