Handling Nonmonotone Missing Data with Available Complete-Case Missing Value Assumption

Gang Cheng, Yen-Chi Chen, Maureen A. Smith, and Ying-Qi Zhao

February 7, 2024

Why did I choose this paper?

- I think that this paper answers some important questions about how to analyze data that is nonmonotone and missing-not-at-random.
- The paper does a good job motivating the semiparametric model and how one can combine a response model with an outcome model.
- 3. The main example shows a distinct use for paper's methodology.

Outline

- 1. Motivating Example
- 2. Problem and Notation
- 3. Single Variable Case
- 4. Multiple Variable Case
- Simulations

Motivating Example

Motivating Example

- Electronic health records (EHRs) data set that contains longitudinal information about diabetes patients.
- Primary variable of interest: glycated hemoglobin (HbA1c) measurement.
- A HbA1c level of less than 7% is known to reduce the risk of microvascular complications.

Motivating Example

- However, EHR data is incomplete because it is only measured when patients enter a clinic.
- The missingness is likely to be missing-not-at-random (MNAR) because a sicker patient is more likely to come into the clinic.

Monotone and Nonmonotone Data

- The data also contains nonmonotone missing patterns when patients miss visits.
- This data contains quarterly measurements from 10 years worth of data, but the authors only consider analyzing the first year.

Monotone Data						Nonmonotone Data				
Index	Q1	Q2	Q3	Q4		Index	Q1	Q2	Q3	Q4
1	√	√	√	√		1	√	√	√	√
2	\checkmark	\checkmark	\checkmark			2	\checkmark		\checkmark	
3	\checkmark	\checkmark				3	\checkmark		\checkmark	
4	\checkmark	\checkmark				4	\checkmark			\checkmark

Problem and Notation

Problem

- How are we going to analyze this data?
- Three questions we want to answer:
 - 1. Single Variable of Interest: $\theta = E[Y_4]$
 - 2. Multiple Variables: Summary Measures

$$\theta = E[Y_3Y_4] \text{ or } \theta = \Pr(Y_3 \le 0.07, Y_4 \le 0.07)$$

3. Multiple Variables: Marginal Parametric Model

$$E[Y_4 \mid Y_2, Y_3] = \beta_0 + \beta_1 Y_2 + \beta_2 Y_3.$$

Notation

- Primary variables (L)
- Auxiliary variables (X)
- Parameter of interest $\theta = E[f(L)]$
- Response pattern for L: $A \in \{0,1\}^d$ where $A_j = 1$ if L_j is observed.
- Response pattern for X: $R \in \{0,1\}^p$ where $R_j = 1$ if X_j is observed.

Notation

- We define $R \geq r$ if $R_i \geq r_i$ for all $i \in \{1, \dots, p\}$.
- For example, $1010 \ge 1000$ but 1010 cannot be compared with 0101.

Single Variable Case

Question 1: Single Variable of Interest

• Since we have a single variable of interest $L \in \mathbb{R}$ and $A \in \{0, 1\}$. We want to estimate $\theta = E[f(L)]$ for some known f.

$$\theta = E[f(L)] = \int f(\ell)p(\ell)d\ell$$

$$= \underbrace{\int f(\ell)p(\ell, A = 1)d\ell}_{\theta_1} + \underbrace{\sum_{r} \underbrace{\int \int f(\ell)p(\ell, x_r, R = r, A = 0)dx_rd\ell}_{\theta_0, r}}_{\theta_0, r}$$

$$= \theta_1 + \sum_{r} \theta_{0, r}$$

Question 1: Single Variable of Interest

- We know that θ_1 is identifiable since A=1.
- To estimate $\theta_{0,r}$ we notice that

$$\theta_{0,r} = \int \int f(\ell)p(\ell, x_r, R = r, A = 0)dx_r d\ell$$
$$= \int \int f(\ell)p(\ell \mid x_r, R = r, A = 0)p(x_r, R = r, A = 0)d\ell dx_r$$

Identification

- To identify $\theta_{0,r}$ we need to identify both $p(x_r,R=r,A=0)$ and $p(\ell\mid x_r,R=r,A=0).$
- The first quantity is identifiable from the data.
- The second quantity requires an additional assumption.

