

ETS Dr.Genz Taiwan PS Co., LTD

FCC Registration No.: 930600

Industry Canada filed test laboratory Reg. No. IC 5679

Accredited Testing Laboratory

A2LA Cert.No.: 2300.01

PCTRB Accredited Type Certification Test House

FCC TEST - REPORT

FCC RULES PART 15 / SUBPART C

FCC ID: TT6J310M

Test report no.: W6M20606-7126-P-15

ETS DR.GENZ TAIWAN PS CO., LTD.
6F, NO. 58, LANE 188, RUEY-KUANG RD., NEIHU, TAIPEI 114, TAIWAN, R.O.C.
PHONE 886-2-66068877 FAX 886-2-66068879

TABLE OF CONTENTS

3 4 4 5 5 6 7
5 6 7
7
7
11
13
14 16
16 16 17
18 20 21
21 21 21 22
23 23
25 28
20 29
30
30
32
33
34
35
30
38
39

FCC ID: TT6J310M

1 General Information

1.1 Notes

The purpose of conformity testing is to increase the probability of adherence to the essential requirements or conformity specifications, as appropriate.

The complexity of the technical specifications, however, means that full and thorough testing is impractical for both technical and economic reasons.

Furthermore, there is no guarantee that a test sample which has Passed all the relevant tests conforms to a specification.

Neither is there any guarantee that such a test sample will interwork with other genuinely open systems.

The existence of the tests nevertheless provides the confidence that the test sample possesses the qualities as maintained and that is performance generally conforms to representative cases of communications equipment.

The test results of this test report relate exclusively to the item tested as specified in 1.5.

The test report may only be reproduced or published in full.

Reproduction or publication of extracts from the report requires the prior written approval of the ETS DR. GENZ TAIWAN PS CO., LTD.

Tester:

July 05, 2006 Jay Chaing

Date ETS-Lab. Name Signature

Technical responsibility for area of testing:

July 05, 2006 Steven Chuang Steven Chuang

Date ETS Name Signature

FCC ID: TT6J310M

1.2 Testing laboratory

1.2.1 Location

OATS

No.5-1, Shuang Sing Village, LiShuei Rd., Wanli Township, Taipei County 207, Taiwan (R.O.C.)

Company

ETS DR. GENZ TAIWAN PS CO., LTD. 6F, NO. 58, LANE 188, RUEY-KUANG RD. NEIHU, TAIPEI 114, TAIWAN R.O.C.

Tel : 886-2-66068877 Fax : 886-2-66068879

1.2.2 Details of accreditation status

Accredited testing laboratory

A2LA-registration number: 2300.01

FCC filed test laboratory Reg. No. 930600

Industry Canada filed test laboratory Reg. No. IC 5679

PCTRB Accredited Type Certification Test House

1.3 Details of approval holder

Name : NITE CORP.

Street : 7F, NO.192-2, Lien Chen Road., Chung Ho City

Town : Taipei Hsien Country : Taiwan

Telephone : + 886-2-2243-6900 Fax : + 886-2-8245-1023

FCC ID: TT6J310M

1.4 Application details

Date of receipt of application : June 30, 2006 Date of receipt of test item : July 01, 2006

Date of test : from July 02, 2006 to July 05, 2006

1.5 General information of Test item

Type of test item : Bluetooth Headset

Model Number: J-310MHardware: Nite_HW2.0Software: Nite_SW1.0Serial number: withoutPhotos: see Annex

Technical data

Frequency band : 2402 - 2480 MHz

Frequency (ch A) : 2.402 GHz Frequency (ch B) : 2.441 GHz Frequency (ch C) : 2.480 GHz

Transmitter Unom

Normal Mode

Power (ch A or ch 0) : Conducted: -5.37 dBm Power (ch B or ch 39) : Conducted: -2.14 dBm Power (ch C or ch 78) : Conducted: -2.89 dBm

Power supply : 3.3 VDC (battery)

Operation modes : duplex

Modulation Type : GFSK

Antenna Type : Chip antenna

Antenna gain : 2 dBi

FCC ID: TT6J310M

Host device: none

Classification:

Fixed Device	
Mobile Device (Human Body distance > 20cm)	
Portable Device (Human Body distance < 20cm)	

Manufacturer:

(if applicable)

 Name
 : ./.

 Street
 : ./.

 Town
 : ./.

 Country
 : ./.

Additional information : The test sample is designed as J-310M device. Its

pseudorandom hopping scheme, authentication, receiver parameters, synchronization procedure and other parameters

are determined by J-310M Specification.

1.6 Test standards

Technical standard: FCC RULES PART 15 Subpart B / SUBPART C § 15.247

ETS Dr. Genz Taiwan PS Co., Ltd.

FCC ID: TT6J310M

2 Technical test

2.1 Summary of test results

No deviations from the technical specification(s) were ascertained in the course of the tests performed.

×

or

The deviations as specified in 2.5 were ascertained in the course of the tests performed.

2.2 Test environment

Temperature : 23 °C Relative humidity content : $20 \dots 75$ % Air pressure : $86 \dots 103$ kPa

Details of power supply : 3.3 VDC (battery)

Extreme conditions parameters : test voltage : -- extreme

min :-- V max :-- V

ETS Dr. Genz Taiwan PS Co., Ltd.

2.3 **Test Equipment List**

No.	Test equipment	Type	Serial No.	Manufacturer	Cal. Date	Next Cal. Date
ETSTW-CE 001	EMI TEST RECEIVER	ESHS10	842121/013	R&S	2005/10/27	2006/10/26
ETSTW-CE 002	PREREULATOR MODE DC POWER SUPPLY	None	None	T-POWER	Functio	n Test
ETSTW-CE 003	AC POWER SOURCE	APS-9102	D161137	GW	Functio	n Test
ETSTW-CE 004	ZWEILEITER-V- NETZNACHBILDUNG TWO-LINE V-NETWORK	ESH3-Z5	840731/011	R&S	2005/10/25	2006/10/24
ETSTW-CE 005	Line-Impedance Stabilisation Network	NNBM 8126D	137	Schwarzbeck	2005/10/21	2006/10/20
ETSTW-CE 006	IMPULS-BEGRENZER PULSE LIMITER	ESH3-Z2	100226	R&S	2004/11/11	2006/11/10
ETSTW-CE 008	ABSORBING CLAMP	MDS 21	3469	ABSORPTIONS- MESSWANDLER- ZANGE	2005/10/24	2007/10/23
ETSTW-CE 009	TEMP.&HUMIDITY CHAMBER	GTH-225-40-1P- U	MAA0305-009	GIANT FORCE	2005/8/18	2006/8/17
ETSTW-CS 001	SIGNAL GENERATOR	SMX	849254/003	R&S	2005/10/14	2006/10/13
ETSTW-CS 002	COUPLING AND DECOUPLING NETWORK	CDN S751	19263	SCHAFFNER	2005/10/14	2006/10/13
ETSTW-CS 003	COUPLING AND DECOUPLING NETWORK	CDN T400	19820	SCHAFFNER	2005/10/14	2006/10/13
ETSTW-CS 004	COUPLING AND DECOUPLING NETWORK	CDN M016	20053	SCHAFFNER	2005/10/27	2006/10/26
ETSTW-CS 005	RF Power Amplifier	100A250A	306547	AR	2005/10/14	2006/10/13
ETSTW-RE 002	Function Generator	33220A	MY43004982	Agilent	2005/10/14	2007/10/13
ETSTW-RE 003	EMI TEST RECEIVER	ESI 26	831438/001	R&S	2005/10/24	2006/10/23
ETSTW-RE 004	EMI TEST RECEIVER	ESI 40	832427/004	R&S	2005/10/29	2006/10/30
ETSTW-RE 005	EMI TEST RECEIVER	ESVS10	843207/020	R&S	2005/10/16	2006/10/15
ETSTW-RE 017	ANTENNA	HL025	352886/001	R&S	2006/5/4	2008/5/3
ETSTW-RE 018	ANTENNA	AT4560	27212	AR	2004/11/8	2007/11/7
ETSTW-RE 021	SWEEP GENERATOR	SWM05	835130/010	R&S	2005/10/14	2006/10/13
ETSTW-RE 022	AMPLIFIER	8447D	2944A09837	Agilent	2005/10/14	2006/10/13
ETSTW-RE 026	Open Area Test Site	10m	None	ETS	NSA Mea	surement
ETSTW-RE 027	Passive Loop Antenna	6512	34563	EMCO	2004/6/30	2007/6/29
ETSTW-RE 028	Log-Periodic DipoleArray Antenna	3148	34429	EMCO	2006/5/26	2008/5/25
ETSTW-RE 029	Biconical Antenna	3109	33524	EMCO	2006/5/26	2008/5/25
ETSTW-RE 030	Double-Ridged Waveguide Horm Antenna	3117	35224	EMCO	2006/5/3	2008/5/2
ETSTW-RE 032	Millivoltmeter	URV 55	849086/013	R&S	2005/10/17	2006/10/16
ETSTW-RE 033	4CH 1GHz 5GS/s DSO	WAVERUNNER 6100A	LCRY0604P14508	LeCory	2005/8/11	2006/8/10
ETSTW-RE 034	Power Sensor	URV5-Z4	839313/006	R&S	2005/10/17	2006/10/16
ETSTW-RE 037	Log-Periodic DipoleArray Antenna	3148	00034546	EMCO	2004/11/18	2006/11/17
ETSTW-RE 038	Log-Periodic DipoleArray	3148	00034547	EMCO	2004/11/18	2006/11/17

