Representation and conversion of one wavefunction

(X. Gonze, Y. Suzukawa, M. Mikami)

November 13, 2007

1 Notations and theoretical considerations

* A Bloch wavefunction characterized by a wavevector ${\bf k}$ is such that

$$\psi_{\mathbf{k}}(\mathbf{r}) = u_{\mathbf{k}}(\mathbf{r})e^{i2\pi\mathbf{k}\cdot\mathbf{r}}$$

where $u_{\mathbf{k}}(\mathbf{r})$ is periodic, that is

$$u_{\mathbf{k}}(\mathbf{r} + \mathbf{R}_{latt}) = u_{\mathbf{k}}(\mathbf{r})$$

where \mathbf{R}_{latt} is a vector of the real space lattice.

* Representation by plane waves

$$\begin{array}{rcl} u_{\mathbf{k}}(\mathbf{r}) & = & \displaystyle\sum_{\mathbf{G}} c_{\mathbf{k}}(\mathbf{G}) e^{i2\pi\mathbf{G}\cdot\mathbf{r}} \\ \\ \psi_{\mathbf{k}}(\mathbf{r}) & = & \displaystyle\sum_{\mathbf{G}} c_{\mathbf{k}}(\mathbf{G}) e^{i2\pi(\mathbf{k}+\mathbf{G})\cdot\mathbf{r}} \end{array}$$

* Normalisation

$$\sum_{\mathbf{C}} |c_{\mathbf{k}}(\mathbf{G})|^2 = 1$$

* For a spinor wavefunction, there is an additional variable, the spin σ that can take two values, that is $\sigma=\uparrow$ (spin up) or $\sigma=\downarrow$ (spin down) The following relations hold :

$$u_{\mathbf{k}}(\mathbf{r}, \sigma) = \sum_{\mathbf{G}} c_{\mathbf{k}}(\mathbf{G}, \sigma) e^{i2\pi \mathbf{G} \cdot \mathbf{r}}$$

$$\psi_{\mathbf{k}}(\mathbf{r}, \sigma) = \sum_{\mathbf{G}} c_{\mathbf{k}}(\mathbf{G}, \sigma) e^{i2\pi(\mathbf{k} + \mathbf{G}) \cdot \mathbf{r}}$$
$$\sum_{\sigma} \sum_{\mathbf{G}} |c_{\mathbf{k}}(\mathbf{G}, \sigma)|^{2} = 1$$

2 Properties of the wavefunctions (scalar case)

* For ground-state wavefunctions, there is the Schrödinger equation

$$H|\psi_{n\mathbf{k}}\rangle = \varepsilon_{n\mathbf{k}}|\psi_{n\mathbf{k}}\rangle$$

where

H is the Hamiltonian operator n labels the state (or the band) $\varepsilon_{n\mathbf{k}}$ is the eigenvalue

* As the wavevector labelling of an eigenstate comes from the property

$$\psi_{\mathbf{k}}(\mathbf{r} + \mathbf{R}_{latt}) = e^{i2\pi \mathbf{k} \mathbf{R}_{latt}} \psi_{\mathbf{k}}(\mathbf{r})$$

in which \mathbf{k} can be replaced by $\mathbf{k} + \mathbf{G}_{latt}$ where \mathbf{G}_{latt} is any reciprocal space lattice vector, we can <u>choose</u> the wavefunctions at \mathbf{k} and $\mathbf{k} + \mathbf{G}_{latt}$ to be equal, or to make a linear combination of wavefunctions with the same energy. We introduce the notation "L.C." when linear combinations are allowed when equating two wavefunction.

$$\psi_{n(\mathbf{k}+\mathbf{G}_{latt})}(\mathbf{r}) \stackrel{\text{L.C.}}{=} \psi_{n\mathbf{k}}(\mathbf{r})$$

When there is no specific reason to prefer a linear combination, the equality relation will be used. This is a choice of "gauge". Note that a phase factor might be allowed in taking the linear combination.

