Resumen general de Matemáticas Discretas

Andrés Cabezas

March 17, 2022

1 ¿Qué son las matemáticas discretas?

"El lenguaje necesario para entender y modelar la computación". Las matemáticas discretas usan conjuntos finitos e infinitos al momento de estudio. Modelan los objetos y conceptos abstractos de las matemáticas que pueden ser representados dentro de un computador.

1.1 Lógica

La lógica consiste en el uso y estudio del razonamiento válido. Para esto, es necesario un lenguaje, pero esto también supone un problema: Los lenguajes que los humanos hablan tiene ciertas subjetividades y diferencias entre si, lo que conduce a errores al momento de usar la lógica. Para resolver esto, es necesario usar un lenguaje formal.

Durante el curso, se estudiarán dos lógicas (o lenguajes), sin embargo, existen muchos más

- Lógica Proposicional
- Lógica de Predicados

¿Para qué son necesarias estas lógicas? Recordemos nuestro objetivo. Queremos usar esto para realizar nuestro razonamiento matemático. De esta forma, podemos definir correctamente objetos matemáticos, teorías matemáticas y realizar demostraciones más formales

2 Lógica Proposicional (LP)

2.1 Proposición

Una proposición consiste en una afirmación, la cual puede ser *verdadera* (1) o falsa (0).

Para denotar proposiciones básicas, usaremos letras mayusculas (Ej.: P, Q, R...)

2.2 Conectivos Lógicos

La LP usa conectivos sencillos para conseguir formar proposiciones más complejas.

Conectivos	Nombre	Uso	Significado
Λ	Conjunción	$P \wedge Q$	РуQ
V	Disyunción	$P \lor Q$	PοQ
\neg	Negación	$\neg P$	No P
\rightarrow	Condicional	$P \rightarrow Q$	Si P, entonces Q
\leftrightarrow	Bicondicional	$P \leftrightarrow Q$	P, si y solo si, Q

2.2.1 Conjunción (\wedge)

El valor de verdad de una conjunción es *verdadero* si ambas proposiciones (a cada lado del signo) son verdaderas. En cualquier otro caso, es *falso*.

Ρ	Q	$P \wedge Q$
0	0	0
0	1	0
1	0	0
1	1	1

2.2.2 Disyunción (\lor)

El valor de verdad de una disyunción es *verdadero* si al menos una de las proposiciones (a cada lado del signo), es verdadera.

Ρ	Q	$P \lor Q$
0	0	0
0	1	1
1	0	1
1	1	1

2.2.3 Negación (¬)

El valor de verdad corresponde al opuesto del valor entregado (a la derecha del signo)

$$\begin{array}{c|cc}
P & \neg P \\
\hline
1 & 0 \\
0 & 1
\end{array}$$

2.2.4 Condicional (\rightarrow)

El valor de verdad de una condicional del tipo $P \to Q$ es falso si P es verdadero, pero Q es falso. En cualquier otro caso, es verdadero.

Ρ	Q	$P \rightarrow Q$
0	0	1
0	1	1
1	0	0
1	1	1

Hint: "Si P es verdadero, entonces necesariamente Q es verdadero". Si P es verdadero, entonces Q deberá ser verdadero para tener un valor de verdad verdadero. Si P es falso, entonces de forma automática el valor de verdad es verdadero.

2.2.5 Bicondicional (\leftrightarrow)

El valor de verdad de una bicondicional es verdadero si ambas proposiciones (a ambos lados del signo) son iguales (en otras palabras, ambas verdaderas o ambas falsas).

Ρ	Q	$P \leftrightarrow Q$
0	0	1
0	1	0
1	0	0
1	1	1

2.3 Proposición Compuesta

Una proposición es compuesta si corresponde a la negación (\neg) , conjunción (\land) , disyunción (\lor) , condicional (\rightarrow) o bicondicional (\leftrightarrow) de proposiciones compuestas.

