```
Association Rule
 * Association rule learning can be divided into
3 kinds of algorithm
             * Aprieni
             * Eclat
             * T-P Growth
 * Association rule learning works on the Concept
  of if and else statement
  eq: 1 A then B.
    where if A is an lincudent
           then B is consequent.
 Let us discuss about Apriori algorithm
* A priori algorithm is generally convidered as
  unsupervised learning algorithm
problem formulas
     support = No of Hems x & Y bought together
                   Total no of transcations
        support = fre (x,4)
                 Total no. of items x & y bought
                                     together
    confidence =
                    Total no. of items 'x' bought.
```

Construct the following transcations apply the association Title mining to get the association rule with minimum Problem support two and confidence of 50% -> Association rule mining is explained wring

Transcational data for All Electronics branch.

له	tional transfer I at them I De		
1	TID	List of item IDs	
1	T ₁₀₀	I, T2, T5	
1	100		
	T ₂₀₀	T2, T4	
	T300	T_2, T_3	
	T400	I1, I2, I4	
١	T ₅₀₀	I,I3	
	T600	T_2, T_3	
	T_00	21, 33	
	T800	1,72 13 15	
	1900	J. I2 I2	

step! ;

Now scan each itemset and court how many candidate each has.

I-i lemost	soupcount.
\$ I,4	6
\$ T2 3	4
\$ T ₃ 3	6.
	2
8 T4 3	1 1 1 2 1.
&I54	Totaley

Step 2

Check whether the candidate support count is with minimum. of "two".

1-i temset	supcount.
क् जा दे	6
	7
&I24	6
\$ T3 4	
§ यप्	Ter.
& Te4	2.

step3 Now Generate two candidate keys. 2-ilemset &ILI24 & II, I34 &I,Iy \$ I, Is4 \$ I2, I34 & T2, T44 &I2, I54 & To, I44 \$ I3, I54 & I4, I54. Step 4: Now Scan the support count of candidate keys. pritemset Supcount . & I, I24 4 &I1, I34 4 &I, T43 &I, I54 2 & T2, T34 4 & T2, I4 4 & I2, Is 4 & I3, I43 0 & I3, I54 & I4, Ir 4

check whether the candiolate support count is th minimum of two, if not remove the candidate Key (from steps4)

2- itemset	supcount.
\$ I, I24	4
&T,134	4
\$ I1, I54	2
à I2, I34	4
& I2, 243	2
\$12, Isy	2

Now Generale three candidate keys with mup count stup 6:

Now	3 9 timbel	supcount	I, I3 I5
		2	
	\$I12 I34	-	1, 14 25
		2.	T2 I3 I4
	& I, I2 354	1	7 72 35
	\$ I, I2 I49	D	at count is with
Step 7:	& I, I3 Iu4 car	didate suppl	act count is will

check whether the minimum of two

3-item set supcount \$I, I2 I34 87, In Isy

step 8:

Generale tour candidate keys.

eliment soupcount

QI, I2 I3 I3

so not possible, because it has only i supcount

* Non-emply mubrits of frequency sets one three idem rats

\$ I, I2 I3 4 & I, I2 I5 4.

-> \$ \$\Partial Partial (Partial), (Partial), (Partial) }

على المراجي (المراجي (المراجي) (المراجي) (المراجي) إلى المراجي المراجي المراجي المراجي المراجي المراجي المراجي

* Arrocation rule for every non-empty subsits

 $S \Rightarrow (I-S)$

* Let us convider, Association rule mining subset creation between three Plems sets.

 $T \Rightarrow \delta T_1 T_2 T_3$

Non-emply roubsets.

& (II) (I2) (I3) (I, I2) (I, I3) (I2I3) ?

$$\{T_i\} \rightarrow \{T_2, T_3\}.$$

$$T_{-5}$$

Confidence = support
$$\frac{(1,2,3)}{\text{support}} = \frac{2/9}{6/9} = \frac{4}{3} = 33.33\%$$

Support =
$$\frac{2}{9} = 22.22^{1/2}$$
.

Confidence = ssupport (1,2,3)

ssupport (2)

 $\frac{2}{9} = \frac{2}{7} = 28.57^{1/2}$.

$$839 = 61,29$$

support = $2/9 = 22.22\%$

Confidence = $\frac{2}{5}$ support (1,2,3) = $\frac{2}{6}$ = $\frac{2}{6$

Confidence = $\frac{1}{4} \frac{1}{4} \frac{1}{4} = \frac{1}{4}$.. The above condition is valid (>=50%) le 5 21,34 = \$2,34 toupport = 2/9 = 22.22.1. Confidence = truppert (1,2,3) = $\frac{2/9}{4/9} = \frac{4/4 = 50}{1}$.. The above condition is valid (>=50%) le 6 42,34 = €1,34 support = 2/9 = 22.12%.

confidence = rruppert (1,2,5) Joupport (2,3) = 2/9 = 2/7 = 208.5]

: The above condition is invaled (250%)