Macaron/Tonus retreat presentation

Mesh-based methods and physically informed learning

Authors: LECOURTIER Frédérique

Supervisors: DUPREZ Michel FRANCK Emmanuel LLERAS Vanessa

February 6-7, 2024

Introduction

Scientific context

Context: Create real-time digital twins of an organ (such as the liver).

 ϕ -**FEM Method**: New fictitious domain finite element method.

- ightharpoonup domain given by a level-set function \Rightarrow don't require a mesh fitting the boundary
- → allow to work on complex geometries
- → ensure geometric quality

Practical case: Real-time simulation, shape optimization...

Objective

Current Objective : Develop hybrid finite element / neural network methods.

Evolution:

- Geometry : 2D, simple, fixed (as circle, ellipse..) $\,
 ightarrow\,$ 3D / complex / variable
- PDE : simple, static (Poisson problem) $\, o \,$ complex / dynamic (elasticity, hyper-elasticity)
- Neural Network : simple and defined everywhere (PINNs) $\,
 ightarrow\,$ Neural Operator

Problem considered

Elliptic problem with Dirichlet conditions:

Find $u: \Omega \to \mathbb{R}^d (d=1,2,3)$ such that

$$\begin{cases} L(u) = -\nabla \cdot (A(x)\nabla u(x)) + c(x)u(x) = f(x) & \text{in } \Omega, \\ u(x) = g(x) & \text{on } \partial \Omega \end{cases} \tag{1}$$

with A a definite positive coercivity condition and c a scalar. We consider Δ the Laplace operator, Ω a smooth bounded open set and Γ its boundary.

Weak formulation:

Find
$$u \in V$$
 such that $a(u, v) = I(v) \forall v \in V$

with

$$a(u,v) = \int_{\Omega} (A(x)\nabla u(x)) \cdot \nabla v(x) + c(x)u(x)v(x) dx$$

$$I(v) = \int_{\Omega} f(x)v(x) dx$$

Remark: For simplicity, we will not consider 1st order terms.

Numerical methods

Objective: Show that the philosophy behind most ofd the methods are the same.

Mesh-based methods // Physically informed learning

Numerical methods: Discrete an infinite-dimensional problem (unknown = function) and solve it in a finite-dimensional space (unknown = vector).

- Encoding: we encode the problem in a finite-dimensional space
- Approximation: solve the problem in finite-dimensional space
- Decoding: bring the solution back into infinite dimensional space

Encoding	Approximation	Decoding
$f \rightarrow \theta_f$	$\theta_f \to \theta_u$	$\theta_u \rightarrow u_{\theta}$

Mesh-based methods

Encoding/Decoding Approximation

Mesh-based methods

Encoding/Decoding

Encoding/Decoding-FEMs

• **Decoding :** Linear combination of piecewise polynomial function φ_i .

$$u_{\theta}(x) = \mathcal{D}_{\theta_u}(x) = \sum_{i=1}^{N} (\theta_u)_i \varphi_i$$

- \Rightarrow linear decoding \Rightarrow approximation space V_N = vectorial space
- \Rightarrow existence and uniqueness of the orthogonal projector
- **Encoding :** Orthogonal projection on vector space $V_N = \textit{Vect}\{\varphi_1, \dots, \varphi_N\}$.

$$\theta_f = E(f) = M^{-1}b(f)$$

with
$$M_{ij} = \int_{\Omega} \varphi_i(x) \varphi_j(x)$$
 and $b_i(f) = \int_{\Omega} \varphi_i(x) f(x)$. Appendix 1

Mesh-based methods

Encoding/Decoding
Approximation

Approximation

Idea: Project a certain form of the equation onto the vector space V_N . We introduce the residual of the equation defined by

$$R(v) = R_{in}(v) \mathbb{1}_{\Omega} + R_{bc}(v) \mathbb{1}_{\partial\Omega}$$

with

$$R_{in}(v) = L(v) - f$$
 and $R_{bc}(v) = v - g$

which respectively define the residues inside Ω and on the boundary $\partial\Omega.$

Discretization: Degrees of freedom problem (which also has a unique solution)

$$u = \arg\min_{v \in V_N} J(v) \longrightarrow \theta_u = \arg\min_{\theta \in \mathbb{R}^N} J(\theta)$$

with J a functional to minimize.

