$20241115 \ \mathrm{MATH} 3541 \ \mathrm{NOTE} \ 9[1]$

Author: Be $\sqrt{-1}$ maginative, and nothing will be $\frac{d}{dx}$ ifficult!

Email: u3612704@connect.hku.hk;

Phone: +852 5693 2134; +86 19921823546;

Contents

1	Intr	roduction	3
2	Homotopy		3
	2.1	Homotopic Functions	3
	2.2	Homotopic Topological Spaces	6
	2.3	Construction of Homotopy	7
3	Elementary Category Theory		8
	3.1	Category	8
	3.2	Functor	13
4	$Th\epsilon$	e Fundamental Group	17
	4.1	The Fundamental Groupoid	17
	4.2	The Fundamental Functor	19
	4.3	Construction of the Fundamental Groupoid	21

1 Introduction

How to prove that a 2-dimensional sphere $\mathbb{S}^2 = \{\mathbf{x} \in \mathbb{R}^3 : ||\mathbf{x}|| = 1\}$ is not homeomorphic to the 2-fold product $\mathbb{S} \times \mathbb{S}$ of the unit circle $\mathbb{S} = \{z \in \mathbb{C} : |z| = 1\}$?

Notice that neither compactness nor connectedness distinguishes the two spaces, so we indeed need to invent some new topological invariant, which is the fundamental group.

2 Homotopy

2.1 Homotopic Functions

Definition 2.1. (Homotopy and Relative Homotopy)

Let X, Y be two topological spaces, A be a subset of X, and f, f' be two functions from X to Y.

- (1) If there exists a continuous function $H: X \times [0,1] \to Y$, such that for all $x \in X$, H(x,0) = f(x) and H(x,1) = f'(x), then $f \sim f'$, i.e., f is homotopic to f'.
- (2) If there exists a continuous function $H: X \times [0,1] \to Y$, such that for all $x \in X$, H(x,0) = f(x) and H(x,1) = f'(x), and for all $x \in A$ and $t \in [0,1]$, f(x) = H(x,t) = f'(x), then $f \sim f'$ rel A, i.e., f is homotopic to f' relative to A.

Remark: $f \sim f' \text{ rel } A \implies f \sim f' \implies f \sim f' \text{ rel } \emptyset, f \sim f' \implies f, f' \text{ are continuous.}$

Proposition 2.2. Let C(X,Y) be the set of all continuous functions from X to Y. Homotopy relation \sim relative to A is an equivalence relation on C(X,Y).

Proof. We may divide our proof into three parts.

Part 1: For all $f \in \mathcal{C}(X,Y)$, define the following identity homotopy:

$$e_f: X \times [0,1] \rightarrow Y, e_f(x,t) = f(x)$$

- (1) f is continuous implies e_f is continuous.
- (2) For all $x \in X$ and $t \in [0, 1]$:

$$e_f(x,0) = e_f(x,t) = e_f(x,1) = f(x)$$

Hence, e_f is a homotopy relative to A, $f \sim f$ rel A.

Part 2: For all $f, f' \in \mathcal{C}(X, Y)$, assume that a homotopy H from f to f' relative to A exists. Define the following inverse homotopy:

$$H^{-1}: X \times [0,1] \to Y, H^{-1}(x,t) = H(x,1-t)$$

 $(1) \ H \ \text{and} \ \tau: X \times [0,1] \to X \times [0,1], (x,t) \mapsto (x,1-t) \ \text{are continuous implies} \ H^{-1} = H \circ \tau$

is continuous.

(2) For all $x \in X$:

$$H^{-1}(x,0) = H(x,1) = f'(x)$$
 and $H^{-1}(x,1) = H(x,0) = f(x)$

(3) For all $x \in A$ and $t \in [0, 1]$:

$$f'(x) = H^{-1}(x,t) = H(x,1-t) = f(x)$$

Hence, H^{-1} is a homotopy relative to $A, f' \sim f$ rel A.

Part 3: For all $f, f', f'' \in \mathcal{C}(X, Y)$, assume that a homotopy H from f to f' relative to A and a homotopy H' from f' to f'' relative to A exist. Fix an arbitrary $x \in (0, 1)$, define the following concatenate homotopy at c:

$$H \star_{c} H' : X \times [0,1] \to Y, H \star_{c} H'(x,t) = \begin{cases} H(x, \frac{t-0}{c-0}) & \text{if } 0 \le t \le c; \\ H'(x, \frac{t-c}{1-c}) & \text{if } c \le t \le 1; \end{cases}$$

(1) H, H' and $\ell_c: X \times [0, c] \to X \times [0, 1], (x, t) \mapsto (x, \frac{t-0}{c-0}), \ \ell'_c: X \times [c, 1] \to X \times [0, 1], (x, t) \mapsto (x, \frac{x-c}{1-c})$ are continuous implies $H \star_c H' = (H \circ \ell_c) \cup (H' \circ \ell'_c)$ is continuous. (2) For all $x \in X$:

$$H \star_c H'(x,0) = H(x,0) = f(x)$$
 and $H \star_c H'(x,1) = H'(x,1) = f'(x)$

(3) For all $x \in A$ and $t \in [0, 1]$:

$$H \star_{c} H'(x,t) = \begin{cases} H(x, \frac{t-0}{c-0}) = f(x) = f'(x) & \text{if} \quad 0 \le t \le c; \\ H'(x, \frac{t-c}{1-c}) = f'(x) = f''(x) & \text{if} \quad c \le t \le 1; \end{cases}$$

Hence, $H \star_c H'$ is a homotopy relative to $A, f \sim f''$ rel A.

Combine the three parts above, we've proven that $\sim \text{rel } A$ is an equivalence relation. Quod. Erat. Demonstrandum.

Remark: When X is a singleton, homotopy degenerates to path, so we've simultaneously proven that path connected components form a partition.

Proposition 2.3. Let
$$f, f': X \to Y, g, g': Y \to Z$$
 be four continuous functions. If $f \sim f'$ rel A and $g \sim g'$ rel $f(A) = f'(A)$, then $g \circ f \sim g' \circ f'$ rel A .

Proof. Assume that a homotopy H from f to f' relative to A and a homotopy I from g to g' relative to f(A) = f'(A) exist. Define the following composite homotopy:

$$I \diamond H : X \times [0,1] \rightarrow Z, I \diamond H(x,t) = I(H(x,t),t)$$

(1) I and $J: X \times [0,1] \to Y \times [0,1], (x,t) \mapsto (H(x,t),t)$ are continuous implies $I \diamond H = I \circ J$ is continuous.

(2) For all $x \in X$:

$$I \diamond H(x,0) = I(f(x),0) = g \circ f(x)$$
 and $I \diamond H(x,1) = I(f'(x),1) = g' \circ f'(x)$

(3) For all $x \in A$ and $t \in [0, 1]$:

$$g \circ f(x) = I \diamond H(x,t) = I(H(x,t),t) = g' \circ f'(x)$$

Hence, $I \diamond H$ is a homotopy relative to $A, g \circ f \sim g' \circ f'$ rel A. Quod. Erat. Demonstrandum.

Proposition 2.4. Let X be a topological space, Y be a normed vector space, B be a convex subset of Y, and $\mathbf{f}: X \to B$ be a continuous function. \mathbf{f} is null-homotopic, i.e., for all $\boldsymbol{\eta} \in B$, $\mathbf{f}': X \to B$, $x \mapsto \boldsymbol{\eta}$ is homotopic to \mathbf{f} .

Proof. Define the following null-homotopy from **f**' to **f**:

$$\mathbf{H}: X \times [0,1] \to Y, \mathbf{H}(x,t) = (1-t)\eta + t\mathbf{f}(x)$$

- (1) $t, \mathbf{f}(x) \boldsymbol{\eta}$ are continuous implies $t[\mathbf{f}(x) \boldsymbol{\eta}]$ is continuous, which further implies $\mathbf{H}(x,t) = \boldsymbol{\eta} + t[\mathbf{f}(x) \boldsymbol{\eta}]$ is continuous.
- (2) For all $x \in X$:

$$\mathbf{H}(x,0) = \boldsymbol{\eta} = \mathbf{f}'(x)$$
 and $\mathbf{H}(x,1) = \mathbf{f}(x)$

Hence, **H** is a homotopy, $\mathbf{f}' \sim \mathbf{f}$. Quod. Erat. Demonstrandum.

