DEVOIR MAISON 3

Exercice 1 - BSB 2012 / Ex3

1. D'après la formule des probabilités totales, comme $\{R, \overline{R}\}$ forme un système complet d'événements et que $\frac{60}{100} = \frac{3}{5}$, alors

$$\begin{split} P(J) &= P\big(R \cap J\big) + P\big(\overline{R} \cap J\big) = P(R) \times P_R(J) + P(\overline{R}) \times P_{\overline{R}}(J) \\ &= \frac{3}{5} \times 1 + \left(1 - \frac{3}{5}\right) \times \frac{1}{3} = \frac{3}{5} + \frac{2}{15} = \frac{9 + 2}{15} = \frac{11}{15}. \end{split}$$

En effet, si l'élève connaît la réponse, il répond juste avec probabilité 1, contre une probabilité $\frac{1}{3}$ s'il ne connaît pas la réponse et répond donc au hasard.

2. Les vingt questions représentent n=20 répétitions d'une expérience de Bernoulli de succès "répondre juste" et de probabilité $p=\frac{11}{15}$. Ces répétitions sont identiques et indépendantes et la variable aléatoire X compte le nombre de succès.

Ainsi X suit une loi binomiale de paramètres n=20 et $p=\frac{11}{15}$. Le support de X est donné par $X(\Omega)=\llbracket 0,20 \rrbracket$ et pour tout $k \in \llbracket 0,20 \rrbracket$,

$$P(X=k) = \binom{n}{k} \times p^k \times \left(1-p\right)^{n-k} = \binom{20}{k} \times \left(\frac{11}{15}\right)^k \times \left(\frac{4}{15}\right)^{20-k}.$$

3. Comme *X* suit une loi binomiale, alors

$$E(X) = np = 20 \times \frac{11}{15} = \frac{44}{3}$$
 et $V(X) = np(1-p) = \frac{44}{3} \times \frac{4}{15} = \frac{176}{45}$.

4. a) Par définition de X, il y a X bonnes réponses, rapportant 1 point chacune, et donc 20 − X mauvaises réponses, rapportant −2 points chacune.
 Ainsi la note finale est donnée par la formule

$$N = 1 \times X + (-2) \times (20 - X) = X - 40 + 2X = 3X - 40.$$

b) Comme N = 3X - 40, alors par linéarité de l'espérance,

$$E(N) = E(3X - 40) = 3E(X) - 40 = 3 \times \frac{44}{3} - 40 = 44 - 40 = 4$$

et
$$V(N) = V(3X - 40) = 3^2 \times V(X) = 9 \times \frac{176}{45} = \frac{176}{5}$$
.

5. a) Il s'agit cette fois encore de n=20 répétitions d'une expérience de Bernoulli de succès "répondre juste" mais de probabilité $p=\frac{3}{5}$. Ces répétitions sont identiques et indépendantes et la variable aléatoire Y compte le nombre de succès.

Ainsi *Y* suit une loi binomiale de paramètres n = 20 et $p = \frac{3}{5}$.

b) La note moyenne obtenue par l'élève B correspond à l'espérance de Y, i.e.

$$E(Y) = np = 20 \times \frac{3}{5} = 12.$$

c) En comparant les notes moyennes obtenues par les élèves A et B dans le cas de points négatifs en cas de mauvaises réponses, à savoir 4 pour l'élève A et 12 pour l'élève B, il vient naturellement en conclusion que la meilleure stratégie est de ne pas répondre au hasard aux questions pour lesquelles la réponse n'est pas connue.

C'est donc l'élève B qui possède la meilleure stratégie.

Exercice 2 - ECRICOME 2020 / Ex2

Partie A

- 1. Je résous l'équation $x^2 + x + 1 = 0$ pour $x \in \mathbb{R}$. Il s'agit d'un polynôme de degré 2. Son discriminant vaut $\Delta = 1^2 4 \times 1 \times 1 = 1 4 = -3 < 0$. Comme le discriminant est négatif, le polynôme n'admet aucune racine. L'équation $x^2 + x + 1 = 0$ n'admet donc pas de solution réelle.
- 2. Comme f est une fraction rationnelle, je peux raisonner en ne considérant que les termes de plus haut degré. Ainsi

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x}{1+x+x^2} = \lim_{x \to +\infty} \frac{x}{x^2} = \lim_{x \to +\infty} \frac{1}{x} = 0^+ \quad \text{et} \quad \lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{1}{x} = 0^-.$$

3. Pour déterminer les variations de f, je dois étudier le signe de la dérivée f'.

La fonction f est de la forme $f = \frac{u}{v}$, avec u(x) = x et $v(x) = x^2 + x + 1$.

