```
In [15]: import pandas as pd
         import numpy as np
         from matplotlib import pyplot as plt
         from sklearn.datasets import make_classification
In [16]: | df1 = pd.DataFrame({
         x': [1,2,3,4,5,6,7,5,2,3,4,3.8],
         'y' : [6,3,8,9,3,7,9,4,2,8,3,7.3],
         'z' : [0,1,0,1,1,0,0,1,1,0,1,1]})
         plt.scatter(df1['x'],df1['y'],c=df1['z'])
         plt.scatter(3.5,7,color='r')
Out[16]: <matplotlib.collections.PathCollection at 0x1684dc2f4f0>
          9
          8
          7
          6
          5
          4
          3 ·
In [17]: #(3,8) (4,9)
         def ed(x1,x2,z1,z2):
             return np.sqrt((x2-x1)**2+(z2-z1)**2)
         ed(3.5,7,3,8)
Out[17]: 6.103277807866851
In [18]: ed(3.5,7,3.8,7.3)
Out[18]: 4.949747468305833
In [19]: |np.argmin([6.1,4.9])
Out[19]: 1
```

Customer Purchase

```
In [20]: df = pd.read_csv('Social_Network_Ads.csv')
df
```

Out[20]:

	User ID	Gender	Age	EstimatedSalary	Purchased
0	15624510	Male	19	19000	0
1	15810944	Male	35	20000	0
2	15668575	Female	26	43000	0
3	15603246	Female	27	57000	0
4	15804002	Male	19	76000	0
395	15691863	Female	46	41000	1
396	15706071	Male	51	23000	1
397	15654296	Female	50	20000	1
398	15755018	Male	36	33000	0
399	15594041	Female	49	36000	1

400 rows × 5 columns

```
In [21]: df.drop(columns='User ID',inplace=True)
```

```
In [26]: from sklearn.preprocessing import LabelEncoder,StandardScaler
    lb = LabelEncoder()
    sc = StandardScaler()
    df['Gender'] = lb.fit_transform(df['Gender'])
    df[['Age','EstimatedSalary']] = sc.fit_transform(df[['Age','EstimatedSalary']])
```

In [27]: df

Out[27]:

	Gender	Age	EstimatedSalary	Purchased
0	1	-1.781797	-1.490046	0
1	1	-0.253587	-1.460681	0
2	0	-1.113206	-0.785290	0
3	0	-1.017692	-0.374182	0
4	1	-1.781797	0.183751	0
395	0	0.797057	-0.844019	1
396	1	1.274623	-1.372587	1
397	0	1.179110	-1.460681	1
398	1	-0.158074	-1.078938	0
399	0	1.083596	-0.990844	1

400 rows × 4 columns

```
In [28]: ind = df.iloc[:,:3]
dep = df.iloc[:,-1]
dep
```

```
Out[28]: 0
                  0
          1
                  0
                  0
          3
                  0
          4
                  0
          395
                  1
          396
                  1
          397
                  1
          398
                  0
          399
                  1
```

Name: Purchased, Length: 400, dtype: int64

In [29]: ind

Out[29]:

	Gender	Age	EstimatedSalary
0	1	-1.781797	-1.490046
1	1	-0.253587	-1.460681
2	0	-1.113206	-0.785290
3	0	-1.017692	-0.374182
4	1	-1.781797	0.183751
395	0	0.797057	-0.844019
396	1	1.274623	-1.372587
397	0	1.179110	-1.460681
398	1	-0.158074	-1.078938
399	0	1.083596	-0.990844

400 rows × 3 columns

```
In [30]: xx = df.iloc
    from sklearn.model_selection import train_test_split
    x_train,x_test,y_train,y_test = train_test_split(ind,dep,test_size=0.2,random_
```

```
In [31]: from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=2)
knn.fit(x_train,y_train)
```

Out[31]: KNeighborsClassifier(n_neighbors=2)

```
In [32]: testing = pd.DataFrame({
    'y' : y_test,
    'y_hat' : knn.predict(x_test)
})
testing.sample(8)
```

Out[32]:

	У	y_hat
322	0	0
4	0	0
199	0	0
176	0	0
348	0	0
6	0	0
255	1	1
233	1	1