

Stat 608 Chapter 6

Regression Diagnostics for Multiple Regression

- 1. Draw scatterplots of the data:
 - Standardized residual plots
 - Marginal model plots
 - Inverse response plots
 - Plots for constant variance
- 2. Identify leverage points & outliers
- 3. Assess relationships between predictors
 - Added variable plots
 - Variance inflation factor
 - R² adjusted
 - Forward, backward, stepwise, AIC, SBC selection (Chapter 7)

Model Checking

$$E[Y|X = x] = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$
$$Var(Y|X = x) = \sigma^2$$

- When a valid model has been fit, plots of the residuals against _____ will:
 - have a random scatter of points
 - have constant variability as the horizontal axis increases
- The residual plots should still have no patterns. Patterns indicate the model is not valid.

Model Checking

If both of the following are true, then residual plots help determine the function g.

$$E[Y|X = x] = g(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p)$$
$$E[X_i|X_j] \approx \alpha_0 + \alpha_1 X_j$$

- Otherwise, Cook & Weisberg: "Using residuals to guide model development will often result in misdirection, or at best more work than would otherwise be necessary."
- **Example:**
 - True model: three predictors.
 - We fit a model with two.
 - Residual plots are potentially non-random.
- We can't use residual plots to tell us what part of the model has been misspecified.

Example 1: Function g DNE

$$E[Y|X] = \frac{|x_1|}{2 + (1.5 + x_2)^2} = \frac{g_1(x_1)}{g_2(x_2)}$$

We need two functions to model the mean.

Example 1: Function g DNE

Example 1: Function g DNE

■ The usual interpretation of the relationship between y and x2 (the fan shape) is that the variance is non-constant, but the data was generated with errors with constant variance!

■ We can't use residual plots to tell us what part of the model has

been misspecified.

Example 2: predictors are not linearly related

Mean function is not too crazy:

$$Y = x_1 + 3x_2^2 + e$$

But the predictors are related via sine:

$$E[X_2|X_1] = sin(X_1)$$

Example 2: predictors are not linearly related

Example 2: predictors are not linearly related

First we try the usual regression model to see what the residual plots look like:

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + e$$

Example 2: predictors are not linearly related

Example 2: predictors are not linearly related

- The usual interpretation might be that we should use a periodic function in x_1 in the model, but that's not true in this case.
- The highly nonlinear relationship between ______ has produced the nonrandom plot in the standardized residuals against x₁.
- Moral: We can't use residual plots to tell us what part of the model has been misspecified.

Leverage

Recall that:

$$\hat{\mathbf{Y}} = \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{H}\mathbf{Y}$$
 $\mathbf{H} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$
 $\hat{Y}_i = h_{ii}Y_i + \sum_{j \neq i} h_{ij}Y_j$

That is, each predicted value of Y is a linear combination of all the values of Y in the data set, generally with the other values being more lightly weighted than the one we are predicting for (Y_i).

As with simple linear regression, if any of the h_{ii} values is much different from the others, it means that single observation may be changing the model much more than the others.

Leverage

■ Rule of thumb:

$$h_{ii} > 2 \times average(h_{ii}) = 2 \times \frac{(p+1)}{n}$$

Classify a point as a point of high leverage if its hat value exceeds the above.

Marginal Model Plots: Assessing Mean

Does the simple linear regression model (1) model E[Y | X] adequately?

$$Y = \beta_0 + \beta_1 x + e \tag{1}$$

One way to find out: Fit a nonparametric estimator like loess, and see whether it agrees with (1).

$$Y = f(x) + e \tag{2}$$

Marginal Model Plots: Assessing Mean

$$Y = \beta_0 + \beta_1 x + e$$
$$Y = f(x) + e$$

Marginal Model Plots: Assessing Mean

20 25 30

15

Years of Experience

$$Y = \beta_0 + \beta_1 x + \beta_2 x^2 + e$$
$$Y = f(x) + e$$

Marginal Model Plots: Multiple Predictors

If we have two predictor variables, we wish to compare models (1) and (2) below.

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + e \tag{1}$$

$$Y = f(x_1, x_2) + e$$
 (2)

■ It's less obvious what to do next. We don't want to make threedimensional plots and we can't make k-dimensional plots in general.

Marginal Model Plots: Multiple Predictors

Cook and Weisberg (1997) utilize the following result:

$$E[Y] = E[E[Y|X]]$$

■ For our linear model context, we use:

$$E_1[Y|x_1] = E[E_1(Y|x)|x_1]$$

- To compare the left and right hand sides of the equation, we make two loess fits and compare to see that they match.
- Left hand side: Plot Y vs. x_1 . Fit a loess smooth. Compare that fit to the right hand side (next slide), a plot of \hat{y} from Model 1 against x_1 .

