

80COMMON x 104RGB LCD DRIVER FOR 4,096-COLOR STN DISPLAY

■ GENERAL DESCRIPTION

The **NJU6818** is an 80COMMON x 104RGB LCD driver for 4,096-color STN display. It contains common drivers, RGB drivers, a serial and a parallel MPU interface circuit, an internal LCD power supply, grayscale palettes and 99,840-bit display data RAM. The segment drivers for RGB (Red, Green, Blue) independently produce optimum 16 grayscales from a built-in 32-grayscale palette, and the LSI achieves 4,096 colors (16x16x16).

In addition, the **NJU6818** operates with a low voltage of 1.7V and a low operating current, therefore it is ideally suited for battery-powered handheld applications.

PACKAGE

BUMP CHIP

■ FEATURES

4,096-color STN LCD driver

Built-in LCD Drivers
 : 80-common Drivers x 104RGB Drivers (312-segment Drivers in B&W)

Built-in Display Data RAM (DDRAM) : 99,840 bits for Graphic Display

• Programmable Display Mode

- Variable 16-grayscale Mode
 - Variable 8-grayscale Mode
 - Fixed 8-grayscale Mode
 - B&W Mode
 : 4,096 Colors
 : 256 Colors
 : Black & White

• 8-/16-bit Parallel Interface Selectable

• 8-/16-bit Bus Length for Display Data Selectable

• 3-/4-line Serial Interface Selectable

Programmable Duty Ratio and Bias Ratio

• Programmable Internal Voltage Booster : Maximum 6 times

Programmable Contrast Control
 : 128-step Electrical Variable Resistor (EVR)

Various Useful Instructions

• Chip Identification (ID) Function

● Low Operating Current : 450uA Typical at V_{DD}=3V, 4-time Boost, Checker Flag Display

Low Logic Voltage : 1.7V to 3.3VWide LCD Voltage Range : 5.0V to 18.0V

C-MOS Technology

• Slim Chip for COG

Package : Bump Chip / TCP

TABLE OF CONTENTS

■ GENERAL DESCRIPTION PACKAGE	1
■ FEATURES	1
■ PAD LOCATION	5
■ PAD COORDINATES 1	9
PAD COORDINATES 2	10
PAD COORDINATES 3	11
PAD COORDINATES 4	12
■ PAD COORDINATES 5	13
■ BLOCK DIAGRAM	14
LCD POWER SUPPLY BLOCK DIAGRAM	15
■ TERMINAL DESCRIPTION 1	16
■ TERMINAL DESCRIPTION 2	17
■ TERMINAL DESCRIPTION 3	18
■ FUNCTIONAL DESCRIPTION	
(1) MPU INTERFACE	
(1-1) Selection of Parallel/Serial Interface Mode	19
(1-2) Selection of MPU Mode	
(1-3) Data Recognition(1-4) Selection of 3-/4-line Serial Interface Mode	
(1-5) 4-line Serial Interface Mode	19
(1-6) 3-line Serial Interface Mode(1-7) Accessing DDRAM	
(1-7) Accessing DDRAM(1-8) Accessing Instruction Register	
(1-9) Selection of 8-/16-bit Bus Length (Parallel Interface Mode)	22
(2) INITIAL DISPLAY LINE REGISTER	
(3) COLUMN AND ROW ADDRESS COUNTERS	
(4) DDRAM	
(4-1) DDRAM Address Range	
(4-2) Window Area for DDRAM Access(4-3) Segment Direction	
(4-4) Bit Assignment of Display Data	
(4-4-1) Bit Assignment Overview	
(4-4-3) Bit Assignment in Variable 8-level Gradation Mode	
(4-4-4) Bit Assignment in Fixed 8-level Gradation Mode	
(4-4-5) Bit Assignment in B&W Mode(4-5) Write Data and Read Data	
(5) GRAYSCALE CONTROL CIRCUIT	
(5-1) Display Mode Selection	39
(5-1-1) Variable 8-grayscale Mode(5-1-2) Variable 8-grayscale Mode	
(5-1-2) Variable 8-grayscale Mode(5-1-3) Fixed 8-grayscale Mode	
(5-1-4) B&W Mode	39
(6) GRAYSCALE PALETTE	
(6-1) Grayscale Selection in Variable 16-grayscale Mode	
(6-3) Grayscale Selection in Fixed 8-grayscale Mode	
(6-4) Grayscale Selection in B&W Mode	

(7) DISPLAY TIMING GENERATOR	43
(8) DATA LATCH CIRCUIT	43
(9) COMMON DRIVERS AND SEGMENT DRIVERS	43
(10) OSCILLATOR	44
(10-1) Using Internal Resistor (CKS=0)	
(10-2) Using External Resistor (CKS=1)	
(10-3) Using External Clock (CKS=1)	
(11) LCD POWER SUPPLY(11-1) Voltage Booster	
(11-1) Voltage Booster	
(11-2-1) Reference Voltage Generator	46
(11-2-2) Voltage Regulator(11-2-3) Electrical Variable Resistor (EVR)	
(11-2-3) Electrical variable Resistor (EVR)	
(11-3) External Components for LCD Power Supply	47
(11-4) Discharge Circuit	
(11-5) Power ON/OFF(11-5-1) Power ON/OFF in Using Internal LCD Power Supply	
(11-5-2) Power ON/OFF in Using External LCD Power Supply	
(12) RESET FUNCTION	51
(13) INSTRUCTION TABLES	52
(13-1) Instruction Table and Register Address	52
(13-2) Instruction Table 0 (RE2, RE1, RE0)=(0, 0, 0)	
(13-3) Instruction Table 1 (RE2, RE1, RE0)=(0, 0, 1)	
(13-4) Instruction Table 2 (RE2, RE1, RE0)=(0, 1, 0)(13-5) Instruction Table 3 (RE2, RE1, RE0)=(0, 1, 1)	
(13-6) Instruction Table 4 (RE2, RE1, RE0)=(1, 0, 0)	
(13-7) Instruction Table 5 (RE2, RE1, RE0)=(1, 0, 1)	58
(14) INSTRUCTION DESCRIPTIONS	
(14-1) Display Data Write	
(14-2) Display Data Read(14-3) Column Address	
(14-4) Row Address	
(14-5) Initial Display Line	
(14-6) N-line Inversion	
(14-7) Display Control (1)(14-8) Display Control (2)	
(14-9) Increment Control	
(14-10) Power Control	
(14-11) Duty Cycle Ratio	
(14-12) Boost Level /ID Code Read(14-13) LCD Bias Ratio	
(14-14) Instruction Table Select	
(14-15) Palette A / B / C	
(14-16) Initial COM(14-17) Duty-1 /Display Clock ON/OFF	
(14-17) Duty-17 Display Clock ON/OFF (14-18) Display Mode Control	
(14-19) Bus Length	
(14-20) EVR Control	
(14-21) Frequency Control(14-22) Discharge ON/OFF	
(14-23) Register Address	
(14-24) Register Read /ID Code Read	
(14-25) Window End Column Address	76
(14-26) Window End Row Address	
(14-27) Initial Line-reverse Address(14-28) Last Line-reverse Address	
(14-29) Line Reverse ON/OFF	77
(14-30) Upper/Lower Palette Select	78

(14-31) PWM Control	78
(15) CHIP IDENTIFICATION (ID) CODE	79
(16) PARTIAL DISPLAY FUNCTION	79
(17) SWAP FUNCTION	80
(17-1) Swap Function in Variable 16-grayscale Mode	
(17-2) Swap Function in Variable 8-grayscale Mode	
(17-3) Swap Function in Fixed 8-grayscale Mode(17-4) Swap Function in B&W Mode	
(18) RELATION BETWEEN ROW ADDRESS AND COMMON DRIVER	
(18-1) SHIFT=0, Initial Display Line "0", Duty Cycle Ratio "1/81"	88
(18-2) SHIFT=0, Initial Display Line "0", Duty Cycle Ratio "1/13"	89
(18-3) SHIFT=1, Initial Display Line "0", Duty Cycle Ratio "1/81"	90 91
(18-5) SHIFT=0, Initial Display Line "0", Duty Cycle Ratio "1/81", Duty-1 ON	92
(19) TYPICAL INSTRUCTION SEQUENCES	
(19-1) Initialization Sequence in Using Internal LCD Power Supply	
(19-2) Initialization Sequence in Using External LCD Power Supply	
(19-3) Display Data Write Sequence(19-4) Partial Display Sequence	
(19-5) Power OFF Sequence	
■ ABSOLUTE MAXIMUM RATINGS	98
■ RECOMMENDED OPERATING CONDITIONS	98
■ DC CHARACTERISTICS	99
■ OSCILLATION FREQUENCY AND FRAME FREQUENCY	100
	102
■ AC CHARACTERISTICS	
	102
AC CHARACTERISTICS	
(1) Write Operation (Parallel Interface / 80-series MPU)	103
(1) Write Operation (Parallel Interface / 80-series MPU)	103 104
(1) Write Operation (Parallel Interface / 80-series MPU)	103 104 105
 (1) Write Operation (Parallel Interface / 80-series MPU) (2) Read Operation (Parallel Interface / 80-series MPU) (3) Write Operation (Parallel Interface / 68-series MPU) (4) Read Operation (Parallel Interface / 68-series MPU) 	103 104 105 106
 (1) Write Operation (Parallel Interface / 80-series MPU) (2) Read Operation (Parallel Interface / 80-series MPU) (3) Write Operation (Parallel Interface / 68-series MPU) (4) Read Operation (Parallel Interface / 68-series MPU) (5) Write Operation (Serial Interface) 	103 104 105 106
 (1) Write Operation (Parallel Interface / 80-series MPU) (2) Read Operation (Parallel Interface / 80-series MPU) (3) Write Operation (Parallel Interface / 68-series MPU) (4) Read Operation (Parallel Interface / 68-series MPU) (5) Write Operation (Serial Interface) (6) Read Operation (Serial Interface) 	103 104 105 106 107
 (1) Write Operation (Parallel Interface / 80-series MPU) (2) Read Operation (Parallel Interface / 80-series MPU) (3) Write Operation (Parallel Interface / 68-series MPU) (4) Read Operation (Parallel Interface / 68-series MPU) (5) Write Operation (Serial Interface) (6) Read Operation (Serial Interface) (7) Display Control Timing 	103104105106107
 (1) Write Operation (Parallel Interface / 80-series MPU) (2) Read Operation (Parallel Interface / 80-series MPU) (3) Write Operation (Parallel Interface / 68-series MPU) (4) Read Operation (Parallel Interface / 68-series MPU) (5) Write Operation (Serial Interface) (6) Read Operation (Serial Interface) (7) Display Control Timing (8) Input Clock Timing 	103104105106107108
 (1) Write Operation (Parallel Interface / 80-series MPU) (2) Read Operation (Parallel Interface / 80-series MPU) (3) Write Operation (Parallel Interface / 68-series MPU) (4) Read Operation (Parallel Interface / 68-series MPU) (5) Write Operation (Serial Interface) (6) Read Operation (Serial Interface) (7) Display Control Timing (8) Input Clock Timing (9) Reset Input Timing 	

■ PAD LOCATION

Chip Center :X=0um, Y=0um

Chip Size :X=19.25mm, Y= 2.50mm

Chip Thickness :625um \pm 25um Bump Pitch :45um(Min) Bump Space : 19um

Bump Size : 26um x 120um Bump Height :17.5um(Typical)

Bump Material :Au

NOTE1) Multiple PADs with successive numbers are internally connected.

NOTE2) Dummy PADs, symbolized with DUMMY, are electrically open.

NOTE3) The purpose of this drawing is to show the order of PADs. Use "PAD CORDINATE TABLE 1 to 5" for design.

