Amdt. Dated January 15, 2004

Reply to Office Action dated January 6, 2004

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- 1. (cancelled)
- 2. (previously presented) A method as described in claim 14 wherein said publicly known manner for deriving an integer from said published information comprises applying a hashing function to said message M.
- (original) A method as described in claim 2 wherein said message M
 includes information IAV identifying said digital postage meter and operating parameters
 applicable to said digital postage meter.
- 4. (original) A method as described in claim 2 wherein said message M includes information IAV identifying said digital postage meter and operating parameters applicable to said digital postage meter.
- 5. (previously presented) A method as described in claim 14 wherein said group [P] is defined on an elliptic curve.
- 6. (previously presented) A method as described in claim 14 wherein said message M includes information tying said postage meter's public key Key_{DM}*P to said information IAV.
- 7. (currently amended) A article having an indicium imprinted thereon as evidence of attributes of said article, said indicium comprising:

Amdt. Dated January 15, 2004

Reply to Office Action dated January 6, 2004

- a) a signature generated with a private key of a first party;
- b) a certificate;
- c) information specifying attributes of said article; wherein
- d) said private key of said first party is generated as a function of said certificate, said information, and a private key of a certifying authority, said function being chosen so that a party wishing to verify said indicium can determine a public key corresponding to said private key of said first party by operating on said certificate and said information with a corresponding public key of said certifying authority.

- 9. (canceled)
- 10. (previously presented) A method for certification by a certifying authority of a public key of a digital postage meter, said digital postage meter producing indicia signed with a corresponding private key of said digital postage meter, said certifying authority having a published public key and a corresponding private key, said method comprising the steps of:
- a) said certifying authority providing said meter with an integer, said integer being a first function of said private key of said authority;
- b) said meter computing a digital postage meter private key as a second function of said integer; and
 - c) said certifying authority publishing related information; wherein
- d) said first function. said second function and said published related information are chosen so that a party seeking to verify said indicia can compute said

Amdt. Dated January 15, 2004

Reply to Office Action dated January 6, 2004

digital postage meter public key by operating on said published related information with said published public key of said authority.

- 11. (original) A method as described in claim 10 wherein said published related information includes information identifying said digital postage meter and operating parameters applicable to said digital postage meter.
- 12. (original) A method for certification by a certifying authority of a public key of a digital postage meter, said digital postage meter producing indicia signed with a corresponding private key of said digital postage meter, said certifying authority having a published public key and a corresponding private key, said method comprising the steps of:
- a) said certifying authority providing a user with an integer, said integer being a first function of said private key of said authority;
- b) said user computing a digital postage meter private key as a second function of said integer and downloading said postage meter private key to said digital postage meter; and
 - c) said certifying authority publishing related information; wherein
- d) said first function, said second function and said published related information are chosen so that a party seeking to verify said indicia can compute said digital postage meter public key by operating on said published related information with said published public key of said authority.
- 13. (original) A method as described in claim 12 wherein said published related information includes information identifying said digital postage meter and operating parameters applicable to said digital postage meter.

Amdt. Dated January 15, 2004

Reply to Office Action dated January 6, 2004

- 14. (currently amended) A method for controlling, and distributing information between a digital postage meter and a certifying station operated by a certifying authority CA for publishing information, so that a public key Key_{DM}*P of said digital postage meter can be determined by a party seeking to verify indicia printed by said digital postage meter from said published information with assurance that said public key Key_{DM}*P has been certified by said certifying authority CA, said method comprising the steps of:
- a) defining and publishing a finite group [P] with a binary operation [+] and publishing a particular point P in said group;
- b) defining and publishing a binary operation K*p, where K is an integer and p is a point in said group, such that K*p is a point in said group computed by applying said operation [+] to K copies of said point p, and computation of K from knowledge of the definition of said group [P], said point p, and K*p is hard;
- c) controlling a certifying station to publish a certificate OMC_{DM} for said digital postage meter, wherein;

 $OMC_{DM} = (r_{DM} + r_{CA})^*P$; and wherein r_{DM} is a random integer generated by said digital postage meter and r_{CA} is a random integer generated by said certifying station;

- d) controlling said certifying station to publish a message M;
- e) controlling said certifying station to generate an integer l_{DM} , and send said integer to said digital postage meter, wherein;

 $I_{DM} = r_{CA} + H(M)Key_{CA}$; and wherein H(M) is an integer derived from said message M in accordance with a publicly known algorithm H and Key_{CA} is a private key of said certifying authority CA;

f) publishing a public key Key_{CA}*P for said certifying authority CA; and (10020882.1)Page 5 of 17

