

Test report No. : 11834855S-B-R1
Page : 1 of 54
Issued date : March 1, 2018
FCC ID : YSKW80

RADIO TEST REPORT

Test Report No.: 11834855S-B-R1

Applicant : **OLYMPUS CORPORATION**

Type of Equipment : Wireless LAN/Bluetooth Module

Model No. : S080WIFI-PCA

FCC ID : YSKW80

Test regulation : FCC Part 15 Subpart C: 2018

* Bluetooth BDR/EDR part

Test Result : Complied

1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.

- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the above regulation.
- 4. The test results in this report are traceable to the national or international standards.
- 5. The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan has been accredited.
- 6. This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- 7. This report is a revised version of 11834855S-B. 11834855S-B is replaced with this report.

Date of test: November 2 to 22, 2017

Representative test

Representative test engineer:

Shiro Kobayashi Engineer Consumer Technology Division

Approved by:

Toyokazu Imamura Leader

Consumer Technology Division

The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan.

There is no testing item of "Non-accreditation".

Test report No. : 11834855S-B-R1
Page : 2 of 54
Issued date : March 1, 2018
FCC ID : YSKW80

REVISION HISTORY

Original Test Report No.: 11834855S-B

Revision	Test report No.	Date	Page revised	Contents
- (Original)	11834855S-B	February 19, 2018	-	-
1	11834855S-B-R1	March 1, 2018	4	Correction of Radio Specification
		,		

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No.
Page
Issued date
FCC ID

: 11834855S-B-R1 : 3 of 54 : March 1, 2018 : YSKW80

CONTENTS **PAGE SECTION 1: SECTION 2: SECTION 3:** Operation of E.U.T. during testing......8 **SECTION 4: SECTION 5: SECTION 6: SECTION 7:** Number of Hopping Frequency 23 Burst Rate Confirmation 30 Test instruments50 **APPENDIX 2:** Worst Case Position 54

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11834855S-B-R1 Page : 4 of 54 **Issued date** : March 1, 2018 FCC ID : YSKW80

SECTION 1: Customer information

Company Name **OLYMPUS CORPORATION**

Address 2951 Ishikawa-machi Hachioji-shi Tokyo 192-8507 Japan

Telephone Number +81-42-642-2283 Facsimile Number +81-42-642-2398 Contact Person Kazuma Tajiri

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

Type of Equipment Wireless LAN/Bluetooth Module

Model No. S080WIFI-PCA

Serial No. Refer to Section 4, Clause 4.2

Rating DC 3.35 V - 4.2 V June 24, 2017 Receipt Date of Sample Country of Mass-production Vietnam

Condition of EUT Production prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification of EUT No Modification by the test lab

2.2 **Product Description**

Model: S080WIFI-PCA (referred to as the EUT in this report) is a Wireless LAN/Bluetooth Module.

Radio Specification

Radio Type Transceiver

Frequency of Operation 2.4 GHz: 2402 MHz - 2480 MHz (Bluetooth BDR/EDR, Bluetooth Low Energy)

2412 MHz - 2462 MHz (Wireless LAN)

U-NII-1 / 5180 MHz - 5320 MHz (IEEE 802.11a/n-20/ac-20) U-NII-2A: 5190 MHz - 5310 MHz (IEEE 802.11n-40/ac-40) 5210 MHz - 5290 MHz (IEEE 802.11ac-80)

5500 MHz - 5700 MHz (IEEE 802.11a/n-20/ac-20)

U-NII-2C: 5510 MHz - 5670 MHz (IEEE 802.11n-40/ac-40)

5530 MHz (IEEE 802.11ac-80)

5745 MHz - 5825 MHz (IEEE 802.11a/n-20/ac-20) U-NII-3:

5755 MHz - 5795 MHz (IEEE 802.11n-40/ac-40)

5775 MHz (IEEE 802.11ac-80)

Modulation DSSS (IEEE 802.11b), OFDM (IEEE 802.11g/n/a/ac)

FHSS (Bluetooth BDR/EDR), GFSK (Bluetooth Low Energy)

Power Supply (inner) VBAT: DC 3.8 V (3.35 V - 4.2 V),

VIO: DC 1.8 V, DC 3.3 V (1.62 V - 3.63 V)

Pattern Antenna Antenna type

: 2.4 GHz: -2.9 dBi Antenna Gain

5 GHz: +1.3 dBi

Operating Temperature : -10 deg. C to +40 deg. C

Clock frequency (Maximum) : 37.4 MHz

UL Japan, Inc. **Shonan EMC Lab.**

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11834855S-B-R1
Page : 5 of 54
Issued date : March 1, 2018
FCC ID : YSKW80

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification : FCC Part 15 Subpart C

FCC Part 15 final revised on February 2, 2018 and effective March 5, 2018

Title : FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators

Section 15.207 Conducted limits

Section 15.247 Operation within the bands 902-928 MHz,

2400-2483.5 MHz, and 5725-5850 MHz

3.2 Procedures and results

Item	Test Procedure	Specification	Worst Margin	Results	Remarks
Conducted	FCC: ANSI C63.10-2013 6. Standard test methods	FCC: Section 15.207	33.1 dB 0.17900 MHz, N and L1, AV	Complied	-
Emission	IC: RSS-Gen 8.8	IC: RSS-Gen 8.8	BT 3DH5 2402 MHz		
Carrier	FCC: FCC Public Notice DA 00-705	FCC: Section15.247(a)(1)		Commissed	Conducted
Frequency Separation	IC: -	IC: RSS-247 5.1 (b)		Complied	Conducted
20dB	FCC: FCC Public Notice DA 00-705	FCC: Section15.247(a)(1)		Complied	Conducted
Bandwidth	IC: -	IC: RSS-247 5.1 (a)			
Number of	FCC: FCC Public Notice DA 00-705	FCC: Section15.247(a)(1)(iii)	See data.	C1:-4	Conducted
Hopping Frequency	IC: -	IC: RSS-247 5.1 (d)	. Soo data.	Complied	Conducted
Dwell time	FCC: FCC Public Notice DA 00-705	FCC: Section15.247(a)(1)(iii)		Complied	Conducted
	IC: -	IC: RSS-247 5.1 (d)		1	
Maximum Peak	FCC: FCC Public Notice DA 00-705	FCC: Section15.247(a)(b)(1)		Complied	Conducted
Output Power	IC: RSS-Gen 6.12	IC: RSS-247 5.4 (b)		P	
	FCC: FCC Public Notice DA 00-705	FCC: Section15.247(d)	10.7 dB 9920.00 MHz, AV, Vert.,		
Spurious	IC: RSS-Gen 6.13	IC: RSS-247 5.5	Tx, Hopping Off, DH5 2480		Conducted/
Emission &		RSS-Gen 8.9	MHz	~	Radiated
Band Edge		RSS-Gen 8.10		Complied	(above 30 MHz)
Compliance			9920.00 MHz, AV, Hori., Tx, Hopping Off, 3DH5 2480 MHz		*1)

Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.

FCC Part 15.31 (e)

The RF Module has its own regulator.

The RF Module is constantly provided voltage (DC 3.8 V) through the regulator regardless of input voltage. Therefore, this EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

The antenna is not removable from the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

^{*} The revisions made after testing date do not affect the test specification applied to the EUT.

^{*1)} Radiated test was selected over 30 MHz based on section 15.247(d).

^{*} In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.

: 11834855S-B-R1 Test report No. Page : 6 of 54 Issued date : March 1, 2018 : YSKW80 FCC ID

3.3 Addition to standard

Item	Test Procedure	Specification	Worst margin	Results	Remarks
99% Occupied	IC: RSS-Gen 6.6	IC: -	N/A	-	Conducted
Bandwidth					

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

EMI

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k=2.

Item	Frequency range		1	Uncertainty (+/-)		
		No. 1 SAC / SR	No. 2 SAC / SR	No. 3 SAC / SR	No. 4 SAC / SR	No. 5,6,8 SR
Conducted emission (AC Mains) LISN	150 kHz-30 MHz	2.5 dB	2.5 dB	2.6 dB	2.6 dB	2.6 dB
Radiated emission	30 MHz-200 MHz	4.3 dB	4.3 dB	4.3 dB	-	-
(Measurement distance: 3 m)	200 MHz-1 GHz	5.9 dB	5.9 dB	5.9 dB	-	-
1	1 GHz-6 GHz	4.7 dB	4.7 dB	4.7 dB	-	-
1	6 GHz-18 GHz	5.3 dB	5.3 dB	5.3 dB	-	-
[18 GHz-40 GHz	5.6 dB	5.6 dB	5.6 dB	-	-
Radiated emission	13 GHz-18 GHz	5.6 dB	5.6 dB	5.6 dB	-	-
(Measurement distance: 1 m)	18 GHz-40 GHz	5.9 dB	5.9 dB	5.9 dB	-	-

SAC=Semi-Anechoic Chamber

SR= Shielded Room is applied besides radiated emission

Antenna terminal test	Uncertainty (+/-)
Power Measurement above 1 GHz (Average Detector)_SPM-06	0.72 dB
Power Measurement above 1 GHz (Peak Detector)_SPM-06	0.85 dB
Power Measurement above 1 GHz (Average Detector)_SPM-07	0.74 dB
Power Measurement above 1 GHz (Peak Detector)_SPM-07	0.91 dB
Spurious emission (Conducted) below 1GHz	1.6 dB
Spurious emission (Conducted) 1 GHz-3 GHz	1.3 dB
Spurious emission (Conducted) 3 GHz-18 GHz	2.2 dB
Spurious emission (Conducted) 18 GHz-26.5 GHz	2.3 dB
Spurious emission (Conducted) 26.5 GHz-40 GHz	2.4 dB
Bandwidth Measurement	1.01 %
Duty cycle and Time Measurement	0.012 %

<u>Conducted Emission test</u> The data listed in this test report has enough margin, more than the site margin.