* The $\mathbf{k} \leftrightarrow \mathbf{k} + \mathbf{G}_{latt}$ correspondence translates to

$$u_{n(\mathbf{k}+\mathbf{G}_{latt})}(\mathbf{r}) \cdot e^{i2\pi\mathbf{G}_{latt} \cdot \mathbf{r}} \stackrel{\text{L.C.}}{=} u_{n\mathbf{k}}(\mathbf{r})$$

$$c_{n(\mathbf{k}+\mathbf{G}_{latt})}(\mathbf{G} - \mathbf{G}_{latt}) \stackrel{\text{L.C.}}{=} c_{n\mathbf{k}}(\mathbf{G})$$

 $\ ^*$ The time-reversal symmetry (non-magnetic case) of the Hamiltonian gives the following relation

$$\psi_{n\mathbf{k}}(\mathbf{r}) \stackrel{\text{L.C.}}{=} \psi_{n(-\mathbf{k})}^*(\mathbf{r})$$

$$u_{n\mathbf{k}}(\mathbf{r}) \stackrel{\text{L.C.}}{=} u_{n(-\mathbf{k})}^*(\mathbf{r})$$

$$c_{n\mathbf{k}}(\mathbf{G}) \stackrel{\text{L.C.}}{=} c_{n(-\mathbf{k})}^*(-\mathbf{G})$$

* For the **k** wavevectors that are half a reciprocal lattice vector ($2\mathbf{k} = \mathbf{G}_{latt}$), there is a special relationship between coefficients of the wavefunction :

$$c_{n\mathbf{k}}(\mathbf{G}) \overset{\mathrm{L.C.}}{=} c_{n(\mathbf{k} - \mathbf{G}_{latt})}(\mathbf{G} + \mathbf{G}_{latt}) \overset{\mathrm{L.C.}}{=} c_{n(-\mathbf{k})}(\mathbf{G} + \mathbf{G}_{latt}) \overset{\mathrm{L.C.}}{=} c_{n\mathbf{k}}^*(-\mathbf{G} - \mathbf{G}_{latt})$$

That is, coefficients at \mathbf{G} and $-\mathbf{G} - \mathbf{G}_{latt}$ are related. This will allow to decrease by a factor of 2 the storage space for these specific \mathbf{k} points.

3 Properties of the wavefunctions (spinor case)

- * One must distinguish two classes of Hamiltonians :
- the Hamiltonian is spin-diagonal
- the Hamiltonian mixes the spin components

In the first class, one finds usual non-spin-polarized, non-spin-orbit Hamiltonians, in which case the spin up-spin up and spin down-spin down parts of the Hamiltonian are equal, as well as spin-polarized Hamiltonian when the magnetic field varies in strength but not in direction.

In the second class, one finds Hamiltonians that include the spin-orbit splitting as well as non-collinear spin systems.

In the first class, the wavefunctions can be made entirely of <u>either</u> spin-up components <u>or</u> spin-down components, and treated independently of those made of opposite spin. This corresponds to nsppol = 2.

In the second class, one must stay with spinor wavefunctions. This corresponds to nspinor = 2.

These two classes are mutually exclusive. The possibilities are thus:

nsppol	nspinor	
1	1	scalar wavefunctions
2	1	spin-polarized wavefunctions
1	2	spinor wavefunctions

4 Plane wave basis set sphere

^{*} In order to avoid dealing with an infinite number of plane waves $\{e^{i2\pi(\mathbf{k}+\mathbf{G})r}\}$ to represent Bloch wavefunctions, one selects those with a kinetic energy lower than some cut-off $E_{\mathrm{kin-cut}}$. The set of allowed \mathbf{G} vectors will be noted by $\{\mathbf{G}_{\mathbf{k},E_{\mathrm{kin-cut}}}\}$

$$\mathbf{G}_{latt} \in \{\mathbf{G}\}_{\mathbf{k}, E_{\text{kin-cut}}} \text{ if } \frac{(2\pi)^2 (\mathbf{G}_{latt} + \mathbf{k})^2}{2} < E_{\text{kin-cut}}$$

Expressed in reduced coordinates:

$$\frac{(2\pi)^2}{2} \sum_{ij} (\mathbf{G}_{latt,i}^{red} + \mathbf{k}_i^{red}) \mathbf{G}_{ij}^{met} (\mathbf{G}_{latt,j}^{red} + k_j^{red}) < E_{\text{kin-cut}}$$