Variants: Depends on the problem form used for projection.

Spatial PDE

Problem - Energetic form Galerkin projection

Any type of PDE

Problem - Least-square form Galerkin Least-square projection

Energetic form

Minimization Problem:

$$u_{\theta}(x) = \arg\min_{v \in V_N} J(v), \qquad J(v) = J_{in}(v) + J_{bc}(v)$$
 (2)

with

$$J_{in}(\mathbf{v}) = rac{1}{2} \int_{\Omega} \mathcal{L}(\mathbf{v}) \mathbf{v} - \int_{\Omega} \mathbf{f} \mathbf{v} \quad ext{ and } \quad J_{bc}(\mathbf{v}) = rac{1}{2} \int_{\Omega} \mathcal{R}_{bc}(\mathbf{v})^2$$

Remark: This form of the problem is due to the Lax-Milgram theorem as a is symmetrical.

Minimization Problem (2)
$$\Leftrightarrow$$
 PDE (1):
$$\nabla_{v} J(v) = R(v)$$
 Appendix 2

$$\begin{array}{ll} u_{\theta} \operatorname{sol} & \Leftrightarrow \nabla_{u_{\theta}} J(u_{\theta}) = 0 \Leftrightarrow \begin{cases} R_{ln}(u_{\theta}) = 0 \text{ in } \Omega \\ u_{\theta} = g \text{ on } \partial \Omega \end{cases} \Leftrightarrow \begin{array}{ll} u_{\theta} \operatorname{sol} \\ \text{of (1)} \end{cases}$$

Min pb

PDE

Galerkin Projection

Discrete minimization Problem:

$$\theta_{u} = \arg\min_{\theta \in \mathbb{R}^{N}} J(\theta), \qquad J(\theta) = J_{in}(\theta) = \frac{1}{2} \int_{\Omega} L(v_{\theta}) v_{\theta} - \int_{\Omega} f v_{\theta}$$
 (3)

Remark : In practice, boundary conditions can be imposed in different ways. We are therefore only interested in the minimization problem in Ω .

Galerkin projection: Consists in resolving

Galerkin Projection (4) \Leftrightarrow PDE (1):

$$\langle R_{in}(u_{\theta}(x)), \varphi_i \rangle_{L^2} = 0, \quad \forall i \in \{1, \dots, N\}$$
 (4)

$$\nabla_{\theta} J(\theta) = \left(\int_{\Omega} R_{in}(v_{\theta}) \varphi_{i} \right)_{i=1,...,N} \qquad \text{Appendix 3}$$

$$\begin{matrix} u_{\theta} \text{ sol} \\ \text{of (1)} \end{matrix} \Leftrightarrow \begin{matrix} u_{\theta} \text{ sol} \\ \text{of (2)} \end{matrix} \Leftrightarrow \begin{matrix} u_{\theta} \text{ sol} \\ \text{of (3)} \end{matrix} \Leftrightarrow \nabla_{\theta} J(\theta) = 0 \Leftrightarrow \begin{matrix} u_{\theta} \text{ sol} \\ \text{of (4)} \end{matrix}$$

$$\begin{matrix} \text{PDE} \end{matrix}$$

$$\begin{matrix} \text{Min pb} \end{matrix}$$

$$\begin{matrix} \text{Discrete} \\ \text{min pb} \end{matrix}$$

$$\begin{matrix} \text{Discrete} \\ \text{min pb} \end{matrix}$$

$$\begin{matrix} \text{projection} \end{matrix}$$

Least-Square form

Minimization Problem:

$$u_{\theta}(x) = \arg\min_{v \in V_N} J(v), \qquad J(v) = J_{in}(v) + J_{bc}(v)$$
 (5)

with

$$J_{in}(v) = rac{1}{2} \int_{\Omega} R_{in}(v)^2$$
 and $J_{bc}(v) = rac{1}{2} \int_{\Omega} R_{bc}(v)^2$

