6.004 Spring 2019 Tutorial Problems L02 – Model of Computing 2

Two's Complement Representation:

Problem 1.

1. What is the 6-bit two's complement representation of the decimal number -21?

```
21 = 16+4+1 = 0b010101, (using 6 bit binary)
-21 = 0b101010+1 = 0b101011
```

2. What is the hexadecimal representation for decimal -51 encoded as an 8-bit two's complement number?

```
51 = 32+16+2+1 = 0b0011_0011, (using 8-bit binary)
-51 = 0b1100 1101 = 0xCD
```

3. The hexadecimal representation for an 8-bit two's complement number is 0xD6. What is its decimal representation?

```
0xD6 = 0b1101\_0110 = -128+64+16+4+2 = -42
Alternative (may be easier):
0xD6 = 0b1101\_0110 which is negative, so use -0xD6 = 0b0010\_1010 = 42, which gives +0xD6 = -42
```

4. Using a 5-bit two's complement representation, what is the range of integers that can be represented with a single 5-bit quantity?

```
-2<sup>4</sup> to (2<sup>4</sup>)-1
```

5. Can the value of the sum of two 2's complement numbers 0xB3 + 0x47 be represented using an 8-bit 2's complement representation? If so, what is the sum in hex? If not, write NO.

```
Yes: negative + positive is always within range.

0xB3+0x47 =

0b1011\_0011 +

0b0100\_0111 =

0b1111\_1010 = 0xFA (in decimal: -6, can you see why it's a very small negative?)
```

6. Can the value of the sum of two 2's complement numbers 0xB3 + 0xB1 be represented using an 8-bit 2's complement representation? If so, what is the sum in hex? If not, write NO.

```
No: negative + negative gave us positive, not okay.

0xB3+0xB1 =

0b1011_0011 +

0b1011_0001 =

0b0110_0100 :(( "9th bit" dropped: we're in 8-bit notation)
```

7. Please compute the value of the expression 0xBB - 8 using 8-bit two's complement arithmetic and give the result in decimal (base 10).

```
0xBB - 8 = 0b1011_1011 + -0b0000_1000 = 0b1011_1011 + 0b1111_1000 = 0b1011_0011 = -77 (negative, so positie is 0b0100_1101 = 77) =
```

This is okay: negative - positive is always okay. (Same as positive-negative)

8. Consider the following subtraction problem where the operands are 5-bit two's complement numbers. Compute the result and give the answer as a decimal (base 10) number.

```
\begin{array}{c} 10101 \\ -\underline{00011} \\ \\ 0b1\_0101 & 0b1\_0101 & 0b1\_0101 \\ -0b0\_0011 => + 0b1\_1100 + 1 => + 0b1\_1101 \\ = 0b1 \ 0010 = -(0b0 \ 1101 + 1) = -14 \end{array}
```

Problem 2.

- 1. Given an unsigned N-bit binary integer $= b_{n-1} \dots b_1 b_0$, prove that v is a multiple of 4 if and only if $b_0 = 0$ and $b_1 = 0$.
 - Powers of 2 greater than or equal to 4 are multiples of 4 (for all $n \ge 2$, $2^n = 4*2^n$ and 2^n is an integer)
 - The sum of numbers divisible by 4 is divisible by 4. Therefore any number of the form $b_{n-1} \dots 00$ is a multiple of 4

If a number ends in one of 01, 10, or 11 we are adding 1, 2, or 3 respectively to a multiple of 4. Therefore it a number is a multiple 4 only if it ends in 00.

1. Does the same relation hold for two's complement encoding?

Yes. The above proof is unmodified: the highest order bit is now -2ⁿ instead of +2ⁿ.

Assembly Language:

MIT 6.004 ISA Reference Card: Instructions

Instruction	Syntax	Description	Execution (*)
LUI	lui rd, luiConstant	Load Upper Immediate	reg[rd] <= luiConstant << 12
JAL	jal rd, label	Jump and Link	reg[rd] <= pc + 4
			pc <= label
JALR	jalr rd, offset(rs1)	Jump and Link Register	reg[rd] <= pc + 4
			pc <= {(reg[rs1] + offset)[31:1], 1'b0}
BEQ	beq rs1, rs2, label	Branch if =	pc <= (reg[rs1] == reg[rs2]) ? label : pc + 4
BNE	bne rs1, rs2, label	Branch if \neq	pc <= (reg[rs1] != reg[rs2]) ? label : pc + 4
BLT	blt rs1, rs2, label	Branch if < (Signed)	pc <= (reg[rs1] \leq reg[rs2]) ? label : pc + 4
BGE	bge rs1, rs2, label	Branch if \geq (Signed)	$pc \le (reg[rs1] \ge reg[rs2])$? label : $pc + 4$
BLTU	bltu rs1, rs2, label	Branch if < (Unsigned)	$pc \leftarrow (reg[rs1] \leftarrow reg[rs2])$? label : $pc + 4$
BGEU	bgeu rs1, rs2, label	Branch if \geq (Unsigned)	pc <= (reg[rs1] >=u reg[rs2]) ? label : pc + 4
LW	lw rd, offset(rs1)	Load Word	reg[rd] <= mem[reg[rs1] + offset]
SW	sw rs2, offset(rs1)	Store Word	mem[reg[rs1] + offset] <= reg[rs2]
ADDI	addi rd, rs1, constant	Add Immediate	reg[rd] <= reg[rs1] + constant
SLTI	slti rd, rs1, constant	Compare < Immediate (Signed)	$reg[rd] \leftarrow (reg[rs1] \leftarrow constant) ? 1 : 0$
SLTIU	sltiu rd, rs1, constant	Compare < Immediate (Unsigned)	$reg[rd] \leftarrow (reg[rs1] \leftarrow (constant) ? 1 : 0$
XORI	xori rd, rs1, constant	Xor Immediate	reg[rd] <= reg[rs1] ^ constant
ORI	ori rd, rs1, constant	Or Immediate	reg[rd] <= reg[rs1] constant
ANDI	andi rd, rs1, constant	And Immediate	reg[rd] <= reg[rs1] & constant
SLLI	slli rd, rs1, constant	Shift Left Logical Immediate	reg[rd] <= reg[rs1] << constant
SRLI	srli rd, rs1, constant	Shift Right Logical Immediate	$reg[rd] \leftarrow reg[rs1] >>_u constant$
SRAI	srai rd, rs1, constant	Shift Right Arithmetic Immediate	$reg[rd] \leftarrow reg[rs1] >>_s constant$
ADD	add rd, rs1, rs2	Add	reg[rd] <= reg[rs1] + reg[rs2]
SUB	sub rd, rs1, rs2	Subtract	reg[rd] <= reg[rs1] - reg[rs2]
SLL	sll rd, rs1, rs2	Shift Left Logical	reg[rd] <= reg[rs1] << reg[rs2]
SLT	slt rd, rs1, rs2	Compare < (Signed)	reg[rd] <= (reg[rs1] < _s reg[rs2]) ? 1 : 0
SLTU	sltu rd, rs1, rs2	Compare < (Unsigned)	reg[rd] <= (reg[rs1] <u 0<="" 1="" :="" ?="" reg[rs2])="" td=""></u>
XOR	xor rd, rs1, rs2	Xor	reg[rd] <= reg[rs1] ^ reg[rs2]
SRL	srl rd, rs1, rs2	Shift Right Logical	reg[rd] <= reg[rs1] >>u reg[rs2]
SRA	sra rd, rs1, rs2	Shift Right Arithmetic	$reg[rd] \leftarrow reg[rs1] >>_s reg[rs2]$
OR	or rd, rs1, rs2	Or	reg[rd] <= reg[rs1] reg[rs2]
AND	and rd, rs1, rs2	And	reg[rd] <= reg[rs1] & reg[rs2]

 $^{(*) \ \}textit{luiConstant} \ \text{is a 20-bit value}. \ \textit{offset} \ \text{and} \ \textit{constant} \ \text{are signed 12-bit values} \ \text{that are sign-extended to 32-bit values}.$

