# **University of Dhaka**

## **Department of Computer Science and Engineering**

CSE-4255: Introduction to Data mining and warehousing Lab
4<sup>th</sup> Year 2<sup>nd</sup> Semester

**Session**: 2018 -19

## **Report Topic:**

Comparative Performance analysis between K-Means and K-Medoids Clustering Algorithm

## **Submitted by:**

Amit Roy, Roll: JH- 40 Md. Tanvir Alam, Roll: SH-61

#### **Submitted to:**

Dr. Chowdhury Farhan Ahmed, Professor, Department of Computer Science and Engineering, University of Dhaka

Abu Ahmed Ferdaus, Associate Professor, Department of Computer Science and Engineering, University of Dhaka

Md. Ashraful Islam, Lecturer Department of Computer Science and Engineering, University of Dhaka

## **Date of Submission:**

October 28, 2019

**Introduction:** Clustering, a well-known problem in data mining and machine learning used to divide a set of objects or data tuples into multiple clusters or groups where the objects assigned in the same cluster are more similar to each other than the objects assigned in a different cluster. Clustering is known as unsupervised learning because unlike classification we don't have the class label of each data tuple. Clustering analysis is used in image pattern recognition, web search, business intelligence, non-random cluster determination and also many other real-life applications.

There are several methods for clustering, like partitioning method, density-based method, hierarchical method, and grid-based method. In partitioning methods, a set of n data tuples are given and the n data tuples are partitioned into k sub-groups or clusters where  $k \le n$  and each data tuple is assigned to exactly one cluster and no cluster is empty. The clusters here are mutually exclusive. There are two famous algorithms namely **K-Means** and **K-Medoids** which take a set of data tuples **D** and a number of clusters **k** as input and subdivide the data tuples of D into k clusters. In unsupervised learning problems, we like to solve problems with minimum ground truth available but in partitioning method based K-means and K-medoids algorithm, we need to provide a number of cluster k as input which means we need to provide some ground truth in an unsupervised learning problem in this approach.

#### **Algorithm Description:**

1. **K-Means:** The K-means algorithm initially randomly picks k of the given data objects as the cluster leader. After that, we assign every other object to one of the k-cluster for which the distance of the cluster leader and that particular object is minimal. After that, we readjust the cluster leader as the mean of the data objects of a particular cluster. Again we assign each data object to that cluster to which it's distance is minimum. When after an iteration no object changes its cluster we will terminate the algorithm.



Figure 1: K-Means algorithm Clustering Method

**2. K-Medoids:** K-Medoids algorithm maintains two sets S and U. S is the set of cluster leaders or representatives and U is the set of all other points. Initially, the K-Medoids algorithm randomly picks k data objects as the cluster leaders or representatives. Then in each iteration, it chooses the best pair (h,k) where  $h \in S$  and  $k \in U$  and swaps them if the cost of the clustering decreases. The algorithm continues until the cost is decreasing.

While swapping a representative object with a non-representative object four cases may occur which can be depicted using the following picture.



Figure 2: Four cases of the cost function for the k-medoids clustering algorithm

Clustering Quality Measures: Once we have divided the data objects into clusters we need to determine the quality of the clusters. For determining the cluster qualities, we use several measures that can be divided into extrinsic and intrinsic methods. In extrinsic methods we need to know some ground truth but intrinsic methods don't require any ground truth. We will use **Purity** and **Silhouette Coefficient** as the extrinsic method and intrinsic method measure respectively to determine the cluster qualities.

• **Purity (Extrinsic Method):** To calculate purity we require that each data object has its associated class label. It can be defined as the percentage of the total number of objects(data points) that were classified correctly, in the unit range [0..1].

$$Purity = \frac{1}{N} \sum_{i=1}^{k} max_{i} \left| c_{i} \cap t_{j} \right|$$

where,

N = number of objects(data points)

k = number of clusters

c; is a cluster and

 $t_i$  is the classification which has the maximum count for cluster  $c_i$ 

The higher the value of purity, the better the clustering.

- Silhouette Coefficient (Intrinsic Method): Ground truth is not required in this measure. For a data set, D, of n objects, suppose D is partitioned into k clusters,  $C_1, \ldots, C_k$ . For each object  $o \in D$ , we calculate
  - a(o) as the average distance between o and all other objects in the cluster to which o belongs.

Similarly,

o b(o) is the minimum average distance from o to all clusters to which o does not belong.

