Funções

Max Jauregui

18 de julho de 2022

1 Definições básicas

Sejam A e B conjuntos quaisquer. Uma relação de A em B é um conjunto arbitrário de pares ordenados (x,y), em que $x \in A$ e $y \in B$. Uma função f de A em B é uma relação de A em B que tem as seguintes propriedades:

- 1. para cada $x \in A$ existe $y \in B$ tal que (x, y) pertence à relação;
- 2. se (x,y) e (x,z) pertencem à relação, então y=z.

Em outras palavras, cada $x \in A$ está associado a um único elemento $y \in B$, o qual será denotado por f(x) e será chamado de valor da função f no ponto x.

Exemplo 1.1. Sejam $A = \{1, 2, 3, 4\}$ e $B = \{3, 5, 7\}$.

- 1. A relação $F = \{(1,3), (2,3), (3,5), (4,5)\}$ é uma função de A em B.
- 2. A relação $R = \{(1,3), (3,5), (4,7)\}$ não é uma função de A em B pois $2 \in A$ não está relacionado com nenhum $y \in B$;
- 3. A relação $S=\{(1,3),(2,5),(3,5),(4,5),(3,7)\}$ não é uma função de A em B, pois (3,5) e (3,7) pertencem à relação.

Uma função f de A em B é denotada de forma simbólica por $f:A\to B$. O conjunto A é chamado de domínio de f e o conjunto B de contradomínio de f.

Exemplo 1.2. No exemplo 1.1 foi definida uma função $F: A \to B$. Nesse caso, tem-se que F(1) = 3, F(2) = 3, F(3) = 5 e F(4) = 5.

Uma função $f:A\to B$ é chamada de uma função real de uma variável real quando $A\subset\mathbb{R}$ e $B\subset\mathbb{R}$. Essa classe de funções será o nosso principal objeto de estudo neste curso.

Embora que para definir uma função seja necessário conhecer o seu domínio, na prática, comumente definem-se funções simplesmente por equações da forma

f(x) = expressão envolvendo a variável x.

Nesse caso, assume-se que o domínio da função f é o conjunto de todos os números $x \in \mathbb{R}$ para os quais a expressão do lado direito faz sentido.

Exemplo 1.3.

- 1. A equação $f(x) = 3x^2 5x + 7$ define uma função f cujo domínio é \mathbb{R} , pois a expressão do lado direito faz sentido para qualquer $x \in \mathbb{R}$.
- 2. A equação $g(x) = \frac{3}{x+5} 3x^3$ define uma função g cujo domínio é o conjunto $\mathbb{R} \{-5\}$, pois a expressão do lado direito só faz sentido se $x \neq -5$;
- 3. A equação $h(x) = 6\sqrt{3-2x}$ define uma função h cujo domínio é o intervalo $(-\infty, 3/2]$, pois a expressão do lado direito só faz sentido se $x \le 3/2$.

Define-se a imagem de uma função f como o conjunto de todos os valores f(x), com x no domínio de f.

Exemplo 1.4. Vamos determinar o domínio e a imagem da função definida pela equação

$$f(x) = \sqrt{4 - 2x} + 5.$$

Como a expressão do lado direito só faz sentido se $4-2x \ge 0$, segue que o domínio de f é o intervalo $(-\infty, 2]$. Para determinamos a imagem de f, vamos determinar o conjunto dos $y \in \mathbb{R}$ para os quais existe $x \in (-\infty, 2]$ tal que $y = \sqrt{4-2x} + 5$. No processo de resolver essa equação para x, encontramos que

$$y - 5 = \sqrt{4 - 2x} .$$

Daqui concluímos que $y-5\geq 0$, ou seja, $y\geq 5$. Terminando de resolver a equação, obtemos que

$$x = \frac{4 - (y - 5)^2}{2} = 2 - \frac{(y - 5)^2}{2}$$
.

Segue daqui que, independentemente do valor de $y, x \in (-\infty, 2]$. Levando em conta todas as condições sobre y, concluímos que a imagem de f é o intervalo $[5, \infty)$.

Uma função f pode ser representada graficamente marcando os pontos (x, f(x)), com x no domínio de f, no plano cartesiano. Em geral, essa representação gera uma curva, a qual é chamada de gráfico de f. Como cada x no domínio de f está associado a um único valor de f(x), o gráfico de f é uma curva tal que qualquer reta vertical corta a curva em no máximo um ponto.

2 Operações com funções