## PDE S

$$\phi(x,\xi)$$
,  $\phi(x,y,z,\xi)$   
 $\phi(x,y)$ 

Several:

$$A \frac{\partial^2 \phi}{\partial x^2} + B \frac{\partial^2 \phi}{\partial x \partial y} + C \frac{\partial^2 \phi}{\partial y^2} + D \frac{\partial \phi}{\partial x} + E \frac{\partial \phi}{\partial y} = F$$

AFA(x,y) ...

Hathenetician:

discrement of = 
$$AC - B^2$$

|                           | d    | havre    | example                                                                                                           |           |
|---------------------------|------|----------|-------------------------------------------------------------------------------------------------------------------|-----------|
| spectic<br>bound<br>value | 1 70 | elliptic | $\nabla^2 \phi(\underline{r}) = -4\pi g(\underline{r})$                                                           | Poissou   |
|                           |      |          | $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \phi = -4\pi \mathcal{G}(\pi, y)$ |           |
|                           |      | 0.0      | $-7^{2}+(n)-\frac{30}{2}$                                                                                         | diffusion |

 $\bar{D}_{5}\varphi(\bar{x}) = \frac{c_{5}}{1} \frac{3+5}{55}$ 

volue protein imtral

instill values

values of of on Bouslary:

Dirichlet

walter of 30 normal to boul:

Neuman

+ others

Different types of equation require different boundary constitions for unique collettons.

Solving PDEs:

- hepler year ODES: all ODES:

 $\frac{dy(t)}{dt} = f(y, t) \leftarrow RK4...$ 

- specifit to problem and boundary corolitions

