MATRICES AND LINEAR ALGEBRA: A QUICK INTRODUCTION

DENNIS BREWER, LUCA CAPOGNA, PHILLIP HARRINGTON, JAMES MEEK, ANDREW RAICH

1. An Introduction to Matrices

1.1. Definition of a matrix.

Definition 1.1. An $m \times n$ matrix is a rectangular array of numbers with m rows and n columns.

Example 1.2. A 2×1 matrix is a column vector and a 1×2 matrix is a row vector.

Example 1.3. 2×2 matrices. $A = \begin{pmatrix} 3 & 4 \\ -1 & \pi \end{pmatrix}$ is an example of a 2×2 matrix. We sometimes write $A = (a_{jk})$ where a_{jk} is the element in the *j*th row and *k*th column of *A*. For example $a_{12} = 4$.

Definition 1.4. We say that two matrices A and B are equal if $a_{jk} = b_{jk}$ for all j and k.

Example 1.5.
$$3 \times 3$$
 matrices. $B = \begin{pmatrix} 4 & 0 & 0 \\ 2 & 1 & -3 \\ -1 & 3 & -2 \end{pmatrix}$ is a 3×3 matrix.

Example 1.6.
$$C = \begin{pmatrix} 4 & 2 \\ -1 & 1 \\ e & 45 \end{pmatrix}$$
 is a 3×2 matrix. $c_{12} = 2$ while $c_{21} = -1$.

1.2. **Matrix Addition.** Matrices of the same size can be added, and the addition is performed component-wise.

Example 1.7.
$$\begin{pmatrix} 2 & 3 \\ 0 & 1 \\ -3 & 6 \end{pmatrix} + \begin{pmatrix} -2 & 5 \\ 3 & 0 \\ -2 & 4 \end{pmatrix} = \begin{pmatrix} 0 & 8 \\ 3 & 1 \\ -5 & 10 \end{pmatrix}$$

Example 1.8. $\begin{pmatrix} 3 & 2 \\ 1 & 4 \end{pmatrix} + \begin{pmatrix} 4 & 2 & 1 \\ -2 & 1 & 0 \end{pmatrix}$ cannot be added! They are different sizes!

Symbolically, if $A = (a_{jk})$ and $B = (b_{jk})$ are both $m \times n$ matrices, then $A + B = (a_{jk} + b_{jk})$.

1.3. Multiplication of a matrix by a scalar. If $\alpha \in \mathbb{R}$ is a scalar and $A = (a_{jk})$ is an $m \times n$ matrix, then the matrix $\alpha A = (\alpha a_{jk})$.

Example 1.9. If
$$A = \begin{pmatrix} 4 & 2 & 3 \\ 3 & -3 & 8 \\ 0 & 0 & 2 \end{pmatrix}$$
, then $\frac{1}{2}A = \begin{pmatrix} 2 & 1 & \frac{3}{2} \\ \frac{3}{2} & -\frac{3}{2} & 4 \\ 0 & 0 & 1 \end{pmatrix}$.

1.4. A special class of matrices.

Definition 1.10. An $n \times n$ matrix is called a square matrix.

Example 1.11.
$$A = \begin{pmatrix} 3 & 9 & 8 \\ 1 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
 is a 3×3 square matrix. $A = \begin{pmatrix} 3 & 9 & 8 \\ 1 & 3 & 0 \end{pmatrix}$ is a 2×3 matrix,

and hence not square.

Definition 1.12. The **identity matrix** is an $n \times n$ matrix with 1's on the diagonal and 0's off of the diagonal and denoted by I or I_n .

Example 1.13.
$$I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
.

A zero matrix is any matrix that contains only 0's.

Theorem 1.14. Let A, B, C be $m \times n$ matrices and $\alpha, \beta \in \mathbb{R}$ be scalars. Then the following algebraic rules hold:

(i)
$$A + B = B + A$$
 Commutativity of Matrix Addition

(ii)
$$(A+B)+C=A+(B+C)$$
 Associativity of Matrix Addition

(iii)
$$\alpha(A+B) = \alpha A + \alpha B$$

(iv)
$$(\alpha + \beta)A = \alpha A + \beta A$$

(v)
$$(\alpha\beta)A = \alpha(\beta A)$$

1.5. Problems.

1. Give an example of a 4×2 matrix and a 2×4 matrix.

2. If
$$M = \begin{pmatrix} 4 & 3 & 1 \\ -1 & \pi & 2 \\ -4 & 3 & 1 \end{pmatrix}$$
, then find m_{23} and $m_{22} + m_{13}$.
Let $A = \begin{pmatrix} 2 & 3 \\ -1 & 3 \end{pmatrix}$, $B = \begin{pmatrix} -1 & 0 \\ 3 & 8 \end{pmatrix}$, and $C = \begin{pmatrix} 1 & -1 \\ 0 & 3 \end{pmatrix}$,

- 3. What is $b_{11} 3a_{22} + 2c_{21}$?
- 4. Compute A + B.
- 5. Compute 3C.
- 6. Compute A + 4B.
- 7. Compute 3B 2C.
- 8. Give an example two matrices F and G so that F + G does not exist.

