LISTA DE EXERCÍCIOS

Lista 03

(Predicados e Quantificadores)

Leitura necessária:

- Matemática Discreta e Suas Aplicações, 6ª Edição (Kenneth H. Rosen):
 - Capítulo 1.3: Predicados e Quantificadores
 - Capítulo 1.4: Quantificadores Agrupados
- Material suplementar:
 - Conjunto de slides: Lógica de Predicados

Revisão.

- 1. Responda formalmente a seguinte pergunta:
 - (a) Qual a diferença entre uma proposição e um predicado? Dê um exemplo de cada.

Exercícios.

2. (Rosen 7th ed. 1.4.8, adaptado) Traduza as expressões abaixo para linguagem natural, sabendo que:

D(x): "x está endividado"

T(x): "x vai trabalhar"

Domínio de x: conjunto de todas as pessoas.

Exemplo: uma forma de escrever $\forall x.\ D(x)$ seria: "Para toda pessoa, essa pessoa está endividada.".

- (a) $\forall x. (D(x) \to T(x))$
- (b) $\forall x. (D(x) \land T(x))$
- (c) $\exists x. (D(x) \rightarrow \neg T(x))$
- (d) $\exists x. (D(x) \lor T(x))$
- 3. (Rosen 1.3.15, adaptado) Determine o valor de verdade das sentenças abaixo, sabendo que o domínio das variáveis consiste nos números inteiros.
 - (a) $\forall n. \ n^3 \ge 0$
 - (b) $\exists n. \ n \cdot n = 3 \cdot n$
 - (c) $\forall n. \ n^2 > 0$
 - (d) $\exists n. \frac{n}{2} > n$
- 4. (Rosen 1.3.27, adaptado) Traduza cada uma das afirmações abaixo em expressões lógicas de 3 maneiras diferentes, variando o domínio e utilizando predicados com uma e duas variáveis.
 - (a) Um amigo seu dirige bem.
 - (b) Nenhum amigo seu tem carteira de motorista.
- 5. (Rosen 1.3.51) Mostre que $\exists x. \ P(x) \land \exists x. \ Q(x) \in \exists x. \ (P(x) \land Q(x))$ não são logicamente equivalentes.
- 6. (Rosen 1.3.61) Considere P(x), Q(x), R(x) e S(x) como as proposições "x é um bebê", "x é lógico", "x é capaz de controlar um crocodilo" e "x é desprezível", respectivamente. Suponha que o domínio sejam todas as pessoas. Expresse cada uma das proposições abaixo usando quantificadores, conectivos lógicos e P(x), Q(x), R(x) e S(x).

- (a) Bebês não são lógicos.
- (b) Ninguém é desprezível se pode controlar um crocodilo.
- (c) Pessoas que não são lógicas são desprezíveis.
- (d) Bebês não podem controlar crocodilos.
- (e) O item (d) resulta de (a), (b) e (c)? Se não, existe alguma conclusão correta?
- 7. (Rosen 1.4.1, adaptado) Transcreva as proposições abaixo para o português (ou seja, escreva usando linguagem natural), em que o domínio para cada variável consista nos números reais.
 - (a) $\forall x. \exists y. (x < y)$
 - (b) $\forall x. \ \forall y. \ (((x \ge 0) \land (y \ge 0) \rightarrow (x \cdot y \ge 0))$
 - (c) $\forall x. \ \forall y. \ \exists z. \ (x \cdot y = z)$
 - (d) $\forall x. \exists y. (x+y=0)$
 - (e) $\forall x. \ \forall y. \ \forall z. \ (x \cdot (y+z) = x \cdot y + x \cdot z)$
- 8. (Rosen 1.4.10) Considere F(x,y) como a proposição "x pode enganar y", em que o domínio são todas as pessoas do mundo. Use quantificadores para expressar cada uma das proposições abaixo.
 - (a) Todos podem enganar Fred.
 - (b) Evelyn pode enganar a todos.
 - (c) Todos podem enganar alguém.
 - (d) Não há ninguém que possa enganar a todos.
 - (e) Todos podem ser enganados por alguém.
 - (f) Ninguém pode enganar Fred e Jerry.
 - (g) Nancy pode enganar exatamente duas pessoas.
 - (h) Há exatamente uma pessoa a quem todos podem enganar.
 - (i) Ninguém pode enganar a si próprio.
 - (j) Há alguém que pode enganar exatamente uma pessoa além de si próprio.
- 9. (Rosen 1.4.11, adaptado) Seja S(x) o predicado " $x \notin um \ estudante$ ", F(x) o predicado " $x \notin um \ professor$ " e A(x,y) o predicado " $x \notin um \ pergunta \ a \ y$ ", onde o domínio das variáveis $x \in y$ consiste de todos as pessoas associadas à universidade. Utilize quantificadores para expressar cada uma das afirmações.
 - (a) Todos os estudantes fizeram uma pergunta ao Prof. Gross.
 - (b) Todas as pessoas que fizeram uma pergunta ao Prof. João são estudantes.
 - (c) Existe um estudante que não fez nenhuma pergunta a nenhum professor.
 - (d) Todos os professores fizeram uma pergunta ao Prof. Miller ou tiveram uma pergunta feita a si pelo Prof. Miller.
 - (e) Todo professor que já foi perguntado por algum estudante foi questionado pelo Prof. Marcos.
 - (f) Existe um professor que já fez uma pergunta a todo outro professor.
 - (g) Existe um estudante que nunca recebeu uma pergunta de um professor.
 - (h) Todos os estudantes que foram questionados por Lois fizeram uma pergunta ao Prof. Michael.
- 10. (Rosen 1.4.31, adaptado) Expresse a negação de cada afirmação de forma que todos sinais de negação precedam imediatamente os predicados.
 - (a) $\forall x. \exists y. \forall z. T(x, y, z)$
 - (b) $\forall x. \exists y. P(x,y) \lor \forall x. \forall y. Q(x,y)$
 - (c) $\forall x. \exists y. (P(x,y) \land \exists z. R(x,y,z))$
 - (d) $\forall x. \exists y. (P(x,y) \leftrightarrow Q(x,y))$
- 11. (Rosen 1.4.42) Use quantificadores para expressar as propriedades distributivas para a multiplicação sobre a adição de números em \mathbb{R} .
- 12. Argumente se a proposição "O número de unicórnios na Terra é ímpar" é verdadeira ou falsa. (Dicas: pesquise sobre a **Lei do Terceiro Excluído** e veja se a declaração a respeita. Converter a proposição para uma expressão lógica quantificada pode ajudar.)