FCC TEST REPORT

Product Name	GSM Fixed Wireless Phone		
Model Name	LGP-450,LGP-450A		
Applicant	LG-Nortel Co. Ltd.		
FCC ID	TUILGP450		

ESTECH CO., LTD

Rm. 1015 World Venture Center, 426-5 Gasan-dong, Geumcheon-gu, Seoul, 153-803, Korea. Tel:82-2-867-3201, Fax:82-2-867-3204

FCC ID:

TUILGP450

Report Number	ESTR1006-042				
	Company Name LG-Nortel Co. Ltd.				
Applicant	Address	533, Hogye-1dong, Dor 749,Korea	ngan-gu, Anyang-	shi,Kyongki-do, 431-	
	Product Name	GSM Fixed Wireless Ph	none		
Product	Model No.	LGP-450,LGP-450A	Manufacturer	LG-Nortel Co., Ltd.	
	Serial No.	NONE	Country of origin	KOREA	
Other	Issued Date	2010-06-24	Tested Date	2010-06-09 ~ 2010-06-24	
Test Result	Pass				
Standard	FCC PART 24 Subpart E & PART 22 Subpart H				
Tested by	I.K. Hong/ Engineer (Signature)				
Approved by	Tag-Sun Park/Engineering manager (Signature)				

FCC Test Report

ESTECH CO., LTD

Rm. 1015 World Venture Center, 426-5 Gasan-dong, Geumcheon-gu, Seoul, 153-803, Korea. Tel:82-2-867-3201, Fax:82-2-867-3204

- o Basic model: LGP-450. Additional model: LGP-450A.
- Two model is same product, only model name is different.
- o This is certified that the above mentioned products have been tested for the sample provided by client.
- o No part of this document may not be duplicated or reproduced by any means without the express written permission of Estech Co., Ltd.

Contents

1. General Information	Page 4
2. Laboratory Information	Page 5
3. Summary of Test Results	Page 5
4. RF Output Power	Page 6
5. Occupied Bandwidth	Page 8
6. Spurious and Harmonic Emission at Antenna Terminal	Page 11
7. Field Strength of Spurious Radiation	Page 20
	_
8. Frequency stability	Page 23

Attachment 1 : EUT Test Photographs
Attachment 2 : EUT Photographs

1. General Information

1.1 EUT Description

FCC ID	TUILGP450		
Product Name	GSM Fixed Wireless Phone		
Model Name	LGP-450,LGP-450A		
Frequency	Tx :1850.20 ~ 1909.80MHz(PCS1900), 824.2 ~ 848.8MHz(GSM850)		
Channel	PCS1900(512/661/810), GSM850 (128/190/251)		
Modulation Type	GSM		
Power Rating	3.7 Vd.c.(3.2 ~ 4.3)Vd.c.		

2. Laboratory Information

2.1 Laboratory Name Estech Co., Ltd.

2.2 Location

Head Office Rm. 1015, World Venture Center II, 426-5 Gasan-dong

Geumcheon-gu, Seoul, 153-803. Korea.

EMC Lab(Ichon) 58-1, Osan-Ri, GaNam-Myon, YeoJoo-Gun, KyungKi-Do, Korea 97-1, Hoiuk-Ri Majang-Myon, Icheon-city, KyungKi-Do, Korea

2.3 Quality System Accredited by KOLAS(ISO/IEC 17025)

2.4 Major Accredited Mark

3. Summary of Test Results

Test Item	Standard	Result
RF Output Power		PASS
Occupied Bandwidth		PASS
Spurious and Harmonic Emission at Antenna Terminal	Part 22 & 24	PASS
Field Strength of Spurious Radiation		PASS
Frequency stability		PASS

4. RF Output Power

4.1 Test Procedure(accroding to ANSI/TIA/EIA 603 Clause 2.2.17, FCC 22.913 & FCC 24.232)

- 1. The EUT was placed on a wooden turn table 3 meters from the receive antenna. The receive antenna height and turn table rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW = 1MHz, A Horn antenna was substituted in place of the EUT. This Horn antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For reading 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.
- **2.** The RF output port of the EUT was connected to the dual directional coupler and Wireless communications test set connected dual directional coupler

The RF Power is measured Power matter This test was performed three channels (Low, High, Middle)

