Name: SOLUTION Roll No. Batch:

Signature:

MS101 – Makerspace 2023-24/I (Autumn Semester) EE Quiz - 1

Aug 23, 2023 (Wed)

Marks: 30

- 1. This **Question-cum-Answer Booklet** has 4 pages and 12 questions.
- 2. Write your **answers only in the space provided for answers**. Answers written at any other place will not be checked. You may use the page margins for rough work.
- 3. No explanations / clarifications will be given to any of the questions.
- 4. No negative marks for wrong answers, however steps are required for all numerical answers.
- 1. State whether the following statement is TRUE or FALSE. Justify your answer in just *one* sentence.

A step-up transformer can be considered as an amplifier since its secondary voltage is larger than the primary voltage.

Marks: 2 (= 1+1)

Time: 45 min

Answer: TRUE / FALSE

One-sentence justification: <u>In a transformer there is no power gain and hence it does not qualify</u> to be called an amplifier.

2. A practical voltage source has an open circuit voltage of 10 V. When a 1.75 k Ω resistor is connected as load across its terminals, the terminal voltage drops to 8.75 V. What is the source resistance in ohms? *No marks without steps.*

Marks: 3

 V_S = Source open circuit voltage, R_S = source resistance, R_L = Load resistance,

 $V_L = \text{voltage across } R_L$, $_{\text{IL}} = \text{current through } R_L$.

<u>Method 1</u>: $R_L = 1.75 \text{ k}\Omega$, $V_L = 8.75 \text{ V}$, Hence $I_L = 8.75/1.75 = 5 \text{ mA}$.

 $V_L = V_S - I_L \times R_S$. Substituting, $8.75 = 10 - (5 \text{ mA}) \times R_S$; $R_S = 1.25 \text{ V/5 mA} = 250 \Omega$

Method 2: $V_L = V_S x R_L/(R_S + R_L)$; Hence, $R_S = R_L \{ (V_S - V_L)/V_L \} = 1.75 \text{ k}\Omega x (10-8.75)/8.75 = 0.25 \text{ k}\Omega$

Answer: 250 Ω

Partial marks given only in case of minor mistakes, and when the steps are leading to the correct answer.

3. A practical current source is modelled as an ideal current source of 100 mA in parallel with a resistor of 240 k Ω . A load resistance of 10 k Ω is connected across this source. What is the load current?

No marks without steps.

Marks: 2

 I_S = Source current, R_S = source resistance, R_L = Load resistance.

Load current $I_L = I_S \times R_S/(R_S + R_L) = 100 \text{ mA} \times 240 \text{ k}\Omega / (240 + 10) \text{ k}\Omega = 96 \text{ mA}$

Answer: 96 mA

Partial marks given only in case of minor mistakes, and when the steps are leading to the correct answer.

4. A resistive network is shown below.

$$R_1 = R_2 = R_L = 3000 \ \Omega$$
. $V_1 = -15 \ V$, and $V_2 = 6 \ V$.

Using superposition theorem, calculate V_{AB} and I_L .

No marks without steps.

Marks: 4 (= 2+2)

Answers:

$$V_{AB} = -3 \text{ V}$$

(2 marks if obtained using superposition theorem)

$$I_L = -1 \text{ mA}$$

(2 marks if obtained using superposition theorem)

(Answers without applying superposition theorem will be given only very little credit).

Solution:

<u>Method 1</u>: Find V_{AB} and I_L considering V_1 alone, with $V_2 = 0$. Since $R_1 = R_2 = R_3$, $V_{AB1} = (1/3)$ $V_1 = -5$ V Hence, $I_{L1} = -5/3000 = -0.001666$ A or -1.66 mA.

Similarly, Find V_{AB} for V_1 = 0. V_{AB2} = (1/3) V_2 = 2 V ; I_{L2} = 2/3000 = 0.00066 A or 0.66 mA

Hence, $V_{AB} = V_{AB1} + V_{AB2} = -5 \text{ V} + 2 \text{ V} = -3 \text{ V}$; $I_L = I_{L1} + I_{L2} = -1.66 \text{ mA} + 0.66 \text{ mA} = -1 \text{ mA}$ (2 marks for V_{AB} , 2 marks for I_L)

Method 2: Find I_L and V_{AB} considering V_1 alone, with $V_2 = 0$. $I_{L1} = 0.5 \text{ x } V_1/(R_1 + [R_2 \parallel R_L])$

= $0.5 \times (-15)/(3000+1500) = -0.001666 \text{ A} = -1.66 \text{ mA}; V_{AB1} = I_{L1} \times R_{L} = -1.666 \times 3 \text{ k} \Omega = -5 \text{ V}$

Similarly, find I_L for $V_1 = 0$. $I_{L2} = 0.5 \text{ x } V_2/(R_2 + [R_1 \parallel R_L]) = 0.5 \text{ x } 6 / (3000 + 1500) = 0.00066 \text{ A} = 0.66 \text{ mA}$ $V_{B2} = I_{L2} \text{ x } R_L = 2 \text{ V}$

Hence, $I_L = I_{L1} + I_{L2} = -1.66 \text{ mA} + 0.66 \text{ mA} = -1 \text{ mA}$

 $V_{AB} = V_{AB1} + V_{AB2} = -5 V + 2 V = -3 V$;

[2 (=1+1) marks for V_{AB} , 2 (=1+1) marks for I_L]

5. The current through a *pn* junction diode in the forward region can be approximated as:

$$i_d = I_S$$
. exp $[v/V_T]$,

where v is the voltage across the diode, I_S is the reverse-saturation current and V_T is the thermal voltage.

