EE6424 Digital Audio Signal Processing Part 2 Lecture 3: Sampling and Quantization of Speech

Outline of lecture

- Digitization (Analog to digital)
 - Sampling (Continuous time → Discrete time)
 - Quantization (Continuous amplitude → Discrete amplitude)
 - Coding (Discrete amplitude → binary digit)
- Scalar Quantization
 - Mechanism of scalar quantization
 - Quantization noise (SQNR)
 - Companding
- Vector Quantization
 - The LBG algorithm

EE6424 Part 3: Lecture 3.1

DIGITIZATION

Digital speech

- A speech signal, in the form of an acoustic sound pressure wave, can be changed into a processable object by converting it into an electrical signal using a microphone.
- The electrical signal is usually transformed from the **analog** into a **digital** signal prior to almost all speech processing.
- Speech coding, speech enhancement, speech and speaker recognition, among others, involve highly sophisticated algorithms which cannot otherwise be realized using analog techniques.
- Analog-to-digital (A/D) conversion, commonly referred to as the digitization, consists of three processes
 - Sampling (continuous time → discrete time)
 Sampling is the process of converting a continuous time signal as a periodic sequence of values.

- Quantization (continuous amplitude → finite set of discrete values)
 Quantization involves representing the sampled values by one from a finite set of values.
- Coding (finite set of binary codes)
 - Coding is concerned with the assignment of **binary codes** to each value in the finite set.
- The digitization process thus converts a continuous-time continuous amplitude speech signal into a sequence of binary codes (or bit stream).

Sampling

• Given an analog input $x_c(t)$, the sampler produces a number $x(n) = x_c(nT)$ at a periodic time nT, where n is an integer (the discrete time index).

Sampling period

• T (seconds) is called the sampling period, while $F_{\rm S}=1/T$ (Hz) is referred to as the sampling frequency.

The sampled signal x(n), which is **discontinuous** in time but **continuous** in amplitude is called a **discrete-time signal**.

- Sampling a band-limited signal can be achieved without loss of information, as long as the **Shannon rule** is followed.
- The sampling frequency F_s must be at least twice as high as the highest frequency (Nyquist rate).
- Incorrect sampling (when signal bandwidth is larger than $F_s/2$), aliasing distortion occurs.

Quantization

- The quantizer takes the numbers x(n) and assigned quantized values $\hat{x}(n)$ according to a non-linear discrete-output mapping function $Q\{\cdot\}$.
- Quantization resulted in **noise** being added to sampled signal x(n) with continuous amplitude.
- Δ is the quantization step-size. The value is decided such that the SNR of the quantized signal is sufficiently large.

- The coder assigns a binary code (quantization index) to each quantization level.
- These codewords are chosen to correspond to the quantized amplitudes such that arithmetic can be done directly on the codewords.
- The fine distinction between **quantized samples** and **coded samples** (i.e., base-10 versus base-2 numbers) could generally be ignored.
- Speech signal represented by binary coded quantized samples is called pulse-code modulation (or just PCM) because binary numbers can be transmitted as on/off pulse amplitude modulation.

Bit rate

- Let B denotes the **number of bits** use to represent the **quantized samples** (i.e., the length of the codewords) and F_s the sampling rate in Hz (or samples per second).
- The bit rate (or data rate), measured in bits per second (bps) of a sampled and quantized speech signal is

$$I = B \times F_{\rm s}$$

• The standard values for **sampling** and **quantizing** sound signals (singing, instrumental music) are B=16 and $F_S=44.1$ kHz or 48 kHz.

$$bit\ rate = 16 \times 44100 = 705,600\ bps$$

 $bit\ rate = 16 \times 48000 = 768,000\ bps$

 This value is more than adequate and much more than desired for most speech applications.