MIT 6.004 ISA Reference Card: Pseudoinstructions

Pseudoinstruction	Description	Execution
li rd, constant	Load Immediate	reg[rd] <= constant
mv rd, rs1	Move	reg[rd] <= reg[rs1] + 0
not rd, rs1	Logical Not	reg[rd] <= reg[rs1] ^ -1
neg rd, rs1	Arithmetic Negation	reg[rd] <= 0 - reg[rs1]
j label	Jump	pc <= label
jal <i>label</i>	Jump and Link (with ra)	reg[ra] <= pc + 4
		pc <= label
jr <i>rs</i>	Jump Register	pc <= reg[rs1] & ~1
jalr rs	Jump and Link Register (with ra)	reg[ra] <= pc + 4
		pc <= reg[rs1] & ~1
ret	Return from Subroutine	<pre>pc <= reg[ra]</pre>
bgt rs1, rs2, label	Branch > (Signed)	$pc \leftarrow (reg[rs1] >_s reg[rs2])$? label : $pc + 4$
ble rs1, rs2, label	$Branch \leq (Signed)$	$pc \leftarrow (reg[rs1] \leftarrow s reg[rs2])$? label : $pc + 4$
bgtu rs1, rs2, label	Branch > (Unsigned)	$pc \leftarrow (reg[rs1] >_s reg[rs2])$? label : $pc + 4$
bleu rs1, rs2, label	$Branch \leq (Unsigned)$	pc <= (reg[rs1] <=_s reg[rs2]) ? label : pc + 4
beqz rs1, label	Branch = 0	pc <= (reg[rs1] == 0) ? label : pc + 4
bnez rs1, label	Branch $\neq 0$	pc <= (reg[rs1] != 0) ? label : pc + 4
bltz rs1, label	Branch < 0 (Signed)	$pc \leftarrow (reg[rs1] \leftarrow 0)$? label : $pc + 4$
bgez rs1, label	Branch ≥ 0 (Signed)	pc <= (reg[rs1] >= 0) ? label : pc + 4
bgtz rs1, label	Branch > 0 (Signed)	pc <= (reg[rs1] > _s 0) ? label : pc + 4
blez rs1, label	Branch ≤ 0 (Signed)	pc <= (reg[rs1] <= _s 0) ? label : pc + 4

Problem 1.

Compile the following expression assuming that a is stored at address 0x1100, and b is stored at 0x1200, and c is stored at 0x2000. Assume a, b, and c are arrays whose elements are stored in consecutive memory locations.

```
for (i = 0; i < 10; i = i+1) c[i] = a[i] + b[i];
li x1, 0x1100 // x1 = address of a[0] (lui x1, 1; addi x1, x1, 0x100)
li x2, 0x2000 // x2 = address of c[0] (lui x2, 2)
li x3, 0
                 // x3 = 0 (i)
                                           (addi x3, x0, 0)
li x9, 10
loop:
                 // x4 = 4 * i
sll x4, x3, 2
add x5, x1, x4 // x5 = address of a[i]
add x6, x2, x4 // x6 = address of c[i]
lw x7, 0(x5) // x7 = a[i]
1 \le x \le 0 \times 100(x \le 0) // x \le 0 = b[i]
add x7, x7, x8 // x7 = a[i] + b[i]
sw x7, 0(x6) // c[i] = a[i] + b[i]
addi x3, x3, 1 // i = i + 1
blt x3, x9, loop // branch back to loop if i < 10
```

Problem 2.

A) Assume that the registers are initialized to: x1=8, x2=10, x3=12, x4=0x1234, x5=24 before execution of each of the following assembly instructions. For each instruction, provide the value of the specified register or memory location. If your answers are in hexadecimal, make sure to prepend them with the prefix 0x.

1. SLL x6, x4, x5 **Value of x6:** 0x34000000

2. ADD x7, x3, x2 **Value of x7:** ___22_____

3. ADDI x8, x1, 2 **Value of x8:** ____10_____

4. SW x2, 4(x4) Value stored: __10____ at address: __0x1238____

B) Assume X is at address 0x1CE8

li x1, 0x1CE8
lw x4, 0(x1)
blt x4, x0, L1
addi x2, x0, 17
beq x0, x0, L2
L1: srai x2, x4, 4
L2:

Value left in x4? 0x87654321_____

X: .word 0x87654321

Value left in x2? 0xF8765432_____

Problem 3.

Compile the following Fibonacci implementation to RISCV assembly.

```
# Reference Fibonacci implementation in Python
def fibonacci iterative(n):
  if n == 0:
     return 0
  n = 1
  x, y = 0, 1
  while n > 0:
     # Parallel assignment of x and y
     # The new values for x and y are computed at the same time, and then
     # the values of x and y are updated afterwards
     x, y = y, x + y
     n -= 1
  return y
// x1 = n
// x2 = final result
bne x1, x0, start
li x2, 0
            // (pseudo instruction for jal x0, end)
j end
start:
addi x1, x1, -1 // n = n - 1
li x3. 0 // x = 0
li x2, 1
          // y = 1 (you're returning y at the end, so use x2 to hold y)
loop:
bge x0, x1, end // stop loop if 0 \ge n
addi x5, x3, x2 // tmp = x + y
            // x = y (pseudo instruction for addi x3, x2, 0)
mv x3, x2
              // y = tmp (pseudo instruction for addi x2, x5, 0)
mv x2, x5
addi x1, x1, -1 // n = n - 1
j loop
            // pseudo instruction for
end:
```