Art Unit: 1656 Examiner: Samuel Liu

REMARKS

Claims 1-3 and 7-11 are canceled. Claims 4-6 and 12-14 are pending in the instant application. Claim 4 has been amended to be directed to a method of making mineralized nanofibers comprising preparing a first solution with at least one peptide amphiphile comprising a hydrocarbon component and a lyophilic peptide component, wherein the peptide amphiphile has a net ionic charge and at least one ion of a mineral salt, wherein the ion of the mineral salt has the same signed net ionic charge as the peptide-amphiphile; preparing a second solution with ion of a mineral salt having an opposite signed ionic charge to the net ionic charge of the peptide-amphiphile of said first solution; and mixing said first and second solutions to self-assemble said peptide amphiphiles into nanofibers and a nanofiber gel, wherein minerals nucleate at the nanofibers surfaces, wherein said nanofibers are fibrous cylindrical micelles.

The amendment defining the peptide amphiphile as comprising a hydrocarbon component and a lyophilic peptide component is supported, e.g., in paragraph [0032]. The amendment defining the net ionic charge of the peptide amphiphile is found, e.g., in Table 2. Finally, the amendment to the claim defining nanofibers as fibrous cylindrical micelles is supported, e.g., in paragraph [0035]. Accordingly, no new matter is added by these amendments. Applicants request entry of these amendments.

Continuing Data and Priority

The Office Action states that U.S. Provisional Appln. No. 60/425,536 does not provide adequate support for the claimed invention of claims 4-6 of the instant application. It concludes that this application is not accorded priority.

To clarify, Applicants respectfully submit that this application is based on provisional applications, Appln. Nos. 60/425,689 and 60/425,536, both of which were filed on November 12, 2002. To the extent that Appln. No. 60/425,536 does not provide support for claims 4-6, Applicants respectfully submit that Appln. No. 60/425,689 does provide such support. As such, Applicants respectfully submit that this application is still accorded the benefit to the filing date of November 12, 2002.

Art Unit: 1656 Examiner: Samuel Liu

35 USC 112, First Paragraph

Claims 4-6 and 12-14 are rejected under 35 USC 112, first paragraph, as allegedly failing to comply with the written description requirement. It is stated that the limitation of "minerals nucleate at the nanofiber surface," as amended into claim 4 on 21 August 2007, is not supported in the specification as originally filed. Applicants respectfully disagree.

This language is supported throughout the specification. For example, original claim 9 recites a "composition comprising: a material nucleated and grown on the surface of nanofibers in a nanofiber gel; said material grown and oriented on the surfaces of said fibers substantially throughout the nanofiber gel." (Original claim 9; emphasis added.) Furthermore, the abstract clearly states that: "[t]emplated mineralization of the initially dissolved mineral cations and anions in the mixture occurs with preferential orientation of the mineral crystals along the fiber surfaces within the nanofiber gel." (Abstract.) Therefore, the limitation, "minerals nucleate at the nanofiber surface," is clearly supported and withdrawal of the rejection is respectfully requested.

35 USC 112, Second Paragraph

Claims 4 and 6 remain, and claims 5 and 12-14 are rejected under 35 USC 112, second paragraph, as allegedly being indefinite for failing to particularly point out and distinctly claim the subject matter, which Applicants regard as the invention.

The rejection iterates that the language "one ionically charged species of peptide amphiphile" is unclear because the claim does not make it clear as to (i) whether or not the species is homogeneous and (ii) whether or not "ionically charged species" refers to net negatively or positively charged molecules. Applicants have amended the claims to refer to the net charge of the peptide-amphiphile molecules. Support for this amendment is found in the specification, for example, in Table 2.

Furthermore, Applicants respectfully contend that whether or not the first solution contains a homogenous set of peptide amphiphiles does not render the claim unclear. In fact, it is contemplated in the specification that there can be one or more peptide amphiphiles, so long as the peptide amphiphiles have the same signed charge. For

Art Unit: 1656 Examiner: Samuel Liu

example, paragraph [0030] provides that "[i]n another embodiment, the compositions can further comprise mixture of peptide-amphiphiles having the same signed ionic charge, but having different peptide sequences, functional groups, or magnitude of ionic charge." (Specification at para. [0030]). Nevertheless, Applicants have clarified the claim language to recite that the first solution comprises at least one peptide amphiphile having a net ionic charge.

