CNIT 176 Lab 07 10/13/2022 Question 1a: Determine the unsigned binary encoding of the number 137 10001001 Question 1b: Determine the unsigned binary encoding of the number 225 11100001 Question 1c: Determine the unsigned binary encoding of the number 212 11010100 Question 1d: Convert the following binary number to hexadecimal (hint: use 4-bit nibbles): 1110 1101 1100 1010 1101 0100 1011 0000 EDCAD4B0 Question 1e: Convert the following binary number to octal (hint: use 3-bit groups): 110 011 101 111 6357 Question 1f: Convert the following hexadecimal number to decimal: B3EF 46063 Question 1g: Determine the signed magnitude binary encoding of the number 181. 110110101 Question 1h: Determine the signed magnitude binary encoding of the number –181. 010110101 Question 1i: Find the one's complement of the positive binary number 10010110 to encode the negative quantity. 01101001 Question 1j: Find the two's complement of the positive binary number 00101110 to encode the negative quantity. 11010010

Arnay Surve

Question 2a:

7 = 0111 -7 = 1001

7 = 00000111 -7 = 11111001

<u>2b:</u>

103 = 01100111 -103 = 10011001

103 = 000000001100111 - 103 = 11111111110011001

Question 3:

01000011 = 67

11011001 = -39

11010010 = -46

10011011 = -101

10011101 = -99

01010100 = 84

10101001 = -87

Question 4:

	Binary	Octal	Hexadecimal
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F
16	10000	20	10
17	10001	21	11
18	10010	22	12
19	10011	23	13

20	10100	24	14
21	10101	25	15
22	10110	26	16
23	10111	27	17
24	11000	30	18
25	11001	31	19
26	11010	32	1A
27	11011	33	1B
28	11100	34	1C
29	11101	35	1D
30	11110	36	1E
31	11111	37	1F
32	100000	40	20

Question 5:

 $2_{10} = 10_2$

 $8_{10} = 10_8$

 $16_{10} = 10_{16}$

Question 6:

2.1010 = 2010

 $3.10_{10} = 30_{10}$

 $4 \cdot 10_{10} = 40_{10}$

 $5 \cdot 10_{10} = 50_{10}$

 $2 \cdot 2_{10} = 100_2$

 $3.2_{10} = 110_2$

 $4.2_{10} = 1000_2$

 $5 \cdot 2_{10} = 1010_2$

2.810 = 208

3.810 = 308

4.810 = 408

$$5.8_{10} = 50_8$$

$$2 \cdot 16_{10} = 20_{16}$$

$$3.16_{10} = 30_{16}$$

$$4.16_{10} = 40_{16}$$

$$5.16_{10} = 50_{16}$$

In general, the multiples of a base follow the pattern of increasing by 10 for each radix, excluding binary.

Question 7:

1010^2 = 10010

1010^3 = 100010

1010^4 = 1000010

1010^5 = 10000010

$$2_{10}^2 = 10_2$$

210^3 = 1002

210^4 = 10002

 $2_{10}^5 = 10000_2$

810^2 = 1008

810^3 = 10008

810^4 = 100008

810^5 = 1000008

16₁₀^2 = **100**₁₆

16₁₀**^3** = **1000**₁₆

16₁₀^4 = 10000₁₆

16₁₀**^5** = **100000**₁₆

In general, the powers of a base increase by a magnitude of 10 for each radix. All the above bases follow this rule.