

## Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at <a href="http://about.jstor.org/participate-jstor/individuals/early-journal-content">http://about.jstor.org/participate-jstor/individuals/early-journal-content</a>.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

Solution by Elizabeth Brown Davis, U. S. Naval Observatory.

Let BCD be the given isosceles triangle; A, its area; 2b its base; 2a its altitude; and c each of its equal sides. Then by the conditions of the problem

$$2c = 2a + 2b$$
, or  $c = a + b$ .

Also,

$$(2a)^2 + b^2 = c^2 = (a + b)^2$$
;

whence

$$3a^2 + 2ab = A,$$

and  $a = \frac{1}{3}\sqrt{3}A$ . Hence,  $2a = \frac{2}{3}\sqrt{3}A =$  altitude. Since  $2ab = 3a^2$ ,  $b = \frac{3}{2}a = \frac{1}{2}\sqrt{3}A$ ;  $2b = \sqrt{3}A =$  the base; and  $c = a + b = \frac{5}{6}\sqrt{3}A =$  the length of the equal sides.

Also solved by C. E. Githens, Elbert H. Clarke, A. M. Harding, A. H. Holmes, Walter C. Eells, H. C. Feemster, Horace Olson, George Y. Sosnow, and Nathan Altshiller.

## CALCULUS.

## 364. Proposed by EMMA GIBSON, Drury College.

Solve the differential equation

$$(xp-y)^2 = a(1+p^2)(x^2+y^2)^{3/2}$$
, where  $p = \frac{dy}{ax}$ .

I. Solution by Geo. W. Hartwell, Hamline University.

Let 
$$v = \frac{y}{x}$$
 and  $u^2 = x^2 + y^2$ .

The equation then takes such form that the variables can be separated and we have

$$\frac{dv}{1+v^2} = \frac{\sqrt{a} \ du}{\sqrt{u-au^2}}.$$

Integrating,

$$\tan^{-1} v + c = \cos^{-1} (1 - 2au) = \text{vers}^{-1} 2au.$$

:. 
$$\tan^{-1}\frac{y}{x} + c = \text{vers}^{-1} 2a \sqrt{x^2 + y^2}$$
.

II. Solution by C. C. Steck, New Hampshire College, Durham, N. H.

If we put  $x = r \cos \theta$  and  $y = r \sin \theta$  in the given equation we get

$$d\theta = \frac{adr}{\sqrt{ar - a^2r^2}}.$$

Integrating this we have

$$\theta + c = \text{arc vers } 2ar.$$

Whence,

$$\arctan \frac{y}{x} + c = \arctan 2a \sqrt{x^2 + y^2}.$$

Solved similarly by A. M. Harding, C. N. Schmall, Elmer Schuyler, and Leroy Coffin.