Математические основы защиты информации и информационной безопасности

Лабораторная работа №7 - Дискретное логарифмирование в конечном поле

Кейела Патачона, группа НПМмд-02-21

Содержание

1	Цель и задание работы	4
2	Выполнение работы2.1Теоретическая часть	5 5
3	Выводы	11
Сп	писок литературы	12

List of Figures

2.1	Пример дискретного логарифмирования	8
2.2	Алгоритм p —Полларда	9
2.3	Результат алгоритма p —Полларда	10

1 Цель и задание работы

Цель

Научиться дискретному логарифмированию в конечном поле

Задания к лабораторной работе

- 1. Реализовать алгоритм программно.
- 2. Получить у преподавателя задание, содержащее числа p,a,b и вычислить логарифм.

2 Выполнение работы

2.1 Теоретическая часть

Задача дискретного логарифмирования, как и задача разложения на множители, применяется во многих алгоритмах криптографии с открытым ключом. Предложенная в 1976 году У. Диффи и М.Хеллманом для установления сеансового ключа, та задача послужила основой для создания протоколов шифрования и цифровой подписи, доказательств с нулсным разглашением и других криптографических протоколов.

Пусть над некоторым множеством Ω произвольной природы определены операции сложения (a+b) и умножения (a+b). Множество Ω называется кольцом если выполняются следующие условия: 1. Сложение коммутативно: a+b=b+c для любых $a,b\in\Omega$; 2. Сложение ассоциативно: (a+b)+c=a+(b+c) для любых $a,b,c\in\Omega$; 3. Существует нулевой элемент $0\in\Omega$ такой, что a+0=a для любого $a\in\Omega$; 4. Для каждого элемента $a\in\Omega$ существует противоположный элемент $-a\in\Omega$ такой, что -a+a=0; 5. Умножение дистрибутивно относительно сложения:

$$a.(b+c) = a.b + a.c, \quad (a+b).c = a.c + b.c,$$

для любых $a, b, c \in \Omega$.

Если в кольце Ω умножение коммутативно: a.b=b.a для любых $a,b\in\Omega$, то кольцо называется коммунтативным.

Если в колые Ω умножение ассоциативно: (a.b).c = a.(b.c) для любых $a,b,c \in$

 Ω , то кольцо называется ассоциативным.

Если в кольце Ω существует единичный элемент e такой, что a.e=e.a=a для любого $a\in\Omega$, то кольцо называется кольцом с единицей.

Если в ассоциативном, коммутативном кольце с единицей для каждого ненулевого элемента a существует обратный элемент $a^{-1} \in \Omega$ такой, что $a^{-1}.a = a.a^{-1} = e$, то кольцо называется *полем*.

Пусть $m \in N, m > 1$. Целые числа a и b называются cpaвнимыми по модулю m (обозначается $a \equiv b \pmod{m}$), если разность a-b делится на m Некоторые свойства отношения сравнимости:

- 1. Рефлексивность: $a \equiv a \pmod{m}$.
- 2. Симметричность: если $a \equiv b \pmod{m}$, то $b \equiv a \pmod{m}$.
- 3. Транзитивность: если $a \equiv b \pmod{m}$ и $b \equiv c \pmod{m}$, $a \equiv c \pmod{m}$.

Отношение, обладающее свойством рефлексивности, симметричности и транитимности, называется *отношением эквивалентности*. Отношение сравнимости является отношением эквивалентности на множестве Z целых чисел.

Отношение эквивалентности разбивает множество, на котором оно определено, на *классы эквивалентности*. Любые два класса эквивалентности либо не пересекаются, либо совпадают.

Классы эквивалентности, определяемые отношением сравнимости, называются классами вычетов по модулю m. Класс вычетов, содержащий число a, обозначается $a \pmod{m}$ и представляет собой множество чисел вида a+km, где $k\in Z$: число a называется представителем этого класса вычетов.

Множество классов вычетов по модулю m обозначается Z/mZ, состоит ровно из m элементов и относительно операций сложения и умножения является кольцом классов вычетов по модулю m.

Пример. Если m=2, то $\mathbb{Z}/2\mathbb{Z}$ = {0 (mod 2), 1 (mod 2)}, где 0 (mod 2) = $2\mathbb{Z}$ множество всех четных чисел, 1 (mod 2) = $2\mathbb{Z}+1$ множество всех нечетных чисел.

