MA 503: Homework 11

Dane Johnson

October 14, 2020

Proposition 18 Let f be an extended real-valued function whose domain is measurable. The following statements are equivalent:

- i. For each real number α the set $\{x: f(x) > \alpha\}$ is measurable.
- ii. For each real number α the set $\{x: f(x) \geq \alpha\}$ is measurable.
- iii. For each real number α the set $\{x: f(x) < \alpha\}$ is measurable.
- iv. For each real number α the set $\{x: f(x) \leq \alpha\}$ is measurable. These statements imply
- v. For each real number α the set $\{x: f(x) = \alpha\}$ is measurable.

Definition A function $f: D \to \overline{\mathbb{R}}$ is said to be (Lebesgue) measurable if $D \subset \mathbb{R}$ is measurable and f satisfies one of statements (i)-(iv) in Proposition 18.

Proposition 19 Let c be a constant and f and g two measurable real-valued functions on the same domain D (which must be measurable by the definition above). Then the functions f + c, cf, f + g, g - f, and fg are also measurable.

Problem 21

a. Let E and D be measurable sets and f a function with domain $E \cup D$. Show that f is measurable if and only if its restrictions to D and E are measurable.

Suppose that f is measurable and let $\alpha \in \mathbb{R}$ be given. Then the set $\{x \in E \cup D : f(x) < \alpha\}$ is measurable (the notation needs to be more explicit here so we can consider whether $x \in D$ or $x \in E$). Consider that

$$\{x \in D : f|_D(x) < \alpha\} = \{x \in D : f(x) < \alpha\} = \{x \in E \cup D : f(x) < \alpha\} \cap D$$
.

Then $\{x \in D : f(x) < \alpha\}$ is measurable as the intersection of two measurable sets. Since α was arbitrary, conclude that $\{x \in D : f|_D(x) < \alpha\}$ is measurable for any α . Conclude that the restriction of f to D, $f|_D$, is a measurable function. By swapping the positions of D and E, the same reasoning shows that the restriction of f to E, $f|_E$, is a measurable function as well.

Suppose that $f|_D$ and $f|_E$ are measurable functions and let $\alpha \in \mathbb{R}$ be given. Since E and D are measurable, the domain $E \cup D$ of f is measurable and

$$\{x \in E \cup D : f(x) < \alpha\} = \{x \in E : f(x) < \alpha\} \cup \{x \in D : f(x) < \alpha\}$$

$$= \{x \in E : f|_{E}(x) < \alpha\} \cup \{x \in D : f|_{D}(x) < \alpha\} .$$

Since $\{x \in E : f|_E(x) < \alpha\}$ and $\{x \in D : f|_D(x) < \alpha\}$ are measurable sets, so is their union. Since α was arbitrary, $\{x \in E \cup D : f(x) < \alpha\}$ is measurable for each α . Therefore, f is a measurable function.

b. Let f be a function with a measurable domain D and let

$$g(x) = \begin{cases} f(x) & x \in D \\ 0 & x \notin D \end{cases}.$$

Show that f is measurable if and only if g is measurable.

The domain of g has not been specified in the problem. If the domain of g is not measurable, then by definition it is impossible for g to be measurable and this problem cannot be completed. So we need to assume that the domain E of g is measurable. If E = D then the result is immediate. If $E \subsetneq D$, then it would seem the definition of g does not make sense and also it would not be possible to show that the measurability of g implies the measurability of g. So most likely we are to assume that $E \supsetneq D$. Since the reasoning is similar for any such measurable E, just assume that the domain of g is \mathbb{R} (which is measurable in what follows. While the work below is still correct if $D = \mathbb{R}$, the result would again be immediate in this case and so this is meant to handle a measurable $D \subsetneq \mathbb{R}$.

Suppose that f is measurable and let $\alpha \in \mathbb{R}$ be given.

$$\{x : g(x) < \alpha\} = \{x \in D : g(x) < \alpha\} \cup \{x \notin D : g(x) < \alpha\}$$

= $\{x \in D : f(x) < \alpha\} \cup \{x \in D^c : 0 < \alpha\}$.

