JVC

SERVICE MANUAL

COLOUR VIDEO MONITOR

TM-1500PS

BASIC CHASSIS

TM

CONTENTS

SPECIFICATIONS	 	. 2
SAFETY PRECAUTIONS	 	. 3
OPERATING INSTRUCTIONS		
SPECIFIC SERVICE INSTRUCTIONS		. 8
SERVICE ADJUSTMENTS		
PARTS LIST	 	19
SCHEMATIC DIAGRAM(APPENDED)	1	~@

SPECIFICATIONS

Item		Content				
Dimensions		36.0cm(W)×39.4cm(D)×33.4cm(H)				
Weight		16.0kg				
Color system		PAL/SECAM system				
Power input		AC 220 - 240V,50/60Hz				
	nption	Max. 68W				
Power consumption Picture Tube		15" (measured diagonally),90° deflection,in-Line gun,data grade tinted CRT				
		tri-dot pitch 0.499mm				
Screen Size		284mm(W)×213mm(H)				
Scanning freq	uency	(H) 15.625KHz				
	· -	(V) 50Hz				
High voltage		24kV(at zero beam current)				
Horizontal res	olution	More than 450 lines				
Speaker		4.5cm round(16Ω)×1				
Audio output		0.75W				
		,				
INPUT A						
İ	VIDEO	BNC×2(IN/OUT),Bridged connection is possible.				
		VS-1Vp-p,75Ω,negative				
	AUDIO	A termination switch is provided (75Ω/OPEN)				
		RCA pin connector × 2(IN/OUT), Bridged connection is possible.				
		390mVrms,High impedance				
INPUT B		8-pin connector × 1				
	VIDEO	VS-1Vp-p,75Ω,negative				
	AUDIO	775mVrms,High impedance				
İ						
Y/C INPUT						
	Y/C	7-pin connector × 2(IN/OUT), Bridged connection is possible.				
		Y-VS-1Vp-p,75Ω,negative				
		C-0.3Vp-p(burst),75Ω				
		A termination switch is provided.(75Ω/OPEN)				
	AUDIO	RCA pin connector × 2(IN/OUT), Bridged connection is possible.				
		390mVrms,High impedance				
ACCESSORY		Power cord(approx. 2.4m) × 1				
OPTION		RK-150E(RACK MOUNT ADOPTOR)				
FUSE		QMF51E2-3R15S (3.15A)				

Design & specification subject to change without notice.

SAFETY PRECAUTIONS

- The design of this product contains special hardware, many circuits and components specially for safety purposes.
 For continued protection, no changes should be made to the original design unless authorized in writing by the manufacturer. Replacement parts must be identical to those used in the
 - er. Replacement parts must be identical to those used in the original circuits. Service should be performed by qualified personnel only.
- Alterations of the design or circuitry of the products should not be made. Any design alterations or additions will void the manufacturer's warranty and will further relieve the manufacturer of responsibility for personal injury or property damage resulting therefrom.
- 3. Many electrical and mechanical parts in the products have special safety-related characteristics. These characteristics are often not evident from visual inspection nor can the protection afforded by them necessarily be obtained by using replacement components rated for higher voltage, wattage, etc. Replacement parts which have these special safety characteristics are identified in the parts list of Service manual. Electrical components having such features are identified by shading on the schematics and by (Â) on the parts list in Service manual. The use of a substitute replacement which does not have the same safety characteristics as the recommended replacement part shown in the parts list of Service manual many create shock, fire, or other hazards.
- Don't short between the LIVE side ground and NEU-TRAL side grounding or EARTH side ground when repairing.
 - Some model's power circuit is partly different in the GND. The difference of the GND is shown by the LIVE (\(_ \)) side GND, the NEUTRAL(\(_ \)) side GND and EARTH (\(_ \)) side GND. Don't short between the LIVE side GND and NEUTRAL side GND or EARTH side GND and never measure with a measuring apparatus (oscilloscope etc.) the LIVE side GND and NEUTRAL side GND or EARTH side GND at the same time. If above note will not be kept, a fuse or any parts will be broken.
- If any repair has been made to the chassis, it is recommended that the B1 setting should be checked or adjusted (See AD-JUSTMENT OF B₁ POWER SUPPLY).
- 6. The high voltage applied to the picture tube must conform with that specified in Service manual. Excessive high voltage can cause an increase in X-Ray emission, arcing and possible component damage, therefore operation under excessive high voltage conditions should be kept to a minimum, or should be prevented. If severe arcing occurs, remove the AC power immediately and determine the cause by visual inspection (incorrect installation, cracked or melted high voltage harness, poor soldering, etc.). To maintain the proper minimum level of soft X-Ray emission, components in the high voltage circuitry including the picture tube must be the exact replacements or alternatives approvided by the manufacturer of the complete product.
- 7. Do not check high voltage by drawing an arc. Use a high voltage meter or a high voltage probe with a VTVM. Discharge the picture tube before attempting meter connection, by connecting a clip lead to the ground frame and connecting the other end of the lead through a 10kΩ 2W resistor to the anode button.
- 8. When service is required, observe the original lead dress. Extra precaution should be given to assure correct lead dress in the high voltage circuit area. Where a short circuit has occurred, those components that indicate evidence of overheating should be replaced. Always use the manufacturer's replacement components.

9. Isolation Check

(Safety for Electrical Shock Hazard)

After re-assembling the product, always perform an isolation check on the exposed metal parts of the cabinet (antenna terminals, video/audio input and output terminals, Control knobs, metal cabinet, screwheads, earphone jack, control shafts, etc.) to be sure the product is safe to operate without danger of electrical shock.

(1) Dielectric Strength Test

The isolation between the AC primary circuit and all metal parts exposed to the user, particularly any exposed metal part having a return path to the chassis should withstand a voltage of 3000V AC (r.m.s.) for a period of one second.

(.... Withstand a voltage of 1100V AC (r.m.s.) to an appliance rated up to 120V, and 3000V AC (r.m.s.) to an appliance rated 200V or more, for a period of one second.)

This method of test requires a test equipment not generally found in the service trade.

(2) Leakage Current Check

Plug the AC line cord directly into the AC outlet (do not use a line isolation transformer during this check.) Using a "Leakage Current Tester", measure the leakage current from each exposed metal part of the cabinet, particularly any exposed metal part having a return path to the chassis, to a known good earth ground (water pipe, etc.). Any leakage current must not exceed 0.5mA AC (r.m.s.).

Alternate Check Method

Plug the AC line cord directly into the AC outlet (do not use a line isolation transformer during this check.). Use an AC voltmeter having 1,000 ohms per volt or more sensitivity in the following manner. Connect a 1,500 Ω 10W resistor paralleled by a 0.15µF AC-type capacitor between an exposed metal part and a known good earth ground (water pipe, etc.). Measure the AC voltage across the resistor with the AC voltmeter. Move the resistor connection to each exposed metal part, particularly any exposed metal part having a return path to the chassis, and measure the AC voltage across the resistor. Now, reverse the plug in the AC outlet and repeat each measurement, Any voltage measured must not exceed 0.35V AC (r.m.s.). This corresponds to 0.5mA AC (r.m.s.).

Fig.A

OPERATING INSTRUCTIONS

INSTRUCTIONS

Type : Moniteur vidéo couleur Système couleur : PAL/SECAN PAL/SECAN Tribe image : 38 cm (imesuré en disponale). Tube image : 38 cm (imesuré en disponale), déviation de 90°, canons électrons en ligne, telnté dats-grade. Taille des points triples où 690mm en 190ms triples où 690mm en 190ms triples où 690mm en 190ms en

prévul.)

AUDIO — connecteur à broches
RCA x 2,380 mVrms, haute
RCA x 2,380 mVrms, haute
possible.
Connecteur à 8 broches x 1
VS — 1 Vcc, 75 chims, synchro
négative
AUDIO — 775 mVrms, haute
impédence à 7 broches Y/C x 2
Y — 1 Vcc, 75 chims, synchro

INPUTB

prévu.)
AUDIO — 390 m/rms, haute impédance, raccordement en sonde possible.

: 16,0 kg : Cordon d'elimentation (environ 2,4 m) x 1

Poids Accessoire

Dimensions (Unit: mm)

C – 0,3 Vcc (burst), 76 ohms Recordement en sonde possible. (Un commutateur d'extrémité est

INPUT Y/C

		Signal Audio Viddo composito Nideo emposito Nideo Nesee Nesee	5.	_
roches		For the second	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	, I -
Affectation des broches	Connecteur INPUT 8	9 999	Connecteur V/C	

5 ž 2

£

CARACTERISTIQUES TECHNIQUES

SAFETY PRECAUTIONS

Thank you for purchasing a JVC colour video monitor. Your new monitor will provide superior-quality pictures and incorporates many useful functions.

To ensure a complete understanding of the monitor and to extend its service life, please read all instructions in this booklet and keep it in a safe place for future reference.

90	video,	
Multi-standard compatibility for a wide range of	composite video,	
ģ	oting	
ibility	9009	
сотра	ations;	put.
dard	•pplic	/ideo ir
Aulti-star	essional applications; accepting	separate video input.

