行业知识图谱+

知识建模与知识存储技术及工具分享

链接数据 洞察价值 Linked Data & Smart Data

What is Happening

AI浪潮下知识图谱的发展

• 起源

知识图谱(Knowledge Graph)于 2012年5月首先由Google提出 定位

人工智能的架构

●发展

政策助力

国务院《新一代人工智能发展规划》

2017年7月8日 国务院明确提出了

建立新一代人工智能关键共性技术体系重点任务

特别强调了

研究跨媒体统一表征、关联理解与知识挖掘、知识图谱构建与学习、知识演化与推理、 智能描述与生成等技术,开发跨媒体分析推理引擎与验证系统的关键共性技术

共性关键技术中反复提到以知识为中心,从获取、表示、融合、计算到应用的全生命周期建设。解决方案——知识图谱!

知识获取 多渠道、多媒体数据自动获取 知识应用 可视化分析,发挥 知识价值 知识计算 按据计算、演化推理 知识获取 知识表示 对抽象的知识进行建模 知识融合 多源、跨媒体知识整合

通用知识图谱 VS 行业知识图谱

- 面向通用领域
- 以常识性知识为主
- "结构化的百科知识"
- 强调知识的广度
- 使用者是普通用户

- 面向某一特定领域
- 基于行业数据构建
- "基于语义技术的行业知识库"
- 强调知识的深度
- 潜在使用者是行业人员

行业态势

To C **ORUGBANK** ResearchSpace **WATCH** 行业应用 InnoTREE निन्द्र 🧿 amazon facebook **EVERSTRING** STARDOG Baide百度 **Q** Palantir 解决方案 metaphacts tamr To B

行业现状——缺少合适的知识建模产品

行业现状——缺少统一的实现各类信息抽取的现成工具

CloselE

- 面向特定领域抽取信息
- 预先定义好抽取的关系类型
- 基于领域专业知识抽取
- 规模小
- 精度比较高

OpenIE

- 面向开放领域抽取信息
- 关系类型事先未知
- 基于语言学模式进行抽取
- 规模大
- 精度相对较低

行业现状——缺少合适的知识图谱专用 存储产品

• 业界普遍采用 RDF store 及 Graph Store, 但各有问题

Graph Store

No Size Fits All!

行业现状——缺少图谱统一消费的产品

知识计算

知识应用

行业知识图谱生命周期

——行业知识图谱构建与应用[CCKS 2017]

学界研究

a knowledge base management system (KBMS), which performs complex rule-based reasoning tasks over very large amounts of data and, in addition, provides methods and tools for data analytics and machine learning

KGMS,即一个知识库管理系统(KBMS),它对大量数据执行复杂的基于规则的推理任务,此外还提供数据分析和机器学习的方法和工具

KG认知误区

② limited to storing and analyzing social network data only 知识图谱仅限于存储和分析社交网络的数据

- ② acquiring a graph database system and feeding it with data is sufficient to achieve a corporate knowledge graph 采用一个图数据库存储方式,然后向其提供数据就可以构建一个完整的企业知识图谱。
- ? restricting a knowledge graph to RDF data only 知识图谱必然使用RDF三元组方式存储,而不是传统关系型数据。

KGMS = **KBMS** + **Big Data** + **Analytics**

我们的思考——KGMS整体架构描述

完整的KGMS应该包括:

KGStorage & Management + 슚 KGRobot + KGBuilder + KGSensor + KGPro

知识的组成

知识图谱旨在描述真实世界中存在的各种实体或概念,以及它们之间的关联关系。其中:

- 每个实体或概念用一个全局唯一确定的ID来标识,称为标识符;
- 每个属性—值对用来刻画实体的内在特性,而关系用来连接两个实体,刻画它们之间的关联。

现实世界中有多种类型的事物

事物之间有多种类型的链接

知识建模的目标:实体-概念-属性-关系

知识建模的工作

知识建模需要完成以下几点工作:

- ① 以概念 (实体类型) 为主体目标, 描述领域内的知识类型;
- ② 利用属性来表示不同数据源中针对实体的描述,形成对实体的全方位描述;
- ③ 利用关系来描述各类抽象成实体的数据之间的关联关系,从而支持关联分析;
- ④ 使用事件机制描述领域中动态发展,并利用时序描述事件的发展状况。

复杂知识建模 - 事件

● 事件: 谓词性知识及其关系

现有的知识图谱普遍是以"概念及概念间的关系"为核心的,缺乏对"事件"知识的描述和应用。

事件间的演化关系多数是不确定的,而实体之间的关系基本是稳定的。

● 事件知识是表示-回答why/how类型问题的必要条件

复杂知识建模 – 原子事件

原子事件(也称为基本事件或简单事件)是一个可直接观察到的、最基本的不能再分解的事件。

——《概率论》

常用属性

发生 时间 结束 时间 关联 实体

起因

结果

如:经典概率实验——抛硬币

走路

吃饭.....

