DILLAN MARROQUIN MATH 440.1001 SCRIBING WEEK 3

Due. 15 February 2021

MATH 440 Problems

Review of Last Lecture

The closed subsets in (X, \mathcal{T}_{cof}) are X and all finite subsets of X. If X is a finite set, then $\mathcal{T}_{cof} = \mathcal{T}_{disc}$.

Lecture 7

Definition (7.1). Let (X, \mathcal{T}) be a topological space and let $A \subseteq X$ be a subset. Let $\mathcal{T}_A := \{U \cap A | U \in \mathcal{T}\}$. Then (A, \mathcal{T}_A) is a topological space and \mathcal{T} is called the **subspace topology** on A.

Definition 7.1 gives many interesting examples of spaces:

- 1. Graph $(f : \mathbb{R} \to \mathbb{R}) \subseteq \mathbb{R}^2$, i.e. the Euclidean Topology.
- 2. $S^2 := \{(x, y, z) | x^2 + y^2 + z^2 = 1\}$, i.e. the "2-sphere."

- 3. Knots in \mathbb{R}^3 .
- 4. The Order topology.
- 5. Lower/Upper Limit topology on \mathbb{R} .
- 6. ... and others.

LECTURE 8

Closed Sets/Limit Points in Topological Spaces

Theorem (8.1). Let *X* be a topological space. Then:

- 1. X, \emptyset are closed subsets.
- 2. Finite unions of closed subsets are closed.
- 3. Arbitrary intersections of closed subsets are closed.

The proof of Theorem 8.1 is a direct consequence of applying DeMorgan's Laws to Definition 6.1. Recall Definition 4.1 of closed subsets in Euclidean space:

Definition (4.1). Let $A \subseteq \mathbb{R}^n$ be a subset. Then A is **closed** iff every convergent sequence $\{a_k\} \subseteq A$ converges in A, i.e. $\lim_{k \to \infty} a_k \in A$.

We will use this definition to help us understand the following definition:

Definition (8.2). Let *X* be a topological space where $A \subseteq X$ is a subset. A point $y \in X$ is a <u>limit point</u> of *A* iff \forall open subsets $U \subseteq X$ containing y, $A \cap (U - \{y\}) \neq \emptyset$.

We will define $L(A) := \{y \in X | y \text{ is a limit point of } A\} := A'$

Examples in \mathbb{R}^1

- 1. Define A := (0, 1].
 - (a) Show $0 \in L(A)$. Let $U \subseteq \mathbb{R}$ be an open subset such that $0 \in U$. Then $\exists \varepsilon > 0$ such that $B_0(\varepsilon) = (-\varepsilon, \varepsilon) \subseteq U$. Therefore $U - \{0\} \supseteq (0, \varepsilon) \implies U - \{0\} \cap A \neq \emptyset$.
 - (b) Show $1 \in L(A)$. Let $U \subseteq \mathbb{R}$ be an open subset such that $1 \in U$. Then $\exists \varepsilon > 0$ such that $B_1(\varepsilon) \subseteq U$. Then $U - \{1\} \supseteq (1 - \varepsilon, 1) \Longrightarrow U - \{1\} \cap A \neq \emptyset$.
 - (c) We can apply this same strategy to prove that L(A) = [0, 1].
- 2. Let $A = \{\frac{1}{n} | n \in \mathbb{N} \}$.

It is obvious that since $\frac{1}{n} \to 0$, then $0 \in L(A)$.

If $x \neq 0$ and $x \in L(A)$, then \exists a subsequence of $\{\frac{1}{n}\}_{n\geq 0} \to x \neq 0$. This is a contradiction since every convergent subsequence of $\{\frac{1}{n}\}$ converges to 0.

In particular, $\forall \frac{1}{n} \in A, \exists$ and open subset $U \supseteq \frac{1}{n}$ such that $A \cap U = \{\frac{1}{n}\}$.

Theorem (8.4). Let *X* be a topological space and let $A \subseteq X$ be a subset. Then *A* is **closed** iff $L(A) \subseteq A$.

Lecture 9

Remark (8.4). Recall Theorem 8.4 from last lecture. This is a useful trick to show that a subset $V \subseteq X$ is open. $\forall y \in V$, find an open subset $U_y \subseteq X$ such that $y \in U_y$ and $U_y \subseteq V$. Then

$$\implies V = \bigcup_{y \in V} U_y$$
 By Axiom 2 of topological space \implies V is open.

Definition (9.2). Let *X* be a topological space and $A \subseteq X$ a subset. Then the <u>closure</u> of *A* in *X*, \bar{A} , is the intersection of all closed subsets of *X* containing *A*:

$$\bar{A} := \bigcap_{B \subseteq X \text{ closed}, A \subseteq B} B$$

Remark (9.2). There are a few remarks:

- 1. \bar{A} is closed by #3 in Theorem 8.1.
- 2. If *B* is closed and $A \subseteq B$, then $A \subseteq \bar{A} \subseteq B$. Hence \bar{A} is the "smallest" closed subset of *X* that contains *A*.
- 3. If *A* is closed, then $\bar{A} = A$.

Intuitive Examples of Closure

1.
$$A = (0,1), X = \mathbb{R}$$
.
Then $\bar{A} = [0,1] \subseteq [-\frac{1}{n}, 1 + \frac{1}{n}], \forall n \in \mathbb{N} \implies \bar{A} \subseteq \bigcap_{n \in \mathbb{N}} [-\frac{1}{n}, 1 + \frac{1}{n}]$.

2.
$$A = B_{\vec{0}}(\varepsilon)$$
, $X = \mathbb{R}^2$.

- 3. A = (0,1), $X = (\mathbb{R}, \mathcal{T}_{\mathrm{disc}})$. Then $\bar{A} = A$ since A is already closed.
- 4. $A = (0,1), X = (\mathbb{R}, \mathcal{T}_{\mathrm{triv}}).$ Then $\bar{A} = \mathbb{R}.$

Theorem (9.5). Let $A \subseteq X$ be a subset of the topological space X. Then $\bar{A} = A \cup L(A)$.