Deep Learning par la pratique

Jour 3, après midi : texte

NLP

Le deep learning pour le texte adapté dans 2 cas

- énormément de texte (au minimum wikipedia sinon plus)
- Tâche complexe : traduction, résumé, transfer de style, chatbot, génération etc

Pour tout le reste :

- classification, analyse de sentiment (c'est de la classification), topic modeling,
 NER etc
- NLTK + Spacy suffit la plupart du temps

Le Traitement du langage naturel - NLP

le NLP couvre un très vaste champs d'applications

- Part of speech tagging (POS), analyse sémantique,
- classification : sentiment, sujets, toxicité, ...
- NER : reconnaissance d'entités, information extraction

Puis de façon plus complexe

• traduction, résume, compréhension, génération, chatbots

et le texte comme origine ou cible

- transformations: texte image speech audio video SQL
- génération :
 - text to image & image to text
 - text to audio & audio to text
 - text to video & video to text

du décompte des mots aux LLMs

Dans l'ancien temps, on se basait sur la fréquence des mots dans un corpus, l'approche tf-idf

du décompte des mots aux LLMs 2013 embeddings - word2vec

- on entraîne un RNN sur un large corpus pour prédire le mot manquant dans une phrase
- on récupère les poids de la dernière couche comme représentation de chaque mot. Ce vecteur est appelé embedding.
- La représentation vectorielle capture la signification du mot

Principales étapes

- word2vec : 2013 capture les relations semantiques. suivi de GloVe, FastText
- Seq2Seq: 2014 encoder-decoder architecture with RNNs
- **Attention**: 2015 Allows the model to focus on different parts of the input sequence for each output step.

- Transformers: 2017 attention mechanisms sans CNN ou RNN
- **BERT**: 2018 evolution de l'architecture Transformers
- GPT 1, 2, 3, 4: de 2018 à 2023 : transformers; modèles de plus en plus grand avec des datasets d'entraînement de plus en plus gigantesques
- 2023 2024 Les LLMs : GPT4o, Claude Opus, Mistral, Gemini, LLama,

Du décompte des mots aux LLMs - Ce qui compte c'est l'attention

2017 - Attention Is All You Need - Transformers

https://arxiv.org/abs/1706.03762

- mélange de CNN et de RNN
- focus sur certain mots: l'attention
 - o multi-head attention : focus sur plusieurs mots à la fois
 - self-attention : lien entre les mots

Ressources sur les transformers

- simple =>
 https://galaxyinferno.com/3-lessons-from-the-paper-attention-is-all-you-need-as-a-begin ner/
- The Illustrated Transformer : https://jalammar.github.io/illustrated-transformer/
- Analyse de l'architecture : https://kikaben.com/transformers-encoder-decoder/
- https://neptune.ai/blog/bert-and-the-transformer-architecture
- https://towardsdatascience.com/attention-is-all-you-need-discovering-the-transformer-p
 aper-73e5ff5e0634
- transformers 2022.02 Lucas Beyers https://www.youtube.com/watch?v=UpfcyzoZ644
- Attention is all you need https://arxiv.org/abs/1706.03762

Préparer les données textuelles

Préparer les données

Comment passer d'un texte de dimension variable à une représentation numérique que l'on peut utiliser pour entraîner un modèle ?

1. **Tokenization** : processus de découpage d'un texte en unités élémentaires appelées "tokens".

Un token peut être un mot, un signe de ponctuation ou un autre élément atomique.