Telephone vs. wideband speech

- Human voice ranges from 50 Hz to 10 kHz, with 99% of voice information being below 4 kHz.
- Speech signals are often sampled at 8 kHz. A low-pass filter is used to remove spectral components above the frequency of interest (e.g., 4 kHz) to avoid aliasing distortion.
- This is usually done by sampling at a very high sampling rate and applying
 a digital low-pass filter (instead of an analog filter) before down-sampling.
- The telephone network limits the bandwidth of speech signals to between the ranges from 300 Hz to 3400 Hz. This is called the telephone bandwidth.
- Wideband speech, as opposed to telephone speech, uses a bandwidth of
 50 Hz to 7000 Hz and a sampling frequency of 16 kHz.

EE6424 Part 3: Lecture 3.2

SCALAR QUANTIZATION

The process of quantization

- Quantization is the process of converting samples of discrete-time signal (continuous amplitude) into a digital signal with reduced resolution (discrete amplitude).
- An analog sample can be considered as having infinite resolution as it requires infinite number of bits to represent.
- The use of 16 bits/sample provides a quality that is considered high.
- Human ear is widely believed to be unable to perceive any loss of information with resolution higher than 24 bits/sample.
- During quantization, the entire continuous amplitude range is divided into finite number of sub-ranges, referred to as the quantization intervals.

The mechanism of quantization

- Divide the real number line into quantization intervals. This determines the resolution.
- Associate each interval with a quantization index, each corresponding to a binary code.
- Map each interval to a quantized value, as given by a quantization table.

Input interval	Binary code	Quantized value
[-3.5, -2.5)	101	-3
[-2.5, -1.5)	110	-2
[-1.5, -0.5)	111	-1
[-0.5, 0.5)	000	0
[0.5, 1.5)	001	1
[1.5, 2.5)	010	2
[2.5, 3.5)	011	3

The notation [a, b) is used to indicate an interval from a to b that is inclusive of a but exclusive of b.

- Each interval is defined by its left and right boundaries and associated with a binary code and a quantized value on the right panel. See example below for the case of 7 quantization intervals.
- Samples with their amplitudes fall into the same quantization interval are assigned the same quantized values.

Quantization step-size

- The quantized value is usually taken as the middle point in the quantization interval.
- The size of the quantization interval is referred to as the quantization step size

$$\Delta = b_{i+1} - b_i$$

- Here, b_i and b_{i+1} , for i=1,2,...,M, indicate the left and right boundaries of the ith quantization interval, and M is the number of quantization levels.
- When a signal is assumed to be quantized by B bits, the number of levels is usually set to

$$M=2^B$$

This ensures the most efficient use of the binary codes available.

- Both quantization bits B and step size Δ are selected together to properly cover the range of the signal. For example, we could choose to cover 95% of a normal distribution.
- Assuming that $|x(n)| \le x_{\max}$, where the signal amplitude is bounded within $\pm x_{\max}$, we have

$$2x_{\text{max}} = \Delta(2^B)$$

 The quantization step size given the binary resources (usually in terms of bit rate) available:

$$\Delta = \frac{2x_{\text{max}}}{2^B}$$

• Alternatively, for a given quantization step size and signal amplitude, the quantization bits (i.e., resolution) B must satisfies

$$2x_{\text{max}} = \Delta(2^B) \rightarrow B > \log_2\left(\frac{2x_{\text{max}}}{\Delta}\right)$$

 Another way to express the above condition is by taking the round number (B has to be an integer) towards plus infinity (e.g., the ceil function in MATLAB)

$$B = \left[\log_2 \left(\frac{2x_{\text{max}}}{\Delta} \right) \right]$$

Quantization noise

- When a signal is digitized (sampling followed by quantization), samples are represented on a linear scale with finite number of bits, an irreversible quantization noise is introduced.
- Quantization noise (error or distortion) is defined as the difference between the continuous input x(n) and quantized value $\hat{x}(n)$