If
$$V_T = 25$$
 mV, and $I_S = 10^{-13}$ A.

Calculate i_d for v = 0.6 V. Your current should be precise to the first decimal place.

Marks: 2

 $i_d = I_S$. exp $[v/V_T]$, = 10^{-13} x exp [600/25]

= 2.6489 mA

Answer: $i_d = 2.6 \text{ mA}$

(No partial marks for writing values in the given equation; partial marks only for numerical answers close to the answer)

6. The circuit diagram of an unregulated DC power supply which employs a capacitive filter is shown below. The secondary voltage of the transformer is 12 Vrms.

If resistor R_L is removed from the circuit, what will be V_{out} in volts? Justify your answer in *one* sentence.

Marks: 3 (= 1 + 2)

Answer:

 $V_{out} = \text{sqrt}(2) \text{ x } 12 = 1.414 \text{ x } 12 = 16.97 = 17 \text{ V}$

(1 mark)

(No marks for $V_{out} = 12$ V. But $V_{out} = 17$ – one diode drop (0.6 or 0.7 V) will also be accepted as a valid answer)

Justification (one sentence):

Since R_L is removed, there is no discharge and the capacitor will charge to the peak secondary voltage, which is $12\sqrt{2} = 17 \text{ V}$.

(2 marks)

7. How many conductors are needed for 8 single-ended signals?	Marks: 1
	Answer: 9

8. A function generator having source resistance of 50 Ω is connected to an amplifier. Which of the following options gives the highest voltage	Marks: 1
at the amplifier's input?	Answer:
A) $R_{in} = 50 \Omega$	A
B) $R_{in} >> 50 \Omega$	
C) $R_{in} \ll 50 \Omega$	B√
	C
)
9. Mark <u>all true</u> statements regarding <u>virtual short</u> across the input terminals of an op amp.	Marks: 2
	All correct statements:
(A) Virtual short means zero input currents into the input terminals	
and zero voltage across them.	$A \sqrt{a}$
(B) Virtual short is not applicable if the op amp output reaches its	B √
higher or lower saturation voltage.	C
(C) Virtual short requires the positive and negative supply voltages to	D
have the same magnitude.	(Fully correct: 2 marks; 1 mistake: 1 mark;
(D) Virtual short requires the non-inverting input to be grounded.	2 mistakes: 0.5 marks;
(D) Throat short requires the non-inverting input to be grounded.	All options chosen: 0
	marks)

10. In the op-amp circuit shown in the figure, $R1=100~k\Omega$, $R2=50~k\Omega$, $R3=100~\Omega$. Find the voltage, current, and power gains. Is it serving as an amplifier?

Marks: $4 (= 1 \times 4)$

Answer: (Steps required in the spaces provided)

Voltage gain $A_v = v_o / v_{in}$ = - R2/R1= $- 50 \text{ k}\Omega / 100 \text{ k}\Omega = \underline{-0.5}$ (deduct 0.5 marks for wrong sign)

Current gain $A_i = i_3 / i_1$ = $(v_o/R3)/(v_{in}/R1)$ = $(v_o/v_{in}) \times (R1/R3) = -0.5 \times 1000 = -500$ (deduct 0.5 marks for wrong sign)

Power gain $A_p = A_v A_i$ = $-0.5 \times -500 = 250$ (deduct 0.5 marks for wrong sign)

Amplifier? Yes $\sqrt{}$ No (No marks for this part without the above three parts as justification)

11. In the I/V converter shown in the figure, $R_1 = 100 \text{ k}\Omega$. Find its trans-resistance and input resistance.

Marks: 2 (= 1 + 1)

Answer:

$$R = v_0/i_{in} = \mathbf{R1} = \mathbf{100} \mathbf{k} \Omega$$

(No penalty for wrong sign)

$$R_{in} = v_{in}/i_{in} = 0/i_{in} = \mathbf{0}$$
 ohms

(No partial marks)

12. In the summer circuit shown in the figure, $R_1 = R_2 = R_3 = 10 \text{ k}\Omega$, $R_4 = R_5 = 100 \text{ k}\Omega$. Find the voltage gain and input resistance for the first and third inputs.

Marks: $4 (= 1 \times 4)$

Answer: (show steps)

$$A_{vI} = v_o/v_1 = [(R2/(R1+R2))]x[1+R5/(R3 | R4)]$$

$$= 0.5 \text{ x} [1 + 100 \text{k}/(100 \text{k} | | 10 \text{k})]$$

$$=0.5 \text{ x} [1+100/(100\text{x}10/(110))]$$

$$= 0.5 \times [1 + 11] = 6$$

$$R_{in1} = v_I/i_1 = R1 + R2 = 20 \text{ k}\Omega$$

$$A_{v3} = v_o/v_3 = -R5/R3 = -100 \text{ k}\Omega/10 \text{ k}\Omega = -10$$

$$R_{in3} = v_3/i_3 = \mathbf{R3} = \mathbf{10 \ k\Omega}$$