#### **Bayesian Networks**

# Lecture 7: Bayesian Networks Continued, ICA 2

ECE/CS 498 DS
Professor Ravi K. Iyer
Department of Electrical and Computer Engineering
University of Illinois

#### **Announcements**

- HW 1 due Mon Feb 17<sup>th</sup> @ 11:59 PM on Compass2G
  - Topic: basic Pandas review with Python
  - To be done individually
- MP 1 final checkpoint due Thu Feb 20<sup>th</sup> @ 11:59 PM on Compass2G
  - Presentations will be Fri Feb 21<sup>st</sup> in the evening
  - Presentation signups will be released by the end of the week
- Discuss section this week (2/14) will be additional practice with Bayesian Networks
- Midterm exam will take place on Wed March 11th

#### **Non-Descendants: Definition**

- In a directed acyclic graph (DAG) G, non-descendants of a node V<sub>i</sub>
  are any nodes that are not descendants of V<sub>i</sub>
- There are two types of non-descendants for a node  $V_i$ :
  - Parents: direct parents of V<sub>i</sub>
  - **Other**: non-descendants that aren't parents of  $V_i$
- For example, in the included graph,

| Node | Non-Descendants  |         |            |
|------|------------------|---------|------------|
|      | All              | Parents | "Other"    |
| Α    | B,D              | None    | B, D       |
| В    | $\boldsymbol{A}$ | None    | A          |
| С    | A, B, D          | A, B    | D          |
| D    | A, B, C, E       | В       | A, C, E    |
| E    | A, B, C, D, F    | С       | A, B, D, F |
| F    | A, B, C, D, E    | C, D    | A, B, E    |



#### **Local Semantics**

- Conditional independence was easy in NB, but for a general BN it is more involved – we will use local semantics.
- Local semantics: Each node is conditionally independent of its non-descendants given its parents
- $P(X|U_1, U_m)$  is independent of  $Z_{1j}, Z_{nj}$ 
  - $P(X|U_1, U_m, Z_{1j}, Z_{nj})$ =  $P(X|U_1, U_m)$



#### **Local Semantics: Definition**

- In order to simplify calculations with joint probabilities in Bayesian Networks, one should always condition each node on its nondescendants
- Local Semantics for Bayesian Networks:
  - Given its parent(s), a child is independent of its other nondescendants
    - "Other" refers to non-descendants that aren't parents
    - Alternate interpretation: the probability of a node given its parents and other non-descendants is just the probability of the node given its parents
    - P(node|parents, other non descendants) =
       P(node|parents)
  - Nodes with no parents are independent of their non-descendants
- We will now go over some examples of this...

# **Local Semantics-Example**

Consider node *C* in the graph to the right

- C's **non-descendants** are A, B and D, which can be further broken down into
  - Parents: A and B
  - Other: D
- Using local semantics,

$$P(C|non-descendants) = P(C|parents)$$
  
 $\Rightarrow P(C|A,B,D) = P(C|A,B)$ 



- That is, when given its parents, C is independent of D
- Intuition:
  - Just as we learned with the Naïve Bayes classifier, when given the parent node, the children nodes are independent
  - In this case, B is a common parent to both C and D. So when B is known, C and D are independent of each other
  - Thus, when B is known, D offers no additional information

# **Local Semantics-Example**

Consider node *B* in the graph to the right

- B's only non-descendant is A
  - Parents: None
  - Other: A
- According to local semantics, since B has no parents,

$$P(B|non-descendants) = P(B)$$
  
 $\Rightarrow P(B|A) = P(B)$ 



- That is, B is independent of its non-descendant A
- Intuition:
  - A is not a parent of B, nor vice versa
  - A and B have a common child C that, when not observed, doesn't convey information to B about A
  - Thus, knowing A offers no additional information about B

#### **Local Semantics - Summary**

| Node | Non-Descendants |                     | Local            |                                |
|------|-----------------|---------------------|------------------|--------------------------------|
|      | All             | Parents             | "Other"          | Semantics<br>Implication       |
| Α    | B,D             | None                | B,D              | P(A B,D) = P(A)                |
| В    | A               | None                | $\boldsymbol{A}$ | P(B A) = P(B)                  |
| С    | A, B, D         | <i>A</i> , <i>B</i> | D                | P(C A,B,D) = P(C A,B)          |
| D    | A, B, C, E      | В                   | A, C, E          | P(D A,B,C,E) = P(D B)          |
| E    | A, B, C, D, F   | С                   | A, B, D, F       | P(E A,B,C,D,F)<br>= $P(E C)$   |
| F    | A, B, C, D, E   | C, D                | A, B, E          | P(F A,B,C,D,E)<br>= $P(F C,D)$ |



 Can you explain the local semantics for nodes A, D, E, and F?

