Analisi Matematica L'insieme numerico \mathbb{R}

Andrea Malvezzi 23 settembre 2024

1 $\sqrt{2}$ è rappresentabile come frazione $(\sqrt{2} \in \mathbb{Q})$?

Per rispondere alla domanda presentata, procederemo con una dimostrazione per assurdo.

Assumiamo che $\sqrt{2} \in \mathbb{Q}$. Dunque:

- \exists m, n $\in \mathbb{N}|\sqrt{2} = m/n$, m.c.d. (m, n) = 1
- $\sqrt{2} = m/n$
- $2 = m^2/n?^2$
- $m^2 = 2n^2$

 $2n^2$ è pari (ha 2 tra i divisori), perciò anche m^2 è pari. Quindi:

- $\exists m_1 \in \mathbb{N} | m_1 = 2n$
- $(2m_1)^2 = 2n^2$
- $2m_1^2 = n^2$

ma...

- n^2 è pari, perciò n è pari;
- essendo n ed m pari, viene meno la premessa iniziale per cui m e n non hanno divisori in comune.

Ed ecco dimostrato **per assurdo** che $\sqrt{2} \notin \mathbb{Q}!$

2 Differenze tra \mathbb{Q} ed \mathbb{R}

Anzitutto occorre specificare che \mathbb{R} nasce come completamento di \mathbb{Q} . Questo significa che il primo serve a riempire i buchi - i **vuoti** - lasciati dal secondo nel piano.

Questo significa che in \mathbb{R} non ci sono spazi vuoti ed è quindi un insieme che nutre della proprietà di **continuità**, anche detta di **completezza**.

2.1 Formalizzazione della proprietà di continuità

Assumendo l'esistenza di \mathbb{R} , definiamo:

• $\emptyset \neq A \subseteq \mathbb{R}$

Ora, per studiare più in dettaglio i sottoinsiemi di R, definiamo tre casi:

1. un numero appartenente ad \mathbb{R} si dice **maggiorante** di un sottoinsieme A se:

 $\forall a \in A, M \geqslant a, M \in \mathbb{R}.$

Se A ammette un maggiorante all'interno dell'insieme stesso, è detto superiormente limitato.

- 2. lo stesso vale per $M \leq a$.
- 3. Se A ammette sia maggiorante che **minorante** è detto **limitato**.

Ovviamente, se A ha un maggiorante o un minorante allora ne ha infiniti. Inoltre nel caso in cui questi siano contenuti nell'insieme stesso prendono il nome di \mathbf{MAX} e di \mathbf{MIN} .

3 La proprietà completezza di $\mathbb R$

 $\forall \emptyset \neq A \subseteq \mathbb{R}$:

- 1. Se A è superiormente limitato allora $\exists \min M_0(A) =: \sup A$, dove M_0 è il minimo maggiorante;
- 2. Se A è inferiormente limitato allora $\exists \max M_0(A) =: \inf A$, dove M_0 è il massimo minorante;

Infine, per definizione, il sup e min di un insieme non limitato in uno o in entrambi gli estremi è pari ad infinito (con il rispettivo segno).