Engineering Calculator with KEyboard and Refined Tools

ECKERT

Console User Interface

(キーボード操作 汎用関数電卓)

バージョン 2017 活用ガイド

2016年12月01日

© 2015-2016 菊地唯真 (Yuishin Kikuchi)

目次

工生	到
惟	部心

これは、関数電卓ソフト ECKERT の活用ガイドです。

0.	はじ	めに	. 1
	0-1. 0-2. 0-3. 0-4.	本ドキュメントの位置づけ. 問題設定の難易度. 注意 知っておくと便利な操作.	1 1
1.	日常	の計算にチャレンジ	. 3
	1-1. 1-2. 1-3. 1-4.	金額計算 平均の速さ 平均の速さ(加重平均) 確率と期待値	5 7
2.	中学		11
	2-1. 2-2. 2-3.	塩分濃度2 次方程式の解の公式	. 14
3.	物理	!の計算にチャレンジ	17
	3-1. 3-2. 3-3.	放物運動 振り子の周期 音のドップラー効果.	. 19
4.	化学	!の計算にチャレンジ	21
	4-1. 4-2. 4-3.	標準原子量	. 22
5.	電気	の計算にチャンレジ	25
	5-1. 5-2.	合成抵抗 LC 並列共振回路	

目次

6.	マニ	ア向け問題	28
	6–1.	地震のマグニチュードの扱い	. 28
	6-2.	音楽の調律	. 30

0. はじめに

0-1. 本ドキュメントの位置づけ

ECKERT (以下、本ソフトウエア) は、キーボード操作の電卓ソフトウエアです。

「ECKERT 活用ガイド」(以下、本ガイド)は、ECKERT の使用例を紹介するガイドです。初めて本ソフトウエアに触れる場合は、「ECKERT スタートガイド」を、詳細な仕様や機能一覧を知るには、「ECKERT ユーザーズマニュアル」をご一読ください。

本ガイドは、本ソフトウエアの基本的な操作、およびスタックの動きを理解している人に向けています。具体的かつ実用的な問題を設定し、その解法を考えながら操作する流れとなっています。活用のヒントとしてお役立てください。

0-2. 問題設定の難易度

1章「日常の計算にチャレンジ」では、日常的な計算のいくつかをピックアップし、やや 面倒な計算を無理なく処理する方法を紹介します。

2章「中学・高校数学にチャレンジ」では、日本の中学・高校数学の中でも、とくに実用性の高い問題の解法を紹介します。

3章「物理の計算にチャレンジ」、4章「化学の計算にチャレンジ」では、日本の高校物理、 高校化学で教えられている問題を例として紹介します。

5章「電気の計算にチャレンジ」、6章「マニア向け問題」は、日本の高校卒業~大学程度の知識を必要とする問題です。前章が物足りない場合、こちらにチャレンジするとよいでしょう。

0-3. 注意

いずれも実用的な計算となるため、登場する関数の意味はあらかじめ把握している必要があります。「指数・対数関数とは?」「三角関数とは?」という疑問が浮かぶ場合、まずは数学的知識を確認しましょう。

