Digital Electronic Circuits Section 1 (EE, IE)

Lecture 4

Inverter (NOT Gate)

Y = not A

$$Y = \overline{A}$$
 $Y = A'$

Delay in actual circuit i.e. not instantaneous.

AND Gate Y = A AND B

$$Y = A.B = A.B$$

= $B.A$

Y = A.B.C= A.(B.C)= (A.B).C(Associative) B

0

0

0

Commu	tative

OR Gate Y = A OR B

$$Y = A + B$$
$$= B + A$$

(Commutative)

$$Y = A + B + C$$

$$= A + (B + C)$$

$$= (A + B) + C$$
(Associative)

	A	B	\boldsymbol{C}	Y
V	0	0	0	0
- <i>Y</i>	$0 \\ 0$	0	1	1
	0	1	0 1 0	1
	0	1	1	0 1 1 1
	1	0	0	1
	1	0	0 1	1
	1	1	0 1	1 1 1 1
	1	1	1	1
			l	l

NOR Gate

A	В	Y
0	0	1
0	1	0
1	0	0
1	1	0

 $Y = \overline{A + B} = \overline{A} \, \overline{B}$

(Commutative)

De Morgan's 1st Theorem:

$$Y = \overline{(A + B + C + ...)}$$

= $\overline{A}.\overline{B}.\overline{C}...$

NAND Gate

A	В	Y
0	0	1
0	1	1
1	0	1
1	1	0

$$Y = \overline{AB} = \overline{A} + \overline{B}$$

(Commutative)

De Morgan's 2nd Theorem:

$$Y = \overline{ABC..}$$

= $\overline{A} + \overline{B} + \overline{C} + \cdots$

Universality of NOR, NAND gate

Realization of AND, OR, NOT

Possible Logic Operations

 f_9 f_{10} f_{11} f_{12} f_{13} 0 0 0 0 0 0 NOT y NOT x

- 2^{2^n} possible functions with n variables
- Formalization of representation and manipulation: Boolean Algebra

Boolean Algebra: Huntington Postulates

No.	Postulate	Description
1	Closed with operators + and .	Result of each is 1, $0 \in B$
2	Identity element: 0 with +, 1 with .	x + 0 = x; $x.1 = x$
3	Commutative w.r.t. +, .	x + y = y + x; $x.y = y.x$
4	. is distributive over +,+ is distributive over .	x.(y + z) = x.y + x.z; x + (y.z) = (x + y).(x + z)
5	For $x \in B$, there is $x' \in B$ s.t. $x + x' = 1$ and $x \cdot x' = 0$	0 + 0' = 0 + 1 = 1, 1 + 1' = 1; 0.0' = 0.1 = 0, 1.1' = 1.0 = 0
6	At least 2 elements $x, y \in B$ s.t. $x \neq y$	$B = \{0,1\}, 0 \neq 1$

1854: Boolean Algebra, George Boole

1904: Postulates, E. V.

.**904.** Postulates, E.

Huntington

1938: Switching Algebra

(2-valued), Claude. E.

Shanon

Associative Law: (x + y) + z = x + (y + z); (x.y).z = x.(y.z) From postulates

Postulates and Basic Theorems

Name	(a)	(b)
Identity	x + 0 = x	x.1 = x
Null	x + 1 = 1	x.0 = 0
Complementarity	x + x' = 1	x.x'=0
Idempotency	X + X = X	x.x = x
Involution	(x')' = x	
Commutative	x + y = y + x	x.y = y.x
Associative	(x + y) + z = x + (y + z)	(x.y).z = x.(y.z)
Distributive	x.(y+z)=x.y+x.z	x + (y.z) = (x + y).(x + z)

Duality and Boolean Expressions

Name	(a)	(b)
Absorption	x + x.y = x	x.(x+y)=x
Adsorption	x + x'.y = x + y	x.(x'+y)=x.y
Uniting	x.y + x.y' = x	(x+y).(x+y')=x
Consensus	x.y + x'.z + y.z = x.y + x'.z	(x + y).(x' + z).(y + z) = (x + y).(x' + z)
De Morgan's	$(x_1 + x_2 + x_3 + \dots x_N)' = x_1' \cdot x_2' \cdot x_3' \cdot \dots x_N'$	$(x_1.x_2.x_3x_N)' = x_1' + x_2' + x_3' + + x_N'$

Duality: Boolean Algebraic expression remains valid if the operators and identity elements are interchanged.