Formally, suppose  $o \in C_i$  ( $1 \le i \le k$ ); then

$$a(o) = \frac{\sum_{o' \in C_i, o \neq o'} dist(o, o')}{|C_i| - 1}$$

and

$$b(o) = \min_{C_j: 1 \le j \le k, j \ne i} \left\{ \frac{\sum_{o' \in C_j} dist(o, o')}{|C_j|} \right\}$$

The **silhouette coefficient** of **o** is defined as

The lesser the value of  $a(\mathbf{o})$  the more  $s(\mathbf{o}) = \frac{b(\mathbf{o}) - a(\mathbf{o})}{max\{b(\mathbf{o}), a(\mathbf{o})\}}$  compact a cluster is. Again, the higher the value of  $b(\mathbf{o})$  the cluster is far from the other clusters. The value of the silhouette coefficient lies between -1 and 1. So, as the value of the silhouette coefficient of an object approaches to 1 the objects cluster is more compact and far from other clusters. We can take the average silhouette coefficient for all the data objects and compare a clustering with another.

We also compared the two above mentioned algorithms using running time and cost (within-cluster variation). Within-cluster variation is the sum of the distance of all data points from its cluster leader. The minimum within-cluster variation, the better the clustering. Other statistics like Hopkins statistics, Dunn Index are also used to measure cluster quality.

**Dataset Description:** To perform comparative performance analysis between K-means and K-medoids algorithm, we used 17 different datasets.

| Dataset Name    | # instances,<br>n | # dimension,<br>d | # clusters,<br>k | Ground Truth<br>Available |
|-----------------|-------------------|-------------------|------------------|---------------------------|
| Iris            | 150               | 4                 | 3                | Yes                       |
| Glass           | 214               | 9                 | 7                | Yes                       |
| Breast-cancer   | 286               | 9                 | 2                | Yes                       |
| R15             | 600               | 2                 | 15               | Yes                       |
| Seeds           | 210               | 3                 | 7                | Yes                       |
| Libras Movement | 360               | 90                | 15               | Yes                       |
| Thyroid         | 215               | 5                 | 2                | No                        |
| Wine            | 178               | 13                | 3                | No                        |
| Yeast           | 1484              | 8                 | 10               | No                        |
| Wdbc            | 569               | 32                | 2                | No                        |
| leaves          | 1600              | 64                | 100              | No                        |
| Aggregation     | 788               | 2                 | 7                | No                        |
| Compound        | 399               | 2                 | 6                | No                        |
| Path-based      | 300               | 2                 | 3                | No                        |
| Spiral          | 312               | 2                 | 3                | No                        |
| Jain            | 373               | 2                 | 2                | No                        |
| Flame           | 240               | 2                 | 2                | No                        |

Table 1: Dataset Description

### **Comparative Performance Analysis:**

Dataset Name: Iris # Instances, n = 150 # Dimensions, d = 4 # Clusters, k = 3

|   | K-Means                |              |                           |             |  |
|---|------------------------|--------------|---------------------------|-------------|--|
| K | Running Time (seconds) | Purity       | Silhouette<br>Coefficient | Cost(WCV)   |  |
| 2 | 0.01469635963          | 0.6533333333 | 0.2230395887              | 21.38044919 |  |
| 3 | 0.01397228241          | 0.66         | 0.5140235168              | 19.62317805 |  |
| 4 | 0.01247024536          | 0.8733333333 | 0.2864282119              | 10.80320585 |  |
| 5 | 0.01060509682          | 0.92         | 0.3471647396              | 11.54946749 |  |
| 6 | 0.02069878578          | 0.866666667  | 0.2662120893              | 12.8826887  |  |

Table 2: K-Means algorithm performance measures

|   | K-Medoids              |              |                           |             |  |
|---|------------------------|--------------|---------------------------|-------------|--|
| К | Running Time (seconds) | Purity       | Silhouette<br>Coefficient | Cost(WCV)   |  |
| 2 | 0.1775770187           | 0.6666666667 | 0.6435145374              | 16.16378296 |  |
| 3 | 0.2719025612           | 0.9          | 0.5221559826              | 12.12682439 |  |
| 4 | 0.3838717937           | 0.9          | 0.4667371149              | 10.67378766 |  |
| 5 | 0.4701457024           | 0.9          | 0.3591643836              | 9.923787665 |  |
| 6 | 0.8767814636           | 0.9533333333 | 0.3351381688              | 9.223752354 |  |

Table 3: K-Medoids algorithm performance measures



Figure 3: Comparative Performance Analysis between K-Means and K-Medoids using Different Performance Metrics

