Examen final

2. Sigui $\alpha:(a,b)\to\mathbb{R}^3$ una corba parametritzada per l'arc amb curvatura $\kappa(s)$ i torsió $\tau(s)$. Suposem que $\kappa(s)\neq 0$ per tot $s\in(a,b)$. Denotem per T,N,B la referència de Frenet i considerem l'aplicació

$$\psi(u,v) = \alpha(u) + v \left(B(u) - \frac{\tau(u)}{\kappa(u)} T(u) \right), \qquad (u,v) \in (a,b) \times \mathbb{R}.$$

Prenem un obert $U \subset (a,b) \times \mathbb{R}$ tal que $M = \psi(U) \subset \mathbb{R}^3$ sigui una superfície regular parametritzada per ψ .

- a) Proveu que el pla tangent a M és constant al llarg de les corbes u = constant. Calculeu la curvatura de Gauss de M en el punt $\psi(u, v)$.
- b) Demostreu que les corbes u = constant són geodèsiques. Demostreu que la corba $\alpha(s)$ és una geodèsica de M.
- c) Trobeu una funció v(s) tal que la corba $\psi(s,v(s))$ sigui tangent a les corbes u= constant.

Solució:

a) Calculem

$$\psi_u(u,v) = T(u) + v(\tau(u)N(u) - \left(\frac{\tau(u)}{\kappa(u)}\right)'T(u) - \tau N(u)) = \left(1 - v\left(\frac{\tau(u)}{\kappa(u)}\right)'\right)T(u)$$

$$\psi_v(u,v) = B(u) - \frac{\tau(u)}{\kappa(u)}T(u)$$

$$\psi_u \times \psi_v(u,b) = \left(1 - v\left(\frac{\tau(u)}{\kappa(u)}\right)'\right)T(u) \times B(u) = -\left(1 - v\left(\frac{\tau(u)}{\kappa(u)}\right)'\right)N(u)$$

Per tant, el pla tangent a M en $\psi(u_0, v)$ és $N(u_0)^{\perp}$ que no depèn de v.

En particular $dN(\psi_v) = 0$ i deduïm que la curvatura de Gauss K s'anul·la en tots els punts de M.

b) Parametriztem la corba $u=u_0$ per $c(v)=\psi(u_0,v)$. Com que $c'(v)=\psi_v(u_0,v)$ i c''(v)=0, és clar que $c''(v)\perp T_{c(v)}M$ i per tant c(v) és geodèsica.

Pel que fa a $\alpha(s)$, com que $\alpha''(s) = \kappa(s)N(s)$, veiem per l'apartat anterior que α'' té la direcció del normal a $T_{\alpha(t)}M$, que és la condició de geodèsica.

c) Per la regla de la cadena,

$$\frac{d}{ds}\psi(s,v(s)) = \psi_u(s,v(s)) + \psi_v(s,v(s))v'(s)$$
$$= \left(1 - v\left(\frac{\tau}{\kappa}\right)'\right)T + \left(B - \frac{\tau}{\kappa}T\right)v'$$

D'altra banda, la corba u=s té vector derivada $\psi_v=B-\frac{\tau}{\kappa}T$. Per tant, les dues corbes seran tangents si i només si

$$1 - \left(\frac{\tau}{\kappa}\right)' v = 0$$

i.e.

$$v(s) = \frac{1}{\left(\frac{\tau(s)}{\kappa(s)}\right)'}$$

- **3.** Considereu la superfície $M = \{(x, y, z) \in \mathbb{R}^3 : z = (y^2 x)^2\}.$
- a) Trobeu els punts de M on la curvatura de Gauss s'anul·la. Proveu que la corba que els conté té curvatura normal nul·la en tots els punts.
- b) Calculeu les curvatures principals de M en el punt $(\frac{1}{2}, 0, \frac{1}{4})$.

Solució:

a) Parametritzem M per

$$\psi(x,y) = (x, y, (y^2 - x)^2)$$

Calculem

$$\psi_x = (1, 0, -2(y^2 - x)) \qquad \psi_y = (0, 1, 4y(y^2 - x)).$$

$$\psi_{xx} = (0, 0, 2), \qquad \psi_{xy} = (0, 0, -4y), \qquad \psi_{yy} = (0, 0, 12y^2 - 4x).$$

La segona forma fonamental té coeficients

$$l = \frac{1}{\sqrt{EG - F^2}} \det(\psi_x, \psi_y, \psi_{xx}) = \frac{2}{\sqrt{EG - F^2}},$$

$$m = \frac{1}{\sqrt{EG - F^2}} \det(\psi_x, \psi_y, \psi_{xy}) = \frac{-4y}{\sqrt{EG - F^2}},$$

$$n = \frac{1}{\sqrt{EG - F^2}} \det(\psi_x, \psi_y, \psi_{yy}) = \frac{12y^2 - 4x}{\sqrt{EG - F^2}}.$$

Per tant la curvatura de Gauss val

$$K = \frac{ln - m^2}{EG - F^2} = \frac{8(y^2 - x)}{(EG - F^2)^2}$$

És a dir que K=0 exactament en els punts on $x=y^2$.

Observem que en tots aquests punts $\psi_x = (1,0,0), \psi_y = (0,1,0)$ i per tant el vector normal és el (0,0,1). Deduïm que la curvatura normal d'aquesta corba és zero.

