

Analyze Data with SQL

Warby Parker marketing funnels

Shaheen Nazar MSIS, SCU

About Warby Parker

Warby Parker is a transformative lifestyle brand

- Founded in 2010 and named after two characters in an early Jack Kerouac journal, Warby Parker believes in creative thinking, smart design, and doing good in the world.
- Objective: To offer designer eyewear at a revolutionary price while leading the way for socially conscious businesses.
- Mission: For every pair of eyeglasses and sunglasses sold, a pair is distributed to someone in need.

What is a Funnel?

A **funnel** is a marketing model which illustrates the theoretical customer journey towards the purchase of a product or service.

Oftentimes, we want to track how many users complete a series of steps and know which steps have the greatest number of users giving up.

Some examples include:

- Answering each part of a 5 Question survey on customer satisfaction
- ▶ Browsing a selection of products → Viewing a shopping cart → Making a purchase

Generally, we want to know the total number of users in each step of the funnel, as well as the percent of users who complete each step.

Using SQL, we can dive into complex funnels and event flow analysis to gain insights into the users' behavior.

Quiz Funnel: Task 1

To help users find their perfect frame, Warby Parker has a style quiz that has the following questions:

- ✓ "What are you looking for?"
- ✓ "What's your fit?"
- ✓ "Which shapes do you like?"
- ✓ "Which colors do you like?"
- ✓ "When was your last eye exam?"

The users' responses are stored in a table called survey.

- ▶ Select all columns from the first 10 rows.
- ▶ What columns does the table have?

Solution with Query

The survey table has the following columns:

- question
- user id
- response

Query Results				
question	user_id	response		
1. What are you looking for?	005e7f99-d48c-4fce-b605-10506c85aaf7	Women's Styles		
2. What's your fit?	005e7f99-d48c-4fce-b605-10506c85aaf7	Medium		
3. Which shapes do you like?	00a556ed-f13e-4c67-8704-27e3573684cd	Round		
4. Which colors do you like?	00a556ed-f13e-4c67-8704-27e3573684cd	Two-Tone		
1. What are you looking for?	00a556ed-f13e-4c67-8704-27e3573684cd	I'm not sure. Let's skip it.		
2. What's your fit?	00a556ed-f13e-4c67-8704-27e3573684cd	Narrow		
5. When was your last eye exam?	00a556ed-f13e-4c67-8704-27e3573684cd	<1 Year		
3. Which shapes do you like?	00bf9d63-0999-43a3-9e5b-9c372e6890d2	Square		
5. When was your last eye exam?	00bf9d63-0999-43a3-9e5b-9c372e6890d2	<1 Year		
2. What's your fit?	00bf9d63-0999-43a3-9e5b-9c372e6890d2	Medium		

-- query here

SELECT *
FROM survey
LIMIT 10;

Quiz Funnel: Task 2

Users will "give up" at different points in the survey.

Let's analyze how many users move from Question 1 to Question 2, etc.

 Create a quiz funnel using the GROUP BY command.

What is the number of responses for each question?

Solution with Query

The survey table has the following columns:

- question
- user id
- response

Query Results		
question	user_count	
1. What are you looking for?	500	
2. What's your fit?	475	
3. Which shapes do you like?	380	
4. Which colors do you like?	361	
5. When was your last eye exam?	270	

-- query here

SELECT question, COUNT(DISTINCT user_id) as 'user_count' FROM survey GROUP BY question;

Quiz Funnel: Task 3

Using a spreadsheet program like Excel or Google Sheets, calculate the percentage of users who answer each question:

- ▶ Which question(s) of the quiz have a lower completion rates?
- ▶ What do you think is the reason?

Solution

- We got the percentage by dividing the number of people completing each step by the number of people completing the previous step.
- ► The percentage drop in 3rd question shows that customers are quite unsure of the shapes they like.
- ► Last question shows the maximum drop, the reason might be "customers are quite hesitant to share their last date of eye exam" or they don't even remember the date.

Question Number	Percent Completing this question
1	100%
2	95%
3	80%
4	95%
5	75%

Home Try-On Funnel: Task 4

Warby Parker's purchase funnel is:

Take the Style Quiz \rightarrow Home Try-On \rightarrow Purchase the Perfect Pair of Glasses

During the Home Try-On stage, we will be conducting an A/B Test:

50% of the users will get **3** pairs to try on

50% of the users will get **5** pairs to try on

Let's find out if users who get more pairs to try on at home will be more likely to make a purchase.

- The data will be distributed across three tables:
 - ✓ quiz
 - home_try_on
 - purchase
- Examine the first five rows of each table
- What are the column names?

