Section 5.4: Randomized rounding

In Section 5.3 we saw that biasing the prob. of setting each variable true resulted in a better approx. guarante.

The approximation ratio can be further improved by allowing a different bias for each variable We will dwelop on LP-familitian of the problem

For each clause, Ci, we define:

Then, C_j can be written as $\bigvee_{i \in P_j} x_i \vee \bigvee_{i \in N_i} \overline{x}_i$

Ex: $(X_{1} \vee X_{2} \vee X_{4} \vee X_{7}) \wedge \cdots$ $(X_{1} \vee X_{7}) \vee (\overline{X}_{2} \vee \overline{X}_{4}))$

If $y_i = 0$ (=) $X_i = F$ and $y_i = 1$ (=) $X_i = T$, then C_j is true, iff

Z y i + Z (1-yi) ≥ 1
 i ∈ P j

This leads to the Jollaning IP-formulation:

$$TP_{\Phi}$$
:

TPo:

max
$$\sum_{j=1}^{m} Z_{j} w_{j}$$

Subject to

 $\sum_{i \in P_{j}} y_{i} + \sum_{i \in N_{j}} (1-y_{i}) \geqslant Z_{j}$, $1 \le j \le m$
 $y_{i} \in d_{0}(1)$, $1 \le j \le m$
 $Z_{j} \in d_{0}(1)$, $1 \le j \le m$

Let LPo be the LP-relaxation of IPo, i.e.,

max
$$\sum_{j=1}^{m} Z_{j} w_{j}$$

Subject to
 $\sum_{i \in P_{j}} y_{i} + \sum_{i \in N_{j}} (1-y_{i}) \geqslant Z_{j}$, $|\leq_{j} \leq_{m}$
 $0 \leq y_{i} \leq 1$, $|\leq_{i} \leq_{m}$
 $0 \leq Z_{j} \leq 1$, $|\leq_{i} \leq_{m}$

Rand Rounding (ϕ)

$$(y^{2}, z^{2}) \leftarrow opt. sol. to LP_{\phi}$$

For $i \leftarrow 1$ to n
Set x_{i} true with prob. y_{i}^{2}

(i.e.,
$$\geq_{p_0}^* = \sum_{j=1}^m \geq_j^* \omega_j$$
)

The approx ratio of RandRounding is at least 1-te = 0.632. For proving this, we will use the Jollaning two facts:

Fact 5.8 (Arithmetic-geometric mean inequality):

For any
$$a_1, a_2, ..., a_k \ge 0$$
,

$$\left(\frac{\frac{k}{||}}{||} a_i\right)^{1/k} \le \frac{1}{k} \sum_{i=1}^{k} a_i$$

$$\frac{1}{||} a_i \le \left(\frac{1}{k} \sum_{i=1}^{k} a_i\right)^k$$

A function
$$\int$$
 is concave on an interval I , if $\int_{-\infty}^{\infty} (x) \leq 0$ for any $X \in I$. (the slope is nonincreasing)

Fact 5.9:

$$\iint \forall x \in [0,1] : \int (x) \gg (\int (1) - \int (0)) x + \int (0)$$

Theorem 5.10: Rand Rounding is a (1-te)-approx. alg

Proof:

For $1 \le j \le m$, let p_j be the probability that C_j is satisfied, and let $\overline{p_j} = 1 - p_j$.

Our goal is to show that $\rho_i > (1-\epsilon)z_i^t$. This will establish the approx factor, since $OPT = \sum_{i=1}^{m} z_i^t w_i^t$

$$\overline{\rho_i} = \overline{\prod_{i \in P_i}} \left(|-y_i^*| \right) \overline{\prod_{i \in N_i}} y_i^+$$

$$\leq \left(\frac{1}{\ell_i}\left(\sum_{i\in P_i}(1-y_i^*)+\sum_{i\in N_i}y_i^*\right)\right)^{\ell_i}$$
, by Fact S.8

$$= \left(\frac{1}{2}\left(|P_{j}| - \sum_{i \in P_{j}} y_{i}^{*} + \sum_{i \in N_{j}} \left(|-|+y_{i}^{*}|\right)\right)^{\frac{1}{2}}$$

$$= \left(\frac{1}{2}\left(|P_{j}| - \sum_{i \in P_{j}} y_{i}^{d} + |N_{j}| - \sum_{i \in N_{j}} (|-y_{i}^{+}|)\right)\right)^{d}$$

$$= \left(\left| -\frac{1}{k_i} \left(\sum_{i \in P_i} y_i^4 + \sum_{i \in N_i} \left(\left| -y_i^4 \right| \right) \right) \right)^{k_i}, \quad \text{Since } |P_i| + |N_i| = k_i$$

$$\leq \left(1 - \frac{z_1^+}{l_1^+}\right)^{l_1^+}$$
, since (\vec{y}^+, \vec{z}^+) is a solution to LP_{ϕ}