Assumption

 The available complete-case missing value (ACCMV) assumption says the following:

$$p(\ell \mid x_r, R = r, A = 0) = p(\ell \mid x_r, R \ge r, A = 1).$$

Assumption

 The available complete-case missing value (ACCMV) assumption says the following:

$$p(\ell \mid x_r, R = r, A = 0) = p(\ell \mid x_r, R \ge r, A = 1).$$

 The ACCMV assumption should be contrasted with the complete-case missing values (CCMV) assumption [2] which is

$$p(\ell \mid x_r, R = r, A = 0) = p(\ell \mid x_r, R = 1_p, A = 1).$$

First notice that the ACCMV assumption is equivalent to

$$\frac{\Pr(R = r, A = 0 \mid X_r, L)}{\Pr(R \ge r, A = 1 \mid X_r, L)} = \frac{\Pr(R = r, A = 0 \mid X_r)}{\Pr(R \ge r, A = 1 \mid X_r)} := O_r(X_r).$$

• We can estimate the odds ratio, $O_r(X_r)$, using logistic regression.

Then we have

Cheng et al.

$$\begin{split} \theta_{0,r} &= \int \int f(\ell) p(\ell,x_r,R=r,A=0) dx_r d\ell \\ &= \int \int f(\ell) \frac{p(\ell,x_r,R=r,A=0)}{p(\ell,x_r,R\geq r,A=1)} p(\ell,x_r,R\geq r,A=1) dx_r d\ell \\ &= \int \int f(\ell) \frac{\Pr(R=r,A=0\mid x_r,\ell)}{\Pr(R\geq r,A=1\mid x_r,\ell)} p(\ell,x_r,R\geq r,A=1) dx_r d\ell \\ &= \int \int f(\ell) O_r(x_r) p(\ell,x_r,R\geq r,A=1) dx_r d\ell \\ &= E[f(L) O_r(X_r) I(R\geq r,A=1)]. \end{split}$$

18/50

Then we have the IPW estimator

$$\hat{\theta}_{0,r,IPW} = n^{-1} \sum_{i=1}^{n} f(L_i) O_r(X_{ir}; \hat{\alpha}_r) I(R_i \ge r, A_i = 1).$$

• This can be combined with an estimated mean for θ_1 and create

$$\hat{\theta}_{IPW} = n^{-1} \sum_{i=1}^{n} f(L_i) I(A_i = 1) \left(1 + \sum_{r} O_r(X_{ir}; \hat{\alpha}_r) I(R_i \ge r) \right)$$

Theory

Theorem

Under regularity conditions,

$$\sqrt{n}(\hat{\theta}_{IPW} - \theta) \stackrel{d}{\to} N(0, \sigma_{IPW}^2).$$

Regression Estimation

 We can also use the ACCMV assumption directly to get an outcome model approach.

$$\theta_{0,r} = \int \int f(\ell)p(\ell \mid x_r, R = r, A = 0)p(x_r, R = r, A = 0)d\ell dx_r$$

$$= \int \int f(\ell)p(\ell \mid x_r, R \ge r, A = 1)p(x_r, R = r, A = 0)d\ell dx_r$$

$$= \int m_{r,0}(x_r)p(x_r, R = r, A = 0)dx_r$$

$$= E[m_{r,0}(X_r)I(R = r, A = 0)]$$

where
$$m_{r,0}(x_r) = E[f(\ell) \mid X_r = x_r, R \ge r, A = 1].$$

Regression Estimation

Then we can construct a regression estimator with

$$\hat{\theta}_{0,r,Reg} = n^{-1} \sum_{i=1}^{n} m_{r,0}(X_{i,r}, \hat{\beta}_r) I(R_i = r, A_i = 0).$$

• This can be combined with the estimated mean for θ_1 to get

$$\hat{\theta}_{Reg} = n^{-1} \sum_{i=1}^{n} (f(L_i)A_i + m_{R_i,0}(X_{i,R_i}, \hat{\beta}_{R_i})(1 - A_i)).$$

Theory

Theorem

Under regularity conditions,

$$\sqrt{n}(\hat{\theta}_{Reg} - \theta) \stackrel{d}{\to} N(0, \sigma_{Reg}^2).$$

Double Robust Estimation

 Since the IPW and regression estimator might not be efficient, we combine the two to get a double robust estimator.

Theorem

Under the ACCMV assumption, the efficient influence function of estimating θ_{0r} is

$$(f(L) - m_{r,0}(X_r))O_r(X_r)I(R \ge r, A = 1) + m_{r,0}(X_r)I(R = r, A = 0) - \theta_{0,r}.$$

Double Robust Estimation

• Hence, an efficient estimator of $\theta_{0,r}$ is

$$\hat{\theta}_{0,r,DR}$$

$$= n^{-1} \sum_{i=1}^{n} \{ (f(L_i) - \hat{m}_{r,0}(X_{i,r})) \hat{O}_r(X_{i,r}) I(R_i \ge r, A_i = 1) + \hat{m}_{r,0}(X_{i,r}) I(R_i = r, A_i = 0) \}$$

This lead to the double robust estimator

$$\hat{\theta}_{DR} = \sum_{r} \hat{\theta}_{0,r,MR} + \hat{\theta}_{1}$$

where
$$\hat{\theta}_1 = n^{-1} \sum_{i=1}^n f(L_i) I(A_i = 1)$$
.

