Теория вероятностей. Лекция четырнадцатая Условное математическое ожидание

Дмитрий Валерьевич Хлопин glukanat@mail.ru

Институт математики и механики им. Н.Н.Красовского

11.12.2018

Переход от дискретного случая к общему

- борелевские множества и мера Лебега
- случайные величины и измеримые отображения
- функции распределения
- абсолютно случайные величины и не только
- математическое ожидание как интеграл
- условное математическое ожидание как интеграл
- совместные функции распределения

Мы определили интеграл по мере (при условии $\mu(\Omega) < \infty$), доказали все свойства матожидания, но интеграл поинтереснее будет, но с интегралами можно делать еще много что...

Техзадание. Итог

Для измеримого пространства (Ω,\mathcal{F}) с мерой μ , $\mu(\Omega)<\infty$, мы задали интеграл для неотрицательных измеримых функций (как предел суммируемых дискретных) так, чтобы для всех неотрицательных измеримых $f,g:\Omega\to\mathbb{R}$

$$\begin{split} &\int_{\Omega} 1_A(\omega) \, \mu(d\omega) \stackrel{\triangle}{=} \mu(A) \text{ для всех } A \in \mathcal{F}; \\ &\int_{\Omega} f(\omega) \, \mu(d\omega) \geq 0; \\ &c \int_{\Omega} f(\omega) \, \mu(d\omega) = \int_{\Omega} c f(\omega) \, \mu(d\omega) \text{ для всех } c > 0; \\ &\int_{\Omega} f(\omega) \, \mu(d\omega) + \int_{\Omega} g(\omega) \, \mu(d\omega) = \int_{\Omega} (f(\omega) + g(\omega)) \, \mu(d\omega). \end{split}$$

После этого по определению приняли

$$\begin{split} &\int_A f(\omega)\,\mu(d\omega) \stackrel{\triangle}{=} \int_\Omega 1_A(\omega) f(\omega)\,\mu(d\omega); \\ &\int_A f(\omega)\,\mu(d\omega) \stackrel{\triangle}{=} 0 \text{ в случае } \mu(A) = 0; \\ &\int_\Omega f(\omega)\,\mu(d\omega) \stackrel{\triangle}{=} \int_\Omega f^+(\omega)\,\mu(d\omega) - \int_\Omega (-f^-)(\omega)\,\mu(d\omega) \text{ для всех измеримых } f, \text{ для которых } f^- \not\equiv 0, \text{ и интегралы справа не равны одновременно } +\infty. \end{split}$$

Лебеговские пространства $\mathcal{L}^p(\Omega, \mathcal{F}, \mu)$.

Пусть даны $p \in [1,\infty]$ и измеримое пространство (Ω,\mathcal{F}) с мерой μ . Через $\mathcal{L}^p(\Omega,\mathcal{F},\mu)$ обозначают пространство всех \mathcal{F} -суммируемых скалярных функций $f:\Omega \to \mathbb{R}$ таких, что $|f|^p$ μ -суммируемо (f ограничено для $p=\infty)$.

В $\mathcal{L}^p(\Omega,\mathcal{F},\mu)$ можно ввести псевдонорму правилом:

$$||f||_p \stackrel{\triangle}{=} \Big(\int_{\Omega} |f(\omega)|^p \mu(d\omega) \Big)^{1/p}, \qquad ||f||_{\infty} \stackrel{\triangle}{=} \sup_{\omega \in \Omega} |f(\omega)|.$$

Говорят, что последовательность функций f_n сходится к f в $\mathcal{L}^p(\Omega,\mathcal{F},\mu)$ (в метрике L^p), если $||f_n-f||_p\to 0$ при $n\to\infty$. Подумать: проверьте, что из сходимости f_n к f в метрике L^p следует сходимость $f_n(\omega)$ к $f(\omega)$ для μ -почти всех $\omega\in\Omega$.

Терминологическое замечание. В хороших книжках вводят также $L^p(\Omega, \mathcal{F}, \mu)$, отождествляя μ -почти всюду совпадающие функции. Тогда $||f||_p$ — полная норма, пространство $L^p(\Omega, \mathcal{F}, \mu)$ банахово, при p=2 и гильбертово. В совсем плохих книжках L^p и \mathcal{L}^p не различают,

Вспоминаем определение матожидания

Математическим ожиданием $\mathbb{E}\xi$ случайной величины $\xi:\Omega\to\mathbb{R}$ назовем значение выражения

$$\int_{\Omega} \xi(\omega) \, \mathbb{P}(d\omega),$$

если оно существует и конечно.