Thus, $\rho_{j} \gg |-\left(|-\frac{z_{j}^{*}}{l_{j}^{*}}\right)^{l_{j}^{*}} \equiv \int_{0}^{\infty} (z_{j}^{*})^{l_{j}^{*}}$

which is a concave function of z;

$$\int_{1}^{1} (z_{i}^{+}) = - \int_{1}^{1} (|-\frac{z_{i}^{+}}{l_{i}}|^{l_{i}^{-}} \cdot (-\frac{l_{i}^{+}}{l_{i}^{+}}) = (|-\frac{z_{i}^{+}}{l_{i}^{+}}|^{l_{i}^{-}})^{l_{i}^{-}} \\
\leq 0 \qquad \leq 0$$

Note that
$$\int (0) = |-(1 - \frac{0}{\lambda_{i}})^{k_{i}} = |-| = 0$$

$$\int (1) = |-(1 - \frac{1}{\lambda_{i}})^{k_{i}}$$
Thus,
$$\rho_{i} \geq \int (z_{i}^{k_{i}})$$

$$P_{i} \geqslant \int (z_{i}^{*})$$

$$\geqslant \left(\int (1) - \int (0)\right) z_{i}^{*} + \int (0), \text{ by fact 5.9}$$

$$\geqslant \left(1 - \left(1 - \frac{1}{l_{i}}\right)^{l_{i}}\right) z_{i}^{*}$$

Hence,
$$\begin{aligned}
& = \sum_{j=1}^{m} \rho_{j} w_{j} \\
& = \sum_{j=1}^{m} \left(\left| - \left(1 - \frac{1}{\epsilon_{j}} \right)^{\ell_{j}} \right) z_{j}^{*} w_{j} \\
& = \left(\left| - \frac{1}{\epsilon_{j}} \right| \cdot \sum_{j=1}^{m} z_{j}^{*} w_{j} \right)
\end{aligned}$$

Note that

Rand Rounding can be derandomized exactly like Rand and Randp

Section 5.5: Choosing the better of two solutions

Combining the alg.s of Sections 5.1 and 5.4 gives a better approx. factor than using any one of them separately. This is because they have different worst-case in pros:

Rand catisfies clause C_j with prob. $\rho_R = 1 - \left(\frac{1}{2}\right)^{l_j}$. Rand Rounding satisfies C_j with prob. $\rho_{RR} \gg \left(1 - \left(1 - \frac{1}{l_j}\right)^{l_j}\right) Z_j^*$. While ρ_R increases with l_j , the lower bound on ρ_{RR} decreases with l_j .

Best of Two (ϕ) $\overrightarrow{X}_R \leftarrow Rand(\phi)$ $\overrightarrow{X}_{RR} \leftarrow RandRaunding(\phi)$ If $\omega(\phi, \overrightarrow{X}_R) \ge \omega(\phi, \overrightarrow{X}_{RR})$ Return \overrightarrow{X}_R Else

Return \overrightarrow{X}_{RR}

Note that

Best Of Two is dvardomized by using the dvardomized vosions of Rand and Rand Randing.

Theorem 5.11: Best of Two is a 3/4-approx. alg.

 $\frac{\text{Proof:}}{\text{E[BestO]Two}(\varphi)]} = \text{E}\left[\max_{\varphi} \left\{ \text{Rand}(\varphi), \text{RandRaundiry}(\varphi) \right\} \right]$ $\geq \text{E}\left[\frac{1}{2} \text{Rand}(\varphi) + \frac{1}{2} \text{RandRaundiry}(\varphi) \right]$ $= \frac{1}{2} \text{E}\left[\text{Rand}(\varphi)\right] + \frac{1}{2} \text{E}\left[\text{RandRaundiry}(\varphi)\right], \text{ by lin. of exp.}$ $\geq \frac{1}{2} \sum_{j=1}^{m} (1 - 2^{-j}i) w_j + \frac{1}{2} \sum_{j=1}^{m} (1 - (1 - \frac{1}{k_j})^{k_j}) z_j^{+} w_j^{-}$ $\geq \sum_{j=1}^{m} z_j^{+} w_j^{-} \cdot \frac{1}{2} \left(1 - 2^{-k_j} + 1 - (1 - \frac{1}{k_j})^{k_j}\right), \text{ Since } z_j^{+} \leq 1.$

For
$$l_{j}=1$$
, $p_{j}=\frac{1}{2}\left(1-\frac{1}{2}+1-0\right)=\frac{3}{4}$
For $l_{j}=2$, $p_{j}=\frac{1}{2}\left(1-\frac{1}{4}+1-\left(1-\frac{1}{2}\right)^{2}\right)=\frac{3}{4}$
For $l_{j}>3$, $p_{j}>\frac{1}{2}\left(1-\frac{1}{8}+1-\frac{1}{6}\right)>\frac{3}{4}$
Hence,
 $E[BestOJTwo]>\sum_{j=1}^{m}Z_{j}^{*}w_{j}\cdot\frac{3}{4}>\frac{3}{4}\cdot OPT$