# Storytelling Case Study: Airbnb, NYC

By: Sanchit Kumar Behera, Potnuru Koushik, Nikitha R.

## Objective:

- Improve business strategies and estimate customer preferences to revive the business in the post-COVID period.
- Understand the critical pre-COVID period insights from the Airbnb NYC business.
- Make recommendations to various departments on how to prepare for postpandemic changes.

## Background

- Airbnb's revenue has been significantly reduced in recent months as a result of COVID-19.
- People have begun to travel more now that the restrictions are lifted.
- Airbnb wants to make sure that it is fully prepared for this range.

## Top 10 Hosts

- The host with the ID 219517861, named Sonder, holds the record for the highest number of bookings, with a total of 327.
- Following Sonder, the second most popular host is Blue Ground.
- In addition to Sonder and Blue Ground, other hosts such as Kara, Ken, Pranjal, Jeremy, and Mike also rank among the top 10 hosts.



## Popular Neighborhoods w.r.t Number of reviews

- Bedford-Stuyvesant, located in Brooklyn, holds the highest popularity with a total of 110,352 reviews, making it the most reviewed neighborhood. It is closely followed by Williamsburg.
- Among the neighborhoods in Manhattan, Harlem has received the highest number of reviews, indicating its popularity among customers. Hell's Kitchen follows closely behind in terms of review count.
- The larger number of customer reviews in these localities suggests a higher level of satisfaction among visitors and guests.



## Neighbourhood vs Availability

- Bedford is highly available and offers affordable prices, making it a favorable choice for customers.
- Similar to Bedford, Harlem also exhibits high availability and relatively lower prices, making it another good option for customers.
- Chelsea, on the other hand, has limited availability but comes with higher costs.
- In contrast, Williams has higher prices and average availability, indicating it may be more suitable for customers who prioritize budget over immediate availability.



## Price Analysis Neighbourhood wise

- Most of the outliers in Price column are for Brooklyn and Manhattan.
- Manhattan has the highest range of prices for the listings.
- Bronx is the cheapest of them all.
- We can see the median price of all neighborhood groups lying between \$80 to \$300.



## Average Price of Neighborhood Group

- The average price of listed properties in Manhattan is around 196.9, which is highest among all neighbourhoods.
- Average price for Brooklyn is second highest i.e. 124.4.
- Bronx seems to be an affordable neighbourhood as compared to others as the average price is <50% than Manhattan's average price.



## Neighborhood Group and Earning

- Manhattan has the highest average earning at \$3.3k
- While Bronx is at the lower end at approximately \$2k.
- The top 3 revenue generating areas are Manhattan, Brooklyn and Staten Island.



### Conclusion

- The host with the ID 219517861, named Sonder, holds the record for the highest number of bookings, with a total of 327.
- Bedford is highly available and offers affordable prices, making it a favorable choice for customers.
- Bronx seems to be an affordable neighbourhood as compared to others as the average price is <50% than Manhattan's average price.</li>
- The top 3 revenue generating areas are Manhattan, Brooklyn and Staten Island.

## Appendix : Methodology

#### AIRBNB Case Study

#### Methodology Document PPT 1:

In the case study we have used Jupiter notebook to perform initial analysis of the data and Tableau for data analysis and visualization.

Initial Analysis using Jupiter Notebook: Data Set Used: AB\_NYC\_2019.csv

Number of Rows: 48895 Number of Columns: 16

# Import the necessary (ibraries import warnings filterwarnings('ignore') import numny as np import pandas as pd import natplotlib.pyplot as plt watplotlib inline import seaborn as ans

# Data conversion and Understanding airbnb = pd.read\_csv("AB\_INVC\_2819.csv") airbnb.head(S)

#### id name host id host name neighbourhood group neighbourhood latitude longitude room type price minimum nights number of revis

|        |                                                          |      |            |          | Barren Barren Barren |          |           |                    |     |    |
|--------|----------------------------------------------------------|------|------------|----------|----------------------|----------|-----------|--------------------|-----|----|
| 0 2539 | Clean & quiet<br>apt home by the<br>park                 | 2787 | John       | Brooklyn | Kensington           | 40.64749 | -73,97237 | Private<br>reom    | 149 | t  |
| 1 2565 | Skylit Midtown<br>Castle                                 | 2845 | Jernifer   | Marhatan | Midown               | 40.75362 | -73.98377 | Entire<br>home/apt | 225 | £  |
| 2 3847 | THE VILLAGE<br>OF<br>HARLEM NEW<br>YORK I                | 4632 | Elisabeth  | Marhatan | Harlem               | 40.80902 | -73.94190 | Private<br>room    | 150 | 3  |
| 3 3831 | Cozy Entire<br>Floor of<br>Brownstone                    | 4869 | LisaRorame | Brooklyn | Cinton Hill          | 40.68514 | -73.95976 | Entire<br>home/apt | 89  | Í  |
| 4 5022 | Entire Apt<br>Specious<br>Studio Loft by<br>central park | 7192 | Laura      | Marhatan | East Harlem          | 49.79851 | -73.94399 | Entire<br>home/apt | 80  | 10 |
|        |                                                          |      |            |          |                      |          |           |                    |     | 1  |

```
# Check the rows and columns of the dataset
airthro. Shope

(ARBOS, 16)

• The dataset contains 48805 rows and 16 columns
• Now we have to check whether there are any missing values in the dataset

**Colcutating the missing values in the dotaset
airthro. Iswael().sus()

1d
0
name
10
bost_Id
0
bo
```

