Aufgabe 1 & 2

 $Quellcode: Aufgabe_1_2.java$

Ausgabe im Anhang.

Es lässt sich erkennen, dass die Exponentialsdarstellung eine Abweichung im Bereich von 10^{-17} für alle x ergibt. Zur Verbesserung gibt es zwei weitere Verfahren: Die Berechnung über die Produkt- oder Reihenentwicklung. Dabei erkennt man, dass die Produktentwicklung für $x \leq 10^{-9}$ mit der in Java verfügbaren Routine übereinstimmt, jedoch vorher teilweise größere Fehler als die Exponentialdarstellung besitzt. Die Reihenentwicklung besitzt dagegen eine relativ hohe Genauigkeit, ihr größter Fehler liegt bei $2*10^{-19}$ für $x=10^{-3}$ und sie weicht auch sonst nur für zwei weitere x-Werte von der vorgegebenen Routine ab.

Aufgabe 3 (c)

Quellcode: Aufgabe3.java Ausgabe im Anhang.

Bei der Vorwärtsrekursion treten für $k \geq 18$ bei geraden k negative Werte auf und der Betrag von I_k steigt schnell an bis ca. $4*10^{17}$. Hier liegt offenbar ein Rechenfehler vor, da das Integral nach (a) monoton fallend und immer positiv ist. Dieser Rechenfehler entsteht durch Fehlerfortpflanzung, da der Startwert $I_0 = e - 1$ schon nicht exakt in Maschinenzahlen dargestellt werden kann. Diese Ungenaugigkeit wird in jedem Rekursionsschritt verstärkt und es kommt zu der beobachteten Abweichung. Die Rückwärtsrekursion nimmt als Startwert $I_63 = 0$ und umgeht so einen anfänglichen Fehler. Dadurch sind dies Werte für alle k auch nah an exakten Werten, bzw. den durch MATLAB berechneten.