Continuous Random Variables and the Normal Distribution

Dr Tom Ilvento

Department of Food and Resource Economics

Overview

- Most intro stat class would have a section on probability - we don't
- But it is important to get exposure to the normal distribution
- We will use this distribution, and the related tdistribution, when we shift to inferences
- First we need to understand the normal distribution
- And feel comfortable with the Standard Normal Table

2

Probability

- Probability is a numerical measure of the likelihood that Event A will occur
 - P(A)
 - Prob(A)
- The basic definition is:
- It is a proportion which goes from 0 to 1

.5

0

Certain

Impossible

3

Random Variables

- Random Variables variables that assume numerical values associated with random outcomes from an experiment
- Random variables can be:
 - Discrete
 - Continuous
- For random variables there is
 - A probability distribution
 - Expectation and variance

The probability of the number of males in three live births

- This discrete distribution shows the probability of 0, 1, 2, or 3 males in three births
- The mean and variance are:
 - Mean = 1.5
 - Variance = .75
 - Std Dev = .866

5

What are Continuous Random Variables?

- Unlike Discrete Random Variables, Continuous Random Variables take on any point in the interval
- Thus the probability distribution is continuous
- It is referred to as a Probability Density Function
 - PDF
 - f(x)

(

When dealing with a pdf...

- It is not particularly useful to think of a probability when a continuous random variable takes on a particular value
 - P(x=a) = 0
- But, we can think of areas under the curve as reflecting a probability
 - P(a<x< b) = some proportion of the curve
 - e.g., P(10 < x < 20)
 - Or the probability up to a point, or after a point
- This is a key concept!!!!!

7

You might want to get a copy of the Standard Normal Distribution handout

- There is a handout
- There is also an Excel file Normal.xls

Standard Normal Curve Probability Distribution The table is based on the upper right 1.0 of the Normal Distribution: total area shown is 5. The Zeons values are represented by the column value + now value, up to two decimal places the probabilities up the Zeons are in the cols.										
z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1738	0.1772	0.1808	0.1844	0.1879
0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
0.8	0.2881	0.2910	0.2939	0.2967	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133
0.9	0.3159	0.3188	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
1.1	0.3643	0.3865	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4506	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4688	0.4693	0.4699	0.4706
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817
2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
2.2	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.4890
2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916
2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4938
2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952
2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4963	0.4964
2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974
2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.4980	0.4981
2.9		0.4982		0.4983	0.4984	0.4984	0.4985	0.4985	0.4988	0.4988
3.0	0.4987	0.4987	0.4987	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990	0.4990
	Rejection	regions	forComr	non Valu	es of Alpi	ha				
29 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4988										

alpha = .10	z <-1.28	z > 1.28	z < -1.645 or z > 1.645
alpha = .05	z < -1.645	z > 1.645	z < -1.96 or z > 1.96
alpha = .01	z < -2.33	z>233	z < -2.575 or z > 2.575

The Normal Distribution

- One bell shaped, symmetrical distribution is the normal distribution
- It is defined by two parameters

• µ the Mean

 $f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-(1/2)[(x-\mu)/\sigma]^2}$

• **o** The Standard Deviation

- For every distribution with a mean (μ) and a standard deviation (σ) there is a different normal curve
- Thus, there are an infinite number of normal curves
- If x is a random variable distributed as a normal variable then it is designated as:

• x ~ N(mean, std dev)

9

П

Properties of the Normal Distribution

- The area under the curve = 1
- Symmetrical, Bell-shaped curve
- Defined by the mean and standard deviation
- Mean = Median = Mode
- The IQR is 1.33 Std Deviations wide (.677 below or .677 above)
- It has an infinite range

Infinate Number of Normal Curves

 For every variable distributed normally with a mean (μ) and a standard deviation (σ) there is a different normal curve

Probability Distribution Function For the Normal Distribution

Mean = 100 s = 20

10

Standard Normal Distribution

- Since its properties are defined by a formula, we can a priori define probabilities associated with the normal curve, but each combination of a mean and std deviation results in a different normal curve
- If we convert our normally distributed variable to z-scores, we make it possible to use one table of probabilities for all normal pdf
- This is called the Standard Normal Distribution
 - mean = 0
 - std dev = 1

• sid dev

Finding Areas under the Normal

• Basic Steps

- 1. Draw the curve and the area we are interested in
- 2. Convert the values to zscores
- Read the proportions in the table, and do any additional calculations that may be necessary

13

Look at the Standard Normal Table

- There are several types of tables
- We will work with a table where only ½ cumu of the curve is presented
- Since the distribution is symmetrical,
 - · Both halves are identical, and
 - each half represents p = .5
- So our table will only calculate probabilities for the right hand side of the distribution
 - Moving from the center, μ = 0, toward the right tail

14

Standard Normal Table - a partial view of the table

- The table allows for two decimal places of a zscore
- Vertical axis is the ones and first decimal place
- Horizontal axis is the second decimal place
- To find the probability associated with a zscore of 1.08
- This value represents the probability from μ = 0 up to 1.08 standard deviations above the mean - .3599

The probability associated with I standard deviation

- The probability associated with z = 1.00 is the area under the curve from z=0 (the mean or center) to z = 1.00
- Or one standard deviation from the mean
- From the table, this probability is .3413

Find the probabilities from the Standard Normal Table

_	z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
	0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
Z = .45	0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
· L40	0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
	0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
Z = 1.25	0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879
	0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
- 7 - 4.00	0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
Z = 1.68	0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
	0.8	0.2881	0.2910	0.2939	0.2967	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133
• $Z = 2.00$	0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
2 - 2.00	1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
• $Z = 2.09$	1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
2 - 2.00	1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
	1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
	1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
	1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
	1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
	1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
Note: The probability	1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
from the table means the	1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
probability from Z=0 up to	2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817
the Z value											
	2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
											17

Remember the Empirical Rule?

- For z = 1.0 One standard deviation above the mean
 - P(0 < z < 1) = .3413
 - ±1.0s would be 2(.3413) = .6826 or 68.26%
- For z = 2 Two standard deviations from the mean
 - P(0 < z < 2) = .4772
 - ±2.0s would be 2(.4772) = .9544 or **95.44%**
- For z = 3 Three standard deviations from the mean
 - P(0 < z < 3) = .4987
 - ±3.0s would be 3(.4987) = .9544 or 99.74%

18

Problem

- A z-score of zero is at the mean, with a probability of zero
- A z-score of 1.5 is 1.5 standard deviations above the mean, which corresponds to a probability of .4332 in the table
- We want the area from the mean to 1.5 standard deviations from the mean
- Reading from the table, the probability is .4332
- Here is a graph of the probability.

Problem

- Suppose a variable is distributed normally with a mean = 300 and a standard deviation of 30
 - $X \sim N$ $\mu = 300 \sigma = 30$
- What is the probability that a value of x is more than 2 standard deviations away from the mean?
- STEPS:
 - Draw it out
 - Calculate z-score
 - Check the table
 - · Do any final calculations

20