Expansão Teórica 33 — A Transformada Inversa da TSR

Resumo

Esta expansão introduz e formaliza a **Transformada Inversa da Teoria das Singularidades Ressonantes (TSR)**, permitindo reconstruir o perfil de coerência angular $Z(\phi)$ a partir da energia projetada de uma singularidade rotacional. Enquanto a Transformada Toroidal Ressonante direta $\mathcal{T}_{\mathrm{TTR}}$ leva uma coerência a uma energia média periférica, a transformada inversa propõe uma operação funcional que, dado um campo energético $E(\phi)$, recupera a coerência angular que o originou. A formulação assume simetria circular local e continuidade periférica, e emprega a área projetada $A(\phi)$ como métrica de regularização. O artigo propõe demonstrações formais, condições de reversibilidade e exemplos funcionais de reconstrução.

1. Introdução

A TSR define a energia periférica projetada de uma singularidade toroidal como:

$$E = rac{1}{T} \int_0^T A(\phi) \cdot rac{\mu(\phi)}{Z(\phi)^2} \, d\phi$$

Esta operação constitui a **Transformada Toroidal Ressonante direta** \mathcal{T}_{TTR} . A presente expansão propõe o operador inverso:

$$Z(\phi) = \mathcal{T}_{\mathrm{TTR}}^{-1}[E(\phi), A(\phi), \mu(\phi)]$$

Que visa recuperar o perfil de coerência angular original com base em dados projetados.

2. Proposição da Transformada Inversa

Partindo da expressão local da energia projetada:

$$E(\phi) = A(\phi) \cdot rac{\mu(\phi)}{Z(\phi)^2}$$

Tomando a inversa algébrica, temos a proposição central da transformada inversa:

$$Z(\phi) = \sqrt{rac{\mu(\phi)}{E(\phi)/A(\phi)}}$$

Assumindo $E(\phi), A(\phi), \mu(\phi) > 0$, obtém-se:

$$Z(\phi) = \sqrt{rac{\mu(\phi) \cdot A(\phi)}{E(\phi)}}$$

Esta função recupera $Z(\phi)$ diretamente, e pode ser utilizada ponto a ponto sobre o ciclo completo.

3. Condições de Aplicabilidade

Para garantir a validade da inversão, exigem-se:

- Domínio contínuo de $\phi \in [0,2\pi]$
- $A(\phi)
 eq 0$ em todo o domínio
- $E(\phi)$ conhecida ou simulada para todo ϕ
- Regularidade das funções: $E(\phi), A(\phi), \mu(\phi) \in C^1$

4. Demonstração da Reversibilidade Local

Dado:

$$Z(\phi) = \sqrt{rac{\mu(\phi) \cdot A(\phi)}{E(\phi)}}$$

Então, substituindo de volta na expressão de $E(\phi)$:

$$E(\phi) = A(\phi) \cdot rac{\mu(\phi)}{Z(\phi)^2} = A(\phi) \cdot rac{\mu(\phi)}{rac{\mu(\phi) \cdot A(\phi)}{E(\phi)}} = E(\phi)$$

Logo:

$$\mathcal{T}_{\mathrm{TTR}}\left(\mathcal{T}_{\mathrm{TTR}}^{-1}[E(\phi)]\right) = E(\phi)$$

Demonstra-se, portanto, a **reversibilidade ponto a ponto**, em domínios regulares.

5. Casos Simples de Reconstrução

Caso 1 — Toroide Puro

• $E(\phi) = E_0$, $A(\phi) = A_0$, $\mu(\phi) = \mu_0$

Resultado:

$$Z(\phi) = \sqrt{rac{\mu_0 \cdot A_0}{E_0}} = Z_0$$

Toroide estático de coerência constante.

Caso 2 — Floral Simétrico

- $E(\phi) = E_0 \cdot [1 + \epsilon \cos(n\phi)]$
- $A(\phi), \mu(\phi)$ constantes

Resultado:

$$Z(\phi) = \sqrt{rac{\mu_0 \cdot A_0}{E_0[1 + \epsilon \cos(n\phi)]}} \Rightarrow Z(\phi) \sim rac{1}{\sqrt{1 + \epsilon \cos(n\phi)}}$$

Resultando em uma coerência floral de simetria n.

Caso 3 — Pulso com Ruptura

- $E(\phi)$ contendo uma descontinuidade ou pico local
- $A(\phi), \mu(\phi)$ suaves

Resultado:

- ullet $Z(\phi)
 ightarrow 0$ no ponto de ruptura
- Recuperação de um colapso coerencial local, interpretado como início de reorganização toroidal

6. Considerações sobre Singularidade

Se em algum ponto $E(\phi) o 0$, então:

$$Z(\phi) o \infty$$

Isso representa **recoerência extrema**, indicando potencial colapso reverso — um caso compatível com reintegração central, ou formação de nova bolha coerente a partir da periferia.

Caso contrário, se $E(\phi) o \infty$, então $Z(\phi) o 0$, recuperando uma singularidade $*\infty$ projetada.

7. Interpretação Geométrica

A transformada inversa permite reconstruir o perfil da coerência angular como uma **função topológica reversível** a partir da sombra projetada.

A superfície toroidal, ao ser observada, fornece uma assinatura energética que contém implícita a estrutura da coerência que a gerou. Assim, a **transformada inversa é uma "leitura da geometria ressonante" a partir da projeção**.

8. Conclusão

A Transformada Inversa da TSR define uma operação matemática funcional capaz de reconstruir a coerência angular $Z(\phi)$ a partir da energia projetada, regularizada por área e densidade. Essa inversão completa o ciclo conceitual da teoria: da coerência à projeção, e da projeção à coerência.

Com isso, a TSR consolida-se como um sistema fechado e reversível, com transformadas diretas e inversas que permitem navegar entre os domínios real e rotacional. Esta formalização também abre

espaço para reconstrução experimental indireta de singularidades, completando a ponte entre
matemática, física e observação.