

SGL 00/9

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applic. No. : 10/006,419 Confirmation No: 2778
Applicant : Oswin Öttinger et al.
Filed : December 7, 2001
Art Unit : 1712
Examiner : Michael J. Feely
Title : Acrylic Resin-Impregnated Bodies Formed of Expanded Graphite, Process for Producing Such Bodies and Sealing Elements, Fuel Cell Components and Heat-Conducting Elements Formed of the Bodies
Docket No. : SGL 00/9
Customer No. : 24131

DECLARATION under 37 C.F.R. § 1.131

The undersigned, Oswin Öttinger and Jürgen Bacher, co-inventors named in this application, hereby declare that:

The invention described and claimed in the above-identified application was made prior to November 30, 2000.

Enclosed, as corroborating evidence of the conception, the diligence, and the reduction of the invention are the following:

App. 1: May 31, 2000 – Final Report (Abschlußbericht) for Project PV - 2000

- 035 titled "Expandierter Graphit als Basis von Brennstoffzellenkomponenten" (Expanded Graphite as Basis for Fuel Cell Components). The report is titled "Untersuchung des Infiltrierverfahrens von unterschiedlichen Sigraflex-Platten mit Methylmethacrylatharz Plex 6918-O" (Investigation of the Impregnation of Different Sigraflex-Panels with Methylmethacrylate Resin (Plex 6918-O)) and was signed by inventor Öttinger on May 30, 2000 and by inventor Bacher on May 31, 2000.

10/006,419

Declaration 37 CFR § 1.131

It should be noted that on page 2 of the report the resin PLEX 6518-O is identified as triethyleneglycodimethacrylate.

Throughout the report, we use the term "graphite plates." The report deals with bodies made of partly recompressed expanded graphite (graphite foil). This can be seen from the materials classification used in the tables, namely, the classification of the flexible graphite materials manufactured by SGL Carbon Group, the assignee of the instant application.

App. 1a: Product catalogue for S/GRAFLEX® products of SGL Carbon Group. The catalogue is the 1999 edition, which was the publication used during the time leading up to the invention and about the time of the report. In the booklet, such properties as bulk density and ash content are described of the F02510C, F05007C, F05010Z, L10010C, L20020C, and L40005C grades of graphite panels used as starting materials for the work in the above Final Report. See in particular page 7 of the booklet for an explanation of the grade designations and page 8 for product specifications.

App. 2: June 13, 2000 – Final Report (*Abschlußbericht*) for Project PV - 2000 - 040 titled "Expandierter Graphit als Basis von Brennstoffzellenkomponenten" (Expanded Graphite as Basis for Fuel Cell Components). The report is titled "Thermogravimetrischer Vergleich von unterschiedlichen Harzsystemen" (Thermogravimetric Comparison of Different Resin Systems) and was signed by inventor Öttinger on June 9, 2000 and by inventor Bacher on June 13, 2000.

App. 3: August 1, 2000 – Final Report (*Abschlußbericht*) for Project PV - 2000 - 050 titled "Expandierter Graphit als Basis von Brennstoffzellenkomponenten" (Expanded Graphite as Basis for Fuel Cell Components). The report is titled "Vorversuche zu dem Alterungs- und Härtungsverhalten von unterschiedlichen Imprägnierharzsystemen" (Preliminary Experiments of the Aging and Hardening Behavior of Different Impregnation Resin Systems) and was signed by inventor Öttinger on July 31, 2000 and by inventor Bacher on August 1, 2000. The report deals with different resins, among them MMA as used in the above-identified application (10/006,419 - SGL 00/9) and those of our issued U.S. Patent No. 6,746,771 (SGL 00/8).

10/006,419

Declaration 37 CFR § 1.131

App. 4a: May 06, 2000 – record of a leakage measurement with graphite foil L10010C impregnated with methylmethacrylate (MMA) resin.

App. 4b: May 8, 2000 – request to the central laboratory of the SGL Carbon Group to carry out thermogravimetric (TGA) and differential scanning calorimetric (DSC) analysis of MMA and other resins (among them epoxy and polyurethane, cf. our patent US 6,746,771, SGL 00/8).

App. 4c: May 9, 2000 – TGA-diagram of MMA resin.

App. 4d: May 10, 2000 – DSC-diagram.

App. 4e: May 12, 2000 – record of a leakage measurement with graphite foil L10010C impregnated with methylmethacrylate (MMA) resin to a higher degree.

App. 4f: June 21, 2000 – record of rheometric measurements (with a handwritten note that the measurements relate to MMA resin).

App. 5: June 2000 – report underlying a company-internal presentation on the progress of the development of "Impregnated Expanded Graphite as BPP-Material."

App. 6: June 4, 2000 – a four page document with various exchanges between Röhm (Degussa-Hüls Gruppe) and the inventor Öttinger dated March and June 2000. Röhm was the supplier of the methacrylate resin PLEX 6918-O used in the inventors' work. The first page is a letter from Röhm to Dr. Öttinger dated 2000-03-16 (March 16, 2000), with the heading "Imprägnierung von Graphit" (Impregnation of Graphite). The letter acknowledges the inventor's plans to impregnate graphite bodies with a monomer solution and offers PLEX 6918-O for his purpose. In the third paragraph of the letter, it is stated that the product PLEX 6918-O is free of MMA (methylmethacrylate) and instead contains high boiling methacrylate monomers. The fourth paragraph of the letter refers to an attachment reproducing "the procedure described and intended by you" (Dr. Öttinger). The second page is a shipment notice for a 5 kg quantity of PLEX 6918-O being sent from Röhm Co. to the inventors. The remaining two pages of this appendix are a data sheet (*Merkblatt 6-37*) for PLEX 6918-O.

It follows clearly that we worked diligently, during the months leading up to the filing of the first patent application in a WTO country (i.e., Germany) on December 7,

10/006,419

Declaration 37 CFR § 1.131

2000, and that we worked diligently with the corporate patent attorney during the time leading up to the first patent application. The invention described in claimed in the instant application was made before November 30, 2000.

