Running head: ELSSP 1

- ¹ Characterizing North Carolina's Deaf/Hard-of-Hearing Infants and Toddlers: Predictors of
- Word Learning, Diagnosis, and Intervention
- Erin Campbell¹ & Elika Bergelson¹
- ¹ Duke University

Characterizing North Carolina's Deaf/Hard-of-Hearing Infants and Toddlers: Predictors of
Word Learning, Diagnosis, and Intervention

Introduction

In the United States, 1-2 children are born with hearing loss, per 1,000 births (CDC, 8 2018). This translates to 114,000 Deaf or Hard of Hearing (DHH) children born in the U.S. per year (Martin, Hamilton, Osterman, & Driscoll, 2019). Of these 114,000, ~90\% will be 10 born to hearing parents (Mitchell & Karchmer, 2004), in a home where spoken language is 11 likely the dominant communication method. Depending on the type and degree of hearing 12 loss and whether the child uses amplification, spoken linguistic input will be partially or 13 totally inaccessible. Some of these children will develop spoken language within the range of 14 their hearing peers (Geers, Mitchell, Warner-Czyz, Wang, & Eisenberg, 2017; Verhaert, 15 Willems, Van Kerschaver, & Desloovere, 2008), but many will face persistent spoken language deficits (Eisenberg, 2007; Luckner & Cooke, 2010; Moeller, Tomblin, Yoshinaga-Itano, Connor, & Jerger, 2007; Sarchet et al., 2014), which may later affect reading ability (Kyle & Harris, 2010) and academic achievement (Karchmer & Mitchell, 2003; Qi & Mitchell, 2012).

Despite many excellent studies examining language development in DHH children,
there is still a gap in the literature describing and analyzing spoken language development
across the full range of children receiving state services for hearing loss, with many studies
focusing in on specific subgroups (e.g. children under age X with Y level of hearing loss and
Z amplification approach, e.g. Vohr et al. (2008); Yoshinaga-Itano, Sedey, Wiggin, and
Mason (2018)). In what follows, we first summarize the previous literature on predictors of
spoken language outcomes in DHH children. We then provide a brief overview of a common
vocabulary measure used in the current study, the MacArthur-Bates Communicative
Development Inventory (CDI). Finally, we turn to an empirical analysis of early vocabulary
in a wide range of young children receiving state services in North Carolina. We have two
broad goals in what follows. First, we aim to provide a comprehensive description of a

heterogeneous group of young children who receive state services for hearing loss. Second, we

- ³² aim to connect the intervention approaches and child characteristics of this sample with
- children's vocabulary, with the broader goal of considering the success of early diagnosis and
- 34 intervention initiatives.

Predictors of Language Outcomes

- Though the literature points towards spoken language delays and deficits for DHH
- children, this is a highly variable population with highly variable outcomes (Pisoni,
- 38 Kronenberger, Harris, & Moberly, 2018). Previous research indicates that gender (Ching et
- al., 2013; Kiese-Himmel & Ohlwein, 2002), additional disability (Ching et al., 2013; Verhaert
- et al., 2008; Yoshinaga-Itano, Sedey, Wiggin, & Chung, 2017), degree and configuration of
- hearing loss (Ching et al., 2013; de Diego-Lázaro, Restrepo, Sedey, & Yoshinaga-Itano, 2018;
- Vohr et al., 2011; Yoshinaga-Itano et al., 2017), amplification (Walker et al., 2015),
- communication (Geers et al., 2017), and early diagnosis/intervention (Yoshinaga-Itano et al.,
- 44 2017, 2018) predict language outcomes in DHH children. We first provide a brief literature
- 45 review on the effect of these predictors on language skills in DHH children.
- Gender. For hearing children, the literature points to a female gender advantage in
- early language acquisition. Girls speak their first word earlier (Macoby, 1966), have a larger
- 48 (Bornstein, Hahn, & Haynes, 2004; Fenson et al., 1994; Frank, Braginsky, Yurovsky, &
- Marchman, 2017) and faster-growing vocabulary (Huttenlocher, Haight, Bryk, Seltzer, &
- 50 Lyons, 1991), and stronger grammatical and phonological skills (Lange, Euler, & Zaretsky,
- 51 2016; Özçalışkan & Goldin-Meadow, 2010). This finding appears to be consistent across
- studies (Wallentin, 2009), various spoken languages (Frank, Braginsky, Marchman, &
- Yurovsky, 2019), and gesture (Özçalışkan & Goldin-Meadow, 2010).
- The DHH literature presents a more mixed (though rather understudied) picture. On
- one hand, DHH girls, like hearing girls, have been found to have a larger spoken vocabulary
- than DHH boys (Ching et al., 2013; Kiese-Himmel & Ohlwein, 2002). However, in contrast

to their hearing peers, DHH children do not seem to show a gender-based difference for some aspects of syntactic development (Pahlavannezhad & Tayarani Niknezhad, 2014).

Comorbidities. Additional co-occurring disabilities occur frequently in the DHH population, perhaps as much as three times more than in the hearing population (Pollack, 1997). Incidence estimates for co-occurring disabilities in DHH children range from 25-51% (Bruce & Borders, 2015; Guardino, 2008; Holden-Pitt & Diaz, 1998; Luckner & Carter, 2001; Picard, 2004; Schildroth & Hotto, 1996; Soukup & Feinstein, 2007), with approximately 8% of DHH children living with 2 or more co-occurring disabilities (Schildroth & Hotto, 1996).

Some of these conditions, particularly those which carry risk of developmental delay (e.g., Down syndrome), result in language delays independent of hearing loss (Chapman, 1997; Kristoffersen, 2008; Weismer, Lord, & Esler, 2010). These effects vary by the nature of the specific disability (Cupples et al., 2014, 2018), with cognitive ability more predictive of language outcomes than presence or absence of additional disability (Meinzen-Derr, Wiley, Grether, & Choo, 2011; Sarant, Holt, Dowell, Richards, & Blamey, 2008). Disability and hearing loss likely each contribute to a given child's spoken language development (Ching et al., 2013; Rajput, Brown, & Bamiou, 2003; Van Nierop et al., 2016), with differential effects of each (Vesseur et al., 2016). In some cases, additional disabilities appear to interact with hearing loss to intensify developmental delays (Birman, Elliott, & Gibson, 2012; Pierson et al., 2007).

Furthermore, incidence of hearing loss is higher among children born premature

(defined as < 37 weeks gestational age). Compared to an incidence of 0.2% in full-term

infants, incidence of hearing loss in extremely premature infants (defined as < 33 weeks

gestational age) ranges 2–11%, with increased prematurity associated with increased rates of

hearing loss (Wroblewska-Seniuk, Greczka, Dabrowski, Szyfter-Harris, & Mazela, 2017).

Independently of hearing status, prematurity is linked to increased risk of language delay and disorder (Barre, Morgan, Doyle, & Anderson, 2011; Carter & Msall, 2017; Cusson,

```
2003; Rechia, Oliveira, Crestani, Biaggio, & de Souza, 2016; Van Noort-van Der Spek,
   Franken, & Weisglas-Kuperus, 2012; Vohr, 2014). Unfortunately, research on language
   development in premature DHH children is scant (Vohr, 2016), so it remains unclear how
85
   hearing loss and prematurity may interact within spoken language skills. One study of
   premature infants finds that auditory brainstem response during newborn hearing screening
   predicts language performance on the PLS-4 at age 3 (Amin, Vogler-Elias, Orlando, & Wang,
   2014), suggesting a link between prematurity, hearing loss, and language development in
   early childhood, though further research is needed in this domain. In extremely premature
   DHH children, incidence of additional disabilities may be as high as 73% (Robertson,
   Howarth, Bork, & Dinu, 2009). Indeed, pre-term infants with comorbidities have been found
   to be more likely to also have hearing loss than those without comorbidities (Schmidt et al.,
93
   2003), further complicating language development for this population.
         Audiological Characteristics. Hearing loss varies in severity, ranging from slight
95
   to profound (Clark, 1981). More severe hearing loss (less access to spoken language)
96
   typically results in more difficulty with spoken language in infancy (Vohr et al., 2008), early
97
   childhood (Ching et al., 2010, 2013; Sarant et al., 2008; Sininger, Grimes, & Christensen,
   2010; Tomblin et al., 2015) and school-age children (Wake, Hughes, Poulakis, Collins, &
   Rickards, 2004). Although profound hearing loss is associated with more pronounced spoken
100
   language difficulty, even mild to moderate hearing loss is associated with elevated risk of
101
   language disorders (Blair, Peterson, & Viehweg, 1985; Delage & Tuller, 2007).
102
         Hearing loss also varies in whether it affects one ear or both. Bilateral hearing assists
103
   speech perception, sound localization, and loudness perception in quiet and noisy
   environments (Ching, Van Wanrooy, & Dillon, 2007). The literature on hearing aids and
105
   cochlear implants also points to benefits for bilateral auditory input (Lovett, Kitterick,
106
   Hewitt, & Summerfield, 2010; Sarant, Harris, Bennet, & Bant, 2014; Smulders et al., 2016).
107
   At school-age, 3-6% of children have unilateral hearing loss (Ross, Visser, Holstrum, Qin, &
108
   Kenneson, 2010). Although children with unilateral hearing loss have one "good ear," even
```

109

mild unilateral hearing loss has been tied to higher risk of language delays and educational
challenges relative to hearing children (Kiese-Himmel, 2002; Lieu, 2004, 2013; Lieu,
Tye-Murray, & Fu, 2012; Vila & Lieu, 2015). Just as in the bilateral case, more severe
hearing loss leads to greater deficits in language and educational outcomes for children with
unilateral hearing loss (Anne, Lieu, & Cohen, 2017; Lieu, 2013).

