Steps in whole genome sequencing/GWAS

Jeff Leek

@jtleek

www.jtleek.com

Background on WGS/GWAS

DNA

ACTGACCTAGATCAGTGTAGCGATCGTATACGAGACCGATTCATCGGCAT

RNA

protein

ATGGGAATTCACGAATTCCTAGACCTGCCCCGGAAACCTACCGCCGCG

DNA molecule

ACCTGCCCGGAAACCTACC GCCGCG

ATGGGAATTCACGAATTCCTAG

Fragment DNA

ATGGGAATTCACGAATTCCTAG

ACACCTGCCCGGAAACC
ACACCTGCCCGGAAACC
TCCTAGACCTGCCCCGG
AATTCCTAGACCTGCCCC
CGAATTCCTACACCTG

ATGGGAATTCACGAATTCCTAGACCTGCCCCGGAAACCTACCGCCGCG **Genome**

http://www.affymetrix.com/estore/catalog/131533/AFFY/Genome-Wide+Human+SNP+Array+6.0#1_3

Steps 1. Variant identification

- 2. Population stratification correction 3. Statistical tests
 - 4. Examining local region
 - 5. Annotation

Step 1: Variant identification (SNP chip)

Software:

• crlmm

Step 1: Variant identification (sequencing)

- <u>freeBayes</u>
- GATK

Step 2: Population stratification

- <u>EIGENSOFT</u>
- snpStats

Step 3: Statistical tests

- PLINK
- snpStats

Step 4: Examine local region

- PLINK
- Annotating
 Genomic Variants
 Workflow

Step 5: Annotation

- CADD
- variantAnnotation
- Annotating
 Genomic Variants
 Workflow

