

Europäisches Patentamt European Patent Office

Office européen des brevets

EP 1 652 916 A1

(12)

FUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC

- (43) Date of publication: (21) Application number: 04771919.0
- (51) Int Cl.: 03.05.2006 Builetin 2006/18
- (22) Date of filing: 13.08.2004

C12N 15/00 (1980.01) A01H 5/00 (1968.09)

(11)

- (86) International application number: PCT/JP2004/011958
- (87) International publication number: WO 2005/017147 (24.02.2005 Gazette 2005/08)
- (84) Designated Contracting States: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR
- (30) Priority: 13.08.2003 JP: 20032931215 29.06.2004 JP 2004192034
- (71) Applicant: INTERNATIONAL FLOWER DEVELOPMENTS Proprietary Limited Victoria 3083 (AU)
- (72) Inventors:
 - · TANAKA, Yoshikazu Otsu-shi, Shiga 5200246 (JP)

- FUKUI, Yuko Takatsuki-shi, Osaka 5691123 (JP)
- TOGAMI, Junichi
- Takatsuki-shi, Osaka 5690814 (JP) KATSUMOTO, Yukihisa
- Mishima-gun, Osaka 6180001 (JP) MIZUTANI, Masako
- Kyoto-shi. Kyoto 6158086 (JP)
- (74) Representative: Denison, Christopher Marcus Mewburn Ellis LLP York House 23 Kingsway London WC2B 6HP (GB)

PROCESS FOR PRODUCING ROSE WITH MODIFIED COLOR (54)

A method for producing a rose characterized by artificially suppressing the rose endogenous metabolic pathway and expressing the pansy gene coding for flavonoid 3',5'-hydroxylase.

Description

Technical Field

[0001] The present invention relates to a new method for producing a rose with altered petal colors. More specifically, it relates to a method for producing a rose by artificially inhibiting the endogenous metabolic pathway of rose, and expressing the gene coding for pansy flavonoid 3',5'-hydroxylase and the gene coding for dihydroflavonol reductase which reduces dihydromyricetin.

Background Art

25

30

[0002] Flower petals perform the role of attracting pollinators such as insects and birds, which transport plant pollinand therefore flower colors, shapes, patterns and odors have evolved in tandem with pollinators (Honda, T. et al., Gendai Kagaku, May, 25-32(1998)). Probably as a result of this, it is rare for a single species of flower to exhibit several different colors, and for example, rose or carnation varieties exhibiting violet to blue colors do not exist, while iris or gentition varieties exhibiting bright red colors do not exist. Because flower color is the most important aspect of petals for purposes of appreciation as well, flowers of different colors have traditionally been bred by crossbreeding. The rose, known as the "queen of flowers" and haying fish commercial value, has also been crossbred throughout the world.

[0003] For example, the current yellow rose cultivar was created by crossbreeding of *Rosa loetida*, originating from western Asia, with a non-yellow rose variety. However, because flower color is determined by the genetic capacity of the plant, there has been a limit to the flower colors that can currently be produced in cross-bred strains whose available genetic sources are restricted (Tanaka et al. Plant Cell Physiol. 39, 1119-1126, 1998; Mol et al. Curr. Opinion Biotechnol, 198-201 1999), Among these, the cultivation of blue roses has been thought impossible and has been considered the "holy grait" of colors (Oba, H., "Bara no Tanjo", 1997, Chukoshinsho; Suzuki, M., "Shokubutsu Bio no Mahou: Aoi Bara mo Yume dewanakunatra", 1990, Kodansha Bluebacks: Saisho, H., "Aoi Bara", 2001, Shocakkan

[0004] Although 'blue rose' varieties currently exist, these are actually pale violet roses. The first improved variety of 'blue rose' by crossbreeding is said to have been the light-violet shaded grey-colored 'Grey Pearl' created in 1945. The light-violet pink-colored 'Staring Silver' was later created in 1957, and these varieties were crossed to produce several pale violet roses such as 'Blue Moon' (1964) and 'Madam Violet' (1981). These pale violet roses and other roses were then utilized in further breeding to create light-grey-colored roses such as 'Seiryu' (1992) and 'Blue Heaven' (2002), which were halled as new types of 'blue roses'.

[0005] However, these flower colors are not actually blue but merely greyish-dull pink, and despite many years of breeding efforts, there is still no example of a truly "blue" rose. In horticultural industry, the group of colors from violet to blue is generally considered "blue" according to the RHSCC (The Royal Horticultural Society Colour Chart). It is an aim of the present invention to create rose plants having flower colors falling within the "violet group", "violet-blue" group and "blue group" according to the Royal Horticultural Society Colour Chart).

[0006] Flower colors derive mainly from the three compound groups of anthocyanins, carotenoids and betalains, but it is the anthocyanins, having the widest absorption wavelength range (from orange to blue), that are responsible for blue color. Anthocyanins belong to the flavonoid family and are blosynthesized by the metabolic pathway shown in Fig. 1. Anthocyanins are normally localized in the vacuoles of epithelial cells. The color shade of anthocyanins (i.e. flower color) depends largely on the structure of the anthocyanins, with more numerous hydroxyl groups on the B ring resulting in a bluer color. Hydroxylation of the B ring is catalyzed by flavonoid 3"-hydroxylase (F3"H) and flavonoid 3",5"-hydroxylase (F3"S"H). Absence of F3"H and F3"5"H activity leads to synthesis of pelargonidin (orange to red colors), presence of F3"H activity leads to synthesis of cyanidin (red to rouge colors) and presence of F3"H activity leads to synthesis of delphinidin (violet color).

[0007] These anthocyanidins are modified with sugars and acyl groups to produce an assortment of anthocyanins. Generally speaking, a larger number of modifying aromatic acyl groups correlates to bluer anthocyanins. Anthocyanins also produce quite different colors depending on the vacuole pH and the copresent flavonols and flavones or metal lons (Saito, N., Tanpakushitsu Kakusan Kouso, 47 202-209, 2002; Broullard and Dangles, in the flavonoids: Advances in Research since 1986 (Ed. by Harborne) Capraman and Hall, London pp.565-588; Tanaka et al. Plant Chypsiol. 39 1119-1126, 1998; Mol et al., Trends in Plant Science 3, 212-217, 1998; Mol et al., Curr. Opinion Biotechnol. 10, 198-201 1999)

[0003] Rose flower petal anthocyanins are derivatives of pelargonidin, cyanidin and peonidin, whereas no delphinidin derivatives are known (Biolley and May, J. Experimental Botany, 44, 1725-1734 1993; Mikanagi Y., Saito N., Yokoi M. and Tatsuzawa F. (2000) Biochem. Systematics Ecol. 28:887-902). This is considered to be the main reason for the lack of blue roses. Existing roses have been created by crossbreeding of crossable related rose species (R. mutillora, R. chineriss, R. quianten, R. moschata, R. qallaca, R. whichuraiana, R. foetida, etc.).

[0009] The fact that no blue rose has been achieved in spite of repeated efforts at crossbreeding is attributed to the

FP 1 652 916 Δ1

lack of delphinidin production ability by rose-related varieties. Production of delphinidin in rose petals would require expression of F3'5'H in the petals as mentioned above, but F3'5'H is believed to be non-expressed in the petals of rose and rose-related varieties. Thus, it is likely impossible to obtain a blue rose by accumulating delphinidin in the petals through crossbreading. It is known that trace amounts of the blue pigment rosacyanin are found in rose petals and its chemical structure has been determined (Japanese Unexamined Patent Publication No. 2002-201372), but oreports are known regarding augmentation of rosacyanin to create a blue rose, and no findings have been published on the rosacyanin bisowthesis pathway or the relevant enzymes or denes.

[0010] Examples of blue or violet colors produced by biological organisms also include indigo plant-produced indigo (for example, Appl. Microbiol. Biotechnol. Feb. 2003, 80(6):720-5) and microbially-produced violacein (J. Mol. Microbiol. Biotechnol. Oct. 2000 2(4):513-9; Org. Lett., Vol.3, No.13, 2001, 1981-1984), and their derivation from tryptophan and their biosynthetic pathways have been studied.

[0011] Blue pigments based on gardenia fruit-derived iridoid compounds (S. Fujikawa, Y. Fukui, K. Koga, T. Iwashita, H. Komura, K. Nomoto, (1987) Structure of genipocyanin G1, a spontaneous reaction product between genipin and formation from gardenia fruits, J. Ferment. Technol. 65 (4), 419-24) and lichen-derived azulenes (Wako Pure Chemical Industries Co., Ltd.) are also known, but no reports are known of expressing these in plant flower petals to produce blue-colored flowers.

[0012] It has been expected that a blue rose could be created by transferring the F3'5'H gene expressed by other plants into rose and expressing it in rose petals (Saisho, H., "Aol Bara", 2001, Shopakkan). The F35'H gene has been obtained from several plants including petunia, gentian and Eustoma russellianum (Holton et al. Nature 366, 276-279, 1993; Tanaka et al. Plan Cell Physiol. 37, 711-716 1996; WO93/18155). There are also reports of transformed varieties of rose (for example, Firocababy et al. Bio/Technology 12:883-888 (1994); US 5480789; US 5792927; EP 536,327 A); US 2001007/157 A)).

[0013] Actual transfer of the petunia F3'5'H gene into rose has also been reported (WO93'18155, WO94/28140).

[0014] However, it has not been possible to obtain a blue rose, and it is believed that obtaining a blue rose will require

[0014] However, it has not been possible to obtain a blue rose, and it is believed that obtaining a blue rose will require a modification which alters the metabolism of flower plaments sulted for rose.

[0015] On the other hand, it has been confirmed that transfer of the F3'5'H gene into red carnation, which produces pelargondin instead of delphinidin, leut state to accumulation of both pelargondin and delphinidin, but that the flower color is only altered to a slightly purplish red (WO94/28140) This result suggests that it is not possible to obtain a "blue" carnation simply by expression of F3'5'H, and that it is necessary to inhibit the metabolic pathway to endogenous swithesis of pelargondinih by carnation.

[0016] In order to avoid competition with the camation endogenous metabolic pathway (reduction of dihydrokaempferol (DHK) by dihydroflavonol reductase (DFR)), a variety lacking DFR was selected from among white camations. The 5°SH gene and petunia DFR (which is known to efficiently reduce dihydromy/netin (DHM) without reducing DHK) gene were transferred into camation. This resulted in one case of successfully obtaining a recombinant camation with a delphinidin content of about 100% and a blue-violet flower color previously not found in carnation (Tanpakushitsu Kakusan Kouso, Vol.47, No.3, p228, 2002). Thus, further modification was necessary to realize a blue camation flower, in addition to accumulating delphinidin by expression of the F3°SH gene.

35

40

[0017] DFR has already been cloned from several plants (petunia, tobacco, rose, *Torenia*, snapdragon, transvaal daisy, orchid, barley, corn, etc.) (Meyer et al., Nature 330, 677-678, 1987; Helariutta et al., Plant Mol. Blot. 22, 183-193 1993; Tanaka et al., Plant Cell Physiol. 36, 1023-1031; Johnson et al., Plant J. 19, 81-85, 1999). Substrate specificity of the DFR gene differs depending on the plant variety, and it is known that the petunia, tobacco and orchid DFR genes cannot reduce DHK, whereas the petunia DFR gene most efficiently reduces DHM among the dihydroflavonols (Forkmann et al., Z. Naturforsch. 42c, 1146-1148, 1987; Johnson et al. Plant J. 19, 81-85, 1999). Nevertheless, no cases have been reported for expression of these DFR genes in rose.

[0018] As a means of avoiding competition with the endogenous metabolic pathway or between the enzyme and the exogenous gene-derived enzyme such as F3'5'H, as mentioned above, the gene may be transferred into a variety lacking the gene. Also, it is known that expression of the target gene can be artificially inhibited by deletion methods involving homologous recombination of the target gene, but because of the low frequency of homologous recombination and the limited number of suitable plant varieties, this has not been implemented in practice (for example, Nat. Biotechnol. 2002, 20:1030-41.

[0019] Inhibition methods on the transcription level include the antisense method using antisense RNA transcripts for mRNA of the target gene (van der Krol et al., Nature 333, 866-869, 1988), the sense (cosuppression) method using transcripts of RNA equivalent to mRNA of the target gene (Napoli et al., Plant Cell 2, 279-289, 1990) and a method of using duplex RNA transcripts corresponding to mRNA of the target gene (RNAI method; Waterhouse et al., Pro. Natl. Acad. Sci. USA 95, 13959-13984, 1998).

[0020] Numerous successful examples of these three methods have been published. For rose, cosuppression of chalcone synthase (CHS) gene which is necessary for synthesis of anthocyanins was reported to successfully alter

FP 1 652 916 Δ1

flower color from red to pink (Gutterson HortScience 30:964-966 1995), but this CHS suppression is incomplete and therefore it has not been possible to totally suppress anthocyanin synthesis to obtain a white flower stock. [0021] Patent document 1: Japanese Unexamined Patent Publication No. 2002-201372

Patent document 2: WO93/18155 Patent document 3: USP 5480789 Patent document 4: USP 5792927

5

15

20

25

30

35

40

Patent document 5: EP 536 327 Al

Patent document 6: US 20010007157 AI 10

Patent document 7: WO94/28140

Non-patent document 1: Honda T. et al. Gendal Kagaku, May, 25-32(1998)

Non-patent document 2: Tanaka et al. Plant Cell Physiol. 39, 1119-1126, 1998 Non-patent document 3: Mol et al. Curr. Opinion Biotechnol. 10, 198-201 1999

Non-patent document 4: Oba. H., "Bara no Tanio", 1997, Chukoshinsho

Non-patent document 5: Suzuki, M., "Shokubutsu Bio no Mahou: Aoi Bara mo Yume dewanakunatta", 1990, Kodansha Bluebacks

Non-patent document 6: Saisho, H., "Aoi Bara", 2001, Shoqakkan

Non-patent document 7: Saito, N., Tanpakushitsu Kakusan Kouso, 47 202-209, 2002

Non-patent document 8: Broullard et al. In the flavonoids: Advances in Research since 1986 (Ed by Harborne) Capmann and Hall, London pp565-588

Non-patent document 9: Tanaka et al. Piant Celi Physiol, 39 1119-1126, 1998

Non-patent document 10: Mol et al, Trends in Plant Science 3, 212-217 1998

Non-patent document 11: Mol et al. Curr. Opinion Biotechnol. 10, 198-201 1999

Non-patent document 12: Biolley and May, J. Experimental Botany, 44, 1725-1734 1993

Non-patent document 13: Mikanagi Y, et al. (2000) Biochem Systematics Ecol. 28:887-902

Non-patent document 14: Appl. Microbiol. Biotechnol. 2003 Feb;60(6):720-5

Non-patent document 15: J. Mol. Microbiol. Biotechnol. 2000 Oct; 2 (4): 513-9

Non-patent document 16: Org. Lett., Vol. 3, No. 13, 2001, 1981-1984

Non-patent document 17: S. Fujikawa, et al. (1987) Tetrahedron Lett. 28 (40), 4699-700

Non-patent document 18: S. Fujikawa, et al. (1987) J. Ferment. Technol. 65 (4), 419-24

Non-patent document 19: Holton et al. Nature 366, 276-279, 1993 Non-patent document 20: Tanaka et al. Plant Cell Physiol. 37, 711-716 1996

Non-patent document 21: Firoozababy et al. Bio/Technology 12:883-888 (1994)

Non-patent document 22: Tanpakushitsu Kakusan Kouso, Vo1.47, No.3, p228, 2002

Non-patent document 23: Meyer et al, Nature 330, 677-678, 1987

Non-patent document 24: Helariutta et al. Plant Mol. Biol. 22 183-193 1993

Non-patent document 25: Tanaka et al. Plant Cell Physiol. 36, 1023-1031

Non-patent document 26: Johnson et al. Plant J. 19, 81-85, 1999

Non-patent document 27: Forkmann et al. Z. Naturforsch, 42c, 1146-1148, 1987

Non-patent document 28: Nat Biotechnol 2002, 20:1030-4

Non-patent document 29: van der Krol et al. Nature 333, 866-869, 1988

Non-patent document 30: Napoli et al. Plant Cell 2, 279-289, 1990

Non-patent document 31: Waterhouse et al. Pro. Natl. Acad. Sci. USA 95, 13959-13964 1998

Non-patent document 32: Gutterson HortScience 30:964-966 1995

45 Non-patent document 33: Suzuki, S., "Bara, Hanazufu", Shoqakkann, p.256-260, 1990

Disclosure of the Invention

[0022] As mentioned above, rose flower colors have been successfully altered by transferring the F3'5'H gene into rose and expressing it in the petals. In camation, the F3'5'H gene and petunia DFR gene have been expressed in DFRdeficient varieties to create blue-violet carnations. However, a "blue rose" has not yet been created. It is therefore an object of the present invention to provide a rose which blossoms with a blue flower.

[0023] The invention thus provides (1) a method for producing a rose characterized by artificially suppressing the rose endogenous metabolic pathway and expressing the pansy gene coding for flavonoid 3',5'-hydroxylase.

[0024] The Invention further provides (2) a method for producing a rose characterized by artificially suppressing the rose endogenous metabolic pathway, and expressing the pansy gene coding for flavonoid 3',5'-hydroxylase and the gene coding for dihydroflavonol reductase.

[0025] The invention still further provides (3) a method for producing a rose characterized by artificially suppressing

expression of rose endogenous dihydroflavonol reductase, and expressing the pansy gene coding for flavonoid 3',5'-

[0026] The invention still further provides (4) a method for producing a rose characterized by artificially suppressing expression of rose endogenous flavonoid 3'-hydroxylase and expressing the pansy gene coding for flavonoid 3',5'-hydroxylase.

[0027] The aforementioned pansy gene coding for flavonoid 3',5'-hydroxylase is, for example, the gene listed as SEQ ID NO: 1 or SEQ ID NO: 3. The gene coding for dihydroflavonol reductase is preferably derived from iris, *Nierembergia*, petunia, orothid, gentlan or Eustoma russellianum.

[0028] The invention still further provides (5) a rose obtained by the production method according to any one of (1) to

[0029] The invention still further provides (6) a rose obtained by the production method according to any one of (1) to (4) above, or a property or tissue thereof, wherein the petal color of the rose is violet, blue-violet or blue.

[0030] The Invention further provides (7) a rose according to (6) above, or a progeny or tissue thereof, wherein the petal color of the rose belongs to the "Violet group", "Violet-Blue" group or "Blue group" according to the Royal Horticultural Society Colour Chart (RHSCC).

[0031] The invention further provides (8) a rose according to (7) above, or a progeny or tissue thereof, wherein the petal color of the rose belongs to "Violet group" 85a or 85b according to the Royal Horticultural Society Colour Chart (RHSCC).

20 Brief Description of the Drawings

[0032]

25

46

- Fig. 1 shows the flavonoid biosynthesis pathway.
- CHS: Chalcone synthase, CHI: Chalcone isomerase
 - FNS: Flavone synthase, F3H: Flavanone 3-hydroxylase
 - F3'H: Flavonoid 3'-hydroxylase
 - F3'5'H: Flavonoid 3'5'-hydroxylase, FLS: Flavonol synthase
 - DFR: Dihydroflavonol 4-reductase
 - ANS: Anthocyanidin synthase, AS: Aurone synthase
 - C2'GT: Chalcone 2'-glucosyl transferase
 - Fig. 2 shows the structure of plasmid pBERD1.
 - Fig. 3 shows the structure of plasmid pBPDBP2.
 - Fig. 4 shows the structure of plasmid pBPDBP8.
 - Fig. 5 shows the structure of plasmid pSPB461.
 - Fig. 6 shows the structure of plasmid pSPB472.
 - Fig. 7 shows the structure of plasmid pSPB130.
 - Fig. 8 shows the structure of plasmid pSPB919. Fig. 9 shows the structure of plasmid pSPB920.
- 40 Fig. 10 shows the structure of plasmid pSPB1106.

Best Mode for Carrying Out the Invention

[0033] Several reasons may be postulated for a lack of blue color in rose even with production of delphiridin. The stability, solubility and color of anthocyanins varies depending on modification with acy groups and surs. Specifically, it is known that an increased number of aromatic acyt groups results in greater blueness. Also, formation of complexes between flavonol and flavone copigments and antihocyanins produce a blue color and shift the maximum absorption wavelength toward the longer wavelength end while also increasing the absorbance. Antihocyanin color is also dependent on pH. Since a lower pH tends toward redness and a more neutral pH produces blueness, the flower color depends on the pH of the vacuoles in which the antihocyanins are localized. In addition, formation of metal chelates the copresence of metal long such as Al³⁺ and Mg²⁺ can significantly affect flower color as well. Trial and error and assiduous research led to the proposal for a modification whereby the proportion of delphiridin in flower petals is increased.

[0034] First, it was attempted to create a blue rose by the same method used to create a blue-violet camation. Specifically, it was attempted to analyze white rose variety 112 and identify a DFR-deficient line, but unlike carnation, no completely DFR-deficient line could be obtained. This is presumably due to the fact that carnation is diploid while ordinarily cultivated rose is tetraploid, such that it is difficult to find a line deficient in a single cene.

[0035] Next, the pansy F3'5'H gene and petunia DFR gene were transferred into the white flower variety Tineke and accumulation of delphinidin was detected, but the amount was minimal and a blue rose was not obtained.

[0036] According to the present invention, the DFR gene, an enzyme participating in the rose endogenous flavonoid synthesis pathway, is artificially suppressed by a gene engineering technique, and the pansy F3'5'H gene is expressed while a dihydromyricetin-reducing DFR gene is also expressed, in order to increase the delphinic nothent to roughly 80-100% of the total anthocyanidins in the flower petals, thereby allowing realization of a blue rose.

[0037] The dihydrormyricetin-reducing DFR genes used in this case were derived from iris (Iridaceae), Nierembergia (Solanaceae) and petunia (Solanaceae), but as other dihydrormyricetin-reducing DFR gene sources there may be mentioned non-pelargonidin-accumulating plants such as tobacco (Solanaceae), cyclamen (Primulaceae), delphinium (flanunculaceae), orchid (Orchidaceae), gentlan (Gentianaceae), Eustoma russellianum (Gentianaceae) and the like (Forkmann 1991, Plant Breeding 106, 1-26; Johnson et al., Plant J. 1999, 19, 81-85). The DFR genes used for the present invention are cenes that preferentially reduce dihydrormyricetin.

[0038] According to the invention, the flavonoid 3'-hydroxylase (F3'H) gene, an enzyme participating in the rose endogenous flavonoid synthesis pathway, is artificially suppressed by a gene engineering technique, and the pansy F3'S'H gene is expressed, in order to increase the delphinidin content to roughly 80-100% of the total anthocyanidins in the flower petals, thereby allowing realization of a blue rose.

[0039] The roses obtained according to the invention have hitherto non-existent flower colors, and the invention can provide roses with flower colors belonging not only to the red-purple group, purple group and purple-violet group but also to the violet group, violet-blue group and blue group. according to the Royal Horticultural Society Colour Chart.

Examples

20

40

[0040] The present invention will now be explained in greater detail by the following examples. Unless otherwise specified, the molecular biological protocols used were based on Molecular Cloning (Sambrook and Russell, 2001, Cold Spring Herbor Laboratory Press, Cold Spring Harbor, New York).

Example 1. Flower color measuring method

[0041] The flower petal color shade was evaluated by measurement using a CM2022 spectrophotometric colorimeter (Minotta Japan) with a 10° visual field and a D65 light source, and analysis using SpectraMaglic color control software (Minotta Japan). The Royal Horticultural Society Colour Chart (RHSCC) number is the nearest color as compared against Color Classification System Version 2.1.1 (The Japan Research Institute Co., Ltd.; Japanese Unexamined Patent Publication No. 2002-016935), based on the color value (CIE L*a** color system) obtained by visual discrimation and measurement with the device mentioned above. This system may be used for objective selection of the nearest RHSCC number.

[0042] Upon measuring the color shades of flower petals of cultivars conventionally referred to as "blue roses" and determining the nearest colors according to the RHSCC by this method, it was determined that Blue Moon and Madelow Violet were 1860 (Greyed-Uprole group), Lavande was 1866 (Greyed-Uprole group), Betting the State (Greyed-Green group) and Blue Heaven was 1980 (Greyed-Green group). These cultivars are called blue roses but are classified in "Grey" groups according to RHSCC number and therefore do not exhibit the blue color which is the object of the present invention.

Example 2. Flavonoid analysis

1) Extraction of flower petal color

[0043] A 0.5 g portion of freeze-dried rose petals was subjected to extraction in 4 ml of 50% acetonlitrile (CH-jCN) containing 0.1% TFA for 20 minutes under ultrasonic vibration and then filtered with a 0.45 µm filter. High-performance liquid chromatography (HPLC) of the anthocyanins in the extract was conducted under the following conditions, isocratic elution was carried out using an RSpak DE-413L (4.6 mm) x 25 cm, Shoko Co., Ltd.) column with a flow rate of 0.6 ml/min, and a mobile phase at a linear concentration gredient of 10%—850% CH-jCNN/QC containing 0.5% trifluoroacetic acid (TFA) for 15 minutes followed by 50% CH₂CN/H₂Q containing 0.5% TFA for 10 minutes. Detection was performed using an SPD-M10A photodiode array detector (Shimadzu Laboratories), with detection in the wavelength range of 500-250 nm and calculation of the abundance ratio of each anthocyanin based on the 520 nm absorbance area.

2) Anthocyanidin analysis

[0044] A 0.2 ml portion of the filtrate was dried completely under reduced pressure in a glass test tube and dissolved in 0.2 ml of 8N hydrochloric acid (Hcf.), and subjected to hydrolysis at 100°C for 20 minutes. The hydrolyzed anthocy-anidins were extracted with 0.2 ml of 1-pentanol, and the organic layer was analyzed by HPLC under the following

conditions. The column used was an ODS-A312 (6 mm) x 15 cm, YMC Co., Ltd.), and elution was performed at a flow rate of 1 ml/min using a CH₂COOH:CH₂0H:H₂O = 15:20:65 solution as the mobile phase.

[0045] Detection was performed by spectral measurement at 600-400 rm using an SPD-M10A photodioda array detector (Shimadzu Laboratories), identification based on absorption maximum (\(\lambda\)max) and retention time (RT), and quantitation based on 520 nm absorbance area. The retention time and \(\lambda\)max of delphinidin and opparidin under these HPLC conditions were 4.0 min, 5.2 min and \$24 nm, \$25 nm, respectively. Delphinidin hydrochloride and cyanidin hydrochloride purchased from Funakoshi CS. Ltd. were used as samples for identification and quantitation.