Proof: Null (b) x + 1 = 1 (proven) By Duality, x.0 = 0

Operator precedence: Parentheses, NOT, AND, OR

More Proof

Proof: Idempotency (a)

$$x + x = (x + x).1$$
 :Identity
$$= (x + x).(x + x')$$
 :Complem.
$$= x + x.x'$$
 :Distribut.
$$= x + 0$$
 :Complem.
$$= x$$
 :Identity

Proof: Idempotency (b)

$$x.x = x.x + 0$$

$$= x.x + x.x'$$

$$= x.(x + x')$$

$$= x.1$$

$$= x$$
[Also, by duality of (a), $x + x = x$]

Proof: Involution

$$(x')' = (x')' + 0$$

$$= (x')' + x.x'$$

$$= [(x')' + x].[(x')' + x']$$

$$= [x + (x')'].[x' + (x')']$$

$$= [x + (x')'].1$$

$$= [x + (x')'].[x + x']$$

$$= x + (x')'.x'$$

$$= x + x'. (x')'$$

$$= x + 0$$

$$= x$$

More Proof

Proof: Consensus (a)

$$x.y + x'.z + y.z = x.y + x'.z + y.z.1$$

$$= x.y + x'.z + y.z.(x + x')$$

$$= x.y + x'.z + x.y.z + x'.y.z$$

$$= (x.y + x.y.z) + (x'.z + x'.y.z)$$

$$= (x.y + x.y.z) + (x'.z + x'.y.z)$$

$$= x.y.(1 + z) + x'.z.(1 + y)$$

$$= x.y.1 + x'.z.1$$

$$= x.y + x'.z$$

Proof: De Morgan's Th. (a) 2 var.: (x + y)' = x'.y'

We know,
$$(x + y) + (x + y)' = 1$$

To show, $(x + y) + x'.y' = 1$
 $(x + y) + x'.y' = [(x + y) + x'].[(x + y) + y']$
 $= [(y + x) + x'].[(x + y) + y']$
 $= [y + (x + x')].[x + (y + y')]$
 $= [y + 1].[x + 1]$
 $= 1.1$
 $= 1$

More Characteristics

- Distributive Law, x + (y.z) = (x + y).(x + z), is not valid for ordinary algebra.
- Complement is not available in ordinary algebra.
- Boolean algebra does not have subtraction, division.
- Boolean algebra (2-valued) has finite set of elements (0 and 1).

Difference with ordinary algebra

Use of NAND (\uparrow), NOR (\downarrow) instead of AND (.), OR (+):

- $(x \uparrow y) \uparrow z \neq x \uparrow (y \uparrow z); (x \uparrow y)' \uparrow z = x \uparrow (y \uparrow z)'$
- $(x \downarrow y) \downarrow z \neq x \downarrow (y \downarrow z); (x \downarrow y)' \uparrow z = x \downarrow (y \downarrow z)'$
- $x \uparrow (y \downarrow z) \neq (x \downarrow y) \uparrow (x \downarrow z)$; $x \uparrow (y \downarrow z) = (x' \downarrow y) \uparrow (x' \downarrow z)$
- $x \downarrow (y \uparrow z) \neq (x \uparrow y) \downarrow (x \uparrow z)$; $x \downarrow (y \uparrow z) = (x' \uparrow y) \downarrow (x' \uparrow z)$

Pseudodistributive

Pseudoassociative

Boolean Function to Truth Table

$$F(x,y) = x + x'.y$$

$$F(0,0) = 0 + 0'.0 = 0 + 1.0 = 0 + 0 = 0$$

 $F(0,1) = 0 + 0'.1 = 0 + 1.1 = 0 + 1 = 1$
 $F(1,0) = 1 + 1'.0 = 1 + 0.0 = 1 + 0 = 1$
 $F(1,1) = 1 + 1'.1 = 1 + 0.1 = 1 + 0 = 1$

X	у	<i>F</i> (<i>x</i> , <i>y</i>)
0	0	0
0	1	1
1	0	1
1	1	1

X	y	Z	F(x,y,z)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

$$F(x,y,z) = (x + y).(x + z)$$
$$F(0,0,0) = (0 + 0).(0 + 0)$$

= 0.0 = 0

$$F(0,0,1) = (0+0).(0+1)$$
$$= 0.1 = 0$$

• • •

• • •

Implementation of Boolean Function

$$F(x,y) = x + x'.y$$

$$F(x,y,z)=(x+y).(x+z)$$

Efficient Implementation

Use of Boolean Algebra

Equivalence can be verified from Truth Table.

From Adsorption Theorem:

$$F(x,y) = x + x'.y = x + y$$

Earlier: One NOT, One 2 i/p AND,

One 2 i/p OR

Now: One 2 i/p OR

From Postulate (Distributive Law):

$$(x+y).(x+z)=x+y.z$$

Earlier: One 2 i/p AND, Two 2 i/p OR

Now: One 2 i/p AND, One 2 i/p OR

Algebraic Simplification

Simplify,

$$Y = F(A,B,C) = A(A' + C)(A'B + C)(A'BC + C')$$

$$Y = (AA' + AC) (A'B + C) (A'BC + C')$$
: distribut.
 $= AC(A'B + C) (A'BC + C')$: $XX' = 0$
 $= (AC \cdot A'B + AC \cdot C) (A'BC + C')$: distribut.
 $= AC(A'BC + C')$: $XX' = 0$
 $= AC \cdot A'BC + AC \cdot C'$: distribut.
 $= 0 + 0 = 0$: $XX' = 0$

Note that, output Y is always L here and can be connected to LOW voltage directly.

