(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 27 December 2002 (27.12.2002)

PCT

(10) International Publication Number WO 2002/102829 A3

(51) International Patent Classification⁷: C12N 5/06, 5/16, C07K 16/00

G01N 33/569,

(21) International Application Number:

PCT/US2002/019220

(22) International Filing Date:

17 June 2002 (17.06.2002)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/298,098

15 June 2001 (15.06.2001) US

- (71) Applicants: INHIBITEX, INC. [US/US]; 8995 West-side Parkway, Alpharetta, GA (US). THE PROVOST FELLOWS AND SCHOLARS OF THE COLLEGE OF THE HOLY AND UNDIVIDED TRINITY OF QUEENS ELIZABETH NEAR DUBLIN [IΕ/ΙΕ]; Trinity College, Dublin 2 (IE). UNIVERSITA' DEGLI STUDI DI PAVIA [IT/IT]; Strada Nuova, 65, I-27100 Pavia (IT).
- (72) Inventors: FOSTER, Timothy, J.; 70 Coolamber Park, Templeogue, Dublin 16 (IE). ROCHE, Fiona; C/o The Provost Fellows and Scholars of the Colleg, e of the Holy and Undivided Trinity of Queen Eliza, beth near Dublin, Trinity College, Dublin 2 (IE). PATTI, Joseph, M.; 6680 Stratford Place, Cumming, GA 30040 (US). HUTCHINS, Jeff, T.; 1120 Quail Run Lane, Cumming, GA 30041 (US). SPEZIALE, Pietro; c/o Universita' Degli Strudi Di Pavia, Strada Nuova, 65, I-27100 Pavia (IT). PALLEN, Mark; C/o The Provost Fellows and Scholars of the Colleg, e of

the Holy and Undivided Trinity of Queen Eliza, behth Near Dublin, Trinity College, Dublin 2 (IE).

- (74) Agent: SCHULMAN, Aaron, B.; Larson & Taylor, PLC, Suite 900, 1199 North Fairfax Street, Alexandria, VA 22314 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments
- (88) Date of publication of the international search report: 25 March 2004

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: CROSS-REACTIVE MONOCLONAL AND POLYCLONAL ANTIBODIES WHICH RECOGNIZE SURFACE PROTEINS FROM COAGULASE-NEGATIVE STAPHYLOCOCCI AND STAPHYLOCOCCUS AUREUS

(57) Abstract: Polyclonal and monoclonal antibodies which are cross-reactive to both coagulase-positive staphylococcus bacteria, such as S. hemolyticus, are provided which can recognize surface proteins from both coagulase-positive and coagulase negative staph bacteria. The antibodies may be generated from surface proteins that have been isolated on the basis of characteristics that may be common between S. aureus and coagulase-negative staphylococci, and these recombinant surface proteins are used to generate the antibodies of the invention. There is also provided vaccines and methods which utilize these proteins and antibodies for the treatment or protection against a wide variety of staphylococcal infections.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US02/19220

A. CLASSIFICATION OF SUBJECT MATTER IPC(7) : G01 N 33/569; C12 N 5/06, 5/16; C07 K 16/00 US CL : 435/7.33, 326, 332, 530/388.2, 388.4						
According to International Patent Classification (IPC) or to both national classification and IPC						
	B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols)					
ľ	35/7.33, 326, 332, 530/388.2, 388.4					
Documentati	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched .					
<u>k</u>	ata base consulted during the international search (nationalise on the continuation of	me of data base and, where practicable,	search terms used)			
C. DOC	UMENTS CONSIDERED TO BE RELEVANT					
Category *	Citation of document, with indication, where a	ppropriate, of the relevant passages	Relevant to claim No.			
Y	Database SPTREMBL, Swiss Institute for Bioinfor The European Bioinformatics Institute, EBI (Camb Q9L470, 100% identical to SEQ.ID.NO: 21, SEQ.	ridge, UK) Accession number	1-16, 19 and 21			
Y	Database SPTREMBL, Swiss Institute for Bioinformatics, SIB (Geneva, Switzerland), The European Bioinformatics Institute, EBI (Cambridge, UK) Accession number Q99QY4, 99.8% identical to SEQ.ID.NO: 18.					
Y	Database SPTREMBL, Swiss Institute for Bioinformatics, SIB (Geneva, Switzerland), The European Bioinformatics Institute, EBI (Cambridge, UK) Accession number Q99QZ2, 97.4% identical to SEQ.ID.NO: 16.					
Y	Y Database SPTREMBL, Swiss Institute for Bioinformatics, SIB (Geneva, Switzerland), The European Bioinformatics Institute, EBI (Cambridge, UK) Accession number Q99XE9, 92 % identical to SEQ.ID.NO: 12.					
Further	documents are listed in the continuation of Box C.	See patent family annex.				
* S	pecial categories of cited documents:	"T" later document published after the int				
"A" document	defining the general state of the art which is not considered to be	date and not in conflict with the appli principle or theory underlying the inv	cation but cited to understand the			
	plication or patent published on or after the international filing date	"X" document of particular relevance; the considered novel or cannot be considered when the document is taken alone				
cstablish	"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as "Y" document of particular relevance; the claimed invention cannot be specified) considered to involve an inventive step when the document is					
"O" document	"O" document referring to an oral disclosure, use, exhibition or other means being obvious to a person skilled in the art					
•	"P" document published prior to the international filing date but later than the "&" document member of the same patent family priority date claimed					
Date of the actual completion of the international search Date of mailing of the international search Date of mailing of the international search						
	28 September 2003 (28.09.2003)					
Name and mailing address of the ISA/US Authorized officer Authorized officer						
Con	il Stop PCT, Attn: ISA/US mmissioner for Patents	Padmavathi v Baskar	ce Ford			
	D. Box 1450 exandria, Virginia 223 13-1450	Telephone No. (703)308-0196	* Xnn			
	Facsimile No. (703)305-3230					
Form PCT/ISA/210 (second sheet) (July 1998)						

PCT/US02/19220

INTERNATIONAL SEARCH REPORT

Database SPTREMBL, Swiss Institute for Bioinformatics, SIB (Geneva, Switzerland),	
The European Bioinformatics Institute, EBI (Cambridge, UK) Accession number Q99UX5, 97.8 % identical to SEQ.ID.NO: 10.	1-16, 19 and 21
Database SPTREMBL, Swiss Institute for Bioinformatics, SIB (Geneva, Switzerland), The European Bioinformatics Institute, EBI (Cambridge, UK) Accession number Q99UX4, 98.8 % identical to SEQ.ID.NO: 8.	1-16, 19 and 21
Database SPTREMBL, Swiss Institute for Bioinformatics, SIB (Geneva, Switzerland), The European Bioinformatics Institute, EBI (Cambridge, UK) Accession number Q931P4- 96.7 % identical to SEQ.ID.NO: 6 and Accession number Q99TD3, 96.6 % identical to SEQ.ID.NO: 6	1-16, 19 and 21
Database SPTREMBL, Swiss Institute for Bioinformatics, SIB (Geneva, Switzerland), The European Bioinformatics Institute, EBI (Cambridge, UK) Accession number Q99QY4, 98.6 % identical to SEQ.ID.NO: 4.	1-16, 19 and 21
Database SPTREMBL, Swiss Institute for Bioinformatics, SIB (Geneva, Switzerland), The European Bioinformatics Institute, EBI (Cambridge, UK) Accession number Q99TB0, 91.6 % identical to SEQ.ID.NO: 2.	1-16, 19 and 21
OHLSEN. K. et al Effects of subinhibitory concentrations of antibiotics on alpha-toxin (hla) gene expression of methicillin-sensitive and methicillin-resistant Staphylococcus aureus isolates. Antimicrob Agents Chemother, November 1998, Vol 42, No. 11, pages 2817-2823.	1-16, 19 and 21
-	
	The European Bioinformatics Institute, EBI (Cambridge, UK) Accession number Q99UX4, 98.8 % identical to SEQ.ID.NO: 8. Database SPTREMBL, Swiss Institute for Bioinformatics, SIB (Geneva, Switzerland), The European Bioinformatics Institute, EBI (Cambridge, UK) Accession number Q931P4-96.7 % identical to SEQ.ID.NO: 6 and Accession number Q99TD3, 96.6 % identical to SEQ.ID.NO: 6 Database SPTREMBL, Swiss Institute for Bioinformatics, SIB (Geneva, Switzerland), The European Bioinformatics Institute, EBI (Cambridge, UK) Accession number Q99QY4, 98.6 % identical to SEQ.ID.NO: 4. Database SPTREMBL, Swiss Institute for Bioinformatics, SIB (Geneva, Switzerland), The European Bioinformatics Institute, EBI (Cambridge, UK) Accession number Q99TB0, 91.6 % identical to SEQ.ID.NO: 2. OHLSEN. K. et al Effects of subinhibitory concentrations of antibiotics on alpha-toxin (hla) gene expression of methicillin-sensitive and methicillin-resistant Staphylococcus aureus isolates. Antimicrob Agents Chemother, November 1998, Vol 42, No.11, pages

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US02/19220

Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claim Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. Claim Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claim Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows: Please See Continuation Sheet
As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.: Please See Continuation Sheet
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

	PCT/US02/19220
INTERNATIONAL SEARCH REPORT	

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING

This application contains the following inventions or groups of inventions 1-58 which are not so linked as to forin a single general inventive concept under PCT Rule 13.1. In order for all inventions to be examined, the appropriate additional examination fees must be paid.

Groups 1-21 Claim(s) 1-14, 16, 19, 21 and 15, drawn to an isolated antibodies that bind to SEQ.ID.NOS: 2, 4, 6,8,10, 12, 14, 16, 17, 18, 19, 21, nucleic acid sequence encoding amino acid sequences SEQ.ID.NOS: 1, 3, 5,7,9, 11, 13, 15, 20 and the nucleic sequences coding for the A domain of the Aap protein or degenerate.

Groups 22-33 Claims 20 and 22 drawn to fragment of the DsqA protein and a vaccine comprising a protein SEQ.ID.NOS: 2, 4, 6,8,10, 12, 14, 16, 17, 18, 19 and 21

Groups 34-45 Claim 17drawn to a method for treating or preventing S.aureus infection using antibodies that bind to SEQ.ID.NOS: 2, 4, 6,8,10, 12, 14, 16, 17, 18, 19 and 21.

Groups 46-57 Claim 18 drawn to a method inducing an immune response using protein SEQ.ID.NOS: 2, 4, 6,8,10, 12, 14, 16, 17, 18, 19 and 21.

The inventions listed as Groups 1-58 do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons:

Group 1, claim(s) 1-14, 16, 19, 21 and 15, claim(s) 1-14, 16, 19, 21 drawn to an isolated antibodies that bind to SEQ.ID.NOS: 2, diagnostic kit comprising antibody to SEQ.ID.NOS: 2, pharmaceutical compostion comprising said antibody and a method of diagnosing S. aureus infection using said antibody which is the first product and first product of use.

Pursuant to PCT Rule 13.2 the ISA/US considers that where multiple products, processes and methods are claimed, the main invention shall consists of the first invention of the category first mentioned in the claims and the first recited invention of each of the other categories related thereto. Accordingly the main invention (Group 1) comprises the first product and a method of use.

Further pursuant to PCT Rule 13.2 the ISA/US considers that any feature which the subsequently recited products and methods share with the main invention does not constitute a special technical feature within the meaning of PCT Rule 13.2 and that each of such products and methods accordingly defines a separate invention. Therefore, the groups of inventions below do not constitute a special technical feature within the meaning of PCT Rule 13.2 and that each of such products and methods accordingly defines a separate invention.

Groups 2-21 drawn to different isolated antibodies that bind to SEQ.ID.NOS: 4, 6,8,10, 12, 14, 16, 17, 18, 19, 21, nucleic acid sequence encoding amino acid sequences SEQ.ID.NOS: 1, 3, 5,7,9, 11, 13, 15, 20 and the nucleic sequences coding for the A domain of the Aap protein or degenerate that are different to each other and lack the same or corresponding special technical features because each antibody bind to a protein having a specific amino acid sequence. They are structurally different to each other since each sequence has been identified with a specific sequence identification number that contains specific amino acids. In the instant case the different inventions represent structurally different antibodies that bind to different polypeptides. Therefore, where structural identity is required, such as for expression, the different sequences have different effects. Thus, each sequence is unique and lacks the same or corresponding special technical features.

Groups 22-33 drawn to fragment of the DsqA protein and a vaccine comprising a protein SEQ.ID.NOS: 2, 4, 6,8,10, 12, 14, 16, 17, 18, 19, and 21. These proteins are different to each other and lack the same or corresponding special technical features because each protein contains a specific amino acid sequence. They are structurally different to each other since each sequence has been identified with a specific sequence identification number that contains specific amino acids. In the instant case the different inventions represent structurally different proteins. Therefore, where structural identity is required, such as for expression, the different sequences have different effects. Thus, each sequence is unique and lacks the same or corresponding special technical features

Groups 34-45 and 46-57 are different methods utilizing different products of ant or corresponding special technical features that result in a different outcome such an immune response with specific protein. These methods are different to each opolypeptides and antibodies as discussed above and thus lack the same or special	h as preventing an infection with antibody or inducing other in utilizing different reagents such as different
Continuation of Box II Item 3: 1-16, 19 and 21 with respect to SEQ.ID.NOS: 2, 4, 6, 8, 10, 12,16, 18, 19 and	
Continuation of B. FIELDS SEARCHED Item 3: SEQ.ID.NOS: 2, 4, 6, 8, 10, 12, 14, 16, 19, 17, 18 and 21 searched on MEDLI DERWENT, SWISS-PROT, PIR, USPTOWEST, SWISSSPTREMBL, GENEM PATENTS	
•	

INTERNATIONAL SEARCH REPORT

PCT/US02/19220

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 27 December 2002 (27.12.2002)

PCT

(10) International Publication Number WO 02/102829 A2

(51) International Patent Classification⁷:

C07K

(21) International Application Number: PCT/US02/19220

(22) International Filing Date: 17 June 2002 (17.06.2002)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/298,098

15 June 2001 (15.06.2001) US

- (71) Applicants: INHIBITEX, INC. [US/US]; 8995 Westside Parkway, Alpharetta, GA (US). THE PROVOST FELLOWS AND SCHOLARS OF THE COLLEGE OF THE HOLY AND UNDIVIDED TRINITY OF QUEENS ELIZABETH NEAR DUBLIN [IE/IE]; Trinity College, Dublin 2 (IE). UNIVERSITA' DEGLI STUDI DI PAVIA [IT/IT]; Strada Nuova, 65, I-27100 Pavia (IT).
- Inventors: FOSTER, Timothy, J.; 70 Coolamber Park, Templeogue, Dublin 16 (IE). ROCHE, Fiona; C/o The Provost Fellows and Scholars of the Colleg, e of the Holy and Undivided Trinity of Queen Eliza, beth near Dublin, Trinity College, Dublin 2 (IE). PATTI, Joseph, M.; 6680 Stratford Place, Cumming, GA 30040 (US). HUTCHINS, Jeff, T.; c/o Inhibitex, Inc., 8995 Westside Parkway, alpharetta, GA 30004 (US). HALL, Andrea; c/o Inhibitex, Inc., 8995 Westside Parkway, Alpharetta, GA 30004 (US). DOMANSKI, Paul; 2655 N. Thompson Road, Atlanta, GA 30319 (US). PATEL, Pratisksha; 895 Yosemite Drive,

Suwanee, GA 30319 (US). SYRIBEYS, Peter; C/o Inhibitex, Inc., 8995 Westside Parkway, Alpharetta, GA (US). SPEZIALE, Pietro; c/o Universita' Degli Strudi Di Pavia, Strada Nuova, 65, 1-27100 Pavia (IT).

- (74) Agent: SCHULMAN, Aaron, B.; Larson & Taylor, PLC, Suite 900, 1199 North Fairfax Street, Alexandria, VA 22314 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GII, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: CROSS-REACTIVE MONOCLONAL AND POLYCLONAL ANTIBODIES WHICH RECOGNIZE SURFACE PRO-TEINS FROM COAGULASE-NEGATIVE STAPHYLOCOCCI AND STAPHYLOCOCCUS AUREUS

(57) Abstract: Polyclonal and monoclonal antibodies which are cross-reactive to both coagulase-positive staphylococcus bacteria, such as S. hemolyticus, are provided which can recognize surface proteins from both coagulase-positive and coagulase negative staph bacteria. The antibodies may be generated from surface proteins that have been isolated on the basis of characteristics that may be common between S. aureus and coagulase-negative staphylococci, and these recombinant surface proteins are used to generate the antibodies of the invention. There is also provided vaccines and methods which utilize these proteins and antibodies for the treatment or protection against a wide variety of staphylococcal infections.

WO 02/102829 PCT/US02/19220

CROSS-REACTIVE MONOCLONAL AND POLYCLONAL ANTIBODIES WHICH RECOGNIZE SURFACE PROTEINS FROM COAGULASE-NEGATIVE STAPHYLOCOCCI AND STAPHYLOCOCCUS AUREUS

Cross Reference to Related Applications

The present application claims the benefit of U.S. provisional application Ser. No. 60/298,098 filed June 15, 2001.

Field of the Invention

10

15

20

25

30

The present invention relates in general to surface proteins from Staphylococcus aureus and their active regions such as their A domains which have homologue proteins on coagulase-negative Staphylococci such as *S. epidermidis* and *S. hemolyticus* as well as antibodies which recognize said proteins, and in particular to isolated monoclonal and polyclonal antibodies which recognize specific proteins from Staphylococcus aureus and coagulase-negative Staphylococci and which are cross-reactive against *S. aureus* and coagulase-negative Staphylococci and can thus be utilized in vaccines and methods useful for preventing or treating a wide variety of infections caused by staphylococcal bacteria.

Background of the Invention

The successful colonization of the host is a process required for most microorganisms to cause infections in animals and humans. Microbial adhesion is the first crucial step in a series of events that can eventually lead to disease. Pathogenic microorganisms colonize the host by attaching to host tissues or serum conditioned implanted biomaterials, such as catheters, artificial joints, and vascular grafts, through specific adhesins present on the surface of the bacteria. MSCRAMM®s (Microbial Surface Components Recognizing Adhesive Matrix Molecules) are a family of cell surface adhesins that recognize and specifically bind to distinct components in the host's extracellular matrix. Once the bacteria have successfully adhered and colonized host tissues, their physiology is dramatically altered and damaging components such as toxins and proteolytic enzymes are secreted. Moreover, adherent bacteria often produce a biofilm and quickly become more resistant to the killing effect of most antibiotics.

S. aureus causes a spectrum of infections that range from cutaneous lesions such as wound infections, impetigo, and furuncles to life-threatening conditions that include pneumonia, septic arthritis, sepsis, endocarditis, and biomaterial related infections. S. aureus is known to express a repertoire of different MSCRAMMs that can act individually or in concert to facilitate microbial adhesion to specific host tissue components. In addition, another type of staphylococcus bacteria is identified as the coagulase-negative bacteria, including such species as S. epidermidis and S. hemolyticus which are also have been known to express MSCRAMMs, and which also are responsible for a wide range of bacterial infections and related diseases. In this regard, MSCRAMMs generally provide an excellent target for immunological attack by antibodies, both polyclonal and monoclonal antibodies.

However, because antibodies by nature are very specific and in the case of different types of Staphylococci, such as *S. aureus* on one hand (coagulase-positive) and *S. epidermidis* and *S. hemolyticus* on the other (coagulase-negative), it has still remained a significant problem to develop antibodies that exhibit cross-reactivity across the different types of bacteria. Such cross-reactive antibodies are particularly desirable because of their potential in immunizing human and animal patients and providing protection against infections caused by both types of Staphylococcal bacteria, namely coagulase-positive bacteria such as *S. aureus* and the coagulase-negative bacteria, such as *S. epidermidis* and *S. hemolyticus*. Such antibodies would thus be extremely useful in preventing or treating a wide variety of the infections caused by staphylococcal bacteria.

Summary of the Invention

10

15

25

Accordingly, it is an object of the present invention to provide monoclonal antibodies that recognize MSCRAMM®'s from both coagulase-positive bacteria such as *S. aureus* as well as MSCRAMM®'s from coagulase-negative bacteria, such as *S. epidermidis* and *S. hemolyticus*.

It is also an object of the present invention to identify and isolate MSCRAMM®'s from staphylococcal bacteria, as well as their active regions such as the A domain, which can be used to generate monoclonal and polyclonal antibodies that will be cross-reactive against both coagulase-positive and coagulase-negative staphylococci.

It is still further an object of the present invention to provide isolated antibodies that can recognize the A domain of surface proteins such as the DgsK protein from coagulase-negative staphylococci and at the same time recognize surface proteins such as the SasA protein from *Staphylococcus aureus*.

It is yet another object of the present invention to utilize the isolated proteins, A domains and antibodies of the invention to produce vaccines useful in the treatment or prevention of staphylococcal infections, and to provide methods wherein the vaccines and antibodies of the invention are used to prevent or treat a staphylococcal infection.

These and other objects are provided by virtue of the present invention which comprises the identification and isolation of surface proteins from one type of staphylococcal bacteria, such as coagulase-negative or coagulase-positive staph, which can give rise to cross-reactive antibodies which can recognize surface proteins of both types of staph and which can thus be utilized in vaccines and methods of treating or preventing a wide range of staphylococcal infections. The present invention also relates to the generation of both polyclonal and monoclonal antibodies from these surface proteins and their use in preventing or treating staphylococcal infections.

These embodiments and other alternatives and modifications within the spirit and scope of the disclosed invention will become readily apparent to those skilled in the art from reading the present specification and/or the references cited herein, all of which are incorporated by reference.

Brief Description of the Drawing Figures

5

10

15

20

25

Figure 1 is a depiction of the primary structure of the in silico-predicted proteins in accordance with the present invention.

Figure 2 shows a Coomassie gel of the purified N-terminal recombinant Histagged proteins expressing the orfs of the present invention.

Figures 3A-3C show Western blotting of *S. aureus* cell wall extracts showing probing with anti-KesK antibodies (Fig. 3A), anti-KnkA antibodies (Fig. 3B) and anti-DsqA antibodies (Fig. 3C), respectively.

Figures 4A-4B show Dot-blotting and Western immunoblotting of Lactococcus lactis expressing S. aureus MSCRAMM®s, namely KnkA (Fig. 4A) and KesK (Fig. 4B).

Figures 5A-5D representing the probing of recombinant LPXTG proteins in accordance with the present invention with convalescent sera examining *in vivo* expression, including RrKn and RrKN2 (Fig. 5A), Kesk1 and Kesk2A (Fig. 5B), KnkA (Fig. 5C) and DsqA2 (Fig. 5D).

Figure 6 shows a Western blot analysis demonstrating that rabbit polyclonal antibodies against *S. aureus* SasA cross-react with a protein released from the cell surface of *S. epidermidis* HB as well as the recombinant A-region from DsgK cloned from *S. epidermidis*.

20 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

5

10

15

25

30

In accordance with the present invention, there are provided specific surface proteins from coagulase-positive staphylococcal bacteria, such as *S. aureus* as well as from coagulase-negative staph such as *S. epidermidis* and *S. hemolyticus*, including active fragments thereof such as the A domains of these proteins or other epitotic regions which can generate antibodies that recognize the whole protein. In accordance with the invention, the identification and isolation of candidate peptide sequences and proteins was carried out based on some of the common features of the MSCRAMM®s ((Microbial Surface Components Recognizing Adhesive Matrix Molecules) which are in most cases are covalently anchored to the cell wall peptidoglycan. These surface proteins had the following common features which

WO 02/102829 PCT/US02/19220 5

were utilized in identifying and isolated the sequences of the present invention, namely: (i) an N-terminal signal peptide (approximately 40 residues in length) required for Sec-dependent secretion, (ii) a wall spanning domain either rich in proline and glycine residues or composed of serine and aspartate dipeptide repeats, (iii) an LPXTG motif required for covalent anchoring of the protein to the pentaglycine crossbridge in peptidoglycan, (iv) a hydrophobic membrane-spanning domain followed by (v) several positively charged residues.

In accordance with the invention, by exploiting the whole genome of *S. aureus* in light of the properties as set forth above, at least eight novel open reading frames encoding proteins with secretion and anchorage motifs indicative of MSCRAMMs were identified (i.e. bearing an N-terminal signal peptide and a C-terminal LPXTG motif followed by a hydrophobic domain and a positively charged tail). Table 1 illustrates the list of proteins identified including their distribution among *S. aureus* genomes, their protein size and C-terminal cell wall sorting sequence.

Table 1.

10

15

20

Name	Distribution	Size	C-terminus
EkeS	ENCSJM	2189 aa	LPNTGSEEMDLPLKELALITGAALLARRRS KKEKES
DsqA	ENCSJM	~1363- 2283 aa	LPDTGDSIKQNGLLGGVMTLLVGLGLMKR KKKKDENDQDDSQA
KesK	ENCSJM	~909 aa	LPKTGETTSSQSWWGLYALLGMLALFIPK FRKESK
KrkN2	ENCSJM (Cowan)	~278 aa	LPKTGLTSVDNFISTVAFATLALLGSLSLLLF KRKESK
KrkN	ENCSJM	~661 aa	LPQTGEESNKDMTLPLMALIALSSIVAFVLP RKRKN
RkaS	ENCSJM	~801 aa	LPKTGTNQSSSPEAMFVLLAGIGLIATVRR RKAS
RrkN	NCSJM	1629 aa	LPKTGLESTQKGLIFSSIIGIAGLMLLARRRK N
KnkA	NCSJM	629 aa	LPKAGETIKEHWLPISVIVGAMGVLMIWLS RRNKLKNKA

Abbreviations: eMRSA-16; N, 8325; C, COL; S, MSSA; J, N315, M, Mu50. Six out of eight are conserved in all of the six staphylococcal genomes currently sequenced and the remaining two are present in 5/6 of these genomes.

WO 02/102829 PCT/US02/19220

In accordance with the invention, amino acid and nucleic acid sequences coding for the above proteins were obtained, and these were as follows: Ekes MRSA – SEQ ID NO:1 (DNA sequence); EkeS_MRSA – SEQ ID NO:2 (Protein sequence); DsqA (8325) – SEQ ID NO:3 (DNA sequence); DsqA (8325) – SEQ ID NO:4 (Protein sequence); KesK1 (8325) – SEQ ID NO:5 (DNA sequence); KesK1 (8325) – SEQ ID NO:6 (Protein sequence); KrkN2 (8325) — SEQ ID NO:7 (DNA sequence); KrkN2 (8325) – SEQ ID NO:8 (Protein sequence); KrkN (8325) – SEQ ID NO:9 (DNA sequence); KrkN (8325) – SEQ ID NO:10 (Protein sequence); RkaS (COL) – SEQ ID NO:11 (DNA sequence); RkaS (COL) – SEQ ID NO:12 (Protein sequence); RrkN (8325) – SEQ ID NO:13 (DNA sequence); RrkN (8325) – SEQ ID NO:14 (Protein sequence); KnkA (8325) – SEQ ID NO:15 (DNA sequence); KnkA (8325) – SEQ ID NO:16 (Protein sequence).

10

15

25

30

In accordance with the present invention, isolated antibodies may be generated from the above proteins or their active regions such as the A domain so as to be able to recognize said proteins and/or said domains. These antibodies may be either monoclonal or polyclonal. If polyclonal antibodies are desired, these may be generated in any of a number of conventional ways well known in the art. In a typical process, the desired surface protein or active region thereof may be injected into a suitable host animal, e.g., a mouse or rabbit, and after a suitable time period, antibodies may be isolated and recovered from the host animal. With regard to monoclonal antibodies, in accordance with the present invention, these may be produced in any number of suitable ways including, e.g., the well known method of Kohler and Milstein, Nature 256:495-497 (1975), or other suitable ways known in the field, such as those methods disclosed in U.S. Pat. Nos. 6,331,415; 5,981,216; 5,807,715; and 4,816,567; Eur. Pat. App. 519,596; and PCT publication WO 00/71585, all of these patent publications incorporated herein by reference. These methods include their preparation as chimeric, humanized, or human monoclonal antibodies in ways that would be well known in this field. Still further, monoclonal antibodies may be prepared from a single chain, such as the light or heavy chains, and in addition may be prepared from active fragments of an

antibody which retain the binding characteristics (e.g., specificity and/or affinity) of the whole antibody. By active fragments is meant an antibody fragment which has the same binding specificity as a complete antibody which binds to the particular surface protein or its homologue from the different type of staph bacteria (i.e., coagulase negative or coagulase-positive), and the term "antibody" as used herein is meant to include said fragments. Additionally, antisera prepared using monoclonal or polyclonal antibodies in accordance with the invention are also contemplated and may be prepared in a number of suitable ways as would be recognized by one skilled in the art.

10

15

20

25

30

As indicated above, antibodies to the isolated surface proteins and/or their active regions in accordance with the invention may be prepared in a number of suitable ways that would be well known in the art, such as the well-established Kohler and Milstein method described above which can be utilized to generate monoclonal antibodies. For example, in preliminary steps utilized in such a process, mice may be injected intraperitoneally once a week for a prolonged period with a purified recombinant MSCRAMM® in accordance with the invention or an active portion thereof, followed by a test of blood obtained from the immunized mice to determine reactivity to the purified protein. Following identification of mice reactive to the proteins, lymphocytes isolated from mouse spleens are fused to mouse myeloma cells to produce hybridomas positive for the antibodies against the surface proteins of the invention which are then isolated and cultured, following by purification and isotyping.

In order to generate monoclonal antibodies in accordance with the invention, it is preferred that these be generated using recombinantly prepared MSCRAMM®'s in accordance with the invention, and these recombinants may be generated and isolated using a number of standard methods well known in the art. For example, one such method employs the use of *E. coli* expression vector pQE-30 as an expression vector for cloning and expressing recombinant proteins and peptides. In one preferred method, using PCR, the A domain of the surface protein identified as DgsK or SasA was amplified from the sequences described above and subcloned

into the *E. coli* expression vector PQE-30 (Qiagen), which allows for the expression of a recombinant fusion protein containing six histidine residues. This vector was subsequently transformed into *E. coli* strain ATCC 55151, grown in a 15-liter fermentor to an optical density (OD₆₀₀) of 0.7 and induced with 0.2 mM isopropyl-1-beta-D galactoside (IPTG) for 4 hours. The cells were harvested using an AG Technologies hollow-fiber assembly (pore size 0.45 µm) and the cell paste frozen at -80° C. Cells were lysed in 1X PBS (10 mL buffer/1 g of cell paste) using 2 passes through the French Press @ 1100psi. Lysed cells were spun down at 17,000rpm for 30 minutes to remove cell debris. Supernatant was passed over a 5-mL HiTrap Chelating (Pharmacia) column charged with 0.1M NiCl₂. After loading, the column was washed with 5 column volumes of 10mM Tris, pH 8.0, 100mM NaCl (Buffer A). Protein was eluted using a 0-100% gradient of 10mM Tris, pH 8.0, 100mM NaCl, 200 mM imidazole (Buffer B) over 30 column volumes. SdrGN1N2N3 or SdrGN2N3 eluted at ~13% Buffer B (~26mM imidazole). Absorbance at 280nm was monitored. Fractions containing SdrGN1N2N3 or SdrGN2N3 were dialyzed in 1x PBS.

10

15

20

25

Next, each protein was then put through an endotoxin removal protocol. Buffers used during this protocol were made endotoxin free by passing over a 5-mL Mono-Q sepharose (Pharmacia) column. Protein was divided evenly between 4x 15mL tubes. The volume of each tube was brought to 9mL with Buffer A. 1mL of 10% Triton X-114 was added to each tube and incubated with rotation for 1 hour at 4°C. Tubes were placed in a 37°C water bath to separate phases. Tubes were spun down at 2,000rpm for 10 minutes and the upper aqueous phase from each tube was collected and the detergent extraction repeated. Aqueous phases from the 2nd extraction were combined and passed over a 5-mL IDA chelating (Sigma) column, charged with 0.1M NiCl₂ to remove remaining detergent. The column was washed with 9 column volumes of Buffer A before the protein was eluted with 3 column volumes of Buffer B. The eluant was passed over a 5-mL Detoxigel (Sigma) column and the flow-through collected and reapplied to the column. The flow-through from the second pass was collected and dialyzed in 1x PBS. The

purified product was analyzed for concentration, purity and endotoxin level before administration into the mice.

In the preferred process, monoclonal antibodies in accordance with the present invention may be prepared from the recombinant proteins identified above in the following manner. In this process, *E. coli* expressed and purified recombinant SasA and DsgK proteins were used to generate a panel of murine monoclonal antibodies while the mouse sera was used as a source of polyclonal antibodies. Briefly, a group of Balb/C or SJL mice received a series of subcutaneous immunizations of 1-10 mg of protein in solution or mixed with adjuvant as described below in Table 2.

Table 2. Immunization Schemes

	RIMMS					
	Injection	Day	Amount (µg)	Route	Adjuvant	
	#1	0	5	Subcutaneou	s FCA/RIBI	
15	#2	2	1	Subcutaneou	s FCA/RIBI	
	#3	4	1	Subcutaneou	s FCA/RIBI	
	#4	7	1	Subcutaneou		
	#5	9	1	Subcutaneou		
20	Conventiona	al				
	Injection	Day	Amount (µg)	Route	Adjuvant	
	Primary	0	5	Subcutaneou	s FCA	
	Boost #1	14	1	Intraperitonea	al RIBI	
	Boost #2	28	1	Intraperitonea		
25	Boost #3	42	1	Intraperitone		

10

30

35

At the time of sacrifice (RIMMS) or seven days after a boost (conventional) serum was collected and titered in ELISA assays against MSCRAMM® proteins or on whole cells (S. *epidermidis* and *S. aureus*). Three days after the final boost, the spleens or lymph nodes were removed, teased into a single cell suspension and the lymphocytes harvested. Lymphocytes were then fused to a P3X63Ag8.653 myeloma cell line (ATCC #CRL-1580). Cell fusion, subsequent plating and feeding were performed according to the Production of Monoclonal Antibodies protocol from Current Protocols in Immunology (Chapter 2, Unit 2.), incorporated herein by reference.

5

10

15

20

25

WO 02/102829 PCT/US02/19220

Any clones that were generated from the fusion were then screened for specific anti-SasA antibody production using a standard ELISA assay. Positive clones were expanded and tested further for activity in a whole bacterial cell binding assay by flow cytometry and SasA binding by Biacore analysis. Throughout the Biacore analysis, the flow rate remained constant at 10 ml/min. Prior to the SasA or DgsK injection, test antibody was adsorbed to the chip via RAM-Fc binding. At time 0, SasA or DgsK at a concentration of 30 mg/ml was injected over the chip for 3 min followed by 2 minutes of dissociation. This phase of the analysis measured the relative association and disassociation kinetics of the Mab/SasA or DgsK interaction.

Next, the antibodies prepared as set forth above were tested for binding to whole bacteria. In these tests, bacterial samples S. aureus Newman, S. aureus 67-0, S. aureus 397 (Sal6), S. aureus Wood, S. aureus 8325-4, methicillin resistant S. aureus MRSA 16, S. epidermidis ATCC 35984, S. epidermidis HB, S. epidermidis CN-899 and S. haemolyticus ATCC 43253 were collected, washed and incubated with Mab or PBS alone (control) at a concentration of 2 µg/ml after blocking with rabbit IgG (50 mg/ml). Following incubation with antibody, bacterial cells were incubated with Goat-F_{(ab')2}-Anti-Mouse-F_{(ab')2}-FITC which served as the detection After antibody labeling, bacterial cells were aspirated through the antibody. FACScaliber flow cytometer to analyze fluorescence emission (excitation: 488, emission: 570). For each bacterial strain, 10,000 events were collected and measured. These data indicate that antibodies against S. aureus SasA were able to recognize a homologous protein on the surface of coagulase-negative staphylococci. The data support Western blot analysis demonstrating that rabbit polyclonal antibodies against S. aureus SasA cross-react with a protein released from the cell surface of S. epidermidis HB as well as the recombinant A-region from DsgK cloned from S. epidermidis (see Figure 6 and Table 3 below).

Table 3. Polyclonal Sera Reactivity

:	New		397	Wo	8325	MRS	ATC		CN-	ATC
	man	67-0	(SAL	od	A.	A	C	HB	899	C t
.1	man		6)	46		16	3598			4325

11

PCT/US02/19220

WO 02/102829

SasA

10

15

20

Although production of antibodies using recombinant forms of the surface proteins of the present invention is preferred, antibodies may be generated from natural isolated and purified versions of these proteins or their active regions such as the A domain, and monoclonal or polyclonal antibodies can be generated using these proteins or active regions in the same manner as described above to obtain such antibodies. Still other conventional ways are available to generate the antibodies of the present invention using recombinant or natural purified proteins or their active regions, as would be recognized by one skilled in the art.

As would be recognized by one skilled in the art, the antibodies of the present invention may also be formed into suitable pharmaceutical compositions for administration to a human or animal patient in order to treat or prevent an infection caused by staphylococcal bacteria. Pharmaceutical compositions containing the antibodies of the present invention, or effective fragments thereof, may be formulated in combination with any suitable pharmaceutical vehicle, excipient or carrier that would commonly be used in this art, including such as saline, dextrose, water, glycerol, ethanol, other therapeutic compounds, and combinations thereof. As one skilled in this art would recognize, the particular vehicle, excipient or carrier used will vary depending on the patient and the patient's condition, and a variety of modes of administration would be suitable for the compositions of the invention, as would be recognized by one of ordinary skill in this art. Suitable methods of administering any pharmaceutical composition disclosed in this application include,

PCT/US02/19220

intramuscular, subcutaneous, intranasal and intradermal administration.

12

WO 02/102829

10

15

20

25

For topical administration, the composition is formulated in the form of an ointment, cream, gel, lotion, drops (such as eye drops and ear drops), or solution (such as mouthwash). Wound or surgical dressings, sutures and aerosols may be impregnated with the composition. The composition may contain conventional additives, such as preservatives, solvents to promote penetration, and emollients. Topical formulations may also contain conventional carriers such as cream or ointment bases, ethanol, or oleyl alcohol. Additional forms of antibody compositions, and other information concerning compositions, vaccines, methods and applications with regard to other MSCRAMM®s will generally also be applicable to the present invention involving the aforementioned MSCRAMM®s and their active regions and antibodies thereto, and these other MSCRAMM®s are disclosed, for example, in U.S. patents 5,175,096; 5,320,951; 5,416,021; 5,440,014; 5,571,514; 5,652,217; 5,707,702; 5,789,549; 5,840,846; 5,980,908; 6,086,895; 6,008,341; 6,177,084; 5,851,794 and 6,288,214; all of these patents incorporated herein by reference.

The antibody compositions of the present invention may also be administered with a suitable adjuvant in an amount effective to enhance the immunogenic response. For example, suitable adjuvants may include alum (aluminum phosphate or aluminum hydroxide), which is used widely in humans, and other adjuvants such as saponin and its purified component Quil A, Freund's complete adjuvant, RIBBI adjuvant, and other adjuvants used in research and veterinary applications. Still other chemically defined preparations such as muramyl dipeptide, monophosphoryl lipid A, phospholipid conjugates such as those described by Goodman-Snitkoff et al. J. Immunol. 147:410-415 (1991) and incorporated by reference herein, encapsulation of the conjugate within a proteoliposome as described by Miller et al., J. Exp. Med. 176:1739-1744 (1992) and incorporated by reference herein, and encapsulation of the protein in lipid

vesicles such as NovasomeTM lipid vesicles (Micro Vescular Systems, Inc., Nashua,

13

PCT/US02/19220

WO 02/102829

10

15

20

25

30

NH) may also be useful.

In any event, the antibody compositions of the present invention which recognize the proteins or their active regions as set forth above will be useful in methods of preventing or treating staphylococcal infection, and in inhibiting binding of staphylococcal bacteria to host tissue and/or cells. In accordance with the present invention, methods are provided for preventing or treating a staphylococcal infection which comprise administering an effective amount of an antibody to the surface proteins as set forth herein or their active subregions so as to treat or prevent a staphylococcal infection. In addition, these monoclonal antibodies will be useful in impairing the binding of staphylococcal bacteria to host cells

Accordingly, in accordance with the invention, administration of the antibodies of the present invention in any of the conventional ways described above (e.g., topical, parenteral, intramuscular, etc.), and will thus provide an extremely useful method of treating or preventing staphylococcal infections in human or animal patients when an effective amount of the antibody compositions are administered to a human or animal patient. By effective amount is meant that level of use, such as of an antibody titer, that will be sufficient to either prevent adherence of the bacteria, to inhibit binding of staph bacteria to host cells and thus be useful in the treatment or prevention of a staph infection. As would be recognized by one of ordinary skill in this art, the level of antibody titer needed to be effective in treating or preventing staphylococcal infection will vary depending on the nature and condition of the patient, and/or the severity of the pre-existing staphylococcal infection.

In addition to use in methods or treating or preventing a staphylococcal infection, the antibodies of the invention may also be used for the specific detection of staphylococcal proteins, or as research tools. The term "antibodies" as used herein includes monoclonal, polyclonal, chimeric, single chain, bispecific, simianized, and humanized or primatized antibodies as well as Fab fragments, such as those fragments which maintain the binding specificity of the antibodies to the WO 02/102829 PCT/US02/19220

surface proteins specified above, including the products of an Fab immunoglobulin expression library. Accordingly, the invention contemplates the use of single chains such as the variable heavy and light chains of the antibodies. Generation of any of these types of antibodies or antibody fragments is well known to those skilled in the art. In the present case, antibodies to the surface proteins or their active regions as referred to above can be generated, isolated and/or purified, and then used to treat or protect against staphylococcal infection.

5

10

15

25

30

Any of the above described antibodies may be labeled directly with a detectable label for identification and quantification of staph bacteria. Labels for use in immunoassays are generally known to those skilled in the art and include enzymes, radioisotopes, and fluorescent, luminescent and chromogenic substances, including colored particles such as colloidal gold or latex beads. Suitable immunoassays include enzyme-linked immunosorbent assays (ELISA).

Alternatively, the antibody may be labeled indirectly by reaction with labeled substances that have an affinity for immunoglobulin. The antibody may be conjugated with a second substance and detected with a labeled third substance having an affinity for the second substance conjugated to the antibody. For example, the antibody may be conjugated to biotin and the antibody-biotin conjugate detected using labeled avidin or streptavidin. Similarly, the antibody may be conjugated to a hapten and the antibody-hapten conjugate detected using labeled anti-hapten antibody. These and other methods of labeling antibodies and assay conjugates are well known to those skilled in the art.

In accordance with the present invention, there are also provided vaccines for either active or passive immunization designed to treat or protect against staphylococcal infections, and these vaccines may be prepared from the surface proteins or their active regions as set forth above using a number of the conventional vaccine preparation methods well known in this field. In the typical vaccine, an immunogenic amount of a suitable surface protein or active fragment thereof is combined with a suitable pharmaceutically acceptable vehicle, carrier or excipient, and an amount of this vaccine effective to immunize a human or animal

patient may be administered as appropriate. By immunogenic amount it would be understood by one of ordinary skill in this art that this refers to any amount of the protein or active fragment or subregion thereof which is able to raise an immunogenic response in the human or animal patient.

15

PCT/US02/19220

WO 02/102829

5

10

15

20

25

30

In addition to active vaccines wherein antibodies are generated in the patient by virtue of the introduction or administration of an immunogenic amount of a protein or active fragment in accordance with the present invention, the isolated antibodies of the present invention, or active fragments thereof, may also be utilized in the development of vaccines for passive immunization against staph infections. In such a case, the antibody compositions as described above, namely an effective amount of the antibody and a pharmaceutically acceptable vehicle, carrier or excipient, may be administered as appropriate to a human or animal patient.

Accordingly, in accordance with the invention, the proteins or active fragments thereof may be utilized as active vaccines, and the antibodies of the invention may be used as a passive vaccine which will be useful in providing suitable antibodies to treat or prevent a staphylococcal infection. As would be recognized by one skilled in this art, a vaccine may be packaged for administration in a number of suitable ways, such as by parenteral (i.e., intramuscular, intradermal or subcutaneous) administration or nasopharyngeal (i.e., intranasal) administration. One such mode is where the vaccine is injected intramuscularly, e.g., into the deltoid muscle, however, the particular mode of administration will depend on the nature of the bacterial infection to be dealt with and the condition of the patient. The vaccine is preferably combined with a pharmaceutically acceptable vehicle, carrier or excipient to facilitate administration, and the carrier is usually water or a buffered saline, with or without a preservative. The vaccine may be lyophilized for resuspension at the time of administration or in solution.

