MADRID 2011

In []: import pandas as pd

import numpy as np

from matplotlib import pyplot as plt

import seaborn as sns

from sklearn.linear_model import LinearRegression,LogisticRegression,Lasso,Rid
from sklearn.model_selection import train_test_split

In [2]: df=pd.read_csv("C:/Users/user/Downloads/FP1_air/csvs_per_year/csvs_per_year/mac
df

\cap	rt l	「つヿ	
Οt	1 .	[4]	٠

	date	BEN	CO	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	TCH	TOL	
0	2011-11- 01 01:00:00	NaN	1.0	NaN	NaN	154.0	84.0	NaN	NaN	NaN	6.0	NaN	NaN	2
1	2011-11- 01 01:00:00	2.5	0.4	3.5	0.26	68.0	92.0	3.0	40.0	24.0	9.0	1.54	8.7	2
2	2011-11- 01 01:00:00	2.9	NaN	3.8	NaN	96.0	99.0	NaN	NaN	NaN	NaN	NaN	7.2	2
3	2011-11- 01 01:00:00	NaN	0.6	NaN	NaN	60.0	83.0	2.0	NaN	NaN	NaN	NaN	NaN	2
4	2011-11- 01 01:00:00	NaN	NaN	NaN	NaN	44.0	62.0	3.0	NaN	NaN	3.0	NaN	NaN	2
209923	2011- 09-01 00:00:00	NaN	0.2	NaN	NaN	5.0	19.0	44.0	NaN	NaN	NaN	NaN	NaN	2
209924	2011- 09-01 00:00:00	NaN	0.1	NaN	NaN	6.0	29.0	NaN	11.0	NaN	7.0	NaN	NaN	2
209925	2011- 09-01 00:00:00	NaN	NaN	NaN	0.23	1.0	21.0	28.0	NaN	NaN	NaN	1.44	NaN	2
209926	2011- 09-01 00:00:00	NaN	NaN	NaN	NaN	3.0	15.0	48.0	NaN	NaN	NaN	NaN	NaN	2
209927	2011- 09-01 00:00:00	NaN	NaN	NaN	NaN	4.0	33.0	38.0	13.0	NaN	NaN	NaN	NaN	2

209928 rows × 14 columns

```
In [3]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 209928 entries, 0 to 209927
Data columns (total 14 columns):
```

#	Column	Non-Null Count	Dtype
0	date	209928 non-null	object
1	BEN	51393 non-null	float64
2	CO	87127 non-null	float64
3	EBE	51350 non-null	float64
4	NMHC	43517 non-null	float64
5	NO	208954 non-null	float64
6	NO_2	208973 non-null	float64
7	0_3	122049 non-null	float64
8	PM10	103743 non-null	float64
9	PM25	51079 non-null	float64
10	S0_2	87131 non-null	float64
11	TCH	43519 non-null	float64
12	TOL	51175 non-null	float64
13	station	209928 non-null	int64

dtypes: float64(12), int64(1), object(1)

memory usage: 22.4+ MB

In [4]: df1=df.dropna()
 df1

Out[4]:

	date	BEN	со	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL	٤
1	2011-11- 01 01:00:00	2.5	0.4	3.5	0.26	68.0	92.0	3.0	40.0	24.0	9.0	1.54	8.7	280
6	2011-11- 01 01:00:00	0.7	0.3	1.1	0.16	17.0	66.0	7.0	22.0	16.0	2.0	1.36	1.7	280
25	2011-11- 01 02:00:00	1.8	0.3	2.8	0.20	34.0	76.0	3.0	34.0	21.0	8.0	1.71	7.4	280
30	2011-11- 01 02:00:00	1.0	0.4	1.3	0.18	31.0	67.0	5.0	25.0	18.0	3.0	1.40	2.9	280
49	2011-11- 01 03:00:00	1.3	0.2	2.4	0.22	29.0	72.0	3.0	33.0	20.0	8.0	1.75	6.2	280
209862	2011- 08-31 22:00:00	0.4	0.1	1.0	0.06	1.0	13.0	33.0	21.0	6.0	5.0	1.26	0.7	280
209881	2011- 08-31 23:00:00	0.9	0.1	1.8	0.16	11.0	45.0	30.0	32.0	17.0	3.0	1.34	4.9	280
209886	2011- 08-31 23:00:00	0.6	0.1	1.1	0.05	1.0	12.0	48.0	19.0	7.0	5.0	1.26	0.9	280
209905	2011- 09-01 00:00:00	0.6	0.1	1.3	0.15	6.0	35.0	34.0	21.0	12.0	3.0	1.32	3.8	280
209910	2011- 09-01 00:00:00	0.7	0.1	1.1	0.04	1.0	12.0	46.0	8.0	5.0	5.0	1.25	0.9	280

