Package 'jmotif'

October 13, 2022

Title Time Series Analysis Toolkit Based on Symbolic Aggregate

Version 1.1.1 Encoding UTF-8

Discretization, i.e. SAX	
Description Implements time series z-normalization, SAX, HOT-SAX, VSM, SAX-VSM, RePair, and RRA algorithms facilitating time series motif (i.e., recurrent pattern), discord (i.e., anomaly), and characteristic pattern discovery along with interpretable time series classification.	
URL https://github.com/jMotif/jmotif-R	
BugReports https://github.com/jMotif/jmotif-R/issues	
Depends R (>= 3.1.0), Rcpp (>= 0.11.1)	
Imports stats	
Suggests testthat	
LinkingTo Rcpp, RcppArmadillo	
LazyData true	
SystemRequirements C++11	
License GPL-2	
RoxygenNote 7.0.2	
NeedsCompilation yes	
Author Pavel Senin [aut, cre]	
Maintainer Pavel Senin <seninp@gmail.com></seninp@gmail.com>	
Repository CRAN	
Date/Publication 2020-02-13 23:30:09 UTC	
R topics documented:	
alphabet_to_cuts2bags_to_tfidf3CBF4	3

2 alphabet_to_cuts

cosine_dist	4
cosine_sim	5
early_abandoned_dist	5
ecg0606	. 6
euclidean_dist	. 6
find_discords_brute_force	. 6
find_discords_hotsax	7
find_discords_rra	8
Gun_Point	. 9
idx_to_letter	. 9
is_equal_mindist	. 10
is_equal_str	. 10
letters_to_idx	. 11
letter_to_idx	. 11
manyseries_to_wordbag	. 12
min_dist	. 12
paa	. 13
sax_by_chunking	. 14
sax_distance_matrix	. 14
sax_via_window	. 15
series_to_chars	. 16
series_to_string	. 16
series_to_wordbag	17
str_to_repair_grammar	. 18
subseries	. 18
znorm	. 19
	• •
	20

 $alphabet_to_cuts$

Translates an alphabet size into the array of corresponding SAX cutlines built using the Normal distribution.

Description

Index

Translates an alphabet size into the array of corresponding SAX cut-lines built using the Normal distribution.

Usage

```
alphabet_to_cuts(a_size)
```

Arguments

a_size

the alphabet size, a value between 2 and 20 (inclusive).

bags_to_tfidf 3

References

Lonardi, S., Lin, J., Keogh, E., Patel, P., Finding motifs in time series. In Proc. of the 2nd Workshop on Temporal Data Mining (pp. 53-68). (2002)

Examples

```
alphabet_to_cuts(5)
```

bags_to_tfidf

Computes a TF-IDF weight vectors for a set of word bags.

Description

Computes a TF-IDF weight vectors for a set of word bags.

Usage

```
bags_to_tfidf(data)
```

Arguments

data

the list containing the input word bags.

References

Senin Pavel and Malinchik Sergey, SAX-VSM: Interpretable Time Series Classification Using SAX and Vector Space Model. Data Mining (ICDM), 2013 IEEE 13th International Conference on, pp.1175,1180, 7-10 Dec. 2013.

Salton, G., Wong, A., Yang., C., A vector space model for automatic indexing. Commun. ACM 18, 11, 613-620, 1975.

```
bag1 = data.frame(
   "words" = c("this", "is", "a", "sample"),
   "counts" = c(1, 1, 2, 1),
   stringsAsFactors = FALSE
   )
bag2 = data.frame(
   "words" = c("this", "is", "another", "example"),
   "counts" = c(1, 1, 2, 3),
   stringsAsFactors = FALSE
   )
ll = list("bag1" = bag1, "bag2" = bag2)
tfidf = bags_to_tfidf(ll)
```

4 cosine_dist

CBF A standard UCR Cylinder-Bell-Funnel dataset from http://www.cs.ucr.edu/~eamonn/time_series_data

Description

A standard UCR Cylinder-Bell-Funnel dataset from http://www.cs.ucr.edu/~eamonn/time_series_data