3) Flavonol analysis

10

30

45

[0046] A 0.2 ml portion of the flower petal-extracted filtrate was dried to hardness under reduced pressure in a 1.5 ml Eppendorf tube and dissolved in 0.2 ml of 0.1 M potassium phosphate buffer (KPB) at pH 4.5, and then 6 units of glucosidase (Shinnihon Kagaku Co., Ltd.) and 1 unit of naringenase (Sigma Chemical Co., MO, USA) were added and the mixture was kept at 30°C for 16 hours. After the reaction, 0.2 ml of 90% CH₂CN was added to the enzyme reaction solution to terminate the reaction. The solution was filtered with a 0.45 µm filter and subjected to HPLC under the following conditions

[0047] Isocratic elution was carried out using a Develosil C30-UG-5 (4.6 mm¢ x 15 cm, Nomura Chernical Co., Ltd.) column with a flow rate of 0.6 ml/min, and a mobile phase at a finear concentration gradient of 18%—63% CH₂CN/H₂O containing 0.1% TFA for 10 minutes followed by 83% CH₂CN/H₂O containing 0.1% TFA for 10 minutes. Detection was performed using an SPD-M10A photodiode array detector, with detection in the wavelength range of 400-250 m. The R.T. and Xmax of kaempferol and quercetin under these conditions were 11.6 min, 385 mm and 10.3 min, 370 nm, respectively. Kaempferol and quercetin purchased from Funakoshi Co., Ltd. were used as samples for quantitation based on the A330 nm area.

25 Example 3. pH measurement method

[0048] Approximately 2 g of rose petals frozen at -80°C for 1 hour or longer was pressed with a homogenizer to obtain the petal juliee. The pit was measured by connecting a 6069-10C microelectrode (Horiba Laboratories) to a pH meter (F-22, Horiba Laboratories).

Example 4. Transformation of rose

[0049] Several methods have been reported for transformation of roses (for example, Firo zababy et al. Bio/Technology 12:883-888 (1994); US 5480789; US 5792927; EP 536,327 A1; US 20010007157 A1), and transformation may be carried out by any of these techniques. Specifically, rose call taken from aseptic seedling leaves were immersed for 5 minutes in a bacterial suspension of Agrobacterium tumefaciens Ag10 (Lazo et al., Bio/Technology 9:963-967, 1991), the excess bacterial suspension was wiped off with sterile filter paper, and the calli were transferred to subculturing medium and cocultivated for 2 days in a dark room.

[0050] After subsequently rinsing with MS liquid medium containing 400 mg/L carbenicillin, the calli were transferred to selection/elimination medium prepared by adding 50 mg/L kanamycin and 200 mg/L carbenicillin to subculturing medium. Upon repeating transfer and cultivation of the portions which grew normally in selection medium without growth inhibition, the kanamycin-resistant calli were selected out. The kanamycin-resistant transformed call were cultivated in redifferentiation medium containing 50 mg/L kanamycin and 200 mg/L carbenicillin to obtain kanamycin-resistant shoots. The obtained shoots were rooted in 1/2MS medium and then habituated. The habituated plants were potted and then cultivated in a closed greenhouse until blooming.

Example 5. Obtaining rose flavonoid gene

[0051] A cDNA library derived from Kardinal rose variety flower petals was screened using the petunia DFR gene (described in WO96/36716) as the probe, to obtain rose DFR cDNA was which designated as pCGP645. The details have already been reported (Tanaka et al., Plant Cell Physiol. 36, 1023-1031 1995).

[0052] Likewise, the same library was screened with the petunia chalcone synthase-A (CHS-A) gene (Koes et al., Gene (1989) 81, 245-257) and the anthocyanidin synthase (ANS) gene (Martin et al., Plant J., (1991) 1, 37-49) according to a publicly known procedure (Tanaka et al., Plant Cell Physiol. 36, 1023-1031 1995, to obtain rose chalcone synthase (CHS) and anthocyanidin synthase (ANS) homologs which were designated as pCGP634 and pCGP1375, respectively. The nucleotide sequence for rose CHS is listed as SEQ ID NO: 5, and the nucleotide sequence for rose ANS is listed as SEQ ID NO: 6.

Example 6. Screening for white rose

[0053] For creation of a blue cultivar by gene recombination, cultivars lacking only the DFR gene may be selected, in order to avoid competition between the endogenous anthocyanin synthesis pathway and the introduced genes (partiularly the F35°H gene), and the peturial DFR gene and F35H gene transferred into those cultivars (M095/36716).

[0054] A screening was conducted among the numerous existing white rose varieties, for those lacking only the DFR gene and normally expressing other anthocyanin biosynthesis enzyme genes. The cause of flower color white

[0055] First, 112 primarily white rose lines were analyzed for flavonoid composition of the flower petals by the method described in Example 1, and lines with high accumulation of flavonois were selected. The pH of each petal juice was then measured and 80 cultivars with relatively high pH values were chosen as primary candidates.

[0056] RNA was then extracted from petals of these cultivars. The RNA extraction was accomplished by a publicly known method (Tanaka et al., Plant Gell Physiol. 38, 1023-1031, 1995). The obtained RNA was used to examine the presence or absence of mRNA corresponding to the rose DFR gene (Tanaka et al., Plant Gell Physiol. 36, 1023-1031, 1995) and the rose anthocyanidin synthase (ANS) gene. RT-PCR was performed and eight cultivars (WKS-11, 13, 22, 36, 43, White (Illiamey, Tsuru No.2, Tineke) having low endogenous expression of DFR mRNA and normal ANS mRNA levels were selected.

[0057] RT-PCR was carried out with a Script First-strand Synthesis System for RT-PCR (Invitrogen) using RNA obtained from petals of each cultivar. The DFR mRNA was detected using DFR-2F (5'-CAAGCAATGGCATCGAATC-3') (SEO ID NO: 13) and DFR-2B (6'-TTTCCAGTGAGTGGGGAAGCT-3') (SEQ ID NO: 14) primers, and the ANS mRNA was detected using ANS-2F (6'-TGGACTGGAAGAACTCGTCC-3') (SEQ ID NO: 15) and ANS-2B (6'-CCTCAC-CTTCTCCTTGTT-3') (SEO ID NO: 16) IN NO: 18) rimers.

[0058] These eight cutivars showed lower levels of DFR mRNA and normal levels of ANS mRNA in Northern blotting (Table 1), and their cutivating properties were excellent. Two of the transformable cultivars (Tineke, WKS36) were decided on for actual transfer of the delbhindin-producing construct.

Table	1

Table 1									
Cultivar name	Flavo	Flavonols (mg/g petal)				RT-PCF	l		
	a	к	Total	1	DFR	CHS	ANS		
WKS-36	0.082	8.095	8.177	4.81	-	+	+		
White Killarney	1.343	6.113	7.456	4.77	+	+	+		
Tsuru No.2	0.715	5.188	5.903	4.7	+	+	+		
WKS-11	2.028	0.475	2.503	4.51	+	+	+		
Tineke	0.097	4.337	4.434	4.45	-	+ .	+		
WKS-13	0.320	3.993	4.313	4.45	-	+	+		
WKS-22	0.145	10.469	10.614	4.41	-	+	+		
WKS-43	0.045	2.104	2.149	4.07		+	+		

^{+:} mRNA detected at same level as colored rose (Rote Rose cultivar)

Example 7. Transfer of rose DFR gene into Tineke

45

[0059] Plasmid pE2113 (Mitsuhara et al., Plant Cell Physiol. 37, 45-59, 1996) comprises the enhancer sequence repeat-containing cauliflower mosaic virus 35S (E1235S) promoter and the nopaline synthase terminator. This plasmid was digested with Sacl and the ends were blunted using a Blunting Kit (Takara). The DNA fragment was ligated with an 8 bb Sall linker (Takara) and the obtained plasmid was designated as pUE5.

[0060] Plasmid pUE5 was digested with HindIII and EcoRI to obtain an approximately 3 kb DNA fragment, which was introduced into pBin19 (Bevan M., Binary Agrobactenium Vector for plant transformation. Nucl. Acid Res. 12. 8711-188) previously digested with HindIII and EcoRI, to obtain plasmid pBE5. Next, pCGP645 was digested with BamHI

^{-;} mRNA detected at lower level than colored rose (Rote Rose cultivar)

Q: Quercetin, K: kaempferol

and Xhol to obtain a DNA fragment containing full-length rose DFR cDNA. This was ligated with pBE5 digested with BamHI and Xhol to construct pBERD1 (Fig. 2). The plasmid was transferred into Agrobacterium tumelaciens Ag10. [0061] Plasmid pBERD1 (Fig. 2) was transferred into the white rose cultivar 'Tineke', and 18 transformants were obtained. Flower color was altered in six of the obtained transformants. Pigment analysis of two plants in which a clear color change from white to pink was observed confirmed accumulation of cyanidin and pelargonidin in both (Table 2). These results suggested that the Tineke cultiver is a cultivar lacking the DFR gene.

Table 2							
Plant No.	Cya (mg/g)	Pel (mg/g)					
1	0.014	0.005					
2	0.014	0.006					
Cya: Cyan	idin, Pel: Pelarç	gonidIn					

Example 8. Transfer of pansy F3'5'H gene (#18) and petunia DFR gene into Tineke

10

16

20

25

30

[0062] RNA was extracted from young budding pansy (Black Pansy varlety) petals by the method of Turpen and Griffith (BioTechniques 4:1-15, 1986), and Oligotex-dT (Olagen) was used for purification of polyA-RNA. This polyA-RNA and a ZAPIR(GiappackII Cloning Kit (Stratagene) were used to construct a cDNA library from the young budding pansy petals. After transferring approximately 100,000 pfu of phage plaques grown on an NZY plate onto a Colony/PlaqueScreen (DuPont), treatment was conducted by the manufacturer's recommended protocol. The plaques were ³²P-labeled and screened using petunia HitcDNA (pcGP602. Holton et al., Nature, 366, p276-279, 1993) as the probe.

[0063] The membrane was subjected to pre-hybridization for 1 hour at 42°C in hybridization buffer (10% (wv) formanide, 1 M NaCl, 10% (wv) dextran sulfate, 1% SDS), and then the ³²P-labeled probe was added to 1 x 10⁶ com/ml and hybridization was performed for 16 hours at 42°C. The membrane was then rinsed for 1 hour in 2xSSC, 1% SDS at 42°C, fresh rinsing solution was exchanged, and rinsing was again performed for 1 hour. The rinsed membrane was exposed on a Kodak XAR film together with an intensifying screen, and the hybridization signal was deten-

[0064] The results of cDNA analysis demonstrated that the two obtained cDNA had high identity with petunia H1. The two cDNA types were designated as pansy F3'5'H cDNA, BP#18 (pCGP1959) and BP#40 (pCGP1961). The nucleotide sequence for #18 is listed as SEQ ID No: 1, and its corresponding armino acid sequence is listed as SEQ ID No: 2, the nucleotide sequence for #40 is listed as SEQ ID No. 3, and its corresponding armino acid sequence is listed as SEQ ID No: 4. BP#18 and BP#40 both exhibit 60% identity with petunia H1 and 62% identity with petunia H1 at al. Nature, 366, p276-279, 1993), on the DNA level.

[0055] Separately, plasmid pUE5 was digasted with EcoRI and the ends were blunted using a Blunting Kit (Takara), and the obtained DNA fragment was ligated with an 8bp Hindill linker (Takara), producing a plasmid which was designated as pUE5H. There was recovered an approximately 1.8 kb DNA fragment obtained by subjecting plasmid pCGP1959 containing pansy 5°35'H #18 cDNA to complete digestion with BarmHI and partial digestion with Xhol. The plasmid obtained by lication of this with pUE5H digested with BarmHI and Xhol was designated as pUEBP18.

[0066] Separately, a DNA fragment containing petunia DFR cDNA was recovered by digestion of pCGP1403 (W096/36716) with BamHl and Khol, and this DNA fragment was ligated with pBE5 that had been digested with BamHl and Khol, to prepare pBEPD2. Next, pUEBP18 was partially digested with Hindill and an approximately 2.8 kb DNA fragment was recovered containing the Ei235S promoter, pansy F3/5/H #18 cDNA and the nos terminator. This fragment was ligated with a DNA fragment totained by partial digestion of pBEPD2 with Hindill to obtain a binary vector plasmid pBPDP8 (Fig. 3). This plasmid was introduced into Agrobacterium tumefaciens Aq 10.

[0067] Plasmid pBPDBP2 (Fig. 3) was transferred into the white rose cultivar "Tineke", and 40 transformants we obtained. Flower color was altered in 23 of the obtained transformants, and pigment analysis confirmed accumulation of delphinidin in 16 of the 19 analyzed transformants (Table 3). The delphinidin content was 100% at maximum (average: 87%), but the maximum amount of pigment was very low at 0.035 mp per gram of petals and the flower color was only altered from RHS Color Chart 156d (Yellow-White group) to 55a (Red group) or 55b (Red-Purple group), while no color of the Violet group, Violet-Blue group or Blue group according to the RHSCC was achieved and the target blue rose could not be obtained.

Т	a	b	le	з

Plant No.	Del content (%)	Del (mg/g)	Cya (mg/g)	M (mg/g)	Q (mg/g)	K (mg/g)	l	
1	87	0.002	0.000	0.000	0.058	0.354	l	

Table continued

Plant No.	Del content (%)	Del (mg/g)	Cya (mg/g)	M (mg/g)	Q (mg/g)	K (mg/g)			
2	100	0.004	0.000	0.338	0.059	1.921			
3	82	0.002	0.001	0.203	0.039	1.382			
4	100	0.003	0.000	0.245	0.050	1.840			
5	76	0.005	0.001	0.000	0.280	3.288			
6	0	0.000	0.000	0.000	0.098	0.409			
7	0	0.000	0.001	0.000	0.101	0.358			
8	0	0.000	0.001	0.000	0.030	2.277			
9	83	0.013	0.003	0.000	0.117	0.841			
10	85	0.011	0.002	0.000	0.104	3.300			
11	84	0.020	0.004	0.000	0.168	3.137			
12	91	0.025	0.002	0.294	0.119	1.252			
13	90	0.028	0.003	0.000	0.075	1.912			
14	91	0.014	0.001	0.000	0.152	2.667			
15	90	0.035	0.004	0.000	0.086	1.616			
16	83	0.023	0.005	0.000	0.117	2.267			
17	91	0.014	0.001	0.000	0.113	0.825			
18	76	0.003	0.001	0.000	0.085	2.351.			
19	82	0.005	0.001	0.000	0.054	1.616			
Del: delph	Del: delphinidin, M: Myricetin								

Example 9. Transfer of pansy F3'5'H gene (#40) and petunia DFR gene into Tineke

5

10

15

20

25

[0068] Plasmid pE2113 (Mitsuhara et al., Plant Cell Physiol. 37, 45-59, 1996) was digested with Hindill and Xbal to obtain an approximately 800 bp DNA fragment, which was ligated with pBlin19 (Bevan M., Binary Agrobacterium Vector for plant transformation. Nucl. Acid Res. 12. 871-21, 1984) proviously digested with Hindill and Xbal. The obtained plasmid was designated as pCGP1391. Another plasmid, pCGP669 (WO94/21840), contains the petunia chalcone synthase A (CHS-A) gene promoter. This pisamid was digested with EoGh, blunted and then digested with Hindill.

[0069] The approximately 700 bp DNA fragment was ligated with pCGP1391 that had been digested with HindIII and SnaBI, and the obtained plasmid was designated as pCGP1707. Also, there was recovered an approximately 1.8 kb DNA fragment obtained by subjecting plasmid pCGP1961 containing panys P3°51H 440 cDNA to complete digestion with BamHi and partial digestion with Xhoi. The plasmid obtained by ligation of this with pUE5H digested with BamHi and Xhoi was designated as pUEBP40. Plasmid pUEBP40 was digested with EcoRV and Xbal and an approximately 5.5 kb DNA fragment was recovered.

[0070] This fragment was ligated with an approximately 700 bp fragment obtained by digesting plasmid pCGP1707 with Hindlll, blunting the ends and further digesting with Xbal, to obtain plasmid pUFBP40. Next, pUFBP40 was partially digested with Hindlll and an approximately 3.4 kb DNA fragment was recovered containing the cauliflower 35s promoter enhancer, CHS-A promoter, pansy F3'5'H #40 cDNA and the nos terminator. This fragment was ligated with a DNA fragment obtained by partial digestion of pBEPD2 with Hindll to obtain a binary vector plasmid pBPDBP8 (Fig. 4). This plasmid was introduced into Agrobacterium tumefaciens Ag10.

[0071] Plasmid pBPDBP8 (Fig. 4) was transferred into the white rose cultivar "Interêx," and 53 transformants we obtained. Flower color was altered in 17 of the obtained transformants, and pigment analysis confirmed accumulation of delphinidin in 8 of the 9 analyzed transformants (Table 4). The delphinidin content was 93% at maximum (average: 75%), but the maximum amount of pigment was very low at 0.014 mg per gram of petals and the flower color work and the flower color work of the flower color of the Violet group, Violet-Blue group or Blue group according to the RHSCC was achieved and the target blue rose could not be obtained. This suggested that the Tineke variety is not a variety lacking only the DFR gene.

Table 4

Plant No.	Del content (%)	Del (mg/g)	Cya (mg/g)	M (mg/g)	Q (mg/g)	K (mg/g)
1	0	0.000	0.001	0,000	0.018	2.023
2	9	0.001	0.006	na	na	na
. 3	93	0.011	0.001	0.000	0.036	2.724
4	86	0.007	0.001	0.000	0.076	2.957
5	71	0.013	0.006	0.000	0.073	2.503
6	87	0.014	0.002	0.000	0.058	3.390
7	78	0.005	0.002	0.000	0.049	1.241
8	47	0.004	0.004	0.000	0.070	1.800
9	78	0.004	0.001	0.000	0.029	2.326

Example 10. Transfer of pansy F3'5'H gene (#18) and petunia DFR gene into WKS36

10

16

20

40

45

[0072] Plasmid pBPDBP2 (Fig. 3) was transferred into the white rose "WKS36", and 138 transformants were obtained. Flower color was altered in 10 of the obtained transformants, and accumulation of delphinidini was confirmed in all of the plants (Table 5). The delphinidini content was 91% at maximum (average, 60%), but the maximum amount of pigment was very low at 0.033 mg per gram of petals and the flower color was only altered to very light pink, while no color of the Violet group, Violet-Blue group or Blue group according to the RHSCC was achieved and the target blue rose could not be obtained. This suggested that the WKS38 variety is not a variety tacking only the DFR cene.

Table 5

Table 5						
Plant No.	Del content (%)	Del (mg/g)	Cya (mg/g)	M (mg/g)	Q (mg/g)	K (mg/g)
1	60	0.008	0.005	0.381	0.169	2.291
2	40	0.006	0.009	0.633	0.486	2.911
3	54	0.005	0.005	0.654	0.336	3.460
4	43	0.016	0.021	0.000	0.656	2.469
5	53	0.009	0.008	0.404	0.325	2.397
6	53	0.004	0.003	0.498	0.251	2.768
7	45	0.013	0.016	0.000	0.381	1.537
8	. 83	0.004	0.001	0.000	0.156	1.632
9	80	0.033	0.008	0.000	0.557	3.766
10	91	0.013	0.000	0.000	0.184	2.610

Example 11. Transfer of pansy F3'5'H gene (#18) and petunia DFR gene into WKS36

[0073] A plasmid obtained by replacing the Asci site of plasmid pUCAP (van Engelen et al., Transgenic Research 4, 288-290, 1995) with Pacl linker was designated as pUCPP. Separately, an expression cassette prepared by linking those chalcone synthase promoter, panys F3°H #18 CDNA and nos terminator was obtained in the following manner. [0074] Chromosomal DNA was extracted from young leaves of the Kardinal rose cultivar (Tanaka et al., Plant Céll Physiol. 36, 1023-1031, 1995). An approximately 100 µg portion of DNA was partially digested with Sau3AI, and approximately 20-04 bD DNA fragments were recovered by sucrose density cradient.

[0075] These were ligated with lambda phage EMBL3 (for example, Stratagene) that had been digested with BamHI, and a chromosomal DNA library was prepared by the manulacture's recommended protocol. The library was screment by a publicky known method (Tanaka et al., Plant Cell Physiol. 36, 1023-1031, 1995) using rose chalcone synthase CDNA

FP 1 652 916 Δ1

(DNA database: GenBank Accession No. AB038246) as the probe. Among the obtained chalcone synthase chromosome clones, there existed lambda CHS20 which included an approximately 6.4 kb DNA sequence upstream from the start codon of chalcone synthase. The approximately 2.9 kb DNA fragment obtained by digestion of lambda CHS20 with Hindilli and EcoRV includes the chalcone synthase promoter region.

[0076] This fragment was ligated with a fragment obtained by digestion of pUC19 (Yanisch-Perron C et al., Gene 33: 103-119, 1985) with Hindill and Smal. This was designated as pCGP1116. The sequence of the chalcone synthase promoter region included therein is listed as SEQI DN.02.1. An approximately 2,9 kb DNA fragment obtained by digestion of pCGP1116 with Hindill and KpnI was ligated with a DNA fragment obtained by digestion of pJB1 (Bodeau, Molecular and genetic regulation of Bronze-2 and other maize anthocyanin genes. Dissertation, Stanford University, USA, 1994) with Hindill and KpnI to dictain oCGP197.

[0077] Separately, an approximately 300 bp DNA fragment containing the nopaline synthase terminator, obtained by digestion of pUES with Saci and Kpni, was blunted and linked with pBluescriptSK- which had been digested with Ecolor and BamHi and blunted. A plasmid of those obtained in which the 5' end of the terminator was close to the Sall site of pBluescriptSK- was designated as pCGP1986. A DNA fragment obtained by digesting pCGP1986 with Xhol, blunting the ends and further digesting with Sall was linked with a DNA fragment obtained by digesting pCGP1987 with Hindill, bluntin the ends and further dioesting with Sall, to obtain DCGP2201.

[0078] Next, a DNA fragment obtained by digesting pCGP2201 with Sall and blunting the ends was linked with an approximately 1.7 kb DNA fragment (containing the pansy flavonoid 3,5°-hydroxylase gene) obtained by digesting pCGP1959 with BarmH land Kpnl and blunting the ends. A plasmid of those obtained in which the rose chalcone synthase promoter had been inserted in a direction allowing transcription of the pansy flavonoid 3',5°-hydroxylase gene in the orward direction was designated as pCGP2203. Plasmid pCGP2203 was recovered by digestion with Hindill and Sacl. The DNA fragment was cloned at the Hindill and Sacl sites of pUCPP, and the resulting plasmid was designated as pSPB459. Next, plasmid pE2113 was digested with SnaBl and a BarmHi linker (Takara) was inserted to obtain a plasmid designated as pUE6.

[0079] An approximately 7:00 bp DNA fragment obtained by digestion of pUE6 with HindIII and BamHI was linked with an approximately 2.2 kb DNA fragment obtained by digestion of pCGP1405 (WO96/36716) with BamHI and BgIII and with the binary vector pBinplus (van Engelen et al., Transgenic Research 4, 288-290, 1995) digested with HindIII and BamHI, to obtain pSPB460. An approximately 5 kb DNA fragment obtained by digestion of pSPB459 with Pacl was introduced into the Pacl site of pSPB460 to obtain pSPB461 (Fig. 5) having the petunia DFR and pansy F3'5'H #18 genes linked in the forward direction on the binary vector. This plasmid is modified for constitutive expression of the petunia DFR gene in plants and specific transcription of the pansy F3'5'H #18 gene in flower petals. The plasmid was transferred into Agropacterium tumefaciens Act 10.

[0080] Plasmid pSPB461 (Fig. 5) was transferred into the white rose "WKS36", and 229 transformants were obtained. Flower color was attered in 16 of the obtained transformants, and accumulation of delphinidin was confirmed in all 12 of the pigment-analyzed plants (Table 6). The delphinidin content was 79% at maximum (average: 58%), but the amount of pigment was very low at 0.031 mg per gram of petals and the flower color was only attered to very light pink, while no color of the Violet group, Violet-Blue group or Blue group according to the RHSCC was achieved and the target blue rose could not be obtained. This suggested that the WKS36 variefy is not a variety lacking only the DFR gene.

Table 6

Plant No.	Dei content (%)	Del (mg/g)	Cya (mg/g)	M (mg/g)	Q (mg/g)	K (mg/g)
1	39	0.002	0.004	0.000	0.414	3.744
2	52	0.006	0.005	0.000	0.465	3.363
3	27	0.002	0.005	0.000	0.342	3.703
4	58	0.014	0.010	0.000	0.430	2.780
5	62	0.008	0.005	0.498	0.281	2.189
6	72	0.002	0.001	0.000	0.193	2.391
7	71	0.010	0.004	0.000	0.152	4.021
8	79	0.031	0.008	0.403	0.215	2.660
9	26	0.004	0.011	0.000	0.249	2.331
10	54	0.007	0.006	0.000	0.299	2.085
. 11	74	0.017	0.006	0.145	0.248	3.505

50

Table continued

Plant No.	Del content (%)	Del (mg/g)	Cya (mg/g)	M (mg/g)	Q (mg/g)	K (mg/g)
12	74	0.013	0.005	0.000	0.229	2.005

Example 12. Transfer of pansy F3'5'H gene (#18), petunia DFR gene and perilla anthocyanin 3-glucoside acyltransferase gene into WKS36

[0081] A gene comprising a start codon added to the perilla hydroxycinnamoyl CoA: anthocyanin 3-glucoside acyltransferase (3AT) gene was designated as pSAT208F (Yonekura-Sakakibars et al., Plant Cell Physiol. 41, 495-502, 2000). An approximately 3.9 kb DNA fragment obtained by digestion of pSPB580 (PCT/AU03/00079) with BamHl and Xhol was linked with an approximately 1.8 kb DNA fragment obtained by digestion of pSAT208F with BamHl and Xhol. [0082] The obtained plasmid was digested with Ascl, and a DNA fragment was recovered containing the E1235S promoter, the perilla 3AT gene and the petunia phospholipid transfer protein terminator. The DNA fragment was inserted into the Ascl site of pSPB461 to obtain plasmid pSPB472 (Fig. 6) having the perilla 3AT, petunia DFR and pansy F3'5'H #18 gene transcription directions in the forward direction. This plasmid is modified for constitutive expression of the perilla 3AT gene and the petunia DFR gene in plants and specific transcription of the pansy F3'5'H #18 gene in flower petals. The plasmid was transferred into Agrobacterium tumefaciens Ag10.

[0083] Plasmid pSPB472 (Fig. 8) was transferred into the white rose "WKS36", and 75 transformants were obtained. Flower color was attered in four of the obtained transformants, and accumulation of delphinidin was confirmed three of the pigment-analyzed plants (Table 7). The delphinidin content was 67% at maximum (average: 49%), but the amount of pigment was very low at 0.011 mg per gram of petals and the flower color was only altered to very light pink, while no color of the Violet group, violet-Blue group or Blue group according to the RHSCC was achieved and the target blue rose could not be obtained. This suggested that the WKS36 variety is not a variety lacking only the DFR gene.

