

CLAIM AMENDMENTS

Claim Amendment Summary

Claims pending

- Before this Amendment: Claims 1-42.
- After this Amendment: Claims 1-8, 16-19, 22-26, and 35-39.

Non-Elected, Canceled, or Withdrawn claims: Claims 9-15, 20-21, 27-34, and 40-42.

Amended claims: Claims 1, 16, 22, and 35.

New claims: None.

Claims:

1. (Currently Amended) A method of generating a high-resolution image from a generic low-resolution image, the method comprising:

extracting a plurality of low-frequency primitives from a low-resolution image; [and]

replacing one or more respective ones of the plurality of low-frequency primitives with corresponding primitives from stored training data to provide a high-frequency primitive layer of the low-resolution image

interpolating the low-resolution image to provide a low-frequency image prior to the extracting;

combining the high-frequency primitive layer with the low-frequency image to provide an intermediate image; and

reconstructing the intermediate image by applying backprojection to provide a high-resolution image, wherein the backprojection is provided as follows:

$$I_H^{t+1} = I_H^t + (((I_H^t * h) \downarrow s - I_L) \uparrow s) * p$$

where p is a backprojection filter; I_H^t and I_H^{t+1} are input image and output images at times t and $t+1$; h is a blurring operator determined by the point spread function of the imaging sensor; $\uparrow s$ is an up-sampling operator by a factor s ; and $\downarrow s$ is a down-sampling operator by a factor s .

2. (Original) A method as recited in claim 1, wherein the high-frequency primitive layer comprises a plurality of high-frequency primitives.

3. (Original) A method as recited in claim 1, wherein the stored training data comprises a plurality of primal sketch priors.

4. (Original) A method as recited in claim 1, wherein the stored training data is provided by comparing pairs of low-resolution and high-resolution versions of a same training image.

5. (Original) A method as recited in claim 1, further comprising normalizing the plurality of low-frequency primitives prior to the replacing.

6. (Original) A method as recited in claim 1, further comprising applying Markov chain inference to the high-frequency primitive layer to provide contour smoothness.

7. (Original) A method as recited in claim 1, further comprising interpolating the low-resolution image to provide a low-frequency image prior to the extracting.

8. (Original) A method as recited in claim 1, further comprising bicubically interpolating the low-resolution image to provide a low-frequency image prior to the extracting.

9. (Canceled)

10. (Canceled)

11. (Canceled)

12. (Canceled)

13. (Canceled)

14. (Canceled)

15. (Canceled)

16. (Currently Amended) A method comprising:
hallucinating a low-frequency image (I'_H);
extracting a high-frequency primitive layer (I_H^{p*}) of the hallucinated low-frequency image;
combining the low-frequency image (I'_H) and the high-frequency primitive layer (I_H^{p*}) to provide an intermediate image (I_H^g); [and]

reconstructing the intermediate image (I_H^g) to provide a high-resolution image (I_H), wherein the reconstructing applies backprojection to the intermediate image (I_H^g) to provide the high-resolution image (I_H), wherein the backprojection is provided as follows:

$$I_H^{t+1} = I_H^t + (((I_H^t * h) \downarrow s - I_L) \uparrow s) * p$$

where p is a backprojection filter; I_H^t and I_H^{t+1} are input image and output images at times t and $t+1$; h is a blurring operator determined by the point spread function of the imaging sensor; $\uparrow s$ is an up-sampling operator by a factor s ; and $\downarrow s$ is a down-sampling operator by a factor s .

17. (Original) A method as recited in claim 16, further comprising interpolating a low resolution image (I_L) to provide the low-frequency image (I'_H).

18. (Original) A method as recited in claim 16, further comprising bicubically interpolating the low resolution image (I_L) to provide the low-frequency image (I'_H).

19. (Original) A method as recited in claim 16, wherein the high-frequency primitive layer (I_H^{p*}) is provided as follows:

$$I_H^{p*} = \arg \max p(I_H^p | I'_H) = \arg \max p(I'_H | I_H^p) p(I_H^p).$$

20. (Canceled)

21. (Canceled)

22. (Currently Amended) One or more computer-readable media having instructions stored thereon that, when executed, direct a machine to perform acts comprising:

extracting a plurality of low-frequency primitives from a low-resolution image; [and]

replacing one or more respective ones of the plurality of low-frequency primitives with corresponding primitives from stored training data to provide a high-frequency primitive layer of the low-resolution image

interpolating the low-resolution image to provide a low-frequency image prior to the extracting;

combining the high-frequency primitive layer with the low-frequency image to provide an intermediate image; and

reconstructing the intermediate image by applying backprojection to provide a high-resolution image, wherein the backprojection is provided as follows:

$$\underline{I_H^{t+1} = I_H^t + (((I_H^t * h) \downarrow s - I_L) \uparrow s) * p}$$

where p is a backprojection filter; I_H^t and I_H^{t+1} are input image and output images at times t and $t+1$; h is a blurring operator determined by the point spread function of the imaging sensor; $\uparrow s$ is an up-sampling operator by a factor s , and $\downarrow s$ is a down-sampling operator by a factor s .

23. (Original) A computer-readable media as recited in claim 22, wherein the acts further comprise normalizing the plurality of low-frequency primitives prior to the replacing.

24. (Original) A computer-readable media as recited in claim 22, wherein the acts further comprise applying Markov chain inference to the high-frequency primitive layer to provide contour smoothness.

25. (Original) A computer-readable media as recited in claim 22, wherein the acts further comprise interpolating the low-resolution image to provide a low-frequency image prior to the extracting.

26. (Original) A computer-readable media as recited in claim 22, wherein the acts further comprise bicubically interpolating the low-resolution image to provide a low-frequency image prior to the extracting.

27. (Canceled)

28. (Canceled)

29. (Canceled)

30. (Canceled)

31. (Canceled)

32. (Canceled)

33. (Canceled)

34. (Canceled)

35. (Currently Amended) An apparatus comprising:

means for extracting a plurality of low-frequency primitives from a low-resolution image; and

means for replacing one or more respective ones of the plurality of low-frequency primitives with corresponding primitives from stored training data for providing a high-frequency primitive layer of the low-resolution image

means for interpolating the low-resolution image to provide a low-frequency image prior to the extracting;

means for combining the high-frequency primitive layer with the low-frequency image to provide an intermediate image; and

means for reconstructing the intermediate image by applying backprojection to provide a high-resolution image, wherein the backprojection is provided as follows:

$$\underline{I_H^{t+1} = I_H^t + (((I_H^t * h) \downarrow s - I_L) \uparrow s) * p}$$

where p is a backprojection filter; I_H^t and I_H^{t+1} are input image and output images at times t and $t+1$; h is a blurring operator determined by the point spread function of the imaging sensor; \uparrow_s is an up-sampling operator by a factor s ; and \downarrow_s is a down-sampling operator by a factor s .

36. **(Original)** An apparatus as recited in claim 35, further comprising means for normalizing the plurality of low-frequency primitives prior to the replacing.
37. **(Original)** An apparatus as recited in claim 35, further comprising means for applying Markov chain inference to the high-frequency primitive layer to provide contour smoothness.
38. **(Original)** An apparatus as recited in claim 35, further comprising means for interpolating the low-resolution image to provide a low-frequency image prior to the extracting.
39. **(Original)** An apparatus as recited in claim 35, further comprising means for bicubically interpolating the low-resolution image to provide a low-frequency image prior to the extracting.
40. **(Cancelled)**

41. (Canceled)

42. (Canceled)