SPRAWOZDANIE 3

Wprowadzenie:

Celem niniejszego sprawozdania jest zbadanie złożoności obliczeniowej, oraz omówienie zasad działania poszczególnych algorytmów grafowych, oraz ich sortowanie. Wszystkie algorytmy były sprawdzane na macierzach (listach) wygenerowanych przez generator macierzy, o nasyceniu krawędzi 50%.

```
def macierz sasiedztwa generator(liczba wierzcholkow,
liczba krawedzi):
  matrix = []
   for i in range(liczba wierzcholkow):
       row = []
           row.append(0)
       matrix.append(row)
           wiersz = random.randint(0, liczba wierzcholkow - 1)
           kolumna = random.randint(0, liczba wierzcholkow -
           if wiersz != kolumna and matrix[wiersz][kolumna] ==
między wierzchołkami na 1.
               matrix[wiersz][kolumna] = 1
               matrix[kolumna][wiersz] = -1
do kolejnej krawędzi.
```

gdzie liczba krawędzi i liczba wierzchołków, jest wybierana przez użytkownika. Dodatkowo została zaimplementowana funkcja wczytywania macierzy z pliku, gdzie macierz jest w formacie np:

34

12

2 1

4 1

Pierwsza linia oznacza, że graf zawiera "3 wierzchołki i 4 krawędzie", każda kolejna oznacza krawędź "a b" z wierzchołka "a" do "b". Złożoność obliczeniowa została sprawdzona i sporządzona na wykresach za pomocą zewnętrznej biblioteki matplotlib służącej do wykonywania wykresów. W sprawozdaniu zostały zawarte po dwa algorytmy, sortowania DFS, i KHAN dla każdego rodzaju macierzy (macierzy sąsiedztwa i macierzy grafu). W pierwszej sekcji zostały zawarte wykresy zależności czasu od liczby elementów dla poszczególnych algorytmów. Oraz krótkie omówienie jak działają poszczególne funkcje.

LINK DO DANYCH W EXCELU:

https://docs.google.com/spreadsheets/d/14Nq3wYb2wuAt7xf4XbAsWAa0K3UKkvSFXRLfSz5j6mY/edit?usp=sharing

SEKCJA 1

Macierz grafu jest stworzona za pomocą poszczególnych list:

- -lista następników
- -lista poprzedników
- -lista braku incydencji

dzięki takiemu rozwiązaniu poszczególne algorytmy bazujące na macierzy grafu, są bardziej zoptymalizowane w porównaniu do innych rodzajów macierzy, widać to w dalszej części sprawozdania.

Rozmiar macierzy grafu wynosi n x (n + 4) gdzie n to liczba wierzchołków. "+4" pojawia się z względu, że ostatnie 4 kolumny to odpowiednie elementy z list wymienionych powyżej.

Złożoność obliczeniowa dla stworzenia struktur danych (list):

Lista incydencji O(n) O(n) O(m)
Lista następników O(n) O(n) O(m)
Lista poprzedników O(n) O(n) O(m)

Gdzie kolejne kolumny to odpowiednio (Struktura danych Sprawdzenie istnienia jednej krawędzi Przejrzenie wszystkich sąsiadów wierzchołka* Przejrzenie wszystkich krawędzi)

Wykres zależności czasu od liczby elementów, porównujący szybkość działania algorytmu DFS I KHANA dla macierzy grafu.

złożoność pamięciowa: O(V2)

DANE:

MACIERZ GRAFU													
10	30	50	80	100	150	200	250	300	350	400	450	500	550
0,001	0,002	0,005	0,01	0,0244	0,0532	0,08111	0,112	0,1541	0,1782	0,2113	0,2284	0,2811	0,2841
0,001	0,002	0,01	0,02	0,0325	0,08312	0,13554	0,19832	0,24329	0,2926	0,3511	0,3919	0,4387	0,4876

MACIERZ GRAFU

złożoność czasowa: O(V^2/E) gdzie E to liczba krawędzi, V wierzchołków.

Macierz sąsiedztwa

Jest to reprezentacja grafu, która jest szczególnie użyteczna dla grafów skierowanych lub nieskierowanych. Zakładając, że graf ma n wierzchołków, macierz sąsiedztwa jest macierzą o wymiarach n×nn \times n×n, gdzie każda komórka A[i][j] wskazuje na istnienie krawędzi między wierzchołkami i i j.

