TS226

.

Codes correcteur d'erreur

Romain Tajan

25 septembre 2019

Plan

- Introduction au codage / définitions
- Sur la modélisation du canal
- Code correcteur d'erreur
- Probabilité d'erreur
- 2 Théorie de l'information / Capacité d'un canal
- ▶ Théorème de Shannon
- Rappels de théorie de l'information (VA continues)
- 3 Codes Linéaires (binaires) en blocs

Dernier QCM

Comment avez-vous trouvé ce cours?

- Très difficile
- Oifficile
- Moyen
- Simple
- Très simple

Plan

- Introduction au codage / définitions
- Code correcteur d'erreur
- Probabilité d'erreur
- 2 Théorie de l'information / Capacité d'un canal
- 3 Codes Linéaires (binaires) en blocs

Décodage du Maximum a Posteriori

Définition

- Soit C un code (M, n) donné.
- Le décodeur du Maximum A Posteriori (MAP) est la fonction de y définie par :

$$\Psi_{\textit{MAP}}(\mathbf{y}) = \operatorname*{argmax}_{w \in \mathcal{M}} \mathbb{P}(\textit{W} = \textit{w} | \mathbf{Y} = \mathbf{y})$$

Le décodeur MAP minimise P_e

Plan

- Introduction au codage / définitions
- 2 Théorie de l'information / Capacité d'un canal
- Capacité d'un canal
- ▶ Rappels de théorie de l'information (VA continues)
- ▶ Capacité d'un canal à entrées continues
- 3 Codes Linéaires (binaires) en blocs

Capacité

La capacité d'un canal discret sans mémoire de sortie $Y \in \mathcal{Y}$ et d'entrée $X \in \mathcal{X}$ et de probabilité de transition p(y|x) est définie par

$$C = \sup_{p(x)} \mathbb{I}(X, Y)$$

La capacité du canal BSC

$$C(p) = 1 + p \log_2(p) + (1 - p) \log_2(1 - p)$$

est atteinte ssi $X \sim \mathcal{B}(0.5)$

Théorème du codage canal de Shannon

Soit $(\mathcal{X}, \mathcal{Y}, p(y|x))$ un canal discret sans mémoire de capacité $C \geq 0$ et soit R < C

1 Il existe une suite de codes $(C_n)_{n\geq 1}$ où C_n est de longueur n, de rendement R_n et de probabilité d'erreur maximale $\lambda^{(n)}$ telle que

$$\lambda^{(n)} \to 0$$
, et $R_n \to R$

2 Réciproquent, s'il existe une suite de codes $(C_n)_{n\geq 1}$ telle que $\lambda^{(n)}\to 0$ alors

$$\limsup_n R_n \leq C$$

- **1** Quelque soit $\epsilon > 0$, il existe **toujours** un code \mathcal{C}_n de longueur n et de rendement $R_n < \mathcal{C}$ tel que $\lambda^{(n)} < \epsilon$.
- La remarque précédente ne dit cependant rien sur la longueur n de ce code, qui peut être éventuellement très grande.
- 3 L'item (2) du théorème montre que C est une borne supérieure des rendements de codes fiables
- 4 La preuve de (1) (Cover & Thomas Information theory) repose sur une génération aléatoire des codes C_n

Entropies

- Entropie de X : $\mathbb{H}(X) = -\int_{\mathcal{V}} p(x) \log(p(x)) dx$
- Entropie jointe de X et Y : $\mathbb{H}(X, Y) = -\int_{X \times Y} p(x, y) \log(p(x, y)) dxdy$
- Entropie conditionnelle de Y sachant X : $\mathbb{H}(Y|X) = -\int_{\mathcal{X}\times\mathcal{V}} p(x,y) \log(p(y|x)) dxdy$