8888888899 888888889911	101: 100: 98: 98: 98: 98: 98:	1034 567	2001123	111111 155789	1223	3333	1335 1336 1356 1356 1356	11111111111111111111111111111111111111	161: 160: 159:	170: 169: 168:	178: 177:	186:
	DMY48 DNY48 VSSA D7 D7 D7 D7	7 DD DD DD D 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		DDDD14 53 XY 54	D15 DMY55 DWY55	VDMY56	DMY55 FLM SFLM SFLM SFLM SFLM SFLM SFLM SFLM	######################################	VICP63	DMY64	≷%	DMY ₆₅

Alignment Mark 1

a : 25μm

b : 50μm

Alignment Mark Coordinates (-9445, 1070) (9445, -1070)

Alignment Mark 2

c : 50µm

Alignment Mark Coordinates (9257, -1068)

00000000000	
COM COM DMY103 DMY104 DMY104 SEGGA S	
381 382 383 384 385 386 387 388 388 389 389 390	

Alignment Mark 3

 $d:50\mu m$ $e:20\mu m$

Alignment Mark Coordinates (-9257, -1068)

■ PAD COORDINATES 1

Chip Size 19.250um x 2.500um (Chip Center 0um x 0um)

						Chip Size		1 X Z,50	00µm (Chip	Center op	.m x υμm)
No.	PAD	X(µm)	Y(µm)	No.	PAD	X(µm)	Y(µm)	No.	PAD	X(μm)	Y(µm)
1	DMY ₀	-9067.5	-1055	52	DMY ₂₇	-6772.5	-1055	103	D ₉	-3487.5	-1055
2	DMY ₁	-9022.5	-1055	53	RS	-6727.5	-1055	104	DMY ₄₉	-3442.5	-1055
3	DMY ₂	-8977.5	-1055	54	RS	-6682.5	-1055	105	DMY ₅₀	-3307.5	-1055
4	V _{DDA}	-8932.5	-1055	55	DMY ₂₈	-6637.5	-1055	106	D ₁₀	-3262.5	-1055
5	V _{DDA}	-8887.5	-1055	56	DMY ₂₉	-6592.5	-1055	107	D ₁₀	-3217.5	-1055
6	DMY ₃	-8842.5	-1055	57	DMY ₃₀	-6547.5	-1055	108	D ₁₀	-3082.5	-1055
7	ID ₀	-8797.5	-1055	58	DMY ₃₁	-6502.5	-1055	109	D ₁₁	-3037.5	-1055
8	ID ₀	-8752.5	-1055	59	WRB	-6457.5	-1055	110	DMY ₅₁	-2992.5	-1055
9	DMY ₄	-8707.5	-1055	60	WRB	-6412.5	-1055	111	DMY ₅₂	-2857.5	-1055
10	DMY ₅	-8662.5	-1055	61	DMY ₃₂	-6367.5	-1055	112	DIVIT 52 D ₁₂	-2812.5	-1055
11			-1055	62		-6322.5	-1055	113			-1055
	DMY ₆	-8617.5			DMY ₃₃				D ₁₂	-2767.5	
12	DMY ₇	-8572.5	-1055	63	RDB	-6277.5	-1055	114	D ₁₃	-2632.5	-1055
13	ID ₁	-8527.5	-1055	64	RDB	-6232.5	-1055	115	D ₁₃	-2587.5	-1055
14	ID ₁	-8482.5	-1055	65	DMY ₃₄	-6187.5	-1055	116	DMY ₅₃	-2542.5	-1055
15	DMY ₈	-8437.5	-1055	66	DMY ₃₅	-6142.5	-1055	117	DMY ₅₄	-2407.5	-1055
16	DMY ₉	-8392.5	-1055	67	V_{DDA}	-6097.5	-1055	118	D ₁₄	-2362.5	-1055
17	ID_2	-8347.5	-1055	68	V_{DDA}	-6052.5	-1055	119	D ₁₄	-2317.5	-1055
18	ID_2	-8302.5	-1055	69	DMY ₃₆	-6007.5	-1055	120	D ₁₅	-2182.5	-1055
19	DMY ₁₀	-8257.5	-1055	70	DMY ₃₇	-5962.5	-1055	121	D ₁₅	-2137.5	-1055
20	DMY ₁₁	-8212.5	-1055	71	DMY ₃₈	-5917.5	-1055	122	DMY ₅₅	-2092.5	-1055
21	DMY ₁₂	-8167.5	-1055	72	DMY ₃₉	-5872.5	-1055	123	V_{DD}	-1957.5	-1055
22	DMY ₁₃	-8122.5	-1055	73	DMY ₄₀	-5737.5	-1055	124	V_{DD}	-1912.5	-1055
23	ID ₃	-8077.5	-1055	74	D ₀ /SCL	-5692.5	-1055	125	V_{DD}	-1867.5	-1055
24	ID ₃	-8032.5	-1055	75	D ₀ /SCL	-5647.5	-1055	126	V_{DD}	-1822.5	-1055
25	DMY ₁₄	-7987.5	-1055	76	D ₁ /SDA	-5512.5	-1055	127	V_{DD}	-1777.5	-1055
26	V_{SSA}	-7942.5	-1055	77	D ₁ /SDA	-5467.5	-1055	128	V_{DD}	-1732.5	-1055
27	V _{SSA}	-7897.5	-1055	78	DMY ₄₁	-5422.5	-1055	129	V_{DD}	-1687.5	-1055
28	DMY ₁₅	-7852.5	-1055	79	DMY ₄₂	-5287.5	-1055	130	V_{DD}	-1642.5	-1055
29	SEL ₆₈	-7807.5	-1055	80	D ₂	-5242.5	-1055	131	V _{DD}	-1597.5	-1055
30	SEL ₆₈	-7762.5	-1055	81	D ₂	-5197.5	-1055	132	DMY ₅₆	-1372.5	-1055
31	DMY ₁₆	-7717.5	-1055	82	D ₃ /SMODE	-5062.5	-1055	133	CL	-1327.5	-1055
32	DMY ₁₇	-7672.5	-1055	83	D ₃ /SMODE	-5017.5	-1055	134	CL	-1282.5	-1055
33	V_{DDA}	-7627.5	-1055	84	DMY ₄₃	-4972.5	-1055	135	FLM	-1147.5	-1055
34	V _{DDA}	-7582.5	-1055	85	DMY ₄₄	-4837.5	-1055	136	FLM	-1102.5	-1055
35	DMY ₁₈	-7537.5	-1055	86	D ₄ /SPOL	-4792.5	-1055	137	DMY ₅₇	-1102.5	-1055
36	DMY ₁₉	-7337.5 -7492.5	-1055	87	D ₄ /SPOL	-4792.5 -4747.5	-1055	138	DMY ₅₈	-922.5	-1055
37	P/S	-7492.5 -7447.5	-1055	88	D ₄ /3POL D ₅	-4747.5 -4612.5	-1055	139	FR	-922.5 -877.5	-1055
38	P/S			89							
		-7402.5	-1055		D ₅	-4567.5	-1055	140	FR	-832.5	-1055
39	DMY ₂₀	-7357.5	-1055	90	DMY ₄₅	-4522.5	-1055	141	CLK	-697.5	-1055
40	V _{SSA}	-7312.5	-1055	91	DMY ₄₆	-4387.5	-1055	142	CLK	-652.5	-1055
41	V _{SSA}	-7267.5	-1055	92	D ₆	-4342.5	-1055	143	DMY ₅₉	-607.5	-1055
42	DMY ₂₁	-7222.5	-1055	93	D ₆	-4297.5	-1055	144	DMY ₆₀	-472.5	-1055
43	RESB	-7177.5	-1055	94	D ₇	-4162.5	-1055	145	OSC ₁	-427.5	-1055
44	RESB	-7132.5	-1055	95	D_7	-4117.5	-1055	146	OSC ₁	-382.5	-1055
45	DMY ₂₂	-7087.5	-1055	96	DMY ₄₇	-4072.5	-1055	147	DMY ₆₁	-337.5	-1055
46	DMY ₂₃	-7042.5	-1055	97	V_{SSA}	-3937.5	-1055	148	DMY ₆₂	-292.5	-1055
47	DMY_{24}	-6997.5	-1055	98	V_{SSA}	-3892.5	-1055	149	OSC ₂	-157.5	-1055
48	DMY ₂₅	-6952.5	-1055	99	DMY ₄₈	-3757.5	-1055	150	OSC ₂	-112.5	-1055
49	CSB	-6907.5	-1055	100	D ₈	-3712.5	-1055	151	V_{SS}	22.5	-1055
50	CSB	-6862.5	-1055	101	D ₈	-3667.5	-1055	152	V _{SS}	67.5	-1055
51	DMY ₂₆	-6817.5	-1055	102	D ₉	-3532.5	-1055	153	V _{SS}	112.5	-1055