Proposition 2.5. Let \mathbf{f}, \mathbf{f}' be two continuous functions from X to \mathbb{S}^n . If $\forall x \in X$ and $t \in [0,1], (1-t)\mathbf{f}(x) + t\mathbf{f}'(x) \neq \mathbf{0}$, then $\mathbf{f} \sim \mathbf{f}'$.

Proof. Define the following homotopy from \mathbf{f} to \mathbf{f}' :

$$\mathbf{H}: X \times [0,1] \to \mathbb{S}^n, \mathbf{H}(x,t) = \frac{(1-t)\mathbf{f}(x) + t\mathbf{f}'(x)}{\|(1-t)\mathbf{f}(x) + t\mathbf{f}'(x)\|}$$

- (1) As $\forall x \in X$ and $t \in [0,1], (1-t)\mathbf{f}(x) + t\mathbf{f}'(x) \neq \mathbf{0}$, **H** is well-defined on $X \times [0,1]$.
- (2) $\mathbf{f}(x), \mathbf{f}'(x)$ and $t, \|\mathbf{v}\|$ are continuous implies $\mathbf{H}(x, t) = \frac{(1-t)\mathbf{f}(x)+t\mathbf{f}'(x)}{\|(1-t)\mathbf{f}(x)+t\mathbf{f}'(x)\|}$ is continuous.
- (3) For all $x \in X$:

$$\mathbf{H}(x,0) = \frac{\mathbf{f}(x)}{\|\mathbf{f}(x)\|} = \mathbf{f}(x) \text{ and } \mathbf{H}(x,1) = \frac{\mathbf{f}'(x)}{\|\mathbf{f}'(x)\|} = \mathbf{f}'(x)$$

Hence, **H** is a homotopy, $\mathbf{f} \sim \mathbf{f}'$. Quod. Erat. Demonstrandum.

2.2 Homotopic Topological Spaces

Definition 2.6. (Homotopy)

Let X, X' be two topological spaces.

If there exist two continuous functions $f: X \to X', g: X' \to X$, such that $g \circ f \sim e_X$ and $f \circ g \sim e_{X'}$ on X',

then X, X' are homotopic.

Proposition 2.7. If X, X' are homeomorphic, then X, X' are homotopic.

Proof. Assume that σ is a homeomorphism from X to X'.

There exist two continuous functions $f = \sigma : X \to X', g = \sigma^{-1} : X' \to X$,

such that $g \circ f = e_X \sim e_X$ and $f \circ g = e_{X'} \sim e_{X'}$.

Hence, $X \sim X'$. Quod. Erat. Demonstrandum.

Remark: Being homeomorphic is stronger than being homotopic.

Proposition 2.8. Let Top be the set of all topological spaces.

Homotopy relation \sim is an equivalence relation on Top.

Proof. We may divide our proof into three parts.

Part 1: For all $X \in \text{Top}$, there exists a continuous function $e_X : X \to X$, such that:

$$e_X \circ e_X = e_X \sim e_X$$

Hence, $X \sim X$.

Part 2: For all $X, X' \in \text{Top}$, assume that there exist two continuous functions $f: X \to X', g: X' \to X$, such that $g \circ f \sim e_X$ and $f \circ g \sim e_{X'}$.

There exist two continuous functions $g: X' \to X, f: X \to X'$, such that:

$$f \circ q \sim e_{X'}$$
 and $q \circ f \sim e_X$

Hence, $X' \sim X$.

Part 3: For all $X, X', X'' \in \text{Top}$, assume that there exist four continuous functions $f: X \to X', g: X' \to X, f': X' \to X'', g': X'' \to X'$, such that $g \circ f \sim e_X$ and $f \circ g \sim e_{X'}$ and $g' \circ f' \sim e_{X'}$ and $f' \circ g' \sim e_{X''}$.

There exist two continuous functions $f' \circ f: X \to X'', g \circ g': X'' \to X$, such that:

$$g \circ g' \circ f' \circ f \sim g \circ f \sim e_X$$
 and $f' \circ f \circ g \circ g' \sim f' \circ g' \sim e_{X''}$

Hence, $X \sim X''$.

Combine the three parts above, we've proven that \sim is an equivalence relation.

Quod. Erat. Demonstrandum.

Proposition 2.9. Let X be a topological space,

Y be a normed vector space, B be a convex subset of Y.

B is contractible, i.e., for all $\eta \in B$, $\{\eta\}$ is homotopic to B.

Proof. There exist two continuous functions $\mathbf{f}: \{\eta\} \to B, \eta \mapsto \eta$,

 $\mathbf{f}': B \to \{\eta\}, \mathbf{x} \mapsto \eta$, such that $\mathbf{f}' \circ \mathbf{f} = e_{\{\eta\}} \sim e_{\{\eta\}}$ and $\mathbf{f} \circ \mathbf{f}' = \mathbf{f}' \sim e_B$.

Hence, B is contractible. Quod. Erat. Demonstrandum.

Proposition 2.10. Let η be a point on \mathbb{S}^n . $\mathbb{S}^n \setminus \{\eta\}$ is contractible.

Proof. \mathbb{R}^n is contractible implies $\mathbb{S}^n \setminus \{\eta\}$ is contractible. Quod. Erat. Demonstrandum.

2.3 Construction of Homotopy

Proposition 2.11. Let X, Y be two topological spaces, A be a subset of X, B be a subset of Y, and f, f' be two continuous functions with domain X. If $f \sim f'$ rel A with codomain B, then $f \sim f'$ rel A with codomain Y.

Proof. It suffices to notice that H is continuous with codomain B implies H is continuous with codomain Y. Quod. Erat. Demonstrandum.

Remark: However, if someone "dig a hole" in the codomain, then certain continuous functions can no longer be homotopic.

Proposition 2.12. Let X be a topological space, A be a subset of X, $(Y_{\lambda})_{\lambda \in I}$ be an indexed family of topological spaces with product $Y = \prod_{\lambda \in I} Y_{\lambda}$, and $(f_{\lambda})_{\lambda \in I}$, $(f'_{\lambda})_{\lambda \in I}$ be two indexed families of continuous functions from X to Y with products $f = \prod_{\lambda \in I} f_{\lambda}$, $f' = \prod_{\lambda \in I} f'_{\lambda}$. $f \sim f'$ rel A iff each $f_{\lambda} \sim f'_{\lambda}$ rel A.

Proof. It suffices to notice that $H = \prod_{\lambda \in I} H_{\lambda}$ is continuous iff each H_{λ} is continuous. Quod. Erat. Demonstrandum.

Remark: Recall the following two facts from multivariable calculus:

- (1) $H(x_1, x_2)$ is continuous $\Longrightarrow H(x_1, \xi_2), H(\xi_1, x_2)$ are continuous.
- (2) $(H_1(x), H_2(x))$ is continuous $\iff H_1(x), H_2(x)$ are continuous.

Proposition 2.13. Let X be a topological space, A be a subset of X, $(Y_{\lambda})_{\lambda \in I}$ be an indexed family of topological spaces with coproduct $Y = \coprod_{\lambda \in I} Y_{\lambda}$, and f_{μ}, f'_{μ} be two continuous functions from X to Y_{μ} . If $\pi_{\mu}: Y_{\mu} \to Y, y \mapsto (y, \mu)$, then $\pi_{\mu} \circ f_{\mu} \sim \pi_{\mu} \circ f'_{\mu}$ rel A iff $f_{\mu} \sim f'_{\mu}$ rel A.

