

Sistemi aprocessori multipli

Sommario

- · Classificazione e concetti di base
 - Sistemi multi-processore
 - Sistemi multi-computer (cluster)
 - Sistemi distribuiti
- · Obiettivo comune
 - Risolvere problemi di dimensioni considerevoli, a volte intrattabili in architetture tradizionali (scale-up)
 - Risolvere problemi trattabili anche con architetture tradizionali, ma in minor tempo (speed-up)

CLASSIFICAZIONI E CONCETTI DI BASE

Sistemi con processori multipli

- Varie classificazioni possibili
- · Determinate da:
 - organizzazione dei processori
 - organizzazione delle memorie
 - struttura della relativa interconnessione (HW)
 - accoppiamento tra SW e HW sui vari processori
- Diverse problematiche per i relativi S.O.!

CLASSIFICAZIONE HW

Classificazioni HW

- Classificazione HW
 - Tassonomia di Flynn
- Classificazione dei MIMD
 - Tassonomia di Tannenbaum
 - Tassonomia di Stallings

ESD Records							
Tassonomia di Flynn							
Flusso dei dati							
	Singolo	Multiplo					
Singolo							
Flusso di istruzioni							
Multiplo							
			8				

Tassonomia di Flynn

- · Gli elementi fondamentali di un calcolatore sono
 - Flusso di istruzioni (IS):
 - programma da eseguire
 - Flusso di dati (DS):
 - operandi e risultati delle istruzioni
 - Unità di controllo (CU):
 - esegue prelievo e decodifica dell'istruzione
 - Unità di elaborazione (PU):
 - esegue le istruzioni (ALU+registri)
 - Memoria principale (MM):
 - · contiene istruzioni e dati

Tassonomia di Flynn

- SISD
 - Un processore
 - Una memoria
 - Un flusso di istruzioni, ogni istruzione applicata ad un dato alla volta
 - Si tratta della macchina di Von Neumann

11

Tassonomia di Flynn

• SIMD

ESD

- Più processori
- Ognuno con la "propria memoria"
- Un flusso di istruzioni, applicato simultaneamente ai vari dati
- Es.: array processor

12

Tassonomia di Flynn

- MISD
 - Più processori
 - Una memoria
 - Un flusso dati, sul quale sono applicati i vari flussi di istruzioni
 - MAI implementato

13

Tassonomia di Flynn

- MIMD
 - Più processori
 - Più memorie
 - Più flussi dati, sui quali vengono eseguite le diverse sequenze di istruzioni

- Caso "interessante"
 - · Tutti i sistemi distribuiti sono MIMD

14

Classificazione dei MIMD

- Con memoria condivisa (multiprocessori)
 - Detti anche "tightly coupled"
 - Condividono clock e memoria
 - Eseguono lo stesso S.O.
 - Comunicazioni "frequenti" e veloci
 - Velocità di comunicazione = velocità della memoria
 - Adatti a lavorare in parallelo su un singolo problema

15

Classificazione dei MIMD

- Con memoria distribuita (multicalcolatori)
 - Detti anche "loosely coupled"
 - Memoria locale ad ogni macchina
 - Eseguono diversi S.O.
 - Comunicazioni "occasionali" e lente
 - · Velocità comunicazione = velocità della rete
 - Adatti a lavorare su molti problemi differenti contemporaneamente

Sistemi multiprocessore a bus

- N CPU connesse ad un singolo bus e a un'unica memoria
- Architettura semplice, permette broadcast, ma poco scalabile a causa del bus
 - Ogni CPU ha una cache per evitare il collassamento del bus
 - · Problema: coerenza delle cache con la memoria
 - · Soluzione: es.: snoopy write-through cache
- SMP (Symmetric MultiProcessor)