	Antenna					
ETSTW-RE 039	Biconical Antenna	3110B	41760	EMCO	2004/11/18	2006/11/17
ETSTW-RE 040	Biconical Antenna	3110B	41761	EMCO	2004/11/18	2006/11/17
ETSTW-RE 042	ANTENNA	HK116	100172	R&S	2005/1/14	2007/1/13
ETSTW-RE 043	ANTENNA	HL223	100166	R&S	2006/5/8	2008/5/7
ETSTW-RE 044	ANTENNA	HL050	100094	R&S	2006/5/29	2008/5/28
ETSTW-RE 048	Triple Loop Antenna	HXYZ 9170	HXYZ 9170-134	Schwarzbeck	2005/3/22	2008/3/21
ETSTW-RE 049	TRILOG Super Broadband test Antenna	VULB 9160	9160-3185	Schwarzbeck	2005/5/19	2007/5/18
ETSTW-RE 055	SPECTRUM ANALYZER	FSU-26	200074	R&S	2005/9/6	2006/9/5
ETSTW-EMI 001	HARMONICS 1000	HAR1000-1P	93	EMC-PARTNER	2005/9/12	2006/9/11
ETSTW-EMS 001	Clamp BASELSTRASSE 160 CH-4242 LAUFEN	CN-EFT1000	354	EMC-PARTNER	2004/11/2	2006/11/1
ETSTW-EMS 002	Frequency Converter	YF-6020	0308014	T-POWER	Functio	n Test
ETSTW-EMS 003	EMC Immunity Test System	TRA2000IN6	579	EMC-PARTNER	2005/10/27	2006/10/26
ETSTW-EMS 004	ESD generator minizap	ESD2000	016	EMC-PARTNER	2005/10/27	2006/10/26
ETSTW-EMS 005	Attenautor (50Ω)	VERI50	051	EMC-PARTNER	2004/8/31	2006/8/30
ETSTW-EMS 006	Attenautor (1 KΩ)	VERIIK	019	EMC-PARTNER	2004/10/21	2006/10/20
ETSTW-EMS 008	Safety Test Solutions	ELT-400	E-0039	Narda	2005/5/4	2007/5/3
ETSTW-EMS 009	Magnetic Field Antenna	MF1000-1	104	EMC-PARTNER	2004/12/3	2007/12/2
ETSTW-EMS 010	Coupling De-coupling Network	CDN-UTP8	014	EMC-PARTNER	2005/9/1	2008/8/31
ETSTW-EMS 011	Calibration Ficture	F-2031-CF- 23MM	451	FCC	2005/8/11	2007/8/11
ETSTW-EMS 012	EM Injection Clamp	F-2031-23MM	476	FCC	2005/8/11	2007/8/10
ETSTW-RS 003	RF Power Amplifier	30S1G3	306933	AR	Function	n Test
ETSTW-RS 004	RF Power Amplifier	150W1000	307009	AR	2005/10/21	2006/10/20
ETSTW-RS 005	Electric Field Probe Type 8.3	EMR-20	BN 2244/20	Narda	2005/9/7	2007/9/6
ETSTW-RS 006	SIGNAL GENERATOR	SML03	101551	R&S	2005/10/21	2006/10/20
ETSTW-GSM 01	SIM Simulator	IT3	B2004-50106	ORGA	2005/9/15	2006/9/14
ETSTW-GSM 02	Universal Radio Communication Tester	CMU 200	103489	R&S	2005/11/15	2006/11/14
ETSTW-GSM 03	Agilent 8960 Test Set 1	E5515C	GB44052675	Agilent	2004/7/14	2006/7/13
ETSTW-GSM 04	Agilent 8960 Test Set 2	E5515C	GB44052665	Agilent	2004/7/14	2006/7/13
ETSTW-GSM 05	Agilent 8960 Test Set 3	E5515C	GB44052652	Agilent	2004/7/17	2006/7/16
ETSTW-GSM 06	Agilent 8960 Test Set 4	E5515C	GB44052684	Agilent	2004/7/16	2006/7/15
ETSTW-GSM 07	Agilent 8960 Test Set 5	E5515C	GB44052658	Agilent	2004/7/14	2006/7/13
ETSTW-GSM 08	Agilent 8960 Test Set 6	E5515C	GB44052666	Agilent	2004/7/16	2006/7/15
ETSTW-GSM 09	Controller PC	Dell GX 270	700F61J	Dell	Functio	n Test
ETSTW-GSM 10	Combiner Wessex / Anite	B4605/100	053	Wessex / Anite	2004/7/14	2006/7/13

ETSTW-GSM 11	GSM 850,900,1800,1900 Test system	TS8950G		R&S	2005/11/1	2006/10/31
ETSTW-GSM 12	Acoustical Calibrator	4231	2463874	Brüel&Kjær	2005/10/31	2006/10/30
ETSTW-GSM 13	Conditioning Amplifier	26900S2	2437856	Brüel&Kjær		
ETSTW-GSM 14	Telephone Test Head	4602B	2465324	Brüel&Kjær		
ETSTW-GSM 15	Mouth Simulator	4227	2462516	Brüel&Kjær		
ETSTW-GSM 16	TEMP.&HUMIDITY CHAMBER	GTH-120-40-1P- U	MAA0501002	GIANT FORCE	2005/12/29	2006/12/28
ETSTW-GSM 18	AUDIO ANALYZER	UPL16	100173	R&S	2005/10/29	2006/10/28
ETSTW-GSM 24	Vibration Testing System	VS-100V	5494	Vibration	2005/12/20	2006/12/19

FCC ID: TT6J310M

2.4 General Test Procedure

POWER LINE CONDUCTED INTERFERENCE: The procedure used was ANSI STANDARD C63.4-2003 using a 50µH LISN (if necessary). Both lines were observed. The bandwidth of the spectrum analyzer was 10 kHz with an appropriate sweep speed.

RADIATION INTERFERENCE: The test procedure used was according to ANSI STANDARD C63.4-2003 employing a spectrum analyzer. For investigated frequency is equal to or below 1GHz, the RBW and VBW of the spectrum analyzer was 100 kHz and 100kHz respectively with an appropriate sweep speed. For investigated frequency is above 1GHz, both of RBW and VBW of the spectrum analyzer were 1 MHz with an appropriate sweep speed. The analyzer was calibrated in dB above a microvolt at the output of the antenna. The ambient, temperature of the UUT was 23°C with a humidity of 40 %.

FORMULA OF CONVERSION FACTORS: The Field Strength at 3m was established by adding the meter reading of the spectrum analyzer (which is set to read in units of $dB\mu V$) to the antenna correction factor supplied by the antenna manufacturer. The antenna correction factors are stated in terms of dB.

Example:

Freq (MHz) METER READING + ACF + CABLE LOSS (to the receiver) = FS

33 $20 \text{ dB}\mu\text{V} + 10.36 \text{ dB} + 6 \text{ dB} = 36.36 \text{ dB}\mu\text{V/m}$ @3m

The UUT was placed on a table 80 cm high and with dimensions of 1m by 1.5m (non metallic table) and arranged according to ANSI C63.4-2003 Section 13.1.2. The table used for radiated measurements is capable of continuous rotation. The spectrum was scanned from 30 MHz to the frequency specified as follows:

- (1) If the intentional radiator operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.
- (2) If the intentional radiator operates at or above 10 GHz and below 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 100 GHz, whichever is lower.
- (3) If the intentional radiator operates at or above 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 200 GHz, whichever is lower, unless specified otherwise elsewhere in the rules.
- (4) If the intentional radiator contains a digital device, regardless of whether this digital device controls the functions of the intentional radiator or the digital device is used for additional control or function purposes other than to enable the operation of the intentional radiator, the frequency range shall be investigated up to the range specified in paragraphs (a)(1)-(a)(3) of this section or the range applicable to the digital device, as shown in paragraph (b)(1) of this Section, whichever is the higher frequency range of investigation.

For hand-held devices, a exploratory test was performed with three (3) orthogonal planes to determine the highest emissions.

Measurements were made by ETS Dr. Genz Taiwan PS Co., Ltd. at the registered open field test site located No.5-1, Shuang Sing Village, LiShuei Rd., Wanli Township, Taipei County 207, Taiwan (R.O.C.). The Registration Number: 930600.

FCC ID: TT6J310M

When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1m to 4m. The antenna was placed in both the horizontal and vertical planes.

When the radiated emission limits are expressed in terms of the average value of the emission, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.

The formula is as follows:

Average = Peak + Duty Factor

Duty Factor = 20 log (dwell time/T)

T = 100ms when the pulse train period is over 100 ms or the period of the pulse train.

Modified Limits for peak according to 15.35 (b) = Max Permitted average Limits + 20dB

ANTENNA & GROUND:

This unit uses Chip antenna.