Many DHH children receive hearing aids (HAs) or cochlear implants (CIs) to boost access to the aural world. These devices have been associated with better speech perception and spoken language outcomes (Niparko et al., 2010; Walker et al., 2015; Waltzman et al., 1997). In turn, aided audibility predicts lexical abilities with children in HAs (Stiles, Bentler, & McGregor, 2012).

For both hearing aids and cochlear implants, earlier fit leads to better spoken language 120 skills, if the amplification is effective. For hearing aids, some studies find that children with 121 milder hearing loss who receive hearing aids earlier have better early language achievement 122 than children who are fit with hearing aids later (Tomblin et al., 2015), but this finding does 123 not hold for children with severe to profound hearing loss (Kiese-Himmel, 2002; Watkin et 124 al., 2007) (for whom hearing aids are generally ineffective). Analogously, children who are 125 eligible and receive cochlear implants earlier have better speech perception and spoken 126 language outcomes than those implanted later (Artières, Vieu, Mondain, Uziel, & Venail, 127 2009; Dettman, Pinder, Briggs, Dowell, & Leigh, 2007; Miyamoto, Hay-McCutcheon, Kirk, 128 Houston, & Bergeson-Dana, 2008; Svirsky, Teoh, & Neuburger, 2004; Yoshinaga-Itano et al., 129 2018), with best outcomes for children receiving implants before their first birthday 130 (Dettman et al., 2007). 131

Communication. Total Communication (TC) refers to communication that

combines speech, gesture, and elements of sign, sometimes simultaneously. Total

communication, while it often includes elements of sign, such as individual signs, is not a

sign language, such as American Sign Language. Clinicians currently employ TC as an

alternative or augmentative communication method for children with a wide range of disabilities (Branson & Demchak, 2009; Gibbs & Carswell, 1991; Mirenda, 2003).

Compared to total communication, DHH children using an exclusively oral approach 138 have better speech intelligibility (Dillon, Burkholder, Cleary, & Pisoni, 2004; Geers et al., 139 2017; Geers, Spehar, & Sedey, 2002; Hodges, Dolan Ash, Balkany, Schloffman, & Butts, 140 1999) and auditory perception (Geers et al., 2017; O'Donoghue, Nikolopoulos, & Archbold, 141 2000). That said, there is some debate as to whether an oral approach facilitates higher 142 spoken language performance, or whether children who demonstrate aptitude for spoken 143 language are steered towards the oral approach rather than TC (Hall, Hall, & Caselli, 2017). 144 1-3-6 Guidelines. Early identification (Apuzzo & Yoshinaga-Itano, 1995; Kennedy 145 et al., 2006; Robinshaw, 1995; White & White, 1987; Yoshinaga-Itano, Sedey, Coulter, & Mehl, 1998; Yoshinaga-Itano et al., 2018) and timely enrollment in early intervention 147 programs (Ching et al., 2013; Holzinger, Fellinger, & Beitel, 2011; Vohr et al., 2008, 2011; 148 Watkin et al., 2007) are associated with better language proficiency. Indeed, DHH children who receive prompt diagnosis and early access to services have been found to meet 150 age-appropriate developmental outcomes, including language (Stika et al., 2015). 151

In line with these findings, the American Academy of Pediatricians (AAP) has set an initiative for Early Hearing Detection and Intervention (EHDI). Their EHDI guidelines recommend that DHH children are screened by 1 month old, diagnosed by 3 months old, and enter early intervention services by 6 months old. We refer to this guideline as 1-3-6.

Meeting this standard appears to improve spoken language outcomes for children with HL (Yoshinaga-Itano et al., 2017, 2018) and the benefits appear consistent across a range of demographic characteristics.

At a federal level in the U.S., the Early Hearing Detection and Intervention Act of 2010 (Capps, 2009) was passed to develop state-wide systems for screening, evaluation, diagnosis, and "appropriate education, audiological, medical interventions for children

identified with hearing loss," but policies for early diagnosis and intervention vary by state.

As of 2011, 36 states (including North Carolina, ("15A NCAC 21F .1201 - .1204," 2000)]

mandate universal newborn hearing screening (National Conference of State Legislatures,

2011). All states have some form of early intervention programs that children with hearing

loss can access (NAD, n.d.), but these also vary state-by-state. For instance, half of the

states in the US do not consider mild hearing loss an eligibility criterion for early

intervention (Holstrum, Gaffney, Gravel, Oyler, & Ross, 2008).

In evaluating the success of this initiative, the AAP (EHDI, n.d.) finds that about 70% of US children who fail their newborn hearing screening test are diagnosed with hearing loss before 3 months old, and that 67% of those diagnosed (46% of those that fail newborn hearing screening) begin early intervention services by 6 months old. These findings suggest that there may be breaks in the chain from screening to diagnosis and from diagnosis to intervention, and the effect may be further delays in language development for children not meeting these guidelines.

Quantifying vocabulary growth in DHH children

The MacArthur Bates Communicative Development Inventory (CDI, Fenson et al., 177 1994) is a parent-report instrument that gathers information about children's vocabulary 178 development. The Words and Gestures version of the form (CDI-WG) is normed for 179 8–18-month-olds. On CDI-WG, parents indicate whether their child understands or produces 180 each of the 398 vocabulary items, and answer questions about young children's early communicative milestones. The Words and Sentences version of the form (CDI-WS) is normed for 16-30-month-olds. On CDI-WS, parents indicate whether their child produces 183 each of the 680 vocabulary items, and answer some questions about grammatical 184 development. The CDI has been normed on a large set of participants across many 185 languages (Anderson & Reilly, 2002; Frank et al., 2017; Jackson-Maldonado et al., 2003).

The CDI has also been validated for DHH children with cochlear implants (Thal, 187 Desjardin, & Eisenberg, 2007). More specifically, in this validation, researchers asked parents 188 to complete the CDI, administered the Reynell Developmental Language Scales, and 189 collected a spontaneous speech sample. All comparisons between the CDI and the other 190 measures yielded significant correlations ranging from 0.58 to 0.93. Critically, the children in 191 this study were above the normed age range for the CDI, and thus this validation helps to 192 confirm that the CDI is a valid measurement tool for older DHH children. In further work, 193 Castellanos, Pisoni, Kronenberger, and Beer (2016) finds that in children with CIs, number 194 of words produced on the CDI predicts language, executive function, and academic skills up 195 to 16 years later. Building on this work, several studies have used the CDI to measure 196 vocabulary development in DHH children (Ching et al. (2013); Yoshinaga-Itano et al. (2017); 197 Yoshinaga-Itano et al. (2018); de Diego-Lázaro et al. (2018); Vohr et al. (2008); Vohr et al. (2011); summarized in 1).

200 Goals and Predictions

This study aims to 1) characterize the demographic, audiological, and intervention
variability in the population of DHH children receiving state services for hearing loss; 2)
identify predictors of vocabulary delays; and 3) evaluate the success of early identification
and intervention efforts at a state level. We include three subgroups of DHH children
traditionally excluded from studies of language development: children with additional
disabilities, children with unilateral hearing loss, and children from bilingual or
non-English-speaking households (e.g., Yoshinaga-Itano et al., 2018).

For the first and third goal above, we did not have specific hypotheses and sought to
provide descriptive information about a diverse sample of DHH children receiving state
services. For the second, we hypothesized that male gender, more severe degree of hearing
loss, bilateral hearing loss, no amplification use, prematurity, and presence of additional
disabilities would predict larger spoken vocabulary delay. We did not have strong predictions

regarding the effects of communication method or presence of other health issues (e.g., congenital heart malformation) on vocabulary.

215 Methods

223

224

225

Clinical evaluations were obtained through an ongoing collaboration with the North
Carolina Early Language Sensory Support Program (ELSSP), an early intervention program
serving children with sensory impairments from birth to 36 months. ELSSP passed along
deidentified evaluations to our team after obtaining consent to do so from each family. No
eligibility criteria beyond hearing loss and receiving an ELSSP evaluation were imposed,
given our goal of characterizing the full range of DHH children with hearing loss in North
Carolina.

The clinical evaluations included demographic and audiological information, CDI vocabulary scores, and the results of any clinical assessments administered (e.g., PPVT), all detailed further below. For some children (n=47), multiple evaluations were available from different timepoints. In these cases, only the first evaluation was considered for this study, due to concerns regarding within-subjects variance for statistical analysis.

While this collaboration is ongoing, we opted to pause for this analysis upon receiving
data from 100 children. Thus, the reported sample below consists of 100 children (56 male /
44 female) ages 4.20–36.17(M=21.21, SD=9.08). Race and SES information were not
available. Families were administered either the Words and Gestures or Words and Sentences
version of the CDI based on clinician judgement. Children who were too old for Words and
Gestures, but who were not producing many words at the time of assessment, were often
given Words and Gestures (n=37). Families for whom Spanish was the primary language
(n=14) completed the Spanish language version of the CDI (Jackson-Maldonado et al., 2003).

With regard to comorbid diagnoses, children in this sample were coded as yes/no for cognitive development concerns (e.g., Down syndrome, global developmental delays; Cornelia

de Lange syndrome), yes/no for prematurity (i.e., more than 3 weeks premature), yes/no for health issues (e.g., heart defects, kidney malformations, VACTERL association), and yes/no for vision loss (not corrected to normal by surgery or glasses).

