往年题选讲

李昊

蚯蚓 (earthworm)

【问题描述】

本题中,我们将用符号LcJ表示对c向下取整,例如: L3.0J=L3.1J=L3.9J=3。

蛐蛐国最近蚯蚓成灾了!隔壁跳蚤国的跳蚤也拿蚯蚓们没办法,蛐蛐国王只好去请神 刀手来帮他们消灭蚯蚓。

蛐蛐国里现在共有n只蚯蚓(n为正整数)。每只蚯蚓拥有长度,我们设第i只蚯蚓的长度为 a_i (i=1,2,...,n),并保证所有的长度都是<u>非负</u>整数(即:可能存在长度为0的蚯蚓)。

每一秒,神刀手会在所有的蚯蚓中,准确地找到最长的那一只(如有多个则任选一个)将其切成两半。神刀手切开蚯蚓的位置由常数 p(是满足 0 的有理数)决定,设这只蚯蚓长度为<math>x,神刀手会将其切成两只长度分别为 LpxJ 和 x-LpxJ 的蚯蚓。特殊地,如果这两个数的其中一个等于 0,则这个长度为 0 的蚯蚓也会被保留。此 外,除了刚刚产生的两只新蚯蚓,其余蚯蚓的长度都会增加 q (是一个非负整常数)。

蛐蛐国王知道这样不是长久之计,因为蚯蚓不仅会越来越多,还会越来越长。蛐蛐国王决定求助于一位有着洪荒之力的神秘人物,但是救兵还需要 *m* 秒才能到来……(*m* 为非负整数)蛐蛐国王希望知道这 *m* 秒内的战况。

具体来说,他希望知道:

- *m*秒内,每一秒被切断的蚯蚓被切断前的长度(有 *m* 个数);
- *m*秒后,所有蚯蚓的长度(有 *n*+ *m* 个数)。 蛐蛐国王当然知道怎么做啦!但是他想考考你......

【子任务】

- 测试点 1~3 满足 m=0。
- 测试点 4~7满足 n, m≤1,000。
- 测试点 8~14 满足 q=0, 其中测试点 8~9 还满足 m≤105。
- 测试点 15~18 满足 m≤3×10⁵。
- 测试点 19~20没有特殊的约定,参见原始的数据范围。
- 测试点 $1 \sim 12$, $15 \sim 16$ 还满足 $v \leq 2$, 这意味着 u, v 的唯一可能的取值是 u = 1, v = 2 ,即 p = 0.5 。这可能会对解决问题有特殊的帮助。

每个测试点的详细数据范围见下表。

测试点	n	m	t	a_i	ν	q
1	= 1					
2	$=10^{3}$	= 0				
3	$=10^{5}$					= 0
4	= 1		= 1			
5	$=10^{3}$	$= 10^3$	1			
6	= 1	_ 10		$\leq 10^{6}$	≤ 2	200
7	$=10^{3}$				<u> </u>	≤ 200
8	$=5\times10^4$	$=5\times10^4$				
9		$=10^{5}$	= 2			
10		$= 2 \times 10^{6}$	= 21			
11	$= 10^5$	$=2.5 \times 10^6$	= 26			= 0
12	_ 10	$=3.5 \times 10^6$	= 36	≤ 10 ⁷		
13		$=5\times10^6$	= 51	210	≤ 10 ⁹	
14		$= 7 \times 10^6$	= 71		<u></u>	
15	$= 5 \times 10^4$	$=5\times10^6$	= 1		≤ 2	
16	- 3 ^ 10	$=1.5 \times 10^6$	= 2			
17		$=10^{5}$	= 3	$\leq 10^{8}$		< 200
18	$= 10^5$	$= 3 \times 10^5$	= 4		≤ 10 ⁹	≤ 200
19	_ 10	$=3.5 \times 10^6$	= 36		≥ 10	
20		$= 7 \times 10^6$	= 71			

积木大赛

(block.cpp/c/pas)

【题目描述】

春春幼儿园举办了一年一度的"积木大赛"。今年比赛的内容是搭建一座宽度为n的大厦,大厦可以看成由n块宽度为1的积木组成,第i块积木的最终高度需要是 h_i 。

在搭建开始之前,没有任何积木(可以看成n块高度为 0 的积木)。接下来每次操作,小朋友们可以选择一段连续区间[L,R],然后将第L块到第R块之间(含第 L 块和第 R块)所有积木的高度分别增加1。