Sistemi multiprocessore a bus

Nome	Massimo numero di proc.	Nome del proc.	Freq. di clock del proc. (MHz)	Memoria max per sistema (GB)	Banda passante max per sistema (MB/sec)
Compaq ProLiant 5000	4	Pentium Pro	200	2	540
Digital AlphaServer 8400	12	Alpha 21164	440	28	2150
HP 9000 K460	4	PA-8000	180	4	960
IBM RS/6000 R40	8	PowerPC 604	112	2	1800
SGI Power Challenge	36	MIPS R10000	195	16	1200
Sun Enterprise 6000	30	UltraSPARC 1	167	30	2600

Tassonomia di Stallings

- Master/Slave
 - Asimmetrico
 - Un processore (Master) esegue il S.O.
 - · Schedula i processori slave
 - Effettua tutti i servizi del kernel
 - · Ha pieno controllo di tutte le risorse
 - Gli altri processori (Slave) eseguono programmi utente ed eventuali utility
 - Master può essere un collo di bottiglia e un punto critico di guasto

Sistemi multiprocessore

- Symmetric Multiprocessor (SMP)
 - Simmetrico
 - Tutti i processori sono uguali
 - Architettura a bus
 - S.O. + difficile da progettare rispetto ai sistemi master/slave

25

SMP

- Il kernel può eseguire su qualsiasi processore
 - Tipicamente in parallelo, thread multiple su processori diversi
 - Ogni processore è auto-schedulante
- Problemi chiave nel progetto di S.O. per SMP
 - Conflitti di scheduling tra processori
 - Sincronizzazione accessi a memoria condivisa
 - Gestione dell'esecuzione concorrente di servizi del S O
 - Fornire affidabilità e tolleranza ai guasti

27

Cluster

- · Generica architettura multicomputer
 - Alternativa a SMP
 - Calcolatori "poco" eterogenei
 - No memoria condivisa
 - Appaiono come un unico calcolatore
- In generale diverso da un insieme di calcolatori su una rete locale
 - Molti processori
 - Connessione dedicata (tipo LAN)

Cluster vs. SMP

- SMP
 - più facili da gestire e configurare
 - occupa meno spazio e consuma meno
 - sono orami stabili
- Cluster
 - sono superiori rispetto alla scalabilità
 - permettono una maggior ridondanza

S.O. multiprocessore (MOS)

- Un processo può essere eseguito su qualunque CPU
- Tutte le CPU eseguono lo stesso S.O.
- File system simile al caso uniprocessore
- · Memoria condivisa
 - Problematica → consistenza memoria/cache

35

S.O. di rete (NOS)

- · Ogni macchina esegue il suo S.O.
- · La molteplicità delle macchine è visibile agli utenti
- L'accesso alle risorse avviene in modo esplicito:
 - Login remoto
 - Trasferimento dati (es. Via FTP)
- · "Esempio" di NOS:
 - NFS (network file system)
 - · Usato per condivisione di file system
 - Non propriamento un S.O.!

S.O. distribuiti (DOS)

- La molteplicità delle macchine NON è visibile agli utenti
- L'accesso alle risorse remote simile a quelle locali
- Macchine sono in qualche modo, ma non completamente, autonome
- Tutte le macchine eseguono lo stesso S.O.

ESD

Obiettivo

- Analizzare le problematiche che riguardano i sistemi operativi per le varie categorie di sistemi
- · Priorità: sistemi distribuiti
 - Presentano le problematiche più interessanti
 - · Significativamente diverse da S.O. centralizzati
 - Diffusione più ampia
 - In parte, problematiche comuni a sistemi multicomputer/cluster

Perché usare DOS?

- Prezzo/Prestazioni
 - Una rete di workstation fornisce + MIPS di un grosso mainframe
- Prestazioni più elevate
 - N processori forniscono idealmente N volte il lavoro di un processore
- Condivisione delle risorse
 - Risorse costose non devono essere replicate

43

Perché usare DOS?

- Scalabilità
 - Una struttura modulare permette di aggiungere/rimpiazzare risorse in modo + semplice
- Affidabilità
 - La ridondanza di risorse permette tolleranza ai guasti