## Notes on Lambda Calculus

## Syntax

$$e : := x$$
  
 $\lambda x. e$ 

e, ez

Variable

**Abstraction** 

**Application** 

A variable x

$$\lambda x. \lambda y. x$$

A function that returns a function that returns the argument of the outer function.

$$(\lambda x. \lambda y. x) a b$$

Apply a to the outer function, then b to the inner function.

Convention: 
$$\lambda x$$
,  $\lambda y$ ,  $\times$  is interpreted as

$$\lambda x.(\lambda y. x)$$

## Reducing Lambda Calculus Expressions

There is only one "operation" in lambda calculus: apply a function to an argument. We do this by substituting the argument into the function body.

$$(\lambda x. x) \ge \longrightarrow \Xi$$

$$(\lambda x. \lambda y. x) a \longrightarrow (\lambda y. a) b \longrightarrow a$$

There are two subtleties when substituting, mainly due to "shadowing" variables. First is using a shadowed variable inside an abstraction:

$$(\lambda x, (\lambda x, x) \times) y$$
Variables refer to the "closest" binding,
$$\rightarrow (\lambda x, x) y$$

We can determine if we're shadowing by checking the set of "free variables", i.e. unbound variables

$$FV(X) = \{X\}$$
 X by itself is not bound.  
 $FV(\lambda x. e) = FV(e) - \{X\}$  X is bound here  
 $FV(e, e_1) = FV(e, v) + V(e_2)$ 

We should only substitute into a lambda if the lambda's variable is different from the variable we're substituting, i.e. if  $\chi \neq \gamma$  when  $s \wedge b + i + \lambda + i + \gamma + i +$ 



## **Exercises**

Evaluate the following until you cannot make any more reductions (or try to).

- 1.  $(\lambda_x, \lambda_y, y)$   $(\lambda_x, x)$   $(\lambda_y, y)$
- 2.  $(\lambda_x, \lambda_y, \chi)$   $(\lambda_x, \chi)$   $(\lambda_y, \gamma)$
- 3. (\(\chi\_X, \times \times) (\(\chi\_X, \times \times)\) (\(\chi\_X, \times \times) (\chi\_X, \times \times)\)
- 4.  $(\lambda x. f(x x)) (\lambda x. f(x x))$
- 5.  $(\lambda_n, \lambda_f, \lambda_x, f(n_f \times))$   $(\lambda_f, \lambda_x, \times)$   $(\lambda_x, \times \times 2)$  1

Try reducing inside the outer lambda.
What's interesting about this version?

Solution to Exercises Note: this is by reducing outer expressions 1.  $(\lambda \times \lambda \times )$   $(\lambda \times \times )$   $(\lambda \times \times )$ Stepl: Reduce the left-most application. Substitute x in (2 y, y) with (2x,x)  $\rightarrow$   $(\lambda_y, y)$   $(\lambda_y, y, y)$ Step 2: Reduce again. Substitute y in y with (2y, y y) λ γ. γ γ Step 1: Reduce the left-most application Substitute x in  $(\lambda y. x)$  with  $(\lambda x. x)$  $\rightarrow (\lambda_{y}, (\lambda_{x} \times)) (\lambda_{y}, y y)$ Step 2: Reduce the application. Substitute y in (2x.x) with (2y.yy)  $\rightarrow \lambda x. x$ 

3.  $(\lambda_X, \chi_X)$   $(\lambda_X, \chi_X)$ Step 1: Reduce the application. Substitute x in (x x) with (2x. xx)  $\rightarrow$   $(\lambda x. \times x) (\lambda x. \times x)$ Note that we got the same thing back. It's not possible to reduce this fully. We call this expression IZ, the diverging operator.  $(\lambda x. f(x x)) (\lambda x. f(x x))$ Step 1: Reduce the application Substitute x in f(xx) with (2xf(xx))  $\rightarrow f((\lambda x. f(x \times x)) (\lambda x. f(x \times x)))$ Note that the argument to the outer f is what we started with! If we try to reduce further, we end up with a chain of f(f(f(---))) This is called the fixed-point combinator or the Y combinator.

