# 統計学

第2回 1変数データの記述と要約1

兵庫県立大学 社会情報科学部 山本 岳洋

t.yamamoto@sis.u-hyogo.ac.jp

## この資料の内容

- 1変数データの記述と要約
  - データとは
  - 種々の代表値
    - 平均,中央值,最頻值
  - 度数分布とヒストグラム

## この資料の内容

- 教科書「確率統計」
  - 2章1節

- 参考書「統計学入門」
  - 2章1節 2章2節 くらいまで

## 記述統計学

- 収集したデータを正しく、効率的に 把握するための手法
  - 例: 受講生の学部の内訳は?
  - 例: 受講生の 通勤時間の分布は?

| В            | c •           | <b>&gt;</b> 0 |     |
|--------------|---------------|---------------|-----|
| 学部について教えてくだ: | ノートPCをすでに持って  | 大学までの通学時間     | (分) |
| 社会情報科学部      | すでに持っている      |               | 20  |
| 社会情報科学部      | 学部でBYODが指定されて |               | 60  |
| 社会情報科学部      | すでに持っている      |               | 100 |
| 社会情報科学部      | すでに持っている      |               | 100 |
| 社会情報科学部      | 学部でBYODが指定されて |               | 90  |
| 社会情報科学部      | すでに持っている      |               | 20  |
| 社会情報科学部      | すでに持っている      |               | 80  |
| 社会情報科学部      | すでに持っている      |               | 20  |
| 社会情報科学部      | 学部でBYODが指定されて |               | 30  |
| 社会情報科学部      | 学部でBYODが指定されて |               | 30  |
| 社会情報科学部      | すでに持っている      |               | 60  |
| 社会情報科学部      | すでに持っている      |               | 60  |
| 社会情報科学部      | すでに持っている      |               | 90  |
| 社会情報科学部      | すでに持っている      |               | 120 |
| 社会情報科学部      | すでに持っている      |               | 20  |

## データの種類

- データは大きく2種類に分類される
- 質的データ
  - 名義尺度
  - 順序尺度

- 量的データ
  - 間隔尺度
  - 比例尺度

## 質的データ

- 名義尺度: 単なるラベル. 順序付けられないデータ
  - 学部:「社会情報科学部」「国際商経学部」
  - 性別:「男性」「女性」
- 順序尺度: 順序だけに意味があるデータ
  - 「知らない」<「知っている」<「とても知っている」
  - 「悪い」<「どちらとも言えない」<「良い」

- 両者とも足し算に意味がないようなデータ
  - 「知らない」 + 「知っている」という演算は×

## 量的データ

- 間隔尺度: 数の間隔に意味があるデータ
  - 温度(摂氏):「40°C」「100°C」
  - 時刻:「午後1時15分」「午後2時30分」
- 比例尺度: 数の比にも意味があるデータ
  - 通勤時間「40分」「130分」
  - 身長,体重など
- ○○倍大きい(小さい)と言えたらそれは比例尺度
- あるいは、0 (原点) が本当に「0」であれば比例尺度

#### 1変数データ(量的データ)の要約

#### 1変数データ = 扱うデータの種類が1種類のデータ

#### 学生50人の数学の成績

| 67 | 100 | 72  | 53 | 75 | 74 | 60 | 90 | 80 | 100 |
|----|-----|-----|----|----|----|----|----|----|-----|
| 68 | 100 | 78  | 98 | 76 | 72 | 73 | 71 | 73 | 86  |
| 82 | 65  | 80  | 75 | 70 | 84 | 70 | 96 | 56 | 86  |
| 91 | 85  | 87  | 79 | 51 | 82 | 53 | 71 | 79 | 100 |
| 91 | 72  | 100 | 84 | 79 | 63 | 94 | 51 | 64 | 96  |