The undersigned declare that all statements made herein of their own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under 18 U.S.C. § 1001 and such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Oswin Öttinger 29 Sept. 05
Oswin Öttinger Date

Jürgen Bacher 30. Sept. 05
Jürgen Bacher Date

SGL CARBON GROUP SGL TECHNIK GmbH	Entwicklung BL - IS	Entwicklung FOME
Dateiname: PV2000035.doc Ausgabedatum: 31.05.00	Abschlußbericht	Projektvorgangsnummer: PV - 2000 - 035

Projektnummer: 65 - 042	Projektbezeichnung: Expandierter Graphit als Basis von Brennstoffzellenkomponenten	Projektleiter: Dr. Öttinger
Projektbearbeiter: Hr. Bacher	Projektvorgang: Untersuchung des Infiltrerverhaltens von unterschiedlichen Sigraflex - Platten mit Methylmethacrylatharz (Plex 6918-O)	

Verteiler:	H. Hirschvogel	FOM
	H. Baumann	FOMP
	H. Herrmann	FOMP
	H. Kienberger	FOMV
	H. Wackerbauer	FOMV
	H. Dr. Neumann	TT

1) Einleitung

Um expandierten Graphit als Basis für Brennstoffzellenkomponenten zu verwenden, wurde im FOME – Labor ein Tränkharz PLEX 6918-O (Methylmethacrylatharz / MMA) von der Firma Röhm für die Infiltration von Graphitplatten (unterschiedlicher Dicke und Dichte) verwendet. Dieses Harz wird zum Abdichten von Gußteilen eingesetzt. Das Tränkharz PLEX 6918-O wurde vorher mit den Katalysatoren Peroxan AZDN (0,3 %) und V 40 (0,5 %) gemischt, bevor man die Graphitplatten durch reines Tauchen imprägnierte. Anschließend wurden die Platten oberflächlich abgewischt und bei 100 °C 70 h gehärtet. Bei der Aushärtereaktion handelt es sich um eine radikalische Polymerisation.

SGL CARBON GROUP

2) Versuchsbeschreibung

Graphitplattenformat:	100 mm x 100 mm
Graphitflächengewicht:	250 bis 2000 g/m ²
Graphitausgangsdichten:	0,5 bzw. 1,0 g/cm ³
Imprägnierlösung:	99,2 % Methylmethacrylatharz Plex 6918-O (Triethylenglycoldimethacrylat) Katalysatoren: 0,3 % Peroxan AZDN (2,2 Dimethyl-2,2 azodipropiononitril); 0,5 % V 40 (1,1 Azobis - (1 cyclohexancarbonitrile))
Viskosität:	Plex 6918-O: 10 - 14 mPas bei 25 °C
Gaphitvorkonditionierung:	100 °C, 30 min
Tauchimprägnierung:	Die Graphitplatten wurden in einem geschlossenen Gefäß getaucht. Nach der bestimmten Imprägnierzeit (1; 5; 9 Stunden) wurden die Platten aus dem Bad herausgenommen und oberflächlich abgewischt. Dabei wurde keine Klebeneigung des Harzes festgestellt.
Aushärtung: noch nicht	100 °C, 70 h (Die gewählte Aushärtebedingung wurde optimiert)
Messung des Durchgangswiderstandes:	siehe PV 2000019
Messung der Heliumleckagerate senkrecht zur Plattenebene:	siehe PV2000012; Prüfgas: Helium; Differenzdruck: 1 bar

3) Versuchsdurchführung

3.1) Harzaufnahmeverhalten der verschiedenen Graphitplatten bei unterschiedlichen Imprägnierzeiten

Methylmethacrylatharzimprägnierung Plex 6918-O					
Imprägnierzeit 1 h	Graphitflächen- in g/m ²	Harzaufnahme in g/m ² (Naß)	Harzaufnahme in g/m ² (Trocken)	Harzausbeute in %	Harzanteil in % (Trocken)
F02510C	250	78	78	100,0	23,8
F05007C	350	187	183	97,9	34,3
F05010Z	500	101	100	99,0	16,7
L10010C	1000	113	113	100,0	10,2
L20010C	2000	164	157	95,7	7,3
L40005C	2000	661	652	98,6	24,6

Tab. 1: Harzaufnahmeverhalten verschiedener Graphitplatten bei 1 Stunde Imprägnierzeit mit Methylmethacrylatharz (Tauchimprägnierung).

Methylmethacrylatharzimprägnierung Plex 6918-O					
Imprägnierzeit 5 h	Graphitflächen- in g/m ²	Harzaufnahme in g/m ² (Naß)	Harzaufnahme in g/m ² (Trocken)	Harzausbeute in %	Harzanteil in % (Trocken)
F02510C	250	126	125	99,2	33,3
F05007C	350	320	316	98,8	47,4
F05010Z	500	180	180	100,0	26,5
L10010C	1000	195	195	100,0	16,3
L20010C	2000	272	268	98,5	11,8
L40005C	2000	1205	1196	99,3	37,4

Tab. 2: Harzaufnahmeverhalten verschiedener Graphitplatten bei 5 Stunde Imprägnierzeit mit Methylmethacrylatharz (Tauchimprägnierung).

Methylmethacrylatharzimprägnierung Plex 6918-O					
Imprägnierzeit 9 h	Graphitflächen- in g/m ²	Harzaufnahme in g/m ² (Naß)	Harzaufnahme in g/m ² (Trocken)	Harzausbeute in %	Harzanteil in % (Trocken)
F02510C	250	143	141	98,6	36,1
F05007C	350	384	380	99,0	52,1
F05010Z	500	228	227	99,6	31,2
L10010C	1000	245	249	101,6	19,9
L20010C	2000	338	338	100,0	14,5
L40005C	2000	1312	1297	98,9	39,3

Tab. 3: Harzaufnahmeverhalten verschiedener Graphitplatten bei 9 Stunde Imprägnierzeit mit Methylmethacrylatharz (Tauchimprägnierung).

Abb. 1: Übersicht über die Trockenharzaufnahme der unterschiedlichen Graphitmaterialien bei verschiedenen Imprägnierzeiten.

Abb. 2: Übersicht über den Harzanteil der unterschiedlichen Graphitmaterialien bei verschiedenen Imprägnierzeiten.

3.2) Vergleich der Leckagerate und des Durchgangswiderstandes der methylmethacrylatharzimprägnierten Graphitplatten

Methylmethacrylatharzimprägnierung Plex 6918-O							
Imprägnierzeit 1 h	Graphitflächen- gewicht in g/m ²	Harzaufnahme in g/m ² (Trocken)	Harzanteil in % (Trocken)	Durchgangs- widerstand in mΩ	Leckagerate in ml/min	Leckagerate in mg/min	Leckagerate in mg/(s·m ²)
F02510C	250	78	23,8	0,10	0,007	0,001	0,010
F05007C	350	183	34,3	0,18			
F05010Z	500	100	16,7	0,17			
L10010C	1000	113	10,2	0,35	0,011	0,002	0,016
L20010C	2000	157	7,3	0,45			
L40005C	2000	652	24,6	0,77			

Tab. 4: Übersicht des Durchgangswiderstandes und der Heliumleckagerate der unterschiedlichen Graphitmaterialien bei 1 Stunde Methylmethacrylatharzimprägnierung.