Como por ejemplo

$$P \wedge (Q \vee R)$$
$$\neg (P \vee (\neg R \wedge Q))$$
$$(P \to Q) \leftrightarrow (P \wedge Q)$$

Si se desea obtener el valor de verdad de alguna proposición compuesta, se debe evaluar de forma recursiva cada uno de los conectivos lógicos presentes. Por ejemplo:

$$\neg (P \lor (\neg R \land Q)) \text{ con } P = 0, Q = 1 \text{ y } R = 0$$

$$\neg (0 \lor (\neg 0 \land 1))$$

$$\neg (0 \lor (1 \land 1))$$

$$\neg (0 \lor 1)$$

$$\neg 1$$

$$0$$

$$(P \to Q) \leftrightarrow (P \land Q)$$
 con P = 1 y Q = 0
 $(1 \to 0) \leftrightarrow (1 \land 0)$
 $0 \leftrightarrow 0$
1

2.3.1 Paréntesis y prioridad

El orden de prioridad entre conectivos lógicos, al momento de evaluar proposiciones compuestas, será el siguiente:

Conectivo	Precedencia	
	1	
\wedge	2	
V	3	
\rightarrow	4	
\leftrightarrow	5	

3 Formulas y Valuaciones

3.1 Variables Proposicionales

Una variable proposicional es una variable que puede ser reemplazada con los valores 1 o 0. Generalmente son representadas con una letra minúscula (Amiga eri boolean)

3.2 Formulas Proposicionales

Una formula proposicional es una formula que puede ser

- Una variable proposicional
- Los valores 1 o 0
- Una combinación con conectivos lógicos

Generalmente son representadas con letras griegas (Ej.: $\alpha)$ Ejemplos:

$$\alpha(p,q,r) := p \land (q \to r)$$

$$\beta(p,q) := (p \land \neg q) \lor (\neg p \land 1)$$

4 Equivalencia Lógica

4.1 Definición

Si tenemos dos formulas proposicionales con las mismas variables proposicionales

$$\alpha(p_1,\ldots,p_n) \ \mathrm{y} \ \beta(p_1,\ldots,p_n)$$

Entonces, α y β serán logicamente equivalentes

$$\alpha \equiv \beta$$

si para toda valuacion posible (v_1, \ldots, v_n) se cumple que:

$$\alpha(v_1,\ldots,v_n)=\beta(v_1,\ldots,v_n)$$

Ejemplo: Para las fórmulas $p \wedge (q \vee r)$ y $(p \wedge q) \vee (p \wedge r)$ se tiene la siguiente tabla de verdad:

p	q	\mathbf{r}	$p \wedge (q \vee r)$	$(p \wedge q) \vee (p \wedge r)$
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	0	0
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

Como ambas formulas son equivalentes para toda valuación, entonces:

$$p \wedge (q \vee r) \equiv (p \wedge q) \wedge (p \wedge r)$$

4.2 Equivalencias útiles

1. Conmutatividad:

$$p \wedge q \equiv q \wedge p$$

$$p \lor q \equiv q \lor p$$

2. Asociatividad:

$$p \wedge (q \wedge r) \equiv (p \wedge q) \wedge r$$

$$p \vee (q \vee r) \equiv (p \vee q) \vee r$$

 $3. \ \ Idempotente:$

$$p \wedge p \equiv p$$

$$p\vee p\equiv p$$

$$\neg\neg p \equiv p$$

5. Distributividad:

$$\begin{split} p \wedge (q \vee r) &\equiv (p \wedge q) \vee (p \wedge r) \\ p \vee (q \wedge r) &\equiv (p \vee q) \wedge (p \vee r) \end{split}$$

6. De Morgan:

$$\neg(p \land q) \equiv \neg p \lor \neg q$$

7. Implicación:

$$p \to q \equiv \neg p \lor q$$

$$p \to q \equiv \neg q \to \neg p$$

$$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$$

8. Absorción:

$$p \lor (p \land q) \equiv p$$
$$p \land (p \lor q) \equiv p$$

9. Identidad:

$$p \lor 0 \equiv p$$
$$p \land 1 \equiv p$$

10. Dominación:

$$p \wedge 0 \equiv 0$$
$$p \vee 1 \equiv 1$$