Alternativament, podem parametritzar la corba per $(x(t), y(t)) = (t^2, t)$. El vector tangent correspon a (x'(t), y'(t)) = (2t, 1). Per tant, la curvatura normal és

$$(2t\ 1)\left(\begin{array}{cc} l & m \\ m & n \end{array}\right)\left(\begin{array}{cc} 2t \\ 1 \end{array}\right) = \frac{1}{\sqrt{EG - F^2}}(2t\ 1)\left(\begin{array}{cc} 2 & -4t \\ -4t & 8t^2 \end{array}\right)\left(\begin{array}{cc} 2t \\ 1 \end{array}\right) = 0$$

b) Els coeficients de la primera forma fonamental són

$$E = 1 + 4(y^2 - x)^2$$
, $F = -8y(y^2 - x)^2$, $G = 1 + 16y^2(y^2 - x)^2$.

Així, en el punt $x = \frac{1}{2}, y = 0$, les formes fonamentals tenen matriu (respecte la base ψ_x, ψ_y)

$$I = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}, \qquad II = \begin{pmatrix} \sqrt{2} & 0 \\ 0 & -\sqrt{2} \end{pmatrix}.$$

Així, l'endomorfisme de Weingarten té matriu

$$W = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} \sqrt{2} & 0 \\ 0 & -\sqrt{2} \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{2}}{2} & 0 \\ 0 & -\sqrt{2} \end{pmatrix}$$

És a dir que les curvatures principals són $\frac{\sqrt{2}}{2}$ i $-\sqrt{2}$

- **4.** Siguin Y, N dos camps de \mathbb{R}^3 i sigui $M \subset \mathbb{R}^3$ una superfície. Suposem que N és unitari i $N_p \perp T_p M$ per tot $p \in M$.
- a) Fixem un punt $p \in M$ i prenem unes coordenades cartesianes (x_1, x_2, x_3) de \mathbb{R}^3 tals que $N_p = (0, 0, 1)$. Proveu que

$$\langle (\operatorname{rot}(N \times Y))_p, N_p \rangle = \frac{\partial Y_1}{\partial x_1}(p) + \frac{\partial Y_2}{\partial x_2}(p) + 2Y_3(p)H(p)$$

on $Y = (Y_1, Y_2, Y_3)$ respecte les coordenades de \mathbb{R}^3 fixades i H(p) denota la curvatura mitjana de M en p (respecte el normal N).

b) Demostreu que si M és compacta i sense vora, llavors

$$\int_{M} (1 + \langle X, N \rangle H) dA = 0$$

on X denota el camp radial $X(x_1, x_2, x_3) = (x_1, x_2, x_3)$ i dA és l'element d'àrea de M.

Solució:

a) Calculem

$$N \times Y = (N_2 y_3 - N_3 Y_2, N_3 Y_1 - N_1 Y_3, N_1 Y_2 - N_2 Y_1)$$

$$\langle \operatorname{rot}(N \times Y)_p, (0, 0, 1) \rangle = \frac{\partial}{\partial x_1} (N_3 Y_1 - N_1 Y_3) - \frac{\partial}{\partial x_2} (N_2 Y_3 - N_3 Y_2)$$

$$= \left(\frac{\partial N_3}{\partial x_1} Y_1 + N_3 \cdot \frac{\partial Y_1}{\partial x_1} - \frac{\partial N_1}{\partial x_1} Y_3 - N_1 \cdot \frac{\partial Y_3}{\partial x_1} - \frac{\partial N_2}{\partial x_2} Y_3 - N_2 \cdot \frac{\partial Y_3}{\partial x_1} + \frac{\partial N_3}{\partial x_1} Y_2 + N_3 \cdot \frac{\partial Y_2}{\partial x_1} \right) (p)$$

$$= \frac{\partial Y_1}{\partial x_1} + \frac{\partial Y_2}{\partial x_2} - \left(\frac{\partial N_1}{\partial x_1} + \frac{\partial N_2}{\partial x_2} \right) Y_3 + \frac{\partial N_3}{\partial x_1} Y_1 + \frac{\partial N_3}{\partial x_1} Y_2.$$

Observem que

$$\frac{\partial N_i}{\partial x_1} = \langle \frac{\partial N}{\partial x_1}, \frac{\partial}{\partial x_i} \rangle = \langle -W \frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_i} \rangle, \qquad i = 1, 2, 3.$$

En particular,

$$\frac{\partial N_1}{\partial x_1} = \langle -W \frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_1} \rangle, \quad \text{i} \quad \frac{\partial N_3}{\partial x_1} = \langle -W \frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_3} \rangle = 0.$$

ja que $W:T_pM=(0,0,1)^\perp\longrightarrow T_pM=(0,0,1)^\perp.$ Anàlogament,

$$\frac{\partial N_3}{\partial x_2} = 0, \qquad \frac{\partial N_2}{\partial x_2} = \langle -W \frac{\partial}{\partial x_2}, \frac{\partial}{\partial x_2} \rangle.$$

Substituïnt a dalt obtenim

$$\langle (\operatorname{rot}(N \times Y))_p, (0, 0, 1) \rangle = \frac{\partial Y_1}{\partial x_1} + \frac{\partial Y_2}{\partial x_2} - Y_3 \operatorname{tr} W$$

b) Pel teorema del rotacional sabem que

$$0 = \int_{M} \operatorname{rot}(N \times X) = \int_{M} \left(\operatorname{rot}(N \times X) \right), N \rangle dA$$

Per cada $p \in M$ prenem coordenades com a l'apartat anterior. Respecte aquestes coordenades tenim

$$\langle (\operatorname{rot}(N \times X))_p, N_p \rangle = \frac{\partial X_1}{\partial x_1} + \frac{\partial X_2}{\partial x_2} + 2X_3 \ H = 2 + 2H\langle X_p, N_p \rangle$$

És important remarcar que aquesta igualtat és vàlida per tot punt $p \in M$. Per tant,

$$0 = \int_{M} (\operatorname{rot}(N \times X)), N \rangle dA = \int_{M} (2 + 2H \langle X, N \rangle) dA.$$