■ PAD COORDINATES 2

						Offip Oize	15,250μπ	1 / 2,0	υυμπι (Спір	Ochter op	πι κ ομιπ)
No.	PAD	X(µm)	Y(µm)	No.	PAD	X(μm)	Y(µm)	No.	PAD	X(µm)	Y(µm)
154	Vss	157.5	-1055	205	V_{REG}	2812.5	-1055	256	V _{EE}	5467.5	-1055
155	Vss	202.5	-1055	206	V _{REG}	2857.5	-1055	257	V _{EE}	5512.5	-1055
156	Vss	247.5	-1055	207	V _{REG}	2902.5	-1055	258	DMY ₇₀	5647.5	-1055
157	V _{SS}	292.5	-1055	208	V _{REG}	2947.5	-1055	259	DMY ₇₁	5692.5	-1055
158	Vss	337.5	-1055	209	V _{REG}	2992.5	-1055	260	DMY ₇₂	5737.5	-1055
159	Vss	382.5	-1055	210	V _{REG}	3037.5	-1055	261	DMY ₇₃	5782.5	-1055
160	DMY ₆₃	517.5	-1055	211	V _{REG}	3082.5	-1055	262	DMY ₇₄	5827.5	-1055
161	V _{LCD}	652.5	-1055	212	DMY ₆₇	3127.5	-1055	263	C1+	5872.5	-1055
162	V _{LCD}	697.5	-1055	213	V _{REF}	3172.5	-1055	264	C1+	5917.5	-1055
163	V _{LCD}	742.5	-1055	214	V _{REF}	3217.5	-1055	265	C1+	5962.5	-1055
164	V _{LCD}	787.5	-1055	215	V _{REF}	3262.5	-1055	266	C1+	6007.5	-1055
165	V _{LCD}	832.5	-1055	216	V _{REF}	3307.5	-1055	267	C1+	6052.5	-1055
166	V _{LCD}	877.5	-1055	217	V _{REF}	3352.5	-1055	268	DMY ₇₅	6097.5	-1055
167	V _{LCD}	922.5	-1055	218	V _{REF}	3397.5	-1055	269	DMY ₇₆	6142.5	-1055
168	V _{LCD}	967.5	-1055	219	V _{REF}	3442.5	-1055	270	C1-	6187.5	-1055
169	DMY ₆₄	1012.5	-1055	220	V _{REF}	3487.5	-1055	271	C1-	6232.5	-1055
170	V ₁	1057.5	-1055	221	DMY ₆₈	3532.5	-1055	272	C1-	6277.5	-1055
171	V ₁	1102.5	-1055	222	V _{BA}	3577.5	-1055	273	C1-	6322.5	-1055
172	V ₁	1147.5	-1055	223	V _{BA}	3622.5	-1055	274	C1-	6367.5	-1055
173	V ₁	1192.5	-1055	224	V _{BA}	3667.5	-1055	275	DMY ₇₇	6412.5	-1055
174	V ₁	1237.5	-1055	225	V _{BA}	3712.5	-1055	276	DMY ₇₈	6457.5	-1055
175	V ₁	1282.5	-1055	226	V _{BA}	3757.5	-1055	277	C2+	6502.5	-1055
176	V ₁	1327.5	-1055	227	V _{BA}	3802.5	-1055	278	C2+	6547.5	-1055
177	V ₁	1372.5	-1055	228	V _{BA}	3847.5	-1055	279	C2+	6592.5	-1055
178	V ₂	1507.5	-1055	229	V _{BA}	3892.5	-1055	280	C2+	6637.5	-1055
179	V ₂	1552.5	-1055	230	DMY ₆₉	3937.5	-1055	281	C2+	6682.5	-1055
180	V ₂	1597.5	-1055	231	V _{SSH}	3982.5	-1055	282	DMY ₇₉	6727.5	-1055
181	V ₂	1642.5	-1055	232	V _{SSH}	4027.5	-1055	283	DMY ₈₀	6772.5	-1055
182	V ₂	1687.5	-1055	233	V _{SSH}	4072.5	-1055	284	C2-	6817.5	-1055
183	V ₂	1732.5	-1055	234	V _{SSH}	4117.5	-1055	285	C2-	6862.5	-1055
184	V ₂	1777.5	-1055	235	V _{SSH}	4162.5	-1055	286	C2-	6907.5	-1055
185		1822.5	-1055	236	V _{SSH}	4207.5	-1055	287	C2-	6952.5	-1055
186	DMY ₆₅	1867.5	-1055	237	V _{SSH}	4252.5	-1055	288	C2-	6997.5	-1055
187	V ₃	1912.5	-1055	238	V _{SSH}	4297.5	-1055	289	DMY ₈₁	7042.5	-1055
188	V ₃	1957.5	-1055	239	V _{SSH}	4342.5	-1055	290	DMY ₈₂	7087.5	-1055
189	V ₃	2002.5	-1055	240	V _{OUT}	4567.5	-1055	291	C3+	7132.5	-1055
190	V ₃	2047.5	-1055	241	V _{OUT}	4612.5	-1055	292	C3+	7177.5	-1055
191	V ₃	2092.5	-1055	242	V _{OUT}	4657.5	-1055	293	C3+	7222.5	-1055
192	V ₃	2137.5	-1055	243	V _{OUT}	4702.5	-1055	294	C3+	7267.5	-1055
193	V ₃	2182.5	-1055	244	V _{OUT}	4747.5	-1055	295	C3+	7312.5	-1055
194	V ₃	2227.5	-1055	245	Vout	4792.5	-1055	296	DMY ₈₃	7357.5	-1055
195	V ₄	2362.5	-1055	246	Vout	4837.5	-1055	297	DMY ₈₄	7402.5	-1055
196	V_4	2407.5	-1055	247	V _{OUT}	4882.5	-1055	298	C3-	7447.5	-1055
197	V_4	2452.5	-1055	248	V _{OUT}	4927.5	-1055	299	C3-	7492.5	-1055
198	V_4	2497.5	-1055	249	V _{EE}	5152.5	-1055	300	C3-	7537.5	-1055
199	V_4	2542.5	-1055	250	V _{EE}	5197.5	-1055	301	C3-	7582.5	-1055
200	V_4	2587.5	-1055	251	V _{EE}	5242.5	-1055	302	C3-	7627.5	-1055
201	V_4	2632.5	-1055	252	V_{EE}	5287.5	-1055	303	DMY ₈₅	7672.5	-1055
202	V ₄	2677.5	-1055	253	V _{EE}	5332.5	-1055	304	DMY ₈₆	7717.5	-1055
203	DMY ₆₆	2722.5	-1055	254	V _{EE}	5377.5	-1055	305	C4+	7762.5	-1055
204	V_{REG}	2767.5	-1055	255	V_{EE}	5422.5	-1055	306	C4+	7807.5	-1055

■ PAD COORDINATES 3

						Onlip Oize	15,250μπ	1 / 2,0	σομπη (Onip	Ochici op	.m x uµm)
No.	PAD	X(µm)	Y(µm)	No.	PAD	X(µm)	Y(µm)	No.	PAD	X(µm)	Y(µm)
307	C ₄ +	7852.5	-1055	358	COM ₂₄	8257.5	1055	409	SEGC ₇	5962.5	1055
308	C ₄ +	7897.5	-1055	359	COM ₂₃	8212.5	1055	410	SEGA ₈	5917.5	1055
309	C ₄ +	7942.5	-1055	360	COM ₂₂	8167.5	1055	411	SEGB ₈	5872.5	1055
310	DMY ₈₇	7987.5	-1055	361	COM ₂₁	8122.5	1055	412	SEGC ₈	5827.5	1055
311	DMY ₈₈	8032.5	-1055	362	COM ₂₀	8077.5	1055	413	SEGA ₉	5782.5	1055
312	C ₄ -	8077.5	-1055	363	COM ₁₉	8032.5	1055	414	SEGB ₉	5737.5	1055
313	C ₄ -	8122.5	-1055	364	COM ₁₈	7987.5	1055	415	SEGC ₉	5692.5	1055
314	C ₄ -	8167.5	-1055	365	COM ₁₇	7942.5	1055	416	SEGA ₁₀	5647.5	1055
315	C ₄ -	8212.5	-1055	366	COM ₁₆	7897.5	1055	417	SEGB ₁₀	5602.5	1055
316	C ₄ -	8257.5	-1055	367	COM ₁₅	7852.5	1055	418	SEGC ₁₀	5557.5	1055
317	DMY ₈₉	8302.5	-1055	368	COM ₁₄	7807.5	1055	419	SEGA ₁₁	5512.5	1055
318	DMY ₉₀	8347.5	-1055	369	COM ₁₃	7762.5	1055	420	SEGB ₁₁	5467.5	1055
319	C ₅ +	8392.5	-1055	370	COM ₁₂	7717.5	1055	421	SEGC ₁₁	5422.5	1055
320	C ₅ +	8437.5	-1055	371	COM ₁₁	7672.5	1055	422	SEGA ₁₂	5377.5	1055
321	C ₅ +	8482.5	-1055	372	COM ₁₀	7627.5	1055	423	SEGB ₁₂	5332.5	1055
322	C ₅ +	8527.5	-1055	373	COM ₉	7582.5	1055	424	SEGC ₁₂	5287.5	1055
323	C ₅ +	8572.5	-1055	374	COM ₈	7537.5	1055	425	SEGA ₁₃	5242.5	1055
324	DMY ₉₁	8617.5	-1055	375	COM ₇	7492.5	1055	426	SEGB ₁₃	5197.5	1055
325	DMY ₉₂	8662.5	-1055	376	COM ₆	7447.5	1055	427	SEGC ₁₃	5152.5	1055
326	C ₅ -	8707.5	-1055	377	COM ₅	7402.5	1055	428	SEGA ₁₄	5107.5	1055
327	C ₅ -	8752.5	-1055	378	COM ₄	7357.5	1055	429	SEGB ₁₄	5062.5	1055
328	C ₅ -	8797.5	-1055	379	COM ₃	7312.5	1055	430	SEGC ₁₄	5017.5	1055
329	C ₅ -	8842.5	-1055	380	COM ₂	7267.5	1055	431	SEGA ₁₅	4972.5	1055
330	C ₅ -	8887.5	-1055	381	COM₁	7222.5	1055	432	SEGB ₁₅	4927.5	1055
331	DMY ₉₃	8932.5	-1055	382	COM ₀	7177.5	1055	433	SEGC ₁₅	4882.5	1055
332	DMY ₉₄	8977.5	-1055	383	DMY ₁₀₃	7132.5	1055	434	SEGA ₁₆	4837.5	1055
333	DMY ₉₅	9022.5	-1055	384	DMY ₁₀₄	7087.5	1055	435	SEGB ₁₆	4792.5	1055
334	DMY ₉₆	9067.5	-1055	385	DMY ₁₀₅	7042.5	1055	436	SEGC ₁₆	4747.5	1055
335	DMY_{97}	9430	-964	386	SEGA ₀	6997.5	1055	437	SEGA ₁₇	4702.5	1055
336	DMY_{98}	9430	-919	387	SEGB₀	6952.5	1055	438	SEGB ₁₇	4657.5	1055
337	DMY_{98}	9430	-874	388	SEGC₀	6907.5	1055	439	SEGC ₁₇	4612.5	1055
338	DMY_{98}	9430	-829	389	SEGA₁	6862.5	1055	440	SEGA ₁₈	4567.5	1055
339	DMY_{99}	9430	-784	390	SEGB ₁	6817.5	1055	441	SEGB ₁₈	4522.5	1055
340	DMY ₁₀₀	9067.5	1055	391	SEGC ₁	6772.5	1055	442	SEGC ₁₈	4477.5	1055
341	DMY ₁₀₁	9022.5	1055	392	SEGA ₂	6727.5	1055	443	SEGA ₁₉	4432.5	1055
342	DMY ₁₀₂	8977.5	1055	393	SEGB ₂	6682.5	1055	444	SEGB ₁₉	4387.5	1055
343	COM ₃₉	8932.5	1055	394	SEGC ₂	6637.5	1055	445	SEGC ₁₉	4342.5	1055
344	COM ₃₈	8887.5	1055	395	SEGA₃	6592.5	1055	446	SEGA ₂₀	4297.5	1055
345	COM ₃₇	8842.5	1055	396	SEGB ₃	6547.5	1055	447	SEGB ₂₀	4252.5	1055
346	COM ₃₆	8797.5	1055	397	SEGC ₃	6502.5	1055	448	SEGC ₂₀	4207.5	1055
347	COM ₃₅	8752.5	1055	398	SEGA ₄	6457.5	1055	449	SEGA ₂₁	4162.5	1055
348	COM ₃₄	8707.5	1055	399	SEGB ₄	6412.5	1055	450	SEGB ₂₁	4117.5	1055
349	COM ₃₃	8662.5	1055	400	SEGC₄	6367.5	1055	451	SEGC ₂₁	4072.5	1055
350	COM ₃₂	8617.5	1055	401	SEGA₅	6322.5	1055	452	SEGA ₂₂	4027.5	1055
351	COM ₃₁	8572.5	1055	402	SEGB₅	6277.5	1055	453	SEGB ₂₂	3982.5	1055
352	COM ₃₀	8527.5	1055	403	SEGC ₅	6232.5	1055	454	SEGC ₂₂	3937.5	1055
353	COM ₂₉	8482.5	1055	404	SEGA ₆	6187.5	1055	455	SEGA ₂₃	3892.5	1055
354	COM ₂₈	8437.5	1055	405	SEGB ₆	6142.5	1055	456	SEGB ₂₃	3847.5	1055
355	COM ₂₇	8392.5	1055	406	SEGC ₆	6097.5	1055	457	SEGC ₂₃	3802.5	1055
356	COM ₂₆	8347.5	1055	407	SEGA ₇	6052.5	1055	458	SEGA ₂₄	3757.5	1055
357	COM ₂₅	8302.5	1055	408	SEGB ₇	6007.5	1055	459	SEGB ₂₄	3712.5	1055

