TRENDS IN CITY-WIDE AIR QUALITY AS OBSERVED FROM SPACE

Karn Vohra (kxv745@student.bham.ac.uk)¹, Eloïse Marais², Louisa Kramer¹, William Bloss¹, Martin Van Damme³, Pierre-François Coheur³

- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK;
- ² School of Physics and Astronomy, University of Leicester, UK;
- ³Université libre de Bruxelles (ULB), Spectroscopie Atmosphérique, Service de Chimie Quantique et Photophysique, Brussels, Belgium

1. INTRODUCTION

- □ Each year **40,000** early deaths in UK and **620,000** in India are attributed to **fine particles**, ozone and **NO**₂ pollution; Associated health cost in UK : **£6 billion**
- Here we choose 4 cities at different stages of development: **London** (developed, PM_{2.5}:12 μg/m³) and **Birmingham** (urban renewal, PM_{2.5}:10 μg/m³) in the UK, and **New Delhi** (semi-developed, PM_{2.5}:143 μg/m³) and **Kanpur** (developing, PM_{2.5}:173 μg/m³) in India
- I Space-based instruments provide long-term observations of air pollutants to assess the effect of rapid development and policy on air quality; we validate and use satellite observations to assess air quality in the 4 target cities in the UK and India

2. METHODOLOGY

- □ Validate satellite observations of NO₂ from the *Ozone Monitoring Instrument (OMI)* on-board NASA's Aura satellite with Defra, Birmingham City Council and London Air Quality Network ground-based observations and validate satellite observations of NH₃ from the *Infrared Atmospheric Sounding Interferometer (IASI)* on-board Metop-A satellite with ground observations from EMEP's supersites in the UK
- Quantify the long-term trend in satellite observations of NO_2 , NH_3 , HCHO (proxy for NMVOCs) and AOD (proxy for PM_{2.5}) for the target cities in the UK and India

Figure 1. Maps of the UK and India showing hotspots of NO₂ pollution as observed from space and locations of the target cities in the two countries

3. SURFACE MONITORING OF NO₂

- ☐ Dense but periodic network of 120 monitoring sites in Greater London
- ☐ Sparse and periodic network of 8 sites in Birmingham
- Outlined points are sites with temporal overlap that we use to compare to OMI NO₂ tropospheric columns (46 for London and 6 for Birmingham)

Figure 2. Trends and locations of NO₂ monitoring sites in London and Birmingham

4. VALIDATION OF SATELLITE OBSERVATIONS

- Assessed temporal consistency between monthly means of satellite and surface NO₂ for London and Birmingham; For London, R = 0.51 for all months excluding DJF (shown alongside) and R = 0.33 for DJF only and for Birmingham, R = 0.71 for all months excluding DJF and R = 0.69 for DJF only
- □ Satellite-based NH₃ assessed against the surface observations from rural supersites in the UK; R = 0.60 for Harwell (shown alongside), R = 0.79 for Chilbolton Observatory, R = 0.46 for Auchencorth Moss
- □ Consistent monthly means of satellite and ground-based NO₂ and NH₃ give us confidence to apply satellite observations to monitor air quality for cities in UK

Figure 3. Evaluation of monthly means of satellite column against ground observations – NO₂ in London for non-winter (top) and NH₃ in Harwell (bottom)

5. TRENDS IN AIR QUALITY IN THE UK AND IN INDIA

- □ We observe linear trends in monthly means of OMI NO₂, IASI NH₃, OMI HCHO and Moderate Resolution Imaging Spectroradiometer (MODIS) AOD in the target cities
- Air quality is improving in the UK cities (significant decrease in NO_x emissions; 35 % in 2005-2018) while it is degrading in the cities in India (significant increase in $PM_{2.5}$ emissions; 36-44 % in 2005-2018)

6. NEXT STEPS

- □ Validate satellite measurements of HCHO and AOD against available surface observations of NMVOCs and PM_{2.5}
- ☐ Evaluate existing **air quality models** using satellite observations

5-SECOND SUMMARY

The direction of trends in air quality for all the select cities is consistent with other studies using satellite observations but the magnitudes are different owing to the differences in instruments and time periods

Figure 4. Long-term trends of satellite observations of air pollutants for select cities in the UK and India