QUESTION BANK OPERATING SYSTEMS (CSE210) MODULE 4

TEXT BOOK

"Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, "Operating System Concepts", 9th Edition, John Wiley and Sons Inc., 2012".

S. No	Questions	Text Book Page No.	Bloom's Level
	Describe various contiguous mamory allocation		Knowledge
1	Describe various contiguous memory allocation schemes with examples.	300	Knowledge
2	Memory partitions of 100kb, 500 kb, 200 kb, 300kb,	363	Application
	600 kb are available how would best, worst, first fit	505	ripplication
	algorithm to place processes 212,417,112,426 in order.		
	Show which is the best algorithm?		
3	Distinguish between internal and external	364	Comprehension
	fragmentation.		1
4	Explain compaction with respect to memory	360	Comprehension
	management		-
5	List differences between logical and physical	355	Knowledge
	addresses.		
6	What is paging? Explain the paging hardware?	367	Comprehension
7	Explain paging in detail. Describe how logical address	367, 369	Comprehension
	is converted into physical address?		
8	Discuss various techniques for structuring the page	378	Comprehension
	tables along with example.		
9	Why are segmentation and paging sometimes	364	Comprehension
	combined into one scheme? Defend		
10	With a diagram discuss the steps involved in handling a	403	Comprehension
4.4	page fault?	100	~
11	Explain in detail about the various page replacement	409	Comprehension
1.0	strategies.	100	A 1
12	Consider the following page reference string: 1, 2, 3, 4,		Application
	2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1, 2, 3, 6. Compute how		
	many page faults would occur for the following		
	replacement algorithms, assuming three frames? Remember all frames are initially empty, so your first		
	unique pages will all cost one fault each. LRU		
	replacement FIFO replacement Optimal replacement		
13		409	Application
	A process references 5 pages A, B, C, D, E in the		1 ipplication
ь	10 / / /	1	

following order A, B, C, D, A, E, B, C, E, D Assuming that the replacement algorithm is LRU and FIFO, compute how many number of page faults during the sequence of references, starting with an empty main memory with 3 frames.		
Explain about disk scheduling algorithms with suitable	472	Comprehension
example.		
6	472	Application
tracks numbered 0 to 199 is currently serving the		
request at track 143 and has just finished a request at		
track 125. If the queue request is kept in FIFO order,		
86, 147, 91, 177, 94, 150, 102, 175, and 130. Discover		
what is the total head movement to satisfy these		
requests for I) FCFS II) SSTF III) LOOK disk		
scheduling algorithm.		