Замечание. Законно было написать и

$$\int_{\mathbb{R}} x (\xi \# \mathbb{P}) (dx),$$

эту эквивалентность докажем чуть позже.

Замечание. $\mathbb{E}\xi$ существует и конечно в точности тогда, когда $\xi \in \mathcal{L}^1(\Omega, \mathcal{F}, \mu)$. При этом $\mathbb{E}|\xi| = ||\xi||_1$.

Матожидание предела равно пределу матожиданий, если

Теорема Лебега. Если последовательность случайных величин ξ_n сходится к ξ п.в., и для случайной величины φ имеют место $\mathbb{E} \varphi < +\infty$ и $|\xi_n| \leq \varphi$ при всех натуральных n, то ξ также суммируема, при этом

$$\mathbb{E}\xi = \lim_{n \to \infty} \mathbb{E}\xi_n < \infty.$$

Теорема Леви. Если последовательность случайных величин ξ_n монотонна, их матожидания $\mathbb{E}\xi_n$ ограничены, то случайная величина $\xi \triangleq \lim_{n \to \infty} \xi_n$ также суммируема, при этом

$$\mathbb{E}\xi = \lim_{n\to\infty} \mathbb{E}\xi_n < \infty.$$

Лемма Фату. Для всякой последовательности неотрицательных случайных величин ξ_n

$$\mathbb{E}(\liminf_{k\to\infty}\xi_k)\leq \liminf_{k\to\infty}\mathbb{E}\xi_k.$$

Свойства матожидания, существование через теорему Лебега: [с-но]

- 8^0 $\mathbb{E}\xi$ существует, и $|\mathbb{E}\xi| \leq \mathbb{E}|\xi|$, если $\mathbb{E}|\xi|$ существует, то есть если $\xi \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$;
- 9^0 $\mathbb{E}\xi$ существует, если $|\xi|$ ограничено некоторой случайной величиной $\varphi \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P});$ в частности, $\mathbb{E}\xi$ существует, если $|\xi|$ ограничена, то есть если $\xi \in \mathcal{L}^\infty(\Omega, \mathcal{F}, \mathbb{P});$
- $10^0~\mathbb{E}|\xi\eta|$ существует, если $\mathbb{E}\xi^2$ и $\mathbb{E}\eta^2$ существуют, то есть если $\xi,\eta\in\mathcal{L}^2(\Omega,\mathcal{F},\mathbb{P});$
- 11⁰ $\mathbb{E}|\xi|, \mathbb{E}\xi$ существуют, если $\mathbb{E}\xi^2$ существует, то есть если $\xi \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P});$
- $12^0 \ g(\mathbb{E}\xi) \leq \mathbb{E}g(\xi)$ для любой выпуклой (вниз) скалярной функции g; при этом, если существует матожидание справа, то и слева тоже существует;
- $13^0~\mathbb{E}(\sum_{i=1}^{\infty}\xi_i)$ существует и равно $\sum_{i=1}^{\infty}\mathbb{E}\xi_i$, если конечен ряд $\sum_{i=1}^{\infty}\mathbb{E}|\xi_i|$.

Интеграл по мере Лебега

Для всякой неотрицательной борелевской функции $f:\mathbb{R}^m \to \mathbb{R}$, для всякой неубывающей последовательности компактов K_n $(\cup_{n\in\mathbb{N}}K_n=\mathbb{R}^m)$ назовем интегралом от функции f по мере Лебега значение выражения

$$\int_{\mathbb{R}^m} f(x) \, \mu(dx) \stackrel{\triangle}{=} \lim_{n \to \infty} \int_{K_n} f(x) \, \mu(dx),$$

если этот предел не зависит от выбора неубывающей последовательности компактов K_n .

Подумать: почему и всё построено, и все хотелки выполнены. Подумать: покажите теоремы Лебега, Леви и лемму Фату для такого интеграла, в частности, покажите, что если функция |f| λ -суммируема, то и все измеримые функции g, модуль которых не превосходит |f|, также суммируемы.

