1 Задание

Написать программу численного решения задачи Коши для уравнения:

$$\frac{d^5y}{dx^5} + 15\frac{d^4y}{dx^4} + 90\frac{d^3y}{dx^3} + 270\frac{d^2y}{dx^2} + 405\frac{dy}{dx} + 243y = 0, x \in [0, 5],\tag{1}$$

при условиях:

$$y(0) = 0$$
, $\frac{dy}{dx}(0) = 3$, $\frac{d^2y}{dx^2}(0) = -9$, $\frac{d^3y}{dx^3}(0) = -8$, $\frac{d^4y}{dx^4}(0) = 0$. (2)

2 Решение

Для реализации был выбрал алгоритм Рунге-Кутта 4-го порядка. Для его решения необходимо выполнить понижение порядка дифференциального уравнения. Для этого введем следующие замены:

$$\begin{cases} y_0(x) = y(x), \\ y_1(x) = y'(x), \\ y_2(x) = y''(x), \\ y_3(x) = y'''(x), \\ y_4(x) = y''''(x), \end{cases}$$
(3)

откуда будет следовать, что

$$y^{(5)}(x) = y_4'(x). (4)$$

Система (1)-(2) перепишется как:

$$\begin{cases} y_0'(x) = y_1(x), \\ y_1'(x) = y_2(x), \\ y_2'(x) = y_3(x), \\ y_3'(x) = y_4(x), \\ y_4'(x) = -243y_0 - 405y_1(x) - 270y_2(x) - 90y_3(x) - 15y_4(x), \end{cases}$$
(5)

HSMM:
$$\begin{cases} y_0(0) = 0, \\ y_1(0) = 3. \end{cases}$$

с условиями:

$$\begin{cases} y_0(0) = 0, \\ y_1(0) = 3, \\ y_2(0) = -9, \\ y_3(0) = -8, \\ y_4(0) = 0. \end{cases}$$
 (6)

3 Реализация алгоритма

Реализация алгоритма описана с файле «main.py», содержащийся в папке с этим отчетом.

4 Примеры расчетов

4.1 Графики

N = 10, 30 соответственно

N = 100, 1000 соответственно

4.2 Интегральные характеристики

N	10	30	100	1000
Время выполнения (сек.)	0.001	0.004	0.012	0.112
$oxed{ extbf{H}}$ евязка (L_2)	17.054	7.58e-06	6.87e-10	5.29e-17

5 Аналитическое решение

Характеристический полином дифференциального уравнения (1) имеет вид:

$$p^5 + 15p^4 + 90p^3 + 270p^2 + 405p + 243 = 0, (7)$$

или же:

$$(3+p)^5 = 0, (8)$$

откуда легко находится общее решение:

$$y(x) = \sum_{k=0}^{4} c_k x^k e^{-3x}, \tag{9}$$

которое, дополняясь условиями (2), принимает вид:

$$y(x) = -\frac{1}{12}e^{-3x}x\left(-36 - 54x + 16x^2 + 129x^3\right)$$
 (10)