■ PAD COORDINATES 4

						Offip Oize	10,200μπ	1 / 2,0	υυμιτί (στιίρ	Ochter op	πικομιτί)
No.	PAD	X(μm)	Y(µm)	No.	PAD	X(μm)	Y(µm)	No.	PAD	X(µm)	Y(µm)
460	SEGC ₂₄	3667.5	1055	511	SEGC ₄₁	1372.5	1055	562	SEGC ₅₈	-922.5	1055
461	SEGA ₂₅	3622.5	1055	512	SEGA ₄₂	1327.5	1055	563	SEGA ₅₉	-967.5	1055
462	SEGB ₂₅	3577.5	1055	513	SEGB ₄₂	1282.5	1055	564	SEGB ₅₉	-1012.5	1055
463	SEGC ₂₅	3532.5	1055	514	SEGC ₄₂	1237.5	1055	565	SEGC ₅₉	-1057.5	1055
464	SEGA ₂₆	3487.5	1055	515	SEGA ₄₃	1192.5	1055	566	SEGA ₆₀	-1102.5	1055
465	SEGB ₂₆	3442.5	1055	516	SEGB ₄₃	1147.5	1055	567	SEGB ₆₀	-1147.5	1055
466	SEGC ₂₆	3397.5	1055	517	SEGC ₄₃	1102.5	1055	568	SEGC ₆₀	-1192.5	1055
467	SEGA ₂₇	3352.5	1055	518	SEGA ₄₄	1057.5	1055	569	SEGA ₆₁	-1237.5	1055
468	SEGB ₂₇	3307.5	1055	519	SEGB ₄₄	1012.5	1055	570	SEGB ₆₁	-1282.5	1055
469	SEGC ₂₇	3262.5	1055	520	SEGC ₄₄	967.5	1055	571	SEGC ₆₁	-1327.5	1055
470	SEGA ₂₈	3217.5	1055	521	SEGA ₄₅	922.5	1055	572	SEGA ₆₂	-1372.5	1055
471	SEGB ₂₈	3172.5	1055	522	SEGB ₄₅	877.5	1055	573	SEGB ₆₂	-1417.5	1055
472	SEGC ₂₈	3127.5	1055	523	SEGC ₄₅	832.5	1055	574	SEGC ₆₂	-1462.5	1055
473	SEGA ₂₉	3082.5	1055	524	SEGA ₄₆	787.5	1055	575	SEGA ₆₃	-1507.5	1055
474	SEGB ₂₉	3037.5	1055	525	SEGB ₄₆	742.5	1055	576	SEGB ₆₃	-1552.5	1055
475	SEGC ₂₉	2992.5	1055	526	SEGC ₄₆	697.5	1055	577	SEGC ₆₃	-1597.5	1055
476	SEGA ₃₀	2947.5	1055	527	SEGA ₄₇	652.5	1055	578	SEGA ₆₄	-1642.5	1055
477	SEGB ₃₀	2902.5	1055	528	SEGB ₄₇	607.5	1055	579	SEGB ₆₄	-1687.5	1055
478	SEGC ₃₀	2857.5	1055	529	SEGC ₄₇	562.5	1055	580	SEGC ₆₄	-1732.5	1055
479	SEGA ₃₁	2812.5	1055	530	SEGA ₄₈	517.5	1055	581	SEGA ₆₅	-1777.5	1055
480	SEGB ₃₁	2767.5	1055	531	SEGB ₄₈	472.5	1055	582	SEGB ₆₅	-1822.5	1055
481	SEGC ₃₁	2722.5	1055	532	SEGC ₄₈	427.5	1055	583	SEGC ₆₅	-1867.5	1055
482	SEGA ₃₂	2677.5	1055	533	SEGA ₄₉	382.5	1055	584	SEGA ₆₆	-1912.5	1055
483	SEGB ₃₂	2632.5	1055	534	SEGB ₄₉	337.5	1055	585	SEGB ₆₆	-1957.5	1055
484	SEGC ₃₂	2587.5	1055	535	SEGC ₄₉	292.5	1055	586	SEGC ₆₆	-2002.5	1055
485	SEGA ₃₃	2542.5	1055	536	SEGA ₅₀	247.5	1055	587	SEGA ₆₇	-2047.5	1055
486	SEGB ₃₃	2497.5	1055	537	SEGB ₅₀	202.5	1055	588	SEGB ₆₇	-2092.5	1055
487	SEGC ₃₃	2452.5	1055	538	SEGC ₅₀	157.5	1055	589	SEGC ₆₇	-2137.5	1055
488	SEGA ₃₄	2407.5	1055	539	SEGA ₅₁	112.5	1055	590	SEGA ₆₈	-2182.5	1055
489	SEGB ₃₄	2362.5	1055	540	SEGB ₅₁	67.5	1055	591	SEGB ₆₈	-2227.5	1055
490	SEGC ₃₄	2317.5	1055	541	SEGC ₅₁	22.5	1055	592	SEGC ₆₈	-2272.5	1055
491	SEGA ₃₅	2272.5	1055	542	SEGA ₅₂	-22.5	1055	593	SEGA ₆₉	-2317.5	1055
492	SEGB ₃₅	2227.5	1055	543	SEGB ₅₂	-67.5	1055	594	SEGB ₆₉	-2362.5	1055
493	SEGC ₃₅	2182.5	1055	544	SEGC ₅₂	-112.5	1055	595	SEGC ₆₉	-2407.5	1055
494	SEGA ₃₆	2137.5	1055	545	SEGA ₅₃	-157.5	1055	596	SEGA ₇₀	-2452.5	1055
495	SEGB ₃₆	2092.5	1055	546	SEGB ₅₃	-202.5	1055	597	SEGB ₇₀	-2497.5	1055
496	SEGC ₃₆	2047.5	1055	547	SEGC ₅₃	-247.5	1055	598	SEGC ₇₀	-2542.5	1055
497	SEGA ₃₇	2002.5	1055	548	SEGA ₅₄	-292.5	1055	599	SEGA ₇₁	-2587.5	1055
498	SEGB ₃₇	1957.5	1055	549	SEGB ₅₄	-337.5	1055	600	SEGB ₇₁	-2632.5	1055
499	SEGC ₃₇	1912.5	1055	550	SEGC ₅₄	-382.5	1055	601	SEGC ₇₁	-2677.5	1055
500	SEGA ₃₈	1867.5	1055	551	SEGA ₅₅	-427.5	1055	602	SEGA ₇₂	-2722.5	1055
501	SEGB ₃₈	1822.5	1055	552	SEGB ₅₅	-472.5	1055	603	SEGB ₇₂	-2767.5	1055
502	SEGC ₃₈	1777.5	1055	553	SEGC ₅₅	-517.5	1055	604	SEGC ₇₂	-2812.5	1055
503	SEGA ₃₉	1732.5	1055	554	SEGA ₅₆	-562.5	1055	605	SEGA ₇₃	-2857.5	1055
504	SEGB ₃₉	1687.5	1055	555	SEGB ₅₆	-607.5	1055	606	SEGB ₇₃	-2902.5	1055
505	SEGC ₃₉	1642.5	1055	556	SEGC ₅₆	-652.5	1055	607	SEGC ₇₃	-2947.5	1055
506	SEGA ₄₀	1597.5	1055	557	SEGA ₅₇	-697.5	1055	608	SEGA ₇₄	-2992.5	1055
507	SEGB ₄₀	1552.5	1055	558	SEGB ₅₇	-742.5	1055	609	SEGB ₇₄	-3037.5	1055
508	SEGC ₄₀	1507.5	1055	559	SEGC ₅₇	-787.5	1055	610	SEGC ₇₄	-3082.5	1055
509	SEGA ₄₁	1462.5	1055	560	SEGA ₅₈	-832.5	1055	611	SEGA ₇₅	-3127.5	1055
510	SEGB ₄₁	1417.5	1055	561	SEGB ₅₈	-877.5	1055	612	SEGB ₇₅	-3172.5	1055

■ PAD COORDINATES 5

						Chip Size	19,230μπ	1 / 2,5	υυμm (Cnip	Center of	πι λ υμιτι <u>)</u>
No.	PAD	X(µm)	Y(µm)	No.	PAD	X(µm)	Y(µm)	No.	PAD	X(µm)	Y(µm)
613	SEGC ₇₅	-3217.5	1055	664	SEGC ₉₂	-5512.5	1055	715	COM ₅₄	-7807.5	1055
614	SEGA ₇₆	-3262.5	1055	665	SEGA ₉₃	-5557.5	1055	716	COM ₅₅	-7852.5	1055
615	SEGB ₇₆	-3307.5	1055	666	SEGB ₉₃	-5602.5	1055	717	COM ₅₆	-7897.5	1055
616	SEGC ₇₆	-3352.5	1055	667	SEGC ₉₃	-5647.5	1055	718	COM ₅₇	-7942.5	1055
617	SEGA ₇₇	-3397.5	1055	668	SEGA ₉₄	-5692.5	1055	719	COM ₅₈	-7987.5	1055
618	SEGB ₇₇	-3442.5	1055	669	SEGB ₉₄	-5737.5	1055	720	COM ₅₉	-8032.5	1055
619	SEGC ₇₇	-3487.5	1055	670	SEGC ₉₄	-5782.5	1055	721	COM ₆₀	-8077.5	1055
620	SEGA ₇₈	-3532.5	1055	671	SEGA ₉₅	-5827.5	1055	722	COM ₆₁	-8122.5	1055
621	SEGB ₇₈	-3577.5	1055	672	SEGB ₉₅	-5872.5	1055	723	COM ₆₂	-8167.5	1055
622	SEGC ₇₈	-3622.5	1055	673	SEGC ₉₅	-5917.5	1055	724	COM ₆₃	-8212.5	1055
623	SEGA ₇₉	-3667.5	1055	674	SEGA ₉₆	-5962.5	1055	725	COM ₆₄	-8257.5	1055
624	SEGB ₇₉	-3712.5	1055	675	SEGB ₉₆	-6007.5	1055	726	COM ₆₅	-8302.5	1055
625	SEGC ₇₉	-3757.5	1055	676	SEGC ₉₆	-6052.5	1055	727	COM ₆₆	-8347.5	1055
626	SEGA ₈₀	-3802.5	1055	677	SEGA ₉₇	-6097.5	1055	728	COM ₆₇	-8392.5	1055
627	SEGB ₈₀	-3847.5	1055	678	SEGB ₉₇	-6142.5	1055	729	COM ₆₈	-8437.5	1055
628	SEGC ₈₀	-3892.5	1055	679	SEGC ₉₇	-6187.5	1055	730	COM ₆₉	-8482.5	1055
629	SEGA ₈₁	-3937.5	1055	680	SEGA ₉₈	-6232.5	1055	731	COM ₇₀	-8527.5	1055
630	SEGB ₈₁	-3982.5	1055	681	SEGB ₉₈	-6277.5	1055	732	COM ₇₁	-8572.5	1055
631	SEGC ₈₁	-4027.5	1055	682	SEGC ₉₈	-6322.5	1055	733	COM ₇₂	-8617.5	1055
632	SEGA ₈₂	-4072.5	1055	683	SEGA ₉₉	-6367.5	1055	734	COM ₇₃	-8662.5	1055
633	SEGB ₈₂	-4117.5	1055	684	SEGB ₉₉	-6412.5	1055	735	COM ₇₄	-8707.5	1055
634	SEGC ₈₂	-4162.5	1055	685	SEGC ₉₉	-6457.5	1055	736	COM ₇₅	-8752.5	1055
635	SEGA ₈₃	-4207.5	1055	686	SEGA ₁₀₀	-6502.5	1055	737	COM ₇₆	-8797.5	1055
636	SEGB ₈₃	-4252.5	1055	687	SEGB ₁₀₀	-6547.5	1055	738	COM ₇₇	-8842.5	1055
637	SEGC ₈₃	-4297.5	1055	688	SEGC ₁₀₀	-6592.5	1055	739	COM ₇₈	-8887.5	1055
638	SEGA ₈₄	-4342.5	1055	689	SEGA ₁₀₁	-6637.5	1055	740	COM ₇₉	-8932.5	1055
639	SEGB ₈₄	-4387.5	1055	690	SEGB ₁₀₁	-6682.5	1055	741	DMY ₁₀₉	-8977.5	1055
640	SEGC ₈₄	-4432.5	1055	691	SEGC ₁₀₁	-6727.5	1055	742	DMY ₁₁₀	-9022.5	1055
641	SEGA ₈₅	-4477.5	1055	692	SEGA ₁₀₂	-6772.5	1055	743	DMY ₁₁₁	-9067.5	1055
642	SEGB ₈₅	-4522.5	1055	693	SEGB ₁₀₂	-6817.5	1055	744	DMY ₁₁₂	-9430	-784
643	SEGC ₈₅	-4567.5	1055	694	SEGC ₁₀₂	-6862.5	1055	745	DMY ₁₁₃	-9430	-829
644	SEGA ₈₆	-4612.5	1055	695	SEGA ₁₀₃	-6907.5	1055	746	DMY ₁₁₃	-9430	-874
645	SEGB ₈₆	-4657.5	1055	696	SEGB ₁₀₃	-6952.5	1055	747	DMY ₁₁₃	-9430	-919
646	SEGC ₈₆	-4702.5	1055	697	SEGC ₁₀₃	-6997.5	1055	748	DMY ₁₁₄	-9430	-964
647	SEGA ₈₇	-4747.5	1055	698	DMY ₁₀₆	-7042.5	1055	749			
648	SEGB ₈₇	-4792.5	1055	699	DMY ₁₀₇	-7087.5	1055	750			
649	SEGC ₈₇	-4837.5	1055	700	DMY ₁₀₈	-7132.5	1055	751			
650	SEGA ₈₈	-4882.5	1055	701	COM ₄₀	-7177.5	1055	752			
651	SEGB ₈₈	-4927.5	1055	702	COM ₄₁	-7222.5	1055	753			
652	SEGC ₈₈	-4972.5	1055	703	COM ₄₂	-7267.5	1055	754			
653	SEGA ₈₉	-5017.5	1055	704	COM ₄₃	-7312.5	1055	755			
654	SEGB ₈₉	-5062.5	1055	705	COM ₄₄	-7357.5	1055	756			
655	SEGC ₈₉	-5107.5	1055	706	COM ₄₅	-7402.5	1055	757			
656	SEGA ₉₀	-5152.5	1055	707	COM ₄₆	-7447.5	1055	758			
657	SEGB ₉₀	-5197.5	1055	708	COM ₄₇	-7492.5	1055	759			
658	SEGC ₉₀	-5242.5	1055	709	COM ₄₈	-7537.5	1055	760			
659	SEGA ₉₁	-5287.5	1055	710	COM ₄₉	-7582.5	1055	761			
660	SEGB ₉₁	-5332.5	1055	711	COM ₅₀	-7627.5	1055	762			
661	SEGC ₉₁	-5377.5	1055	712	COM ₅₁	-7672.5	1055	763			
662	SEGA ₉₂	-5422.5	1055	713	COM ₅₂	-7717.5	1055	764			
663	SEGB ₉₂	-5467.5	1055	714	COM ₅₃	-7762.5	1055	765			

