Comportamento di sistemi dinamici tridimensionali in presenza di orbite omocline

Federico Fattorini

Università di Pisa

12 Giugno, 2023

Introduzione

Orbita omoclina

Un'orbita omoclina è una traiettoria del sistema dinamico che unisce un punto di tipo sella a se stesso. Formalmente, dato uno stato stazionario x_s , una traiettoria x(t) è un'orbita omoclina se $x(t) \longrightarrow x_s$ per $t \longrightarrow \pm \infty$ Considerando il caso tridimensionale, si hanno due categorie principali di punto sella, in base agli autovalori associati al campo linearizzato:

- Fuoco-sella $\lambda_{1/2} = \rho \pm i\omega$, con $\rho < 0$ e $\lambda_3 > 0$
- ▶ Sella $\lambda_1, \lambda_2, \lambda_3$ reali con $\lambda_1 < 0, \lambda_2 < 0$ e $\lambda_3 > 0$

L'obbiettivo sarà quello di studiare la struttura delle orbite in prossimità delle orbite omocline di un punto sella.

Punti iperbolici in esame

Figura: a) Fuoco-sella; b) sella

Tecnica generale

Si consideri un sistema dinamico 3D autonomo e $\mathcal{C}^r(r \geq 2)$, avente un punto fisso iperbolico nell'origine, con un manifold 2D stabile e uno 1D instabile tali che è presente un'orbita omoclina che connette il punto a se stesso.

La tecnica utilizzata consiste nel definire una superficie secante al campo vettoriale in prossimità dell'orbita omoclina, e nel costruire, tramite il flusso del campo vettoriale, una mappa di Poincaré da tale superficie in se stessa.

Tecnica generale

Costruzione della mappa

Si considerano i rettangoli Π_0 e Π_1 secanti l'orbita omoclina e considerati sufficientemente vicini all'origine, rappresentati in figura. Si definisce la mappa $P \equiv P_1 \circ P_0 : \Pi_0 \longrightarrow \Pi_0$, con $P_0 : \Pi_0 \longrightarrow \Pi_1$ e $P_1 : \Pi_1 \longrightarrow \Pi_0$

Tecnica generale

- 1. Π_0 e Π_1 vengono scelti in base al sistema, e in modo da rispecchiare la geometria dello spazio delle fasi
- 2. Se Π_0 e Π_1 sono presi abbastanza vicini all'origine, la mappa P_0 viene costruita, in prima approssimazione, a partire dal campo linearizzato attorno al punto fisso
- 3. Considerando $p_0 = \mathcal{W}^u(0) \cap \Pi_0$ e $p_1 = \mathcal{W}^u(0) \cap \Pi_1$, e assumendo che l'orbita omoclina sia confinata in lontananza da altri stati stazionari, il tempo di volo da p_0 a p_1 è finito. Per Π_0 piccolo a sufficienza, il flusso mappa Π_1 in Π_0 , e quindi P_1 è ben definita:

$$P_1(h) = p_0 + DP_1(p_1)h + \mathcal{O}(|h|^2) \simeq p_0 + DP_1(p_1)h$$

con h coordinata in Π_1 centrata in p_1 e Π_1 piccolo a sufficienza

4. Si costruisce $P = P_1 \circ P_0$

Orbita omoclina per un punto sella con autovalori reali

Si consideri il sistema della forma:

$$\dot{x} = \lambda_1 x + f_1(x, y, z, \mu),$$

$$\dot{y} = \lambda_2 y + f_2(x, y, z, \mu),$$

$$\dot{z} = \lambda_3 z + f_3(x, y, z, \mu),$$

con $(x, y, z, \mu) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}$, $f_i \in C^2$ non lineari in x,y e z e t.c. $f_i(0, 0, 0, 0) = 0$. Si assuma inoltre:

- $ightharpoonup \lambda_1 < 0, \ \lambda_2 < 0 \ (\lambda_2 > \lambda_1) \ e \ \lambda_3 > 0$
- Per $\mu=0$ il sistema possiede un'orbita omoclina Γ che connette (0,0,0) a se stesso, e tale orbita si rompe per $\mu>0$ e $\mu<0$

