Série 10 du jeudi 24 novembre 2016

Rappel 1.

Pour $\alpha \in \mathbb{R}$, la fonction puissance α est définie de \mathbb{R}_+^* dans \mathbb{R}_+^* par $x^{\alpha} = e^{\alpha \ln x}$, $\forall x > 0$.

Rappel 2.

On admet les développements limités suivants (!):

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \mathcal{O}\left(|x|^8\right), \text{ si } x \to 0,$$

$$\cos z = \cos(1) - \sin(1)(z - 1) - \frac{\cos(1)}{2!}(z - 1)^2 + \frac{\sin(1)}{3!}(z - 1)^3 + \mathcal{O}\left(|z - 1|^4\right), \text{ si } z \to 1,$$

$$\ln(z) = (z - 1) - \frac{1}{2!}(z - 1)^2 + \mathcal{O}(|z - 1|^3), \text{ si } z \to 1.$$

Exercice 1 (* A rendre).

 $\text{Calculer les limites suivantes: 1.) } \lim_{\substack{x \to 0 \\ \neq}} \frac{1 - \cos x^6}{x^{12}}, \, 2.) \, \lim_{\substack{x \to \infty}} \left(1 + \frac{1}{x}\right)^x.$

Exercice 2.

Calculer les limites suivantes:

- (1) $\lim_{\substack{x \to 0 \\ x \neq 0}} \frac{(\sin x)^m}{(1 \cos x)^n}$ avec $m, n \in \mathbb{N}^*, 1 \le m, n \le 2$.
- (2) $\lim_{x \to 0} x^{\alpha} \ln x$, avec $\alpha > 0$.
- (3) $\lim_{x \to \infty} \frac{\ln x}{r^{\alpha}}$, avec $\alpha > 0$.

Exercice 3.

Trouver le polynôme de Taylor d'ordre m autour de 0 des fonctions suivantes:

- 1.) $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = 2x + \cos(x^2)$ et m = 4,
- 2.) $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = \cos(\cos(x))$ et m = 6,
- 3.) $f:]-\frac{\pi}{2}, \frac{\pi}{2}[\to \mathbb{R}$ définie par $f(x) = \ln(\cos(x))$ et m=4.

Exercice 4.

Supposons qu'on ait une quantité x>0 d'une certaine ressource que l'on veut partager en n parties x_1, \ldots, x_n avec $x_i \geq 0, \forall i=1,\ldots,n$ et $x_1+x_2+\ldots+x_n \leq x$. Soit $f:\mathbb{R}\to\mathbb{R}$ une fonction strictement croissante. On veut maximiser $f(x_1)+f(x_2)+\ldots+f(x_n)$.

Montrer que si f est strictement concave, alors la seule solution optimale est le choix $x_1 = x_2 = \ldots = x_n = \frac{x}{n}$. Indication: montrer que si $x_i \neq x_j$, alors on peut trouver une meilleure solution en remplaçant x_i et x_j par $x_i' = x_j' = \frac{x_i + x_j}{2}$.