Обозначим $F_p=Z/pZ\,p$ — простое целое число и назовем конечным полем и p элементов. Задача дискретного логарифмирования в конечном поле формулируется так: для данных целых чисел a и b,a>1,b>p, найти логарифм - такое целое число x, что $a^x\equiv b (mod\,m)$ (если такое число существует). По аналогии с вещественными числами используется обозначение $x=log_ab$.

Безопасность соответствующих криптосистем основана на том, что зная числа a,x,p, вычислить $a^x \pmod p$ легко, а решит задачу дискретного логарифмирования трудно. Рассмотрим р-Метод Полларда, который можно применить и для задач дискретного логарифмирования. При этом случайное отображение f должно обладать не только сжимающими свойствами, но и вычислимостью логарифма (логарифм числа f(c) можно выразить через неизвестный логарифм x и $log_a f(c)$). Для дискретного логарифмирования в качестве случайного отображения f чаще всего используются ветвящиеся отображения, например:

$$f(c) = egin{cases} ac & ext{при } c < rac{p}{2} \\ bc & ext{при } c > rac{p}{2} \end{cases}$$

При $c<\frac{p}{2}$ имеем $log_af(c)=log_ac+1$, при $c\geq\frac{p}{2}-log_af(c)=log_ac+1$

2.2 Алгоритм, реализующий p—Метод Полларда для задач дискретного логарифмирования.

Bxod. Простое число p, число a порядка r по модулю p, целое число b, 1 < b < p; отображение f, обладающее сжимающими свойствами и сохраняющее вычислимость логарифма.

Выход. Показатель x, для которого $a^x \equiv b \pmod{p}$, если такой показатель существует. 1. Выбрать произвольные целые числа u,v положить $c \leftarrow a^u b^v \pmod{p}$, $d \leftarrow c$ 2. Выполнять $c \leftarrow f(c) \pmod{p}$, $d \leftarrow f(f(c)) \pmod{p}$, вычисляя при этом логарифмы для c и d как линейные функции от x по модулю r, до получения

равенства $c \equiv d \pmod{p}$. 3. Приравняв логарифмы для c и d, вычислить логарифм x решением сравнения по модулю r. Результат: x или "Решений нет".

Пример. Решим задачу дискретного логарифмирования $10^x \equiv 64 (mod\ 107)$, используя p—Метод Полларда. Порядок числа 10 по модулю 107 равен 53.

Выберем отображение $f(c)\equiv 10c$ (mod 107) при c<53, $f(c)\equiv 64c$ (mod 107) при $c\geq 53$. Пусть u=2,v=2. Результаты вычислений запишем в таблицу:

Номер шага	С	$\log_a c$	d	$\log_a d$
0	4	2+2 x	4	2+2 x
1	40	3+2 x	76	4+2 x
2	79	4+2 x	56	5+3 x
3	27	4+3 x	75	5+5 x
4	56	5+3 x	CHW 3	5+7 x
5	53	5+4 x	86	7+7 x
6	75	5+5 x	42	8+8 x
7	92	5+6 x	23	9+9 x
8	3	5+7 x	53	11+9 x
9	30	6+7 x	92	11+11 x
10	86	7+7 x	30	12+12 x
11	47	7+8 x	47	13+13 x

Figure 2.1: Пример дискретного логарифмирования

Приравниваем логарифмы, полученные на 11—м шаге: $7+8x\equiv 13+13x \pmod{107}$. Решая сравнение первой степени, получаем: $x=20 \pmod{53}$.

Проверка: $10^{20} \equiv 64 \pmod{107}$.

```
a = 10
b = 64
u_0 = 2
v_0 = 2
def f(c, a, b, p):
    if c < (p // 2):
        return b * c
c = (a ** u_0 * b ** v_0) % p
d = c
while True:
    print(f"Iteration {i} : c = {c} d = {d}")
    c = f(c, a, b, p) \% p
    d = f(f(d, a, b, p) \% p, a, b, p) \% p
    if c == d % p:
    i += 1
print(f"Iteration {i} : c = {c} d = {d}")
```

Figure 2.2: Алгоритм p—Полларда

```
Iteration
                    4 d = 4
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
           8
Iteration
Iteration
           10
                        d
                     30
Iteration
Iteration
```

Figure 2.3: Результат алгоритма p—Полларда

3 Выводы

Мной была узчена тема дискретного логарифмирования в конечном поле.

Список литературы

1. Инструкция к лабораторной работе №7