0. はじめに

0-4. 知っておくと便利な操作

本ソフトウエアを扱う上で便利な機能を紹介します。

0-4-1. オールクリア

スタック、レジスタのオールクリアは、次のように入力します。

入力> ac

本ガイドを読みながら操作する場合、それぞれの問題ごとにオールクリアすること をおすすめします。

0-4-2. 元に戻す・やり直し

本ソフトウエアには、元に戻す・やり直し機能があります。スタックの状態を何回か、 さかのぼったり、たどったりできます。

元に戻す 入力> u

やり直し 入力> r

操作を誤った場合、元に戻す・やり直し(アンドゥ・リドゥ)は大変便利です。

1. 日常の計算にチャレンジ

1-1. 金額計算

ある日、文具店で買い物をしました。購入したものは、次のものです。

品目	単価	個数
ノート	110	5
消しゴム	80	3
シャープペンシルの芯	100	4
赤ボールペン	90	3

ただし、消費税の8%は含まれていません。税込みの金額はいくらになるでしょうか。

1-1-1. 品名ごとに購入額を出す

まずは品目ごとに購入額を出します。ノートに対して110×5といった具合です。

入力> 110 5 *

#	TYPE	VALUE
4		
Z		
Υ		
Х	Integer	550

同様に他の品目も求めましょう。

入力> 80 3 * 100 4 * 90 3 *

#	TYPE	VALUE
4	Integer	550
Z	Integer	240
Υ	Integer	400
Х	Integer	270

1-1-2. 合計を出す

合計を出すには、「sum」を使います。

入力> sum

#	TYPE	VALUE
4		
Z		
Υ		
Х	Integer	1460

1-1-3. 税込みを計算する

税込みを出すには、「intax」を使います。8%なので、8を指定します。

入力> 8 intax

#	TYPE	VALUE
4		
Z		
Υ		
Х	Rational	7884/5

分数表示では見づらいため、「toflt」で型を切り替えます。

入力> toflt

#	TYPE	VALUE
4		
Z		
Υ		
Х	Floating	1576.8

1-2. 平均の速さ

自動車で高速道路と一般道を走りました。高速道路では80[km/h]の速さで 60 分、一般道では40[km/h]の速さで20分走りました。途中の加減速・停止はないものとして、平均の速さは何[km/h]でしょうか。

1-2-1. 合計の距離

平均の速さは、合計の距離と合計の時間から求めます。まずは、距離です。

入力> 80 1 *

#	TYPE	VALUE
4		
Z		
Υ		
Х	Integer	80

入力> 40 20 60 / *

#	TYPE	VALUE
4		
Z		
Υ	Integer	80
Х	Rational	40/3

入力> +

#	TYPE	VALUE
4		
Z		
Υ		
Х	Rational	280/3

1-2-2. 合計の時間 合計の時間を求めます。

入力> 1 20 60 / +

#	TYPE	VALUE
4		
Z		
Υ	Rational	280/3
Х	Rational	4/3

1-2-3. 速さを求める

合計の距離と合計の時間の除算です。

入力> /

#	TYPE	VALUE
4		
Z		
Υ		
Х	Integer	70

1-3. 平均の速さ(加重平均)

高速道路では80[km/h]の速さで 60 分、一般道では40[km/h]の速さで20分走りました。 途中の加減速・停止はないものとして、平均の速さは何[km/h]でしょうか。加重平均で求め てみましょう。