In addition, in certain cases, the antibodies of the present invention may be modified as necessary so that, when necessary, they become less immunogenic in the patient to whom it is administered. For example, if the patient is a human, the antibody may be "humanized" by transplanting the complimentarity determining

regions of the hybridoma-derived antibody into a human monoclonal antibody as described, e.g., by Jones *et al.*, *Nature* 321:522-525 (1986) or Tempest *et al. Biotechnology* 9:266-273 (1991) or "veneered" by changing the surface exposed murine framework residues in the immunoglobulin variable regions to mimic a homologous human framework counterpart as described, e.g., by Padlan, Molecular Imm. 28:489-498 (1991), these references incorporated herein by reference. Even further, when so desired, the monoclonal antibodies of the present invention may be administered in conjunction with a suitable antibiotic to further enhance the ability of the present compositions to fight bacterial infections when necessary.

10

20

25

30

In addition to treating human or animal patients, the present compositions may also be used to halt or prevent infection of a medical device or other biomaterials such as an implant. Medical devices or polymeric biomaterials to be coated with the antibodies, proteins and active fragments described herein include, but are not limited to, staples, sutures, replacement heart valves, cardiac assist devices, hard and soft contact lenses, intraocular lens implants (anterior chamber or posterior chamber), other implants such as comeal inlays, kerato-prostheses, vascular stents, epikeratophalia devices, glaucoma shunts, retinal staples, scleral buckles, dental prostheses, thyroplastic devices, laryngoplastic devices, vascular grafts, soft and hard tissue prostheses including, but not limited to, pumps, electrical devices including stimulators and recorders, auditory prostheses, pacemakers, artificial larynx, dental implants, mammary implants, penile implants, cranio/facial tendons, artificial joints, tendons, ligaments, menisci, and disks, artificial bones, artificial organs including artificial pancreas, artificial hearts, artificial limbs, and heart valves; stents, wires, guide wires, intravenous and central venous catheters, laser and balloon angioplasty devices, vascular and heart devices (tubes, catheters, balloons), ventricular assists, blood dialysis components, blood oxygenators, urethral/ureteral/urinary devices (Foley catheters, stents, tubes and balloons), airway catheters (endotracheal and tracheostomy tubes and cuffs), enteral feeding tubes (including nasogastric, intragastric and jejunal tubes), wound drainage tubes, tubes used to drain the body cavities such as the pleural, peritoneal, cranial, and pericardial cavities, blood bags, test tubes, blood collection tubes, vacutainers,

17

PCT/US02/19220

WO 02/102829

10

15

20

25

30

syringes, needles, pipettes, pipette tips, and blood tubing.

It will be understood by those skilled in the art that the term "coated" or "coating", as used herein, means to apply the antibody or active fragment, or pharmaceutical composition derived therefrom, to a surface of the device, preferably an outer surface that would be exposed to streptococcal bacterial infection. The surface of the device need not be entirely covered by the protein, antibody or active fragment.

The preferred dose for administration of an antibody composition in accordance with the present invention is that amount will be effective in preventing of treating a staphylococcal infection, and one would readily recognize that this amount will vary greatly depending on the nature of the infection and the condition of a patient. As indicated above, an "effective amount" of antibody or pharmaceutical agent to be used in accordance with the invention is intended to mean a nontoxic but sufficient amount of the agent, such that the desired prophylactic or therapeutic effect is produced. As will be pointed out below, the exact amount of the antibody or a particular agent that is required will vary from subject to subject, depending on the species, age, and general condition of the subject, the severity of the condition being treated, the particular carrier or adjuvant being used and its mode of administration, and the like. Accordingly, the "effective amount" of any particular antibody composition will vary based on the particular circumstances, and an appropriate effective amount may be determined in each case of application by one of ordinary skill in the art using only routine experimentation. The dose should be adjusted to suit the individual to whom the composition is administered and will vary with age, weight and metabolism of the The compositions may also contain stabilizers or pharmaceutically acceptable preservatives, such as thimerosal (ethyl(2-mercaptobenzoate-S)mercury sodium salt) (Sigma Chemical Company, St. Louis, MO).

When used with suitable labels or other appropriate detectable biomolecule or chemicals, the monoclonal antibodies described herein are useful for purposes such as in vivo and in vitro diagnosis of staphylococcal infections or detection of staphylococcal bacteria. Laboratory research may also be facilitated through use of such antibodies. Various types of labels and methods of conjugating the labels to

the antibodies of the invention are well known to those skilled in the art, such as the

18

PCT/US02/19220

WO 02/102829

ones set forth below.

5

10

15

20

25

30

For example, the antibody can be conjugated (directly or via chelation) to a radiolabel such as, but not restricted to, ³²P, ³H, ¹⁴C, ³⁵S, ¹²⁵I, or ¹³¹I. Detection of a label can be by methods such as scintillation counting, gamma ray spectrometry or autoradiography. Bioluminescent labels, such as derivatives of firefly luciferin, are also useful. The bioluminescent substance is covalently bound to the protein by conventional methods, and the labeled protein is detected when an enzyme, such as luciferase, catalyzes a reaction with ATP causing the bioluminescent molecule to emit photons of light. Fluorogens may also be used to label proteins. Examples of fluorogens include fluorescein and derivatives, phycoerythrin, allo-phycocyanin, phycocyanin, rhodamine, and Texas Red. The fluorogens are generally detected by a fluorescence detector.

The location of a ligand in cells can be determined by labeling an antibody as described above and detecting the label in accordance with methods well known to one skilled in the art, such as immunofluorescence microscopy using procedures such as those described by Warren et al. (*Mol. Cell. Biol.*, 7: 1326-1337, 1987).

As indicated above, the monoclonal antibodies of the present invention, or active portions or fragments thereof, are particularly useful for interfering with the initial physical interaction between a staphylococcal pathogen responsible for infection and a mammalian host, and this interference with the physical interaction may be useful both in treating patients and in preventing or reducing bacteria infection on in-dwelling medical devices to make them safer for use.

In another embodiment of the present invention, a kit which may be useful in isolating and identifying staphylococcal bacteria and infection is provided which comprises the antibodies of the present invention in a suitable form, such as lyophilized in a single vessel which then becomes active by addition of an aqueous

WO 02/102829 PCT/US02/19220

sample suspected of containing the staphylococcal bacteria. Such a kit will typically include a suitable container for housing the antibodies in a suitable form along with a suitable immunodetection reagent which will allow identification of complexes binding to the surface proteins or the antibodies of the invention. In general, these kits may contain an antibody in accordance with the invention and means to identify binding of that antibody when a sample from a patient is introduced to the antibody. For example, a suitable immunodetection reagent may comprise an appropriate detectable signal or label, such as a biotin or enzyme that produces a detectable color, etc., which may be linked to the antibody or utilized in other suitable ways so as to provide a detectable result when the antibody binds to the antigen.

In short, the antibodies of the present invention which recognize and bind to the surface proteins of the invention, or active fragments thereof, will thus be useful in treating a wide variety of staphylococcal infections in human and animal patients and in medical or other in-dwelling devices. In accordance with the invention, because of the nature of these proteins and the fact that they contain epitopes in common with proteins of the other type of staphylococcal bacteria, i.e., a protein from a coagulase-negative staph will raise antibodies that recognize a homologous protein from *S. aureus* and vice versa, the antibodies of the invention will exhibit cross-reactivity and should be effective against a broad range of staphylococcal infections. Accordingly, the present invention provides methods and compositions for improved methods of treating or protecting against a wide range of staphylococcal infections.

EXAMPLES

5

10

15

20

25

30

The following examples are provided which exemplify aspects of the preferred embodiments of the present invention. It should be appreciated by those of skill in the art that the techniques disclosed in the examples which follow represent techniques discovered by the inventors to function well in the practice of the invention, and thus can be considered to constitute preferred modes for its practice. However, those of skill in the art should, in light of the present disclosure,

appreciate that many changes can be made in the specific embodiments which are disclosed and still obtain a like or similar result without departing from the spirit and scope of the invention.

5 Example 1. Isolation and Sequencing of MSCRAMM's from S. Aureus

10

15

20

Staphylococcus aureus is known to express a class of surface-associated proteins which play important roles in pathogenicity by allowing bacteria to avoid host defenses and by acting as adhesins. These proteins are known as MSCRAMMs (Microbial Surface Components Recognizing Adhesive Matrix Molecules) and in most cases are covalently anchored to the cell wall peptidoglycan. They have several common features: (i) an N-terminal signal peptide (approximately 40 residues in length) required for Sec-dependent secretion, (ii) a wall spanning domain either rich in proline and glycine residues or composed of serine and aspartate dipeptide repeats, (iii) an LPXTG motif required for covalent anchoring of the protein to the pentaglycine crossbridge in peptidoglycan, (iv) a hydrophobic membrane-spanning domain followed by (v) several positively charged residues.

By exploiting the whole genome sequences of *S. aureus*, eight novel open reading frames encoding proteins with secretion and anchorage motifs indicative of MSCRAMMs were identified (i.e. bearing an N-terminal signal peptide and a C-terminal LPXTG motif followed by a hydrophobic domain and a positively charged tail). The following Table illustrates the list of proteins identified including their distribution among *S. aureus* genomes, their protein size and C-terminal cell wall sorting sequence.

Name	Distribution	Size	C-terminus
EkeS	ENCSJM	2189 aa	LPNTGSEEMDLPLKELALITGAALLARRRS KKEKES
DsqA	ENCSJM	~1363- 2283 aa	LPDTGDSIKQNGLLGGVMTLLVGLGLMKR KKKKDENDQDDSQA
KesK	ENCSJM	~909 aa	LPKTGETTSSQSWWGLYALLGMLALFIPK FRKESK

WO 02/102829 PCT/US02/19220

KrkN2	ENCSJM (Cowan)	~278 aa	LPKTGLTSVDNFISTVAFATLALLGSLSLLLF KRKESK
KrkN	ENCSJM	~661 aa	LPQTGEESNKDMTLPLMALIALSSIVAFVLP RKRKN
RkaS	ENCSJM	~801 aa	LPKTGTNQSSSPEAMFVLLAGIGLIATVRR RKAS
RrkN	NCSJM	1629 aa	LPKTGLESTQKGLIFSSIIGIAGLMLLARRRK N
KnkA	NCSJM	629 aa	LPKAGETIKEHWLPISVIVGAMGVLMIWLS RRNKLKNKA

Abbreviations: eMRSA-16; N, 8325; C, COL; S, MSSA; J, N315, M, Mu50. Six out of eight are conserved in all of the six staphylococcal genomes currently sequenced and the remaining two are present in 5/6 of these genomes.

The following is a list of the DNA and protein sequences:

Ekes MRSA (SEQ ID NO:1)

5

10 aaaatataaagtagggatattctctactttaatcgggacagttttattactttcaaacccaaatggtgcacaagctttaac tacggatcataatgtgcaaggtggttcaaatcaagcattacctggcaactcacaaaatacaaatgccgatactaatc gagacatagtaaatgattcgcaaaatactcctaatgcacatgcaacagacaatacatcaacaaatcaagcattgac taatcatcaaaacgttgatgtggcaaatcaagtcgggcctgctccaatacagcctagcgcgtcgcctgcgcaaaata 15 ataataattctaatgctaattcaacagcaacagagccagcggcgaatacaaataataatttagcatcaaataacaat acattaaacgtgcctaataatacagataacaatgattcagcgcgtcatctgactttaaaagaaattcaagaagatgtt cgtcattcgtctgataagccagagttagttgcgattgctgaagaagcatctaatagaccgaaaaagagaagcagac gtgctgcgccaacagatcctaatgcaacaccagcagatccaacggctacaccagcagatccaacggcaggaaat ggtagtgcaccagttgcaattacagcgccatacacgccaacaactgatcccaatgccaataatataggacaaaatg 20 cacctaacgaagtgctttcatttgatgataacaacattagaccaagtacgaaccgttctgtgcctacagtaactgttgtt gataatttaccaggctacacactgattaatggtggtaaagtaggggtgtttagtcatgcaatggtaagaacgagcatgt ttgattcaggagatgccaagaactatcaagcgcaaggcaatgtaattgcattgggtcgtattagaggaaatgataca aatgatcatggcgattttaatggtatcgagaaaacattaacagtaaatccgaattctgaattaatctttgaatttaatact atgactactaaaaactatcaaggtatgacaaatttaatcattaaaaaatgctgataacgatactgttattggtgaaaaag tagttgcttatggtccgatttggcgcttattaaaagtacctgaaaatgttagtcatctaaaaattcaatttgtacctaaaaat 25 gacgcaataacagatgcacgtggtatttatcaattacgagatggatataaatactatgactttgtagactcaatcggtct tcattctgggtcacatgtctatgttgaaagacgtacaatggagccaacagcaacaaataataaagaatttacagttac gttgaatatgtaaataattcattgactaaagattttcctagcggtaattcaggtgttgatattaatgatatgaatgtgacgta 30 tgacgcagcaaatcgaattattacaattaaaagtactggtggaggtacagggaattcgccggcacgactaatgcctg ataaaatattggatttgaagtataagctacgtgtgaacaatgtgccaacaccaagaacagtaacatttaacgatacat taacgtataaaacatattcacaagattttattaattcacctgctgaaagtcatactgtaagtacaaatccatatacaattg atatcatcatgaataaagacgcattgcaagccgaagtcgatagacgaattcaacaagcggattatacatttgcatcat tagatattttaatgatcttaaaagacgcgcacaaacaattttagatgaaaaccgtaacaatgtacctttaaacaaaag 35 agtttctcaagcagatatcgattcattagcaaatcagatgcaacatacgttaattcgcagtgttgacgctgaaaatgcc

gttaatagaaaagttgatgacatggaagatttagttaaccaaaatgatgaactgacagatgaagaaaaacaagca gcgattcaagtcatcgaggaacataaaaatgaaattattgggaatattggtgaccaaacgactgatgatggcgttact agaattaaagatcaaggtatacagactttaagtggagacactgcaacaccagttgttaaaccaaatgctaaacaag atgcattaaatcaattaacaacggatgaaacagatgctattgataatgttacgaatgctactaccaatgctgatgttga caagagatgccgtatcacatgatgcacaacagcatatcgcagagatcaatgcaaatcctgatgcgactcaagaag aaagacaagcagcaatagagaaagtaaatgctgctgtagctgttgcgaatactaatattaaatgctaataccaat gctgatgttgagcaagtaaagacaaatgcaattcaaggtatacaagccattgaaccagctacaaaggttaaaaca gatgctaaaaacgctattgatcaaagtgcggaaacgcaacataatgcgatatttaataataatgatgcgaccttaga agagcaacaagcagcacaacaattgcttgatcaagctgtagccacagcgaagcaaaatattaatgcagcagata cgaatcaagaagttgcacaagcaaaagatcagggcacacaaaatatagttgtgattcaaccggcaacacaagtta aaacggatgcacgcaatgctgtaaatgaaaaagcgcgagaggcgataacaaatatcaatgctacacctggcgcg actcgagaagagaaacaagaagcgataaatcgtgtcaatacacttaaaaatagagcattaaatgatattggtgtga caaccactgaagaaaagcaagtagcattaaatcaagtagaccaagatttagcaacggcaattaataatataaatc aagctgatactaatgcagaagtagatcaagcacaacaattaggtacaaaaagcaattaatgcgattcagccaaatat tgtaaaaaaaacctgcagcattagcacaaaccaatcagcattatagtgctaaattagttgaaatcaatgctacaccag acaagcaaatacaaatgcggaagtagaccaagctgcgacagtggcagagaataatatcgatgctgttcaagttga cgttgtaaaaaaaaaaacaagcgggggagataaaatcactgctgaagtagcgaagcgtattgaagcggttaaacaaa aattaatcaaaaccaaacaaatgatcaggtagacgcaactacaaatcaagcgattaatgctatagataatgttgaa gctgaagtagtaattaaaccaaaggcaattgcagatattgaaaaagctgttaaagaaaagcaacagcaaattgat aatagtcttgattcaacagataatgagaaagaagttgctttacaagcattagctaaagaaaaagaaaaagcacttg cagctattgaccaagctcaaacgaatagtcaggtgaatcaagcggcaacaaatggtgtatcagcgattaaaattatt ttaatcaagataaagaagcgacagcagaagaaagacaagcggcgttagataaaatcaatgatttagttgctaaag ctatgacaaatatcacgaatgatagaacaaatcagcaagttaatgactcaacaaatcaagcgcttgacgacattgc attagtgacgcctgaccatattgttagagcagctgctagagatgcagttaagcaacaatatgaagctaaaaagcac gaaattgagcaagcggaacatgcgactgatgaagaaaaacaagttgctttaaatcaattagcgaataatgaaaaa cgtgcattacaaaacattaatcaagcaatagcgaataatgatgtgaaacgtgttgaatcaaatggtattgctacgttaa gaatctataaaagatacaccacatgctacgacagatgaattagatgaagcaaaccaacaaataaacgacacatt aaacaaggtcaacaagatatagacaatacgacacaagatgcagctgtcaatgatgttagaaaccaaacgattaa ggcaatcgaacaaattaaaccgaaagttagacgcaaacgtgcagcgttggataacattgatgaaagtaataat aacaacatcaaagtgattttacctaaagttcaagttaaaccagcagcgcgtcaatctgtcagcgcaaaagctgaag ctcaaaatgcacttattgatcaaagtgatttatctaccgaagaagaagaattagctgctaaacatttagtagaacaag cacttaatcaagctattgatcagatcaatcacgcagataagactgcgcaagttaatcaaaatagtatcgatgctcaaa atattatttcaaaaattaaaccagcgacaacagttaaagcaacagcattacaacaaattcaaaatatcgctacaaat

10

15

20

25

30

35

40

45

EkeS_MRSA (SEQ ID NO:2)

10

15

MNLLKKNKYSIRKYKVGIFSTLIGTVLLLSNPNGAQALTTDHNVQGGSNQALPGNS QNTNADTNRDIVNDSQNTPNAHATDNTSTNQALTNHQNVDVANQVGPAPIQPSA 20 SPAQNNNNSNANSTATEPAANTNNNLASNNNTLNVPNNTDNNDSARHLTLKEIQE DVRHSSDKPELVAIAEEASNRPKKRSRRAAPTDPNATPADPTATPADPTAGNGSA PVAITAPYTPTTDPNANNIGQNAPNEVLSFDDNNIRPSTNRSVPTVTVVDNLPGYTL INGGKVGVFSHAMVRTSMFDSGDAKNYQAQGNVIALGRIRGNDTNDHGDFNGIEK TLTVNPNSELIFEFNTMTTKNYQGMTNLIIKNADNDTVIGEKVVAYGPIWRLLKVPE 25 NVSHLKIQFVPKNDAITDARGIYQLRDGYKYYDFVDSIGLHSGSHVYVERRTMEPT ATNNKEFTVTTSLKNNGNFGASFNTDDFVYKIQLPEGVEYVNNSLTKDFPSGNSG **VDINDMNVTYDAANRIITIKSTGGGTGNSPARLMPDKILDLKYKLRVNNVPTPRTVT** FNDTLTYKTYSQDFINSPAESHTVSTNPYTIDIIMNKDALQAEVDRRIQQADYTFASL DIFNDLKRRAQTILDENRNNVPLNKRVSQADIDSLANQMQHTLIRSVDAENAVNRK VDDMEDLVNQNDELTDEEKQAAIQVIEEHKNEIIGNIGDQTTDDGVTRIKDQGIQTL SGDTATPVVKPNAKQAIRDKAAKQREIINHTPDATQDEIQDALNQLTTDETDAIDNV TNATTNADVETAKNNGINTIGAVAPQVTHKQAARDAINQATATKRQQINSNREATQ EEKNAALNELTQATNHALEQINQATTNDDVDTAKGDGLNAINPIAPVTVVKQAARD AVSHDAQQHIAEINANPDATQEERQAAIEKVYAAVAVANTNILNANTNADVEQVKT 35 NAIQGIQAIEPATKVKTDAKNAIDQSAETQHNAIFNNNDATLEEQQAAQQLLDQAVA TAKQNINAADTNQEVAQAKDQGTQNIVVIQPATQVKTDARNAVNEKAREAITNINA TPGATREEKQEAINRVNTLKNRALNDIGVTSTTAMVNSIRDDAVNQIGAVQPHVTK KQTATGVLTDLATAKKQEINQNTNATTEEKQVALNQVDQDLATAINNINQADTNAE VDQAQQLGTKAINAIQPNIVKKPAALAQTNQHYSAKLVEINATPDATDDEKNAAINT LNQDRQQAIESIKQANTNAEVDQAATVAENNIDAVQVDVVKKQAARDKITAEVAKR IEAVKQTPNATDEEKQAAVNQINQLKDQAFNQINQNQTNDQVDATTNQAINAIDNV EAEVVIKPKAIADIEKAVKEKQQQIDNSLDSTDNEKEVALQALAKEKEKALAAIDQA QTNSQVNQAATNGVSAIKIIQPETKIKPAAREKINQKANELRAQINQDKEATAEERQ AALDKINDLVAKAMTNITNDRTNQQVNDSTNQALDDIALVTPDHIVRAAARDAVKQ 45 QYEAKKHEIEQAEHATDEEKQVALNQLANNEKRALQNINQAIANNDVKRVESNGIA

TLKGVEPHIVVKPEAQEAIKASADNQVESIKDTPHATTDELDEANQQINDTLKQGQ QDIDNTTQDAAVNDVRNQTIKAIEQIKPKVRRKRAALDNIDESNNNQLDAIRNTLDT TQDERNVAIAALNKIVNAIKNDIAQNKTNAEVDQTEADGNNNIKVILPKVQVKPAAR QSVSAKAEAQNALIDQSDLSTEEERLAAKHLVEQALNQAIDQINHADKTAQVNQNS IDAQNIISKIKPATTVKATALQQIQNIATNKINLIKANNEATDEEQNAAIVQVEKELIKA KQQIAGAVTNADVAYLLHDGKNEIREIEPVINKKATAREQLTTLFNDKKQAIEANVQ ATVEERNSILAQLQNIYDTAIGQIDQDRSNAQVDKTATLNLQTIHDLDVHPIKKPDAE KTINDDLARVTHLVQNYRKVSDRNKADALKAITALKLQMDEELKTARTNADVDAVL KRFNVALGDIEAVITEKENSLLRIDNIAQQTYAKFKAIATPEQLAKVKALIDQYVADG NRMVDEDATLNDIKKDTQLIIDEILAIKLPAEVIKASPKVGQPAPKVCTPIKKEDKQEV RKVVKELPNTGSEEMDLPLKELALITGAALLARRRSKKEKES

DsqA (8325) (SEQ ID NO:3)

10

15 tctaatgaatgtaaagataatacaaggagttattacatgagtaaaagacagaaagcatttcatgacagcttagcaaa cgaaaaaaaaaagagtaagactttataaatctggaaaaaattgggtaaaatccggaattaaagaaatagaaatgttc aaaattatggggctaccatttattagtcatagtttagtgagtcaagataatcaaagcattagtaaaaaaatgacgggat acggactgaaaactacggcggttattggtggtgcattcacggtaaatatgttgcatgaccagcaagcttttgcggcttct gatgcaccattaacttctgaattaaacacacaaagtgaaacagtaggtaatcaaaactcaacgacaatcgaagcat 20 caacatcaacagccgattccacaagtgtaacgaaaaatagtagttcggtacaaacatcaaatagtgacacagtctc aagtgaaaagtctgaaaaggtcacttcgacaactaatagtacaagcaatcaacaagagaaattgacatctacatc agaatcaacatcctcaaagaatactacatcaagttctgatactaaatctgtagcttcaacttcaagtacagaacaacc aattaatacatcaacaaatcaaagtactgcatcaaataacacttcacaaagcacaacgccatcttcggtcaacttaa acaaaactagcacaacgtcaactagcaccgcaccagtaaaacttcgaactttcagtcgcttagctatgtcaacatttg 25 cgtcagcagcgacaaccgcagtaactgctaatacaattacagttaataaagataacttaaaacaatatatgac aacgtcaggtaatgctacctatgatcaaagtaccggtattgtgacgttaacacaggatgcatacagccaaaaaggtg ctattacattaggaacacgtattgactctaataagagttttcatttttctggaaaagtaaatttaggtaacaaatatgaag ggcatggaaatggtggagatggtatcggttttgccttttcaccaggtgtattaggtgaaacagggttaaacggtgccgc agtaggtattggtggcttaagtaacgcatttggcttcaaattggatacgtatcacaatacatctaaaccaaattcagctg 30 caaaggcgaatgctgacccatctaatgtagctggtggaggtgcgtttggtgcatttgtaacaacagatagttatggtgtt gcgacaacgtatacatcaagttcaacagctgataatgctgcgaagttaaatgttcaacctacaaataacacgttcca agattttgatattaactataatggtgatacaaaggttatgactgtcaaatatgcaggtcaaacatggacacgtaatattt cagattggattgcgaaaagtggtacgaccaacttttcattatcaatgacagcctcaacaggtggcgcgacaaatttac aacaagtacaatttggaacattcgaatatacagagtctgctgttacacaagtgagatacgttgatgtaacaacaggta 35 aagatattattccaccaaaaacatattcaggaaatgttgatcaagtcgtgacaatcgataatcagcaatctgcattga ctgctaaaggatataactacacgtccgtcgatagttcatatgcgtcaacttataatgatacaaataaaactgtaaaaat gacgaatgctggacaatcagtgacatattattttactgatgtaaaagcaccaactgtaactgtaggcaatcaaaccat agaagtgggtaaaacaatgaatcctattgtattgactacaacggataatggtactgggactgtgacaaatacagttac aggattaccaagcggattaagttacgatagtgcaacgaattcaatcattgggacaccaacaaaaattggtcaatca 40 acagtgacagttgtgtctactgaccaagcaaataacaaatcgacgacaacttttacaataaatgttgtggatacgaca gcaccaacagtgacaccaataggagatcaatcatcagaagtgtattcaccaatatccccgattaaaattgctacgca agataacagtggaaatgcggtgacgaatacagtgactggattgccatccggactaacatttgatagtacaaataata ctattagtggtacaccaacaacattggtacaagtactatatcaatcgtttctacagatgcgagcggtaacaaaacga cgacaacttttaaatatgaagtaacaagaaatagcatgagtgattccgtatcaacatcaggaagtacacaacaatct 45 caaagtgtgtcaacaagtaaagctgactcacaaagtgcatcaacgagtacatcaggatcgattgtggtatctacatc agctagtacctcgaaatcgacaagtgtaagcctatctgattctgtgagtgcatctaagtcattaagcacatctgaaagt

aatagtgtatcaagctcaacaagcacaagtttagtgaattcacaaagtgtatcatcaagcatgtcggattcagctagt aaatcaacatcattaagcgattctatttcaaactctagcagtactgaaaaatccgaaagtctatcaacaagtacatctg attcattgcgtacatcaacatcactcagtgactcattaagtatgagtacatcaggaagcttgtctaagtcacaaagctta tcaacgagtatatcagggtcgtctagtacatcagcatcattaagtgacagtacatcgaatgcaattagtacatcaacat 5 cattgagcgagtcagctagcacctcggactctatcagtatttcaaatagcatagccaactctcaaagtgcgtcaacaa gcaaatcagattcacaaagtacatcaatatcattaagtacaagtgattcaaaatcgatgagtacatcagaatcattga gcgattcgacgagcacaagtggttctgtttctggatcactaagcatagcagcatcacaaagtgtctcaacaagtacat cagactcgatgagtacttcagagatagtaagtgactctatcagtacaagtgggtcattatctgcatcagacagtaaatc aatgtccgtaagtagttcaatgagcacgtctcagtcaggtagtacatcagaatcattaagtgattcacaaagtacatct gattctgatagtaagtcattatcacaaagtactagtcaatcaggttcaacaagtacatcaacgtcgacaagtgcttcag 10 tacgtacttcggaatcacaaagtacgtctggttcaatgagtgcaagtcaatccgattcaatgagcatatcaacgtcgttt agtgattcaacgagtgatagcaaatcagcatcaactgcatcaagtgaatcaatatcacaaagtgcttctacgagcac atctggttcggtaagtacttcgacatcgttaagtacaagtaattcagaacgtacatcaacatctatgagtgattccacaa gcttaagtacatcagagtctgattcaataagtgaatcaacgtcaacgagcgactctataagtgaagcaatatctgcttc 15 agagagcacgtttatatcattaagtgaatcaaatagtactagcgattcagaatcacaaagtgcatctgcctttttaagtg aatcattaagtgaaagtacgtctgaatcaacatcagagtcagtgagtagttcgacaagtgagagtacgtcattatcag acagtacatcagaatctggtagcacatcaacatcattaagtaattcaacaagtggtagtacgtccatttcaacatcga caagtatcagtgaatcaacgtcaacgtttaagagcgagagtgtttcaacatcactgagtatgtcaacgagtacaagtt tgtctgactctacaagtttgtcaacatcattaagtgattccacaagtgatagtaagtctgattcattaagtacatcaatgtc 20 gacaagtgattcaatcagtacaagtaaatctgattccattagtacatccacatcattaagtggttctacaagtgaaagt aggaagtacaagtacgtcaacgagtacaagtttgtctgactcaacgagtacatcattgtcactaagtgcctcaatgaa tcaaagcggagtagactcaaactcagcaagccaaagtgcctcaaactcaacaagtacaagcacgagcgaatcc gattcacaaagcacatcatcatatacaagtcagtcaacaagccaaagtgaatccacatcgacatcaacgtcactaa 25 gcgattcaacaagtatatctaaaagtacgagtcaatcaggttcggtaagcacatcagcgtcattaagtggttcagag agtgaatctgattcacaaagtatctcaacaagtgcaagtgagtcaacatcagaaagtgcgtcaacatcactcagtga ctcaacaagtacaagtaactcaggatcagcaagtacgtcaacatcgctcagtaactcagcaagtgaatc cgattigtcgtcaacatctttaagtgattcaacatctgcgtcaatgcaaagcagtgaatccgattcacaaagcacatca gcatcattaagtgattcgctaagtacatcaacttcaaaccgcatgtcgaccattgcaagtttatctacatcggtaagtac 30 atcagagtctggctcaacatcagaaagtacaagtgaatccgattcaacatcaacatcattaagcgattcacaaagc acatcaagaagtacaagtgcatcaggatcagcaagtacatcaacatcaacaagtgactctcgtagtacatcagctt caactagtacttcgatgcgtacaagtactagtgattcacaaagtatgtcgctttcgacaagtacatcaacaagtatgag tgattcaacgtcattatctgatagtgttagtgattcaacatcagactcaacaagtgcgagtacatctggttcgatgagtgt gtctatatcgttaagtgattcgacaagtacatcaacatcggctagtgaagtaatgagcgcaagcatatctgattcacaa 35 agtatgtcagaatctgtaaatgattcagaaagtgtaagtgaatctaattctgaaagtgactctaaatcgatgagtggctc aacaagtgtcagtgattctggctcattgagcgtctcaacgtcattaagaaaatcagaaagtgtaagcgagtcaagttc attgagttgctcacaatcgatgagcgattcagtaagcacaagcgattcgtcatcattaagtgtatcgacgtcactaaga agttcagaaagcgtgagtgaatctgattcattaagtgattcaaaaatcaacaagtggttcgacttcaacaagtacatctg gttcattgagtacctcaacatcattaagtggttcagaaagcgtaagcgagtctacctcgctaagtgattcaatatcaatg 40 agtgattctactagtacaagtgactccgactcattaagtggatcaatatctttaagtggttccacaagtcttagcacttcg gattcattaagtgattcaaaatcattgagtagctcgcaaagtatgagtggatcagaatcaacgtcaacaagtgtgagc gattcgcagtcaagctcaacaagtaatagtcaatttgactctatgagcatcagtgcatcagaaagcgactcaatgtct acaagtgattcgtctagcatcagtggatcaaattcaacgagtacatcactttcaacatctgactcaatgagcggaagc gtatcagtttcaacatcgacaagtttaagtgactcaatatcaggttcaacaagtgtaagtgactcgagctcaacaagc 45 acatctacatcattaagtgattcaatgtcacaaagccagtcaacaagtacaagtgcatctggttccttaagtacatcga tatcaacatcaatgtcaatgagtgctagtacatcgtcatcacaaagcacatcggtgtcgacatcattatcaacatcag

DsqA (8325) (SEQ ID NO:4)

10

SNECKDNTRSYYMSKRQKAFHDSLANEKTRVRLYKSGKNWVKSGIKEIEMFKIMG LPFISHSLVSQDNQSISKKMTGYGLKTTAVIGGAFTVNMLHDQQAFAASDAPLTSE 15 LNTQSETVGNQNSTTIEASTSTADSTSVTKNSSSVQTSNSDTVSSEKSEKVTSTTN STSNQQEKLTSTSESTSSKNTTSSSDTKSVASTSSTEQPINTSTNQSTASNNTSQS TTPSSVNLNKTSTTSTSTAPVKLRTFSRLAMSTFASAATTTAVTANTITVNKDNLKQ YMTTSGNATYDQSTGIVTLTQDAYSQKGAITLGTRIDSNKSFHFSGKVNLGNKYEG HGNGGDGIGFAFSPGVLGETGLNGAAVGIGGLSNAFGFKLDTYHNTSKPNSAAKA 20 NADPSNVAGGGAFGAFVTTDSYGVATTYTSSSTADNAAKLNVQPTNNTFQDFDIN YNGDTKVMTVKYAGQTWTRNISDWIAKSGTTNFSLSMTASTGGATNLQQVQFGT FEYTESAVTQVRYVDVTTGKDIIPPKTYSGNVDQVVTIDNQQSALTAKGYNYTSVD SSYASTYNDTNKTVKMTNAGQSVTYYFTDVKAPTVTVGNQTIEVGKTMNPIVLTTT DNGTGTVTNTVTGLPSGLSYDSATNSIIGTPTKIGQSTVTVVSTDQANNKSTTTFTI 25 NVVDTTAPTVTPIGDQSSEVYSPISPIKIATQDNSGNAVTNTVTGLPSGLTFDSTNN TISGTPTNIGTSTISIVSTDASGNKTTTTFKYEVTRNSMSDSVSTSGSTQQSQSVST SKADSQSASTSTSGSIVVSTSASTSKSTSVSLSDSVSASKSLSTSESNSVSSSTST SLVNSQSVSSSMSDSASKSTSLSDSISNSSSTEKSESLSTSTSDSLRTSTSLSDSL SMSTSGSLSKSQSLSTSISGSSSTSASLSDSTSNAISTSTSLSESASTSDSISISNSI ANSQSASTSKSDSQSTSISLSTSDSKSMSTSESLSDSTSTSGSVSGSLSIAASQSV STSTSDSMSTSEIVSDSISTSGSLSASDSKSMSVSSSMSTSQSGSTSESLSDSQST SDSDSKSLSQSTSQSGSTSTSTSTSASVRTSESQSTSGSMSASQSDSMSISTSFS DSTSDSKSASTASSESISQSASTSTSGSVSTSTSLSTSNSERTSTSMSDSTSLSTS ESDSISESTSTSDSISEAISASESTFISLSESNSTSDSESQSASAFLSESLSESTSES 35 TSESVSSSTSESTSLSDSTSESGSTSTSLSNSTSGSTSISTSTSISESTSTFKSESV STSLSMSTSTSLSDSTSLSDSTSDSKSDSLSTSMSTSDSISTSKSDSISTSTS LSGSTSESESDSTSSSESKSDSTSMSISMSQSTSGSTSTSTSLSDSTSTSLSLS ASMNQSGVDSNSASQSASNSTSTSTSESDSQSTSSYTSQSTSQSESTSTSTSLS DSTSISKSTSQSGSVSTSASLSGSESESDSQSISTSASESTSESASTSLSDSTSTS NSGSASTSTSLSNSASASESDLSSTSLSDSTSASMQSSESDSQSTSASLSDSLST STSNRMSTIASLSTSVSTSESGSTSESTSESDSTSTSLSDSQSTSRSTSASGSAST STSTSDSRSTSASTSTSMRTSTSDSQSMSLSTSTSTSMSDSTSLSDSVSDSTSDS TSASTSGSMSVSISLSDSTSTSTSASEVMSASISDSQSMSESVNDSESVSESNSE 45 SDSKSMSGSTSVSDSGSLSVSTSLRKSESVSESSSLSCSQSMSDSVSTSDSSSLS VSTSLRSSESVSESDSLSDSKSTSGSTSTSTSGSLSTSTSLSGSESVSESTSLSDS

ISMSDSTSTSDSDSLSGSISLSGSTSLSTSDSLSDSKSLSSSQSMSGSESTSTSVS DSQSSSTSNSQFDSMSISASESDSMSTSDSSSISGSNSTSTSLSTSDSMSGSVSV STSTSLSDSISGSTSVSDSSSTSTSTSLSDSMSQSQSTSTSASGSLSTSISTSMSM SASTSSSQSTSVSTSLSTSDSISDSTSISISGSQSTVESESTSDSTSISDSESLSTSD SDSTSTSTSDSTSGSTSTSISESLSTSGSGSTSVSDSTSMSESNSSSVSMSQDKS DSTSISDSESVSTSTSTSLSTSDSTSTSESLSTSMSGSQSISDSTSTSMSGSTSTS ESNSMHPSDSMSMHHTHSTSTSRLSSEATTSTSESQSTLSATSEVTKHNGTPAQ SEKRLPDTGDSIKQNGLLGGVMTLLVGLGLMKRKKKKDENDQDDSQA

10 KesK1 (8325) (SEQ ID NO:5)

tagaaaatcaactctaggcgttgcatcggtcattgtcagtacactatttttaattacttctcaacatcaagcacaagcag cagaaaatacaaatacttcagataaaatctcggaaaatcaaaataataatgcaactacaactcagccacctaagg atacaaatcaaacacaacctgctacgcaaccagcaaacactgcgaaaaactatcctgcagcggatgaatcactta 15 aagatgcaattaaagatcctgcattagaaaataaagaacatgatataggtccaagagaacaagtcaatttccagtta ttagataaaaacaatgaaacgcagtactatcactttttcagcatcaaagatccagcagatgtgtattacactaaaaag aaagcagaagttgaattagacatcaatactgcttcaacatggaagaagtttgaagtctatgaaaacaatcaaaaatt gccagtgagacttgtatcatatagtcctgtaccagaagaccatgcctatattcgattcccagtttcagatggcacacaa gaattgaaaattgtttcttcgactcaaattgatgatggagaagaaacaaattatgattatactaaattagtatttgctaaa 20 aagtaatcaaacaacacgaatacatctaatcaaaatatatcaacgatcaacaatgctaataatcaaccgcaggc aacgaccaatatgagtcaacctgcacaaccaaaatcgtcaacgaatgcagatcaagcgtcaagccaaccagctc atgaaacaaattctaatggtaatactaacgataaaacgaatgagtcaagtaatcagtcggatgttaatcaacagtatc 25 caccagcagatgaatcactacaagatgcaattaaaaacccggctatcatcgataaagaacatacagctgataattg gcgaccaattgattttcaaatgaaaaatgataaaggtgaaagacagttctatcattatgctagtactgttgaaccagca actgtcatttttacaaaaacaggaccaataattgaattaggtttaaagacagcttcaacatggaagaaatttgaagttt atgaaggtgacaaaaagttaccagtcgaattagtatcatatgattctgataaagattatgcctatattcgtttcccagtat ctaatggtacgagagagattaaaattgtgtcatctattgaatatggtgagaacatccatgaagactatgattatacgcta 30 atggtctttgcacagcctattactaataacccagacgactatgtggatgaagaaacatacaatttacaaaaattattag ctccgtatcacaaagctaaaacgttagaaagacaagtttatgaattagaaaaattacaagagaaattgccagaa aaatataaggcggaatataaaaagaaattagatcaaactagagtagagttagctgatcaagttaaatcagcagtga cggaatttgaaaatgttacacctacaaatgatcaattaacagatttacaagaagcgcattttgttgtttttgaaagtgaa gaaaatagtgagtcagttatggacggctttgttgaacatccattctatacagcaactttaaatggtcaaaaatatgtagt 35 gatgaaaacaaaggatgacagttactggaaagatttaattgtagaaggtaaacgtgtcactactgtttctaaagatcct aaaaataattctagaacgctgattttcccatatatacctgacaaagcagtttacaatgcgattgttaaagtcgttgtggc aaacattggttatgaaggtcaatatcatgtcagaattataaatcaggatatcaatacaaaagatgatgatacatcaca aaataacacgagtgaaccgctaaatgtacaaacaggacaagaaggtaaggttgctgatacagatgtagctgaaa atagcagcactgcaacaaatcctaaagatgcgtctgataaagcagatgtgatagaaccagagtctgacgtggttaa agatgctgataataatattgataaagatgtgcaacatgatgttgatcatttatccgatatgtcggataataatcacttcga 40 taaatatgatttaaaagaaatggatactcaaattgccaaagatactgatagaaatgtggataaagatgccgataat agcgttggtatgtcatctaatgtcgatactgataaagactctaataaaaataaagacaaagtcatacagctgaatcat attgccgataaaaataatcatactggaaaagcagcaaagcttgacgtagtgaaacaaaattataataatacagaca aagttactgacaaaaaaaacaactgaacatctgccgagtgatattcataaaactgtagataaaacagtgaaaacaa 45 aagaaaaagccggcacaccatcgaaagaaaacaaacttagtcaatctaaaatgctaccaaaaactggagaa

WO 02/102829 PCT/US02/19220

KesK1 (8325) (SEQ ID NO:6)

5 LLSIKYNLIGVVNNMNKHHPKLRSFYSIRKSTLGVASVIVSTLFLITSQHQAQAAENT NTSDKISENQNNNATTTQPPKDTNQTQPATQPANTAKNYPAADESLKDAIKDPALE NKEHDIGPREQVNFQLLDKNNETQYYHFFSIKDPADVYYTKKKAEVELDINTASTW KKFEVYENNQKLPVRLVSYSPVPEDHAYIRFPVSDGTQELKIVSSTQIDDGEETNY DYTKLVFAKPIYNDPSLVKSDTNDAVVTNDQSSSVASNQTNTNTSNQNISTINNAN 10 NQPQATTNMSQPAQPKSSTNADQASSQPAHETNSNGNTNDKTNESSNQSDVNQ QYPPADESLQDAIKNPAIIDKEHTADNWRPIDFQMKNDKGERQFYHYASTVEPATV **IFTKTGPIIELGLKTASTWKKFEVYEGDKKLPVELVSYDSDKDYAYIRFPVSNGTRE** VKIVSSIEYGENIHEDYDYTLMVFAQPITNNPDDYVDEETYNLQKLLAPYHKAKTLE 15 RQVYELEKLQEKLPEKYKAEYKKKLDQTRVELADQVKSAVTEFENVTPTNDQLTD LQEAHFVVFESEENSESVMDGFVEHPFYTATLNGQKYVVMKTKDDSYWKDLIVEG KRVTTVSKDPKNNSRTLIFPYIPDKAVYNAIVKVVVANIGYEGQYHVRIINQDINTKD DDTSQNNTSEPLNVQTGQEGKVADTDVAENSSTATNPKDASDKADVIEPESDVVK DADNNIDKDVQHDVDHLSDMSDNNHFDKYDLKEMDTQIAKDTDRNVDKDADNSV 20 GMSSNVDTDKDSNKNKDKVIQLNHIADKNNHTGKAAKLDVVKQNYNNTDKVTDKK TTEHLPSDIHKTVDKTVKTKEKAGTPSKENKLSQSKMLPKTGETTSSQSWWGLYA LLGMLALFIPKFRKESK

KrkN2 (8325) (SEQ ID NO:7)

