1. Cours : Suites et récurrence

1 Démonstration par récurrence

Exemple introductif, tiré de l'épreuve de spécialité de Polynésie 2022 : On considère la suite (u_n) définie par $u_0 = 1$ et, pour tout entier naturel n,

$$u_{n+1} = \frac{u_n}{1 + u_n}.$$

A l'aide de cette expression, il est possible de calculer les termes de la suite de proche en proche.

•
$$u_1 = \frac{u_0}{1 + u_0} = \frac{1}{1 + 1} = \frac{1}{2}$$
.

•
$$u_2 = \frac{u_1}{1+u_1} = \frac{\frac{1}{2}}{1+\frac{1}{2}} = \frac{\frac{1}{2}}{\frac{3}{2}} = \frac{1}{3}.$$

•
$$u_3 = \frac{u_2}{1 + u_2} = \frac{\frac{1}{3}}{1 + \frac{1}{3}} = \frac{\frac{1}{3}}{\frac{4}{3}} = \frac{1}{4}.$$

• ...

Toutefois, il n'est pas possible de calculer u_{50} sans calculer tous les termes précédents... On souhaiterait déterminer une expression de u_n en fonction de n pour tout entier naturel n.

D'après les premiers termes de notre suite, il semblerait que pour tout entier naturel n, on ait $u_n = \frac{1}{n+1}$. Cette formule fonctionne pour les rangs 0, 1, 2 et 3 mais qu'en est-il pour le reste ?

Un moyen de s'assurer que cette formule fonctionne pour tous les rangs est de la démontrer par récurrence.

Définition 1 : Lorsque l'on souhaite démontrer une proposition mathématique qui dépend d'un entier n, il est parfois possible de démontrer cette proposition par récurrence.

Pour tout entier n, on note $\mathcal{P}(n)$ la proposition qui nous intéresse. La démonstration par récurrence comporte trois étapes :

- **Initialisation**: On montre qu'il existe un entier n_0 pour lequel $\mathcal{P}(n_0)$ est vraie;
- **Hérédité**: on montre que, si pour un entier $n \ge n_0$, $\mathcal{P}(n)$ est vraie, alors $\mathcal{P}(n+1)$ l'est également;
- Conclusion : on en conclut que pour tout entier $n \ge n_0$, la proposition $\mathcal{P}(n)$ est vraie.

Le principe du raisonnement par récurrence rappelle les dominos que l'on aligne et que l'on fait tomber, les uns à la suite des autres.

On positionne les dominos de telle sorte que, dès que l'un tombe, peu importe lequel, il entraîne le suivant dans sa chute. C'est **l'hérédité**. Seulement, encore faut-il faire effectivement tomber le premier domino, sans quoi rien ne se passe : c'est **l'initialisation**.

Si ces deux conditions sont remplies, on est certain qu'à la fin, tous les dominos seront tombés : c'est notre **conclusion**.

Exemple 1: On considère la suite (u_n) définie par $u_0 = 1$ et, pour tout entier naturel n,

$$u_{n+1} = \frac{u_n}{1 + u_n}.$$

Pour tout entier naturel n, on note $\mathcal{P}(n)$ la proposition « $u_n = \frac{1}{n+1}$ ».

• **Initialisation**: Pour n = 0, on a

$$\frac{1}{0+1} = \frac{1}{1} = 1 = u_0.$$

La propriété $\mathcal{P}(0)$ est donc vraie.

• **Hérédité**: Soit $n \in \mathbb{N}$. Supposons que $\mathscr{P}(n)$ est vraie. On a donc $u_n = \frac{1}{n+1}$. A partir de ce résultat, on souhaite démontrer que $\mathcal{P}(n+1)$ est vraie, c'est-à-dire que $u_{n+1} = \frac{1}{n+1+1} = \frac{1}{n+2}$.

Nous avons donc
$$u_n = \frac{1}{n+1}$$
. Or, $u_{n+1} = \frac{u_n}{1+u_n}$. Ainsi,

$$u_{n+1} = \frac{\frac{1}{n+1}}{\frac{1}{n+1}+1} = \frac{\frac{1}{n+1}}{\frac{1}{n+1}+\frac{n+1}{n+1}} = \frac{\frac{1}{n+1}}{\frac{n+2}{n+1}} = \frac{1}{n+1} \times \frac{n+1}{n+2} = \frac{1}{n+2}.$$

On trouve bien que $u_{n+1} = \frac{1}{n+1+1}$: $\mathcal{P}(n+1)$ est donc vraie. • **Conclusion**: La propriété est vraie au rang 0 et est héréditaire, elle est donc vraie pour tout entier n.

Nous avons montré que pour tout entier naturel n, on a bien $u_n = \frac{1}{n+1}$.

Une propriété utile qui peut être démontrée par récurrence est la suivante. Souvenez-vous en, elle reviendra dans un prochain chapitre!

Propriété 1 — Inégalité de Bernoulli : Soit a un réel strictement positif.

Pour tout entier naturel n, on a $(1+a)^n \ge 1 + na$.

Démonstration 1 : Nous allons démontrer cette propriété par récurrence. Fixons-nous un réel a strictement positif. Pour tout entier naturel n, on note alors $\mathcal{P}(n)$ la proposition « $(1+a)^n \ge 1 + na$ ».

- **Initialisation**: Prenons n = 0.
 - D'une part, $(1+a)^0 = 1$.
 - D'autre part, $1+0 \times a = 1$.

On a bien $(1+a)^0 \ge 1 + 0 \times a$. $\mathcal{P}(0)$ est donc vraie.

• **Hérédité** : Soit $n \in \mathbb{N}$. Supposons que $\mathscr{P}(n)$ est vraie. On a donc $(1+a)^n \geqslant 1+na$. En multipliant des deux côtés de l'inégalité par (1+a), qui est strictement positif, on obtient alors que

$$(1+a)^{n+1} \geqslant (1+na)(1+a).$$

Or,

$$(1+na)(1+a) = 1+na+a+na^2 = 1+(n+1)a+na^2 \ge 1+(n+1)a.$$

Ainsi, $(1+a)^{n+1} \ge 1 + (n+1)a$. $\mathcal{P}(n+1)$ est donc vraie.

• Conclusion : $\mathcal{P}(0)$ est vraie et, si pour $n \in \mathbb{N}$, $\mathcal{P}(n)$ est vraie, $\mathcal{P}(n+1)$ l'est aussi. Ainsi, d'après le principe de récurrence, $\mathcal{P}(n)$ est vraie pour tout entier naturel n.

On a bien montré que, pour tout entier naturel n, $(1+a)^n \ge 1 + na$.

Une interprétation graphique de cette inégalité est possible.

La droite d'équation y = 1 + nx n'est autre que la tangente à la courbe d'équation $y = (1 + x)^n$ à l'abscisse 0. L'inégalité de Bernoulli dit donc que la courbe se trouve au-dessus de la tangente lorsque x > 0.

Nous verrons, lorsque la dérivation n'aura plus de secret pour vous, que cette remarque nous fournira une autre démonstration de l'inégalité de Bernoulli.

2 Suites majorées, minorées, bornées

Définition 2 — Suites majorées, minorées, bornées : Soit (u_n) une suite réelle. On dit que...

- ... (u_n) est *majorée* s'il existe un réel M tel que, pour tout entier naturel n, $u_n \le M$. Un tel réel M est alors appelé *majorant* de la suite (u_n) .
- ... (u_n) est *minorée* s'il existe un réel m tel que, pour tout entier naturel $n, u_n \ge m$. Un tel réel m est alors appelé *minorant* de la suite (u_n) .
- ... (u_n) est bornée si (u_n) est à la fois majorée et minorée.