Methylmethacrylatharzimprägnierung Plex 6918-O							
Imprägnierzeit 5 h	Graphitflächen- gewicht in g/m ²	Harzaufnahme in g/m ² (Trocken)	Harzanteil in % (Trocken)	Durchgangs- widerstand in mΩ	Leckagerate in ml/min	Leckagerate in mg/min	Leckagerate in mg/(s·m ²)
F02510C	250	125	33,3	0,19			
F05007C	350	316	47,4	0,23			
F05010Z	500	180	26,5	0,23			
L10010C	1000	195	16,3	0,48	0,003	0,001	0,005
L20010C	2000	268	11,8	0,55			
L40005C	2000	1196	37,4	0,76			

Tab. 5: Übersicht des Durchgangswiderstandes und der Heliumleckagerate der unterschiedlichen Graphitmaterialien bei 5 Stunden Methylmethacrylatharzimprägnierung.

Methylmethacrylatharzimprägnierung Plex 6918-O							
Imprägnierzeit 9 h	Graphitflächen- gewicht in g/m ²	Harzaufnahme in g/m ² (Trocken)	Harzanteil in % (Trocken)	Durchgangs- widerstand in mΩ	Leckagerate in ml/min	Leckagerate in mg/min	Leckagerate in mg/(s·m ²)
F02510C	250	141	36,1	0,37	< 0,001	< 0,0002	< 0,001
F05007C	350	380	52,1	0,28			
F05010Z	500	227	31,2	0,23			
L10010C	1000	249	19,9	0,43	< 0,001	< 0,0002	< 0,001
L20010C	2000	338	14,5	0,58			
L40005C	2000	1297	39,3	0,77			

Tab. 6: Übersicht des Durchgangswiderstandes und der Heliumleckagerate der unterschiedlichen Graphitmaterialien bei 9 Stunden Methylmethacrylatharzimprägnierung (Blasenbildung bei F02510C und F05007C).

Abb. 3: Übersicht des Durchgangswiderandes von F05007C, F05010Z und L10010C bei verschiedenen Methylmethacrylatharzgehalten.

Abb. 4: Übersicht des Durchgangswiderandes von F02510C, L20010C und L40005C bei verschiedenen Methylmethacrylatharzgehalten.

Abb. 5: Übersicht der Leckagerate in $\text{mg}/(\text{m}^2 \cdot \text{s})$ senkrecht zur Plattenebene der F02510C und L10010C Graphitplatten bei verschiedenen Methylmethacrylatharzgehalten.

3.3) Leckageverhalten und Durchgangswiderstand von Graphitplatten mit unterschiedlicher Harzimprägnierung (Furanharz, Epoxidharz, Siliconharz, Polyurethanharz, Methylmethacrylatharz)

Abb. 6: Vergleich der Leckageraten von F02510C imprägniert mit unterschiedlichen Harzsystemen.

Abb. 7: Vergleich der Heliumleckagerate von L10010C – Graphitplatten imprägniert mit unterschiedlichen Harzsystemen.

Abb. 8: Vergleich der Durchgangswiderstände von F02510C und L10010C, imprägniert mit verschiedenen Harzsystemen.

4) Zusammenfassung

- Die Darstellung von Methylmethacrylatharz ist eine radikalische Polymerisation. Bei 100 °C härtet die imprägnierten Platten vollständig aus. Die Harzausbeute beträgt dabei 98 – 100 %.
- Die Naßharzaufnahme von Methylmethacrylatharz ist bei der Tauchimprägnierung nur etwas geringer als die von Furfurylalkohol bei gleicher Verfahrensweise. Da die Aushärterreaktion von MMA - Harz im Gegensatz zur Polykondensationsreaktion von Furanharz eine radikalische Polymerisation ist, liegt die Trockenharzaufnahme von Methylmethacrylat deutlich höher als bei der Furanharzimprägnierung.
- Durch die sehr geringen Abdampfverluste von Methylmethacrylat beim Härtet können bei der angewandten Tauchimprägnierung relativ hohe Trockenharzanteile bei allen Graphitplatten erreicht werden. So liegt der Harzanteil der methylmethacrylatimprägnierten Platten bei allen Materialien $\geq 10\%$ (außer L20010C) ab ca. 1 Stunden Imprägnierzeit. L20010C hat den geringsten prozentualen Harzanteil von allen Graphitmaterialien und erreicht erst nach 3 Stunden einen Trockenharzanteil von ca. 10 %.
- Bei sehr hohen Harzanteilen $\geq 35\%$ kann bei der Tauchimprägnierung Blasenbildung auftreten.
- Der Durchgangswiderstand der methylmethacrylatharzimprägnierten Graphitplatten mit unterschiedlichen Harzgehalten veränderte sich unwesentlich bei gleichem Graphitbasismaterial und ist insgesamt gesehen auf niedrigem Niveau.
- Die Permeabilität der mit MMA – Harz imprägnierten Platten liegt schon bei der Imprägnierzeit von 1 Stunde auf sehr niedrigen Niveau, beeinflußt durch den relativ hohen Anfangsharzanteil (Abb. 5).
- Vergleicht man die mit verschiedenen Harzen imprägnierten Graphitplatten untereinander, so ist die Leckagerate der MMA – Harz imprägnierten Graphitplatten deutlich geringer als bei den anderen Imprägniersystemen (Abb. 8).
- Hinsichtlich des Durchgangswiderstandes liegen MMA - Harz imprägnierte Graphitplatten etwa auf dem gleich guten Niveau von furanharzimprägnierten Graphitplatten (Abb. 9).

30/05/00 Oskar Öttinger
Entwicklungsleiter Datum/Unterschrift

37.05.00 J. Baier
Projektbearbeiter Datum/Unterschrift

SGL CARBON GROUP SGL TECHNIK GmbH Dateiname: PV2000040 Ausgabedatum: 13.06.00	Entwicklung BL - IS Abschlußbericht	Entwicklung FOME Projektvorgangsnummer: PV - 2000 - 040
Projektnummer: 65 - 042	Projektbezeichnung: Expandierter Graphit als Basis für Brennstoffzellenkomponenten	Projektleiter: Dr. Öttinger
Projektbearbeiter: Hr. Bacher	Projektvorgang: Thermogravimetrischer Vergleich von unterschiedlichen Harzsystemen	

Verteiler: H. Hirschvogel FOM
H. Baumann FOMP
H. Kienberger FOMV
H. Wackerbauer FOMV
H. Dr. Neumann TT

1) Hintergrund

Um die unterschiedlichen Harzsysteme zur Infiltration in Graphitplatten hinsichtlich ihres Aushärteverhaltens und der Harzausbeute vergleichen zu können, wurden im Zentrallabor thermogravimetrische Untersuchungen der Harzsystemen an Luft (20 l pro Stunde) durchgeführt. Die Aufheizrate von RT bis 200 bzw. 300 °C betrug dabei 1 K pro Minute.

