1.1 ID 字段格式

ID 字段使用标准 11 位地址,使用 CANOpen 的地址格式。

10	9	8	7	6	5	4	3	2	1	0
	CAN-ID									
Function code							Node-II)		

MSB

Function code 字段(也叫 COB-ID)主要用于区别 PDO2 命令的发送和接受,PDO2 发送(TPDO 生产者推进器发送信息)为 0101,PDO2 接收(RPDO 消费者控制器请求信息)为 0110。

Node-ID 为推进器的节点 ID, 地址范围从 1~127。

1.2 数据字段格式

数据字段一般为 8Byte 或 4Byte(DLC=8 或 4),携带数据时使用 8Byte 字段,不携带数据(即发送命令或请求数据时)使用 4Byte 字段(删减掉后面 4Byte 即 32Bit 的数据)。如下所示,数据字段高 4 字节为控制命令,低 4 字节为携带数据(int 或 float):

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
	控制	命令		携带数据			
命令 2Byte 子命令 (若有)							

LSB

命令: 2Byte 的字符型命令,例如: TC 既 0x5443 代表力矩控制命令,后续携带数据代表推进器的期望输出力矩值。

子命令: 用于设置或读取系统信息。

携带数据:大端模式,整型和浮点均用 32 位

❖ 以下涉及到位置控制或者返回协议均为舵机和推杆类有效,推进器或者电机产品内部不具备编码器,硬件不支持位置功能,以下将不再重复说明。

1.3 通信逻辑

运动控制器只发送 PDO2 接收(RPDO)命令,获取类命令一般发送 4 字节数据字段(只包含命令),设置类命令发送带数据的 8 字节数据字段。

推进器只发送 PDO2 发送(TPDO)命令,如果接收到任何控制器发出的指令都立刻给出一个反馈(供控制器判断命令是否已正确写入),反馈的 TPDO 数据中数据字段前 4 字节与接收到的 RPDO 数据前 4 字节相同,后面携带的数据表征是否已将命令正确写入推进器中。

举个例子:

设目标推进器地址为 0x30B;

运动控制器发送信号控制命令 TC=5, 既令推进器以+5%信号运行,则发送完整 CAN 总线数据:

帧 ID:0000030B	数据帧	标准帧	DLC:08	Data:54 43 00 00 00 00 00 05
---------------	-----	-----	--------	------------------------------

推进器接到上述命令后,如果能正确设置则回复:

帧 ID:0000028B 数据帧 标准帧	DLC:08	Data:54 43 00 00 00 00 00 05
-----------------------	--------	------------------------------

运动控制器发送信号控制命令 TC=-5, 既令推进器以-5%信号运行,则发送完整 CAN 总线数据:

帧 ID:0000030B 数据帧 标准帧 DLC:08 Data:54 43 00	00 00 00 FF FB
--	----------------

推进器接到上述命令后,如果能正确设置则回复:

帧 ID:0000028B	数据帧	标准帧	DLC:08	Data:54 43 00 00 00 00 FF FB
---------------	-----	-----	--------	------------------------------

如果推进器发生故障(如堵转或被禁止)则回复:

帧 ID:0000028B	数据帧	标准帧	DLC:08	Data:54 43 00 00 00 00 EE EE
---------------	-----	-----	--------	------------------------------

2.1 常规命令

命令字	命令功能	命令格式	命令说明
0x5443	信号控制	54 43 + 00 00 00 00 00 + 百分比	按控制信号的百分比对推进器进行 控制,取值范围 0xff9c-0x0064 (-100~100)
0x5643	转速控制	56 43 + 00 00 00 00 + 转速	单位: rpm, 最低转速 30rpm。

命令字	命令功能	命令格式	命令说明
0x5156	读取转速	51 56 + 00 00	单位: rpm
0x5143	读取电流	51 43 + 00 00	单位: dA, 0.1A
0x5150	读取电压	51 50 + 00 00	单位: dV,0.1V
0x5154	读取电机温度	51 54 + 00 00	单位: ℃
0x4551	读取驱动器温度	45 51 + 00 00	单位: ℃
0x4546	读取错误信息	45 46 + 00 00	详见故障信息解读表
0x4346	清除故障信息	43 46 + 00 00	清除故障信息
0x4D51	请求模式	4D 51 + 00 00	停止自动返回
0x4D4C	低速模式	4D 4C + 00 00	每间隔 1 秒返回一次电流和转速
0x4D4D	中速模式	4D 4D + 00 00	每间隔 100ms 返回一次电流和转速

2.2 修改 ID (0x4349)、波特率功能(0x4342)

设备可以配置 ID 和波特率,正确配置后需要重启后生效。

ID 范围(1~127) 波特率范围(10kbps~1000kbps)

