09/09/2004 09:08 5084777234 Richard M Sharkansky Page 3/10

Appl. No. 09/618,741

Third Response to the Final Office Action mailed May 12, 2004 (CORRECTED)

Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

Claims 1 - 7 (cancelled)

Claim 8. (previously presented) The method of claim 32, wherein the mixing comprises rotating the chamber.

Claim 9. (cancelled)

Claim 10. (previously presented) The method of claim 8, further comprising: forming the aluminum oxynitride into a transparent structure.

Claim 11. (original) The method of claim 10, wherein forming the aluminum oxynitride comprises:

forming a green body comprising the aluminum oxynitride; and sintering the green body.

Claim 12. (original) The method of claim 11, further comprising: isostatically pressing the sintered green body under heat.

Claim 13. (previously presented) The method of claim 32, wherein the aluminum oxynitride comprises $Al_{23-1/3}$ $xO_{27+x}N_{5-x}$, where $0.429 \le x \le 2$.

Claims 14 - 31. (cancelled)

Appl. No. 09/618,741

Third Response to the Final Office Action mailed May 12, 2004 (CORRECTED)

Claim 32. (currently amended) A method of making aluminum oxynitride, the method comprising:

- (a) providing a chamber having a predetermined temperature;
- (b) introducing aluminum oxide particles and carbon particles into the provided chamber;
- (c) reacting the aluminum oxide particles and carbon particles introduced into the provided chamber while mixing the aluminum oxide particles and carbon particles within the provided chamber and while passing nitrogen gas over the mixing aluminum oxide particles and carbon particles with the predetermined temperature of the chamber being maintained constant at the predetermined temperature during conversion of the aluminum oxide particles, carbon particles and nitrogen into the aluminum oxynitride; and
 - (d) removing the aluminum oxynitride from the chamber.
- Claim 33. (previously presented) The method recited in claim 32 wherein the predetermined temperature is about 1700-1900°C.
- Claim 34. (currently amended) A method of making aluminum oxynitride, the method comprising:
 - (a) providing a chamber having a predetermined temperature;
 - (b) introducing aluminum oxide particles and carbon particles into the provided chamber;
 - (c) reacting the aluminum oxide particles and carbon particles introduced into the provided chamber while continuously mixing the aluminum oxide particles and carbon particles within the provided chamber and while passing nitrogen gas over the mixing aluminum oxide particles and carbon particles with the predetermined temperature of the chamber being maintained constant at the predetermined temperature during conversion of the aluminum oxide particles, carbon particles and nitrogen into the aluminum oxynitride; and
 - (d) removing the aluminum oxynitride from the chamber;

09/09/2004 09:08 5084777234 Richard M Sharkansky Page 5/10

Appl. No. 09/618,741

Third Response to the Final Office Action mailed May 12, 2004 (CORRECTED)

Claim 35. (previously presented) The method recited in claim 34 wherein the predetermined temperature is about 1700-1900°C.

- Claim 36. (previously presented) A method of making aluminum oxynitride, the method comprising:
 - (a) providing a chamber having a predetermined temperature;
 - (b) continuously introducing aluminum oxide particles and carbon particles into the provided chamber;
 - (c) reacting aluminum oxide particles and carbon particles continuously introduced into the provided chamber while continuously mixing the aluminum oxide particles and carbon particles within the provided chamber and while passing nitrogen gas over the mixing aluminum oxide particles and carbon particles with the temperature of the chamber being maintained constant at the provided predetermined temperature during conversion of the aluminum oxide particles, carbon particles and nitrogen into the aluminum oxynitride; and
 - (d) continuously removing the aluminum oxynitride from the chamber.
- Claim 37. (previously presented) The method recited in claim 36 wherein the predetermined temperature is about 1700-1900°C.
- Claim 38. (currently amended) A method of making aluminum oxynitride, the method comprising:
 - (a) providing a chamber;
 - (b) introducing aluminum oxide particles and carbon particles into the provided chamber;
 - (c) reacting the aluminum oxide particles and carbon particles introduced into the provided chamber while mixing the aluminum oxide particles and carbon particles within the provided chamber and while passing nitrogen gas over the mixing aluminum oxide particles and carbon particles with the chamber having a temperature about 1700-1900°C during conversion of the aluminum oxide particles, carbon particles and nitrogen into the aluminum oxynitride; and