Theory

Theorem

Under regularity conditions,

$$\sqrt{n}(\hat{\theta}_{DR} - \theta) \stackrel{d}{\to} N(0, \sigma_{eff}^2).$$

Multiple Variable Case

Question 2: Multiple Variables of Interest

- Now, we consider the problem when $L \in \mathbb{R}^d$ is multivariate.
- In this setup, the complete case is $A = 1_d$.
- We also introduce a new notation $\bar{a} = 1_d a$ and $\bar{r} = 1_p r$.

ACCMV Assumption

For a multivariate L, the ACCMV assumption is revised to

$$p(\ell_{\bar{a}} \mid \ell_a, x_r, A = a, R = r) = p(\ell_{\bar{a}} \mid \ell_a, x_r, A = 1_d, R \ge r).$$

This is equivalent to

$$\frac{\Pr(R=r,A=a\mid x_r,\ell)}{\Pr(R\geq r,A=1_d\mid x_r,\ell)} = \frac{\Pr(R=r,A=a\mid x_r,\ell_a)}{\Pr(R\geq r,A=1_d\mid x_r,\ell_a)} := O_{r,a}(x_r,\ell_a).$$

To handle the multivariate case, notice that we have

$$\theta = E[f(L)] = \sum_{r,a} E[f(L)I(A=a,R=r)] = \sum_{r,a} \theta_{r,a}.$$

• $a = 1_d$, $\theta_{r,a}$ is identifiable and

$$\theta_{r,a} = E[f(L)I(A=a, R=r)].$$

• When $a \neq 1_d$, we can derive

$$\theta_{r,a} = E[f(L)O_{r,a}(X_r, L_a)I(A = 1_d, R \ge r)].$$

Furthermore, we can express

$$\sum_{r,a\neq 1_d} O_{r,a}(X_r, L_a)I(A = 1_d, R \ge r)$$

$$= \sum_r I(A = 1_d, R = r) \sum_{\tau \le r, a \ne 1_d} O_{\tau,a}(X_\tau, L_a)$$

$$= \sum_r Q_r(X_r, L)I(R = r, A = 1_d)$$

where
$$Q_r(X_r,L) = \sum_{\tau \leq r, a \neq 1_d} O_{\tau,a}(X_\tau,L_a).$$

• Then,

$$\begin{split} \theta &= E[f(L)] \\ &= \sum_{r,a \neq 1_d} E[f(L)O_{r,a}(X_r, L_a)I(A = 1_d, R \geq r)] \\ &+ \sum_r E[f(L)I(A = 1_d, R = r)] \\ &= E\Big[f(L)\sum_r (1 + Q_r(X_r, L)I(R = r, A = 1_d))\Big]. \end{split}$$

Then IPW estimation has three steps

- 1. Estimate the individual odds $O_{r,a}$
- 2. Compute the total weights Q_r .

$$\hat{Q}_r(X_r,L) = \sum_{\tau \leq r} \sum_{a \neq 1_d} \hat{O}_{\tau,a}(X_\tau,L_a).$$

Apply the IPW Approach

$$\hat{\theta}_{IPW} = n^{-1} \sum_{i=1}^{n} f(L_i) (\hat{Q}_{R_i}(X_{i,R_i}, L_i) + 1) I(A_i = 1_d).$$

Theory

Theorem

Under regularity conditions,

$$\sqrt{n}(\hat{\theta}_{IPW} - \theta) \stackrel{d}{\to} N(0, \sigma_{IPW}^2).$$

Regression Estimation

Similar to the single variable case, the ACCMV assumption implies that

$$\theta_{r,a} = E[m_{r,a}(X_r, L_a)I(R=r, A=a)]$$

where
$$m_{r,a}(X_r, L_a) = E[f(L) \mid L_a, X_r, R \geq r, A = 1_d].$$

Regression Estimation

- 1. Estimate the outcome regression model.
- 2. Using the regression model to impute the missing values,

$$\hat{\theta}_{Reg} = n^{-1} \sum_{i=1}^{n} (f(L_i)I(A_i = 1_d) + \hat{m}_{R_i, A_i}(X_{i, R_i}, L_{A_i})I(A_i \neq 1_d)).$$

Theory

Theorem

Under regularity conditions,

$$\sqrt{n}(\hat{\theta}_{Reg} - \theta) \stackrel{d}{\to} N(0, \sigma_{Reg}^2).$$