Działanie macierzy sąsiedztwa

1. Reprezentacja grafu:

- Dla grafów skierowanego:
 - A[i][j]=1 oznacza, że istnieje krawędź między wierzchołkami i i j.
 - A[i][j]=0 oznacza, że nie ma krawędzi między wierzchołkami i i j.
 - A[i][j]=-1 oznacza, że istnieje krawędź między wierzchołkami j i i.
- Dla grafów nieskierowanych:
 - A[i][j]=1 oznacza, że istnieje krawędź od wierzchołka i do wierzchołka j.

■ A[i][j]=0 oznacza brak krawędzi od iii do j.

2. Cechy:

- Symetryczność (dla grafów nieskierowanych): A[i][j]=A[j][i]A[i][j] = A[j][i]A[i][j]=A[j][i].
- Rozmiar: Macierz sąsiedztwa ma rozmiar n×nn \times nn×n, gdzie nnn to liczba wierzchołków w grafie.
- Gęstość: Macierz sąsiedztwa jest bardziej efektywna pamięciowo dla grafów gęstych, gdzie liczba krawędzi jest bliska n2n^2n2.

3. Zastosowanie:

- Szybkie sprawdzanie istnienia krawędzi: Można sprawdzić, czy istnieje krawędź między dwoma wierzchołkami w czasie O(1)O(1)O(1).
- Operacje na grafie: Łatwe wykonywanie operacji takich jak dodawanie czy usuwanie krawędzi poprzez proste przypisanie wartości w macierzy.

Dane:

MACIERZ SASIEDZ													
10	30	50	80	100	150	200	250	300	350	400	450	500	550
0,002	0,018	0,02311	0,04311	0,06411	0,0921	0,12317	0,1991	0,2429	0,2972	0,3626	0,3711	0,4199	0,4799
0,0002	0,019	0,02799	0,04193	0,06291	0,11311	0,20821	0,2385	0,3614	0,4514	0,5414	0,5944	0,6694	0,7814

zależność czasu od liczby elementów dla macierzy sąsiedztwa. Złożoność czasowa: O(V^2) gdzie V to liczba wierzchołków.

Powodem dlaczego khan zarówno w macierzy grafu jak i macierzy sąsiedztwa działa wolniej jest fakt, że na bieżąco muszą być sprawdzane i zmieniane stopnie wejściowe wszystkich wierzchołków, co wydłuża czas obliczeń. W przeciwieństwie do DFS gdzie potrzebne są tylko dane następników poszczególnego (startowego, lub następnika) wierzchołka.

Porównanie złożoności obliczeniowej macierzy grafu i sąsiedztwa dla algorytmów DFS i KHANA:

DANE:

DFS MG I MS													
10	30	50	80	100	150	200	250	300	350	400	450	500	550
0,002	0,0021	0,0042	0,0181	0,0232	0,0591	0,083	0,121	0,1462	0,18101	0,2029	0,2395	0,2766	0,2951
0,002	0,0181	0,0241	0,0444	0,0591	0,0899	0,129	0,183	0,2329	0,29099	0,347	0,3852	0,4513	0,4818
KHAN MG I MS													
10	30	50	80	100	150	200	250	300	350	400	450	500	550
0,002	0,00301	0,00899	0,0291	0,03499 1	0,093	0,143	0,1911	0,2391	0,28900 1	0,3291	0,381	0,41109	0,4911
0,002	0,0129	0,03001	0,03991	0,05892	0,124	0,211	0,2719	0,3219	0,44101	0,4914	0,5714	0,6504	0,7319

Zalety macierzy sąsiedztwa:

- Szybkie sprawdzanie istnienia krawędzi: Można sprawdzić, czy istnieje krawędź między dwoma wierzchołkami w czasie O(1).
- **Prostota:** Reprezentacja jest prosta i intuicyjna.
- Łatwość implement

Zalety macierzy grafu:

- Mała złożoność obliczeniowa, z względu na zawarte wskaźniki na kolejne wierzchołki z poszczególnych list.
- Jest lepsza od metody listowej przez **szybki czas sprawdzenia istnienia krawędzi**, kosztem zwiększenia złożoności pamięciowej.