Information mutuelle

$$I(X, Y) = H(X) - H(X|Y)$$

$$= H(Y) - H(Y|X)$$

$$= \int_{X \times Y} p(x, y) \log \left(\frac{p(x, y)}{p(x)p(y)}\right) dxdy$$

- ① Si $\mathbb{V}(X) \leq \sigma^2$ alors $\mathbb{H}(X) \leq \log(2\pi e \sigma^2)$ avec égalité ssi $X \sim \mathcal{N}(0, \sigma^2)$.
- 2 Pour $\beta \in \mathbb{R}$ et $\alpha > 0$, $\mathbb{H}(\alpha X + \beta) = \mathbb{H}(X) + \log(\alpha)$

- Si $\mathbb{V}(X) \leq \sigma^2$ alors $\mathbb{H}(X) \leq \log(2\pi e \sigma^2)$ avec égalité ssi $X \sim \mathcal{N}(0, \sigma^2)$.
- Pour $\beta \in \mathbb{R}$ et $\alpha > 0$, $\mathbb{H}(\alpha X + \beta) = \mathbb{H}(X) + \log(\alpha)$
- $\mathbb{H}(X,Y) \leq \mathbb{H}(X) + \mathbb{H}(Y)$ avec égalité ssi X et Y sont indépendantes
- $\mathbb{H}(X, Y) = H(X) + H(Y|X) = H(Y) + H(X|Y)$
- $\blacksquare (Y|X) < \blacksquare (Y)$ avec égalité ssi X et Y sont indépendantes

- Si $\mathbb{V}(X) < \sigma^2$ alors $\mathbb{H}(X) < log(2\pi e\sigma^2)$ avec égalité ssi $X \sim \mathcal{N}(0, \sigma^2)$.
- Pour $\beta \in \mathbb{R}$ et $\alpha > 0$, $\mathbb{H}(\alpha X + \beta) = \mathbb{H}(X) + \log(\alpha)$
- $\mathbb{H}(X, Y) < \mathbb{H}(X) + \mathbb{H}(Y)$ avec égalité ssi X et Y sont indépendantes
- $\mathbb{H}(X, Y) = H(X) + H(Y|X) = H(Y) + H(X|Y)$
- $\mathbb{H}(Y|X) < \mathbb{H}(Y)$ avec égalité ssi X et Y sont indépendantes
- L'entropie (jointe, conditionnelle) dans le cas continu peut prendre des valeurs négatives.

- Si $\mathbb{V}(X) < \sigma^2$ alors $\mathbb{H}(X) < log(2\pi e\sigma^2)$ avec égalité ssi $X \sim \mathcal{N}(0, \sigma^2)$.
- Pour $\beta \in \mathbb{R}$ et $\alpha > 0$, $\mathbb{H}(\alpha X + \beta) = \mathbb{H}(X) + \log(\alpha)$
- $\mathbb{H}(X, Y) \leq \mathbb{H}(X) + \mathbb{H}(Y)$ avec égalité ssi X et Y sont indépendantes
- $\mathbb{H}(X, Y) = H(X) + H(Y|X) = H(Y) + H(X|Y)$
- $\mathbb{H}(Y|X) < \mathbb{H}(Y)$ avec égalité ssi X et Y sont indépendantes
- L'entropie (jointe, conditionnelle) dans le cas continu peut prendre des valeurs négatives.
- $\mathbb{Z}(X,Y) \geq 0$ avec égalité ssi X et Y sont indépendantes.

Capacité

La capacité d'un canal Gaussien sans mémoire avec contrainte d'énergie E_s est

$$C = \sup_{p(x): \mathbb{V}(X) \le E_{s}} \mathbb{I}(X, Y)$$
$$= \frac{1}{2} \log \left(1 + 2 \frac{E_{s}}{N_{0}} \right)$$

- Le supremum est ici pris sur les densités de probabilités p(x) telles que $\mathbb{V}(X)$.
- Le supremum est atteint par $p(x) = \mathcal{N}(0, E_s)$
- Capacité en nats/accès canal (nats/symbole)

- $oldsymbol{1}$ Cette expression fait apparaître de rapport signal à bruit $rac{E_s}{N_0}$
- 2 La capacité croît lentement en fonction du RSB (log)

