Figure 1A

Muc1 Exemplary Protein - (SEQ ID NO:19)

Signal Peptide Cleavage (G | S; A | S)

MTPGTQSPFF LLLLLTVLTV VTGSGHASST PGGEKETSAT QRSSVPSSTE KNAVSMTSSV LSSHSPGSGS

TTPPAHDVTS APDNKPAPGS TAPPAHGVTS STIQGQDVIL APATEPASGS AATWGQDVIS VPVIRPALGS 71

TAPPAHGVTS APDNRPALAS TAPPAHGVTS APDTRPPPGS TAPAAHGVTS APDTRPAPGS APDTRPPGS 141 TAPPVHNVTS ASGSASGSAS TLVHNGTSAR ATTTPASKST PFSIPSHHSD TPTTLASHST KTDASSTHHS 211

TVPPLTSSNH STSPQLSTGV SFFFLSFHIS NLQFNSSLED PSTDYYQELQ RDISEMFLQI YKQGGFLGLS 281

Post-translational cleavage site (G | S)

NIKFRPGSVV VQLTLAFREG TINVHDVETQ FNQYKTEAAS RYNLTISDVS VSDVPFPFSA QSGAGVPGWG 351

IALLULUCUL VALAIVYLIA LAVCQCRRKN YGQLDIFPAR DTYHPMSEYP TYHTHGRYVP PSSTDRSPYE Fransmembrane region (TMR) 421

(SEQ ID NO:19; NM 002456) KVSAGNGGSS LSYTNPAVAA TSANL 491

Figure 1B

Muc1 juxtamembrane domain-GST Fusion

GST plus amino acids 337-422 of Mucl

GST-FLQI YKQGGFLGLS NIKFRPGSVV VQLTLAFREG TINVHDVETQ FNQYKTEAAS RYNLTISDVS VSDVPFPFSA (SEQ ID NO:7) QSGAGVPGWG IA

	(SEQ ID NO:8)	(SEQ ID NO:9)	(SEQ ID NO:10)	(SEQ ID NO:11)	(SEQ ID NO:12)
	21 amino acids (362-382) QLTLAFREGTINVHDVETQFN	21 amino acids (383-403) QYKTEAASRYNLTISDVSVSD	21 amino acids (337-357) FLQIYKQGGFLGLSNIKFRPG	21 amino acids (354-374) FRPGSVVVQLTLAFREGTINV	19 amino acids (404-422) VPFPFSAQSGAGVPGWGIA
	(362 - 382)	(383 - 403)	(337 - 357)	(354 - 374)	(404-422)
	acids	acids	acids	acids	acids
	amino	amino	amino	amino	amino
ptides	21	21	21	21	19
Synthetic Pe	Peptide a	Peptide b	Peptide c	Peptide d	Peptide e

Figure 2A

Muc16 Exemplary Protein – (SEQ ID NO:20)

