Non-negligible Functions and Reduction Proofs

coinstudent2048

November 19, 2021

Abstract

We present a lemma about non-negligible functions that is helpful in reduction proofs in cryptography. We also provide a reduction proof as a demonstration.

1 The Thing

Let $\mathbb{R}_{>0}$ be the set of non-negative real numbers. Let us define the concept of negligible function first:

Definition 1.1. A function $f: \mathbb{N} \to \mathbb{R}_{\geq 0}$ is **negligible** if for all polynomial $p(\cdot)$ there exists an $N \in \mathbb{N}$ such that for all integers n > N it holds that $f(n) < \frac{1}{p(n)}$.

Definition 1.1 is from Katz & Lindell [4]. We now prove the following lemma:

Lemma 1.1. If $f: \mathbb{N} \to \mathbb{R}_{>0}$ is non-negligible, then $g(\cdot) = f(\cdot)^m$ for any $m \in \mathbb{N}$ and m > 1 is non-negligible.

Proof. The function f being not negligible means that there exists a polynomial $p(\cdot)$ such that for all $N \in \mathbb{N}$, there exists an n > N such that $f(n) \ge \frac{1}{p(n)}$. Let $p_f(\cdot)$ be such polynomial and n_f be such n > N. Then setting $p_g(\cdot) = p_f(\cdot)^m$ and $n_g = n_f$ suffices for non-negligibility of g because $f(n_f) \ge \frac{1}{p_f(n_f)} \Longrightarrow f(n_f)^m \ge \frac{1}{p_f(n_f)^m}$.

Lemma 1.1 justifies the usage of finite number of "breaks" of one hardness assumption in reduction proofs. For a start, the probability of breaking the hardness assumption HA is a function of the security parameter λ . Just here we denote this as $\Pr[\mathsf{HA}(\lambda)]$. Hence, for m>1, the probability for breaking HA m times, $\Pr[\wedge_{i=1}^m\mathsf{HA}_i(\lambda)] \geq \Pr[\mathsf{HA}(\lambda)]^m$. Now Lemma 1.1 says that if $\Pr[\mathsf{HA}(\lambda)]$ is non-negligible (or equivalently, for all negligible function $\mathsf{negl}(\lambda)$, $\Pr[\mathsf{HA}(\lambda)] \geq \mathsf{negl}(\lambda)$), then $\Pr[\mathsf{HA}(\lambda)]^m$ must also be non-negligible and hence $\Pr[\wedge_{i=1}^m\mathsf{HA}_i(\lambda)]$ is also non-negligible.

2 The Demo

Let \mathbb{G} be a cyclic group where the Discrete Logarithm (DL) assumption holds, and \mathbb{F} be its scalar field. We now present a hardness assumption used in Bulletproofs [1], Bulletproofs+ [3], and Halo [2]:

Definition 2.1 (Discrete Logarithm Relation Assumption). *DL Relation assumption holds relative to* Setup if for all $n \geq 2$ and PPT adversary \mathcal{A} , there exists a negligible function $\mathsf{negl}(\lambda)$ such that

$$\Pr\left[\begin{array}{c|c} \exists i \in \{1,\dots,n\} : x_i \neq 0 \\ \wedge \sum_{i=1}^n x_i G_i = 0 \end{array} \middle| \begin{array}{c} (\mathbb{G},\mathbb{F}) \leftarrow \mathsf{Setup}(1^\lambda); \\ \{G_i\}_{i=1}^n \xleftarrow{\$} \mathbb{G}^n; \\ \{x_i\}_{i=1}^n \leftarrow \mathcal{A}(\mathbb{G},\mathbb{F},\{G_i\}_{i=1}^n) \end{array} \right] \leq \mathsf{negl}(\lambda).$$

Note that the $\sum_i x_i G_i$ operation is also called multi-scalar multiplication.

Theorem 2.1. DL relation assumption holds if and only if DL assumption holds.

Proof. The forward direction is trivial. For the backward direction, we prove by induction on n:

Base case (n=2): Assume that \mathcal{A} breaks DL relation: with non-negligible probability, for $G_1, G_2 \stackrel{\$}{\leftarrow} \mathbb{G}$, \mathcal{A} outputs $x_1, x_2 \in \mathbb{F}$ such that $x_1G_1 + x_2G_2 = 0$. Then $G_1 = (-x_2/x_1)G_2$, breaks DL assumption.

Inductive case: Assume that the backward direction of Theorem 2.1 holds for case n. Then we prove the same for case n+1. Assume that \mathcal{A} breaks DL relation for case n+1. By Lemma 1.1, \mathcal{A} can break it twice: with non-negligible probability, for $\{G_i\}_{i=1}^{n+1} \stackrel{\$}{\leftarrow} \mathbb{G}^{n+1}$, \mathcal{A} outputs $\{x_i\}_{i=1}^{n+1}$ and $\{x_i'\}_{i=1}^{n+1}$ such that both satisfy the multi-scalar multiplication with $\{G_i\}_{i=1}^{n+1}$ to zero. Now observe that

$$x_{1}' \sum_{i=1}^{n+1} x_{i}G_{i} = x_{1}' \cdot 0 = 0 \quad \land \quad x_{1} \sum_{i=1}^{n+1} x_{i}'G_{i} = x_{1} \cdot 0 = 0$$

$$\implies \sum_{i=1}^{n+1} x_{1}' x_{i}G_{i} - \sum_{i=1}^{n+1} x_{1}x_{i}'G_{i} = 0 - 0 = 0$$

$$\implies \sum_{n=1}^{n+1} (x_{1}' x_{i} - x_{1}x_{i}')G_{i} = 0$$

$$\implies \sum_{n=2}^{n+1} (x_{1}' x_{i} - x_{1}x_{i}')G_{i} = 0$$

with the last implication because $x_1'x_1 - x_1x_1' = 0$. Now the last implication has only n addends, hence this breaks DL relation assumption for case n. From the above assumption of the backward direction of Theorem 2.1 holding for case n, this must also break DL assumption.

References

- [1] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg Maxwell. Bulletproofs: Short proofs for confidential transactions and more. Cryptology ePrint Archive, Report 2017/1066, 2017. https://ia.cr/2017/1066.
- [2] Sean Bowe, Jack Grigg, and Daira Hopwood. Recursive proof composition without a trusted setup. Cryptology ePrint Archive, Report 2019/1021, 2019. https://ia.cr/2019/1021.
- [3] Heewon Chung, Kyoohyung Han, Chanyang Ju, Myungsun Kim, and Jae Hong Seo. Bulletproofs+: Shorter proofs for privacy-enhanced distributed ledger. Cryptology ePrint Archive, Report 2020/735, 2020. https://ia.cr/2020/735.
- [4] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography: Principles and Protocols. Chapman and Hall/CRC, 2007.