Les majorants et minorants sont indépendants de n! Bien que pour tout n > 0, on ait $n \le n^2$, on ne peut pas dire que la suite (u_n) définie par $u_n = n$ est majorée. Cette indépendance se traduit dans l'ordre des quantificateurs employés dans la définition précédente (le majorant y apparaît avant l'entier n).

Exemple 2 : Pour tout n, on pose $u_n = \cos(n)$.

La suite (u_n) est bornée puisque, pour tout entier $n, -1 \le u_n \le 1$.

- Exemple 3 : Pour tout entier naturel n, on pose $v_n = n^2 + 1$. La suite (v_n) est minorée puisque pour tout entier naturel n, $v_n \ge 1$. En revanche, elle n'est pas majorée.
- **Exemple 4:** Pour tout entier naturel n, on pose $w_n = (-1)^n n$. Cette suite n'est ni majorée, ni minorée.

Lorsqu'une suite est définie par récurrence, une majoration ou une minoration de cette suite peut elle-même être démontrée par récurrence.

- Exemple 5 : On considère la suite (u_n) définie par $u_0 = 5$ et pour tout entier naturel n, $u_{n+1} = 0.5u_n + 2$. Pour tout entier naturel n, on note $\mathcal{P}(n)$ la proposition « $u_n \ge 4$ ».
 - **Initialisation**: On a bien $u_0 \ge 4$. $\mathcal{P}(0)$ est donc vraie.
 - **Hérédité**: Soit $n \in \mathbb{N}$. Supposons que $\mathscr{P}(n)$ est vraie, c'est-à-dire $u_n \geqslant 4$. En multipliant cette inégalité par 0,5, on en déduit que $0,5u_n \geqslant 2$. En ajoutant 2, on en déduit que $0,5u_n+2\geqslant 4$, c'est-à-dire $u_{n+1}\geqslant 4$. $\mathscr{P}(n+1)$ est donc vraie.
 - Conclusion : Ainsi, $\mathscr{P}(0)$ est vraie et la proposition \mathscr{P} est héréditaire. D'après le principe de récurrence, on en conclut que pour tout entier naturel n, $\mathscr{P}(n)$ est vraie.

Si l'on se donne une fonction f définie sur un ensemble I et une suite (u_n) à valeurs dans I telle que, pour tout entier naturel n, $u_{n+1} = f(u_n)$, l'étude de la fonction f pourra également nous fournir des informations sur la suite (u_n) étudiée.

Exemple 6 : On considère une fonction f définie sur \mathbb{R} et dont le tableau de variations est le suivant.

On considère alors la suite (u_n) définie par $u_0 = 1$ et, pour tout entier naturel n, $u_{n+1} = f(u_n)$.

Pour tout entier naturel n, on considère la proposition $\mathcal{P}(n)$: « $0 \le u_n \le 3$ ».

- **Initialisation** : On a bien $0 \le u_0 \le 3$. $\mathcal{P}(0)$ est donc vraie.
- Hérédité: Soit n∈ N. Supposons que P(n) est vraie, c'est-à-dire 0 ≤ u_n ≤ 3.
 La fonction f est décroissante sur l'intervalle [-1;3], lequel contient l'intervalle [0;3]. Il est alors possible d'appliquer cette fonction à notre inégalité (attention, la fonction étant décroissante, l'inégalité sera alors renversée).

Ainsi, on a $f(0) \ge f(u_n) \ge f(3)$. On sait par ailleurs que $f(u_n) = u_{n+1}$ et que f(3) = 0. Enfin, d'après les variations de f, on sait également que $f(-1) \ge f(0)$, c'est-à-dire que $3 \ge f(0)$. Ainsi, $3 \ge f(0) \ge f(u_n) \ge f(3)$, c'est-à-dire $3 \ge f(0) \ge u_{n+1} \ge 0$. On en conclut en particulier que $3 \ge u_{n+1} \ge 0$. $\mathscr{P}(n+1)$ est donc vraie.

• Conclusion : Ainsi, $\mathcal{P}(0)$ est vraie et la proposition \mathcal{P} est héréditaire. D'après le principe de récurrence, on en conclut que pour tout entier naturel n, $\mathcal{P}(n)$ est vraie.

3 Suites croissantes, suites décroissantes

Définition 3 — Variations d'une suite : Soit (u_n) une suite réelle et n_0 un entier naturel.

- On dit que (u_n) est *croissante* à partir de n_0 si, pour tout entier naturel $n \ge n_0$, $u_{n+1} \ge u_n$.
- On dit que (u_n) est décroissante à partir de n_0 si, pour tout entier naturel $n \ge n_0$, $u_{n+1} \le u_n$.

Étudier la croissance ou la décroissance d'une suite revient donc souvent à étudier le signe de $u_{n+1} - u_n$.

■ Exemple 7 : On considère la suite (u_n) définie pour tout entier naturel n par $u_n = n^2 - n$. Pour tout entier naturel n,

$$u_{n+1} - u_n = (n+1)^2 - (n+1) - (n^2 - n) = n^2 + 2n + 1 - n - 1 - n^2 - 1 = 2n \ge 0.$$

La suite (u_n) est donc croissante.

Jason LAPEYRONNIE

Propriété 2 : Soit (u_n) une suite **strictement positive** et n_0 un entier naturel.

- (u_n) est croissante à partir de n_0 si, pour tout entier naturel $n \ge n_0$, $\frac{u_{n+1}}{u_n} \ge 1$.
- (u_n) est décroissante à partir de n_0 si, pour tout entier naturel $n \ge n_0$, $\frac{u_{n+1}}{u_n} \le 1$.
- Exemple 8 : On considère la suite (u_n) définie pour tout entier naturel non nul n par $u_n = \frac{2^n}{n}$.

Pour tout entier naturel non nul n, on a $u_n > 0$ et

$$\frac{u_{n+1}}{u_n} = \frac{\frac{2^{n+1}}{n+1}}{\frac{2^n}{n}} = \frac{2^{n+1}}{n+1} \times \frac{n}{2^n} = \frac{2n}{n+1}.$$

Or, si $n \ge 1$, on a, en ajoutant n aux deux membres de l'inégalité, $2n \ge n+1$ et donc $\frac{2n}{n+1} \ge 1$.

Ainsi, pour tout entier naturel non nul n, $\frac{u_{n+1}}{u_n} \ge 1$. La suite (u_n) est donc croissante.

Encore une fois, lorsqu'une suite est définie par récurrence, ses variations peuvent également être étudiées par récurrence.

Exemple 9: On considère la suite (u_n) définie par $u_0 = 4$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = \sqrt{5 + u_n}$.

Pour tout entier naturel n, on note $\mathcal{P}(n)$ la proposition $0 \le u_{n+1} \le u_n$. Montrer que $\mathcal{P}(n)$ est vraie pour tout entier naturel n démontrera que la suite (u_n) est décroissante et minorée par 0, un résultat qui nous intéressera fortement dans un prochain chapitre...

- Initialisation : $u_0 = 4$, $u_1 = \sqrt{5+4} = \sqrt{9} = 3$. On a bien $0 \le u_1 \le u_0$. $\mathcal{P}(0)$ est vraie.
- **Hérédité :** Soit $n \in \mathbb{N}$. Supposons que $\mathscr{P}(n)$ est vraie. On a alors

$$0 \leqslant u_{n+1} \leqslant u_n$$
.