4.1 Solution with Query

The quiz table has the following columns:

- user_id
- style
- fi
- shape
- color

	(Query Results		
user_id	style	fit	shape	color
4e8118dc-bb3d-49bf-85fc-cca8d83232ac	Women's Styles	Medium	Rectangular	Tortoise
291f1cca-e507-48be-b063-002b14906468	Women's Styles	Narrow	Round	Black
75122300-0736-4087-b6d8-c0c5373a1a04	Women's Styles	Wide	Rectangular	Two-Tone
75bc6ebd-40cd-4e1d-a301-27ddd93b12e2	Women's Styles	Narrow	Square	Two-Tone
ce965c4d-7a2b-4db6-9847-601747fa7812	Women's Styles	Wide	Rectangular	Black
28867d12-27a6-4e6a-a5fb-8bb5440117ae	Women's Styles	Narrow	Rectangular	Black
5a7a7e13-fbcf-46e4-9093-79799649d6c5	Women's Styles	Wide	Rectangular	Tortoise
0143cb8b-bb81-4916-9750-ce956c9f9bd9	Women's Styles	Wide	Rectangular	Two-Tone
a4ccc1b3-cbb6-449c-b7a5-03af42c97433	Women's Styles	I'm not sure. Let's skip it.	Square	Tortoise
b1dded76-cd60-4222-82cb-f6d464104298	Women's Styles	Narrow	Rectangular	Crystal

-- query here

SELECT *
FROM quiz
LIMIT 10;

4.2 Solution with Query

The home_try_on table has the following columns:

- user id
- number_of_pairs
- address

	Query Results			
user_id	number_of_pairs	address		
d8addd87-3217-4429-9a01-d56d68111da7	5 pairs	145 New York 9a		
f52b07c8-abe4-4f4a-9d39-ba9fc9a184cc	5 pairs	383 Madison Ave		
8ba0d2d5-1a31-403e-9fa5-79540f8477f9	5 pairs	287 Pell St		
4e71850e-8bbf-4e6b-accc-49a7bb46c586	3 pairs	347 Madison Square N		
3bc8f97f-2336-4dab-bd86-e391609dab97	5 pairs	182 Cornelia St		
4c10e298-53c8-4009-adda-bbcaecb7e8b6	5 pairs	312 Frawley Cir		
5a3ee321-517d-4a21-a351-d6815ab2edd5	5 pairs	301 Fred Douglass Cir		
4d895ccf-4877-4f13-8183-13d7d0a20a47	3 pairs	77 Margaret Corbin Dr		
39e8a811-75b9-4dc3-bdff-c92b6db0431d	3 pairs	482 Coenties Slip		
9d2656a0-d066-4b42-bce1-77825f34ded9	5 pairs	364 De Peyster St		

-- query here

SELECT *
FROM home_try_on
LIMIT 10;

4.3 Solution with Query

The purchase table has the following columns:

- user id
- product_id
- style
- model_name
- Color
- price

Query Results					
user_id	product_id	style	model_name	color	price
00a9dd17-36c8-430c-9d76-df49d4197dcf	8	Women's Styles	Lucy	Jet Black	150
00e15fe0-c86f-4818-9c63-3422211baa97	7	Women's Styles	Lucy	Elderflower Crystal	150
017506f7-aba1-4b9d-8b7b-f4426e71b8ca	4	Men's Styles	Dawes	Jet Black	150
0176bfb3-9c51-4b1c-b593-87edab3c54cb	10	Women's Styles	Eugene Narrow	Rosewood Tortoise	95
01fdf106-f73c-4d3f-a036-2f3e2ab1ce06	8	Women's Styles	Lucy	Jet Black	150
021901a5-74ee-482d-9f03-0089d17ff7d6	3	Men's Styles	Dawes	Driftwood Fade	150
026e11d9-926c-4206-af7c-273e3ee6ad7f	2	Men's Styles	Brady	Sea Glass Gray	95
028b47b0-e075-4b2c-bcf3-f963d8089449	10	Women's Styles	Eugene Narrow	Rosewood Tortoise	95
029e417e-a0b5-4ec7-9190-a852016619d9	5	Men's Styles	Monocle	Endangered Tortoise	50
02bd0f5a-3f04-4902-b005-82188b07785f	7	Women's Styles	Lucy	Elderflower Crystal	150

-- query here

SELECT * FROM purchase LIMIT 10

Home Try-On Funnel: Task 5

Create a new table with the desirable layout on the right side Each row will represent a single user from the browse table:

- If the user has any entries in home_try_on, then is_home_try_on will be True
- ✓ number_of_pairs comes from home_try_on table
- ✓ If the user has any entries in purchase, then is purchase will be True.
- Select only the first 10 rows from this table (otherwise, the query will run slowly)

user_id	is_home_try_on	number_of_pairs	is_purchase	
4e8118dc	True	3	False	
291f1cca	True	5	False	
75122300	False	NULL	False	

Solution with Query

In order to get the desired table, I used a LEFT JOIN to combine the three tables, starting at the top of the funnel (quiz) and ending with the bottom of the funnel (purchase).

