An algorithmic approach to the random spanning forests

Riccardo Michielan 15 ottobre 2020

Indice

1 Algoritmo di Wilson

2 Radici della RSF

3 Partizioni loop-erased

$$\mathcal{G} = (\mathcal{X}, \mathcal{E}, w)$$
, grafo pesato

$$\mathcal{G} = (\mathcal{X}, \mathcal{E}, w)$$
, grafo pesato

Foresta ricoprente, sottografo di $\mathcal G$ con insieme dei nodi uguale ad $\mathcal X$ e senza cicli.

$$\mathcal{G} = (\mathcal{X}, \mathcal{E}, w)$$
, grafo pesato

Foresta ricoprente, sottografo di \mathcal{G} con insieme dei nodi uguale ad \mathcal{X} e senza cicli.

Con **radici** se per ogni albero di ϕ viene scelto un nodo. $\rho(\phi)$ insieme delle radici

$$\mathcal{G} = (\mathcal{X}, \mathcal{E}, w)$$
, grafo pesato

Foresta ricoprente, sottografo di \mathcal{G} con insieme dei nodi uguale ad \mathcal{X} e senza cicli.

Con **radici** se per ogni albero di ϕ viene scelto un nodo. $\rho(\phi)$ insieme delle radici

 $\ensuremath{\mathcal{F}}$ insieme di tutte le foreste ricoprenti con radici.

Su $\mathcal F$ introduciamo una misura di probabilità. Sia $\phi \in \mathcal F$

Su $\mathcal F$ introduciamo una misura di probabilità. Sia $\phi \in \mathcal F$

Misura standard di ϕ

Sia q > 0.

La **misura standard** di ϕ è

$$w_q(\phi) := q^{|\rho(\phi)|} \prod_{e \in \phi} w(e).$$

Su $\mathcal F$ introduciamo una misura di probabilità. Sia $\phi \in \mathcal F$

Misura standard di ϕ

Sia q > 0.

La **misura standard** di ϕ è

$$w_q(\phi) := q^{|\rho(\phi)|} \prod_{e \in \phi} w(e).$$

Sia $Z(q) := \sum_{\phi \in \mathcal{F}} w_q(\phi)$. La **probabilità standard** di ϕ è

$$\nu_q(\phi) := \frac{w_q(\phi)}{Z(q)}.$$

Su $\mathcal F$ introduciamo una misura di probabilità. Sia $\phi \in \mathcal F$

Misura generalizzata di ϕ

Siano $Q = \{q(x)\}_{x \in \mathcal{X}}, \ S := \{x : q(x) = \infty\}.$

La **misura generalizzata** di ϕ è

$$w_Q(\phi) := \prod_{x \in \rho(\phi) \setminus S} q(x) \prod_{e \in \phi} w(e) 1_{\{S \subset \rho(\phi)\}}$$

Sia $Z(Q) := \sum_{\phi \in \mathcal{F}} w_Q(\phi)$. La probabilità generalizzata di ϕ è

$$\nu_Q(\phi) := \frac{w_Q(\phi)}{Z(Q)}.$$

Su $\mathcal F$ introduciamo una misura di probabilità. Sia $\phi \in \mathcal F$

Misura generalizzata di ϕ

Siano $Q = \{q(x)\}_{x \in \mathcal{X}}, \ S := \{x : q(x) = \infty\}.$

La **misura generalizzata** di ϕ è

$$w_Q(\phi) := \prod_{x \in \rho(\phi) \setminus S} q(x) \prod_{e \in \phi} w(e) \, 1_{\{S \subset \rho(\phi)\}}$$

Sia $Z(Q) := \sum_{\phi \in \mathcal{F}} w_Q(\phi)$. La probabilità generalizzata di ϕ è

$$\nu_Q(\phi) := \frac{w_Q(\phi)}{Z(Q)}.$$

Una foresta aleatoria ricoprente (RSF) è una v.a. Φ_q (o Φ_Q) associata alla probabilità ν_q (o ν_Q).