25

tcagctatgaaaaagattacaatgggtacagcatctatcattttaggttcccttgtatac ataggcgcagacagccaacaagtcaatgcggcaacagaagctacgaacgcaactaataat 30 ggctcttcagagaagtcacacatggatgactatatgcaacaccctggtaaagtaattaaa caaaataataatattatttccaaaccgtgttaaacaatgcatcattctggaaagaatac aaattttacaatgcaaacaatcaagaattagcaacaactgttgttaacgataataaaaaa gcggatactagaacaatcaatgttgcagttgaacctggatataagagcttaactactaaa gtacatattgtcgtgccacaaattaattacaatcatagatatactacgcatttggaattt 35 gaaaaagcaattcctacattagctgacgcagcaaaaccaaacaatgttaaaccggttcaa ccaaaaccagctcaacctaaaacacctactgagcaaactaaaccagttcaacctaaagtt gaaaaagttaaacctactgtaactacaacaagcaaagttgaagacaatcactctactaaa gttgtaagtactgacacaacaaagatcaaactaaaacacaaactgctcatacagttaaa acagcacaaactgctcaagaacaaaataaagttcaaacacctgttaaagatgttgcaaca 40 gcgaaatctgaaagcaacaatcaagctgtaagtgataataaatcacaacaaactaacaaa gttacaaaacataacgaaacgcctaaacaagcatctaaagctaaagaattaccaaaaact • ggtttaacttcagttgataactttattagcacagttgccttcgcaacacttgccctttta ggttcattatctttattacttttcaaaagaaaagaatctaaataa

45 KrkN2 (8325) (SEQ ID NO:8)

EENNMTKHYLNSKYQSEQRSSAMKKITMGTASIILGSLVYIGADSQQVNAATEATN ATNNQSTQVSQATSQPINFQVQKDGSSEKSHMDDYMQHPGKVIKQNNKYYFQTV LNNASFWKEYKFYNANNQELATTVVNDNKKADTRTINVAVEPGYKSLTTKVHIVVPQINYNHRYTTHLEFEKAIPTLADAAKPNNVKPVQPKPAQPKTPTEQTKPVQPKVEKVKPTVTTTSKVEDNHSTKVVSTDTTKDQTKTQTAHTVKTAQTAQEQNKVQTPVKDVATAKSESNNQAVSDNKSQQTNKVTKHNETPKQASKAKELPKTGLTSVDNFISTVAFATLALLGSLSLLLFKRKESK

PCT/US02/19220

KrkN (8325) (SEQ ID NO:9)

10

15

20

25

30

35

tatacaattaggagttgtttctacaacatgaacàaacagcaaaaagaatttaaatcattttattcaattagaaagtcatc actaggcgttgcatctgtagcaattagtacacttttattattaatgtcaaatggcgaagcacaagcagcagctgaaga aacaggtggtacaaatacagaagcacaaccaaaaactgaagcagttgcaagtccaacaacaacatctgaaaaa gctccagaaactaaaccagtagctaatgctgtctcagtatctaataaagaagttgaggcccctacttctgaaacaaa agaagctaaagaagttaaagaagttaaagcccctaaggaaacaaaagaagttaaaccagcagcaaaagccac taacaatacatatcctattttgaatcaggaacttagagaagcgattaaaaaaccctgcaataaaagacaaagatcata gcgcaccaaactctcgtccaattgattttgaaatgaaaaagaagatggaactcaacagttttatcattatgcaagttc tgttaaacctgctagagttattttcactgattcaaaaccagaaattgaattaggattacaatcaggtcaattttggagaaa atttgaagtttatgaaggtgacaaaaagttgccaattaaattagtatcatacgatactgttaaagattatgcttacattcg cttctctgtatcaaacggaacaaaagctgttaaaattgttagttcaacacacttcaataacaaagaagaaaaatacg attacacattaatggaattcgcacaaccaatttataacagtgcagataaattcaaaactgaagaagattataaagctg atcagctattactgaattccaaaatgtacaaccaacaaatgaaaaaatgactgatttacaagatacaaaatatgttgtt tatgaaagtgttgagaataacgaatctatgatggatacttttgttaaacaccctattaaaacaggtatgcttaacggcaa aaaatatatggtcatggaaactactaatgacgattactggaaagatttcatggttgaaggtcaacgtgttagaactata agcaaagatgctaaaaataatactagaacaattattttcccatatgttgaaggtaaaactctatatgatgctatcgttaa agttcacgtaaaaacgattgattatgatggacaataccatgtcagaatcgttgataaagaagcatttacaaaagcca aaaccaacaccatcacctgttgaaaaagaatcacaaaaacaagacagccaaaaagatgacaataaacaattac caagtgttgaaaaaagaaaatgacgcatctagtgagtcaggtaaagacaaaacgcctgctacaaaaccaactaaa ggtgaagtagaatcaagtagtacaactccaactaaggtagtatctacgactcaaaatgttgcaaaaccaacaactg cttcatcaaaaaaaaaaaaaaatttcagcaggttctagcgaagcaaaagatagtgctccattacaa aaagcaaacattaaaaacacaaatgatggacacactcaaagccaaaacaataaaaatacacaagaaaataaa gcaaaatcattaccacaaactggtgaagaatcaaataaagatatgacattaccattaatggcattattagctttaagta gcatcgttgcattcgtattacctagaaaacgtaaaaactaa

KrkN (8325) (SEQ ID NO:10)

40 YTIRSCFYNMNKQQKEFKSFYSIRKSSLGVASVAISTLLLLMSNGEAQAAAEETGG
TNTÉAQPKTEAVASPTTTSEKAPETKPVANAVSVSNKEVEAPTSETKEAKEVKEV
KAPKETKEVKPAAKATNNTYPILNQELREAIKNPAIKDKDHSAPNSRPIDFEMKKKD
GTQQFYHYASSVKPARVIFTDSKPEIELGLQSGQFWRKFEVYEGDKKLPIKLVSYD
TVKDYAYIRFSVSNGTKAVKIVSSTHFNNKEEKYDYTLMEFAQPIYNSADKFKTEED
45 YKAEKLLAPYKKAKTLERQVYELNKIQDKLPEKLKAEYKKKLEDTKKALDEQVKSAI
TEFQNVQPTNEKMTDLQDTKYVVYESVENNESMMDTFVKHPIKTGMLNGKKYMV

30

METTNDDYWKDFMVEGQRVRTISKDAKNNTRTIIFPYVEGKTLYDAIVKVHVKTIDY DGQYHVRIVDKEAFTKANTDKSNKKEQQDNSAKKEATPATPSKPTPSPVEKESQK QDSQKDDNKQLPSVEKENDASSESGKDKTPATKPTKGEVESSSTTPTKVVSTTQ NVAKPTTASSKTTKDVVQTSAGSSEAKDSAPLQKANIKNTNDGHTQSQNNKNTQE NKAKSLPQTGEESNKDMTLPLMALLALSSIVAFVLPRKRKN

RkaS (COL) (SEQ ID NO:11)

5

titataaataatttacataaaatcaatcattttaatataaggattatgataatatattggtgtatgacagttaatggaggga 10 acgaaatgaaagctttattacttaaaacaagtgtatggctcgttttgctttttagtgtaatgggattatggcaagtctcgaa cgcggctgagcagcatacaccaatgaaagcacatgcagtaacaacgatagacaaagcaacaacagataagca cagggaacagctgatgatacaaacagcaaagtaacatccaacgcaccatctaacaaaccatctacagtagtttca acaaaagtaaacgaaacacgcgacgtagatacacaacaagcctcaacacaaaaaccaactcacacagcaac 15 taaaatattacatacaaatgatatccatggccgactagccgaagaaaaagggcgtgtcatcggtatggctaaattaa aaacagtaaaagaacaagaaaagcctgatttaatgttagacgcaggagacgccttccaaggtttaccactttcaaa ccagtctaaaggtgaagaaatggctaaagcaatgaatgcagtaggttatgatgctatggcagtcggtaaccatgaat ttgactttggatacgatcagttgaaaaagttagagggtatgttagacttcccgatgctaagtactaacgtttataaagatg 20 gaaaacgcgcgtttaagccttcaacgattgtaacaaaaaatggtattcgttatggaattattggtgtaacgacaccag aaacaaagacgaaaacaagacctgaaggcattaaaggcgttgaatttagagatccattacaaagtgtgacagcg gaaatgatgcgtatttataaagacgtagatacatttgttgttatatcacatttaggaattgatccttcaacacaagaaaca tggcgtggtgattacttagtgaaacaattaagtcaaaatccacaattgaagaaacgtattacagttattgatggtcattc acatacagtacttcaaaatggtcaaatttataacaatgatgcattggcacaaacaggtacagcacttgcgaatatcgg 25 taagattacatttaattatcgcaatggagaggtatcgaatattaaaccgtcattgattaatgttaaagacgttgaaaatgt aacaccgaacaaagcattagctgaacaaattaatcaagctgatcaaacatttagagcacaaactgcagaggtaat tattccaaacaataccattgatttcaaaggagaaagagatgacgttagaacgcgtgaaacaaatttaggaaacgcg ttcgtgcctctatcgcaaaaggtaaggtgacacgctatgatttaatctcagtattaccatttggaaatacgattgcgcaa 30 attgatgtaaaaggttcagacgtcttggacggctttcgaacatagtttaggcgcaccaacaacacaaaaggacggta gcaaacgaattaatgctattcaaattttaaataaagagacaggtaagtttgaaaatattgatttaaaacgtgtatatcac gtaacgatgaatgacttcacagcatcaggtggcgacggatatagtatgttcggtggtcctagagaagaaggtatttca ttagatcaagtactagcaagttatttaaaaacagctaacttagctaagtatgatacgacagaaccacaacgtatgttat 35 taggtaaaccagcagtaagtgaacaaccagctaaaggacaacaaggtagcaaaggtagtaagtctggtaaagat acacaaccaattggtgacgacaaagtgatggatccagcgaaaaaaccagctccaggtaaagttgtattgttgctag gtgggaaacaattggctagaatgtcagtgcctaaaggtagcgcgcatgagaaacagttaccaaaaactggaacta atcaaagttcaagcccagaagcgatgtttgtattattagcaggtataggtttaatcgcgactgtacgacgtagaaaag 40 ctagctaa

RkaS (COL) (SEQ ID NO:12)

45 FINNLHKINHFNIRIMIIYWCMTVNGGNEMKALLLKTSVWLVLLFSVMGLWQVSNAA EQHTPMKAHAVTTIDKATTDKQQVPPTKEAAHHSGKEAATNVSASAQGTADDTN

SKVTSNAPSNKPSTVVSTKVNETRDVDTQQASTQKPTHTATFKLSNAKTASLSPR MFAANAPQTTTHKILHTNDIHGRLAEEKGRVIGMAKLKTVKEQEKPDLMLDAGDAF QGLPLSNQSKGEEMAKAMNAVGYDAMAVGNHEFDFGYDQLKKLEGMLDFPMLS TNVYKDGKRAFKPSTIVTKNGIRYGIIGVTTPETKTKTRPEGIKGVEFRDPLQSVTA EMMRIYKDVDTFVVISHLGIDPSTQETWRGDYLVKQLSQNPQLKKRITVIDGHSHT VLQNGQIYNNDALAQTGTALANIGKITFNYRNGEVSNIKPSLINVKDVENVTPNKAL AEQINQADQTFRAQTAEVIIPNNTIDFKGERDDVRTRETNLGNAIADAMEAYGVKN FSKKTDFAVTNGGGIRASIAKGKVTRYDLISVLPFGNTIAQIDVKGSDVWTAFEHSL GAPTTQKDGKTVLTANGGLLHISDSIRVYYDINKPSGKRINAIQILNKETGKFENIDL KRVYHVTMNDFTASGGDGYSMFGGPREEGISLDQVLASYLKTANLAKYDTTEPQR MLLGKPAVSEQPAKGQQGSKGSKSGKDTQPIGDDKVMDPAKKPAPGKVVLLLAH RGTVSSGTEGSGRTIEGATVSSKSGKQLARMSVPKGSAHEKQLPKTGTNQSSSP EAMFVLLAGIGLIATVRRRKAS

15 RrkN (8325) (SEQ ID NO:13)

10

atcaaataaattgaataaatattcaataagaaaatttacagttggaacagcatctattttaattggctcactaatgtatttg 20 ggaactcaacaagaggcagaagcagctgaaaacaatattgagaatccaactacattaaaagataatgtccaatc aaaagaagtgaagattgaagaagtaacaaacaaagacactgcaccacagggtgtagaagctaaatctgaagta acttcaaacaaagacacaatcgaacatgaaccatcagtaaaagctgaagatatatcaaaaaaggaggatacac aaaagctcgttctgttgatgaaggctcttttgatattacaagagattctaaaaatgtagttgaatctacccaattacaatt 25 taaccaggittaatgttggtaatgaaagtaatggtttgataggagctttacaattaaaaaataaaatagattttagtaag aaaggaaatgcagaagaatatttaactaatggtggaatccttggggataaaggtctggtaaattcaggcggatttaa gagcttttgtgaaaaatgacagttctggtaattcacaaatggttggagaaaatattgataaatcaaaaactaattttttaa 30 actatgcggacaattcaactaatacatcagatggaaagtttcatgggcaacgtttaaatgatgtcatcttaacttatgttg cttcaactggtaaaatgagagcagaatatgctggtaaaacttgggagacttcaataacagatttaggtttatctaaaaa tcaggcatataatttcttaattacatctagtcaaagatggggccttaatcaagggataaatgcaaatggctggatgaga 35 aagagattccattcaagaaagaacgtaaatttaatccggatttagcaccagggacagaaaaagtaacaagagaa ggacaaaaaggtgagaagacaataacgacaccaacactaaaaaatccattaactggagtaattattagtaaaggt gaaccaaaagaagagattacaaaagatccgattaatgaattaacagaatacggacctgaaacaatagcgccag aatccagaaacaggagacgtagttagaccgccggtcgatagcgtaacaaaatatggacctgtaaaaggagactc 40 gattgtagaaaaagaagagattccattcgagaaagaacgtaaatttaatcctgatttagcaccagggacagaaaaa gtaacaagagaaggacaaaaaggtgagaagacaataacgacgccaacactaaaaaatccattaactggagaa attattagtaaaggtgaatcgaaagaagaatcacaaaagatccgattaatgaattaacagaatacggaccagaa acgataacaccaggtcatcgagacgaatttgatccgaagttaccaacaggagagaaagaggaagttccaggtaa accaggaattaagaatccagaaacaggagatgtagttagaccaccggtcgatagcgtaacaaaatatggacctgt 45 gggacagaaaaagtaacaagagaaggacaaaaaggtgagaagacaataacgacaccaacactaaaaaatc

10

15

20

25

30

35

40

45

cattaactggagtaattattagtaaaggtgaaccaaaagaagaaatcacaaaagatccgattaatgaattaacaga gaagttccaggtaaaccaggaattaagaatccagaaacaggagacgtagttagaccaccggtcgatagcgtaac ccggatttagcaccagggacagaaaaagtaacaagagaaggacaaaaaaggtgagaagacaataacgacgcc aacactaaaaaatccattaactggagaaattattagtaaaggtgaatcgaaagaagaagaatcacaaaagatccgat taatgaattaacagaatacggaccagaaacgataacaccaggtcatcgagacgaatttgatccgaagttaccaac aggagagaaagaggaagttccaggtaaaccaggaattaagaatccagaaacaggagatgtagttagaccaccg gtcgatagcgtaacaaaatatggacctgtaaaaggagactcgattgtagaaaaagaagagattccattcgagaaa gaacgtaaatttaatcctgatttagcaccagggacagaaaaagtaacaagagaaggacaaaaaggtgagaaga caataacgacgccaacactaaaaaatccattaactggagaaattattagtaaaggtgaatcgaaagaagaaatca caaaagatccgattaatgaattaacagaatacggaccagaaacgataacaccaggtcatcgagacgaatttgatc cgaagttaccaacaggagagaagaggaagttccaggtaaaccaggaattaagaatccagaaacaggagacg tagttagaccaccggtcgatagcgtaacaaaatatggacctgtaaaaggagactcgattgtagaaaaagaagaaa ttccattcaagaaagaacgtaaatttaatcctgatttagcaccagggacagaaaaagtaacaagagaaggacaaa aaggtgagaagacaataacgacgccaacactaaaaaatccattaactggagaaattattagtaaaggtgaatcga aagaagaaatcacaaaagatccgattaatgaattaacagaatacggaccagaaacgataacaccaggtcatcg agacgaatttgatccgaagttaccaacaggagagaaaagaggaagttccaggtaaaccaggaattaagaatccag aaacaggagatgtagttagaccaccggtcgatagcgtaacaaaatatggacctgtaaaaggagactcgattgtag aaaaagaagaaattccattcgagaaagaacgtaaatttaatcctgatttagcaccagggacagaaaaagtaacaa gagaaggacaaaaaggtgagaagacaataacgacgccaacactaaaaaatccattaactggagaaattattagt aaaggtgaatcgaaagaagaatcacaaaagatccgattaatgaattaacagaatacggaccagaaacgataa attaagaatccagaaacaggagatgtagttagaccaccggtcgatagcgtaacaaaatatggacctgtaaaagga aaaaagtaacaagagaaggacaaaaaggtgagaagacaataacgacgccaacactaaaaaatccattaactg gagaaattattagtaaaggtgaatcgaaagaagaaatcacaaaagatccagttaatgaattaacagaattcggtgg cgagaaaataccgcaaggtcataaagatatctttgatccaaacttaccaacagatcaaacggaaaaagtaccagg taaaccaggaatcaagaatccagacacaggaaaagtgatcgaagagccagtggatgatgattaaacacgga ccaaaaacgggtacaccagaaacaaaacagtagagataccgtttgaaacaaaacgtgagtttaatccaaaatt acaacctggtgaagagcgagtgaaacaagaaggacaaccaggaagtaagacaatcacaacaacaatcacagt gattgtagagttcggtggagagaaccaaaagatccaaaaggacctgaaaacccagagaagccgagcagacc aactcatccaagtggcccagtaaatcctaacaatccaggattatcgaaagacagagcaaaaccaaatggcccagt tcattcaatggataaaaatgataaagttaaaaaatctaaaaattgctaaagaatcagtagctaatcaagagaaaaaa cgagcagaattaccaaaaacaggtttagaaagcacgcaaaaaggtttgatctttagtagtataattggaattgctgga ttaatgttattggctcgtagaagaagaattaa

32

RrkN (8325) (SEQ ID NO:14)

SGKYGKRSMQMRDKKGPVNKRVDFLSNKLNKYSIRKFTVGTASILIGSLMYLGTQ QEAEAAENNIENPTTLKDNVQSKEVKIEEVTNKDTAPQGVEAKSEVTSNKDTIEHE PSVKAEDISKKEDTPKEVADVAEVQPKSSVTHNAETPKVRKARSVDEGSFDITRDS KNVVESTPITIQGKEHFEGYGSVDIQKKPTDLGVSEVTRFNVGNESNGLIGALQLK NKIDFSKDFNFKVRVANNHQSNTTGADGWGFLFSKGNAEEYLTNGGILGDKGLVN SGGFKIDTGYIYTSSMDKTEKQAGQGYRGYGAFVKNDSSGNSQMVGENIDKSKT

NFLNYADNSTNTSDGKFHGQRLNDVILTYVASTGKMRAEYAGKTWETSITDLGLS KNQAYNFLITSSQRWGLNQGINANGWMRTDLKGSEFTFTPEAPKTITELEKKVEEL PFKKERKFNPDLAPGTEKVTREGQKGEKTITTPTLKNPLTGVIISKGEPKEEITKDPI NELTEYGPETIAPGHRDEFDPKLPTGEKEEVPGKPGIKNPETGDVVRPPVDSVTKY **GPVKGDSIVEKEEIPFEKERKFNPDLAPGTEKVTREGQKGEKTITTPTLKNPLTGEII** SKGESKEEITKDPINELTEYGPETITPGHRDEFDPKLPTGEKEEVPGKPGIKNPETG DVVRPPVDSVTKYGPVKGDSIVEKEEIPFEKERKFNPDLAPGTEKVTREGQKGEK TITTPTLKNPLTGVIISKGEPKEEITKDPINELTEYGPETITPGHRDEFDPKLPTGEKE EVPGKPGIKNPETGDVVRPPVDSVTKYGPVKGDSIVEKEEIPFKKERKFNPDLAPG TEKVTREGQKGEKTITTPTLKNPLTGEIISKGESKEEITKDPINELTEYGPETITPGH 10 RDEFDPKLPTGEKEEVPGKPGIKNPETGDVVRPPVDSVTKYGPVKGDSIVEKEEIP FEKERKFNPDLAPGTEKVTREGQKGEKTITTPTLKNPLTGEIISKGESKEEITKDPIN ELTEYGPETITPGHRDEFDPKLPTGEKEEVPGKPGIKNPETGDVVRPPVDSVTKYG **PVKGDSIVEKEEIPFKKERKFNPDLAPGTEKVTREGQKGEKTITTPTLKNPLTGEIIS** KGESKEEITKDPINELTEYGPETITPGHRDEFDPKLPTGEKEEVPGKPGIKNPETGD 15 VVRPPVDSVTKYGPVKGDSIVEKEEIPFEKERKFNPDLAPGTEKVTREGQKGEKTI TTPTLKNPLTGEIISKGESKEEITKDPINELTEYGPETITPGHRDEFDPKLPTGEKEE **VPGKPGIKNPETGDVVRPPVDSVTKYGPVKGDSIVEKEEIPFEKERKFNPDLAPGT** EKVTREGQKGEKTITTPTLKNPLTGEIISKGESKEEITKDPVNELTEFGGEKIPQGH KDIFDPNLPTDQTEKVPGKPGIKNPDTGKVIEEPVDDVIKHGPKTGTPETKTVEIPF ETKREFNPKLQPGEERVKQEGQPGSKTITTPITVNPLTGEKVGEGQPTEEITKQPV DKIVEFGGEKPKDPKGPENPEKPSRPTHPSGPVNPNNPGLSKDRAKPNGPVHSM DKNDKVKKSKIAKESVANQEKKRAELPKTGLESTQKGLIFSSIIGIAGLMLLARRRK N

KnkA (8325) (SEQ ID NO:15)

20

25

ggaaggagtatgttgatggctaaatatcgagggaaaccgtttcaattatatgtaaagttatcgtgttcgacaatgatggc gacaagtatcattttaacgaatatcttgccgtacgatgcccaagctgcatctgaaaaggatactgaaattacaaaaga 30 gatattatctaagcaagatttattagacaaagttgacaaggcaattcgtcaaattgagcaattaaaacagttatcggctt catctaaagaacattataaagcacaactaaatgaagcgaaaacagcatcgcaaatagatgaaatcataaaacga gctaatgagttggatagcaaagacaataaaagttctcacactgaaatgaacggtcaaagtgatatagacagtaaatt agatcaattgcttaaagatttaaatgaggtttcttcaaatgttgataggggtcaacaaagtggcgaggacgatcttaat gcaatgaaaaatgatatgtcacaaacggctacaacaaaacatggagaaaaaagatgataaaaatgatgaagca atggtaaataaggcgttagaagacctagaccatttgaatcagcaaatacacaaatcgaaagatgcatcgaaagat 35 acatcggaagatccagcagtgtctacaacagataataatcatgaagtagctaaaacgccaaataatgatggttctg gacatgttgtgttaaataaattcctttcaaatgaagagaatcaaagccatagtaatcgactcactgataaattacaagg aagcgataaaattaatcatgctatgattgaaaaattagctaaaagtaatgcctcaacgcaacattacacatatcataa actgaatacgttacaatctttagatcaacgtattgcaaatacgcaacttcctaaaaaatcaaaatcagacttaatgagc 40 gaagtaaataagacgaaagagcgtataaaaagtcaacgaaatattattttggaagaacttgcacgtactgatgata aaaagtatgctacacaaagcattttagaaagtatatttaataaagacgaggcagttaaaaattctaaaagatatacgt gttgatggtaaaacagatcaacaaattgcagatcaaattactcgtcatattgatcaattatctctgacaacgagtgatg atttattaacgtcattgattgatcaatcacaagataagtcgctattgatttctcaaattttacaaacgaaattaggaaaag ctgaagcagataaattggctaaagattggacgaataaaggattatcaaatcgccaaatcgttgaccaattgaagaa 45 acattttgcatcaactggcgacacgtcttcagatgatatattaaaagcaattttgaataatgccaaagataaaaaaca agcaattgaaacgattttagcaacacgtatagaaagacaaaaggcaaaattactggcagatttaattactaaaata

WO 02/102829 PCT/US02/19220 34

gaaacagatcaaaataaaatttttaatttagttaaatcggcattgaatggtaaagcggatgatttattgaatttacaaaa gagactcaatcaaacgaaaaaagatatagattatattttatcaccaatagtaaatcgtccaagtttactagatcgattg aataaaaatgggaaaacgacagatttaaataagttagcaaatttaatgaatcaaggatcagatttattagacagtatt ccagatatacccacaccaaagccagaaaagacgttaacacttggtaaaggtaatggattgttaagtggattattaaa tgctgatggtaatgtatctttgcctaaagcgggggaaacgataaaagaacattggttgccgatatctgtaattgttggtg caatgggtgtactaatgatttggttatcacgacgcaataagttgaaaaataaagcataa

KnkA (8325) (SEQ ID NO:16)

10 GRSMLMAKYRGKPFQLYVKLSCSTMMATSIILTNILPYDAQAASEKDTEITKEILSK QDLLDKVDKAIRQIEQLKQLSASSKEHYKAQLNEAKTASQIDEIIKRANELDSKDNK SSHTEMNGQSDIDSKLDQLLKDLNEVSSNVDRGQQSGEDDLNAMKNDMSQTATT KHGEKDDKNDEAMVNKALEDLDHLNQQIHKSKDASKDTSEDPAVSTTDNNHEVA KTPNNDGSGHVVLNKFLSNEENQSHSNRLTDKLQGSDKINHAMIEKLAKSNASTQ HYTYHKLNTLQSLDQRIANTQLPKNQKSDLMSEVNKTKERIKSQRNIILEELARTDD KKYATQSILESIFNKDEAVKILKDIRVDGKTDQQIADQITRHIDQLSLTTSDDLLTSLID QSQDKSLLISQILQTKLGKAEADKLAKDWTNKGLSNRQIVDQLKKHFASTGDTSSD DILKAILNNAKDKKQAIETILATRIERQKAKLLADLITKIETDQNKIFNLVKSALNGKAD DLLNLQKRLNQTKKDIDYILSPIVNRPSLLDRLNKNGKTTDLNKLANLMNQGSDLLD SIPDIPTPKPEKTLTLGKGNGLLSGLLNADGNVSLPKAGETIKEHWLPISVIVGAMG VLMIWLSRRNKLKNKA

Primary structure analysis:

A bioinformatic approach was used for primary structure and function prediction (Figure 1). Proteins RrkN and DsqA possessed a similar structural organization to

(Figure 1). Proteins RrkN and DsqA possessed a similar structural organization to previously described MSCRAMMs. RrkN is similar in structure to the Pls/Aap proteins of *S. aureus* and *S. epidermidis*, respectively. It contains a 200-residue domain at its N-terminus showing 40% identity to Pls and Aap. The C-terminus of the protein is predominantly composed of a 128 residue repeat domain, which varies in the numbers of repeats from strain to strain. These repeats are also present in Pls and Aap. A putative *sar* homolog and *fnbpA* and *fnbpB* lie directly upstream from RrkN on the genome.

35

25

30

DsqA is similar in structural organization to the Sdr family of proteins. It contains a typical A domain followed by a TYYFTDVK motif which is similar to a conserved TYTFTVYVD motif found in all of the Sdr proteins. The function of this motif has yet to be determined. Two 88 residue repeat domains reside in the centre of the protein

WO 02/102829 PCT/US02/19220 35

followed by a C-terminal SX-repeat motif similar to the SD-repeat motif found in the Sdr proteins. The size of this repeat varies from strain to strain. DsqA neighbors secY and secA on the genome. A DsqA homolog (>90% identical) is also found in S. epidermidis.

5

10

15

20

25

30

KnkA contains no repeat domains in its sequence. Secondary structure prediction analysis indicate that this protein is predominantly composed of alpha-helices.

RkaS contains no repeat domains in its sequence. BLAST analysis indicates that it is similar to a 5' nucleotidase UDP-sugar hydrolase. The gene encoding RkaS lies directly upstream from *orfX*, the insertion site of the *mec* element.

KesK contains two 140 residue repeat domains at the N-terminus of the protein which are 38% identical. Hydropathy plot analysis (Kyte and Doolittle, 1982) indicates that there is a large hydrophilic domain in the center of the protein (residue 500-560).

EkeS contains two 300 residue repeat domains in the center of the protein which are 38% identical. Blast analysis indicates that the N-terminus of the protein (residues 1-1268, bearing both repeats) is 49% identical to FmtB, an LPXTG protein with 17 tandem repeats. FmtB is proposed to be involved indirectly in methicillin resistance as inactivation of *fmtB* abolishes methicillin resistance. This appears to be due to affecting cell wall composition as methicillin sensitivity can be relieved by increasing the production of the cell wall precursor glucosamine-1-phosphate (Komatsuzawa *et al.*, 2000).

KrkN and KrkN2 neighbor each other on the genome.

Expression analysis:

Due to lack of sequence homology with protein databases, a putative function for each of these proteins could not be predicted and hence a molecular approach was taken. Unique regions of four of the *orfs* were expressed in *E. coli* as recombinant his-tagged fusion proteins using the Qiagen pQE-30 expression system. Figure 2. represents a Coomassie stained SDS-PAGE gel of the purified N-terminal his-tag fusion proteins. The recombinant proteins RrkN1, DsqA2, KesK1 and KnkA were used to generate antibodies in rabbits. Western blotting analysis of *S. aureus* cell wall extracts revealed that KesK, KnkA and DsqA are expressed and cell wall-associated (Figure 3). Strain eMRSA-16 represents a *knkA*-negative strain since it lacks the *knkA* gene. An immunoreactive band of 65kDa reacts with the cell wall fraction from both exponential and stationary phase cells of strain 8325-4 (Figure 3, B). The absence of this band in strain eMRSA-16 suggests that it represents the gene product of *knkA*.

Western immunoblotting of the cell wall fraction of strain 8325-4 using anti-KesK antibodies identified a 150kDa immunoreactive band in both exponential and stationary phase cultures. A similar sized immunoreactive protein released from the cell wall fraction of *Lactococcus lactis* expressing full length KesK on an expression plasmid (pKS80) suggests that the 150kDa band represents the *kesK* gene product (data not shown). A *kesK* knockout mutant in *S. aureus* would be required to confirm the size of the cell wall-released KesK protein.

Western immunoblotting of the cell wall fraction of *S. aureus* strain MSSA and eMRSA-16 using anti-DsqA antibodies identified a 130kDa immunoreactive band. Expression levels are higher in stationary phase cells.

Heterologous expression in Lactococcus lactis:

10

25

30

Heterologous expression of *S. aureus* surface proteins in *Lactococcus lactis* (*L. lactis*) has previously been used as a tool to study protein function (Sinha *et al.*, 2000). In this study this surrogate system will be used to express each of the in

WO 02/102829 PCT/US02/19220 37

silico-predicted MSCRAMMs on the surface of L. lactis to fish for a function. KesK and KnkA have been cloned into L. lactis and shown by dot blotting to be surface expressed (Figure 4). No cross reaction was observed with the negative control (pKS80 plasmid without an insert) indicating that this is a specific reaction. Cell wall and protoplast fractions of Lactococcus lactis bearing pKS-KnkA and pKS-KesK were generated by digestion of cells with lysozyme and mutanolysin and used in Western blotting studies using anti-KnkA and anti-KesK antibodies, respectively. Unlike what was observed in S. aureus, KnkA was not detected in the cell wall fraction of *L. lactis* but found to be associated with the protoplast fraction. The anchoring motif of KnkA differs from the consensus LPXTG sequence in that it contains an Alanine residue instead of a Threonine (i.e. LPKAG) (Table 1). It has been recently been published that S. aureus contains two sortase genes, srtA and srtB (Pallen, 2001). It is possible that this variant form of the LPXTG motif is processed by the second sortase gene, which is absent in L. lactis. This would also explain the slight increase in size of the KnkA protein observed in the protoplast fraction, as the cell wall sorting signal has not been cleaved.

KesK was detected in the cell wall fraction of *L. lactis* but migrated at a smaller molecular weight than the KesK protein released from the cell wall of *S. aureus*. The majority of MSCRAMMs expressed on the surface of *L. lactis* are prone to proteolysis during the cell wall extraction procedure (Louise O'Brien, personal communication). Therefore, it is possible that the KesK protein released from the surface of *L. lactis* represents a truncated form of KesK. Shorter digestion times with lysozyme and mutanolysin has been shown to limit the extent of proteolysis.

25

30

10

15

20

Expression of in silico-predicted MSCRAMMs in vivo:

Convalescent-phase sera from 33 patients recovering from *S. aureus* infections were tested in their ability to recognize the purified N-terminal his-tag fusion proteins in an ELISA assay. Pooled sera from children and healthy blood donors were used

as negative controls. A positive reaction was taken as a value equal to or greater than twice the value of the negative control. Figures 5A-5D illustrate that all of the proteins were recognized by 27-42% of the patients suggesting that these proteins are expressed *in vivo* and are immunogenic during infection of the host.

5

References:

- Komatsuzawa, H., Ohta, K., Sugai, M., Fujiwara, T., Glanzmann, P., Berger-Bachi, B., Suginaka, H. (2000) Tn551-mediated insertional inactivation of the *fmtB* gene encoding a cell wall-associated protein abolishes methicillin resistance in *Staphylococcus aureus*. J. Antimicrob. Chemother. **45**: 421-31.
- Sinha, B., Francois, P., Que, Y.A., Hussain, M., Heilmann, C., Moreillon, P., Lew, D., Krause, K.H., Peters, G., Herrmann, M. (2000) Heterologously expressed Staphylococcus aureus fibronectin-binding proteins are sufficient for invasion of host cells.

Infect. Immun. 68: 6871-6878.

Pallen, M.J., Lam, A.C., Antonio, M., Dunbar, K. (2000) An embarrassment of sortases - a richness of substrates? Trends. Microbiol. 9: 97-101

Example 2. Isolation and Sequencing of Cross-Reactive Proteins from S. Aureus and from Coagulase-Negative Staphylococci

25

30

It has been recently shown that *S. epidermidis* contains surface proteins structurally related to *S. aureus* MSCRAMM[®] proteins (US 09/386,962). One protein from *S. aureus* is of particular interest since it has a close homologue in *S. epidermidis*. The protein is called DsqA or SasA (*S. aureus*) and DgsK (*S. epidermidis*). They are characterized by a typical "A" domain of approximately 500 amino acid residues,

followed by two B repeats of 88 residues that are ~40% identical, and a unique SXSX dipeptide repeat that can vary in length depending on the strain. Contained within the A domain of the S. aureus DsqA/SasA is a 180 residue region that has ~40% identity to a similar sized domain within region A of S. aureus proteins RrkN, Pls and S. epidermidis protein Aap The A regions of the DsqA/SasA and DgsK proteins are 46 % identical at the amino acid level, the BB repeats are 50% identical. Active and passive immunization strategies that include; vaccines, polyclonal and monoclonal antibodies recognizing both S. aureus and coagulase-negative staphylococcal proteins are the subject of this invention.

10

Specific Examples of Antibodies that Cross-React with Coagulase-Negative Staphylococci and *S. aureus*.

Coagulase-negative staphylococcal DgsK A-Domain:

Amino Acid Sequence (SEQ ID NO:17)
ASETPITSEISSNSETVANQNSTTIKNSQKETVNSTSLESNHSNSTNKQMSSEVTN
TAQSSEKAGISQQSSETSNQSSKLNTYASTDHVESTTINNDNTAQQDQNKSSNVT
SKSTQSNTSSSEKNISSNLTQSIETKATDSLATSEARTSTNQISNLTSTSTSNQSSP
TSFANLRTFSRFTVLNTMAAPTTTSTTTTSSLTSNSVVVNKDNFNEHMNLSGSATY
DPKTGIATLTPDAYSQKGAISLNTRLDSNRSFRFIGKVNLGNRYEGYSPDGVAGGD
GIGFAFSPGPLGQIGKEGAAVGIGGLNNAFGFKLDTYHNTSTPRSDAKAKADPRN
VGGGGAFGAFVSTDRNGMATTEESTAAKLNVQPTDNSFQDFVIDYNGDTKVMTV
TYAGQTFTRNLTDWIKNSGGTTFSLSMTASTGGAKNLQQVQFGTFEYTESAVAKV
RYVDANTGKDIIPPKTIAGEVDGTVNIDKQLNNFKNLGYSYVGTDALKAPNYTETSG
TPTLKLTNSSQTVIYKFKDVQ

S. aureus SasA A-domain:

Amino Acid Sequence (SEQ ID NO:18)

30 ASDAPLTSELNTQSETVGNQNSTTIEASTSTADSTSVTKNSSSVQTSNSDTVSSEK SEKVTSTTNSTSNQQEKLTSTSESTSSKNTTSSSDTKSVASTSSTEQPINTSTNQS TASNNTSQSTTPSSVNLNKTSTTSTSTAPVKLRTFSRLAMSTFASAATTTAVTANTI TVNKDNLKQYMTTSGNATYDQSTGIVTLTQDAYSQKGAITLGTRIDSNKSFHFSGK VNLGNKYEGHGNGGDGIGFAFSPGVLGETGLNGAAVGIGGLSNAFGFKLDTYHNT SKPNSAAKANADPSNVAGGGAFGAFVTTDSYGVATTYTSSSTADNAAKLNVQPT NNTFQDFDINYNGDTKVMTVKYAGQTWTRNISDWIAKSGTTNFSLSMTASTGGAT NLQQVQFGTFEYTESAVTQVRYVDVTTGKDIIPPKTYSGNVDQVVTIDNQQSALTA KGYNYTSVDSSYASTYNDTNKTVKMTNAGQSVTYYFTDVV

The entire sequence of the Aap protein and the DNA coding therefor (with an indication of the presence of the Adomain) is shown below:

S. epidermidis Aap Protein (A-domain underlined) (SEQ ID NO:19)

5

MGKRRQGPINKKVDFLPNKLNKYSIRKFTVGTASILLGSTLIFGSSSHEAKAAEEKQ <u>VDPITQANQNDSSERSLENTNQPTVNNEAPQMSSTLQAEEGSNAEAPQSEPTKA</u> EEGGNAEAAQSEPTKAEEGGNAEAPQSEPTKAEEGGNAEAAQSEPTKTEEGSNV KAAQSEPTKAEEGSNAEAPQSEPTKTEEGSNAKAAQSEPTKAEEGGNAEAAQSE PTKTEEGSNAEAPQSEPTKAEEGGNAEAPQSEPTKTEEGGNAEAPNVPTIKANSD 10 NDTQTQFSEAPTRNDLARKEDIPAVSKNEELQSSQPNTDSKIEPTTSEPVNLNYSS PFMSLLSMPADSSSNNTKNTIDIPPTTVKGRDNYDFYGRVDIESNPTDLNATNLTR YNYGQPPGTTTAGAVQFKNQVSFDKDFDFNIRVANNRQSNTTGADGWGFMFSK KDGDDFLKNGGILREKGTPSAAGFRIDTGYYNNDPLDKIQKQAGQGYRGYGTFVK NDSQGNTSKVGSGTPSTDFLNYADNTTNDLDGKFHGQKLNNVNLKYNASNQTFT 15 ATYAGKTWTATLSELGLSPTDSYNFLVTSSQYGNGNSGTYASGVMRADLDGATL TYTPKAVDGDPIISTKEIPFNKKREFDPNLAPGTEKVVQKGEPGIETTTTPTYVNPN TGEKVGEGEPTEKITKQPVDEIVHYGGEEIKPGHKDEFDPNAPKGSQTTQPGKPG VKNPDTGEVVTPPVDDVTKYGPVDGDPITSTEEIPFDKKREFNPDLKPGEERVKQ KGEPGTKTITTPTTKNPLTGEKVGEGEPTEKITKQPVDEITEYGGEEIKPGHKDEFD 20 PNAPKGSQEDVPGKPGVKNPGTGEVVTPPVDDVTKYGPVDGDPITSTEEIPFDKK REFNPDLKPGEERVKQKGEPGTKTITTPTTKNPLTGEKVGEGEPTEKITKQPVDEI VHYGGEQIPQGHKDEFDPNAPVDSKTEVPGKPGVKNPDTGEVVTPPVDDVTKYG PVDGDSITSTEEIPFDKKREFDPNLAPGTEKVVQKGEPGTKTITTPTTKNPLTGEKV GEGKSTEKVTKQPVDEIVEYGPTKAEPGKPAEPGKPAEPGKPAEPGTPAEPGKPA 25 EPGTPAEPGKPAEPGKPAEPGKPAEPGTPAEPGTPAEPGKPAEPGTPA EPGKPAEPGTPAEPGKPAESGKPVEPGTPAQSGAPEQPNRSMHSTDNKNQLPD TGENRQANEGTLVGSLLAIVGSLFIFGRRKKGNEK

30 S. epidermidis aap DNA (SEQ ID NO:20) atgggcaaac gtagacaagg tcctattaat aaaaaagtgg

atttttacc taacaaatta aacaagtatt ctataagaaa attcactgtt ggtacggcct caatattact tggttcgaca cttattttig gaagtagtag ccatgaagcg aaagctgcag aagaaaaaaa agttgatcca attacacaag ctaatcaaaa tgatagtagt gaaagatcac ttgaaaacac aaatcaacct actgtaaaca atgaagcacc acagatgtct tctacattgc aagcagaaga aggaagcaat gcagaagcac ctcaatctga gccaacgaag gcagaagaag gaggcaatgc agaagcagct caatctgagc caacgaaggc agaagaagga ggcaatgcag aagcacctca atctgagcca acgaaggcag aagaaggagg caatgcagaa gcagctcaat ctgagccaac gaagacagaa gaaggaagca acgtaaaagc agctcaatct gagccaacga aggcagaaga aggaagcaat gcagaagcac ctcaatctga gccaacgaag acagaagaag gaagcaacgc aaaagcagct caatctgagc caacgaaggc agaagaagga ggcaatgcag aagcagctca atctgagcca acgaagacag aagaaggaag caatgcagaa gcacctcaat ctgagccaac gaaggcagaa gaaggaggca atgcagaagc acctcaatct gagccaacga agacagaaga aggaggcaat gcagaagcac cgaatgttcc aactatcaaa gctaattcag ataatgatac acaaacacaa ttttcagaag cccctacaag aaatgaccta gctagaaaag aagatatccc tgctgtttct aaaaacgagg aattacaatc atcacaacca aacactgaca gtaaaataga acctacaact tcagaacctg tgaatttaaa ttatagttct ccgtttatgt ccttattaag catgcctgct gatagttcat ccaataacac taaaaataca atagatatac cgccaactac ggttaaaggt agagataatt acgattttta cggtagagta gatatcgaaa gtaatcctac agatttaaat gcgacaaatt taacgagata taattatgga cagccacctg gtacaacaac agctggtgca gttcaattta aaaatcaagt tagttttgat aaagatttcg actttaacat tagagtagca aacaatcgtc aaagtaatac aactggtgca gatggttggg gctttatgtt cagcaagaaa gatggggatg atttcctaaa aaacggtggt atcttacgtg aaaaaggtac acctagtgca gctggtttca gaattgatac aggatattat aataacgatc cattagataa aatacagaaa caagctggtc aaggctatag agggtatggg acatttgtta aaaatgactc ccaaggtaat acttctaaag taggatcagg tactccatca acagattttc ttaactacgc agataatact actaatgatt tagatggtaa attccatggt caaaaattaa ataatgttaa tttgaaatat aatgcttcaa atcaaacttt tacagctact tatgctggta aaacttggac ggctacgtta tctgaattag gattgagtcc aactgatagt tacaattttt tagttacatc aagtcaatat ggaaatggta atagtggtac atacgcaagt ggcgttatga gagctgattt agatggtgca acattgacat acactcctaa agcagtcgat ggagatccaa

10

15

20

25

30

10

15

20

25

30

ttatatcaac taaggaaata ccatttaata agaaacgtga atttgatcca aacttagccc caggtacaga aaaagtagtc caaaaaggtg aaccaggaat tgaaacaaca acaacaccaa cttatgtcaa tcctaataca ggagaaaaag ttggcgaagg tgaaccaaca gaaaaaataa caaaacaacc agtggatgaa atcgttcatt atggtggcga agaaatcaag ccaggccata aggatgaatt tgatccaaat gcaccgaaag gtagtcaaac aacgcaacca ggtaagccgg gggttaaaaa tcctgataca ggcgaagtag ttactccacc tgtggatgat gtgacaaaat atggtccagt tgatggagat ccgatcacgt caacggaaga aattccattc gacaagaaac gtgaattcaa tcctgattta aaaccaggtg aagagcgtgt taaacaaaaa ggtgaaccag gaacaaaaac aattacaaca ccaacaacta agaacccatt aacaggggaa aaagttggcg aaggtgaacc aacagaaaaa ataacaaaac aaccagtaga tgaaatcaca gaatatggtg gcgaagaaat caagccaggc cataaggatg aatttgatcc aaatgcaccg aaaggtagcc aagaggacgt tccaggtaaa ccaggagtta aaaaccctgg aacaggcgaa gtagtcacac caccagtgga tgatgtgaca aaatatggtc cagttgatgg agatccgatc acgtcaacgg aagaaattcc attcgacaag aaacgtgaat tcaatcctga tttaaaacca ggtgaagagc gcgttaaaca gaaaggtgaa ccaggaacaa aaacaattac aacgccaaca actaagaacc cattaacagg agaaaaagtt ggcgaaggtg aaccaacaga aaaaataaca aaacaaccag tggatgagat tgttcattat ggtggtgaac aaataccaca aggtcataaa gatgaatttg atccaaatgc acctgtagat agtaaaactg aagttccagg taaaccagga gttaaaaatc ctgatacagg tgaagttgtt accccaccag tggatgatgt gacaaaatat ggtccagttg atggagattc gattacgtca acggaagaaa ttccgtttga taaaaaacgc gaatttgatc caaacttagc gccaggtaca gagaaagtcg ttcaaaaagg tgaaccagga acaaaaacaa ttacaacgcc aacaactaag aacccattaa caggagaaaa agttggcgaa ggtaaatcaa cagaaaaagt cactaaacaa cctgttgacg aaattgttga gtatggtcca acaaaagcag aaccaggtaa accagcggaa ccaggtaaac cagcggaacc aggtaaacca gcggaaccag gtacgccagc agaaccaggt aaaccagcgg aaccaggtac gccagcagaa ccaggtaaac cagcggaacc aggtaaacca gcggaaccag gtaaaccagc ggaaccaggt aaaccagcgg aaccaggtac gccagcagaá ccaggtacgc cagcagaacc aggtaaacca gcggaaccag gtacgccagc agaaccaggt aaaccagcgg aaccaggtac gccagcagaa ccaggtaaac cagcggaatc aggtaaacca gtggaaccag gtacgccagc acaatcaggt gcaccagaac aaccaaatag atcaatgcat tcaacagata ataaaaatca attacctgat acaggtgaaa

42

atcgtcaagc taatgaggga actttagtcg gatctctatt agcaattgtc ggatcattgt tcatatttgg tcgtcgtaaa aaaggtaatg aaaaataatt tcatataaaa actttctgcc attaa

5 A-Domain from S. epidermidis Aap (amino acids 55-600) (SEQ ID NO:21)

55 EKQVDPITQANQNDSSERSLENTNQPTVNNEAPQMSSTLQAEEGSNAEAPQSE
PTKAEEGGNAEAAQSEPTKAEEGGNAEAPQSEPTKAEEGGNAEAAQSEPTKTEE
GSNVKAAQSEPTKAEEGSNAEAPQSEPTKTEEGSNAKAAQSEPTKAEEGGNAEA
AQSEPTKTEEGSNAEAPQSEPTKAEEGGNAEAPQSEPTKTEEGGNAEAPNVPTIK
ANSDNDTQTQFSEAPTRNDLARKEDIPAVSKNEELQSSQPNTDSKIEPTTSEPVNL
NYSSPFMSLLSMPADSSSNNTKNTIDIPPTTVKGRDNYDFYGRVDIESNPTDLNAT
NLTRYNYGQPPGTTTAGAVQFKNQVSFDKDFDFNIRVANNRQSNTTGADGWGF
MFSKKDGDDFLKNGGILREKGTPSAAGFRIDTGYYNNDPLDKIQKQAGQGYRGYG
TFVKNDSQGNTSKVGSGTPSTDFLNYADNTTNDLDGKFHGQKLNNVNLKYNASN
15 QTFTATYAGKTWTATLSELGLSPTDSYNFLVTSSQYGNGNSGTYASGVMRADLD
GA⁶⁰⁰

Protein Production and Purification

20

25

30

Using PCR, the A domain of DgsK or SasA was amplified from the sequences described above and subcloned into the *E. coli* expression vector PQE-30 (Qiagen), which allows for the expression of a recombinant fusion protein containing six histidine residues. This vector was subsequently transformed into the *E. coli* strain ATCC 55151, grown in a 15-liter fermentor to an optical density (OD₆₀₀) of 0.7 and induced with 0.2 mM isopropyl-1-beta-D galactoside (IPTG) for 4 hours. The cells were harvested using an AG Technologies hollow-fiber assembly (pore size of 0.45 □m) and the cell paste frozen at −80° C. Cells were lysed in 1X PBS (10 mL of buffer/1 g of cell paste) using 2 passes through the French Press @ 1100psi. Lysed cells were spun down at 17,000rpm for 30 minutes to remove cell debris. Supernatant was passed over a 5-mL HiTrap Chelating (Pharmacia) column charged with 0.1M NiCl₂. After loading, the column was washed with 5 column

volumes of 10mM Tris, pH 8.0, 100mM NaCl (Buffer A). Protein was eluted using a 0-100% gradient of 10mM Tris, pH 8.0, 100mM NaCl, 200 mM imidazole (Buffer B) over 30 column volumes. SdrGN1N2N3 or SdrGN2N3 eluted at ~13% Buffer B (~26mM imidazole). Absorbance at 280nm was monitored. Fractions containing SdrGN1N2N3 or SdrGN2N3 were dialyzed in 1x PBS.

Each protein was then put through an endotoxin removal protocol. Buffers used during this protocol were made endotoxin free by passing over a 5-mL Mono-Q sepharose (Pharmacia) column. Protein was divided evenly between 4x 15mL tubes. The volume of each tube was brought to 9mL with Buffer A. 1mL of 10% Triton X-114 was added to each tube and incubated with rotation for 1 hour at 4°C. Tubes were placed in a 37°C water bath to separate phases. Tubes were spun down at 2,000rpm for 10 minutes and the upper aqueous phase from each tube was collected and the detergent extraction repeated. Aqueous phases from the 2nd extraction were combined and passed over a 5-mL IDA chelating (Sigma) column, charged with 0.1M NiCl₂ to remove remaining detergent. The column was washed with 9 column volumes of Buffer A before the protein was eluted with 3 column volumes of Buffer B. The eluant was passed over a 5-mL Detoxigel (Sigma) column and the flow-through collected and reapplied to the column. The flowthrough from the second pass was collected and dialyzed in 1x PBS. The purified product was analyzed for concentration, purity and endotoxin level before administration into the mice.

Monoclonal Antibody Production

10

15

20

30

E. coli expressed and purified recombinant SasA and DsgK proteins were used to generate a panel of murine monoclonal antibodies while the mouse sera was used as a source of polyclonal antibodies. Briefly, a group of Balb/C or SJL mice received a series of subcutaneous immunizations of 1-10 mg of protein in solution or mixed with adjuvant as described in the Table below.

Immunization Schemes

	RIMMS				
	<u>Injection</u>	Day	Amount (µg)	Route	Adjuvant
	#1	0	5	Subcutaneous	FCA/RIBI
	#2	2	1	Subcutaneous	FCA/RIBI
5	#3	4	1	Subcutaneous	FCA/RIBI
	#4	7	1	Subcutaneous	FCA/RIBI
	#5	9	1	Subcutaneous	FCA/RIBI
	Conventional				
10	Injection	Day	Amount (µg)	Route	Adjuvant
	Primary	0	5	Subcutaneous	FCA
	Boost #1	14	1	Intraperitoneal	RIBI
	Boost #2	28	1	Intraperitoneal	RIBI
	Boost #3	42	1	Intraperitoneal	
15				•	

At the time of sacrifice (RIMMS) or seven days after a boost (conventional) serum was collected and titered in ELISA assays against MSCRAMM® proteins or on whole cells (S. *epidermidis* and *S. aureus*). Three days after the final boost, the spleens or lymph nodes were removed, teased into a single cell suspension and the lymphocytes harvested. The lymphocytes were then fused to a P3X63Ag8.653 myeloma cell line (ATCC #CRL-1580). Cell fusion, subsequent plating and feeding were performed according to the Production of Monoclonal Antibodies protocol from Current Protocols in Immunology (Chapter 2, Unit 2.).

43

20

Any clones that were generated from the fusion were then screened for specific anti-SasA antibody production using a standard ELISA assay. Positive clones were expanded and tested further for activity in a whole bacterial cell binding assay by flow cytometry and SasA binding by Biacore analysis.

30

35

Biacore Analysis

Throughout the analysis, the flow rate remained constant at 10 ml/min. Prior to the SasA or DgsK injection, test antibody was adsorbed to the chip via RAM-Fc binding. At time 0, SasA or DgsK at a concentration of 30 mg/ml was injected over the chip for 3 min followed by 2 minutes of dissociation. This phase of the analysis

measured the relative association and disassociation kinetics of the Mab / SasA or DgsK interaction.

Binding to Whole Bacteria

5

10

15

20

Bacterial samples S. aureus Newman, S. aureus 67-0, S. aureus 397 (Sal6), S. aureus Wood, S. aureus 8325-4, methicillin resistant S. aureus MRSA 16, S. epidermidis ATCC 35984, S. epidermidis HB, S. epidermidis CN-899 and S. haemolyticus ATCC 43253 were collected, washed and incubated with Mab or PBS alone (control) at a concentration of 2 µg/ml after blocking with rabbit lgG (50 mg/ml). Following incubation with antibody, bacterial cells were incubated with Goat-F_{(ab')2}-Anti-Mouse-F_{(ab')2}-FITC which served as the detection antibody. After antibody labeling, bacterial cells were aspirated through the FACScaliber flow cytometer to analyze fluorescence emission (excitation: 488, emission: 570). For each bacterial strain, 10,000 events were collected and measured. These data indicate that antibodies against S. aureus SasA were able to recognize a homologous protein on the surface of coagulase-negative staphylococci. The data support Western blot analysis demonstrating that rabbit polyclonal antibodies against S. aureus SasA cross-react with a protein released from the cell surface of S. epidermidis HB as well as the recombinant A-region from DsgK cloned from S. epidermidis (see Table below and Figure 6).

Polyclonal Sera Reactivity

Polycion	Polycional Sera Reactivity													
	New man	67-0	397 (SAL 6)	Wo od 46	8325 -4	MRS A 16	ATC C 3598 4	⊬НВ	CN- 899	ATC C 4325 3				
Normal Mouse Sera	-	-	-		-	-		-	us	-				
Mouse anti- SasA	+	+	+/-	-	+	+	+	+	+	+				

WO 02/102829 PCT/US02/19220 47

What is claimed is:

25

30

- 1. An isolated antibody which binds to a staphylococcal surface protein selected from the group consisting of SEQ ID NOS. 2, 4, 6, 8, 10, 12, 14, 16, 17, 18, 19 and 21.
- 2. The antibody according to Claim 1 wherein the antibody is raised against the A domain of the surface protein.
- 3. The antibody according to Claim 1, wherein the antibody treats or prevents *S. aureus* infection in a human or animal.
- 4. The antibody according to Claim 1, wherein the antibody is suitable for parenteral, oral, intranasal, subcutaneous, aerosolized or intravenous administration in a human or animal.
 - 5. The antibody according to Claim 1, wherein said antibody is a monoclonal antibody.
- 6. The antibody according to Claim 1, wherein said antibody is a polyclonal antibody.
 - 7. The antibody according to Claim 5 wherein the monoclonal antibody is of a type selected from the group consisting of murine, chimeric, humanized and human monoclonal antibodies.
 - 8. The antibody according to Claim 5 wherein the antibody is a single chain monoclonal antibody.

- 9. The antibody according to Claim 1 which comprises an antibody fragment having the same binding specificity of an antibody which binds to a staphylococcal surface protein having the sequence selected from the group consisting of SEQ ID NOS. 2, 4, 6, 8, 10, 12, 14, 16, 17, 18, 19 and 21.
- 10. The antibody according to Claim 1 that is raised against a protein having an amino acid sequence selected from the group consisting of SEQ ID NOS. 2, 4, 6, 8, 10, 12, 14, 16, 17, 18, 19 and 21.

10

15

5

- 11. The antibody according to Claim 1 wherein the surface protein has an amino acid sequence encoded by a nucleic acid sequence selected from the group consisting of nucleic acid sequences SEQ ID NOS, 1, 3, 5, 7, 9, 11, 13, 15, 20 and the nucleic acid sequences coding for the A domain of the Aap protein or degenerates thereof.
 - 12. Isolated antisera containing an antibody according to Claim 1.
- 13. A diagnostic kit comprising an antibody according to Claim 1 and 20 means for detecting binding by that antibody.
 - 14. A diagnostic kit according to Claim 13 wherein said means for detecting binding comprises a detectable label that is linked to said antibody.
- 15. A method of diagnosing an infection of *S. aureus* comprising adding an antibody according to Claim 1 to a sample suspected of being infected with *S. aureus*, and determining if antibodies have bound to the sample.

- 16. A pharmaceutical composition for treating or preventing an infection of *S. aureus* comprising an effective amount of the antibody of Claim 1 and a pharmaceutically acceptable vehicle, carrier or excipient.
- 17. A method of treating or preventing an infection of *S. aureus* comprising administering to a human or animal patient an effective amount of an antibody according to Claim 1.
- 18. A method of inducing an immunological response comprising administering to a human or animal an immunogenic amount of an isolated protein selected from the group consisting of the amino acid sequences SEQ ID NOS. 2, 4, 6, 8, 10, 12, 14, 16, 17, 18, 19 and 21.
- 19. An isolated antibody according to Claim 1 that has the ability to bind to an amino acid sequence coded by the nucleic acid sequence of SEQ ID NOS. 1, 3, 5, 7, 9, 11, 13, 15, 20 and the nucleic acid sequences coding for the A domain of the Aap protein or degenerates thereof.
 - 20. An isolated active fragment from the A domain of the DsqA protein.
 - 21. An isolated antibody according to Claim 1 further comprising a physiologically acceptable antibiotic.

20

22. A vaccine for treating or preventing an infection of *S. aureus* comprising an amount of a protein sequence selected from the group consisting of SEQ ID NOS. 2, 4, 6, 8, 10, 12, 14, 16, 17, 18, 19 and 21 in an amount effective to elicit an immune response, and a pharmaceutically acceptable vehicle, carrier or excipient.

Figure 1. Primary structure of in silico-predicted LPXTG proteins.

		Residues	Predicted MW	Apparent MW
•	RrkN 1	60 - 215	· 19	29
•	RrkN 2	60 - 437	45	48
•	DsqA 1	54 - 279	27	38
•	DsqA 2	54 - 533	58	62
•	KesK 1	55 - 335	34	47
•	KnkA.	39 - 210	20	27
•	KesK 2	329 - 591	31	40

Figure 2. Coomassie gel of the purified N-terminal His-tagged fusion proteins.

Figure 3. Western blotting of S.aureus cell wall extracts. Bacterial cells were standardised to an OD₆₀₀ of 50 units and cell walls were isolated by lysostaphin digestion of stabilised protoplasts. A. Lane 1, 8325-4 (early exponential phase); lane 2, 8325-4 (stationary phase). B. Lanes 1 and 2, eMRSA-16; lanes 3 and 4, 8325-4; lanes 1 and 3 represent early exponential phase cells and lanes 2 and 4 represent stationary phase cells. C. Lanes 1 and 2, MSSA; lanes 3 and 4, eMRSA-16; lanes 1 and 3 represent early exponential phase cells and lanes 2 and 4 represent stationary phase cells.

Figure 4. Dot blotting and Western immunoblotting of Lactococcus lactis expressing S.aureus MSCRAMMs. Full length knkA and kesK were cloned into the L.lactis expression plasmid pKS80 and electroporated into compotent L.lactis MG1363 cells. Positive KnkA and KesK expressing clones were detected using dot blotting with anti-KnkA (A) and anti-KesK (B) antibodies, respectively. L.lactis bearing pKS80 was used as a negative control.

A.(i) lane 1, L.lactis pKS-KnkA; lane 2, L.lactis pKS80. B. (ii) lane 1, L.lactis pKS-KesK; lane 2, L.lactis pKS80. Western immunoblotting was used to examine the expression of KesK and KnkA in S.aureus and L.lactis. A (ii). Lane 1, cell wall extract from exponential phase S.aureus strain 8325-4, lane 2, protoplast fraction from L.lactis bearing pKS80; lane 3, protoplast fraction from L.lactis bearing pKS-KnkA. B. (ii) Lane 1, cell wall extract from exponential phase S.aureus strain 8325-4; lane 2, cell wall extract from L.lactis bearing pKS-KesK; lane 3, cell wall extract from L.lactis bearing pKS80.

Figure 5A. Probing recombinant LPXTG proteins with convalescent sera to study in vivo expression.

Figure 5C

Figure 5D

Western immunoblotting analysis of proteins released from the cell wall of S. aureus Newman (N) and S. epidermidis HB (H). Probed with rabbit anti-S. aureus SasA region A antibodies and goat anti-rabbit conjugated to horseradish peroxidase

Cross reaction of S. aureus Sas A A-region antibodies with Dgs K expressed in E. coli. Lane 1, FPLC purified Sas A A-region control. Lanes 2, 4 and 6, Dgs K A-region expressed from pQE-30 in E. coli strain TOPP-3 (induced); lanes 3, 5 and 7, TOPP-3 bearing pQE-30 with dgs K insert (uninduced).

FIGURE 6

SEQUENCE LISTING

	•	SEQUENCE LISTING													
	<110>	FOSTER,	FOSTER, Timothy												
5	<120>	CROSS-R	EACTIVE	MONOCLONAL	AND POLYCLO	ONAL ANTIBO	DIES								
3	<130>	P07263U	S01/BAS												
10		US 60/2 2001-06	=												
10	<160>	29													
	<170>	PatentI	PatentIn version 3.1												
15	<210> <211> <212> <213>	6609 DNA	ococcus	epidermidis	5										
20	<400>	_	~~~	~	~~~~			60							
						tgaatttgtt	_	60							
25						ctttaatcgg		120							
43						atcataatgt	·	180							
						ccgatactaa		240							
30						acaatacatc		300							
						tcgggcctgc	_	360							
0.5						ctaattcaac		420							
35	ccagcgg	gcga ata	caaataa	taatttagca,	tcaaataaca	atacattaaa	cgtgcctaat	480							
	aatacag	gata aca	atgattc	agcgcgtcat	ctgactttaa	aagaaattca	agaagatgtt	540							
40	cgtcatt	cgt ctg	ataagcc	agagttagtt	gcgattgctg	aagaagcatc	taatagaccg	600							
	aaaaaga	igaa gca	gacgtgc	tgcgccaaca	gatcctaatg	caacaccagc	agatccaacg	660							
	gctacac	cag cag	atccaac	ggcaggaaat	ggtagtgcac	cagttgcaat	tacagcgcca	720							
45	tacacgo	caa caa	ctgatcc	caatgccaat	aatataggac	aaaatgcacc	taacgaagtg	780							
	ctttcat	ttg atg	ataacaa	cattagacca	agtacgaacc	gttctgtgcc	tacagtaact	840							
50	gttgttg	gata att	taccagg	ctacacactg	attaatggtg	gtaaagtagg	ggtgtttagt	900							
	catgcaa	atgg taa	gaacgag	catgtttgat	tcaggagatg	ccaagaacta	tcaagcgcaa	960							
	ggcaatg	staa ttg	cattggg	tcgtattaga	ggaaatgata	caaatgatca	tggcgatttt	1020							
55	aatggta	atcg aga	aaacatt	aacagtaaat	ccgaattctg	aattaatctt	tgaatttaat	1080							
	actatga	acta cta	aaaacta	tcaaggtatg	acaaatttaa	tcattaaaaa	tgctgataac	1140							
	gatacto	gtta ttg	gtgaaaa	agtagttgct	tatggtccga	tttggcgctt	attaaaagta	1200							

	cctgaaaatg	ttagtcatct	aaaaattcaa	tttgtaccta	aaaatgacgc	aataacagat	1260
5	gcacgtggta	tttatcaatt	acgagatgga	tataaatact	atgactttgt	agactcaatc	1320
	ggtcttcatt	ctgggtcaca	tgtctatgtt	gaaagacgta	caatggagcc	aacagcaaca	1380
	aataataaag	aatttacagt	tacaacgtca	ttaaagaata	atggtaactt	tggcgcttca	1440
10	ttcaatacag	atgattttgt	atataaaatt	caattacctg	aaggtgttga	atatgtaaat	1500
	aattcattga	ctaaagattt	tcctagcggt	aattcaggtg	ttgatattaa	tgatatgaat	1560
15	gtgacgtatg	acgcagcaaa	tcgaattatt	acaattaaaa	gtactggtgg	aggtacaggg	1620
10	aattcgccgg	cacgactaat	gcctgataaa	atattggatt	tgaagtátaa	gctacgtgtg	1680
	aacaatgtgc	caacaccaag	aacagtaaca	tttaacgata	cattaacgta	taaaacatat	1740
20	tcacaagatt	ttattaattc	acctgctgaa	agtcatactg	taagtacaaa	tccatataca	1800
	attgatatca	tcatgaataa	agacgcattg	caagccgaag	tcgatagacg	aattcaacaa	1860
25	gcggattata	catttgcatc	attagatatt	tttaatgatc	ttaaaagacg	cgcacaaaca	1920
25	attttagatg	aaaaccgtaa	caatgtacct	ttaaacaaaa	gagtttctca	agcagatatc	1980
	gattcattag	caaatcagat	gcaacatacg	ttaattcgca	gtgttgacgc	tgaaaatgcc	2040
30	gttaatagaa	aagttgatga	catggaagat	ttagttaacc	aaaatgatga	actgacagat	2100
	gaagaaaaac	aagcagcgat	tcaagtcatc	gaggaacata	aaaatgaaat	tattgggaat	2160
35	attggtgacc	aaacgactga	tgatggcgtt	actagaatta	aagatcaagg	tatacagact	2220
	ttaagtggag	acactgcaac	accagttgtt	aaaccaaatg	ctaaacaagc	tatacgtgat	2280
	aaagcagcga	aacaaagaga	aattatcaat	cacacgccag	atgctactca	agatgaaatt	2340
40	caagatgcat	taaatcaatt	aacaacggat	gaaacagatg	ctattgataa	tgttacgaat	2400
	gctactacca	atgctgatgt	tgaaacagct	aaaaataatg	gtattaatac	aattggtgca	2460
45	gttgcgccac	aagtgacaca	caaacaagct	gcaagagatg	caattaatca	agcgacagca	2520
	acgaaacgac	aacaaataaa	tagcaataga	gaagcaacac	aagaagagaa	aaatgcagca	2580
	ttgaatgaat	taacgcaagc	cacgaaccac	gcattagaac	aaatcaatca	agcgacaacc	2640
50	aatgatgatg	tagatactgc	caaaggtgat	ggtctgaatg	ccattaatcc	tattgcgcct	2700
	gtaactgttg	tcaagcaagc	agcaagagat	gccgtatcac	atgatgcaca	acagcatatc	2760
55	gcagagatca	atgcaaatcc	tgatgcgact	caagaagaaa	gacaagcagc	aatagagaaa	2820
- •	gtaaatgctg	ctgtagctgt	tgcgaatact	aatatattaa	atgctaatac	caatgctgat	2880
	gttgagcaag	taaagacaaa	tgcaattcaa	ggtatacaag	ccattgaacc	agctacaaag	2940
60	gttaaaacag	atgctaaaaa	cgctattgat	caaagtgcgg	aaacgcaaca	taatgcgata	3000

	tttaataata	atgatgcgac	cttagaagag	caacaagcag	cacaacaatt	gcttgatcaa	3060
5	gctgtagcca	cagcgaagca	aaatattaat	gcagcagata	cgaatcaaga	agttgcacaa	3120
	gcaaaagatc	agggcacaca	aaatatagtt	gtgattcaac	cggcaacaca	agttaaaacg	3180
	gatgcacgca	atgctgtaaa	tgaaaaagcg	cgagaggcga	taacaaatat	caatgctaca	3240
10	cctggcgcga	ctcgagaaga	gaaacaagaa	gcgataaatc	gtgtcaatac	acttaaaaat	3300
	agagcattaa	atgatattgg	tgtgacgtct	actactgcga	tggtcaatag	tattagagac	3360
15	gatgcagtca	atcaaatcgg	tgcagttcaa	ccgcatgtaa	cgaagaaaca	aactgctaca	3420
10	ggtgtattaa	cggacttagc	aactgcaaaa	aaacaagaaa	ttaatcaaaa	tacaaatgca	3480
	accactgaag	aaaagcaagt	agcattaaat	caagtagacc	aagatttagc	aacggcaatt	3540
20	aataatataa	atcaagctga	tactaatgca	gaagtagatc	aagcacaaca	attaggtaca	3600
	aaagcaatta	atgcgattca	gccaaatatt	gtaaaaaaac	ctgcagcatt	agcacaaacc	3660
25	aatcagcatt	atagtgctaa	attagttgaa	atcaatgcta	caccagatgc	aacagatgat	3720
20	gagaaaaatg	ctgcgatcaa	tactttaaat	caagacagac	aacaagctat	tgaaagtatt	3780
	aaacaagcaa	atacaaatgc	ggaagtagac	caagctgcga	cagtggcaga	gaataatatc	3840
30	gatgctgttc.	aagttgacgt	tgtaaaaaaa	caagcagcgc	gagataaaat	cactgctgaa	3900
	gtagcgaagc	gtattgaagc	ggttaaacaa	acacctaatg	caactgacga	agaaaagcag	3960
35	gctgcagtta	atcaaatcaa	tcaacttaaa	gatcaagcgt	ttaatcaaat	taatcaaaac	4020
	caaacaaatg	atcaggtaga	cgcaactaca	aatcaagcga	ttaatgctat	agataatgtt	4080
	gaagctgaag	tagtaattaa	accaaaggca	attgcagata	ttgaaaaagc	tgttaaagaa	4140
40	aagcaacagc	aaattgataa	tagtcttgat	tcaacagata	atgagaaaga	agttgcttta	4200
	caagcattag	ctaaagaaaa	agaaaaagca	cttgcagcta	ttgaccaagc	tcaaacgaat	4260
45	agtcaggtga	atcaagcggc	aacaaatggt	gtatcagcga	ttaaaattat	tcaacctgaa	4320
, -	acaaaaatta	aaccagcagc	acgtgaaaaa	atcaatcaaa	aagcgaatga	attacgtgcg	4380
	caaattaatc	aagataaaga	agcgacagca	gaagaaagac	aagcggcgtt	agataaaatc	4440
50	aatgatttag	ttgctaaagc	tatgacaaat	atcacgaatg	atagaacaaa	tcagcaagtt	4500
	aatgactcaa	caaatcaagc	gcttgacgac	attgcattag	tgacgcctga	ccatattgtt	4560
55	agagcagctg	ctagagatgc	agttaagcaa	caatatgaag	ctaaaaagca	cgaaattgag	4620
	caagcggaac	atgcgactga	tgaagaaaaa	caagttgctt	taaatcaatt	agcgaataat	4680
	gaaaaacgtg	cattacaaaa	cattaatcaa	gcaatagcga	ataatgatgt	gaaacgtgtt	4740
60	gaatcaaatg	gtattgctac	gttaaaaggc	gtagaaccgc	acattgtggt	taaacctgaa	4800
					-		

	gctcaagaag	ccataaaagc	gagcgcagat	aaccaagtag	aatctataaa	agatacacca	4860
5	catgctacga	cagatgaatt	agatgaagca	aaccaacaaa	taaacgacac	acttaaacaa	4920
J	ggtcaacaag	atatagacaa	tacgacacaa	gatgcagctg	tcaatgatgt	tagaaaccaa	4980
	acgattaagg	caatcgaaca	aattaaaccg	aaagttagac	gcaaacgtgc	agcgttggat	5040
10	aacattgatg	aaagtaataa	taatcaactc	gatgcaatac	gaaatacgct	agatacaacg	5100
	caagatgaac	gaaatgttgc	tattgctgcg	ttaaataaaa	ttgttaatgc	aattaaaaat	5160
15	gatattgcac	aaaacaaaac	gaatgcagaa	gtggatcaaa	ctgaggctga	tggtaacaac	5220
	aacatcaaag	tgattttacc	taaagttcaa	gttaaaccag	cagcgcgtca	atctgtcagc	5280
	gcaaaagctg	aagctcaaaa	tgcacttatt	gatcaaagtg	atttatctac	cgaagaagaa	5340
20	agattagctg	ctaaacattt	agtagaacaa	gcacttaatc	aagctattga	tcagatcaat	5400
•	cacgcagata	agactgcgca	agttaatcaa	aatagtatcg	atgctcaaaa	tattatttca	5460
25	aaaattaaac	cagcgacaac	agttaaagca	acagcattac	aacaaattca	aaatatcgct	5520
	acaaataaaa	ttaatttaat	taaagcaaat	aacgaagcga	cagatgaaga	acaaaatgct	5580
	gcaatagtac	aagttgaaaa	agagttaatt	aaagctaaac	aacaaattgc	tggtgcagtg	5640
30	actaatgctg	atgtggcata	tttattgcat	gatgggaaaa	acgaaattcg	tgaaatcgaa	5700
	cctgttatta	ataaaaaagc	aactgcgcga	gaacaattaa	caacattatt	caacgataag	5760
35	aaacaagcaa	ttgaagcgaa	tgttcaagca	acagtagaag	aaagaaatag	tattttagca	5820
	cagttacaaa	acatttatga	cactgctatt	ggacaaattg	atcaagatcg	tagcaatgca	5880
	caagttgata	aaacagcaac	attaaatcta	caaacaatac	atgatttaga	cgtacatcct	5940
40	attaaaaagc	cagatgctga	aaaaacgatt	aatgatgatc	ttgcacgtgt	tacacattta	6000
	gtgcaaaatt	atcgaaaagt	aagtgatcgt	aataaggctg	atgcattaaa	agctataact	6060
45	gcattaaaat	tacaaatgga	tgaagaatta	aaaacagcac	gcactaatgc	tgatgttgat	6120
•	gcagttttaa	aacgatttaa	tgttgcatta	ggcgatatag	aagcagtaat	tactgaaaaa	6180
	gaaaatagct	tactgcgcat	tgataacatt	gctcaacaaa	catatgcgaa	attcaaagcg	6240
50	atcgcaacac	cagaacaatt	agctaaagta	aaagcattaa	ttgatcaata	tgttgcagat	6300
	ggcaatagaa	tggttgatga	agatgcgaca	ttaaatgaca	tcaaaaaaga	tacgcaactc	6360
55	attattgatg	aaattttagc	aattaaatta	cctgctgaag	tgataaaagc	gtcaccaaaa	6420
	gtggggcaac	ctgctccaaa	agtttgtacg	cctattaaaa	aagaagataa	acaagaagtg	6480
	cgaaaagttg	taaaagaact	tccaaatact	ggttctgaag	aaatggattt	accattaaaa	6540
60	gaattagcac	taattacagg	cgcagcatta	ttagctagaa	gacgttctaa	aaaagaaaaa	6600

	gaatcataa														6609		
5	<210 <210 <210 <210	1> 22> 1	2 2189 PRT Stapl	hylo	cocci	us ej	pide	rmid	is	,							
10	<400	0> 2	2														
	Met 1	Asn	Leu	Leu	Lys 5	Lys	Asn	Lys	Tyr	Ser 10	Ile	Arg	Lys	Tyr	Lys 15	Val	
15	Gly	Ile	Phe	Ser 20	Thr	Leu	Ile	Gly	Thr 25	Val	Leu	Leu	Leu	Ser 30	Asn	Pro	
20	Asn	Gly	Ala 35	Gln	Ala	Leu	Thr	Thr 40	Asp	His	Asn	Val	Gln 45	Gly	Gly	Ser	
	Asn	Gln 50	Ala	Leu	Pro	Gly	Asn 55	Ser	Gln	Asn	Thr	Asn 60	Ala	Asp	Thr	Asn	
25	Arg 65	Asp	Ile	Val	Asn	Asp 70	Ser	Gln	Asn	Thr	Pro 75	Asn	Ala	His	Ala	Thr 80	
•	Asp	Asn	Thr	Ser	Thr 85	Asn	Gln	Ala	Leu	Thr 90	Asn	His	Gln	Asn	Val 95	Asp	
30	Val	Ala	Asn	Gln 100	Val	Gly	Pro	Ala	Pro 105	Ile	Gln	Pro	Ser	Ala 110	Ser	Pro	
35	Ala	Gln	Asn 115	Asn	Asn	Asn	Ser	Asn 120	Ala	Asn	Ser	Thr	Ala 125	Thr	Glu	Pro	
÷	Ala	Ala 130	Asn	Thr	Asn	Asn	Asn 135	Leu	Ala	Ser	Asn	Asn 140	Asn	Thr	Leu	Asn	
40	Val 145	Pro	Asn	Asn	Thr	Asp 150	Asn	Asn	Asp	Ser	Ala 155	Arg	His	Leu	Thr	Leu 160	
	Lys	Glu	Ile	GLn	Glu 165	Asp	Val	Arg	His	Ser 170	Ser	Asp	Lys	Pro	Glu 175	Leu	
45	Val	Ala	Ile	Ala 180	Glu	Glu	Ala	Ser	Asn 185	Arg	Pro	Lys	Lys	Arg 190	Ser	Arg	
50	Arg	Ala	Ala 195	Pro	Thr	Asp	Pro	Asn 200	Ala	Thr	Pro	Ala	Asp 205	Pro	Thr	Ala	
	Thr	Pro 210	Ala	Asp	Pro	Thr	Ala 215	Gly	Asn	Gly	Ser	Ala 220	Pro	Val	Ala	Ile	
55	Thr 225	Ala	Pro	Tyr	Thr	Pro 230	Thr	Thr	Asp	Pro	Asn 235	Ala	Asn	Asn	·Ile	Gly 240	
<i>~</i> ^	Gln	Asn	Ala	Pro	Asn 245	Glu	Val	Leu	Ser	Phe 250	Asp	Asp	Asn	Asn	Ile 255	Arg	
60	Pro	Ser	Thr	Asn	Arg	Ser	Val	Pro	Thr	Val	Thr	Val	Val	Asp	Asn	Leu	

				260					265					270		
5	Pro	Gly	Tyr 275	Thr	Leu	Ile	Asn	Gly 280	Gly	Lys	Val	Gly	Val 285	Phe	Ser	His
3	Ala	Met 290	Val	Arg	Thr	Ser	Met 295	Phe	Asp	Ser	Gly	Asp 300	Ala	Lys	Asn	Tyr
10	Gln 305	Ala	Gln	Gly	Asn	Val 310	Ile	Ala	Leu	Gly	Arg 315	Ile	Arg	Gly	Asn	Asp 320
	Thr	Asn	Asp	His	Gly 325	Asp	Phe	Asn	Gly	Ile 330	Glu	Lys	Thr	Leu	Thr 335	Val
15	Asn	Pro	Asn	Ser 340	Glu	Leu	Ile	Phe	Glu 345	Phe	Asn	Thr	Met	Thr 350	Thr	Lys
20	Asn	Tyr	G1n 355	Gly	Met	Thr	Asn	Leu 360	Ile	Ile	Lys	Asn	Ala 365	Asp	Asn	Asp
	Thr	Val 370	Ile	Gly	Glu	Lys	Val 375	Val	Ala	Tyr	Gly	Pro 380	Ile	Trp	Arg	Leu
25	Leu 385	Lys	Val	Pro	Glu	Asn 390	Val	Ser	His	Leu	Lys 395	Ile	Gln	Phe	Val	Pro 400
	Lys	Asn	Asp	Ala	Ile 405	Thr	Asp	Ala	Arg	Gly 410	Ile	Tyr	Gln	Leu	Arg 415	Asp
30	Gly	Tyr	Lys	Tyr 420	Tyr	Asp	Phe	Val	Asp 425	Ser	Ile	Gly	Leu	His 430	Ser	Gly
35	Ser	His	Val 435	Tyr	Val	Glu	Arg	Arg 440	Thr	Met	Glu	Pro	Thr 445	Ala	Thr	Asn
	Asn	Lys 450	Glu	Phe	Thr	Val	Thr 455	Thr	Ser	Leu	Lys	Asn 460	Asn	Gly	Asn	Phe
40	Gly 465	Ala	Ser	Phe	Asn	Thr 470	Asp	Asp	Phe	Val	Tyr 475	Lys	Ile	Gln	Leu	Pro 480
	Glu	Gly	Val	Glu	Tyr 485	۷al	Asn	Asn	Ser	Leu 490	Thr	Lys	Asp	Phe	Pro 495	Ser
45	Gly	Asn	Ser	Gly 500	Val	Asp	Ile	Asn	Asp 505	Met	Asn	Val	Thr	Tyr 510	Asp	Ala
50	Ala	Asn	Arg 515	Ile	Ile	Thr	Ile	Lys 520	Ser	Thr	Gly	_	Gly .525	Thr	Gly	Asn
	Ser	Pro 530	Ala	Arg	Leu	Met	Pro 535	Asp	Lys	Ile	Leu	Asp 540	Leu	Lys	Tyr	Lys
55	Leu 545	Arg	Val	Asn	Asn	Val 550	Pro	Thr	Pro	Arg	Thr 555	Val	Thr	Phe	Asn	Asp 560
	Thr	Leu	Thr	Tyr	Lys 565	Thr	Tyr	Ser	Gln	Asp 570	Phe	Ile	Asn	Ser	Pro 575	Ala
60	Glu	Ser	His	Thr	Val	Ser	Thr	Asn	Pro	Tyr	Thr	Ile	Asp	Ile	Ile	Met

				580					585					590		
5	Asn	Lys	Asp 595	Ala	Leu	Gln	Ala	Glu 600	Val	Asp	Arg	Arg	Ile 605	Gln	Gln	Ala
_	Asp	Tyr 610	Thr	Phe	Ala	Ser	Leu 615	Asp	Ile	Phe	Asn	Asp 620	Leu	Lys	Arg	Arg
10	Ala 625	Gln	Thr	Ile	Leu	Asp 630	Glu	Asn	Arg	Asn	Asn 635	Val	Pro	Leu	Asn	Lys 640
	Arg	Val	Ser	Gln	Ala 645	Asp	Ile	Asp	Ser	Leu 650	Ala	Asn	Gln	Met	Gln 655	His
15	Thr	Leu	Ile	Arg 660	Ser	Val	Asp	Ala	Glu 665	Asn	Ala	Val	Asn	Arg 670	ГÀЗ	Val
20	Asp	Asp	Met 675	Glu	Asp	Leu	Val	Asn 680	Gln	Asn	Asp	Glu	Leu 685	Thr	Asp	Glu
	Glu	Lys 690	Gln	Ala	Ala	Ile	Gln 695	Val	Ile	Glu	Glu	His 700	Lys	Asn	Glu	Ile
25	Ile 705	Gly	Asn	Ile	Gly	Asp 710	Gln	Thr	Thr	Asp	Asp 715	Gly	Val	Thr	Arg	Ile 720
	Lys	Asp	Gln	Gly	Ile 725	Gln	Thr	Leu	Ser	Gly 730	Asp	Thr	Ala	Thr	Pro 735	Val
30	Va1	Lys	Pro	Asn 740	Ala	Lys	Gln	Ala	Ile 745	Arg	Asp	Lys	Ala	Ala 750	Lys	Gln
35	Arg	Glu	Ile 755	Ile	Asn	His	Thr	Pro 760	Asp	Ala	Thr	Gln	Asp 765	Glu	Ile	Gln
	Asp	Ala 770	Leu	Asn	Gln	Leu	Thr 775	Thr	qeA	Glu	Thr	Asp 780	Ala	Ile	Asp	Asn
40	Val 785	Thr	Asn	Ala	Thr	Thr 790	Asn	Ala	Asp	Val	Glu 795	Thr	Ala	rys	Asn	Asn 800
	Gly	Ile	Asn	Thr	Ile 805	Gly	Ala	Val	Ala	Pro 810	Gln	Val	Thr	His	Lys 815	Gln
45				Asp 820					825				_	830		
50	Ile	Asn	Ser 835	Asn	Arg	Glu	Ala	Thr 840	Gln	Glu	Glu	Lys	Asn 845	Ala	Ala	Leu
	Asn	Glu 850	Leu	Thr	Gln	Ala	Thr 855	Asn	His	Ala	Leu	Glu 860	Gln	Ile	Asn	Gln
55	Ala 865	Thr	Thr	Asn	Asp	Asp 870	Val	Asp	Thr	Ala	Lys 875	Gly	Asp	Gly	Leu	Asn 880
	Ala	Ile	Asn	Pro	Ile 885	Ala	Pro	Val	Thr	Val 890	Val	Lys	Gln	Ala	Ala 895	Arg
60	Asp	Ala	Val	Ser	His	Asp	Ala	Gln	Gln	His	Ile	Ala	Glu	Ile	Asn	Ala

7/62

				900					905					910)		
مع	Asn	Pro	Asp 915	Ala	Thr	Gln	Glu	Glu 920	Arg	Gln	Ala	Ala	Ile 925		ı Lys	s Val	
5	Tyr	Ala 930	Ala	Val	Ala	Val	Ala 935	Asn	Thr	Asn	Ile	Leu 940	Asn	n Ala	a Ası	n Thr	
10	Asn 945	Ala	Asp	Val	Glu	Gln 950	Val	Lys	Thr	Asn	Ala 955	Ile	Gln	ı Gly	/ Ile	e Gln 960	
	Ala	Ile	G1u	Pro	Ala 965	Thr	Lys	Val	Lys	Thr 970	_	Ala	Lys	a Asr	n Ala 975	a Ile	
15	Asp	Gln		Ala 980	Glu	Thr	Gln	His	Asn 985	Ala	Ile	Phe	Asn	Asr 990		n Asp	
20	Ala		Leu 995	Glu	Glu	Gln	Gln	Ala 1000		a Gl	n Gl	n Le		u <i>F</i> 05	Asp (Gln A	la
20	Val	Ala 1010		Ala	Lys	Gln	Asn 101		le As	en A	la A		sp 020	Thr	Asn	Gln	
25	Glu	Val 1025		Gln	Ala	, Lys	Asp 103		.n. G	ly T	hr G		sn 035	Ile	Val	Val	
	Ile	Gln 1040		Ala	Thr	Gln	Val		s Ti	ır A	sp A		rg 050	Asn	Ala	Val	•
30	Asn	Glu 1055		Ala	Arg	Glu	Ala 106		.e Th	ır A	sn I		sn 065	Ala	Thr	Pro	
35	Gly	Ala 1070		Arg	Glu	Glu	Lys 107		.n G	lu A	la I		sn 080	Arg	Val	Asņ	
<i>33</i>	Thr	Leu 1085		Asn	Arg	Ala	Leu 109		n As	sp I	le G	_	al 095	Thr	Ser	Thr	
40	Thr	Ala 1100		Val	Asn	Ser	Ile 110		g As	sp A	sp A.		al 110	Asn	Gln	Ile	
	Gly	Ala 1115		Gln	Pro	His	Val 112		r Ly	/s L	ys G		nr L25	Ala	Thr	Gly	
45	Val	Leu 1130		Asp	Leu	Ala	Thr 113		a Ly	/s L	ys G		Lu 140	Ile	Asn	Gln	
50	Asn	Thr 1145		Ala	Thr	Thr	Glu 115		.u Ly	ys G.	ln Va		la 155	Leu	Asn	Gln	
30	Val	Asp 1160		Asp	Leu	Ala	Thr 116		a Il	Le A	sn A	_	le 170	Asn	Gln	Ala	
55	Asp	Thr 1175		Ala	Glu	. Val	Asp 118		n Al	la G	ln G		eu 185	Gly	Thr	Lys	
	Ala	Ile 1190		Ala	Ile	Gln	Pro		sn II	le V	al L		ys 200	Pro	Ala	Ala	
60	Leu	Ala	Gln	Thr	Asn	Gln	His	Ту	r Se	er A	la L	ys L	, eu	Val	Glu	Ile	

