Modelling Concurrent Systems Notes

Leon Lee

October 10, 2024

Contents

1	Introduction to Concurrent Systems
	1.1 Lecture 1 - Specification and Implementation
	1.2 Deadlocks
	1.3 Relations
	1.4 Reactive Systems
_	CCS
3	Congruence Closure
	3.1
	3.1.2 Showing Congruences
	3.2 Equational Logic

1 Introduction to Concurrent Systems

1.1 Lecture 1 - Specification and Implementation

The main topics that are covered in this course:

- Formalising specifications as well as implementations of concurrent systems
- Studying the criteria for deciding whether an implementation meets a specification
- Techniques for proving whether an implementation meets a specification

Both specifications and implementations can be represented by means of models of concurrency such as Labelled Transition Systems (LTSs) or Process Graphs.

Definition 1.1.1: Process Graphs and LTSs

A **process graph** is a triple (S, I, \rightarrow) , defined by the following:

- S is a set of **states**
- $I \in S$ is an initial state
- \rightarrow is a set of triples (s, a, t) with $s, t \in S$, and a an action drawn from a set Act

A Labelled Transition System(LTS) is a process graph without the initial state (but sometimes LTS is used as a synonym for process graph i.e. with the initial state)

Sometimes we will use process graphs with a fourth component $\checkmark \subseteq S$ indicating the final states of the process: those in the system can terminate successfully

Specifications and implementations can not only be represented by LTSs or other models of concurrency, but also by **process algebraic expressions**, where complex processes are built up from constants for atomic actions using operators for *sequential*, *alternative*, and *parallel composition*.

The most popular process algebraic languages from literature are:

- CCS: the Calculus of Communicating Systems
- CSP: Communicating Sequential Processes
- ACP: the Algebra of Communicating Processing

We will be using ACP, focusing on the partially synchronous parallel composition operator

Definition 1.1.2: ACP

The syntax of **ACP**, the **Algebra of Communicating Processes** features the operations

- 1. ϵ : Successful termination (only in the optional extension ACP_{ϵ})
- 2. δ : Deadlock
- 3. a: Action constant for each action a
- 4. $P \cdot Q$: Sequential Composition
- 5. P + Q: Summation, Choice, or Alternative Composition
- 6. P||Q: Parallel Composition
- 7. $\partial_H(P)$: Restriction, or Encapsulation for each set of visible actions H
- 8. $\tau_I(P)$: **Abstraction** for each set of visible actions I (only in the optional extension ACT_{τ})

Note: There is also left and right parallel operators, P

The atomic actions of ACP consist of all a, b, c etc from a given set A of visible actions, and one special action τ , that is meant to be internal and invisible to the outside world.

For each application, a partial **communication function** $\gamma: A \times A \to A$ is chosen that tells for each two visible actions a and b whether they synchronise (namely if γ is defined), and if so, what is result of their synchronisation: $\gamma(a,b)$. The communication function is required to be commutative and associative. The invisible action cannot take part in synchronisations.

Definition 1.1.3: ACP in terms of Process Graphs

Below is the **ACP** operations in terms of process graphs extended with a predicate \checkmark that signals successful termination

- ϵ is the graph with one state and no transition. This one state is the initial state, and is marked with \checkmark
- δ is the graph with one state and no transitions. This one state is the initial state. It is not maked as terminating.
- a is a graph with two states (and initial and a final one) and one transition between them, labelled a. The final state is marked with \checkmark
- $G \cdot H$ is the process that first performs G, and upon successful termination of G proceed with H.
- G+H is obtained by taking the union of copies of G and H with disjoint sets of states, and adding a fresh state **root** which will be the initial state of G+H. For each transition $I_G \xrightarrow{a} s$ in G, where I_G denotes the initial state of G, there will be an extra transition **root** $\xrightarrow{a} s$, and likewise, for each transition $I_H \xrightarrow{a} s$ in H, where I_H denotes the initial state of h, there will be an extra transition **root** $\xrightarrow{a} s$ **root** is labelled with \checkmark if either I_G or I_H is.
- G||H is obtained by taking the Cartesian product of the states of G and H; that is, the states of G|H are pairs (s,t) with s a state from G and t a state from H. The initial state of G||H is the pair of initial states of G and H. A state (s,t) is labelled \checkmark iff both s and t are labelled \checkmark . The transitions are
 - $-(s,t) \xrightarrow{a} (s',t)$ whenever $s \xrightarrow{a} s'$ is a transition in G
 - $-(s,t) \xrightarrow{a} (s,t')$ whenever $t \xrightarrow{a} t'$ is a transition in H
 - $-(s,t) \xrightarrow{c} (s',t')$ whenever $s \xrightarrow{a} s$ is a transition in G, and $t \xrightarrow{b} t'$ is a transition in H, and $\gamma(a,b) = c$

Intuitively, G||H allows all possible interleavings of actions from G and actions from H. In addition, it enables actions to synchronise with their communication partners.

