A REPORT ON

AN INTELLIGENT HUMIDISTAT

BY

Priyansh Vyas	2020A7PS1388G
Krishanu Shah	2020A7PS1728G
Prateek Upadhya	2020A7PS0056G
Ojas Kanth	2020A7PS1391G
Piyush Mohite	2020A7PS0114G
Omkar Nabar	2020A7PS0119G

In partial fulfilment of the requirements of the course CS F241: Microprocessors, Programming & Interfacing (MPI)

Under the guidance of

K.R. Anupama

Department of EEE&I

LIST OF CONTENTS

LIST OF CONTENTS	2
ACKNOWLEDGEMENT	3
LIST OF COMPONENTS USED	4
PROBLEM STATEMENT	6
ASSUMPTIONS	6
JUSTIFICATIONS	7
ADDRESS MAPPING MEMORY MAPPING I/O MAPPING MEMORY AND ADDRESS MAP	7 7 8 9
SOFTWARE FLOW-CHART	10
LIST OF ATTACHMENTS	11
REFERENCES	12

ACKNOWLEDGEMENT

The successful completion of this report required a lot of guidance and support that we received throughout this project. We would like to extend our deepest gratitude to the Instructor-in-Charge (IC) of this course, Prof. K.R. Anupama for giving us this opportunity to work on such an interesting assignment and for clearing our doubts regarding the same.

We would also like to thank our seniors for guiding us all along till the completion of this report.

LIST OF COMPONENTS USED

Model Number	Component	Quantity	Specifications	Purpose
8086	Microprocessor	1	Size: 16-bitMemory: 1MB	Central Processing unit for the design.
LM020L	LCD Alphanumeric 16×1	1	 Display: 16 characters in 1 line Power Supply for LCD Drive Operating temperature: 0 - 50 °C Power supply current (Vdd = 5V): 1 - 3 mA 	Display temperature and humidity readings.
WE700	Global Water WE700/WQ101 Temperature Sensor	1	 Output: 4-20mA Range: -50 to +50° C Resolution: 2° F or 1° C Operating Voltage: 10-36VDC Warm-Up Time: 5 seconds Operating Temperature: -50 to +100°C 	Used to measure the outside temperature and provide temperature readings
WE600	Global Water WE600 Humidity Sensor	1	 4-20 mA output Accuracy: ±2% RH Operating Voltage: 10-36V DC Temp: -40 to 55°C 	Sense, measure and report the relative humidity (RH) of air.
8255	PPI	2	Programmable Peripheral Interface.	Provides I/O ports for other devices.
6116	SRAM - 2K	2	Static Random Access Memory.	Used to store temporary data (such as temperature values, humidity values, stack, etc.). Contains Data and Stack Segment.
2732	EPROM - 4K	2	Erasable Read-Only Programmable Memory	Code resides here.
74LS373	Octal Latch	3	 Supply voltage V_{cc}=4.75-5.25 V Operating Ambient Temperature Range: 0-70°C 	To latch address bus

74LS245	8-Bit Buffer	4	 Supply voltage V_{cc}= 4.75-5.25 V Free Air Operating Temperature: 0-70°C 	To buffer data bus (bi-directional)
74LS138	2	3x8 Decoder		Used for selecting signals
74LS244	1	Unidirectional buffer		Buffering the control lines
Logic Gates	Multiple	OR, NOT, NOR logic Gates		Used for building decoding logic for memory interfacing and I/O interfacing.

PROBLEM STATEMENT

A humidistat is supposed to be reset according to the outside temperature- as the outside temperature falls, the humidity level inside the house should be lower. This project aims to develop a humidistat that senses the outside temperature and adjusts the humidity accordingly. Two sensors are required: outside temperature and inside moisture. Output is provided via a simple relay with the humidifier (presumably on the furnace) being on or off. Also, readings from the humidity and temperature sensors must be displayed on an LCD. The entire system can be turned on or off using a single switch.

ASSUMPTIONS

- ALP is stored in the ROM in executable format.
- The outside temperature is between 10° C and 40° C.

Chart for optimal humidity ranges at given temperature range

Temperature (in deg C)	Relative Humidity
0-5	27%-30%
5-10	30%-33%
10-15	33%-35%
15-20	35%-38%
20-25	38%-40%
25-30	40%-43%
30-35	43%-45%
35-45	45%-48%
45-55	48%-50%
55-60	50%-53%

• When the humidifier is switched on, it decreases the humidity.

• The humidifier circuit is represented in the design via an LED, which turns on when the LED glows, and consequently, the humidifier turns off when the LED stops glowing.

JUSTIFICATIONS

• Temperature and relative humidity (RH) are already stored in the DS, and a one-degree change in temperature corresponds to one unit change in RH.

ADDRESS MAPPING

i. MEMORY MAPPING

The system uses 8kb of ROM and 4kb of RAM.

Both consist of 2 chips of 4KB and 2KB size, respectively. They are organised into odd and even banks to facilitate both byte and word size data transfers.

Random Access Memory (6116):

Even Bank:

Starting Address: 08000HEnding Address: 08FFEH

Odd Bank:

Starting Address: 08001HEnding Address: 08FFFH

Read-Only Memory (2732):

Starting Address: 00000HEnding Address: 01FFFH

The assembly code resides in the ROM and begins at address 00000H.