Marginal Model Plots: Multiple Predictors

$$E_1[Y|x_1] = E[E_1(Y|x)|x_1]$$

Right hand side (inside):

$$E_1[Y|x] = E_1(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + e|x)$$
$$= \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

■ This can be estimated by:

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2$$

■ So we should plot the fitted values of model (1) against x_1 , getting a loess smooth, and compare to the previous smooth of y vs. x_1 .

Marginal Model Plots: Multiple Predictors

$$E_1[Y|x_1] = E[E_1(Y|x)|x_1]$$

Proof of equality: Right hand side:

$$E[E_1[Y|x]|x_1] = E(\beta_0 + \beta_1 x_1 + \beta_2 x_2 | x_1)$$

= $\beta_0 + \beta_1 x_1 + \beta_2 E[x_2 | x_1]$

Left hand side:

$$E_1[Y|x_1] = E(\beta_0 + \beta_1 x_1 + \beta_2 x_2 | x_1)$$

= $\beta_0 + \beta_1 x_1 + \beta_2 E[x_2 | x_1]$

Marginal Model Plots: Multiple Predictors

- It's easier to put both loess plots on the same graph.
- We repeat this marginal model plot for each predictor.

Marginal Model Plots: Multiple Predictors

■ Since the two fits in the following plot differ markedly, we conclude that the model below is not a valid model for the data.

$$Food = \beta_0 + \beta_1 Service + \beta_2 Decor + \beta_3 Cost + e$$

Transformations (Box Cox: Approach 1)

Step 1: Transform all of the predictors to multivariate normality

Multivariate Normal Distribution

Step 2: Transform Y given the predictors, so that the residuals are as normally distributed as possible. (I.e. Consider the model below.)

$$Y = g(\beta_0 + \beta_1 \psi_S(x_1, \lambda_{X_1}) + \ldots + \beta_p \psi_S(x_p, \lambda_{X_p}))$$

Transformations: State Spending

EX: Per capita state and local expenditures

ECAB: Economic ability index

MET: % of population in metropolitan areas

YOUNG: % of population aged 5 – 19 years

OLD: % of population aged 65 and older

WEST: 1 = western state, 0 = otherwise

Transformations: State Spending

Step 1: Transform Predictors

yjPower Transformations to Multinormality

```
Est. Power Std. Err. Wald Lower Bound Wald Upper Bound
MET
        1.0268 0.1715
                                0.6908
                                               1.3629
       1.2373 0.6815
                           -0.0985
                                               2.5731
ECAB
                             -2.1923
YOUNG 0.4653 1.3559
                                               3.1229
       1.9089 0.8089
                               0.3235
                                               3.4943
OLD
```

Likelihood ratio tests about transformation parameters LRT df pval LR test, lambda = (0 0 0 0) 63.741169 4 4.738432e-13 LR test, lambda = (1 1 1 1) 1.452826 4 8.349635e-01

Transformations: State Spending

Step 2: Transform Y, given predictors

```
lm.1<-lm(EX ~ MET + ECAB+ YOUNG+ OLD + WEST)
tranmod <- powerTransform(lm.1, family="yjPower")
summary(tranmod)</pre>
```

```
Est.Power Std.Err. Wald Lower Bound Wald Upper Bound Y1 0.1668 0.5829 -0.9757 1.3094
```

Likelihood ratio tests about transformation parameters LRT df pval LR test, lambda = (0) 0.08138015 1 0.7754357

LR test, lambda = (1) 2.10124406 1 0.1471793

Transformations: Using Logs for % Effects

$$log(Y) = \beta_0 + \beta_1 \log(x) + \beta_2 x_2 + e$$

$$\beta_2 = \frac{\Delta \log(Y)}{\Delta x_2}$$

$$= \frac{\log(Y_2) - \log(Y_1)}{\Delta x_2}$$

$$= \frac{\log(Y_2/Y_1)}{\Delta x_2}$$

$$\approx \frac{Y_2/Y_1 - 1}{\Delta x_2} \text{ (using } \log(1+z) \approx z \text{ and assuming } \beta_2 \text{ is small)}$$

$$= \frac{100(Y_2/Y_1 - 1)}{100\Delta x_2}$$

$$= \frac{\%\Delta Y}{100\Delta x_2}$$

- For every 1 unit change in x_2 , the model predicts a $100 \times \beta_2$ % change in Y.
- For every 1% change in x_1 , the model predicts a β_1 % change in Y.