Table 7

Plant No.	Del content (%)	Del (mg/g)	Cya (mg/g)	M (mg/g)	Q (mg/g)	K (mg/g)
1 -	32	0.003	0.006	0.219	0.236	1.972
2	67	0.011	0.005	0.520	0.329	3.234
3	46	0.006	0.007	0.000	0.579	3.874

[0084] Thus, despite screening of several white roses, it was not possible to obtain a cultivar lacking only the DFR cene. In other words, it was not possible to obtain a blue rose by the method for creation of blue carnation (WO94/28140).

Example 13. Inhibition of rose DFR gene by cosuppression

[0085] Plasmid pBERD1 was transferred into the pale violet rose "Lavande", and 26 transformants were obtained. However, none of the plants exhibited altered flower color, suggesting that it is difficult to inhibit the rose endogenous DFR gene by cosuppression.

Example 14. Screening for colored roses

5

10

25

30

35

45

50

55

[0086] Cultivars for creation of blue roses were then selected from among colored roses. After visually selecting 136 lines from colored rose cultivars with relatively blue shades, 89 of the lines were subjected to pigment analysis. The values obtained for the examined colored roses are shown in Tables 8 to 10.

Table 8

Name	Cya (mg/g)	Pel (mg/g)	Peo (mg/g)	Q (mg/g)	K (mg/g)
Lavande	0.078	0.000	0.000	0.451	0.078
Madam Violet	0.055	0.000	0.000	1.780	0.189
Vol de Nuit	0.317	0.003	0.000	2.661	0.316
Blue Moon	0.049	0.000	0.000	1.341	0.119

Table continued

Name	Cya (mg/g)	Pel (mg/g)	Peo (mg/g)	Q (mg/g)	K (mg/g)
Seiryu	0.015	0.000	0.000	3.030	1.300
WKS077	1.875	0.008	0.000	1.430	0.247
WKS078	0.211	0.000	0.000	1.286	0.133
WKS079	2.864	0.003	0.000	1.030	0.106
WKS080	0.040	0.000	0.000	0.362	0.047
WKS081	0.032	0.000	0.000	4.480	1.563
WKS082	0.074	0.000	0.000	2.400	0.196
WKS083	0.018	0.405	0.000	0.146	0.962
WKS084	0.055	0.000	0.000	1.269	0.159
WKS087	0.032	0.000	0.000	0.797	0.134
WKS089	0.030	0.000	0.000	1.484	0.317
WKS090	1.571	0.007	0.000	1.346	0.339
WKS091	0.045	0.169	0.000	0.186	0.899
WKS092	0.038	0.002	0.000	1.358	0.135
WKS095	0.015	0.000	0.000	2.945	0.255
WKS096	0.024	0.000	0.000	2.032	0.349
WKS097	0.991	0.002	0.000	1.659	0.185
WKS100	0.051	0.000	0.000	1.410	0.615
WKS101	0.424	0.000	0.000	2.194	0.482
WKS104	0.066	0.000	0.000	2.347	0.424
WKS107	1.202	0.004	0.000	3.134	0.460
WKS114	0.429	0.000	0.000	3.509	0.541
WKS116	0.026	0.000	0.000	3.440	0.868
WKS117	0.027	0.000	0.000	0.227	0.149
WKS121	0.669	0.006	0.000	1.336	0.453
WKS123	0.487	0.003	0.000	3.663	0.826
Peo: Peonidin					

1.5515.5									
Name	Cya (mg/g)	Pel (mg/g)	Peo (mg/g)	Q (mg/g)	K (mg/g)				
WKS124	0.022	0.045	- 0.000	0.192	2.012				
WKS125	0.187	0.002	0.000	0.349	0.089				
WKS126	0.544	0.002	0.000	2.226	0.895				
WKS127	1.609	0.008	0.006	2.278	0.528				
WKS128	1.844	0.003	0.007	2.576	0.409				
WKS129	1.645	0.002	0.006	0.450	0.160				
WKS130	1.332	0.008	0.005	1.599	0.525				
WKS131	0.582	0.002	0.001	2.460	0.567				

Table continued

.. 30

Name	Cya (mg/g)	Pel (mg/g)	Peo (mg/g)	Q (mg/g)	K (mg/g)					
WKS132	1.101	0.006	0.000	0.298	0.208					
WKS133	2.773	0.003	0.000	1.263	0.230					
WKS133	3.487	0.011	0.023	0.414	0.108					
WKS134	1.084	0.001	0.002	2.777	0.413					
WKS135	0.241	0.007	0.001	0.803	0.113					
WKS136	0.637	0.000	0.003	1.451	0.062					
WKS137	1.208	0.014	0.002	1.034	1.027					
WKS138	1.955	0.006	0.000	3.857	0.855					
WKS139	0.285	0.003	0.000	1.363	0.538					
WKS140	0.075	0.000	0.000	0.291	0.097					
WKS141	0.197	0.000	0.000	0.358	0.045					
WKS142	1.906	0.029	0.106	1.890	1.860					
WKS143	1.125	0.027	0.020	1.596	1.129					
WKS144	2.685	0.484	0.000	0.160	0.184					
WKS145	0.948	0.006	0.000	3.086	1.222					
WKS146	3.108	0.047	0.000	0.228	0.398					
WKS147	0.593	0.003	0.004	3.619	0.924					
WKS148	0.059	0.000	0.000	3.113	0.466					
WKS149	1.101	0.013	0.000	1.481	1.866					
WKS150	0.498	0.562	0.000	0.061	0.156					
WKS151	0.947	1.073	0.000	0.038	0.227					
WKS152	0.303	1.599	0.000	0.015	0.464					
Peo: Peon	Peo: Peonidin									

	_				
Name	Cya (mg/g)	Pel (mg/g)	Peo (mg/g)	Q (mg/g)	K (mg/g)
WKS153	1.178	0.796	0.000	0.020	0.179
WKS154	0.219	0.659	0.000	0.007	0.265
WKS155	0.547	0.006	0.000	1.274	0.073
WKS156	0.851	0.005	0.000	1.139	0.238
WKS157 ·	0.955	0.555	0.000	0.133	1.315
WKS158	0.634	0.005	0.000	0.526	0.219
WKS159	0.106	0.320	0.000	0.034	0.959
WKS160	0.750	0.005	0.000	2.283	0.768
WKS161	0.262	0.419	0.000	0.197	1.115
WKS162	0.039	0.564	0.000	0.041	0.447
WKS163	0.184	0.002	0.000	0.756	0.105
WKS164	0.918	0.012	0.000	1.954	2.832

Table continued

5

10

15

25

30

Name	Cya (mg/g)	Pel (mg/g)	Peo (mg/g)	Q (mg/g)	K (mg/g)
WKS165	0.097	0.604	0.000	0.026	0.197
WKS166	0.116	0.015	0.000	0.488	0.566
WKS167	0.647	0.002	0.000	2.507	0.499
WKS168	1.109	0.029	0.000	1.797	2.328
WKS169	0.070	0.003	0.000	0.208	1.369
Baby Faurax	2.247	0.022	0.058	4.518	0.580
Indigo	0.891	0.006	0.000	5.781	3.820
Intermezzo	0.040	0.000	0.000	1.075	0.443
James Veitch	1.281	0.004	0.002	2.087	0.923
Lagoon	0.053	0.000	0.000	2.887	0.315
Magenta	0.126	0.000	0.000	1.062	0.191
MRS COLVILLE	1.666	0.012	0.000	3.500	2.940
Mme. Isaac Pereire	0.629	0.003	0.000	1.021	0.105
Mme. de La Roche-Lambert	0.869	0.005	0.000	4.994	2.794
Roseraie de L'hay	0.364	0.005	1.256	0.156	0.077
Rose de Rescht	1.348	0.004	0.000	4.027	0.842
Rose du Roi a Fleurs Pourpres	2.556	0.017	0.000	0.968	0.411
Peo: Peonidin					

Example 15. Transfer of pansy F3'5'H gene (#40) and Torenia anthocyanin 5-acyltransferase gene into Lavande

[0087] Modification of anthocyanins with aromatic acyl groups can stabilize the anthocyanins and produce a bluer color (for example, WO96/25500). The following experiment was conducted with the goal of producing acylated delphinidin-nive anthocyanins.

[0088] RNA was obtained from *Torenia* Summer Wave flower petals, and polyA+RNA was prepared therefrom. A CDNA library was prepared from the polyA+RNA with \(\tilde{A}\) ZAPII (Stratagene) as the vector, using a directional CDNA library preparation kit (Stratagene) according to the manufacturer's recommended protocol. The major antibocyanin of *Torenia* is modified with an aromatic acyl group at the 5-position glucose (Suzuki et al., Molecular Breeding 2000 6, 239-246), and therefore antibocyanin acyltransferase is expressed in \(Torenia\) betals.

[0089] Anthocyanin acyltransferase includes the conserved amino acid sequence Asp-Phe-Gly-Trp-Gly-Lys, and corresponding synthetic DNA can be used as primer to obtain the anthocyanin acyltransferase gene (WO96/25500). Secifically, 10 ng of single-stranded cDNA synthesized for construction of the *Torenia* cDNA library was used as template, and 100 ng of ATC primer (5'-GA(TC)TT(TC)GGITGGGGIAA-3', I: Inosine) (SEQ ID NO: 17) and 100 ng of oligo dT primer (5'-TTITTTTTTTTTTTTCGAG-3') (SEQ ID NO: 18) were used as primers for PCR with Taq polymerase (Takara, Japan), under the manufacturer's recommended conditions.

[0090] The PCR was carried out in 25 cycles of reaction with one cycle consisting of 1 minute at 95°C, 1 minute at 55°C and 1 minute at 72°C. The approximately 400 bp DNA fragment that was obtained was recovered with Gene Clear III (BIQ.101. In and was subcloned in pCR-TOPO. Determination of the nucleotide sequence revealed a sequence homologous to the gentian acyltransferase gene (Fujiwara et al., 1998, Plant J. 16 421-431). The nucleotide sequence was determined by the Dye Primer method (Applied Biosystems), using Sequence 73 10 or 37° (both by Applied Biosystems).

[0091] The DNA fragment was labeled with DIG using a DIG-labeling detection kit (Japan Roche), and used for screening of a Torenia cDNA library by plaque hybridization according to the manufacturer's recommended protocol. Twelve of the obtained positive signal clones were randomly selected, the plasmids were recovered, and their nucleotide sequences were determined. These exhibited high homology with anthocyanin acyltransferase. The total nucleotide sequence of the cDNA in the clone designated as pTAT7 was determined. The nucleotide sequence is listed as SEQ ID NO: 8, and the corresponding armino acid sequence is listed as SEQ ID NO: 8.

[0092] After digesting pBE2113-GUS (Mitsuhara et al., Plant Cell Physiol. 37, 45-59, 1986) with Sacl, the ends were blunted and an 8 bp Xhol linker (Takara) was inserted. An approximately 1.7 kb DNA fragment obtained by digesting pTA17 with BamHI and Xhol was inserted at the BamHI and Xhol sites of this plasmid, to obtain pSPB120. After digesting pSPB120 with SnaBI and BamHI, the ends were blunted and ligation was performed to obtain pSPB120. Separately, plasmid pCGP1981 containing paney F35"H 40 cDNA was completely digested with BamHI and then partily digested with Xhol to obtain an approximately 1.8 kb DNA fragment which was recovered and ligated with pUE5H previously dicested with BamHI and Xhol, to obtain a lossmid which was designated as pUEBP40.

[0093] After digesting pUEBP40 with SnaBI and BarmHI, the ends were blunted and ligation was performed to obtain pUEBP40. This plasmid pUEBP40* was partially digested with HindIII to obtain an approximately 2.7 kb DNA fragment which was recovered and linked with a DNA fragment obtained by partial digestion of pSPB120* with HindIII. Of the obtained plasmids, a binary vector having the neomycin phosphotransferase gene, pansy F3'5'H #40 gene and Torenia SAT gene linked in that order in the same direction from the right border sequence on the binary vector, was designated as pSPB130 (Fig. 7). This plasmid is modified for constitutive expression of the pansy F3'5'H #40 gene and the Torenia SAT gene in plants and specific transcription of the genes in the flower petals. The plasmid was transferred into Agrobacterium prefacelors And I.

[0094] Plasmid pSPB130 (Fig. 7) was transferred into the pale violet rose variety "Lavande", and 41 transformants were obtained. Accumulation of delphildin was confirmed in 20 of the 32 pigment-analyzed plants (Tables 11 and 12). The delphildin content was 71% at maximum (average: 36%). The flower color was altered from RHS Color Chart 186c (Greyed-Purple group) to 79d (Purple group). The proportion of acylated anthocyanins was only about 30% of the total anthocyanins, the maximum absorption wavelength and shifted toward longer wavelength by 4 nm from delphildin 3,5-diglucoside, but because of the low proportion among the total anthocyanins.

20

25

45

			Table II				
Plant No.	Acylation (%)	Del content (%)	Del (mg/g)	Cya (mg/g)	M (mg/g)	Q (mg/g)	K (mg/g)
1	0	9	0.005	0.050	na	na	na
2	0	11	0.009	0.069	na	na	na
3	0	10	0.010	0.087	na	na	na
4	0	22	0.028	0.102	na	na	na
5	.5	51	0.073	0.069	na	na	na
6	4	57	0.093	0.069	na	na	na
7	5	48	0.039	0.042	na	na	na
8	13	0	0.000	0.065	na	na	na
9	17	9	0.006	0.062	na	na	· na
10	26	0	0.000	0.104	na	na	na
11	17	67	0.074	0.036	na	na	na
12	0	. 0	0.000	0.131	na	na	na
13	0	0	0.000	0.083	na	na	na
14	6	48	0.084	0.092	na	na	na
15	0	20	0.020	0.081	na	na	na
16	42	13	0.020	0.131	0.000	0.637	0.020
17	32	36	0.032	0.058	na	na	na
18	7	0	0.000	0.146	na	na	na
19	0	0	0.000	0.069	na	na	na
20	0	0	0.000	0.142	na	na	na

Table continued

Plant No.	Acylation (%)	Del content (%)	Del (mg/g)	Cya (mg/g)	M (mg/g)	Q (mg/g)	K (mg/g)				
21	0	0	0.000	0.080	na	na	na				
na: no ana	na: no analysis/measurement										

Table 12

10

15

25

Plant No.	Acylation (%)	Del content (%)	Del (mg/g)	Cya (mg/g)	M (mg/g)	Q (mg/g)	K (mg/g
22	0	0	0.000	0.069	na	na	na
23	0	0	0.000	0.057	na	na	na
24	18	4	0.006	0.149	na	na	na
25	17	4	0.008	0.208	na	na	na
26	0	0	0.000	0.188	na	na	na
27	0	0	0.000	0.078	na	na	na
28	17	67	0.090	0.044	na	na	na
29	17	71	0.057	0.024	na	na	na
30	16	40	0.040	0.059	na	na	na
31	21	70	0.082	0.036	0.305	0.062	0.008
32	18	62	0.066	0.040	na	na	na

Example 16. Transfer of pansy F3'5'H gene (#40) and Torenia anthocyanin 5-acyltransferase gene into WKS100

[0095] Plasmid pSPB130 (Fig. 7) was transferred into the pale violet rose variety "WKS100", and 146 transformants were obtained. Accumulation of delphinidin was confirmed in 56 of the 63 pigment-analyzed plants (Tables 13-15). The delphinidin content was 95% at maximum (average: 44%). The flower color was altered from RHS Color Chart 55d (Red group) to 186d (Greyed-Purple group). However, no color of the Violet group, Violet-Blue group or Blue group according to the RHSCC was achieved and the target blue rose could not be obtained.

40	Plant No.	Acylation (%)	Del content (%)	Del (mg/g)	Cya (mg/g)	Pel (mg/g)	M (mg/g)	Q (mg/g)	K (mg/g)
	1	20	75	0.036	0.012	0.000	2.944	0.974	0.322
	2	16	51	0.027	0.027	0.000	1.685	1.734	0.512
45	3	13	50	0.024	0.024	0.000	0.000	1.382	1.912
	4	23	50	0.037	0.037	0.000	na	na	na
	5	9	25	0.013	0.033	0.005	na	na	na
50	6	10	26	0.034	0.097	0.000	na	na	na
	7	13	65	0.053	0.028	0.000	1.936	1.184	0.760
	8	13	65	0.044	0.024	0.000	1.622	1.065	0.562
55	9	14	62	0.033	0.021	0.000	2.096	1.444	0.710
55	10	14	95	0.137	0.008	0.000	0.000	0.156	1.097
	11	10	62	0.036	0.022	0.000	2.025	1.194	0.799

EP 1 652 916 A1

Table continued

Plant No.	Acylation (%)	Del content (%)	Del (mg/g)	Cya (mg/g)	Pel (mg/g)	M (mg/g)	Q (mg/g)	K (mg/g)
12	5	59	0.054	0.038	0.000	2.194	1.289	0.783
13	9	43	0.033	0.044	0.000	2.542	1.803	0.734
14	9	50	0.030	0.031	0.000	0.020	1.971	0.741
15	1	70	0.066	0.028	0.000	1.652	1.659	0.867
16	0	20	0.008	0.023	0.008	0.308	2.632	1.463
17	1	63	0.068	0.040	0.000	2.037	2.128	1.554
18	21	51	0.037	0.035	0.000	2.659	1.936	1.002
19	0	0	0.000	0.095	0.000	na	na	na
20	0	0	0.000	0.037	0.000	na	na	na
21	0	23	0.026	0.086	0.003	0.182	4.554	3.083
22	4	71	0.110	0.044	0.000	3.265	1.643	1.341
23	12	65	0.051	0.025	0.002	1.356	0.888	0.387
24	6	58	0.038	0.027	0.000	2.374	2.016	0.809
25	5	52	0.044	0.040	0.000	2.651	2.546	1.108

	Plant No.	Acylation (%)	Del content (%)	Del (mg/g)	Cya (mg/g)	Pel (mg/g)	M (mg/g)	Q (mg/g)	K (mg/g)
. 35	26	6	64	0.033	0.019	0.000	2.707	1.546	0.605
: 35	27	16	0	0.000	0.041	0.000	na	na	na
	28	16	13	0.007	0.050	0.000	0.249	3.359	1.459
	29	12	7	0.007	0.095	0.000	na	na	na
40	30	15	. 9	0.007	0.069	0.000	na	na .	na
	31	15	8	0.007	0.081	0.000	na	, na	na
	32	7	-7	0.007	0.094	0.000	na	na	na
45	33	13	10	0.006	0.055	0.000	na	na	na
10	34	14	46	0.078	0.090	0.002	na	na	na
	35	. 4	8	0.007	0.078	0.000	na	na	na
	36	3	48	0.045	0.039	0.010	3.050	2.304	1.326
50	37	2	39	0.029	0.046	0.000	na	na	na
	38	1	55	0.073	0.059	0.000	1.608	2.138	1.015
	39	1	33	0.030	0.063	0.000	na	na	na
55	40	2	59	0.050	0.035	0.000	3.651	2.727	1.076
35	41	17	15	0.011	0.061	0.000	na	na	na
	42	0	0	0.000	0.048	0.002	na	na	na

Table continued

					able continue	u			
5	Plant No.	Acylation (%)	Del content (%)	Del (mg/g)	Cya (mg/g)	Pel (mg/g)	M (mg/g)	Q (mg/g)	K (mg/g)
	43	3	17	0.009	0.046	0.000	na	na	na
	44	40	32	0.027	0.058	0.000	na	na	na
	45	2	0	0.000	0.031	0.000	na	na	na
10	46	2	0	0.000	0.038	0.000	na	na	na
	47	1	8	0.004	0.048	0.000	na	na	na
	48	19	57	0.046	0.034	0.000	2.626	2.165	0.900
15	49	10	59	0.047	0.032	0.000	1.737	1.901	1.054
	50	2	70	0.057	0.024	0.000	1.545	0.880	0.694
	na: no ana	lysis/measur	ement						

20

50

55

Table 15

Plant No.	Acylation (%)	Del content (%)	Del (mg/g)	Cya (mg/g)	Pel (mg/g)	M (mg/g)	Q (mg/g)	K (mg/g
51	4	10	0.006	0.056	0.000	na	na	na
52	16	12	0.006	0.039	0.002	na	na	na
53	34	84	0.156	0.030	0.000	5.100	1.056	0.511
54	32	89	0.131	0.017	0.000	3.907	0.803	0.431
55	29	89	0.098	0.013	0.000	3.687	0.453	0.226
56	21	83	0.083	0.017	0.000	2.679	0.817	0.431
57	14	8	0.007	0.082	0.000	na	na	na
58	9	44	0.034	0.041	0.002	2.258	2.054	0.672
59	7	51	0.040	0.038	0.000	2.246	2.151	0.765
60	0	7	0.008	0.111	0.000	na	na	na
61	. 1	48	0.069	0.073	0.000	1.558	1.730	0.565
62	13	0	0.000	0.036	0.000	na	na	na
63	16	14	0.005	0.029	0.000	na	na	na

Example 17. Transfer of pansy F3'5'H gene (#40) and Torenia anthocyanin 5-acyltransferase gene into WKS116

[0096] Plasmid pSPB130 (Fig. 7) was transferred into the pale violet rose variety "WKS116", and 282 transformants were obtained. Accumulation of deiphinidin was confirmed in 33 of the 36 pigment-analyzed plants (Tables 16 and 17). The delphinidin content was 80% at maximum (average: 73%). The flower color was altered from RHS Color Chart 196d (Greyed-Green group) to 186d (Greyed-Purple group). However, no color of the Violet group, Violet-Blue group or Blue group according to the RHSCC was achieved and the target blue rose could not be obtained.

ı		4 1 11 /0/3	D-1	0-144-5	Q	14.4	04:- 43	144
ı	Plant No.	Acylation (%)	Del content (%)	Del (mg/g)	Cya (mg/g)	M (mg/g)	G (mg/g)	K (mg/g)
I	1	1.8	78	0.015	0.004	0.746	0.753	0.507

Table continued

Plant No.	Acylation (%)	Del content (%)	Del (mg/g)	Cya (mg/g)	M (mg/g)	Q (mg/g)	K (mg/g
2	12.7	78	0.097	0.028	1.826	2.352	1.572
3	5.9	78	0.030	0.009	1.000	1.452	0.934
4	0.0	76	0.030	0.010	0.813	0.990	0.480
5	2.6	72	0.038	0.015	1.279	1.835	0.832
6	0.0	72	0.019	0.007	0.839	0.983	0.642
7	3.1	75	0.033	0.011	1.131	1.476	0.877
8	1.9	75	0.028	0.009	0.761	0.977	0.466
9	2.6	76	0.034	0.011	na	na	na
10	2.7	73	0.031	0.011	na	na	ne
11	. 4.4	77 .	0.033	0.010	1.001	1.003	0.618
12	7.0	74	0.035	0.012	0.849	0.945	0.577
13	9.3	74	0.025	0.009	na	na	na
14	3.2	80	0.044	0.011	1.045	0.959	0.545
15	4.5	. 75	0.031	0.010	1.115	1.256	0.729
16	10.5	71	0.028	0.012	1.055	1.155	0.670
17	1.7	51	0.016	0.016	0.330	1.537	1.052
18	10.5	77	0.112	0.033	2.008	2.976	2.216
19	0.0	0	0.000	0.010	na	na	na
20	0.0	30	0.007	0.015	na	na	na
. 21	na	56	0.013	0.010	0.197	1.960	1.463
22	4.4	47	0.006	0.007	na	na	na
23	3.6	77	0.026	0.008	na	na	na

			10010 11	-			
Plant No.	Acylation (%)	Del content (%)	Del (mg/g)	Cya (mg/g)	M (mg/g)	Q (mg/g)	K (mg/g)
24	7.2	82	0.028	0.006	1.295	1.272	0.805
25	3.5	83	0.035	0.007	na	na	na
26	17.4	26	0.009	0.025	na	na	na
27	39.3	91	0.101	0.010	3.499	0.563	0.178
28	28.2	85	0.047	0.005	na	na	na
29	0.0	0	0.000	0.025	na	na	na
30	10.4	89	0.092	0.012	na	na	na
31	1.9	0	0.000	0.036	na	na	na
32	5.8	76	0.027	0.009	na	na	na
33	16.8	88	0.066	0.009	na	na	na
34	10.5	87	0.103	0.015	na	na	na
35	13.7	38	0.021	0.034	na	na	na

FP 1 652 916 Δ1

Table continued

Plant No.	Acylation (%)	Del content (%)	Del (mg/g)	Cya (mg/g)	M (mg/g)	Q (mg/g)	K (mg/g)
36	18.3	95	0.051	0.003	na	na	na
na: no ana	lysis/measureme	ent					

Example 18. Transfer of pansy F3'5'H gene (#40) and Torenia anthocyanin 5-acyltransferase gene into WKS124

5

15

30

35

40

55

[0097] Plasmid pSPB130 (Fig. 7) was transferred into the pale orange rose variety "WKS124", and 50 transformants were obtained. Accumulation of delphinidin was confirmed in 13 of the 15 playent-analyzed plants (Table 18). The delphinidin content was 95% at maximum (average: 82%). The flower color was altered from RHS Color Chart 52d (Red group) to 71c (Red-Purple group). However, no color of the Violet group, Violet-Blue group or Blue group according to the RHSCC was achieved and the tarest blue rose could not be obtained.

Plant No.	Acylation (%)	Del content (%)	Dei (mg/g)	Cya (mg/g)	Pel (mg/g)	M (mg/g)	Q (mg/g)	K (mg/g
1	0.6	. 0	0.000	0.013	0.069	na	na	na
2	35.5	75	0.256	0.051	0.034	0.066	0.093	1.190
3	43.0	78	0.385	0.068	0.041	0.039	0.046	1.197
4	44.2	85	0.811	0.120	0.028	0.106	0.094	1.021
5	na	86	0.907	0.123	0.024	0.219	0.066	0.852
6	4.6	0	0.000	0.023	0.075	na	па	na
7	7.9	90	1.498	0.169	0.008	0.905	0.143	0.679
8	8.4	90	1.403	0.146	0.008	0.971	0.145	0.827
9	26.7	88	0.521	0.066	0.003	0.623	0.108	0.853
10	21.9	89	0.504	0.058	0.003	0.636	0.098	0.727
11	26.0	85	0.928	0.145	0.019	0.424	0.152	0.455
12	3.8	95	1.017	0.058	0.000	1.161	0.140	0.262
13	11.6	84	0.939	0.156	0.025	0.748	0.128	0.262
14	38.5	69	0.166	0.071	0.007	0.000	0.059	0.776
15	27.1	55	0.137	0.040	0.074	0.000	0.021	2.330

Example 19. Transfer of pansy F3'5'H gene (#40) and Torenia anthocyanin 5-acyltransferase gene into WKS132

[0088] Plasmid pSPB130 (Fig. 7) was transferred into the bright red rose variety "WK5132", and 24 transformants were obtained. Accumulation of delphinidin was confirmed in 6 of the 7 pigment-analyzed plants (Table 19). The delphinidin content was 43% at maximum (average: 12%). The flower color was altered from RHS Color Chart 57a (Red-Purple group) to 66a (Red-Purple group). However, no color of the Violet group, Violet-Blue group or Blue group according to the RHSCC was schleved and the target blue rose could not be obtained.