Remark: This form of the problem is due to the Lax-Milgram theorem as a is symmetrical.

$$\begin{array}{ll} \text{Minimization Problem (5)} \Leftrightarrow \text{PDE (1):} \\ \nabla_{v} J(v) = L(R(v)) \mathbb{1}_{\Omega} + (v-g) \mathbb{1}_{\partial \Omega} & \text{Appendix 4} \\ \\ u_{\theta} \text{ sol} \\ \text{of (5)} & \Leftrightarrow \nabla_{u_{\theta}} J(u_{\theta}) = 0 \ \Leftrightarrow \begin{cases} L(R(u_{\theta})) = 0 \text{ in } \Omega \\ R(u_{\theta}) = 0 \text{ on } \partial \Omega \end{cases} \Leftrightarrow R(u_{\theta}) = 0 \ \Leftrightarrow \begin{cases} u_{\theta} \text{ sol of (1)} \\ R(u_{\theta}) = 0 \text{ on } \partial \Omega \end{cases} \\ \\ \text{PDE} \end{array}$$

A modifier!

Least-Square Galerkin Projection

Discrete minimization Problem:

$$\theta_{u} = \arg\min_{\theta \in \mathbb{R}^{N}} J(\theta), \quad J(\theta) = J_{in}(\theta) = \frac{1}{2} \int_{\Omega} (L(v_{\theta}) - f)^{2}$$
 (6)

Remark : In practice, boundary conditions can be imposed in different ways. We are therefore only interested in the minimization problem in Ω .

Galerkin projection: Consists in resolving

Least-Square Galerkin Projection (7) \Leftrightarrow PDE (1):

$$\langle R_{in}(u_{\theta}(x)), (\nabla_{\theta}R_{in}(u_{\theta}(x)))_i \rangle_{L^2} = 0, \quad \forall i \in \{1, \dots, N\}$$
 (7)

$$\nabla_{\theta} J(\theta) = \left(\int_{\Omega} L(R_{in}(v_{\theta})) \varphi_{i}\right)_{i=1,...,N} \qquad \text{Appendix 5}$$

$$\begin{array}{c} u_{\theta} \text{ sol} \\ \text{of (1)} \end{array} \Leftrightarrow \begin{array}{c} u_{\theta} \text{ sol} \\ \text{of (5)} \end{array} \Leftrightarrow \begin{array}{c} u_{\theta} \text{ sol} \\ \text{of (6)} \end{array} \Leftrightarrow \nabla_{\theta} J(\theta) = 0 \Leftrightarrow \begin{array}{c} u_{\theta} \text{ sol} \\ \text{of (7)} \end{array}$$

$$\text{PDE} \qquad \begin{array}{c} \text{Discrete} \\ \text{min pb} \end{array} \qquad \begin{array}{c} \text{LS Galerkin} \\ \text{projection} \end{array}$$

Steps Decomposition - FEMs

Encoding	Арр	Decoding	
$f o heta_f$	$ heta_f o heta_u$		$\theta_u \rightarrow u_{ heta}$
0 (6)	Galerkin	LS Galerkin	$u_{\theta}(x) = \mathcal{D}_{\theta}(x)$
$\theta_f = \mathcal{E}(f) \\ = M^{-1}b(f)$	$\langle R(u_{\theta}), \varphi_i \rangle_{L^2} = 0$	$\langle R(u_{\theta}), (\nabla_{\theta}R(u_{\theta}))_i \rangle_{L^2} = 0$	$=\sum_{i=1}^{N}(\theta_{u})_{i}\varphi_{i}$
20)	$A\theta_u = B$		i=1

Example: Galerkin projection.