AMINO TERMINAL DOMAIN	TANDEM REPEAT DOMAIN	CARBOXY TERMINAL DOMAIN
TPTLGTLTPL SPVIQTLDVS GTDTSTTFPT QVTSSGTDRN TTVSLVTHPA PGEPETTPSM VLDEVPGMVT LILSPGELET AVLTVSPEVP SAFSNLTVAS EAESSSAIST ATSPGAEATS LTSPGAEATS LTSPGAEATS TTTIPPSIPG PDMSDLVTSL TTTIPPSIPG TTTIPPSIPG TTTIPPSIPG TTTIPPSIPG SRTSYNHRSW SRTSYNHRSW	NATERELQGL TLDRNSLYVN SVLQGLLKPL NSLYVNGFTH	LNASFHWLGS IKSYFSDCQV GNSDLP <u>EWAV</u>
SRATLTTSVY SLVSRSGAER DALTPLVTIS SPGAEDLVTS ALTNSPGEPA STTIPLITLS GTEAGSAVPT SGVNSTSIPT ATSHGVEASS SLVTSSGSET DTMPSTVTSP HSEPDTTPSI LPVSPGASKM SSAVSTTTIS PGVDTRSGVP WVTHPPQTST TTALLSTHPR LSTHPGTETS GPPEFSRTVT MSTLASESVT	DMRHPGSRKF TNGIQELGPY TGSRKFNTME EELGPYTLDR	LVEQVFLDKT ALNQLFRNSS YSPNRNEPLT
KTTTTALKTT VLNRESETTA IPTNISPSEL TSSAIPIMTV LAAKTSTTNR PLVTSSRAVI ETTPSMATSH GVVTSLVTSS SSEPETTPSM VSPTVQGLVT TTSRFSHSEL TVPRTTPNYS ETHTSSAIPT VAITSPGPEA SDTAPSMVTS PSSEPDTMAS TLTHSPGMPE SPGVSAKTAP TETSPSVTSV SLFTPLTTPG	FTITNLQYEE ERLYWELSNL NLQYEEDMRR WELSKLINDI	ALFSSNLDPS YQRNKRNIED LDRSSVLVDG LQ
KRMETTTTAL STALPRTTPS TSHGADVSSA PSIATSPGAE SRLVTSMVTS VSTEVPGVVT PILTFSLGEP TVPTVSPEVP STTIPILTLS KMISAIPTLA PAESSSTLPR WVTHPAVTST ETTTSFITYS GTIPNFSHRG TGFTVPIRTV SGAATSTTVP TSRVDLSPTA DKPQTVTSWN TTTTFNTLAG	VPFMVPFTLN PDPEDLGLDR MPFTLNFTIT SPGLNREQLY	TMDSVLVTVK QDKAQPGTTN RNGTQLQNFT YYQSHLDLED
SPKGLHTGGT SLATSLGAET SELDTVSSTA NFSHHESDAT IPTSTISPAV ESSSAVPTPT SSRAVTSTTI ATSLVTHSEA PLVTSSRAVT TTSLVTHSEA PTLTLSSGEP PTLTLSSGEP TWVPKTTPKF HPAETSTTVS ASSATHPGTQ PEMVTSQITS SSLFTLLVTG SGLSSASITT TTGSSPTVAK SSIPSSTA	AT MAVDAICTHR PSPTAAGPLL AICTHRLDPK	TFRFCLVTNL NFTITNLPYS AIYEEFLRMT EYNVQQQCPG
KGPQTSTSPA VFPDVPETTS VSKTTPNFFH TSSTIPRTIP THPEAQTSSA TPSMTTSHGA VPGVVTSLVT LTISSDEPET VPTLTVSTGE ISATFPTVPE SSGTDTSITI IQLIHPAETN TPSPGEPETT TPSPGEPETT TPSPGEPETT TPSPGEPETT TPSPGEPETT TPSPGEPETT TPSPGEPETT TTMVEATNLA TLTLTVSPAV TSTALPTQTT	SLRPEKDSSA VGTSGTPSSS EKDGAATGVD GTPSSLSSPT/	TLYKGSQLHD SSSSTQHFYP SPLARRVDRV <u>V</u> TTRRRKKEG
AAHRGTIRPV LTEMMITTPY VIHPAETIPT RTTWLTHPAE GEPKTIASLV SIFFHSKSDT AIPTPTVSPG STTLPTLTLS EASSAVPTPT RAVTSTTIPT AHPGTEASSV TSLVTSSGRD VPDMVTSQVT TPTLSETPY TPTLSETPY TDTSTAIPTL ATSPRTEASS ASLTIRPGAE TSSSAETSTS EGVSPTTILR	EYLYSGCRLA TSTPGTSTVD SGCRLTLLRP GTSTVDLRTS	LLRDIQDKVT EMESSVYQPT HTGVDSLCNF LITCLICGVL
MEHITKIPNE NASRQMASTI SSEPDTTASW LTKSPHETET MTIPTLTLSP QTSPTVPWTT ATSHGEEASS SLVASSRAVT TPSMATSHGA GWVTSLVTSS SQPETIDSWV TISPGIPGVL DFPTITVSPD DSTTTFPTLT VPSSGTDTST VVTSQVTSSA HSSPDATPVM TVFPQVSETT GLLETTGLLA RPTPPKTSHG ISTTSSYNRR	LKPLFRNSSL GFTHRSSMPT FKNTSVGPLY QSSVSTTSTP	IT TYQLVDIHVT STFRSVPNRH ILIGLAGLLG
1 81 161 241 321 401 481 721 881 1041 1121 1201 1201 1201 1201 1201 1361	1681 1761 1841 1921	11511 11591 11671

