МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ВЯТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ И ТЕЛЕКОММУНИКАЦИЙ КАФЕДРА ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНФОРМАТИКИ

ОТЧЕТ ПО ДИСЦИПЛИНЕ «Системы искуственного интеллекта и принятия решений» ПО ЛАБОРАТОРНОЙ РАБОТЕ №4-5

 Выполнил студент группы ПМ-41
 Кислицын И.К.

 Проверил доцент, к.т.н. кафедры ЭВМ
 Ростовцев В.С.

Целью выполнения лабораторной работы является изучение алгоритма обратного распространения ошибки в процессе обучения нейронной сети.

Вариант 5, функция $Y = X1 * X2 + X3^2$. Интервалы переменных [0; 5].

1. Влияние нормализации

Рассмотрим следующую нейронную сеть:

Номер слоя	Число	Активационн	Крутизна	Смещение	Bec
	нейронов	ая функция	функции		
1й слой	5	сигмоид	0,5	1	1
2й слой	2	сигмоид	0,5	1	1

Скорость обучения 0.2, циклов обучения 5000. Результаты с разными видами нормализации:

Нормализация	Средняя ошибка	
Без нормализации	34,99	
С нормализацией [0;1]	2,23	
С нормализацией [-0,5;0,5]	12,23	
С нормализацией [-1;1]	12,24	

Видно, что нормализация [0; 1] даёт наименьшую среднюю ошибку. Далее исспользуется только такая.

2. Влияние метода выбора данных для обучения

Метод	Средняя ошибка
Случайный	2,23
Последовательный	2,72

Видно, что при случайном выборе средняя ошибка ниже. Далее используется только такой метод.

3. Оценка влияния структуры нейросети на сруднюю ошибку

3.1. Нейросеть 1

Структура сети: 3 - 5 - 2 - 1

Число входов: 3 Число выходов: 1

Слой------Сигмоида-------Крутизна---Смещение----Момент-----Вес

--1-----0,5------1,0-------1,0 --2-----0,5------1,0--------1,0 --выход---сигмоид-------0,5------1,0------1,0------1,0

Скорость обучения: 0,2 Нормализация: [0;1] Циклов обучения: 5000

Максимальная ошибка: 14.91185800 Минимальная ошибка: 0.00051500 Средняя ошибка: 2.72205836

Среднеквадратичная ошибка: 9194.33091658

3.2 Нейросеть 2

Структура сети: 3 - 10 - 1

Число входов: 3 Число выходов: 1

Слой Сигмоида Крутизна Смещение Момент Вес1гиперб. тангенс0,60,31,2выходсигмоид				
Скорость обучения: 0,2 Нормализация: [0;1] Циклов обучения: 5000				
Максимальная ошибка: 12.42181200 Минимальная ошибка: 0.00276600 Средняя ошибка: 2.18356589				
Среднеквадратичная ошибка: 5525.12743473				
3.3 Нейросеть 3 Структура сети: 3 - 10 - 2 - 7 - 1 Число входов: 3 Число выходов: 1				
Слой Сигмоида КрутизнаСмещение Момент Вес1				
выходсигмоид0,51,01,0 Скорость обучения: 0,2 Нормализация: [0;1]				
Циклов обучения: 5000 Максимальная ошибка: 6.01724200 Минимальная ошибка: 0.00235000 Средняя ошибка: 1.27196359				
Среднеквадратичная ошибка: 1664.15988027				
3.4 Нейросеть 4 Структура сети: 3 - 4 - 1 Число входов: 3				
Число выходов: 1 СлойСигмоида				
Скорость обучения: 0,2 Нормализация: [0;1] Циклов обучения: 5000				
Максимальная ошибка: 14.43097500 Минимальная ошибка: 0.00068600 Средняя ошибка: 2.52156086				
Среднеквадратичная ошибка: 7950.58497531				
3.5 Нейросеть 5 Структура сети: 3 - 7 - 5 - 1				
Число входов: 3 Число выходов: 1 СлойСигмоидаКрутизнаСмещениеМоментВес				
11,01,01,01,01,0				
Скорость обучения: 0,32 Нормализация: [0;1]				
Циклов обучения: 5000 Максимальная ошибка: 6.55621500 Минимальная ошибка: 0.00184800				

Средняя ошибка: 1.34539893

Среднеквадратичная ошибка: 1868.01426631

3.6 Нейросеть 6

Структура сети: 3 - 6 - 4 - 1

Число входов: 3 Число выходов: 1

Слой------Сигмоида-------Крутизна---Смещение---Момент-----Вес

--выход---сигмоид-------0,5------1,0------1,0

Скорость обучения: 0,32 Нормализация: [0;1] Циклов обучения: 5000

Максимальная ошибка: 5.64148700 Минимальная ошибка: 0.00033300 Средняя ошибка: 1.22548452

Среднеквадратичная ошибка: 1550.99707022

Наилучшей оказалась нейросеть 6, показавшая наименьшую среднюю ошибку.