		1205					1210					1215			
5	Asn	Ala 1220	Thr	Pro	Asp	Ala	Thr 1225	Asp	Asp	Glu	Lys	Asn 1230	Ala	Ala	Ile
J	Asn	Thr 1235	Leu	Asn	Gln	Asp	Arg 1240	Gln	Gln	Ala	Ile	Glu 1245	Ser	Ile	Lys
10	Gln	Ala 1250	Asn	Thr	Asn	Ala	Glu 1255	Val	Asp	Gln	Ala	Ala 1260	Thr	Val	Ala
	Glu	Asn 1265	Asn	Ile	Asp	Ala	Val 1270	Gln	Val	Asp	Val	Val 1275	Lys	Lys	Gln
15	Ala	Ala 1280	Arg	Asp	Lys	Ile	Thr 1285	Ala	Glu	Val	Ala	Lys 1290	Arg	Ile	Glu
20	Ala	Val 1295	Lys	Gln	Thr	Pro	Asn 1300	Ala	Thr	Asp	Glu	Glu 1305	Гуз	Gln	Ala
20	Ala	Val 1310	Asn	Gln	Ile	Asn	Gln 1315	Leu	Lys	Asp	Gln	Ala 1320	Phe	Asn	Gln
25	Ile	Asn 1325	Gln	Asn	Gln	Thr	Asn 1330	Asp	Gln	Val	Asp	Ala 1335	Thr	Thr	Asn
	Gln	Ala 1340	Ile	Asn	Ala	Ile	Asp 1345	Asn	Val	Glu	Ala	Glu 1350	Val	Val	Ile
30	Lys	Pro 1355	Lys	Ala	Ile	Ala	Asp 1360	Ile	Glu	Lys	Ala	Val 1365	Lys	Glu	Lys
35	Gln	Gln 1370	Gln	Ile	Asp ·	Asn	Ser 1375	Leu	Asp	Ser	Thr	Asp 1380	Asn	Glu	Lys
	Glu	Val 1385	Ala	Leu	Gln	Ala	Leu 1390	Ala	Lys	Glu	Lys	Glu 1395	Lys	Ala	Leu
40	Ala	Ala 1400	Ile	Asp	Gln	Ala	Gln 1405	Thr	Asn	Ser	Gln	Val 1410	Asn	Gln	Ala
	Ala	Thr 1415	Asn	Gly	Val	Ser	Ala 1420	Ile	Lys	Ile	Ile	Gln 1425	Pro	Glu	Thr
45	Lys	Ile 1430	Lys	Pro	Ala	Ala	Arg 1435					Gln 1440	Lys	Ala	Asn
50	Glu	Leu 1445	Arg	Ala	Gln	Ile	Asn 1450	Gln	Asp	Lys	Glu	Ala 1455	Thr	Ala	Glu
	Glu	Arg 1460	Gln	Ala	Ala	Leu	Asp 1465	Lys	Ile	Asn	Asp	Leu 1470	Val	Ala	Lys
55	Ala	Met 1475	Thr	Asn	Ile	Thr	Asn 1480	Asp	Arg	Thr	Asn	Gln 1485	Gln	Val	Asn
	Asp	Ser 1490	Thr	Asn	Gln	Ala	Leu 1495	Asp	Asp	Ile	Ala	Leu 1500	Val	Thr	Pro
60	Asp	His	Ile	Val	Arg	Ala	Ala	Ala	Arg	Asp	Ala	Val	Lys	Gln	Gln

		1505					1510					1515			
5	Tyr	Glu 1520	Ala	Lys	Lys	His	Glu 1525	Ile	Glu	Gln	Ala	Glu 1530	His	Ala	Thr
3	Asp	Glu 1535	Glu	Lys	Gln	Val	Ala 1540	Leu	Asn	Gln	Leu	Ala 1545	Asn	Asn	Glu
10	Lys	Arg 1550	Ala	Leu	Gln	Asn	Ile 1555	Asn	Gln	Ala	Ile	Ala 1560	Asn	Asn	Asp
	Val	Lys 1565	Arg	Val	Glu	Ser	Asn 1570	Gly	Ile	Ala	Thr	Leu 1575	Lys	Gly	Val
15	Glu	Pro 1580	His	Ile	Val	Val	Lys 1585	Pro	Glu	Ala	Gln	Glu 1590	Ala	Ile	Lys
20	Ala	Ser 1595	Ala	Asp	Asn	Gln	Val 1600	Glu	Ser	Ile	Lys	Asp 1605	Thr	Pro	His
20	Ala	Thr 1610	Thr	Asp	Glu	Leu	Asp 1615	Glu	Ala	Asn	Gln	Gln 1620	Ile	Asn	Asp
25	Thr	Leu 1625	Lys	Gln	Gly	Gln	Gln 1630	Asp	Ile	Asp	Asn	Thr 1635	Thr	Gln	Asp
	Ala	Ala 1640	Val	Asn	Asp	Val	Arg 1645	Asn	Gln	Thr	Ile	Lys 1650	Ala	Ile	Glu
30	Gln	Ile 1655	Lys	Pro	Lys	Val	Arg 1660	Arg	Lys	Arg	Ala	Ala 1665	Leu	Asp	Asn
35	Ile	Asp 1670	Glu	Ser	Asn	Asn	Asn 1675	Gln	Leu	Asp	Ala	Ile 1680	Arg	Asn	Thr
	Leu	Asp 1685	Thr	Thr	Gln	Asp	Glu 1690	Arg	Asn	Val	Ala	Ile 1695	Ala	Ala	Leu
40	Asn	Lys 1700	Ile	Val	Asn	Ala	Ile 1705	Lys	Asn	Asp	Ile	Ala 1710	Gln	Asn	Lys
	Thr	Asn 1715	Ala	Glu	Val	Asp	Gln 1720	Thr	GLu	Ala	Asp	Gly 1725	Asn	Asn	Asn
45	Ile	Lys 1730	Val	Ile	Leu	Pro	Lys 1735	Val	Gln	Val	Lys	Pro 1740	Ala	Ala	Arg
50	Gln	Ser 1745	Val	Ser	Ala	Lys	Ala 1750	Glu	Ala	Gln	Asn	Ala 1755	Leu	Ile	Asp
	Gln	Ser 1760	Asp	Leu	Ser	Thr	Glu 1765	Glu	Glu	Arg	Leu	Ala 1770	Ala	Lys	His
55	Leu	Val 1775	Glu	Gln	Ala	Leu	Asn 1780	Gln	Ala	Ile	Asp	Gln 1785	Ile	Asn	His
	Ala	Asp 1790	Lys	Thr	Ala	Gln	Val 1795	Asn	Gln	Asn	Ser	Ile 1800	Asp	Ala	Gln
60	Asn	Ile	Ile	Ser	Lys	Ile	Lys	Pro	Ala	Thr	Thr	Val	Lys	Ala	Thr

		1805					1810					1815			
5	Ala	Leu 1820	Gln	Gln	Ile	Gln	Asn 1825	Ile	Ala	Thr	Asn	Lys 1830	Ile	Asn	Leu
3	Ile	Lys 1835	Ala	Asn	Asn	Glu	Ala 1840	Thr	Asp	Glu	Glu	Gln 1845	Asn	Ala	Ala
10	Ile	Val 1850	Gln	Val	Glu	Lys	Glu 1855	Leu	Ile	Lys	Ala	Lys 1860	Gln	Gln	Ile
	Ala	Gly 1865	Ala	Val	Thr	Asn	Ala 1870	qeA	Val	Ala	Tyr	Leu 1875	Leu	His	Asp
15	Gly	Lys 1880		Glu	Ile	Arg	Glu 1885	Ile	Glu	Pro	Val	Ile 1890	Asn	Lys	Lys
20	Ala	Thr 1895	Ala	Arg	Glu	Gln	Leu 1900	Thr	Thr	Leu	Phe	Asn 1905	Asp	Lys	Lys
20	Gln	Ala 1910	Ile	Glu	Ala	Asn	Val 1915	Gln	Ala	Thr	Val	Glu 1920	Glu	Arg	Asn
25	Ser	Ile 1925	Leu	Ala	Gln	Leu	Gln 1930	Asn	Ile	Tyr	Asp	Thr 1935	Ala	Ile	Gly
	Gln	Ile 1940	Asp	Gln	Asp	Arg	Ser 1945	Asn	Ala	Gln	Val	Asp 1950	Lys	Thr	Ala
30	Thr	Leu 1955	Asn	Leu	Gln	Thr	Ile 1960	His	Asp	Leu	Asp	Val 1965	His	Pro	Ile
35	Lys	Lys 1970	Pro	Asp	Ala	Glu	Lys 1975	Thr	Ile	Asn	Asp	Asp 1980	Leu	Ala	Arg
	Val	Thr 1985	His	Leu	Val	Gln	Asn 1990	Tyr	Arg	Lys	Val	Ser 1995	Asp	Arg	Asn
40	Lys	Ala 2000	Asp	Ala	Leu	Lys	Ala 2005	Ile	Thr	Ala	Leu	Lys 2010	Leu	Gln	Met
	Asp	Glu 2015	Glu	Leu	Lys	Thr	Ala 2020	Arg	Thr	Asn	Ala	Asp 2025	Val	Asp	Ala
45	Val	Leu 2030	Lys	Arg	Phe	Asn	Val 2035	Ala	Leu	Gly	Asp	Ile 2040	Glu	Ala	Val
50	Ile	Thr 2045	Glu	Lys	Glu	Asn	Ser 2050	Leu	Leu	Arg	Ile	Asp 2055	Asn	Ile	Ala
	Gln	Gln 2060	Thr	Tyr	Ala	Lys	Phe 2065	Lys	Ala	Ile	Ala	Thr 2070	Pro	Glu	Gln
55	Leu	Ala 2075	Lys	Val	Lys	Ala	Leu 2080	Ile	Asp	Gln	Tyr	Val 2085	Ala	Asp	Gly
	Asn	Arg 2090	Met	Val	Asp	Glu	Asp 2095	Ala	Thr	Leu	Asn	Asp 2100	Ile	Lys	Lys
60	Asp	Thr	Gln	Leu	Ile	Ile	Asp	Glu	Ile	Leu	Ala	Ile	Lys	Leu	Pro

	2105			2110			2115				
5	Ala Glu 2120	Val Ile	Lys Ala	Ser Pr 2125	o Lys	Val G	ly Gln 2130	Pro	Ala Pr	0	
J	Lys Val 2135	Cys Thr	Pro Ile	Lys Ly 2140	s Glu	Asp Ly	ys Gln 2145	Glu	Val Ar	rg	
10	Lys Val 2150	Val Lys	Glu Leu	Pro As 2155	n Thr	Gly Se	er Glu 2160	Glu	Met As	sp	
	Leu Pro 2165	Leu Lys	Glu Leu	Ala Le 2170	u Ile	Thr G	Ly Ala 2175	Ala	Leu Le	eu	
15	Ala Arg 2180	Arg Arg	Ser Lys	Lys Gl 2185	u Lys	Glu Se	er				
20	<210> 3 <211> 68 <212> DN <213> St	A	occus ep	idermidi	.8	•					
25	<400> 3 tctaatgaa	t gtaaaq	gataa ta	caaggagt	tatta	catga	gtaaaa	jaca	gaaago	attt	60
	catgacagc	t tagcaa	aacga aa	aaacaaga	gtaag	acttt	ataaato	tgg	aaaaaa	ıttgg	120
	gtaaaatcc	g gaatta	aaaga aa	tagaaatg	ttcaa	aatta	tggggct	acc	atttat	:tagt	180
30	catagttta	g tgagto	caaga ta	atcaaagc	attag	rtaaaa	aaatgad	ggg	atacgg	actg	240
	aaaactacg	g cggtta	attgg tg	gtgcattc	acggt	aaata	tgttgca	atga	ccagca	agct	300
35	tttgcggct	t ctgate	gcacc at	taacttct	gaatt	aaaca	cacaaag	gtga	aacagt	aggt	360
<i>33</i>	aatcaaaac	t caacga	acaat cg	aagcatca	acato	aacag	ccgatto	ccac	aagtgt	aacg	420
	aaaaatagt	a gttcg	gtaca aa	catcaaat	agtga	cacag	tctcaag	gtga	aaagto	tgaa	480
40	aaggtcact	t cgacaa	actaa ta	gtacaago	aatca	acaag	agaaatt	gac	atctac	atca	540
	gaatcaaca	t cctcaa	aagaa ta	ctacatca	agtto	tgata	ctaaato	etgt	agcttc	aact	600
45	tcaagtaca	g aacaa	ccaat ta	atacatca	acaaa	tcaaa	gtactgo	catc	aaataa	cact	660
43	tcacaaagc	a caacgo	ccatc tt	cggtcaac	ttaaa	caaaa	ctagcac	caac	gtcaac	tagc	720
	accgcacca	g taaaa	cttcg aa	ctttcagt	cgctt	agcta	tgtcaac	catt	tgcgtc	agca	780
50	gcgacgaca	a cegeaq	gtaac tg	ctaataca	attac	agtta	ataaaga	ataa	cttaaa	acaa	840
	tatatgaca	a cgtcaq	ggtaa tg	ctacctat	gatca	aagta	ccggtat	tgt	gacgtt	aaca	900
55	caggatgca	t acago	caaaa ag	gtgctatt	acatt	aggaa	cacgtat	tga	ctctaa	taag	960
55	agttttcat	t tttct	ggaaa ag	taaattta	ggtaa	caaat	atgaagg	ggca	tggaaa	ıtggt	1020
	ggagatggt	a teggti	tttgc ct	tttcacca	ggtgt	attag	gtgaaac	cagg	gttaaa	ıcggt	1080
60	gccacaata	a atatto	aataa et	taaqtaaq	geatt	taact	tcaaati	igga	tacdta	ntcac	1140

	aatacatcta	aaccaaattc	agctgcaaag	gcgaatgctg	acccatctaa	tgtägctggt	1200
5	ggaggtgcgt	ttggtgcatt	tgtaacaaca	gatagttatg	gtgttgcgac	aacgtataca	1260
<i>J</i>	tcaagttcaa	cagctgataa	tgctgcgaag	ttaaatgttc	aacctacaaa	taacacgttc	1320
	caagattttg	atattaacta	taatggtgat	acaaaggtta	tgactgtcaa	atatgcaggt	1380
10	caaacatgga	cacgtaatat	ttcagattgg	attgcgaaaa	gtggtacgac	caacttttca	1440
	ttatcaatga	cagcctcaac	aggtggcgcg	acaaatttac	aacaagtaca	atttggaaca	1500
15	ttcgaatata	cagagtctgc	tgttacacaa	gtgagatacg	ttgatgtaac	aacaggtaaa	1560
13	gatattattc	caccaaaaac	atattcagga	aatgttgatc	aagtcgtgac	aatcgataat	1620
	cagcaatctg	cattgactgc	taaaggatat	aactacacgt	ccgtcgatag	ttcatatgcg	1680
20	tcaacttata	atgatacaaa	taaaactgta	aaaatgacga	atgctggaca	atcagtgaca	1740
	tattatttta	ctgatgtaaa	agcaccaact	gtaactgtag	gcaatcaaac	catagaagtg	1800
25	ggtaaaacaa	tgaatcctat	tgtattgact	acaacggata	atggtactgg	gactgtgaca	1860.
25	aatacagtta	caggattacc	aagcggatta	agttacgata	gtgcaacgaa	ttcaatcatt	1920
•	gggacaccaa	caaaaattgg	tcaatcaaca	gtgacagttg	tgtctactga	ccaagcaaat	1980
30	aacaaatcga	cgacaacttt	tacaataaat	gttgtggata	cgacagcacc	aacagtgaca	2040
•	ccaataggag	atcaatcatc	agaagtgtat	tcaccaatat	ccccgattaa	aattgctacg	2100
35	caagataaca	gtggaaatgc	ggtgacgaat	acagtgactg	gattgccatc	cggactaaca	2160
	tttgatagta	caaataatac	tattagtggt	acaccaacaa	acattggtac	aagtactata	2220
	tcaatcgttt	ctacagatgc	gagcggtaac	aaaacgacga	caacttttaa	atatgaagta	2280
40	acaagaaata	gcatgagtga	ttccgtatca	acatcaggaa	gtacacaaca	atctcaaagt	2340
-	gtgtcaacaa	gtaaagctga	ctcacaaagt	gcatcaacga	gtacatcagg	atcgattgtg	2400
45	gtatctacat	cagctagtac	ctcgaaatcg	acaagtgtaa	gcctatctga	ttctgtgagt	2460
	gcatctaagt	cattaagcac	atctgaaagt	aatagtgtat	caageteaac	aagcacaagt	2520
	ttagtgaatt	cacaaagtgt	atcatcaagc	atgtcggatt	cagctagtaa	atcaacatca	2580
50	ttaagcgatt	ctatttcaaa	ctctagcagt	actgaaaaat	ccgaaagtct	atcaacaagt	2640
	acatctgatt	cattgcgtac	atcaacatca	ctcagtgact	cattaagtat	gagtacatca	2700
55	ggaagcttgt	ctaagtcaca	aagcttatca	acgagtatat	cagggtcgtc	tagtacatca	27.60
	gcatcattaa	gtgacagtac	atcgaatgca	attagtacat	caacatcatt	gagcgagtca	2820
	gctagcacct	cggactctat	cagtatttca	aatagcatag	ccaactetca	aagtgcgtca	2880
60	acaagcaaat	cagattcaca	aagtacatca	atatcattaa	gtacaagtga	ttcaaaatcg	2940

	atgagtacat	cagaatcatt	gagcgattcg	acgagcacaa	gtggttctgt	ttctggatca	3000
5	ctaagcatag	cagcatcaca	aagtgtctca	acaagtacat	cagactcgat	gagtacttca	3060
	gagatagtaa	gtgactctat	cagtacaagt	gggtcattat	ctgcatcaga	cagtaaatca	3120
	atgtccgtaa	gtagttcaat	gagcacgtct	cagtcaggta	gtacatcaga	atcattaagt	3180
10	gattcacaaa	gtacatctga	ttctgatagt	aagtcattat	cacaaagtac	tagtcaatca	3240
	ggttcaacaa	gtacatcaac	gtcgacaagt	gcttcagtac	gtacttcgga	atcacaaagt	3300
15	acgtctggtt	caatgagtgc	aagtcaatcc	gattcaatga	gcatatcaac	gtcgtttagt	3360
10	gattcaacga	gtgatagcaa	atcagcatca	actgcatcaa	gtgaatcaat	atcacaaagt	3420
	gcttctacga	gcacatctgg	ttcggtaagt	acttcgacat	cgttaagtac	aagtaattca	3480
20	gaacgtacat	caacatctat	gagtgattcc	acaagcttaa	gtacatcaga	gtctgattca	3540
	ataagtgaat	caacgtcaac	gagcgactct	ataagtgaag	caatatctgc	ttcagagagc	3600
25	acgtttatat	cattaagtga	atcaaatagt	actagcgatt	cagaatcaca	aagtgcatct	3660
23	gcctttttaa	gtgaatcatt	aagtgaaagt	acgtctgaat	caacatcaga	gtcagtgagt	3720
	agttcgacaa	gtgagagtac	gtcattatca	gacagtacat	cagaatctgg	tagcacatca	3780
30	acatcattaa	gtaattcaac	aagtggtagt	acgtccattt	caacatcgac	aagtatcagt	3840
	gaatcaacgt	caacgtttaa	gagcgagagt	gtttcaacat	cactgagtat	gtcaacgagt	3900
35	acaagtttgt	ctgactctac	aagtttgtca	acatcattaa	gtgattccac	aagtgatagt	3960
5 0	aagtctgatt	cattaagtac	atcaatgtcg	acaagtgatt	caatcagtac	aagtaaatct	4020
	gattccatta	gtacatccac	atcattaagt	ggttctacaa	gtgaaagtga	atccgactca	4080
40	acatcatcaa	gtgaaagtaa	atccgattca	acatcaatga	gcataagtat	gtctcaatca	4140
	acatcaggaa	gtacaagtac	gtcaacgagt	acaagtttgt	ctgactcaac	gagtacatca	4200
45	ttgtcactaa	gtgcctcaat	gaatcaaagc	ggagtagact	caaactcagc	aagccaaagt	4260
15	gcctcaaact	caacaagtac	aagcacgagc	gaatccgatt	cacaaagcac	atcatcatat	4320
	acaagtcagt	caacaagcca	aagtgaatcc	acatcgacat	caacgtcact	aagcgattca	4380
50	acaagtatat	ctaaaagtac	gagtcaatca	ggttcggtaa	gcacatcagc	gtcattaagt	4440
	ggttcagaga	gtgaatctga	ttcacaaagt	atctcaacaa	gtgcaagtga	gtcaacatca	4500
55	gaaagtgcgt	caacatcact	cagtgactca	acaagtacaa	gtaactcagg	atcagcaagt	4560
	acgtcaacat	cgctcagtaa	ctcagcaagc	gcaagtgaat	ccgatttgtc	gtcaacatct	4620
	ttaagtgatt	caacatctgc	gtcaatgcaa	agcagtgaat	ccgattcaca	aagcacatca	4680
60	gcatcattaa	gtgattcgct	aagtacatca	acttcaaacc	gcatgtcgac	cattgcaagt	4740

	ttatctacat	cggtaagtac	atcagagtct	ggctcaacat	cagaaagtac	aagtgaatcc	4800
5	gattcaacat	caacatcatt	aagcgattca	caaagcacat	caagaagtac	aagtgcatca	4860
	ggatcagcaa	gtacatcaac	atcaacaagt	gactctcgta	gtacatcagc	ttcaactagt	4920
	acttcgatgc	gtacaagtac	tagtgattca	caaagtatgt	cgctttcgac	aagtacatca	4980
.10	acaagtatga	gtgattcaac	gtcattatct	gatagtgtta	gtgattcaac	atcagactca	5040
	acaagtgcga	gtacatctgg	ttcgatgagt	gtgtctatat	cgttaagtga	ttcgacaagt	5100
15	acatcaacat	cggctagtga	agtaatgagc	gcaagcatat	ctgattcaca	aagtatgtca	5160
IJ	gaatctgtaa	atgattcaga	aagtgtaagt	gaatctaatt	ctgaaagtga	ctctaaatcg	5220
	atgagtggct	caacaagtgt	cagtgattct	ggctcattga	gcgtctcaac	gtcattaaga	5280
20	aaatcagaaa	gtgtaagcga	gtcaagttca	ttgagttgct	cacaatcgat	gagcgattca	5340
	gtaagcacaa	gcgattcgtc	atcattaagt	gtatcgacgt	cactaagaag	ttcagaaagc	5400
25	gtgagtgaat	ctgattcatt	aagtgattca	aaatcaacaa	gtggttcgac	ttcaacaagt	5460
	acatctggtt	cattgagtac	ctcaacatca	ttaagtggtt	cagaaagcgt	aagcgagtct	5520
	acctcgctaa	gtgattcaat	atcaatgagt	gattctacta	gtacaagtga	ctccgactca	5580
30	ttaagtggat	caatatcttt	aagtggttcc	acaagtctta	gcacttcgga	ttcattaagt	5640
	gattcaaaat	cattgagtag	ctcgcaaagt	atgagtggat	cagaatcaac	gtcaacaagt .	5700
35	gtgagcgatt	cgcagtcaag	ctcaacaagt	aatagtcaat	ttgactctat	gagcatcagt	5760
	gcatcagaaa	gcgactcaat	gtctacaagt	gattcgtcta	gcatcagtgg	atcaaattca	5820
-	acgagtacat	cactttcaac	atctgactca	atgagcggaa	gcgtatcagt	ttcaacatcg	5880
40	acaagtttaa	gtgactcaat	atcaggttca	acaagtgtaa	gtgactcgag	ctcaacaagc	5940
	acatctacat	cattaagtga	ttcaatgtca	caaagccagt	caacaagtac	aagtgcatct	6000
45	ggttccttaa	gtacatcgat	atcaacatca	atgtcaatga	gtgctagtac	atcgtcatca	6060
	caaagcacat	cggtgtcgac	atcattatca	acatcagaca	gtatcagtga	ttctacttca	6120
	ataagtatca	gtggttcaca	aagtacagta	gaatcagaat	ctacaagtga	ttcaacttct	6180
50	atcagtgact	cagaatcatt	gagtacatca	gattcagact	cgacatcgac	aagtacatcg	6240
	gactcaacaa	gtggttcaac	ttcaacaagc	atatctgaat	cattaagtac	gtctggttca	6300
55	ggttcaacga	gcgtatctga	ctcaacatca	atgagtgaat	ctaattcatc	gagtgtttca	6360
	atgtcacaag	acaaatccga	ctcaacatca	attagtgact	cagaatcagt	gtcaacaagc	6420
	acatcaacgt	cattgagcac	atccgattcg	acaagcacat	ccgaatcact	gagtacatct	6480
60	atgtctggtt	cacaaagcat	ttctgactca	acatcaacaa	gtatgtccgg	ctcaacaagt	6540

	acat	tctga	aat o	ctaad	ctcaa	at go	catco	cgtca	a gad	ctcaa	atga	gtat	gcat	ica 1	tacto	cacagc	6	600
5	acga	agcad	cat o	ctcg	cttal	cc aa	agtga	aagca	a aca	aacga	agca	cga	gtgaa	atc 1	tcagt	ctaca	6	660
J	ttaa	agtgo	caa o	catc	tgaaq	gt ga	actaa	aacat	: aat	tggca	acac	cago	cacaa	aag 1	tgaaa	aaaaga	6	720
	ttg	ccaga	ata d	caggt	-gact	ic aa	ataaa	acaa	a aat	ggat	tac	tage	gtggd	egt 1	tatga	acatta	6	780
10	ttag	gttg	gtt t	caggt	ttaa	at ga	aagaq	gaaag	g aaa	aaaga	aaag	atga	aaat	ga 1	tcaag	gatgat	6	840
	tcto	caago	cat a	aa													6	852
15	<210 <211 <212 <213	L> 2 2> E	2283 PRT	nyloo	cocci	ıs eg	oideı	midi	.s									
20	<400)> 4	<u>l</u>															
	Ser 1	Asn	Glu	Cys	Lys 5	Asp	Asn	Thr	Arg	Ser 10	Tyr	Tyr	Met	Ser	Lys 15	Arg		
25	Gln	Lys	Ala	Phe 20	His	Asp	Ser	Leu	Ala 25	Asn	Glu	Lys	Thr	Arg 30	Val	Arg		
30	Leu	Tyr	Lys 35	Ser	Gly	Lys	Asn	Trp 40	Val	Lys	Ser	Gly	Ile 45	Lys	Glu	Ile		
	Glu	Met 50	Phe	Lys	Ile	Met	Gly 55	Leu	Pro	Phe	Ile	Ser 60	His	Ser	Leu	Val		
35	Ser 65	Gln	Asp	Asn	Gln	Ser 70	Ile	Ser	Lys	Lys	Met 75	Thr	Gly	Tyr	Gly	Leu 80		
	Lys	Thr	Thr	Ala	Val 85	Ile	Gly	Gly	Ala	Phe 90	Thr	Val	Asn	Met	Leu 95	His		
40	Asp	Gln	Gln	Ala 100	Phe	Ala	Ala	Ser	Asp 105	Ala	Pro	Leu	Thr	Ser 110	Glu	Leu		
45	Asn	Thr	Gln 115	Ser	Glu	Thr	Val	Gly 120	Asn	Gln	Asn	Ser	Thr 125	Thr	Ile	Glu		
	Ala	Ser 130	Thr	Ser	Thr	Ala	Asp 135	Ser	Thr	Ser	Val	Thr 140	Lys	Asn	Ser	Ser		
50	Ser 145	Val	Gln	Thr	Ser	Asn 150	Ser	Asp	Thr	Val	Ser 155	Ser	Glu	Lys	Ser	Glu 160		
	Lys	Val	Thr	Ser	Thr 165	Thr	Asn	Ser	Thr	Ser 170	Asn	Gln	Gln	Glu	Lys 175	Leu		
55	Thr	Ser	Thr	Ser 180	Glu	Ser	Thr	Ser	Ser 185	Lys	Asn	Thr	Thr	Ser 190	Ser	Ser		
60	Asp	Thr	Lys 195	Ser	Val	Ala	Ser	Thr 200	Ser	Ser	Thr	Glu	Gln 205	Pro	Ile	Asn		

	Thr	Ser 210	Thr	Asn	Gln	Ser	Thr 215	Ala	Ser	Asn	Asn	Thr 220	Ser	Gln	Ser	Thr
5	Thr 225	Pro	Ser	Ser	Val	Asn 230	Leu	Asn	Lys	Thr	Ser 235	Thr	Thr	Ser	Thr	Ser 240
	Thr	Ala	Pro	Val	Lys 245	Leu	Arg	Thr	Phe	Ser 250	Arg	Leu	Ala	Met	Ser 255	Thr
10	Phe	Ala	Ser	Ala 260	Ala	Thr	Thr	Thr	Ala 265	Val	Thr	Ala	Asn	Thr 270	Ile	Thr
15	Val	Asn	Lys 275	Asp	Asn	Leu	Lys	Gln 280	Tyr	Met	Thr	Thr	Ser 285	Gly	Asn	Ala
	Thr	Tyr 290	Asp	Gln	Ser	Thr	Gly 295	Ile	Val	Thr	Leu	Thr 300	Gln	Asp	Ala	Tyr
20	Ser 305	Gln	Lys	Gly	Ala	Ile 310	Thr	Leu	Gly	Thr	Arg 315	Ile	Asp	Ser	Asn	Lys 320
	Ser	Phe	His	Phe	Ser 325	Gly	Lys	Val	Asn	Leu 330	Gly	Asn	Lys	Tyr	Glu 335	Gly
25	His	Gly	Asn	Gly 340	Gly	Asp	Gly	Ile	Gly 345	Phe	Ala	Phe	Ser	Pro 350	Gly	Val
30	Leu	Gly	Glu 355	Thr	Gly	Leu	Asn	Gly 360	Ala	Ala	Val	Gly	Ile 365	Gly	Gly	Leu
	Ser	Asn 370	Ala	Phe	Gly	Phe	Lys 375	Leu	Asp	Thr	Tyr	His 380	Asn	Thr	Ser	Lys
35	Pro 385	Asn	Ser	Ala	Ala	Lys 390	Ala	Asn	Ala	Asp	Pro 395	Ser	Asn	Val	Ala	Gly 400
-	Gly	Gly	Ala	Phe	Gly 405	Ala	Phe	Val	Thr	Thr 410	Asp	Ser	Tyr	Gly	Val 415	Ala
40	Thr	Thr	Tyr	Thr 420	Ser	Ser	Ser	Thr	Ala 425	Asp	Asn	Ala	Ala	Lys 430	Leu	Asn
45	Val	Gln	Pro 435	Thr	Asn	Asn	Thr	Phe 440	Gln	Asp	Phe	Asp	Ile 445	Asn	Tyr	Asn
	Gly							Val		-				Thr	Trp	Thr
50	Arg 465	Asn	Ile	Ser	Asp	Trp 470	Ile	Ala	Lys	Ser	Gly 475	Thr	Thr	Asn	Phe	Ser 480
	Leu	Ser	Met	Thr	Ala 485	Ser	Thr	Gly	Gly	Ala 490	Thr	Asn	Leu	Gln	Gln 495	Val
55	Gln	Phe	Gly	Thr 500	Phe	Glu	Tyr	Thr	Glu 505	Ser	Ala	Val	Thr	Gln 510	Val	Arg
60	Tyr	Val	Asp 515	Val	Thr	Thr	Gly	Lys 520	Asp	Ile	Ile	Pro	Pro 525	Lys	Thr	Tyr

	Ser	Gly 530	'Asn	Val	Asp	Gln	Val 535	Val	Thr	Ile	Asp	Asn 540	Gln	Gln	Ser	Ala
5	Leu 545	Thr	Ala	Lys	Gly	Tyr 550	Asn	Týr	Thr	Ser	Val 555	Asp	Ser	Ser	Tyr	Ala 560
	Ser	Thr	Tyr	Asn	Asp 565	Thr	Asn	Lys	Thr	Val 570	Lys	Met	Thr	Asn	Ala 575	Gly
10	Gln	Ser	Val	Thr 580	Tyr	Tyr	Phe	Thr	Asp 585	Val	Lys	Ala	Pro	Thr 590	Val	Thr
15	Val	Gly	Asn 595	Gln	Thr	Ile	Glu	Val 600	Gly	Lys	Thr	Met	Asn 605	Pro	Ile	Val
	Leu	Thr 610	Thr	Thr	Asp	Asn	Gly 615	Thr	Gly	Thr	Val	Thr 620	Asn	Thr	Val	Thr
20	Gly 625	Leu	Pro	Ser	Gly	Leu 630	Ser	Tyr	Asp	Ser	Ala 635	Thr	Asn	Ser	Ile	Ile 640
	Gly	Thr	Pro	Thr	Lys 645	Ile	Gly	Gln	Ser	Thr 650	Val	Thr	Val	Val	Ser 655	Thr
25	Asp	Gln	Ala	Asn 660	Asn	Lys	Ser	Thr	Thr 665	Thr	Phe	Thr	Ile	Asn 670	Val	Val
30	Asp	Thr	Thr 675	Ala	Pro	Thr	Val	Thr 680	Pro	Ile	Gly	Asp	Gln 685	Ser	Ser	Glu
50	Val	Tyr 690	Ser	Pro	Ile	Ser	Pro 695	Ile	Lys	Ile	Ala	Thr 700	Gln	Asp	Asn	Ser
35	Gly 705	Asn	Ala	Val	Thr	Asn 710	Thr	Val	Thr	Gly	Leu 715	Pro	Ser	Gly	Leu	Thr 720
	Phe	Asp	Ser	Thr	Asn 725	Asn	Thr	Ile	Ser	Gly 730	Thr	Pro	Thr	Asn	Ile 735	Gly
40	Thr	Ser	Thr	Ile 740	Ser	Ile	Val	Ser	Thr 745	Asp	Ala	Ser	Gly	Asn 750	Lys	Thr
45	Thr	Thr	Thr 755	Phe	Lys	Tyr	Glu	Val 760	Thr	Arg	Asn	Ser	Met 765	Ser	Asp	Ser
13	Val	Ser 770	Thr	Ser	Gly	Ser			Gln		Gln	Ser 780	Val	Ser	Thr	Ser
50	Lys 785	Ala	Asp	Ser	Gln	Ser 790	Ala	Ser	Thr	Ser	Thr 795	Ser	Gly	Ser	Ile	Val 800
	Val	Ser	Thr	Ser	Ala 805	Ser	Thr	Ser	Lys	Ser 810	Thr	Ser	Val	Ser	Leu 815	Ser
55	Asp	Ser	Val	Ser 820	Ala	Ser	Lys	Ser	Leu 825	Ser	Thr	Ser	Glu	Ser 830	Asn	Ser
60	Val	Ser	Ser 835	Ser	Thr	Ser	Thr	Ser 840	Leu	Val	Asn	Ser	Gln 845	Ser	Val	Ser

	Ser	Ser 850	Met	Ser	Asp	Ser	Ala 855	Ser	Lys	Ser	Thr	Ser 860	Leu	Ser	: Asp	Ser
5	Ile 865	Ser	Asn	Ser	Ser	Ser 870	Thr	Glu	Lys	Ser	Glu 875	Ser	Leu	Ser	Thr	Ser 880
	Thir	Ser	Asp	Ser	Leu 885	Arg	Thr	Ser	Thr	Ser 890	Leu	Ser	Asp	Ser	Leu 895	Ser
.10	Met	Ser	Thr	Ser 900	Gly	Ser	Leu	Ser	Lys 905	Ser	Gln	Ser	Leu	Ser 910		Ser
15	Ile	Ser	Gly 915	Ser	Ser	Ser	Thr	Ser 920	Ala	Ser	Leu	Ser	Asp 925		Thr	Ser
13	Asn	Ala 930	Ile	Ser	Thr	Ser	Thr 935	Ser	Leu	Ser	Glu	Ser 940	Ala	Ser	Thr	Ser
20	Asp 945	Ser	Ile	Ser	Ile	Ser 950	Asn	Ser	Ile	Ala	Asn 955	Ser	Gln	Ser	Ala	Ser 960
	Thr	Ser	Lys	Ser	Asp 965	Ser	Gln	Ser	Thr	Ser 970	Ile	Ser	Leu	Ser	Thr 975	Ser
25	Asp	Ser	Lys	Ser 980	Met	Ser	Thr	Ser	Glu 985	Ser	Leu,	Ser	Asp	Ser 990		Ser
30	Thr	Ser	Gly 995	Ser	Val	Ser	Gly	Ser 100		ı Sei	c Ile	e Ala	a Al 10		er G	ln Se
50	Val	Ser 1010		Ser	Thr	Ser	Asp 101		er Me	et Se	er Th		er 020	Glu	Ile	Val
35	Ser	Asp 1025		: Ile	Ser	Thr	Ser 103		ly Se	er Le	eu Se		la 035	Ser	Asp	Ser
	Lys	Ser 1040		. Ser	· Val	Ser	Sex		er Me	et Se	er Th		er 050	Gln	Ser	Gly
40	Ser	Thr 1055		Glu	Ser	Leu	Ser 106		sp Se	er Gl	ln Se		nr 065	Ser	Asp	Ser
45	Asp	Ser 1070		Ser	Leu	. Ser	Glr 107		er Tl	nr Se	er Gl		er 080	GLy	Ser	Thr
15	Ser	Thr 1085		Thr	Ser	Thr	Ser 109		la Se	er Va	al Ar	_	nr 195	Ser	Glu	Ser
50	Gln	Ser 1100		Ser	Gly	Ser	Met 110		er A	la Se	er Gl		er 110	Asp	Ser	Met
	Ser	Ile 1115		Thr	Ser	Phe	Ser 112		sp Se	er Th	ır Se		sp 125	Ser	Lys	Ser
55	Ala	Ser 1130		Ala	Ser	Ser	Glu 113		er I	le Se	er Gl		er 140	Ala	Ser	Thr
60	Ser	Thr 1145		: Gly	Ser	Val	. Ser 115		hr Se	er Th	ır Se		eu 155	Ser	Thr	Ser

	Asn	Ser 1160	Glu	Arg	Thr	Ser	Thr 1165	Ser	Met	Ser	Asp	Ser 1170	Thr	Ser	Leu
5	Ser	Thr 1175	Ser	Glu	Ser	Asp	Ser 1180	Ile	Ser	Glu	Ser	Thr 1185	Ser	Thr	Ser
	Asp	Ser 1190	Ile	Ser	Glu	Ala	Ile 1195	Ser	Ala	Ser	Glu	Ser 1200	Thr	Phe	Ile
10	Ser	Leu 1205	Ser	Glu	Ser	Asn	Ser 1210	Thr	Ser	Asp	Ser	Glu 1215	Ser	Gln	Ser
15	Ala	Ser 1220	Ala	Phe	Leu	Ser	Glu 1225	Ser	Leu	Ser	Glu	Ser 1230	Thr	Ser	Glu
13	Ser	Thr 1235	Ser	Glu	Ser	Val	Ser 1240	Ser	Ser	Thr	Ser	Glu 1245	Ser	Thr	Ser
20	Leu	Ser 1250		Ser	Thr	Ser	Glu 1255	Ser	Gly	Ser	Thr	Ser 1260	Thr	Ser	Leu
	Ser	Asn 1265	Ser	Thr	Ser	Gly	Ser 1270	Thr	Ser	Ile	Ser	Thr 1275	Ser	Thr	Ser
25	Ile	Ser 1280	Glu	Ser	Thr	Ser	Thr 1285	Phe	Lys	Ser	Glu	Ser 1290	Val	Ser	Thr
30	Ser	Leu 1295	Ser	Met	Ser	Thr	Ser 1300	Thr	Ser	Leu	Ser	Asp 1305	Ser	Thr	Ser
30	Leu	Ser 1310	Thr	Ser	Leu	Ser	Asp 1315	Ser	Thr	Ser	Asp	Ser 1320	Lys	Ser	Asp
35	Ser	Leu 1325	Ser	Thr	Ser	Met	Ser 1330	Thr	Ser	Asp	Ser	Ile 1335	Ser	Thr	Ser
	Lys	Ser 1340	Asp	Ser	Ile	Ser	Thr 1345	Ser	Thr	Ser	Leu	Ser 1350	Gly	Ser	Thr
40	Ser	Glu 1355	Ser	Glu	Ser	Asp	Ser 1360	Thr	Ser	Ser	Ser	Glu 1365	Ser	Lys	Ser
45	Asp	Ser 1370	Thr	Ser	Met	Ser	Ile 1375	Ser	Met	Ser	Gln	Ser 1380	Thr	Ser	Gly
10	Ser	Thr 1385	Ser	Thr	Ser		Ser 1390		Ser	Leu	Ser	Asp 1395	Ser	Thr	Ser
50	Thr	Ser 1400	Leu	Ser	Leu	Ser	Ala 1405	Ser	Met	Asn	Gln	Ser 1410	Gly	Val	Asp
	Ser	Asn 1415	Ser	Ala	Ser	Gln	Ser 1420	Ala	Ser	Asn	Ser	Thr 1425	Ser	Thr	Ser
55	Thr	Ser 1430	Glu	Ser	Asp	Ser	Gln 1435	Ser	Thr	Ser	Ser	Tyr 1440	Thr	Ser	Gln
60	Ser	Thr 1445	Ser	Gln	Ser	Glu	Ser 1450	Thr	Ser	Thr	Ser	Thr 1455	Ser	Leu	Ser

	Asp	Ser 1460	Thr	Ser	Ile	Ser	Lys 1465		Thr	Ser	Gln	Ser 1470	Gly	Ser	Val
5	Ser	Thr 1475	Ser	Ala	Ser	Leu	Ser 1480	Gly	Ser	Glu	Ser	Glu 1485	Ser	Asp	Ser
	Gln	Ser 1490	Ile	Ser	Thr	Ser	Ala 1495	Ser	Glu	Ser	Thr	Ser 1500	Glu	Ser	Ala
10	Ser	Thr 1505	Ser	Leu	Ser	Asp	Ser 1510	Thr	Ser	Thr	Ser	Asn 1515	Ser	Gly	Ser
15	Ala	Ser 1520	Thr	Ser	Thr	Ser	Leu 1525	Ser	Asn	Ser	Ala	Ser 1530	Ala	Ser	Glu
10	Ser	Asp 1535	Leu	Ser	Ser	Thr	Ser 1540	Leu	Ser	Asp	Ser	Thr 1545	Ser	Ala	Ser
20	Met	Gln 1550	Ser	Ser	Glu	Ser	Asp 1555	Ser	Gln	Ser	Thr	Ser 1560	Ala	Ser	Leu
	Ser	Asp 1565	Ser	Leu	Ser	Thr	Ser 1570	Thr	Ser	Asn	Arg	Met 1575	Ser	Thr	Ile
25	Ala	Ser 1580	Leu	Ser	Thr	Ser	Val 1585	Ser	Thr	Ser	Glu	Ser 1590	Gly	Ser	Thr
30	Ser	Glu 1595	Ser	Thr	Ser'	Glu	Ser 1600	Asp	Ser	Thr	Ser	Thr 1605	Ser	Leu	Ser
	Asp	Ser 1610	Gln	Ser	Thr	Ser	Arg 1615	Ser	Thr	Ser	Ala	Ser 1620	Gly	Ser	Ala
35	Ser	Thr 1625	Ser	Thr	Ser	Thr	Ser 1630	Asp	Ser	Arg	Ser	Thr 1635	Ser	Ala	Ser
	Thr	Ser 1640	Thr	Ser	Met	Arg	Thr 1645	Ser	Thr	Ser	Asp	Ser 1650	Gln	Ser	Met
40	Ser	Leu 1655	Ser	Thr	Ser	Thr	Ser 1660	Thr	Ser	Met	Ser	Asp 1665	Ser	Thr	Ser
45	Leu	Ser 1670	Asp	Ser	Val	Ser	Asp 1675	Ser	Thr	Ser	Asp	Ser 1680	Thr	Ser	Ala
	Ser	Thr 1685	Ser	Gly	Ser	Met	Ser 1690	Val	Ser	Ile	Ser	Leu 1695	Ser	Asp	Ser
50	Thr	Ser 1700	Thr	Ser	Thr	Ser	Ala 1705	Ser	Glu	Val	Met	Ser 1710	Ala	Ser	Ile
	Ser	Asp 1715	Ser	Gln	Ser	Met	Ser 1720	Glu	Ser	Val	Asn	Asp 1725	Ser	Glu	Ser
55	Val	Ser 1730	Glu	Ser	Asn	Ser	Glu 1735	Ser	Asp	Ser	Lys	Ser 1740	Met	Ser	Gly
60	Ser	Thr 1745	Ser	Val	Ser	Asp	Ser 1750	Gly	Ser	Leu	Ser	Val 1755	Ser	Thr	Ser

