Assignment 7

CSCI 411

1.

- a. $(0+1)(00+11+01+10)^*$
- b. $\varepsilon + (01+1)(0+1)^*$
- c. $(0+1)^*(01+10+11) + \epsilon + 0 + 1$
- d. $((10+1)^* + (01+1)^*)(00 + \epsilon)((10+1)^* + (01+1)^*)$

2.

- Remove states that are not reachable from starting state

	0	1
->A	В	F
В	D	G
*D	G	Е
E	Н	Е
*F	A	G
G	D	G
н	D	G

- Keep on separating the final and non final states ill we get all states output is lies in a common class for both 0 and 1.

	0	1
Α	В	F
B, G, H	D	G
D	G	Е
Е	Н, В	Е
*F	А	G

	A	В	С	D	E	F	G	
В	х							
С	х	X						
D	X	X						
E	х	X		X				
F	Х	X	X	X	X			
G	х		X	X	X	X		
Н	Х		X	X	X	X		
ı	x	X		X	X	X	X	X

 $EQ \ State: \{B,\,G\},\,\{B,\,H\},\,\{C,\,D\},\,\{C,\,E\},\,\{C,\,I\},\,\{G,\,H\}$

3.

* I - Intermediate state, F - Final state

If the pairs forming with 0 and 1 as input are symmetric(i.e. I, I and F, F), then M1 and M2 are equivalent.

	0	1
A, D	B, E (I, I)	A, D (F, F)
B, F	C, G (F, F)	A, D (F, F)
C, G	C, F (F, F)	A, G (F, F)
B, E	C, F (F, F)	A, G (F, F)

We can see that all the pairs formed in the transition table are symmetric. Hence, M1 and M2 are equivalent.

4.

* I - Intermediate state, F - Final state

If the pairs forming with 0 and 1 as input are symmetric(i.e. I, I and F, F), then M1 and M2 are equivalent.

	0	1
A, C	A, D (F, F)	B, E (I, I)
B, E	A, C (F, F)	B, E (I, I)
A, D	A, D (F, F)	B, E (I, I)

We can see that all the pairs formed in the transition table are symmetric. Hence, M1 and M2 are equivalent.

5.

a. let L be regular length and P be pumping length.

w belongs to L, where $|w| \ll P$

$$w = xy$$

conditions: |y| < 0,

(y is composed only of zeros)

|xy| >= p,

(x and y lies within p)

Vi < xyi belongs to L (if i=0, xy0 = x = 0(p - k)

these contradicts L. Hence, L is not a regular language.

b.

c. let L be regular length and P be pumping length.

let w^2((w^r)^2) belongs to L, where |w| > 1 and $|ww| \mathrel{<=} P$ and w belongs to L

now let P >= 4

and xyz where x = y = z, and $z = (w^r)^2$ which is does not

 $\{wwR|w \in \{0, 1\}*\}.$

Hence, $\{wwR|w\in\{0,\,1\}*\}$ is not a regular language.

6.

 Initial state of finite automata will be final because empty string is included.

Binary number will end with a 0 for even numbers.

b. This is not a regular language because there is comparison.

C.

This is not a regular language because there is comparison.

For a regular language L, there exists an integer value 'n', such that for all 'w' belongs to L with |w| >= n.

w = xyz, $|xy| \ll n$, |y| > 0 or $|y| \gg 1$ and for all $i \gg 0$: $xy^{(i)}z$ belongs to L

Let L be regular length and P be pumping length.

Let n be the states of DFA for which and example string $s = 0^{(n)}10^{(n)}1$

Now, s = uvw, if u and v were empty and then we could pump the string, but according to the pumping lemma Condition, v must be all 0's.

Thus, uvvw is not in language L because contains 1 which indicates that s does not work.

Hence, L is not regular.

d. This is a regular language.

NFA:

