TOPOLOGÍA. Examen del Tema 4

Nombre:

- 1. Sea el conjunto $X=\{a,b,c,d,e\}$ y $\tau=\{X,\emptyset,\{a\},\{c,d\},\{a,c,d\},\{b,c,d,e\}\}$. Estudiad la conexión de (X,τ) y $A=\{b,d,e\}$.
- 2. Probad que un subconjunto no vacío, conexo, abierto y cerrado de un espacio topológico es una componente conexa de dicho espacio.
- 3. Estudiad si $(\mathbb{S}^1 \times \mathbb{R}) \setminus \{p\}$ es arcoconexo.
- 4. Estudiad la conexión local de $X=\{0\}\cup\{\frac{1}{n};n\in\mathbb{N}\}.$

- 1. Sea el conjunto $X = \{a, b, c, d, e\}$ y $\tau = \{X, \emptyset, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d, e\}\}$. Estudiad la conexión de (X, τ) y $A = \{b, d, e\}$.
 - Solución: Como $X = \{a\} \cup \{b, c, d, e\}$, X no es conexo. Por otro lado, $\tau_{|A} = \{A, \emptyset, \{d\}, \{d, e\}\}$. Por tanto, dos abiertos no triviales siempre se intersecan, luego A es conexo.
- 2. Probad que un subconjunto no vacío, conexo, abierto y cerrado de un espacio topológico es una componente conexa de dicho espacio.
 - Solución: Sea A un conjunto con dichas propiedades y $x \in A$. Probamos que $A = C_x$. Como A es conexo, $A \subset C_x$. Por otro lado, $C_x = (C_x \cap A) \cup (C_x \cap (X \setminus A))$ es una partición por abiertos, luego $C_x \cap A = C_x$ ($\Rightarrow C_x \subset A$, luego $A = C_x$) o $C_x \cap A = \emptyset$ (imposible, ya que $A \subset C_x$).
- 3. Estudiad si $(\mathbb{S}^1 \times \mathbb{R}) \setminus \{p\}$ es arcoconexo.
 - Solución: Después de una afinidad podemos suponer que $X = (\mathbb{S}^1 \times \mathbb{R}) \setminus \{(0,1,0)\}$. Probamos que todo punto se puede unir por un conjunto arcoconexo A con el punto q = (0,-1,0). Sea $(x,y,z) \in X$.
 - (a) Si $z \neq 0$, se toma $A = (\mathbb{S}^1 \times \{z\}) \cup [q, (0, -1, z)].$
 - (b) Si z = 0, se toma $A = (\mathbb{S}^1 \times \{0\}) \setminus \{p\}$.
- 4. Estudiad la conexión local de $X = \{0\} \cup \{\frac{1}{n}; n \in \mathbb{N}\}.$

Solución: El punto 0 no tiene ningún entorno conexo, ya que si U es un entorno conexo de 0, entonces U tiene que ser un intervalo. Como en X los únicos intervalos que existen son los puntos, entonces $U = \{0\}$. Pero U no es un entorno de 0 pues la inclusión $(-r, r) \cap A \subset U = \{0\}$ no es posible, para cada r > 0.

TOPOLOGÍA. Examen del Tema 4

Nombre:

- 1. Sea el conjunto $X=\{a,b,c,d,e\}$ y $\tau=\{X,\emptyset,\{a\},\{c,d\},\{a,c,d\},\{b,c,d,e\}\}$. Estudiad la conexión de (X,τ) y $A=\{b,d,e\}$.
- 2. Probad que un subconjunto no vacío, conexo, abierto y cerrado de un espacio topológico es una componente conexa de dicho espacio.
- 3. Estudiad si $(\mathbb{S}^1 \times \mathbb{R}) \setminus \{p\}$ es arcoconexo.
- 4. Estudiad la conexión local de $X=\{0\}\cup\{\frac{1}{n};n\in\mathbb{N}\}.$

