Exercícios - Problemas de Busca 1

Prof. André Vignatti

Exercício 1 (Otimização versus Busca). Lembre-se do problema do caixeiro viajante (TSP):

TSP	
Entrada:	Uma matriz de distâncias, um orçamento b
Saída:	Um circuito que passa por todas as cidades e tem
	tamanho $\leq b$, se tal circuito existir.

A versão de otimização deste problema quer o circuito mais curto:

TSP-OPT	
Entrada:	Uma matriz de distâncias
Saída:	O circuito mais curto que passa por todas as cidades.

Mostre que se o TSP pode ser resolvido em tempo polinomial, o TSP-OPT também pode.

O problema HAMILTONIAN PATH é definido como: Dado um grafo, encontrar um ciclo que visita cada vértice exatamente uma vez (ou dizer não existe).

Exercício 2 (Busca versus Decisão). Suponha que você tem um algoritmo que executa em tempo polinomial e retorna SIM se um grafo tem um caminho hamiltoniano e NÃO caso contrário. Mostre que você pode usar esse algoritmo para criar um algoritmo de tempo polinomial para o HAMILTO-NIAN PATH (que retorna qual é o caminho, se ele existir).

Exercício 3. Mostre que se você tem um algoritmo de tempo polinomial para o TSP, então você pode usar esse algoritmo para resolver o HAMILTONIAN PATH.