Name	LA()
_ , , , , , , , , , , , , , , , , , , ,	(

B. Results and data analysis (50 pts)

Data Sheet 1, inelastic collision (25 pts)

Mass of Glider 1, $m_1 = \underline{\hspace{1cm}} \pm \underline{\hspace{1cm}}$

Mass of Glider 2, $m_2 = \underline{\hspace{1cm}} \pm \underline{\hspace{1cm}}$

Observations:

	Trial #	1	2	
Before Collision	$ec{V_1}$ ()			
	$ec{V_2}$ ()			
	Total Momentum \vec{P} , $m_1\mathbf{v}_1 + m_2\mathbf{v}_2$ ()			
After Collision	$ec{V}_{_{1}}$ ()			
	$ec{V_2}$ ()			
	Total Momentum \vec{P} ', $m_1\mathbf{v_1}' + m_2\mathbf{v_2}'$			
	$\Delta P = \left \vec{P}' - \vec{P} \right ()$			
	$\%\Delta P = \Delta P / \vec{P} $ $\times 100\%$			

Data Sheet 1 (continue), inelastic collision Paste velocity-time graphs here: Figure 1. Velocity versus time of Glider 1

Figure 2. _____

Data Sheet 2, elastic collision (25 pts)

Mass of Glider 1, $m_1 = $	<u>±</u>
Mass of Glider 2, $m_2 = $	<u>±</u>
Observations:	

	Trial #	1	2	
Before Collision	$ec{V_1}$ ()			
	\vec{V}_2 ()			
	Total Momentum \vec{P} , $m_1\mathbf{v_1} + m_2\mathbf{v_2}$ ()			
After Collision	$ec{V_1}$ ()			
	\vec{V}_2 ()			
	Total Momentum \vec{P} ', $m_1\mathbf{v_1}' + m_2\mathbf{v_2}'$			
	$\Delta P = \left \vec{P}' - \vec{P} \right ()$			
	$\%\Delta P = \Delta P / \vec{P} $ $\times 100\%$			

Data Sheet 2 (continue), elastic collision Paste velocity-time graphs here: Figure 3. _____

TA signature:

C.	Answer the following	questions after	the experiment	(8 pts each)
----	----------------------	-----------------	----------------	--------------

4. Do the velocities of the gliders remain constant before the collision? Explain your observations.

5. Do the measured ΔP and $\%\Delta P$ change with the initial value of the total momentum? In the other words, is there any difference between trials with different initial momentum? Explain your results.

- 6. (i) Calculate the total momentum and its uncertainty before and after the collision from Trial 2 of both elastic and inelastic collisions. (**Hint:** Refer to "The Analysis of Errors a practical guide" in the lab manual about the combining errors starting from page 7)
 - (ii) Based on the answers of 6(i), conclude whether the total momentum is conserved in your Trial 2 of both the elastic and inelastic collisions?

- 7. (i) Calculate the total kinetic energy and its uncertainty before and after the collision from Trial 2 of both elastic and inelastic collisions. (**Hint:** Refer to "The Analysis of Errors a practical guide" in the lab manual about the combining errors starting from page 7)
 - (ii) Based on the answers of 7(i), conclude whether the kinetic energy is conserved in your Trial 2 of the elastic and inelastic collisions?