Radiated emission test

The data listed in this test report has enough margin, more than the site margin.

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11834855S-B-R1
Page : 7 of 54
Issued date : March 1, 2018
FCC ID : YSKW80

3.5 Test Location

UL Japan, Inc. Shonan EMC Lab.

1-22-3, Megumigaoka, Hiratsuka-shi, Kanagawa-ken 259-1220 JAPAN

Telephone: +81 463 50 6400, Facsimile: +81 463 50 6401

JAB Accreditation No. RTL02610

FCC Test Firm Registration Number: 839876

Test site	IC Registration Number	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	M aximum measurement distance
No.1 Semi-anechoic chamber	2973D-1	20.6 x 11.3 x 7.65	20.6 x 11.3	10 m
No.2 Semi-anechoic chamber	2973D-2	20.6 x 11.3 x 7.65	20.6 x 11.3	10 m
No.3 Semi-anechoic chamber	2973D-3	12.7 x 7.7 x 5.35	12.7 x 7.7	5 m
No.4 Semi-anechoic chamber	-	8.1 x 5.1 x 3.55	8.1 x 5.1	-
No.1 Shielded room	-	6.8 x 4.1 x 2.7	6.8 x 4.1	-
No.2 Shielded room	-	6.8 x 4.1 x 2.7	6.8 x 4.1	-
No.3 Shielded room	-	6.3 x 4.7 x 2.7	6.3 x 4.7	-
No.4 Shielded room	-	4.4 x 4.7 x 2.7	4.4 x 4.7	-
No.5 Shielded room	-	7.8 x 6.4 x 2.7	7.8 x 6.4	-
No.6 Shielded room	-	7.8 x 6.4 x 2.7	7.8 x 6.4	-
No.8 shielded room	-	3.45 x 5.5 x 2.4	3.45 x 5.5	-
No.1 Measurement room	-	2.55 x 4.1 x 2.5	-	-

3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11834855S-B-R1
Page : 8 of 54
Issued date : March 1, 2018
FCC ID : YSKW80

SECTION 4: Operation of E.U.T. during testing

4.1 Operating Mode(s)

Bluetooth (BT): Transmitting (Tx), Payload: PRBS9

Details of Operating Mode(s)

Test Item	Mode	Tested frequency
Conducted Emission,	Tx (Hopping Off) DH5, 3DH5	2402 MHz
Spurious Emission		2441 MHz
(Conducted/Radiated)		2480 MHz
Carrier Frequency Separation	Tx (Hopping On) DH5, 3DH5	2402 MHz
		2441 MHz
		2480 MHz
20dB Bandwidth	Tx (Hopping Off) DH5, 3DH5	2402 MHz
		2441 MHz
		2480 MHz
Number of Hopping Frequency	Tx (Hopping On) DH5, 3DH5	-
Dwell time	Tx (Hopping On),	-
	-DH1, DH3, DH5	
	-3DH1, 3DH3, 3DH5	
Maximum Peak Output Power	Tx (Hopping Off) DH5, 2DH5, 3DH5	2402 MHz
		2441 MHz
		2480 MHz
Band Edge Compliance	Tx DH5, 3DH5	2402 MHz
(Conducted)	-Hopping On	2480 MHz
	-Hopping Off	
99% Occupied Bandwidth	Tx DH5, 3DH5	2402 MHz
	-Hopping On	2441 MHz
	-Hopping Off	2480 MHz

^{*}As a result of preliminary test, the formal test was performed with the above modes, which had the maximum payload length (except Dwell time test)

Power settings: Fixed

Software: Bluetool version: 1.9.6.5 *This setting of software is the worst case.

Any conditions under the normal use do not exceed the condition of setting.

In addition, end users cannot change the settings of the output power of the product.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

^{*2}DH mode (2Mb/s EDR: pi/4DQPSK) was excluded for other tests than power measurement by using 3DH mode (3 Mb/s EDR: 8DPSK) as a representative.

^{*} It is considered that the non-tested packet type (e.g. inquiry) can be omitted as it is complied with above all test items based on Bluetooth Core specification.

^{*}EUT has the power settings by the software as follows;

Test report No. : 11834855S-B-R1
Page : 9 of 54
Issued date : March 1, 2018
FCC ID : YSKW80

4.2 Configuration and peripherals

Description of EUT and Support equipment

Desci	Description of E&T and Support equipment							
No.	Item	Model number	Serial number	Manufacturer	Remark			
A	Wireless LAN/Bluetooth Module	S080WIFI-PCA	5	OLYMPUS CORPORATION	EUT			
В	Jig Board	Т3050ТВ	-	OLYMPUS CORPORATION	-			
С	SD Card	SD-K08G	1572 CS00156	TOSHIBA	-			
D	UART – USB Conversion Board	T3050 UART - USB	-	OLYMPUS CORPORATION	-			
Е	Power Supply(DC)	PAN35-10A	NA000955	Kikusui	-			

List of cables used

No.	Name	Length (m)	Shi	Remark	
			Cable	Connector	
1	Signal	0.2	Unshielded	Unshielded	-
2	DC	0.3	Unshielded	Unshielded	-
3	DC	1.5	Unshielded	Unshielded	-
4	Signal	0.2	Unshielded	Unshielded	-
5	AC	1.8	Unshielded	Unshielded	-

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Test report No. : 11834855S-B-R1
Page : 10 of 54
Issued date : March 1, 2018
FCC ID : YSKW80

SECTION 5: Conducted Emission

Test Procedure and conditions

EUT was placed on a platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane. The table is made of expanded polystyrol and expanded polypropylene and the table top is covered with polycarbonate. That has very low permittivity.

The rear of tabletop was located 40 cm to the vertical conducting plane. The rear of EUT, including peripherals aligned and flushed with rear of tabletop. All other surfaces of tabletop were at least 80 cm from any other grounded conducting surface. EUT was located 80 cm from a Line Impedance Stabilization Network (LISN) / Artificial mains Network (AMN) and excess AC cable was bundled in center.

I/O cables that were connected to the peripherals were bundled in center. They were folded back and forth forming a bundle 30 cm to 40 cm long and were hanged at a 40 cm height to the ground plane.

The AC Mains Terminal Continuous disturbance Voltage has been measured with the EUT in a Shielded room. The EUT was connected to a LISN (AMN).

An overview sweep with peak detection has been performed.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Detector : QP and CISPR AV
Measurement range : 0.15 MHz - 30 MHz

Test data : APPENDIX

Test result : Pass

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11834855S-B-R1
Page : 11 of 54
Issued date : March 1, 2018
FCC ID : YSKW80

SECTION 6: Radiated Spurious Emission

Test Procedure

It was measured based on "11.0 Emissions in non-restricted frequency bands" of "KDB 558074 D01 DTS Meas Guidance v04".

[For below 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane.

The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane.

The height of the measuring antenna varied between 1 and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

Test Antennas are used as below;

Frequency	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Biconical	Logperiodic	Horn

In any 100 kHz bandwidth outside the restricted band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator confirmed 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on a radiated measurement.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11834855S-B-R1
Page : 12 of 54
Issued date : March 1, 2018
FCC ID : YSKW80

20 dBc was applied to the frequency over the limit of FCC 15.209 / Table 4 of RSS-Gen 8.9 (IC) and outside the restricted band of FCC15.205 / Table 6 of RSS-Gen 8.10 (IC).

restricted band of 1 e e 12 12 10 7 Tuble of 1 Noby Gen 6.10 (1e).					
Frequency	Below 1 GHz	Above 1 GHz		20 dBc	
Instrument used	Test Receiver	Spectrum Analyzer		Spectrum Analyzer	
Detector	QP	PK	AV	PK	
IF Bandwidth	BW 120 kHz	RBW: 1 MHz	RBW: 1 MHz	RBW: 100 kHz	
		VBW: 3 MHz	VBW: 10 Hz *1)	VBW: 300 kHz	
Test Distance	3 m	3.99 m*2) (1 GHz – 13 GHz),		3.99 m*2) (1 GHz – 13 GHz),	
		1 m*3) (13 GHz – 40	GHz)	1 m*3) (13 GHz – 40 GHz)	

^{*1)} Although DA 00-705 accepts VBW = 10 Hz for AV measurements, it was confirmed that superfluous smoothing was not performed.