Degree of hearing loss was most often reported with a written description (e.g., "mild 241 sloping to moderate" or "profound high frequency loss"). We created 3 variables: hearing 242 loss in the better ear, hearing loss in the worse ear, and average hearing loss (average of 243 better and worse ear). Using the ASHA hearing loss guidelines, each of these was coded with 244 a dB HL value corresponding with the median dB HL for the level of hearing loss (e.g., 245 moderate hearing loss was coded as 48 dB HL), and sloping hearing loss was coded as the 246 average of the levels (e.g. mild to moderate was coded as 40.5 dB HL). Participants were also 247 coded for unilateral or bilateral hearing loss; presence or absence of Auditory Neuropathy 248 Spectrum Disorder; and etiology of hearing loss (sensorineural, conditive, or mixed). 249 Amplification was recorded as the device the child used at the time of assessment: either 250 hearing aid, cochlear implant, or none. 251

Communication method was recorded as spoken language, total communication, or 252 cued speech. One participant had a parent fluent in sign language, but the reported 253 communication method in the home was total communication. No child in our sample used 254 American Sign Language or another signed language. The forms also listed the primary 255 language spoken at home, which we binned into English-speaking and non-English-speaking. 85% of families spoke English, and 14% spoke Spanish. For one child, who was adopted from another country after her second birthday, we recorded the language background as 258 non-English-speaking, although the child's adoptive parents are English-speaking, because 259 the child had lived most of her life in a non-English-speaking environment. 260

Age at screening was measured as the child's age in months at their first hearing
screening. Age at screening was available for 68 participants. All participants with a
screening age available were screened at birth or while in the NICU. We presume that the

vast majority of participants without age at screening received their newborn hearing 264 screening, as North Carolina boasts a 98% NBHS rate (NCDHHS, 2013). Age at diagnosis 265 was taken as the age in months when children received their first hearing loss diagnosis. All 266 children were enrolled in birth-to-three early intervention services through ELSSP, and the 267 date of enrollment was listed on the clinician evaluation. From the clinician report, we 268 calculated the number of hours of early intervention services received per month (including 269 service coordination, speech therapy, and occupational therapy, among others). Because of 270 the relatively sparse data on screening age, if participants had an age at diagnosis ≤ 3 mo. 271 and an age of intervention ≤ 6 mo., they were recorded as meeting 1-3-6. It is possible that 272 a participant did not receive screening by 1 month, but did receive diagnosis by 3 months 273 and services by 6 months. This special case would be coded as meeting 1-3-6 by our criteria. 274

275 Results

In the first section, we explore relationships among child demographic, audiological, and clinical variables. In the second section, we examine the influence of these factors on vocabulary development. In the third section, we describe the implementation of the EHDI 1-3-6 guidelines and predictors of early diagnosis and intervention. All analyses were conducted in R. All code is available on Github.

Part I: Interactions Among Variables

we test how these variables may be related to vocabulary, we describe their relationships to 284 each other. As would be expected, many health, audiological, and clinical characteristics are 285 not distributed randomly across this sample of children. To quantify this statistically, we 286 used bonferroni-corrected chi-square tests between each of our variables (gender 287 (male/female), laterality (bi-/uni-lateral hearing loss), health issues (yes/no), developmental 288 delays (yes/no), prematurity (yes/no), language background (English/non-English), 1-3-6 280 (yes/no), degree of hearing loss (mild, moderate, severe/profound as defined above), etiology 290 (sensorineural/conductive), services received per month (binned into 0-2, 3-6, and >7 - to 291 create maximally evenly sized bins), communication (spoken/total communication) and 292 amplification (hearing aids/cochlear implants/none)). Because the chi-square statistic 293 assumes n > 5 is expected in the majority of the cells for each test (preferably $\geq 80\%$ 294 McHugh (2013)), we excluded mixed hearing loss (n=8) and cued speech (n=1) from this section of the analysis. Strictly speaking, some of these variables are not expected to be randomly distributed relative to each other (e.g., prematurity and health issues; degree and 297 amplification), but quantifying the differences via chi square using a conservative significance 298 threshold lets us highlight the strongest relationships within this dataset.

Given that we ran 66 Chi-square tests, Bonferroni-corrected alpha for this set of analyses was p < 0.0007. Of these 66 combinations of variables, p < .05 for 26, and 9 survived Bonferroni correction. We are only discussing the latter below, but the full set of results can be found in figure ??.

304

We found that health issues, developmental delays, and prematurity were highly 305 interrelated in our sample, such that children born premature were more likely to also 306 experience health issues $(X^2 (1, N = 98) = 23.9, p = 1e-06)$ and developmental delays $(X^2 (1, N = 98) = 23.9, p = 1e-06)$ 307 (1, N = 98) = 11.63, p = 0.00065), and children with developmental delays were more likely 308 to also experience health issues $(X^2 (1, N = 98) = 20.87, p = 4.9e-06)$. Children with developmental delays received more services per month than typically-developing children 310 $(X^2 (2, N = 95) = 22.17, p = 1.5e-05)$ and were more likely to use total communication $(X^2 (2, N = 95) = 22.17, p = 1.5e-05)$ 311 (2, N = 98) = 22.51, p = 1.3e-05). Likewise, children who used total communication received 312 more services per month than children using spoken language $(X^2 (4, N = 95) = 21.35, p =$ 313 0.00027). 314

We also found relationships among many of the audiological characteristics. There was 315 a significant relationship between laterality and etiology $(X^2 (2, N = 88) = 18.29, p =$ 316 0.00011), such that children with conductive hearing loss were more likely to have unilateral 317 hearing loss, children with sensorineural hearing loss were more likely to have a bilateral loss, 318 and all children with mixed hearing loss (n = 8) had bilateral hearing loss. Chi-square tests 319 showed that laterality $(X^2 (2, N = 98) = 16.43, p = 0.00027)$ and degree of hearing loss $(X^2$ 320 (4, N = 87) = 28.45, p = 1e-05) were related to amplification in our sample. Children with 321 bilateral hearing loss were more likely than children with unilateral hearing loss to use a 322 hearing aid or cochlear implant; no child with unilateral hearing loss used a cochlear implant, 323 and many children with unilateral hearing loss used no amplification. Regarding degree, 324 children with severe-profound hearing loss were more likely to use a cochlear implant than 325 children with less severe hearing loss (i.e., mild or moderate).

Part II: Influence on vocabulary

339

We next turn to the relationship between each of these variables and children's productive vocabulary, measured on the CDI. Figure ?? shows the vocabulary scores of children in our samples relative to norms for hearing children. Descriptively, we found widespread vocabulary delays on both Words and Gestures and Words and Sentences, with the majority of DHH children testing around or below the 25th percentile for hearing children (based on Wordbank norms; Frank et al. (2017)).

The CDI is composed of two instruments, which differ in number of questions (the max score of 398 on Words and Gestures and 680 on Words and Sentences). For this reason, instead of using the raw number of words produced as our outcome variable, we use the difference (in months) between the child's chronological age and their predicted age for their vocabulary – we call this derived variable **vocabulary delay**.

To predict age from vocabulary score, we used the 50th percentile for productive

vocabulary from Wordbank data from (8,300 typically-developing infants; Frank et al. 340 (2017)) to create a binary logistic growth curve. The growth curve modeled the 50th 341 percentile language trajectories for Words and Gestures and Words and Sentences. For each 342 child, we took the number of words they produced divided by the number of words on the 343 instrument, to give us the proportion of words produced. We used the proportion of words in 344 an inverse prediction from the binary logistic regression curves to generate a predicted age; 345 such for each possible CDI score, the growth curve provided the age that score would be 346 achieved for the 50th percentile trajectory. We subtracted the predicted age from each 347 child's chronological age to get the vocabulary delay variable. 348

To look at the relationship between our predictor variables and vocabulary delay, we conducted multiple linear regression, using vocabulary delay as the outcome variable. We exclude children from non-English-speaking families from this section of the analysis because our growth curves are based on the English language CDI.

351

352

353

354

Our full regression model included all variables except Language Background:

Vocabulary Delay ~ Gender + Developmental Delay + Health Issues + Prematurity +

Laterality + Degree + Amplification + Communication + Meets 1-3-6 +

ServicesReceivedPerMonth. We performed stepwise model comparison using stepAIC

(MASS) to pare down the model. This process selected only the predictors which incrementally improved model fit, measured by Akaike's Information Criterion (AIC), which considers goodness of fit and model complexity (penalizing models with many predictors).

Based on this iterative process, we removed Prematurity, Communication, Meets 1-3-6, and ServicesReceivedPerMonth from the model.

Our final model included: Vocabulary Delay ~ Gender + Developmental Delay + 364 Health Issues + Laterality + Degree + Amplification. This model accounted for significant 365 variance in children's vocabulary delay (adjusted- $R^2 = 0.29$, p =). There were significant 366 main effects of gender, developmental delay, laterality, degree, health issues, and amplification. In this model, being male ($\beta = 6.07$, p = 0.035), having a developmental delay 368 $(\beta = 12.14, p = 0.0065)$, bilateral hearing loss $(\beta = -8.85, p = 0.019)$, and more severe 369 hearing loss predicted a larger delay ($\beta = 0.17$, p = 0.018). Having a cochlear implant ($\beta =$ 370 12.24, p = 0.0061) or hearing aid (β = 19.94, p = 0.00036) predicted a smaller delay, relative to no amplification. Presence of health issues indicated a smaller vocabulary delay (β -6.74, p = 0.043). Although we showed in Part I that relationships exist among several of 373 these variables (e.g., degree and amplification), a vif test on our model revealed that each 374 predictor was responsible for a unique share of the variance (all GVIF < 3; see table ??; 375 James, Witten, Hastie, and Tibshirani (2013)). 376

Part III: Meets136 success

Perhaps of greatest importance to clinicians and policymakers is the implementation and effect of existing policies. Lastly, we looked at the ages at which children received diagnosis and intervention, and how this mapped onto the 1-3-6 guidelines. Although we did not find 1-3-6 guidelines to significantly predict vocabulary delay in our sample, we wanted to examine the reach of 1-3-6 and discuss factors that may influence whether a given child receives early diagnosis and intervention. In this section, we provide a brief description of the implementation of 1-3-6 in our sample and describe the results of linear regression models for age at diagnosis and age at intervention.

