ВИЩА ОСВІТА

В. П. Дубовик, І. І. Юрик

ВИЩА МАТЕМАТИКА

НАВЧАЛЬНИЙ ПОСІБНИК

Рекомендовано Міністерством освіти і науки України як навчальний посібник для студентів вищих навчальних закладів

4-те видання перероблене та доповнене

Ігнатекс-Україна Київ 2013

ББК 22.1я73

Д79

Рекомендовано Міністерством освіти і науки України як навчальний посібник для студентів вищих навчальних закладів

Рецензенти: \mathcal{I} . . \mathcal{E} аранник, д-р фіз.-мат. наук, проф.; \mathcal{B} . О. \mathcal{M} арченко, канд. фіз.-мат. наук (Полтавський пед. ін.-т); \mathcal{B} . \mathcal{E} . \mathcal{E} \mathcal

Дубовик В.П

Д79 Вища математика: навч. посіб. для студ. вищ. навч. зак. / В.П Дубовик., II. Юрик. - 4-те вид. - К. : Ігнатекс-Україна., 2013. - 648 с: іл. - (Вища школа). - Бібліогр.: с. 632-633.

ISBN 978-966-97049-3-1

У посібнику розглянуто питання з таких розділів вищої математики, як векторна алгебра та аналітична геометрія; диференціальне й інтегральне числення; функції багатьох змінних; диференціальні рівняння; ряди, кратні, криволінійні та поверхневі інтеграли.

Теоретичний матеріал відповідає навчальній програмі з курсу вищої математики і супроводжується достатньою кількістю прикладів і задач. Особливу увагу приділено прикладній і практичній спрямованості курсу.

Для студентів технічних і технологічних спеціальностей вищих навчальних заклалів.

ББК 22.1я73

Дане видання захищене голограмою. Без наявності голограми з логотипом «А.С.К.» видання є незаконним і контрафактною продукцією.

Якщо Ви придбали цю книгу без голограми (підроблену продукцію), то зателефонувавши за номером 067-441-83-75 та відправивши її на нашу адресу: 03127 м. Київ, пр-т 40-річчя Жовтня, 120 корпус 1, разом з чеком і вказавши адресу придбання,. Ви зможете отримати оригінальну книгу та 100 грн. винагороди..

«А.С.К.» - ϵ зареєстрованою торговою маркою. Свідоцтво на знак для товарів і послуг №-141175 від 11.07.2011р.

Охороняється Законом України про авторське право. Передрук даного посібника або будь-якої його частини забороняється без письмового дозволу видавництва. Будь-які спроби порушення закону переслідуватимуться у судовому порядку.

Гуртовий продаж за цінами видавництва:

e-mail: ignatex@ukr.net

(044)- 468-52-49

(095)-829-73-84

(097)-614-48-75

ISBN 978-966-97049-3-1

© В.П. Дубовик, І..І.Юрик, 2001 © «Ігнатекс-Україна», 2009-2013 χL

Математика — одна з найдавніших наук, що зародилась на світанку цивілізації. Вона постійно збагачувалася, час від часу істотно оновлювалася і все більше утверджувалась як засіб пізнання закономірностей навколишнього світу. Розширюючи і зміцнюючи свої багатогранні зв'язки з практикою, математика допомагає людству відкривати і використовувати закони природи і є у наш час могутнім рушієм розвитку науки і техніки.

Саме нашому часу видаються особливо співзвучними пророчі слова великого Леонардо да Вінчі про те, що ніякі людські дослідження не можна назвати справжньою наукою, якщо вони не пройшли через ма-

тематичні доведення.

Що ж таке математика? Відповісти на це запитання далеко не просто, і залежно від рівня математичних знань відповіді будуть дуже різними. Випускник середньої школи словом «математика» користується як збірним терміном для позначення арифметики, алгебри та початків аналізу і геометрії. Студент технічного вузу дізнається, що існують й інші розділи математики, наприклад аналітична геометрія, диференціальне та інтегральне числення, диференціальні рівняння тощо. Для спеціаліста-математика число таких розділів сягає кількох десятків. Причому кількість ця з часом зростає, тому що розвиток сучасної математики супроводжується виникненням нових розділів. В останній третині 20-го ст. у математиці сформувалося уже понад 250 напрямів. Проте перелік їх не відповідає на поставлене запитання.

Загальноприйнятого означення предмета математики немає. У минулому математику вважали наукою про вимірні величини або числа. Пізніше виникло означення математики як науки про нескінченні величини. У сучасний період під математикою розуміють науку про математичні структури. Таку точку зору започаткувала група французьких математиків, яка відома під колективним псевдонімом Н. Бурба-

кі [3].

Слід зазначити, що математичні структури— не довільні творіння розуму, а відбиття об'єктивного світу, нехай нерідко навіть у дуже абстрактному вигляді. Математика вивчає поняття, одержані шляхом абстракції від явищ реального світу, а також абстракції від попередніх

абстракцій. Абстрактність у математиці не відриває пізиання від дійсного світу, а дає змогу пізнати його глибше і повніше. Абстракції виникають з реальної дійсності і тому з нею тісно пов'язані. По суті, саме це зумовлює придатність математичних результатів до описування різноманітних навколишніх явищ, успіх того процесу, який ми сьогодні спостерігаємо і який одержав назву математизації знань. Математичний результат має ту властивість, що він застосовний не тільки при вивченні якогось одного явища чи процесу, а може використовуватись і в багатьох інших, які суттєво відрізняються своєю фізичною природою. Наприклад, одне й те саме диференціальне рівняння y' = ky описує характер радіоактивного розпаду, швидкість розмноження бактерій, зміну атмосферного тиску, процес опріснення розчину, зміну температури речовини, хід хімічної реакції тощо.

Історію розвитку математики можна умовно поділити на чотири пе-

ріоди.

Перший період розвитку математики — період зарсд кення математики як самостійної дисципліни — почався в глибині тисячолітньої історії людства і тривав приблизно до 6—5 ст. до н. е. У цей період формувались поняття цілого числа і раціонального дробу, відстані, площі, об'єму, створювались правила дій з числами та найпростіші правила обчислення площ фігур і об'ємів тіл. Так накопичувався матеріал, на базі якого зародились арифметика та алгебра. Вимірювання площ і об'ємів сприяло розвитку геометрії, а в зв'язку з запитами астрономії виникли початки тригонометрії. Однак у цей період математика не мала ще форми дедуктивної науки, вона являла собою збірку правил для розв'язування окремих практичних задач.

Другий період — період елементарної математики — тривав від 6—5 ст. до н. е. до середини 17 ст. У цей період математика стає самостійною наукою з своєрідним, чітко вираженим методом і системою основних понять. В Індії було створено десяткову систему числення, в Китаї знайдено метод розв'язування лінійних рівнянь, а запропонований стародавніми греками спосіб викладу елементарної геометрії на базі системи аксіом став зразком дедуктивної побудови математичної теорії на багато століть. У 15—16 ст. замість громіздкого словесного описання арифметичних дій та алгебраїчних виразів почали застосовувати знаки додавання, віднімання, знаки степенів, коренів, дужки, букви для позначення заданих та невідомих величин тощо.

Велике значення в розвитку елементарної математики відіграли праці грецьких вчених Фалеса, Піфагора, Евкліда, Архімеда, індійського математика і астронома Аріабхатти, китайського математика Чжан Цана, італійських математиків Кардано і Феррарі, французького математика Вієта та багатьох інших вчених.

Третій період — період створення математики змінних величин (середина 17 — початок 20 ст.). Природознавство і техніка дістали новий метод вивчення руху і зміни стану речовин — диференціальне та

інтегральне числення. Створився ряд нових математичних наук — теорія диференціальних рівнянь, теорія функцій, диференціальна геометрія та інші. Бурхливий розвиток математики в той період пов'язаний з іменами французьких вчених Р. Декарта, П. Ферма, Ж. Лагранжа, англійських математиків Дж. Валліса, І. Ньютона, німецьких математиків В. Лейбніца, К. Якобі, К. Вейєрштрасса та багатьох інших учених.

Значну роль у розвитку математики змінних величин відіграли праці М. В. Остроградського, П. Л. Чебишева та інших російських

та українських вчених [2].

На Україні в цей період відкрито університети в Харкові (1805), Києві (1834) та Одесі (1865), в яких були математичні відділення чи

факультети.

Четвертий період — період сучасної математики — характеризується надзвичайно широким застосуванням математики до задач, що їх висуває природознавство і техніка. На базі їхніх запитів виникає і бурхливо розвивається ряд нових математичних дисциплін і напрямів: функціональний аналіз, теорія множин, теорія ймовірностей, теорія ігор та інші. У розвитку математики цього періоду значну роль відіграли роботи німецьких математиків Д. Гільберта і Г. Кантора, французького математика А. Лебега, українських та російських математиків П. С. Александрова, М. М. Боголюбова, А. М. Колмогорова, В. М. Глушкова, М. П. Кравчука, Ю. О. Митропольського та багатьох інших.

Створення всередині нашого століття електронних обчислювальних машин (ЕОМ) значно розширює можливості математики. Завдяки ЕОМ математичні методи застосовуються нині не тільки в таких традиційних науках, як механіка, фізика, астрономія, а й в хімії, біології, психології, соціології, медицині, лінгвістиці та ін.

У посібнику нумерація рисунків і формул дається автономно в межах кожної глави. Символи ○ і ● в тексті означають відповідно початок і кінець доведення теореми чи розв'язання задачі. Для скорочення запису замість слів «існує», «для довільного» і «слідує» використовуються відповідно такі логічні символи: ∃, ∀, ⇒.

Глава 1

ЕЛЕМЕНТИ ЛІНІЙНОЇ АЛГЕБРИ

Термін «алгебра» походить від назви твору «Альджебр аль-мукабала» узбецького математика Мухаммеда аль-Хорезмі. Цей твір містить методи розв'язування задач, що зводяться до рівняннь першого і другого степенів.

Алгебраїчна символіка була створена в основному в 16—17 ст. Першим застосував буквенні позначення як для невідомих, так і для зада-

них в задачі величин, французький математик Ф. Вієт.

До середини 18 ст. алгебра склалася приблизно в тому об'ємі, який

нині називають елементарною алгеброю.

Однією з основних задач лінійної алгебри є розв'язування систем лінійних алгебраїчних рівнянь. У зв'язку з вивченням цих систем виникли поняття визначника та матриці. Побудову загальної теорії систем лінійних рівнянь було завершено в 19 ст.

\$ 1. ВИЗНАЧНИКИ

1.1. Визначники другого і третього порядків та їхні властивості Вираз

$$\Delta = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21} \tag{1}$$

називається визначником (детермінантом) другого порядку.

Поняття «визначник» (від латинського determino — визначаю) ввів В. Лейбніц.

Вираз

$$\Delta = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{21}a_{32}x_{13} + a_{12}a_{23}a_{31} - a_{13}a_{22}a_{31} - a_{13}a_{22}a_{32} - a_{13}a_{22}a_{22} - a_{13}a_{22}a_{22}a_{2$$

називається визначником (детермінантом) третього порядку.

Символи a_{ij} називаються елементами визначника, причому перший індекс i показує номер рядка, а другий індекс j — номер стовпця, на

Рис. 1.1

перетині яких стоїть даний елемент. Так, елемент a_{23} стоїть у другому рядку і третьому стовпці.

Елементи a_{11} , a_{22} у визначнику (1) і a_{11} , a_{22} , a_{38} у визначнику (2) складають головну діагональ визначника, а елементи a_{12} , a_{21} і a_{18} , a_{22} , a_{31} в тих самих визначниках — побічну діагональ.

Для обчислення визначника другого порядку потрібно від добутку елементів, що стоять на головній діагоналі, відняти добуток елементів, розміщених на побічній діагоналі.

Визначник третього порядку обчислюється за правилом трикутників (рис. 1.1): перші три доданки в правій частині формули (2) є добутками елементів, що стоять на головній діагоналі і в вершинах двох трикутників, у яких одна сторона паралельна головній діагоналі. Аналогічно утворюються доданки зі знаком мінус, де за основу береться побічна діагональ.

Зауважимо, що елементами визначника можуть бути не тільки числа, а й алгебраїчні чи тригонометричні вирази, функції тощо.

П риклад

Обчислити визначники:

a)
$$\begin{vmatrix} 2 & -4 \\ 3 & 5 \end{vmatrix}$$
; 6) $\begin{vmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{vmatrix}$ B) $\begin{vmatrix} 2 & 3 & 4 \\ 5 & -2 & 1 \\ 1 & 2 & 3 \end{vmatrix}$.

За формулами (1) і (2) маємо:

a)
$$\begin{vmatrix} 2 & -4 \\ 3 & 5 \end{vmatrix} = 2 \cdot 5 - (-4) \cdot 3 = 22$$
; 6) $\begin{vmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{vmatrix} = \cos^2 \alpha + \sin^2 \alpha - \cos^2 \alpha + \sin^2 \alpha = \cos^2 \alpha = \cos^2$

$$= 1; \quad B \begin{vmatrix} 2 & 3 & 4 \\ 5 & -2 & 1 \\ 1 & 2 & 3 \end{vmatrix} = 2 \cdot (-2) \cdot 3 + 5 \cdot 2 \cdot 4 + 3 \cdot 1 \cdot 1 - 1 \cdot (-2) \cdot 4 - 1 \cdot 2 \times 2 \times 4 + 3 \cdot 1 \cdot 1 - 1 \cdot (-2) \cdot 4 - 1 \cdot 1 \cdot 1 - 1 \cdot (-2) \cdot 4 - 1 \cdot 1 \cdot 1 - 1 \cdot (-2) \cdot 4 - 1 \cdot 1 \cdot 1 - 1 \cdot (-2) \cdot 4 - 1 \cdot 1 \cdot 1 - 1 \cdot (-2) \cdot 4 - 1 \cdot 1 \cdot 1 - 1 \cdot (-2) \cdot 4 - 1 \cdot 1 \cdot 1 - 1 \cdot (-2) \cdot 4 - 1 \cdot 1 \cdot 1 - 1 \cdot (-2) \cdot 4 - 1 \cdot 1 \cdot 1 - 1 \cdot (-2) \cdot 4 - 1 \cdot 1 \cdot 1 - 1 \cdot (-2) \cdot 4 - 1 \cdot 1 \cdot 1 - 1 \cdot (-2) \cdot 4 - 1 \cdot 1 \cdot 1 - 1 \cdot (-2) \cdot 4 - 1 \cdot 1 \cdot 1 - 1 \cdot (-2) \cdot 4 - 1 \cdot 1 \cdot 1 - 1 \cdot (-2) \cdot 4 - 1 \cdot 1 \cdot 1 - 1 \cdot (-2) \cdot 1 \cdot 1 - 1 \cdot 1 \cdot 1 - 1 \cdot$$

$$\times 2 - 3 \cdot 5 \cdot 3 = -10$$
.

Розглянемо (на прикладі визначників третього порядку) основні властивості визначників.

1°. Визначник не зміниться, якщо його рядки замінити відповідними стовпиями:

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{21} & a_{22} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{22} & a_{32} \end{vmatrix}.$$

Ця властивість доводиться безпосередньо перевіркою: достатньо розкрити обидва визначники за формулою (2). Властивість 1⁰ встановлює рівноправність рядків і стовпців визначника. Тому всі подальші влативості справедливі і для рядків і для стовпців. Доводяться вони, як і властивість 1⁰, перевіркою.

20. Якщо переставити місцями два рядки (стовпці), то визначник

поміняє знак. Наприклад,

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = - \begin{vmatrix} a_{12} & a_{11} & a_{18} \\ a_{22} & a_{21} & a_{23} \\ a_{32} & a_{31} & a_{33} \end{vmatrix}.$$

3°. Якщо один з рядків (стовпців) визначника складається тільки з нулів, то визначник дорівнює нулю. Наприклад,

$$\begin{vmatrix} a_{11} & a_{12} & a_{18} \\ 0 & 0 & 0 \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & 0 \\ a_{21} & a_{22} & 0 \\ a_{31} & a_{32} & 0 \end{vmatrix} = 0.$$

4°. Якщо визначник має два однакових рядки (стовпці), то він дорівнює нулю. Наприклад,

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a & b & c \\ a & b & c \end{vmatrix} = \begin{vmatrix} a & a & a_{13} \\ b & b & a_{23} \\ c & c & a_{33} \end{vmatrix} = 0.$$

5°. Спільний множник, що міститься в усіх елементах одного рядка (стовпця), можна винести за знак визначника. Наприклад,

$$\begin{vmatrix} a_{11} & a_{12} & ka_{13} \\ a_{21} & a_{22} & ka_{23} \\ a_{31} & a_{32} & ka_{33} \end{vmatrix} = k \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}.$$

- 6°. Якщо у визначнику елементи двох рядків (стовпців) пропорційні. то визначник дорівнює нулю.
- 7°. Якщо кожен елемент n-го рядка (n-го стовпця) є сума двох доданків, то такий визначник дорівнює сумі двох визначників, у одного з яких n-й рядок (n-й стовпець) складається з перших доданків, а у другого з других; інші елементи усіх трьох визначників однакові. Наприклад,

$$\begin{vmatrix} a_{11} & a_{12} + b_{12} & a_{13} \\ a_{21} & a_{22} + b_{22} & a_{23} \\ a_{31} & a_{32} + b_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} + \begin{vmatrix} a_{11} & b_{12} & a_{13} \\ a_{21} & b_{22} & a_{23} \\ a_{31} & b_{32} & a_{33} \end{vmatrix}.$$

8°. Визначник не зміниться, якщо до елементів одного рядка (стовпця) додати відповідні елементи іншого рядка (стовпця), помножені на одне й те саме число. Наприклад,

$$\begin{vmatrix} a_{11} & a_{12} & a_{18} \\ a_{21} & a_{22} & a_{28} \\ a_{31} & a_{32} & a_{38} \end{vmatrix} = \begin{vmatrix} a_{11} + ka_{18} & a_{12} & a_{18} \\ a_{21} + ka_{28} & a_{22} & a_{28} \\ a_{31} + ka_{28} & a_{22} & a_{23} \end{vmatrix}.$$

1.2. Розклад визначника за елементами рядка або стовпця

Нехай задано визначник третього порядку

$$\Delta = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}. \tag{3}$$

Мінором M_{ij} елемента a_{ij} визначника називається визначник, який утворюється з даного визначника в результаті викреслення i-го рядка та j-го стовпця. Наприклад, для визначника (3) мінорами елементів a_{23} і a_{32} є такі визначники:

$$M_{23} = \begin{vmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{vmatrix}; \quad M_{32} = \begin{vmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \end{vmatrix}.$$

Алгебраїчним доповненням A_{ij} елемента a_{ij} називається його мінор, взятий зі знаком $(-1)^{i+j}$, тобто

$$A_{ij} = (-1)^{i+j} M_{ij}.$$
 (4)
Наприклад, якщо $\Delta = \begin{vmatrix} 0 & 1 & -2 \\ 2 & 3 & -1 \\ 5 & 4 & -3 \end{vmatrix}$, то $A_{21} = (-1)^{2+1} \begin{vmatrix} 1 & -2 \\ 4 & -3 \end{vmatrix} = -5.$

Тепер сформулюємо і доведемо теореми про розклад визначника за елементами рядка (стовпця).

Теорема 1. Визначник дорівнюв сумі добутків елементів якого-небудь рядка (стовпця) на їхні алгебраїчні доповнення.

О Покажемо, що для визначника (3) виконуються такі рівності:

$$\begin{split} &\Delta = a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13}; \quad \Delta = a_{11}A_{11} + a_{21}A_{21} + a_{31}A_{31}; \\ &\Delta = a_{21}A_{21} + a_{22}A_{22} + a_{28}A_{23}; \quad \Delta = a_{12}A_{12} + a_{22}A_{22} + a_{32}A_{32}; \\ &\Delta = a_{31}A_{31} + a_{32}A_{32} + a_{38}A_{33}; \quad \Delta = a_{13}A_{13} + a_{23}A_{23} + a_{33}A_{33}. \end{split}$$
 (5)

Доведемо, наприклад, першу з них.

Розкриваючи визначник (3) за формулою (2) і групуючи доданки, що містять елементи першого рядка, маємо

$$\Delta = a_{11}(a_{22}a_{33} - a_{32}a_{23}) + a_{12}(a_{31}a_{23} - a_{21}a_{33}) + a_{13}(a_{21}a_{32} - a_{22}a_{31}).$$

За формулою (4) вирази, що стоять у дужках, відповідно дорівнюють алгебраїчним доповненням A_{11} , A_{12} , A_{13} , тому

$$\Delta = a_{11}A_{11} + a_{12}A_{13} + a_{13}A_{13}.$$

Аналогічно доводяться й інші рівності.

Запис визначника за будь-якою з формул (5) називають розкладом визначника за елементами відповідного рядка чи стовпця.

Приклад

Обчислити визначиик
$$\Delta = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 3 & -1 & 4 \end{bmatrix}$$
, розкладаючи його за елементами тре-

тього рядка.

О За третьою з формул (5) маємо

$$\Delta = 3 \ (-1)^{3+1} \ \begin{vmatrix} 2 & 3 \\ 1 & 2 \end{vmatrix} + \ (-1) \ (-1)^{3+2} \ \begin{vmatrix} 1 & 3 \\ 0 & 2 \end{vmatrix} + 4 \ (-1)^{3+3} \ \begin{vmatrix} 1 & 2 \\ \mathbf{0} & 1 \end{vmatrix} = 9.$$

Такий самий результат дає формула (2). •

Теорема 2. Сума добутків елементів будь-якого рядка (стовпця) визначника на алгебраїчні доповнення відповідних елементів іншого рядка (стовпця) дорівнює нулю.

 Розглянемо, наприклад, суму добутків елементів першого рядка визначника (3) на алгебраїчні доповнення елементів другого рядка:

$$\begin{aligned} a_{11}A_{21} + a_{12}A_{22} + a_{13}A_{23} &= -a_{11} \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} + a_{12} \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} - \\ -a_{18} \begin{vmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{vmatrix} &= -a_{11} (a_{12}a_{83} - a_{13}a_{32}) + a_{12} (a_{11}a_{83} - a_{13}a_{31}) - \\ -a_{13} (a_{11}a_{32} - a_{12}a_{31}) &= 0. \quad \bullet \end{aligned}$$

1.3. Поняття про визначники вищих порядків

Теорема 1 дає змогу ввести означення визначника довільного порядку. За означенням визначник *n*-го порядку дорівнює сумі добутків елементів будь-якого рядка (стовпця) на їхні алгебраїчні доповнення. Можна довести, що всі розглянуті вище властивості визначників третього порядку справджуються для визначників будь-якого порядку.

Розглянемо, наприклад, визначник четвертого порядку

$$\Delta = \begin{vmatrix} a_{11} & a_{12} & a_{18} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{34} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix}.$$

Цей визначник можна розкласти за елементами будь-якого рядка, наприклад першого:

$$\Delta = a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13} + a_{14}A_{14}. \tag{6}$$

Оскільки всі алгебраїчні доповнення A_{II} у формулі (6) є визначники третього порядку, то цією формулою можна користуватись для обчислення визначника четвертого порядку. Але такий спосіб обчислення громіздкий: якщо для знаходження визначника четвертого порядку треба обчислювати чотири визначники третього порядку, то для знаходження визначника п'ятого порядку вже прийдеться обчислювати двадцять визначників третього порядку! Тому на практиці спочатку за допомогою властивості 8° перетворюють визначник так, щоб у деякому рядку чи стовпці всі елементи, крім одного, стали нулями. Розкладаючи тоді визначник згідно з теоремою за елементами цього рядка, дістанемо тільки один доданок, тому що всі інші доданки є добутками алгебраїчних доповнень на нуль.

П риклади

Обчислити визначники:

1)
$$\Delta_1 = \begin{bmatrix} 1 & 0 & -1 & 2 \\ 1 & 2 & -2 & 0 \\ -1 & 3 & 0 & 2 \\ 2 & 1 & -1 & 3 \end{bmatrix}$$
; 2) $\Delta_2 = \begin{bmatrix} 2 & 7 & 3 & 4 & 5 \\ 1 & 3 & 4 & 2 & 2 \\ -2 & -5 & 17 & -6 & -11 \\ 4 & 2 & 1 & 7 & 9 \\ 8 & 3 & 6 & 8 & 11 \end{bmatrix}$.

О 1) У першому рядку перетворимо всі елементи, крім першого, на иулі. Для цього, залишаючи перший і другий стовпці без змін, до третього додамо перший, а до четвертого — перший, помиожений на (—2). Тоді

$$\Delta_{1} = \begin{vmatrix} 1 & 0 & 0 & 0 \\ 1 & 2 & -1 & -2 \\ -1 & 3 & -1 & 4 \\ 2 & 1 & 1 & -1 \end{vmatrix}.$$

Розклавши цей визиачник за елементами першого рядка, дістанемо

$$\Delta_{\mathbf{I}} = \mathbf{I} \cdot (-\mathbf{I})^{1+1} \begin{vmatrix} 2 & -\mathbf{I} & -2 \\ 3 & -1 & 4 \\ 1 & 1 & -1 \end{vmatrix} = -21.$$

2) У першому стовиці перетворимо вс! елементи, крім другого, на нулі. Для цього, залишаючи другий рядок без змін, до першого ридка додамо другий, помножений на (—2), до третього — перший, до четвертого — перший, помножений на (—2). Матимемо

$$\Delta_{2} = \begin{vmatrix} 0 & 1 & -5 & 0 & 1 \\ 1 & 3 & 4 & 2 & 2 \\ 0 & 2 & 20 & -2 & -6 \\ 0 & -12 & -5 & -1 & -1 \\ 0 & -1 & 4 & -6 & -7 \end{vmatrix}.$$

Розкладемо цей визначник за елементами першого стовпця і винесемо за знак визначника спільний множник 2 з третього рядка і (—1) з четвертого:

$$\Delta_{2} = 1 \cdot (-1)^{2+1} \cdot 2 \cdot (-1) \begin{vmatrix} 1 & -5 & 0 & 1 \\ 1 & 10 & -1 & -3 \\ 12 & 5 & 1 & 1 \\ -1 & 4 & -6 & -7 \end{vmatrix} = 2 \begin{vmatrix} 0 & 0 & 0 & 1 \\ 4 & -5 & -1 & -3 \\ 11 & 10 & 1 & 1 \\ 6 & -31 & -6 & -7 \end{vmatrix}.$$

Розклавшн цей визначник за елементами першого рядка, дістанемо

$$\Delta = 2 \cdot (-1)^{1+4} \cdot \begin{vmatrix} 4 & -5 & -1 \\ 11 & 10 & 1 \\ 6 & -31 & -6 \end{vmatrix} = -2 \begin{vmatrix} 4 & -5 & -1 \\ 15 & 5 & 0 \\ -18 & -1 & 0 \end{vmatrix} = 150. \bullet$$

Завдання для самоконтролю

- 1. Що називається визначником другого порядку?
- 2. Що називається визначником третього порядку?
- 3. Сформулювати основні властивості визначників.
- 4. Що називається мінором і алгебраїчним доповненням?
- 5. Сформулювати і довести теорему про розклад визначника за елементами рядка (стовпця). Чому дорівнює сума добутків елементів одного рядка (стовпця) на відповідні алгебраїчні доповнення іншого рядка (стовпци)?
 - 6. Як обчислюються визначники вищих (четвертого, п'ятого і т. д.) порядків?
 - 7. Обчислити визначники:

a)
$$\begin{vmatrix} 3 & -2 \\ 4 & 1 \end{vmatrix}$$
; 6) $\begin{vmatrix} 1 & 2 \\ -1 & -3 \end{vmatrix}$; B) $\begin{vmatrix} \sin^2 \alpha & \cos^2 \alpha \\ \sin^2 \beta & \cos^2 \beta \end{vmatrix}$; r) $\begin{vmatrix} 2 & 5 & -2 \\ 3 & 8 & 0 \\ 1 & 3 & 5 \end{vmatrix}$;

8. Розв'язати рівняння:

a)
$$\begin{vmatrix} x^2 & 4 & 9 \\ x & 2 & 3 \\ 1 & 1 & 1 \end{vmatrix} = 0;$$
 6) $\begin{vmatrix} x^2 & 3 & 2 \\ x & -1 & 1 \\ 0 & 1 & 4 \end{vmatrix} = 0.$

9. Розв'язати нерівності:

a)
$$\begin{vmatrix} x & 0 & 1 \\ 2 & 1 & 3 \\ 4 & x & 1 \end{vmatrix} \le 0;$$
 6) $\begin{vmatrix} x & x^2 & 1 \\ 1 & x & x^2 \\ x^2 & 1 & x \end{vmatrix} < 1.$

B i ∂ n o s i ∂ i. 7. a) 11; 6) —1; B) sin (α + β) sin (α — β); r) 3; μ) —10; e) —216 e) —303. 8. a) 2; 3; 6) 0; 2. 9. a) [0; 1]; 6) (0; $\sqrt[3]{2}$).

§ 2 МАТРИШ

2.1. Основні означення

Прямокутна таблиця чисел a_{ij} , i=1,2,...,m;j=1,2,...,n, складена з m рядків та n стовпців і записана у вигляді

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ & \ddots & \ddots & \ddots & \ddots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \text{ afo } A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ & & \ddots & \ddots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix},$$

називається матрицею. Поняття матриці вперше ввели англійські математики У. Гамільтон і Д. Келі. Коротко матрицю позначають так:

$$A = (a_{ij})$$
 and $A = ||a_{ij}||$,

де a_{ij} — елементи матриці, причому індекс i в елементі a_{ij} означає номер рядка, а j — номер стовпця, на перетині яких стоїть даний елемент.

Добуток числа рядків m на число стовпців n називають розміром матриці і позначають $m \times n$. Якщо хочуть вказати розмір $m \times n$ матриці A, то пишуть $A_{m \times n}$.

Матриця, в якої число рядків дорівнює числу стовпців, називається квадратною. Кількість рядків (стовпців) квадратної матриці називається її порядком. Матриця, у якої всього один рядок, називається матрицею-рядком, а матриця, у якої всього один стовпець, — матрицею-стовпцем. Дві матриці $A_{m \times n} = (a_{ij})$ та $B_{m \times n} = (b_{ij})$ називаються рівними, якщо вони однакових розмірів і мають рівні відповідні елементи: $a_{ij} = b_{ij}$. Нульовою називається матриця, у якої всі елементи дорівнюють нулю. Позначається така матриця буквою O. Як і в визначниках (п. 1.1), в квадратних матрицях виділяють головну і побічну діагональ.

Квадратна матриця називається діагональною, якщо всі її елементи, крім тих, що знаходяться на головній діагоналі, дорівнюють нулю. Діагональна матриця, у якої кожен елемент головної діагоналі дорівнює одиниці, називається одиничною і позначається буквою Е. Наприклад, одинична матриця третього порядку має вигляд

$$E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Будь-якій квадратній матриці

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ & \ddots & \ddots & \ddots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$

можна поставити у відповідність певне число, яке називається визначником (детермінантом) цієї матриці і позначається символом det A. За означенням

$$\det A = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}.$$

Наприклад, якщо

$$A = \begin{pmatrix} 0 & 1 \\ 3 & 5 \end{pmatrix}$$
, to det $A = \begin{pmatrix} 0 & 1 \\ 3 & 5 \end{pmatrix} = -3$.

Прямокутна матриця розміром $m \times n$ $(n \neq m)$ визначника не має.

2.2. Дії над матрицями

1°. Операція додавання матриць вводиться тільки для матриць однакового розміру. Сумою C=A+B двох матриць $A_{m\times n}=(a_{ij})$ і $B_{m\times n}=(b_{ij})$ називається матриця $C_{m\times n}=(c_{ij})=(a_{ij}+b_{ij})$. Наприклад,

$$\begin{pmatrix} -1 & 2 & 3 \\ 1 & 5 & 0 \end{pmatrix} + \begin{pmatrix} 3 & 2 & 0 \\ 1 & 3 & 4 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 3 \\ 2 & 8 & 4 \end{pmatrix}.$$

 $2^{\mathbf{0}}$. Добутком матриці $A_{m \times n} = (a_{ij})$ на число k (або числа k на матрицю $A_{m \times n}$) називається матриця $B_{m \times n} = (ka_{ij})$. Наприклад,

$$2 \cdot \begin{pmatrix} 1 & 2 & 3 \\ 0 & -1 & -3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 0 & -1 & -3 \end{pmatrix} \cdot 2 = \begin{pmatrix} 2 & 4 & 6 \\ 0 & -2 & -6 \end{pmatrix}.$$

 3^{0} . Різниця матриць A - B визначається як сума матриці A і матриці B, помноженої на -1:

$$A - B = A + (-1)B$$
.

Справедливі такі властивості операцій:

- а) A + B = B + A комутативність відносно додавання матриць;
- б) A + (B + C) = (A + B) + C -асоціативність відносно до-
- в) A + O = A; A A = O -роль нульової матриці в діях над матрицями така, як і числа нуль в діях над числами;
 - r) α $(\beta A) = (\alpha \beta) A$ асоціативність відносно множення чисел;
- д) $\alpha (A + B) = \alpha A + \alpha B$ дистрибутивність множення на число відносно додавання матриць;
- e) $(\alpha + \beta) A = \alpha A + \beta A$ дистрибутивність множення на матрицю відносно додавання чисел.
- 4°. Операція множення двох матриць вводиться лише для узгоджених матриць. Матриця А називається узгодженою з матрицею В,

якщо кількість стовпців першої матриці A дорівнює кількості рядків другої матриці B.

Якщо ця умова не виконується, тобто матриці неузгоджені, то

множення таких матриць неможливе.

З узгодженості матриці A з B не випливає, взагалі кажучи, узгодженість матриці B з A.

Квадратні матриці одного порядку взаємно узгоджені.

Добутком C = AB матриці $A_{m \times n} = (a_{ij})$ на матрицю $B_{n \times k} = (b_{ij})$ називається така матриця, у якої елемент c_{ij} дорівнює сумі добутків елементів i-го рядка матриці A на відповідні елементи j-го стовпця матриці B:

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{in}b_{nj}; \quad C = C_{m \times k} = (c_{ij}),$$

 $i = 1, 2, \ldots, m; \quad j = 1, 2, \ldots, k.$

Це означення називають правилом множення рядка на стовпець. Наприклад, щоб визначити елемент c_{24} , що стоїть в другому рядку і четвертому стовпці матриці C = AB, потрібно знайти суму добутків елементів другого рядка матриці A на відповідні елементи четвертого стовпця матриці B.

П риклад

Знайти матрицю C = AB, якщо:

a)
$$A = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 2 & 3 \\ -2 & 0 & -1 \end{pmatrix}$; 6) $A = \begin{pmatrix} 0 \\ -2 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 2 \end{pmatrix}$.

O а) Матриця $A_{2 \times 2}$ узгоджена з матрицею $B_{2 \times 3}$, тому за означенням маємо

$$C = \begin{pmatrix} 1 \cdot 1 + 2 \cdot (-2) & 1 \cdot 2 + 2 \cdot 0 & 1 \cdot 3 + 2 \cdot (-1) \\ 0 \cdot 1 + (-1) \cdot (-2) & 0 \cdot 2 + (-1) \cdot 0 & 0 \cdot 3 + (-1) \cdot (-1) \end{pmatrix} = \begin{pmatrix} -3 & 2 & 1 \\ 2 & 0 & 1 \end{pmatrix}.$$

$$6) C = AB = A_{2 \times 1} B_{1 \times 2} = \begin{pmatrix} 0 \cdot 1 & 0 \cdot 2 \\ -2 \cdot 1 & -2 \cdot 2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ -2 & -4 \end{pmatrix}. \bullet$$

З правила множення матриць випливає, що завжди можна перемножити дві квадратні матриці одного порядку; в результаті дістанемо матрицю того самого порядку. Зокрема, квадратну матрицю можна помножити саму на себе, тобто піднести до квадрата; прямокутну неквадратну матрицю піднести до квадрата не можна.

Операція множення матриць не комутативна, тобто при множенні матриць не можна міняти місцями множники:

$$AB \neq BA$$
.

Наприклад (перевірте):

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \neq \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix};$$

$$\begin{pmatrix} 1 & -2 & 0 \\ 3 & -1 & 5 \end{pmatrix} \begin{pmatrix} 1 & 7 \\ 3 & 4 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} -5 & -1 \\ -5 & 17 \end{pmatrix};$$

$$\begin{pmatrix} 1 & 7 \\ 3 & 4 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -2 & 0 \\ 3 & -1 & 5 \end{pmatrix} = \begin{pmatrix} 22 & -9 & 35 \\ 15 & -10 & 20 \\ -1 & 2 & 0 \end{pmatrix}.$$

Для дій 10—40 над матрицями виконуються такі властивості (за умови, що вказані операції мають зміст):

a) (AB) C = A (BC); 6) $(\alpha A) B = A (\alpha B) = \alpha (AB)$;

B) (A + B) C = AC + BC; r) C (A + B) = CA + CB;

д) $A \cdot O = O \cdot A = O$; e) AE = EA = A; e) det $(AB) = \det A \times \det B$.

2.3. Обернена матриця

Нехай A — квадратна матриця. Матриця A^{-1} називається оберненою до матриці A, якщо виконується умова

$$AA^{-1} = A^{-1}A = E$$
.

Квадратна матриця A називається виродженою, якщо $\det A = 0$, і невиродженою, якщо $\det A \neq 0$.

Теорема 3. Для існування оберненої матриці A^{-1} необхідно і достатньо, щоб матриця A була невиродженою.

О Необхідність. Нехай обернена матриця A^{-1} існує, тоді $AA^{-1} = E$. Застосовуючи правило знаходження визначника добутку двох матриць, маємо det $A \cdot \det A^{-1} = 1$, тому det $A \neq 0$.

Достатність. Нехай det $A \neq 0$, тоді матриця A має обернену матрицю A^{-1} , причому

$$A^{-1} = \frac{1}{\det A} \begin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ & \ddots & \ddots & \ddots & \ddots \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{pmatrix}, \tag{7}$$

де A_{ij} — алгебраїчні доповнення елементів a_{ij} визначника матриці

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ & \ddots & \ddots & \ddots & \ddots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}. \tag{8}$$

Дійсно, добутки AA^{-1} і $A^{-1}A$ матриць (7) і (8) дорівнюють матриці, у якої всі елементи головної діагоналі дорівнюють одиниці (за тео-

ремою 1), а всі недіагональні елементи — нулю (за теоремою 2). Отже, $A^{-1}A = AA^{-1} = E$.

Покажемо, що A^{-1} — єдина обернена матриця. Нехай A'' — ще одна обернена матриця, тоді

$$A^{-1} = A^{-1}E = A^{-1}(AA'') = (A^{-1}A)A'' = EA'' = A''$$
.

П риклад

Зиайти матрицю A^{-1} , обернену до матриці

$$A = \begin{pmatrix} 1 & 2 & 0 \\ -1 & 1 & 2 \\ 3 & 0 & 1 \end{pmatrix}.$$

О Обчислимо визначник матриці А:

$$\det A = \begin{vmatrix} 1 & 2 & 0 \\ -1 & 1 & 2 \\ 3 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ -1 & 3 & 2 \\ 3 & -6 & 1 \end{vmatrix} = 15.$$

Матриця A невироджена, тому обернена матриця знаходиться за формулою (7). Знаходимо алгебраїчні доповнення всіх елементів даної матриці:

$$A_{11} = \begin{vmatrix} 1 & 2 \\ 0 & 1 \end{vmatrix} = 1; \quad A_{12} = -\begin{vmatrix} -1 & 2 \\ 3 & 1 \end{vmatrix} = 7; \quad A_{13} = \begin{vmatrix} -1 & 1 \\ 3 & 0 \end{vmatrix} = -3;$$

$$A_{21} = -\begin{vmatrix} 2 & 0 \\ 0 & 1 \end{vmatrix} = -2; \quad A_{22} = \begin{vmatrix} 1 & 0 \\ 3 & 1 \end{vmatrix} = 1; \quad A_{23} = -\begin{vmatrix} 1 & 2 \\ 3 & 0 \end{vmatrix} = 6;$$

$$A_{31} = \begin{vmatrix} 2 & 0 \\ 1 & 2 \end{vmatrix} = 4; \quad A_{32} = -\begin{vmatrix} 1 & 0 \\ -1 & 2 \end{vmatrix} = -2; \quad A_{33} = \begin{vmatrix} 1 & 2 \\ -1 & 1 \end{vmatrix} = 3.$$

Складаемо обернену матрицю

$$A^{-1} = \begin{pmatrix} \frac{1}{15} & -\frac{2}{15} & \frac{4}{15} \\ \frac{7}{15} & \frac{1}{15} & -\frac{2}{15} \\ -\frac{1}{5} & \frac{2}{5} & \frac{1}{5} \end{pmatrix}.$$

Переконуємось, що

$$\begin{pmatrix} 1 & 2 & 0 \\ -1 & 1 & 2 \\ 3 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{15} & -\frac{2}{15} & \frac{4}{15} \\ \frac{7}{15} & \frac{1}{15} & -\frac{2}{15} \\ -\frac{1}{5} & \frac{2}{5} & \frac{1}{5} \end{pmatrix} =$$

$$= \begin{bmatrix} \frac{1}{15} & -\frac{2}{15} & \frac{4}{15} \\ \frac{7}{15} & \frac{1}{15} & -\frac{2}{15} \\ -\frac{1}{5} & \frac{2}{5} & \frac{1}{5} \end{bmatrix} \begin{pmatrix} 1 & 2 & 0 \\ -1 & 1 & 2 \\ 3 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}. \bullet$$

2.4. Ранг матриці

Нехай задано матрицю $A_{m\times n}=A$. Виділимо в матриці A будь-які k рядків і стільки ж стовпців, де k — число, не більше чисел m і n, тобто $k\leqslant \min{(m,n)}$.

Визначник порядку k, складений з елементів, що стоять на перетині виділених рядків і стовпців, називається мінором k-го порядку матриці A.

Pангом r (A) матриці A називається найбільший з порядків її мінорів, відмінних від нуля.

Безпосередньо з означення випливає, що:

1) Ранг існує для будь-якої матриці $A_{m \times n}$, причому

$$0 \leq r(A) \leq \min(m, n);$$

- 2) r(A) = 0 тоді і тільки тоді, коли A = 0;
- 3) для квадратної матриці n-го порядку ранг дорівнює n тоді і тільки тоді, коли матриця невироджена.

Ранг матриці можна знайти так. Якщо всі мінори першого порядку (елементи матриці) дорівнюють нулю, то r=0. Якщо хоч один з мінорів першого порядку відмінний від нуля, а всі мінори другого порядку дорівнюють нулю, то r=1. У випадку, коли є мінор другого порядку, відмінний від нуля, досліджуємо мінори третього порядку. Так продовжуємо доти, поки не станеться одне з двох: або всі мінори порядку k дорівнюють нулю, або мінорів порядку k не існує, тоді r=k-1.

П риклад Зиайти ранг матриці

$$A = \begin{pmatrix} 1 & 0 & -1 & 0 \\ 2 & 0 & 4 & 0 \\ 3 & 0 & 6 & 0 \end{pmatrix}.$$

О Серед мінорів першого порядку (тобто елементів матриці) є відмінні від нуля) тому $r(A)\geqslant 1.$

Оскільки одни з мінорів другого порядку

$$\begin{vmatrix} 1 & -1 \\ 2 & 4 \end{vmatrix} = 6 \neq 0,$$

а всі мінори третього порядку дорівнюють нулю, то r(A) = 2.

Вказаний метод знаходження рангу матриці не завжди зручний, тому що пов'язаний з обчисленням значного числа визначників. Простіший метод грунтується на тому, що ранг матриці не змінюється, якщо над матрицею виконати так звані елементарні перетворення, а саме [1]:

- а) переставити місцями два рядки (стовпці);
- б) помножити кожен елемент рядка (стовпця) на один і той самий відмінний від нуля множник;
- в) додати до елементів рядка (стовпця) відповідні елементи другого рядка (стовпця), помножені на одне і те саме число.

П риклад Знайти ранг матриці

$$A = \begin{pmatrix} 1 & 2 & 2 & 0 & -1 \\ 3 & -1 & 4 & -2 & 4 \\ 5 & 3 & 10 & 8 & 2 \\ 1 & -5 & 0 & -2 & 6 \end{pmatrix}.$$

О Виконуючи елементарні перетворення, маємо:

$$\begin{pmatrix} 1 & 2 & 2 & 0 & -1 \\ 3 & -1 & 4 & -2 & 4 \\ 5 & 3 & 10 & 8 & 2 \\ 1 & -5 & 0 & -2 & 6 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 2 & 0 & -1 \\ 0 & -7 & -2 & -2 & 7 \\ 0 & -7 & 0 & 8 & 7 \\ 0 & -7 & -2 & -2 & 7 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & -7 & -2 & -2 & 7 \\ 0 & -7 & 0 & 8 & 7 \\ 0 & -7 & -2 & -2 & 7 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & -4 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & -5 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$r(A) = 3.$$

(Знак ~ між матрицями показує, що вони утворюються одна з другої елементарними перетворенними і, отже, мають один і той самий ранг).

Завдання для самоконтролю

- 1. Що називаеться матрицею?
- 2. Як визначаються: сума двох матриць, добуток матриці на число, різниця та добуток двох матриць?
 - 3. Що називаеться оберненою матрицею?
 - 4. Сформулювати і довести теорему про існування оберненої матриці. 5. Що називається рангом матриці? Як знаходиться раиг?