amplitude
$$q(n) = \hat{x}(n) - x(n)$$

- Notice that the input x(n) has continuous amplitude while the quantized value $\hat{x}(n)$ is discrete and is drawn from a finite set of values.
- The quantization process $Q\{\cdot\}$ distorts the input continuous values x(n) by an additive noise q(n):

$$\hat{x}(n) = Q\{x(n)\} = x(n) + q(n)$$

- The quantization error manifests itself as the presence of **noise over the signal**.
- The **amplitude** of the quantization noise is determined by the **step size**, which in turn is determined by the **maximum amplitude** x_{max} of the input signal and **quantization resolution** B.
- Let the quantized value be at the middle of the quantization interval, and all quantization intervals have the same length (uniform quantization), the quantization noise satisfies:

$$-\frac{\Delta}{2} \le q(n) \le \frac{\Delta}{2}$$

Example

• The quantization step Δ is set to 1. Therefore the maximum value of quantization error |q(n)| is $\Delta/2 = 0.5$.

- For each interval, the value of the quantization error goes from $\Delta/2 = 0.5$ to $-\Delta/2 = -0.5$.
- The quantization error is uniformly distributed from $\Delta/2 = 0.5$ to $-\Delta/2 = -0.5$.

Property of q(n)

- We assume that the quantization noise q(n) as a white noise with the following properties
 - Stationary and white

$$\gamma_{qq}(l) = E\{q(n)q(n-l)\} = 0 \quad \forall l \neq 0$$

where $E\{x\}$ denotes the mean of x.

- Uncorrelated with the input (assume stationary input x(n))

$$\gamma_{xq}(l) = E\{x(n)q(n-l)\} = 0 \quad \forall l$$

Uniformly distributed

$$p(q) = \begin{cases} \frac{1}{\Delta} & \text{for } -\frac{\Delta}{2} \le q(n) \le \frac{\Delta}{2} \\ 0 & \text{otherwise} \end{cases}$$

Mean-square quantization error (MSQE)

- The quantization error q(n) is uniformly distributed in the interval from $-\Delta/2$ to $\Delta/2$,
- Its variance, also referred to as the mean-square quantization error (MSQE) is computed (assuming zero mean) as follows

$$\sigma_q^2 = E\left\{q^2\right\} = \int_{-\Delta/2}^{\Delta/2} q^2 p(q) dq = \int_{-\Delta/2}^{\Delta/2} q^2 \frac{1}{\Delta} dq = \frac{1}{\Delta} \int_{-\Delta/2}^{\Delta/2} q^2 dq$$

$$= \frac{1}{\Delta} \left[\frac{(\Delta/2)^3}{3} - \frac{(-\Delta/2)^3}{3} \right]$$

$$= \frac{\Delta^2}{24} + \frac{\Delta^2}{24} = \frac{\Delta^2}{12}$$

Let

$$\Delta = \frac{2x_{\text{max}}}{2^B}$$

• The MSQE becomes dependent on the maximum amplitude x_{max} of the input signal and the design parameter B

$$\sigma_q^2 = \frac{\Delta^2}{12} = \left[\frac{2x_{\text{max}}}{2^B}\right]^2 \frac{1}{12} = \left[\frac{4x_{\text{max}}^2}{2^{2B}}\right] \frac{1}{12} = \frac{x_{\text{max}}^2}{3 \times 2^{2B}}$$

Signal-to-quantization noise ratio

 The signal-to-quantization noise ratio (SQNR or simply SNR) is defined as the ratio between the variances of the input signal and the quantization error, as follows

$$SQNR = \frac{\sigma_x^2}{\sigma_q^2} = \frac{E\{x^2(n)\}}{E\{q^2(n)\}}$$

- We assume that the input x(n) and error $q(n) = Q\{x(n)\} x(n)$, have zero mean.
- The denominator, $E\{q^2(n)\}$, is also referred to as the mean-square quantization error (MSQE).