Наилучшей активационной функицией оказался рациональный сигмоид.

Сети с большим количеством слоёв (4 и больше) в среднем отработали хуже, чем грамотно подобранные сети меньших размерностей.

Далее рассматривается сеть с конфигурацией как у нейросети 6.

4. Влияние парамеров крутизны.

Параметр крутизны выходного слоя	Средняя ошибка
0,1	1.26
0,5	1,21
0,9	1,36

Слишком большой и слишком маленький параметр крутизны, как видно, плохо влияет на качество обучения, при бём большой влияет хуже.

5. Влияние скорости обучения

Скорость обучения	Средняя ошибка	
0,1	1.50	
0,3	1,21	
0,5	1,78	

6.Влияние момента

Момент	Средняя ошибка	
0	1,21	
0,2	2,98	
0,4	34,52	
0,1	1,34	

Видно, что большой момент негативно влияет на качество обучения.

Начальные значения весов синапсов

Нейрон[1][1]

w[1, 1, 1] = -0.582

w[1, 1, 2] = 0.036

w[1, 1, 3] = 0.3

Вес смещения:

w[1, 1, 4] = 1

Нейрон[1][2]

w[1, 2, 1] = -0.44

w[1, 2, 2] = -0.956

w[1, 2, 3] = -0.476

Вес смещения:

w[1, 2, 4] = 1

Нейрон[1][3]

w[1, 3, 1] = -0.736

w[1, 3, 2] = 0.2

w[1, 3, 3] = -0.208

Вес смещения:

w[1, 3, 4] = 1

Нейрон[1][4]

w[1, 4, 1] = -0.878

w[1, 4, 2] = -0.13

w[1, 4, 3] = 0.382

Вес смещения:

w[1, 4, 4] = 1

Нейрон[1][5]

w[1, 5, 1] = 0.856

w[1, 5, 2] = 0.876

w[1, 5, 3] = -0.556

Вес смещения:

w[1, 5, 4] = 1

Нейрон[1][6]

w[1, 6, 1] = -0.172

w[1, 6, 2] = -0.292

w[1, 6, 3] = -0.882

Вес смещения:

w[1, 6, 4] = 1

Нейрон[2][1]

w[2, 1, 1] = -0.176

w[2, 1, 2] = 0.164

w[2, 1, 3] = -0.672

w[2, 1, 4] = -0.918

w[2, 1, 5] = 0.15

w[2, 1, 6] = -0.462

Вес смещения:

w[2, 1, 7] = 1

Нейрон[2][2]

$$w[2, 2, 1] = 0.272$$

$$w[2, 2, 2] = -0.996$$

$$w[2, 2, 3] = 0.578$$

$$w[2, 2, 4] = 0.138$$

$$w[2, 2, 5] = -0.912$$

$$w[2, 2, 6] = -0.686$$

Вес смещения:

$$w[2, 2, 7] = 1$$

Нейрон[2][3]

$$w[2, 3, 1] = 0.222$$

$$w[2, 3, 2] = 0.32$$

$$w[2, 3, 3] = -0.26$$

$$w[2, 3, 4] = 0.092$$

$$w[2, 3, 5] = 0.154$$

$$w[2, 3, 6] = 0.362$$

Вес смещения:

$$w[2, 3, 7] = 1$$

Нейрон[2][4]

$$w[2, 4, 1] = 0,1$$

$$w[2, 4, 2] = -0.148$$

$$w[2, 4, 3] = -0.56$$

$$w[2, 4, 4] = 0.86$$

$$w[2, 4, 5] = -0.228$$

$$w[2, 4, 6] = 0,442$$

Вес смещения:

$$w[2, 4, 7] = 1$$

Нейрон[3][1]

$$w[3, 1, 1] = -0.82$$

$$w[3, 1, 2] = 0.24$$

$$w[3, 1, 3] = -0.87$$

$$w[3, 1, 4] = -0.356$$

Вес смещения:

$$w[3, 1, 5] = 1$$

Выбран обучающий пример

$$x1 = 0.09$$

$$x^2 = 0$$

$$x3 = 0.05$$

$$y = 0.125$$

Прямая волна

Нейрон[1][1]

$$A\kappa coh = 0,723646066$$

Нейрон[1][2]

$$A\kappa coh = 0.7184123619$$

Нейрон[1][3]

