For question 1 proceed as follows:

- 1. First explain what needs to be proven: "We need to find constants c > 0 and $n_0 \ge 1$ integer such that ...".
- 2. Simplify the above inequality.
- 3. Determine values for c and n_0 as required.

For question 2, you must use a proof by contradiction:

- First give the claim that you will assume true and from which you will derive a contradiction.
- Use the definition of order to write the inequality from which you will derive the contradiction.
- Simplify the inequality and explain how you derive a contradiction from it.
- 1. (3 marks) Let f(n) and g(n) and h(n) be non-negative functions such that f(n) is O(g(n)). Use the definition of "big Oh" to prove that $f(n) \times h(n)$ is $O(g(n) \times h(n))$.
- 2. (3 marks) Use the definition of "big Oh" to prove that n is not O(1/n).
- 3. (5 marks) Let A be an array storing $n \ge 1$ integer values. We say that A is symmetric if either
 - n=1, or
 - n > 1 and A[i] = A[n i 1], for all $i = 0, \dots, \lfloor \frac{n}{2} \rfloor 1$, where $\lfloor \frac{n}{2} \rfloor$ means to round $\frac{n}{2}$ down to the nearest integer, so for example $\lfloor \frac{3}{2} \rfloor = 1$ and $\lfloor \frac{2}{2} \rfloor = 1$.

Complete the provided Java class Symmetric.java by designing and implement in Java an algorithm isSymmetric(int[] A,int n) that decides whether a given input array A of size n is symmetric. You **must** submit the completed Symmetric.java file as part of your assignment.

If A is symmetric your algorithm must return the value true, otherwise it must return the value false. For example if A is the following array.

Then, the algorithm must return the value true. However, if the array A is as follows:

4	7	3	9	1	1	7	3	7	4
0	1	2	3	4	5	6	7	8	9

Then, the algorithm must return the value false as $A[3] = 9 \neq A[10 - 3 - 1] = 7$.

4. Consider the following algorithm for the problem of deciding whether all values stored in an array A of size n > 1 are different.

Algorithm are Different (A, n)

Input: Array A storing n integer values.

Out: true if all values in A are different; false otherwise.

for
$$i \leftarrow 1$$
 to $n-1$ do

for $j \leftarrow 0$ to i - 1 do

if A[j] = A[i] then return false

return true

- i. Prove that this algorithm is correct by showing the following:
 - a. (1 mark) Show that the algorithm terminates.
 - b. (3 marks) Show that the algorithm always produces the correct answer. First state what needs to be proven: "If all values stored in A are different then the algorithm must ...". Then show that the algorithm is correct for each one of the two possible outputs.
- ii. (1 mark) Explain what the worst case for the algorithm is.
- iii. (4 marks) Compute the time complexity of the algorithm in the worst case. You must give the order of the time complexity using "big-Oh" notation and you must explain how you computed the time complexity.
- 5. (2 marks) **Optional question**. Download from OWL the java class **Search.java**, which contains implementations of 3 different algorithms for solving the search problem:
 - LinearSearch, of time complexity O(n).
 - QuadraticSeach, of time complexity $O(n^2)$.
 - FactorialSearch, of time complexity O(n!).

Modify the main method so that it prints the worst case running times of the above algorithms for the following input sizes:

- FactorialSearch, for input sizes n = 7, 8, 9, 10, 11, 12.
- QuadraticSeach, for input sizes n = 5, 10, 100, 1000, 10000.
- LinearSearch for, input sizes n = 5, 10, 100, 1000, 10000, 100000.

Fill out the following tables indicating the running times of the algorithms for the above input sizes. You do not need to include your code for the Search class.

\mathbf{n}	Linear Search	n	Quadratic Search	\mathbf{n}	Factorial Search
5		5		7	
10		10		8	
100		100		9	
1000		1000		10	
10000		10000		11	
100000				12	