- 1. Sea el conjunto $X = \{a, b, c, d, e\}$ y $\tau = \{X, \emptyset, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d, e\}\}$. Estudiad la conexión de (X, τ) y $A = \{b, d, e\}$.
 - Solución: Como $X = \{a\} \cup \{b, c, d, e\}$, X no es conexo. Por otro lado, $\tau_{|A} = \{A, \emptyset, \{d\}, \{d, e\}\}$. Por tanto, dos abiertos no triviales siempre se intersecan, luego A es conexo.
- 2. Probad que un subconjunto no vacío, conexo, abierto y cerrado de un espacio topológico es una componente conexa de dicho espacio.
 - Solución: Sea A un conjunto con dichas propiedades y $x \in A$. Probamos que $A = C_x$. Como A es conexo, $A \subset C_x$. Por otro lado, $C_x = (C_x \cap A) \cup (C_x \cap (X \setminus A))$ es una partición por abiertos, luego $C_x \cap A = C_x$ ($\Rightarrow C_x \subset A$, luego $A = C_x$) o $C_x \cap A = \emptyset$ (imposible, ya que $A \subset C_x$).
- 3. Estudiad si $(\mathbb{S}^1 \times \mathbb{R}) \setminus \{p\}$ es arcoconexo.
 - Solución: Después de una afinidad podemos suponer que $X = (\mathbb{S}^1 \times \mathbb{R}) \setminus \{(0,1,0)\}$. Probamos que todo punto se puede unir por un conjunto arcoconexo A con el punto q = (0,-1,0). Sea $(x,y,z) \in X$.
 - (a) Si $z \neq 0$, se toma $A = (\mathbb{S}^1 \times \{z\}) \cup [q, (0, -1, z)].$
 - (b) Si z = 0, se toma $A = (\mathbb{S}^1 \times \{0\}) \setminus \{p\}$.
- 4. Estudiad la conexión local de $X = \{0\} \cup \{\frac{1}{n}; n \in \mathbb{N}\}.$

Solución: El punto 0 no tiene ningún entorno conexo, ya que si U es un entorno conexo de 0, entonces U tiene que ser un intervalo. Como en X los únicos intervalos que existen son los puntos, entonces $U = \{0\}$. Pero U no es un entorno de 0 pues la inclusión $(-r, r) \cap A \subset U = \{0\}$ no es posible, para cada r > 0.

TOPOLOGÍA. Examen del Tema 4

- Licenciatura de Matemáticas. GRUPO 2^0 A - Curso 2010/11

Profesor: Rafael López Camino

Nombre:

Razonar las respuestas

- 1. Estudiar si las siguientes parejas de conjuntos son homeomorfos entre sí:
 - (a) $B_1((1,0)) \cup B_1((0,-1))$ y $\overline{B_1((1,0)) \cup B_1((-1,0))}$.
 - (b) $\mathbb{S}^1((1,0))$ y $\mathbb{S}^1((1,0)) \cup \mathbb{S}^1((-1,0))$.
- 2. Estudiar las componentes conexas y la conexión local del siguiente conjunto de \mathbb{R}^2 : $X = ([0,1] \times \{0\}) \cup \bigcup_{n \in \mathbb{N}} \{(1,\frac{1}{n})\}.$
- 3. Estudiar la conexión local y las componentes conexas del siguiente conjunto de \mathbb{R}^2 : $X = \{(x, y) \in \mathbb{R}^2; x^2 y^2 = 1\}.$

- 1. Estudiar si las siguientes parejas de conjuntos son homeomorfos entre sí:
 - (a) $B_1((1,0)) \cup B_1((0,-1))$ y $\overline{B_1((1,0)) \cup B_1((-1,0))}$.
 - (b) $\mathbb{S}^1((1,0))$ y $\mathbb{S}^1((1,0)) \cup \mathbb{S}^1((-1,0))$.

Solución.

