

Khoa Công Nghệ Thông Tin Trường Đại Học Cần Thơ

Đánh giá hiệu quả của giải thuật học

Trần Nguyễn Minh Thư tnmthu@cit.ctu.edu.vn

> Cần Thơ 02-2015

Nội dung

- Nghi thức kiểm tra
- ■Các chỉ số đánh giá

Nghi thức kiểm tra

- nếu dữ liệu có 1 tập học và 1 tập kiểm tra sẵn dùng
 - dùng dữ liệu học để xây dựng mô hình,
 - dùng tập kiểm tra để đánh giá hiệu quả của giải thuật
- nếu dữ liệu **không có 1 tập kiểm tra** sẵn?

3

Nghi thức kiểm tra

- nếu dữ liệu không có 1 tập kiểm tra sẵn
 - sử dụng nghi thức k-fold :
 - chia tập dữ liệu thành k phần (fold) bằng nhau,
 lặp lại k lần, mỗi lần sử dụng k-1 folds để học và
 1 fold để kiểm tra, sau đó tính trung bình của k
 lần kiểm tra
 - nghi thức hold-out : lấy ngẫu nhiên 2/3 tập dữ liệu để học và 1/3 tập dữ liệu còn lại dùng cho kiểm tra, có thể lặp lại quá bước này k lần rồi tính giá trị trung bình

Nghi thức kiểm tra

- nếu dữ liệu có số phần tử lớn hơn 300
 - sử dụng nghi thức k-fold với k = 10
- nếu dữ liệu có số phần tử nhỏ hơn 300
 - sử dụng nghi thức leave-1-out (k-fold với k = số phần tử)
 - => Vd leave 1 out

5

Nghi thức đánh giá

- Given-N [J.S Breese98]
 - Thường được sử dụng để đánh giá trong các lĩnh vực thương mại điện tử
 - Là một mở rộng của k-fold nhưng thực hiện trên từng giao dịch thay vì toàn bộ dữ liệu
 - Giao dịch sử dụng để đánh giá phải có ít nhất N+1 mục dữ liệu
- Phương pháp
 - Chia danh sách các sản phẩm trong giỏ hàng thành 2 phần: tập được gọi là « Given » và 1 tập « Test »
 - So sánh các gợi ý thực tế (Test) và những sản phẩm gợi ý để nghị bởi hệ thống, độ chính xác của hệ thống sẽ tăng lên 1 đơn vị hay bằng 0

Phương pháp đánh giá

"All But One" trường hợp đặc biệt của Given-N

- Tập "given": số lượng các sản phẩm của giỏ hàng 1 (ít nhất 1 sản phẩm)
- Tập « test » : luôn luôn bằng 1
- Ưu điểm của phương pháp " All But One " cho phép đánh giá các giỏ hàng có kích thước lớn hơn 1 sản phẩm

Chỉ số đánh giá

9

Confusion matrix (C) cho k lóp

dự đoán =>	1	•••	k
1			
•••			
k			

- ☐ C[i, j]: số phần tử lớp **i (dòng)** được giải thuật dự đoán là lớp **j (cột)**
- ☐ C[i,i]: số phần tử phân lớp đúng
- ☐ Độ chính xác lớp i: C[i,i] / C[i,]
- ☐ Độ chính xác tổng thể: ∑C[i,i] / C

Confusion matrix (C) cho k lóp

dự đoán =>	Setosa	vesicolor	virginica
Setosa	15	0	0
vesicolor	0	16	2
virginica	0	3	14

- □Độ chính xác lớp i: C[i,i] / C[i,]
 - \square Setosa = ?
 - \square Vesicolor = ?
 - \square Virginica = ?
- \Box Độ chính xác tổng thể: $\sum C[i,i] / C = ?$

11

Confusion matrix (C) cho k lóp

dự đoán =>	Setosa	vesicolor	virginica
Setosa	15	0	0
vesicolor	0	16	2
virginica	0	3	14

- C[i, j]: số phần tử lớp i (dòng) được giải thuật dự đoán
- là lớp j (cột)
- ☐ C[i,i]: số phần tử phân lớp đúng
- □ Độ chính xác lớp i: C[i,i] / C[i,]
 - \square Setosa = 15/15
 - \square Vesicolor = 16/18
 - ☐ Virginica = 14/17
- \Box Độ chính xác tổng thể: $\sum C[i,i] / C = 45/50$

Confusion matrix (C) cho 2 lóp (+/-)