#### **Local Semantics - Summary**

| Node | Non-Descendants |                     | Local            |                                |
|------|-----------------|---------------------|------------------|--------------------------------|
|      | All             | Parents             | "Other"          | Semantics<br>Implication       |
| A    | B,D             | None                | B,D              | P(A B,D) = P(A)                |
| В    | A               | None                | $\boldsymbol{A}$ | P(B A) = P(B)                  |
| С    | A, B, D         | <i>A</i> , <i>B</i> | D                | P(C A,B,D) = P(C A,B)          |
| D    | A, B, C, E      | В                   | A, C, E          | P(D A,B,C,E) = P(D B)          |
| E    | A, B, C, D, F   | C                   | A, B, D, F       | P(E A,B,C,D,F) $= P(E C)$      |
| F    | A, B, C, D, E   | C, D                | A, B, E          | P(F A,B,C,D,E)<br>= $P(F C,D)$ |



 Can you explain the local semantics for node E?

#### **Curse of Dimensionality**

- Let <u>Network Size</u> = number of parameters required for joint distribution
- Network grows exponentially with number of nodes ~ 2<sup>N</sup>
  - Each additional node doubles the size of the network!
  - A network with 100 nodes => 2<sup>100</sup>-1 parameters! => Impractical!
- Bayesian networks can greatly reduce this complexity

- We are given a Bayesian network with 14 binary variables, each taking on either value 0 or 1
- The joint probability space requires 2^14 -1 ~16 K parameters, which is huge!
- Let us now begin to calculate the number of parameters required if we take advantage of the BN structure
  - There are 3 red nodes, each of which has no incoming edges and no parents
  - There are 5 blue nodes, each of which has 1 incoming edge from a parent
  - There are 6 pink nodes, each of which has 2 incoming edges from parents



Consider a red node R.
 The following table defines probabilities for all values of R

| P(R=0) | P(R=1) |
|--------|--------|
| k      | 1-k    |

- We only need one of these two values to calculate P(R) since once we know one, the other is simply 1 minus the known one.
- With three red nodes, we have 3\*1 = 3 total independent parameters from the red nodes

• Consider a blue node B with parent node  $P_1$ . The following table defines probabilities for all values of B and  $P_1$ .

| $P(B P_1)$ | B = 0 | B=1       |
|------------|-------|-----------|
| $P_1=0$    | $k_1$ | $1 - k_1$ |
| $P_1 = 1$  | $k_2$ | $1 - k_2$ |

- We only need one value per row to be able to calculate  $P(B|P_1)$ , which means we need 2 independent parameters per blue node
- With 5 blue nodes, we have 5\*2 = 10 total independent parameters from the blue nodes

• Consider a pink node M with parent nodes  $P_1$  and  $P_2$ . The following table defines probabilities for all values of M,  $P_1$  and  $P_2$ :

| $P(M P_1,P_2)$ | M = 0 | M = 1     |
|----------------|-------|-----------|
| $P_1=0, P_2=0$ | $k_1$ | $1 - k_1$ |
| $P_1=0, P_2=1$ | $k_2$ | $1 - k_2$ |
| $P_1=1, P_2=0$ | $k_3$ | $1 - k_3$ |
| $P_1=1, P_2=1$ | $k_4$ | $1 - k_4$ |

- We only need one value per row to be able to calculate  $P(M|P_1,P_2)$ , which means we need 4 independent parameters per pink node
- With 6 blue nodes, we have 6\*4 = 24 total independent parameters from the pink nodes

 We need ~16 K parameters to specify an arbitrary joint distribution

 Using the Bayesian Network structure as shown, we only need 3 + 10 + 24 = 37 parameters, which is much less than 16 K parameters!



# Begin ICA 2