Københavns Universitet. Økonomisk Institut

1. årsprøve 2015 V-1A rx ret

Skriftlig eksamen i Matematik A

Onsdag den 18. februar 2015

Rettevejledning

Opgave 1. Stamfunktioner.

Lad $I \subseteq \mathbf{R}$ være et åbent, ikke-tomt interval, og lad $f: I \to \mathbf{R}$ være en funktion.

(1) Forklar, hvad det vil sige, at funktionen $F: I \to \mathbf{R}$ er en stamfunktion til f.

Løsning. Funktionen $F: I \to \mathbf{R}$ er en stamfunktion til f, hvis F er differentiabel på intervallet I, og hvis F'(x) = f(x) for ethvert $x \in I$.

(2) Vis, at hvis F_0 er en stamfunktion til f, da kan enhver stamfunktion F til f skrives på formen

$$F(x) = F_0(x) + c$$
, hvor $c \in \mathbf{R}$.

Løsning. Lad F og F_0 være stamfunktioner til f. Da finder vi, at funktionen $\Phi = F - F_0$ er differentiabel, og at

$$\Phi'(x) = F'(x) - F'_0(x) = f(x) - f(x) = 0, \quad \forall x \in I,$$

så Φ er åbenbart konstant. Heraf aflæses påstanden.

(3) Hvad forstår man ved det ubestemte integral

$$\int f(x) \, dx$$

til funktionen f?

Løsning. Hvis F_0 er en stamfunktion til f, er det ubestemte integral af f netop samtlige stamfunktioner til f, så

$$\int f(x) dx = F_0(x) + c, \text{ hvor } c \in \mathbf{R}.$$

(4) Udregn følgende ubestemte integraler

$$\int \frac{x^3}{1+x^4} dx, \int \frac{e^x}{1066+e^x} dx \text{ og } \int (1,479+e^x)e^x dx.$$

Løsning. Vi får, at

$$\int \frac{x^3}{1+x^4} dx = \frac{1}{4} \int \frac{1}{1+x^4} d(1+x^4) = \frac{1}{4} \ln(1+x^4) + c,$$

$$\int \frac{e^x}{1066 + e^x} dx = \int \frac{1}{1066 + e^x} d(1066 + e^x) = \ln(1066 + e^x) + c$$
og

$$\int (1,479 + e^x)e^x dx = \int (1,479e^x + e^{2x}) dx = 1,479e^x + \frac{1}{2}e^{2x} + c,$$

hvor $c \in \mathbf{R}$.

Opgave 2. Vi betragter den funktion $f: \mathbb{R}^2 \to \mathbb{R}$, som er defineret ved forskriften

$$\forall (x,y) \in \mathbf{R}^2 : f(x,y) = x^2 - y^2 + (x-y)^2.$$

(1) Bestem de partielle afledede

$$\frac{\partial f}{\partial x}(x,y)$$
 og $\frac{\partial f}{\partial y}(x,y)$

i et vilkårligt punkt $(x, y) \in \mathbf{R}^2$.

Løsning. Idet $f(x,y) = 2x^2 - 2xy$, får vi, at

$$\frac{\partial f}{\partial x}(x,y) = 4x - 2y \text{ og } \frac{\partial f}{\partial y}(x,y) = -2x.$$

(2) Vis, at funktionen f har netop et stationært punkt, og bestem dette punkt.

Løsning. Vi får, at punktet $(x_0, y_0) = (0, 0)$ er det eneste stationære punkt for funktionen f.

(3) Bestem Hessematricen H(x,y) for funktionen f i et vilkårligt punkt $(x,y) \in \mathbf{R}^2$.

Løsning. Vi får, at funktionen f har Hessematricen

$$H(x,y) = \left(\begin{array}{cc} 4 & -2 \\ -2 & 0 \end{array}\right),$$

der er konstant og indefinit.

(4) Afgør, om det stationære punkt er et maksimums-, et minimums- eller et sadelpunkt for f.

Løsning. Af det ovenstående ser vi straks, at det stationære punkt er et sadelpunkt for funktionen f.

(5) Bestem en ligning for tangentplanen til grafen for f gennem punktet (1, 2, f(1, 2)).

Vi bemærker, at f(1,2) = -2, $\frac{\partial f}{\partial x}(1,2) = 0$ og $\frac{\partial f}{\partial y}(1,2) = -2$. Tangent-planen har derfor ligningen

$$z = f(1,2) + \frac{\partial f}{\partial x}(1,2)(x-1) + \frac{\partial f}{\partial y}(1,2)(y-2) = -2 - 2(y-2) = -2y + 2.$$

Opgave 3. Vi betragter ligningen

$$(*) e^x + \sin x - 2y^2 + xy + 1 = 0.$$

(1) Godtgør, at punktet $(x_0, y_0) = (0, 1)$ er en løsning til ligningen (*).

Løsning. Ved indsættelse af punktet $(x_0, y_0) = (0, 1)$ i ligningen (*) opnår vi det ønskede.

(2) I en omegn af punktet x = 0 definerer ligningen (*) den variable y som en implicit given funktion y = y(x) af den variable x. Bestem differentialkvotienten y'(0).

Løsning. Vi indfører funktionen

$$F(x,y) = e^x + \sin x - 2y^2 + xy + 1$$

og finder, at

$$F'_x = e^x + \cos x + y$$
 og $F'_y = -4y + x$.

Da er $F_x'(0,1)=3,$ og $F_y'(0,1)=-4.$ Nu får vi
, at

$$y'(0) = -\frac{F_x'(0,1)}{F_y'(0,1)} = \frac{3}{4}.$$

(3) I en omegn af punktet y = 1 definerer ligningen (*) den variable x som en implicit given funktion x = x(y) af den variable y. Bestem differentialkvotienten x'(1).

Løsning. Vi finder, at

$$x'(1) = -\frac{F_y'(0,1)}{F_x'(0,1)} = \frac{4}{3}.$$

(4) I en åben omeg
nU af x=0 betragter vi den funktion
 $f:U\to {\bf R},$ som har forskriften

$$\forall x \in U : f(x) = y(\sin(2x)).$$

Bestem differentialkvotienten f'(0).

Løsning. Vi får, at

$$f'(x) = y'(\sin(2x)) \cdot 2\cos(2x)$$
 så $f'(0) = \frac{3}{4} \cdot 2 = \frac{3}{2}$.