Латентность при обращении к подсистеме памяти

Тип обращения к памяти	Объём памяти,	Латентность,
	байт	такты
Регистры процессора	$2^6 - 2^{10}$	1
Кэш 1 уровня	$2^{14} - 2^{16}$	2-4
Кэш 2 уровня	$2^{15} - 2^{22}$	10-12
Кэш 3 уровня	$2^{21} - 2^{36}$	15-50
ОЗУ на одном кристалле с процессором при попадании в TLB (по случайным адресам)	$2^{14} - 2^{24}$	10-75
Внешнее ОЗУ при попадании в TLB (по случайным адресам)	$2^{20} - 2^{40}$	200-400
Внешнее ОЗУ при промахе в TLB (по случайным адресам)	$2^{20} - 2^{40}$	2000-2500
Внешнее ОЗУ при выгруженной во внешний Flash диск странице	$2^{30} - 2^{42}$	$10^5 - 10^6$
Внешнее ОЗУ при выгруженной во внешний жёсткий диск странице	$2^{30} - 2^{50}$	$10^6 - 10^8$

Обощённая схема адресного ЗУ

Pasted image 20250306145003.png

Обощённая схема ассоциативного ЗУ

Ассоциативная памяти - по сути память поиска - не ебём где, но знаем характеристики. Так что мы даём ей характеристики а дальше она пусть ебётся как хочет

В запоминающем массиве по сравнению с рисунком выше на один бит в длину больше. Этот последний бит указывает, занята ли строка (0 - не занято)

Pasted image 20250306145732.png

Обощённая схема последовательного ЗУ

Стек (LIFO)

Счётчик адреса - по сути указатель стека. И т.к. технически стек можно реализовать на LFSR (см семинар 2), адреса не обязательно в прямом порядке

Pasted image 20250306151530.png

Буфер (FIFO)

Pasted image 20250306152051.png