September 4, 2015

PSID:	Name:	Sob.		
1. Find a formula for the inverse of the $Step I$. Let $y = f(x) \Rightarrow y$	e function $f(x)$ $f(x) = \frac{4x-1}{2x+3}$	$=\frac{4x-1}{2x+3}.$	2xy+3x = 4 $2xy-4y =$.y-1.
Step 3. Solve y \Rightarrow X	> X= 4 2447 24+3	y+3 ≥ x(2y+3)=46	(2X-4)y = 1-1 ≥ y	-3x-1 = $\frac{-3x-1}{2x-4}$
1. Find a formula for the inverse of the Step I. Let $y = f(x) \Rightarrow y$. Step 2. Switch x and $y = f(x)$. Solve $y \Rightarrow f(x)$. Collect y in one side and 2. Simplify the expession $\sin(\tan^{-1}(x))$. Let $0 = f(x)$.	collect non). D) Then	g in the other	r side)	
X I FX X		= $sin(0) =$	X	
3. Prove that $\lim_{x\to 0} x^4 \cos(\frac{2}{x}) = 0$. (By				
Then $-x^4 \in x^4 \cos \theta$	$\frac{2}{x}$) $\leq x^4$	Thus .	lim x =	0 lm-x4=0
and $0 = \lim_{x \to 0} x \le \lim_{x \to 0} x = 0$	$x^4 \omega s \left(\frac{2}{x}\right) \leq$	$\lim_{X \to 0} X^{4} = 0$	> limx40	05侯)=0
4. Find the limit $\lim_{x\to 0^+} \left(\frac{1}{x} - \frac{1}{ x }\right)$ if it is By def. of $\frac{1}{ X }$ (We he	exists. If not, expression $\frac{1}{ X }$	$ \begin{array}{c} \text{xplain why?} \\ = \begin{cases} \frac{1}{X}, \times \\ -\frac{1}{Y}, \times \end{cases} $	>o	
$\Rightarrow \frac{1}{1} - \frac{1}{ X } = \begin{cases} 0, \\ \frac{2}{X}, \end{cases}$	X < 0 }	$\Rightarrow \lim_{X \to 0^+} \left(\frac{1}{X}\right)$	· - =	Ô.