BLOCK DIAGRAM

■ LCD POWER SUPPLY BLOCK DIAGRAM

■ TERMINAL DESCRIPTION 1

No.	Terminal	I/O	Function
123~131	V_{DD}	Power	Power Supply for Logic Circuits
151~159	V_{SS}	Power	GND for Logic Circuits
231~239	V_{SSH}	Power	GND for High Voltage Circuits
4,5			V _{DDA} is internally connected to V _{DD} to fix SEL68 or P/S to "H" if necessary, and
33,34	V_{DDA}	Power	cannot be used as main power supply.
67,68			V _{DDA} should be open if not used.
26,27			V _{SSA} is internally connected to V _{SS} to fix SEL68 or P/S to "L" if necessary, and
40,41	V_{SSA}	Power	cannot be used as main GND.
97,98			V _{SSA} should be open if not used.
			LCD Bias Voltages
161~168	V_{LCD}		When the internal LCD power supply is used, internal LCD bias voltages (V _{LCD})
170~177	V_1		and V ₁ -V ₄) are activated by the "Power Control" instruction. Stabilizing capacitors
178~185	V_2	Power	are required between each bias voltage and V _{SS} .
187~194	V ₃		When the external LCD power supply is used, LCD bias voltages are externally
195~202	V_4		supplied on V_{LCD} , V_1 , V_2 , V_3 and V_4 individually, with the following relation
222 227			maintained: V _{SSH} <v<sub>4<v<sub>3<v<sub>2<v<sub>1<v<sub>LCD</v<sub></v<sub></v<sub></v<sub></v<sub>
263~267	C ₁₊	Power	Capacitor Connection for Voltage Booster
270~274	C ₁ -		
277~281 284~288	C ₂₊	Power	Capacitor Connection for Voltage Booster
284~288 291~295	C ₂ -		· ·
291~295	C ₃₊ C ₃ -	Power	Capacitor Connection for Voltage Booster
305~309	C ₄₊		
312~216	C ₄ -	Power	Capacitor Connection for Voltage Booster
319~323	C ₅₊		
326~330	C ₅ -	Power	Capacitor Connection for Voltage Booster
222~229	V _{BA}	Power	Reference-Voltage Generator Output
213~220	V_{REF}	Power	Voltage Regulator Input
			Voltage Booster Input
249~257	V_{EE}	Power	• V _{EE} is normally connected to V _{DD} .
040 040		6	Voltage Booster Output
240~248	V_{OUT}	Power	Input if an external LCD power supply is used.
204~211	V_{REG}	Power	Voltage Regulator Output
12 11	RESb	I	Reset
43,44	KESD	ı	Active "L"
			MPU Mode Select
29,30	SEL68	I	SEL68 H L
			MPU 68 series 80 series
7,8	ID_0		
13,14	ID_1	ı	ID Code
17,18	ID_2	ı	These terminals are fixed at "H" or "L" for ID code.
23,24	ID_3		

■ TERMINAL DESCRIPTION 2

No.	Terminal	I/O	Function
74,75	D ₀ /SCL	I/O	Parallel Interface D ₇ to D ₀ : 8-bit Bi-directional Bus
76,77	D ₁ /SDA	I/O	• In the parallel interface mode (P/S="H"), D ₇ -D ₀ are connected to 8-bit bi-directional MPU bus. <u>Serial Interface</u>
82,83	D ₃ /SMODE	I/O	SDA: Serial Data SCL: Serial Clock SMODE: 3-/4-line Serial Mode Select SPOL: RS Polarity Select (3-line Serial Interface Mode)
86,87	D ₄ /SPOL	I/O	 In the 3 or 4-line serial interface mode (P/S="L"), D₀ is assigned to SCL, and D₁ to SDA. In the 3-line serial interface mode, D₄ is assigned to SPOL.
80.81 88,89 92,93 94,95	D ₂ D ₅ D ₆ D ₇	I/O	 Serial data on SDA is latched at the rising edge of SCL signal in order of D₇, D₆, and D₀, and then converted into 8-bit parallel data at the timing of the internal signal produced from the 8th SCL. SCL should be set to "L" right after data transmission or during non-access.
100,101 102,103 106,107 108,109 112,113 114,115 118,119 120,121	D ₈ D ₉ D ₁₀ D ₁₁ D ₁₂ D ₁₃ D ₁₄ D ₁₅	I/O	8-bit Bi-directional Bus • In the 16-bit bus length mode, D ₁₅ -D ₈ are assigned to upper 8-bit data bus. • In the serial interface mode or the 8-bit parallel interface mode, D ₁₅ -D ₈ should be fixed to "H" or "L".
49,50	CSb	1	Chip Select • Active "L"
53,54	RS	ı	Register Select This signal interprets transferred data as display data or instruction. RS H L Data Instruction Display Data
63,64	RDb (E)	ı	80-series MPU Interface (P/S="H", SEL68="L") Data Read (RDb) Signal • Active "L" 68-series MPU Interface (P/S="H", SEL68="H") Enable Signal • Active "H"
59,60	WRb (R/W)	ı	80-series MPU Interface (P/S="H", SEL68="L") Data Write (WRb) Signal • Active "L" 68-series MPU Interface (P/S="H", SEL68="H") Data Read or Write (R/W) Signal R/W H L Status Read Write

■ TERMINAL DESCRIPTION 3

No.	Terminal	I/O	Function
			Parallel/Serial Interface Mode Select
37,38	P/S	I	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
133,134	CL	0	Line Clock • CL is normally open.
135,136	FLM	0	First Line Maker • FLM is normally open.
139,140	FR	0	Frame Rate • FR is normally open.
141,142	CLK	0	Clock Output CLK is normally open.
145,146 149,150	OSC1 OSC2	O	OSC • When the internal oscillator is used, fix OSC1 to "H" or "L" and leave OSC2 open. To attain more accurate frequency, connect OSC1 and OSC2 with an external resistor. • When the internal oscillator is not used, input external clock to OSC1 and leave OSC2 open.
386~697	SEGA ₀ ~SEGA ₁₀₃ SEGB ₀ ~SEGB ₁₀₃ SEGC ₀ ~SEGC ₁₀₃	Ο	REV Register OFF ON Normal 0 1 Reverse 1 0 • Segment drivers output the following voltage levels. B/W Mode (Example) FR Signal Display Data Reverse Display OFF (Normal) Reverse Display ON VLCD V2 VSSH V3
343~382 701~740	COM ₀ ~ COM ₇₉	Ο	Common Drivers Common drivers output the following voltage levels. Data FR Output Levels H H V _{SSH} L H V ₁ H L V _{LCD} L L V ₄

NOTE) DUMMY PADs: No. 1~3,6, 9~12, 15, 16, 19~22, 25, 28, 31, 32, 35, 36, 39, 42, 45~48, 51, 52, 55~58, 61, 62, 65, 66, 69~73, 78, 79, 84, 85, 90, 91, 96, 99, 104, 105, 110, 111, 116, 117, 122, 132, 137, 138, 143, 144, 147, 148, 160, 169, 186, 203, 212, 221, 230, 258~262, 268, 269, 275, 276, 282, 283, 289, 290, 296, 297, 303, 304, 310, 311, 317, 318, 324, 325, 331~342, 383~385, 698~700, 741~748

■ FUNCTIONAL DESCRIPTION

(1) MPU INTERFACE

(1-1) Selection of Parallel/Serial Interface Mode

The P/S selects a parallel or a serial interface mode, as shown in Table 1. In the serial interface mode, Except "Boost Level / ID Code Read" instruction data, neither display data in the DDRAM nor instruction data in the registers can be read out.

Table 1 Selection of Parallel/Serial Interface Mode

P/S	I/F Mode	CSb	RS	RDb	WRb	SEL68	SDA	SCL	Data
Н	Parallel I/F	CSb	RS	RDb	WRb	SEL68			D_7 - D_0 (D_{15} - D_0)
L	Serial I/F	CSb	RS	-	-	-	SDA	SCL	-

NOTE) "-": Fix to "H" or "L".

(1-2) Selection of MPU Mode

In the parallel interface mode, the SEL68 selects 68 or 80-series MPU mode, as shown in Table 2.

Table 2 Selection of MPU Mode

SEL68	MPU Mode	CSb	RS	RDb	WRb	Data
Н	68-series MPU	CSb	RS	E	R/W	D ₇ -D ₀ (D ₁₅ -D ₀)
L	80-series MPU	CSb	RS	RDb	WRb	D ₇ -D ₀ (D ₁₅ -D ₀)

(1-3) Data Recognition

In the parallel interface mode, the data from MPU is interpreted as display data or instruction according to the combination of the RS, RDb and WRb (R/W) signals, as shown in Table 3.

Table 3 Data Recognition (Parallel Interface Mode)

RS	68-series	80-s	eries	Function
13	R/W	RDb	WRb	1 dilction
Н	Н	L	Н	Read Instruction
Н	L	Н	Ш	Write Instruction
L	Н	L	Н	Read Display Data
L	L	Н	L	Write Display Data

(1-4) Selection of 3-/4-line Serial Interface Mode

In the serial interface mode, the SMODE selects 3- or 4-line serial interface mode, as shown in Table 4.