Double Robust Estimation

 For exactly the same reasons as before, we can construct a double robust estimator:

$$\hat{\theta}_{DR}$$

$$= n^{-1} \sum_{i=1}^{n} \Big(\sum_{r,a \neq 1_d} \{ (f(L_i) - \hat{m}_{\tau,a}(X_i,r)) \hat{O}_{r,a}(X_{i,r}, L_{i,a}) I(R_i \geq r, A_i = 1_d) + \hat{m}_{r,a}(X_{i,r}, L_{i,a}) I(R_i = r, A_i = a) \} + f(L_i) I(A_i = 1_d) \Big)$$

Theory

Theorem

Under regularity conditions,

$$\sqrt{n}(\hat{\theta}_{DR} - \theta) \stackrel{d}{\to} N(0, \sigma_{eff}^2).$$

Simulations

Simulation: Single Variable

- Let $L = Y_3$ and $X = (Y_1, Y_2)$.
- We want to estimate $\theta = E[Y_3]$.
- Let $|r| = \sum_r r_i$ be the number of observed variables in X.

Simulation: Single Variable

We generate data with the following setup:

1.
$$(L, X_r) \mid A = 1, R = r \sim N(\mu_{|r|+1}, \Sigma_{|r|+1})$$

2.
$$X_r \mid A = 0, R = r \sim N(\mu_{|r|}, \Sigma_{|r|}).$$

• We have $\mu_1 = 1$, $\mu_2 = (1, -1)'$, $\mu_3 = (0, -1, -1)'$, and

$$\Sigma_1 = 1, \Sigma_2 = \begin{bmatrix} 1 & 1/2 \\ 1/2 & 1 \end{bmatrix} \text{ and } \Sigma_3 = \begin{bmatrix} 1 & 1/2 & 1/2 \\ 1/2 & 1 & 1/2 \\ 1/2 & 1/2 & 1 \end{bmatrix}.$$

Simulation: Single Variable

- We assume that $\Pr(A=j,R=r)=1/8$ for j=0,1 and $r\in\{00,01,10,11\}.$
- We run 1000 Monte Carlo samples with the total number of observations equal to n=2000.

Simulation Results

Method	Bias	Coverage of 95% CI
IPW	-0.006	0.778
IPW (mis.)	-0.084	0.536
Reg	-0.001	0.955
Reg (mis.)	0.040	0.857
DR	-0.002	0.931
DR (IPW mis.)	0.000	0.939
DR (Reg mis.)	-0.000	0.920
DR (Both mis.)	0.041	0.870
Complete Case	-0.178	0.001

Simulation: Multiple Variables

- $L = (Y_3, Y_4)$ and $X = (Y_1, Y_2)$
- Goal: $\theta = E[Y_3Y_4]$

Simulation: Multiple Variables

We generate the data using the following procedure:

- 1. $(L, X_r) \mid A = 11, R = r \sim N(1_{2+|r|, \Sigma_{2+|r|}})$ for $r \in \{00, 01, 10, 11\}$.
- 2. $(L_a,X_r)\mid A=a,R=r\sim N(\mu_{1+|r|},\Sigma_{1+|r|})$ for any $a\in\{01,10\}$ and any $r\in\{00,01,10,11\}.$
- 3. $X_r \mid A = 00, R = r \sim N(\mu_{|r|}, \Sigma_{|r|})$ for any $r \in \{01, 10, 11\}$.

where $\Sigma_d = (1/2)I_d + (1/2)1_d1_d'$ and $\mu_1 = 0.5$, $\mu_2 = 1_2$, and $\mu_3 = 1_3$.

Simulation: Multiple Variables

• We let $\Pr(A=a,R=r)=1/16$ for $a\in\{00,01,10,11\}$ and for $r\in\{00,01,10,11\}.$

Simulation Results

Method	Bias	Coverage of 95% CI
IPW	-0.000	0.943
IPW (mis.)	0.078	0.852
Reg	-0.001	0.956
Reg (mis.)	-0.048	0.892
DR	-0.001	0.948
DR (IPW mis.)	-0.001	0.949
DR (Reg mis.)	-0.001	0.952
DR (Both mis.)	0.014	0.943
Complete Case	0.131	0.723

Thank You

References

- [1] Gang Cheng et al. "Handling Nonmonotone Missing Data with Available Complete-Case Missing Value Assumption". In: arXiv preprint arXiv:2207.02289 (2022).
- [2] Eric J Tchetgen Tchetgen, Linbo Wang, and BaoLuo Sun. "Discrete choice models for nonmonotone nonignorable missing data: Identification and inference". In: *Statistica Sinica* 28.4 (2018), p. 2069.