Суперкомпьютерное моделирование и технологии

Отчет

Задача для трехмерного гиперболического уравнения в прямоугольном параллелепипеде. CUDA реализация.

Лазарев Владимир Александрович

2 вариант

Оглавление

Математическая постановка задачи	3
Численный метод решения задачи	
Программная реализация	
Результаты запусков программ на различных кластерах	٠
Выволы	10

Математическая постановка задачи

В трехмерной замкнутой области

$$\Omega = [0 \le x \le L_x] \times [0 \le y \le L_y] \times [0 \le z \le L_z]$$

для $0 \le t \le T$ требуется найти решение u(x,y,z,t) уравнения в частных производных $\frac{\partial^2 u}{\partial t^2} = \Delta u$ с начальными условиями

$$u(t = 0) = \phi(x, y, z)$$

$$\frac{\partial u}{\partial t}(t = 0) = 0$$

$$u(0, y, z, t) = 0$$

$$u(L_x, y, z, t) = 0$$

$$u(x, 0, z, t) = 0$$

$$u(x, L_y, z, t) = 0$$

$$u(x, y, 0, t) = u(x, y, L_z, t)$$

$$u_z(x, y, 0, t) = u_z(x, y, L_z, t)$$

Численный метод решения задачи

Введем на
$$\Omega$$
 сетку $\omega_{h\tau}=\overline{\omega_h}\times\omega_{\tau}$, где $T=T_0$,
$$L_x=L_{x0}, L_y=L_{y0}, L_z=L_{z0},$$
 $\overline{\omega_h}=\{\left(x_i=ih_x,y_j=jh_y,z_k=kh_z\right),i,j,k=\overline{0,N},h_xN=L_x,h_yN=L_y,h_zN=L_z\},$
$$\omega_{\tau}=\{t_n=n\tau,n=\overline{0,K},\tau K=T\}$$

Через ω_h обозначим множество внутренних, а через γ_h – множество граничных узлов сетки $\overline{\omega_h}$.

Для аппроксимации исходного уравнения воспользуемся следующей системой уравнений:

$$\frac{u_{i,j,k}^{n+1} - 2u_{i,j,k}^n + u_{i,j,k}^{n-1}}{\tau^2} = \Delta_h u^n, (x_i, y_i, z_i) \in \omega_h, n = \overline{1, K - 1}$$

Здесь Δ_h – семиточечный разностный аналог оператора Лапласа:

$$\Delta_h u^n = \frac{u_{i-1,j,k}^n - 2u_{i,j,k}^n + u_{i+1,j,k}^n}{h^2} + \frac{u_{i,j-1,k}^n - 2u_{i,j,k}^n + u_{i,j+1,k}^n}{h^2} + \frac{u_{i,j,k-1}^n - 2u_{i,j,k}^n + u_{i,j,k+1}^n}{h^2}$$

Приведенная выше разностная схема является явной — значения $u_{i,j,k}^{n+1}$ на (n+1)-ом шаге можно явным образом выразить через значения на предыдущих слоях.

Для начала счета должны быть заданы значения $u^0_{i.i.k}, u^1_{i.i.k}, (x_i, y_i, z_i) \in \omega_h$:

$$u_{i,j,k}^{0} = \phi(x_{i}, y_{i}, z_{i}), (x_{i}, y_{i}, z_{i}) \in \omega_{h}$$

$$u_{i,j,k}^{1} = u_{i,j,k}^{0} + \frac{\tau^{2}}{2} \Delta_{h} \phi(x_{i}, y_{i}, z_{i})$$

$$u_{i,j,0}^{n+1} = u_{i,j,N}^{n+1}$$

$$u_{i,j,1}^{n+1} = u_{i,j,N+1}^{n+1}$$

$$i, j, k = \overline{0, N}$$

Программная реализация

Реализована гибридная параллельная программа (MPI + OpenMP). Принимает входные данные в виде аргументов командной строки. Используются следующие аргументы:

- -Lx = длина параллелепипеда вдоль оси X (по умолчанию 1);
- -Ly= длина параллелепипеда вдоль оси Y (по умолчанию 1);
- -Lz = длина параллелепипеда вдоль оси Z (по умолчанию 1);
- -T= конечное время сетки (по умолчанию 1);
- -N= количество точек пространственной сетки (по умолчанию 128);
- -K= количество точек временной сетки (по умолчанию 2000);
- -steps= количество шагов для решения (по умолчанию 5).