Table 4 Selection of 3-/4-line Serial Interface Mode

SMODE	Serial Interface Mode
Н	3-line
L	4-line

(1-5) 4-line Serial Interface Mode

While the chip select is active (CSb="L"), the SDA and SCL are enabled. While the chip select is inactive (CSb="H"), the SDA and SCL are disabled, and the internal shift register and the internal counter are being initialized. 8-bit serial data on the SDA is latched at the rising edge of the SCL signal in order of D_7 , D_6 ,..., and D_0 , and converted into 8-bit parallel data at the timing of the internal signal produced from the 8^{th} SCL signal. The data on the SDA is interpreted as display data or instruction according to the RS.

Table 5 Data Recognition (4-line Serial Interface)

	, , , , , , , , , , , , , , , , , , , ,
RS	Data Recognition
Н	Instruction
L	Display Data

Note that the SCL should be set to "L" right after data transmission or during non-access because the serial interface is susceptible to external noises which may cause malfunctions. For added safety, inactivate the chip-select (CSb="H") temporary whenever 8-bit data transmission is completed. Fig 1 illustrates the interface timing of the 4-line serial interface mode.

Fig 1 4-line Serial Interface Timing

(1-6) 3-line Serial Interface Mode

While the chip select is active (CSb="L"), the SDA and SCL are enabled. While the chip select is not active (CSb="H"), the SDA and SCL are disabled, and the internal shift register and the internal counter are being initialized. 9-bit serial data on the SDA is latched at the rising edge of the SCL signal in order of RS, D_7 , D_6 ,..., and D_0 , and then converted into 9-bit parallel data at the timing of the internal signal produced from the 9th SCL signal. The data on the SDA is interpreted as display data or instruction according to the combination of the RS bit and the SPOL status, as follows.

Table 6 Data Recognition (3-line Serial Interface)

	SPOL=L		SPOL=H
RS	Data Recognition	RS	Data Recognition
0	Display Data	0	Instruction
1	Instruction	1	Display Data

Note that the SCL should be set to "L" right after data transmission or during non-access because the serial interface is susceptible to external noises which may cause malfunctions. For added safety, inactivate the chip-select (CSb="H") temporary whenever 9-bit data transmission is completed. Fig 2 illustrates the interface timing of the 3-line serial interface mode.

Fig 2 3-line Serial Interface Timing

(1-7) Accessing DDRAM

While the chip select is active (CSb="L"), the data from MPU can be written into the DDRAM or the instruction register. When the RS is "L", the data is interpreted as display data which is stored in the DDRAM. The display data is latched at the rising edge of the WRb signal in the 80-series MPU mode, or at the falling edge of the E signal in the 68-series MPU mode.

Table 7 Data Recognition

RS	Data Recognition
L	Display Data
Н	Instruction

In the DDRAM read sequence, be sure to execute a dummy read right after setting an address or right after writing display data or instruction. The data from MPU is temporarily held in the internal bus-holder, then released on the internal data-bus, therefore a dummy data is read out by the 1st "Display Data Read" instruction. After that, the display data is read out from a specified address by the 2nd instruction. Note that the "Display Data Read" instruction cannot be used in the serial interface mode.

Display Data Write Operation

Display Data Read Operation

Fig 3 Internal-signal Timing of Display Data Read/Write Operations

NOTE) In 16-bit bus length mode, instruction is transmitted to/from instruction register in 16 bits, as well as display data.

(1-8) Accessing Instruction Register

Each instruction register has a specific address in between (0H) and (FH), and instruction data is read out from the register by the "Register Address" and "Register Read" instructions. For more information, refer to "(14-23) Register Address" and "(14-24) Register Read /ID Code Read".

Fig 4 Access Timing of Instruction Register

(1-9) Selection of 8-/16-bit Bus Length (Parallel Interface Mode)

Either 8- or 16-bit bus length is selected by the D₀ (WLS) bit of the "Bus Length" instruction. In the 16-bit bus length mode, instruction as well as display data is transmitted to/from the instruction registers in 16 bits (D_{15} to D_0). However, only lower 8 bits $(D_7 \text{ to } D_0)$ are valid for instruction register access. And only 12 bits are actually stored in the DDRAM, even though entire 16 bits (D_{15} to D_0) are transmitted for DDRAM access. For more information, refer to "(4-4) Bit Assignment of Display Data".

Table 8 Selection of 8-/16-bit Bus Length Mode

WLS	Bus Length Mode
L	8-bit Bus Length
Н	16-bit Bus Length

(2) INITIAL DISPLAY LINE REGISTER

The address data in the initial display line register specifies the row address, which corresponds to an initial COM and is normally positioned on top of a screen in full display. The initial COM is the start position of common scanning, which is specified by the "Initial COM" instruction.

The row address, which is established in the initial display line register, is preset into the line counter whenever the FLM becomes "H". At the rising edge of the CL signal, the line counter is counted-up, then 312-bit display data is latched into the data latch circuit. At the falling edge of the CL signal, the latch data is released to the grayscale control circuit to decide a grayscale level, then the segment drivers Ai, Bi and Ci (i=0 to 103) generate LCD waveforms.

(3) COLUMN AND ROW ADDRESS COUNTERS

The column and row address counters designate a column address and a row address respectively for DDRAM access, but they are completely independent from the line counter. The line counter provides a line address which is synchronized with display control timings such as the FLM and the CL.

(4) DDRAM

(4-1) DDRAM Address Range

The DDRAM is capable of 80 bits for row address and 1,248 bits (12-bit x 104-segment) for column address. The range of the column address is varied depending on the settings as follows, and the row address is from (00H) to (4FH). Setting outside these ranges is not allowed, otherwise it may cause malfunctions. For DDRAM access, two data transmissions are needed for 1 RGB-pixel in the 8-bit bus length mode, and one transmission in the 16-bit bus length mode.

8-bit Bus Length

Fig 5 Range of Column Address in 8-bit Bus Length

16-bit Bus Length

Fig 6 Range of Column Address in 16-bit Bus Length

(4-2) Window Area for DDRAM Access

In addition to the normal DDRAM access discussed previously, the window area access can be used. This area is set by the "Increment Control" instruction and the designation of the start point and the end point.

By the "Increment Control", an auto-increment is set for column address and row address individually. Once this mode is set up, the column address, row address or both are automatically counted up, whenever the DDRAM is accessed. And, the start point is specified by the "Column Address" and "Row Address" instructions, and the end point by the "Window End Column Address" and "Window End Row Address" instructions. For more information, refer to "(14-9) Increment Control", "(14-25) Window End Column Address" and "(14-26) Window End Row Address". The typical sequence of the window area setting is listed below.

- 1. Set "1" at D₃ (WIN), D₁ (AYI) and D₀ (AXI) of "Increment Control" instruction.
- 2. Set start point by "Column Address" and "Row Address" instructions.
- 3. Set end point by "Window End Column Address" and "Window End Row Address" instructions.
- 4. Window area is set up, and DDRAM can be accessed.

NOTE) The order of address setting is column address first, then row address.

Whole DDRAM Area

Fig 7 Window Area

- NOTE1) The following relation should be maintained to avoid malfunctions.
 - AX (Window Start Column Address) < EX (Window End Column Address) < Maximum Column Address
 - AY (Window Start Row Address) < EY (Window End Row Address) < Maximum Row Address

NOTE3) Auto-increment in the window area

A read-modify-write operation is enabled by setting "1" at the D2 (AIM) of the "Increment Control" instruction. Refer to the description about "AIM" bit in "(14-9) Increment Control".

(4-3) Segment Direction

The DDRAM access direction is controlled by the D_0 (REF) bit of the "Display Control (2)" instruction. This function is used to reverse the segment direction for reducing the restrictions on the IC position of an LCD module.

- D₇ D₆ D₅ D₄ D₃ D₂ D₁ D₀

- D₇ D₆ D₅ D₄ D₃ D₂ D₁ D₀

- D₇ D₆ D₅ D₄ D₃ D₂ D₁ D₀

D₆ D₅

D₆ D₅ D₄

(4-4) Bit Assignment of Display Data

(4-4-1) Bit Assignment Overview

ps is used for grasping general outlines of the variations in the bit assignment of display data.