En ajoutant 5 à chaque membre, on obtient

$$5 \le u_{n+1} + 5 \le u_n + 5$$
.

On souhaite "appliquer la racine carrée" à cette inégalité. La fonction $x \mapsto \sqrt{x}$ étant croissante sur l'intervalle $[0; +\infty[$, l'appliquer ne changera pas le sens de l'inégalité. On a donc bien

$$\sqrt{5} \leqslant \sqrt{u_{n+1} + 5} \leqslant \sqrt{u_n + 5}.$$

D'une part, $\sqrt{5} \ge 0$. D'autre part, $\sqrt{u_{n+1}+5} = u_{n+2}$ et $\sqrt{u_n+5} = u_{n+1}$. Ainsi,

$$0 \le u_{n+2} \le u_{n+1}$$
.

La proposition $\mathcal{P}(n+1)$ est donc vraie.

• Conclusion : $\mathcal{P}(0)$ est vraie et \mathcal{P} est héréditaire. Par récurrence, $\mathcal{P}(n)$ est vraie pour tout $n \in \mathbb{N}$.

Comme précédemment, si l'on dispose d'une fonction f que l'on sait étudier et d'une suite (u_n) telle que pour tout entier naturel n, $u_{n+1} = f(u_n)$, il est sans doute possible d'utiliser les informations que nous avons sur la fonction pour en déduire des informations sur notre suite.

Attention! Ce n'est pas parce que la fonction f est croissante que la suite le sera également!

Exemple 10: On considère une fonction f définie sur \mathbb{R} et dont le tableau de variations est le suivant.

On considère alors la suite (u_n) définie par $u_0 = 3$ et, pour tout entier naturel n, $u_{n+1} = f(u_n)$.

On souhaite montrer que la suite (u_n) est décroissante et bornée par -1 et 5. Pour tout entier naturel n, on considère alors la proposition $\mathscr{P}(n)$: « $-1 \le u_{n+1} \le u_n \le 5$ ».

- Initialisation : On a $u_0 = 3$ et $u_1 = f(u_0) = f(3) = 2$. On a bien $-1 \le u_1 \le u_0 \le 5$. $\mathcal{P}(0)$ est donc vraie.
- Hérédité: Soit n∈ N. Supposons que P(n) est vraie, c'est-à-dire -1 ≤ u_{n+1} ≤ u_n ≤ 5.
 La fonction f est croissante sur l'intervalle [-1;5]. Il est alors possible d'appliquer cette fonction à notre inégalité (la fonction étant croissante, le sens de l'inégalité est conservée).
 Ainsi, on a f(-1) ≤ f(u_{n+1}) ≤ f(u_n) ≤ f(5).
 On sait par ailleurs que f(u_n) = u_{n+1}, que f(u_{n+1}) = u_{n+2}, que f(5) = 5 et enfin que f(-1) = 1 ≥ -1.
 On en conclut donc que -1 ≤ u_{n+1} ≤ u_n ≤ 5. P(n+1) est donc vraie.
- Conclusion : Ainsi, $\mathcal{P}(0)$ est vraie et la proposition \mathcal{P} est héréditaire. D'après le principe de récurrence, on en conclut que pour tout entier naturel n, $\mathcal{P}(n)$ est vraie.

2. Exercices : Suites et récurrence

Principe

► Exercice 1 – Voir le corrigé

Soit r un réel. On rappelle qu'une suite (u_n) est arithmétique de raison r si pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n + r$. Soit donc (u_n) une suite arithmétique de raison r.

- 1. Montrer par récurrence que pour tout entier naturel n, on a $u_n = u_0 + rn$.
- 2. **Application :** On considère la suite (u_n) arithmétique de premier terme $u_0 = 4$ et de raison r = 8.
 - (a) Exprimer u_n en fonction de n pour tout entier naturel n.
 - (b) Calculer u_{18} à l'aide de cette formule.

► Exercice 2 – Voir le corrigé

Soit q un réel. On rappelle qu'une suite (u_n) est géométrique de raison q si pour tout $n \in \mathbb{N}$, $u_{n+1} = q \times u_n$. Soit donc (u_n) une suite géométrique de raison q.

- 1. Montrer par récurrence que pour tout entier naturel n, $u_n = u_0 \times q^n$.
- 2. **Application :** On considère la suite (u_n) géométrique de premier terme $u_0 = 3$ et de raison r = -2.
 - (a) Exprimer u_n en fonction de n pour tout entier naturel n.
 - (b) Calculer u_{12} à l'aide de cette formule.

► Exercice 3 – Voir le corrigé

On considère la suite (u_n) telle que $u_0 = 12$ et pour tout entier naturel n, $u_{n+1} = 3u_n - 8$. Montrer par récurrence que pour tout entier naturel n, on a $u_n = 4 + 8 \times 3^n$.

► Exercice 4 – Voir le corrigé

On considère la suite (u_n) définie par $u_1 = 1$ et, pour tout entier naturel n,

$$u_{n+1} = \frac{u_n}{\sqrt{u_n^2 + 1}}.$$

- 1. Calculer u_2 et u_3
- 2. Conjecturer une expression de u_n en fonction de n pour tout entier naturel n.
- 3. Démontrer cette conjecture par récurrence.

► Exercice 5 – Voir le corrigé

On considère la suite (u_n) définie par $u_0 = 3$ et, pour tout entier naturel n, $u_{n+1} = \frac{u_n - 2}{2u_n + 5}$.

Montrer que pour tout entier naturel n, on a

$$u_n = \frac{9-8n}{3+8n}.$$

► Exercice 6 – Voir le corrigé

Montrer par récurrence que, pour tout entier naturel non nul n, on a

$$1+2+3+\ldots+n=\frac{n(n+1)}{2}.$$

► Exercice 7 – Voir le corrigé

Soit *n* un entier naturel non nul et

$$u_n = 1 + 3 + 5 + 7 + \cdots + (2n - 1).$$

- 1. Calculer u_1 , u_2 , u_3 et u_4 .
- 2. Conjecturer une expression simple de u_n en fonction de n puis démontrer cette conjecture par récurrence.

► Exercice 8 – Voir le corrigé

On considère les suites (x_n) et (y_n) définies comme suit.

$$\begin{cases} x_0 = -4 \\ \text{Pour tout } n \in \mathbb{N}, x_{n+1} = 0.8x_n - 0.6y_n \end{cases}$$

$$\begin{cases} y_0 = 3 \\ \text{Pour tout } n \in \mathbb{N}, y_{n+1} = 0.6x_n + 0.8y_n \end{cases}$$

Montrer que pour tout entier naturel n, $x_n^2 + y_n^2 = 25$. Interpréter géométriquement cette propriété.

► Exercice 9 (Suites arithmético-géométriques) – Voir le corrigé

Soit a et b deux réels, avec a différent de 0 et 1. On considère une suite (u_n) telle que, pour tout $n \in \mathbb{N}$,

$$u_{n+1} = a u_n + b.$$

- 1. Résoudre l'équation x = ax + b, d'inconnue réelle x. On note r la solution de cette équation.
- 2. Montrer par récurrence que, pour tout entier naturel *n*,

$$u_n = a^n(u_0 - r) + r.$$

- 3. On propose de montrer ce résultat par une autre méthode. On considère pour cela la suite (c_n) définie pour tout entier naturel n par $c_n = u_n r$.
 - (a) Exprimer c_{n+1} en fonction de c_n pour tout entier naturel n.
 - (b) Quelle est la nature de la suite (c_n) ?
 - (c) En déduire une expression de c_n puis de u_n en fonction de n, pour tout entier naturel n.

