Algebarske strukture:

1. Definicija operacije i binarne operacije. Cayleyeva tablica. Primjeri operacija.

Funkcija $f_1: S_1xS_2 \rightarrow S_3$ zove se binarna operacija. $f_1: SxS \rightarrow S$ zove se binarna operacija na skupu S Vidimo da je binarna funkcija funkcija 2 argumenta (varijable).

z=x+y

Zapis binarne funkcije je cesto infiksan, ali ne uvijk (npr. nzv(6,15) → prefiksno). Operacija može biti unarna, ternarna, ili opženito n-arna.

- unarna f:S \rightarrow S (npr. x^2)
- ternarna f:SxSxS→S (npr. u=xyz)
- n-arna f: $(x_1 x x_2 x x_3 x ... x x_n) \rightarrow x (x_1 + x_2 + x_3 + ...)$

Od ranije znamo da se funkcija može zadavati tablično, ali nam je poznat slučaj samo jedne varijable:

Kako su operacije specijalne funkcije, ako je skup na kojem se definira konačan, tada se binarna operacija može zadati dvodimenzionalnom tablicom, koja se naziva Cayleyeva tablica. U slučaju ternarne operacije, "tablica" bi trebala biti trodimenzionalna, pa se tablični prikaz od 3 ili više argumenata ne koristi. Primjer:

$$NZD(x,y), S=\{1,2,3\}$$

NZD	1	2	3
1	1	1	1
2	1	2	1
3	1	1	3

Operacija može biti i teoretkska:

a*b ili *(a,b), S={a,b}

Za ovu operaciju se ne može zadati formula operacije, jedino tablica. Ako je zadana binarna operacija f:AxA->A i ako je skup A konačan i ima n elemenata, tada broj različitih operacija na skupu A iznosi n^{^2}.

Primjeri operacija: neke temeljne binarne operacije na skupu G:

- operacija zbrajanja realnih brojeva (G=R, a+b)
- množenje realnih brojeva (G=R, a*b)
- najveća zajednička mjera dvaju prirodnih brojeva (G=N, Nzm(a,b))
- zbrajanje I množenje kompleksnih brojeva, zbrajanje vektora, kompozicija dviju funkcija,zbrajanje pravokutnih matrica, itd.

2. Osnovna svojstva binarnih operacija. Vanjska i unutarnja operacija. Grupoid.

Skup na kojem je definirana neka operacija naziva se operacijska struktura. Primjer: (R,+), $(N,+,\cdot)$ ili općenito (S,*) ili $(S,*,\circ)$

* i ○ – hipotetske operacije

Nas zanimaju one operacijske strukture čije operacije imaju neka "lijepa" svojstva:

a) svojstvo zatvorenosti:

(za svaki a,b \subseteq S) (a*b \subseteq S)

b) svojstvo komutativnosti:

(za svaki a,b \subseteq S) a*b=b*a

c) svostvo asocijativnosti

 $(za \text{ svaki } a,b,c \subseteq S) \quad a^*(b^*c)=(a^*b)^*c$

d) neutralni element

(za svaki $x \in S$) (postoji $e \in S$) ($x^*e = e^*x = x$), e-neutralni element

e) inverzni element

(za svaki $x \in S$) (postoji $y \in S$) ($x^*y = y^*x = e$), y-inverzni element elementa x, općenito se označava sa x^{-1}

Vanjska i unutarnja operacija???

Struktura (S,*) se naziva grupoid ako operacija * ima svojstvo zatvorenosti. Primjer:

(N,+) je grupoid

(V, ·) nije grupoid (jer dobijemo broj, a ne vektor).

