Homework 11

Zachary Moring

November 21, 2024

 ${\it Code for the Lean portion is here: https://github.com/zpm-bu/cs511-formal-methods/blob/assignments/lean/Homework/hw12.lean}$

Exercise 2.4.12(a) Find a model which does not satisfy the following formula, or prove that it is valid:

$$(\forall x \forall y (S(x,y) \to S(y,x))) \to (\forall x \neg S(x,x))$$

Any equivalence relation will be a model which does not satisfy the formula. In plain language, the formula reads "If S is symmetric then S is not reflexive," yet *every* equivalence relation has both of these properties.

Exercise 2.4.12(b) Find a model which does not satisfy the following formula, or prove that it is valid:

$$\exists y (\forall x P(x)) \to P(y)$$

1	$\exists y. \forall x. P(x)$	premise
2	$y_0.\forall x.P(x)$	$\exists y$ i 1
3	$P(y_0)$	$\forall x \in 2$
4	$\forall x. P(x) \to P(y_0)$	\rightarrow i 2:3
5	P(y)	$\exists y \in 2:4$

Exercise 2.4.12(c) Find a model which does not satisfy the following formula, or prove that it is valid:

$$(\forall x (P(x) \to \exists y Q(y))) \to (\forall x x \exists y (P(x) \to Q(y)))$$

1	$\forall x. P(x) \to \exists y Q(y)$	premise
2	x_0	arbitrary
3	$P(x_0) \to \exists y Q(y)$	$\forall xe 1$
4	$P(x_0)$	assume
5	$\exists y. Q(y)$	\rightarrow e 3
6	$y_0.Q(y_0)$	∃ <i>y</i> i 4
7	$P(x_0) o Q(y_0)$	→i 2 : 6
8	$\exists y. P(x_0) \to Q(y)$	$\exists y \in 7$
9	$\forall x. \exists y. P(x) \to Q(y)$	$\forall x$ i 2 : 8

Exercise 2.4.12(d) Find a model which does not satisfy the following formula or prove that it is valid:

$$(\forall x \exists y (P(x) \to Q(y))) \to (\forall x (P(x) \to \exists y Q(y)))$$

1	$\forall x. \exists y. P(x) \to Q(y)$	premise
2	x_0	arbitrary
3	$\exists y. P(x_0) \to Q(y)$	$\forall xe 1$
4	$y_0.P(x_0) \to Q(y_0)$	∃ <i>y</i> i 3
5	$P(x_0)$	assume
6	$Q(y_0)$	\rightarrow e 4,5
7	$\exists y. P(x_0) \to Q(y)$	$\exists y \in 6$
8	$P(x_0) \to \exists y. Q(y)$	\rightarrow i $5:7$
9	$\forall x. P(x) \rightarrow \exists y. Q(y)$	$\forall x i \ 2:8$