LÓGICA EI Mestrado Integrado em Engenharia Informática Universidade do Minho

Departamento de Matemática

2020/2021

1.3 Sistema Formal de Dedução Natural para o Cálculo Proposicional

Observação: O *sistema formal de demonstrações* para o Cálculo Proposicional que estudaremos será notado por DNP e designado por *Dedução Natural Proposicional*.

Observação:

O sistema DNP constitui uma certa formalização de *deduções* (a partir de *hipóteses*) e de *demonstrações* no contexto do Cálculo Proposicional, num estilo conhecido como *dedução natural*.

As deduções permitirão uma abordagem alternativa à relação de consequência semântica (definida à custa do conceito de valoração) e, em particular, permitirão identificar as tautologias com as fórmulas para as quais podem ser construídas demonstrações (deduções que não dependem de hipóteses).

Exemplo:

Deduções em DNP serão construídas usando um certo conjunto de *regras de inferência*, que codificam raciocínios elementares utilizados habitualmente na elaboração de demonstrações matemáticas.

Um raciocínio elementar que usamos frequentemente na construção de deduções é o seguinte: de φ e $\varphi \to \psi$ podemos concluir ψ .

Representaremos este raciocínio do seguinte modo:

$$\frac{\varphi \quad \varphi \to \psi}{\psi}$$

Esta regra é habitualmente designada *modus ponens* (embora no formalismo DNP adotemos um nome diferente para esta regra, como veremos adiante).

Outro raciocínio elementar é o seguinte: se assumindo φ por hipótese podemos concluir ψ , então podemos concluir $\varphi \to \psi$.

 φ :

Utilizemos a notação ψ para simbolizar a possibilidade de concluir ψ a partir de φ .

Então, este raciocínio poderá ser representado do seguinte modo:

Neste raciocínio, φ é uma *hipótese temporária* usada para concluir ψ .

A notação $\not\sim$ reflete o facto de que a conclusão $\varphi \to \psi$ já *não* depende da hipótese temporária φ .

Notação: O conceito de dedução em DNP será formalizado adiante, através de uma definição indutiva, cujas regras serão determinadas por *regras de inferência*.

As deduções, a que habitualmente chamaremos derivações, corresponderão a certas $\acute{arvores}$ finitas de $\acute{formulas}$, onde uma fórmula φ que ocorra como folha poderá estar cancelada, o que será notado por \not ou por $[\varphi]$.

Na apresentação das regras de inferência de *DNP*, usaremos a notação

para representar uma árvore de fórmulas cuja raiz é ψ e cujas eventuais ocorrências da fórmula φ como folha estão necessariamente canceladas.

Definição:

As *regras de inferência* do sistema formal DNP são apresentadas de seguida.

Cada regra de inferência originará uma regra na definição indutiva do *conjunto das derivações* (Slide 15).

As regras de inferência recebem derivações (uma ou mais) e produzem uma nova derivação.

Regras de Introdução Regras de Eliminação

Numa regra de inferência, as fórmulas imediatamente acima do *traço* de inferência serão chamadas *premissas* e a fórmula abaixo do traço de inferência é chamada a *conclusão* da regra.

Uma *aplicação* ou *instância* de uma regra de inferência é uma substituição das fórmulas da regra (meta-variáveis) por fórmulas do CP.

Chamaremos inferência a uma aplicação de uma regra de inferência.

Regras de Introdução

Regras de Eliminação

$$\begin{array}{ccc}
\vdots & \vdots \\
\frac{\dot{\varphi} & \psi}{\varphi \wedge \psi} & \wedge I
\end{array}$$

$$\frac{\varphi \wedge \psi}{\varphi} \wedge_{\mathbf{1}} \mathcal{E}$$

$$\begin{array}{ccc} \vdots & \vdots & & \vdots & & \vdots \\ \frac{\dot{\varphi} & \psi}{\varphi \wedge \psi} \wedge \mathbf{1} & & \frac{\varphi \wedge \psi}{\varphi} \wedge_{\mathbf{1}} \mathbf{E} & & \frac{\varphi \wedge \psi}{\psi} \wedge_{\mathbf{2}} \mathbf{E} \end{array}$$

