

Angular power spectrum and cosmological constrains using photometric redshifts

Matías Carrasco Kind

Department of Astronomy University of Illinois

DES Ardvark v.05 data (BCC)

Overdensity maps

DES Ardvark v.05 data (BCC)

 \sim 43 million galaxies with z between 0 and 1.5

4096 Healpix "pixels" (nside=128)

rotated frame from DES footprint to matches healpix scheme

 \sim 830 sq degrees

... so far

Photometric redshift PDFs using TPZ

We use TPZ (Carrasco Kind & Brunner, 2013a) to generate photo-z for all galaxies.

100,00 for training

5 magnitudes only

 \sim 0.17 sec per PDF

Store 43 million PDFs for analysis

No outlier removal

Photometric redshift PDFs using TPZ

Metrics

$$(\Delta z = z_{phot} - z_{spec})$$

$$<\Delta z> = 0.0088$$

$$< |\Delta z| > = 0.089$$

$$\sigma_{\Delta z} = 0.1421$$

$$\sigma_{|\Delta z|} = 0.1109$$

$$\sigma_{68} = 0.0885$$

$$frac > 2\sigma = 0.0531$$

$$frac > 3\sigma = 0.0207$$

N(z) using PDFs computed by TPZ

Also in redshift shells

We consider only PDF with at least 10% of its area inside redshift shell

N(z) and overdensities from stacked PDFs

Computing C_ℓ

- Quadratic estimation with Karhunen Loève compression on the overdensity maps(Hayes, Brunner & Ross, 2013)
- ullet Bandwidth $\Delta \ell \sim rac{180}{\phi}$
- ullet Computational expensive, $t\sim (n_p)^3$ and $m\sim (n_p)^2$
- ullet Usually $\ell_{max} \sim 3 imes N_{side}$
- ullet We use $\Delta\ell=11$ and $\ell_{max}\sim350$

Modeling C_ℓ

Limber approximation with no redshift-space distortions and scale-independent bias b:

$$C_{\ell} = \frac{\ell(\ell+1)}{2\pi} b^2 \int dz \phi^2(z) \frac{H(z)}{r^2(z)} P\left(\frac{\ell+1/2}{r(z)}, z\right)$$

CAMB and HALOFIT for non linear P(k, z)

 $\phi(z)$ calculated using z_{spec} , full PDF and its mean

Fitting with MCMC. Fit on Ω_m , Ω_b , n_s , H_o and the bias. We fix $\omega=-1$ and $\Omega_k=0$

"red leak" and pixel window function limitations

Preliminary Results

Preliminary Results

Fitting Cosmological parameters

Current and future work

- * Lots to be done!
- * Use larger areas to decrease $\Delta \ell$. Possible BAO signal
- * Increase resolution to go to small and non linear scales
- * Review current code and modify it accordingly.
- st Compute C_ℓ at several redshift shells to constrain d_A
- * Real data; Masking observations, calibrate photo-z
- * Cross-correlation between redshift shells

Thanks!