2. Determinants of 2×2 and 3×3 matrices

Definition 2.1. Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. The **determinant** of A, denoted $\det(A)$ or |A| is the quantity

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc.$$

The determinant is a fundamental quantity in linear algebra. For example, the system of equations

$$ax + by = \alpha$$

$$cx + dy = \beta$$

has the solution

$$\begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{ad - bc} \begin{pmatrix} \alpha d - \beta b \\ a\beta - c\alpha \end{pmatrix}$$

if $ad - bc \neq 0$. If ad - bc = 0, then the two equations are multiples of one another. From this example, we see that the determinant indicates whether or not a 2×2 system of linear equations has a unique solution.

Example 2.2.
$$\begin{vmatrix} 2 & 3 \\ -1 & 0 \end{vmatrix} = 2 \cdot 0 - 3 \cdot (-1) = 3.$$

Example 2.3.
$$\det \begin{pmatrix} -1 & 3 \\ 2 & -6 \end{pmatrix} = (-1)(-6) - 3 \cdot 2 = 0.$$

Definition 2.4. If A is a square matrix and $det(A) \neq 0$, then A is called **nonsingular**. If det(A) = 0, then A is called **singular**.

The matrix in Example 2.2 is nonsingular while the matrix in Example 2.3 is singular.

Definition 2.5. Let $A = (a_{jk})_{1 \le j,k \le 3} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$. The **determinant** of A is the quantity

$$|A| = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$
$$= a_{11} (a_{22}a_{33} - a_{23}a_{32}) - a_{12} (a_{21}a_{33} - a_{23}a_{31}) + a_{13} (a_{21}a_{32} - a_{22}a_{31}).$$

In analog of the 2×2 case, the system of equations

$$a_{11}x + a_{12}y + a_{13}z = \alpha$$
$$a_{21}x + a_{22}y + a_{23}z = \beta$$
$$a_{31}x + a_{32}y + a_{33}z = \gamma$$

has a unique solution if and only if $\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{vmatrix} \neq 0$ and has no solutions or infinitely many solutions otherwise.

Example 2.6.
$$\begin{vmatrix} 3 & 2 & 0 \\ 1 & 3 & 2 \\ -1 & 4 & 2 \end{vmatrix} = 3(3 \cdot 2 - 2 \cdot 4) - 2(1 \cdot 2 - 2(-1)) + 0(1 \cdot 4 - 3(-1)) = -6 - 8 = -14.$$
Example 2.7.
$$\begin{vmatrix} i & j & k \\ -1 & 0 & 4 \\ -2 & 1 & 3 \end{vmatrix} = i(0 \cdot 3 - 4 \cdot 1) - j((-1)3 - 4(-2)) + k((-1)1 - 0(-2)) = -4i - 5j - k.$$

Example 2.7.
$$\begin{vmatrix} i & j & k \\ -1 & 0 & 4 \\ -2 & 1 & 3 \end{vmatrix} = i(0\cdot 3 - 4\cdot 1) - j((-1)3 - 4(-2)) + k((-1)1 - 0(-2)) = -4i - 5j - k$$

2.1. Problems.

- 1. Evaluate $\begin{bmatrix} 5 & -1 \\ 4 & 6 \end{bmatrix}$.
- 2. Evaluate $\det \begin{pmatrix} -2 & -7 \\ 3 & 8 \end{pmatrix}$.

3. Which of the following is a singular matrix?

$$\begin{pmatrix} 2 & 3 \\ -4 & -6 \end{pmatrix}$$
 (b)

$$\left(\begin{array}{cc} 8 & 3 \\ -5 & -2 \end{array}\right)$$

4. Use determinants to determine whether the system of linear equations

$$2x - 3y = 2$$
$$3x - 4y = -1$$

has a unique solution.

- 5. Evaluate $\begin{vmatrix} 1 & 2 & 4 \\ 4 & -1 & 5 \\ -2 & 2 & 1 \end{vmatrix}$.

 6. Evaluate $\det \begin{pmatrix} 2 & 0 & 7 \\ -2 & -1 & -2 \\ 5 & 6 & 1 \end{pmatrix}$.
- 7. Which of the following is a singular matrix? (a)

$$\left(\begin{array}{ccc} 4 & 1 & -2 \\ 5 & 3 & -1 \\ 2 & 4 & 1 \end{array}\right)$$

(b)
$$\begin{pmatrix} 1 & 2 & 0 \\ -1 & 4 & 2 \\ -2 & 2 & 2 \end{pmatrix}$$

8. Use determinants to determine whether the system of linear equations

$$8y + 2z = 3$$
$$3x + 5y - 3z = 4$$
$$-6x - 2y + 8z = -1$$

has a unique solution.