Amdt. Dated January 15, 2004

Reply to Office Action dated January 6, 2004

- g) controlling said digital postage meter to compute a private key Key_{DM}, $Key_{DM} = r_{DM} + l_{DM} = r_{DM} + r_{CA} + H(M)Key_{CA}$; and
- h) controlling said digital postage meter to print an indicium and digitally sign said indicium with said key Key_{DM} ; whereby
- i) said verifying party can compute said user's public key Key_{DM}*P as $Key_{DM}*P = OMC_{DM} + H(M) \ Key_{CA}*P = \\ (r_{DM} + r_{CA})*P + H(M)Key_{CA}*P$ from knowledge of H, M, [P], said public key Key_{CA}*P, and OMC_{DM}.

- a) controlling said digital postage meter to generate a random number r_{DM} and send a point r_{DM} *P to a certifying station;
- b) controlling said digital postage meter to receive a certificate OMC_{DM} from a certifying station operated by said certifying authority CA, wherein;

$$OMC_{DM} = (r_{DM} + r_{CA})^*P$$
; and wherein

steps of:

Amdt. Dated January 15, 2004

Reply to Office Action dated January 6, 2004

 r_{DM} is a random integer generated by said digital postage meter and r_{CA} is a random integer generated by said certifying station;

c) controlling said digital postage meter to receive an integer I_{DM} from said certifying station, wherein;

 $I_{DM} = r_{CA} + H(M)Key_{CA}$; and wherein

M is a message published by said certifying station and H(M) is an integer derived from said message M in accordance with a publicly known algorithm H and Keyca is a private key of said certifying authority CA;

d) controlling said digital postage meter to compute a private key Keydm,

$$Key_{DM} = r_{DM} + I_{DM} = r_{DM} + r_{CA} + H(M)Key_{CA}$$
; and

- e) controlling said digital postage meter to print an indicium and digitally sign said indicium with said key Key_{DM}; whereby
- f) said verifying party can compute said digital postage meter public key Кеу_{рм}*Р as

$$Key_{DM}^*P = OMC_{DM} + H(M) Key_{CA}^*P =$$

 $(r_{DM}+r_{CA})^*P+H(M)Key_{CA}^*P$

from knowledge of H, M, [P], said public key Keyca*P, and OMCDM.

16. (currently amended) A method for controlling a certifying station operated by a certifying authority CA to publish information relating to a digital postage meter for printing indicla signed with a private key Key_{DM} based upon a published a finite group [P] with a binary operation [+] and a published particular point P in said group and a published a binary operation K*P, where K is an integer and p is a point in said group, such that K*p is a point in said group computed by applying said operation [+] to K copies of said point p, and computation of K from knowledge of the definition of said group [P], said point p, and K*p is hard, so that a public key Key_{DM}*P of said digital postage meter can be determined by a party seeking to verify indicia printed by said

Amdt. Dated January 15, 2004

Reply to Office Action dated January 6, 2004

digital postage meter from said published information with assurance that said public key Key_{DM}*P has been certified by a certifying authority CA, said method comprising the steps of:

- a) controlling said certifying station to receive a point r_{DM}^*P from said digital postage meter, where r_{DM} is a random number generated by said digital postage meter;
- b) controlling said certifying station to generate and send to said digital postage meter a certificate OMC_{DM}, wherein;

 $OMC_{DM} = (r_{DM} + r_{CA})^*P$; and wherein r_{CA} is a random integer generated by said certifying station;

c) controlling said certifying station to generate and send to said digital postage meter an integer I_{DM}, wherein;

 $I_{DM} = r_{CA} + H(M)Key_{CA}$; and wherein M is a message published by said certifying station and H(M) is an integer derived from said message M in accordance with a publicly known algorithm H and Key_{CA} is a private key of said certifying authority CA; whereby

d) said digital postage meter can compute said private key Key_{DM}, $Key_{DM} = r_{DM} + l_{DM} = r_{DM} + r_{CA} + H(M)Key_{CA}; and$ and digitally sign said indicium with said key Key_{DM}; and whereby

e) said verifying party can compute said digital postage meter public key Кеурм*Р as

$$Key_{DM}^*P = OMC_{DM} + H(M) Key_{CA}^*P = (r_{DM} + r_{CA})^*P + H(M)Key_{CA}^*P$$

from knowledge of H, M, [P], said public key Keyca*P, and CERTom.