16460 rows × 14 columns

In [5]: df1=df1.drop(["date"],axis=1)

```
In [6]: sns.heatmap(df1.corr())
```

Out[6]: <AxesSubplot:>


```
In [7]: plt.plot(df1["EBE"],df1["PM25"],"o")
```

Out[7]: [<matplotlib.lines.Line2D at 0x1aa70adb160>]


```
In [8]: x=df1.drop(["EBE"],axis=1)
    y=df1["EBE"]
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear

```
In [9]: li=LinearRegression()
li.fit(x_train,y_train)
```

Out[9]: LinearRegression()

```
In [10]: prediction=li.predict(x_test)
    plt.scatter(y_test,prediction)
```

Out[10]: <matplotlib.collections.PathCollection at 0x1aa70cb4cd0>

```
10 - 8 - 6 - 4 - 2 - 0 - 2 4 6 8 10
```

```
In [11]: lis=li.score(x_test,y_test)
```

```
In [12]: df1["TCH"].value_counts()
```

```
Out[12]: 1.30
                   897
          1.29
                   878
          1.28
                   856
          1.31
                   827
          1.27
                   820
          3.41
                     1
          2.88
                     1
          2.41
                     1
          2.80
                     1
          2.49
```

Name: TCH, Length: 171, dtype: int64

```
In [13]: df1.loc[df1["TCH"]<1.40,"TCH"]=1
    df1.loc[df1["TCH"]>1.40,"TCH"]=2
    df1["TCH"].value_counts()
```

Out[13]: 1.0 12828 2.0 3632

Name: TCH, dtype: int64

Lasso

```
In [14]: la=Lasso(alpha=5)
la.fit(x_train,y_train)
```

Out[14]: Lasso(alpha=5)

```
In [15]: prediction1=la.predict(x_test)
    plt.scatter(y_test,prediction1)
```

Out[15]: <matplotlib.collections.PathCollection at 0x1aa70d1ee80>


```
In [16]: las=la.score(x_test,y_test)
```

Ridge

```
In [17]: rr=Ridge(alpha=1)
rr.fit(x_train,y_train)
```

Out[17]: Ridge(alpha=1)

```
In [18]: prediction2=rr.predict(x_test)
    plt.scatter(y_test,prediction2)
```

Out[18]: <matplotlib.collections.PathCollection at 0x1aa70b271f0>


```
In [19]: rrs=rr.score(x_test,y_test)
```

ElasticNet

```
In [20]:
         en=ElasticNet()
         en.fit(x_train,y_train)
Out[20]: ElasticNet()
In [21]:
         prediction2=rr.predict(x_test)
         plt.scatter(y_test,prediction2)
Out[21]: <matplotlib.collections.PathCollection at 0x1aa70d9ca30>
          10
           8
           6
           4
           2
                                                     10
In [22]: ens=en.score(x_test,y_test)
In [23]:
         print(rr.score(x_test,y_test))
         rr.score(x_train,y_train)
         0.8305645679872002
Out[23]: 0.8132155812013233
         Logistic
In [24]: | g={"TCH":{1.0:"Low",2.0:"High"}}
         df1=df1.replace(g)
         df1["TCH"].value_counts()
```

12828

3632 Name: TCH, dtype: int64

Out[24]: Low

High

