Doxygen_TP_SAC_MELIN

Generated by Doxygen 1.9.5

Chapter 1

Module Index

1.1 Modules

Here is a list of all modules:

MSIS	??
Stm32g4xx_system	??
STM32G4xx_System_Private_Includes	??
STM32G4xx_System_Private_TypesDefinitions	??
STM32G4xx_System_Private_Defines	??
STM32G4xx_System_Private_Macros	??
STM32G4xx_System_Private_Variables	??
STM32G4xx_System_Private_FunctionPrototypes	??
STM32G4xx System Private Functions	??

2 Module Index

Chapter 2

File Index

2.1 File List

Here is a list of all documented files with brief descriptions:

adc.c		
	This file provides code for the configuration of the ADC instances	??
dma.c		
	This file provides code for the configuration of all the requested memory to memory DMA trans-	
	fers	??
gpio.c		
	This file provides code for the configuration of all used GPIO pins	??
main.c		
	: Main program body	??
pi.c		
-100	Ce fichier sert à implémenter le correcteur PI mais il n'est pas terminé	??
stm32g4	xx_hal_msp.c	22
otm20a4	This file provides code for the MSP Initialization and de-Initialization codes	"
stm32g4	-	22
syscalls.	Interrupt Service Routines	"
systalis.	STM32CubeIDE Minimal System calls file	22
sysmem		• •
Зузіпсіп	STM32CubeIDE System Memory calls file	22
system	stm32g4xx.c	• •
	CMSIS Cortex-M4 Device Peripheral Access Layer System Source File	??
tim.c		
	This file provides code for the configuration of the TIM instances	??
usart.c	·	
	This file provides code for the configuration of the USART instances	??

File Index

Chapter 3

Module Documentation

3.1 CMSIS

Modules

• Stm32g4xx_system

3.1.1 Detailed Description

3.2 Stm32g4xx_system

Modules

- STM32G4xx_System_Private_Includes
- STM32G4xx_System_Private_TypesDefinitions
- STM32G4xx_System_Private_Defines
- STM32G4xx_System_Private_Macros
- STM32G4xx_System_Private_Variables
- STM32G4xx_System_Private_FunctionPrototypes
- STM32G4xx_System_Private_Functions

3.2.1 Detailed Description

3.3 STM32G4xx_System_Private_Includes

Macros

- #define HSE_VALUE 24000000U
- #define HSI_VALUE 16000000U

6 Module Documentation

3.3.1 Detailed Description

3.3.2 Macro Definition Documentation

3.3.2.1 HSE_VALUE

#define HSE_VALUE 24000000U

Value of the External oscillator in Hz

3.3.2.2 HSI_VALUE

#define HSI_VALUE 16000000U

Value of the Internal oscillator in Hz

- 3.4 STM32G4xx_System_Private_TypesDefinitions
- 3.5 STM32G4xx System Private Defines
- 3.6 STM32G4xx System Private Macros
- 3.7 STM32G4xx System Private Variables

Variables

- uint32 t SystemCoreClock = HSI VALUE
- const uint8_t AHBPrescTable [16] = {0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 1U, 2U, 3U, 4U, 6U, 7U, 8U, 9U}
- const uint8_t **APBPrescTable** [8] = {0U, 0U, 0U, 0U, 1U, 2U, 3U, 4U}
- 3.7.1 Detailed Description
- 3.8 STM32G4xx_System_Private_FunctionPrototypes
- 3.9 STM32G4xx System Private Functions

Functions

void SystemInit (void)

Setup the microcontroller system.

void SystemCoreClockUpdate (void)

Update SystemCoreClock variable according to Clock Register Values. The SystemCoreClock variable contains the core clock (HCLK), it can be used by the user application to setup the SysTick timer or configure other parameters.

3.9.1 Detailed Description

3.9.2 Function Documentation

3.9.2.1 SystemCoreClockUpdate()

```
\begin{tabular}{ll} \beg
```

Update SystemCoreClock variable according to Clock Register Values. The SystemCoreClock variable contains the core clock (HCLK), it can be used by the user application to setup the SysTick timer or configure other parameters.

Note

Each time the core clock (HCLK) changes, this function must be called to update SystemCoreClock variable value. Otherwise, any configuration based on this variable will be incorrect.

