Homework 4

MAD4204

Carson Mulvey

- 1. For P a finite poset, let J(P) be the set of ideals in P and A(P) be the set of antichains.
 - (a) Find #J(P) and #A(P) for a chain. For an antichain.
 - (b) Find #J(P) and #A(P) for B_3 .
 - (c) Must #J(P) = #A(P)? Why or why not? Explain.

Solution.

- (a) For chain P, each element generates a unique ideal. Conversely, all ideals in P can be traced to a unique maximum element. Thus, including the empty ideal, #J(P) = #P + 1. Also, all pairs of elements are comparable, so only singleton antichains exist (plus the empty antichain). Thus #A(P) = #P + 1.
 For an antichain P, all pairs of elements are incomparable, so any subset of P is another antichain. Since no element is strictly less than another, all subsets of P are also ideals. Conversely, ideals and antichains of P must be subsets of P. Thus #J(P) = #A(P) = 2^{#P}.
- (b) For $P = B_3$, we look at antichains $\{\{1\}, \{2\}, \{3\}\}\}$ and $\{\{1,2\}, \{2,3\}, \{3,1\}\}\}$, each of which have 8 antichain subsets. Since the empty set is counted twice, this gives 15 antichains. Besides this, we have $\{\emptyset\}$, $\{\{1,2,3\}\}$, $\{\{1\}, \{2,3\}\}$, $\{\{2\}, \{3,1\}\}$, and $\{\{3\}, \{1,2\}\}$, for a total of #A(P) = 20. All ideals come from extending these antichains to include all subsets of its elements, so #J(P) = 20.
- (c) Yes, #J(P) = #A(P) must hold! We will describe a process that creates a bijection between ideals and antichains.

For any ideal $I \subseteq P$, denote \tilde{I} as the set of maximal elements of I. We note that for any pair $x, y \in \tilde{I}$, x and y are incomparable, since either x > y or y > x would make one of x and y not maximal. Thus \tilde{I} is an antichain.

Conversely, let A be an antichain. Define \tilde{A} to be the set where $x \in \tilde{A}$ if $x \leq a$ for some $a \in A$. If $y \leq x$, then by transitivity, $y \leq a$ for some $a \in A$, so $y \in \tilde{A}$. This makes \tilde{A} an ideal by definition.

- 2. (a) For P a poset with n elements, prove P contains a chain with at least \sqrt{n} elements or an antichain with at least \sqrt{n} elements.
 - (b) Prove Hall's theorem using Dilworth's theorem.

Solution.

(a) Let poset P have no antichain with at least \sqrt{n} elements. Then let the width of P be $a < \sqrt{n}$. By Dilworth's Theorem, the number of elements in a minimal chain cover is also a. Then by the Pigeonhole Principle, at least one chain in any chain cover must contain at least $\lceil n/a \rceil$ elements. But since $a < \sqrt{n}$, we have

$$\lceil n/a \rceil \ge \lceil \sqrt{n} \rceil$$

$$\ge \sqrt{n}.$$

4. Let M(n,k) be the multiset consisting of k copies of each element in [n]. Let P(n,k) be the poset on submultisets of M(n,k) ordered by containment, e.g.

$$\{\{1,1,4\}\}\subseteq \{\{1,1,1,3,3,4,5,5\}\}$$
 but $\{\{1,1,4\}\}\not\subseteq \{\{1,3,3,4,4\}\}.$

Find a general formula for $\mu_{P(n,k)}(x,y)$, and explain how it relates to Example 16.20.

Solution. We know that a|b iff for any prime p, the exponent of p in the prime factorization in a is less than or equal to that of b. Thus, taking the number of copies of some i in a multiset as the power of prime p_i in an integer, we have a mapping between P(n,k) and $(\mathbb{N},|)$, where n,k are arbitrarily large as needed. Thus, $\mu_{P(n,k)}(x,y)=(-1)^n$ if there is exactly 1 more copy of each element in p than that in p, and p and p otherwise.