Usage

CBF

Format

A four-elements list containing train and test data along with their labels

- labels_train: the training data labels, correspond to data matrix rows
- data_train: the training data matrix, each row is a time series instance
- labels_test: the test data labels, correspond to data matrix rows
- data_test: the test data matrix, each row is a time series instance

cosine_dist

Computes the cosine similarity between numeric vectors

Description

Computes the cosine similarity between numeric vectors

Usage

```
cosine_dist(m)
```

Arguments

m

the data matrix

Value

Returns the cosine similarity

```
a <- c(2, 1, 0, 2, 0, 1, 1, 1)
b <- c(2, 1, 1, 1, 1, 0, 1, 1)
sim <- cosine_dist(rbind(a,b))
```

5 cosine_sim

cosine_sim	Computes the cosine distance value between a bag of words and a set of TF-IDF weight vectors.
	·

Description

Computes the cosine distance value between a bag of words and a set of TF-IDF weight vectors.

Usage

```
cosine_sim(data)
```

Arguments

data

the list containing a word-bag and the TF-IDF object.

References

Senin Pavel and Malinchik Sergey, SAX-VSM: Interpretable Time Series Classification Using SAX and Vector Space Model. Data Mining (ICDM), 2013 IEEE 13th International Conference on, pp.1175,1180, 7-10 Dec. 2013.

Salton, G., Wong, A., Yang., C., A vector space model for automatic indexing. Commun. ACM 18, 11, 613-620, 1975.

early_abandoned_dist

Finds the Euclidean distance between points, if distance is above the threshold, abandons the computation and returns NAN.

Description

Finds the Euclidean distance between points, if distance is above the threshold, abandons the computation and returns NAN.

Usage

```
early_abandoned_dist(seq1, seq2, upper_limit)
```

Arguments

seq1 the array 1. seq2 the array 2.

upper_limit the max value after reaching which the distance computation stops and the NAN

is returned.

ecg0606

A PHYSIONET dataset

Description

A PHYSIONET dataset

Usage

ecg0606

Format

A vector of numeric values

euclidean_dist

Finds the Euclidean distance between points.

Description

Finds the Euclidean distance between points.

Usage

```
euclidean_dist(seq1, seq2)
```

Arguments

seq1 the array 1.

seq2 the array 2. stops and the NAN is returned.

find_discords_brute_force

Finds a discord using brute force algorithm.

Description

Finds a discord using brute force algorithm.

Usage

```
find_discords_brute_force(ts, w_size, discords_num)
```

find_discords_hotsax 7

Arguments

ts the input timeseries.
w_size the sliding window size.

discords_num the number of discords to report.

References

Keogh, E., Lin, J., Fu, A., HOT SAX: Efficiently finding the most unusual time series subsequence. Proceeding ICDM '05 Proceedings of the Fifth IEEE International Conference on Data Mining

Examples

```
discords = find_discords_brute_force(ecg0606[1:600], 100, 1)
plot(ecg0606[1:600], type = "1", col = "cornflowerblue", main = "ECG 0606")
lines(x=c(discords[1,2]:(discords[1,2]+100)),
    y=ecg0606[discords[1,2]:(discords[1,2]+100)], col="red")
```

find_discords_hotsax

Finds a discord (i.e. time series anomaly) with HOT-SAX. Usually works the best with lower sizes of discretization parameters: PAA and Alphabet.

Description

Finds a discord (i.e. time series anomaly) with HOT-SAX. Usually works the best with lower sizes of discretization parameters: PAA and Alphabet.

Usage

```
find_discords_hotsax(ts, w_size, paa_size, a_size, n_threshold, discords_num)
```

Arguments

ts the input timeseries. w_size the sliding window size.

paa_size the PAA size.
a_size the alphabet size.

n_threshold the normalization threshold.discords_num the number of discords to report.