小M是个聪明的小朋友,她很快想出了建造大厦的最佳策略,使得建造所需的操作次数最少。但她不是一个勤于动手的孩子,所以想请你帮忙实现这个策略,并求出最少的操作次数。

【输入】

输入文件为 block.in

输入包含两行,第一行包含一个整数n,表示大厦的宽度。

第二行包含n个整数,第i个整数为 h_i 。

【输出】

输出文件为 block.out

仅一行, 即建造所需的最少操作数。

【输入输出样例】

block.in	block.out
5	5
2 3 4 1 2	

【样例解释】

其中一种可行的最佳方案, 依次选择

[1,5] [1,3] [2,3] [3,3] [5,5]

【数据范围】

对于 30%的数据, 有 $1 \le n \le 10$;

对于 70%的数据, 有 $1 \le n \le 1000$;

对于 100%的数据,有 $1 \le n \le 100000$, $0 \le h_i \le 10000$ 。

2. 联合权值

(link.cpp/c/pas)

【问题描述】

无向连通图 G 有 n 个点,n-1 条边。点从 1 到 n 依次编号,编号为 i 的点的权值为 W_i ,每条边的长度均为 1。图上两点(u, v)的距离定义为 u 点到 v 点的最短距离。对于图 G 上的点对(u, v),若它们的距离为 2,则它们之间会产生 $W_u \times W_v$ 的联合权值。

请问图 G 上所有可产生联合权值的**有序点对**中,联合权值最大的是多少? 所有联合权值之和是多少?

【输入】

输入文件名为 link.in。

第一行包含 1 个整数 n。

接下来 n-1 行,每行包含 2 个用空格隔开的正整数 u、v,表示编号为 u 和编号为 v 的点之间有边相连。

最后 1 行,包含 n 个正整数,每两个正整数之间用一个空格隔开,其中第 i 个整数表示图 G 上编号为 i 的点的权值为 W_i 。

【输出】

输出文件名为 link.out。

输出共1行,包含2个整数,之间用一个空格隔开,依次为图G上联合权值的最大值和所有联合权值之和。由于所有联合权值之和可能很大,输出它时要对10007取余。

【输入输出样例】

link.in	link.out
5	20 74
1 2	
2 3	
3 4	
4 5	
1 5 2 3 10	

【样例说明】

本例输入的图如上所示, 距离为 2 的有序点对有(1,3)、(2,4)、(3,1)、(3,5)、(4,2)、(5,3)。 其联合权值分别为 2、15、2、20、15、20。其中最大的是 20, 总和为 74。

【数据说明】

对于 30%的数据, $1 < n \le 100$,

对于 60%的数据, 1 < n ≤ 2000

对于 100%的数据, $1 < n \le 200,000$, $0 < W_i \le 10,000$ 。

2. 信息传递

(message.cpp/c/pas)

【问题描述】

有n个同学(编号为1到n)正在玩一个信息传递的游戏。在游戏里每人都有一个固定的信息传递对象,其中,编号为i的同学的信息传递对象是编号为Ti的同学。游戏开始时,每人都只知道自己的生日。之后每一轮中,所有人会同时将自己当前所知的生日信息告诉各自的信息传递对象(注意:可能有人可以从若干人那里获取信息,但是每人只会把信息告诉一个人,即自己的信息传递对象)。当有人从别人口中得知自己的生日时,游戏结束。请问该游戏一共可以进行几轮?