For
$$i \in \{1, \dots, N\}$$
,

$$\langle R(u_{\theta}), \varphi_{i} \rangle_{L^{2}} = 0$$

$$\iff \int_{\Omega} L(u_{\theta}) \varphi_{i} = \int_{\Omega} f \varphi_{i}$$

$$\iff \sum_{j=1}^{N} (\theta_{u})_{j} \int_{\Omega} \varphi_{i} L(\varphi_{j}) = \int_{\Omega} f \varphi_{i}$$

$$A\theta_u=B \text{ with }$$

$$A_{i,j}=\int_\Omega \varphi_i L(\varphi_j) \quad , \quad B_i=\int_\Omega f\varphi_i$$

Physically Informed Learning

Encoding/Decoding Approximation

Physically Informed Learning

Encoding/Decoding

Approximation

Encoding/Decoding - NNs

• **Decoding**: Implicit neural representation.

$$u_{\theta}(x) = \mathcal{D}_{\theta_u}(x) = u_{NN}(x)$$

with u_{NN} a neural network (for example a MLP).

- \Rightarrow non-linear decoding \Rightarrow approximation space V_N = finite-dimensional variety
- ⇒ there is no unique projector
- Encoding: Optimization process.

$$\theta_f = E(f) = \arg\min_{\theta \in \mathbb{R}^N} \int_{\Omega} ||f_{\theta}(x) - f(x)||^2 dx f(x) \frac{\mathsf{d}f}{\mathsf{d}}$$

Non-Linear Decoder

Advantages:

- We gain in the richness of the approximation
- · We can hope to significantly reduce the number of degrees of freedom
- · This avoids the need to use meshes.

polynomial models \Rightarrow local precision

⇒ use meshes

NN models

⇒ global precision

 \Rightarrow no need to use meshes

Physically Informed Learning

Encoding/Decoding

Approximation

Approximation

Idea: Project a certain form of the equation onto the variety \mathcal{M}_N .

Discretization: Degrees of freedom problem (no mesh).

$$u = \arg\min_{v \in \mathcal{M}_N} J(v) \longrightarrow \theta_u = \arg\min_{\theta \in \mathbb{R}^N} J(\theta)$$

with J a functional to minimize.

Variants: Depends on the problem form used for projection.

Spatial PDE

Problem - Energetic form

Deep-Ritz

(Galerkin projection)

Any type of PDE

Problem - Least-square form Standard PINNs (Galerkin Least-square projection)

Discrete minimization Problem : Considering the energetic form of our PDE, our discrete problem is

$$\theta_{u} = \arg\min_{\theta \in \mathbb{R}^{N}} J_{in}(\theta) + J_{bc}(\theta)$$
 (8)

with

$$J_{in}(heta) = rac{1}{2} \int_{\Omega} \mathit{L}(\mathsf{v}_{ heta}) \mathsf{v}_{ heta} - \int_{\Omega} \mathit{fv}_{ heta} \quad ext{ and } \quad \mathit{J}_{bc}(heta) = rac{1}{2} \int_{\Omega} (\mathsf{v}_{ heta} - \mathsf{g})^2$$

Monte-Carlo method : Discretize the cost function by random process.

• $(\mathbf{x}_1,\ldots,\mathbf{x}_n)$ randomly drawn according to $\mu(\mathbf{x})$ defined on Ω

$$J_{in}(\theta) = \frac{1}{2n} \sum_{i=1}^{n} L(v_{\theta}(x_i)) v_{\theta}(x_i) - \frac{1}{n} \sum_{i=1}^{n} f(x_i) v_{\theta}(x_i)$$

• (y_1,\ldots,y_{n_b}) randomly drawn according to $\mu_b(x)$ defined on $\partial\Omega$

$$J_{bc}(\theta) = \frac{1}{2n_b} \sum_{i=1}^{n_b} (v_{\theta}(y_i) - g(y_i))^2$$