T	he	se	maps		sis	us	sec	l fo	or g	gra	sp	ing	g	ene	era	1 o	utl	ine	es	of 1	the	v	ariati
	Palette C	B ₀ C ₃ C ₂ C ₁ C ₀		D_7 D_4 D_3 D_2 D_1		D ₇ D ₄ D ₃ D ₂ D ₁		D ₄ D ₃ D ₂ D ₁ D ₀		D ₄ D ₃ D ₂ D ₁ D ₀	X=CFH	D ₇ D ₄ D ₃ D ₂ D ₁	X=01H	D_0 D_7 D_4 D_3 D_2 D_1	X=CFH	D ₄ D ₃ D ₂ D ₁ D ₀	X=01H	D ₄ D ₃ D ₂ D ₁ D ₀	Х=9ВН	D ₄ D ₃ D ₂ D ₁ D ₀	X=01H(H)	$D_0 D_7 D_6 D_5 D_4$	
SEG ₁₀₃	Palette A Palette B	A ₃ A ₂ A ₁ A ₀ B ₃ B ₂ B ₁	H29=X	5 D14 D13 D12 D10 D9 D8	H00=X	5 D ₁₄ D ₁₃ D ₁₂ D ₁₀ D ₉ D ₈	H29=X	1 D ₁₀ D ₉ D ₈ D ₇ D ₆ D ₅ D ₄	H00=X	D ₃ D ₂ D ₁ D ₀ D ₁₁ D ₁₀ D ₉ D ₈ D ₇ D ₆ D ₅ D ₄	X=CEH	D ₇ D ₆ D ₅ D ₄ D ₂ D ₁ D ₀	H00=X	D_7 D_6 D_5 D_4 D_2 D_1 D_0	X=CEH	D_3 D_2 D_1 D_0 D_7 D_6 D_5 D_4 D_3 D_2 D_1 D_0	H00=X	$D_2 \ D_1 \ D_0 \ D_7 \ D_6 \ D_5 \ D_4 \ D_3 \ D_2 \ D_1 \ D_0 \ D_7 \ D_6 \ D_5 \ D_4 \ D_3 \ D_2 \ D_1 \ D_0$		D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0	H00=X	D ₇ D ₆ D ₅ D ₄ D ₃ D ₂ D ₁ D ₀ D ₇ D ₆ D ₅ D ₄ D ₃ D ₂ D ₁ D ₀	
	3 Palette C	B ₀ C ₃ C ₂ C ₁ C ₀		D ₇ D ₄ D ₃ D ₂ D ₁ D ₁		D ₇ D ₄ D ₃ D ₂ D ₁ D ₁		D ₄ D ₃ D ₂ D ₁ D ₀ D ₁₁ D ₁₀ D ₉ D ₈			X=CDH	D ₄ D ₃ D ₂ D ₁	X=03H		X=CDH		X=03H	D ₄ D ₃ D ₂ D ₁ D ₀ D ₃	HV6=X	D ₀ D ₇ D ₆ D ₅ D ₄ D ₃	X=02H	D ₄ D ₃ D ₂ D ₁ D ₀ D ₇	
SEG ₁₀₂	Palette A Palette B	A ₃ A ₂ A ₁ A ₀ B ₃ B ₂ B ₁	H99=X	D15 D14 D13 D12 D10 D9 D8 D7 D4 D3 D2 D1 D15 D14 D13 D12 D10 D9 D8 D7	X=01H	D15 D14 D13 D12 D10 D9 D8 D7 D4 D3 D2 D1 D15 D14 D13 D12 D10 D9 D8 D7	H99=X	D ₁₁ D ₁₀ D ₉ D ₈ D ₇ D ₆ D ₅ D ₄	X=01H	D ₁₁ D ₁₀ D ₉ D ₈ D ₇ D ₆ D ₅ D ₄	X=CCH	D ₇ D ₆ D ₅ D ₄ D ₂ D ₁ D ₀ D ₇	X=02H	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	X=CCH	D_3 D_2 D_1 D_0 D_7 D_6 D_5 D_4 D_3 D_2 D_1 D_0	X=02H	D_3 D_2 D_1 D_0 D_7 D_6 D_5	H66=X	D ₇ D ₆ D ₅ D ₄ D ₃ D ₂ D ₁	X=01H(L)	D ₃ D ₂ D ₁ D ₀ D ₇ D ₆ D ₅	
П		1												1				_					de)
	Palette C	B ₀ C ₃ C ₂ C ₁ C ₀	0	D ₇ D ₄ D ₃ D ₂ D ₁		D ₇ D ₄ D ₃ D ₂ D ₁		D ₄ D ₃ D ₂ D ₁ D ₀		D ₄ D ₃ D ₂ D ₁ D ₀	X=03H	D ₇ D ₄ D ₃ D ₂ D ₁	X=CDH	D ₇ D ₄ D ₃ D ₂ D ₁	X=03H	D ₅ D ₄ D ₃ D ₂ D ₁ D ₀	х=сDН	$D_5 \hspace{0.1cm} D_4 \hspace{0.1cm} D_3 \hspace{0.1cm} D_2 \hspace{0.1cm} D_1 \hspace{0.1cm} D_0$	X=02H	D ₁ D ₀ D ₇ D ₆ D ₅ D ₄ D ₃ D ₂ D ₁ D ₀	X=9AH(H)	D ₆ D ₅ D ₄ D ₃ D ₂ D ₁ D ₀ D ₇ D ₆ D ₅ D ₄	RAM MAP 2 (Variable 8-grayscale Mode, Fixed 8-grayscale Mode or B&W Mode)
SEG1	Palette B	B ₃ B ₂ B ₁	X=01H	D ₁₄ D ₁₃ D ₁₂ D ₁₀ D ₉ D ₈ D ₇ D ₄ D ₃	H99=X	D ₁₄ D ₁₃ D ₁₂ D ₁₀ D ₉ D ₈ D ₇ D ₄ D ₃	X=01H	8 D ₇ D ₆ D ₅ D ₄ D ₃	H99=X	D ₁₀ D ₉ D ₈ D ₇ D ₆ D ₅	2H	D ₅ D ₄ D ₂ D ₁ D ₀	СН	Do		0 D7 D6 D5	`	D ₂ D ₁ D ₀ D ₇ D ₆ D ₅		0 D7 D6 D5	H66=X	4 D ₃ D ₂ D ₁	ayscale Mo
	Palette A	A ₃ A ₂ A ₁ A ₀		D ₁₅ D ₁₄ D ₁₃ D ₁	•	D ₁₅ D ₁₄ D ₁₃ D ₁		D ₁₁ D ₁₀ D ₉ D ₈		D ₁₁	X=02H	D ₇ D ₆ D ₅ D.	X=CCH	D ₇ D ₆ D ₅ D ₄ D ₂ D ₁	X=02H	D ₃ D ₂ D ₁ D ₀ D ₇ D ₆	X=CCH	D ₀ D ₃ D ₂ D ₁ D ₁	X=01H	D_2	×	D ₀ D ₇ D ₆ D ₅ D.	Fixed 8-gr
	Palette C	C ₃ C ₂ C ₁ C ₀	ū	D ₄ D ₃ D ₂ D ₁		D ₄ D ₃ D ₂ D ₁		D ₃ D ₂ D ₁ D ₀		D ₃ D ₂ D ₁ D ₀	X=01H	D ₇ D ₄ D ₃ D ₂ D ₁	X=CFH	D_7 D_4 D_3 D_2 D_1	X=01H	D ₅ D ₄ D ₃ D ₂ D ₁ D ₀	X=CFH	D_5 D_4 D_3 D_2 D_1 D_0	×	D ₁ D ₀ D ₇ D ₆ D ₅ D ₄ D ₃	X=9BH	$D_5 \hspace{0.1cm} D_4 \hspace{0.1cm} D_3 \hspace{0.1cm} D_2 \hspace{0.1cm} D_1 \hspace{0.1cm} D_0$	scale Mode,
SEG ₀	Palette B	B ₃ B ₂ B ₁ B ₀	H00=X	D ₁₅ D ₁₄ D ₁₃ D ₁₂ D ₁₀ D ₉ D ₈ D ₇ D ₄	X=67H	D ₁₄ D ₁₃ D ₁₂ D ₁₀ D ₉ D ₈ D ₇ D ₄	H00=X	D ₇ D ₆ D ₅ D ₄ D ₃	H29=X	D ₈ D ₇ D ₆ D ₅ D ₄	H	D ₅ D ₄ D ₂ D ₁ D ₀ D ₇	 H	D_0	×	D ₇ D ₆	ΞX	D_1 D_0 D_7 D_6 D_5 D_4	H00=X	D_2	=X	D ₇ D ₆ D ₅ D ₄	riable 8-gray
	Palette A	A ₃ A ₂ A ₁ A ₀		D ₁₅ D ₁₄ D ₁₃ D ₁₂		D ₁₅ D ₁₄ D ₁₃ D ₁₂		D ₁₁ D ₁₀ D ₉ D ₈		D ₁₁ D ₁₀ D ₉ D ₈	H00=X	D ₇ D ₆ D ₅ D ₄	нээ=х	D_7 D_6 D_5 D_4 D_2 D_1	H00=X	D ₃ D ₂ D ₁ D ₀	Х=СЕН	D_3 D_2 D_1 D_0	=X	D ₇ D ₆ D ₅ D ₄ D ₃	X=9AH(L)	$D_3 D_2 D_1 D_0 D_7 D_6$	I MAP 2 (Va
	C256 REF			0		0		0		0		0) -		0	-) -		0		o -	RAN
	HSV			×		×		×		×		0	,	О		0		0	,	-		-	
	ABS	;		0		0	,	-		-	(o	(o	,	-	7	-		×		×	Table 9-2
	WLS		7		,	-	,	-	,	-	(0	C	0	C	0		0	(0	C	0	able
Mode		16b			bit									8	8bit								_

C256 REF HSW ABS WLS

D₇ D₆ D₅ D₄ D₃ D₂ D₁ D₀ × × 0 8 bit

_	abl	Table 10 SWAP		
SV	SV	Palette A	Palette B	Palette
VAP	VAP	A ₃ A ₂ A ₁ A ₀	B ₃ B ₂ B ₁ B ₀	C ₃ C ₂ C ₁
0	0		- 0010	.0010
1	1	SEGAX	SEGBX	SECO
0	1			· V — J — J
1	0	SEGUX	SEGBX	SEGA

NOTE2) The functions of the variable 8-grayscale mode are different from those of the fixed 8-grayscale mode. NOTE1) On the RAM MAP 2, A₀, B₀, C₁ and C₀ bits are fixed to "1".

NOTE3) The contents of the DDRAM at "C256=0" are not compatible with the contents at "C256=1"

Table 9-1

RAM MAP 1 (Variable 16-grayscale Mode, Fixed 8-grayscale Mode or B&W Mode)

- 26 -

(4-4-2) Bit Assignment in Variable 16-grayscale Mode

16-bit Bus Length (MON=0, PWM=0, C256=0, WLS=1)

HSW	ABS	REF	SWAP								Col	lumr	ı Ad	dres	s/D	Display Da	ta / 🤅	Segr	nen	t Dri	ver								
*	0	0	0						X=0	10H						$\leftarrow \rightarrow$						X=6	37H						
*	0	1	1	X=67H									\longleftrightarrow	X=00H															
	Display [D ₁₅		D ₁₃	D			D ₈				<u> </u>	D ₁	\longleftrightarrow	D ₁₅		D ₁₃	D ₁₂			D ₈	D ₇					
	Grayscale Palette					tte A	١.	Palette B			Palette C			\longleftrightarrow	Palette A				Palette B				Palette C						
	Segment Driver					GA₀		SEGB ₀				SEGC ₀			\longleftrightarrow	SEGA ₁₀₃				•	SEG	B ₁₀₃	3	SEGC ₁₀₃					

HSW	0 0 1 X=00H 0 1 0 X=67H														s/D	Display Da	ıta / :	Segr	men	t Dri	ver							
*	* 0 1 0 X=67H															$\leftarrow \rightarrow$						X=6	37H					
*	0	1				X=6	37H						$\leftarrow \rightarrow$						X=0	00H								
	. ,	Data in D		D	Pale				മ Pale					∠ tte C	D ₁	\longleftrightarrow			tte A		D ₁₀		د tte E		D ₄	ے Palet	²□ te C) D ₁
		t Driver		SE	GC₀			SEC	GB₀			SE	GA₀		\longleftrightarrow	;	SEG	GC ₁₀₃	3	Ç	SEG	B ₁₀₃	3	,	SEG	A ₁₀₃		

HSW	ABS REF SWAP Column Addres 1 0 0 X=00H 1 1 1 X=67H														s/E	Display Da	ita / :	Segi	men	t Dri	ver							
*	1 0 0 X 1 1 1 X Display Data in DDRAM 立 点 点 点 点 点 点 点 点 点 点 点 点 点 点 点 点 点 点 点															$\leftarrow \rightarrow$						X=6	37H					
*	1 1 1 X															$\leftarrow \rightarrow$						X=0)0H					
		Data in [ot Oale				° Pale					tte C	D ₀	\longleftrightarrow	D ₁₁		ိ tte A	D ₈		°ale	° tte E	D ₄		^z Palet		
		nt Driver		SE	GA ₀			SE	GB₀			SE	GC₀		\longleftrightarrow		SEG	A ₁₀₃	3	Ç	SEG	B ₁₀₃	3	;	SEG	C ₁₀₃		

	HSW	ABS		Со	lumi	n Ad	dres	s/E	Display Da	ita / :	Segr	nen	t Dri	ver															
ĺ	*	1	0	1						X=0	10H						$\leftarrow \rightarrow$						X=6	37H					
ĺ	*	1	1	0						X=6	7H						$\leftarrow \rightarrow$						X=(HOC					
_	ı	Display I	Data in [DDRAM	D ₁₁	D ₁₀	D _o	D ₈	D ₇	D_{e}	D_5	D ₄	D_3	D_2	D ₁	D _o	\longleftrightarrow	D ₁₁	D ₁₀	D _o	D ₈	D ₇	D _e	Ds	D_4	D³	D_2	D ₁	D _o
	Grayscale Palette					Pale	tte A	١.	ı	Pale	tte E	3	ı	Pale	tte C		\longleftrightarrow	I	Pale	tte A	١	F	Pale	tte E	3	ı	Palet	te C	2
			nt Driver		SE	GC₀			SEC	GB₀			SE	GA₀		\longleftrightarrow		SEG	iC ₁₀₃	3	·,	SEG	3B ₁₀₃	3		SEG	A ₁₀₃		

8-bit Bus Length (MON=0, PWM=0, C256=0, WLS=0)

