Análise em Frequência

IFCe – Instituto Federal do Ceará Departamento de Telemática

Prof. Dr. Regis C. P. Marques regismarques@ifce.edu.br

Série de Fourier

- Análise em frequência -

• O que é frequência: a frequência de um sinal pode ser vista como a "velocidade" com a qual a amplitude deste sinal varia.

- A frequência de sinais contínuos é medida em [Hz = 1/s] ou [rad/s].
- A frequência de sinas discretos é medida em [rad].

- Análise em frequência -

Período e frequência fundamentais: em sinais periódicos podemos definir o seu período fundamental e a partir desse, sua frequência fundamental.

Onda quadrada de período T₀=2.

Seno de mesmo período.

- Este seno é a componente fundamental desta onda quadrada.
- Podemos concluir que senos e cossenos possuem uma única (componente de) frequência, outros sinais são compostos também de harmônicos.

A combinação de senos e cossenos pode ser utilizada para representar sinais periódicos. Este resultado é conhecido como série de Fourier.

$$x(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t)$$

Em que

$$a_n = \frac{2}{T_0} \int_{T_0} x(t) \cos(n\omega_0 t) dt$$

$$b_n = \frac{2}{T_0} \int_{T_0} x(t) \sin(n\omega_0 t) dt$$

 $a_0 = (1/2)a_{n=0}$; é chamada componente dc ou média de x(t).

A partir dos termos a_n e b_n , são obtidos os espectros de amplitude e fase. Também chamados de espectros de Fourier

$$c_n = \sqrt{{a_n}^2 + {b_n}^2}$$
 Espectro de amplitude

$$\theta_n = tg\left(\frac{-b_n}{a_n}\right)$$

Espectro de fase

Ex: calcular a série de Fourier para a onda quadrada de período 2 e amplitude [-1,1].

Sabemos que x(t) pode ser representado por componentes pares e ímpares, e que cossenos são funções pares e senos são funções ímpares. Assim, a série também provê uma decomposição em sinais pares e ímpares:

$$x(t) = a_0 + x(t)_{par} + x(t)_{impar}$$

$$x(t)_{par} = \sum_{n=1}^{\infty} a_n \cos(n\omega_0 t)$$

$$x(t)_{impar} = \sum_{n=1}^{\infty} b_n \sin(n\omega_0 t)$$

♦ Esse resultado é útil, pois se x(t) é par, $b_n=0$. Se x(t) é ímpar $a_n=0$. Lembre que x(t) pode não ser par nem ímpar, neste caso $a_n \neq 0$ e $b_n \neq 0$.

Série exponencial complexa:

$$D_n = \frac{1}{T_0} \int_{T_0} x(t) e^{-jn\omega_0 t} dt$$

$$x(t) = \sum_{n=-\infty}^{\infty} D_n e^{jn\omega_0 t}$$

Ex: Repita o cálculo da série de Fourier para a onda quadrada de período 2 e amplitude [-1,1].

Relações

$$a_0 = C_0 = D_0$$

$$a_n$$
-j b_n = Cn $e^{j\theta n}$ = 2 D_n

$$a_n + jb_n = Cne^{-j\theta n} = 2D_{-n}$$

$$C_n = 2|D_n|$$

$$\theta_n = \angle Dn$$

Exemplo: onda quadrada

- Exemplos: solucionar utilizando a série exponencial os exemplos 6.1 da pg.
 533, 6.2 da página 536, E6.1 da página 542. (sinais e sistemas lineares Lathi)
- Com o uso do Octave, plotar os 30 primeiros termos de cada série e visualizar os sinais reconstruídos.

