Traitement des données climatiques – Station SOB (Niakhar)

Projet MAELIA – Ferlo Sine 24 mai 2025

Introduction

Ce rapport présente les étapes suivies pour le traitement des données climatiques afin de les mettre dans un format compatible avec MAELIA. Les données analysées proviennent de la tour à flux installée à Niakhar (station SOB), fournies par Olivier Roupsard (CIRAD). Elles couvrent la période de **2018 à 2024** et sont enregistrées toutes les **30 minutes** par une instrumentation automatisée multi-capteurs.

Objectif

L'objectif est de produire un fichier journalier contenant les variables suivantes : précipitations cumulées (RRmm), températures extrêmes (Tmin, Tmax), rayonnement net cumulé (RGI) et l'évapotranspiration potentielle journalière (ETP), compatible avec le modèle MAELIA.

Étapes du traitement

- 1. Chargement du fichier source Excel et suppression des lignes d'en-tête non pertinentes.
- 2. Conversion de la colonne TIME_START en date.
- 3. Correction des précipitations : les valeurs étant exprimées en mm/h alors qu'elles proviennent de pas de 30 minutes, chaque valeur est divisée par 2.
- 4. Conversion du rayonnement net (Net_radiation_1) de $\rm W/m^2$ vers $\rm MJ/m^2/30min$ via un facteur 1.8/1000.
- 5. Agrégation des variables au pas de temps journalier : somme pour RRmm et RGI, minimum/maximum/moyenne pour les températures.
- 6. Calcul de l'ETP selon la formule FAO-56 de Penman-Monteith.

Formule utilisée

L'évapotranspiration potentielle (ETP) est estimée à l'aide de la formule de Penman-Monteith standard, telle que décrite par (1) et reprise dans (2) :

$$ET_0 = \frac{0.408 \cdot \Delta \cdot R_n + \gamma \cdot \frac{900}{T + 273} \cdot u_2 \cdot (e_s - e_a)}{\Delta + \gamma (1 + 0.34 \cdot u_2)} \tag{1}$$

avec:

- R_n : rayonnement net journalier (MJ/m²/j)
- T: température moyenne journalière (°C)
- u_2 : vitesse du vent à 2 m (m/s)

Remarque : la vitesse du vent dans notre jeu de données est mesurée à 20 m. Une correction pour ramener cette valeur à 2 m n'a pas été appliquée dans cette version du traitement.

- e_s : pression de vapeur saturante (kPa)
- e_a : pression de vapeur réelle (kPa)
- Δ : pente de la courbe de pression de vapeur saturante (kPa/°C)
- γ : constante psychrométrique (kPa/°C)

Graphiques générés

FIGURE 1 – Évapotranspiration potentielle journalière estimée

FIGURE 2 – Précipitations cumulées journalières

Figure 3 – Rayonnement net journalier cumulé $(\mathrm{MJ/m^2/j})$

 ${\tt Figure \ 4-Temp\'eratures \ minimales \ journali\`eres}$

FIGURE 5 – Températures maximales journalières

Références

- [1] R. G. Allen, L. S. Pereira, D. Raes, and M. Smith, *Crop evapotranspiration : Guidelines for computing crop water requirements.* FAO Irrigation and Drainage Paper 56, Rome : FAO, 1998.
- [2] T. Djikou, "Estimation de l'évapotranspiration potentielle dans le bassin du haut bani (mali) à partir des données météorologiques," mémoire de master, Université de Ouagadougou, 2006. Mémoire présenté dans le cadre du programme AMMA-CATCH.