In [2]: # настройки отображения графиков %matplotlib inline plt.style.use('ggplot') plt.rcParams['figure.figsize'] = (15, 5) plt.rcParams['font.family'] = 'sans-serif' df = pd.read_csv(In [3]: '/opt/kate_repo/real_data_analysis/wargaming_task/second_task.csv') In [4]: | df['Realm'] = df['Realm'].fillna('NA') df.head() Out[4]: SPA_ID Realm Type_of_group RU Target 2 EU 1 Target 3 NΑ **Target** 3 4 SEA **Target** 5 RU Control In [5]: df_second = pd.read_csv('/opt/kate_repo/real_data_analysis/wargaming_task/second_task_table2.csv') df_second.head() Out[5]: SPA_ID dt Revenue 0 1/8/2018 15.8 2 1 1/2/2018 24.0 2 5 1/9/2018 8.6 3 6 1/14/2018 5.8 1/8/2018 21.6 In [6]: from sqlalchemy import create_engine In [7]: # Instantiate sqlachemy.create_engine object engine = create_engine('postgresql://postgres:postgres@localhost/sql_example') # Save the data from dataframe to postgres table "second_task" df.to_sql('wargaming', engine, index=False # Not copying over the index) # Save the data from dataframe to postgres table "second_task_table2" # df_second.to_sql('wargaming_second', engine, index=False # Not copying over the index) conn = engine.connect() total_pivot = pd.read_sql(""" CREATE TEMPORARY TABLE wargaming_all("SPA_ID" int8 NULL, "Realm" text NULL, "Type_of_group" text NULL, "dt" text NULL, "Revenue" float8 NULL); INSERT INTO wargaming_all **SELECT** FROM wargaming left JOIN wargaming_second USING ("SPA_ID") WHERE wargaming."Realm" = 'RU' and $(wargaming_second."dt" = '1/8/2018'$ OR wargaming_second."dt" = '1/9/2018') ORDER BY wargaming."SPA_ID"; --средняя выручка, общая выручка и количество операций в группах (wargaming_agg) CREATE TEMPORARY TABLE wargaming_agg("Type_of_group" text NULL, "summ" float8 NULL, "avg_revenue" float8 NULL, "count_transaction" int8 NULL); INSERT INTO wargaming_agg SELECT DISTINCT "Type_of_group", sum (wargaming_all."Revenue") OVER (PARTITION BY wargaming_all."Type_of_group") AS summ, avg(wargaming_all."Revenue") OVER (PARTITION BY wargaming_all."Type_of_group") as avg_revenu e, count(wargaming_all."Revenue") OVER (PARTITION BY wargaming_all."Type_of_group") AS count_tr ansaction FROM wargaming_all; --количество уникальных id в группах (wargaming_uniq_id_pay), пользователей, которые платили CREATE TEMPORARY TABLE wargaming_uniq_id_pay("Type_of_group" text NULL, "count_id_pay" int8 NULL); INSERT INTO wargaming_uniq_id_pay SELECT "Type_of_group", count (DISTINCT "SPA_ID") as count_id_pay FROM wargaming_all group by "Type_ of_group"; --количество уникальных id в группах (wargaming_uniq_id_group), пользователей, которые платили CREATE TEMPORARY TABLE wargaming_uniq_id_group("Type_of_group" text NULL, "count_id_max" int8 NULL); INSERT INTO wargaming_uniq_id_group SELECT "Type_of_group", count (DISTINCT "SPA_ID") as count_id_max FROM wargaming group by "Type_of_g roup"; -- сводная таблица агрегированных значений по группам CREATE TEMPORARY TABLE wargaming_total("Type_of_group" text NULL, "summ" float8 NULL, "avg_revenue" float8 NULL, "count_transaction" int8 NULL, "count_id_pay" int8 NULL, "count_id_max" int8 NULL); INSERT INTO wargaming_total SELECT * from wargaming_agg LEFT JOIN wargaming_uniq_id_pay USING ("Type_of_group") LEFT JOIN wargaming_uniq_id_group USING ("Type_of_group"); Select*from wargaming_total; """, conn) total_pivot.head() Out[8]: Type_of_group summ avg_revenue count_transaction count_id_pay count_id_max Control 72449.9 6798 3819 20000 10.657532 Target 84550.8 10.558292 8008 4092 20000 1 In [105]: # Сравнение количества плательщиков в контрольной и тестовой группе profit_control=total_pivot.count_id_pay.min()*100/total_pivot.count_id_max.max() profit_target=total_pivot.count_id_pay.max()*100/total_pivot.count_id_max.max() print('%% плательщиков без скидки: %.3f' % profit_control) print('%% плательщиков со скидкой: %.3f' % profit_target) % плательщиков без скидки: 19.095 % плательщиков со скидкой: 20.460 In [107]: # Разница между количеством плательщиков в % profit_target-profit_control Out[107]: 1.3650000000000002 Скидка привлекла на 1% плательщиков больше In [112]: # Разница выручки в контрольной и тестовой группе profit=(total_pivot.summ.min()*100/total_pivot.summ.max())-100

Вводные данные: В период с 08.01.18 по 09.01.18 был проведен A/B тест. Тестовой группе был предложен товар со скидкой. Задача: Оцените эффект данной скидки с точки зрения изменения дохода для пользователей RU региона. Оформить в виде выводов с визуализацией, кратко пояснить методологию расчетов. Написать SQL запрос. Данные необходимо забрать с помощью SQL запроса: Имеются 2 таблицы с данными. В первой таблице «Users» содержатся идентификационный номер пользователей «SPA_ID», регион «Realm» и тип группы «Туре_of_group». Во второй

таблице «Revenue» содержатся идентификационный номер пользователей «SPA ID», дата «DT» и «Revenue» (запись отсутствует, если

пользователь не платил).

