Technische Universität Wien

Institut für Automatisierungs- und Regelungstechnik

SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am 11.03.2016

Arbeitszeit: 120 min

Name:						
Vorname(n):						
Matrikelnummer:						Note:
Aufgabe	1	2	3	1	7	

4

8

9

9

30

Bitte ...

- ... tragen Sie Name, Vorname und Matrikelnummer auf dem Deckblatt ein,
- ... rechnen Sie die Aufgaben auf separaten Blättern, nicht auf dem Angabeblatt,
- ... beginnen Sie für eine neue Aufgabe immer auch eine neue Seite,
- ... geben Sie auf jedem Blatt den Namen sowie die Matrikelnummer an und
- ... begründen Sie Ihre Antworten ausführlich.

erreichbare Punkte

erreichte Punkte

Viel Erfolg!

1. Gegeben ist das in Abbildung 1 dargestellte Experiment zur Bestimmung eines 4 P. Reibmodells. Dazu wurde mit einer externen Kraft f_e die Masse m für verschiedene konstante Geschwindigkeiten \dot{x} über die Oberfläche bewegt. Die erforderliche externe Antriebskraft f_e in Abhängigkeit der Geschwindigkeit \dot{x} ist in einer Messkurve (Abbildung 1b.)) dargestellt.

Abbildung 1: Reibkennlinie.

- a) Welche Reibungsarten treten gemäß der dargestellten Messkurve auf? Geben 2 P.| Sie die entsprechenden Reibgesetze dazu an.
- b) Bestimmen Sie die entsprechenden Reibparameter des Modells anhand der eingezeichneten Messwerte. Wählen Sie dazu $m=0.1\,\mathrm{kg}$ und approximieren Sie die Erdbeschleunigung mit $g=10\,\mathrm{m\,s^{-2}}$.
- c) Wie ändert sich die Reibkennlinie aus Abbildung 1b.) für einen Haftreibungs- 1 P. koeffizienten $\mu_H=0.15$. Skizzieren Sie diese.

a) Haftreibung: $f_H = \mu_H mg$ Trockene Gleitreibung: $f_C = \mu_C mg \operatorname{sign} \dot{x}$ Viskose Reibung: $f_r = \mu_V \dot{x}$ Fallunterscheidung:

$$f_e = \begin{cases} f_H & \text{für } \dot{x} = 0\\ f_C + f_r & \text{sonst} \end{cases}$$

b) Reibkoeffizienten

$$\mu_V = \frac{0.1 \,\text{N}}{1 \,\text{m s}^{-1}} = 0.1 \,\text{N s m}^{-1}$$

$$\mu_C = \frac{0.1 \,\text{N}}{mg} = 0.1$$

$$\mu_H = \frac{0.1 \,\text{N}}{mg} = 0.1$$

c) Haftreibung

2. Betrachten Sie den Drehteller aus Abbildung 2, welcher sich mit konstanter Winkelgeschwindigkeit ω dreht. Die Geschwindigkeit \dot{x}_m sowie die Beschleunigung \ddot{x}_m der Masse m sind für die nachfolgende Untersuchung Null. Der Haftreibungskoeffizient zwischen dem Drehteller und der Masse m beträgt μ_H . Der Winkel β , die Länge l, der Abstand x_m , sowie die entspannte Länge der Feder x_0 und die Federkonstante c sind bekannt.

Abbildung 2: Drehteller.

- a) Skizzieren und benennen Sie alle auftretenden Kräfte. Drücken Sie die Kräfte 2 P.| als Funktionen der gegebenen Größen aus.
- b) Zerlegen Sie die Kräfte in Normal- und Tangentialkomponenten in Bezug auf 1 P. die Oberfläche.
- c) Bestimmen Sie die Haftbedingungen damit die Masse in Ruhe bleibt. 2 P.
- d) Ermitteln Sie die kritischen Winkelgeschwindigkeiten ω_{krit} , ab welcher sich die 3 P. | Masse m in Bewegung setzen würde.