* The kinetic energy cut-off is computed from the input variables ecut and dilatmx, to give the effective value:

$$ecut_eff = ecut * (dilatmx) * *2$$

* For "time-reversal **k**-points" ($2\mathbf{k} = \mathbf{G}_{latt}$, see section 2), not all coefficients must be stored. A specific storage mode, governed by the input variable <code>istwfk</code> has been introduced for the following **k** points:

$$\left(000\right), \left(00\frac{1}{2}\right), \left(0\frac{1}{2}0\right), \left(0\frac{1}{2}\frac{1}{2}\right), \left(\frac{1}{2}00\right), \left(\frac{1}{2}0\frac{1}{2}\right), \left(\frac{1}{2}\frac{1}{2}0\right), \left(\frac{1}{2}\frac{1}{2}\frac{1}{2}\right)$$

For these points, the number of G vectors to be taken into account, is decreased by about a factor of 2.

For the **G**'s that are not treated, the coefficients $c_{n\mathbf{k}}(\mathbf{G})$ can be recovered from those that are treated, thanks to

$$c_{n\mathbf{k}}(\mathbf{G}) = c_{n\mathbf{k}}^*(-\mathbf{G} - \mathbf{G}_{latt})$$

* The number of plane waves is npw

For $ipw = 1 \cdots npw$, the reduced coordinates of **G** are contained in the array kg:

these are integer numbers
$$\begin{cases} \mathbf{G}_1^{red} = & \text{kg}(1, \text{ipw}) \\ \mathbf{G}_2^{red} = & \text{kg}(2, \text{ipw}) \\ \mathbf{G}_3^{red} = & \text{kg}(3, \text{ipw}) \end{cases}$$

This list of G vectors is computed in the routine kpgsph.f.

[To be continued : explain the time reversed k-point structure]

5 FFT grid and FFT box

* For the generation of the density from wavefunctions, as well as for the application of the local part of the potential, one needs to be able to compute

 $\psi_{n\mathbf{k}}(\mathbf{r})$ or $u_{n\mathbf{k}}(\mathbf{r})$ for a 3D-mesh of **r**-points, extremely fast, from the values $c_{n\mathbf{k}}(\mathbf{G})$.

[note: spin up and spin down parts can be treated separately in this operation, so they do not need to be specified otherwise in this section 5.]

* The FFT algorithm starts from values of a function

$$z(j_1, j_2, j_3)$$
 for $j_1 = 0 \cdots (N_1 - 1), j_2 = 0 \cdots (N_2 - 1), j_3 = 0 \cdots (N_3 - 1)$

and compute fast the transformed

$$\tilde{z}(l_1, l_2, l_3)$$
 for $l_1 = 0 \cdots (N_1 - 1), l_2 = 0 \cdots (N_2 - 1), l_3 = 0 \cdots (N_3 - 1)$

with

$$\tilde{z}(l_1, l_2, l_3) = \sum_{j_1, j_2, j_3} z(j_1, j_2, j_3) e^{i2\pi \left(\frac{j_1 l_1}{N_1} + \frac{j_2 l_2}{N_2} + \frac{j_3 l_3}{N_3}\right)}$$

* We want, on a FFT grid, the values of $u_{\mathbf{k}}(\mathbf{r})$ for

$$\begin{split} r_1^{red} &= \frac{0}{N_1}, \frac{1}{N_1}, \cdots \frac{N_1 - 1}{N_1} \left(= \frac{l_1}{N_1} \right) \\ r_2^{red} &= \frac{0}{N_2}, \frac{1}{N_1}, \cdots \frac{N_2 - 1}{N_2} \left(= \frac{l_2}{N_2} \right) \\ r_3^{red} &= \frac{0}{N_3}, \frac{1}{N_3}, \cdots \frac{N_3 - 1}{N_3} \left(= \frac{l_3}{N_3} \right) \end{split}$$

(the choice of N_1, N_2, N_3 is not discussed here.)

Note that we do not want $u_k(r)$ everywhere: these specific values allow to use the FFT algorithm. The effect of G_1^{red} or $G_1^{red} + N_1$ (or any value of G_1^{red} modulo N) will be similar.

