

ALAN REYES-FIGUEROA TEORÍA DE NÚMEROS

(AULA 05) 18.JULIO.2023

Recordemos:

Teorema (Teorema de Bézout)

Para todo $a, b \in \mathbb{Z}$, existen $M, N \in \mathbb{Z}$ tales que Ma + Nb = d, d = (a, b).

Propiedad

La ecuación diofantina xa + yb = c admite solución en \mathbb{Z} si, y sólo si, $d \mid c$, donde d = (a, b).

Si (x_0, y_0) es una solución particular de la ecuación, entonces todas las otras soluciones son de la forma $x = x_0 + \frac{b}{d}t, \quad y = y_0 - \frac{a}{d}t, \quad t \in \mathbb{Z}.$

Prueba: (\Rightarrow) Como d=(a,b) existen enteros $r,s\in\mathbb{Z}$ con a=dr, b=ds.

Si existe una solución $(x_0, y_0) \in \mathbb{Z}^2$, entonces

$$c = x_0 a + y_0 b = x_0 (dr) + y_0 (ds) = d(x_0 r + y_0 s) \Rightarrow d \mid c.$$

(\Leftarrow) Sea $d \mid c$. Entonces c = dq, para algún $q \in \mathbb{Z}$. Por el Teorema de Bézout, existen enteros $M, N \in \mathbb{Z}$ tales que d = Ma + Nb. Entonces

$$(Mq)a + (Nq)b = (Ma + Nb)q = dq = c,$$

y $(Mq, Nq) \in \mathbb{Z}^2$ es una solución de xa + yb = c.

Para la segunda afirmación del teorema, supongamos que se conoce una solución $(x_0,y_0)\in\mathbb{Z}^2$ de la ecuación dada. Si $(x',y')\in\mathbb{Z}^2$ es cualquier otra solución, entonces $ax_0+by_0=c=ax'+by'$. Lo anterior es equivalente a $a(x'-x_0)=b(y_0-y')$.

Tenemos $a(x' - x_0) = b(y_0 - y')$.

De nuevo, como d=(a,b), existen enteros primos relativos r y s, tales que a=dr, b=ds. Sustituyendo estos valores en la ecuación anterior y cancelando el factor común d, entonces

$$r(x'-x_0)=s(y_0-y').$$

La situación es ahora la siguiente: $r \mid s(y_0 - y')$, con (r, s) = 1. Del lema de Euclides, $r \mid y_0 - y'$; ó, en otras palabras, $y_0 - y' = rt$ para algún número entero $t \in \mathbb{Z}$. Sustituyendo, obtenemos

$$x'-x_0=st.$$

Esto lleva a las fórmulas

$$x' = x_0 + st = x_0 + \frac{b}{d}t,$$
 $y' = y_0 - rt = y_0 - \frac{a}{d}t.$

Sin importar el valor de $t \in \mathbb{Z}$, estos valores satisfacen la ecuación diofantina, pues

$$ax' + by' = a(x_0 + \frac{b}{d}t) + b(y_0 - \frac{a}{d}t) = (ax_0 + by_0) + (\underbrace{\frac{ab}{d} - \frac{ab}{d}}_{=0})t$$

$$= c$$

Entonces, existen infinitas soluciones a la ecuación, una para cada $t \in \mathbb{Z}$, en la forma requerida. \Box

Corolario

Si (a,b)=1 y si $(x_0,y_0)\in\mathbb{Z}^2$ es una solución particular de la ecuación diofantina xa+yb=c, entonces todas las soluciones son de la forma

$$x = x_0 + bt,$$
 $y = y_0 - at,$ $t \in \mathbb{Z}.$

Sean $a \ge b \ge$ o. Recordemos que si el Algoritmo de Euclides hace k+1 divisiones para hallar d=(a,b), entonces en cada paso $r_{k+1}=q_kr_{k-1}+r_k$, $q_k\ge 1$, $b>r\ge 0$, se tiene

$$a = qb + r \ge b + r > 2r, \Rightarrow r < \frac{a}{2}.$$

Similarmente, $r_1 < \frac{b}{2} \le \frac{a}{2}$, $r_2 < \frac{r}{2} < \frac{a}{4}$, $r_3 < \frac{r_1}{2} < \frac{b}{4} \le \frac{a}{4}$, ..., y en general

$$r_{2j} < \frac{a}{2^j}, \qquad r_{2j+1} < \frac{a}{2^j} \qquad \text{para } j = 1, 2, \dots, (k+1)/2.$$

Por otro lado, existe $t \in \mathbb{Z}^+$ tal que $a < 2^t \Rightarrow \log_2 a < t \Rightarrow r_{2t} < \frac{a}{2^t} < 1 \Rightarrow r_{2t} = 0$. (i.e., el algoritmo acaba a lo sumo en 2t pasos)

Si a tiene N dígitos en su representación decimal, entonces $a < 10^N$. Luego, $\log_2 a < N \log_2 10$.

Así

$$k+1=2t \le 2(|\log_2 a|+1) \le 2(N|\log_2 10|+1) \approx 6.6N.$$

(LAMÉ, 1844).

Se puede mostrar que para que el Algoritmo de Euclides efectúe n pasos (n=k+1), se debe tomar al menos $a=F_{n+2},\ b=F_{n+1}$. En particular $n<2\log_2 a \Rightarrow \frac{n}{2}<\log_2 a \Rightarrow a>2^{n/2}$.

Recordemos la **Fórmula de** BINET (1843)

$$F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right]$$

Como $\left(\frac{1-\sqrt{5}}{2}\right)^n \to 0$, cuando $n \to \infty$, podemos simplificar

$$F_n pprox rac{1}{\sqrt{5}} \Big(rac{1+\sqrt{5}}{2}\Big)^n = rac{1}{\sqrt{5}} arphi^n,$$

donde $\varphi = \frac{1+\sqrt{5}}{2}$ es la razón aúrea. (*i.e.*, los F_n se parecen a los φ^n)

Recordemos que φ satisface $\varphi^2-\varphi-1=$ 0, de modo que $\varphi^2=\varphi+$ 1. Afirmamos que $F_n\geq \varphi^{n-1}$, para todo $n\geq$ 1.

 $F_1=1\geq \varphi^0$, $F_2=2\geq \varphi$. Asumiendo la hipótesis inductiva que $F_k\geq \varphi^{k-1}$ siempre que $k\leq n$, entonces $F_{n+1}=F_n+F_{n-1}\geq \varphi^{n-1}+\varphi^{n-2}=\varphi^{n-2}(\varphi+1)=\varphi^{n-2}\varphi^2=\varphi^n$, lo que completa la afirmación.

Luego, $a=F_{n+2}\geq \varphi^{n+1}$ y vale que $n\leq n+1=\log_{\varphi}\varphi^{n+1}\leq \log_{\varphi}a$.

De esta última desigualdad, obtenemos

$$n \leq \log_{\varphi} a = \frac{\log_{10} a}{\log_{10} \varphi} \approx 4.7851..(\log_{10} a) < 5\log_{10} a \leq 5N.$$

(Teorema de LAMÉ, 1844).