6. Які перетворення над матрицями назнваються елементаринми?

7. Пересвідчитись, що

$$\begin{pmatrix} 5 & 0 & 7 \\ 1 & 2 & 3 \\ -1 & 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 0 & 1 \\ 3 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 26 & 3 & 22 \\ 14 & -1 & 8 \\ 5 & -4 & -1 \end{pmatrix}.$$

8. Знайти обернену матрицю A^{-1} до матриці

$$A = \begin{pmatrix} 3 & 5 & -2 \\ 1 & -3 & 2 \\ 6 & 7 & -3 \end{pmatrix}.$$

9. Знайти ранг матриць:

$$A = \begin{pmatrix} 1 & 0 & 2 & 0 \\ 3 & 0 & 6 & 0 \\ 5 & 0 & 10 & 0 \end{pmatrix}; \quad B = \begin{pmatrix} 1 & 2 & 3 & 4 \\ -1 & 0 & 2 & 1 \\ -1 & 2 & 7 & 5 \\ -1 & 4 & 12 & 10 \end{pmatrix}.$$

Bidrosidi. 8.
$$A^{-1} = \frac{1}{10} \begin{pmatrix} -5 & 1 & 4 \\ 15 & 3 & -8 \\ 25 & 9 & -14 \end{pmatrix}$$
. 9. $r(A) = 1$, $r(B) = 3$.

8 8. СИСТЕМИ ЛІНІЙНИХ РІВНЯНЬ

3.1. Основні означення

Системою m лінійних рівнянь з n невідомими $x_1, x_2, ..., x_n$ називається система виду

Числа a_{ij} , $i=1,2,...,m;\ j=1,2,...,n$ біля невідомих називаються коефіцієнтами, а числа b_i — вільними членами системи (9).

Система рівнянь (9) називається однорідною, якщо всі вільні члени дорівнюють нулю, і неоднорідною, якщо хоч один з них відмінний від нуля.

Множина чисел a_1 , a_2 , ..., a_n називається впорядкованою, якщо вказано порядок слідування цих чисел, тобто вказано, яке з них є першим, яке другим, яке третім і т. д. Наприклад, якщо впорядкована трійка чисел, то в запису a, b, c число a вважається першим, b — другим, c — третім, в запису b, a, c першим є число b, другим — число a і третім — число c.

Упорядкований набір n чисел $(x_1^0, x_2^0, ..., x_n^0)$ називається розв'язком системи (9), якщо при підстановці цих чисел замість невідомих $x_1, x_2, ..., x_n$ усі рівняння системи перетворюються в тотожності. Таку систему чисел називають також n-вимірним вектором, або точкою n-вимірного простору (див. п. 2.6, гл. 2).

Система рівнянь називається сумісною, якщо вона має хоча б один

розв'язок, і несумісною, якщо вона не має жодного розв'язку.

Сумісна система називається визначеною, якщо вона має єдиний розв'язок, тобто існує тільки один набір n чисел x_1^0 , x_2^0 , ..., x_n^0 , який перетворює всі рівняння системи (9) в тотожності.

Сумісна система називається невизначеною, якщо вона має більше, ніж один розв'язок.

Дві системи лінійних рівнянь називаються еквівалентними, якщо вони мають одну й ту ж множину розв'язків. Еквівалентні системи дістають, зокрема, внаслідок елементарних перетворень даної системи. Елементарні перетворення системи лінійних рівнянь відповідають елементарним перетворенням матриці (п. 2.4) за умови, що вони виконуються лише над рядками матриці.

3.2. Розв'язування систем лінійних рівнянь за формулами Крамера Нехай задано систему двох лінійних рівнянь з двома невідомими х і у:

$$\begin{cases} a_{11}x + a_{12}y = b_1; \\ a_{21}x + a_{22}y = b_2. \end{cases}$$
 (10)

Виконаємо такі елементарні перетворення системи (10): спочатку помножимо перше рівняння на a_{22} , друге — на $-a_{12}$, а потім складемо їх; після цього перше рівняння помножимо на a_{21} , а друге — на $-a_{11}$ і складемо їх. Дістанемо систему

$$\begin{cases} x(a_{11}a_{22} - a_{21}a_{12}) = b_1a_{22} - b_2a_{12}; \\ y(a_{11}a_{22} - a_{21}a_{12}) = b_2a_{11} - b_1a_{21}. \end{cases}$$
(11)

Систему (11) можна записати за допомогою визначників:

$$\begin{cases} x \cdot \Delta = \Delta_x; \\ y \cdot \Delta = \Delta_y, \end{cases} \tag{12}$$

де

$$\Delta = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}; \ \Delta_x = \begin{vmatrix} b_1 & a_{12} \\ b_2 & c_{22} \end{vmatrix}; \ \Delta_y = \begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{vmatrix}.$$

Визначник Δ , складений з коефіцієнтів системи (10), називається визначником системи. Визначники Δ_x та Δ_y утворюються з визначника Δ відповідно заміною стовпців при невідомих x та y вільними членами.

При розв'язуванні рівнянь (12) можуть бути такі випадки.

1) $\Delta \neq 0$, тоді система (10) має єдиний розв'язок:

$$x = \frac{\Delta_x}{\Delta} \; ; \; y = \frac{\Delta_y}{\Delta} \; . \tag{13}$$

Формули (13) вперше вивів К. Крамер і вони називаються формулами Крамера.

2) $\Delta = 0$; $\Delta_x \neq 0$ або $\Delta_y \neq 0$, тоді система (10) не має розв'язків, тобто є несумісною.

3) $\Delta = \dot{\Delta}_x = \Delta_y = 0$, тоді система (10) зводиться до одного рівняння і має безліч розв'язків, тобто є невизначеною.

Розглянемо тепер систему трьох лінійних рівнянь з трьома невідомими x, y, z:

$$\begin{cases} a_{11}x + a_{12}y + a_{13}z = b_1; \\ a_{21}x + a_{22}y + a_{23}z = b_2; \\ a_{31}x + a_{32}y + a_{33}z = b_3. \end{cases}$$
(14)

Обчислимо визначники:

$$\Delta = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}; \quad \Delta_{\mathbf{x}} = \begin{vmatrix} b_{1} & a_{12} & a_{13} \\ b_{2} & a_{22} & a_{23} \\ b_{3} & a_{32} & a_{32} \end{vmatrix}; \quad \Delta_{\mathbf{y}} = \begin{vmatrix} a_{11} & b_{1} & a_{13} \\ a_{21} & b_{2} & a_{23} \\ a_{31} & b_{3} & a_{33} \end{vmatrix};$$

$$\Delta_{\mathbf{z}} = \begin{vmatrix} a_{11} & a_{12} & b_{1} \\ a_{21} & a_{22} & b_{2} \\ a_{31} & a_{32} & b_{3} \end{vmatrix}.$$

Якщо визначник системи $\Delta \neq 0$, то система (14) має единий розв'язок, який знаходиться за формулами Крамера:

$$x = \frac{\Delta_x}{\Delta}, \quad y = \frac{\Delta_y}{\Delta}, \quad z = \frac{\Delta_z}{\Delta}.$$
 (15)

Доведемо, наприклад, другу з формул (15). Помножимо перше, друге і третє рівняння системи (14) на алгебраїчні доповнення відповідних коефіцієнтів при y, тобто на A_{12} , A_{22} , A_{32} , а потім складемо їх:

$$x(a_{11}A_{12} + a_{21}A_{22} + a_{31}A_{32}) + y(a_{12}A_{12} + a_{22}A_{22} + a_{32}A_{32}) +$$

$$+ z(a_{13}A_{12} + a_{23}A_{22} + a_{33}A_{32}) = b_{1}A_{12} + b_{2}A_{22} + b_{3}A_{32}.$$

За теоремою 2 вирази в дужках при x і z в цій рівності дорівнюють нулю, а за теоремою 1 вираз в дужках при y і права частина дорівнюють відповідно Δ і Δ_y , тобто $\Delta_y = \Delta \cdot y$.

Аналогічно доводяться формули Крамера для знаходження невідомих x і z. Якщо задано n лінійних рівнянь з n невідомими (n > 3)

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1; \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2; \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$
(16)

і визначник системи $\Delta \neq 0$, то така система має єдиний розв'язок, який внаходиться за формулами Крамера, аналогічними до формул (13) і (15):

$$x_1 = \frac{\Delta_{x_1}}{\Delta}, \quad x_2 = \frac{\Delta_{x_2}}{\Delta}, \dots, \quad x_n = \frac{\Delta_{x_n}}{\Delta}.$$
 (17)

У випадку, коли визначник системи (14) чи (16) дорівнює нулю, формули Крамера (15) і (17) не мають змісту. Такі системи, а також системи, у яких число невідомих не дорівнює числу рівнянь і до яких, очевидно, формули Крамера теж не можна застосувати, розглянемо в п. 3.5.

П риклад

Розв'язати системи за формулами Крамера:

a)
$$\begin{cases} 2x - y = 0; \\ x + 3y = 7; \end{cases}$$

$$\begin{cases} x - y + z = 0; \\ 2x + y + z = 5; \\ 2y - z = 3. \end{cases}$$

O а) Знаходимо визначники Δ , Δ_x , Δ_y :

$$\Delta = \begin{vmatrix} 2 & -1 \\ 1 & 3 \end{vmatrix} = 7; \quad \Delta_x = \begin{vmatrix} 0 & -1 \\ 7 & 3 \end{vmatrix} = 7, \quad \Delta_y = \begin{vmatrix} 2 & 0 \\ 1 & 7 \end{vmatrix} = 14.$$

За формулами (13)

$$x = \frac{\Delta_x}{\Delta} = \frac{7}{7} = 1$$
, $y = \frac{\Delta_y}{\Delta} = \frac{14}{7} = 2$.

б) Розв'язок дістанемо за формулами (15). Маємо

$$\Delta = \begin{vmatrix} 1 & -1 & 1 \\ 2 & 1 & 1 \\ 0 & 2 & -1 \end{vmatrix} = -1, \Delta_x = \begin{vmatrix} 0 & -1 & 1 \\ 5 & 1 & 1 \\ 3 & 2 & -1 \end{vmatrix} = -1,$$

$$\Delta_y = \begin{vmatrix} 1 & 0 & 1 \\ 2 & 5 & 1 \\ 0 & 3 & -1 \end{vmatrix} = -2, \quad \Delta_z = \begin{vmatrix} 1 & -1 & 0 \\ 2 & 1 & 5 \\ 0 & 2 & 3 \end{vmatrix} = -1,$$

$$x = 1, \quad y = 2, \quad z = 1. \quad \bullet$$

3.3. Матричний запис системи лінійних рівнянь і її розв'язування Нехай задано систему (16), яка містить *п* лінійних рівнянь *п* з невідомими.

Введемо матриці

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}; \quad X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}; \quad B = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}.$$

Матрицю A, складену з коефіцієнтів системи (16), називають матрицею або основною матрицею системи, матрицю X — матрицею з невідомих, а матрицю B — матрицею з вільних членів. Тоді згідно з правилом множення матриць систему (16) можна записати одним матричним рівнянням з невідомою матрицею X:

$$AX = B. (18)$$

Припустимо, що матриця A системи (16) має обернену матрицю A^{-1} ; помножимо обидві частини рівності (18) на A^{-1} зліва:

$$A^{-1}AX = A^{-1}B$$
.

Оскільки $A^{-1}A = E$ і EX = X, то

$$X = A^{-1}B. (19)$$

Отже, щоб розв'язати систему рівнянь (16), достатньо знайти матрицю, обернену до матриці системи, і помножити її справа на матрицю з вільних членів.

Формулу (19) називають матричним записом розв'язку системи (16) або розв'язком матричного рівняння (18).

Зауважимо, що розв'язок системи рівнянь у матричній формі можливий лише тоді, коли матриця системи невироджена.

II риклад

Розв'язати систему рівнянь

$$\begin{cases} x + 2y = 3; \\ -x + y + 2z = 5; \\ 3x + z = -2. \end{cases}$$

О Маємо (див. приклад п. 2.3)

$$A = \begin{pmatrix} 1 & 2 & 0 \\ -1 & 1 & 2 \\ 3 & 0 & 1 \end{pmatrix}; \quad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}; \quad B = \begin{pmatrix} 3 \\ 5 \\ -2 \end{pmatrix}; \quad A^{-1} = \begin{pmatrix} \frac{1}{15} & -\frac{2}{15} & \frac{4}{15} \\ \frac{7}{15} & \frac{1}{15} & -\frac{2}{15} \\ -\frac{1}{5} & \frac{2}{5} & \frac{1}{5} \end{pmatrix}.$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{vmatrix} \frac{1}{15} & -\frac{2}{15} & \frac{4}{15} \\ \frac{7}{15} & \frac{1}{15} & -\frac{2}{15} \\ -\frac{1}{5} & \frac{2}{5} & \frac{1}{5} \end{vmatrix} \begin{pmatrix} 3 \\ 5 \\ -2 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}.$$

Отже, x = -1, y = 2, z = 1. ●

3.4. Розв'язування систем лінійних рівнянь методом Гаусса

Одним з найпоширеніших методів розв'язування систем лінійних рівнянь є метод послідовного виключення невідомих, або метод Гаусса. Цей метод запропонований К. Гауссом і грунтується на елементарних перетвореннях системи рівнянь (п. 2.1).

Нехай маємо систему (9), яка містить m рівнянь і n невідомих. Очевидно, серед коефіцієнтів a_{i1} хоча б один відмінний від нуля. Якщо ж $a_{11}=0$, то першим в системі (9) запишемо те рівняння, в якому коефіцієнт при x_1 відмінний від нуля. Позначимо цей коефіцієнт через a'_{11} .

Перетворимо систему (9), виключаючи x_1 в усіх рівняннях, крім першого. Для цього помножимо перше рівняння на — $\frac{a_{91}}{a_{11}'}$ і додамо до другого, потім помножимо перше рівняння на — $\frac{a_{91}}{a_{11}'}$ і додамо до тре-

тього і т. д. При цьому може статись так, що друге невідоме х₂ також не входить в усі рівняння з номером i > 1. Нехай x_h — невідоме з найменшим номером, яке входить в будь-яке рівняння, не рахуючи першого. Дістанемо систему

$$\begin{cases} a'_{11}x_1 + \cdots + a'_{1n}x_n = b'_1; \\ a'_{2k}x_k + \cdots + a'_{2n}x_n = b'_2; \\ \vdots \\ a'_{mk}x_k + \cdots + a'_{mn}x_n = b'_m, & k > 1, & a'_{11} \neq 0. \end{cases}$$
 (20)

Застосовуючи до всіх рівнянь, крім першого, таку саму процедуру 1 виконавши ряд елементарних перетворень, дістанемо систему

$$\begin{cases} a_{11}^{"}x_1 + \cdots + a_{1n}^{"}x_n = b_1^{"}; \\ a_{2k}^{"}x_k + \cdots + a_{2n}^{"}x_n = b_2^{"}; \\ a_{3l}^{"} + \cdots + a_{3n}^{"}x_n = b_3^{"}; \\ \vdots \\ a_{ml}^{"}x_l + \cdots + a_{mn}^{"}x_n = b_m^{"}, \quad a_{11}^{"} \neq 0, \quad a_{2k}^{"} \neq 0. \end{cases}$$
(21)

Якщо продовжити цей процес, то матимемо систему

жити неи процес, то матимемо систему
$$\begin{vmatrix}
\bar{a}_{11}x_1 + \cdots & + \bar{a}_{1n}x_n = \bar{b}_1; \\
\bar{a}_{2k}x_k + \cdots & + \bar{a}_{2n}x_n = \bar{b}_2; \\
\bar{a}_{3l}x_l + \cdots & + \bar{a}_{3n}x_n = \bar{b}_3; \\
\vdots & \vdots & \vdots & \vdots \\
\bar{a}_{rs}x_s + \cdots + \bar{a}_{rn}x_n = \bar{b}_r; \\
0 = \bar{b}_{r+1}; \\
\vdots & \vdots & \vdots \\
0 = \bar{b}_m.$$
(22)

Таку систему рівнянь називають східчастою або трапецієподібною. Дослідимо цю систему.

- 1. Якщо система містить рівняння виду $0 = b_t$ і $b_t \neq 0$, то вона очевидно несумісна.
- 2. Нехай система (22) не містить рівнянь виду $0=b_t$ ($b_t\neq 0$). Назвемо невідомі $x_1, x_k, x_l, \ldots, x_s$, з яких починаються перше, друге, ..., r-е рівняння, основними, а всі інші, якщо вон**и** є, вільними. Основних невідомих за означенням r. Надаючи вільним невідомим довільні значення і підставляючи ці значення в рівняння системи, з r-го рівняння знайдемо x_s . Підставляючи це значення в перші r-1 рівнянь і, піднімаючись вгору по системі, знайдемо всі основні невідомі. Оскільки вільні невідомі можуть набувати будь-яких значень, система має безліч розв'язків.
- 3. Нехай в системі (22) r=n. Тоді вільних невідомих немає, тоб. то всі невідомі основні і система (22) має так званий трикутний вигляд:

$$\begin{cases} \bar{a}_{11}x_1 + \cdots + \bar{a}_{1n}x_n = \bar{b}_1; \\ \bar{a}_{22}x_2 + \cdots + \bar{a}_{2n}x_n = \bar{b}_2; \\ \vdots \\ \bar{a}_{nn}x_n = \bar{b}_n. \end{cases}$$

З останнього рівняння системи знайдемо x_n , і, піднімаючись по системі вгору, знайдемо всі інші невідомі. Отже, в цьому випадку система має єдиний розв'язок.

Зауваження 1. Викладений нами метод послідовного виключення змінних називають ще алгоритмом Гаусса. Він складається з однотипових операцій і легко реалізується на сучасних ЕОМ.

Зауваження 2. При розв'язуванні системи лінійних рівнянь методом Гаусса зручніше приводити до трикутного чи трапецієподібного вигляду не саму систему рівнянь, а розширену матрицю цієї системи, тобто матрицю, утворену приєднанням до матриці її коефіцієнтів стовпця вільних членів. Виконуючи над рядками розширеної матриці елементарні перетворення, приходимо до розв'язку системи.

П риклад

Розв'язати системи рівиянь методом Гаусса:

a)
$$\begin{cases} x - y + 2z = -1; \\ -x + 2y - 3z = 3; \\ 2x - y + 3z = 2; \end{cases}$$

$$\begin{cases} x + y + z = 1; \\ 2x + y + 2z = 1; \\ x + y + 3z = 2; \\ x + 3z = 1; \end{cases}$$
B)
$$\begin{cases} -x + y + 2z = 1; \\ x + 2y - z = 2; \\ 2x + y - 3z = 1; \\ x + 5y = 5. \end{cases}$$

 О а) Виконуємо елементарні перетворення над рядками розширеної матриці даної системи (позначатимемо це символом ⇒):

$$\begin{pmatrix} 1 & -1 & 2 & -1 \\ -1 & 2 & -3 & 3 \\ 2 & -1 & 3 & 2 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & -1 & 2 & -1 \\ 0 & 1 & -1 & 2 \\ 0 & 1 & -1 & 4 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & -1 & 2 & -1 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 0 & 2 \end{pmatrix}.$$

Таким чином, система а) еквівалентна системі

$$\begin{cases} x - y + 2z = -1; \\ 0 \cdot x + y - z = 2; \\ 0 \cdot x + 0 \cdot y + 0 \cdot z = 2. \end{cases}$$

В останньому рівнянні вільний член дорівнює двом, а коефіцієнти при невідомих дорівнюють нулю (тобто 0=2), тому система несумісна.

б) Маємо

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 1 & 2 & 1 \\ 1 & 1 & 3 & 2 \\ 1 & 0 & 3 & 1 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & -1 & 0 & -1 \\ 0 & 0 & 2 & 1 \\ 0 & -1 & 2 & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & -1 & 2 & 0 \\ 0 & -1 & 0 & -1 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & -1 & 0 & -1 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Отже, система б) еквівалентна системі трикутного вигляду

$$\left\{ egin{array}{ll} x+y+z=1; & \text{ і має единий розв'язок:} \\ -y+0\cdot z=-1; & z=-rac{1}{2} \;, \; y=1, \; z=rac{1}{2} \;. \end{array}
ight.$$

в) Маємо

$$\begin{pmatrix} -1 & 1 & 2 & 1 \\ 1 & 2 & -1 & 2 \\ 2 & 1 & -3 & 1 \\ 1 & 5 & 0 & 5 \end{pmatrix} \Rightarrow \begin{pmatrix} -1 & 1 & 2 & 1 \\ 0 & 3 & 1 & 3 \\ 0 & 3 & 1 & 3 \\ 0 & 6 & 2 & 6 \end{pmatrix} \Rightarrow \begin{pmatrix} -1 & 1 & 2 & 1 \\ 0 & 3 & 1 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Отже, система в) еквівалентна системі трапецієподібного вигляду

$$\begin{cases} -x + y + 2z = 1; \\ 3y + z = 3 \end{cases}$$

і має безліч розв'язків. З останньої системи зиаходимо

$$y=1-\frac{z}{3}$$
, $x=\frac{5}{3}z$.

Таким чином, розв'язки системи в) мають вигляд $x=\frac{5}{3}t$, $y=1-\frac{t}{3}$, z=t, де t — довільне число (— ∞ < t <— ∞).

Зазначимо, що жодну з наведених у цьому прикладі систем не можиа розв'язувати ні за формулами Крамера, ні матричним способом.

3.5. Однорідна система лінійних рівнянь

Нехай задано однорідну систему m лінійних рівнянь з n невідомими

$$\begin{cases}
 a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = 0; \\
 a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = 0; \\
 \vdots \\
 a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = 0.
\end{cases} (23)$$

Ця система завжди має нульовий розв'язок $x_1 = 0$, $x_2 = 0$, ..., $x_n = 0$, тому що підстановка нулів замість невідомих в кожне з рівнянь (23) перетворює їх в тотожності. Ненульові розв'язки (якщо вони існують) системи (23) можна знайти методом Гаусса.

Покажемо, що для однорідної системи трьох рівнянь з трьома невідомими можна знайти загальні формули, що виражають ненульові розв'язки через коефіцієнти системи.

Розглянемо систему

$$\begin{cases}
 a_1x + a_2y + a_3z = 0; \\
 b_1x + b_2y + b_3z = 0; \\
 c_1x + c_2y + c_3z = 0.
\end{cases} (24)$$

Якщо визначник системи $\Delta \neq 0$, то система має єдиний нульовий розв'язок. Дійсно, визначники $\Delta_x = \Delta_y = \Delta_z = 0$ (один стовпець в кожному визначнику містить тільки нулі), тому за формулами Крамера x=0, y=0, z=0.

Покажемо, що коли визначник $\Delta=0$, то система (24) має безліч розв'язків. Розглянемо такі два випадки.

1. Припустимо, що у визначнику Δ існує принаймні один відмінний від нуля мінор другого порядку. Нехай, наприклад,

$$\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \neq 0. \tag{25}$$

Візьмемо ті рівняння системи (24), що містять відмінний від нуля мінор, і запишемо їх у вигляді

$$\begin{cases} a_1 x + a_2 y = -a_3 z; \\ b_1 x + b_2 y = -b_3 z. \end{cases}$$
 (26)

Оскільки визначник (25) системи (26) відмінний від нуля, то за формулами Крамера

$$x = \frac{\Delta_x z}{\Delta} , \quad y = \frac{\Delta_y z}{\Delta} , \tag{27}$$

де

$$\Delta = \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}; \quad \Delta_x = \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix}; \quad \Delta_y = \begin{vmatrix} a_3 & a_1 \\ b_3 & b_1 \end{vmatrix}.$$

Оскільки z може набувати будь-яких дійсних значень, покладемо $z = \Delta \cdot t$, де t — довільне дійсне число, тоді з формул (27)

$$x = \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} \cdot t; \quad y = \begin{vmatrix} a_3 & a_1 \\ b_3 & b_1 \end{vmatrix} \cdot t; \quad z = \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \cdot t. \tag{28}$$

Підставляючи розв'язки (28) у третє рівняння системи (24) і використовуючи теорему 1, впевнюємося, що формули (28) при будь-якому t визначають розв'язки однорідної системи (24).

2. Нехай тепер визначник системи (24) і всі його мінори другого порядку дорівнюють нулю. Це значить, що коефіцієнти всіх трьох рівнянь (24) пропорційні, тому система зводиться до одного рівняння з трьома невідомими. Надаючи двом невідомим довільних значень, знаходять відповіднє їм третє невідоме.

Отже, якщо визначник Δ однорідної системи (24) дорівнює нулю, то така система має безліч розв'язків.

П риклад

Розв'язати системи рівнянь:

a)
$$\begin{cases} x + 2y + 3z = 0; & 6 \\ 2x + y + z = 0; \\ x - y + 2z = 0; \end{cases} \begin{cases} -x + y - 2z = 0; \\ x - y + 2z = 0; \\ 2x + y - z = 0. \end{cases}$$

О а) Визначник системи

$$\Delta = \begin{vmatrix} 1 & 2 & 3 \\ 2 & 1 & 1 \\ 1 & -1 & 2 \end{vmatrix} = \begin{vmatrix} 1 & 3 & 1 \\ 2 & 3 & -3 \\ 1 & 0 & 0 \end{vmatrix} \neq 0,$$

тому система а) має єдиннй розв'язок: x = 0, y = 0, z = 0.

б) Визначник системи

$$\Delta = \begin{vmatrix} -1 & 1 & -2 \\ 1 & -1 & 2 \\ 2 & 1 & -1 \end{vmatrix} = \begin{vmatrix} -1 & 1 & 2 \\ 0 & 0 & 0 \\ 2 & 1 & 1 \end{vmatrix} = 0,$$

тому система б) невизначена. Всі мінори другого порядку, що містяться у першому і другому рядках визначника, дорівнюють нулю. Візьмемо друге і третє рівняння системи:

$$x-y+2z=0;$$

$$2x+u-z=0.$$

Ці рівняния містять відмінинй від нуля мінор другого порядку

$$\begin{vmatrix} 1 & -1 \\ 2 & 1 \end{vmatrix} \neq 0,$$

тому за формулами (28) маємо

$$x = \begin{vmatrix} -1 & 2 \\ 1 & -1 \end{vmatrix} \cdot t = -t; \quad y = \begin{vmatrix} 2 & 1 \\ -1 & 2 \end{vmatrix} \cdot t = 5t; \quad z = \begin{vmatrix} 1 & -1 \\ 2 & 1 \end{vmatrix} \cdot t = 3t.$$

Отже, система б) має безліч розв'язків: $x=-t,\ y=5t,\ z=3t,$ де t — довільне дійсне число. lacktriangle

3.6. Критерій сумісності системи лінійних рівнянь

Нехай задано систему m лінійних рівнянь з n невідомими:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1; \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2; \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m. \end{cases}$$
(29)

Складемо основну матрицю A і розширену матрицю \tilde{A} даної системи:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}; \quad \tilde{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_m \end{pmatrix}.$$

Вичерпну відповідь на запитання про існування розв'язку системи (29) дає теорема Кронекера — Капеллі. Наводимо її без доведення.

Теорема 4. Для того щоб система лінійних рівнянь була сумісною, необхідно і достатньо, щоб ранг її основної матриці дорівнював рангу розширеної матриці.

Якщо ранг основної матриці дорівнює рангу розширеної матриці і дорівнює числу невідомих, то система має єдиний розв'язок.

Якщо ранг основної матриці дорівнює рангу розширеної матриці, але менший числа невідомих, то система мав безліч розв'язків [1, 9].

П риклад

Дослідити на сумісність систему рівнянь

$$\begin{cases} x + 2y - z = 1; \\ 2x - y + 2z = 3; \\ 3x + y + z = 5. \end{cases}$$

О Оскільки рант основної матриці r(A) = 2, а ранг розширеної матриці $r(\tilde{A}) = 3$ (перевірте), то задана система рівнянь несумісна.

Завдання для самоконтролю

1. Що називається системою т лінійних алгебраїчих рівиянь з п невідомими?

2. Яка система лінійних рівнянь називається сумісною; несумісною; визначеною; невизначеною?

3. Записати формули Крамера. В якому випадку вони застосовуються? Довести формули Крамера для системи трьох рівиянь з трьома невідомими.

4. У чому полягає метод Гаусса?

За яких умов однорідна система лінійних рівнянь має єдиний нульовий розв'язок; безліц розв'язків?

6. Сформулювати теорему Кронекера — Капеллі.

7. Розв'язати системи рівнянь, користуючись формулами Крамера:

a)
$$\begin{cases} 3x_1 + 2x_2 + x_3 = 5; \\ 2x_1 + 3x_2 + x_3 = 1; \\ 2x_1 + x_2 + 3x_3 = 11; \end{cases}$$

$$\begin{cases} x_1 + x_3 + 2x_3 + 3x_4 = 1; \\ 3x_1 - x_2 - x_3 - 2x_4 = -4; \\ 2x_1 + 3x_2 - x_3 - x_4 = -6; \\ x_1 + 2x_2 + 3x_3 - x_4 = -4. \end{cases}$$

8. Розв'язати систему матричиим способом:

$$\begin{cases} x_1 + x_2 + 2x_3 = -1; \\ 2x_1 - x_2 + 2x_3 = -4; \\ 4x_1 + x_2 + 4x_3 = -2. \end{cases}$$

9. Розв'язати системи методом Гаусса:

a)
$$\begin{cases} x_1 - 2x_2 + x_3 + x_4 = 1; \\ x_1 - 2x_2 + x_3 - x_4 = -1; \\ x_1 - 2x_2 + x_3 + 3x_4 = 3; \end{cases}$$
 6)
$$\begin{cases} 2x_1 + x_2 + x_3 = 2; \\ x_1 + 3x_2 + x_3 = 5; \\ x_1 + x_2 + 5x_3 = -7; \\ 2x_1 + 3x_2 - 3x_2 = 14. \end{cases}$$

10. Розв'язати однорідні системи:

a)
$$\begin{cases} 2x - 5y + 2z = 0; \\ x + 4y - 3z = 0; \end{cases}$$
 0) $\begin{cases} 3x + 2y - z = 0; \\ 2x - y + 3z = 0; \\ x + y - z = 0. \end{cases}$

11. Дослідити на сумісність системи:

a)
$$\begin{cases} x+y+z=2; \\ 2x-3y-z=5; \\ x+y-z=7; \end{cases}$$
 6)
$$\begin{cases} 2x_1-x_2+x_3-5x_4=4; \\ 2x_1+x_2+2x_8-x_4=1; \\ 6x_1-x_2+4x_8-11x_4=6. \end{cases}$$

 $B\ i\ \partial\ n\ o\ e\ i\ \partial\ t$. 7. a) (2; —2; 3); 6) (—1; —1; 0; 1). 8. (1; 2; —2). 9. a) $x_3=$ = $-x_1+2x_2$, $x_4=1$; 6) (1; 2; —2). 10. a) (7t; 8t; 13t); 6) (0; 0; 0). 11. a) Сумісна; 6) несумісна.

Глава 2

ЕЛЕМЕНТИ ВЕКТОРНОЇ АЛГЕБРИ

Векторна алгебра — розділ математики, в якому вивчаються дії над векторами. Векторна алгебра виникла і вдосконалювалась у зв'язку з потребами механіки і фізики. До 19 ст. величини, що зустрічались у механіці і фізиці, задавали числом або кількома дійсними числами. Дальший розвиток фізики показав, що деякі з фізичних величин набагато доцільніше характеризувати не тільки числом, а й напрямом, тобто вектором.

Вперше вектори застосував К. Вессель у 1799 р. для інтерпретації комплексних чисел. Проте справжній розвиток векторної алгебри розпочався лише в середині 19 ст. і привів до створення нової математичної дисципліни — векторного аналізу.

Апарат векторного числення ефективно використовується в багатьох загальнонаукових та інженерних дисциплінах (електро- і гідродинаміці, теоретичній і технічній механіці, теорії механізмів і машин).

§ 1. ВЕКТОРИ I ЛІНІЙНІ ДІЇ З НИМИ

1.1. Скалярні і векторні величини

Багато фізичних величин повністю визначаються своїм числовим значенням (об'єм, маса, густина, температура тощо); вони називаються скалярними. Але є й такі величини, які крім числового значення мають ще й напрям (швидкість, сила, напруженість магнітного поля тощо). Такі величини називаються векторними.

Будь-яка упорядкована пара точок A і B простору визначає напрямлений відрізок, або вектор, тобто відрізок, що має певну довжину і певний напрям. (Термін «вектор» (від лат. vector — переносник) ввів у 1848 р. Гамільтон.) Першу точку A називають початком вектора, а другу B — кінцем вектора. Напрямом вектора вважають напрям від його початку до кінця.

Вектор, початок якого знаходиться в точці A, а кінець — в точці B, позначається символом \overrightarrow{AB} або \overrightarrow{a} . Напрям вектора на рисунку показують стрілкою (рис. 2.1). Відстань між початком вектора $\overrightarrow{a} = \overrightarrow{AB}$ і його кінцем називається довжиною (або модулем) вектора і позначається $|\overrightarrow{a}|$ або $|\overrightarrow{AB}|$. Вектор, довжина якого дорівнює одиниці, називається одиничним.

Вектор, довжина якого дорівнює одиниці, називається одиничним. Одиничний вектор, напрям якого збігається з напрямом вектора \vec{a} , називається ортом вектора \vec{a} і позначається через \vec{a}^0 . Вектор, початок якого збігається з кінцем, називається нульовим

Вектор, початок якого збігається з кінцем, називається нульовим і позначається через o; напрям нульового вектора невизначений, а його довжина дорівнює нулю.

Вектори a і b називаються колінеарними, якщо вони лежать на одній прямій або на паралельних прямих. Колінеарні вектори можуть бути напрямлені однаково або протилежно. Нульовий вектор вважається колінеарним будь-якому вектору Вектори \vec{a} і \vec{b} називаються

рівними $(\vec{a} = \vec{b})$, якщо вони колінеарні, однаково напрямлені і мають рівні довжини.

В означенні рівності векторів не передбачено якесь певне розміщення їх, тому, не порушуючи рівності, вектори можна переносити паралельно самим собі. У зв'язку з цим вектори в аналітичній геометрії називаються вільними. Іноді вільність переміщення вектора обмежується. В механіці, наприклад, розглядаються ковзні і зв'язані вектори. Прикладом ковзного вектора є вектор кутової швидкості при обертанні тіла, тому що він може розміщуватися лише на осі обертання. Прикладом зв'язаного вектора є сила, прикладена до якоїсь точки пружного тіла, оскільки результат дії сили залежить від точки приклалання.

Три вектори називаються компланарними, якщо вони лежать в одній площині або в паралельних площинах. Зокрема, вектори компланарні, якщо два з них або всі три колінеарні. Три вектори вважаються компланарними також у тому випадку, коли хоча б один з них нульовий.

1.2. Лінійні дії з векторами

До лінійних дій з векторами належать додавання і віднімання векторів, множення вектора на число.

1. Додавання векторів. Сума $\vec{a} + \vec{b}$ двох векторів \vec{a} і \vec{b} за означенням є вектор c, напрямлений з початку вектора a в кінець вектора b за умови, що початок вектора \vec{b} збігається з кінцем вектора \vec{a} (рис. 2.2). Це правило додавання вектора називають правилом трикутника.

Суму двох векторів можна побудувати також за правилом паралелограма (рис. 2.3).

Щоб побудувати суму будь-якого скінченного числа векторів, потрібно в кінці першого вектора побудувати другий, в кінці другого побудувати третій і т. д. Напрямлений відрізок, що йде з початку першого вектора в кінець останнього і буде сумою даних векторів (рис. 2.4).

2. Віднімання векторів визначається як дія, обернена додаванню. Різницею $\vec{a} - \vec{b}$ називається вектор \vec{c} , який, будучи доданий до вектора \vec{b} , дає вектор \vec{a} (рис. 2.5).

Два вектори називаються *протилежними*, якщо вони колінеарні, довжини їх однакові, а напрями протилежні. Вектор, протилежний вектору \vec{a} , позначається через $-\vec{a}$. Тоді різницю $\vec{a} - \vec{b}$ можна тлумачити ще й так (рис. 2.6): відняти від вектора \vec{a} вектору \vec{b} , це все одно, що до вектора \vec{a} додати вектор, протилежний вектору \vec{b} , тобто $\vec{a} - \vec{b} = \vec{a} + (-\vec{b})$.

3. Множення вектора на число. Нехай задані вектор $\vec{a} \neq 0$ і число $\lambda \neq 0$. Добутком $\lambda \vec{a}$ називається вектор, довжина якого дорівнює $|\lambda||\vec{a}|$, а напрям збігається з напрямом вектора \vec{a} , якщо $\lambda > 0$, і протилежний йому, якщо $\lambda < 0$. Якщо $\lambda = 0$ або $\vec{a} = 0$, то $\lambda \vec{a} = \vec{0}$.

Геометричний зміст операції множення вектора на число такий: множення вектора \vec{a} на число λ можна розуміти як «розтяг» вектора \vec{a}

в λ разів при $\lambda > 1$ і «стиск» при $0 < \lambda < 1$, причому при $\lambda < 0$ відбувається ще й зміна напряму. На рис. 2. 7 показано вектори \vec{a} , $\vec{-2a}$, $\vec{2}$, \vec{a} .

З означення множення вектора на число випливає, що коли вектори колінеарні, то існує єдине число λ таке, що $\vec{b}=\lambda \vec{a}$ і, навпаки, якщо $\vec{b} = \lambda \vec{a}$, то вектори \vec{a} і \vec{b} колінеарні.

Лінійні операції над векторами мають такі властивості:

1°. Комутативність відносно додавання векторів:

$$\vec{a} + \vec{b} = \vec{b} + \vec{a}$$
.

20. Асоціативність відносно додавання векторів:

$$(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c}).$$

3°. Асоціативність відносно множення чисел: $\lambda (\mu \vec{a}) = (\lambda \mu) \vec{a}$. 4°. Дистрибутивність відносно додавання чисел:

$$(\lambda + \mu)\vec{a} = \lambda \vec{a} + \mu \vec{a}$$
.

50. Дистрибутивність відносно додавання векторів:

$$\lambda (\vec{a} + \vec{b}) = \lambda \vec{a} + \lambda \vec{b}$$
.

 \bigcirc Доведемо, наприклад, властивість 5° : нехай \vec{a} і \vec{b} неколінеарні вектори і $\lambda > 0$. Побудуємо (рис. 2.8) вектори $\overrightarrow{OB} = \overrightarrow{a} + \overrightarrow{b}$, $\overrightarrow{OA_1} = \lambda \overrightarrow{a}$, $\overrightarrow{OB}_1 = \lambda \ (\overrightarrow{b} + \overrightarrow{a})$. З подібності трикутників OAB і OA_1B_1 випливає, що $\overrightarrow{A_1B_1} = \lambda \overrightarrow{b}$, a is $\triangle OA_1B_1$ маємо $\overrightarrow{OA_1} + \overrightarrow{A_1B_1} = \overrightarrow{OB_1}$, тобто $\lambda \overrightarrow{a} + \lambda \overrightarrow{b} = A_1B_1$ $=\lambda (\vec{a}+\vec{b})$. Випадок $\lambda < 0$ розглядається аналогічно.

Якщо \vec{a} і \vec{b} колінеарні і $\vec{a} \neq \vec{0}$, то вектор \vec{b} можна записати у вигляді $\vec{b} = \mu \vec{a}$. Тоді, використовуючи властивості 3° і **4**°, маємо: λ (\vec{a} + $(+\vec{b}) = \lambda (\vec{a} + \mu \vec{a}) = \lambda \vec{a} + \lambda \vec{b}$.

Розглянуті властивості мають велике значення у векторній алгебрі, бо вони дають право робити перетворення в лінійних операціях з векторами так само, як у звичайній алгебрі: векторні доданки можна переставляти місцями і сполучати їх в групи, вводити дужки, виносити за дужки як скалярні, так і векторні спільні множники.

1.3. Розклад вектора за базисом

Застосовуючи лінійні операції над векторами, можна знаходити суми добутків чисел α_i , де i=1,2,...,n, на вектори $\vec{a_i}: \alpha_1 \vec{a_1} + \alpha_2 \vec{a_2} +$ $+ \dots + \alpha_n a_n$. Вирази такого виду називаються лінійними комбіна*ціями векторів*, а числа α_i , що входять в лінійну комбінацію,— її ко-ефіцієнтами.

Базисом на прямій називається довільний ненульовий вектор на

цій прямій.

Базисом на площині називається довільна упорядкована пара неколінеарних векторів, а базисом у просторі — довільна упорядкована трійка некомпланарних векторів. Вектори, що складають базис, називаються базисними. Розкласти вектор за базисом означає зобразити його у вигляді лінійної комбінації базисних векторів.

Якщо вектори \vec{a} , \vec{b} , \vec{c} складають базис і вектор \vec{d} розкладений за цим базисом, тобто $\vec{d} = \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c}$, то числа α , β , γ називаються координатами вектора \vec{d} в даному базисі, а вектори $\alpha \vec{a}$, $\beta \vec{b}$ і $\gamma \vec{c}$ — компонентами, або складовими векторами \vec{d} . Кажуть також, що вектор \vec{d} лінійно виражається через вектори \vec{a} , \vec{b} і \vec{c} або є лінійною комбінацією їх.

Теорема 1. Кожен вектор, паралельний якій-небудь прямій, можна

розкласти за базисом на цій прямій.

Кожен вектор, паралельний якій-небудь площині, можна розкласти за базисом на цій площині

Кожен вектор можна розкласти за базисом у просторі.

Координати вектора у кожному випадку визначаються однозначно. Не зупиняючись на доведенні цієї теореми [4], розглянемо її геометричний зміст.

Перше твердження теореми означає, що для довільного вектора \vec{d} , колінеарного ненульовому вектору \vec{a} (рис. 2.9, a), знайдеться таке число α , що $\vec{d} = \alpha \vec{a}$. Очевидно, що $\alpha = +\frac{|\vec{d}|}{|\vec{a}|}$, якщо вектори \vec{a} і \vec{d} однаково напрямлені, і $\alpha = -\frac{|\vec{d}|}{|\vec{a}|}$, якщо ці вектори протилежно напрямлені.

Друге твердження означає, що для кожного вектора \vec{d} , компланарного з двома неколінеарними векторами \vec{a} та \vec{b} (рис. 2.9, \vec{b}), знайдуться такі числа α та β , що $\vec{d} = \alpha \vec{a} + \beta \vec{b}$.

Щоб указати компоненти \vec{aa} та \vec{bb} , досить розкласти вектор \vec{d} на суму векторів, колінеарних векторам \vec{a} та \vec{b} (згадайте розклад сили у фізиці на дві складові).

Третє твердження теореми означає, що для кожного вектора \vec{d} і некомпланарних векторів \vec{a} , \vec{b} і \vec{c} знайдуться такі числа α , β і γ , що $\vec{d} = \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c}$. Складові $\alpha \vec{a}$, $\beta \vec{b}$ та $\gamma \vec{c}$ показані на рис. 2.9, ϵ .

Таким чином, базис в просторі дає змогу кожному вектору однозначно співставити упорядковану трійку чисел (координат цього вектора) і, навпаки, кожній упорядкованій трійці чисел а, в і у за допомогою базису можна співставити єдиний вектор $\alpha \vec{a} + \beta \vec{b} + \gamma \vec{c}$, де $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ — вектори базису, тобто обраний базис дає змогу встановити взаємно однозначну відповідність між векторами і упорядкованими трійками чисел.

П риклад

Нехай ABCD — паралелограм, M і N — середини його сторін (рис. 2.10). Розкласти вектор \overrightarrow{DC} за векторами $\overrightarrow{a} = \overrightarrow{AM}, \overrightarrow{b} = \overrightarrow{AN}.$ О 3 трикутників \overrightarrow{AND} і \overrightarrow{AMB} маємо

$$\vec{b} = \vec{A}\vec{D} + \frac{1}{2}\vec{D}\vec{C}, \quad \vec{a} = \vec{D}\vec{C} + \frac{1}{2}\vec{A}\vec{D}.$$

Якщо з першої рівності знайти вектор \overrightarrow{AD} і підставити його значения в другу, лістанемо

$$\vec{a} = \vec{DC} + \frac{1}{2} (\vec{b} - \frac{1}{2} \vec{DC}) = \frac{3}{4} \vec{DC} + \frac{1}{2} \vec{b}, \quad \vec{DC} = \frac{4}{3} \vec{a} - \frac{2}{3} \vec{b}.$$

Отже, якщо базисними векторами є вектори $\vec{a} = \overrightarrow{AM}$ і $\vec{b} = \overrightarrow{AN}$, то координатами вектора \overrightarrow{DC} в цьому базисі є числа $\frac{4}{3}$ і $\frac{-2}{3}$.

1.4. Проекція вектора на вісь

Віссю називається напрямлена пряма. Напрям прямої позначають стрілкою. Заданий на осі напрям вважають додатним, а протилежний йому — від'ємним.

Проекцією точки А на вісь и називається основа A_1 перпендикуляра AA_1 , опущеного з точки A на дану вісь. Таким чином, проекція A, є точкою перетину осі и з площиною, яка проходить через точку A, перпендикулярно oci u.

Рис. 2.10

. 2.11 Рис. 2.12

Нехай у просторі задано вісь u і вектор \overrightarrow{AB} . Позиачимо через A_1 та B_1 проекції на вісь u відповідно початку A і кінця B вектора \overrightarrow{AB} і розглянемо вектор A_1B_1 (рис. 2.11).

