UNIVERSITY OF BUEA

FACULTY OF ENGINEERING AND TECHNOLOGY

LEVEL 400 ELECTRICAL ENGINEERING AND COMPUTER ENGINEERING

Continuous Assessment

February 2014

Course Title: Feedback Systems

Course Code: EEF 409

Course Instructor: Professor Tanyi Emmanuel

Time: 2 Hours

Tables of Laplace Transforms are allowed

Question 1

Routh formulated necessary and sufficient conditions for the **Absolute Stability** of a system, but did not address the problem of **Relative Stability**: If stable, how stable?.

The Nyquist Criterion addresses the twin-problem of Absolute and Relative Stability.

- a) Use the Routh Criterion to analyze the stability of a system with characteristic equation $q(s) = s^4 + 3s^3 + 6s^2 + 12s + K$
 - i) For K=8
 - ii) For K=10
- b) Use the Routh Criterion to analyze the stability of a system with characteristic equation $q(s) = s^5 + s^4 + 4s^3 + 4s^2 + 2s + 1$
- c) Apply the Nyquist Criterion to determine the Value of the Gain $K=K_{\max}$ for which the system with Open-loop Transfer Function $L(s)=\frac{K}{(1+s)(1+2s)(1+10s)}$ is marginally stable.

For
$$K = \frac{K_{\text{max}}}{2}$$
, calculate:

- i) The Gain Margin
- ii) The Phase Margin

Question 2

A system is described by the Open-loop Transfer Function $L(s) = \frac{10(1+s)}{s(1+0.1s)(1+0.01s)}$

- Represent the Frequency Response on a Bode Diagram.
 Calculate the Phase Margin from the Bode Diagram.
- b) Represent the Frequency Response on a Polar Diagram.
 Calculate the Gain Margin from the Polar Diagram

Question 3

A system is described by the closed-loop Transfer Function $W(s) = \frac{100}{s^2 + 4s + 100}$

A unit step input is applied to the system. Calculate:

- a) The output, y(t).
- b) The Peak Response (Maximum Response), $\,M_{p}\,$
- c) The time-to-peak (time taken to reach the maximum response), T_{p}
- d) $y(T_p + T)$, where T is the period of the damped oscillation
- e) The ratio $\frac{a_1}{a_2}$, where a_1 and a_2 are the first and second overshoots respectively
- f) The steady-state error to the unit step input