示例命令	正确返回	命令说明		
43 49+ 00 00 00 00 +ID		将设备 ID 修改为 0x37f, 修改		
43 49 00 00 00 00 00 7f	43 49 00 00 00 00 00 7f	成功,重启后生效		
示例命令	正确返回	命令说明		
43 42 + 00 00 00 00 +波 特率		支持波特率 1000kbps ,800kbps, 666kbps,500kbps, 400kbps,		
43 42 00 00 00 00 03 e8	43 42 00 00 00 00 03 e8	333kbps,250kbps, 200kbps, 150kbps,125kbps,100kbps, 83.33kbps(配置时取 83), 80kbps, 66.66kbps(配置时取 66),50kbps, 40kbps, 33.33kbps(配置时取 33), 20kbps, 10kbps		

2.3 超时停机功能 (0x5354)

在指定时间没有收到 CAN 指令即停机;

时间单位 ms, 最小 100ms, 最大时间 60000ms, 00 失效;

停机后再次发送指令即清除,因此故障只能查询到一次。

示例命令	正确返回	命令说明	
53 54 00 00 00 00 时间		配置设备 5S 接收不到指令即	
53 54 00 00 00 00 13 88	53 54 00 00 00 00 13 88	停机	

2.4 返回数据可配置携带信息功能(0x564D)

用户可以配置信号控制、速度控制所返回的信息。

配置信息: byte6:01 返回携带帧头,00 返回不携带帧头; Byte7:见数据表

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0x56	0x4d	0x00	0x00	0x00	0x00	标志	携带信息

		_
	Byte6	
bit7-bit2	bit1	bit0
保留	不携带帧 头标志	停止返 回标志

							`
bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
保留	保留	保留	保留	保留	第三帧	第二帧	第一帧

	Bit7-bit2	保留			
Byte6	bit1	1不携带帧头	0 携带帧头	为1时仅返回一帧,转速 +电压+电流+状态	
	bit0	1 不返回信息	0 返回信息		
	Bit0	1 返回第一帧	0 不返回第一帧	帧头+转速+电压+电流	
Byte7	Bit1	1 返回第二帧	0 不返回第二帧	帧头+状态+电机温度+驱动 器温度	
	Bit2	1 返回第三帧	0 不返回第三帧	帧头+绝对位置+相对位置	

帧头说明:

帧头定义为两个字节, 其算法为: 命令字&0xff00|序号

如命令字为 56 43,则返回帧头为 56 01、56 02、56 03; 如命令字为 54 43,则返回帧头为 54 01、54 02、54 03.

示例:

状态	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	备注	
中兴	0x56	0x4d	0x00	0x00	0x00	0x00	0x01	0x00	米四国应应 有	
发送	命令	〉字		保	留字		不带帧头	返回信息	返回固定信息	
接收	0x56	0x4d	0x00	0x00	0x00	0x00	0x00	0x01	正确应答信息	
发送	0x56	0x43	0x00	0x00	0x00	0x00	0x01	0xf4	转速控制 500rpm	
接收	0x01	0xf3	0x01	0xd2	0x00	0x03	0x00	0x00	应答信息	
接收	转速4	99rpm	电压	46.6V	电流	. 0.3A	状	态	应合信息	
发送	0x56	0x4d	0x00	0x00	0x00	0x00	0x00	0x03	返回第一、第二	
及迟	命令字		保留字			带帧头	返回信息	帧信息		
接收	0x56	0x4d	0x00	0x00	0x00	0x00	0x00	0x03	应答信息	
发送	0x56	0x43	0x00	0x00	0x00	0x00	0x01	0xf4	转速控制 500rpm	
	0x56	0x01	0x01	0xf0	0x01	0xe0	0x00	0x04		
接收	第一点	贞帧头	转速4	96rpm	电压	48.0V	电流	0.4A	第一帧数据	
接收	0x56	0x02	0x00	0x00	0x00	0x18	0x00	0x10	第二帧数据	
安化	第二帧	贞帧头	状	态	电机温	.度 24℃	驱动器沿	温度 16℃	为一 恢数据	
发送	0x56	0x4d	0x00	0x00	0x00	0x00	0x02	0x00	不返回信息	
及达	命令	今字	保留字				不返回	无效配置	不吸凹信息	
接收	0x56	0x4d	0x00	0x00	0x00	0x00	0x02	0x00	正确应答信息	
发送	0x56	0x43	0x00	0x00	0x00	0x00	0x01	0xf4	转速控制 500rpm	
无返回										

2.5 上电即持续返回信息功能(0x5352)

配置完即生效,重启后保留配置。

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0x53	0x52	0x00	0x00	0x00	返回信息	间隔	耐间