- * A transformada de Fourier é definida a partir da série exponencial, desde que $T_0 \rightarrow \infty$. Como a série a transformada é definida por um par de equações.
- A transformada direta, ou decomposição, é dada por

$$X(\omega) = \mathcal{F}[x(t)] = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

A transformada inversa, ou síntese, é dada por

$$x(t) = \mathcal{F}^{-1}[X(\omega)] = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$$

* A transformada de Fourier fornece uma ferramenta importante para a análise de sinais no domínio da frequência. Ao contrário da série, a transformada fornece um espectro contínuo, uma vez que sinais não periódicos não possuem apenas componentes harmônicas (com frequência múltipla da fundamental $n\omega_0$). A própria frequência fundamental $(\omega_0 = 2\pi/T_0)$ não é mais definida, uma vez que não se pode definir um período fundamental (T_0) .

Função portão (pulso retangular)

$$X(\omega) = \int_{-\infty}^{\infty} \operatorname{rect}\left(\frac{t}{\tau}\right) e^{-j\omega t} dt$$

$$X(\omega) = \int_{-\tau/2}^{\tau/2} e^{-j\omega t} dt = -\frac{1}{j\omega} (e^{-j\omega\tau/2} - e^{j\omega\tau/2}) = \frac{2\sin\left(\frac{\omega\tau}{2}\right)}{\omega} = \tau \frac{\sin\left(\frac{\omega\tau}{2}\right)}{\left(\frac{\omega\tau}{2}\right)} = \tau \operatorname{sinc}\left(\frac{\omega\tau}{2}\right)$$

O pulso retangular tem largura de banda de aproximadamente $2\pi/\tau$.

IFCe – Instituto Federal do Ceará

Departamento de Telemática

Exponencial

$$\mathcal{F}^{-1}[\delta(\omega-\omega_0)] = \frac{1}{2\pi} \int_{-\infty}^{\infty} \delta(\omega-\omega_0) e^{j\omega t} d\omega = \frac{1}{2\pi} e^{j\omega_0 t}$$

 $\pi \frac{1}{2\pi} e^{j\omega_0 t} \Longleftrightarrow \delta(\omega - \omega_0)$

$$e^{j\omega_0 t} \Longleftrightarrow 2\pi\delta(\omega-\omega_0)$$

 $e^{-j\omega_0 t} \Longleftrightarrow 2\pi\delta(\omega+\omega_0)$

Uma exponencial complexa tem uma única componente em ω_0 .

IFCe – Instituto Federal do Ceará

Departamento de Telemática

Cosseno

$$\cos \omega_0 t = \frac{1}{2} (e^{j\omega_0 t} + e^{-j\omega_0 t})$$

$$\cos \omega_0 t \Longleftrightarrow \pi [\delta(\omega + \omega_0) + \delta(\omega - \omega_0)]$$

Funções senoidais possuem apenas uma componente de frequência, sua fundamental.

Trem de impulsos

$$\delta_{T_0}(t) = \sum_{n=0}^{\infty} \delta(t - nT_0)$$

Como é um sinal periódico, devemos utilizar a série (exponencial) de Fourier.

$$\delta_{T_0}(t) = \sum_{-\infty} D_n e^{jn\omega_0 t}$$

IFCe - Instituto Federal do Ceará

Departamento de Telemática

$$\omega_0 = \frac{2\pi}{T_0}$$

$$D_n = \frac{1}{T_0}$$

$$X(\omega) = \frac{2\pi}{T_0} \sum_{n=-\infty}^{\infty} \delta(\omega - n\omega_0)$$
$$= \omega_0 \delta_{\omega_0}(\omega)$$

No.	x(t)	$X(\omega)$	
1	$e^{-at}u(t)$	$\frac{1}{a+j\omega}$	<i>a</i> > 0
2	$e^{at}u(-t)$	$\frac{1}{a-j\omega}$	a > 0
3	$e^{-a t }$	$\frac{2a}{a^2+\omega^2}$	a > 0
4	$te^{-at}u(t)$	$\frac{1}{(a+j\omega)^2}$	a > 0
5	$t^n e^{-at} u(t)$	$\frac{n!}{(a+j\omega)^{n+1}}$	a > 0
6	$\delta(t)$	1	
7	1	$2\pi\delta(\omega)$	
8	$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$	