The address loaded as soon as the system is switched on is FFFF0H.

ii. <u>I/O MAPPING</u>

The input and output devices such as temperature & humidity sensor and LCD are connected using 8255. Both 8255 are used in Input-Output mode.

Pinout for 8255 (A)

Control Word: 10000000b

Port A is used to generate the control signal of LCD

Port B is used to give input to the LCD

PC7 is used to turn on the humidifier.

PORT TYPE	PORT ADDRESS	ТҮРЕ
A	00Н	Output
В	02H	Output
C (Lower)	04H	Output
C (Upper)	04H	Output
Control Register	06H	

Pinout for **8255** (B)

Control Word: 10011010b

Port A is used to take the digital output from ADC

PC0 – PC3 are used to give control input to ADC

PC5 is used to receive the signal of EOC.

PORT TYPE	PORT ADDRESS	ТҮРЕ				
A	10H	Input				
В	12H	Input				
C (Lower)	14H	Output				
C (Upper)	14H	Input				
Control Register	16H					

iii. MEMORY AND ADDRESS MAPS

СНІР	A1 9	A18	A17	A16	A15	A14	A13	A12	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A1	A0
EPROM 2732																				
FROM 000000h	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TO 01FFFh	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1
SRAM 6116																				
FROM 08000h	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TO 08FFFh	0	0	0	0	1	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1

SOFTWARE FLOW-CHART

LIST OF ATTACHMENTS

Temperature and Humidity sensors

Specifications

Humidity Sensor

Type: Capacitance Output: 4-20 mA Range: 0 to 100% RH Accuracy: ±2% RH

Operating Voltage: 10-36 VDC Current Draw: 3mA plus sensor output Warm Up Time: 3 seconds minimum Operating Temp: -40° to +55°C Sensor Size: 1 1/2" diameter x 7"

Weight: 1/2 lb.

Temperature Sensor Type: Precision RTD Output: 4-20 mA Range: -50°C to +50°C Accuracy: ±0.2°F or ±0.1°C Operating Voltage: 10-36 VDC Current Draw: Same as sensor output Warm Up Time: 5 seconds minimum Operating Temp: -50° to +100°C Sensor Size: 3/4" diameter x 4 1/2" Weight: 1/2 lb.

LCD Display Specifications

LMO20L·LMO20XMBL

 ■ 16 character x 1 line ■ Controller LSI HD44780 is built-in (See page 79). ■ +5V single power supply ■ Display color: LM020L: Gray LM020XMBL: New-gray
MECHANICAL DATA (Nominal dimensions) Module size
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
ELECTRICAL CHARACTERISTICS $Ta = 25^{\circ}C, V_{DD} = 5.0 \text{ V} \pm 0.25 \text{ V}$ $!nput "high" voltage (V_{IH}) 2.2 \text{ V min.}$ $!nput "low" voltage (V_{IL}) 0.6 \text{ V max.}$ $!Output high voltage (V_{OH}) (-I_{OH} = 0.2 \text{ mA}) 2.4 \text{ V min.}$ $!Output low voltage (V_{OL}) (I_{OL} = 1.2 \text{ mA}) 0.4 \text{ V max.}$ $!Power supply current (I_{DD}) (V_{DD} = 5.0 \text{ V}) 10 \text{ mA typ.}$ $!2.0 \text{ mA max.}$ $!POWER SUPPLY FOR LCD DRIVE (Recommended) (V_DD-V_O)$
Duty = $1/16$ Range of $V_{DD} - V_{O}$

Ta = 25°C												4.4 V typ.
$Ta = 50^{\circ}C$									٠.	,		4.2 V typ.

OPTICAL DATA See page 7

INTERNAL PIN CONNECTION

Pin No.	Symbol	Level	F	unction						
1	Vss	-	٥٧	T						
2	V _{DD}		+5V	Power supply						
3	Vo	T -	-	1						
4	RS	H/L	L: Instruction code input H: Data input							
5	R/W	H/L	H: Data read (LCD module→MPU) L: Data write (LCD module ←MPU							
6	E	H, H→L	Enable signal							
7	DBO	H/L								
8	D81	H/L								
9	DB2	H/L								
10	DB3	H/L	Data bus li							
11	DB4	H/L	Note (
12	DB5	H/L	1000 117, 127							
13	DB6	H/L								
14	DB7	H/L								

Notes:

In the HD44780, the data can be sent in either 4-bit 2-operation or 8-bit 1-operation so that it can interface to both 4 and 8 bit MPU's.

- (1) When interface data is 4 bits long, data is transferred using only 4 buses of DB₄~DB, and DB₀~DB, are not used. Data transfer between the HD44780 and the MPU completes when 4-bit data is transferred twice. Data of the higher order 4 bits (contents of DB₄~DB, when interface data is 8 bits long) is transferred first and then lower order 4 bits (contents of DB₀~DB, when interface data is 8 bits long).
- (2) When interface data is 8 bits long, data is transferred using 8 data buses of DB $_{\rm 0}$ \sim DB $_{\rm 7}$

REFERENCES

- 1. https://www.ysi.com/we600
- $2. \ \underline{https://www.digchip.com/datasheets/parts/datasheet/000/LM020L-pdf.php}$