Precision Spectroscopy of Trapped Hydrogen: A Simplified Walkthrough of Two-Photon Spectroscopy in Magnetic Traps

1. Introduction and Research Goal

Objective:

- To perform high-precision two-photon spectroscopy of the 1S-2S transition in trapped atomic hydrogen.
- This transition is of profound significance due to its extremely **narrow natural linewidth (1.3 Hz)**, making it a candidate for:
 - Testing Quantum Electrodynamics (QED)
 - Determining the $\mathbf{Rydberg}$ $\mathbf{constant}$
 - Measuring the **proton charge radius**
 - Investigating potential **temporal variations** of fundamental constants

2. Background Theory

2.1 Two-Photon Spectroscopy

- Involves the **simultaneous absorption** of two photons (in this case, 243 nm) to excite hydrogen from the **1S** (ground state) to the **2S** (metastable state).
- Second-order electric dipole process: forbidden in one-photon transitions but allowed in two-photon processes.
- The transition is **Doppler-free** due to counter-propagating photons with the same frequency.

$$\Delta E = 2h\nu = E_{2S} - E_{1S}$$

2.2 Hydrogen's Importance

- As the **simplest atom**, hydrogen is ideal for **fundamental physical tests**.
- The 1S–2S transition has one of the longest lifetimes, allowing for extremely narrow linewidths, which increases measurement precision.

3. Experimental Setup

3.1 Atomic Hydrogen Source

- Hydrogen atoms are generated by dissociating molecular hydrogen in an RF discharge.
- A cryogenic nozzle cools the atoms to 80 K.
- The beam passes through a quartz nozzle into a superconducting magnetic trap.

3.2 Magnetic Trapping

- Magnetic traps are used to **confine low-field seeking states** (i.e., atoms whose magnetic moments align opposite to the local field).
- A **Ioffe-Pritchard trap** is used:
 - Provides a quadrupole radial field
 - Has an **axial bias field** to avoid spin-flip losses at the center (Majorana transitions)

3.3 Cooling

- Hydrogen atoms are cooled by **evaporative cooling**, allowing temperatures to reach below $100~\mu K$.
- This reduces **Doppler broadening** and improves **spectral resolution**.

3.4 Laser System

- A frequency-doubled dye laser produces 243 nm light.
- Output is stabilized to an optical cavity and referenced to a cesium clock, allowing precise frequency measurements.

3.5 Spectroscopy Method

- Counter-propagating photons allow for **Doppler-free** two-photon excitation.
- 2S state is metastable and decays only via two-photon emission or collisions.
- Detection is done by quenching 2S to 2P with a microwave field, which rapidly decays to 1S, emitting Lyman- (121.6 nm) photons, detected by photomultiplier tubes (PMTs).

4. Energy Levels and Zeeman Effect

4.1 Zeeman Splitting

• The presence of a magnetic field splits energy levels due to the **Zeeman effect**:

$$\Delta E = \mu_B g_F m_F B$$

• Transition is done between the 1S(F=1, mF=1) and 2S(F=1, mF=1) hyperfine states.

5. Key Experimental Considerations

5.1 AC Stark Shift (Light Shift)

- The intense spectroscopy laser field shifts energy levels via the AC Stark effect.
- The shift must be corrected to obtain the **true resonance frequency**.

$$\Delta \nu_{\rm Stark} \propto I$$

5.2 Magnetic Field Shifts

- Even small inhomogeneities in the magnetic field can cause **frequency shifts**.
- These are carefully mapped and accounted for using spectroscopy across the trap.

5.3 Collisional Effects

- 2S atoms can undergo **quenching collisions** with 1S atoms, leading to non-radiative decay.
- Density of atoms in the trap must be monitored to account for this.

6. Measurement Procedure

6.1 Excitation and Detection

- Atoms are exposed to pulsed or continuous-wave 243 nm light.
- Quenched fluorescence is recorded after excitation to detect 2S state populations.

6.2 Frequency Scan

- The laser frequency is scanned across the **expected resonance region**.
- Observed signal as a function of frequency yields the **spectral line shape**.

7. Line Shape Analysis

7.1 Doppler Effects

- Residual Doppler broadening is minimal due to the **two-photon nature** and low temperatures.
- Linewidth is mainly governed by **transit-time broadening**, **power broadening**, and **natural linewidth**.

7.2 Theoretical Line Shape

- A **Voigt profile** (convolution of Lorentzian and Gaussian) is used to model the spectrum.
 - Lorentzian: from natural linewidth and collisions
 - Gaussian: from residual Doppler broadening

8. Corrections Applied to Measured Frequency

Effect	Magnitude (Hz)	Nature
AC Stark shift	10-100	Linear in power
Zeeman shift	30–40	Depends on field
Second-order Doppler	1	Relativistic
Gravitational redshift	0.1	Negligible here
Line pulling	1–5	Line shape artifacts

All shifts are measured and subtracted to yield the unperturbed transition frequency.