SGL CARBON GROUP

2) Harzsysteme

Furanharz:	100 T Furfurylalkohol 10 T Maleinsäureanhydrid
Epoxidharz:	100 T Rütapox VE 4834 (> 50 % Bisphenol – A – diglycidylether; 25 – 50 % Methylhexahydrophthalsäureanhydrid)
Phenolharz:	100 T Bakelite Harz 6148 GN (< 10 % Natriumhydroxid, < 5 % Methanol, < 0,5 % Formaldehyd, < 0,5 % Phenol)
Polyurethanharz:	100 T Blendur VP KU3-4520 (75-85 % Diphenylmethandiisocyanat) (15-25 % Bis(4,4-glycidyloxyphenyl)-propan) Katalysator: 10 T Blendur VP PU 90IK06 (modifiziertes Diphenylmethandiisocyanat)
Siliconharz:	100 T Silres MSE 100 Summenformel: $\text{CH}_3\text{Si}(\text{O})_{1.1}(\text{OCH}_3)_{0.8}$
Polyesterimidharz:	100 T E8570 mit Styrol – Reaktivverdünnner
Methylmethacrylatharz:	99,2 T Methylmethacrylatharz Plex 6918-O (Triethylenglycoldimethacrylat) Katalysatoren: 0,3 T Peroxan AZDN (2,2 Dimethyl-2,2 azodipropiononitril); 0,5 T V 40 (1,1 Azobis - (1 cyclohexancarbonitrile))

3) Vergleich der thermogravimetrischen Untersuchungen der verschiedenen Harzsysteme

Abb. 1: Vergleich der TGA – Kurven der unterschiedlichen Harzimprägniersysteme.

Harzausbeute nach Aushärtung in %	Methylmethacrylatharz	Epoxidharz	Siliconharz	Polyurethanharz	Polyesterimidharz	Phenolharz	Furanharz
TGA Werte Reinsubstanz	94	83	47	99	74	40	19
Typische Werte in Graphitplatten	98 - 100	75 - 98	60 - 80	97 - 100	55 - 80	45-65	55 - 80

Tab. 1: Vergleich der TGA - Harzausbeuten mit den Harzausbeuten in den Graphitplatten (ausgehärtet im Trockenschrank) der unterschiedlichen Harzimprägniersysteme.

4) Zusammenfassung

- Vergleicht man nur die TGA – Kurven der einzelnen Harzsysteme untereinander, so kann man große Unterschiede feststellen. Die Harzsysteme, die nach dem Mechanismus der Polykondensation aushärten, wie Furanharz, Phenolharz und Siliconharz zeigen dabei den größten Masseverlust. Polyesterimidharz und Epoxidharz zeigen bei TGA – Analysen einen mittleren Masseverlust, während Polyurethanharz und Methylmethacrylatharz quasi keinen nennenswerten Masseverlust aufweisen.
- Alle TGA – Kurven, die einen nennenswerten Masseverlust aufzeigen, zeigen ab einem bestimmten Temperaturbereich eine Art Sättigungsverhalten, bei dem die TGA – Kurve nahezu keinen Masseverlust mehr aufzeigt. Dieser Sättigungsbereich deutet darauf hin, daß ab dieser Temperatur das Harz nahezu vollständig ausgehärtet ist. Für Epoxidharz beträgt diese Temperatur ca. 150 °C,

für das Polyesterimidharz ca. 110 °C, für Siliconharz ca. 250 °C, für Phenolharz ca. 120 °C und für das Furanharz ca. 100 °C.

- Vergleicht man die Harzausbeuten der Reinsubstanz mit den Harzausbeuten im Graphit, so zeigt sich, daß die Harzausbeuten im Graphit grundsätzlich höher liegen. Der Grund liegt darin, daß bei der TGA – Messung zum einen flüchtige Polykondensationsprodukte aber auch zum anderen flüchtige Monomermoleküle erfaßt werden. Bei Aushärtung des Harzes im Graphit hingegen wird das Abdampfen von Harzmonomeren weitgehend unterdrückt. Für die praktische Durchführung der Aushärtung von imprägnierten Platten bedeutet dies, daß man ein möglichst rasches Aufheizen der imprägnierten Platten mindestens bis zu der zuvor genannten Sättigungstemperatur anstreben sollte, sofern nicht Bläheffekte entgegen stehen.

9/6/03 Oskar Ohnig
Entwicklungsleiter Datum/Unterschrift

13.06.03 J.Baier
Projektbearbeiter Datum/Unterschrift

SGL CARBON GROUP SGL TECHNIK GmbH	Entwicklung BL - IS	Entwicklung FOME
Dateiname: PV2000050.doc Ausgabedatum: 01.08.00	Abschlußbericht	Projektvorgangsnummer: PV - 2000 - 050
Projektnummer: 65 - 042	Projektbezeichnung: Expandierter Graphit auf Basis von Brennstoffzellenkomponenten	Projektleiter: Dr. Öttinger
Projektbearbeiter: Hr. Bacher	Projektvorgang: Vorversuche zu dem Alterungs- und Härtungsverhalten von unterschiedlichen Imprägnierharzsystemen	

Verteiler: H. Hirschvogel FOM
 H. Wackerbauer FOMV
 H. Kienberger FOMV
 H. Baumann FOMP
 H. Herrmann FOMP
 H. Dr. Neumann TT

1) Einleitung

Ziel dieser Untersuchung ist es, die verschiedenen Harzimprägniersysteme hinsichtlich ihrer Alterung (bei Raumtemperatur bzw. 50 °C) und hinsichtlich Ihres Aushärteverhaltens näher zu betrachten.

SGL CARBON GROUP

2) Versuchsdurchführung

2.1) Viskositätsmessung (Alterung)

Meßgerät: Mettler RM180
Meßtemperatur: 20 °C; 50 °C
Alterungstemperaturen: Raumtemperatur; 50 °C

2.2) Aushärteverhalten

Harzmenge: ca. 5 ml
Aushärtetemperaturen: 60; 80; 100; 150; 200 °C

Die Harzsysteme wurden in Aluschalen gegeben und mit einer Graphitplatte abgedeckt. Das Aushärteverhalten wurde in Zeitabständen bei der Aushärtetemperatur und bei Raumtemperatur beurteilt.

3) Viskositäten als Funktion des Alterungsverhaltens der unterschiedlichen Imprägnierlösungen bei Raumtemperatur bzw. bei 50 °C

3.1) Epoxidharzsysteme

Verwendete Harzsysteme:

VE 4834	= 1 Teil HM + 1 Teil Rütapox 0162 + latenter Katalysator
M4 – 1158 – CK	= 1 Teil HM + 1 Teil Rütapox 0158 + latenter Katalysator
Rütadur HM:	= Methylhexahydrophthalsäureanhydrid
Rütapox 0162:	= Bisphenol-A-diglycidether
Rütapox 0158:	= Bisphenol-F-diglycidether

Viskosität in mPas		Alterungszeit bei 50 °C in Tagen				
Epoxidharz	Material	0	3,7	5,7	11,5	24,4
RT Messung	Rütapox VE 4834	500*				gummiartig
	Rütapox M4-1158-CK	346	572		4258	gummiartig
50°C Messung	Rütapox VE 4834	70*				
	Rütapox M4-1158-CK	37		57	161	gummiartig

Tab. 1: Viskosität von Epoxidharzsystemen gemessen bei Raumtemperatur und 50 °C als Funktion der Alterung bei 50 °C.
* laut Datenblatt der Bakelite AG

Viskosität in mPas		Alterungszeit bei 50 °C in Tagen				
Epoxidharz	Material	0	2,8	4	7	20
RT Messung	1 T Rütapox 0162					
	1 T Rütadur HM	710	762		802	
50°C Messung	1 T Rütapox 0158			361		
	1 T Rutadur HM	294				560
	1 T Rütapox 0162				53	
	1 T Rütadur HM					
	1 T Rütapox 0158			33		
	1 T Rutadur HM	33		33		41

Tab. 2: Viskosität von verschiedenen Epoxidharz / Härtergemischen gemessen bei Raumtemperatur und 50 °C als Funktion der Alterung bei 50 °C.