Проекцією вектора \overrightarrow{AB} на вісь u називають додатне число $|\overrightarrow{A_1B_1}|$, якщо вектор $\overrightarrow{A_1B_1}$ і вісь u однаково напрямлені, і від'ємне число — $|\overrightarrow{A_1B_1}|$, якщо вектор $\overrightarrow{A_1B_1}$ і вісь u протилежно напрямлені. Проекцію вектора \overrightarrow{a} на вісь позначають так: пр \overrightarrow{a} . Якщо $\overrightarrow{a} = \overrightarrow{0}$, то вважають, що пр $\overrightarrow{a} = 0$.

Кутом ф між вектором а і віссю и (або між двома векторами) називається менший з кутів, на який потрібно повернути один вектор або вісь, щоб він збігався за няпрямом з другим вектором або віссю: $\varphi =$

$$= (\overrightarrow{a}, u) = (\overrightarrow{a}, \overrightarrow{u^0}), \ 0 \leqslant \varphi \leqslant \pi.$$

У деяких випадках ми будемо вказувати, від якого вектора і в якому напрямі кут відраховується.

Справедливі такі властивості проекцій.

1. Проекція вектора \vec{a} на вісь и дорівнює добутку довжини вектора \vec{a} на косинус кута ϕ між вектором і віссю, тобто

$$\operatorname{np}_{u} \vec{a} = \vec{a} \cos \varphi. \tag{1}$$

О Якщо
$$\varphi = (\vec{a}, u) < \frac{\pi}{2}$$
 (рис. 2.12), то $\pi p_u \vec{a} = |\vec{a}_1| = |\vec{a}| \cos \varphi$.

Якщо
$$\varphi > \frac{\pi}{2}$$
 (рис. 2.13), то $\pi p_u \vec{a} = -|\vec{a}_1| = -|\vec{a}|\cos(\pi - 1)$

$$-\varphi)=|\vec{a}|\cos\varphi.$$

Якщо $\varphi = \frac{\pi}{2}$, то формула (1) справедлива, оскільки пр $_{u} \stackrel{\rightarrow}{a} = 0$.

 2^{0} . Проекція суми кількох векторів на дану вісь дорівнює сумі їхніх проекцій на цю вісь, тобто

$$\operatorname{np}_{u}(\vec{a} + \vec{b} + \vec{c}) = \operatorname{np}_{u}\vec{a} + \operatorname{np}_{u}\vec{b} + \operatorname{np}_{u}\vec{c}. \tag{2}$$

О Нехай вектор $\vec{d} = \vec{a} + \vec{b} + \vec{c}$ (рис. 2.14). Маємо

$$\operatorname{np}_{u} \vec{d} = |\vec{d}_{1}| = |\vec{a}_{1}| + |\vec{b}_{1}| - |\vec{c}_{1}| = \operatorname{np}_{u} \vec{a} + \operatorname{np}_{u} \vec{b} + \operatorname{np}_{u} \vec{c}.$$

 3° . При множенні вектора $\overset{\longrightarrow}{a}$ на число λ його проекція також помножиться на це число:

О Нехай $\phi = (\overrightarrow{a}, u)$ і $\phi' = (\lambda \overrightarrow{a}, u)$. Якщо $\lambda > 0$, то за формулою (1)

$$\operatorname{np}_{u}(\lambda \vec{a}) = (\lambda \vec{a}) \cos \varphi' = \lambda |\vec{a}| \cos \varphi = \lambda \operatorname{np}_{u} \vec{a};$$

якщо $\lambda < 0$, то

$$\operatorname{пр}_{u}(\lambda \vec{a}) = |\lambda \vec{a}| \cos \varphi' = -\lambda |\vec{a}| \cos (\pi - \varphi) = \lambda \operatorname{пp}_{u} \vec{a}. \quad \bullet$$

Таким чином, основні властивості проекції вектора на вісь полягають в тому, що лінійні операції над векторами приводять до відповідних лінійних операцій над проекціями цих векторів.

Завдання для самоконтролю

1. Що називається: вектором, ортом, нульовим вектором?

2. Які вектори називають рівними, колінеарними, компланарними?

3. Як визначається сума двох векторів, сума кількох векторів, різниця двох векторів, добуток вектора на число?

4. Сформулювати властивості лінійних операцій над векторами.

5. Що називається базисом на прямій, на площині, в просторі? Сформулювати теорему про розклад вектора за базисом і з'ясувати її геометричний зміст.

 Що називається проекцією вектора на вісь? Сформулювати і довести властивості проекцій.

7. Довести, що при будь-якому розміщениі точок А, В, С справедлива формула

$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = 0.$$

8. У трикутнику ОАВ проведена медіана ОС. Довести, що

$$\overrightarrow{OC} = 0.5 (\overrightarrow{OA} + \overrightarrow{OB}).$$

9. Довести, що умова $\vec{a} + \vec{b} + \vec{c} = 0$ є необхідною і достатньою для того, щоб з векторів \vec{a} , \vec{b} , \vec{c} можна було утворитн трнкутинк $(\vec{a} \neq \vec{0}, \vec{b} \neq \vec{0}, \vec{c} \neq \vec{0})$.

10. Відомо, що $(\vec{a}, \vec{b}) = 60^{\circ}$, $|\vec{a}| = 5$, $|\vec{b}| = 8$. Показати, що $|\vec{a} + \vec{b}| = \sqrt{129}$, $|\vec{a} - \vec{b}| = 7$.

11. Відомо, що $(\vec{a}, \vec{b}) = 120^{\circ}$, $|\vec{a}| = 4$. Показати що пр \vec{b} $\vec{a} = -2$.

Вказівка. Кожну вісь можна задатн вектором, який лежить на цій осі і має з нею однаковий напрям. Тому символ пр \overrightarrow{a} потрібно тлумачити як проекцію вектора \overrightarrow{a} на вісь, яка визначається вектором \overrightarrow{b} .

§ 2. СИСТЕМИ КООРДИНАТ

2.1. Декартова система координат

Розглянемо в просторі точку O і деякий базис, що задається векторами $\overrightarrow{e_1}$, $\overrightarrow{e_2}$, $\overrightarrow{e_3}$ (рис. 2.15).

Сукупність точки і базису називається декартовою системою координат в просторі на честь французького математика Р. Декарта. Точка О називається початком координат, а осі, які проходять через початок координат в напрямі базисних векторів, називаються осями координат. Перша з них проходить в напрямі вектора e_1 і називається віссю абсцис, друга вісь, яка проходить у напрямі вектора e_2 ,— віссю ординат і гретя— в напрямі вектора e_3 — віссю аплікат.

Площини, які проходять через осі координат, називаються координатними площинами.

Всякій точці простору можна співставити вектор OM, початок якого збігається з початком координат O, а кінець — з точкою M. Такий вектор називається радіусом-вектором точки M відносно точки O. Згідно з теоремою I існують такі дійсні числа x_1 , x_2 , x_3 , що

$$\vec{OM} = \vec{x_1}\vec{e_1} + \vec{x_2}\vec{e_2} + \vec{x_3}\vec{e_3}. \tag{4}$$

Координати x_1 , x_2 , x_3 радіуса-вектора точки M відносно початку координат називають декартовими координатами точки

M в даній системі координат і пишуть: M (x_1 ; x_2 ; x_3). Координата x_1 називається абсицсою точки M, координата x_2 — ординатою і координата x_3 — аплікатою точки M.

Аналогічно визначаються декартові координати точки на площині і на прямій. Різниця лише в тому, що точка на площині має дві координати, а точка на прямій — одну. Таким чином, якщо в просторі обрано декартову систему координат, то кожній точці простору відповідає одна упорядкована трійка дійсних чисел — декартові координати цієї точки. І навпаки, для кожної упорядкованої трійки чисел знайдеться єдина точка простору, для якої ці числа є декартовими координатами. Це означає, що обрана тим чи іншим способом декартова система координат установлює взаємно однозначну відповідність між точками простору і упорядкованими трійками чисел.

Система координат на площині визначає таку саму відповідність між точками площини і упорядкованими парами чисел, а на прямій — між точками прямої і дійсними числами.

2.2. Прямокутиа система координат

Очевидно, декартових систем координат можна задати скільки завгодно. Серед них широко використовується прямокутна декартова система координат. Щоб визначити цю систему, введемо такі поняття

Упорядкована трійка одиничних попарно ортогональних векторів називається *ортонормованим базисом*. Позначають ортонормований

базис через
$$\vec{i}$$
, \vec{j} , \vec{k} , де $|\vec{i}| = |\vec{j}| = |\vec{k}| = 1$, $(\vec{i}, \vec{j}) = (\vec{j}, \vec{k}) = (\vec{k}, \vec{i}) = \frac{\pi}{2}$.

Упорядкована трійка \vec{a} , \vec{b} , \vec{c} некомпланарних векторів називається *правою* (рис. 2.16, a), якщо з кінця третього вектора \vec{c} найкоротший поворот від першого вектора \vec{a} до другого вектора \vec{b} видно протигодинникової стрілки; в протилежному випадку трійка векторів \vec{a} , \vec{b} , \vec{c} називається *лівою* (рис. 2.16, \vec{b}).

Прямокутною декартовою системою координат (або просто прямокутною системою координат) називаеться декартова система координат, базис якої ортонормований. Прямокутна система координат називаеться правою (лівою), якщо її ортонормований базис утворює праву (ліву) трійку векторів. Надалі користуватимемося правою системою координат, яка визначається правим ортонормованим базисом: \vec{i} , \vec{j} , \vec{k} .

Прямокутну систему координат позначають (рис. 2.17) через Oxyz (Ox — вісь абсцис, Oy — вісь ординат, Oz — вісь аплікат), а координатні площини — через Oxy, Oyz, Ozx. Вони поділяють простір

Рис. 2.18

на вісім октантів. При зображенні системи координат, як правило, показують лише осі координат; вектори \vec{i} , \vec{j} , \vec{k} не вказують.

Нехай задана прямокутна система координат Oxyz і довільна точка M (рис. 2.17). Радіус-вектор $\overrightarrow{r} = \overrightarrow{OM}$ цієї точки згідно з формулою (4) записують у вигляді

$$\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$$
, and $\vec{r} = (x; y; z)$. (5)

Координати x, y, z радіуса-вектора точки M називаються координатами точки M. Точка M з координатами x, y, z позначається через M (x; y; z).

З ортогональності базисних векторів системи Охуг випливає, що координати точки М дорівнюють відповідним проекціям (п. 1.4) радіуса-вектора цієї точки на осі координат, тобто

$$x = \operatorname{np}_{Ox} \overrightarrow{OM}, \quad y = \operatorname{np}_{Oy} \overrightarrow{OM}, \quad z = \operatorname{np}_{Oz} \overrightarrow{OM},$$
 (6)

і визначаються проектуванням точки *M* на координатні осі (рис. 2.18). Прямокутні координати точки на площині і на прямій визначають-

ся таким самим способом, як і в просторі.

Прямокутна система координат *Оху* на площині задається точкою О — початком координат і двома взаємно перпендикулярними оди-

Рис. 2.15

ничними векторами \vec{i} , \vec{j} — базисом системи координат; система координат на прямій задається точкою O і одиничним вектором \vec{i} . Зрозуміло, що точка M (x; y) на площині має лише дві координати (абсцису і ординату), а точка M(x) на прямій — одну.

II риклади

1. На координатиій прямій Ox побудувати точки: A_1 (3), A_2 (—2). 2. У прямокутній системі координат Oxy побудувати точки B_1 (1; 2), B_2 (2; —3),

 B_3 (—3; 0). 3. У прямокутній системі координат *Охуг* побудувати точки C_1 (1; 2; 3), C_2 (3; -2; 3), C_3 (-1; -3; -5).

Побудову точок показано на рис. 2.19, α — ϵ .

2.3. Полярна система координат

Декартова система координат не єдиний спосіб визначати за допомогою чисел місце знаходження точки на плошині. Для цієї мети використовують багато інших координатних систем.

Найважливішою після прямокутної системи координат є полярна система координат. Вона задається точкою О, яка називається полюсом, і променем Ор, який виходить з полюса і називається полярною віссю. Задаються також одиниці масштабу: лінійна — для вимірювання довжин відрізків і кутова — для вимірювання кутів.

Розглянемо полярну систему координат і візьмемо на площині довільну точку M (рис. 2.20). Нехай $\rho = |\overrightarrow{OM}|$ — відстань від точки O до точки M і $\phi = (Op, OM)$ — кут, на який треба повернути полярну вісь проти годинникової стрілки, щоб сумістити її з векто-DOM OM.

Полярними координатами точки М називаються числа р і ф. При цьому число р вважається першою координатою і називається полярним радіусом, а число ф — другою координатою і називається полярним кутом. Точка М з полярними координатами р і ф позначається так: М (р; ф). Очевидно, полярний радіус може набувати довільних невід'ємних значень: $0 \leqslant \rho < +\infty$ полярний кут вважатимемо таким, що змінюється в межах $0\leqslant \phi < 2\pi$. Іноді розглядають кути φ, більші від 2π, а також від'ємні кути, тобто такі, що відкладаються від подярної осі за годинниковою стрілкою.

Виразимо декартові координати точки М через полярні.

Вважатимемо, що початок прямокутної системи збігається з полюсом, а вісь Ох — з полярною віссю Ор. Якщо точка М (рис. 2.21) має декарто- \mathbf{B} і координати \mathbf{x} і \mathbf{y} і полярні \mathbf{p} і $\mathbf{\phi}$, то

кщо точка
$$M$$
 (рис. 2.21) мае декартоти x і y і полярні ρ і φ , то $x = \rho \cos \varphi$, $y = \rho \sin \varphi$, (7) Рис. 2.20

 $C(4; \frac{51}{6}1)$ $O(4; \frac{5}{6}1)$ $O(4; \frac{5}{6}1)$ O(4

Рис. 221

звідки

$$\rho = \sqrt{x^2 + y^2}, \quad \varphi = \arctan \frac{y}{x}. \tag{8}$$

Зауважимо, що друга з формул (8) дає два значення кута φ , оскільки він змінюється від 0 до 2π . З цих двох значень кута треба взяти те, для якого задовольняються формули (7). Формули (7) називають формулами переходу від полярних координат до декартових, а формули (8) — формулами переходу від декартових координат до полярних.

Приклад

Побудувати точки за полярними координатами: $A\left(3;\frac{\pi}{4}\right)$, $B=\left(2;\frac{3}{2}\pi\right)$, $C=\left(4;\frac{5}{6}\pi\right)$. Дані точки показано на рис. 2.22.

2.4. Перетворення прямокутних координат на площині

При розв'язуванні задач іноді треба переходити від однієї прямокутної системи до іншої. Виконується такий перехід за допомогою формул перетворення координат.

Розглянемо перетворення координат на площині.

 1° . Паралельне перенесення осей. Візьмемо дві прямокутні декартові системи координат Oxy і O_1XY з різними початками координат і однаково напрямленими осями.

Нехай точки O_1 і M в системі Oxy (рис. 2.23) мають відповідно координати (a; b) і (x; y), тоді координати точки M в системі O_1XY задовільняють рівності

$$X = x - a, \quad Y = y - b. \tag{9}$$

Формули (9) називаються формулами перетворення координат при паралельному перенесенні осей. Вони виражають координати точок в системі O_1XY через координати точок в системі Oxy.

 2° . Поворот осей координат. Нехай на площині задані дві прямокутні системи координат Оху і ОХУ, що мають спільний початок координат, причому система ОХУ утворена з системи Оху поворотом осей на додатний кут α (рис. 2.24).

Знайдемо формули, що виражають координати (x; y) точки M в системі Oxy через координати (X; Y) цієї точки в системі OXY. Введемо дві полярні системи координат із спільним полюсом O і полярними осями Ox і OX, тоді згідно з формулами Ox0 маємо

$$x = \rho \cos (\varphi + \alpha) = \rho \cos \varphi \cos \alpha - \rho \sin \varphi \sin \alpha = X \cos \alpha - Y \sin \alpha;$$

 $y = \rho \sin (\varphi + \alpha) = \rho \sin \varphi \cos \alpha + \rho \cos \varphi \sin \alpha = Y \cos \alpha + X \sin \alpha,$
Звідки

$$X = x \cos \alpha + y \sin \alpha, \quad Y = -x \sin \alpha + y \cos \alpha.$$
 (10)

Формули (10) називаються формулами перетворення координат при повороті осей.

П риклад

В системі Oxy точка M має координати (2; 4). Знайти її координати в системі OXY, яка утворюється з системи Oxy поворотом на кут $\pi/2$.

ОЗа формулами (10) маємо

$$X = 2\cos\frac{\pi}{2} + 4\sin\frac{\pi}{2} = 4,$$

$$Y = -2\sin\frac{\pi}{2} + 4\cos\frac{\pi}{2} = -2.$$

Такий самий результат можна дістатн геометрично, побудувавши точку M і системи координат Oxy і OXY. lacktriangle

2.5. Циліндрична та сферична системи координат

У просторі крім прямокутної системи координат часто вживаються циліндрична та сферична системи координат.

1°. Циліндрична система координат. Якщо в прямокутній системі координат Охуг замість перших двох координат x, y взяти полярні координати ρ , φ , а третю координату z залишити без зміни, то дістанемо циліндричну систему координат (рис. 2.25). Координати точки M простору в цій системі записуються у вигляді M (ρ ; φ ; z).

Залежності між прямокутними координатами точки M(x; y; z) і її циліндричними координатами $M(\rho; \phi; z)$ випливають з формул (7):

$$x = \rho \cos \varphi, \quad y = \rho \sin \varphi, \quad z = z,$$
 (11)

$$0 \le \rho < +\infty$$
, $0 \le \varphi < 2\pi$, $-\infty < z < +\infty$.

Отже, якщо прямокутна і циліндрична системи координат розміщені так, як на рис. 2.25, то зв'язок між прямокутними і циліндрич-

ними координатами виражається формулами (11).

2°. Сферична система координат. У системі Охуг візьмемо точку M і через цю точку і вісь Oz проведемо площину (рис. 2.26). Нехай r — відстань від початку координат до точки M; φ — двогранний кут між площинами Ozx і zOM; θ — кут між віссю Oz і променем OM. Упорядкована трійка чисел r, φ , θ однозначно визначає положення точки М у просторі. Ці числа називаються сферичними координатами точки М.

Знайдемо залежність між прямокутними і сферичними координатами точки M. З прямокутних трикутників ONM і OPN маємо

$$z = r \cos \theta$$
, $\rho = r \sin \theta$, $x = \rho \cos \varphi$, $y = \rho \sin \varphi$,

тоді

$$x = r \sin \theta \cos \varphi, \quad y = r \sin \theta \sin \varphi, \quad z = r \cos \theta,$$
 (12)

де

$$0 \leqslant r < +\infty$$
, $0 \leqslant \varphi < 2\pi$, $0 \leqslant \theta \leqslant \pi$.

Таким чином, якщо прямокутна і сферична системи координат розміщені так, як на рис. 2.26, то зв'язок між прямокутними і сферичними координатами виражається формулами (12).

2.6. Поняття про *п*-вимірний простір Як уже вказувалось в п. 2.1, між геометричними векторами і їхніми координатами у фіксованому базисі існує взаємно однозначна відповідність. При цьому кожному вектору простору співставляється упорядкована трійка чисел, кожному вектору, що належить деякій площині, упорядкована пара чисел, а кожному вектору, що належить деякій прямій, - дійсне число, і навпаки.

Рис. 2.26

Упорядковану трійку чисел називають *тривимірним вектором*, а множину всіх гривимірннх векторів називають *тривимірним про*-

стором і позначають через R_3 .

Упорядковані пари чисел називають двовимірними векторами, а числа — одновимірними. Множини двовимірних і одновимірних векторів називають відповідно двовимірними і одновимірними просторами і позначають через R_2 і R_1 .

Узагальнюючи простори R_1 , R_2 , R_3 , приходимо до n-вимірного про-

стору R_n , де n — довільне натуральне число.

Упорядкована множина n дійсних чисел $x_1, x_2, ..., x_n$ називається n-вимірним вектором \vec{x} і позначається так: $\vec{x} = (x_1; x_2; ...; x_n)$. Множина всіх n-вимірних векторів називається n-вимірним просто

множина всіх n-вимірних векторів називається n-вимірним простором і позначається через R_n . Якщо довільний вектор $x=(x_1;\ x_2;\ ...\ ...;x_n)$ простору R_n розглядати як радіус-вектор відповідної точки M відносно початку вибраної системи координат, то координати точки M визначаються як координати цього радіуса-вектора. У зв'язку з цим n-вимірний простір R_n можна тлумачити також як множину впорядкованих сукупностей n дійсних чисел.

Простори R_1 , R_2 , R_3 є окремими випадками простору R_n . Їх можна зобразити геометрично; для n > 3 простори R_n геометрично вже уявити не можна, проте вони відіграють важливу роль у науці і техніці

П риклади

1. У системі (9) лінійних рівнянь (гл. 1) кожне рівняння можна розглядати як (n+1)-вимірний вектор, бо воно визначається впорядкованою сукупністю (n+1) чисел. Так, перше рівняння визначається вектором

$$(a_{11}; a_{12}; \ldots; a_{1n}; b_1).$$

2. Розв'язок системи рівнянь з п невідомими є п-вимірним вектором.

3. Кожний рядок матриці A (гл. 1, п. 2.1) є п-вимірним вектором, а кожний стовпець — m-виміриим. Рядки назнвають горизонтальними, а стовпці — вертикальними векторами матриці. Отже, довільну матрицю можна розглядати як деяку упорядковану сукупність її вертикальних або горизонтальних векторів.

2.7. Лінійна залежність векторів

Розглянемо систему з т п-вимірних векторів

$$\vec{a}_1, \vec{a}_2, \ldots, \vec{a}_m$$
 (13)

За означенням вектори (13) називаються лінійно залежними, якщо рівність

$$\vec{\alpha_1 a_1} + \vec{\alpha_2 a_2} + \cdots + \vec{\alpha_m a_m} = 0 \tag{14}$$

можлива за умови, що хоча б одне з чисел $\alpha_i \neq 0$, де i=1,2,...,m. Якщо ж рівність (14) можлива лише за умови, що $\alpha_1=\alpha_2=...=$ $\alpha_m=0$, то вектори (13) називаються лінійно незалежними.

Для з'ясування питання про лінійну залежність векторів (13) кожен із заданих векторів $\vec{a_t} = (a_{1t}; \ a_{2t}, \ ...; \ a_{nt})$ і нуль-вектор $\vec{o} = (0; 0; ...; 0)$ запишемо як матрицю-стовпець, тоді векторну рівність (14) можна записати у матричній формі (гл. 1, п. 2.2):

$$\alpha_1 \begin{pmatrix} a_{11} \\ a_{21} \\ \dots \\ a_{n1} \end{pmatrix} + \alpha_2 \begin{pmatrix} a_{12} \\ a_{22} \\ \dots \\ a_{n2} \end{pmatrix} + \cdots + \alpha_m \begin{pmatrix} a_{1m} \\ a_{2m} \\ \dots \\ a_{nm} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \dots \\ 0 \end{pmatrix},$$

aõo

$$\begin{cases} a_{11}\alpha_{1} + a_{12}\alpha_{2} + \cdots + a_{1m}\alpha_{m} = 0; \\ a_{21}\alpha_{1} + a_{22}\alpha_{2} + \cdots + a_{2m}\alpha_{m} = 0; \\ \vdots \\ a_{n1}\alpha_{1} + a_{n2}\alpha_{2} + \cdots + a_{nm}\alpha_{m} = 0. \end{cases}$$
(15)

Маємо лінійну однорідну систему рівнянь (гл. 1, п. 3.5) відносно невідомих а. Якщо система (15) має лише нульовий розв'язок, то вектори (13) будуть лінійно незалежними. Якщо ж крім нульового система (15) має ще й ненульові розв'язки, то вектори (13) лінійно залежні. Наводимо без доведення такі властивості поняття лінійної залеж-

ності [1, 4]:

- 1) якщо серед векторів (13) є нульовий, то ці вектори лінійно залежні:
- 2) якщо вектори (13) лінійно залежні, то після додавання до них одного чи кількох нових векторів дістанемо лінійно залежну систему векторів;
- 3) якщо вектори (13) лінійно незалежні, то після відкидання одного чи кількох векторів дістанемо знову лінійно незалежні вектори;
- 4) вектори (13) лінійно залежні тоді і лише тоді, коли один з них є лінійною комбінацією інших;
- 5) якщо два ненульові тривимірні вектори лінійно залежні, то вони колінеарні, і навпаки;
- 6) якщо три ненульові тривимірні вектори лінійно залежні, то вони компланарні, і навпаки;

7) чотири (і більше) тривимірних вектори завжди лінійно залежні. Поняття лінійної залежності має досить глибокий зміст і широко використовується в математиці. Не вдаючись до подробиць, наведемо такі застосування цього поняття [7].

- 10. Всяка упорядкована сукупність лінійно незалежних векторів, через які лінійно виражається довільний вектор простору, називається базисом цього простору. Неважко переконатись в еквівалентності цього означення і означення базисів у просторах R_1 , R_2 , R_3 .
- 20. Максимальне число лінійно незалежних векторів деякого простору називається його розмірністю. Розмірність простору дорів-

нює числу базисних векторів цього простору. Відповідно до цього означення пряму лінію розглядають як одновимірний простір R_1 з одним базисним вектором; площина — це двовимірний простір R_2 , базис якого містить два вектори і т. п.

3°. Максимальне число лінійно незалежних стовпців матриці дорівнює максимальному числу її лінійно незалежних рядків, і це число

дорівнює рангу матриці.

Розглянемо систему лінійних рівнянь (9) (див. гл. 1) і зафіксуємо який-иебудь відмінний від нуля мінор, порядок якого дорівнює рангу матриці цієї системи. Рівняння, у яких коефіцієнти при невідомих утворюють обраний мінор, називають базисними. Тоді з твердження 30 випливає такий важливий для практики висновок: система лінійних рівнянь еквівалентна системі своїх базисних рівнянь.

П риклад

Довести, що вектори $\overrightarrow{a}=(1;\,2;\,3),\,\overrightarrow{b}=(0;\,1;\,2),\,\overrightarrow{c}=(1;\,3;\,-1)\,$ лінійно незалежні.

O Розв'яжемо рівняння $\alpha_1\vec{a} + \alpha_2\vec{b} + \alpha_3\vec{c} = 0$. Маємо

$$\alpha_{1} \binom{1}{2} + \alpha_{3} \binom{0}{1} + \alpha_{3} \binom{1}{3} + \alpha_{3} \binom{1}{3} = \binom{0}{0} \operatorname{afo} \left\{ \begin{array}{l} \alpha_{1} + \alpha_{3} = 0; \\ 2\alpha_{1} + \alpha_{2} + 3\alpha_{3} = 0; \\ 3\alpha_{1} + 2\alpha_{2} - \alpha_{3} = 0. \end{array} \right.$$

Оскільки внаначинк системи відмінний від нуля (перевірте), то система має єдиний розв'язок $\alpha_1=0$, $\alpha_2=0$, $\alpha_3=0$. Отже, задані вектори лінійно незалежні.

Завдання для самоконтролю

1. Що називається декартовою системою координат?

2. Дати визначения декартових координат точки: на прямій; на площині; в просторі.

3. Внаначити прямокутну систему координат. Яка система координат називаеть-

ся правою; лівою?

4. Довести, що координати точки у прямокутній системі дорівнюють відповідним проекціям радіуса-вектора цієї точки на осі координат.

5. Охарактеризувати полярну, циліндричну та сферичну системи координат.

6. Довести формули перетворення координат при паралельному перенесенні осей координат і при їхньому повороті навколо осі.

7. Дати поняття п-вимірного вектора і п-вимірного простору.

- 8. З'ясуватн поняття лінійної залежності векторів і сформулюватн його властнвості.
- 9. Довести, що векторн $\vec{a}=(1;-1;2), \vec{b}=(10;1;1)$ і $\vec{c}=(2;-1;6)$ лінійно незалежні.
- 10. Довести, що вектори $\vec{a}=(3;-2;1)$, $\vec{b}=(-1;1;-2)$, $\vec{c}=(2;1;-3)$ і $\vec{d}=(11;-6;5)$ лінійно залежні. Внразитн вектор \vec{d} як лінійну комбінацію векторів \vec{a} , \vec{b} , \vec{c} .

$$B i \partial no s i \partial s$$
. $\vec{d} = 2\vec{a} - 3\vec{b} + \vec{c}$.

§ 3. ВЕКТОРИ В СИСТЕМІ КООРДИНАТ

3.1. Координати, довжина і напрямні косинуси вектора

Для того щоб операції над векторами звести до операцій над чис-

лами, розглядатимемо вектори в системі координат.

1. Координати вектора. Нехай в прямокутній системі координат Охуг задано вектор \vec{a} . Це означає, що в ортонормованому базисі \vec{i} , \vec{j} , \vec{k} , який задає обрану систему координат, вектор $\vec{a} = a_x \vec{i} + a_y \vec{j} + a_z \vec{k}$ (п. 1.3), де числа a_x , a_y , a_z — координати вектора \vec{a} в цьому базисі. Але з властивостей проекції (п. 1.4) випливає, що

$$a_x = \prod_{DO_x} \overrightarrow{a}, \quad a_y = \prod_{DO_y} \overrightarrow{a}, \quad a_z = \prod_{DO_z} \overrightarrow{a}.$$
 (16)

Отже, координати вектора в системі координат *Охуг* це його проекції на осі координат.

2. Довжина вектора. Вектор \overline{a} є діагоналлю прямокутного паралелепіпеда (рис. 2.27) з вимірами $|a_x|, |a_y|, |a_z|$, тому довжина цього вектора дорівнює

$$|\vec{a}| = V \overline{a_x^2 + a_y^2 + a_z^2}. \tag{17}$$

Якщо початок вектора $\overrightarrow{a}=\overrightarrow{AB}$ (рис. 2.28) міститься в точці A (x_1 ; y_1 ; z_1), а кінець — в точці B (x_2 ; y_2 ; z_2), то в формул (2) і (16) випливає, що $a_x=x_2-x_1$, $a_y=y_2-y_1$, $a_z=z_2-z_1$, тобто

$$\overrightarrow{AB} = (x_2 - x_1; \ y_2 - y_1; \ z_2 - z_1).$$
 (18)

Тоді з формули (17) знаходимо довжину вектора \overrightarrow{AB} :

$$\overrightarrow{AB} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}.$$
 (19)

Цією формулою користуються для внаходження відстані між точками A і B.

3. Напрямні косинуси вектора. Напрям довільного вектора $\vec{a} = (a_x; a_y; a_z)$ визначається кутами α , β , γ , які утворює вектор \vec{a} з осями координат (рис. 2.27):

$$\alpha = (\overrightarrow{a}, \overrightarrow{i}), \quad \beta = (\overrightarrow{a}, \overrightarrow{j}), \quad \gamma = (\overrightarrow{a}, \overrightarrow{k}), \quad 0 \leqslant \alpha, \quad \beta, \quad \gamma \leqslant \pi.$$

Косинуси цих кутів називаються напрямними косинусами. Формули для напрямних косинусів дістаємо з формул (1) і (16):

$$\cos \alpha = \frac{a_x}{|\vec{a}|}, \quad \cos \beta = \frac{a_y}{|\vec{a}|}, \quad \cos \gamma = \frac{a_z}{|\vec{a}|}.$$
 (20)

Підносячи обидві частини кожної з рівностей (20) до квадрата і підсумовуючи, з урахуванням формули (17) дістанемо

$$\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1, \tag{21}$$

тобто сума квадратів напрямних косинусів довільного вектора дорівнює одиниці.

П риклади

1. Задано точки A (0; —1; 2) і B (—1; 1; 4).

Знайти координати, довжину та напрямиі косинуси вектора \overrightarrow{AB} .

- О З формул (18), (19) і (20) маємо $\overrightarrow{AB} = (-1; 2; 2); |\overrightarrow{AB}| = \sqrt{1+4+4} = 3; \cos \alpha = -\frac{1}{3}, \cos \beta = \cos \gamma = \frac{2}{3}.$
 - 2. Чн може вектор утворюватн з осями координат кутн $\alpha=\beta=60^{\circ},\,\gamma=30^{\circ}$?
 - $\cos^2 60^\circ + \cos^2 60^\circ + \cos^2 30^\circ = \frac{5}{4} \neq 1$

тому згідно з формулою (21) дістанемо на це запитания негативну відповідь. •

- 3.2. Лінійні дії з векторами. Рівність і колінеарність векторів
- 1. Дії з векторами. Якщо відомі координати векторів, то лінійним діям з векторами відповідають відповідні арифметичні дії над їхніми координатами. Це випливає з властивостей 2^0 , 3^0 проекцій (п. 1.4). Нехай задано вектори $\vec{a}=(a_x;\,a_y;\,a_z),\,\vec{b}=(b_x;\,b_y;\,b_z)$ і дійсне число λ , тоді $\lambda \vec{a}=(\lambda a_x;\,\lambda a_y;\,\lambda a_z),\,\vec{a}\pm\vec{b}=(a_x\pm b_y;\,a_y\pm b_y;\,a_z\pm b_z).$
- 2. Рівність векторів. Нехай вектори $a=(a_x;\ a_y;\ a_z)$ та $b=(b_x;\ b_y;\ b_z)$ рівні, тобто мають однакові довжини і напрям, тоді з формул (1) і (16) випливає, що

$$a_x = b_x, \quad a_y = b_y, \quad a_z = b_z$$
 (22)

і навпаки, якщо мають місце формули (22), то $\vec{a} = \vec{b}$. Отже, всяка векторна рівність виду $\vec{a} = \vec{b}$ еквівалентна трьом скалярним рівностям (22).

3. Колінеарність векторів. Необхідною і достатньою умовою того, що вектори $\vec{a}=(a_x;\,a_y;\,a_z)$ та $\vec{b}=(b_x;\,b_y;\,b_z)$ колінеарні, є пропорціональність їхніх проєкцій:

$$\frac{a_x}{b_x} = \frac{a_y}{b_y} = \frac{a_z}{b_z} \,. \tag{23}$$

Дійсно, якщо вектори \vec{a} і \vec{b} колінеарні, то існує таке число λ , що $\vec{a} = \lambda \vec{b}$, тоді з формул (22) дістаємо рівності $a_x = \lambda b_x$; $a_y = \lambda b_y$; $a_z = \lambda b_z$, з яких випливають формули (23).

Приклади

1. Знайти вектор $\vec{a} = (a_x; -1; a_z)$, колінеарний вектору $\vec{b} = (1; -2; 3)$.

O 3 ymob (23) маємо
$$\frac{1}{a_x} = \frac{-2}{-1} = \frac{3}{a_z}$$
: $a_x = \frac{1}{2}$, $a_z = \frac{3}{2}$.

2. Довести, що координати орта $\overrightarrow{a^0}$ вектора $\overrightarrow{a}=(a_x;\,a_y;\,a_z)$ збігаються з напрямними косинусами даного вектора.

$$\bigcirc \overrightarrow{a^0} = \frac{\overrightarrow{a}}{|\overrightarrow{a}|} = \frac{1}{|\overrightarrow{a}|} (a_x; \ a_y; \ a_z) = \left(\frac{a_x}{|\overrightarrow{a}|}; \ \frac{a_y}{|\overrightarrow{a}|}; \ \frac{a_z}{|\overrightarrow{a}|}\right) = (\cos \alpha; \cos \beta; \cos \gamma). \bullet$$

3.3. Поділ відрізка в даному відношенні. Координати центра мас Нехай задано відрізок AB точками $A(x_1; y_1; z_1)$ і $B(x_2; y_2; z_2)$. Знайдемо на відрізку таку точку M(x; y; z), яка ділить цей відрізок у відношенні λ , тобто $|\overrightarrow{AM}|: |\overrightarrow{MB}| = \lambda$. Введемо радіуси-вектори $\overrightarrow{r_1} = \overrightarrow{OA_1} = (x_1; y_1; z_1), \ \overrightarrow{r} = \overrightarrow{OM} = (x; y; z), \ \overrightarrow{r_2} = \overrightarrow{OB} = (x_2; y_2; z_2)$ (рис. 2.29). Оскільки $\overrightarrow{AM} = \overrightarrow{r} - \overrightarrow{r_1}, \ \overrightarrow{MB} = \overrightarrow{r_2} - \overrightarrow{r}$ і за умовою $\overrightarrow{AM} = \overrightarrow{AMB}$, то $\overrightarrow{r} - \overrightarrow{r_1} = \lambda (\overrightarrow{r_2} - \overrightarrow{r})$, звідки $\overrightarrow{r} = \frac{\overrightarrow{r_1} + \lambda \overrightarrow{r_2}}{1 + \lambda}$ Прирівнюючи проєкції обох частин цієї рівності на осі координат, згідно з формулами (22) маємо

$$x = \frac{x_1 + \lambda x_2}{1 + \lambda}, \quad y = \frac{y_1 + \lambda y_2}{1 + \lambda}, \quad z = \frac{z_1 + \lambda z_2}{1 + \lambda}. \tag{24}$$

 $A(x_1; y_1; z_1)$ $A(x_1; y_1; z_1)$ $A(x_1; y_1; z_1)$ $A(x_2; y_2; z_2)$ $A(x_1; y_1; z_1)$ $A(x_$

Зокрема, координати точки, яка ділить відрізок AB навпіл ($\lambda=1$), знаходять за формулами

$$x = \frac{x_1 + x_2}{2}, \quad y = \frac{y_1 + y_2}{2},$$

$$z = \frac{z_1 + z_2}{2}. \tag{25}$$

Виведемо тепер формули для координат

центра мас системи матеріальних точок M_1 (x_1 ; y_1 ; z_1), M_2 (x_2 ; y_2 ; z_2),, M_n (x_n ; y_n ; z_n), в яких зосереджено маси m_1 , m_2 , ..., m_n . Знайдемо спочатку центр маси N_1 (x_{N_1} ; y_{N_2} ; z_{N_1}) системи двох точок M_1 та M_2 . Оскільки центр маси лежить на відрізку M_1M_2 і ділить його у від-

иошенні
$$\lambda_1 = \frac{m_2}{m_1} = \frac{|\overrightarrow{M_1N_1}|}{|\overrightarrow{N_1M_2}|}$$
, то за формулами (24) $x_{N_1} = \frac{m_1x_1 + m_2x_2}{m_1 + m_2}$, $y_{N_1} = \frac{m_1y_1 + m_2y_2}{m_1 + m_2}$, $z_{N_1} = \frac{m_1z_1 + m_2z_2}{m_1 + m_2}$ (26)

Точка, координати якої обчислюються за формулами (26), називаеться центром мас двох матеріальних точок M_1 і M_2 .

Розглянемо тепер систему точок N_1 і M_3 , в яких зосереджено маси m_1+m_2 і m_3 і знайдемо центр маси N_2 $(x_{N_0};y_{N_2};z_{N_2})$ цих точок. Оскіль-

ки
$$\lambda_2 = \frac{m_8}{m_1 + m_2} = \frac{|\overrightarrow{N_1N_2}|}{|\overrightarrow{N_2M_8}|}$$
, то з формул (24) і (26) маємо $x_{N_3} = \frac{m_1x_1 + m_2x_2 + m_2x_3}{m_1 + m_2 + m_3}$, $y_{N_2} = \frac{m_1y_1 + m_2y_2 + m_3y_3}{m_1 + m_2 + m_3}$, (27) $z_{N_3} = \frac{m_1z_1 + m_2z_2 + m_3z_3}{m_1 + m_2 + m_3}$.

Точка, координати якої обчислюються за формулами (27), навивається центром мас трьох матеріальних точок M_1 , M_2 , M_3 .

Методом математичної індукції можна довести, що центр мас системи n матеріальних точок знаходиться в точці C (x_C ; y_C ; z_C), де

$$x_{C} = \frac{\sum_{i=1}^{n} m_{i} x_{i}}{\sum_{i=1}^{n} m_{i}}, \quad y_{C} = \frac{\sum_{i=1}^{n} m_{i} y_{i}}{\sum_{i=1}^{n} m_{i}}, \quad z_{C} = \frac{\sum_{i=1}^{n} m_{i} z_{i}}{\sum_{i=1}^{n} m_{i}} \bullet$$

Завдання для самоконтролю

1. Як визначаються координати і довжина вектора?

2. Як знайти відстань між точками $A(x_1; y_1; z_1)$ і $B(x_2; y_2; z_2)$?

3. Що називається напрямними косинусами вектора? Як вони знаходяться? 4. Довести, що напрямиі косинуси вектора задовольняють умову $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$.

5. Довести, що координатами орта довільного вектора є напрямні косинуси цього вектора.

- 6. Як визначаються лінійні операції з векторами, заданими своїми координатами?
 - 7. Які умови рівності та колінеарності векторів, заданих своїми проекціями?
 - 8. У чому полягає задача про поділ відрізка в даному відношенні?
- Записати формули для координат точки, яка ділить даний відрізок у даному відношенні.

- У чому полягає задача про центр мас системи матеріальних точок?
 Вивести формули для координат центра мас двох матеріальних точок.
- 12. Відомо, що $\vec{a} = (0; -2; -3), \vec{b} = (3; 2; 3)$. Переконатись, що $|\vec{3a} + 2\vec{b}| =$
- 13. Відрізок між точками A (2; —3) і B (6; 8) точками C і D поділено на три рівиі частини. Пересвідчитись, що

$$x_C = \frac{10}{3}$$
, $y_C = \frac{2}{3}$; $x_D = \frac{14}{3}$, $y_D = \frac{13}{3}$.

14. В точках A (—2) і B (7) містяться маси $m_1 = 5$ І $m_3 = 3$. Упевинтись, що центр мас цих точок міститься в точці $C\left(\frac{11}{8}\right)$.

§ 4. СКАЛЯРНИЙ ДОБУТОК ДВОХ ВЕКТОРІВ

4.1. Означення, геометричний та механічний зміст скалярного добутку

Скалярним добутком двох векторів \vec{a} і \vec{b} називається число $\vec{a} \cdot \vec{b}$, що дорівнює добутку довжин цих векторів на косинус кута між ними:

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \varphi, \tag{28}$$

де $\varphi = (\vec{a}, \vec{b})$ — кут між векторами \vec{a} і \vec{b} .

Якщо хоча б один з векторів \vec{a} чи \vec{b} нульовий, то за означенням $\vec{a} \cdot \vec{b} = 0$. Оскільки за формулою (3) $|\vec{a}| \cos \varphi = \pi \vec{b}$, $|\vec{b}| \cos \varphi = \pi \vec{b}$ $= np \rightarrow \vec{b}$, то з (28) маємо

$$\vec{a} \cdot \vec{b} = |\vec{a}| \operatorname{пp}_{\vec{a}} \vec{b} = |\vec{b}| \operatorname{пp}_{\vec{b}} \vec{a}. \tag{29}$$

Формули (29) виражають геометричний зміст скалярного добутку: скалярний добуток двох векторів дорівнює добутку довжини одного вектора на проекцію на нього другого вектора.

З фізики відомо, що робота A сили \vec{F} при переміщенні матеріальної точки з початку в кінець вектора \vec{S} , який утворює з вектором \vec{F} кут α

(рис. 2.30), дорівнює
$$A = |\vec{F}| |\vec{S}| \cos \alpha$$
, або $A = \vec{F} \cdot \vec{S}$. (30)

Отже, робота дорівнює скалярному добутку вектора сили на вектор переміщення. В цьому суть механічного змісту скалярного добутку.

Рис. 2.30

4.2. Властивості скалярного добутку

У векторному численні величину $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos(\vec{a}, \vec{b})$ називають скалярним добутком векторів \vec{a} та \vec{b} тому, що, по-перше, ця величина є скаляр і, по-друге, має деякі алгебраїчні властивості звичайного добутку чисел.

Розглянемо три алгебраїчні властивості скалярного добутку.

10. Комутативна властивість множення:

$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$$
.

О За означенням скалярного добутку $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos (\vec{a}, \vec{b})$ і $\vec{b} \cdot \vec{a} = |\vec{b}| |\vec{a}| \cos (\vec{b}, \vec{a})$. Оскільки $|\vec{a}| |\vec{b}| = |\vec{b}| |\vec{a}|$ як добуток чисел і $\cos (\vec{a}, \vec{b}) = \cos (\vec{b}, \vec{a})$, тому що $(\vec{a}, \vec{b}) = (\vec{b}, \vec{a})$, то $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$.

20. Асоціативна властивість відносно множення на число ді

$$(\lambda \vec{a}) \cdot \vec{b} = \lambda (\vec{a} \cdot \vec{b}).$$

О З формул (29) і (3) маємо

$$(\lambda \vec{a}) \cdot \vec{b} = |\vec{b}| \operatorname{np}_{\vec{b}} (\lambda \vec{a}) = \lambda |\vec{b}| \operatorname{np}_{\vec{b}} \vec{a} = \lambda (\vec{a} \cdot \vec{b}). \quad \bullet$$

30. Дистрибутивна властивість відносно додавания векторів:

$$\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}.$$

О Згідно з формулами (29) і (2) дістанемо

$$\vec{a} \cdot (\vec{b} + \vec{c}) = |\vec{a}| \operatorname{np}_{\vec{a}} (\vec{b} + \vec{c}) = |\vec{a}| \operatorname{np}_{\vec{a}} \vec{b} + |\vec{a}| \operatorname{np}_{\vec{a}} \vec{c} = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}. \quad \bullet$$

Ці три властивості обумовлюють глибоку аналогію між векторною алгеброю і алгеброю чисел. Перша властивість дає змогу міняти місцями множники, друга — об'єднувати числові коефіцієнти векторних множників, а третя — розкривати або вводити дужки і виносить за них спільні скалярні чи векторні множники. Проте аналогія між скалярним добутком векторів і добутком чисел є неповною. Зокрема, не існує скалярного добутку трьох і більшого числа векторів; рівність $\vec{a} \cdot \vec{b} = 0$ може виконуватись і при ненульових множниках $\vec{a} \neq 0$, $\vec{b} \neq 0$, якщо $(\vec{a}, \vec{b}) = \frac{\pi}{2}$; не можна робити висновок, що з рівності

 $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}$ випливає рівність $\vec{b} = \vec{c}$ навіть коли $\vec{a} \neq 0$. Рівність $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}$ при $\vec{a} \neq 0$ означає, що $(\vec{a}, \vec{b} - \vec{c}) = \frac{\pi}{2}$ і правильна при $\vec{b} \neq \vec{c}$.

