Hypothesis Testing

To define a statistical Test we

- 1. Choose a statistic (called the *test statistic*)
- 2. Divide the range of possible values for the test statistic into two parts
 - The Acceptance Region
 - The Critical Region

To perform a statistical Test we

- 1. Collect the data.
- 2. Compute the value of the test statistic.
- 3. Make the Decision:
 - If the value of the test statistic is in the Acceptance Region we decide to accept H₀.
 - If the value of the test statistic is in the Critical Region we decide to *reject* H₀.

The z-test for Proportions

Testing the probability of success in a binomial experiment

The Test Statistic

$$z = \frac{\hat{p} - p_0}{\mathbf{S}_{\hat{p}}} = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

The Test Statistic

$$z = \frac{\hat{p} - p_0}{\mathbf{S}_{\hat{p}}} = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

The one tailed z-test

$$H_0: p \le p_0$$

$$H_A: p > p_0$$

The one tailed z-test

$$H_0: p \ge p_0$$

$$H_A: p < p_0$$

The Test Statistic

$$z = \frac{\hat{p} - p_0}{\mathbf{S}_{\hat{p}}} = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

• If you are trying to prove a difference

$$H_A: p \neq p_0$$

- This is the alternative Hypothesis (H_A)
 - the Research Hypothesis
- Use a two tailed test

• If you are trying to prove the true value p exceeds the hypothesized value p_0

$$H_{A}: p > p_{0}$$

- This is the alternative Hypothesis (H_A)
 - the Research Hypothesis

Comments

- The alternative Hypothesis (H_A) is what the experiment is trying to prove - the Research Hypothesis
- The alternative Hypothesis (H_A) will determine if you use a one-tailed test or a two tailed test

• If you are trying to prove the true value p does not exceed the hypothesized value p_0

$$H_A: p < p_0$$

- This is the alternative Hypothesis (H_A)
- the Research Hypothesis

• If you are trying to prove a difference

$$H_A: p \neq p_0$$

- This is the alternative Hypothesis (H_A) the Research Hypothesis
- If you were interested in proving that the new procedure is not an improvement:
- Then

$$H_A: p < p_0$$

Example

- A new surgical procedure is developed for correcting heart defects infants before the age of one month.
- Previously the procedure was used on infants that were older than one month and the success rate was 91%
- A study is conducted to determine if the success rate of the new procedure is greater than 91% (*n* = 200)

- If you were interested in proving only a difference between the new and the old:
- Then

$$H_A: p \neq p_0$$

Comments

- Different objectives will result in different choices of the alternative hypothesis
- If you were interested in Proving that the new procedure is an *improvement*:
- Then

$$H_A: p > p_0$$

We want to test

$$-H_0$$
: $p \le 0.91(91\%)$

Against

$$-H_{\rm A}: p > 0.91(91\%)$$

p = the success rate of the new procedure

Performing the Test

- Decide on a = P[Type I Error] = the significance level of the test
 Choose (a = 0.05)
- 2. Collect the data
- The number of successful operations in the sample of 200 cases is x = 187

$$\hat{p} = \frac{x}{n} = \frac{187}{200} = 0.935 (93.5\%)$$

Comments

- When the decision is made to accept H₀ is made it should not be conclude that we have proven H₀.
- This is because when setting up the test we have not controlled **b** = P[type II error] = P[accepting H₀ when H₀ is FALSE]
- Whenever H₀ is accepted there is a possibility that a type II error has been made.

3. Compute the test statistic

$$z = \frac{\hat{p} - p_0}{\mathbf{s}_{\hat{p}}} = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$
$$= \frac{0.935 - 0.91}{\sqrt{\frac{0.91(1 - 0.91)}{200}}} = 1.235$$

4. Make the Decision $z_a = z_{0.05} = 1.645$

• Accept H_0 if: $z \le 1.645$

• Reject H_0 if: z > 1.645

In the last example

The conclusion that there is a **no** significant (a = 5%) increase in the success rate of the new procedure over the older procedure should be interpreted:

We have been unable to proof that the new procedure is better than the old procedure

Since the test statistic is in the Acceptance region we decide to Accept H_0

Conclude that H_0 : $p \le 0.91(91\%)$ is true

There is a **no** significant (a = 5%) increase in the success rate of the new procedure over the older procedure

An analogy - a jury trial

The two possible decisions are

- Declare the accused innocent.
- Declare the accused guilty.

The null hypothesis (H_0) – the accused is innocent

The alternative hypothesis (H_A) – the accused is guilty

Hence: When decision of innocence is made:

It is **not concluded** that innocence has been proven

but that

we have been unable to disprove innocence

The two possible errors that can be made:

- Declaring an innocent person guilty. (type I error)
- Declaring a guilty person innocent. (type II error)

Note: in this case one type of error may be considered more serious

The z-test for the Mean of a Normal Population

We want to test, **m** denote the mean of a normal population

Requiring all 12 jurors to support a guilty verdict :

- Ensures that the probability of a type I error (Declaring an innocent person guilty) is small.
- However the probability of a type II error (Declaring an guilty person innocent) could be large.

