Descriptive Statistics: Numerical

Dr. Md. Israt Rayhan
Professor
Institute of Statistical Research and Training (ISRT)
University of Dhaka

Email: israt@isrt.ac.bd

Describing Data Numerically

Measures of Central Tendency

average

Arithmetic Mean

- The arithmetic mean (mean) is the most common measure of central tendency
 - For a population of N values:

$$\mu = \frac{\sum_{i=1}^{N} x_i}{N} = \frac{x_1 + x_2 + \dots + x_N}{N}$$
Population values
Population size

For a sample of size n:

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n} = \frac{X_1 + X_2 + \dots + X_n}{n}$$
Observed values

Sample size

Arithmetic Mean

(continued)

- The most common measure of central tendency
- Mean = sum of values divided by the number of values
- Affected by extreme values (outliers)

Median

 In an ordered list, the median is the "middle" number (50% above, 50% below)

Not affected by extreme values

Finding the Median

The location of the median:

Median position =
$$\frac{n+1}{2}$$
 position in the ordered data

- If the number of values is odd, the median is the middle number
- If the number of values is even, the median is the average of the two middle numbers
- Note that $\frac{n+1}{2}$ is not the *value* of the median, only the *position* of the median in the ranked data

Mode

- A measure of central tendency
- Value that occurs most often
- Not affected by extreme values
- Used for either numerical or categorical data
- There may may be no mode
- There may be several modes

No Mode

Which measure of location is the "best"?

- Mean is generally used, unless extreme values (outliers) exist
- Then median is often used, since the median is not sensitive to extreme values.
 - Example: Median home prices may be reported for a region – less sensitive to outliers

Range

- Simplest measure of variation
- Difference between the largest and the smallest observations:

Range =
$$X_{largest} - X_{smallest}$$

Example:

Range =
$$14 - 1 = 13$$

Population Variance

 Average of squared deviations of values from the mean

Population variance:

$$\sigma^2 = \frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}$$

Where μ = population mean

N = population size

 $x_i = i^{th}$ value of the variable x

Sample Variance

 Average (approximately) of squared deviations of values from the mean

Sample variance:

$$s^2 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}$$

Where
$$X = arithmetic mean$$

n = sample size

 $X_i = i^{th}$ value of the variable X

Population Standard Deviation

- Most commonly used measure of variation
- Shows variation about the mean
- Has the same units as the original data
 - Population standard deviation:

$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}}$$

Sample Standard Deviation

- Most commonly used measure of variation
- Shows variation about the mean
- Has the same units as the original data
 - Sample standard deviation:

$$S = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}}$$

Calculation Example: Sample Standard Deviation

Sample

Data (x_i) :

$$n = 8$$
 Mean $= \overline{x} = 16$

$$s = \sqrt{\frac{(10 - \overline{X})^2 + (12 - \overline{x})^2 + (14 - \overline{x})^2 + \dots + (24 - \overline{x})^2}{n - 1}}$$

$$= \sqrt{\frac{(10-16)^2+(12-16)^2+(14-16)^2+\cdots+(24-16)^2}{8-1}}$$

$$=\sqrt{\frac{126}{7}} = \boxed{4.2426}$$

A measure of the "average" scatter around the mean

Coefficient of Variation

- Measures relative variation
- Always in percentage (%)
- Shows variation relative to mean
- Can be used to compare two or more sets of data measured in different units

$$CV = \left(\frac{s}{\overline{x}}\right) \times 100\%$$

Comparing Coefficient of Variation

Stock A:

- Average price last year = \$50
- Standard deviation = \$5

$$CV_A = \left(\frac{s}{\overline{x}}\right) \cdot 100\% = \frac{\$5}{\$50} \cdot 100\% = \frac{10\%}{10\%}$$

Stock B:

- Average price last year = \$100
- Standard deviation = \$5

$$CV_B = \left(\frac{s}{\overline{x}}\right) \cdot 100\% = \frac{\$5}{\$100} \cdot 100\% = \frac{5\%}{\$}$$

Both stocks
have the same
standard
deviation, but
stock B is less
variable relative
to its price

Approximations for Grouped Data

Suppose a data set contains values m_1, m_2, \ldots, m_k , occurring with frequencies $f_1, f_2, \ldots f_K$

For a population of N observations the mean is

$$\mu = \frac{\sum_{i=1}^{K} f_i m_i}{N}$$

where
$$N = \sum_{i=1}^{K} f_i$$

For a sample of n observations, the mean is

$$\overline{x} = \frac{\sum_{i=1}^{K} f_i m_i}{n}$$

where
$$n = \sum_{i=1}^{K} f_i$$