*

$$u_{\mathbf{k}}(\mathbf{r}) = \sum_{\mathbf{G}} c_{\mathbf{k}}(\mathbf{G}) e^{i2\pi \mathbf{G} \cdot \mathbf{r}}$$

$$= \sum_{\mathbf{G}} c_{\mathbf{k}}(\mathbf{G}) e^{i2\pi (G_1^{red} r_1^{red} + G_2^{red} r_2^{red} + G_3^{red} r_3^{red})}$$

Let us represent $u_{\mathbf{k}}(\mathbf{r})$ by the segment wf_real $(1:2,1:N_1,1:N_2,1:N_3)$ where the first index refer to the real or imaginary part and the three others to the integer values l_1+1, l_2+1, l_3+1

Let us map the $c_{\mathbf{k}}(\mathbf{G})$ coefficients on a similar segment wf_reciprocal $(1:2,1:N_1,1:N_2,1:N_3)$ with a similar meaning of wf_reciprocal $(1:2,j_1+1,j_2+1,j_3+1)$:

$$\begin{array}{lcl} j_1 & = & \operatorname{mod}(\mathbf{G}_1^{red}, N_1)[\Rightarrow j_1 \in [0, N_1 - 1]] \\ j_2 & = & \operatorname{mod}(\mathbf{G}_2^{red}, N_2) \\ j_3 & = & \operatorname{mod}(\mathbf{G}_3^{red}, N_3) \end{array}$$

Then:

 $wf_real(\cdot, l_1 + 1, l_2 + 1, l_3 + 1)$

$$= \sum_{j_1=0}^{N_1-1} \sum_{j_2=0}^{N_2-1} \sum_{j_3=0}^{N_3-1} \text{wf_reciprocal}(\cdot, j_1+1, j_2+1, j_3+1) \times e^{i2\pi(\frac{j_1l_1}{N_1} + \frac{j_2l_2}{N_2} + \frac{j_3l_3}{N_3})}$$

This is, up to the array indexing convention, precisely the operation done by the FFT algorithm.

* For FFT efficiency (minimisation of cache conflicts), the arrays wf_real and wf_reciprocal are not dimensioned wf $(2, N_1, N_2, N_3)$, but wf $(2, N_4, N_5, N_6)$

if
$$N_1$$
 even, $N_4 = N_1 + 1$; if N_1 odd, $N_4 = N_1$

if
$$N_2$$
 even, $N_5 = N_2 + 1$; if N_2 odd, $N_5 = N_2$

if
$$N_2$$
 even, $N_5=N_2+1;$ if N_2 odd, $N_5=N_2$ if N_3 even, $N_6=N_3+1;$ if N_3 odd, $N_6=N_3$

6 Wavefunctions and spatial symmetries.

* If some spatial symmetry operation commutes with the Hamiltonian :

$$[H, S_{\mathbf{t}}] = 0$$

then

$$H|\psi> = \varepsilon|\psi> \quad \Rightarrow \quad S_{\mathbf{t}}H|\psi> = \varepsilon S_{t}|\psi>$$
$$\Rightarrow \quad H[S_{\mathbf{t}}|\psi>] = \varepsilon[S_{\mathbf{t}}|\psi]$$

 $S_{\mathbf{t}}|\psi>$ is also an eigenvector, with the same eigenvalue as $|\psi>$. However its wavevector is different:

$$\psi_{n\mathbf{k}}(\mathbf{r} + \mathbf{R}) = e^{i2\pi\mathbf{k}\mathbf{R}}\psi_{n\mathbf{k}}(\mathbf{r})$$

$$\Rightarrow (S_{\mathbf{t}}\psi_{n\mathbf{k}})(\mathbf{r} + \mathbf{R}) = \psi_{n\mathbf{k}}((S_{\mathbf{t}})^{-1}(\mathbf{r} + \mathbf{R}))$$

$$= \psi_{n\mathbf{k}}(\sum_{\beta} S_{\alpha\beta}^{-1}(r_{\beta} + R_{\beta} - t_{\beta}))$$

$$= \psi_{n\mathbf{k}}(\sum_{\beta} S_{\alpha\beta}^{-1}(r_{\beta} - t_{\beta}) + \sum_{\beta} S_{\alpha\beta}^{-1}R_{\beta})$$

$$= \psi_{n\mathbf{k}}((S_{\mathbf{t}})^{-1}(\mathbf{r}) + \sum_{\beta} S_{\alpha\beta}^{-1}R_{\beta})$$