► Exercice 10 – Voir le corrigé

On rappelle que pour tout entier naturel n, la fonction $f_n : x \mapsto x^n$, définie sur \mathbb{R} , est dérivable, de dérivée $f'_n : x \mapsto nx^{n-1}$. Nous allons le démontrer par récurrence.

- 1. Montrer, à l'aide du taux de variation, que les fonctions $f_1: x \mapsto x$ et $f_2: x \mapsto x^2$ sont dérivables sur \mathbb{R} et donner leur fonctions dérivées.
- 2. Soit *u* et *v* deux fonctions dérivables. Rappeler la formule de la dérivée de *uv*.
- 3. Pour tout entier naturel n, on pose $\mathcal{P}(n)$ la proposition « f_n est dérivable sur \mathbb{R} et pour tout réel x, $f'_n(x) = nx^{n-1}$ ». Démontrer cette proposition par récurrence.

Suites majorées, minorées, bornées

► Exercice 11 – Voir le corrigé

Dans chacun des cas suivants, déterminer si la suite (u_n) est majorée, minorée, bornée.

a.
$$u_n = (-1)^n + \frac{1}{n} \text{ pour } n \neq 0$$
 b. $u_n = \cos(n) + \sin(n)$ **c.** $u_n = -3\cos(n) + 2\sin(n)$

d.
$$u_n = 2\cos(n) - n$$
 e. $u_n = \cos(n) + 3$ **f.** $u_n = \frac{n}{n+1}$

► Exercice 12 – Voir le corrigé

On considère la suite (u_n) définie par $u_0 = 2$ et, pour tout entier naturel n, $u_{n+1} = \frac{1}{5}u_n + 8$. Montrer par récurrence que pour tout entier naturel n, on a $u_n \le 10$.

► Exercice 13 – Voir le corrigé

On considère la suite (u_n) définie par $u_0 = 5$ et, pour tout entier naturel n, $u_{n+1} = \frac{u_n + 3}{2}$. Montrer que, pour tout entier naturel n, on a $3 \le u_n \le 5$.

► Exercice 14 – Voir le corrigé

On considère la suite (u_n) définie par $u_0 = 1$ et, pour tout entier relatif n, $u_{n+1} = \frac{1}{1 + u_n}$. Montrer par récurrence que, pour tout entier naturel n, $\frac{1}{2} \le u_n \le 1$.

► Exercice 15 – Voir le corrigé

On considère la suite (v_n) définie par $v_0 = 0.3$ et, pour tout entier naturel n, $v_{n+1} = 4v_n - 4v_n^2$.

- 1. Pour tout réel $x \in [0; 1]$, on pose $f(x) = 4x 4x^2$. On admet que f est dérivable sur \mathbb{R} . Donner une expression de f'(x) pour tout réel $x \in [0; 1]$.
- 2. Étudier le signe de f' sur l'intervalle [0; 1].
- 3. En déduire les variations de f et en déduire que pour tout réel x, on a $0 \le f(x) \le 1$.
- 4. Montrer par récurrence que, pour tout entier naturel n, on a $0 \le v_n \le 1$.

Suites croissantes, suites décroissantes

► Exercice 16 – Voir le corrigé

On considère la suite (u_n) définie pour tout entier naturel n par $u_n = 2n^2 - 24n + 3$.

- 1. Montrer que pour tout entier naturel n, $u_{n+1} u_n = 4n 22$.
- 2. En déduire le sens de variations de la suite (u_n) .

► Exercice 17 – Voir le corrigé

On considère la suite (u_n) définie par $u_0 = 5$ et pour tout entier naturel n, $u_{n+1} = \frac{1}{2}u_n + 4$.

- 1. Montrer par récurrence que, pour tout entier naturel $n, u_n \leq 8$.
- 2. Montrer que pour entier naturel n, $u_{n+1} u_n = -\frac{1}{2}u_n + 4$.
- 3. Déduire des deux questions précédentes que la suite (u_n) est croissante.

► Exercice 18 – Voir le corrigé

On considère la suite (u_n) définie par $u_0 = 1$ et, pour tout entier naturel n, $u_{n+1} = \frac{2u_n}{2 + u_n}$.

- 1. Montrer que pour tout entier naturel n, $u_n > 0$.
- 2. Montrer que la suite (u_n) est strictement décroissante.

► Exercice 19 – Voir le corrigé

On considère la suite (u_n) définie par $u_0 = 2$ et pour tout entier naturel n, $u_{n+1} = \frac{2}{3}u_n - 7$. Montrer que pour tout entier naturel n, $u_n \ge -21$ et que la suite (u_n) est décroissante.

► Exercice 20 – Voir le corrigé

On considère la suite (u_n) définie par $u_0 = 5$ et pour tout entier naturel n, $u_{n+1} = \sqrt{2u_n - 1}$. Montrer que pour tout entier naturel n, $u_n \ge 1$ et que (u_n) est décroissante.

► Exercice 21 (Métropole 2021) – Voir le corrigé

On considère la suite (u_n) définie par $u_0 = 1$ et, pour tout entier naturel n,

$$u_{n+1} = \frac{5u_n + 4}{u_n + 2}.$$

- 1. Montrer que la fonction f définie pour tout réel $x \in [0; +\infty[$ par $f(x) = \frac{5x+4}{x+2}$ est strictement croissante sur $[0, +\infty[$.
- 2. Montrer que pour tout entier naturel n,

$$0 \leqslant u_n \leqslant u_{n+1} \leqslant 4$$
.

► Exercice 22 (Centres étrangers 2022) – Voir le corrigé

On considère les suites (a_n) et (b_n) définies par $a_0 = \frac{1}{10}$, $b_0 = 1$ et, pour tout entier naturel n,

$$\begin{cases} a_{n+1} = e^{-b_n} \\ b_{n+1} = e^{-a_n} \end{cases}$$

On rappelle que la fonction $x \mapsto e^{-x}$ est décroissante sur \mathbb{R} . Montrer que pour tout entier naturel n,

$$0 < a_n \le a_{n+1} \le b_{n+1} \le b_n \le 1.$$

3. Correction des exercices

Principe

► Correction 1 – Voir l'énoncé

Pour tout entier naturel n, on considère la proposition P(n): « $u_n = u_0 + rn$ ».

- Initialisation : Pour n = 0, on a bien $u_0 + r \times 0 = u_0$. P(0) est vraie.
- **Hérédité :** Soit $n \in \mathbb{N}$. Supposons que P(n) est vraie, c'est-à-dire $u_n = u_0 + rn$. Or, $u_{n+1} = u_n + r$. Ainsi, $u_{n+1} = u_0 + rn + r = u_0 + r(n+1)$. P(n+1) est donc vraie.
- Conclusion : P(0) est vraie. P est héréditaire. Par récurrence, P(n) est vraie pour tout entier naturel n.

D'après la question 1, , pour tout entier naturel n, on a $u_n = 4 + 8n$. Ainsi, $u_{18} = 4 + 8 \times 18 = 144$.

► Correction 2 – Voir l'énoncé

Pour tout entier naturel n, on considère la proposition P(n): « $u_n = u_0 \times q^n$ ».

- Initialisation : Pour n = 0, on a bien $u_0 \times q^0 = u_0 \times 1 = u_0$. P(0) est vraie.
- **Hérédité :** Soit $n \in \mathbb{N}$. Supposons que P(n) est vraie, c'est-à-dire $u_n = u_0 \times q^n$. Or, $u_{n+1} = q u_n$. Ainsi, $u_{n+1} = q \times u_0 \times q^n = u_0 \times q^{n+1}$. P(n+1) est donc vraie.
- Conclusion : P(0) est vraie. P est héréditaire. Par récurrence, P(n) est vraie pour tout entier naturel n.