- *2) Distance Factor: $20 \times \log (3.99 \text{ m/}3.0 \text{ m}) = 2.47 \text{ dB}$ *3) Distance Factor: $20 \times \log (1.0 \text{ m/}3.0 \text{ m}) = -9.54 \text{ dB}$
- The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

Antenna	Carrier	Spurious	Spurious	Spurious	Spurious
polarization		(Below 1 GHz)	(1 GHz -2.8 GHz)	(2.8 GHz -13 GHz)	(13 GHz -26.5 GHz)
Horizontal	Z	Z	Z	Z	X
Vertical	Y	Z	Y	Y	X

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement range : 30 MHz – 26.5 GHz

Test data : APPENDIX

Test result : Pass

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11834855S-B-R1
Page : 13 of 54
Issued date : March 1, 2018
FCC ID : YSKW80

SECTION 7: Antenna Terminal Conducted Tests

Test Procedure

The tests were made with below setting connected to the antenna port.

Test	Span	RBW	VBW	Sweep time	Detector	Trace	Instrument used
20dB Bandwidth	3 MHz	30 kHz	100 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99% Occupied Bandwidth *1)	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Sample	Max Hold	Spectrum Analyzer
Maximum Peak Output Power	-	-	-	Auto	Peak Average *2)	-	Power Meter (Sensor: 50MHz BW)
Carrier Frequency Separation	3 MHz	100 kHz	300 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
Number of Hopping Frequency	30 MHz	300 kHz	1 MHz	Auto	Peak	Max Hold	Spectrum Analyzer
Dwell Time	Zero Span	100 kHz, 1 MHz	300 kHz, 3 MHz	As necessary capture the entire dwell time per hopping channel	Peak	Clear Write	Spectrum Analyzer
Conducted Spurious	9 kHz to 150 kHz	200 Hz	620 Hz	Auto	Peak	Max Hold	Spectrum Analyzer
Emission *3)	150 kHz to 30 MHz	10 kHz	30 kHz				
	30 MHz to 25 GHz	100 kHz	300 kHz				
Conducted Spurious Emission Band Edge compliance	10 MHz	100 kHz	300 kHz	Auto	Peak	Max Hold	Spectrum Analyzer

^{*1)} Max hold was applied as Worst-case measurement.

The test results and limit are rounded off to two decimals place, so some differences might be observed.

Test data : APPENDIX

Test result : Pass

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

^{*2)} Reference data

^{*3)} In the frequency range below 30MHz, RBW was narrowed to separate the noise contents.

Then, wide-band noise near the limit was checked separately, however the noise was not detected as shown in the chart.

Test report No. : 11834855S-B-R1
Page : 14 of 54
Issued date : March 1, 2018
FCC ID : YSKW80

APPENDIX 1: Test data

Conducted Emission

DATA OF CONDUCTED EMISSION TEST

UL Japan, Inc. Shonan EMC Lab. No.2 Shielded Room Date: 2017/11/22

Mode : BT_DH5_2402MHz

Power : AC 120 V / 60 Hz Temp./Humi. : 20 deg.C / 42 %RH

Remarks : -

Limit1 : FCC 15C (15.207) QP Limit2 : FCC 15C (15.207) AV Engineer : Kazutaka Takeyama

_	Read	dina		Res	ults	Lin	nit	Mai	rain		
	<qp></qp>	<av></av>		<qp></qp>	<av></av>	<qp></qp>	<av></av>	<qp></qp>	<av></av>	Phase	Comment
[MHz]	[dBuV]	[dBuV]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dB]	[dB]		
0.15000	8.80	3.20	12.46	21.26	15.66	66.00	56.00	44.7	40.3	N	
0.40000	6.90	1.20	12.50	19.40	13.70	57.85	47.85	38.4	34.1	N	
0.63800	5.70	0.20	12.52	18.22	12.72	56.00	46.00	37.7	33.2	N	
2.45200	0.60	-5.00	12.64	13.24	7.64	56.00	46.00	42.7	38.3	N	
19.12100	0.60	-5.00	13.53	14.13	8.53	60.00	50.00	45.8	41.4	N	
26.19000	5.60	-0.20	13.84	19.44	13.64	60.00	50.00	40.5	36.3	N	
0.15000	9.50	4.00	12.46	21.96	16.46	66.00	56.00	44.0	39.5	L1	
0.40000	6.70	1.40	12.50	19.20	13.90	57.85	47.85	38.6	33.9	L1	
0.63800	5.50	0.10	12.52	18.02	12.62	56.00	46.00	37.9	33.3	L1	
2.45200	0.40	-5.10	12.64	13.04	7.54	56.00	46.00	42.9	38.4	L1	
19.12100	2.20	-3.50	13.53	15.73	10.03	60.00	50.00	44.2	39.9	L1	
26.19000	6.00	0.00	13.84	19.84	13.84	60.00	50.00	40.1	36.1	L1	
	İ										
			1								
	0.15000 0.40000 0.63800 2.45200 19.12100 26.19000 0.15000 0.40000 0.63800 2.45200 19.12100	Freq. GP/ MHz GBuY GBuY 0.15000 8.80 0.40000 0.63800 5.70 2.45200 0.60 19.12100 0.560 0.15000 0.5000 0.40000 6.70 0.63800 0.40000 19.12100 2.20 19.12100 2.20	MHz (GBV) (ABV) (GBV) (GB	Freq. COP. CAV. CFac.	Pred COP CAV COP CAV COP						

 $\label{eq:calculation:Result [dBuV] = Reading [dBuV] + C.Fac (LISN (AMN) + Cable + ATT) [dB] \\ LISN (AMN) = SLS - O3$

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11834855S-B-R1
Page : 15 of 54
Issued date : March 1, 2018
FCC ID : YSKW80

Conducted Emission

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11834855S-B-R1
Page : 16 of 54
Issued date : March 1, 2018
FCC ID : YSKW80

Conducted Emission

DATA OF CONDUCTED EMISSION TEST

UL Japan, Inc. Shonan EMC Lab. No.2 Shielded Room Date: 2017/11/22

Mode : BT_3DH5_2402MHz

Power : AC 120 V / 60 Hz Temp./Humi. : 20 deg.C / 42 %RH

Remarks :

Limit1 : FCC 15C (15.207) QP Limit2 : FCC 15C (15.207) AV Engineer : Kazutaka Takeyama

No.	Freq.	<qp></qp>	<av></av>	C.Fac	<qp></qp>	<av></av>	<qp> Lin</qp>	<av></av>	<qp></qp>	gin <av></av>	Phase	Comment
NO.	[MHz]	[dBuV]	[dBuV]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dB]	[dB]	riiase	Comment
1	0.15000	9.60	4.00	12.46	22.06	16.46	66.00	56.00	43.9	39.5	N	
2	0.17900	12.60	8.90	12.46	25.06	21.36	64.53	54.53	39.4	33.1	N	
3	0.67800	5.30	-0.20	12.53	17.83	12.33	56.00	46.00	38.1	33.6	N	
4	3,01700	-0.10	-5.70	12.69	12.59	6,99	56.00	46.00	43.4	39.0	N	
5	19.085 00	0.30	-5.20	13.53	13.83	8.33	60.00	50.00	46.1	41.6	N	
6	26,16200	5.60	-0.10	13.83	19,43	13,73	60.00	50.00	40.5	36.2	N	
7	0.15000	8.90	3.20	12.46	21.36	15,66	66.00	56.00	44.6	40.3	L1	
8	0.17900	12.60	8.90	12.46	25.06	21.36	64.53	54.53	39.4	33.1	L1	
9	0.67800	5.30	-0.20	12.53	17.83	12,33	56.00	46.00	38.1	33.6	L1	
10	3.01700	-0.20	-5.60	12.69	12.49	7.09	56.00	46.00	43.5	38.9	L1	
11	19.085 00	2.10	-3.80	13.53	15.63	9.73	60.00	50.00	44.3	40.2	L1	
12	26,16200	5.80	-0.10	13.83	19.63	13.73	60.00	50.00	40.3	36.2	L1	
				l						l		

 $\label{eq:calculation:Result [dBuV] = Reading [dBuV] + C.Fac (LISN (AMN) + Cable+ATT) [dB] \\ LISN (AMN) = SLS-O3$

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11834855S-B-R1
Page : 17 of 54
Issued date : March 1, 2018
FCC ID : YSKW80

Conducted Emission

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11834855S-B-R1
Page : 18 of 54
Issued date : March 1, 2018
FCC ID : YSKW80

20dB Bandwidth, 99%Occupied Bandwidth and Carrier Frequency Separation

Test place Shonan EMC Lab. No.5 Shielded Room

Report No. 11834855S-B-R1

DateNovember 16, 2017November 20, 2017Temperature / Humidity26deg. C / 37 % RH24deg. C / 31 % RHEngineerMakoto HosakaShiro Kobayashi

Mode Tx, Hopping Off

Mode	Freq.	20dB Bandwidth	99% Occupied	Carrier Frequency	Limit for Carrier
			Bandwidth	Separation	Frequency separation
	[MHz]	[MHz]	[kHz]	[MHz]	[MHz]
DH5	2402.0	0.948	900.600	1.000	>= 0.632
DH5	2441.0	1.024	901.300	1.000	>= 0.683
DH5	2480.0	0.959	905.000	1.000	>= 0.639
DH5	Hopping On	-	78623.100	-	-
3DH5	2402.0	1.312	1210.700	1.000	>= 0.875
3DH5	2441.0	1.313	1213.900	1.000	>= 0.875
3DH5	2480.0	1.314	1213.000	1.000	>= 0.876
3DH5	Hopping On	-	78750.800	-	-

Limit: Two-thirds of 20dB Bandwidth or 25kHz (whichever is greater).