Наведемо геометричні властивості скалярного добутку.

4°. Якщо $\vec{a} \neq 0$ і $\vec{b} \neq 0$, то $\vec{a} \cdot \vec{b} > 0$, коли кут (\vec{a}, \vec{b}) — гострий, $\vec{a} \cdot \vec{b} < 0$, коли кут $\varphi = (\vec{a}, \vec{b})$ — тупий.

5°. Скалярний добуток двох ненульових векторів дорівнює нулю

тоді і лише тоді, коли ці вектори взаємно перпендикулярні.

6°. Скалярний квадрат вектора дорівнює квадрату його довжини

$$\vec{a}^2 = |\vec{a}|^2, \tag{31}$$

звідки

$$|\vec{a}| = \sqrt{\vec{a^2}}.$$
 (32)

Властивості 40—60 безпосередньо випливають з формули (28).

Приклади

1. Знайти скалярний добуток векторів $\vec{m} = \vec{2a} - \vec{3b}$ і $\vec{n} = 4\vec{a} + 5\vec{b}$, якщо $|\vec{a}| = 1$, $|\vec{b}| = 2$, $(\vec{a}, \vec{b}) = \frac{\pi}{3}$.

○ Користуючись властивостями 1°---3°, маємо

$$\vec{m} \cdot \vec{n} = (2\vec{a} - 3\vec{b}) \cdot (4\vec{a} + 5\vec{b}) = 8\vec{a}^2 + 10\vec{a} \cdot \vec{b} - 12\vec{a} \cdot \vec{b} - 15\vec{b}^2 = 8\vec{a}^2 - 2\vec{a} \cdot \vec{b} - 15\vec{b}^2.$$

Застосовуючи формули (28) і (31), знаходимо

$$\vec{m} \cdot \vec{n} = 8 \cdot 1^2 - 2 \cdot 1 \cdot 2 \cdot \frac{1}{2} - 15 \cdot 2^2 = -54.$$

2. Знайти довжину вектора $\vec{c} = 2\vec{a} - \vec{3}\vec{b}$, якщо $|\vec{a}| = 1$, $|\vec{b}| = 4$, $(\vec{a}, \vec{b}) = \frac{\pi}{3}$.

О За формулою (32) дістанемо

$$|\vec{c}| = V \overrightarrow{\vec{c^2}} = V (2\vec{a} - 3\vec{b})^2 = V (4\vec{a^2} - 12\vec{a} \cdot \vec{b} + 9\vec{b}^2) = V (12\vec{4} = 2) (12\vec{4} - 3\vec{b})^2 = V (12\vec{4} - 3\vec$$

4.3. Вираз скалярного добутку через координати. Кут між векторами

Нехай задано два вектори $\vec{a}=(a_x;\,a_y;\,a_z)$ та $\vec{b}=(b_x;\,b_y;\,b_z)$. Знайдемо їхній скалярний добуток. Використовуючи властивості 1^0 і 3^0 ска-

лярного добутку, дістанемо

$$\vec{a} \cdot \vec{b} = (a_{x}\vec{i} + a_{y}\vec{j} + a_{z}\vec{k}) \cdot (b_{x}\vec{i} + b_{y}\vec{j} + b_{z}\vec{k}) =$$

$$= a_{x}b_{x}\vec{i}^{2} + a_{x}b_{y}\vec{i} \cdot \vec{j} + a_{x}b_{z}\vec{i} \cdot \vec{k} + a_{y}b_{x}\vec{i} \cdot \vec{j} + a_{y}b_{y}\vec{j}^{2} +$$

$$+ a_{y}b_{z}\vec{j} \cdot \vec{k} + a_{z}b_{x}\vec{k} \cdot \vec{i} + a_{z}b_{y}\vec{k} \cdot \vec{j} + a_{z}b_{z}\vec{k}^{2}.$$

Оскільки \vec{i} , \vec{j} , \vec{k} — попарно ортогональні орти, то $\vec{i}^2 = \vec{j}^2 = \vec{k}^2 = 1$, $\vec{i} \cdot \vec{j} = \vec{i} \cdot \vec{k} = \vec{j} \cdot \vec{k} = 0$, тому

$$\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z. \tag{33}$$

Отже, скалярний добуток двох векторів, заданих координатами в прямокутній системі координат, дорівнює сумі добутків їхніх відповідних координат

Вкажемо на ряд важливих висновків з формули (33).

1. Необхідною і достатньою умовою перпендикулярності векторів $\vec{a}=(a_x;\,a_y;\,a_z)$ і $\vec{b}=b_x;\,b_y;\,b_z)$ є рівність

$$a_x b_x + a_y b_y + a_z b_z = 0. (34)$$

2. Довжина вектора $\vec{a} = (a_x; a_y; a_z)$ визначається за формулою

$$|\vec{a}| = \sqrt{a_x^2 + a_y^2 + a_z^2}. \tag{35}$$

Формула (35) випливає з формул (32) і (33). В п. 3.1 цю формулу ми довели іншим способом.

3. Кут $\phi = (\vec{a}, \vec{b})$ між векторами $\vec{a} = (a_x; a_y; a_z)$ та $\vec{b} = (b_x; b_y; b_z)$ визначається рівністю

$$\cos \varphi = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} = \frac{a_x b_x + a_y b_y + a_z b_z}{V a_x^2 + a_y^2 + a_z^2 V b_x^2 + b_y^2 + b_z^2}.$$
 (36)

Ця формула є наслідком формул (28), (33) і (35).

П риклади

- 1. Обчислитн, яку роботу виконує сила $\vec{F}=(2;-1;4)$, яка прямолінійно переміщує матеріальну точку з точки M (—1; 0; 3) в точку N (2; —3; 5).
- О За формулами (18) знайдемо вектор переміщення $\vec{S} = \overrightarrow{MN} = (3; -3; 2)$, тоді за формулами (30) і (33) робота $A = \vec{F} \cdot \vec{S} = 17$. ●
- 2. Задані вектори $\vec{a} = (2; 0; -2)$ і $\vec{b} = (-2; 1; 2)$. Знайти проекцію вектора $\vec{c} = 2\vec{a} + \vec{b}$ на вектор \vec{b} .
 - О Знайдемо координати вектора с:

$$\vec{c} = 2(2\vec{i} - 2\vec{k}) + (-2\vec{i} + \vec{j} + 2\vec{k}) = 2\vec{i} + \vec{j} - 2\vec{k} = (2; 1; -2).$$

З формул (29), (33) і (35) дістаємо

$$\operatorname{np}_{\vec{b}}\vec{c} = \frac{\vec{b} \cdot \vec{c}}{|\vec{b}|} = \frac{2 \cdot (-2) + 1 \cdot 1 + (-2) \cdot 2}{\sqrt{4 + 1 + 4}} = -\frac{7}{3} \cdot \bullet$$

3. Трикутник заданий вершинами A (0; -1; 2), B (-1; -2; 7), C (1; -2; 6). Знайти його внутрішній кут при вершині A.

Користуючись формулами (18) і (36), дістанемо

$$\overrightarrow{AB} = (-1; -1; 5), \ \overrightarrow{AC} = (1; -1; 4), \cos \varphi = \cos(\overrightarrow{AB}, \overrightarrow{AC}) = \frac{20}{9\sqrt{6}} \approx 0.91,$$

 $\varphi \approx 25^{\circ}. \quad \bullet$

Завдання для самоконтролю

- 1. Що називається скаляринм добутком двох векторів?
- 2. У чому полягає геометричний та механічний зміст скалярного добутку?
- Сформулювати і довести алгебраїчні властивості скалярного добутку.
 Сформулювати і довести геометричні властивості скалярного добутку.
- Довести, що скалярний добуток векторів, заданих координатами в прямокутній системі координат, дорівнює сумі добутків їхніх відповідних координат.
- 6. Сформулювати і довести необхідну і достатню умову перпендикулярності
- двох векторів, заданнх координатами. 7. Записати і довести формулу для знаходження кута між векторами, заданнми координатами.
 - 8. Відомо, що $|\vec{a}| = 3$, $|\vec{b}| = 4$, $(\vec{a}, \vec{b}) = 120^\circ$. Обчислити:

1)
$$\vec{a} \cdot \vec{b}$$
; 2) $\vec{a^2}$; 3) $(\vec{a} - \vec{b})^2$; 4) $(\vec{a} + 2\vec{b}) \cdot (3\vec{a} - 2\vec{b})$.

- 9. Знайти кут між діагоналями паралелограма, побудованого на векторах $\vec{a} = 2\vec{i} \vec{j}$, $\vec{b} = -\vec{j} + 2\vec{k}$.
- 10. Задано точки A (1; 1; 1) і B (4; 5; —3). Знайти проекцію вектора \overrightarrow{AB} на вісь, яка утворює з координатними осями рівні кути.

$$B i \partial nos i \partial i$$
. 8. 1) -6; 2) 9; 3) 37; 4) -61. 9. $\frac{\pi}{2}$. 10. $\sqrt[4]{3}$.

§ 5. ВЕКТОРНИЙ ДОБУТОК ДВОХ ВЕКТОРІВ

5.1. Означення і властивості векторного добутку

Векторним добутком вектора \vec{a} на вектор \vec{b} називається вектор \vec{c} , який визначається такими трьома умовами:

- 1) довжина вектора \vec{c} дорівнює $|\vec{c}| = |\vec{a}| |\vec{b}| \sin \varphi$, де $\varphi = (\vec{a}, \vec{b})$;
- 2) вектор \vec{c} перпендикулярний до кожного з векторів \vec{a} і \vec{b} ;
- 3) якщо $\vec{c} \neq 0$, то вектори \vec{a} , \vec{b} , \vec{c} утворюють праву трійку векторів (п. 2.2).

Векторний добуток позначають одним із символів:

$$\vec{c} = \vec{a} \times \vec{b} = [\vec{a}\vec{b}] = [\vec{a} \times \vec{b}].$$

Рис. 2.31

Рис. 2.32

Розглянемо кілька прикладів.

1. Нехай в точці A (рис. 2.31) прикладена сила \vec{F} і O — деяка фіксована точка. Як відомо з фізики, моментом сили \vec{F} відносно точки Oназивається вектор \vec{M} , довжина якого дорівнює добутку сили на плече і який напрямлений по осі обертання так, що коли дивитися з його кінця, то обертання тіла відбувається проти руху стрілки годинника. Оскільки

$$|\vec{M}| = |\vec{F}| ON = |\vec{F}| |r| \sin \varphi = |\vec{F}| |\overrightarrow{OA}| \sin (\vec{F}, \overrightarrow{OA}),$$

то момент сили \vec{F} , прикладеної в точці A, відносно точки O визначаеться векторним добутком

$$\vec{M} = \vec{OA} \times \vec{F}. \tag{37}$$

- 2. Швидкість \vec{v} точки P твердого тіла, яке обертається з кутовою швидкістю ω навколо нерухомої осі l, визначається за формулою Ейле- $\vec{pa v} = \vec{\omega} \times \vec{r}.$
- 3. Якщо електрон, заряд якого дорівнює е, рухається з швидкістю v в магнітному полі сталої напруги \vec{H} , то на електрон діє сила \vec{F} . яка визначається за формулою

$$\vec{F} = \frac{e}{c} (\vec{v} \times \vec{H}),$$

де с — швидкість світла.

Розглянемо алгебраїчні властивості векторного добутку.

1°. Антикомутативність множення:

$$\vec{a} \times \vec{b} = -(\vec{b} \times \vec{a}),$$

тобто від перестановки множників векторний добуток змінює знак. Це випливає з того, що вектори $\vec{a} \times \vec{b}$ і $\vec{b} \times \vec{a}$ мають однакові модулі, колінеарні і трійки векторів $(\vec{a}, \vec{b}, \vec{a} \times \vec{b})$ і $(\vec{a}, \vec{b}, \vec{b} \times \vec{a})$ протилежної орієнтації (рис. 2.32).

2°. Асоціативність відносно скалярного множника х:

$$\vec{\lambda a} \times \vec{b} = \lambda (\vec{a} \times \vec{b}); \vec{a} \times \lambda \vec{b} = \lambda (\vec{a} \times \vec{b}).$$

3°. Дистрибутивність відносно додавання векторів:

$$\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}.$$

Алгебраїчні властивості векторного добутку дають змогу при множенні лінійних векторів виконувати дії так само, як з алгебраїчними многочленами. Проте при виконанні векторного множення слід пам'ятати, що воно некомутативне: при переставлянні співмножників знак векторного добутку змінюється на протилежний.

Наведемо геометричні властивості векторного добутку.

- 4°. Векторний добуток двох векторів дорівнює нулю тоді і лише тоді, коли ці вектори колінеарні.
- $\mathbf{5}^{0}$. Модуль $|\vec{a} \times \vec{b}|$ векторного добутку неколінеарних векторів дорівнює площі S паралелограма, побудованого на векторах \vec{a} і \vec{b} , віднесених до спільного початку, тобто

$$S = |\vec{a} \times \vec{b}|. \tag{38}$$

6°. Векторні добутки ортів задовольняють такі рівності:

$$\vec{i} \times \vec{i} = \vec{j} \times \vec{j} = \vec{k} \times \vec{k} = 0. \quad \vec{i} \times \vec{j} = \vec{k}, \quad \vec{j} \times \vec{k} = \vec{i},$$

$$\vec{k} \times \vec{i} = \vec{j}; \quad \vec{j} \times \vec{i} = -\vec{k}, \quad \vec{k} \times \vec{j} = -\vec{i}, \quad \vec{i} \times \vec{k} = -\vec{j}.$$

Приклад

60

Обчислити |
$$(\vec{3a} - \vec{b}) \times (\vec{a} - 2\vec{b})$$
 |, якщо | \vec{a} | $=$ 3, | \vec{b} | $=$ 4, $(\vec{a}, \vec{b}) = \frac{\pi}{2}$.

$$(\vec{3}\vec{a} - \vec{b}) \times (\vec{a} - 2\vec{b}) = 3 \ (\vec{a} \times \vec{a}) - 6 \ (\vec{a} \times \vec{b}) - (\vec{b} \times \vec{a}) + 2 \ (\vec{b} \times \vec{b}) =$$

$$= -6 \ (\vec{a} \times \vec{b}) + \vec{a} \times \vec{b} = -5 \ (\vec{a} \times \vec{b}); \ |-5 \ (\vec{a} \times \vec{b})| = 5 \ |\vec{a}| \ |\vec{b}| \sin \frac{\pi}{2} = 5 \cdot 3 \times$$

$$\times 4 \cdot 1 = 60:$$

5.2. Векторний добуток двох векторів, заданих координатами Нехай в прямокутній системі координат задано вектори $\overrightarrow{a}=(a_x;a_y;a_z)$ і $\overrightarrow{b}=(b_x;b_y;b_z)$. Покажемо, що векторний добуток вектора \overrightarrow{a}

на вектор \vec{b} визначається за формулою

$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}. \tag{39}$$

О Використовуючи властивості 1°—3° і 6° векторного добутку і теорему про розклад визначника (гл. 1, п. 1.2), маємо

$$\vec{a} \times \vec{b} = (a_{x}\vec{i} + a_{y}\vec{j} + a_{z}\vec{k}) \times (b_{x}\vec{i} + b_{y}\vec{j} + b_{z}\vec{k}) = a_{x}b_{x}(i \times i) + a_{x}b_{y}(\vec{i} \times i) + a_{x}b_{y}(\vec{i} \times i) + a_{y}b_{x}(\vec{j} \times i) + a_{y}b_{y}(\vec{j} \times j) + a_{y}b_{z}(\vec{j} \times k) + a_{z}b_{z}(\vec{k} \times i) + a_{z}b_{y}(\vec{k} \times j) + a_{z}b_{z}(\vec{k} \times k) = (a_{y}b_{z} - a_{z}b_{y})\vec{i} - a_{z}b_{z}(\vec{k} \times k) + a_{z}b_{z}(\vec{k} \times k) + a_{z}b_{z}(\vec{k} \times k) = (a_{y}b_{z} - a_{z}b_{y})\vec{i} - a_{z}b_{z}(\vec{k} \times k) + a_{z}b_$$

П риклади

Знайтн площу трикутника, заданого вершинами А (1; 2; 0), В (0; —2; 1),

C (-1; 0; 2).

О Площа трикутника \overrightarrow{ABC} дорівнює половині площі паралелограма, побудованого на векторах \overrightarrow{AB} і \overrightarrow{AC} . Оскільки $\overrightarrow{AB}=(-1;-4;1), \overrightarrow{AC}=(-2;-2;2)$ і за формулою (39)

$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ -1 & -4 & 1 \\ -2 & -2 & 2 \end{vmatrix} = -\overrightarrow{6i} - \overrightarrow{6k},$$

то за формулою (38) площа $S_{\triangle ABC} = \frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}| = \frac{1}{2} \sqrt{6^2 + 6^2} = 3\sqrt{2}$. \bullet

2. Знайти момент снли $\vec{F}=(1;\ -2;\ 4),\$ прикладеної до точки A (1; 2; 3), вІдносно точки B (3; 2; -1).

О Згідно з формулою (37) момент снлн $\vec{M} = \vec{BA} \times \vec{F}$. Оскільки $\vec{BA} = (-2; 0; 4)$, то

$$\vec{M} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -2 & 0 & 4 \\ 1 & -2 & 4 \end{vmatrix} = 8\vec{i} + 12\vec{j} + 4\vec{k}. \bullet$$

Завдания для самоконтролю

1. Дати озиачення векторного добутку двох векторів.

2. Сформулювати властивості векторного добутку.

- 3. Записати і вивести формулу для обчисления векторного добутку двох векторів, заданих координатами в прямокутній системі координат.
 - 4. Довестн, що $(\vec{a} + \vec{b}) \times (\vec{a} \vec{b}) = 2 (\vec{b} \times \vec{a})$.
 - 5. Довести тотожність: $(\vec{a} \times \vec{b})^2 + (\vec{a} \cdot \vec{b})^2 = \vec{a}^2 \vec{b}^2$.
 - 6. Знвити площу паралелограма, побудованого нв векторах $\vec{a} = \vec{m} \vec{2n}$, $\vec{b} = \vec{n}$

 $= 2\vec{m} + 3\vec{n}$, икщо $|\vec{m}| = |\vec{n}| = 1$, $(\vec{m}, \vec{n}) = \frac{\pi}{6}$.

7. Дві сили $\vec{F}_1=(2;1;3)$ і $\vec{F}_2=(1;3;-5)$ прикладені в точці A (2; -1; -2). Знайти момент рівнодійної цих сил відносно початку координат. В і ∂ n о e і ∂ і, 6. 3,5. 7. 15.

§ 6. МІШАНИЙ ДОБУТОК ВЕКТОРІВ

6.1. Означення і обчислення мішаного добутку

При множенні двох векторів \vec{a} і \vec{b} вище було визначено два види добутків: скалярний, результатом якого є число $\vec{a} \cdot \vec{b}$, і векторний, результатом якого є вектор $\vec{a} \times \vec{b}$.

Множення трьох векторів \vec{a} , \vec{b} і \vec{c} можна виконати різними способами. Зокрема, можно утворити такі добутки:

$$(\vec{a} \cdot \vec{b}) \cdot \vec{c}, \quad (\vec{a} \times \vec{b}) \times \vec{c}, \quad (\vec{a} \times \vec{b}) \cdot \vec{c}.$$

Перший з цих добутків відповідає множенню скаляра $\vec{a} \cdot \vec{b}$ на вектор \vec{c} і не розглядається. Те саме стосується добутків $(\vec{a} \cdot \vec{c}) \cdot \vec{b}$ та $(\vec{b} \cdot \vec{c}) \cdot \vec{a}$.

Результатом другого добутку є вектор \vec{d} , який називається *подвійним векторним* або *векторно-векторним* добутком даних трьох векторів: $\vec{d} = (\vec{a} \times \vec{b}) \times \vec{c}$.

Для знаходження подвійного векторного добутку застосовують формули

$$(\vec{a} \times \vec{b}) \times \vec{c} = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{b} \cdot \vec{c}) \vec{a};$$

$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c}.$$

Подвійний векторний добуток часто зустрічається у векторному численні, але певного геометричного змісту не має.

Останній з наведених добутків $(\vec{a} \times \vec{b}) \cdot \vec{c}$ — це скалярний добуток вектора $\vec{a} \times \vec{b}$ на вектор \vec{c} ; його називають мішаним добутком

векторів \vec{a}, \vec{b} і \vec{c} . Цей добуток має чіткий геометричний зміст і широко використовується в задачах.

Знайдемо мішаний добуток векторів $\vec{a}, \vec{b}, \vec{c}$, заданих координатами:

$$\vec{a} = (a_x; a_y; a_z), \vec{b} = (b_x; b_y; b_z), \vec{c} = (c_x; c_y; c_z).$$

Координати вектора $\vec{a} \times \vec{b}$ визначаються за формулою (39):

$$\vec{a} \times \vec{b} = \begin{vmatrix} a_y & a_z \\ b_y & b_z \end{vmatrix} \vec{i} - \begin{vmatrix} a_x & a_z \\ b_x & b_z \end{vmatrix} \vec{j} + \begin{vmatrix} a_x & a_y \\ b_x & b_y \end{vmatrix} \vec{k}.$$

Помноживши вектор $\vec{a} \times \vec{b}$ скалярно на вектор \vec{c} , за формулою (33) дістанемо

$$(\vec{a} \times \vec{b}) \cdot \vec{c} = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}. \tag{40}$$

6.2. Властивості мішаного добутку

1°. Якщо в мішаному добутку поміняти місцями які-небудь два множники, то мішаний добуток эмінить знак, наприклад:

$$(\vec{a} \times \vec{b}) \cdot \vec{c} = -\vec{c} \cdot (\vec{b} \times \vec{a}).$$

Дійсно, якщо в мішаному добутку поміняти місцями два множники, то це те саме, що у визначнику (40) поміняти місцями два рядки, а від цього визначник змінює знак.

²⁰. При циклічній перестановці множників мішаний добуток не змінюється:

$$(\vec{a} \times \vec{b}) \cdot \vec{c} = (\vec{b} \times \vec{c}) \cdot \vec{a} = (\vec{c} \times \vec{a}) \cdot \vec{b}$$
.

Справді, при циклічній перестановці міняються місцями два рази множники, або, що те саме, у визначнику (40) рядок міняється місцем два рази, а від цього визначник не змінюється.

3°. У мішаному добутку знаки векторного і скалярного добутків

можна міняти місцями:

$$(\vec{a} \times \vec{b}) \cdot \vec{c} = \vec{a} \cdot (\vec{b} \times \vec{c}).$$

Дійсно, з властивості 2^0 і комутативності скалярного добутку маємо

$$(\vec{a} \times \vec{b}) \cdot \vec{c} = (\vec{b} \times \vec{c}) \cdot \vec{a} = \vec{a} \cdot (b \times c).$$

У зв'язку з цим мішані добутки $(\vec{a} \times \vec{b}) \cdot \vec{c}$ (векторно-скалярний добуток) і $\vec{a} \cdot (\vec{b} \times \vec{c})$ (скалярно-векторний добуток) скорочено позначають так: $\vec{a} \cdot \vec{b} \cdot \vec{c}$.

4°. Модуль мішаного добутку а b с дорівнює об'єму паралелепіпеда, побудованого на векторах а, b і с, віднесених до спільного початку:

$$V = |\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}|. \tag{41}$$

О Візьмемо три некомпланарних вектори \vec{a} , \vec{b} і \vec{c} і побудуємо на цих .33). Об'єм цього паралелепіпеда

векторах паралелепіпед (рис. 2.33). Об'єм цього паралелепіпеда V=Sh,

де
$$S$$
 — площа основи, а h — висота. Але $S = |\vec{a}| |\vec{b}| \sin(\vec{a}.\vec{b}) = |\vec{a} \times \vec{b}|$, $h = |\overrightarrow{AA_2}| = |\operatorname{пр}_{\vec{a} \times \vec{b}} \vec{c}|$, тому $V = |\vec{a} \times \vec{b}| |\operatorname{пр}_{\vec{a} \times \vec{b}} \vec{c}| = |(\vec{a} \times \vec{b}) \cdot \vec{c}| = |\vec{a} \vec{b} \vec{c}|$.

 5° . Якщо мішаний добуток $\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}$ додатний, то вектори \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} утворюють праву трійку, а якщо від'ємний, то ліву.

О З формул (29) випливає, що $\overrightarrow{abc} = |\overrightarrow{a} \times \overrightarrow{b}|$ пр $\overrightarrow{axb} \overrightarrow{c}$. Якщо $\overrightarrow{abc} > 0$, то пр $\overrightarrow{axb} \overrightarrow{c} > 0$ і кут $\varphi = (\overrightarrow{a} \times \overrightarrow{b}, \overrightarrow{c})$ гострий, тобто вектори \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} утворюють праву трійку. Якщо $\overrightarrow{abc} < 0$, то пр $\overrightarrow{axb} < 0$, кут $\varphi = (\overrightarrow{a} \times \overrightarrow{b}, \overrightarrow{c})$ тупий, тому вектори \overrightarrow{a} , \overrightarrow{b} і \overrightarrow{c} утворюють ліву трійку. \blacksquare

 6° . Вектори \vec{a} , \vec{b} , \vec{c} компланарні тоді і тільки тоді, коли їхній мішаний добуток дорівнює нулю.

О Якщо $\vec{a} \, \vec{b} \, \vec{c} = 0$, то вектор \vec{c} перпендикулярний до вектора $\vec{a} \times \vec{b}$ і лежить з векторами \vec{a} , \vec{b} в одній площині. Це означає, що вектори \vec{a} , \vec{b} і \vec{c} компланарні. Навпаки, якщо вектори \vec{a} , \vec{b} , \vec{c} компланарні, то можна вважати, що вони лежать в одній площині, тому $(\vec{a} \times \vec{b}, \vec{c}) = \frac{\pi}{2}$; $\vec{a} \, \vec{b} \, \vec{c} = 0$

Властивості 4^0 — 6^0 виражають геометричний зміст мішаного добутку трьох векторів.

П риклади

1. Знайти об'єм тетраедра, заданого вершинами A (2; —1; 0), B (5; 5; 3), C (3; 2; —2), D (4; 1; 2).

 \bigcirc Відомо, що об'єм тетраєдра V_{ABCD} , побудованого на векторах \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{AD} , дорівнює шостій частині об'єму паралелепіпеда, побудованого на цих векторах. То-

му за формулою (4і) маємо

$$V = \frac{1}{6} | \overrightarrow{AB} | \overrightarrow{AC} | \overrightarrow{AD} |$$

Знаходимо вектори $\overrightarrow{AB}=(3;\ 6;\ 3),\ \overrightarrow{AC}=(1;\ 3;\ -2),\ \overrightarrow{AD}=(2;\ 2;\ 2).$ За формулою (40) дістанемо

$$V = \frac{1}{6} \left| \begin{vmatrix} 3 & 6 & 3 \\ 1 & 3 & -2 \\ 2 & 2 & 2 \end{vmatrix} \right| = 3. \quad \bullet$$

2. Довести, що точки A (0; 1; 2), B (-2; 0; -1) C (-1; 5; 8), D (1; 6; 11) лежать в одній площині.

 \bigcirc Точки A, B, C, D лежать в одній площнні, якщо вектори \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{AD} компланарні. Знаходимо вектори $\overrightarrow{AB} = (-2; -1; -3), \overrightarrow{AC} = (-1; 4; 6), \overrightarrow{AD} = (1; 5; 9).$ Оскільки мішаний добуток

$$\overrightarrow{AB} \quad \overrightarrow{AC} \quad \overrightarrow{AD} = \begin{vmatrix} -2 & -i & -3 \\ -i & 4 & 6 \\ i & 5 & 9 \end{vmatrix} = 0,$$

то за властивістю 6° векторн \overrightarrow{AB} , \overrightarrow{AC} і \overrightarrow{AD} компланарні, тому залані точки лежать в одиій площині.

3. Яку трійку утворюють вектори \vec{a} , \vec{b} , \vec{c} , якщо $\vec{a} = (1; 2; 3)$, $\vec{b} = (-1; 0; 2)$, $\vec{c} = (1; -2; 5)$?

Оскільки мішаний добуток

$$\overrightarrow{abc} = \begin{vmatrix} 1 & 2 & 3 \\ -1 & 0 & 2 \\ 1 & -2 & 5 \end{vmatrix} = 24 > 0,$$

то за властивістю 5° дані вектори утворюють праву трійку. •

Завдання для самоконтролю

- 1. Що називається мішаним добутком трьох векторів?
- 2. Як обчислюється мішаний добуток трьох векторів, заданих координатами в прямокутній системі координат?
 - 3. У чому полягає геометричний эміст мішаного добутку?
 4. У чому полягає умова компланарності трьох векторів?
- 5. Довести, що коли вектори \vec{a} , \vec{b} , \vec{c} утворюють праву трійку, то \vec{a} \vec{b} \vec{c} > 0, а коли ліву трійку, то $\vec{a}\vec{b}\vec{c} < 0$.

6. Довести, що об'єм тетраедра дорівнює шостій частині модуля мішаного добутку трьох некомпланарних векторів, які утворюють ребра тетраедра.

- 7. Задані вершини тетраедра A (1; 2; 3), B (9; 6; 4), C (3; 0; 4), D (5; 2; 6). Переконатись, що висота тетраедра, опущена з вершини D, дорівнює $\frac{4}{2}\sqrt{2}$.
- 8. Довести, що вектори $\vec{a} = (1; 9; -11), \vec{b} = (-1; 6; -6) i \vec{c} = (-2; -3; 5) ком$ планарні.
- 9. Довести, що вектори $\vec{a} = (8; 4; 1), \vec{b} = (2; -2; 1), \vec{c} = (4; 0; 3)$ утворюють ліву трійку векторів,

Глава 3

ЕЛЕМЕНТИ АНАЛІТИЧНОЇ ГЕОМЕТРІЇ

Аналітична геометрія — це розділ математики, в якому властивості геометричних об'єктів (точок, ліній, поверхонь, фігур, тіл тощо)

вивчаються засобами алгебри на основі методу координат.

Основоположником аналітичної геометрії вважають Р. Декарта, який вперше в 1637 р. у своїй книзі «Геометрія» дав чіткий виклад ідеї методу координат на площині. Р. Дскарт запропонував положення точки на площині відносно заданої системи координат визначати за допомогою двох чисел — її координат, а кожну лінію на площині розглядати як множину точок, заданих певною геометричною умовою. Ця умова записується у вигляді рівняння, яке зв'язує змінні координати точки, що належить даній лінії, і назнвається рівнянням цієї лінії. Такий спосіб дослідження геометричних об'єктів і називають методом координат.

Наступний важливий вклад в аналітичну геометрію зробив французький учений Ж.-Л. Лагранж, який вперше в 1788 р. у своему творі «Аналітична механіка» запропонував положення вектора визначати за допомогою чисел — його проекцій на координатні осі. Розвиток

ідей Лагранжа привів до створення векторної алгебри.

Метод координат та апарат векторної алгебри широко використовуються в сучасній аналітичній геометрії.

§ 1. ЛІНІЇ НА ПЛОЩИНІ ТА ЇХНІ РІВНЯННЯ

1.1. Поняття про лінію та її рівняння

Розглянемо рівність

$$F\left(x,\ y\right) =0, \tag{1}$$

яка зв'язує змінні величини x та y.

Рівність (1) називають рівнянням з двома змінними х і у, якщо ця рівність виконується не для всіх пар чисел х, у, і тотожністю, якщо вона справедлива для всіх значень x і y. Наприклад, рівності x +y = 0 і $x^2 + y^2 = 9$ є рівняннями, а рівності x + y - (x + y) = 0 та $(x + y)^2 - x^2 - 2xy - y^2 = 0$ — тотожностями. Рівняння (1) називається рівнянням лінії l, яка задана на площині

відносно певної системи координат, якщо це рівняння задовольняють координати x і y кожної точки лінії l і не задовольняють координати

х і у жодної точки, яка не лежить на цій лінії.

Коли рівняння (1) є рівнянням лінії І, то кажуть, що це рівняння визначає (або задає) лінію І. Отже, якщо лінія задана рівнянням, то про кожну точку площини можна сказати, чи лежить вона на цій лінії, чи не лежить. Якщо координати точки задовольняють рівняння лінії, то точка лежить на ній, якщо не заловольняють, то не лежить.

Лінія, яка задана рівнянням (1) відносно певної системи координат у площині, є геометричним місцем точок, координати яких задовольняють задане рівняння.

Змінні х і у в рівнянні (1) лінії І називаються змінними координата-

ми її точок.

Нехай лінія *l* відносно системи координат Оху визначається рівнянням (1). В аналітичній геометрії лінії класифікують залежно від властивостей цього рівняння. Якщо вираз F(x, y) в рівнянні (1) є многочленом від змінних х та у (тобто сума скінченного числа одночленів ax^ky^m , де a — сталий коефіцієнт, а показники k і m — цілі додатні числа або нулі), то лінія, що задається цим рівнянням, називається алгебраїчною.

Алгебраїчні лінії розрізняють залежно від їхнього порядку. Степенем одночлена ax^ky^m називається сума k+m показників при змінних. Степенем рівняння (1) називається найвищий степінь одночлена, що входить до його складу. Алгебраїчною лінією п-го порядку називається лінія, що виражається рівнянням п-го степеня. Порядок алгебраїчної лінії не змінюється при заміні однієї декартової системи на іншу.

Лінія, яка не є алгебраїчною, називається трансцендентною. Ми вивчатимемо лише лінії першого та другого порядків, тобто лінії,

що задаються рівняннями

$$ax + by + c = 0$$
 Ta $ax^2 + by^2 + cxy + dx + ey + f = 0$.

Таким чином, лінію на площині можна задати геометрично як сукупність точок з певними геометричними властивостями і аналітично -за допомогою рівняння. У зв'язку з цим виникають дві типові для аналітичної геометрії задачі: скласти рівняння лінії, яка задана геометрично, і навпаки, встановити геометричний образ лінії, заланої аналітично. Зазначимо, що в аналітичній геометрії друга задача розв'язуеться лише для алгебраїчних ліній першого та другого порядків. Загальний метод дослідження ліній, заданих рівняннями, дається в курсі математичного аналізу.

Прикласи

1. Рівняння y = 2x - 1 визначає на площині пряму лінію.

2. Рівняння $x^2 - y^2 = 0$ або (x + y)(x - y) = 0 визначають дві прямі бісектриси координатних кутів.

3. Рівняння $x^2 + y^2 = 0$ задовольняє лише одна точка O (0; 0). У подібних ви-

падках кажуть, що рівняння визначає вироджену лінію.
4. Рівняння $x^2 + y^2 + 1 = 0$ не визначає ніякого геометричного місця точок, оскільки для будь-яких значень x та y маємо $x^2 + y^2 + 1 > 0$.

1.2. Знаходження рівняння лінії за її геометричними властивос-ТЯМИ

Зупинимося детальніше на задачі про складання рівняння лінії, ваданої геометрично. Для її розв'язання потрібно встановити геометричну властивість, яку задовольняють лише точки даної лінії, і записати цю властивість у вигляді рівняння. Таке рівняння пов'язує вмінні координати точок даної лінії і ті відомі сталі величини, які геометрично визначають саме цю лінію.

П риклади

1. Скласти рівняння лінії, сума квадратів відстаней кожної точки якої до то-

чок A (-1; 0) і B (i; 0) дорівнює 4.

О Нехай точка M(x; y) лежить на лінії, тоді за умовою $AM^2 + BM^3 = 4$. Оскільки $AM^2 = (x+1)^2 + y^2$, $BM^2 = (x-1)^2 + y^3$, то $(x+1)^2 + y^2 + (x-1)^3 + y^3 = 4$, звідки після спрощень дістаємо шукане рівияння: $x^3 + y^3 = 1$. ●

2. Скласти рівняння лінії, кожна точка якої розміщена від точки А (і; 2) в два

рази далі, ніж від точки B (-2; 0).

 \bigcirc Позначимо змінну точку лінії через M (x; y), тоді за умовою AM = 2BM, тобто

$$\sqrt{(x-1)^2 + (y-2)^2} = 2\sqrt{(x+2)^2 + y^2}.$$

Перетворюючи це рівняння, маємо

$$3x^2 + 3y^2 + i8x + 4y + 1i = 0.$$

1.3. Полярні рівняння лінії

Рівняння Φ (р, φ) = 0 називається рівнянням лінії l в полярних координатах, або полярним рівнянням, якщо його задовольняють полярні координати р і φ будь-якої точки лінії l і не задовольняють координати жодної точки, яка не лежить на цій лінії. Щоб від полярного рівняння лінії перейти до рівняння (1), потрібно полярні координати в рівнянні Φ (р, φ) = 0 виразити через декартові (п. 2.3, гл. 2).

Приклади

1. Спіраллю Архімеда називається лінія, описана точкою, що рівномірно ружається по променю, який сам рівномірно обертається навколо свого початку. Рівняння спіралі Архімеда (рис. 3.і) має вигляд $\rho = a\phi$, де a > 0 — стала величина.

2. Равликом Паскаля називають криву (рис. 3.2), що задається рівнянням р =

 $= a \cos \varphi + b$.

3. Лемніскатою Бернуллі називають криву, що задається рівнянням $\rho = a \sqrt{\cos 2\phi}$ і має вигляд вісімкн (рис. 3.3). У прямокутних координатах рівняння лемніскати Бернуллі записується складніше: $(x^2 + y^2)^3 - a^2(x^3 - y^3) = 0$.

4. Трипелюстковою розою називають криву (рис. 3.4), що задається рівнянням

 $\rho = a \cos 3\varphi$.

5. Координатними лініями називають лінії, в яких одна з координат є сталою величиною. У декартових координатах координатні лінії утворюють два сімейства прямих, паралельних одній з осей координат (рис. 3.5, a). У полярних координатах лінії ρ = const утворюють сімейство концентричних кіл з центром у полюсі, а лінії φ = const — сімейство променів, що внходять з полюса (рис. 3.5, δ).

1.4. Параметричні рівняння лінії

Нехай залежність між змінними x і y виражена через третю змінну t, тобто

$$x = x(t), \quad y = y(t). \tag{2}$$

Змінна і називається параметром і визначає положення точки (х; у) на площині. Наприклад, якщо x = 2t + 1, $y = t^2$, то значенню параметра t=3 відповідає на площині точка (7, 9), тому що $x = 2 \cdot 3 + 1 = 7$, $y = 3^2 =$ = 9

Якщо t змінюється, то точка на площині переміщується, описуючи деяку лінію І. Такий спосіб задання лінії називається параметричним, а рівняння (2) — параметричними рівняннями лінії І. Щоб від рівняння (2)

перейти до рівняння (1), потрібно будь-яким способом з двох рівнянь (2) виключити параметр t (наприклад, з першого рівняння виразити через х і результат підставити в друге рівняння). Але такий перехід не завжди доцільний і не завжди можливий, тому доводиться користуватись параметричними рівняннями (2).

П риклади

1. Розглянемо траєкторію точки кола, яке котиться без ковзання вздовж нерухомої прямої. Якщо вздовж осі Ox котиться без ковзання коло радіуса R, то будьяка нерухома точка кола описує криву, яка назнвається циклоїдою (рис. 3.6) і зада-€ться рівнянням

$$x = R(t - \sin t), \quad y = R(1 - \cos t); \quad -\infty < t < +\infty.$$

Якщо параметр t змінюється від 0 до 2п, то дані рівняння визначають першу арк у циклоїди, якщо $2\pi < t < 4\pi$ — то другу арку і т. д.

Циклоїда є найпростішою з кривих, які описує на нерухомій площині точка однієї лінії, що котиться без ковзання по другій лінії.

Рис. 3.7

2. Гіпоциклоїдами (рис. 3.7, а) та епіциклоїдами (рис. 3.7, б) називаються криві, які описує точка кола, яка котиться по нерухомому усередині та ззовні. Вигляд і рівняння кривих залежать від відношення радіусів кіл.

Гіпоциклоїда при відношенні радіусів і : 4 називається астроїдою (рис. 3.8, a), а епіциклоїда при відношенні радіусів і : 1 називається кардіоїдою (рис. 3.8, б). Параметричні рівняння астроїдн мають такий вигляд:

$$x = R \cos^3 t$$
, $y = R \sin^3 t$;
 $0 \le t < 2\pi$.

Кардіоїда задається параметричними рівняннями

$$x = 2R \cos t (1 + \cos t), \quad y = 2R \sin t (1 + \cos t); \quad 0 \le t < 2\pi.$$

Простіше записується полярие рівняння кардіоїди:

$$\rho = 2R (1 + \cos \varphi).$$

Усі ці криві широко застосовуються в теорії механізмів.

3. Евольвентною розгорткою кола (від латинського evolvo — розгортати) називається крива, що задається рівняннями

$$x = R(\cos t + t\sin t), \quad y = R(\sin t - t\cos t); \quad 0 \le t < +\infty.$$

Механічне креслення евольвенти виконується так: на коло туго намотують гнучку й нерозтяжну нигку, закріплену в точці A (рис. 3.9), і з вільним кінцем M в цій точці. Відтягуючи нитку за вільний кінець, змотують її з кола; точка M при цьому описує дугу евольвенти кола, тобто, якщо M — довільна точка евольвенти, то довжина дуги AB дорівнює довжині відрізка MB.

Профілі переважної більшості зубців зубчастих коліс окреслені з боків дугами евольвенти кола.

львенти кола.

1.5. Векторне рівняння лінії

Лінію можна задати також векторним рівнянням $\vec{r} = \vec{r}(t)$, де t — скалярний змінний параметр. Кожному значенню t_0 відповідає ціл-

ком визначений вектор $\vec{r}_0 = \vec{r} (t_0)$ плошини. Таким чином, якщо параметр t набуває певної множини деяких значень, то рівняння \vec{r} = $=\stackrel{\rightarrow}{r}(t)$ задає деяку множину векторів. Якщо від точки 0 (рис. 3.10) площини відкласти вектори $\overrightarrow{OM} = r$, то геометричне місце точок, які збігаються з кінцями цих векторів (за

умови, що всі вектори компланарні), визначить на площині деяку лінію *І*.

Векторному параметричному рівнянню $\vec{r} = \vec{r}(t)$ в прямокутній системі координат Оху Відповідають два скалярних рівняння:

$$x = x(t), \quad y = y(t),$$

тобто проекціями на осі координат векторного рівняння лінії є її параметричні рівняння.

Векторне рівняння та параметричні рівняння лінії мають такий механічний зміст: якщо точка рухається на площині, то вказані рівняння називаються рівняннями руху точки, а лінія l — траєкторією точки; параметром t при цьому ϵ час.

1.6. Про залежність рівняння лінії від вибору системи координат У попередніх прикладах вказувалось, що одну й ту саму лінію

можна задати різними рівняннями. Таким чином, вигляд рівняння лінії залежить від вибору системи координат або, що те саме, від розміщення лінії відносно системи координат. Рівняння лінії змінюється як при переході від однієї декартової системи до іншої, тобто при перетворенні координат (гл. 2, п. 2), так і при переході від декартових до будь-яких інших координат (гл. 2. п. 2.5).

У зв'язку з цим виникають такі задачі: як обрати таку систему координат, у якій рівняння лінії, заданої геометрично, було б найпростішим, або як замінити систему координат, щоб задане рівняння лінії спростилось? Подібні задачі ми розглядатимемо при вивченні ліній другого порядку.

Усе сказане тут про залежність рівняння лінії на площині від вибору системи координат однаково стосується і рівнянь поверхонь та ліній у просторі. Про це йтиметься в § 2.

Завдання для самоконтролю

- 1. Що називається рівнянням з двома змінними? Яка різниця між рівнянням і тотожністю?
 - 2. Шо називається рівнянням лінії на площині?
- 3. Яка лінія називається алгебраїчною? Що називається порядком алгебраїчної лінії? Як записуються в загальному вигляді алгебраїчні лінії першого та другого порядків?

- 4. Як знайти рівняння лінії за її геометричними властивостями?
- 5. Що називається полярним рівиянням лінії? Навести прикладн.
- 6. Як записуються векторие та параметричні рівняння лінії? У чому полягає іхній механічний эміст? Навести приклади.
 - 7. Чому вигляд рівняння лінії залежить від системи координат?
- 8. Побудуватн лінії, задані рівняннями в декартових координатах: a) y = 2x + + i; б) $x^2 + y^3 = i$; в) $y = \cos x$.
- 9. Побудувати лінії, задані полярними рівняннями: а) p=5; б) $\phi=\frac{\pi}{4}$; в) $\rho=2\cos\phi$.
- 10. Побудувати лінії, задані параметричними рівняннями: a) x = t 1, y = 2t + 1; б) $x = \frac{t}{2}$, $y = t^2$; в) $x = 2\cos t$, $y = 2\sin t$.
- 11. Точка M рухається так, що під час руху залишається весь час у два рази ближчою до A (1; 0), ніж до B (4; 0). Скласти рівняння її траєкторії.