```
In [25]: x=df1.drop(["TCH"],axis=1)
    y=df1["TCH"]
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
Tn [26]: le=LegisticPagnessian()
```

```
In [26]: lo=LogisticRegression()
    lo.fit(x_train,y_train)
```

Out[26]: LogisticRegression()

```
In [27]: prediction3=lo.predict(x_test)
   plt.scatter(y_test,prediction3)
```

Out[27]: <matplotlib.collections.PathCollection at 0x1aa70b57cd0>


```
In [28]: los=lo.score(x_test,y_test)
```

Random Forest

df1=df1.replace(g1)

```
In [29]: from sklearn.ensemble import RandomForestClassifier
    from sklearn.model_selection import GridSearchCV
In [30]: g1={"TCH":{"Low":1.0,"High":2.0}}
```

```
In [31]: x=df1.drop(["TCH"],axis=1)
    y=df1["TCH"]
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

```
In [32]: rfc=RandomForestClassifier()
rfc.fit(x_train,y_train)
```

Out[32]: RandomForestClassifier()

```
In [33]:
         parameter={
              'max_depth':[1,2,4,5,6],
              'min samples_leaf':[5,10,15,20,25],
              'n estimators':[10,20,30,40,50]
         grid search=GridSearchCV(estimator=rfc,param grid=parameter,cv=2,scoring="accur")
In [34]:
         grid_search.fit(x_train,y_train)
Out[34]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                       param_grid={'max_depth': [1, 2, 4, 5, 6],
                                   'min samples leaf': [5, 10, 15, 20, 25],
                                   'n_estimators': [10, 20, 30, 40, 50]},
                       scoring='accuracy')
In [35]: rfcs=grid_search.best_score_
In [36]: | rfc_best=grid_search.best_estimator_
In [37]: | from sklearn.tree import plot_tree
         plt.figure(figsize=(80,40))
         plot tree(rfc best.estimators [5],feature names=x.columns,class names=['Yes',"
Out[37]: [Text(2316.467889908257, 2019.0857142857144, '0 3 <= 19.5\ngini = 0.338\nsa
         mples = 7259\nvalue = [9040, 2482]\nclass = Yes'),
          Text(1116.0, 1708.457142857143, 'PM25 <= 16.5\ngini = 0.494\nsamples = 197
         2\nvalue = [1394, 1745]\nclass = No'),
          Text(593.8348623853211, 1397.8285714285716, 'NMHC <= 0.235 \cdot i = 0.446 \cdot i
         samples = 1040\nvalue = [1092, 553]\nclass = Yes'),
          Text(327.6330275229358, 1087.2, 'NMHC <= 0.155\ngini = 0.399\nsamples = 91
         5\nvalue = [1043, 396]\nclass = Yes'),
          Text(163.8165137614679, 776.5714285714287, 'NO <= 5.5\ngini = 0.245\nsampl
         es = 219\nvalue = [282, 47]\nclass = Yes'),
          Text(81.90825688073394, 465.9428571428573, '0 3 <= 12.5 \neq 0.044 = 0.044
         ples = 91\nvalue = [130, 3]\nclass = Yes'),
          Text(40.95412844036697, 155.3142857142857, 'gini = 0.117\nsamples = 35\nva
         lue = [45, 3]\nclass = Yes'),
          Text(122.86238532110092, 155.3142857142857, 'gini = 0.0\nsamples = 56\nval
         ue = [85, 0]\nclass = Yes'),
          Text(245.72477064220183, 465.9428571428573, 'NO 2 <= 23.5 \le 0.348 \le 0.348
         amples = 128\nvalue = [152, 44]\nclass = Yes'),
          Text(204.77064220183485, 155.3142857142857, 'gini = 0.408\nsamples = 12\nv \_
```

```
In [38]: print("Linear:",lis)
    print("Lasso:",las)
    print("Ridge:",rrs)
    print("ElasticNet:",ens)
    print("Logistic:",los)
    print("Random Forest:",rfcs)
```