No limit applies to 20dB Bandwidth.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11834855S-B-R1
Page : 19 of 54
Issued date : March 1, 2018
FCC ID : YSKW80

20dB Bandwidth and Carrier Frequency Separation

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11834855S-B-R1
Page : 20 of 54
Issued date : March 1, 2018
FCC ID : YSKW80

20dB Bandwidth and Carrier Frequency Separation

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11834855S-B-R1
Page : 21 of 54
Issued date : March 1, 2018
FCC ID : YSKW80

99% Occupied Bandwidth

Transmit Freq Error

x dR Randwidth

-435.875 Hz

1 303 MHz*

UL Japan, Inc. Shonan EMC Lab.

Transmit Freq Error

x dR Randwidth

-1.686 kHz 940.913 kHz*

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11834855S-B-R1
Page : 22 of 54
Issued date : March 1, 2018
FCC ID : YSKW80

99% Occupied Bandwidth

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11834855S-B-R1
Page : 23 of 54
Issued date : March 1, 2018
FCC ID : YSKW80

Number of Hopping Frequency

Test place Shonan EMC Lab. No.5 Shielded Room

Report No. 11834855S-B-R1
Date November 20, 2017
Temperature / Humidity 24deg. C / 31 % RH
Engineer Shiro Kobayashi
Mode Tx, Hopping On

Mode	Number of channel	Limit
	[channels]	[channels]
DH5	79	>= 15
3DH5	79	>= 15

Test was not performed at AFH mode whose number of hopping channel is 20 channels because this Bluetooth radio is in compliance of Bluetooth Specification.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11834855S-B-R1
Page : 24 of 54
Issued date : March 1, 2018
FCC ID : YSKW80

Number of Hopping Frequency

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11834855S-B-R1
Page : 25 of 54
Issued date : March 1, 2018
FCC ID : YSKW80

Dwell time

Test place Shonan EMC Lab. No.5 Shielded Room

Report No. 11834855S-B-R1
Date November 20, 2017
Temperature / Humidity 24deg. C / 31 % RH
Engineer Shiro Kobayashi
Mode Tx, Hopping On

Mode		Number of tr	ansmission		Length of	Result	Limit
		in a 31.6(79 He	opping x 0.4)		transmission		
	/ 12.	8 (32 Hopping x	(0.4) second period		[msec]	[msec]	[msec]
DH1	49.2 times /	5 sec. x	31.6 sec. =	311 times	0.423	132	400
DH3	22.8 times /	5 sec. x	31.6 sec. =	145 times	1.680	244	400
DH5	21.2 times /	5 sec. x	31.6 sec. =	134 times	2.931	393	400
3DH1	50.8 times /	5 sec. x	31.6 sec. =	322 times	0.429	138	400
3DH3	23.4 times /	5 sec. x	31.6 sec. =	148 times	1.685	249	400
3DH5	16.0 times /	5 sec. x	31.6 sec. =	102 times	2.937	300	400

Sample Calculation

Result = Number of transmission x Length of transmission

*Average data of 5 tests.(except Inquiry)

Mode			Sampling [times]			Average
	1	2	3	4	5	Average [times]
DH1	48	50	49	50	49	49.2
DH3	23	26	20	21	24	22.8
DH5	26	21	19	20	20	21.2
3DH1	51	51	51	50	51	50.8
3DH3	19	21	24	25	28	23.4
3DH5	16	14	13	19	18	16.0

Sample Calculation

Average = Summation (Sampling 1 to 5) / 5

This device complies with the Bluetooth protocol for FHSS operation, employing a pseudo random channel selection and hopping rate to ensure that the occupancy time in N x 0.4s, where N is the number of channels being used in the hopping sequence ($20 \le N \le 79$), is always less than 0.4s regardless of packet size. This is confirmed in the test report for N = 79.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11834855S-B-R1
Page : 26 of 54
Issued date : March 1, 2018
FCC ID : YSKW80

Dwell time

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11834855S-B-R1
Page : 27 of 54
Issued date : March 1, 2018
FCC ID : YSKW80

Dwell time

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11834855S-B-R1
Page : 28 of 54
Issued date : March 1, 2018
FCC ID : YSKW80

Maximum Peak Output Power

Test place Shonan EMC Lab. No.5 Shielded Room

Report No. 11834855S-B-R1
Date November 2, 2017
Temperature / Humidity 22 deg. C / 41 % RH
Engineer Makoto Hosaka
Mode Tx, Hopping Off

Mode	Freq.	Reading	Cable	Atten.	Re	sult	Li	mit	Margin
			Loss	Loss					
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]
DH5	2402.0	-4.53	1.60	9.96	7.03	5.05	20.96	125	13.93
DH5	2441.0	-4.90	1.61	9.97	6.68	4.66	20.96	125	14.28
DH5	2480.0	-5.36	1.62	9.97	6.23	4.20	20.96	125	14.73
2DH5	2402.0	-6.36	1.60	9.96	5.20	3.31	20.96	125	15.76
2DH5	2441.0	-6.31	1.61	9.97	5.27	3.37	20.96	125	15.69
2DH5	2480.0	-6.90	1.62	9.97	4.69	2.94	20.96	125	16.27
3DH5	2402.0	-6.26	1.60	9.96	5.30	3.39	20.96	125	15.66
3DH5	2441.0	-6.30	1.61	9.97	5.28	3.37	20.96	125	15.68
3DH5	2480.0	-6.83	1.62	9.97	4.76	2.99	20.96	125	16.20

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

Test was not performed at AFH mode, because the decrease of number of channel (min: 20ch) at AFH mode does not influence on the output power and bandwidth of the EUT.

As this device had AFH mode and frequency separation could not meet the requirement of over 20dB BW without 2/3 relaxation, 125mW power limit was applied to it.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

^{*}The equipment and cables were not used for factor 0 dB of the data sheets.

Test report No. : 11834855S-B-R1
Page : 29 of 54
Issued date : March 1, 2018
FCC ID : YSKW80

<u>Average Output Power</u> (Reference data for RF Exposure / SAR testing)

Test place Shonan EMC Lab. No.5 Shielded Room

Report No. 11834855S-B-R1
Date November 2, 2017
Temperature / Humidity 22 deg. C / 41 % RH
Engineer Makoto Hosaka
Mode Tx, Hopping Off

1 1	Г	D 1'	0.11		В	1.	Duty Result		1.
Mode	Freq.	Reading	Cable	Atten.	Re	sult	Duty	Re	sult
			Loss	Loss	(Time a	iverage)	factor	factor (Burst pow	
	[MHz]	[dBm]	[dB]	[dB]	[dBm] [mW]		[dB]	[dBm]	[mW]
DH5	2402.0	-5.86	1.60	9.96	5.70	3.72	1.07	6.77	4.75
DH5	2441.0	-6.24	1.61	9.97	5.34	3.42	1.07	6.41	4.38
DH5	2480.0	-6.73	1.62	9.97	4.86	3.06	1.07	5.93	3.92
2DH5	2402.0	-10.10	1.60	9.96	1.46	1.40	1.07	2.53	1.79
2DH5	2441.0	-10.02	1.61	9.97	1.56	1.43	1.07	2.63	1.83
2DH5	2480.0	-10.61	1.62	9.97	0.98	1.25	1.07	2.05	1.60
3DH5	2402.0	-10.14	1.60	9.96	1.42	1.39	1.07	2.49	1.77
3DH5	2441.0	-10.14	1.61	9.97	1.44	1.39	1.07	2.51	1.78
3DH5	2480.0	-10.64	1.62	9.97	0.95	1.24	1.07	2.02	1.59

Sample Calculation:

Result (Time average) = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss Result (Burst power average) = Time average + Duty factor

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

^{*}The equipment and cables were not used for factor 0 dB of the data sheets.

Test report No. : 11834855S-B-R1
Page : 30 of 54
Issued date : March 1, 2018
FCC ID : YSKW80

Burst Rate Confirmation

Test place Shonan EMC Lab. No.5 Shielded Room

Report No. 11834855S-B-R1
Date November 20, 2017
Temperature / Humidity 24deg. C / 31 % RH
Engineer Shiro Kobayashi
Mode Tx, Hopping Off

DH₅

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11834855S-B-R1
Page : 31 of 54
Issued date : March 1, 2018
FCC ID : YSKW80

Radiated Spurious Emission

Report No. 11834855S-B-R1 Test place Shonan EMC Lab.

