ECON 340 Economic Research Methods

Div Bhagia

Lecture 4
Covariance and Correlation

Where would you want to live?

Mushroom Kingdom

Mean = Median= \$50,000 SD= \$3,000

Bowser's Kingdom

Z-Score

We can calculate the Z-Score to capture how many standard deviations (σ) away from the mean (μ) a specific observation is.

$$Z = \frac{X - \mu}{\sigma} \rightarrow X = \mu + Z.\sigma$$

Example: $\sigma_{MK} = 3000$, $\sigma_{BK} = 5000$

$$Z_{MK} = \frac{45000 - 50000}{3000} = -1.66$$
 $Z_{BK} = \frac{45000 - 50000}{5000} = -1$

Describing Data

How do we summarize the information contained in a variable?

- Empirical distribution, histogram, percentiles
- Measures of central tendency: mean, median, mode
- Measures of variance: range, variance, standard deviation

How do we summarize the relationship between two variables?

Describing Relationships

- Scatterplot: a graph where each point represents an observation of two variables
- Can see the relationship between two variables
- Positive relationship if when X is high Y is high (and when X is low Y is low)
- Negative relationship if when X is high Y is low (and when X is low Y is high)
- How to construct a statistic to capture this?

Covariance

Covariance indicates whether there is a positive or negative relationship between two variables.

$$\sigma_{XY} = \frac{1}{N} \sum_{i=1}^{N} (X_i - \mu_X)(Y_i - \mu_Y) \quad (Population)$$

$$S_{XY} = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})$$
 (Sample)

Example

 X_i : sleep in hours, Y_i : exercise in hours

Week	X_i	Y_i	$(X_i - \mu_X)(Y_i - \mu_Y)$
1	6	0.5	
2	9	0.3	
3	9	1	
Total			

$$\sigma_{XY} = \frac{1}{N} \sum_{i=1}^{N} (X_i - \mu_X)(Y_i - \mu_Y) =$$

Why does the formula work?

Correlation

Correlation also indicates the *strength* of the relationship in addition to the *direction*.

$$\rho_{XY} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$$
 (Population) $r_{XY} = \frac{S_{XY}}{S_X S_Y}$ (Sample)

Bounded between -1 and 1.

- $\rho = 0$, no linear relationship
- $\rho = 1$, perfect positive linear relationship
- $\rho = -1$, perfect negative linear relationship

Correlation

Example

 X_i : sleep in hours, Z_i : exercise in minutes

Week	X_i	Z_i	$(X_i - \mu_X)(Z_i - \mu_Z)$
1	6	30	
2	9	18	
3	9	60	
Total			

$$\sigma_{XZ} = \frac{1}{N} \sum_{i=1}^{N} (X_i - \mu_X)(Z_i - \mu_Z) =$$

Finally... Correlation is not causation

A positive correlation between inequality and crime doesn't suggest that inequality \rightarrow crime. This is for two reasons:

- Reverse causality: crime → inequality (unlikely here but a concern in many situations)
- Other confounding factors: larger, more congested cities tend to be more unequal and also have higher crime rates

Things to do next

- Install R and R Studio on your computers if you haven't already (instructions on the course website)
- Please read Chapter 1 from Stock & Watson (uploaded on Canvas). We will discuss it on Tuesday.
- Finalize the research project team by end of the day
- Coming up: Problem Set 1 (Due on Tues)