12. Скласти рівняння лінії, кожна точка якої рівновіддалена від точки A (3; 0) і прямої x+3=0.

Відповіді. 8. Рис. 3.11. 9. Рис. 3.12, 10. Рис. 3.13, 11. $x^2 + y^2 = 4$. 12. $y^2 = 12x$.

§ 2. ПОВЕРХНІ І ЛІНІЇ В ПРОСТОРІ. ЇХНІ РІВНЯНПЯ

2.1. Поверхня та її рівняння

Розглянемо співвідношення

$$F(x, y, z) = 0 (3)$$

між трьома змінними величинами х, у, г.

Рівність (3) називають рівнянням з трьома змінними x, y, z, якщо ця рівність не виконується для всіх трійок чисел x, y, z, і тотожністю, якщо вона справджується при будь-яких значеннях х, у, г.

Припустимо, парою значень $x=x_0$ і $y=y_0$ з рівняння (3) визначається єдине значення $z=z_0$. Упорядкована трійка чисел x_0 , y_0 , z_0 у заданій прямокутній системі координат визначає точку $M(x_0)$ $y_0; z_0$.

Сукупність всіх розв'язків г рівняння (3), які відповідають певним значенням x та y, визначає в просторі деяке геометричне місце точок M(x; y; z), яке називається поверхнею (рис. 3.14), а рівняння (3) рівнянням цієї поверхні.

Отже, рівняння (3) називається рівнянням поверхні відносно заданої системи координат, якщо це рівняння задовольняють координати х, у, г кожної точки даної поверхні і не задовольняють координати х, у, г жодної точки, яка не лежить на цій поверхні.

Поверхнею, заданою рівнянням (3) відносно певної системи координат, називається геометричне місце точок M(x; y; z), координати яких х, у, г задовольняють дане рівняння.

Якщо вираз F(x; y; z) в рівнянні (3) є многочленом від x, y, z, тобто сумою скінченного числа одночленів $ax^ky^mz^p$ із сталими коефіцієнтами a і невід'ємними цілими показниками k, m, p, то поверхня, яка задається цим рівнянням, називається алгебраїчною.

Неалгебраїчні поверхні називаються трансцендентними. Порядком алгебраїчної поверхні називається степінь многочлена, яким задається дана лінія.

Ми розглядатимемо лише алгебраїчні поверхні першого порядку

і деякі алгебраїчні поверхні другого порядку. Отже, як і лінію на площині, поверхню в просторі можна задати геометрично і аналітично. Якщо поверхня задана геометрично, то виникає задача про складання рівняння цієї поверхні і, навпаки, якщо поверхня задана рівнянням, то постає задача про її геометричні властивості.

Приклад Скластн рівняння геометричного місця точок, рівновіддаленых від точок A (1; —1; 2) і B (0; —2; 3).

Рис. 3.14

О Нехай точка M(x; y; z) лежить на заданій поверхні. Тоді за умовою AM = BM, тобто

$$V\overline{(x-1)^2 + (y+1)^2 + (z-2)^2} = V\overline{(x-0)^2 + (y+2)^2 + (z-3)^2},$$

звідки після спрощень дістаємо шукане рівняння 2x + 2y - 2z + 7 = 0.

2.2. Рівняння лінії в просторі

Лінію l в просторі можна розглядати як лінію перетину двох поверхонь, або геометричне місце точок, що знаходяться од-

ночасно на двох поверхнях; отже, якщо F_1 (x, y, z) = 0 і F_2 (x, y, z) = 0 рівняння двох поверхонь, які визначають лінію l (рис. 3.15), то координати точок цієї лінії задовольняють систему двох рівнянь з трьома невідомими:

$$\begin{cases}
F_1(x, y, z) = 0; \\
F_2(x, y, z) = 0.
\end{cases}$$
(4)

Рівняння системи (4) сумісно визначають лінію l і називаються рівняннями лінії в просторі.

Лінію в просторі можна розглядати також як траєкторію рухомої точки. При такому підході лінію в просторі задають векторним параметричним рівнянням

$$\vec{r} = \vec{r}(t). \tag{5}$$

Векторному параметричному рівнянню (5) відповідають скалярні параметричні рівняння

$$x = x(t), y = y(t), z = z(t)$$

— проекції вектора (5) на осі координат. Таким чином, векторні рівняння лінії на площині і в просторі мають однаковий вигляд і однакову суть, а відповідні параметричні рівняння відрізняються лише кількістю рівнянь, яка залежить від числа базисних векторів на площині і в просторі.

II риклади

1. Якщо деяка точка *М* рівномірно рухається по твірній кругового циліндра, а сам циліндр рівномірно обертається навколо своєї осі, то точка *М* описує криву, яка називається *гвинтовою лінією*.

Радіусом гвинтової лінії називають радіус циліндра, а $\overline{\text{п}}$ вісью — вісь циліндра. Відстань, на яку зміститься точка вздовж твірної при повному оберті циліндра, називається кроком гвинта і позначається через h. Щоб вивести рівняння гвинтової лінії, візьмемо вісь циліндра за вісь Oz, а площину Oxz — за початок відліку кута повороту циліндра (рис. 3.16, a).

Нехай $\angle NOB = t$ і M (x; y; z) — довільна точка гвинтової лінії. Координати x і y точки M збігаються з координатами точки B (рис. 3.16, δ): $x = R \cos t$, y =

=R sin t, де R — радіус цнліндра. Щоб визначити координату z, побудуємо розгортку циліндра NN_1D_1D (рис. 3.16, θ), в якій $NN_1=2\pi R$, $N_1D_1=ND=h$, NB=Rt, BM=z. З подібності трикутників NMB і ND_1N_1 дістанемо

$$\frac{z}{h} = \frac{Rt}{2\pi R}, \quad z = \frac{h}{2\pi} t.$$

Таким чином, параметричні рівняння гвинтової лінії мають вигляд

$$x = R \cos t$$
, $y = R \sin t$, $z = \frac{h}{2\pi} t$

або у векторній формі $\vec{r}(t) = R \cos t \vec{i} + R \sin t \vec{j} + \frac{ht}{2\pi} \vec{k}$.

2. Лінія, яка задається рівняннями

$$\begin{cases} x^2 + y^2 + z^2 = R^2; \\ x^2 + y^2 + Rx = 0, \end{cases}$$

утворюється при перетнні циліндричної та сферичної поверхонь (§ 7) і називається лінією Вівіані (рнс. 3.17).

Завдання для самоконтролю

- 1. Що називається рівнянням поверхні?
- 2. Що називається алгебраїчною поверхнею п-го порядку?
- 3. Як аналітично задати лінію, яка утворюється при перетині двох поверхонь?
 - 4. Як аналітично задати лінію, яка є траєкторією рухомої точкн?
- 5. Упевнитись, що точка A (1; 0; —1) лежить на поверхні $x^2 + y^2 + 2z^2 3 =$ **=** 0, а точка B (1; 2; 0) — не лежить на ній.
- 6. Пересвідчитись, що точка А (1; 2; 3) лежить на лінії, яка визначається системою рівнянь

$$\begin{cases} x^2 + xy - z^2 + 6 = 0; \\ x + 2y - 3z + 4 = 0. \end{cases}$$

7. Вивести рівняння геометричного місця точок, суми відстаней яких від двох даних точок A (0; 0; —4) і B (0; 0; 4) — величинн сталі і дорівнюють і0. B і ∂ пові ∂ ь, 7. $\frac{x^2}{9} + \frac{y^2}{9} + \frac{z^2}{25} = i$.

$$Bi\partial nosi\partial b$$
, 7. $\frac{x^2}{9} + \frac{y^2}{9} + \frac{z^2}{25} = 1$

\$ 3. ПРЯМА НА ПЛОЩИНІ

3.1. Різні види рівнянь прямої на площині

Пряма на площині геометрично може бути задана різними способами: точкою і вектором, паралельним даній прямій; двома точками; точкою і вектором, перпендикулярним до даної прямої, тощо. Різним способам задання прямої відповідають у прямокутній системі координат різні види її рівнянь.

Нехай пряма (на площині чи в просторі) проходить через задану точку M_0 паралельно заданому ненульовому вектору \vec{s} , який називається напрямним вектором прямої. Пряма має безліч напрямних векторів, їхні відповідні координати пропорційні. Точка M_0 і її напрямний вектор цілком визначають пряму, тому що через точку M_0 можна провести лише одну пряму, паралельну вектору \vec{s} . Складемо рівняння цієї прямої. Позначимо через M (рис. 3.18) довільну точку прямої і розглянемо радіуси-вектори $\vec{r}_0 = \overrightarrow{OM}_0$ та $\vec{r} = \overrightarrow{OM}$ точок M_0 та M і вектор M_0M , що лежить на даній прямій.

Оскільки вектори $\overrightarrow{M_0M} = \overrightarrow{r} - \overrightarrow{r_0}$ і \overrightarrow{s} колінеарні, то $\overrightarrow{r} - \overrightarrow{r_0} = \overrightarrow{st}$, звідки

$$\vec{r} = \vec{r}_0 + \vec{s}t. \tag{6}$$

Змінна t у формулі (6) може набувати довільних дійсних значень і називається параметром, а рівняння (6) називається векторним параметричним рівнянням прямої.

Векторне параметричне рівняння прямої має однаковий вигляд і

на площині, і в просторі.

Якщо пряма l розглядається на площині і задається точкою M_0 (x_0 ; y_0) та напрямним вектором $\vec{s} = (m; n)$, то, прирівнюючи відповідні координати векторів \vec{r} та $\vec{r}_0 + \vec{st}$ за формулою (6), маємо

$$x = x_0 + mt, \quad y = y_0 + nt,$$
 (7)

ЗВІДКИ

$$\frac{x-x_0}{m} = \frac{y-y_0}{n}.$$
 (8)

Рівняння (7) називаються параметричними рівняннями прямої, а рівняння (8) — її канонічним рівнянням.

Зокрема, якщо пряма проходить через точку M_0 (x_0 ; y_0) паралельно осі Ox, то її напрямний вектор $\vec{s}=(m;0)$, тому рівняння (8) набирає вигляду

$$\frac{x-x_0}{m}=\frac{y-y_0}{0}.$$

Як відомо, добуток середніх членів пропорції дорівнює добутку крайніх членів. Тому маємо $(y-y_0)$ $m=(x-x_0)\cdot 0$, звідки $y=y_0$. Це і є рівняння прямої, яка паралельна осі Ox.

Аналогічно, якщо пряма проходить через точку M_0 (x_0 ; y_0) пара-

лельно осі Oy, то її рівнянням є $x = x_0$.

Виведемо рівняння прямої з кутовим коефіцієнтом. Якщо пряма не перпендикулярна до осі Ox, то рівняння (8) можна записати у вигляді

$$y - y_0 = \frac{n}{m} (x - x_0)$$
 and $y = \frac{n}{m} x + (y_0 - \frac{n}{m} x_0)$.

Позначивши $\frac{n}{m}=k$, $y_0-\frac{n}{m}x=b$, дістанемо

$$y - y_0 = k \left(x - x_0 \right) \tag{9}$$

або

$$y = kx + b. ag{10}$$

Відношення $k=\frac{n}{m}=\operatorname{tg}\alpha$, де α — кут, утворений прямою з додатним напрямом осі Ox (рис. 3.19), називається *кутовим коефіцієнтом прямо*ї, а величина $b=y_0-\frac{n}{m}\;x_0$ — ордината точки перетину прямої з віссю Oy Якщо пряма проходить через початок координат, то b=0 і рівняння такої прямої має вигляд

$$y = kx. (11)$$

Рівняння (9) називається рівнянням прямої, яка проходить через задану точку і має заданий кутовий коефіцієнт, а рівняння (10) — рівнянням прямої з кутовим коефіцієнтом.

Рівняння прямої, яка проходить через дві задані точки M_1 (x_1 ; y_1) та M_2 (x_2 ; y_2), дістанемо з рівняння прямої, що проходить через точку M_1 і має напрямний вектор s = 1

 $= \overrightarrow{M_1} \overrightarrow{M_2} = (x_2 - x_1; y_2 - y_1):$ $\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1}. \quad (12)$ $\overrightarrow{F_0} \qquad \overrightarrow{N_0} \qquad$

Рівняння (12) називається рівнянням прямої, яка проходить через дві задані точки.

Зокрема, якщо пряма прохо ить через точки A (a; 0) та B (0; b), тобто відтинає на осях відрізки a та b (рис. 3.20), то з рівняння (11) маємо

$$\frac{x-a}{0-a} = \frac{y-0}{b-0}$$
 and $\frac{x}{a} + \frac{y}{b} = 1$. (13)

Рівняння (13) називається рівнянням прямої у відрізках на осях.

Розглянемо рівняння прямої, яка проходить через задану точку $M_1(x_1; y_1)$ перпендикулярно до заданого ненульового вектора $\vec{n} = (A; B)$.

Візьмемо на прямій l довільну точку (рис. 3.21) M (x; y) і введемо вектор $\overrightarrow{M_1}M = (x - x_1; y - y_1)$. Оскільки вектори \overrightarrow{n} і $\overrightarrow{M_1}M$ перпендикулярні, то їх скалярний добуток дорівнює нулю, тобто

$$A(x - x_1) + B(y - y_1) = 0. (14)$$

Рівняння (14) називається рівнянням прямої, яка проходить через задану точку перпендикулярно до заданого вектора.

Вектор n=(A; B) називається нормальним вектором прямої. Пряма має безліч нормальних векторів. Усі вони паралельні, отже, їхні відповідні координати пропорційні.

3.2. Загальне рівняння прямої та його дослідження

Усі одержані вище рівняння прямої лінії є рівняннями першого степеня відносно змінних x і y, тобто лінійними рівняннями. Отже, рівняння будь-якої прямої, яка лежить в площині Oxy, є лінійним рівнянням відносно x і y.

Покажемо, що правильним буде й обернене твердження: кожне лінійне рівняння

$$Ax + By + C = 0 \tag{15}$$

з двома змінними x і y визначає на площині в прямокутній системі координат п яму лінію.

Дійсно, якщо (x_1, y_1) — будь-який розв'язок рівняння (15), то $Ax_1 + By_1 + C = 0$. (16)

Віднімаючи почленно від рівняння (15) рівність (16), дістаємо

$$A(x-x_1) + B(y-y_1) = 0. (17)$$

Рівняння (17) еквівалентне рівнянню (15) і згідно з формулою (14) визначає на площині Оху пряму, яка проходить через точку M_1 (x_1 , y_1) перпендикулярно до вектора n = (A; B), тобто рівняння (15) також визначає пряму і називається загальним рівнянням прямої. Коефіцієнти A і B при невідомих x і y загального рівняння є координатами її нормального вектора.

Кожне з рівнянь (7)— (14) зводиться до рівняння (15), отже, кожна пряма лінія задається рівнянням (15), і навпаки, кожне рівняння (15) визначає на площині *Оху* пряму. Це означає, що кожна пряма— це лінія першого порядку, і навпаки, кожна лінія першого порядку

є пряма.

Дослідимо загальне рівняння, тобто розглянемо окремі випадки розміщення прямої в системі координат Oxy залежно від значень коефіцієнтів A, B і C.

1. Якщо $A \neq 0$, $B \neq 0$, $C \neq 0$, то рівняння (15) зводиться до рівняння прямої у відрізках на осях

$$\frac{x}{-C/A} + \frac{y}{-C/B} = 1,$$

тобто пряма перетинає осі координат в точках з координатами $\left(-\frac{C}{A};0\right)$ і $\left(0;-\frac{C}{B}\right)$.

- 2. Якщо A = 0, то пряма By + C = 0 паралельна осі Ox і проходить через точку $\left(0; -\frac{C}{B}\right)$, оскільки нормальний вектор $\vec{n} = (0; B)$ прямої перпендикулярний до осі Ox, а координати даної точки задовольняють рівняння прямої.
- 3. Аналогічно попередньому, якщо B=0, то пряма Ax+C=0 паралельна осі Oy і проходить через точку $\left(-\frac{C}{A};\,0\right)$.
- 4. Якщо C=0, то пряма Ax+By=0 проходить через початок координат, тому що координати точки O(0;0) задовольняють рівняння прямої.
- 5. Якщо A=C=0, то згідно з попереднім рівняння By=0 або y=0 визначає вісь Ox.
- 6. Якщо B = C = 0, то рівняння Ax = 0 або x = 0 визначає вісь Oy.

3.3. Кут між двома прямими. Умови паралельності і перпендикулярності двох прямих

Кут між двома прямими вимірюється кутом між їхніми напрямними векторами. При цьому слід зазначити, що, вибравши на одній із прямих напрямний вектор, напрямлений в протилежну сторону, дістанемо другий кут, який доповнює перший до π .

а) Нехай прямі l_1 та l_2 задано канонічними рівняннями

$$\frac{x-x_1}{m_1} = \frac{y-y_1}{n_1}; \quad \frac{x-x_2}{m_2} = \frac{y-y_2}{n_2}$$

і φ — кут між цими прямими: $\varphi = (l_1, l_2)$, $0 < \varphi < \pi$. Оскільки вектори $\vec{s_1} = (m_1; n_1)$ і $\vec{s_2} = (m_2; n_2)$ є напрямними векторами даних прямих (рис. 3.22) і $\varphi = (\vec{s_1}, \vec{s_2})$, то за формулою (36) (див. гл. 2) маємо

$$\cos \varphi = \frac{\vec{s_1} \cdot \vec{s_2}}{|\vec{s_1}| |\vec{s_2}|} = \frac{m_1 m_2 + n_1 n_2}{\sqrt{m_1^2 + n_1^2 \sqrt{m_2^2 + n_2^2}}}.$$
 (18)

Якщо прямі l_1 і l_2 паралельні, то вектори $\vec{s_1}$ і $\vec{s_2}$ теж паралельні, тому їхні координати пропорційні, тобто

$$\frac{m_1}{m_2} = \frac{n_1}{n_2} \tag{19}$$

— умова паралельності двох прямих. Якщо прямі l_1 і l_2 перпендикулярні, то вектори $\vec{s_1}$ і $\vec{s_2}$ теж перпендикулярні і їхній скалярний добуток дорівнює нулю, отже,

$$m_1 m_2 + n_1 n_2 = 0 (20)$$

— умова перпендикулярності двох прямих.

б) Нехай тепер прямі l_1 і l_2 задані загальними рівняннями $A_1x+B_1y+C_1=0$ і $A_2x+B_2y+C_2=0$, тоді кут ϕ між ними (рис. 3.23) дорівнює куту між їхніми нормальними векторами $n_1=(A_1;B_1)$ і $n_2=(A_2;B_2)$; тому аналогічно випадку а) дістанемо:

1) формулу для кута φ між прямими l_1 і l_2 :

$$\cos \varphi = \frac{A_1 \cdot A_2 + B_1 \cdot B_2}{\sqrt{A_1^2 + B_1^2} \sqrt{A_2^2 + B_2^2}}; \tag{21}$$

2) умову паралельності прямих l_1 і l_2 :

$$\frac{A_1}{A_2} = \frac{B_1}{B_2} \,; \tag{22}$$

3) умову перпендикулярності прямих l_1 і l_2 :

$$A_1 \cdot A_2 + B_1 \cdot B_2 = 0. \tag{23}$$

Рис. 3.22

Рис. 3.23

Нехай прямі l_1 і l_2 задані рівняннями з кутовими коефіцієнтами $y = k_1 x + b_1$, $y = k_2 x + b_2$, де $k_1 = \lg \alpha_1$, $k_2 = \lg \alpha_2$ — кутові коефіцієнти, то з рис. 3.24 видно, що

$$tg \varphi = tg (\alpha_2 - \alpha_1) = \frac{tg \alpha_2 - tg \alpha_1}{1 + tg \alpha_1 tg \alpha_2}$$

$$tg \varphi = \frac{k_2 - k_1}{1 + k_1 k_2}.$$
(24)

Зауважимо, що формула (24) визначає кут, на який треба повернути пряму l_1 (проти годинникової стрілки), щоб вона збіглась з прямою l_2 . Якщо прямі l_1 і l_2 паралельні, то $\varphi=0$ і tg $\varphi=0$, тому з формули (24) маємо $k_2 - k_1 = 0$. Отже, умовою паралельності двох прямих є рівність їхніх кутових коефіцієнтів:

$$k_1 = k_2. \tag{25}$$

Якщо прямі l_1 і l_2 перпендикулярні, то $\varphi=90^\circ$ і $\lg \varphi$ не існує, тому що знаменник дробу (24) дорівнює нулю. Таким чином, умова перпендикулярності прямих має вигляд

$$k_1 k_2 + 1 = 0$$
 and $k_2 = -\frac{1}{k_1}$. (26)

Формули (18), (21) і (24) дають змогу визначити один із двох суміжних кутів, які утворюються при перетині двох прямих. Другий кут дорівнює п — ф. Іноді вирази справа в цих формулах записують по модулю, тоді визначається гострий кут між прямими.

Рис. 3.24

Рнс. 3.25

Приклади.

1. Знайти кут між прямими 3x-4y+1=0 і 5x-12y+3=0. За формулою (21) маємо

$$\cos \varphi = \frac{3 \cdot 5 + (-4) \cdot (-12)}{\sqrt{3^2 + (-4)^2} \sqrt{5^2 + (-12)^2}} = \frac{15 + 48}{5 \cdot 13} = \frac{63}{65} \approx 0,96,$$

$$\varphi = \arccos 0,96. \quad \bullet$$

2. Скласти рівняння прямої, що проходить через точку (—8; 1) паралельно прямій 2x-y+7=0.

О Приведемо задане рівняння до внгляду (10): y = 2x - 7, отже, кутовни кое-

фіцієнт прямої k=2.

Оскільки шукана і задана прямі паралельні, то за умовою (25) їхні кугові коефіцієнтн рівні між собою, тому, скорнставшнсь рівнянням (9), дістанемо y-1=2 (x+8) або y-2x-17=0.

3. Медіанн ВМ і CN (рис. 3.25) трикутника ABC лежать на прямих x+y=3 і 2x+3y=1, а точка A (1; 1) — вершина трикутника. Скласти рівняння прямої BC.

О Розв'язуючн систему рівняння $\begin{cases} x+y=3; \\ 2x+3y=1, \end{cases}$ знаходимо точку перетину медіан: O(8;-5). З відношення $\frac{AO}{OP}=\frac{2}{1}=\lambda$ і формул (24) (гл. 2) дістанемо координатн точки P: $8=\frac{1+2x_P}{1+2}$, $-5=\frac{1+2y_P}{1+2}$; $x_P=\frac{23}{2}$, $y_P=-8$. Оскільки точки B 1 C лежать на заданнх прямих, то їхиі координатн задовольняють задані рівняння. Точка P ділить відрізок BC пополам, отже, маємо систему рівнянь

$$\frac{x_B + x_C}{2} = \frac{23}{2}; \quad \frac{y_B + y_C}{2} = -8; \quad x_B + y_B = 3; \quad 2x_C + 3y_C = 1,$$

звідкн $x_C=11$, $y_C=-7$. Пряма BC проходить через точки $P\left(\frac{23}{2};-8\right)$ і $C\left(11;-7\right)$, тому за формулою (12) дістанемо $\frac{x-23/2}{11-23/2}=\frac{y+8}{-7+8}$ або 2x+y-15=0.

3.4. Відстань від точки до прямої

Нехай задано пряму l рівнянням Ax+By+C=0 і точку $M_{\rm o}$ ($x_{\rm o};\ y_{\rm o}$). Відстань d (рис. 3.26) точки $M_{\rm o}$ від прямої l дорівнює мо-

дулю проекції вектора $\overrightarrow{M_1M_0}$, де $M_1(x_1; y_1)$ — довільна точка прямої l, на напрям нормального вектора $\overrightarrow{n}=(A;B)$. Отже,

$$\begin{split} d &= | \operatorname{np}_{\vec{n}} \overrightarrow{M_1 M_0}| = \frac{|\overrightarrow{M_1 M_0} \cdot \overrightarrow{n}|}{|\overrightarrow{n}|} = \\ &= \frac{|Ax_0 + By_0 - Ax_1 - By_1|}{|\overrightarrow{A^2 + B^2}|}. \end{split}$$

Оскільки $Ax_1 + By_1 + C = 0$, то $-Ax_1 -$

$$d = \frac{|Ax_0 + By_0 + C|}{VA^2 + B^2} . {(27)}$$

За и в аження. Число в завжди додатне, бо це відстань. Відхиленням δ точки M_0 (x_0 ; y_0) від прямої Ax + By + C = 0 називається додатне число $\delta = d$, якщо точки M_0 і O(0; 0) лежать по різні сторони від прямої, і від'ємне число $\delta = -d$, якщо ці точки лежать по один бік від неї. З формули (27) випливає, що відхилення

$$\delta = \frac{Ax_0 + By_0 + C}{+ \sqrt{A^2 + B^2}},$$

де знак знаменника має бути протилежний до знака С.

II риклад

Знайтн площу квадрата, дві сторонн якого лежать на прямих 4x - 3y - 10 = 018x - 6y + 15 = 0.

Оскільки задані прямі паралельні, то довжину d сторонн квадрата можна

знайти як відстань від довільної точки однієї прямої до другої прямої.

Знайдемо яку-небудь точку на першій прямій. Нехай, наприклад, x=1, тоді $4 \cdot 1 - 3y - 10 = 0$, звідкн y = -2. Отже, точка $M_0(1; -2)$ належить першій прямій.

За формулою (27) знайдемо відстань від точки M_0 до другої прямої:

$$d = \frac{|8 \cdot 1 - 6 \cdot (-2) + 15|}{\sqrt{8^2 + (-6)^2}} = \frac{7}{2}.$$

Площа квадрата $S=d^2=\frac{49}{4}$. lacktriangle

Завдання для самокоитролю

1. Що називається напрямним вектором прямої?

2. Скласти рівняння прямої, яка проходить через задану точку паралельно заданому вектору.

3. Вивести канонічні та параметричні рівняння прямої на площині.

4. Вивести рівняння прямої з кутовим коефіцієнтом та рівняння прямої, що проходить через дві точки.

5. Вивести рівняння прямої у відрізках на осях та загальне рівняння прямої.

6. Довести, що всяке рівняння Ax + By + C = 0 визначає на площині Oxyпряму лінію. Дослідити загальне рівняння прямої.

7. Як знайти кут між двома прямнин? Сформулюватн і записатн умовн паралельності та перпендикулярності двох прямих.

8. Вивести формулу для знаходження відстані точки від прямої.

- 9. Вказатн хоча б один иапрямний вектор прямої, яка: а) має кутовий коефіцієнт k; б) задана рівнянням Ax + By + C = 0.
 - 10. Вказати хоча б один нормальний вектор кожної з прямих у задачі 9. 11. Задано три точки: А (5; 2), В (9; 4) і С (7; 3). Показати, що вони лежать на

одній прямій і написати її рівняння.

12. Знайтн кут між прямнмн x=4 1 2x-y-1=0. 13. Точка A (2; 0) є вершиною правнльного трикутника, а протнлежна їй сторона лежить на прямій x + y - 1 = 0. Скласти рівняння двох інших сторін.

14. Скластн рівняння прямнх, які знаходяться від точки A (1; —2) на відстані $d=\sqrt{20}$ і паралельні грямій 2x-y-5=0. 15. Довестн, що пряма 3x+2y-6=0 перетннае відрізок AB, де A (1; 1),

§ 4. ПЛОЩИНА В ПРОСТОРІ

4.1. Загальне рівняння площини та його дослідження

Нехай в прямокутній системі координат *Охуг* задано площину Π (рис. 3.27) точкою M_0 (x_0 ; y_0 ; z_0) і вектором $\vec{n}=(A;B;C)$, перпендикулярним до цієї площини. Візьмемо на площині точку M (x; y; z) і знайдемо вектор $\overrightarrow{M_0}M=(x-x_0;\ y-y_0;\ z-z_0)$. При будь-якому положенні точки M на площині Π вектори \vec{n} і $\overrightarrow{M_0}M$ взаємно перпендикулярні, тому їхній скалярний добуток дорівнює нулю, тобто

$$A(x-x_0)+B(y-y_0)+C(z-z_0)=0 (28)$$

або

$$Ax + By + Cz + D = 0, (29)$$

де $D = -Ax_0 - By_0 - Cz_0$.

Рівняння (28) називається рівнянням площини, яка проходить через точку M_0 (x_0 ; y_0 ; z_0) перпендикулярно до вектора $\vec{n}=(A; B; C)$, а рівняння (29) — загальним рівнянням площини.

Вектор $\vec{n}=(A;B;C)$ називається нормальним вектором площини. Кожна площина має безліч нормальних векторів. Усі вони паралельні між собою, а їхні координати пропорційні. Отже, всяка площина в прямокутній системі координат визначається рівнянням першого степеня.

Рис. 3.27

Покажемо тепер справедливість оберненого твердження: всяке рівняння першого степеня

$$Ax + By + Cz + D = 0 \tag{30}$$

з трьома змінними x, y і z задає в прямокутній системі координат Охуг площину.

Нехай задано довільне рівняння (30) і (x_0, y_0, z_0) — будь-який розв'язок цього рівняння, тобто

$$Ax_0 + By_0 + Cz_0 + D = 0.$$
 (31)

Віднявши від рівняння (30) рівність (31), дістанемо

$$A(x-x_0) + B(y-y_0) + C(z-z_0) = 0. (32)$$

Рівняння (32) еквівалентне рівнянню (30) і згідно з формулою (28) визначає в просторі площину, яка проходить через точку M_0 (x_0 ; y_0 ; z_0) перпендикулярно до вектора $\vec{n}=(A;B;C)$. Отже, рівняння (30) також визначає площину.

Таким чином, кожне алгебраїчне рівняння першого степеня із

змінними х, у і г є рівнянням площини.

Дослідимо загальне рівняння площини.

- 1. Якщо в рівняннях (30) D=0, то воно набирає вигляду Ax+By+Cz=0. Це рівняння задоєольняє точка O (0; 0; 0). Отже, якщо в загальному рівнянні площини відсутній вільний член, то така площина проходить через початок координат.
- 2. Якщо A=0, то рівняння (30) набирає вигляду By+Cz+D=0 і визначає площину, нормальний вектор якої n=(0;B;C) перпендикулярний до осі Ox. Отже, якщо в загальному рівнянні площини коефіцієнт при змінній x дорівнює нулю, то таке рівняння вивначає площину, що паралельна осі Ox.

Аналогічно рівняння Ax + Cz + D = 0 визначає площину, паралельну осі Oy, а рівняння Ax + By + C = 0 — площину, паралельну Oz.

3. Якщо A=0, B=0, $C\neq 0$, $D\neq 0$, то рівняння (30) набирає вигляду Cz+D=0 або $z=-\frac{D}{C}$. З випадку 2 випливає, що це рівняння визначає площину, яка паралельна осям Ox та Oy (коефіцієнти при x і y дорівнюють 0), тобто площину, паралельну площині Oxy.

Аналогічно площина By + D = 0 паралельна площині Oxz, а

площина Ax + D = 0 паралельна площині Oyz.

4. Якщо в рівнянні (30) A = D = 0, то площина By + Cz = 0 проходить через вісь Ox. Справді, згідно з попереднім, при D = 0 площина проходить через початок координат, а при A = 0 — паралельно осі Ox, отже, проходить через вісь Ox.

Аналогічно площина Ax + Cz = 0 проходить через вісь Oy, а пло-

щина Ax + By = 0 — через вісь Oz.

5. Якщо в рівнянні площини A = B = D = 0, то площина Cz = 0 або z = 0 збігається з площиною Oxy. Аналогічно площина Ax = 0 або x = 0 збігається з площиною Oyz, а площина y = 0 — з площиною Oxz.

Приклади

1. Скластн рівняння площинн, яка проходить через точку M (1; 2; 3) перпендикулярно до вектора $\overrightarrow{n} = (-1; -3; 1)$. О Шукане рівняння знаходимо за формулою (28):

$$-1 \cdot (x-1) + (-3) \cdot (y-2) + 1 \cdot (z-3) = 0$$

860

$$x + 3y - z - 4 = 0$$
.

2. Скластн рівняння площнин, яка проходить через точку M_0 (—3; 4; 5) перпендикулярно до осі Oy.

 \bigcirc Орт $\overrightarrow{j}=(0;1;0)$ перпендикулярний до площини, тому його можна розглядати як нормальний вектор. Отже, шукане рівняння має вигляд

$$0 \cdot (x+3) + 1 \cdot (y-4) + 0 \cdot (z-5) = 0$$
 and $y = 4$.

4.2. Рівняння площини, що проходить через три точки. Рівняння площини у відрізках на осях

Нехай на площині Π задано три точки: M_1 (x_1 ; y_1 ; z_1), M_2 (x_2 ; y_2 ; z_2), M_3 (x_3 ; y_3 ; z_3), які не лежать на одній прямій. Ці точки однозначно визначають площину. Знайдемо її рівняння.

Візьмемо на площині довільну точку M(x; y; z) і знайдемо вектори

$$\overrightarrow{M_1}M_3 = (x_3 - x_1; y_3 - y_1; z_3 - z_1),$$

 $\overrightarrow{M_1M} = (x - x_1; y - y_1; z - z_1), \overrightarrow{M_1M_2} = (x_2 - x_1; y_2 - y_1; z_2 - z_1).$ Ці вектори лежать в площині Π , тобто вони компланарні. Оскільки мішаний добуток компланарних векторів дорівнює нулю, то $\overrightarrow{M_1MM_1M_2M_1M_3} = 0$ або

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0.$$
 (33)

Маємо рівняння площини, що проходить через три точки. Зокрема, нехай площина відтинає на осях Ox, Oy, Oz відрізки a, b, c, тобто проходить через точки A (a; 0; 0), B (0; b; 0) і C (0; c). Підставляючи координати цих точок у формулу (33) і розкриваючи визначник, дістанемо

$$xbc + yac + zab - abc = 0$$
 and $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$. (34)

Рівняння (34) називається рівнянням площини у відрізках на осях. Ним зручно користуватись при побудові площини.

Приклади.

1. Написати загальне рівняння площини, що проходить через точки M_1 (1; 2; 3), M_2 (—1; 0; 2), M_3 (—2; 1; 0).

О Підставимо координати точок у рівняння (33):

$$\begin{vmatrix} x-1 & y-2 & z-3 \\ -2 & -2 & -1 \\ -3 & -1 & -3 \end{vmatrix} = 0.$$

Рнс. 3.29

Розкладемо визначник за елементами першого рядка:

$$(x-1)\begin{vmatrix} -2 & -1 \\ -1 & -3 \end{vmatrix} - (y-2)\begin{vmatrix} -2 & -1 \\ -3 & -3 \end{vmatrix} + (z-3)\begin{vmatrix} -2 & -2 \\ -3 & -1 \end{vmatrix} = 0.$$

Обчислюючи визначники другого порядку, знаходимо шукане рівняння:

$$(x-1)$$
 5 - $(y-2)$ 3 + $(z-3)$ (-4) = 0 and $5x-3y-4z+13=0$.

2. Побудувати площину 3x - 2y + 4z - 12 = 0.

О Запишемо задане рівняння у відрізках на осях. Для цього перенесемо у праву частину вільний член і поділимо на нього обидві частини рівняння:

$$\frac{x}{4} + \frac{y}{-6} + \frac{z}{3} = 1$$

ввідки a=4, b=-6, c=3.

Знаючи відрізки, які відтинає площина на осях координат, легко побудувати площину (рис. 3.28).

•

4.3. Кут між двома площинами. Умови паралельності і перпендикулярності двох площин

Нехай задано дві площини $\Pi_{ extbf{1}}$ і $\Pi_{ extbf{2}}$ відповідно рівняннями

$$A_1x + B_1y + C_1z + D_1 = 0$$
, $A_2x + B_2y + C_2z + D_2 = 0$.

Двогранний кут між площинами вимірюється лінійним кутом, який дорівнює куту між нормальними векторами $\vec{n}_1 = (A_1; B_1; C_1)$ $\vec{n}_2 = (A_2; B_2; C_2)$ цих площин (рис. 3.29). Отже, з формулп (36) (гл. 2) маємо

$$\cos \varphi = \frac{\overrightarrow{n_1} \cdot \overrightarrow{n_2}}{|\overrightarrow{n_1}| |\overrightarrow{n_2}|} = \frac{A_1 A_2 + B_1 B_2 + C_1 C_2}{\sqrt{A_1^2 + B_1^2 + C_1^2} \sqrt{A_2^2 + B_2^2 + C_2^2}}.$$
 (35)

Якщо площини $\mathit{\Pi_1}$ і $\mathit{\Pi_2}$ перпендикулярні, то скалярний добуток їхніх нормальних векторів дорівнює нулю, тобто рівність

$$A_1 A_2 + B_1 B_2 + C_1 C_2 = 0 (36)$$

€ умовою перпендикулярності площин.

Якщо площини Π_1 і Π_2 паралельні, то координати нормальних векторів пропорційні, тобто *умовою паралельності площин* є рівність відношень:

$$\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2} \,. \tag{37}$$

П риклад

Знайтн кут між площинами 2x+y+3z-1=0 і x+y-z+5=0. О За формулою (35) маємо

$$\cos \varphi = \frac{2 \cdot 1 + 1 \cdot 1 + 3 \cdot (-1)}{\sqrt{2^2 + 1^2 + 3^2} \sqrt{1^2 + 1^2 + (-1)^2}} = 0,$$

отже, дані площини перпендикуляриі.

4.4. Відстань від точки до площини

Якщо задане рівняння Ax + By + Cz + D = 0 площини Π і точка M_0 (x_0 ; y_0 ; z_0), що не лежить на цій площині, то відстань d від точки M_0 до площини Π знаходиться за формулою

$$d = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}.$$
 (38)

Доведення формули (38) таке саме, як і формули (27).

П риклад

Знайтн внсоту AH пірамідн, заданої своїмн вершинами A (—1; 2; —1), B (1; 0; 2), C (0; 1; —1), D (2; 0; —1).

О За формулою (33) знаходимо рівняння площинн, що проходить через точки В, С, D:

$$\begin{vmatrix} x-1 & y-0 & z-2 \\ -1 & 1 & -3 \\ 1 & 0 & -3 \end{vmatrix} = 0,$$

звідки 3x + 6y + z - 5 = 0.

Висоту AH знайдемо як відстань точкн A (—1; 2; —1) від площнни BCD за формулою (38):

$$AH = \frac{3 \cdot (-1) + 6 \cdot 2 + 1 \cdot (-1) - 3}{\sqrt{3^2 + 6^2 + 1^2}} = \frac{5}{\sqrt{46}} . \bullet$$

Завдання для самоконтролю

- 1. Довести, що кожна площина може бути виражена лінійним рівнянням відносно прямокутної системи координат Охуг і, навпаки, кожне лінійне рівняння з трьома невідомими х, у і z визначає у просторі площину.
 - 2. Записати і дослідити загальне рівняння площини.
 - 3. Вивести рівняння площини, яка проходить через три точки.
 - 4. Внвести рівняння площини у відрізках на осях.
- Як обчислити кут між двома площинами? Які умови паралельності і перпендикулярності двох площин?
 - 6. Вивести формулу для обчисления відстані від точки до площини.

7. Задано точки M_1 (1; 2; —1) і M_2 (0; 3; 1). Скласти рівняння площнии, яка проходить через точку M_1 перпендикулярно до вектора $M_1 M_2$.

8. Скластн рівняння площини, яка проходить через точку А (1; 0; —1) паралель-

ио векторам $\vec{a} = (5; 0; 1)$ і $\vec{b} = (0; 1; -1)$.

9. Знайти відстань між площинами 2x-y+2z+9=0 і 4x-2y+4z-21=0. B i ∂ n o s i ∂ i. 7. x-y-2z-1=0. 8. x-5y-5z-6=0. 9. 6.5.

\$ 5. ПРЯМА ЛІНІЯ В ПРОСТОРІ

5.1. Різні види рівнянь прямої в просторі

Як уже зазначалося в § 3, коли пряма задана точкою і напрямним вектором, то її векторне параметричне рівняння (як на площині, так і в просторі) має вигляд (6): $\vec{r} = \vec{r}_0 + \vec{s}t$, де \vec{r} — радіус-вектор змінної точки M прямої; \vec{r}_0 — радіус-вектор заданої точки M_0 ; \vec{s} — ненульовий напрямний вектор прямої; t — параметр.

Нехай у просторі в прямокутній системі координат задано пряму точкою M_0 (x_0 ; y_0 ; z_0) і напрямним вектором s = (m; n; p). Візьмемо довільну точку M (x; y; z) цієї прямої (рис. 3.30). Тоді аналогічно тому, як було знайдено формули (7), (8) і (12), дістаємо:

1) параметричні рівняння прямої в просторі:

$$x = x_0 + mt$$
, $y = y_0 + nt$, $z = z_0 + pt$; (39)

2) канонічні рівняння прямої в просторі:

$$\frac{x - x_0}{m} = \frac{y - y_0}{n} = \frac{z - z_0}{p} \; ; \tag{40}$$

3) рівняння прямої в просторі, яка проходить через дві задані точки $M_1\left(x_1;\,y_1;\,z_1\right)$ і $M_2\left(x_2;\,y_2;\,z_2\right)$:

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1}.$$
 (41)

У рівняннях (39) — (41) одна або дві координати напрямного вектора можуть дорівнювати нулю (випадки m=n=p=0 та $x_2-x_1=y_2-y_1=z_2-z_1=0$ неможливі, бо за означенням $s\neq 0$).

Якщо m = 0, $n \neq 0$, $p \neq 0$, то напрямний вектор \vec{s} перпендикулярний до осі Ox, тому рівняння

$$\frac{x-x_0}{0}=\frac{y-y_0}{n}=\frac{z-z_0}{p}$$

визначає пряму, перпендикулярну до осі Ох.

Рис. 3.30

Рнс. 3.31

Аналогічно рівняння, в яких лише n=0 або $\rho=0$, визначають прямі, перпендикулярні до осі *Oy* або *Oz*.

Якщо m=n=0, $p\neq 0$, або m=p=0, $n\neq 0$, або n=p=0, $m\neq 0$, то рівняння (40) визначають прямі, відповідно паралельні осям Oz, Oy, Ox.

Розглянемо тепер випадок, коли пряма в просторі задається перетином двох площин. Відомо, що дві непаралельні площини перетинаються по прямій лінії. Отже, система рівнянь двох площин

$$\begin{cases}
A_1x + B_1y + C_1z + D_1 = 0; \\
A_2x + B_2y + C_2z + D_2 = 0,
\end{cases}$$
(42)

нормальні вектори яких $\vec{n_1} = (A_1; B_1; C_1)$ і $\vec{n_2} = (A_2; B_2; C_2)$ не колінеарні, визначає в просторі пряму лінію.

Рівняння (42) називаються загальними рівняннями прямої в просторі. Щоб від загальних рівнянь (42) перейти до канонічних рівнянь (40), потрібно знайти точку M_0 (x_0 ; y_0 ; z_0) на прямій і її напрямний вектор $\vec{s} = (m; n; p)$. Для знаходження точки M_0 одну з її координат, наприклад, $x = x_0$ беруть довільною, а дві інші визначають із системи

$$\begin{cases} B_1 y + C_1 z = -D_1 - A_1 x_0; \\ B_2 y + C_2 z = -D_2 - A_2 x_0. \end{cases}$$

Ця система матиме розв'язок за умови, що $\frac{B_1}{B_2} \neq \frac{C_1}{C_2}$. Якщо ця умова порушується, то в системі (42) довільне значення надають змінній y або змінній z.

Для знаходження напрямного вектора \vec{s} врахуємо, що нормальні вектори $\vec{n_1}$ і $\vec{n_2}$ даних площин перпендикулярні до прямої (рис. 3.31). Тому за вектор \vec{s} можна взяти їхній векторний добуток:

$$\vec{s} = \vec{n}_1 \times \vec{n}_2 = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \end{vmatrix}. \tag{43}$$

II риклад

Звести рівняння прямої

$$\begin{cases} x+y-z-1=0; \\ 2x-y+3z+5=0 \end{cases}$$

до канонічного внгляду,

 \bigcirc Знайдемо яку-небудь точку M_0 ($x_0; y_0; z_0$) на даній прямій. Для цього покладемо в обох рівняннях x=0 і розв'яжемо систему

$$\begin{cases} y-z-1=0; \\ -y+3z+5=0, \end{cases}$$

ввідки z=-2, y=-1. Отже, точка M_0 (0; -1; -2) належить даній прямій.

Напрямний вектор з знаходимо за формулою (43):

$$\vec{s} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 1 & -1 \\ 2 & -1 & 3 \end{vmatrix} = 2\vec{i} - 5\vec{j} - 3\vec{k}.$$

Канонічні рівняння заданої прямої мають вигляд

$$\frac{x}{2} = \frac{y+1}{-5} = \frac{z+2}{-3}$$
.