No.	x(t)	$X(\omega)$
9	$\cos \omega_0 t$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$
10	$\sin \omega_0 t$	$j\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]$
11	u(t)	$\pi\delta(\omega) + \frac{1}{j\omega}$
12	sgn t	$\frac{2}{j\omega}$
13	$\cos \omega_0 t u(t)$	$\frac{\pi}{2}[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]+\frac{j\omega}{\omega_0^2-\omega^2}$
14	$\sin \omega_0 t u(t)$	$\frac{\pi}{2j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]+\frac{\omega_0}{\omega_0^2-\omega^2}$
15	$e^{-at}\sin \omega_0 t u(t)$	$\frac{\omega_0}{(a+j\omega)^2+\omega_0^2} \qquad a>0$
16	$e^{-at}\cos\omega_0 tu(t)$	$\frac{a+j\omega}{(a+j\omega)^2+\omega_0^2} \qquad a>0$

No.	x(t)	$X(\omega)$	
16	$e^{-at}\cos\omega_0 t u(t)$	$\frac{a+j\omega}{(a+j\omega)^2+\omega_0^2}$	a > 0
17	$rect\left(\frac{t}{\tau}\right)$	$\tau \operatorname{sinc}\left(\frac{\omega\tau}{2}\right)$	
18	$\frac{W}{\pi}$ sinc (Wt)	$\operatorname{rect}\left(\frac{\omega}{2W}\right)$	
19	$\Delta\left(\frac{t}{\tau}\right)$	$\frac{\tau}{2}$ sinc ² $\left(\frac{\omega\tau}{4}\right)$	
20	$\frac{W}{2\pi}\operatorname{sinc}^2\left(\frac{Wt}{2}\right)$	$\Delta\left(\frac{\omega}{2W}\right)$	
21	$\sum_{n=-\infty}^{\infty} \delta(t-nT)$	$\omega_0 \sum_{n=-\infty}^{\infty} \delta(\omega - n\omega_0)$	$\omega_0 = \frac{2\pi}{T}$
22	$e^{-t^2/2\sigma^2}$	$\sigma\sqrt{2\pi}e^{-\sigma^2\omega^2/2}$	

- Exercícios -

Reproduzir os resultados discutidos utilizando o Octave.

```
Exemplo:
        fo = 10000; % frequencia máxima (Hz)
         Fs = 1000 * fo;
                          %frequência de amostragem (Hz)
         Tmax = 5/fo; %tempo máximo a ser simulado (s)
         dt=1/Fs;
                  %passo de tempo(s)
         t = dt:dt:Tmax; %eixo de tempo
         N = length(t); %numero de pontos simulados
         df = Fs/N; %passo de frquência
          f = -Fs/2:df:Fs/2-df; %eixo de frequência
          %% Exemplo da simulação de um seno
         wo = 2*pi*fo; %frequência em rad/s
          x=sin(wo.*t);
          figure, plot(t,x);
         X=fftshift(fft(x));
          figure, plot (f, abs(X));
```

- Exercícios -

 Utilizar o código anterior para analisar a soma de senoides e outras funções, como portão e trem de pulsos.

Linearidade

$$a_1x_1(t) + a_2x_2(t) \iff a_1X_1(\omega) + a_2X_2(\omega)$$

Conjugado

$$x^*(t) \iff X^*(-\omega)$$

Simétrico conjugado (se x(t) é real)

$$X(-\omega) = X^*(\omega)$$

Convolução

$$x_1(t) * x_2(t) \iff X_1(\omega)X_2(\omega)$$

$$x_1(t)x_2(t) \Longleftrightarrow \frac{1}{2\pi}X_1(\omega) * X_2(\omega)$$

Se

$$h(t) \iff H(\omega)$$

então

$$Y(\omega) = X(\omega)H(\omega)$$

Diferenciação e integração

$$\frac{dx}{dt} \iff j\omega X(\omega)$$

$$\int_{-\infty}^{t} x(\tau) d\tau \Longleftrightarrow \frac{X(\omega)}{j\omega} + \pi X(0)\delta(\omega)$$

Exercício: com base nas propriedade da dualidade e escalonamento no tempo, explique o comportamento de um filtro passa-baixas, nos casos em que sua resposta impulsiva seja representada por: (a) uma função <u>ret</u>; (b) uma função <u>sinc</u>.