复杂知识建模 – 动态事件

● 动态事件: 若干个相关的原子事件的集合

基于时序的集合

基于因果的集合

复杂知识建模 – 时序知识

- 时序特性是信息的客观存在。
- 知识和数据是不断更新的,这些变化的时间点同样代表了有意义的信息。
- 时态信息的需求与技术一直伴随着数据库技术的发展而产生和发展。

知识图谱中的时序信息

● 事件的生成时间

如: PlantData完成天使轮融资的时间为2017年12月

• 某事件的有效时间段

如:某人在某公司任一个职位时间段

● 某一对象在特定历史时刻的状态

如:2018年5月PlantData融资状态

● 知识图谱在过去特定时间的版本

如:工商知识图谱在去年12月的历史快照

事件基于时序演进的可视化

21年前

- 李达康为了修路,在全县搞强行摊派捐款
- 一位农妇被逼 喝农药自杀
- ◉ 县政府被闹

- 李达康与易学习
 资助王大路创业
- 王大路多年经营, 拥有今天的大路 集团

高、李冲突原因

- 赵立春要求吕州 市长李达康批地
- 李达康拒接批地
- 赵立春调离李达 康至林城
- ◉ 高育良批地

复杂知识建模 – 时序的表示方式

• 边属性

复杂知识建模 – 事件的表示方式

● 抽象类型实体

使用知识图谱对数据进行抽象建模

- 以实体为主体目标,实现对不同来源的数据进行映射与合并。(实体抽取与合并)
- 利用属性来表示不同数据源中针对实体的描述,形成对实体的全方位描述。(属性映射与归并)
- 利用关系来描述各类抽象建模成实体的数据之间的关联关系,从而 支持关联分析。(关系抽取)
- 通过实体链接技术,实现围绕实体的多种类型数据的关联存储。(实体链接)
- 使用事件机制描述客观世界中动态发展,体现事件与实体间的关联;并利用时序描述事件的发展状况。(动态事件描述)

知识建模的方法

即建立知识图谱的数据模式。行业知识图谱的数据模式对整个知识图谱的结构进行定义,因此需要保证可靠性。

自顶向下的方法

专家手工编辑形成数据模式

自底向上的方法

基于行业现有的标准进行转换 从现有的高质量行业数据源(如 业务系统数据库表)中进行映射

知识建模关键技术与难点

- 复杂知识建模
- 多人在线协同编辑,并且实时更新
- 能够导入集成使用现有的(结构化)知识
- 支持大数据量
- 能够支撑事件、时序等复杂知识表达
- 可以与自动算法进行结合,避免全人工操作

知识建模工具 Protégé

- 本体编辑器
- 基于RDF(S), OWL等语义网规范
- 图形化界面

● 提供了在线版本——WebProtégé

● 适用于原型构建场景

https://protege.stanford.edu/

知识建模工具 Protégé

- 概念定义
- 属性定义
- 实例编辑

知识建模工具 Protégé

● 可视化

知识建模工具 WebProtégé

● 概念编辑

知识建模工具 WebProtégé

• 属性定义

知识建模工具 WebProtégé

• 实例编辑

知识建模工具 Protégé 总结

- 建模特性层面
 - 不支持复杂事件及时序的建模
 - 不支持边属性定义
 - 完全遵守RDF规范,所有元素都必须以URI的方式进行定义

使用层面

- 基本只提供单人编辑,在线版本的并发功能支持也不完善;并发编辑时需要通过文件共享来实现;
- 因为基于单机构建,因此对大数据量支持不够,会出现内存溢出;
- 完全依靠人工,难以实现与知识图谱构建(半)自动化过程的交互。

构建一个适用的建模工具 (1)

- 在线并发编辑支持;
- 编辑的知识实时保存,当其它用户对当前用户正在编辑的内容有更新时,系统自动提示加载最新版本,因此能够有效地解决并发知识编辑冲突。

在线编辑

上下位关系定义

属性定义编辑

构建一个适用的建模工具 (2)

- 提供导入、集成功能,能够把现有的知识通过导入功能进行集成;
- 以存储为桥梁,可以对自动算法的结果进行编辑。

知识导入

构建一个适用的建模工具 (3)

支持对动态事件数据的建模,使用时态信息存储实现事件时间描述。

属性名	属性类型	定义域	操作选项			
轮次	数值	融资事件	详情			
融资额	数值	融资事件	详情			
融资时间	数值	融资事件	详情			
投资方	对象	融资事件	详情 边属性编辑			
融资方	对象	融资事件	详情 边属性编辑			
融资事件标签	对象	融资事件	详情 边属性编辑			

融资事件的建模

构建一个适用的建模工具 (4)

支持大数据量的知识图谱编辑:编辑是基于底层的知识图谱存储的,每次编辑时加载到前端的仅为当前相关的数据,因此不会造成内存溢出等问题。

知识建模总结

象属性

象属性

能够描述实体数值属性、实体对

象属性

需要统一的知识建模工具来解决所有建模需求!