Théorème du codage canal de Shannon

Soient $(\mathcal{X}, \mathcal{Y}, p(y|x))$ un **canal gaussien de variance** $\frac{N_0}{2}$, une contrainte de puissance E_s et Rtel que

$$0 < R < \frac{1}{2}\log_2\left(1 + 2\frac{E_s}{N_0}\right)$$

 \bigcirc il existe une suite de codes $(\mathcal{C}_n)_{n\geq 1}$ où \mathcal{C}_n est de longueur n, de rendement R_n et de probabilité d'erreur maximale $\lambda^{(n)}$ telle que

$$\lambda^{(n)} \to 0$$
, et $R_n \to R$

Réciproquent, s'il existe une suite de codes $(C_n)_{n\geq 1}$ telle que $\lambda^{(n)}\to 0$ alors

$$\limsup_{n} R_n \leq C$$

Retour sur l'efficacité énergétique

Débit maximal en bits/s | Bande passante

Supposons une transmission en bande de base telle que :

- le signal occupe une bande passante W
- le signal analogique possède une puissance P
- le canal est additif gaussien de DSP $\frac{N_0}{2}$ alors le débit binaire maximal atteignable vaut

$$D_b = W \log_2 \left(1 + \frac{P}{N_0 W} \right)$$

Débit maximal en bits/s | Bande passante

Plan

- Introduction au codage / définitions
- 2 Théorie de l'information / Capacité d'un cana
- 3 Codes Linéaires (binaires) en blocs

- $\textbf{1} \ \, \text{Dans cette section} \,\, \mathcal{X} = \mathcal{Y} = \{0,1\} \,\, \text{et le canal considéré est le } \textbf{canal binaire symétrique}$
- 2 Dans cette section on notera \mathbb{F}_2 le **corps** $(\{0,1\},\oplus,\cdot)$ où :
 - Pour $x, y \in \mathbb{F}_2$, $x \oplus y = (x + y) \mod 2 (\equiv OU \text{ exclusif})$

- 1 Dans cette section $\mathcal{X}=\mathcal{Y}=\{0,1\}$ et le canal considéré est le canal binaire symétrique
- 2 Dans cette section on notera \mathbb{F}_2 le **corps** $(\{0,1\},\oplus,\cdot)$ où :
 - Pour $x, y \in \mathbb{F}_2$, $x \oplus y = (x + y) \mod 2 (\equiv OU \text{ exclusif})$
 - Pour $x, y \in \mathbb{F}_2$, $x \cdot y$ est le produit "classique" entre x et $y \ (\equiv ET)$

- $oldsymbol{0}$ Dans cette section $\mathcal{X}=\mathcal{Y}=\{0,1\}$ et le canal considéré est le canal binaire symétrique
- **2** Dans cette section on notera \mathbb{F}_2 le **corps** $(\{0,1\},\oplus,\cdot)$ où :
 - Pour $x, y \in \mathbb{F}_2$, $x \oplus y = (x + y) \mod 2 (\equiv OU \text{ exclusif})$
 - Pour $x, y \in \mathbb{F}_2$, $x \cdot y$ est le produit "classique" entre x et $y \ (\equiv \mathsf{ET})$

- $oldsymbol{0}$ Dans cette section $\mathcal{X}=\mathcal{Y}=\{0,1\}$ et le canal considéré est le canal binaire symétrique
- **2** Dans cette section on notera \mathbb{F}_2 le **corps** $(\{0,1\},\oplus,\cdot)$ où :
 - Pour $x, y \in \mathbb{F}_2$, $x \oplus y = (x + y) \mod 2 (\equiv OU \text{ exclusif})$
 - Pour $x, y \in \mathbb{F}_2$, $x \cdot y$ est le produit "classique" entre x et $y \ (\equiv \mathsf{ET})$
- 3 \mathbb{F}_2 est un corps fini à deux éléments $(\mathbb{Z}/2\mathbb{Z})$
- Par la suite on notera ⊕ → +

