Computational Linguistics

Parsing (part 1)

Chapter 13 J&M'09

We've been parsing for ages now...

• Shift-reduce : Yngve (1955)

• Left-corner : Rosenkrantz & Lewis (1970)

• Earley: Earley (1970)

CKY: Cocke-Kasami-Younger Parsing (1965,1967,1970)

BOTTOM-UP PARSING: Shift-Reduce

Given a grammar Γ , a finte sequence of tokens $w_1 \dots w_n$, a stack (initialized as empty), and a chart (recording the input, the stack and the applied rule and the alternative rule applications, at every step):

While stack not singleton and input not empty, do:

- ① replace $Y_1...Y_n$ elements at the top of the stack with X if there is a rule $X \to Y_n...Y_1$ (Reduce)

The chart should also keep track of alternative choice points at every step, so the parser can backtrack if needed.

Input	Stack	Actions
Tom probably sneezed	_	initial state
probably sneezed	Tom	shift
probably sneezed	PN	reduce
probably sneezed	NP	reduce
sneezed	probably NP	shift
sneezed	ADV NP	reduce
_	sneezed ADV NP	shift
_	IV ADV NP	reduce
_	VP ADV NP	reduce
_	VP NP	reduce
_	S	reduce

Grammar

	$\begin{array}{l} DT \to a \\ TV \to recorded \end{array}$	$\begin{array}{c} NP \to PRP \\ NP \to DT \; N \end{array}$	
Input	Stack	Actions	
I recorded a record	_	initial state	

$S \rightarrow NP VP$	$DT \to a$	$NP \rightarrow PRP$	$N \rightarrow record$
$VP \rightarrow TV NP$	$TV \to recorded$	$NP \to DT \; N$	$PRP \to I$
Input	Stack	Actions	
I recorded a record	_	initial state	
recorded a record		shift	

$S \rightarrow NP VP$	$DT \to a$	$NP \rightarrow PRP$	$N \rightarrow record$
VP → TV NP	$TV \rightarrow recorded$	$NP \to DT \; N$	$PRP \to I$
Input	Stack	Actions	
I recorded a record	_	initial state	
recorded a record	1	shift	
recorded a record	PRP	reduce	

$S \rightarrow NP VP$	$DT \to a$	$NP \rightarrow PRP$	$N \rightarrow record$
$VP \to TV \; NP$	$TV \to recorded$	$NP \to DT\;N$	$PRP \to I$

Input	Stack	Actions
I recorded a record	_	initial state
recorded a record	1	shift
recorded a record	PRP	reduce
recorded a record	NP	reduce

$S \rightarrow NP VP$	$DT \to a$	$NP \rightarrow PRP$	$N \rightarrow record$
$VP \to TV \; NP$	$TV \to recorded$	$NP \to DT\;N$	$PRP \to I$

Input	Stack	Actions
I recorded a record	_	initial state
recorded a record	1	shift
recorded a record	PRP	reduce
recorded a record	NP	reduce
a record	recorded NP	shift

$S \rightarrow NP VP$	$DT \to a$	$NP \rightarrow PRP$	$N \rightarrow record$
$VP \to TV \; NP$	$TV \to recorded$	$NP \to DT\;N$	$PRP \to I$

Input	Stack	Actions
I recorded a record	_	initial state
recorded a record	1	shift
recorded a record	PRP	reduce
recorded a record	NP	reduce
a record	recorded NP	shift
a record	TV NP	reduce

$S \rightarrow NP VP$	DT o a	$NP \rightarrow PRP$	$N \rightarrow record$
$VP \to TV \; NP$	$TV \to recorded$	$NP \to DT\;N$	$PRP \to I$

Input	Stack	Actions
I recorded a record	_	initial state
recorded a record	1	shift
recorded a record	PRP	reduce
recorded a record	NP	reduce
a record	recorded NP	shift
a record	TV NP	reduce
record	a TV NP	shift

$S \rightarrow NP VP$	$DT \to a$	$NP \rightarrow PRP$	$N \rightarrow record$
$VP \to TV \; NP$	$TV \to recorded$	$NP \to DT\;N$	$PRP \to I$

