

CIV 590 Urban Transportation Planning Fall 2018

Assignment No. 4 100 Points

Question 1 (40 Points)

The travel time for each link is given for the street network below. Consider the trip table as

	A	В	С	D
Α	0	0	400	200
В	0	0	300	100
С	0	0	0	0
D	0	0	0	0

Please compute the link volume using all-or-nothing traffic assignment algorithm.

Question 2 (20 points) Three route connect an origin and a destination with performance function $t_1=8+0.5x_1$, $t_2=1+2x_2$, and $t_3=3+0.75x_3$, with the x's expressed in thousands of vehicles per hour and the t's expressed in minutes. If the peak-hour traffic demand is 3000 vehicles, determine user equilibrium traffic flow.

Question 3 (20 points) Two routes connect an origin and destination with performance functions $t_1=5+3x_1$ and $t_2=7+x_2$, the x's expressed in thousands of vehicles per hour and the t's expressed in minutes. Total O-D demand is 7000 vehicles in the peak hour. Determine the user equilibrium and system optimal route flows and total travel times.

Question 4 (20 points) Two routes connect an origin and a destination. The performance functions are $t1=3+1.5(x_1/c_1)$ and $t2=5+4(x_2/c_2)$, the OD demand is 6000 vehicles per hour, and c_1 and c_2 are equal to 2000 and 1500 vph, respectively. Proposed capacity improvements will increase c_2 by 1000 vph. It is known the current routes are in user equilibrium, and it is estimated that each 1-minute reduction in route travel time will attract an additional 500 vph. What will the user equilibrium flows and total hourly OD demand be after the capacity improvement?