Semi Anechoic Chamber No.1 No.1 No.1

Date November 19, 2017 November 17, 2017 November 18, 2017
Temperature / Humidity 20 deg. C / 42 % RH Engineer Hiroyuki Morikawa (30 MHz -1 GHz) (13 GHz -26.5 GHz)

Mode Tx, Hopping Off, DH5 2402 MHz

(* PK: Peak, AV: Average, QP: Quasi-Peak)

			AV: Average, Q								** * * * *		ln ı
Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Distance	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	Factor [dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	307.592	`	25.70	13.68	6.85	31.76	0.00	14.47	46.00	31.5	100	107	
Hori.	337.517	QP	30.60	14.36	7.10	31.75	0.00	20.31	46.00	25.6	100	28	
Hori.	376.784	QP	23.40	15.25	7.43	31.77	0.00	14.31	46.00	31.6	100	166	
Hori.	533.027	QP	28.80	18.18	8.33	31.93	0.00	23.38	46.00	22.6	240	220	
Hori.	2390.000	PK	45.67	27.14	14.23	40.85	2.47	48.66	73.90	25.2	145	93	
Hori.	4804.000	PK	45.49	31.13	6.79	41.86	2.47	44.02	73.90	29.9	151	341	
Hori.	7206.000	PK	45.28	36.35	8.41	41.18	2.47	51.33	73.90	22.6	150	0	
Hori.	9608.000	PK	44.69	38.11	9.48	40.59	2.47	54.16	73.90	19.7	150	0	
Hori.	2390.000	AV	33.27	27.14	14.23	40.85	2.47	36.26	53.90	17.6	145	93	
Hori.	4804.000	AV	34.05	31.13	6.79	41.86	2.47	32.58	53.90	21.3	151	341	
Hori.	7206.000	AV	33.20	36.35	8.41	41.18	2.47	39.25	53.90	14.7	150	0	
Hori.	9608.000	AV	32.27	38.11	9.48	40.59	2.47	41.74	53.90	12.2	150	0	
Vert.	352.186	QP	21.60	14.69	7.23	31.74	0.00	11.78	46.00	34.2	100	0	
Vert.	464.404	QP	22.70	17.01	7.98	31.85	0.00	15.84	46.00	30.1	100	116	
Vert.	533.022	QP	29.10	18.18	8.33	31.93	0.00	23.68	46.00	22.3	102	105	
Vert.	2390.000	PK	46.06	27.14	14.23	40.85	2.47	49.05	73.90	24.9	248	135	
Vert.	4804.000	PK	45.86	31.13	6.79	41.86	2.47	44.39	73.90	29.5	149	7	
Vert.	7206.000	PK	45.75	36.35	8.41	41.18	2.47	51.80	73.90	22.1	150	0	
Vert.	9608.000	PK	45.03	38.11	9.48	40.59	2.47	54.50	73.90	19.4	150	0	
Vert.	2390.000	AV	33.60	27.14	14.23	40.85	2.47	36.59	53.90	17.3	248	135	
Vert.	4804.000	AV	34.43	31.13	6.79	41.86	2.47	32.96	53.90	20.9	149	7	
Vert.	7206.000	AV	33.68	36.35	8.41	41.18	2.47	39.73	53.90	14.2	150	0	
Vert.	9608.000	AV	32.55	38.11	9.48	40.59	2.47	42.02	53.90	11.9	150	0	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amprifier) + Distance factor

Distance factor : $1 \text{ GHz} - 13 \text{ GHz} : 20 \log (3.99 \text{ m} / 3.0 \text{ m}) = 2.47 \text{ dB}$ $13 \text{ GHz} - 40 \text{ GHz} : 20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.54 \text{ dB}$

20 dBc Data Sheet (RBW 100 kHz, VBW 300 kHz)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Distance	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	Factor [dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2402.000	PK	97.91	27.18	14.24	40.84	2.47	100.96	-	-	Carrier
Hori.	2400.000	PK	41.35	27.17	14.23	40.84	2.47	44.38	80.96	36.6	
Vert.	2402.000	PK	94.08	27.18	14.24	40.84	2.47	97.13	-	-	Carrier
Vert.	2400.000	PK	38.64	27.17	14.23	40.84	2.47	41.67	77.13	35.5	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amprifier) + Distance factor

Distance factor: 1 GHz - 13 GHz: 20log (3.99 m / 3.0 m) = 2.47 dB 13 GHz - 40 GHz: 20log (1.0 m / 3.0 m) = -9.54 dB

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

^{*} These results have sufficient margin without taking account Dwell time factor.

: 11834855S-B-R1 Test report No. Page : 32 of 54 Issued date : March 1, 2018 : YSKW80 FCC ID

Radiated Spurious Emission (Reference Plot for band-edge)

Report No. 11834855S-B-R1 Test place Shonan EMC Lab. No.1

Semi Anechoic Chamber

November 17, 2017 23 deg. C / 39 % RH Temperature / Humidity Yosuke Ishikawa Engineer (1 GHz -13 GHz)

Tx, Hopping Off, DH5 2402 MHz Mode

^{*} Final result of restricted band edge was shown in tabular data.

UL Japan, Inc. **Shonan EMC Lab.**

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11834855S-B-R1
Page : 33 of 54
Issued date : March 1, 2018
FCC ID : YSKW80

Radiated Spurious Emission

Report No. 11834855S-B-R1 Test place Shonan EMC Lab.

Semi Anechoic Chamber No.1 No.1 No.1

Date November 19, 2017 November 17, 2017 November 18, 2017
Temperature / Humidity 20 deg. C / 42 % RH Engineer Hiroyuki Morikawa (30 MHz -1 GHz) (13 GHz -26.5 GHz)

Mode Tx, Hopping Off, DH5 2441 MHz

(* PK: Peak, AV: Average, QP: Quasi-Peak)

D 1 1	L D	D	D 1		· ·	o :	D	D L	x · · ·	37 . 1	xx : 1		n ı
Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Distance	Result	Limit	Margin	Height	_	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	Factor [dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	307.534	QP	25.40	13.68	6.84	31.76	0.00	14.16	46.00	31.8	100	113	
Hori.	337.520	QP	31.70	14.36	7.10	31.75	0.00	21.41	46.00	24.5	100	189	
Hori.	376.660	QP	23.70	15.24	7.43	31.77	0.00	14.60	46.00	31.4	100	167	
Hori.	533.021	QP	29.50	18.18	8.33	31.93	0.00	24.08	46.00	21.9	202	219	
Hori.	4882.000	PK	46.17	31.31	6.87	41.76	2.47	45.06	73.90	28.8	151	335	
Hori.	7323.000	PK	46.57	36.51	8.57	41.27	2.47	52.85	73.90	21.1	150	0	
Hori.	9764.000	PK	45.11	38.37	9.60	40.62	2.47	54.93	73.90	19.0	150	0	
Hori.	4882.000	AV	33.88	31.31	6.87	41.76	2.47	32.77	53.90	21.1	151	335	
Hori.	7323.000	AV	34.10	36.51	8.57	41.27	2.47	40.38	53.90	13.5	150	0	
Hori.	9764.000	AV	32.67	38.37	9.60	40.62	2.47	42.49	53.90	11.4	150	0	
Vert.	337.519	QP	27.10	14.36	7.10	31.75	0.00	16.81	46.00	29.1	157	225	
Vert.	463.580	QP	22.70	17.00	7.98	31.85	0.00	15.83	46.00	30.1	100	101	
Vert.	533.017	QP	27.80	18.18	8.33	31.93	0.00	22.38	46.00	23.6	100	106	
Vert.	4882.000	PK	45.32	31.31	6.87	41.76	2.47	44.21	73.90	29.7	152	2	
Vert.	7323.000	PK	46.34	36.51	8.57	41.27	2.47	52.62	73.90	21.3	150	0	
Vert.	9764.000	PK	44.88	38.37	9.60	40.62	2.47	54.70	73.90	19.2	150	0	
Vert.	4882.000	AV	34.08	31.31	6.87	41.76	2.47	32.97	53.90	20.9	152	2	
Vert.	7323.000	AV	34.36	36.51	8.57	41.27	2.47	40.64	53.90	13.3	150	0	
Vert.	9764.000	AV	33.06	38.37	9.60	40.62	2.47	42.88	53.90	11.0	150	0	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amprifier) + Distance factor

Distance factor : 1 GHz - 13 GHz : 20log(3.99 m / 3.0 m) = 2.47 dB13 GHz - 40 GHz : 20log(1.0 m / 3.0 m) = -9.54 dB

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

^{*} These results have sufficient margin without taking account Dwell time factor.

: 11834855S-B-R1 Test report No. Page : 34 of 54 Issued date : March 1, 2018 : YSKW80 FCC ID

Radiated Spurious Emission

11834855S-B-R1 Report No. Test place Shonan EMC Lab.

