- 1. Este ejercicio es para caracterizar la σ -álgebra de Borel \mathcal{B} en $C([0,T],\mathbb{R})$.
 - a) Sea (E,d) un espacio métrico separable y completo (polaco). Entonces todo abierto $U \subset E$ se puede escribir como unión numberable de bolas abiertas.
 - b) Sea (E,d) un espacio métrico polaco, entonces existen numberables bolas B_1, \ldots, B_n, \ldots tal que la σ -álgebra de Borel $\mathcal{B}(E)$ verifica

$$\mathcal{B}(E) = \sigma(\{B_n, n \in \mathbb{N}\}).$$

c) Para $\omega \in C([0,T],\mathbb{R})$ definimos $\pi_t(\omega) = \omega(t)$. Probar que $\pi_t: C([0,T],\mathbb{R}) \to \mathbb{R}$ es continua.

En $(C([0,T],\mathbb{R}), \| \|_{\infty})$ definimos la σ -álebra de Kolmogorov

$$\mathcal{K} = \sigma(\lbrace \pi_t^{-1}(B) : t \in [0, T], B \in \mathcal{B}(\mathbb{R}) \rbrace).$$

- d) Probar que las bolas abiertas están en \mathcal{K} .
- e) Probar que $\mathcal{K} = \mathcal{B}$.
- 2. Hacer (al menos) los ejercicios 1.2, 1.6, 1.8 del libro de Morters-Peres.
- 3. Sea $X \sim N(0,1)$. Probar que para todo x > 0,

$$\frac{x}{x^2+1} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \le P(X > x) \le \frac{1}{x} \frac{1}{\sqrt{2\pi}} e^{-x^2/2}.$$

4. Sea $a_n = \sum_{k=0}^n \sqrt{k} r^k$ Probar que $\limsup_{n \to \infty} \frac{a_n}{\sqrt{n} r^n} < \infty$.

Instrucciones para entregar: En la carpeta de dropbox referida en el email crear una carpeta con su propio nombre en el cual cada uno irá subiendo los ejercicios para entregar. Pueden ser escritos en latex (\mathfrak{G}) o un scan de una hoja escrita a mano (\mathfrak{G}) prolija (\mathfrak{G}) . La app de dropbox para celu les deja hacer scans de las hojas de manera muy eficiente y suben directo.

Fecha estimada de entrega: 12 de abril.

^{*}Entregar el Ejercicio 1 de la lista y el 1.6 del libro.