Finite Fields: Part II

Cunsheng Ding

HKUST, Hong Kong

November 26, 2015

1 / 21

Contents

1 The Group $(GF(p^m)^*, \cdot)$ of the Finite Field $GF(p^m)$

Extensions and Subfields of Finite Fields

 $\colone{3}$ Minimal Polynomials over $\mathrm{GF}(r)$ of Elements in $\mathrm{GF}(r^\ell)$

The Objective of this Lecture

Our objective

- Study the structure of the finite fields $GF(p^m)$.
- Deal with extensions and subfields of $GF(p^m)$.

Throughout this lecture, let $q = p^m$, where p is any prime and m is any positive integer.

Our first task is to prove that the group $(GF(q)^*, \cdot)$ is cyclic. To this end, we need to prove a number of auxiliary results.

Proposition 1

For any $a \in GF(q)^*$, there exists a positive integer ℓ such that $a^{\ell} = 1$.

Proof.

Consider the following sequence of elements in $GF(q)^*$:

$$a^{0}, a^{1}, a^{2}, \cdots$$

Since the group $GF(q)^*$ has order q-1, there exist two distinct $0 \le h < k$ such that $a^h = a^k$. Hence, $a^h(a^{k-h}-1) = 0$ and $a^{k-h} = 1$. The desired conclusion then follows.

Definition 2

The <u>order</u> of $a \in GF(q)^*$, denoted by ord(a), is the least positive integer ℓ such that $a^{\ell} = 1$.

The following theorem was proved in the previous lecture about groups and rings.

Proposition 3 (Lagrange's Theorem)

For any $a \in GF(q)^*$, ord(a) divides q - 1.

The following conclusion follows from Proposition 3.

Proposition 4

Every $a \in GF(q)$ satisfies $a^q = a$.

The proof of the following proposition is left as an exercise.

Proposition 5

For any $a \in GF(q)^*$, we have $\operatorname{ord}(a^i) = \operatorname{ord}(a)/\gcd(\operatorname{ord}(a), i)$.

Proposition 6

For any $a \in GF(q)^*$ and $b \in GF(q)^*$, we have ord(ab) = ord(a)ord(b) if gcd(ord(a), ord(b)) = 1.

Proof.

Let ℓ be a positive integer such that $(ab)^{\ell}=1$. Then $a^{\ell}=b^{-\ell}$. Hence, $a^{\ell \operatorname{ord}(b)}=(b^{\operatorname{ord}(b)})^{-\ell}=1$. It then follows that $\operatorname{ord}(a)\mid \ell \operatorname{ord}(b)$. Since $\gcd(\operatorname{ord}(a),\operatorname{ord}(b))=1$, $\operatorname{ord}(a)$ divides ℓ . By symmetry, $\operatorname{ord}(b)$ divides ℓ . Consequently, $\operatorname{lcm}(\operatorname{ord}(a),\operatorname{ord}(b))$ must divide ℓ . But $\operatorname{lcm}(\operatorname{ord}(a),\operatorname{ord}(b))=\operatorname{ord}(a)\operatorname{ord}(b)$, as $\gcd(\operatorname{ord}(a),\operatorname{ord}(b))=1$. On the other hand, it is obvious that $(ab)^{\operatorname{ord}(a)\operatorname{ord}(b)}=1$. The desired conclusion then follows.

Proposition 7

If $g(x) \in \mathbb{F}[x]$ has degree n, then the equation g(x) = 0 has at most n solutions in \mathbb{F} , where \mathbb{F} is any field.

Proof.

The proof is by induction on n. If n=1, the equation is of the form ax+b=0, which obviously has only the solution x=-b/a. If $n\geq 2$ and g(x)=0 has no solution, then we are done. Otherwise, $g(\alpha)=0$ for some $\alpha\in\mathbb{F}$, and apply the Division Algorithm to divide g(x) by $x-\alpha$. Then we have

$$g(x) = q(x)(x-\alpha) + g(\alpha) = q(x)(x-\alpha).$$

Now deg(q(x)) = n - 1. By induction, q(x) = 0 has at most n - 1 solutions. Whence, g(x) = 0 has at most n solutions.

Theorem 8

The multiplicative group $GF(q)^*$ is cyclic.

Proof.

We assume that $q \ge 3$. Let $h := q - 1 = p_1^{r_1} p_2^{r_2} \cdots p_n^{r_n}$ be the canonical factorization of q - 1. For every i with $1 \le i \le n$, by Proposition 7, the polynomial $x^{h/p_i} - 1$ has at most h/p_i roots in GF(q). Since $h/p_i < h$, it follows that there are nonzero elements in GF(q) that are not roots of this polynomial.

Let a_i be such an element, and set $b_i = a_i^{h/p_i^{r_i}}$.

