Research Project Proposal: Input-Aware Dynamic Quantization in Deep Neural Networks

Mehmet Emre Akbulut mehmetemre.akbulut@mail.polimi.it Computer Science and Engineering Track

Input-Aware Dynamic Quantization in Deep Neural Networks Research Question

"How can we design and

implement an instance-aware dynamic quantization framework that adapts bit precision considering given input for devices with limited memory and computation power while maintaining the model accuracy?"

Main Research Areas - What is TinyML?

TinyML is a bridge between ML and Embedded Systems [1]

Tiny Machine Learning (TinyML) is a subset of Machine Learning that serves as a link between the ML domain and the embedded system ecosystem.

Credits: MIT HAN Lab [2]

TinyML: Advantages and Challenges

Advantages

- Enables lower memory consumption and computation overhead
- Reducing latency through on-device data processing
- Reducing networking costs
- Incremental learning
- Better Privacy

Challenges

- Resource-constrained edge devices: memory, computation, energy
- Hardware complexity and heterogenity
- Miscellaneous techniques: Hardware, Software and ML Algorithms

TinyML: Solutions

One of the main techniques used to compress and deploy these models on devices with limited resources is lowprecision quantization.

Model Compression Summary [3]

- Lower precision of weights, biases, and activations.
- A 32-bit full precision model is compressed to a low-bit representation by employing bit widths from 8-bit to 1-bit.
- Lower memory consumption and fewer arithmetic operations with little loss in task performance
- Higher inference speed

Quantization illustration [5]

- One of the important techniques is the mixed-precision quantization of neural networks.
- Different bit precision for different layers/blocks in the model
- Bit selection problem
- Current solutions in the literature use pre-defined, fixed bit widths for each layer, that can not be modified without retraining the model.

Dynamic quantization techniques aims to reduce memory and computation overhead at **run-time** through changing bit-widths during inference without retraining.

Choosing optimal bit-widths for each layer by considering:

- Resource Availability
- Performance on the Task
- Input of the Model

Main Related Works

- AdaBits were proposed to allow dynamically adjust bit precision of the model during inference, however same precision for all layers [9].
- Bit-Mixer focuses on choosing bit precisions for each layer on inference time considering the resource availability and performance, not input [10].
- Also, an Instance-Aware DQNet which consists of a predictor bit controller network is proposed. Mainly focusing on custom solutions with a specific Neural Net (ResNet) and not a generalized framework [11].

Further Ideas

- Different bit predictor network architectures integrated to model
- Better regularization metrics for input complexity when training the model
- Focusing on different patches of the input
- Layer statistics
- A framework without depending on specific neural net architecture

Research Plan

The goal of the research is to

- design
- implement
- deploy

a framework that enables dynamic quantization concerning given input in edge devices, by improving the current solutions in literature.

The nature of this research mainly lies between theory and application.

Steps and Goals

- Problem Formulation and SotA
- > Literature Review
- Design
- > Implementation
- > Experiments
- > Thesis Writing

Design / Implementation

- 1. Choosing the CNN architecture to be worked on (ResNet, MobileNet...).
- 2. Exploring efficient ways of **dynamic quantization to choose bit-widths of the layers based on the input** (bit predictor network integrated to model, possible input-aware architectures, patch complexity of input, layer statistics etc.) while **considering the challenges in the TinyML**.
- 3. Concretize different candidate solutions for the research question.
- 4. Firstly starting with a theoretical assumptions, then continuing synchronously with implementation.
- 5.A set of different solutions and versions are aimed to start experiments after the implementation and development of these candidate solutions.

Experiments and Research Assessment

- Result collection and analysis, reimplementing solution with respect to their outcomes.
- In the thesis, the real concern is maintaining model success (accuracy, precision, AUC, etc) while reducing computation overhead.
 - Accuracy of classifier
 - FLOPs and MAC Operations
 - Inference Time
 - Memory Usage

Experiments and Research Assessment

 Apart from this, a real deployment on a resource-constrained edge device will strengthen our assessment through testing the developed solution in real-world scenarios, which differs from previous works.

Research Plan

THANKS FOR YOUR ATTENTION!

References

- 1. Cavagnis L, https://leonardocavagnis.medium.com, 2024
- 2.MIT HAN LAB, https://www.youtube.com/@tinyML, 2024. [Accessed: October 2024].
- 3.C. -H. Wang, K. -Y. Huang, Y. Yao, J. -C. Chen, H. -H. Shuai and W. -H. Cheng, "Lightweight Deep Learning: An Overview," in IEEE Consumer Electronics Magazine, vol. 13, no. 4, pp. 51-64, July 2024, doi: 10.1109/MCE.2022.3181759.
- 4.Grootendorst M, https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-quantization, 2024. [Accessed: October 2024]
- 5.Nagel, M., Fournarakis, M., Amjad, R. A., Bondarenko, Y., van Baalen, M., and Blankevoort, T. A white paper on neural network quantization. ArXiv abs/2106.08295 (2021).
- 6.Xu, Yuhui et al. "DNQ: Dynamic Network Quantization." 2019 Data Compression Conference (DCC) (2018): 610-610.
- 7.Liu, Z., Wang, Y., Han, K., Ma, S., and Gao, W. Instance-aware dynamic neural network quantization. 2022, IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2022), 12424–12433.
- 8.Suzuki L, https://larissa-suzuki.medium.com/a-very-short-introduction-to-mlops-for-tinyml-part-1-40432708b974, 2021 [Accessed: October 2024]
- 9.Jin, Q., Yang, L., and Liao, Z. A. Adabits: Neural network quantization with adaptive bit-widths. 2020IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019), 2143–2153.
- 10.Bulat, A., and Tzimiropoulos, G. Bit-mixer: Mixed-precision networks with runtime bit-width selection. 2021 IEEE/CVF International Conference on Computer Vision (ICCV) (2021), 5168-5177.
- 11.Liu, Z., Wang, Y., Han, K., Ma, S., and Gao, W. Instance-aware dynamic neural network quantization. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2022), 12424–12433.