Input	Stack	Actions
I recorded a record	_	initial state
recorded a record	1	shift
recorded a record	PRP	reduce
recorded a record	NP	reduce
a record	recorded NP	shift
a record	TV NP	reduce
record	a TV NP	shift
record	DT TV NP	reduce

$S \rightarrow NP VP$	$DT \to a$	$NP \rightarrow PRP$	$N \rightarrow record$
$VP \to TV \; NP$	$TV \rightarrow recorded$	$NP \to DT\;N$	$PRP \to I$

Input	Stack	Actions
I recorded a record	_	initial state
recorded a record	1	shift
recorded a record	PRP	reduce
recorded a record	NP	reduce
a record	recorded NP	shift
a record	TV NP	reduce
record	a TV NP	shift
record	DT TV NP	reduce
_	record DT TV NP	shift

$S \rightarrow NP VP$	DT o a	$NP \rightarrow PRP$	$N \rightarrow record$
$VP \to TV \; NP$	$TV \rightarrow recorded$	$NP \to DT\;N$	$PRP \to I$

Input	Stack	Actions
I recorded a record	_	initial state
recorded a record	1	shift
recorded a record	PRP	reduce
recorded a record	NP	reduce
a record	recorded NP	shift
a record	TV NP	reduce
record	a TV NP	shift
record	DT TV NP	reduce
_	record DT TV NP	shift
_	N DT TV NP	reduce

$S \rightarrow NP VP$	$DT \to a$	$NP \rightarrow PRP$	$N \rightarrow record$
$VP \to TV \; NP$	$TV \rightarrow recorded$	$NP \to DT\;N$	$PRP \to I$

Input	Stack	Actions
I recorded a record	_	initial state
recorded a record	1	shift
recorded a record	PRP	reduce
recorded a record	NP	reduce
a record	recorded NP	shift
a record	TV NP	reduce
record	a TV NP	shift
record	DT TV NP	reduce
_	record DT TV NP	shift
_	N DT TV NP	reduce
_	NP TV NP	reduce

$S \rightarrow NP VP$	$DT \to a$	$NP \rightarrow PRP$	$N \rightarrow record$
$VP \to TV \; NP$	$TV \rightarrow recorded$	$NP \to DT\;N$	$PRP \to I$

Input	Stack	Actions
I recorded a record	_	initial state
recorded a record	1	shift
recorded a record	PRP	reduce
recorded a record	NP	reduce
a record	recorded NP	shift
a record	TV NP	reduce
record	a TV NP	shift
record	DT TV NP	reduce
_	record DT TV NP	shift
_	N DT TV NP	reduce
_	NP TV NP	reduce
_	VP NP	reduce

$S \rightarrow NP VP$	DT o a	$NP \rightarrow PRP$	$N \rightarrow record$
$VP \to TV \; NP$	$TV \to recorded$	$NP \to DT \; N$	$PRP \to I$

Input	Stack	Actions
I recorded a record	_	initial state
recorded a record	1	shift
recorded a record	PRP	reduce
recorded a record	NP	reduce
a record	recorded NP	shift
a record	TV NP	reduce
record	a TV NP	shift
record	DT TV NP	reduce
_	record DT TV NP	shift
_	N DT TV NP	reduce
_	NP TV NP	reduce
_	VP NP	reduce
_	S	reduce

```
rule(s,[np,vp]).
rule(np, [dt,n]).
3 rule(n,[n,pp]).
4 rule(pp, [p,np]).
5 rule(np, [prp]).
6 rule(vp, [tv,np]).
7 rule(vp,[iv]).
8 lex(p,in).
9 lex(dt,the).
10 lex(tv,saw).
  lex(iv, sneezed).
12 lex(n,cat).
13 | lex(n,hat).
```

```
?- sr_parse([the,cat,in,the,hat,sneezed]).
true
```

Prolog shift-reduce parser

```
sr_parse(Sentence):-
          srparse([],Sentence).
  srparse([_],[]).
  srparse([Y,X|MoreStack],Words):-
         rule(LHS,[X,Y]),
         srparse([LHS|MoreStack],Words).
8
9
  srparse([X|MoreStack],Words):-
         rule(LHS,[X]),
         srparse([LHS|MoreStack],Words).
  srparse(Stack, [Word|Words]):-
          lex(X,Word),
15
          srparse([X|Stack],Words).
16
```