Proof. It suffices to notice that π_{μ} is an embedding, and a path in Y is restricted to move in one single slice Y_{μ} . Quod. Erat. Demonstrandum.

Proposition 2.14. Let X, Y be two topological spaces,

A be a subset of X, [Y] be the quotient space of Y under $[\bullet]$,

and f, f' be two continuous functions from X to Y.

If
$$[ullet]: Y \to [Y], y \mapsto [y]$$
, then $[f] \sim [f']$ rel A if $f \sim f'$ rel A .

Proof. It suffices to notice that [H] is continuous if H is continuous.

Quod. Erat. Demonstrandum.

Remark: Notice that the other implication is wrong.

3 Elementary Category Theory

3.1 Category

Category is introduced to describe the structures of mathematical objects.

Definition 3.1. (Category)

Let (Obj, Mor) be a tuple of two sets. If:

(1) For all objects $A, B \in \text{Obj}$, there exists a unique morphism class:

$$Mor(A, B) \subseteq Mor$$

(2) For all objects $A, B, C \in \text{Obj}$, there exists a unique binary operation:

$$\circ : \operatorname{Mor}(A, B) \times \operatorname{Mor}(B, C) \to \operatorname{Mor}(A, C), (\sigma, \tau) \mapsto \tau \circ \sigma$$

(3) For all objects $A, B, C, D \in \text{Obj}$:

$$\forall \mu \in \operatorname{Mor}(A, B), \forall \nu \in \operatorname{Mor}(B, C), \forall \sigma \in \operatorname{Mor}(C, D), \sigma \circ (\nu \circ \mu) = (\sigma \circ \nu) \circ \mu$$

(4) For all object $A \in \text{Obj}$:

$$\exists e_A \in \operatorname{Mor}(A, A), \quad \forall B \in \operatorname{Obj}, \quad \forall \sigma \in \operatorname{Mor}(A, B), \quad \sigma \circ e_A = \sigma;$$

$$\forall B \in \operatorname{Obj}, \quad \forall \tau \in \operatorname{Mor}(B, A), \quad e_A \circ \tau = \tau;$$

Then, (Obj, Mor) is a category.

Proposition 3.2. Define the followings:

- (1) Obj = [All sets].
- (2) Mor = [All functions].
- (Obj, Mor) is a category.

Proof. We may divide our proof into four parts.

(1) For all sets $A, B \in Obj$, there exists a unique function class:

$$Mor(A, B) = [All function f from A to B] \subseteq Mor$$

(2) For all sets $A, B, C \in \text{Obj}$, there exists a unique binary operation:

$$\circ : \operatorname{Mor}(A, B) \times \operatorname{Mor}(B, C) \to \operatorname{Mor}(A, C), (\sigma, \tau) \mapsto \tau \circ \sigma$$

The following argument suggests that $\tau \circ \sigma \in \text{Mor}(A, C)$ is well-defined:

$$\forall a \in A, \exists! \tau(\sigma(a)) \in C, \tau \circ \sigma(a) = \tau(\sigma(a))$$

(3) For all sets $A, B, C, D \in \text{Obj}$:

$$\forall \mu \in \operatorname{Mor}(A, B), \forall \nu \in \operatorname{Mor}(B, C), \forall \sigma \in \operatorname{Mor}(C, D), \sigma \circ (\nu \circ \mu) = (\sigma \circ \nu) \circ \mu$$

The following argument suggests that $\sigma \circ (\nu \circ \mu) = (\sigma \circ \nu) \circ \mu$:

$$\forall a \in A, \sigma \circ (\nu \circ \mu)(a) = \sigma(\nu(\mu(a))) = (\sigma \circ \nu) \circ \mu(a)$$

(4) For all set $A \in \text{Obj}$:

$$\exists e_A \in \operatorname{Mor}(A, A), \quad \forall B \in \operatorname{Obj}, \quad \forall \sigma \in \operatorname{Mor}(A, B), \quad \sigma \circ e_A = \sigma;$$

$$\forall B \in \operatorname{Obj}, \quad \forall \tau \in \operatorname{Mor}(B, A), \quad e_A \circ \tau = \tau;$$

The following argument suggests that $e_A \in \text{Mor}(A, A)$ is well-defined:

$$\forall a \in A, \exists! a \in A, e_A(a) = a$$

The following argument suggests that $\sigma \circ e_A = \sigma$:

$$\forall a \in A, \sigma \circ e_A(a) = \sigma(e_A(a)) = \sigma(a)$$

The following argument suggests that $e_A \circ \tau = \tau$:

$$\forall b \in B, e_A \circ \tau(b) = e_A(\tau(b)) = \tau(b)$$

Hence, (Obj, Mor) is a category. Quod. Erat. Demonstrandum.

Remark: "No structure" is a structure.

Proposition 3.3. Define the followings:

- (1) Obj = [All groups].
- (2) Mor = [All group homomorphisms].
- (Obj, Mor) is a category.

Proof. We may divide our proof into four parts.

(1) For all groups $A, B \in \text{Obj}$, there exists a unique group homomorphism class:

$$Mor(A, B) = [All group homomorphism f from A to B] \subseteq Mor$$

(2) For all groups $A, B, C \in \text{Obj}$, there exists a unique binary operation:

$$\circ: \operatorname{Mor}(A,B) \times \operatorname{Mor}(B,C) \to \operatorname{Mor}(A,C), (\sigma,\tau) \mapsto \tau \circ \sigma$$

The following argument suggests that $\tau \circ \sigma \in \text{Mor}(A, C)$ is well-defined:

$$\forall a, a' \in A, \tau \circ \sigma(a_1 a_2) = \tau(\sigma(a_1 a_2)) = \tau(\sigma(a_1)\sigma(a_2))$$
$$= \tau(\sigma(a_1))\tau(\sigma(a_2)) = \tau \circ \sigma(a_1)\tau \circ \sigma(a_2)$$

(3) For all groups $A, B, C, D \in \text{Obj}$:

$$\forall \mu \in \operatorname{Mor}(A, B), \forall \nu \in \operatorname{Mor}(B, C), \forall \sigma \in \operatorname{Mor}(C, D), \sigma \circ (\nu \circ \mu) = (\sigma \circ \nu) \circ \mu$$

(4) For all group $A \in \text{Obj}$:

$$\exists e_A \in \operatorname{Mor}(A, A), \quad \forall B \in \operatorname{Obj}, \quad \forall \sigma \in \operatorname{Mor}(A, B), \quad \sigma \circ e_A = \sigma;$$

$$\forall B \in \operatorname{Obj}, \quad \forall \tau \in \operatorname{Mor}(B, A), \quad e_A \circ \tau = \tau;$$

The following argument suggests that $e_A \in \text{Mor}(A,A)$ is well-defined:

$$\forall a_1, a_2 \in A, e_A(a_1a_2) = a_1a_2 = e_A(a_1)e_A(a_2)$$

Hence, (Obj, Mor) is a category. Quod. Erat. Demonstrandum.

Proposition 3.4. Define the followings:

- (1) $Obj = [All vector space over field <math>\mathbb{F}].$
- (2) Mor = [All linear mappings].
- (Obj, Mor) is a category.

Proof. We may divide our proof into four parts.