Obiettivo: campionare una RSF \longrightarrow Algoritmo di Wilson

Obiettivo: campionare una RSF \longrightarrow Algoritmo di Wilson

$$\mathcal{G} = (\mathcal{X}, \mathcal{E}, w)$$
 finito. Associamo processo X Markov, generatore

$$Lf(x) = \sum_{y \in \mathcal{X}} w(x, y)[f(y) - f(x)]$$

Obiettivo: campionare una RSF \longrightarrow Algoritmo di Wilson

 $\mathcal{G} = (\mathcal{X}, \mathcal{E}, w)$ finito. Associamo processo X Markov, generatore

$$Lf(x) = \sum_{y \in \mathcal{X}} w(x, y)[f(y) - f(x)]$$

 $\overline{\mathcal{X}}:=\mathcal{X}\cup\{\Delta\}$ (assorbente). \overline{X} processo Markov su $\overline{\mathcal{X}}$, generatore

$$\mathcal{L}f(x) = \begin{cases} Lf(x) + q(x)[f(\Delta) - f(x)], & x \neq \Delta \\ 0, & x = \Delta \end{cases}$$

Obiettivo: campionare una RSF \longrightarrow Algoritmo di Wilson

 $\mathcal{G} = (\mathcal{X}, \mathcal{E}, w)$ finito. Associamo processo X Markov, generatore

$$Lf(x) = \sum_{y \in \mathcal{X}} w(x, y)[f(y) - f(x)]$$

 $\overline{\mathcal{X}}:=\mathcal{X}\cup\{\Delta\}$ (assorbente). \overline{X} processo Markov su $\overline{\mathcal{X}}$, generatore

$$\mathcal{L}f(x) = \begin{cases} Lf(x) + q(x)[f(\Delta) - f(x)], & x \neq \Delta \\ 0, & x = \Delta \end{cases}$$

Fissati $x_0 \in \overline{\mathcal{X}}, B \subset \overline{\mathcal{X}}$.

Una traiettoria loop-erased Γ_B , da x_0 a B, si ottiene

- **1** facendo partire \overline{X} in x_0 , fino a raggiungere B,
- 2 cancellando i loop che appaiono.

Definiamo l'algoritmo di Wilson \mathcal{W} :

Definiamo l'algoritmo di Wilson W:

1 eseguiamo un traiettoria loop-erased Γ_{Δ} , partendo da un punto $x_1 \in \mathcal{X}$ qualsiasi;

Definiamo l'algoritmo di Wilson W:

- **1** eseguiamo un traiettoria loop-erased Γ_{Δ} , partendo da un punto $x_1 \in \mathcal{X}$ qualsiasi;
- 2 eseguiamo ricorsivamente traiettorie loop-erased Γ_{V_n} , con V_n insieme dei punti percorsi dalle traiettorie precedenti, partendo da punti $x_n \in \mathcal{X} \setminus V_n$ qualsiasi;

Definiamo l'algoritmo di Wilson \mathcal{W} :

- **1** eseguiamo un traiettoria loop-erased Γ_{Δ} , partendo da un punto $x_1 \in \mathcal{X}$ qualsiasi;
- 2 eseguiamo ricorsivamente traiettorie loop-erased Γ_{V_n} , con V_n insieme dei punti percorsi dalle traiettorie precedenti, partendo da punti $x_n \in \mathcal{X} \setminus V_n$ qualsiasi;
- 3 iteriamo il procedimento finché $\overline{\mathcal{X}}$ non è interamente ricoperto.

Definiamo l'algoritmo di Wilson \mathcal{W} :

- **1** eseguiamo un traiettoria loop-erased Γ_{Δ} , partendo da un punto $x_1 \in \mathcal{X}$ qualsiasi;
- 2 eseguiamo ricorsivamente traiettorie loop-erased Γ_{V_n} , con V_n insieme dei punti percorsi dalle traiettorie precedenti, partendo da punti $x_n \in \mathcal{X} \setminus V_n$ qualsiasi;
- 3 iteriamo il procedimento finché $\overline{\mathcal{X}}$ non è interamente ricoperto.

Output dell'algoritmo = albero ricoprente (con radice Δ) su $\overline{\mathcal{X}}.$

Proposizione

Fissato τ albero ricoprente con radice Δ ,

$$\mathbb{P}(\mathcal{W} = \tau) = \frac{\prod_{x \sim \Delta: x \notin S} q(x) \prod_{(x,y) \in \tau: y \neq \Delta} w(x,y)}{\det_{\mathcal{X} \setminus S}(-\mathcal{L})} 1_{\{s \sim \Delta, \ \forall s \in S\}}.$$

Proposizione

Fissato τ albero ricoprente con radice Δ ,

$$\mathbb{P}(\mathcal{W} = \tau) = \frac{\prod_{x \sim \Delta: x \notin S} q(x) \prod_{(x,y) \in \tau: y \neq \Delta} w(x,y)}{\det_{\mathcal{X} \setminus S}(-\mathcal{L})} \mathbb{1}_{\{s \sim \Delta, \ \forall s \in S\}}.$$

Foresta $\phi \in \mathcal{F} \longrightarrow \text{albero } \tau(\phi) \text{ in } \overline{\mathcal{G}}$ aggiungendo il nodo Δ e i lati da $\rho(\phi)$ a Δ .

