Stationary Stochastic Processes

Lecture 2 - Gaussian processes

Department of Statistics Stockholm University

Department of Computer and Information Science Linköping University

Lecture overview

- Spectral density in discrete time
- Periodogram and Whittle likelihood
- Convolutions and filters

Gaussian processes - Wiener process

Definition

A Gaussian process (GP) is a collection of random variables, any finite number of which have a multivariate Gaussian distribution.

- $X(t) \sim GP(m(t), r(t, s))$ means:
 - \triangleright $X(t) \sim N((m(t), r(t, t))$
 - $ightharpoonup \operatorname{Cov}(X(t), X(s)) = r(t, s)$
- Wiener process (Brownian motion). GP with X(0) = 0
 - ▶ Independent increments $X(t_4) X(t_3)$ indep of $X(t_2) X(t_1)$ for all $0 < t_1 < t_2 < t_3 < t_4$
 - $X(t+h) X(t) \sim N(0, \sigma^2 h)$
- Properties:
 - \rightarrow $X(t) \sim N(0, \sigma^2 t)$
 - $r(s, t) = \sigma^2 \min(s, t)$ [not stationary]
 - Continuous, but nowhere differentiable.
 - Let W(t) be standard $(\sigma = 1)$ Wiener. Then $X(t) = e^{-\alpha t} W(e^{2\alpha t})$ is an Ornstein-Uhlenbeck process.

Spectral density in discrete time

- Time series: $\{X_t, t \in \mathbb{Z}\}$
- For every covariance function $r(\tau)$ of a stationary sequence $\{X_t, t \in \mathbb{Z}\}$ there is a positive and integrable R(f) such that

$$r(\tau) = \int_{-1/2+0}^{1/2} e^{i2\pi f \tau} R(f) df$$

An absolutely summable function $r(\tau)$ $(\sum |r(\tau)| < \infty)$ is a covariance function if

$$R(f) = \sum_{\tau=-\infty}^{\infty} e^{-i2\pi f \tau} r(\tau)$$

- is symmetric, non-negative, and integrable.
- Discrete time $(\Delta_t = 1)$: $f \in (-1/2, 1/2]$. Enough since

$$\cos\left((2\pi f + k\pi)t\right) = \begin{cases} \cos(2\pi f t) & \textit{k, t integers with k even} \\ \cos\left((\pi - 2\pi f)t\right) & \textit{k, t integers with k odd} \end{cases}$$

so variation at angular frequencies $\omega = 2\pi f$ higher than π (f > 1/2) cannot be distinguished from corresponding $\omega \in (-\pi, \pi]$ $(f \in (-1/2, 1/2])$. Aliasing.

Aliasing

- **Sampling** a continous time process at Δ_t distance.
- Nyquist frequency: $f_n = 1/(2\Delta_t)$. Highest detectable freq.
- Under-sampling (Fig 4.8 in LRS).

Discrete Fourier Transform - a statistical view

Fitting time trends with polynomial basis functions

$$x_t = \beta_0 + \beta_1 t + \beta_2 t^2 + \beta_3 t^3 + \varepsilon$$

Fitting time trends with periodic basis functions

$$x_t = \beta_0 + \beta_1 \cos(0.1t) + \beta_2 \cos(t) + \beta_3 \cos(2t) + \varepsilon$$

Discrete Fourier Transform - a statistical view

Regress on trigonometric bases $\cos(2\pi f_k t)$ and $\sin(2\pi f_k t)$ for all Fourier frequencies

$$f_k \in \{k/n \text{ for } k = -\lceil n/2 \rceil + 1, \dots, \lfloor n/2 \rfloor \}$$

- $\cos(2\pi f_k t)$ and $\sin(2\pi f_k t)$ are orthogonal functions/vectors.
- Regress on each basis separately. Each regression costs O(n):

$$\hat{\beta}_k = \sum_{t=1}^n \cos(2\pi f_k t) x_t$$

- Total cost is $O(n^2)$.
- Fast Fourier Transform: divide-and-conquer: $O(n \log n)$.

