- Due by class: Questionnaire on Canvas
- Due by class: Read syllabus

# Lecture 1: Course overview

CIS 240: MICROCOMPUTER ARCHITECTURE & PROGRAMMING 1/22/2025

### Me: I'm Tina

My specialties:







### You

- If you don't see why we're doing something, or where it's useful, <u>ASK!</u>
- If debugging hits a wall, email me! (Maybe 30 minutes if not making progress)
- I can meet for office hours at almost any time. If scheduled OH don't work for you, please tell me! And we can find a better time for you.
- I prefer you turning something in over me just taking off points. If you can't get an assignment in on-time, tell me and we'll work something out.



# Questionnaire stuff

### Homework

| Monday | Tuesday | Wednesday | Thursday | Friday | Saturday | Sunday |
|--------|---------|-----------|----------|--------|----------|--------|
| 4      |         |           |          | 3      |          | 9      |

- 11:59pmNot Monday

### Office hours: In-person

|          | Monday | Tuesday | Wednesday | Thursday  | Friday | Sat | Sun  |
|----------|--------|---------|-----------|-----------|--------|-----|------|
|          |        | Tuesday | -         | Inioisady | Пасу   | 301 | 3011 |
| 10am     | 8      |         | 7         |           |        |     |      |
| 11am     |        |         |           |           | 1      |     |      |
| Noon     | /      | 1       |           | 1         | 1      |     |      |
| 1:20pm   | 5      |         | 6         |           |        |     |      |
| 2pm      | 1      |         |           |           |        |     |      |
| 3pm      |        |         |           |           |        |     |      |
| 4pm      |        |         |           |           |        |     |      |
| 5pm      |        |         |           |           |        |     |      |
|          |        |         |           |           |        |     |      |
| This day | 1      | 5       | 1         | 5         | 7      |     |      |

- TuTh after 2pm
- TuTh 10am
- Mornings
- After 6pm
- 4-6pm, MW
- Not TuTh12:30-2
- Virtual 8-9pm

Bait and switch

### Interests

- Security (memory unsafe. Memory safe languages include Rust, Go, C#, Java, Swift, Python, and JavaScript.)
- Games
- Not interested much in this class. Let me program.
- Hands on work
- Bit manipulation
- Memory (Stack, etc.)
- Concurrency (Threads, locks...)
- Mojo programming language



### Today

- -Lecture:
  - Course overview → "Let's build a computer"
    - Goal: Make sure you know what we're talking about when we talk about "computer architecture".
  - Numbers
- Lab: Numbers practice (Homework will also be number practice)

### Computer hardware...

https://www.pcmag.com/how-to/how-to-build-a-pc-theultimate-beginners-guide

### What kind of computer?

- Case
- Motherboard
- Processor (CPU)
- Cooling
- Memory
- Storage drives
- Power supply
- (Graphics card)
- (WiFi card if not built-in to motherboard or using dongle)
- Display, keyboard, mouse, speakers, ...

- For example: CORSAIR: <a href="https://www.corsair.com/us/en/s/pc-case-comparison?gl=1\*wswpfc\*\_up\*MQ..\*\_gs\*MQ..&gclid=Cj0KCQjw\_qexBhCoARIsAFgBleuw1ddEZJJSBm01tV0UGNcbBQnWOBRHBeyBprO3DspljRPc2fQ4OeEaAj\_wEALw\_wcB</a>
- Size?
- What motherboard format do you want to use?
  - TX Largest board. Lotsa slots for adding memory, video card, etc.
  - Micro-ATX smaller. Less slots.
  - Mini-ITX Maybe just a single slot
- Color, material...

### Motherboard & CPU:

### What all future decisions depend on

- Motherboard
  - newegg: <a href="https://www.newegg.com/Motherboards/Category/ID-20">https://www.newegg.com/Motherboards/Category/ID-20</a>
  - (1) You need a motherboard that works with the CPU you choose; (Find CPU socket type: AM5, LGA1700...)
  - (2) the board should be the right size and shape ("form factor") for your case; and
  - (3) it should have the external ports and internal expansion slots you need for what you plan to install.

