Math 311W Worksheet for April 13-14

Jacob Harkins jah6863@psu.edu

May 20, 2024

Exercise 1) Let $A = \{1,2,3,4,5\}$. Consider the collection of all subsets of A, part of A, $\wp(A)$,(It is not necessary to list all of them explicitly, but it might help. There are 32 subsets.) and on it consider the relation

$$XRY \iff X \cap Y \neq \emptyset$$

Which of the four properties does this relation have or not have? Explain.

The powerset is $:\mathcal{P}(A) = \{\{1, 3, 5\}, \{1, 4\}, \{2, 3, 4\}, \{2, 3\}, \{4, 5\}, \{1\}, \{3, 4\}, \{1, 2, 3, 4, 5\}, \{2, 4\}, \{2, 3, 5\}, \{3, 5\}, \{3, 4, 5\}, \{1, 2, 3\}, \{1, 3\}, \{1, 3, 4\}, \{1, 2, 4, 5\}, \{2, 3, 4, 5\}, \{1, 2, 5\}, \{1, 5\}, \{1, 4, 5\}, \{1, 2, 3, 4\}, \{5\}, \{4\}, \{2\}, \{1, 3, 4, 5\}, \{1, 2\}, \{1, 2, 4\}, \{1, 2, 3, 5\}, \{2, 4, 5\}, \{2, 5\}, \{3\}, \{\}\}$

The relation is not reflexive, because $\emptyset \not \mathbb{R} \emptyset$

This relation is symmetric,

Assume
$$XRY$$
 $\iff X \cap Y \neq \emptyset$
 $\iff Y \cap X \neq \emptyset$
 $\iff YRX$

This relation is not Transitive,

Let
$$X = \{1\}, Y = \{2\}, Z = \{2, 3\}$$

 $YRZ \Rightarrow YRX$

This relation is not antisymmetric, consider $X = \{1, 2\}Y = \{2, 3\}$

$$XRY \wedge YRX$$
$$X \neq Y$$

Exercise 2) Let U be a universal set. Define the following relation between the subsets of U:

 $ARB \iff B$ has at least as many elements as A

 $|A| \leq |B| \iff B$ has at least as many elements as A

Which of the four properties does this relation have or does not have? Explain.

- This relation is reflexive, for any A, |A| = |A| Hence, ARA;
- It is not symmetric, Let $A = \{1\}, B = \{1, 2\}$ then $|A| \leq |B|, |B| \nleq |A|$;

- transitive, If $|A| \le |C| \le |B| \iff |A| \le |B|$
- It is not antisymmetric, If $A = \{1\}, B = \{2\}$ then $(ARB\ BRA) \land A \neq B$

Exercise 3) Consider the function $f: A \to B$, where $A = \{\text{all multiples of 2}\}$ and $B = \{\text{all multiples of 10}\}$ be defined as f(n) = 5n. Prove that f is one-to-one and onto.

One-to-One:

Let $x, y \in A$ with f(x) = f(y)

$$f(x) = 5x, \ f(y) = 5y$$
$$\implies x = y$$

Onto:

Let $y \in B$

$$y = 10n$$

$$\Longrightarrow f(2n) = y$$

$$2n \in A \implies f \text{ is one-to-one}$$

Exercise 4) There exists a unique prime number of the form $n^3 - 1$.

$$n^{3} - 1$$

$$= (n - 1)(n^{2} + n + 1)$$

$$\Rightarrow (n - 1) = 1 \lor (n^{2} + n + 1) = 1$$

$$\Rightarrow (n - 1) = 1$$

$$\Rightarrow n = 2$$

$$\Rightarrow 2^{3} - 1 = 7$$