

Online, November 11-12th, 2024

binarygrid ● EN

Binary Grid (binarygrid)

You are given a grid A consisting of N rows and M columns, containing only 0s and 1s.

You can do the following operations on A:

- Select a row i ($0 \le i \le N-1$) and invert it (i.e. flip every value in that row, such that each 0 becomes a 1 and each 1 becomes a 0).
- Select a column j $(0 \le j \le M 1)$ and invert it.

A binary grid is **beautiful** if there are no three consecutive equal values in the same row or in the same column. More formally, there is no $i, j \ (0 \le i \le N-1, 0 \le j \le M-3)$ such that $A_{i,j} = A_{i,j+1} = A_{i,j+2}$, and there is no $i, j \ (0 \le i \le N-3, 0 \le j \le M-1)$ such that $A_{i,j} = A_{i+1,j} = A_{i+2,j}$.

Your task is to decide whether it is possible to make a given grid beautiful, and if so, then report the minimum number of operations to do it.

Among the attachments of this task you may find a template file binarygrid.* with a sample incomplete implementation.

Input

The first line of the input file contains a single integer T, the number of testcases. T testcases follow, each preceded by an empty line.

Each testcase consists of:

- a line containing two space-separated integers N and M.
- N lines, the (i+1)-th of which consisting of string A_i consisting of 0s and 1s representing row i of the grid.

Output

The output file must contain T lines, each consisting of a single integer, the answers of the testcases. If it is possible to make a grid beautiful, then the answer to the testcase is the minimum number of operations to do so, otherwise, if it is impossible, then the answer is -1.

Constraints

- $1 \le T \le 100$.
- $1 \le N \le 2000$.
- $1 \le M \le 2000$.
- $A_{i,j}$ is either 0 or 1 for each $i = 0 \dots N 1$ and $j = 0 \dots M 1$.
- The sum of N over all testcases is at most 2000.
- The sum of M over all testcases is at most 2000.

binarygrid Page 1 of 2

Scoring

Your program will be tested against several test cases grouped in subtasks. In order to obtain the score of a subtask, your program needs to correctly solve all of its test cases.

- Subtask 1 (0 points)	Examples.
- Subtask 2 (9 points)	$N \leq 10$ and $M \leq 10$. The sum of N over all test cases does not exceed 10 and the sum of M over all test cases does not exceed 10.
- Subtask 3 (12 points)	N = 1.
- Subtask 4 (20 points)	$N \leq 10$. The sum of N over all test cases does not exceed 10.
- Subtask 5 (59 points)	No additional constraints.

Examples

input	output
3	3
3	0
4 4	-1
	_1
0001	
1110	
1010	
1000	
3 3	
011	
101	
110	
5 5	
11111	
10001	
11011	
10001	
11111	

Explanation

Explanation of the first sample:

In the **first testcase**, a possible way to make the grid beautiful using 3 operations is as follows:

- Invert column 0.
- Invert row 2.
- Invert column 1.

In the **second testcase**, the grid is already beautiful thus no operations are needed.

In the third testcase, it is impossible to make the grid beautiful using the mentioned operations.

binarygrid Page 2 of 2