Overall, 37% of our sample met 1-3-6 guidelines for early diagnosis and intervention (see 2). Among the children for which screening information was available (n = 68), 100% were screened at birth or during NICU stay. 69% of children received diagnosis by 3 months of age, and 39% began early intervention by 6 months of age. Among children with comorbidities, 21.05% met 1-3-6 guidelines, compared to 47.37% of children without comorbidities. Figure ?? shows the age at first diagnosis, intervention, amplification, and implantation for each child in our sample.

To better understand implementation of 1-3-6 guidelines, we zoomed in on diagnosis

and intervention. We created two linear regression models, one for age at diagnosis and one for age at intervention. For each model, we started with the set of predictors that would have been present prior to or during diagnosis or intervention, respectively. We then pared down each model using stepwise regression by AIC (MASS package), using the process described above in Part II of Results.

For age at diagnosis, we included the set of child-specific factors that would be relevant 401 before diagnosis of hearing loss (e.g., we excluded amplification type because a child would 402 not receive a hearing aid or cochlear implant prior to being diagnosed with hearing loss.) We 403 began with: gender, degree, developmental delay, health issues, prematurity, laterality, language background, and etiology. Under the best fit model (R²=0.16, p=0.00), children with no additional health issues ($\beta = 3.7$, p = 0.011), children from English-speaking 406 households ($\beta = -6.47$, p = 0.0014), and children with unilateral hearing loss ($\beta = -2.15$, p = 407 0.18) predicted earlier diagnosis. This model accounted for roughly 16.41% of the variance in 408 age at diagnosis. 409

We repeated this model selection process for age at intervention. In addition to the variables used to fit the intervention model, we included age at intervention. The best fit model was Age Intervention ~ prematurity + degree + age at diagnosis + language background (R^2 =0.43 , p=0.00). Prematurity (β = 3.78, p = 0.056), less severe hearing loss (β = -0.09, p = 0.003), later diagnosis (β = 0.65, p = 1.9e-08), and coming from a non-English-speaking household (β = -1.38, p = 0.52) predicted later intervention and accounted for roughly 43.41% of the variance in age at intervention.

410

419 Discussion

(This isn't ready yet)

418

420

426

In this study, we examined the demographic, audiological, and clinical characteristics of 100 young DHH children in North Carolina. We documented the distribution of these characteristics and explored the relationships between these variables, vocabulary, diagnosis, and intervention. This analysis was exploratory and descriptive, and the results should be interpreted accordingly.

In our sample, we found several of these variables to be related. Prematurity, health

issues, and developmental delay frequently co-occurred, such that there was a moderate 427 relationship between each of these variables (cramer's V = 0.38 - 0.52, p < .0007). Children 428 with one of these conditions (prematurity, developmental delay, health issues) were more 429 likely to have any other condition. This is not surprising. Many conditions that cause 430 developmental delays have a high incidence of health issues (e.g., heart problems in Down 431 Syndrome; vomiting and seizures with hydrocephalus), and it is well documented that there 432 is a higher incidence of developmental delay in preterm infants (???: Pierrat et al., 2017). 433 Children born premature, especially those born extremely premature, are at increased risk for 434 a number of health issues at birth (CITE) and throughout the lifespan (CITE). Each of these 435 conditions may affect language and development in different ways. The literature points to 436 increased risk of language delay for children with developmental delays (CITE) and children 437 born premature (CITE), with differential effects based on the nature of the developmental delay (CITE) or the gestation duration (CITE). Together, these risks may interact and 439 multiply. In our sample, we also had a large range of health conditions (76 unique conditions in our sample of 100 children), and it appears probable that those conditions would vary in whether and how they influence vocabulary growth. Unfortunately, we lack sufficient Ns to 442 measure the unique effect of each condition. We found that children with developmental delays (e.g., Down syndrome) were much more likely to use a total communication approach 444 than typically-developing DHH children. Assignment to "spoken language" and "total 445 communication" groups was not random, with use of total communication appearing to 446 follow children already at greater risk for verbal delays. Additionally, in our sample, children 447 with developmental delays were considerably more likely to receive >10 services per month, 448 perhaps accounting for increased need (or increased perceived need). The services per month 449 variable also includes occupational therapy, physical therapy, which typically-developing 450 DHH children may be unlikely to receive. Likewise, children who used total communication 451 were more likely to receive frequent services. We also found relationships among many of our 452 audiological variables. In particular, etiology and laterality were related, such that 453

conductive hearing loss was more likely unilateral, and sensorineural hearing loss was more 454 likely bilateral. There were only seven cases of mixed hearing loss, and all were bilateral. 455 One possible explanation is that certain underlying causes of conductive hearing loss (e.g., 456 aural atresia, impacted cerumen, trauma to the tympanic membrane) may be more likely to 457 affect one ear than two. Amplification devices were more common for children with less 458 hearing (i.e., children with bilateral hearing loss and children with moderate to profound 459 hearing loss). This may be due to the assumption that a hearing aid or cochlear implant will 460 not benefit children with minimal hearing loss (Updike, 1994), although several studies have 461 found benefits in speech perception and quality of life for amplification for unilateral hearing 462 loss (Hassepass et al., 2013; priwin et al., 2007; briggs et al., 2011; dwyer et al., 2014) and 463 spoken language vocabulary and grammar for mild hearing loss (walker et al., 2015).

465 Conclusion

Footnotes: Despite exciting, increasing, and converging evidence for benefits of early sign language exposure (e.g., Schick, De Villiers, De Villiers, & Hoffmeister, 2007; Clark et al., 2016; Davidson, Lillo-Martin, & Pichler, 2014; Hrastinski & Wilbur, 2016; Magnuson, 2000; Spencer, 1993), the majority of DHH children will not be raised in a sign language environment. This is particularly true for North Carolina, which does not have a large community of sign language users, relative to states like Maryland or areas like Washington D.C. or Rochester, NY. For this reason, we focus on spoken language development.

References

- 474 15A NCAC 21F .1201 .1204. (2000).
- Amin, S. B., Vogler-Elias, D., Orlando, M., & Wang, H. (2014). Auditory neural
- myelination is associated with early childhood language development in premature infants.
- 477 Early Human Development, 90(10), 673–678.
- 478 https://doi.org/10.1016/j.earlhumdev.2014.07.014
- Anderson, D., & Reilly, J. (2002). The MacArthur Communicative Development
- 480 Inventory: Normative Data for American Sign Language. Journal of Deaf Studies and Deaf
- 481 Education, 7(2), 83–106. https://doi.org/10.1093/deafed/7.2.83
- Anne, S., Lieu, J. E. C., & Cohen, M. S. (2017). Speech and Language Consequences
- of Unilateral Hearing Loss: A Systematic Review. Otolaryngologyhead and Neck Surgery:
- Official Journal of American Academy of Otolaryngology-Head and Neck Surgery, 157(4),
- 485 572-579. https://doi.org/10.1177/0194599817726326
- Apuzzo, M.-R. L., & Yoshinaga-Itano, C. (1995). Early Identification of Infants with
- 487 Significant Hearing Loss and the Minnesota Child Development Inventory (No. 2).
- 488 SEMINARS IN HEARING-VOLUME (Vol. 16).
- Artières, F., Vieu, A., Mondain, M., Uziel, A., & Venail, F. (2009). Impact of early
- cochlear implantation on the linguistic development of the deaf child. Otology and
- ⁴⁹¹ Neurotology, 30(6), 736–742. https://doi.org/10.1097/MAO.0b013e3181b2367b
- Barre, N., Morgan, A., Doyle, L. W., & Anderson, P. J. (2011). Language abilities in
- children who were very preterm and/or very low birth weight: A meta-analysis. Journal of
- 494 Pediatrics, 158(5). https://doi.org/10.1016/j.jpeds.2010.10.032
- Birman, C. S., Elliott, E. J., & Gibson, W. P. (2012). Pediatric cochlear implants:

Additional disabilities prevalence, risk factors, and effect on language outcomes. Otology and