Proposizione

Fissato τ albero ricoprente con radice Δ ,

$$\mathbb{P}(\mathcal{W} = \tau) = \frac{\prod_{x \sim \Delta: x \notin S} q(x) \prod_{(x,y) \in \tau: y \neq \Delta} w(x,y)}{\det_{\mathcal{X} \setminus S}(-\mathcal{L})} \mathbb{1}_{\{s \sim \Delta, \ \forall s \in S\}}.$$

Foresta $\phi \in \mathcal{F} \longrightarrow \text{albero } \tau(\phi) \text{ in } \overline{\mathcal{G}}$ aggiungendo il nodo Δ e i lati da $\rho(\phi)$ a Δ .

Teorema (Sampling)

$$Z(Q) = \det_{\mathcal{X} \setminus S}(Q - L), \qquad \nu_Q(\phi) = \mathbb{P}(\mathcal{W} = \tau(\phi)).$$

Traiettorie loop-erased

Per dimostrare la proposizione serve calcolare

$$P_{x_0}(\Gamma_B = \gamma_B)$$
, dove $\gamma_B = (x_0, ..., x_{l-1}, \Delta)$

è un percorso senza loop da x_0 a Δ .

Traiettorie loop-erased

Per dimostrare la proposizione serve calcolare

$$P_{x_0}(\Gamma_B = \gamma_B), \quad \text{dove} \quad \gamma_B = (x_0, ..., x_{l-1}, \Delta)$$

è un percorso senza loop da x_0 a Δ .

Teorema (Marchal, 2000)

Fissato un percorso senza loop γ_B , allora

$$P_{x_0}(\Gamma_B = \gamma_B) = \prod_{i=1}^{l-1} w(x_{i-1}, x_i) q(x_{l-1}) \frac{\det_{\mathcal{X} \setminus \{x_0, \dots, x_{l-1}\}}(-\mathcal{L})}{\det_{\mathcal{X}}(-\mathcal{L})}$$

Traiettorie loop-erased

Per dimostrare la proposizione serve calcolare

$$P_{x_0}(\Gamma_B = \gamma_B)$$
, dove $\gamma_B = (x_0, ..., x_{l-1}, \Delta)$

è un percorso senza loop da x_0 a Δ .

Teorema (Marchal, 2000)

Fissato un percorso senza loop γ_B , allora

$$P_{\mathsf{x}_0}(\mathsf{\Gamma}_B = \gamma_B) = \prod_{i=1}^{l-1} w(\mathsf{x}_{i-1}, \mathsf{x}_i) q(\mathsf{x}_{l-1}) \frac{\det_{\mathcal{X} \setminus \{\mathsf{x}_0, \dots, \mathsf{x}_{l-1}\}}(-\mathcal{L})}{\det_{\mathcal{X}}(-\mathcal{L})}$$

Nota:
$$[-\mathcal{L}]_{\mathcal{X}} = Q - L$$
.

Numero di radici di una RSF

Conseguenze del teorema Sampling.

Numero di radici di una RSF

Conseguenze del teorema Sampling.

Corollario 1

$$Z(q) = q \prod_{i=1}^{n-1} (q + \lambda_i)$$

con $\{\lambda_i\}$ autovalori della matrice -L.

Numero di radici di una RSF

Conseguenze del teorema Sampling.

Corollario 1

$$Z(q) = q \prod_{i=1}^{n-1} (q + \lambda_i)$$

con $\{\lambda_i\}$ autovalori della matrice -L.

Corollario 2

Se -L ha spettro reale, allora

$$|
ho(\Phi_q)| \sim \sum_{i=0}^{n-1} \mathfrak{B}\left(rac{q}{q+\lambda_i}
ight)$$

somma di n v.a. Bernoulliane indipendenti con parametri $\frac{q}{q+\lambda_i}$.