Интегрирование по заряду [без д-ва]

Пусть дано некоторое измеримое пространство (Ω, \mathcal{F}) . **Теорема Жордана-Хана**. Для всякого заряда $S: \mathcal{F} \to \mathbb{R} \cup \{+\infty\}$ имеются меры $S_+: \mathcal{F} \to \mathbb{R} \cup \{+\infty\}$, $S_-: \mathcal{F} \to \mathbb{R} \cup \{+\infty\}$, что $S = S_+ - S_-$. При этом для некоторых Ω_+, Ω_- выполнено

$$S_{+}(A) = S(\Omega_{+} \cap A) \ge 0, \quad S_{-}(A) = -S(\Omega_{-} \cap A) \ge 0 \quad \forall A \in \mathcal{F}.$$

Под интегралом от функции h по заряду S понимают выражение:

$$\int_{\Omega} h(\omega) S(d\omega) = \int_{\Omega} h(\omega) S_{+}(d\omega) - \int_{\Omega} h(\omega) S_{-}(d\omega).$$

В частности, это выражение корректно, если h суммируема относительно меры $S_+ + S_-$.

Неотрицательную счетно-аддитивную функцию $|S| = S_+ + S_-$ называют полной вариацией заряда S (иногда под полной вариацией понимают число $|S|(\Omega)$).

Подмена измеримого пространства

Пусть дано некоторое измеримое отображение $\xi:\Omega\to \tilde{\Omega}$ из (Ω,\mathcal{F}) в $(\tilde{\Omega},\mathcal{H})$. Пусть на (Ω,\mathcal{F}) задана мера μ . Введем образ меры $\xi\#\mu:\mathcal{H}\to\mathbb{R}$ правилом:

$$(\xi \# \mu)(H) = \mu(\xi^{-1}(H)) \quad \forall H \in \mathcal{H}.$$

Теорема 1. Если $\xi:\Omega\to \tilde\Omega$ измеримо, $h:\tilde\Omega\to\mathbb R$ $\xi\#\mu$ -интегрируемо, то $f\stackrel{\triangle}=h\circ\xi:\Omega\to\mathbb R$ также μ -интегрируемо,

$$\int_{\Omega} f(\omega) \, \mu(d\omega) = \int_{\Omega} h(\xi(\omega)) \mu(d\omega) = \int_{\tilde{\Omega}} h(\tilde{\omega}) \, (\xi \# \mu) (d\tilde{\omega})$$

и $\int_{\xi^{-1}(H)} h(\xi(\omega)) \, \mu(d\omega) = \int_H h(\tilde{\omega}) \, (\xi\#\mu) (d\tilde{\omega})$ для всех $H \in \mathcal{H}$. Доказательство. Зафиксируем ξ . Для h=1 последняя формула очевидна. Тогда первая очевидна для всех h вида $h=1_H$, следовательно для их сумм, а значит и для всех $\xi\#\mu$ -интегрируемых.

Частный случай: замена переменных

Пусть $\tilde{\Omega} = \mathbb{R}$.

Следствие 1. Пусть даны измеримая функция $\xi:\Omega\to\mathbb{R}$ и борелевская функция $h:\mathbb{R}\to\mathbb{R}$, тогда

$$\int_{\Omega} h(\xi(\omega))\mu(d\omega) = \int_{\mathbb{R}} h(x) (\xi \# \mu)(dx).$$

При этом для всех $H \in \mathcal{B}$ имеем

$$\int_{\xi^{-1}(H)} h(\xi(\omega)) \, \mu(d\omega) = \int_H h(x) \, (\xi \# \mu)(dx).$$

Подумать: почему исчезло требование о $\xi\#\mu$ -измеримости h?

Замена переменных. Матожидание от суперпозиции

Пусть μ = \mathbb{P} — вероятностная мера.

Следствие 2. Пусть дана случайная величина $\xi:\Omega\to\mathbb{R}$ и борелевская функция $h:\mathbb{R}\to\mathbb{R}$, тогда

$$\mathbb{E}h(\xi) = \int_{\Omega} h(\xi(\omega))\mathbb{P}(d\omega) = \int_{\mathbb{R}} h(x) (\xi \# \mathbb{P})(dx),$$

$$\mathbb{E}\xi = \int_{\Omega} \xi(\omega)\mathbb{P}(d\omega) = \int_{\mathbb{R}} x (\xi \# \mathbb{P})(dx),$$

где матожидания существуют и конечны, если $h(\xi)$ и ξ \mathbb{P} -суммируемы. При этом, для $1_{(-\infty,y]}$ имеем $F_{\xi}(y) = \int_{(-\infty,y]} (\xi\#\mathbb{P})(dx)$ для всех $y \in \mathbb{R}$.

Терминологическое замечание. В старых книжках пишут $F_{\xi}(y) = \int_{(-\infty,y]} dF_{\xi}(x)$, эта запись интуитивно понятна (хотя интеграл в этой формуле вполне матанский и не настолько общий как у нас).