(1) For all vector spaces $A, B \in \text{Obj}$, there exists a unique linear mapping class:

$$Mor(A, B) = [All linear mapping f from A to B] \subseteq Mor$$

(2) For all vector spaces $A, B, C \in \text{Obj}$, there exists a unique binary operation:

$$\circ: \operatorname{Mor}(A, B) \times \operatorname{Mor}(B, C) \to \operatorname{Mor}(A, C), (\sigma, \tau) \mapsto \tau \circ \sigma$$

The following argument suggests that $\tau \circ \sigma \in \text{Mor}(A, C)$ is well-defined:

$$\forall \mathbf{a}_1, \mathbf{a}_2 \in A, \tau \circ \sigma(\mathbf{a}_1 + \mathbf{a}_2) = \tau(\sigma(\mathbf{a}_1 + \mathbf{a}_2)) = \tau(\sigma(\mathbf{a}_1) + \sigma(\mathbf{a}_2))$$

$$= \tau(\sigma(\mathbf{a}_1)) + \tau(\sigma(\mathbf{a}_2)) = \tau \circ \sigma(\mathbf{a}_1) + \tau \circ \sigma(\mathbf{a}_2)$$

$$\forall \lambda \in \mathbb{F} \text{ and } \mathbf{a} \in A, \tau \circ \sigma(\lambda \mathbf{a}) = \tau(\sigma(\lambda \mathbf{a})) = \tau(\lambda \sigma(\mathbf{a}))$$

$$= \lambda \tau(\sigma(\mathbf{a})) = \lambda \tau \circ \sigma(\mathbf{a})$$

(3) For all vector spaces $A, B, C, D \in \text{Obj}$:

$$\forall \mu \in \operatorname{Mor}(A,B), \forall \nu \in \operatorname{Mor}(B,C), \forall \sigma \in \operatorname{Mor}(C,D), \sigma \circ (\nu \circ \mu) = (\sigma \circ \nu) \circ \mu$$

(4) For all vector space $A \in \text{Obj}$:

$$\exists e_A \in \operatorname{Mor}(A, A), \quad \forall B \in \operatorname{Obj}, \quad \forall \sigma \in \operatorname{Mor}(A, B), \quad \sigma \circ e_A = \sigma;$$

$$\forall B \in \operatorname{Obj}, \quad \forall \tau \in \operatorname{Mor}(B, A), \quad e_A \circ \tau = \tau;$$

The following argument suggests that $e_A \in Mor(A, A)$ is well-defined:

$$\forall \mathbf{a}_1, \mathbf{a}_2 \in A, e_A(\mathbf{a}_1 + \mathbf{a}_2) = \mathbf{a}_1 + \mathbf{a}_2 = e_A(\mathbf{a}_1) + e_A(\mathbf{a}_2)$$
$$\forall \lambda \in \mathbb{F} \text{ and } \mathbf{a} \in A, e_A(\lambda \mathbf{a}) = \lambda \mathbf{a} = \lambda e_A(\mathbf{a})$$

Hence, (Obj, Mor) is a category. Quod. Erat. Demostrandum.

Proposition 3.5. Define the followings:

- (1) Obj = [All rings with unity].
- (2) Mor = [All ring homomorphisms].
- (Obj, Mor) is a category.

Proof. We may divide our proof into four parts.

(1) For all rings $A, B \in \text{Obj}$, there exists a unique ring homomorphism class:

$$Mor(A, B) = [All ring homomorphism f from A to B] \subseteq Mor$$

(2) For all rings $A, B, C \in \text{Obj}$, there exists a unique binary operation:

$$\circ: \operatorname{Mor}(A, B) \times \operatorname{Mor}(B, C) \to \operatorname{Mor}(A, C), (\sigma, \tau) \mapsto \tau \circ \sigma$$

The following argument suggests that $\tau \circ \sigma \in \text{Mor}(A, C)$ is well-defined:

$$\begin{aligned} \forall a_1, a_2 \in A, \tau \circ \sigma(a_1 + a_2) &= \tau(\sigma(a_1 + a_2)) = \tau(\sigma(a_1) + \sigma(a_2)) \\ &= \tau(\sigma(a_1)) + \tau(\sigma(a_2)) = \tau \circ \sigma(a_1) + \tau \circ \sigma(a_2) \\ \tau \circ \sigma(1_A) &= \tau(\sigma(1_A)) = \tau(1_B) = 1_C \\ \forall a_1, a_2 \in A, \tau \circ \sigma(a_1 a_2) &= \tau(\sigma(a_1 a_2)) = \tau(\sigma(a_1) \sigma(a_2)) \\ &= \tau(\sigma(a_1)) \tau(\sigma(a_2)) = \tau \circ \sigma(a_1) \tau \circ \sigma(a_2) \end{aligned}$$

(3) For all rings $A, B, C, D \in \text{Obj}$:

$$\forall \mu \in \operatorname{Mor}(A,B), \forall \nu \in \operatorname{Mor}(B,C), \forall \sigma \in \operatorname{Mor}(C,D), \sigma \circ (\nu \circ \mu) = (\sigma \circ \nu) \circ \mu$$

(4) For all ring $A \in \text{Obj}$:

$$\exists e_A \in \operatorname{Mor}(A, A), \quad \forall B \in \operatorname{Obj}, \quad \forall \sigma \in \operatorname{Mor}(A, B), \quad \sigma \circ e_A = \sigma;$$

$$\forall B \in \operatorname{Obj}, \quad \forall \tau \in \operatorname{Mor}(B, A), \quad e_A \circ \tau = \tau;$$

The following argument suggests that $e_A \in Mor(A, A)$ is well-defined:

$$\forall a_1, a_2 \in A, e_A(a_1 + a_2) = a_1 + a_2 = e_A(a_1) + e_A(a_2)$$

$$e_A(1_A) = 1_A$$

$$\forall a_1, a_2 \in A, e_A(a_1 a_2) = a_1 a_2 = e_A(a_1) e_A(a_2)$$

Hence, (Obj., Mor) is a category. Quod. Erat. Demostrandum.

Proposition 3.6. Define the followings:

- (1) Obj = [All topological spaces].
- (2) Mor = [All continuous maps].
- (Obj, Mor) is a category.

Proof. We may divide our proof into four parts.

(1) For all topological spaces $A, B \in Obj$, there exists a unique continuous map class:

$$Mor(A, B) = [All continuous map f from A to B] \subseteq Mor$$

(2) For all topological spaces $A, B, C \in \text{Obj}$, there exists a unique binary operation:

$$\circ : \operatorname{Mor}(A, B) \times \operatorname{Mor}(B, C) \to \operatorname{Mor}(A, C), (\sigma, \tau) \mapsto \tau \circ \sigma$$

The following argument suggests that $\tau \circ \sigma \in \text{Mor}(A, C)$ is well-defined:

$$\forall W \in \mathcal{O}_C, (\tau \circ \sigma)^{-1}(W) = \sigma^{-1}(\tau^{-1}(W)) \in \mathcal{O}_A$$

(3) For all topological spaces $A, B, C, D \in \text{Obj}$:

$$\forall \mu \in \operatorname{Mor}(A, B), \forall \nu \in \operatorname{Mor}(B, C), \forall \sigma \in \operatorname{Mor}(C, D), \sigma \circ (\nu \circ \mu) = (\sigma \circ \nu) \circ \mu$$

(4) For all topological space $A \in \text{Obj}$:

$$\exists e_A \in \operatorname{Mor}(A, A), \quad \forall B \in \operatorname{Obj}, \quad \forall \sigma \in \operatorname{Mor}(A, B), \quad \sigma \circ e_A = \sigma;$$

 $\forall B \in \operatorname{Obj}, \quad \forall \tau \in \operatorname{Mor}(B, A), \quad e_A \circ \tau = \tau;$

The following argument suggests that $e_A \in Mor(A, A)$ is well-defined:

$$\forall U \in \mathcal{O}_A, e_A^{-1}(U) = U \in \mathcal{O}_A$$

Hence, (Obj, Mor) is a category. Quod. Erat. Demonstrandum.

3.2 Functor

If ([All categories], •) is a category, then what should be •?
Well, for all categories (Obj, Mor), (Obj', Mor'), a structure-preserving map should preserve both objects and morphisms, which gives rise to the idea of functor.

Definition 3.7. (Functor)

Let (Obj, Mor), (Obj', Mor') be two categories,

and $\sigma: \mathrm{Obj} \sqcup \mathrm{Mor} \to \mathrm{Obj}' \sqcup \mathrm{Mor}'$ be a map. If:

(1) For all object $A \in \text{Obj}$:

$$\sigma(e_A) = e_{\sigma(A)}$$

(2) For all objects $A, B, C \in \text{Obj}$:

$$\forall \mu \in \operatorname{Mor}(A, B), \forall \nu \in \operatorname{Mor}(B, C), \sigma(\nu \mu) = \sigma(\nu)\sigma(\mu)$$

Then σ is a functor from (Obj, Mor) to (Obj', Mor').

