

SIMULATION MODELLING WITH R-SIMMER

Tom Lawton – NHS-R Conference Nov 2019

tom.lawton@bthft.nhs.uk

@LawtonTri

Modelling – The Need

■ 16 beds x 365 days

Does NOT neatly provide 5840 days of care

Can't just "slot" patients together as they don't arrive on demand

Row Labels	Average of LOS
Planned local surgical admission	3.8
Non Planned Admission	5.9
Grand Total	5.4

Modelling - Types

■ Discrete Event Simulation

Entities (patients) moving between states. Queues and servers Stochastic, individual. Probability (Markov chain) vs data driven

System Dynamics

Stocks (patients) and flows and/or time series approaches Aggregate, deterministic. Hybrid approach with DES/ABS

Agent Based Simulation

Agents (patients) are active rather than servers Stochastic, can be used with DES

r-simmer "DES for R"

- Trajectory
- Resource (Server & Queue)
- Arrival

■ Arrivals

Generator, Attributes, Priority

Activities

Select, Seize, Release, Timeout, Renege, Branch, Clone, Trap, Rollback

Trajectories

```
t0 <- <pre>trajectory() %>%
  seize("res0", 1) %>%
  branch(function() 1, c(TRUE, FALSE),
         trajectory() %>%
           clone (2,
                 trajectory() %>%
                   seize("res1", 1) %>%
                   timeout(1) %>%
                   release("res1", 1),
                 trajectory() %>%
                   trap("signal",
                         handler=trajectory() %>%
                          timeout(1)) %>%
                   timeout(1)),
         trajectory() %>%
           set attribute("dummy", 1) %>%
           seize("res2", function() 1) %>%
           timeout(function() rnorm(1, 20)) %>%
           release("res2", function() 1) %>%
           <u>release</u>("res0", 1) %>%
           rollback(11)) %>%
  synchronize() %>%
  rollback(2) %>%
  release("res0", 1)
```


Trajectories

Modelling technique

- Mixed, mostly data driven technique
- Inputs traditionally modelled (Poisson/exponential)
- Patients (demand) sampled from real data
- Rules to govern interaction with the system

 System may not be identical to the one which "generated" the data
- Monte-Carlo: Repeatedly generate a single year

ICU Rules

Patient Types

Emergency – no control

"Unplanned Local Admission"

Can be transferred out to other hospitals (this is bad)

Elective - need operation but could be delayed

"Planned Local Surgical Admission"

Deferral for usually a week

Repatriations – people we've transferred out (clinical/non-clinical)

They will usually ask for a bed daily

Transfers In - from other hospitals

Can be rejected

ICNARC Data (CCMDS)

- Level 3 sickest patients with most support (ICU)

 1:1 nursing
- Level 2 less unwell but still too demanding for ward (HDU) 1:2 nursing
- Level 1 could be managed on ward with extra input (discharge) 1:4 nursing in theory, 1:2 usually in practice
- Level O delayed discharge
 Usually treated as level 1
- Modelling: must assume a "direction of travel"

Model Environment Suggestions

■ Tick Rate

Days

■ Resources

Beds (16) Half-A-Nurse (24)

■ Trajectories

Initial trajectories for each patient type
(emergency, elective main ones)
Common trajectory to select a real patient
Common trajectory to use resources (suggest L3>L0)

Generator Suggestions

■ Poisson distribution

```
rpois(1,x)
```

■ Each day – real values indexed by:

Admission type

Day of week (weekdays ()) or business day (is.bizday())

■ r-simmer needs inter-arrival gaps (-1 to end)

from to() helper function

More advanced: use of closure to store current date & last patient

Trajectory suggestions

■ Set up appropriate patient

Store L3,2 etc days in attributes?
Or store key to an external dataframe?

■ Seize bed, appropriate nursing resource

Failure (renege_in()) - record event. Retry?

■ Timeout

L3,2,1,0 days

Remember to release nursing resource on L3->2 transition

■ Release

```
release all()
```

Coding

- https://r-simmer.org/
 Articles "The Bank Tutorial"
- https://github.com/thigger/ICU-Model
- ICNARC Test Data.csv

 Date, admission type, days of care L3-L0
- ICUModel.R

An example final model

github examples

■ WORKSHOP.md

Instructions and suggestions for workshop

- 1 Partmodel-BedsOnly.R
 - Trajectory and random generators defined. Models beds only
- 2 Partmodel-AddedNurses.R
 - Random generator, random days. Nurses added
- 3 Partmodel-ElectiveAndEmergency.R
 - Separate trajectories for elective and emergency patients

github examples

- 4 Partmodel-DaysAsAttributes.R
 - Attributes defined for days at different levels
- 5 Partmodel-PoissonGenerator.R
 - Generator upgraded to a closure with variable Poisson process
- 6 Partmodel-DataDriven.R
 - Generator and attributes pull from real data. Monte-Carlo
- ICUModel.R
 - Full model including repatriations/transfers in