ここで、ベクトル計算機能とレジスタ機能を使います。レジスタを表示させるには、「reg」と入力します。

入力> reg

1-3-1. 重み付けベクトルを計算する まず、時間についてベクトルを作り、RA にストアします。

入力> 60 20 2 mrtup stra

#	TYPE	VALUE
RA	Tuple[Row]	[60, 20]
RB		
Z		
Υ		
Х		

次に、ベクトルの成分の合計を出します。

入力> ldra cut sum

#	TYPE	VALUE
RA	Tuple[Row]	[60, 20]
RB		
Z		
Υ		
Х	Integer	80

次に、ベクトルの要素の合計が1となるように除算し、重み付けとします。

入力> ldra swap /

#	TYPE	VALUE
RA	Tuple[Row]	[60, 20]
RB		
Z		
Υ		
Х	Tuple[Row]	[3/4, 1/4]

1-3-2. 速さをベクトルにする 重み付けに対応するにように、速さをベクトルにします。

入力> 80 40 2 mrtup

#	TYPE	VALUE
RA	Tuple[Row]	[60, 20]
RB		
Z		
Υ	Tuple[Row]	[3/4, 1/4]
Х	Tuple[Row]	[80, 40]

1-3-3. 内積を計算する

変数(速さ)と重み付けのベクトルの内積を計算します。

入力> dot

#	TYPE	VALUE
RA	Tuple[Row]	[60, 20]
RB		
Z		
Υ		
Х	Integer	70

1-4. 確率と期待値

あるくじびきゲームがあります。300円で一回引くことができ、賞金と本数は次のように 決められています。このくじの一本あたりの期待値(平均値)を求めましょう。

賞金(円)	100	500	1000
本数	70	20	10

ここで、ベクトル計算機能(内積計算)とレジスタ機能を使います。レジスタを表示させるには、「reg」と入力します。

入力> reg

1-4-1. それぞれの確率を求める

期待値を求めるには、まず確率を知る必要があります。前問と同様に求められます。

入力> 70 20 10 3 mrtup stra

#	TYPE	VALUE
RA	Tuple[Row]	[70, 20, 10]
RB		
Z		
Υ		
Х		

入力> ldra cut sum

#	TYPE	VALUE
RA	Tuple[Row]	[70, 20, 10]
RB		
Z		
Υ		
Х	Integer	100

入力> ldra swap /

#	TYPE	VALUE
RA	Tuple[Row]	[70, 20, 10]
RB		
Z		
Υ		
Х	Tuple[Row]	[7/10, 1/5, 1/10]

1-4-2. 賞金のベクトルを作り、内積を計算する 賞金のベクトルを作ります。次に、内積を計算すれば、求まります。

入力> 100 500 1000 3 mrtup

#	TYPE	VALUE
RA	Tuple[Row]	[70, 20, 10]
RB		
Z		
Υ	Tuple[Row]	[7/10, 2/10, 1/10]
Х	Tuple[Row]	[100, 500, 1000]

入力> inner

#	TYPE	VALUE
RA	Tuple[Row]	[70, 20, 10]
RB		
Z		
Υ		
Х	Integer	270

つまり、このくじ引きゲームは1回あたり平均で30円負けることになります。

2-1. 塩分濃度

濃度3%の食塩水が250[g]あります。これに食塩を追加して濃度をちょうど5%にするには、何[g]の食塩が必要でしょうか。

ここで、レジスタ機能を使います。レジスタを表示させるには、「reg」と入力します。

入力> reg

2-1-1. 最初に溶けている食塩の量を求める

溶質(食塩)と溶媒(水)に分けて考えます。溶かす食塩の質量をxとします。質量パーセント濃度は、溶質の質量を溶液全体の質量で割ったものです。

元の食塩水の質量 = T = 250[g], 元の食塩の質量 = $S = \frac{3}{100} \times 250[g]$

入力**>** 250 3 perc

#	TYPE	VALUE
RA		
RB		
Z		
Υ	Integer	250
Х	Rational	15/2

入力> strb stra

#	TYPE	VALUE
RA	Integer	250
RB	Rational	15/2
Z		
Υ		

2-1-2. 方程式を立てて解く

x[g]の食塩を溶かして5%にするため、次のような方程式が立てられます。

$$\frac{S+x}{T+x} = \frac{5}{100}$$

これを解きます。

$$100(S+x) = 5(T+x) \iff 100S - 5T = 5x - 100x$$

$$\therefore x = (100S - 5T)/(5 - 100)$$

2-1-3. 式を計算する

TはRAに、SはRBにあるので、これを使います。

#	TYPE	VALUE
RA	Integer	250
RB	Rational	15/2
Z		
Υ		
Х	Integer	-500

入力> 5 100 -

#	TYPE	VALUE
RA	Integer	250
RB	Rational	15/2
Z		
Υ	Integer	-500
Х	Integer	-95

入力> /

#	TYPE	VALUE
RA	Integer	250
RB	Rational	15/2
Z		
Υ		
Х	Rational	100/19

2-2. 2次方程式の解の公式

方程式「 $x^2 - 5x + 3 = 0$ 」の解を求めましょう。

ここで、レジスタ機能を使います。レジスタを表示させるには、「reg」と入力します。

入力> reg

$$x_{1} = \frac{-b + \sqrt{b^{2} - 4ac}}{2a}$$

$$x_{2} = \frac{-b - \sqrt{b^{2} - 4ac}}{2a}$$

$$a = 1, \quad b = -5, \quad c = 3$$

2-2-1. ルートを計算する

まず、 $\sqrt{b^2-4ac}$ を求めて、レジスタ RA に登録します。

入力> -5 sq 4 1 3 * * - sqrt stra

#	TYPE	VALUE
RA	Floating	3.60555127546399
RB		
Z		
Υ		
Х		

2-2-2. 解を求める

では、解を求めましょう。

$$x_1 = \frac{-b + \sqrt{D}}{2a}$$

$$x_2 = \frac{-b - \sqrt{D}}{2a}$$

$$a = 1, \quad b = -5, \quad c = 3, \quad D = b^2 - 4ac$$

入力> -5 pm ldra + 2 1 * /

#	TYPE	VALUE
RA	Floating	3.60555127546399
RB		
Z		
Υ		
Х	Floating	4.30277563773199

入力> -5 pm ldra - 2 1 * /

#	TYPE	VALUE
RA	Floating	3.60555127546399
RB		
Z		
Υ	Floating	4.30277563773199
Х	Floating	0.697224362268005

※仮に $\sqrt{D} = \sqrt{b^2 - 4ac}$ が虚数になるとしても、計算できます。

2-3. 測量

とても高い木があります。今、高さを知りたい木からは20[m]離れており、仰角72°で木の頂上が見えます。この木の高さは何[m]でしょうか。ただし、人の目の高さは1.5[m]です。