Prolog shift-reduce analyzer (outputs a parse tree)

```
sr_parse(Sentence,Parse):-
          srparse([],Sentence,[],Parse).
  srparse([_],[],[X],X).
  srparse([Y,X|MoreStack],Words,[Z,W|ListNodes],Parse):-
         rule(LHS, [X,Y]), Node = .. [LHS,W,Z],
         srparse([LHS|MoreStack], Words, [Node|ListNodes], Parse).
8
9
  srparse([X|MoreStack], Words, [Y|ListNodes], Parse):-
         rule(LHS,[X]), Node = .. [LHS,Y],
         srparse([LHS|MoreStack], Words, [Node|ListNodes], Parse).
  srparse(Stack, [Word|Words],ListNodes,Parse):-
          lex(X,Word), Node = .. [X,Word],
15
          srparse([X|Stack], Words, [Node|ListNodes], Parse).
16
```

```
1 rule(s, [np, vp]).
rule(np, [dt,n]).
3 rule(n, [n,pp]).
4 rule(pp, [p,np]).
5 rule(np, [prp]).
6 rule(vp, [tv,np]).
7 rule(vp,[iv]).
8 lex(p,in).
9 lex(dt,the).
10 lex(tv,saw).
11 lex(iv, sneezed).
|12| lex(n.cat).
13 | lex(n,hat).
```

```
?- sr_parse([the,cat,in,the,hat,sneezed],P).
P = s(np(dt(the), n(n(cat), pp(p(in), np(dt(the), n(cat))))),
vp(iv(sneezed)));
false.
```

Left-corner parsing: combines the best aspects of top-down and bottom-up parsing strategies.

- Like bottom-up parsing, use the input to avoid building irrelevant parses;
- Like top-down parsing, uses the grammar rules to avoid trying to combine phrases that cannot be combined.

Initialization: empty the stack.

While input not empty and stack not equal to $S \to X_1...X_n \bullet$, do:

- Complete. If the top stack item is $Z \to W_1...W_i$ and the next item down is $X \to Y_1...Y_j \bullet ZK_0...K_n$, then replace those two items with $X \to Y_1...Y_iZ \bullet K_0...K_n$.
- Predict. If $X \to Y_1...Y_n$ is on top of the stack, and the grammar contains a rule $Z \to XK_0...K_n$ then replace the top item on the stack with $Z \to X \bullet K_0...K_n$.
- Shift. If the next word in the input is w and $X \to w$ is part of the grammar then shift $X \to w$ onto the top of the stack.

As usual, a chart keeps track of the states and alternative choice points so the parser can backtrack to it when parsing fails.

Input read	Stack	Action
I recorded it	-	Initialize
recorded it	$[PRN \rightarrow I \bullet]$	Shift
recorded it	$[NP \rightarrow PRN \bullet]$	Predict
recorded it	$[S \rightarrow NP \bullet VP]$	Predict
it	$[TV \to recorded ullet] [S \to NP ullet VP]$	Shift
it	$[VP \rightarrow TV \bullet NP] [S \rightarrow NP \bullet VP]$	Predict
_	$[PRN \rightarrow it \bullet] [VP \rightarrow TV \bullet NP] [S \rightarrow NP \bullet VP]$	Shift
_	$[NP \rightarrow prn \bullet] [VP \rightarrow TV \bullet NP] [S \rightarrow NP \bullet VP]$	Predict
_	$[VP \to TV \; NP \; \bullet] \; [S \to NP \; \bullet \; VP]$	Complete
	$[S \rightarrow NP \ VP \bullet]$	Complete

$\begin{array}{c} S \to NP \; VP \\ VP \to IV \end{array}$	$\begin{array}{c} DT \to a \\ IV \to sneezed \end{array}$	$\begin{array}{c} N \to ADJ N \\ NP \to DT N \end{array}$	
Input read	Stack		Action
a black cat sneezed	_		Initialize