5.2. Кут між двома прямими. Умови паралельності і перпендикулярності прямих

Нехай прямі l_1 і l_2 задано рівняннями

$$\frac{x-x_1}{m_1} = \frac{y-y_1}{n_1} = \frac{z-z_1}{p_1} \; ; \quad \frac{x-x_2}{m_2} = \frac{y-y_2}{n_2} = \frac{z-z_2}{p_2} \; .$$

Кут між цими прямими (рис. 3.32) дорівнює куту ϕ між їхніми напрямними векторами $\vec{s_1} = (m_1; n_1; p_1)$ і $\vec{s_2} = (m_2; n_2; p_2)$, тому аналогічно в випадком а) п. 3.3 дістанемо:

l) формулу для кутa ϕ між прямими l_1 і l_2 :

$$\cos \varphi = \frac{\overrightarrow{s_1} \cdot \overrightarrow{s_2}}{|\overrightarrow{s_1}||\overrightarrow{s_2}|} = \frac{m_1 m_2 + n_1 n_2 + v_1 p_2}{\sqrt{m_1^2 + n_1^2 + p_1^2} \sqrt{m_2^2 + n_2^2 + p_2^2}}; \quad (44)$$

2) умову паралельності прямих l_1 і l_2 :

$$\frac{m_1}{m_2} = \frac{n_1}{n_2} = \frac{p_1}{p_2} \,; \tag{45}$$

3) умову перпендикулярності прямих l_1 і l_2 :

$$m_1 m_2 + n_1 n_2 + p_1 p_2 = 0. (46)$$

П риклади

1. Знайти кут ф між прямнмн

$$\begin{cases} 2x + y - z - 1 = 0; \\ 2x - y + 3z + 5 = 0 \end{cases}$$

$$i \begin{cases} x = 2t; \\ y = 2 - t; \\ z = -2 + 3t \end{cases}$$

○ За формулами (43) і (39) знаходню напрями! вектори даних прямих: s₁ = (2; $-8; -4) i \vec{s_2} = (2; -1; 3).$

Оскільки $\vec{s_1} \cdot \vec{s_2} = 0$, то $\phi = 90^\circ$. 2. При яких значениях m_1 і n_2 прямі

$$\frac{x}{m_1} = \frac{y-2}{2} = \frac{z+1}{4}$$
 i $\frac{x+1}{-1} = \frac{y+5}{n_0} = \frac{z+3}{-2}$

паралельні?

О З умовн (45) маємо

$$\frac{m_1}{-1} = \frac{2}{n_2} = \frac{4}{-2}$$
; $\frac{m_1}{-1} = -2$, $\frac{2}{n_2} = -2$,

звідки $m_1 = 2$, $n_2 = -1$.

5.3. Құт між прямою і площиною. Умови паралельності і перпендикулярності прямої і площини

Кут між прямою l і площиною Π за означенням є кут між прямою l і її проекцією на площину Π .

Нехай площина Π і пряма l задані рівняннями

$$Ax + By + Cz + D = 0$$
 i $\frac{x - x_0}{m} = \frac{y - y_0}{n} = \frac{z - z_0}{n}$.

Позначимо гострий кут між прямою l (рис. 3.33) і її проекцією l_1 на площину Π через φ , а кут між нормальним вектором n = (A; B; C)площини Π і напрямним вектором s = (m; n; p) прямої l — через θ . Якщо $\theta \le 90^\circ$, то $\varphi = 90^\circ - \theta$, тому $\sin \varphi = \cos \theta$; якщо ж $\theta > 90^\circ$. το $φ = θ - 90^\circ$ i $\sin φ = -\cos θ$.

Отже, в будь-якому випадку $\sin \varphi = |\cos \theta|$. Але

$$\cos\theta = \frac{\overrightarrow{n} \cdot \overrightarrow{s}}{|\overrightarrow{n}||\overrightarrow{s}|},$$

тому кут між прямою і площиною знаходиться за формулою

$$\sin \varphi = \frac{|\vec{n} \cdot \vec{s}|}{|\vec{n}||\vec{s}|} = \frac{|Am + Bn + Cp|}{\sqrt{A^2 + B^2 + C^2} \sqrt{m^2 + n^2 + p^2}}.$$
 (47)

Якщо пряма l паралельна площині Π , то вектори \vec{n} \vec{l} \vec{s} перпендикулярні, тому $\vec{n} \cdot \vec{s} = 0$, тобто

$$Am + Bn + Cp = 0 (48)$$

имова паралельності прямої і площини.

Якщо пряма l перпендикулярна до площини Π , то вектори n l sпаралельні, тому співвідношення

$$\frac{A}{m} = \frac{B}{n} = \frac{C}{p} \tag{49}$$

е умовою перпендикулярності прямої і площини.

П риклади

1. Через задану точку M_0 (x_0 ; y_0 ; z_0) провести пряму l, перпенднкулярну до площнин II, заданої рівнянням Ax + By + Cz + D = 0.

 \bigcirc Оскільки пряма l перпенднкулярна до площини Π , то напрямним вектором прямої l можна взяти иормальний вектор площини Π : (рис. 3.34): $\vec{s} = \vec{n} = (A; B; C)$. Тому згідно з формулою (40) рівняння прямої І має внгляд

$$\frac{x-x_0}{A} = \frac{y-y_0}{B} = \frac{z-z_0}{C} . \quad \bullet$$

2. Через задану точку M_0 (x_0 ; y_0 ; z_0) провестн площину Π , перпендикулярну до прямої І, заданої рівняннямн

$$\frac{x-x_1}{m}=\frac{y-y_1}{n}=\frac{z-z_1}{p}.$$

 \bigcirc Нормальним вектором площини Π може бути напрямний (рис. 3.35) вектор прямої $l: \overrightarrow{n} = \overrightarrow{s} = (m; n; p)$, тому за формулою (28) рівняння площини Π має вигляд

$$m(x-x_0)+n(y-y_0)+p(z-z_0)=0.$$

3. Через задану точку M_0 (x_0 ; y_0 ; z_0)і пряму l, задану рівняннями $\frac{x-x_1}{m} =$

$$=\frac{y-y_1}{n}=\frac{z-z_1}{p}$$
, провести площину Π .

О Нехай M(x; y; z) — довільна точка площини Π (рис. 3.36), а $M_1(x_1; y_1; z_1)$ вадана точка прямої І. Тоді вектори $M_1M_0 = (x_1 - x_1; y_0 - y_1; z_0 - z_1), \ M_1M =$ $= (x - x_1; y - y_1; z - z_1)$ і напрямний вектор s = (m; n; p) прямої компланарні, тому рівняння площинн П має вигляд

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_0 - x_1 & y_0 - y_1 & z_0 - z_1 \\ m & n & p \end{vmatrix} = 0. \quad \bullet$$

4. Як розміщена пряма І, задана рівняннями

$$\begin{cases} x = x_0 + mt; \\ y = y_0 + nt; \\ z = z_0 + pt. \end{cases}$$

відиосио площини Π , заданої рівияниям Ax + By + Cz + D = 0?

О Підставивши в рівияння площини Π замість x, y, z їхиі значения з рівнянь прямої I, дістанемо рівияння

$$A(x_0 + mt) + B(y_0 + nt) + C(z_0 + pt) + D = 0$$

з якого можиа визначити те зиачення параметра t, яке відповідає шуканій точці перетину. Якщо це рівняння має єдиний розв'язок, то пряма l перетинає площину Π , якщо безліч розв'язків — пряма l лежить в площині Π , якщо одержане рівняння не має розв'язків, то пряма l паралельна площині Π .

5. Знайти точку перетину прямих l_1 і l_2 , заданих рівняннями

$$\begin{cases} x = x_1 + m_1 t; \\ y = y_1 + n_1 t; \\ z = z_1 + p_1 t \end{cases} \quad \begin{cases} x = x_2 + m_2 t; \\ y = y_2 + n_2 t; \\ z = z_2 + p_2 t. \end{cases}$$

О Нехай M_0 (x_0 ; y_0 ; z_0) — точка перетину заданих прямих. При якомусь значениі t_1 параметра t її координати задовольнятимуть рівняния прямої l_1 , а при певному значениі t_2 — рівняния прямої l_2 , тобто

$$\begin{cases} x_0 = x_1 + m_1 t_1; \\ y_0 = y_1 + n_1 t_1; \\ z_0 = z_1 + p_1 t_1, \end{cases} \begin{cases} x_0 = x_2 + m_2 t_2; \\ y_0 = y_2 + n_2 t_2; \\ z_0 = z_2 + p_2 t_2. \end{cases}$$

Прирівнюючи праві частини цих систем, дістаємо систему трьох лінійних рівнянь з двома невідомими t_1 і t_2 , яку можна розв'язати, наприклад, методом Гаусса. Якщо ця система має одни розв'язок, то прямі перетинаються, якщо безліч розв'язків — прямі збігаються, якщо система не має розв'язків, то прямі мимобіжні.

6. Зиайти відстань заданої точки M_0 ($x_0; y_0; z_0$) від прямої l, заданої рівияниями

$$\frac{x-x_1}{m}=\frac{y-y_1}{n}=\frac{z-z_1}{p}.$$

О Відстань d від точки M_0 (рис. 3.37) до прямої l дорівнює відстані між точкою M_0 та її проєкцією P на цю пряму: $d=M_0P$. Щоб знайти точку P, досить через точку M_0 провести площину Π , перпенднкулярну до прямої l (приклад 3), і знайти точку її перетину а прямою l (приклад 4).

■

Рис. 3.38

7. Як розміщені прямі

$$\overrightarrow{r} = \overrightarrow{r_1} + \overrightarrow{s_1}t$$
 i $\overrightarrow{r} = \overrightarrow{r_2} + \overrightarrow{s_2}t$?

О Прямі l_1 і l_2 збігаються, якщо вектори $\vec{s_1}$, $\vec{s_2}$ і $\vec{r_1} - \vec{r_2}$ колінеарні (рис. 3.38, a). Умовою паралельності даних прямих є колінеарність векторів $\vec{s_1}$ і $\vec{s_2}$ (рис. 3.38, δ), тобто $\vec{s_1} \times \vec{s_2} = 0$.

Прямі l_1 і l_2 перетинаються, якщо вектори $\vec{s_1}$ і $\vec{s_2}$ ие колінеарні, а вектори $\vec{s_1}$, $\vec{s_2}$ і $\vec{r_1} - \vec{r_2}$ компланарні (рис. 3.38, θ), тобто $\vec{s_1s_2}$ ($\vec{r_1} - \vec{r_2}$) = 0.

Отже, умова $\vec{s_1s_2}$ $(\vec{r_1}-\vec{r_2}) \neq 0$ еквівалентна тому, що прямі l_1 і l_2 мимобіжні. lacktriangle

8. Довести, що відстань d точки M_0 (рис. 3.39) з радіусом-вектором $\vec{r_0}$ від прямої l, заданої рівнянням $\vec{r} = \vec{r_1} + \vec{st}$, визначається за формулою

$$d = \frac{|\vec{s} \times (\vec{r_1} - \vec{r_0})|}{|\vec{s}|}.$$

О Відстань d дорівнює одній з висот паралелограма, побудованого на векторах $\vec{r_1} - \vec{r_0}$. \bullet 9. Довести. що вілстань (оне 3 40) між молей

9. Довести, що відстань (рис. 3.40) між мимобіжними прямими (довжина спільного перпендикуляра) l_1 і l_2 , заданими рівняннями $\overrightarrow{r} = \overrightarrow{r_1} + \overrightarrow{s_1}t$ і $\overrightarrow{r} = \overrightarrow{r_2} + \overrightarrow{s_2}t$, знаходиться за формулою

$$d = \frac{|\overrightarrow{s_1} \overrightarrow{s_2} (\overrightarrow{r_2} - \overrightarrow{r_1})|}{|\overrightarrow{s_1} \times \overrightarrow{s_2}|}.$$

Рис. 3.40

О Відстань d дорівнює відстані між паралельними площинами, в яких лежать прямі l_1 і l_2 . Ця відстань, в свою чергу, дорівнює висоті паралелепіпеда, побудованого на векторах $\overrightarrow{s_1}$, $\overrightarrow{s_2}$ і $\overrightarrow{r_2}$ — $\overrightarrow{r_1}$.

■

Завдання для самоконтролю

- 1. Скласти векторие параметричне рівняння прямої, яка задана в просторі точкою і напрямним вектором.
- Вивести канонічні та параметричні рівняння прямої в просторі і рівняння прямої, яка проходить через дві задані точки.
- 3. Написати загальні рівняння прямої. Як перейти від загальних рівнянь прямої до канонічних?
- 4. Як знайти кут між двома прямими в просторі? Написати умови паралельності і перпендикулярності прямих.
- 5. Як знайти кут між прямою і площниою? Які умови паралельності і перпендикулярності прямої і площини?
 - 6. Довестн, що умову, за якої дві прямі

$$\frac{x-x_1}{m_1} = \frac{y-y_1}{n_1} = \frac{z-z_1}{p_1} \quad i \quad \frac{x-x_2}{m_2} = \frac{y-y_2}{n_2} = \frac{z-z_2}{p_2}$$

лежать в одній площині, можна записати у вигляді

$$\begin{vmatrix} x - x_1 & y_1 - y_2 & z_1 - z_2 \\ m_1 & n_1 & p_1 \\ m_2 & n_2 & p_2 \end{vmatrix} = 0.$$

7. Довести, що рівияния площини, яка проходить через пряму

$$\frac{x-x_1}{m_1} = \frac{y-y_1}{n_1} = \frac{z-z_1}{p_1}$$

паралельно прямій $\frac{x-x_2}{m_2}=\frac{y-y_2}{n_2}=\frac{z-z_2}{p_2}$, можна записати у вигляді

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ m_1 & n_1 & p_1 \\ m_2 & n_2 & p_2 \end{vmatrix} = 0.$$

8. Довести, що рівияния площини, яка проходить через пряму

$$\frac{x-x_0}{m}=\frac{y-y_0}{n}=\frac{z-z_0}{p}.$$

перпендикулярио до площини Ax + By + Cz + D = 0, можиа записати у вигляді

$$\begin{vmatrix} x - x_0 & y - y_0 & z - z_0 \\ m & n & p \\ A & B & C \end{vmatrix} = 0.$$

9. Знайтн точку, симетричну точці (4; 3; 10) відносно прямої

$$\frac{x-1}{2} = \frac{y-2}{4} = \frac{z-3}{5}$$
.

10. Знайти точку, симетричиу точці (1; 5; 2) відносно площнин 2x-y-z+11=0.

 $B i \partial n o e i \partial i$. 9. (2; 9; 6). 10. 3; 7; 4).

§ 6. ЛІНІЇ ДРУГОГО ПОРЯДКУ

6.1. Поняття лінії другого порядку

Як зазначалося в п. 1.1, лінія другого порядку — це множина точок, координати яких задовольняють рівняння виду

$$ax^2 + by^2 + cxy + dx + ey + f = 0,$$
 (50)

де коефіцієнти a, b, c, d, e, f — дійсні числа, причому хоча б одне з чисел a, b, c відмінне від нуля, тобто $a^2 + b^2 + c^2 \neq 0$. Зокрема, до ліній другого порядку належать такі лінії: коло, еліпс, гіпербола і парабола. Виявляється, що множиною точок (x; y) з дійсними координатами, які задовольняють рівняння (50), може бути не тільки одна в названих ліній. Рівняння (50) може визначати на площині Oxy також дві прямі, одну пряму, точку або не визначати жодної точки.

Огже, коло, еліпс, парабола і гіпербола задаються рівняннями другого степеня, але, на відміну від прямої лінії, обернене тверджен-

ня неправильне.

Щоб відповісти на запитання, яке геометричне місце точок визначаеться рівнянням (50), треба підібрати таку систему координат, в якій це рівняння спростилось би. Відомо [1], що для всякої лінії другого порядку існує прямокутна система координат (її називають канонічною), в якій рівняння (50) має найпростіший або канонічний вигляд. Ми не займатимемося тут зведенням загального рівняння (50) до канонічного вигляду, а встановимо і дослідимо лише окремі канонічні рівняння.

Лінії другого порядку називають також конічними перерізами через те, що їх можна дістати як лінії перетину кругового конуса з площиною. Коло утворюється як лінія перетину площини, яка перпендикулярна до осі конуса і не проходить через його вершину (рис. 3.41, a); еліпс — лінія перетину площини, яка перетинає всі твірні конуса, не перпендикулярна до осі конуса і не проходить через його вершину (рис. 3.41, б); якщо перетнути двопорожнинний конус пло-

Рис. 3.41

щиною, паралельною двом твірним, дістанемо гіперболу (3.41, s), а одній твірній — параболу (рис. 3.41, z).

Лінії другого порядку широко застосовуються в науці і техніці.

П риклади

1. Планети Сонячної системи рухаються по еліпсах, що мають спільний фокус,

в якому розтацювано Сонце.

2. Якщо у фокусі параболи розмістити джерело світла, то промені, відбившись від параболи, підуть паралельно її осі. На цій властивості грунтується побудова

прожектора.

3. У динаміці космічних польотів використовуються поняття трьох космічних швидкостей: $v_1=7,9$ км/с, $v_2=11,2$ км/с, $v_3=16,7$ км/с. Нехай v_0 — початкова швидкість, з якою штучний супутник запускається з поверхні Землі. При недостатній початковій швидкості $v_0 < v_1$ супутник обертатися навколо Землі не буде. Якщо $v_0=v_1$, то супутник буде обертатися по круговій орбіті, центр якої знаходиться в центрі Землі. Якщо $v_1 < v_0 < v_2$, то обертання супутника відбуватиметься по еліпсу, причому центр Землі знаходитиметься в одному з фокусів еліпса.

Прн $v_2 \leqslant v_0 < v_3$ супутиик долає земие тяжіния і стає штучиим супутинком Сонця, рухаючись при цьому по параболі (при $v_0 = v_2$) або по гіперболі (при $v_2 < v_0 < v_2$) відносио Землі. Якщо $v_0 \geqslant v_3$, то супутиик спочатку долає земие, а потім і соиячне

тяжіния і залишає Сонячну систему.

4. Рух матеріальної точки під дією центрального поля сили тяжіння відбувається по одній з ліній другого порядку.

6.2. Коло

Колом називають множину точок площини, відстані яких від заданої точки площини (центра кола) дорівнюють сталому числу (радіусу).

Щоб вивести рівняння кола, використаємо прямокутну систему координат Oxy; позначимо через O_1 (a; b) — центр кола, через M (x; y) — довільну точку площини і через R — радіус кола (рис. 3.42). Точка M лежить на колі тоді і лише тоді, коли $O_1M = R$ або

$$\sqrt{(x-a)^2 + (y-b)^2} = R. \tag{51}$$

Рівняння (51) і є шуканим рівнянням кола. Але зручніше користуватись рівнянням, яке дістанемо при піднесенні обох частин рівняння (51) до квадрата:

$$(x-a)^2 + (y-b)^2 = R^2. (52)$$

Оскільки рівняння (52) випливає з рівнярня (51), то координати всякої точки, які задовольняють рівняння (51), задовольнятимуть також рівняння (52). Проте при піднесенні будь-якого рівняння до квадрата, як відомо, можуть з'явитися сторонні корені, тобто рівняння (51) і (52) можуть виявитися нееквівалентними. Покажемо, що в цьому випадку так не буде. Справді, добувши корінь з обох частин рівняння (52), дістанемо $\sqrt{(x-a)^2+(y-b)^2}=\pm R$. Але в правій частині знак мінус треба відкинути, бо відстань R>0. Отже, рівняння (51) і (52) еквівалентні, тобто визначають одну й ту саму криву — коло.

Якщо центр кола міститься в початку координат, то a=b=0 і рівняння (52) набирає вигляду

$$x^2 + y^2 = R^2. (53)$$

Рівняння (53) називається канонічним рівнянням кола. Якщо в рівнянні розкрити дужки, то дістанемо загальне рівняння кола

$$x^2 + y^2 + Ax + By + C = 0, (54)$$

де A=-2a, B=-2b, $C=a^2+b^2-R^2$. Отже, коло — лінія другого порядку.

Рівняння кола має такі властивості.

 1° . Коефіцієнти при x^{2} і y^{2} рівні між собою.

20. У рівнянні відсутній член з добутком ху.

Обернене твердження неправильне: не всяке рівняння другого степеня, яке задовольняє умови 1° і 2° , є рівнянням кола, тобто не всяке рівняння виду (54) визначає коло.

П риклади

1. Написати рівняння кола, якщо точки A (—1; 4) і B (3; 2) є кінцями його діаметра.

 \bigcirc Нехай O_1 $(a;\ b)$ — центр кола. Тоді $AO_1=O_1B$, тому за формулами (25) (гл. 2) маємо

$$a = \frac{x_A + x_B}{2} = \frac{-1+3}{2} = 1, b = 3.$$

Оскільки радіус кола $R = AO_1 = \sqrt{5}$, то за формулою (52) дістаємо шукане рівняння: $(x-1)^2 + (y-3)^2 = 5$.

2. Знайти центр і радіус кола $x^2 + y^2 + 4x - 6y - 23 = 0$.

 \odot Згрупуємо доданки із змінною x та змінною y і доповнимо одержані вирази до повних квадратів:

$$x^2 + 4x + y^2 - 6y - 23 = 0$$

або

$$(x^2 + 4x + 4) - 4 + (y^2 - 6y + 9) - 9 - 23 = 0$$

звідки

$$(x+2)^2 + (y-3)^2 = 36.$$

Отже, точка (—2; 3) — центр кола, а R=6 — його радіус. lacktriangle

3. Показати, що рівияння $x^2+y^2+6x-6y+19=0$ не визначає ніякого геометричного об'єкта.

О Перетворимо рівняння

$$(x^2 + 6x + 9) - 9 + (y^2 - 6y + 9) - 9 + 19 = 0$$

або

$$(x+3)^2 + (y-3)^2 = -1$$
.

Оскільки сума иевід'ємних чисел не може бути від'ємним числом, то задане рівияния не задовольняють координати жодної точки площини Оху.

4. Арка має форму дуги кола. Знайти довжину *l* дуги арки, якщо її проліт і підном відповідно дорівнюють 2a і b. (Підном арки дорівнює відношению її висоти до прольоту.)

 \bigcirc Введемо систему координат Oxy так, як показано на рис. 3.43, де арка MPN — дуга кола, MO=ON, OP=h=2ab. В обраній системі координат точки M, P і N мають координати M (—a; 0), P (0; 2ab), N (a; 0). Нехай O_1 (0; y_0) і R відповідно центр і радіус кола, тоді його рівняння має вигляд

$$x^2 + (y - y_0)^2 = R^2$$
.

Оскільки коло проходить через точки P і N, то

$$(2ab - y_0)^2 = R^2; \quad a^2 + y_0^2 = R^2,$$

звідки

$$R = \frac{(4b^2 + 1) a}{4b}$$
; $|y_0| = \frac{(4b^2 - 1) a}{4b}$.

Знайдемо центральний кут $2\alpha = \angle MO_1N$, на який спирається дуга арки. Маємо

$$\cos \alpha = \frac{|y_0|}{R} = \frac{|4b^2 - 1|}{4b^2 + 1}$$
, tomy $2\alpha = 2 \arccos \frac{|4b^2 - 1|}{4b^3 + 1}$,

отже,

$$l = 2R\alpha = \frac{(4b^2 + 1) a}{2b} \arccos \frac{|4b^2 - i|}{4b^2 + i}$$
.

6.3. Еліпс

Еліпсом називають множину всіх точок площини, сума відстаней яких від двох даних точок цієї площини, які називаються фокусами, є величина стала і більша від відстані між фокусами. Щоб вивести рівняння еліпса, візьмемо на площині дві точки F_1 і F_2 — фокуси еліпса і розмістимо прямокутну систему координат так, щоб вісь Ox проходила через фокуси, а початок координат ділив відрізок F_1F_2 навпіл (рис. 3.44).

Позначимо відстань між фокусами, яку називають фокальною, через $2c: F_1F_2 = 2c$, а суму відстаней від довільної точки еліпса до фокусів — через 2a. Тоді фокуси мають такі координати: F_1 (—c; 0) і F_2 (c; 0). За означенням 2a > 2c, тобто a > c.

Нехай M (x; y) — довільна точка площини. Ця точка лежить на еліпсі тоді, коли $F_1M + F_2M = 2a$ або

$$V(x+c)^2 + y^2 + V(x-c)^2 + y^2 = 2a.$$
 (55)

Це, по суті, і є рівняння еліпса. Щоб спростити його, перенесемо один

радикал у праву частину, піднесемо обидві частини до квадрата і звелемо полібні. Матимемо

$$a\sqrt{(x-c)^2+y^2}=a^2-cx.$$

Піднісши обидві частини цього рівняння ще раз до квадрата та спростивши вираз, дістанемо x^2 (a^2-c^2) + $a^2y^2=a^2$ (a^2-c^2). Оскільки a>c, то $a^2-c^2>0$, тому можна позначити

$$a^2 - c^2 = b^2. (56)$$

Тоді рівняння (55) набере вигляду

$$x^2b^2 + a^2y^2 = a^2b^2$$

або

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1. {(57)}$$

Можна довести, що рівняння (55) і (57) еквівалентні. Рівняння (57) називається канонічним рівнянням еліпса. Отже, еліпс — крива другого порядку.

Встановимо деякі властивості і дослідимо форму еліпса.

10. Рівняння (57) містить змінні х та у лише в парних степенях, тому, якщо точка (х; у) належить еліпсу, то йому також належать mочки (—x; y), (x; —y) i (—x; —y). Тому еліпс симетричний відносно осей Ox та Oy, а також відносно точки O (0; 0), яку називають центром еліпса. Отже, для встановлення форми еліпса достатньо дослідити ту його частину, яка розміщена в одному, наприклад в першому, ксординатному куті.

 2° . В першому координатному куті $x \geqslant 0$, $y \geqslant 0$, тому з рівності **(57)** маємо

$$y = \frac{b}{a} \sqrt{a^2 - x^2},\tag{58}$$

звідки випливає, що точки A_1 (a; 0) та B_0 (0; b) належать еліпсу, причому, якщо х збільшується від θ до θ 0. Kрім того, не існує точок еліпса, у яких x > a, бо вираз (58) при x > aне має змісту. Таким чином, частина еліпса, розміщена в першому

Рис. 3.46

координатному куті, має форму дуги A_1B_1 (рис. 3.45). Відобразивши цю дугу симетрично відносно осей Ох та Оу, дістанемо весь еліпс. Він вміщуеться в прямокутник із сторонами 2а і 2b. Сторони прямокутника дотикаються до еліпса в точках перетину х= д його з осями Ох і Оу.
Еліпс перетинає осі координат в

точках A_1 (a; 0), A_2 (—a; 0), B_1 (0; b), B_{a} (0; —b). Ці точки називаються вершинами еліпса.

Величини $A_1A_2 = 2a$ та $B_1B_2 = 2b$ називаються відповідно великою та малою осями еліпса.

Таким чином, з властивостей 1° і 2° випливає, що всякий еліпс має дві взаємно перпендикулярні осі симетрії (головні осі еліпса) і центр симетрії (центр еліпса). Точки, в яких еліпс перетинає головні осі, обмежують на головних осях відрізки довжинами 2а і 2b, які називаються великою і малою осями еліпса, а числа а та b — великою і малою півосями еліпса. Весь еліпс вміщується в прямокутник із сторонами 2a і 2b. Сторони прямокутника дотикаються до еліпса в його вершинах.

 3° . Якщо a = b, то рівняння (57) набирає вигляду

$$x^2 + y^2 = a^2$$

тобто дістаємо рівняння кола. Отже, коло є окремим випадком еліпса. З формули (56) випливає, що при a=b значення c=0, тобто коло — це еліпс, у якого фокуси збігаються з його центром.

Міра відхилення еліпса від кола характеризується величиною є, яка називається ексцентриситетом еліпса і дорівнює відношенню половини його фокальної відстані до довжини більшої півосі:

$$\varepsilon = \frac{c}{a} \,, \tag{59}$$

причому $0 \leqslant \varepsilon < 1$, оскільки $0 \leqslant c < a$. З формул (56) і (59) дістаємо

$$\frac{b}{a} = \frac{\sqrt{a^2 - c^2}}{a} = \sqrt{1 - \frac{c^2}{a^2}} = \sqrt{1 - \epsilon^2}.$$

Отже, якщо $\varepsilon = 0$, то b = a, тобто еліпс перетворюється в коло; якщо ε наближається до одиниці, то відношення осей $b\hat{l}a$ зменшується, тобто еліпс все більше розтягується вздовж осі Ох.

4°. Нехай M (x; y) — довільна точка еліпса з фокусами F_1 і F_2 (рис. 3.46). Відстані $F_1M = r_1$ і $F_2M = r_2$ називаються фокальними

радіусами точки M. Очевидно, $r_1+r_2=2a$. Прямі $x=\pm\frac{a}{\varepsilon}$ називаються директрисами еліпса.

Відношення фокальних радіусів довільної точки еліпса до відстаней цієї точки від відповідних директрис є величина стала і дорівнює ексцентриситету еліпса, тобто

$$\frac{r_1}{d_1} = \frac{r_2}{d_2} = \varepsilon. \tag{60}$$

П риклади

1. Скласти каиоиічие рівняния еліпса, який проходить через точки M_1 (3; 2) і M_2 (4; $\frac{2\sqrt{2}}{3}$), якщо фокуси його лежать на осі Ox симетрично початку координат. О За умовою координати заданих точок задовольняють рівняния (57):

$$\frac{16}{a^2} + \frac{8}{9b^2} = i$$
, $\frac{9}{a^2} + \frac{4}{b^2} = i$.

Розв'язуючи цю систему рівнянь, знаходимо $a^2=18$ і $b^2=8$. Отже, шукане рівняння має вигляд

$$\frac{x^2}{18} + \frac{y^2}{8} = 1.$$

2. Скласти канонічне рівняння еліпса, фокуси яного розміщені на осі Ox симетрично початку координат, якщо відствиь між фокусами дорівнює 14, а ексцентриситет дорівнює 7/9.

 \bigcirc Оскільки 2c=14, то c=7. 3 формул (59) і (56) дістаємо, що a=9 і $b^2=32$. Отже, шукане рівняння має вигляд

$$\frac{x^2}{8i} + \frac{y^2}{32} = i. \quad \bullet$$

3. Довести, що полярие рівняния $\rho = \frac{16}{5-3\cos\phi}$ визиачає еліпс. Знайти півосі цього еліпса.

 ○ Внкористовуючи формули (7), (8) (гл. 2), перейдемо від заданого рівняння до рівняння в прямокутній системі коордянат:

$$\sqrt{x^2 + y^2} = \frac{16}{5 - 3\sqrt{\frac{x}{\sqrt{x^2 + y^2}}}}.$$

Далі маємо

$$5\sqrt{x^2 + y^2} - 3x = 16, \quad 25(x^2 + y^2) = 256 + 96x + 9x^2,$$

$$16(x - 3)^2 + 25y^2 = 400, \quad \frac{(x - 3)^2}{25} + \frac{y^2}{16} = 1.$$

Враховуючи формули паралельного переносу (гл. 2, п. 2.4), робимо висновок, що остание рівняния визначає еліпс з центром у точці (3; 0) і півосями a=5 і b=4.

6.4. Гіпербола

Гіперболо пазивається множина всіх точок площини, модуль різниці відстаней яких від двох даних точок цієї площини, що називаються фокусами, є величина стала і менша відстані між фокусами.

Позначимо через F_1 і F_2 фокуси гіперболи, відстань між ними — через 2c, а модуль різниці відстаней від довільної точки гіперболи до фокусів — через 2a. За означенням a < c. Щоб вивести рівняння гіперболи, візьмемо на площині прямокутну систему координат Oxy так, щоб вісь Ox проходила через фокуси, а початок координат поділив відрізок F_1F_2 навпіл (рис. 3.44). Точка M(x; y) площини лежить на гіперболі тоді і лише тоді, коли $|MF_1 - MF_2| = 2a$ або

$$|V(x+c)^2+y^2|-V(x-c)^2+y^2|=2a.$$

Виконавши ті самі перетворення, що й при виведенні рівняння еліпса, дістанемо канонічне рівняння гіперболи

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1, (61)$$

де

$$b^2 = c^2 - a^2. (62)$$

Отже, гіпербола є лінією другого порядку.

Встановимо деякі властивості і дослідимо форму гіперболи.

1°. Гіпербола симетрична осям Ох, Оу і початку координат.

2°. Для частини гіперболи, яка лежить у першому координатному куті, з рівняння (61) дістанемо

$$y = -\frac{b}{a} \sqrt{x^2 - a^2} \,. \tag{63}$$

3 рівності (63) випливає, що $x \geqslant a$.

Точка A_1 (a; 0) належить гіперболі і є точкою перетину гіперболи в віссю Ox. Гіпербола не перетинає вісь Oy. Якщо x > a, то y > 0, причому якщо x збільшується, то y також збільшується, тобто якщо $x \to +\infty$, то $y \to +\infty$.

Покажемо, що, віддаляючись у нескінченність, змінна точка M(x; y) гіперболи необмежено наближається до прямої

$$y = \frac{b}{a} x. ag{64}$$

Така пряма називається асимптотю гіперболи. Для цього візьмемо точку N, що лежить на асимптоті і має ту саму абсцису x, що й точка M(x; y), і знайдемо різницю MN між ординатами ліній (63) і (64) (рис. 3.47):

$$MN = \frac{b}{a} x - \frac{b}{a} \sqrt{x^2 - a^2} = \frac{b}{a} (x - \sqrt{x^2 - a^2}) =$$

$$= \frac{b}{a} \frac{(x - \sqrt{x^2 - a^2}) (x + \sqrt{x^2 - a^2})}{x + \sqrt{x^2 - a^2}} = \frac{ab}{x + \sqrt{x^2 - a^2}}.$$

Звідси, якщо $x \to +\infty$, то знаменник теж прямує до $+\infty$, а $MN \to$ → 0, бо чисельник є сталою величиною. Отже, точки М гіперболи, віддаляючись від точки A_1 (a; 0) у нескінченність, необмежено наближаються до прямої (64), тобто ця пряма є асимптотою.

Таким чином, частина гіперболи, розміщена у першому координатному куті, має вигляд дуги, яка показана на рис. 3.47. Відобразивши цю дугу симетрично відносно координатних осей, дістанемо вигляд всієї гіперболи.

Гіпербола складається з двох віток (лівої і правої) і має дві асимптоти:

$$y = \frac{b}{a}x$$
, $y = -\frac{b}{a}x$.

Осі симетрії називаються *осями гіперболи*, а точка перетину осей— її центром. Вісь Ox перетинає гіперболу в двох точках A_1 $(a;\ 0)$ і A_2 (—a; 0), які називаються вершинами гіперболи. Ця вісь називається дійсною віссю гіперболи, а вісь, яка не має спільних точок а гіперболою, — уявною віссю.

Дійсною віссю називають також відрізок A_1A_2 , який сполучає вершини гіперболи і його довжину $A_1A_2=2a$. Відрізок B_1B_2 , який сполучає точки B_1 (0; b) і B_2 (0; —b), а також його доєжину, називають уявною віссю. Величини а і в відповідно називаються дійсною і уявною півосями гіперболи.

Прямокутник із сторонами 2a і 2b називається основним прямо-

кутником гіперболи.

При побудові гіперболи (61) доцільно спочатку побудувати основний прямокутник C_1D_1DC (рис. 3.48), провести прямі, що проходять через протилежні вершини цього прямокутника — асимптоти гіперболи і визначити вершини А, і А2 гіперболи.

Рівняння

$$\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1 \tag{65}$$

також визначає гіперболу, яка називається спряженою до гіперболи (61). Гіпербола (65) показана на рис. 3.48 штриховою лінією. Верши-

ни цієї гіперболи лежать в точках B_1 (0; b) і B_2 (0; -b), а її асимптоти збігаються з асимптотами гіперболи (61).

Гіпербола з рівними півосями (a = b) називається рівносторонньою, її канонічне рівняння має вигляд

$$x^2-y^2=a^2.$$

Основним прямокутником рівносторонньої гіперболи є квадрат із стороною 2a, а $\ddot{i}\ddot{i}$ асимптотами — бісектриси координатних кутів.

3°. Ексцентриситет гіперболи визначається як відношення половини фокальної відстані до довжини її дійсної півосі:

$$\varepsilon = \frac{c}{a}.\tag{66}$$

Оскільки c > a, то $\varepsilon > 1$. Крім того, з формул (62) і (66) випливає, що

$$\frac{b}{a} = \sqrt{\varepsilon^2 - 1}.$$

Отже, ексцентриситет гіперболи характеризує її форму: чим більший ексцентриситет, тим більше відношення $\frac{b}{a}$, тобто тим більше основний прямокутник розтягується в напрямі осі Оу, а гіпербола відхиляється від осі Ох; чим ближче ексцентриситет до одиниці, тим більше основний прямокутник розтягується в напрямі осі Ох, а гіпербола наближається до цієї осі.

 ${f 4^o}$. Прямі $x=\pm rac{a}{\epsilon}$, де a- дійсна піввісь гіперболи, а $\epsilon-\ddot{\imath}\ddot{\imath}$ ексцентриситет, називаються директрисами гіперболи. Директриси гіперболи мають ту саму властивість (60), що й директриси еліпса.

П риклади

- 1. Скластн канонічне рівняння гіперболи, фокуси якої розміщено на осі Ох симетрично початку координат, якщо дійсна вісь дорівнює 6, а ексцентриситет є = $=\frac{5}{3}$.
 - О Оскільки 2a=6, то a=3. З формул (62) і (66) знаходимо, що b=4. Шукане рівняння має внгляд $\frac{x^2}{9}-\frac{y^2}{16}=1$. ●

- 2. Знайти відстань фокуса гіперболи $x^2 8y^2 = 8$ від її асимптоти.
- О Запишемо канонічне рівняння даної гіперболи:

$$\frac{x^2}{8} - \frac{y^2}{1} = 1,$$

звідкн $a=\sqrt{8}$, $b=\mathrm{i}$ — півосі гіперболи, тому згідно з формулою (64) рівняння асимптоти має вигляд $x-y\sqrt{8}=0$.

3 формули (62) знаходимо, що c=3, тому F_1 (—3; 0) і F_2 (3; 0) — фокуси гіпер-

За формулою (27) обчислюємо відстань d від фокуса F_1 (або, що те саме, фокуса F_2) до знайденої асимптоти: d=1.

3. На прямолінійному відрізку залізниці розташовано станції A і B, відстань між якими I. Від заводу N йдуть прямі автомагістралі NA і NB, причому NB < NA. Вантаж із заводу N иа станцію A можна транспортувати або по автомагістралі NB, а звідти залізницею (перший шлях), або безпосередньо по автомагістралі NA (другий шлях). При цьому тариф (вартість перевезення і т вантажу на I км) залізницею і автотранспортом становить відповідно m і n (n > m), а розвантаження завантаження однієї тонни коштує k. Вняначити зону впливу станції B, тобто множіну точок, з яких дешевше доставити вантаж в A першим шляхом, ніж другим.

О Введемо систему координат Оху так, як показано на рис. 3.49, де AO = OB. Знайдемо рівняння множнин точок M(x; y), для яких обидва шляхи «однаково вигідні», тобто таких, що вартість доставки вантажу $S_1 = r_2n + k + lm$ першим шля-

хом дорівнює вартості $S_2 = r_1 n$ доставки вантажу другим шляхом

$$r_2n + k + lm = r_1n$$
, $(AM = r_1 BM = r_2)$.

З цієї умовн дістанемо

$$r_2 - r_1 = \frac{k + lm}{n} = \text{const.}$$

Отже, множиною точок, в якнх $S_1=S_2$, ϵ права вітка гіперболи

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
,

де $a=\frac{lm+k}{2n}$, $b=\frac{1}{2}\sqrt{l^2-4a^2}$. Для точок площинн, які лежать справа від цієї вітки, $S_1 < S_2$, тобто вигіднішим є перший шлях, а для точок, які лежать зліва,—другий шлях.

Таким чииом, права вітка гіперболи обмежує зону впливу станції В, а ліва— станції А.

4. Встановити, що рівняння $16x^2 - 9y^2 - 64x - 54y - 16i = 0$ визиачає гіперболу. Зиайти її центр і півосі.

О Виділимо повні квадрати відносно х та у:

$$16 (x^{2} - 4x) - 9 (y^{2} + 6y) - 161 = 0;$$

$$16 (x^{2} - 4x + 4 - 4) - 9 (y^{2} + 6y + 9 - 9) - 16i = 0;$$

$$16 (x - 2)^{2} - 64 - 9 (y + 3)^{2} + 81 - 161 = 0;$$

$$16 (x - 2)^{2} - 9 (y + 3)^{2} = i44; \quad \frac{(x - 2)^{2}}{9} - \frac{(y + 3)^{2}}{16} = 1.$$

Врахувавши формули паралельного переносу, дійдемо висновку, що задане рівняння визначає гіперболу з центром у точці O_1 (2; —3) і півосями a=3;b=4 (рнс. 3.50). lacktriangle

6.5. Парабола

Параболою називається множина всіх точок площини, кожна з яких знаходиться на однаковій відстані від даної точки, яка назива-"еться фокусом, і від даної прямої, яка називається директрисою і не

проходить через фокус.

Знайдемо рівняння параболи. Нехай на площині задані фокус Fі директриса, причому відстань фокуса від директриси дорівнює р. Візьмемо прямокутну систему координат Оху так, щоб вісь Ох проходила через фокус, перпендикулярно до директриси, а вісь Оу ділила відстань між фокусом F і директрисою навпіл (рис. 3.51). Тоді фокус має координати $F\left(\frac{p}{2};0\right)$, а рівняння директриси має вигляд $x=-\frac{p}{2}$. Нехай M (x; y) — довільна точка площини, а відрізки MB і MF відстані цієї точки від директриси і фокуса. Точка М тоді лежить на параболі, коли MB = MF або

$$\sqrt{\left(x - \frac{p}{2}\right)^2 + y^2} = x + \frac{p}{2}.$$
 (67)

Це і є рівняння параболи. Щоб спростити його, піднесемо обидві частини рівності (67) до квадрата:

$$x^2 - px + \frac{p^2}{4} + y^2 = x^2 + px + \frac{p^2}{4}$$
,

тобто

$$y^2 = 2px. (68)$$

Можна довести, що рівняння (67) і (68) рівносильні.

Рівняння (68) називається канонічним рівнянням параболи. Отже.

парабола є лінія другого порядку.

Дослідимо форму параболи. Оскільки рівняння (68) містить змінну у в париому степені, то парабола симетрична відносно осі Ох. Тому достатньо розглянути лише ту її частину, яка лежить у верхній пів-площині. Для цієї частини $y \geqslant 0$, тому з рівняння (68) дістанемо

$$y = \sqrt{2px}. (69)$$

З цієї рівності випливає, що парабола розміщена справа від осі Oy, тому що при x < 0 вираз (69) не має змісту. Значення x = 0, y = 0задовольняють рівняння (69), тобто парабола проходить через початок координат. Із зростанням x значення y також зростає. Отже, змінна точка M(x; y) параболи, виходячи з початку координат із зростанням х, рухається по ній вправо і вверх.

Виконавши симетричне відображення розглянутої частини пара-

боли відносно осі Ох, матимемо всю параболу (рис. 3.52).

Вісь симетрії параболи називається її віссю; точка перетину осі в параболою — вершиною параболи; число, яке дорівнює відстані фокуса від директриси, — параметром параболи. Віссю параболи, заданої рівнянням (68), є вісь Ох, вершиною — точка О (0; 0) і параметром — число p.

3'ясуємо вплив параметра p на форму параболи. Якщо в рівнянні (68) покласти $x = \frac{p}{2}$, то відповідні значення ординати $y = \pm p$, тобто маємо на параболі дві симетричні відносно осі Ox точки $\left(\frac{p}{2};\ p\right)$ і

 $\left(rac{p}{2}; -p
ight)$. Відстань між цими точками дорівнює 2p і збільшується із збільшенням p. Отже, параметр p характеризує «ширину» області, яку обмежує парабола.

Рівняння $y^2 = -2px$, $x^2 = 2py$, $x^2 = -2py$, у яких параметр p > 0 визначають параболи, зображені на рис. 3.53.

Зауваження. Використовуючи властивість 40 еліпса та гіперболи і означення параболи, можна дати таке загальне означення кривої другого порядку (крім кола): множина точок, для яких відношення є відстані до фокуса і до відповідної директриси є величина стала,— це еліпс (при $0 < \varepsilon < 1$), або парабола (при $\varepsilon = 1$) або гіпербола (при $\varepsilon > 1$).

П риклади

1. Досліднтн взаємие розміщення параболи $y^2=x$ і прямої x+y-2=0.

О Розв'язуючи систему рівнянь $\begin{cases} y^2 = x; \\ x + y - 2 = 0, \end{cases}$ знаходимо розв'язки (4; —2) і (1; 1). Це означає, що пряма перетинає параболу в точках M_1 (4; —2), M_2 (1; 1).

2. В параболу $x^2 = y \sqrt{3}$ вписано рівносторонній трикутник так, що одна з вершин його збігається з вершиною параболи. Знайти сторону трикутника. О Нехай точка $A(x_0; y_0)$ — одна з вершин трикутника. Тоді іншими його вершинами будуть точки $B(-x_0; y_0)$ і O(0; 0). Оскільки трикутник рівносторонній, то AB = AO = BO, звідки $2x_0 = \sqrt{x_0^2 + y_0^2}$. Розв'язуючи це рівняння разом з рів-

нянням $x_0^2 = y_0 \sqrt{3}$, знаходимо $x_0 = 3$. Отже, сторона трикутника дорівнює $2x_0 =$ = 6.

