Milestone 1 Report: Data Collection, Preprocessing, and Exploratory Data Analysis (EDA)

1. Project Objective

The goal of this project is to develop a **data science tool** that facilitates **data-driven decision-making** by analyzing multiple datasets and presenting insights interactively. The tool will take the form of a **dashboard** that allows users to explore relationships, trends, and key patterns within the data.

The tool will focus on **movie-related datasets**, integrating data from platforms such as IMDb, Rotten Tomatoes, and Netflix. The dashboard will assist users in understanding key factors that influence movie success, audience engagement, and critical reception.

2. Data Used

Three datasets have been selected for analysis:

- 1. **Rotten Tomatoes Movies Dataset** Contains metadata about movies, including ratings, genres, and production details.
- 2. Rotten Tomatoes Reviews Dataset Includes audience and critic reviews for various movies.
- 3. **Netflix Movies Dataset** Provides information about movies available on Netflix, such as release year, runtime, and genre.
- 4. **IMDb Movies Dataset** Contains extensive details about movies, including user ratings, director information, and box office earnings.

These datasets were obtained from **Kaggle** and other public repositories.

3. Technology Stack

The project is implemented using the following tools and technologies:

- Programming Language: Python
- Data Manipulation & Analysis: Pandas, NumPy
- Machine Learning & Statistical Analysis: Scikit-learn, SciPy
- Visualization: Matplotlib, Seaborn, Plotly Dash
- Interactive Dashboard Development: Streamlit
- Jupyter Notebook for exploratory data analysis and iterative testing

4. Project Timeline

The project follows the CRISP-DM methodology and consists of three key milestones:

Milestone	Task Description	Start Date	End Date
Milestone	Data collection, preprocessing, exploratory data analysis (EDA)	Feb 5,	Feb 21,
1		2025	2025
Milestone	Feature engineering, feature selection, model development	Feb 21,	Mar 21,
2		2025	2025
Milestone	Model evaluation, tool development, final presentation	Mar 24,	Apr 23,
3		2025	2025

5. Exploratory Data Analysis (EDA) Report

5.1 Data Preprocessing Steps

• Handling Missing Data:

- o Numerical columns were imputed using mean/median values.
- Categorical missing values were filled using mode or removed if the missing percentage exceeded a threshold.

• Outlier Detection & Treatment:

 Z-score thresholding and IQR methods were applied to remove extreme outliers in numerical columns.

• Feature Scaling & Encoding:

- o Continuous features were normalized using Min-Max Scaling.
- Categorical variables were one-hot encoded or label encoded, depending on cardinality.

5.2 Key Insights from EDA

Descriptive Statistics

We analyzed the datasets to understand the distribution and characteristics of key numerical features. Below are some key insights from the descriptive statistics:

Rotten Tomatoes Movies Dataset:

- Contains 15,625 movies, with an average tomatometer rating of 60% (std = 28.2%).
- The audience rating has a mean of 59.8% (std = 20.5%).
- The number of **critics' reviews** per movie is relatively low, with an average tomatometer count of **15.9%** of the maximum observed value.
- The dataset covers movies from various genres, directors, and production companies, with significant variability.
- Runtime distribution is relatively uniform, with most movies ranging from ~90 to
 120 minutes.

Rotten Tomatoes Reviews Dataset:

- o Contains **over 1.13 million reviews**, covering thousands of movies and critics.
- The average review score is 474.5 (std = 288.6), with a wide range.
- Review dates span a long period, with some older and newer movies included.

• Netflix Movies and TV Shows Dataset:

- Covers 8,590 titles, including both movies and TV shows.
- The average movie duration is ~89 minutes, though TV show episodes introduce variability.
- The **release years** range widely, with a mix of older and recent content.
- o A diverse set of **countries and genres** is represented.

• IMDb Top 1000 Movies Dataset:

- Contains 809 top-rated movies based on IMDb rankings.
- The average IMDb rating is ~6.3, with some highly rated movies reaching 9+.
- The meta score has a mean of 62.9, indicating mostly well-received movies.
- The gross revenue varies significantly, with an average of ~\$397 million but high deviation.

5.2.2 Data Visualization Findings

1. Correlation Matrix

- The correlation matrix reveals strong relationships among various features.
- tomatometer_rating and audience_rating have a moderate positive correlation, indicating that movies well-rated by critics also tend to be liked by audiences.
- tomatometer_count and tomatometer_top_critics_count show high correlation, suggesting that the number of critic reviews is proportional to the number of top critics who review the movie.
- audience_count and audience_rating have a weak correlation, implying that popularity (measured by count) does not strongly influence audience ratings.

2. Histograms of Numerical Features

- tomatometer_rating is skewed toward higher values, suggesting that most movies receive favorable critic ratings.
- audience_count, tomatometer_count, and tomatometer_top_critics_count exhibit right-skewed distributions, meaning a small number of movies receive an exceptionally high number of reviews.
- runtime follows a roughly normal distribution, with most movies having an average runtime.

3. Pairplot (Scatter Matrix)

- Some scatter plots show distinct patterns, such as audience_rating vs. tomatometer_rating, where a weak but visible positive trend exists.
- Several relationships appear non-linear, indicating that transformations might be necessary for better modeling.
- Outliers are present, particularly in review count variables (tomatometer_count, audience_count), which might require further investigation.

4. Box Plots of Numerical Features

- tomatometer_count, audience_count, and tomatometer_top_critics_count contain numerous outliers, suggesting that some movies receive an unusually high number of reviews.
- tomatometer_rating and audience_rating have a relatively symmetric distribution but show some extreme values.
- runtime has a few outliers, indicating a small number of movies that are significantly longer or shorter than average.

6. Next Steps

Following the completion of Milestone 1, we will proceed to:

• Feature Engineering (Milestone 2):

- Select the most relevant features using statistical methods.
- o Create new derived features (e.g., revenue-to-budget ratio, engagement scores).
- o Train and evaluate machine learning models for predicting movie success.

• Tool Development (Milestone 3):

- Design an interactive dashboard using Streamlit or Plotly Dash.
- o Implement model-driven insights for user interaction.
- o Finalize reports and prepare the final presentation.