Test results (enclosure)

TEST CASE	Para. Number	Required	Test passed	Test failed
Peak Output Power	15.247(b)	×	×	
Equivalent radiated Power	15.247(b)	×	×	
Spurious Emissions radiated – Transmitter operating	15.247(c)	×	×	
Spurious Emissions conducted – Transmitter operating	15.247			
Carrier Frequency Separation	15.247(a) (1)	×	×	
Number of Hopping Frequencies	15.247(a) (1)(i)	×	×	
Time of Occupancy (Dwell Time)	15.247(a) (1)(i)	×	×	
20 dB Bandwidth	15.247(a) (1)(i)	×	×	
Band-edge Compliance of RF Emission	15.247(c)	×	×	
Radiated Emission from Digital Part And Receiver L.O.	15.109	×	×	
Power Line Conducted Emission	15.207(a)	×	×	

The follows is intended to leave blank.

FCC ID: TT6J310M

3.1 Peak Output Power (transmitter)

FCC Rule: 15.247

This measurement applies to equipment with an integral antenna and to equipment with an antenna connector and equipped with an antenna as declared by the applicant.

The power was measured with modulation (declared by the applicant).

		Conducted Power			
Test conditions		Channel A Channel B Channel			
		[dBm]	[dBm]	[dBm]	
$T_{\text{nom}} = 23^{\circ}\text{C}$	$_{\rm n}$ = 23°C V _{nom} = 3.3 V		-2.14	-2.89	
Measureme	ent uncertainty		< 3 dB		

		Radiated Power			
Test conditions		Channel A	Channel A Channel B Channel		
		[dBm]	[dBm]	[dBm]	
$T_{\text{nom}} = 23^{\circ}\text{C}$	$V_{\text{nom}} = 3.3 \text{ V}$				
Measurement uncertainty			< 3 dB		

Test conditions T _{nom} = 23°C, V _{nom} = 3.3 V Frequency[MHz]	Signal Field strength TX highest power mode $dB\mu V/m$
2402	93.42
Measurement uncertainty	< 3 dB

The diagrams for the field strength measurements are included in Appendix.

FCC ID: TT6J310M

Maximum Peak Output Power

Limits:

Frequency	Number of hopping channels					
MHz	≥ 75	≥ 50	49 ≥ 25	74 ≥ 15		
902-928		30 dBm	24 dBm			
2400-2483.5 MHz	30 dBm	-		21 dbm		
5725-5850 MHz	30 dBm	-				

In case of employing transmitter antennas having antenna gain >dBi and using fixed poin-to point operation consider §15.247 (b)(4).

Test equipment used: ETSTW-RE 003, ETSTW-RE 012, ETSTW-RE 017, ETSTW-RE 024

FCC ID: TT6J310M

3.2 Equivalent isotropic radiated power

FCC Rule: 15.239(b), 15.35

Because using an internal antenna there are no deviations from the radiated test results according 3.1.

3.2.1 Transmitter

Integral Antenna:

At the transmitter the measurement was transacted with the modulation declared by the manufactrer and the maximum available output power of the EUT.

In this arrangement the EUT fulfils the requirements of the FCC rules § 15.247, subpart C, section b. This unit uses an internal antenna. There is no provision for an external antenna (see photo).

3.3 RF Exposure Compliance Requirements

According to Supplement C, Edition 01-01 to OET Bulletin 65, Edition 97-01 this spread spectrum transmitter is categorically excluded from routine environmental evaluation because of the low power level, where there is a high likelihood of compliance with RF exposure standards. The antenna used for this Bluetooth transceiver module must not be co-located or operating in conjunction with any other antenna or transmitter.

3.4 Out of Band Radiated Emissions

FCC Rule: 15.247(c), 15.35

For out of band emissions that are close to or that exceed the 20 dB attenuation requirement described in the specification, radiated measurements were performed at a 3 m separation distance to determine whether these emissions complied with the general radiated emission requirement.

For frequencies below 1GHz:

Max. reading – 20 dB

 $93.42 \text{ dB}\mu\text{V/m}$ - 20 dB= $73.42 \text{ dB}\mu\text{V/m}$

Guidance on Measurement of FHSS Systems:

"If the emission is pulsed, modify the unit for continuous operation, use the settings shown above, then correct the reading by subtracting the peak-average correction factor, derived from the appropriate duty cycle calculation." Here the correction was added to the limit instead subtracted from the reading.

Duty Cycle correction = 20 log (dwell time/100ms)

For frequencies above 1GHz (Peak measurements).

Limit = max. aver. reading-20dB +20dB(because Peak detector is used)

73.42 dBuV/m

For frequencies above 1GHz (Average measurements).

Max. reading – 20 dB - duty cycle correction:

No duty cycle correction was added to the reading

 $93.42 \text{ dB}\mu\text{V/m}$ $- 20 \text{ dB} = 73.42 \text{ dB}\mu\text{V/m}$

Remarks: See attached diagrams.

Test equipment used: Test equipment used: ETSTW-RE 003, ETSTW-RE 004, ETSTW-RE 030, ETSTW-RE 017, ETSTW-RE 028, ETSTW-RE 029, ETSTW-RE 042, ETSTW-RE 043

FCC ID: TT6J310M

3.5 Transmitter Radiated Emissions in restricted Bands

FCC Rules: 15.247 (c), 15.205, 15.209, 15.35

Radiated emission measurements were performed from 30 MHz to 26000 MHz.

For radiated emission tests, the analyzer setting was as followings:

RES BW VID BW

Frequency <1 GHz 100 kHz 100 kHz (Peak measurements) Frequency >1 GHz 1 MHz 1 MHz (Peak measurements)

1 MHz 1 MHz (Average measurements)

Limits:

For frequencies below 1GHz:

Frequency of Emission (MHz)	Field strength (microvolts/meter)	Field Strength (dB microvolts/meter)
30 – 88	100	40.0
88 – 216	150	43.5
216 – 960	200	46.0
Above 960	500	54.0

For frequencies above 1GHz (Average measurements).

Guidance on Measurement of FHSS Systems:

"If the emission is pulsed, modify the unit for continues operation, use the settings shown above, then correct the reading by subtracting the peak-average correction factor, derived from the appropriate duty cycle calculation." Here the correction was added to the limit instead subtracted from the reading.

Duty cycle correction = $20 \log (dwell time/100ms)$

For frequencies above 1GHz (Average measurements).

Limit – duty cycle correction

No duty cycle correction was added to the reading.

 $54.0 dB \mu V/m$

For frequencies above 1GHz (Peak measurements).

Limit + 20dB

 $54.0 dB \mu V/m + 20 dB = 74 dB \mu V/m$

Remarks: See attached diagrams.

Test equipment used: ETSTW-RE 003, ETSTW-RE 004, ETSTW-RE 030, ETSTW-RE 017,

ETSTW-RE 028, ETSTW-RE 029, ETSTW-RE 042, ETSTW-RE 043

FCC ID: TT6J310M

3.6 Spurious emissions (tx)

Spurious emission was measured with modulation (declared by manufacturer).

In any 100 kHz bandwidth outside the frequency band in which the intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c))

SAMPLE CALCULATION OF LIMIT. All results will be updated by an automatic measuring system in accordance to point 2.3.

Calculation of test results:

Such factors like antenna correction, cable loss, external attenuation etc. are already included in the provided measurement results. This is done by using validated test software and calibrated test system according the accreditation requirements.

The peak and average spurious emission plots was measured with the average limits.

In the Table being listed the critical peak and average value an exhibit the compliance with the above calculated Limits.

If in the column's correction factor states a value then the max. Field strength in the same row is corrected by a value gained from the "Marker-Delta-Method" or the "Duty-Cycle Correction Factor".

Summary table with radiated data of the test plots

Low Channel

Antenna Polarization	Frequency Marker (MHz)	Corrected Reading (dBuv)	Correction Factor (dB)	Detector	Test Result (dBuV/m)	Compliance Limit (dBuV/m)	Margin (dB)	Table Azimuth (degree)	Antenna Height (cm)
	2390	47.97	2.06	P	50.03	54	3.97	277	150
п	4801.746	48.7	4.42	P	53.12	74	20.88	280	148
Н	4801.746	43.5	4.42	AV	47.92	54	6.08	280	148
	117.457	20.08	13.11	P	33.19	43.5	10.31	121	128

Antenna Polarization	Frequency Marker (MHz)	Corrected Reading (dBuv)	Correction Factor (dB)	Detector	Test Result (dBuV/m)	Compliance Limit (dBuV/m)	Margin (dB)	Table Azimuth (degree)	Antenna Height (cm)
	4801.596	46.82	4.42	P	51.24	74	22.76	161	146
V	4801.596	40.54	4.42	AV	44.96	54	9.04	161	146
'	117.231	20.01	13.11	P	33.12	43.5	10.38	125	126
	2390	48.03	2.06	P	50.09	54	3.91	280	145

FCC ID: TT6J310M

Middle Channel

Antenna Polarization	Frequency Marker (MHz)	Corrected Reading (dBuv)	Correction Factor (dB)	Detector	Test Result (dBuV/m)	Compliance Limit (dBuV/m)	Margin (dB)	Table Azimuth (degree)	Antenna Height (cm)
	4881.853	54.51	4.42	P	58.93	74	15.07	283	148
Н	4881.853	48.72	4.42	AV	53.14	54	0.86	283	148
	117.338	21.62	13.11	P	34.73	43.5	8.76	118	129

