# Universitat Oberta de Catalunya

# Estudis d'Informàtica, Multimèdia i Telecomunicació

# **ASSIGNATURA**: Grafs i Complexitat

#### Final 1

1. (Valoració d'un 5+5+5+10=25%) El següent algorisme fa un canvi de base d'un nombre enter no negatiu n expressat en base 10 a base 2.

```
función CanviBase2(n)
2
       inicio
          m \leftarrow 0
3
          pot \leftarrow 1
4
          mientras n > 0
5
                        m \leftarrow (n \bmod 2) * pot + m
                        n \leftarrow n \text{ div } 2
                        pot \leftarrow 10 * pot
          finmientras
          retorno m
10
11
```

Justifiqueu quines de les següents afirmacions són correctes:

- a) Si n = 100 la complexitat de l'algorisme és  $O(\log 100) = O(1)$ .
- b) Si n = 100, la complexitat de l'algorisme és  $O(\log_2 100)$ .
- c) La complexitat de l'algorisme és  $O(\log_2 n)$ .
- d) La complexitat de l'algorisme és  $O(\log n)$ .

- a) Falsa. La complexitat és una mesura assimptòtica i no té sentit calcular-la per a un valor determinat de l'entrada.
- b) Falsa. Pel mateix motiu que l'anterior.
- c) Certa. La complexitat del canvi de base és  $O(\log_2 n)$ .
- d) Certa. Ja que  $O(\log n) = O(\log_b n)$  per a qualsevol base b > 0.
- 2. (Valoració d'un 15+10=25%) Utilitzant l'algorisme de Kruskal, trobeu un arbre generador minimal del graf,



L'arbre minimal obtingut és únic? Justifiqueu la resposta.

Solució: Aplicant l'algorisme de Kruskal obtenim l'arbre generador minimal següent:



L'arbre obtingut és únic atès que a cada pas hem triat totes les possibles arestes de pes més petit. Les de pes 1, 4 i 5. Les que queden ja són de pes més gran.

- 3. (Valoració d'un  $5{+}10{+}10{=}25\%)$ 
  - a) Demostreu que un graf amb un vèrtex aïllat no pot ser autocomplementari.
  - b) Si un graf té grau mínim k, quina mida mínima pot tenir?
  - c) Demostreu que el següent graf és hamiltonià, però no té cap camí eulerià ni és bipartit.



# Solució:

- a) El complementari és connex, ja que a  $G^c$  tot vèrtex serà adjacent al vèrtex aïllat de G.
- b) Com tot vèrtex té k o més veïns, la suma de graus serà almenys nk, on n és l'ordre del graf. Aquesta suma és igual al doble de la mida del graf, pel lema de les encaixades. Per tant,  $2m \ge nk$ , d'on  $m \ge \lceil nk/2 \rceil$ .
- c) És hamiltonià perquè hi ha un cicle que conté tots els vèrtexs. No té cap camí eulerià perquè el nombre de vèrtexs de grau senar és superior a dos. No és bipartit perquè conté cicles de longitud senar  $(C_3 i C_5)$
- 4. (Valoració d'un 6.25+6.25+6.25+6.25=25%) Digueu si són certes o falses les afirmacions següents, justificant la resposta:
  - a) Un problema que es pot resoldre en temps  ${\cal O}(n^{73})$  té complexitat polinòmica.
  - b) El problema "Donat un graf, decidir si és hamiltonià" no pertany a NP.
  - c)  $A \wedge (B \vee C) \wedge (A \vee C)$  és una fòrmula en FNC (forma normal conjuntiva).
  - d) Si A és NP-difícil, aleshores  $A \in NP$ .

- a) Cert, per definició.
- b) Fals. Un testimoni seria una llista ordenada dels vèrtexs que formés un cicle hamiltonià.
- c) Cert, és una conjunció de disjuncions.
- d) Fals. Seria cert si A fos NP-complet.

#### Final 2

- 1. (Valoració d'un 5+10+10=25%) En emmagatzematge distribuït com el que utilitza Google, la informació es replica en diversos servidors per facilitar la cerca i la recuperació d'informació. Podem imaginar un sistema d'emmagatzematge distribuït com un graf bipartit  $G(I \cup S, A)$ . El conjunt I representa el conjunt d'unitats d'informació i el conjunt S representa el conjunt de servidors. Utilitzant la teoria de grafs, responeu les següents qüestions:
  - a) Si disposem de 6 servidors i cada servidor no pot contenir més de 4 unitats d'informació, quin és el nombre màxim d'unitats d'informació que pot emmagatzemar el sistema?
  - b) Si suposem que cada unitat d'informació ha de replicar-se en 3 servidors, quin és el nombre màxim d'unitats d'informació diferents que pot emmagatzemar el sistema?
  - c) En el mateix sistema, és a dir, amb 6 servidors i cada servidor no pot contenir més de 4 unitats d'informació, quin és el nombre màxim d'unitats d'informació que podem emmagatzemar segons el nombre de replicacions que triem?