Puisque u'(x) = 1 et v'(x) = 2x + 1, alors

$$f'(x) = \frac{u'(x) \times v(x) - u(x) \times v'(x)}{v(x)^2} = \frac{1 \times (x^2 + x + 1) - x \times (2x + 1)}{(x^2 + x + 1)^2}$$
$$= \frac{x^2 + x + 1 - 2x^2 - x}{(x^2 + x + 1)^2} = \frac{1 - x^2}{(x^2 + x + 1)^2} = \frac{(1 + x)(1 - x)}{(x^2 + x + 1)^2}.$$

Il ne me reste plus qu'à étudier le signe de chacun des facteurs pour obtenir le signe de f'(x):

$$f(-1) = \frac{-1}{1 + (-1) + (-1)^2} = \frac{-1}{1 - 1 + 1} = -1$$
 et $f(1) = \frac{1}{1 + 1 + 1^2} = \frac{1}{1 + 1 + 1} = \frac{1}{3}$

x	$-\infty$		-1		1		+∞
1+x		_	0	+		+	
1-x		+		+	0	_	
$x^2 + x + 1$		+		+		+	
f'(x)		_	0	+	0	_	
f	0		-1		$\frac{1}{3}$		~ ₀

En particulier, j'ai bien montré que la fonction f est croissante sur l'intervalle [-1,1].

4. a) Une équation de la tangente à la courbe C_f au point d'abscisse a est donnée par la formule $y = f'(a) \times (x - a) + f(a)$. Ici a = 0 donc l'équation de la tangente devient

$$y = f'(0) \times (x - 0) + f(0).$$

Or
$$f(0) = \frac{0}{1+0+0} = 0$$
 et $f'(0) = \frac{1-0^2}{(0^2+0+1)^2} = \frac{1}{1} = 1$.

Donc la tangente au point d'abscisse 0 a pour équation

$$y = 1 \times (x - 0) + 0$$
, *i.e.* $y = x$.

b) Je cherche à résoudre l'inéquation $f(x) \le x$ pour $x \ge -1$:

$$f(x) \leqslant x \iff \frac{x}{1+x+x^2} - x \leqslant 0 \iff x - x(x^2 + x + 1) \leqslant 0 \quad \operatorname{car} x^2 + x + 1 > 0$$

$$\iff x - x^3 - x^2 - x \leqslant 0 \iff -x^2(x+1) \leqslant 0 \iff x^2(x+1) \geqslant 0.$$

Or $x^2 \ge 0$ sur \mathbb{R} et $x+1 \ge 0$ puisque $x \ge -1$. Ainsi j'ai bien montré que

$$\forall x \in [-1, +\infty[, f(x) \leq x.$$

Graphiquement, cela signifie que la courbe représentative de la fonction f se situe sous la tangente \mathcal{T} sur l'intervalle $[-1,+\infty[$.

5. Voici l'allure de la courbe C_f et de sa tangente \mathcal{T} .

Partie B

1. Soit $n \in \mathbb{N}^*$. En multipliant numérateur et dénominateur par n, j'obtiens que

$$f\left(\frac{1}{n}\right) = \frac{\frac{1}{n}}{1 + \frac{1}{n} + \frac{1}{n^2}} = \frac{1}{n + 1 + \frac{1}{n}}.$$

En outre, comme $\frac{1}{n} > 0$, alors $n+1+\frac{1}{n} > n+1$, et en passant à l'inverse, par décroissance,

$$f\left(\frac{1}{n}\right) = \frac{1}{n+1+\frac{1}{n}} \leqslant \frac{1}{n+1}.$$

2. Je raisonne par récurrence sur $n \in \mathbb{N}^*$.

Énoncé: Je note \mathcal{P}_n la propriété: $0 \le u_n \le \frac{1}{n}$.

Initialisation : Pour n = 1,

$$u_1 = 1$$
 et $0 \le 1 \le \frac{1}{1} = 1$.

Ainsi \mathcal{P}_1 est vraie.

Hérédité: Soit $n \ge 1$. Je suppose que \mathcal{P}_n est vraie et je montre que \mathcal{P}_{n+1} l'est aussi.

Par hypothèse de récurrence, $0 \le u_n \le \frac{1}{n} \le 1$, car $n \ge 1$.

Alors comme f est croissante sur [0,1],

$$f(0) \leqslant f(u_n) \leqslant f\left(\frac{1}{n}\right) \iff 0 = f(0) \leqslant u_{n+1} \leqslant f\left(\frac{1}{n}\right) \leqslant \frac{1}{n+1}.$$

Finalement \mathcal{P}_{n+1} est vraie et la propriété est héréditaire.

