VLSI Testing Homework 3

系所:資應所

姓名:林元泰 / Yuan-Tai Lin

學號:109065520

1. Derive the logic circuit of a 16-bit adder

Input: 2 16-bits data

Output: 1 17-bits result

Synthesis result of my adder with period = 40ns by

Design compiler:

Number of ports:	105
Number of nets:	152
Number of cells:	54
Number of combinational cel	ls: 35
Number of sequential cells:	17
Number of macros/black boxes	s: 0
Number of buf/inv:	1
Number of references:	4
Combinational area:	371.851194
Buf/Inv area:	2.116800
Noncombinational area:	263.894401
Macro/Black Box area:	0.00000
Net Interconnect area:	undefined (No wire load specified)
	,
Total cell area:	635.745595
Total area:	undefined

Point	Incr	Path
clock clk (rise edge)	0.00	0.00
clock network delay (ideal)	0.00	0.00
result_reg[0]/CK (DFFRQX2)	0.00	0.00 r
result_reg[0]/Q (DFFRQX2)	0.21	0.21 r
U21/Y (AO22X2)	0.07	0.28 r
result_reg[0]/D (DFFRQX2)	0.00	0.28 r
data arrival time		0.28
clock clk (rise edge)	40.00	40.00
clock network delay (ideal)	0.00	40.00
result_reg[0]/CK (DFFRQX2)	0.00	40.00 r
library setup time	-0.15	39.85
data required time		39.85
data required time		39.85
data arrival time		-0.28
slack (MET)		39.57

2. My BISTed circuit

- A. top.v: Connect all modules.
- B. adder.v : Add two 16-bits data into 17-bits result.

C. LFSR.v:

Characteristic polynomial: $g(x) = x^7 + x^1 + x^2 + x^3 + x^4 +$

1

I use 6 LFSRs to generate two inputs of adder.v. Each LFSR has a unique random seed.

D. LFSR_manager.v:

I use 2 LFSR_managers to generate 2 16-bits input for adder.

The LFSR_manager combine 3 output of LFSRs into 16-bits data.

E. MISR.v

The MISR compress the 17-bits result of adder into 10-bits signature.

My golden signature:

Signature	1:	807	Signature	37 :	911
Signature	2:	399	Signature	38 :	966
Signature	3:	520	Signature	39 :	514
Signature	4:	322	Signature	40 :	798
Signature	5:	478	Signature	41:	654
Signature	6:1	1010	Signature	42 :	843
Signature	7:	283	Signature	43 :	421
Signature	8:	680	Signature	44 :	755
Signature	9:	883	Signature	45 :	412
Signature	10:	731	Signature	46 :	267
Signature	11:	657	Signature	47 :	676
Signature	12:	361	Signature	48 :	626
Signature	13 :	977	Signature	49 :	597
Signature	14:3	1003	Signature	50 :	70
Signature	15 :	22	Signature	51:	868
Signature	16:	10	Signature	52 :	718
Signature	17:	801	Signature	53 :	132
Signature	18:	977	Signature	54:	384
Signature	19 :	9	Signature	55 :	226
Signature	20 :	321	Signature	56 :	946
Signature	21:	994	Signature	57 :	506
Signature	22 :	783	Signature	58:	28
Signature	23 :	169	Signature	59 :	9
Signature	24 :	600	Signature	60 :	802
Signature	25 :	361	Signature	61:	940
Signature	26 :	721	Signature	62 :	536
Signature	27 :	648	Signature	63 :	12
Signature	28 :	358	Signature	64 :	295
Signature	29 :	946	Signature	65 :	725
Signature	30 :	502	Signature	66 :	939
Signature	31:	284	Signature	67 :	245
Signature	32 :	174	Signature	68 :	893
Signature	33:	152	Signature	69 :	763
Signature	34:	365	Signature	70 :	443
Signature	35 :	433	Signature	71:	509
Signature	36:	731	Signature	72 :	540

Signature	73 :	49	Signature	111:	831
Signature	74 :	532	Signature	112:	222
Signature	75 :	521	Signature	113 :	907
Signature	76:	838	Signature	114:	194
Signature	77 :	929	Signature	115 :	127
Signature	78 :	751	Signature	116 :	575
Signature	79 :	948	Signature	117 :	349
Signature	80:	252	Signature	118 :	686
Signature	81:	416	Signature	119 :	153
Signature	82:	749	Signature	120 :	623
Signature	83:	405	Signature	121:	87
Signature	84:	746	Signature	122 :	876
Signature	85 :	116	Signature	123 :	759
Signature	86 :	887	Signature	124 :	638
Signature	87 :	991	Signature	125 :	570
Signature	88:	302	Signature	126 :	861
Signature	89 :	945	Signature	127 :	972
Signature	90 :	732			
Signature	91:	146			
Signature	92 :	108			
Signature	93 :	854			
Signature	94 :	232			
Signature	95 :	111			
Signature	96 :	855			
Signature	97 :	464			
Signature	98 :	488			
Signature	99 :	535			
Signature	100 :	841			
Signature	101:	675			
Signature	102 :	78			
Signature	103 :	67			
Signature	104 :	545			
Signature	105 :	17			
Signature	106 :	547			
Signature	107 :	814			
Signature	108 :	693			
Signature	109 :	888			
Signature	110 :	506			