2-3-1. 三角形を考える

底辺が20[m]、直角以外の一方の角度が72°の直角三角形を考えます。ここから高さを求めるにはタンジェントを使います。度数法タンジェントであることに注意しましょう。

$$H' = 20 \tan 72^{\circ}$$

入力> 20 72 tand *

#	TYPE	VALUE
Z		
Υ		
Х	Floating	61.5536707435051

2-3-2. 目の高さを考慮

目の高さが1.5[m]であるため、実際にはこの三角形が1.5[m]浮いています。つまり、これを足す必要があります。

$$H = H' + 1.5$$

入力> 1.5 +

#	TYPE	VALUE
Z		
Υ		
Х	Floating	63.0536707435051

3-1. 放物運動

標準重力加速度 g_0 の地表から52°の角度で、ボールを初速度13.4[m/s]で打ち出しました。 2 秒後、ボールは地表から何[m]の高さにあるでしょう。

3-1-1. 初速度の垂直成分

地表から52°の角度で、初速度13.4[m/s]なので、これを水平成分、垂直成分に分けて考えます。今回は高さを求めるので、垂直成分を考えます。垂直なので、度数法のサインを用います。これをレジスタにストアします。

 $V_0 = 13.4 \times \sin 52^{\circ}$

入力> 13.4 52 sind * stra

#	TYPE	VALUE
RA	Floating	10.5593440983301
RB		
Z		
Υ		
Х		

また、2秒という時間もストアしておきます。

入力> 2 strb

#	TYPE	VALUE
RA	Floating	10.5593440983301
RB	Integer	2
Z		
Υ		
Х		

3-1-2. 等加速度運動を計算

今回は、標準重力加速度 g_0 の地表からの投げ上げです。

$$h = V_0 t - \frac{1}{2} g_0 t^2$$
 $\left(h は高さ、 V_0 は初速度、 t は時間 $\right)$$

入力> ldra ldrb *

#	TYPE	VALUE
RA	Floating	10.5593440983301
RB	Integer	2
Z		
Υ		
Х	Floating	21.1186881966602

入力> grav ldrb sq * 2 /

#	TYPE	VALUE
RA	Floating	10.5593440983301
RB	Integer	2
Z		
Υ	Floating	21.1186881966602
Х	Floating	19.6133

入力> -

#	TYPE	VALUE
RA	Floating	10.5593440983301
RB	Integer	2
Z		
Υ		
Х	Floating	1.50538819666015

つまり、1.51[m]の高さです。

3-2. 振り子の周期

柱時計の振り子はおよそ1[m]になっています。これについて検証してみましょう。振り子の振れる角度が小さい場合、その周期は次の近似式で表現されます。

$$T=2\pi\sqrt{l/g}$$
 (lは振り子の長さ、 g は重力加速度)

長さ1[m]、重力加速度を g_0 とするとき、周期はいくらになるでしょうか。

3-2-1. ルートの部分を計算する まずは、 $\sqrt{l/g}$ を計算します。ただ、l=1[m]なので、かなり省略できます。

入力> grav inv sqrt

#	TYPE	VALUE
Z		
Υ		
Х	Floating	0.319329956781059

3-2-2. 2πと乗算

2πと乗算するには、専用の機能を使いましょう。

入力> tpix

#	TYPE	VALUE
Z		
Υ		
Х	Floating	2.00640929258904

1周期がほぼ2秒なので、1[m]は都合のよい長さなのです。

3-3. 音のドップラー効果

サイレンを鳴らした救急車がそばを通過すると、救急車が近づくときは高い音に、遠ざかるときは低い音に聞こえます。このように、波の発信源や観測者が動くことによって、発信される波と観測される波とが異なる現象を、ドップラー効果と言います。

道に立った人が60[km/h]で近づく救急車のサイレンを聞きます。サイレンの周波数を800[Hz]とすると、観測される周波数はいくつになるでしょうか。なお、音速は1225[km/h]とします。

3-3-1. 波長の伸び縮みを考える

音源が動くと、動いた方向に発せられる波の波長は縮められます。音波を音源が追いかける形になるので、縮められた波長λ'は次のような関係になります。

$$V - v_0 = f\lambda'$$
 (Vは音速、 v_0 は音源の速度)

