Curs: Probabilități și Statistică Instructori: A. Amărioarei, S. Cojocea

Proiect 1

Problemă ¹

Considerăm următoarele distribuții: $\mathcal{B}(n,p)$, $\mathcal{P}(\lambda)$, $\mathcal{E}(\lambda)$, $\mathcal{N}(\mu,\sigma^2)$

- 1. Generați N=1000 de realizări independente din fiecare repartiție și calculați media și varianța esantionului.
- 2. Ilustrați grafic funcțiile de masă, respectiv funcțiile de densitate pentru fiecare din repartițiile din enunțul problemei. Considerați cate 5 seturi de parametrii diferiți pentru fiecare repartiție și suprapuneți graficele pe aceeași figură pentru fiecare rapetiție. Adăugați și legenda.
- 3. Pentru seturile de parametrii de la punctul anterior trasați funcțiile de repartiție pentru fiecare repartiție (tot suprapuse) și adăugați legenda corespunzătoare.
- 4. Scopul acestui punct este de a ilustra grafic aproximarea legii binomile cu ajutorul repartiției Poisson. Pentru o v.a. X repartizată binomial de parametrii n și p_n am văzut la curs că repartiția acesteia se poate aproxima cu cea a unei v.a. $\mathcal{P}(\lambda)$, cu $\lambda = np_n$. Fie $p_n = \frac{1}{n}$. Trasați, pentru fiecare $n \in \{10, 25, 50, 100\}$, funcția de masă, respectiv funcția de repartiție pentru $\mathcal{B}(n, p_n)$ și $\mathcal{P}(1)$ (suprapuse pe aceeași figură²).

Grupele: 241, 242, 243, 244 Pagina 1

 $^{^{1}}$ Raportul poate fi scris in Word sau \LaTeX (pentru uşurinţă recomand folosirea pachetului rmarkdown din R - mai multe informaţii găsiţi pe site la secţiune Link-uri utile). Toate simulările, figurile şi codurile folosite trebuie incluse in raport. Se va folosi doar limbajul R.

 $^{^2}$ trebuie să p
bțineți 8 figuri două pentru fiecare $n_{\rm c}$ una cu funcția de mas
ă și una cu funcția de repartiție