$$\frac{\vdots}{\varphi} \quad \frac{\vdots}{\neg \varphi} \quad \neg E$$

Regras de Introdução

Regras de Eliminação

$$\begin{array}{ccc} \vdots \\ \frac{\dot{\varphi}}{\varphi \vee \psi} \vee_{1} I & \frac{\vdots}{\psi} \\ \frac{\psi}{\varphi \vee \psi} \vee_{2} I \end{array}$$

$$\begin{array}{cccc} & & & & \cancel{K} & & \cancel{K} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\varphi \lor \psi & \dot{\sigma} & \dot{\sigma} & \dot{\sigma}}{\sigma} & \lor \mathbf{E} \end{array}$$

$$\begin{array}{ccc}
\cancel{\cancel{\phi}} & \cancel{\cancel{\phi}} \\
\vdots & \vdots \\
\cancel{\psi} & \cancel{\dot{\varphi}} \\
\cancel{\varphi} \leftrightarrow \cancel{\psi} & \leftrightarrow
\end{array}$$

$$arphi$$
 \vdots
 \vdots
 φ (RAA)
 \vdots
 φ (\bot)

Exemplo: Vejamos dois exemplos de inferências $\wedge_1 E$:

$$\frac{p_1 \wedge p_2}{p_1} \wedge_1 E \qquad \frac{(p_1 \wedge p_2) \wedge (p_1 \to \neg p_3)}{p_1 \wedge p_2} \wedge_1 E \tag{1}$$

Estas duas inferências podem ser *combinadas* do seguinte modo:

$$\frac{(p_1 \wedge p_2) \wedge (p_1 \to \neg p_3)}{\frac{p_1 \wedge p_2}{p_1} \wedge_1 E} \wedge_1 E$$
(2)

Exemplo (cont.):

Combinando esta construção com uma inferência \rightarrow *I* podemos obter:

$$\frac{\frac{[(p_1 \wedge p_2) \wedge (p_1 \rightarrow \neg p_3)]}{\frac{p_1 \wedge p_2}{p_1} \wedge_1 E} \wedge_1 E}{\frac{((p_1 \wedge p_2) \wedge (p_1 \rightarrow \neg p_3)) \rightarrow p_1}{} \rightarrow I}$$
(3)

As duas inferências em (1), assim como as combinações de inferências em (2) e (3), são exemplos de *derivações* no sistema formal DNP.

Definição: O *conjunto* \mathcal{D}^{DNP} *das derivações de* DNP é o menor conjunto X, de árvores finitas de fórmulas, com folhas possivelmente canceladas, tal que:

- a) para todo $\varphi \in \mathcal{F}^{CP}$, a árvore cujo único nodo é φ pertence a X;
- b) X é fechado para cada uma das regras de inferência de DNP; por exemplo, X é fechado para as regras → E e → I quando as seguintes condições são satisfeitas (respetivamente):

$$\begin{array}{ccc}
& & & \stackrel{\cancel{\mathcal{S}}}{D} \\
D & & & \psi \\
\downarrow & & & \varphi \to \psi & \downarrow I & \in X
\end{array}$$

(onde: ψ denota uma árvore de fórmulas cuja raiz é ψ ; e

D W

 $\overline{\varphi \to \psi} \to I$ denota a árvore de fórmulas obtida de D adicionando um novo nodo $\varphi \to \psi$, que passa a ser a nova raiz e tem por único descendente a raiz de D, e cancelando todas as eventuais ocorrências de φ como folha).

As derivações em DNP são também chamadas *deduções*.

No nosso estudo, privilegiaremos a terminologia derivação.

A terminologia *demonstração* será reservada para uma classe especial de derivações (ver Slide 23).

Observação:

O conjunto \mathcal{D}^{DNP} das derivações em DNP admite princípios de indução estrutural e de recursão estrutural.

Observação: Existe um conceito natural de subderivação.