References

Keogh, E., Lin, J., Fu, A., HOT SAX: Efficiently finding the most unusual time series subsequence. Proceeding ICDM '05 Proceedings of the Fifth IEEE International Conference on Data Mining

8 find_discords_rra

Examples

```
discords = find_discords_hotsax(ecg0606, 100, 3, 3, 0.01, 1)
plot(ecg0606, type = "1", col = "cornflowerblue", main = "ECG 0606")
lines(x=c(discords[1,2]:(discords[1,2]+100)),
    y=ecg0606[discords[1,2]:(discords[1,2]+100)], col="red")
```

find_discords_rra

Finds a discord with RRA (Rare Rule Anomaly) algorithm. Usually works the best with higher than that for HOT-SAX sizes of discretization parameters (i.e., PAA and Alphabet sizes).

Description

Finds a discord with RRA (Rare Rule Anomaly) algorithm. Usually works the best with higher than that for HOT-SAX sizes of discretization parameters (i.e., PAA and Alphabet sizes).

Usage

```
find_discords_rra(
    series,
    w_size,
    paa_size,
    a_size,
    nr_strategy,
    n_threshold,
    discords_num
)
```

Arguments

```
series the input timeseries.

w_size the sliding window size.

paa_size the PAA size.

a_size the alphabet size.

nr_strategy the numerosity reduction strategy ("none", "exact", "mindist").

n_threshold the normalization threshold.

discords_num the number of discords to report.
```

References

Senin Pavel and Malinchik Sergey, SAX-VSM: Interpretable Time Series Classification Using SAX and Vector Space Model., Data Mining (ICDM), 2013 IEEE 13th International Conference on.

Gun_Point 9

Examples

```
discords = find_discords_rra(ecg0606, 100, 4, 4, "none", 0.01, 1)
plot(ecg0606, type = "1", col = "cornflowerblue", main = "ECG 0606")
lines(x=c(discords[1,2]:(discords[1,2]+100)),
   y=ecg0606[discords[1,2]:(discords[1,2]+100)], col="red")
```

Gun_Point

standard UCR \boldsymbol{A} http://www.cs.ucr.edu/~eamonn/time_series_data

Gun Point

dataset

from

Description

A standard UCR Gun Point dataset from http://www.cs.ucr.edu/~eamonn/time_series_data

Usage

Gun_Point

Format

A four-elements list containing train and test data along with their labels

- labels_train: the training data labels, correspond to data matrix rows
- data_train: the training data matrix, each row is a time series instance
- labels_test: the test data labels, correspond to data matrix rows
- data_test: the test data matrix, each row is a time series instance

idx_to_letter

Get the ASCII letter by an index.

Description

Get the ASCII letter by an index.

Usage

```
idx_to_letter(idx)
```

Arguments

idx

the index.

```
# letter 'b'
idx_to_letter(2)
```

is_equal_str

 $\verb"is_equal_mindist"$

Compares two strings using mindist.

Description

Compares two strings using mindist.

Usage

```
is_equal_mindist(a, b)
```

Arguments

a the string a.b the string b.

Examples

```
is_equal_str("aaa", "bbb") # true
is_equal_str("aaa", "ccc") # false
```

is_equal_str

Compares two strings using natural letter ordering.

Description

Compares two strings using natural letter ordering.

Usage

```
is_equal_str(a, b)
```

Arguments

```
a the string a.b the string b.
```

```
is_equal_str("aaa", "bbb")
is_equal_str("ccc", "ccc")
```

letters_to_idx 11

letters_to_idx

Get an ASCII indexes sequence for a given character array.

Description

Get an ASCII indexes sequence for a given character array.

Usage

```
letters_to_idx(str)
```

Arguments

str

the character array.

Examples

```
letters_to_idx(c('a','b','c','a'))
```

 $letter_to_idx$

Get the index for an ASCII letter.

Description

Get the index for an ASCII letter.

Usage

```
letter_to_idx(letter)
```

Arguments

letter

the letter.

```
# letter 'b' translates to 2
letter_to_idx('b')
```

min_dist

manyseries_to_wordbag Converts a set of time-series into a single bag of words.

Description

Converts a set of time-series into a single bag of words.

Usage

```
manyseries_to_wordbag(data, w_size, paa_size, a_size, nr_strategy, n_threshold)
```

Arguments

data the timeseries data, row-wise.

w_size the sliding window size.

paa_size the PAA size.

 $\begin{array}{ll} {\sf a_size} & {\sf the\ alphabet\ size}. \\ {\sf nr_strategy} & {\sf the\ NR\ strategy}. \end{array}$

n_threshold the normalization threshold.