Since f is measurable, the set $\{x \in D: f(x) < \alpha\}$ is always measurable, so it remains for us to see if $D^c \cap \{x: g(x) < \alpha\} = \{x \in D^c: g(x) < \alpha\} = \{x \in D^c: 0 < \alpha\}$ is measurable. Either $0 < \alpha$ or $0 \ge \alpha$. If $0 < \alpha$, $\{x \in D^c: 0 < \alpha\} = D^c$. If $0 \ge \alpha$, $\{x \in D^c: 0 < \alpha\} = \emptyset$. Since D^c and \emptyset are measurable sets, $\{x \in D^c: 0 < \alpha\}$ in either case. Therefore, $\{x: g(x) < \alpha\}$ is measurable as the union of two measurable sets.

Suppose that g is measurable (again with the assumptions mentioned in the first paragraph about the domain of g and f). Let α be given. The set $\{x \in \mathbb{R} : g(x) < \alpha\}$ is measurable and D is measurable.

$$\{x \in D : f(x) < \alpha\} = \{x \in D : g(x) < \alpha\} = \{x \in \mathbb{R} : g(x) < \alpha\} \cap D$$
.

Then $\{x \in D : f(x) < \alpha\}$ is measurable as the intersection of two measurable sets. Since α was arbitrary, $\{x \in D : f(x) < \alpha\}$ is measurable for any α . Conclude that f is a measurable function.

Problem 22

a. Let $f: D \to \mathbb{R}$ where D is a measurable set. Let $D_1 = \{x: f(x) = \infty\}$ and $D_2 = \{x: f(x) = -\infty\}$. Show that f is measurable if and only if D_1 and D_2 are measurable and the restriction of f to $D\setminus (D_1 \cup D_2)$ is measurable.

Suppose that f is measurable and let f^{\dagger} denote the restriction of f to $D\setminus (D_1\cup D_2)$. Since $\{x:f(x)>n\}$ and $\{x:f(x)<-n\}$ are measurable sets for each $n\in\mathbb{N}$,

$$D_1 = \{x : f(x) = \infty\} = \bigcap_n \{x : f(x) > n\} \in \mathfrak{M},$$

$$D_2 = \{x : f(x) = -\infty\} = \bigcap_n \{x : f(x) < -n\} \in \mathfrak{M}.$$

This implies that $D \cap D_1^c \cap D_2^c = D \setminus (D_1 \cup D_2) \in \mathfrak{M}$ as well. Let $\alpha \in \mathbb{R}$. Since f^{\dagger} is only defined for $x \in D \setminus (D_1 \cup D_2)$,

$${x: f^{\dagger}(x) < \alpha} = {x: f(x) < \alpha} \cap (D_1 \cup D_2)^c$$
.

This shows that $\{x: f^{\dagger}(x) < \alpha\}$ is measurable as the intersection of measurable sets. Since α was arbitrary, $\{x: f^{\dagger}(x) < \alpha\}$ is measurable for each α and since the domain of f^{\dagger} is measurable, conclude that f^{\dagger} is a measurable function.

Suppose that f^{\dagger} is measurable and that D_1 and D_2 are measurable sets. Let $\alpha \in \mathbb{R}$. The set $\{x: f^{\dagger}(x) < \alpha\}$ is measurable and so

$$\{x \in D : f(x) < \alpha\} = \{x \in D \setminus (D_1 \cup D_2) : f(x) < \alpha\} \cup \{x \in D : f(x) = -\infty\}$$
$$= \{x : f^{\dagger}(x) < \alpha\} \cup D_2 \in \mathfrak{M}.$$

Since α was arbitrary and D is measurable, conclude that f is measurable.

b. Prove that the product of two measurable extended real-values functions is measurable.

