Examenul național de bacalaureat 2021 Proba E. c)

Matematică *M_tehnologic*

BAREM DE EVALUARE ȘI DE NOTARE

Testul 7

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	b = 3,6	2p
	$m_a = \frac{2,4+3,6}{2} = \frac{6}{2} = 3$	3p
2.	$f(x) = 0 \Leftrightarrow x^2 + 3x = 0$	2p
	Abscisele punctelor de intersecție a graficului funcției f cu axa Ox sunt $x = -3$ și $x = 0$	3 p
3.	$2^{1-2x} = 2^5 \Leftrightarrow 1-2x = 5$	3p
	x = -2	2p
4.	$\frac{20}{100} \cdot x = 27$, unde x este prețul înainte de ieftinire	3p
	x = 135 de lei	2p
5.	O(0,0) este mijlocul segmentului AC	2p
	<i>OD</i> este linie mijlocie în triunghiul <i>ABC</i> , deci $OD = \frac{BC}{2}$, de unde obținem $BC = 2OD$	3p
6.	$\sin^2 x + \left(\frac{1}{5}\right)^2 = 1 \Leftrightarrow \sin^2 x = \frac{24}{25}$ şi, cum $x \in \left(0, \frac{\pi}{2}\right)$, obţinem $\sin x = \frac{2\sqrt{6}}{5}$	3р
	$tgx = \frac{2\sqrt{6}}{5} : \frac{1}{5} = 2\sqrt{6}$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(4) = \begin{pmatrix} 3 & 4 \\ 1 & -1 \end{pmatrix} \Rightarrow \det(A(4)) = \begin{vmatrix} 3 & 4 \\ 1 & -1 \end{vmatrix} = 3 \cdot (-1) - 4 \cdot 1 =$	3р
	=-3-4=-7	2p
b)	$A(1) \cdot A(1) + 2A(x) = \begin{pmatrix} 2x - 1 & -1 + 2x \\ 1 & 0 \end{pmatrix} \Rightarrow \det(A(1) \cdot A(1) + 2A(x)) = 1 - 2x, \text{ pentru orice}$	3p
	număr real x	
	1-2x=11, de unde obținem $x=-5$	2p
c)	$A(0) \cdot A(x) \cdot A(1) = \begin{pmatrix} -x & 1 \\ x+1 & -3 \end{pmatrix}$, pentru orice număr real x	2p
	$\begin{pmatrix} -x & 1 \\ x+1 & -3 \end{pmatrix} = \begin{pmatrix} 3y-3 & 3y \\ 3 & -3 \end{pmatrix}, \text{ de unde obținem } x=2 \text{ și } y = \frac{1}{3}$	3 p
2.a)	$1*2=20\cdot 1-21\cdot 2+1=$	3p
	=20-42+1=-21	2p
b)	(x-1)*x=-x-19, pentru orice număr real x	2p
	-x-19=1, de unde obținem $x=-20$	3 p

c)	$x^2 * x = 20x^2 - 21x + 1$, pentru orice număr real x	2 p
	$20x^2 - 21x + 1 \le 0$, de unde obţinem $x \in \left[\frac{1}{20}, 1\right]$	3 p

(30 de puncte) **SUBIECTUL al III-lea**

1.a)	$f'(x) = e^x + (x-2)e^x =$	3p
	$=(1+x-2)e^x=(x-1)e^x, x \in \mathbb{R}$	2p
b)	$\lim_{x \to 1} \frac{f'(x)}{e^x - e} = \lim_{x \to 1} \frac{(x - 1)e^x}{e^x - e} =$	2p
	$= \lim_{x \to 1} \frac{xe^x}{e^x} = 1$	3p
c)	$f'(x) = 0 \Leftrightarrow x = 1$ și $f'(x) \le 0$, pentru orice $x \in (-\infty, 1] \Rightarrow f$ este descrescătoare pe $(-\infty, 1]$, $f'(x) \ge 0$, pentru orice $x \in [1, +\infty) \Rightarrow f$ este crescătoare pe $x \in [1, +\infty)$	2p
	$f(x) \ge f(1) \Leftrightarrow (x-2)e^x \ge -e$, pentru orice $x \in \mathbb{R}$, de unde obținem $(x-2)e^{x-1} \ge -1$, pentru orice $x \in \mathbb{R}$, deci $(2-x)e^{x-1} \le 1$, pentru orice $x \in \mathbb{R}$	3 p
2.a)	$\int_{-1}^{1} \left(f(x) - x^2 \right) dx = \int_{-1}^{1} \left(2x^5 - 1 \right) dx = \left(\frac{x^6}{3} - x \right) \Big _{-1}^{1} =$	3p
	$=-\frac{2}{3}-\frac{4}{3}=-2$	2p
b)	$\int_{2}^{4} \frac{f(x) - 2x^{5}}{2x} dx = \int_{2}^{4} \left(\frac{x}{2} - \frac{1}{2x}\right) dx = \left(\frac{x^{2}}{4} - \frac{1}{2}\ln x\right) \Big _{2}^{4} =$	3р
	$=4-\frac{1}{2}\ln 4-1+\frac{1}{2}\ln 2=\frac{6-\ln 2}{2}$	2p
c)	$\int_{0}^{1} x^{4} (2x^{5} - 1)^{2} dx = \frac{1}{10} \int_{0}^{1} (2x^{5} - 1)' (2x^{5} - 1)^{2} dx = \frac{1}{10} \cdot \frac{(2x^{5} - 1)^{3}}{3} \Big _{0}^{1} =$	3p
	$=\frac{1}{10}\left(\frac{1}{3} + \frac{1}{3}\right) = \frac{1}{15}$	2p