	Leu	Arg 1760	Lys	Ser	Glu	Ser	Val 1765		Glu	Ser	Ser	Ser 1770	Leu	Ser	Cys
5	Ser	Gln 1775	Ser	Met	Ser	Asp	Ser 1780	Val	Ser	Thr	Ser	Asp 1785	Ser	Ser	Ser
	Leu	Ser 1790	Val	Ser	Thr	Ser	Leu 1795	Arg	Ser	Ser	Glu	Ser 1800	Val	Ser	Glu
10	Ser	Asp 1805	Ser	Leu	Ser	Asp	Ser 1810	Lys	Ser	Thr	Ser	Gly 1815	Ser	Thr	Ser
15	Thr	Ser 1820	Thr	Ser	Gly	Ser	Leu 1825	Ser	Thr	Ser	Thr	Ser 1830	Leu	Ser	Gly
	Ser	Glu 1835	Ser	Val	Ser	Glu	Ser 1840	Thr	Ser	Leu	Ser	Asp 1845	Ser	Ile	Ser
20	Met	Ser 1850	Asp	Ser	Thr	Ser	Thr 1855	Ser	Asp	Ser	Asp	Ser 1860	Leu	Ser	Gly
	Ser	Ile 1865	Ser	Leu	Ser	Gly	Ser 1870	Thr	Ser	Leu	Ser	Thr 1875	Ser	Asp	Ser
25	Leu	Ser 1880	Asp	Ser	Lys	Ser	Leu 1885	Ser	Ser	Ser	Gln	Ser 1890	Met	Ser	Gly
30	Ser	Glu 1895	Ser	Thr	Ser	Thr	Ser 1900	Val	Ser	Asp	Ser	Gln 1905	Ser	Ser	Ser
	Thr	Ser 1910	Asn	Ser	Gln	Phe	Asp 1915	Ser	Met	Ser	Ile	Ser 1920	Ala	Ser	Glu
35	Ser	Asp 1925	Ser	Met	Ser	Thr	Ser 1930	Asp	Ser	Ser	Ser	Ile 1935	Ser	Gly	Ser
	Asn	Ser 1940	Thr	Ser	Thr	Ser	Leu 1945	Ser	Thr	Ser	Asp	Ser 1950	Met	Ser	Gly
40	Ser	Val 1955	Ser	Val	Ser	Thr	Ser 1960	Thr	Ser	Leu	Ser	Asp 1965	Ser	Ile	Ser
45	Gly	Ser 1970	Thr	Ser	Val	Ser	Asp 1975	Ser	Ser	Ser	Thr	Ser 1980	Thr	Ser	Thr
	Ser	Leu 1985	Ser	Asp	Ser	Met	Ser 1990	Gln	Ser	Gln	Ser	Thr 1995	Ser	Thr	Ser
50	Ala	Ser 2000	Gly	Ser	Leu	Ser	Thr 2005	Ser	Ile	Ser	Thr	Ser 2010	Met	Ser	Met
	Ser	Ala 2015	Ser	Thr	Ser	Ser	Ser 2020	Gln	Ser	Thr	Ser	Val 2025	Ser	Thr	Ser
55	Leu	Ser 2030	Thr	Ser	Asp	Ser	Ile 2035	Ser	Asp	Ser	Thr	Ser 2040	Ile	Ser	Ile
60	Ser	Gly 2045	Ser .	Gln	Ser	Thr	Val 2050	Glu	Ser	Glu	Ser	Thr 2055	Ser	Asp	Ser

	TUL	2060	тте	ser	Asp	Ser	2065		Leu	ser	Thr	Ser 2070	Asp	Ser	Asp	
5	Ser	Thr 2075	Ser	Thr	Ser	Thr	Ser 2080	Asp	Ser	Thr	Ser	Gly 2085	Ser	Thr	Ser	
	Thr	Ser 2090	Ile	Ser	Glu	Ser	Leu 2095	Ser	Thr	Ser	Gly	Ser 2100	Gly	Ser	Thr	
10	Ser	Val 2105	Ser	Asp	Ser	Thr	Ser 2110	Met	Ser	Glu	Ser	Asn 2115	Ser	Ser	Ser	
15	Val	Ser 2120	Met	Ser	Gln	Asp	Lys 2125	Ser	Asp	Ser	Thr	Ser 2130		Ser	Asp	
13	Ser	Glu 2135	Ser	Val	Ser	Thr	Ser 2140	Thr	Ser	Thr	Ser	Leu 2145	Ser	Thr	Ser	
20	Asp	Ser 2150	Thr	Ser	Thr	Ser	Glu 2155	Ser	Leu	Ser	Thr	Ser 2160	Met	Ser	Gly	
	Ser	Gln 2165	Ser	Ile	Ser	Asp	Ser 2170	Thr	Ser	Thr	Ser	Met 2175	Ser	Gly	Ser	
25	Thr	Ser 2180	Thr	Ser	Glu	Ser	Asn 2185	Ser	Met	His	Pro	Ser 2190	Asp	Ser	Met	
30	Ser	Met 2195	His	His	Thr	His	Ser 2200	Thr	Ser	Thr	Ser	Arg 2205	Leu	Ser	Ser	
50	Glu	Ala 2210	Thr	Thr	Ser	Thr	Ser 2215	Glu	Ser	Gln	Ser	Thr 2220	Leu	Ser	Ala	
35	Thr	Ser 2225	Glu	Val	Thr	Lys	His 2230	Asn	Gly	Thr	Pro	Ala 2235	Gln	Ser	Glu	
	Lys	Arg 2240	Leu	Pro	Asp	Thr	Gly 2245	Asp	Ser	Ile	Lys	Gln 2250	Asn	Gly	Leu	
40	Leu	Gly 2255	Gly	Val	Met	Thr	Leu 2260	Leu	Val	Gly	Leu	Gly 2265	Leu	Met	Lys	
45	Arg	Lys 2270	Lys	Lys	Lys	Asp	Glu 2275	Asn	Asp	Gln	Asp	Asp 2280	Ser	Gln	Ala	
	<210 <210 <210		730 VA			•										
50	<213	3> St 0> 5	aphy	/loc	occus	s epi	iderm	idis								
			aa tt	aaai	tataa	a tct	tata	gga q	gttgt	taad	ca a	catga	acaa	acat	tcaccca	60
55	aaa	ttaag	gt ct	ttc	tatto	c tat	taga	aaa 1	caad	ctcta	ag go	cgttg	catc	ggt	cattgtc	120
•	agta	acacta	at tt	tta	attad	c tto	ctcaa	cat o	caago	cacaa	ag ca	agcag	aaaa	taca	aaatact	180
	tca	gataaa	aa to	ctcg	gaaaa	a tca	aaaat	aat a	aatgo	caact	ta ca	aactc	agcc	acc	taaggat	240
60	acaa	aatcaa	aa ca	acaa	cctg	c tac	cgcaa	cca q	gcaaa	acact	tg c	gaaaa	acta	tac	tgcagcg	300

	gatgaatcac	ttaaagatgc	aattaaagat	cctgcattag	aaaataaaga	acatgatata	360
5	ggtccaagag	aacaagtcaa	tttccagtta	ttagataaaa	acaatgaaac	gcagtactat	420
J	cactttttca	gcatcaaaga	tccagcagat	gtgtattaca	ctaaaaagaa	agcagaagtt	480
	gaattagaca	tcaatactgc	ttcaacatgg	aagaagtttg	aagtctatga	aaacaatcaa	540
10	aaattgccag	tgagacttgt	atcatatagt	cctgtaccag	aagaccatgc	ctatattcga	600
	ttcccagttt	cagatggcac	acaagaattg	aaaattgttt	cttcgactca	aattgätgat	660
15	ggagaagaaa	caaattatga	ttatactaaa	ttagtatttg	ctaaacctat	ttataacgat	720
13	ccttcacttg	taaaatcaga	tacaaatgat	gcagtagtaa	cgaatgatca	atcaagttca	780
	gtcgcaagta	atcaaacaaa	cacgaataca	tctaatcaaa	atatatcaac	gatcaacaat	840
20	gctaataatc	aaccgcaggc	aacgaccaat	atgagtcaac	ctgcacaacc	aaaatcgtca	900
	acgaatgcag	atcaagcgtc	aagccaacca	gctcatgaaa	caaattctaa	tggtaatact	960
25	aacgataaaa	cgaatgagtc	aagtaatcag	tcggatgtta	atcaacagta	tccaccagca	1020
LJ	gatgaatcac	tacaagatgc	aattaaaaac	ccggctatca	tcgataaaga	acatacagct	1080
	gataattggc	gaccaattga	ttttcaaatg	aaaaatgata	aaggtgaaag	acagttctat	1140
30	cattatgcta	gtactgttga	accagcaact	gtcattttta	caaaaacagg	accaataatt	1200
	gaattaggtt	taaagacagc	ttcaacatgg	aagaaatttg	aagtttatga	aggtgacaaa	1260
35	aagttaccag	tcgaattagt	atcatatgat	tctgataaag	attatgccta	tattcgtttc	1320
J	ccagtatcta	atggtacgag	agaagttaaa	attgtgtcat	ctattgaata	tggtgagaac	1380
	atccatgaag	actatgatta	tacgctaatg	gtctttgcac	agcctattac	taataaccca	1440
40	gacgactatg	tggatgaaga	aacatacaat	ttacaaaaat	tattagctcc	gtatcacaaa	1500
	gctaaaacgt	tagaaagaca	agtttatgaa	ttagaaaaat	tacaagagaa	attgccagaa	1560
45	aaatataagg	cggaatataa	aaagaaatta	gatcaaacta	gagtagagtt	agctgatcaa	1620
43	gttaaatcag	cagtgacgga	atttgaaaat	gttacaccta	caaatgatca	attaacagat	1680
	ttacaagaag	cgcattttgt	tgtttttgaa	agtgaagaaa	atagtgagtc	agttatggac	1740
50	ggctttgttg	aacatccatt	ctatacagca	actttaaatg	gtcaaaaata	tgtagtgatg	1800
	aaaacaaagg	atgacagtta	ctggaaagat	ttaattgtag	aaggtaaacg	tgtcactact	1860
55	gtttctaaag	atcctaaaaa	taattctaga	acgctgattt	tcccatatat'	acctgacaaa	1920
<i>J J</i>	gcagtttaca	atgcgattgt	taaagtcgtt	gtggcaaaca	ttggttatga	aggtcaatat	1980
	catgtcagaa	ttataaatca	ggatatcaat	acaaaagatg	atgatacatc	acaaaataac	2040
60	acgagtgaac	cgctaaatgt	acaaacagga	caagaaggta	aggttgctga	tacagatgta	2100
-							

	gcc	gaaa	aca '	gcagi	Jac L1	yc a	acaa	aluci	L aa	ayar	g c y L	CLG	alda	age i	agat	gtgata	•
5	gaa	ccaga	agt (ctgad	cgtg	gt t	aaaga	atgci	t gai	taata	aata	ttga	ataa	aga '	tgtg	caacat	,
•	gate	gttga	atc a	attta	atcc	ga ta	atgto	cggat	aat	taato	cact	tcga	ataaa	ata 1	tgati	ttaaaa	•
	gaaa	atgga	ata (ctcaa	aatt	gc ca	aaaga	atact	gat	tagaa	aatg	tgga	ataaa	aga 1	tgac	gataat	ı
10	agc	gttg	gta †	tgtca	atcta	aa t	gtcga	atact	gat	taaaq	gact	ctaa	ataaa	aaa 1	taaag	gacaaa	,
••	gtc	ataca	agc 1	tgaat	cata	at to	gccga	ataaa	a aat	taato	cata	ctg	gaaaa	agc a	agcaa	aagctt	
15	gac	gtagt	tga a	aacaa	aaati	ta ta	aataa	ataca	a gad	caaaq	gtta	ctga	acaaa	aaa a	aacaa	actgaa	
	cate	ctgc	cga (gtgat	catto	ca ta	aaaa	ctgta	a gat	caaaa	acag	tgaa	aaaca	aaa a	agaaa	aaagcc	•
	ggca	acaco	cat d	cgaaa	agaaa	aa ca	aaact	tagt	: caa	atcta	aaaa	tgct	cacca	aaa a	aacto	ggagaa	
20	acaa	actto	caa (gccaa	etcat	g gt	Eggg	gctta	a tat	zgcgt	tat	tagg	gtate	gtt a	agctt	tattc	
	atto	cctaa	aat t	tcaga	aaaa	ga at	ctaa	aataa	1								
25	<210 <210 <210 <210	1> 9 2> 1	6 909 PRT	nyloo	SOCCI	le er	പ് ർമാ	omi di	i e								
30 .	<400		s Se a pi	.19100		ra ef).T.G.E.I	-101.Q1	.5								
			_	Ile	Lys	Tyr	Asn	Leu	Ile	Glv	Val	Val	Asn	Asn	Met	Asn	
	1				5	•				10					15		
35	Lys	His	His	Pro 20	Lys	Leu	Arg	Ser	Phe 25	Tyr	Ser	Ile	Aṛg	Jys Jys	Ser	Thr	
40	Leu	Gly	Val 35	Ala	Ser	Val	Ile	Val 40	Ser	Thr	Leu	Phe	Leu 45	Ile	Thr	Ser	
	Gln	His 50	Gln	Ala	Gln	Ala	Ala 55	Glu	Asņ	Thr	Asn	Thr 60	Ser	Asp	Lys	Ile	
45	Ser 65	Glu	Asn	Gln	Asn	Asn 70	Asn	Ala	Thr	Thr	Thr 75	Gln	Pro	Pro	Lys	Asp 80	
	Thr	Asn	Gln	Thr	Gln 85	Pro	Ala	Thr	Gln	Pro 90	Ala	Asn	Thr	Ala	Lys 95	Asn	
50	Tyr	Pro	Ala	Ala 100	Asp	Glu	Ser	Leu	Lys 105	Asp	Ala	Ile	Lys	Asp 110	Pro	Ala	
55	Leu	Glu	Asn 115	Lys	Glu	His	Asp	Ile 120	Gly	Pro	Arg	Glu	Gln 125	Val	Asn	Phe	
	Gln	Leu 130	Leu	Asp	Lys	Asn	Asn 135	Glu	Thr	Gln	Tyr	Tyr 140	His	Phe	Phe	Ser	
60	Ile 145	Lys	Asp	Pro	Ala	Asp 150	Val	Tyr	Tyr	Thr	Lys 155	Lys	Lys	Ala	Glu	Val 160	

	Glu	Leu	Asp	Ile	Asn 165	Thr	Ala	Ser	Thr	Trp 170	Lys	Lys	Phe	Glu	Val 175	Tyr
5	Glu	Asn	Asn	Gln 180	Lys	Leu	Pro	Val	Arg 185	Leu	Val	Ser	Tyr	Ser 190	Pro	Val
10	Pro	Glu	Asp 195	His	Ala	Tyr	Ile	Arg 200	Phe	Pro	Val	Ser	Asp 205	Gly	Thr	Gln
	Glu	Leu 210	Lys	Ile	Val	Ser	Ser 215	Thr	Gln	Ile	Asp	Asp 220	Gly	Glu	Glu	Thr
15	Asn 225	Tyr	Asp	Tyr	Thr	Lys 230	Leu	Val	Phe	Ala	Lys 235	Pro	Ile	Tyr	Asn	Asp 240
	Pro	Ser	Leu	Val	Lys 245	Ser	qsA	Thr	Asn	Asp 250	Ala	Val	Val	Thr	Asn 255	Asp
20	Gln	Ser	Ser	Ser 260	Val	Ala	Ser	Asn	Gln 265	Thr	Asn	Thr	Asn	Thr 270	Ser	Asn
25	Gln	Asn	Ile 275	Ser	Thr	Ile	Asn	Asn 280	Ala	Asn	Asn	Gln	Pro 285	Gln	Ala	Thr
	Thr	Asn 290	Met	Ser	Gln	Pro	Ala 295	Gln	Pro	Lys	Ser	Ser 300	Thr	Asn	Ala	Asp
30	Gln 305	Ala	Ser	Ser	Gln	Pro 310	Ala	His	Glu	Thr	Asn 315	Ser	Asn	Gly	Asn	Thr 320
	Asn	Asp	Lys	Thr	Asn 325	Glu	Ser	Ser	Asn	Gln 330	Ser	Asp	Val	Asn	Gln 335	Gln
35	Tyr	Pro	Pro	Ala 340	Asp	Glu	Ser	Leu	Gln 345	Asp	Ala	Ile	Lys	Asn 350	Pro	Ala
40	Ile	Ile	Asp 355	Lys	Glu	His	Thr	Ala 360	Asp	Asn	Trp	Arg	Pro 365	Ile	Asp	Phe
. •	Gln	Met 370	Lys	Asn	Asp	Lys	Gly 375	Glu	Arg	Gln	Phe	Tyr 380	His	Tyr	Ala	Ser
45	Thr 385	Val	Glu	Pro	Ala	Thr 390	Val	Ile	Phe	Thr	Lys 395	Thr	Gly	Pro	Ile	Ile 400
	Glu	Leu	Gly		Lys 405	Thr	Ala	Ser		Trp 410	_	Lys	Phe	Glu	Val 415	Tyr
50	Glu	Gly	Asp	Lys 420	Lys	Leu	Pro	Val	Glu 425	Leu	Val	Ser	Tyr	Asp 430	Ser	Asp
55	Lys	qeA	Tyr 435	Ala	Tyr	Ile	Arg	Phe 440	Pro	Val	Ser	Asn	Gly 445	Thr	Arg	Glu
	Val	Lys 450	Ile	Val	Ser	Ser	Ile 455	Glu	Tyr	Gly	Glu	Asn 460	Ile	His	Glu	qzA
60	Tyr 465	Asp	Tyr	Thr	Leu	Met 470	Val	Phe	Ala	Gln	Pro 475	Ile	Thr	Asn	Asn	Pro 480

	Asp	Asp	Tyr	Val	Asp 485		Glu	Thr	Tyr	Asn 490	Leu	Gln	Lys	Leu	Leu 495	Ala
5	Pro	Tyr	His	Lys 500	Ala	Lys	Thr	Leu	Glu 505	Arg	Gln	Val	Tyr	Glu 510	Leu	Glu
10	Lys	Leu	Gln 515	Glu	Lys	Leu	Pro	Glu 520	Lys	Tyr	Lys	Ala	Glu 525	Tyr	Lys	Lys
10	Lys	Leu 530	Asp	Gln	Thr	Arg	Val 535	Glu	Leu	Ala	Asp	Gln 540	Val	Lys	Ser	Ala
15	Val 545	Thr	Glu	Phe	Glu	Asn 550	Val	Thr	Pro	Thr	Asn 555	Asp	Gln	Leu	Thr	Asp 560
	Leu	Gln	Glu	Ala	His 565	Phe	Val	Val	Phe	Glu 570	Ser	Glu	Glu	Asn	Ser 575	Glu
20	Ser	Val	Met	Asp 580	Gly	Phe	Val	Glu	His 585	Pro	Phe	Tyr	Thr	Ala 590	Thr	Leu
25	Asn	Gly	Gln 595	Lys	Tyr	Val	Val	Met 600	Lys	Thr	Lys	Asp	Asp 605	Ser	Tyr	Trp
	Lys	Asp 610	Leu	Ile	Val	Glu	Gly 615	Lys	Arg	Val	Thr	Thr 620	Val	Ser	Lys	Asp
30	Pro 625	Lys	Asn	Asn	Ser	Arg 630	Thr	Leu	Ile	Phe	Pro 635	Tyr	Ile	Pro	Asp	Lys 640
	Ala	Val	Tyr	Asn	Ala 645	Ile	Val	Lys	Val	Val 650	Val	Ala	Asn	Ile	Gly 655	Tyr
35	Glu	Gly	Gln	Tyr 660	His	Val	Arg	Ile	Ile 665	Asn	Gln	Asp	Ile	Asn 670	Thr	Lys
40	Asp	Asp	Asp 675	Thr	Ser	Gln	Asn	Asn 680	Thr	Ser	Glu	Pro	Leu 685	Asn	Val	Gln
	Thr	Gly 690	Gln	Glu	Gly	Lys	Val 695	Ala	Asp	Thr	Asp	Val 700	Ala	Glu	Asn	Ser
45	Ser 705	Thr	Ala	Thr	Asn	Pro 710	Lys	Asp	Ala	Ser	Asp 715	Lys	Ala	Asp	Val	Ile 720
	Glu	Pro	Glu	Ser	Asp 725				Asp			Asn		Ile	Asp 735	Lys
50	Asp	Val	Gln	His 740	Asp	Val	Asp	His	Leu 745	Ser	Asp	Met	Ser	Asp 750	Asn	Asn
55	His	Phe	Asp 755	Lys	Tyr	Asp	Leu	Lys 760	Glu	Met	Asp	Thr	Gln 765	Ile	Ala	Lys
	Asp	Thr 770	Asp	Arg	Asn	Val	Asp 775	Lys	Asp	Ala	Asp	Asn 780	Ser	Val	Gly	Met
60	Ser 785	Ser	Asn	Val	Asp	Thr 790	Asp	Lys	Asp	Ser	Asn 795	Lys	Asn	Lys	Asp	Lys

	Val	Ile	Gln	Leu	Asn 805	His	Ile	Ala	Asp	Lys 810	Asn	Asn	His	Thr	Gly 815	Lys	
5	Ala	Ala	Lys	Leu 820	Asp	Val	Val	Lys	Gln 825	Asn	Tyr	Asn	Asn	Thr 830	Asp	Lys	
10	Val	Thr	Asp 835	Lys	Lys	Thr	Thr	Glu 840	His	Leu	Pro	Ser	Asp 845	Ile	His	Lys	
10	Thr	Val 850	Asp	Lys	Thr	Val	Lys 855	Thr	Lys	GLu	rys	Ala 860	Gly	Thr	Pro	Ser	
15	Lys 865	Glu	Asn	Lys	Leu	Ser 870	Gln	Ser	Lys	Met	Leu 875	Pro	Lys	Thr	Gly	Glu 880	
	Thr	Thr	Ser	Ser	Gln 885	Ser	Trp	Trp	Gly	Leu 890	Tyr	Ala	Leu	Leu	Gly 895	Met	
20	Leu	Ala	Leu	Phe 900	Ile	Pro	Lys	Phe	Arg 905	Lys	Glu	Ser	Lys				
25	<210 <211 <212 <213	L> 1 2> [1065 NA	nyloo	cocci	ıs ep	oider	midi	LS								i
30	<400 gagg	•		acato	gacaa	aa a	catta	attta	a aad	cagta	aagt	atca	aatca	aga a	acaa	cgttca	60
50	tcag	gctat	iga a	aaaag	gatta	ac aa	atgg	gtaca	gca	atcta	atca	tttt	aggt	tc o	ectt	gtatac	120
	atag	ggcgc	cag a	acago	ccaad	ca aç	gtcaa	atgcg	g gca	aacag	gaag	ctad	cgaac	ege a	aacta	aataat	180
35	caaa	agcac	cac a	aagtt	tctc	ca a	gcaac	catca	a caa	accaa	atta	att	ccaa	agt (gcaaa	aaagat	240
	ggct	ctto	cag a	agaag	gtcad	ca ca	atgga	atgad	tat	tatgo	caac	acco	ctggt	taa a	agtaa	attaaa	300
40	caaa	aataa	ata a	aatat	tatt	t c	caaac	ccgt	j tta	aaca	aatg	cato	catto	ctg q	gaaa	gaatac	360
40	aaat	ttta	aca a	atgca	aaaca	aa to	caaga	aatta	a gca	aacaa	actg	ttgt	taad	cga 1	taata	aaaaaa	420
	gcg	gatac	cta q	gaaca	aatca	aa t	gttgo	cagtt	: gaa	accto	ggat	ataa	agago	ctt a	aacta	actaaa	480
45	gtad	catat	tg 1	tcgto	gccad	ca aa	attaa	attac	aat	cata	agat	ata	ctac	gca 1	tttg	gaattt	540
	gaaa	aaago	caa t	ttcct	acat	t ag	gctga	acgca	a gca	aaaa	ccaa	acaa	atgti	taa a	accg	gttcaa	600
50	ccaa	aaaco	ag d	ctcaa	accta	aa aa	acaco	ctact	gaç	gcaaa	acta	aac	cagti	tca a	accta	aaagtt	660
50	gaaa	aaagt	ta a	aacct	acto	gt aa	actac	caaca	a ago	caaag	gttg	aaga	acaat	tca (ctcta	actaaa	720
	gtt	gtaag	gta (ctgad	cacaa	ac aa	aaaga	atcaa	a act	taaaa	acac	aaa	ctgci	tca †	taca	gttaaa	780
55	acaç	gcaca	aaa d	ctgct	caaç	ga a	caaaa	ataaa	a gti	tcaaa	acac	ctgi	ttaaa	aga i	tgtt	gcaaca	840
	gega	aaato	ctg a	aaago	caaca	aa to	caago	ctgta	a ag	tgata	aata	aato	caca	aca a	aact	aacaaa	900
60	gtta	acaaa	aac a	ataad	cgaaa	ac go	cctaa	aacaa	a gca	atcta	aaag	cta	aagaa	att a	acca	aaaact	960

	ggt	ttaa	ctt	cagti	tgata	aa ct	tttai	tage	c aca	agtt	gcct	tcg	caaca	act t	tgcc	ctttta	1020
	ggti	tcat	tat (cttta	atta	ct ti	ttcaa	aaaga	a aaa	agaat	tcta	aata	aa				1065
5	<210 <210 <210 <210	1> 2>	8 354 PRT Stapl	hylod	cocci	ıs ep	pide	cmidi	is								
10	<400	0> .	8														
	Glu 1	Glu	Asn	Asn	Met 5	Thr	Lys	His	Tyr	Leu 10	Asn	Ser	Lys	Tyr	Gln 15	Ser	
15	Glu	Gln	Arg	Ser 20	Ser	Ala	Met	Lys	Lys 25	Ile	Thr	Met	Gly	Thr 30	Ala	Ser	
20	Ile	Ile	Leu 35	Gly	Ser	Leu	Val	Tyr 40	Ile	Gly	Ala	Asp	Ser 45	Gln	Gln	Val	
	Asn	Ala 50	Ala	Thr	Glu	Ala	Thr 55	Asn	Ala	Thr	Asn	Asn 60	Gln	Ser	Thr	Gln	
25	Val 65	Ser	Gln	Ala	Thr	Ser 70	Gln	Pro	Ile	Asn	Phe 75	Gln	Val	Gln	Lys	Asp 80	
	Gly	Ser	Ser	Glu	Lys 85	Ser	His	Met	Asp	Asp 90	Tyr	Met	Gln	His	Pro 95	Gly	
30	Lys	Val	Ile	Lys 100	Gln	Asn	Asn	Lys	Tyr 105	Tyr	Phe	Gln	Thr	Val 110	Leu	Asn	
35	Asn	Ala	Ser 115	Phe	Trp	Lys	Glu	Tyr 120	Lys	Phe	Tyr	Asn	Ala 125	Asn	Asn	Gln	
	Glu	Leu 130	Ala	Thr	Thr	Val	Val 135	Asn	Asp	Asn	Lys	Lys 140	Ala	Asp	Thr	Arg	
40	Thr 145	Ile	Asn	Val	Ala	Val 150	Glu	Pro	Gly	Tyr	Lys 155	Ser	Leu	Thr	Thr	Lys . 160	
	Val	His	Ile	Val	Val 165	Pro	Gln	Ile	Asn	Tyr 170	Asn	His	Arg	Tyr	Thr 175	Thr	
45	His	Leu	Glu	Phe 180	Glu	Lys	Ala	Ile	Pro 185	Thr	Leu	Ala	Asp	Ala 190	Ala	Lys	
50	Pro	Asn	Asn 195	Val	Lys	Pro	Val	Gln 200	Pro	Lys	Pro	Ala	Gln 205	Pro	Lys	Thr	
	Pro	Thr 210	Glu	Gln	Thr	Lys	Pro 215	Val	Gln	Pro	Lys	Val 220	Glu	Lys	Val	Lys	
55	Pro 225	Thr	Val	Thr	Thr	Thr 230	Ser	Lys	Val	Glu	Asp 235	Asn	His	Ser	Thr	Lys 240	
	Val	Val	Ser	Thr	Asp 245	Thr	Thr	Lys	Asp	Gln 250	Thr	Lys	Thr	Gln	Thr 255	Ala	
60	His	Thr	Val	Lys	Thr	Ala	Gln	Thr	Ala	Gln	Glu	Gln	Asn	Lys	Val	Gln	ι

		260			Ž	265					270			
5	Thr Pro	Val 'Lys 275	Asp Va	l Ala	Thr 1 280	Ala I	rys :	Ser	Glu	Ser 285	Asn	Asn	Gln	
J	Ala Val 290	Ser Asp	Asn Ly	s Ser 295	Gln (Gln 1	Thr I	Asn	Lys 300	Val	Thr	Lys	His	
10	Asn Glu 305	Thr Pro	Lys Gl 31	_	Ser 1	Lys <i>P</i>		Lys 315	Glu	Leu	Pro	Lys	Thr 320	
	Gly Leu	Thr Ser	Val As 325	p Asn	Phe :		Ser ! 330	Thr	Val	Ala	Phe	Ala 335	Thr	
15	Leu Ala	Leu Leu 340	Gly Se	r Leu		Leu I 345	Leu :	Leu	Phe	Lys	Arg 350	Lys	Glu	
	Ser Lys													
20	<212> D	965 NA taphyloc	coccus	epider	midis	s								
25	<400> 9													
	tatacaat	ta ggagt	tgttt	ctacaa	catg	aaca	aac	agc	aaaa	agaa	att 1	caaat	cattt	60
	tattcaat	ta gaaaq	gtcatc	actagg	cgtt	gcat	ctg	tag	caat	tagt	ac a	acttt	tatta	120
30	ttaatgtc	aa atggo	cgaagc	acaago	agca	gcto	gaag	aaa	cago	ıtggt	ac a	aaata	acagaa	180
	gcacaacc	aa aaact	gaagc	agttgc	aagt	ccaa	acaa	caa	cato	tgaa	aa a	agcto	ccagaa	240
35	actaaacc	ag tagct	caatgc	tgtctc	agta	tcta	aata	aag	aagt	tgag	ggc (cccta	acttct	300
55	gaaacaaa	ag aagct	taaaga	agttaa	agaa	gtta	aaag	ccc	ctaa	ggaa	aac a	aaaa	gaagtt	360
	aaaccagc	ag caaaa	agccac	taacaa	taca	tato	ccta	ttt	tgaa	tcag	gga a	actta	agagaa	420
40	gcgattaa	aa accct	gcaat	aaaaga	caaa	gato	cata	gcg	cacc	aaac	etc 1	tcgto	ccaatt	480
	gattttga	aa tgaaa	aaagaa	agatgg	aact	caad	cagt	ttt	atca	ittat	igc a	aagtt	tctgtt	540
4 /**	aaacctgc	ta gagti	tatttt	cactga	ttca	aaao	ccag	aaa	ttga	atta	agg a	attad	caatca	600
45	ggtcaatt	tt ggaga	aaaatt	tgaagt	ttat	gaag	ggtg	aca	aaaa	ıgttç	jcc a	aatta	aaatta	660
	gtatcata	cg atact	tgttaa	agatta	itgct	taca	attc	gct	tctc	tgta	atc a	aaac	ggaaca	720
50	aaagctgt	ta aaati	tgttag	ttcaac	acac	ttca	aata	aca	aaga	agaa	aaa a	atac	gattac	780
	acattaat	gg aatto	cgcaca	accaat	ttat	aaca	agtg	cag	ataa	atto	caa a	aacto	gaagaa	840
	gattataa	ag ctgaa	aaaatt	attago	gcca	tata	aaaa	aag	cgaa	aaca	act a	agaaa	agacaa	900
55	gtttatga	at taaa	taaaat	tcaaga	ıtaaa	ctto	cctg	aaa	aatt	aaaq	ggc ·	tgagi	tacaag	960
	aagaaatt	ag aggat	tacaaa	gaaago	cttta	gate	gagc	aag	tgaa	aatca	agc '	tatta	actgaa	1020
60	ttccaaaa						_	_						
		•												

30/62

```
gtttatgaaa gtgttgagaa taacgaatct atgatggata cttttgttaa acaccctatt
                                                                          1140
      aaaacaggta tgcttaacgg caaaaaatat atggtcatgg aaactactaa tgacgattac
                                                                          1200
  5
      tggaaagatt tcatggttga aggtcaacgt gttagaacta taagcaaaga tgctaaaaat
                                                                          1260
      aatactagaa caattatttt cccatatgtt gaaggtaaaa ctctatatga tgctatcgtt
                                                                          1320
 10
      aaagttcacg taaaaacgat tgattatgat ggacaatacc atgtcagaat cgttgataaa
                                                                          1380
      gaagcattta caaaagccaa taccgataaa tctaacaaaa aagaacaaca agataactca
                                                                          1440
      gctaagaagg aagctactcc agctacgcct agcaaaccaa caccatcacc tgttgaaaaa
                                                                          1500
 15
      gaatcacaaa aacaagacag ccaaaaagat gacaataaac aattaccaag tgttgaaaaa
                                                                          1560
      gaaaatgacg catctagtga gtcaggtaaa gacaaaacgc ctgctacaaa accaactaaa
                                                                          1620
 20
      ggtgaagtag aatcaagtag tacaactcca actaaggtag tatctacgac tcaaaatgtt
                                                                          1680
      gcaaaaccaa caactgcttc atcaaaaca acaaaagatg ttgttcaaac ttcagcaggt
                                                                          1740
      tctagcgaag caaaagatag tgctccatta caaaaagcaa acattaaaaa cacaaatgat
                                                                          1800
 25
      ggacacactc aaagccaaaa caataaaaat acacaagaaa ataaagcaaa atcattacca
                                                                          1860
      caaactggtg aagaatcaaa taaagatatg acattaccat taatggcatt attagcttta
                                                                          1920
 30
      agtagcatcg ttgcattcgt attacctaga aaacgtaaaa actaa
                                                                          1965
      <210>
             10
             654
 35
             PRT
             Staphylococcus epidermidis
      <400> 10
 40
      Tyr Thr Ile Arg Ser Cys Phe Tyr Asn Met Asn Lys Gln Gln Lys Glu
      Phe Lys Ser Phe Tyr Ser Ile Arg Lys Ser Ser Leu Gly Val Ala Ser
                  20
 45
      Val Ala Ile Ser Thr Leu Leu Leu Met Ser Asn Gly Glu Ala Gln
              35
                                  40
      Ala Ala Glu Glu Thr Gly Gly Thr Asn Thr Glu Ala Gln Pro Lys
50
          50
                                                  60
      Thr Glu Ala Val Ala Ser Pro Thr Thr Thr Ser Glu Lys Ala Pro Glu
      65
                          70
                                              75
                                                                   80
 55
      Thr Lys Pro Val Ala Asn Ala Val Ser Val Ser Asn Lys Glu Val Glu
                      85
      Ala Pro Thr Ser Glu Thr Lys Glu Ala Lys Glu Val Lys
                  100
                                       105
                                                           110
 60
```

	Ala	Pro	Lys 115	Glu	Thr	Lys	Glu	Val 120	Lys	Pro	Ala	Ala	Lys 125	Ala	Thr	Asn
5	Asn	Thr 130	Tyr	Pro	Ile	Leu	Asn 135	Gln	Glu	Leu	Arg	Glu 140	Ala	Ile	Lys	Asn
	Pro 145	Ala	Ile	Lys	Asp	Lys 150	Asp	His	Ser	Ala	Pro 155	Asn	Ser	Arg	Pro	Ile 160
10	Asp	Phe	Glu	Met	Lys 165	Lys	Lys	Asp	Gly	Thr 170	Gln	Gln	Phe	Tyr	His 175	Tyr
15	Ala	Ser	Ser	Val 180	Lys	Pro	Ala	Arg	Val 185	Ile	Phe	Thr	Asp	Ser 190	Lys	Pro
	Glu	Ile	Glu 195	Leu	Gly	Leu	Gln	Ser 200	Gly	Gln	Phe	Trp	Arg 205	Lys	Phe	Glu
20	Val	Tyr 210	Glu	Gly	Asp	Lys	Lys 215	Leu	Pro	Ile	Lys	Leu 220	۷al	Ser	Tyr	Asp
	Thr 225	Val	ГÀЗ	Asp	Tyr	Ala 230	Tyr	Ile	Arg	Phe	Ser 235	Val	Ser	Asn	Gly	Thr 240
25	Lys	Ala	Val	Lys	Ile 245	Val	Ser	Ser	Thr	His 250	Phe	Asn	Asn	Lys	Glu 255	Glu
30	Lys	Tyr	Asp	Tyr 260	Thr	Leu	Met	Glu	Phe 265	Ala	Gln	Pro	Ile	Tyr 270	Asn	Ser
	Ala	Asp	Lys 275	Phe	Lys	Thr	Glu	Glu 280	Asp	Tyr	Lys	Ala	Glu 285	Lys	Leu	Leu
35	Ala	Pro 290	Tyr	Lys	Lys	Ala	Lys 295	Thr	Leu	Glu	Arg	Gln 300	Val	Tyr	Glu	Leu
	Asn 305	Lys	Ile	Gln	Asp	Lys 310	Leu	Pro	Glu	Lys	Leu 315	Lys	Ala	Glu	Tyr	Lys 320
40	Lys	Lys	Leu	Glu	Asp 325	Thr	Lys	ГÀЗ	Ala	Leu 330	Asp	Glu	Gln	Val	Lys 335	Ser
45	Ala	Ile	Thr	Glu 340	Phe	Gln	Asn	Val	Gln 345	Pro	Thr	Asn	Glu	Lys 350	Met	Thr
	Asp	Leu	Gln 355	Asp		Lys							Val 365	Glu	Asn	Asn
50	Glu	Ser 370	Met	Met	Asp	Thr	Phe 375	Val	Lys	His	Pro	Ile 380	Lys	Thr	Gly	Met
	Leu 385	Asn	Gly	Lys	Lys	Tyr 390	Met	Val	Met	Glu	Thr 395	Thr	Asn	Asp	Asp	Tyr 400
55	Trp	Lys	Asp	Phe	Met 405	Val	Glu	Gly	Gln	Arg 410	Val	Arg	Thr	Ile	Ser 415	ГÀЗ
60	Asp	Ala	Lys	Asn 420	Asn	Thr	Arg	Thr	Ile 425	Ile	Phe	Pro	Tyr	Val 430	Glu	Gly

