Assignment - 01

1. Design a DFA that accepts all the strings end with aga from \(\gamma = \{a, 6\}\) draw the corresponding transition table and check whether string w= bbababaaa is accepted or not

Design of a DFA that accepts all the strings end with aaa from E= {a,b}

Transition Table

Q		a	6
→ 90		9,	20
9,1		92	90
9.	1	95	90
P.J		Ps	20

Given,

String w= 66a6a6aaa

 $S(q_0, \underline{b}bababaaa) \vdash S(q_0, \underline{b}bababaaa) \vdash S(q_0, \underline{b}bababaaa)$ +S(q,66a6a6aaa)+S(qo,66a6a6aaa)+S(q,66a6a6aaa)

L S(90,660606000) LS (9,,660606000) -S(92,660606000)

1- S(9, 66a6a6aaa) = 9,

.. The string w= bbababaaa is accepted

2) Describe DEA and write rules for designing DEA

a type of finite acade machine or finite state outernotes.

DFA is Wederibed by M= (Q, E, S, 90, F) where

6 -> Set of finite non-empty states

I -> Set of finite non-empty input alphabels

90 - hitral starte & 90 E G

F -> Set of final states on accepting states & FCO

 $S \to Mapping function / Transition function in the form: <math display="block">S: \Theta \times \Sigma \to \Theta$

As the name suggest the automorta is deterministic because with single input it can move exactly to one state.

Rules of designing a DFA

(i) Apply all the input symbols exactly once to each state of the machine.

ex: {a,b} And (allowed) And (not allowed)

in the machine

Dead State: A state which is reachable from the initial State but doesn't participate in the acceptance of the String is known as Dead State.

Unreachable State: A state which can not be reached from the initial state is called unreachable state.

tinitial final umeachouse state state

3. Convert the following NFA to DFA and explain the

Conversion of NFA to DFA:

Step(2): Write all transitions from initial state on every input symbol in Σ .

Steples: Repeat step(1) for every new state, if a transition on some input symbol resulted in a set of states then it is also considered as a new single state.

Step(3): Repeat step(2) until no move new state is found.

Step(4): The final states of equivalent DFA are all those States which consists one accepting state I final state of the given NFA.

Given, NEA

Transition table of DFA

8	0	1
→ q ₀	£90}	{a1}
۹,	{a,,a,}	{ 9.}
[9,90]	{9,,92}	<i>[वव</i> २र्

· S({a,,a=},0) -> S(q,,0) U S(a=,0)

→ { a,, a=} u{a=}

→ { q,,q2 {

· S({a,,92},1) > S(9,,1) US(92,1)

→ {9,3 U }9,,92}

 $\rightarrow \{a, a \neq 3\}$

4. Explain NFA-E with an example

NFA-E stands for Non-deterministic finite automa.
-ta with E-moves is a type of finite state machine or
finite state automata.

NFA-E is defined by M= (Q, E, S', no, F) where,

Q -> Set of finite non-empty states

I -> Set of finite non-empty input alphabets

90 -> Initial state & 90 EQ

F -> Set of final states on accepting states &F CO

S' -> Mapping function / Transition function in the form

 $S': \Theta \times (\Sigma \cup \{e\}) \rightarrow 2\Theta$

S': 6×5 →20

example:

[= (a+b) = { E, a, b, aa, bb, ab, ba, aaa, aba, bbb, bab, ...}

(+1) (0+6) + 066

It means reducing the number of states from the given finite automata. Reducing number of states means we have to reduce or remove unreachable state, dead state & reducing the given DFA.

Procedure:

- 1. Remove all the unreachable states from the given DFA.
- 2. Divide the rest of the states into two groups
 (i) Non-final states (ii) final states
- 3. Apply every input symbol to each state and findout the resultant state.
- 4. Now identify the similarity between any two states of the same group and merge them into one.
- 5. Otherwise divide them to create another group.
- 6. Repeat step 4 & 5 until no change occur
- 7. Now draw the transition diagram of the minimized DFA.

example:

Minimized DFA:

$$G_{1} \begin{cases} Q_{0} < \alpha & S(Q_{0}, \alpha) = Q_{1} \\ S(Q_{0}, b) = Q_{2} \end{cases}$$

$$Q_{1} < \alpha & S(Q_{1}, \alpha) = Q_{1} \\ S(Q_{1}, b) = Q_{2} \end{cases}$$

$$Q_{2} < \alpha & S(Q_{2}, \alpha) = Q_{1} \\ S(Q_{2}, b) = Q_{2} \end{cases}$$

$$Q_{3} < \alpha & S(Q_{3}, \alpha) = Q_{4}$$

$$Q_{4} < \alpha & S(Q_{4}, \alpha) = Q_{4}$$