HASIL EKSPERIMEN TUGAS AKHIR

Hasil pengaruh dari jumlah dataset:

Dataset	UAR
Compare + Coughvid, Coswara (Positive & Negative)	56,2%
Compare + Coswara (Positive & Negative) + Coughvid (Positive)	61,5%
Compare + Coswara (Positive) + Coughvid (Positive)	75,4%

Dengan hasil diatas maka dataset yang akan digunakan adalah Compare + Coswara (Positive) + Coughvid (Positive). Sebagai catatan, hasil diatas masih menggunakan data development yang diberikan oleh Compare. Lalu dilanjutkan dengan eksperiment pembagian data untuk training dan development pada dataset Coswara dan Coughvid, sebagai berikut:

Split	UAR
70% (Training), 30% (Development)	69,7%
75% (Training), 25% (Development)	66,7%
80% (Training), 20% (Development)	71,6%
85% (Training), 15% (Development)	69,1%
90% (Training), 10% (Development)	66,8%
95% (Training), 5% (Development)	70,7%

Dikarenakan dataset dari Compare, Coswara, dan Coughvid dimana suara batuknya masih tercampur oleh noise, bahkan suara didalam dataset tersebut beberapa bukan suara batuk melainkan suara lain seperti suara orang berbicara, suara kendaraan dan lainnya, maka dilakukanlah *filtering* dengan menggunakan *cough detection* yang menunjukkan seberapa besar probabilitas data audio tersebut adalah suara batuk. Sehingga apabila suara tersebut memiliki probabilitas diatas 80%, maka suara tersebut akan lolos dan dianggap sebagai suara batuk. Berikut ini jumlah hasil dari *filtering* dengan menggunakan *cough detection*:

Proses	Jumlah Audio	UAR
Sebelum Cough Detection	13.486	71,6%
Sesudah Cough Detection	6.903	82,4%

Hasil tersebut terbilang bagus karena mendapatkan hasil UAR sebesar 82,4%, tetapi hasil tersebut belum bisa diterima dikarena data *test* yang digunakan berkurang drastis yang semestinya berjumlah 206 suara (169 negative dan 38 positive) menjadi 81 suara (68 negative dan 13 positive). Berkurangnya data secara drastis tersebut diakibatkan oleh banyaknya suara batuk yang masih tercampur oleh *background noise* sehingga probabilitas yang didapat semakin menurun. Oleh karena itu, untuk mengatasi hal tersebut dilakukan proses *noise reduction* pada semua dataset yang digunakan, kemudian dilanjutkan dengan *filtering* dengan *cough detection*. Hasil yang didapat sebagai berikut:

Proses	Jumlah Audio	UAR
Kondisi awal	13.486	71,6%
Tanpa Noise Reduction	6.903	82,4%
Menggunakan Noise Reduction	9.682	73,17%

Dari hasil tersebut didapatkan bahwa jumlah audio meningkat sebanyak kurang lebih 3000 suara batuk dan didapatkan nilai UAR sebesar 73,17%. Kemudian dilanjutkan dengan variasi dimana training tanpa menggunakan *noise augmentasi* dan tanpa *spec-aug*. Maka didapatkan hasil sebagai berikut:

Proses	UAR
Menggunakan Noise Augment dan Spec Aug	73,17%
Tanpa Noise Augment	71,82%
Tanpa Noise Augment dan Tanpa Spec Aug	75,22%

Selanjutnya dilakukan proses segmentasi terhadap dataset agar mendapatkan suara 1 batuk dan data yag didapat lebih banyak. Dalam metode segmentasi ini, digunakan 2 metode yaitu metode Hysterisis Comparator dan RMS Threshold. Setelah dilakukan segmentasi, selanjutnya dilakukan *filtering* dengan menggunakan *cough detection*, sehingga didapatkan hasil sebagai berikut:

Metode	Jumlah Audio	UAR
Hysterisis Comparator	8.975	76,82%
RMS Threshold	15.763	74,80%

Dari hasil diatas didapatkan hasil yang baik dengan menggunakan *hysterisis comparator* dengan nilai UAR sebesar 76,82. Selanjutnya, dikarenakan hasil segmentasi memiliki tingkat *loudness*

yang berbeda-beda maka dilakukan *loudness normalization* pada hasil segmentasi batuk. Hasil yang didapat sebagai berikut:

Proses	UAR
Tanpa Loudness Normalization	76,82%
Menggunakan Loudness Normalization	80,59%

Kemudian dilanjutkan dengan pengaruh model pre-trained terhadap hasil UAR yang didapat, yang mana sebagai berikut:

Model Pre-Trained	UAR
CNN 14	80,59%
ResNet 38	80,19%
MobileNet V1	75,99%
ResNet 54	80,23%
ResNet 22	77,93%

Selanjutnya dilakukan tuning nilai alpha pada mixup, berikut hasilnya:

Nilai Alpha Mixup	UAR
0,1	78,02%
0,2	77,70%
0,3	79,58%
0,4	75,99%
0,5	77,05%
0,6	78,57%
0,7	79,08%
0,8	81,29%

0,9	80,51%
1	77,15%
1,1	79,08%
1,2	79,91%

Selanjutnya dilakukan tuning nilai learning rate, berikut hasilnya:

Nilai Learning Rate	UAR
0,1	73,97%
0,01	50%
0,001	81,29%
0,0001	73,64%
0.00001	66,32%

Selanjutnya dilakukan tuning nilai weight decay, berikut hasilnya:

Nilai Weight Decay	UAR
0,1	78,25%
0,01	81,29%
0,001	79,08%
0,0001	82,21%
0.00001	77,15%