Using this result, the SQNR could be expressed as

SQNR =
$$\sigma_x^2 \times \left[\frac{x_{\text{max}}^2}{3 \times 2^{2B}} \right]^{-1} = \frac{3 \times 2^{2B}}{x_{\text{max}}^2 / \sigma_x^2}$$

• It is customary to represent the SQNR in dB scale by taking $10 \times \log_{10}$

SQNR =
$$10 \times \log_{10} \frac{\sigma_{\chi}^{2}}{\sigma_{q}^{2}} dB$$

= $10 \times \left[\log_{10} 3 + B \log_{10} 4 - 2 \log_{10} \frac{x_{\text{max}}}{\sigma_{\chi}} \right]$
= $6.02 B + 4.77 - 20 \log_{10} \frac{x_{\text{max}}}{\sigma_{\chi}}$

Loading factor

- The ratio x_{max}/σ_x is referred to as the **loading factor** of the quantizer.
- For an input x(n) with **uniform distribution**, the loading factor can be computed from the variance and the maximum amplitude (x_{max} being also the peak signal amplitude)

$$\sigma_x^2 = \frac{(2x_{\text{max}})^2}{12}$$

$$\sigma_x = \frac{2x_{\text{max}}}{\sqrt{12}}$$

Loading factor =
$$\frac{x_{\text{max}}}{\sigma_{\chi}} = \frac{\sqrt{12}}{2} = 1.7$$

For uniformly distributed input, the last term in the SQNR formula is

$$20\log_{10}\left(\frac{x_{\text{max}}}{\sigma_x}\right) = 20\log_{10}\left(\frac{\sqrt{12}}{2}\right) = 4.77$$

The SQNR becomes

$$SQNR = 6.02B + 4.77 - 4.77 \text{ dB}$$
$$= 6.02B \text{ dB}$$

- The above leads to the conclusion that increasing the resolution by one bit increases the SNR by 6.02 dB.
- The number of bits *B* must be decided so that the **SQNR** of the quantized signal is sufficiently large.

Overload factor

For non-uniform input, it is common to assume a loading factor of 4

$$x_{\text{max}} = 4\sigma_x$$

The maximum amplitude is four times the standard deviation of the input signal.

$$SQNR = 6.02B + 4.77 - 20 \log_{10} 4 dB$$
$$= 6.02B - 7.27 dB$$

- For the case when the amplitude distribution follows a Gaussian distribution, a loading factor of 4 cover 99% of the possible input values.
- The SQNR reduces as compared to uniform input (having a smaller loading factor of 1.7).

- The left over $\leq 1\%$ with value $|x| > 4\sigma_x$, which falls into the **overload area**, will be mapped to the same quantized value as $\pm x_{\rm max}$.
- This introduces the so-called overload error (or noise), which added up to the quantization noise and thereby reducing the overall SQNR.

• This example shows for the case of $x_{\text{max}} = 2\sigma_x$ with a loading factor of 2.

$$SQNR = 6.02B + 4.77 - 20 \log_{10} 2 dB$$
$$= 6.02B - 1.25 dB$$

Loading factor vs. overload noise

- Most signals, speech especially, have a wide dynamic range. The amplitudes vary greatly between voiced and unvoiced sounds.
 - A large loading factor reduces the overload noise.
 - This increases the quantization step size $\Delta = 2x_{\text{max}}/2^B$ and therefore the quantization noise (for the same B).
 - The quantization noise is the same whether the signal sample is large or small.
 - For a given peak-to-peak value, we could reduce the noise by adding more bits.
- Another alternative is use log-scale quantization via companding.
- In companding, signal amplitude is **compressed** or **warped** so as to approach to that of uniform distribution before **quantization**.

- Companding is motivated by the fact that optimum SQNR is obtained for uniform input. Deviation from uniform distribution reduces the SQNR.
- The following figure show the optimal SQNR for uniform, Gaussian,
 Laplacian, and Gamma distributions. [Source: Y. You, Audio Coding: Theory and Applications, Springer, 2010.]

