CS 580 ALGORITHM DESIGN AND ANALYSIS

Beyond NP

Vassilis Zikas

SUMMARY

- Class so far:
 - Efficient algorithms
 - Probably hard problems (NP-complete)
- Today:
 - A glimpse beyond: PSPACE

- So far, we've been thinking of time as the valuable resource, so we focused on polynomial time algorithms
- P: set of problems solvable in polynomial time
- This lecture: treat space as the fundamental resource

• PSPACE: set of problems solvable in polynomial space

- Observation: $P \subseteq PSPACE$
 - Proof: a polynomial time algorithm can "consume" at most a polynomial amount of space

- What can we do with polynomial space?
- Different mentality than "time"
- Count from 0 to 2^n -1
 - Only needs *n* bits!
- Not super exciting as an algorithm, but highlights that space can be re-used!
 - Time, of course, cannot

- Claim: 3-SAT is in PSPACE
- Proof:
 - Enumerate all possible assignments
 - For each assignment check if it satisfies all clauses
- Theorem: $NP \subseteq PSPACE$
- Proof:
 - Consider an arbitrary problem $X \in NP$
 - ∘ $X \le_P 3$ -SAT, by definition, so there is a poly-time algorithm that solves X by calling an oracle for 3-SAT
 - This algorithm (and oracle) can be implemented in polynomial space

- PSPACE is closed under complements
- Therefore, $co-NP \subseteq PSPACE$

• QSAT: Let ϕ be a CNF formula. Is the following propositional formula true?

$$\exists x_1 \forall x_2 \exists x_3 \forall x_4 \dots \forall x_{n-1} \exists x_n \phi(x_1, \dots, x_n)$$

• Assume *n* is odd

• 3-SAT is just

$$\exists x_1 \exists x_2, \dots, \exists x_n \ \phi(x_1, \dots, x_n)$$

• QSAT: Let ϕ be a CNF formula. Is the following propositional formula true?

$$\exists x_1 \forall x_2 \exists x_3 \forall x_4 \dots \forall x_{n-1} \exists x_n \ \phi(x_1, \dots, x_n)$$

• Intuition: Alice picks value for x_1 , the Bob picks value for x_2 , the Alice picks x_3 , and so on. Can Alice satisfy ϕ no matter what Bob does?

• QSAT: Let ϕ be a CNF formula. Is the following propositional formula true?

$$\exists x_1 \forall x_2 \exists x_3 \forall x_4 \dots \forall x_{n-1} \exists x_n \ \phi(x_1, \dots, x_n)$$

- $(x_1 \lor x_2) \land (x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_2} \lor x_3)$
- Yes: Alice sets $x_1 = 1$. Bob sets x_2 . Alice sets $x_3 = x_2$ and all clauses are satisfied
- $(x_1 \lor x_2) \land (\overline{x_2} \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_2} \lor x_3)$
- No:
 - If Alice sets $x_1 = 1$, Bob could set $x_2 = 1$. Alice loses.
 - If Alice sets $x_1 = 0$, Bob could set $x_2 = 0$. Alice loses

- Theorem: $QSAT \in PSPACE$
- Proof
 - Recursively try all possibilities
 - Only need one bit of information from each sub-problem
 - Amount of space proportional to the call stack

8-PUZZLE

• 8-puzzle:

- Board: 3-by-3 grid of tiles labeled 1-8.
- Legal move: slide neighboring tile into blank (white) square.
- Find sequence of legal moves to transform initial configuration into goal configuration.

• Input:

- ∘ Conditions: set $C = \{C_1, ..., C_n\}$
- Initial configuration: Subset $c_0 \subseteq C$ of conditions initially satisfied
- Goal configuration: Subset $c^* \subseteq C$ of conditions we seek to satisfy
- Operators: Set $O = \{O_1, \dots, O_k\}$
 - To invoke operator O_i we must satisfy some prerequence conditions
 - After we invoke operator O_i some conditions become true and other become false
- Question: Is it possible to apply sequence of operators to get from initial configuration to goal configuration?