D'après la question précédente, on a, pour tout $n \in \mathbb{N}$, $u_n = 3 \times (-2)^n$. Ainsi, $u_{12} = 3 \times (-2)^{12} = 12288$.

► Correction 3 – Voir l'énoncé

Pour tout entier naturel n, on considère la proposition P(n): « $u_n = 4 + 8 \times 3^n$ ».

- **Initialisation :** Pour n = 0, on a bien $4 + 8 \times 3^0 = 4 + 8 \times 1 = 12 = u_0$. P(0) est vraie.
- **Hérédité :** Soit $n \in \mathbb{N}$. Supposons que P(n) est vraie, c'est-à-dire $u_n = 4 + 8 \times 3^n$. Or, $u_{n+1} = 3u_n 8$. Ainsi, $u_{n+1} = 3(4 + 8 \times 3^n) 8 = 3 \times 4 + 3 \times 8 \times 3^n 8 = 4 + 8 \times 3^{n+1}$. P(n+1) est donc vraie.
- Conclusion : P(0) est vraie. P est héréditaire. Par récurrence, P(n) est vraie pour tout entier naturel n.

► Correction 4 – Voir l'énoncé

On a

•
$$u_2 = \frac{u_1}{\sqrt{u_1^2 + 1}} = \frac{1}{\sqrt{1^2 + 1}} = \frac{1}{\sqrt{2}}.$$

•
$$u_3 = \frac{u_2}{\sqrt{u_2^2 + 1}} = \frac{\frac{1}{\sqrt{2}}}{\sqrt{\left(\frac{1}{\sqrt{2}}\right)^2 + 1}} = \frac{\frac{1}{\sqrt{2}}}{\sqrt{\frac{1}{2} + 1}} = \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{\frac{3}{2}}} = \frac{1}{\sqrt{2}} \times \sqrt{\frac{2}{3}} = \frac{1}{\sqrt{3}}.$$

Pour tout entier naturel non nul n, on pose $\mathscr{P}(n)$: « $u_n = \frac{1}{\sqrt{n}}$ ».

- Initialisation : $\frac{1}{\sqrt{1}} = 1 = u_1$, $\mathcal{P}(1)$ est vraie.
- **Hérédité** : Soit $n \in \mathbb{N} \setminus \{0\}$. Supposons que $\mathscr{P}(n)$ est vraie. On a donc $u_n = \frac{1}{\sqrt{n}}$. Or, $u_{n+1} = \frac{u_n}{\sqrt{u_n^2 + 1}}$.

Ainsi,

$$u_{n+1} = \frac{\frac{1}{\sqrt{n}}}{\sqrt{\left(\frac{1}{\sqrt{n}}\right)^2 + 1}} = \frac{1}{\sqrt{n}} \times \frac{1}{\sqrt{\frac{1}{n} + 1}} = \frac{1}{\sqrt{n}} \times \frac{1}{\sqrt{\frac{n+1}{n}}} = \frac{1}{\sqrt{n}} \times \sqrt{\frac{n}{n+1}} = \frac{1}{\sqrt{n+1}}.$$

 $\mathcal{P}(n+1)$ est donc vraie.

• **Conclusion** : $\mathcal{P}(1)$ est vraie et \mathcal{P} est héréditaire. Par récurrence, $\mathcal{P}(n)$ est vraie pour tout entier naturel non nul n

► Correction 5 – Voir l'énoncé

Pour tout entier naturel *n*, on pose $\mathcal{P}(n)$: « $u_n = \frac{9-8n}{3+8n}$ ».

- Initialisation : On a $\frac{9-8\times0}{3+8\times0} = \frac{9}{3} = 3 = u_0$. $\mathscr{P}(0)$ est vraie.
- **Hérédité**: Soit $n \in \mathbb{N}$. Supposons que $\mathscr{P}(n)$ est vraie, c'est-à-dire $u_n = \frac{9-8n}{3+8n}$. On cherche à établir

$$u_{n+1} = \frac{9 - 8(n+1)}{3 + 8(n+1)} = \frac{9 - 8n - 8}{3 + 8n + 8} = \frac{1 - 8n}{11 + 8n}.$$

Or,
$$u_{n+1} = \frac{u_n - 2}{2u_n + 5}$$
. Ainsi, $u_{n+1} = \frac{\frac{9 - 8n}{3 + 8n} - 2}{2 \times \frac{9 - 8n}{3 + 8n} + 5} = \frac{\frac{9 - 8n - 2(3 + 8n)}{3 + 8n}}{\frac{2(9 - 8n) + 5(3 + 8n)}{3 + 8n}}$.

On a alors

$$u_{n+1} = \frac{9 - 8n - 2(3 + 8n)}{3 + 8n} \times \frac{3 + 8n}{2(9 - 8n) + 5(3 + 8n)} = \frac{9 - 8n - 2(3 + 8n)}{2(9 - 8n) + 5(3 + 8n)}.$$

et donc

$$u_{n+1} = \frac{9 - 8n - 6 - 16n}{18 - 16n + 15 + 40n} = \frac{3 - 24n}{33 + 24n}$$

En factorisant par 3, on obtient finalement $u_{n+1} = \frac{3(1-8n)}{3(11+8n)} = \frac{1-8n}{11+8n}$, qui est bien le résultat voulu. $\mathscr{P}(n+1)$ est vraie.

• Conclusion : $\mathscr{P}(0)$ est vraie, \mathscr{P} est héréditaire. D'après le principe de récurrence, $\mathscr{P}(n)$ est vraie pour tout entier naturel n.

► Correction 6 – Voir l'énoncé

Pour tout entier naturel non nul n, on note $\mathcal{P}(n)$ la proposition « $1+2+3+\ldots+n=\frac{n(n+1)}{2}$ ».

- D'une part, la somme de tous les entiers entre 1 et 1 vaut évidemment 1. Par ailleurs, $\frac{1 \times (1+1)}{2} = 1$. $\mathcal{P}(1)$ est vraie.
- Soit *n* un entier naturel non nul. Supposons que $\mathcal{P}(n)$ est vraie. On a alors

$$1+2+3+\ldots+n+(n+1)=\frac{n(n+1)}{2}+n+1=\frac{n(n+1)}{2}+\frac{2(n+1)}{2}=\frac{(n+1)(n+2)}{2}.$$

 $\mathcal{P}(n+1)$ est donc vraie.

• $\mathcal{P}(1)$ est vraie, P est héréditaire. Par récurrence, $\mathcal{P}(n)$ est vraie pour tout entier naturel non nul n.

► Correction 7 – Voir l'énoncé

On a
$$u_1 = 1$$
, $u_2 = 1 + 3 = 4$, $u_3 = 1 + 3 + 5 = 9$, $u_4 = 1 + 3 + 5 + 7 = 16$.

Pour tout entier naturel non nul n, on pose $\mathcal{P}(n)$: « $u_n = n^2$ ».

- Initialisation : $1^2 = 1 = u_1$, $\mathcal{P}(1)$ est vraie.
- **Hérédité**: Soit *n* un entier naturel non nul. Supposons que $\mathcal{P}(n)$ est vraie. On a donc $u_n = n^2$. Or,

$$u_{n+1} = 1 + 3 + 5 + 7 + \dots + (2n-1) + (2(n+1)-1) = u_n + (2n+1).$$

Ainsi, puisque $u_n = n^2$ par hypothèse de récurrence,

$$u_{n+1} = n^2 + 2n + 1 = (n+1)^2$$
.