Remark: To define a ring homomorphism, it is necessary to require that the multiplicative identity is preserved because $r^2 = r$ doesn't imply $r = 1_R$. For the same reason, it is necessary to require that every identity map is preserved under functors.

Proposition 3.8. Define the followings:

- (1) $\mathbf{Obj} = [All \text{ categories}].$
- (2) Mor = [All functors].
- (**Obj**, **Mor**) is a category.

Proof. We may divide our proof into four parts.

(1) For all categories $\mathbf{A}, \mathbf{B} \in \mathbf{Obj}$, there exists a unique functor class:

$$Mor(A, B) = [All functor f from A to B] \subseteq Mor$$

(2) For all categories $A, B, C \in Obj$, there exists a unique binary operation:

$$\circ: \operatorname{Mor}(A, B) \times \operatorname{Mor}(B, C) \to \operatorname{Mor}(A, C), (\sigma, \tau) \mapsto \tau \circ \sigma$$

The following argument suggests that $\tau \circ \sigma \in Mor(A, \mathbb{C})$ is well-defined.

For all object A of A:

$$\boldsymbol{\tau} \circ \boldsymbol{\sigma}(e_A) = \boldsymbol{\tau}(\boldsymbol{\sigma}(e_A)) = \boldsymbol{\tau}(e_{\boldsymbol{\sigma}(A)}) = e_{\boldsymbol{\tau} \circ \boldsymbol{\sigma}(A)} = e_{\boldsymbol{\tau} \circ \boldsymbol{\sigma}(A)}$$

For all objects A, B, C of **A**:

$$\forall \mu \in \operatorname{Mor}(A, B), \forall \nu \in \operatorname{Mor}(B, C), \boldsymbol{\tau} \circ \boldsymbol{\sigma}(\nu \mu) = \boldsymbol{\tau}(\boldsymbol{\sigma}(\nu \mu)) = \boldsymbol{\tau}(\boldsymbol{\sigma}(\nu) \boldsymbol{\sigma}(\mu))$$
$$= \boldsymbol{\tau}(\boldsymbol{\sigma}(\nu)) \boldsymbol{\tau}(\boldsymbol{\sigma}(\mu)) = \boldsymbol{\tau} \circ \boldsymbol{\sigma}(\nu) \boldsymbol{\tau} \circ \boldsymbol{\sigma}(\mu)$$

(3) For all categories $A, B, C, D \in Obj$:

$$\forall \boldsymbol{\mu} \in \operatorname{Mor}(\mathbf{A},\mathbf{B}), \forall \boldsymbol{\nu} \in \operatorname{Mor}(\mathbf{B},\mathbf{C}), \forall \boldsymbol{\sigma} \in \operatorname{Mor}(\mathbf{C},\mathbf{D}), \boldsymbol{\sigma} \circ (\boldsymbol{\nu} \circ \boldsymbol{\mu}) = (\boldsymbol{\sigma} \circ \boldsymbol{\nu}) \circ \boldsymbol{\mu}$$

(4) For all category $\mathbf{A} \in \mathbf{Obj}$:

$$\begin{split} \exists \mathbf{e_A} \in Mor(\mathbf{A}, \mathbf{A}), & \forall \mathbf{B} \in Obj, & \forall \boldsymbol{\sigma} \in Mor(\mathbf{A}, \mathbf{B}), & \boldsymbol{\sigma} \circ \mathbf{e_A} = \boldsymbol{\sigma}; \\ & \forall \mathbf{B} \in Obj, & \forall \boldsymbol{\tau} \in Mor(\mathbf{B}, \mathbf{A}), & \mathbf{e_A} \circ \boldsymbol{\tau} = \boldsymbol{\tau}; \end{split}$$

The following argument suggests that $e_A \in Mor(A, A)$ is well-defined: For all object A of A:

$$\mathbf{e}_{\mathbf{A}}(e_A) = e_A = e_{\mathbf{e}_{\mathbf{A}}(A)}$$

For all objects A, B, C of **A**:

$$\forall \mu \in \operatorname{Mor}(A, B), \forall \nu \in \operatorname{Mor}(B, C), \mathbf{e}_{\mathbf{A}}(\nu \mu) = \nu \mu = \mathbf{e}_{\mathbf{A}}(\nu) \mathbf{e}_{\mathbf{A}}(\mu)$$

Hence, (**Obj**, **Mor**) is a category. Quod. Erat. Demonstrandum.

Definition 3.9. (Dual Space of \mathbb{F}^n)

Define the following subset \mathbb{F}_n of $\mathbb{F}^n[x_1,x_2,\cdots,x_n]$ as the dual space of \mathbb{F}^n :

$$\mathbb{F}_n = \left\{ u(x_1, x_2, \cdots, x_n) = \frac{\partial u}{\partial x_1} x_1 + \frac{\partial u}{\partial x_2} x_2 + \cdots + \frac{\partial u}{\partial x_n} x_n : \frac{\partial u}{\partial x_1}, \frac{\partial u}{\partial x_2}, \cdots, \frac{\partial u}{\partial x_n} \in \mathbb{F} \right\}$$

Proposition 3.10. \mathbb{F}_n is a vector space over field \mathbb{F} .

Proof. We may divide our proof into eight parts.

(1) For all $\mathbf{u}_1 \cdot \mathbf{x}, \mathbf{u}_2 \cdot \mathbf{x} \in \mathbb{F}_n$:

$$\mathbf{u}_1 \cdot \mathbf{x} + \mathbf{u}_2 \cdot \mathbf{x} = \mathbf{u}_2 \cdot \mathbf{x} + \mathbf{u}_1 \cdot \mathbf{x}$$

(2) For all $\mathbf{u}_1 \cdot \mathbf{x}, \mathbf{u}_2 \cdot \mathbf{x}, \mathbf{u}_3 \cdot \mathbf{x} \in \mathbb{F}_n$:

$$(\mathbf{u}_1 \cdot \mathbf{x} + \mathbf{u}_2 \cdot \mathbf{x}) + \mathbf{u}_3 \cdot \mathbf{x} = \mathbf{u}_1 \cdot \mathbf{x} + (\mathbf{u}_2 \cdot \mathbf{x} + \mathbf{u}_3 \cdot \mathbf{x})$$

(3) There exists $0 \in \mathbb{F}_n$, such that for all $\mathbf{u} \cdot \mathbf{x} \in \mathbb{F}_n$:

$$0 + \mathbf{u} \cdot \mathbf{x} = \mathbf{u} \cdot \mathbf{x} + 0 = \mathbf{u} \cdot \mathbf{x}$$

(4) For all $\mathbf{u} \cdot \mathbf{x} \in \mathbb{F}_n$, there exists $-\mathbf{u} \cdot \mathbf{x} \in \mathbb{F}_n$, such that:

$$(-\mathbf{u} \cdot \mathbf{x}) + \mathbf{u} \cdot \mathbf{x} = \mathbf{u} \cdot \mathbf{x} + (-\mathbf{u} \cdot \mathbf{x}) = 0$$

(5) For all $\lambda_1, \lambda_2 \in \mathbb{F}$ and $\mathbf{u} \cdot \mathbf{x} \in \mathbb{F}_n$:

$$(\lambda_1\lambda_2)\mathbf{u}\cdot\mathbf{x} = \lambda_1(\lambda_2\mathbf{u}\cdot\mathbf{x})$$

(6) For the unity $1 \in \mathbb{F}$, for all $\mathbf{u} \cdot \mathbf{x} \in \mathbb{F}_n$:

$$1\mathbf{u} \cdot \mathbf{x} = \mathbf{u} \cdot \mathbf{x}$$

(7) For all $\lambda_1, \lambda_2 \in \mathbb{F}$ and $\mathbf{u} \cdot \mathbf{x} \in \mathbb{F}_n$:

$$(\lambda_1 + \lambda_2)\mathbf{u} \cdot \mathbf{x} = \lambda_1 \mathbf{u} \cdot \mathbf{x} + \lambda_2 \mathbf{u} \cdot \mathbf{x}$$

(8) For all $\lambda \in \mathbb{F}$ and $\mathbf{u}_1 \cdot \mathbf{x}, \mathbf{u}_2 \cdot \mathbf{x} \in \mathbb{F}_n$:

$$\lambda(\mathbf{u}_1 \cdot \mathbf{x} + \mathbf{u}_2 \cdot \mathbf{x}) = \lambda \mathbf{u}_1 \cdot \mathbf{x} + \lambda \mathbf{u}_2 \cdot \mathbf{x}$$

Hence, \mathbb{F}_n is a vector space over field \mathbb{F} . Quod. Erat. Demonstrandum.

