

Java Flight Recorder & Mission Control 一个高效的性能分析工具

朱光宇(效山) guangyu.zhu@aliyun.com

- 什么是Java飞行记录器
- 如何使用飞行记录器优化性能

Java飞行记录器

- 历史
 - JRockit -> Oracle JDK 7u40 -> Open JDK 11
- 用途
 - 全方位收集Java应用运行时产生的各种事件
 - 性能分析、运行监控、 故障排除
- 特点
 - 深入集成到JDK/JVM内部
 - 低开销,适用于生产环境
 - 可扩展,方便的API,可自定义事件

JFR的整体架构

JFR事件框架

- Everything is an Event!
- 支持120多种事件
 - 精准的方法采样
 - 详细的GC信息:暂停、引用处理
 - 深入JIT内部:内联、逆优化
 - 详细的Safepoint信息
 - TLAB对象分配

自定义事件

```
import jdk.jfr.*;
 import java.nio.file.*;
 import jdk.jfr.consumer.*;
 Path p = Paths.get("recording.jfr");
 for (RecordedEvent e : RecordingFile.readAllEvents(p)) {
    System.out.println(e.getStartTime() + " : " + e.getValue("message"));
PUDITO SCACE VOIG MAIN (SCITING . . . ALAS) CHIOMS TODACEDCTON (
    HelloWorld event = new HelloWorld();
    event.message = "hello, world!";
    event.commit();
```


Alibaba Group

为什么开销这么低

- 高效的采样机制
 - 不需要字节码操纵就可以Profile对象分配
 - 直接从vframe获取调用栈信息
- 高效的事件缓冲机制
 - TLB的使用
 - 内存访问尽量使用原子操作而避免使用锁
- 自描述二进制事件编码格式
 - 配合常量池

```
二进制编码:98 80 80 00 87 02 95 ae e4 b2 92 03
a2 f7 ae 9a 94 02 02 01 8d 11 00 00
```

```
Event size [98 80 80 00]

Event ID [87 02]

Timestamp [95 ae e4 b2 92 03]

Duration [a2 f7 ae 9a 94 02]

Thread ID [02]

Stack trace ID [01]

Payload [fields]

Loaded Class: [0x8d11]

Defining ClassLoader: [0]

Initiating ClassLoader: [0]
```


- 什么是Java飞行记录器
- 如何使用飞行记录器优化性能

Java应用性能分析概要

- 性能指标
 - Benchmark : Score
 - 真实应用:QPS/TPS、RT
- 性能分析关注点
 - 整体性能:CPU占用率、GC暂停时间、堆使用量、线程活动等
 - 代码执行性能:热点方法
 - GC性能:GC次数、暂停时间、堆使用量
 - 同步性能: Monitor阻塞时间
 - I/O性能:文件I/O、套接字I/O
 - •

如何启动Java飞行记录器

- 配置文件
 - \$JAVA_HOME/jre/lib/jfr/default.jfc, profile.jfc
- 在启动应用时启用飞行记录器
 - -XX:+UnlockCommercialFeatures (jdk11不再需要)
 - -XX:+FlightRecorder
- 开启记录
 - 通过JVM命令行参数
 - -XX:StartFlightRecording=delay=10s,duration=60m,settings=profile,filename=rec.jfr (固定时间记录)
 - -XX:StartFlightRecording=defaultrecording=true (持续记录)
 - -XX:FlightRecorderOptions=defaultrecording=true, disk=true, repository=/tmp, maxage=8h, settings=default
 - 通过jcmd

```
jcmd $PID JFR.start
jcmd $PID JFR.dump recording=1 filename=/tmp/r.jfr
jcmd $PID JFR.stop recording=1
```

• 通过Mission Control的JVM浏览器

Demo#1:通过Mission Control启动飞行记录

- Demo
 - 通过MBean建立连接、开启记录

Demo#2: Mission Control基本功能

- Demo
 - Mission Control基本功能

Alibaba Group

Demo#3:热点方法分析

- 应用场景
 - 新闻的相关性、照片的相似度
- Micro benchmark
 - 向量的余弦距离

热点方法分析-优化效果

优化前

vec 128 time used:27471

vec 512 time used:15787

使用AVX指令优化后

vec 128 time used:2003

vec 512 time used:11536

堆栈跟踪	计数
▶ t int jdk.internal.misc.Unsafe.getIntUnaligned(Object, long, boolean)	168
▶ tfloat VectorCosineFloat.vectorDot512(byte[], byte[], FloatVector\$FloatSpecies, Unsafe)	144
▶ t Buffer java.nio.ByteBuffer.limit(int)	56
▶ t void java.nio.Buffer. <init>(int, int, int)</init>	53
▶ tfloat VectorCosineFloat.vectorDot128(byte[], byte[], FloatVector\$FloatSpecies, Unsafe)	26
▶ t Buffer java.nio.Buffer.limit(int)	12
▶ t int jdk.internal.misc.Unsafe.convEndian(boolean, int)	12
▶ t Buffer java.nio.ByteBuffer.position(int)	10
▶ t Buffer java.nio.Buffer.position(int)	6
▶ t void java.lang.Object. <init>()</init>	4

堆栈跟踪	计数
▶ t ByteBuffer java.nio.ByteBuffer.wrap(byte[], int, int)	133
▶ t Float512Vector jdk.incubator.vector.Float512Vector.bOp(Vector, FloatVector\$FBinOp)	112
▶ t Long java.lang.Long.valueOf(long)	44
▶ 1 Float512Vector jdk.incubator.vector.Float512Vector\$Float512Species.fromByteArray(b	14
▶ t Vector jdk.incubator.vector.VectorIntrinsics.load(Class, Class, int, Object, long, Object, i	8
▶ tfloat VectorCosineFloat.vectorDot512(byte[], byte[], FloatVector\$FloatSpecies, Unsafe)	6
▶ 1 Object jdk.incubator.vector.VectorIntrinsics.binaryOp(int, Class, Class, int, Object, Objec	4
▶ tfloat jdk.incubator.vector.Float512Vector.addAll()	3
▶ 1 Float512Vector jdk.incubator.vector.Float512Vector.sub(Vector)	2
▶ 1 Float512Vector jdk.incubator.vector.Float512Vector.mul(Vector)	2

Demo#4: 线程同步性能分析

An example from Java Mission Control 6.0 Tutorial

Demo#5: GC性能分析

An example from Java Mission Control 6.0 Tutorial

Reference

- Java Flight Recorder源码
- Java Mission Control 6.0 Tutorial Marcus Hirt http://hirt.se/downloads/oracle/JMC6Tutorial

Thanks