Discrete minimization Problem: Considering the least-square form of our PDE, our discrete problem is

$$\theta_{u} = \arg\min_{\theta \in \mathbb{R}^{N}} J_{in}(\theta) + J_{bc}(\theta)$$
(9)

with

$$J_{\mathit{in}}(\theta) = rac{1}{2} \int_{\Omega} (\mathit{L}(\mathit{v}_{ heta}) - \mathit{f})^2 \quad ext{ and } \quad J_{\mathit{bc}}(\theta) = rac{1}{2} \int_{\Omega} (\mathit{v}_{ heta} - \mathit{g})^2$$

Monte-Carlo method: Discretize the cost function by random process.

• (x_1, \ldots, x_n) randomly drawn according to $\mu(x)$ defined on Ω

$$J_{in}(\theta) = \frac{1}{2n} \sum_{i=1}^{n} (L(v_{\theta}(x_i)) - f(x_i)))^2$$

• (y_1, \ldots, y_{n_b}) randomly drawn according to $\mu_b(x)$ defined on $\partial\Omega$

$$J_{bc}(\theta) = \frac{1}{2n_b} \sum_{i=1}^{n_b} (v_{\theta}(y_i) - g(y_i))^2$$

In practice...

- → Two different random generation processes (to have enough boundary points)
- → Weights in front of the cost functions still need to be determined
- → Use regular model, derivable several times (and automatic differentiation)
- → Activation functions regular enough to be derived 2 times (due to the Laplacian) ⇒ Tangent Hyperbolic rather than ReLU
 - (or adaptive methods where we parameterize the activation functions)
- → Stochastic gradient descent method (by mini-batch) ADAM method (Appendix 6

To go further:

- \rightarrow Standard PINNs: possibility of adding a J_{data} cost function
 - \rightarrow to approximate already known solutions
- → Impose boundary conditions using a LevelSet function

Steps Decomposition - NNs

Encoding	Encoding Approximation	
$f o heta_f$	$ heta_f o heta_u$	$\theta_u \rightarrow u_{\theta}$

Mesh-based Methods					
$ heta_{\it f} = \mathcal{E}(\it f)$	Galerkin	LS Galerkin	$u_{\theta}(x) = \mathcal{D}_{\theta}(x)$		
$= M^{-1}b(f)$	$\langle R(u_{\theta}), \varphi_i \rangle = 0$	$\langle R(u_{\theta}), (\nabla_{\theta} R(u_{\theta}))_i \rangle = 0$	$=\sum_{i=1}^{N}(heta_{u})_{i}arphi_{i}$		
= W b()	$A\theta_u = B$		$= \sum_{i=1}^{\infty} (\partial_u)_i \varphi_i$		

Physically informed learning					
C	Deep-Ritz	Standard PINNs			
$ heta_f = \min_{ heta \in \mathbb{R}^N} \int_{\Omega} f_{ heta} - f ^2$	Energetic Form	LS Form	$u_{\theta}(x) = u_{NN}(x)$		
0 (22 0 32	$ heta_u = \operatorname{argmin}_{\theta \in \mathbb{R}^N} J(\theta)$				

Our hybrid method

ϕ -FEM Method

Main ideas:

• Domain defined by a LevelSet Function ϕ .

- Mesh of a fictitious domain containing $\Omega.$

$$u_{\theta}(x) = \mathcal{D}_{\theta_{w}}(x) = \phi(x) \sum_{i=1}^{N} (\theta_{w})_{i} \varphi_{i} + g(x)$$

Impose exact BC in PINNs

A compléter!

Correct PINNs prediction with ϕ FEM

A compléter!

Conclusion

Conclusion

A compléter!