Linear: 0.8305073316874275 Lasso: 0.5846802065548421 Ridge: 0.8305645679872002 ElasticNet: 0.7133987542437089 Logistic: 0.7778452814904819

Random Forest: 0.8899496615170978

Best Model is Random Forest

MADRID 2012

In [39]: df2=pd.read_csv("C:/Users/user/Downloads/FP1_air/csvs_per_year/csvs_per_year/modef2

Out[39]:

	date	BEN	со	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL	
0	2012- 09-01 01:00:00	NaN	0.2	NaN	NaN	7.0	18.0	NaN	NaN	NaN	2.0	NaN	NaN	28
1	2012- 09-01 01:00:00	0.3	0.3	0.7	NaN	3.0	18.0	55.0	10.0	9.0	1.0	NaN	2.4	28
2	2012- 09-01 01:00:00	0.4	NaN	0.7	NaN	2.0	10.0	NaN	NaN	NaN	NaN	NaN	1.5	28
3	2012- 09-01 01:00:00	NaN	0.2	NaN	NaN	1.0	6.0	50.0	NaN	NaN	NaN	NaN	NaN	28
4	2012- 09-01 01:00:00	NaN	NaN	NaN	NaN	1.0	13.0	54.0	NaN	NaN	3.0	NaN	NaN	28
210715	2012- 03-01 00:00:00	NaN	0.6	NaN	NaN	37.0	84.0	14.0	NaN	NaN	NaN	NaN	NaN	28
210716	2012- 03-01 00:00:00	NaN	0.4	NaN	NaN	5.0	76.0	NaN	17.0	NaN	7.0	NaN	NaN	28
210717	2012- 03-01 00:00:00	NaN	NaN	NaN	0.34	3.0	41.0	24.0	NaN	NaN	NaN	1.34	NaN	28
210718	2012- 03-01 00:00:00	NaN	NaN	NaN	NaN	2.0	44.0	36.0	NaN	NaN	NaN	NaN	NaN	28
210719	2012- 03-01 00:00:00	NaN	NaN	NaN	NaN	2.0	56.0	40.0	18.0	NaN	NaN	NaN	NaN	28

210720 rows × 14 columns

4

```
In [40]: df2.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 210720 entries, 0 to 210719
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	date	210720 non-null	object
1	BEN	51511 non-null	float64
2	CO	87097 non-null	float64
3	EBE	51482 non-null	float64
4	NMHC	30736 non-null	float64
5	NO	209871 non-null	float64
6	NO_2	209872 non-null	float64
7	0_3	122339 non-null	float64
8	PM10	104838 non-null	float64
9	PM25	52164 non-null	float64
10	S0_2	87333 non-null	float64
11	TCH	30736 non-null	float64
12	TOL	51373 non-null	float64
13	station	210720 non-null	int64

dtypes: float64(12), int64(1), object(1)

memory usage: 22.5+ MB

Out[41]:

	date	BEN	со	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL	٤
6	2012- 09-01 01:00:00	0.4	0.2	0.8	0.24	1.0	7.0	57.0	11.0	7.0	2.0	1.33	0.6	280
30	2012- 09-01 02:00:00	0.4	0.2	0.7	0.24	1.0	5.0	55.0	5.0	5.0	2.0	1.33	0.5	280
54	2012- 09-01 03:00:00	0.4	0.2	0.7	0.24	1.0	4.0	56.0	6.0	4.0	2.0	1.33	0.5	280
78	2012- 09-01 04:00:00	0.3	0.2	0.7	0.25	1.0	5.0	54.0	6.0	5.0	2.0	1.34	0.4	280
102	2012- 09-01 05:00:00	0.4	0.2	0.7	0.24	1.0	3.0	53.0	8.0	5.0	2.0	1.33	0.5	280
210654	2012- 02-29 22:00:00	0.6	0.3	0.5	0.09	1.0	35.0	57.0	25.0	21.0	3.0	1.12	2.3	280
210673	2012- 02-29 23:00:00	2.0	0.4	2.4	0.21	16.0	79.0	20.0	37.0	25.0	12.0	1.33	6.2	280
210678	2012- 02-29 23:00:00	0.7	0.3	0.6	0.09	1.0	27.0	63.0	22.0	18.0	3.0	1.11	1.9	280
210697	2012- 03-01 00:00:00	1.5	0.4	1.7	0.21	16.0	79.0	17.0	28.0	21.0	11.0	1.34	4.9	280
210702	2012- 03-01 00:00:00	0.6	0.3	0.5	0.09	1.0	23.0	61.0	18.0	16.0	3.0	1.11	1.2	280

10916 rows × 14 columns

In [42]: df3=df3.drop(["date"],axis=1)