#### CPU

■ Digikey.com search for CPU → Microprocessors

### Cooling the system:

- https://www.youtube.com/watch?v=UoXRHexGlok
- https://www.youtube.com/watch?v=7uBNCN6v\_gk 0:44
- https://www.corsair.com/us/en/s/cpu-coolers-comparison



### Memory: RAM & Hard drive

- https://www.corsair.com/us/en/s/corsair-memory
- RAM: DDR4 or DDR5 memory
- ► Hard drive: "the smart default pick with new motherboards is a solid-state boot drive in the M.2 format supporting PCI Express data transfers". → These days, SSD

- https://www.corsair.com/us/en/s/psu-family
- ATX power supply or for smaller cases SFX.
- Fully wired power supply or modular power supply.





### Course map

22

Data

**Numbers** 

(1)

Signals between components:

#### **Digital circuits**

- Gates
- **Boolean logic**
- **Truth tables**
- **K-Maps**

2





South Bridge

#### **Languages/Instructions Hardware**

- **Assembly**
- **Machine language**
- **Architecture Hardware**

#### **Memory**

**Addressing schemes** 

(5)





4

Wireless & Router







**Memory mapped I/O** CIS 240: MICROC From A SSEMBROGRAMMING

From C

BIOS





········



Headphones

Speaker System & Adapters

# Representing Numbers & Data

#### Internal digital representation of NUMBERS

- A wire can be 0V or 5V, OFF or ON, LOW or HIGH. These respectively are represented as LOGIC '0' (zero or FALSE) and '1' (one or TRUE).
- Each wire or memory cell represents a bit:
  - A bit (**BI**nary digi**T**) is one of these values
- **RÉMEMBER**: Computers stores all values as 1s and 0s!
  - Pictures
  - Numbers
  - Instructions
  - Characters / words
  - Data

### Decimal = Base-10

Let's say you have a number base-10: 298.460 Maximum digit value = Base -1 = 10 - 1 = 9

| 10 <sup>4</sup>   | 10 <sup>3</sup>   | 10 <sup>2</sup>   | 10 <sup>1</sup>   | 10 <sup>0</sup>   | • | 10-1               | 10-2               | 10-3               |
|-------------------|-------------------|-------------------|-------------------|-------------------|---|--------------------|--------------------|--------------------|
| 0                 | 0                 | 2                 | 9                 | 8                 | • | 4                  | 6                  | 0                  |
| 0x10 <sup>4</sup> | 0x10 <sup>3</sup> | 2x10 <sup>2</sup> | 9x10 <sup>1</sup> | 8x10 <sup>0</sup> | • | 4x10 <sup>-1</sup> | 6x10 <sup>-2</sup> | 0x10 <sup>-3</sup> |

$$0x10^4+0x10^3+2x10^2+9x10^1+8x10^0+4x10^{-1}+6x10^{-2}+0x10^{-3}$$

Shorthand 298.460 → 298.460<sub>10</sub>

### "Bits" Base-2 (Positive Binary)

Let's say you have a number base-2: 00110.110<sub>2</sub>

 $\blacksquare$  Maximum digit value = Base - 1 = 2 - 1 = 1

| ı | <b>2</b> <sup>4</sup> | <b>2</b> <sup>3</sup> | <b>2</b> <sup>2</sup> | <b>2</b> <sup>1</sup> | <b>2</b> <sup>0</sup> | • | <b>2</b> -1       | 2-2               | <b>2</b> -3       |
|---|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|---|-------------------|-------------------|-------------------|
|   | 0                     | 0                     | 1                     | 1                     | 0                     | • | 1                 | 1                 | 0                 |
|   | 0x2 <sup>4</sup>      | $0x2^{3}$             | 1x2 <sup>2</sup>      | 1x2 <sup>1</sup>      | 0x2 <sup>0</sup>      | • | 1x2 <sup>-1</sup> | 1x2 <sup>-2</sup> | 0x2 <sup>-3</sup> |
|   | OFF                   | OFF                   | ON                    | ON                    | OFF                   |   | ON                | ON                | OFF               |

$$0x2^4 + 0x2^3 + 1x2^2 + 1x2^1 + 0x2^0 + 1x2^{-1} + 1x2^{-2} + 0x2^{-3}$$

**■**00110.110<sub>2</sub> In Base-10:

$$=0+0+2^2+2^1+0+2^{-1}+2^{-2}+0$$

$$=0+0+4+2+0+1/2+1/4+0=6.75_{10}$$

# Example: Translate 652.625<sub>10</sub> to binary (1) (Left of decimal point done on this slide)

Powers of 2 for positive powers:

| <b>2</b> <sup>10</sup> | <b>2</b> <sup>9</sup> | <b>2</b> <sup>8</sup> | <b>2</b> <sup>7</sup> | 26 | <b>2</b> <sup>5</sup> | 24 | <b>2</b> <sup>3</sup> | <b>2</b> <sup>2</sup> | <b>2</b> <sup>1</sup> | <b>2</b> <sup>0</sup> |
|------------------------|-----------------------|-----------------------|-----------------------|----|-----------------------|----|-----------------------|-----------------------|-----------------------|-----------------------|
| 1024                   | 512                   | 256                   | 128                   | 64 | 32                    | 16 | 8                     | 4                     | 2                     | 1                     |

- Take integer part: 652
  - Find largest power of 2 and subtract:
  - -652-512=140 (1x2°)
  - Find largest power of 2 and subtract:
  - -140-128=12 (1x27)
  - Find largest power of 2 and subtract:
  - -12-8=4 (1x2<sup>3</sup>)
  - ► Find largest power of 2 and subtract:

| <b>2</b> <sup>10</sup> | 29         | <b>2</b> <sup>8</sup> | <b>2</b> <sup>7</sup> | 26       | <b>2</b> <sup>5</sup> | 24 | <b>2</b> <sup>3</sup> | <b>2</b> <sup>2</sup> | <b>2</b> <sup>1</sup> | <b>2</b> <sup>0</sup> |
|------------------------|------------|-----------------------|-----------------------|----------|-----------------------|----|-----------------------|-----------------------|-----------------------|-----------------------|
| <b>O</b> CIS 240       | : MICROCOM | APUT OARC             | HITECTURE & F         | rogammin | 1G 0                  | 0  | 1                     | 1                     | 0                     | 0                     |

# Example: Translate 652.625<sub>10</sub> to binary (2) (Right of decimal point done on this slide)

■ Powers of 2 for positive powers:

| 2-1 | <b>2</b> -2 | <b>2</b> -3 | 2-4    | 2-5     |
|-----|-------------|-------------|--------|---------|
| 0.5 | 0.25        | 0.125       | 0.0625 | 0.03125 |

- ■Take decimal part: 0.652
  - Find largest power of 2 and subtract:
  - -0.625-0.5=0.125 (1x2<sup>-1</sup>)
  - ► Find largest power of 2 and subtract:
  - -0.125-0.125=0 (1x2-3)

| 2-1 | 2-2 | <b>2</b> -3 | 2-4 | <b>2</b> -5 |
|-----|-----|-------------|-----|-------------|
| 1   | 0   | 1           | 0   | 0           |

► Final value of 652.625<sub>10</sub> is:

Previous slide

| <b>2</b> <sup>10</sup> | 2° CIS | <b>28</b><br>240: MI | <b>2</b> 7<br>CROCOM | <b>2</b> 6<br>PUTER AR | <b>2</b> 5<br>CHITECTU | <b>24</b><br>RE&PRO | <b>23</b><br>Grammin | , <sub>IG</sub> 2 <sup>2</sup> | <b>2</b> <sup>1</sup> | <b>2</b> <sup>0</sup> |   | 2-1 | 2-2 | 2-3 | 2-4 | <b>2</b> -5 |
|------------------------|--------|----------------------|----------------------|------------------------|------------------------|---------------------|----------------------|--------------------------------|-----------------------|-----------------------|---|-----|-----|-----|-----|-------------|
| 0                      | 1      | 0                    | 1                    | 0                      | 0                      | 0                   | 1                    | 1                              | 0                     | 0                     | • | 1   | 0   | 1   | 0   | 0           |

This slide

### Example: Translate 652.625<sub>10</sub> to binary (3)

Translate 652.625<sub>10</sub> to binary

| <b>2</b> <sup>10</sup> | 29 | <b>2</b> <sup>8</sup> | <b>2</b> <sup>7</sup> | 26 | <b>2</b> <sup>5</sup> | <b>2</b> <sup>4</sup> | <b>2</b> <sup>3</sup> | <b>2</b> <sup>2</sup> | <b>2</b> <sup>1</sup> | <b>2</b> <sup>0</sup> | • | <b>2</b> -1 | 2-2 | <b>2</b> -3 | 2-4 | <b>2</b> -5 |
|------------------------|----|-----------------------|-----------------------|----|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|---|-------------|-----|-------------|-----|-------------|
| 0                      | 1  | 0                     | 1                     | 0  | 0                     | 0                     | 1                     | 1                     | 0                     | 0                     |   | 1           | 0   | 1           | 0   | 0           |

- $-652.625_{10} = 01010001100.10100_{2}$
- To represent this number in a digital system you need 16 bits, 16 wires, 16 memory cells or 16 somethings...