Ma trận contingency

dự đoán =>	dương	âm
dương	TP	FN
âm	FP	TN

TP: true positive

tổng số phần tử lớp dương được giải thuật dự đoán lớp dương

TN: true negative

tổng số phần tử lớp âm được giải thuật dự đoán là lớp âm

FP: false positive

tổng số phần tử lớp âm được giải thuật dự đoán là lớp dương

FN: false negative

tổng số phần tử lớp dương được dự đoán là lớp âm

13

Confusion matrix (C) cho 2 lóp (+/-)

dự đoán =>	dương	âm
dương	TP	FN
âm	FP	TN

Precision Recall Accuracy F1

$$prec = \frac{tp}{tp + fp}$$

$$rec = \frac{tp}{tp + fn}$$

$$acc = \frac{tp + tn}{tp + fn + tn + fp}$$

dự đoán =>	dương	âm
dương	10 (TP)	5 (FN)
âm	8 (FP)	22 (TN)

$$F1 = \frac{2 \times prec \times rec}{prec + rec}$$

Confusion matrix (C) cho 2 lóp (+/-)

dự đoán =>	dương	âm
dương	10 (TP)	5 (FN)
âm	8 (FP)	22 (TN)

$$prec = \frac{tp}{tp + fp}$$

$$rec = \frac{tp}{tp + fn}$$

Precision = 10/(10+8) = 0.56 Recall = 10/(10+5) = 0.67 Accuracy=(10+22)/10+5+8+22) = 32/45 = 0.71 F1 = 2 x precision x recall /

(prec + recall) = 0.75/1.23 = 0.61

$$acc = \frac{tp + tn}{tp + fn + tn + fp}$$

$$F1 = \frac{2 \times prec \times rec}{prec + rec}$$

15

Dữ liệu không cân bằng

- nếu dữ liệu không cân bằng
 - lớp positive có số lượng rất nhỏ so với lớp negative
 - ví du : positive = 5%, negative = 95%
 - một giải thuật học có thể cho kết quả 95% độ chính xác khi phân loại, nhưng chúng ta có thể mất hoàn toàn lớp positive
- khả năng tách lớp positive từ lớp negative

Chỉ số đánh giá cho bài toán hồi quy

Đánh giá độ chính xác của các dự đoán

- Các chỉ số thường dùng: MSE Mean Square Error, RMSE – Root Mean Square Error, MAE – Mean Absolute Error
- Đo lường mức độ sai số của các dự đoán. Các giá trị đo lường này bằng 0 khi hệ thống đạt được hiệu quả tốt nhất. Giá trị này càng cao thì hiệu quả của hệ thống càng thấp.
- MAE là chỉ số được sử dụng nhiều nhất vì khả năng giải thích trực tiếp của nó.

Chỉ số đánh giá cho bài toán hồi quy

Đánh giá độ chính xác của các dự đoán

- Tính chính xác của dự đoán được đo trên n quan sát trong đó p_i là giá trị dự đoán đánh giá của item i,
 - r_i là giá trị đánh giá thực tế của item i
- Mean Absolute Error (MAE) (sai số trung bình tuyệt đối) tính toán độ lệch giữa dự đoán xếp hạng và xếp hạng thực tế

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |p_i - r_i|$$

Chỉ số đánh giá cho bài toán hồi quy

- Đánh giá độ chính xác của các dự đoán
 - Mean Square Error (MSE) (sai số bình phương trung bình).....

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (p_i - r_i)^2$$

 Root Mean Square Error (RMSE) (sai số trung bình toàn phương) tương tự như MAE nhưng chú trọng tới những giá trị có độ lệch lớn

$$RMSE = \sqrt{\frac{1}{n}\sum_{i=1}^{n}(p_i - r_i)^2}$$

Bài kiểm tra 15 phút

■ Giả sử tập dữ liệu có 40000 mẫu tin trong đó có 8 mẫu tin thuộc lớp dương (+1) và 39992 mẫu tin thuộc lớp âm (-1), có hai mô hình phân lớp M1 và M2 cho kết quả tương ứng trong bảng 1, 2 như sau

Ma trận confusion thu được từ mô hình M1 (bảng bên trái) và M2 (bảng bên phải)

dự báo =>	dương	âm
drong	1	7
âm	1	39991

dự báo =>	dương	<u>âm</u>
drong	8	0
âm	32	39960

■ Anh, Chị hãy cho biết mô hình nào thích hợp để xử lý tập dữ liệu trên? Giải thích lý do.