	Lys	Thr	Leu 435	Tyr	Asp	Ala	Ile	Val 440	Lys	Val	His	Val	Lys 445	Thr	Ile	Asp	
5	Tyr	Asp 450	Gly	Gln	Tyr	His	Val 455	Arg	Ile	Val	Asp	Lys 460	Glu	Ala	Phe	Thr	
	Lys 465	Ala	Asn	Thr	Asp	Lys 470	Ser	Asn	Lys	Lys	GLu 475	Gln	Gln	Asp	Asn	Ser 480	
10	Ala	Lys	Lys	Glu	Ala 485	Thr	Pro	Ala	Thr	Pro 490	Ser	Lys	Pro	Thr	Pro 495	Ser	
15	Pro	Val	Glu	Lys 500	Glu	Ser	Gln	Lys	Gln 505	Asp	Ser	Gln	Lys	Asp 510	Asp	Asn	
	Lys	Gln	Leu 515	Pro	Ser	Val	Glu	Lys 520	Glu	Asn	Asp	Ala	Ser 525	Ser	Glu	Ser	
20	Gly	Lys 530	Asp	Lys	Thr	Pro	Ala 535	Thr	Lys	Pro	Thr	Lys 540	Gly	Glu	Val	Glu	
	Ser 545	Ser	Ser	Thr	Thr	Pro 550	Thr	Lys	Val	Val	Ser 555	Thr	Thr	Gln	Asn	Val 560	
25	Ala	Lys	Pro	Thr	Thr 565	Ala	Ser	Ser	Lys	Thr 570	Thr	Lys	Asp	Val	Val 575	Gln	
30	Thr	Ser	Ala	Gly 580	Ser	Ser	Glu	Ala	Lys 585	Asp	Ser	Ala	Pro	Leu 590	Gln	Lys	
	Ala	Asn	Ile 595	Lys	Asn	Thr	Asn	Asp 600	Gly	His	Thr	Gln	Ser 605	Gln	Asn	Asn	
35	Lys	Asn 610	Thr	Gln	Glu	Asn	Lys 615	Ala	Lys	Ser	Leu	Pro 620	Gln	Thr	Gly	Glu	
	Glu 625	Ser	Asn	Lys	Asp	Met 630	Thr	Leu	Pro	Leu	Met 635	Ala	Leu	Leu	Ala	Leu 640	
40	Ser	Ser	Ile	Val	Ala 645	Phe	Val	Leu	Pro	Arg 650	Lys	Arg	Lys	Asn			•
45	<210 <211 <212 <213	L> 2 2> I	l1 2406 DNA Staph	nyloo	cocci	ıs ep	oider	cmidi	is								
50)> 1 ataaa		attta	acata	aa aa	atcaa	atcat	t tt	aata	ataa	ggat	tato	gat a	aatat	tattgg	60
50	tgta	atgad	cag t	taat	ggag	gg ga	aacga	aaatq	g aaa	agctt	tat	tact	taaa	aac a	aagt	gtatgg	120
	ctc	gtttt	igc t	tttt	agto	gt aa	atggo	gatta	a tgo	gcaag	gtct	cgaa	acgc	ggc 1	tgago	cagcat	180
55	acad	ccaat	cga a	aagca	acato	gc ag	gtaad	caac	g ata	agaca	aaag	caa	caaca	aga -	taago	caacaa	240
	gtad	ccgc	caa d	caaaq	ggaag	ge ge	gctca	atcat	tct	ggca	aaag	aag	eggea	aac (caac	gtatca	300
60	gcat	cago	ege a	aggga	aacag	gc to	gatga	ataca	a aad	cagca	aaag	taad	catco	caa (cgca	ccatct	360

	aacaaaccat	ctacagtagt	ttcaacaaaa	gtaaacgaaa	cacgcgacgt	agatacacaa	420
	caagcctcaa	cacaaaaacc	aactcacaca	gcaacgttca	aattatcaaa	tgctaaaaca	480
5	gcatcacttt	caccacgaat	gtttgctgct	aatgcaccac	aaacaacaac	acataaaata	540
	ttacatacaa	atgatatcca	tggccgacta	gccgaagaaa	aagggcgtgt	catcggtatg	600
10	gctaaattaa	aaacagtaaa	agaacaagaa	aagcctgatt	taatgttaga	cgcaggagac	660
	gccttccaag	gtttaccact	ttcaaaccag	tctaaaggtg	aagaaatggc	taaagcaatg	720
	aatgcagtag	gttatgatgc	tatggcagtc	ggtaaccatg	aatttgactt	tggatacgat	780
15	cagttgaaaa	agttagaggg	tatgttagac	ttcccgatgc	taagtactaa	cgtttataaa	840
	gatggaaaac	gcgcgtttaa	gccttcaacg	attgtaacaa	aaaatggtat	tcgttatgga	900
20	attattggtg	taacgacacc	agaaacaaag	acgaaaacaa	gacctgaagg	cattaaaggc	960
20	gttgaattta	gagatccatt	acaaagtgtg	acagcggaaa	tgatgcgtat	ttataaagac	1020
	gtagatacat	ttgttgttat	atcacattta	ggaattgatc	cttcaacaca	agaaacatgg	1080
25	cgtggtgatt	acttagtgaa	acaattaagt	caaaatccac	aattgaagaa	acgtattaca	1140
	gttattgatg	gtcattcaca	tacagtactt	caaaatggtc	aaatttataa	caatgatgca	1200
30	ttggcacaaa	caggtacagc	acttgcgaat	atcggtaaga	ttacatttaa	ttatcgcaat	1260
50	ggagaggtat	cgaatattaa	accgtcattg	attaatgtta	aagacgttga	aaatgtaaca	1320
	ccgaacaaag	cattagctga	acaaattaat	caagctgatc	aaacatttag	agcacaaact	1380
35	gcagaggtaa	ttattccaaa	caataccatt	gatttcaaag	gagaaagaga	tgacgttaga	1440
	acgcgtgaaa	caaatttagg	aaacgcgatt	gcagatgcta	tggaagcgta	tggcgttaag	1500
40	aatttctcta	aaaagactga	ctttgccgtg	acaaatggtg	gaggtattcg	tgcctctatc	1560
10	gcaaaaggta	aggtgacacg	ctatgattta	atctcagtat	taccatttgg	aaatacgatt	1620
	gcgcaaattg	atgtaaaagg	ttcagacgtc	tggacggctt	tcgaacatag	tttaggcgca	1680
45	ccaacaacac	aaaaggacgg	taagacagtg	ttaacagcga	atggcggttt	actacatatc	1740
	tctgattcaa	tccgtgttta	ctatgatata	aataaaccgt	ctggcaaacg	aattaatgct	1800
50	attcaaattt	taaataaaga	gacaggtaag	tttgaaaata	ttgatttaaa	acgtgtatat	1860
	cacgtaacga	tgaatgactt	cacagcatca	ggtggcgacg	gatatagtat	gttcggtggt	1920
	cctagagaag	aaggtatttc	attagatcaa	gtactagcaa	gttatttaaa	aacagctaac	1980
55	ttagctaagt	atgatacgac	agaaccacaa	cgtatgttat	taggtaaacc	agcagtaagt	2040
	gaacaaccag	ctaaaggaca	acaaggtagc	aaaggtagta	agtctggtaa	agatacacaa	2100
60	ccaattggtg	acgacaaagt	gatggatcca	gcgaaaaaac	cagctccagg	taaagttgta	2160

	ttg	ttgc	tag (cgca	taga	gg a	actg	ttagi	t ago	cggt	acag	aag	gttc	tgg	tcgca	acaata	222
	gaa	ggag	cta (ctgta	atca	ag c	aaga	gtgg	g aaa	acaai	ttgg	cta	gaat	gtc	agtg	cctaaa	228
5	ggta	agcg	cgc a	atga	gaaa	ca gi	ttac	caaa	a act	tggaa	acta	atca	aaag	ttc	aagc	ccagaa	234
	gcga	atgt	ttg 1	tatta	atta	gc a	ggtai	taggi	t tta	aatc	gcga	ctg	tacg	acg	tagaa	aaagct	240
10	agct		12														240
15	<21: <21: <21:	1> {2>]	B01 PRT	nylo	COCCI	ıs ep	pide	cmid	is				•				
	<400)> :	12														
20	Phe 1	Ile	Asn	Asn	Leu 5	His	Lys	Ile	Asn	His 10	Phe	Asn	Ile	Arg	Ile 15	Met	
	Ile	Ile	Tyr	Trp 20	Cys	Met	Thr	۷al	Asn 25	Gly	Gly	Asn	Glu	Met 30	Lys	Ala	
25	Leu	Leu	Leu 35	Lys	Thr	Ser	Val	Trp 40	Leu	Val	Leu	Leu	Phe 45	Ser	Val	Met	
	Gly	Leu 50	Trp	Gln	Val	Ser	Asn 55	Ala	Ala	Glu	Gln	His 60	Thr	Pro	Met	Lys	
30	Ala 65	His	Ala	Val	Thr	Thr 70	Ile	Asp	Lys	Ala	Thr 75	Thr	Asp	Lys	Gln	Gln 80	
35	Val	Pro	Pro	Thr	Lys	Glu	Ala	Ala	His	His 90	Ser	Gly	Lys	Glu	Ala 95	Ala	
-	Thr	Asn	Val	Ser 100	Ala	Ser	Ala	Gln	Gly 105	Thr	Ala	Asp	Asp	Thr 110	Asn	Ser	
40	Lys	Val	Thr 115	Ser	Asn	Ala	Pro	Ser 120	Asn	Lys	Pro	Ser	Thr 125	Val	Val	Ser	
	Thr	Lys 130	Val	Asn	Glu	Thr	Arg 135	Asp	Val	Asp	Thr	Gln 140	Gln	Ala	Ser	Thr	
45	Gln 145	Lys	Pro	Thr	His	Thr 150	Ala	Thr	Phe	Lys	Leu 155	Ser	Asn	Ala	Lys	Thr 160	
50	Ala	Ser	Leu	Ser	Pro 165	Arg	Met	Phe	Ala	Ala 170	Asn	Ala	Pro	Gln	Thr 175	Thr	
	Thr	His	Lys	Ile 180	Leu	His	Thr	Asn	Asp 185	Ile	His	Gly	Arg	Leu 190	Ala	Glu	
55	Glu	Lys	Gly 195	Arg	Val	Ile	Gly	Met 200	Ala	Lys	Leu	Lys	Thr 205	Val	Lys	Glu	
	Gln	Glu 210	Lys	Pro	Asp	Leu	Met 215	Leu	Asp	Ala	Gly	Asp 220	Ala	Phe	Gln	Gly	
60	Leu	Pro	Leu	Ser	Asn	Gln	Ser	Lvs	Glv	Glu	Glii	Met	Ala	Tivs	Ala	Met	

	225					230					235					240
5	Asn	Ala	Val	Gly	Tyr 245	Asp	Ala	Met	Ala	Val 250	Gly	Asn	His	Glu	Phe 255	Asp
2	Phe	Gly	Tyr	Asp 260	Gln	Leu	Lys	Lys	Leu 265	Glu	Gly	Met	Leu	Asp 270	Phe	Pro
10	Met	Leu	Ser 275	Thr	Asn	Val	Tyr	Lys 280	Asp	Gly	Lys	Arg	Ala 285	Phe	Lys	Pro
	Ser	Thr 290	Ile	Val	Thr	Lys	Asn 295	Gly	Ile	Arg	Tyr	Gly 300	Ile	Ile	Gly	Val
15	Thr 305	Thr	Pro	Glu	Thr	Lys 310	Thr	Lys	Thr	Arg	Pro 315	Glu	Gly	Ile	Lys	Gly 320
20	Val	Glu	Phe	Arg	Asp 325	Pro	Leu	Gln	Ser	Val 330	Thr	Ala	Glu	Met	Met 335	Arg
	Ile	Tyr	Lys	Asp 340	Val	Asp	Thr	Phe	Val 345	Val	Ile	Ser	His	Leu 350	Gly	Ile
25	Asp	Pro	Ser 355	Thr	Gln	Glu	Thr	Trp 360	Arg	Gly	Asp	Tyr	Leu 365	Val	Lys	Gln
	Leu	Ser 370	Gln	Asn	Pro	Gln	Leu 375	Lys	Lys	Arg	Ile	Thr 380	Val	Ile	Asp	Gly
30	His 385	Ser	His	Thr	Val	Leu 390	Gln	Asn	Gly	Gln	Ile 395	Tyr	Asn	Asn	Asp	Ala 400
35	Leu	Ala	Gln	Thr	Gly 405	Thr	Ala	Leu	Ala	Asn 410	Ile	Gly	Lys	Ile	Thr 415	Phe
	Asn	Tyr	Arg	Asn 420	Gly	Glu	Val	Ser	Asn 425	Ile	Lys	Pro	Ser	Leu 430	Ile	Asn
40	Val	Lys	Asp 435	Val	Glu	Asn	Val	Thr 440	Pro	Asn	Lys.	Ala	Leu 445	Ala	Glu	Gln
	Ile	Asn 450	Gln	Ala	Asp	Gln	Thr 455	Phe	Arg	Ala	Gln	Thr 460	Ala	Glu	Val	Ile
45	Ile 465	Pro	Asn	Asn	Thr	Ile 470	Asp	Phe	Lys	Gly	Glu 475	Arg	Asp	Asp	Val	Arg 480
50	Thr	Arg	Glu	Thr	Asn 485	Leu	Gly	Asn	Ala	Ile 490	Ala	Asp	Ala	Met	Glu 495	Ala
	Tyr	GLy	Val	Lys 500	Asn	Phe	Ser	Lys	⊥ ys 505	Thr	Asp	Phe	Ala	Val 510	Thr	Asn
55	Gly	Gly	Gly 515	Ile	Arg	Ala	Ser	Ile 520	Ala	Lys	Gly	Lys	Val 525	Thr	Arg	Tyr
60		530		Ser			535					540				
60	Val	Lys	Gly	Ser	Asp	Val	Trp	Thr	Ala	Phe	Glu	His	Ser	Leu	Gly	Ala

	545					550				•	555					560	
5	Pro	Thr	Thr	Gln	Lys 565	Asp	Gly	Lys	Thr	Val 570	Leu	Thr	Ala	Asn	Gly 57 5	Gly	
3	Leu	Leu	His	Ile 580	Ser	Asp	Ser	Ile	Arg 585	Val	Tyr	Tyr	Asp	Ile 590	Asn	Lys	
10	Pro	Ser	Gly 595	Lys	Arg	Ile	Asn	Ala 600	Ile	Gln	Ile	Leu	Asn 605	Lys	Glu	Thr	
	Gly	Lys 610	Phe	Glu	Asn	Ile	Asp 615	Leu	Гуз	Arg	Val	Tyr 620	His	Val	Thr	Met	
15	Asn 625	Asp	Phe	Thr	Ala	Ser 630	Gly	Gly	Asp	Gly	Tyr 635	Ser	Met	Phe	Gly	Gly 640	
20	Pro	Arg	Glu	Glu	Gly 645	Ile	Ser	Leu	Asp	Gln 650	Val	Leu	Ala	Ser	Tyr 655	Leu	
	Lys	Thr	Ala	Asn 660	Leu	Ala	Lys	Tyr	Asp 665	Thr	Thr	Glu	Pro	Gln 670	Arg	Met	
25	Leu	Leu	Gly 675	Lys	Pro	Ala	Val	Ser 680	Glu	Gln	Pro	Ala	Lys 685	Gly	Gln	Gln	
	Gly	Ser 690	Lys	Gly	Ser	Lys	Ser 695	Gly	Lys	Asp	Thr	Gln 700	Pro	Ile	Gly	Asp	
30	Asp 705	Lys	Val	Met	Asp	Pro 710	Ala	Lys	Lys	Pro	Ala 715	Pro	Gly	Lys	Val	Val 720	
35	Leu	Leu	Leu	Ala	His 725	Arg	Gly	Thr	Val	Ser 730	Ser	Gly	Thr	Glu	Gly 735	Ser	
	Gly	Arg	Thr	Ile 740	Glu	Gly	Ala	Thr	Val 745	Ser	Ser	Lys	Ser	Gly 750	Lys	Gln	
40	Leu	Ala	Arg 755	Met	Ser	Val	Pro	Lys 760	Gly	Ser	Ala	His	Glu 765	Lys	Gln	Leu	
	Pro	Lys 770	Thr	Gly	Thr	Asn	Gln 775	Ser	Ser	Ser	Pro	Glu 780	Ala	Met	Phe	Val	
45	Leu 785	Leu	Ala	Gly	Ile	Gly 790	Leu	Ile	Ala	Thr	Val 795	Arg	Arg	Arg	Lys	Ala 800	
	Ser																
50	<210 <211 <212 <213	L> 4 ?> I	ONA	ryloc	occi	ıs ep	oider	midi	İs								
55	<400 agto	_	L3 aat a	atgga	ıaaaa	ıg ga	ngtat	igcaa	a ato	gagag	gata	agaa	agga	acc (ggtaa	aataaa	60
	agag	gtaga	att t	tcta	ıtcaa	aa ta	aatt	gaat	: aaa	atatt	caa	taaq	gaaaa	att †	tacag	gttgga	120
60	acag	gcato	cta t	ttta	atto	gg ct	cact	taato	g tat	ttgg	ggaa	ctca	acaa	aga (ggcag	gaagca	180

gctgaaaaca atattgagaa tccaactaca ttaaaagata atgtccaatc aaaagaagtg 240 aagattgaag aagtaacaaa caaagacact gcaccacagg gtgtagaagc taaatctgaa 300 5 gtaacttcaa acaaagacac aatcgaacat gaaccatcag taaaagctga agatatatca 360 aaaaaggagg atacaccaaa agaagtagct gatgttgctg aagttcagcc gaaatcgtca 420 10 gtcactcata acgcagagac acctaaggtt agaaaagctc gttctgttga tgaaggctct 480 tttgatatta caagagattc taaaaatgta gttgaatcta ccccaattac aattcaaggt 540 aaagaacatt ttgaaggtta cggaagtgtt gatatacaaa aaaaaccaac agatttaggg 600 15 gtatcagagg taaccaggtt taatgttggt aatgaaagta atggtttgat aggagcttta 660 caattaaaaa ataaaataga ttttagtaag gatttcaatt ttaaagttag agtggcaaat 720 20 780 aaccatcaat caaataccac aggtgctgat ggttgggggt tcttatttag taaaggaaat gcagaagaat atttaactaa tggtggaatc cttggggata aaggtctggt aaattcaggc 840 ggatttaaaa ttgatactgg atacatttat acaagttcca tggacaaaac tgaaaagcaa 900 25 gctggacaag gttatagagg atacggagct tttgtgaaaa atgacagttc tggtaattca 960 caaatggttg gagaaaatat tgataaatca aaaactaatt ttttaaacta tgcggacaat 1020 30 tcaactaata catcagatgg aaagtttcat gggcaacgtt taaatgatgt catcttaact 1080 tatgttgctt caactggtaa aatgagagca gaatatgctg gtaaaacttg ggagacttca 1140 ataacagatt taggtttatc taaaaatcag gcatataatt tcttaattac atctagtcaa 1200 35 1260 agatggggcc ttaatcaagg gataaatgca aatggctgga tgagaactga cttgaaaggt 1320 tcagagttta cttttacacc agaagcgcca aaaacaataa cagaattaga aaaaaaagtt 40 1380 gaagagattc cattcaagaa agaacgtaaa tttaatccgg atttagcacc agggacagaa aaagtaacaa gagaaggaca aaaaggtgag aagacaataa cgacaccaac actaaaaaat 1440 ccattaactg gagtaattat tagtaaaggt gaaccaaaag aagagattac aaaagatccg 1500 45 attaatgaat taacagaata cggacctgaa acaatagcgc caggtcatcg agacgaattt 1560 1620 gatccgaagt taccaacagg agagaaagag gaagttccag gtaaaccagg aattaagaat 50 1680 ccagaaacag gagacgtagt tagaccgccg gtcgatagcg taacaaaata tggacctgta aaaggagact cgattgtaga aaaagaagag attccattcg agaaagaacg taaatttaat 1740 cctgatttag caccagggac agaaaaagta acaagagaag gacaaaaagg tgagaagaca 1800 55 ataacgacgc caacactaaa aaatccatta actggagaaa ttattagtaa aggtgaatcg 1860 aaagaagaaa tcacaaaaga tccgattaat gaattaacag aatacggacc agaaacgata 1920 60 acaccaggtc atcgagacga atttgatccg aagttaccaa caggagagaa agaggaagtt 1980

	ccaggtaaac	caggaattaa	gaatccagaa	acaggagatg	tagttagacc	accggtcgat	2040
5	agcgtaacaa	aatatggacc	tgtaaaagga	gactcgattg	tagaaaaaga	agagattcca	2100
J	ttcgagaaag	aacgtaaatt	taatcctgat	ttagcaccag	ggacagaaaa	agtaacaaga	2160
	gaaggacaaa	aaggtgagaa	gacaataacg	acaccaacac	taaaaaatcc	attaactgga	2220
10	gtaattatta	gtaaaggtga	accaaaagaa	gaaatcacaa	aagatccgat	taatgaatta	2280
	acagaatacg	gaccagaaac	gataacacca	ggtcatcgag	acgaatttga	tccgaagtta	2340
15	ccaacaggag	agaaagaaga	agttccaggt	aaaccaggaa	ttaagaatcc	agaaacagga	2400
13	gacgtagtta	gaccaccggt	cgatagcgta	acaaaatatg	gacctgtaaa	aggagactcg	2460
	attgtagaaa	aagaagagat	tccattcaag	aaagaacgta	aatttaatcc	ggatttagca	2520
20	ccagggacag	aaaaagtaac	aagagaagga	caaaaaggtg	agaagacaat	aacgacgcca	2580
	acactaaaaa	atccattaac	tggagaaatt	attagtaaag	gtgaatcgaa	agaagaaatc	2640
25	acaaaagatc	cgattaatga	attaacagaa	tacggaccag	aaacgataac	accaggtcat	2700
45	cgagacgaat	ttgatccgaa	gttaccaaca	ggagagaaag	aggaagttcc	aggtaaacca	2760
	ggaattaaga	atccagaaac	aggagatgta	gttagaccac	cggtcgatag	cgtaacaaaa	2820
30	tatggacctg	taaaaggaga	ctcgattgta	gaaaaagaag	agattccatt	cgagaaagaa	2880
	cgtaaattta	atcctgattt	agcaccaggg	acagaaaaag	taacaagaga	aggacaaaaa	2940
35	ggtgagaaga	caataacgac	gccaacacta	aaaaatccat	taactggaga	aattattagt	3000
	aaaggtgaat	cgaaagaaga	aatcacaaaa	gatccgatta	atgaattaac	agaatacgga	3060
÷	ccagaaacga	taacaccagg	tcatcgagac	gaatttgatc	cgaagttacc	aacaggagag	3120
40	aaagaggaag	ttccaggtaa	accaggaatt	aagaatccag	aaacaggaga	cgtagttaga.	3180
	ccaccggtcg	atagcgtaac	aaaatatgga	cctgtaaaag	gagactcgat	tgtagaaaaa	3240
45	gaagaaattc	cattcaagaa	agaacgtaaa	tttaatcctg	atttagcacc	agggacagaa	3300
	aaagtaacaa	gagaaggaca	aaaaggtgag	aagacaataa	cgacgccaac	actaaaaaat	3360
	ccattaactg	gagaaattat	tagtaaaggt	gaatcgaaag	aagaaatcac	aaaagatccg	3420
50	attaatgaat	taacagaata	cggaccagaa	acgataacac	caggtcatcg	agacgaattt	3480
	gatccgaagt	taccaacagg	agagaaagag	gaagttccag	gtaaaccagg	aattaagaat	3540
55	ccagaaacag	gagatgtagt	tagaccaccg	gtcgatagcg	taacaaaata	tggacctgta	3600
	aaaggagact	cgattgtaga	aaaagaagaa	attccattcg	agaaagaacg	taaatttaat	3660
	cctgatttag	caccagggac	agaaaaagta	acaagagaag	gacaaaaagg	tgagaagaca	3720
60	ataacgacgc	caacactaaa	aaatccatta	actggagaaa	ttattagtaa	aggtgaatcg	3780

```
aaagaagaaa tcacaaaaga tccgattaat gaattaacag aatacggacc agaaacgata
                                                                          3840
     acaccaggtc atcgagacga atttgatccg aagttaccaa caggagagaa agaggaagtt
                                                                          3900
 5
     ccaggtaaac caggaattaa gaatccagaa acaggagatg tagttagacc accggtcgat
                                                                          3960
     agcgtaacaa aatatggacc tgtaaaagga gactcgattg tagaaaaaga agaaattcca
                                                                          4020
10
     ttcgagaaag aacgtaaatt taatcctgat ttagcaccag ggacagaaaa agtaacaaga
                                                                          4080
     gaaggacaaa aaggtgagaa gacaataacg acgccaacac taaaaaatcc attaactgga
                                                                          4140
     gaaattatta gtaaaggtga atcgaaagaa gaaatcacaa aagatccagt taatgaatta
                                                                          4200
15
     acagaattcg gtggcgagaa aataccgcaa ggtcataaag atatctttga tccaaactta
                                                                          4260
     ccaacagatc aaacggaaaa agtaccaggt aaaccaggaa tcaagaatcc agacacagga
                                                                          4320
20
     aaagtgatcg aagagccagt ggatgatgtg attaaacacg gaccaaaaac gggtacacca
                                                                          4380
     gaaacaaaaa cagtagagat accgtttgaa acaaaacgtg agtttaatcc aaaattacaa
                                                                          4440
     cctggtgaag agcgagtgaa acaagaagga caaccaggaa gtaagacaat cacaacacca
                                                                          4500
25
     atcacagtga acccattaac aggtgaaaaa gttggcgagg gtcaaccaac agaagagatc
                                                                          4560
     acaaaacaac cagtagataa gattgtagag ttcggtggag agaaaccaaa agatccaaaa
                                                                          4620
30
     ggacctgaaa acccagagaa gccgagcaga ccaactcatc caagtggccc agtaaatcct
                                                                          4680
     aacaatccag gattatcgaa agacagagca aaaccaaatg gcccagttca ttcaatggat
                                                                          4740
     aaaaatgata aagttaaaaa atctaaaatt gctaaagaat cagtagctaa tcaagagaaa
                                                                          4800
35
     aaacgagcag aattaccaaa aacaggttta gaaagcacgc aaaaaggttt gatctttagt
                                                                          4860
     agtataattg gaattgctgg attaatgtta ttqqctcqta gaaqaaagaa ttaa
                                                                          4914
40
     <210>
            14
     <211>
            1637
     <212>
           PRT
            Staphylococcus epidermidis
     <213>
45
     <400> 14
     Ser Gly Lys Tyr Gly Lys Arg Ser Met Gln Met Arg Asp Lys Lys Gly
50
     Pro Val Asn Lys Arg Val Asp Phe Leu Ser Asn Lys Leu Asn Lys Tyr
     Ser Ile Arg Lys Phe Thr Val Gly Thr Ala Ser Ile Leu Ile Gly Ser
             35
                                  40
                                                      45
55
     Leu Met Tyr Leu Gly Thr Gln Gln Glu Ala Glu Ala Glu Asn Asn
         50
                             55
                                                  60
     Ile Glu Asn Pro Thr Thr Leu Lys Asp Asn Val Gln Ser Lys Glu Val
60
     65
                         70
                                              75
                                                                  80
```

	Lys	Ile	Glu	Glu	Val 85	Thr	Asn	Lys	Asp	Thr 90	Ala	Pro	Gln	Gly	Val 95	Glu
5	Ala	Lys	Ser	Glu 100	Val	Thr	Ser	Asn	Lys 105	Asp	Thr	Ile	Glu	His 110	Glu	Pro
10 -	Ser	Val	Lys 115	Ala	Glu	Asp	Ile	Ser 120	Lys	Lys	Glu	Asp	Thr 125	Pro	Lys	Glu
	Val	Ala 130	Asp	Val	Ala	Glu	Val 135	Gln	Pro	Lys	Ser	Ser 140	Val	Thr	His	Asn
15	Ala 145	Glu	Thr	Pro	ГÃЗ	Val 150	Arg	Lys	Ala	Arg	Ser 155	Val	Asp	Glu	Gly	Ser 160
	Phe	Asp	Ile	Thr	Arg 165	Asp	Ser	Lys	Asn	Val 170	Val	Glu	Ser	Thr	Pro 175	Ile
20	Thr	Ile	Gln	Gly 180	Lys	Glu	His	Phe	Glu 185	Gly	Tyr	Gly	Ser	Val 190	Asp	Ile
25	Gln	Lys	Lys 195	Pro	Thr	Asp	Leu	Gly 200	Val	Ser	Glu	Val	Thr 205	Arg	Phe	Asn
	Val	Gly 210	Asn	Glu	Ser	Asn	Gly 215	Leu	Ile	Gly	Ala	Leu 220	Gln	Leu	ГÀЗ	Asn
30	Lys 225	Ile	Asp	Phe	Ser	Lys 230	Asp	Phe	Asn	Phe	Lys 235	Val	Arg	Val	Ala	Asn 240
	Asn	His	Gln	Ser	Asn 245	Thr	Thr	Gly	Ala	Asp 250	Gly	Trp	Gly	Phe	Leu 255	Phe
35	Ser	Lys	Gly	Asn 260	Ala	Glu	Glu	Tyr	Leu 265	Thr	Asn	Gly	Gly	Ile 270	Leu	Gly
.: 40	Asp	Lys	Gly 275	Leu	Val	Asn	Ser	Gly 280	Gly	Phe	Lys	Ile	Asp 285	Thr	Gly	Tyr
	Ile	Tyr 290	Thr	Ser	Ser	Met	Asp 295	Lys	Thr	Glu	Lys	Gln 300	Ala	Gly	Gln	Gly
45	Tyr 305	Arg	Gly	Tyr	Gly	Ala 310	Phe	Val	Lys	Asn	Asp 315	Ser	Ser	Gly	Asn	Ser 320
	Gln	Met	Val	Gly	Glu 325	Asn	Ile	Asp		Ser 330	• .	Thr	Asn	Phe	Leu 335	Asn
50	Tyr	Ala	Asp	Asn 340	Ser	Thr	Asn	Thr	Ser 345	Asp	Gly	Lys	Phe	His 350	Gly	Gln
55	Arg	Leu	Asn 355	Asp	Val	Ile	Leu	Thr 360	Tyr	Val	Ala	Ser	Thr 365	Gly	Lys	Met
	Arg	Ala 370	Glu	Tyr	Ala	Gly	Lys 375	Thr	Trp	Glu	Thr	Ser 380	Ile	Thr	Asp	Leu
60	Gly 385	Leu	Ser	Lys	Asn	Gln 390	Ala	Tyr	Asn	Phe	Leu 395	Ile	Thr	Ser	Ser	Gln 400

	Arg	Trp	Gly	Leu	Asn 405	Gln	Gly	Ile	Asn	Ala 410	Asn	Gly	Trp	Met	Arg 415	Thr
5	Asp	Leu	Lys	Gly 420	Ser	Glu	Phe	Thx	Phe 425	Thr	Pro	Glu	Ala	Pro 430	Lys	Thr
10	Ile	Thr	Glu 435	Leu	Glu	Lys	Lys	Val 440	Glu	Glu	Ile	Pro	Phe 445	Lys	Lys	Glu
	Arg	Lys 450	Phe	Asn	Pro	Asp	Leu 455	Ala	Pro	Gly	Thr	Glu 460	Lys	Val	Thr	Arg
15	Glu 465	Gly	Gln	Lys	Gly	Glu 470	Lys	Thr	Ile	Thr	Thr 475	Pro	Thr	Leu	Lys	Asn 480
	Pro	Leu	Thr	Gly	Val 485	Ile	Ile	Ser	rys .	Gly 490	Glu	Pro	Lys	Glu	Glu 495	Ile
20	Thr	Lys	Asp	Pro 500	Ile	Asn	Glu	Leu	Thr 505	Glu	Tyr	Gly	Pro	Glu 510	Thr	Ile
25	Ala	Pro	Gly 515	His	Arg	qzA	Glu	Phe 520	Asp	Pro	Lys	Leu	Pro 525	Thr	Gly	Glu
	Lys	Glu 530	Glu	Val	Pro	Gly	Lys 535	Pro	Gly	Ile	Lys	Asn 540	Pro	Glu	Thr	Gly
30	Asp 545	Val	Val	Arg	Pro	Pro 550	Val	Asp	Ser	Val	Thr 555	Lys	Tyr	Gly	Pro	Val 560
	Lys	Gly	Asp	Ser	11e 565	Val	Glu	Ъўз	Glu	Glu 570	Ile	Pro	Phe	Glu	Lys 575	Glu
35	Arg	Lys	Phe	Asn 580	Pro	Asp	Leu	Ala	Pro 585	Gly	Thr	Glu	Lys	Val 590	Thr	Arg
40	Glu	Gly	Gln 595	Lys	Gly	Glu	Lys	Thr 600	Ile	Thr	Thr	Pro	Thr 605	Leu	Lys	Asn
	Pro	Leu 610	Thr	Gly	Glu	Ile	Ile 615	Ser	Lys	Gly	Glu	Ser 620	Lys	Glu	Glu	Ile
45	Thr 625	Lys	Asp	Pro	Ile	Asn 630	Glu	Leu	Thr	Glu	Tyr 635	Gly	Pro	Glu	Thr	Ile 640
	Thr	Pro	Gly	His	Arg 645	Asp	Glu	Phe	Asp	Pro 650		Leu	Pro	Thr	Gly 655	Glu
50	Lys	Glu	Glu	Val 660	Pro	Gly	Lys	Pro	Gly 665	Ile	Lys	Asn	Pro	Glu 670	Thr	Gly
55	Asp	Val	Val 675	Arg	Pro	Pro	Val	Asp 680	Ser	Val	Thr	ГЛЗ	Tyr 685	Gly	Pro	Val
	Lys	Gly 690	Asp	Ser	Ile	Val	Glu 695	Lys	Glu	Glu	Ile	Pro 700	Phe	Glu	Lys	Glu
60	Arg 705	Lys	Phe	Asn	Pro	Asp 710	Leu	Ala	Pro	Gly	Thr 715	Glu	Lys	Val	Thr	Arg 720

	Glu	Gly	Gln	Lys	Gly 725	Glu	Lys	Thr	Ile	Thr 730	Thr	Pro	Thr	Leu	Lys 735	Asn
5	Pro	Leu	Thr	Gly 740	Val	Ile	Ile	Ser	Lys 745	Gly	Glu	Pro	Lys	Glu 750	Glu	Ile
10	Thr	ГÀ2	Asp 755	Pro	Ile	Asn	Glu	Leu 760	Thr	Glu	Tyr	Gly	Pro 765	Glu	Thr	Ile
	Thr	Pro 770	Gly	His	Arg	Asp	Glu 775	Phe	Asp	Pro	Lys	Leu 780	Pro	Thr	Gly	Glu
15	Lys 785	Glu	Glu	Val	Pro	Gly 790	Lys	Pro	Gly	Ile	Lys 795	Asn	Pro	Glu	Thr	Gly 800
	Asp	Val	Val	Arg	Pro 805	Pro	Val	Asp	Ser	Val 810	Thr	Lys	Tyr	Gly	Pro 815	Val
20	Lys	Gly	Asp	Ser 820	Ile	Val	Glu	Lys	Glu 825	Glu	Ile '	Pro	Phe	830	Lys	Glu
25	Arg	Lys	Phe 835	Asn	Pro	Asp	Leu	Ala 840	Pro	Gly	Thr	Glu	Lys 845	Val	Thr	Arg
	Glu	Gly 850	Gln	Lys	Gly	Glu	Lys 855	Thr	Ile	Thr	Thr	Pro 860	Thr	Leu	Lys	Asn
30	Pro 865	Leu	Thr	Gly	Glu	Ile 870	Ile	Ser	Lys	Gly	Glu 875	Ser	Lys	Glu	Glu	Ile 880
	Thr	Lys	Asp	Pro	Ile 885	Asn	Glu	Leu	Thr	Glu 890	Tyr	Gly	Pro	Glu	Thr 895	Ile
35	Thr	Pro	Gly	His 900	Arg	Asp	Glu	Phe	Asp 905	Pro	Lys	Leu	Pro	Thr 910	Gly	Glu
40	Lys	Glu	Glu 915	Val	Pro	Gly	Lys	Pro 920	Gly	Ile	Lys	Asn	Pro 925	Glu	Thr	Gly
	Asp	Val 930	Val	Arg	Pro	Pro	Vaİ 935	Asp	Ser	Val	Thr	Lys 940	Tyr	Gly	Pro	Val
45	Lys 945	Gly	Asp	Ser	Ile	Val 950	Glu	Lys	Glu	Glu	Ile 955	Pro	Phe	Glu	Lys	Glu 960
	Arg	Lys	Phe	Asn	Pro 965	Asp	Leu	Ala	Pro	Gly 970	Thr	Glu	Lys	Val	Thr 975	Arg
50	Glu	Gly	Gln	Lys 980	Gly	Glu	Lys	Thr	Ile 985	Thr	Thr	Pro	Thr	Leu 990	Lys	Asn
55	Pro	Leu	Thr 995	GŢĀ	Glu	Ile	Ile	Ser 1000		Gly	y Glu	ı Ser	Lys 100		Lu Gi	lu Ile
	Thr	Lys 1010		Pro) Ile	e Asn	Glu 101		eu Th	ır Gl	lu Ty		.y 1)20	Pro (Slu :	C hr
60	Ile	Thr 1025		Gl ⁷	y His	Arg	Asp 103		u Ph	ne As	sp Pr		/s])35	Leu I	Pro S	Thr

	Gly	Glu 1040	Lys	Glu	Glu	Val	Pro 1045	Gly	Lys	Pro	Gly	Ile 1050	Lys	Asn	Pro
5	Glu	Thr 1055	Gly	Asp	Val	Val	Arg 1060	Pro	Pro	Val	Asp	Ser 1065	Val	Thr	Lys
10	Tyr	Gly 1070	Pro	Val	Lys	Gly	Asp 1075	Ser	Ile	Val	Glu	Lys 1080	Glu	Glu	Ile
10	Pro	Phe 1085	Lys	Lys	Glu	Arg	Lys 1090	Phe	Asn	Pro	Asp	Leu 1095	Ala	Pro	Gly
15	Thr	Glu 1100	Lys	Val	Thr	Arg	Glu 1105	Gly	Gln	Lys	Gly	Glu 1110	Lys	Thr	Ile
	Thr	Thr 1115	Pro	Thr	Leu	Lys	Asn 1120	Pro	Leu	Thr	Gly	Glu 1125	Ile	Ile	Ser
20	Lys	Gly 1130	Glu	Ser	Lys	Glu	Glu 1135	Ile	Thr	Lys	Asp	Pro 1140	Ile	Asn	Glu
25	Leu	Thr 1145			Gly		Glu 1150					Gly 1155		_	Asp
	Glu	Phe 1160	Asp	Pro	Lys	Leu	Pro 1165	Thr	Gly	Glu	Lys	Glu 1170	Glu	Val	Pro
30	Gly	Lys 1175	Pro	Gly	Ile	Lys	Asn 1180	Pro	Glu	Thr	Gly	Asp 1185	Val	Val	Arg
	Pro	Pro 1190	Val	Asp	Ser	Val	Thr 1195	Lys	Tyr	Gly	Pro	Val 1200	Lys	Gly	Asp
35	Ser	Ile 1205	Val	Glu	Lys	Glu	Glu 1210	Ile	Pro	Phe	Glu	Lys 1215	Glu	Arg	Lys
40	Phe	Asn 1220	Pro	Asp	Leu	Ala	Pro 1225	Gly	Thr	Glu	Lys	Val 1230	Thr	Arg	Glu
	Gly	Gln 1235	Lys	Gly	Glu	Lys	Thr 1240	Ile	Thr	Thr	Pro	Thr 1245	Leu	Lys	Asn
45	Pro	Leu 1250	Thr	Gly	Glu	Ile	Ile 1255	Ser	Lys	Gly	Glu	Ser 1260	Lys	Glu	Glu
	Ile	Thr 1265	Lys	Asp	Pro	Ile	Asn 1270	Glu	Leu	Thr	Glu	Tyr 1275	Gly	Pro	Glu
50	Thr	Ile 1280	Thr	Pro	Gly	His	Arg 1285	Asp	Glu	Phe	Asp	Pro 1290	Lys	Leu	Pro
55	Thr	Gly 1295	Glu	Lys	Glu	Glu	Val 1300	Pro	Gly	Lys	Pro	Gly 1305	Ile	Lys	Asn
- •	Pro	Glu 1310	Thr	Gly	Asp	Val	Val 1315	Arg	Pro	Pro	Val	Asp 1320	Ser	Val	Thr
60	Lys	Tyr 1325	Gly	Pro	Val	Lys	Gly 1330	Asp	Ser	Ile	Val	Glu 1335	Lys	Glu	Glu

	Ile	Pro 1340	Phe	Glu	Lys	Glu	Arg 1345	Lys	Phe	Asn	Pro	Asp 1350	Leu	Ala	Pro
5	Gly	Thr 1355	Glu	Ъуs	Val	Thr	Arg 1360	Glu	Gly	Gln	ГÀЗ	Gly 1365	Glu	Lys	Thr
10	Ile	Thr 1370	Thr	Pro	Thr	Leu	Lys 1375	Asn	Pro	Leu	Thr	Gly 1380	Glu	Ile	Ile
	Ser	Lys 1385	Gly	Glu	Ser	Lys	Glu 1390	Glu	Ile	Thr	Lys	Asp 1395	Pro	Val	Asn
15	Glu	Leu 1400	Thr	Glu	Phe	Gly	Gly 1405	Glu	Lys	Ile	Pro	Gln 1410	Gly	His	Lys
	Asp	Ile 1415	Phe	Asp	Pro	Asn	Leu 1420	Pro	Thr	Asp	Gln	Thr 1425	Glu	Lys	Val
20	Pro	Gly 1430	Lys	Pro	Gly	Ile	Lys 1435	Asn	Pro	Asp	Thr	Gly 1440	Lys	Val	Ile
25	Glu	Glu 1445		Val		Asp				His		Pro 1455	Lys	Thr	Gly
•	Thr	Pro 1460	Glu	Thr	Lys	Thr	Val 1465	Glu	Ile	Pro	Phe	Glu 1470	Thr	Lys	Arg
30	Glu	Phe 1475	Asn	Pro	Lys	Leu	Gln 1480	Pro	Gly	Glu	Glu	Arg 1485	Val	Lys	Gln
	Glu	Gly 1490	Gln	Pro	Gly	Ser	Lys 1495	Thr	Ile	Thr	Thr	Pro 1500	Ile	Thr	Val
35	Asn	Pro 1505	Leu •	Thr	Gly	Glu	Lys 1510	Val	Gly	Glu	Gly	Gln 1515	Pro	Thr	Glu
40	Glu	Ile 1520	Thr	Lys	Gln	Pro	Val 1525	Asp	Lys	Ile	Val	Glu 1530	Phe	Gly	Gly
	Glu	Lys 1535	Pro	Lys	Asp	Pro	Lys 1540	Gly	Pro	Glu	Asn	Pro 1545	Glu	Lys	Pro
45	Ser	Arg 1550	Pro	Thr	His	Pro	Ser 1555	Gly	Pro	Val	Asn	Pro 1560	Asn	Asn	Pro
	Gly	Leu 1565	Ser	Lys	Asp	Arg	Ala 1570	Lys	Pro	Asn	Gly	Pro 1575	Val	His	Ser
50	Met	Asp 1580	Lys	Asn	Asp	Lys	Val 1585	Lys	Lys	Ser	Lys	Ile 1590	Ala	Lys	Glu
55	Ser	Val 1595	Ala	Asn	Gln	Glu	Lys 1600	Lys	Arg	Ala	Glu	Leu 1605	Pro	Lys	Thr
	Gly	Leu 1610	Glu	Ser	Thr	Gln	Lys 1615	Gly	Leu	Ile	Phe	Ser 1620	Ser	Ile	Ile
60	Gly	Ile 1625	Ala	Gly	Leu	Met	Leu 1630	Leu	Ala	Arg	Arg	Arg 1635	Lys	Asn	

15 <210> 1923 <211> DNA Staphylococcus epidermidis <400> 15 ggaaggagta tgttgatggc taaatatcga gggaaaccgt ttcaattata tgtaaagtta 60 10 togtgttoga caatgatggo gacaagtato attttaacga atatottgco gtacgatgco 120 caagctgcat ctgaaaagga tactgaaatt acaaaagaga tattatctaa gcaagattta 180 ttagacaaag ttgacaaggc aattcgtcaa attgagcaat taaaacagtt atcggcttca 240 15 300 tctaaagaac attataaagc acaactaaat gaagcgaaaa cagcatcgca aatagatgaa atcataaaac gagctaatga gttggatagc aaagacaata aaagttctca cactgaaatg 360 20 aacggtcaaa gtgatataga cagtaaatta gatcaattgc ttaaagattt aaatgaggtt 420 tettcaaatg ttgatagggg tcaacaagt ggcgaggacg atettaatgc aatgaaaaat 480 gatatgtcac aaacggctac aacaaaacat ggagaaaaag atgataaaaa tgatgaagca 540 25 atggtaaata aggcgttaga agacctagac catttgaatc agcaaataca caaatcgaaa 600 gatgcatcga aagatacatc ggaagatcca gcagtgtcta caacagataa taatcatgaa 660 30 gtagctaaaa cgccaaataa tgatggttct ggacatgttg tgttaaataa attcctttca 720 aatgaagaga atcaaagcca tagtaatcga ctcactgata aattacaagg aagcgataaa 780 attaatcatg ctatgattga aaaattagct aaaagtaatg cctcaacgca acattacaca 840 35 tatcataaac tgaatacgtt acaatcttta gatcaacgta ttgcaaatac gcaacttcct 900 aaaaatcaaa aatcagactt aatgagcgaa gtaaataaga cgaaagagcg tataaaaagt 960 40 caacgaaata ttattttgga agaacttgca cgtactgatg ataaaaagta tgctacacaa 1020 agcattttag aaagtatatt taataaagac gaggcagtta aaattctaaa agatatacgt 1080 gttgatggta aaacagatca acaaattgca gatcaaatta ctcgtcatat tgatcaatta 1140 45 tctctgacaa cgagtgatga tttattaacg tcattgattg atcaatcaca agataagtcg 1200 ctattgattt ctcaaatttt acaaacgaaa ttaggaaaag ctgaagcaga taaattggct 1260 50 aaagattgga cgaataaagg attatcaaat cgccaaatcg ttgaccaatt gaagaaacat 1320 tttgcatcaa ctggcgacac gtcttcagat gatatattaa aagcaatttt gaataatgcc 1380 aaagataaaa aacaagcaat tgaaacgatt ttagcaacac gtatagaaag acaaaaggca 1440 55 1500 gttaaatcgg cattgaatgg taaagcggat gatttattga atttacaaaa gagactcaat 1560 60 caaacgaaaa aagatataga ttatatttta tcaccaatag taaatcgtcc aagtttacta 1620

	gat	cgat	tga	ataa	aaat	gg g	aaaa	cgac	a ga	ttta	aata	agt	tage	aaa	ttta	atgaat	1680
5	caa	ggat	cag	attt	atta	ga c	agta	ttcca	a ga	tata	ccca	cac	caaa	gcc	agaa	aagacg	1740
J	tta	acac	ttg	gtaa	aggta	aa t	ggat	tgtta	a ag	tggat	ttat	taaa	atgci	tga	tggta	aatgta	1800
	tct	ttgc	cta	aagc	3333	ga a	acga	taaaa	a ga	acati	tggt	tgc	egata	atc	tgtaa	attgtt	1860
10	ggt	gcaa	tgg (gtgt	acta	at g	attt	ggtta	a tc	acgad	ogca	ata	agtt	gaa	aaata	aaagca	1920
	taa																1923
15	<210 <210 <210 <210	1> (2>)	16 640 PRT Stapl	hylo	cocci	ıs ej	pide:	cmid	Ĺs								
20	<400	0> :	16														
20	Gly 1	Arg	Ser	Met	Leu 5	Met	Ala	Lys	Tyr	Arg 10	Gly	Lys	Pro	Phe	Gln 15	Leu	
25	Tyr	Val	Lys	Leu 20	Ser	Cys	Ser	Thr	Met 25	Met	Ala	Thr	Ser	Ile 30	Ile	Leu	•
	Thr	Asn	Ile 35	Leu	Pro	Tyr	Asp	Ala 40	Gln	Ala	Ala	Ser	Glu 45	Lys	Asp	Thr	
30	Glu	Ile 50	Thr	Lys	Glu	Ile	Leu 55	Ser	Lys	Gln	Asp	Leu 60	Leu	Asp	Lys	Val	
35	Asp 65	Lys	Ala	Ile	Arg	Gln 70	Ile	Glu	Gln	Leu	Lys 75	Gln	Leu	Ser	Ala	Ser 80	
	Ser	Lys	Glu	His	Tyr 85	Lys	Ala	Gln	Leu	Asn 90	Glu	Ala	Lys	Thr	Ala 95	Ser	
40	Gln	Ile	Asp	Glu 100	Ile	Ile	Lys	Arg	Ala 105	Asn	Glu	Leu	Asp	Ser 110	Lys	Asp	
	Asn	Lys	Ser 115	Ser	His	Thr	Glu	Met 120	Asn	Gly	Gln	Ser	Asp 125	Ile	Asp	Ser ·	
45	Lys	Leu 130	Asp	Gln	Leu	Leu	Lys 135	Asp	Leu	Asn	Glu	Val 140	Ser	Ser	Asn	Val	,
50	Asp 145	Arg	Gly	Gln	Gln	Ser 150	Gly	Glu	Asp	Asp	Leu 155	Asn	Ala	Met	Lys	Asn 160	
	Asp	Met	Ser	Gln	Thr 165	Ala	Thr	Thr	Lys	His 170	Gly	Glu	Lys	Asp	Asp 175	Lys	
55	Asn	Asp	Glu	Ala 180	Met	Val	Asn	Lys	Ala 185	Leu	Glu	Asp	Leu	Asp 190	His	Leu	
	Asn	Gln	Gln 195	Ile	His	Lys	Ser	Lys 200	Asp	Ala	Ser	Lys	Asp 205	Thr	Ser	Glu	
60	Asp	Pro	Ala	Val	Ser	Thr	Thr	Asp	Asn	Asn	His	Glu	Val	Ala	Lvs	Thr	