Semi Anechoic Chamber No.1 No.1 No.1

November 19, 2017 November 17, 2017 November 18, 2017 20 deg. C / 42 % RH 23 deg. C / 39 % RH 21 deg. C / 30 % RH Temperature / Humidity Yosuke Ishikawa Engineer Hiroyuki Morikawa Shiro Kobayashi (30 MHz -1 GHz) (1 GHz -13 GHz) (13 GHz -26.5 GHz)

Tx, Hopping Off, DH5 2480 MHz Mode

(* PK: Peak, AV: Average, QP: Quasi-Peak)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Distance	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	Factor [dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	308.420	QP	25.60	13.70	6.85	31.76	0.00	14.39	46.00	31.6	100	122	
Hori.	337.515	QP	31.40	14.36	7.10	31.75	0.00	21.11	46.00	24.8	100	181	
Hori.	387.401	QP	23.40	15.49	7.52	31.78	0.00	14.63	46.00	31.3	100	161	
Hori.	533.031	QP	29.70	18.18	8.33	31.93	0.00	24.28	46.00	21.7	209	220	
Hori.	2483.500	PK	50.17	27.45	14.32	40.81	2.47	53.60	73.90	20.3	147	89	
Hori.	4960.000	PK	45.73	31.48	6.94	41.65	2.47	44.97	73.90	28.9	149	340	
Hori.	7440.000	PK	45.56	36.68	8.75	41.36	2.47	52.10	73.90	21.8	150	0	
Hori.	9920.000	PK	45.07	38.63	9.72	40.66	2.47	55.23	73.90	18.7	150	0	
Hori.	2483.500	AV	34.87	27.45	14.32	40.81	2.47	38.30	53.90	15.6	147	89	
Hori.	4960.000	AV	33.76	31.48	6.94	41.65	2.47	33.00	53.90	20.9	149	340	
Hori.	7440.000	AV	33.99	36.68	8.75	41.36	2.47	40.53	53.90	13.4	150	0	
Hori.	9920.000	AV	32.75	38.63	9.72	40.66	2.47	42.91	53.90	11.0	150	0	
Vert.	337.516	QP	26.90	14.36	7.10	31.75	0.00	16.61	46.00	29.3	154	230	
Vert.	462.624	QP	22.90	16.98	7.97	31.85	0.00	16.00	46.00	30.0	100	99	
Vert.	533.022	QP	28.00	18.18	8.33	31.93	0.00	22.58	46.00	23.4	100	119	
Vert.	2483.500	PK	48.42	27.45	14.32	40.81	2.47	51.85	73.90	22.1	220	211	
Vert.	4960.000	PK	45.95	31.48	6.94	41.65	2.47	45.19	73.90	28.7	152	5	
Vert.	7440.000	PK	46.75	36.68	8.75	41.36	2.47	53.29	73.90	20.6	150	0	
Vert.	9920.000	PK	45.82	38.63	9.72	40.66	2.47	55.98	73.90	17.9	150	0	
Vert.	2483.500	AV	33.61	27.45	14.32	40.81	2.47	37.04	53.90	16.9	220	211	
Vert.	4960.000	AV	34.13	31.48	6.94	41.65	2.47	33.37	53.90	20.5	152	5	
Vert.	7440.000	AV	34.48	36.68	8.75	41.36	2.47	41.02	53.90	12.9	150	0	
Vert.	9920.000	AV	33.03	38.63	9.72	40.66	2.47	43.19	53.90	10.7	150	0	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amprifier) + Distance factor Distance factor : 1 GHz - 13 GHz : 20log (3.99 m / 3.0 m) = 2.47 dB

13 GHz - 40 GHz : $20\log(1.0 \text{ m}/3.0 \text{ m}) = -9.54 \text{ dB}$

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

 $[\]boldsymbol{*}$ These results have sufficient margin without taking account Dwell time factor.

Test report No. : 11834855S-B-R1
Page : 35 of 54
Issued date : March 1, 2018
FCC ID : YSKW80

<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Report No. 11834855S-B-R1 Test place Shonan EMC Lab.

Semi Anechoic Chamber

Date November 17, 2017
Temperature / Humidity 23 deg. C / 39 % RH
Engineer Yosuke Ishikawa
(1 GHz -13 GHz)

Mode Tx, Hopping Off, DH5 2480 MHz

No.1

^{*} Final result of restricted band edge was shown in tabular data.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11834855S-B-R1
Page : 36 of 54
Issued date : March 1, 2018
FCC ID : YSKW80

Radiated Spurious Emission

Report No. 11834855S-B-R1 Test place Shonan EMC Lab.

Semi Anechoic Chamber No.1 No.1 No.1

Date November 19, 2017 November 17, 2017 November 18, 2017
Temperature / Humidity 20 deg. C / 42 % RH Engineer Hiroyuki Morikawa (30 MHz -1 GHz) (13 GHz -26.5 GHz)

Mode Tx, Hopping Off, 3DH5 2402 MHz

(* PK: Peak, AV: Average, QP: Quasi-Peak)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Distance	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	Factor [dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	307.555	QP	25.50	13.68	6.84	31.76	0.00	14.26	46.00	31.7	100	121	
Hori.	337.515	QP	32.40	14.36	7.10	31.75	0.00	22.11	46.00	23.8	100	180	
Hori.	374.850	QP	23.40	15.20	7.42	31.77	0.00	14.25	46.00	31.7	100	164	
Hori.	533.021	QP	29.00	18.18	8.33	31.93	0.00	23.58	46.00	22.4	208	229	
Hori.	2390.000	PK	45.32	27.14	14.23	40.85	2.47	48.31	73.90	25.6	157	92	
Hori.	4804.000	PK	46.56	31.13	6.79	41.86	2.47	45.09	73.90	28.8	148	340	
Hori.	7206.000	PK	45.56	36.35	8.41	41.18	2.47	51.61	73.90	22.3	150	0	
Hori.	9608.000	PK	44.47	38.11	9.48	40.59	2.47	53.94	73.90	20.0	150	0	
Hori.	2390.000	AV	32.97	27.14	14.23	40.85	2.47	35.96	53.90	17.9	157	92	
Hori.	4804.000	AV	34.49	31.13	6.79	41.86	2.47	33.02	53.90	20.9	148	340	
Hori.	7206.000	AV	33.61	36.35	8.41	41.18	2.47	39.66	53.90	14.2	150	0	
Hori.	9608.000	AV	32.71	38.11	9.48	40.59	2.47	42.18	53.90	11.7	150	0	
Vert.	337.515	QP	27.50	14.36	7.10	31.75	0.00	17.21	46.00	28.7	146	230	
Vert.	462.422	QP	22.90	16.97	7.97	31.85	0.00	15.99	46.00	30.0	100	99	
Vert.	533.025	QP	27.70	18.18	8.33	31.93	0.00	22.28	46.00	23.7	100	119	
Vert.	2390.000	PK	45.82	27.14	14.23	40.85	2.47	48.81	73.90	25.1	226	215	
Vert.	4804.000	PK	46.42	31.13	6.79	41.86	2.47	44.95	73.90	29.0	152	4	
Vert.	7206.000	PK	45.42	36.35	8.41	41.18	2.47	51.47	73.90	22.4	150	0	
Vert.	9608.000	PK	44.40	38.11	9.48	40.59	2.47	53.87	73.90	20.0	150	0	
Vert.	2390.000	AV	33.17	27.14	14.23	40.85	2.47	36.16	53.90	17.7	226	215	
Vert.	4804.000	AV	34.52	31.13	6.79	41.86	2.47	33.05	53.90	20.9	152	4	
Vert.	7206.000	AV	33.63	36.35	8.41	41.18	2.47	39.68	53.90	14.2	150	0	
Vert.	9608.000	AV	32.68	38.11	9.48	40.59	2.47	42.15	53.90	11.8	150	0	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amprifier) + Distance factor

Distance factor : $1 \text{ GHz} - 13 \text{ GHz} : 20 \log (3.99 \text{ m} / 3.0 \text{ m}) = 2.47 \text{ dB}$ $13 \text{ GHz} - 40 \text{ GHz} : 20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.54 \text{ dB}$

20 dBc Data Sheet (RBW 100 kHz, VBW 300 kHz)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Distance	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	Factor [dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2402.000	PK	94.43	27.18	14.24	40.84	2.47	97.48	-	-	Carrier
Hori.	2400.000	PK	38.28	27.17	14.23	40.84	2.47	41.31	77.48	36.2	
Vert.	2402.000	PK	88.33	27.18	14.24	40.84	2.47	91.38	-	-	Carrier
Vert.	2400.000	PK	36.37	27.17	14.23	40.84	2.47	39.40	71.38	32.0	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amprifier) + Distance factor

Distance factor: 1 GHz - 13 GHz: 20log (3.99 m / 3.0 m) = 2.47 dB 13 GHz - 40 GHz: 20log (1.0 m / 3.0 m) = -9.54 dB

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

^{*} These results have sufficient margin without taking account Dwell time factor.

Test report No. : 11834855S-B-R1
Page : 37 of 54
Issued date : March 1, 2018
FCC ID : YSKW80

<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Report No. 11834855S-B-R1 Test place Shonan EMC Lab.

Semi Anechoic Chamber No.1

Date November 17, 2017
Temperature / Humidity 23 deg. C / 39 % RH
Engineer Yosuke Ishikawa
(1 GHz -13 GHz)

Mode Tx, Hopping Off, 3DH5 2402 MHz

^{*} Final result of restricted band edge was shown in tabular data.

