Détection d'événements à partir de capteurs sols – application au suivi de personnes fragiles

Soutenance de thèse

Ludovic Minvielle

Directeur: Nicolas Vayatis, Centre Borelli, ENS Paris-Saclay Co-encadrante: Mathilde Mougeot, Centre Borelli, ENS Paris-Saclay

Thèse industrielle entre l'ENS Paris-Saclay et Tarkett

Mercredi 15 Juillet 2020

Table of contents

1. Introduction

2. A tour of monitoring systems

Systems Processing

3. Step proposal network

Region proposal network Main architecture Signal embedding Step proposal network Results

4. Conclusion

Introduction

Context

- Elderly population is growing
- ► Higher levels of frailty globally
- Increasing demand for reliable monitoring devices
- ► Tarkett, French company with 12,500 employees, 13 industrial sites, sells 1.3 millions m² of flooring every day
- Floor in Motion: a floor-based sensor for elderly care
- Objective: providing tools for elderly monitoring in nursing homes
 - First aimed application: fall detection

Introduction

Motivation

- Processing and understanding time series
 - Proliferation of sensor-based systems
 - ► Redundancy, interpretability, external pertubations
- Real world application
 - Real-time processing in a limited system
 - Convenient hypotheses not granted

(a) Foot-attached accelerometer

(b) Tarkett's floor sensor

Systems

What makes a good monitoring system?

- coverage and occlusion
- intrusiveness
- signal quality / information
- robustness
- ease of installation / use
- scalability

Criteria	RCB carn	Depthcam	Westable	Acoustic	Radar Wit	Vibration	floor
Coverage/Occlusion Intrusiveness							
Signal quality / info							
Robustness			***	★☆☆	★☆☆	★☆☆	★★☆
Ease of instal. / use			★★☆	★★☆	★★☆	***	★☆☆
Scalability			***	★★☆	★☆☆	★★☆	***

*ذ*٢

Systems

What makes a good monitoring system?

- coverage and occlusion
- intrusiveness
- signal quality / information
- robustness
- ease of installation / use
- scalability

Signal acquisition			

Criteria	RCB carn	Depthcam	Westable	Acoustic	Radar Wifi	Vibration	floo ^t
Coverage/Occlusion	★☆☆	★☆☆					
Intrusiveness	★☆☆	★☆☆					
Signal quality / info	***	***					
Robustness	★★☆	***	***	★☆☆	★☆☆	★☆☆	★★☆
Ease of instal. / use	★☆☆	★☆☆	★★☆	★★☆	★★☆	***	★☆☆
Scalability	★☆☆	★☆☆	***	★★☆	★☆☆	★★☆	***

Systems

What makes a good monitoring system?

- coverage and occlusion
- intrusiveness
- signal quality / information
- robustness
- ▶ ease of installation / use
- scalability

	Signal acquisition			
Vision	Wearable			
RGB-Camera Omni-Camera Depth-Camera	Accelerometer Gyroscope Barometric pressure			

Criteria	RCB care	Depth carri	Weatable	Acoustic	Radar Wifi	Vibration	floor
Coverage/Occlusion	★☆☆	★☆☆	***				
Intrusiveness	★☆☆	★☆☆	★★☆				
Signal quality / info	***	***	★★☆				
Robustness	★★☆	***	***	★☆☆	★ ☆☆	★☆☆	★★☆
Ease of instal. / use	★☆☆	★ ☆☆	★★☆	★★☆	★★☆	***	★☆☆
Scalability	★☆☆	★☆☆	***	★★☆	★ ☆☆	★★☆	***

Systems

What makes a good monitoring system?

- coverage and occlusion
- intrusiveness
- signal quality / information
- robustness
- ease of installation / use
- scalability

Signal acquisition						
Vision	Wearable	Ambient				
RGB-Camera Omni-Camera Depth-Camera	Accelerometer Gyroscope Barometric pressure	Microphone Radar Wi-Fi Vibrational Pressure				

Criteria		~			Wifi		
	RCB carn	Depth cam	Weatable	Acoustic	Radar	Vibration	Floor
Coverage/Occlusion	★☆☆	★☆☆	***	★★☆	★ ☆☆	***	***
Intrusiveness	★☆☆	★☆☆	★★☆	★☆☆	★★☆	***	***
Signal quality / info	***	***	★★☆	★★☆	★☆☆	★★☆	★★☆
Robustness	★★☆	***	***	★☆☆	★☆☆	★☆☆	★★☆
Ease of instal. / use	★☆☆	★☆☆	★★☆	★★☆	★★☆	***	★☆☆
Scalability	★☆☆	★☆☆	***	★★☆	★☆☆	★★☆	***

Processing

How to process the inputs ?