Simplify, Y = (A + B)(A'(B' + C'))' + A'(B + C)

$$Y = (A + B) ((A + (B' + C')') + A'(B + C) : De Morgan's$$

 $= (A + B) (A + BC) + A'(B + C)$: De Morgan's
 $= (AA + ABC + AB + BBC) + A'(B + C)$
 $= (A + AB + ABC + BC) + A'(B + C)$
 $= A(1 + B + BC) + BC + A'(B + C)$
 $= A + BC + A'(B + C)$
 $= (A + A'(B + C)) + BC$
 $= A + B + C + BC$
 $= A + B + C + BC$

Shanon's Expansion Theorem

$$F(x_1, x_2, x_3, ..., x_N) = x_1'.F(0, x_2, x_3, ..., x_N) + x_1.F(1, x_2, x_3, ..., x_N)$$

Proof: x_1 can take only 2 values, 0 and 1

For
$$x_1 = 0$$
, LHS = $F(0, x_2, x_3, ..., x_N) = 0'.F(0, x_2, x_3, ..., x_N) + 0.F(1, x_2, x_3, ..., x_N)$
= $1.F(0, x_2, x_3, ..., x_N) + 0$
= $F(0, x_2, x_3, ..., x_N) = RHS$
For $x_1 = 1$, LHS = $F(1, x_2, x_3, ..., x_N) = 1'.F(0, x_2, x_3, ..., x_N) + 1.F(1, x_2, x_3, ..., x_N)$
= $0.F(0, x_2, x_3, ..., x_N) + F(1, x_2, x_3, ..., x_N)$
= $0.F(1, x_2, x_3, ..., x_N) = RHS$

Dual Form:

$$F(x_1, x_2, x_3, ..., x_N) = [x_1' + F(1, x_2, x_3, ..., x_N)].[x_1 + F(0, x_2, x_3, ..., x_N)]$$

Example:

$$F(x,y) = x + x'.y$$

$$F(0,y) = 0 + 0'.y = 1.y = y$$

$$F(1,y) = 1 + 1'.y = 1$$

$$F(x,y) = x'.F(0,y) + x.F(1,y)$$

$$= x'.y + x.1$$

$$= x'.y + x$$

$$= x + x'.y$$

Example on Simplification

Simplify,

$$F(A, B, C, D, E) = A + \overline{A}.B + A.D.(B + E).(B.C + D.E)$$

Choice of A as expansion variable as it is associated with more number of terms

$$F(0, B, C, D, E) = 0 + \overline{0}.B + 0.D.(B + E).(B.C + D.E) = B$$

 $F(1, B, C, D, E) = 1 + \overline{1}.B + 1.D.(B + E).(B.C + D.E) = 1$
 $F(A, B, C, D, E) = \overline{A}.F(0, B, C, D, E) + A.F(1, B, C, D, E)$
 $= \overline{A}.B + A.1 = A + \overline{A}.B = A + B$

More on Shanon's Expansion Theorem

$$F(x_1, x_2, x_3, ..., x_N) = x_1'.F(0, x_2, x_3, ..., x_N) + x_1.F(1, x_2, x_3, ..., x_N)$$

$$F(x_1, x_2, x_3, ..., x_N) = x_1'.[x_2'.F(0, 0, x_3, ..., x_N) + x_2.F(0, 1, x_3, ..., x_N)] + x_1.[x_2'.F(1, 0, x_3, ..., x_N) + x_2.F(1, 1, x_3, ..., x_N)]$$
Nesting

$$F(x,y) = x'.F(0,y) + x.F(1,y) = x'.[y'.F(0,0) + y.F(0,1)] + x.[y'.F(1,0) + y.F(1,1)]$$
 For 2 variables $= x'.y'.F(0,0) + x'.y.F(0,1) + x.y'.F(1,0) + x.y.F(1,1)$

Example:

$$F(x,y) = x + x'.y$$
 \Rightarrow $F(0,0) = 0 + 0'.0 = 0;$ $F(0,1) = 0 + 0'.1 = 1;$ $F(1,0) = 1 + 1'.0 = 1;$ $F(1,1) = 1 + 1'.1 = 1;$

Х	у	F(x,y)
0	0	0
0	1	1
1	0	1
1	1	1

$$F(x,y) = x'.y'.0 + x'.y.1 + x.y'.1 + x.y.1 = x'.y + x.y' + x.y$$
 In Truth Table,
= $x'.y + x.(y + y') = x'.y + x.1 = x + x'.y$ o/p is 1 in 3 rows

References:

- ☐ Donald P. Leach, Albert P. Malvino, and Goutam Saha, Digital Principles & Applications 8e, McGraw Hill
- ☐ M. Morris Mano, and Michael D. Ciletti, Digital Design 5e, Pearson
- ☐ Technical documents from http://www.ti.com accessed on Oct. 08, 2018