Figure 2B

Muc16 juxtamembrane domain-GST Fusion

GST plus amino acids 11559-11666 of Muc16

GST-IN YQRNKRNIED ALNQLFRNSS IKSYFSDCQV STFRSVPNRH HTGVDSLCNF SPLARRVDRV AIYEEFLRMT RNGTQLQNFT LDRSSVLVDG YSPNRNEPLT GNSDLP (SEQ ID NO:13)

Syllchetic reptides	optides 20 amino	יי מיי	(11644-11663)	acida (11644-11663) SSVI,VDG YSPNRNEPI,T GNS	(SEO ID NO:14)
	20 amino	acids	(11559-11578)	acids (11559-11578) TN YQRNKRNIED ALNQLFRN	(SEQ ID NO:15)
	21 amino	acids	(11576-11596)	acids (11576-11596) FRNSS IKSYFSDCQV STFRSV	(SEQ ID NO:16)
	23 amino	acids	(11595-11617)	acids (11595-11617) SVPNRH HTGVDSLCNF SPLARRV	(SEQ ID NO:17)
	28 amino	acids	(11618-11645)	acids (11618-11645) DRV AIYEEFLRMT RNGTQLQNFT LDRSS	(SEQ ID NO:18)

Figure 3

Figure 4A

Clone 2C12

Clone 4H2

Clone 9B9

Clone 10B7

Clone 6H6

Clone 8H1

Figure 4A (continued)

Clone 6A4

Clone 6C7

Clone 3A3

Clone 7C10

Clone 2A10

Clone 5C11

Figure 4B

CM1 $(5.36 \times 10^{-8} \text{M})$

Gillian PAYNE et al NON-SHED ANTIBODIES TO.. A-8340

Figure 5A

Clone 1B8

Clone 1D2

Clone 2F4

Clone 3B9

Clone 4E2

Clone 4F8

Figure 5A (continued)

Clone 5G1

Clone 5G8

Clone 9E2

Clone 9G10

Clone 10C3

Clone 10G2

Figure 5A (continued)

Clone 2A9

Clone 2E6

Clone 2F9

Clone 3C2

Clone 3E7

Clone 5C5

Figure 5A (continued)

Clone 5E11

Clone 7G7

Clone 9D8

Clone 10C9

Clone 2D3

Clone 9G4

Figure 5B

M11

Figure 6A

muc1flagmuc1

(SEQ ID NO:21) Figure 6B

GGATCCATGA CACCGGGCAC CCAGTCTCCT TTCTTCCTGC TGCTGCTCCT CACAGTGCTT ACAGTTGTTA CAGGTTCTGG TCATGCAAGC TCTACCGACT ACAAGGACGA CCTAGGTACT GTGGCCCGTG GGTCAGAGGA AAGAAGGACG ACGACGAGGA GTGTCACGAA TGTCAACAAT GTCCAAGACC AGTACGTTCG AGATGGCTGA TGTTCCTGCT BamHI

CGATGACAA TCTAGATTCC GAAACAGCAG CATCAAGAGT TATTTTTCTG ACTGTCAAGT TTCAACATTC AGGTCTGTCC CCAACAGGGCA CCACACGGG GTGGACTCCC GCTACTGTTC AGATCTAAGG CTTTGTCGTC GTAGTTCTCA ATAAAAAGAC TGACAGTTCA AAGTTGTAAG TCCAGACAGG GGTTGTCCGT GGTGTGGCCC CACCTGAGGG

