Conclusion Analysis Analysis Data Problem Team

Lending Club Case Study

Example 1 LendingClub

- 1. Kunj Lal
- 2. Navaneeth S Rao

Can we analyze the past loan data of Lending Club and identify the risky loan applicants who are prone to default?

Data Cleaning

- The **loan.csv** data has a total of 39,717 rows and 111 columns.
- Only a few columns from this data help us in analyzing and coming up with the defaulter predictions.

Step 1: Drop the column with only NULL values

```
#Check the total no. of rows and columns with NULL values
print("No. of empty rows in the data set:")
print(loan_data.isnull().all(axis = 1).sum())

print("No. of empty columns in the data set:")
print(loan_data.isnull().all(axis = 0 ).sum())

No. of empty rows in the data set:
0
No. of empty columns in the data set:
54
```

Totally 54 columns have NULL values and can be dropped.

Data Cleaning(Contd.)

Step 2: Dropping customer behaviour variables.

• These variables are not available at the time of application, and thus they cannot help in our analysis.

```
b) Dropping customer behavior variables

• Customer behavior variables are not available at the time of loan application, and thus they cannot help in our predictive analysis

loan_data.drop(['delinq_2yrs','earliest_cr_line','inq_last_6mths', 'open_acc', 'pub_rec', 'revol_bal', 'revol_util','total_acc',

# Check the shape now print(loan_data.shape)

(39717, 36)

Now the number of columns have dropped from 57 to 36
```


Now the numbers of columns have reduced to 36.

Data Cleaning(Contd.)

Step 3: Dropping additional columns that don't offer much to our analysis.

Some of the key columns are "id", "member_id",
 "initial_list_status", "mths_since_last_delinq", "title" etc.

```
c) Dropping additional columns as they don't offer much to our analysis ¶

In [950]: loan_data.drop(['id', 'member_id', 'emp_title', 'mths_since_last_deling', 'mths_since_last_record', 'initial_list_status', 'next_______

In [951]: loan_data.shape

Out[951]: (39717, 17)
```


Now the number of columns has reduced to 17.

Data Cleaning(Contd.)

Step 4: Check for missing values in the remaining columns.

- Emp_length column has 1075 missing values.
- The missing values will be imputed with the mode of the data.

```
In [955]: loan_data.isnull().sum()
Out[955]: loan amnt
          funded_amnt
          funded amnt inv
          int rate
          installment
          grade
          sub grade
          emp length
                                  1075
          home ownership
          annual_inc
          verification_status
          issue d
          loan status
          purpose
          addr state
          dtype: int64
```



```
In [956]: # Replace the missing values with mode
loan_data.emp_length.fillna(loan_data.emp_length.mode()[0], inplace = True)

#Check if any values are missing still
loan_data.emp_length.isnull().sum()
Out[956]: 0
```

Data Cleaning(Contd.)

Step 5: Standardize the data.

 emp_length column field should contain only numbers (need to remove <, +, years etc.

Int_rate column should only contain numbers (need to

remove %)

```
In [959]: #Convert to a numerical column
          loan_data['int_rate'] = loan_data['int_rate'].str.rstrip('%')
In [960]: #Display the data
          loan_data['int_rate']
Out[960]: 0
                   10.65
                   15.27
                   15.96
                   13.49
                   12.69
          39712
                    8.07
                   10.28
                    8.07
                    7.43
          39715
          Name: int_rate, Length: 39717, dtype: object
```


Data Cleaning(Contd.)

Step 5: Removing the current loan status data.

• Applicants who are still paying the loans cannot be considered for the analysis.

```
In [961]: loan_data = loan_data[loan_data.loan_status != "Current"]
          loan_data.loan_status.unique()
Out[961]: array(['Fully Paid', 'Charged Off'], dtype=object)
In [962]: loan_data.emp_length
Out[962]: 0
                   10
                   10
          39712
          39713
          39714
          39715
          39716
          Name: emp_length, Length: 38577, dtype: object
```


Data Cleaning(Contd.)

Step 6: Converting the data type of int_rate variable.

• This will be used further in the analysis.

In [964]:	loan_data.dtypes		
Out[964]:	loan_amnt	int64	
	funded_amnt	int64	
	funded_amnt_inv	float64	
	term	object	
	int_rate	object	
	installment	float64	
	grade	object	
	sub_grade	object	
	emp_length	object	
	home_ownership	object	
	annual_inc	float64	
	verification_status	object	
	issue_d	object	
	loan_status	object	
	purpose	object	
	addr_state	object	
	dti	float64	
	dtype: object		
	h) Converting the datatypes of variables		
In [965]:	[965]: loan_data['int_rate'] = loan_data['int_rate'].astype('float64		

Data Cleaning(Contd.)

Step 7: Deriving additional columns and binning the data.

This will be used further in the analysis.

```
i) Deriving columns
In [966]: # Derived columns
          # categorise loan amounts into bins
          loan_data['loan_amnt_category'] = pd.cut(loan_data ['loan_amnt'], [0, 7000, 14000, 21000, 28000, 35000], labels=['0-7000', '7000']
          # categorise annual incomes into bins
          loan_data['annual_inc_category'] = pd.cut(loan_data['annual_inc'], [0, 20000, 40000, 60000, 80000,1000000], labels=['0-20000', '2
          # categorise intrest rates into bins
          loan_data['int_rate_category'] = pd.cut(loan_data['int_rate'], [0, 10, 12.5, 16, 20], labels=['0-10', '10-13', '12.5-16', '16 +']
          # categorise dti into bins
          loan_data['dti_category'] = pd.cut(loan_data['dti'], [0, 5, 10, 15, 20, 25], labels=['0-5', '05-10', '10-15', '15-20', '25+'])
In [967]: # Derived columns
          # Lets create month and year columns separately
          loan_data.issue_d = pd.to_datetime(loan_data.issue_d, format='%b-%y')
          loan_data['year']=loan_data['issue_d'].dt.year
          loan data['month']=loan data['issue d'].dt.month
```


Data Cleaning(Contd.)

Step 8: Handling outliers.

 These variables could possibly have outliers: annual_inc, dti, loan_amnt, funded_amnt, funded_amnt_inv

Box plots will help us in removing the outliers.

annual inc

 Values above 95th percentile are considered as outliers and removed from the data

Data Cleaning(Contd.)

<u>dti</u>

• There are no outliers in this variable.

Data Cleaning(Contd.)

funded amnt, funded amnt inv

• There are very few outliers in these variables. Since the distribution is continuous we will keep these variables.

- 1. Distribution plot of loan_amnt, funded_amnt, and, funded_amnt_inv.
- The distribution of the amounts for all three looks very similar. We can use one variable for our analysis further.

• Loan_amnt variable will be considered.

Loan Amount distribution

• Observation: Most of the loan amounts are in the range of 5000 - 15000

2. Distribution plot of interest rates.

Observation: Most interest rates are in the range of 10 -15%

3. Distribution plot of annual income.

nalysis

• Observation: Annual income of the borrowers are mostly in the range of 40000c-80000

4. Count plot of loan status.

• Observation: Close to 15% of loans were charged off out of total loans issued.

5. Count plot of loan purpose.

Observation: Most of the loans were taken for debt consolidation and credit bill payments. Also, the charged-off loans are high for these types of loans.

5. Count plot of home ownership.

home.

6. Bar plot of year and month.

- Observations: Number of loan applications are increasing year on year.
- Increasing in number of loans add to number of charged loans.
- Number of loans reduced in 2008 (may be due to great recession)

7. Count plot of loan paying term.

1. Annual income vs charged off proportion

- Observations: Income range of 80000+ are less likely to default.
- Income range of 0-20000 are more likely to default.
- Increase in annual income results in low charged off proportion. High income applicants are less likely to default.

2. Purpose of loan vs charged off proportion

• Observation: Small business applicants are more likely to default.

3. Grade vs charged off proportion

- Observation: Grade 'A' are very low on defaulter proportion
- Grade 'F' and 'G' are high on defaulter proportion
- Defaulter proportion is increasing with increasing grades.

4. Sub-Grade vs charged off proportion

- Observation: Sub Grades of "A" are very less likely to charged off.
- Sub Grades of "F" and "G" are more likely to charged off.
- Defaulter proportion is increasing with sub grades moving from sub grades of "A" towards sub grades of "G"

5. Interest rate vs charged off proportion

- Observation: Interest rates of more than 16% are more likely to default
- Interest rates less than 10% are less likely to default
- The defaulter proportion is increasing with higher interest rates

6. Address state vs charged off proportion

• Observation: State 'NE' is showing high chances of default

7. Verification status vs charged off proportion

- Observation: The difference in charged off proportion is very less
- This variable doesn't provide a significant difference in making a decision

8. Verification status vs Interest rate

- Observation: Average interest rate is higher for 60 months
- Most of the loans issued for the longer term had higher interest rates for repayment.

9. Grade vs Interest rate

- Observation: Higher the grade lower the interest rate
- Interest rate is increasing with grades

10. Year vs Interest rate

Observation: Interest rate is increasing slowly with increase in year.

- 1. Giving loans to applicants with low income are likely to default.
- 2. Applicants who are living on rent or mortgaged the home are likely to default
- 3. Number of loans given should be balanced over the years
- 4. Small business applicants are likely to default
- 5. Grade 'F' and 'G' are high on defaulter proportion
- 6. Interest rates more than 16% are more likely to default
- 7. Applicants who are not working or having less than one year of experience are likely to default.
- 8. State 'NE' applicants are likely to deault.