•

Introduction

- ▶ Issue: one-dimensional signals for large areas
- ► Goal: Classify elderly from other individuals
 - Most signals are made of walks of staff individuals
- ▶ **Subtask**: Bring the model's attention over step-related signals
- A model to recognize steps?

Introduction

- ▶ **Issue**: one-dimensional signals for large areas
- Goal: Classify elderly from other individuals
 Most signals are made of walks of staff individuals
- ► **Subtask**: Bring the model's attention over step-related signals
- ► A model to recognize steps?

Figure: Healthy individual walking on the sensor.

- Signals are complex
- ► How to **localize** steps?
- ► This presentation: A step detector using convolutional neural network: Step Proposal Network

1. Introduction

2. A tour of monitoring systems

Systems Processing

3. Step proposal network Region proposal network

Main architecture Signal embedding Step proposal network Results

4. Conclusion

Region proposal network Object detection

Classification: What is the image class?

Region proposal network

Object detection

- Classification: What is the image class?
- ▶ Object detection: Where are the objects and what are they classes?

Region proposal network

Object detection

- Classification: What is the image class?
- ▶ Object detection: Where are the objects and what are they classes?
- How to efficiently localize objects?
- Proposal models [Hosang et al., 2016]
- ► Faster R-CNN [Ren et al., 2015]

Region proposal network Faster R-CNN

Main idea: proposals are generated by a CNN called Region Proposal Network

Figure: Region proposal network. Source: [Ren et al., 2015]

Region proposal network

- Main idea: proposals are generated by a CNN called Region Proposal Network
- A sliding window is passed: multiple anchors over each location (various sizes and scales)
- ► Two layers: Classification (Object / Not Object) and Regression (anchor coordinates)

Figure: Region proposal network. Source: [Ren et al., 2015]

1. Introduction

2. A tour of monitoring systems

Systems Processing

3. Step proposal network

Region proposal network

Main architecture

Signal embedding
Step proposal network
Results

4. Conclusion

Main architecture

- Directly inspired from RPN
- ► Simple architecture with three hidden layers, all convolutional
- Output: probability of having a step at a specific window location and size
 - Here 3 sizes and all discrete locations are considered

Figure: Architecture of SPN.

Main architecture

- Directly inspired from RPN
- ► Simple architecture with three hidden layers, all convolutional
- Output: probability of having a step at a specific window location and size
 - Here 3 sizes and all discrete locations are considered

Figure: Architecture of SPN.

- Use the convolutional representation to "boost" training
- First layer (Signal embedding) of SPN is trained separately using convolutional dictionary learning

1. Introduction

2. A tour of monitoring systems

Systems Processing

3. Step proposal network

Region proposal network
Main architecture

Signal embedding

Step proposal network Results

4. Conclusion

Convolutional dictionary learning

- ▶ s : data to be represented
- ► Objective : find M atoms \mathbf{d}_m and activation signals \mathbf{x}_m such that

$$\mathbf{s}pprox\sum_{m=1}^{M}\mathbf{x}_{m}*\mathbf{d}_{m}$$

* : convolution

Convolutional dictionary learning

- s : data to be represented
- ► Objective : find M atoms \mathbf{d}_m and activation signals \mathbf{x}_m such that

$$\mathbf{s} pprox \sum_{m=1}^{M} \mathbf{x}_m * \mathbf{d}_m$$

* : convolution

Figure: Convolutional dictionary learning.

Convolutional dictionary learning

- s : data to be represented
- ► Objective : find M atoms \mathbf{d}_m and activation signals \mathbf{x}_m such that

$$\mathbf{s} pprox \sum_{m=1}^{M} \mathbf{x}_m * \mathbf{d}_m$$

* : convolution

CDL general problem:

$$\underset{\mathbf{x}_{m},\mathbf{d}_{m}}{\operatorname{arg \, min}} \frac{1}{2} \left\| \sum_{m=1}^{M} \mathbf{x}_{m} * \mathbf{d}_{m} - \mathbf{s} \right\|_{2}^{2} + \lambda \sum_{m=1}^{M} \|\mathbf{x}_{m}\|_{1}$$
s.t. $\|\mathbf{d}_{m}\|_{2} \leq 1 \quad \forall m$.

Figure: Convolutional dictionary learning.

Learning step atoms

- Learning with Alternating Direction Method of Multipliers (ADMM)
 [Bristow et al., 2013]
- ▶ 3 atoms of length 0.7 second

Figure: Dictionary.

Learning step atoms

- Learning with Alternating Direction Method of Multipliers (ADMM)
 [Bristow et al., 2013]
- ▶ 3 atoms of length 0.7 second

reconstruction 200 -400 200 400 (a) Original signal and its reconstruction activation 2 500 -500 -1000 200 400 600 800 (b) Signal activations

Figure: Dictionary.