In [1]:

import pandas as pd

import numpy as np
from scipy import stats
import seaborn as sns

import matplotlib.pyplot as plt
from scipy.stats import normaltest

sns.set()

Out[112]: -14.311987586161436

transaction

fig, ax = plt.subplots()

ax.bar(x, data_1)
ax.bar(x, data_2)

fig.set_figwidth(15)
fig.set_figheight(10)

plt.xlabel("Тип группы") plt.ylabel("Выручка")

Out[114]: -15.109890109890117

операций существенно не изменилась

))

plt.show()

80000

70000

60000

50000

30000

20000

10000

In [23]:

);

SELECT

FROM

WHERE

ORDER BY

""", conn)

1

9

9

17

17

and

0

1

2

3

Out[53]: <AxesSubplot:>

200

150

100

50

alpha = 0.05**if** p > alpha:

Out[80]: 8.45841702908998e-20

);

SELECT

FROM

WHERE

and

and

1

2

3

Out[57]: <AxesSubplot:>

200

175

150

125

100

75

50

25

0

else:

alpha = 0.05if p > alpha:

Out[81]: 1.4156494465782551e-12

Out[25]:

ORDER BY

""", conn)

5

29

29

37

conn = engine.connect()

In [25]:

Out[23]:

0

conn = engine.connect()

table_ru_target = pd.read_sql("""

"Realm" text NULL,

"Revenue" float8 NULL

wargaming."Realm" = 'RU'

wargaming."SPA_ID";

Select*from table_ru_target;

SPA_ID Realm Type_of_group

RU

RU

RU

RU

RU

In [53]: | table_ru_target.Revenue.hist(bins=100)

In [80]: # Проверка распределения на нормальность
from scipy.stats import normaltest
data = table_ru_target.Revenue
stat, p = normaltest(data)

print('Нормальное распределение')

Распределение не является нормальным

table_ru_control = pd.read_sql("""

"Realm" text NULL,

"Revenue" float8 NULL

wargaming."Realm" = 'RU'

wargaming."SPA_ID";

Select*from table_ru_control;

SPA_ID Realm Type_of_group

RU RU

RU

RU

RU

In [81]: # Проверка распределения на нормальность
from scipy.stats import normaltest
data = table_ru_control.Revenue

print('Нормальное распределение')

Распределение не является нормальным

различий Альтернативная гипотеза - Группы имеют значимые различия

In [87]: **from scipy.stats import** mannwhitneyu

compare samples

interpret
alpha = 0.05
if p > alpha:

In []:

generate two independent samples
data1 = table_ru_target.Revenue
data2 = table_ru_control.Revenue

stat, p = mannwhitneyu(data1, data2)

Statistics=26929913.500, p=0.132 Не можем отклонить нулевую гипотезу

print('Statistics=%.3f, p=%.3f' % (stat, p))

print('Отклоняем нулевую гипотезу')

print('Распределение не является нормальным')

U-критерий Манна-Уитни для оценки различий между группами

print('He можем отклонить нулевую гипотезу ')

Статистически достоверные различия в группах не обнаружены

In []: Для пользователей RU региона статистически значимый эффект от скидки отсутствует.

stat, p = normaltest(data)

table_ru_control.Revenue.hist(bins=100)

table_ru_control.head()

(wargaming_second."dt" = '1/8/2018'
OR wargaming_second."dt" = '1/9/2018')

Control 1/9/2018

Control 1/9/2018

Control 1/8/2018

Control 1/8/2018

Control 1/8/2018

dt Revenue

8.6

21.5

6.3

20.2

10

15

Для оценки статистической значимости будет использован непараметрический метод. Нулевая гипотеза - Группы не имеют статистически значимых

wargaming."Type_of_group" = 'Control'

"dt" text NULL,

INSERT INTO table_ru_control

wargaming
left JOIN wargaming_second

USING ("SPA_ID")

"Type_of_group" text NULL,

print('Распределение не является нормальным')

table_ru_target.head()

wargaming."Type_of_group" = 'Target'

(wargaming_second."dt" = '1/8/2018'
OR wargaming_second."dt" = '1/9/2018')

Target 1/8/2018

Target 1/9/2018

Target 1/8/2018

Target 1/9/2018

Target 1/8/2018

dt Revenue

2.8

10.3

21.6

14.2

8.4

"dt" text NULL,

INSERT INTO table_ru_target

wargaming left JOIN wargaming_second

USING ("SPA_ID")

"Type_of_group" text NULL,

Выручка 00008 0

In [114]: # Платежные операции в контрольной и тестовой группе

data_1 = total_pivot['count_transaction']
data_2 = total_pivot['count_id_pay']

color_rectangle = np.random.rand(7, 4)
ax.bar(x, y, color = color_rectangle)

Количество платежейКоличество плательшиков

transaction=(total_pivot.count_transaction.min()*100/total_pivot.count_transaction.max())-100

Доход в тестовой группе на 14% выше, как и процент платежных операций. Постоянные пользователи стали совершать операции чаще, но сумма

plt.title('Сравнение показателей тестовой и контрольной групп', fontsize=22)

Control

ax.legend((ax.bar(x, data_1), ax.bar(x, data_2)), ('Количество платежей', 'Количество плательщиков'

Сравнение показателей тестовой и контрольной групп

Тип группы

CREATE TEMPORARY TABLE table_ru_target("SPA_ID" int8 NULL,

CREATE TEMPORARY TABLE table_ru_control("SPA_ID" int8 NULL,

Target

25

30