学期末大型实验报告

GeorgeDong32

实验六 比例求和运算电路

一、实验目的

- 1. 掌握用集成运算放大电路组成比例、求和电路的特点及性能。
- 2. 学会上述电路的测试和分析方法。

二、实验仪器

- 1. 数字万用表
- 2. 示波器
- 3. 信号发生器

三、预习要求

- 1. 计算表 6.1 中的 Uo和 Af
- 2. 估算表 6.3 的理论值
- 3. 估算表 6.4、表 6.5 中的理论值
- 4. 计算表 6. 6 中的 Uo 值
- 5. 计算表 6. 7 中的 Uo 值
 - 1、6.1电压四值电路

理论上任何协议下, Uo都等于Ui , AF=1

2、3、兄点中数据

4. 对于回6.4 所子的反相求和电路。

5. 对月日65所至台双端稿门书中略

四、实验内容

1. 电压跟随电路 实验电路如图 6.1 所示。

图 6.1 电压跟随电路

按表 6.1 连接电路,将+12V、-12V接入集成运放工作区,实验并测量记录。

表 6.1

U _I (V)		-2	-0. 5	0	+0.5	1
U _o (V)	$R_L = \infty$	-1.998	-0.498	0	0.498	1.999
	$R_L=5k1$	-1.997	-0.495	0	0.496	1.997

2. 反相比例放大器

实验电路如图 6.2 所示。

图 6.2 反相比例放大电路

(1) 按表 6.2 内容实验并测量记录。

表 6.2

直流输入电压 U _I (mV)		30	100	300	1000	3000
	理论估算(V)	-0.3	-1	-3	-10	-30
输出电压 Uo	实际值(V)	-0.313	-0.999	-3.05	-9.91	-10. 25
	误差(mV)	13	1	50	90	运放饱和

(2) 按表 6.3 要求实验并测量记录。

表 6.3

	测试条件	理论估算值	实测值
$\Delta \mathrm{U}_0$		-8V	-8.204
$\Delta \mathrm{U}_{\mathrm{AB}}$	R _L 开路,直流输入信	0	0
ΔU_{R2}	号 U _I 由 0 变为 800mV	0	0
ΔU_{R1}		0.8V	0.799
$\Delta \mathrm{U}_{0\mathrm{L}}$	R _L 由开路变为 5k1, U _I =800mV	0	0

(3)测量图 6.2 电路的上限截止频率。

截止频率为 17.2KHz

3. 同相比例放大电路

电路如图 6.3 所示

(1) 按表 6.4 和 6.5 实验测量并记录。

图 6.3 同相比例放大电路

表 6.4

直流输入电压 U _I (mV)		30	100	300	1000	3000
	理论估算(V)	0.33	1.1	3.3	11.1	33.3
输出电压 Uo	实际值(V)	0.316	1.062	3. 321	10.98	\
	误差(mV)	14	38	9	20	运放饱和

表 6.5

	测试条件	理论估算值	实测值
$\Delta \mathrm{U}_0$		8.8V	8.869
$\Delta \mathrm{U}_{\mathrm{AB}}$	R _L 开路,直流输入信	0	0
ΔU_{R2}	号 U _I 由 0 变为 800mV	0	0
ΔU_{R1}		0.8V	0. 795
$\Delta \mathrm{U}_{0\mathrm{L}}$	R _L 由开路变为 5k1, U _I =800mV	0	0

(2) 测出电路的上限截止频率

截止频率为 16.3KHz

4. 反相求和放大电路。

实验电路如图 6.4 所示。

按表 6.6 内容进行实验测量,并与预习计算比较。

表 6.6

U _{I1} (V)	0.3	-0. 3
$U_{I2}(V)$	0.2	0.2
U _O (V)	-4. 946	0. 983
估算(V)	-5	1

5. 双端输入求和放大电路 实验电路为图 6.5 所示。

图 6.5 双端输入求和电路

表 6.7

U _{I1} (V)	1	2	0.2
$U_{I2}(V)$	0.5	1.8	-0.2
Uo(V)	-4. 978	-1.936	-4.052
估算(V)	-5	-2	-4

按表 6.7 要求实验并测量记录。

五、实验报告

1. 总结本实验中5种运算电路的特点及性能。

- 1. 都是基于继承运算放大器构建的运算电路,具有输入电阻大,输出电阻小的特点
- 2. 频带宽,可放大信号范围大
- 3. 具有双端输入和双端输出的差分放大电路,对共模信号有很强的抑制作用

