MCRG Minimal Walking Technicolor

Liam Keegan

June 2010

Edinburgh University

Simon Catterall, Luigi Del Debbio, Joel Geidt

Minimal Walking Technicolor

- Simplest interesting model: MWT
- 2 dirac fermions transforming under the adjoint representation of SU(2)

Saninno, Tuominen [arXiv:hep-ph/0405209]

Walking Technicolor Cartoon

Scheme dependence

- Walking/Running of coupling is scheme dependent
- Want to measure physical, scheme independent quantities:
 - Existence of fixed point
 - Anomalous mass dimension at the fixed point

- Spatially average locally / integrate out UV modes
- Leaves IR physics intact
- Look at evolution of all couplings

$$\hat{\xi}^{(0)}$$
 , $\{g_i^{(0)}\}$

- Spatially average locally / integrate out UV modes
- Leaves IR physics intact
- Look at evolution of all couplings

$$\hat{\xi}^{(1)} = \hat{\xi}^{(0)}/2$$
 , $\{g_i^{(1)}\}$

- Spatially average locally / integrate out UV modes
- Leaves IR physics intact
- Look at evolution of all couplings

$$\hat{\xi}^{(2)} = \hat{\xi}^{(0)}/2^2$$
 , $\{g_i^{(2)}\}$

- Spatially average locally / integrate out UV modes
- Leaves IR physics intact
- Look at evolution of all couplings

$$\hat{\xi}^{(3)} = \hat{\xi}^{(0)}/2^3$$
 , $\{g_i^{(3)}\}$

Monte Carlo Renormalisation Group

- Match after
 n(n-1) steps
- s = 2 change in scale
- Step scaling of bare couplings

Lattice Blocking Transform

- ullet Free parameter lpha adjusts RG blocking transform
- Optimise α to approach RT quickly such that subsequent steps give the same matching

$$V_{n,\mu} = Proj \left[(1-lpha)U_{n,\mu}U_{n+\mu,\mu} + rac{lpha}{6} \sum_{
u
eq \mu} U_{n,
u}U_{n+
u,\mu}U_{n+\mu+
u,\mu}U_{n+2\mu,
u}^{\dagger}
ight]$$

MCRG Key Points

- Find pairs of couplings with identical actions, but whose correlation lengths differ by a factor 2
- Identify matching actions by comparing observables on blocked lattices (plaquette and 6-link loops)
- Always match between lattices with the same number of points to minimise finite size errors
- ullet Optimise lpha to approach RT quickly so that subsequent steps give the same matching

Hasenfratz [arXiv:hep-lat/0907.0919]

Pure Gauge Simulation

- Simulated on lattices of size L=32,16
- Allows for 3 matchings; 2(1), 3(2), 4(3) steps on the $32^4(16^4)$ lattices
- \bullet Optimise α such that these steps predict the same matching coupling

Plaquette Matching

- 32(16) matching
- $\beta = 3.0$
- $\alpha = 0.57$

Alpha Optimisation

Pure Gauge Bare Step Scaling

Phase diagram

- UVFP: both m and g are relevant
- IRFP: m relevant, g irrelevant
- Near IRFP can match in m, value of g should be irrelevant

Simulation details

- Simulated on lattices of size L=16,8
- Allows for 2 matchings; 2(1), 3(2) steps on the 16⁴(8⁴) lattices
- Keep β constant, match in bare mass
- \bullet Optimise α such that these all agree to find continuum physics

Plaquette Matching

- 16⁴ blocked two/three times
- Single mass m = -1.05
- 8⁴ blocked one/two times
- Many masses -1.15 < m' < -0.90

Alpha Optimisation

- $\alpha_{opt} \sim 0.68$
- m = -1.05
- m' = -1.01(2)

PCAC Masses

- Have matching bare masses, but additively renormalised quantities
- So need to convert to PCAC masses to be able to extract anomalous dimension

Anomalous Dimension

- Extract γ from ratio of masses:
- $m' = 2^{\gamma+1}m$
- To verify that beta is irrelevant, repeat at different beta...
 - Linear fit gives $\gamma = 0.49(13)$

Anomalous Dimension

- Extract γ from ratio of masses:
- $m' = 2^{\gamma+1}m$
- To verify that beta is irrelevant, repeat at different beta...
- Linear fit gives $\gamma = 0.49(13)$

Summary

- We find $\gamma = 0.49(13)$
- All-order prediction $\gamma = 0.75$ has $\chi^2/dof \sim 2.3$