Bibliography

Bibliography

Mesh-based methods

Appendix 1: Encoding - FEMs

We want to project f onto the vector subspace V_N so that $f_\theta = p_{V_N}(f)$ then $\forall i \in \{1, \dots, N\}$, we have

$$\langle f_{\theta} - f, \varphi_{i} \rangle = 0$$

$$\iff \langle f_{\theta}, \varphi_{i} \rangle = \langle f, \varphi_{i} \rangle$$

$$\iff \sum_{j=1}^{N} (\theta_{f})_{j} \langle \varphi_{j}, \varphi_{i} \rangle = \langle f, \varphi_{i} \rangle$$

$$\iff M\theta_{f} = b(f)$$

$$\iff \theta_{f} = M^{-1}b(f)$$

with

$$M_{ij} = \langle \varphi_i, \varphi_j \rangle = \int_{\Omega} \varphi_i(x) \varphi_j(x) dx$$
 $b_i(f) = \langle f, \varphi_i \rangle = \int_{\Omega} f(x) \varphi_i(x) dx$

Appendix 2: Energetic form I

Let's compute the gradient of / with respect to v with

$$J(\mathbf{v}) = J_{in}(\mathbf{v}) + J_{bc}(\mathbf{v}) = \left(\frac{1}{2} \int_{\Omega} L(\mathbf{v}) \mathbf{v} - \int_{\Omega} f \mathbf{v}\right) + \left(\frac{1}{2} \int_{\Omega} R_{bc}(\mathbf{v})^2\right)$$

• First, let's calculate the differential of I_{in} with respect to v.

$$J_{in}(v + \epsilon h) = \frac{1}{2} \int_{\Omega} (A\nabla(v + \epsilon h)) \cdot \nabla(v + \epsilon h) + c(v + \epsilon h)^{2} - \int_{\Omega} f(v + \epsilon h)$$

By bilinearity of the scalar product and by symmetry of A, we finally obtain

$$\mathcal{D}J_{in}(v)\cdot h = \lim_{\epsilon \to 0} \frac{J_{in}(v+\epsilon h) - J_{in}(v)}{\epsilon} = \int_{\Omega} (-\nabla \cdot (A\nabla v) + cv - f)h$$

And thus

$$\nabla_{\mathbf{v}} J_{in}(\mathbf{v}) = L(\mathbf{v}) - f = R_{in}(\mathbf{v})$$

Appendix 2: Energetic form II

• In the same way, we can compute the differential of J_{bc} with respect to v.

$$J_{bc}(v+\epsilon h)=rac{1}{2}\int_{\Omega}v^2+2\epsilon vh+\epsilon^2h^2-2vg-2\epsilon hg+g^2$$

Then

$$\mathcal{D}J_{bc}(v) \cdot h = \lim_{\epsilon \to 0} \frac{J_{bc}(v + \epsilon h) - J_{bc}(v)}{\epsilon} = \int_{\Omega} v^2 - hg$$

And thus

$$\nabla_{v} J_{bc}(v) = (v - g) = R_{bc}(v)$$

$$abla_{v} J(v) =
abla_{v} J_{i}(v) +
abla_{v} J_{bc}(v) = R(v)$$

Appendix 3: Galerkin Projection

Let's compute the gradient of I with respect to θ with

$$J(\theta) = J_{in}(\theta) = \frac{1}{2} \int_{\Omega} L(u_{\theta}) v_{\theta} - \int_{\Omega} f v_{\theta}$$

First, we define

$$v_{\theta} = \sum_{i=1}^{N} \theta_{i} \varphi_{i} = \theta \cdot \varphi$$
 and $v_{\theta + \epsilon h} = (\theta + \epsilon h) \cdot \varphi = v_{\theta} + \epsilon v_{h}$

Then since A is symmetric

$$\mathcal{D}J(\theta) \cdot h = \int_{\Omega} R(v_{\theta}) v_{h} = \sum_{i=1}^{N} h_{i} \int_{\Omega} R(v_{\theta}) \varphi_{i}$$

$$\nabla_{\theta} J(\theta) = \left(\int_{\Omega} R(\mathbf{v}_{\theta}) \varphi_{i} \right)_{i=1,\dots,N}$$