In view of the foregoing amendments, withdrawal of the rejection is proper.

35 USC 102 - Wong et al.

Claims 4-6 and 14 are rejected under 35 USC 102(a) as allegedly being anticipated by Wong et al. (Nano Lett. (2002 June) 2, 583-587). The rejection states that Wong describes a process of preparing SiO₂/Au composites on the surface of nanoparticles. The rejection states that net positively charged peptide amphiphiles (Lys₂₀₀Cys₃₀) are mixed with a positively charged solution of Au salts. This solution is then mixed with a negatively charged solution SiO₂ solution. It is stated that the mineral Au ions inherently nucleate sites for formation of gold nanoparticles. Applicants respectfully traverse the rejection.

Applicants contend that the "peptide amphiphile" of Wong et al. is not within the meaning described in the instant application. Specifically, paragraph [0032] describes peptide amphiphiles within the scope of the invention as the following:

[0032] Notwithstanding embodiments provided above, broader aspects of the present invention include a peptide amphiphile composition having a hydrophobic or lyophobic component and a lyophilic peptide or peptide-like component. In various preferred embodiments, the hydrophobic component of such a composition is of sufficient length to provide amphiphilic behavior and micelle formation in water or another polar solvent system. Typically, such a component is a C₆ or greater hydrocarbon moiety, although other hydrophobic, hydrocarbon and/or alkyl components could be used as would be well-known to those skilled in the art to provide similar functional effect. . . .

Moreover, Applicants have amended independent claim 4 to recite that the peptide amphiphile comprises a hydrocarbon component and a lyophilic peptide component. Wong et al., on the other hand, describes the diblock copolypeptide, Lys₂₀₀Cys₃₀, as having amphiphilic properties, but these polypeptides do not meet the claim-recited

Art Unit: 1656 Examiner: Samuel Liu

definition of "peptide amphiphiles." Rather, these diblock copolypeptides lack a hydrocarbon component. Furthermore, Applicants have amended the claims to further clarify that the nanofibers are fibrous cylindrical micelles formed from the peptide amphiphiles. Therefore, Wong does not anticipate the claims as amended. Withdrawal of the rejection is respectfully requested.

35 USC 102 - Slocik et al.

Claims 4-6 are rejected under 35 USC 102(a) as allegedly being anticipated by Slocik et al.

It is stated that Slocik describes the preparation of nanomaterials comprising histidine-rich self-assembled amphiphilic peptides (HREs) and metal sulfide composites, where HREs stabilize nanoclusters. It is stated that positively charged peptides are mixed with positively charged silver nitrate solution. Then a second solution of $\rm Na_2S$ is added to the first solution to produce $\rm Ag_2S/HREs$ nanofibers. Applicants respectfully traverse the rejection.

Applicants submit that "peptide amphiphiles" according to the present invention are not employed in the Slocik methods. To clarify, the claims have been amended requiring that a peptide amphiphile having a hydrocarbon component and a lyophilic peptide component be used in the claimed method. The Slocik reference, on the other hand, states that "[i]n the first step, metal-HRE complexes were formed by the 1:1 reaction of appropriate metal ion to peptide in a deaerated solution of Tris buffer..." (Slocik, page 170, col. 1.) Furthermore, Slocik describes the peptide used as AHHAHHAAD. (Id.) Therefore, this reference does not, in fact, teach the use of peptide amphiphiles, as defined in the claims and the present application. Furthermore, Applicants have clarified that the nanofibers made using the self-assembling peptide amphiphiles are fibrous cylindrical micelles. Each and every element of the claims has not been met. Accordingly, withdrawal of the rejection is respectfully requested.

Art Unit: 1656 Examiner: Samuel Liu

CONCLUSION

Applicants believe that this amendment overcomes the outstanding rejections.

Applicants, however, invite the Examiner to call the undersigned to discuss any remaining issues to expedite the prosecution of this application.

Respectfully submitted,

BENET GROUP LLC

/Maria L. Maebius/

Maria L. Maebius Registration No. 42,967

c/o Intellevate P.O. Box 52050 Minneapolis, MN 55402 Tel. 202.253.7199 Fax 612-677-3572 Date: 19 February 2008