3. Matrix Multiplication

3.1. Matrix Multiplication. Let A and B be two matrices. The product AB can be defined if the number of columns of A equals the number of rows of B, that is, if A is an $m \times n$ matrix and B is an $n \times k$ matrix, then AB will be an $m \times k$ matrix. If

$$A = (a_{ij})_{\substack{1 \le i \le m \\ 1 \le j \le n}}, \quad B = (b_{j\ell})_{\substack{1 \le j \le n \\ 1 \le \ell \le k}},$$

then the matrix C = AB is an $m \times k$ matrix and if $C = (c_{j\ell})_{\substack{1 \le i \le n \\ 1 \le \ell \le k}}$, then

$$c_{i\ell} = \sum_{j=1}^{n} a_{ij} b_{j\ell}.$$

Example 3.1. Let $A = \begin{pmatrix} 1 & -1 & 4 \end{pmatrix}$ and $B = \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix}$. Then

$$AB = \begin{pmatrix} 1 & -1 & 4 \end{pmatrix} \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \cdot 2 + (-1)4 + 4(-1) \end{pmatrix} = \begin{pmatrix} -6 \end{pmatrix}.$$

On the other hand,

$$BA = \begin{pmatrix} 2\\4\\-1 \end{pmatrix} \begin{pmatrix} 1 & -1 & 4 \end{pmatrix} = \begin{pmatrix} 2 & -2 & 8\\4 & -4 & 16\\-1 & 1 & -4 \end{pmatrix}$$

Matrix multiplication is NOT commutative!

Example 3.2. Let $A = \begin{pmatrix} 4 & 2 & -1 \\ 2 & 1 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 2 \\ 1 \\ 5 \end{pmatrix}$, and $C = \begin{pmatrix} 1 & -1 \\ 2 & -1 \\ 0 & 3 \end{pmatrix}$. Then

$$AB = \begin{pmatrix} 4 & 2 & -1 \\ 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ 5 \end{pmatrix} = \begin{pmatrix} 4 \cdot 2 + 2 \cdot 1 + (-1)5 \\ 2 \cdot 2 + 1 \cdot 1 + 1 \cdot 5 \end{pmatrix} = \begin{pmatrix} 5 \\ 10 \end{pmatrix}$$

while BA is not defined. Also,

$$AC = \begin{pmatrix} 4 & 2 & -1 \\ 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 2 & -1 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} 4 \cdot 1 + 2 \cdot 2 + (-1)0 & 4(-1) + 2(-1) + (-1)3 \\ 2 \cdot 1 + 1 \cdot 2 + 1 \cdot 0 & 2(-1) + 1(-1) + 1 \cdot 3 \end{pmatrix} = \begin{pmatrix} 8 & -9 \\ 4 & 0 \end{pmatrix}$$

while

$$CA = \begin{pmatrix} 1 & -1 \\ 2 & -1 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 4 & 2 & -1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 \cdot 4 + (-1)2 & 1 \cdot 2 + (-1)1 & 1(-1) + (-1)1 \\ 2 \cdot 4 + (-1)2 & 2 \cdot 2 + (-1)1 & 2(-1) + (-1)1 \\ 0 \cdot 4 + 3 \cdot 2 & 0 \cdot 2 + 3 \cdot 1 & 0(-1) + 3 \cdot 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 & -2 \\ 6 & 3 & -3 \\ 6 & 3 & 3 \end{pmatrix}$$

Example 3.3. Multiplying square matrices. Let $A = \begin{pmatrix} 2 & 3 \\ -1 & -2 \end{pmatrix}$ and $B = \begin{pmatrix} 3 & 1 \\ 4 & -1 \end{pmatrix}$. Then

$$AB = \begin{pmatrix} 2 & 3 \\ -1 & -2 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 4 & -1 \end{pmatrix} = \begin{pmatrix} 2 \cdot 3 + 3 \cdot 4 & 2 \cdot 1 + 3(-1) \\ (-1)3 + (-2)4 & (-1)1 + (-2)(-1) \end{pmatrix} = \begin{pmatrix} 18 & -1 \\ -11 & 1 \end{pmatrix}$$

while

$$BA = \begin{pmatrix} 3 & 1 \\ 4 & -1 \end{pmatrix} \begin{pmatrix} 2 & 3 \\ -1 & -2 \end{pmatrix} = \begin{pmatrix} 3 \cdot 2 + 1(-1) & 3 \cdot 3 + 1(-2) \\ 4 \cdot 2 + (-1)(-1) & 4 \cdot 3 + (-1)(-2) \end{pmatrix} = \begin{pmatrix} 5 & 7 \\ 9 & 14 \end{pmatrix}$$

Matrix multiplication is not necessarily commutative even for square matrices!