Ver o Exemplo 7.11, página 618 (livro Sinais e Sistemas Lineares – Lathi).

Resposta em Frequência de Sistemas LTI

- Resposta em Frequência -

* Considere um sistema com resposta impulsiva h(t). À entrada deste sistema é submetido um sinal $x(t)=e^{j \omega_0 t}$. Assim:

$$y(t) = \int_{-\infty}^{\infty} h(\tau)x(t-\tau)d\tau$$

$$y(t) = \int_{-\infty}^{\infty} h(\tau) e^{j\omega_0(t-\tau)} d\tau$$

y (t) será uma exponencial complexa de amplitude $H(\omega_0)$ e fase linear.

$$y(t) = e^{j\omega_0 t} \int_{-\infty}^{\infty} h(\tau) e^{j\omega_0 \tau} d\tau \longrightarrow$$

$$y(t)=e^{j\omega_0t}H(\omega_0)$$

$$|y(t)| = H(\omega_0)$$

$$\Delta y(t) = \Delta H(\omega_0) + \omega_0 t$$

- Resposta em Frequência -

* Resultado similar pode ser obtido para uma entrada cossenoidal e assim, por inspeção, podemos conseguir uma aproximação da resposta em frequência, para diferentes valores de ω_0 .

$$\cos (\omega_0 t)$$
 \rightarrow $h(t)$ \rightarrow $|H(\omega_0)|\cos (\omega_0 t + \angle H(\omega_0))$

* Exercício computacional: considere um sistema cuja resposta impulsiva é dada por uma função ret(t/ τ). Obtenha sua resposta em frequência por meio do experimento descrito acima.

rect $\left(\frac{\tau}{\tau}\right) \xrightarrow{\tau \text{ sinc } \left(\frac{\omega \tau}{\tau}\right)}$

- Resposta em Frequência -

* Segundo a propriedade da convolução a relação entradasaída de um sistema com resposta impulsiva h(t) é:

$$h(t) \Longleftrightarrow H(\omega)$$

 $Y(\omega) = X(\omega)H(\omega)$

• Exercício : determine a resposta y(t) a uma entrada $e^{-t}u(t)$, de um sistema cuja resposta em frequência é $H(\omega)=1/j\omega+2$.

Qual seria a resposta deste sistema se considerarmos que ele apresenta um atraso de resposta de 0.05 s? Qual a saída neste caso?

Resposta em Frequência de Sistemas LTI Caso de Estudo: Transmissão Através de Sistemas LTI

- Transmissão sem distorção -

Sabemos que:

$$Y(\omega) = X(\omega)H(\omega)$$

Se h(t) é a resposta de um canal não ruidoso, sem interferências, reflexões ou outros fenômenos. Este canal é dito sem distorções, sendo aceitável que apresente um atraso t_d e um ganho (ou atenuação) G_0 . Tal que,

$$y(t) = G_0 x(t - t_d)$$

Com base na propriedade do deslocamento no tempo, mostre os efeitos deste sistema na frequência.

- Fase linear e atraso de grupo-

• O sistema sem distorção do exemplo anterior tem resposta em frequência $H(\omega)$ e espectros de amplitude e fase mostrados na figura abaixo:

* Se o espectro de fase é uma reta, sua angulação (atraso de grupo) d

$$t_g = -\frac{\alpha}{d\omega} \angle H(\omega)$$

é constante.

- Fase linear e atraso de grupo-

Assim um sistema sem distorção tem atraso de grupo constante. Se o espectro de fase não é linear a derivada

$$t_g = -\frac{d}{d\omega} \angle H(\omega)$$

é uma função de ω e portanto não será constante. Implicação:

O atraso das componentes não será constante, causando distorções no sinal.