- 1 Dans cette section $\mathcal{X}=\mathcal{Y}=\{0,1\}$ et le canal considéré est le canal binaire symétrique
- 2 Dans cette section on notera \mathbb{F}_2 le **corps** $(\{0,1\},\oplus,\cdot)$ où :
 - Pour $x, y \in \mathbb{F}_2$, $x \oplus y = (x + y) \mod 2 (\equiv OU \text{ exclusif})$
 - Pour $x, y \in \mathbb{F}_2$, $x \cdot y$ est le produit "classique" entre x et $y \ (\equiv \mathsf{ET})$
- $\mathfrak{S}_{\mathbb{Z}}$ est un corps fini à deux éléments $(\mathbb{Z}/2\mathbb{Z})$
- 4 Par la suite on notera $\oplus \rightsquigarrow +$
- $(\mathbb{F}_2^n,+,\cdot)$ est un **espace vectoriel** où
 - Pour $\mathbf{x}, \mathbf{y} \in \mathbb{F}_2^n$, $\mathbf{x} + \mathbf{y} = [x_0 + y_0, x_1 + y_1, \dots, x_{n-1} + y_{n-1}]$
 - Pour $x \in \mathbb{F}_2$ et $\mathbf{y} \in \mathbb{F}_2^n$, $x \cdot \mathbf{y} = [x \cdot y_0, x \cdot y_1, \dots, x \cdot y_{n-1}]$

Remarques

- 1 Dans cette section $\mathcal{X}=\mathcal{Y}=\{0,1\}$ et le canal considéré est le canal binaire symétrique
- 2 Dans cette section on notera \mathbb{F}_2 le **corps** $(\{0,1\},\oplus,\cdot)$ où :
 - Pour $x, y \in \mathbb{F}_2$, $x \oplus y = (x + y) \mod 2 (\equiv OU \text{ exclusif})$
 - Pour $x, y \in \mathbb{F}_2$, $x \cdot y$ est le produit "classique" entre x et $y \ (\equiv \mathsf{ET})$

Dans \mathbb{F}_2 que vaut x + x?

- **(**
- X
- $\mathbf{0}$ $\bar{\mathbf{x}}$

#QDLE#Q#A*BCD#30#

Remarques

- ① Dans cette section $\mathcal{X}=\mathcal{Y}=\{0,1\}$ et le canal considéré est le canal binaire symétrique
- 2 Dans cette section on notera \mathbb{F}_2 le **corps** $(\{0,1\},\oplus,\cdot)$ où :
 - Pour $x, y \in \mathbb{F}_2$, $x \oplus y = (x + y) \mod 2 (\equiv OU \text{ exclusif})$
 - Pour $x, y \in \mathbb{F}_2$, $x \cdot y$ est le produit "classique" entre x et $y \ (\equiv \mathsf{ET})$

Dans \mathbb{F}_2 que vaut $x \cdot x$?

- <u>(A)</u> (
- X
- $\mathbf{0}$ $\bar{\mathbf{x}}$

#QDLE#Q#ABC*D#30#

Dire si l'assertion suivante est vraie. "Si $\mathbf{x} \in \mathbb{F}_2^n$, alors $-\mathbf{x} = \mathbf{x}$."

- Vrai
- Faux

#QDLE#Q#A*B#30#

Code linéaire en bloc

Code linéaire

Un code binaire $\mathcal C$ possédant $M=2^k$ mots de codes de longueur n est dit **linéaire** si et seulement si, il existe k vecteurs de $\mathbb F_2^n$ notés $\mathbf g_0,\mathbf g_1,\dots,\mathbf g_{k-1}$ tels que tout mot de code $\mathbf x$ de c s'écrit comme une combinaison linéaire des vecteurs $\mathbf g_i$

$$\mathbf{c} = \sum_{i=0}^{k-1} u_i \mathbf{g}_i$$

- 1 L'ensemble $\mathcal{B}_{\mathcal{C}} = \{\mathbf{g}_0, \mathbf{g}_1, \dots, \mathbf{g}_{k-1}\}$ est appelé base de \mathcal{C} .
- 2 \mathcal{C} est un sous-espace vectoriel de \mathbb{F}_2^n de dimension k (si $\mathcal{B}_{\mathcal{C}}$ est une base libre)

Dernier QCM

Comment avez-vous trouvé ce cours?

- Très difficile
- Oifficile
- Moyen
- Simple
- Très simple

