H. Hexadecimal Digits of an Integral

Time Limit: 8 seconds

Problem

Compute the \mathbf{n}^{th} digit, in the hexadecimal expansion of the following expression.

$$\left(\int_{0}^{1} 36 \left(\prod_{k=1}^{\infty} \frac{2}{\sqrt[2^{k}]{2}+1}\right)^{2} - 48 (x+1)^{-1} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k+1} x^{2 k+2} dx\right)^{1/2}$$

In other words, if the expression is equal to $n_1.n_2n_3...n_k...$ in hexadecimal. Given k, output n_k . Each digit is an element of $\{1,2,3,4,5,6,7,8,9,A,B,C,D,E,F\}$. For example, the hexadecimal expansion of 1/11 is 0.0F0F0F0F0F...

The Input

The input will consist of at most 50 lines with the value of $\mathbf{k}(\mathbf{k} < 1000001)$ on each line.

The Output

For each line of input, output the hexadecimal digit on a single line.

Sample Input

100 200

Sample Output

A 4

Problem setter: Josh Bao