**Solució:** En el graf bipartit G, anomenem n al nombre d'elements d'I. El nombre d'elements d'S es G.

- a) Si cada servidor no pot contenir més de 4 unitats d'informació, llavors el nombre máxim d'unitats d'informació que pot emmagatzemar el sistema seria  $n=4\cdot 6=24$ .
- b) Si cada unitat d'informació es replica en 3 servidors significa que cada vèrtex de I té grau 3. Per tant, 3n = 24 i n = 8.
- c) Si b és el nombre de replicacions i n el nombre d'unitats d'informació, llavors bn = 24 amb  $b \le 6$ . Les possibilitats per (b, n) seran, (1, 24), (2, 12), (3, 8), (4, 6) i (6, 4).
- 2. (Valoració d'un 5+10+10+5=25%) Aplicant l'algorisme de Floyd a un graf ponderat de 7 vèrtexs obtenim la matriu,

$$d^{7} = \begin{pmatrix} 0 & 1 & 3 & 11 & 12 & 10 & 6 \\ 1 & 0 & 2 & 10 & 11 & 9 & 5 \\ 3 & 2 & 0 & 9 & 13 & 7 & 3 \\ 11 & 10 & 9 & 0 & 6 & 7 & 11 \\ 12 & 11 & 13 & 6 & 0 & 6 & 10 \\ 10 & 9 & 7 & 7 & 6 & 0 & 4 \\ 6 & 5 & 3 & 11 & 10 & 4 & 0 \end{pmatrix}$$

Justifiqueu si són certes o falses les següents afirmacions:

- a) El diàmetre del graf és 13.
- b) El graf és connex.
- c) Aplicant 7 vegades l'algorisme de Dijkstra amb origen a cada vèrtex, obtindriem el mateix resultat que aplicant l'algorisme de Floyd.
- d) L'algorisme de Dijkstra és més eficient que l'algorisme de Floyd quan l'utilitzem per calcular el diàmetre del graf.

#### Solució:

- a) Cert. El valor màxim de la matriu és 13 que és el diàmetre del graf.
- b) Cert. Totes les entrades de la matriu són finites la qual cosa significa que entre cada parella de vèrtexs existeix un camí.
- c) Cert. La fila *i*-èssima de la matriu és la distància mínima del vèrtex *i* a la resta de vèrtexs que ha de coincidir amb la obtinguda amb l'algorisme de Dijkstra.
- d) Fals. L'algorisme de Dijsktra té una complexitat  $O(n^2)$  i l'algorisme de Floyd  $O(n^3)$  però, si apliquem l'algorisme de Dijkstra n vegades, obtindrem la mateixa complexitat  $O(n^3)$ .
- 3. (Valoració d'un 5+5+5+10=25%) Sigui la següència 4, 3, 2, 1, 1, 1, 1, 1, 1, 1.
  - a) Demostreu que és gràfica usant l'algorisme de Havel-Hakimi.
  - b) Dibuixeu un graf que tingui aquesta seqüència.
  - c) Demostreu que un arbre no pot tenir aquesta seqüència.
  - d) Demostreu que un graf connex no pot tenir aquesta seqüència. (Indicació: useu l'apartat anterior; i penseu com pot ser un cicle d'aquest graf).

### Solució:

a) Apliquem l'algorisme de Havel-Hakimi:

b) Una possibilitat seria:



- c) No pot ser un arbre perquè el nombre d'arestes, que és  $(4+3+2+1\cdot7)/2=8$ , no és igual al nombre de vèrtexs (10) menys un.
- d) Suposem que G és connex i té la seqüència donada. Hem vist que G no pot ser un arbre a l'apartat anterior. Com G és connex però no un arbre, ha de contenir un cicle. Un vèrtex de grau 1 no pot estar al cicle, per tant el cicle ha d'estar format pels vèrtexs de grau 2, 3 i 4. Si intentem afegir vèrtexs de grau 1 al cicle, mantenint el graf connex, només podem posar-ne 3 (i obtindríem el graf de la solució al segon apartat, tret dels dos  $T_2$ ).
- 4. (Valoració d'un 6.25+6.25+6.25+6.25=25%) Digueu si són certes o falses les afirmacions següents, justificant la resposta:
  - a) Un problema que es pot resoldre en temps  $O(n^{1000})$  és intractable.
  - b) Si  $A \leq_p B$  i  $A \notin P$ , aleshores  $B \notin P$ .
  - c) El problema "Donat un graf, decidir si conté un subgraf complet de mida 6" és verificable en temps polinòmic.
  - d) Un problema que es pot resoldre en temps  $O(3^n)$  té complexitat polinòmica.
  - $e)\,$  Si A és NP-difícil, aleshores A és NP-complet.

- a) Fals, ja que es pot resoldre en temps polinòmic.
- b) Cert, per les propietats de les reduccions.
- c) Cert, un testimoni seria donar sis vèrtexs que formin un  $K_6$ .
- d) Fals, en principi tindria complexitat exponencial.

#### Final 3

1. (Valoració d'un 15+10=25%) Considereu la següent sequència de nombres enters ordenada en ordre decreixent,

- a) Per a quins valors de y i x corresponen a la seqüència de graus d'un graf.
- b) Per als valors de y i x obtinguts en l'apartat anterior, dibuixeu un graf que la tingui com a seqüència de graus.

- a) Com que la seqüència está ordenada, deduïm que  $0 \le x \le y \le 2$ . A més, com que el nombre de vèrtexs de grau senar ha de ser parell deduïm que y o x han de ser senars però no tots dos. Això tenim dues possibilitats,
  - y = 2, x = 1: Apliquem l'algorisme de Havel-Hakimi: 5,4,3,3,2,2,1 3,2,2,1,1,1 1,1,0,1,1 1,1,1,1,0 0,1,1,0 1,1,0,0 0,0,0 y = 1, x = 0: 5,4,3,3,2,1,0 3,2,2,1,0,0 1,1,0,0,0 0,0,0,0
- b) Una representació gràfica dels dos graf podria ser:



2. (Valoració d'un 15+10=25%) Donat el graf,



- a) Demostreu que és eulerià però no hamiltonià.
- b) Afegiu el nombre mínim d'arestes al graf anterior de manera que no sigui eulerià però sí hamiltonià.

- a) Tots els vèrtexs tenen grau parell, per tant és un graf eulerià. Si eliminem el vèrtex 4 obtenim dues components connexes, per tant no pot ser hamiltonià.
- b) Si afegim l'aresta  $\{2,5\}$  aleshores el graf tindrà dos vèrtexs de grau senar i, per tant, no podrà ser eulerià. Ara, però, podem construir el següent cicle hamiltonià:



- 3. (Valoració d'un 10+15=25%)
  - a) Donada l'expressió aritmètica  $3*(x+1)^2$ , amb la prioritat habitual d'operacions, dibuixeu l'arbre associat i doneu el recorregut de l'arbre en preordre i en postordre.

b) Doneu l'ordre i la mida dels grafs  $T_3 + N_2$ ,  $K_4 \cup C_4$  i  $N_1 \times T_4$ .

#### Solució:

- a) En preordre:  $*3^+ x 12$ En postordre:  $3x1 + 2^*$
- b) L'ordre és  $n(T_3+N_2)=5$ . La mida és  $m(T_3+N_2)=m(T_3)+m(N_2)+n(T_3)\cdot n(N_2)=8$ .  $n(K_4\cup C_4)=8$ .  $m(K_4\cup C_4)=m(K_4)+m(C_4)=6+4=10$ .  $N_1\times T_4=T_4$ , que té ordre 4 i mida 3.
- 4. (Valoració d'un 6.25+6.25+6.25+6.25=25%)

Digueu si són certes o falses les afirmacions següents, justificant la resposta:

- a) Si  $A \leq_p B$  i  $A \notin NP$ , aleshores  $B \notin NP$ .
- b) Si  $A \leq_p B$  i A és NP-complet, aleshores B és NP-complet.
- c) Un problema verificable en temps  $O(n^{50})$  pertany a NP.
- d) El problema "Donat un graf, decidir si és eulerià" pertany a P.

- a) Cert, per les propietats de les reduccions.
- b) Fals, perquè B no té perquè pertanyer a NP.
- c) Cert, per definició de NP.
- d) Cert, ja que n'hi ha prou amb mirar la paritat dels graus dels vèrtexs.