17. (currently amended) A method for controlling, and distributing information among a user station, a digital postage meter and a certifying station operated by a

Amdt. Dated January 15, 2004

Reply to Office Action dated January 6, 2004

certifying authority CA for publishing information, so that a public key Key₅₀*P of said digital postage meter can be determined by a party seeking to verify indicia printed by said digital postage meter from said published information with assurance that said public key Key₅₀*P has been certified by said certifying authority CA, said method comprising the steps of:

- a) defining and publishing a finite group [P] with a binary operation [+] and publishing a particular point P in said group;
- b) defining and publishing a binary operation K*p, where K is an integer and p is a point in said group, such that K*p is a point in said group computed by applying said operation [+] to K copies of said point p, and computation of K from knowledge of the definition of said group [P], said point p, and K*p is hard;
- c) controlling a certifying station to publish a certificate OMC₅₀ for said digital postage meter, wherein;

 $OMC_{50} = (r_{50} + r_{CA})^*P$; and wherein r_{50} is a random integer generated by said digital postage meter and r_{CA} is a random integer generated by said certifying station;

- d) controlling said certifying station to publish a message M;
- e) controlling said certifying station to generate an integer l_{50} , and send said integer to said user station, wherein;

 $I_{50} = r_{CA} + H(M)Key_{CA}$; and wherein H(M) is an integer derived from said message M in accordance with a publicly known algorithm H and Key_{CA} is a private key of said certifying authority CA;

- f) publishing a public key Keyca*P for said certifying authority CA; and
- g) controlling said user station to compute a private key Key50,

(10020992.1)Page 9 of 17

Amdt. Dated January 15, 2004

Reply to Office Action dated January 6, 2004

$$Key_{50} = r_{50} + l_{50} = r_{50} + r_{CA} + H(M)Key_{CA}$$
; and

- h) transmitting said key Key50 to said postage meter; whereby
- i) said digital postage meter can print an indicium and digitally sign said indicium with said key Key₅₀; and whereby
 - i) said verifying party can compute said user's public key Key₅₀*P as

 Key₅₀*P = OMC₅₀ + H(M) Key_{CA}*P =

 (r₅₀+r_{CA})*P + H(M)Key_{CA}*P

from knowledge of H, M, [P], said public key Keyca*P, and OMC50.

- 18. (previously presented) A method as described in claim 17 wherein said publicly known manner for deriving an integer from said published information comprises applying a hashing function to said message M.
- 19. (previously presented) A method as described in claim 18 wherein said message M includes information IAV identifying said digital postage meter and operating parameters applicable to said digital postage meter.
- 20. (previously presented) A method as described in claim 17 wherein said message M includes information IAV identifying said digital postage meter and operating parameters applicable to said digital postage meter.
- 21. (previously presented) A method as described in claim 17 wherein said group [P] is defined on an elliptic curve.
- 22. (previously presented) A method as described in claim 17 wherein said message M includes information tying said postage meter's public key Key₅₀*P to said information IAV.

Amdt. Dated January 15, 2004

Reply to Office Action dated January 6, 2004

23. (currently amended) A method for controlling a certifying station operated by a certifying authority CA to publish information relating to a digital postage meter for printing indicia signed with a private key Key₅₀ based upon a published a finite group [P] with a binary operation [+] and a published particular point P in said group and a published a binary operation K*p, where K is an integer and p is a point in said group, such that K*p is a point in said group computed by applying said operation [+] to K copies of said point p, and computation of K from knowledge of the definition of said group [P], said point p, and K*p is hard, so that a public key Key_{DM}*P of said digital postage meter can be determined by a party seeking to verify indicia printed by said digital postage meter from said published information with assurance that said public key Key_{DM}*P has been certified by a certifying authority CA, said method comprising the steps of:

- a) controlling said certifying station to receive a point r_{DM}^*P from a user station, where r_{DM} is a random number generated by said user station;
- b) controlling said certifying station to generate and send to said user station a certificate OMC₅₀, wherein;

OMC₅₀ = $(r_{50} + r_{CA})^+P$; and wherein r_{CA} is a random integer generated by said certifying station;

c) controlling said certifying station to generate and send to said user station an integer I_{50} , wherein;

 $I_{50} = r_{CA} + H(M)Key_{CA}$; and wherein

M is a message published by said certifying station and H(M) is an integer derived from said message M in accordance with a publicly known algorithm H and Keyca is a private key of said certifying authority CA; whereby

d) said user station can compute said private key Key_{DM},

 $Key_{50} = r_{50} + I_{50} = r_{50} + r_{CA} + H(M)Key_{CA}$

and transmit said key Key50 to said digital postage meter; whereby

(10020992.1) Page 11 of 17

Amdt. Dated January 15, 2004

Reply to Office Action dated January 6, 2004

- e) said digital postage meter can digitally sign said indicium with said key Key50; and whereby
- f) said verifying party can compute said digital postage meter public key Key₅₀*P as

 $Key_{50}^*P = OMC_{50} + H(M) Key_{CA}^*P =$

(rDM+rca)*P+H(M)Keyca*P

from knowledge of H, M, [P], said public key Keyca*P, and CERTom.

