Bucket Sort When You Know The Distribution.

David Ponarovsky

January 21, 2023

Abstract

We propose a new simple construction based on Tanner Codes, which yields a good LDPC code with testability query complexity of $\Theta\left(n^{1-\varepsilon}\right)$ for any $\varepsilon > 0$.

The problem. Let $f:[0,1] \to [0,1]$ a fixed distribution function. Write an algorithm that sort n draws $x_1...x_n$ at linear expectation time.

Solution. We will define a partition of the input into a serie of n buckets $\mathcal{B} = \{B_k = [t_k, t_{k+1}] : k \in [n]\}$ such that $\Pr[x \in B_i] = \frac{1}{n}$ for any bucket. Assume that we seccused to compute the buckets efficiently. Let the X_{ij} be the indecator of the event that x_j fall to B_i . Then we have:

$$\begin{split} &\mathbf{Pr}\left[\sum_{i}|B_{i}|^{2}\geq t\right] = \mathbf{Pr}\left[\sum_{i}\left(\sum_{j}X_{ij}\right)^{2}\geq t\right] \\ &= \mathbf{Pr}\left[\sum_{i,j,j'}X_{i,j}X_{i,j'}\geq t\right] = \mathbf{Pr}\left[\sum_{i,j\neq j'X_{i,j}X_{i,j'}\geq t-n}\right] \end{split}$$

It follows that the probability that all the buckets will have at most 100 items is bounded by $n^2 (100)^{-n} \to 0$. Therefore any computation made over single bucket requires a constant time (w.h.p) and the expection of the total work is linear. It lefts to show that knowing the distribution enables to compute efficiently the buckets.

$$\frac{1}{n} = \mathbf{Pr}\left[x \in B_k\right] = f\left(t_{k+1}\right) - f\left(t_k\right)$$
$$\Rightarrow t_{k+1} \leftarrow f^{-1}\left(\frac{1}{n} + f\left(t_k\right)\right)$$