Sistema in esame

Figura: Orbita omoclina in prossimità del punto sella e rottura di questa per $\mu>0$ e $\mu<0$

Scelta delle superfici e tempo di volo

Come superfici per il calcolo della mappa di poincarè si scelgono ($\epsilon > 0$):

$$\Pi_0 = \{(x, y, z) \in \mathbb{R}^3 : |x| \le \epsilon, y = \epsilon, 0 < z \le \epsilon\}$$

$$\Pi_1 = \{(x, y, z) \in \mathbb{R}^3 : |x| \le \epsilon, y \le \epsilon, z = \epsilon\}$$

Il flusso linearizzato in un intorno dell'origine è:

$$x(t) = x_0 e^{\lambda_1 t}, y(t) = y_0 e^{\lambda_2 t}, z(t) = z_0 e^{\lambda_3 t}$$

Da cui, il tempo di volo da Π_0 a Π_1 $(\tau: z(\tau) = \epsilon)$ è:

$$\tau = \frac{1}{\lambda_3} log(\frac{\epsilon}{z_0})$$

Mappe P_0 e P_1

Quindi, la mappa di Poicaré P_0 sarà:

$$\begin{pmatrix} x \\ \epsilon \\ z \end{pmatrix} \longrightarrow \begin{pmatrix} \left(\frac{\epsilon}{z}\right)^{\frac{\lambda_1}{\lambda_3}} x \\ \left(\frac{\epsilon}{z}\right)^{\frac{\lambda_2}{\lambda_3}} \epsilon \\ \epsilon \end{pmatrix}$$

Al contrario, in base a quanto detto sopra, si ha per P_1 :

$$\begin{pmatrix} x \\ y \\ \epsilon \end{pmatrix} \longrightarrow \begin{pmatrix} 0 \\ \epsilon \\ 0 \end{pmatrix} + \begin{pmatrix} a & b & 0 \\ 0 & 0 & 0 \\ c & d & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ 0 \end{pmatrix} + \begin{pmatrix} e\mu \\ 0 \\ \mu \end{pmatrix}$$

Dove a, b, c, d ed e sono costanti.

Mappa $P = P_1 \circ P_0$

Infine, componendo le due mappe si ha la mappa di Poicaré totale:

$$\begin{pmatrix} x \\ z \end{pmatrix} \longrightarrow \begin{pmatrix} a(\frac{\epsilon}{z})^{\frac{\lambda_1}{\lambda_3}} x + b(\epsilon \frac{\epsilon}{z})^{\frac{\lambda_2}{\lambda_3}} + e\mu \\ c(\frac{\epsilon}{z})^{\frac{\lambda_1}{\lambda_3}} x + d(\epsilon \frac{\epsilon}{z})^{\frac{\lambda_2}{\lambda_3}} + \mu \end{pmatrix}$$

Tale mappa è valida solo per ϵ piccoli, in modo da linearizzare il flusso per il calcolo di P_0 , e per x, z piccoli, in modo da approssimare P_1 con una mappa affine.

Punti fissi

I punti fissi della mappa P corrisponderanno alle orbite periodiche del sistema di interesse. Per semplicità, definiamo:

$$A = a\epsilon^{\frac{\lambda_1}{\lambda_3}}, B = b\epsilon^{1+\frac{\lambda_2}{\lambda_3}}, C = c\epsilon^{\frac{\lambda_1}{\lambda_3}}, D = d\epsilon^{1+\frac{\lambda_2}{\lambda_3}}$$

Risolvendo il sistema per ottenere i punti fissi (e prendendo z sufficientemente piccolo), si ha:

$$z - \mu \simeq CBz^{rac{|\lambda_1 + \lambda_2|}{\lambda_3}} + Ce\mu z^{rac{|\lambda_1|}{\lambda_3}} + Dz^{rac{|\lambda_2|}{\lambda_3}} \equiv G(z)$$

Tale equazione può essere risolta graficamente, e assumendo P_1 invertibile $(ad - bc \neq 0)$ si hanno 4 casi al variare dei parametri:

•
$$\frac{dG}{dz}(z=0) = \infty$$
 se $|\lambda_1| < \lambda_3$ o $|\lambda_2| < \lambda_3$

$$ightharpoonup \frac{dG}{dz}(z=0)=0$$
 se $|\lambda_1|>\lambda_3$ e $|\lambda_2|>\lambda_3$

Caso 1: derivata nulla

Figura: Soluzioni grafiche dell'equazione per i punti fissi: in entrambi i casi, per $\mu>0$ un'orbita periodica si crea a partire dall'orbita omoclina

Caso 2: derivata divergente

Figura: Soluzioni grafiche dell'equazione per i punti fissi: per $\mu>0$ e G(z) negativa un'orbita periodica si crea a partire dall'orbita omoclina. Nel caso di G(z) positiva, accade lo stesso per $\mu<0$

Effetti dovuti al comportamento globale

Si consideri un tubo τ da Π_0 a Π_1 e contenente Γ . $\mathcal{R} = \tau \cap \mathcal{W}^s(0)$ è un nastro bidimensionale; se si uniscono senza torcere \mathcal{R} le due estremità, si hanno due situazioni:

- $\mathcal{W}^s(0)$ subisce un numero pari di torsioni in τ : una volta unite le estremità, \mathcal{R} è omomorfo ad un cilindro
- $\mathcal{W}^s(0)$ subisce un numero dispari di torsioni in τ : una volta unite le estremità, \mathcal{R} è omomorfo ad un nastro di Mobius

Effetti dovuti al comportamento globale

Effetti della mappa P_0 su un rettangolo in Π_0

• Una qualsiasi segmento a z costante viene mappato in un segmento in Π_1 da P_0 , ma viene contratto :

$$y' = \epsilon \left(\frac{\epsilon}{z}\right)^{\frac{\lambda_2}{\lambda_3}}; \quad \frac{x'}{x} = \left(\frac{\epsilon}{z}\right)^{\frac{\lambda_1}{\lambda_3}} \longrightarrow 0 \quad \text{se} \quad z \longrightarrow 0$$

▶ Una qualsiasi segmento a x costante viene contratto da P_0 se $-\lambda_2 > \lambda_3$ per $z \longrightarrow 0$, mentre si espande se $-\lambda_2 < \lambda_3$:

$$\frac{y'}{z} = \epsilon^{1 + \frac{\lambda_2}{\lambda_3}} z^{-\frac{\lambda_2}{\lambda_3} - 1}$$

Effetti dovuti al comportamento globale

Effetti della mappa P₁

 P_1 mappa $\Pi_0(\mathcal{D})$ lungo Γ, in modo che la "punta" di $P_0(\mathcal{D})$ rimanga nei pressi di Γ \cap Π_0 :

- Se \mathcal{R} è omomorfo ad un cilindro, $P_0(\mathcal{D})$ si ribalta un numero pari di volte e l'immagine in Π_0 starà sopra $\mathcal{W}^s(0)$
- Se \mathcal{R} è omomorfo ad ud un nastro di mobius, $P_0(\mathcal{D})$ si ribalta un numero dispari di volte e l'immagine in Π_0 starà sotto $\mathcal{W}^s(0)$

Effetti del comportamento globale

Classificazione dei 4 casi

Tornando all'equazione per i punti fissi:

$$z = CBz^{\frac{|\lambda_1 + \lambda_2|}{\lambda_3}} + Ce\mu z^{\frac{|\lambda_1|}{\lambda_3}} + Dz^{\frac{|\lambda_2|}{\lambda_3}} + \mu$$

L'espressione a destra determinerà il segno della componente z del primo ritorno di un punto in Π_0 . In base a quanto detto sopra, considerando $\mu=0$, si ha che:

- ightharpoonup Se \mathcal{R} è omomorfo ad un cilindro, il primo ritorno sarà positivo
- ightharpoonup Se $\mathcal R$ è omomorfo ad un nastro di Mobius, il primo ritorno sarà negativo

Si possono quindi classificare i 4 casi elencati in precedenza.

