Package 'sdcLog'

October 8, 2021

Title Tools for Statistical Disclosure Control in Research Data Centers **Version** 0.4.0

```
Description Tools for researchers to explicitly show that their results
     comply to rules for statistical disclosure control imposed by research
     data centers. These tools help in checking descriptive statistics and
     models and in calculating extreme values that are not individual data.
     Also included is a simple function to create log files. The methods
     used here are described in the ``Guidelines for the checking of output
     based on microdata research" by Bond, Brandt, and de Wolf (2015)
     <https://ec.europa.eu/eurostat/cros/system/files/dwb_standalone-document_</pre>
     output-checking-guidelines.pdf>.
License GPL-3
URL https://github.com/matthiasgomolka/sdcLog
BugReports https://github.com/matthiasgomolka/sdcLog/issues
Depends R (>= 3.5)
Imports broom (>= 0.5.5),
     checkmate (>= 2.0.0),
     crayon (>= 1.3.4),
     data.table (>= 1.12.8),
     mathjaxr,
     stats,
     utils
Suggests knitr,
     lfe,
     rmarkdown.
     skimr,
     spelling,
     testthat (>= 3.0.0),
     tibble
VignetteBuilder knitr
```

RdMacros mathjaxr **Config/testthat/edition** 3 2 common_arguments

Encoding UTF-8
Language en-US
LazyData true
Roxygen list(markdown = TRU

JE)

RoxygenNote 7.1.2

R topics documented:

	common_arguments	
	- 1 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
	sdc_descriptives	
	sdc_descriptives_DT	
	sdc_log	
	sdc_min_max	
	sdc_min_max_DT	
	sdc_model	
	sdc_model_DT	
Index		
commo	n_arguments arguments	

Description

arguments

Arguments

data	data.frame from which the descriptive statistics are calculated.
id_var	<pre>character The name of the id variable. Defaults to getOption("sdc.id_var") so that you can provide options(sdc.id_var = "my_id_var") at the top of your script.</pre>
val_var	character vector of value variables on which descriptive statistics are computed.
by	character vector of grouping variables.
zero_as_NA	logical If TRUE, zeros in 'val_var' are treated as NA.
model	The estimated model object. Can be a model type like lm, glm and various others (anything which can be handled by broom::augment()).
min_obs	integer The minimum number of observations used to calculate the minimum and maximum. Defaults to getOption("sdc.n_ids",5L). This is not the number of distinct entities.
max_obs	integer The maximum number of observations used to calculate the minimum and maximum. Defaults to nrow(data). This is not the number of distinct entities.

sdc_descriptives 3

sdc_descriptives

Disclosure control for descriptive statistics

Description

Checks the number of distinct entities and the (n, k) dominance rule for your descriptive statistics.

That means that sdc_descriptives() checks if there are at least 5 distinct entities and if the largest 2 entities account for 85% or more of val_var. The parameters can be changed using options. For details see vignette("options", package = "sdcLog").

Usage

```
sdc_descriptives(
  data,
  id_var = getOption("sdc.id_var"),
  val_var = NULL,
  by = NULL,
  zero_as_NA = NULL
)
```

Arguments

data data.frame from which the descriptive statistics are calculated.

id_var character The name of the id variable. Defaults to getOption("sdc.id_var")

so that you can provide options(sdc.id_var = "my_id_var") at the top of

your script.

val_var character vector of value variables on which descriptive statistics are computed.

by character vector of grouping variables.

zero_as_NA logical If TRUE, zeros in 'val_var' are treated as NA.

Details

The general form of the (n, k) dominance rule can be formulated as:

$$\sum_{i=1}^{n} x_i > \frac{k}{100} \sum_{i=1}^{N} x_i$$

where $x_1 \ge x_2 \ge \cdots \ge x_N$. n denotes the number of largest contributions to be considered, x_n the n-th largest contribution, k the maximal percentage these n contributions may account for, and N is the total number of observations.

If the statement above is true, the (n, k) dominance rule is violated.

Value

A list of class sdc_descriptives with detailed information about options, settings, and compliance with the criteria distinct entities and dominance.

Examples

```
sdc\_descriptives(
  data = sdc_descriptives_DT,
  id_var = "id",
  val_var = "val_1"
sdc_descriptives(
  data = sdc_descriptives_DT,
  id_var = "id",
  val_var = "val_1",
  by = "sector"
)
sdc_descriptives(
  data = sdc_descriptives_DT,
  id_var = "id",
 val_var = "val_1",
 by = c("sector", "year")
)
sdc_descriptives(
  data = sdc_descriptives_DT,
  id_var = "id",
 val_var = "val_2",
 by = c("sector", "year")
)
sdc_descriptives(
 data = sdc_descriptives_DT,
  id_var = "id",
  val_var = "val_2",
 by = c("sector", "year"),
  zero_as_NA = FALSE
)
```

sdc_descriptives_DT Example data for sdc_descriptives()

Description

Utilized in the vignette.

Usage

```
data("sdc_descriptives_DT")
```

sdc_log 5

Format

A data table with 20 rows and 5 columns.

Details

The data.table contains the following columns:

- id factor random identifier
- sector factor economic sector
- year integer time variable
- val_1, val_2 numeric value variables

sdc_log

Create Stata-like log files from R Scripts

Description

This function creates Stata-like log files from R Scripts. It can handle several files (in a character vector) at once.