 $\mathcal{P}(n+1)$ est donc vraie.

• Conclusion : $\mathcal{P}(1)$ est vraie et \mathcal{P} est héréditaire. Par récurrence, $\mathcal{P}(n)$ est vraie pour tout entier naturel

▶ Correction 8 – Voir l'énoncé

Pour tout entier naturel n, on considère la proposition P(n): « $x_n^2 + y_n^2 = 25$ ».

- Initialisation: Pour n = 0, on a bien x₀² + y₀² = (-4)² + 3² = 16 + 9 = 25. P(0) est vraie.
 Hérédité: Soit n ∈ N. Supposons que P(n) est vraie, c'est-à-dire x_n² + y_n² = 25. Alors,

$$x_{n+1}^2 + y_{n+1}^2 = (0.8x_n - 0.6y_n)^2 + (0.6x_n + 0.8y_n)^2.$$

En développant, on a

$$x_{n+1}^2 + y_{n+1}^2 = 0.64x_n^2 - 0.96x_ny_n + 0.36y_n^2 + 0.36x_n^2 + 0.96x_ny_n + 0.64y_n^2.$$

En simplifiant, on a donc

$$x_{n+1}^2 + y_{n+1}^2 = x_n^2 + y_n^2 = 25.$$

P(n+1) est donc vraie.

• Conclusion : P(0) est vraie. P est héréditaire. Par récurrence, P(n) est vraie pour tout entier naturel n.

Si l'on se place dans un repère orthonormé, pour tout entier naturel n, le point de coordonnées $(x_n; y_n)$ est sur le cercle de centre l'origine et de rayon 5.

▶ Correction 9 – Voir l'énoncé

On a x = ax + b si et seulement si x - ax = b si et seulement si $x = \frac{b}{1 - a}$.

Pour tout entier naturel n, on pose $\mathscr{P}(n)$: « $u_n = a^n(u_0 - r) + r$ ».

- Initialisation : $a^0 \times (u_0 r) + r = u_0 r + r = u_0$. $\mathcal{P}(0)$ est vraie.
- **Hérédité**: Soit *n* un entier naturel non nul. Supposons que $\mathcal{P}(n)$ est vraie. On a donc $u_n = a^n(u_0 r) + r$. Or,

$$u_{n+1} = au_n + b = a \times (a^n(u_0 - r) + r) + b = a^{n+1}(u_0 - r) + ar + b.$$

Or, r est solution de l'équation x = ax + b. Ainsi, ar + b = r. Il en vient que

$$u_{n+1} = a^{n+1}(u_0 - r) + r.$$

 $\mathcal{P}(n+1)$ est donc vraie.

• Conclusion : $\mathcal{P}(0)$ est vraie et \mathcal{P} est héréditaire. Par récurrence, $\mathcal{P}(n)$ est vraie pour tout $n \in \mathbb{N}$.

Pour tout entier naturel n,

$$c_{n+1} = u_{n+1} - r = au_n + b - r$$

Or, r est solution de l'équation x = ax + b. Ainsi,

$$c_{n+1} = au_n + b - (ar + b) = a(u_n - r) = a \times c_n$$
.

La suite (c_n) est une suite géométrique de raison a.

D'après la question précédente, la suite (c_n) est une suite géométrique de raison a. Ainsi, pour tout entier naturel n,

$$c_n = c_0 \times a^n = (u_0 - r) \times a^n$$
.

Or, pour tout entier naturel n, $c_n = u_n - r$ et donc $u_n = c_n + r$. On en conclut que, pour tout entier naturel n,

$$u_n = a^n(u_0 - r) + r.$$

► Correction 10 – Voir l'énoncé

Pour tout réel x et tout réel non nul h,

$$\frac{f_1(x+h)-f_1(x)}{h} = \frac{x+h-x}{h} = \frac{h}{h} = 1.$$

Ainsi, f_1 est dérivable sur \mathbb{R} et pour tout réel x, $f'_1(x) = 1$. Par ailleurs, pour tout réel x et tout réel h non nul,

$$\frac{f_2(x+h) - f_2(x)}{h} = \frac{(x+h)^2 - x^2}{h} = \frac{x^2 + 2hx + h^2 - x^2}{h} = 2x + h.$$

Ainsi, f_2 est dérivable sur \mathbb{R} et pour tout réel x, $f_2'(x) = 2x$.

Soit u et v deux fonctions dérivables sur \mathbb{R} . Alors uv est dérivable sur \mathbb{R} et (uv)' = u'v + uv'.

Pour tout entier naturel n supérieur ou égal à 2, on considère la proposition $\mathscr{P}(n)$: « la fonction $f_n: x \mapsto x^n$ est dérivable sur \mathbb{R} , de dérivée $f'_n: x \mapsto nx^{n-1}$ ».

- Initialisation : D'après la question 1., f_2 est dérivable sur \mathbb{R} et pour tout réel x, $f_2'(x) = 2x = 2x^{2-1}$. $\mathscr{P}(2)$ est donc vraie.
- **Hérédité** : Soit n un entier naturel supérieur ou égal à 2. Supposons que $\mathcal{P}(n)$ est vraie. Pour tout réel x

$$f_{n+1}(x) = x^{n+1} = x \times x^n = f_1(x) \times f_n(x).$$

Or, f_1 est dérivable sur \mathbb{R} (question 1.) et f_n est également dérivable sur \mathbb{R} par hypothèse de récurrence. Ainsi, f_{n+1} est dérivable sur \mathbb{R} et

$$f'_{n+1} = f'_1 \times f_n + f_1 \times f'_n.$$

Pour tout réel x,

$$f'_{n+1}(x) = 1 \times x^n + x \times nx^{n-1} = x^n + nx^n = (n+1)x^n = (n+1)x^{n+1-1}.$$

 $\mathcal{P}(n+1)$ est donc vraie.

• Conclusion : $\mathscr{P}(2)$ est vraie et \mathscr{P} est héréditaire. Par récurrence, $\mathscr{P}(n)$ est vraie pour tout entier naturel n supérieur ou égal à 2

Suites majorées, minorées, bornées

► Correction 11 – Voir l'énoncé

- **a.** Pour tout entier naturel $n, -1 \le (-1)^n \le 1$ et $0 \le \frac{1}{n} \le 1$. Ainsi, $-1 \le (-1)^n \le 2$. La suite (u_n) est bornée.
- **b.** Pour tout entier nature $n, -1 \le \cos(n) \le 1$ et $-1 \le \sin(n) \le 1$. Ainsi, $-2 \le \cos(n) + \sin(n) \le 2$. La suite (u_n) est bornée.
- **c.** Pour tout entier nature $n, -1 \le \cos(n) \le 1$ et donc $3 \ge -3\cos(n) \ge -3$, soit $-3 \le -3\cos(n) \le 3$. Par ailleurs, $-1 \le \sin(n) \le 1$ et donc $-2 \le 2\sin(n) \le 2$. Ainsi, $-5 \le -3\cos(n) + 2\sin(n) \le 5$. La suite (u_n) est
- **d.** Pour tout entier naturel $n, -2 \le \cos(n) \le 2$ et $-n \le 0$. Ainsi, $2\cos(n) n \le 2$. La suite (u_n) est majorée. En revanche, elle n'est pas minorée.
- **e.** Pour tout entier naturel $n, -1 \le \cos(n) \le 1$. Ainsi, $2 \le \cos(n) + 4 \le 4$. La suite (u_n) est bornée.
- **f.** Pour tout entier naturel n, $0 \le n \le n+1$ et donc $0 \le \frac{n}{n+1} \le 1$. La suite (u_n) est bornée.