Companding

- Companding is commonly used in the telephone system.
- The amplitude of the signal is compressed by logarithmic transformation before **uniform quantization**.
- At the decoding stage, the amplitude is exponentially expanded.
- The combined process is called companding:

Compressor
$$\rightarrow Q\{\cdot\} \rightarrow \text{Expander}$$

- The effective decision boundaries when seen from the expander output is logarithmic.
- The overall process can be seen as a **logarithmic scale** quantization as opposed to **linear scale** (or uniform) quantization.

- The distribution of speech samples follows a Laplacian (or Gaussian) distribution, with heavy concentration around the mode.
- The compressor warps the input distribution such that it is closer to a uniform distribution.
- The consequence is that **more** quantization steps with **smaller** size are placed in high density area around the mode.

- Companding leads to a more efficient use of binary bits.
- An 8-bit log PCM could give the speech quality almost equivalent to a 12-bit linear PCM.
- From speech coding perspective, compression (reduction in the bit rate) is achieved by removing **statistical redundancy** due to **non-uniform** distribution of the input signal samples.
- Two kinds of transformation formulae commonly used are
 - $-\mu$ -law
 - A-law

The actual difference between the two is marginal.

μ-law companding

Compressor (a)

$$y = f(x) = \operatorname{sign}(x) \frac{\ln(1+\mu|x|)}{\ln(1+\mu)}, \quad -1 \le x \le 1$$

Expander (b)

$$x = f^{-1}(y) = \operatorname{sign}(y) \frac{(1+\mu)^{|y|} - 1}{\mu}, -1 \le y \le 1$$

- The larger μ becomes, the larger the amount of **amplitude compression**.
- Typically, values between 100 and 500 are used for μ . In particular, 8-bit, μ = 256, with sampling frequency at 8 kHz is commonly used for digital telephony.

EE6424 Part 3: Lecture 3.3

VECTOR QUANTIZATION

Vector quantization

- Scalar quantization (SQ) quantizes a signal one sample at a time. Furthermore, the mapping of a sample value is not influenced by previous or following sample values.
- **Vector quantization** (VQ) quantizes a block (or **vector**) of input samples each time, usually leading to a higher efficiency especially for correlated signals.
- Let \mathbf{x} be an N-dimensional vector (i.e., we are interested in quantizing N samples at a time):

$$\mathbf{x} = [x_0, x_1, ..., x_{N-1}]^{\mathrm{T}}$$

Notice that x as defined above is a column vector. The transpose operator
 T at the upper right corner turns the row vector (takes less writing space)
 into a column vector. This notation is commonly used in engineering to
 represent vector variables.

Quantization regions

- The vector \mathbf{x} is drawn from a vector space Ω , which can be divided into a set of M regions $\{\delta_0, \delta_2, ..., \delta_{M-1}\}$ in a mutually exclusive and collectively exhaustive way.
 - (a) The regions form the entire vector space.

$$\Omega = \bigcup_{i=0}^{M-1} \delta_i$$

(b) The regions are mutually exclusive (or disjoint).

$$\delta_i \cap \delta_i = \emptyset \quad \forall i \neq j$$

 The mutually exclusive property implies that a vector can fall to one and only one region among the M regions (similar to the case of SQ).

VQ codebook

- A representative vector \mathbf{r}_i is assigned to each region δ_i , i=0,1,...,M-1. The set of M representative vectors $\{\mathbf{r}_0,\mathbf{r}_1,...,\mathbf{r}_{M-1}\}$ are referred to as the **VQ codebook**.
- An input vector \mathbf{x} is quantized based on its distance $d(\mathbf{x}, \mathbf{r}_i)$ from the representative vectors \mathbf{r}_i as follows:

$$Q(\mathbf{x}) = \mathbf{r}_i$$
 if and only if $d(\mathbf{x}, \mathbf{r}_i) < d(\mathbf{x}, \mathbf{r}_j) \ \forall i \neq j$

• The quantized vector is the representative vector \mathbf{r}_i of the region where the input sample falls into. In uniform SQ, the center of the interval is used as the quantized value.