3. Test setup for RF Conducted measurement

4.2 Test Equipments

The following test equipments are used during tests

Equipment	Manufacturer	Model	Cal. Due Date
Receiver	Rohde & Schwarz	ESPI7	2010-08-27
Signal Generator	HP	83620B	2010-09-08
Power Meter	Power Meter HP EPM-442A		2010-10-13
Wireless Communications Test Set	Agilent	E5515C	2011-05-11
Pre Amplifier	HP	8449B	2011-02-01
Horn Antenna	SCHWARZBECK	BBHA 9120 D	2010-06-30
Horn Antenna	SCHWARZBECK	BBHA 9120 D	2010-06-30

4.3. Test Results

4.3.1 PCS1900

(GSM)

Ch No.	Freq (MHz)	Peak Power Meter(dBm)	Peak Power EIRP(dBm)
512	1850.20	28.60	27.40
661	1880.00	28.57	29.63
810	1909.80	28.87	29.94

FCC ID:

TUILGP450

FREQ	Receiver		on Factor B)			Limit	POL
(MHz)	Reading (dBuV)	Antenna gain(dBi)	Cable Loss (dB)	(dBm)	(dBm)	(dBm)	(H/V)
1850.20	96.19	10.40	12.50	29.50	27.40	33	V
1880.00	95.86	10.43	12.60	31.80	29.63	33	V
1909.80	95.60	10.44	12.70	32.20	29.94	33	V

4.3.2 GSM850

(GSM)

Ch No.	Freq (MHz)	Peak Power Meter(dBm)	Peak Power ERP(dBm)
128	824.20	31.87	29.98
190	836.60	32.02	29.11
251	848.80	32.20	28.52

FREQ	Receiver		on Factor B)	SG Reading	ERP	Limit	POL
(MHz)	Reading (dBuV)	Antenna gain(dBi)	Cable Loss (dB)	(dBm)	(dBm)	(dBm)	(H/V)
824.20	101.98	0.99	8.90	37.89	29.98	38.5	V
836.60	100.87	1.31	9.10	36.90	29.11	38.5	V
848.80	100.61	1.62	9.20	36.10	28.52	38.5	V

5. Occupied Bandwidth

5.1 Test Procedure

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% of the Emission bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled.

5.2 Test Equipments

The following test equipments are used during tests

Equipment	Manufacturer	Model	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	2010-09-10
Dual Directional Coupler	HP	778D	2011-02-25
Wireless Communications Test Set	Agilent	E5515C	2011-05-11

5.3 Test Results

5.3.1 PCS1900

(GSM)

Channel	Frequency(MHz)	26dB Bandwidth(kHz)
512	1850.20	310.76
661	1880.00	306.87
810	1909.80	316.19

5.3.2 GSM850

(EDGE)

Channel	Frequency(MHz)	26dB Bandwidth(kHz)
128	824.20	315.95
190	836.60	314.15
251	848.80	314.85

5.4 Test Plot

PCS1900 GSM

26dB Channel Bandwidith(512)

FCC ID: TUILGP450

26dB Channel Bandwidith(661)

26dB Channel Bandwidith(810)

10 of 28

GSM850

26dB Channel Bandwidith(128)

26dB Channel Bandwidith(190)

26dB Channel Bandwidith(256)

http://www.estech.co.kr

FCC ID:

TUILGP450

6. Spurious and Harmonic Emission at Antenna Terminal

6.1 Test Procedure

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to 10GHz. Set the RES BW to 1% of the emission bandwidth to show compliance with the -13dBm, limit, in the 1MHz bands immediately outside and adjacent to the top and bottom edges of the frequency block.

For the Out-of-Band measurements a 1MHz RBW was used to scan from 10MHz to 10xfo of the fundamental carrier for all frequency block. A display line was placed at -13dBm to show compliance for spurious, and harmonics.

22.917(f): Mobile emission in base frequency range. The mean power of any emissions appearing in the base station frequency range from cellular mobile transmitter operated must be attenuated to a level not to exceed -80dBm at the transmit antenna connector.