2. 分析理论计算与实验结果误差的原因。

- 1. 器件有温漂和制造误差
- 2. 实际电源输出略低于设置值
- 3. 电路中的各个元件的实际值和标称值存在误差

实验七 积分与微分电路

一、实验目的

- 1. 学会用运算放大器组成积分微分电路。
- 2. 学会积分微分电路的特点及性能。

二、实验仪器

- 1. 数字万用表
- 2. 信号发生器
- 3. 双踪示波器

三、预习要求

- 1. 分析图 7. 1 电路,若输入正弦波,U。与 U_i 相位差是多少?当输入信号为 100Hz 有效值为 2V 时,U。=?
- 2. 分析图 7. 2 电路,若输入正弦波,U。与 U_i 相位差多少?当输入信号为 160Hz 幅值为 1V 时,输出 U。=?
- 3. 拟定实验步骤、做好记录表格。

「正弦次語》),Uo与Ui 捆住差为
$$40^\circ$$

結〉为100Hz 有效值为 $2V$ 約0 正弦次寸,
Uo= -UC= - こう 世 dt = - こう $\frac{1}{R_1}$ dt = $-\frac{1}{1270}$ $\int sin 200\pi t dt$
= $\frac{\Gamma(cs(200\pi t))}{127}$ (V) [小子Ut]

四、实验内容

1. 积分电路:

实验电路如图 7.1 所示, 先不接入 Rp1, 连接+12V 和-12V 到集成电路区。

图 7.1 积分电路

(1) 取 $U_{i=+1}V$,断开开关 K(开关 K 用一连线代替,拔出连线一端作为断开) 用示波器和 万用表电压档观察 U_{o} 变化。

(2)测量饱和输出电压及有效积分时间。

饱和输出电压为-9.513V,有效积分时间为960ms

(3) 使图 7.1 中积分电容 C_1 改为 0.1 μ ,在积分电容两端并接 R_{P1} ,将 R_{P1} 调到电阻最大。断开 K , U_i 分别输入频率为 100Hz 幅值为 1V($V_{P-P}=2V$)的正弦波和方波

信号,观察和比较 U_i 与 U_o 的幅值大小及相位关系,并记录波形。将 R_{Pl} 调整为 100k,重复以上步骤,观察记录波形并与 R_{Pl} 最大时比较。

(4) R_{Pl} =100k, 改变信号频率(20Hz \sim 400Hz), 观察 U_i 与 U_o 的相位、幅值及波形的变化。

300Hz 正弦波

2. 微分电路

实验电路如图 7.2 所示。

图 7.2 微分电路

(1) 输入正弦波信号,f=160Hz 幅值为 1V,用示波器观察 U_i 与 U_o 波形并测量输出电压。

输出电压幅值为 2.32V

(2) 改变正弦波频率($20Hz\sim400Hz$),观察 U_{i} 与 U_{o} 的相位、幅值变化情况并记录。

50Hz 正弦输入

300Hz 正弦输入

输入输出相位差增大, 输出电压幅值增大

(3) 在微分电容 C_1 左端接入 1k 电位器,调节其为 $400\,\Omega$,然后输入方波信号,f=200Hz,幅值 200mV ($V_{P-P}=400mV$),用示波器观察 U_o 波形,按上述步骤(2) 重复实验。

50Hz **方波输入**

200Hz 方波输入

300Hz **方波输入**

(4) 输入方波信号,f=200Hz,幅值 200mV ($V_{P-P}=400mV$),调节微分电容左端接入的电位器 (1k),观察 U_i 与 U_o 幅值及波形的变化情况并记录。

 $R = 339 \Omega$

 $R = 719 \Omega$

Uo随着电阻的增大而减小,波形的幅度减小

(5) 调节电位器为 $100\,\Omega$,输入三角波 f=200Hz,幅值 $200\,\text{mV}$ ($V_{P-P}=400\,\text{mV}$),用示波器观察 U_o 波形,改变三角波频率($100\,\text{Hz}\sim400\,\text{Hz}$),观察变化。

