Generative Adversarial Nets

Lucas Borsatto Simão, Iniciação Científica em Machine Learning

ユロシフ। 864ユロシフ। 864ユロシフ। 864ユロシフ। 864 Background **GANs**

Tipos de aprendizado

Supervisionado

- Um conjunto x de dados possuem rótulos y;
- Objetivo do algoritmo é prever a saída y dada uma entrada x;

Não supervisionado

- O conjunto x de dados não é rotulado;
- O algoritmo tenta entender a estrutura presente nos dados x;

Modelos de aprendizado

Discriminativo

- Representa a função que mapeia os dados x aos rótulos y;
- Aprende a probabilidade condicional P(y|x);

Generativo

- Representa a função que mapeia x e y dado somente o x;
- Aprende a probabilidade conjunta P(x, y);

Discriminativos vs Generativos

Redes Neurais

Generative Adversarial Nets (GANs)

Uso de modelos generativos Para que servem

ユロシフ। 864ユロシフ। 864ユロシフ। 864ユロシフ। 864

Utilização de modelos Generativos

Denoising

Utilização de modelos Generativos

Inpainting

Utilização de modelos Generativos

Transferência de estilos

Fonte: https://arxiv.org/abs/1603.03417.pdf

GANs Generative Adversarial Networks

ユロシフト からりプロシフト からりプロシフト からり

Conceitos básicos

- Modelo revolucionou a área de Generative Models;
- Criado por Ian Goodfellow, em 2014;

"GANs and it's variations are the most interesting idea in 10 years in ML", Yan Lecunn, diretor do departamento de pesquisa do Facebook.

Conceitos básicos

- Usa um vetor latente z;
- São dois modelos que competem entre si;
- Modelo gerador tenta criar imagens próximas das reais para confundir o discriminador;
- O discriminador tenta adivinhar qual imagem é falsa e qual é real;

Estrutura de uma GAN

Estrutura de uma GAN

distribuição real

Estrutura de uma GAN

 Processo inicialmente possui tanto G(z) quanto D(x,G(z)) imprecisos;

A medida que o D(x,G(z))
melhora a precisão, G(z) gera
dados de maior qualidade;

 Com o tempo G(z) aproxima sua distribuição de X;

Processo acontece até que G(z) ~
 X e D(x,G(z)) ~ 0.5;

Aprendizagem – Nash Equilibrium

- O aprendizado se trata de um jogo chamado minimax:
 - O Discriminador tenta aumentar as chances de classificação correta;
 - O Gerador tenta diminuir as chances de o Discriminador acertar a classificação;

Problemas ... Adversidades encontradas no treinamento

ユロシフト からりプロシフト からりプロシフト からり

Instabilidade no treinamento

 Dificuldade de se achar hiperparâmetros que se encaixem no problema;

Fonte: https://arxiv.org/pdf/1701.07875.pdf

Colapso de modelo

 Um grande número de valores de z são mapeados para uma mesma resposta, sem variação;

Fonte: https://arxiv.org/pdf/1701.07875.pdf

Erros de conceito

 Por vezes, quando convergem, tem dificuldade em interpretar figuras 3D e discernir as propriedades da imagem;

Fonte: https://arxiv.org/pdf/1701.00160.pdf

Avanços Melhorias propostas ao algoritmo

ユロシフ। 864ユロシフ। 864ユロシフ। 864ユロシフ। 864

Unrolled GAN

- Objetivo é tratar do colapso de modelo;
- Função de custo é modificada para que o Discriminador antecipe os passos que serão dados pelo Gerador;
- O custo é mais alto para o gerador para passos que tendem ao colapso;

Unrolled GAN

Fonte: https://arxiv.org/abs/1611.02163.pdf

DCGAN

- Objetivo é mapear padrões e métodos para que o algoritmo apresente convergência;
- Implementação de CNNs junto com GANs;
- Utilização da capacidade do modelo para tarefas discriminativas;
- Operações conceituais entre imagens;

DCGAN – Conceitos utilizados

- Utilização de redes inteiramente convolucionais;
- Batch Normalization;
- Definição dos hiperparâmetros para apresentar resultados;

DCGAN - Estrutura

Fonte: https://arxiv.org/pdf/1511.06434.pdf

DCGAN

Fonte: https://arxiv.org/pdf/1511.06434.pdf

DCGAN

Fonte: https://arxiv.org/abs/1611.02163.pdf

Improved Techniques for Training GANs

- Melhoras sugeridas pelo mesmo autor das GANs:
 - Discriminador possui conhecimento prévio dos minibatches com o objetivo de evitar o colapso de modelo;
 - Limita o discriminador a ter respostas entre 0.1 e 0.9 ao invés de 0 e 1;
 - Virtual Batch Gradiente baseado em batchs de referência;
- Tenta-se resolver o problema com métodos empíricos;

Principled Methods for Training GANS

- Problemas das GANs explicados matematicamente;
- Proposta de se usar função de custo baseada em distância entre os dados e não em sua semelhança;
- Torna-se base para criação das Wasserstein GANs;

Principled Methods for Training GANS

• Distância da dados dispostos entre duas retas;

Fonte: https://openreview.net/pdf?id=Hk4_qw5xe

WGAN

WGAN

Fonte: https://arxiv.org/pdf/1701.07875.pdf

Aplicações das GANs Algoritmos para diversas funcionalidades

ユロシフ। 864ユロシフ। 864ユロシフ। 864ユロシフ। 864

InfoGAN

Fonte: https://arxiv.org/pdf/1606.03657.pdf

Neural Photo Editing

Fonte: https://arxiv.org/pdf/1609.07093.pdf

SRGAN – Super Resolução

Interpolação Bicubica

SRGAN

Original

Fonte: https://arxiv.org/pdf/1609.04802.pdf

SGAN

Fonte: https://arxiv.org/pdf/1611.08207.pdf

Conditional GANs

Fonte: https://arxiv.org/pdf/1701.00160.pdf

Imitation Learning

Conclusão

- GANs são modelos generativos que aprendem a partir de um espaço latente;
- É necessário encontrar o equilíbrio entre o modelo gerador e o discriminativo;
- As muitas variações possuem alplicações em diversas áreas;

Obrigado!

Lucas Borsatto

Pesquisador em Machine Learning Engenheiro Mecatrônico

Twitter

@lucasbsimao