Взвешенная сумма = 0,92336 $A\kappa coh = 0.7157262339$ Нейрон[1][4] Взвешенная сумма = 0,94008 Aксон = 0,7191158168 Нейрон[1][5] Взвешенная сумма = 1,04924 $A\kappa coh = 0.7406289316$ Нейрон[1][6] Взвешенная сумма = 0,94042 $A\kappa coh = 0,7191844877$ Нейрон[2][1] Взвешенная сумма = 0,6281726772 $A\kappa coh = 0,6520750069$ Нейрон[2][2] Взвешенная сумма = 0,8254066192 $A\kappa coh = 0,6953828085$ Нейрон[2][3] Взвешенная сумма = 2,645012857 $A\kappa coh = 0.9337029445$ Нейрон[2][4] Взвешенная сумма = 2,332688636 Aксон = 0,9115483559 Нейрон[3][1] Взвешенная сумма = -0,5046424081 Aксон = 0.4372522544Обратная волна Подсчет локальной ошибки нейронов на выходе нейронной сети... Желаемый сигнал на выходе: 0.125 Прогнозируемый сигнал на выходе нейронной сети: 0,4372522544 Нейрон[3][1] Локальная ошибка = 0,03841681959 Подсчет локальной ошибки нейронов в скрытых слоях нейронной сети...

Нейрон[2][1] Локальная ошибка = -0,007146912127

Нейрон[2][2] Локальная ошибка = 0,00195303942

Нейрон[2][3] Локальная ошибка = -0.002068919673 Нейрон[2][4]

Локальная ошибка = -0,00110269912

Нейрон[1][1]

Локальная ошибка = 0,0002438812173

Нейрон[1][2]

Локальная ошибка = -0.0007315380199

Нейрон[1][3]

Локальная ошибка = 0.001441939069

Нейрон[1][4]

Локальная ошибка = 0,001149661202

Нейрон[1][5]

Локальная ошибка = -0,0005610035183

Нейрон[1][6]

Локальная ошибка = 0,0001465704135

Коррекция весов синапсов

$$w[1, 1, 1] = -0.5820065848$$

$$w[1, 1, 2] = 0.036$$

$$w[1, 1, 3] = 0.2999963418$$

Вес смещения:

$$w[1, 1, 4] = 0,9999268356$$

$$w[1, 2, 1] = -0.4399802485$$

$$w[1, 2, 2] = -0.956$$

$$w[1, 2, 3] = -0.4759890269$$

Вес смещения:

$$w[1, 2, 4] = 1,000219461$$

$$w[1, 3, 1] = -0.7360389324$$

$$w[1, 3, 2] = 0.2$$

$$w[1, 3, 3] = -0.2080216291$$

Вес смещения:

$$w[1, 3, 4] = 0.9995674183$$

$$w[1, 4, 1] = -0.8780310409$$

$$w[1, 4, 2] = -0.13$$

$$w[1, 4, 3] = 0.3819827551$$

Вес смещения:

$$w[1, 4, 4] = 0.9996551016$$

$$w[1, 5, 1] = 0.8560151471$$

$$w[1, 5, 2] = 0.876$$

$$w[1, 5, 3] = -0,5559915849$$

Вес смещения:

$$w[1, 5, 4] = 1,000168301$$

$$w[1, 6, 1] = -0.1720039574$$

$$w[1, 6, 2] = -0.292$$

```
w[1, 6, 3] = -0.8820021986
Вес смещения:
w[1, 6, 4] = 0.9999560289
w[2, 1, 1] = -0.1744484495
w[2, 1, 2] = 0.165540329
w[2, 1, 3] = -0.6704654302
w[2, 1, 4] = -0.9164581627
w[2, 1, 5] = 0.151587963
w[2, 1, 6] = -0.4604580155
Вес смещения:
w[2, 1, 7] = 1,004288147
w[2, 2, 1] = 0.2715760072
w[2, 2, 2] = -0.9964209263
w[2, 2, 3] = 0.5775806475
w[2, 2, 4] = 0.1375786615
w[2, 2, 5] = -0.9124339432
w[2, 2, 6] = -0.6864213787
Вес смещения:
w[2, 2, 7] = 0.9988281763
w[2, 3, 1] = 0.2224491497
w[2, 3, 2] = 0.3204459012
w[2, 3, 3] = -0.259555766
w[2, 3, 4] = 0.09244633786
w[2, 3, 5] = 0.1544596905
w[2, 3, 6] = 0.3624463805
Вес смещения:
w[2, 3, 7] = 1,001241352
w[2, 4, 1] = 0,1002393892
w[2, 4, 2] = -0.1477623422
w[2, 4, 3] = -0,5597632308
w[2, 4, 4] = 0.8602378905
w[2, 4, 5] = -0.2277549927
w[2, 4, 6] = 0,4422379132
Вес смещения:
w[2, 4, 7] = 1,000661619
w[3, 1, 1] = -0.8275151944
w[3, 1, 2] = 0.2319856812
w[3, 1, 3] = -0.8807609693
w[3, 1, 4] = -0.3665056366
Вес смещения:
w[3, 1, 5] = 0.9884749541
```

Расчёт вручную

```
С помощью метаматического пакета Scilab. Код:
```

```
x = [0.09 \ 0 \ 0.05];

y = 0.125;

function [res]=f(x)

n = size(x);
```

```
n = n(2);
     res = [];
     for i = 1:n
         res(i) = 1/(1 + exp(-x(i)));
     end
     res = res';
endfunction
function [res]=f_{out}(x)
    n = size(x);
    n = n(2);
     res = [];
     for i = 1:n
         res(i) = 1/(1 + exp(-x(i)*0.5));
    res = res';
endfunction
w1 = [
-0.582 0.036 0.3
-0.44 -0.956 -0.476
-0.736 0.2 -0.208
-0.878 -0.13 0.382
0.856 0.876 -0.556
-0.172 -0.292 -0.882
]';
w2 = [
-0.176 0.164 -0.672 -0.918 0.15 -0.462
0.272 -0.996 0.578 0.138 -0.912 -0.686
0.222 0.32 -0.26 0.092 0.154 0.362
0.1 -0.148 -0.56 0.86 -0.228 0.442
1':
w3 = [-0.82 \ 0.24 \ -0.87 \ -0.356]';
//проход вперёд
s1 = x * w1 + 1;
y1 = f(s1); //первый слой
s2 = y1 * w2 + 2;
y2 = f(s2);//второй слой
s3 = y2 * w3 + 1;
res y = f out(s3); // результат
function [res]=f diff(x)
    n = size(x);
    n = n(2);
     res = [];
     for i = 1:n
         res(i) = exp(x(i))/(1 + exp(-x(i)))^2;
     end
     res = res';
endfunction
dy = y - res_y; // ошибка выходного слоя
ds2 = dy * w3 .* f_diff(s3)'; //ошибка 2 слоя
ds1 = (ds2'.* f_diff(s2)) * w2';//ошибка 1 слоя
v1 = 0.7236461 \quad 0.7184124 \quad 0.7157262 \quad 0.7191158 \quad 0.7406289 \quad 0.7191845
y2 = 0.6520750 \quad 0.6953828 \quad 0.9337029 \quad 0.9115484
res \ y = 0.4372523
dy = 0.03841
ds2 = -0.0071445
                    0,0019523 -0,0020689 -0,0011026
ds3 = 0.0002438 -0.0007315 0.0014419 0.0011496 -0.0005610 0.0001465
```

Результаты совпали (с точностью до округления) с расчётами программы BackPropagate.

f(x) – активационная функция, рациональный сигмоид

$$f(x) = \frac{1}{1 + e^{-x}}$$

f diff(x) — её производная

$$f_{diff}(x) = f(x)' = \frac{e^x}{(1 + e^{-x})^2}$$

Локальная ошибка вычисляется по фрмуле

$$\gamma_j = y_j - t_j$$

для выходного слоя, для остальных по формуле

$$\gamma_{j} = \sum_{i=1}^{m} \gamma_{i} f _ diff(s_{j}) w_{ij}$$

Коррекция весов вычисляется по формуле

$$w_{ij}(t+1) = w_{ij}(t) - \alpha \gamma_i f _diff(s_i) y_i$$

Выводы

В ходе выполнения лабораторной работы были получены знания по выбору конфигурации и настройке нейросетей, подбору оптимальных параметров, был усвоен алгоритм обратного распространения ошибки.

В результате была выбрана оптимальная для решения заданной задачи нейронная сеть следующей конфигурации:

Были получены навыки по работе с нейрометямии в программе BackPropagate.