► Correction 12 – Voir l'énoncé

Pour tout entier naturel n, on considère la proposition P(n): « $u_n \le 10$ ».

- Initialisation : Pour n = 0, on a $u_0 = 2$ et donc $u_0 \le 10$. P(0) est vraie.
- **Hérédité**: Soit $n \in \mathbb{N}$. Supposons que P(n) est vraie, c'est-à-dire $u_n \leqslant 10$. Ainsi, $\frac{1}{5} \times 10 \leqslant \frac{1}{5} \times 10$ et $\frac{1}{5}u_n + 8 \leqslant \frac{1}{5} \times 10 + 8$, c'est-à-dire $u_{n+1} \leqslant 10$. P(n+1) est donc vraie. **Conclusion :** P(0) est vraie. P est héréditaire. Par récurrence, P(n) est vraie pour tout entier naturel n.

► Correction 13 – Voir l'énoncé

Pour tout entier naturel n, on considère la proposition P(n): « $3 \le u_n \le 5$ ».

- Initialisation : Pour n = 0, on a $u_0 = 5$ et donc $3 \le u_0 \le 5$. P(0) est vraie.
- **Hérédité**: Soit $n \in \mathbb{N}$. Supposons que P(n) est vraie, c'est-à-dire $3 \le u_n \le 5$. Ainsi, $3+3 \le u_n+3 \le 5+3$ et $\frac{3+3}{2} \le \frac{u_n+3}{2} \le \frac{5+3}{2}$, c'est-à-dire $3 \le u_{n+1} \le 4$. Or, puisque $4 \le 5$, on a donc bien $3 \le u_{n+1} \le 5$. P(n+1) est donc vraie.
- Conclusion : P(0) est vraie. P est héréditaire. Par récurrence, P(n) est vraie pour tout entier naturel n.

▶ Correction 14 – Voir l'énoncé

Pour tout entier naturel n, on considère la proposition P(n): « $\frac{1}{2} \le u_n \le 1$ ».

- Initialisation: Pour n = 0, on a $u_0 = 1$ et donc $\frac{1}{2} \le u_0 \le 1$. P(0) est vraie.
- **Hérédité :** Soit $n \in \mathbb{N}$. Supposons que P(n) est vraie, c'est-à-dire $\frac{1}{2} \leqslant u_n \leqslant 1$. Ainsi, $\frac{1}{2} + 1 \le u_n + 1 \le 1 + 1$, c'est-à-dire $\frac{3}{2} \le u_n + 1 \le 2$. On applique alors la fonction $x \mapsto \frac{1}{x}$ à cette inégalité. Cette fonction étant décroissante sur $]0; +\infty[$, l'inégalité est alors renversée. On a donc $\frac{2}{3} \ge \frac{1}{1+u_n} \ge \frac{1}{2}$. Or, $\frac{2}{3} \le 1$. On a donc bien $\frac{1}{2} \le u_{n+1} \le 1$. P(n+1) est donc vraie.
- Conclusion : P(0) est vraie. P est héréditaire. Par récurrence, P(n) est vraie pour tout entier naturel n.

► Correction 15 – Voir l'énoncé

Pour tout réel x, f'(x) = 4 - 8x. On a f'(x) > 0 si et seulement si 4 - 8x > 0 si et seulement si $x < \frac{1}{2}$. On

http://mathoutils.fr

construit donc le tableau de signes de f' et le tableau de variations de f sur [0;1].

х	0	$\frac{1}{2}$	1
f'(x)		+ 0 -	
f	0 -	1	0

En particulier, on voit que pour tout réel $x \in [0, 1]$, on a $0 \le f(x) \le 1$.

Pour tout entier naturel n, on pose P(n): « $0 \le v_n \le 1$ ».

- Initialisation : pour n = 0, on a $v_0 = 0.3$ et donc $0 \le v_n \le 1$. P(0) est vraie.
- **Hérédité** : Soit $n \in \mathbb{N}$. Supposons que P(n) est vraie, c'est-à-dire $0 \le v_n \le 1$. En utilisant les résultats de la question précédente, on a alors $0 \le f(v_n) \le 1$, c'est-à-dire $0 \le v_{n+1} \le 1$. P(n+1) est vraie.
- Conclusion : P(0) est vraie et P est héréditaire. Par récurrence, P(n) est vraie pour tout $n \in \mathbb{N}$.

Suites croissantes, suites décroissantes

▶ Correction 16 – Voir l'énoncé

Soit *n* un entier naturel. On a

$$u_{n+1} = 2(n+1)^2 - 24(n+1) + 3 = 2(n^2 + 2n + 1) - 24n - 24 + 3$$

et donc

$$u_{n+1} = 2n^2 + 4n + 2 - 24n - 24 + 3 = 2n^2 - 20n - 19.$$

Ainsi,

$$u_{n+1} - u_n = 2n^2 - 20n - 19 - (2n^2 - 24n + 3) = 4n - 22.$$

Étudions le signe de $u_{n+1} - u_n$, c'est-à-dire le signe de 4n - 22. On a $4n - 22 \ge 0$ si et seulement si $n \ge 5,5$. Ainsi, (u_n) est décroissante jusqu'au rang 5 puis croissante à partir du rang 6. On a par ailleurs $u_5 = -67$ et $u_6 = -69$. Ainsi, (u_n) est en fait décroissante jusqu'au rang 6 puis croissante à partir de ce rang. Une autre méthode consiste simplement à étudier les variations de la fonction $x \mapsto 2x^2 - 24x + 3$.

▶ Correction 17 – Voir l'énoncé

Pour tout entier naturel n, on pose P(n): « $u_n \le 8$ ».

- Initialisation: pour n = 0, on a u₀ = 5 et donc u_n ≤ 8. P(0) est vraie.
 Hérédité: Soit n ∈ N. Supposons que P(n) est vraie, c'est-à-dire u_n ≤ 8. On a donc $\frac{1}{2}u_n + 4 \le \frac{1}{2} \times 8 + 4$ c'est-à-dire $u_{n+1} \le 8$. P(n+1) est vraie. • **Conclusion**: P(0) est vraie et P est héréditaire. Par récurrence, P(n) est vraie pour tout $n \in \mathbb{N}$.

Soit *n* un entier naturel, on a $u_{n+1} - u_n = \frac{1}{2}u_n + 4 - u_n = -\frac{1}{2}u_n + 4$.

Puisque pour tout entier naturel n, on a $u_n \le 8$, on a donc $-\frac{1}{2}u_n \ge -\frac{1}{2} \times 8$ et $-\frac{1}{2}u_n + 4 \ge -\frac{1}{2} \times 8 + 4$, c'est-àdire $u_{n+1} - u_n \ge 0$. La suite (u_n) est donc croissante.

Jason LAPEYRONNIE

► Correction 18 – Voir l'énoncé

Pour tout entier naturel n, on pose P(n): « $u_n > 0$ ».

- Initialisation : pour n = 0, on a $u_0 = 1$ et donc $u_0 > 0$. P(0) est vraie.
- **Hérédité**: Soit $n \in \mathbb{N}$. Supposons que P(n) est vraie, c'est-à-dire $u_n > 0$. Or, $u_{n+1} = \frac{2u_n}{2+u_n}$. u_{n+1} est donc le quotient de deux réels strictement positifs, il est donc strictement positif lui aussi. P(n+1) est vraie.
- Conclusion : P(0) est vraie et P est héréditaire. Par récurrence, P(n) est vraie pour tout $n \in \mathbb{N}$.