$S \rightarrow NP VP$	DT o a	$N \rightarrow ADJ N \qquad N \rightarrow cat$
$VP \rightarrow IV$	$IV \rightarrow sneezed$	$NP \rightarrow DT N ADJ \rightarrow black$
Input read	Stack	Action
a black cat sneezed	_	Initialize
black cat sneezed	$[DT \to a \bullet]$	Shift

$S \rightarrow NP VP$ $VP \rightarrow IV$	$\begin{array}{c} DT \to a \\ IV \to sneezed \end{array}$	$N \rightarrow ADJ N \qquad N \rightarrow cat$ $NP \rightarrow DT N \qquad ADJ \rightarrow black$	
nput read	Stack	Actio	on
a black cat sneezed	_	Initia	lize
olack cat sneezed	$[DT \to a \bullet]$	Shift	
olack cat sneezed	$[NP \rightarrow DT \bullet N]$	Predi	ict

$S \rightarrow NP VP$	DT o a	$N \rightarrow ADJ N$	$N \rightarrow cat$
$VP \rightarrow IV$	$IV \rightarrow sneezed$	$NP \to DT \; N$	$ADJ \to black$
Input read	Stack		Action
.			
a black cat sneezed	_		Initialize
black cat sneezed	$[DT \to a \bullet]$		Shift
black cat sneezed	$[NP \to DT \bullet N]$		Predict
cat sneezed	$[ADJ \rightarrow black \bullet] [I$	$NP \rightarrow DT \bullet N$	Shift

$S \rightarrow NP VP$	DT o a	$N \rightarrow ADJ N$	$N \rightarrow ca$	at
$VP \rightarrow IV$	$IV \rightarrow sneezed$	$NP \to DT \; N$	$ADJ \rightarrow bl$	ack
Input read	Stack			Action
a black cat sneezed	_			Initialize
black cat sneezed	$[DT \to a \bullet]$			Shift
black cat sneezed	$[NP \to DT \bullet N]$			Predict
cat sneezed	[ADJ → black •]	$[NP \rightarrow DT \bullet N]$		Shift
cat sneezed	$[N \rightarrow ADJ \bullet N][$	$NP \rightarrow DT \bullet N$		Predict

$S \rightarrow NP VP$	DT o a	$N \rightarrow ADJ N$	$N \rightarrow c$	at
$VP \rightarrow IV$	$IV \rightarrow sneezed$	$NP \to DT \; N$	$ADJ \rightarrow b$	olack
Input read	Stack			Action
	Stack			
a black cat sneezed	-			Initialize
black cat sneezed	$[DT \to a \bullet]$			Shift
black cat sneezed	$[NP \to DT \bullet N]$			Predict
cat sneezed	$[ADJ \rightarrow black \bullet]$	$NP \rightarrow DT \bullet N$		Shift
cat sneezed	$[N \rightarrow ADJ \bullet N] [N$	$IP \to DT \bullet N$		Predict
sneezed	$[N \rightarrow cat \bullet] [N \rightarrow$	$ADJ \bullet N] [NP \rightarrow$	DT • N]	Shift

$S \rightarrow NP VP$	$DT \to a \qquad N \to ADJ N \qquad N \to c$	cat
$VP \rightarrow IV$	$IV \rightarrow sneezed$ $NP \rightarrow DT N ADJ \rightarrow b$	olack
Input read	Stack	Action
a black cat sneezed	-	Initialize
black cat sneezed	$[DT \to a \bullet]$	Shift
black cat sneezed	$[NP \rightarrow DT \bullet N]$	Predict
cat sneezed	$[ADJ \rightarrow black \bullet] [NP \rightarrow DT \bullet N]$	Shift
cat sneezed	$[N \to ADJ \bullet N] [NP \to DT \bullet N]$	Predict
sneezed	$[N \rightarrow cat \bullet] [N \rightarrow ADJ \bullet N] [NP \rightarrow DT \bullet N]$	Shift
sneezed	$[N \to ADJ \ N \bullet] \ [NP \to DT \bullet N]$	Complete

