INFERENCES ABOUT THE MEAN VECTOR

Reference: Johnson & Wichern (2007) Applied Multivariate Statistical Analysis Chapter 5.

1 Hypotheses Testing for μ

Problem:

Given a random sample $X_1, X_2, ..., X_n$ from a p variate normal (or approximately normal) population with mean μ and covariance matrix Σ where Σ is unknown. Examine whether μ is significantly different from a given value, μ_0 at a specified level of significance, say α .

<u>Note:</u> Since $X_j \sim N_p(\mu, \Sigma)$, sample mean $\overline{X}_n \sim N_p(\mu, \frac{1}{n}\Sigma)$.

Hypotheses: $H_0: \mu = \mu_0 \text{ against } H_1: \mu \neq \mu_0.$

<u>Test Statistic:</u> $T^2 = n \left(\overline{X}_n - \mu_0 \right)^T S_n^{-1} \left(\overline{X}_n - \mu_0 \right).$

Note that T^2 has a Hoteling's T^2 distribution and hence, $\frac{n-p}{p(n-1)}T^2$ has a F-distribution with p and n-p degrees of freedom.

<u>Decision:</u> Reject H_0 if

$$\frac{n-p}{p(n-1)}T^2 > F_{p,n-p}(\alpha)$$

where $F_{p,n-p}(\alpha)$ is the upper 100α percentile of the $F_{p,n-p}$ distribution.

2 Confidence Region for μ

Since the distribution of $\frac{n-p}{p(n-1)}T^2$ is $F_{p,n-p}$,

$$\mathcal{P}\left[\frac{n-p}{p(n-1)}T^2 > F_{p,n-p}(\alpha)\right] = \alpha.$$

Hence, $\mathcal{P}\left[T^2 \leq \frac{p(n-1)}{n-p}F_{p,n-p}(\alpha)\right] = 1 - \alpha$ and

$$\mathcal{P}\left[n\left(\overline{X}_{n}-\boldsymbol{\mu}\right)^{T}\mathcal{S}_{n}^{-1}\left(\overline{X}_{n}-\boldsymbol{\mu}\right)\leq\frac{p(n-1)}{n-p}F_{p,n-p}(\alpha)\right]=1-\alpha$$

Thus \overline{X}_n will be within $\left[\frac{p(n-1)}{n-p}F_{p,n-p}(\alpha)\right]^{1/2}$ of μ with probability $1-\alpha$ provided distance is defined in terms of $(\mathcal{S}_n/n)^{1/2}$. Therefore, a $100(1-\alpha)\%$ confidence region for μ is

$$n\left(\overline{\boldsymbol{X}}_{n}-\boldsymbol{\mu}\right)^{T} \mathcal{S}_{n}^{-1}\left(\overline{\boldsymbol{X}}_{n}-\boldsymbol{\mu}\right) \leq \frac{p(n-1)}{n-p} F_{p,n-p}(\alpha).$$

If $\overline{\boldsymbol{x}}_n$ is the sample average of the observed values, then

$$n\left(\overline{\boldsymbol{x}}_n-\boldsymbol{\mu}\right)^T \mathcal{S}_n^{-1}\left(\overline{\boldsymbol{x}}_n-\boldsymbol{\mu}\right) \leq \frac{p(n-1)}{n-p} F_{p,n-p}(\alpha).$$

This is an ellipsoid with center at \overline{x}_n . The axes and relative lengths are given by eigenvectors e_i and eigenvalues λ_i of S_n .

Let $c^2 = \frac{p(n-1)}{n-p} F_{p,n-p}(\alpha)$ then length of the axis along e_i is $2\sqrt{\frac{\lambda_i}{n}}c$. That is the axes of the *p*-variate confidence ellipsoid are

$$\overline{x}_n \pm 2\sqrt{\frac{\lambda_i}{n}}c \ e_i \quad \text{for } i = 1, 2, \dots, p.$$

3 Simultaneous Confidence Interval

$$(T^2 - Interval)$$

Let \boldsymbol{a} be a $p \times 1$ constant vector, then for ever \boldsymbol{a}

$$\boldsymbol{a}^T \overline{\boldsymbol{X}}_n \pm \sqrt{\frac{p(n-1)}{n-p}} F_{p,n-p}(\alpha) \ \frac{\boldsymbol{a}^T \mathcal{S}_n \boldsymbol{a}}{n}$$

is a $100(1-\alpha)\%$ confidence interval for $\boldsymbol{a}^T\boldsymbol{\mu}$.

The successive choices of $\mathbf{a}^T = (1, 0, \dots, 0)$, $\mathbf{a}^T = (0, 1, \dots, 0)$, and so on through $\mathbf{a}^T = (0, 0, \dots, 1)$ gives the confidence interval for $\mu_1, \mu_2, \dots, \mu_p$ respectively.

$$\overline{X}_{1n} \quad \pm \sqrt{\frac{p(n-1)}{n-p}} F_{p,n-p}(\alpha) \quad \sqrt{\frac{S_{11}}{n}},$$

$$\overline{X}_{2n} \quad \pm \sqrt{\frac{p(n-1)}{n-p}} F_{p,n-p}(\alpha) \quad \sqrt{\frac{S_{22}}{n}},$$

$$\vdots$$

$$\overline{X}_{pn} \quad \pm \sqrt{\frac{p(n-1)}{n-p}} F_{p,n-p}(\alpha) \quad \sqrt{\frac{S_{pp}}{n}}.$$

where $\overline{\boldsymbol{X}}_n^T = (\overline{X}_{1n}, \overline{X}_{2n}, \dots, \overline{X}_{pn})$. Thus confidence interval for μ_i , $(i = 1, 2, \dots, p)$ is given by

$$\left(\overline{X}_{in} - \sqrt{\frac{p(n-1)}{n-p}} F_{p,n-p}(\alpha)\right) \sqrt{\frac{S_{ii}}{n}}, \quad \overline{X}_{in} + \sqrt{\frac{p(n-1)}{n-p}} F_{p,n-p}(\alpha)\right) \sqrt{\frac{S_{ii}}{n}}\right).$$

