CONDUCTING EXPERIMENTS

Conducting experiments

- Training/Testing or Training/validation/testing
- Cross validation (10-folds or 5-folds)
 - $lue{}$ Partition training set into 10 subsets (A_1, \cdots, A_{10}) with equal samples (cardinality)

For i = 1...10

Use A_i as test set and the rest subsets as training set Compute and report average accuracy

Accuracy in two classes

- Simplest case
 - Treat false positive & false negative equally weighted
 - Report accuracy
- Want to distinguish false positive & false negative
 - Errors not equally weighted
 - For medical reports (usually class imbalance)
 - More insights in error analysis
- □ Ref: (https://en.wikipedia.org/wiki/Precision_and_recall)

Accuracy in two classes

- □ P (condition positive): actual positive cases in the data
- N (condition negative): actual negative cases in the data
- □ TP (true positive): predicted positive & real positive
- □ TN (true negative): predicted negative & real negative
- FP (false positive, false alarm, type I error): number of negative cases predicted as positive
- FN (false negative, miss, type II error): number of positive cases predicted as negative

Accuracy in two classes

- Consider the BPSK problem again
- □ "0" is in (-2,1), "1" is in (-1,2)

Sensitivity vs Specificity (medical)

Sensitivity, recall, hit rate, or true positive rate (TPR)

$$TPR = \frac{TP}{P} = \frac{TP}{TP + FN} = 1 - FNR$$

Specificity, selectivity or true negative rate (TNR)

$$TNR = \frac{TN}{N} = \frac{TN}{TN + FP} = 1 - FPR$$

Fall-out or false positive rate (FPR)

$$FPR = \frac{FP}{N} = \frac{FP}{FP + TN} = 1 - TNR$$

□ Miss rate or false negative rate (FNR)

$$FNR = \frac{FP}{P} = \frac{FP}{TP + FN} = 1 - TPR$$

Precision vs recall

- $\square \operatorname{Recall} = \frac{TP}{TP + FN} \text{ (same as sensitivity)}$
- $\Box \text{ Accuracy} = \frac{TP + TN}{P + N}$
- \square Some papers also use F_1 -measure
- $\Box F_1 = 2 \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$
- \square What is the range of F_1

Numerical example in COVID-19

- □ All patients: positive 1% & negative 99%
- □ Test kit with sensitivity 30% & specificity 95%
- \square TP = P × TPR = 0.3 %
- \Box TN = N × TNR = 94.05 %
- □ FP = 99% 94.05% = 4.95 %
- \square FN = 1% 0.3% = 0.7 %
- \square Precision = $\frac{0.3}{0.3+4.95}$ = 5.71%, Recall = 30%
- $\Box F_1 = 2 \frac{0.0571 \times 0.3}{0.0571 + 0.3} = 0.096$

Numerical example

- Tossing a coin to determine positive or negative
- \square FP=99 %/2 = 49.5%
- □ FN=0.5%
- \square Precision $=\frac{0.5}{0.5+49.5}=1 \%$
- □ Recall = 50 %
- Γ $F_1 = 2 \frac{0.01 \times 0.5}{0.01 + 0.5} = 0.020$
- \square Therefore, test kit is slightly better in F_1 -measure

Binary classification with threshold

- Classifier produces values in [0,1] (continuous) instead of binary
 - □ If classifier output > threshold: class 1
 - Else class 2
- How to compare accuracy between two classifiers
 - Unfair comparison if threshold not optimized
 - Want to use curves for fair comparison

- Receiver operating characteristic (ROC) curve is a graphical plot that illustrates the diagnostic ability of a binary classifier system as its discrimination threshold is varied –Wiki
- Plotting the true positive rate (TPR, in Y axis) against the false positive rate (FPR, in X axis) at various threshold settings
- AUC: area under curve (usually ROC AUC)

- Consider the BPSK problem again
- Moving threshold toward left increases TPR, but also increases FPR (FAR)

- As threshold moves toward left (previous picture),
 TPR 1, but FAR aslo 1
- Which method is better in plot below

The left-upper corner is the best case (why?)

□ A curve closer to this corner is better (method II is

better)

- Ref: A. Martin, G. Doddington, T. Kamm, M. Ordowski, and M. Przybocki, "The DET curve in assessment of detection task performance," In Proceedings of the Eurospeech, vol.4, pp.1899–1903, Rhodes, Greece, September 1997
- DET is also widely used, like ROC
- A detection error tradeoff (DET) graph is to plot false rejection rate (Y axis) vs. false acceptance rate (X axis)
- DET curve usually uses log scales in both axes (to make the curves more linear)
 - Shortcoming of using log: origin (0,0) undefined

DET curve without log

Left-lower corner is best (thus, method II is better)

Confusion matrix

- Use TPR, TNR, FPR, & FNR for binary classification
- Use confusion matrix for multiclass classification
- Put "actual" class in horizontal and "predicted class in vertical (or vice versa)
- \square Fill in percentage of $\left(\frac{b_j}{a_i}\right)$ in each cell
 - $\square S_i$: set of test samples in class i
 - $\square a_i$: $|S_i|$ (i.e., total # of elements in the set)
 - lacksquare b_i : elements of S_i predicted as class j

Confusion matrix example

 https://www.researchgate.net/figure/Confusion-matrix-of-theclassification-results-using-different-classifiers_fig3_317547458

Confusion matrix example

- How to read this matrix
- For actual SMC, 77% of samples are correctly predicted as SMC
- Thus, diagonal values are more important
- Matrix may not be symmetric (like this example)

Confusion matrix example

- Guess labels in which axis represents "actual" class
 - Sum over all predicted percentages is 100%
 - Y axis (so add numbers in horizontal direction to 100%)
- $lue{}$ In this example, which class Z is hard to classify
 - DLB
- □ If predicted as DLB, sample is likely from class DLB
- □ If sample in class DLB, it has 43% change predicted as AD, i.e., P(predict as AD | DLB) = 0.43
 - Compute P(DLB | predict as AD)