Conclusion : Comme la propriété est vraie pour n = 1 et est héréditaire, alors par principe de récurrence, \mathcal{P}_n est vraie pour tout $n \ge 1$, *i.e.*

$$\forall n \in \mathbb{N}^*, \quad 0 \leqslant u_n \leqslant \frac{1}{n}.$$

3. Pour tout $n \ge 1$, la suite $(u_n)_{n \ge 1}$ satisfait l'encadrement $0 \le u_n \le \frac{1}{n}$.

Or je sais que $\lim_{n\to +\infty} 0=0$ et $\lim_{n\to +\infty} \frac{1}{n}=0$. Donc grâce au théorème des gendarmes, je peux conclure que la suite $(u_n)_{n\geqslant 1}$ converge et que sa limite vaut 0, *i.e.* $\lim_{n\to +\infty} u_n=0$.

4. Voici le script complété.

Partie C

1. Je raisonne par récurrence sur $n \ge 2$.

Énoncé : Je note \mathcal{P}_n la propriété : $-1 \leq v_n \leq 0$.

Initialisation : Pour n = 2,

$$v_2 = f(v_1) = f(-2) = \frac{-2}{1 + (-2) + (-2)^2} = -\frac{2}{3}$$
 et $-1 \leqslant -\frac{2}{3} \leqslant 0$.

Ainsi \mathcal{P}_2 est vraie.

Hérédité : Soit $n \ge 2$. Je suppose que \mathcal{P}_n est vraie et je montre que \mathcal{P}_{n+1} l'est aussi.

Par hypothèse de récurrence, $-1 \le v_n \le 0$.

Alors comme f est croissante sur [-1,0],

$$f(-1) \le f(v_n) \le f(0) \iff -1 = f(-1) \le v_{n+1} \le f(0) = 0.$$

Finalement \mathcal{P}_{n+1} est vraie et la propriété est héréditaire.

Conclusion : Comme la propriété est vraie pour n = 2 et est héréditaire, alors par principe de récurrence, \mathcal{P}_n est vraie pour tout $n \ge 2$, *i.e.*

$$\forall n \geqslant 2$$
, $-1 \leqslant v_n \leqslant 0$.

2. Grâce à la question **4.** de la Partie A, je sais que $f(x) \le x$ pour tout $x \ge -1$. Comme pour tout $n \ge 2$, $v_n \ge -1$, alors j'en déduis que $f(v_n) \le v_n$, *i.e.*

$$\forall n \geqslant 2$$
, $v_{n+1} \leqslant v_n$.

J'ai bien montré que la suite $(v_n)_{n \ge 2}$ est décroissante.

3. Grâce aux deux questions précédentes, je sais que la suite $(v_n)_{n \in \mathbb{N}^*}$ est décroissante (à partir de $n \ge 2$) et minorée par -1.

Par le théorème de la limite monotone, j'en déduis que la suite $(v_n)_{n\geqslant 1}$ converge.

- 4. À l'aide de la figure, comme les points de la suite semblent se rapprocher de la droite d'équation y = -1, je conjecture que la limite de la suite $(\nu_n)_{n \ge 1}$ est égale à -1.
- 5. a) Je cherche à résoudre l'équation f(x) = -1 pour $x \in \mathbb{R}$.

$$f(x) = -1 \iff \frac{x}{1+x+x^2} + 1 = 0 \iff x+1 \times (x^2+x+1) = 0 \quad \operatorname{car} x^2 + x + 1 > 0$$

$$\iff x+x^2+x+1 = 0 \iff x^2+2x+1 = 0 \iff (x+1)^2 = 0$$

$$\iff x+1 = 0 \iff x = -1.$$

L'unique solution de l'équation f(x) = -1 est x = -1.

b) Je raisonne par l'absurde et suppose qu'il existe un entier $n \in \mathbb{N}^*$ tel que $v_n = -1$. Tout d'abord, n est différent de 1 puisque $v_1 = -2 \neq -1$.

Alors dans ce cas $v_n = f(v_{n-1})$, donc $f(v_{n-1}) = -1$ et v_{n-1} est une solution de f(x) = -1. Comme -1 est l'unique solution de cette équation, je viens de montrer que si $v_n = -1$, alors $v_{n-1} = -1$, c'est-à-dire que le terme précédent aussi vaut -1.

En itérant ce résultat, j'obtiens alors que $v_{n-2}=-1$, $v_{n-3}=-1$, etc. jusqu'à $v_2=-1$ et donc $v_1=-1$. Or cela est impossible. Mon raisonnement est donc absurde puisqu'il aboutit à une contradiction. Donc il ne peut pas exister de $n \in \mathbb{N}^*$ tel que $v_n=-1$. J'ai bien montré que

$$\forall n \in \mathbb{N}^*, \quad v_n \neq -1.$$