 $\label{eq:Ryttov,Sannino} \mbox{ [arXiv:hep-th/0711.3745], Biagio [arXiv:hep-ph/0911.0020], Bursar et. al. [arXiv:hep-ph/0910.4535]}$

Future Plans

- Try different RG blocking transforms, look for universality.
- Use 32⁴ lattices, would give 3 matching steps instead of 2.
- Match in more observables, including fermionic ones.

ullet Look for fixed point in coupling by matching in eta at zero mass

PCAC Mass

PCAC mass is defined using the Partially Conserved Axial Current:

PCAC Mass

$$am(x_0) = \frac{\frac{1}{2}(\partial_0 + \partial_0^*)f_A(x_0)}{2f_P(x_0)}$$

$$f_A(x_0) = -1/12 \int d^3y \, d^3z \, \langle \overline{\psi}(x_0) \gamma_0 \gamma_5 \tau^a \psi(x_0) \overline{\zeta}(y) \gamma_5 \tau^a \zeta(z) \rangle$$

$$f_P(x_0) = -1/12 \int d^3y \, d^3z \, \langle \overline{\psi}(x_0) \gamma_5 \tau^a \psi(x_0) \overline{\zeta}(y) \gamma_5 \tau^a \zeta(z) \rangle$$

Prediction for anomalous dimension

Conjectured all orders beta function

$$\beta(g) = \frac{g^3}{(4\pi)^2} \frac{\beta_0 - \frac{2}{3}T(r)N_f\gamma(g^2)}{1 - \frac{g^2}{8\pi^2}C_2(G)\left(1 + \frac{2\beta_0'}{\beta_0}\right)}$$

$$\beta_0 = \frac{11}{3}C_2(G) - \frac{4}{3}T(r)N_f, \quad \beta_0' = C_2(G) - T(r)N_f$$

- \bullet For MWTC this predicts anomalous dimension $\gamma=3/4$ at fixed point
- This is a scheme-independent quantity at a fixed point

Ryttov, Sannino [arXiv:0711.3745]

Phase diagram

- UVFP: both m and g are relevant
- IRFP: m relevant, g irrelevant
- Can try tuning the mass to zero
- Then measure the scaling of the least irrelevant operator, hopefully g

Simulation details

- Simulated on lattices of size L = 16,8
- Allows for 2 matchings; 2(1), 3(2) steps on the 16⁴(8⁴) lattices
- Tune all runs to the critical $m_{PCAC} = 0$ massless point
- \bullet Optimise α such that these all agree to find continuum physics

Mass tuning

- Measure m_{PCAC} for a range of β , m
- Interpolate to find the m_{crit} for each β
- Simulate at m_{crit} for each β
- Two different sets of runs to see mass dependence

Mass tuning

- Measure m_{PCAC} for a range of β , m
- Interpolate to find the m_{crit} for each β
- Simulate at m_{crit} for each β
- Two different sets of runs to see mass dependence

Mass tuning

- Measure m_{PCAC} for a range of β , m
- Interpolate to find the m_{crit} for each β
- Simulate at m_{crit} for each β
- Two different sets of runs to see mass dependence

Plaquette Matching

- Massless L = 16
- $m_{PCAC} = 0.003(1)$
- Different fits show sensitivity to L=8 mass tuning

Alpha Optimisation

- Looks less sensitive to L=8 mass tuning than expected.
- $s_b = 0.04(7)$
- $s_b = 0.05(7)$
- Step scaling consistent with zero within errors.

Mass sensitivity

- Near-massless L = 16
- $m_{PCAC} = 0.015(1)$
- $s_b = 0.20(6)$
- $s_b = 0.20(7)$
- Very sensitive to L=16 mass tuning

Particle content of MWT

- Fermionic content:
 - (U,D) techni-quark doublet
 - (N,E) new lepton doublet
 - Composite techniquark-technigluon doublet
- Composite Higgs from techni-pion

MWT LHC Phenomenology

- Details depend on choice of ETC model
- Then construct low energy EFT for LHC

Frandsen, Sannino, et. al. [arXiv:0710.4333v1] [arXiv:0809.0793v1]

MWT Dark Matter candidate

- Lightest technibaryon is a cold dark matter candidate
- TIMP: Technicolour Interacting Massive Particle
- iTIMP: lightest weak isotriplet technibaryon
- Prospects for discovery/exclusion from both dark matter experiments and LHC

Frandsen, Sannino [arXiv:0911.1570]