3. Definicija polugrupe i monoida. Dajte primjere.

Grupoid (S,*) sa svojstovom asocijativnosti za operaciju * naziva se polugrupa. Primjeri: (N, +) je polugrupa

(V, x) nije polugrupa jer x nije asocijativno (napisat primjer)

Ako u polugrupi (S,*) postoji element e takav da (za svaki $x \in S$) ($x^*e = e^*x = x$), tada se struktura naziva monoid (polugrupa s jedinicom).

e – jedinica polugrupe ili neutralni element polugrupe Primier:

```
(N,+) – grupoid, polugrupa

x+e = e+x = x \rightarrow nema takvoga e, pa ovo nije monoid

<math>(N_0,+) \rightarrow onda ima e, koji je jednak 0

(N,\cdot) – grupoid, polugrupa, monoid \rightarrow e=1
```

Napomena: ako je binarna operacija zapisana aditivno, kao +, onda se neutralni element zove *nula* (nul-element) i označava sa 0.

4. Pojam slobodne polugrupe.

Neka je Y bilo koji skup simbola, koje interpretiramo kao *slova*. **Riječ** na X je konačan slijed elemenata skupa X. Npr. ako je X={a,b,c}, onda su S=aaac, T=ababba, U= abacbb riječi na X. Skup svih riječi označavamo sa X*. Definirajmo sada binarnu operaciju · na skupu X*. Ako su S i T dvije riječi, onda neka je ST riječ dobivena tako da najprije napišemo redom sva slova riječi S i odmah do njih desno nadovežemo slova riječi T. U gornjem primjeru je ST=aaacababba. Ovakva binarna operacija zove se konkatenacija (ulančavanje, nadovezivanje) riječi.

Lako je provjeriti da je konkatenacija asocijativna operacija. Provjeri se najlakše na primjeru T(SU)=(TS)U. Time smo dobili polugrupu (X*.·) svih riječi koja se zove **slobodna polugrupa**.

Slobodnoj polugrupi X^* možemo pridružiti još jedan element (riječ) λ koji se zove *prazna riječ*. Jasno je da se konkatenacijom s praznom riječi ništa ne mijenja: $\lambda T = T$ za svaki T iz X^* , uključujući i $T = \lambda$. Prema tome, λ je neutralni element, čime X^* postaje monoid s obzirom na operaciju konkatenacije.

5. Definicija grupe. Abelova grupa. Aditivna i multiplikativna grupa.

```
Struktura (S,*) se zove grupa ako je monoid u kojem (za svaki x \subseteq S) (postoji x<sup>-1</sup> \subseteq S) (x*x<sup>-1</sup>=x<sup>-1</sup>*x=e) x<sup>-1</sup> – inverzni element elementa x Primjer: (Z,+) \rightarrow x+x<sup>-1</sup>=0
```

U slučaju da je zapis aditivni (S,+), inverzni element se označava sa -x, a ako je zapis multiplikativni ili opći, inverzni element se označava s x^{-1} . Ako element x strukture ima inverzni element, tada za x kažemo da je invertibilan.

Ako je uz sva svojstva grupe operacija * komutativna, za grupu (S,*) kažemo da je komutativna grupa ili **Abelova grupa**.

Ako je u nekoj Abelovoj grupi (S,*) binarna operacija zapisana multiplikativno, tj. ako je zadana grupa (S,·), onda grupu nazivamo **multiplikativnom grupom**. U njoj operaciju · zovemo množenjem.

Ako je u nekoj Abelovoj grupi (S,*) binarna operacija zapisana aditivno, tj. ako je zadana grupa (S,+), onda grupu nazivamo **aditivnom grupom**. Po dogovoru, svaka aditivna grupa je Abelova grupa. Neutralni element aditivne grupe zovemo **nula** (i označavamo s 0), a inverzni element od a označavamo sa –a umjesto a⁻¹ i zovemo **suprotni element**.

Inverzni element a⁻¹ od a je jedincat, tj. ne moegu postojati dva različita inverzna elementa od a. Vrijedi (a⁻¹)⁻¹=a.

Neka je (S, ·) grupa.

a) (invertiranje produkta) Za sve a,b ∈ S vrijedi:

$$(ab)^{-1}=b^{-1}a^{-1}$$

b) (pravilo skraćivanja) Za sve a,b,c ⊆ S iz uvjeta ac=bc slijedi a=b. Na sličan način iz ca=cb slijedi a=b.

