Exercise II: Random walk

-Task I: implementation

- Generate a function that produces a random walk in one dimension *x*:
 - \circ For step N = 0, Start at x = 0
 - o Draw a number r from a uniform distribution between 0 and 1
 - o If $r \ge 0.5$ add 1 to x, else add -1 to x
- Organize the output such that the full random walk is written out.

-Task II: simulation and evaluation

- Run n = 10000 random walks of N = 20000 steps each (that should only take ca. 2 minutes calculation time)
- Plot histograms of the distribution of x for all n = 10000 random walks for N = 100, 1000, 10000 and 20000.
- For N = 100, 1000, 10000 and 20000, check the convergence of all walks check in dependence of n for
 - o the first moment, i.e. the mean $\langle x \rangle$,
 - o the second moment, i.e. the variance $\langle (x \langle x \rangle)^2 \rangle$ and
 - o the third moment, giving the skewness $\langle (x \langle x \rangle)^3 \rangle$.

-Task III: random walks and the diffusion equation (THEORY EXERCISE)

Usually, random walks are not rationalized in the form of number of steps N, but in form of the time increment ("step") Δt an individual step takes and the walk time $t = N \Delta t$.

In the limit of long length and time scales (i.e., a large number of steps), the evolution of random walks is described by the *diffusion equation*

$$\frac{\partial P}{\partial t} = D \frac{\partial^2 P}{\partial x^2}$$

with the evolving probability density P(x, t) to find the "walker" at a x of choice at time t and the diffusion constant D.

Using the probability density of a random walk $P(x) = (2\pi N)^{-\frac{1}{2}} \exp\left(-\frac{x^2}{2N}\right)$ (see the lecture / the lecture script), show that a random walk is a solution to the diffusion equation with $D = x_0^2/2\Delta t$ with step size x_0^2 . *Hint*: bear in mind that P(x) then turns into a time-dependent distribution P(x,t).