

#HackTheBase Workshop

Environment monitoring with The Things Network, InfluxDB, and Grafana

Tomas Hrdlicka

hrdlicka@ucwlabs.com

Twitter: @Tomas_Hrdlicka

LinkedIn: https://www.linkedin.com/in/tomashrdlicka

IoT Monitoring (1/2)

- Let's build a system to monitor the environmental conditions such as temperature and humidity in a room.
- We will build a LoRa sensor node with DHT/BME280 sensor connected to The Things Network.
- To see graphs in Grafana, we will build a Node.js application (TTN Bridge) reading data from MQTT and storing them in the time series database InfluxDB.

IoT Monitoring (2/2)

LoRa Sensor Node

Adafruit Feather M0 as LoRa Sensor Node with DHT11 sensor

InfluxDB

- It is a time-series database which means that it is specially designed to store time-series data.
- Time-series is a set of values/measurements that are taken over a successive period of time. For eg. data collected by an IoT sensor.
- Time-series can have 0-many points. A point wherein can have the following elements:
 - Time (timestamp)
 - Measurement
 - Key-value field (at least one)
 - Key-value tags

Sensor Data Monitoring

TTN Application (1/5)

TTN Application (2/5)

TTN Application (3/5)

VICE OVERVIEW																	
Application ID	htb-	iot-m	onitor	ing-dh	nt												
Device ID																	
Activation Method	ABF																
Device EUI	<>	+	00 C1 FE 17 7E 87 7E 2			'E 2A											
Application EUI	<>	=	70 B3 D5 7E D0 02 1F			LF 18	(A)										
Device Address	<>	=	26 01 17 E8														
Network Session Key	<>	≒	ø	msb	{ 0x00	0×FB,	0xA7,	0xBC,	0x12,	0x16,	0×35,	0x12,	0x9C,	0x42,	0xEC,	0x48,	
App Session Key	<>	=	ø	msb	{ ØxEC	0x0A,	0x3C,	0x05,	0x9F,	0xD4,	0xDA,	0x68,	0xBE,	0xF4,	0xA4,	0xD7,	

TTN Application (4/5)

TTN Application (5/5)

Lora Sensor Node - DHT

- Source code
 - https://github.com/ucwlabs/iot-monitoring-ttn/blob/master/lora-senso r-node-dht/lora-sensor-node-dht.ino

```
lora-sensor-node-dht
28 #include <lmic.h>
29 #include <hal/hal.h>
30 #include "SPI.h"
31 #include "DHT.h"
32
33 #define DHTPIN 9
34 #define DHTTYPE DHT11
36 DHT dht(DHTPIN, DHTTYPE);
38 // LoRaWAN NwkSKey - Network session key
39 static const PROGMEM u1_t NWKSKEY[16] = { 0x00, 0xFB, 0xA7, 0xBC, 0x12, 0x16, 0x35, 0x12, 0x9C, 0x42, 0xEC, 0x48, 0xE1, 0x59, 0xB7, 0x7E };
41 // LoRaWAN AppSKey - Application session key
42 static const u1_t PROGMEM APPSKEY[16] = { 0xEC, 0x0A, 0x3C, 0x05, 0x9F, 0xD4, 0xDA, 0x6B, 0xF4, 0xA4, 0xD7, 0xA6, 0xFD, 0xB8, 0x46 };
44 // LoRaWAN end-device address (DevAddr)
45 static const u4_t DEVADDR = 0x260117E8; // <-- Change this address for every node!
47 // These callbacks are only used in over-the-air activation, so they are
48 // left empty here (we cannot leave them out completely unless
49 // DISABLE_JOIN is set in config.h, otherwise the linker will complain).
50 void os_getArtEui (u1_t* buf) { }
51 void os_getDevEui (u1_t* buf) { }
52 void os_getDevKey (u1_t* buf) { }
53
54 static osjob_t sendjob;
56 // Schedule TX every this many seconds (might become longer due to duty cycle limitations).
57 const unsigned TX_INTERVAL = 16;
59 // Pin mapping
60 const lmic_pinmap lmic_pins = {
61 .nss = 8,
62 .rxtx = LMIC_UNUSED_PIN,
63 .rst = 4,
    .dio = \{3, 6, 11\},
65 };
```


