Endliche Primkörper

Definition

$$p\in\mathbb{P}$$

Primkörper zu p: $\mathbb{F}_p := \mathbb{Z}/(p)$

Beispiel

$$\blacktriangleright \mathbb{F}_2 = \mathbb{Z}/(2) = \{\overline{0}, \overline{1}\}$$

+	0	$\overline{1}$		0	
0	0	$\overline{1}$	0	$\frac{\overline{0}}{\overline{0}}$	$\overline{0}$
$\overline{1}$	$\frac{3}{1}$	$\overline{0}$	$\overline{1}$	0	$\overline{1}$

Endliche Primkörper (Forts.)

Unterdrücke den Querstrich in der Notation

▶
$$\mathbb{F}_3 = \mathbb{Z}/(3) = \{0, 1, 2\}$$

•
$$\mathbb{F}_5 = \mathbb{Z}/(5) = \{0, 1, 2, 3, 4\}$$

+	0	1	2	3	4	•	0	1	2	3	4
				3			0				
				4		1	0	1	2	3	4
2	2	3	4	0	1	2	0	2	4	1	3
3	3	4	0	1	2	3	0	3	1	4	2
4	4	0	1	2	3	4	0	4	3	2	1
							'				

Restklassenkörper von Polynomringen

Beispiel

 $\mathbb{R}[X]/(X^2+1)$ ist Körper

Definition

Körper der komplexen Zahlen: $\mathbb{C}:=\mathbb{R}[X]/(X^2+1)$

Terminologien und Notationen:

- ightharpoonup komplexe Zahl: Element von $\mathbb C$
 - imaginäre Einheit: $i := \overline{X} \in \mathbb{C}$

Bemerkung

- $ightharpoonup \mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}\}$
- ▶ $a, b, a', b' \in \mathbb{R}$
 - $a + bi = a' + b'i \Leftrightarrow a = a' \text{ und } b = b'$
- ▶ $a, b, c, d \in \mathbb{R}$

$$(a + bi) + (c + di) = (a + c) + (b + d)$$
 i
 $(a + bi) \cdot (c + di) = (ac - bd) + (ad + bc)$ i

Definition

```
z \in \mathbb{C}, a, b \in \mathbb{R} mit z = a + bi
```

- ► Realteil von z: $\operatorname{Re} z := a$
- ▶ Imaginärteil von z: $\operatorname{Im} z := b$

Beispiel

- $ightharpoonup \operatorname{Re}(2-\mathrm{i}) =$
- ▶ Im(2 i) =

Definition

 $z\in\mathbb{C}$

zu z konjugierte komplexe Zahl: $\overline{z} := \operatorname{Re} z - (\operatorname{Im} z)i$

Beispiel

 $\overline{3-2i} =$

Beispiel

- $ightharpoonup \mathbb{F}_2[X]/(X^2+X+1)$ ist Körper
- ▶ $\mathbb{F}_2[X]/(X^3+X+1)$ ist Körper
- $\mathbb{F}_3[X]/(X^2+1)$ ist Körper

Notation

- $\mathbb{F}_4 := \mathbb{F}_2[X]/(X^2 + X + 1); \quad \alpha := \overline{X} \text{ in } \mathbb{F}_4$
- $ightharpoonup \mathbb{F}_8 := \mathbb{F}_2[X]/(X^3+X+1); \quad \beta := \overline{X} \text{ in } \mathbb{F}_8$
- $\blacktriangleright \ \mathbb{F}_9 := \mathbb{F}_3[X]/(X^2+1); \qquad \quad \iota \ := \overline{X} \ \text{in} \ \mathbb{F}_9$

Bemerkung

- $\blacktriangleright \mathbb{F}_4 = \{a + b\alpha \mid a, b \in \mathbb{F}_2\}$
- ▶ $a, b, a', b' \in \mathbb{F}_2$

$$a+b\alpha=a'+b'\alpha\Leftrightarrow a=a'$$
 und $b=b'$

▶
$$a, b, c, d \in \mathbb{F}_2$$

$$(a+b\alpha)+(c+d\alpha)=(a+c)+(b+d)$$

$$(a+b\alpha)\cdot(c+d\alpha)=(ac+bd)+(ad+bc+bd)\alpha$$

 \mathbb{F}_{4}

+		0	1	α	$1 + \alpha$
0		0	1	α	$1 + \alpha$
1		1	0	1+c	χ α
α		α	1 + 0	$1 + \alpha$ 0	
$1+\alpha$ 1		$+\alpha$	α	1	0
		^	4		1 .
		0	T	α	$1 + \alpha$
0		0	0	0	0
1		0	1	α	$1 + \alpha$
α		0	α	$1 + \alpha$	1
$1 + \alpha$		0	$1 + \alpha$	1	α

Euler-Funktion

Definition

Euler-Funktion:

$$\varphi \colon \mathbb{N} \to \mathbb{N}, \ n \mapsto |(\mathbb{Z}_n)^{\times}|$$

Beispiel

$$\phi(8) =$$

Euler-Funktion (Forts.)

Bemerkung

$$\varphi(n) = |\{x \in \{0, 1, \dots, n-1\} \mid ggT(n, x) = 1\}|.$$

Proposition

▶
$$p, q \in \mathbb{P}$$
 mit $p \neq q$

$$\varphi(pq)=(p-1)(q-1)$$

$$ightharpoonup p \in \mathbb{P}$$

$$\varphi(p)=p-1$$

Euler-Funktion (Forts.)