- The system frequency computed by this function is not the real frequency in the chip. It is calculated based on the predefined constant and the selected clock source:
- If SYSCLK source is HSI, SystemCoreClock will contain the HSI_VALUE(**)
- If SYSCLK source is HSE, SystemCoreClock will contain the HSE_VALUE(***)
- If SYSCLK source is PLL, SystemCoreClock will contain the HSE_VALUE(***) or HSI_VALUE(*) multiplied/divided by the PLL factors.

(**) HSI_VALUE is a constant defined in stm32g4xx_hal.h file (default value 16 MHz) but the real value may vary depending on the variations in voltage and temperature.

(***) HSE_VALUE is a constant defined in stm32g4xx_hal.h file (default value 24 MHz), user has to ensure that HSE_VALUE is same as the real frequency of the crystal used. Otherwise, this function may have wrong result.

· The result of this function could be not correct when using fractional value for HSE crystal.

Parameters None Return values None

3.9.2.2 SystemInit()

void SystemInit (

8 Module Documentation

void)

Setup the microcontroller system.

Parameters

None

Return values

None

Chapter 4

File Documentation

4.1 adc.c File Reference

This file provides code for the configuration of the ADC instances.

```
#include "adc.h"
```

Functions

- void MX_ADC1_Init (void)
- void HAL_ADC_MspInit (ADC_HandleTypeDef *adcHandle)
- void HAL_ADC_MspDeInit (ADC_HandleTypeDef *adcHandle)

Variables

- ADC_HandleTypeDef hadc1
- DMA HandleTypeDef hdma_adc1

4.1.1 Detailed Description

This file provides code for the configuration of the ADC instances.

Attention

Copyright (c) 2022 STMicroelectronics. All rights reserved.

4.1.2 Function Documentation

4.1.2.1 HAL_ADC_MspDeInit()

ADC1 GPIO Configuration PA0 ----> ADC1_IN1

4.1.2.2 HAL_ADC_MspInit()

Initializes the peripherals clocks

ADC1 GPIO Configuration PA0 ----> ADC1_IN1

4.1.2.3 MX_ADC1_Init()

```
void MX_ADC1_Init (
     void )
```

Common config

Configure the ADC multi-mode

Configure Regular Channel

4.2 dma.c File Reference

This file provides code for the configuration of all the requested memory to memory DMA transfers.

```
#include "dma.h"
```

Functions

• void MX_DMA_Init (void)

4.2.1 Detailed Description

This file provides code for the configuration of all the requested memory to memory DMA transfers.

Attention

Copyright (c) 2022 STMicroelectronics. All rights reserved.

This software is licensed under terms that can be found in the LICENSE file in the root directory of this software component. If no LICENSE file comes with this software, it is provided AS-IS.

4.2.2 Function Documentation

4.2.2.1 MX DMA Init()

Enable DMA controller clock

4.3 gpio.c File Reference

This file provides code for the configuration of all used GPIO pins.

```
#include "gpio.h"
```

Functions

void MX_GPIO_Init (void)

4.3.1 Detailed Description

This file provides code for the configuration of all used GPIO pins.

Attention

Copyright (c) 2022 STMicroelectronics. All rights reserved.

4.3.2 Function Documentation

4.3.2.1 MX_GPIO_Init()

```
void MX_GPIO_Init (
     void )
```

Configure pins as Analog Input Output EVENT_OUT EXTI

4.4 main.c File Reference

: Main program body

```
#include "main.h"
#include "adc.h"
#include "dma.h"
#include "tim.h"
#include "usart.h"
#include "gpio.h"
#include "stdio.h"
#include "string.h"
#include "stdlib.h"
```

Macros

- #define UART_TX_BUFFER_SIZE 64
- #define UART_RX_BUFFER_SIZE 1
- #define CMD BUFFER SIZE 64
- #define MAX ARGS 9
- #define ASCII_LF 0x0A
- #define ASCII CR 0x0D
- #define ASCII_DEL 0x7F
- #define ENCOD_MOITIE 4294967295/2
- #define MAX_ARR 626
- #define alpha_50 313

Functions

void SystemClock_Config (void)

System Clock Configuration.

• int main (void)

The application entry point.