一方、観測される周波数f'は次のような関係です。

$$V = f'\lambda'$$

これをまとめると、観測される周波数f'は次のように表現されます。

$$f' = \frac{V}{V - v_0} f$$

3-3-2. 式を計算する

求まった式を素直に計算しましょう。

入力> 1225 1225 60 - / 800. *

#	TYPE	VALUE
Z		
Υ		
Х	Floating	841.201716738197

4-1. 標準原子量

原子の質量数は陽子数と中性子数の和で整数です。しかし、原子量は異なり、同位体を考慮するため、小数で表現されます。

地球上に存在する塩素Clの同位体の割合は、 ^{35}Cl が75.77%、 ^{37}Cl が24.23%とされています。塩素原子一個あたりの平均の質量は何[amu]でしょうか。

存在比と質量の積の和を求めれば、平均になります。

 $Cl = 35 \times 0.7577 + 37 \times 0.2423$

入力> 35 .7577 * 37 .2423 * +

#	TYPE	VALUE
Z		
Υ		
Х	Floating	35.4846

4-2. 分子の個数

100[g]の水があります。ここには何個の水分子が含まれますか。ただし、原子量は、H=1、0=16とします。

4-2-1. 分子量を求める

水は H_2O なので、分子量は次のようになります。

入力> 1 2 * 16 +

#	TYPE	VALUE
Z		
Υ		
Х	Integer	18

つまり、水は1[mol]あたり18[g]です。

4-2-2. モル数を求める

今回の体積を水の1[mol]あたりの重さで割ります。

入力> 100 swap /

#	TYPE	VALUE
Z		
Υ		
Х	Rational	50/9

4-2-3. 個数を求める

分子の個数はモル数とアボガドロ数の積で求まります。

入力> avogadro *

#	TYPE	VALUE
Z		
Υ		
Х	Floating	3.34563405E+24

4-3. 濃度の計算

水160[g]に対して硫酸 $(H_2SO_4 = 96)$ 40[g]を混ぜると、密度1.15[g/cm³]の希硫酸となります。これの濃度を、質量パーセント濃度、モル濃度で表しましょう。

4-3-1. 質量パーセント濃度

単純に求めましょう。

$$40/(160+40)$$

入力> 40 160 40 + /

#	TYPE	VALUE
Z		
Υ		
Х	Rational	1/5

入力> 100 *

#	TYPE	VALUE
Z		
Υ		
Х	Integer	20

4-3-2. モル濃度

まずは、溶液1[L]あたりの質量を求める必要があります。密度は1.15[g/cm³]です。

入力> 1.15 1000 *

#	TYPE	VALUE
Z		
Υ	Integer	20
Х	Floating	1150.

質量パーセント濃度が求まっているので、溶液1[L]あたりの硫酸の質量が求まります。

入力> swap perc

#	TYPE	VALUE
Z		
Υ	Floating	1150.
Х	Floating	230.

最後に、これをモル数に直せば、溶液1[L]あたりの硫酸のモル数になります。

入力> 96 /

#	TYPE	VALUE
Z		
Υ	Floating	1150.
Х	Floating	2.39583333333333

4. 電気の計算にチャレンジ

5. 電気の計算にチャンレジ

5-1. 合成抵抗

 $330[\Omega]$ と $560[\Omega]$ の抵抗が並列に接続されています。この 2 つの抵抗の合成抵抗の大きさは何 $[\Omega]$ でしょうか。

線形抵抗 R_1 , R_2 を並列接続したときの合成容量Rは次のようになります。

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$$

専用のキーワードを使って一発で求めます。

入力> 330 560 para

#	TYPE	VALUE
Z		
Υ		
Х	Rational	18480/89

見づらければキャストしましょう。

入力> toflt

#	TYPE	VALUE
Z		
Υ		
Х	Floating	207.640449438202

4. 電気の計算にチャレンジ

5-2. LC 並列共振回路

LC 並列共振回路を、周波数20[kHz]で共振させようとしています。キャパシタ C の容量はすでに決まっており、2200[pF]です。インダクタ L のインダクタンスをいくつに設定すればよいでしょうか。

