$1 \quad 2022/7/11$

Figure 1: Pretext task

Figure 2: Downstream task

1.1 Close price of S&P 500 index from Yahoo finance (small dataset)

• Train Data: 2017.01.01-2019.01.01 Test Data: 2017.01.01-2019.01.01

1. 502 observations (step=10)

Pure data: (26, 251, 1) Noise data: (26, 251, 1)

2. Loss plot

Figure 3: Loss plot(2017-2019)

3. Denoised plot

Figure 4: Denoised plot(2017-2019)

4. Regression Forecasting

(a) Generate features (200 features in total)

SMA(2-51)

EMA(2-51)

STDDEV(2-51)

LAG(2-51)

(b) TimeSeriesSplit=10

1. Using feature matrix generated by reconstructed data to predict original data

The last test MSE: 3626.6775423724475

Figure 5: XGBre-RO-1719-19

HalvingGridSearchCV:

Optimal values for hyperparameters: 'learning_rate': 0.1, 'max_depth':

10, 'n_estimators': 500

Best model score: -2585.5981169086917

Test MSE: 3332.947

HalvingRandomSearchCV:

Optimal values for hyperparameters: 'subsample': 0.95, 'scale_pos_weight': 0.4, 'reg_lambda': 0.6, 'reg_alpha': 0.5, 'n_estimators': 700, 'min_child_weight': 0, 'max_depth': 10, 'learning_rate': 0.02, 'gamma': 0.4, 'colsample_bytree':

0.6

Best model score: -2436.3794010297015

Test MSE: 3121.3774

BayesianOptimization:

Test MSE: 2191.956298828125

2. Using feature matrix generated by original data to predict original

The last test MSE: 4746.077826718005

HalvingGridSearchCV:

Optimal values for hyperparameters: 'learning_rate': 0.05, 'max_depth':

10, 'n_estimators': 700

Best model score: -2811.671274117187

Test MSE: 4087.8457103080864

Halving Random Search CV:

Optimal values for hyperparameters: 'subsample': 0.85, 'scale_pos_weight': 1, 'reg_lambda': 1, 'reg_alpha': 0.5, 'n_estimators': 100, 'min_child_weight': 0, 'max_depth': 10, 'learning_rate': 0.1, 'gamma': 0.1, 'colsample_bytree':

0.7

Best model score: -2955.2431469829

Test MSE: 5002.151511272279

BayesianOptimization:

Test MSE: 2740.978656614699

Figure 6: SVC(2017-2019)

Figure 7: EMDSVC(2017-2019)

6. Strategies Moving Average crossover

Table 1: Close Price Comparison via MA Crossover

		1	
Date	Buy with Original Signals	Date	Buy with Original Signals
2017-01-18	2271.889893	2017-01-30	2280.899902
2017-04-28	2384.199951	2017-04-28	2384.199951
2017-09-05	2457.850098	2017-09-05	2457.850098
2018-03-16	2752.010010	2018-03-16	2752.010010
2018-05-14	2730.129883	2018-05-14	2730.129883

Bollinger Bands

Table 2: Close Price Comparison via BB

Date	Buy with Original Signals	Date	Buy with Original Signals
2017-03-21	2344.020020	2017-03-21	2341.590088
2017-04-13	2328.949951		
2017-06-29	2419.699951	2017-06-29	2419.699951
2017-07-06	2409.750000	2017-07-06	2409.750000
2017-08-10	2438.209961	2017-08-10	2438.209961
2017-08-17	2430.010010	2017-08-17	2430.010010
2018-02-05	2648.939941	2018-02-05	2648.939941
2018-02-08	2581.000000		
2018-03-22	2643.689941	2018-03-22	2643.689941
2018-06-27	2699.629883		
2018-10-10	2785.679932	2018-10-09	2880.340088
2018-10-24	2656.100098	2018-10-24	2656.100098
2018-12-17	2545.939941	2018-12-17	2545.939941
2018-12-19	2506.959961	2018-12-19	2506.959961

