Assignment - 0

- Image Manipulation
 - 1. Merging
 - 2. Scaling
 - 3. Intensity Centralization

Merging

- Merge two images horizontally to create a new image.
- Input:
 - Image left
 - Image right
 - Column at which to merge the images

Column = 155

Image left

Image right

Output

Intensity Scaling

- Scaling: multiply each pixel in the image using a constant value called as scaling factor. Scaling factor is a value between *0 and 1*.
- Input:
 - Image
 - Column at which left section ends and right section begins
 - Scaling factor for left section (alpha)
 - Scaling factor for right section (beta)

(left image) * alpha(0.25)

Column = 155

(right image) * beta(0.9)

Intensity Centralization

- The two images can have very different overall brightness values.
- The goal is to make sure that the average intensities of the left section and the right section are equal and centralized (= $^{\sim}128$).
- After centralizing pixels, the average of all the pixels in the left section and right section will be ~128
- Input:
 - Image
 - Column at which left section ends and right section begins

Column = 155

add the offset. $(I(x,y) + o_l)$

Output

3. For each pixel I(x, y) in the left section

2. Compute offset. ($o_l = 128 - m_l$)

1. Compute average intensity of left pixels

 (m_l)

- 1. Compute average intensity of right pixels (m_r)
- 2. Compute offset. ($o_r = 128 m_r$)
- 3. For each pixel I(x, y) in the right section add the offset. $(I(x, y) + o_r)$

Assignment - 0

- 1. Merging (10 Pts.)
- 2. Intensity Scaling (10 Pts)
- 3. Intensity Centralizing (10 Pts)

Total: 30 Pts.

Submission Instructions

- Must use the starter code available in Github
- Submission allowed only through Github
- You will receive an email with invitation to join Github classroom
- Start by reading the readme.md file.
- Instructions are available here
- Github will automatically save the last commit as a submission before the deadline