### **Module 10 - Project**

# Multi-Task Learning

AI VIET NAM Nguyen Quoc Thai



# **Objectives**

### **Multi-task Learning for Computer Vision**





# Outline

- > Introduction
- > Deep Multi-Task Architectures
- > Optimization Strategy
- > Experiment



- **Single-Task Learning**
- Image Classification





MODEL (LeNet, ResNet,...)



Class: CAT



- **Single-Task Learning**
- Image Segmentation









- **Single-Task Learning**
- Object Detection







Assign labels, bounding boxes to objects in the image



### **Single-Task Learning**





### **Multi-Task Learning**







### **Motivation**

- Learning multiple tasks jointly with the aim of mutual benefit
- Improves generalization on other tasks
  - Caused by the inductive bias provided by the auxiliary task



### **Multi-Task Learning**





- MTL Methods (based on what to share?)
- Feature-based MTL
  - Aims to learn common features among different tasks
- Parameter-based MTL
  - Learns model parameters to help learn parameters for other tasks
- Instance-based MTL
  - o Identify useful data instances in a task for other task



- MTL Methods (based on how to share?)
- Feature-based MTL
  - Feature learning approach
  - Deep learning approach
- Parameter-based MTL
  - Low-Rank approach



### **Feature Learning Approach**

- Why need to learn common feature representations?
  - Original features may not have enough expressive power
- > Two sub-categories
  - Feature transformation approach
  - Feature selection approach





### **Feature Learning Approach**

- > Feature transformation approach
  - The learned features are a linear or nonlinear transformation of the original feature representation
  - Multi-task feedforward NN







### **Feature Learning Approach**

- > Feature selection approach
  - Select a subset of the original features as the learned representation
  - Eliminates useless features based on different criteria





Low-Rank Approach

Assumes the model parameters of different tasks share a low-rank subspace





### **Deep Learning Approach**

- Deep Multi-Task Architectures
  - Encoder-Focused
  - Decoder-Focused
- Optimization Strategy Methods
  - Task Balancing
  - Other: Heuristics, Gradient Sign Dropout



# Outline

- > Introduction
- > Deep Multi-Task Architectures
- > Optimization Strategy
- > Experiment





### Deep Multi-Task Architectures used in Computer Vision





# 1

### **Encoder-Focused**

> Share the task features in the encoding stage







### **Encoder-Focused**

- Hard Parameter Sharing
  - o Generally applied by sharing the hidden layers between all tasks
  - Keep several task-specific output layers







### **Encoder-Focused**

- > Soft Parameter Sharing
  - Each task has its own model with its own parameters
  - Uses a linear combination in every layer of the task-specific networks





### **Encoder-Focused**

### Cross-Stitch Networks

Shared the activations amongst all single-task networks in the encoder







1

### **Encoder-Focused**

- Cross-Stitch Networks
  - Shared the activations amongst all single-task networks in the encoder
  - Cross connection







### **Encoder-Focused**

- Multi-Task Attention Networks
  - Used a shared backbone network in conjunction with task-specific attention modules in the encoder







### **Decoder-Focused**







### **Decoder-Focused**

- > PAD-Net
  - Multi-Tasks Guided Prediction-and-Distillation Network for Simultaneous Depth Estimation and Scene Parsing





### **Decoder-Focused**

- > PAD-Net
  - Deep Multimodal Distillation





# Outline

- > Introduction
- > Deep Multi-Task Architectures
- > Optimization Strategy
- > Experiment



### **Task Balancing Approaches**

> Set a unique weight for each task

$$\mathcal{L}_{MTL} = \sum_{i} w_{i}.\mathcal{L}_{i}$$

Use SGD to minimize the objective

$$W_{shared} = W_{shared} - \gamma \sum_{i} w_{i} \frac{\partial \mathcal{L}_{i}}{\partial W_{shared}}$$



### **Uncertainty Weighting**

- Use the homoscedastic uncertainty to balance the single-task losses
- > Optimize the model weights W and noise parameters

$$\mathcal{L}(W, \sigma_1, \sigma_2) = \frac{1}{2\sigma_1^2} \mathcal{L}_1(W) + \frac{1}{2\sigma_2^2} \mathcal{L}_2(W) + \log(\sigma_1 \sigma_2)$$



- **Dynamic Weight Averaging (DWA)**
- Learns to average task weighting over time by considering the rate of change of loss for each task





- Other methods
  - Gradient Normalization
  - Dynamic Task Prioritization



# Quiz





# Outline

- > Introduction
- > Deep Multi-Task Architectures
- > Optimization Strategy
- > Experiment



# Experiment



### NYUD-v2 Dataset





# Experiment

# Model



Hard Parameter Sharing



Soft Parameter Sharing



# Experiment



Code



# Summary





# Thanks!

Any questions?