3.2) Polyurethanharzsystem

Verwendetes Harzsystem:

Blendur VP KU 3-4520: = ~ 3 T Diphenylmethandiisocyanat
~ 1 T Bis(4,4-glycidyloxyphenyl)-propan
Blendur VP PU 90IK06 = Modifiziertes Diphenylmethandiisocyanat in der Funktion eines Starters

Viskosität in mPas		Alterungszeit bei Raumtemperatur in Tagen			
Polyurethanharz	Material	1	3	10	14
RT Messung	95 T Blendur VP KU 3-4520 5 T Blendur VP PU 90IK06	37	45	42	59

Tab. 3: Viskosität von Polyurethanharz gemessene bei Raumtemperatur als Funktion der Alterung bei Raumtemperatur.

3.3) Methylmethacrylatharzsystem

Verwendetes Harzsystem:

99,2 % Plex 6918-O: Triethylenglycoldimethacrylat
0,3 % Peroxan AZDN: 2,2 Dimethyl-2,2-azodipropiononitril
0,5 % V 40: 1,1 Azobis-(1cyclohexancarbonitrile)

Viskosität in mPas		Alterungszeit bei Raumtemperatur in Tagen	
Methylmethacrylatharz	Material	8	48
RT Messung	Plex 6918-O	13	14

Tab. 4: Viskosität von Methylmethacrylatharz gemessene bei Raumtemperatur als Funktion der Alterung bei Raumtemperatur.

3.4) Siliconharzsystem

Verwendetes Harzsystem:

Silres MSE 100: Gemisch verschiedener oligomerer Methylkieselsäuren

Viskosität in mPas		Alterungszeit bei 50 °C in Tagen	
Siliconharz	Material	0	9
RT Messung	Silres MSE 100	34	
50°C Messung		15	20

Tab. 5: Viskosität von Siliconharz gemessene bei Raumtemperatur und 50 °C als Funktion Alterung bei 50 °C.

3.5) Furanharzsystem

Verwendetes System:

10 T Furfurylalkohol

1 T Maleinsäureanhydrid

Viskosität in mPas		Alterungszeit bei Raumtemperatur in Tagen			
Furanharz	Material	0	3	6	10
RT Messung	FM101	18	35	112	346

Tab. 6: Viskosität von Furanharz gemessene bei Raumtemperatur als Funktion der Alterung bei Raumtemperatur.

4) Aushärteverhalten der unterschiedlichen Imprägnierlösungen bei verschiedenen Temperaturen

4.1) Epoxidharzsystem

Minuten	Epoxidharzhärtung (Rütapox M4-1158-CK)			
	Temperatur 150 °C		Temperatur 200 °C	
	Kaltzustand	Warmzustand	Kaltzustand	Warmzustand
2	flüssig	flüssig	flüssig	flüssig
5	flüssig	flüssig	flüssig	flüssig
10	zäh / klebrig	flüssig	zäh / klebrig	zäh / klebrig
20	fest	zäh / klebrig	fest	leicht zäh
30	fest	fest	fest	fest
50	fest	fest	fest	fest

Tab. 7: Aushärteverhalten von Epoxidharz Rütapox M4-1158-CK bei 150 °C bzw. 200 °C.

Epoxidharzhärtung (Rütapox 0162 / Rütadur HM 1:1)		
Stunden	Temperatur 150 °C	
	Kaltzustand	Warmzustand
1	flüssig	flüssig
2	flüssig	flüssig
4,5	flüssig	flüssig
6	flüssig	flüssig
7	flüssig	flüssig
18	honigartig	flüssig
20	gummiartig	zäh / honigartig
22	fest	gummiartig
24	fest	fest

Tab. 8: Aushärteverhalten von Epoxidharz Rütapox 0162 / Rütadur HM im Verhältnis 1 / 1 bei 150 °C.

4.2) Polyurethanharzsystem

Polyurethanharz (Blendur VP KU3-4520 + Kat. - 95:5)				
Minuten	Temperatur 100 °C		Temperatur 150 °C	
	Kaltzustand	Warmzustand	Kaltzustand	Warmzustand
5			flüssig	flüssig
6			flüssig	flüssig
7			flüssig	flüssig
8			flüssig	flüssig
9			gummiartig / klebt	honigartig / zäh
10			fest	gummiartig / klebt
15			fest	fest
1 Stunde	flüssig	flüssig		
1 Std. 20 Min.	zäh / honigartig	zäh / teilweise fl.		
1 Std. 40 Min.	zäh / klebt	honigartig		
2 Stunden.	klebt	zäh / klebt		
2 Std. 15 Min.	angehärtet	zäh / klebt		
3 Std. 30 Min.	nicht ganz gehärtet	nicht ganz gehärtet		
4 Std. 15 Min.	fest	fest		

Tab. 9: Aushärteverhalten von Polyurethanharz Blendur VP KU 3-4520 / Blendur VP PU 90IK06 im Verhältnis 95 / 5 bei 100 °C bzw. 150 °C.

4.3) Methylmethacrylatharzsystem

Minuten	Methylmethacrylatharzhärtung (Plex 6918-O)							
	Temperatur 60 °C		Temperatur 80 °C		Temperatur 100 °C		Temperatur 150 °C	
	Kaltzustand	Warmzustand	Kaltzustand	Warmzustand	Kaltzustand	Warmzustand	Kaltzustand	Warmzustand
40 Sekunden							flüssig	flüssig
1							fest	fest
2	flüssig	flüssig			flüssig	flüssig		
5	flüssig	flüssig			flüssig	flüssig		
10	flüssig	flüssig	flüssig	flüssig	fest	fest		
20			flüssig	flüssig				
30			Teilaushärtung					
40			fest	fest				
5 + 5					fest	fest		
20 Stunden	flüssig	flüssig						
5 Tage	fest	fest						

Tab. 10: Aushärteverhalten von Methylmethacrylatharz Plex 6918-O bei 60, 80, 100 bzw 150 °C.
(Teilaushärtung: Ein Teil des Harzes ist fest (Bodenschicht), der Rest des Harzes ist niedrig viskos.)