Logarithms and % Effects

 $log(SundayCirculation) = \beta_0 + \beta_1 log(WeekdayCirculation) + \beta_2 Tabloidwithcompetitor + e$

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.44730 0.35138 -1.273 0.206
log(Weekday) 1.06133 0.02848 37.270 < 2e-16 ***
Tabloid -0.53137 0.06800 -7.814 1.26e-11 ***
```

Because of the log transformation, the model above predicts:

- A 1.06% increase in Sunday Circulation for every 1% increase in Weekday Circulation
- A 53.1% decrease in Sunday Circulation if the newspaper is a tabloid with a serious competitor

Multicollinearity

Multicollinearity: strong correlations between predictors

- Regression coefficients can have the wrong sign
- Many of the predictor variables may not be statistically significant when the overall F-test is highly significant.

Multicollinearity

- Problem: X1 and X2 are too strongly correlated with each other.
- When Rank(X) is not the number of columns of X, clearly we cannot estimate β.
- When the columns of X are pretty close to being linear combinations of one another:
 - The variables are effectively carrying very similar information about the response variable.
 - The parameter estimates become unstable, and variance estimates become large.

Added Variable Plots

- Goal: Find out whether X_2 adds anything to the model after X_1 has already been added.
- Idea: We're interested in the following Final Model:

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{Z}\alpha + \mathbf{e}$$

(Variable Z is a single variable, so α is a scalar.)

+ Added Variable Plots

+ Added Variable Plots

Added Variable Plots

Added Variable Plots

- Added variable plots enable us to visually assess the additional effect of each predictor, after the others have been included in the model.
- Added variable plots should display straight line relationships. If they don't, the model is misspecified.
- The slope from the added variable plot is the slope of the multiple linear regression model for that variable.
- The scatter of the points in the added variable plot visually indicates which points are most influential in determining the estimate of α .

Review

- a) Marginal model plots measure whether the mean is adequately modeled; added variable plots measure whether each variable contributes something the others don't.
- Marginal model plots measure whether each variable contributes something the others don't; added variable plots measure additional contributions to the mean function.

Bridges

- Predicting design time of bridges is helpful for budgeting and scheduling purposes.
- The variables are as follows:
 - Y = Time = design time in person-days
 - Darea = Deck area of bridge
 - Ccost = Construction cost
 - Dwgs = Number of structural drawings
 - Length = Length of bridge
 - Spans = Number of spans (space between towers)

Summary

- Remember that scatterplot matrices in two dimensions and correlation matrices only measure whether each individual predictor is correlated with the others; it doesn't account for relationships like $x_1 = x_2 + x_5$.
- A consequence of multicollinearity is that the determinant of X'X is near 0; that means variances of the parameter estimates are going wild. One more point could completely change the parameter estimates from positive to negative.
- Multicollinearity can invalidate a model which is otherwise valid.
 Our bridges model is invalid.

Summary

- When two or more highly correlated predictor variables are included in a regression model, they are effectively carrying very similar information about the response variable. Thus, it is difficult for least squares to distinguish their separate effects on the response variable.
- In this situation the overall F-test will be highly statistically significant but very few of the regression coefficients may be statistically significant.

Multicollinearity and Variance Inflation Factors

Consider the multiple regression model:

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_p x_p + e$$

If R_j^2 denotes the value of R^2 from regressing x_j on the other predictors, then:

$$Var(\hat{eta}_j) = rac{1}{1 - R_j^2} imes rac{\sigma^2}{(n-1)S_{x_j}^2}$$
, $j = 1 \dots$, p

The first fraction is called the jth variance inflation factor. We say that our model has problems with multicollinearity if VIF > 5.

Omitted Variables

- **Spurious correlation** is found when two variables being studied are related because both are related to a third variable currently omitted from the regression model.
- Ex: Number of ice cream cones sold and number of shark attacks are positively correlated. Weather is called a **lurking variable**.
- Ex: Hormone replacement therapy and estrogen replacement therapy for women were associated with a lower risk of coronary heart disease. But in randomized controlled trials, the association wasn't found. Why not?

Omitted Variables

Model we should fit:
$$Y = \beta_0 + \beta_1 x + \beta_2 \nu + e_{Y \cdot X \cdot V}$$

Relationship between predictors: $u = lpha_0 + lpha_1 x + e_{
u \cdot x}$

Model we actually fit if we don't use v:

$$Y = (\beta_0 + \beta_2 \alpha_0) + (\beta_1 + \beta_2 \alpha_1)x + (e_{Y \cdot x, \nu} + \beta_2 e_{\nu \cdot x})$$

Two cases:

- $\alpha_1 = 0$ and/or $\beta_2 = 0$: The omitted variable has no effect on the regression model that has only x.
- α 1 ≠ 0 and β 2 ≠ 0: The omitted variable does have an effect on the model that has only x.
 - **Ex:** Y and x could be highly correlated even when $\beta_1 = 0$.
 - **Ex:** Y and x could be strongly negatively associated even when $\beta_1 > 0$.