VQ design

• The goal of VQ design is to find the set of regions $\{\delta_0, \delta_1, ..., \delta_{M-1}\}$ and the codebook $\{\mathbf{r}_0, \mathbf{r}_1, ..., \mathbf{r}_{M-1}\}$ that minimize the total quantization error over a training set $\{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_k, ..., \mathbf{x}_L\}$ of L vectors:

$$Err = \sum_{k=1}^{L} d\left[\mathbf{x}_{k}, \hat{\mathbf{x}}(\mathbf{x}_{k})\right]$$

• The distance or error is defined as the Euclidean distance of the input vector \mathbf{x}_k and the representative vector \mathbf{r}_i as follows

$$d\left(\mathbf{x},\mathbf{r}_{i}\right) = \sum_{n=1}^{N} \left(x_{n} - r_{i,n}\right)^{2}$$

• The **Linde-Buzo-Gray** (LBG) algorithm, also known as k-means algorithm, is commonly used to find the optimal VQ code book.

The LBG (k-means) algorithm

- Step 1: Initialize the VQ codebook (randomly)
- Step 2: Quantize each training vector \mathbf{x}_k using the current codebook

$$Q(\mathbf{x}_k) = \mathbf{r}_i$$
 if and only if $d(\mathbf{x}_k, \mathbf{r}_i) < d(\mathbf{x}_k, \mathbf{r}_j) \ \forall i \neq j$

• Step 3: Update the VQ codebook $\{\mathbf{r}_0, \mathbf{r}_1, ..., \mathbf{r}_{M-1}\}$, in which the new representative vectors are taken as the centroids of the regions. Here, L_i is the number of training samples assigned to the ith region in Step 2.

$$\mathbf{r}_i = \frac{1}{L_i} \sum_{\mathbf{x}_k \in \delta_i} \mathbf{x}_k, \quad i = 0, 1, \dots, M - 1$$

• Step 4: Calculate the total quantization error over all the L training samples:

$$Err = \sum_{k=1}^{L} d\left[\mathbf{x}_{k}, \hat{\mathbf{x}}(\mathbf{x}_{k})\right]$$

Go to Step 2 if the change in Err is greater than the pre-determined threshold ε

$$\frac{Err(t-1)-Err(t)}{Err(t)} > \varepsilon$$

- Step 5: Stop
- VQ is used, for example in speech coding, where blocks of samples are quantized. The indices are sent to the receiving end where quantized samples are recovered using the same codebook.

VQ Codebook example

- The following shows the VQ training process in the twodimensional vector space.
- The red dots represent the centroids of the regions, and the region boundaries are represented as straight lines.
- Training data are represented as smaller dots in green
- Source: http://www.datacompression.com/vq.shtml

Summary

- Sampling and quantization of the input signal into digital form is the necessary process in any applications of digital signal processing
- Sampling is a time-domain operation whereby a continuous time signal is represented as a periodic sequence of numbers.
- Sampling a band-limited signal can be achieved without loss of information, as long as the Shannon rule is followed.
- Quantization involves representing the sampled values by one from a finite set of values.
- The quantized values could be represented as binary codes (assuming that we use binary number system as it commonly used nowadays in digital transmission system).

- The quantization process $Q\{\cdot\}$ distorts the input continuous values x(n) by an **additive noise** q(n).
- Uniform (or linear) quantization produces highest SQNR (1 bit \rightarrow 6dB) when the input signal has a uniform distribution.
- For non-uniform input, companding could be used, by which statistical redundancy is reduced by warping the input samples toward uniform distribution.
- Vector quantization (VQ) quantizes blocks of samples as opposed to scalar quantization (SQ) which quantizes the input signal one sample at a time.