- 15-inch data-grade CRT, together with a comb filter for pictures with a horizontal resolution of more than 450 lines. Multi-function and superior flexibility with numerous facilities required by professional users including a under
- sean switch, pulse cross switch, etc.
 Mountable in a standard E1A rack with optional rack
 mount adaptar RK-150E. (For mounting, refer to the instruction manual of the RK-150E.)

l		
l		
ŧ		
8		
ı		

Safety Precautions 3		{Front Panel}	(Rear Panel) 5	Connections 6	Connections Outfine Diagram	Chanistonstons
•		•	•	•	•	
•		٠		•	٠	
-		•	-	•	•	
٠		•	•	•	•	
•		•		•	•	
		- :		:		
				- :		
٠		٠	٠			
•		•	•		•	
•		•	•	•		
٠		٠	•	•	•	
٠		٠	٠	٠	•	
•		•	•	•	•	
•		•	•	•	•	
		- :		- :	- :	
					-	
					ε	
					-	
					ā	
•	Ç	•	•	•		
•	2	•	•	•	Ω	
•	è	•	٠	•		
	2	•	•	٠	≗	
ë	2	•	•	•	₹	
.0	ō	=	_	•	5	
=	Ç	2	-	•	0	
=	v	ā	Ē	•	•	5
õ	⊑	•		5	E	.5
2	=	=	~	.5	۳.	:
•	₹	ਨ	-	5	5	3
~	2	.=	•	호	횰	3
-	ĕ	=	=	⊱	ĕ	5
*	Controls and Connectors			ಾರ	۰δ	2
ű	ပ			ပ	ပ	Ū
			_		-	

In order to prevent any fatal accidents caused by misoperation or mishandling of the monitor, be fully aware of all the following precautions.

 Use only the power source specified on the rating label When not using this unit for a long period of time, or when

located on rear of the cabinet.

WARNINGS

cleaning it, be sure to disconnect the power plug from the AC outlet.

• Do not allow anything to rest on the power cord. And do not locate this unit where people will tread on the cord.

• Do not overload well outlets or power cords as this can

To prevent fire or shock hazard, do not expose this monitor to rain or moisture. Dangarous high voltages are present inside the unit. Do not remove the back cover of the cabinet. When servicing the monitor, contact qualified service personnel. Never try to service it yourself.

result in a fire or electric shock.

Avoid using this unit under the following conditions:

— in extremely out, cold or humid places,

— in dusty places.

— near appliances generating strong magnetic fields,

— in places subject to direct sunlight, and

— in badly ventilated places.

— Do not cover the ventilation slots while in operation as this Improper operations, in particular alteration of high voltage or changing the type of tube may result in x-ray emission of confiderable does. A unit altered in such a way no longer meets the standards of certification, and must therefore no longer be operated.

could obstruct the required ventilation.

When dust accumulates on the screen surface, clean with a soft cloth.

Unplug this unit from the AC outlet and refer servicing to qualified service personnel under the following conditions:

When the power cord is frayed or plug is damaged.

- If the unit does not operate normally following the op-- If the unit has been dropped or the cabinet has been erating instructions,

 Do not attempt to service this unit yourself as opening or - When the unit exhibits a distinct change in perform-

removing covers may expose you to dangerous voltage or other hazards. Always refer servicing to qualified service sonnel verify in writing that the replacement parts he uses have the same safety charscteristics as the original parts. When replacement parts are required, have the service per-Use of manufacturer's specified replacement parts can pre-

Upon completion of any servicing or repair to this unit, please ask the service personnel to perform the safety check described in the manufacturer's service literature. When this unit reaches the end of its useful life, improper disposal could result in a picture tube implosion. Ask vent fire, shock, or other hazards.

qualified service personnel to dispose of this unit.

13

121

CONTROLS AND CONNECTORS

(Rear Panel)

V. HOLD control

Turn to adjust the vertical synchronization of the picture.

O VOLUME control

Turn clockwise to make the sound louder. Counterclockwise to make it softer. Picture controls

Use to optimize the picture. The centre click position of each control is its standard setting. This standard setting can be varied (preset) by turning the SUB control screws at the side of the controls. Use a screwdriver to turn the SUB

- CHROMA control
- Turn to adjust the colour density of the picture to your
- **BRIGHT control**
- Turn to adjust the picture brightness to your preference. CONTRAST control
 - Turn to adjust the picture contrast to your preference.

D SYSTEM switch

Switches the colour system when a videc signal is input.

SECAM (-): For SECAM colour system PAL () : For PAL colour system

D INPUT SELECT switches

Press to select the video signals input to the rear connectors. (Selecting the signals)

- (1) Set the switch on the left to VIDEO or Y/C position. VIDEO (▲): When monitoring a composite video (via the INPUT A or INPUT B con-
- nector on the rear panel) : When monitoring Y/C separate video via the Y/C INPUT connector on the Y/C (-)
- the left switch to 'VIDEO', set the : When monitoring a signal via the fNswitch on the right to A or B position. (2) While setting A (.

rear panel)

: When monitoring a signal via the IN-PUT B connector PUT A connector 8 1

OUNDER SCAN switch

Press to switch the scanning size on the screen.

- (=) : for overscanning (-) : for underscanning

To check the retrace period (sync signal) by delaying the PULSE CROSS switch

- phase of the input signal.

 OFF (.A.): For normal picture

 ON (....): For retrace period check display
- COLOUR OFF switch

(--) : For a monochrome picture

BLUE CHECK switch

Switches the picture between normal and monochrome blue, for checking and adjusting the CHROMA.

(I.M.): Normal picture

Smeaked and the picture Same density and Smeaked spirits and picture Same density and Smeaked spirits and picture Same density and Smeaked spirits and picture Same density and Smeaked spirits and picture spirits and picture spirits and picture spirits and picture spirits and picture spirits and picture spirits and picture spirits and picture spirits and picture spirits and picture spirits and picture spirits and picture spirits and picture spirits and picture spiri

- (1) Input the colour ber signal to display a monochrome blue (2) Turn the CHROMA control Adjusting procedure
- so that all blue bars have the same density and brightness.

POWER switch/indicator

Pressing this switch turns the power on; the indicator lights. Pressing this switch again turns the power off; the indicator goes off.

PAL SUB CHROMA control

This is for service personnel only. Do not touch this control.

SET UP switch

\$**@**

- Aubio

0000

OPEN TSI

(

INPUT A

Avoid out

Do not reset this switch. It is for service personnel only. AFC switch

Switches the AFC time constant of the horizontal sync circuitry to correct the skewed portion of the picture.

FAST : Fast mode (Smaller time constant)

NORMAL: Normal mode

Input connectors for composite video and audio signals and output connectors for bridge-connected signals.

: When there is only an input signal

IN : When inputting a signal OUT : For bridged connection Setting the termination switch 75.0: When there is only an inpu OPEN : For bridged connection

INPUT A connectors/Termination switch

Connect to an AC outlet with the provided power cord.

Power input connector

Input connector for composite video and audio signals from equipment that is provided with the same type of 8-pin VTR output connector. INPUT B connector

Input connectors for Y/C separate video and audio signals and output connectors for bridge-connected signals. Y/C INPUT connectors/Termination switch : When inputting signals

: When there are only input signals OUT : For bridged connection OPEN : For bridged connection Setting the termination switch

Caution: These connectors can only be connected to the Y/GA2 connectors of the VTR; they cannot be connected to the other dubbing connectors (DUB, -Y/C929, Y/C933, and etc.)

- 9 -

6 (No.50343)

The following is an outline of the circuitry and connections, showing concepts. It is not a circuit diagram.

INPUT SELECT INITCH

₹©

≊(0)

35

CONNECTIONS

Be sure to disconnect the power plug from the AC outlet before connecting to other equipment.

Also refer to the instruction manual of the equipment to be connected.

\$

≥

750

When using any of the OUT connectors (bridged output), set its termination switch to "OPEN".

SPECIFIC SERVICE INSTRUCTIONS

DISASSEMBLY PROCEDURE

1. Method of removing the top cover

- (1) Remove the two screws (2) in Fig. 1.
- (2) Remove the respectively two screws ® and ©.
- (3) By pulling the cover a little bit backward, dismount the cover as indicated by an arrow.

Fig. 1

2. Method of dismounting the rear cover

- Dismount the top cover.
- (1) Remove the two screws ® in Fig. 2-1.
- (2) Pull the rear cover right upward until it stops as indicated by the arrow, and dismount the cover.

For assembly,

(1) Since the four positions
in Fig. 2-2 are hooked, align the hooks straight and let them move down.

Fig. 2-2

3. Method of dismounting Input PCB

- Dismount the top cover.
- Dismount the rear cover.
- (1) Remove the three screws (f) in Fig. 3.
- (2) Remove the GND wire.
- (3) When the two hooks between the Main and Input PCBs are removed, the Input PCB will be dismounted.
- (4) Dismount the connectors, etc. as required.

4. Method of dismounting Power PCB

- Dismount the top cover.
- (1) Remove the wire clamp fixing the transformer on the Power PCB and PCB holder.
- (2) Remove the four screws © in Fig. 4 and dismount the PCB holder.
- (3) Remove the two screws (9).
- (4) After raising the Power PCB once, pull the lower part of the PCB outward and dismount the PCB.
- (5) Dismount the connectors, etc. as required.