まず、LC 並列共振回路のインピーダンスを求めます。 $Z_L=j\omega L$ と $Z_C=1/j\omega C$ の並列回路なので、整理すると、次のようになります。

$$Z = \frac{j\omega L}{1 - \omega^2 LC}$$

共振するのは、分母がゼロになるときなので、その条件を求めます。

$$\omega^2 = 1/LC$$

さて、キャパシタ C と周波数fが決まっているので、インダクタ L を求めましょう。上式を変形し、L を左辺に表示します。

$$L = 1/\omega^2 C$$

5-2-1. 角周波数を求める

周波数は20[kHz]なので、これに対する角周波数を求めます。

入力> 20k tpix

#	TYPE	VALUE
Z		
Υ		
Х	Floating	125663.706143592

4. 電気の計算にチャレンジ

また、2乗もします。

入力> sq

#	TYPE	VALUE
Z		
Υ		
Х	Floating	15791367041.743

5-2-2. キャパシタンスとの乗算

Cと乗算します。

入力> 2200p *

#	TYPE	VALUE
Z		
Υ		
Х	Floating	34.7410074918345

5-2-3. 逆数を取る

逆数を取って、Lが決定されます。

入力> inv

#	TYPE	VALUE
Z		
Υ		
Х	Floating	0.0287844271711187

6-1. 地震のマグニチュードの扱い

日本では大きな地震が度々発生します。地震のエネルギーの大きさには極端な桁数の差が現れるため、通常は常用対数を用いて、マグニチュード M で表示されます。日本の場合、多くの地震は気象庁マグニチュード Mj で評価されます。

東北地方太平洋沖地震(東日本大震災)のモーメントマグニチュード Mw は 9.0 と評価 されました。これをジュールに換算してみましょう。

地震のマグニチュードとエネルギー[J]との関係式は次の通りです。Mはマグニチュード、Eはエネルギーです。

$$\log_{10} E = 4.8 + 1.5M$$
$$E = 10^{(4.8 + 1.5M)}$$

これは、Mが 1 増えるとEが $10\sqrt{10} \cong 31.6$ 倍に、2 増えると 1000 倍になるということです。 この式から、東北地方太平洋沖地震のエネルギーの大きさは次のようになります。

$$E = 10^{(4.8 + 1.5 \times 9.0)}$$

6-1-1. 指数部分を求める まずは、4.8 + 1.5 × 9.0を求めます。

入力> 4.8 1.5 9.0 * +

#	TYPE	VALUE
Z		
Υ		
Х	Floating	18.3

6-1-2. 10 の冪乗を求める

もとが常用対数であったため、10の冪乗を計算します。

入力> tpow

#	TYPE	VALUE
Z		
Υ		
Х	Floating	1.99526231496888E+18

これは 2011 年頃のドイツの一年間の総発電量のエネルギーに匹敵します。

6-2. 音楽の調律

楽器の音を綺麗に響かせるには、調律が欠かせません。調律の基準音は 1939 年のロンドン国際会議で決まった、A4 = 440[Hz]がよく用いられます。ただ、オーケストラではもう少し高い基準音を採用します。

440[Hz]を基準にすると、445[Hz]は何セント(半音の何パーセント)ずれているでしょうか。

6-2-1. ウェーバー・フェヒナーの法則

人間が聞き取る音の高さは周波数の大きさによって決まります。また、その高低の感覚は周波数に対して対数尺になっています(ウェーバー・フェヒナーの法則)。たとえば、純正律の完全五度は常に周波数「比」を 1.5 に取りますが、このため、周波数「差」は基準音の高さによって異なります。

6-2-2. 12 平均律

1 オクターブ (12 半音) の周波数比は 2 倍です。これをもとに、(12 平均律として) 半音の周波数比rを割り出すと、次のようになります。

$$r^{12} = 2$$

$$\therefore r = \sqrt[12]{2}$$

6-2-3. セントの計算

何パーセントずれているかを考えるには、対数を使います。周波数比について、 $\sqrt[14]{2}$ を底とする対数を考えます。

 f_0 は基準音の周波数、fは基準音とのズレが知りたい音の周波数です。

$$100 \log_{\sqrt[12]{2}} \left(\frac{f}{f_0} \right) = 1200 \operatorname{lb}(f/f_0)$$

6-2-4. 式を計算する

では、440[Hz]と、445[Hz]の高さの違い求めましょう。

 $C = 1200 \, \text{lb}(445/440)$

入力> 445 440 /

#	TYPE	VALUE
Z		
Υ		
Х	Rational	89/88

入力**>** 1b

#	TYPE	VALUE
Z		
Υ		
Х	Floating	0.0163018123291006

入力> 1200 *

#	TYPE	VALUE
Z		
Υ		
Х	Floating	19.5621747949208

ECKERT および本ドキュメントの著作権は、作者である菊地唯真に属します。