Name – Tapas Mazumdar

ID - 2018A8B40427P

Analog Electronics Lab #8 – Study the sinusoidal and non-sinusoidal oscillators using LM741

Objectives

To study the sinusoidal and non-sinusoidal oscillators using op-amp IC LM741

- 1. RC phase shift oscillator
- 2. Wein Bridge oscillator

and draw output waveforms in each case.

Also draw the schematic for each filter and compare theoretical values with simulated ones.

Oscillators

An **oscillator** is a circuit which produces a continuous, repeated, alternating waveform without any input. Oscillators basically convert unidirectional current flow from a DC source into an alternating waveform which is of the desired frequency, as decided by its circuit components.

RC phase shift oscillator

Schematic and waveforms

C = 0.1uF

C = 0.2uF

Wein Bridge oscillator

Schematic and waveforms

C = 0.1 uF

Results

Comparison of simulated and theoretical values oscillator frequencies:

Oscillator	Theoretical value of oscillator frequency	Best simulated value of oscillator frequency
RC phase shift oscillator $C = 0.1 uF$	$\frac{1}{2\pi\sqrt{6}RC} = \frac{1}{2\pi \times \sqrt{6} \times 100 \times 0.1u} = 6.497 \text{ kHz}$	6.16 kHz
RC phase shift oscillator $C = 0.2uF$	$\frac{1}{2\pi\sqrt{6}RC} = \frac{1}{2\pi \times \sqrt{6} \times 100 \times 0.2u} = 3.249 \text{ kHz}$	3.06 kHz
Wein Bridge oscillator C= 0.1uF	$\frac{1}{2\pi RC} = \frac{1}{2\pi \times 100 \times 0.1 \text{u}} = 15.915 \text{ kHz}$	13.84 kHz
Wein Bridge oscillator C= 0.2uF	$\frac{1}{2\pi RC} = \frac{1}{2\pi \times 100 \times 0.2u} = 7.958 \text{ kHz}$	7.454 kHz

Conclusions

The minimum value of potentiometer resistance possible is 2.95 k Ω for RC phase shift oscillator and 1 k Ω for Wein Bridge oscillator below which the simulation is not possible. The values of frequencies obtained are shown in table above. At double value of capacitor, we get approximately half the frequency as expected.