5. Method of checking the Main PCB

- Dismount the top cover.
- Dismount the rear cover.
- (1) Set the TV set sideways as shown in Fig. 5. In this case, lay soft cloth, etc. under the set in advance to prevent any damage to the exterior part.
- (2) Remove the four screws ① and dismount the bottom lid.
- (3) Shift the Main PCB as required.

Fig. 5 (Bottom surface view)

6. Method of dismounting front panel ass'y

- Dismount the top cover.
- Dismount the rear cover.
- (1) Remove the speaker chord (Main PCB [G]).
- (2) Remove the chord of degauss coil (Power PCB [I]).
- (3) Remove the two chords of deflecting coil (Main PCBs [H] and [V]).
- (4) Remove the anode cap.
 - Pay attention to the high tension!!
 - Since the cap will be electrified, be sure to remove the cap after discharging.
- (5) After removing the [CRT EARTH] chord, pull out the CRT socket PCB.

Fig. 6-1

- (6) When the four screws are removed, the front panel ass'y will be dismounted together with the CRT.
 - Since the CRT is heavy, remove the screws ① while holding the front panel ass'y.

Fig. 6-2

7. Method of dismounting speakers

- Dismount the top cover.
- Dismount the rear cover.
- Dismount the front panel ass'y.
- (1) Remove the speaker chord (Main PCB [G]).
- (2) Remove the two screws fixing the speaker to the front panel ass'y.
 - Unless the front panel ass'y has been dismounted from the TV set body, it is impossible to mount the speaker.

8. Precautions for wire clamp and binding band

- (1) The wire should be clamped exactly.
- (2) Be sure not to remove the binding band for wire treatment. Should it be removed, the wire should be treated exactly to the initial position.

SERVICE ADJUSTMENTS

PRIOR TO STARTING ADJUSTMENT

- Dismount the top cover, rear cover and bottom lid.
- Perform sufficient warm-up of the TV set and testers.
 (for 30 minutes or more).
- Unless specified otherwise specially in [ADJUSTING STEP] given below, perform adjustment after setting the switches and VRs on the front panel to the following positions:

BLUE CHECK : OFF

COLOUR OFF : OFF

PULSE CROSS : OFF

UNDER SCAN : OFF

SYSTEM SW : PAL

INPUT SELECT : VIDEO A

CONTRAST : CLICK position

CONTRAST BRIGHT CHROMA

PHASE

: CLICK position: CLICK position: CLICK position

 Regarding the list of the layout of adjusted parts, refer to [ADJUSTMENT LOCATION] in [SCHEMATIC DIAGRAM].

TOOLS AND FIXTURES FOR ADJUSTMENT

- DC voltmeter or digital voltmeter
- Oscilloscope
- Pattern generator (PAL)
 - If monoscope signal can be output, it is possible to perform further accurate adjustment.
 - · The signal should be input to VIDEO A.
- Color thermometer
 - Adjustment is possible without it. If available, however, further accurate adjustment is possible.
- Short jumper
- 10kΩ resistor

In addition to the above, the following tools are necessary to adjust the purity and convergence.

- Magnetic eraser
- Silicon bond (KE4866)
- REICHLOCK or G2 bond

ADJUSTING STEP

POWER PCB

ltem	Measuring instrument	Test point	Adjustment part	Description
	PATTERN GENERATOR DC VOLTMETER OF DIGITAL VOLTMETER TP-E TP-91	TP-91 TP-E(赤) POWER PCE	R913(B1 ADJUSTMENT)	 Input the total black signal. Adjust the B1 adjust VR (R913) so that the voltage between TP-91 and TP-E () becomes DC 110V. Confirm that the B1 voltage scarcely changes even when the input signal has been changed.

MAIN PCB (1)

ltem	Measuring instrument	Test point	Adjustment part	Description
Adjustment of PAL APC	PATTERN GENERATOR SHORT JUMPER 10 kΩ RESISTOR MAIN PCB C320 TP-40 C33 C320 TP-92 C323 TP-E O	32	C320 C323 (DL AMP) C332 C331 C339	 Input the color bar signal. Connect IC301 14Pin and TP-E with a short jumper. Connect TP-40 and TP-92 with a 10kΩ resistor. Adjust the COLOR SYNC. VR (C320) to a position where the color changes from a striped pattern to a color bar and remains at a standstill. Connect the oscilloscope to TP-48 and TP-49,and plot the X-Y coordinates. Adjust with R323 and R332,C331 so that the waveforms are the shapes shown from A to B in the chart below.
				7. When it is not possible to adjust with the two VRs,adjust with C339. 8. Input the half color bar. 9. Adjust with C320 so that the color at the center section under the color bar is at minimum.
Adjustment of NOCTH CIRCUIT	PATTERN GENERATOR OSCILLOSCOPE MAIN PCB O O TP-E O TP-64 C236	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	C236	1. Input the color bar signal. 2. Connect the oscilloscope between TP-64 and TP-E. In case the waveform can be expanded by the oscilloscope, expand the waveform to allow easy adjustment. 3. Adjust the C236 so that the CHROMA component becomes minimum. Minimize the CHROMA component Expansion of waveform

CRT socket PCB

ltem	Measuring instrument	Test point	Adjustment part	Description
Adjustment of CUTOFF R725 :B R715 :G R705 :R CRT soc	cket PCB		R705 :R R715 :G R725 :B SCREEN VR	 Continue running for 10 minutes or more. Input the total white signal. Turn the transverse one line [SET UP] switch (S203) on the rear surface over to the [SET UP] side. Turn the [CUT OFF] VRs (R705, R715 and R725) on the CRT socket PCB fully in counterclockwise direction. While turning the screen VR gradually in clockwise direction from full counterclockwise direction, search for the color appearing for the first time. Turn the [CUT OFF] VRs, with which the color has appeared first in the Step 4, slightly in clockwise direction. By turning the [CUT OFF] VRs for the other two colors in clockwise direction, adjust the intensity of the three shining colors so that the transverse single line look white. Return the transverse single line [SET UP] switch (S203) to the [NORMAL] side.
Adjustment of WHITE BALANCE	PATTERN GENERATOR CRT soc R712 :G D R702 :R D	1	R702 :R DRV R712 :G DRV	 Continue running for 30 minutes or more. This adjustment should be performed after [Adjustment of CUTOFF]. Input the total white signal. Adjust the R and G DRIVER VRs (R702 and R712) on the CRT socket PCB to a position where the entire screen becomes white. While turning the CONTRAST VR and BRIGHT VR on the front panel, make sure that the white balance is attained. [In case monoscope signal and color temperature meter are available] Input the monoscope signal. The light receiving unit of the color temperature meter will measure the color temperature at the center of the screen. Adjust the CONTRAST VR, R and G DRIVER VRs (R702 and R712) on the CRT socket PCB to a position where the color temperature meter indicates a specified value. Color temperature D9300°K (x = 0.283, y = 0.297) While turning the CONTRAST VR and BRIGHT VR on the front panel, make sure that the white balance is attained.

MAIN PCB (2)

Item	Measuring instrument	Test point	Adjustment part	Description
Adjustment of FOCUS	PATTERN GENERATOR	Both the verti horizontal line be made thin	es should	 This adjustment should be performed after [Standard setting of CONTRAST]. Input the cross hatch signal. Adjust the FOCUS VR to a position where the vertical and horizontal lines of cross hatch become thinnest and clearest. Note: Be sure to perform final adjustment of the convergence after adjustment of focus, since the convergence will be changed whenever the focus has been adjusted.
Adjustment of HORIZONTAL SYNCHRONISM	O	R505 • • • • • • • • • • • • • • • • • •	R505 (H FREQ,)	 Set the CONTRAST VR on the front panel to the clicking position. Input the color bar signal. Connect TP-33A and TP-E with a short jumper. Adjust the H. HOLD VR (R505) to a position where the image remains at a standstill without flowing horizontally. Namely, adjust the VR to an intermediate position where the image flows horizontally. Remove the connected short jumper. Make sure that the color synchronism is not collapsed and normal image appears instantaneously when returned to the color bar signal again after changing the input select switch.
Adjustment of H PULSE	PATTERN GENERATOR OSCILLOSCOPE	TP-64 TP-70	C334 R379 (PULSE PHASE)	 Input the color bar signal. Connect the oscilloscope to TP-64 and TP-70,set to the dual-trace and increase the SYNC section. Adjust with C334 so that the SYNC forward line of the Y signal and the start of the H PULSE coincide. Y SYINC H PULSE Coincidence Confirm that the waveform phase dose not slip even when the pulse cross SW is pressed. If the phase slips, use R379 to adjust so that the H PULSE dose not come to the left side (leading phase) of the SYNC of Y signal.