```
In [43]: sns.heatmap(df3.corr())
```

Out[43]: <AxesSubplot:>


```
In [44]: x=df3.drop(["TCH"],axis=1)
y=df3["TCH"]
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear

```
In [45]: li=LinearRegression()
li.fit(x_train,y_train)
```

Out[45]: LinearRegression()

```
In [ ]:
```

```
In [46]: prediction=li.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[46]: <matplotlib.collections.PathCollection at 0x1aa72e176a0>


```
In [47]: lis=li.score(x_test,y_test)
In [48]: df3["TCH"].value_counts()
Out[48]: 1.30
                  737
          1.31
                  676
          1.32
                  644
          1.33
                  552
          1.29
                  529
         3.03
                    1
         3.01
                    1
         2.47
                    1
         2.33
                    1
          2.07
         Name: TCH, Length: 167, dtype: int64
In [49]: |df3.loc[df3["TCH"]<1.40,"TCH"]=1</pre>
         df3.loc[df3["TCH"]>1.40,"TCH"]=2
         df3["TCH"].value_counts()
Out[49]: 1.0
                 8772
          2.0
                 2144
         Name: TCH, dtype: int64
 In [ ]:
```

Lasso

```
In [50]: la=Lasso(alpha=5)
la.fit(x_train,y_train)
Out[50]: Lasso(alpha=5)
```

```
In [51]: prediction1=la.predict(x_test)
    plt.scatter(y_test,prediction1)
```

Out[51]: <matplotlib.collections.PathCollection at 0x1aa71741790>


```
In [52]: las=la.score(x_test,y_test)
```

Ridge

```
In [53]: rr=Ridge(alpha=1)
rr.fit(x_train,y_train)
```

Out[53]: Ridge(alpha=1)

```
In [54]: prediction2=rr.predict(x_test)
   plt.scatter(y_test,prediction2)
```

Out[54]: <matplotlib.collections.PathCollection at 0x1aa717a3310>


```
In [55]: rrs=rr.score(x_test,y_test)
```

ElasticNet

```
In [56]:
         en=ElasticNet()
         en.fit(x_train,y_train)
Out[56]: ElasticNet()
In [57]:
         prediction2=rr.predict(x_test)
         plt.scatter(y_test,prediction2)
Out[57]: <matplotlib.collections.PathCollection at 0x1aa717f88e0>
           2.4
           2.2
           2.0
           1.8
           1.6
           1.4
           1.2
                     1.5
                             2.0
                                    2.5
                                            3.0
                                                   3.5
              1.0
                                                          4.0
In [58]:
         ens=en.score(x_test,y_test)
In [59]:
         print(rr.score(x_test,y_test))
         rr.score(x_train,y_train)
         0.6854937601485451
Out[59]: 0.6889077427743225
         Logistic
In [60]:
         g={"TCH":{1.0:"Low",2.0:"High"}}
         df3=df3.replace(g)
         df3["TCH"].value_counts()
```

87722144

Name: TCH, dtype: int64

Out[60]: Low

High

