

浙江大学 20_10 - 20_11_学年_春夏_学期 《 材料力学(乙) 》课程期末考试试卷

.课程号: _261C0031_, 开课学院: _<u>航空航天</u>_

考试试卷: A √卷、B 卷 (请在选定项上打 √)

考试形式: 闭√、开卷(请在选定项上打√),允许带_A4纸一张_入场

考试日期: _2011 年 6 月 26 日, 考试时间: _120 分钟

诚信考试,沉着应考,杜绝违纪。

考生姓名:			学号:						
题序		-	=	四	五	六	七	八	总分
得分									
评卷人									

- 一、选择和填充题(每小题3分,共21分)
- 1、下面有关应变能的几个论述,正确的是(_____)。
 - (1) 与载荷的加载次序有关,与载荷的最终值无关;
 - (2) 与载荷的加载次序无关,与载荷的最终值无关;
 - (3) 与载荷的加载次序有关,与载荷的最终值有关;
 - (4) 与载荷的加载次序无关,与载荷的最终值有关。
- 2、图示等腰直角三角形微体,已知两个直边截面上只有切应力,且等于 τ_0 ,则斜边截面上的正应力 σ 和切应力 τ 分别为(____)

(1)
$$\sigma = \tau_0, \tau = \tau_0$$
 (2) $\sigma = \tau_0, \tau = 0$ (3) $\sigma = \sqrt{2}\tau_0, \tau = \tau_0$, (4) $\sigma = \sqrt{2}\tau_0, \tau = 0$

3、图中的板和铆钉是同一材料,已知挤压许可应力是剪切许可应力的两倍,也 就是说 $[\sigma_{hx}]=2[\tau]$ 。为了充分提高材料利用率,则铆钉的直径应该是 (____)

4、如图所示的简支梁,其应变能为U,用卡氏第二定理表示的C、D 点处扰度的哪个表达式是正确的(______)

的哪个权益,
(1)
$$f_C = f_D = \frac{\partial U}{\partial F}$$
 (2) $f_C = f_D = \frac{1}{2} \frac{\partial U}{\partial F}$

(3)
$$\frac{\partial U}{\partial F}$$
 没有意义 (4) $f_C = f_D = 2 \frac{\partial U}{\partial F}$

- 5、关于偏心拉伸(压缩)变形的下述说法,正确的是(_____)。
- (1) 只发生平面弯曲这一种变形;
- (2) 中性轴通过横截面的形心;
- (3) 中性轴不通过横截面的形心;
- (4) 只发生拉伸(压缩)这一种变形。

6、图示交变应力的循环特征r、平均应力 σ_m 、应力幅值 σ_a 分别为 (1)40,20,10; (2)20,10,20; (3)0,20,10; (4)0,20,20。 正确答案是(

7、图示矩形截面拉杆受偏心拉力 F 作用,用电测法测得该杆表面 A、B 两点的轴向线应变分别为 ε_A 和 ε_B 。偏心距 e=_____。

二、某点的应力状态如图所示(图中应力单位: MPa),试求:(1)该点的主应力大小与方向,并在单元体上画出;(2)该点的最大切应力;(3)画出应力圆。(14分)

三、图示跨长I=8m的简支梁由 No.20a 工字钢制成,有一重G=1kN的重物自高度 h=0.5m 处自由下落至梁的中点处。已知材料的许用应力 $[\sigma]=175\,\mathrm{MPa}$,弹性模量 $E=210\,\mathrm{GPa}$ 。试校核该梁的强度。(20a 截面参数: $A=35.5\,\mathrm{cm}^2$, $I_z=2370\,\mathrm{cm}^4$, $W_z=237\,\mathrm{cm}^3$)(15分)

四、如图所示结构,杆 AB 横截面面积 A=21.5 cm²,抗弯截面模量 $W_z=102$ cm³,材料的许用应力 $[\sigma]=180$ MPa。圆截面杆 CD,其直径 d=28mm,材料的弹性模量 E=200GPa,比例极限 $\sigma_p=200$ MPa。 A、C、D 三处均为球铰约束,若已知: $l_1=1.25$ m, $l_2=0.55$ m,F=25 kN,稳定安全系数 $[n]_{st}=1.8$,试校核此结构是否安全。(15分)

五、如图所示,直径d=100mm的圆形折杆 ABC,AB 杆与 BC 杆处在同一水平面上,且相互垂直,材料的许用应力为 $[\sigma]=160$ MPa。在 C 点受竖向力P=5KN的作用,试指出最危险的点,画出该点应力单元图,并按第三强度理论核强度。(15分)

六如下图所示 L 形框架,D 截面处固定,C 截面处水平向支撑,A 端作用有 题集中力。各段抗弯刚度均为 EI。试画出框架弯矩图,并求 A 端竖向位移 (请用能量法求解,忽略轴力的影响)。(20分)