Table 19

ĺ	Plant No.	Acylation (%)	Del content (%)	Del (mg/g)	Cya (mg/g)	Pel (mg/g)
	1	1.8	0.4	0.008	1.872	0.009
	2	1.0	0.0	0.000	1.409	0.010

Table continued

Plant No.	Acylation (%)	Del content (%)	Del (mg/g)	Cya (mg/g)	Pel (mg/g)
3	21.3	11.4	0.237	1.841	0.007
4	6.8	42.5	0.461	0.619	0.006
5	7.6	9.5	0.204	1.936	0.011
6	na	1.3	0.016	1.227	0.007
7	23.7	5.4	0.081	1.407	0.005

Example 20. Transfer of pansy F3'5'H gene (#40) and Torenia anthocyanin 5-acyltransferase gene into WKS133

10

15

20

40

55

[0099] Plasmid pSPB130 [Fig. 7] was transferred into the dark red-violet rose variety *WKS133*, and 16 transformants were obtained. Accumulation of delphinidin was confirmed in all eight of the pigment-analyzed plants (Table 20). The delphinidin content was 34% at maximum (average: 11%). The flower color was altered from RHS Color Chart 53a (Red group) to 61a (Red-Purple group). However, no color of the Violet group, Violet-Blue group or Blue group according to the RHSCC was achieved and the tarest blue rose could not be obtained.

חל פולפד

Plant	Plant Acviation	Del	Del	Cya	Pel	Peo	Σ	a	×
02	(8)	content	(6/6m)	(b/bw)	(mg/g)	(mg/g)	(b/bw)	(b/bm) (b/bm) (b/bm) (b/bm) (b/bm) (b/bm) (b/bm)	(b/bw)
		(%)							
-	10.3	23.7	1.322	4.253	0.009	0.004	0.691	1.322 4.253 0.009 0.004 0.691 0.792 0.133	0.133
2	11.8	33.8	1.192	2.324	0.005	0.003	0.621	0.621 0.422	0.093
6	6.1	12.9	0.009	090.0	0.000	0.000	0.102	0.102 0.500	0.048
4	3.8	9.1	0.363	3.627	0.005	0.008	na	na	na
	15.8	2.0	0.078	3.774	0.009	0.000	0.045	0.045 0.939	0.472
و	11.5	2.7	0.135	4.771	0.011	0.005	0.046	0.046 0.576	0.034
-	13.3	3.0	0.180	5.800	0.009	0.009	001.0	0.937	0.179
8	12.2	3.5	0.161	4.470	0.009	0.009	0.068	4.470 0.009 0.009 0.068 0.738	0.148
ğ	a: no analy	na: no analysis/measurement	ement						

Example 21. Transfer of pansy F3'5'H gene (#40) and Torenia anthocyanin 5-acyltransferase gene into WKS137

[0100] Plasmid pSPB130 (Fig. 7) was transferred into the dark red-violet rose variety "WKS137", and 20 transformants were obtained. Accumulation of delphinidin was confirmed in all 17 of the pigment-analyzed plants (Table 21). The delphinidin content was 1.3% at maximum (average: 0.4%), No alteration in flower color was observed from RHS Color

ול הולהי

×	(b/	na	812	na	na	na	na	na											
×	(mg/g)	na	2.	na	na	na	na	na											
α	(mg/g)	u	G	u	u	ū	u	C.	G	u	G	G	3.026	u		E	u	r.	
Σ	(mg/g)	na	0.048	na	na	na	na	na											
Peo	(6/6w)	0.000	0.000	0.000	0.000	0.000	0.003	0.000	0.000	0.000	0.000	0.003	0.000	0.000	0.001	0.000	0.000	0.000	
Pel	(6/6w)	0.037	0.051	0.014	0.057	0.035	0.040	0.045	0.042	0.024	0.016	0.027	0.022	0.065	0.024	0.041	0.014	0.051	
Cya	(6/6w)	2.821	3.384	1.982	3.344	3.145	2.919	2.820	2.467	3.836	1.743	2.593	2.393	3.756	2.149	2.281	1.314	2.892	
Del	(b/bw)	0.008	0.010	0.005	0.008	0.011	0.025	0.008	0.010	0.010	0.008	0.011	0.007	0.009	0.008	0.007	0.007	0.007	
Del	content (%)	0.3	0.3	0.3	0.2	0.4	1.3	0.3	0.4	0.2	0.5	0.4	0.3	0.2	0.4	0.5	0.5	0.2	
Acylation	(%)	0.5	8.0	0.4	9.0	0.7	0.7	0.4	0.5	0.7	0.1	0.7	9.0	1.4	0.7	8.0	0.5	1.0	
Plant	No.	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	

Example 22. Transfer of pansy F3'5'H gene (#40) and Torenia anthocyanin 5-acyltransferase gene into WKS140

[0101] Plasmid pSPB130 (Fig. 7) was transferred into the pale violet rose variety "WKS140", and 197 transformants were obtained. Accumulation of delphinidin was confirmed in 37 of the 45 pigment-analyzed plants (Tables 22 and 23).

The delphinidin content was 94% at maximum (average: 47%). The flower color was altered from RHS Color Chart 186d (Greyed-Purple group) to 79d (Purple group). However, no color of the Violet group, Violet-Blue group or Blue group according to the RHSCC was achieved and the target blue rose could not be obtained.

To		

Plant No.	Acylation (%)	Del content (%)	Del (mg/g)	Cya (mg/g)	M (mg/g)	Q (mg/g)	K (mg/g)
1	3.5	0.0	0.000	0.090	na	ла	na
2	2.5	0.0	0.000	0.093	0.096	2.429	0.246
3	5.5	63.5	0.061	0.035	0.688	1.090	0.106
4	13.2	17.7	0.013	0.059	na	na	na
5	5.4	11.6	0.017	0.129	na	na	na
6	3.6	12.3	0.011	0.078	na	na	na
7	13.6	11.7	0.009	0.069	na	na	na
8	4.1	22.3	0.012	0.041	0.057	1.950	0.492
9	3.3	0.0	0.000	0.071	na	na	na
10	2.6	18.6	0.017	0.076	na	na	na
11	4.2	18.6	0.012	0.052	0.130	3.101	1.172
12	6.5	25.0	0.026	0.079	0.251	2.300	0.592
13	1.3	0.0	0.000	0.062	0.000	2.200	0.552
14	22.7	85.4	0.261	0.045	1.649	0.943	0.126
15	20.9	57.4	0.093	0.069	0.481	1.418	0.182
16	16.4	39.9	0.052	0.078	na	na	na
17	15.2	50.8	0.074	0.072	na	na	na
18	6.1	22.6	0.036	0.111	0.148	2.152	0.279
19	2.7	0.0	0.000	0.033	na-	na	na
20	9.1	52.6	0.041	0.037	na	na	na
21	4.4	46.2	0.075	0.087	na	na	na
22	8.5	34.7	0.040	0.075	0.195	1.847	0.394
23	11.0	30.9	0.018	0.040	0.155	1.106	0.142
24	13.4	46.8	0.056	0.063	na	na	na
25	2.8 8	5.1 1	0.006	0.107	na	na	na

Table 23

Plant No.	Acylation (%)	Del content (%)	Del (mg/g)	Cya (mg/g)	M (mg/g)	Q (mg/g)	K (mg/g)
26	4.1	6.8	0.007	0.098	na	na	na
27	31.4	93.4	0.252	0.018	1.434	0.361	0.052
28	13.4	86.7	0.101	0.016	1.237	1.740	0.499
29	32.3	94.2	0.200	0.012	0.862	0.131	0.029
30	13.0	89.7	0.176	0.020	0.553	0.289	0.026
31 .	12.3	87.1	0.150	0.022	1.007	0.674	0.135

Table continued

Plant No.	Acylation (%)	Del content (%)	Del (mg/g)	Cya (mg/g)	M (mg/g)	Q (mg/g)	K (mg/g
32	6.7	9.9	0.009	0.086	na	na	na
33	11.5	67.4	0.108	0.052	na	na	na
34	5.0	11.2	0.014	0.110	0.074	2.588	0.659
35	12.5	79.7	0.088	0.022	1.192	1.185	0.574
36	15.0	83.4	0.065	0.013	1.478	1.147	0.570
37	1.8	0.0	0.000	0.068	na	na	na
38	1.3	44.3	0.105	0.132	0.582	3.259	1.232
39	2.5	73.6	0.114	0.041	na	na	na
40 .	14.0	85.3	0.165	0.028	1.881	1.035	0.180
41	0.5	4.3	0.006	0.144	na	na	na
42	9.9	53.3	0.040	0.035	0.373	1.038	0.164
43	33.5	87.4	0.275	0.040	1.851	0.701	0.148
44	1.3	0.0	0.000	0.073	na	na	na
45	1.5	0.0	0.000	0.062	na	na	na

Example 23. Transfer of pansy F3'5'H gene (#40) and Torenia anthocyanin 5-acyltransferase gene into WKS77

[0102] Plasmid pSPB130 (Fig. 7) was transferred into the dark red-purple rose variety "WKS77", and 35 transformants were obtained. Accumulation of delphinidin was confirmed in all 17 of the pigment-analyzed plants (Table 24). The delphinidin content was 57% at maximum (average: 33%). The flower color was aftered from RHS Color Chart 57a (Red-Purple group) to 71a (Red-Purple group). However, no color of the Violet group, Violet-Blue group or Blue group according to the RHSCC was achieved and the target blue rose could not be obtained.

Plant No.	Acylation (%)	Del content (%)	Del (mg/g)	Cya (mg/g)	Pel (mg/g)	M (mg/g)	Q (mg/g)	K (mg/g)
1	6.2	42.5	1.153	1.552	0.008	0.484	0.679	0.196
2	7.6	38.6	0.618	0.979	0.005	0.267	0.465	0.094
3	3.9	40.4	0.706	1.030	0.011	1.266	1.768	0.722
4	2.0	46.9	0.372	0.417	0.004	0.363	0.608	0.276
5	5.4	40.6	0.540	0.784	0.005	1.077	1.809	0.645
6	2.0	44.7	1.078	1.325	0.009	0.516	1.034	0.382
7	2.1	46.5	0.398	0.453	0.005	0.353	0.792	0.569
8	5.8	39.7	0.647	0.980	0.005	0.425	0.706	0.183
9	4.7	40.0	0.844	1.268	0.000	0.310	0.764	0.199
10	7.6	39.7	1.345	2.033	0.009	0.350	0.635	0.119
11	14.1	2.9	0.068	2.274	0.013	na	na	na
12	12.8	6.9	0.126	1.688	0.009	na	na	na
13	12.7	4.2	0.109	2.468	0.012	0.060	1.541	0.366

EP 1 652 916 A1

Table continued

Plant No.	Acylation (%)	Del content (%)	Del (mg/g)	Cya (mg/g)	Pel (mg/g)	M (mg/g)	Q (mg/g)	K (mg/g
14	13.0	20.9	0.704	2.669	0.000	0.407	2.502	0.694
15	19.3	43.5	1.011	1.308	0.007	0.357	0.843	0.276
16	19.6	6.1	0.092	1.414	0.010	0.120	1.740	0.477
17	22.8	56.6	1.068	0.814	0.004	0.604	0.503	0.126

5

10

15

Example 24. Transfer of pansy F3'5'H gene (#40) and Torenia anthocyanin 5-acyltransferase gene into WKS82

[0103] Plasmid pSPB130 [Fig. 7) was transferred into the pale violet rose variety "WKS82", and 89 transformants were obtained. Accumulation of delphinidin was confirmed in all 44 of the pigment-analyzed plants (Tables 25 and 26). The delphinidin content was 91% at maximum (average: 49%). The flower color was altered from RHS Color Chart 186d (Greyed-Purple group) to 80c (Purple-Violet group). However, no color of the Violet group, Violet-Blue group or Blue group according to the RHSCC was achieved and the target blue rose could not be obtained.

To	h	ما	2	5

25	Plant No.	Acylation (%)	Del content (%)	Del (mg/g)	Cya (mg/g)	Pel (mg/g)	M (mg/g)	Q (mg/g)	K (mg/g)
	1	10.5	52.3	0.055	0.050	0.000	0.430	0.883	0.083
	2	15.9	62.5	0.091	0.054	0.000	0.570	0.549	0.030
30	3	15.9	36.6	0.044	0.076	0.000	0.622	2.221	0.102
	4	6.8	40.0	0.023	0.034	0.000	0.247	0.986	0.172
	5	15.0	82.9	0.087	0.018	0.000	5.451	0.403	0.042
	6	na	89.7	0.072	0.008	0.000	0.853	0.163	0.062
35	7	9.5	89.5	0.101	0.012	0.000	0.719	0.144	0.019
	8	14.7	11.4	0.012	0.090	0.000	na	na	na
	9	11.6	29.3	0.024	0.059	0.000	na	na	na
40	10	8.7	15.2	0.010	0.053	0.000	na	na	na
	11	7.9	59.0	0.046	0.032	0.000	0.580	0.619	0.022
	12	8.5	55.6	0.060	0.048	0.000	1.318	1.615	0.165
	13	13.9	42.3	0.026	0.035	0.000	0.603	1.094	0.052
45	14	10.1	10.3	0.008	0.073	0.000	na	na	na
	15	10.6	18.8	0.018	0.079	0.000	na	na	na
	16	9.3	11.7	0.009	0.066	0.000	na	na	na
50	17	14.3	76.2	0.112	0.035	0.000	3.741	1.587	0.377
	18	12.7	76.7	0.101	0.031	. 0.000	1.608	0.656	0.075
	19	9.8	71.7	0.057	0.022	0.000	1.403	0.455	0.041
	20	5.3	14.1	0.011	0.068	0.000	0.132	2.999	0.720
55	21	3.5	18.5	0.008	0.035	0.000	na	na	na
	22	7.7	23.1	0.017	0.055	0.000	0.141	0.929	0.034

Table continued

Plant No.	Acylation (%)	Del content (%)	Del (mg/g)	Cya (mg/g)	Pel (mg/g)	M (mg/g)	Q (mg/g)	K (mg/g)
23	5.4	19.0	0.015	0.065	0.000	0.297	4.128	1.350
na: no ana	lvsis/measur	ement						

5

10

55

Table 06

				Table 26				
Plant No.	Acylation (%)	Del content (%)	Del (mg/g)	Cya (mg/g)	Pel (mg/g)	M (mg/g)	Q (mg/g)	K (mg/g
24	1.1	42.1	0.036	0.050	0.000	0.609	2.929	0.679
25	22.7	91.0	0.079	0.008	0.000	0.964	0.218	0.018
26	6.1	61.3	0.048	0.030	0.000	0.490	0.468	0.029
27	8.7	91.3	0.097	0.009	0.000	2.053	0.339	0.123
28	9.4	59.9	0.060	0.040	0.000	1.537	1.631	0.422
29	5.5	51.2	0.040	0.038	0.000	0.688	0.723	0.038
30	5.1	61.4	0.056	0.032	0.003	0.637	0.537	0.087
31	7.0	53.3	0.037	0.032	0.000	0.706	1.032	0.051
32	5.7	58.1	0.071	0.051	0.000	1.592	1.478	0.220
33	4.3	64.6	0.092	0.050	0.000	0.849	0.753	0.035
34	6.4	61.7	0.042	0.026	0.000	0.477	0.468	0.023
35	8.9	58.8	0.048	0.034	0.000	0.646	0.928	0.063
36	6.2	11.6	0.007	0.057	0.000	0.094	1.132	0.066
37	7.1	51.2	0.038	0.036	0.000	0.911	1.135	0.079
38	5.8	50.8	0.029	0.028	0.000	0.868	1.105	0.096
39	5.5	47.0	0.027	0.023	0.007	1.366	1.632	0.105
40	4.9	67.0	0.044	0.022	0.000	0.795	0.586	0.051
41	na	61.1	0.053	0.033	0.000	1.310	1.466	0.259
42	9.6	71.0	0.074	0.030	0.000	0.460	0.337	0.023
43	1.2	27.6	0.009	0.024	0.000	na	na	na
44	5.2	13.8	0.013	0.078	0.000	na	na	na

Example 25. Transfer of pansy F3'5'H gene (#40) and Torenia anthocyanin 5-acyltransferase gene into WKS91

[0104] Plasmid pSPB130 (Fig. 7) was transferred into the light orange rose variety "WKS91", and 10 transformants were obtained. Accumulation of delphinidin was confirmed in only one of the two pigment-analyzed plants (Table 27). The delphinidin content was 2% at maximum. No alteration in flower color was observed from RHS Color Chart 43c (Red group).

Table 27

Plant No.	Acylation (%)	Del content (%)	Del (mg/g)	Cya (mg/g)	Pel (mg/g)
1	0.7	0.0	0.000	0.090	0.307
2	0.0	1.8 .	0.006	0.040	0.295

Example 26. Expression of pansy F3'5'H gene (#40) and Iris DFR gene and suppression of rose endogenous DFR gene in Lavande

10

50

[0105] RNA was obtained from blue iris petals of cut flowers, and polyA*RNA was prepared therefrom. A cDNA library was prepared from the polyA*RNA with \(\frac{1}{2}\text{APII}\) (Stratagene) as the vector, using a cDNA library preparation kit (Stratagene) according to the manufacturer's recommended protocol. An iris DFR gene fragment was prepared by the same method as reported for obtaining centian DFR gene fragment (Tanaka et al. Plant Cell Physiol. 37, 711-716 1996).

[0106] The approximately 400 bp DNA fragment obtained was recovered with Gene Clean according to the manufacturer's recommended protocol, and was subcloned in pCR-TOPO. Determination of the nucleotide sequence revealed a sequence homologous to the rose DFR gene. The DNA fragment was used for screening of the inis CDNA library, and iris DFR cDNA including the full-length amino acid sequence was obtained. The total nucleotide sequence of the cDNA in the clone designated as pSPB906 was determined. The nucleotide sequence is listed as SEQ ID NO: 10.

[0107] Next, an approximately 3.9 kb DNA fragment obtained by digestion of pSPB580 with BamHI and XhoI was linked with an approximately 1.5 kb DNA fragment obtained by digestion of pSPB906 with BamHI and XhoI, and the obtained plasmid was designated as pSPB909.

[0108] A vector for transcription of double-stranded RNA for the rose DFR-cDNA in plants was prepared in the following manner. An approximately 3.5 kb DNA fragment (including Mac1 promoter, rose DFR-cDNA and mas terminator) obtained by partial digestion of pCGP1364 (Tanaka et al., Plant Cell Physiol. (1995) 36, 1023-1031) with Pstt was inserted at the Pstt site of pUC19 (Yanisch-Perron C et al., Gene 33:103-119, 1985) to obtain plasmids, among which a plasmid having the Hindill site of pUC19 near the Mac1 promoter was designated as pCGP1394.

[0109] Next, an approximately 1.4 kb DNA fragment obtained by digestion of pCGP1394 with Hindfill and Sacill was iligated with an approximately 1.9 kb DNA fragment obtained by digestion of pCGP1394 with Pst, blunting of the ends and further digestion with Sacil, and with a binary vector fragment obtained by digestion of pBinPLUS with Saci, blunting of the ends and further digestion with Hindfill, obtain pSPB185. Plasmid pSPB186 was digested with Xbal, blunted and ligated with a Sall linker to obtain pSPS51. An approximately 700 by DNA fragment obtained by digestion of pUE6 with Hindfill and Sacill and with a GNB (seen fragment obtained by digestion of pE218 with Hindfill and Sacil and Sa

[0110] Plasmid pSPB528 is a binary vector having a structural gene inserted between the enhancer-containing cauifflower mosale virus 355 promoter and the manopine synthase terminator, which is expressible in plants. Also, in order to shorten the 5'-end non-translated sequence of rose DFR cDNA in pCGP645, plasmid pCGP645 was digested with Smal and Pvul. blunted and re-ligated to obtain pCGP645s.

[0111] The 5'-end sequence of rose DFR cDNA was obtained by PCR amplification using pCGP845s as the template and a reverse primer and the synthetic primer RDF310 (5'-CCTTGATGAGCCCTTGATGGCCTCGTCG-3') (SEQ ID NO: 19) as the primers, and was cloned in pCRTOPO. The DNA nucleotide sequence was determined and absence of errors by PCR was confirmed. This plasmid was designated as pSPE359. Also, a rose DFR cDNA 5'-end sequence with a different length was obtained by amplification using pCGP845s as the template and a reverse primer and we synthetic primer RDF830 (5'-GGGTCGAGCGGCCCTGTGCTTTCGG-3') (SEQ ID NO: 20) as the primers, and was cloned in pCRTOPO. The DNA nucleotide sequence was determined and absence of errors by PCR was confirmed.

[0112] This plasmid was designated as pSPB570. A binary vector DNA fragment obtained by digestion of pSPB528 with BamHI and SacI, and an approximately 0.3 kb DNA fragment obtained by digestion of pSPB569 with SacI and XhoI, were ligated with a DNA fragment obtained by digestion of pSPB570 with BamHI and SalI, to obtain pSPB572. This vector is designed for transcription of double-stranded RNA for rose DFR dDNA in plants.

[0113] Plasmid pUE6 was digested with Saci and blunted, and a Sall linker was inserted to obtain pUE8. A DNA fragment obtained by digesting pUE8 with Hindill and EcoRl was introduced at the Hindill and EcoRl sites of pBinPLUS to obtain plasmid pSPB188. An approximately 3.7 kb DNA fragment obtained by digestion of pSPB188 with BamHI and Sall was ligated with an approximately 1.8 kb DNA fragment obtained by complete digestion of pCgP1961 with BamHI followed by partial digestion with Xhol, to obtain plasmid pSPB567. After Paci digestion and dephosphorplatin treatment of pSPB572, it was linked with an approximately 2.8 kb DNA fragment obtained by digestion of pSPB567 with Paci, and a plasmid with transcription of the nptll gene and pansy F3'S'H #40 in the same direction was selected and designated as pSPB067.

[0114] After AscI digestion and dephosphorylation treatment of pSPB905, it was linked with an approximately 2.5 kb DNA fragment obtained by digestion of pSPB909 with AscI, and a plasmid with transcription of the iris DFR gene in the same direction as the nptil gene was obtained and designated as pSPB919 (Fig. 8). This plasmid is expected to allow transcription of the iris DFR gene and pansy F3'5'H #40 gene in rose, while suppressing expression of the rose DFR gene due to transcription of double-stranded RNA. The plasmid was transferred into Agrobacterium tumerlaciens Ag10. [0115] Plasmid pSPB919 (Fig. 8) was transferred into the pale violet rose variety "Lavande", and "Transformants were obtained. Accumulation of delphinidin was confirmed in 31 of the 38 pigment-analyzed plants (Tables 28 and 29). The delphinidin content was 100% at maximum (average: 76%). The flower color was altered from RHS Color Chart 1866 (Grever-Pumple round) to 85.6 b (Violet group).

[0116] RNA was extracted from rose petals in the same manner as explained above, and after separating the RNA by agarose gel electrophoresis, it was transferred onto Hybond N (Amersham) (for example, Tanaka et al., 1995). The mRNA was detected using a DIG Northern Starter Kit (Roche) by the manufacturer's recommended protocol. The rose DFR mRNA was detected using pCGP645 (Tanaka et al., Plant Cell Physiol. 36, 1023-1031, 1995) as template and a T7 orimer transcriot as the probe.

[0117] Detection of pansy F3'5'H #40 mRNA was accomplished using pCGP 1961 as template and a T7 primer transcript as the probe. Detection of iris DFR mRNA was accomplished using pSPB906 as template and a T7 primer transcript as the probe. Pansy F3'5'H #40 and iris DFR gene mRNA were detected in the altered-color roses. On the other hand, rose DFR mRNA was significantly reduced compared to the host and a band was detected at the low molecular weight position, indicating decomposition of the rose DFR mRNA.

Table 28

20

40

45

50

			Table 20			
Plant No.	Del content (%)	Del (mg/g)	Cya (mg/g)	M (mg/g)	Q (mg/g)	K (mg/g)
1	0.0	0.000	0.105	0.036	0.856	0.038
2	0.0	0.000	0.125	na	na	na
3	0.0	0.000	0.091	0.023	0.851	0.101
4	0.0	0.000	0.116	0.000	1.336	0.087
5	0.0	0.000	0.048	na	na	na
6	88.5	0.086	0.011	1.626	1.187	0.411
7	90.8	0.089	0.009	0.797	1.548	0.087
8	84.0	0.046	0.009	0.163	0.699	0.016
9	87.8	0.062	0.009	0.193	0.760	0.022
10	89.3	0.072	0.009	0.210	0.575	0.033
11	91.5	0.049	0.005	0.398	0.805	0.050
12	91.5	0.032	0.003	0.100	0.811	0.014
13	85.7	0.040	0.007	0.092	0.497	0.012
14	64.9	0.040	0.021	0.263	0.327	0.015
15	88.3	0.041	0.005	na	na	na
16	66.4	0.011	0.006	0.036	1.221	0.030
17	79.7	0.008	0.002	0.030	0.765	0.009
18	100.0	0.010	0.000	0.048	1.343	0.067
19	95.9	0.040	0.002	0.159	0.136	0.004
20	65.4	0.016	0.008	0.090	1.244	0.048
21	18.8	0.011	0.049	0.048	0.855	0.020
22	0.0	0.000	0.110	0.000	1.274	0.079

Table continued

Plant No.	Del content (%)	Del (mg/g)	Cya (mg/g)	M (mg/g)	Q (mg/g)	K (mg/g)
23	0.0	0.000	0.140	0.000	1.952	0.200
na: no ana	lysis/measuremen					

5

10

15

20

25

30

Table 29

Plant No.	Del content (%)	Del (mg/g)	Cya (mg/g)	M (mg/g)	Q (mg/g)	K (mg/g)
24	41.4	0.102	0.144	0.265	0.417	0.015
25	34.3	0.042	0.081	0.167	0.429	0.024
26	34.6	0.023	0.043	na	na	na
27	41.4	0.082	0.116	0.232	0.385	0.019
28	37.7	0.046	0.076	0.254	0.429	0.018
29	36.1	0.032	0.057	0.151	0.235	0.042
30	97.2	0.052	0.002	0.208	0.088	0.004
31	93.0	0.038	0.003	0.347	0.137	0.007
32	98.2	0.101	0.002	0.339	0.258	0.029
33	91.3	0.039	0.004	na	na	na
34	91.9	0.041	0.004	0.332	0.120	0.007
35	96.8	0.052	0.002	na	na	na
36	96.7	0.084	0.003	0.342	0.168	0.010
37	88.0	0.014	0.002	0.076	1.000	0.029
38	84.5	0.016	0.003	0.074	1.121	0.025

Example 27. Expression of pansy F3'5'H gene (#40) and Nierembergia DFR gene, and suppression of rose endogenous DFR gene in Lavande

[0118] RNA was obtained from petals of the *Nierembergia hybrida* cultivar Fairy Bell Patio Light Blue (Suntory Flowers Co., Ltd.), and polyA*RNA was prepared therefrom. A cDNA library was prepared from the polyA*RNA with XZAPII (Stratagene) as the vector, using a cDNA library synthesis kit (Stratagene) according to the manufacturer's recommended protocol. The cDNA library was screened using DIG-labeled petunia DPR cDNA (from pCGP1405).

