Critérios de Teste Estrutural Grafo de Fluxo de Controle

Prof.^a Érica Souza

Técnicas de Teste

Teste Funcional (Caixa Preta)

- ▶ Testes baseados na especificação (de requisitos)
- A funcionalidade testada e considerada uma caixa preta

Teste Estrutural (Caixa Branca)

- Testes baseados na estrutura interna do programa
- Analisar o código fonte (caixa branca)

Critérios de Teste

Quais casos de teste com maior chance de revelar defeitos

 Um critério pode ser usado para selecionar/projetar os casos de teste

Critérios de Teste Estrutural

- Vários critérios de teste estrutural
 - Critérios baseado em Fluxo de controle
 - Teste de Mutação
- Em geral, a maioria dos critérios da técnica estrutural utiliza uma representação de programa conhecida como "grafo de fluxo de controle" (GFC)
- A representação de um programa P m um GFC consiste em estabelecer uma representação entre **vértices** (**nós**) dos blocos de código e em indicar possíveis fluxos de controles entre blocos por meio de **arestas** (**arcos**)

- Grafo direcionado G = (V, E, s)
- Construído com base no fluxo de controle do programa
- Sendo:
 - V → Nós (Vértices)
 - ▶ Blocos de instrução que não possuem desvios de execução
 - ► E → Arcos (Arestas)
 - Representa mudanças no fluxo de execução
 - s ∈ V é o nó de entrada

- Mapeando o programa para GFC
 - ▶ If
 - If-else
 - While
 - For
 - Do-While
 - Switch
 - Condições compostas
 - ▶ And (&&) e Or (||)

- Mapeando o programa para o GFC
 - ▶ If e If-else

- Mapeando o programa para GFC
 - While, For, Do-While


```
A;
do {
B;
} while(a > 0);
C;
```

- Mapeando o programa para GFC
 - Switch

```
A;
switch(a) {
  case 1: B; break;

  case 2: D; break;

  default: E;
}
C;
```


- Mapeando o programa para GFC
 - Condições Compostas
 - ▶ And (&&) e Or (II)

Exemplo 01

```
q = I;
b = 2;
c = 3;
   if (a == 2) {
     x = x + 2;
   else {
      x = x / 2;
   p = q / r;
   if (b / c > 3) {
      z = x + y;
```

Exemplo 01

```
② if (a == 2) {
 3 \times = \times + 2;
   else {
  4 \times = \times / 2;
6 p = q / r;
6 if (b / c > 3) {
  } ....
```


Exemplo 02 – Bubble Sort

```
public int∏ bolha (int∏ a, int size){
     int i, j, aux;
     for (i = 0; i < size; i ++) {
       for (j = size - 1; j > i; j--)
        if( a [ j - l] > a [ j ] ) {
           aux = a[j-I];
          a[j-l] = a[j];
           a[j] = aux;
     return a;
```

Exemplo 02 – Bubble Sort

```
public int∏ bolha (int∏ a, int size){
  1 int i, j, aux;
     0 0 0 for (i = 0; i < size; i ++) {
        for (j = size - 1; j > i; j--) {
    (3) if( a [ j - I] > a [ j ] ) {
           aux = a [j - I];
       a[j-1] = a[j];
           a[j] = aux;
     return a;
```


Critérios de Teste

 Todos-Nós → CTs que executem cada nó ao menos uma vez (line-coverage) – cobertura das linhas de código

 Todos-Arcos → CTs que executem cada arco ao menos uma vez (branch-coverage) cobertura por desvios

Ferramenta de cobertura de código

Para cobertura de código utilizar o plugin TikiOne JaCoCoverage

- Instalação:
 - Olhar pdf no Moodle "Fluxo de controle Ferramenta"

Exercício

- Elabore um casos de teste (JUnit) para o exemplo do Bubble Sort considerando a execução de diferentes arcos.
 - Use a ferramenta JaCoCo para confirmar a cobertura dos arcos