Por exemplo, a derivação (3) do Slide 14 tem as quatro seguintes subderivações:

$$(p_1 \wedge p_2) \wedge (p_1 \rightarrow \neg p_3)$$
,

$$\frac{(p_1 \wedge p_2) \wedge (p_1 \rightarrow \neg p_3)}{p_1 \wedge p_2} \wedge_1 E$$

$$\frac{(p_1 \wedge p_2) \wedge (p_1 \rightarrow \neg p_3)}{\frac{p_1 \wedge p_2}{p_1} \wedge_1 E} \wedge_1 E$$

$$\frac{\frac{\left[\left(p_{1}\wedge p_{2}\right)\wedge\left(p_{1}\rightarrow\neg p_{3}\right)\right]}{\frac{p_{1}\wedge p_{2}}{p_{1}}\wedge_{1}E}\wedge_{1}E}{\frac{\left(\left(p_{1}\wedge p_{2}\right)\wedge\left(p_{1}\rightarrow\neg p_{3}\right)\right)\rightarrow p_{1}}{\rightarrow}I}.$$

Exemplo: Para quaisquer fórmulas do CP φ , ψ e σ , as construções abaixo são exemplos de derivações em DNP.

1)
$$\frac{\varphi \cancel{\not N} \psi^{(1)}}{\frac{\varphi}{\varphi} \wedge_{1} E} \frac{\frac{\varphi \cancel{\not N} \psi^{(1)}}{\psi} \wedge_{2} E}{\frac{\varphi \to \varphi}{\varphi \to \varphi} \to \varphi} \to E}{\frac{\varphi \to \varphi}{(\varphi \wedge \psi) \to \varphi} \to I^{(1)}} \to E$$

Os números naturais que aparecem a anotar inferências e fórmulas canceladas estabelecem uma correspondência, unívoca, entre as fórmulas canceladas e as regras que permitem efetuar esses cancelamentos.

Exemplo (cont.):

2)
$$\frac{\cancel{\varphi}^{(2)} \neg \cancel{\varphi}^{(1)}}{\frac{\bot}{\varphi} RAA^{(2)}} \neg E$$

$$\frac{\neg \varphi \rightarrow \varphi}{\neg \neg \varphi \rightarrow \varphi} \rightarrow I^{(1)}$$

3)
$$\frac{\varphi^{(1)}}{\psi \to \varphi} \to I^{(2)}$$
$$\frac{\varphi \to (\psi \to \varphi)}{\varphi \to (\psi \to \varphi)} \to I^{(1)}$$

Note-se que em 3), a inferência $\to I$ anotada com (1) é utilizada para cancelar a única ocorrência como folha de φ , enquanto que a inferência $\to I$ anotada com (2) não é utilizada para efetuar qualquer cancelamento.

Definição: Numa derivação D:

- a raiz é chamada a conclusão de D;
- as folhas são chamadas as hipóteses de D;
- as folhas canceladas são chamadas as hipóteses canceladas de D;
- as folhas não canceladas são chamadas as hipóteses não canceladas de D.

Definição: Seja D uma derivação em DNP e φ uma fórmula do Cálculo Proposicional.

- Diremos que D é uma derivação de φ a partir de um conjunto de fórmulas Γ quando φ é a conclusão de D e o conjunto das hipóteses não canceladas de D é um subconjunto de Γ.
- Diremos que D é uma demonstração de φ quando D é uma derivação de φ a partir do conjunto vazio.

Exemplo: Sejam φ , ψ e σ fórmulas.

a) Seja D₁ a seguinte derivação em DNP.

$$\frac{\varphi \xrightarrow{(2)} \varphi \to \psi}{\psi \xrightarrow{\varphi} \varphi \xrightarrow{(1)} \varphi \to \varphi} \to E$$

$$\frac{\varphi \xrightarrow{\varphi} \varphi \to \varphi}{\varphi \xrightarrow{\varphi} \varphi \to \varphi} \to \varphi \xrightarrow{(1)} \varphi \to \varphi$$

$$\frac{\varphi \xrightarrow{(2)} \varphi \to \psi}{\varphi \xrightarrow{\varphi} \varphi \to \varphi} \to \varphi \xrightarrow{(1)} \varphi \to \varphi$$

$$\frac{\varphi \xrightarrow{\varphi} \varphi \to \varphi}{(\psi \to \varphi) \to (\varphi \to \varphi)} \to \varphi \xrightarrow{(1)} \varphi$$

