

Econ 2250: Stats for Econ

Fall 2022

Source for pic stats above.

Review

- Summary Statistics
 - Sum
 - Average
 - Median
 - Even and odd
 - Deviation
 - Variance
 - Standard Deviation
- Probability
 - Joint
 - Conditional
- Modeling
 - Covariance
 - Correlation

Summary Statistics

	total_rooms	total_bedrooms	median_house_value
count	17000.000000	17000.000000	17000.000000
mean	2643.664412	539.410824	207300.912353
std	2179.947071	421.499452	115983.764387
min	2.000000	1.000000	14999.000000
25%	1462.000000	297.000000	119400.000000
50%	2127.000000	434.000000	180400.000000
75%	3151.250000	648.250000	265000.000000
max	37937.000000	6445.000000	500001.000000

Remember that median is middle

if
$$n$$
 is odd, $\operatorname{median}(x) = x_{(n+1)/2}$ if n is even, $\operatorname{median}(x) = \frac{x_{(n/2)} + x_{((n/2)+1)}}{2}$

Summary Operator

 $\sum X = X_1 + X_2 + ... + X_n$

Summary

$$\sum_{i=1}^n x_i \equiv x_1 + x_2 + \ldots + x_n$$

Summary Operator Properties

$$\sum_{i=1}^{n} c = nc$$

2.)
$$\sum_{i=1}^{n} cx_i = c \sum_{i=1}^{n} x_i$$

3.) For any constant
$$a$$
 and b : $\sum_{i=1}^n (ax_i + by_i) = a\sum_{i=1}^n x_i + b\sum_{j=1}^n y_i$

Gotchas! Be Careful

$$\sum_i^n rac{x_i}{y_i}
eq rac{\sum_{i=1}^n x_i}{\sum_{i=1}^n y_i}$$

$$\sum_{i=1}^n x_i^2
eq \left(\sum_{i=1}^n x_i
ight)^2$$

Summary Operation (SIGMA?)

And we can divide

$$x = [3, 12, 4]$$

 $y = [2, 9, 1]$
 $sum(x*y) / sum(x**2)$

$$\frac{\sum x_i y_i}{\sum x_i^2} = \frac{x_1 * y_1 + x_2 * y_2 + x_3 * y_3}{x_1^2 + x_2^2 + x_3^2}$$
$$3 * 2 + 12 * 9 + 4 * 1$$

$$= \frac{3^{2} + 12^{2} + 4^{2}}{3^{2} + 12^{2} + 4^{2}}$$

$$= \frac{6 + 108 + 4}{9 + 144 + 16}$$

$$= \frac{118}{169} = 0.6982249$$

Summary Operator Property 3:

For any constant
$$a$$
 and b : $\sum_{i=1}^n (ax_i + by_i) = a\sum_{i=1}^n x_i + b\sum_{j=1}^n y_i$

$$\sum_{i=1}^{n} (ax_i + by_i) =$$

$$(ax_1 + by_1) + (ax_2 + by_2) + (ax_3 + by_3) =$$

$$ax_1 + by_1 + ax_2 + by_2 + ax_3 + by_3 =$$

$$(ax_1 + by_1) + (ax_2 + by_2) + (ax_3 + by_3) =$$

$$a(x_1 + bx_2 + bx_3) + b(y_1 + y_2 + y_3) =$$

$$a\sum_{i=1}^{n} x_i + b\sum_{i=1}^{n} y_i$$

Show that...using x = (1,2,3)

$$\sum_i^n rac{x_i}{y_i}
eq rac{\sum_{i=1}^n x_i}{\sum_{i=1}^n y_i}$$

And

$$\sum_{i=1}^n x_i^2
eq \left(\sum_{i=1}^n x_i
ight)^2$$

Expected Value Operator

$$E(x) = \sum_{i} x_{i} * Pr(x_{i})$$

Expected Value Operator Property 2:

$$E(aX + b) = E(aX) + E(b) = aE(X) + b$$

```
x = [3,6,2]
p(x) = \frac{1}{3}
a = 5
b = 4
E(aX + b) = E(aX) + E(b)
= ax_{1}*p(x_{1}) + ax_{2}*p(x_{2}) + ax_{3}*p(x_{3}) + b = a(x_{1}*p(x_{1}) + x_{2}*p(x_{2}) + x_{3}*p(x_{3})) + b
= a(E(x)) + b = 5(3*\frac{1}{3} + 6*\frac{1}{3} + 2*\frac{1}{3}) + 4 = 22\frac{1}{3}
```

Variance

$$V(X) = E((X - E(X))^2)$$

From the example above

$$\sigma^2 = \frac{1}{n} \sum (x_i - \mu_x)^2$$

Sum of demean_sq = 11.1 + 32.1 + 5.4 = 48.6

х	mu	demean	demean_sq
3	6.3	-3.3	11.1
12	6.3	5.7	32.1
4	6.3	-2.3	5.4

48.6/3 = 16.2

But, notice our deviations (-3.3, 5.7, -2.3), 16.2 is an awful absolute value estimate. That is because we squared the errors, and x is in levels (not squared).