[0119] The screening conditions were according to the plaque hybridization method using a DIG-labeling system, according to the manufacturer's recommended protocol. However, the formaldehyde concentration was 30% for the pre-hybridization and hybridization buffers, and hybridization was carried out overright at 37°C. The membrane was finsed at 155°C in 5xSSC containing 1% SDS. Plasmids were recovered from 20 plaques among the numerous positions and their nucleotide sequences were determined using Reverse Primer (Takara). These exhibited high homology with the DFR genes of other plants including petunia. The total nucleotide sequence of the cDNA in the clone designated as pSPB708 was determined. The nucleotide sequence is listed as SEQ ID NO: 11, and the corresponding amino acid sequence is listed as SEQ ID NO: 12

[0120] An approximately 3.9 kb DNA fragment obtained by digestion of pSPB580 with BamHI and Xhol was linked with an approximately 1.5 kb DNA fragment obtained by digestion of pSPB709 with BamHI and Xhol, to obtain plasmid pSPB910. After Ascl digestion and dephosphorylation treatment of pSPB910, it was linked with an approximately 2.5 kb DNA fragment obtained by digestion of pSPB910 with Ascl, and a plasmid with transcription of the Nierembergia DFR gene in the same direction as the nptII gene was obtained and designated as pSPB920 (Fig. 9). This plasmid is expected to allow transcription of the Nierembergia DFR gene and pansy F3'SH #40 gene in rose, while suppressing expression of the rose DFR gene due to transcription of double-stranded RNA. The plasmid was transferred into Agrobacterium tumerateriers And.

[0121] Plasmid pSPB920 (Fig. 9) was transferred into the pale violet rose variety "Lavande", and 56 transformants were obtained. Accumulation of delphinidin was confirmed in 23 of the 24 pigment-analyzed plants (Table 30). The delphinidin content was 100% at maximum (average: 43%). The flower color was altered from RHS Color Chart 186c (Greyad-Pumle group) to 85b (Violet group).

	30	

Plant No.	De! content (%)	Del (mg/g)	Cya (mg/g)	M (mg/g)	Q (mg/g)	K (mg/g)	
1	69.5	0.025	0.002	0.081	2.265	0.066	
2	85.4	0.024	. 0.004	0.114	1.355	0.032	
3	71.8	0.006	0.002	0.043	0.781	0.027	
4	100.0	0.012	0.000	0.414	0.283	0.030	
5	88.2	0.015	0.002	0.506	0.126	0.030	
6	100.0	0.013	0.000	0.430	0.123	0.008	
7	33.3	0.019	0.038	na	na	na	
8	37.3	0.012	0.020	na	na	na	
9	48.2	0.012	0.013	na	na	na	
10	18.9	0.011	0.049	0.053	1.023	0.022	
11	39.7	0.037	0.056	0.120	1.157	0.035	
12	9.4	0.010	0.095	na	na	na	
13	11.0	0.008	0.062	na	na	na	
14	24.4	0.017	0.054	0.128	1.852	0.181	
15	12.4	0.015	0.102	· na	na	na	
16	89.7	0.089	0.010	0.530	1.424	0.165	
17	15.4	0.006	0.035	na	na	na	
18	22.3	0.006	0.019	0.018	1.286	0.038	
19	10.4	0.007	0.058	0.039	1.673	0.045	
20	28.3	0.006	0.015	0.028	0.932	0.025	
21	35.2	0.015	0.028	0.105	0.743	0.028	
22	16.0	0.010	0.052	na	na	na	
23	0.0	0.000	0.018	0.013	1.764	0.027	
24	13.7	0.007	0.042	0.033	1.469	0.041	
na: no ana	na: no analysis/measurement						

Example 28, inheritance of traits to progeny

15

20

40

[0122] Cross-breeding was carried out using a transformant (LA919-2-13) obtained by transfer of pSPB919 (Fig. 8) into the pale violet rose variety "Lavande" as the pollen parent and non-recombinant WKS77 or WKS133 or WKS133 exhibiting parent (Suzuki, S., "Bara, Hanazufu", Shogakkarin, p.256-260, 1990). Fruit was collected on the 100th day after pollination. Seed production was accomplished by first peeling the fruit, harvesting the achiene, peeing the achiene, peeing the germand embedding it on moistened filter paper in a dish. The water used for seed production was sterlized water containing 1 mil/ PPM" (Plant Preservative Mixture, Plant Cell Technology, Inc.) and 50 mg/l kanamycin, and seedfins were raised by obting only the normally budded plants.

[0123] Accumulation of delphinidin was confirmed in all 40 of the pigment-analyzed transformant progeny (Tables 31 and 32). The delphinidin content was 99% at maximum (average: 46%).

Table 31

Plant No.	Del content (%)	Del (mg/g)	Cya (mg/g)	Pel (mg/g)	Peo (mg/g)
1	89.8	0.494	0.056	0.000	0.000
2	96.1	3.900	0.153	0.005	0.000
3	55.9	0.836	0.660	0.000	0.000
4	24.6	0.041	0.127	0.000	0.000
5	23.5	1.108	3.605	0.009	0.002
6	25.9	0.191	0.545	0.003	0.000
7	0.5	0.013	2.552	0.012	0.002
8	75.8	0.283	0.090	0.000	0.000
9	95.9	1.420	0.061	0.000	0.000
10	30.8	0.862	1.841	0.007	0.105
11	13.3	0.068	0.441	0.004	0.000
12	23.9	0.529	1.667	0.023	0.000
13	43.7	0.280	0.362	0.000	0.000
14	19.3	0.035	. 0.145	0.000	0.000
15	0.6	0.008	1.418	0.021	0.000
16	20.8	0.048	0.183	0.000	0.000
17	92.5	2.257	0.177	0.007	0.000
18	66.4	2.496	1.247	0.015	0.000
19	42.4	0.369	0.497	0.004	0.000
20	75.6	0.597	0.183	0.010	0.000
21	19.6	0.271	1.103	0.008	0.000
22	71.0	0.107	0.044	0.000	0.000
23	0.6	0.006	0.850	0.004	0.000

Plant No.	Del content (%)	Del (mg/g)	Cya (mg/g)	Pel (mg/g)	Peo (mg/g)
24	16.7	0.053	0.263	0.000	0.000
25	71.8	0.211	0.083	0.000	0.000
26	18.6	0.177	0.769	0.003	0.000
27	1.3	0.009	0.652	0.004	0.000
28	59.7	0.183	0.124	0.000	0.000
29	39.6	0.124	0.187	0.003	0.000
30	21.4	0.187	0.684	0.003	0.000
31	0.6	0.005	0.763	0.004	0.000
32	38.8	0.226	0.353	-0.003	0.000
33	50.5	0.154	0.151	0.000	0.000
34	28.0	0.267	0.682	0.003	0.000
35	83.9	0.204	0.039	0.000	0.000

EP 1 652 916 A1

Table continued

Plant No.	Del content (%)	Del (mg/g)	Cya (mg/g)	Pel (mg/g)	Peo (mg/g)
36	64.9	0.380	0.205	0.000	0.000
37	78.8	0.239	0.064	0.000	0.000
38	97.4	0.614	0.016	0.000	0.000
39	98.7	0.805	0.011	0.000	0.000
40	54.9	0.083	0.068	0.000	0.000

5

10

20

50

55

Example 29. Expression of pansy F3'5'H #40 gene and iris DFR gene and suppression of rose endogenous DFR gene in WKS140

[0124] Plasmid pSPB919 was transferred into the pale violet rose variety "WKS140", and 89 transformants were obtained. Accumulation of delphinidin was confirmed in 74 of the 79 pigment-analyzed plants. The delphinidin content was 100% at maximum (average: 68%). The flower color was altered from RHS Color Chart 186d (Greyed-Purple group) to primarily 84c (Violet group).

Table 33

Table 33					
Plant No.	Del (%)	Del (mg/g)	Cya (mg/g)	Pel (mg/g)	
1	0.0%	0.0000	0.0423	0.0000	
2	89.9%	0.0242	0.0027	na	
3	90.0%	0.0245	0.0027	na	
4	88.6%	0.0093	0.0012	na	
5	43.5%	0.0042	0.0054	na	
6	91.2%	0.0118	0.0011	na	
7	81.2%	0.0027	0.0006	na	
8	81.0%	0.0173	0.0041	na	
9	73.9%	0.0733	0.0259	na	
10	62.9%	0.0321	0.0190	na	
11	91.9%	0.0962	0.0084	na	
12	99.1%	0.1606	0.0015	na	
13	94.7%	0.0588	0.0033	na	
14	100.0%	0.0839	0.0000	na	
15	0.0%	0.0000	0.0005	na	
16	98.4%	0.0296	0.0005	na	
17	80.4%	0.1748	0.0451	na	
18	94.6%	0.0190	0.0000	na	
19	0.0%	0.0000	0.0714	na	
20	34.3%	0.0099	0.0191	na	
21	30.9%	0.0126	0.0282	na	
22	65.6%	0.0294	0.0154	na	
23	24.1%	0.0205	0.0646	na	
na: no ana	na: no analysis/measurement				

Example 30. Expression of pansy F3'5'H #40 gene and iris DFR gene and suppression of rose endogenous DFR gene in WKS77

[0125] Plasmid pSPB919 was transferred into the dark red-purple rose variety "WKS77", and 50 transformants were obtained. Accumulation of delphinidin was confirmed in 21 of the 23 pigment-analyzed plants. The delphinidin content was 81% at maximum (average: 19%). The flower color was altered from RHS Color Chart 57a (Red-Purple group) to 77b (Purple group).

Table 34

10

15

20

25

30

35

an

45

	Table 34					
Plant No.	Del (%)	Del (mg/g)	Cya (mg/g)	Pel (mg/g)		
1	26.0%	1.2028	3.4033	0.0117		
2	41.5%	0.6473	0.9093	0.0048		
3	80.8%	0.2210	0.0526	na		
4	68.0%	0.1865	0.0878	na		
5	68.5%	0.2090	0.0951	0.0010		
6	1.5%	0.0119	0.7731	0.0051		
7	1.5%	0.0114	0.7304	0.0041		
8	0.2%	0.0069	2.9266	0.0063		
9	0.2%	0.0017	1.0791	0.0062		
10	0.0%	0.0000	0.5013	0.0043		
11	0.1%	0.0028	2.3418	0.0110		
12	0.4%	0.0091	2.4603	0.0126		
13	0.2%	0.0040	1.7766	0.0096		
14	0.3%	0.0026	0.9046	0.0052		
15	0.0%	0.0000	1.6063	0.0100		
16	22.2%	0.3279	1.1392	0.0049		
17	. 24.0%	0.2638	0.8288	0.0052		
18	1.4%	0.0240	1.6777	0.0118		
19	1.1%	0.0186	1.6352	0.0101		
20	26.7%	0.2645	0.7230	0.0037		
21	22.7%	0.2200	0.7460	0.0046		
22	40.1%	0.8929	1.3374	0.0071		
na: no ana	na: no analysis/measurement					

Example 31. Expression of pansy F3'5'H #40 gene and Nierembergia DFR gene and suppression of rose endogenous DFR gene in WKS77

[0126] Plasmid pSPB920 was transferred into the dark red-purple rose variety "WKS77", and 30 transformants were obtained. Accumulation of delphinidin was confirmed in 26 of the 27 pigment-analyzed plants. The delphinidin content was 98% at maximum (average: 60%). The flower color was aftered from RHS Color Chart 57a (Red-Purple group) to 77b (Purple group).

Plant No.	Del (%)	Del (mg/g)	Cya (mg/g)	Pel (ma/a)
1	93.9%	0.1679	0.0110	0.0000

FP 1 652 916 Δ1

Table continued

5

10

15

20

40

		Table Contin	ueu	
Plant No.	Del (%)	Del (mg/g)	Cya (mg/g)	Pel (mg/g)
2	97.6%	0.2311	0.0058	па
3	96.3%	0.1684	0.0065	na
4	97.1%	0.1012	0.0017	na
5	9.6%	0.0946	0.7810	0.1104
6	21.9%	0.1462	0.5166	0.0034
7	12.7%	0.1097	0.7495	0.0049
8	97.9%	0.1942	0.0042	na
9	98.1%	0.1228	0.0024	na
10	3.2%	0.0360	1.0689	0.0035
11	3.1%	0.0267	0.9587	0.0032
12	4.8%	0.1138	2.2562	0.0049
13	6.2%	0.1066	1.5999	0.0080
14	96.5%	0.3541	0.0132	па
15	2.1%	0.0173	0.7852	0.0068
16	94.7%	0.2898	0.0160	0.0000
17	96.7%	0.0819	0.0020	0.0000
18	95.8%	0.6969	0.0309	na
19	96.4%	0.4868	0.0181	na
20	64.3%	0.3092	0.1724	na
21	26.9%	0.2740	0.7431	0.0025
22	19.9%	0.3760	1.5028	0.0071
23	88.2%	0.0316	0.0042	na
24	94.2%	0.0259	0.0016	na
25	90.4%	0.0481	0.0051	na
na: no ana	ılysis/meası	rement		

Example 32. Expression of pansy F3'5'H #40 gene and petunia DFR gene and suppression of rose endogenous DFR gene in WKS77

[0127] Plasmid pSPB921 was transferred into the dark red-purple rose variety "WKS77*, and 15 transformants were obtained. Accumulation of delphinidin was confirmed in 12 of the 13 pigment-analyzed plants. The delphinidin content was 98% at maximum (average: 60%). The flower color was aftered from RHS Color Chart 57a (Red-Purple group) to 72b (Red-Purple group).

Table 36

Plant No.	Del (%)	Del (mg/g)	Cya (mg/g)	Pel (mg/g)
1	90.0%	0.0549	0.0061	na
2	38.4%	0.3397	0.5402	0.0041
3	56.9%	0.7834	0.5824	0.0099
4	58.5%	0.0196	0.0139	na
5	90.3%	0.1336	0.0144	na

Table continued

Plant No.	Del (%)	Del (mg/g)	Cya (mg/g)	Pel (mg/g)
6	90.9%	0.1251	0.0126	na
7	86.7%	0.1771	0.0274	na
8	91.6%	0.0113	0.0010	na na
9	97.5%	0.0864	0.0022	nįa
10	9.5%	0.2687	2.6591	0.0000
11	8.8%	0.1421	1.4598	0.0071
12	0.4%	0.0060	1.3554	0.0053
na: no ana	lysis/meas	rement	•	

Example 33. Inheritance of traits to progeny

5

10

15

20

35

45

50

[0128] Cross-breeding was carried out in the same manner as Example 28, using a transformant (LA/919-4-10) obtained by transfer of pSPB919 into the pale violet rose variety "Levande" as the pollen parent and the non-recombinant rose variety "Black Baccara" as the matemal parent. Fruit was collected on the 100th day after pollination. Seed production was accomplished by first peeling the fruit, harvesting the achene, peeling the achene, and then removing the germ and embedding it on moistened filter paper in a dish. The water used for seed production was sterilized water containing 1 ml/I PPM™ (Plant Preservative Mixture, Plant Cell Technology, Inc.) and 50 mg/l kanamycin, and seedlings were raised by optima only the normally budded plants.

[0129] Accumulation of delphinidin was confirmed in all 18 of the pigment-analyzed transformant progeny. The delphinidin content was 99.8% at maximum (average: 98.7%).

Table 37

Plant No. Del (%). Del (mg/g) Cya (mg/g) Pel (mg/g) 1 97.8% 0.6833 0.0142 0.0009 2 98.0% 0.9002 0.0096 na 3 98.5% 0.5385 0.0080 na 4 99.5% 2.0561 0.0087 0.0016 5 99.8% 1.6556 0.0034 na 6 96.6% 0.5601 0.0200 na 7 99.0% 0.6148 0.0063 na 8 98.9% 1.6867 0.0193 na 9 95.0% 0.5740 0.0304 na 10 96.9% 0.1152 0.0036 na 11 99.3% 0.0683 0.0005 na 12 99.8% 0.1248 0.0005 na 13 99.5% 0.3574 0.0010 0.0000 14 99.8% 0.5500 0.0021 na 15 99.8% 0			Tubic or		
2 99.0% 0.9002 0.0096 na 3 98.5% 0.5385 0.0080 na 4 99.5% 2.0561 0.0087 0.0016 5 99.8% 1.6556 0.0034 na 6 96.6% 0.5601 0.0200 na 7 99.0% 0.6148 0.0063 na 8 98.9% 1.6867 0.0193 na 9 95.0% 0.5740 0.0304 na 10 96.9% 0.1152 0.0036 na 11 99.3% 0.0683 0.0005 na 12 99.6% 0.1248 0.0005 na 12 99.6% 0.1248 0.0005 na 13 99.5% 0.3574 0.0010 0.0000 14 99.6% 0.3574 0.0010 0.0000 15 99.6% 1.2322 0.0049 na 16 99.7% 1.4384 0.0042 na	Plant No.	Del (%)	Del (mg/g)	Cya (mg/g)	Pel (mg/g)
3 98.5% 0.5385 0.0080 na 4 99.5% 2.0561 0.0087 0.0016 5 99.8% 1.6556 0.0034 na 6 96.6% 0.5601 0.0200 na 7 99.0% 0.6148 0.0063 na 8 98.9% 1.6867 0.0193 na 9 95.0% 0.5740 0.0304 na 10 96.9% 0.1152 0.0036 na 11 99.3% 0.0683 0.0005 na 12 99.6% 0.1248 0.0005 na 13 99.5% 0.3574 0.0010 0.0000 14 99.6% 0.3574 0.0010 0.0001 14 99.6% 0.5500 0.0021 na 15 99.6% 1.2322 0.0049 na	1	97.8%	0.6633	0.0142	0.0009
4 99.5% 2.0561 0.0087 0.0016 5 99.8% 1.6556 0.0034 na 6 96.6% 0.5601 0.0200 na 7 99.0% 0.6148 0.0063 na 8 98.9% 1.6867 0.0193 na 9 95.0% 0.5740 0.0304 na 10 96.9% 0.1152 0.0036 na 11 99.3% 0.0683 0.0005 na 12 99.6% 0.1248 0.0005 na 13 99.5% 0.3574 0.0010 0.0000 14 99.6% 0.3550 0.0021 na 15 99.6% 1.2322 0.0049 na 16 99.7% 1.4384 0.0042 na	2	99.0%	0.9002	0.0096	na
5 99.8% 1.6556 0.0034 na 6 96.6% 0.5601 0.0200 na 7 99.0% 0.6148 0.0063 na 8 98.9% 1.6867 0.0193 na 9 95.0% 0.5740 0.0304 na 10 96.9% 0.1152 0.0036 na 11 99.3% 0.0683 0.0005 na 12 99.6% 0.1248 0.0005 na 13 99.5% 0.3574 0.0010 0.0000 14 99.6% 0.5500 0.0021 na 15 99.6% 1.2322 0.0049 na 16 99.7% 1.4384 0.0042 na	3	98.5%	0.5385	0.0080	na
6 96.6% 0.5601 0.0200 na 7 99.0% 0.6148 0.0063 na 8 98.9% 1.6867 0.0193 na 9 95.0% 0.5740 0.0304 na 10 96.9% 0.1152 0.0036 na 11 99.3% 0.0683 0.0005 na 12 99.6% 0.1248 0.0005 na 13 99.5% 0.3574 0.0010 0.0000 14 99.8% 0.5500 0.0021 na 15 99.6% 1.2322 0.0049 na 16 99.7% 1.4384 0.0042 na	4	99.5%	2.0561	0.0087	0.0016
7 99.0% 0.6148 0.0063 na 8 98.9% 1.6867 0.0193 na 9 95.0% 0.5740 0.0304 na 10 96.9% 0.1152 0.0036 na 11 99.3% 0.0683 0.0005 na 12 99.6% 0.1248 0.0005 na 13 99.5% 0.3574 0.0010 0.0000 14 99.6% 0.5500 0.0021 na 15 99.6% 1.2322 0.0049 na 16 99.7% 1.4384 0.0042 na	5	99.8%	1.6556	0.0034	na
8 98.9% 1.6867 0.0193 na 9 95.0% 0.5740 0.0304 na 10 96.9% 0.1152 0.0036 na 11 99.3% 0.0683 0.0005 na 12 99.6% 0.1248 0.0005 na 13 99.5% 0.3574 0.0010 0.0000 14 99.6% 0.5500 0.0021 na 15 99.6% 1.2322 0.0049 na 16 99.7% 1.4384 0.0042 na	6	96.6%	0.5601	0.0200	na
9 95.0% 0.5740 0.0904 na 10 96.9% 0.1152 0.0036 na 111 99.3% 0.0683 0.0005 na 12 99.5% 0.1248 0.0005 na 13 99.5% 0.3574 0.0010 0.0000 14 99.6% 0.5500 0.0021 na 15 99.6% 1.2322 0.0049 na 16 99.7% 1.4384 0.0042 na	7	99.0%	0.6148	0.0063	na
10 96.9% 0.1152 0.0036 na 11 99.3% 0.0683 0.0005 na 12 99.6% 0.1248 0.0005 na 13 99.5% 0.3574 0.0010 0.0000 14 99.6% 0.5500 0.0021 na 15 99.6% 1.2322 0.0049 na 16 99.7% 1.4384 0.0042 na	8	98.9%	1.6867	0.0193	na
11 99.3% 0.0683 0.0005 na 12 99.6% 0.1248 0.0005 na 13 99.5% 0.3574 0.0010 0.0000 14 99.6% 0.5500 0.0021 na 15 99.6% 1.2322 0.0049 na 16 99.7% 1.4384 0.0042 na	9	95.0%	0.5740	0.0304	na
12 99.6% 0.1248 0.0005 na 13 99.5% 0.3574 0.0010 0.0000 14 99.6% 0.5500 0.0021 na 15 99.6% 1.2322 0.0049 na 16 99.7% 1.4384 0.0042 na	10	96.9%	0.1152	0.0036	na
13 99.5% 0.3574 0.0010 0.0000 14 99.6% 0.5500 0.0021 na 15 99.6% 1.2322 0.0049 na 16 99.7% 1.4384 0.0042 na	11	99.3%	0.0683	0.0005	na
14 99.6% 0.5500 0.0021 na 15 99.6% 1.2322 0.0049 na 16 99.7% 1.4384 0.0042 na	12	99.6%	0.1248	0.0005	na
15 99.6% 1.2322 0.0049 na 16 99.7% 1.4384 0.0042 na	13	99.5%	0.3574	0.0010	0.0000
16 99.7% 1.4384 0.0042 na	14	99.6%	0.5500	0.0021	na
	15	99.6%	1.2322	0.0049	na
17 99.8% 0.5117 0.0010 na	16	99.7%	1.4384	0.0042	na
	17	99.8%	0.5117	0.0010	na

Table continued

Plant No.	Del (%)	Del (mg/g)				
18	98.3%	0.8073	0.0140	na		
na: no ana	lysis/measu	rement				

Example 34. Expression of pansy F3'5'H #40 gene and suppression of rose endogenous F3'H gene in WKS77

5

15

20

35

40

[0130] Plasmid pSPB1106 (Fig. 10) was transferred into the dark red-purple rose variety "WKS77", and 40 transformants were obtained. Accumulation of delphinidin was confirmed in all 26 of the pigment-analyzed plants. The delphinidin content was 80.0% at maximum (average: 30.5%). The flower color underwent a major alteration from RHS Color Chart 57a (Red-Purple group) to 83d (Violet group).

Table 38

			Table	30			
Plant No.	Del (%)	Del (mg/g)	Cya (mg/g)	Pel (mg/g)	M (mg/g)	Q (mg/g)	K (mg/g)
1	68.7%	0.5497	0.2275	0.0241	na	na	na
2	78.8%	0.3449	0.0830	0.0096	na	na	na
3	80.0%	0.6949	0.1604	0.0144	na	na	na
4	71.2%	0.4377	0.1563	0.0214	na	na	na
5	72.7%	0.5260	0.1715	0.0266	0.3812	0.2275	1.7669
6	70.7%	0.3829	0.1449	0.0146	na	na	na
7 -	10.3%	0.0358	0.3031	0.0071	na	na	na
8	15.6%	0.1847	0.9530	0.0444	na	na	na
9	4.8%	0.0739	1.4586	0.0149	na	na	na
10	1.1%	0.0114	1.0411	0.0144	na	na	na
→ 11	54.0%	1.3206	1.1166	0.0092	na	na	na
÷ 12	57.8%	0.8842	0.6410	0.0056	na	na	na
:[13	0.9%	0.0242	2.5500	0.0168	na	na	na
14	23.0%	0.2087	0.6909	0.0062	na	na	na
15	12.7%	0.1645	1.1271	0.0058	na	na	na
16	26.4%	0.5275	1.4645	0.0132	na	na	na
- 17	18.7%	0.3555	1.5310	0.0109	na	na	na
18	24.2%	0.4388	1.3687	0.0072	na	na	na
19	64.7%	0.4029	0.1945	0.0249	0.6368	0.3949	2.0567
20	0.1%	0.0021	1.8646	0.0077	na	na	na
21	0.0%	0.0000	0.9708	0.0062	na	na	na
22	0.1%	0.0022	2.6049	0.0127	na	na	na
23	0.4%	0.0066	1.8002	0.0066	na	na	na
24	0.5%	0.0079	1.4670 .	0.0056	0.0000	1.3096	0.2414
25	17.3%	0.1000	0.4671	0.0099	na	na	na
26	18.3%	0.1232	0.5418	0.0052	na	na	na
na: no ana	lysis/meas	rement	•		•	•	

Example 35. Expression of pansy F3'5'H #40 gene and suppression of rose endogenous F3'H gene in Lavande

[0131] Plasmid pSPB1106 was transferred into the pale violet rose variety "Lavande", and 40 transformants were obtained. Accumulation of delphinidin was confirmed in 23 of the 25 pigment-analyzed plants. The delphinidin content was 98.3% at maximum (average: 46.9%).