## 代表值

- 収集したデータの特徴的な値を知りたい
  - 「今回のテストの**平均点**は・・・」
  - データの特徴を端的に表す値

#### ● 代表的な代表値

- 平均 (mean)
- 中央値(median, メディアン)
- 最頻値(mode, モード)
- 四分位数

#### 記号の説明

- $\vec{r} p: x_1, x_2, ..., x_n$ 
  - n: データの大きさ (個数)
    - 今回の例だと n=50
  - $-x_i$ :測定した個々のデータの値 (**観測値**ともいう)
    - $x_1 = 67$ 点,  $x_2 = 100$ 点,  $\dots$  ,  $x_n = 96$ 点

## 平均 (mean)

- いわゆる我々が知っている平均
  - 厳密にいうと,算術平均(相加平均)
- すべてのデータの値の合計を データの個数 n で割ったもの

平均 
$$\overline{\overline{x}} = \frac{1}{n}(x_1 + x_2 + \dots + x_n)$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$(\bar{x} \text{ はエックスバーと読む})$$

## 平均: 具体例

#### 50名の成績の平均 $\bar{x}$ は、

$$\bar{x} = \frac{1}{50}(67 + 100 + \dots + 96)$$

## 中央値 (median, メディアン)

- データを小さい方から順番に並べたときの、 真ん中に位置するデータの値
  - 平均とは異なる概念
- 簡単な具体例:

学生5人の英語成績を低い順に並べたもの



※ちなみにこの例の 平均は70点

## 中央値

#### 中央值

データの個数が n 個のとき,

- n+1 番目の値 n+1 番目の値
- -n が偶数: 小さい方から  $\frac{n}{2}$  と $\frac{n}{2}$  十 1 番目の値の平均

#### 学生50人の数学の成績を 値の小さい順に並べ替えた (ソートした)もの

| 51 | 51 | 53 | 53 | 56 | 60  | 63  | 64  | 65  | 67  |
|----|----|----|----|----|-----|-----|-----|-----|-----|
| 68 | 70 | 70 | 71 | 71 | 72  | 72  | 72  | 73  | 73  |
| 74 | 75 | 75 | 76 | 78 | 79  | 79  | 79  | 80  | 80  |
| 82 | 82 | 84 | 84 | 85 | 86  | 86  | 87  | 90  | 91  |
| 91 | 94 | 96 | 96 | 98 | 100 | 100 | 100 | 100 | 100 |

#### 中央值: 具体例

- 50名の成績の例だと, n = 50 (偶数)
   なので, 25番目の値(78点)と26番目の値(79点)の平均が中央値となる.
- $\bullet$  したがって、中央値は  $\frac{78+79}{2}$  = 78.5 点

## 最頻値 (mode, モード)

● データの中で出現回数が最も多い値

- 50名の成績の例だと
  - 100点をとった学生が5人と最も多いので, 最頻値は100点

#### 平均・中央値・最頻値の直感的理解

#### ● 平均

すべての学生の成績を合計して学生数で割った値

#### ● 中央値

- ちょうど「真ん中」の人が取った成績

#### ● 最頻値

- 最も多くの学生が取った成績

● これら3つの値は一致するとは限らない

### 平均と中央値

● 平均は、極端な値をとるデータに 大きく影響をうける



● 他の値から極端に小さかったり 大きかったりする値のことを 外れ値(outlier, 異常値)と言う

### 平均と中央値

- たとえば、前ページの例で100点の学生が 仮に75点だったとすると
  - 平均: 70点 → 65点 に変化
  - 中央値: 62点 → 62点 (変わらず)

● 中央値は、少々の外れ値に対しては あまり影響を受けない。このような性質を 頑健(robust、ロバスト)である、と呼ぶ

#### 平均と中央値が異なる例

● どのような種類のデータだと、平均と中央値が大きく異なるか?

- データの種類は?
- そのときの分布の形は?

