case study explanation

https://docs.google.com/document/d/1tK-y-dMpHeZ8IYXIwt1xV2WQZ1Fj0vo0NPa9NB0BbSE/edit?usp=sharing

Report Created by: Olaniyan Farouq Olayinka

Date: 23rd November 2024

TASK 1

Task 1 requires me to write a **python script** to process the files provided to me, and also to create a single dataset to perform three (3) analysis and also to generate three (3) outputs.

• The Python script file

Link:

https://drive.google.com/file/d/1ChunWyluezCvnTNFLUq3IV_cU9rtazhe/view?usp=sharing

The final dataset

Link: https://drive.google.com/file/d/1je1tlyW8i5xSW2p-5lK0LJxTtlmS7oOr/view?usp=sharing

• The text file containing the queries on the final dataset used to obtain the outlined analyses in the case study pdf file

Link: https://drive.google.com/file/d/1ZglaR6J0vIIav8S7wwfkojtXuoE19-2B/view?usp=sharing

Additionally I am attaching the three (3) analyses from my Postgres Database(attaching three(3) screenshots)

Number of hospital visits per day over the period

Number of patients attended to per doctor per month showing their names

The ratio of female to male patient visits per month.

TASK 2

Task 2 requires me to outline a high-level **architecture** to deploy and schedule the python script to run once a day with my **design** reading the data from an **RDBMS** and writing the resulting dataset to a **Data Warehouse**. The **architecture** would be based on **Azure cloud platform**.

Diagram:

Text:

```
On-Prem RDBMS

|
[Secure Connection: VPN Gateway / ExpressRoute]
|
Azure Data Factory (Orchestrator)
|
Azure Function (Python Script)
|
Azure Storage (Blob) -> Azure Synapse Analytics (Data Warehouse)
|
Azure Monitor (Error Handling & Monitoring)
```

Architecture Overview

 On-Prem RDBMS: I would connect the on-premises database to Azure using Azure VPN Gateway or ExpressRoute for secure data transfer.

2. Azure Services:

- Azure Data Factory (ADF): I would use ADF for orchestrating the ETL workflow, including triggering the Python script and scheduling its execution.
- Azure Storage (Blob): Then store intermediate data files (e.g., CSVs) for backup or staging data.
- Azure Functions: Deploy the Python script as an Azure Function for scalable and serverless execution.
- Azure SQL Database (Optional for staging): Although this is optional, I would temporarily stage data before writing to the final Data Warehouse.
- Azure Synapse Analytics (Data Warehouse): Finally, I store the final processed dataset for analysis and reporting.

3. Security and Monitoring:

- Azure Key Vault: This here securely stores database credentials and other sensitive information.
- **Azure Monitor**: I would use this to track the pipeline execution and logs for debugging and monitoring.

Workflow

For clarity, I would break down the process into stages for better understanding

- Data Extraction: As I stated earlier, I would use Azure Data Factory to connect to the on-prem RDBMS via Integration Runtime for secure and seamless access. Afterwards I can extract raw data into Blob Storage or pass it directly to the Azure Function.
- 2. **Data Processing: Azure Function** runs the **Python script**, processes the data, and writes the output to Blob Storage or Azure SQL Database.
- Data Loading: Azure Data Factory would also be used to move the processed dataset from Blob Storage or Azure SQL Database to Azure Synapse Analytics using the "COPY INTO" command.
- 4. **Scheduling**: Azure Data Factory has a built-in scheduler that would be used to trigger the entire workflow once daily.
- 5. **Error Handling and Monitoring**: A crucial part, this helps see the progress and to know what stops the process flow. To achieve this, I would configure **Azure Monitor** for logging and alerting in case of failures during the ETL process.

WAREHOUSE DESIGN(Addition)

	doctors		proces	sed_hospital_data	I		
column_name	data_type		column_name	data_type			column_name
id	text		id	text	•		id
name	text		patient_id	text			patient_id
created_at	timestamp without time zone	ļ	doctor_id	text		c	loctor_id
			created_at	timestamp without time zone		С	reated_at
			type	text		typ	oe
			id_doctor	text			
column_name	data_type		name	text			
id	text		created_at_doctor	timestamp without time zone			
name	text		id_patient	text			
created_at	timestamp without time zone		name_patient	text			
sex	text		created_at_patient	timestamp without time zone			
			sex	text			
			visit_date	date			
			month	text			
			Primary Key				
			Foreign Key				