Esercitazione 1 - Linguaggi e Calcolabilità

29-03-2019

Antonio Cruciani antonio.cruciani@alumni.uniroma2.eu

Esercizi a lezione

Esercizio 1:

Sia $L \subseteq \Sigma^*$ un linguaggio accettabile ma non decidibile. Si considerino le seguenti due funzioni $f: \Sigma^* \to \{0,1\} \ e \ g: \Sigma^* \to \{0,1\}$:

$$f(x) = \left\{ \begin{array}{ll} 1 & \text{se } x \in L \\ \text{Non definito Altrimenti} \end{array} \right. \qquad g(x) = \left\{ \begin{array}{ll} 1 & \text{se } x \in L \\ 0 & \text{Altrimenti} \end{array} \right.$$

Discutere la calcolabilità di $f \in g$.

Esercizio 2:

Sia $L_1 \subseteq \Sigma^*$ un linguaggio accettabile ma non decidibile e sia $L_2 \subseteq \Sigma^*$ un linguaggio decidibile. Si consideri la seguente funzione $f: \Sigma^* \to \mathbb{N}: \forall x \in \Sigma^*$,

$$f(x) = \begin{cases} 1 & \text{SE } x \in L_1 \\ |x| & \text{SE } x \notin L_1 \land x \in L_2 \\ 0 & \text{ALTRIMENTI} \end{cases}$$

Si dimostri se f è una funzione calcolabile.

Soluzioni esercizi a lezione

Esercizio 1:

Osserviamo che f è calcolabile, ricordiamo che dati Σ e Σ_1 $f: \Sigma^* \to \Sigma_1^*$ è una funzione (parziale) calcolabile se $\exists T \ (trasduttore)$ tale che $\forall x \in \Sigma^*$ termina con la stringa f(x) scritta sul nastro di output se e solo se f(x) è definita.

Il linguaggio L è accettabile ma non decidibile $\Rightarrow \exists T_1$ TM di tipo riconoscitore che accetta L. Sia ora T_2 il trasduttore che calcola f(x) esso, senza perdita di generalità, sarà a due nastri dove sul primo simulerà la macchina di Turing T_1 con input x e nel secondo scriverà l'output f(x) se e solo se la simulazione di $T_1(x)$ sarà accettante.

Formalmente: $[O_{T_1(x)} = q_a \Rightarrow O_{T_2} = f(x) = 1] \iff x \in L$

Poiché L è accettabile ma non è decidibile per $x \in L^c \not\exists T'$ tale che T'(x) accetta se $x \in L^c$.

Quindi abbiamo che $\forall x \in L, f(x) = 1 \Rightarrow f$ è calcolabile.

Osserviamo ora che g(x) non è una funzione calcolabile. Osserviamo che per come è definita essa è una funzione totale.

Ricordiamo il teorema:

Thm: L è un linguaggio decidibile $\iff \chi_L$ è una funzione totale e calcolabile

Ora assumiamo per assurdo che g sia totale e calcolabile, allora L dev'essere decidibile, ma L per definizione è accettabile ma non decidibile, quindi abbiamo una contraddizione $\Rightarrow g$ non è calcolabile.

Esercizio 2:

Osserviamo esplicitamente che f non è calcolabile.

Ora, mostriamo che se f fosse calcolabile allora potremmo costruire una macchina di Turing in grado di decidere L_1 il quale è un linguaggio accettabile ma non decidibile (non co-Turing-recognizable).

Supponiamo, quindi, per assurdo che f sia una funzione calcolabile (allora esiste un trasduttore T_f che la calcola) e sia inoltre T_1 a tre nastri, definita come segue:

- n_1) input x
- n_2) nastro per la simulazione della computazione $T_f(x)$
- n_3) output di $T_f(x)$

La macchina di Turing di tipo accettatore che simula T_f con input x. Essa lavorerà come segue:

- simula $T_f(x)$ sul secondo nastro, e se tale computazione scrive sul nastro 3:
 - 1 Allora T_1 Accetta
 - |x| Allora T_1 Rigetta
 - 0 Allora T_1 Rigetta

Osserviamo esplicitamente che T_1 decide L_1 in quanto:

$$O_{T_1}(x) = \begin{cases} q_a & \text{SE } x \in L_1\\ q_r & \text{SE } x \in L_1^c \end{cases}$$

Ma tale T_1 non può esistere in quanto L_1 è accettabile ma non decidibile. Quindi f non è calcolabile.

Spieghiamo meglio questo ragionamento e osserviamo che, sostanzialmente, basta rivolgere l'attenzione a questo passaggio logico:

• se
$$f(x) = |x| \Rightarrow x \in L_1^c \cap L_2$$

Questo ci dice che se f fosse calcolabile allora potremmo stabilire che $x \in L_1^c \cap L_2$ ma per poter far questo dovrebbe esistere una macchina in grado di accettare L_1^c , ma essa non può esistere in quanto L_1^c per definizione non è accettabile, quindi abbiamo un assurdo che ci permette di dire che f non è calcolabile.