【输入格式】

输入文件名为message.in。

输入共2行。

第 1 行包含 1 个正整数n,表示n个人。

第 2 行包含n个用空格隔开的正整数 $T1, T2, \cdots, Tn$,其中第Ti个整数表示编号为i 的同学的信息传递对象是编号为Ti的同学, $Ti \leq n \perp Ti \neq i$ 。

数据保证游戏一定会结束。

【输出格式】

输出文件名为message.out。

输出共1行,包含1个整数,表示游戏一共可以进行多少轮。

【输入输出样例1】

message.in	message.out
5	3
24 2 3 1	

见选手目录下的message/message1.in与message/message1.ans。

【输入输出样例1说明】

游戏的流程如图所示。当进行完第3轮游戏后,4号玩家会听到2号玩家告诉他自己的生日,所以答案为3。当然,第3轮游戏后,2号玩家、3号玩家都能从自己的消息来源得知自己的生日,同样符合游戏结束的条件。

【样例输入输出2】

见选手目录下的message/message2.in与message/message2.ans。

【数据规模与约定】

对于 30%的数据 $n \leq 200$;

对于 60%的数据, n≤ 2500;

对于 100%的数据, n≤ 200000。

2. 寻找道路

(road.cpp/c/pas)

【问题描述】

在有向图 G 中,每条边的长度均为 1,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件:

- 1. 路径上的所有点的出边所指向的点都直接或间接与终点连通。
- 2. 在满足条件1的情况下使路径最短。

注意:图 G 中可能存在重边和自环,题目保证终点没有出边。请你输出符合条件的路径的长度。

【输入】

输入文件名为 road.in。

第一行有两个用一个空格隔开的整数 n 和 m,表示图有 n 个点和 m 条边。

接下来的 m 行每行 2 个整数 x、y,之间用一个空格隔开,表示有一条边从点 x 指向点 y。

最后一行有两个用一个空格隔开的整数 s、t,表示起点为 s,终点为 t。

【输出】

输出文件名为 road.out。

输出只有一行,包含一个整数,表示满足题目描述的最短路径的长度。如果这样的路径不存在,输出-1。

【输入输出样例1】

road.in	road.out
3 2	-1
1 2	
2 1	
1 3	

【输入输出样例说明】

如上图所示,箭头表示有向道路,圆点表示城市。起点 1 与终点 3 不连通,所以满足题目描述的路径不存在,故输出-1。

【输入输出样例2】

road.in	road.out	
6 6	3	
1 2		
1 3		
2 6		
2 5		
4 5		
3 4		
1 5		

【输入输出样例说明】

如上图所示,满足条件的路径为 1->3->4->5。注意点 2 不能在答案路径中,因为点 2 连了一条边到点 6,而点 6 不与终点 5 连通。

【数据说明】

对于 30%的数据, $0 < n \le 10$, $0 < m \le 20$;

对于 60%的数据, $0 < n \le 100$, $0 < m \le 2000$

对于 100%的数据, $0 < n \le 10,000$, $0 < m \le 200,000$,0 < x,y,s,t ≤ n,x ≠ t。

1. 跳石头

(stone.cpp/c/pas)

【问题描述】

一年一度的"跳石头"比赛又要开始了!

这项比赛将在一条笔直的河道中进行,河道中分布着一些巨大岩石。组委会已经选择好了两块岩石作为比赛起点和终点。在起点和终点之间,有 N 块岩石(不含起点和终点的岩石)。在比赛过程中,选手们将从起点出发,每一步跳向相邻的岩石,直至到达终点。

为了提高比赛难度,组委会计划移走一些岩石,使得选手们在比赛过程中的最短跳跃距离尽可能长。由于预算限制,组委会至多从起点和终点之间移走 M 块岩石(不能移走起点和终点的岩石)。

【输入格式】

输入文件名为 stone.in。

输入文件第一行包含三个整数 L, N, M, 分别表示起点到终点的距离, 起点和终点之间的岩石数, 以及组委会至多移走的岩石数。

接下来 N 行,每行一个整数,第 i 行的整数 Di (0 < Di < L)表示第 i 块岩石与起点的距离。这些岩石按与起点距离从小到大的顺序给出,且不会有两个岩石出现在同一个位置。