- 24. (currently amended) A method for determining a public key Keyom*P of a digital postage meter with assurance that said key Keyom has been certified by a group of one or more certifying authorities CA, said method comprising the steps of:
- a) scanning an indicium produced by said postage meter to obtain a certificate OMC_{DM} for said postage meter, wherein;

 $OMC_{DM} = (r_{DM} + sum(r_{CAI}))^*P$; and wherein

 r_{DM} is a random integer known only to a party generating said key Key_{DM} and $sum(r_{CAI})$ is a sum of a plurality of random integers r_{CAI} , an ith one of said certifying stations generating an ith one of said random integers r_{CAI} ;

- b) scanning said indicium produced by said postage meter to obtain a message M said message M being published by a certifying station operated by one of said certifying authorities CA;
- c) computing a hash H(M) of said message M in accordance with a predetermined hashing function H;
- d) obtaining at least one public key _{CAI}*P corresponding to said one or more certifying authorities CA, an ith one of said authorities having an ith one of said keys Key_{CAI}; and

Amdt. Dated January 15, 2004

Reply to Office Action dated January 6, 2004

- e) computing said user's public key Key_U*P as

 Key_U*P = CERT_U [+] H(M)sum_[+](KeyCAi*P)=

 (r_U + sum(r_{CAi}))*P [+] sum(H(M)Key_{CAi})*P; wherein
- f) a binary operation [+] is defined on a finite group [P] having a published particular point P; and
- g) K*p, is a second binary operation defined on said group [P], where K is an integer and p is a point in said group, such that K*p, is a point in said group computed by applying said operation [+] to K copies of said point p, and computation of K from knowledge of the definition of said group [P], said point p, and K*p is hard.

26. (canceled)

- 27. (previously amended) A method as described in claim 31 wherein M = (e,IAV), where IAV is an identity and attributes value for said postage meter.
- 28. (canceled)
- 29. (canceled)
- 30. (previously amended) A method as described in claim 32 wherein M = (e,IAV), where IAV is an identity and attributes value for said postage meter.
- 31. (previously presented) A method of digitally signing a postal indicium comprising the steps of:
 - a) generating a message m, said message m including indicia data;

Amdt. Dated January 15, 2004

Reply to Office Action dated January 6, 2004

- b) generating a digital signature with message recovery for said message m; and
- c) incorporating said digital signature into said indicium; wherein
- d) said generating step further comprises the substeps of:
- d1) generating a random integer r_s , $r_s < n$, where n is the order of a group [P] defined on an elliptic curve;

d2) generating a integer K,

 $K = K(r_s P)$

where K(p) is a mapping of points in [P] onto the integers, and P is a particular published point in [P];

d3) generating e,

 $e = SKE_K(m)$

where SKEK is a symmetric key encryption algorithm using key K;

- d4) generating H(M), where H is a hashing function and M is a message which can be recovered from said indicium;
- d5) generating $s = Key_{DM}H(M) + r_{S}$, where Key_{DM} is the private key of a postage meter which produced said indicium; and
- d6) setting said digital signature for said message m equal to the pair (s,e).
- 32. (previously presented) A method of verifying a digital signature of a postal indicium comprising the steps of:
 - a) recovering a message m from a digital signature of a postal indicium; and

Amdt. Dated January 15, 2004

Reply to Office Action dated January 6, 2004

- b) accepting said signature as valid if said message m is internally consistent;
 wherein
 - c) said recovering step further comprises the substeps of:
- c1) recovering a public key Key_{DM}*P for a postage meter which produced said indicium;
- c2) obtaining the signature (s,e) of said indicium, where s = $Key_{DM}H(M)$ +rs and e = $SKE_K(m)$, where SKE_K is a symetric key encryption algorithm using key K, m is indicia data, and M is a message recoverable from said indicium;
 - c3) obtaining M from said indicium;
 - c4) generating

s*P [-] H(M)Key_{DM}*P =
H(M)Key_{DM}*P [+]
$$r_S$$
*P [-] H(M)Key_{DM}*P =
 r_S *P

where [-] is the inverse of [+];

c5) generating

$$K = K(r_S^*P)$$

where K(p) is a mapping of points in [P] onto the integers, and P is a particular published point in [P];

c6) generating

$$m = SKE^{-1}K(e)$$

where SKE1K is the inverse of SKEK