Для распараллеливания вся сетка разбивается на области в количестве используемых процессов по следующему алгоритму:

- Начинается разбиение с параллелепипеда $[0, N] \times [0, N] \times [0, N]$, выбирается X как начальная ось;
- Если оставшееся количество областей для разбиения равно 1, возвращается обрабатываемый параллелепипед;

- Если размер нечетный, то по текущей оси выбирается область $\frac{1}{countOfProcesses}$ и делается из нее параллелепипед, также продолжается разбиваться область $1-\frac{1}{countOfProcesses}$;
- По выбранной оси делим область пополам и рекурсивно запускаем для этих подобластей переходя на следующую ось $X \to Y, Y \to Z, Z \to X$).

Операции, производимые с получаемыми параллелепипедами, обрабатываются с помощью CUDA ядер.

Компиляция производилась посредством на Polus посредством следующего набора команд:

- module load SpectrumMPI
- nvcc main.cu -03 -std=c++11 I/opt/ibm/spectrum_mpi/include L/opt/ibm/spectrum mpi/lib -lmpiprofilesupport -lmpi ibm

Постановка в очередь производилась командой:

```
bsub -n 6 -gpu "num=2" -R "span[ptile=2]" -o stdout.txt -e error.txt OMP_NUM_THREADS=1 mpiexec ./a.out -N=128 -K=2000 - steps=20
```

Код доступен по ссылке https://github.com/vlazarew/parallel_2021-22/tree/main/task4

График аналитического и полученного решений

Решение при $L_x = L_y = L_z = 1$

Рисунок 1. Аналитическое решение

Рисунок 2 Погрешность

Рисунок 3 Полученное решение

Решение при $L_x = L_y = L_z = \pi$

Рисунок 4 Аналитическое решение

Рисунок 5 Погрешность

Рисунок 6 Полученное решение

Результаты запусков программ на различных кластерах

Таблица 1. Результаты расчетов на Polus

$$Lx = Ly = Lz = 1, N = 128, K = 2000$$

Число	MPI			MPI + CUDA			Ускорение
MPI-	Время решения	Ускорение	Погрешность	Время	Ускорение	Погрешность	
процессов	(c)			решения (с)			
1	0.511036	1	2.7637e-08	0.179019	1	2.7637e-08	2,85465
2	0.314435	1,62525	2.7637e-08	0.181736	0,98505	2.7637e-08	1,73017
4	0.201344	2,53812	2.7637e-08	0.19022	0,94112	2.7637e-08	1,05848
6	0.221924	2,30275	2.7637e-08	0.217649	0,82251	2.7637e-08	1,01964

$$Lx = Ly = Lz = 1, N = 256, K = 2000$$

Число	MPI			MPI + CUDA			Ускорение
MPI-	Время решения	Ускорение	Погрешность	Время	Ускорение	Погрешность	
процессов	(c)			решения (с)			
1	3.93388	1	6.73841e-09	0.112484	1	6.73841e-09	34,97280
2	2.45262	1,60395	6.73841e-09	0.0944015	1,19155	6.73841e-09	25,98073
4	1.63391	2,40765	6.73841e-09	1.3997	0,08035	6.73841e-09	1,16710
6	1.35657	2,89987	6.73841e-09	0.98688	0,11398	6.73841e-09	1,37460

$$Lx = Ly = Lz = 1, N = 512, K = 2000$$

Число	MPI			MPI + CUDA			Ускорение
MPI-	Время решения	Ускорение	Погрешность	Время	Ускорение	Погрешность	
процессов	(c)			решения (с)			
1	30.5387	1	1.51341e-09	0.69225	1	1.51341e-09	44,11513
2	19.2748	1,58438	1.51341e-09	0.416098	1,66367	1.51341e-09	46,32274
4	12.5462	2,43410	1.51341e-09	0.41664	1,66151	1.51341e-09	30,11281
6	9.93361	3,07428	1.51341e-09	0.403805	1,71432	1.51341e-09	24,60002

Выводы

Как следует из приведенных выше таблиц, задача для трехмерного гиперболического уравнения отлично подходит для распараллеливания. В результате получены программные средства, решающую поставленную задачами гибридным способом при использовании средств МРІ и СUDA. Важную роль в МРІ при распараллеливании задачи сеточного метода играет способ разбиения на блоки. Использование СUDA для распараллеливания полученной МРІ программы более чем целесообразно, о чем свидетельствуют полученные значения ускорений по сравнению с версией без использования СUDA вызовов.