Dataset Name: Glass # Instances, n = 214 # Dimensions, d = 9 # Clusters, k = 7

|   | K-Means                |              |                           |             |  |
|---|------------------------|--------------|---------------------------|-------------|--|
| K | Running Time (seconds) | Purity       | Silhouette<br>Coefficient | Cost(WCV)   |  |
| 5 | 0.08393597603          | 0.4672897196 | 0.2109776303              | 18.25305448 |  |
| 6 | 0.04468250275          | 0.5327102804 | 0.2380100242              | 14.35612801 |  |
| 7 | 0.07472062111          | 0.5514018692 | 0.3108097082              | 14.50182337 |  |
| 8 | 0.06846475601          | 0.5794392523 | 0.1718447559              | 13.40140952 |  |
| 9 | 0.1846382618           | 0.6168224299 | 0.2232864618              | 13.7248931  |  |

Table 4: K-Means algorithm performance measures

|   |              | K-Medoids               |              |             |  |  |
|---|--------------|-------------------------|--------------|-------------|--|--|
|   | Running Time | Running Time Silhouette |              |             |  |  |
| K | (seconds)    | Purity                  | Coefficient  | Cost(WCV)   |  |  |
| 5 | 1.007563114  | 0.5420560748            | 0.3264569579 | 12.47902327 |  |  |
| 6 | 1.571109056  | 0.6588785047            | 0.2286534629 | 11.9321226  |  |  |
| 7 | 2.072346687  | 0.6635514019            | 0.2101546722 | 11.40575257 |  |  |
| 8 | 2.3126719    | 0.6728971963            | 0.2173557937 | 10.89504322 |  |  |
| 9 | 3.353453398  | 0.691588785             | 0.2248496158 | 10.41809687 |  |  |

Table 5: K-Medoids algorithm performance measures



Figure 4: Comparative Performance Analysis between K-Means and K-Medoids using Different Performance Metrics

Dataset Name: Breast\_cancer

# Instances, n = 286 # Dimensions, d = 9 # Clusters, k = 2

|   | K-Means                |              |                           |             |  |
|---|------------------------|--------------|---------------------------|-------------|--|
| K | Running Time (seconds) | Purity       | Silhouette<br>Coefficient | Cost(WCV)   |  |
| 2 | 0.1123621464           | 0.7027972028 | 0.1522094311              | 73.46033249 |  |
| 3 | 0.04260444641          | 0.7062937063 | 0.2055181972              | 67.82227784 |  |
| 4 | 0.0799446106           | 0.7027972028 | 0.1831461                 | 60.4140362  |  |
| 5 | 0.09431314468          | 0.7307692308 | 0.1714015117              | 55.43236682 |  |
| 6 | 0.1173949242           | 0.7097902098 | 0.1502975366              | 52.43231421 |  |

Table 6: K-Means algorithm performance measures

|   |                        | K-Medoids    |                           |             |  |  |
|---|------------------------|--------------|---------------------------|-------------|--|--|
| К | Running Time (seconds) | Purity       | Silhouette<br>Coefficient | Cost(WCV)   |  |  |
| 2 | 0.8413333893           | 0.7027972028 | 0.1994929118              | 72.49577621 |  |  |
| 3 | 1.449322701            | 0.7027972028 | 0.208201985               | 63.05644992 |  |  |
| 4 | 1.161122322            | 0.7027972028 | 0.223753465               | 56.59261514 |  |  |
| 5 | 1.677128553            | 0.7447552448 | 0.2197452743              | 52.23508147 |  |  |
| 6 | 2.689814806            | 0.7377622378 | 0.2275247486              | 49.48608856 |  |  |

Table 7: K-Medoids algorithm performance measures



Figure 5: Comparative Performance Analysis between K-Means and K-Medoids using Different Performance Metrics

Dataset Name: Seeds # Instances, n = 210 # Dimensions, d = 7 # Clusters, k = 3

|   | K-Means                |              |                           |             |  |
|---|------------------------|--------------|---------------------------|-------------|--|
| К | Running Time (seconds) | Purity       | Silhouette<br>Coefficient | Cost(WCV)   |  |
| 3 | 0.1094629765           | 0.6285714286 | 0.3891639937              | 26.54713578 |  |
| 4 | 0.06522631645          | 0.8952380952 | 0.3293147201              | 18.97369081 |  |
| 5 | 0.05115699768          | 0.6333333333 | 0.2566762988              | 24.65746639 |  |
| 6 | 0.09515500069          | 0.8761904762 | 0.2521570627              | 16.21849819 |  |
| 7 | 0.09860754013          | 0.9047619048 | 0.2241169827              | 16.1768276  |  |