a) Fliehkraft $F_f = m(x_m + l)\cos(\beta)\omega^2$, Gewichtskraft $F_g = mg$, Federkraft $F_c = c(x_m - x_0)$, Reibkraft (siehe Punkt b) $F_r = (F_{g,n} + F_{f,n})\mu_H$;

Abbildung 3: Auftretende Kräfte.

$$F_{f,t} = m(x_m + l)\cos(\beta)^2 \omega^2$$

$$F_{f,n} = m(x_m + l)\cos(\beta)\sin(\beta)\omega^2$$

$$F_{g,t} = mg\sin(\beta)$$

$$F_{g,n} = mg\cos(\beta)$$

c) Haftbedingungen

$$F_{f,t} - F_{g,t} - F_c > \mu_H(F_{g,n} + F_{f,n}) \rightarrow Bewegung nach außen$$

 $F_{f,t} - F_{g,t} - F_c < -\mu_H(F_{g,n} + F_{f,n}) \rightarrow Bewegung nach innen$

d) Bedingung 1:

$$F_{f,t} - F_{g,t} - F_c > \mu_H(F_{g,n} + F_{f,n})$$

$$m(x_m + l)\cos(\beta)^2 \omega^2 - mg\sin(\beta) - c(x_m - x_0) > \mu_H \Big(mg\cos(\beta) + m(x_m + l)\cos(\beta)\sin(\beta)\omega^2 \Big)$$

$$\omega^2 > \frac{mg\sin(\beta) + c(x_m - x_0) + \mu_H mg\cos(\beta)}{m(x_m + l)\cos(\beta)^2 - \mu_H m(x_m + l)\cos(\beta)\sin(\beta)}$$

$$\omega_1 > \sqrt{\frac{mg\sin(\beta) + c(x_m - x_0) + \mu_H mg\cos(\beta)}{m(x_m + l)\cos(\beta)^2 - \mu_H m(x_m + l)\cos(\beta)\sin(\beta)}}$$

$$\omega_2 < -\sqrt{\frac{mg\sin(\beta) + c(x_m - x_0) + \mu_H mg\cos(\beta)}{m(x_m + l)\cos(\beta)^2 - \mu_H m(x_m + l)\cos(\beta)\sin(\beta)}}$$

Bedingung 2:

$$F_{f,t} - F_{g,t} - F_c < -\mu_H(F_{g,n} + F_{f,n})$$

$$m(x_m + l)\cos(\beta)^2 \omega^2 - mg\sin(\beta) - c(x_m - x_0) < -\mu_H \Big(mg\cos(\beta) + m(x_m + l)\cos(\beta)\sin(\beta)\omega^2 \Big)$$

$$\omega^2 < \frac{mg\sin(\beta) + c(x_m - x_0) - \mu_H mg\cos(\beta)}{m(x_m + l)\cos(\beta)^2 + \mu_H m(x_m + l)\cos(\beta)\sin(\beta)}$$

$$\omega_3 < \sqrt{\frac{mg\sin(\beta) + c(x_m - x_0) - \mu_H mg\cos(\beta)}{m(x_m + l)\cos(\beta)^2 + \mu_H m(x_m + l)\cos(\beta)\sin(\beta)}}$$

$$\omega_4 > -\sqrt{\frac{mg\sin(\beta) + c(x_m - x_0) - \mu_H mg\cos(\beta)}{m(x_m + l)\cos(\beta)^2 + \mu_H m(x_m + l)\cos(\beta)\sin(\beta)}}$$

3. Gegeben ist der in Abbildung 4 dargestellte Zahnriemenantrieb. Der Schlitten mit 9 P. der Masse m_s ist über einen Zahnriemen mit den beiden Riemenscheiben verbunden. Die Riemenscheibe 1 wird über einen Motor mit dem Moment M₁ angetrieben. Die Trägheitsmomente bzw. die Drehwinkel der Riemenscheiben sind mit θ_i und φ_i, i ∈ {1,2} bezeichnet. Der Radius der beiden Riemenscheiben ist r. Das elastische Verhalten des Zahnriemens wird mit Hilfe der drei Federelemente c₁, c₂ und c₃ berücksichtigt. Die Position des Schlittens ist mit s bezeichnet. Die Reibung zwischen Schlitten und Schlittenführung wird als viskose Reibung mit dem Reibkoeffizienten μ_V charakterisiert.