- Neurotology, 33(8), 1347–1352. https://doi.org/10.1097/MAO.0b013e31826939cc
- Blair, J. C., Peterson, M., & Viehweg, S. (1985). The Effects of Mild Sensorineural
- Hearing Loss on Academic Performance of Young School-Age Children. Volta Review, 87(2),
- 500 87-93.
- Bornstein, M. H., Hahn, C.-S., & Haynes, O. M. (2004). Specific and general language
- performance across early childhood: Stability and gender considerations. First Language,
- ⁵⁰³ 24(3), 267–304. https://doi.org/10.1177/0142723704045681
- Branson, D., & Demchak, M. (2009). The Use of Augmentative and Alternative
- 505 Communication Methods with Infants and Toddlers with Disabilities: A Research Review.
- Augmentative and Alternative Communication, 25(4), 274–286.
- 507 https://doi.org/10.3109/07434610903384529
- Bruce, S. M., & Borders, C. (2015). Communication and Language in Learners Who
- Are Deaf and Hard of Hearing With Disabilities: Theories, Research, and Practice.
- 510 American Annals of the Deaf, 160(4), 368–384. https://doi.org/10.1353/aad.2015.0035
- ⁵¹¹ Capps, L. (2009). H.R.1246 111th Congress (2009-2010): Early Hearing Detection
- and Intervention Act of 2009.
- Carter, F. A., & Msall, M. E. (2017). Language Abilities as a Framework for
- 514 Understanding Emerging Cognition and Social Competencies after Late, Moderate, and Very
- 515 Preterm Birth. Journal of Pediatrics (Vol. 181). Mosby Inc.
- 516 https://doi.org/10.1016/j.jpeds.2016.10.077
- Castellanos, I., Pisoni, D. B., Kronenberger, W. G., & Beer, J. (2016). Early expressive
- language skills predict long-term neurocognitive outcomes in cochlear implant users:
- Evidence from the MacArthurBates Communicative Development Inventories. American

- Journal of Speech-Language Pathology, 25(3), 381–392.
- 521 https://doi.org/10.1044/2016_AJSLP-15-0023
- 522 CDC. (2018). 2016 Hearing Screening Summary. Centers for Disease Control and
- Prevention. https://www.cdc.gov/ncbddd/hearingloss/2016-data/01-data-summary.html.
- Chapman, R. S. (1997). Language development in children and adolescents with Down
- syndrome. Mental Retardation and Developmental Disabilities Research Reviews, 3(4),
- ₅₂₆ 307–312.
- 527 https://doi.org/10.1002/(SICI)1098-2779(1997)3:4<307::AID-MRDD5>3.0.CO;2-K
- Ching, T. Y., Crowe, K., Martin, V., Day, J., Mahler, N., Youn, S., ... Orsini, J.
- 529 (2010). Language development and everyday functioning of children with hearing loss
- assessed at 3 years of age. In International Journal of Speech-Language Pathology (Vol. 12,
- pp. 124–131). https://doi.org/10.3109/17549500903577022
- Ching, T. Y., Dillon, H., Marnane, V., Hou, S., Day, J., Seeto, M., ... Yeh, A. (2013).
- Outcomes of early- and late-identified children at 3 years of age: Findings from a prospective
- population-based study. Ear and Hearing, 34(5), 535-552.
- 535 https://doi.org/10.1097/AUD.0b013e3182857718
- Ching, T. Y., Van Wanrooy, E., & Dillon, H. (2007). Binaural-Bimodal Fitting or
- 537 Bilateral Implantation for Managing Severe to Profound Deafness: A Review. Trends in
- 538 Amplification (Vol. 11). https://doi.org/10.1177/1084713807304357
- ⁵³⁹ Clark, J. G. (1981). Uses and abuses of hearing loss classification. ASHA: A Journal
- of the American Speech-Language-Hearing Association, 23(7), 493-500.
- Clark, M. D., Hauser, P. C., Miller, P., Kargin, T., Rathmann, C., Guldenoglu, B., ...
- Israel, E. (2016). The Importance of Early Sign Language Acquisition for Deaf Readers.
- Reading and Writing Quarterly, 32(2), 127-151.

```
https://doi.org/10.1080/10573569.2013.878123
```

- Cupples, L., Ching, T. Y. C., Crowe, K., Seeto, M., Leigh, G., Street, L., ... Thomson, J. (2014). Outcomes of 3-year-old children with hearing loss and different types of additional disabilities. *Journal of Deaf Studies and Deaf Education*, 19(1), 20–39.
- https://doi.org/10.1093/deafed/ent039
- Cupples, L., Ching, T. Y. C., Leigh, G., Martin, L., Gunnourie, M., Button, L., ...
 Van Buynder, P. (2018). Language development in deaf or hard-of-hearing children with
 additional disabilities: Type matters! *Journal of Intellectual Disability Research: JIDR*,
 62(6), 532–543. https://doi.org/10.1111/jir.12493
- Cusson, R. M. (2003). Factors influencing language development in preterm infants.

 Journal of Obstetric, Gynecologic, and Neonatal Nursing: JOGNN / NAACOG, 32(3),

 to 402–409. https://doi.org/10.1177/0884217503253530
- Davidson, K., Lillo-Martin, D., & Pichler, D. C. (2014). Spoken english language development among native signing children with cochlear implants. *Journal of Deaf Studies* and Deaf Education, 19(2), 239–250. https://doi.org/10.1093/deafed/ent045
- de Diego-Lázaro, B., Restrepo, M. A., Sedey, A. L., & Yoshinaga-Itano, C. (2018).

 Predictors of Vocabulary Outcomes in Children Who Are Deaf or Hard of Hearing From

 Spanish-Speaking Families. Language, Speech, and Hearing Services in Schools, 50(1), 1–13.

 https://doi.org/10.1044/2018_LSHSS-17-0148
- Delage, H., & Tuller, L. (2007). Language development and mild-to-moderate hearing loss: Does language normalize with age? *Journal of Speech, Language, and Hearing Research*, 50(5), 1300–1313. https://doi.org/10.1044/1092-4388(2007/091)
- Dettman, S. J., Pinder, D., Briggs, R. J., Dowell, R. C., & Leigh, J. R. (2007).
- Communication development in children who receive the cochlear implant younger than 12

```
months: Risks versus benefits. Ear and Hearing, 28 (SUPPL.2).
```

- 569 https://doi.org/10.1097/AUD.0b013e31803153f8
- Dillon, C. M., Burkholder, R. A., Cleary, M., & Pisoni, D. B. (2004). Nonword
- repetition by children with cochlear implants: Accuracy ratings from normal-hearing
- listeners. Journal of Speech, Language, and Hearing Research, 47(5), 1103–1116.
- 573 https://doi.org/10.1044/1092-4388(2004/082)
- EHDI. (n.d.). Early Hearing Detection and Intervention (EHDI). AAP.org.
- http://www.aap.org/en-us/advocacy-and-policy/aap-health-
- initiatives/PEHDIC/Pages/Early-Hearing-Detection-and-Intervention.aspx.
- Eisenberg, L. S. (2007). Current state of knowledge: Speech recognition and
- production in children with hearing impairment. Ear and Hearing, 28(6), 766–772.
- 579 https://doi.org/10.1097/AUD.0b013e318157f01f
- Fenson, L., Dale, P. S., Reznick, J. S., Bates, E., Thal, D. J., Pethick, S. J., ... Stiles,
- J. (1994). Variability in Early Communicative Development. Monographs of the Society for
- Research in Child Development, 59(5), i. https://doi.org/10.2307/1166093
- Frank, M., Braginsky, M., Marchman, V., & Yurovsky, D. (2019). Variability and
- ⁵⁸⁴ Consistency in Early Language Learning.
- Frank, M. C., Braginsky, M., Yurovsky, D., & Marchman, V. A. (2017). Wordbank:
- An open repository for developmental vocabulary data. Journal of Child Language, 44(3),
- 587 677–694. https://doi.org/10.1017/S0305000916000209
- Geers, A. E., Mitchell, C. M., Warner-Czyz, A., Wang, N. Y., & Eisenberg, L. S.
- (2017). Early sign language exposure and cochlear implantation benefits. *Pediatrics*, 140(1).
- $_{590}$ https://doi.org/10.1542/peds.2016-3489

```
Geers, A., Spehar, B., & Sedey, A. (2002). Use of Speech by Children From Total
Communication Programs Who Wear Cochlear Implants. American Journal of
Speech-Language Pathology, 11(1), 50–58. https://doi.org/10.1044/1058-0360(2002/006)
```

- Gibbs, E. D., & Carswell, L. E. (1991). Using total communication with young children with down syndrome: A literature review and case study. Early Education and Development, 2(4), 306–320. https://doi.org/10.1207/s15566935eed0204 4
- Guardino, C. A. (2008). Identification and placement for deaf students with multiple disabilities: Choosing the path less followed. *American Annals of the Deaf*, 153(1), 55–64. https://doi.org/10.1353/aad.0.0004
- Hall, M. L., Hall, W. C., & Caselli, N. K. (2017). Deaf children need language, not
 (just) speech. https://doi.org/10.1177/0142723719834102
- 602 Hodges, A. V., Dolan Ash, M., Balkany, T. J., Schloffman, J. J., & Butts, S. L. (1999).
- Speech perception results in children with cochlear implants: Contributing factors.
- $_{ t 604}$ Otolaryngologyhead and Neck Surgery: Official Journal of American Academy of
- Otolaryngology-Head and Neck Surgery, 121(1), 31–34.
- $^{606} \quad https://doi.org/10.1016/S0194\text{-}5998(99)70119\text{-}1$
- Holden-Pitt, L., & Diaz, J. A. (1998). Thirty Years of the Annual Survey of Deaf and Hard-of-Hearing Children & Samp; Youth: A Glance Over the Decades. *American Annals of the Deaf*, 143(2), 71–76. https://doi.org/10.1353/aad.2012.0630
- Holstrum, W. J., Gaffney, M., Gravel, J. S., Oyler, R. F., & Ross, D. S. (2008). Early intervention for children with unilateral and mild bilateral degrees of hearing loss. *Trends in Amplification*, 12(1), 35–41. https://doi.org/10.1177/1084713807312172
- Holzinger, D., Fellinger, J., & Beitel, C. (2011). Early onset of family centred intervention predicts language outcomes in children with hearing loss. *International Journal*

