Mouvement T - ★

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$.

Question 1 Quel est le mouvement de 1 par rapport à 0.

Question 2 Donner l'équation paramétrique de la trajectoire du point B, point appartenant à $\mathbf{1}$ par rapport à $\mathbf{0}$.

defi

.

$$x_B(t) = \lambda(t)$$
.

Mouvement T - ★

B2-13

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$.

Question 3 Donner le torseur cinématique $\{\mathcal{V}(1/0)\}$ au point B.

Question 4 Déterminer $\overrightarrow{\Gamma(B, 1/0)}$.

Indications:

1.
$$\{\mathcal{V}(1/0)\} = \left\{\begin{array}{c} \overrightarrow{0} \\ \dot{\lambda}(t)\overrightarrow{i_0} \end{array}\right\}_{\forall P}$$

2.
$$\overrightarrow{\Gamma(B,1/0)} = \ddot{\lambda}(t)\overrightarrow{i_0}$$
.

Corrigé voir ??.

C2-05

B2-13

Mouvement R ★

C2-05

B2-13

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R\overrightarrow{i_1}$ avec R = 20 mm.

Question 5 Quel est le mouvement de 1 par rapport à 0.

Question 6 Quelle est la trajectoire du point *B* appartenant à 1 par rapport à 0.

Question 7 Donner l'équation paramétrique de la trajectoire du point B, point appartenant à $\mathbf{1}$ par rapport à $\mathbf{0}$.

```
Indications:

1. .
2. .
3. x_B(t) = R \cos \theta(t) et y_B(t) = R \sin \theta(t).
```

Corrigé voir ??.

Mouvement R ★

B2-13

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R\overrightarrow{i_1}$ avec R = 20 mm.

Question 8 Déterminer $\overrightarrow{V(B,1/0)}$ par dérivation vectorielle.

Question 9 Déterminer $\overrightarrow{V(B,1/0)}$ par une autre méthode.

Question 10 Donner le torseur cinématique $\{\mathcal{V}(1/0)\}$ au point B.

Question 11 Déterminer $\overrightarrow{\Gamma(B, 1/0)}$.

Indications:

1.
$$\overrightarrow{V(B,1/0)} = R \dot{\theta} \overrightarrow{j_1}$$
.

2. $\overrightarrow{V(B,1/0)} = R \dot{\theta} \overrightarrow{j_1}$.

3. $\{\mathscr{V}(1/0)\} = \begin{cases} \dot{\theta} \overrightarrow{k_0} \\ R \dot{\theta} \overrightarrow{j_1} \end{cases} \begin{cases} R \dot{\theta} \overrightarrow{j_1} \\ R \dot{\theta} \overrightarrow{j_1} \end{cases} = R \dot{\theta} \overrightarrow{j_1}$.

4. $\overrightarrow{\Gamma(B,1/0)} = R \ddot{\theta} \overrightarrow{j_1} - R \dot{\theta}^2 \overrightarrow{i_1}$.

Corrigé voir ??.

Mouvement TT - ★

C2-05

B2-13

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$ et $\overrightarrow{BC} = \mu(t)\overrightarrow{j_0}$.

Question 12 Quel est le mouvement de 2 par rapport à 0.

Question 13 Donner l'équation du mouvement du point *C* dans le mouvement de **2** par rapport à **0**.

On souhaite que le point C réalise un cercle de centre A et de rayon $R=10\,\mathrm{cm}$ à la vitesse $v=0.01\,\mathrm{m\,s^{-1}}$.

Question 14 Donner la relation liant $\theta(t)$, v et R.

Par ailleurs la vitesse du point C est donnée par $\overrightarrow{V(C,2/0)} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{AC}\right]_{\mathcal{R}_0} = R\dot{\theta}\overrightarrow{e_{\theta}}$.

Question 15 Donner les expressions de $\lambda(t)$ et $\mu(t)$ permettant la réalisation de cette trajectoire en fonction de v, R et du temps.