- Example: 8 puzzle
- Conditions: $C_{i,j}$: $1 \le i, j \le 9$
 - $C_{i,j}$ means that tile i is in square j
- Initial state: $c_0 = \{C_{1,1}, C_{2,2}, \dots, C_{7,8}, C_{8,7}, C_{9,9}\}$
- Goal state: $c^* = \{C_{1,1}, ..., C_{9,9}\}$
- Operators:
 - Conditions to apply $O_i = \{C_{1,1}, ..., C_{7,8}, C_{8,7}, C_{9,9}\}$
 - After invoking O_i , conditions $C_{7,9}$ and $C_{9,8}$ become true
 - After invoking O_i , conditions $C_{7,8}$ and $C_{9,9}$ become false

1	2	3
4	5	6
8	9	7

AN ASIDE

 How to check if an 8-puzzle is solvable: Any legal move preserves the parity of the number of inversions: pairs of numbers in the wrong order

Not really an algorithm, but still pretty cool

- Think of planning as a very very large graph
- There is a node for each of the 2^n possible configurations (T/F values for conditions)
- There is a directed edge from configuration c to configuration c', if one of the operators can take us from c to c'
- Question: is there a directed path from c_0 to c^* ?

• The configuration graph can have 2^n nodes and the shortest path can be of length $2^n - 1$

Concrete example:

- $c_0 = (0,0,0,...,0)$, i.e. all conditions 0
- $c^* = (1,1,1,...,1)$
- To invoke O_i must satisfy C_1 , ..., C_{i-1}
- After invoking, C_i becomes true and C_1 , ..., C_{i-1} become false
- ∘ Solution: {} $\rightarrow^{O_1} \{C_1\} \rightarrow^{O_2} \{C_2\} \rightarrow^{O_1} \{C_1, C_2\}...$
- Number of steps: $2^n 1$

- Claim: PLANNING is in EXPTIME
- Proof:
 - Run BFS on the configuration graph

- Theorem: PLANNING is in PSPACE
- Proof:
 - Intuition: BFS and DFS are not aggressive enough in terms of space re-usage
 - Need to go around this
 - Suppose there is a path from c_1 to c_2 of length L
 - Path from c_1 to midpoint and from midpoint to c_2 are each of length $\leq L/2$
 - Enumerate all possible midpoints!
 - Recurse. Depth of recursion log₂ L

PSPACE-COMPLETENESS (9.5 IN KT)

PSPACE COMPLETE

- Definition: A problem X is PSPACE-hard if for every problem Y in PSPACE $Y \leq_P X$
- Definition: A problem *X* is PSPACE-complete if (1) *X* is in PSPACE, (2) *X* is PSPACE-hard.

- Theorem [Stockmeyer-Meyer 1973]: QSAT is PSPACE-complete
- Corollary: PSPACE ⊆ EXPTIME
 - Proof: We gave an exponential time algorithm for QSAT, and QSAT is PSPACE-complete.

COMPLEXITY

What we know:

$$P \subseteq NP \subseteq PSPACE \subseteq EXPTIME$$
 and

$$P \subset EXPTIME$$

- What we don't know:
 - Which of the above inclusions are strict?
 - We think all of them
 - We know it should be at least one of them
 - We have proofs for zero of them

MORE PSPACE-COMPLETE PROBLEMS

- Competitive facility location
- Generalizations of games
 - Othello, Hex, Shanghai, Sokoban, etc
 - Note: generalized chess and go and EXPTIMEcomplete
- Given a memory restricted Turing Machine does it terminate in at most *k* steps?
- Do two regular expressions describe different languages?
- Is a deadlock state possible within a system of communicating processors?

- Input: Graph with positive node weights and a target B
- Game: Two competing players alternate in selecting nodes. Not allowed to select a node if any of its neighbors has been selected.
- Question: Can the second player guarantee at least *B* units of profit?

- Claim: COMPETITIVE FACILITY LOCATION is PSPACE-complete
- Proof:
 - To show that it is in PSPACE, we can use almost the same algorithm as QSAT
 - Recursion step has n choices instead of 2
 - To show that it is PSPACE-hard, we reduce QSAT to it. I.e. given an instance of QSAT we construct a game such that player 2 can get utility *B* (win) iff the QSAT formula is false

Construction:

- We are given a formula $\phi(x_1, ..., x_n) = C_1 \wedge \cdots \wedge C_k$ of QSAT
- Include a node for each literal and its negation, and connect them
 - At most one of x_i and $\overline{x_i}$ can be selected
- Choose $c \ge k + 2$ and put weight c^i on literal x_i and its negation
- \circ Set $B = c^{n-1} + c^{n-3} + \dots + c^4 + c^2 + 1$
 - Ensures variables are selected in order x_n , x_{n-1} , ...
- So far, player 2 will lose by 1
 - The max they can get is $c^{n-1} + c^{n-3} + \cdots + c^2$

- Give player 2 one more chance!
- Add a node with weight 1 for each clause C_j (and connect with the corresponding literal nodes)
- Player 2 can take this extra move if and only if there exists some clause that is left unsatisfied

SUMMARY

A glimpse beyond NP