- $\partial_H(G)$ is just G, but with all actions in G omitted. It is used to remove the remnants of unsuccessful communication, so that the synchronisation that is enabled by parallel composition, is enforced.
- $\tau_I(G)$ is just G, but with all actions in I renamed into τ .

These semantics are of the **denotional** kind. Here "denotional" entails that each constant denotes a process graph (up to **isomorphism**) and each ACP operator denotes an operation on process graphs (creating a new graph out of one or two argument graphs)

1.2 Deadlocks

Deadlock means that a process isn't "terminated" but it cannot go further $ACP-\epsilon$ is an alternative modele where non-finishing states can also terminate

1.3 Relations

Definition 1.3.1: Equivalence Relation

A binary relation \sim on a set D is an **equivalence relation** if it is

• Reflexive: $p \sim p$ for all processes $p \in D$

• Symmetric: If $p \sim q$ then $q \sim p$

• Transitive: If $p \sim q$ and $q \sim r$ then $p \sim r$

Definition 1.3.2: Equivalence Class

If \sim is an equivalence relation on D, and p is in D, then $[p]_{\sim}$ denotes the set of all processes in D that are equivalent to p. Such a set is called an **equivalent class**

Equivalence relations that split a set into more sets are called **finer** or **more discriminating**, and equivalence relations that split a set into less sets are called **coarser** or **more identifying**. The finest relation is e - every element has its own class, and the coarsest relation is the universal equivalence - everything is equivalent to itself

Definition 1.3.3: Equivalence Relation

A binary relation on a set D is a **preorder** (\sqsubseteq) if it is

• Reflexive: $p \sqsubseteq p$ for all processes $p \in D$

• Transitive: If $p \sqsubseteq q$ and $q \sqsubseteq r$ then $p \sqsubseteq r$

1.4 Reactive Systems

2 CCS

3 Congruence Closure

3.1

Definition 3.1.1: Congruence Closure

For an equivalence \sim , we have \sim^c , its congruence closure where

$$P \sim^c Q \implies \forall C[], C[P] \sim C[Q]$$

3.1.2 Showing Congruences

Example: Show that $=_{PT}$ is a congruence for ∂_H

$$P =_{PT} Q \implies \partial_H(P) =_{PT} \partial_H(Q)$$

WTS

$$PT(P) = PT(Q) \implies PT(\partial_H(P)) = PT(\partial_H(Q))$$

 $PT(\partial_H(P)) = \{ \sigma \in PT(P) \mid \sigma \text{ does not contain any action from } H \}$

We can just replace PT(P) with PT(Q) and the implication follows automatically **Example**: Show that $=_{CT}$ is **not** a congruence for ∂_H

For P = ab + ac, we have $CT(\partial_b(P)) = a + ac$

For Q = a(b+c), we have $CT(\partial_b(Q)) = ac$

3.2 Equational Logic

Equations - of the form P = Q

Equational logic - comprised of axioms, and rules

Rules use the rules listed below

• Reflexive: P = P

 \bullet Symmetric: P=Q and Q=P

• Transitive: P = Q and Q = R implies P = R

• Substitution: P = P + P implies a.b = a.b + a.b

• Congruence: $P = Q \implies C[P] = C[Q]$

 $Ax \vdash P = Q$ if P = Q follows from the ...

Theorem 3.2.1

$$P =_B Q \iff Ax \vdash P = Q$$

You want proofs to be sound and complete Operations of the + in CCS

• P + Q = Q + P

• (P+Q) + R = R + (Q+R)

• P+P=P

• P + 0 = P

Operations of P|Q:

$$P = \sum_{i=1}^{k} a_i P_i = a_1 P_1 + a_2 P_2 + \dots + a_k P_k$$

$$Q = \sum_{j=1}^{l} b_j Q_j$$

Theorem 3.2.2: Expansion Law

$$P|Q = \sum_{i=1}^{k} a_i \cdot (P_i|Q) + \sum_{j=1}^{l} b_j \cdot (P|Q_j) + \sum_{i=1}^{k} \sum_{j=1}^{l} \tau(P_i|Q_j)$$

$$\gamma: A \times A \to (A \uplus \{\delta\})$$

 $\gamma(a_i, b_j) = \delta$ if they do not communicate

Definition 3.2.3: Head normal form

Something is in head normal form if it can be written in the form

$$P = \sum a_i . P_i$$

Example: We can write

$$(a.b|c) = a(b|c) + c(a.b)$$
$$= a(bc + cb) + c(a.b)$$

Example: $\partial_H(P+Q) = \partial_H(P) + \partial_H(Q)$