Então:

- **1** o conjunto de hipóteses de D_1 é $\{\varphi, \varphi \to \psi, \psi \to \sigma\}$;
- **2** o conjunto de hipóteses não canceladas de D_1 é $\{\varphi \to \psi\}$;
- 3 a conclusão de D_1 é $(\psi \to \sigma) \to (\varphi \to \sigma)$;
- **4** D_1 é uma derivação de $(\psi \to \sigma) \to (\varphi \to \sigma)$ a partir de $\{\varphi \to \psi\}$.

b) Seja D_2 a seguinte derivação em DNP.

$$\frac{\varphi \not \wedge \neg \varphi^{(1)}}{\varphi} \wedge_{1} E \quad \frac{\varphi \not \wedge \neg \varphi^{(1)}}{\neg \varphi} \wedge_{2} E$$

$$\frac{\bot}{\neg (\varphi \wedge \neg \varphi)} \neg J^{(1)}$$

Então:

- **1** o conjunto de hipóteses de D_2 é $\{\varphi \land \neg \varphi\}$;
- 2 o conjunto de hipóteses não canceladas de D_2 é vazio;
- 3 a conclusão de D_2 é $\neg(\varphi \land \neg\varphi)$;
- 4 D_2 é uma demonstração de $\neg(\varphi \land \neg \varphi)$.

Definição:

Uma fórmula φ diz-se *derivável a partir de* um conjunto de fórmulas Γ ou uma *consequência sintática de* Γ (notação: $\Gamma \vdash \varphi$) quando existem derivações em DNP de φ a partir de Γ .

Escreveremos $\Gamma \not\vdash \varphi$ para denotar que φ não é derivável a partir de Γ .

Definição:

Uma fórmula φ diz-se um *teorema* de DNP (notação: $\vdash \varphi$) quando existe uma demonstração de φ em DNP.

Escreveremos $\forall \varphi$ para denotar que φ não é teorema de DNP.

Exemplo: Atendendo ao exemplo anterior:

- 1 $\{\varphi \to \psi\} \vdash (\psi \to \sigma) \to (\varphi \to \sigma)$ (i.e., $(\psi \to \sigma) \to (\varphi \to \sigma)$ é derivável a partir de $\{\varphi \to \psi\}$);
- 2 $\vdash \neg(\varphi \land \neg \varphi)$ (*i.e.*, $\neg(\varphi \land \neg \varphi)$ é um teorema de DNP).

Proposição: Para toda a fórmula proposicional φ ,

 φ é teorema de DNP se e só se $\emptyset \vdash \varphi$.

Dem.: Imediata a partir das definições.

Definição: Seja Γ um conjunto de fórmulas proposicionais.

 Γ diz-se *sintaticamente inconsistente* quando $\Gamma \vdash \perp$.

 Γ dir-se-á *sintaticamente consistente* no caso contrário, i.e. quando $\Gamma \not\vdash \bot$, ou seja, quando não existem derivações de \bot a partir de Γ .

Exemplo:

O conjunto $\Gamma = \{p_0, p_0 \rightarrow \neg p_0\}$ é sintaticamente inconsistente.

Uma derivação de \perp a partir de Γ é:

$$egin{array}{ccc} egin{pmatrix}
ho_0 & eta_0 &
ho_0
ightarrow \neg
ho_0 \ \hline & \neg
ho_0 &
otag \end{bmatrix}
eg E$$

31/45

Proposição: Seja Γ um conjunto de fórmulas proposicionais.

As seguintes afirmações são equivalentes:

- a) Γ é sintaticamente inconsistente;
- **b)** para algum $\varphi \in \mathcal{F}^{CP}$, $\Gamma \vdash \varphi$ e $\Gamma \vdash \neg \varphi$;
- **c)** para todo $\varphi \in \mathcal{F}^{CP}$, $\Gamma \vdash \varphi$.

Dem.: Por exemplo, é suficiente provar as implicações **a**)⇒**b**), **b**)⇒**c**) e **c**)⇒**a**).

Dem. (cont.):

a) \Rightarrow **b**): Admitindo que Γ é sintaticamente inconsistente, existe uma derivação D de \bot a partir de Γ .