 $(S_{\alpha\beta}^{-1}R_{\beta})$ must be a vector of the real space lattice if S_t leaves the lattice invariant)

$$= e^{i2\pi \sum_{\alpha\beta} k_{\alpha} S_{\alpha\beta}^{-1} R_{\beta}} \psi_{n\mathbf{k}}((S_t)^{-1}(\mathbf{r}))$$
$$= e^{i2\pi \mathbf{k}' \cdot \mathbf{R}} (S_t \psi_{n\mathbf{k}})(\mathbf{r})$$

where $(\mathbf{k}')_{\alpha} = \sum_{\beta} S_{\beta\alpha}^{-1} k_{\beta}$ For a vector in the reciprocal space

$$(\mathbf{k}')_{\beta} = (S_{\mathbf{t}}(\mathbf{k}))_{\beta} = \sum_{\beta} S_{\beta\alpha}^{-1} k_{\beta}$$

i.e. the inverse transpose of $S_{\alpha\beta}$ is used.

* The preceding result means

$$\psi_{n(S^{-1,t}\mathbf{k})} \stackrel{\text{L.C.}}{=} (S_{t}\psi_{n\mathbf{k}})(\mathbf{r})$$

$$\stackrel{\text{L.C.}}{=} \psi_{n\mathbf{k}}(\sum_{\beta} S_{\alpha\beta}^{-1}(r_{\beta} - t_{\beta}))$$

$$\Rightarrow u_{n(S^{-1,t}k)}(\mathbf{r})e^{i2\pi\sum_{\alpha\beta} S_{\alpha\beta}^{-1,t}k_{\beta}r_{\alpha}} \stackrel{\text{L.C.}}{=} e^{i2\pi\sum_{\alpha\beta} k_{\alpha}S_{\alpha\beta}^{-1}(r_{\beta} - t_{\beta})} \times u_{n\mathbf{k}}(\sum_{\beta} S_{\alpha\beta}^{-1}(r_{\beta} - t_{\beta}))$$

$$\Rightarrow u_{n(S^{-1,t}k)}(\mathbf{r}) \stackrel{\text{L.C.}}{=} e^{-i2\pi\sum_{\alpha\beta} k_{\alpha}S_{\alpha\beta}^{-1}t_{\beta}} u_{n\mathbf{k}}(\sum_{\beta} S_{\alpha\beta}^{-1}(r_{\beta} - t_{\beta}))$$

$$\Rightarrow \sum_{\mathbf{G}} c_{n(S^{-1,t}k)}(\mathbf{G})e^{i2\pi\mathbf{G}\cdot\mathbf{r}} \stackrel{\text{L.C.}}{=} e^{-i2\pi\sum_{\alpha\beta} k_{\alpha}S_{\alpha\beta}^{-1}t_{\beta}} \sum_{\mathbf{G}'} c_{n\mathbf{k}}(\mathbf{G}')e^{i2\pi\sum_{\alpha\beta} G'_{\alpha}S_{\alpha\beta}^{-1}(r_{\beta} - t_{\beta})}$$

$$\Rightarrow c_{n(S^{-1,t}k)}(\sum_{\alpha} G'_{\alpha}S_{\alpha\beta}^{-1}) \stackrel{\text{L.C.}}{=} e^{-i2\pi\sum_{\alpha\beta} (k_{\alpha} + G'_{\alpha})S_{\alpha\beta}^{-1}t_{\beta}} c_{n\mathbf{k}}(\mathbf{G}')$$

This formula allows to derive coefficients c_n at one **k** point from these at a symmetric **k** point.

