

Question: Where is the photon?

Binary Classification: a thing of the past

New Achievements in Photon detection -

Hao Tang, Xiaotian Yang, David Ullrich

(Quick) Physical Background

Setup:

Principle:

(Quick) Physical Background

Setup:

BUT: Ambiguous Output

Machine Learning Solution

Key facts on the used Model

- Fully connected feedforward model
- Cut out noise on both sides
- 3.5% of max. workload of the FPGA

Performance of the Model

Comparison of Target vs. Our Performance

Rms = 10dB (Noise Level)

Performance for Different Noise Levels

Training Data With More Noise

Performance Metrics for Different Models (rms0.01)

Question:

Is Machine Learning really the best way to go?

Human vs. Machine

Idea

Algorithm

Comparing to Previous Results

Comparison of Algorithm vs. Machine Learning Performance

Key Message(s)

- We can resolve the actual photon number from the detector data to a *very high* accuracy
- To further optimise, it is useful to *also* further understand the underlying physics