【输出格式】

输出文件名为 stone.out。

输出文件只包含一个整数,即最短跳跃距离的最大值。

【输入输出样例1】

stone.in	stone.out
25 5 2	4
2	
11	
14	
17	
21	

见选手目录下的 stone/stone1.in 和 stone/stone1.ans。

【输入输出样例1说明】

将与起点距离为 2 和 14 的两个岩石移走后,最短的跳跃距离为 4 (从与起点距离 17 的岩石跳到距离 21 的岩石,或者从距离 21 的岩石跳到终点)。

【输入输出样例2】

见选手目录下的 stone/stone2.in 和 stone/stone2.ans。

【数据规模与约定】

对于 20%的数据, 0 ≤ M ≤ N ≤ 10。

对于 50%的数据, 0 ≤ M ≤ N ≤ 100。

对于 100%的数据, 0 ≤ M ≤ N ≤ 50,000, 1 ≤ L ≤ 1,000,000,000。

2. 子串

(substring.cpp/c/pas)

【问题描述】

有两个仅包含小写英文字母的字符串 A 和 B。现在要从字符串 A 中取出 k 个 <u>互不重</u> <u>看</u>的非空子串,然后把这 k 个子串按照其在字符串 A 中出现的顺序依次连接起来得到一个新的字符串,请问有多少种方案可以使得这个新串与字符串 B 相等?注意:子串取出的位置不同也认为是不同的方案。

【输入格式】

输入文件名为 substring.in。

第一行是三个正整数 n, m, k, 分别表示字符串 A 的长度,字符串 B 的长度,以及问题描述中所提到的 k,每两个整数之间用一个空格隔开。

第二行包含一个长度为 n 的字符串,表示字符串 A。

第三行包含一个长度为 m 的字符串,表示字符串 B。

【输出格式】

输出文件名为 substring.out。

输出共一行,包含一个整数,表示所求方案数。由于答案可能很大,所以这里要求输出答案对 1,000,000,007 取模的结果。

【输入输出样例1】

substring.in	substring.out	
6 3 1	2	
aabaab		
aab		

见选手目录下 substring/substring1.in 与 substring/substring1.ans。

【输入输出样例2】

substring.in	substring.out
6 3 2	7
aabaab	
aab	

【数据规模与约定】

对于第 1 组数据: 1≤n≤500, 1≤m≤50, k=1;

对于第 2 组至第 3 组数据: 1≤n≤500, 1≤m≤50, k=2;

对于第 4 组至第 5 组数据: 1≤n≤500, 1≤m≤50, k=m;

对于第 1 组至第 7 组数据: 1≤n≤500, 1≤m≤50, 1≤k≤m;

对于第1组至第9组数据: 1≤n≤1000, 1≤m≤100, 1≤k≤m;

对于所有 10 组数据: 1≤n≤1000, 1≤m≤200, 1≤k≤m。

组合数问题 (problem)

【问题描述】

组合数 C_n^m 表示的是从n个物品中选出m个物品的方案数。举个例子,从(1, 2, 3)三个物品中选择两个物品可以有(1, 2),(1, 3),(2, 3)这三种选择方法。根据组合数的定义,我们可以给出计算组合数 C_n^m 的一般公式:

$$C_n^m = \frac{n!}{m!(n-m)!}$$

其中 $n! = 1 \times 2 \times \cdots \times n$ 。

小葱想知道如果给定 n, m 和 k ,对于所有的 $0 \le i \le n, 0 \le j \le \min(i, m)$ 有多少对(i, j)满足 C_i^j 是 k 的倍数。

【输入格式】

从文件 *problem.in* 中读入数据。

第一行有两个整数 t,k,其中 t代表该测试点总共有多少组测试数据,k的意义见【问题描述】。

接下来t行每行两个整数n,m,其中n,m的意义见【问题描述】。

【输出格式】

输出到文件 problem.out中。

t行,每行一个整数代表所有的 $0 \le i \le n, 0 \le j \le \min(i, m)$ 中有多少对(i, j) 满足 C_i 是 k的倍数。

【子任务】

测试点	n	m	k	t
1	≤ 3	≤ 3	= 2	= 1
2			= 3	≤ 10 ⁴
3	≤ 7	≤ 7	= 4	= 1
4			= 5	≤ 10 ⁴
5	≤ 10	≤ 10	= 6	= 1
6			= 7	≤ 10 ⁴
7	≤ 20	≤ 100	= 8	= 1
8			= 9	≤ 10 ⁴
9	≤ 25	≤ 2000	= 10	= 1
10			= 11	≤ 10 ⁴
11	≤ 60	≤ 20	= 12	= 1
12			= 13	≤ 10 ⁴
13		≤ 25	= 14	= 1
14	≤ 100		= 15	≤ 10 ⁴
15		≤ 60	= 16	= 1
16			= 17	≤ 10 ⁴
17		≤ 100	= 18	= 1
18	≤ 2000		= 19	≤ 10 ⁴
19		≤ 2000	= 20	= 1
20			= 21	≤ 10 ⁴