ltem	Measuring instrument	Test point	Adjustment part	Description
Adjustment of H. AMPLITUDE and H. CENTER	PATTERN GENERATOR MAIN PCB O O O O O O O O O O O O O O O O O O	R527 L503 L501 S501	L501 S501 (H CENTER) L503 R527 (H POSITION)	 This adjustment should be performed after [Adjustment of B1 VOLTAGE] and [Adjustment of HORIZONTAL SYNCHRONISM]. Input the monoscope signal or cross hatch signal. Select the [OVER SCAN] screen with the [UNDER SCAN] switch on the front panel. With the horizontal amplitude coil (L501) and [H. CENTER] switch (S501), perform adjustment so that 95% of monoscope pattern (cross hatch) is displayed on the screen. Select the [UNDER SCAN] screen with the [UNDER SCAN] switch on the front panel. Adjust the horizontal amplitude coil (L503) so that the distance from both sides of the CRT to the edge of image becomes 7 ± 3 mm. In case the image is chipped off from the raster, adjust the H. POSITION VR (R527). Select the [OVER SCAN] screen with the [UNDER SCAN] switch on the front panel.
Adjustment of V. AMPLITUDE, V. CENTER and V. LINEARITY MAIN PCB O O O O O O O O O O O O O O O O O O	PATTERN GENERATOR 401 R413 R412 R409	95% 9 [OVER SC 5± 7±3mm 5±	R413 S401 R409 R412 5% 5% 5% 2mm CAN] screen	 Input the monoscope signal or cross hatch signal. Select the [OVER SCAN] screen with the [UNDER SCAN] switch on the front panel. Roughly adjust the V. HEIGHT VR (R413) so that nearly all the monoscope pattern (cross hatch) is displayed on the screen. With the V. HEIGHT VR (R413) and V. CENTER switch (S401), perform adjustment so that 95% of the monoscope pattern (cross hatch) is displayed on the screen. While turning the V. LIN. VR (R409), adjust the vertical linearity. Repeat the Steps 3 - 5 as required. Select the [UNDER SCAN] screen with the [UNDER SCAN] switch on the front panel. Adjust the V. HEIGHT VR (R412) so that the distance from upper and lower edges of the CRT to the end of image becomes 5±2 mm. Perform fine adjustment of the center and vertical linearity so that displacement of adjustment will not occur even if the UNDER SCAN switch on the front panel has been changed over. Select the [OVER SCAN] screen with the [UNDER SCAN] switch on the front panel.
Adjustment of CHROMA DISCRIMINATIO N	PATTERN GENERATOR		T304 T305 [SECAM MODULE]	 Continue running for 30 minutes or more. This adjustment should be performed after [Adjustment of white balance]. Turn the SYSTEM SW to SECAM. Input the SECAM color bar. Adjustment T304 and T305 so that the color of the white section remains the same regardless of whether the COLOR OFF SW is ON or OFF. Return the SYSTEM SW to PAL.

ADJUSTING STEP OF COLOR TONE

ADJUSTMENT OF PURITY

Adjustment Part	Description	Remarks
Wedge	PRIOR TO STARTING ADJUSTMENT:	
	Remove the wedge being inserted in between	
Purity magnet	the deflecting yoke. At this time, clear the trace of the wedge.	
G cutoff VR	Peel off the adhesive fixing six magnets with the	
	tip of screw driver, etc. so that the magnets will	
R cutoff VR	turn freely.	
	Input the total white signal.	
B cutoff VR	Perform magnetic erasing of the Brown tube with	
	a magnetic eraser.	
Screen VR	5. Set the brightness and picture to slightly higher	
	levels, and perform warm-up roughly for 20 - 30	B CUT OFF 🗸
Deflecting yoke	minutes.	● G CUT OFF /
Traverse one		R CUT OFF
line [SET UP]	ADJUSTING STEP	
switch	By turning the G CUTOFF VR on the CRT	
	socket board fully in clockwise direction and the	CRT socket PCB
	R and B CUTOFF VR fully in counterclockwise	
	direction, adjust the screen VR to make the	
	green screen visible.	
	After loosening the clamp screw of the deflecting	Align the two purity magnets to a horizontal level.
	yoke, pull the yoke fully backward, and let color	a nonestruction
	shading appear in a vertical belt form.	
	C. Pile we the clicke of the two posits marries	
	Pile up the clicks of the two purity magnets alternately each other, and set them to a	
	horizontal position as an initial.	
	While opening and closing or turning the clicks	
	of the two purity magnets, perform adjustment so	
	that the green vertical belt appears at the center	
	of the screen.	
	5. By pushing out the deflecting yoke to the front	
	side, position the yoke so that the entire screen	
	becomes totally green (In this case, tentatively	Bring the group helt to the center
	fix the deflecting yoke with a wedge so that the	Bring the green belt to the center.
	yoke is not moved).	
	6. Set the traverse one line [SET UP] switch to the	1
	[SET UP] side to display traverse one line on	
	the screen.	
	With the deflecting yoke, make the traverse one	
	line horizontal and further close to the vertical	Traverse one line
	center	•
	(Do not change the cross position of the	Vertical center position
	deflecting yoke)	(There are two small dents)
	7. Return the transverse single line [SET UP]	
	switch to the [NORMAL] side.	Let the traverse one line approach
1		between both of the white dents denoted
į		by(_)

Adjustment Part	Description	Remarks
	 8. Confirm that the purity has been attained with regard to the red, blue and monocolor rasters. 9. Tentatively fix the deflecting yoke slightly with the clamp screw to prevent its movement in back and forth direction. 10. Restore the wedges to the initial position and fix the deflecting yoke. Use three wedges of a V-form and set them respectively at an interval of about 120°. The wedges should be fixed to the Brown tube using silicon bond (KE4866) 11. The clamp screw of the deflecting yoke should be clamped firmly with and adequate torque. 	The wedges should be fixed at three positions at an interval of about 120°.

ADJUSTMENT OF CONVERGENCE

Adjustment Part	Description	Remarks
CONVERGENCE	 ADJUSTING STEP Input the cross hatch signal. Overlap the red and blue lings at the center of the screen with 4-pole magnet to turn the color to Magenta color (red/blue). Next, overlap the Magenta color (red/blue) and green lings at the center of the screen with 6-pole magnet. Repeat the Steps 2 and 3, and adjust the convergence of the vertical and horizontal lines at the center of the screen. 	Open the two thumbscrews. Turn together while maintaining the angle of the thumbscrews.
	AFTER COMPLETION OF ADJUSTMENT 1. Subsequent to completing adjustment of the purity and convergence, fix the six magnets using an adhesive (G2 bond or REICHLOCK). 2. Then, be sure to adjust the boards on Page 1 - 13 and after.	

PARTS LIST

CAUTION

- The parts marked ⚠ are very important for the safety. When replacing these parts, be sure to use specified ones to secure the safety and performance.
- As a rule, the resistors and capacitors which are indicated as shown in (NOTE 2) "HOW TO EXPRESS PARTS NUMBERS OF STANDARD PARTS" are not shown in the list of the parts on the board.
 - When ordering the service parts, confirm the resistance/rated power, capacitance/rated voltage, and type of the parts, then order by the part No. indicated according to (NOTE 2).

(NOTE 1) ABBREVIATIONS OF RESISTORS, CAPACITORS AND TOLERANCES

	RESISTORS		CAPACITORS
CR	Carbon Resistor	C CAP.	Ceramic Capacitor
FR	Fusible Resistor	E CAP.	Electrolytic Capacitor
PR	Plate Resistor	M CAP.	Mylar Capacitor
V R	Variable Resistor	HV CAP.	High Voltage Capacitor
HV R	High Voltage Resistor	MF CAP.	Metalized Film Capacitor
MFR	Metal Film Resistor	MM CAP.	Metalized Mylar Capacitor
MG R	Metal Glazed Resistor	MP CAP.	Metalized Polystyrol Capacitor
MP R	Metal Plate Resistor	PP CAP.	Polypropylene Capacitor
ом в	Metal Oxide Film Resistor	PS CAP.	Polystyrol Capacitor
CMF R	Coating Metal Film Resistor	TF CAP.	Thin Film Capacitor
UNF R	Non-Flammable Resistor	MPP CAP.	Metalized Polypropylene Capacitor
CH V R	Chip Variable Resistor	TAN. CAP.	Tantalum Capacitor
CH MG R	Chip Metal Glazed Resistor	CH C CAP.	Chip Ceramic Capacitor
COMP. R	Composition Resistor	BP E CAP.	Bi-Polar Electrolytic Capacitor
LPTC R	Linear Positive Temperature Coefficient Resistor	CH AL E CAP.	Chip Aluminum Electrolytic Capacitor
		CH AL BP CAP.	Chip Aluminum Bi-Polar Capacitor
		CH TAN. E CAP.	Chip Tantalum Electrolytic Capacitor
		CH AL BP E CAP.	Chip Tantalum Bi-Polar Electrolytic Capacitor