References

Senin Pavel and Malinchik Sergey, SAX-VSM: Interpretable Time Series Classification Using SAX and Vector Space Model. Data Mining (ICDM), 2013 IEEE 13th International Conference on, pp.1175,1180, 7-10 Dec. 2013.

Salton, G., Wong, A., Yang., C., A vector space model for automatic indexing. Commun. ACM 18, 11, 613-620, 1975.

min_dist

Computes the mindist value for two strings

Description

Computes the mindist value for two strings

Usage

```
min_dist(str1, str2, alphabet_size, compression_ratio = 1)
```

Arguments

str1 the first string
str2 the second string
alphabet_size the used alphabet size
compression_ratio

the distance compression ratio

paa 13

Value

Returns the distance between strings

References

Lonardi, S., Lin, J., Keogh, E., Patel, P., Finding motifs in time series. In Proc. of the 2nd Workshop on Temporal Data Mining (pp. 53-68).

Examples

```
str1 <- c('a', 'b', 'c')
str2 <- c('c', 'b', 'a')
min_dist(str1, str2, 3)
```

paa

Computes a Piecewise Aggregate Approximation (PAA) for a time series.

Description

Computes a Piecewise Aggregate Approximation (PAA) for a time series.

Usage

```
paa(ts, paa_num)
```

Arguments

ts a timeseries to compute the PAA for.
paa_num the desired PAA size.

References

Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra, S., Dimensionality reduction for fast similarity search in large time series databases. Knowledge and information Systems, 3(3), 263-286. (2001)

14 sax_distance_matrix

SAY	hw	_chun	king
Jun_	_ U y _	_Ciiuii	NTHE

Discretize a time series with SAX using chunking (no sliding window).

Description

Discretize a time series with SAX using chunking (no sliding window).

Usage

```
sax_by_chunking(ts, paa_size, a_size, n_threshold)
```

Arguments

ts the input time series.

paa_size the PAA size.
a_size the alphabet size.

n_threshold the normalization threshold.

References

Lonardi, S., Lin, J., Keogh, E., Patel, P., Finding motifs in time series. In Proc. of the 2nd Workshop on Temporal Data Mining (pp. 53-68). (2002)

sax_distance_matrix

Generates a SAX MinDist distance matrix (i.e. the "lookup table") for a given alphabet size.

Description

Generates a SAX MinDist distance matrix (i.e. the "lookup table") for a given alphabet size.

Usage

```
sax_distance_matrix(a_size)
```

Arguments

a_size

the desired alphabet size (a value between 2 and 20, inclusive)

Value

Returns a distance matrix (for SAX minDist) for a specified alphabet size

sax_via_window 15

References

Lonardi, S., Lin, J., Keogh, E., Patel, P., Finding motifs in time series. In Proc. of the 2nd Workshop on Temporal Data Mining (pp. 53-68).

Examples

```
sax_distance_matrix(5)
```

sax	vıa	windov	V

Discretizes a time series with SAX via sliding window.

Description

Discretizes a time series with SAX via sliding window.

Usage

```
sax_via_window(ts, w_size, paa_size, a_size, nr_strategy, n_threshold)
```

Arguments

ts the input timeseries.

w_size the sliding window size.

paa_size the PAA size.

a_size the alphabet size.

nr_strategy the Numerosity Reduction strategy, acceptable values are "exact" and "mindist"

– any other value triggers no numerosity reduction.

n_threshold the normalization threshold.

References

Lonardi, S., Lin, J., Keogh, E., Patel, P., Finding motifs in time series. In Proc. of the 2nd Workshop on Temporal Data Mining (pp. 53-68). (2002)

series_to_string

series_to_chars Transforms a time series into the char array using SAX and the normal alphabet.

Description

Transforms a time series into the char array using SAX and the normal alphabet.

Usage

```
series_to_chars(ts, a_size)
```

Arguments

ts the timeseries.
a_size the alphabet size.