```
In [61]: x=df3.drop(["TCH"],axis=1)
    y=df3["TCH"]
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [62]: lo=LogisticRegression()
```

In [62]: lo=LogisticRegression()
lo.fit(x_train,y_train)

Out[62]: LogisticRegression()

```
In [63]: prediction3=lo.predict(x_test)
plt.scatter(y_test,prediction3)
```

Out[63]: <matplotlib.collections.PathCollection at 0x1aa716bc580>


```
In [64]: los=lo.score(x_test,y_test)
```

Random Forest

```
In [65]: from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import GridSearchCV
```

```
In [66]: g1={"TCH":{"Low":1.0,"High":2.0}}
df3=df3.replace(g1)
```

```
In [67]: x=df3.drop(["TCH"],axis=1)
y=df3["TCH"]
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

```
In [68]: rfc=RandomForestClassifier()
rfc.fit(x_train,y_train)
```

Out[68]: RandomForestClassifier()

```
In [69]:
         parameter={
              'max_depth':[1,2,4,5,6],
              'min samples_leaf':[5,10,15,20,25],
              'n estimators':[10,20,30,40,50]
In [70]: grid search=GridSearchCV(estimator=rfc,param grid=parameter,cv=2,scoring="accu
         grid_search.fit(x_train,y_train)
Out[70]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                       param_grid={'max_depth': [1, 2, 4, 5, 6],
                                   'min samples leaf': [5, 10, 15, 20, 25],
                                   'n_estimators': [10, 20, 30, 40, 50]},
                       scoring='accuracy')
In [71]: rfcs=grid_search.best_score_
In [72]: rfc best=grid search.best estimator
In [73]: from sklearn.tree import plot tree
         plt.figure(figsize=(80,40))
         plot tree(rfc best.estimators [5],feature names=x.columns,class names=['Yes',
Out[73]: [Text(2493.5625, 2019.0857142857144, 'TOL <= 7.15\ngini = 0.308\nsamples =
         4812\nvalue = [6188, 1453]\nclass = Yes'),
          Text(1488.0, 1708.457142857143, 'NO <= 22.5\ngini = 0.259\nsamples = 4518
         \nvalue = [6094, 1098] \setminus class = Yes'),
          Text(744.0, 1397.8285714285716, '0 3 <= 23.5 \setminus gini = 0.178 \setminus gini = 3782
         \nvalue = [5456, 597]\nclass = Yes'),
          Text(372.0, 1087.2, 'NMHC <= 0.275\ngini = 0.452\nsamples = 574\nvalue =
          [603, 317] \setminus class = Yes'),
          Text(186.0, 776.5714285714287, 'PM10 <= 16.5\ngini = 0.258\nsamples = 406
         \nvalue = [556, 100]\nclass = Yes'),
          Text(93.0, 465.9428571428573, 'station <= 28079016.0\ngini = 0.18\nsamples
         = 248\nvalue = [361, 40]\nclass = Yes'),
          Text(46.5, 155.3142857142857, 'gini = 0.0\nsamples = 44\nvalue = [73, 0]\n
         class = Yes'),
          Text(139.5, 155.3142857142857, 'gini = 0.214\nsamples = 204\nvalue = [288,
         40\nclass = Yes'),
          Text(279.0, 465.9428571428573, 'TOL <= 1.05\ngini = 0.36\nsamples = 158\nv
         alue = [195, 60]\nclass = Yes'),
          Text(232.5, 155.3142857142857, 'gini = 0.5\nsamples = 23\nvalue = [20, 20]
```

```
In [74]: print("Linear:",lis)
    print("Lasso:",las)
    print("Ridge:",rrs)
    print("ElasticNet:",ens)
    print("Logistic:",los)
    print("Random Forest:",rfcs)
```

Linear: 0.6851032563985955 Lasso: -0.0014194828338582877 Ridge: 0.6854937601485451

ElasticNet: 0.34195759108298374 Logistic: 0.8006106870229007 Random Forest: 0.9331240896615699

Best model is Random Forest

In []: