The Effects of Graphics on Reading Comprehension of Causal Analytics Reports

W241 Victor Chen

 \mathbf{Z}

Background

Data-savvy analysts

Pressed-for-time, story-focused executives

Background

Data analytics

Hypotheses

A graphic/visual representation of causal knowledge will lead to more effective translation of data insights into actionable prescriptions

- More accurate reading comprehension of complex analytics reports
- Higher confidence in the results
- Greater actionability of recommendations

Example

Data analytics

Example

Data analytics

Example

Data analytics


```
causal graph(n1 level='label1'.
              n2 level='label1',
              n1_searchterm='well-being',
              n2 searchterm='performance',
              search method='contain',
              draw_graph=True
Ouery has returned 5 findings on the direct causal link between 'well-being' and 'performance'.
Query has returned 3 findings on mediation between 'well-being' and 'performance'.
Ouery has returned 16 findings on the confounder between 'well-being' and 'performance'.
Query has returned 0 findings on the collider between 'well-being' and 'performance'.
                                                well-being, social
                                   0.3461 (0.0) /0.4782 (0.0)
                                                                                 0.4782(0.0)
    distributive justice
                                 interpersonal justice
                                                                                    perceived organizational support
                                                                                                                                  well-being, hedonic
                                                                0.6486 (0.0)
                           -0.1869 (0.0044) \ -0.1149 (0.2793)
                                                                                                                -0.3395 (0.0)
                                                                                    -0.1522 (0.045)
                                                         performance
                                                                         0.0697 (0.4152)
    [1] link label shows the mean effect size (p-value in the parenthesis);
    [2] link arrow shows the direction of causality;
    [3] link color suggests the sign of the effect size: green for positive, and red for negative;
    [4] link thickness suggests the magnitude of the effect size.
```

Hypothesis

A graphic/visual representation of causal knowledge will lead to a more accurate reading comprehension of analytics reports.

Control

Berkeley UNIVERSITY OF CALIFORNIA

Does 401(k) Eligibility affect Financial Wealth?

A recent study on the effects of 401(k) eligibility on financial wealth was published in American Economic Review in 2017. This study examined a sample of households from wave 4 of the 1990 U.S. Survey of Income and Program Participation (SIPP), where the observations are limited to households in which the reference person is 25-64 years old, at least one person is employed, and no one is self-employed. The sample consists of 9915 households, and all dollar amounts are in 1991 dollars. The sample shows a \$19,559 mean difference between households ineligible for 401(k) and those eligible for 401(k). That is, on average, households eligible for 401(k) had almost \$20,000 more in net financial assets than those ineligible for 401(k). But this simple mean difference has not controlled for covariates like age, income, family size, marriage status, two-earner status, defined benefit (DB) pension status, IRA participation status, and homeownership status. Because these covariates may directly affect a household's 401(k) eligibility, the study further used machine learning techniques to reduce the confounding biases from the data. After debiasing the data, there is an approximately \$8000 - \$9000 effect of the debiased measure of 401(k) eligibility on the debiased measure of a household's net financial assets. Additionally, a linear regression estimated a coefficient of \$5896 of 401(k) eligibility on a household's net financial assets, after controlling for all the covariates, suggesting that everything being equal, a household eligible for 401(k) on average tends to earn almost \$6000 more in net financial assets. These findings suggest a clear positive relationship between 401(k) eligibility and a household's financial wealth. But the exact estimates vary depending on the research methods.

Based on this study, how many additional 1991 dollars in a household's net financial assets would be caused by 401(k) eligibility, everything else being equal?

References

[1] Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., & Newey, W. (2017). Double/debiased/Neyman machine learning of treatment effects. *American Economic Review*, 107(5), 261-65.

[2] DoubleML (2021). Python: Impact of 401(k) on financial wealth. Accessible at https://docs.doubleml.org/stable/examples/py_double_ml_pension.html.

\$19,559 \$8000-\$9000 Almost \$6000

Treatment

Does 401(k) Eligibility affect Financial Wealth?

A recent study on the effects of 401(k) eligibility on financial wealth was published in American Economic Review in 2017. This study examined a sample of households from wave 4 of the 1990 U.S. Survey of Income and Program Participation (SIPP), where the observations are limited to households in which the reference person is 25-64 years old, at least one person is employed, and no one is self-employed. The sample consists of 9915 households, and all dollar amounts are in 1991 dollars. The sample shows a \$19,559 mean difference between households ineligible for 401(k) and those eligible for 401(k). That is, on average, households eligible for 401(k) had almost \$20,000 more in net financial assets than those ineligible for 401(k). But this simple mean difference has not controlled for covariates like age, income, family size, marriage status, two-earner status, defined benefit (DB) pension status, IRA participation status, and homeownership status. Because these covariates may directly affect a household's 401(k) eligibility, the study further used machine learning techniques to reduce the confounding biases from the data. After debiasing the data, there is an approximately \$8000 - \$9000 effect of the debiased measure of 401(k) eligibility on the debiased measure of a household's net financial assets. Additionally, a linear regression estimated a coefficient of \$5896 of 401(k) eligibility on a household's net financial assets, after controlling for all the covariates, suggesting that everything being equal, a household eligible for 401(k) on average tends to earn almost \$6000 more in net financial assets. These findings suggest a clear positive relationship between 401(k) eligibility and a household's financial wealth. But the exact estimates vary depending on the research methods.

Based on this study, how many additional 1991 dollars in a household's net financial assets would be caused by 401(k) eligibility, everything else being equal?
References [1] Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., & Newey, W. (2017). Double/debiased/Neyman machine learning of treatment effects. American Economic Review, 107(5), 261-65. [2] DoubleML (2021). Python: Impact of 401(k) on financial wealth. Accessible at https://docs.doubleml.org/stable/examples/py_double_ml_pension.html .
\$19,559
\$8000-\$9000
Almost \$6000

Measurement Unit

Unique individual Amazon M-Turks workers whose first language is EN, and are living in the United States

Randomization

Workflow and Causation

Outcome measures

Main Y:

 Correct answer (1 correct, 0 wrong) on the expected effects of enrollment in 401k on net financial assets in 1991 dollars, on average

Secondary Ys:

- Reading speed (in seconds)
- Whether to check external sources (1 yes, 0 no)

Control group N = 75

Treatment group N = 72

Data Analysis - Summary

Data Analysis - Summary

```
        Group
        Education

        Control
        Undergraduate
        37

        < Undergraduate</td>
        29

        Master's
        7

        > Master's
        1

        Treatment
        Undergraduate
        40

        < Undergraduate</td>
        16

        Master's
        9

        > Master's
        7
```

Name: Education, dtype: int64

Difference in education score: 0.11555555555555554

The variances are 0.095288888888888888 and 0.17283950617283966 for the control and treatment groups, respectively.

The t-test of the mean education difference has a p-value of 0.058709107659612805.


```
Group Professional

Control > 5 years work experience, including internships 67

No work experience 4

1-3 years work experience, including internships 3

4-5 years work experience, including internships 1

Treatment > 5 years work experience, including internships 64

1-3 years work experience, including internships 4

4-5 years work experience, including internships 4
```

Name: Professional, dtype: int64

Difference in experience score: 0.0866666666666689

The variances are 0.5891555555555563 and 0.2500000000000001 for the control and treatment groups, respectively. The t-test of the mean experience score difference has a p-value of 0.4238107594329512.


```
Group In401k
Control Yes, I am 39
No, I am not 36
Treatment Yes, I am 45
No, I am not 25
I am not sure 2
Name: In401k, dtype: int64
```

Difference in 401k status: 0.1049999999999998

The variances are 0.2496 and 0.234375 for the control and treatment groups, respectively. The t-test of the mean 401k status difference has a p-value of 0.20103306368696297.