Standard Deviation = square root of σ^2 , sqrt(16.2) = 4.02

Nice correlation app

https://shiny.rit.albany.edu/stat/rectangles/

Covariance Cov(X, Y) = E[(X-E(X)(Y-E(Y))]

Covariance

$$Cov(x, y) = E[(X - E(X))(Y - E(Y))]$$

= $\frac{\sum (x_i - \mu_x)(y_i - \mu_y)}{n - 1}$

Example covariance

$$\frac{\sum (x_i - \mu_x)(y_i - \mu_y)}{n-1}$$

x	у		demean_x	demean_y	demean_x*demean_y
	3	6	-2.4	1.6	-3.84
	5	9	-0.4	4.6	-1.84
	2	2	-3.4	-2.4	8.16
	8	1	2.6	-3.4	-8.84
	9	4	3.6	-0.4	-1.44

mean_y 4.4 mean_x 5.4

Correlation

$$ho_{X,Y} = \operatorname{corr}(X,Y) = rac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y}$$

Correlation

$$ho_{X,Y} = \operatorname{corr}(X,Y) = rac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y} = rac{\operatorname{E}[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y}, \quad ext{if } \sigma_X \sigma_Y > 0$$

$$r_{xy} \ \stackrel{ ext{def}}{=} \ rac{\sum\limits_{i=1}^{n}(x_i-ar{x})(y_i-ar{y})}{(n-1)s_xs_y} = rac{\sum\limits_{i=1}^{n}(x_i-ar{x})(y_i-ar{y})}{\sqrt{\sum\limits_{i=1}^{n}(x_i-ar{x})^2\sum\limits_{i=1}^{n}(y_i-ar{y})^2}}$$

Example

$$\sum\limits_{i=1}^n (x_i-ar{x})(y_i-ar{y})$$

$$\sqrt{\sum\limits_{i=1}^{n}(x_{i}-ar{x})^{2}\sum\limits_{i=1}^{n}(y_{i}-ar{y})^{2}}$$

x	у	demean_x	demean_x_sq	demean_y	demean_y_sq	demean_x*demean_y	
3	6	-2.4	5.76	1.6	2.56	-3.84	
5	9	-0.4	0.16	4.6	21.16	-1.84	
2	2	-3.4	11.56	-2.4	5.76	8.16	
8	1	2.6	6.76	-3.4	11.56	-8.84	
9	4	3.6	12.96	-0.4	0.16	-1.44	
	J2		37.2		41.2	-7.8	sum
mean_y	4.4			1.5		-1.95	sum/(n-1)

mean_y	4.4
mean_x	5.4

numerator denom

-1.95	-1.95	-0.22	correlation	
sqrt(37.2 + 41.2)	8.85		N/A	

Probability

Probability notation

- Capital letters, such as X, Y, and Z, are used to denote random variables.
- Lowercase letters, such as x, y, z and a, b, c are used to denote particular values that the random variable can take on.
- Thus, the expression P(X = x) symbolizes the probability that the random variable X takes on the particular value x. Often, this is written simply as P(x).
- Likewise, $P(X \le x)$ = probability that the random variable X is less than or equal to the specific value x;
- $P(a \le X \le b)$ = probability that X lies between values a and b.

Probability Distribution Function (PDF): specification of the probability associated with each value of a random variable.

For continuous r.v.s:

$$F(a) = p(X \le a) = \int_{-\infty}^{a} f(x) dx = \text{Area up to } X = a$$

$$p(a \le X \le b) = F(b) - F(a)$$

$$F(a) = p(X \le a)$$

$$p(a \le X \le b) = F(b) - F(a)$$

Probability Mass Function (PMF)

A probability distribution involving only discrete values of X. Aggregates different possible values of X, and the different possible values of P(x).