By Proposition 3, $b_i^{p_i^{r_i}} = a_i^h = a_i^{q-1} = 1$. Hence, $\operatorname{ord}(b_i) = p_i^{s_i}$, where

 $0 \le s_i \le r_i$. On the other hand, $b_i^{p_i^{r_i-1}} = a_i^{h/p_i} \ne 1$. It follows that $\operatorname{ord}(b_i) = p_i^{r_i}$. By Proposition 6, we have

$$\operatorname{ord}(b_1b_2\cdots b_n)=\operatorname{ord}(b_1)\operatorname{ord}(b_2)\cdots\operatorname{ord}(b_n)=h=q-1.$$

Definition 9

Any element in $GF(q)^*$ with order q-1 is called a <u>generator</u> of $GF(q)^*$ and a <u>primitive element</u> of GF(q).

Theorem 10

GF(q) has $\phi(q-1)$ primitive elements.

Proof.

By Theorem 8, GF(q) has a primitive element α . Hence, every element $\beta \in GF(q)^*$ can be expressed as $\beta = \alpha^k$ for some k. By Proposition 5, β is a primitive element if and only if gcd(k, q-1) = 1. The desired conclusion then follows.

Remark

Let p be any prime. Then a primitive element of GF(p) is called the primitive root of p or modulo p.

Example 11

It is easily verified that 3 is a primitive element of GF(7). Note that $\phi(6) = 2$. GF(7) has only two primitive elements: 3 and 3⁵ mod 7 = 5.

Uniqueness of Finite Fields

Definition 12

Two fields \mathbb{F}_1 and \mathbb{F}_2 are said to be <u>isomorphic</u> if there is a bijection σ from \mathbb{F}_1 to \mathbb{F}_2 satisfying the following:

- \bullet $\sigma(a+b) = \sigma(a) + \sigma(b)$ for all $a, b \in \mathbb{F}_1$.
- ② $\sigma(ab) = \sigma(a)\sigma(b)$ for all $a, b \in \mathbb{F}_1$.
- $\mathfrak{I}_{\mathbb{F}_1}$ $\mathfrak{I}_{\mathbb{F}_2}$, where $\mathfrak{1}_{\mathbb{F}_1}$ and $\mathfrak{1}_{\mathbb{F}_2}$ are the identities of \mathbb{F}_1 and \mathbb{F}_2 , respectively.

Remarks

- Two isomorphic fields have the same properties, and thus can be viewed as identical.
- In an assignment problem, you will be asked to prove that two finite fields are isomorphic.

Uniqueness of Finite Fields

The following theorem can be found in Chapter 2 of Lidl and Niederreiter.

Theorem 13

Any finite field with p^m elements is isomorphic to $GF(p^m)$, constructd with a fixed monic irreducible polynomial $\pi(x) \in GF(p)[x]$ with degree m.

Remark

Due to this theorem, we do not need to specify the monic irreducible polynomial $\pi(x)$ over GF(p) with degree m when we mention $GF(p^m)$.

Extensions and Subfields of Finite Fields

Definition 14

Let $\mathbb F$ be a field. A subset $\mathbb K$ of $\mathbb F$ that is itself a field under the operations of $\mathbb F$ will be called a <u>subfield</u> of $\mathbb F$. In this context, $\mathbb F$ is called an <u>extension field</u> of $\mathbb K$. If $\mathbb K \neq \mathbb F$, we say that $\mathbb K$ is a proper subfield of $\mathbb F$.

A field containing no proper subfields is called a <u>prime field</u>. Examples of prime fields are GF(p), where p is any prime.

Example 15

 $GF(p^m)$ is an extension field of GF(p), and GF(p) is a subfield of $GF(p^m)$.

Existence of Subfields of Finite Fields

Theorem 16

If $GF(p^k)$ is a subfield of $GF(p^m)$, then $k \mid m$.

Proof.

Every $b \in \mathrm{GF}(p^m)$ must be a root of $x^{p^m} = x$. Every $a \in \mathrm{GF}(p^k)$ must be a root of $x^{p^k} = x$. Since $\mathrm{GF}(p^k) \subseteq \mathrm{GF}(p^m)$, every $a \in \mathrm{GF}(p^k)$ is also a root of $x^{p^m} = x$. Thus, $(x^{p^k} - x) \mid (x^{p^m} - x)$, and $(x^{p^k-1} - 1) \mid (x^{p^m-1} - 1)$. It then follows that

$$x^{p^k-1}-1=\gcd(x^{p^k-1}-1,x^{p^m-1}-1).$$

But, we have

$$\gcd(x^{p^k-1}-1,x^{p^m-1}-1)=x^{\gcd(p^k-1,p^m-1)}-1=x^{p^{\gcd(k,m)}-1}-1. \tag{1}$$

Hence, $k \mid m$.

Existence of Subfields of Finite Fields

Theorem 17

Let $k \mid m$. Then $GF(p^m)$ has a subfield with p^k elements.

Proof.

Since $k \mid m$, it follows from (1) that $(x^{p^k} - x) \mid (x^{p^m} - x)$. Note that all the elements of $GF(p^m)$ are the roots of $x^{p^m} - x = 0$. It then follows that the set

$$\mathbb{K} = \{ a \in \mathrm{GF}(p^m) \mid a^{p^k} = a \}$$

has cardinality p^k .