Случай абсолютно непрерывного распределения

Следствие 3. Для абсолютно непрерывной случайной величины $\xi:\Omega\to\mathbb{R}$ с плотностью $f_\xi:\mathbb{R}\to\mathbb{R}$ и неотрицательного борелевского отображения h имеем

$$\begin{split} \int_{\mathbb{R}} h(x) \, (\xi \# \mathbb{P}) (dx) &= \int_{\mathbb{R}} h(x) \, f_{\xi}(x) \, \lambda(dx), \\ \int_{\mathbb{R}} x \, (\xi \# \mathbb{P}) (dx) &= \int_{\mathbb{R}} x \, f_{\xi}(x) \, \lambda(dx), \\ F_{\xi}(y) &= \int_{(-\infty,y]} f_{\xi}(x) \, \lambda(dx) \, \text{для почти всех } y \in \mathbb{R}. \end{split}$$

Доказательство. Зададим на $\mathcal B$ две меры $\mu(B) = \int_B h(x) \, f_\xi(x) \, \lambda(dx)$ и $\overline{\nu(B)} = \int_B h(x) \, (\xi\#\mathbb P)(dx)$. По теореме Каратеодори, если они совпадают для всевозможных полуинтервалов B = (a,b], то и на $\mathcal B$. Но $\mu((a,b]) = \int_{(a,b]} h(x) \, f_\xi(x) \, \lambda(dx) = F(b) - F(a) = \int_{(a,b]} h(x) \, f_\xi(x) \, (\xi\#\mathbb P)(dx) = \nu((a,b])$. Осталось применить предыдущее следствие.

Случай абсолютно непрерывного распределения. Матожидание

Следствие 4. Для абсолютно непрерывной случайной величины ξ с плотностью f_{ξ} , для борелевского отображения h имеем

$$\mathbb{E}h(\xi) = \int_{\mathbb{R}} h(x) (\xi \# \mathbb{P}) (dx) = \int_{\mathbb{R}} h(x) f_{\xi}(x) \lambda(dx),$$

причем из конечности любого из интегралов следует существование остальных частей. В частности,

$$\mathbb{E}\xi = \int_{\mathbb{R}} x (\xi \# \mathbb{P})(dx) = \int_{\mathbb{R}} x f_{\xi}(x) \lambda(dx).$$

Доказательство. Если $h \ge 0$ и интеграл конечен, смотрим предыдущее следствие. В общем случае, вновь рассматривая $h = h^+ + h^-$, из суммируемости h по какой-либо мере следует суммируемость h^+ и h^- по этой мере, а следовательно совпадение интегралов и по той, и по другой мере (и от h^+ , и от h^- , а следовательно и от h).

Абсолютная непрерывность мер

Пусть есть некоторое измеримое пространство (Ω, \mathcal{F}) с мерой μ и заряд S, определенный на некоторой σ -алгебре \mathcal{G} , содержащей \mathcal{F} .

Определение. Заряд S называют абсолютно непрерывным относительно меры μ (и пишут $S\ll\mu$), если для всякого $A\in\mathcal{F}$ из $\mu(A)=0$ следует S(A)=0.

<u>Подумать</u>: переформулируйте фразу: "мера $\xi\#\mathbb{P}$ абсолютно непрерывна относительно меры Лебега".

Подумать: проверьте, что заряд S абсолютно непрерывен относительно меры μ тогда и только тогда, когда для всякого $\varepsilon>0$ найдется такое $\delta>0$, что для всякого $A\in\mathcal{F}$ из $\mu(A)<\delta$ следует $|S(A)|<\varepsilon$. Подумать: убедитесь, что для всякой μ -суммируемой $f:\Omega\to\mathbb{R}$

<u>Подумать</u>: убедитесь, что для всякой μ -суммируемой $f:\Omega\to\mathbb{R}$ правило $A\mapsto S(A)=\int_A f(\omega)\,\mu(d\omega)$ всегда задает заряд, абсолютно непрерывный относительно μ .