Appendix 4: Least-Square form I

Let's compute the gradient of / with respect to v with

$$J(v) = J_{in}(v) + J_{bc}(v) = \left(\frac{1}{2} \int_{\Omega} R_{in}(v)^2\right) = \left(\frac{1}{2} \int_{\Omega} R_{bc}(v)^2\right)$$

First, let's calculate the differential of J_{in} with respect to v.

$$\mathcal{D}J_{in}(v) \cdot h = \langle \nabla \cdot (A\nabla h), \nabla \cdot (A\nabla v) - cv + f \rangle + \langle ch, -\nabla \cdot (A\nabla v) + cv - f \rangle$$

$$= -\langle \nabla \cdot (A\nabla h), R_{in}(v) \rangle + \langle ch, R_{in}(v) \rangle$$

$$= \langle -\nabla \cdot (A\nabla R_{in}(v)) + cR_{in}(v), h \rangle$$

$$= \langle L(R_{in}(v)), h \rangle$$

And thus

$$\nabla_{\mathbf{v}} J_{in}(\mathbf{v}) = L(R_{in}(\mathbf{v}))$$

Appendix 4: Least-Square form II

• In the same way, we can compute the differential of J_{bc} with respect to v.

$$J_{b\epsilon}(\textit{v}+\epsilon\textit{h}) = rac{1}{2}\int_{\Omega} \textit{v}^2 + 2\epsilon\textit{v}\textit{h} + \epsilon^2\textit{h}^2 - 2\textit{v}\textit{g} - 2\epsilon\textit{h}\textit{g} + \emph{g}^2$$

Then

$$\mathcal{D}J_{bc}(v) \cdot h = \lim_{\epsilon \to 0} \frac{J_{bc}(v + \epsilon h) - J_{bc}(v)}{\epsilon} = \int_{\Omega} v^2 - hg$$

And thus

$$\nabla_{v} J_{bc}(v) = (v - g) = R_{bc}(v)$$

$$\nabla_{\mathbf{v}} J(\mathbf{v}) = L(\mathbf{R}(\mathbf{v})) \mathbb{1}_{\Omega} + (\mathbf{v} - \mathbf{g}) \mathbb{1}_{\partial \Omega}$$

Appendix 5: LS Galerkin Projection

Let's compute the gradient of I with respect to θ with

$$J(\theta) = J_{in}(\theta) = \frac{1}{2} \int_{\Omega} (L(u_{\theta}) - f)^2$$

First, we define

$$v_{\theta} = \sum_{i=1}^{N} \theta_{i} \varphi_{i} = \theta \cdot \varphi$$
 and $v_{\theta + \epsilon h} = (\theta + \epsilon h) \cdot \varphi = v_{\theta} + \epsilon v_{h}$

Then since A is symmetric

$$\mathcal{D}J(\theta) \cdot h = \int_{\Omega} L(R(\nu_{\theta})) \nu_{h} = \sum_{i=1}^{N} h_{i} \int_{\Omega} L(R(\nu_{\theta})) \varphi_{i}$$

$$\nabla_{\theta} J(\theta) = \left(\int_{\Omega} L(R(v_{\theta})) \varphi_i \right)_{i=1,\dots,N}$$

Physically Informed Learning

Appendix 6: ADAM Method

Adam = Adaptive Moment Estimation" - combine les idées du moment et de RMSProp.

1:
$$m \leftarrow \frac{\beta_1 m + (1 - \beta_1) \nabla f_x}{1 - \beta_1^T}$$

$$2: \qquad \mathbf{s} \leftarrow \frac{\beta_2 \mathbf{s} + (1 - \beta_2) \nabla^2 f_{\mathbf{x}}}{1 - \beta_2^{\mathsf{T}}}$$

$$3: \qquad x \leftarrow x - \ell \frac{m}{\sqrt{s + \epsilon}}$$

with

- T the number of iteration (starting at 1)
- ϵ a smoothing paramete
- $\beta_i \in]0,1[$ which convergence quickly to 0.