Question 16 En utilisant Python, tracer $\lambda(t)$, $\mu(t)$ et la trajectoire générée.

```
Indications:

1. .

2. x_C(t) = \lambda(t) et y_C(t) = \mu(t).

3. \theta(t) = \frac{v}{R}t.

4. \lambda(t) = R\cos\left(\frac{v}{R}t\right), \mu(t) = R\sin\left(\frac{v}{R}t\right).

5. .
```

Corrigé voir ??.

Mouvement TT - ★

B2-13

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$ et $\overrightarrow{BC} = \mu(t)\overrightarrow{j_0}$.

Question 17 Déterminer $\overrightarrow{V(C,2/0)}$ par dérivation vectorielle ou par composition.

Question 18 Donner le torseur cinématique $\{\mathcal{V}(2/0)\}$ au point C.

Question 19 Déterminer $\overrightarrow{\Gamma(C,2/0)}$.

- 1. $\overrightarrow{V(C,2/0)} = \dot{\lambda}(t)\overrightarrow{i_0} + \dot{\mu}(t)\overrightarrow{j_0}$.
- 2. $\{\mathcal{V}(2/0)\} = \left\{ \begin{array}{c} \overrightarrow{0} \\ \dot{\lambda}(t)\overrightarrow{i_0} + \dot{\mu}(t)\overrightarrow{j_0} \end{array} \right\}_{\forall p}$
- 3. $\overrightarrow{\Gamma(C,2/0)} = \ddot{\lambda}(t)\overrightarrow{i_0} + \ddot{\mu}(t)\overrightarrow{j_0}$

Corrigé voir ??.

Mouvement RR ★

C2-05

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R\overrightarrow{i_1}$ avec $R = 20 \,\mathrm{mm}$ et $\overrightarrow{BC} = L\overrightarrow{i_2}$ avec $L = 15 \,\mathrm{mm}$.

Question 20 Donner l'ensemble des positions accessibles par le point *C*.

Question 21 Donner l'équation du mouvement du point *C* dans son mouvement de **2** par rapport à **0**.

On souhaite que le point C réalise un segment entre les points [-20, 25] et [20, 25] à la vitesse linéaire v.

Question 22 Donner la durée du mouvement si *C* se déplace à vitesse quelconque.

Question 23 Donner l'équation paramétrique que doit suivre le point *C*.

Question 24 Donner les expressions de $\theta(t)$ et $\varphi(t)$ permettant la réalisation de cette trajectoire à la vitesse $v=0.01\,\mathrm{m\,s^{-1}}$.

Question 25 En utilisant Python, tracer $\theta(t)$, $\varphi(t)$ et la trajectoire générée.

Corrigé voir ??.

Mouvement RR ★

B2-13

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R\overrightarrow{i_1}$ avec $R = 20 \,\mathrm{mm}$ et $\overrightarrow{BC} = L\overrightarrow{i_2}$ avec $L = 15 \,\mathrm{mm}$.

Question 26 Déterminer $\overrightarrow{V(C,2/0)}$ par dérivation vectorielle.

Question 27 Déterminer $\overrightarrow{V(C,2/0)}$ par composition.

Question 28 Donner le torseur cinématique $\{\mathcal{V}(2/0)\}$ au point C.

Question 29 Déterminer $\Gamma(C, 2/0)$.

Corrigé voir ??.

Mouvement RT ★

C2-05

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$.

Question 30 Donner l'ensemble des positions accessibles par le point *B*.

Question 31 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **2** par rapport à **0**.

On souhaite que le point B réalise un segment entre les points [-25, 25] et [25, 25].

Question 32 Donner les expressions de $\theta(t)$ et $\lambda(t)$ permettant la réalisation de cette trajectoire à la vitesse $v=0.01\,\mathrm{m\,s^{-1}}$.

Question 33 En utilisant Python, tracer $\theta(t)$, $\lambda(t)$ et la trajectoire générée.

Corrigé voir ??.

Mouvement RT ★

B2-13

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$.

Question 34 Déterminer $\overrightarrow{V(B,2/0)}$ par dérivation vectorielle.

Question 35 Déterminer $\overrightarrow{V(B,2/0)}$ par composition.

Question 36 Donner le torseur cinématique $\{\mathcal{V}(2/0)\}$ au point B.

Question 37 Déterminer $\overrightarrow{\Gamma(B,2/0)}$.