Assim, fixando uma (qualquer) fórmula φ , tem-se que

$$D_1 = \frac{D}{\varphi} (\bot)$$
 $D_2 = \frac{D}{\neg \varphi} (\bot)$

(as derivações D_1 e D_2 obtidas de D acrescentando, em ambos os casos, uma inferência final (\bot) , com conclusão φ e $\neg \varphi$, respetivamente) são, respetivamente, derivações de

- (i) φ a partir de Γ (a conclusão de D_1 é φ e as hipóteses não canceladas de D_1 são as mesmas de D); e de
- (ii) $\neg \varphi$ a partir de Γ (a conclusão de D_2 é $\neg \varphi$ e as hipóteses não canceladas de D_2 são as mesmas de D).

Por conseguinte, $\Gamma \vdash \varphi$ e $\Gamma \vdash \neg \varphi$.

Exercício: prove as outras duas implicações.

Notação:

Na representação de relações de derivabilidade utilizaremos abreviaturas análogas às utilizadas para representação de relações de consequência semântica.

Por exemplo, dadas fórmulas $\varphi, \varphi_1, ..., \varphi_n$ e dados conjuntos de fórmulas Γ e Δ , a notação $\Gamma, \Delta, \varphi_1, ..., \varphi_n \vdash \varphi$ abrevia $\Gamma \cup \Delta \cup \{\varphi_1, ..., \varphi_n\} \vdash \varphi$.

Proposição: Sejam $\varphi, \psi \in \mathcal{F}^{CP}$ e $\Gamma, \Delta \subseteq \mathcal{F}^{CP}$.

- a) Se $\varphi \in \Gamma$, então $\Gamma \vdash \varphi$.
- **b)** Se $\Gamma \vdash \varphi$ e $\Gamma \subseteq \Delta$, então $\Delta \vdash \varphi$.
- c) Se $\Gamma \vdash \varphi$ e $\Delta, \varphi \vdash \psi$, então $\Delta, \Gamma \vdash \psi$.
- d) $\Gamma \vdash \varphi \rightarrow \psi$ se e só se $\Gamma, \varphi \vdash \psi$.
- e) Se $\Gamma \vdash \varphi \rightarrow \psi$ e $\Delta \vdash \varphi$, então $\Gamma, \Delta \vdash \psi$.

Demonstração:

a) Se $\varphi \in \Gamma$, então $\Gamma \vdash \varphi$.

Dem.:

Suponhamos que $\varphi \in \Gamma$.

Então, a árvore cuja única fórmula é φ é uma derivação cuja conclusão é φ e cujo conjunto de hipóteses não canceladas é $\{\varphi\}$, que é um subconjunto de Γ , pois $\varphi \in \Gamma$.

Assim, encontrámos uma derivação de φ a partir de Γ , pelo que $\Gamma \vdash \varphi$.

b), c) e e): Exercício.

Sistema Formal de Dedução Natural

Dem. (cont.):

- **d)** $\Gamma \vdash \varphi \rightarrow \psi$ se e só se $\Gamma, \varphi \vdash \psi$
 - \Rightarrow): Suponhamos que $\Gamma \vdash \varphi \rightarrow \psi$, *i.e.*, suponhamos que existe uma derivação D de $\varphi \to \psi$ a partir de Γ . Então.

$$D' = \frac{\varphi \quad \varphi \xrightarrow{D} \psi}{\psi} \to E$$

- (D' é a derivação cuja última inferência é $\rightarrow E$ e as derivações das premissas são φ e D, respetivamente)
- é uma derivação de ψ a partir de $\Gamma \cup \{\varphi\}$, pois:
- i) ψ é a conclusão de D'; e
- ii) o conjunto Δ de hipóteses não canceladas de D' é constituído por φ e pelas hipóteses não canceladas de D, que formam um subconjunto de Γ , pelo que Δ é um subconjunto de $\Gamma \cup \{\varphi\}$.

Como D' é uma derivação de ψ a partir de $\Gamma \cup \{\varphi\}$, segue $\Gamma, \varphi \vdash \psi$.