Let $f,g:D\to\overline{\mathbb{R}}$, where D is a measurable set on which both f and g and thus fg can be defined. Assume that both f and g are measurable. By part (a), the sets $\{x:f(x)=\infty\}$, $\{x:f(x)=-\infty\}$, $\{x:g(x)=\infty\}$, and $\{x:g(x)=-\infty\}$ are measurable. Also the sets $\{x:f(x)<0\}$, $\{x:f(x)>0\}$, $\{x:g(x)<0\}$, and $\{x:g(x)>0\}$ are measurable since f and g are measurable (and Proposition 18). By repeatedly using the fact that the σ -algebra $\mathfrak M$ is closed under complement and intersection and the conventions from section 2.3 for multiplication in $\overline{\mathbb{R}}$, the set

$$\begin{split} D_1 &:= \{x: (fg)(x) = \infty\} \\ &= [\{x: f(x) = \infty\} \cap \{x: g(x) > 0\}] \\ &\cup [\{x: f(x) = -\infty\} \cap \{x: g(x) < 0\}] \\ &\cup [\{x: g(x) = \infty\} \cap \{x: f(x) > 0\}] \\ &\cup [\{x: g(x) = -\infty\} \cap \{x: f(x) < 0\}] \\ &\cup [\{x: f(x) = \infty\} \cap \{x: g(x) = \infty\}] \\ &\cup [\{x: f(x) = -\infty\} \cap \{x: g(x) = -\infty\}] \\ &\in \mathfrak{M} \;. \end{split}$$

Similarly,

$$\begin{split} D_2 &:= \{x: (fg)(x) = -\infty\} \\ &= [\{x: f(x) = \infty\} \cap \{x: g(x) < 0\}] \\ &\cup [\{x: f(x) = -\infty\} \cap \{x: g(x) > 0\}] \\ &\cup [\{x: g(x) = \infty\} \cap \{x: f(x) < 0\}] \\ &\cup [\{x: g(x) = -\infty\} \cap \{x: f(x) > 0\}] \\ &\cup [\{x: f(x) = \infty\} \cap \{x: g(x) = -\infty\}] \\ &\cup [\{x: f(x) = \infty\} \cap \{x: g(x) = -\infty\}] \\ &\in \mathfrak{M} \;. \end{split}$$

This implies $D_1 \cup D_2$ and $D \setminus (D_1 \cup D_2)$ are measurable. By Problem 21 (a), the restriction of f to $D \setminus (D_1 \cup D_2)$ is measurable. Similarly, the restriction of g to $D \setminus (D_1 \cup D_2)$ is measurable. Moreover, these restrictions are measurable real-valued functions and so by Proposition 19, the restriction of fg to $D \setminus (D_1 \cup D_2)$ is measurable. By part (a) of this problem, since D_1 and D_2 are measurable and the restriction of fg to $D \setminus (D_1 \cup D_2)$ is measurable, we conclude that fg is measurable.

c. If f and g are measurable extended real-valued functions, and $\alpha \in \mathbb{R}$ is fixed, prove that

$$(f+g)(x) := \begin{cases} \alpha & f(x) = \infty, \quad g(x) = -\infty \\ \alpha & f(x) = -\infty, \quad g(x) = \infty \\ f(x) + g(x) & \text{otherwise} \end{cases}$$

is measurable.

Let $f, g: D \to \overline{\mathbb{R}}$. By part (a) the sets $\{x: f(x) = \infty\}$, $\{x: f(x) = -\infty\}$, $\{x: g(x) = \infty\}$, and $\{x: g(x) = -\infty\}$ are measurable. This implies $\{x: -\infty < g(x) < \infty\} = D \setminus (\{x: g(x) = \infty\} \cup \{x: g(x) = -\infty\})$ and similarly $\{x: -\infty < f(x) < \infty\}$ are measurable.