Corrigé voir ??.

Mouvement RT ★

C2-05

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$ et $\overrightarrow{BC} = R\overrightarrow{i_2}$ avec R = 30 mm.

Question 38 Donner l'ensemble des positions accessibles par le point *B*.

Question 39 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **2** par rapport à **0**.

On souhaite que le point B réalise un segment entre les points [-25, 25] et [25, 25].

Question 40 Donner les expressions de $\theta(t)$ et $\lambda(t)$ permettant la réalisation de cette trajectoire à la vitesse $v=0.01\,\mathrm{m\,s^{-1}}$.

Question 41 En utilisant Python, tracer $\theta(t)$, $\lambda(t)$ et la trajectoire générée.

Corrigé voir ??.

Mouvement RT ★

B2-13

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$ et $\overrightarrow{BC} = R\overrightarrow{i_2}$ avec R = 30 mm.

Question 42 Déterminer $\overrightarrow{V(C,2/0)}$ par dérivation vectorielle ou par composition.

Question 43 Donner le torseur cinématique $\{\mathcal{V}(2/0)\}$ au point C.

Question 44 Déterminer $\overrightarrow{\Gamma(C,2/0)}$.

Corrigé voir ??.

Mouvement RR 3D ★★

C2-05

B2-13

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{BC} = \ell \overrightarrow{i_2} + r \overrightarrow{j_2}$. On note $R + \ell = L = 20$ mm et r = 10 mm.

Question 45 Donner l'ensemble des positions accessibles par le point *C*.

Question 46 Donner l'équation du mouvement du point C dans le mouvement de $\mathbf 2$ par rapport à $\mathbf 0$.

Indications:

1. .

2. $x_C(t) = (R + \ell)\cos\theta - r\cos\varphi\sin\theta$, $y_C(t) = (R + \ell)\sin\theta + r\cos\varphi\cos\theta$, $z_C(t) = r\sin\varphi$.

Corrigé voir ??.

Mouvement RR 3D ★

B2-13

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{BC} = \ell \overrightarrow{i_2} + r \overrightarrow{j_2}$. On note $R + \ell = L = 20$ mm et r = 10 mm.

Question 47 Déterminer $\overrightarrow{V(C,2/0)}$ par dérivation vectorielle.

Question 48 Déterminer $\overrightarrow{V(C,2/0)}$ par composition.

Question 49 Donner le torseur cinématique $\{\mathcal{V}(2/0)\}$ au point C.

Question 50 Déterminer $\Gamma(C, 2/0)$.

Corrigé voir ??.

Mouvement RR 3D ★★

C2-05

B2-13

Soit le mécanisme suivant. On a $\overrightarrow{AB} = H\overrightarrow{j_1} + R\overrightarrow{i_1}$ et $\overrightarrow{BC} = L\overrightarrow{i_2}$. On a H = 20 mm, R = 20 mm, L = 10 mm.

Question 51 Donner l'ensemble des positions accessibles par le point *C*.

Question 52 Donner l'équation de mouvement du point C dans le mouvement de 2 par rapport à $\mathbf{0}$.

Indications

- 1. Tore
- 2. $x_C(t) = R\cos\theta + L\cos\varphi\cos\theta$, $y_C(t) = H + L\sin\varphi$, $z_C(t) = -R\sin\theta L\cos\varphi\sin\theta$.

Corrigé voir ??.

Mouvement RR 3D ★

B2-13

Soit le mécanisme suivant. On a $\overrightarrow{AB} = H\overrightarrow{j_1} + R\overrightarrow{i_1}$ et $\overrightarrow{BC} = L\overrightarrow{i_2}$. On a H = 20 mm, r = 5 mm, L = 10 mm.

Question 53 Déterminer $\overline{V(C,2/0)}$ par dérivation vectorielle.

Question 54 Déterminer $\overrightarrow{V(C,2/0)}$ par composition du vecteur vitesse.

Question 55 Donner le torseur cinématique $\{\mathcal{V}(2/0)\}$ au point C.

Question 56 Déterminer $\overrightarrow{\Gamma(C, 2/0)}$.

Corrigé voir ??.