Dem. (cont.):

 \Leftarrow): Suponhamos agora que Γ, $\varphi \vdash \psi$, *i.e.*, suponhamos que existe uma derivação D de ψ a partir de Γ \cup { φ }.

Então, a derivação

$$D' = \begin{array}{c} \not \varnothing \\ D \\ \psi \\ \hline \varphi \to \psi \end{array} \to I^{(1)},$$

(D' é a derivação obtida de D acrescentando uma inferência final $\to I$, que cancela todas as ocorrências de φ como hipótese) é uma derivação de $\varphi \to \psi$ a partir de Γ , pois:

- i) $\varphi \rightarrow \psi$ é a conclusão de D'; e
- ii) o conjunto Δ das hipóteses não canceladas de D' é constituído por todas as hipóteses não canceladas de D (um subconjunto de $\Gamma \cup \{\varphi\}$), exceto φ e, portanto, Δ é um subconjunto de Γ .

Como D' é uma derivação de $\varphi \to \psi$ a partir de Γ , segue $\Gamma \vdash \varphi \to \psi$. \square

Teorema (*Correção*): Para todo $\varphi \in \mathcal{F}^{CP}$ e para todo $\Gamma \subseteq \mathcal{F}^{CP}$, se $\Gamma \vdash \varphi$, então $\Gamma \models \varphi$.

Dem.:

Suponhamos que $\Gamma \vdash \varphi$, *i.e.*, suponhamos que existe uma derivação D de φ a partir de Γ .

Aplicando o lema que se segue, conclui-se de imediato $\Gamma \models \varphi$.

Lema: Para todo $D \in \mathcal{D}^{DNP}$, se D é uma derivação de φ a partir de Γ , então $\Gamma \models \varphi$.

Este lema é demonstrado por indução estrutural em derivações.

ロト (部) (重) (重) 重 の90

Observação:

O Teorema da Correção constitui uma ferramenta para provar a não derivabilidade de fórmulas a partir de conjuntos de fórmulas.

De facto, do Teorema da Correção segue que

$$\Gamma \not\models \varphi \Longrightarrow \Gamma \not\vdash \varphi,$$

o que significa que, para mostrar que não existem derivações em DNP de uma fórmula φ a partir de um conjunto de fórmulas Γ , basta mostar que φ não é consequência semântica de Γ .

Exemplo: Seja $\Gamma = \{ p_1 \lor p_2, p_1 \to p_0 \}.$

- 1 Em DNP não existem derivações de p₀ ∨ p₁ a partir de Γ.
 Se existisse uma tal derivação, pelo Teorema da Correção, teríamos Γ ⊨ p₀ ∨ p₁, mas esta consequência semântica não é válida (tome-se, por exemplo, a valoração que atribui 1 a p₂ e 0 às restantes variáveis proposicionais).
- De forma análoga, pode mostrar-se que não existem derivações de ⊥ a partir de Γ (exercício).

Logo, Γ é sintaticamente consistente.

Proposição: Seja Γ um conjunto de fórmulas proposicionais.

 Γ é sintaticamente consistente sse Γ é semanticamente consistente.

Dem.:

- ←) Consequência do Teorema da Correção. (Porquê?)
- ⇒) Ver a bibliografia recomendada.

Teorema (Completude): Para todo $\varphi \in \mathcal{F}^{CP}$ e para todo $\Gamma \subseteq \mathcal{F}^{CP}$,

se
$$\Gamma \models \varphi$$
, então $\Gamma \vdash \varphi$.

Dem.: Consequência da proposição anterior. (Exercício.)

Teorema (Adequação): Para todo $\varphi \in \mathcal{F}^{CP}$ e para todo $\Gamma \subseteq \mathcal{F}^{CP}$,

$$\Gamma \vdash \varphi$$
 se e só se $\Gamma \models \varphi$.

Dem.: Imediata, a partir dos Teoremas da Correção e da Completude.

 $\textbf{Corolário} \colon \mathsf{Para} \ \mathsf{toda} \ \mathsf{a} \ \mathsf{fórmula} \ \mathsf{proposicional} \ \varphi,$

 φ é um teorema de DNP se e só se φ é uma tautologia.

Dem.: Exercício.