#### 1変数データ(量的データ)の要約

#### 学生50人の数学の試験成績

| 67 | 100 | 72  | 53 | 75 | 74 | 60 | 90 | 80 | 100 |
|----|-----|-----|----|----|----|----|----|----|-----|
| 68 | 100 | 78  | 98 | 76 | 72 | 73 | 71 | 73 | 86  |
| 82 | 65  | 80  | 75 | 70 | 84 | 70 | 96 | 56 | 86  |
| 91 | 85  | 87  | 79 | 51 | 82 | 53 | 71 | 79 | 100 |
| 91 | 72  | 100 | 84 | 79 | 63 | 94 | 51 | 64 | 96  |

分布を把握したい

## 度数分布表

| <br>階級   | 階級値 |    |
|----------|-----|----|
| 51点~55点  | 53点 | 4  |
| 56点~60点  | 58点 | 2  |
| 61点~65点  | 62点 | 3  |
| 66点~70点  | 68点 | 4  |
| 71点~75点  | 73点 | 10 |
| 76点~80点  | 78点 | 7  |
| 81点 ~85点 | 83点 | 5  |
| 86点~90点  | 88点 | 4  |
| 91点~95点  | 93点 | 3  |
| 96点~100点 | 98点 | 8  |
| 合計       |     | 50 |

#### ● 階級

- データを分ける区間

#### ● 階級値

- 階級の代表的な値(後述)
- 度数分布表には記載しないこともある

#### ● 度数 (frequency)

その階級に属するデータの個数

### ヒストグラム

#### 度数分布表をグラフで表したもの

学生50名の試験成績分布



成績 (点)

## 相対度数

| <br>階級   | <br>階級値 | <br>度数 | <br>相対度数 |
|----------|---------|--------|----------|
| 51点~55点  | 53点     | 4      | 0.08     |
| 56点~60点  | 58点     | 2      | 0.04     |
| 61点~65点  | 62点     | 3      | 0.06     |
| 66点~70点  | 68点     | 4      | 0.08     |
| 71点~75点  | 73点     | 10     | 0.20     |
| 76点~80点  | 78点     | 7      | 0.14     |
| 81点 ~85点 | 83点     | 5      | 0.10     |
| 86点~90点  | 88点     | 4      | 0.08     |
| 91点~95点  | 93点     | 3      | 0.06     |
| 96点~100点 | 98点     | 8      | 0.16     |
| 合計       |         | 50     | 1.00     |

#### ● 相対度数

- 度数をデータの 個数で割ったもの
- 相対度数の合計は必ず1になる
- 相対度数 = その階級に 属するデータの割合
  - 個数が異なる他のデータとの比較時に便利
  - A中学 (50名) とB中学 (300名) の数学の成績を比較

## ヒストグラム (相対度数)

グラフのかたちは全く一緒になる 学生50名の試験成績分布



成績(点)

### 累積度数

|          | <b>アトドクワ /士</b> | <del>二</del> 半上 | 田住世光     |
|----------|-----------------|-----------------|----------|
| 階級<br>   | 階級値             |                 | 累積度数<br> |
| 51点~55点  | 53点             | 4               | 4        |
| 56点~60点  | 58点             | 2               | 6        |
| 61点~65点  | 62点             | 3               | 9        |
| 66点~70点  | 68点             | 4               | 13       |
| 71点~75点  | 73点             | 10              | 23       |
| 76点~80点  | 78点             | 7               | 30       |
| 81点 ~85点 | 83点             | 5               | 35       |
| 86点~90点  | 88点             | 4               | 39       |
| 91点~95点  | 93点             | 3               | 42       |
| 96点~100点 | 98点             | 8               | 50       |
| 合計       |                 | 50              |          |

#### ● 累積度数

- 度数を、下の階級から順に積み上げたときの累積和
- その階級までに属する データの数が分かる
  - 試験が75点以下の 学生数は23人
- 同様に、相対度数に 対する累積和は 累積相対度数

## 累積度数グラフ

#### 学生50名の試験成績分布 (累積度数)



成績 (点)