6.2 Test Equipments

The following test equipments are used during tests

Equipment	Manufacturer	Model	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	2010-09-10
Dual Directional Coupler	HP	778D	2011-02-25
Wireless Communications Test Set	Agilent	E5515C	2011-05-11

6.3 Test Results

6.3.1 PCS1900

PCS1900 GSM(Spurious Emission: Band Edge)

Channel	Frequency	Result	Limit	Margin
512	1850.20	-15.11	-13.00	2.11
810	1909.80	-15.56	-13.00	2.56

PCS1900 GSM (Spurious Emission: Out of Band)

Channel	Frequency	Result	Limit	Margin
512	1850.20	-34.01	-13.00	21.01
661	1880.00	-34.02	-13.00	21.02
810	1909.80	-34.08	-13.00	21.08

(GSM850)

GSM850 (Spurious Emission: Band Edge)

Channel	Frequency	Result	Limit	Margin
128	824.20	-14.57	-13.00	1.57
251	848.80	-14.70	-13.00	1.70

GSM850 (Spurious Emission: Out of Band)

Channel	Frequency	Result	Limit	Margin
128	824.20	-26.66	-13.00	13.66
190	836.60	-25.88	-13.00	12.88
251	848.80	-26.98	-13.00	13.98

6.5 Test Plot

PCS1900

PLOT OF EMISSION (PCS1900):BAND EDGE (CH512)

PLOT OF EMISSION (PCS1900):BAND EDGE (CH810)

GSM850

PLOT OF EMISSION (GSM850):BAND EDGE (CH128)

PLOT OF EMISSION (GSM850):BAND EDGE (CH251)

PCS1900

PLOTS OF EMISSION (PCS1900): OUT OF BAND(CH512)

PLOTS OF EMISSION (PCS1900): OUT OF BAND(CH661)

PLOTS OF EMISSION (PCS1900): OUT OF BAND(CH810)

GSM850

PLOTS OF EMISSION (GSM850): OUT OF BAND(CH128)

PLOTS OF EMISSION (GSM850): OUT OF BAND(CH190)

PLOTS OF EMISSION (GSM850): OUT OF BAND(CH251)

MOBILE EMISSION IN BASE FREQUENCY RANGE (RX BAND)

7. Field Strength of Spurious Radiation

7.1 Test Procedure(accoding to ANSI/TIA/EIA 603 Clause 3.2.12 ,FCC 22.917 & FCC 24.238)

Radiation and harmonic emission are measured outdoors at our 3 meters test range. The equipment under test is placed on a wooden turntable 3 meters from the receive antenna. The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer (or receiver). A half wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive spectrum analyzer reading. This level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

7.2 Test Equipments

The following test equipments are used during tests

<u> </u>	Č		
Equipment	Manufacturer	Model	Cal. Due Date
Receiver	Rohde & Schwarz	ESPI7	2010-08-27
Signal Generator	HP	83620B	2010-09-08
Wireless Communications Test Set	Agilent	E5515C	2011-02-01
Pre Amplifier	HP	8444B	2011-02-01
Horn Antenna	SCHWARZBECK	BBHA 9120 D	2010-06-30
Horn Antenna	SCHWARZBECK	BBHA 9120 D	2010-06-30

^{*} The TX signal isn't detected from 3rd harmonics.

7.3 Test Setup

Test setup for 30MHz to 1GHz

Test setup for above1GHz

7.3 Test Results

PCS1900

GSM(Ch 512)

Mesured output power: 28.60 dBm = 0.724W, Limit: $43+10log_{10}(W)=41.60 dBc$

Frequency	Receiver		Factor(dB)		(dBm)	dBc	Polarity
(MHz)	Reading(dBuV	AG(dBi)	CL(dB)	SG Reading	Result		
3700.40	45.10	12.69	19.10	-33.30	-39.71	68.31	Н

FCC ID:

TUILGP450

GSM(Ch 661)

Mesured output power: 28.57dBm = 0.719W, Limit: $43+10log_{10}(W) = 41.57dBc$

Frequency	Receiver	Correction	Factor(dB)	EIRP	(dBm)	dBc	Polarity
(MHz)	Reading(dBuV	AG(dBi)	CL(dB)	SG Reading	Result	ubc	Totality
3760.00	44.40	12.75	19.50	-32.60	-39.35	67.92	Н

GSM(Ch 810)

Mesured output power: 28.87dBm = 0.771W, Limit: $43+10log_{10}(W) = 41.87dBc$

Frequency	Receiver	Correction	Factor(dB)	EIRP	(dBm)	dBc	Polarity
(MHz)	Reading(dBuV	AG(dBi)	CL(dB)	SG Reading	Result	ubc	
3819.60	44.20	12.75	19.50	-32.60	-39.35	68.22	V

 $Remark: E.R.P. \& E.I.R.P = S.G \ level \ (dBm) - Cable \ loss \ (dB) + Ant. \ gain \ (dBd/dBi)$

GSM850

GSM(Ch 128)