Further taking $\mathbf{a}^T = (0, 0, \dots, a_i, 0, \dots, 0, a_k, 0, \dots, 0)$ with $a_i = -a_k = 1$, we can obtain a $(1 - \alpha)\%$ confidence interval for $\mu_i - \mu_k$ as follows:

$$\left(\left(\overline{X}_{in} - \overline{X}_{kn} \right) - \sqrt{\frac{p(n-1)}{n-p}} F_{p,n-p}(\alpha) \sqrt{\frac{S_{ii} - 2S_{ik} + S_{kk}}{n}}, \left(\overline{X}_{in} - \overline{X}_{kn} \right) + \sqrt{\frac{p(n-1)}{n-p}} F_{p,n-p}(\alpha) \sqrt{\frac{S_{ii} - 2S_{ik} + S_{kk}}{n}} \right).$$

Note: Since $\frac{p(n-1)}{n-p}F_{p,n-p}=T^2$, the above confidence intervals are called T^2 intervals.

4 Bonferroni Intervals

Bonferroni confidence intervals can be computed for any number $m(\leq p)$ of individuals means. The length of a Bonferroni interval is shorter than the length of the corresponding T^2 interval and they are equal only if m = p = 1.

For any $m(\leq p)$, $100(1-\alpha)\%$ Bonferroni intervals for μ_i $(i=1,2,\ldots,m)$ are given by

$$\left(\overline{X}_{in} - t_{n-1} \left(\frac{\alpha}{2m}\right) \sqrt{\frac{S_{ii}}{n}}, \quad \overline{X}_{in} + t_{n-1} \left(\frac{\alpha}{2m}\right) \sqrt{\frac{S_{ii}}{n}}\right).$$

Note:

Length of Bonferroni interval = $2t_{n-1} \left(\frac{\alpha}{2m}\right) \sqrt{\frac{S_{ii}}{n}}$ and

Length of
$$T^2$$
 interval = $2\sqrt{\frac{p(n-1)}{n-p}}F_{p,n-p}(\alpha) \sqrt{\frac{S_{ii}}{n}}$.

Thus, the ratio

$$\frac{\text{Length of Bonferroni interval}}{\text{Length of } T^2 \text{ interval}} = \frac{t_{n-1} \left(\frac{\alpha}{2m}\right)}{\sqrt{\frac{p(n-1)}{n-p} F_{p,n-p}(\alpha)}}$$

This does not dependent on random quantities, \overline{X}_n and S_n and using numerical computation we can show that this ratio is less than 1 for all $m \leq p$ and p > 1.

5 Large sample Theory

When the sample size is large, test of hypotheses and confidence intervals for μ can be constructed without the normality assumption on the population.

Consider a random sample X_1, X_2, \ldots, X_n from a p-variate population (not necessarily normal) with mean μ and <u>positive definite</u> covariance matrix Σ . Further, n is large relative to p.

It can be proved that distribution of T^2 , for this case, is approximately chi-square with p degrees of freedom. That is,

$$n\left(\overline{X}_n - \mu\right)^T S_n^{-1} \left(\overline{X}_n - \mu\right) \approx \chi_p^2.$$

Note that when n is large relative to p

- (a) $S_n \approx \Sigma$ (using law of large numbers)
- (b) and hence, the distribution of T^2 is approximately χ^2_p .
- (c) Further, it can be proved that, as $n \to \infty$

$$\frac{p(n-p)}{n-p}F_{p,n-p} \to \chi_p^2$$

6 Hypotheses Testing for μ

Consider the hypotheses:

$$H_0: \boldsymbol{\mu} = \boldsymbol{\mu}_0$$
 against $H_1: \boldsymbol{\mu} \neq \boldsymbol{\mu}_0$.

Since n is large relative to p, test statistic

$$T^2 = n \left(\overline{X}_n - \mu_0 \right)^T S_n^{-1} \left(\overline{X}_n - \mu_0 \right) \approx \chi_p^2.$$

Hence reject H_0 if $T^2 > \chi_p^2(\alpha)$ where $\chi_p^2(\alpha)$ is the upper 100α percentile of the chi-square distribution with p degrees of freedom.

7 Confidence Region for μ

A $100(1-\alpha)\%$ confidence interval for μ is

$$n\left(\overline{\boldsymbol{X}}_{n}-\boldsymbol{\mu}\right)^{T}\mathcal{S}_{n}^{-1}\left(\overline{\boldsymbol{X}}_{n}-\boldsymbol{\mu}\right)\leq\chi_{p}^{2}(\alpha)$$

Note that this is an ellipsoid and the axes of the ellipsoid can calculate using the eigenvalues and eigenvectors of S. See Week 4 Lecture Note for details.

8 Simultaneous Confidence Intervals

A $100(1-\alpha)\%$ confidence interval for μ_i for $i=1,2,\ldots,p$ is given by

$$\left(\overline{X}_{in} - \sqrt{\chi_p^2(\alpha)} \sqrt{\frac{S_{ii}}{n}}, \quad \overline{X}_{in} + \sqrt{\chi_p^2(\alpha)} \sqrt{\frac{S_{ii}}{n}}\right).$$