Investment

Group

Control	Yes, I primarily make investments myself.	39
	No, I don't have any	19
	Yes, but I primarily rely on professional investors to help me invest.	17
Treatment	Yes, I primarily make investments myself.	44
	Yes, but I primarily rely on professional investors to help me invest.	19
	No, I don't have any	9
Name: Inve	stment, dtype: int64	
Difference	in investment background: 0.109722222222222	

The t-test of the mean difference in investment background has a p-value of 0.09108924246338256.

The variances are 0.175555555555555546 and 0.12495177469135793 for the control and treatment groups, respectively.


```
Group DataScience
Control No 62
Yes 10
I am not sure 3
Treatment No 57
Yes 12
I am not sure 3
```

Name: DataScience, dtype: int64

Difference in Data science background: 0.033333333333333333

 $\hbox{The variances are 0.1155555555555555555558 and 0.138888888888888895 for the control and treatment groups, respectively. } \\$

The t-test of the mean difference in Data science background has a p-value of 0.5742522857891523.

Data Analysis - Correctness of the answer

Data Analysis - Correctness of the answer (Cont'd)

The t-test of the mean outcome difference has a p-value of 0.027544900175178758.

```
print("-" * 50)
  print("Mean outcoem by group")
  print("-" * 50)
  print(df.groupby('Group')['Outcome'].mean())
  Mean outcoem by group
  Group
  Control
              0.1867
  Treatment 0.3472
  Name: Outcome, dtype: float64
Y1 = df[df['Group']=='Treatment']['Outcome']
  Y0 = df[df['Group']=='Control']['Outcome']
  print("ATE:", Y1.mean() - Y0.mean())
  print("The variances are {} and {} for the control and treatment groups, respectively.".format(np.var(Y0), np.var(Y1)))
  print("The t-test of the mean outcome difference has a p-value of {}.".format(stats.ttest ind(Y1, Y0, equal var=True)[1]))
  ATE: 0.1605555555555555
  The variances are 0.15182222222222 and 0.22665895061728392 for the control and treatment groups, respectively.
```

Data Analysis - Correctness of the answer (Cont'd)

Logit Regression Resi	ults						
Dep. Variable:		Outcome	No. Obs	servation	ıs:	147	
Model:		Logit	Df	Residua	ls:	140	
Method:		MLE		Df Mod	el:	6	
Date:	Tue, 12	Apr 2022	Pseu	do R-sq	u.: 0.0	4912	
Time:		23:44:23	Log-Likelihood: -		d: -80	0.867	
converged:		True		LL-Nu	III: -8	5.045	
Covariance Type:		HC3	LLR p-value: 0.2133				
		coef	std err	Z	P> z	[0.025	0.975]
Intercept		-1.4978	0.766	- 1 .955	0.051	-2.999	0.004
C(Group)[T.Trea	tment]	0.8923	0.400	2.231	0.026	0.109	1.676
adus -41	and the same of						
education	_score	-0.3790	0.421	-0.901	0.367	-1.203	0.445
education experience		-0.3790 0.0663	0.421 0.630	-0.901 0.105		-1.203 -1.169	0.445 1.302
experience		100000000000000000000000000000000000000					
experience	_score	0.0663	0.630	0.105	0.916	-1.169	1.302

Data Analysis - Subsample test 1: Education

```
0 \text{ for } < UG
```

1 for UG +

```
1 101
0 46
Name: education_score, dtype: int64

education score: 0
ATE: 0.1416666666666666
The variances are 0.17888888888888 and 0.234375 for the control and treatment groups, respectively.
The t-test of the mean outcome difference has a p-value of 0.3202249474781813.

education score: 1
ATE: 0.18373015873015874
The variances are 0.1313580246913581 and 0.2241709183673471 for the control and treatment groups, respectively.
The t-test of the mean outcome difference has a p-value of 0.03607277577286542.
```

Data Analysis - Subsample test 2: Work experience

The t-test of the mean outcome difference has a p-value of 0.6185599512335765.