3. Струмінь води внтікає з конічної насадки з швидкісло v_0 під кутом α до горизонту. Нехтуючи опором повітря, скласти рівняння струменя відносио прямокутної системи координат Оху, вважаючи, що струмінь міститься в площині Оху, точка О збігається з вихідним отвором насадки, а вісь Ох проходить горизонтально в напрямі польоту струменя (рис. 3.54). Знайти дальність польоту І, висоту підкому h і кут. при якому дальність польоту найбільша.

О Виділимо в струмені води частнику одиничної масн. Якби на неї не діяла сила тяжіння, то за час t вона пройшла б шлях, який дорівнює модулю вектора $\overrightarrow{ON} =$

= $(v_0 t \cos \alpha; v_0 t \sin \alpha)$, де v_0 — початкова швидкість частники. Під дією сили тяжіння частинка за той же час t пройде шлях, що дорівнює довжині дуги ОМ. Оскільки снла тяжіння напрямлена вертнкально вниз, то радіусвектор частинки має вигляд $\overrightarrow{OM}=(x;y)=\left(v_0t\cos\alpha;v_0t\sin\alpha-\frac{gt^2}{2}\right)$, де g= прискорення сили гяжіння. Рівняння

$$\begin{cases} x = v_0 t \cos \alpha; \\ y = v_0 t \sin \alpha - \frac{gt^2}{2}, \end{cases}$$

- це параметричні рівняння траєкторії польоту частинки. Виключивши параметр t, дістанемо $y = ax - bx^2$. де

$$a = \operatorname{tg} \alpha$$
; $b = \frac{g}{2v_0^2} \operatorname{sec}^2 \alpha$.

Таким чином, траєкторія руху частинки, а отже, і весь струмінь мають форму параболн. Дальність польоту струменя дістанемо з його рівняння при y=0, а висоту підйому — при $x = \frac{1}{2}$:

$$l = \frac{v_0^2 \sin 2\alpha}{g}$$
, $h = \frac{v_0^2 \sin^2 \alpha}{2g}$.

Дальність польоту найбільша, якщо $\alpha = 45$

6.6. Полярні та параметричні рівняння кривих другого порядку 1. Нехай в прямокутній системі координат рівнянням (53) задано

Рнс. 3.55

коло. Якщо ввести полярні координати р і ф так, як указано в п. 2.3 (гл. 2), то рівняння (53) запишеться у вигляді

$$(\rho\cos\varphi)^2 + (\rho\sin\varphi)^2 = R^2; \text{ alo } \rho = R. \tag{70}$$

Це і є полярне рівняння кола з центром у полюсі і радіусом R. Щоб вивести параметричні рівняння кола, позначимо через t кут між віссю Ox і радіусом-вектором \overline{OM} довільної точки M (x; y) кола (рис. 3.55). Точка M(x; y) лежить на колі тоді і тільки тоді, коли

$$x = R\cos t, \quad y = R\sin t; \quad 0 \le t < 2\pi. \tag{71}$$

Рівняння (71) називаються параметричними рівняннями кола.

2. Розглянемо тепер криву t, яка може бути еліпсом, параболою

або правою віткою гіперболи (рис. 3.56). Нехай F — фокус кривої l (якщо l — еліпс, то F — його лівий фокус), d — відповідна цьому фокусу директриса, 2p — довжина хорди, яка проходить через фокус паралельно директрисі, і є — ексцентриситет кривої І. Введемо полярну систему координат так, щоб $\ddot{\text{II}}$ полюс збігався з F, а полярна вісь Fx була перпендикулярною до директриси d і напрямлена в бік, протилежний від неї. Тоді згідно з загальним означенням кривої другого порядку (зауваження п. 6.5) маємо

$$\frac{MF}{MQ} = \varepsilon. (72)$$

Оскільки $MF = \rho$, то

$$\frac{N_1 F}{Q_1 N_1} = \frac{p}{Q_1 N_1} = \varepsilon, \quad MQ = Q_1 N_1 + MN = \frac{p}{\varepsilon} + \rho \cos \varphi$$

і з рівності (72) дістанемо

$$\rho = \frac{p}{1 - \varepsilon \cos \varphi} \ . \tag{73}$$

Це і є загальне полярне рівняння кривої l. При $0 < \varepsilon < 1$ рівняння (73) визначає еліпс, при $\varepsilon = 1$ — параболу, а при $\varepsilon > 1$ — праву вітку

гіперболи. Рівняння лівої вітки гіперболи в обраній полярній системі має вигляд

$$\rho = \frac{-p}{1 + \varepsilon \cos \varphi} \, .$$

Число р в полярних рівняннях називається полярним параметром кривої. Для того щоб виразити р через параметри канонічних рівнянь (57), (61) і (68) кривої *l*, досить в це рівняння підставити координати точки $N_1: x = c$, y =

y = p — для еліпса і гіперболи і $x = \frac{p}{2}$, y = p — для параболи. Тоді для еліпса і гіперболи маємо $p=\frac{b^2}{a}$, а для параболи полярний параметр дорівнює параметру р її канонічного рівняння (68). Рівняння (73) застосовується в механіці.

П риклад

Яку крнву визначає полярне рівняння $\rho = \frac{8}{2 - \sqrt{2}\cos\phi}$? О Привівши дане рівняння до вигляду $\rho = \frac{1}{1 - \frac{\sqrt{2}}{2}\cos\phi}$, дістанемог

ho=4, $arepsilon=rac{\sqrt{2}}{2}<1$. Отже, задана лінія є еліпс. Знайдемо його півосі. Оскількн, $p=4=\frac{b^2}{a^2}$ і $e^2=\frac{c^2}{a^2}=\frac{1}{2}$. To a=8 і $b=4\sqrt{2}$.

Наведемо без доведення параметричні рівняння еліпса і гіперболи [9]. Параметричні рівняння

 $x = x_0 + a \cos t$; $y = y_1 + b \sin t$, $(a > 0, b > 0, 0 \le t < 2\pi)$ задають еліпс з центром у точці $(x_0; y_0)$ і з півосями a і b.

Параметричні рівняння гіперболи з центром у точці $(x_0; y_0)$ і півосями а і в мають вигляд

 $x = x_0 + a \operatorname{ch} t$; $y = y_0 + b \operatorname{sh} t$, $(a > 0, b > 0, -\infty < t < +\infty)$, де ch t i sh t — гіперболічний косинус і гіперболічний синус (гл. 5, п. 2.4).

П риклад

Кривошип ОА (рис. 3.57) обертаеться навколо точки О із сталою кутовою швидкістю ω і приводить у рух повзун B за допомогою шатуна AB, причому $OA = AB \Rightarrow$ = а. Скласти рівняння траєкторії середньої точки М шатуна.

$$O$$
 Нехай $M(x; y)$ — середня точка шатуна AB , $\varphi = \angle AOB$, тоді $x = OA_1 + A_1M_1 = OA\cos\varphi + \frac{1}{2}OA\cos\varphi = \frac{3}{2}a\cos\varphi;$ $y = MM_1 = MB\sin\varphi = \frac{1}{2}a\sin\varphi.$

Оскільки $\varphi = \omega t$, то

$$x = \frac{3}{2} a \cos \omega t$$
; $y = \frac{1}{2} a \sin \omega t$,

де t — час. Отже, траєкторією середньої точки шатуна є еліпс. Вилучивши параметр t, дістанемо його канонічне рівняння:

$$\frac{x^2}{\frac{9}{4}a^2} + \frac{y^2}{\frac{a^2}{4}} = 1. \quad \bullet$$

Завдания для самоконтролю

1. Що назнвається лінією другого порядку?

2. Що називається колом? Вивести рівняння кола з центром у точці M_0 (x_0 ; y_0) і радіусом R.

3. Вивести полярие і параметричні рівняння кола.

- 4. Що називається еліпсом? Вивести канонічне рівняння еліпса.
- 5. Досліднти форму еліпса, заданого канонічним рівнянням, і побудувати його,

6. Записати полярне і параметричні рівняння еліпса.

- 7. Що називаеться гіперболою? Вивести канонічне рівняння гіперболи.
- 8. Дослідити форму гіперболи, заданої канонічним рівнянням, і побудувати її.

9. Записати полярні і параметричні рівняння гіперболи.

10. Вивести рівняння асимптот гіперболи.

11. Що назнвається фокальним радіусом, ексцентриснтетом і директрисою еліпса, гіперболи?

12. Що називається параболою? Вивести канонічне рівняння параболн і дослідити її форму.

13. Записати полярне рівняння параболи. Чому дорівнює полярний параметр в полярних рівняннях еліпса, гіперболи і параболи?

14. У чому полягає характерна особливість директрис еліпса, гіперболи і параболи? Дати загальне означення цих кривих.

15. Зиайти радіус і коордниати центра кола

$$2x^2 + 2y^2 - 12x + y + 3 = 0.$$

16. Скласти рівняння кола з центром у точці (2; 2), яке дотикається до прямої 3x+y-18=0.

17. Знайтн довжину хорди еліпса $4x^2 + 9y^2 = 36$, яка проходить через його фокус перпендикулярно до великої осі.

18. Обчислити ексцентриситет еліпса, якщо відстань між його фокусами дорівнює середньому арнфметичному довжин осей.

19. Скласти канонічне рівняння гіперболи, яка проходить через точку $\left(-\frac{5}{4}\right)$

 $\left(\frac{3}{2}\right)$ i має асимптоти $y=\pm 2x$.

20. Скласти канонічне рівняиня параболи, у якої відстань від фокуса до директриси дорівнює 12.

21. Яку криву визначае полярне рівняння
$$ho = rac{1}{\sin^2 rac{\phi}{2}}$$
 ?

B
$$l \partial n \circ s i \partial l$$
. 15. 2; $(0; -2)$. 16. $(x-2)^2 + (y-2)^2 = 10$. 17. $\frac{8}{3}$, 18. 0,8. 19. $\frac{x^2}{1} - \frac{y^2}{4} = 1$. 20. $y^2 = 24x$. 21. $y^2 = 4(x+1)$.

§ 7. ПОВЕРХНІ ДРУГОГО ПОРЯДКУ

7.1. Поняття поверхні другого порядку

Поверхнею другого порядку називається множина точок, прямокутні координати яких задовольняють рівняння виду

$$ax^2 + by^2 + cz^2 + dxy + exz + fyz + gx + hy + kz + l = 0$$
, (74) де принаймні один з коефіцієнтів a, b, c, d, e, f відмінний від нуля.

Рівняння (74) називається загальним рівнянням поверхні другого

порядку.

Поверхня другого порядку як геометричний об'єкт не змінюється, якщо від заданої прямокутної системи координат перейти до іншої. При цьому рівняння (74) і рівняння, знайдене після перетворення координат, будуть еквівалентні.

Можна довести [14], що існує система координат, в якій рівняння

(74) має найпростіший (або канонічний) вигляд.

До поверхонь другого порядку належать, зокрема, циліндричні та конічні поверхні, поверхні обертання, сфера, еліпсоїд, однопорожнинний та двопорожнинний гіперболоїди, еліптичний та гіперболічний параболоїди. Розглянемо ці поверхні та їхні канонічні рівняння.

7.2. Циліндричні поверхні

Lиліндричною поверхнею називають поверхню σ , утворену множиною прямих (твірних), які перетинають задану лінію L (напрямну) і паралельні заданій прямій l (рис. 3.58). Вивчатимемо лише такі циліндричні поверхні, напрямні яких

лежать в одній з координатних площин, а твірні паралельні координатній осі, яка перпендикулярна до цієї площини.

Рис. 3,53

Рис. 3.59

Розглянемо випадок, коли твірні циліндричної поверхні паралельні осі Oz, а напрямна лежить в площині Oxy.

Нехай задано рівняння

$$f(x, y) = 0, \tag{75}$$

яке в площині Oxy визначає (рис. 3.59) деяку лінію L — множину точок M (x; y), координати яких задовольняють це рівняння. Дане рівняння задовольняють також координати всіх тих точок N (x; y; z) простору, у яких дві перші координати x і y збігаються з координатами будь-якої точки лінії L, а третя координата z — довільна, тобто тих точок простору, які проектуються на площину Oxy в точки лінії L.

Всі такі точки лежать на прямій, яка паралельна осі Oz і перетинає лінію L в точці M (x; y). Сукупність таких прямих і є циліндричною поверхнею σ .

Якщо точка не лежить на поверхні σ , то вона не може проектуватися в точку лінії L, тобто координати такої точки рівняння (75) не задовольняють. Отже, рівняння (75) визначає поверхню σ . Таким

чином, рівняння f(x, y) = 0 визначає в просторі циліндричну поверхню, твірні якої паралельні осі Oz, а напрямна L в площині Oxy задається тим самим рівнянням f(x, y) = 0. Ця сама лінія в просторі Oxyz задається двома рівняннями:

$$\begin{cases} f(x, y) = 0; \\ z = 0. \end{cases}$$

Аналогічно рівняння f(x, z) = 0, в якому відсутня зміна y, визначає в просторі циліндричну поверхню, твірні якої паралельні осі Oy, а напрямна L в площині Oxz задається тим самим рівнянням f(x, z) = 0; рівняння f(y, z) = 0 визначає в просторі циліндричну поверхню, твірні якої паралельні осі Ox.

Приклади

1. Поверхня, яка внзначається рівнянням $x^2 + y^2 = R^2$, є циліндричною і навивається прямим круговим циліндром. Її твірні паралельні осі Oz, а напрямною в площині Oxy є коло $x^2 + y^2 = R^2$ (рис. 3.60, a).

2. Поверхня, яка визначається рівнянням $\frac{\dot{x}^2}{a^2} + \frac{y^2}{b^2} = 1$, є циліндричною і називається *еліптичним циліндром* (рис. 3.60, δ).

3. Цнліндрична поверхня, яка визначається рівнянням $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, називається гіперболічним циліндром (рис. 3.60, в).

4. Циліндрична поверхня, яка визначається рівнянням $y^2 = 2px$, називається

параболічним циліндром (рис. 3.60, г).

5. Рівняння $z^2 = 1 - y$ внзначає в просторі параболічний циліндр, напрямна якого в площині Oyz є парабола $z^2 = 1 - y$, а твірні паралельні осі Ox (рис. 3.60, ∂).

7.3. Поверхні обертання

Поверхню, утворену обертанням заданої плоскої кривої l навколо заданої прямої (осі обертання), яка лежить в площині кривої l, називають поверхнею обертання.

Нехай лінія l, що лежить в площині Oyz, задана рівняннями

$$\begin{cases} F(Y, Z) = 0; \\ X = 0 \end{cases}$$

(X, Y, Z - 3мінні координати точок лінії <math>l, а x, y, z) — змінні координати точок поверхні).

Розглянемо поверхню, утворену обертанням цієї лінії навколо осі

Ог (рис. 3.61), і знайдемо рівняння поверхні обертання.

Проведемо через довільну точку M (x; y; z) поверхні обертання площину, перпендикулярну до осі Oz, і позначимо через K і N точки перетину цієї площини з віссю Oz і лінією I. Оскільки відрізки |Y|, KN і KM рівні між собою як радіуси, KP = y, PM = x, то $Y = \pm \sqrt{x^2 + y^2}$, крім того, Z = z. Оскільки координати точки N задовольняють рівняння F (X, Z) = 0, то, підставляючи в це рівняння

вамість Y, Z рівні їм величини $\pm \sqrt{x^2 + y^2}$, z, дістанемо рівняння

$$F(\pm \sqrt{x^2 + y^2}, z) = 0,$$
 (76)

яке задовольняє довільна точка M(x; y; z) поверхні обертання. Можна показати, що координати точок, які не лежать на цій поверхні, рівняння (76) не задовольняють. Отже, рівняння (76) є рівнянням поверхні обертання.

Аналогічно можна скласти рівняння поверхонь обертання навколо осей *Ox* і *Oy*. Таким чином, щоб дістати рівняння поверхні обертання кривої навколо якої-небудь координатної осі, треба в рівнянні кривої залишити без зміни координа-

ту, яка відповідає осі обертання, а другу координату замінити на квадратний корінь із суми квадратів двох інших координат, взятий із знаком + або -.

Приклад

Зиайти рівняння поверхні обертання еліпса $x^2 + 4y^2 = 4$, z = 0 навколо осі 0x. О У рівнянні еліпса треба залишити без зміни координату x, а замість координати y підставити в рівняння $\pm \sqrt{y^2 + z^2}$:

$$x^2 + 4(y^2 + z^2) = 4$$
 and $\frac{x^2}{4} + y^2 + z^2 = 1$.

7.4. Қонічні поверхні

Конічною поверхнею називається поверхня, утворена множинсю прямих, що проходять через задану точку P і перетинають задану лінію L. При цьому лінія L називається напрямною конічної поверхні, точка P — її вершиною, а кожна з прямих, які утворюють конічну поверхню, — твірною.

 $oldsymbol{\mathsf{Hexa}}$ й напрямна $oldsymbol{\mathsf{L}}$ задана в прямокутній системі координат рів-

няннями

$$\begin{cases}
F_1(X, Y, Z) = 0; \\
F_2(X, Y, Z) = 0,
\end{cases}$$
(77)

а точка $P(x_0; y_0; z_0)$ — вершина конічної поверхні (рис. 3.62). Щоб скласти рівняння конічної поверхні, візьмемо на поверхні довільну точку M(x; y; z) і позначимо точку перетину твірної PM з напрямною L через N(X; Y; Z).

Канонічні рівняння твірних, які проходять через точки N і P,

мають вигляд

$$\frac{x - x_0}{X - x_0} = \frac{y - y_0}{Y - y_0} = \frac{z - z_0}{Z - z_0} . \tag{78}$$

Виключаючи X, Y і Z з рівнянь (77) і (78), дістанемо шукане рівняння конічної поверхні.

Рнс. 3.62

П риклади

1. Скласти рівняння конічної поверхні з вершниою в точці O(0; 0; 0) і з напрямною L, заданою рівняннями

$$\frac{X}{a^2} + \frac{Y}{b^2} = i, \quad Z = c.$$

 \bigcirc . Нехай $M\left(x;y;z\right) -$ довільна точка конічної поверхні, а $N\left(X;Y;z\right) -$ точка перетнну твірної OM і лінії L. Канонічні рівияння твірної OM мають внгляд $\frac{x}{X} = \frac{y}{Y} = \frac{z}{Z}$. Оскільки Z = c, то $X = c \frac{x}{z}$, $Y = c \frac{y}{z}$. Підставляючн ці значення X і Y в перше з рівнянь напрямної L, дістанемо шукане рівняння:

$$\frac{c^2x^2}{a^2z^2} + \frac{c^2y^2}{b^2z^2} = i, \quad \frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0.$$

При a=b напрямною L є коло $X^2+Y^2=a^2$, Z=c, а рівняння конічної поверхні має вигляд $\frac{x^2}{a^2} + \frac{y^2}{a^2} - \frac{z^2}{c^2} = 0$. Ця поверхня називається прямим круговим конусом (рис. 3.63).

2. Рівняння конічної поверхні, вершиною якої є точка О (0; 0; 0), а напрям-

иою - еліпс (рис. 3.64)

$$\frac{X^2}{9} + \frac{Z^2}{4} = 1, Y = 5$$

має вигляд

$$\frac{x^2}{9} + \frac{z^2}{4} - \frac{y^2}{25} = 0.$$

Рнс. 3.64

7.5. Сфера

Сферою називають множину всіх точок простору, рівновіддалених від заданої точки, яка називається центром кола. Відрізок, що сполучає центр сфери в її довільною точкою, називається радіцеом сфери.

Візьмемо в просторі прямокутну систему координат Oxyz. Щоб скласти рівняння сфери з центром у точці O_1 (a;b;c) і радіусом R (рис. 3.65), візьмемо в просторі довільну точку M (x;y;z). Точка M належить сфері тоді і лише тоді, коли $O_1M=R$, або $V(x-a)^2+\cdots$

 $+\cdots + (y-b)^2 + (z-c)^2$. Це і є *рівняння сфери*. Для зручності його ваписують у такому вигляді:

$$(x-a)^2 + (y-b)^2 + (z-c)^2 = R^2.$$
 (79)

Зокрема, якщо центр сфери збігається з початком координат, тобто a=b=c=0, то рівняння такої сфери має вигляд

$$x^2 + y^2 + z^2 = R^2.$$

Я кщо в рівнянні (79) розкриємо дужки, то матимемо загальне рівняння сфери

$$x^{2} + y^{2} + z^{2} + Ax + By + Cz + D = 0,$$
 (80)

де A = -2a, B = -2b, C = -2c, $D = a^2 + b^2 + c^2 - R^2$.

Це рівняння має такі властивості.

 1° . Рівняння (80) є рівнянням другого степеня відносно x, y і z, отоже, сфера — поверхня другого порядку.

 2^{0} . Коефіцієнти при x^{2} , y^{2} , z^{2} рівні між собою.

30. У рівнянні відсутні члени з добутками ху, хг, уг.

Проте не всяке рівняння виду (80), яке задовольняє умови 1^о—3^о, вображує сферу.

П риклади

1. Знайти центр і радіус сфери, заданої рівнянням

$$x^2 + y^2 + z^2 + 2x + 4y - 6z - 11 = 0.$$

 \bigcirc Виділяючи повні квадратн по x, y і z, запишемо задане рівняння у внгляді $(x+1)^2+(y+2)^2+(z-3)^2=25$. Отже, точка O_1 (—1; —2; 3) — центр сфери і R=5-1 радіус.

2. Рівняння $x^2 + y^2 + z^2 + 2x + 4y - 6z + 15 = 0$, and $(x + 1)^2 + (y + 2)^2 + 2x + 4y - 6z + 15 = 0$

 $+(z-3)^2=-1$ не визначає ніякого геометричного об'єкта.

7.6. Еліпсоїд

Eліпсоїдом називається поверхня, яка в деякій прямокутній системі координат визначається рівнянням

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1. ag{81}$$

Рівняння (81) називається канонічним рівнянням еліпсоїда. Дослідження форми еліпсоїда проведемо методом паралельних перерізів. Для цього розглянемо перерізи даного еліпсоїда площинами, паралельними площині Оху. Кожна з таких площин визначається рівнянням z = h, де h — довільне дійсне число, а лінія, яка утвориться в перерізі, визначається рівняннями

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 - \frac{h^2}{c^2}; \quad z = h. \tag{82}$$

- Дослідимо рівняння (82) при різних значеннях h. 1. Якщо | h | > c, c > 0, то $\frac{x^2}{a^2} + \frac{y^2}{b^2} < 0$ і рівняння (82) ніякої лінії не визначають, тобто точок перетину площини z = h з еліпсоїдом не існує.
- 2. Якщо $h = \pm c$, то $\frac{x^2}{c^2} + \frac{y^2}{h^2} = 0$ і лінія (82) вироджується в точки (0;0;c) і (0;0;-c), тобто площини z=c і z=-c дотикаються до еліпсоїда.

3. Якщо
$$|h| < c$$
, то $\frac{x^2}{a_1^2} + \frac{y^2}{b_1^2} = 1$, де $a_1 = a \sqrt{1 - \frac{h^2}{c^2}}$,

 $b_1=b\sqrt{1-rac{h^2}{c^2}}$, тобто площина z=h перетинає еліпсоїд по еліпсу з півосями a_1 і b_1 . При зменшенні h значення a_1 і b_1 збільшуються і досягають своїх найбільших значень при h=0, тобто в перерізі еліпсоїда площиною Oxy матимемо найбільший еліпс з півосями $a_1 =$ $= a, b_1 = b.$

Аналогічні результати дістанемо, якщо розглядатимемо перерізи еліпсоїда плошинами x = h і y = h.

Таким чином, розглянуті перерізи дають змогу зобразити еліпсоїд як замкнуту овальну поверхню (рис. 3.66). Величини a, b, c називаються півосями еліпсоїда. Якщо будь-які дві півосі рівні між собою, то триосний еліпсоїд перетворюється в еліпсоїд обертання, а якщо всі три півосі рівні між собою, — у сферу.

Знайти центр і півосі еліпсоїда, заданого рівнянням

$$3x^2 + 4y^2 + 6z^2 - 6x + 16y - 36z + 49 = 0.$$

О Виділяючи повні квадрати відносно х, у, г, дістанемо

$$3(x-1)^2+4(y+2)^2+6(z-3)^2=36$$

a60
$$\frac{(x-1)^2}{12} + \frac{(y+2)^2}{9} + \frac{(z-3)^2}{6} = 1$$
.

Отже, даний еліпсоїд має півосі: $a = 2\sqrt{3}$, b = 3, $c = \sqrt{6}$; його центр знаходиться в точиі O(1; -2; 3).

7.7. Однопорожнинний гіперболоїд

Однопорожнинним гіперболоїдом називається поверхня, яка в деякій прямокутній системі координат визначається рівнянням

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1. \tag{83}$$

Рівняння (83) називається канонічним рівнянням однопорожнинного гіперболоїда.

Досліджують рівняння (83), як і в попередньому пункті, методом паралельних перерізів. Перетинаючи однопорожнинний гіперболоїд площинами, паралель-

Рис. 3.67

ними площині Оху, дістанемо в перерізі еліпси. Якщо поверхню (83) перетинати площинами x = h або y = h, то в перерізі дістанемо гіпегболи.

Детальний аналіз цих перерізів показує, що однопорожнинний гіперболоїд має форму нескінченної трубки, яка необмежено розширюється в обидва боки від найменшого еліпса, по якому однопорожнинний гіперболоїд перетинає площину Оху (рис. 3.67).

П риклад

Знайти лінії перетину однопорожнинного гіперболоїда $\frac{x^2}{4} + \frac{y^2}{9} - \frac{z^2}{16} =$ = 1 площинами: a) Oxz; б) Oxy; в) x = 4.

O a) Лінією перетину площини Oxz з даним гіперболоїдом є гіпербола

$$\frac{x^2}{4} + \frac{y^2}{9} - \frac{z^2}{16} = 1$$
, $y = 0$, and $\frac{x^2}{4} - \frac{z^2}{16} = 1$, $y = 0$.

б) Лінією перетину площини Оху з данни гіперболоїдом є еліпс:

$$\frac{x^2}{4} + \frac{y^2}{9} - \frac{z^2}{16} = 1$$
, $z = 0$, and $\frac{x^2}{4} + \frac{y^2}{9} = 1$, $z = 0$.

в) Лінія перетину площини x = 4 з даним гіперболоїдом є гіпербола:

$$\frac{x^2}{4} + \frac{y^2}{9} - \frac{z^2}{16} = 1, \quad x = 4, \text{ alo } \frac{y^2}{27} - \frac{z^2}{48} = -1, \quad x = 4. \quad \bullet$$

7.8. Двопорожнинний гіперболоїд

Двопорожнинним гіперболоїдом називається поверхня, яка в деякій прямокутній системі координат визначається рівнянням

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1. ag{84}$$

Рівняння (84) називається канонічним рівнянням двопорожнинного еіперболоїда.

Рис. 3.69

Метод паралельних перерізів дає змогу зобразити двопорожнинний гіперболоїд як поверхню, що складається з двох окремих порожнин (звідси назва двопорожнинний), кожна з яких перетинає вісь Ог і має форму опуклої нескінченної чаші (рис. 3.68).

Приклад

Скласти рівняння поверхні обертання, утвореної обертанням гіперболи $\frac{x^2}{4}$ — $-\frac{y^2}{9}=1$, z=0 навколо осі абсцис, і визначити вид поверхиі.

 \bigcirc Підставивши в рівняння гіперболи замість y вираз $\pm \sqrt{y^2+z^2}$, маємо

$$\frac{x^2}{4} - \frac{y^2 + z^2}{9} = 1, \text{ ado } \frac{y^2}{9} + \frac{z^2}{9} - \frac{x^2}{4} = -1.$$

Це рівняння двопорожниного гіперболоїда, який перетинає вісь Ox в точках (2; 0; 0) і (—2; 0; 0) (рис. 3.69). \bullet

7.9. Еліптичний параболоїд

Еліптичним параболоїдом називається поверхня, яка в деякій прямокутній системі координат визначається рівнянням

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = z, (85)$$

що є канонічним рівнянням еліптичного параболоїда. Він має форму нескінченної опуклої чаші (рис. 3.70). Лініями паралельних перерізів еліптичного параболоїда є параболи або еліпси.

П риклад

Знайти точки перетину еліптичного параболоїда

$$z = \frac{x^2}{4} + y^2$$

з прямою

$$\frac{x-2}{2} = \frac{y+1}{-1} = \frac{z-10}{4}.$$

О Запишемо параметричи рівняння даної прямої:

$$x = 2t + 2$$
, $y = -t - 1$, $z = 4t + 10$.

Підставимо вирази для x, y, z в рівняння параболоїда і знайдемо ті значения параметра, які відповідають точкам перетину:

$$4t+10=\frac{(2t+2)^2}{4}+(-t-1)^2$$
; $4t+10=2t^2+4t+2$; $t_1=-2$, $t_2=2$.

Підставляючи знайдені значення параметра в параметричні рівняння прямої, знайдемо точки перетину: M_1 (—2; 1; 2) і M_2 (6; —3; 18). \bullet

Рис. 3.71

7.10. Гіперболічний параболоїд

Гіперболічним параболоїдом називається поверхня, яка в деякій прямокутній системі координат визначається рівнянням

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = z, (86)$$

що є канонічним рівнянням гіперболічного параболоїда. Ця поверхня має форму сідла (рис. 3.71).

Лініями паралельних перерізів гіперболічного параболоїда ε гіперболи або параболи.

7.11. Лінійчаті поверхні

Поверхні, твірні яких є прямі лінії, називаються лінійчатими. Такими поверхнями є циліндричні та конічні поверхні. Розглянемо рівняння однопорожнинного гіперболоїда (83) і запишемо його у вигляді

$$\left(\frac{y}{b} + \frac{z}{c}\right)\left(\frac{y}{b} - \frac{z}{c}\right) = \left(1 + \frac{x}{a}\right)\left(1 - \frac{x}{a}\right). \tag{87}$$

Складемо систему рівнянь:

$$\begin{cases} \frac{y}{b} + \frac{z}{c} = k\left(1 + \frac{x}{a}\right); \\ \frac{y}{b} - \frac{z}{c} = \frac{1}{k}\left(1 - \frac{x}{a}\right), \end{cases}$$
(88)

де k — довільний, відмінний від нуля, параметр.

Рис. 3.73

При певному значенні параметра k кожне з рівнянь системи (88) визначає площину, а кожна з систем визначає пряму лінію як перетин площин.

Якщо перемножити рівняння (88) почленно, то дістанемо рівняння (87). Тому довільна точка (x; y; z), що задовольняє систему (88), лежить на поверхні (87). Це означає, що кожна з прямих (88) повністю лежить на поверхні однопорожнинного гіперболоїда (рис. 3.72). Отже, однопорожнинний гіперболоїд — лінійчата поверхня. Те саме стосується і гіперболічного параболоїда (86).

Зазначимо, що однопорожнинні гіперболоїди застосовуються в будівництві. Спорудження різноманітних висотних веж з використанням прямолінійних твірних однопорожнинного гіперболоїда поєднує в собі міцність конструкції і простоту її виконання. Ідея використання однопорожнинного гіперболоїда в будівництві належить російському вченому В. Г. Шухову. За проектом ІШухова побудована телевізійна вежа на Шаболовці в Москві. Вона складається з секцій однопорожнинних гіперболоїдів обертання.

П риклад

Знайти ті прямолінійні твірні гіперболічного параболоїда $x=\frac{x^2}{9}-\frac{y^2}{4}$, які проходять через точку $A\left(4;\ 2;\ \frac{7}{9}\right)$.

O Запишемо задане рівняння у вигляді
$$z = \left(\frac{x}{3} - \frac{y}{2}\right)\left(\frac{x}{3} + \frac{y}{2}\right)$$
.

Складемо систему рівнянь
$$\begin{cases} \frac{x}{3} - \frac{y}{2} = zk; \\ \frac{x}{3} + \frac{y}{2} = \frac{1}{k}. \end{cases}$$
 Підставивши координати точки

Рис. 3.75

А в перше рівняния системи, знайдемо $k = \frac{3}{7}$. Отже, пряма

$$\begin{cases} \frac{x}{3} - \frac{y}{2} = \frac{3}{7}z; \\ \frac{x}{3} + \frac{y}{2} = \frac{7}{3}, \end{cases} \text{ and } \begin{cases} 14x - 21y - 18z = 0; \\ 2x - 3y - 14 = 0 \end{cases}$$

 ϵ однією з тих твірних заданого параболоїда, яка проходить через точку A. Другу твірну знаходимо аналогічно з системи

$$\begin{cases} \frac{x}{3} + \frac{y}{2} = zk; \\ \frac{x}{3} - \frac{y}{2} = \frac{1}{k} \end{cases} \bullet$$

Завдавия для самоковтролю

1. Що називається поверхнею другого порядку?

2. Довести, що рівняння f(x, y) = 0 задає в просторі циліндричну поверхню, твірні якої паралельні осі Oz, а напрямна задається тим самим рівнянням.

3. Скласти рівняння поверхні, яка утворюється обертанням лінії, заданої рів-

нянням f(y, z) = 0 навколо осі Oz.

4. Як скласти рівняння конічної поверхні, заданої вершиною і напрямною лінією?

5. Скласти і охарактеризуватн рівняння сфери.

6. Що називається еліпсоїдом? У чому полягає метод паралельних перерізів?

7. Що називається однопорожнинним гіперболої дом? Довести, що в перерізах однопорожнинного гіперболої да площинами x = h і y = h утворюються гіперболи.

8. Що називається двопорожнинним гіперболоїдом? Дослідити перерізи цієї

поверхні площинами z = h.

9. Що називається еліптичним параболоїдом? Дослідити лінії перетину параболоїда площинами x=h.

10. Скласти рівняння поверхні, утвореної обертанням лінії y=x навколо осі Ox. Побудувати поверхню.

11. Яку поверхню визначає рівняння $x^2-y^2-z^2-4=0$? Побудувати поверхню.

12. Яка поверхня визначається рівнянням $y = x^2 + z^2$? Побудувати поверхню. В і д n о в і д і. 10. $x^2 = y^2 + z^2$ (рис. 3.73). 11. Двопорожнинний гіперболоїд обергання (рис. 3.74). 12. Параболоїд обертання (рис. 3.75).

Глава 4

ВСТУП ДО МАТЕМАТИЧНОГО АНАЛІЗУ

Математичний аналіз— це сукупність розділів математики, присвячених дослідженню функцій методами нескінченно малих. Основи дано у працях І. Ньютона, Г. Лейбніца, Л. Ейлера та інших математиків 17—18 ст. Обгрунтування математичного аналізу за допомогою поняття границі належить О. Л. Коші.

Курс математичного аналізу містить такі розділи: вступ до аналізу, диференціальне числення, інтегральне числення і теорія рядів. У 19—20 ст. методами математичного аналізу почали вивчати складніші математичні об'єкти, ніж функції. Це привело до створення функціонального аналізу та багатьох інших математичних дисциплін.

§ 1. ДІЙСНІ ЧИСЛА

1.1. Множини. Логічні символи

Поняття множнии є одним з фундаментальних у математиці. Воно належить до понять, яким не можна дати строге означення, тобто до так званих первісних, які не можна виразити через простіші поняття. Інтуїтивно множину розуміють як сукупність (сімейство, набір, зібрання) деяких об'єктів, об'єднаних за певною ознакою чи властивістю.

Прикладами множин може бути множина деталей, з яких склада-ється даний механізм, множина шкіл даного міста, множина зірок певного сузір'я, множина розв'язків даного рівняння, множина всіх цілих чисел тощо.

Об'єкти, з яких складається множина, називаються її елементами. Множини позначають великими буквами латинського алфавіту, а їх елементи — малими. Якщо елемент x належить множині X, то пишуть $x \in X$: запис $x \notin X$ або $x \notin X$ означає, що елемент x не належить множині X.

Множина вважається заданою, якщо відома характеристика її елементів, коли про кожний елемент можна сказати, належить він цій множині чи ні. Так, множині цілих чисел належить число 7, але не належить число 0.7.

ньою і позначається символом Ø. Прикладом порожньої множини є

множина дійсних коренів рівняння $x^2+1=0$. Нехай задано дві множини A і B. Якщо кожен елемент множини A є елементом множини B, то множину A називають $ni\partial$ -множиною множини B і пишуть $A \subset B$ або $B \supset A$ («A міститься B B» або «B містить A»). Наприклад, множина натуральних чисел є підмножиною цілих чисел. Очевидно, що кожна множина є своєю

Puc. 4.1

підмножиною і порожня множина є підмножиною будь-якої множини. Якщо множини A і B містять одні і ті самі елементи, тобто $A \subset B$ і $B \subset A$, то їх називають *рівними* і пишуть A = B.

Визначимо деякі операції, які можна виконувати над множинами. Множину C, яка містить елементи, кожен з яких належить множині A або множині B, називають об'єднанням (сумою) множин A, B і позначають $C = A \cup B$ (рис. 4.1, a). Отже,

 $a \in A \cup B \Leftrightarrow a \in A \text{ afo } a \in B.$

Множину D, що складається з елементів, кожен з яких одночасно належить множинам A і B, називають перерізом (добутком) множин A і B і позначають $D = A \cap B$ (рис. 4.1, б). Отже, $a \in A \cap B \Leftrightarrow a \in B$ і $a \in A$.

Множину \vec{E} , що складається з елементів, кожен з яких належить множині A і не належить множині B, називають різницею множин A і B і позначають $E = A \setminus B$ (рис. 4.1, e). Отже, $a \in A \setminus B \Leftrightarrow a \in A$ і $a \notin B$.

Наприклад, якщо

$$A = \{-2; -1; 0; 1; 2\}, B = \{-\frac{1}{2}; 0; \frac{1}{2}; 1\},$$

TO

$$C = A \cup B = \left\{ -2; -1; -\frac{1}{2}; 0; \frac{1}{2}; 1; 2 \right\},$$

$$D = A \cap B = \{0; 1\}, E = A \setminus B = \{-2; -1; 2\}.$$

Нехай P(x) — деяка властивість числа x, тоді запис $\{x \mid P(x)\}$ означає множину всіх тих чисел x, для яких виконується властивість P(x). Наприклад,

$$\{x \mid x^2 - 1 = 0\} = \{-1; 1\}, \{x \mid x < 1, x > 5\} = \emptyset.$$

1.2. Множина дійсних чисел

У курсі вищої математики часто використовують множини, елементи яких є числа. Такі множини називаються *числовими*. Назвемо деякі з них:

- 1) множина натуральних чисел $N = \{1; 2; ...; n; ...\};$

- 2) множина цілих невід'ємних чисел $Z_0 = \{0; 1; 2; ...; n; ...\};$ 3) множина цілих чисел $Z = \{0; \pm 1, \pm 2; ...; \pm n; ...\};$ 4) множина раціональних чисел $Q = \{p/q \mid p \in Z, q \in N\};$
- 5) множина дійсних чисел $R = \{x \mid x = a, \alpha_1 \alpha_2 \alpha_3 ...\}$, де $a \in \mathbb{Z}$, α_i — цифри десяткової системи числення.

Між цими множинами існує зв'язок:

$$N \subset Z_0 \subset Z \subset Q \subset R$$
.

Множина дійсних чисел містить раціональні та ірраціональні числа. Всяке раціональне число є або цілим числом, або скінченним чи періодичним десятковим дробом. Ірраціональне число — це нескінченний неперіодичний десятковий дріб. Так, $\frac{2}{5}=0.4; \frac{1}{3}=0.333...$ раціональні числа; $\sqrt{2} = 1,4142...$, $\pi = 3,1415...$ — ірраціональні числа.

Не вдаючись до теорії дійсних чисел [11], зазначимо, що на множині дійсних чисел завжди виконуються операції Додавання, віднімання, множення і ділення (крім ділення на 0). Корінь непарного степеня з довільного дійсного числа має одне дійсне значення. Корінь парного степеня з додатного числа має два значення, які відрізняються лише знаком. Корінь парного степеня з від'ємного числа на множині дійсних чисел змісту не має.

Дійсні числа зображають точками (гл. 2. п. 2.2) на координатній осі або числовій прямій.

Таким чином, між множиною дійсних чисел R і множиною всіх точок прямої можна встановити взаємно однозначну відповідність. Це сзначає, що кожному числу $x \in R$ відповідає певна точка прямої і, навпаки, кожній точці прямої відповідає певне число.

1.3. Числові проміжки. Окіл точки

Нехай a і b — дійсні числа, причому a < b. Розглянемо числові множини:

$$[a; b] = \{x \mid a \le x \le b\}; \qquad (a; +\infty) = \{x \mid a < x\};
(a; b] = \{x \mid a < x \le b\}; \qquad (-\infty: b) = \{x \mid x < b\};
(a; b) = \{x \mid a < x < b\}; \qquad [a; +\infty) = \{x \mid a \le x\};
[a; b) = \{x \mid a \le x < b\}; \qquad (-\infty; b] = \{x \mid x \le b\};
(-\infty; +\infty) = \{x \mid -\infty < x < +\infty\}.$$

Усі ці множини називаються числовими проміжками, причому $[a; b] - відрізок (сегмент), (a; b), (a; +\infty), (-\infty; b), (-\infty; +\infty) -$ Інтервали, $(a; b], [a; b), [a; +\infty), (-\infty, b] - півінтервали.$

Проміжки [a; b], (a; b), (a; b], [a; b) називаються скінченними і позначаються спільним символом $\langle a; b \rangle$; точки a і b називають відповідно лівим і правим кінцем цих проміжків.

Останні з наведених проміжків називаються нескінченними. Символи $-\infty$ і $+\infty$ в цих проміжках не треба розглядати як числа; це символічне позначення процесу необмеженого віддалення точок числової осі від її початку вліво і вправо. Арифметичні операції над символами $-\infty$ і $+\infty$ неприпустимі. Вважають, що будь-яке дійсне число x більше, ніж $-\infty$, і менше, ніж $+\infty$: $-\infty < x < +\infty$.

Введемо інтервали, що називаються околами точки. Нехай x_0 довільне дійсне число. *Околом* точки x_0 називають будь-який інтервал $(\alpha; \beta)$, що містить цю точку, тобто $\alpha < x_0 < \beta$. Так, околами точки $x_0 = 1$ є інтервали (-0.5; 1.5), (0; 2) і т. д.

Інтервал $(x_0 - \varepsilon; x_0 + \varepsilon)$, де $\varepsilon > 0$, називають ε -околом точки x_0 , причому точку x_0 називають центром, а число ε — радіусом околу. Цей окіл називають досить малим, якщо число ε досить мале.

1.4. Модуль (абсолютна величина) дійсного числа

Модулем дійсного числа x називають число |x|, яке визначається за формулою

$$|x| = \begin{cases} x, & \text{якщо} \quad x > 0; \\ 0, & \text{якщо} \quad x = 0; \\ -x, & \text{якщо} \quad x < 0. \end{cases}$$

Так,
$$|5| = 5$$
, $|-4| = 4$, $|\pi - 5| = 5 - \pi$, $|x - 3| = \begin{cases} x - 3, & x > 3; \\ 0, & x = 3; \\ 3 - x, & x < 3 \end{cases}$

Геометрично число |x| визначає відстань від початку відліку θ до точки, відповідної числу x на числовій осі.

Розглянемо арифметичне значення кореня $V\overline{a^2}$, де a — довільне дійсне число. Очевидно, що

$$V\vec{a^2} = \begin{cases} a, & a > 0; \\ 0, & a = 0; \\ -a, & a < 0. \end{cases}$$

Отже, $\sqrt{a^2} = |a|$.

Сформулюемо властивості модуля дійсного числа.

10. Рівні між собою числа мають рівні між собою модулі:

$$a = b \Rightarrow |a| = |b|$$
.

 2° . Модуль числа ϵ число невід'ємне:

$$|x| \geqslant 0$$
.

30. Число не більше свого модуля:

$$x \leq |x|$$
.

4°. Протилежні числа мають рівні між собою модулі: |x| = |-x|.

5°. Модуль суми двох чисел не більший суми їхніх модулів: $|x + y| \le |x| + |y|$.

- **6°.** Модуль різниці двох чисел не менший різниці їхніх модулів: $|x-y| \ge |x| |y|$.
- **70.** Модуль добутку двох чисел дорівнює добутку їхніх модулів: $|x \cdot y| = |x| |y|$.
- 8°. Модуль частки дорівнює частці модулів діленого і дільника:

$$\left|\frac{x}{y}\right| = \frac{|x|}{|y|}, \quad y \neq 0.$$

9°. Якщо a>0, то нерівності $|x|\leqslant a$ та — $a\leqslant x\leqslant a$ рівносильні:

$$\forall a > 0 : |x| \leqslant a \Leftrightarrow \{x \mid -a \leqslant x \leqslant a\}.$$

10°. Для довільного числа a>0 нерівності $|x|\geqslant a$ та $x\leqslant -a$ або $x\geqslant a$ рівносильні:

$$(\forall a > 0 : |x| \geqslant a) \Leftrightarrow \{x \mid x \leqslant -a \text{ afo } x \geqslant a\}.$$

Користуючись поняттям модуля, деякі з наведених вище проміжків можна записати у вигляді

$$-a \leqslant x \leqslant a \Leftrightarrow [-a; a] \Leftrightarrow |x| \leqslant a;$$

$$-\infty < x < +\infty \Leftrightarrow (-\infty; +\infty) \Leftrightarrow |x| < +\infty.$$

Зокрема, є-окіл точки x_0 записується у вигляді $x_0 - \varepsilon < x < < x_0 + \varepsilon \Leftrightarrow (x_0 - \varepsilon; x_0 + \varepsilon) \Leftrightarrow |x - x_0| < \varepsilon;$ цей самий окіл з виколотою точкою x_0 записується так:

$$0<|x-x_0|<\varepsilon$$
.