Pro Asn Asp Gly Ser Gly His Val Val Leu Asn Lys Phe Leu Ser Asn Glu Glu Asn Gln Ser His Ser Asn Arg Leu Thr Asp Lys Leu Gln Gly Ser Asp Lys Ile Asn His Ala Met Ile Glu Lys Leu Ala Lys Ser Asn Ala Ser Thr Gln His Tyr Thr Tyr His Lys Leu Asn Thr Leu Gln Ser Leu Asp Gln Arg Ile Ala Asn Thr Gln Leu Pro Lys Asn Gln Lys Ser Asp Leu Met Ser Glu Val Asn Lys Thr Lys Glu Arg Ile Lys Ser Gln Arg Asn Ile Ile Leu Glu Glu Leu Ala Arg Thr Asp Asp Lys Tyr Ala Thr Gln Ser Ile Leu Glu Ser Ile Phe Asn Lys Asp Glu Ala Val Lys Ile Leu Lys Asp Ile Arg Val Asp Gly Lys Thr Asp Gln Gln Ile Ala Asp Gln Ile Thr Arg His Ile Asp Gln Leu Ser Leu Thr Thr Ser Asp Asp Leu Leu Thr Ser Leu Ile Asp Gln Ser Gln Asp Lys Ser Leu Leu Ile Ser Gln Ile Leu Gln Thr Lys Leu Gly Lys Ala Glu Ala Asp Lys Leu Ala Lys Asp Trp Thr Asn Lys Gly Leu Ser Asn Arg Gln Ile Val Asp Gln Leu Lys Lys His Phe Ala Ser Thr Gly Asp Thr Ser Ser Asp Asp Ile Leu Lys Ala Ile Leu Asn Asn Ala Lys Asp Lys Gln Ala Ile Glu Thr Ile Leu Ala Thr Arg Ile Glu Arg Gln Lys Ala Lys Leu Leu Ala Asp Leu Ile Thr Lys Ile Glu Thr Asp Gln Asn Lys Ile Phe Asn Leu Val Lys Ser Ala Leu Asn Gly Lys Ala Asp Asp Leu Leu Asn Leu Gln Lys Arg Leu Asn Gln Thr Lys Lys Asp Ile Asp Tyr Ile Leu Ser Pro Ile Val Asn Arg Pro Ser Leu Leu Asp Arg Leu Asn

		530					535					540				
5	Lys 545	Asn	Gly	Lys	Thr	Thr 550	Asp	Leu	Asn	Lys	Leu 555	Ala	Asn	Leu	Met	Asn 560
J	Gln	Gly	Ser	Asp	Leu 565	Leu	Asp	Ser	Ile	Pro 570	Asp	Ile	Pro	Thr	Pro 575	ГЛЗ
10	Pro	Glu	Lys	Thr 580	Leu	Thr	Leu	Gly	Lys 585	Gly	Asn	Gly	Leu	Leu 590	Ser	Gly
	Leu	Leu	Asn 595	Ala	Asp ·	Gly	Asn	Val 600	Ser	Leu	Pro	Lys	Ala 605	Gly	Glu	Thr
15	Ile	Lys 610	Glu	His	Trp	Leu	Pro 615	Ile	Ser	Val	Ile	Val 620	Gly	Ala	Met	Gly
20	Val. 625	Leu	Met	Ile	Trp	Leu 630	Ser	Arg	Arg	Asn	Lys 635	Leu	Lys	Asn	Lys	Ala 640
20	<210 <211 <212	L> .	L7 522 PRT													
25	<213			ryloc	cocci	ıs ep	oider	cmidi	s							
20	<400)> 3	L7												-	
30	Ala 1	Ser	Glu	Thr	Pro 5	Ile	Thr	Ser	Glu	Ile 10	Ser	Ser	Asn	Ser	Glu 15	Thr
	Val	Ala	Asn	Gln 20	Asn	Ser	Thr	Thr	Ile 25	Lys	Asn	Ser	Gln	Lys 30	Glu	Thr
35	Val	Asn	Ser 35	Thr	Ser	Leu	Glu	Ser 40	Asn	Hìs	Ser	Asn	Ser 45	Thr	Asn	Lys
	Gln	Met 50	Ser	Ser	Glu	Val	Thr 55	Asn	Thr	Ala	Gln	Ser 60	Ser	Glu	Lys	Ala
40	Gly 65	Ile	Ser	Gln	Gln	Ser 70	Ser	Glu	Thr	Ser	Asn 75	Gln	Ser	Ser	Lys ·	Leu 80
45	Asn	Thr	Tyr	Ala	Ser 85	Thr	Asp	His	Val	Glu 90	Ser	Thr	Thr	Ile	Asn 95	Asn
10	Asp	Asn	Thr	Ala 100	Gln	Gln	Asp	Gln	Asn 105	Lys	Ser	Ser	Asn	Val 110	Thr	Ser
50	Lys	Ser	Thr 115	Gln	Ser	Asn	Thr	Ser 120	Ser	Ser	Glu	Lys	Asn 125	Ile	Ser	Ser
	Asn	Leu 130	Thr	Gln	Ser	Ile	Glu 135	Thr	Lys	Ala	Thr	Asp 140	Ser	Leu	Ala	Thr
55	Ser 145	Glu	Ala	Arg	Thr	Ser 150	Thr	Asn	Gln	Ile	Ser 155	Asn	Leu	Thr	Ser	Thr 160
60	Ser	Thr	Ser	Asn	Gln 165	Ser	Ser	Pro	Thr	Ser 170	Phe	Ala	Asn	Leu	Arg 175	Thr

	Phe	Ser	Arg	Phe 180	Thr	Val	Leu	Asn	Thr 185	Met	Ala	Ala	Pro	Thr 190	Thr	Thr
5	Ser	Thr	Thr 195	Thr	Thr	Ser	Ser	Leu 200	Thr	Ser	Asn	Ser	Val 205	Val	Val	Asn
	Lys	Asp 210	Asn	Phe	Asn	Glu	His 215	Met	Asn	Leu	Ser	Gly 220	Ser	Ala	Thr	Tyr
10	Asp 225	Pro	Lys	Thr	Gly	Ile 230	Ala	Thr	Leu	Thr	Pro 235	Asp	Ala	Tyr	Ser	Gln 240
15	Lys	Gly	Ala	Ile	Ser 245	Leu	Asn	Thr	Arg	Leu 250	Asp	Ser	Asn	Arg	Ser 255	Phe
	Arg	Phe	Ile	Gly 260	Lys	Val	Asn	Leu	Gly 265	Asn	Arg	Tyr	Glu	Gly 270	Tyr	Ser
20	Pro	Asp	Gly 275	Val	Ala	Gly	Gly	Asp 280	Gly	Ile	Gly	Phe	Ala 285	Phe	Ser	Pro
	Gly	Pro 290	Leu	Gly	Gln	Ile	Gly 295	Lys	Glu	Gly	Ala	Ala 300	Val	Gly	Ile	Gly
25	Gly 305	Leu	Asn	Asn	Ala	Phe 310	Gly	Phe	Lys	Leu	Asp 315	Thr	Tyr	His	Asn	Thr 320
30	Ser	Thr	Pro	Arg	Ser 325	Asp	Ala	Lys	Ala	Lys 330	Ala	Asp	Pro	Arg	Asn 335	Val
	Gly	Gly	Gly	Gly 340	Ala	Phe	Gly	Ala	Phe 345	Val	Ser	Thr	Asp	Arg 350	Asn	Gly
35	Met	Ala	Thr 355	Thr	Glu	Glu	Ser	Thr 360	Ala	Ala	Lys	Leu	Asn 365	Val	Gln	Pro
	Thr	Asp 370	Asn	Ser	Phe	Gln	Asp 375	Phe	Val	Ile	Asp	Tyr 380	Asn	Gly	Asp	Thr
40	Lys 385	Val	Met	Thr	Val	Thr 390	Tyr	Ala	Gly	Gln	Thr 395	Phe	Thr	Arg	Asn	Leu 400
45	Thr	Asp	Trp	Ile	Lys 405	Asn	Ser	Gly	Gly	Thr 410	.Thr	Phe	Ser	Leu	Ser 415	Met
	Thr	Ala					Ala				Gln	Gln	Val	Gln 430	Phe	Gly
50	Thr	Phe	Glu 435	Tyr	Thr	Glu	Ser	Ala 440	Val	Ala	Lys	Val	Arg 445	Tyr	Val	Asp
	Ala	Asn 450	Thr	Gly	Lys	Asp	Ile 455	Ile	Pro	Pro	Lys	Thr 460	Ile	Ala	Gly	Glu
55	Val 465	Asp	Gly	Thr	Val	Asn 470	Ile	Asp	Lys	Gln	Leu 475	Asn	As'n	Phe	Lys	Asn 480
60	Leu	Gly	Tyr	Ser	Tyr 485	Val	Gly	Thr	Asp	Ala 490	Leu	Lys	Ala	Pro	Asn 495	Tyr
1/1/																

Thr Glu Thr Ser Gly Thr Pro Thr Leu Lys Leu Thr Asn Ser Ser Gln Thr Val Ile Tyr Lys Phe Lys Asp Val Gln <210> <211> 485 <212> PRT <213> Staphylococcus epidermidis <400> 18 Ala Ser Asp Ala Pro Leu Thr Ser Glu Leu Asn Thr Gln Ser Glu Thr Val Gly Asn Gln Asn Ser Thr Thr Ile Glu Ala Ser Thr Ser Thr Ala Asp Ser Thr Ser Val Thr Lys Asn Ser Ser Ser Val Gln Thr Ser Asn Ser Asp Thr Val Ser Ser Glu Lys Ser Glu Lys Val Thr Ser Thr Thr Asn Ser Thr Ser Asn Gln Gln Glu Lys Leu Thr Ser Thr Ser Glu Ser Thr Ser Ser Lys Asn Thr Thr Ser Ser Ser Asp Thr Lys Ser Val Ala Ser Thr Ser Ser Thr Glu Gln Pro Ile Asn Thr Ser Thr Asn Gln Ser Thr Ala Ser Asn Asn Thr Ser Gln Ser Thr Thr Pro Ser Ser Val Asn Leu Asn Lys Thr Ser Thr Ser Thr Ser Thr Ala Pro Val Lys Leu Arg Thr Phe Ser Arg Leu Ala Met Ser Thr Phe Ala Ser Ala Ala Thr Thr Thr Ala Val Thr Ala Asn Thr Ile Thr Val Asn Lys Asp Asn Leu Lys Gln Tyr Met Thr Thr Ser Gly Asn Ala Thr Tyr Asp Gln Ser Thr Gly Ile Val Thr Leu Thr Gln Asp Ala Tyr Ser Gln Lys Gly Ala Ile Thr Leu Gly Thr Arg Ile Asp Ser Asn Lys Ser Phe His Phe Ser Gly Lys Val Asn Leu Gly Asn Lys Tyr Glu Gly His Gly Asn Gly Gly Asp Gly Ile Gly Phe Ala Phe Ser Pro Gly Val Leu Gly Glu Thr Gly Leu

	Asn	Gly	Ala	Ala 260	Val	Gly	Ile	Gly	Gly 265	Leu	Ser	Asn	Ala	Phe 270	Gly	Phe
5	Lys	Leu	Asp 275	Thr	Tyr	His	Asn	Thr 280	Ser	Lys	Pro	Asn	Ser 285	Ala	Ala	Lys
10	Ala	Asn 290	Ala	Asp	Pro	Ser	Asn 295	Val	Ala	Gly		Gly 300	Ala	Phe	Gly	Ala
10	Phe 305	Val	Thr	Thr	Asp	Ser 310	Tyr	Gly	Val	Ala	Thr 315	Thr	Tyr	Thr	Ser	Ser 320
15	Ser	Thr	Ala	Asp	Asn 325	Ala	Ala	ГЛЗ	Leu	Asn 330	Val	Gln	Pro	Thr	Asn 335	Asn
	Thr	Phe	Gln	Asp 340	Phe	Asp	Ile	Asn	Tyr 345	Asn	Gly	Asp	Thr	Lys 350	Val	Met
20	Thr	Val	Lys 355	Tyr	Ala	Gly	Gln	Thr 360	Trp	Thr	Arg	Asn	Ile 365	Ser	Asp	Trp
25	Ile	Ala 370	Lys	Ser	Gly	Thr	Thr 375	Asn	Phe	Ser	Leu	Ser 380	Met	Thr	Ala	Ser
	Thr 385	Gly	Gly	Ala	Thr	Asn 390	Leu	Gln	Gln	Val	Gln 395	Phe	Gly	Thr	Phe	Glu 400
30	Tyr	Thr	Glu	Ser	Ala 405	Val	Thr	Gln	Val	Arg 410	Tyr	Val	Asp	Val	Thr 415	Thr
	Gly	Lys	Asp	Ile 420	Ile	Pro	Pro	Lys	Thr 425	Tyr	Ser	Gly	Asn	Val 430	Asp	Gln
35	Val	Val	Thr 435	Ile	Asp	Asn	Gln	Gln 440	Ser	Ala	Leu	Thr.	Ala 445	Lys	Gly	Tyr
40	Asn	Tyr 450	Thr	Ser	Val	Asp	Ser 455	Ser	Tyr	Ala	Ser	Thr 460	Tyr	Asn	Asp	Thr
	Asn 465	Lys	Thr	Val	Lys	Met 470	Thr	Asn	Ala	Gly	Gln 475	Ser	Val	Thr	Tyr	Tyr 480
45	Phe	Thr	Asp	Val	Val 485			•								
50	<210 <211 <212 <213	l>] ?> F	19 1245 PRT Staph	nyloo	coccu	ıs ep	oider	midi	İs							
	<400)>]	L9			_										
55	Met 1	Gly	Lys	Arg	Arg 5	Gln	Gly	Pro	Ile	Asn 10	Lys	Lys	Val	Asp	Phe 15	Leu
	Pro	Asn	Lys	Leu 20	Asn	Lys	Tyr	Ser	Ile 25	Arg	Lys	Phe	Thr	Val 30	Gly	Thr
60	Ala	Ser	Ile	Leu	Leu	Gly	Ser	Thr	Leu	Ile	Phe	Gly	Ser	Ser	Ser	His

			35					40					45			
5	Glu	Ala 50	Lys	Ala	Ala	Glu	Glu 55	Lys	Gln	Val	Asp	Pro 60	Ile	Thr	Gln	Ala
	Asn 65	Gln	Asn	Asp	Ser	Ser 70	Glu	Arg	Ser	Leu	Glu 75	Asn	Thr	Asn	Gln	Pro 80
10	Thr	Val	Asn	Asn	Glu 85	Ala	Pro	Gln	Met	Ser 90	Ser	Thr	Leu	Glņ	Ala 95	Glu
	Glu	Gly	Ser	Asn 100	Ala	Glu	Ala	Pro	Gln 105	Ser	Glu	Pro	Thr	Lys 110	Ala	Glu
15	Glu	Gly	Gly 115	Asn	Ala	Glu	Ala	Ala 120	Gln	Ser	Glu	Pro	Thr 125	Lys	Ala	Glu
20	Glu	Gly 130	Gly	Asn	Ala	Glu	Ala 135	Pro	Gln	Ser	Glu	Pro 140	Thr	Lys	Ala	Glu
	Glu 145	Gly	Gly	Asn	Ala	Glu 150	Ala	Ala	Gln	Ser	Glu 155	Pro	Thr	Lys	Thr	Glu 160
25 ·	Glu	Gly	Ser	Asn	Val 165	Lys	Ala	Ala	Gln	Ser 170	Glu	Pro	Thr	Lys	Ala 175	Glu
	Glu	Gly	Ser	Asn 180	Ala	Glu	Ala	Pro	Gln 185	Ser	Glu	Pro	Thr	Lys 190	Thr	Glu
30	Glu	Gly	Ser 195	Asn	Ala	Lys	Ala	Ala 200	Gln	Ser	Glu	Pro	Thr 205	Lys	Ala	Glu
35	Glu	Gly 210	Gly	Asn	Ala	Glu	Ala 215	Ala	Gln	Ser	Glu	Pro 220	Thr	Lys	Thr	Glu
	Glu 225	Gly	Ser	Asn	Ala	Glu 230	Ala	Pro	Gln	Ser	Glu 235	Pro	Thr	Lys	Ala	Glu 240
40	Glu	Gly	Gly	Asn	Ala 245	Glu	Ala	Pro	Gln	Ser 250	Glu	Pro	Thr	Lys	Thr 255	Glu
	Glu	Gly	Gly	Asn 260	Ala	Glu	Ala	Pro	Asn 265	Val	Pro	Thr	Ile	Lys 270	Ala	Asn
45	Ser	Asp	Asn 275	Asp	Thr	Gln	Thr	Gln 280	Phe	Ser	Glu	Ala	Pro 285	Thr	Arg	Asn
50	Asp	Leu 290	Ala	Arg	Lys	Glu	Asp 295	Ile	Pro	Ala	Val	Ser 300	Lys	Asn	Glu	Glu
	Leu 305	Gln	Ser	Ser	Gln	Pro 310	Asn	Thr	Asp	Ser	Lys 315	Ile	Glu	Pro	Thr	Thr 320
55	Ser	Glu	Pro	Val	Asn 325	Leu	Asn	Tyr	Ser	Ser 330	Pro	Phe	Met	Ser	Leu 335	Leu
	Ser	Met	Pro	Ala 340	Asp	Ser	Ser	Ser	Asn 345	Asn	Thr	Lys	Asn	Thr 350	Ile	Asp
60	Ile	Pro	Pro	Thr	Thr	Val	Lys	Gly	Arg	Asp	Asn	Tyr	Asp	Phe	Tyr	Gly

			355					360					365			
5	Arg	Val 370	Asp	Ile	Glu	Ser	Asn 375	Pro	Thr	Asp	Leu	Asn 380	Ala	Thr	Asn	Leu
	Thr 385	Arg	Tyr	Asn	Tyr	Gly 390	Gln	Pro	Pro	Gly	Thr 395	Thr	Thr	Ala	Gly	Ala 400
10	Val	Gln	Phe	Lys	Asn 405	Gln	Val	Ser	Phe	Asp 410	Lys	Asp	Phe	Asp	Phe 415	Asn
	Ile	Arg	Val	Ala 420	Asn	Asn	Arg	Gln	Ser 425	Asn	Thr	Thr	Gly	Ala 430	Asp	Gly
15	Trp	Gly	Phe 435	Met	Phe	Ser	Lys	Lys 440	Asp	Gly	Asp	Asp	Phe 445	Leu	Lys	Asn
20	Gly	Gly 450	Ile	Leu	Arg	Glu	Lys 455	Gly	Thr	Pro	Ser	Ala 460	Ala	Gly	Phe	Arg
	Ile 465	Asp	Thr	Gly	Tyr	Tyr 470	Asn	Asn	Asp	Pro	Leu 475	Asp	Lys	Ile	Gln	Lys 480
25	Gln	Ala	Gly	Gln	Gly 485	Tyr	Arg	GLy	Tyr	Gly 490	Thr	Phe	Val	Lys	Asn 495	Asp
	Ser	Gln	Gly	Asn 500	Thr	Ser	Lys	Val	Gly 505	Ser	Gly	Thr	Pro	Ser 510	Thr	Asp
30	Phe	Leu	Asn 515	Tyr	Ala	Asp	Asn	Thr 520	Thr	Asn	Asp	Leu	Asp 525	Gly	Lys	Phe
35	His	Gly 530	Gln	Lys	Leu	Asn	Asn 535	Val	Asn	Leu	Lys	Tyr 540	Asn	Ala	Ser	Asn
	Gln 545	Thr	Phe	Thr	Ala	Thr 550	Tyr	Ala	Gly	Lys	Thr 555	Trp	Thr	Ala	Thr	Leu 560
40	Ser	Glu	Leu	Gly	Leu 565	Ser	Pro	Thr	Asp	Ser 570	Tyr	Asn	Phe	Leu	Val 575	Thr
	Ser	Ser	Gln	Tyr 580	Gly	Asn	Gly	Asn	Ser 585	Gly	Thr	Tyr	Ala	Ser 590	Gly	Val
45	Met	Arg	Ala 595	Asp	Leu	Asp	Gly	Ala 600	Thr	Leu	Thr	Tyr	Thr 605	Pro	Lys	Ala
50	Val	Asp 610	Gly	Asp	Pro	Ile	Ile 615	Ser	Thr	Lys	Glu	Ile 620	Pro	Phe	Asn	Lys
	Lys 625	Arg	Glu	Phe	Asp	Pro 630	Asn	Leu	Ala	Pro	Gly 635	Thr	Glu	Lys	Val	Val 640
55	Gln	Lys	Gly	Glu	Pro 645	Gly	Ile	Glu	Thr	Thr 650	Thr	Thr	Pro	Thr	Tyr 655	Val
	Asn	Pro	Asn	Thr 660	Gly	Glu	Lys	Val	Gly 665	Glu	Gly	Glu	Pro	Thr 670	Glu	Lys
60	Ile	Thr	Lys	Gln	Pro	Val	Asp	Glu	Ile	Val	His	Tyr	Gly	Gly	Glu	Glu

			675					680					685			
5	Ile	Lys 690	Pro	Gly	His	Lys	Asp 695	Glu	Phe	Asp	Pro	Asn 700	Ala	Pro	Lys	Gly
3	Ser 705	Gln	Thr	Thr	Gln	Pro 710	Gly	Lys	Pro	Gly	Val 715	Lys	Asn	Pro	Asp	Thr 720
10	Gly	Glu	Val	Val	Thr 725	Þro	Pro	Val	Asp	Asp 730	Val	Thr	Lys	Tyr	Gly 735	Pro
	Val	Asp	Gly	Asp 740	Pro	Ile	Thr	Ser	Thr 745	Glu	Glu	Ile	Pro	Phe 750	Asp	Lys
15	Lys	Arg	Glu 755	Phe	Asn	Pro	Asp	Leu 760	Lys	Pro	Gly	Glu	Glu 765	Arg	Val	Lys
20	Gln	Lys 770	Gly	Glu	Pro	Gly	Thr 775	Lys	Thr	Ile	Thr	Thr 780	Pro	Thr	Thr	Lys
	Asn 785	Pro	Leu	Thr	Gly	Glu 790	ГЛЗ	Val	Gly	Glu	Gly 795	Glu	Pro	Thr	Glu	Lys 800
25	Ile	Thr	Lys	Gln	Pro 805	Val	Asp	Glu	Ile	Thr 810	Glu	Tyr	Gly	Gly	Glu 815	Glu
	Ile	Lys	Pro	Gly 820	His	Lys	Asp	Glu	Phe 825	Asp	Pro	Asn	Ala	Pro 830	Lys	Gly
30	Ser	Gln	Glu 835	Asp	Val	Pro	Gly	Lys 840	Pro	Gly	Val	Lys	Asn 845	Pro	Gly	Thr
35	Gly	Glu 850	Val	Val	Thr	Pro	Pro 855	Val	Asp	Asp	Val	Thr 860	Lys	Tyr	Gly	Pro
	Val 865	Asp	Gly	Asp	Pro	Ile 870	Thr	Ser	Thr	Glu	Glu 875	Ile	Pro	Phe	Asp	Lys 880
40	Lys	Arg	Glu	Phe	Asn 885	Pro	Asp	Leu	Lys	Pro 890	Gly	Glu	Glu	Arg	Val 895	Lys
	Gln	Lys	Gly	Glu 900	Pro	Gly	Thr	Lys	Thr 905	Ile	Thr	Thr	Pro	Thr 910	Thr	ГЛЗ
45	Asn	Pro	Leu 915	Thr	Gly	Glu	Lys	Val 920	Gly	Glu	Gly	Glu	Pro 925	Thr	Glu	Lys
50	Ile	Thr 930	Lys	Gln	Pro	Val	Asp 935	Glu	Ile	Val	Ніз	Tyr 940	Gly	Gly	Glu	Gln
	Ile 945	Pro	Gln	Gly	His	Lys 950	Asp	Glu	Phe	Asp	Pro 955	Asn	Ala	Pro	Val	Asp 960
55	Ser	Lys	Thr	Glu	Val 965	Pro	Gly	Lys	Pro	Gly 970	Val	Lys	Asn	Pro	Asp 975	Thr
	Gly	Glu	Val	Val 980	Thr	Pro	Pro	Val	Asp 985	Asp	Val	Thr	Lys	Tyr 990	Gly	Pro
60	Val	Asp	Gly	Asp	Ser	Ile	Thr	Ser	Thi	c Glu	ı Glu	ı Ile	e Pro	o Pi	ne As	sp Lys

			995				1	000				10	005			
5	Lys	Arg 1010		Phe	Asp	Pro	Asn 1015	Leu	Ala	Pro	Gly	Thr 1020	Glu	Lys	Val	
J	Val	Gln 1025	Lys	Gly	Glu	Pro	Gly 1030	Thr	ГЛЗ	Thr	Ile	Thr 1035	Thr	Pro	Thr	
10	Thr	Lys 1040	Asn	Pro	Leu	Thr	Gly 1045	Glu	Lys	Val	Gly	Glu 1050	Gly	Lys	Ser	
	Thr	Glu 1055	Lys	Val	Thr	Lys	Gln 1060	Pro	Val	Asp	Glu	Ile 1065	Val	Glu	Tyr	
15	Gly	Pro 1070	Thr	Lys	Ala	Glu	Pro 1075	Gly	Lys	Pro	Ala	Glu 1080	Pro	Gly	Lys	
20	Pro	Ala 1085	Glu	Pro	Gly	Lys	Pro 1090	Ala	Glu	Pro	Gly	Thr 1095	Pro	Ala	Glu	
	Pro	Gly 1100	Lys	Pro	Ala	Glu	Pro 1105	Gly	Thr	Pro	Ala	Glu 1110	Pro	Gly	Lys	
25	Pro	Ala 1115	Glu	Pro	Gly	Lys	Pro 1120	Ala	Glu	Pro	Gly,	Lys 1125	Pro	Ala	Glu	
	Pro	Gly 1130	Lys	Pro	Ala	Glu	Pro 1135	Gly	Thr	Pro	Ala	Glu 1140	Pro	Gly	Thr	
30	Pro	Ala 1145	Glu	Pro	Gly	Lys	Pro 1150	Ala	Glu	Pro	Gly	Thr 1155	Pro	Ala	Glu	
35		1160					1165					Glu 1170		_	-	
		1175					1180					Thr 1185				
40		1190					1195					His 1200			_	
A &		1205					1210					Arg 1215				
45	Glu	Gly 1220	Thr	Leu	Val	Gly	Ser 1225	Leu	Leu	Ala	Ile	Val 1230	Gly	Ser	Leu	
. 50	Phe	Ile 1235	Phe	Gly	Arg	Arg	Lys 1240	Lys	Gly	Asn	Glu	Lys 1245				
55	<212)> 20 .> 37 ?> DN 8> St	165 IA	/loco	occus	s epi	.dermi	dis								
JJ	<400 atgg	· · · · ·		agac	caago	r tco	tatta	aat a	aaaa	ıagtç	gg at	tttt	acc	taac	aaatta	60
60	aaca	agtat	it ct	iataa	igaaa	att	cacto	jtt g	gtac	ggcc	st ca	atatt	act	tggt	tcgaca	120

	cttatttttg	gaagtagtag	ccatgaagcg	aaagctgcag	aagaaaaaca	agttgatcca	180
	attacacaag	ctaatcaaaa	tgatagtagt	gaaagatcac	ttgaaaacac	aaatcaacct	240
5	actgtaaaca	atgaagcacc	acagatgtct	tctacattgc	aagcagaaga	aggaagcaat	300
	gcagaagcac	ctcaatctga	gccaacgaag	gcagaagaag	gaggcaatgc	agaagcagct	360
10	caatctgagc	caacgaaggc	agaagaagga	ggcaatgcag	aagcacctca	atctgagcca	420
10	acgaaggcag	aagaaggagg	caatgcagaa	gcagctcaat	ctgagccaac	gaagacagaa	480
	gaaggaagca	acgtaaaagc	agctcaatct	gagccaacga	aggcagaaga	aggaagcaat	540
15	gcagaagcac	ctcaatctga	gccaacgaag	acagaagaag	gaagcaacgc	aaaagcagct	600
	caatctgagc	caacgaaggc	agaagaagga	ggcaatgcag	aagcagctca	atctgagcca	660
20	acgaagacag	aagaaggaag	caatgcagaa	gcacctcaat	ctgagccaac	gaaggcagaa	720
20	gaaggaggca	atgcagaagc	acctcaatct	gagccaacga	agacagaaga	aggaggcaat	780
	gcagaagcac	cgaatgttcc	aactatcaaa	gctaattcag	ataatgatac	acaaacacaa	840
25	ttttcagaag	cccctacaag	aaatgaccta	gctagaaaag	aagatatccc	tgctgtttct	900
	aaaaacgagg	aațtacaatc	atcacaacca	aacactgaca	gtaaaataga	acctacaact	960
30	tcagaacctg	tgaatttaaa	ttatagttct	ccgtttatgt	ccttattaag	catgcctgct	1020
30	gatagttcat	ccaataacac	taaaaataca	atagatatac	cgccaactac	ggttaaaggt	1080
	agagataatt	acgattttta	cggtagagta	gatatcgaaa	gtaatcctac	agatttaaat	1140
35	gcgacaaatt	taacgagata	taattatgga	cagccacctg	gtacaacaac	agctggtgca	1200
	gttcaattta	aaaatcaagt	tagttttgat	aaagatttcg	actttaacat	tagagtagca	1260
40	aacaatcgtc	aaagtaatac	aactggtgca	gatggttggg	gctttatgtt	cagcaagaaa	1320
	gatggggatg	atttcctaaa	aaacggtggt	atcttacgtg	aaaaaggtac	acctagtgca	1380
	gctggtttca	gaattgatac	aggatattat	aataacgatc	cattagataa	aatacagaaa	1440
45	caagctggtc	aaggetatag	agggtatggg	acatttgtta	aaaatgactc	ccaaggtaat	1500
•	acttctaaag	taggatcagg	tactccatca	acagattttc	ttaactacgc	agataatact	1560
50	actaatgatt	tagatggtaa	attccatggt	caaaaattaa	ataatgttaa	tttgaaatat	1620
	aatgcttcaa	atcaaacttt	tacagctact	tatgctggta	aaacttggac	ggctacgtta	1680
	tctgaattag	gattgagtcc	aactgatagt	tacaattttt	tagttacatc	aagtcaatat	1740
55	ggaaatggta	atagtggtac	atacgcaagt	ggcgttatga	gagctgattt	agatggtgca	1800
	acattgacat	acactcctaa	agcagtcgat	ggagatccaa	ttatatcaac	taaggaaata	1860
60	ccatttaata	agaaacgtga	atttgatcca	aacttagccc	caggtacaga	aaaagtagtc	1920

caaaaaggtg aaccaggaat tgaaacaaca acaacaccaa cttatgtcaa tcctaataca 1980 ggagaaaaag ttggcgaagg tgaaccaaca gaaaaaataa caaaacaacc agtggatgaa 2040 atcgttcatt atggtggcga agaaatcaag ccaggccata aggatgaatt tgatccaaat 2100 gcaccgaaag gtagtcaaac aacgcaacca ggtaagccgg gggttaaaaa tcctgataca 2160 ggcgaagtag ttactccacc tgtggatgat gtgacaaaat atggtccagt tgatggagat 2220 10 2280 ccgatcacgt caacggaaga aattccattc gacaagaaac gtgaattcaa tcctgattta aaaccaggtg aagagcgtgt taaacaaaaa ggtgaaccag gaacaaaaac aattacaaca 2340 15 ccaacaacta agaacccatt aacaggggaa aaagttggcg aaggtgaacc aacagaaaaa 2400 ataacaaaac aaccagtaga tgaaatcaca gaatatggtg gcgaagaaat caagccaggc 2460 cataaggatg aatttgatcc aaatgcaccg aaaggtagcc aagaggacgt tccaggtaaa 2520 20 2580 ccaggagtta aaaaccctgg aacaggcgaa gtagtcacac caccagtgga tgatgtgaca aaatatggtc cagttgatgg agatccgatc acgtcaacgg aagaaattcc attcgacaag 2640 25 2700 aaacgtgaat tcaatcctga tttaaaacca ggtgaagagc gcgttaaaca gaaaggtgaa 2760 ccaggaacaa aaacaattac aacgccaaca actaagaacc cattaacagg agaaaaagtt 2820 ggcgaaggtg aaccaacaga aaaaataaca aaacaaccag tggatgagat tgttcattat 30 ggtggtgaac aaataccaca aggtcataaa gatgaatttg atccaaatgc acctgtagat 2880 agtaaaactg aagttccagg taaaccagga gttaaaaatc ctgatacagg tgaagttgtt 2940 35 accccaccag tggatgatgt gacaaaatat ggtccagttg atggagattc gattacgtca 3000 acggaagaaa ttccgtttga taaaaaacgc gaatttgatc caaacttagc gccaggtaca 3060 gagaaagtcg ttcaaaaagg tgaaccagga acaaaaacaa ttacaacgcc aacaactaag 3120 40 aacccattaa caggagaaaa agttggcgaa ggtaaatcaa cagaaaaagt cactaaacaa 3180 cctgttgacg aaattgttga gtatggtcca acaaaagcag aaccaggtaa accagcggaa 3240 45 ccaggtaaac cagcggaacc aggtaaacca gcggaaccag gtacgccagc agaaccaggt 3300 3360 aaaccagcgg aaccaggtac gccagcagaa ccaggtaaac cagcggaacc aggtaaacca 3420 gcggaaccag gtaaaccagc ggaaccaggt aaaccagcgg aaccaggtac gccagcagaa 50 ccaggtacgc cagcagaacc aggtaaacca gcggaaccag gtacgccagc agaaccaggt 3480 3540 aaaccagcgg aaccaggtac gccagcagaa ccaggtaaac cagcggaatc aggtaaacca 55 3600 gtggaaccag gtacgccagc acaatcaggt gcaccagaac aaccaaatag atcaatgcat tcaacagata ataaaaatca attacctgat acaggtgaaa atcgtcaagc taatgaggga 3660 actttagtcg gatctctatt agcaattgtc ggatcattgt tcatatttgg tcgtcgtaaa 3720 60

<210> 21 <211> <212> PRT <213> Staphylococcus epidermidis <400> 21 Glu Lys Gln Val Asp Pro Ile Thr Gln Ala Asn Gln Asn Asp Ser Ser Glu Arg Ser Leu Glu Asn Thr Asn Gln Pro Thr Val Asn Asn Glu Ala Pro Gln Met Ser Ser Thr Leu Gln Ala Glu Glu Gly Ser Asn Ala Glu Ala Pro Gln Ser Glu Pro Thr Lys Ala Glu Glu Gly Gly Asn Ala Glu Ala Ala Gln Ser Glu Pro Thr Lys Ala Glu Glu Gly Gly Asn Ala Glu Ala Pro Gln Ser Glu Pro Thr Lys Ala Glu Glu Gly Gly Asn Ala Glu Ala Ala Gln Ser Glu Pro Thr Lys Thr Glu Glu Gly Ser Asn Val Lys Ala Ala Gln Ser Glu Pro Thr Lys Ala Glu Glu Gly Ser Asn Ala Glu Ala Pro Gln Ser Glu Pro Thr Lys Thr Glu Glu Gly Ser Asn Ala Lys Ala Ala Gln Ser Glu Pro Thr Lys Ala Glu Glu Gly Gly Asn Ala Glu Ala Ala Gln Ser Glu Pro Thr Lys Thr Glu Glu Gly Ser Asn Ala Glu Ala Pro Gln Ser Glu Pro Thr Lys Ala Glu Glu Gly Gly Asn Ala Glu Ala Pro Gln Ser Glu Pro Thr Lys Thr Glu Glu Gly Gly Asn Ala Glu Ala Pro Asn Val Pro Thr Ile Lys Ala Asn Ser Asp Asn Asp Thr Gln Thr Gln Phe Ser Glu Ala Pro Thr Arg Asn Asp Leu Ala Arg Lys Glu Asp Ile Pro Ala Val Ser Lys Asn Glu Glu Leu Gln Ser Ser Gln Pro Asn Thr Asp Ser Lys Ile Glu Pro Thr Thr Ser Glu Pro Val Asn Leu

59/62

	Asn	Tyr	Ser 275	Ser	Pro	Phe	Met	Ser 280	Leu	Leu	Ser	Met	Pro 285	Ala	Asp	Ser
5	Ser	Ser 290	Asn	Asn	Thr	Lys	Asn 295	Thr	Ile	Asp	Ile	Pro 300	Pro	Thr	Thr	Val
10	Lys 305	Gly	Arg	Asp	Asn	Tyr 310	Asp	Phe	Tyr	Gly	Arg 315	Val	Asp	Ile	Glu	Ser 320
	Asn	Pro	Thr	Asp	Leu 325	Asn	Ala	Thr	Asn	Leu 330	Thr	Arg	Tyr	Asn	Tyr 335	Gly
15	Gln	Pro	Pro	Gly 340	Thr	Thr	Thr	Ala	Gly 345	Ala	Val	Gln	Phe	Lys 350	Asn	Gln
	Val	Ser	Phe 355	Asp	Lys	Asp	Phe	Asp 360	Phe	Asn	Ile	Arg	Val 365	Ala	Asn	Asn
20	Arg	Gln 370	Ser	Asn	Thr	Thr	Gly 375	Ala	Asp	Gly	Trp	380	Phe	Met	Phe	Ser
25	Lys 385	Lys	Asp	Gly	Asp	Asp 390	Phe	Leu	Lys	Asn	Gly 395	Gly	Ile	Leu	Arg	Glu 400
	Lys	Gly	Thr	Pro	Ser 405	Ala	Ala	Gly	Phe	Arg 410	Ile	Asp	Thr	Gly	Tyr 415	Tyr
30	Asn	Asn	Asp	Pro 420	Leu	Asp	Lys	Ile	Gln 425	Lys	Gln	Ala	Gly	Gln 430	Gly	Tyr
	Arg	Gly	Tyr 435	Gly	Thr	Phe	Val	Lys 440	Asn	Asp	Ser	Gln	Gly 445	Asn	Thr	Ser
35	Lys	Val 450	Gly	Ser	GLy	Thr	Pro 455	Ser	Thr	Asp	Phe	Leu 460	Asn	Tyr	Ala	Asp
40	Asn 465	Thr	Thr	Asn	Asp	Leu 470	Asp	Gly	Lys	Phe	His 475	Gly	Gln	Lys	Leu	Asn 480
	Asn	Val	Asn	Leu	Lys 485	Tyr	Asn	Ala	Ser	Asn 490	Gln	Thr	Phe	Thr	Ala 495	Thr
45	Tyr	Ala	Gly	Lys 500	Thr	Trp	Thr	Ala	Thr 505	Leu	Ser	Glu	Leu	Gly 510	Leu	Ser
	Pro	Thr	Asp 515	Ser	Tyr	Asn	Phe	Leu 520	Val	Thr	Ser	Ser	Gln 525	Tyr	Gly	Asn
50	Gly	Asn 530	Ser	GLY	Thr	Tyr	Ala 535	Ser	Gly	Val	Met	Arg 540	Ala	Asp	Leu	Asp
55	Gly Ala 545															
60	<210 <211 <212 <213	l> 3 2> 1	22 36 PRT Staphylococcus aureus													

<400> 22 Leu Pro Asn Thr Gly Ser Glu Glu Met Asp Leu Pro Leu Lys Glu Leu 10 15 Ala Leu Ile Thr Gly Ala Ala Leu Leu Ala Arg Arg Arg Ser Lys Lys Glu Lys Glu Ser 10 35 <210> 23 <211> 43 <212> PRT 15 <213> Staphylococcus aureus <400> 23 Leu Pro Asp Thr Gly Asp Ser Ile Lys Gln Asn Gly Leu Leu Gly Gly 20 5 1 15 Val Met Thr Leu Leu Val Gly Leu Gly Leu Met Lys Arg Lys Lys 20 25 Lys Asp Glu Asn Asp Gln Asp Asp Ser Gln Ala 35 <210> 24 <211> 35 30 <212> PRT <213> Staphylococcus aureus <400> 24 35 Leu Pro Lys Thr Gly Glu Thr Thr Ser Ser Gln Ser Trp Trp Gly Leu 5 15 Tyr Ala Leu Leu Gly Met Leu Ala Leu Phe Ile Pro Lys Phe Arg Lys 25 40 Glu Ser Lys 35 <210> 25 45 <211> 38 <212> PRT <213> Staphylococcus aureus <400> 25 50 Leu Pro Lys Thr Gly Leu Thr Ser Val Asp Asn Phe Ile Ser Thr Val 15 10 Ala Phe Ala Thr Leu Ala Leu Leu Gly Ser Leu Ser Leu Leu Phe 55 25 20 Lys Arg Lys Glu Ser Lys 35

60

<210> 26

```
<211> 36
     <212> PRT
     <213> Staphylococcus aureus
     <400> 26
     Leu Pro Gln Thr Gly Glu Glu Ser Asn Lys Asp Met Thr Leu Pro Leu
                                         10
10
    Met Ala Leu Ile Ala Leu Ser Ser Ile Val Ala Phe Val Leu Pro Arg
                 20
                                     25
                                                         30
     Lys Arg Lys Asn
             35
15
           27
     <210>
     <211>
           34
     <212> PRT
           Staphylococcus aureus
     <213>
20
    <400> 27
    Leu Pro Lys Thr Gly Thr Asn Gln Ser Ser Ser Pro Glu Ala Met Phe
                                         10
                                                             15
25
    Val Leu Leu Ala Gly Ile Gly Leu Ile Ala Thr Val Arg Arg Lys
                 20
                                     25
    Ala Ser
30
     <210>
           28
           33
    <211>
    <212> PRT
           Staphylococcus aureus
    <213>
35
    <400> 28
    Leu Pro Lys Thr Gly Leu Glu Ser Thr Gln Lys Gly Leu Ile Phe Ser
                                                             15
40
    Ser Ile Ile Gly Ile Ala Gly Leu Met Leu Leu Ala Arg Arg Arg Lys
    Asn
45
    <210> 29
    <211>
           39
    <212> PRT
    <213> Staphylococcus aureus
50
    <400> 29
    Leu Pro Lys Ala Gly Glu Thr Ile Lys Glu His Trp Leu Pro Ile Ser
                                                             15
                                         10
55
    Val Ile Val Gly Ala Met Gly Val Leu Met Ile Trp Leu Ser Arg Arg
    Asn Lys Leu Lys Asn Lys Ala
60
             35
```