Properties:

$$0 \le P(X = x) \le 1$$

$$\Sigma P(X = x) = 1.$$

х	P(x)
2	1/16
3	2/16
4	3/16
5	4/16
6	3/16
7	2/16
8	1/16

Cumulative Density Function (CDF)

The probability that a random variable X takes on a value less than or equal to some particular value a is often written as

$$F(a) = p(X \le a) = \sum_{X \le a} p(x)$$

(for discrete variables, integral for continuous)

Likelihood of event

$$P(\text{event}) = \frac{\text{# of outcomes of event}}{\text{# of outcomes in }\Omega}$$

Events

Non-mutually exclusive В P(A U B) P(A) + P(B) - P(A|B)

Summary of probabilities

Event	Probability
Α	$P(A) \in [0,1]$
not A	$P(A^{\complement}) = 1 - P(A)$
A or B	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $P(A \cup B) = P(A) + P(B)$ if A and B are mutually exclusive
A and B	$P(A \cap B) = P(A B)P(B) = P(B A)P(A)$ $P(A \cap B) = P(A)P(B)$ if A and B are independent
A given B	$P(A \mid B) = rac{P(A \cap B)}{P(B)} = rac{P(B A)P(A)}{P(B)}$

Bayes Rule

- P(A|B) = P(B|A) * P(A) / P(B)
- NOTE: we often do not have access to P(B) and have to calculate by looking at all possible cases:
- P(B) = P(B|A) * P(A) + P(B|not A) * P(not A)

Bayes example 1

At a School, 60% of the boys play football and 36% of the boys play ice hockey.

Given that 40% of those that play football also play ice hockey, what percent of those that play ice hockey also play football?

$$P(A|B)$$
?

$$P(A) = 60\% = 0.6$$

$$P(B) = 36\% = 0.36$$

$$P(B) = 36\% = 0.36$$

 $P(B|A) = 40\% = 0.4$

$$P(A|B) = \frac{P(A)P(B|A)}{P(B)} = \frac{0.6 \times 0.4}{0.36} = \frac{0.24}{0.36} = 66\frac{2}{3}\%$$

Example 1b

Now, for the problem above, what is the percentage of those that do not play football that play hockey?

What is the $P(H|\sim F)$?

$$P(F) = 60\% = 0.6$$

$$P(H|F) = 40\% = 0.4$$

$$P(H) = 36\% = P(F)P(H|F) + P(\sim F)P(H|\sim F) = 0.36$$

Let's imagine that there are 100 students...

Bayes Example 4

In a factory, machine X produces 60% of the daily output and machine Y produces 40% of the daily output.

2% of machine X's output is defective, and 1.5% of machine Y's output is defective.

One day, an item was inspected at random and found to be defective. What is the probability that it was produced by machine X?

= 0.018

$$P(X) = 60\% = 0.6$$

P(defective) =
$$2\% \times 60\% + 1.5\% \times 40\% = 0.012 + 0.006$$

P(defective|X) = 2% = 0.02

$$\frac{P(A)P(B|A)}{P(B)} = \frac{0.6 \times 0.02}{0.018} = \frac{0.012}{0.018} = \frac{2}{3}$$

Defect

Covid

Let's 5% of the population has COVID, and test has true positive of 85% (says you have it when you do have it), and false positive of 10% (says you have it when you don't).

You take a test and it says positive, what is the actual chance that you have it?

Have Covid given a positive test result

$$P(B) = P(A)P(B|A) + P(\sim A)P(B|\sim A) = 10\% * 95\% + 90\% * 2\%$$

Have Covid given a positive test result

$$P(B) = P(A)P(B|A) + P(\sim A)P(B|\sim A) = 5\% * 85\% + 95\% * 10\%$$

$$P(A1|B) = \frac{P(A1)P(B|A1)}{P(A1)P(B|A1) + P(A2)P(B|A2) + P(A3)P(B|A3) + ...etc}$$

- Pam put in 15 paintings, 4% of her works have won First Prize.
- Pia put in 5 paintings, 6% of her works have won First Prize.
- Pablo put in 10 paintings, 3% of his works have won First Prize.

What is the chance that Pam will win First Prize?

Pam wins?

$$\frac{4\%*15/30}{(4\%*15/30 + 6\%*5/30 + 4\%*10/30)} = 50\%$$

 $P(B) = P(A)P(B|A) + P(\sim A)P(B|\sim A) = 4\%*15/30 + 6\%*5/30 + 4\%*10/30$

End of class form

https://forms.gle/kgT2w9wPZo3vJcjA8