3. Test my adder whether it can operate at speed of 1 GHz.

Synthesis my adder with period = 1ns

```
# add your design here
read_file -format verilog {./adder.v }

create_clock -name "clk" -period 1 -waveform { 0 0.5 } { clk }

set_fix hold clk
set_dont_touch_network clk
compile -exact_map

write_file -format verilog -hierarchy -output adder_syn.v
write_sdf -version 1.0 adder_syn.sdf
uplevel #0 { report_timing -path full -delay max -nworst 1 -max_paths 1 -significant_digits 2 -sort_by group }
report_area
exit
```

<adder.dc>

Point	Incr	Path
clock clk (rise edge)	0.00	0.00
clock network delay (ideal)	0.00	0.00
result_reg[0]/CK (DFFRQX2)	0.00	0.00 r
result_reg[0]/Q (DFFRQX2)	0.21	0.21 r
U21/Y (AO22X2)	0.07	0.28 r
result_reg[0]/D (DFFRQX2)	0.00	0.28 r
data arrival time		0.28
clock clk (rise edge)	1.00	1.00
clock network delay (ideal)	0.00	1.00
result_reg[0]/CK (DFFRQX2)	0.00	1.00 r
library setup time	-0.15	0.85
data required time		0.85
data required time		0.85
data arrival time		-0.28
slack (MET)		0.57

< Timing report >

Simulation result:

The adder is a netlist. Rest of modules are RTLs.

Testbench	100ns/1ns	10ns/1ns	1 nc /1 nc	
timescale	100ns/1ps	10ns/1ps	1ns/1ps	
Result	pass	pass	pass	

4. The maximum operating speed of my BISTed adder design

我把所有的 module 放進同一個 file(BISTed_adder.v)進行 synthesis,從 1 GHz 開始測試 synthesis 的結果。

Synthesis with period = 1ns => fail

```
# add your design here
read_file -format verilog {./BISTed_adder.v }

create_clock -name "clk" -period 1 -waveform { 0 0.5 } { clk }

set_fix_hold clk
set_dont_touch_network clk
compile -exact_map

write_file -format verilog -hierarchy -output BISTed_adder_syn.v
write_sdf -version 1.0 BISTed_adder_syn.sdf
uplevel #0 { report_timing -path full -delay max -nworst 1 -max_paths 1 -significant_digits 2 -sort_by group }
report_area
exit
```

< BISTed_adder.dc>

data required time 0.9	1
data arrival time -0.9	8
slack (VIOLATED) -0.0	7

< Timing report >

Synthesis with period = 1.1ns => fail

```
# add your design here
read_file -format verilog {./BISTed_adder.v }

create_clock -name "clk" -period 1.1 -waveform { 0 0.55 } { clk | set_fix_hold clk
set_dont_touch_network clk
compile -exact_map

write_file -format verilog -hierarchy -output BISTed_adder_syn.v
write_sdf -version 1.0 BISTed_adder_syn.sdf
uplevel #0 { report_timing -path full -delay max -nworst 1 -max_paths 1 -significant_digits 2 -sort_by group }
report_area
exit
```

< BISTed_adder.dc>

data required time	1.01
data arrival time	-1.02
slack (VIOLATED)	-0.02

< Timing report >

Synthesis with period = 1.2ns => success

```
# add your design here
read_file -format verilog {./BISTed_adder.v }

create_clock -name "clk" -period 1.2 -waveform { 0 0.6 } { clk }
set_fix_hold clk
set_dont_touch_network clk
compile -exact_map

write_file -format verilog -hierarchy -output BISTed_adder_syn.v
write_sdf -version 1.0 BISTed_adder_syn.sdf
uplevel #0 { report_timing -path full -delay max -nworst 1 -max_paths 1 -significant_digits 2 -sort_by group }
report_area
exit
```

<BISTed adder.dc>

```
data required time 1.06
data arrival time -1.06
slack (MET) 0.00
```

Simulate the netlist which period = 1.2ns is successful.

```
Always blocks:
Initial blocks:
Cont. assignments:
Pseudo assignments:
8
mining checks:
774
                Always blocks:
                                                  2
                                                  3
                                                151
                                               84
                Simulation timescale: 1ps
        Writing initial simulation snapshot: worklib.testbench:v
Loading snapshot worklib.testbench:v ...... Done
*Novas* Loading libsscore_ius111.so
ncsim> source /usr/cad/cadence/INCISIV/INCISIVE_15.20.084/tools/inca/files/ncsimrc
Novas FSDB Dumper for IUS, Release 2012.01, Linux x86_64/64bit, 01/12/2012
Copyright (C) 1996 - 2012 by SpringSoft, Inc.
* WARNING -
 The simulator version is newer than the FSDB dumper version which *
* may cause abnormal behavior. Please contact SpringSoft support at
  support@springsoft.com for assistance.
*Novas* : Create FSDB file 'adder.fsdb'
*Novas* : Begin traversing the scopes, layer (0).
*Novas* : End of traversing.
Start
Signature
Signature
Sign
                   2: 399
                   3 : 520
Signature
                   4: 322
Signature
                   5: 478
             6:1010
Signature
```

The shortest period is 1.2ns => The max speed of my design is 0.83 GHz.