- of Pediatric Otorhinolaryngology, 75(2), 256–260.
- 616 https://doi.org/10.1016/j.ijporl.2010.11.011
- Hrastinski, I., & Wilbur, R. B. (2016). Academic Achievement of Deaf and
- Hard-of-Hearing Students in an ASL/English Bilingual Program. Journal of Deaf Studies
- and Deaf Education, 21(2), 156–170. https://doi.org/10.1093/deafed/env072
- Huttenlocher, J., Haight, W., Bryk, A., Seltzer, M., & Lyons, T. (1991). Early
- Vocabulary Growth: Relation to Language Input and Gender. Developmental Psychology,
- 622 27(2), 236–248. https://doi.org/10.1037/0012-1649.27.2.236
- Jackson-Maldonado, D., Thal, D. J., Fenson, L., Marchman, V. A., Newton, T.,
- 624 Conboy, B., ... Paul H. Brookes Publishing Company (Firm). (2003). MacArthur
- Inventarios del Desarrollo de Habilidades Comunicativas: User's quide and technical manual.
- 626 P.H. Brookes.
- James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to
- Statistical Learning (Vol. 103). New York, NY: Springer New York.
- 629 https://doi.org/10.1007/978-1-4614-7138-7
- Karchmer, M. A., & Mitchell, R. E. (2003). Demographic and achievement
- characteristics of deaf and hard-of-hearing students. PsycNET.
- Kennedy, C. R., McCann, D. C., Campbell, M. J., Law, C. M., Mullee, M., Petrou, S.,
- 633 ... Stevenson, J. (2006). Language ability after early detection of permanent childhood
- hearing impairment. New England Journal of Medicine, 354 (20), 2131–2141.
- 635 https://doi.org/10.1056/NEJMoa054915
- Kiese-Himmel, C. (2002). Unilateral sensorineural hearing impairment in childhood:
- Analysis of 31 consecutive cases. International Journal of Audiology, 41(1), 57–63.
- 638 https://doi.org/10.3109/14992020209101313

```
Kiese-Himmel, C., & Ohlwein, S. (2002). Vocabulary of young children with sensorineural deafness. HNO, 50(1), 48-54.
```

- Kristoffersen, K. E. (2008). Speech and language development in cri du chat syndrome:
- 642 A critical review. Clinical Linguistics and Phonetics (Vol. 22).
- 643 https://doi.org/10.1080/02699200801892108
- Kyle, F. E., & Harris, M. (2010). Predictors of reading development in deaf children:
- A 3-year longitudinal study. Journal of Experimental Child Psychology, 107(3), 229–243.
- 646 https://doi.org/10.1016/j.jecp.2010.04.011
- Lange, B. P., Euler, H. A., & Zaretsky, E. (2016). Sex differences in language
- competence of 3- to 6-year-old children. Applied Psycholinguistics, 37(6), 1417–1438.
- 649 https://doi.org/10.1017/S0142716415000624
- Lieu, J. E. C. (2004). Speech-language and educational consequences of unilateral
- hearing loss in children. Archives of Otolaryngology-Head & Neck Surgery, 130(5), 524-530.
- 652 https://doi.org/10.1001/archotol.130.5.524
- Lieu, J. E. C. (2013). Unilateral hearing loss in children: Speech-language and school
- 654 performance. *B-ENT*, (SUPPL. 21), 107–115.
- Lieu, J. E. C., Tye-Murray, N., & Fu, Q. (2012). Longitudinal study of children with
- unilateral hearing loss. The Laryngoscope, 122(9), 2088–2095.
- 657 https://doi.org/10.1002/lary.23454
- Lovett, R. E. S., Kitterick, P. T., Hewitt, C. E., & Summerfield, A. Q. (2010).
- 659 Bilateral or unilateral cochlear implantation for deaf children: An observational study.
- 660 Archives of Disease in Childhood, 95(2), 107–112. https://doi.org/10.1136/adc.2009.160325
- Luckner, J. L.;., & Carter, K. (2001). Essential competencies for teaching students

with hearing loss and additional disabilities. American Annals of the Deaf, 146(7), 7-15.

- Luckner, J. L., & Cooke, C. (2010). A summary of the vocabulary research with
- students who are deaf or hard of hearing. American Annals of the Deaf, 155(1), 38–67.
- 665 https://doi.org/10.1353/aad.0.0129
- Macoby, E. E. (1966). The development of sex differences.
- Magnuson, M. (2000). Infants with Congenital Deafness: On the Importance of Early
- Sign Language Acquisition. American Annals of the Deaf, 145(1), 6-14.
- 669 https://doi.org/10.1353/aad.2012.0256
- Martin, J. A., Hamilton, B. E., Osterman, M. J., & Driscoll, A. K. (2019). National
- Vital Statistics Reports Volume 68, Number 13, November 30, 2019, Births: Final Data for
- 672 2018. National Center for Health Statistics, 68(13), 1–47.
- McHugh, M. L. (2013). The Chi-square test of independence. Biochemia Medica,
- 674 23(2), 143–149. https://doi.org/10.11613/BM.2013.018
- Meinzen-Derr, J., Wiley, S., Grether, S., & Choo, D. I. (2011). Children with cochlear
- 676 implants and developmental disabilities: A language skills study with developmentally
- matched hearing peers. Research in Developmental Disabilities, 32(2), 757–767.
- 678 https://doi.org/10.1016/j.ridd.2010.11.004
- Mirenda, P. (2003). Toward Functional Augmentative and Alternative Communication
- 680 for Students With Autism: Manual Signs, Graphic Symbols, and Voice Output
- 681 Communication Aids (Vol. 34, p. 203).
- Mitchell, R. E., & Karchmer, M. A. (2004). Chasing the Mythical Ten Percent:
- Parental Hearing Status of Deaf and Hard of Hearing Students in the United States. Sign
- Language Studies, 4(2), 138-163.

```
Miyamoto, R. T., Hay-McCutcheon, M. J., Kirk, K. I., Houston, D. M., &
```

- Bergeson-Dana, T. (2008). Language skills of profoundly deaf children who received cochlear
- 687 implants under 12 months of age: A preliminary study. Acta Oto-Laryngologica, 128(4),
- 688 373–377. https://doi.org/10.1080/00016480701785012
- Moeller, M. P., Tomblin, J. B., Yoshinaga-Itano, C., Connor, C. M. D., & Jerger, S.
- 690 (2007). Current state of knowledge: Language and literacy of children with hearing
- 691 impairment. Ear and Hearing (Vol. 28). https://doi.org/10.1097/AUD.0b013e318157f07f
- NAD. (n.d.). National Association of the Deaf NAD.
- 693 https://www.nad.org/resources/early-intervention-for-infants-and-toddlers/information-for-
- parents/early-intervention-services/.
- National Conference of State Legislatures. (2011). Newborn Hearing Screening State
- 696 Laws. https://www.ncsl.org/research/health/newborn-hearing-screening-state-laws.aspx.
- NCDHHS. (2013). Project Narrative: Reducing Loss to Follow-up after Failure to Pass
- 698 Newborn Hearing Screening (No. H61MC00043) (pp. 1–34). North Carolina Department of
- 699 Health and Human Services.
- Niparko, J. K., Tobey, E. A., Thal, D. J., Eisenberg, L. S., Wang, N. Y., Quittner, A.
- L., & Fink, N. E. (2010). Spoken language development in children following cochlear
- ₇₀₂ implantation. JAMA Journal of the American Medical Association, 303(15), 1498–1506.
- 703 https://doi.org/10.1001/jama.2010.451
- O'Donoghue, G. M., Nikolopoulos, T. P., & Archbold, S. M. (2000). Determinants of
- speech perception in children after cochlear implantation. Lancet, 356 (9228), 466–468.
- 706 https://doi.org/10.1016/S0140-6736(00)02555-1
- Özçalışkan, Ş., & Goldin-Meadow, S. (2010). Sex differences in language first appear in
- gesture. Developmental Science, 13(5), 752–760.

- 709 https://doi.org/10.1111/j.1467-7687.2009.00933.x
- Pahlavannezhad, M. R., & Tayarani Niknezhad, H. (2014). Comparison of the Speech Syntactic Features between Hearing-Impaired and Normal Hearing Children. *Iranian Journal of Otorhinolaryngology*, 26 (75), 65–72.
- Picard, M. (2004). The Volta Review (p. 221).
- Pierrat, V., Marchand-Martin, L., Arnaud, C., Kaminski, M., Resche-Rigon, M.,
 Lebeaux, C., ... Group, and the E.-2. writing. (2017). Neurodevelopmental outcome at 2
 years for preterm children born at 22 to 34 weeks' gestation in France in 2011: EPIPAGE-2
 cohort study. *BMJ*, 358. https://doi.org/10.1136/bmj.j3448
- Pierson, S. K., Caudle, S. E., Krull, K. R., Haymond, J., Tonini, R., & Oghalai, J. S. (2007). Cognition in children with sensorineural hearing loss: Etiologic considerations.

 Laryngoscope, 117(9), 1661–1665. https://doi.org/10.1097/MLG.0b013e3180ca7834
- Pisoni, D. B., Kronenberger, W. G., Harris, M. S., & Moberly, A. C. (2018). Three challenges for future research on cochlear implants. World Journal of Otorhinolaryngology Head and Neck Surgery. https://doi.org/10.1016/j.wjorl.2017.12.010
- Pollack, B. J. (1997). Educating Children Who Are Deaf or Hard of Hearing:

 Additional Learning Problems. ERIC Clearinghouse on Disabilities and Gifted Education,

 (E548), 1–6.
- Qi, S., & Mitchell, R. E. (2012). Large-Scale Academic Achievement Testing of Deaf and Hard-of-Hearing Students: Past, Present, and Future. *Journal of Deaf Studies and Deaf Education*, 17(1), 1–18. https://doi.org/10.1093/deafed/enr028
- Rajput, K., Brown, T., & Bamiou, D. E. (2003). Aetiology of hearing loss and other related factors versus language outcome after cochlear implantation in children.