$S \rightarrow NP VP$	$DT \rightarrow a$ $N \rightarrow ADJ N$ $N \rightarrow c$	cat
$VP \rightarrow IV$	$IV \rightarrow sneezed$ $NP \rightarrow DT N ADJ \rightarrow I$	olack
	0	
Input read	Stack	Action
a black cat sneezed	-	Initialize
black cat sneezed	[DT o a ullet]	Shift
black cat sneezed	$[NP \rightarrow DT \bullet N]$	Predict
cat sneezed	[ADJ o black ullet] [NP o DT ullet N]	Shift
cat sneezed	$[N \to ADJ \bullet N] [NP \to DT \bullet N]$	Predict
sneezed	$[N \rightarrow cat \bullet] [N \rightarrow ADJ \bullet N] [NP \rightarrow DT \bullet N]$	Shift
sneezed	$[N \to ADJ \ N \bullet] \ [NP \to DT \bullet N]$	Complete
sneezed	$[NP \rightarrow DT N \bullet]$	Complete

$S \rightarrow NP VP$	$DT \to a$	$N \to ADJ N$	$N \rightarrow c$	cat
$VP \rightarrow IV$	$IV \rightarrow sneezed$	$NP \to DT \; N$	$ADJ \rightarrow b$	olack
Input read	Stack			Action
a black cat sneezed	_			Initialize
black cat sneezed	$[DT \to a ullet]$			Shift
black cat sneezed	$[NP \to DT \bullet N]$			Predict
cat sneezed	$[ADJ \rightarrow black \bullet]$	$NP \rightarrow DT \bullet N$		Shift
cat sneezed	$[N \rightarrow ADJ \bullet N] [N$	$IP \to DT \bullet N$		Predict
sneezed	$[N \rightarrow cat ullet] [N \rightarrow$	ADJ • N] [NP →	DT • N]	Shift
sneezed	$[N \rightarrow ADJ N \bullet] [N$	$JP \rightarrow DT \bullet N]$		Complete
sneezed	$[NP \rightarrow DT N \bullet]$			Complete
sneezed	$[S \rightarrow NP \bullet VP]$			Predict

$S \rightarrow NP VP$	DT o a	$N \rightarrow ADJ N$	$N \rightarrow c$	at
$VP \rightarrow IV$	$IV \rightarrow sneezed$	$NP \to DT \; N$	$ADJ \to b$	lack
Input read	Stack			Action
a black cat sneezed	_			Initialize
black cat sneezed	$[DT \to a \bullet]$			Shift
black cat sneezed	$[NP \to DT \bullet N]$			Predict
cat sneezed	$[ADJ \rightarrow black \bullet] [N]$	$NP \rightarrow DT \bullet N$		Shift
cat sneezed	$[N \rightarrow ADJ \bullet N] [N$	$P \rightarrow DT \bullet N$		Predict
sneezed	$[N \to cat ullet] [N \to$	$ADJ \bullet N] [NP \rightarrow$	DT • N]	Shift
sneezed	$[N \rightarrow ADJ N \bullet] [N$	$P \rightarrow DT \bullet N$		Complete
sneezed	$[NP \to DT \; N \; ullet]$			Complete
sneezed	$[S \rightarrow NP \bullet VP]$			Predict
_	$[IV \rightarrow sneezed \bullet] [S]$	$S \rightarrow NP \bullet VP$		Shift

$S \rightarrow NP VP$ $VP \rightarrow IV$	$DT \to a$ $IV \to sneezed$	$\begin{array}{c} N \to ADJ \; N \\ NP \to DT \; N \end{array}$		
Input read	Stack			Action
a black cat sneezed	_			Initialize
black cat sneezed	$[DT \to a \bullet]$			Shift
black cat sneezed	$[NP \to DT \bullet N]$			Predict
cat sneezed	$[ADJ \rightarrow black \bullet] [N$	$P \rightarrow DT \bullet N$		Shift
cat sneezed	$[N \rightarrow ADJ \bullet N] [NF$	$\rightarrow DT \bullet N$		Predict
sneezed	$[N \rightarrow cat \bullet] [N \rightarrow A$	$ADJ \bullet N] [NP \rightarrow$	DT • N]	Shift
sneezed	$[N \rightarrow ADJ N \bullet] [NF$	$\rightarrow DT \bullet N$	-	Complete
sneezed	$[NP \rightarrow DT N \bullet]$	-		Complete
sneezed	$[S \rightarrow NP \bullet VP]$			Predict
_	$[IV \rightarrow sneezed \bullet] [S$	$\rightarrow NP \bullet VP$		Shift
_	$[VP \rightarrow IV \bullet] [S \rightarrow I]$	-		Predict