7 Conversion of wavefunctions [routine wfconv.f]

- * The aim is to derive the wavefunction corresponding to a set of parameters, from the wavefunction corresponding to another set of parameters. This set of parameters is made of :
 - nspinor (1 if scalar wavefunction, 2 if spinor wavefunction)
 - kpt (the k-point)
 - kg (the set of plane waves, determined by $E_{\rm kin-cut}, \mathbf{G}^{\rm met}$ and \mathbf{k})
 - istwfk (the storage mode)
 - * Changing nspinor:
- from nspinor=1 to nspinor=2: the scalar wavefunctions are used to generate

two spinor wavefunctions

$$c(\mathbf{G}) \rightarrow c_1(\mathbf{G}, \sigma) = \begin{cases} c(\mathbf{G}) & \text{(if } \sigma = \uparrow) \\ 0 & \text{(if } \sigma = \downarrow) \end{cases}$$
$$\rightarrow c_2(\mathbf{G}, \sigma) = \begin{cases} 0 & \text{(if } \sigma = \uparrow) \\ c(\mathbf{G}) & \text{(if } \sigma = \downarrow) \end{cases}$$

- from nspinor=2 to nspinor=1: this is conceptually not well defined, as the natural "inverse" of the previous recipe

$$c_1(\mathbf{G}, \sigma) \to c(\mathbf{G}) = c_1(\mathbf{G}, \uparrow)$$

will not lead to a normalized wavefunction

One state out of two must be ignored also.

Despite this criticism, this natural procedure is followed in wfconv.f.

* Changing kpt, from $kpt_1(\mathbf{k}_1)$ to $kpt_2(\mathbf{k}_2)$ Suppose (no time-reversal use)

$$\begin{array}{lcl} (k_2^{red})_{\alpha} & = & (\Delta G^{red})_{\alpha} + \sum_{\beta} S^{red}_{\beta\alpha} k_{1,\beta}^{red} \, [\mathrm{see} \, \, \mathrm{listkk.f}] \\ \\ (G_2^{red})_{\alpha} & = & -(\Delta G^{red})_{\alpha} + \sum_{\beta} S^{red}_{\beta\alpha} G^{red}_{1,\beta} \end{array}$$

According to the results in sections 2 and 6,

$$c_{n\mathbf{k}_1}(\mathbf{G}_1) = e^{-i2\pi \sum_{\alpha} (\mathbf{k}_1 + \mathbf{G}_1)_{\alpha}^{red} t_{\alpha}^{red}} c_{n\mathbf{k}_2}(\mathbf{G}_2)$$

or equivalently

$$c_{n\mathbf{k}_2}(\mathbf{G}_2) = e^{i2\pi \sum_{\alpha} (\mathbf{k}_1 + \mathbf{G}_1)_{\alpha}^{red} t_{\alpha}^{red}} c_{n\mathbf{k}_1}(\mathbf{G}_1)$$

If the time-reversal symmetry is used, we have instead

$$\begin{array}{lcl} (k_2^{red})_{\alpha} & = & (\Delta G^{red})_{\alpha} - \sum_{\beta} S^{red}_{\beta\alpha} k_{1,\beta}^{red} \, [\text{see listkk.f}] \\ \\ (G_2^{red})_{\alpha} & = & -(\Delta G^{red})_{\alpha} - \sum_{\beta} S^{red}_{\beta\alpha} G^{red}_{1,\beta} \end{array}$$

which leads to

$$c_{n\mathbf{k}_2}(\mathbf{G}_2) = (e^{i2\pi \sum_{\alpha} (\mathbf{k}_1 + \mathbf{G}_1)^{red}_{\alpha} t^{red}_{\alpha}} c_{n\mathbf{k}_1}(\mathbf{G}_1))^*$$

The phase factor is computed in ph1d3d.f

The resulting function, at G_1 is placed in a FFT box in sphere.f (iflag=1) The conversion from G_1 to G_2 is made when reading the coefficients in the FFT box, to place them in $c_n\mathbf{k}_2(G_2)$, in sphere.f also (iflag=-1).

* The change of istwfk is accomplished when using sphere.f, as the representation in the FFT box is a <u>full</u> representation, where all the non-zero coefficients are assigned to their **G** vector, even if they are the symmetric of another coefficient.