Query Results				
user_id	is_home_try_on	number_of_pairs	is_purchase	
4e8118dc-bb3d-49bf-85fc-cca8d83232ac	1	3 pairs	0	
291f1cca-e507-48be-b063-002b14906468	1	3 pairs	1	
75122300-0736-4087-b6d8-c0c5373a1a04	0	Ø	0	
75bc6ebd-40cd-4e1d-a301-27ddd93b12e2	1	5 pairs	0	
ce965c4d-7a2b-4db6-9847-601747fa7812	1	3 pairs	1	
28867d12-27a6-4e6a-a5fb-8bb5440117ae	1	5 pairs	1	
5a7a7e13-fbcf-46e4-9093-79799649d6c5	0	Ø	0	
0143cb8b-bb81-4916-9750-ce956c9f9bd9	0	Ø	0	
a4ccc1b3-cbb6-449c-b7a5-03af42c97433	1	5 pairs	0	
b1dded76-cd60-4222-82cb-f6d464104298	1	3 pairs	0	

-- query here

SELECT DISTINCT q.user_id,
h.user_id IS NOT NULL AS 'is_home_try_on',
h.number_of_pairs,
p.user_id IS NOT NULL AS 'is_purchase'
FROM quiz q
LEFT JOIN home_try_on h
ON q.user_id = h.user_id
LEFT JOIN purchase p
ON p.user_id = q.user_id
LIMIT 10;

Home Try-On Funnel: Task 6

Now the data is in desired format, we can analyze it in several ways:

- ✓ Calculate overall conversion rates by aggregating across all rows
- Compare conversion from

```
quiz \rightarrow home_try_on and home_try_on \rightarrow purchase.
```

Calculate the difference in purchase rates between customers who had 3 number_of_pairs with ones who had 5

Original tables can be used to calculate things like:

- ✓ The most common results of the style quiz
- The most common types of purchase made.

6.1 Building a funnel for analyzing the data

Creating a temporary table with the name "Funnel"

Querying the Funnel table for calculating overall conversion rates.

Query Results		
num_quiz	num_home_try_on	num_purchase
1000	750	495

```
WITH Funnel AS (
SELECT DISTINCT q.user_id,
h.user_id IS NOT NULL AS 'is_home_try_on',
h.number_of_pairs,
p.user_id IS NOT NULL AS 'is_purchase'
FROM quiz q
LEFT JOIN home_try_on h
ON q.user_id = h.user_id
LEFT JOIN purchase p
ON p.user_id = q.user_id)
```

SELECT COUNT(*) AS 'num_quiz', SUM(is_home_try_on) AS 'num_home_try_on', SUM(is_purchase) AS 'num_purchase' FROM Funnel;

6.2 Analyzing the data continued...

Querying the temporarily created Funnel table for

- Percentage of users from "quiz" to "home try on"
- Percentage of users from "home try on" to "purchase"

Query Results		
Quiz_to_Hometrial	Hometrial_to_Purchase	
0.75	0.66	

WITH Funnel AS (
SELECT DISTINCT q.user_id,
h.user_id IS NOT NULL AS 'is_home_try_on',
h.number_of_pairs,
p.user_id IS NOT NULL AS 'is_purchase'
FROM quiz q
LEFT JOIN home_try_on h
ON q.user_id = h.user_id
LEFT JOIN purchase p
ON p.user_id = q.user_id)

SELECT
SUM(is_home_try_on) * 1.0 / COUNT(user_id) AS
'Quiz_to_Hometrial',
SUM(is_purchase) * 1.0 / SUM(is_home_try_on) AS
'Hometrial_to_Purchase'
FROM Funnel:

6.3 Analyzing the data continued...

Querying the temporarily created Funnel table for :

Calculating the difference in purchase rates between customers who had 3 number_of_pairs with ones who had 5

When customers were provided with 5 pairs for home trial, the conversion rate to purchase is 79.24%, however when provided with only 3 pairs, the conversion rate to purchase got restricted to 53.03%

Hence proved that if users get more pairs to try at home, they are more likely to make a purchase.

	Query Results	
AB_variant	home_trial	purchase
Ø	0	0
3 pairs	379	201
5 pairs	371	294

```
WITH Funnel AS (
SELECT DISTINCT q.user_id,
h.user_id IS NOT NULL AS 'is_home_try_on',
h.number_of_pairs AS 'AB_variant',
p.user_id IS NOT NULL AS 'is_purchase'
FROM quiz q
LEFT JOIN home_try_on h
ON q.user_id = h.user_id
LEFT JOIN purchase p
ON p.user_id = q.user_id)
```

-- query here

SELECT AB_variant ,
SUM(is_home_try_on) AS "home_trial",
SUM(is_purchase) AS "purchase"
FROM Funnel
GROUP BY AB variant;

6.4 Analyzing the data continued...

- 1. The most common results of the style 'quiz'
- 2. The most common types of 'purchase' made

The most common style in quiz table is Women's style

The model called "Lucy" is the most purchased model in Women's style and model called "Dawes" is the most purchased model in Men's style.

Query Results		
style	common_style	
Women's Styles	469	
Men's Styles	432	
I'm not sure. Let's skip it.	99	

Query Results		
style	model_name	total_count
Women's Styles	Lucy	252
Men's Styles	Dawes	243

-- query here

SELECT style, COUNT(*) AS 'common_style'
FROM quiz
GROUP BY style
ORDER BY 2 DESC;

SELECT style, model_name, COUNT(model_name) AS 'total_count' FROM purchase GROUP BY style ORDER BY 3 DESC;

Thank you

CodeAcademy for giving the opportunity to practice