Analyse convexe & optimisation **Durée approximative : 2h.**

Seuls le polycopié et les notes de cours sont autorisés .

Exercice 1. Pour les ensembles X suivants, dites si l'ensemble est convexe et déterminez l'opérateur de projection Π_X par la méthode de votre choix. Déterminer l'opérateur de projection signifie donner son expression $\Pi_X(x)$ pour tout x. Note : pour cet exercice, seul le résultat final comptera, ce n'est donc pas la peine de trop justifier.

- 1. $X = \{x \in \mathbb{R}^2, ||x||_2 \le 1\}.$
- 2. $X = \{x \in \mathbb{R}^2, \sqrt{\|x\|_2} \le 1\}.$
- 3. $X = \{x \in \mathbb{R}^2, ||x||_2 = 1\}.$
- 4. $X = \{(x_0, \dots, x_n) \in (\mathbb{R}^2)^{n+1}, x_i = x_1 + i/n(x_n x_1), i \in \{1, \dots, n-1\}\}$. Ici, il faut donner une justification.

Exercice 2. Sur un schéma dessiner proprement quelques lignes de niveau de la fonction $f(x_1, x_2) = 2|x_1| + x_2^2$.

Exercice 3. Dans ce problème, on s'intéresse à la gestion numérique d'une contrainte affine. Ce type de contrainte apparaît abondamment dans les milieux industriels et académiques. Soit $A \in \mathbb{R}^{m \times n}$, $b \in \text{Im}(A)$, $X = \{x \in \mathbb{R}^n, Ax = b\}$ et

$$f(x) = \chi_X(x) = \begin{cases} 0 & \text{si } x \in X \\ +\infty & \text{sinon.} \end{cases}$$

Le but de cet exercice est d'étudier la fonction f en utilisant les outils d'analyse convexe vus en cours. On travaille avec la norme Euclidienne et les produits scalaires usuels notés $\|\cdot\|_2$ et $\langle\cdot,\cdot\rangle$ respectivement.

Partie I : La première partie de cet examen est destinée à permettre une meilleure compréhension du problème. On commence donc par un exemple simple et on pose n=2, m=1, A=[1,0], b=1.

- 1. Dessiner l'ensemble X.
- 2. Dessiner le cône normal $\mathcal{N}_X(x)$ au point $x = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.
- 3. Déterminer la projection $\Pi_X(x)$ du point $x = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$.

Partie II : Dans la deuxième partie de cet examen, on se propose d'étudier le problème d'un point de vue générique. La matrice A est arbitraire avec des lignes linéairement indépendantes et $b \in \text{Im}(A)$.

- 1. Montrer que f est convexe et fermée.
- 2. Montrer que $X = \bar{x} + \text{Ker}(A)$ pour un certain \bar{x} qu'on précisera.
- 3. Soit $x_0 \in X$. En utilisant les remarques précédentes, montrer que

$$\mathcal{N}_X(x_0) = \operatorname{Ker}(A)^{\perp}.$$

4. Que vaut $\mathcal{N}_X(x_0)$ pour $x_0 \notin X$?

L'objectif des questions suivantes est de calculer :

$$x^* = \operatorname{Prox}_f(x_0) = \operatorname*{arg\,min}_{x \in \mathbb{R}^n} f(x) + \frac{1}{2} \|x - x_0\|_2^2. \tag{1}$$

- 5. Que représente x^* géométriquement?
- 6. Ecrire les conditions d'optimalité satisfaites par la solution x^* du problème (1).
- 7. Montrer que $Ker(A)^{\perp} = Im(A^*)$.
- 8. En déduire que les conditions d'optimalité peuvent se réécrire

$$\begin{cases} x^* - x_0 = A^*y \\ A(x_0 + A^*y) = b \end{cases}$$

- 9. En déduire que $x^* = x_0 + A^*(AA^*)^{-1}(b Ax_0)$.
- 10. Justifier pourquoi AA^* peut-être inversée.

Note: la matrice $A^+ = A^*(AA^*)^{-1}$ n'est rien d'autre que la pseudo-inverse de A. Le point x^* aurait aussi pu être trouvé en utilisant des techniques d'algèbre linéaire.

Partie III : Nous nous intéressons maintenant à un problème d'optimisation pratique. Soit $g: \mathbb{R}^n \to \mathbb{R}$ une fonction convexe différentiable avec un gradient L-Lipschitz.

1. Ecrire un algorithme efficace pour résoudre le problème suivant :

$$\min_{x \in \mathbb{R}^n, Ax = b} g(x).$$

- 2. Quelle garanties théoriques de convergence pouvez-vous donner à cet algorithme?
- 3. On suppose maintenant que g est μ -fortement convexe à gradient L-Lipschitz. Décrire un algorithme de minimisation.
- 4. Quelles garanties théoriques de convergence pouvez-vous donner?