TTN & MQTT (1/2)

```
    $ mosquitto_sub -h eu.thethings.network -p 1883 \
        -u htb-iot-monitoring-dht \
        -P your_access_key \
        -t 'htb-iot-monitoring-dht/devices/device01/up'
```

{"app_id":"htb-iot-monitoring-dht","dev_id":"device01","hardware_serial":" 00C1FE177E877E2A","port":1,"counter":7800,"payload_raw":"Cc4eJhOI ","payload_fields":{"dht":{"humidity":50,"temperature":25.1,"temperatureF":77.18}},"metadata":{"time":"2019-09-09T09:22:40.591968971Z","freque ncy":868.1,"modulation":"LORA","data_rate":"SF7BW125","airtime":5145 6000,"coding_rate":"4/5","gateways":[{"gtw_id":"eui-b827ebfffe91af1e","timestamp":147734291,"time":"","channel":0,"rssi":-43,"snr":10.2,"rf_chain ":1,"latitude":49.06326,"longitude":17.494406,"location_source":"registry" }]}}

TTN & MQTT (2/2)

```
    $ mosquitto_sub -h eu.thethings.network -p 1883 \
        -u htb-iot-monitoring-dht \
        -P your_access_key \
        -t 'htb-iot-monitoring-dht/devices/device01/up/dht'
```

{"humidity":50,"temperature":25.1,"temperatureF":77.18}

Application

```
$ git clone <a href="https://github.com/ucwlabs/iot-monitoring-ttn.git">https://github.com/ucwlabs/iot-monitoring-ttn.git</a>
iot-monitoring-ttn
$ cd iot-monitoring-ttn/
$ chmod +x run.sh
$ ./run.sh
$ docker ps -a
```

```
ONTAINER ID
                                                COMMAND
                                                                          CREATED
                                                                                              STATUS
                                                                                                                   PORTS
                   ucwlabs/ttn-bridge:latest
eee82f9625b9
                                                "docker-entrypoint.s.."
                                                                          36 hours ago
                                                                                              Up 11 hours
                                                                                                                                             ttn-bride
                   grafana/grafana:5.4.3
                                                "/run.sh"
                                                                          39 hours ago
                                                                                                                   0.0.0.0:3000->3000/tcp
4523c7fffcf
                                                                                              Up 36 hours
                                                                                                                                             grafana
73ff0c4cba9
                   influxdb:1.7.8
                                                "/entrypoint.sh infl..."
                                                                          39 hours ago
                                                                                              Up 36 hours
                                                                                                                   0.0.0.0:8086->8086/tcp
```

```
$ docker container logs -f ttn-bridge
    { deviceId: 'device01',
        payload:
        { dht: { humidity: 50, temperature: 25.1, temperatureF: 77.18 } } }
        { deviceId: 'device01',
            payload:
            { dht: { humidity: 50, temperature: 25.1, temperatureF: 77.18 } } }
```


Grafana (1/6)

Grafana (2/6)

Grafana (3/6)

Grafana (4/6)

Grafana (5/6)

Grafana (6/6)

References

- Workshop materials
 - https://github.com/ucwlabs/iot-monitoring-ttn
- Adafruit Feather M0 Radio with Lora Radio Module
 - https://learn.adafruit.com/adafruit-feather-m0-radio-with-lora-radio-m odule
- Sensors
 - o DHT 11/22
 - https://www.adafruit.com/product/386
 - https://www.adafruit.com/product/385
 - BME280
 - https://www.adafruit.com/product/2652
- The Things Network Console
 - https://console.thethingsnetwork.org
- The Things Network API MQTT
 - https://www.thethingsnetwork.org/docs/applications/mqtt/api.html
- The Things Network SDK Node.js
 - https://www.thethingsnetwork.org/docs/applications/nodejs/quick-start.html

Thank you for your attention Q & A

https://hackthebase.com