Challenge 2 (Day 3)

You are given an array A with size N (indexed from 0) and an integer K. Let's define another array B with size $N \cdot K$ as the array that's formed by concatenating K copies of array A.

For example, if $A = \{1, 2\}$ and K = 3, then $B = \{1, 2, 1, 2, 1, 2\}$.

You have to find the maximum subarray sum of the array B. Fomally, you should compute the maximum value of Bi + Bi+1 + Bi+2 + ... + Bj, where $0 \le i \le j < N \cdot K$.

Input Format

- The first line of the input contains a single integer T denoting the number of test cases. The description of T test cases follows.
- The first line of each test case contains two space-separated integers N and K.
- The second line contains N space-separated integers A0, A1, ..., AN-1.

Constraints

- 1 ≤ T ≤ 10
- $1 \le N \le 100000$
- $1 \le K \le 100000$
- -100000 ≤ Ai ≤ 1000000 for each valid i

Output Format

For each test case, print a single line containing the maximum subarray sum of B.

Sample Input 0

```
2
2 3
1 2
3 2
1 -2 1
```

Sample Output 0

```
9
2
```

Explanation 0

- Test case 1: $B = \{1, 2, 1, 2, 1, 2\}$ and the subarray with maximum sum is the whole $\{1, 2, 1, 2, 1, 2\}$. Hence, the answer is 9.
- Test case 2: $B = \{1, -2, 1, 1, -2, 1\}$ and the subarray with maximum sum is $\{1, 1\}$. Hence, the answer is 2.