Table 8: K-Means algorithm performance measures

|   |                        | K-Medoids    |                           |             |  |  |
|---|------------------------|--------------|---------------------------|-------------|--|--|
| К | Running Time (seconds) | Purity       | Silhouette<br>Coefficient | Cost(WCV)   |  |  |
| 3 | 0.5242869854           | 0.8857142857 | 0.453366338               | 20.45407492 |  |  |
| 4 | 1.214434862            | 0.9          | 0.380369821               | 18.58982332 |  |  |
| 5 | 1.275073051            | 0.8904761905 | 0.3184077598              | 16.81869792 |  |  |
| 6 | 1.224798679            | 0.8857142857 | 0.2760045103              | 16.08739767 |  |  |
| 7 | 1.615141869            | 0.8904761905 | 0.28157436                | 15.33522922 |  |  |

Table 9: K-Medoids algorithm performance measures



Figure 6: Comparative Performance Analysis between K-Means and K-Medoids using Different Performance Metrics

Dataset Name: R15 # Instances, n = 600 # Dimensions, d = 2 # Clusters, k = 15

|    | K-Means                |              |                           |             |  |
|----|------------------------|--------------|---------------------------|-------------|--|
| К  | Running Time (seconds) | Purity       | Silhouette<br>Coefficient | Cost(WCV)   |  |
| 13 | 0.1108675003           | 0.655        | 0.1826356701              | 44.93315682 |  |
| 14 | 0.249724865            | 0.7866666667 | 0.5171934676              | 21.94561627 |  |
| 15 | 0.1324393749           | 0.7533333333 | 0.436096949               | 28.74738045 |  |
| 16 | 0.1310503483           | 0.8366666667 | 0.5842438966              | 17.06936745 |  |
| 17 | 0.1312339306           | 0.7783333333 | 0.4495541247              | 25.13210186 |  |

Table 10: K-Means algorithm performance measures

|    |                        | K-Medoids    |                           |             |  |  |
|----|------------------------|--------------|---------------------------|-------------|--|--|
| К  | Running Time (seconds) | Purity       | Silhouette<br>Coefficient | Cost(WCV)   |  |  |
| 13 | 63.34089518            | 0.7333333333 | 0.3376819301              | 37.71232733 |  |  |
| 14 | 78.44403696            | 0.6266666667 | 0.3875919533              | 31.22423571 |  |  |
| 15 | 72.34407902            | 0.7266666667 | 0.3574381159              | 32.36411168 |  |  |
| 16 | 80.51552749            | 0.775        | 0.5018354502              | 23.20451135 |  |  |
| 17 | 91.86335468            | 0.7883333333 | 0.369095206               | 23.47529594 |  |  |

Table 11: K-Medoids algorithm performance measures



Figure 7: Comparative Performance Analysis between K-Means and K-Medoids using Different Performance Metrics

According to these bar charts and line charts, the K-means algorithm shows better runtime performance in different datasets but the K-medoids algorithm has better purity, silhouette coefficient. K-Medoids algorithm also reduces within-cluster-variation more than the K-Means algorithm. In small datasets typical PAM based K-Medoids algorithm shows better performance but in large datasets K-Means algorithm performs better. When the dataset contains outliers, the K-Means

algorithm is much more affected than the K-Medoids algorithm but K-Means takes less time than K-Medoids.

Random Cluster Representative Initialization Analysis: As we know K-Means algorithm used to initialize the cluster randomly and hence may result in different cluster and cluster leader representative for different runs in the same dataset. This random initialization may produce different results in different runs on those datasets where the clusters are not spherical but have some other shapes. For example, the output of K-Means algorithm, on "spiral" dataset on two different are shown here.



Figure 8: Visualization of the K-Means Algorithm on Spiral Dataset for two different runs

As we can see from the figure, different initialization of the cluster representative leads to different shape of the cluster as the shape of the cluster is not spherical in this dataset. So, the K-means algorithm does not perform better here. Density-based algorithms like DB-SCAN or OPTICS may perform better in these scenarios.

Conclusion: In this experiment, we have implemented two clustering algorithms named k-means and k-medoids algorithm and compared their performance in different datasets using different performance measures like purity, silhouette coefficient, running time and within-cluster variation. While K-Means shows better runtime performance than K-Medoids, the K-Medoids algorithm produces better clusters as it uses real objects as the cluster leaders rather than means of the objects of a cluster.