			Table	39			
Plant No.	Del (%)	Del (mg/g)	Cya (mg/g)	Pel (mg/g)	M (mg/g)	Q (mg/g)	K (mg/g)
1	76.8%	0.0732	0.0188	0.0032	0.5705	0.1595	0.3073
2	80.1%	0.1441	0.0296	0.0061	0.5298	0.1881	4.3294
3	3.7%	0.0086	0.2174	0.0027	na	na	na
4	4.4%	0.0079	0.1691	0.0034	na	na	na
5	8.8%	0.0158	0.1557	0.0070	na	na	na
6	39.0%	0.0212	0.0128	0.0204	0.0000	0.0363	1.3107
7	94.4%	0.0089	0.0027	0.0084	0.0756	0.0573	1.3689
8	40.4%	0.0165	0.0071	0.0172	0.0365	0.0592	2.5211
9	42.0%	0.0087	0.0036	0.0084	0.0752	0.0596	1.2661
10	13.5%	0.0153	0.0939	0.0040	0.1288	1.0594	0.5440
11	81.6%	0.2252	0.0447	0.0061	0.3947	0.1401	0.3947
12	78.8%	0.1022	0.0239	0.0036	0.6700	0.2137	0.5847
13	81.7%	0.2125	0.0438	0.0036	1.3616	0.4621	0.7478
14	80.9%	0.1829	0.0388	0.0044	0.4100	0.2405	0.0567
15	70.9%	0.0664	0.0204	0.0069	0.4230	0.1221	0.1788
16	0.0%	0.0000	0.0844	0.0000	na	na	na
17	98.0%	0.2363	0.0048	0.0000	0.0000	1.0613	0.2698
18	98.3%	0.1398	0.0025	0.0000	0.0479	0.7060	0.1299
19	4.2%	0.0078	0.1724	0.0040	0.0000	0.8627	0.2075
20	0.0%	0.0000	0.1696	0.0043	na	na	na
21	60.0%	0.0333	0.0115	0.0107	0.0000	0.0740	1.8678
22	14.3%	0.0091	0.0454	0.0088	0.1096	0.5305	0.6453
23	15.1%	0.0082	0.0408	0.0053	na	na	na
24	17.6%	0.0082	0.0324	0.0059	na	na	na
25	24.4%	0.0147	0.0375	0.0080	0.0000	0.2147	0.9765

[0132] These results demonstrate that the transferred exogenous gene was inherited and expressed by the progeny, and that the trait of delphinidin production which is not found in ordinary rose petals was successfully inherited by the rose progeny. Thus, this gene can be used for cross-breeding cultivation of roses with altered colors to create roses with new colors including blue and purple.

Industrial Applicability

10

15

30

35

40

45

[0133] By artificially suppressing function of the endogenous metabolic pathway such as, for example, expression of dihydroflavonol reductase, in rose, and expressing the gene coding for pansy flavoniod 3;5'-hydroxylase and a gene coding for endydroflavonior reductase from species other than rose, it is possible to create blue to violet roses. These

genes are inherited by subsequent generations, and the blue rose trait can be utilized for cross-breeding.

5

10

SEQUENCE LISTING

	(110)International Flower Developments Proprietary Limited	
5	(120)Process for production of rose with altered color	
	<130>P835	
	<160>21	
10	<210>1	
	<211)1662	
	<212>DNA	
15	(213)Pansy	
-	(220)	
	<pre><223>Nucleotide sequence encoding pansy #18 F3'5'H</pre>	
	<400>1	
20	gaatteggea egagageeaa t atg gea att eea gte act gae ett get gte	51
	Met Ala Ile Pro Val Thr Asp Leu Ala Val	
	1 5 10	
25	gcg gtt atc ctt ttc ttg atc act cgc ttc cta gtt cgt tct ctt ttc	99
	Ala Val Ile Leu Phe Leu lle Thr Arg Phe Leu Val Arg Ser Leu Phe	
	15 20 25	
30	aag aaa cca acc gga ccg ctc ccg ccg ggt cct tca ggc tgg ccc ttg	147
	Lys Lys Pro Thr Gly Pro Leu Pro Pro Gly Pro Ser Gly Trp Pro Leu	
	30 35 40	
35	gtg ggc gcg ctc cct ctc cta ggc gcc atg cct cac gtc aca cta gcc	195
	Val Gly Ala Leu Pro Leu Leu Gly Ala Met Pro His Val Thr Leu Ala 45 50 55	
	45 50 55 aac ctc gct aaa aaa tac ggt ccg atc atg tac cta aaa atg ggc acg	243
40	Asn Leu Ala Lys Lys Tyr Gly Pro Ile Met Tyr Leu Lys Met Gly Thr	243
	60 65 70	
	tgc gac atg gtg gtc gcg tcc act ccc gac tcg gct cga gcc ttc ctc	291
45	Cys Asp Met Val Val Ala Ser Thr Pro Asp Ser Ala Arg Ala Phe Leu	
	75 80 85 90	
	aaa acc cta gac ctc aac ttc tcc gac cgc ccg ccc aac gcc ggc gcc	339
	Lys Thr Leu Asp Leu Asn Phe Ser Asp Arg Pro Pro Asn Ala Gly Ala	
50	95 100 105	
	acc cat ttg gcg tac ggc gcg cag gac ttg gtc ttc gcg aag tac ggt	387
	Thr His Leu Ala Tyr Gly Ala Gln Asp Leu Val Phe Ala Lys Tyr Gly	
55	110 115 120	

	cca	agg	tgg	aag	acc	cta	aga	aaa	ttg	agc	aac	ctc	cac	atg	cta	ggc	435
	Pro	Arg	Trp	Lys	Thr	Leu.	Arg	Lys	Leu	Ser	Asn	Leu	His	Met	Leu	Gly	
5			125					130					135				
	ggg	aag	gcg	ctg	gac	gat	tgg	gct	cac	gtg	agg	gct	aac	gag	cta	ggc	483
	Gly	Lys	Ala	Leu	Asp	Asp	Trp	Ala	His	Val	Arg	Ala	Asn	Glu	Leu	Gly	
10		140					145					150					
	cac	atg	ctt	aac	gcc	atg	tgc	gag	gcg	agc	cgg	tgc	gga	gag	ccc	gtg	531
	His	Met	Leu	Asn	Ala	Met	Cys	Glu	Ala	Ser	Arg	Cys	Gly	Glu	Pro	Val	
15	155					160					165					170	
	gtg	ctg	gcc	gag	atg	ctc	acg	tac	gcc	atg	gcc	aac	atg	atc	ggt	caa	579
	Val	Leu	Ala	Glu	Met	Leu	Thr	Tyr	Ala	Met	Ala	Asn	Met	lle	Gly	Gln	
20					175					180					185		
	gtg	ata	ctg	agt	cgg	cgc	gtg	ttc	gtc	асс	aaa	ggg	aca	gag	tcg	aac	627
	Val	Ile	Leu	Ser	Arg	Arg	Val	Phe	Val	Thr	Lys	Gly	Thr	Glu	Ser	Asn	
				190					195					200			
25	gag	ttc	aaa	gat	atg	gtg	gtc	gag	ttg	atg	act	tcc	gcg	ggg	tat	ttc	675
	Glu	Phe	Lys	Asp	Met	Val	Val	Glu	Leu	Met	Thr	Ser	Ala	Gly	Tyr	Phe	
			205					210					215				
30		att		-			-	_		-	-	-	-	_			723
	Asn	lle	Gly	Asp	Phe	Ile		Ser	Ile	Ala	Trp		Asp	Leu	Gln	Gly	
		220					225					230					
35		gag															771
		Glu	Arg	Gly	Met		Lys	Leu	His	lhr		Phe	Asp	Val	Leu		
	235					240					245					250	010
40		aag															819
70	inr	Lys	мет	met		GIU	nıs	Arg	ніа	260	ser	піѕ	610	Arg		Gly	
					255										265		002
		tcg															867
45	Lys	Ser	ASP	270	Leu	ASD	vaı	Leu	275	oru	010	Cys	010	280	Int	ASII	
																	016
		gag															915
50	ыу	Glu		Leu	Asn	vaı	ınr		vai	Lys	Ala	vaı		Leu	ASD	Leu	
			285					290					295				000
		acg															963
55	Phe	Thr	Ala	Gly	Thr	Asp		Ser	Ser	Ser	He		Glu	Irp	Ala	Leu	
		300					305					310					

	acc	gaa	atg	atg	aag	aat	ccg	acg	atc	tta	aaa	aag	acc	caa	gaa	gag	1011
5	Thr	Glu	Met	Met	Lys	Asn	Pro	Thr	lle	Leu	Lys	Lys	Thr	Gln	Glu	Glu	
,	315					320					325					330	
	atg	gat	cga	gtc	atc	ggt	cgc	gat	cgg	aga	ttg	ctc	gaa	tcc	gac	gtt	1059
	Met	Asp	Arg	Val	lle	Gly	Arg	Asp	Arg	Arg	Leu	Leu	Glu	Ser	Asp	Val	
10					335					340					345		
	tcg	aaa	ctc	ccg	tat	tta	caa	gcc	ata	gcg	aaa	gaa	aca	tat	cgt	aaa	1107
	Ser	Lys	Leu	Pro	Tyr	Leu	Gln	Ala	Ile	Ala	Lys	Glu	Thr	Tyr	Arg	Lys	
15				350					355					360			
	cac	cca	tcg	aca	cct	cta	aac	ctg	ccg	agg	att	gcg	atc	caa	gca	tgt	1155
	His	Pro	Ser	Thr	Pro	Leu	Asn	Leu	Pro	Arg	Ile	Ala	lle	Gln	Ala	Cys	
20			365					370					375				
	gaa	gtt	gat	ggc	tac	tac	atc	ccc	aaa	gac	acg	agg	ctt	agc	gtc	aac	1203
	Glυ	Val	Asp	Gly	Tyr	Tyr	lle	Pro	Lys	Asp	Thr	Arg	Leu	Ser	Val	Asn	
25		380					385					390					
20	att	tgg	gcg	atc	ggt	cgg	gac	cca	agt	gtt	tgg	gag	aat	cca	tcg	gag	1251
		Trp	Ala	Ile	Gly	Arg	Asp	Pro	Ser	Val		Glu	Asn	Pro	Ser	Glu	
	395					400					405					410	
30		tcg															1299
	Phe	Ser	Pro	Glu		Phe	Leu	Ser	Glu		Asn	Gly	Lys	lle		Pro	
					415					420					425		
35		ggg		-			-				-	-			_		1347
	ыу	Gly	Asn		Phe	GIU	Leu	116		Phe	ыу	Ala	ыу		Arg	116	
				430					435	-44				440			1395
40		gct															1393
	Cys	Ala	445	1111	MI B	met	UIY	450	141	Leu	•a1	361	455	116	Leu	Uly	
		ttg					~~+			* * * *				.~+^	0~+	~~~	1443
45		Leu	-				-							-	-		1440
45	1111	460	101	1112	Sei	rne	465	пр	Lys	Leu	110	470	Oly	141	361	010	
		aac	210	~ · ·	~~~	201		999	ctt	909	++ =		994	no c	a + a	ect	1491
																Pro	1451
50	475	ASII	met	עפח	010	480	1 116	OI)	Deu	nia	485	0111	Lys	nia	141	490	
		•								~~~			~~~				1520
		tcg Ser															1539
55	ren	ser	мта	inr		Sel	110	vi g	PEO		110	Ser	vig	1 9 5		116	
					495					500					505		

	**************************************	1599
	tgagctgatg ggctgggcct gagcccaaac atattgggtg tgttttatct gtaattttta	
5	atattataaa gticgtaatt tigtattiat ggitaattat gagitaaaaa aaaaaaaaaa	1659
	aaa	1662
	<210>2	
10	<211>506	
	<212>PRT	
	<213>Pansy	
15	⟨220⟩	
15	<223>Amino acid sequence of pansy #18 F3'5'H	
	<400>2	
	Met Ala lle Pro Val Thr Asp Leu Ala Val Ala Val Ile Leu Phe Leu	
20	1 5 10 15	
	lle Thr Arg Phe Leu Val Arg Ser Leu Phe Lys Lys Pro Thr Gly Pro	
	20 25 30	
25	Leu Pro Pro Gly Pro Ser Gly Trp Pro Leu Val Gly Ala Leu Pro Leu	
	35 40 45	
	Leu Gly Ala Met Pro His Val Thr Leu Ala Asn Leu Ala Lys Lys Tyr 50 55 60	
30	50 55 60 Gly Pro Ile Met Tyr Leu Lys Met Gly Thr Cys Asp Met Val Val Ala	
	65 70 75 80	
	Ser Thr Pro Asp Ser Ala Arg Ala Phe Leu Lys Thr Leu Asp Leu Asn	
	85 90 95	
35	Phe Ser Asp Arg Pro Pro Asn Ala Gly Ala Thr His Leu Ala Tyr Gly	
	100 105 110	
	Ala Gln Asp Leu Val Phe Ala Lys Tyr Gly Pro Arg Trp Lys Thr Leu	
40	115 120 125	
	Arg Lys Leu Ser Asn Leu His Met Leu Gly Gly Lys Ala Leu Asp Asp	
	130 135 140	
45	Trp Ala His Val Arg Ala Asn Glu Leu Gly His Met Leu Asn Ala Met	
	145 150 155 160	
	Cys Glu Ala Ser Arg Cys Gly Glu Pro Val Val Leu Ala Glu Met Leu	
50	165 170 175	
30	Thr Tyr Ala Met Ala Asn Met lle Gly Gln Val Ile Leu Ser Arg Arg	
	180 185 190	
	Val Phe Val Thr Lys Gly Thr Glu Ser Asp Glu Phe Lys Asp Met Val	
55	195 200 205	

	Val	Glu	Leu	Met	Thr	Ser	Ala	Gly	Tyr	Phe	Asn	Ile	Gly	Asp	Phe	lle
5		210					215					220				
	Pro	Ser	Ile	Ala	Trp	Met	Asp	Leu	Gln	Gly	lle	Glu	Arg	Gly	Met	Lys
	225					230					35					240
10	Lys	Leu	His	Thr	Lys	Phe	Asp	Val	Leu	Leu	Thr	Lys	Met	Met	Lys	Glu
					245					250					255	
	His	Arg	Ala	Thr	Ser	His	Glu	Arg		Gly	Lys	Ser	Asp	Phe	Leu	Asp
15				260					265					270		
15	Val	Leu		Glu	Glu	Cys	Glu		Thr	Asn	Gly	Glu		Leu	Asn	Val
	m		275			., .		280		1	nı .	TE I	285	C)	T)	
	lhr	Asn 290	Val	Lys	Ala	val	295	Leu	ASD	Leu	rne	300	Ala	GIY	ınr	Asp
20	Th.	290 Ser	c	Sa-	110	110		T-n	41.	1	Thr		No+	Ma t	Lvc	400
	305	261	261		116	310	010	117		Deu	315	010	mc c	me t	L) S	320
		Thr	Ile	Leu	Lys		Thr	Gln	Glu	Glu		Asp	Arg	Val	Ile	
25					325					330					335	
	Arg	Asp	Arg	Arg	Leu	Leu	Glu	Ser	Asp	Val	Ser	Lys	Leu	Pro	Tyr	Leu
				340					345					350		
30	Gln	Ala		Ala	Lys	Glu	Thr		Arg	Lys	His	Pro		Thr	Pro	Leu
			355					360			03		365			_
	Asn	Leu 370	Pro	Arg	He	Ala	375	GIn	Ala	Cys	Glu	380	Asp	Gly	lyr	lyr
35	II.	Pro	Lve	400	The	4-0		Sar	Va1	Acn	110		415	110	G1 v	4-0
	385	110	Lys	nsp	1111	390	Leu	361	141	Non	395	110	nia	116	Oly	400
		Pro	Ser	Val	Trp		Asn	Pro	Ser	Glu		Ser	Pro	Glu	Arg	
40					405					410					415	
	Leu	Ser	Glu	Glu	Asn	Gly	Lys	Ile	Ser	Pro	Gly	Gly	Asn	Asp	Phe	Glu
				420					425					430		
45	Leu	lle	Pro	Phe	Gly	Ala	Gly	Arg	Arg	Ile	Cys	Ala	Gly	Thr	Arg	Met
			435					440					445			
	Gly	Met	Val	Leu	Val	Ser	Tyr	lle	Leu	Gly	Thr	Leu	Val	His	Ser	Phe
50		450					455					460				
	Asp	Trp	Lys	Leu	Pro		Gly	Val	Ser	Glu		Asn	Met	Asp	Glu	Ser
	465					470					475					480
55	Phe	Gly	Leu	Ala		Gln	Lys	Ala	Val		Leu	Ser	Ala	Thr		Ser
					485					490					495	

	Pro	Arg	Leu	Ala	Pro	Ser	Ala	Tyr	Val	Ile							
5				500					505								
	<21	0>3															
	<21	1>179	95														
10	<21	2>DN	A														
10	<21	3>Pai	nsy														
	<22	0>															
	<22	3>Nu	cleo	tide	sequ	Jenc 6	e en	codin	ng pa	ansy	#40	F3'5	5'H				
15	<40	0>3															
	gaa	ttcg	gca d	cgagg	gaca							-		-	_		50
-						М		la I	le Le	eu Va		hr As	sp Pl	ne Va	al Va	al	
20							1				5					10	
	-	gct															98
	Ala	Ala	He	He		Leu	116	lhr	Arg	20	Leu	Val	Arg	Ser		Phe	
25		aaa			15		.+.						aat	***	25	***	146
	_	Lys			-	_			_							-	140
	<i>D</i> , 3	2,5		30	6		500		35	01,		Deu	01,	40		Dea	
30	gtg	ggc	gcc		cct	ctc	cta	ggc		atg	cct	cac	gtc		cta	gcc	194
	Val	Gly	Ala	Leu	Рго	Leu	Leu	Gly	Ala	Met	Pro	His	Val	Ala	Leu	Ala	
			45					50					55				
35	aaa	ctc	gct	aag	aag	tat	ggt	ccg	atc	atg	cac	cta	aaa	atg	ggc	acg	242
	Lys	Leu	Ala	Lys	Lys	Tyr		Pro	Ile	Met	His	Leu	Lys	Met	Gly	Thr	
		60					65					70					
40	-	gac	-														290
	-	Asp	Met	Val	Val		Ser	Thr	Pro	Glu		Ala	Arg	Ala	Phe		
	75					80					85					90	000
45		acg		-				_		-							338
45	Lys	Thr	ren	ASP	95	ASII	rne	Sel	ASII	100	FFO	rro	ASII	мта	105	ита	
	***	cac		~~~		~ a c	aca	ca.			atc	***		226		aat	386
		His															300
50	361	1113	Leb	110	1 9 1	ULJ	nia.	0111	115	LCG	141	1116	nia	120	1 9 1	Uly	
	cca	agg	t a a		act	tta	202	999		900	aar	ctc	cac		cta	gge	434
	_	Arg															204
55	110	wig	125	-	1111	200	.11 6	130	200	501	11511	200	135		bea	319	
			120					100					100				

		_						_				gtc					482
5	Gly	Lys	Ala	Leu	Asp	Asp	Trp	Ala	Asn	Val	Arg	Val	Thr	Glu	Leu	Gly	
		140					145					150					
	cac	atg	ctt	aaa	gcc	atg	tgc	gag	gcg	agc	cgg	tgc	ggg	gag	ccc	gtg	530
10	His	Met	Leu	Lys	Ala	Met	Cys	Glu	Ala	Ser	Arg	Cys	Gly	Glu	Pro	Val	
10	155					160					165					170	
	gtg	ctg	gcc	gag	atg	ctc	acg	tac	gcc	atg	gcg	aac	atg	atc	ggt	caa	578
	Val	Leu	Ala	Glu	Met	Leu	Thr	Tyr	Ala	Met	Ala	Asn	Met	Ile	Gly	Gln	
15					175					180					180		
	gtg	ata	ctc	agc	cgg	cgc	gtg	ttc	gtg	acc	aaa	ggg	acc	gag	tct	aac	626
	Val	He	Leu	Ser	Arg	Arg	Val	Phe	Val	Thr	Lys	Gly	Thr	Glu	Ser	Asn	
20				185					190					195			
				-	-		-		-	-	-	tcc	-				674
	Glu	Phe		Asp	Met	Val	Val		Leu	Met	Thr	Ser		Gly	Tyr	Phe	
25			200					205					210				
				_								atg					722
	Asn		Gly	Asp	Phe	He		Ser	lle	Ala	Trp	Met	Asp	Leu	Gln	Gly	
30		215					220					225					770
30												ttt					770
	230	010	Arg	ыу	met	235	Lys	Leu	піѕ	ini	240	Phe	ASD	181	Leu	245	
		225	a t or	ata	99.0		cat	949	ara	900		cat	999	cac	222		818
35												His					010
		-,0			250				,	255					260	,	
	aag	gca	gat	ttc		gac	gtt	ctc	ttg		gaa	tgc	gac	aat		aat	866
40		-	-									Cys					
				265					270					275			
	ggg	gag	aag	ctt	agt	att	acc	aat	atc	aaa	gct	gtc	ctt	ttg	aat	cta	914
45	Gly	Glu	Lys	Lev	Ser	lle	Thr	Asn	Ile	Lys	Ala	Val	Leu	Leu	Asn	Leu	
			280					285					290				
	ttc	acg	gcg	ggc	acg	gac	aca	tct	tcg	agc	ata	atc	gaa	tgg	gcg	tta	962
50	Phe	Thr	Ala	Gly	Thr	Asp	Thr	Ser	Ser	Ser	lle	Ile	Glυ	Trp	Ala	Leu	
		295					300			•		305					
	acg	gag	atg	atc	aag	aat	ccg	acg	atc	tta	aaa	aag	gcg	caa	gag	gag	1010
	-		-		-							Lys					
55	310		-			315					320					325	

	atg	gat	cga	gtc	atc	ggt	cgt	gat	cgg	agg	ctg	ctc	gaa	tcg	gac	ata	1058
5	Met	Asp	Arg	Val	Ile	Gly	Arg	Asp	Arg	Arg	Leu	Leu	Glu	Ser	Asp	Ile	
3					330					335					340		
	tcg	agc	ctc	ccg	tac	cta	caa	gcc	att	gct	aaa	gaa	acg	tat	cgc	aaa	1106
	Ser	Ser	Leu	Pro	Tyr	Leu	Gln	Ala	He	Ala	Lys	Glu	Thr	Tyr	Arg	Lys	
10				345	•				350					355		•	
	cac	ccg	tcg	acg	cct	ctc	aac	ttg	ccg	agg	att	gcg	atc	caa	gca	tgt	1154
	His	Pro	Ser	Thr	Pro	Leu	Asn	Leu	Pro	Arg	Ile	Ala	Ile	Gln	Ala	Cys	
15			360					365					370				
	gaa	gtt	gat	ggc	tac	tac	atc	cct	aag	gac	gcg	agg	ctt	agc	gtg	aac	1202
	Glu	Val	Asp	Gly	Tyr	Tyr	lle	Pro	Lys	Asp	Ala	Arg	Leu	Ser	Val	Asn	
20		375					380					385					
	att	tgg	gcg	atc	ggt	cgg	gac	ccg	aat	gtt	tgg	gag	aat	ccg	ttg	gag	1250
	lle	Trp	Ala	Ile	Gly	Arg	Asp	Pro	Asn	Val	Trp	Glu	Asn	Pro	Leu	Glu	
25	390					395					400					405	
23	ttc	ttg	ccg	gaa	aga	ttc	ttg	tct	gaa	gag	aat	ggg	aag	atc	aat	ccc	1298
	Phe	Leu	Pro	Glu	Arg	Phe	Leu	Ser	Glu	Glu	Asn	Gly	Lys	lle	Asn	Pro	
					410					415					420		
30	ggt	ggg	aat	gat	ttt	aag	ctg	att	ccg	ttt	gga	gcc	ggg	agg	aga	att	1346
	Gly	Gly	Asn	-	Phe	Lys	Leu	lle		Phe	Gly	Ala	Gly	Arg	Arg	lle	
				425					430					435			
35	_	gcg										_	_		_		1394
	Cys	Ala		Thr	Arg	Met	Gly		Val	Leu	Val	Ser		lle	Leu	Gly	
			440					445					450				
40		ttg															1442
40	Thr	Leu	Val	His	Ser	Phe		Trp	Lys	Leu	Pro		Gly	Val	Ala	Glu	
		455					460					465					
		aa t															1490
45	Leu	Asn	Met	Asp	Glu		Phe	Gly	Leu	Ala		Gln	Lys	Ala	Val		
	470					475					480					485	
		tcg															1538
50	Leu	Ser	Ala	Leu		Ser	Pro	Arg	Leu		Ser	Asn	Pro	Tyr		Thr	
					490					495					500		
	tgag	ctaa	tg g	gctg	ggco	t ag	gtttf	gtgg	gco	cta	attt	agag	gact	ttt	gtgt	ttaag	1598
55	gtgt	gtac	tt t	atta	atte	g gt	tgctt	aaat	gte	tgti	tta	att	tgta	tt	atgg	taatt	1658
33	atga	cttt	at t	gtat	aatt	a tt	tatt	tttc	: cc1	tcte	gggt	att	ttato	ca	ttta	atttt	1718

	ctt	caga	att a	atgai	cata	ag tt	atca	gaat	aaa	atte	gaaa	ataa	atga	atc i	ggaaa	aaaaaa	1778
5	aaa	aaaa	aaa a	aaaa	aaa												1795
5	<21	0>4															
	<21	1>50	1														
	<21	2>PR	Γ														
10	<21	3>Pai	nsv														
	<22	0>	-														
	<22	3>Am:	ino a	acid	sequ	Jence	of	pans	sy #4	40 F3	3'5'1	ł					
15	<40	0>4															
	Met	Ala	lle	Leu	Val	Thr	Asp	Phe	Val	Val	Ala	Ala	He	Ile	Phe	Leu	
	1				5					10					15		
20	Ile	Thr	Arg	Phe	Leu	Val	Arg	Ser	Leu	Phe	Lys	Lys	Pro	Thr	Arg	Pro	
				20					25					30			
	Leu	Pro		Gly	Pro	Leu	Gly		Pro	Leu	Val	Gly		Leu	Pro	Leu	
25			35					40					45			_	
	Leu	Gly		Met	Pro	His		Ala	Leu	Ala	Lys		Ala	Lys	Lys	Tyr	
	C1	50		11.4	712 -	1	55	Was	C1	Thu	Cua	60	Mas	V-1	Va1	41.	
30	65	Pro	116	мет	nıs	70		мег	Oly	1111	75	nsp	met	181	141	- 80	
50		Thr	Prn	Glu	Ser			Ala	Phe	Leu		Thr	Leu	Asp	Len		
	501	••••		0	85		6			90					95		
	Phe	Ser	Asn	Arg	Pro	Pro	Asn	Ala	Gly	Ala	Ser	His	Leu	Ala	Tyr	Gly	
35				100					105					110			
	Ala	Gln	Asp	Leu	Val	Phe	Ala	Lys	Tyr	Gly	Pro	Arg	Trp	Lys	Thr	Leu	
			115					120					125				
40	Arg	Lys	Leu	Ser	Asn	Leu	His	Met	Leu	Gly	Gly	Lys	Ala	Leu	Asp	Asp	
		130					135					140					
	Trp	Ala	Asn	Val	Arg		Thr	Glu	Leu	Gly		Met	Leu	Lys	Ala		
45	145					150					155					160	
	Cys	Glu	Ala	Ser			Gly	Glu	Pro			Leu	Ala	Glu		Leu	
		_			165					170					175		
50	Thr	Tyr	Ala		Ala	Asn	Met	lle			Val	He	Leu		Arg	Arg	
				180			_		180		۵.			185			
	Val	Phe		Thr	Lys	Gly	Thr		Ser	Asn	Glu			Asp	Met	Val	
55			190					195	_				200		· D1		
	Val	Glu	Leu	Met	Thr	Ser	Ala	Gly	Tyr	Phe	Asn	He	Gly	Asp	Phe	ile	

