Relationships and data;

$$\frac{\theta}{360} = \frac{s}{2\pi R}$$

$$P^2 = a^3$$
 (P in years, a in AU)

$$P^2 = \frac{4\pi a^3}{G(m_1 + m_2)}$$
 (all in SI units)

$$e = \frac{dist \, between \, foci}{2a}$$

$$e = \sqrt{1 - \frac{b^2}{a^2}}$$

$$F = G \frac{m_1 m_2}{r_{12}^2}$$

F=ma

$$v_{circ} = \sqrt{\frac{GM}{r}}$$

$$v_{escape} = \sqrt{\frac{2GM}{r}}$$

frequency=1/Period

$$frequency = f = \frac{c}{\lambda}$$

Wien's law:
$$\lambda_{Imax} = \left(\frac{3 \times 10^6}{T_{Kelvin}}\right) nm$$

Stefan's Law: $Flux = \sigma T_K^4$

Power = (Flux) x (area emitting)

$$T_{kelvin} = T_{celsius} + 273$$

 $E_{photon} = hf$

$$\frac{\lambda'}{\lambda} = \frac{f}{f'} = (1 + \frac{v}{c})$$

$$\theta_{resolvable,radians} = \frac{\lambda}{D}$$

$$Intensity = \frac{Power}{4\pi R^2}$$

$$Density = \frac{mass}{volume}$$

$$\sigma = 5.67 \times 10^{-8} \frac{W}{m^2 K^4}$$

$$G = 6.67 \times 10^{-11} \frac{Nm^2}{kg^2}$$

$$h = 6.34 \times 10^{-34} \, Js$$

$$c = 3.00 \times 10^8 \frac{m}{s}$$

1 degree = 60 arc minutes

1 arc minute = 60 arc sec

360 degrees= 2π radians

 $1 \text{ a.u.} = 150 \times 10^6 \text{ km}$

1 light-year=distance light travels in 1 year

Area of circle: $A = \pi R^2$ Area of sphere: $A = 4\pi R^2$ Volume of sphere: $V = \frac{4}{3}\pi R^3$

Prefix S	Symbol	Meaning	Prefix	Symbol	Meaning
deci	d	10^{-1}	deka	da	10^{1}
centi	c	10^{-2}	hecto	h	10^{2}
milli	m	10^{-3}	kilo	k	10^3
micro	μ	10^{-6}	mega	M	10^6
nano	n	10 ⁻⁹	giga	G	10^{9}
pico	p	$10^{-12} \\ 10^{-15}$	tera	T	10^{12}
femto	f	10^{-15}	peta	P	10^{15}
atto	a	10 ⁻¹⁸	exa	E	10^{18}

Example: 1 nanometer = 10^{-9} meter OR 1nm = 10^{-9} m

Density of common solar system materials:

Bensity of common solar system materials.							
Iron	8000 kg/m ³	Water/Ice	1000 kg/m ³				
Granite	2750 kg/m ³	Amonia (NH ₃)	800 kg/m ³				
CO ₂ Ice	1600 kg/m ³	Methane (CH ₄)	500 kg/m^3				