4.4) Siliconharzsystem

Stunden	Siliconharzhärtung (Silres MSE100)	
	Temperatur 200 °C	
	Kaltzustand	Warmzustand
1	flüssig	flüssig
2,5	flüssig	flüssig
3,5	zäh / gummiartig	zäh / gummiartig
4,5	zäh / gummiartig	zäh / gummiartig
6,5	gummiartig	gummiartig
24	hart - spröde	hart - spröde

Tab. 11: Aushärteverhalten von Siliconharz Silres MSE 100 bei 200 °C.

4.5) Furanharzsystem

Furanharzhärtung (FM101)		
Stunden	Temperatur 60 °C	
	Kaltzustand	Warmzustand
6	zäh / klebrig	flüssig / honigartig
7	zäh / klebrig	zäh / klebrig
8	weich / klebt nicht	weich / klebt nicht
9	weich / gummiartig	weich / gummiartig

Tab. 12: Aushärteverhalten von Furanharz FM101 bei 60 °C.

5) Zusammenfassung

Epoxidharzsystem

- Epoxidharzsysteme auf Basis von Bisphenol-F haben eine Viskositäten bei 50 °C von ca. 30 – 40 mPas.
- Epoxidharzsysteme auf Basis von Bisphenol-A haben eine Viskosität bei 50 °C von 50 – 70 mPas.
- Geht man von einer Grenzviskosität für eine Imprägnierbehandlung von 100 mPas aus, erreicht man bei latent katalysierten Epoxidharzsystemen (VE 4834, M4-1158-CK) eine Topfzeit in der Größenordnung von 1 Woche bei 50 °C. Bei den nicht latent katalysierten Epoxidharzsystemen (Mischung 0162/HM bzw. 0158/HM) sind Topfzeiten bei T = 50 °C von größer 3 Wochen denkbar.
- Epoxidharzsysteme mit latentem Katalysator zeigen zäh / klebrige Aggregatzustände nach ca. 10 – 20 Minuten Temperaturbelastung bei 150 °C. Epoxidharzsysteme ohne Katalysator zeigen einen honigartigen Aggregatzustand nach 18 – stündlicher Einlagerung bei 150 °C.

Polyurethanharzsystem

- Das untersuchte Polyurethanharzsystem 95 T Blendur VP KU 3-4520 + 5 T Blendur VP PU 90IK06 zeigt eine Topfzeit im Bereich von 2 Wochen auf. Die RT Viskosität steigt innerhalb 2 Wochen bei RT – Auslagerung von ca. 40 auf 60 mPas an.
- Der honigartige Aggregatzustand bei oben genannten Polyurethanharz wird bei 100 °C nach ca. 80 min und bei 150 °C nach ca. 9 min erreicht.

Methylmethacrylatharzsystem

- Die Viskosität des untersuchten Methylmethacrylatharzsystem liegt bei RT mit ca. 10 – 20 mPas sehr niedrig. Laut Herstellerangaben verändert sich die Viskosität

innerhalb 6 Monaten kaum, so daß von einer sehr langen Topfzeit ausgegangen werden kann.

- Das untersuchte Methylmethacrylatharz zeigt keinen zäh viskosen Aggregatzustand. Bei Temperatur von 80 °C ist das Harz nach ca. 40 Minuten und bei 150 °C nach ca. 1 Minute fest.

Siliconharz

- Die Viskosität des untersuchten Silres MSE 100 Harzes liegt bei RT ca. bei 35 mPas, bei 50 °C bei ca. 15 mPas. Nach Lagerung bei 50 °C über 9 Tage hat sich die Viskosität nur schwach erhöht. Die Topfzeit des Harzes sollte damit im Bereich von Wochen bis Monaten liegen.
- Einen gummiartigen Übergang zeigt Siliconharz bei 200 °C ca. nach 3 – 4 Stunden.

Furanharzsystem

- Das Furanharzsystem hat bei RT eine niedrige Viskosität von ca. 15 mPas. Nach ca. 4 Tagen Lagerung bei RT steigt die Viskosität über 100 mPas an, so daß die Topfzeit des Harzes ohne Kühlung bei maximal 1 Woche liegt.
- Furanharz zeigt bei Temperaturbeaufschlagung auch einen zäh viskosen Übergang. Bei 60 °C liegt dieser im Bereich von 6 – 7 Std..

31/7/00 Oskar Ottinger
Entwicklungsleiter Datum/Unterschrift

1.08.00 J. Baier
Projektbearbeiter Datum/Unterschrift

Form-01.xls	11/09/1992				
Prüfung der Gasdurchlässigkeit nach DIN 3535					
Projekt: MMA-Harz Vakuum, Impregnierung Hersteller/Lieferant: FOME Materialbezeichnung: L10010C Harzanteil: -11,7%					
		Datum: 06.05.00	Bearbeiter: JB		
		Bemerkung:			
Außendurchmesser (wirksamer)	[mm]	64x83	Innendruck	[bar]	1ba, He
Innendurchmesser (wirksamer)	[mm]		Flächenpressung	[N/mm²]	20 MPa
Dichtungshöhe	[mm]	1,005	Hydraulikdruck	[bar]	46,8 ba.
Fläche der verpressten Dichtung	[mm²]	0	Oberflächenrauheit	[µm]	
Vorbehandlung		1h/100°C	Temperatur	Anfang [°C]	
Umrechnungsfaktor	[cm³/min] in [mg/s·m]	0,095	Temperatur	Ende [°C]	
m = 5,7896g					
Zeit	Gasmenge	Leckage	Zeit	Gasmenge	Leckage
[min]	[cm³]	[cm³/min]	[min]	[cm³]	[cm³/min]
0	0		105	0	
5-10	0		110-10	0,145	0,0145
10-20	0,01		115-20	0,28	0,0135
15-30	0,01		120-30	0,38	0,01
20-75	0,01		125-40	0,48	0,01
25		0	130-75	0,66	0,005
30			135		0,011
35			140		
40			145		
45			150		
50			155		
55			160		
60			165		
65			170		
70			175		
75			180		
80					
85					
90			Mittelwerte:	[cm³/min]	
95					
100				[mg/s·m]	

SGL CARBON GROUP

SGL CARBON GmbH
Zentrallabor Meitingen

Prüfauftrag

Auftraggeber:	J. Bacher	Auftrags-Nr.	1 -Nr. 11625/00
Tel.:	1730 Abt.: FOME	Eingang:	8.5.2000
Eintrag:	9680.007 WG: 65	Ausgang:	

Gegenstand (genaue Bezeichnung, Materialtyp, Abmessung usw.):

- 1 Siliconharz Silres MSE100
- 2 Epoxidharz Rütafox VE 4834
- 3 Polyurethanharz Blendur VP KU3 -452C
- 4 Phenolharz Resol-Harz 6748 GN
- 5 MMA-Harz Plex G918-O