Абсолютная непрерывность мер. Плотность

Определение. Измеримое отображение $f:\Omega \to \mathbb{R}$ называется плотностью (производной) заряда S относительно меры μ (и иногда обозначается $f=\frac{dS}{d\mu}$), если

$$S(A) = \int_A f(\omega) \mu(d\omega) \quad \forall A \in \mathcal{F}.$$

Подумать: когда имеется и чему равно $\frac{d(\xi\#\mathbb{P})}{d\lambda}$? Подумать: определим для некоторого множества $B \in \mathcal{F}$ ($\mathbb{P}(B) \neq 0$) меру S правилом:

$$S(A) \stackrel{\triangle}{=} \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \mathbb{P}(A|B) \qquad \forall A \in \mathcal{F};$$

убедитесь, что $S \ll \mathbb{P}$ и $\frac{dS}{d\mathbb{P}} = \frac{1}{\mathbb{P}(B)} 1_B$.

Теорема Радона-Никодима

Пусть заданы (Ω, \mathcal{F}) с мерой μ , причем или $\mu(\Omega) < +\infty$, или μ — мера Лебега на некотором борелевском подмножестве $\Omega \subset \mathbb{R}^m$.

Теорема Радона-Никодима [без д-ва]. Если заряд S абсолютно непрерывен относительно μ , то найдется такая μ -измеримая функция $f:\Omega \to \mathbb{R},$ что функция $f^ \mu$ -суммируема и

$$S(A) = \int_A f(\omega) \,\mu(d\omega) \qquad \forall A \in \mathcal{F},$$

то есть f — плотность заряда S относительно вероятности μ . При этом любые такие функции μ -почти всюду совпадают; f μ -почти всюду неотрицательна, если S — мера; f суммируема, если $|S|(\Omega)$ конечно.

Замечание. Можно было ввести понятие σ -конечной меры и сформулировать соответствующую теорему, но тогда надо было вводить и интеграл по такой мере.

Существование плотности

Следствие 5. Для вероятности η (на измеримом пространстве (Ω, \mathcal{F})) следующие условия эквивалентны:

- 1. вероятность η абсолютно непрерывна относительно μ ;
- 2. для некоторой μ -суммируемой $f:\Omega\to\mathbb{R}$ при всех $A\in\mathcal{F}$ выполнено $\eta(A)=\int_A f(\omega)\,\mu(d\omega);$
- 3. для некоторой μ -суммируемой $f:\Omega\to\mathbb{R}$ при всех η -интегрируемых $h:\Omega\to\mathbb{R}$ выполнено

$$\int_{\Omega} h(\omega) f(\omega) \, \mu(d\omega) = \int_{\Omega} h(\omega) \, \eta(d\omega).$$

При этом так полученная функция f почти всюду неотрицательна, единственна μ -почти всюду, при этом $\int_{\Omega} f(\omega)\,\mu(d\omega)$ = 1.

Свойства плотности

Следствие 6. Для ξ следующие условия эквивалентны:

- 1. $\xi \# \mathbb{P}$ абсолютно непрерывна относительно меры λ ;
- 1'. ξ абсолютно непрерывна с плотностью $f_{\xi}: \mathbb{R} \to \mathbb{R}$;
- 2. для некоторой λ -суммируемой $f_{\xi}: \mathbb{R} \to \mathbb{R}$ при всех $A \in \mathcal{B}$ $(\xi \# \mathbb{P})(A) = \int_A f_{\xi}(x) \lambda(dx);$
- 2'. для некоторой λ -суммируемой $f_{\xi}:\mathbb{R}\to\mathbb{R}$ при всех $y\in\mathbb{R}$ выполнено $F_{\xi}(y)=\int_{(-\infty,u]}f_{\xi}(x)\,\lambda(dx);$
- 3. для некоторой λ -суммируемой $f_{\xi}:\mathbb{R}\to\mathbb{R}$ при всех η -суммируемых $h:\mathbb{R}\to\mathbb{R}$ выполнено

$$\int_{\mathbb{R}} h(x) f_{\xi}(x) \, \lambda(d\omega) = \mathbb{E}h(\xi).$$

При этом любые так полученные функции f_{ξ} почти всюду совпадают, почти всюду неотрицательны и $\int_{\Omega} f_{\xi}(\omega) \, \mu(d\omega) = 1$.

Снова примеры

Пример 1. Пусть g — суммируемая случайная величина. Рассмотрим отображение $S:\mathcal{F} \to \mathbb{R}$, заданное правилом

$$S(A) = \int_A g(\omega) \mathbb{P}(d\omega) \quad \forall A \in \mathcal{F},$$

тогда этот заряд (мера при $g \ge 0$) абсолютно непрерывен относительно \mathbb{P} , а g — плотность этого заряда.