Abbildung 4: Schema des Zahnriemenantriebs.

- a) Wählen Sie einen geeigneten Vektor der generalisierten Koordinaten q. 1 P.
- b) Berechnen Sie die kinetische Energie des Systems in Abhängigkeit der genera- 1 P.| lisierten Koordinaten \mathbf{q} und deren Zeitableitung $\dot{\mathbf{q}}$.
- c) Ermitteln Sie die potentielle Energie des Systems in Abhängigkeit der genera- 1 P.| lisierten Koordinaten q.
- d) Leiten Sie die Bewegungsgleichungen des Systems mit Hilfe des Euler-Lagrange- 3 P. Formalismus her.

Unter der Annahme von $\theta_1 \gg \theta_2$ kann der Zahnriemenantrieb aus Abbildung 4 näherungsweise als Zwei-Massen-Schwinger betrachtet werden, siehe Abbildung 5.

Abbildung 5: Schema des Zwei-Massen-Schwingers.

- e) Fassen Sie die Federelemente c_1 , c_2 und c_3 zu einer Gesamtsteifigkeit c zusam- 1 P.| men.
- f) Stellen Sie die Bewegungsgleichungen für das vereinfachte System aus Abbil- 2 P. dung 5 auf.

a) Generalisierte Koordinaten

$$\mathbf{q} = \begin{bmatrix} \varphi_1 \\ \varphi_2 \\ s \end{bmatrix}$$

b) Kinetische Energie

$$T = \frac{1}{2}\theta_1 \dot{\varphi_1}^2 + \frac{1}{2}\theta_2 \dot{\varphi_2}^2 + \frac{1}{2}m_s \dot{s}^2$$

c) Potentielle Energie

$$V = \frac{1}{2}c_1(s - r\varphi_1)^2 + \frac{1}{2}c_2(r\varphi_2 - s)^2 + \frac{1}{2}c_3r^2(\varphi_1 - \varphi_2)^2$$

d) Mit der generalisierten Kraft

$$f_{np} = \begin{bmatrix} M_1 \\ 0 \\ -\mu_V \dot{s} \end{bmatrix}$$

folgen die Bewegungsgleichungen

$$\ddot{\varphi}_{1} = \frac{1}{\theta_{1}} \Big(M_{1} + c_{1}r(s - r\varphi_{1}) - c_{3}r^{2}(\varphi_{1} - \varphi_{2}) \Big)$$

$$\ddot{\varphi}_{2} = \frac{1}{\theta_{2}} \Big(-c_{2}r(r\varphi_{2} - s) + c_{3}r^{2}(\varphi_{1} - \varphi_{2}) \Big)$$

$$\ddot{s} = \frac{1}{m_{s}} \Big(-c_{1}(s - r\varphi_{1}) + c_{2}(r\varphi_{2} - s) - \mu_{V}\dot{s} \Big)$$

e) Gesamtsteifigkeit der Federn

$$c = c_1 + \frac{c_2 c_3}{c_2 + c_3}$$

f) Bewegungsgleichungen des Zwei-Massen-Schwingers

$$\ddot{\varphi}_1 = \frac{1}{\theta_1} (M_1 + cr(s - r\varphi_1))$$
$$\ddot{s} = \frac{1}{m_s} (-c(s - r\varphi_1) - \mu_V \dot{s})$$

8

4. In einer isolierten Rohrleitung strömt Heißdampf mit der Temperatur T_D . Die Temperatur der Umgebung ist T_L . Die Wärmeübergangszahl an der Rohrinnenseite beträgt α_i , die Wärmeleitfähigkeit der Rohrleitung ist λ und die Wärmeübergangszahl an der Rohraußenseite beträgt α_a . Die Innen- und Außendurchmesser $2r_i$ bzw. $2r_a$ sind gegeben.

Abbildung 6: Heißdampfleitung im Querschnitt.