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11834855S-B-R1
Page : 38 of 54
Issued date : March 1, 2018
FCC ID : YSKW80

Radiated Spurious Emission

Report No. 11834855S-B-R1 Test place Shonan EMC Lab.

Semi Anechoic Chamber No.1 No.1 No.1

Date November 19, 2017 November 17, 2017 November 18, 2017
Temperature / Humidity 20 deg. C / 42 % RH Engineer Hiroyuki Morikawa (30 MHz -1 GHz) (13 GHz -26.5 GHz)

Mode Tx, Hopping Off, 3DH5 2441 MHz

(* PK: Peak, AV: Average, QP: Quasi-Peak)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Distance	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	Factor [dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	307.994	QP	25.50	13.69	6.85	31.76	0.00	14.28	46.00		100	126	
Hori.	337.518	QP	31.90	14.36	7.10	31.75	0.00	21.61	46.00	24.3	100	182	
Hori.	376.325	QP	24.70	15.23	7.43	31.77	0.00	15.59	46.00	30.4	100	178	
Hori.	533.023	QP	29.20	18.18	8.33	31.93	0.00	23.78	46.00	22.2	207	227	
Hori.	4882.000	PK	45.46	31.31	6.87	41.76	2.47	44.35	73.90	29.6	151	351	
Hori.	7323.000	PK	45.55	36.51	8.57	41.27	2.47	51.83	73.90	22.1	150	0	
Hori.	9764.000	PK	44.48	38.37	9.60	40.62	2.47	54.30	73.90	19.6	150	0	
Hori.	4882.000	AV	34.15	31.31	6.87	41.76	2.47	33.04	53.90	20.9	151	351	
Hori.	7323.000	AV	34.18	36.51	8.57	41.27	2.47	40.46	53.90	13.4	150	0	
Hori.	9764.000	AV	33.14	38.37	9.60	40.62	2.47	42.96	53.90	10.9	150	0	
Vert.	337.512	QP	27.20	14.36	7.10	31.75	0.00	16.91	46.00	29.0	154	221	
Vert.	462.606	QP	22.90	16.98	7.97	31.85	0.00	16.00	46.00	30.0	100	99	
Vert.	533.025	QP	27.90	18.18	8.33	31.93	0.00	22.48	46.00	23.5	100	144	
Vert.	4882.000	PK	45.14	31.31	6.87	41.76	2.47	44.03	73.90	29.9	148	8	
Vert.	7323.000	PK	45.66	36.51	8.57	41.27	2.47	51.94	73.90	22.0	150	0	
Vert.	9764.000	PK	45.11	38.37	9.60	40.62	2.47	54.93	73.90	19.0	150	0	
Vert.	4882.000	AV	34.16	31.31	6.87	41.76	2.47	33.05	53.90	20.9	148	8	
Vert.	7323.000	AV	34.38	36.51	8.57	41.27	2.47	40.66	53.90	13.2	150	0	
Vert.	9764.000	AV	33.15	38.37	9.60	40.62	2.47	42.97	53.90	10.9	150	0	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amprifier) + Distance factor

Distance factor : 1 GHz - 13 GHz : 20log(3.99 m / 3.0 m) = 2.47 dB13 GHz - 40 GHz : 20log(1.0 m / 3.0 m) = -9.54 dB

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

^{*} These results have sufficient margin without taking account Dwell time factor.

: 11834855S-B-R1 Test report No. Page : 39 of 54 Issued date : March 1, 2018 : YSKW80 FCC ID

Radiated Spurious Emission

11834855S-B-R1 Report No. Test place Shonan EMC Lab.

Semi Anechoic Chamber No.1 No.1 No.1

November 19, 2017 November 17, 2017 November 18, 2017 20 deg. C / 42 % RH 23 deg. C / 39 % RH 21 deg. C / 30 % RH Temperature / Humidity Yosuke Ishikawa Engineer Hiroyuki Morikawa Shiro Kobayashi (30 MHz -1 GHz) (1 GHz -13 GHz) (13 GHz -26.5 GHz)

Tx, Hopping Off, 3DH5 2480 MHz Mode

(* PK: Peak, AV: Average, QP: Quasi-Peak)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Distance	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	Factor [dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	307.897	QP	25.50	13.69	6.85	31.76	0.00	14.28	46.00	31.7	100	123	
Hori.	337.519	QP	32.30	14.36	7.10	31.75	0.00	22.01	46.00	23.9	100	185	
Hori.	376.309	QP	23.90	15.23	7.43	31.77	0.00	14.79	46.00	31.2	100	165	
Hori.	533.036	QP	29.80	18.18	8.33	31.93	0.00	24.38	46.00	21.6	209	219	
Hori.	2483.500	PK	48.36	27.45	14.32	40.81	2.47	51.79	73.90	22.1	149	91	
Hori.	4960.000	PK	46.02	31.48	6.94	41.65	2.47	45.26	73.90	28.6	151	334	
Hori.	7440.000	PK	46.21	36.68	8.75	41.36	2.47	52.75	73.90	21.2	150	0	
Hori.	9920.000	PK	45.04	38.63	9.72	40.66	2.47	55.20	73.90	18.7	150	0	
Hori.	2483.500	AV	33.81	27.45	14.32	40.81	2.47	37.24	53.90	16.7	149	91	
Hori.	4960.000	AV	34.31	31.48	6.94	41.65	2.47	33.55	53.90	20.4	151	334	
Hori.	7440.000	AV	34.40	36.68	8.75	41.36	2.47	40.94	53.90	13.0	150	0	
Hori.	9920.000	AV	33.01	38.63	9.72	40.66	2.47	43.17	53.90	10.7	150	0	
Vert.	337.515	QP	27.40	14.36	7.10	31.75	0.00	17.11	46.00	28.8	153	229	
Vert.	462.615	QP	22.90	16.98	7.97	31.85	0.00	16.00	46.00	30.0	100	99	
Vert.	533.027	QP	27.80	18.18	8.33	31.93	0.00	22.38	46.00	23.6	100	145	
Vert.	2483.500	PK	45.95	27.45	14.32	40.81	2.47	49.38	73.90	24.5	228	210	
Vert.	4960.000	PK	45.68	31.48	6.94	41.65	2.47	44.92	73.90	29.0	150	10	
Vert.	7440.000	PK	46.23	36.68	8.75	41.36	2.47	52.77	73.90	21.1	150	0	
Vert.	9920.000	PK	44.78	38.63	9.72	40.66	2.47	54.94	73.90	19.0	150	0	
Vert.	2483.500	AV	33.40	27.45	14.32	40.81	2.47	36.83	53.90	17.1	228	210	
Vert.	4960.000	AV	34.09	31.48	6.94	41.65	2.47	33.33	53.90	20.6	150	10	
Vert.	7440.000	AV	34.32	36.68	8.75	41.36	2.47	40.86	53.90	13.0	150	0	
Vert.	9920.000	AV	32.93	38.63	9.72	40.66	2.47	43.09	53.90	10.8	150	0	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amprifier) + Distance factor Distance factor : 1 GHz - 13 GHz : 20log (3.99 m / 3.0 m) = 2.47 dB

13 GHz - 40 GHz : $20\log(1.0 \text{ m}/3.0 \text{ m}) = -9.54 \text{ dB}$

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

 $[\]boldsymbol{*}$ These results have sufficient margin without taking account Dwell time factor.

Test report No. : 11834855S-B-R1
Page : 40 of 54
Issued date : March 1, 2018
FCC ID : YSKW80

<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Report No. 11834855S-B-R1 Test place Shonan EMC Lab.

Semi Anechoic Chamber No.1

Date November 17, 2017
Temperature / Humidity 23 deg. C / 39 % RH
Engineer Yosuke Ishikawa
(1 GHz -13 GHz)

Mode Tx, Hopping Off, 3DH5 2480 MHz

^{*} Final result of restricted band edge was shown in tabular data.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11834855S-B-R1
Page : 41 of 54
Issued date : March 1, 2018
FCC ID : YSKW80

November 18, 2017

Radiated Spurious Emission (Plot data, Worst case)

Report No. 11834855S-B-R1 Test place Shonan EMC Lab.