References

Lonardi, S., Lin, J., Keogh, E., Patel, P., Finding motifs in time series. In Proc. of the 2nd Workshop on Temporal Data Mining (pp. 53-68). (2002)

Examples

```
y = c(-1, -2, -1, 0, 2, 1, 1, 0)
y_paa3 = paa(y, 3)
series_to_chars(y_paa3, 3)
```

series_to_string

Transforms a time series into the string.

Description

Transforms a time series into the string.

Usage

```
series_to_string(ts, a_size)
```

Arguments

ts the timeseries.
a_size the alphabet size.

series_to_wordbag 17

References

Lonardi, S., Lin, J., Keogh, E., Patel, P., Finding motifs in time series. In Proc. of the 2nd Workshop on Temporal Data Mining (pp. 53-68). (2002)

Examples

```
y = c(-1, -2, -1, 0, 2, 1, 1, 0)
y_paa3 = paa(y, 3)
series_to_string(y_paa3, 3)
```

series_to_wordbag

Converts a single time series into a bag of words.

Description

Converts a single time series into a bag of words.

Usage

```
series_to_wordbag(ts, w_size, paa_size, a_size, nr_strategy, n_threshold)
```

Arguments

ts the timeseries.

w_size the sliding window size.

paa_size the PAA size.
a_size the alphabet size.

nr_strategy the NR strategy.

n_threshold the normalization threshold.

References

Senin Pavel and Malinchik Sergey, SAX-VSM: Interpretable Time Series Classification Using SAX and Vector Space Model. Data Mining (ICDM), 2013 IEEE 13th International Conference on, pp.1175,1180, 7-10 Dec. 2013.

Salton, G., Wong, A., Yang., C., A vector space model for automatic indexing. Commun. ACM 18, 11, 613-620, 1975.

18 subseries

```
str_to_repair_grammar Runs the repair on a string.
```

Description

Runs the repair on a string.

Usage

```
str_to_repair_grammar(str)
```

Arguments

str

the input string.

References

N.J. Larsson and A. Moffat. Offline dictionary-based compression. In Data Compression Conference, 1999.

Examples

subseries

Extracts a subseries.

Description

Extracts a subseries.

Usage

```
subseries(ts, start, end)
```

Arguments

the input timeseries (0-based, left inclusive).

start the interval start. end the interval end.

```
y = c(-1, -2, -1, 0, 2, 1, 1, 0)
subseries(y, 0, 3)
```

znorm 19

znorm	Z-normalizes a time series by subtracting its mean and dividing by the
	standard deviation.

Description

Z-normalizes a time series by subtracting its mean and dividing by the standard deviation.

Usage

```
znorm(ts, threshold = 0.01)
```

Arguments

ts the input time series.

threshold the z-normalization threshold value, if the input time series' standard deviation

will be found less than this value, the procedure will not be applied, so the

"under-threshold-noise" would not get amplified.

References

Dina Goldin and Paris Kanellakis, On similarity queries for time-series data: Constraint specification and implementation. In Principles and Practice of Constraint Programming (CP 1995), pages 137-153. (1995)

```
x = seq(0, pi*4, 0.02)
y = sin(x) * 5 + rnorm(length(x))
plot(x, y, type="1", col="blue")
lines(x, znorm(y, 0.01), type="1", col="red")
```

Index

```
* datasets
                                                  subseries, 18
    CBF, 4
                                                  znorm, 19
    ecg0606, 6
    Gun_Point, 9
alphabet_to_cuts, 2
\verb|bags_to_tfidf|, 3
CBF, 4
cosine_dist, 4
cosine_sim, 5
early_abandoned_dist, 5
ecg0606, 6
euclidean_dist, 6
find_discords_brute_force, 6
find_discords_hotsax, 7
\verb|find_discords_rra|, 8
Gun_Point, 9
idx_to_letter, 9
\verb|is_equal_mindist|, 10
\verb|is_equal_str|, 10
letter_to_idx, 11
letters_to_idx, 11
manyseries_to_wordbag, 12
min_dist, 12
paa, 13
sax_by_chunking, 14
sax_distance_matrix, 14
sax_via_window, 15
series_to_chars, 16
series_to_string, 16
series_to_wordbag, 17
str_to_repair_grammar, 18
```