

Transformer Illustration

http://jalammar.github.io/illustrated-transformer/

Encoder and Decoder

Structure of the Encoder and Decoder

- Self-attention
- Encoder-decoder attention

Start Encoding

Calculate Values

- Calculate dot product of key and value vector
- Multiply each value vector by the Softmax score
- Sum up the weighted value vectors v_1 and v_2

$$Attention(Q, K, V) = softmax(\frac{QK^T}{\sqrt{d_k}})V$$

Sum

14

Final Output of the Self-attention Module

The Beast with Multiple Heads

- 1) This is our 2) Winput sentence* eac
- 2) We embed each word*
- 3) Split into 8 heads. We multiply X or R with weight matrices
- 4) Calculate attention using the resulting Q/K/V matrices
- 5) Concatenate the resulting Z matrices, then multiply with weight matrix W^O to produce the output of the layer

W₀K W₀V

 W_0^Q

Mo

* In all encoders other than #0, we don't need embedding. We start directly with the output of the encoder right below this one

• •

Positional Encoding

- Use sine and cosine functions of different frequencies
 - pos: word position
 - i: dimension index
 - $-d_{\text{model}} = 512$

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\text{model}}})$$

$$PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$$

Encoding Variable-length Sentences

Positional Encoding Matrix for the sequence 'I am a robot'

Positional Encoding Layer in Transformers

- k: Position of an object in input sequence, 0≤k<L/2
- d: Dimension of the output embedding space
- P(k,j): Position function for mapping a position k in the input sequence to index (k, j) of the positional matrix
- n: User defined scalar. Set to 10,000 by the authors of <u>Attention is all You Need</u>.
- i: Used for mapping to column indices 0≤i<d/2. A single value of i maps to both sine and cosine functions

$$P(k, 2i) = \sin\left(\frac{k}{n^{2i/d}}\right)$$

$$P(k, 2i + 1) = cos(\frac{k}{n^{2i/d}})$$

Positional Encoding Matrix for the sequence 'I am a robot'

Visualizing Positional Encoding

Decoding time step: 1 2 3 4 5 6

OUTPUT

Decoder

Which word in our vocabulary am is associated with this index? Get the index of the cell with the highest value (argmax) log_probs 0 1 2 3 4 5 ... vocab_size Softmax logits 0 1 2 3 4 5 ... vocab_size Linear

Decoder stack output

Output of Decoder

Output Vocabulary

WORD	а	am	l	thanks	student	<eos></eos>
INDEX	0	1	2	3	4	5

One-hot encoding of the word "am"

Trained Model Outputs

Latest NLP Models (2018 -)

GPT, ELMo, BERT

Generative Pre-trained Transformer (GPT)

Embeddings from Language Models (ELMo) Bidirectional Encoder Representations from Transformers (BERT)

BERT: Bidirectional Encoder Representations from Transformers (2019)

- Use "Masked Language Model" to train the bidirectional transformer encoder
 - Randomly masked out some tokens and train models to predict them
- Fine-tuning on different tasks
- Achieved state-of-the-art results on multiple NLP tasks

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

Jacob Devlin Ming-Wei Chang Kenton Lee Kristina Toutanova
Google AI Language

{jacobdevlin,mingweichang,kentonl,kristout}@google.com

1 - Semi-supervised training on large amounts of text (books, wikipedia..etc).

The model is trained on a certain task that enables it to grasp patterns in language. By the end of the training process, BERT has language-processing abilities capable of empowering many models we later need to build and train in a supervised way.

Semi-supervised Learning Step

Model:

Dataset:

Objective: Predict the masked word (langauge modeling)

2 - Supervised training on a specific task with a labeled dataset.

Supervised Learning Step

Model: (pre-trained in step #1)

Dataset:

Buy these pills	Spam
Win cash prizes	Spam
Dear Mr. Atreides, please find attached	Not Spam

Email message

Class

Embeddings from Language Models (ELMo)

- Consider how words vary across contexts
- Use sentence as input and encoded it by bi-directional LSTM

Deep contextualized word representations

Matthew E. Peters[†], Mark Neumann[†], Mohit Iyyer[†], Matt Gardner[†], {matthewp, markn, mohiti, mattg}@allenai.org

Christopher Clark*, Kenton Lee*, Luke Zettlemoyer^{†*} {csquared, kentonl, lsz}@cs.washington.edu

[†]Allen Institute for Artificial Intelligence *Paul G. Allen School of Computer Science & Engineering, University of Washington

Use Bi-LSTM to create Word Embedding

1- Concatenate hidden layers

2- Multiply each vector by a weight based on the task

3- Sum the (now weighted) vectors

Backward Language Model

OpenAl GPT: Pre-training Transformer Decoders

- Unsupervised pre-train transform decoders for predicting the next word (GPT: Generative Pre-Training)
- Use 12 Transformer decoders in GPT-1
 - GPT-1: Improving Language Understanding with Unsupervised Learning (2018)
 - GPT-2: Better Language Models and Their Implications (2019)
 - GPT-3: Language Models are Few-Shot Learners (2020)

OpenAl GPT for Different Tasks

OpenAl GPT-2

- Pre-trained using 40GB of Internet text
- Scale-up of GPT with 10X parameters trained with 10X data
- Other tricks
 - Layer normalization was moved to the input of each sub-block
 - An additional layer normalization was added after the final self-attention block

Parameters	Layers	d_{model}
117M	12	768
345M	24	1024
762M	36	1280
1542M	48	1600

Size does Matter! GPT-3

- 175 Billion Parameters!
- 175×4=700GB
- 55 years and \$4,600,000 to train even with the lowest priced GPU cloud on the market.

GPT3 Demo (gpt3demo.com)

huggingface.co

References

- 1. https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html
- 2. http://jalammar.github.io/illustrated-transformer/
- 3. http://jalammar.github.io/illustrated-bert/
- 4. Hong-Yi Lee, Transformer, 2019, https://www.youtube.com/watch?v=ugWDIIOHtPA