Learning step atoms

- Learning with Alternating Direction Method of Multipliers (ADMM)
 [Bristow et al., 2013]
- 3 atoms of length 0.7 second
- Use the following embedding:

$$\mathbf{S} \doteq \left(\mathbf{s} * \mathbf{d}_{\textit{m}}\right)_{1 \leq \textit{m} \leq 3}$$

Figure: Dictionary.

400

600

800

200

Learning step atoms

- Learning with Alternating Direction Method of Multipliers (ADMM)
 [Bristow et al., 2013]
- 3 atoms of length 0.7 second
- Use the following embedding:

$$\mathbf{S} \doteq \left(\mathbf{s} * \mathbf{d}_{\textit{m}}\right)_{1 \leq \textit{m} \leq 3}$$

Figure: Dictionary.

400

600

800

200

1. Introduction

2. A tour of monitoring systems

Systems Processing

3. Step proposal network

Region proposal network Main architecture Signal embedding Step proposal network

Results

4. Conclusion

Principle

- Objective of SPN: output boxes with largest Intersection over Union (IoU)
- ▶ IoU: $\mathbf{b_i}$ are labelled boxes, \hat{b} is an estimated box:

$$IoU(\hat{b}) \doteq \max_{j} \frac{|\mathbf{b_j} \cap \hat{b}|}{|\mathbf{b_j} \cup \hat{b}|}$$

Principle

- Objective of SPN: output boxes with largest Intersection over Union (IoU)
- ▶ IoU: $\mathbf{b_i}$ are labelled boxes, \hat{b} is an estimated box:

$$IoU(\hat{b}) \doteq \max_{j} \frac{|\mathbf{b_j} \cap \hat{b}|}{|\mathbf{b_j} \cup \hat{b}|}$$

Training

- Output: a matrix $\mathbf{W} \in \mathbb{R}^{T \times K}$
 - ► T: signal length
 - K: number of different box sizes
- ▶ $\mathbf{W}_{t,k}$: probability that the box b_t^k starting at time t and of size 0.4s, 0.5s, or 0.6s (for respectively k = 1, 2, or 3) has a large IoU score
- Positive boxes: $IoU(b_t^k) > \sqrt{0.7}$
- ▶ Negative boxes: $IoU(b_t^k) < \sqrt{0.3}$
- Other are not used for training

The loss function \mathcal{L} over a signal \mathbf{s} is defined as:

$$\mathcal{L}(\mathbf{s}, \mathbf{W}) = \sum_{t} \sum_{k \in [1, 2, 3]} \mathbb{1}_{\text{IoU}(b_t^k) > \sqrt{0.7}} \log(\mathbf{W}_{t, k}) + \mathbb{1}_{\text{IoU}(b_t^k) < \sqrt{0.3}} \log(1 - \mathbf{W}_{t, k}).$$

Data

- 43 signals recorded in a nursing home
- Manually labeled steps

Training

- SPN is trained using classical gradient descent
- ► Training time: < 5 minutes
- Inference (detection over a 10s signal):< 1 second
- Optimization details
 - ▶ learning rate of 10⁻³
 - ► learning rate decay (×0.9 every 10 epochs)
 - Nesterov momentum

Figure: SPN training and testing errors.

- Object detection use the mean Average Precision (mAP): area under the Precision-Recall curve
- ► **Without** embedding, mAP = 72,5%
- ▶ **With** embedding, mAP = 78,6%

- Object detection use the mean Average Precision (mAP): area under the Precision-Recall curve
- ► **Without** embedding, mAP = 72,5%
- ▶ **With** embedding, mAP = 78,6%

- Object detection use the mean Average Precision (mAP): area under the Precision-Recall curve
- ► **Without** embedding, mAP = 72,5%
- ▶ **With** embedding, mAP = 78,6%

- Object detection use the mean Average Precision (mAP): area under the Precision-Recall curve
- ► **Without** embedding, mAP = 72,5%
- ▶ **With** embedding, mAP = 78,6%

Conclusion

Conclusion

- ▶ SPN uses the convolutional representation to detect steps
- Allows to located steps in complex signals
- ► Training and inference are fast

Future work

- ► Add a regression layer on the step proposals
- ► Tests on step detection benchmarks data sets

Conclusion

Conclusion

- ► SPN uses the convolutional representation to detect steps
- ▶ Allows to located steps in complex signals
- ► Training and inference are fast

Future work

- Add a regression layer on the step proposals
- Tests on step detection benchmarks data sets

Thanks

Contact: minvielle@cmla.ens-cachan.fr

Reference: L. Minvielle and J. Audiffren. Nursenet: Monitoring elderly levels of activity with a piezoelectric floor. Sensors, 19(18), 2019 link

References

