Min Lab Sheet 104 8 and small (s)

- O What is circular queue?

 A circular queue is the extended version of a regular queue where the last element is connected to the first element.
- What are the characteristics of circular queue?

 * A Circular queue is the extended version
 of regular queue where the last element is
 connected to the first element.
 - * Thus forming a circle -like structure.
 - * The circular queue solves the major limitation of the normal queue.
 - * In a normal queue, after a bit of instrtion and deletion, There will be non usable empty space
- 3 Give applications of circular queue
 - or. Memory Management:

 circular queue is used in memory management
 - A CPU uses a queue to schedule processes
 - O3. Trafic Systems:

 Questes are 150 in also used in trafic elements

A circular queue is a type of data structure that implements a queue using a fixed size array. By enabling items to be inserted and removed from both ends of the queue without shifting elements, it gets arround the drawbacks of a conventional linear queue. Initializing the queue, adding components, removing elements and testing for different circumstances like a full or empty

queue are all part of the circular algorithm.

1 Write a simple program of a cincular so

class Circular Queue:

def__init__(self, size):

self. size = Size

self. front = -1

self. rear = -1

self. queue = []

14/06/2023

def_enqueue(Self, value):
 if self. is_full():
 print ("Pueue is full")
 return
 if self. front = -1:
 self. front = 0
else:

self. rear = (self. rear + 1) % self. size self. queue. append (value)

def_dequeue (self):

```
if self. is_empty():

print ("Queue is empty")

neturn
```

value = Self. queue [self.front]
self. queue.pop (self.front)

if self.front = = self.rear:

self.front = -1

self.rear = +1

return value

def __str__(self):
return str (self, queue)

if_name__ = "__main__ "; queue = Circular Queue (5) queue. enqueue (1) queue en queue (2) queue, enqueue (3) print (queue) queue. dequeue() print (queue) queue. enqueue (4) a otro print (queue)

6 Compare and contrast linear queues and circular queues.

	Tueves.		
	Feature	Linear Queue	Circular Queue
	Data Structure	Linear	Circular Queue
	Insertion	Rear end	Either end
	Deletion	Front	Either end
	Overflow	Possible	Not possible
	Underflow	Possible	Not possible
	Memory	Less	More
	efficiency	efficient	efficient
1	Applications	*CPU Scheduling *fire buffering	*Memory management *Array rotation
L			

Here are some points of Comparison:

- * Complexity

 Circular queues are more complex to implement than linear queues, because they need to keep track of the wraparound point
- * Performance

 Circular queues are generally more performant than linear queues, because they do not have to worry about over flow.
- * Memory Usage

 Circular queues use less
 memory than linear queues,
 because they do not
 need to store empty
 slots.