Пример 2. Пусть также на \mathcal{F}_0 = $\{\Omega,\varnothing\}$ задана вероятностная мера μ_0 = $\mathbb{P}|_{\mathcal{F}_0}$. Тогда плотность введенного выше заряда S относительно μ_0 равна (как \mathcal{F}_0 -измеримая функция) константе, то есть $\mathbb{E} g$.

И снова примеры

Пример 3. Теперь для некоторой полной группы не более чем счетного числа событий H_1,\ldots,H_n,\ldots рассмотрим σ -алгебру $\mathcal{H} \stackrel{\triangle}{=} \sigma(H_1,\ldots,H_n,\ldots)$ и определенную на этой σ -алгебре вероятностную меру $\mu_1 = \mathbb{P}|_{\mathcal{H}}$. Тогда плотность h введенного выше заряда S относительно μ_1 является \mathcal{H} -измеримой функцией, константой на каждом H_i , а именно

$$h|_{H_i} \stackrel{\triangle}{=} \frac{\int_{H_i} g(\omega) \, \mathbb{P}(d\omega)}{\int_{H_i} \, \mathbb{P}(d\omega)} = \frac{\int_{H_i} g(\omega) \, \mathbb{P}(d\omega)}{\mathbb{P}(H_i)}.$$

В частности, для всякого множества $B \in \mathcal{F}$, для $g \stackrel{\triangle}{=} 1_B$ имеем плотность f, заданную правилом:

$$h|_{H_i} \stackrel{\triangle}{=} \frac{\int_{H_i \cap B} \mathbb{P}(d\omega)}{\int_{H_i} \mathbb{P}(d\omega)} = \mathbb{P}(B \,|\, H_i) = \mathbb{P}(B \,|\, \mathcal{H})|_{H_i}.$$

Собственно определение условного матожидания

Действительную \mathcal{H} -измеримую \mathbb{P} -интегрируемую случайную величину $h:\Omega\to\mathbb{R}$ будем называть (и обозначать $\mathbb{E}(g|\mathcal{H}))$ условным математическим ожиданием действительной случайной величины g относительно \mathcal{H} , если имеет место

$$\int_{H} g(\omega) \, \mathbb{P}(d\omega) = \int_{H} h(\omega) \, \mathbb{P}(d\omega) \qquad \forall H \in \mathcal{H}.$$

Условное матожидание индикаторной функции 1_A (для $A \in \mathcal{F}$) будем также называть условной вероятностью и обозначать как $\mathbb{P}(A|\mathcal{H})$. Применяя теорему Радона—Никодима для заряда, введенного правилом $\mathcal{H} \ni H \mapsto \int_H \xi(\omega) d\mathbb{P}(\omega)$, получаем Следствие 7. Если матожидание $\mathbb{E}|\xi|$ конечно, то существует и условное математическое ожидание случайной величины ξ относительно σ -подалгебры \mathcal{H} . Более того, оно единственно с точностью до \mathbb{P} -почти всюду.

Те же примеры снова

Пример 1. $\mathbb{E}(g|\mathcal{F}) = g$.

Пример 2. Пусть \mathcal{F}_0 = $\{\Omega,\varnothing\}$. Тогда $\mathbb{E}(g|\mathcal{F}_0)$ = $\mathbb{E}g$.

Пример 3. Для полной группы не более чем счетного числа событий H_1,\ldots,H_n,\ldots и $\mathcal{H}\stackrel{\triangle}{=} \sigma(H_1,\ldots,H_n,\ldots)$ имеем \mathcal{H} - измеримую функцию

$$\mathbb{E}(g|\mathcal{H})|_{H_i} = \frac{\int_{H_i} g(\omega) \, \mathbb{P}(d\omega)}{\mathbb{P}(H_i)}.$$

В частности, для всякого множества $B \in \mathcal{F}$, для $g \stackrel{\triangle}{=} 1_B$ имеем

$$\mathbb{P}(B|\mathcal{H})|_{H_i} \stackrel{\triangle}{=} \mathbb{E}(1_B|\mathcal{H})|_{H_i} = \mathbb{P}(B|H_i).$$

Для не более чем счетного набора $B_i \in \mathcal{F}$, для $g \stackrel{\triangle}{=} \sum_{k \in \mathbb{N}} a_k 1_{B_k}$ имеем

$$\mathbb{E}(\sum_{k\in\mathbb{N}}a_k1_{B_k}|\mathcal{H})=\sum_{k\in\mathbb{N}}a_k\mathbb{P}(B_k\,|\,\mathcal{H}).$$

