中国科学技术大学数学科学学院 2024~2025学年秋季学期期中考试试卷

课程名称	名称 数学分析 (B3)		课程编	晶号	MATH1008		
考试时间2024 年 11 月 5 日 9:45-11:45			考试形	/式	闭卷		
姓名 学号					学 院 _		
题号	_	_	•		三	总分	
得分							

- 一、【30 分】如下三小问每问 10 分.
 - (1) 叙述实数列的极限点与 ℝ 的子集的聚点的定义.

(2) 设 a 是实数列 $\{x_n\}$ 的极限点,设 $\{x_n\}$ 有子列 $\{y_n\}$ 收敛于 a,并且对于任意 $n \neq m$ 成立 $y_n \neq y_m$. 证明: a 是数集 $\{x_1, x_2, \cdots\}$ 的聚点.

(3) 设 $\{x_n\}$ 是一个各项两两不同的有界实数列,且 $\lim_{n\to\infty} (x_{n+1} - x_n) = 0$. 证明: $\{x_n\}$ 的极限点集合是一个闭区间,规定独点集合为退化闭区间.

二、【30 分】设 f 是有界闭区间 [a, b] 上不恒为零的实值连续函数,设 f(a) = f(b) = 0, 且 $f^{-1}(0) = \{x \in [a, b] : f(x) = 0\}$ 为可数无限集合.如下四小问独立评分,且可用前面小问的结论.

(1) 【5 分】证明: 集合 $B = \{x \in [a, b] : f(x) \neq 0\}$ 是开集.

(2) 【10 分】证明: B 可以表为一列两两不交的非空开区间之并 $B=\bigcup_{n=1}^{\infty}(a_n,\,b_n)$,且 $\lim_{n\to\infty}(b_n-a_n)=0.$

(3)【5 分】证明: 正数列 $\{(b_n-a_n)\}$ 里有最大项, 将其记作 c.

(4) 【10 分】证明: 对于任意 $\lambda \in (0, c)$, 方程 $f(x) = f(x + \lambda)$ 在 [a, b] 里有解.

- 三、【40 分】设 $\gamma \in \mathbb{R}$ 是无理数,设 0 < a < b < 1.设 $\chi_{(a,b)}(x)$ 为开区间 (a,b) 的特征函数,即,它在 (a,b) 上取值 1,在 $[0,1)\setminus (a,b)$ 上取值 0;将之延拓为周期为 1 的函数,且仍记作 $\chi_{(a,b)}(x)$.如下四小问独立评分,每小问 10 分,解答时可用前面小问结论.
 - (1) 回忆欧拉公式: 对于任意 $x \in \mathbb{R}$, 成立 $e^{ix} = \cos x + i \sin x$, 其中 $i = \sqrt{-1}$. 证明: 对于任意非零整数 k, 成立

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} e^{2\pi i k \cdot n\gamma} = 0.$$

(2) 证明: 对于任意 $\epsilon>0$, 存在两个连续非负周期为 1 的函数 $f_\epsilon^+, f_\epsilon^-$, 使得 $f_\epsilon^- \le \chi_{(a,b)} \le f_\epsilon^+ \ \text{以及}$

$$b - a - 2\epsilon \le \int_0^1 f_{\epsilon}^-(x) dx, \quad \int_0^1 f_{\epsilon}^+(x) dx \le b - a + 2\epsilon.$$

(3) 证明: 对于任意周期为 1 的连续函数 f, 成立

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} f(n\gamma) = \int_{0}^{1} f(x) dx.$$

提示 利用 Fejér 定理.

(4) 证明

$$\lim_{N\to\infty}\frac{\sharp\{1\leq n\leq N:\langle n\gamma\rangle\in(a,\,b)\}}{N}=b-a.$$

这里 $\langle \gamma \rangle = \gamma - [\gamma]$ 是 γ 的小数部分, $\sharp A$ 表示有限集合 A 的元素个数.

提示 等价于证明

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \chi_{(a,b)}(n\gamma) = \int_{0}^{1} \chi_{(a,b)}(x) dx.$$

24.11. B3 期中考试参考解答与评分标准

- **1.** (i-ii) 略 (iii) 设数列 $\{x_n\}$ 的上极限为 b, 下极限为 a. 如果 a = b, 那么数列收敛, 自明. (2 分) 以下设 a < b, 并用反证法. 设存在 $c \in (a, b)$ 不是该数列的极限点. 那么存在 $\epsilon > 0$ 使得:
 - $[c \epsilon, c + \epsilon] \subset (a, b);$
 - 当 n 充分大时,数列 $\{x_n\}$ 中仅有限多项落在区间 $(c-\epsilon, c+\epsilon)$ 里,不妨设数列的每一项都不在该区间里;
 - 当 n 充分大时, $|x_n x_{n+1}| < \epsilon$. (4 分)

回忆数列的上极限为 $b > c - \epsilon$, 下极限为 $a < c - \epsilon$. 对于任意 n, 要么 $x_n \le c - \epsilon$, 要么 $x_n \le c - \epsilon$, 要么 $x_n \ge c + \epsilon$; 并且这两个条件给出下标集 \mathbb{N} 的由两个无限子集构成的分拆 (2分). 于是可取严格单调增的正整数列 $\{n_k\}$, 使得对于任意 k, 成立 $x_{n_k} \le c - \epsilon$ 与 $x_{n_k+1} \ge c + \epsilon$. 于是 $|x_{n_k} - x_{n_k+1}| \ge 2\epsilon$, 矛盾 (2分).

- **2.** (i) 由 f(a) = f(b) = 0 得 $B \subset (a, b)(1 分)$. 记 f 在 (a, b) 上的限制函数为 g, 则 g 连续 (2 分). B 等于开集 $\mathbb{R}\setminus\{0\}$ 在 g 下的原像, 所以 B 是开集 (2 分).
- (ii) 由开集结构定理, B 可以写成至多可数个两两不交的开区间之并 (3 分).

以下用反证法证明 B 一定是可数个两两不交的开区间之并: $B = \bigcup_{n=1}^{\infty} (a_n, b_n)$. 假设 B 是有限个两两不交的开区间的并, 不妨设 $B = (a_1, b_1) \cup (a_2, b_2)$, 其中 $a \le a_1 < b_1 \le a_2 < b_2 \le b$. 如果 $b_1 < a_2$, 那么不可数集合 $[b_1, a_2]$ 包含于 $f^{-1}(0)$, 矛盾. 类似可得, $a = a_1$ 与 $b_2 = b$, 那么 $f^{-1}(0)$ 为有限集合 $\{a, b_1, b\}$, 亦矛盾. $(4 \ \mathcal{G})$

因 B 包含于 (a, b), 得 $\sum_{n=1}^{\infty} (b_n - a_n) \leq b - a$, 从而 $b_n - a_n \to 0(3 \text{ 分})$.

- (iii) 约化为证明"收敛于零的正数列 $\{c_n\}$ 有最大项". 事实上, 存在 N, 对于任意 n > N, 成立 $c_n < c_1(3 \, \mathcal{G})$. 那么数列 $\{c_n\}$ 里的最大项等于 $\max(c_1, \ldots, c_N)(2 \, \mathcal{G})$.
- (iv) 不妨设 $c = b_1 a_1$ 是数列 $\{b_n a_n\}$ 的最大项. 由 B 的定义, $f(a_1) = f(b_1) = 0$, 且 f 在开区间 (a_1, b_1) 上恒正或者恒负, 不妨设为恒正 (4 分). 任取 $\lambda \in (0, c)$, 易见 $f(a_1) f(a_1 + \lambda) = -f(a_1 + \lambda) < 0$, $f(b_1 \lambda) f(b_1) = f(b_1 \lambda) > 0(3 分)$. 利用介值定理, 存在 $x \in (a_1, b_1 \lambda)$, 使得 $f(x) f(x + \lambda) = 0$ (3 分).
- 3. 此题由 Weyl 等分布原理改编而成.
- (i) 由 γ 为无理数, 对于任意非零整数 k, 都有 $1 e^{2\pi i k \gamma} \neq 0$ (5 分). 再由等比级数求和公式得证 (5 分).

(ii) 构造过程如下图所示, 酌情给分.

(iii) 称集合 $\{e^{2\pi ikx}: k \in \mathbb{Z}\}$ 中函数的有限线性组合为三角多项式. 任给 $\epsilon > 0$, 由 Fejér 定理, 存在三角多项式 P(x), 使得对于任意 $x \in \mathbb{R}$ 成立 $|f(x) - P(x)| < \epsilon/3$ (4分). 经计算知, 恒等式对三角多项式成立; 当 N 充分大时, 有

$$\left| \frac{1}{N} \sum_{n=1}^{N} P(n\gamma) - \int_{0}^{1} P(x) dx \right| < \frac{\epsilon}{3} \quad (3 \%).$$

最后,由三角不等式得

$$\left| \frac{1}{N} \sum_{n=1}^{N} f(n\gamma) - \int_{0}^{1} f(x) \, dx \right| \leq \frac{1}{N} \sum_{n=1}^{N} |f(n\gamma) - P(n\gamma)| + \left| \frac{1}{N} \sum_{n=1}^{N} P(n\gamma) - \int_{0}^{1} P(x) \, dx \right| + \left| \frac{1}{N} \sum_{n=1}^{N} P(n\gamma) - \int_{0}^{1} P(x) \, dx \right| + \int_{0}^{1} |P(x) - f(x)| \, dx < \epsilon,$$

(3分)

(iv) 记
$$S_N = \frac{1}{N} \sum_{n=1}^{N} \chi_{(a.b)}(n\gamma)$$
. 任给 $\epsilon > 0$, 由 (2) 得

$$\frac{1}{N} \sum_{n=1}^{N} f_{\epsilon}^{-}(n\gamma) \le S_N \le \frac{1}{N} \sum_{n=1}^{N} f_{\epsilon}^{+}(n\gamma) \quad (3 \ \%).$$

利用 (2-3) 得 $b-a-2\epsilon \leq \liminf_{N\to\infty} S_N$, $\limsup_{N\to\infty} S_N \leq b-a+2\epsilon(5 分)$. 由 $\epsilon>0$ 的任意性, 得 $\lim_{N\to\infty} S_N = b-a(2 分)$.