Eniversidad de Huelva

GRADO EN INGENIERÍA INFORMÁTICA

FUNDAMENTOS DE COMPUTADORES

Examen de Febrero (02/02/2017)

APELLIDOS:		
NOMBRE:	_DNI N°:	GRUPO:
		•

1.- (4 puntos) Una máquina expendedora de chocolatinas proporciona productos cuyos precios son de 50 cts, $1 \in y 2 \in P$ ara adquirir una chocolatina se debe introducir una única moneda de alguno de los valores indicados (la máquina no admite monedas distintas a éstas). La máquina dispone de un detector de monedas con dos salidas (M_1 y M_0) que indican el valor de la moneda introducida según la siguiente tabla:

Moneda introducida	M_1	\mathbf{M}_0
Ninguna	0	0
50 cts	0	1
1 €	1	0
2 €	1	1

También dispone de un circuito que codifica el tipo de producto seleccionado como sigue:

Producto seleccionado	$\mathbf{P_1}$	$\mathbf{P_0}$
Ninguno	0	0
Chocolatina de 50 cts	0	1
Chocolatina de 1 €	1	0
Chocolatina de 2 €	1	1

Una vez seleccionado el producto e introducida la moneda, la máquina suministrará el producto deseado y el cambio (si procede), que consistirá en una moneda como máximo. En aquellos casos en que con una moneda no pueda proporcionar el cambio correcto, la máquina devolverá la moneda introducida y no proporcionará el producto.

Se desea diseñar un circuito que ponga a nivel alto una señal C en aquellos casos en que se deba proporcionar el producto deseado al cliente, e indique el valor de la moneda a devolver codificado según la siguiente tabla:

Valor de la moneda a devolver	\mathbf{D}_1	\mathbf{D}_0
Ninguna	0	0
50 cts	0	1
1 €	1	0
2€	1	1

Se pide:

- a) Tabla de verdad del circuito. (2 puntos)
- **b**) Implementación del circuito completo mediante el empleo de decodificadores con un máximo de ocho salidas negadas y puertas lógicas. (*1 punto*)
- c) Escribir un módulo VHDL en el que se modele la función C. (1 punto)
- **2.-** (1 punto) Determinar los valores que deben aplicarse a los diferentes canales del multiplexor de la figura para obtener en su salida la función \mathbf{F} .

3.- (1.5 puntos) Dado el diagrama de estados de la figura:

Implementar un circuito cuyo comportamiento se corresponda con dicho diagrama mediante el empleo de flip-flops tipo T y puertas lógicas.

4.- (3.5 puntos) Un circuito digital proporciona a su salida una secuencia de pulsos a nivel alto de duración constante e igual a 5 periodos de la señal CLK. El tiempo de separación entre los pulsos de salida generados por este circuito es variable, si bien entre dos pulsos consecutivos la salida siempre pasará a cero durante al menos 2 periodos de reloj.

Las salidas **A** y **B** de dos circuitos generadores de pulsos como el descrito anteriormente se han conectado a las entradas de un tercer circuito, tal como se muestra en la siguiente figura:

La función de este último circuito es detectar cuando los pulsos de salida de ambos generadores coinciden en el tiempo, o bien si el desfase entre éstos es de un solo periodo de la señal CLK. Cada vez que esto ocurra, la salida **S** del circuito debe pasar a nivel alto durante el mismo tiempo que ambas entradas permanezcan a 1 simultáneamente.

- a) Representar el diagrama de estados del circuito a diseñar. (3 puntos)
- **b**) Indicar el tamaño de la PROM necesaria para implementar el circuito si se utiliza un registro como elemento de memoria. (0.5 puntos)

a) Tabla de verdad del circuito.

P ₁	P ₀	M ₁	M_0	С	D ₁	D_0
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	0	0	1	0
0	0	1	1	0	1	1
0	1	0	0	0	0	0
0	1	0	1	1	0	0
0	1	1	0	1	0	1
0	1	1	1	0	1	1
1	0	0	0	0	0	0
1	0	0	1	0	0	1
1	0	1	0	1	0	0
1	0	1	1	1	1	0
1	1	0	0	0	0	0
1	1	0	1	0	0	1
1	1	1	0	0	1	0
1	1	1	1	1	0	0

$$C = \sum_{4} (5, 6, 10, 11, 15)$$

$$D_1 = \sum_4 (2, 3, 7, 11, 14)$$

$$D_0 = \sum_4 (1, 3, 6, 7, 9, 13)$$

b) Implementación del circuito completo mediante decodificadores y puertas lógicas.

c) Módulo VHDL de la función C.

```
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY EFC_17_F IS
  PORT ( P1 : IN STD_LOGIC;
          PO: IN STD LOGIC;
          M1: IN STD_LOGIC;
          M0: IN STD_LOGIC;
          C: OUT STD_LOGIC);
END EFC_17_F;
ARCHITECTURE A_ EFC_17_F OF EFC_17_F IS
SIGNAL ENTRADA: STD_LOGIC_VECTOR (3 DOWNTO 0);
BEGIN
ENTRADA <= P1 & P0 & M1 & M0;
WITH ENTRADA SELECT
C <= '1' WHEN "0101" | "0110" | "1010" | "1011" | "1111",
    '0' WHEN OTHERS;
END A_ EFC_17_F;
```

Tabla de verdad de la función a implementar: $F(D, C, B, A) = CA + \overline{DA}$.

D	С	В	Α	F
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

$$F = \sum_{4} (0, 2, 4, 5, 6, 7, 13, 15)$$

La tabla necesaria para implementar la función F mediante un multiplexor es la siguiente.

СВА		001	010	011	100	101	110	111
0	1	0	1	0	1	1	1	1
1	0	0	0	0	0	1	0	1
,	D	0	D	0	D	1	D	1

Por tanto, los canales de entrada del multiplexor deben conectarse como se muestra en la siguiente figura.

Tabla de estados y de excitación del sistema

q ₁	q ₀	Ε	Q_1	\mathbf{Q}_{0}	S	T ₁	T ₀
0	0	0	0	0	0	0	0
0	0	1	0	1	1	0	1
0	1	0	1	1	1	1	0
0	1	1	1	0	0	1	1
1	0	0	1	1	0	0	1
1	0	1	1	0	1	0	0
1	1	0	0	0	0	1	1
1	1	1	0	1	0	1	0

$$T_1 = \sum_3 (2, 3, 6, 7) = q_0$$

$$T_0 = \sum_3 (1, 3, 4, 6) = \overline{q_1} E + q_1 \overline{E} = q_1 \oplus E$$

$$S = \sum_{3} (1, 2, 5) = \overline{q_0} E + \overline{q_1} q_0 \overline{E}$$

a) Diagrama de estados del sistema.

b) Para implementar el sistema mediante un registro y una memoria PROM, el tamaño necesario de esta última será de 32 posiciones de 4 bits cada una, ya que debe tener 5 líneas de dirección a las que se aplicarán las señales (q₂, q₁, q₀, A y B) y cuatro líneas de salida (que proporcionarán las señales D₂, D₁, D₀ y S).