0 for < = 5 years work experience

1 for 5+ years work experience

```
1 131
0 16
Name: experience_score, dtype: int64

Work experience score: 1
ATE: 0.19519589552238806
The variances are 0.1372243261305412 and 0.230224609375 for the control and treatment groups, respectively. The t-test of the mean outcome difference has a p-value of 0.010613096924951873.

Work experience score: 0
ATE: -0.125
The variances are 0.234375 and 0.1875 for the control and treatment groups, respectively.
```

Data Analysis - Subsample test 3: 401k status

Yes, I'm currently enrolled in 401k

No, I'm not

Yes, I am 84 No, I am not 63

Name: In401k, dtype: int64

Enrolled in 401k: No, I am not

ATE: 0.12962962962962

The variances are 0.1388888888888888 and 0.20850480109739364 for the control and treatment groups, respectively.

The t-test of the mean outcome difference has a p-value of 0.22725246004317023.

Enrolled in 401k: Yes, I am ATE: 0.17264957264957265

The variances are 0.1630506245890861 and 0.23506172839506173 for the control and treatment groups, respectively.

The t-test of the mean outcome difference has a p-value of 0.08624412598748671.

Data Analysis - Subsample test 4: Investment background

0 if not involved in personal investments

1 if involved in personal investments

```
1 83
0 64
Name: investment_background, dtype: int64
investment background: 1
ATE: 0.2097902097902098
The variances are 0.13017751479289943 and 0.23140495867768582 for the control and treatment groups, respectively. The t-test of the mean outcome difference has a p-value of 0.030818486949751207.
investment background: 0
ATE: 0.09920634920634924
The variances are 0.17283950617283966 and 0.21811224489795905 for the control and treatment groups, respectively. The t-test of the mean outcome difference has a p-value of 0.38070771208171583.
```

Data Analysis - Subsample test 5: Data science training

Yes, I did

No, I did not

No 125 Yes 22

Name: DataScience, dtype: int64

Data science: No

ATE: 0.1474358974358974

The variances are 0.14059171597633133 and 0.21638888888888 for the control and treatment groups, respectively.

The t-test of the mean outcome difference has a p-value of 0.05443764110466267.

Data science: Yes

ATE: 0.2

The variances are 0.21000000000000000 and 0.25 for the control and treatment groups, respectively.

The t-test of the mean outcome difference has a p-value of 0.3659958339806202.

Data Analysis - Other findings

Reading speed (time taken in seconds to complete the survey)

```
Histogram of Time (seconds)
                       Time
                                    Treatment
                                    Control
 10
 8
          100
Y1 = df[df['Group']=='Treatment']['Time']
Y0 = df[df['Group']=='Control']['Time']
print("ATE:", Y1.mean() - Y0.mean())
print("The variances are {} and {} for the control and treatment groups, respectively.".format(np.var(Y0), np.var(Y1)))
print("The t-test of the mean time difference has a p-value of {}.".format(stats.ttest ind(Y1, Y0, equal var=True)[1]))
ATF: -0.307222222222223
The variances are 16839.43395555556 and 4579.161844135802 for the control and treatment groups, respectively.
The t-test of the mean time difference has a p-value of 0.9858491683781828.
```

Data Analysis - Other findings

Checking external sources (1 yes, 0 no)

Conclusion and Discussion

- Causal graph/visualization has
 - Increased the accuracy of reading comprehension
 - Without changes in the reading speed or whether or not to seek external sources
- Subsample tests are generally consistent, with some subsamples to small to have enough statistical power (e.g., p value).
- Results remain consistent after controlling for covariates in a regression model

Conclusion and Discussion

- If I had more budget and time, what would I have done differently?
 - Blocking and randomization within each block by key predictors: data science training, etc.
 - More examples in multiple disciplines and fields, from daily topics like healthcare to specialized topics such as neuroscience;
 - More varieties of the underlying analytics reports, e.g., DML to synthetic control, instrumental variables, etc.
 - Effects of causal graphs on the entire workflow between data science and decision-making

Q&As