機械学習を用いたポケモンのタイプ判定

Group 4 上原 由宇駆·上原 一真·白石 貴祥

Agenda

- 目的・目標
- アプローチ
- 実施計画
- データ
- 学習方法
- 実行結果
- 実験結果
- 考察

目的 目標

ポケモンの画像から、そのポケモンが持つタイプ (18種)を判定したい

例:ピカチュウの画像を入力すると、でんきタイプだと判定される

アプローチ

- ポケモンのタイプ判別できそうな手法を考える
- classificationが良さそう
- CNNやろう!

実験計画

- 必要そうなデータの収集
- 学習用データセットの構築
- CNN等を用いて機械学習
- 様々な手法の検証
- 評価

データ(1)

ポケモンの画像

● 形状: 215×215 RGBA

● 枚数:801枚(1ポケモン1枚)*第7世代まで

データ(2)

● ポケモンの図鑑番号や名前、タイプデータ、種族値など (第7世代まで)

Number	Name	Type1	Type2	Total	HP	Attack	Defense	SpecialAtk	SpecialDef	Speed
1	Bulbasaur	Grass	Poison	318	45	49	49	65	65	45
2	lvysaur	Grass	Poison	405	60	62	63	80	80	60
3	Venusaur	Grass	Poison	525	80	82	83	100	100	80
3	VenusaurMega Venusaur	Grass	Poison	625	80	100	123	122	120	80
4	Charmander	Fire	NA	309	39	52	43	60	50	65
5	Charmeleon	Fire	NA	405	58	64	58	80	65	80
6	Charizard	Fire	Flying	534	78	84	78	109	85	100
6	CharizardMega Charizard X	Fire	Dragon	634	78	130	111	130	85	100
6	CharizardMega Charizard Y	Fire	Flying	634	78	104	78	159	115	100

データ前処理

- 今回使わないデータを省く
 - 種族値やメガ進化, 色違い etc.
- データの正規化
 - 0~255を0~1にする
- 次元削減
 - RGBAをRGBに変換
 - 画像サイズを215*125から64*64に変換

試した手法

- 多クラス分類 Multi class classification
- 多ラベル分類Multi label classification
- クラスタリング
- ランダムフォレスト

- 多クラス分類。1つの画像を複数クラスの中から1つに分類する。
- 問題点として、1つのクラスに分類するので、複数タイプに対応できない。

- KerasのSequentialモデルを利用
 - 畳み込み層やプーリング層を重ねてモデルを構築
 - 活性化関数はrelu
 - 最適化関数はAdam
 - 出力層にsoftmax
 - 損失関数はcategorical_crossentropy
- データ数不足の対策として、sklearnのKFoldを使って交差検証

実行結果:

部分点ありの場合:約95%

完全解答の場合:約1%

部分点とは?

→ タイプはバイナリクラスで表現される。(e.g.:[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

このタイプの精度を評価する際、一致する割合を精度とする (部分点を与える)方 法と完全一致で正解とみなす方法の2種類がある。

Multi label classification

● 多ラベル分類。1枚の画像から2つ以上のクラスを出力出来る.

男性 90% ポロシャツ 70% 青色 98%

- KerasのSequentialモデルを利用
 - 畳み込み層やプーリング層を重ねてモデルを構築
 - 活性化関数はrelu
 - 最適化関数はAdam
 - 出力層にsigmoid
 - 損失関数はbinary_crossentropy
- データ数の不足対策
 - ズラし, 反転等での水増し
 - 交差検証

Multi label classification

試した事

- 1. とりあえず参考サイトのコードを試す
 - a. 水タイプとノーマルタイプとしか出力されなかった
- 2. class weight
 - a. タイプはバラけたけど精度はほぼ変わらなかった
- 3. L2正則化
 - a. 過学習はしなくなったが lossが下がらなくなった

Multi label classification

実行結果:

部分点ありの場合:約90%

完全解答の場合: 約1%

クラスタリング

- 階層型クラスタリング
 - o scipy の linkage を使ってクラスタリング

クラスタリングの考察

- あまりタイプごとに別れてくれない
- 進化系統が同じポケモンは同じクラスタに分類できているっぽい
- 色だけじゃなく、体形や姿勢が似ているものでクラスタリングされている

実行結果

- 多クラス分類
 - 2タイプもちのポケモンの時, 一つのタイプしか予測できない為に, 正解は Type1だが予測はType2を出力してしまい, 当たっているのに当たってない状 況になった.
- 多ラベル分類
 - 18タイプ中4タイプで確率20%ずつとなり2タイプに絞り込めなかった.
- クラスタリング
 - 色以外の要素が思ったより大きく、うまくタイプで分かれなかった

考察

精度が出せなかった要因

データが少ない

・データに偏りがある (クラスごとのサンプル数が違う、e.g.:水タイプは多いがフェアリータイプは少ない)

・そもそもクラスタ数が多すぎる (18タイプあるのでかなりばらけたっぽい)

参考文献

image_data

https://www.kaggle.com/dollarakshay/pokemon-images

type_data

https://github.com/lgreski/pokemonData