- void HAL_UART_RxCpltCallback (UART_HandleTypeDef *huart)
- void HAL_ADC_ConvCpltCallback (ADC_HandleTypeDef *hadc)

Cette fonction permet d'effectuer une mesure de courant en utilisant la fonction Callback de l'ADC.

void HAL_GPIO_EXTI_Callback (uint16_t GPIO_Pin)

Cette fonction permet de gérer l'affichage des variables grâce à un appui sur le bouton bleu.

void Error_Handler (void)

This function is executed in case of error occurrence.

4.4 main.c File Reference 13

Variables

- uint8_t prompt [] ="user@Nucleo-STM32G431>>"
- uint8_t started []
- uint8 t **newline** [] ="\r\n"
- uint8_t cmdNotFound [] ="Command not found\r\n"
- uint32_t uartRxReceived
- uint8_t uartRxBuffer [UART_RX_BUFFER_SIZE]
- uint8_t uartTxBuffer [UART_TX_BUFFER_SIZE]
- int adcDmaFlag
- · int affichage
- uint32_t position
- uint16_t adcBuffer [2]
- int it_Tim1
- int it2_Tim1
- float retour_courant

4.4.1 Detailed Description

: Main program body

Attention

Copyright (c) 2022 STMicroelectronics. All rights reserved.

This software is licensed under terms that can be found in the LICENSE file in the root directory of this software component. If no LICENSE file comes with this software, it is provided AS-IS.

4.4.2 Function Documentation

4.4.2.1 Error_Handler()

This function is executed in case of error occurrence.

Return values

4.4.2.2 HAL_ADC_ConvCpltCallback()

```
void HAL_ADC_ConvCpltCallback ( \label{eq:ADC_HandleTypeDef} ADC\_HandleTypeDef * hadc \ )
```

Cette fonction permet d'effectuer une mesure de courant en utilisant la fonction Callback de l'ADC.

Return values

4.4.2.3 HAL_GPIO_EXTI_Callback()

Cette fonction permet de gérer l'affichage des variables grâce à un appui sur le bouton bleu.

Return values

none

4.4.2.4 main()

```
int main (
     void )
```

The application entry point.

Return values

4.4.2.5 SystemClock_Config()

```
void SystemClock_Config (
     void )
```

System Clock Configuration.

4.5 pi.c File Reference

Return values

None	
------	--

Configure the main internal regulator output voltage

Initializes the RCC Oscillators according to the specified parameters in the RCC_OscInitTypeDef structure.

Initializes the CPU, AHB and APB buses clocks

4.4.3 Variable Documentation

4.4.3.1 started

```
uint8_t started[]
```

Initial value:

```
"\r\n*----*"
"\r\n| Welcome on Nucleo-STM32G431 |"
"\r\n*----*"
"\r\n"
```

4.5 pi.c File Reference

Ce fichier sert à implémenter le correcteur PI mais il n'est pas terminé.

```
#include "pi.h"
```

Macros

- #define Kp 1
- #define Ki 0.1
- #define **Te_courant** 0.0000625

Functions

void Asserv_courant (float commande)

Variables

- float retour_courant
- · float erreur

4.5.1 Detailed Description

Ce fichier sert à implémenter le correcteur PI mais il n'est pas terminé.

4.6 stm32g4xx_hal_msp.c File Reference

This file provides code for the MSP Initialization and de-Initialization codes.

```
#include "main.h"
```

Functions

```
• void HAL_MspInit (void)
```

4.6.1 Detailed Description

This file provides code for the MSP Initialization and de-Initialization codes.

Attention

Copyright (c) 2022 STMicroelectronics. All rights reserved.

This software is licensed under terms that can be found in the LICENSE file in the root directory of this software component. If no LICENSE file comes with this software, it is provided AS-IS.

4.6.2 Function Documentation

4.6.2.1 HAL_MspInit()

```
void HAL_MspInit (
     void )
```

Initializes the Global MSP. Disable the internal Pull-Up in Dead Battery pins of UCPD peripheral

4.7 stm32g4xx_it.c File Reference

Interrupt Service Routines.

```
#include "main.h"
#include "stm32g4xx_it.h"
```

Functions

· void NMI_Handler (void)

This function handles Non maskable interrupt.

void HardFault_Handler (void)

This function handles Hard fault interrupt.

void MemManage_Handler (void)

This function handles Memory management fault.

void BusFault_Handler (void)

This function handles Prefetch fault, memory access fault.

void UsageFault_Handler (void)

This function handles Undefined instruction or illegal state.

void SVC Handler (void)

This function handles System service call via SWI instruction.

void DebugMon_Handler (void)

This function handles Debug monitor.

void PendSV_Handler (void)

This function handles Pendable request for system service.

void SysTick_Handler (void)

This function handles System tick timer.

void DMA1_Channel1_IRQHandler (void)

This function handles DMA1 channel1 global interrupt.