RDF store or Graph store?

知识图谱数据存储 ≠ 使用图数据库

——大规模知识图谱存储[2016]

知识图谱数据存储

知识图谱最适合处理关联密集型的数据,因此首先需要需要存放的是节点和边的数据。

知识图谱数据存储

在现实应用中,还有一些不适合放入知识图谱中的数据(日志、事件,需要频繁统计、计算)怎么办?

使用其它的存储和计算框架进行存储和处理,同时实现与知识图谱中数据的链接。

No Size Fits All!

知识图谱存储方案

知识图谱是基于图的数据结构,其存储方式主要有两种方式

- 1. RDF存储
- 2. 图数据库(Graph Database)。

Native RDF 存储方案

六重索引: SPO、SOP、PSO、POS、OSP、OPS

优点:

- 三元组模式查询(triple pattern)的高效执行
- · 任意两个三元组模式的高效归并连接 (merge-join)

问题: 1、6倍空间开销,如果是(S, P, O, C)四元组呢?

2、更新维护代价大

基于Graph store的存储方案

- 图数据模型 (属性图)
- 节点、边、节点属性、边属性

- 优点:图查询语言、图挖掘算法
- 缺点:
 - 存储缺点:分布式存储实现代价高,数据更新速度慢,大节点处理慢
 - 消费缺点:不支持推理、问答等语义类消费

现有产品: Virtuoso

OpenLink Virtuoso是一个混合模型数据库,实现了Web,文件和数据库服务器功能以及本机XML存储和通用数据访问中间件,提供单一服务器解决方案。

Virtuoso提供了扩展的对象关系模型,它提供了关系型数据访问,类型继承,运行时数据类型,迟绑定,基于id的访问等数据访问方式。

提供CSV、RDF文件形式的数据导入,支持从外部的数据库进行库、表、数据的关联。

缺点:

- 联合查询效率较低
- 图算法的支持不足

现有产品: neo4j

 Neo4j is a highly scalable native graph database that leverages data relationships as first-class entities, helping enterprises build intelligent applications to meet today' s evolving data challenges.

●特点

- 节点存储 (node store)
- 关系存储 (relationship store)
- 属性存储 (property store)

- 企业数据管理场景下不使用 Schema 会难以从整体把握数据
- 非企业版本受数据量、查询速度等方面的限制
- 不支持时态信息的存储
- 没有顶层Schema约束

现有产品: Titan

Titan是一个分布式的图数据库,支持横向扩展,可容纳数千亿个顶点和边。 Titan支持事务,并且可以支撑上千并发用户和 计算复杂图形遍历。

Titan的特性

- 弹性与线性扩展、分布式架构、可容错
- 支持 ACID 和最终一致性.
- 支持多种存储后端,支持高可用和热备
- 支持位置、数字范围和全文检索
- 原生支持 TinkerPop 软件栈

• 停止维护2年后,于2015年2月被DataStax收购

时序知识存储

● 时间点

基于点的时间元素 (Point - based) , 又称为时刻 (Time Points)

● 时间区间

时间区间是指一段时间,有固定的起止时间点

● 时间跨度

指持续的一段时间,表示时间的长度;与时间区间不同的是,时间跨度没有时间起点,也没有时间终点。

● 时间元素Now

Now是一个时间变元,随着当前时间的变化而变化,记录了随时间变化的信息,它的有效值依赖于当前时间。

● 时间粒度

指描述时间数据的最小时间单位,是表示时间点之间离散化程度的因素;时间粒度反映了时态信息系统中时间点描述的最小单位,时间粒度越小,离散的时间点越多,描述的事件的变化信息越精细准确