- 2. Sequencage (prochain slide)
- 3. **Embedding**: remplacer chaque token par son équivalent vectoriel

tokenisation des phrases

représentation vectorielle

Tokenization => split(' '): 90% du boulot

```
"bonjour tout le monde".split(" ")
```

Tokenizer

NLTK

```
1 from nltk import ngrams
2 from nltk.tokenize import WordPunctTokenizer
3
4 text = "How much wood would a woodchuck chuck if a woodchuck could chuck wood?"
5
6 # Tokenize
7 tokens = WordPunctTokenizer().tokenize(text)
```

Spacy.io

Pour du texte, avant de se lancer dans les réseaux de neurones : Spacy

```
Edit the code & try spaCy
  # pip install -U spacy
  # python -m spacy download en_core_web_sm
  import spacy
  # Load English tokenizer, tagger, parser and NER
 nlp = spacy.load("en_core_web_sm")
  # Process whole documents
  text = ("When Sebastian Thrun started working on self-driving cars at "
          "Google in 2007, few people outside of the company took him "
          "seriously. "I can tell you very senior CEOs of major American "
          "car companies would shake my hand and turn away because I wasn't "
          "worth talking to," said Thrun, in an interview with Recode earlier "
          "this week.")
  doc = nlp(text)
  # Analyze syntax
  print("Noun phrases:", [chunk.text for chunk in doc.noun_chunks])
  print("Verbs:", [token.lemma_ for token in doc if token.pos_ == "VERB"])
  # Find named entities, phrases and concepts
  for entity in doc.ents:
     print(entity.text, entity.label_)
  RUN
```

https://spacy.io/

Annoter un corpus

- manuel : <u>https://prodi.gy/</u>
- LLM: few shots learning

Preparer les données

Sequencage : découper le texte en séquence de même longueurs avec du padding

on ajoute un token de marquage

"Dynamic Padding"																
	1	2	3	4	5	6	7	8	9	10	11	12	13	14		
	_Eh	_bien	_c		_est	_un	_bon	indicateu	[PAD]	[PAD]	[PAD]	[PAD]	[PAD]			
	Ouais	_je	_suis	_un	_coureur	[PAD]	[PAD]	[PAD]	[PAD]	[PAD]	[PAD]	[PAD]	[PAD]		Batch Length:	13
	_lls	_ne	_sont	_pas	importaní			[PAD]	[PAD]	[PAD]	[PAD]	[PAD]	[PAD]			
	_11	_y	_a	_de	ombreus	condition	_qui	_ne	_sont	_pas	_visibles	_				
	Chaque	_zone	_de		F	_île	_offre	_quelque	_chose	_de	_différent	_				
	_Mais	_tu	_peux	_vivre	_avec	_eux			[PAD]	[PAD]	[PAD]	[PAD]	[PAD]		Batch	1
	_Un	_grand	_homme	_	,	_dit	- 4	il			[PAD]	[PAD]	[PAD]		Length:	13
	_Elle	_a	_été	_menée	_en	_silence	_		[PAD]	[PAD]	[PAD]	[PAD]	[PAD]			
Г	_Tu	er	beaucou	_de	fourmis	_de	_feu	[PAD]	[PAD]	[PAD]	[PAD]	[PAD]	[PAD]	[PAD]		
	_La	_questior	_est	_de	_savoir	_si	_clin	ton	_a	_le	_cul	ot			Batch	1
	_c		_est	_vrai			[PAD]	[PAD]	[PAD]	[PAD]	[PAD]	[PAD]	[PAD]	[PAD]	Length:	14
	_Dans	_ce	_domaine	_	,	_seuls	_les	_sa	ther	j	_le	_savent	1			

Total Tokens:

160

Text classification

Implémentons les tutoriaux suivants

- https://keras.io/examples/nlp/text_classification_from_scratch/
- https://www.geeksforgeeks.org/sentiment-analysis-with-an-recurrent-neural-networks-rnn/?ref=ml_lbp
- https://www.geeksforgeeks.org/sentiment-classification-using-bert/?ref=lbp

Ecrire comme Molière

On va s'inspirer du notebook d'écriture de Shakespeare pour écrire comme Molière

dataset:

https://www.kaggle.com/datasets/guillaumegrosjean/moliere-plays-dataset

sur la base des textes; enlever les noms des personnages

with the invention of the transformer architecture are LSTM still relevant?

https://chatgpt.com/c/e53f96b6-388f-403c-90f3-bd6bb2890b1e https://claude.ai/chat/d52fa833-e313-441a-ba55-72bd3a76e223