Antenna Polarization	Frequency Marker (MHz)	Corrected Reading (dBuv)	Correction Factor (dB)	Detector	Test Result (dBuV/m)	Compliance Limit (dBuV/m)	Margin (dB)	Table Azimuth (degree)	Antenna Height (cm)
	4881.54	49.4	4.42	PK	53.82	74	20.18	142	151
V	4881.54	44.24	4.42	AV	48.66	54	5.34	142	151
	114.8	19.94	12.89	PK	32.83	43.5	10.67	86	112

High Channel

Antenna Polarization	Frequency Marker (MHz)	Corrected Reading (dBuv)	Correction Factor (dB)	Detector	Test Result (dBuV/m)	Compliance Limit (dBuV/m)	Margin (dB)	Table Azimuth (degree)	Antenna Height (cm)
	2483.5	52.92	-0.98	PK	51.94	54	2.06	281	145
Н	4959.87	49.53	4.35	PK	53.88	74	20.12	283	148
п	4959.87	42.76	4.35	AV	47.11	54	6.89	283	148
	116.92	20.62	13.1	PK	33.72	43.5	9.78	123	129

Antenna Polarization	Frequency Marker (MHz)	Corrected Reading (dBuv)	Correction Factor (dB)	Detector	Test Result (dBuV/m)	Compliance Limit (dBuV/m)	Margin (dB)	Table Azimuth (degree)	Antenna Height (cm)
	4959.63	47.99	4.35	PK	52.34	74	21.66	145	149
V	4959.63	42.67	4.35	AV	47.02	54	6.98	145	149
'	2483.5	50.64	-0.98	PK	49.66	54	4.34	129	146
	115.93	21.09	12.99	PK	34.08	43.5	9.42	79	116

Note 1. Correction Factor = Antenna factor + Cable loss - Preamplifier

- 2. The formula of measured value as: Test Result = Corrected Reading + Correction Factor
- 3. Detector function in the form: P = Peak, QP = Quasi Peak, AV = Average

All other not noted test plots do not contain significant test results in relation to the limits.

TEST RESULT (Transmitter): The unit DOES meet the FCC requirements.

Comment: see attached diagrams

Test equipment used: ETSTW-RE 003, ETSTW-RE 004, ETSTW-RE 030, ETSTW-RE 017, ETSTW-RE 028, ETSTW-RE 029, ETSTW-RE 042, ETSTW-RE 043

FCC ID: TT6J310M

3.7 Carrier Frequency Separation

Carrier Frequency Separation was measured with modulation (declared by manufacturer).

According to FCC rules part 15 subpart C §15.247 frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or 20 dB bandwidth of the hopping channel, whichever is greater.

			Channel	Separation
Test conditions		Channel B+1		
$T_{\text{nom}} = 23^{\circ}\text{C}$	$V_{\text{nom}} = 3.3 \text{ V}$	1.0000MHz		
Measurement uncertainty				< 10 Hz

Limits:

Frequency Range MHz	Limits				
	20 dB bandwidth < 25 kHz	20 dB bandwidth > 25 kHz			
902-928	25 kHz	20 dB bandwidth			
2400-2483.5 5725-5850.0	25 kHz	20 dB bandwidth			

Test equipment used: ETSTW-CE 003, ETSTW-RE 004, ETSTW-RE 055

Comment: see attached diagram

FCC ID: TT6J310M

3.8 Number of Hopping Frequencies

According to FCC rules part 15 subpart C §15.247 frequency hopping systems operating in the 2400-2483.5 MHz band shall use at least 15 hopping frequencies. Frequency hopping systems in 5725-5850 MHz bands shall use least 75 hopping frequencies.

For frequency hopping systems operating in the 902-928 MHz band: if the 20dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies; if the 20dB bandwidth of the hopping channel 250 kHz or greater, the system shall use at least 25 hopping frequencies.

Test conditions		Operating Mode	Number of Channels
$T_{nom} = 23$ °C	$V_{nom} = 3.3 V$	normal transmitting	79
$T_{nom}=23^{\circ}C$	$V_{\text{nom}} = 3.3 \text{ V}$	Inquiry mode	32

Limits:

	Limit						
Frequency Range MHz	20dB Bandwidth		20dB Bandwidth < 250 kHz	20dB Bandwidth			
	≤1MHz		< 230 KHZ	≥ 250 kHz			
902-928 MHz			≥ 50	≥ 25			
2400-2483.5	≥ 15	≥ 15					
5725-5850.0 MHz	≥ 75						

Test equipment used: ETSTW-CE 003, ETSTW-RE 004, ETSTW-RE 055

Comment: see attached diagrams

3.8.1 Pseudorandom Frequency Hopping Sequence

The generation of the hopping sequence is determined by the Bluethooth cord specification and complies with the FCC requirements.

3.8.2 Coordination of hopping sequences to other transmitters

According to the Bluetooth core specification V1.1 such a coordination is not possible. During scatternet function only one of the two hopping sequences will be used at a definite moment.

3.8.3 System Receiver Hopping Capability

According to the Bluetooth core specification. The system receivers shift frequencies in synchronization with the transmitted signals.

FCC ID: TT6J310M

3.9 Time of Occupancy (Dwell Time)

Frequency hopping systems operating in the 5725-5850 MHz band shall use an average time of occupancy on any frequency not greater than 0.4 seconds within a 30 second period.

In 2400-2483,5 MHz band the average time of occupancy on any channel shall not be greater than 0,4 seconds multiplied by the number of hopping channels employed.

For frequency hopping systems operating in the 902-928 MHz band: if the 20dB bandwidth of the hopping channel is less than 250 kHz, the average time of occupancy on any frequency shall not greater than 0.4 seconds within a 20 second period; if the 20dB bandwidth of the hopping channel is 250 kHz or greater, the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period.

Test conditions	Operating mode	Measurement period	Time of Occupancy
$T_{\text{nom}} = 23 ^{\circ}\text{C}$	normal transmitting		265.59 ms
$V_{nom} = 3.3 \text{ V}$ Channel B	inquiry mode		ms
Measurement uncertainty		< 1 μs	

Limits and measurement periods:

Frequency MHz	Number of channels	Measurement Periode	Limit
002 028	≥50	20 s	0,4 s
902 – 928	49 ≥ 25	10 s	0,4 s
2400 – 2483,5	≥ 15	0,4 s * number of used channels	0,4 s
5725- 5850	≥ 75	30 s	0,4s

Test equipment used: ETSTW-CE 003, ETSTW-RE 004, ETSTW-RE 055

Comment: See attached diagram, which show the On-time and the number of counted events during the measurement period

FCC ID: TT6J310M

3.10 20dB Bandwidth

Frequency hopping systems operating in the 5725-5850 MHz bands shall use a maximum 20dB bandwidth of 1 MHz.

The 20dB bandwidth is measured on the lowest, middle and highest hopping channel.

For frequency hopping systems operating in the 902-928 MHz band the maximum 20dB bandwidth of the hopping channel is 500 kHz.

Test conditions		20 dB Bandwidth			
		Channel A	Channel B	Channel C	
T _{nom} = 23°C	$V_{nom} = 3.3 \text{ V}$	793.26923 kHz	793.26923 kHz	793.26923 kHz	
Measurement uncertainty			< 10 Hz		

Limits:

Frequency Range / MHz	Number of channels	Limit	
902-928	< 50	< 250 kHz	
902-928	49 ≥ 25	500 kHz ≥ 250 kHz	
2400-2483.5	≥ 15	not determined	
5725-5850	75	≤1 MHz	

Test equipment used: ETSTW-CE 003, ETSTW-RE 004, ETSTW-RE 055

Comment: see attached diagram

3.10.1 System Receiver Input Bandwidth

It is determined in the Bluetooth core specification. The value matches to the bandwidth of transmitter signal.

FCC ID: TT6J310M

3.11 Band-edge Compliance of RF Emissions

According to FCC rules part 15 subpart C §15.247(c) in any 100 kHz bandwidth outside the frequency band in which the intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in § 15.209(a) is not required.

In addition radiated emission which fall in the restricted bands, as defined in section 15.205(a), must also with the radiated emission limits.

Test conditions			r outside band-edges Frequency				
		Lower Band-edge	Upper Band-edge				
$T_{\text{nom}} = 23^{\circ}\text{C}$	$V_{\text{nom}} = 120 \text{ V}$	dB dB					
Measuremer	nt uncertainty	< 100 Hz					

Test conditions			r outside band-edges ng Fequency				
		Lower Band-edge	Upper Band-edge				
$T_{\text{nom}} = 23^{\circ}\text{C}$	$V_{\text{nom}} = 120 \text{ V}$	52.65 dB 65.76 dB					
Measuremen	t uncertainty	< 100 Hz					

Limits:

Frequency Range / MHz	Limit
902 –928	
2400 – 2483.5	- 20 dB
5725 - 5850	

Test equipment used: ETSTW-CE 003, ETSTW-RE 004, ETSTW-RE 055

Comment: see attached diagrams

FCC ID: TT6J310M

3.12 Radiated Emissions from Receiver Section of Transceiver

FCC Rule: 15.109

Summary table with radiated data of the test plots

(RX)

Low Channel

Antenna Polarization	Frequency Marker (MHz)	Corrected Reading (dBuv)	Correction Factor (dB)	Detector	Test Result (dBuV/m)	Compliance Limit (dBuV/m)	Margin (dB)	Table Azimuth (degree)	Antenna Height (cm)
	4793.58	45.53	4.41	PK	49.94	54	4.06	281	152
	7278.55	40.24	6.63	PK	46.87	54	7.13	276	174
Н	769.13	8.77	24.74	PK	33.51	46	12.49	133	119
	116.87	9.5	12.99	PK	22.49	43.5	21.01	126	137
	182.28	11.98	13.76	PK	25.74	43.5	17.76	233	188