- a) Vereinfachen Sie die Wärmeleitgleichung $\frac{\partial T_R}{\partial t} = a\Delta T_R$ mit einer allgemeinen 1.0 P.| Konstanten a für den stationären Fall und einer unendlich langen Leitung. **Hinweis:** Zylinderkoordinaten $\Delta = \frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r} + \frac{1}{r^2}\frac{\partial^2}{\partial \omega^2} + \frac{\partial^2}{\partial z^2}$
- b) Zeigen Sie, dass die Funktion $f(r) = \frac{c_0}{r}$ mit einer Konstanten c_0 die Differentialgleichung erfüllt.

Hinweis: Für diese Aufgabe ist die Substitution $\frac{\partial T_R}{\partial r} = f(r)$ erforderlich.

Hinweis: Die Teilaufgaben 4c) bis 4e) sind unabhängig von den Teilaufgaben 4a) und 4b) lösbar.

- c) Lösen Sie nun die verbleibende Differentialgleichung $\frac{\partial T_R}{\partial r} = f = \frac{c_0}{r}$. Geben 1.5 P.| Sie den stationären, radialen Temperaturverlauf $T_R(r)$ in der Rohrleitung in allgemeiner Form an. Bezeichnen Sie die Integrationskonstante mit c_1 .
- d) Bestimmen Sie die Konstanten c_0 und c_1 für gegebene Temperaturen an Innen- 2.5 P.| und Außenwand T_i bzw. T_a . Geben Sie die Funktion $T_R(r)$ an.

 Hinweis: Nehmen Sie die Temperaturen T_i und T_a als bekannt an.
- e) Stellen Sie die Randbedingungen $\dot{Q}_i = f_i(T_i)$ und $\dot{Q}_a = f_a(T_a)$ dar. Vereinfachen Sie anschließend den in der Leitung mit der Länge L auftretenden Wärmestrom $\dot{Q}_\lambda = -\lambda A(r) \frac{\partial T_R}{\partial r}$ mit der Fläche A(r). Wie stehen die Wärmeströme \dot{Q}_i , \dot{Q}_a und \dot{Q}_λ in Verbindung zueinander?

Hinweis: Der Wärmestrom ist das Flächenintegral über die Wärmestromdichte: $\dot{Q} = \int_A \dot{q} dA$.

a) Aus

$$\Delta = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r}$$

folgt

$$\frac{\partial^2 T_R}{\partial r^2} + \frac{1}{r} \frac{\partial T_R}{\partial r} = 0.$$

b)

$$f' + \frac{f}{r} = -c_0 r^{-2} + \frac{1}{r} c_0 r^{-1} = 0$$

c)

$$\frac{\partial T_R}{\partial r} = \frac{c_0}{r}$$
$$dT_R = \frac{c_0}{r}dr$$
$$T_R(r) = c_0 \ln(r) + c_1$$

d) Aus

$$T_i = c_0 \ln(r_i) + c_1$$
$$T_a = c_0 \ln(r_a) + c_1$$

folgt

$$c_0 = \frac{T_i - T_a}{\ln\left(\frac{r_i}{r_a}\right)}$$

$$c_1 = T_i - \frac{(T_i - T_a)}{\ln\left(\frac{r_i}{r_a}\right)} \ln(r_i)$$

$$T_R(r) = T_i + \frac{(T_i - T_a)}{\ln\left(\frac{r_i}{r_a}\right)} \ln\left(\frac{r}{r_i}\right).$$

e)

$$\dot{Q}_{i} = \alpha_{i} A_{i} (T_{D} - T_{i})$$

$$\dot{Q}_{\lambda} = -\lambda A(r) \frac{\partial T_{R}}{\partial r} = -\lambda 2\pi r L \frac{(T_{i} - T_{a})}{\ln(\frac{r_{i}}{r_{a}})} \frac{1}{r} \frac{1}{r_{i}} = -2\pi \lambda L \frac{(T_{i} - T_{a})}{\ln(\frac{r_{i}}{r_{a}})}$$

$$\dot{Q}_{a} = \alpha_{a} A_{a} (T_{a} - T_{L})$$

$$\dot{Q}_{i} = \dot{Q}_{a} = \dot{Q}_{\lambda}$$