Proposition 3.11. The polynomials x_1, x_2, \dots, x_n form a basis of \mathbb{F}_n .

Proof. We may divide our proof into two parts.

(1) For all $u(x_1, x_2, \dots, x_n) \in \mathbb{F}_n$, there exists $\frac{\partial u}{\partial x_1}, \frac{\partial u}{\partial x_2}, \dots, \frac{\partial u}{\partial x_n} \in \mathbb{F}$, such that:

$$u(x_1, x_2, \dots, x_n) = \frac{\partial u}{\partial x_1} x_1 + \frac{\partial u}{\partial x_2} x_2 + \dots + \frac{\partial u}{\partial x_n} x_n$$

(2) For all $\frac{\partial u}{\partial x_1}$, $\frac{\partial u}{\partial x_2}$, \cdots , $\frac{\partial u}{\partial x_n} \in \mathbb{F}$:

$$\frac{\partial u}{\partial x_1}x_1 + \frac{\partial u}{\partial x_2}x_2 + \dots + \frac{\partial u}{\partial x_n}x_n = 0 \implies \frac{\partial u}{\partial x_1} = \frac{\partial u}{\partial x_2} = \dots = \frac{\partial u}{\partial x_n} = 0$$

Hence, the polynomials x_1, x_2, \dots, x_n form a basis of \mathbb{F}_n .

Quod. Erat. Demonstrandum.

Proposition 3.12. Define the followings:

- (1) Obj = [All subspace U of \mathbb{F}^n].
- (2) Mor = [All linear mapping from some $U \in \text{Obj}$ to some $V \in \text{Obj}$].
- (3) $Obj' = [All subspace U' of \mathbb{F}_n].$
- (4) $Mor' = [All linear mapping from some <math>U' \in Obj'$ to some $V' \in Obj']$.

The following two functors are well-defined:

- (1) $\mu : (\mathrm{Obj}, \mathrm{Mor}) \to (\mathrm{Obj}', \mathrm{Mor}'), \mathbf{u} \mapsto \mathbf{u} \cdot \mathbf{x}.$
- (2) $\nu : (\mathrm{Obj}', \mathrm{Mor}') \to (\mathrm{Obj}, \mathrm{Mor}), u(\mathbf{x}) \mapsto \nabla u.$

Proof. We may divide our proof into four parts.

(1) For all subspace $U \in \text{Obj}$:

$$\mu(e_U) = \mu(\mathbf{u} \mapsto \mathbf{u}) = \mathbf{u} \cdot \mathbf{x} \mapsto \mathbf{u} \cdot \mathbf{x} = e_{\mu(U)}$$

(2) For all subspace $U' \in \text{Obj}'$:

$$\nu(e_{U'}) = \nu(u(\mathbf{x}) \mapsto u(\mathbf{x})) = \nabla u \mapsto \nabla u = e_{\nu(U')}$$

(3) For all subspaces $U, V, W \in \text{Obj}$:

$$\forall \sigma \in \operatorname{Mor}(U, V), \forall \tau \in \operatorname{Mor}(V, W), \mu(\tau \sigma) = \mu(\mathbf{u} \mapsto \mathbf{w})$$
$$= \mathbf{u} \cdot \mathbf{x} \mapsto \mathbf{w} \cdot \mathbf{x} = \mu(\tau)\mu(\sigma)$$

(4) For all subspaces $U', V', W' \in \text{Obj}'$:

$$\forall \sigma \in \operatorname{Mor}'(U', V'), \forall \tau \in \operatorname{Mor}'(V', W'), \nu(\tau \sigma) = \nu(u(\mathbf{x}) \mapsto w(\mathbf{x}))$$
$$= \nabla u \mapsto \nabla w = \nu(\tau)\nu(\sigma)$$

Hence, the functors μ, ν are well-defined. Quod. Erat. Demonstrandum.

Remark: As $\nu \circ \mu = e_{\text{Mor} \sqcup \text{Obj}}$ and $\mu \circ \nu = e_{\text{Mor}' \sqcup \text{Obj'}}$, $(\text{Obj}, \text{Mor}) \cong (\text{Obj'}, \text{Mor'})$.

Definition 3.13. (Left Action)

Let G be a group, and X be a set.

If a function $*: G \times X \to X$ satisfies the following two axioms:

- (1) For the identity $e \in G$, for all $x \in X$, e * x = x.
- (2) For all $g_1, g_2 \in G$ and $x \in X$, $(g_1g_2) * x = g_1 * (g_2 * x)$.

Then * is a left action of G on X.

Proposition 3.14. Define the followings:

- (1) $Obj = \{G\}.$
- (2) Mor = G.
- (3) $Obj' = \{X\}.$
- (4) Mor' = Perm(X).

The following two statements are logically equivalent:

- $(1) * : G \times X \to X$ is a left action of G on X.
- (2) $\sigma: G \mapsto X, g \mapsto (x \mapsto g * x)$ is a functor.

Proof. By omitting quantifiers, we can prove this statement directly.

* is a left action
$$\iff e * x = x \text{ and } (g_1g_2) * x = g_1 * (g_2 * x)$$

 $\iff \sigma(e_G) = e_X \text{ and } \sigma(g_1g_2) = \sigma(g_1)\sigma(g_2) \iff \sigma \text{ is a functor}$

Quod. Erat. Demonstrandum.

4 The Fundamental Group

4.1 The Fundamental Groupoid

To describe the set of all paths, we define groupoid.

Definition 4.1. (Groupoid)

Let (Obj, Mor) be a category.

(Obj, Mor) is a groupoid if for all objects $A, B \in \text{Obj}$:

$$\forall \sigma \in \operatorname{Mor}(A, B), \exists \tau \in \operatorname{Mor}(B, A), \tau \circ \sigma = e_A \text{ and } \sigma \circ \tau = e_B$$

Definition 4.2. (Concatenation)

Let X be a topological space, x_0, x_1, \dots, x_n be a sequence of points, $0 = c_0 < c_1 < \dots < c_n = 1$ be a partition of [0, 1],

and $\gamma_0, \gamma_1, \cdots, \gamma_{n-1} : [0,1] \to X$ be a sequence of paths satisfying:

$$x_0 = \gamma_0(0), \gamma_0(1) = x_1 = \gamma_1(0), \dots, \gamma_{n-1}(1) = x_n$$

Define the following path $\gamma = \gamma_0 \star_{c_1} \gamma_1 \star_{c_2} \cdots \star_{c_{n-1}} \gamma_{n-1} : [0,1] \to X$ as the concatenation of $\gamma_0, \gamma_1, \cdots, \gamma_{n-1}$ at c_0, c_1, \cdots, c_n :

$$\gamma(t) = \begin{cases} \gamma_0(\frac{t-c_0}{c_1-c_0}) & \text{if} \quad c_0 \le t \le c_1; \\ \gamma_1(\frac{t-c_1}{c_2-c_1}) & \text{if} \quad c_1 \le t \le c_2; \\ \vdots & & \vdots \\ \gamma_{n-1}(\frac{t-c_{n-1}}{c_n-c_{n-1}}) & \text{if} \quad c_{n-1} \le t \le c_n; \end{cases}$$

Remark: The continuity of γ follows from the gluing lemma.