Zusatzz-informationen(z.B. Hersteller, Lieferant, Rohstoff, Zusammensetzung, Gefahrenhinweis, usw.):

Durchzuführende Untersuchung / Problemstellung:

TGA am Luft + DSC TGA : s. Abb. 1-6
 1°C pro Minute
 bis 300°C

Priorität (gewünschter Fertigstellungstermin)

Verteiler für Untersuchungsbefund

TGA

Sample: I-11625/00 Pr. 5 MMA-Harz
 Size: 48.9480 mg
 Method: 1K-300
 Comment: MMA-Harz P1ex 6948-0

File: C: TGMA.01
 Operator: Weidlich unter Luft
 Run Date: 9-May-00 07:45

Sample: I-14625/00 Pr.5 MMA-Harz
Size: 3.8800 mg
Method: DSC 30-500°C 10°C/min.
Comment: Pr.5; MMA-Harz Plex 6918-0

DSC

File: C:DSCMMA.01
Operator: Weidlich
Run Date: 10-May-00 09:51

FORM-01.XLS

Form-01.xls

11/09/1992

Prüfung der Gasdurchlässigkeit nach DIN 3535

Projekt: BPP Imprägnierzeit: 1h

Hersteller/Lieferant:

Harzanteil: 10,2%

Datum: 12.05.00

Materialbezeichnung:

I-10C10C

MMA-Harz

Bemerkung:

Außendurchmesser (wirksamer)	[mm]	67x83	Innendruck	[bar]	1 bar HE
Innendurchmesser (wirksamer)	[mm]		Flächenpressung	[N/mm²]	20 MPa
Dichlungshöhe	[mm]	1,0123	Hydraulikdruck	[bar]	46,8 bar
Fläche der verpressten Dichtung	[mm²]	0	Oberflächenrauheit	[µm]	
Vorbehandlung		1h/100°C	Temperatur	Anfang [°C]	
Umrechnungsfaktor	[cm³/min] in [mg/s·m]	0,095	Temperatur	Ende [°C]	

$m = 5,7486g$

Zeit [min]	Gasmenge [cm³]	Leckage [cm³/min]	Zeit [min]	Gasmenge [cm³]	Leckage [cm³/min]
0	Links		105	rechts	
5	0	0	110	senkrecht zur Platte	
10	0	0	115	0	0
15	20	0,005	120	5	0,06
20			125	10	0,11
25			130	15	0,17
30			135	20	0,22
35			140		0,011
40			145		
45			150		
50			155		
55			160		
60			165		
65			170		
70			175		
75			180		
80					
85					
90			Mittelwerte: [cm³/min]		
95					
100				[mg/s·m]	

MMA-Hart

vom 22.05.00
4

MESSPROTOKOLL RHEOMETRIC SCIENTIFIC RHEOMAT RM180

DATUM : 21.06.00
 PROBEN-NR. : 3
 MESS-SYSTEM : 1A
 PROGRAMM-NR. : 1

STUFE	TEMPERATUR	VISKOSITÄT	SCHERGESCHWINDIGKEIT
ZEIT	[°C]	[Pa*s]	[1/s]
1		MOMENT ZU KLEIN	
2		MOMENT ZU KLEIN	
3		MOMENT ZU KLEIN	
4		MOMENT ZU KLEIN	
5	20.4	0.013	357
6	20.3	0.013	549
7	20.2	0.014	841
8	20.1	0.017	1291
7	20.1	0.013	841
6	20.2	0.013	549
5	20.3	0.013	357
4		MOMENT ZU KLEIN	<u>14</u>
3		MOMENT ZU KLEIN	
2		MOMENT ZU KLEIN	
1		MOMENT ZU KLEIN	

Impregnated Expanded Graphite as BPP-material

Status 06/2000

- 1. Motivation**
- 2. R&D status- overview**
- 3. Processing data of impregnated expanded graphite**
- 4. Electrical resistivity data of impregnated expanded graphite**
- 5. Leakage data of impregnated expanded graphite**

Impregnated Flexible Graphite - A Cheap BPP-Material ? “Hydrocycle” - Manhattan Scientifics Inc. and NovArs GmbH

Fuel Cell stack with BPP made of Flexible Graphite

“Hydrocycle” - Prototype with 180 Watt Fuel Cell

Source: webpage Manhattan Scientific Inc., April 2000

Impregnated Expanded Graphite as BPP-Material

Principle Production Steps

Polymer/Expanded Graphite - Composite by Infiltration Process

Status 06/2000

SGL CARBON GROUP

Impregnation resins

Thermogravimetry

Polymer/Expanded Graphite - Composite Resin Content versus Impregnation Process

Polymer/Expanded Graphite - Composite by Infiltration Process

Furan Resin Content versus Impregnation Time

Polymer/Expanded Graphite - Composite versus Impregnation Time

Polymer/Expanded Graphite - Composite by Infiltration Process Furan Resin Content versus Impregnation Time

Polymer/Expanded Graphite - Composite by Infiltration Process Furan Resin Content versus Impregnation Time

Polymer/Expanded Graphite - Composite by Infiltration Process

Epoxy Resin Content versus Impregnation Time

Polymer/Expanded Graphite - Composite Silicon Based Resin Content versus Impregnation Time

Polymer/Expanded Graphite - Composite by Infiltration Process

Polyurethan Based Resin Content versus Impregnation Time

Polymer/Expanded Graphite - Composite by Infiltration Process

PMMA Based Resin Content versus Impregnation Time

Polymer/Expanded Graphite - Composites by Infiltration Electrical Resistivity (perpendicular to surface)

Quick Test Procedure of ETME

Polymer/Expanded Graphite - Composites by Infiltration Leakage Behaviour (perpendicular to surface)

Quick Test Procedure of FOME

Polymer/Expanded Graphite - Composites by Infiltration Leakage Behaviour (perpendicular to surface)

Quick Test Procedure of FOME

Röhm GmbH Chemische Fabrik
Kirschenallee, D-64293 Darmstadt

SGL-Technik GmbH
Dr. Oswin Öttinger
Werner von Siemens Strasse 18

D-86405 Meltingen

Kontakt/Zeichen MO-AT/Schrif
Telefon 06151/18-4658
Telefax 06151/18-3230
E-Mail
Darmstadt 2000-03-16

Imprägnierung von Graphit

Sehr geehrter Herr Dr. Öttinger,

nach interner Diskussion hat sich herausgestellt, daß wir für die von Ihnen geplante Imprägnierung von Graphitkörpern eine spezielle Monomerlösung anbieten können, die bereits für eine nahezu identische Anwendung eingesetzt wird.

Dies ermöglicht es Ihnen, mit einer Minimierung an eigenem Entwicklungsaufwand, auf eine bestehende Technologie aufzubauen und das „Rad nicht neu erfinden zu müssen“.