П риклад

Розв'язати нерівності: a) |2x-3| < 5; б) $(x-2)^2 \ge 9$.

О а) За властивістю 90 маємо

$$-5 < 2x - 3 < 5$$
, and $-2 < 2x < 8$, and $-1 < x < 4$.

Отже, дана нерівність виконується для тих значень x, які належать інтервалу (—1; 4).

6) Оскільки $\sqrt{a^2} = |a|$, то $\sqrt{(x-2)^2} = |x-2|$ і за властивістю 10^0 маємо $x-2\geqslant 3$ або $x-2\leqslant -3\Rightarrow x\geqslant 5$ або $x\leqslant -1$. Таким чином, дана нерівність справедлива для всіх значень $x\in (-\infty;-1]$ \cup [5; $+\infty$).

Завдаиня для самокоитролю

- 1. Як описати поняття множини? Навести приклади.
- Записати множнии: натуральних чисел, цілих невід'ємних чисел, цілих чисел, раціональних чисел, дійсних чисел.

- 3. Які множини иазиваються числовими проміжками?
- 4. Шо називається є-околом точки ха?

- 5. Який эміст запису $A = \{x \mid P(x)\}$? 6. Як визначаються об'єднанни, переріз та різниця двох заданих множин? Навести приклади.
 - 7. Що називається модулем дійсного числа? Який геометричний зміст модуля?

8. Сформулювати властивості модуля дійсного числа.

9. Розв'язати иепівності:

30 | 3x + 1 | < 2; б) $(x - 1)^2 \ge 9$; в) | $x^2 - 5x + 6$ | $> x^2 - 5x + 6$. 10. Розв'язати рівняння: a) | 2x + 1 | $= x^2$; б) | $\sin x$ | $= \sin x + 2$; в) | x - 1-1|+|x-2|=1.

Bidnosidi. 9. a)
$$\left(-1; \frac{1}{3}\right)$$
; 6) $\left(-\infty; -2\right) \cup [4; +\infty)$; B) (2; 3). 10. a) -1 ; $1+\sqrt{2}$; 6) $-\frac{\pi}{2}+2k\pi$, $k \in \mathbb{Z}$; B) [1; 2].

§ 2. ФУНКЦІЯ

2.1. Сталі і змінні величини

Величина — одне з основних математичних понять, зміст якого з розвитком математики змінювався і узагальнювався. Це поняття настільки широке і всеохоплююче, що його важко визначити. Маса, сила, тиск, напруга, довжина, об'єм, дійсне число, вектор — все це приклади величин. На першій стадії під величиною розуміли те, що, виражаючись в певних одиницях (наприклад, довжина в метрах. маса — в грамах і т. д.), характеризується своїм числовим значенням.

Згодом величинами стали і такі поняття, як число, вектор та інші. Величини в деякому процесі можуть набувати різних або однакових числових значень. У першому випадку величина називається эмінною. у другому — сталою.

П риклади

1. Відношення довжини кола до його діаметра є величина стала для всіх кіл і дорівнює числу л.

2. Величина x, яка задовольняє умову $x \in [0; 1]$, є змінною величиною.

3. Якщо в різних місцях і на різних глибинах озера вимірювати одночасно тиск води і її густину, то виявитьси, що тиск — змінна величнна, а густину можна вважати величиною сталою.

У перших двох прикладах стала і змінна величини визначаються точно. У третьому випадку густина води, хоч і незначно, але змінюється, тому вона є сталою тільки з певною точністю. В багатьох реальних явищах можна вказати величини, які лише умовно будуть сталими.

Предметом вищої математики є вивчення змінних величин.

Стала величина вважається окремим випадком змінної: стала це така змінна, всі значення якої рівні між собою.

Якщо величина набуває своїх значень дискретно (перервно), то ії називають послідовністю (п. 3.1). Якщо ж змінна величина набуває неперервних значень, то її просто називають змінною.

2.2. Поняття функції

Вивчаючи те чи інше явище, ми, як правило, оперуємо кількома величинами, які пов'язані між собою так, що зміна деяких з них приводить до зміни інших.

Такий взаємозв'язок у математиці виражається за допомогою функції. Цей термін вперше ввів Г. Лейбніц.

II риклади

- 1. Нехай електричне коло складається з джерела постійної напруги U і реостата R. При зміні опору R змінюватиметься сила струму. Напруга U величина стала (в даному колі), а опір R і струм I змінні, причому I змінюється залежно від зміни R за законом Ома: $I = \frac{U}{D}$, тобто сила струму I є функція опору R.
- 2. Під час вільного падіння тіла пройдений шлях S залежить від змінн часу t. Зв'язок між змінними величинамн S і t задається формулою

$$S = \frac{gt^2}{2} ,$$

де g — прискорення при вільному падінні (сгала величина). Величина S залежить від зміни величнни t, тобто шлях S є функцією часу t.

3. Згідно з законом Бойля — Маріотта об'єм газу V та тиск P при сталій температурі пов'язані формулою PV=c, де c — деяка стала. Звідсн

$$V = \frac{c}{P}$$
,

тобто змінна величина V змінюється залежно від зміни P, тому об'єм V є функція тиску P.

4. Довжина l кола діаметра d визначається за формулою $l=\pi d$, де π — стала величина. Змінна l залежить від змінної величини d, тобто довжина кола l ϵ функцією діаметра d.

Спільним у цих прикладах є те, що зв'язок між змінними величинами описується певним правилом (залежністю, законом, відповідністю) так, що кожному значенню однієї величини $(R,\ P,\ t,\ d)$ відповідає єдипе значення другої $(I,\ V,\ S,\ l)$.

Дамо тепер означення функції. Якщо кожному числу x з деякої

Дамо тепер означення функції. Якщо кожному числу x з деякої числової множини X за певним правилом поставлене у відповідність єдине число y, то кажуть, що y є функція від x і пишуть y = f(x), $x \in X$. Це означення належить M. 1. Лобачевському і M Діріхле.

Змінна x називається незалежною змінною, або аргументом, а змінна y — залежною змінною, або функцією; під символом f розуміють те правило, за яким кожному x відповідає y, або ті операції, які треба виконати над аргументом, щоб дістати відповідне значення функції

Множина X називається областю визначення функції. Множина Y усіх чисел y, таких, що y=f(x) для кожного $x\in X$ називається множиною значень функції, тобто

$$Y = \{y \mid y = f(x), \quad \forall \ x \in X\}.$$

Іноді у означенні функції припускають, що одному значенню аргумента відповідає не одне, а кілька значень y або навіть нескінченна множина значень y. У цьому випадку функцію називають багатозначною, на відміну від означеної вище однозначної функції. Прикладами многозначних функцій є $y=\pm V$ $\widetilde{x},\ y=\operatorname{Arcsin} x$ тощо. Надалі ми розглядатимемо лише однозначні функції.

У ширшому розумінні поняття функції вживається як синонім

поняття відображення множини на множину.

Нехай задано дві непорожні множини X і Y з елементами $x \in X$ і $y \in Y$ і нехай перетворення f переводить x в y. Тоді це перетворення f (правило, закон, відповідність, відображення, залежність) називають функцією і пишуть

$$X \perp Y$$
 або $f: X \rightarrow Y$

(X та Y множини деяких елементів, не обов'язково числові). У цьому випадку, як і у випадку числових множин X та Y, ці множини називають областю визначення та множиною значень функції. Залежно від природи множини X та Y для функції f вживають різні назви. Так, якщо X та Y — множини дійсних чисел, то кажуть, що f — дійсна функція дійсного аргументу; якщо X — множина комплексних чисел (гл. 7, п. 1.4), а Y — множина дійсних чисел, то f дійсна функція комплексного аргументу; якщо Х — множина функцій, а Y — числова множина, то f називається функціоналом.

Порівнюючи означення функції, бачимо, що в першому з них під функцією $y = f(\lambda)$ розуміють її значення — число y. За другим означенням функція — це закон або правило f, за яким кожному елементу $x \in X$ ставиться у відповідність єдиний елемент $y \in Y$. Таким чином, за першим означенням поняття функції зводиться до поняття змінної величини, а за другим— до поняття відповідності. Іноді поняття функції виражається і через інші поняття (наприклад,

множину). Надалі користуватимемось першим означенням функції. Y курсі математичного аналізу розглядають функції, для яких область визначення X і множина значень Y складаються з дійсних чисел. Тому під поняттям «число», якщо не зроблено застереження, розумітимемо дійсне число.

З означення функції не випливає, що різним значенням аргументу відповідають різні значення функції. Функція може в усій області визначення набувати кількох або навіть одного значення. Зокрема, якщо множина значень функції складається лише з одного числа c, то таку функцію називають сталою і пишуть y=c.

2.3. Способи задання функцій

Щоб задати функцію y=f(x), треба вказати її область визначення X, множину значень Y і правило f, за яким для довільного числа $x\in X$ можна знайти відповідне йому число $y\in Y$.

Основні способи задання функції: аналітичний, графічний і табличний.

При аналітичному способі задання функції відповідність між аргументом і функцією задається формулою (аналітичним виразом), де зазначено, які дії потрібно виконати над значенням аргументу та сталими числами, щоб дістати відповідне значення функції. Якщо при цьому область визначення не вказується, то під останньою розуміють область існування функції — множину всіх дійсних значень аргументу, для яких аналітичний вираз має зміст.

Зауваження. Не слід ототожнювати функцію і формулу, за допомогою якої ця функція задана. Однією й тією формулою можна задавати різні функції, і навпаки, одна й та сама функція на різних ділянках її області визначення може задаватись різними формулами. Так, функції $y = x^3$, $x \in [0; 1]$ і $y = x^3$, $x \in (2; 5)$ — різні, бо вони мають різні області визначення; функція

$$y = \begin{cases} 2x - 1, & x \leq 0; \\ \lg x, & x > 0 \end{cases}$$

визначена на проміжку $(-\infty; +\infty)$, але для недодатних і додатних значень аргументу її задано різними формулами.

П риклад

Знайти області визначення функції:

a)
$$y = \frac{x+2}{\sqrt{-x^2+3x+4}}$$
; 6) $y = \lg \sin(x-2)$; B) $y = \arcsin \frac{x-1}{3x}$;
r) $y = \sqrt{4-x} + \sqrt[3]{\frac{1}{x-1}} + \lg(x-2)$; A) $y = n!$.

O a)
$$X = \{x \mid -\dot{x}^2 + 3x + 4 > 0\} = \{x \mid -1 < x < 4\} = (-1; 4);$$

6)
$$X = \{x \mid \sin(x-2) > 0\} = \{x \mid 2(\pi n + 1) < x < (2n + 1)\pi + 2\};$$

B)
$$X = \left\{x \mid \left| \frac{x-1}{3x} \right| \leqslant 1\right\} \cap \left\{x \mid x \neq 0\right\} = \left(-\infty; -\frac{1}{2}\right] \cup \left[\frac{1}{4}; +\infty\right];$$

г) $X = \{x \mid 4-x \geqslant 0\}$ $\cap \{x \mid x \neq 1\}$ $\cap \{x \mid x-2>0\} = (2;4];$ д) формула y = n! ставить у відповідність кожному изтуральному числу n число y = n!. Наприклад, якщо n = 3, то $y = 3! = 1 \cdot 2 \cdot 3 = 6$, якщо n = 5, то $y = 5! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 = 120$. Отже, $X = Z_0$ (вважають, що 0! = 1).

Ці приклади показують, що областю існування функції можуть бути досить різноманітні множини: відрізок, кілька або навіть нескінченна кількість відрізків, дискретна множина точок тощо.

Зазначимо, що задача знаходження множини Y значень аналітично заданої функції набагато складніша і пов'язана з задачею про екстремуми функції (гл. 6, п. 6.3).

При графічному способі задання функції y = f(x) відповідність між змінними x і y задається графіком — множиною точок (x; y)площини, прямокутні координати яких задовольняють рівність y =

= f(x). Залежно від того, яку задано функцію, графік її може складатись з однієї суцільної лінії, кількох ліній, дискретної множини точок площини тощо.

Графічним способом задання функції широко користуються при дослідженнях, пов'язаних з використанням таких самописних приладів, як барограф (для запису змін атмосферного тиску), осцилограф (для запису змін електричного струму або напруги), електрокардіограф (для запису електричних явищ, пов'язаних з діяльністю серця), термограф (для запису змін температури повітря) тощо. Криві (їх називають відповідно барограма, осцилограма, електрокардіограма, термограма), що їх виписують прилади, задають цілком певну функцію, властивості якої характеризують перебіг того чи іншого процесу.

Графіки функцій можна спостерігати на дисплеях комп'ютерів. У математиці графіками широко користуються для геометричного зображення функцій, навіть тоді, коли ці функції задані аналітично. Якщо функція y = f(x) задана на деякій множині X формулою, то завжди можна вважати, що їй відповідає певний графік, який визначає цю функцію геометрично. А якщо функція задана довільним графіком, то чи можна її задати деякою формулою? Це дуже складне запитання. Щоб відповісти на нього, потрібно з'ясувати, який зміст має поняття формули. Якщо функція y = f(x) задана формулою, то ми поки що вважаємо, що функція у утворюється за допомогою скінченного числа таких операцій над х, як додавання, віднімання, множення, ділення, добування кореня, логарифмування, взяття sin, arcsin тощо. Математичний аналіз дає змогу значно розширити поняття формули. Зокрема, формулою вважається також і нескінченний ряд, членами якого є ті чи інші функції, тобто допускається нескінченне число операцій над цими функціями. За допомогою таких формул більшість кривих, що зустрічаються на практиці, можна задати аналітично (гл. 9).

П риклади

1. Графіком функції $y=2n-3, n\in N$ є нескінченна множина ізольованих точок (рис. 4.2), які лежать на прямій y=2x-3.

2. Графіком функції y = |x| є сукупність бісектрис першого і другого коорди-

натних кутів (рис. 4.3). 3. Графіком функції

$$y = \begin{cases} x^2 - 2, & -\infty < x \le 2; \\ 2, & 2 < x < +\infty, \end{cases}$$

що задана різними аналітичними внразами на різних частинах області зміни x, є сукупність параболи і прямої (рис. 4.4). Стрілка на графіку означає, що точка M (2; 2) не належить прямій.

4. Функція

$$y = \operatorname{sign} x = \begin{cases} -1, & x < 0; \\ 0, & x = 0; \\ 1, & x > 0 \end{cases}$$

(читається «сигнум ікс») визначена на всій числовій осі і набуває трьох значень : —1; 0; 1; $X=(-\infty;+\infty)$, $Y=\{-1,0,1\}$. Графік цієї функції зображено на рис. 4.5.

5. Функція $y = \frac{|x|}{x}$ (рис. 4.6) визначена при $x \neq 0$ і набуває двох значень: —1; 1; $X = (-\infty; 0) \cup (0; +\infty)$: $Y = \{-1, 1\}$.

Зауважимо, що в прямокутній системі координат Oxy (рис. 4.7) функцію задає лише така крива l_2 , яку кожна пряма, що проходить через точку $x \in X$ паралельно осі Oy, перетинає лише в одній точці. Область визначення цієї функції — відрізок [a; b], який є проекцією кривої на вісь Ox. Щоб знайти значення функції $y_0 = f(x_0)$, що відповідає значенню аргументу x_0 , потрібно через точку $x_0 \in [a; b]$ провести перпендикуляр до осі Ox. Довжина цього перпендикуляра від осі Ox до точки M_0 (x_0 ; y_0) перетину з кривою, взята з належним знаком, і є значенням функції в точці x_0 , тобто $y_0 = f(x_0)$. Крива l_1 не задає функцію.

 \dot{T} абличний спосіб задання функції y = f(x) полягає в тому, що відповідність між змінними x та y задається у вигляді таблиці.

Табличний спосіб досить часто використовується при проведенні експериментів, коли задають певну сукупність $x_1, x_2, ..., x_n$ значень аргументу і дослідним шляхом знаходять відповідні значення функції: $y_1, y_2, ..., y_n$.

Якщо функція задана аналітично, то для неї можна побудувати таблицю, тобто табулювати функцію. Табулюються, як правило, функції, які виражаються складною формулою, але часто зустрічаються в практиці. Такими є, наприклад, таблиці логарифмів, тригонометричні

Рис. 4.8

таблиці тощо. І тут, як і при графічному заданні функції, виникає обернене запитання: чи завжди можна від табличного задання функції перейти до аналітичного, тобто чи можна функцію, задану таблицею, задати формулою? Щоб відповісти на нього, зауважимо, що таблиця дає не всі значення функції. Проміжні її значення, які не входять у задану таблицю, можна знайти наближено за допомогою так званої операції інтерполювання функції. Тому в загальному випадку знайти точний аналітичний вираз функції за її таблицею неможливо. Проте можна побудувати формулу, причому не одну, яка для значень x_i , що є в таблиці, буде давати відповідні значення y_i функції. Такі формули називаються інтерполяційними (гл. 5, п. 72).

Останнім часом табличний спосіб широко застосовується у зв'язку з використанням електронно-обчислювальних машин (ЕОМ), тому що вихідну інформацію ЕОМ видає у вигляді числових масивів (таблиць). У зв'язку з цим все більше поширюється і стає одним з основних четвертий спосіб задання функції — за допомогою комп'ютерних програм. Як правило, цим способом задаються такі функції, які є розв'язками складних математичних задач. Жодним з попередніх способів подібні функції задати не можна.

Крім розглянутих існують й інші способи задання функції. Так, функцію можна задати словесним описом залежності між змінними.

Приклади

1. Функцію у задано умовою: кожному дійсному числу x ставиться у відповідність найбільше ціле число, яке не перевищує x (рис. 4.8). Ця функція, визначена на множині дійсних чнсел, називається *цілою частиною* x і позначається y = [x] або y = E(x) (E — початкова літера французького слова entier — цілий). Наприклад, [0, 2] = 0, [-2, 5] = -3, [5] = 5 і т. д.

2. Кожному раціональному числу ставиться у відповідність число 1, а ірраціональному — число 0. Ця функція теж визначена на множині R. Вона позначається через $D\left(x\right)$ і називається функцією Діріхле:

$$D(x) = \begin{cases} 1, & \text{якщо} & x - \text{раціональне число;} \\ 0, & \text{якщо} & x - \text{ірраціональне число.} \end{cases}$$

Графік функції D (x) практично зобразити не можна, бо він складається з точок прямої y=1, що мають абсинсамн раціональні числа, і з точок прямої y=0, в яких абсинси — ірраціональні числа.

2.4. Класифікація елементарних функцій

Основними елементарними функціями називаються такі:

1. Степенева функція $y = x^{\alpha}$, $\alpha \in R$. Область визначення і графіки цієї функції залежать від значення α (рис. 4.9, $a-\epsilon$).

2. Показникова функція $y = a^x$, a > 0, $a \ne 1$ (рис. 4.10).

- 3. Логарифмічна функція $y = \log_a x$, a > 0, $a \ne 1$ (рис. 4.11). 4. Тригонометричні функції: $y = \sin x$, $y = \cos x$, $y = \operatorname{tg} x$, y = ctg x (puc. 4.12, a - s).

5. Обернені тригонометричні функції: $y = \arcsin x$, $y = \arccos x$,

 $y = \operatorname{arctg} x$, $y = \operatorname{arcctg} x$ (puc. 4.13, a - z).

Графіки основних елементарних функцій треба пам'ятати. Перетворюючи їх, можна дістати графіки багатьох інших функцій. Нехай графік функції y = f(x) відомий, розглянемо деякі перетворення цього графіка.

1. Графік функції y = f(x) + b дістанемо з графіка функції y == f(x) паралельним перенесенням останнього вздовж осі Oy на величину, що дорівнює b (рис. 4.14).

2. Графік функції y = f(x + a) дістаємо з графіка функції y == f(x) паралельним перенесенням останнього вздовж осі Ox на ве-

личину, що дорівнює a (рис. 4.15).

3. Графік функції $y = cf(x), c \neq 0$ (рис. 4.16) дістаємо з графіка функції y = f(x) при 0 < c < 1 за допомогою стискування в $\frac{1}{2}$ разів ординат останнього, а при c > 1 за допомогою розтягування в c разів

Рис. 4.9

його ординат із збереженням відповідних абсцис. Якщо $-\infty < c <$ <0, то графік y=cf(x) є дзеркальним відображенням графіка y=-cf(x) відносно осі Ox (відповідно до випадків -1< c< 0 і r < -1).

4. Графік функції $y = f(kx), k \neq 0$ дістаємо з графіка функції y = f(x) при 0 < k < 1 збільшенням в $\frac{1}{h}$ разів абсцис його точок, а при $1 < k < +\infty$ зменшенням в k разів абсцис його точок із збереженням їхніх ординат (рис. 4.17).

Якщо $-\infty < k < 0$, то графік y = f(kx) є дзеркальним відобра-

женням графіка f(-kx) відносно осі Oy.

Введемо арифметичні операції над функціями. Нехай функція y = f(x) визначена на множині A, а $\varphi(x)$ — на множині B, причому переріз цих множин $C = A \cap B \neq \emptyset$. Тоді на множині C можна визначити суму функцій $f(x) + \varphi(x)$. Значення суми в точці x = 0 $= x_0 \in C$ — це число, яке дорівнює сумі $f(x_0) + \varphi(x_0)$. Аналогічно

139

Рис. 4.13

можна визначити різницю $f(x) - \varphi(x)$, добуток $f(x) \varphi(x)$ та частку $\frac{f(x)}{\varphi(x)}$ цих функцій (останню за умови, що $\varphi(x) \neq 0$, $\forall x \in C$).

Над функціями виконують і так звану операцію суперпозиції, або накладання. Нехай функція y=f(u) визначена на множині A, а функція $u=\varphi(x)$ — на множині B, причому для кожного значення $x\in B$ відповідне значення $u=\varphi(x)\in A$. Тоді на множині B визначена функція $f(\varphi(x))$, яку називають складеною функцією від x, або суперпозицією заданих функцій, або функцією від функції.

Змінну $u = \varphi(x)$ функції y = f(u) називають проміжним аргументом, або внутрішньою функцією, а змінну y = f(u) зовнішньою

функцією.

Наприклад, функція $y = \sqrt[3]{\sin x}$ є суперпозицією двох основних елементарних функцій — степеневої та тригонометричної: $y = \sqrt[3]{u}$, $u \in [-1; 1]$, $u = \sin x$, $x \in (-\infty; +\infty)$. Складені функції можна утворювати за допомогою суперпозиції не тільки двох, а й більшої кількості функцій.

Наприклад, функцію $y=2^{\sin x^a}$ можна розглядати як суперпозицію трьох функцій:

$$y = 2^{u}$$
, $u \in [-1; 1]$, $u = \sin v$, $v \in (-\infty; +\infty)$, $v = x^{3}$, $x \in (-\infty; +\infty)$.

Основні елементарні функції, а також функції, утворені за допомогою формул, в яких над основними елементарними функціями виконується лише скінченне число арифметичних операцій (додавання, віднімання, множення, ділення) і суперпозицій, називаються елементарними.

Так, функція $y=\arccos\frac{1}{x}+\frac{5x^2-1}{\sin x}$ є елементарною функцією, а функції

$$y = \begin{cases} x^2, & -\infty < x \le 1; \\ 2x + 1, & 1 < x < +\infty; \end{cases} y = x + \frac{x^2}{2} + \frac{x^3}{3} + \cdots + \frac{x^n}{n} + \cdots$$

не ϵ елементарними. Неелементарними ϵ також функції n!, sign x, E(x), D(x).

Елементарні функції поділяють на такі класи.

1) Функція виду $P(x) = a_0 x^n + a_1 x^{n-1} + ... + a_{n-1} x + a_n$, де $n \in Z_0$, a_0 , a_1 , ..., a_n — дійсні числа — коєфіцієнти $(a_0 \neq 0)$, називається цілою раціональною функцією, або многочленом (поліномом) степеня n. Многочлен першого степеня називається також лінійною функцією, а другого — квадратичною.

2) Функція, що є відношенням двох многочленів

$$R(x) = \frac{a_0 x^n + a_1 x^{n-1} + \cdots + a_n}{b_0 x^m + b_1 x^{m-1} + \cdots + b_m},$$

називається дробовою раціональною функцією, або раціональним дробом.

Сукупність многочленів і раціональних дробів утворює клас раціональних функцій.

3) Функція, утворена за допомогою скінченного числа суперпозицій та арифметичних операцій над раціональними функціями і над степеневими функціями з дробовими показниками і яка не є раціональною, називається *ірраціональною функцією*.

Наприклад, функції $y = \sqrt{\frac{2x+1}{x^3+1}}$; $y = \sqrt{x}+5$ — ірраціональні.

4) Елементарна функція, яка не є раціональною або ірраціональною, називається трансцендентною функцією. Це, наприклад, функції $y = \sin x$, $y = 2^x + x$, $y = \lg x$, $y = \arctan x$ тощо.

2.5. Обмежені функції

Функцію f(x), визначену на множині A, називають обмеженою на цій множині, коли існує таке число M>0, що для всіх $x\in A$ виконується нерівність $|f(x)|\leqslant M$. Таким чином, значення обмеженої функції не виходять за межі відрізка [-M;M]. Тому її графік лежить між прямими y=-M та y=M (рис. 4.18). Наприклад, функції $y=\sin x$ та $y=\cos x$ обмежені на всій числовій осі, бо $|\sin x|\leqslant 1$, $|\cos x|\leqslant 1$, $x\in (-\infty;+\infty)$. Якщо для функцій f(x) або $\varphi(x)$, визначених на множині A, іс-

Якщо для функцій f(x) або $\varphi(x)$, визначених на множині A, існує таке число N, що виконується нерівність $f(x) \le N$ або $\varphi(x) \ge N$, то функцію f(x) називають обмеженою зверху, а $\varphi(x) - 0$ обмеженою знизу. Наприклад, функція $y = a^x$ на інтервалі $(-\infty; +\infty)$ обмежена знизу прямою y = 0, але не обмежена зверху; функція $y = -x^2 + 4x - 3$ (рис. 4.19) обмежена зверху прямою y = 1, але не обмежена знизу; функція $y = \frac{1}{r}$ необмежена.

Розглядаючи обмеженість функції f(x), ми тим самим характеризуємо множину значень цієї функції.

Рис. 4.18

Рис. 4.19

2.6. Монотонні функції

Нехай функція f(x) визначена на множині A. Якщо для двох довільних різних значень x_1 і x_2 аргументу, взятих із множини A, з нерівності $x_1 < x_2$ випливає, що:

- а) $f(x_1) < f(x_2)$, то функція називається *зростаючою*; б) $f(x_1) \le f(x_2)$, то функція називається *неспадною*;

- в) $f(x_1) > f(x_2)$, то функція називається спадною; г) $f(x_1) \geqslant f(x_2)$, то функція називається незростаючою.

Наприклад, функція $y = a^x$ (рис. 4.10) є зростаючою при a > 1 і спадною при 0 < a < 1 на інтервалі $(-\infty; +\infty)$; функція $y = -x^2 + 4x - 3$ (рис. 4.19) є зростаючою на інтервалі (— ∞ ; 2) і спадною на інтервалі (2; $+\infty$); функція E(x) (рис. 4.8) — неспадна.

Зростаючі, незростаючі, спадні й неспадні функції на множині А називаються монотонними на цій множині, а зростаючі і спадні — строго монотонними.

Нехай функція не є монотонною в усій своїй області визначення, але цю область можна розбити на деяке (скінченне чи нескінченне) число проміжків, які не перетинаються і на кожному з яких функція монотонна. Такі проміжки називаються проміжками монотонності функції.

Так, функція $y=x^2$ не є монотонною на всій числовій осі, але має два проміжки монотонності: ($-\infty$; 0) і (0; $+\infty$); на першому з них функція спадає, а на другому — зростає.

Функції $y = \sin x$ і $y = \cos x$ мають нескінченну кількість проміжків монотонності.

2.7. Парні і непарні функції

Нехай функція f(x) визначена на множині A точок осі Ox, розміщених симетрично відносно точки x=0, тобто якщо $x \in A$, то й $-x \in A$.

Функцію f(x) називають парною, якщо f(-x) = f(x), $x \in A$, і непарною, якщо f(-x) = -f(x), $x \in A$.

П риклади

- 1. Функція $y=rac{1}{x+2}$ не є парною і не є непарною, бо її область внзначення не симетрична відносно точки x=0: в точці x=2 функція визначена, а в точці x = -2 — не визиачена.
- 2. Функція $y = \frac{2x^2 + x}{x}$ має область визначення (— ∞ ; 0) U (0; $+\infty$), сниетричиу відиосио точки x=0, але не є иі париою, ні непарною, бо

$$f(-x) = \frac{2(-x)^2 + (-x)}{-x} = -\frac{2x^2 - x}{x}; \quad -f(x) = -\frac{2x^2 + x}{x};$$
$$f(-x) \neq f(x), \quad f(-x) \neq -f(x).$$

3. Область визначення функції $f(x) = \frac{x^2+1}{x^2-3}$ симетрична відносно точки

 $x = 0 \ (x \neq \pm \sqrt{3})$, і ця функція парна, бо

$$f(-x) = \frac{(-x)^2 + 1}{(-x)^2 - 3} = \frac{x^2 + 1}{x^2 - 3} = f(x).$$

4. Функції $y = \sin x$, $y = \log x$, $y = \cot x$ — непарні, а $y = \cos x$ — парна.

Графік парної функції симетричний відносно осі Oy, а непарної — відносно початку координат. Крім того, якщо парна чи непарна функція має певну властивість для додатних значень x, то можна визначити відповідну властивість для від'ємних значень x. Наприклад, якщо для x > 0 парна функція зростає, то для x < 0 ця функція спадає.

2.8. Періодичні функції

Функція f(x), визначена на всій числовій прямій, називається періодичною, якщо існує таке число T, що f(x+T)=f(x). Число T називається періодом функції. Якщо T — період функції, то її періодами є також числа kT, де k дорівнює ± 1 , ± 2 , Найменший з додатних періодів функції, якщо такий існуе, називається основним періодом функції.

Ми визначили періодичну функцію, задану на всій числовій прямій. Більш загальним є таке означення.

Функція f(x), визначена на множині X, називається періодичною на цій множині, якщо існує таке число $T \neq 0$, що $x + T \in X$ і f(x + T) = f(x), $x \in X$.

З означення випливає, що для побудови графіка періодичної з періодом T функції досить побудувати її графік на довільному проміжку довжини T, а потім продовжити цей графік на всю область визначення, повторюючи його через кожний проміжок довжини T.

П риклади

1. Основним періодом функцій $y = \sin x$, $y = \cos x$ є число $T = 2\pi$.

2. Функції $y = \operatorname{tg} x$ і $y = \operatorname{ctg} x$ мають основний період $T = \pi$.

3. Періодом функції y=C (C — стала) є довільне, відмінне від нуля число; ця функція не має основного періоду.

4. Знайти період функції $y = \sin(ax + b)$, $x \in (-\infty; +\infty)$. О Якщо ця функція періодичи, то існує таке число $T \neq 0$, що

$$\sin(ax+b) = \sin(a(x+T)+b),$$

звідки

$$2\pi n + ax + b = ax + aT + b, \quad T = \frac{2\pi n}{a}, n \in \mathbb{Z}.$$

Отже, основним періодом даної функції є число $T=\frac{2\pi}{|a|}$. lacktriangle

Періодичні функції відіграють важливу роль для математичного опису періодичних явищ, що спостерігаються в природі. Характерною особливістю цих явищ є періодичне повторення їх через певні про-

міжки часу. Прикладами можуть бути рух маятника навколо осі, рух небесних тіл (планети рухаються по еліптичних орбітах), робота майже всіх машин і механізмів пов'язана з періодичним рухом (рух поршнів, шатунів тощо).

2.9. Неявно задані функції

Якщо функція задана рівнянням y = f(x), розв'язаним відносно залежної змінної y, то кажуть, що функція задана у явній формі або є явною.

Під неявним заданням функції розуміють задання функції у вигляді рівняння F(x, y) = 0, не розв'язаного відносно залежної змін ної.

Це рівняння задає функцію лише тоді, коли миожина впорядкованих пар чисел (x, y), які є розв'язком даного рівняння, така, що будьякому числу x_0 у цій множині відповідає не більше однієї пари (x_0, y_0) з першим елементом x_0 . Так, рівняння 2x + 3y - 1 = 0 задає функцію, а рівняння $x^2 + y^2 = 4$ не задає, бо значенню $x_0 = \sqrt{3}$ відповідає дві пари чисел: $(\sqrt{3}, 1)$, $(\sqrt{3}, -1)$.

відповідає дві пари чисел: $(\sqrt{3}, 1)$, $(\sqrt{3}, -1)$.

Довільну явно задану функцію y = f(x) можна записати як неявно задану рівнянням f(x) - y = 0, але не навпаки. Наприклад, функцію $e^y - x + y = 0$ явно записати не можна, бо це рівняння не можна розв'язати відносно y. Тому неявна форма запису функції більш загальна, ніж явна. Неявно задану функцію називають неявною.

Зауважимо, що терміни «явна функція» і «неявна функція» характеризують не природу функції, а аналітичний спосіб її задання.

2.10. Обернені функції

Нехай задана функція y=f(x) з областю визначення X і множиною значень Y. Функція f(x) кожному значенню $x_0 \in X$ ставить у відповідність єдине значення $y_0 \in Y$ (рис. 4.20). При цьому може виявитись, що різним значенням аргументу x_1 і x_2 відповідає одне й те саме значення функції y_1 (рис. 4.21). Додатково вимагатимемо, щоб функція f(x) різним значенням x ставила у відповідність різ-

Рис. 4.21

ні значення у. Тоді кожному значенню $y \in Y$ відповідатиме єдине значення $x \in X$. тобто можна визначити функцію $x = \phi(y)$ з областю визначення У і множиною значень Х. Ця функція називається оберненою финкцією до даної.

Отже, функція $x = \varphi(y)$ є оберненою до функції y = f(x), якщо:

1) областю визначення функції ф є множина значень функції f:

2) множина значень функції $\phi \in \text{облас-}$ тю визначення функції f;

3) кожному значенню змінної $y \in Y$ відповідає єдине значення змінної $x \in X$.

3 цього випливає, що кожна з двох функцій y = f(x) і $x = \varphi(y)$ може бути названа прямою або оберненою, тобто ці функції взаємно

обернені.

Щоб знайти функцію $x = \varphi(y)$, обернену до функції y = f(x), достатньо розв'язати рівняння f(x) = y відносно змінної x (якщо це можливо). Оскільки кожна точка (x; y) кривої y = f(x) є одночасно точкою кривої $x = \varphi(y)$, то графіки взаємно обернених функцій y = f(x) і $x = \varphi(y)$ збігаються. Якщо ж додатково зажадати, щоб, як звичайно, незалежна змінна позначалась через х, а залежна через y, то замість функції $x = \varphi(y)$ матимемо функцію $y = \varphi(x)$. Це означає, що кожна точка $M_1(x_0; y_0)$ кривої y = f(x) стане точкою $M_2(y_0; x_0)$ кривої $y = \varphi(x)$. Оскільки в системі координат *Оху* точки M_1 і M_2 симетричні відносно прямої y=x, то графіки взаємно обернених функцій y = f(x) і $y = \varphi(x)$ симетричні відносно бісектриси першого і третього координатних кутів (рис. 4.22).

З означення оберненої функції випливає, що функція $y=\varphi(x)$, $x\in X,\ y\in Y$ має обернену тоді і тільки тоді, коли ця функція задає взаємно однозначну відповідність між множинами Таку властивість мають, зокрема, зростаючі функції, оскільки для них $(x_1 < x_2) \Leftrightarrow (y_1 < y_2)$, і спадні функції, тому що для них $(x_1 < x_2) \Leftrightarrow (y_1 > y_2)$. Звідси випливає, що будь-яка строго монотонна функція має обернену функцію. При цьому, якщо пряма функція строго зростає (спадає), то обернена їй функція також строго зростає

(спадає).

Зазначимо без доведення, що коли функція y = f(x) зростає (спадає) і неперервна на відрізку [a;b], то вона має обернену функцію, яка зростає (спадає) і неперервна на відрізку [f(a); f(b)]([f(b); f(a)]) [12].

Приклади

1. Функція y = 2x - 1 має обернену функцію $y = \frac{x+1}{2}$ (рис. 4.23).

y=x², xε(θ; ∞) y=√x PHC. 4.24

Рис. 4.23

2. Функція $y=x^3$ на множині (— ∞ ; $+\infty$) не має оберненої, тому що вона не є монотонною; на миожині (0; $+\infty$) вона має обернену функцію $y=\sqrt{x}$, $x\in(0;+\infty)$ (рис. 4.24).

3. Функція $y=a^x$, $x \in R$, $y \in (0; +\infty)$ (рис. 4.10) має обернену функцію y=

= $\log_a x$, $x \in (0; +\infty)$, $y \in R$ (puc. 4.11).

4. Функція $y = \sin x, x \in R$ (рис. 4.12, a) не має оберненої; функція $y = \sin x, x \in \left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$ має обернену функцію $y = \arcsin x, x \in [-1; 1]$ (рис. 4.13, a).

5. Функція $y = \cos x$, $x \in [0; \pi]$ (рис. 4.12, б) має обериену функцію $y = \arccos x$, $x \in [-1; 1]$, $y \in [0; \pi]$ (рис. 4.13, б).

6. Функція $y = \arctan x$, $x \in (-\infty; +\infty)$ (рис. 4.13, в) обернена функції $y = \tan x$, $x \in [-\frac{\pi}{2}; \frac{\pi}{2}]$, $y \in R$ (рис. 4.12, в).

7. Функція $y=\arctan x$, $x\in R$ (рис. 4.13, г) обернена функції $y=\cot x$, $x\in (0;\pi)$, $y\in R$ (рис. 4.12, г).

2.11. Параметрично задані функції

Нехай задано дві функції

$$x = \varphi(t), \ y = \psi(t) \tag{1}$$

однієї незалежної змінної t, визначені на одному й тому самому проміжку. Якщо функція $x = \varphi(t)$ строго монотонна, то згідно з попереднім пунктом вона має обернену функцію $t = \Phi(x)$. Тому змінну y можна розглядати як складену функцію від $x : y = \psi(\Phi(x))$.

Задання функціональної залежності між х і у у вигляді двох функцій (1) називають параметричним заданням функцій. Допоміжна змінна t при цьому називається параметром. Всяка параметрично задана функція (1) визначає на площині Оху деяку криву, проте не всяка параметрично задана крива (гл. 3, п. 1.4) визначає функцію.

П риклади

1. Рівняння $x=R\cos t,\ y=R\sin t,\ t\in [0;\ \pi]$ визначають функцію, оскільки змінна $x=R\cos t,\ t\in [0;\ \pi]$ строго монотонна. Задана функція визначає півколо $y=\sqrt{R^2-x^2}$, розміщене у верхній півплощині, тому що при $0\leqslant t<\pi$ значення $y=R\sin t\geqslant 0$.

2. Рівняння $x=a\cos^3 t$, $y=a\sin^3 t$, $0\leqslant t\leqslant \frac{\pi}{2}$ визначають функцію, графіком якої є дуга астроїди, що знаходиться у першому координатному куті (рис. 3.8).

Завдания для самоконтролю

1. Що називається функцією? Навести приклади.

2. Що називається областю визначення та множиною значень функції?

3. Охарактеризувати основні способи задання функції.

4. Які функції називаються основними елементарними функціями?

5. Побудувати графіки таких основних елементарних функцій:

$$y = x$$
; $y = x^2$; $y = x^3$; $y = x^{-1}$; $y = a^x$;

 $y = \log_a x$; $y = \sin x$; $x = \cos x$; $y = \lg x$;

 $y = \operatorname{ctg} x$; $y = \arcsin x$; $y = \arccos x$; $y = \arctan x$.

- 6. Як, маючн графік функції y = f(x), побудувати графік функції y = af(kx + y)+b)?
 - 7. Яка функція називається складеною? Навести приклади.
 - 8. Яка функція називається елементарною?

9. Як класифікують елементарні функції?

10. Які функції називаються монотонними? Навестн прикладн.

11. Яка функція називається парною, непарною? Які особливості цих функцій? Навести приклади.

12. Яка функція називається періодичною? Що називається її основним періодом? Навести приклади.

13. Як знайти функцію, обернену до даної? За яких умов існує обернена функція? Навести приклади.

14. Яка функція називається неявно заданою, параметрично заданою?

15. Знайти область визначення функцій:

a)
$$y = \sqrt{x} + \arcsin \frac{3x - 1}{4} + \lg (9 - x^2)$$
; 6) $y = \lg \cos x$.

16. Нехай $f(x) = (x+1)(x-1)^{-1}$. Довести, що $f(x^{-1}) = -f(x)$.

17. За допомогою перетворень відповідних графіків основних елементарних функцій побудувати графіки функцій: a) $y = \sin x + 3$; 6) $y = 3 \sin 2x$; в) y = $= \lg (x - 1).$

18. Довестн, що коли кожна з функцій f(x) і $\varphi(x)$ зростає на інтервалі (a;b),

то їхня сума $f(x) + \varphi(x)$ також зростає на цьому інтервалі. 19. Довести: а) функція $y = x^4 + 2x^2$, $x \in [0; 1]$ не є ні парною, ні непарною; б) функція $y = x^2 + \cos x$, $x \in (-\infty; +\infty)$ парна: в) функція $y = x^3 - 3\sin x$, $x \in R$ — непарна.

Рис. 4.25

20. Довести, що функція $y=\sin\frac{1}{x}$ неперіодична, а функція $y=\sin 3x$ має озновним періодом число $T=\frac{2}{3}\,\pi$.

$$Bidnosidi$$
. 15. a) $\left[0; \frac{5}{3}\right]$; 6) $\left(2\pi k - \frac{\pi}{2}; 2\pi k + \frac{\pi}{2}\right)$, $k \in \mathbb{Z}$.

17. Див. рис. 4.25, a — в.

§ 3. ГРАНИЦЯ ФУНКЦІЇ

3.1. Числова послідовність

З поняттям числової послідовності ми зустрічались під час вивчення шкільного курсу алгебри та геометрії. Зокрема, числовими послідовностями є арифметична прогресія, геометрична прогресія, послідовність периметрів і площ правильних *п*-кутників, вписаних у коло, послідовність площ поверхонь та об'ємів правильних *п*-гранних призм, вписаних в циліндр, тощо.

Сформулюємо означення числової послідовності в загальному вигляді: якщо кожному натуральному числу $n \in N$ за певним правилом станиться у відповідність число x_n , то множину чисел

$$\{x_1, x_2, \ldots, x_n, \ldots\}$$

називають *числовою послідовністию* (або коротко *послідовністю*) і позначають символом $\{x_n\}$.

Окремі числа $x_1, x_2, ..., x_n, ...$ називають членами або елементами послідовності: x_1 — перший член послідовності, x_2 — другий і т. д., x_n — n-й, або загальний член послідовності.

За означенням послідовність містить нескінченну кількість членів, причому будь-які два з них відрізняються, принаймні, номерами. Отже, елементи x_n і x_m при $n \neq m$ вважаються різними, хоча як числа вони можуть бути рівні між собою. Якщо всі елементи послідовності $\{x_n\}$ дорівнюють одному й тому самому числу, то її називають сталою.

Геометрично послідовність зображається на числовій осі у вигляді послідовності точок, координати яких дорівнюють відповідним членам послідовності. Можна також зображати послідовність точками координатної площини Оху, відкладаючи на осі Ох номери членів послідовності, а на осі Оу — відповідні члени.

Послідовність вважається заданою, якщо вказано спосіб знаходження її загального члена. Найчастіше послідовність задається формулою її загального члена.

Очевидно, що всяка функція y = f(n), задана на множи і натуральних чисел N, визначає деяку числову послідовність $\{y_n\}$ з загальним членом $y_n = f(n)$.

	3.6. Зв'язок між криволінійними інтегралами першого і другого роду 60	07
	3.7. Формула Гріна 6	08
	3.8. Умови незалежності криволінійного інтеграла від форми шляху	
	інтегрування б	10
	3.9. Інтегрування повних диференціалів. Первісна функція	
	Завдання для самоконтролю 6	517
S	4. Поверхневі інтеграли	
,	4.1. Поверхневі інтеграли першого ряду	
	4.2. Поверхневі інтеграли другого ряду	
	4.3. Формула Остроградського – Гауса	
	4.4. Формула Стокса	
	Завдання для самоконтролю6	
	Список рекомендованої і використаної літератури	
	Іменний покажчик	
	Предметний покажчик	536

Навчальне видання ДУБОВИК Володимир Панасович ЮРИК Іван Іванович

ВИЩА МАТЕМАТИКА (українською мовою)

4-те видання перероблене та доповнене

Підписано до друку 20. 08. 12 Формат 60х84 1/16. Папір офсетний. Друк офсетний. Гарнітура літературна. Умовн.-друк. арк. 37,66 тираж 500

«Ігнатекс-Україна », 03127, Київ, пр-т 40-річчя Жовтня, 120, корпус 1 Свідоцтво Держкомінформу України ДК № 3414 від 05. 03. 2009.

Віддруковано в Україні

Висновок державної санітарно-епідеміологічної експертизи № 05.03.02-04/52772 від 31.05.2012р.