Cours

Charles Vin

Date

0.1 Modéliser un problème

- 1. Les variables qui interviennent
- 2. La fonction objectif
- 3. Les contraintes
- 4. Résumer le tout correctement sous un problème d'optimisation (P)

0.2 Résoudre un problème

Pour un problème sous forme standard on a

A =la matrice du système de contraintes

B =la matrice des constantes à droite des contraintes

 $f^T = \text{matrice de la fonction à optimiser}$

- 1. Résolution graphique?
- 2. Max de sommet : $\binom{q}{n-p}$ avec n nombre de variable, p nombre de contraintes d'égalité, q nombre de contraintes d'inégalités.
- 3. Mettre sous forme standard
- 4. Trouver toutes les bases possibles
- 5. Pour chaque base:
 - Vérifier si c'est réalisable : $\det A \neq 0 \Leftrightarrow \exists A^{-1}$ puis il faut que $X(B_i) = A^{-1}b > 0$
 - dégénéré ou non dégénéré : si une des variables de la base = 0 (invalide la résolution du système plus tard)
 - Correspond au sommet: $(0,0,[X(B_i)],0,0,\ldots)$
- 6. Trouver la solution optimale parmi les bases réalisables : Il faut que

$$C^{H_i} = f_{H_i}^T - f_{B_i}^T (A^{B_i})^{-1} A^{H_i} \ge 0.$$

0.2.1 Autre méthode pas encore trop compris

— Trouver $X(B_i)$ avec

$$\begin{split} AX(B_i) &= b \Leftrightarrow \left(A^{B_i} \quad A^{H_i}\right) \begin{pmatrix} X_{B_i} \\ X_{H_i} \end{pmatrix} = b \\ &\Leftrightarrow X_{b_i}(\theta) = (A^{B_2})^{-1}b - (A^{B_i})^{-1}A^{H_i}X_{H_i}(\theta) \end{split}$$

- On se retrouve avec un vecteur dépendant de θ , il faut trouver les bornes de θ tel que
 - $X_{B_i} \le 0$ $X_{H_i} \le 0$
- Conclure sur les points admissibles