$$D_1 := \{x : (f+g)(x) = \infty\}$$

$$= [\{x : f(x) = \infty\} \cap \{x : -\infty < g(x) < \infty\}]$$

$$\cup [\{x : -\infty < f(x) < \infty\} \cap \{x : g(x) = \infty\}]$$

$$\cup [\{x : f(x) = \infty\} \cap \{x : g(x) = \infty\}]$$

$$D_2 := \{x : (f+g)(x) = -\infty\}$$

$$= [\{x : f(x) = -\infty\} \cap \{x : -\infty < g(x) < \infty\}]$$

$$\cup [\{x : -\infty < f(x) < \infty\} \cap \{x : g(x) = -\infty\}]$$

$$\cup [\{x : f(x) = -\infty\} \cap \{x : g(x) = -\infty\}]$$

Since \mathfrak{M} is a σ -algebra, D_1 and D_2 are measurable. By part (a), if we can show that the restriction of f to $D\setminus (D_1\cup D_2)$, $h(x):=(f+g)|_{D\setminus (D_1\cup D_2)}(x)$ is measurable then we can conclude the extended real-valued function $f+g:D\to \overline{\mathbb{R}}$ is measurable. Let $E:=D\setminus (D_1\cup D_2)$. Let $\beta\in \mathbb{R}$ be arbitrary. With Proposition 18 (iii) in mind, we want to show that the set $\{x\in E:h(x):=(f+g)(x)<\beta\}$ is measurable. Since α is fixed, consider whether $\alpha<\beta$ or $\alpha\geq\beta$. Let $F=E\cap\{x:-\infty< f(x)<\infty\}\cap\{x:-\infty< g(x)<\infty\}\in\mathfrak{M}$. For $x\in F$, f(x) and g(x) are both finite so that h(x)=(f+g)(x) is a measurable function by Proposition 19. So the set $\{x\in F:h(x)<\beta\}$ is measurable.

$$\{x \in E : h(x) < \beta\} = \{x \in F : h(x) < \beta\}$$

$$\cup [\{x \in E : f(x) = \infty\} \cap \{x \in E : g(x) = -\infty\}]$$

$$\cup [\{x : f(x) = -\infty\} \cap \{x : g(x) = \infty\}] \in \mathfrak{M}, \quad \alpha < \beta$$

$$\{x \in E : h(x) < \beta\} = \{x \in F : h(x) < \beta\} \in \mathfrak{M}, \quad \alpha \ge \beta .$$

Note that the sets above of a form like $\{x \in E : f(x) = \infty\} = \{x \in D : f(x) = \infty\} \cap D_1^c \cap D_2^c$ are indeed measurable and that it is necessary to mention these cases as $D_1 \cup D_2$ does not include all possible instances where f and g are infinite. Since β was arbitrary, conclude that the restriction of f + g to $D \setminus (D_1 \cup D_2)$ is measurable and so by part (a), the extended real valued function f + g is measurable.

(d) Let $f, g: D \to \mathbb{R}$ be measurable extended real-valued functions such that f and g are each finite almost everywhere. Show that f+g is measurable no matter how it is defined at points where it is of the form $\infty - \infty$ (and presumably $-\infty + \infty$).

$$C_1 := \{x : f(x) = \infty\} \cup \{x : f(x) = -\infty\}$$

$$C_1 := \{x : g(x) = \infty\} \cup \{x : g(x) = -\infty\}$$

$$m(C_1) = m(C_2) = 0 \text{ by hypothesis.}$$

$$0 \le m(C_1 \cup C_2) \le m(C_1) + m(C_2) = 0 \implies m(C_1 \cup C_2) = 0$$

$$B := [\{x : f(x) = \infty\} \cap \{x : g(x) = -\infty\}] \cup [\{x : f(x) = -\infty\} \cap \{x : g(x) = \infty\}]$$

The set B is the set of points at which f+g is of the form $\infty-\infty$ or $-\infty+\infty$. Let f+g be defined arbitrarily at points in B. To see that $B\subset C_1\cup C_2$, let $y\in B$. If $y\in \{x:f(x)=\infty\}\cap \{x:g(x)=-\infty\}$, then $f(y)=\infty$ and $g(y)=-\infty$. So $y\in C_1$ and $y\in C_2$ and $y\in C_1\cap C_2\subset C_1\cup C_2$. If $y\in \{x:f(x)=-\infty\}\cap \{x:g(x)=\infty\}$ it follows similarly that $y\in C_1\cup C_2$. This implies that m(B)=0. Define $h:D\to \overline{\mathbb{R}}$,

$$h(x) = \begin{cases} (f+g)(x) & x \in B^c \\ 27 & x \in B \end{cases}.$$

Then h is measurable by part (c) and the set of points at which $h \neq f + g$ has measure zero. That is, h is a measurable function and h = f + g almost everywhere. By Proposition 21, conclude that f + g is measurable.