	TOLERANCES								
F	G	J	К	М	N	R	Н	Z	Р
±1%	± 2%	± 5%	± 10%	± 20%	±30%	+30%	+ 50%	+80%	+100%

(NOTE 2) HOW TO EXPRESS PARTS NUMBERS OF STANDARD PARTS

MAIN PARTS LIST

SYMBOL		PART NO.	PART NAME	REMARKS
NO. CRT & TUNE			47744	TO DEFEATOR OF
	Δ	A 7 5 0 3 4 - B CE 4 0 7 6 4 - 0 0 A CE 2 0 1 6 8 - A 0 A CE L D 0 1 1 - 0 0 3 M 3 6 J G K 9 0 X	P&C MAGNET WEDGE ASSY DEFLECTION YOKE DEG COIL PICTURE TUBE	X 4 DY 0 1 L 0 1 V 0 1
VARIABLE R R1101 R1265 R1269 R1323 R1345		QVAZ005-C004A QVPA603-103A QVPA603-103A QVPC611-202HZ QVPA603-223A	VR (CONT. BRIGHT) VR (SUB CONTRAST) VR (SUB BRIGHT) VR (DL AMP) VR (PAL SUB COLOR	CHROMA PHASE VOL. et 10kΩ B 10kΩ B 2kΩ B) 22kΩ B
R 1 3 4 8 R 1 3 7 9 R 1 4 0 9 R 1 4 1 2 R 1 4 1 3		QVPA603-103A QVPC611-104HZ QVPC611-501HZ QVPC611-102HZ QVPC611-501HZ	VR (SUB CHROMA) VR (PULSE PHASE) VR (V. LIN.) VR (V. HEIGHT UND) VR (V. HEIGHT NOR)	
R 1 5 0 5 R 1 5 2 7 R 3 7 0 2 R 3 7 0 5 R 3 7 1 2		QVPC611-502HZ QVPC611-103HZ QVPE805-201H QVPE805-502II QVPE805-201H	VR (H. HOLD) VR (H. POSITION) VR (R DRIVE) VR (R CUT OFF) VR (G DRIVE)	5 kΩ B 10 kΩ B 200 Ω B 5 kΩ B 200 Ω B
R 3 7 1 5 R 3 7 2 5 R 9 9 1 3		QVPE805-502H QVPE805-502H QVPE805-503H	VR (G CUT OFF) VR (B CUT OFF) VR (B! ADJ.)	5 k Ω B 5 k Ω B 5 0 k Ω B
TRANSFORME T1502 T9901 T9902	△	CE 4 0 3 6 1 - 0 0 B CJ 2 7 3 7 9 - 0 0 A CE 4 1 1 0 0 - 0 0 B CE 4 1 0 5 9 - 0 0 B	SW DRIVE TRANSF FLYBACK TRANSF. SW. TRANSF. DRIVE TRANSF.	T501
DIODE D1205 D1409 D1410 D1502 D1506	Δ	RD5. 1ES (B3) -T2 MA4051 (M) MA4056 (M) -T2 HZ7B2L-C1 MA4100 (M) -T2	ZENER DIODE ZENER DIODE ZENER DIODE ZENER DIODE ZENER DIODE	
D1516 D1518 D1950 D9905 D9908	Δ	MA4220 (M) -T2 V19E-T3 GL5PG23 LB-156-LFB R2M-LFA1	ZENER DIODE SI. DIODE L. E. D DIODE BRIDGE SI. DIODE	Power
TRANSISTOR Q1504		2 S D 1 5 5 4 - L B	SI. TRANSISTOR	н оит.
I C I C 1 2 0 2 I C 1 2 0 3 I C 1 3 0 1 I C 1 3 0 2 I C 1 4 0 1	Δ	MC14066BCP AN5615 AN5625N TC4538BP AN5521	I. C. I. C. I. C. I. C. (M) I. C. (M)	or TC4066BP
I C 1 5 0 1 I C 1 5 0 2 I C 1 6 0 2 I C 1 8 0 1 I C 1 8 0 2	Δ	HA11423 MC7812CT AN5265 MC14538BCP MC14066BCP	I. C. I. C. I. C. (M) I. C. I. C.	or TA78012AP or TC4538BP or TC4066BP
I C 1 8 0 3 I C 1 8 0 4 I C 6 2 0 1 I C 6 6 0 1 I C 9 9 0 1	Δ	MC14538BCP MC14538BCP LA7016 MC14066BCP STR54041S	I. C. I. C. I. C. I. C. I. C. (H)	or TC4538BP or TC4538BP or TC4066BP

SYMBOL NO.	Δ	PART NO.	PART NAME	REMARKS
OTHERS	Δ	CM21945-00B QMCB005-001 CM11677-C0C-M0 EAS-45P38B CM46115-A01	TERMINAL ASSY 3P INLET FRONT PANEL ASSY SPEAKER POWER KNOB	SP01
	Δ	CM46043-B01 CM46044-001 CM11679-A01-M0 QMP4718-200R SBX-S004A	VOL KNOB PUSH KNOB REAR COVER POWER CORD SECAM MODULE PC	X 5 X 7
CP1501 DL1201 FR9908 F9901 LF9901	Δ	ICP-F50 CE41679-001 QRZ0054-100M QMF51E2-3R15S CE40847-00C	IC PROTECTOR DELAY LINE F R FUSE LINE FILTER	10 Ω 1∕4W J 3. 15A
LF9902 RY1501 S1101 S1401 S1501		CE 4 0 8 4 7 - 0 0 C CE SK 0 0 6 - 0 0 1 QST 2 7 3 1 - C 0 1 QS L 4 A 1 3 - C 0 2 QS L 4 A 1 3 - C 0 2	LINE FILTER RELAY PUSH SWITCH LEVER SWITCH LEVER SWITCH	V. Center SW H. Center SW
S 1 9 0 1 S 6 2 0 1 S 6 2 0 2 S 6 2 0 3 S 6 5 0 1	Δ	QSP4D21-C06 QSS4C22-C01 QSS4C22-C01 QSS4C22-C01 QSS4C22-C01	PUSH SWITCH SLIDE SWITCH SLIDE SWITCH SLIDE SWITCH SLIDE SWITCH	Power SW Termination SW Termination SW SET UP AFC
TH9901 X1301	Δ	A 7 6 0 3 8 - T A 7 6 0 9 0	POSISTOR CRYSTAL	
	•			

EXPLODED VIEW PARTS LIST

	SYMBOL NO.	PART NO.	PART NAME	REMARKS
4 444	1 2 3 4 5	CJ27379-00A M36JGK90X CELD011-003 CE20168-A0A CH30168-00D	FLYBACK TRANSF. PICTURE TUBE DEG COIL DEFLECTION YOKE BRAIDED ASSY	T501 V01 L01 DY01
	6 7 8 9 1 0	A 4 8 4 5 7 A 7 5 0 3 4 - B C E 4 0 7 6 4 - 0 0 A E A S - 4 5 P 3 8 B C M 4 6 1 1 5 - A 0 1	SPRING P&C MAGNET WEDGE ASSY SPEAKER POWER KNOB	X4 SP01
	1 1 1 2 1 3 1 4 1 5	CM46043-B01 CM46044-001 CM11682-A01 CM33989-001 SXST4010M	VOL KNOB PUSH KNOB TOP COVER HANDLE SCREW	X 5 X 7 X 2 X 2
	1 6 1 7 1 8 1 9 2 0	SBSB4016M CM11679-A01-M0 CM44287-00C CM21335-A09(R) QMCB005-001	TAP SCREW REAR COVER ASSY SCREW ROLL R LABEL 3P INLET	X 4 X 2
	2 1 2 2 2 3 2 4 2 5	CM11681-A01 SSSB3010Z QZF2008-002 SBSB4010Z CM21944-B01	BOTTOM BASE TAP SCREW FOOT TAP SCREW BOTTOM LID	X 4 X 4 X 4
Δ	2 6 2 7 2 8 1 0 0 1 0 1	CM44286-00A CM31015-A03-V0 QMP4718-200R CM11677-C0C-M0 CM33992-001	ASSY SCREW CHASSIS RAIL POWER CORD FRONT PANEL ASSY SPEAKER NET	X 4 X 2
	1 0 2 1 0 3 2 0 0 2 0 1 2 0 2	CM33995-B02 CM46116-A01 CM21945-00B CH40319-A0A CEMR002-001	CONTROL SHEET LED LENS TERMINAL ASSY 8P CONNECTOR 7P CONNECTOR	VTR Y/C358 OUT
	203	CEMR 0 0 3 - 0 0 1	7P CONNECTOR	Y/C358 IN
	·			

EXPLODED VIEW

PRINTED CIRCUIT BOARD PARTS LIST

MAIN PC BOARD ASS'Y (FX-1025A)

