Resumen de fórmulas de Tema 2

	Datos agrupados
Datos sin agrupar	$NIC = log_{10} n o NIC = \sqrt{n}, 5 \leq NIC \leq 15$
Dutos sin agrapai	Ancho del IC: $A = \frac{R}{NIC}$
Medidas de posición o tendencia central	
Media: $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$	k
n.	$\bar{X} = \sum (X_{PM_i} \cdot fr_i)$
*Se puede obtener con Alcula.	$\overline{i=1}$
	Se determina a cuál intervalo de clase pertenece el
Mediana/cuartiles:	cuartil. Es el primero que tenga $Fr \ge \frac{\kappa}{4}$.
n impar: $Q_k = X_{\frac{k}{4}(n+1)}$ con k=1,2,3.	$\frac{k}{x} = F_x$
n par: $Q_k = \frac{1}{2} \left[X_{\left(\frac{k}{2}n\right)} + X_{\left(\frac{k}{2}n+1\right)} \right]$ con k=1,2,3	$Q_k = L_i + \frac{\frac{\kappa}{4} - Fr_{(i-1)}}{Fr_i - Fr_{(i-1)}}.A$
$\left[\frac{1}{2} \operatorname{part} \left(\frac{Q_k}{4} n \right) + \frac{1}{2} \left(\frac{k}{4} n + 1 \right) \right] = 0 + k - 1, 2, 3$	ι (ι^{-1})
	con k=1,2,3
	Se determina a cuál intervalo de clase pertenece la
	moda. Es aquél con mayor fr.
Moda: Valor de mayor frecuencia.	$Mo = L_i + \frac{A}{f - f}$
	$Mo = L_i + \frac{A}{f_i - f_{(i+1)}} + 1$
	71 7(11)
	Se determina a cuál intervalo de clase pertenece el
Percentiles:	percentil. Es el primero que tenga $Fr \ge \frac{\kappa}{100}$.
$P_k = X_{(\frac{k}{1-\kappa}n)} $ con k=1,,99	,
(100)	$P_k = L_i + \frac{\frac{k}{100} - Fr_{(i-1)}}{Fr_i - Fr_{(i-1)}} \cdot A \text{con k=1,,99}$
Medidas de dispersión	
Varianza:	$S^{2} = \frac{n \sum_{i=1}^{k} X_{PM_{i}}^{2} \cdot fa_{i} - \left[\sum_{i=1}^{k} (X_{PM_{i}} \cdot fa_{i})\right]^{2}}{n \left(n-1\right)}$
$S^{2} = \frac{n \sum_{i=1}^{n} X_{i}^{2} - (\sum_{i=1}^{n} X_{i})^{2}}{n (n-1)}$	$S^2 = \frac{1}{n(n-1)}$
n(n-1)	
Desvío estándar: $S = \sqrt{S^2}$	$S = \sqrt{S^2}$
*Se puede obtener con Alcula.	
Rango:	$R = X_{m \land x} - X_{m \nmid n}$
$R = X_{m\acute{a}x} - X_{m\acute{i}n}$	$n = n_{max}$ n_{min}
Rango intercuartil:	$IQ = Q_3 - Q_1$
$IQ = Q_3 - Q_1$	- 4 43 41
Coeficiente de variación:	$CV = S/\bar{X}$
$CV = S/\bar{X}$	·
Medidas de forma	
Asimetría:	2/ V V
$SK = \frac{3(\bar{X} - \tilde{X})}{S}$	$SK = \frac{3(\bar{X} - \tilde{X})}{S}$
Curtosis:	S
$Cu = \frac{1}{n} \frac{\sum_{i=1}^{n} (x_i - X)^4}{S^4} - 3$	
n S.	

<u>Teorema de Chebyshev</u>: en relación a un conjunto de datos cualquiera (poblacional o muestral) y una constante k > 1 cuando menos $(1 - 1/k^2)$ de los datos debe estar dentro de k desvíos estándar a uno y otro lado de la media para que la dispersión se considere pequeña.

Ejemplo: si elegimos k=2 entonces $1-\frac{1}{k^2}=\frac{3}{4}=0,75$. El 75% de los datos debe estar a $\overline{X}+2S$ y $\overline{X}-2S$ para que la desviación se considere pequeña.