• void TIM1 UP TIM16 IRQHandler (void)

This function handles TIM1 update interrupt and TIM16 global interrupt.

void USART2_IRQHandler (void)

This function handles USART2 global interrupt / USART2 wake-up interrupt through EXTI line 26.

void EXTI15_10_IRQHandler (void)

This function handles EXTI line[15:10] interrupts.

Variables

- int **i** =0
- int it_Tim1
- int it2 Tim1
- DMA_HandleTypeDef hdma_adc1
- TIM_HandleTypeDef htim1
- UART_HandleTypeDef huart2

4.7.1 Detailed Description

Interrupt Service Routines.

Attention

Copyright (c) 2022 STMicroelectronics. All rights reserved.

4.8 syscalls.c File Reference

STM32CubeIDE Minimal System calls file.

```
#include <sys/stat.h>
#include <stdlib.h>
#include <errno.h>
#include <stdio.h>
#include <signal.h>
#include <time.h>
#include <sys/time.h>
#include <sys/times.h>
```

Functions

```
• int __io_putchar (int ch) __attribute__((weak))
```

- int __io_getchar (void)
- · void initialise monitor handles ()
- int **_getpid** (void)
- int _kill (int pid, int sig)
- void _exit (int status)
- __attribute__ ((weak))
- int _close (int file)
- int fstat (int file, struct stat *st)
- int isatty (int file)
- int _lseek (int file, int ptr, int dir)
- int _open (char *path, int flags,...)
- int _wait (int *status)
- int _unlink (char *name)
- int _times (struct tms *buf)
- int _stat (char *file, struct stat *st)
- int _link (char *old, char *new)
- int _fork (void)
- int _execve (char *name, char **argv, char **env)

Variables

• char ** environ = __env

4.8.1 Detailed Description

STM32CubeIDE Minimal System calls file.

Author

Auto-generated by STM32CubeIDE

```
For more information about which c-functions need which of these lowlevel functions please consult the Newlib libc-manual
```

Attention

Copyright (c) 2022 STMicroelectronics. All rights reserved.

4.9 sysmem.c File Reference

STM32CubeIDE System Memory calls file.

```
#include <errno.h>
#include <stdint.h>
```

Functions

```
    void * _sbrk (ptrdiff_t incr)
    _sbrk() allocates memory to the newlib heap and is used by malloc and others from the C library
```

4.9.1 Detailed Description

STM32CubeIDE System Memory calls file.

Author

Generated by STM32CubeIDE

```
For more information about which C functions need which of these lowlevel functions please consult the newlib libc manual
```

Attention

Copyright (c) 2022 STMicroelectronics. All rights reserved.

This software is licensed under terms that can be found in the LICENSE file in the root directory of this software component. If no LICENSE file comes with this software, it is provided AS-IS.

4.9.2 Function Documentation

4.9.2.1 _sbrk()

_sbrk() allocates memory to the newlib heap and is used by malloc and others from the C library

This implementation starts allocating at the '_end' linker symbol The '_Min_Stack_Size' linker symbol reserves a memory for the MSP stack The implementation considers '_estack' linker symbol to be RAM end NOTE: If the MSP stack, at any point during execution, grows larger than the reserved size, please increase the '_Min_Stack_Size'.

Parameters

incr Memory size

Returns

Pointer to allocated memory

4.10 system stm32g4xx.c File Reference

CMSIS Cortex-M4 Device Peripheral Access Layer System Source File.

```
#include "stm32g4xx.h"
```

Macros

- #define HSE_VALUE 24000000U
- #define HSI_VALUE 16000000U

Functions

· void SystemInit (void)

Setup the microcontroller system.

void SystemCoreClockUpdate (void)

Update SystemCoreClock variable according to Clock Register Values. The SystemCoreClock variable contains the core clock (HCLK), it can be used by the user application to setup the SysTick timer or configure other parameters.