	SYMBOL NO.	PART NO.	PART NAME	REMARKS
	VARIABLE R R1101 R1265 R1269 R1323 R1345	QVAZ005-C004A QVPA603-103A QVPA603-103A QVPC611-202HZ QVPA603-223A	VR (CONT. BRIGHT) VR (SUB CONTRAST) VR (SUB BRIGHT) VR (DL AMP) VR (PAL SUB COLOR	10kΩ B 2kΩ B
	R 1 3 4 8 R 1 3 7 9 R 1 4 0 9 R 1 4 1 2 R 1 4 1 3	QVPA603-103A QVPC611-104HZ QVPC611-501HZ QVPC611-102HZ QVPC611-501HZ	VR (SUB CHROMA) VR (PULSE PHASE) VR (V. LIN.) VR (V. HEIGHT UND) VR (V. HEIGHT NOR)	10 k Ω B 100 k Ω B 500 Ω B 1 k Ω B 500 Ω B
	R 1 5 0 5 R 1 5 2 7	QVPC611-502HZ QVPC611-103HZ	VR (H. HOLD) VR (H. POSITION)	5 k Ω B 10 k Ω B
	RESISTOR R1293 R1294 R1295 R1296 R1414	QRD123J-681SX QRD123J-681SX QRD123J-681SX QRD123J-681SX QRD123J-681SX QRX019J-2R7S	C R C R C R C R MF R	680 Ω 1/2W J 680 Ω 1/2W J 680 Ω 1/2W J 680 Ω 1/2W J 2.7 Ω 1W J
	R 1 4 1 8 R 1 4 1 9 R 1 4 2 2 R 1 4 2 3 R 1 4 2 4	QRG019J-102S QRD123J-182SX QRD123J-182SX QRX019J-3R3S QRG019J-471S	OM R C R C R MF R OM R	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Δ	R 1 4 2 7 R 1 5 0 2 R 1 5 0 3 R 1 5 1 4 R 1 5 2 4	QRX029J-2R2A CJ39520-00P QRD161J-223Y QRG039J-151A QRG019J-680S	MF R R BLOCK C R OM R OM R	2. 2 \Omega 2W J 2 2 k \Omega 1 \setminus 6W J 1 5 0 \Omega 3W J 6 8 \Omega 1W J
	R 1 5 2 5 R 1 5 3 1 R 1 5 3 2 R 1 5 3 7 R 1 5 4 1	QRD123J-271SX QRG029J-221A QRG039J-822A QRX029J-R82A QRX029J-R82A QRD123J-220SX	C R OM R OM R MF R C R	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Δ Δ Δ	R 1 5 4 2 R 1 5 4 3 R 1 5 4 4	QRG 0 2 9 J - 1 0 2 A QRG 0 2 9 J - 1 0 2 A QRG 0 2 9 J - 1 0 2 A	OM R OM R OM R	1 kΩ 2W J 1 kΩ 2W J 1 kΩ 2W J
	CAPACITOR C1216 C1223 C1229 C1236 C1316 C1317 C1320 C1331 C1332	QCT25CH-390AZ QEN61HM-106Z QFV71HJ-104MZ QAT3110-300A QEN61HM-475Z QFV71HJ-563MZ QAT3710-300MZ QAT3710-300MZ QAT3710-300MZ	C CAP. BP E CAP. TF CAP. TRIM CAP. BP E CAP. TF CAP. TRIM CAP. TRIM CAP. TRIM CAP. TRIM CAP.	39pF 50V J 10µF 50V M 0.1µF 50V J 30pF 4.7µF 50V M 0.056µF 50V J
	C 1 3 3 3 C 1 3 3 4 C 1 3 3 5 C 1 3 3 9 C 1 4 0 2	QCT25CH-121AZ QAT3710-300MZ QCT25CH-101Z QAT3710-300MZ QEE61VK-105BZ	C CAP. TRIM CAP. C CAP. TRIM CAP. TRIM CAP. TAN. CAP.	120pF 50V J 100pF 50V J 1µF 35V K
Δ	C 1 4 1 0 C 1 4 1 2 C 1 4 2 5 C 1 5 1 4 C 1 5 2 2	QFV71HJ-104MZ QFV71HJ-104MZ QEN62AM-474Z QFZ0083-563MZ QFZ0081-4501S	TF CAP. TF CAP. BP E CAP. M CAP. MPP CAP.	0. 1 \(\mu \text{F} \) 5 0 \(\text{V} \) J 0. 1 \(\mu \text{F} \) 5 0 \(\text{V} \) J 0. 4 7 \(\mu \text{F} \) 1 0 0 \(\text{V} \) M 0. 0 5 6 \(\mu \text{F} \) 5 0 \(\text{V} \) K 4 5 0 0 \(\mu \text{F} \) 1 6 0 0 \(\text{V} \) ± 3%
Δ	C 1 5 2 3 C 1 5 2 4	QFZ0081-3001S QFZ0089-534S	PP CAP. MPP CAP.	3000pF 1600V ±3% 0.53µF 200V J

	SYMBOL NO.	PART NO.	PART NAME	REMARKS
	CAPACITOR C1525 C1532 C1616 C1617 C1620	QFV71HJ-474MZ QCF31HP-222AZ QFV71HJ-104MZ QFV71HJ-104MZ QFV71HJ-224MZ	TF CAP. CH C CAP. TF CAP. TF CAP. TF CAP.	0. 47 μF 50 V J 2200 pF 50 V P 0. 1 μF 50 V J 0. 1 μF 50 V J 0. 22 μF 50 V J
	C 1 6 2 1 C 1 8 0 5 C 1 8 0 6 C 1 8 0 7 C 1 8 1 2	QFV71HJ-224MZ QFV71HJ-224MZ QCT25CH-181Z QCT25CH-221Z QCT25CH-2330Z	TF CAP. TF CAP. C CAP. C CAP. C CAP.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	C1813	QCT25CH-680Z	C CAP.	68pF 50V J
Δ.	TRANSFORME T1302 T1502 T1503	R CE40394-001 CE40361-00B CE40381-00A	B P TRANSF SW DRIVE TRANSF SIDE PIN TRANSF	
	COIL L1202 L1203 L1302 L1303 L1304	CELP006-120Z A76186-22Z A76186-8.2Z A76186-8.2Z A76186-8.2Z A76186-4.7Z	PEAKING COIL PEAKING COIL PEAKING COIL PEAKING COIL PEAKING COIL	2 2 μH 8. 2 μH 8. 2 μH 4. 7 μH
Δ Δ Δ	L 1 3 0 5 L 1 3 0 6 L 1 5 0 1 L 1 5 0 2 L 1 5 0 3	A 7 6 1 8 6 - 3 9 Z A 7 6 1 8 6 - 3 . 9 CE 4 1 2 3 8 - 0 0 A A 3 9 9 3 4 CE 4 1 2 3 8 - 0 0 A	PEAKING COIL PEAKING COIL WIDTH COIL LINIARITY COIL WIDTH COIL	39µН 3.9µН
	L1504	Cl30030-038	HEATER CHOKE	
	DIODE D1205 D1206 D1208 D1209 D1210	RD5. 1ES (B3) -T2 1SS133-T2 1SS133-T2 1SS133-T2 1SS146-T2	ZENER DIODE SI. DIODE SI. DIODE SI. DIODE SI. DIODE SI. DIODE	
	D1211 D1212 D1213 D1214 D1301	1 S S 1 3 3 - T 2 1 S S 1 3 3 - T 2	SI. DIODE SI. DIODE SI. DIODE SI. DIODE SI. DIODE	
	D1302 D1303 D1304 D1305 D1306 D1307 D1309	1 S S 1 3 3 - T 2 1 S S 1 3 3 - T 2	SI. DIODE SI. DIODE SI. DIODE SI. DIODE SI. DIODE SI. DIODE SI. DIODE SI. DIODE	
	D 1 4 0 1 D 1 4 0 2 D 1 4 0 3 D 1 4 0 4 D 1 4 0 5	1 SR 3 5 - 1 0 0 A - H J 1 SR 3 5 - 1 0 0 A - H J 1 SS 1 3 3 - T 2 V 1 9 E - T 3 1 SS 1 3 3 - T 2	SI. DIODE SI. DIODE SI. DIODE SI. DIODE SI. DIODE	
	D1408 D1409 D1410 D1411 D1501	1 SS 1 3 3 - T 2 MA 4 0 5 1 (M) MA 4 0 5 6 (M) - T 2 1 SS 1 3 3 - T 2 1 SS 1 3 3 - T 2	SI. DIODE ZENER DIODE ZENER DIODE SI. DIODE SI. DIODE	
Δ	D1502 D1503	HZ7B2L-C1 1SR35-100A-HJ	ZENER DIODE SI. DIODE	