Semi Anechoic Chamber No.1 No.1 No.1

Date November 19, 2017 November 17, 2017

Temperature / Humidity
Engineer

20 deg. C / 42 % RH
Hiroyuki Morikawa
(30 MHz -1 GHz)

23 deg. C / 39 % RH
Yosuke Ishikawa
Shiro Kobayashi
(1 GHz -13 GHz)
(13 GHz -26.5 GHz)

Mode Tx, Hopping Off, DH5 2402 MHz

^{*}These plots data contains sufficient number to show the trend of characteristic features for EUT.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11834855S-B-R1
Page : 42 of 54
Issued date : March 1, 2018
FCC ID : YSKW80

Conducted Spurious Emission

Test place Shonan EMC Lab. No.5 Shielded Room

Report No. 11834855S-B-R1
Date November 16, 2017
Temperature / Humidity 26deg. C / 37 % RH
Engineer Makoto Hosaka
Mode Tx, Hopping Off, DH5

2402 MHz

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11834855S-B-R1
Page : 43 of 54
Issued date : March 1, 2018
FCC ID : YSKW80

Conducted Spurious Emission

Test place Shonan EMC Lab. No.5 Shielded Room

Report No. 11834855S-B-R1
Date November 16, 2017
Temperature / Humidity 26deg. C / 37 % RH
Engineer Makoto Hosaka
Mode Tx, Hopping Off, DH5

2441 MHz

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11834855S-B-R1
Page : 44 of 54
Issued date : March 1, 2018
FCC ID : YSKW80

Conducted Spurious Emission

Test place Shonan EMC Lab. No.5 Shielded Room

Report No. 11834855S-B-R1
Date November 16, 2017
Temperature / Humidity 26deg. C / 37 % RH
Engineer Makoto Hosaka
Mode Tx, Hopping Off, DH5

2480 MHz

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11834855S-B-R1
Page : 45 of 54
Issued date : March 1, 2018
FCC ID : YSKW80

Conducted Spurious Emission

Test place Shonan EMC Lab. No.5 Shielded Room

Report No. 11834855S-B-R1
Date November 20, 2017
Temperature / Humidity Engineer Shiro Kobayashi
Mode Tx, Hopping Off, 3DH5

2402 MHz

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11834855S-B-R1
Page : 46 of 54
Issued date : March 1, 2018
FCC ID : YSKW80

Conducted Spurious Emission

Test place Shonan EMC Lab. No.5 Shielded Room

Report No. 11834855S-B-R1
Date November 20, 2017
Temperature / Humidity 24 deg. C / 31 % RH
Engineer Shiro Kobayashi
Mode Tx, Hopping Off, 3DH5

2441 MHz

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11834855S-B-R1
Page : 47 of 54
Issued date : March 1, 2018
FCC ID : YSKW80

Conducted Spurious Emission

Test place Shonan EMC Lab. No.5 Shielded Room

Report No. 11834855S-B-R1
Date November 20, 2017
Temperature / Humidity Engineer Shiro Kobayashi
Mode Tx, Hopping Off, 3DH5

2480 MHz

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11834855S-B-R1
Page : 48 of 54
Issued date : March 1, 2018
FCC ID : YSKW80

Conducted Emission Band Edge compliance

Test place Shonan EMC Lab. No.5 Shielded Room

Report No. 11834855S-B-R1
Date November 16, 2017
Temperature / Humidity 26deg. C / 37 % RH
Engineer Makoto Hosaka
Mode Tx DH5

Hopping On

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11834855S-B-R1
Page : 49 of 54
Issued date : March 1, 2018
FCC ID : YSKW80

Conducted Emission Band Edge compliance

Test place Shonan EMC Lab. No.5 Shielded Room

Report No. 11834855S-B-R1
Date November 20, 2017
Temperature / Humidity 24 deg. C / 31 % RH
Engineer Shiro Kobayashi
Mode Tx 3DH5

Hopping On

Hopping Off

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

: 11834855S-B-R1 Test report No. Page : 50 of 54 **Issued date** : March 1, 2018 FCC ID : YSKW80

APPENDIX 2: Test instruments

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date *	
						Interval(month)	
SAF-04	Pre Amplifier	TOYO Corporation	TPA0118-36	1440489	RE	2017/03/17 * 12	
SCC-G05	Coaxial Cable	Junkosha	J12J102207- 00	APR-30-15 -037	RE	2017/01/08 * 12	
SCC-G22	Coaxial Cable	Suhner	SUCOFLEX 104	296199/4	RE	2017/05/08 * 12	
SHA-01	Horn Antenna	Schwarzbeck	BBHA9120 D	9120D-725	RE	2017/08/14 * 12	
SOS-01	Humidity Indicator	A&D	AD-5681	4062555	RE	2017/10/30 * 12	
SRENT-08	Spectrum Analyzer	Agilent	E4448A	MY501800 19	RE	2017/10/12 * 12	
KJM-09	Measure	KOMELON	KMC-36	-	RE	-	
SAEC-01(SVS WR)	Semi-Anechoic Chamber	TDK	SAEC-01(S VSWR)	1	RE	2017/07/20 * 12	
COTS-SEMI-1	EMI Software	TSJ	TEPTO-DV(RE,CE,RFI, MF)	-	RE	-	
STS-01	Digital Hitester	Hioki	3805-50	080997812	RE	2017/10/16 * 12	
SCC-G40	Coaxial Cable	Junkosha	MWX221-01 000NFSNM S/B	1612S005	RE	2017/01/08 * 12	
SAT10-06	Attenuator	Agilent	8493C-010	74865	RE	2016/11/07 * 12	
SFL-02	Highpass Filter	MICRO-TRONICS	HPM50111	051	RE	2016/11/29 * 12	
SAEC-01(NSA	Semi-Anechoic Chamber	TDK	SAEC-01(N SA)	1	RE	2017/06/09 * 12	
SHA-05	Horn Antenna	ETS LINDGREN	3160-09	LM4210	RE	2017/03/15 * 12	
SAF-09	Pre Amplifier	TOYO Corporation	HAP18-26W	00000018	RE	2017/09/22 * 12	
SCC-G33	Coaxial Cable	Junkosha	MWX241-01 000KMSKM S	-	RE	2017/04/20 * 12	
SCC-G19	Coaxial Cable	Suhner	SUCOFLEX 102A	1188/2A	RE	2017/03/23 * 12	
SAF-01	Pre Amplifier	SONOMA	310N	290211	RE	2017/02/09 * 12	
KAT6-04	Attenuator	INMET	18N-6dB	-	RE	2016/12/15 * 12	
SAT3-09	Attenuator	JFW	50HF-003N	-	RE	2017/08/24 * 12	
SBA-01	Biconical Antenna	Schwarzbeck	BBA9106	91032664	RE	2017/10/21 * 12	
SCC-A1/A3/A 5/A7/A8/A13/ SRSE-01	Coaxial Cable&RF Selector	Fujikura/Fujikura/Su hner/Suhner/Suhner/ Suhner/TOYO	8D2W/12DS FA/141PE/1 41PE/141PE /141PE/NS4 906	-/0901-269 (RF Selector)	RE	2017/04/07 * 12	
SCC-A2/A4/A 6/A7/A8/A13/ SRSE-01	Coaxial Cable&RF Selector	Fujikura/Fujikura/Su hner/Suhner/Suhner/ Suhner/TOYO	8D2W/12DS FA/141PE/1 41PE/141PE /141PE/NS4 906	-/0901-269 (RF Selector)	RE	2017/04/07 * 12	
SLA-05	Logperiodic Antenna	Schwarzbeck	VUSLP9111 B	193	RE	2017/01/05 * 12	
STR-01	Test Receiver	Rohde & Schwarz	ESU40	100093	RE	2017/04/12 * 12	

UL Japan, Inc. **Shonan EMC Lab.**

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11834855S-B-R1
Page : 51 of 54
Issued date : March 1, 2018
FCC ID : YSKW80

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date *
						Interval(month)
SOS-09	Humidity Indicator	A&D	AD-5681	4061484	AT	2016/12/13 * 12
KTS-07	Digital Tester	SANWA	PC500	7019232	AT	2017/10/11 * 12
SPM-07	Power Meter	Agilent	8990B	MY510027 2	AT	2017/05/01 * 12
SPSS-04	Power sensor	Agilent	N1923A	MY532600 9	AT	2017/05/01 * 12
SCC-G14	Coaxial Cable	Suhner	SUCOFLEX 102	31600/2	AT	2017/03/23 * 12
SAT10-13	Attenuator	Weinschel Corp.	54A-10	81626	AT	2017/03/23 * 12
SSA-03	Spectrum Analyzer	Agilent	E4448A	MY482501 52	AT	2017/08/20 * 12
SRENT-10	Spectrum Analyzer	Agilent	E4440A	US4142151 1	AT	2016/12/05 * 12
SCC-B12/B13/ SRSE-02	Coaxial Cable&RF Selector	Suhner/Suhner/TOYO	RG223U/141 PE/NS4906	-/0901-270(RF Selector)	CE	2017/04/07 * 12
SLS-03	LISN	Rohde & Schwarz	ENV216	100513	CE	2017/02/27 * 12
KAT3-12	Attenuator	JFW IND. INC.	50HF-003N	-	CE	2017/07/24 * 12
SOS-04	Humidity Indicator	A&D	AD-5681	4061512	CE	2016/12/13 * 12
STR-07	Test Receiver	Rohde & Schwarz	ESU26	100484	CE	2017/09/26 * 12
SJM-09	Measure	PROMART	SEN1935	-	CE	-
COTS-SEMI-1	EMI Software	TSJ	TEPTO-DV(RE,CE,RFI,M F)	-	CE	-
STS-02	Digital Hitester	Hioki	3805-50	080997819	CE	2017/03/08 * 12

The expiration date of the calibration is the end of the expired month.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

Test Item: CE: Conducted Emission test

RE: Radiated Emission test

AT: Antenna Terminal Conducted test

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN