DOE as a Tool within the Development Process

Minnesota Quality Conference Perry Parendo Medtronic Energy and Component Center University of St. Thomas

Agenda

- **■ DOE** definition and tool description
- **■** Development process and how DOE fits in
- **■** How to get started using **DOE**

DOE Definition and Tool Description

It is only a tool – and not always the right choice

DOE Definitions

- DOE organizes the collection of development test data to determine the most statistically confident relationship between inputs and outputs.
 - Complexity of the relationship is chosen by the user.
- DOE is a tool to assist in the process of understanding a system

Provides understanding

- equation
- priority
- area of interest

Process Development

- Goal: Reduce rework, amount of coating used, amount of coating wasted and cost of coating process
- Response: Achieve vendor recommended thickness and customer required visual quality
- Approach: Use DOE in lab environment to determine air pressure and flow rate settings while a new production line is being set up
- Result: Achieved a significant reduction in cost and defined settings quickly for a high quality finish

Office Process Development

- Goal: Accelerate time to market
- Response: Approval time of engineering changes
- Approach: Use DOE to assess factors influencing sign-off. Submitter experience, approver experience, and change complexity are example variables.
- Result: Identified a training issue which would reduce approval iterations and improve sign-off by an average of several weeks.

Product Development

- Goal: Evaluate battery design options
- Response: Battery size and longevity
- Approach: Use DOE with a simulation to assess design and modeling factors influencing performance.
- Result: Understood sensitivities such that detailed design decisions could be made quickly and with certainty.

St. Thomas Projects

- Welding, web processes, heat treat, stamping
- Molding plastic and rubber, foaming (gaskets, diaphragms and piece parts)
- Adhesive in assembly, epoxy curative reaction, powder coating colorization, adhesive delivery
- Plating, vapor deposition, cleaning, soldering, polishing
- Laser cutting, drilling and surface grinding equipment
- Medical fluid sampling equipment
- **■** Electronics, composites, food
- Seal repeatability, product durability/ reliability
- Office process flow, process waste, mfg sim.
- Analysis of hydraulic, thermal & molding

90 of these projects saved an estimated \$4,184,000 thru Spring 2001.

Medical Development DOE Application Ideas

- **■** Performance modeling
- **■** Environmental Exposure
- Process validations
- **■** Seal integrity
- **■** Adhesive connections
- **■** Electrical isolation
- **■** Polishing operations

Can be used anywhere but not everywhere

Tools

■ Factorial Designs

- Full and Fractional
- Taguchi maximum assumptions
- Advanced Designs (Response Surface Methods)
 - 3 and 5 level
 - Optimization
- **■** Related Statistical Tools
 - Statistical Process Control (SPC)
 - Probabilistic Failure Assessment (PFA)

Organizing the collection of data to determine the most statistically confident relationship

Tool Comparison / Typical Equations

OFAT or Taguchi typical output (main effects)

$$y = z + a*A + b*B + c*C$$

More information (fine tuning) is achieved as progress to more rigorous tools

Factorial typical output (main and interactions)

$$y = z + a*A + b*B + c*C + d*A*B + e*A*C + f*B*C + g*A*B*C$$

Response Surface typical output (main, interactions, quadratic)

$$y = z + a*A + b*B + c*C + d[A]^{2} + e[B]^{2} + f[C]^{2} + g[AB] + h[AC] + i[BC] + j[ABC] + p[A]^{3} + q[B]^{3} + r[C]^{3} + s[A^{2}B] + t[AB^{2}] + u[A^{2}C] + v[AC^{2}] + w[B^{2}C] + x[BC^{2}]$$

RSM, Postage Stamp

DOE and the Development Process

"DOE – It's not just for hardware anymore..."

Types of Testing in Development Process

- Thought Experiments * (concepting stage simulation and trade studies)
- Development * (subsystem, components, validation)
- Verification (composite system or subsystem, hypothesis testing)
- Qualification (composite system or subsystem, clinicals)
- Problem Resolution * (manufacturing, and post-implementation field issues)

^{*} These are the areas where DOE is used

System Life Cycle "V" Model

Perry K. Parendo July 2001

Development Stages

Development Process Benefits

- Schedule acceleration
- Can consider more variables
- Optimize variable settings by analysis versus prototypes
- Organized and efficient test approach to characterize actual performance of prototype hardware, production hardware and processes
- **■** Design flexible prototypes for test to reduce cost
- Goes beyond factors-of-safety approach on critical components to reduce weight

DOE Process

- **■** Define goal need
- **■** Define response(s) to measure progress to goal
- List all variables and down select to "key" variables using engineering judgment
- Select appropriate design matrix approach *
- Select safe/consistent test levels for variables
- **■** Address tradeoffs between responses
- **■** Perform test
- Analyze results *
- **■** Discuss next step

* Where DOE software helps

Keys for Development Application

- Ingenuity for Defining the Goal appropriately
- Defining and applying appropriate measurement techniques
- Reducing the complexity down to the critical few factors for DOE evaluation
- Choosing an appropriate approach
- **■** Being rigorous enough in testing to be "in-control"
- Determining "when is it optimized enough?"
- Selling to the "old school"
- Obtain quick, confident, and more improvement

Getting Started with DOE

"This person sitting beside me could probably do this..."

Chaos Chart

Too much time spent on this side

Ideal Brink of Meets Chaos Requirements **Threshold** Fails to meet Chaos Requirements State **DOE/SPC** No **Understanding Understanding**

Understand Variable Relationships

Perry K. ParendoJuly 2001

How to Start Applying DOE

- Receive training in tool and process
- Select small low risk project with a small team now
- Get wins under your belt
 - Document savings
- Expect learning, mistakes or delays as you get started
 - However, benefits can be obtained on the first project.
- Use these projects to build on and to gain manager approval for future work and larger impact projects/tests

Current Contact Information

- Perry Parendo
- 651-230-3861
- Perry@PerrysSolutions.com
- www.PerrysSolutions.com