Effetti del comportamento globale

Classificazione dei 4 casi

Figura: Classificazione dei 4 casi: sopra derivata nulla, sotto derivata divergente

Stabilità delle orbite

La stabilità delle orbite periodiche può essere valutata a partire dagli autovalori della jacobiana della mappa di Poincarè calcolata nei punti fissi (lasciando la dipendenza da z). Omettendo i calcoli, si ottiene:

- Se $|\lambda_1| > \lambda_3$ e $|\lambda_2| > \lambda_3$, entrambi gli autovalori possono diventare piccoli a piacere, per z piccoli
- ▶ Se $|\lambda_1 + \lambda_2| > \lambda_3$ e $|\lambda_1| < \lambda_3$ o $|\lambda_2| < \lambda_3$, un autovalore può diventare grande a piacere, e l'altro piccolo a piacere, sempre per z piccoli
- Se $|\lambda_1 + \lambda_2| < \lambda_3$ entrambi possono diventare grandi a piacere, o si può presentare la situazione del caso sopra

Stabilità delle orbite

Conclusioni

Per $\mu \neq 0$ e sufficientemente piccolo, l'orbita omoclina biforca in un'orbita periodica. Tale orbita sarà:

- ▶ Un pozzo se $|\lambda_1| > \lambda_3$ e $|\lambda_2| > \lambda_3$
- ▶ Una sella se $|\lambda_1 + \lambda_2| > \lambda_3$, $|\lambda_1| < \lambda_3$ e/o $|\lambda_2| < \lambda_3$
- ▶ Una sorgente o un pozzo se $|\lambda_1 + \lambda_2| < \lambda_3$

Sistema con due orbite omocline

Si può estendere la discussione al caso in cui il sistema dinamico possiede due orbite omocline Γ_r e Γ_l per $\mu=0$, con le due orbite che appartengono a due rami separati del manifold instabile di (0,0,0)

Sistema con due orbite omocline

Diversi comportamenti globali delle due orbite

Figura: Sopra: \mathcal{R}_r e \mathcal{R}_l omomorfi a cilindri.

Sotto: \mathcal{R}_r e \mathcal{R}_l omomorfi a nastri di Mobius. Nel mezzo: caso intermedio.

Caratterizzazione del sistema

Per semplicità, prendendo come sistema dinamico quello considerato sopra (in particolare, il caso dei due cilindri), si aggiungono le seguenti assunzioni:

- $0 < -\lambda_2 < \lambda_3 < -\lambda_1, \ d \neq 0$
- Il sistema è invariante per la rotazione di π attorno all'asse y $(x,y,z) \longrightarrow (-x,y,-z)$, e le orbite omocline si rompono per $\mu \neq 0$

Esplosione omoclina

La nuova mappa P sarà definita P: $\Pi_0^r \cup \Pi_0^l \longrightarrow \Pi_0^r \cup \Pi_0^l$ (gli apici r/l indica il ramo considerato), e sarà composta da $P^r : \Pi_0^r \longrightarrow \Pi_0^r \cup \Pi_0^l$ e $P^l : \Pi_0^r \longrightarrow \Pi_0^r \cup \Pi_0^l$. Per simmetria $P_l(x,z;\mu) = -P_r(-x,-z;\mu)$

Teorema

Esiste un $\mu_0 < 0$ tale che, per $\mu_0 < \mu < 0$, P possiede un insieme di Cantor invariante sul quale è topologicamente coniugata ad un Bernoulli shift a due simboli.

Il teorema afferma quindi che, mentre per $\mu \geq 0$ il sistema non possiede caratteristiche particolari, per $\mu < 0$ il comportamento è di tipo caotico. Questo tipo di biforcazione (globale) viene definita **"Esplosione omoclina"**.

Comportamento caotico

Figura: Analogia della mappa di Poincaré del sistema dinamico con la mappa a ferro di cavallo per $\mu < 0$

Bibliografia

[1] Stephen Wiggins e Stephen Wiggins. Introduction to applied nonlinear dynamics and chaos. Springer, 2003.