9. Results

9.1 Measured Transition Frequency

$$\nu_{1S-2S} = 2\,466\,061\,413\,187\,103\,(46) \text{ Hz}$$

• Uncertainty: 46 Hz

• Relative uncertainty: 1.9×10^{-14}

9.2 Comparison to Other Measurements

- In **excellent agreement** with previous beam-based measurements.
- Slight improvements in **systematic uncertainty** due to magnetic trap stability and reduced atomic motion.

10. Significance of the Results

10.1 Fundamental Constants

• Transition frequency used to derive the Rydberg constant:

$$R_{\infty} = \frac{E_{1S-2S}}{hc} (1 + \text{QED corrections})$$

10.2 Testing QED

- Precise agreement confirms bound-state QED calculations.
- No significant deviation found \rightarrow **Standard Model holds** at this precision.

10.3 Constraints on New Physics

- Results limit models that propose **temporal variation** of α (fine-structure constant).
- Can be combined with **atomic clocks** to test for **variation in fundamental constants**.

11. Experimental Challenges and Innovations

11.1 Trap Lifetime and Background Gas

- Long trap lifetimes (several minutes) achieved by maintaining ultra-high vacuum.
- Background gas collisions minimized to prevent loss or quenching of 2S atoms.

11.2 Efficient Detection

- Lyman- photon detection is challenging due to UV optics and low efficiency.
- Innovative use of PMTs and quench radiation improved detection.

11.3 Laser Stability

- Laser linewidth and stability are **crucial for precision**.
- Locked to ultra-stable cavity and referenced to cesium clock via frequency combs.

12. Future Prospects

12.1 Improved Measurement

- Reducing **AC Stark uncertainties** with **intensity extrapolation** methods.
- Further cooling (e.g., **Bose-Einstein condensation**) could eliminate Doppler effects entirely.

12.2 Fundamental Constant Studies

- Use the 1S–2S transition in combination with other **hydrogen-like systems** (e.g., muonic hydrogen) to refine values of:
 - Proton charge radius
 - Fine-structure constant

12.3 Cross-disciplinary Applications

- Fundamental symmetry tests
- Metrology (redefining SI units)
- Space-time variation studies

13. Conclusion

- This landmark experiment marks one of the **most precise frequency measurements** ever performed.
- The innovative use of magnetic traps, ultra-cold atoms, and two-photon spectroscopy allows for extraordinary control over systematic effects.
- Results match theoretical expectations, supporting **QED** and **Standard Model predictions**.
- Paves the way for future ultra-precise tests of atomic structure, fundamental physics, and metrology.

Trapped Ion Quantum Computation with Transverse Phonon Modes

Ronit Dutta 20PH20035

Term Project Laser Spectroscopy

Contents

Intr	oduction and Research Goal	2
Bac	kground Theory	2
2.1	Qubits in Trapped Ions	2
2.2	Ion Trap Geometry	2
2.3		3
2.4	Lamb-Dicke Regime	3
Lase	er-Ion Interaction: Hamiltonian Framework	3
3.1	Basic Interaction Hamiltonian	3
3.2	Position Operator Expansion	3
3.3	Simplified Hamiltonian	3
Qua	antum Gates via Spin-Dependent Forces	3
4.1		3
4.2	· ·	3
4.3	Gate Condition	
Tra	nsverse vs. Axial Mode Characteristics	4
5.1	Transverse Mode Advantages	4
5.2	<u> </u>	4
5.3	Mode Participation	4
Exp	perimental Implementation	4
6.1	-	
-	1	$\overline{4}$
	Bac 2.1 2.2 2.3 2.4 Lase 3.1 3.2 3.3 Qua 4.1 4.2 4.3 Trai 5.1 5.2 5.3 Exp 6.1	2.2 Ion Trap Geometry 2.3 Phonon Modes 2.4 Lamb-Dicke Regime Laser-Ion Interaction: Hamiltonian Framework 3.1 Basic Interaction Hamiltonian 3.2 Position Operator Expansion 3.3 Simplified Hamiltonian Quantum Gates via Spin-Dependent Forces 4.1 Conditional Dynamics 4.2 Time Evolution Operator 4.3 Gate Condition Transverse vs. Axial Mode Characteristics 5.1 Transverse Mode Advantages 5.2 Axial Mode Disadvantages 5.3 Mode Participation Experimental Implementation

7	Results and Analysis		
	7.1 Gate Fidelity	5	
	7.2 Robustness to Scaling	5	
	7.3 Heating and Decoherence	5	
8	Comparison Table	5	
9	Key Insights and Deviations		
10	Conclusion	5	

1 Introduction and Research Goal

- **Primary Aim**: To propose a method for implementing high-fidelity quantum logic gates in trapped ion systems using **transverse phonon modes** rather than conventional **axial phonon modes**.
- Motivation: Axial modes become problematic with system scaling due to increasing mode density, spatial inhomogeneity, and cross-talk. The paper demonstrates that **transverse modes** offer a better route to scalable and robust quantum gate implementations.

