eGaN® FET DATASHEET EPC2010

EPC2010 – Enhancement Mode Power Transistor

 V_{DSS} , 200 V $R_{DS(ON)}$, $25\,m\Omega$ I_D , 12 A

Gallium Nitride is grown on Silicon Wafers and processed using standard CMOS equipment leveraging the infrastructure that has been developed over the last 55 years. GaN's exceptionally high electron mobility and low temperature coefficient allows very low R_{DS(ON)}, while its lateral device structure and majority carrier diode provide exceptionally low Q_G and zero Q_{RR} . The end result is a device that can handle tasks where very high switching frequency, and low on-time are beneficial as well as those where on-state losses dominate.

Maximum Ratings					
V_{DS}	Drain-to-Source Voltage	200	V		
I _D	Continuous ($T_A = 25^{\circ}C$, $\theta_{JA} = 17$)	12	А		
	Pulsed (25°C, Tpulse = 300 μs)	60			
V _{GS}	Gate-to-Source Voltage	6	· V		
	Gate-to-Source Voltage	-5			
T,	Operating Temperature	-40 to 125	°C		
T _{STG}	Storage Temperature	-40 to 150			

EPC2010 eGaN® FETs are supplied only in passivated die form with solder bars

Applications

- High Speed DC-DC conversion
- · Class D Audio
- Hard Switched and High Frequency Circuits

Benefits

- · Ultra High Efficiency
- Ultra Low R_{DS(on)}
- Ultra low Q_G
- · Ultra small footprint

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT		
Static Character	Static Characteristics (T _J = 25°C unless otherwise stated)							
BV _{DSS}	Drain-to-Source Voltage	$V_{GS} = 0 \text{ V, } I_D = 200 \mu\text{A}$	200			V		
I _{DSS}	Drain Source Leakage $V_{DS} = 160 \text{ V}, V_{GS} = 0 \text{ V}$			50	150	μΑ		
	Gate-Source Forward Leakage	$V_{GS} = 5 V$		1	3	mA		
I _{GSS}	Gate-Source Reverse Leakage	$V_{GS} = -5 \text{ V}$		0.2	1			
$V_{GS(TH)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 3 \text{ mA}$	0.7	1.4	2.5	V		
R _{DS(ON)}	Drain-Source On Resistance	$V_{GS} = 5 \text{ V, } I_D = 6 \text{ A}$		18	25	m $Ω$		
Source-Drain Ch	Source-Drain Characteristics (T _j = 25°C unless otherwise stated)							
V_{SD}	Source-Drain Forward Voltage	$I_S = 0.5 \text{ A}, V_{GS} = 0 \text{ V}, T = 25^{\circ}\text{C}$		1.8		V		
		$I_S = 0.5 \text{ A}, V_{GS} = 0 \text{ V}, T = 125 ^{\circ}\text{C}$		1.8		V		

Thermal Characteristics				
		TYP		
$R_{ heta JC}$	Thermal Resistance, Junction to Case	2.4	°C/W	
$R_{\theta JB}$	Thermal Resistance, Junction to Board	16	°C/W	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Note 1)	56	°C/W	

Note 1: R_{DA} is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board. See http://epc-co.com/epc/documents/product-training/Appnote_Thermal_Performance_of_eGaN_FETs.pdf for details.

eGaN® FET DATASHEET EPC2010

	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT	
Dynamic Charac	Dynamic Characteristics (T _j = 25°C unless otherwise stated)						
C _{ISS}	Input Capacitance			480	540		
C _{oss}	Output Capacitance	$V_{DS} = 100 V, V_{GS} = 0 V$		270	350	pF	
C _{RSS}	Reverse Transfer Capacitance			9.2	12		
Q_{G}	Total Gate Charge (V _{GS} = 5 V)			5	7.5		
Q_{GD}	Gate to Drain Charge	$V_{DS} = 100 \text{ V}, I_{D} = 12 \text{ A}$		1.7	2.6		
Q_{GS}	Gate to Source Charge			1.3	2	nC	
Qoss	Output Charge	$V_{DS} = 100 V, V_{GS} = 0 V$		40	50		
Q_{RR}	Source-Drain Recovery Charge			0			

All measurements were done with substrate shorted to source.

Figure 2: Transfer Characteristics

Figure 3: R_{DS(ON)} vs V_G for Various Current

Figure 4: R_{DS(ON)} vs V_G for Various Temperature

eGaN® FET DATASHEET EPC2010

All measurements were done with substrate shortened to source.

eGaN® FET DATASHEET EPC2010

Figure 11: Transient Thermal Response Curves

Normalized Maximum Transient Thermal Impedance Duty Factors: Z_{BJC}, Normalized Thermal Impedance 0.2 0.1 0.05 0.01 0.02 0.01 Notes: Duty Factor: $D = t_1/t_2$ Single Pulse $Peak \, T_J = P_{DM} \, x \, Z_{\theta JC} \, x \, R_{\theta JC} + T_C$ 0.001 10-6 10-5 10-4 10-3 10-2 10-1 t_p, Rectangular Pulse Duration, seconds

Figure 12: Safe Operating Area

EPC2010 eGaN® FET DATASHEET

TAPE AND REEL CONFIGURATION

EPC2010 (note 1) Dimension (mm) target min 11.9 12.3 12.0 b 1.75 1.65 1.85 5.45 c (note 2) 5.50 5.55 3.90 d 4.00 4.10 4.00 3.90 4.10 e f (note 2) 2.00 1.95 2.05 g 1.5 1.5 1.6 Die is placed into pocket solder bar side down (face side down)

Note 1: MSL1 (moisture sensitivity level 1) classified according to IPC/JEDEC industry standard. Note 2: Pocket position is relative to the sprocket hole measured as true position of the pocket, not the pocket hole.

DIE MARKINGS

Part		Laser Markings	
Number	Part #	Lot_Date Code	Lot_Date Code
	Marking Line 1	Marking line 2	Marking Line 3
EPC2010	2010	YYYY	ZZZZ

DIE OUTLINE

Solder Bar View

DIM	MICROMETERS				
DIM	MIN	Nominal	MAX		
A	3524	3554	3584		
В	1602	1632	1662		
c	1379	1382	1385		
d	577	580	583		
e	262	277	292		
f	245	250	255		
q	600	600	600		

Side View

eGaN® FET DATASHEET EPC2010

RECOMMENDED LAND PATTERN

(units in µm)

Pad no. 1 is Gate; Pads no. 3, 5, 7 are Drain; Pads no. 4, 6 are Source; Pad no. 2 is Substrate

Efficient Power Conversion Corporation (EPC) reserves the right to make changes without further notice to any products herein to $improve\ reliability, function\ or\ design.\ EPC\ does\ not\ assume\ any\ liability\ arising\ out\ of\ the\ application\ or\ use\ of\ any\ product\ or\ circuit$ described herein; neither does it convey any license under its patent rights, nor the rights of others.

 $eGaN^{\circ} \ is \ a \ registered \ trademark \ of \ Efficient \ Power \ Conversion \ Corporation.$

U.S. Patent 8,350,294

Information subject to change without notice. Revised February, 2013