四种时态数据库

回滚数据库

双时态数据库

快照数据库

以在特定的时刻的瞬

间快照来建立模型,

来考虑现实世界,现

实世界是变化的, 快

照数据库只是反映了

某一个瞬间的情况。

支持事务时间,按 事务时间进行编址 ,保存了每次事务 提交,状态演变之 前的状态。

历史数据库

双时态数据库由时态 关系组成,其时态关 系是一个四维结构

记录事实的有效 时间的数据库称 为历史数据库

知识图谱时态信息存储

- 在知识图谱存储中应用的为历史数据库,同时也借鉴回滚数据库的思想进行知识图谱的版本信息管理。
- 历史数据库:记录事实的有效时间,用有限的数据冗余实现数据时态信息的应用。
- 回滚数据库:在特定的时间点(可视为回滚点,但不用于真实的回滚操作)对知识图谱数据进行独立的数据备份,形成知识图谱的版本记录,实现对特定历史状态的查询,满足一些特定应用场景的使用需要

0

大规模知识图谱存储解决方案

指导思想

数据思维

依据数据特点进行数据存储结构 选择与设计

No Size Fits All

没有一种通用的存储方案能够解 决所有问题

整体原则

基础存储支撑灵活 基础存储可扩展、高可用 按需要进行数据分割 适时使用缓存和索引 善于利用现有成熟存储 保持图形部分数据的精简 不在图中作统计分析计算 在应用中进行扩充迭代

知识图谱存储方案设计思路

关系型数据: 使用图形数据进行存储

关联型数据: 作为记录型数据存入合适的存储中, 通过实体链接与图谱

中实体关联。

属性型数据:作为实体的数值属性存入知识图谱

时态型数据: 使用基础存储上的时态处理中间件进行存储与查询

知识图谱数据存储方案设计思路

那应该如何选择RDF还是Graph呢

视数据消费场景而定:

数据消费思维!

现有知识图谱存储解决方案对比

RDF store

无法满足遍历、路径等图计算消费场景

原因:存储结构决定了数据连接操作开销大

Graph store

无法支持语义搜索、问答、推理等知识消费类场景

原因: 没有顶层模式定义和约束, 语义不明确

Time series DB

	知识消费	图计算消费	时序消费
RDF store	strong	weak	weak
Graph store	weak	strong	weak

无法支撑知识图谱的统一消费!

我们需要统一的知识图谱存储平台!

Best practice

现有案例数据场景总结

案例	数据场景	概念	实体	关系	属性	事件	时序
本上海洋枚字图与结 ZHOUSHAN OCEAN DIGITAE LUBRARY	海洋知识体系、鱼类品种分类体系、论 文、专利、书籍	√	√	V	√		
NARI 国电南瑞 NARI-TECH	百科知识体系、论文、专利、标准、成果、实验室、图片、视频、人物、企业、 科研机构、知识点	V	√	V	V		V
同济大学图书馆 Yangji University Library	柴油发动机分类体系,产业链,专利、 论文、研究机构、专家	√	√	V	√		√
() 科创365	专利分类体系、专利、企业、人物、科 研机构	√	√	\checkmark	√		√
₩ HUAWEI	知识点、专家、研究机构、企业、论文、 专利	√	√	V	√		√
农业知识图谱 Agriculture Knowledge Graph	水稻品种、产业链、病虫害、农作物、专利、论文、成果、政策法规、新闻	V	√	V	V		V

现有案例数据场景总结

案例	数据场景	概念	实体	关系	属性	事件	时序
圆湖本2李大学 2000年11月2日 11日11日	产业上下游体系、产品、企业、科研机构、人物	√	√	√	√		√
写国网商城 www.esgcc.com.cn	商品分类体系、商品、品牌、店铺、分站、地域	√	√	√	√		
夏子数聚	人物、公司、行业、地域、股票	√	√	√	√	√	√
LengJing.io	产品、企业、投资机构、行业、融资 事件、人物	√	√	√	√	√	√
科创云脑 inobrain.com	产业链、产品、公司、专利	√	√	√	√		
Landray蓝凌	开发商、人员、部门、客户、项目、 合同、供应商、流程、地点、行业	√	√	√	√	√	

知识消费场景

实践案例	知识消费			图计算			时序消费	
	知识问答	语义搜索	智能提示	图探索	路径	关联	时序图探索	
THOUSIAN OCEAN DIGITAL LISSARY		√	√					
NARI 国电南瑞 MARI-TECH		V	√	√	√	√		
同济大学图书馆 Yongji University Library			√	V	V	V	\checkmark	
() 科创365		√	√	V	√	V		
∮ ∳ HUAW€I			√	√	V	V	\checkmark	
农业知识图谱 Agriculture Knowledge Graph		√	√	V	√	V	V	

知识消费场景

实践案例	知识消费			图计算			时序消费	
	知识问答	语义搜索	智能提示	图探索	路径	关联	时序图探索	
圆湖本2季大学 如此中国1985年11年		V	V	√	√	√	\checkmark	
写 国网商城 www.esgcc.com.cn		√	√					
夏子数聚 BUNNTUM DATA			√	√	√	V	\checkmark	
LengJing.io		√	V	V	√	√		
科创云脑 inobrain.com		√	√	√				
Landray蓝凌	√			√	√	V	√	