2. 火柴排队

(match.cpp/c/pas)

【问题描述】

涵涵有两盒火柴,每盒装有 n 根火柴,每根火柴都有一个高度。现在将每盒中的火柴各自排成一列,同一列火柴的高度互不相同,两列火柴之间的距离定义为: $\sum_{i=1}^{n} (a_i - b_i)^2$,其中 a_i 表示第一列火柴中第 i 个火柴的高度, b_i 表示第二列火柴中第 i 个火柴的高度。

每列火柴中相邻两根火柴的位置都可以交换,请你通过交换使得两列火柴之间的距离最小。请问得到这个最小的距离,最少需要交换多少次?如果这个数字太大,请输出这个最小交换次数对 99,999,997 取模的结果。

【输入输出样例1】

match.in	match.out
4	1
2 3 1 4	
3 2 1 4	

【输入输出样例说明】

最小距离是 0,最少需要交换 1 次,比如:交换第 1 列的前 2 根火柴或者交换第 2 列的前 2 根火柴。

【输入输出样例 2】

match.in	match.out
4	2
1 3 4 2	
1 7 2 4	

【输入输出样例说明】

最小距离是 10,最少需要交换 2 次,比如:交换第 1 列的中间 2 根火柴的位置,再交换第 2 列中后 2 根火柴的位置。

【数据范围】

对于 10%的数据, $1 \le n \le 10$;

对于 30%的数据, $1 \le n \le 100$;

对于 60%的数据, $1 \le n \le 1,000$;

对于 100%的数据,1 ≤ n ≤ 100,000,0 ≤火柴高度≤ 2^{31} – 1。

2. 花匠

(flower.cpp/c/pas)

【问题描述】

花匠栋栋种了一排花,每株花都有自己的高度。花儿越长越大,也越来越挤。栋栋决定 把这排中的一部分花移走,将剩下的留在原地,使得剩下的花能有空间长大,同时,栋栋希 望剩下的花排列得比较别致。

具体而言,栋栋的花的高度可以看成一列整数 $h_1,h_2,...,h_n$ 。设当一部分花被移走后,剩下的花的高度依次为 $g_1,g_2,...,g_m$,则栋栋希望下面两个条件中至少有一个满足:

条件 A: 对于所有的 $1 \le i \le \frac{m}{2}$,有 $g_{2i} > g_{2i-1}$,同时对于所有的 $1 \le i < \frac{m}{2}$,有 $g_{2i} > g_{2i+1}$; 条件 B: 对于所有的 $1 \le i \le \frac{m}{2}$,有 $g_{2i} < g_{2i-1}$,同时对于所有的 $1 \le i < \frac{m}{2}$,有 $g_{2i} < g_{2i+1}$ 。注意上面两个条件在m = 1时同时满足,当m > 1时最多有一个能满足。请问,栋栋最多能将多少株花留在原地。

【输入】

输入文件为 flower.in。

输入的第一行包含一个整数n,表示开始时花的株数。

第二行包含n个整数,依次为 $h_1,h_2,...,h_n$,表示每株花的高度。

【输出】

输出文件为 flower.out。

输出一行,包含一个整数m,表示最多能留在原地的花的株数。

【输入输出样例】

flower.in	flower.out
5	3
5 3 2 1 2	

【输入输出样例说明】

有多种方法可以正好保留 3 株花,例如,留下第 1、4、5 株,高度分别为 5、1、2,满足条件 B。

【数据范围】

对于 20%的数据, $n \leq 10$;

对于 30%的数据, $n \leq 25$;

对于 70%的数据, $n \le 1000$, $0 \le h_i \le 1000$;

对于 100%的数据, $1 \le n \le 100,000$, $0 \le h_i \le 1,000,000$, 所有的 h_i 随机生成,所有随机数服从某区间内的均匀分布。