제 1회 대전대학교 Open Source Project 경진대회

(HE-E)

정보통신공학과 20121675 유재만 정보통신공학과 20121651 나성욱 정보통신공학과 20141538 김미나

구글 음성인식을 이용한 안드로이드 어플 스위치 제어 시스템

사람과 기계가 소통을 한다?

사람의 음성을 인식한 '아두이노 우노보드' 사람의 음성 명령을 인지한 기계모듈 제어

1. 개발 목적

2. 시스템 구성 및 아키텍처

3. 개발 계획 및 개발 단계별 보고

1. 개발 목적

목소리를 통해서 여러 가지 제품이 간편한게 제어되는 편리한 환경을 만들자!

- 1) 对性型的不能量的企业是717量的。
- 2) 公叶里 们公时间 十孔 份望如 가까片게 福己.
- 3) 개이의 한지라 되었을 스마트 기기를 통해 할아니 가능한 시간다.

LIST

1. 개발 목적

2. 시스템 구성 및 아키텍처

3. 개발 계획 및 개발 단계별 보고

2. 시스템 구성 및 아키텍처

아두이노 우노보드

블루투스 모듈

초음파 거리센서

릴레이

스마트폰

안드로이드 앱으로 패킷을 보냄

음성 인식이 되면 구글 음성 인식 서비스 작동

LIST

1. 개발 목적

2. 시스템 구성 및 아키텍처

3. 개발 계획 및 개발 단계별 보고

3. 개발 계획 및 개발 단계별 보고

개발 계획

1단계. 자료수집 / 재료 구입

2단계. 아두이노 아키텍처 설계, 프로그래밍

3단계. 시제품 테스트

4단계. 디자인 구상 및 PT준비

5단계. 출품

시제품 제작계획	ıπ	132	128	134	135	136	D7	108	139	D 1 0	1)11	1212
자료수집 / 제료구입												
아무이노 아기레처 설계 및 프로그래밍												
시제품 대스트												
디자인 구성												
출품												
시제품 제작계획	1213	1014	1215	1216	1317	D18	1)19	1320	1021	1022	н)	1
자료수집 / 제료구입												
아두이노 아기텍처 설계 및 프로그래밍												
시제품 테스트												
시제품 디자인												
및 맛 준비												
출품												

개발 단계별 보고

1단계. 자료수집 / 재료 구입

2단계. 아두이노 아키텍처 설계, 프로그래밍

3단계. 시제품 테스트

4단계. 디자인 구상 및 PT준비 5단계. 출품

소스코드

```
#include <SoftwareSerial.h>
SoftwareSerial BTSerial(2, 3);
int bufferPosition;
int echoPin = 6;
int trigPin = 7;
int relay = 13;
// 초음파 거리 센서는 6, 7번핀, 릴레이는 13번 핀에 연결 했습니다.
float senVal = 0;
float senDur = 0;
void setup() {
 Serial.begin(9600);
 BTSerial.begin(9600);
 bufferPosition = 0;
 pinMode(relay, OUTPUT);
 pinMode(trigPin, OUTPUT);
 pinMode(echoPin, INPUT);
```


소스코드

```
void loop() {
 if (BTSerial.available()) {
  byte data = BTSerial.read(); // 블루투스로 안드로이드에서 보내준 데이터를 받는다.
  if (data == '2') { // 안드로이드에서 on을 입력 했을 경우
    digitalWrite(relay, HIGH);
  } else if (data == '1') { // 안드로이드에서 off를 입력 했을 경우
    digitalWrite(relay, LOW);
  } else if (data == '3') { // 안드로이드에서 auto를 입력 했을 경우
    while (1) {
     float duration, distance;
     digitalWrite(trigPin, HIGH);
     delay(10);
     digitalWrite(trigPin, LOW);
     senDur = pulseIn(echoPin, HIGH);
     senVal = ((float)(340 * senDur) / 10000) / 2;
     // 초음파 거리 센서에서 보낸 데이터에서 거리를 측정 한다.
     // 초음파 거리 센서 원리는 튜토리얼에 있습니다.
     Serial.println(senVal);
     if (senVal < 40) // 40cm내에 사람이 있을 경우
       digitalWrite(relay, LOW); // 릴레이를 작동
     } else {
       digitalWrite(relay, HIGH); // 없을 경우 릴레이를 끔
     delay(200); // 0.2초 대기
     if (BTSerial.read() == '4') { // 안드로이드에서 stop을 입력 했을 경우
      break; // 초음파 거리 센서로 스탠드를 조정 하는 것을 멈춘다.
```


시연 동영상

LIST

1. 개발 목적

2. 시스템 구성 및 아키텍처

3. 개발 계획 및 개발 단계별 보고

기대효과

- 오픈소스를 이용해서 구글(google)의 음성인식을 이용한 제품이다. 오픈소스에 제공된 이 제품은 기기 하나만 제어할 수 있지만, 이번 개발에서는 와이파이모듈을 이용해서 연동하여 다양한 기기를 제어할 수 있도록 연구 할 것이다.
- 노인이나 몸의 거동이 불편한 사람에게 이 장치를 사용할 수 있게 마련해주어 전자기기나 전기기기에 대한 제어를 목소리로 한다면 보다 생활에 도움이 될 수 있을 것이다.
- 일반 이용자에게도 이 장치를 통해 제어를 할 수 있게 된다면 두 손의 사용이 더 자유로워 질 뿐만 아니라 제어를 하고자 하는 곳에 가까워지기만 해도 미리 제 어를 할 수 있어 편리한 생활이 가능해 질 것이라고 본다.

THANK YOU!