# Now we have the missing values, there are certain columns that are not efficient to the dataset airbob.drop(['id', 'name', 'last review'], axis = 1, inplace = True)

# View whether the columns are dropped airbnb.head(5)

#### id name host\_id host\_name neighbourhood\_group neighbourhood latitude longitude room\_type price minimum\_nights number\_of\_revie

| 0 | 2539 | Clean & quiet<br>apt home by the<br>park                 | 2787 | John        | Brooklyn  | Kensington   | 40.64749 | -73.97237        | Private            | 149 | 1  |   |
|---|------|----------------------------------------------------------|------|-------------|-----------|--------------|----------|------------------|--------------------|-----|----|---|
| 1 | 2595 | Skylit Midtown<br>Castle                                 | 2845 | Jenniler    | Manhattan | Midtown      | 40.75362 | -73,98377        | Entire<br>homelapt | 225 | 1  |   |
|   | 3647 | THE VILLAGE<br>OF<br>HARLEMNEW<br>YORK I                 | 4532 | Elisabeth   | Manhattan | Harlem       | 40.80902 | -73.94190        | Private room       | 150 | 3  |   |
|   | 3831 | Cozy Entire<br>Floor of<br>Brownstone                    | 4869 | LisaRoxanne | Brooklyn  | Clinton Hill | 40.68514 | -73.95976        | Entire<br>home/apt | 89  | 1  | ; |
| 4 | 5022 | Entire Apt<br>Spacious<br>Studio Loft by<br>central park | 7192 | Laura       | Manhatan  | East Harlem  | 40.79051 | <b>-73</b> 94399 | Entire<br>home/apt | 80  | 10 |   |

## Methodology- Contd.

#### Step 2: Data Wrangling:

- · Checked the Duplicate rows in our dataset and no duplicate data was found.
- Checked the Null Values in our dataset. Columns like name, host-name, last review and review-per-month have null values.
- We've dropped the column name as missing values are less and dropping it won't have significant impact on analysis.
- · Checked the formatting in our dataset.
- Identified and review outliers.

#### Data Analysis and Visualizations using Tableau:

We have used tableau to visualize the data for the assignment. Below are the detailed steps used for each visualization.

#### 1) Top 10 Host:

We identified the top 10 Host Ids, Host Name with count of Host Ids using the tree

#### 2) Preferred Room type with respect to Neighbourhood group:

- We created a pie chart for understanding the percentage of room type preferred wrt neighbourhood group
- We added Room Type to the colours Marks card to highlight the different Room Type in different colours and count of Host Id to the size.

#### 3) For Variance of price with Neighbourhood Groups:

- We used a box and whisker's plot with Neighbourhood Groups in Columns and Price in Rows
- We changed the Price from a Sum Measure to the median measure.

#### 4) Average price of Neighbourhood groups:

- We created a bubble chart with Neighbourhood Groups in Columns and Price column in Rows.
- •We added the Neighbourhood Groups to the colors Marks card to highlight the different neighbourhood Groups in different colors. Also Put Avg price in Label.

#### 5) Customer Booking w r t minimum nights:

 The bins were used to display the distribution of minimum nights based on the number of ids booked for each neighbourhood group.

#### 6) Popular Neighborhoods:

- We took neighbourhood in rows and sum of reviews in column and took neighbourhood groups in colour.
- . We used filter to show Top 20 neighbours as per the sum of reviews.

#### 7) Neighbourhood vs Availability:

 We created a dual axis chart using bar chart for availability 365 and line chart for price for top 10 neighbourhood group sorted by price.

#### 8) Price range preferred by Customers:

 We have taken pricing preference based on volume of bookings done in a price range and no of Ids to create a bar chart. We have created bin for Price column with interval of \$20.

#### 9) Understanding Price variation w.r.t Room Type & Neighbourhood:

- We created Highlights Table chat by taking Room Type in rows & Neighbourhood Group in column.
- We took the average price in colour Marks card to highlight the different Room Type in different colours

#### 10) Price variation w r t Geography:

 We used Geo location chart to plot neighbourhood, neighbourhood Group in map to show case the variation of prices across.

#### 11) Popular Neighborhoods:

- We took neighborhood in rows and sum of reviews in column and took neighborhood groups in color.
- . We used filter to show Top 20 neighbors as per the sum of reviews.

#### 12) Tools used:

- Data cleaning and preparation: Jupyter notebook Python
- · Visualization and analysis: Tableau
- Data Storytelling: Microsoft PPT