Situation

- A success-failure experiment has been repeated *n* times
- The probability of success *p* is unknown. We want to test
 - $-H_0$: $p = p_0$ (some specified value of p) Against
 - $-H_{A}$: $p \neq p_0$

The Data

- Let x₁, x₂, x₃, ..., x_n denote a sample from a normal population with mean *m* and standard deviation *s*.
- Let

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$
 = the sample mean

- we want to test if the mean, **m**, is equal to some given value **m**₀.
- Obviously if the sample mean is close to m₀ the Null Hypothesis should be accepted otherwise the null Hypothesis should be rejected.

The Acceptance region:

Accept H_0 Reject H_0 $P[\text{Accept } H_0 \text{ when true}] = P[-z_{a/2} \le z \le z_{a/2}] = 1 - a$ $P[\text{Reject } H_0 \text{ when true}] = P[z < -z_{a/2} \text{ or } z > z_{a/2}] = a$

The Test Statistic

 To decide to accept or reject the Null Hypothesis (H₀) we will use the test statistic

$$z = \frac{\overline{x} - \mathbf{m}_0}{\mathbf{S}_{\overline{x}}} = \frac{\overline{x} - \mathbf{m}_0}{\mathbf{S}_{\overline{x}}} = \sqrt{n} \frac{\overline{x} - \mathbf{m}_0}{\mathbf{S}} \approx \sqrt{n} \frac{\overline{x} - \mathbf{m}_0}{s}$$

- If H_0 is true we should expect the test statistic z to be close to zero.
- If H_0 is true we should expect the test statistic z to have a standard normal distribution.
- If H_A is true we should expect the test statistic z to be different from zero.

• Acceptance Region

- Accept
$$H_0$$
 if: $-z_{a/2} \le z \le z_{a/2}$

• Critical Region

- Reject
$$H_0$$
 if: $z < -z_{a/2}$ or $z > z_{a/2}$

· With this Choice

$$P[\text{Type I Error}] = P[\text{Reject } H_0 \text{ when true}]$$

$$= P[z < -z_{a/2} \text{ or } z > z_{a/2}] = a$$

The sampling distribution of z when H_0 is true:

The Standard Normal distribution

Reject H_0

Accept H₀

Reject H_0

Summary

To test mean of a Normal population

 H_0 : $\mathbf{m} = \mathbf{m}_0$ (some specified value of \mathbf{m}) Against

 H_A : $m \neq m_0$

 Decide on a = P[Type I Error] = the significance level of the test (usual choices 0.05 or 0.01) 2. Collect the data

3. Compute the test statistic

$$z = \sqrt{n} \, \frac{\overline{x} - \mathbf{m}_0}{\mathbf{S}} \approx \sqrt{n} \, \frac{\overline{x} - \mathbf{m}_0}{s}$$

4. Make the Decision

• Accept H_0 if: $-z_{a/2} \le z \le z_{a/2}$

• Reject H_0 if: $z < -z_{a/2}$ or $z > z_{a/2}$

The one tailed test – other direction

To test

 H_0 : $m \ge m_0$ (some specified value of m) against

$$H_{A}$$
: $m < m_0$

Acceptance and Critical Region

• Accept H_0 if: $z \ge -z_{a/2}$

• Reject H_0 if: $z < -z_{a/2}$

The one tailed test

To test

 H_0 : $\mathbf{m} \le \mathbf{m}_0$ (some specified value of \mathbf{m}) against

 $H_{\rm A}$: $m > m_0$

1. Use the test statistic

$$z = \sqrt{n} \frac{\overline{x} - \mathbf{m}_0}{S} \approx \sqrt{n} \frac{\overline{x} - \mathbf{m}_0}{S}$$

Test Statistic
$$z = \sqrt{n} \frac{\overline{x} - \mathbf{m}_0}{\mathbf{S}} \approx \sqrt{n} \frac{\overline{x} - \mathbf{m}_0}{s}$$

Expect z to be negative if H_0 is false

The Acceptance and Critical region:

2. Use as the Acceptance and Critical Region

• Accept H_0 if: $z \le z_{a/2}$

• Reject H_0 if: $z > z_{a/2}$

Example:

We are interested in measuring the concentration of lead in water and we want to know if it exceeds the threshold level $\mathbf{m}_0 = 10.0$

We take n = 40 one-litre samples measuring the concentration of lead.

Statistical results:

 $\overline{x} = 12.1$ and s = 1.2

$$\frac{\text{Test Statistic}}{z = \sqrt{n} \frac{\overline{x} - \mathbf{m}_0}{\mathbf{s}} \approx \sqrt{n} \frac{\overline{x} - \mathbf{m}_0}{s}$$

$$= \sqrt{40} \frac{12.1 - 10.0}{1.2} = 11.07$$

Since z is greater than $z_{0.05} = 1.645$ we conclude that the average lead level is significantly higher than 10.0