МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

ИЗУЧЕНИЕ ПЛАЗМЫ ГАЗОВОГО РАЗРЯДА В НЕОНЕ

Выполнил:

Деревянченко Михаил

Группа:

Б03-106

Оглавление

1. Аннотация	3
2. Теоретические сведения	
3. Экспериментальная установка и методика измерений	
4. Проведение измерений и обработка результатов	
5. Обсуждение результатов	
6. Вывод	

1. Аннотация

Целью данной работы являются:

- 1. Снятие вольт-амперной характеристики тлеющего разряда и зондовые характеристики при разных токах разряда.
- 2. Рассчитать концентрацию и температуру электронов в плазме, плазменную частоту, поляризационную длину, дебаевский радиус экранирования и степень ионизации.

2. Теоретические сведения

2.1 Плазма

В ионизированном газе поле ионов «экранируется» электронами. Для поля Е и плотности р электрического заряда

$$divE = 4\pi \rho$$

а с учётом сферической симметрии и E = -gradφ:

$$\frac{d^2\varphi}{dr^2} + \frac{2}{r}\frac{d\varphi}{dr} = -4\pi\rho$$

Плотности заряда электронов и ионов (которые мы считаем бесконечно тяжёлыми и поэтому неподвижными)

$$\rho_e = -ne * \exp(\frac{e \varphi}{kT_e})$$

Расстояние, на которое распространяется действие электрического поля отдельного заряда в плазме:

$$r_D = \sqrt{\frac{kT_e}{4\pi ne^2}}$$
 - радиус Дебая.

Среднее число ионов в сфере такого радиуса

$$N_D = n \frac{4}{3} \pi r_D^2$$

Теперь выделим параллелепипед с плотностью п электронов, сместим их на х. Возникнут поверхностные заряды $\sigma = \text{nex}$, поле от которых будет придавать электронам ускорение:

$$\frac{d^2x}{dx^2} = \frac{-eE}{m} = \frac{-4\pi ne^2}{m}x$$

Отсюда получаем плазменную (ленгмюровскую) частоту колебаний электронов:

$$\omega_p = \sqrt{\frac{4\pi n e^2}{m}}$$

2.2 Газовый разряд

Газовый разряд — процесс возникновения ионизации газа под действием приложенного электрического поля.

Предположим, что ионы в газовом проводнике создаются исключительно внешним ионизатором. Тогда при прекращении действия этого ионизатора ток и, следовательно, разряд прекращаются. Такой разряд называется несамостоятельным.

ВАХ несамостоятельного разряда \wedge^U представлена справа. С повышением напряжения на газовом промежутке ток сначала возрастает (кривая ОА), а потом достигает насыщения и

остаётся (участок ΑБ), практически постоянным ЧТО соответствует полному вытягиванию на электроды зарядов, создаваемых внешним ионизатором. При дальнейшем повышении напряжения ток снова начинает возрастать (участок БВ). Это значит, что имеющиеся ионы, и прежде всего электроны, за между ДВУМЯ последовательными столкновениями такую энергию, набирают что возникнет столкновительная ионизация, то есть рождение новых, вторичных ионов. При этом возникают и развиваются электронные лавины.

В достаточно сильном электрическом поле проводимость газа может возрасти скачком — возникает пробой. Соответствующее напряжение на газовом промежутке называется напряжением пробоя, ИЛИ Если напряжением зажигания. после возникновения пробоя убрать внешний ионизатор, то разряд не Разряд перешёл прекращается. В режим самостоятельного разряда: теперь ионизация поддерживается процессами в самом разряде.

В широком смысле термин электрический пробой означает превращение изолятора в проводник в результате приложения к нему достаточно сильного поля. Для газа это означает переход в ионизованное состояние. При этом возрастание тока приводит к ещё большему возрастанию концентрации ионов, что приводит к

проводимости и, следовательно, возрастанию К понижению напряжения, необходимого для поддержания такого тока. Если дифференциальное ввести понятие сопротивление как производную по току от напряжения, то в этом случае возникает дифференциальное новое отрицательное явление сопротивление.

ВАХ разряда в неоне и нагрузочная прямая

2.3 Одиночный зонд

При внесении в плазму уединённого проводника — зонда — с потенциалом, изначально равным потенциалу точки плазмы, в которую его помещают, на него поступают токи электронов и ионов:

$$I_{e0} = \frac{n\langle v_e \rangle}{4} eS$$

$$I_{i0} = \frac{n\langle v_i \rangle}{4} eS$$

где $<\!\!\mathrm{v_e}\!\!>$ и $<\!\!\mathrm{v_i}\!\!>$ — средние скорости электронов и ионов, S — площадь зонда, n — плотность электронов и ионов. Скорости электронов много больше скорости ионов, поэтому I_{i0} $<\!\!<$ I_{e0} . Зонд будет заряжаться до некоторого равновесного напряжения $-U_f$ — плавающего потенциала.

В равновесии ионный ток мало меняется, а электронный имеет вид:

$$I_e = I_0 \exp\left(\frac{-eU_f}{kT_e}\right)$$

 $I_{e_{\rm H}}$ $I_{e_{\rm H}}$

Будем подавать потенциал U_3 на зонд и снимать значение зондового тока I_3 . Максимальное значение тока $I_{\text{ен}}$ — электронный ток насыщения, а минимальное $I_{\text{ін}}$ — ионный ток насыщения. Значение из

эмпирической формулы Бомона:

$$I_{in}=0.4 ne \sqrt{\frac{2kT_e}{m_i}}$$

2.4 Двойной зонд

Двойным зондом называется система, состоящая из двух одинаковых зондов, расположенных на небольшом расстоянии друг от друга. Между зондами создаётся разность потенциалов, которая по величине много меньше плавающего потенциала $U_{\rm f}$.

При этом оба зонда имеют относительно плазмы близкий к плавающему отрицательный потенциал, т. е. находятся на ионной ветви вольт-амперной характеристики.

При отсутствии разности потенциалов ток между зондами равен нулю. Рассчитаем величину тока, проходящего через двойной зонд вблизи точки I = 0. При небольших разностях потенциалов ионные токи на оба зонда равны ионному току насыщения и компенсируют друг друга. Пусть потенциалы на первом и втором зондах равны:

$$U_1 = -U_f + \Delta U_1$$

$$U_2 = -U_f + \Delta U_2$$

Между зондами $U = \Delta U_{2-} \Delta U_{1}$. Ток на первом электроде:

$$I_1 = I_{in} + I_{e1} = I_{in} - \left(\frac{1}{4}neS\langle v_e \rangle \exp\left(\frac{-eU_f}{kT_e}\right)\right) \exp\left(\frac{e\Delta U_1}{kT_e}\right)$$

При $\Delta U_1 = 0$ электронный и ионный ток компенсируют друг друга. Тогда:

$$I_1 = I_{in} (1 - \exp(\frac{e \Delta U_1}{kT_c}))$$

$$I_2 = I_{in} \left(1 - \exp\left(\frac{e \Delta U_2}{kT_e}\right) \right)$$

С учетом последовательного соединения зондов($I_1 = -I_2 = I$):

$$U = \frac{kT_e}{e} \ln \frac{1 - I/I_{in}}{1 + I/I_{in}}$$

$$I_{iH}$$

$$I_{iH}$$

$$I_{iH}$$

$$I_{iH}$$

$$I = I_{in} th \frac{eU}{2kT_e} + AU$$

где A — некоторая константа, величина которой может быть найдена из опыта.

Дифференцируя формулу в точке U=0, учитывая малый угол и A стремящееся к нулю, найдем:

$$kT_e = \frac{1}{2} \frac{eI_{iH}}{\frac{dI}{dU}\big|_{U=0}}$$

3. Экспериментальная

установка и методика

измерений

• Экспериментальная установка:

Стеклянная газоразрядная трубка имеет холодный (не нагреваемый) полый катод, три анода и геттерный узел — стеклянный баллон, на внутреннюю поверхность которого напылена газопоглощающая плёнка (геттер). Трубка наполнена изотопом неона 22Ne при давлении 2 мм рт. ст. Катод и один из анодов (I или II) с помощью переключателя П1 подключаются через балластный резистор R6 (~ 500

кОм) к регулируемому высоковольтному источнику питания (ВИП) с выходным напряжением до нескольких киловольт. При подключении к ВИП анода-І между ним и катодом газовый разряд. Ток возникает разряда измеряется миллиамперметром A1, а падение напряжения на разрядной трубке — вольтметром V1, подключенным к трубке через MO_M) (несколько десятков высокоомный делитель напряжения с коэффициентом $(R_1+R_2)/R_2$. При подключении к ВИП анода-ІІ разряд возникает в пространстве между анодом-II, двойной катодом где находится И 30НД, используемый для диагностики плазмы положительного столба. Зонды изготовлены из молибденовой проволоки диаметром d и имеют длину l. Они подключены к источнику питания через потенциометр R. Переключатель $\Pi 2$ позволяет полярность напряжения на зондах. Величина изменять напряжения на зондах изменяется с помощью дискретного $\langle\langle V\rangle\rangle$ переключателя выходного напряжения источника питания и потенциометра R, а измеряется вольтметром V_2 . Для измерения зондового тока используется микроамперметр A_2 .

- Методика измерений:
- 1. Снять ВАХ разряда $I_p(U_p)$

- 2. Снять ВАХ двойного зонда $I_3(U_3)$ при фиксированном токе разряда.
- 3. Снять зондовые характеристики при токах разряда, равных 3 и 1.5 мА.

4. Проведение измерений и обработка результатов

 $1.U_{3AX} = 216B$

ВАХ разряда

I, MA	U, B
0.52	35
1	32.8
1.4	28.2
1.8	26.3
2.16	25.4
2.56	24.8
3	24.2
3.4	24.04
3.8	23.97
4.2	23.81
4.6	23.71
5	23.56
4.6	23.72
4.2	23.81
3.8	23.97

3.4	24.01
3	24.15
2.56	24.79
2.16	25.38
1.8	26.20
1.4	27.93
1	32.70
0.52	35.12

BAX разряда

Наибольшее вклад в погрешность имеет погрешность МНК, а систематические погрешности приборов малы, по сравнению с ней. Также учитываем наличие делителя напряжения с коэффициентом 10.

 $R_{\text{max}} = (8.1 \pm 0.4) * 10^4 \text{Ом}$ — максимально дифференциальное сопротивление разряда.

2. ВАХ двойного зонда

$I_p = 5$ MA		$I_p = 3MA$		$I_p = 1.5 \text{MA}$	
Із, мкА	U ₃ , B	I ₃ , мкА	U_3 , B	Із, мкА	U ₃ , B
124.0	24.98	77.9	25.01	40.4	25.0
127.3	21.98	75.7	22.02	39.0	22.04
125.6	19.00	73.4	19.0	37.7	19.0
121.2	16.02	70.9	15.98	36.3	16.04
113.2	13.03	67.1	13.0	34.5	12.9
99.1	10.00	60.4	10.03	31.5	10.0
85.8	8.00	53.3	8.01	28.3	8.01
68.8	6.0	44.1	6.03	23.8	6.02
48.1	4.01	31.9	4.0	17.6	3.98
23.6	2.0	17.9	2.02	10.3	2.02
4.5	0.50	6.2	0.5	4.1	5.07
8.1	-0.50	1.9	-0.51	0.5	-0.5
-11.8	-2.02	-9.6	-2.02	-5.8	-2.03
-36.3	-4.05	-23.4	-3.98	-13.1	-4.01

-56.7	-6.0	-35.4	-6.04	-18.9	-5.97
-73.9	-8.0	-44.3	-7.99	-23.3	-8.0
-87.0	-9.99	-51.2	-10.0	-26.3	-9.98
-101.3	-13.03	-57.6	-13.06	-29.1	-12.98
-109.1	-16.03	-61.1	-16.02	-30.6	-16.0
-112.9	-19.03	-63.3	-19.01	-31.8	-19.0
-114.1	-22.0	-65.3	-22.02	-32.9	-22.98
-111.2	-25	-67.2	-25.01	-34.1	-25.01

Из-за неточности вольтметра при изменении полярности происходил скачок тока. В следующей таблице этот скачок учтен и по этим данным строим ВАХи зондов.

$$I_p = 5$$
мА — скачок 0.9-(-13.3)мкА

$$I_p = 3$$
мА — скачок 2.5-(-5.5)мкА

$$I_p = 1.5$$
мА — скачок 2.0-(-2.5)мкА

$I_p = 5 \text{MA}$		$I_p = 3MA$		$I_p = 3MA \qquad \qquad I_p = 1.5MA$	
I ₃ , мкА	U ₃ , B	I ₃ , мкА	U ₃ , B	I ₃ , мкА	U ₃ , B
123.1.	24.98	77.9	25.01	38.4	25.0
126.4	21.98	75.7	22.02	37	22.04
124.7	19.00	73.4	19.0	35.7	19.0
120.3	16.02	70.9	15.98	34.3	16.04
112.3	13.03	67.1	13.0	32.5	12.9
98.2	10.00	60.4	10.03	29.5	10.0

84.9	8.00	53.3	8.01	26.3	8.01
67.9	6.0	44.1	6.03	21.8	6.02
47.2	4.01	31.9	4.0	15.6	3.98
22.7	2.0	17.9	2.02	8.3	2.02
3.6	0.50	6.2	0.5	2.1	0.5
-5.2	-0.50	1.9	-0.51	-2	-0.5
-25.1	-2.02	-9.6	-2.02	-8.3	-2.03
-49.6	-4.05	-23.4	-3.98	-15.6	-4.01
-70.0	-6.0	-35.4	-6.04	-21.4	-5.97
-87.2	-8.0	-44.3	-7.99	-25.8	-8.0
-100.3	-9.99	-51.2	-10.0	-28.8	-9.98
-114.4	-13.03	-57.6	-13.06	-31.6	-12.98
-122.4	-16.03	-61.1	-16.02	-33.1	-16.0
-126.2	-19.03	-63.3	-19.01	-34.3	-19.0
-127.4	-22.0	-65.3	-22.02	-35.4	-22.98
-124.5	-25	-67.2	-25.01	-36.6	-25.01

 				
I_p	Зондовые характеристики	I_{iH} ,	ΔU,	T _e , K
		мкА	эВ	
1.5	BAX зонда	27.0	6.6	$3.8*10^4$
	О.46*x+27.02 Касательная 4.1*x 20 —————————————————————————————————			
3	BAX зонда	56.0	7.2	4.2*104
	80 — 0.78*х+55.98 — Касательная 7.80*х — 20 — 20 — 20 — 10 — U, В			

Красная линия — асимптота;

Зеленая линия — касательная к графику в точке 0.

3. Характеристики плазмы

• Погрешность ΔU зависит от погрешностей МНК асимптоты и касательной к графику в точке 0, т. к. $\Delta U \! = \! \frac{I_{_{iH}}}{k} \;,\; \text{где k - коэффициент наклона касательной.}$ Тогда

$$\epsilon_U = \sqrt{\epsilon_{I_{in}}^2 + \epsilon_k^2}$$

• Концентрация электронов:

$$n_e = \frac{I_{iH}}{0.4 e \pi \, dl \sqrt{\frac{2kT_e}{m_i}}}$$

$$\epsilon_n = \sqrt{\epsilon_{I_{iu}}^2 + 0.5^2 \epsilon_U^2}$$

$$d = 0.2 MM$$

$$1 = 5.2 \text{MM}$$

• Плазменная частота

$$\omega_p = 5.6 * 10^4 \sqrt{n_e} \frac{pa\partial}{c}$$

$$\epsilon_{\omega} = 0.5 \epsilon_n$$

• Дебаевский радиус

$$\epsilon_r = 0.5 \sqrt{\epsilon_n^2 + \epsilon_U^2}$$

• Среднее число ионов в дебаевской сфере

$$N_D = \frac{4}{3} \pi r_D^3 n_i$$

• Степень ионизации плазмы

$$\alpha = \frac{n_i}{n}$$
 - доля ионизированных атомов, где n — общее

число частиц в единице объема: $P = nkT_i$

$$P = 2 \text{ Topp}$$

$$T_i \approx 300 K$$

$$n = 6.4*10^{16} \text{ cm}$$

I _p , MA	R, Om	kT _e , 3B	n _e , cm ⁻³	ω_{p} , рад/с
5	$(8.1\pm0.4)*10^4$	3.75±0.22	$(7.98\pm0.40)*10^{10}$	$(1.58\pm0.04)*10^{10}$
3	$(8.1\pm0.4)*10^4$	3.6±0.13	$(4.77\pm0.19)*10^{10}$	$(1.22\pm0.02)*10^{10}$
1.5	$(8.1\pm0.4)*10^4$	3.3±0.12	$(2.40\pm0.09)*10^{10}$	$(8.6\pm0.2)*10^9$

I _p , мА	T _e , K	r _{De} , cM	r _D , cm	$< N_D >$	α
5	$(4.36\pm0.26)*10^4$	$(5.1\pm0.2)*10^{-3}$	(4.2±0.1)*10 ⁻⁴	25	1.2*10 ⁻⁶
3	$(4.19\pm0.15)*10^4$	$(6.5\pm0.2)*10^{-3}$	(5.4±0.2)*10 ⁻⁴	32	7.4*10 ⁻⁷
1.5	$(3.84\pm0.13)*10^4$	$(8.7\pm0.3)*10^{-3}$	(7.7±0.2)*10 ⁻⁴	46	3.7*10 ⁻⁷

5. Обсуждение

результатов

1. В работе исследовалась ВАХ разряда в неоне. Измеренная зависимость соответствует синему участку на рисунке справа.

2. Были измерены такие характеристики плазмы, как температура электронов, ток насыщения ионов, концентрация электронов, люнгмеровская частота, дебаевские радиусы электронов и ионов, среднее число ионов в дебаевской сфере, степень ионизации плазмы.

Сравнивая линейные размеры области плазмы 1 (порядка 10^{1} см) и дебаевский радиус r_D (порядка 10^{-4} см) можно сказать, что $1>> r_D$, а значит плазма является квазинейтральной.

Число частиц в дебаевской сфере N_D соответствует 2 порядку, при этом оно незначительно больше 1, поэтому газ можно лишь приближенно рассматривать как идеальный.

При увеличении тока разряда увеличиваются температура и концентрация электронов.

6. Вывод

Были измерены ВАХи разряда и двойного зонда, и по полученным данным вычислены основные характеристики плазмы. Результаты совпадают по величине (порядку) с ожидаемыми из теории значениями, а также соответствуют определению и описанию плазмы.