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
保留	保留	保留	保留	保留	信息3	信息 2	信息1

byte5 用于配置上电后返回的信息,配置信息如下表所示

BitO: 信息 1 数据 41 01 + 转速 + 电压 + 电流

Bit1: 信息 2 数据 41 02 + 状态 + 电机温度 + 驱动器温度

Bit2: 信息 3 数据 41 03 + 绝对位置 + 相对位置

byte6 byte7 用于配置返回间隔,单位 ms

2.6 故障记录查询功能(0x4652)

设备可以查询本次启动后产生的所有故障记录。

示例:

发送: 46 52 00 00 查询故障记录

接收: 46 52 00 00 00 00 40 12 电机温度异常/欠压保护/EE 数据错误

46 52: 帧头, 40 12: 故障数据, 详见故障信息解读表

2.7 扩展命令

命令字	命令功能	命令格式	命令说明
0x5350	修改系统参数	53 50 + 参数类型+ 参数	内部配置指令
0x5250	读取系统系统参数	52 50 +参数类型	如有需要请联系客 服

3 故障信息解读表

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	备注	
Byte0				0x45					命令	
Byte1		0x46								
Byte2		0x00								
Byte3		0x00								
Byte4		0x00								
Byte5		0x00								
Byte6	预留	预留	电机温 度传感 器故障	驱动器温 度传感器 故障	通讯超时	零点保护	电机过温	驱动过温		
Byte7	编码器 故障	堵转 保护	预留	欠压保护	过压 保护	过流 保护	EE 数据	EE 读写		

例如:

过压保护返回 45 46 00 00 00 00 00 08

过流保护返回 45 46 00 00 00 00 00 04

电机过温返回 45 46 00 00 00 00 02 00

零点保护+欠压保护 返回 45 46 00 00 00 00 04 10

保护机制如下: 故障等级 1 为严重故障关闭输出;

故障等级2为一般故障将限制输出或只上报故障。

字节	位	参数	阈值	处理	实时	恢复	故障等级
	bit7	预留					
	bit6	预留					
	bit5	电机传感 器故障		上报故障	是	是	2
	bit4	驱动器传 感器故障		上报故障	是	是	2
Byte6	bit3	通讯超时		上报故障 关闭输出	是	是 再次发送指令	2
	bit2	零点保护		上报故障 禁止输出	是	是 信号过零点	2
	bit1	电机过温	120℃	上报故障 限制输出	是	是 ≤100℃	2
	bit0	驱动过温	120℃	上报故障 限制输出	是	是 ≤100℃	2

字节	位	参数	阈值	处理	实时	恢复	故障等级
	bit7	编码器故 障		上报故障 位置指令失效	是	否	2
	bit6	堵转保护		上报故障 关闭输出	是	否	1
	bit5	预留					
D 4 7	bit4	欠压保护		上报故障	是	是	2
Byte7	bit3	过压保护		上报故障	是	是	2
	bit2	过流保护		上报故障 关闭输出	是	否	1
	bit1	EE 数据错 误		上报故障 关闭输出	是	否	1
	bit0	EE 读写错 误		上报故障 关闭输出	是	否	1

4 位置控制功能(支持舵机、推杆、含编码器电机)

4.1 绝对位置控制

● 绝对位置控制指令(LA)

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0x4c	0x41	目标	速度		目标	位置	

说明: 目标速度精度为 1rpm, 为零时不启动 目标位置单位为 0.1°, 分辨率 0.1°, 取值范围为-1799~1799

● 读取绝对位置(QA)

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	
0x51	0x41	0x00	0x00	无				

● 设置当前位置为绝对位置零点(AZ)

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0x41	0x5a	0x00	0x00	0x00	0x00	0x00	0x00

● 设置绝对位置安全范围(SPLA)

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0x53	0x50	0x4c	0x41	反向最大值		正向旨	最大值

说明: 如果控制位置超过了设置的安全范围设备不执行指令

● 读取绝对位置最大值(RPLA)

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0x52	0x50	0x4c	0x41	反向最大值		正向旨	最大值

4.2 相对位置控制

■ 相对位置控制(LR)

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0x4c	0x52	目标	目标速度		目标	位置	

说明: 目标速度精度为 1rpm;

目标速度为零时不启动,持续发送,不累加目标位置;

目标速度不为零时启动,持续发送,累加目标位置。

■ 读取相对位置(QR)

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0x51	0x52	0x00	0x00	无			

■ 设置当前位置为相对位置零点(RZ)

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0x52	0x5a	0x00	0x00	0x00	0x00	0x00	0x00

■ 相对位置清零(RC)

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0x52	0x43	0x00	0x00	0x00	0x00	0x00	0x00

4.3 通用急停指令

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0x4C	0x53	0x00	0x00	0x00	0x00	0x00	0x00