On a montré que pour tout entier naturel n, $u_n > 0$. On peut donc déterminer les variations de la suite (u_n) en étudiant le quotient $\frac{u_{n+1}}{u_n}$. Or, pour tout entier naturel n,

$$\frac{u_{n+1}}{u_n} = \frac{2u_n}{2+u_n} \times \frac{1}{u_n} = \frac{2}{2+u_n}.$$

Or, puisque $u_n > 0$, il en vient que $2 + u_n > 2$ et donc que $\frac{2}{2 + u_n} < 1$. Ainsi, pour tout entier naturel n, $\frac{u_{n+1}}{u_n} < 1$, et donc $u_{n+1} < u_n$. La suite (u_n) est strictement décroissante.

▶ Correction 19 – Voir l'énoncé

On rappelle qu'une suite décroissante vérifie que pour tout entier naturel n, $u_n \ge u_{n+1}$.

Pour tout entier naturel n, on pose P(n): « $u_n \ge u_{n+1} \ge -21$ ».

- **Initialisation**: pour n = 0, on a $u_0 = 2$ et $u_1 = \frac{2}{3} \times 2 7 = -\frac{17}{3}$. On a bien $u_0 \ge u_1 \ge -21$. P(0) est vraie.
- **Hérédité**: Soit $n \in \mathbb{N}$. Supposons que P(n) est vraie, c'est-à-dire $u_n \geqslant u_{n+1} \geqslant -21$. On a donc $\frac{2}{3}u_n - 7 \geqslant \frac{2}{3}u_{n+1} - 7 \geqslant -21 \times \frac{2}{3} - 7$ c'est-à-dire $u_{n+1} \geqslant u_{n+2} \geqslant -21$. P(n+1) est vraie.
- Conclusion : P(0) est vraie et P est héréditaire. Par récurrence, P(n) est vraie pour tout $n \in \mathbb{N}$.

► Correction 20 – Voir l'énoncé

On rappelle qu'une suite décroissante vérifie que pour tout entier naturel n, $u_n \ge u_{n+1}$.

Pour tout entier naturel n, on pose P(n) : « $u_n \ge u_{n+1} \ge 1$ ».

- **Initialisation**: pour n = 0, on a $u_0 = 2 = 5$ et $u_1 = \sqrt{2 \times 5 1} = \sqrt{9} = 3$. On a bien $u_0 \ge u_1 \ge 1$. P(0) est vraie.
- **Hérédité**: Soit $n \in \mathbb{N}$. Supposons que P(n) est vraie, c'est-à-dire $u_n \geqslant u_{n+1} \geqslant 1$. On a donc $2u_n - 1 \geqslant 2u_{n+1} - 1 \geqslant 2 \times 1 - 1$. On applique alors la fonction $x \mapsto \sqrt{x}$ à l'inégalité. Cette fonction étant croissante sur \mathbb{R}_+ , le sens de l'inégalité ne change pas. Ainsi, $\sqrt{2u_n - 1} \geqslant \sqrt{2u_{n+1} - 1} \geqslant \sqrt{2 \times 1 - 1}$, c'est-à-dire $u_{n+1} \geqslant u_{n+2} \geqslant -21$. P(n+1) est vraie.
- Conclusion : P(0) est vraie et P est héréditaire. Par récurrence, P(n) est vraie pour tout $n \in \mathbb{N}$.

► Correction 21 – Voir l'énoncé

La fonction f est dérivable comme quotient de fonctions dérivables sur $[0, +\infty[$, le dénominateur ne s'annulant pas sur cet intervalle. De plus, pour tout réel positif x,

$$f'(x) = \frac{5 \times (x+2) - 1 \times (5x+4)}{(x+2)^2} = \frac{5x + 10 - 5x - 4}{(x+2)^2} = \frac{6}{(x+2)^2}.$$

Ainsi, pour tout réel positif x, f'(x) > 0. f est strictement croissante sur $[0; +\infty[$.

Pour tout entier naturel n, on considère la proposition $\mathscr{P}(n)$: « $0 \le u_n \le u_{n+1} \le 4$ ».

- **Initialisation**: Pour n = 0, on a $u_0 = 1$ et $u_1 = \frac{5 \times 1 + 4}{1 + 2} = \frac{9}{3} = 3$ et donc $0 \le u_0 \le u_1 \le 4$. $\mathscr{P}(0)$ est vraie.
- Hérédité: Soit n ∈ N. Supposons que P(n) est vraie, c'est-à-dire 0 ≤ u_n ≤ u_{n+1} ≤ 4. La fonction f étant strictement croissante sur [0;+∞[, on peut l'appliquer à cette inégalité sans en changer le sens. Ainsi.

$$f(0) \leqslant f(u_n) \leqslant f(u_{n+1}) \leqslant f(4).$$

Or,
$$f(0) = 2$$
, qui est supérieur à 0, $f(u_n) = u_{n+1}$, $f(u_{n+1}) = u_{n+2}$ et $f(4) = 4$. Il en vient que

$$0 \leqslant u_{n+1} \leqslant u_{n+2} \leqslant 4.$$

 $\mathcal{P}(n+1)$ est donc vraie.

• Conclusion : $\mathscr{P}(0)$ est vraie. \mathscr{P} est héréditaire. Par récurrence, $\mathscr{P}(n)$ est vraie pour tout entier naturel n.

► Correction 22 – Voir l'énoncé

Pour tout entier naturel n, on pose P(n): « $0 < a_n \le a_{n+1} \le b_{n+1} \le b_n \le 1$ ».

• Initialisation: pour n=0, on a $a_0=\frac{1}{10}$, $b_0=1$, $a_1=\mathrm{e}^{-b_0}=\mathrm{e}^{-1}=\frac{1}{\mathrm{e}}$ et $b_1=\mathrm{e}^{-a_0}=\mathrm{e}^{-0,1}$. D'une part, puisque $10\geqslant \mathrm{e}$, en appliquant la fonction inverse qui est décroissante sur \mathbb{R}_+^* , on a que $\frac{1}{10}\leqslant\frac{1}{\mathrm{e}}$, c'est-à-dire $a_0\leqslant a_1$.

Par ailleurs, la fonction $x \mapsto e^x$ étant croissante sur \mathbb{R} . On a donc que $e^{-1} \le e^{-0,1} \le e^0$, c'est-à-dire $a_1 \le b_1 \le b_0$.

Finalement, on a bien que $0 < a_0 \le a_1 \le b_1 \le b_0 \le 1$. P(0) est donc vraie.

• **Hérédité** : Soit $n \in \mathbb{N}$. Supposons que P(n) est vraie, c'est-à-dire $0 < a_n \le a_{n+1} \le b_{n+1} \le b_n \le 1$. La fonction $x \mapsto e^{-x}$ étant strictement décroissante sur \mathbb{R} , on a alors

$$e^{0} > e^{-a_{n}} \ge e^{-a_{n+1}} \ge e^{-b_{n+1}} \ge e^{-b_{n}} \ge e^{-1}$$
.

Ainsi, puisque $e^{-1} > 0$, on a, en lisant cette inégalité dans l'autre sens,

$$0 < a_{n+1} \le a_{n+2} \le b_{n+2} \le b_{n+1} \le 1$$
.

P(n+1) est vraie.

• Conclusion : P(0) est vraie et P est héréditaire. Par récurrence, P(n) est vraie pour tout $n \in \mathbb{N}$.

Jason LAPEYRONNIE