Our hybrid method

Appendix 7 : $\phi ext{-FEM Method}$

Our hybrid method

Appendix 7 : ϕ -FEM Method

Appendix 7: Problem

Let $u = \phi w + g$ such that

$$\begin{cases} -\Delta u = f, \text{ in } \Omega, \\ u = g, \text{ on } \Gamma, \end{cases}$$

where ϕ is the level-set function and Ω and Γ are given by :

The level-set function ϕ is supposed to be known on \mathbb{R}^d and sufficiently smooth. For instance, the signed distance to Γ is a good candidate.

Remark: Thanks to ϕ and g, the conditions on the boundary are respected.

Appendix 7: Fictitious domain

- \rightarrow ϕ_h : approximation of ϕ
- ightharpoonup $\Gamma_{\it h}=\{\phi_{\it h}=0\}$: approximate boundary of Γ
- $\rightarrow \Omega_h$: computational mesh
- $\rightarrow \partial \Omega_h$: boundary of Ω_h ($\partial \Omega_h \neq \Gamma_h$)

Remark : n_{vert} will denote the number of vertices in each direction for ${\cal O}$

Appendix 7: Facets and Cells sets

- $\rightarrow \mathcal{T}_h^{\Gamma}$: mesh elements cut by Γ_h
- $\rightarrow \mathcal{F}_h^{\Gamma}$: collects the interior facets of \mathcal{T}_h^{Γ} (either cut by Γ_h or belonging to a cut mesh element)

Appendix 7: Poisson problem

Approach Problem : Find $w_h \in V_h^{(k)}$ such that

$$a_h(w_h, v_h) = I_h(v_h) \quad \forall v_h \in V_h^{(k)}$$

where

$$a_h(w, v) = \int_{\Omega_h} \nabla(\phi_h w) \cdot \nabla(\phi_h v) - \int_{\partial\Omega_h} \frac{\partial}{\partial n} (\phi_h w) \phi_h v + \boxed{G_h(w, v)},$$
 $I_h(v) = \int_{\Omega} f \phi_h v + \boxed{G_h^{rhs}(v)}$ Stabilization terms

and

$$V_h^{(k)} = \left\{ v_h \in H^1(\Omega_h) : v_{h|_{\mathcal{T}}} \in \mathbb{P}_k(\mathcal{T}), \ \forall \mathcal{T} \in \mathcal{T}_h \right\}.$$

For the non homogeneous case, we replace

$$u = \phi w \rightarrow u = \phi w + g$$

by supposing that g is currently given over the entire Ω_h .

Appendix 7: Stabilization terms

Independent parameter of h Jump on the interface E
$$G_h(w,v) = \begin{bmatrix} \sigma h \sum_{E \in \mathcal{F}_h^{\Gamma}} \int_{\mathcal{E}} \left[\frac{\partial}{\partial n} (\phi_h w) \right] \left[\frac{\partial}{\partial n} (\phi_h v) \right] + \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} \int_{\mathcal{T}} \Delta(\phi_h w) \Delta(\phi_h v) \\ I^{\text{st}} \text{ order term} \\ G_h^{\text{rhs}}(v) = \begin{bmatrix} -\sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} \int_{\mathcal{T}} f \Delta(\phi_h v) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} \int_{\mathcal{T}} (\Delta(\phi_h w) + f) \Delta(\phi_h v) \end{bmatrix}$$

<u>1st term</u>: ensure continuity of the solution by penalizing gradient jumps.

→ Ghost penalty [Burman, 2010]

<u>2nd term</u>: require the solution to verify the strong form on Ω_h^{Γ} .

Purpose:

- → reduce the errors created by the "fictitious" boundary
- → ensure the correct condition number of the finite element matrix
- → restore the coercivity of the bilinear scheme