Definition 4.3. (Path Homotopy)

Let X be a topological space, and $\gamma, \gamma' : [0, 1] \to X$ be two paths. If $\gamma \sim \gamma'$ rel $\{0, 1\}$, then $\gamma \approx \gamma'$, i.e., the path γ is homotopic to the path γ' .

Remark: From now on, the notation $[\gamma]$ means the path homotopy class of γ .

Definition 4.4. (The Fundamental Groupoid)

Let X be a topological space. Define the followings:

- (1) Obj = X.
- (2) Mor = [All path homotopy class $[\gamma_0]$].

Define $\pi_1(X) = (\text{Obj}, \text{Mor})$ as the fundamental groupoid of X.

Proposition 4.5. $\pi_1(X)$ is a groupoid.

Proof. We may divide our proof into five parts.

(1) For all points $x_0, x_1 \in \text{Obj}$, there exists a unique collection of path homotopy classes:

$$\operatorname{Mor}(x_0, x_1) = [\operatorname{All path homotopy class} [\![\gamma_0]\!] \text{ from } x_0 \text{ to } x_1] \subseteq \operatorname{Mor}$$

(2) For all points $x_0, x_1, x_2 \in \text{Obj}$, there exists a unique binary operation:

$$\star : \operatorname{Mor}(x_0, x_1) \times \operatorname{Mor}(x_1, x_2) \to \operatorname{Mor}(x_0, x_2), \llbracket \gamma_0 \rrbracket \star \llbracket \gamma_1 \rrbracket = \llbracket \gamma_0 \star_c \gamma_1 \rrbracket$$

The following argument suggests that $[\![\gamma_0]\!]\star[\![\gamma_1]\!]\in\operatorname{Mor}(x_0,x_2)$ is well-defined:

$$[\![\gamma_0]\!] = [\![\gamma_0'\!]\!] \text{ and } [\![\gamma_1]\!] = [\![\gamma_1'\!]\!] \implies [\![\gamma_0]\!] \star [\![\gamma_1]\!] = [\![\gamma_0 \star_c \gamma_1]\!] = [\![\gamma_0'\!] \star_{c'} \gamma_1'\!] = [\![\gamma_0'\!]\!] \star [\![\gamma_1'\!]\!]$$

(3) For all points $x_0, x_1, x_2, x_3 \in \text{Obj}$:

$$\forall [\![\gamma_0]\!] \in Mor(x_0, x_1), \forall [\![\gamma_1]\!] \in Mor(x_1, x_2), \forall [\![\gamma_2]\!] \in Mor(x_2, x_3)$$

(4) For all point $x_0 \in \text{Obj}$:

$$\begin{split} \exists \llbracket e_{x_0} : t \mapsto x_0 \rrbracket \in \operatorname{Mor}(x_0, x_0), \quad \forall x_1 \in \operatorname{Obj}, \quad \forall \llbracket \sigma \rrbracket \in \operatorname{Mor}(x_0, x_1), \quad \llbracket e_{x_0} \rrbracket \star \llbracket \sigma \rrbracket = \llbracket \sigma \rrbracket; \\ \forall x_1 \in \operatorname{Obj}, \quad \forall \llbracket \tau \rrbracket \in \operatorname{Mor}(x_1, x_0), \quad \llbracket \tau \rrbracket \star \llbracket e_{x_0} \rrbracket = \llbracket \tau \rrbracket; \end{split}$$

(5) For all points $x_0, x_1 \in \text{Obj}$:

$$\forall \llbracket \sigma \rrbracket \in \operatorname{Mor}(x_0, x_1), \exists \llbracket \tau : t \mapsto \sigma(1 - t) \rrbracket \in \operatorname{Mor}(x_1, x_0)$$

$$\llbracket \sigma \rrbracket \star \llbracket \tau \rrbracket = \llbracket e_{x_0} \rrbracket \text{ and } \llbracket \tau \rrbracket \star \llbracket \sigma \rrbracket = \llbracket e_{x_1} \rrbracket$$

Hence, (Obj, Mor) is a groupoid. Quod. Erat. Demonstrandum.

Proposition 4.6. Let (Obj, Mor) be a groupoid.

For all $A \in \text{Obj}$, Mor(A, A) is a group.

Proof. We may divide our proof into four parts.

- (1) For all $\sigma, \tau \in \text{Mor}(A, A)$, there exists a unique $\tau \circ \sigma \in \text{Mor}(A, A)$.
- (2) For all $\mu, \nu, \sigma \in \text{Mor}(A, A)$:

$$\sigma \circ (\nu \circ \mu) = (\sigma \circ \nu) \circ \mu$$

(3) There exists $e_A \in \text{Mor}(A, A)$, such that for all $\sigma \in \text{Mor}(A, A)$:

$$\sigma \circ e_A = e_A \circ \sigma = \sigma$$

(4) For all $\sigma \in \text{Mor}(A, A)$, there exists $\tau \in \text{Mor}(A, A)$, such that:

$$\sigma \circ \tau = \tau \circ \sigma = e_A$$

Hence, Mor(A, A) is a group. Quod. Erat. Demonstrandum.

4.2 The Fundamental Functor

The fundamental groupoid $\pi_1(X)$ is an additional algebraic structure that "grows from the topological space X", just like a flower blossoms in a lush field of greenery.

Definition 4.7. (The Fundamental Functor)

Define the followings:

- (1) $\mathbf{Obj} = [All \text{ topological space } X].$
- (2) $\mathbf{Mor} = [\text{All continuous map } \sigma].$
- (3) $\mathbf{Obj'} = [\text{All groupoid } X'].$
- (4) $\mathbf{Mor}' = [\text{All groupoid homomorphism } \sigma'].$

Define the fundamental functor π_1 as the functor that:

- (1) Sends every topological space X
- to the fundamental groupoid $X' = \pi_1(X)$.
- (2) Sends every continuous function σ
- to the groupoid homomorphism $\sigma': x \mapsto \sigma(x), [\![\gamma]\!] \mapsto [\![\sigma \circ \gamma]\!].$

Proposition 4.8. π_1 is a functor.

Proof. We may divide our proof into two parts.

(1) For all topological space $X \in \mathbf{Obj}$:

$$\pi_1(e_X) = [\![\gamma]\!] \mapsto [\![e_X \circ \gamma]\!] = e_{\pi_1(X)}$$

(2) For all topological spaces $X, Y, Z \in \mathbf{Obj}$:

$$\forall \mu \in \mathbf{Mor}(X,Y), \forall \nu \in \mathbf{Mor}(Y,Z), \pi_1(\nu \circ \mu) = x \mapsto \nu \circ \mu(x), \llbracket \gamma \rrbracket \mapsto \llbracket \nu \circ \mu \circ \gamma \rrbracket$$
$$= \pi_1(\nu) \circ \pi_1(\mu)$$

Hence, π_1 is a functor. Quod. Erat. Demonstrandum.

Remark: It follows directly that $X \cong Y \implies \pi_1(X) \cong \pi_1(Y)$.

To make things even more interesting, a weakened hypothesis yields a similar result!

Proposition 4.9. Define the followings:

- (1) $\mathbf{Obj} = [\text{All topological space } X \text{ with base point } x_0].$
- (2) $\mathbf{Mor} = [\text{All base point preserving continuous map } \sigma].$
- (3) $\mathbf{Obj'} = [\text{All group } X'].$
- (4) $\mathbf{Mor'} = [\text{All group homomorphism } \sigma'].$

For all $(X, x_0), (Y, y_0) \in \mathbf{Obj}$:

$$(X, x_0) \sim (Y, y_0) \implies \pi_1(X, x_0) \cong \pi_1(Y, y_0)$$

Proof. It suffices to prove that for all base point preserving homotopic continuous functions $f \sim g$ from (X, x_0) to (Y, y_0) , the group homomorphisms f', g' are equal. For all group element $\llbracket \sigma \rrbracket \in \pi_1(X, x_0)$:

$$f'(\llbracket \sigma \rrbracket) = \llbracket f \circ \sigma \rrbracket = \llbracket g \circ \sigma \rrbracket = g'(\llbracket \sigma \rrbracket)$$

Hence, f' = g'.