111

221

YGTGTAACTT CTCGCCACTG GCTCGGAGAG TAGACAGAGT TGCCATCTAT GAGGAATTTC TGCGGATGAC CCGGAATGGT ACCCAGCTGC AGAACTTCAC CCTGGACAGG ACACATTGAA GAGGGGTGAC CGAGCCTCTC ATCTGTCTCA ACGGTAGATA CTCCTTAAAG ACGCCTACTG GGCCTTACCA TGGGTCGACG TCTTGAAGTG GGACCTGTCC ECORI

AGCAGTGTCC TTGTGGATGG GTATTCTCCC AACAGAAATG AGCCCTTAAC TGGGAATTCT GACCTTCCCT TCTGGGCTGT CATCCTCATC GGCTTGGCAG GACTCCTGGG TCGTCACAGG AACACCTACC CATAAGAGGG TTGTCTTTAC TCGGGAATTG ACCCTTAAGA CTGGAAGGGA AGACCCGACA GTAGGAGTAG CCGAACCGTC CTGAGGACCCC 331

ACTCATCACA TGCCTGATCT GCGGTGTCCT GGTGACCACC CGCCGGCGGA AGAAGGAAGG AGAATACAAC GTCCAGGCAAC AGTGCCCAGG CTACTACCAG TGAGTAGTGT ACGGACTAGA CGCCACAGGA CCACTGGTGG GCGGCCGCCT TCTTCCTTCC TCTTATGTTG CAGGTCGTTG TCACGGGTCC GATGATGGTC AGTGTGGATC 441

ACCTGGAGGA TCTGCAAGCG GCCGCTCGAG CCACCATGGA ACAAAAACTC ATCTCAGAAG AGGATCTGGC TAGCGAACAA AAACTCATCT CAGAAGAGA TCTGGAACAA TGGACCTCCT AGACGTTCGC CGCCGAGCTC GGTGGTACCT TGTTTTTGAG TAGAGTCTTC TCCTAGACCG ATCGCTTGTT TTTGAGTAGA GTCTTCTCCT AGACCTTGTT

551

XbaI

AAACTCATCT CAGAAGAGGA TCTGACCGGT TAAATGCATC TAGAGGGCCC TTTGAGTAGA GTCTTCTCCT AGACTGGCCA ATTTACGTAG ATCTCCCGGG 661

0458-A Gillian PAYNE et al NOW-SHED ANTIBODIES TO..

Figure 7

Figure 8

Figure 9

0.0 | 1.1.1.mm | 1.1.1 Figure 10B -9.0 0.4-0.2-1.2 0.1 A405 10-8 10-8 10.₉ [MJ-172] M [MJ-171] M 10-10 10-11 10-9 10-12 Figure 10C Figure 10A 0.0 10-13 0.2-0.4-0.0 0.8-0.4-1.0--9.0 0.8--9.0 1.0-

[MJ-173] M

90tA

20tA

Gillian PAYNE et al NON-SHED ANTIBODIES TO.. A-8340

Figure 12F

150

150

150

25

50

10-12

10-12

10-12

10-13

10-13

10-13

10-13

10-13

Gillian PAYNE et al NON-SHED ANTIBODIES TO... A-8340

Gillian PAYNE et al NON-SHED ANTIBODIES TO.. A-8340

10 &

[CM1] M

10-9 10-11 125₇ PA1 Figure 14B 10-12 75-50-25-100 Percent of Max ■ MJ-171-DM1 10-9 10-9 [Ab] M 10-1 10-11 ¹²⁵ | **HeLa/54.1** ¹²⁵ | **WISH** Figure 14A Figure 14C 10.12 50-75-25-50-25-100 9 75-Percent of Max Percent of Max

₽[®]