200Hz **三角波输入**

300Hz 三角波输入

400Hz **三角波输入**

随着频率升高,输出电压的幅值不断增大。

3. 积分——微分电路

实验电路如图 7.3 所示

图 7.3 积分一微分电路

(1) 在 U_i 输入 f=200Hz,幅值 6V 的方波信号,用示波器观察 U_{o1} 和 U_{o2} 的波形并记录。

(2)将f改为(100Hz~400Hz),重复上述实验。

100Hz 方波输入

300Hz 方波输入

五、实验报告

- 1. 整理实验中的数据及波形,总结积分,微分电路特点。
 - 1. 输入信号脉宽要小于 1/10 时间常数
 - 2. 输出信号的幅值随输入信号的频率变化而变化
 - 3. 在微分电路中电容充放电时可能会出现尖峰
- 2. 分析实验结果与理论计算的误差原因。

实验实测值与理论值相差在5%以内,属于正常波动范围。

产生误差的原因可能是集成运放的温漂,各个电子元件实际值与标称值之间有误差。

实验八 波形发生电路

一、实验目的

- 1. 掌握波形发生电路的特点和分析方法
- 2. 熟悉波形发生电路设计方法。

二、实验仪器

- 1. 双踪示波器
- 2. 数字万用表

三、预习要求

- 1. 分析图 8.1 电路的工作原理, 定性画出 U。和 Uc 波形。
- 2. 若图 8.1 电路 R=10k, 计算 Uo的频率。
- 3. 图 8. 2 电路如何使输出波形占空比变大?利用实验箱上所标元器件画出原理图。
- 4. 图 8. 3 电路中,如何改变输出频率?设计2种方案并画图表示。
- 5. 图 8. 4 电路中如何连续改变振荡频率? 画出电路图。(利用实验箱上的元器件)

5. 同上理. 将凡更快为证常 0-10-1k的电位器

四、实验内容

1. 方波发生电路

实验电路如图 8.1 所示, RP2 调到最大, 双向稳压管实际值约为 5.6-5.8V。

图 8.1 方波发生电路

(1) 按电路图接线,观察 U_C 、 U_o 波形及频率,与预习比较。用示波器观测时,通道需处于直流(DC)状态,如 U_o 波形有所失真,可适当减小 R_{P2} 。

(2) 分别测出 R=10k、110k 时的频率,输出幅值,与预习比较。

R = 10K

R = 100K

(3) 要想获得其他频率应如何选择电路参数? 试利用实验箱上给出的元器件进行条件 实验并观测之。

可以调整 R 和 C1 来调整电路频率,如将 0.1 μ的电容换为 0.05 μ后波形如下

 $C1 = 0.05 \,\mu$

2. 占空比可调的矩形波发生电路

实验电路如图 8.2 所示。 R_{P3} 调到最大,如 U_o 有所失真,可适当减小 R_{P3} 。

图 8.2 占空比可调的矩形波发生电路

(1) 按图接线, R_{P2} =10k,观察并测量电路的 U_C 、 U_o 振荡频率、幅值及占空比,改变 R_{P1} 观察对占空比和频率的影响。

(2) 调节 R_{P2},观察它对输出波形的影响。 R_{P2} 的阻值大小,影响输出波形的频率

3. 三角波发生电路

实验电路如图 8.3 所示。 R_{P2} 调到最大,如 U_o 有所失真,可适当减小 R_{P2} 。

图 8.3 三角波发生电路

- (1) 按图接线, R_{P1} =10k,分别观测 U_{o1} 及 U_{o2} 的波形并记录。
- (2) 调整 R_{P1} ,观察波形变化。如何改变 U_{o2} 的频率而不改变幅值?按预习方案分别实验并记录。

波形变化为频率变化,首先是 U_{ol} 的频率变化; 改变频率且不改变幅值需要调整 R_{P2} 的阻值大小。

4. 锯齿波发生电路

实验电路如图 8.4 所示。 R_{P2} 调到最大,如 U_{o} 有所失真,可适当减小 R_{P2} 。

图 8.4 锯齿波发生电路

(1) 按图接线,观测 U_{o1} 及 U_{o2} 输出波形和频率,改变 R_{P1} 观察它对输出的影响。 R_{P1} 改变输出波形的占空比

(2) 按预习时的方案改变锯齿波频率并测量变化范围。 最大的不失真频率变化范围为 163Hz-15.83kHz

五、实验报告

1. 画出各实验的波形图。

波形图见报告中图片

- 2. 画出各实验预习要求的设计方案, 电路图, 写出实验步骤及结果。 见实验预习部分附图
- 3. 总结波形发生电路的特点,并回答。
 - (1) 波形产生电路需调零吗? 不需要调零
 - (2) 波形产生电路有没有输入端。 波形发生电路没有输入端