Periodogram

DFT of time series x_t at Fourier frequencies f_k

$$Z_n(f_k) = \sum_{t=0}^{n-1} x_t e^{-i2\pi f_k t}$$

- Time series with n observations in time domain ⇒ DFT at n frequencies.
- $Z_n(f_k)$ is complex valued (regression coef for cos and sin).
- How much variation is captured at frequency f_k ? Periodogram

$$I(f_k) = \frac{1}{n} \left| Z_n(f_k) \right|^2$$

Properties of periodogram and Whittle likelihood

'Periodogram

$$I(f_k) = \frac{1}{n} \left| Z_n(f_k) \right|^2$$

- $I(f_k)$ is an asymptotically unbiased but inconsistent estimate of $R(f_k)$. Smoothing etc.
- **Asympotically** as $n \to \infty$

$$I(f_k) \stackrel{indep}{\sim} \text{Exponential}(R(f_k))$$

■ The Whittle (log-)likelihood uses this asymptotic result

$$\ell(\theta) = \sum_{\mathsf{all}f_k} \left(\log R_{\theta}(f_k) + \frac{I(f_k)}{R_{\theta}(f_k)} \right)$$

where $R_{\theta}(f_k)$ is spectral density parametrized by θ .

Gaussian process - squared exponential covariance

Mattias Villani

Stationary Processes

Gaussian processes

Definition

A Gaussian process (GP) is a collection of random variables, any finite number of which have a multivariate Gaussian distribution.

- Linear combinations of Gaussians are Gaussian.
- Integration of GPs gives Gaussian variables.
- Differentiation of GPs gives new GPs.
 - Finite differences (X(t+h)-X(t))/h are Gaussian.
 - ▶ Limits of linear combinations are Gaussian

$$X'(t) = \lim_{h \to 0} \frac{X(t+h) - X(t)}{h}$$

► Integrals are also Gaussian

$$\int_{0}^{1} X(t)dt = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} X\left(\frac{k}{n}\right)$$

Cramér's representation of stationary processes

Convergence in quadratic mean defines the infinite sum

$$X(t) = A_0 + \sum_{k=1}^{\infty} A_k \cos(2\pi f_k t + \phi_k)$$

Continuum of frequencies

$$X(t) = \int_{-\infty}^{\infty} e^{i2\pi f t} dZ(f)$$

where Z(t) is an random complex-valued non-decreasing spectal distribution function with orthogonal increments.

- Stochastic integral (enough to define it via q.m. convergence.).
- Cramérs representation of any stationary process.

Convolutions

Convolution (filtering) using impulse reponse function h(u)

$$Y(t) = \int_{-\infty}^{\infty} h(u)X(t-u)du$$

Discrete time linear filter

$$Y_t = \sum_{u = -\infty}^{\infty} h(u) X_{t-u}$$

Impulse reponse: response to a 'unit blip at time t', $X(t) = \delta_0(t)$,

$$Y(t) = \int_{-\infty}^{\infty} h(u)X(t-u)du = h(t)$$

Frequency function of the filter h(t)

$$H(f) = \int_{-\infty}^{\infty} e^{-i2\pi f u} h(u) du$$

$$H(f) = \sum_{u = -\infty}^{\infty} e^{-i2\pi f u} h(u) du$$

Convolutions

Frequency function of the filter h(t)

$$H(f) = \int_{-\infty}^{\infty} e^{-i2\pi f u} h(u) du$$

$$H(f) = \sum_{u = -\infty}^{\infty} e^{-i2\pi f u} h(u) du$$

■ Spectral density of a linear filter

$$Y(t) = \int_{-\infty}^{\infty} h(u)X(t-u)du$$

$$R_Y(f) = |H(f)|^2 R_X(f)$$

MA models

$$Y_t = \sum_{u=0}^{\infty} \theta_u \epsilon_{t-u}$$

so $h(u) = \theta_u$ and $X_t = \epsilon_t$ is white noise with $R_{\epsilon}(f) = c$ for -1/2 > f < 1/2.