Билет 96

Aвтор1, ..., AвторN

23 июня 2020 г.

Содержание

0.1	билет 90: наиоольшее и наименьшее значение квадратичнои формы на единичнои
	сфере. Формула для нормы матриц

Билет 96 СОДЕРЖАНИЕ

0.1. Билет 96: Наибольшее и наименьшее значение квадратичной формы на единичной сфере. Формула для нормы матриц.

Теорема 0.1.

Наибольшее (наименьшее) значение на квадратичной формы на сфере равно наибольшему (наименьшему) собственному числу матрицы, задающей данную форму.

Доказательство.

Будем находить наименьшее и наибольшее значение с помощью метода множителей Лагранжа. Для этого надо соорудить фнукцию, которую мы будем минимизировать и функцию-уравнение, которое будет является условием, при котором мы ищем минимум. $f(x) = Q(x) = \sum_{i,j=1}^{n} c_{ij}x_ix_j$ -

функция, которую хотим минимизировать (максимизировать). $\Phi(x) = ||x||^2 - 1 = 0 = \sum_{i=1}^n x_i^2 - 1$ - функция-условие. Данному условию удовлетворяют точки, норма которых равна $1 \Leftrightarrow$ лежат на единичной сфере.

Стоит заметить, что метода Лагранжа позволяет найти точки-экстрмумы, а наша текущая задача состоит в том, чтобы найти наибольшее и наименьшее значение функции, но так как множество на которому мы рассматриваем нашу функцию - компакт (единичная сфера - компакт), то по теореме Вейерштрасса, функция достигает своего наибольшего и наименьшего значения на данном множетсво, значит достаточно рассмотреть точки-экстремумы.

Составим функцию $F(x) = f(x) - \lambda \Phi(x)$. Такая функция называется функцией Лагранжа. Она удобна, тем, что по теореме Лагранжа (об этом методе), для точек условного экстремума grad f линейно зависим с grad $\Phi_1, \dots, \operatorname{grad} \Phi_n$. Значит $\exists \lambda_1, \dots, \lambda_n : \operatorname{grad} f = \sum_{i=1}^n \lambda_i \operatorname{grad} \Phi_i$. Чтобы найти лямбды можно приравнять нулю все частные производные F, так как это и означает линейную зависимость $\operatorname{grad} f$, $\operatorname{grad} \Phi_1, \dots, \operatorname{grad} \Phi_n$.

Решим уравения в нашей задаче, для этого продифференцируем F.

$$F'_{x_k} = \left(\sum_{i,j=1}^n a_{ij} x_i x_j - \lambda \sum_{i=1}^n x_i^2\right)'_{x_k} = a_{kk} \cdot 2x_k + \sum_{i \neq k} a_{ik} x_i + \sum_{i \neq k} a_{ki} x_i - 2\lambda x_k = 0$$

Производная f по x_k имеет такой вид, так как f содержит слагемые вида: $a_{kk}x_k^2, a_{ki}x_kx_i, a_{ik}x_ix_k$. Сгруппируем слагаемые:

$$F'_{x_k} = 2\sum_{i=1}^{n} a_{ik}x_i - 2\lambda x_k = 0$$

Заметим, что $\sum_{i=1}^{n} a_{ik} x_i = Ax$, где A - матрица квадратичной формы.

Тогда уравнение приобретает вид:

$$Ax - \lambda x = 0$$

Это ни что иное, как равенство для собственных векторов матрицы A. Значит точки эксремума это собственные вектора, а λ -ы равны собственным числам. Посчитаем значение f(x) = Q(x) в данных точках.

$$Q(x) = \langle Ax, x \rangle = \langle \lambda x, x \rangle = \lambda \langle x, x \rangle = \lambda ||x||^2 = \lambda$$

Значит наибольшее (наименьшее) значение Q(x) равно набиольшему (наименьшему) собственному числу и достигается оно на соответсвующем собственном векторе.

Билет 96 COДЕРЖАНИЕ

Замечание.

Можно было не требовать, чтобы радиус сферы был равен 1, если положить радиус сферы равным R, то изменились бы только последнии выкладки в доказательстве, а именно экстремальное значение формы стало бы равным $R^2 \cdot \lambda$ (так как тогды бы ||x|| = R).

Следствие.

$$A: \mathbb{R}^n \mapsto \mathbb{R}^n$$
, тогда $||A|| = \max\{\sqrt{\lambda}: \lambda - \text{ собственное число } A^\top A\}$

Доказательство.

Оценим норму в квадрате:

$$||A||^2 = \max_{||x||=1} ||Ax||^2 = \max_{||x||=1} \langle Ax, Ax \rangle = \max_{||x||=1} \langle A^\top Ax, x \rangle$$

- 1. Воспользовались одним из определений нормы оператора
- 2. Воспользовались $||a||^2 = \langle a, a \rangle$
- 3. Воспользовались фактом $\langle a, Ab \rangle = \langle A^{\top}a, b \rangle$

 $A^{\top}A$ - симмитричная матрица \Longrightarrow задает какую-то квадратичную форму. Не сложно заметить, что $\langle A^{\top}Ax, x \rangle = Q(x)$, для формы Q, которая задается матрицей $A^{\top}A$. Получили выражение из предыдущей теормемы

$$\max_{||x||=1} \left\langle A^{\top} A x, x \right\rangle = \max$$
 собственное число

Так как оценивали норму в квадрате, то

$$||A|| = \max \sqrt{\lambda}$$