### Class problems 1

- Convert 43.125<sub>10</sub> to binary
- Convert 13.1875<sub>10</sub> to binary
- Convert 444.44<sub>10</sub> to binary (limited to 3 numbers to the right of the binary point)

### Translate 01101.010<sub>2</sub> to base-10

| 24 | <b>2</b> <sup>3</sup> | <b>2</b> <sup>2</sup> | <b>2</b> <sup>1</sup> | <b>2</b> <sup>0</sup> | • | <b>2</b> -1 | 2-2 | <b>2</b> -3 |
|----|-----------------------|-----------------------|-----------------------|-----------------------|---|-------------|-----|-------------|
| 0  | 1                     | 1                     | 0                     | 1                     | • | 0           | 1   | 0           |

$$0x2^{4}+1x2^{3}+1x2^{2}+0x2^{1}+1x2^{0}+0x2^{-1}+1x2^{-2}+0x2^{-3} = 0 + 8 + 4 + 0 + 1 + 0 + 0.25 + 0 = 13.25_{10}$$

### Class problem 2

- Convert 001011.101<sub>2</sub> to decimal
- Convert 101.01<sub>2</sub> to decimal

- Binary: 01011101101010101.00111101
  - All ones and zeroes
  - Not human friendly
- Hexadecimal
  - Group 4-bits together from decimal point
  - → 4-bits can equal more than 9.

The average person can hold between three and seven items in their short-term memory, also known as working memory. This limit is known as the "magical number seven"

| Decimal | 0    | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   | 13   | 14   | 15   |
|---------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Base-2  | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |
| Hex     | 0    | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | Α    | В    | С    | D    | Е    | F    |

- 0,1011,1011,0101,0101,.0011,1101,

### Class problems 3

- What is the hexidecimal representation of 1001010110101010101.10101012?
- ► 625.626<sub>10</sub> in hex

■ What's missing?

### Representing negative numbers (1)

- Five ways to represent negative numbers (Four numerical ways):
  - ■Sign-magnitude
    - Easy for humans but not so good for math
  - 1's complement
    - Better for math but wasteful
  - ■2's complement → The main one we'll be looking at
    - Usually used. Computers like it, not wasteful.
  - BCD (Binary-coded decimal)
    - Humans like it. Computers... Not so much. Math hard.
  - → ASCII, JIS X 0208, EUC (Unix), Unicode, etc.
    - Text characters

      CIS 240: MICROCOMPUTER ARCHITECTURE & PROGRAMMING

### WORD: Wikipedia

In computing, word is a term for the natural unit of data used by a particular computer design. A word is simply a fixed-sized group of bits that are handled together by the system. The number of bits in a word (the word size or word length) is an important characteristic of a computer architecture.

# 2's complement in picture form



## Two's complement Representation (1) THIS IS THE MOST IMPORTANT REPRESENTATION

- Positive numbers are the same for positive binary and for positive 2's complement numbers.
- Let's pick a number:  $27_{10} = 00011011_2 = 0x1B$
- Two's complement says the negative value is just the "complement plus 1". All 1s are changed to zero and all zeroes are changed to ones then 1 is added.
- **■** So....

$$00011011_2 = 27_{10}$$
AND
 $11100100_2 + 1 = 11100101_2 = -27_{10}$ 

### Class problems 4

- Fill in the following table
  - → All answers in 8-bits except base-10
  - ■If a number can't be represented, write "X" or "?"

|   | Base-10          | Positive binary | Hexadecimal | 2's complement        |
|---|------------------|-----------------|-------------|-----------------------|
|   | 22 <sub>10</sub> |                 |             |                       |
|   |                  | 000100012       |             |                       |
| / |                  |                 | 0x81        |                       |
|   |                  |                 |             | 000100012             |
|   |                  |                 |             | 11111001 <sub>2</sub> |