Appl. No. 09/618,741

Third Response to the Final Office Action mailed May 12, 2004 (CORRECTED)

(d) removing the aluminum oxynitride from the chamber,

Claim 39. (currently amended) A method of making aluminum oxynitride, the method comprising:

- (a) providing a chamber;
- (b) introducing aluminum oxide particles and carbon particles into the provided chamber;
- (c) reacting the aluminum oxide particles and carbon particles introduced into the provided chamber while continuously mixing the aluminum oxide particles and carbon particles within the provided chamber and while passing nitrogen gas over the mixing aluminum oxide particles and carbon particles with the chamber having a temperature selected to convert the aluminum oxide particles, carbon particles and nitrogen into the aluminum oxynitride; and
 - (d) removing the aluminum oxynitride from the chamber;
- Claim 40. (previously presented) The method recited in claim 39 wherein the temperature of the chamber is about 1700-1900°C.
- Claim 41. (previously presented) A method of making aluminum oxynitride, the method comprising:
 - (a) providing a chamber:
 - (b) continuously introducing aluminum oxide particles and carbon particles into the provided chamber;
 - (c) reacting aluminum oxide particles and carbon particles continuously introduced into the provided chamber while continuously mixing the aluminum oxide particles and carbon particles within the provided chamber and while passing nitrogen gas over the mixing aluminum oxide particles and carbon particles with the temperature of the chamber being maintained to convert the aluminum oxide particles, carbon particles and nitrogen into the aluminum oxynitride.

09/09/2004 09:08 5084777234 Richard M Sharkansky Page 7/10

Appl. No. 09/618,741

Third Response to the Final Office Action mailed May 12, 2004 (CORRECTED)

Claim 42. (previously presented) The method recited in claim 36 wherein the temperature is about 1700-1900°C.

- Claim 43. (currently amended) The method recited in claim 40 41 including removing the aluminum oxynitride from the chamber.
- Claim 44. (currently amended) The method recited in claim 40 41 including continuously removing the aluminum oxynitride from the chamber.
- Claim 45. (previously presented) The method recited in claim 43 wherein the temperature is about $1700-1900^{\circ}$ C.
- Claim 46. (previously presented) The method recited in claim 44 wherein the temperature is about 1700-1900°C.
- Claim 47. (previously presented) A method of making aluminum oxynitride, the method comprising:
 - (a) providing a chamber:
 - (b) continuously introducing aluminum oxide particles and carbon particles into the provided chamber;
 - (c) reacting aluminum oxide particles and carbon particles continuously introduced into the provided chamber while continuously mixing the aluminum oxide particles and carbon particles within the provided chamber and while passing nitrogen gas over the mixing aluminum oxide particles and carbon particles with the temperature of the chamber being maintained to continuously convert the aluminum oxide particles, carbon particles and nitrogen into the aluminum oxynitride.
- Claim 48. (currently amended) The method recited in claim 37_47 wherein the temperature is about 1700-1900°C.

Appl. No. 09/618,741

Third Response to the Final Office Action mailed May 12, 2004 (CORRECTED)

Claim 49. (currently amended) The method recited in claim 48 47 including removing the aluminum oxynitride from the chamber.

Claim 50. (currently amended) The method recited in claim 48-47 including continuously removing the aluminum oxynitride from the chamber.

Claim 51. (previously presented) The method recited in claim 50 wherein the temperature is about 1700-1900°C.

Claim 52. (currently amended) The method recited in claim 51 49 wherein the temperature is about 1700-1900°C.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
RAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.