

A cantilever beam is subjected to a tensile load and is also analyzed for bending. The beam has the following specifications:

- Applied Load (P): 1000 N, applied along the x-axis (tensile direction)
- Beam Length (L): 300 mm
- Beam Cross-Section Radius (R): 15 mm (circular cross-section)
- Material: Structural Steel
 - Young's Modulus (E): Use standard value for structural steel
 - o Poisson's Ratio (v): Use standard value for structural steel

Objectives:

- 1. 1D Tensile Load Analysis:
 - Find the maximum tensile stress
 - o Find the **total deformation** (elongation)
- 2. 3D Bending Load Analysis (Cantilever Configuration):
 - Treat the load as applied at the free end, perpendicular to the beam z or -y- axis (for bending)
 - Find the maximum bending stress
 - Find the total deformation (tip deflection)

Expected Results:

Provide numerical values for:

• **Maximum Stress** (in MPa or N/mm²)

• **Total Deformation** (in mm) results put the screenshots from static structures to results.

Step 1

Step 3 Imaginary Geometry of 1D

Real Geometry of 3D

Step 4 Meshing of 1D Model

Step 4 Meshing of 3D Model

Step 5 setup for 1D

For 3D for Z-axis load

Solution of 1D Total Deformation, minimum stress and direct stress

Total deformation in 1D 2x10⁶

TOTAL DEFORMATION WITH TENSILE LOAD

Solution of 3D Total Deformation