SYMBOL	PART NO.	PART NAME	REMARKS
NO. DIODE D1504 D1505 D1506 D1508 D1509	1 SR 3 5 - 1 0 0 A - H J 1 SS 1 3 3 - T 2 MA 4 1 0 0 (M) - T 2 1 SS 1 3 3 - T 2 V 1 9 E - T 3	SI. DIODE SI. DIODE ZENER DIODE SI. DIODE SI. DIODE	
D 1 5 1 0 D 1 5 1 1 D 1 5 1 2 D 1 5 1 3 D 1 5 1 4	1 S S 1 3 3 - T 2 V 1 9 E - T 3 V 1 9 E - T 3 V 1 9 E - T 3 U 1 9 E - F K	SI. DIODE SI. DIODE SI. DIODE SI. DIODE SI. DIODE	
D 1 5 1 5 D 1 5 1 6 D 1 5 1 7 D 1 5 1 8 D 1 5 1 9	1 S S 1 3 3 - T 2 MA 4 2 2 0 (M) - T 2 1 S S 1 3 3 - T 2 V 1 9 E - T 3 1 S S 1 3 3 - T 2	SI. DIODE ZENER DIODE SI. DIODE SI. DIODE SI. DIODE SI. DIODE	
D1520 D1801 D1950	1 S S 1 3 3 - T 2 1 S S 1 3 3 - T 2 G L 5 P G 2 3	SI. DIQDE SI. DIODE L. E. D	Power
TRANSISTOR Q1207 Q1208 Q1209 Q1210 Q1211	2 S C 1 7 4 0 S (QR) -T 2 S C 1 7 4 0 S (QR) -T 2 S C 1 7 4 0 S (QR) -T 2 S C 1 7 4 0 S (QR) -T 2 S C 1 7 4 0 S (QR) -T	SI. TRANSISTOR SI. TRANSISTOR SI. TRANSISTOR SI. TRANSISTOR SI. TRANSISTOR	
Q1212 Q1213 Q1214 Q1215 Q1216	2 S C 1 7 4 0 S (QR) -T 2 S C 1 7 4 0 S (QR) -T 2 S C 1 7 4 0 S (QR) -T 2 S C 1 7 4 0 S (QR) -T 2 S C 1 7 4 0 S (QR) -T	SI. TRANSISTOR SI. TRANSISTOR SI. TRANSISTOR SI. TRANSISTOR SI. TRANSISTOR	·
Q1217 Q1218 Q1219 Q1221 Q1222	2SA933S (QR) -T 2SC1740S (QR) -T 2SC1740S (QR) -T 2SC1740S (QR) -T 2SC1740S (QR) -T	SI. TRANSISTOR SI. TRANSISTOR SI. TRANSISTOR SI. TRANSISTOR SI. TRANSISTOR	
Q1223 Q1301 Q1304 Q1305 Q1306	2 S C 1 7 4 0 S (QR) -T 2 S C 1 7 4 0 S (QR) -T 2 S C 1 7 4 0 S (QR) -T 2 S C 1 7 4 0 S (QR) -T 2 S C 1 7 4 0 S (QR) -T	SI. TRANSISTOR SI. TRANSISTOR SI. TRANSISTOR SI. TRANSISTOR SI. TRANSISTOR	
Q1307 Q1308 Q1309 Q1401 Q1502 Q1503 Q1504	2SA933S (QR) -T 2SC1740S (QR) -T 2SA933S (QR) -T 2SC1740S (QR) -T 2SC1740S (QR) -T 2SC1627A (OY) 2SD1554-LB	SI. TRANSISTOR SI. TRANSISTOR SI. TRANSISTOR SI. TRANSISTOR SI. TRANSISTOR SI. TRANSISTOR SI. TRANSISTOR	н оит.
Q1505 Q1506 Q1507 Q1801 Q1802	2SC1740S (QR) -T 2SC1740S (QR) -T 2SA933S (QR) -T 2SC1740S (QR) -T 2SC1740S (QR) -T	SI. TRANSISTOR SI. TRANSISTOR SI. TRANSISTOR SI. TRANSISTOR SI. TRANSISTOR	
Q1803 Q1804 Q1805 Q1806 Q1807	2SA933S (QR) -T 2SA933S (QR) -T 2SC1740S (QR) -T 2SC1740S (QR) -T 2SA933S (QR) -T	SI. TRANSISTOR SI. TRANSISTOR SI. TRANSISTOR SI. TRANSISTOR SI. TRANSISTOR	
Q1808	2SC1740S (QR) -T	SI. TRANSISTOR	

	SYMBOL NO.	PART NO.	PART NAME	REMARKS
Δ	I C I C 1 2 0 2 I C 1 2 0 3 I C 1 3 0 1 I C 1 3 0 2 I C 1 4 0 1	MC14066BCP AN5615 AN5625N TC4538BP AN5521	I. C. I. C. I. C. I. C. (M) I. C. (M)	or TC4066BP
Δ	I C 1 5 0 1 I C 1 5 0 2 I C 1 6 0 2 I C 1 8 0 1 I C 1 8 0 2	HA11423 MC7812CT AN5265 MC14538BCP MC14066BCP	I. C. I. C. I. C. (M) I. C. I. C.	or TA78012AP or TC4538BP or TC4066BP
	I C 1 8 0 3 I C 1 8 0 4	MC14538BCP MC14538BCP	I. C. I. C.	or TC4538BP or TC4538BP
	OTHERS CP1501 DL1201 DL1302	CM46042-001 SBX-S004A ICP-F50 CE41679-001 CE41489-001	LED HOLDER SECAM MODULE PC IC PROTECTOR DELAY LINE IH DELAY LINE	
₽	DL1303 FR1538 FR1628 RY1501 S1101	CE41042-002 QRZ0054-4R7M QRH017J-5R6M CESK006-001 QST2731-C01	DELAY LINE F R F R RELAY PUSH SWITCH	4. 7 Ω 1/4W J 5. 6 Ω 1W J
Δ	S1401 S1501 S1901 TH1201 X1301	QSL4A13-C02 QSL4A13-C02 QSP4D21-C06 A75575-332 A76090	LEVER SWITCH LEVER SWITCH PUSH SWITCH THERMISTOR CRYSTAL	V. Center SW H. Center SW Power SW 3. 3kΩ

CRT SOCKET PC BOARD Ass'y (FX-3016A)

SYMBOL NO.	PART NO.	PART NAME	REMARKS
VARIABLE R R3702 R3705 R3712 R3715 R3725	QVPE 8 0 5 - 2 0 1 H QVPE 8 0 5 - 5 0 2 H QVPE 8 0 5 - 2 0 1 H QVPE 8 0 5 - 5 0 2 H QVPE 8 0 5 - 5 0 2 H	VR (R DRIVE) VR (R CUT OFF) VR (G DRIVE) VR (G CUT OFF) VR (B CUT OFF)	200 Ω B 5 k Ω B 200 Ω B 5 k Ω B 5 k Ω B
RESISTOR R3708 R3718 R3728 R3728 R3733 CAPACITOR C3709 DIODE	QRG029J-822A QRG029J-822A QRG029J-822A ERZ-C05ZK271 QFH63BK-223M	OM R OM R OM R ZINC N R MM CAP.	8. 2 k \Omega 2 W J 8. 2 k \Omega 2 W J 8. 2 k \Omega 2 W J
D3704 D3705 D3706	1 S S 1 3 3 - T 2 1 S S 1 3 3 - T 2 RM 2 C - L F A 1	SI. DIODE SI. DIODE SI. DIODE	
TRANSISTOR Q3701 Q3702 Q3703 Q3704 Q3705	2 S C 2 0 6 8 - L B 2 S C 4 5 0 2 - T 2 S C 2 0 6 8 - L B 2 S C 4 5 0 2 - T 2 S C 2 0 6 8 - L B	SI. TRANSISTOR SI. TRANSISTOR SI. TRANSISTOR SI. TRANSISTOR SI. TRANSISTOR	
Q3706	2 S C 4 5 0 2 - T	SI. TRANSISTOR	
OTHERS	A 7 5 5 2 2 - C	CRT SOCKET	

INPUT PC BOARD Ass'y (FX-6015A)

SYMBOL NO.	PART NO.	PART NAME	REMARKS
RESISTOR R6201 R6202 R6213 R6301	QRV141F-75R0AY QRV141F-75R0AY QRV141F-75R0AY QRV141F-75R0AY	MF R MF R MF R MF R	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
CAPACITOR C6201 C6202 C6203 C6204 C6205	QEKC1HM-335GMZ QEKC1HM-335GMZ QEKC1CM-336MZ QEKC1CM-336MZ QEKC1CM-107MZ	E CAP. E CAP. E CAP. E CAP. E CAP.	3. 3 \(\mu \text{F} \) 5 0 \(\text{V} \) M 3. 3 \(\mu \text{F} \) 5 0 \(\text{V} \) M 3 3 \(\mu \text{F} \) 1 6 \(\text{V} \) M 1 0 0 \(\mu \text{F} \) 1 6 \(\text{V} \) M
C 6 6 0 2 C 6 6 0 3 C 6 6 0 4 C 6 6 0 5	QEKC1HM-105GMZ QEKC1HM-105GMZ QEKC1HM-105GMZ QEKC1CM-107MZ	E CAP. E CAP. E CAP. E CAP.	1 μ F 5 0 V M 1 μ F 5 0 V M 1 μ F 5 0 V M 1 0 0 μ F 1 6 V M
COIL L6601	A 7 6 1 8 6 - 1. 0 Z	PEAKING COIL	1. 0 #H
DIODE D6201 D6202 D6203 D6204	1 S S 1 3 3 - T 2 1 S S 1 3 3 - T 2 1 S S 1 3 3 - T 2 1 S S 1 3 3 - T 2	SI. DIODE SI. DIODE SI. DIODE SI. DIODE	
TRANSISTOR Q 6 2 0 1 Q 6 2 0 2 Q 6 2 0 3 Q 6 6 0 1 Q 6 6 0 2	2 S C 1 7 4 0 S (R) - T 2 S C 1 7 4 0 S (R) - T 2 S C 1 7 4 0 S (R) - T 2 S C 1 7 4 0 S (R) - T 2 S C 1 7 4 0 S (R) - T	SI TRANSISTOR SI TRANSISTOR SI TRANSISTOR SI TRANSISTOR SI TRANSISTOR	
Q 6 6 0 3 Q 6 6 0 4 Q 6 6 0 5 Q 6 6 0 6	2 S C 1 7 4 0 S (R) - T 2 S C 1 7 4 0 S (R) - T 2 S C 1 7 4 0 S (R) - T 2 S C 1 7 4 0 S (R) - T	SI TRANSISTOR SI TRANSISTOR SI TRANSISTOR SI TRANSISTOR	
IC IC6201 IC6601	LA7016 MC14066BCP	I. C. I. C.	or TC4066BP
OTHERS S 6 2 0 1 S 6 2 0 2 S 6 2 0 3 S 6 5 0 1	QSS4C22-C01 QSS4C22-C01 QSS4C22-C01 QSS4C22-C01	SLIDE SWITCH SLIDE SWITCH SLIDE SWITCH SLIDE SWITCH	Termination SW Termination SW SET UP AFC

POWER PC BOARD Ass'y (FX-9015A)

ſ	SYMBOL NO.	PART NO.	PART NAME	REMARKS
	VARIABLE R R9913	QVPE805-503H	VR (B1 ADJ.)	50kΩ B
Δ	RESISTOR R9902 R9909 R9911 R9912 R9916	QRF204K-5R6 QRG019J-151S QRG039J-473A QRG029J-470A QRM055K-R22	UNF R OM R OM R OM R MP R	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	R 9 9 1 8 R 9 9 1 9 R 9 9 2 1 R 9 9 2 2	QRX019J-3R9S QRG029J-333A QRD149J-561S QRD149J-2R2S	MF R OM R C R C R	3. 9 Ω 1W J 33k Ω 2W J 560 Ω 1/4W J 2. 2 Ω 1/4W J
	CAPACITOR C9901 C9903 C9904 C9905 C9906	QFZ9022-104M QFZ9022-224M QFZ9022-104M QCZ9034-472A QCZ9034-472A	MF CAP. MF CAP. MF CAP. C CAP. C CAP.	0. 1 \(\mu \text{FAC 2 5 0 V} \) M 0. 2 2 \(\mu \text{FAC 2 5 0 V} \) M 0. 1 \(\mu \text{FAC 2 5 0 V} \) M 4 7 0 0 \(\mu \text{FAC 1 2 5 V} \) P 4 7 0 0 \(\mu \text{FAC 1 2 5 V} \) P
ΔΔ	C 9 9 0 7 C 9 9 0 8 C 9 9 1 1 C 9 9 1 6 C 9 9 1 7	QCZ9034-472A QCZ9034-472A QEZ0111-337R QCZ0122-391U QCZ0122-821U	C CAP. C CAP. E CAP. C CAP. C CAP.	4700pFAC125V P 4700pFAC125V P 330μF 400V M 390pF 2kV K 820pF 2kV K
	C 9 9 1 8 C 9 9 1 9 C 9 9 2 1 C 9 9 2 3 C 9 9 2 5	QCZ0122-821U QCF22HP-103M QEHC2AM-107MZ QEHC2AM-107MZ QFV71HJ-474MZ	C CAP. CH C CAP. E CAP. E CAP. TF CAP.	820pF 2kV K 0.01μF 500V P 100μF 100V M 100μF 100V M 0.47μF 50V J
	C 9 9 2 7 C 9 9 2 8 C 9 9 2 9 C 9 9 3 1 C 9 9 3 4	QCZ9036-472M QCZ9036-472M QCZ9036-472M QCZ9036-472M QCZ9036-472M QCZ0122-471A	C CAP. C CAP. C CAP. C CAP. C CAP.	4700pFAC125V M 4700pFAC125V M 4700pFAC125V M 4700pFAC125V M 470pF 2kV K
Δ	TRANSFORME T9901 T9902	R CE41100-00B CE41059-00B	SW. TRANSF. DRIVE TRANSF.	
Δ	D I O D E D 9 9 0 1 D 9 9 0 2 D 9 9 0 3 D 9 9 0 4 D 9 9 0 5 D 9 9 0 6 D 9 9 0 7 D 9 9 0 8 D 9 9 0 9 D 9 9 1 0	EU2A-LFF6 RU1C-LFA1 W06B EU2A-LFF6 LB-156-LFB EU2A-LFF6 RU4B-LFK2 R2M-LFA1 1S1555-LB13 W06B	SI. DIODE SI. DIODE SI. DIODE SI. DIODE SI. DIODE DIODE BRIDGE SI. DIODE SI. DIODE SI. DIODE SI. DIODE SI. DIODE	
	D9911	RU1C-LFA1	SI. DIODE	
	TRANSISTOR Q9901 Q9902 Q9903	2SC2655 (Y) -T 2SA966 (OY) -T 2SD982	SI. TRANSISTOR SI. TRANSISTOR SI. TRANSISTOR	
Δ	IC IC9901	STR 5 4 0 4 1 S	I. C. (H)	
∆	OTHERS FR9908 F9901 LF9901	QRZ0054-100M QMF51E2-3R15S CE40847-00C	F R FUSE LINE FILTER	10 Ω 1∕4W J 3. 15A

	SYMBOL NO.	PART NO.	PART NAME	REMARKS
Δ.	OTHERS LF9902 TH9901	CE40847-00C A76038-T	LINE FILTER POSISTOR	

MODULE PC BOARD PARTS LIST

The following module pc boards are supplied as assemblies.

The component parts on the module PC boards are available only when the parts are listed in the "MODULE PRINTED CIRCUIT BOARD PARTS LIST".

SECAM MODULE PC BOARD Ass'y (SBX-S004A) within MAIN PC BOARD Ass'y.

PACKING

PACKING PARTS LIST

	SYMBOL NO.	PART NO.	PART NAME	REMARKS
A	1 2 3 4 5	CP10756-A12 CP10901-B0A AP3804-22 TM-1500PS-IB-A QZL1008-004 QMP4718-200R QPGA030-02505	PACKING CASE CUSHION ASSY SET COVER INST. BOOK DBP INFOR SHEET POWER CORD POLY. COVER	4Pcs in 1set

LIVC TM-1500PS SCHEMATIC DIAGRAM.

■ NOTICE

O The voltage reading and waveform are measured at each point with a multi-meter and an oscilloscope while input a video signal (color bar) through the video input terminal (INPUT A) on the monitor.

The measurements were made with each VR under the condition just after the shipment. The figures of the signal circuits may be more or less different after adjustments, so use the figures simply for reference.

Multimeter used.

DC 20kΩ/V

Given figures are all DC voltages.

Sweep speed of oscilloscope

 $H \rightarrow 20 \mu S/div$. $V \rightarrow 5 m S/div$.

Others-sweep speed specified

O Since the schematic diagram is a standard one, the circuit and circuit constants may be subject to change for improvement without any notice.

SAFETY

FR (-\mathcal{N}^FR) denotes a fusible resistor which operates as a fuse. When replacing fusible resistors and parts indicated with black shading () in the circuit diagrams, be sure to ensure safety by using designated parts. As to other parts too, use designated parts to maintain safety and performance.

■ INDICATION OF PARTS SYMBOL

(Example) FX-1025A : R1209-R209 Inside board

Outside board (Example) R0001-R01

■ SCHEMATIC DIAGRAM INDICATION

Resistor

Resistance value

Without unit : $[\Omega]$ K : $[k\Omega]$ M : $[M\Omega]$

Rated allowable power

Without indication : 1/6W

Others Indicated

○ Type

Without indication : Carbon resistor

OMR

: Oxide metal film resistor

UNFR

: Unflammable resistor

MFR

: Metal film resistor

MPR

: Metal plate resistor : Fusible resistor

* Composition resistor 1/2 [W] is indicated as 1/2S or

Comp.

Capacitor

Capacitance

Below 1 : $[\mu F]$ Above 1: [pF]

Withstnad voltage

Without indication : DC 50 [V]

Others

: DC withstand voltage [V]

AC indicated

: AC withstand voltage [V]

O Indications for electrolitic capacitors are as follows. (Example)

 $47/50 \rightarrow \text{capacitance } [\mu \text{F}] / \text{withstand voltage } [V]$

Type

Without indication : Ceramic capacitor : Mylar capacitor MY

MM

: Metalized mylar capacitor

: Polypropylene capacitor

MPP

: Metalized polypropylene capacitor

MF TF

: Metalized film capacitor : Thin film capacitor

BP

: Bipolar electrolytic capacitor

TAN.

: Tantalum capacitor

Coil

Without unit : [µH]

Power Supply

: B1 (110V)

___ : B₂ (12 V)

* Each voltage reading specified

Connection method

: Connector -> - : Receptacle

○ ○ : Wrapping or soldering

Test point & GND. symbol.

: Test point by miniature GT pin

: Only test point display

: Neutral (Secondary) side ground

NOTE FOR SERVICE -

This model's power circuit is partly different in the GND. The difference of the GND is shown by the LIVE (primary: __) side GND and the NEUTRAL (secondary: 🗼) side GND.

Don't short between the LIVE side GND and NEU-TRAL side GND or never measure with a measuring apparatus (oscilloscope etc.) the LIVE side GND and NEUTRAL side GND at the same time.

If above note will not be kept, a fuse or any parts will

be broken.

ALIGNMENT LOCATION

- NOTE FOR SERVICE -

This model's power circuit is partly different in the GND. The difference of the GND is shown by the LIVE (primary: \bot) side GND and the NEUTRAL (secondary: $\frac{1}{100}$) side GND.

Don't short between the LIVE side GND and NEU-TRAL side GND or never measure with a measuring apparatus (oscilloscope etc.) the LIVE side GND and NEUTRAL side GND at the same time.

If above note will not be kept, a fuse or any parts will be broken.

2

CRT SOCKET PCB BACK PATTERN