Let $a, b \in \mathbb{K}$. Then

$$(a+b)^{p^k}=a^{p^k}+b^{p^k}=a+b,\ (ab)^{p^k}=a^{p^k}b^{p^k}=ab,\ (a^{-1})^{p^k}=(a^{p^k})^{-1}=a^{-1}.$$

Hence, \mathbb{K} is a subfield with p^k elements.

Existence of Subfields of Finite Fields

Theorem 18

Let $k \mid m$ and let $GF(p^k)$ denote the subfield of $GF(p^m)$. Let α be a generator of $GF(p^m)^*$, and let $\beta = \alpha^{(p^m-1)/(p^k-1)}$. Then β is a generator of $GF(p^k)^*$.

Proof.

By definition, $\beta^{p^k} = \beta$. It then follows from the proof of heorem 17 that $\beta \in \mathrm{GF}(p^k)$. By Proposition 5,

$$\operatorname{ord}(\beta) = \frac{\operatorname{ord}(\alpha)}{\gcd\left(\operatorname{ord}(\alpha), \frac{p^m - 1}{p^k - 1}\right)} = \frac{p^m - 1}{\gcd\left(p^m - 1, \frac{p^m - 1}{p^k - 1}\right)} = p^k - 1.$$

The desired conclusion then follows.

Minimal Polynomials over GF(r) of Elements in $GF(r^{\ell})$

Let r be a power of p in the following.

Definition 19

Let $\ell \geq 1$ be an integer. For any $a \in \mathrm{GF}(r^\ell)^*$, the monic polynomial $P_a(x) \in \mathrm{GF}(r)[x]$ with the least degree such that $P_a(a) = 0$ is called the minimal polynomial over $\mathrm{GF}(r)$ of a.

Remarks

- The existence of the minimal polynomial is guaranteed by Proposition 4 (i.e., $a^{r^{\ell}-1}-1=0$).
- By definition, $P_a(x)$ is irreducible over GF(r).
- It follows from Proposition 4 that $P_a(x)$ divides $x^{r^{\ell}-1}-1$.

Minimal Polynomials over GF(r) of Elements in $GF(r^{\ell})$

Proposition 20

Let $a \in GF(r^{\ell})^*$. Then the minimal polynomial $P_a(x)$ of a over GF(r) has degree at most ℓ .

Proof.

Note that $a^{r^\ell}=a$ for any $a\in \mathrm{GF}(r^\ell)^*$. The set $\{a^{r^\ell}:i=0,1,2,\ell-1\}$ has at most ℓ elements. Let e be the smallest positive integer such that $a^{r^e}=a$. Then $e\leq \ell$. Define

$$g(x) = \prod_{i=0}^{e-1} (x - a^{r^i}).$$

Since $g(x)^r = g(x^r)$, g is a polynomial over GF(r). On the other hand, g(a) = 0 and deg(g) = e. The desired conclusion then follows.

Minimal Polynomials over GF(r) of Elements in $GF(r^{\ell})$

Proposition 21

If α is a generator of $GF(r^{\ell})^*$, the minimal polynomial $P_{\alpha}(x)$ has degree ℓ .

Proof.

Let α is a generator of $\mathrm{GF}(r^\ell)^*$. Suppose that the minimal polynomial $P_\alpha(x)$ has degree $e < \ell$. Let

$$P_{\alpha}(x) = x^{e} + a_{e-1}x^{e-1} + a_{e-2}x^{e-2} + \dots + e_{1}x + e_{0}.$$

Then each α^i can be expressed as $\sum_{k=0}^{e-1} b_k \alpha^k$, where all $b_i \in GF(r)$. Then we have

$$|\{0,\alpha^0,\alpha^1,\alpha^2,\cdots,\alpha^{r^{\ell}-2}\}| \leq r^{\varrho} < r^{\ell}.$$

This is contrary to the assumption that α is a generator of $GF(r^{\ell})^*$. The desired conclusion then follows from Proposition 20.

The Finite Field GF(2³)

Example 22

Let α be a generator of $GF(2^3)^*$ with minimal polynomial $P_{\alpha}(x) = x^3 + x + 1$. Then the minimal polynomials of all the elements over GF(2) are:

$$\begin{array}{lll} 0 & x, \\ \alpha^0 & x-1, \\ \alpha^1 & x^3+x+1, \\ \alpha^2 & x^3+x+1, \\ \alpha^3 & x^3+x^2+1, \\ \alpha^4 & x^3+x+1, \\ \alpha^5 & x^3+x^2+1, \\ \alpha^6 & x^3+x^2+1. \end{array}$$

Note that the canonical factorization of $x^{2^3-1} - 1$ over GF(2) is given by

$$x^7 - 1 = (x - 1)(x^3 + x + 1)(x^3 + x^2 + 1).$$