Lemma

 ${\it G}$ endliche abelsche Gruppe, ${\it x} \in {\it G}$

$$x^{|G|}=1$$

Euler-Funktion (Forts.)

Satz von Euler

$$n\in\mathbb{N},\;a\in\mathbb{Z}$$
 mit $\mathrm{ggT}(n,a)=1$
$$a^{\phi(n)}\equiv_n 1$$

Kleiner Satz von Fermat

$$p \in \mathbb{P}$$
, $a \in \mathbb{Z}$

$$a^{p-1} \equiv_p 1$$

6. Dezember 2018

Die symmetrische Gruppe

Symmetrische Gruppe

Erinnerung

Es sei A eine Menge.

 $\operatorname{Abb}(A,A) \text{ ist Monoid mit Verkn\"{u}pfung}$

$$(g,f)\mapsto g\circ f=gf$$

(Komposition von Abbildungen).

Definition

- ► Es sei *A* eine Menge.
 - ► Symmetrische Gruppe auf A:

$$S_A := Abb(A, A)^{\times}$$

- ▶ Permutation von A: Element von S_A
- ▶ Es sei $n \in \mathbb{N}_0$.

Symmetrische Gruppe vom Grad n:

$$S_n := S_{\underline{n}}$$

Notation

Für $\pi \in S_A$:

$$\pi = \left(\begin{array}{ccc} a_1 & a_2 & \cdots & a_n \\ \pi(a_1) & \pi(a_2) & \cdots & \pi(a_n) \end{array} \right).$$

Für $\pi \in S_n$:

$$\pi = \left(\begin{array}{ccc} 1 & 2 & \cdots & n \\ \pi(1) & \pi(2) & \cdots & \pi(n) \end{array}\right).$$

Meistens lassen wir das Zeichen "o" für die Verknüpfung weg.

Beispiele

- \triangleright $S_0 =$ \triangleright $S_1 =$
 - ► S₂ =
 - ► *S*₃ =

Beispiele

- $\left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 1 & 3 \end{array}\right) \left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 2 & 1 \end{array}\right) =$
- $\left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 2 & 1 \end{array}\right) \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 1 & 3 \end{array}\right) =$

Definition

Für $n \in \mathbb{N}_0$ ist $n! \in \mathbb{N}$, gesprochen "n Fakultät", definiert durch

$$0! := 1,$$

$$n! := \prod_{i=1}^{n} i = 1 \cdot 2 \cdot 3 \cdots n$$

für n > 0.

Proposition

Für $n \in \mathbb{N}_0$ ist $|S_n| = n!$.

Träger einer Permutation

Definition

Für $\pi \in \mathcal{S}_{\mathcal{A}}$ heißt

$$T_{\pi} := \{ a \in A \mid \pi(a) \neq a \} \subseteq A$$

der *Träger* von π .

Beispiel

$$\mathcal{T}_{\pi} = \{1, 2, 4, 5, 6, 7, 8, 10, 11\}.$$

Träger einer Permutation (Forts.)

Bemerkung

Es seien $\pi, \psi \in S_A$.

- $\blacktriangleright \pi(T_{\pi}) = T_{\pi}.$
- ▶ Gilt $T_{\pi} \subseteq B$, so kann π auch als Element von S_B aufgefasst werden.
- ▶ Haben π und ψ disjunkte Träger, so gilt $\pi \circ \psi = \psi \circ \pi$.

Zykel

Definition

Es seien $x_1, x_2, \dots, x_k \in A$ paarweise verschieden. $\sigma \in S_A$ mit

$$\sigma(x) = \begin{cases} x_{i+1} & \text{falls } x = x_i \text{ und } i < k, \\ x_1 & \text{falls } x = x_k, \\ x & \text{falls } x \neq x_1, x_2, \dots, x_k, \end{cases}$$

heißt Zykel der Länge k oder kurz k-Zykel von S_A . Schreibweise:

$$\sigma=(x_1,x_2,\ldots,x_k).$$

Die 2-Zykel heißen auch Transpositionen von S_A .

Beispiele

▶ Der 4-Zykel $\sigma := (1,5,2,4) \in S_5$ ist die Permutation

$$\sigma = \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 3 & 1 & 2 \end{array}\right).$$

$$(1,2,3,4,5)(2,1)(5,4) =$$

$$\blacktriangleright$$
 (1,2)(2,3) =

$$\blacktriangleright$$
 (1,2,3)(3,2,1) =

Bemerkung

- Es gilt stets $(x_1, x_2, \dots, x_k)^k = id$.
- ► Es gilt stets $(x_1, x_2, ..., x_k)^{-1} = (x_k, x_{k-1}, ..., x_1)$.
- ▶ Für Transpositionen τ gilt $\tau^{-1} = \tau$.
- ► Jeder 1-Zykel ist die Identität.
- ▶ Jeder k-Zykel läßt sich als Produkt von k-1 Transpositionen schreiben:

$$(x_1, x_2, \ldots, x_k) = (x_1, x_2)(x_2, x_3) \cdots (x_{k-1}, x_k).$$

Eine solche Zerlegung ist im Allgemeinen nicht eindeutig.

Satz

Jede Permutation $\pi \in S_A$ läßt sich als Produkt von Zykeln schreiben, deren Träger paarweise disjunkt sind.

Eindeutigkeit: Bis auf Reihenfolge der Faktoren.

Sprechweise: Zerlegung von π in *paarweise disjunkte Zykeln*.

Konvention: Lasse 1-Zykel weg.

Beispiel