Transition to turbulence in oscillating flows

Akshay ANAND

International Masters in Turbulence (M2)

Supervisors:

¹Islam RAMADAN ²Hélène BAILLIFT

Université de Poitiers, Institut Pprime Poitiers, France

21 juillet 2020

Contents

Introduction

Objective

Previous work

Methodology

Results and discussions

Questions

Introduction

Introduction

Mechanical probes (Hot wire anemometry)

Acoustic frequencies :

 $\delta_{
u} = 0.5 \mathrm{mm}$ for $f = 20 \mathrm{Hz}$

 $\delta_{\nu} = 0.02$ mm for f = 20kHz

Objective

- Compare two different optical measurement techniques
 - LDA
 - PIV
- Focused on near wall region at high frequencies

Optical Measurement Methods

1. Depicted from wiki

Optical Measurement Methods

1. Depicted from wiki

Previous Work

Oscillatory boundary later

Oscillatory boundary layer thickness is given by

$$\delta_{\mathbf{V}} = \sqrt{2\nu/\omega}$$

$$\omega = 2\pi f$$

а

a. Reyt et al

Experimental Setup (LDA)

LDV Measurements

f = 25 Hz

Axial velocity along radius Radial dependence of axial component

 $\delta_
u =$ 0.435mm

 $Re_{\delta_{\nu}}=64$ to 474 ^a

a. Reyt et all

Sine wave of frequency that propagates along x axis in cylindrical wave guide of radius R

$$u_{ac}(x,r,t) = Ae^{i\omega(t-x/c)} \left(1 - \frac{J_0(r\sqrt{-i\omega/\nu})}{J_0(R\sqrt{-i\omega/\nu})} \right)$$
 (1)

Sine wave of frequency that propagates along x axis in cylindrical wave guide of radius R

$$u_{ac}(x,r,t) = Ae^{i\omega(t-x/c)} \left(1 - \frac{J_0(r\sqrt{-i\omega/\nu})}{J_0(R\sqrt{-i\omega/\nu})} \right)$$
 (1)

$$u_{ac}(x, r, t) = Ae^{i\omega(t - x/c)} \left(1 - \frac{J_0(r\sqrt{-i\omega/\nu})}{J_0(R\sqrt{-i\omega/\nu})}\right)$$

Acoustic velocity profile at different phases along acoustic period * Experimental data - Theoretical data

Acoustic velocity profile at different phases along acoustic period * Experimental data - Theoretical data

Acoustic velocity profile at different phases along acoustic period for $Re_{\delta_{\nu}} = 260 \star \text{Experimental data}$ - Theoretical data

Acoustic velocity profile at different phases along acoustic period after changing the value of ν

* Experimental data

Acoustic velocity profile at different phases along acoustic period after changing the value of ν

* Experimental data

Acoustic velocity profile at different phases along acoustic period after changing the value of ν

* Experimental data

Acoustic velocity profile at different phases along acoustic period after changing the value of ν

* Experimental data

Acoustic velocity profile at different phases along acoustic period after changing the value of ν

* Experimental data

Acoustic velocity profile at different phases along acoustic period after changing the value of ν

* Experimental data

Stokes boundary layer

With an increase in $Re_{\delta_{\nu}}$ we noticed the effective increase in boundary layer thickness.

Transition around $Re_{\delta_{
u}}=250$ $\delta_{
u}=0.435 \mathrm{mm}$ $Re_{\delta_{
u}}=64$ to 474

Experimental setup (PIV)

 $f_s = 25 \text{ Hz}$

 $Re_{\delta_{\nu}}=$ 205 to 466

2

2. Ramadan et all

Methodology

Distribution of normalized Reynolds stress

Flat up to Re 240

Sudden change at Re 272

At Re 418 flow ~ fully turbulent

Ramadan et all

Acoustic velocity profile at different phases along acoustic period * Experimental data - Theoretical data

Acoustic velocity profile at different phases along acoustic period * Experimental data - Theoretical data

Acoustic velocity profile at different phases along acoustic period * Experimental data - Theoretical data

Acoustic velocity profile at different phases along acoustic period for $Re_{\delta_{\nu}} = 272 \star \text{Experimental data}$ - Theoretical data

Acoustic velocity profile at different phases along acoustic period after changing the value of ν * Experimental data - Theoretical data

Acoustic velocity profile at different phases along acoustic period after changing the value of ν * Experimental data - Theoretical data

Acoustic velocity profile at different phases along acoustic period after changing the value of ν * Experimental data - Theoretical data

Results and discussions

Presence of spikes

Mean velocity around zero in regions of high accelerations

Results and discussions

Results and discussions

Didn't observe any coherent result

Comparison

Compared two quite similar cases using different optical methods

Comparison

Compared two quite similar cases using different optical methods

Comparison

Compared two quite similar cases using different optical methods

Conclusion and future work

- Compare two different optical measurement techniques
 - LDA
 - PIV
- Followed the methodology used in LDA methods
- Quantitatively the results seems similar for both the set of data but qualitatively the results are not comparable.
- Could be tried to get turbulent quantity out of LDA data
 - Perform averaging over time, and we calculate S.D for these time slots
 - It may represent turbulent intensity