

Digitalizing our Marketing and Branding Infringement Checks

Who Are We?

- Super Heroes Media Incorporated
- Provide marketing and branding services
- Two largest accounts: Disney & Warner Bros

Our Two Biggest Portfolios

Infringement of material between our portfolios

These portfolios are very similar yet distinct

Easy for marketing/branding team to mix up information

Mix up could result in loss of business, damage to our reputation/credibility or lawsuit

Why Digitalize our Infringement Checks?

- More work is coming our way
 - MCU Phase 4 and 5
 - DCEU reboot
- Leverage on technology to manage our increased workload
 - Automate checks
 - Reduce mistakes
 - Increase efficiency

First Step in Our Digitalization Journey

- Trial implementation of a Natural Language
 Processing (NLP) Model to process text from
 - scripts,
 - concept write ups,
 - media publications and releases,
 - o promotions,
 - etc

Data Science Process

Scrapping from Reddit

- Subreddits
 - r/marvelstudios
 - r/DC_Cinematics
- Pushshift API
 - Post titles
 - Post text

Data Science Process

Data Cleaning & Processing

Data Exploration

Title and Post Length

Outliers in Post Length

Most Frequently Occurring Words

Removing Common Words

Data Science Process

Modelling Process

Vectorization

- Count Vectorizer
- 2. TF IDF Vectorizer

Apply Classification Algorithms

- 1. Base Model
- 2. Multinomial Naïve Bayes
- 3. Logistic Regression
- 4. KNN Classifier
- 5. Random Forest
- 6. Support Vector Machine

10 Models Trained and Tested

Data Science Process

Confusion Matrix

Model Evaluation Metrics

$$\frac{TP + TN}{TP + TN + FP + FN}$$

$$\frac{TN}{TN + FP}$$

$$\frac{TP}{TP + FN}$$

Receiving Operating Characteristic (ROC) AUC

Measure of ability to distinguish between classes

Harmonic man of Precision and Recall.

Effective metric when FP and FN are equally costly

$$2 \times \frac{Precision \times Recall}{Precision + Recall}$$

Precision

TP $\overline{TP + FP}$

Model	Model Type	Training Accuracy	Test Accurary	Specificity	Recall	Precision	F1	ROC AUC
Model 0	Dummy Classifier	0.5133	0.4898	0.5152	0.4672	0.5193	0.4919	0.5
Model 1	Naive Bayes (Cvec)	0.8998	0.8837	0.9177	0.8533	0.9208	0.8858	0.95
Model 2	Naive Bayes (TF-IDF)	0.893	0.8510	0.8745	0.8301	0.8811	0.8545	0.94
Model 3	Logistic Regression (Cvec)	0.9264	0.8122	0.8182	0.8069	0.8327	0.8196	0.93
Model 4	Logistic Regression (TF-IDF)	0.8684	0.802	0.708	0.8842	0.7736	0.8252	0.91
Model 5	KNN Classifier (Cvec)	0.7778	0.6959	0.8571	0.5521	0.8125	0.6575	0.82
Model 6	KNN Classifier (TF-IDF)	0.7117	0.6612	0.71	0.6178	0.7049	0.6584	0.77
Model 7	Random Forest (Cvec)	0.8187	0.7939	0.9351	0.668	0.9202	0.774	0.91
Model 8	Random Forest (TF-IDF)	0.8098	0.8061	0.9697	0.6602	0.9607	0.7826	0.92
Model 9	Support Vector Machine (Cvec)	0.9298	0.7959	0.8225	0.7722	0.8299	0.8	0.9
Model 10	Support Vector Machine (TF-IDF)	0.9652	0.8347	0.8442	0.8263	0.856	0.8409	0.91

Accuracy Score

ROC AUC

Data Science Process

Recap on Problem Statement

Trial implementation of a Natural Language
 Processing (NLP) Model to prevent information infringement onto other client domains

Production Model

Naïve Bayes

*** Count Vectorizer

Accuracy: 0.884

ROC AUC: 0.95

TF-IDF Vectorizer

Accuracy: 0.85

ROC AUC: 0.94

Explore TF-IDF Vectorizer further as it could help with word importance when a larger dataset is introduced

Feature Importance (DCEU)

Feature Importance (MCU)

Conclusion

- The model can differentiate between the two brands quite well
- To adopt as a secondary tool for automated infringement checks

Recommendations

Increase Model Accuracy

- Try other classification algorithms (e.g. decision trees, bagging, boosting, other complex models)
- Remove more common words

Increase Model Useability

- Include older data, going back to MCU and DCEU origins
- Use data from other sources (e.g Facebook, twitter)
- Consider data from Marvel and DC comics

-Thanks!

Any questions?