6. Potencije aⁿ i a⁻ⁿ u grupi. Teorem o potencijama u multiplikativnom i aditivnom obliku.

Ako je *n* prirodan broj, onda se u svakoj grupi definira potencija elementa:

$$x^{n} = x^{*}x^{*}x^{*}...^{*}x$$

 $x^{-n} = x^{-1}x^{-1}...^{*}x^{-1}$
 $(x^{-1})^{n} = x^{-n}$
 $a^{0} = e$

Ako je zapis grupe aditivan, tada se xⁿ zapisuje:

 $x^n = n \cdot x = x + x + x + x + x + \dots + x$

Ako je zapis multiplikativan:

$$x^n = x \cdot x \cdot x \dots \cdot x$$

Teoremi o potencijama u multiplikativnom obliku, u grupi (S, ·):

- a) $x^m \cdot y^n = x^{m+n} = x^n \cdot x^m$ (komutativnost vrijedi zobg operacije +, a ne ·)
- b) $x^n \cdot y^n = (x \cdot y)^n \neq (y \cdot x)^n$
- c) $(x^{m})^{n} = x^{m \cdot n}$

Teoremi o potencijama u aditivnom obliku , u grupi (S,+):

- a) $mx+nx = (m+n)\cdot x = nx+mx$
- b) $nx+ny = n(x+y) \neq n(y+x)$
- c) $n \cdot (mx) = (n \cdot m)x = (m \cdot n)x$

7. Pojam podgrupe i reda grupe.

Ako su $(S,^*)$ i $(T,^*)$ dvije grupe sa istom operacijom, i pritom je S podskup od T, tada kažemo da je $(S,^*)$ podgrupa grupe $(T,^*)$, što se označava: $(S,^*) \le (T,^*)$. Ako je pritom S pravi podskup od T, onda pišemo $(S,^*) < (T,^*)$.

({e},*) – trivijalna podgrupa (ima svojstva I zatvorenosti I asocijativnosti)

Ako je (S,*) grupa, i k(S)=n (k-kardinalni broj) konačan broj, tada kažemo da je grupa konačna. Broj n se naziva red grupe.

Ako je broj elemenata skupa S beskonačan, tada kažemo da je grupa (S,*) beskonačna ili beskonačnog reda.

8. Primjeri konačne i beskonačne Abelove i ne-Abelove grupe.

Primjeri konačnih Abelovih grupa:

- a) Grupa samo s jednim elementom zove se *trivijalna grupa* ($\{e\}$,*). To su npr. ($\{1\}$,·) ili ($\{0\}$,+)
- b) Grupa ({-1,1},·) je reda dva. Skup {1,-1,i,-i} je grupa s obzirom na množenje kompleksnih brojeva, i njen red je četiri.

Primjeri beskonačnih Abelovih grupa:

- a) $Z \le Q \le R \le C$ Svaka podgrupa aditivne grupe cijelih brojeva Z ima oblik nZ = 0,1,2,...
- b) Skup \mathbf{R}^n svih poredanih n-teraca realnih brojeva je grupa s obzirom na zbrajanje vektora (koje se definira kao zbrajanja po komponentama). Očito je $\mathbf{R}^n \leq \mathbf{R}^{n+1}$, jer \mathbf{R}^n možemo shvatiti kao podskup \mathbf{R}^{n+1} tako da element vektor (x₁, ...
- $(x_n) \subseteq \mathbf{R}^n$ poistovjetimo s vektorom $(x_1, ..., x_n, 0) \subseteq \mathbf{R}^{n+1}$
- c) Skup svih kompleksnih brojeva na jediničnoj kružnici u \mathbf{C} je grupa s obzirom na množenje. Označava se sa S^1 . Očito je $\mathbf{C}_{\mathbf{n}} \leq S^1$ za svaki n iz \mathbf{N} .

Primjeri beskonačnih nekomutativnih grupa:

- a) Skup svih regularnih (invertibilnih) kvadratnih matrica s realnim koeficijentima reda n≥2 je grupa s obziromna množenje matrica. Označava se sa GL(n, R) i zove se opća linearna grupa. Neutralni element je jedinična matrica *I*. Svojstvo grupoidnosti je posljedica činjenice da je produkt regularnih matrica opet regularna matrica. Ova grupa je beskonačna i nekomutativna. Neke podgrupe su grupa regularnih gornjih trokutastih matriva, grupa matrica čija je determinanta jednaka 1, itd.
- b) Neka je zadan skup X i neka je G skup svih bijekcija f:X→X. Taj skup je grupa s obzirom na kompoziciju funkcija kao binarnu operaciju u zove se grupa permutacija skupa X. Elementi se zovu permutacije skupa X. Neutralni element

je identična funkcija, a inverzni element je inverzna funkcija f⁻¹. Ta grupa je općenito nekomutativna, već kad je X tročlan skup.

9. Podgrupa generirana elementom a. Ciklička grupa.

U grupi (S,*) uzmimo element a i promatrajno skup { a^k : $k \subseteq \mathbf{Z}$ }. TO je podgrupa grupe S: Označavamo ju sa:

$$\langle a \rangle = \{a^k : k \subseteq \mathbf{Z}\}$$

To je najmanja (s obzirom na inkluziju) podgrupa grupe S koja sadrži *a* kao svoj element. Podgrupu <a> zovemo podgrupom **generiranom** elementom *a*. Element *a* zovemo generatorom te podgrupe.

Neka je (S,*) grupa i $a \subseteq S$, a \neq e. Ako za neki prirodni broj n vrijedi a^n =e, onda najmanji takav n zovemo **redom elementa a** i označavamo sa n = |a|. Ako je a reda n, onda je inverz elementa a^k jednak a^{n-k} , jer je $a^k a^{n-k}$ = e. $(a^k)^{-1} = a^{n-k}$

Za grupu (S,*) kažemo da je **ciklička grupa** ako postoji element a \subseteq S takav da je S = <a>, tj. svaki x \subseteq S se može napisati u obliku potencije x = a^k za neki k \subseteq Z:

$$S = \{a^k : k \subseteq Z\}$$

Element *a* se zove **generator** cikličke grupe S. Kažemo da je ciklička grupa S generirana elementom *a*.

Ako je generator a konačnog reda n, onda je ciklička grupa reda n:

$$S = \{e,a,a^2, ..., a^{n-1}\}$$

Ako je $a^k \neq e$ za svaki k $\subseteq N$, onda je S **beskonačna ciklička grupa**:

$$S = \{..., a^{-2}, a^{-1}, e, a, a^{2}, ...\}$$

Primjer toga je aditivna grupa cijlih brojeva Z, koja je generirana elementom 1:

$$S = \{..., -2, -1, 0, 1, 2, ...\} = <1>$$

10. O grupi n-tih korjena iz jedinice Cn.

Koji su to elementi konačne cikličke grupe koji generiraju cijelu grupu? Grupu C_n čine svi n-ti korijeni iz jedinice. Ima ih ukupno n, i u Gaussovoj ravnini predstavljaju one kompleksne brojeve koji leže u vrhovima pravilnog n-terokuta upisanog u jediničnu kružnicu oko ishodišta:

$$cos(2k\pi/n)+isin(2k\pi/n), k = 0,1, ..., n-1$$

Svaki n-ti korijen iz jedinice koji je generator cikličke grupe C_n zove se **primitivni n-ti korijen** iz jedinice.

Primjer: Element $\varepsilon = \cos(2\pi/n) + i\sin(2\pi/n)$ je primitivni n-ti korijen iz jedinice. Sljedeći teorem opisuje koji još elementi cikličke grupe C_n mogu biti primitivni korijeni:

- a) Element $\varepsilon^k \subseteq C_n$ je primitivni n-ti korijen iz jedinice onda I samo onda ako su n i k relativno prosti. Primitivnih korijena ima $\varphi(n)$, gdje je $\varphi(n)$ Eulerova funkcija.
- b) Neka je *n* prost broj. Svi elementi iz C_n koji su $\neq 1$ su primitivni korijeni.

Element $k \subseteq Z_n$ je generator aditivne grupe Z_n onda i samo onda ako su k i n relativno prosti. Ako je n prost broj, onda je svaki njegov element koji je $\neq 1$, ujedno i generator grupe Z_n .

Primjer:

Vrijedi $\phi(20)$ =8 jer su brojevi k = 1,3,7,9,11,13,17,19 manji od 20 i relativno prosti sa 20. Ti brojevi su generatori grupe Z_{20} , a isto tako ε^k su primitivni korijeni iz jedinice u grupi C_{20} , $\varepsilon = \cos(2\pi/n) + i\sin(2\pi/n)$.

11. Primjeri konačnih i beskonačnih cikličkih grupa.

Primjeri konačnih cikličkih grupa:

a) $<e> = ({e},+)$

b) <-1> = $(\{-1,1\},\cdot)$

Primjer beskonačnih cikličkih grupa:

a) <1> = (Z,+)

To je valjda to, nisam siguran.

12. Simetrična grupa. Dokaz svojstava grupe za S₂.

Neka je zadan neki konačan skup od n elemenata $S = \{a_1, a_2, \ldots, a_n\}$. Svaka bijekcija skupa S na samog sebe $f:S \rightarrow S$ naziva se **permutacija**. Skup svih permutacija (svih bijekcija skupa S na samog sebe) označava se sa S_n . Ako uvedemo uobičajenu operaciju \circ (kompozicija funkcija), tada imamo strukturu (S_n, \circ) . Može se pokazati da je ta struktura grupa i naziva se grupa permutacija ili **simetrična grupa**. Ova grupa ima red n! ili n! elemenata:

 $k(S_n) = n!$

U toj grupi je e = i, tj, neutralni element je identična funkcija (ili identiteta). foi = iof = f

Svojstva i dokazi???

13. Morfizmi grupe. Cayleyev teorem.

Neka su (G, \cdot) i (H, \cdot) dvije grupe. Preslikavanje $f : G \rightarrow H$ zove se **homomorfizam grupa** ako za sve a,b \subseteq G vrijedi:

f(ab)=f(a)f(b)

Ako je f : $G \rightarrow H$ homomorfizam grupa, onda je:

a) f(e) = eb) $f(a)^{-1} = f(a^{-1})$

Homomorfizam f : X \rightarrow Y dviju grupa X i Y zovemo **izomorfizam** ako je f bijekcija. Kažemo da su grupe X i Y **izomorfne** i pišemo $X \cong Y$.

Grupe G i H koje su međusobno izomorfne možemo smatrati "jednakima". Poistovjećivanje vrši upravo funkcija f:

- a) G i H imaju isti kardinalni broj (f je bijekcija)
- b) množenje u grupama G i H vrši se na potpuno isti način, dotično umnošku *ab* u grupi G će odgovarati upravo umnožak f(a)f(b) u grupi H.

Ako su dvije konačne grupe G i H izomorfne, onda su pripadne Cayleyeve tablice množenja "iste". Točnije, umnošku *ab* u tablici množenja grupe G će odgovarati upravo umnožak f(a)f(b) u tablici množenja grupe H.

Ako je f : G → H surjektivni homomorfizam grupa, onda kažemo da je f epimorfizam. Injektivni homomorfizam zove se monomorfizam.

Ako je G=H (grupe su (G,*) i (H,\circ)), tada kažemo da su grupe (G,*) i (G,\circ) automorfne (izomorfizam na samoga sebe se zove automorfizam). Cayleyev teorem:

Može se pokazati da je svaka konačna grupa (G,*), k(G)=n izomorfna jednoj grupi permutacija skupa n elemenata. (G,*) je izomorfno sa (S_n,\circ) .

14. Definicija prstena i podprstena.

Grupa (S,*, ∘) (znači, ima 2 operacije koje zovemo zbrajanje i množenje elemenata prstena) se naziva prsten ako vrijedi:

- a) (S,*) je Abelova grupa
- b) (S \ {e}, ∘) je polugrupa (∘ je asocijativno)
- c) vrijede oba zakona distributivnosti (npr. za (R,+,·) vrijedi a(b+c)=ab+ac i (a+b)c=ac+bc)

Primjer:

 $(Z,+,\cdot)$

(Z,+) je Abelova grupa

 $(Z \setminus \{0\}, \cdot)$ je polugrupa

- a) Ako se u definiciji prstena pod b) traži da struktura (S\{e},○) bude monoid, tu strukturu nazivamo prsten s jedinicom.
- b) Ako se u definiciji prstena pod b) traži da je struktura (S\{e},○) grupa, tada se nova struktura naziva tijelo.
- c) Ako se u definicij prstena pod b) traži da je struktura (S\{e},○) komutativna polugrupa, tada kažemo da je struktura komutativni prsten.
- d) Ako se u definiciji prstena pod b) traži da je struktura (S\{e},○) komutativna grupa, tada se struktura naziva komutatuivno tijelo ili polje.

Ako je jasno koje su operacije na prstenu definirane, govorimo samo o prstenu S. Isto tako kažemo da je R **potprsten** prstena S ako je R podskup od S i R je prsten s operacijama naslijeđenim iz S. Svaki prsten S ima dva trivijalna

potprstena: {0} i S. Ako prsten sadrži jedinični element e s obzirom na množenje(tj. za sve a iz R je e·a=a·e=e), onda ga zovemo prstenom s jedinicom.

15. Primjeri konačniih i beskonačnih prstena.

Primjer konačnog prstena: Ako je *n* pozitivan cijeli broj, onda skup $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$ cijelih brojeva modulo n (koji je kao aditivna grupa ciklička grupa reda n) tvori prsten s *n* elemenata.

Primier beskonacnog: ???

16. Dokažite da je skup svih polinoma R[x] s koeficijentina nad poljem R i uobičajenim operacijama + i • jedan prsten. Pojam ireducibilnog polinoma.

Neka je R komutativan prste s jedinicom i $a_0, a_1, ..., a_n \subseteq R$. Izraz:

$$f(x) = a_0 + a_1 x + ... + a_n x^n$$

zove se **formalni polinom** s koeficijentima iz prstena R, ili polinom nad R. Ako u polinomu $f(x) = a_0 + a_1 x + ... + a_n x^n$ vrijedi $a_n \neq 0$, onda kažemo da je f(x)polinom n-tog stupnja i a_n je vodeći koeficijent polinoma. Skup svih formalnih polinoma s koeficijentima iz R označavamo sa R[x]. Za dva polinoma iz R[x] kažemo da su jednaki ako su im koeficijenti uz odgovarajuće potencije od x isti. Skup polinoma R[x] uvijek sadrži R kao svoj podskup.

Cili nam je sada da R[x] organiziramo u prsten, ti, uvedemo operacije zbrajanja množenja polinoma. Dva polinoma iz R[x] zbrajamo tako da zbrojimo odgovarajuće koeficijente uz iste potencije od x. Ako je $f(x) = a_0 + a_1x + ... + a_mx^m$ i $g(x) = b_0 + b_1 x + ... + b_n x^n$ onda definiramo:

ramo:
$$f(x)+g(x) = \sum_{j=1}^{\max \{m,n\}} (a_j+b_j)x^j$$

gdje stavljamo a_i=0 ako je j>m i b_i=0 za j>n.

Na sličan način definiramo i množenje polinoma:

$$f(x)g(x) = a_0b_0 + (a_1b_0 + a_0b_1)x + ... + a_mb_nx^{m+n}$$

f(x)g(x) =
$$a_0b_0+(a_1b_0+a_0b_1)x+...+a_m$$

Pri tome je koeficijent uz x^k jednak:

$$a_0b_k+a_1b_{k-1}+...+a_kb_0 = \sum_{j=0} a_jb_{k-j}$$

Na ovako definirano zbrajanje i množenje polinoma, skup svih polinoma R[x] je prsten.

Neka je $(F,+,\cdot)$ bilo koje polje. Za dva polinoma f(x) i $g(x) \subseteq F[x]$ kažemo da su **proporcionalni** nad F ako postoji konstanta c \subseteq F, c \neq 0, takva da je f(x)=c·g(x).

Za polinom f(x) ∈ F[x] koji je barem prvoga stupnja, kažemo da je **ireducibilan** (nerastavljiv) ako iz rastava f(x)=g(x)h(x) slijedi da je jedan od polinoma g(x), h(x)nultoga stupnja (tj. konstanta iz F). Dakle, drugi je onda proporcionalan sa f(x).

Ako polinom f(x) nije ireducibilan, kažemo da je **reducibilan**, tj. rastavljiv na produkt dvaju polinoma od kojih niji jedan nije konstantan.

17. Definicija tijela i polja. Primjeri konačnih i beskonačnih polja.

Grupa (S,*, ∘) (znači, ima 2 operacije koje zovemo zbrajanje i množenje elemenata prstena) se naziva prsten ako vrijedi:

- a) (S,*) je Abelova grupa
- b) (S \ {e} , ○) je polugrupa (○ je asocijativno)
- c) vrijede oba zakona distributivnosti (npr. za (R,+,·) vrijedi a(b+c)=ab+ac i (a+b)c=ac+bc)

Ako se u definiciji prstena pod b) traži da je struktura (S\{e},\circ) grupa, tada se nova struktura naziva **tijelo**.

Ako se u definiciji prstena pod b) traži da je struktura (S\{e},○) komutativna grupa, tada se struktura naziva komutatuivno tijelo ili **polje**.

Primjer konačnih polja:

Skup Z_n je polje onda i samo onda ako je n prost broj: $Z_2=\{0,1\}$, Z_3 , Z_5 , Z_7 , ... Sva ova polja su konačna.

Primjeri beskonačnih polja su Q, R, C, i mnoga druga.

Nadam se da se na to mislilo.

18. Primjeri ostalih algebarskih struktura

a) Booleova algebra

Bilo koji primjer, npr. A v B

b) Vektorski prostor

Vektorski ili linearni prostor je algebarski pojam u matematici koji nalazi primjenu u svim glavnim granama matematike, među kojima su linearna algebra, analiza i analitička geometrija. Definira se na sljedeći način: neka skup V ima strukturu Abelove grupe u odnosu na zbrajanje. Elemente skupa V zovemo vektori. Neutralni element označujemo sa 0 i zovemo nulti vektor. Neka skup F ima strukturu polja. Elemente skupa F zovemo skalari, a neutralne elemente u odnosu na dvije binarne operacije označujemo sa 0 i 1. Na skupu F × V definirano je množenje vektora skalarom, tj. preslikavanje F × V \rightarrow V, koje svakom skalaru $\alpha \in F$ i svakom vektoru $x \in V$ pridružuje vektor $\alpha x \in V$, tako da vrijede sljedeći aksiomi:

$$\begin{split} \text{(II)} \ &\alpha(\beta x) = (\alpha\beta)x, \forall \alpha, \beta \in F, \forall x \in V \\ \text{(II)} \ &\alpha(x+y) = \alpha x + \alpha y, \forall \alpha \in F, \forall x, y \in V \\ \text{(III)} \ &(\alpha+\beta)x = \alpha x + \beta x, \forall \alpha, \beta \in F, \forall x \in V \end{split}$$

$$(\mathsf{IV})\,1x = x, \forall x \in V$$

Ovako se definisano preslikavanje zove množenje vektora skalarom, dok se V naziva vektorski prostor nad poljem F i piše V(F).

- c) Petllja
- d) Kvazigrupa

Generalizacija pojma grupe u kojoj se izostavlja svojstvo asocijativnosti naziva se petlja, a u još općenitijoj situaciji kada nema jedinice kvazigrupa.