- (a) El primer espacio X no es conexo pues $X = B_1((1,0)) \cup B_1((0,-1))$ es una partición por abiertos no trivial. El segundo espacio Y es conexo, ya que $\overline{B_1((1,0))} \cup \overline{B_1((-1,0))} = \overline{B_1((1,0))} \cup \overline{B_1((-1,0))}$ es unión de dos conexos (son convexos) con intersección no trivial (el punto (0,0)).
- (b) Si fueran homeomorfos, sea $f: \mathbb{S}^1((1,0)) \to \mathbb{S}^1((1,0)) \cup \mathbb{S}^1((-1,0))$ un homeomorfismo. Entonces,

$$f_{|\mathbb{S}^1((1,0))-\{f^{-1}(0,0)\}}:\mathbb{S}^1((1,0))-\{f^{-1}(0,0)\}\to\mathbb{S}^1((1,0))\cup\mathbb{S}^1((-1,0))-\{(0,0)\}$$

sería también un homeomorfismo. Pero el dominio es homeomorfo a \mathbb{R} , por tanto, conexo; pero el codominio no es conexo al tener la siguiente partición no trivial por abiertos:

$$Z:=\mathbb{S}^1((1,0))\cup\mathbb{S}^1((-1,0))-\{(0,0)\}=(Z\cap\{(x,y);x>0\})\cup(Z\cap\{(x,y);x<0\}.$$

2. Estudiar las componentes conexas y la conexión local del siguiente conjunto de \mathbb{R}^2 : $X = ([0,1] \times \{0\}) \cup \bigcup_{n \in \mathbb{N}} \{(1,\frac{1}{n})\}.$

Solución. Las componentes conexas de X son $[0,1] \times \{0\}$ y los puntos $(1,\frac{1}{n})$. Para ello, cada uno de los conjuntos son conexo, ya que el primero es convexo (también es homeomorfo a [0,1]) y los otros son puntos. Veamos que son los conexos más grandes. Sea $(0,0) \in [0,1] \times \{0\}$ y supongamos que $[0,1] \times \{0\} \nsubseteq C_{(0,0)}$. Entonces existirá $(1,\frac{1}{n}) \in C_{(0,0)} - ([0,1] \times \{0\})$. Sea $y_0 = (\frac{1}{n} + \frac{1}{n+1})/2$. Se tendría la siguiente descomposición en abiertos de $C_{(0,0)}$:

$$C_{(0,0)} = (C_{(0,0)} \cap \{(x,y); y < y_0\}) \cup (C_{(0,0)} \cap \{(x,y); y > y_0\})$$

la cual no es trivial, pues en el primer conjunto está (0,0) y en el segundo (1,1/n). Esta contradicción prueba que $[0,1] \times \{0\}$ es una componente conexa.

Sea ahora (1,1/n) y supongamos que $\{(1,1/n)\}\not\subseteq C_{(1,1/n)}$. Entonces existirá $m\in\mathbb{N}$ tal que $(1,1/m)\in C_{(1,1/n)}$ (no puede ser de la forma (x,0), ya que

 $C_{(x,0)} = C_{(0,0)}$). Sin perder generalidad, supongamos que m > n. Usando la notación anterior, tendríamos una partición no trivial de $C_{(1,1/n)}$:

$$C_{(1,1/n)} = (C_{(1,1/n)} \cap \{(x,y); y < y_0\}) \cup (C_{(1,1/n)} \cap \{(x,y); y > y_0\}),$$

lo cual es una contradicción.

El espacio no es localmente conexo, ya que el punto p := (1,0) no tiene ningún entorno conexo. Sea U tal entorno. Entonces existirá r > 0 tal que $B_r(p) \cap X \subset U$. Es evidente que existe $n \in \mathbb{N}$ tal que $(1,1/n) \in B_r(p) \cap X \subset U$. Si U es conexo, entonces

$$U \subset C_p = [0,1] \times \{0\}, \ U \subset C_{(1,1/n)} = \{(1,1/n)\}:$$

contradicción.

3. Estudiar la conexión local y las componentes conexas del siguiente conjunto de \mathbb{R}^2 : $X = \{(x, y) \in \mathbb{R}^2; x^2 - y^2 = 1\}.$

Solución. Se tiene la siguiente partición por abiertos de X:

$$X = \{(x, y) \in \mathbb{R}^2; x < 0\}) \cup (X \cap \{(x, y) \in \mathbb{R}^2; x > 0\}).$$

Esta partición no es trivial ya que (-1,0) está en el primer abierto y (1,0) en el segundo.