Example 3.4. If A is any $n \times n$ matrix, then AI = IA = A. Multiplication by the identity matrix is the analog of multiplying by 1.

Example 3.5. Multiplicative inverses. Let $A = \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix}$. Observe that

$$AB = \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I$$

and

$$BA = \begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I.$$

Definition 3.6. An $n \times n$ matrix A for which there exists an $n \times n$ matrix B satisfying $AB = BA = I_n$ is called **invertible** and B is denoted by A^{-1} .

The inverse of a nonsingular matrix A is unique. Suppose B and C are inverses of A, i.e., AB = BA = I and AC = CA = I. Then

$$C = CI = C(AB) = (CA)B = IB = B.$$

Example 3.7. Two strange examples. Let $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Then

$$A^2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

This is an example of a nonzero matrix A so that $A^2 = 0$. A matrix A so that $A^k = 0$ for some positive integer k is called a **nilpotent matrix**.

Let
$$B = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
. Then

$$B^{2} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = B.$$

B is an example of a matrix that is neither 0 nor the identity so that $B^2 = B$. A nonzero matrix so that $B^2 = B$ is called an **idempotent matrix**.

We summarize the arithmetic properties of matrix multiplication with the following theorem

Theorem 3.8. Let $\alpha \in \mathbb{R}$ be a matrix and A, B, C be matrices so that the indicated operations are defined.

(i)
$$A(B+C) = AB + AC$$

(ii)
$$(A+B)C = AC + BC$$

(iii)
$$\alpha(AB) = (\alpha A)B = A(\alpha B)$$
.

3.2. Problems.

1. Let
$$A = \begin{pmatrix} 2 & 3 & 2 \\ -1 & 0 & 3 \end{pmatrix}$$
 and $B = \begin{pmatrix} 4 & 5 \\ 3 & 1 \\ 0 & -3 \end{pmatrix}$. Compute AB and BA .

2. Let
$$A = \begin{pmatrix} 2 & 4 \\ -1 & -1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$. Compute AB . Can you compute BA ?

3. Given matrices
$$A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}$, show that $AB = BA = I$.

4. Given matrices
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 0 & 1 \\ 0 & -1 & 1 \end{pmatrix}$, show that $AB = BA = I$.

5. Let
$$A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$$
. Show that there cannot be a 2×2 matrix B satisfying $AB = BA = I$.

6. Show that if
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 and $\det A \neq 0$, then $A^{-1} = \frac{1}{\det A} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.

7. Let
$$A = \begin{pmatrix} 2 & -1 \\ 5 & -2 \end{pmatrix}$$
.

a. Write the vector equation
$$A \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$$
 as a system of linear equations and solve for x and y .

b. Find
$$A^{-1}$$
, apply to $A \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$, and solve for the vector $\begin{pmatrix} x \\ y \end{pmatrix}$.

8. Let A be an invertible $n \times n$ matrix. Is it true that $(A^{-1})^{-1} = A$?

4. Linear Independence

A linear combination of vectors $\vec{v_i} \in \mathbb{R}^n$ is any vector \vec{w} of the form $\vec{w} = \alpha_1 \vec{v_1} + \alpha_2 \vec{v_2} + \cdots + \alpha_m \vec{v_m}$ for scalars $\alpha_i \in \mathbb{R}$. The following property assures that no vector in a set can be expressed as a linear combination of the remaining vectors.

Definition 4.1. A set $\{v_1, v_2, ..., v_m\}$ of vectors is called **linearly independent** if the relationship $\alpha_1 \vec{v}_1 + \alpha_2 \vec{v}_2 + \cdots + \alpha_m \vec{v}_m = \vec{0}$ can hold only if all of the scalars α_i are zero. Otherwise, the set is **linearly dependent**.

Example 4.2. The set
$$\left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 3 \\ 5 \\ 0 \end{pmatrix} \right\}$$
 is linearly dependent because $3 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + 5 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + (-1) \begin{pmatrix} 3 \\ 5 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

.

Example 4.3. The set $\left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 3 \\ 5 \\ 2 \end{pmatrix} \right\}$ is linearly independent because

$$\alpha_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \alpha_2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + \alpha_3 \begin{pmatrix} 3 \\ 5 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} \alpha_1 + 3\alpha_3 \\ \alpha_2 + 5\alpha_3 \\ 2\alpha_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

can hold only if all of the α_i are 0.

Note that any set of vectors $\{v_1, v_2, ..., v_m, \vec{0}\}$ which includes the zero vector among its members is linearly dependent. This is shown by forming the linear combination $0\vec{v}_1 + 0\vec{v}_2 + \cdots + 0\vec{v}_m + 1 \cdot \vec{0} = \vec{0}$.