Antenna Polarization		Reading	Correction Factor	Detector	Test Result	Compliance Limit	Margin (dB)	Table Azimuth	Antenna Height
	(MHz)	(dBuv)	(dB)		(dBuV/m)	(dBuV/m)	(42)	(degree)	(cm)
	4801.6	47.12	4.42	PK	51.54	54	2.46	286	146
V	64.75	11.45	13.47	PK	24.92	40	15.08	182	122
	130.16	11.1	14.11	PK	25.21	43.5	18.29	140	135

Middle Channel

Antenna Polarization	Frequency Marker	Corrected Reading	Correction Factor	Detector	Test Result	Compliance Limit	Margin	Table Azimuth	Antenna Height
1 Oldfization	(MHz)	(dBuv)	(dB)	Detector	(dBuV/m)	(dBuV/m)	(dB)	(degree)	(cm)
	4873.75	42.52	4.79	PK	47.31	54	6.69	162	159
Н	7310.81	40.57	6.35	PK	46.92	54	7.08	178	166
	130.24	11	14.12	PK	25.12	43.5	18.38	142	138

Antenna Polarization	Frequency Marker (MHz)	Corrected Reading (dBuv)	Correction Factor (dB)	Detector	Test Result (dBuV/m)	Compliance Limit (dBuV/m)	Margin (dB)	Table Azimuth (degree)	Antenna Height (cm)
	9755.96	40.31	11.27	PK	51.58	54	2.42	192	133
V	4873.85	39.5	4.79	PK	44.29	54	9.71	159	141
V	7310.87	40.78	6.35	PK	47.13	54	6.87	152	139
	130.33	11.61	14.12	PK	25.73	43.5	17.77	144	132

FCC ID: TT6J310M

High Channel

Tingii Chaime									
Antenna Polarization	Frequency Marker (MHz)	Corrected Reading (dBuv)	Correction Factor (dB)	Detector	Test Result (dBuV/m)	Compliance Limit (dBuV/m)	Margin (dB)	Table Azimuth (degree)	Antenna Height (cm)
	4953.9	44.35	4.45	PK	48.8	54	5.2	261	152
Н	850.9	9.41	25.61	PK	35.02	46	10.98	137	123
П	182.28	13.89	13.76	PK	27.65	46	18.35	236	184
	195.23	16.45	12.45	PK	28.9	46	17.1	241	177

Antenna Polarization	Frequency Marker (MHz)	Corrected Reading (dBuv)	Correction Factor (dB)	Detector	Test Result (dBuV/m)	Compliance Limit (dBuV/m)	Margin (dB)	Table Azimuth (degree)	Antenna Height (cm)
	4953.9	44.31	4.45	PK	48.76	54	5.24	262	151
V	38.87	10.89	13.49	PK	24.38	40	15.62	126	173
'	64.75	12.15	13.47	PK	25.62	40	14.38	191	127
	130.16	12.15	14.11	PK	26.26	43.5	17.24	141	136

Note 1. Correction Factor = Antenna factor + Cable loss - Preamplifier

2. The formula of measured value as: Test Result = Corrected Reading + Correction Factor

3. Detector function in the form: P = Peak, QP = Quasi Peak, AV = Average

FCC ID: TT6J310M

Summary table with radiated data of the test plots

(Digital)

Except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency of Emission	Field Strength	Field Strength
(MHz)	(microvolts/meter)	(dBmicrovolts/meter)
30 - 88	100	40.0
88 - 216	150	43.5
216 – 960	200	46.0
Above 960	500	54.0

Test equipment used: ETSTW-RE 003, ETSTW-RE 004, ETSTW-RE 028, ETSTW-RE 029, ETSTW-RE 042, ETSTW-RE 043

Comment: see attached diagram

ETS Dr. Genz Taiwan PS Co., Ltd.

FCC ID: TT6J310M

3.13 Power Line Conducted Emission

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the table bellows with this provision shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminals.

This measurement was transact first with instrumentation using an average and peak detector and a 10 kHz bandwidth. If the peak detector achieves a calculated level, the measurement is repeated by an instrumentation using a quasi-peak detector.

Frequency	Level	(dBµV)
Trequency	quasi-peak	average
150 kHz	lower limit line	Lower limit line

LISN type	Frequency Marker	Corrected Reading (dBuV)		Correction Factor	Test Result (dBuV)		Compliance Limit (dBuV)		Margin (dB)	
N	MHz	QP	AV	dB	QP	AV	QP	AV	QP	AV
	0.25	27.7	14.5	10.1	37.8	24.6	61.75	51.75	23.95	27.15
	0.38	27	13.8	10.1	37.1	23.9	58.3	48.3	21.2	24.4
	0.48	21.2	9.8	10.1	31.3	19.9	56.1	46.1	24.8	26.2
	1.09	22	10.5	10.1	32.1	20.6	56	46	23.9	25.4
	9.06	19.7	7.4	10.1	29.8	17.5	60	50	30.2	32.5
L1	7.5	23.1	11.3	10.1	33.2	21.4	56	46	22.8	24.6
	1.09	15.2	9.7	10.1	25.3	19.8	56	46	30.7	26.2
	1.64	13	6.3	10.1	23.1	16.4	56	46	32.9	29.6
	9.35	12.5	5.6	10.1	22.6	15.7	60	50	37.4	34.3

Limits:

Frequency of Emission (MHz)	Conducted Limit (dBuV)				
	Quasi Peak	Average			
0.15-0.5	66 to 56	56 to 46			
0.5-5	56	46			
5-30	60	50			

Test equipment used: ETSTW-CE 001, ETSTW-CE 003, ETSTW-CE 004, ETSTW-CE 006

Comment: see attached diagram

Pictures

Appendix

J

A	Peak Output Power
В	Spurious Emissions radiated
C	Carrier Frequency Separation
D	Number of Hopping Frequencies
E	Time of Occupancy (Dwell Time)
F	20dB Bandwidth
G	Band-edge Compliance of RF Conducted Emissions
Η	Radiated Emissions from Receiver Section of Transceiver
I	Power Line Conducted Emission

FCC ID: TT6J310M

Appendix A

Peak Output Power

The measurement diagram are wideband pre-scan results; only for reference.

ETS Dr. Genz Taiwan PS Co., Ltd.

Max output power 2402 MHz
Date: 2.JUL.2006 09:46:14

Max output power 2441 MHz
Date: 2.JUL.2006 10:13:28

Max output power 2480 MHz
Date: 2.JUL.2006 10:12:13

Carrier power (Field Strength) FCC RULES PART 15, SUBPART C / LP002

Order Number: W6M20606-7126 low channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3VDC (battery)

Test Specification: according to §15.247 Comment 1: Dist.: 3m, Ant.: HL025

Dist.: 3m, Ant.: HL025 Freq: 2.402GHz, Emax: 93.42dBµV/m, RBW: 1MHz

Carrier power (Field Strength)

FCC RULES PART 15, SUBPART C / LP002

Order Number: W6M20606-7126 low channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3VDC (battery)

Test Specification: according to §15.247 Comment 1:

Dist.: 3m, Ant.: HL025 Freq: 2.402GHz, Emax: 86.69dBµV/m, RBW: 1MHz

Carrier power (Field Strength)

FCC RULES PART 15, SUBPART C / LP002

Order Number: W6M20606-7126 moddle channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3VDC (battery)

Test Specification: according to §15.247

Comment 1:

Dist.: 3m, Ant.: HL025 Freq: 2.441GHz, Emax: 90.36dBpV/m, RBW: 1MHz

Carrier power (Field Strength)

FCC RULES PART 15, SUBPART C / LP002

Order Number: W6M20606-7126 moddle channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3VDC (battery)

Test Specification: according to \$15.247 Comment 1: Dist.: 3m, Ant.: HL02

: Dist.: 3m, Ant.: HL025 Freq: 2.441GHz, Emax: 83.33dBµV/m, RBW: 1MHz

Carrier power (Field Strength)

FCC RULES PART 15, SUBPART C / LP002

Order Number: W6M20606-7126 high channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3VDC (battery)

Test Specification: according to \$15.247

Comment 1:

Dist.: 3m, Ant.: HL025 Freq: 2.480GHz, Emax: 91.08dBµV/m, RBW: 1MHz

Carrier power (Field Strength)

FCC RULES PART 15, SUBPART C / LP002

Order Number: W6M20606-7126 high channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9C/ Unom.: 3.3VDC (battery)

Test Specification: according to §15.247
Comment 1: Dist.: 3m, Ant.: HL025

Dist.: 3m, Ant.: HL025 Freq: 2.480GHz, Emax: 86.61dBµV/m, RBW: 1MHz

Registration number: W6M20606-7126-P-15

FCC ID: TT6J310M

Appendix B

Spurious Emissions radiated

The measurement diagram are wideband pre-scan results; only for reference.

ETS Dr. Genz Taiwan PS Co., Ltd.