知识建模案例-电商搜索

数据源

数据说明

商品明细 - 商品详情

商品属性 – 从商品1-3级分类共有的属性

商品分类 - 分1、2、3级分类

品牌 – 商品品牌、品牌简称、品牌英文、logo

店铺 - 店铺、店铺地域及店铺与商品的关系

订单 - 订单、订单与用户、订单与商品的关系

评论 - 评论、评论与商品、评论与用户的关系

用户 - 用户及其画像

专区 - 商品业务上的分区

分站 - 商品业务上的虚拟分站

- 商品体系复杂,多层级多类型,商品不同品类有公有属性、也有私有属性
- 商品属性需要做数据质量控制\需要通过图谱点概率影响搜索
- 搜索输入的联想及纠错

搜索意图识别

图谱具有搜索意图识别可优化精确搜索的结果

搜索词 "奥克斯空调"在原系统返回结果中混合 "空调、风扇、电饭煲",结合电商知识图谱的系统中,能正确返回所有"奥克斯的空调"

搜索结果优化

商品知识图谱拥有的概念属性支持更加丰富的搜索结果页筛选条件

- 商品知识图谱支持商品品类层级及品类下:品牌、店铺、个性化属性的表达及质量控制。
- 搜索"笔记本电脑",原系统只存在品类、店铺及品牌几个过滤筛选项,且品牌存在错误。在现系统中,支持品类、店铺、品牌(文字+logo)及属性(屏幕尺寸、光驱、厚度)的过滤筛选。

电商搜索-建模结果

知识建模案例-科技知识服务

数据源

数据说明

图片 专利 数据 视频 论文 百科 数据 成果 专家 学者 数据 标准 行业 数据 机构 标准 企业 数据

百科 - 从行业百科全书+百度、维基、互动百科构建知识体系

专利 - 专利数据, 分发明专利、实用新型、外观设计

论文 - 论文数据, 分期刊、学位等

成果 - 成果数据

标准 - 标准数据, 国标、行标、企标

图书 – 一般的书籍数据

图片视频 - 带文本描述的图谱、视频

专家学者 - 上述数据的作者 + 专家库

行业机构 -上述数据的作者 + 行业机构库

企业 - 上述数据的作者 + 行业企业库

- 多源异构数据统一到一个知识体系上
- 不同类型搜索数据的个性化筛选项
- 决策支持-不同类型数据的统计,人物及资源合并

相关推荐

相关推荐

- 利用知识图谱的语义信息和大数据平台的计算能力,对行业知识进行分析和可 视化展示
- 电力行业知识信息展示,包括知识点、行业热词、上下位推理、语义距离

搜索-一框式搜索

- 知识图谱能够辅助识别用户的查询意图,跨资源类型进行搜索
- 知识数据改善搜索体验,对搜索结果进行知识展示,包括图谱、电力行业 知识体系、资源分类、时间统计等
- 用户能够根据标注结果、时间、资源类型进行筛选

决策支持

- 通过对多源异构的知识数据进行融合,从而能够从多维度进行统一分析
- 从人物、机构、知识点、期刊等维度进行分析和可视化展示,辅助决策。

知识资源服务-建模结果

知识建模案例 创投分析

数据源

数据说明

产品 - 产品及其多种同义

投资机构 – 融资事件中的投资方

融资事件 - 企业的投融资事件

标签数据 – 刻画融资事件与人物的背景标签

企业 - 初创企业

行业 - 企业所在行业

人物 - 企业管理者

高校 - 高校, 主要刻画人物教育背景

- 支持问答
- 支持会话式统计
- 能够对事件发生的时间进行表示
- 能够对事件发生的参与方进行表示

问答式创投关系发现

实体问答、知识问答、会话式统计分析

会话式创投关系发现

会话式路径发现、会话式关联分析

创投分析-建模结果

知识建模案例-金融

数据源

数据说明

专利数据 - 全国专利数据

公司 – 全国4000万家公司,包括上市公司

人物 - 企业法人、高管

失信 - 全国法院失信信息

诉讼 - 全国法院诉讼信息

招投标 – 上述公司招投标信息

新闻 - 上述公司新闻数据

招聘 - 上述公司招聘信息

建模难点:

- 行业分类体系定义
- 投资关系边属性定义
- 新数据源加入后,模式的动态扩充

风险评估

银行、投行、政府等机构可对客户的担保等行为,利用企业图谱进行**客户资源分类管理、信贷前期风险评估、采购企业风险审核、招投标企业资质评级**等。 基于投资、任职、专利、招投标、涉诉关系以目标企业为核心向外层层扩散形成一