- International Journal of Pediatric Otorhinolaryngology, 67(5), 497–504.
- 733 https://doi.org/10.1016/S0165-5876(03)00006-5
- Rechia, I. C., Oliveira, L. D., Crestani, A. H., Biaggio, E. P. V., & de Souza, A. P. R.
- 735 (2016). Effects of prematurity on language acquisition and auditory maturation: A
- 736 systematic review. CODAS, 28(6). https://doi.org/10.1590/2317-1782/20162015218
- Robertson, C. M., Howarth, T. M., Bork, D. L., & Dinu, I. A. (2009). Permanent
- bilateral sensory and neural hearing loss of children after neonatal intensive care because of
- extreme prematurity: A thirty-year study. *Pediatrics*, 123(5).
- 740 https://doi.org/10.1542/peds.2008-2531
- Robinshaw, H. M. (1995). Early intervention for hearing impairment: Differences in
- the timing of communicative and linguistic development. British Journal of Audiology,
- ⁷⁴³ 29(6), 315–334. https://doi.org/10.3109/03005369509076750
- Ross, D. S., Visser, S. N., Holstrum, W. J., Qin, T., & Kenneson, A. (2010). Highly
- variable population-based prevalence rates of unilateral hearing loss after the application of
- common case definitions. Ear and Hearing, 31(1), 126–133.
- 747 https://doi.org/10.1097/AUD.0b013e3181bb69db
- Sarant, J., Harris, D., Bennet, L., & Bant, S. (2014). Bilateral Versus Unilateral
- 749 Cochlear Implants in Children: A Study of Spoken Language Outcomes. Ear and Hearing,
- 750 35(4), 396–409. https://doi.org/10.1097/AUD.0000000000000022
- Sarant, J., Holt, C. M., Dowell, R. C., Richards, F., & Blamey, P. J. (2008). Spoken
- Language Development in Oral Preschool Children With Permanent Childhood Deafness.
- Journal of Deaf Studies and Deaf Education, 14(2), 205–217.
- 754 https://doi.org/10.1093/deafed/enn034
- Sarchet, T., Marschark, M., Borgna, G., Convertino, C., Sapere, P., & Dirmyer, R.

(2014). Vocabulary Knowledge of Deaf and Hearing Postsecondary Students. Journal of
 Postsecondary Education and Disability, 27(2), 161–178.

- Schick, B., De Villiers, P., De Villiers, J., & Hoffmeister, R. (2007). Language and theory of mind: A study of deaf children. *Child Development*, 78(2), 376–396.
- 760 https://doi.org/10.1111/j.1467-8624.2007.01004.x
- Schildroth, A. N., & Hotto, S. A. (1996). Annual Survey: Changes in Student and
- Program Characteristics, 1984-85 and 1994-95. American Annals of the Deaf, 141(2), 67-71.
- 763 https://doi.org/10.1353/aad.2012.1017
- Schmidt, B., Asztalos, E. V., Roberts, R. S., Robertson, C. M., Sauve, R. S., &
- Whitfield, M. F. (2003). Impact of Bronchopulmonary Dysplasia, Brain Injury, and Severe
- Retinopathy on the Outcome of Extremely Low-Birth-Weight Infants at 18 Months: Results
- from the Trial of Indomethacin Prophylaxis in Preterms. Journal of the American Medical
- Association, 289(9), 1124-1129. https://doi.org/10.1001/jama.289.9.1124
- Sininger, Y. S., Grimes, A., & Christensen, E. (2010). Auditory development in early
- amplified children: Factors influencing auditory-based communication outcomes in children
- with hearing loss. Ear and Hearing, 31(2), 166–185.
- 772 https://doi.org/10.1097/AUD.0b013e3181c8e7b6
- Smulders, Y. E., van Zon, A., Stegeman, I., Rinia, A. B., Van Zanten, G. A., Stokroos,
- R. J., ... Grolman, W. (2016). Comparison of Bilateral and Unilateral Cochlear
- Implantation in Adults: A Randomized Clinical Trial. JAMA Otolaryngology— Head & Neck
- 776 Surgery, 142(3), 249–256. https://doi.org/10.1001/jamaoto.2015.3305
- Soukup, M., & Feinstein, S. (2007). Identification, assessment, and intervention
- 5778 strategies for Deaf and Hard of Hearing students with learning disabilities.
- Spencer, P. E. (1993). The expressive communication of hearing mothers and deaf

- infants. American Annals of the Deaf, 138(3), 275–283.
- 781 https://doi.org/10.1353/aad.2012.0414
- Stika, C. J., Eisenberg, L. S., Johnson, K. C., Henning, S. C., Colson, B. G., Ganguly,
- D. H., & DesJardin, J. L. (2015). Developmental Outcomes of Early-Identified Children who
- are Hard of Hearing at 12 to 18 Months of Age. Early Human Development, 91(1), 47–55.
- 785 https://doi.org/10.1016/j.earlhumdev.2014.11.005
- Stiles, D. J., Bentler, R. A., & McGregor, K. K. (2012). The Speech Intelligibility
- Index and the pure-tone average as predictors of lexical ability in children fit with hearing
- AIDS. Journal of Speech, Language, and Hearing Research: JSLHR, 55(3), 764–778.
- 789 https://doi.org/10.1044/1092-4388(2011/10-0264)
- Svirsky, M. A., Teoh, S. W., & Neuburger, H. (2004). Development of language and
- speech perception in congenitally, profoundly deaf children as a function of age at cochlear
- implantation. In Audiology and Neuro-Otology (Vol. 9, pp. 224–233).
- 793 https://doi.org/10.1159/000078392
- Thal, D., Desjardin, J., & Eisenberg, L. S. (2007). Validity of the MacArthurBates
- 795 Communicative Development Inventories for Measuring Language Abilities in Children With
- 796 Cochlear Implants. Article in American Journal of Speech-Language Pathology, 54–64.
- 797 https://doi.org/10.1044/1058-0360(2007/007)
- Tomblin, J. B., Harrison, M., Ambrose, S. E., Walker, E. A., Oleson, J. J., & Moeller,
- M. P. (2015). Language outcomes in young children with mild to severe hearing loss. Ear
- and Hearing, 36, 76S-91S. https://doi.org/10.1097/AUD.0000000000000219
- Van Nierop, J. W., Snabel, R. R., Langereis, M., Pennings, R. J., Admiraal, R. J.,
- Mylanus, E. A., & Kunst, H. P. (2016). Paediatric Cochlear Implantation in Patients with
- Waardenburg Syndrome. Audiology and Neurotology, 21(3), 187–194.

```
804 https://doi.org/10.1159/000444120
```

- Van Noort-van Der Spek, I. L., Franken, M. C. J., & Weisglas-Kuperus, N. (2012).
- Language functions in preterm-born children: A systematic review and meta-analysis.
- Pediatrics, 129(4), 745-754. https://doi.org/10.1542/peds.2011-1728
- Verhaert, N., Willems, M., Van Kerschaver, E., & Desloovere, C. (2008). Impact of
- early hearing screening and treatment on language development and education level:
- Evaluation of 6 years of universal newborn hearing screening (ALGO) in Flanders, Belgium.
- International Journal of Pediatric Otorhinolaryngology, 72(5), 599–608.
- https://doi.org/10.1016/j.ijporl.2008.01.012
- Vesseur, A., Langereis, M., Free, R., Snik, A., van Ravenswaaij-Arts, C., & Mylanus, E.
- 814 (2016). Influence of hearing loss and cognitive abilities on language development in
- 815 CHARGE Syndrome. American Journal of Medical Genetics, Part A, 170(8), 2022–2030.
- 816 https://doi.org/10.1002/ajmg.a.37692
- Vila, P. M., & Lieu, J. E. (2015). Asymmetric and unilateral hearing loss in children.
- 818 Cell and Tissue Research (Vol. 361). Springer Verlag.
- 819 https://doi.org/10.1007/s00441-015-2208-6
- Vohr, B. (2014). Speech and language outcomes of very preterm infants. Seminars in
- Fetal and Neonatal Medicine (Vol. 19). W.B. Saunders Ltd.
- 822 https://doi.org/10.1016/j.siny.2013.10.007
- Vohr, B., Jodoin-Krauzyk, J., Tucker, R., Johnson, M. J., Topol, D., & Ahlgren, M.
- 824 (2008). Early language outcomes of early-identified infants with permanent hearing loss at 12
- to 16 months of age. *Pediatrics*, 122(3), 535–544. https://doi.org/10.1542/peds.2007-2028
- Vohr, B., Jodoin-Krauzyk, J., Tucker, R., Topol, D., Johnson, M. J., Ahlgren, M., &
- Pierre, L. (2011). Expressive vocabulary of children with hearing loss in the first 2 years of