$S \rightarrow NP VP$	DT o a	$N \rightarrow ADJ N$	$N \rightarrow c$	at
$VP \rightarrow IV$	$IV \rightarrow sneezed$	$NP \to DT \; N$	$ADJ \rightarrow b$	lack
Input read	Stack			Action
a black cat sneezed	_			Initialize
black cat sneezed	$[DT \to a \bullet]$			Shift
black cat sneezed	$[NP \rightarrow DT \bullet N]$			Predict
cat sneezed	$[ADJ \rightarrow black \bullet]$	$[NP \rightarrow DT \bullet N]$		Shift
cat sneezed	$[N \rightarrow ADJ \bullet N]$	$[NP \to DT \bullet N]$		Predict
sneezed	$[N \rightarrow cat \bullet] [N -$	\rightarrow ADJ • N] [NP \rightarrow	DT • N]	Shift
sneezed	$[N \rightarrow ADJ N \bullet]$	$[NP \to DT \bullet N]$		Complete
sneezed	$[NP \rightarrow DT N \bullet]$			Complete
sneezed	$[S \rightarrow NP \bullet VP]$			Predict
_	$[IV \rightarrow sneezed \bullet]$	$[S \rightarrow NP \bullet VP]$		Shift
_	$[VP \rightarrow IV \bullet] [S \rightarrow IV \bullet]$	$\rightarrow NP \bullet VP]$		Predict
_	$[S \rightarrow NP VP \bullet]$			Complete

```
lc_parse(String) :-
      leftcorner_recognize(s,String,[]).
2
  leftcorner_recognize(Cat, [Word|StringIn],StringOut) :-
      lex(WCat,Word),
      complete(Cat, WCat, StringIn, StringOut).
6
  complete(Cat,Cat,String,String).
9
  complete(Cat,SubCat,StringIn,StringOut) :-
      rule(LHS, [SubCat|Cats]),
      matches(Cats,StringIn,String1),
12
      complete(Cat,LHS,String1,StringOut).
13
14
  matches([],String,String).
  matches([Cat|Cats],StringIn,StringOut) :-
      leftcorner_recognize(Cat,StringIn,String1),
17
      matches(Cats, String1, StringOut).
18
```

```
?- lc_parse([the,cat,in,the,hat,sneezed]).
true;
false.

?- lc_parse([the,in,the,hat,sneezed]).
false.
```

Parsing/Grammar profiling

```
?- time(sr_parse([the,big,cat,in,the,hat,in,the,hat,saw,tom]))
387 inferences, 0.000 CPU in 0.000 seconds
?- time(lc_parse([the,big,cat,in,the,hat,in,the,hat,saw,tom])).
341 inferences, 0.000 CPU in 0.000 seconds
```

Parsing/Grammar profiling (all parses)

```
stats_t(S,sr,Total):-
      statistics(cputime, I1),
      findall(S2, (S2=S, sr_parse(S)),_),
      statistics(cputime, I2),
4
      Total is I2 - I1.
5
6
  stats_t(S,lc,Total):-
      statistics(cputime, I1),
8
      findall(S2, (S2=S, lc_parse(S)),_),
9
      statistics(cputime, I2),
10
      Total is I2 - I1.
```

```
?- stats_t([the,big,cat,in,the,hat,in,the,hat,saw,tom],sr,T).
T = 0.

?- stat_inf([the,big,cat,in,the,hat,in,the,hat,saw,tom],lc,T).
T = 0.
```

(1) The captain said you claimed the sergeant denied the antenna in the hangar broke in the attack near the gate.

(14 parses)

Parser	Steps	Time
Shift-reduce	19129	0.01 secs
Left-corner	5453	0.01 secs

(on a 2.4 Ghz Intel Core 2 Duo with 4 GB 1067 MHz DDR4)