Homework #7

Fall 2015

Nikhil Unni

1. Let F denote the additive group of continuous functions from \mathbb{R} to \mathbb{R} .

(a) Let $\phi: F \to \mathbb{R}$ be defined by $f \to \int_0^1 f(x) dx$ for all $f \in F$. Prove that ϕ is a group homomorphism.

$$f, g \in F$$

$$\phi(f+g) \stackrel{?}{=} \phi(f) + \phi(g)$$

$$\int_{0}^{1} (f+g)(x)dx \stackrel{?}{=} \int_{0}^{1} f(x)dx + \int_{0}^{1} g(x)dx$$

$$\int_{0}^{1} (f(x) + g(x))dx \stackrel{?}{=} \int_{0}^{1} f(x)dx + \int_{0}^{1} g(x)dx$$

$$\int_{0}^{1} f(x)dx + \int_{0}^{1} g(x)dx = \int_{0}^{1} f(x)dx + \int_{0}^{1} g(x)dx$$

(b) Find the kernel K of ϕ .

K is the set of all continuous functions where the integral from 0 to 1 equals 0. Algebraically, from the Fundamental Theorem of Calculus, this is the set of functions f with antiderivative F, where F(1) = F(0). Geometrically, this is the set of functions where the average value between 0 and 1 is 0 (like $sin(2\pi x)$, or 2x - 1).

(c) Describe the coset x+K of the kernel, with both algebraic and geometric descriptions. Is there a "nicer" representative of this coset?

It is the set of functions where the integral from 0 to 1 equals some constant, c. This means the average value from 0 to 1 is c. This can be represented as : $\{f_c|\int_0^1 f_c dx = c, f_c \in F, c \in \mathbb{R}\}$

(d) Note that the cosets of K are in bijection with \mathbb{R} . Does Lagrange's Theorem apply here? Explain very briefly.

1

Nikhil Unni 2

Because the cosets of K form the quotient group of $G/ker(\phi)$, and since ϕ is a surjective function, by the Fundamental Homomorphism Theorem $\mathbb R$ is isomorphic to $G/ker(\phi)$, meaning the mapping is bijective. Lagrange's Theorem does not help us here because it can only speak of cardinalities for infinite sets.

2. (a) Suppose G is a finite group of order m. Prove that $g^m = e$ for all $g \in G$.

From Lagrange's Theorem, we know that the order of any $\langle g \rangle$ (let's call it x), for some $g \in G$ divides m. Meaning that xy = m, for some $y \in \mathbb{Z}$. Then:

$$g^m = g^{x+y} = (g^x)^y = e^y = e$$

(b) Suppose G is a finite group, and $N \subseteq G$. If there are k cosets of N in G, prove that $g^k \in N$ for all $g \in G$.

Because N is a normal subgroup, the set of cosets becomes the quotient group G/N of order k, where (aN)(bN) = (ab)N for the binary operation, and eN = N is the identity. From part (a), we know that for any quotient group, q, $q^k = N$.

By the definition of the binary operation, this means for any element g:

$$(gN)^k = N$$
$$(g^k N) = eN$$
$$g^k = e$$

- 3. This problem will deal with the group $G = D_4 \times S_3$.
 - (a) How many elements of each order do the groups D_4 and S_4 have? Using this info, determine how many elements of each order G has.

For D_4 :	
Order Number	Count
1	1
2	5
4	2

For S_3 :

Order Number	Count
1	1
2	3
3	2

3

For G :	
Order Number	Count
1	1
2	29
3	2
4	2
6	10
12	4

(b) Find all subgroups of G that are isomorphic to $Z_2 \times Z_2$. Be sure to explain why you have found all of them.

All sets are of the form $\{(e,()),ds\}$ for all $d\in\{r^2,s,rs,r^2s,r^3s\}$, and $s\in\{(1,2),(2,3),(1,3)\}$. All of those elements in d and s are their own inverse in their respective group. So paired with the group's inverse, they become isomorphic to Z_2 .