	205					210					215				
Pro 220	Ser	lle	Ala	Trp	Met 225	Asp	Leu	Gln	Gly	11e 230	Glu	Arg	Gly	Met	Lys 235
	Leu	His	Thr			Asp	Val	Leu			Lys	Met	Val		
His	Arg	Ala	Thr	240 Ser	His	Glu	Arg		245 Gly	Lys	Ala	Asp		250 Leu	Asp
V 1	Leu	1	255	C1	C			260		C1	C1	1	265	٠	11.
Val	Leu	270	610	GIU	cys	ASD	275	inr	ASII	GIY	010	280	Leu	Ser	116
Thr	Asn 285	Ile	Lys	Ala	Val	Leu 290	Leu	Asn	Leu	Phe	Thr 295	Ala	Gly	Thr	Asp
	Ser	Ser	Ser	lle		Glu	Trp	Ala	Leu		Glu	Met	lle	Lys	
300	m .				305		C1	61	61	310			V - 1		315
	Thr			320					325					330	
Arg	Asp	Arg	Arg 335	Leu	Leu	Glu	Ser	Asp 340	lle	Ser	Ser	Leu	Pro 345	Tyr	Leu
Gln	Ala	11e 350	Ala	Lys	Glu	Thr	Tyr 355	Arg	Lys	His	Pro	Ser 360	Thr	Pro	Leu
Asn	Leu 365	Pro	Arg	lle	Ala	11e 370	Gln	Ala	Cys	Glu	Val 375	Asp	Gly	Tyr	Tyr
Ile 380	Pro	Lys	Asp	Ala	Arg 385	Leu	Ser	Val	Asn	11e 390	Trp	Ala	ile	Gly	Arg 395
Asp	Pro	Asn	Val	Trp 400	Glu	Asn	Pro	Leu	Glu 405	Phe	Leu	Pro	Glu	Arg 410	Phe
Leu	Ser	Glu	Glu 415	Asn	Gly	Lys	Ile	Asn 420	Pro	Gly	Gly	Asn	Asp 425	Phe	Lys
Leu	Ile	Pro 430	Phe	Gly	Ala	Gly	Arg 435	Arg	Ile	Cys		Gly 440	Thr	Arg	Met
Gly	Me t 445	Val	Leu	Val	Ser	Tyr 450	Ile	Leu	Gly	Thr	Leu 455	Val	His	Ser	Phe
Asp	Trp	Lys	Leu	Pro	Asn	Gly	Val	Ala	Glu	Leu	Asn	Met	Asp	Glu	Ser
460					465					470					475
Phe	Gly	Leu	Ala	Leu 480	Gln	Lys	Ala	Val	Pro 485		Ser	Ala	Leu	Val 490	Ser
Pro	Arg	Leu	Ala		Asn	Pro	Tyr	Ala							

		495		500			
8	<210>5						
5	<211>1474						
	<212>DNA						
	⟨213⟩Rose						
10	⟨220⟩						
	⟨223⟩Nucle	otide sequer	nce encodin	rose chalc	one synthas	i e	
	⟨400⟩5						
15		aaatggtgac	cgtcgaggaa	gtccgcaagg	ctcaacgcgc	tgagggtccg	60
						gagcacatac	120
	-		-			ggagaaattc	180
20	cagcgcatgt	gtgacaaatc	tatgatcaag	aagcgctaca	tgtacttgac	cgaagaaatt	240
20	cttaaggaga	atcctagtat	gtgtgagtac	atggcccctt	cacttgatgc	aagacaagat	300
	atggtggttg	ttgaaattcc	aaagcttgga	aaagaggctg	ccactaaggc	tattaaggaa	360
	tggggtcagc	ccaagtccaa	aatcacccac	ttggtctttt	gtaccactag	tggcgtcgac	420
25	atgcccgggg	ccgattacca	gctcactaag	ctcttaggcc	tccgcccgtc	cgtgaagcgt	480
	ctcatgatgt	accaacaagg	gtgtttcgcc	ggaggcacgg	tgctccggtt	ggctaaggac	540
	ttggccgaga	acaacaaggg	tgcacgtgtt	cttgttgttt	gctcagagat	cactgccgtg	600
30	actttccgtg	ggcctagcga	cacccatctc	gatagtcttg	tgggccaagc	cttgttcggt	660
	gatggtgctg	cggccattat	tgttggggcc	gacccattgc	ccgaggttga	gaagccttcg	720
	ttcgagttgg	tctcggcagc	ccaaactatc	cttcctgaca	gtgacggagc	catcgacggg	780
35	catcttcgtg	aagttgggct	cacatttcac	ctcctcaaag	atgttcccgg	gctgatttca	840
	-				-	agactggaac	900
						agaggctaaa	960
					_	gtacggcaat	1020
40						tgcagctaat	1080
						tgggccaggg	1140
			-			gcatctgggt	1200
45						actctacttt	1260
						atatgtaatg	1320
	_					atttagttag	1380
50	aagttgactt	tccggaagat	ttagagcggg	gaatatatct	cccactagct	gaaagattat	1440
		agtacgttca	222222222	aaaa			1474
	<210>6						
	<211>420						
55	<212>DNA						

	<213	3>Ro:	se														
	<220)>															
5	<223	3>Nuc	cleo	tide	seq	Jenc-	e end	codin	g pa	art o	of re	se a	antho	осуа	nidir	n synt	hase
	<400	0>6												-			
	gaag	gaagg	gga	ggct	ggaga	aa g	gaggi	tcggt	gga	ctc	gaag	aact	tcgt	ct	gcaaa	atgaaa	60
10	atca	acta	act	accca	aaaa	tg c	cctca	agccg	gaa	actte	gccc	tcgg	gcgta	gga a	agcco	cacaco	120
	gaca	ataag	gtg	cact	cacci	tt c	atcci	tccac	aad	atgg	ttc	ccg	gcct	gca	gctci	ttctac	180
	ggcg	gcaa	aat	gggt	gaca	gc g	aaat	gcgtg	ccc	aact	cca	tcgt	tcate	gca	catca	ggcgac	240
15	aact	ttgga	aga	ttct	gagc	aa c	ggcaa	agtac	aag	gagca	attt	ttca	acag	gg	ggati	tgtcas	300
	caag	gggag	gaa	ggtga	aggt	tc t	cgttg	ggcgg	tti	tct	tgta	gcca	accca	agg :	agga	ggtcat	360
	tctc	caago	ccg	ttgc	gacga	ac t	gtcto	cgagg	agg	gaaco	gcg	tcti	tcca	ccc	gacti	tttcgg	420
20	<210																
		1>180															
		2>DN/															
25	(220	3>To1	reni	а													
			len	tide	SPOI	ienc	e end	odin	e To	reni	ia an	tho	rvan.	in a	rvl 1	tranef	erase
	<400				ouq.								.,		.,.		Ciuoc
30			gec a	aaaaa	agaaa	ac a:	attaa	atca	atg	gct	gtt	gaa	gcc	ccc	aaa	aca	53
									Met	Ala	Val	Glu	Ala	Pro	Lys	Thr	
									1				5				
35		_	-	_		-		tct						-		-	101
	Ile		Ala	Val	Leu	Glu		Ser	Leu	lle	Thr		Gln	Ser	Thr	Asp	
		10					15					20					1.40
40		-						aca									149
40	25	610	Gin	inr	Leu	30	Leu	Thr	rne	rne	35	116	Lys	ITP	vaı	40	
		cat	cca	ato	caa		ctt	gtg	t t ø	tac		ttc	cca	tat	tet		197
				-				Val		_				-		_	131
45					45	0,5	200			50				0,0	55	2,0	
	tca	cat	ttt	ctc	gaa	gcc	aca	gtt	ccg	agc	ttc	aaa	tca	tca	ctc	tcc	245
	Ser	His	Phe	Leu	Glu	Ala	Thr	Val	Pro	Ser	Phe	Lys	Ser	Ser	Leu	Ser	
50				60					65					70			
	aaa	act	ctc	aga	cac	tat	ctt	cca	tta	tca	gga	aac	tta	tac	tat	cca	293
	Lys	Thr	Leu	Arg	His	Tyr	Leu	Pro	Leu	Ser	Gly	Asn	Leu	Tyr	Tyr	Pro	
55			75					80					85				

	aac	ccg	acc	cat	gac	atg	gat	gat	gat	gaa	tcg	aac	atg	ccc	gag	atc	341
5	Asn	Pro	Thr	His	Asp	Met	Asp	Asp	Asp	Glu	Ser	Asn	Met	${\tt Pro}$	Glu	Ile	
-		90					95					100					
	cgt	tat	aaa	cct	ggc	gac	tcg	gtt	tct	cta	acc	gtt	gca	gag	tac	ttc .	389
•	Arg	Tyr	Lys	Pro	Gly	Asp	Ser	Val	Ser	Leu	Thr	Val	Ala	Glu	Tyr	Phe	
10	105					110					115					120	
	tec	ggt	cat	gaa	gac	aat	acg	act	act	gaa	gaa	tac	ttc	aat	tac	ctc	437
		Gly		-													
15					125					130					135		
	act	gga	aat	ttc	cag	aga	gat	tgc	gat	caa	ttc	tat	gat	ctc	tta	ccc	485
	Thr	Gly	Asn	Phe	Gln	Arg	Asp	Cys	Asp	Gln	Phe	Tyr	Asp	Leu	Leu	Pro	
20				140					145					150			
	gat	ttt	cga	gac	ccg	gaa	acc	gaa	tcc	aat	tgc	aca	gta	atc	cca	ctt	533
	Asp	Phe	Arg	Asp	Pro	Glu	Thr	Glu	Ser	Asn	Суş	Thr	Val	Ile	Pro	Leu	
			155					160					165				
25	ata	gca	gtt	caa	atc	aca	ctc	ttt	cca	ggt	gct	ggg	ata	tgt	ctg	ggg	581
	lle	Ala	Val	Gln	He	Thr	Leu	Phe	Pro	Gly	Ala	Gly	lle	Cys	Leu	Gly ·	
		170					175					180					
30	gtc	atc	aac	agt	cac	gta	gtt	ggc	gat	g¢g	agt	tcc	ata	gtg	gga	ttc	629
	Val	lle	Asn	Ser	His	Val	Val	Gly	Asp	Ala	Ser	Ser	Ile	Val	Gly	Phe	
	185					190					195					200	
35		aaa															677
	He	Lys	Ala	Trp		Lys	Val	Ala	Met		Glu	Asp	Asp	Glu		Ile	
					205					210					215		
40		gct															725
40	Leu	Ala	Asn		Asn	Leu	He	Pro		Tyr	Asp	Arg	Ser		Val	Lys	
				220					225					230			
	-	cca						-									773
45	Asp	Pro	-	Gly	116	Lys	Ser		Leu	lrp	Asn	Lys		Lys	Asn	Val	
			235			•		240					245				
		tat															821
50	Lys	Tyr	Gln	Pro	Gln	Pro		Lys	His	Leu	Pro		Asn	Lys	Val	Arg	
		250					255		•			260					
		aca															869
55		Thr	Tyr	Thr	Lev	-	Lys	Asn	Asp	Ile		Arg	Leu	Lys	Thr	-	
	265					270					275					280	

	atc	cga	tcc	aag	aaa	cca	ggc	aca	acc	tgc	tta	tca	tct	ttc	aca	atc	917	
5	Ile	Arg	Ser	Lys	Lys	Pro	Gly	Thr	Thr	Cys	Leu	Ser	Ser	Phe	Thr	Ile		
3					285					290					295			
	gca	aca	gcc	tat	gct	tgg	aca	tgc	ctt	gca	aaa	tct	gca	gca	gaa	gct	965	
	Ala	Thr	Ala	Tyr	Ala	Trp	Thr	Cys	Leu	Ala	Lys	Ser	Ala	Ala	Glu	Ala `		
10				300					305					310				
	gaa	gaa	caa	gta	gtc	caa	gac	agt	gac	gac	gag	cac	ttg	ctc	atg	ccc	1013	
	Glu	Glu	Gln	Val	Val	Gln	Asp	Ser	Asp	Asp	Glu	His	Leu	Leu	Met	Pro		
15			315					320					325					
	gtt	gat	ttg	aga	cca	aga	ata	gat	cct	cca	tta	cca	cct	tct	tac	ttt	1061	
	Val	Asp	Leu	Arg	Pro	Arg	lle	Asp	Pro	Pro	Leu	Pro	Pro	Ser	Tyr	Phe		
20		330					335					340						
			-	-	ctt												1109	
	-	Asn	Cys	Val	Leu		Ser	Phe	Ala	Lys		Thr	His	Gly	Leu			
25	345					350					355					360		
					ggg									_	-	-	1157	
	Lys	Gly	Glu	Leu	Gly	Leu	Pne	ASN	Ala		610	vaı	116	Ser		Vai		
					365 gtt					370				~~~	375		1205	
30					Val	_	_			-	-			_		-	1205	
•	116	1111	Uly	380	141	261	Lys	LJS	385	лор	Deu	1 116	LJa	390	Deu	лар		
	aga	caa	gg t		att	ttt	cet	gcc		ttc	gga	aaa	cga		tte	SCE	1253	
35	-			-	lle													
	_		395				_	400				-	405					
	atc	atg	ggt	tcg	cct	aag	ttc	gat	ctc	tac	gaa	gtt	gat	ttc	ggg	tgg	1301	
40	lle	Met	Gly	Ser	Pro	Lys	Phe	Asp	Leu	Tyr	Glu	Val	Asp	Phe	Gly	Trp		
		410					415					420						
	ggt	aag	ccg	aag	aag	att	gaa	cct	gtg	tcc	att	gat	aga	gag	agg	acg	1349	
45	Gly	Lys	Pro	Lys	Lys	Ile	Glu	${\tt Pro}$	Val	Ser	lle	Asp	Arg	Glu	Arg	Thr		
	425					430					435					440		
	act	atg	tgg	att	agc	aag	tct	ggc	gag	ttt	gag	ggt	gga	ttg	gag	att	1397	
	Thr	Met	Trp	He	Ser	Lys	Ser	Gly	Glu	Phe	Glu	Gly	Gly	Leu	Glu	lle		
50					445					450					455			
	ggt	ttt	tct	ttc	aat	aag	aag	aaa	atg	gat	gct	ttt	ggc	gag	tgt	ttt	1445	
	Gly	Phe	Ser	Phe	Asn	Lys	Lys	Lys	Met	Asp	Ala	Phe	Gly	Glu	Cys	Phe		
55				460					465					470				

5	aac ago ggt tig aag gat att taatttaaaa aattgittag ottigatgoa Asn Ser Gly Leu Lys Asp lle 475	1496
€.	tgcgtitiat ataigitgig aaalaatgig gigigcaata actagagtaa cittaggita ataaaticgg tiliicigii aaaictggal galicgigca agcaaacigi cgatgcgtig	1556 1616
10	gatggatgic gggtggtgtg gagattgitg aagaaggaaa iggatgciti tittaiggig	1676
	gtttgaagga tttgaatgig tagattattg gtttattgag gttgtttata tttgtgtatg	1736
	tigittaige aigaaaaata titagaicee aacattitai giaigaegig gittaatait	1796
15	tcgatttcga tc	1808
	<210>8	
	<211>479	
20	<212>PRT	
	<213>Torenia	
	⟨220⟩ .	
25	<223>Amino acid sequence of Torenia anthocyanin acyl transferase	
	<400>8	
	Met Ala Val Glu Ala Pro Lys Thr Ile Cys Ala Val Leu Glu Asn Ser 1 5 10 15	
	1 5 10 15 Leu Ile Thr Pro Gln Ser Thr Asp Thr Glu Gln Thr Leu Ser Leu Thr	
30	20 25 30	
	Phe Phe Asp lle Lys Trp Val His Phe His Pro Met Gln Cys Leu Val	
	35 40 45	
35	Leu Tyr Asn Phe Pro Cys Ser Lys Ser His Phe Leu Glu Ala Thr Val	
	50 55 60	
	Pro Ser Phe Lys Ser Ser Leu Ser Lys Thr Leu Arg His Tyr Leu Pro	
40	65 70 75 80	
	Leu Ser Gly Asn Leu Tyr Tyr Pro Asn Pro Thr His Asp Met Asp Asp	•
	85 90 95	
45	Asp Glu Ser Asn Met Pro Glu Ile Arg Tyr Lys Pro Gly Asp Ser Val	
	100 105 110	
	Ser Leu Thr Val Ala Glu Tyr Phe Ser Gly His Glu Asp Asn Thr Thr	
50	115 120 125	
	Thr Glu Glu Tyr Phe Asn Tyr Leu Thr Gly Asn Phe Gln Arg Asp Cys	
	130 135 140	
55	Asp Gln Phe Tyr Asp Leu Leu Pro Asp Phe Arg Asp Pro Glu Thr Glu	
<i>3</i> 3	145 150 155 160	

Ser	Asn	Cys	Thr	Val 165	lle	Pro	Leu	lle	Ala 170	Val	Gln	lle	Thr	Leu 175	Phe
Pro	Gly	Ala	Gly 180	lle	Cys	Leu	Gly	Val 185	lle	Asn	Ser		Val 190	Val	Gly
Asp	Ala	Ser 195	Ser	lle	Val	Gly	Phe 200	lle	Lys	Ala	Trp	Se r 205	Lys	Val	Ala
	Tyr 210		-	-		215					220			٠	
225			_		230		-			235					240
	Trp			245					250					255	
	Leu		260					265					270		
	lle	275					280					285			
	Cys 290					295					300				
305					310					315					320
_	Asp			325					330					335	
	Pro		340					345					350		
	Lys	355					360					365			
	Val 370	•				375					380				
385	Asp				390					395					400
Leu	Phe	Gly	Lys	Arg 405		Leu	Ala	lle	Met 410	Gly	Ser	Pro	Lys	Phe 415	Asp
Leu	Tyr	Glu	Val 420	Asp	Phe	Gly	Trp	Gly 425		Pro	Lys	Lys	11e 430	Glu	Pro
Val	Ser	Ile 435	Asp	Arg	Glu	Arg	Thr 440	Thr	Met	Trp	lle	Ser 445	Lys	Ser	Gly

	Glu	Phe 450	Glu	Gly	Gly	Leu	Glu 455	lle	Gly	Phe	Ser	Phe 460	Asn	Lys	Lys	Lys	
5	Met		Ala	Phe	Gly	Glu		Phe	Asn	Ser	Gly	Leu	Lys	Asp	Ile		
	465					470					475						
	<210	0>9															
10	<21	1>12	52														
	<212	2>DN	A														
	<213	3>1r	is														
15	<220	0>															
	<223 <400		cleo	tide	sequ	Jenc (e en	codi	ng I	ris	lihy	drof	ravo	nol	redu	tase	
20	aaa	caata	ata 1	tcga	gate	gat	g ag	cc	gti	tgt	gt	gac	c gg	a gc	gag	ggc	51
					Met	t Me	t Se	r Pr	Val	l Va	l Va	1 Th	r Gl	y A1:	a Se	r Gly	
					1	l			;	5				1	0		
25	tac	gtc	ggt	tca	tgg	ctt	gtt	atg	aag	ctc	ctt	cgc	gac	ggc	tac	gcc	99
25	Tyr	Val	Gly	Ser	Trp	Leu	Val	Met	Lys	Leu	Leu	Arg	Asp	Gly	Tyr	Ala	
			15					20					25				
	-		-		-	_	-						_	_	aag	-	147
30	Val		Ala	Thr	Val	Arg		Pro	Thr	Asn	Val		Lys	Thr	Lys	Pro	
		30					35					40		•			195
	_	_	-										_		aag Lys		193
35	45	Leu	лър	Leu	110	50	піа	пор	n1a	Leo	55		116	110	Lys	60	
		ctc	PPC	cag	gac		agc	ttc	gac	aag			gca	gga	tgc		243
	-			-	-		-								Cys		
40	-		-		65					70				-	75		
	gcg	gtc	ttc	cac	gtc	gcc	acg	ccc	atg	gat	ttc	gag	tcc	aag	gac	cca	291
	Ala	Va 1	Phe	His	Val	Ala	Thr	Pro	Met	Asp	Phe	Glu	Ser	Lys	Asp	Pro	
45				80					85					90			
	gaa	aac	gag	gtg	atc	aag	ccg	acc	ata	aat	ggc	gtt	tta	agt	atc	atg	339
	Glu	Asn	Glu	Val	lle	Lys	Pro	Thr	lle	Asn	Gly	Val	Leu	Ser	lle	Met	
50			95					100					105				
	agg	tcc	tgt	aag	aag	gcc	gga	acg	gtc	aaa	cgc	gtc	gtc	ttc	act	tca	387
	Arg	Ser	Cys	Lys	Lys	Ala	Gly	Thr	Val	Lys	Arg	Val	Val	Phe	Thr	Ser	
		110					115					120					
55	tcc	gcc	ggg	acg	gtg	gac	gtg	aaa	gaa	cat	cag	cag	acg	gag	tac	gac	435

	Ser	Ala	Gly	Thr	Val	Asp	Val	Lys	Glu	His	Gln	Gln	Thr	Glu	Tyr	Asp _.	
5	125					130					135					140	
	gag	agc	tcg	tgg	agc	gac	gtc	gac	ttc	tgc	aga	cgt	gtc	aag	atg	aca	483
	Glu	Ser	Ser	Trp	Ser	Asp	Val	Asp	Phe	Cys	Arg	Arg	Val	Lys	Met	Thr	
10					145					150					155		
10	ggc	tgg	atg	tat	ttt	gtg	tcg	aag	act	ctg	gcc	gag	aga	gca	gcc	tgg	531
	Gly	Trp	Met	Tyr	Phe	Val	Ser	Lys	Thr	Leu	Ala	Glu	Arg	Ala	Ala	Trp	
				160					165					170			
15		ttt															579
	Glu	Phe		Arg	Glu	Asn	Gly		Asp	Phe	lle	Ser		Ile	Pro	Thr	
			175					180					185				
20		gtc	-														627
	Leu	Val	Val	Gly	Pro	Phe		Thr	Thr	Thr	Met		Pro	Ser	Met	Val	
		190					195					200					675
25		gcg Ala															013
	205	nıa	Leu	361	rne	210	1111	ULY	лы	010	215	1113	171	1113	116	220	
		cac	909	CAP	ctc		cac	ctt	gac	gac		Lgc	gct	ECC	cac		723
30	-	His		-													
					225					230					235		
	tac	ctc	ctg	aat	cgc	ссс	gaa	gcg	aac	ggg	agg	tac	ata	tgc	tca	tcg	771
35	Tyr	Leu	Leu	Asn	Arg	Pro	Glu	Ala	Asn	Gly	Arg	Tyr	lle	Cys	Ser	Ser	
35				240					245					250			
		gaa	-														819
	His	Glu		Thr	lle	His	Asp		Ala	Arg	Met	Val		Glu	Arg	His	
40			255					260					265				
		tgg	-														867
	Pro	Trp	Cys	Gly	Ser	He		610	Lys	rhe	Asp		116	GIU	Lys	ASP	
45		270					275			٠		280					915
		aga Arg															915
	285	Arg	ınr	vai	nıs	290	Ser	Ser	Lys	MIR	295		кър	Leu	Gly	300	
50				• • •			~~~	~~~		++0			~~~	2+2	000		963
		ttc Phe	-		_		-										303
	טגט	rne	Lys	ıyr	305	101	910	910	met	310		oru	VIS	116	315	261	
55		_4.				***								200		~~~	1011
	rgc	gtc	gag	aag	aag	CIC	ata	CCC	CIC	cct	Rag	aat	RRC	aac	gıg	Rac	1011

	Cys	Val	Glu	Lys	Lys	Leu	Ile	Pro	Leu	Pro	Glu	Asn	Gly	Asn	Val	Asp	
5				320					325					330			
	gca	gct	gcc	ggg	gct	aaa	gac	atg	gtt	cat	gga	gca	gag	gaa	cat	gcc	1059
	Ala	Ala	Ala	Gly	Ala	Lys	Asp	Met	Val	His	Gly	Ala	Glu	Glu	His	Ala	
			335					340					345				
10	cga	att	gct	atg	gaa	cta	gaa	cca	aaa	aaa	aag	gtc	aag	tgaa	aatg	tga	1108
	Arg	lle	Ala	Met	Glu	Leu	Glu	Pro	Lys	Lys	Lys	Val	Lys				
		350					355					360					
15	aga	taca	aca	tttt	atgc	gt a	tgga	catt	a ca	atct	taga	tgt	tcaa	ggt	ttca	aattgt	1168
	atc	ttaa	gtg	tatg	attt	at g	ttga	cact	c. gg	agt	ttca	ttg	aaat	taa ·	taaa	aggga	1228
	ttt	gctc	aaa	aaaa	aaaa	aa a	aaa										1252
20	<21	0>10															
	<21	1>36	1														
	<21	2>PR	ľ														
25		3>1r	is														
	<22																
			ino	acid	seq	uenç	e en	codi	ng I	ris	dihy	drof	ravo	nol:	redu	ctase	
		0>10									_	٥,			•		
30		Met	Ser	Pro	Val 5	Val	Val	lhr	61y	Ala 10	Ser	ыу	lyr	Val		Ser	
	1	Leu	Val	Mot	-	1	1	4	Acn		Tur	410	Vo1	۸	15	Th-	
	110	Leu	141	20	Lys	Leu	Leu	AL E	25	ULJ	1 9 1	nia	141.	30	nıa	1111	
35	Val	Arg	Asp		Thr	Asn	Val	Glu		Thr	Lvs	Pro	l.eu		Asn	l.en	
		6	35					40	-,-		-,-		45		,	200	
	Pro	Gly	Ala	Asp	Ala	Leu	Leu	Thr	Ile	Trp	Lys.	Ala	Asp	Leu	Gly	Gln	
40		50					55					60					
	Asp	Gly	Ser	Phe	Asp	Lys	Ala	Val	Ala	Gly	Cys	Thr	Ala	Val.	Phe	His	
	65					70					75					80	
45	Val	Ala	Thr	Pro	Met	Asp	Phe	Glu	Ser	Lys	Asp	Pro	Glu	Asn	Glu	Val	
					85					90					95		
	Ile	Lys	Pro	Thr	lle	Asn	Gly	Val	Leu	Ser	Ile	Met	Arg	Ser	Cys	Lys	
50				100					105					110			
30	Lys	Ala	Gly	Thr	Val	Lys	Arg	Val	Val	Phe	Thr	Ser	Ser	Ala	Gly	Thr	
			115					120					125				
	Val	Asp	Val	Lys	Glu	His	Gln	Gln	Thr	Glu	Tyr	Asp	G1u	Ser	Ser	Trp	
55		130					135					140					