Moving average convergence diver

Table 3: Close Price Comparison via MACD

Table 5. Close Flice Comparison via MACD			
Date	Buy with Original Signals	Date	Buy with Original Signals
2017-01-04	2270.750000		
2017-01-11	2275.320068		
2017-01-24	2280.070068	2017-01-20	2271.310059
2017-04-24	2374.149902	2017-04-24	2374.149902
2017 - 05 - 25	2415.070068	2017-05-25	2415.070068
2017-06-19	2453.459961		
2017-07-13	2447.830078	2017-07-13	2447.830078
2017-08-31	2471.649902	2017-08-31	2471.649902
		2017-11-07	2590.639893
2017-11-28	2627.040039	2017-11-27	2601.419922
2018-01-04	2723.989990	2018-01-04	2723.989990
2018-02-23	2747.300049	2018-02-22	2703.959961
2018-03-05	2720.939941	2018-03-05	2720.939941
2018-04-10	2656.870117	2018-04-11	2642.189941
2018 - 05 - 07	2672.629883	2018-05-07	2672.629883
2018-06-04	2746.870117	2018-06-05	2748.800049
2018-07-09	2784.169922	2018-07-09	2784.169922
2018-08-06	2850.399902	2018-08-06	2850.399902
2018-08-24	2874.689941	2018-08-27	2896.739990
2018-09-20	2930.750000	2018-09-21	2929.669922
2018-11-02	2723.060059	2018-11-02	2723.060059
2018-11-28	2743.790039	2018-11-28	2743.790039
		2018-12-31	2506.850098

• Train Data: 2017.01.01-2019.01.01 Test Data: 2018.06.01-2019.06.01

- 1. Same denoised model trained by 2017-2019
- 2. Denoised plot

Figure 8: Denoised plot(2018-2019)

3. Regression Forecasting

- (a) TimeSeriesSplit=10
 - 1. Using feature matrix generated by reconstructed data to predict original data

The last test MSE: 2152.6313423679935

EEMD: 2457.243271258142

CEEMDAN: 1467.4669466283585

HalvingGridSearchCV:

Best model score: -2873.987590862372

Test MSE: 755.9846 EEMD: 1124.2512 CEEMDAN: 2774.193

Halving Random Search CV:

Best model score: -4261.291451234443

Test MSE: 422.973 EEMD: 676.0305

CEEMDAN: 1223.3672

BayesianOptimization:

Test MSE: 392.46634048998067 EEMD: 528.8270263671875

CEEMDAN: 262.0235595703125

2. Using feature matrix generated by original data to predict original data

The last test MSE: 1896.106842233075

Halving Grid Search CV:

Best model score: -5114.213177644038

Test MSE: 2094.160648379061

Halving Random Search CV:

Best model score: -3981.967834908588

Test MSE: 1422.358187529776

BayesianOptimization:

Test MSE: 666.5796529948711

Figure 9: SVC(2017-2019)

Figure 10: SVC(EEMD)

Figure 11: SVC(CEE)

Figure 12: EMDSVC(2017-2019)

5. Strategies Moving Average crossover

Table 4: Close Price Comparison via MA Crossover

Date	Buy with Original Signals	Date	Buy with Original Signals
2018-06-15	2779.659912	2018-06-15	2779.659912
2018-07-13	2801.310059	2018-07-13	2801.310059
2019-01-24	2642.330078	2019-01-24	2642.330078

Bollinger Bands

Table 5: Close Price Comparison via BB

Date	Buy with Original Signals	Date	Buy with Original Signals
2018-06-25	2717.070068		
2018-06-27	2699.629883		
2018-10-10	2785.679932	2018-10-09	2880.340088
2018-10-24	2656.100098		
2018-12-17	2545.939941		
2018-12-19	2506.959961	2018-12-19	2506.959961
2019-05-13	2811.870117	2019-05-09	2870.719971
2019-05-31	2752.060059		

Moving average convergence diver

Table 6: Close Price Comparison via MACD

Date	Buy with Original Signals	Date	Buy with Original Signals
2018-06-04	2746.870117	2018-06-04	2746.870117
2018-07-06	2759.820068	2018-07-06	2759.820068
2018-08-03	2840.350098	2018-08-03	2840.350098
2018-08-22	2861.820068		
2018-08-24	2874.689941	2018-08-24	2874.689941
2018-09-20	2930.750000	2018-09-21	2929.669922
2018-11-02	2723.060059	2018-11-02	2723.060059
2018-11-28	2743.790039	2018-11-28	2743.790039
2019-01-02	2510.030029	2019-01-03	2447.889893
2019-03-19	2832.570068	2019-03-19	2832.570068
2019-04-02	2867.239990	2019-04-02	2867.239990
2019-04-23	2933.679932		
		2018-12-31	2506.850098

1.2 Minute price of bitcoin (large dataset)

• Train Data: 2021.01.01-2021.05.12 Test Data: 2021.01.01-2021.05.12

1. 188316 observations (step=2000)