Mit dem Produkt PLEX 6918-O (Datenblatt anliegend) steht Ihnen ein geeignetes Imprägniermittel zur Verfügung, welches frei von MMA ist und stattdessen hoch-siedende Methacrylat-monomere enthält, was natürlich einen bedeutenden Vorteil bei der Vakuumimprägnierung darstellt.

In anliegendem Imprägnierschema finden Sie die von Ihnen beschriebene und angestrebte Verfahrensweise wieder.

Für Hinweise bezüglich der Initiierung und andere anwendungstechnische Details steht Ihnen der Linkssunterzeichner unter der Tel. Nr. 06151-184347 und der e-mail-Adresse reinhold_martin@roehm.com gerne zur Verfügung.

Mit freundlichen Grüßen

R ö h m G m b H
GG-MO / MO-AT

i. V. Martin

i. V. Schroth

Anlage: M-6-37; Imprägnierschema

Unsere anwendungstechnische Beratung ist unverbindlich. Die Verantwortung für die Anwendung bzw. Verarbeitung unserer Produkte liegt beim Käufer, auch im Hinblick auf etwaige Schutzrechte Dritter. Technische Daten, die unsere Produkte betreffen, sind Richtwerte.

Our technical advice on the uses of our materials is given without obligation. The buyer is responsible for the application and processing of our products and is also liable for observing and third-party rights. Technical data concerning our products are typical values.

Vorsitzender des Aufsichtsrates:
Dr. Alfred Oberholz

Ehrenvorsitzender: Otto Röhm

Sitz der Gesellschaft: Darmstadt
Handelsregister-Nr. HRR 1281

Geschäftsführer:
Dr. Norbert Wiemers, Vorsitzender
Dr. Hans-Peter Schäufler
Dr. Karlheinz Nothnagel

Deutsche Bank AG Darmstadt
Kto. 230 326, BLZ 506 700 05
Swift-Code DEUTDEFF508

Dresdner Bank AG Darmstadt
Kto. 1 740 870 00 Rk 7 500 000 50

Röhm GmbH, Chemische Fabrik
Kirschenallee
D-64293 Darmstadt

Telefon: +49 (0) 6151 /18-01
Telefax +49 (0) 6151 /18-07

RÖHM GmbH Chemische Fabrik · D-64275 Darmstadt

SGL Technik GmbH
 z.H. H. Dr. Öttinger
 Werner von Siemensstr. 18
 86405 Meitingen

Musteraufltrag

Nummer/Datum/Kunde
 22109295/2000-03-28/50001
 Bestellnummer/Datum
 Telefonat vom/2000-03-22

Ansprechpartner/Tel/Fax/e-Mail
 Abteilung MO-VM-V
 Frau Anneliese Clarizia MO-VM-V
 06151/18-4348/06151-18-3586
 anneliese_clarizia@roehm.com

Wir liefern zu den Ihnen vorliegenden und nachstehenden Bedingungen:

Unverb.Warenausgangstermin / vorauss.Eintrefftermin: 2000-04-06 / 2000-04-06

Zahlung: O H N E B E R E C H N U N G

Incoterms: CPT Meitingen

Versand: Kuriere/Airmail

Gewichte:	Brutto 5,000 KG	Netto 5,000 KG	Tara 0,000 KG
-----------	--------------------	-------------------	------------------

Pos.	Materialbezeichnung	Preis	Sollmenge	Wert in DEM
			Preiseinheit	
01	99945976 PLEX 6918-O F 107 mit Emulgator	5,00 DEM	5,000 KG	1 KG 25,00

Den Gefahrgutvorschriften nicht unterstellt. - WGK: 1(S)

Not subject to the regulations on dangerous goods.

Pas soumis aux prescriptions con. les marchandises dangereuses.

Summe Positionen			25,00
Umsatzsteuer	16,00 %	25,00	4,00
Endbetrag			29,00

Vorsitzender des Aufsichtsrates:
 Dr. Alfred Oberholz
 Ehrenvorsitzender: Otto Röhm

Sitz der Gesellschaft: Darmstadt
 Handelsregister-Nr. HRB 1281
 USt.-Id-Nr.: DE811137855

Geschäftsführer:
 Dr. Norbert Wiemers, Vorsitzender
 Dr. Hans-Peter Schaufler
 Dr. Karlheinz Nothnagel

Deutsche Bank AG Darmstadt, 230 328
 BLZ: 508 700 05 Swift-Code: DEUTDEFF508
 DresdnerBank AG Darmstadt, 1 749 870 00
 BLZ: 508 800 50, Swift-Code: DRESDEFF508
 Commerzbank AG Darmstadt, 130 50 10
 BLZ: 608 400 05, Swift-Code: COBADEFF508

Röhm GmbH Chemische Fabrik
 Kirschenallee
 D-64293 Darmstadt
 Telefon: +49 (0) 6151/18-01
 Telefax: +49 (0) 6151/18-02,
 Internet: www.roehm.com

GESCHÄFTSGEBIET MONOMERE

Chemieprodukte

Merkblatt 6 - 37

PLEX 6918-O

Chemische Bezeichnung:

Methacrylsäureester mit Emulgatorzusatz

Aussehen:

klare, niedrigviskose, leicht bräunliche
Flüssigkeit

SPEZIFIKATION:

Brechzahl:
1,4612 - 1,4632

Dichte:
1,0735 - 1,0755 g/cm³

Physikalische Daten:

Viskosität (M23*):
10 - 14 mPa.s bei 25 °C

Festpunkt (ISO 1392):
< - 50 °C

Siedepunkt (Ph. Eur.):
> 200 °C bei 1013 mbar

Flammpunkt (ASTM D93; PM):
161 °C

* Röhm Methode

GESCHÄFTSGEBIET MONOMERE

Röhm GmbH Chemische Fabrik
D-64275 Darmstadt
Anwendungstechnik:
Telefon (06151) 18-46 88
(06151) 18-43 47
Telefax (06151) 18-32 30
Besucheradresse: Kirschenallee

M-6-37

Lagertemperatur:	max. + 25 °C
Lagerfähigkeit:	max. 6 Monate
Anwendung:	heißhärtendes Imprägniermittel für das Vakuumimprägnierverfahren.

Version Febr. 00

Unsere anwendungstechnische Beratung ist unverbindlich. Die Verantwortung für die Anwendung bzw. Verarbeitung unserer Produkte liegt beim Käufer, auch im Hinblick auf etwaige Schutzrechte Dritter. Technische Daten, die unsere Produkte betreffen, sind Richtwerte. Änderungen vorbehalten.
® = registrierte Marke

röhm
Degussa-Hüls Gruppe

Röhm GmbH
Chemische Fabrik
D-64293 Darmstadt
Telefon: +49 (0)6151/18-01
Telefax: +49 (0)6151/18-02
Internet: www.roehm.com

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.