Prof. Ueli Maurer Fabio Banfi Daniel Jost Jiamin Zhu

Cryptography Foundations

Exercise 8

8.1 Changing the Distribution of Bit-Guessing Problems

Goal: Show that the performance of a distinguisher for a bit-guessing problem does not change much if the distribution of the problem is changed only slightly.

a) Show that for any two random variables X and X' over some set \mathcal{X} , and any event $\mathcal{A} \subseteq \mathcal{X}$, we have

$$\Pr^{X'}[\mathcal{A}] - \Pr^{X}[\mathcal{A}] \le \delta(X, X').$$

b) State formally Exercise 4.4 from the lecture notes and prove the statement using the result from subtask **a)**.

8.2 Amplifying the Performance of a Worst-Case Solver

Goal: Understand the bounds in Idea 4 of the reduction in the lecture notes.

Let S be a solver with performance $\epsilon > 0$ on each instance of some bit guessing problem (i.e., S has worst-case performance ϵ). Let $q \in \mathbb{N}$ be odd and let T be the solver that invokes S (each time with fresh and independent randomness) q times and then outputs the bit that was returned more often by S. Find for all $\delta \in (0,1)$ a bound on q such that the performance of T is at least $1 - \delta$ whenever q exceeds this bound.

Hint: Use a variant of Hoeffding's inequality for Bernoulli random variables, which states the following: Let $\alpha \in (0,1)$ and let X_1, \ldots, X_q be independent and identically distributed random variables over $\{0,1\}$ with $p := \Pr[X_i = 1]$. Then, $\Pr\left[\sum_{i=1}^q X_i \leq (p-\alpha)q\right] \leq e^{-2\alpha^2q}$.

8.3 The Next Bit Test

Goal: When you can predict the *i*-th bit from the first i-1 bits in a random bit-string, then you can distinguish this bit-string from the uniform string. Interestingly, the converse also holds. Therefore, unpredictable bit-strings are indistinguishable.

Let $X^{\ell} = (X_1, \dots, X_{\ell})$ be an arbitrarily distributed random variable on the set $\in \{0, 1\}^{\ell}$, for some $\ell \geq 1$. A predictor of the *i*-th bit of X^{ℓ} is a distinguisher for the following bit-guessing problem: given $X^{i-1} = (X_1, \dots, X_{i-1})$, output a guess $Z \in \{0, 1\}$ for X_i . Prove that when D is a distinguisher of X^{ℓ} from the uniformly distributed bitstring $U^{\ell} = (U_1, \dots, U_{\ell}) \in \{0, 1\}^{\ell}$ with advantage ε , then there is an $i \in \{1, \dots, \ell\}$ and a predictor P_i of the *i*-th bit of X^{ℓ} with advantage at least $\frac{2\varepsilon}{\ell}$.

Hint: You should use a result about the distinguishing advantage proven in Exercise 1.3 b).