- life: Impact of early intervention. Journal of Perinatology, 31(4), 274–280.
- 829 https://doi.org/10.1038/jp.2010.110
- Vohr, B. R. (2016). Language and hearing outcomes of preterm infants. Seminars in
- 831 Perinatology (Vol. 40). W.B. Saunders. https://doi.org/10.1053/j.semperi.2016.09.003
- Wake, M., Hughes, E. K., Poulakis, Z., Collins, C., & Rickards, F. W. (2004).
- Outcomes of Children with Mild-Profound Congenital Hearing Loss at 7 to 8 Years: A
- Population Study. Ear and Hearing, 25(1), 1–8.
- 835 https://doi.org/10.1097/01.AUD.0000111262.12219.2F
- Walker, E. A., Holte, L., McCreery, R. W., Spratford, M., Page, T., & Moeller, M. P.
- 837 (2015). The Influence of Hearing Aid Use on Outcomes of Children With Mild Hearing Loss.
- 338 Journal of Speech, Language, and Hearing Research: JSLHR, 58(5), 1611–1625.
- 839 https://doi.org/10.1044/2015_JSLHR-H-15-0043
- Wallentin, M. (2009). Putative sex differences in verbal abilities and language cortex:
- A critical review. Brain and Language, 108(3), 175–183.
- 842 https://doi.org/10.1016/j.bandl.2008.07.001
- Waltzman, S. B., Cohen, N. L., Gomolin, R. H., Green, J. E., Shapiro, W. H., Hoffman,
- R. A., & Roland, J. T. (1997). Open-set speech perception in congenitally deaf children
- using cochlear implants. American Journal of Otology, 18(3), 342–349.
- Watkin, P., McCann, D., Law, C., Mullee, M., Petrou, S., Stevenson, J., ... Kennedy,
- 847 C. (2007). Language ability in children with permanent hearing impairment: The influence
- of early management and family participation. Pediatrics, 120(3).
- 849 https://doi.org/10.1542/peds.2006-2116
- Weismer, S. E., Lord, C., & Esler, A. (2010). Early language patterns of toddlers on
- the autism spectrum compared to toddlers with developmental delay. Journal of Autism and

- White, S. J., & White, R. E. (1987). The effects of hearing status of the family and age of intervention on receptive and expressive oral language skills in hearing-impaired infants. ASHA Monographs, (26), 9–24.
- Wroblewska-Seniuk, K., Greczka, G., Dabrowski, P., Szyfter-Harris, J., & Mazela, J. (2017). Hearing impairment in premature newborns Analysis based on the national hearing
- 859 https://doi.org/10.1371/journal.pone.0184359

858

screening database in Poland. *PLoS ONE*, 12(9).

- Yoshinaga-Itano, C., Sedey, A. L., Coulter, D. K., & Mehl, A. L. (1998). Language of early- and later-identified children with hearing loss. *Pediatrics*, 102(5), 1161–1171.
- https://doi.org/10.1542/peds.102.5.1161
- Yoshinaga-Itano, C., Sedey, A. L., Wiggin, M., & Chung, W. (2017). Early hearing detection and vocabulary of children with hearing loss. *Pediatrics*, 140(2).
- $^{865} \quad https://doi.org/10.1542/peds.2016-2964$
- Yoshinaga-Itano, C., Sedey, A. L., Wiggin, M., & Mason, C. A. (2018). Language outcomes improved through early hearing detection and earlier cochlear implantation.
- 868 Otology and Neurotology, 39(10), 1256-1263.
- https://doi.org/10.1097/MAO.00000000000001976

 $\label{thm:continuous} \begin{tabular}{ll} Table 1 \\ Summary of findings of CDI studies in DHH children \\ \end{tabular}$

Study	Population	Gender	1-3-6	Laterality	Degree	Amplification	Communication	Comorbidities
Ching et al., 2013	3 year old children receiving services in Australia	Female +	Did not study	Did not study	More severe -	No effect	No effect	Comorbidities -
Yoshinaga-Itano et al., 2017	8-39 month children with bilateral hearing loss	No effect	1-3-6 +	Did not study	More severe -	Did not study	Did not study	Comorbidities -
Yoshinaga-Itano et al., 2018	Children with cochlear implants	Did not study	1-3-6 +	Did not study	Did not study	Earlier CI activation +	Did not study	Did not study
De Diego-Lazaro et al., 2018	Spanish speaking children with bilateral hearing loss	No effect	Earlier intervention +	Did not study	Milder +	More functional hearing +	Did not study	Did not study
Vohr et al., 2011	18-24 month olds with hearing loss	Did not study	Earlier intervention +	Did not study	Milder +	Did not study	Did not study	NICU stay -; Comorbidities -

a + equals bigger vocab, - equals smaller vocab

Table 2

CDI details

CDI version	Average Age (SD)	Average Comprehension (SD)	Average Production (SD)	% Developmental Delays
WG (n=74)	20.05 (8.82) months	105 (99.7) words	32 (53.4) words	18.92%
WS (n=23)	25.74 (7.82) months	NA	145 (183.4) words	4.35%

Table 3 $Additional\ Diagnoses\ (n=39)$

Condition	Specific Condition	n
Premature		17
	Extremely Premature	11
	NICU stay	16
Health Issues		36
	Heart	9
	Lung	5
	Illness	15
	Feeding Issues	14
	Pregnancy/Birth Complications	11
	Musculoskeletal	9
	Cleft Lip/Palate	4
	Other	15
Developmental Concerns		17
	Down Syndrome	5
	Chromosomal Issues	2
	Neural Tube Defects	2
	Other	10
Vision Loss		5
	Retinopathy of Prematurity	1
	Nearsightedness	1
	Farsightedness	1
	Cortical Visual Impairment	1

 $\label{eq:audiological} Table \ 4$ $\mbox{\it Audiological Characteristics of the Sample}$

Laterality	Amplification	mean_HLbetter	mean_HLworse	mean_age_amplification	mean_age_implantation
Bilateral	CI	85.60	89.79	11.29	14.12
Bilateral	HA	47.02	55.57	8.28	NaN
Bilateral	none	49.67	53.65	NaN	NaN
Unilateral	HA	4.70	56.04	10.91	NaN
Unilateral	none	2.50	73.90	8.50	NaN

 $\label{eq:communication} \begin{tabular}{ll} Table 5 \\ Language and communication characteristics of the sample \\ \end{tabular}$

Communication	English	Hindi	Spanish	Total
cued speech	1	0	0	1
spoken	68	1	10	79
total communication	15	0	3	18

Table 6

Meets 1-3-6 table

Diagnosis by 3 months	69.47%
Average Age Diagnosis (SD)	4.65 (7.19) months
Intervention by 6 months	39.18%
Average Age Intervention (SD)	11.12 (8.54) months
Meets 1-3-6	36.84%

Table 7 $Variables\ table$

Variable	Scale	Range
Age	Continuous	4.2-36 months (mean (SD): 21 (9.1))
Age at Amplification	Continuous	2-30 months (mean (SD): 9 (6.7))
Age at Diagnosis	Continuous	0-30 months (mean (SD): 5 (7.2))
Age at Implantation	Continuous	7-32 months (mean (SD): 14 (7.2))
Age at Intervention	Continuous	1-33 months (mean (SD): 11 (8.5))
Amplification	Categorical	Hearing Aid / Cochlear Implant / None
Communication	Categorical	Spoken / Total Communication / Cued Speech
Degree Hearing Loss (worse ear)	Continuous	17.75-100 dB HL (mean (SD): 64 (24))
Developmental Delay	Categorical	Yes / No
Gender	Categorical	Female / Male
Health Issues	Categorical	Yes / No
Language in Home	Categorical	English / Other
Laterality	Categorical	Unilateral / Bilateral
Meets 1-3-6	Categorical	Yes / No
Prematurity	Categorical	Full-term / Premature
Services Received Per Month	Continuous	0-43 services per month (mean (SD): 6 (6.4))
Type of Hearing Loss	Categorical	Sensorineural / Conductive / Mixed
CDI - Words Produced	Continuous	0-635 words (mean (SD): 61 (111.2))

term	estimate	std.error	statistic	p.value
(Intercept)	-9.6942330	7.2180893	-1.343047	0.1838572
Gendermale	6.0664252	2.8224384	2.149356	0.0352771
DevelopmentalConcernsyes	12.1442161	4.3169802	2.813128	0.0064568
HealthIssuesyes	-6.7421398	3.2609887	-2.067514	0.0426103
LateralityUnilateral	-8.8502622	3.6931136	-2.396423	0.0193973
HLworse	0.1731283	0.0710937	2.435211	0.0175929
AmplificationHA	12.2372465	4.3229550	2.830760	0.0061483
Amplificationnone	19.9404428	5.3052790	3.758604	0.0003644

	GVIF	Df
Gender	1.170592	1
DevelopmentalConcerns	1.488285	1
HealthIssues	1.424512	1
Laterality	1.160945	1
HLworse	1.613671	1
Amplification	2.263125	2

term	estimate	std.error	statistic	p.value
(Intercept)	9.384015	1.967599	4.769272	0.0000069
HealthIssuesyes	3.703441	1.418520	2.610778	0.0105472
Monolingual_Englishyes	-6.469065	1.957318	-3.305066	0.0013545
LateralityUnilateral	-2.148902	1.575573	-1.363886	0.1759312

	VIF	Df
HealthIssues	1.002092	1
Monolingual_English	1.025896	1
Laterality	1.027814	1

term	estimate	std.error	statistic	p.value
(Intercept)	14.6545372	2.8717392	5.1030181	0.0000022
HLworse	-0.0925203	0.0302741	-3.0560849	0.0030365
IsPrematureyes	3.7839323	1.9540853	1.9364212	0.0563036
IdentificationOfHLMonths	0.6520471	0.1044276	6.2440093	0.0000000
Monolingual_Englishyes	-1.3846263	2.1177275	-0.6538265	0.5150755

	VIF	Df
HLworse	1.030540	1
IsPremature	1.064463	1
IdentificationOfHLMonths	1.068221	1
Monolingual_English	1.101377	1