Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 5 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження складних циклічних алгоритмів»

Варіант 22

Виконав студент	Мєшков_Андрій_Ігорович
	(шифр, прізвище, ім'я, по батькові)
Перевірив	Вєчерковська Анастасія Сергіївна
1 1	(прізвище ім'я по батькові)

Лабораторна робота 5 Дослідження складних циклічних алгоритмів

Мета – дослідити особливості роботи складних циклів та набути практичних навичок їх використання під час складання програмних специфікацій.

Варіант 22

Задача. Натуральне число називається паліндромом, якщо його запис читається однаково з початку та з кінця (наприклад, 575, 9). Знайти всі паліндроми з інтервалу [1000000,1000000000].

Постанова задачі. Для знаходження паліндрому ми будемо використовувати два цикли: зовнішній арифметичний цикл для перерахування кожного числа проміжку та цикл з передумовою для перетворення числа на обернене для подальшого порівняння. Для отримання оберненого числа ми будемо використовувати прості арифметичні дії та остачу від ділення числа.

Змінна	Тип	Ім'я	Призначення
Натуральне число в проміжку, паліндром, елемент зовнішнього циклу	Цілий/Натуральний	a	Початкові дані, результат
Елемент внутрішнього циклу	Цілий/Натуральний	ь	Проміжні дані
Обернене число а	Цілий/Натуральний	Z	Проміжні дані

Кожне значення а ми будемо привласнювати b. Поки b>0 ми будемо підсумовувати остачу від ділення(%) на 10 у z та ділити b на 10 націло. Після виходу з внутрішнього циклу ми будемо порівнювати z та а. Якщо число дорівнює оберненому, то число є паліндромом та виводиться на екран. Після перевіряється наступне число з проміжку.

Розв'язання. Програмні специфікації запишемо у псевдокоді та у графічній формі у вигляді блок-схеми.

Крок 1. Визначимо основні дії.

<u>Крок 2.</u> Деталізуємо дію зовнішнього циклу: знаходження та виведення паліндромів.

Крок 3. Деталізуємо дію внутрішнього циклу: знаходження оберненого числа.

<u>Крок 4.</u> Деталізуємо дію порівняння натурального числа з оберненим та виведення паліндромів.

Псевдокод

Крок 1
Початок
Зовнішній
цикл,
знаходження
та виведення
паліндромів
Кінень

Крок 2	Крок 3	Крок 4
Початок	Початок	Початок
повторити	повторити	повторити
для а від 1000000 до 1000000000	для а від 1000000 до 1000000000	для а від 1000000 до 1000000000
b:=a	b:=a	b:=a
z=0	z:=0	z=0
Внутрішній цикл,	поки b>0	поки b>0
<u>знаходження</u>	повторити	повторити
оберненого числа	z:=z*10	z = z * 10
Порівняння	z = z + b%10	z = z + b%10
натурального числа	b:=b/10	b = b/10
з оберненим та	все повторити	все повторити
виведення	<u>Порівняння</u>	якщо a==z
паліндромів	натурального числа з	Т0
все повторити	оберненим та	Вивести а
Кінець	виведення	все якщо
	<u>паліндромів</u>	все повторити
	все повторити	Кінець
	Кінець	

Початок a:=1000000, a<=1000000000, b:=a z:=0 b>0 z:=z*10 z:=z+b%10 b:=b/10 Порівняння натурального числа з оберненим та виведення паліндромів

Кінець

Крок 4

Випробування алгоритму: перевіримо правильність алгоритму на довільних конкретних значеннях початкових даних.

Тест№1

Блок	Дія
1	Початок
2	Початок арифм. циклу. a=1000000; a<=1000000000; a++
3	b=1000000, z=0
4	Початок циклу. Перевірка умови: 1000000>0 – true
5	z=0, z=0, b=100000
6	Початок циклу. Перевірка умови: 100000>0 – true
7	z=0, z=0, b=10000
8	Початок циклу. Перевірка умови: 10000>0 – true
9	z=0, z=0, b=1000
10	Початок циклу. Перевірка умови: 1000>0 – true
11	z=0, z=0, b=100
12	Початок циклу. Перевірка умови: 100>0 – true
13	z=0, z=0, b=10
14	Початок циклу. Перевірка умови: 10>0 – true
15	z=0, z=0, b=1
16	Початок циклу. Перевірка умови: 1>0 – true
17	z=0, z=1, b=0
18	Початок циклу. Перевірка умови: $0>0$ — false
19	1000000 = 1 - false
20	b=1000001, z=0
21	Початок циклу. Перевірка умови: 1000001>0 – true
22	z=0, z=1, b=100000
23	Початок циклу. Перевірка умови: 100000>0 – true
24	z=10, z=10, b=10000
25	Початок циклу. Перевірка умови: 10000>0 – true
26	z=100, z=100, b=1000
27	Початок циклу. Перевірка умови: 1000>0 – true
28	z=1000, z=1000, b=100
29	Початок циклу. Перевірка умови: 100>0 – true
30	z=10000, z=10000, b=10
31	Початок циклу. Перевірка умови: 10>0 – true
32	z=100000, z=100000, b=1
33	Початок циклу. Перевірка умови: 1>0 – true
34	z=1000000, z=1000001, b=0
35	Початок циклу. Перевірка умови: 0>0 – false
36	1000001==1000001 - true
37	Вивід: а=1000001
	: D:1001001
•••	Вивід: а=1001001
	: D::::-:-:-:-:-:-:-::-::::::::
•••	Вивід: а=354757453

•••	Вивід: а=99999999
•••	b=1000000000, z=0
•••	Початок циклу. Перевірка умови: 1000000000>0 – true
•••	z=0, z=0, b=100000000
	Початок циклу. Перевірка умови: 100000000>0 – true
	z=0, z=0, b=10000000
	Початок циклу. Перевірка умови: 10000000>0 – true
	z=0, z=0, b=1000000
	Початок циклу. Перевірка умови: 1000000>0 – true
•••	z=0, z=0, b=100000
	Початок циклу. Перевірка умови: 100000>0 – true
	z=0, z=0, b=10000
•••	Початок циклу. Перевірка умови: 10000>0 – true
•••	z=0, z=0, b=1000
•••	Початок циклу. Перевірка умови: 1000>0 – true
•••	z=0, z=0, b=100
•••	Початок циклу. Перевірка умови: 100>0 – false
•••	z=0, z=0, b=10
	Початок циклу. Перевірка умови: 10>0 – true
	z=0, z=0, b=1
	Початок циклу. Перевірка умови: $1>0$ — true
	z=0, z=1, b=0
•••	Початок циклу. Перевірка умови: $0>0$ — false
•••	1000000000 = 1 - false
	Вихід з арифм. циклу
	Кінець

Висновок: було досліджено складні циклічні алгоритми, проаналізовано подане завдання, декомпозовано та виконано. Також були розроблені псевдокод та блок-схема поставленого алгоритму.