FCC RULES PART 15, SUBPART C / LP002

Order Number: W6M20606-7126 low channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3VDC (battery)

Test Specification: according to \$15.247

Comment 1:

Dist.: 3m, Ant.: HK 116 Freq: 195.230MHz, Emax: 37.21dBµV/m, RBW: 100kHz

FCC RULES PART 15, SUBPART C / LP002

Order Number: W6M20606-7126 low channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3VDC (battery)

Test Specification: according to §15.247

Comment 1:

Dist.: 3m, Ant.: HK 116 Freq: 195.230MHz, Emax: 34.90dBpV/m, RBW: 100kHz

FCC RULES PART 15, SUBPART C / LP002

Order Number: W6M20606-7126 low channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3VDC (battery)

Test Specification: according to §15.247

Comment 1:

Dist.: 3m, Ant.: HL 223, amplif. Freq: 874.950MHz, Emax: 42.79dB\(\mu\bar{V}\)/m, RBW: 100kHz

FCC RULES PART 15, SUBPART C / LP002

Order Number: W6M20606-7126 low channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3VDC (battery)

Test Specification: according to \$15.247

Comment 1:

Dist.: 3m, Ant.: HL 223, amplif. Freq: 1.000GHz, Emax: 43.64dBµV/m, RBW: 100kHz

FCC RULES PART 15, SUBPART C / LP002

Order Number: W6M20606-7126 low channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3VDC (battery) Test Specification: according to \$15.247, peak detector
Comment 1: Dist.: 3m, Ant.: HL025, amplif.
Freq: 2.400GHz, Emax: 68.14dBµV/m, RBW: 1MHz

FCC RULES PART 15, SUBPART C / LP002

Order Number: W6M20606-7126 low channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3VDC (battery) Test Specification: according to §15.247, peak detector

Comment 1:

Dist.: 3m, Ant.: HL025, amplif. Freq: 2.400GHz, Emax: 62.19dBµV/m, RBW: 1MHz

FCC RULES PART 15, SUBPART C / LP002

Order Number: W6M20606-7126 low channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3VDC (battery) Test Specification: according to \$15.247, peak detector
Comment 1: Dist.: 3m, Ant.: HL025, ampl.+HP.
Freq: 4.802GHz, Emax: 52.88dBµV/m, RBW: 1MHz

FCC RULES PART 15, SUBPART C / LP002

Order Number: W6M20606-7126 low channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3VDC (battery) Test Specification: according to \$15.247, peak detector
Comment 1: Dist.: 3m, Ant.: HL025, ampl.+HP.
Freq: 7.984GHz, Emax: 53.05dBµV/m, RBW: 1MHz

Spurious emissions Field Strength FCC RULES PART 15, SUBPART C / LP002

Order Number: W6M20606-7126 low channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3VDC (battery)
Test Specification: according to §15.247, peak detector
Comment 1: Dist.: 3m, Ant.: HL025, ampl.+HP.

Dist.: 3m, Ant.: HL025, ampl.+HP. Freq: 11.543GHz, Emax: 48.30dBpV/m, RBW: 1MHz

FCC RULES PART 15, SUBPART C / LP002

Order Number: W6M20606-7126 low channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3VDC (battery) Test Specification: according to §15.247, peak detector

Comment 1:

Dist.: 3m, Ant.: HL025, ampl.+HP. Freq: 11.760GHz, Emax: 49.15dBpV/m, RBW: 1MHz

FCC RULES PART 15, SUBPART C / LP002

Order Number: W6M20606-7126 low channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3VDC (battery) Test Specification: according to §15.247, peak detector

Comment 1:

Dist.: 3m, Ant.: HL025, ampl.+HP. Freq: 18.000GHz, Emax: 52.46dBµV/m, RBW: 1MHz

FCC RULES PART 15, SUBPART C / LP002

Order Number: W6M20606-7126 low channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3VDC (battery) Test Specification: according to §15.247, peak detector

Comment 1:

Dist.: 3m, Ant.: HL025, ampl.+HP. Freq: 17.315GHz, Emax: 52.96dBµV/m, RBW: 1MHz

Spurious emissions Field Strength FCC RULES PART 15, SUBPART C / LP002

Order Number: W6M20606-7126 low channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3VDC (battery) Test Specification: according to §15.247, peak detector

Comment 1:

Dist.: 3m, Ant.: HL025, amplif. Freq: 26.466GHz, Emax: 50.83dBpV/m, RBW: 1MHz

FCC RULES PART 15, SUBPART C / LP002

Order Number: W6M20606-7126 moddle channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3VDC (battery)

Test Specification: according to §15.247 Comment 1:

Dist.: 3m, Ant.: HK 116 Freq: 195.230MHz, Emax: 34.80dBµV/m, RBW: 100kHz

FCC RULES PART 15, SUBPART C / LP002

Order Number: W6M20606-7126 moddle channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3VDC (battery)

Test Specification: according to §15.247

Comment 1:

Dist.: 3m, Ant.: HK 116 Freq: 188.417MHz, Emax: 31.96dBµV/m, RBW: 100kHz

FCC RULES PART 15, SUBPART C / LP002

Order Number: W6M20606-7126 moddle channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3VDC (battery)

Test Specification: according to §15.247

Comment 1:

Dist.: 3m, Ant.: HL 223, amplif. Freq: 884.569MHz, Emax: 42.47dBµV/m, RBW: 100kHz

FCC RULES PART 15, SUBPART C / LP002

Order Number: W6M20606-7126 moddle channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3VDC (battery)

Test Specification: according to §15.247

Comment 1:

Dist.: 3m, Ant.: HL 223, amplif. Freq: 878.156MHz, Emax: 42.91dBµV/m, RBW: 100kHz

Spurious emissions Field Strength FCC RULES PART 15, SUBPART C / LP002

Order Number: W6M20606-7126 moddle channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3VDC (battery) Test Specification: according to §15.247, peak detector

Comment 1:

Dist.: 3m, Ant.: HL025, amplif. Freq: 3.752GHz, Emax: 47.99dBµV/m, RBW: 1MHz

FCC RULES PART 15, SUBPART C / LP002

Order Number: W6M20606-7126 moddle channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3VDC (battery) Test Specification: according to §15.247, peak detector

Comment 1:

Dist.: 3m, Ant.: HL025, amplif. Freq: 3.820GHz, Emax: 47.93dBµV/m, RBW: 1MHz

FCC RULES PART 15, SUBPART C / LP002

Order Number: W6M20606-7126 moddle channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9° C/ Unom.: 3.3VDC (battery) Test Specification: according to \$15.247, peak detector Comment 1: Dist.: 3m, Ant.: HL025, ampl.+HP.

Dist.: 3m, Ant.: HL025, ampl.+HP. Freq: 4.882GHz, Emax: 57.59dBpV/m, RBW: 1MHz

FCC RULES PART 15, SUBPART C / LP002

Order Number: W6M20606-7126 moddle channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3VDC (battery) Test Specification: according to §15.247, peak detector

Comment 1:

Dist.: 3m, Ant.: HL025, ampl.+HP. Freq: 4.882GHz, Emax: 53.72dBµV/m, RBW: 1MHz

FCC RULES PART 15, SUBPART C / LP002

Order Number: W6M20606-7126 moddle channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3VDC (battery) Test Specification: according to §15.247, peak detector

Comment 1:

Dist.: 3m, Ant.: HL025, ampl.+HP. Freq: 11.920GHz, Emax: 48.97dBpV/m, RBW: 1MHz

FCC RULES PART 15, SUBPART C / LP002

Order Number: W6M20606-7126 moddle channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3VDC (battery) Test Specification: according to §15.247, peak detector

Comment 1:

Dist.: 3m, Ant.: HL025, ampl.+HP. Freq: 11.904GHz, Emax: 49.11dBpV/m, RBW: 1MHz

FCC RULES PART 15, SUBPART C / LP002

Order Number: W6M20606-7126 moddle channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3VDC (battery) Test Specification: according to §15.247, peak detector

Comment 1:

Dist.: 3m, Ant.: HL025, ampl.+HP. Freq: 17.291GHz, Emax: 52.12dBµV/m, RBW: 1MHz

FCC RULES PART 15, SUBPART C / LP002

Order Number: W6M20606-7126 moddle channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3VDC (battery) Test Specification: according to §15.247, peak detector

Comment 1:

Dist.: 3m, Ant.: HL025, ampl.+HP. Freq: 17.315GHz, Emax: 52.97dBpV/m, RBW: 1MHz

FCC RULES PART 15, SUBPART C / LP002

Order Number: W6M20606-7126 high channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3VDC (battery)

Test Specification: according to §15.247

Comment 1:

Dist.: 3m, Ant.: HL 223, amplif. Freq: 935.872MHz, Emax: 42.98dBµV/m, RBW: 100kHz

Spurious emissions Field Strength FCC RULES PART 15, SUBPART C / LP002

Order Number: W6M20606-7126 moddle channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3VDC (battery) Test Specification: according to §15.247, peak detector

Comment 1:

Dist.: 3m, Ant.: HL025, amplif. Freq: 24.626GHz, Emax: 50.25dBpV/m, RBW: 1MHz

Spurious emissions Field Strength FCC RULES PART 15, SUBPART C / LP002

Order Number: W6M20606-7126 moddle channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3VDC (battery) Test Specification: according to §15.247, peak detector

Comment 1:

Dist.: 3m, Ant.: HL025, amplif. Freq: 25.001GHz, Emax: 50.55dBµV/m, RBW: 1MHz

FCC RULES PART 15, SUBPART C / LP002

Order Number: W6M20606-7126 high channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3VDC (battery)

Test Specification: according to §15.247

Comment 1:

Dist.: 3m, Ant.: HK 116 Freq: 195.230MHz, Emax: 36.99dBµV/m, RBW: 100kHz

FCC RULES PART 15, SUBPART C / LP002

Order Number: W6M20606-7126 high channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3VDC (battery)

Test Specification: according to §15.247

Comment 1:

Dist.: 3m, Ant.: HK 116 Freq: 195.230MHz, Emax: 35.10dBµV/m, RBW: 100kHz

FCC RULES PART 15, SUBPART C / LP002

W6M20606-7126 Order Number: high channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3VDC (battery)

Test Specification: according to §15.247

Comment 1:

Dist.: 3m, Ant.: HL 223, amplif. Freq: 943.888MHz, Emax: 43.68dB\(\mu\bar{V}\)/m, RBW: 100kHz

FCC RULES PART 15, SUBPART C / LP002

Order Number: W6M20606-7126 high channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3VDC (battery) Test Specification: according to §15.247, peak detector

Comment 1:

Dist.: 3m, Ant.: HL025, amplif. Freq: 2.484GHz, Emax: 49.56dBµV/m, RBW: 1MHz

FCC RULES PART 15, SUBPART C / LP002

Order Number: W6M20606-7126 high channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3VDC (battery)

Test Specification: according to \$15.247, peak detector
Comment 1: Dist.: 3m, Ant.: HL025, amplif.
Freq: 3.976GHz, Emax: 48.17dBµV/m, RBW: 1MHz

FCC RULES PART 15, SUBPART C / LP002

Order Number: W6M20606-7126 high channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3VDC (battery) Test Specification: according to \$15.247, peak detector
Comment 1: Dist.: 3m, Ant.: HL025, ampl.+HP.
Freq: 4.962GHz, Emax: 53.30dBµV/m, RBW: 1MHz

FCC RULES PART 15, SUBPART C / LP002

Order Number: W6M20606-7126 high channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9C/ Unom.: 3.3VDC (battery) Test Specification: according to \$15.247, peak detector
Comment 1: Dist.: 3m, Ant.: HL025, ampl.+HP.
Freq: 7.727GHz, Emax: 52.13dBµV/m, RBW: 1MHz

FCC RULES PART 15, SUBPART C / LP002

Order Number: W6M20606-7126 high channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3VDC (battery) Test Specification: according to §15.247, peak detector

Comment 1:

Dist.: 3m, Ant.: HL025, ampl.+HP. Freq: 11.960GHz, Emax: 48.98dBpV/m, RBW: 1MHz

FCC RULES PART 15, SUBPART C / LP002

Order Number: W6M20606-7126 high channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3VDC (battery) Test Specification: according to §15.247, peak detector

Comment 1:

Dist.: 3m, Ant.: HL025, ampl.+HP. Freq: 11.575GHz, Emax: 49.07dBpV/m, RBW: 1MHz

FCC RULES PART 15, SUBPART C / LP002

Order Number: W6M20606-7126 high channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9C/ Unom.: 3.3VDC (battery)
Test Specification: according to \$15.247, peak detector
Comment 1: Dist.: 3m, Ant.: HL025, ampl.+HP.

Dist.: 3m, Ant.: HL025, ampl.+HP. Freq: 17.315GHz, Emax: 52.32dBµV/m, RBW: 1MHz

FCC RULES PART 15, SUBPART C / LP002

Order Number: W6M20606-7126 high channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3VDC (battery) Test Specification: according to \$15.247, peak detector
Comment 1: Dist.: 3m, Ant.: HL025, ampl.+HP.
Freq: 17.988GHz, Emax: 53.34dBµV/m, RBW: 1MHz

Spurious emissions Field Strength FCC RULES PART 15, SUBPART C / LP002

Order Number: W6M20606-7126 high channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3VDC (battery)

Test Specification: according to §15.247, peak detector Comment 1:

Dist.: 3m, Ant.: HL025, amplif. Freq: 25.665GHz, Emax: 50.90dBpV/m, RBW: 1MHz

Spurious emissions Field Strength FCC RULES PART 15, SUBPART C / LP002

Order Number: W6M20606-7126 high channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3VDC (battery)

Test Specification: according to \$15.247, peak detector
Comment 1: Dist.: 3m, Ant.: HL025, amplif.
Freq: 24.405GHz, Emax: 51.23dBµV/m, RBW: 1MHz

Registration number: W6M20606-7126-P-15 FCC ID : TT6J310M

Appendix C

Carrier Frequency Separation

Frequency spreading CH 38&39 Date: 3.JUL.2006 20:14:39

Registration number: W6M20606-7126-P-15 FCC ID : TT6J310M

Appendix D

Number of Hopping Frequencies

*RBW 300 kHz *VBW 300 kHz

Number of hopping frequencies ($CH.: 0 \sim 37$)

Date: 3.JUL.2006 20:01:11

*RBW 300 kHz *VBW 300 kHz

Number of hopping frequencies ($CH.: 38 \sim 78$)

Date: 3.JUL.2006 20:03:47

Registration number: W6M20606-7126-P-15 FCC ID : TT6J310M

Appendix E

Time of Occupancy (Dwell Time)

270 μs/

Time of occupancy (DH3 Packe) = $1.713462 \text{ ms} \times 155 = 265.59 \text{ ms}$ Date: 3.JUL.2006 20:29:46

Center 2.441 GHz

Registration number: W6M20606-7126-P-15 FCC ID : TT6J310M

Appendix F

20dB Bandwidth

ETS Dr. Genz Taiwan PS Co., Ltd.

20dB bandwidth 2402 MHz Date: 2.JUL.2006 10:01:59

-50-

20dB bandwidth 2441 MHz Date: 2.JUL.2006 10:14:33

500 kHz/

Span 5 MHz

20dB bandwidth 2480 MHz
Date: 2.JUL.2006 10:09:28

Center 2.48 GHz

--80-

--90**-**

Registration number: W6M20606-7126-P-15 FCC ID : TT6J310M

Appendix G

Band-edge Compliance of RF Conducted Emissions

ETS Dr. Genz Taiwan PS Co., Ltd.

Bandedge 2402 MHz

Date: 2.JUL.2006 09:48:02

2 MHz/

Span 20 MHz

Bandedge 2480 MHz

Date: 2.JUL.2006 10:11:01

Center 2.4835 GHz

Registration number: W6M20606-7126-P-15

FCC ID: TT6J310M

Appendix H

Radiated Emissions from Receiver Section of Transceiver

The measurement diagram are wideband pre-scan results; only for reference.

ETS Dr. Genz Taiwan PS Co., Ltd.

Order Number: W6M20606-7126 low channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3 VDC (Battery)

Test Specification: according to subpart B Comment 1: Dist.: 3m, Ant.: HK 116

Freq:195.230MHz Emax:27.22dBuV/m RBW: 100 kHz

Order Number: W6M20606-7126 low channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3 VDC (Battery)

Test Specification: according to subpart B Comment 1: Dist.: 3m, Ant.: HK 116

Dist.: 3m, Ant.: HK 116 Freq:130.160MHz Emax:25.21dBµV/m RBW: 100 kHz

Order Number: W6M20606-7126 low channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3 VDC (Battery)

Test Specification: according to subpart B

Comment 1: Dist.: 3m, Ant.: HL 223, ampl.

Freq:964.729MHz Emax:35.82dBμV/m RBW: 100 kHz

Order Number: W6M20606-7126 low channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3 VDC (Battery)

Test Specification: according to subpart B

Comment 1: Dist.: 3m, Ant.: HL 223, ampl.

Freq:879.760MHz Emax:36.36dBuV/m RBW: 100 kHz

Order Number : W6M20606-7126 low channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3 VDC (Battery)

Test Specification: according to subpart B

Comment 1:

Dist.: 3m, Ant.: HL25, ampl. Freq:3.988GHz Emax:37.57dBµV/m RBW: 1 MHz

Order Number: W6M20606-7126 low channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3 VDC (Battery)

Test Specification: according to subpart B

Comment 1: Dist.: 3m, Ant.: HL25, ampl.

Freq:3.747GHz Emax:36.62dBµV/m RBW: 1 MHz

Order Number: W6M20606-7126 low channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3 VDC (Battery)

Test Specification: according to subpart B

Comment 1: Dist.: 3m, Ant.: HL25, ampl.

Freq:4.794GHz Emax:49.94dBuV/m RBW: 1 MHz

Order Number: W6M20606-7126 low channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3 VDC (Battery)

Test Specification: according to subpart B

Comment 1: Dist.: 3m, Ant.: HL25, ampl.

Freq:4.802GHz Emax:51.54dBµV/m RBW: 1 MHz

Order Number : W6M20606-7126 low channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3 VDC (Battery)

Test Specification: according to subpart B

Dist.: 3m, Ant.: HL25, ampl. Comment 1:

Freq:11.904GHz Emax:51.46dBuV/m RBW: 1 MHz

Order Number: W6M20606-7126 low channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3 VDC (Battery)

Test Specification: according to subpart B

Comment 1: Dist.: 3m, Ant.: HL25, ampl.