个网络关系图, 直观立体展现企业关联。

企业最终控制人

利用图谱边属性记录的股权投资关系可追溯企业最终控制人

基于股权、任职、专利、招投标、涉诉关系形成的网络关系中,查询企业之间的最短关系路径,衡量企业之间的联系密切度。

基于股权投资关系寻找持股比例最大的股东,最终追溯至自然人或国有资产管理部门。

建模结果

总结

实体 关系 自主研发的知识图谱 概念 事件 统一存储平台 属性 时序 统一知识建模 统一知识存储 **KGMS**

PlantData KGMS

知识图谱发展趋势

互联网的不断发展,链接了越来越多的事物,在此其中,不仅仅是数据或信息的爆炸,其本质是知识的急剧增长。PlantData KGaaS提供一套从知识构建到消费的解决方案,降低知识使用的门槛,发挥知识的最大价值。

KGMS与PlantData KGaaS

● 产品体系及KGMS定位

KGMS 图谱管理工具集及图谱存储

KGBuilder 图谱自动化工具集

KGRobot 会话式图谱开放机器人

KGPro 图谱可视化深度分析工具

KGSenor 智能文档辅助编辑工具

KGMS

- KGMS知识大脑的手工构建及运营管理问题
- 最简单直接的一站式构建、管理、使用知识图谱的产品,人人都能玩转知识图谱

● 使用场景

企业

快速构建针对业务场景的应用,做poc验证 自动化流程后的数据运营

研究者

知识图谱构建、建模研究,可视化 rdf导出,参与相关模型计算

开发者

二次开发,基于KGaaS的个性化应用

KGMS的功能

知识建模工具

知识编辑工具

数据入图

数据标引

知识体系建模 属性的定义 图谱构建 数据修正 以运营人员的视角 完成外部数据到知 识图谱的构建 资源型数据的人工 标引及修正

KGMS的优势

业界领先的知识图 谱管理及存储工具 丰富的实战应用经 验,知识图谱构建 各环节针对性优化

JSSDK Restful SDK 轻量级一站式图谱 构建+应用 支持KGaaS 支持私有化部署

KGMS 功能流程

● KGMS提供一整套手工构建知识大脑的工具集

知识建模、知识编辑、知识融合、数据接入、数据入图、数据标引及知识图谱的底层存储+sdk

KGMS 我的图谱

● 图谱管理、图谱编辑、高级操作

功能	功能点
图谱管理	图谱的增删改
图谱编辑	概念编辑 属性定义 实例编辑 关系编辑 同义编辑 领域词典 实体融合 图谱可视化
高级操作	分析视图导出 实体导出、推荐问题导出

KGMS 构建知识图谱的基本操作

- 1.概念编辑 定义知识体系
- 2.属性定义 定义数据的模式

● 3.实体编辑 – 添加实例数据、实例属性数据

• 4.关系编辑 – 添加实例关系

● 5.边关系编辑 – 添加实例边关系属性值

KGMS 知识图谱编辑工具

● 概念编辑

知识图谱的知识体系人工构建

场景

多层级概念作为资源的统一分类 多层级概念属性继承 问答模式识别的需要

● 概念编辑

上下位关系定义 基本名称、唯一标示、描述、图片 文件导入

● 知识体系

● 资源搜索统一整合

标准行业知识体系分类是进行多资源数据整合的基础

zdp

● 概念体系是知识问答的基础

通过属性的搭配,能够回答如:

- 1. 2018年融资事件
- 2. 2018年大于1000万元的融资事件
- 3.2018年新发布的产品
- 4. 2018年人工智能新发布的产品等

融资事件

KGMS 知识图谱编辑工具

• 属性定义

数值属性 对象属性

边的数值属性

边的对象属性定义

场景

数值属性,人的身高体重

对象属性,企业与投资机构的投资关系

边的数值,关系时间的刻画

边的对象属性, 引起关系生的事件

KGMS 数值属性定义

• 数值属性定义

属性名称

属性同义

数据类型

举例:

人的身高、体重 BMI

数据类型
整数值
浮点值
布尔值
日期
字符串
Map型
计算属性

KGMS 数值属性定义

● 数值属性定义后,实例编辑自动生成表单

KGMS 对象属性定义

• 对象属性定义

属性名称 属性同义 数据类型 值域

KGMS 对象属性定义

对象属性定义后,关系编辑自动生成表单,并限定值域

KGMS 属性定义

KGMS 属性定义

- 电商属性的分类导航
- 知识图谱、搜索的知识卡片

KGMS 属性定义

● 问答的高级功能支持

Q1: 2018年融资额大于1000万元的融资事件

Q3: idg融资事件统计按<mark>轮次</mark>

KGMS 边属性定义

- 边属性定义的入口 属性定义列表
- 在已经定义的对象属性上,再定义边属性

KGMS 边属性定义

• 边数值属性定义

定义类型同数值属性,举例:投资关系的发生时间、发生金额

• 边对象属性定义

定义类型同对象属性,举例:投资关系的发生事件对象

KGMS 关系编辑

关系编辑的边属性编辑

根据边数值属性定义编辑根据边对象属性定义编辑

KGMS 边属性定义

KGMS 知识图谱编辑工具

• 实例编辑

刻画现实社会中客观存在的唯一实体

● 关系编辑

对象间的关系

场景

企业、投资机构、产品、人 投资机构 – 投资 – 企业 企业 – 发布 – 产品 人 – 任职 – 企业

KGMS 实例编辑

• 实例编辑

名称、唯一标识、简介、图片 从属概念 根据数值属性定义出的表单 支持文件导入

KGMS 关系编辑

● 关系编辑

对应对象属性下定义的关系添加 支持文件导入

KGMS 关系编辑

知识推荐

KGMS 图谱可视化

● 图谱可视化

对于当前构建图谱的可视化展示

KGMS 知识图谱编辑工具

同义编辑

概念同义、属性同义、实例同义编辑

• 领域词典

提示nlp能力的领域关键词、词性、词频

• 实体融合

人工实体对齐、待合并实体候选集推荐、实体关联资源更新

场景

搜索的同义扩展、语义识别 多资源的标引 同名不同机构作者合并 及 相关资源合并

KGMS 同义编辑

● 同义编辑

概念同义编辑实例同义编辑

属性同义编辑在属性定义的时候完成

KGMS 同义编辑

• 同义编辑效果

KGMS 领域词典

• 领域词典

支持搜索、问答、标引

KGMS 实体融合

• 实体融合

KGMS 实体融合

实体融合

将同义实体合并

将人物合并,对标引关联的资源进行统一视角的计算

KGMS 高级操作

● 图谱分析视图导出

用于统计、特征画像的导出,为后续计算服务。

• 生成数据导出

自动实体实体、联想提示、问题提示、输入纠错

KGMS 我的数据

● 数据管理,对文档资源型数据进行管理

功能	功能点		
数据集管理	数据集的增删改 录入数据的增删改 批量文件导入		
数据入图	数据字段与图谱模式映射 数据内容校验 数据手工入图		
数据标引	数据标引到概念 数据标引到实体 标引结果维护		

KGMS 数据导入

● 支持格式 xls、cvs

将数据文件导入云端, 为后续的处理做准备

KGMS 数据编辑

编辑

对数据集进行编辑,支持多种形式的数据

如:短文本、长文本、富文本、时间、开关、可枚举值等

短文本

KGMS 数据入图

入图

采集的数据需要通过 人工校验审核 导入知识图谱

● 入图步骤

- 1.选择一个数据集
- 2.选择一个知识图谱
- 3.设定字段映射
- 4.设定校验规则
- 5.自动生成表单
- 6.审核入图

KGMS 数据标引

标引

选择一个现有的知识图谱, 手工选择概念、实例进行关联。

可支持脚本自动标引的结果修正。

KGMS 数据标引

标引

资源型数据不存在知识图谱里,通过标引,与知识图谱的概念及实例建立关联。可用于支持语义搜索、各种图表统计。

论文、专利、文献、成果、标准

标引

KGMS 商店

商店,数据分享推广的平台

● 行业数据

知识图谱标准格式的行业数据。

• 行业知识图谱

知识图谱标准格式的行业数据。

• 行业知识模式

共享知识图谱的标准数据schema。

KGMS JSSDK

KGMS SDK

Restful SDK

接口分类	具体接口	接口说明
通用接口	图谱schema接口	获取知识图谱底层schema定义
	搜索提示接口	对于用户输入,在知识图谱中进行实体或概念的提示
图数据及可视化	图数据探索接口	以一个中心实体为视角,以图谱可视化的方式查看与其存在关联关系的人物,机构,资源,技术点等
	时序图探索接口	以一个中心实体为视角,以图谱可视化的方式查看与其存在关联关系的人物,机构, 资源,技术点等在每一个时间点的情况
	知识卡片接口	以infobox的形式展示一个实体或概念的相关信息
	语义关联接口	在知识图谱中获取与实体或概念相关联的实体或概念
网络分析	路径分析接口	在一个基于人物,机构,资源,技术点等实体形成的一个网络关系图中,查询任意两个主体的最短路径。
	关联分析接口	在一个于基于人物,机构,资源,技术点等实体形成的一个网络关系图中,查询任意多个主体的关联关系。

