6.006- Introduction to Algorithms

Courtesy of MIT Press. Used with permission.

Lecture 4

Menu

- Priority Queues
- Heaps
- Heapsort

Priority Queue

A data structure implementing a set *S* of elements, each associated with a key, supporting the following operations:

```
insert(S, x): insert element x into set S
```

 $\max(S)$: return element of S with largest key

 $extract_{max}(S)$: return element of S with largest key and

part of heap_sort() function remove it from S

increase_key(S, x, k): increase the value of element x's key to new value k (assumed to be as large as current value)

Heap

- Implementation of a priority queue
- An array, visualized as a nearly complete binary tree
- Max Heap Property: The key of a node is \geq than the keys of its children

(Min Heap defined analogously)

Heap as a Tree

root of tree: first element in the array, corresponding to i = 1

parent(i) = i/2: returns index of node's parent

left(i)=2i: returns index of node's left child

right(i)=2i+1: returns index of node's right child

No pointers required! Height of a binary heap is O(lg n)

Heap Operations

build max heap: produce a max-heap from an unordered

array

max heapify: correct a single violation of the heap

property in a subtree at its root

insert, extract max, heapsort

Max_heapify

- Assume that the trees rooted at left(i) and right(i) are max-heaps
- If element A[i] violates the max-heap property, correct violation by "trickling" element A[i] down the tree, making the subtree rooted at index i a max-heap

Max_heapify (Example)

Node 10 is the left child of node 5 but is drawn to the right for convenience

Max_heapify (Example)

Exchange A[2] with A[4]
Call MAX_HEAPIFY(A,4)
because max_heap property
is violated

Max_heapify (Example)

Exchange A[4] with A[9] No more calls

Time=? $O(\log n)$

Max_Heapify Pseudocode

```
l = left(i)
r = right(i)
if (l \le \text{heap-size}(A) \text{ and } A[l] > A[i])
   then largest = l else largest = i
if (r \le \text{heap-size}(A) \text{ and } A[r] > A[\text{largest}])
   then largest = r
if largest \neq i
   then exchange A[i] and A[largest]
          Max Heapify(A, largest)
```

Build_Max_Heap(A)

Converts A[1...n] to a max heap

Why start at n/2?

Because elements A[n/2 + 1 ... n] are all leaves of the tree 2i > n, for i > n/2 + 1

Time=? $O(n \log n)$ via simple analysis

Build_Max_Heap(A) Analysis

Converts A[1...n] to a max heap

```
Build_Max_Heap(A):
for i=n/2 downto 1
do Max Heapify(A, i)
```


Observe however that Max_Heapify takes O(1) for time for nodes that are one level above the leaves, and in general, O(l) for the nodes that are l levels above the leaves. We have n/4 nodes with level 1, n/8 with level 2, and so on till we have one root node that is lg n levels above the leaves.

Build_Max_Heap(A) Analysis

Converts A[1...n] to a max heap

Total amount of work in the for loop can be summed as:

$$n/4 (1 c) + n/8 (2 c) + n/16 (3 c) + ... + 1 (lg n c)$$

Setting $n/4 = 2^k$ and simplifying we get:

c
$$2^k(1/2^0 + 2/2^1 + 3/2^2 + ... (k+1)/2^k)$$

The term is brackets is bounded by a constant!

This means that Build_Max⁴_Heap is O(n)

Build-Max-Heap Demo

Build-Max-Heap Demo

MAX-HEAPIFY (A,2) Swap A[2] and A[5] Swap A[5] and A[10]

MAX-HEAPIFY (A,1) Swap A[1] with A[2] Swap A[2] with A[4] Swap A[4] with A[9]

Build-Max-Heap

A 4 1 3 2 16 9 10 14 8 7

Sorting Strategy:

1. Build Max Heap from unordered array;

- 1. Build Max Heap from unordered array;
- 2. Find maximum element A[1];
- 3. Swap elements A[n] and A[1]: now max element is at the end of the array!

- 1. Build Max Heap from unordered array;
- 2. Find maximum element A[1];
- 3. Swap elements A[n] and A[1]: now max element is at the end of the array!
- 4. Discard node *n* from heap (by decrementing heap-size variable)

- 1. Build Max Heap from unordered array;
- 2. Find maximum element A[1];
- 3. Swap elements A[n] and A[1]: now max element is at the end of the array!
- 4. Discard node *n* from heap (by decrementing heap-size variable)
- 5. New root may violate max heap property, but its children are max heaps. Run max_heapify to fix this.

- 1. Build Max Heap from unordered array;
- 2. Find maximum element A[1];
- 3. Swap elements A[n] and A[1]: now max element is at the end of the array!
- 4. Discard node *n* from heap (by decrementing heap-size variable)
- 5. New root may violate max heap property, but its children are max heaps. Run max_heapify to fix this.
- 6. Go to Step 2 unless heap is empty.

Running time:

after n iterations the Heap is empty every iteration involves a swap and a max_heapify operation; hence it takes $O(\log n)$ time

Overall $O(n \log n)$

MIT OpenCourseWare http://ocw.mit.edu

6.006 Introduction to Algorithms Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.