Mesured output power:31.87dBm = 1.538W, Limit: 43+10log₁₀(W)= **44.87dBc**

310(· ·)							
Frequency	Receiver	Correction	Factor(dB)	EIRP	(dBm)	dBc	Polarity
(MHz)	Reading(dBuV	AG(dBd)	CL(dB)	SG Reading	Result	ubc	
1648.40	46.10	9.77	11.60	-48.80	-50.63	82.50	V

FCC ID:

TUILGP450

GSM(Ch 190)

Mesured output power: 32.02dBm = 1.592W, Limit: $43+10log_{10}(W)=45.02dBc$

Frequency	Receiver	Correction	Factor(dB)	EIRP	(dBm)	dBc	Polarity
(MHz)	Reading(dBuV	AG(dBd)	CL(dB)	SG Reading	Result	ubc	
1673.20	45.20	9.94	11.70	-49.90	-51.66	83.68	V

GSM(Ch 251)

Mesured output power: 32.20 dBm = 1.660 W, Limit: $43+10 \log_{10}(\text{W}) = 45.20 \text{dBc}$

Frequency Receiver		Correction Factor(dB)		EIRP(dBm)		dBc	Polarity
(MHz)	Reading(dBuV	AG(dBd)	CL(dB)	SG Reading	Result	ubc	Folarity
1697.60	46.10	10.12	11.80	-48.80	-50.48	82.68	V

 $Remark: E.R.P. \ \& \ E.I.R.P = S.G \ level \ (dBm) - Cable \ loss \ (dB) + Ant. \ gain \ (dBd/dBi)$

8. Frequency stability

8.1 Test Procedure

The frequency stability of the transmitter is measured by:

- a) **Temperature:** The temperature is varied from -30 $^{\circ}$ C to +60 $^{\circ}$ C using an environmental chamber.
- **b) Primary Supply Voltage:** The primary supply voltage is varied from 85% to 115% of the voltage normally at the input to the device or at the power supply terminals if cables are not normally supplied.
- * The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within ± 2.5 ppm of the center frequency.

8.2 Test Equipments

The following test equipments are used during tests

Equipment	Manufacturer	Model	Cal. Due Date
Wireless Communications Test Set	Agilent	E5515C	2011-02-01
DC Power Supply	INTERACT	AK-3010	2011-02-25
Tem/Hum Chamber	Myung Technology	SM-150-2	2011-02-09

8.3 Test Results

PCS1900

 Operting Frequency :
 1,880,000,000

 Channel :
 661

 Reference Voltage :
 3.70

 Deviatin Limit(ppm) :
 ± 2.5

Voltage	Power	Temperature	Frequency	Deviation
(%)	(VDC)	(℃)	(Hz)	(ppm)
100		+20°C (Ref)	1,880,000,000	0.000
100		-30	1,879,999,978	0.012
100		-20	1,879,999,974	0.014
100		-10	1,879,999,975	0.013
100		0	1,879,999,973	0.014
100	2.70	10	1,879,999,985	0.008
100	3.70	20	1,880,000,000	0.000
100		25	1,879,999,971	0.015
100		30	1,879,999,974	0.014
100		40	1,879,999,982	0.010
100		50	1,879,999,972	0.015
100		60	1,879,999,972	0.015
85	3.15	20	1,879,999,972	0.015
115	4.26	20	1,879,999,975	0.013
Batt EndPoint	3.00	20	1,879,999,974	0.014

FCC ID:

TUILGP450

GSM850

 Operting Frequency :
 836,600,000

 Channel :
 190

 Reference Voltage :
 3.70

 Deviatin Limit(ppm) :
 ± 2.5

Voltage	Power	Temperature	Frequency	Deviation
(%)	(VDC)	(℃)	(Hz)	(ppm)
100		+20°C (Ref)	836,600,001	0.000
100		-30	836,599,972	0.035
100		-20	836,599,975	0.031
100		-10	836,599,984	0.020
100		0	836,599,983	0.022
100	3.70	10	836,599,972	0.035
100		20	836,600,001	0.000
100		25	836,599,982	0.023
100		30	836,599,984	0.020
100		40	836,599,976	0.030
100		50	836,599,978	0.027
100		60	836,599,973	0.033
85	3.15	20	836,599,974	0.032
115	4.26	20	836,599,983	0.022
Batt EndPoint	3.00	20	836,599,974	0.032

Attachment 1 : EUT Test Photographs

Attachment 2 : EUT Photographs

Attachment 2 : EUT Photographs