Now, if there exist two base point preserving continuous functions $f: X \to Y, g: Y \to X$, such that $g \circ f \sim e_X$ and $f \circ g \sim e_Y$, then the group homomorphisms f', g' satisfy $g' \circ f' = e_{X'}$ and $f' \circ g' = e_{Y'}$, so f', g' are isomorphisms, and $\pi_1(X, x_0) \cong \pi_1(Y, y_0)$. Quod. Erat. Demonstrandum.

4.3 Construction of the Fundamental Groupoid

Proposition 4.10. Let $(X_{\lambda})_{\lambda \in I}$ be an indexed family of topological spaces, and $X = \coprod_{\lambda \in I} X_{\lambda}$ be the coproduct space of $(X_{\lambda})_{\lambda \in I}$.

$$\pi_1(X) \cong \coprod_{\lambda \in I} \pi_1(X_\lambda)$$

Proof. Define σ from $\coprod_{\lambda \in I} \pi_1(X_\lambda)$ to $\pi_1(X)$ as a groupoid homomorphism that:

- (1) Sends every object (x_0, λ) to the object (x_0, λ) .
- (2) Sends every morphism $[\![t \mapsto \gamma(t)]\!], \lambda$ to the morphism $[\![t \mapsto (\gamma(t), \lambda)]\!].$

We need to prove that σ is indeed a bijective groupoid homomorphism.

(1) For all object (x_0, λ) :

$$\sigma(\llbracket e_{x_0} \rrbracket, \lambda) = \sigma(\llbracket t \mapsto x_0 \rrbracket, \lambda) = \llbracket t \mapsto (x_0, \lambda) \rrbracket = \llbracket e_{(x_0, \lambda)} \rrbracket$$

(2) For all objects $(x_0, \lambda), (x_1, \lambda), (x_2, \lambda)$ with the same subscript λ :

$$\forall [\![\gamma_0]\!] \in Mor(x_0, x_1), \forall [\![\gamma_1]\!] \in Mor(x_1, x_2)$$

$$\sigma(\llbracket \gamma_0 \rrbracket \star \llbracket \gamma_1 \rrbracket, \lambda) = \sigma(\llbracket t \mapsto \gamma_0 \star_c \gamma_1(t) \rrbracket, \lambda) = \llbracket t \mapsto (\gamma_0 \star_c \gamma_1(t), \lambda) \rrbracket$$
$$= \llbracket t \mapsto (\gamma_0(t), \lambda) \rrbracket \star \llbracket t \mapsto (\gamma_1(t), \lambda) \rrbracket = \sigma(\llbracket \gamma_0 \rrbracket, \lambda) \star \sigma(\llbracket \gamma_1 \rrbracket, \lambda)$$

(3) For all objects $(x_0, \lambda), (x_1, \lambda), (x'_0, \lambda'), (x'_1, \lambda')$ with subscripts λ, λ' :

$$\forall \llbracket \gamma \rrbracket \in \operatorname{Mor}(x_0, x_1), \forall \llbracket \gamma' \rrbracket \in \operatorname{Mor}(x_0', x_1')$$

$$\sigma(\llbracket \gamma \rrbracket, \lambda) = \sigma(\llbracket \gamma' \rrbracket, \lambda') \implies \llbracket t \mapsto (\gamma(t), \lambda) \rrbracket = \llbracket t \mapsto (\gamma'(t), \lambda') \rrbracket$$
$$\implies (\llbracket \gamma \rrbracket, \lambda) = (\llbracket \gamma' \rrbracket, \lambda')$$

(4) As the components of coproduct space are pairwisely not path connected, every morphism of $\pi_1(X)$ is in the form $[t \mapsto (\gamma(t), \lambda)]$.

Hence, σ is bijective groupoid homomorphism, σ is a groupoid isomorphism, $\pi_1(X) \cong \coprod_{\lambda \in I} \pi_1(X_\lambda)$. Quod. Erat. Demonstrandum.

Proposition 4.11. Let $(X_{\lambda})_{{\lambda}\in I}$ be an indexed family of topological spaces, and $X=\prod_{{\lambda}\in I}X_{\lambda}$ be the product space of $(X_{\lambda})_{{\lambda}\in I}$.

$$\pi_1(X) \cong \prod_{\lambda \in I} \pi_1(X_\lambda)$$

Proof. Define σ from $\pi_1(X)$ to $\prod_{\lambda \in I} \pi_1(X_\lambda)$ as a groupoid homomorphism that:

(1) Sends every object x_0 to the object x_0 .

- (2) Sends every morphism $\llbracket t \mapsto (\gamma_{\lambda}(t))_{\lambda \in I} \rrbracket$ to the morphism $(\llbracket t \mapsto \gamma_{\lambda}(t) \rrbracket)_{\lambda \in I}$. We need to prove that σ is indeed a bijective groupoid homomorphism.
- (1) For all object x_0 :

$$\sigma(\llbracket e_{x_0} \rrbracket) = \sigma(\llbracket t \mapsto (x_{0,\lambda})_{\lambda \in I} \rrbracket) = (\llbracket t \mapsto x_{0,\lambda} \rrbracket)_{\lambda \in I} = (e_{x_{0,\lambda}})_{\lambda \in I}$$

(2) For all objects x_0, x_1, x_2 :

$$\forall \llbracket \gamma_0 \rrbracket \in \operatorname{Mor}(x_0, x_1), \forall \llbracket \gamma_1 \rrbracket \in \operatorname{Mor}(x_1, x_2)$$

$$\sigma(\llbracket \gamma_0 \rrbracket \star \llbracket \gamma_1 \rrbracket) = \sigma(\llbracket t \mapsto ((\gamma_0 \star_c \gamma_1)_{\lambda}(t))_{\lambda \in I} \rrbracket) = (\llbracket t \mapsto (\gamma_0 \star_c \gamma_1)_{\lambda}(t) \rrbracket)_{\lambda \in I}$$
$$= (\llbracket t \mapsto \gamma_{1,\lambda}(t) \rrbracket)_{\lambda \in I} \star (\llbracket t \mapsto \gamma_{2,\lambda}(t) \rrbracket)_{\lambda} = \sigma(\llbracket \gamma_0 \rrbracket) \star \sigma(\llbracket \gamma_1 \rrbracket)$$

(3) For all objects x_0, x_1, x'_0, x'_1 :

$$\forall \llbracket \gamma \rrbracket \in \operatorname{Mor}(x_0, x_1), \forall \llbracket \gamma' \rrbracket \in \operatorname{Mor}(x_0', x_1')$$

$$\sigma(\llbracket \gamma_0 \rrbracket) = \sigma(\llbracket \gamma_1 \rrbracket) \implies (\llbracket t \mapsto \gamma_{0,\lambda}(t) \rrbracket)_{\lambda \in I} = (\llbracket t \mapsto \gamma_{1,\lambda}(t) \rrbracket)_{\lambda \in I}$$
$$\implies \llbracket \gamma_0 \rrbracket = \llbracket \gamma_1 \rrbracket$$

(4) By the definition of Cartesian product, every morphism of $\pi_1(X)$ is in the form $[t \mapsto \gamma_{0,\lambda}(t)]$. Hence, σ is bijective groupoid homomorphism, σ is a groupoid isomorphism, $\pi_1(X) \cong \prod_{\lambda \in I} \pi_1(\lambda)$. Quod. Erat. Demonstrandum.

Remark: It follows that $\pi_1(\mathbb{S} \times \mathbb{S}) = \pi_1(\mathbb{S}) \times \pi_1(\mathbb{S})$.

References

 $[1]\,$ H. Ren, "Template for math notes," 2021.