Problem #3.3

Second Shot

First Shot $S_1 = 1$ $S_2 = 1$ $S_2 = 0$ $S_1 = 1$ $S_2 = 0$ $S_3 = 0$ $S_4 = 0$ $S_5 = 0$ $S_7 = 0$ $S_8 = 0$ S_8

 $H_0: S_1 \perp \!\!\! \perp S_2 \text{ vs } H_1: \text{not } H_0$

Data is not ordinal so a restricted alternative is not necessary.

Statistics	Value	p-value	Conclusion
X^2	0.2727	0.6015	Do not reject H_0 , there is evidence that the
			first and second shot are independent
G^2	0.2858	0.5930	Do not reject H_0 , there is evidence that the
			first and second shot are independent

Problem #3.9(a)

	Drugs	No Drugs
Schizophrenia	105	52
Affective disorder	19	2
Neurosis	8	0
Personality disorder	47	18
Special Systems	12	13

No Drugs Drugs Schizophrenia 9.6582 -9.6582 Affective disorder -6.30536.3053 Neurosis -6.17606.1760Personality disorder 1.3491 -1.3491Special Systems 0.6542-0.6542

Table 1: Counts

Table 2: Pearson Standardized Residuals

OUTSTANDING: conclusion

Problem #3.12

Gamma, γ : 0.3873

95% CI: (0.3156, 0.4591)

Gamma is 0.3873 which indicates that when attitudes disagree (i.e. counts that are not on the diagonal), the proportion of concordant attitudes towards abortions (\uparrow school = \uparrow approval) is larger than the proportion of discordant attitudes. This means that there is greater approval of abortion when there is more schooling.

Problem #3.15

Type of CI for OR 95% CI

	JI	
(a)	Woolf (i.e. Wald)	$(0,\infty)$
(b)	Cornfield's Exact	$(2.646, \infty)$ OUTSTANDING: Answer: $(0.618, \infty)$
(c)	Profile Likelihood	$(5.117, \infty)$

Problem #3.31

OUTSTANDING:

Table 3: Counts

Table 5: Perason Standard Residuals