KGMS SDK 图探索

● 图探索的配置项

以哪个图的数据作为计算依据 从中心节点出发步数的范围 从中心节点出发包含的关系类型 以哪个节点作为中心节点 从中心节点出发包含的节点类型 是否合并两节点间的同类型关系

KGMS SDK 图探索

KGMS SDK 时序图探索

时序图探索的配置项

以哪个图的数据作为计算依据 从中心节点出发步数的范围 从中心节点出发包含的关系类型 该节点相关事件发生的时间区间

以哪个节点作为中心节点 从中心节点出发包含的节点类型 是否合并两节点间的同类型关系

KGMS SDK 知识卡片

● 知识卡片的配置项

以哪个图的数据作为计算依据

指定卡片的核心节点A

是否读取节点A的数值属性

是否读取节点A的对象属性? 读取哪些?

控制读取数据的量

, riantuata

北京小桔科技有限公司

所属: 初创企业

简介 滴滴出行(原名滴滴打车)是一个手机智能叫车系

统,帮助乘客随时随地、方便快捷的叫到出租车,帮助司机低成本更方便的接受预订。2015年与快的

打车合并为滴滴快的集团。

同义词 -

企业规模 2000人以上

注册号 110108015068911

经营状况 开业

成立日期 2012-07-10 注册资本 1000 万人民币

经营范围 技术开发、技术咨询、技术服务、技术推广;基础

软件服务;应用软件服务;设计、制作、代理、发

布广告;软件开发;销售自查看全部>>

公司地址 北京市海淀区上地东路9号1幢5层北区2号

企业类型 有限责任公司(自然人投资或控股)

企业背景标签 阿里巴巴系

企业行业标签 交通出行 汽车交通

行业小类 <u>交通出行</u> 行业大类 汽车交通

企业其他标签 拼车 共享经济 打车 租车 代驾 020

KGMS SDK 资源统计

● 资源统计配置项

读取数据集的数据

对数据集的数据进行各维度统计

读取模型挖掘的计算结果

读取机器学习的计算结果

KGMS SDK 知识推荐

● 知识推荐的配置项

读取图中节点A一步的任意类型关系 读取图中概念C下的实体 读取图中概念C下的子概念

KGMS SDK 路径分析

● 路径分析的配置项

- 以哪个图的数据作为计算依据
- 起始和终止节点是什么
- 路径步数的范围
- 路径中节点关系的方向
- 在计算路径时是否只计算最短路径
- 路径中包含的节点类型
- 路径中包含的边关系类型
- 对起始于终止节点进行关系解读
- 对指定的节点和边类型统计

KGMS SDK 路径分析

KGMS SDK 关系发现

● 关系发现配置项

以哪个图的数据作为计算依据 路径步数的范围 在计算路径时是否只计算最短路径 路径中包含的边关系类型 对指定的节点和边类型统计 起始和终止节点是什么 路径中节点关系的方向 路径中包含的节点类型 对起始于终止节点进行关系解读

KGMS SDK 关系发现

KGMS 服务方式

分类	功能	KGaaS	私有化基础版本	私有化高级版
资源控制相关	图谱个数	5	不限	不限
	数据集个数	5	不限	不限
	单图谱限制	1w	不限	不限
	单数据集限制	1w	不限	不限
数据管理	数据集管理	支持	支持	支持
	文件导入	支持	支持	支持
	数据修正	支持	支持	支持
	数据标引	支持	支持	支持
	数据入图	支持	支持	支持
	知识图谱管理	支持	支持	支持
	文件导入导出	支持	支持	支持
	概念编辑	支持	支持	支持
	属性定义	支持	支持	支持
	实例编辑	支持	支持	支持
知识图谱管理	关系编辑	支持	支持	支持
	同义编辑	支持	支持	支持
	领域词典	支持	支持	支持
	图谱可视化	支持	支持	支持
	实体融合	支持	支持	支持
	实体标引资源融合	不支持	支持	支持
SDk相关技能	知识卡片	支持	支持	支持
	图谱探索	支持	支持	支持
	时序探索	支持	支持	支持
	知识推荐	支持	支持	支持
	路径分析	支持	支持	支持
	关联分析	不支持	支持	支持
	搜索服务	不支持	支持	支持
	资源统计	不支持	支持	支持

KGMS 演示

- 公有创投图谱数据查看
- 从零构建一个教学创投图谱
- 数据编辑、数据入图、数据标引的使用

KGMS

• QA 公众号 活动推广