Regression Trees

Regression Trees

- ➤ The tree will search for all combination of predictors and cutoff value to decide the best split
- In Regression tree, the best split is the split that minimizes

$$\sum_{i: \mathbf{x}_i \in R_1(j,s)} (y_i - \hat{y}_{R_1})^2 + \sum_{i: \mathbf{x}_i \in R_2(j,s)} (y_i - \hat{y}_{R_2})^2$$
RSS of obs. in left branch
RSS of obs. in right branch

 $\blacktriangleright \ \hat{y}_{R_1}$ and \hat{y}_{R_2} are the means of the responses falling in to the left branch and right branch, respectively.

Example

X_1	X_2	Y
1	0	1.2
2	1	2.1
3	2	1.5
4	1	3.0
2	2	2.0
1	1	1.6

Using the RSS to decide the best split among

- ▶ Split 1: Region 1 $X_1 < 4$, Region 2 $X_1 \ge 4$
- lacksquare Split 2: Region 1 $X_2 < 2$, Region 2 $X_2 \ge 2$

X_1	X_2	Y	Split 1
1	0	1.2	(4,64)
2	1	2.1	4,29
3	2	1.5	15
4	1	3.0	Resion 1
2	2	2.0	Y=1.2 21
1	1	1.6	21
			1.5 2.0 1.6
			١.٢

$$\frac{-1}{1} = \frac{1.2 + 2.1 + 1.5 + 2.0 + 1.6}{5} = 1.60$$

$$855_1 = (1.2 - \frac{1}{4})^2 + (2.1 - \frac{1}{4})^3 + (1.5 - \frac{1}{4})^2 + (1.4 - \frac{1}{4})^3 +$$

= 1.8075 + 0.125 = 1.9325

The split with the smaller RSS is the better split. Thus, split I

Resim 1

T = 1.2, 2.1, 3.0, 1.6

| Resion 2

Y = 1.5, 2.0

Split 2:

 X_1

2

 $\frac{X_2}{0}$

1

1.2

2.1

1.5

3.0

is better than split 2.

Suppose that your regression tree contain only one split which is the best split in the previous question. Calculate the ${\cal R}^2$ of this regression tree on the training data.

Use your regression tree to predict the y for the below testing data. Calculate the R^2 of the tree on the testing data.

•	tile	tree on	tile	
	$\overline{x_1}$	x_2	y	
	3	1	3.0	
	1	5	3.6	
	5	1	4.0	
	5	2	3.9	
	_			

= 10.6708

$$Z(Y-\overline{Y}) = 0.607$$

 $\Rightarrow R^2 = 1 - \frac{10.6708}{0.6675} = -16.565$