	Ser	Asp	Val	Asp	Phe	Cys	Arg	Arg	Val	Lys	Met	Thr	Gly	Trp	Met	Tyr	
5	145					150					155					160	
	Phe	Val	Ser	Lys	Thr	Leu	Ala	Glu	Arg	Ala	Ala	Trp	Glu	Phe	Ala	Arg	
					165					170					175		
10	Glu	Asn	Gly	lle	Asp	Phe	Ile	Ser	lle	lle	Pro	Thr	Leu	Val	Val	Gly	
10				180					185					190			
	Pro	Phe	Ile	Thr	Thr	Thr	Met	Pro	Pro	Ser	Met	Val	Thr	Ala	Leu	Ser	
			195					200					205				
15	Phe		Thr	Gly	Asn	Glu		His	Tyr	His	lle		Lys	His	Ala	Gln	
		210					215					220	_				
		Val	His	Leu	Asp		Leu	Cys	Ala	Ala		lle	Tyr	Leu	Leu		
20	225	_				230					235	•				240	
	Arg	Pro	Glu	Ala-			Arg	lyr	116		Ser	Ser	His	Glu		Ihr	
	11.	172 -	A	1	245		W- 4	V-1	۸	250	۸	u: -	D	т	255	C1	
25	116	nis	Asp	260	AIR	Arg	met	Val	265	GIU	AI B	піѕ	FFO	270	Cys	оту	
	Ser	He	Pro		Lvs	Phe	Asp	Glv		Glu	Lvs	Asp	Val		Thr	Val	
			275		-, -			280			-,		285				
30	His	Phe	Ser	Ser	Lys	Arg	Leu	Leu	Asp	Leu	Gly	Phe	Glu	Phe	Lys	Tyr	
		290					295					300					
	Thr	Val	Glu	Glu	Met	Phe	Asp	Glu	Ala	lle	Arg	Ser	Cys	Val	Glu	Lys	
35	305					310					315					320	
-	Lys	Leu	Ile	Pro		Pro	Glu	Asn	Gly		Val	Asp	Ala	Ala		Gly	
					325					330					335		
	Ala	Lys	Asp		Val	His	Gly	Ala		Glu	His	Ala	Arg		Ala	Met.	
40			۵.	340					345					350			
	Glu	Leu	Glu	Рго	Lys	Lys	Lys		Lys								
	/010		355					360									
45	<210		17														
		>129 >DN/															
					. h.	مقصط	1.										
50	<213>Nierembergia hybrida																
	<220> <223>Nucleotide sequence encoding Nierembergia hybrida dihydrofravonol re																
	ucta		.160	146	Sequ	,,,,,,,						D-4	.,, 01				 - 0
55	<400																
	1200																

	att	cata	cta	catt	ttcc	cg t	cctt	aagt	a aa	tttt	attt	ctg	aaa	atg 1	gca	agc	55
5														Met 1	Ala:	Ser	
5														1			
	gaa	gca	gtt	cat	gct	agt	CCE	aca	gtt	tgt	gtc	acc	gga	gca	gct	gga	103
•		Ala													-		
10	0.0	5					10					15	0.		,,,,	01)	
		att								-+-				+			151
			-		-				_			-	-				191
15		lle	ыу	Ser	IFP		vai	meı	Arg	ren		GIU	Arg	GIY	ıyr		
15	20					25					30					35	
	-	cat				-					_	-	_				199
	Val	His	Ala	Thr		Arg	Asp	Pro	Glu		Lys	Lys	Lys	Val	Lys	His	
20					40					45					50		
	cta	cag	gaa	ttg	cca	aaa	gct	gat	acg	aac	tta	acg	ctg	tgg	aaa	gcg	247
	Leu	Gln	Glu	Leu	Pro	Lys	Ala	Asp	Thr	Asn	Leu	Thr	Leu	Trp	Lys	Ala	
25				55					60					65			
25	gac	ttg	gcg	gta	gaa	gga	agc	ttt	gat	gaa	gcc	att	aaa	ggc	tgt	caa	295
	Asp	Leu	Ala	Val	Glu	Gly	Ser	Phe	Asp	Glu	Ala	Ile	Lys	Gly	Cys	Gln	
			70					75					80				
30	gga	gta	ttt	cat	gtg	gcc	act	cct	atg	gat	ttc	gag	tcc	aag	gac	cct	343
	Gly	Val	Phe	His	Val	Ala	Thr	Pro	Met	Asp	Phe	Glu	Ser	Lys	Asp	Pro	
		85					90					95					
35	gag	aat	gaa	gta	atc	aag	cca	aca	gtc	cag	gga	atg	ttg	agc	atc	ata	391
-	Glu	Asn	Glu	Val	lle	Lys	Pro	Thr	Val	Gln	Gly	Met	Leu	Ser	lle	lle	
	100					105					110					115	
	gaa	tca	tgt	gtt	aaa	gca	aac	aca	gtg	aag	agg	ttg	gtt	ttc	act	tcg	439
40	Glu	Ser	Cys	Val	Lys	Ala	Asn	Thr	Val	Lys	Arg	Leu	Val	Phe	Thr	Ser	
					120					125					130		
	tct	gct	gga	act	cta	gat	gtc	caa	gag	caa	caa	aaa	ctc	ttc	tac	gat	487
45	Ser	Ala	Gly	Thr	Lev	Asp	Val	Gln	Glu	Gln	Gln	Lys	Leu	Phe	Tyr	Asp	
				135					140					145			
	gag	acc	agc	tgg	agc	gac	ttg	gac	ttc	ata	aat	gcc	aag	aag	atg	aca	535
	Glu	Thr	Ser	Trp	Ser	Asp	Leu	Asp	Phe	Ile	Asn	Ala	Lys	Lys	Met	Thr	
50			150	-				155					160	-			
	992	tgg		tac	111	ø i. t	tca		ata	ctc	PCP	gap		gct	gca	ato	583
		Trp														-	505
55	JIY		NIC F	1 y 1		101	170	دور	116		ura	175	درد	мта	ura	MEL	
		165					110					112					

gaa	gaa	gct	aaa	aag	aac	aac	att	gat	ttc	att	agc	atc	ata	сcа	cca	631
Glu	Glu	Ala	Lys	Lys	Asn	Asn	lle	Asp	Phe	lle	Ser	lle	lle	Pro	Pro	
180					185					190					195	
ctg	gtt	gtt	ggt	cca	ttc	atc	acc	cct	tcg	ttc	ccg	cct	agt	tta	atc	679
Leu	Val	Val	Gly	${\tt Pro}$	Phe	lle	Thr	Pro	Ser	Phe	${\tt Pro}$	${\tt Pro}$	Ser	Leu	lle	
				200					205					210		
act	gcc	ctt	tca	cta	att	act	ggg	aat	gaa	gct	cac	tac	tgc	atc	att	727
Thr	Ala	Leu	Ser	Leu	lle	Thr	Gly	Asn	Glu	Ala	His	Tyr	Cys	lle	lle	
			215					220					225			
aaa	caa	ggt	caa	tat	gtg	cat	ttg	gat	gat	ctt	tgt	gag	gct	tac	ata	775
Lys	Gln	Gly	Gln	Tyr	Val	His	Leu	Asp	Asp	Leu	Cys	Glu	Ala	Tyr	lle	
	٠	230					235					240				
						aaa										823
Phe		Tyr	Glu	His	Pro	Lys	Ala	Glu	Gly	Arg		lle	Cys	Ser	Ser	
	245					250					255					
		-				gat										871
	His	Ala	ile	He		Asp	Val	Ala	Lys		Ile	Arg	Glu	Lys		
260		• • •	•		265	aca	~~~			270		~~+			275	919
				_		Thr								-		313
110	oru	1 9 1	1 9 1	280	110	,,,,	oru	1116	285	ULY	110	nia	Lys	290	Leu .	
cct	σtσ	gtg	gct		tce	tca	886	888		aca	gat	atø	pet		Cap	967
			-		_	Ser	-				-				_	
			295					300			-		305			
ttc	aag	tac	act	ttg	gag	gat	atg	tàt	aaa	ggg	gcc	att	gag	act	tgt	1015
						Asp										
		310					315					320				
cga	cag	aag	cag	ttg	ctt	ccc	ttt	tct	acc	aat	agg	cct	tcg	gaa	aat	1063
Arg	Gln	Lys	Gln	Leu	Leu	Pro	Phe	Ser	Thr	Asn	Arg	Pro	Ser	Glu	Asn	
	325					330					335					
gga	ctt	gac	aaa	gaa	gcc	att	tcc	att	tct	tct	gaa	aac	ttt	gca	agt	1111
Gly	Leu	Asp	Lys	Glu	Ala	lle	Ser	lle	Ser	Ser	Glu	Asn	Phe	Ala	Ser	
340					345					350					355	
gga	aaa	gag	aat	gca	cca	gtt	gca	aat	cac	aaa	gta	aag	tta	aca	agt	1159 ·
						Val										
				360					365					370		

	gtt	gaa	att	taga	aact	gca a	atct	ttca	a te	gtaaa	aga	ggca	aagc	ttgc	cta	tcaaca	at 1218	
5	Val	Glu	Ile															
	ctt	tgct	tct.	aagt	tgtca	at c	tatt	tgtt	t cti	taat	gct	aaag	gcag	taa	aagg	ttcaat	1278	
	gaa	aaaa	aaa	aaaa	aaaa	a											1297	
10	<21	0>12																
	<21	1>37	4															
	<21	2>PR	r															
	<21	3>Ni	erem	berg:	ia h	ybri e	da											
15	<22	0>																
	<22	3>Am	ino	acid	sequ	ienc	e of	Nie:	rembe	ergia	a hyl	brida	a dil	hydr	ofra	vonol	reductase	E
	<40	0>12																
20	Met	Ala	Ser	Glu	Ala	Val	His	Ala	Ser	Pro	Thr	Val	Cys	Val	Thr	Gly		
	1				5					10					15			
	Ala	Ala	Gly	Phe	lle	Gly	Ser	Trp	Leu	Val	Met	Arg	Leu	Leu	Glu	Arg'		
25				20					25					30				
	Gly	Tyr			His	Ala	Thr		Arg	Asp	Pro	Glu		Lys	.Lys	Lys		
			35					40					45					
30	Val	Lys	His	Leu	Gln	Glu		Pro	Lys	Ala	Asp		Asn	Leu	Thr	Leu		
30	T	50	41.	A		41-	55 v. 1	C1	C1	c	DL.	60	C1.	41.		,		
	65	Lys	VIS	ASP	ren	70	vai	610	GIY	Ser	75	ASD	GIU	кта	116	Eys 80		
		Cys	Glin	G1 v	Val		His	Val	Ala	Thr		Met	Aen	Phe	G1.,			
35	01,	0,3	0111	013	85		.,,,		,,,,	90		,,,,,	лор		95	561		
	Lys	Asp	Pro	Glu		G1u	Val	lle	Lvs		Thr	Val	Gln	Glv		Leu		
	•			100					105					110				
40	Ser	lle	lle	Glů	Ser	Cys	Val	Lys	Ala	Asn	Thr	Val	Lys	Arg	Leu	Val		
			115					120					125					
	Phe	Thr	Ser	Ser	Ala	Gly	Thr	Leu	Asp	Val	Gln	Glu	Gln	Gln	Lys	Leu		
45		130					135					140						
	Phe	Tyr	Asp	Glu	Thr	Ser	Trp	Ser	Asp	Leu	Asp	Phe	lle	Asn	Ala	Lys		
	145					150					155					160		
50	Lys	Met	Thr	Gly	Trp	Met	Tyr	Phe	Val	Ser	Lys	lle	Leu	Ala	Glu	Lys		
					165					170					175			
	Ala	Ala	Met	Glu	Glu	Ala	Lys	Lys	Asn	Asn	He	Asp	Phe	lle	Ser	Ile		
				180					185					190				
55	lle	Pro	Pro	Leu	Val	Val	Gly	Pro	Phe	lle	Thr	Pro	Ser	Phe	Pro	Pro		

<212>DNA

		195			200					205			
5	Ser Leu	lle T	Thr Ala	Leu Ser	Leu	lle	Thr	Gly	Asn	Glu	Ala	His	Tyr
•	210			215					220				
	Cys lle	Ile L	ys Gln	Gly Gln	Tyr	Val	His	Leu	Asp	Asp	Leu	Cys	Glu
10	225			230				235					240
10	Ala Tyr	Ile F	he Leu	Tyr Glu	His	Pro	Lys	Ala	Glu	Gly	Arg	Phe	lle
			245				250					255	
	Cys Ser	Ser H	lis His	Ala lle	Ile	Tyr	Asp	Val	Ala	Lys	Met	lle	Arg
15		2	260			265					270		
	Glu Lys	Trp F	ro Glu	Tyr Tyr	Val	Pro	Thr	Glu	Phe	Lys	Gly	lle	Ala
		275			280					285			
20			ro Val	Val Ala	Phe	Ser	Ser	Lys	Lys	Leu	Thr	Asp	Met
	290			295					300				
	Gly Phe	Gln P	he Lys		Leu	Glu			Tyr	Lys	Gly	Ala	
25	305			310				315		·			320
	Glu Thr	Cys A	325	Lys Gin	Leu		330	Phe	Ser	lhr	Asn	335	Pro
	Sor Cla	Ann C		Asp Lys	Cl.,			Sar	116	Sar	Sar		Aen
30	3e1 01u		340	ASP Lys		345	110	361	116	561	350	010	vėn
	Phe Ala			Glu Asn			Val	Ala	Asn	His		Val	Lys
		355			360					365			
35	Leu Thr	Ser V	/al Glu	lle									
	370											1	
	<210>13												
40	<211>20												
40	<212>DN												
	<213>Ar	tifici	ial Segi	uence									
	<220> <221>												
45	(222)												
	<223>Pr	imar F)FR-2F										
	<400>13	imei b	/ I K 21										
50	caagcaa	tee ca	t cepaa	t.c.									
	<210>14	- 55 00											
	<211>22												
55	/212\DN												

	(213)Artificial Sequence		
5	<220>		
5	⟨221⟩		
	⟨222⟩		
	(223)Primer DFR-2B		
10	<400>14		
	tttccagtga gtggcgaaag tc		22
	<210>15		
15	<211>20		
	<212>DNA		
	(213)Artificial Sequence		
20	<220>		
	<221>		
	<222>		
	<223>Primer ANS-2F		
25	<400>15		
	tggactcgaa gaactcgtcc	•	20
	<210>16		
30	<211>19		
	<212>DNA		
	<213>Artificial Sequence		
35	<220> <221>		
	(221)		
	<222> <223>Primer ANS-2B		
40	<400>16		
**	cctcaccttc tcccttgtt		19
	<210>17		
	<211>17		
45	<212>DNA		
	<213>Artificial Sequence	·	
	(220)		
50	(221)		
	(222)		
	<223>ATC Primer		
55	<400>17		

	gayttyggit ggggiaa	17
	<210>18	
5	<211>23	
	<212>DNA	
	<213>Artificial Sequence	
10	<220>	
	<221>	
	<222>	
15	<223>Origo dT Primer	
	<400>18	
	tttttttt ttttttctc gag	23
20	<210>19	
	<211>26	
	<212>DNA	
	<213>Artificial Sequence	
25	⟨220⟩	
	<221> ·	
	(222)	
30	<223>Primer RDF310	
	<400>19	
	ccctcgagcc cttgatggcc tcgtcg	26
35	<210>20	
	<211>26	
	<pre><212>DNA <213>Artificial Sequence</pre>	
40	<220>	
	(221)	
	<222>	
45	<223>Primer RDF830	
45	<400>20	
	gggtcgacgc ggccctctgc tttcgg	26
	<210>21	
50	<211>2934	
	<212>DNA	
	<213>Rose	
55	(220)	

<223 Nuceotide sequence of rose chalcone synthase promotor <400 >21

5

10

15

20

25

30

35

40

45

50

aagottoago aagagtigaa gaaataggga cagagocato catgigotti gatgaatoig 60 120 atgggataca aaatgtgaaa gattcacttg ctgatttatc cagaatttct tcatatagtg 180 aggagaatgi igaaagatci aatgatgagc actctgitaa actagacgga attcatgigc agcacgagtg tcatgagggc agtgaagaag acaaacctga tggtaagagc ggtgagaatg 240 cagttgatct ggctaatcat ggcatggctc gaactgattt ttgtcagata acagaagaga 300 ttgagaatgg agtagtcatc actgagatga gcaacattgc caaccctgat aaaactgata 360 420 ttccaaacgg ggtgcctcaa aatgagactg atgatggatt taataacact caggatgatg ctaatacaaa ggaagtgaca gaagagaatt ctgacagacg tgcgaaggaa gtgacagaag 480 540 agaattotga caaagatgit tigaagaata tootigaatt otoacgigot toticigigg tggattitga aattccagtg tiggatgiga aatttacttc tcttgaaagt tgcagtgcca 600 ctigitcict igcagcccit tigicigaat cgccggaatc aatgacigaa gcacciigig 660 720 tgaggcaaat tgatgatgtg cccccggttg gtgaggagtc tagcttgatt ttggtggaag 780 atcgggagcc ggttggtcct actcctgatg gtaatttttc tgtggatatg gattactata gigiagcaga accitigage acaigggaig egaateigea gigigaaaca icaaalagee 840 900 atgagactit tgctgcaagt ctcatttgat agcttctgtg ttaataactt tgttagtctg 960 tacataaatt tgtctagaca agaattggtc gtgtactatc gtgtgttttt gccgtgcttt agtactcatg aaccaattca gagaaaactg gctgcatatt ttgaggagtc tctgaattct 1020 tcaatgctca actggtatgc atgtaggtgg catatcactt cagggattct tctattcttt 1080 aactttacgc atcttgacat tttgtatata acaaaatcag gtctattggg tgaaagtaat 1140 tggctagaat ggaaagcict acggttttac cgcaggtcaa ttttcatagc tccacaagtg 1200 aattgaaaat gctcataggc tttatgtttg tcctccacct ctggcgacga tgtttgttgg 1260 ggagttaact caaacctacc accaaactcg aacccatctt ccataattta taatacaaat 1320 tigcgatcat tigticatcc aattatigig acactegget accaeccaaa atateggica 1380 cagacccaaa cgtattgtca caacaaatcg tgtctctcgc attaaacaca gctagaaaga 1440 agagttgaac ccacaattcg agcacccact acctatgtac gaagtcatga gttcgagtca 1500 ccataggggt agaagtgaaa tcatttgatc atctttaaag aaataaaagg aagagttgaa 1560 cccacaattg gctcttgtcc caaaaagaac taatagttca gtgcaccgac gtgtatttgc 1620 1680 accgacataa atggattgtt agattatatt aaatacactc ttaggttatt aataaaaata ttaattataa atatcaaaag ttgagatcat citataaatg ttgggtcagt tacaccgtcg 1740 gtgcatagaa taatttccaa actatataat agccttcatt ttctgattta gctcatggga 1800 1860 catgattgct ataaataatt gtactcgtag aggcatactt gtgtcttttt atacagttgt actgaagctc agaaaagttt atgaaggtga gaactgagaa gggcaaggca tttggtagtt 1920 gaggtatatg agagcatgaa ccccatgcat tgcagctacc acctctcttt tttccttctt 1980 cccatacaaa taaaaccaac tcttctcacc taagtctatc atctttattt atggcagctc 2040

	ttgcttaatt	agctcatcta	tattatatta	tttatctata	atatgtgtca	ctctgtctac	2100
5	ctaccagccc	aaaataaaac	tgataatagt	caatttgatg	atatttttg	ttttttgttt	2160
	tgttttgtct	tttttgtatt	gatttttta	aaattaaaat	gacttcattt	tttgtttttg	2220
	ttttttttc	tattttttt	tatagaaaaa	ttggcaaact	ttcattatct	gttattgatg	2280
0	acaattaagc	cattaaaacc	tataattaat	tatctttcaa	ttcgagtaaa	tttaaaacgg	2340
	tgtaaaatta	aaatatgatc	gtattcttaa	atgaataaaa	ctcacttaat	aatagtaata	2400
	cttgaatcac	atctacgaac	atagattctt	ttcatccagt	ctaaccatgt	ttgaatatat	2460
5	agagtttgat	tatggttatg	tctttgtcca	cattttggtt	tgtaaataaa	tgtgcaacgg	2520
	aggtatggta	ctgttgctct	atcaaattca	agtttgaatt	aaaagaaaaa	aaaaaagacg	2580
	atattttgtg	cgctttgttt	ggtaggtaaa	acgagagaac	aaacgcattc	caaatcatgc	2640
20	ggattttgat	cggcaacaca	caccacaaaa	aaccgtacac	gatgcacgtg	ccatttgccg	2700
	ggggtttcta	acaaggtaat	tgggcaggca	cgtgatcccc	cagctaccca	cctctcgctt	2760
	cccttctcaa	actccttttc	catgtatata	tacaacccct	tttctcagac	cattatattc	2820
	taacatttt	gctttgctat	tgtaacgcaa	caaaaactgc	tcattccatc	ctigitccic	2880
?5	cccattttga	tcttctctcg	accettetee	gagatgggta	ccgagctcga	attc	2934

30 Claims

- A method for producing a rose characterized by artificially suppressing the rose endogenous metabolic pathway
 and expressing the pansy gene coding for flavonoid 3',5'-hydroxylase.
- 35 2. A method for producing a rose according to daim 1, characterized by artificially suppressing the rose endogenous metabolic pathway, and expressing the pansy gene coding for flavonoid 3°,5'-hydroxylase and the gene coding for dihydroflavonoi reductase.
- 3. A method for producing a rose according to claim 2, characterized by artificially suppressing expression of rose 40 endogenous dihydroflavonol reductase, and expressing the pansy gene coding for flavonoid 3',5'-hydroxylase and the gene coding for dihydroflavonol reductase derived from a plant other than rose.
 - A method for producing a rose according to claim 1, characterized by artificially suppressing expression of rose endogenous flavonoid 3'-hydroxylase and expressing the pansy gene coding for flavonoid 3',5'-hydroxylase.
 - A rose obtained by the production method according to any one of claims 1 to 4, or a progeny or tissue thereof having the same properties as the rose.
 - 6. A rose obtained by the production method according to any one of claims 1 to 4, or a progeny or tissue thereof having the same properties as the rose, wherein the petal color of the rose is violet, blue-violet or blue.
 - A rose according to claim 6, or a progeny or tissue thereof having the same properties as the rose, wherein the
 petal color of the rose belongs to the "Volet group", "Violet-Blue" group or "Blue group" according to the Royal
 Horticultural Society Coloru Chart (RHSCC).
 - A rose according to claim 7, or a progeny or tissue thereof having the same properties as the rose, wherein the
 petal color of the rose belongs to "Violet group" 85a or 85b according to the Royal Hortlcultural Society Colour Chart
 (RHSCC).

Fig.1

Hind-EI2 355 Ω Bamnos Hind-Ç Petýniá DFR JE12 35S Bam-E I 1 Hind — EI-

Fig.3

	INTERNATIONAL SEARCH REPORT	REPORT International application No.				
	·	P	CT/JP2004/011958			
	ATION OF SUBJECT MATTER C12N15/00, A01H5/00					
Int.CI	C12N15/00, A01R5/00		:			
	All and Detect Charles and a Charles and a bath antique	A classification and IDC	· .			
	ernational Patent Classification (IPC) or to both national	Classification and IPC				
B. FIELDS SE	ARCHED tentation searched (classification system followed by cla	ssification symbols)				
	C12N15/00, A01H5/00	,				
	•					
	searched other than minimum documentation to the exte	at that much dominants are los	duded in the fields seembed			
Documentation s	exercise other than minimum documentation to the exe	nt that such documents are mo	idded in the fields searched			
	•					
	ase consulted during the international search (name of	ata base and, where practicable	le, search terms used)			
BIOSIS	, WPIDS, JSTplus					
0 000000	THE COLUMN TO THE DELIVERY					
	VTS CONSIDERED TO BE RELEVANT		nges Relevant to claim No.			
Category*	Citation of document, with indication, where ap					
х	FORKMANN, G et al., Metabolic and applications of flavonoid	engineering	. 1-8			
	Biotechnol. 2001 April, Vol.1					
	to 160					
×	MOL, J et al., Novel coloured		1-8			
	Opin Biotechnol. 1999 April,	Vol.10(2), pages				
	198 to 201		į l			
A	JP 3403196 B (Kyowa Hakko Ko		1-8			
	28 February, 2003 (28.02.03), & CA 2130800 A & WO	93/18155 A				
	& AU 2956092 A & EP	632128 A				
		6114601 A 2002/0100072 A	1			
8 0	6 US 6232109 B · & US	2002/0100072 A				
i						
İ			-			
× Further de	ocuments are listed in the continuation of Box C.	See patent family ann	ex.			
"A" document of	gories of cited documents: defining the general state of the art which is not considered ticular relevance	"I" later document published date and not in conflict wi	after the international filing date or priority ith the application but elted to understand derlying the invention			
"E" earlier appl	ication or potent but published on or after the international	"X" domment of particular rel	levance; the claimed invention cannot be not be considered to lovelye an inventive			
cited to est	which may throw doubts on priority claim(s) or which is ablish the publication date of another citation or other	"Y" document of particular rel	levance; the claimed invention cannot be			
"O" document r	on (as specified) eferring to an oral disclosure, use, exhibition or other means	combined with one or mo	in inventive step when the document is are other such documents, such combination			
"P" document p the priority	sublished prior to the internstional filing date but later than date claimed	being obvious to a person "&" document member of the				
Date of the	al completion of the international search	Date of mailing of the interr	national search report			
	tember, 2004 (09.09.04)		, 2004 (28.09.04)			
	ng address of the ISA/	Authorized officer				
Japane	se Patent Office]				
Facsimile No.		Telephone No.				

يعي ميك يه س

INTERNATIONAL SEARCH REPORT International application No. PCT/JP2004/011958 C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Category* Citation of document, with indication, where appropriate, of the relevant passages JP 8-511683 A (International Flower Developments PTY. Ltd.), 10 December, 1996 (10.12.96), 8 WO 94/28140 A 6 CA 2163220 A 6 CN 1127015 A 6 EP 0703982 A 1-8 & NZ 266401 A 6 PL 177743 A & SG 45175 A and the state of . 116.1 erit for minimal participation of a contract of the contract o an interesting distriction of the control of the co

81

Form PCT/ISA/210 (continuation of second sheet) (January 2004)