2 Background Theory

2.1 Qubits in Trapped Ions

- Qubits are encoded in two hyperfine ground states of a trapped ion, typically denoted as $|\uparrow\rangle$ and $|\downarrow\rangle$.
- The ions are confined in a **linear Paul trap** with strong confinement in the transverse directions and weak confinement in the axial direction.

2.2 Ion Trap Geometry

• Confining potential:

$$V(x,y,z) = \frac{1}{2}M(\omega_x^2 x^2 + \omega_y^2 y^2 + \omega_z^2 z^2)$$
 (1)

where $\omega_x, \omega_y \gg \omega_z$.

2.3 Phonon Modes

- Ions oscillate in normal modes:
 - 1. N axial modes (along z) with lower frequencies
 - 2. 2N transverse modes (along x and y) with higher frequencies

2.4 Lamb-Dicke Regime

• The system operates in the Lamb-Dicke limit:

$$\eta_k = \Delta k \sqrt{\frac{\hbar}{2M\omega_k}} \ll 1 \tag{2}$$

where η_k is the Lamb-Dicke parameter.

3 Laser-Ion Interaction: Hamiltonian Framework

3.1 Basic Interaction Hamiltonian

$$H = \hbar\Omega \sum_{j} \sigma_{j}^{x} \cos(\Delta k \cdot x_{j} - \mu t)$$
(3)

3.2 Position Operator Expansion

$$x_j = \sum_k b_j^k \sqrt{\frac{\hbar}{2M\omega_k}} (a_k^{\dagger} + a_k) \tag{4}$$

3.3 Simplified Hamiltonian

$$H \approx \hbar\Omega \sum_{j,k} \eta_k b_j^k \sigma_j^x (a_k e^{-i\omega_k t} + a_k^{\dagger} e^{i\omega_k t}) \cos(\mu t)$$
 (5)

4 Quantum Gates via Spin-Dependent Forces

4.1 Conditional Dynamics

$$H_{\rm int} = \hbar \Omega \eta_k b_j^k \sigma_j^x (a_k e^{i(\mu - \omega_k)t} + a_k^{\dagger} e^{-i(\mu - \omega_k)t})$$
 (6)

4.2 Time Evolution Operator

$$U(\tau) = \exp\left[i\sum_{j}\phi_{j}(\tau)\sigma_{j}^{x} + i\sum_{i < j}\phi_{ij}(\tau)\sigma_{i}^{x}\sigma_{j}^{x}\right]$$
 (7)

4.3 Gate Condition

- $\phi_j(\tau) = 0$ (no residual entanglement)
- $\phi_{ij}(\tau) = \pi/4$ (entangling phase)

5 Transverse vs. Axial Mode Characteristics

5.1 Transverse Mode Advantages

- Higher frequency: $\omega_{x(k)} \sim \omega_x \gg \omega_z$
- More uniform eigenvectors b_i^k
- Less sensitive to heating and spectral crowding

5.2 Axial Mode Disadvantages

- Densely spaced frequencies
- Sensitive to ion spacing and imperfections

5.3 Mode Participation

- Axial: higher modes are localized
- Transverse: more uniformly delocalized

6 Experimental Implementation

6.1 Trap Parameters

• $\omega_z \approx 1 \text{ MHz}, \, \omega_x, \omega_y \approx 5 \text{ MHz}$

6.2 Raman Beam Configuration

- Bichromatic beams tuned near $\omega_k \pm \delta$
- Pulse shaping to ensure closed phonon loops:

$$\int_0^\tau \alpha_k(t)dt = 0 \tag{8}$$

7 Results and Analysis

7.1 Gate Fidelity

- Achieved fidelity > 99%
- Robust to ion spacing, thermal motion, and trap errors

7.2 Robustness to Scaling

• High fidelity retained with increasing ion number

7.3 Heating and Decoherence

- Strong confinement reduces heating
- Easier cooling requirements

8 Comparison Table

Feature	Axial Modes	Transverse Modes
Mode frequency spacing	Narrow	Wide
Sensitivity to ion spacing	High	Low
Thermal robustness	Low	High
Gate fidelity under scaling	Degrades fast	Remains high
Experimental complexity	Higher	Lower

9 Key Insights and Deviations

- **Insight**: Transverse modes, despite higher frequency, yield better entangling gates due to uniform coupling.
- Observation: Less sensitive to localization effects than axial modes.
- Implication: Calls for design paradigms using transverse control for better scalability.

10 Conclusion

- The paper demonstrates a novel approach using transverse modes for scalable, high-fidelity trapped-ion gates.
- This method shows resilience against scaling issues and environmental noise.
- Opens a promising path toward practical, large-scale quantum computation using trapped ions.