## 度数分布表と平均

| <br>階級   | 階級値 | <br>度数 |
|----------|-----|--------|
|          |     |        |
| 51点~55点  | 53点 | 4      |
| 56点~60点  | 58点 | 2      |
| 61点~65点  | 62点 | 3      |
| 66点~70点  | 68点 | 4      |
| 71点~75点  | 73点 | 10     |
| 76点~80点  | 78点 | 7      |
| 81点 ~85点 | 83点 | 5      |
| 86点~90点  | 88点 | 4      |
| 91点~95点  | 93点 | 3      |
| 96点~100点 | 98点 | 8      |
| 合計       |     | 50     |

● 度数分布表だけからでも、 (近似としての) 平均を 求めることができる

#### ● 階級値

- その階級内にデータがまんべんなく分布(一様に 分布)していると仮定したときの,データの平均
- その階級の下限値と上限 値の平均

## 度数分布表と平均

$$\frac{1}{50}$$
(53 ×4 + 58×2 + ··· + 98×8)

= 77.9点

本当の平均 (≒78.0点) と近い値が得られる

#### ● つまり、階級値とは

個々のデータの値は分からないので、とりあえず 中間の値にしておけば平均を求めるときに誤差は 少ないだろう、という考え

## 度数分布表と中央値

| 階級       | 階級値 | 度数 | 累積度数 |
|----------|-----|----|------|
| 51点~55点  | 53点 | 4  | 4    |
| 56点~60点  | 58点 | 2  | 6    |
| 61点~65点  | 62点 | 3  | 9    |
| 66点~70点  | 68点 | 4  | 13   |
| 71点~75点  | 73点 | 10 | 23   |
| 76点~80点  | 78点 | 7  | 30   |
| 81点 ~85点 | 83点 | 5  | 35   |
| 86点~90点  | 88点 | 4  | 39   |
| 91点~95点  | 93点 | 3  | 42   |
| 96点~100点 | 98点 | 8  | 50   |
| 合計       |     | 50 |      |

累積度数を求めれば、 中央値がどの階級に 属するかが分かる

- 中央値(24番目と 25番目の平均)
  - 度数分布表を見れば, 76点-80点の階級 にあることが分かる
    - 本当の中央値 = 78.5

#### この資料のまとめ

#### ● データの種類

- 質的データと量的データ
  - 平均を求めることができるのは・・・?

#### ● 代表値

- 平均,中央值,最頻值
- データの特性を客観的に記述

#### ● 度数分布表とヒストグラム

- データの分布を素早く把握するのに便利
- データを収集したら、まずは分布を確認

#### レポート課題その1 について

- 締切: 4月23日 (火) 講義開始時 (厳守)
- 手書き、パソコンで作成し印刷 どちらでもOK
- 配布した紙に直接手書きでもOK
  - スペースが十分ではないかもしれないので、 その場合は紙を適宜追加してください
  - なお,5月以降は紙では配付しない 予定です

#### レポート課題その1 について

- 紙が複数枚になる場合は,左上をホチキス留めしてください
- 表紙は必要ありません
- 学生番号・氏名を忘れないように

#### レポート課題その1について

- 余裕があるひとは、表やグラフなどを Excelで作成してみるとよいでしょう
  - もっと余裕があるひとは、Rについて調べ、 Rで作図してみても良いでしょう

## 注意事項

- 他人のレポートをコピーすることは 剽窃(ひょうせつ)にあたります
  - 大学の規定に従い厳しく処分します
- 友だちで教え合うのはOKです
  - むしろ推奨します
  - つまり、自分のことば、データで レポートを書いてください
- 参考にした書籍やURLがあれば記載

## 次回

- 4月23日 (火)
- 講義開始時にレポートを回収します
- 講義中に簡単な小テストを実施します
  - 講義資料を見ながら回答してもらってよいので、ノートPCやスマートフォンを用意、あるいは講義資料を事前に印刷するなど、資料が見られるようにしておいてください