Teorema

Il processo delle radici $\rho(\Phi_Q)$ è determinantale

Teorema

Il processo delle radici $ho(\Phi_Q)$ è determinantale: per ogni $A\subset\mathcal{X}$

$$\mathbb{P}(A\subset
ho(\Phi_Q))=\det_A(K_Q),$$
 con nucleo

$$K_Q(x,y) = P_x(\overline{X}_{T_Q^-} = y), \qquad x, y \in \mathcal{X}$$

dove T_Q è il tempo di assorbimento in Δ per il processo \overline{X} .

Teorema

Il processo delle radici $ho(\Phi_Q)$ è determinantale: per ogni $A\subset\mathcal{X}$

$$\mathbb{P}(A\subset \rho(\Phi_Q))=\det_A(K_Q),\qquad \text{con nucleo}$$

$$K_Q(x,y) = P_x(\overline{X}_{T_Q^-} = y), \qquad x,y \in \mathcal{X}$$

dove T_Q è il tempo di assorbimento in Δ per il processo \overline{X} .

Teorema

Il processo delle radici $ho(\Phi_Q)$ è determinantale: per ogni $A\subset\mathcal{X}$

$$\mathbb{P}(A\subset \rho(\Phi_Q))=\det_A(K_Q),\qquad \text{con nucleo}$$

$$K_Q(x,y) = P_x(\overline{X}_{T_Q^-} = y), \qquad x, y \in \mathcal{X}$$

dove T_Q è il tempo di assorbimento in Δ per il processo \overline{X} .

• f. di Green
$$G_Q(x, y) = E_x[\ell_y(T_Q)] = (Q - L)^{-1}(x, y)$$

Teorema

Il processo delle radici $ho(\Phi_Q)$ è determinantale: per ogni $A\subset\mathcal{X}$

$$\mathbb{P}(A\subset \rho(\Phi_Q))=\det_A(K_Q),\qquad \text{con nucleo}$$

$$K_Q(x,y) = P_x(\overline{X}_{T_Q^-} = y), \qquad x, y \in \mathcal{X}$$

dove T_Q è il tempo di assorbimento in Δ per il processo \overline{X} .

- f. di Green $G_Q(x, y) = E_x[\ell_y(T_Q)] = (Q L)^{-1}(x, y)$
- Riscriviamo il nucleo $K_Q = G_Q Q$

Teorema

Il processo delle radici $ho(\Phi_Q)$ è determinantale: per ogni $A\subset \mathcal{X}$

$$\mathbb{P}(A\subset \rho(\Phi_Q))=\det_A(K_Q),\qquad \text{con nucleo}$$

$$K_Q(x,y) = P_x(\overline{X}_{T_Q^-} = y), \qquad x, y \in \mathcal{X}$$

dove T_Q è il tempo di assorbimento in Δ per il processo \overline{X} .

- f. di Green $G_Q(x,y) = E_x[\ell_y(T_Q)] = (Q L)^{-1}(x,y)$
- Riscriviamo il nucleo $K_Q = G_Q Q$
- lacksquare $A\subset
 ho(\Phi_Q)= au(\Phi_Q)$ contiene tutti i lati da A a Δ

Teorema

Il processo delle radici $ho(\Phi_Q)$ è determinantale: per ogni $A\subset\mathcal{X}$

$$\mathbb{P}(A\subset
ho(\Phi_Q))=\det_A(K_Q),$$
 con nucleo

$$K_Q(x,y) = P_x(\overline{X}_{T_Q^-} = y), \qquad x, y \in \mathcal{X}$$

dove T_Q è il tempo di assorbimento in Δ per il processo \overline{X} .

- lacksquare f. di Green $G_Q(x,y)=E_x[\ell_y(T_Q)]=(Q-L)^{-1}(x,y)$
- Riscriviamo il nucleo $K_Q = G_Q Q$
- lacksquare $A\subset
 ho(\Phi_Q)= au(\Phi_Q)$ contiene tutti i lati da A a Δ
- lacksquare Marchal \longrightarrow rapporto tra determinanti $rac{\det_A(Q)}{\det_A(Q-L)}$

 π_m partizione di \mathcal{G} in alberi, con $m \geq 1$ blocchi.