Variables

- uint32_t SystemCoreClock = HSI_VALUE
- const uint8_t **AHBPrescTable** [16] = $\{0U, 0U, 0U, 0U, 0U, 0U, 0U, 1U, 2U, 3U, 4U, 6U, 7U, 8U, 9U\}$
- const uint8_t **APBPrescTable** [8] = {0U, 0U, 0U, 0U, 1U, 2U, 3U, 4U}

4.10.1 Detailed Description

CMSIS Cortex-M4 Device Peripheral Access Layer System Source File.

Author

MCD Application Team

This file provides two functions and one global variable to be called from user application:

- SystemInit(): This function is called at startup just after reset and before branch to main program. This call is made inside the "startup_stm32g4xx.s" file.
- SystemCoreClock variable: Contains the core clock (HCLK), it can be used by the user application to setup the SysTick timer or configure other parameters.
- SystemCoreClockUpdate(): Updates the variable SystemCoreClock and must be called whenever the core clock is changed during program execution.

After each device reset the HSI (16 MHz) is used as system clock source. Then SystemInit() function is called, in "startup_stm32g4xx.s" file, to configure the system clock before to branch to main program.

4.11 tim.c File Reference 21

4.10.2 This file configures the system clock as follows:

```
4.10.2.1 System Clock source | HSI
4.10.2.2 SYSCLK(Hz) | 16000000
4.10.2.3 HCLK(Hz) | 16000000
4.10.2.4 AHB Prescaler | 1
4.10.2.5 APB1 Prescaler | 1
4.10.2.6 APB2 Prescaler | 1
4.10.2.7 PLL_M | 1
4.10.2.8 PLL_N | 16
4.10.2.9 PLL P 7
4.10.2.10 PLL_Q | 2
4.10.2.11 PLL_R | 2
4.10.2.12 Require 48MHz for RNG | Disabled
```

Attention

Copyright (c) 2019 STMicroelectronics. All rights reserved.

This software is licensed under terms that can be found in the LICENSE file in the root directory of this software component. If no LICENSE file comes with this software, it is provided AS-IS.

4.11 tim.c File Reference

This file provides code for the configuration of the TIM instances.

#include "tim.h"

Functions

- · void MX_TIM1_Init (void)
- void MX_TIM2_Init (void)
- void HAL_TIM_Base_MspInit (TIM_HandleTypeDef *tim_baseHandle)
- void HAL_TIM_Encoder_MspInit (TIM_HandleTypeDef *tim_encoderHandle)
- void HAL_TIM_MspPostInit (TIM_HandleTypeDef *timHandle)
- void HAL TIM Base MspDeInit (TIM HandleTypeDef *tim baseHandle)
- void HAL TIM Encoder MspDeInit (TIM HandleTypeDef *tim encoderHandle)

Variables

- TIM HandleTypeDef htim1
- TIM_HandleTypeDef htim2

4.11.1 Detailed Description

This file provides code for the configuration of the TIM instances.

Attention

Copyright (c) 2022 STMicroelectronics. All rights reserved.

This software is licensed under terms that can be found in the LICENSE file in the root directory of this software component. If no LICENSE file comes with this software, it is provided AS-IS.

4.11.2 Function Documentation

4.11.2.1 HAL_TIM_Encoder_MspDeInit()

4.11.2.2 HAL_TIM_Encoder_MspInit()

4.11.2.3 HAL_TIM_MspPostInit()

4.12 usart.c File Reference

This file provides code for the configuration of the USART instances.

```
#include "usart.h"
```

Functions

- void MX_USART2_UART_Init (void)
- void HAL_UART_MspInit (UART_HandleTypeDef *uartHandle)
- void HAL_UART_MspDeInit (UART_HandleTypeDef *uartHandle)

Variables

UART HandleTypeDef huart2

4.12.1 Detailed Description

This file provides code for the configuration of the USART instances.

Attention

Copyright (c) 2022 STMicroelectronics. All rights reserved.

4.12 usart.c File Reference 23

4.12.2 Function Documentation

4.12.2.1 HAL_UART_MspDeInit()

4.12.2.2 HAL_UART_MspInit()