Freq:11.952GHz Emax:51.19dBμV/m RBW: 1 MHz

Order Number: W6M20606-7126 low channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3 VDC (Battery)

Test Specification: according to subpart B

Comment 1: Dist.: 3m, Ant.: HL25, ampl.

Freq:17.820GHz Emax:52.46dBµV/m RBW: 1 MHz

Order Number : W6M20606-7126 low channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3 VDC (Battery)

Test Specification: according to subpart B

Comment 1: Dist.: 3m, Ant.: HL25, ampl.

Freq:17.832GHz Emax:52.57dBuV/m RBW: 1 MHz

Order Number: W6M20606-7126 middle channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3 VDC (Battery)

Test Specification: according to subpart B Comment 1: Dist.: 3m, Ant.: HK 116

Freq:195.230MHz Emax:26.47dBuV/m RBW: 100 kHz

Order Number: W6M20606-7126 middle channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3 VDC (Battery)

Test Specification: according to subpart B Comment 1: Dist.: 3m, Ant.: HK 116

Freq:198.978MHz Emax:25.47dBuV/m RBW: 100 kHz

Order Number: W6M20606-7126 middle channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3 VDC (Battery)

Test Specification: according to subpart B

Comment 1: Dist.: 3m, Ant.: HL 223, ampl.

Freq:975.952MHz Emax:35.01dBµV/m RBW: 100 kHz

Order Number : W6M20606-7126 middle channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3 VDC (Battery)

Test Specification: according to subpart B

Comment 1:

Dist.: 3m, Ant.: HL 223, ampl. Freq:907.014MHz Emax:35.55dBµV/m RBW: 100 kHz

W6M20606-7126 Order Number : middle channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3 VDC (Battery)

Test Specification: according to subpart B

Comment 1:

Dist.: 3m, Ant.: HL25, ampl. Freq:3.958GHz Emax:37.34dBµV/m RBW: 1 MHz

Order Number : W6M20606-7126 middle channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3 VDC (Battery)

Test Specification: according to subpart B

Comment 1:

Dist.: 3m, Ant.: HL25, ampl. Freq:3.856GHz Emax:37.25dBµV/m RBW: 1 MHz

Order Number : W6M20606-7126 middle channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3 VDC (Battery)

Test Specification: according to subpart B

Comment 1:

Dist.: 3m, Ant.: HL25, ampl. Freq:7.703GHz Emax:46.51dBµV/m RBW: 1 MHz

Order Number: W6M20606-7126 middle channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3 VDC (Battery)

Test Specification: according to subpart B

Comment 1: Dist.: 3m, Ant.: HL25, ampl.

Freq:7.535GHz Emax:47.01dBuV/m RBW: 1 MHz

Order Number: W6M20606-7126 middle channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3 VDC (Battery)

Test Specification: according to subpart B

Comment 1: Dist.: 3m, Ant.: HL25, ampl.

Freq:11.543GHz Emax:51.55dBμV/m RBW: 1 MHz

Order Number: W6M20606-7126 middle channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3 VDC (Battery)

Test Specification: according to subpart B

Comment 1: Dist.: 3m, Ant.: HL25, ampl.

Freq:10.862GHz Emax:51.69dBµV/m RBW: 1 MHz

Order Number: W6M20606-7126 middle channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3 VDC (Battery)

Test Specification: according to subpart B

Comment 1: Dist.: 3m, Ant.: HL25, ampl.

Freq:17.844GHz Emax:52.71dBμV/m RBW: 1 MHz

Order Number: W6M20606-7126 middle channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3 VDC (Battery)

Test Specification: according to subpart B

Comment 1: Dist.: 3m, Ant.: HL25, ampl.

Freq:17.844GHz Emax:52.89dBµV/m RBW: 1 MHz

Order Number: W6M20606-7126 high channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3 VDC (Battery)

Test Specification: according to subpart B Comment 1: Dist.: 3m, Ant.: HK 116

Freq:195.230MHz Emax:28.90dBμV/m RBW: 100 kHz

Order Number: W6M20606-7126 high channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3 VDC (Battery)

Test Specification: according to subpart B Comment 1: Dist.: 3m, Ant.: HK 116

Freq:130.160MHz Emax:26.26dBµV/m RBW: 100 kHz

Order Number : W6M20606-7126 high channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3 VDC (Battery)

Test Specification: according to subpart B

Comment 1:

Dist.: 3m, Ant.: HL 223, ampl. Freq:969.539MHz Emax:35.99dBµV/m RBW: 100 kHz

Order Number: W6M20606-7126 high channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3 VDC (Battery)

Test Specification: according to subpart B

Comment 1: Dist.: 3m, Ant.: HL 223, ampl.

Freq:935.872MHz Emax:35.62dBµV/m RBW: 100 kHz

Order Number : W6M20606-7126 high channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3 VDC (Battery)

Test Specification: according to subpart B

Comment 1:

Dist.: 3m, Ant.: HL25, ampl. Freq:3.741GHz Emax:36.96dBµV/m RBW: 1 MHz

Order Number: W6M20606-7126 high channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3 VDC (Battery)

Test Specification: according to subpart B

Comment 1: Dist.: 3m, Ant.: HL25, ampl.

Freq:3.904GHz Emax:36.49dBµV/m RBW: 1 MHz

Order Number: W6M20606-7126 high channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3 VDC (Battery)

Test Specification: according to subpart B

Comment 1: Dist.: 3m, Ant.: HL25, ampl.

Freq:4.954GHz Emax:48.80dBµV/m RBW: 1 MHz

Order Number: W6M20606-7126 high channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3 VDC (Battery)

Test Specification: according to subpart B

Comment 1: Dist.: 3m, Ant.: HL25, ampl.

Freq:4.954GHz Emax:47.90dBµV/m RBW: 1 MHz

Order Number: W6M20606-7126 high channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3 VDC (Battery)

Test Specification: according to subpart B

Comment 1: Dist.: 3m, Ant.: HL25, ampl.

Freq:11.872GHz Emax:51.14dBμV/m RBW: 1 MHz

Order Number: W6M20606-7126 high channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3 VDC (Battery)

Test Specification: according to subpart B

Comment 1: Dist.: 3m, Ant.: HL25, ampl.

Freq:11.752GHz Emax:51.37dBuV/m RBW: 1 MHz

Order Number: W6M20606-7126 high channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3 VDC (Battery)

Test Specification: according to subpart B

Comment 1: Dist.: 3m, Ant.: HL25, ampl.

Freq:17.832GHz Emax:52.72dBuV/m RBW: 1 MHz

Order Number: W6M20606-7126 high channel

Test Site / Operator: ETS / Orville

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3 VDC (Battery)

Test Specification: according to subpart B

Comment 1: Dist.: 3m, Ant.: HL25, ampl.

Freq:17.820GHz Emax:52.56dBµV/m RBW: 1 MHz

in accordance to the CISPR 22

Order Number: W6M20606-7126 Test Site / Operator: ETS / Dicky

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3 VDC (Battery)

Test Specification: Fully Anechoic Chamber

Comment 1: Dist.: 3m, Ant.: HK 116 , Peak detector

Freq:137.315MHz Emax:32.47dB μ V/m RBW: 100 kHz

in accordance to the CISPR 22

Order Number: W6M20606-7126 Test Site / Operator: ETS / Dicky

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3 VDC (Battery)

Test Specification: Fully Anechoic Chamber

Comment 1: Dist.: 3m, Ant.: HK 116 , Peak detector

Freq:137.315MHz Emax:32.47dB μ V/m RBW: 100 kHz

in accordance to the CISPR 22

Order Number: W6M20606-7126 Test Site / Operator: ETS / Dicky

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3 VDC (Battery)

Test Specification: Fully Anechoic Chamber

Comment 1: Dist.: 3m, Ant.: HL 223 , Peak detector

Freq:945.491MHz Emax:28.07dB μ V/m RBW: 100 kHz

in accordance to the CISPR 22

Order Number: W6M20606-7126 Test Site / Operator: ETS / Dicky

Temperature/Voltage: Temp.: 23.9°C/ Unom.: 3.3 VDC (Battery)

Test Specification: Fully Anechoic Chamber

Comment 1:

Dist.: 3m, Ant.: HL 223 , Peak detector Freq:878.156MHz Emax:29.20dBµV/m RBW: 100 kHz

Registration number: W6M20606-7126-P-15

FCC ID: TT6J310M

Appendix I

Power Line Conducted Emission

The measurement diagram are wideband pre-scan results; only for reference.

EMI voltage test in the ac-mains according to FCC Part 15 Class B

Order Number:: W6M20606-7126

Operating Condition: Unom: 3.3VDC (Battery) , Tnom: 23.9°C

Test Site: ETS Operator: Orville

Test Specification: V-network: ESH3-Z5 L1

EMI voltage test in the ac-mains according to FCC Part 15 Class B

Order Number:: W6M20606-7126

Operating Condition: Unom: 3.3 VDC (Battery) , Tnom: $23.9 \,^{\circ}\text{C}$

Test Site: ETS
Operator: Oryginal Control Cont

Operator: Orville

Test Specification: V-network: ESH3-Z5 N

Registration number: W6M20606-7126-P-15 FCC ID : TT6J310M

Appendix J

Pictures