 π_m partizione di $\mathcal G$ in alberi, con $m\geq 1$ blocchi. Una **partizione loop-erased** è v.a. Π_q con distribuzione

$$\mathbb{P}(\Pi_q = \pi_m) = \mu_q(\pi_m) = \frac{q^m \sum_{\phi: \Pi(\phi) = \pi_m} w(\phi)}{Z(q)}$$

 π_m partizione di $\mathcal G$ in alberi, con $m\geq 1$ blocchi. Una **partizione loop-erased** è v.a. Π_q con distribuzione

$$\mathbb{P}(\Pi_q = \pi_m) = \mu_q(\pi_m) = \frac{q^m \sum_{\phi: \Pi(\phi) = \pi_m} w(\phi)}{Z(q)}$$

Obiettivo: studiare correlazione tra 2 punti associata a μ_q

 π_m partizione di $\mathcal G$ in alberi, con $m \geq 1$ blocchi. Una **partizione loop-erased** è v.a. Π_q con distribuzione

$$\mathbb{P}(\Pi_q = \pi_m) = \mu_q(\pi_m) = \frac{q^m \sum_{\phi: \Pi(\phi) = \pi_m} w(\phi)}{Z(q)}$$

Obiettivo: studiare correlazione tra 2 punti associata a μ_q

Definizione

Presi $x, y \in \mathcal{X}$, definiamo il **potenziale di interazione**

$$U_q(x,y) := \mathbb{P}(x \text{ e } y \text{ appartengono a blocchi diversi di } \Pi_q)$$

Confrontro caso mean-field (MF) e mean-field-community (MFC)

Confrontro caso mean-field (MF) e mean-field-community (MFC)

MF

- \blacksquare \mathcal{K}_N , grafo completo
- w, edge weight costante

Confrontro caso mean-field (MF) e mean-field-community (MFC)

MF

- \blacksquare \mathcal{K}_N , grafo completo
- w, edge weight costante

MFC

- \mathcal{K}_{2N} , grafo bipartito
- w₁, nella stessa comunità
- *w*₂, tra diverse comunità

Confrontro caso mean-field (MF) e mean-field-community (MFC)

MF

- \blacksquare \mathcal{K}_N , grafo completo
- w, edge weight costante

 $U_q^{(N)}$, indipendente da x, y

MFC

- \mathcal{K}_{2N} , grafo bipartito
- w₁, nella stessa comunità
- *w*₂, tra diverse comunità

Confrontro caso mean-field (MF) e mean-field-community (MFC)

MF

- \blacksquare \mathcal{K}_N , grafo completo
- w, edge weight costante

 $U_q^{(N)}$, indipendente da x, y

MFC

- \mathcal{K}_{2N} , grafo bipartito
- w₁, nella stessa comunità
- w₂, tra diverse comunità

 $U_q^{(N)}(in)$, x, y stessa comunità $U_q^{(N)}(out)$, x, y diverse comunità

Confrontro caso mean-field (MF) e mean-field-community (MFC)

MF

- \blacksquare \mathcal{K}_N , grafo completo
- w, edge weight costante

 $U_q^{(N)}$, indipendente da x, y

MFC

- \mathcal{K}_{2N} , grafo bipartito
- w₁, nella stessa comunità
- w₂, tra diverse comunità

 $U_q^{(N)}(in)$, x, y stessa comunità $U_q^{(N)}(out)$, x, y diverse comunità

Caratteristiche comuni

1. Termine geometrico

2. Termine entropico

$$U_q(x,y) = \sum_{\gamma} P_x(\Gamma_{\Delta} = \gamma) P_y(\tau_{\gamma \setminus \Delta} > \tau_{\Delta})$$

Idea delle dimostrazioni:

$$U_q(x,y) = \sum_{\gamma} P_x(\Gamma_{\Delta} = \gamma) P_y(\tau_{\gamma \setminus \Delta} > \tau_{\Delta})$$

1 Percorso loop-erased, che parte da x.

$$U_q(x,y) = \sum_{\gamma} P_x(\Gamma_{\Delta} = \gamma) P_y(\tau_{\gamma \setminus \Delta} > \tau_{\Delta})$$

- 1 Percorso loop-erased, che parte da x.
- **2** Random walk fino ad assorbimento, che parte da y.

$$U_q(x,y) = \sum_{\gamma} P_x(\Gamma_{\Delta} = \gamma) P_y(\tau_{\gamma \setminus \Delta} > \tau_{\Delta})$$

- 1 Percorso loop-erased, che parte da x.
- 2 Random walk fino ad assorbimento, che parte da y.
- 3 Numero di percorsi γ loop-erased di uguale lunghezza.