Pure data: (48, 94158, 1) Noise data: (48, 94158, 1)

2. Loss plot

Figure 13: Loss plot(bit)

3. Denoised plot

Figure 14: Denoised plot(bit)

4. Regression Forecasting

(a) Generate features (200 features in total) $\frac{\mathrm{SMA}(2\text{-}51)}{\mathrm{EMA}(2\text{-}51)}$ $\begin{array}{l} \text{STDDEV}(2\text{-}51) \\ \text{LAG}(2\text{-}51) \end{array}$

(b) TimeSeriesSplit=10

1. Using feature matrix generated by reconstructed data to predict original data

The last test MSE: 3775.5785444924863

2. Using feature matrix generated by original data to predict original data

The last test MSE: 4237.80436168226

Figure 15: SVC(bit)

Figure 16: EMDSVC(bit)

• Train Data: 2021.01.01-2021.05.12(Only using first 80%, 150652 observation)

Test Data: 2021.01.01-2021.05.12

1. Loss plot

Figure 17: Loss plot(bit)

2. Denoised plot

Figure 18: Denoised plot(bit)

3. Regression Forecasting

Table 7: R to O and O to O

MSE	R to O	O to O
TimeSeriesSplit1	4029.446469436446	6959.288549566705
${\bf Time Series Split 2}$	2528.3044600754783	4641.225435585642
${\bf Time Series Split 3}$	26204805.266945664	28271068.21184866
${\bf Time Series Split 4}$	6048024.076939112	6095684.625164483
${\bf Time Series Split 5}$	8639.155680171423	10902.335757344075
${\bf Time Series Split 6}$	165837.36769624185	198253.59791907933
${\bf Time Series Split 7}$	2121.1523391233663	3662.9754652226393
${\bf Time Series Split 8}$	582471.3196687133	717363.6937461786
Time Series Split 9	4893.151336454887	8267.96235254641
TimeSeriesSplit10	4221.8781678319665	4237.80436168226
The average MSE	3302757.111970282	3532104.1720600342

Figure 19: SVC(bit)

1.3 Minute data of road congestion (another type of dataset)

• Train Data: 1991.04.01-1991.09.30 Test Data: 1991.04.01-1991.09.30

1. 188316 observations (step=100)

Pure data: (66, 6529, 1) Noise data: (66, 6529, 1)

2. Loss plot

Figure 20: Loss plot(tra)

3. Denoised plot

Figure 21: Denoised plot(tra)

4. Regression Forecasting

(a) Generate features (200 features in total) ${\rm SMA}(2\text{-}51) \\ {\rm EMA}(2\text{-}51)$

STDDEV(2-51)

LAG(2-51)

(b) TimeSeriesSplit=10

1. Using feature matrix generated by reconstructed data to predict original data $\,$

The last test MSE: 109.76000038377794

BayesianOptimization:

Test MSE: 99.5308837890625

2. Using feature matrix generated by original data to predict original data

The last test MSE: 124.23597242474737

BayesianOptimization:

Test MSE: 115.01419207394254

Figure 22: SVC(tra)

Figure 23: EMDSVC(tra)

• Train Data: 1991.04.01-1991.09.30(Only using first 80%, 10446 observation)

Test Data: 1991.04.01-1991.09.30(Later 20%)

1. Loss plot

Figure 24: Loss plot(tra)

2. Denoised plot

Figure 25: Denoised plot(tra)

3. Regression Forecasting

Table 8: R to O and O to O

MSE	R to O	O to O
TimeSeriesSplit1	242.68974552124521	290.4062846537116
TimeSeriesSplit2	158.76399623358037	159.50257515128237
TimeSeriesSplit3	219.7605641416004	297.4470299555518
TimeSeriesSplit4	190.1979981669478	200.6940283853277
Time Series Split 5	186.39734349179187	179.50189293799235
TimeSeriesSplit6	123.11959620435692	126.25034154453321
Time Series Split 7	134.58254181552334	137.24418629961175
TimeSeriesSplit8	131.34448558423148	123.13017839965764
TimeSeriesSplit9	117.84628670281049	129.53874957473602
TimeSeriesSplit10	161.7295449938986	155.925421258954
The average MSE	166.64321028559863	179.96406881613584
BayesianOptimization	123.53077697753906	136.86177050502738

$4. \ \, SVC(label-Trend\ Forecast)$

Figure 26: SVC(tra)