Usage

```
sdc_log(r_script, destination, replace = FALSE, append = FALSE, local = FALSE)
```

Arguments

r_script

character Path of the R script to be run with logging.

destination

One of:

- character Path of the log file to be used.
- file connection to which the log should be written. This is especially useful, when you have nested calls to sdc_log() and want to write everything into the same log file. Then, create a single file connection and provide this connection to all calls to sdc_log() (and close it afterwards).

replace

logical Indicates whether to replace an existing log file.

append

logical Indicates whether to append an existing log file.

local

One of:

- logical Indicates whether to evaluate within the global environment (FALSE) or the calling environment (TRUE).
- environment A specific evaluation environment. Determines the evaluation environment. Useful whenever sdc_log() is called from within a function, or for nested sdc_log() calls. By default (FALSE) evaluation occurs in the global environment. See also source.

Value

character vector holding the path(s) of the written log file(s).

6 sdc_min_max

sdc_min_max

Calculate RDC rule-compliant extreme values

Description

Checks if calculation of extreme values comply to RDC rules. If so, function returns average min and max values according to RDC rules.

Usage

```
sdc_min_max(
  data,
  id_var = getOption("sdc.id_var"),
  val_var,
  by = NULL,
  max_obs = nrow(data)
)
```

Arguments

data	data.frame from which the descriptive statistics are calculated.
id_var	<pre>character The name of the id variable. Defaults to getOption("sdc.id_var") so that you can provide options(sdc.id_var = "my_id_var") at the top of your script.</pre>
val_var	character vector of value variables on which descriptive statistics are computed.
by	character vector of grouping variables.
max_obs	integer The maximum number of observations used to calculate the minimum and maximum. Defaults to nrow(data). This is not the number of distinct entities.

Value

A list list of class sdc_min_max with detailed information about options, settings and the calculated extreme values (if possible).

Examples

```
sdc_min_max(sdc_min_max_DT, id_var = "id", val_var = "val_1")
sdc_min_max(sdc_min_max_DT, id_var = "id", val_var = "val_2")
sdc_min_max(sdc_min_max_DT, id_var = "id", val_var = "val_3", max_obs = 10)
sdc_min_max(sdc_min_max_DT, id_var = "id", val_var = "val_1", by = "year")
sdc_min_max(
    sdc_min_max_DT, id_var = "id", val_var = "val_1", by = c("sector", "year")
)
```

sdc_min_max_DT 7

			~-
sdc	mın	max	1)1

Example data for sdc_min_max()

Description

Utilized in the vignette

Usage

```
data("sdc_min_max_DT")
```

Format

A data.table with 20 rows and 6 columns.

Details

The data.table contains the following columns:

- id factor random identifier
- sector factor economic sector
- year integer time variable
- val_1 val_3 numeric value variables

sdc_model

Disclosure control for models

Description

Checks if your model complies to RDC rules. Checks for overall number of entities and number of entities for each level of dummy variables.

Usage

```
sdc_model(data, model, id_var = getOption("sdc.id_var"))
```

Arguments

	data	data.frame	which was	used to	build the model
--	------	------------	-----------	---------	-----------------

model The estimated model object. Can be a model type like lm, glm and various

others (anything which can be handled by broom::augment()).

id_var character The name of the id variable. Defaults to getOption("sdc.id_var")

so that you can provide options(sdc.id_var = "my_id_var") at the top of

your script.

8 sdc_model_DT

Value

A list of class sdc_model with detailed information about options, settings, and compliance with the distinct entities criterion.

Examples

```
# Check simple models
model_1 <- lm(y ~ x_1 + x_2, data = sdc_model_DT)
sdc_model(data = sdc_model_DT, model = model_1, id_var = "id")
model_2 <- lm(y ~ x_1 + x_2 + x_3, data = sdc_model_DT)
sdc_model(data = sdc_model_DT, model = model_2, id_var = "id")
model_3 <- lm(y ~ x_1 + x_2 + dummy_3, data = sdc_model_DT)
sdc_model(data = sdc_model_DT, model = model_3, id_var = "id")</pre>
```

sdc_model_DT

Example data for sdc_model()

Description

Utilized in the vignette

Usage

```
data("sdc_model_DT")
```

Format

A data.table with 80 rows and 9 columns.

Details

The data.table contains the following columns:

- id factor random identifier
- y x_4 numeric value variables
- dummy_1 dummy_3 factor dummy variables

Index

```
* datasets
    sdc_descriptives_DT, 4
    sdc_min_max_DT, 7
     sdc_model_DT, 8
broom::augment(), 2, 7
character, 2, 3, 5–7
common\_arguments, 2
data.frame, 2, 3, 6, 7
environment, 5
factor, 5, 7, 8
file, 5
glm, 2, 7
integer, 2, 5-7
list, 3, 6, 8
1m, 2, 7
logical, 2, 3, 5
numeric, 5, 7, 8
sdc\_descriptives, 3
sdc_descriptives_DT, 4
sdc_log, 5
sdc_min_max, 6
sdc_min_max_DT, 7
sdc_model, 7
{\tt sdc\_model\_DT,\, \color{red} 8}
source, 5
```