HS	SW	ABS	REF	SWAP								Со	lumr	n Ad	dres	s/D	isplay Da	ıta / 🤄	Segr	men	t Dri	ver							
()	0	0	0			Х	=00	Н				X	=01	Н		$\leftarrow \rightarrow$			X:	=CE	Н				Х	=CF	Н	
()	0	1			X:	=CE	Н				X:	=CF	Ή		\longleftrightarrow			Χ	=00	Н				Х	=011	1		
	[DDRAM	D ₇	D_6	D_{5}	D ₄	D_2	D1	D_0	D ₇	D ₄	D³	D_2	D1	\longleftrightarrow	D ₇	D_6	D_5	D_4	D_2	D1	D ₀	D ₇	D ₄	D_3	D_2	D ₁		
	Grayscale Palette					Pale	tte A	١	ı	Pale	tte E	3	F	Pale	tte C	,	\longleftrightarrow	ı	Pale	tte A	١.	F	Pale	tte E	3	ı	Pale	te C	;
	Display Data in DDR/ Grayscale Pale Segment Dri					SE	GA₀			SEC	GB₀			SE	GC₀	·	\longleftrightarrow	,	SEG	6A ₁₀₃		•	SEG	B ₁₀₃	3		SEG	C ₁₀₃	3

HSW	ABS	REF	SWAP								Со	lumr	n Ad	dres	s/D	isplay Da	ıta / :	Segr	men	t Dri	ver							
0	0	1			Х	=00	Н				X	=01	Н		$\leftarrow \rightarrow$			X:	=CE	Н				Х	=CF	Н		
0	0	0			X:	=CE	Н				X:	=CF	Н		$\leftarrow \rightarrow$			Х	=00	Н				Х	=011	Н		
	Display I	DDRAM	D ₇	De	D_S	D ₄	D_2	D ₁	D_0	D ₇	D ₄	D_3	D_2	D ₁	\longleftrightarrow	D ₇	D_6	D_{S}	D ₄	D_2	D ₁	D_0	D ₇	D ₄	D ₃	D_2	D ₁	
	Grayscale Palette					tte A		ı	Pale	tte E	3	F	Pale	tte C	;	\longleftrightarrow	ı	Pale	tte A	١.	F	Pale	tte E	3	ı	Pale	tte C	;
					SEC	3C₀			SEC	GB₀			SE	GA₀		\longleftrightarrow	;	SEG	C ₁₀₃	3		SEG	B ₁₀₃	3		SEG	iA ₁₀₃	3

HSW	ABS	REF	SWAP								Со	lumr	n Ad	ldres	s/E	Display Da	ata / :	Segi	men	t Dri	ver							
0	1 0 1 1 Display Data in DDF				X=0)0H					X=()1H				$\leftarrow \rightarrow$		X=0	ŒΗ					X=0	CFH			
0	1	1		X=C	CEH					X=(CFH				$\leftarrow \rightarrow$		X=()0H					X=0)1H				
	Display I	Data in [DDRAM	D_3	D_2	D ₁	D ₀	D ₇	D ₆	D_S	D ₄	D_3	D_2	D ₁	D_0	\longleftrightarrow	D³	D_2	D1	D ₀	D ₇	De	D ₅	D ₄	D ₃	D_2	D ₁	D ₀
	Grayscale Palett					tte A	١.	ı	Pale	tte E	3	F	Pale	tte C	;	\longleftrightarrow	ı	Pale	tte A	A	F	Pale	tte E	3	ı	Palet	tte C	;
	Display Data in DDR Grayscale Pale Segment Dri				SE	GA₀			SEC	GB₀			SE	GC₀		\longleftrightarrow		SEG	A ₁₀₃	3	,	SEG	B ₁₀₃			SEG	iC ₁₀₃	3

HSW	ABS	REF	SWAP								Со	lumr	n Ad	dres	s/E	Display Da	ita / :	Segr	nen	t Dri	ver							
0	1	1 0 1 1			X=()0H					X=()1H				$\leftarrow \rightarrow$		X=C	ΈH					X=(CFH			
0	1	1	0		X=0	CEH					X=(CFH				$\leftarrow \rightarrow$		X=0)0H					X=0)1H			
	Display [D₃	D_2	D1	D ₀	D ₇	De	D_{5}	D ₄	D_3	D_2	D ₁	D_0	\longleftrightarrow	D³	D_2	D ₁	D ₀	D ₇	De	Ds	D ₄	D₃	D_2	D ₁	D ₀		
	Grayscale Palette					tte A		F	Pale	tte E	3	F	Pale	tte C	;	\longleftrightarrow	ı	Pale	tte A		F	Pale	tte E	3	F	Palet	te C	;
		t Driver		SE	GC₀			SEC	GB₀			SE	GA₀		\longleftrightarrow	ļ	SEG	iC ₁₀₃	3	,	SEG	B ₁₀₃	1	,	SEG	A ₁₀₃		

HSW	ABS	REF	SWAP							(Colui	mn A	Addre	ess /	Disp	olay	Data	ı / Se	egme	ent C)rive	r						
1	*	0	0				X=(00H							X=()1H							X=0)2H				
	Display	Data in I	DDRAM	D ₇	De	D_5	D ₄	D ₃	D_2	D ₁	D_0	D ₇	D_6	D_5	D ₄	D ₃	D_2	D1	D ₀	D ₇	D_6	D_{S}	D ₄	D ₃	D_2	D1	D_0	
	G	Srayscale	Palette		Pale	tte A			Pale	tte B			Pale	tte C	;		Pale	tte A			Pale	tte B	}		Pale	tte C	;	· · · ·
		Segmer	nt Driver		SE	GA₀			SE	GB₀			SEC	3C₀			SE	GA₁			SEC	GB₁			SE	GC₁		

						Сс	lum	n Ad	dres	s/D	ispla	ay Da	ata /	Seg	men	t Dri	ver						
			X=9	99H							X=9	AH							X=9	9BH			
 D7							οO	D ₇	⁹ O	D_S	D₄	D_3	D_2	٦	D_0	D ₇	⁹ Q	D ₅	P	D_3	D_2	D₁	D ₀
	Palette A Palette B							Pale	tte C	;		Pale	tte A	١		Pale	tte B	;		Pale	tte C	``	
	SEGA ₁₀₂ SEGB ₁₀₂						SEG	C ₁₀₂	2		SEC	A ₁₀₃			SEG	B ₁₀₃			SEC	3C ₁₀₃	3		

HSV	/ ABS	REF	SWAP							(Colui	mn A	Addre	ess /	Dis	olay	Data	a / Se	egme	ent D)rive	r						
1	*	0	1				X=(H00							X=()1H							X=()2H				
	Display	/ Data in I	DDRAM	D ₇	D_6	D_5	D ₄	D₃	D_2	D1	D_0	D ₇	De	D_{S}	D ₄	D_3	D_2	D ₁	D_0	D7	De	Ds	D ₄	D3	D_2	D1	Ο°	ļ
	(Grayscale	Palette		Pale	tte A			Pale	tte B			Pale	tte C	;		Pale	tte A			Pale	tte B	3		Pale	tte C		
		Segmer	SE	GC₀			SE	$\overline{GB_0}$			SE	GA_0			SE	GC₁			SE	GB₁			SE	GA₁				

						Сс	lum	n Ad	dres	s/D	ispla	ay Da	ata /	Seg	men	t Dri	ver						
			X=9	99H							X=9	AH.							X=9	BH			
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								D ₇	⁹ Q	Ds	Pγ	D_3	D_2	٦	D_0	D7	⁹ Q	D ₅	Pγ	D_3	D_2	D_1	D ₀
	Palette A Palette B								Pale	tte C	;		Pale	tte A	١		Pale	tte B	1		Pale	tte C	,
	SEGC ₁₀₂ SEGB ₁₀₂								SEC	A ₁₀₂			SEG	C ₁₀₃			SEG	B ₁₀₃			SEC	A ₁₀₃	

HSW	ABS	REF	SWAP							(Colui	mn A	Addre	ess /	Disp	olay	Data	a / Se	egme	ent D	rive	r						
1	*	1					X=9	BH							X=9	99H					X=9	HA6						
	* 1 0 X=9AH Display Data in DDRAM C C C								D ₆	D_5	D_4	D_3	D_2	D_1	D_0	D7	D_6	D5	D_4	D_3	D_2	D1	D ₀	D7	De	D ₅	D ₄	
		Srayscale	Palette		Pale	tte A			Pale	tte B			Pale	tte C	;		Pale	tte A			Pale	tte E	3		Pale	tte C		
		Segmer	nt Driver		SE	GC₀			SE	$\overline{GB_0}$			SE	\overline{GA}_0			SE	GC₁			SE	GB₁			SE	GA₁		

						Co	lum	n Ad	dres	s/D	ispla	ay Da	ata /	Seg	men	t Dri	ver					
	X=(01H					X=()2H							X=0)0H				X=()1H	
 2																						
	Pale	tte A	\		Pale	tte B	}		Pale	tte C	;		Pale	tte A		ı	Pale	te B		Pale	tte C	;
	SEG	€C ₁₀₂	2		SEG	B ₁₀₂			SEG	A ₁₀₂			SEG	C_{103}			SEG	B ₁₀₃		SEG	A ₁₀₃	

HSV	/V	ABS	REF	SWAP							(Colur	mn A	Addre	ess /	Disp	olay	Data	1 / Se	egme	ent D	rive	r						
1		*	1	1	1 X=9AH 2 2 2 A							X=9	ВН							X=9	99H					X=9	AH.		
		Display	Data in [DDRAM	1 1 1 1				D7	De	D_{5}	D_4	D_3	D_2	D1	D_0	D7	D_6	D_5	D_4	D₃	D_2	D1	D ₀	D7	D ₆	Ds	D_4	
		G	rayscale	Palette		Pale	tte A			Pale	tte B			Pale	te C	;		Pale	tte A		F	Pale	tte B	3		Pale	tte C		
			Segmen	t Driver		SEC	GA₀			SE	GB₀			SEC	3C₀			SE	GA₁			SEC	GB₁			SE	GC₁		

-						Co	lum	n Ad	dres	s/D	ispla	ay Da	ata /	Seg	men	t Dri	ver						
	X=()1H					X=()2H							X=0)0H					X=()1H	
 D_3	D_2	D1	D ₀	D ₇	D_6	D_5	D ₄	D₃	D_2	D1	D_0	D7	D_6	D5	D ₄	D ₃	D_2	D1	D ₀	D ₇	De	D_5	D_4
	Pale	tte A			Pale	tte B	}		Pale	tte C	,		Pale	tte A			Pale	tte B			Pale	tte C	;
	SEC	A ₁₀₂			SEG	B ₁₀₂			SEG	C ₁₀₂			SEC	A ₁₀₃			SEG	B ₁₀₃			SEG	C ₁₀₃	

New Japan Radio Co., Ltd. -

(4-4-3) Bit Assignment in Variable 8-level Gradation Mode

8-bit Bus Length (MON=0, PWM=0, C256=1, WLS=0)

HSW	ABS	REF	SWAP						Co	lumn Ac	ldress /	Display Da	ta / S	egme	nt Dri	ver				
*	*	0	0				X	(=00F	1			$\leftarrow \rightarrow$				>	<=67F	1		
*	*	1	1				Χ	(=67F	ł			$\leftarrow \rightarrow$				>	(=00H	1		
ı	Display [Data in [DDRAM	D ₇	D ₆	Ds	D ₄	D³	D_2	D1	Do	\longleftrightarrow	D ₇	D ₆	D ₅	D ₄	D_3	D_2	D1	D ₀
	G	rayscale	Palette	Pa	alette	Α	Pa	alette	В	Pale	tte C	\longleftrightarrow	P	alette	Α	Pa	alette	В	Pale	tte C
		Segmen	t Driver	9	SEGA	0	5	SEGB	0	SE	GC₀	$\leftarrow \rightarrow$	S	EGA₁	03	S	EGB₁	03	SEG	iC ₁₀₃

HSW	ABS	REF	SWAP						Co	lumn Ac	ldress /	Display Da	ıta / S	egme	nt Dri	ver				
*	*	0	1				>	(=00F	1			$\leftarrow \rightarrow$)	K=671	1		
*	*	1	0				>	(=67F	ł			$\leftarrow \rightarrow$)	K=00H	1		
	Display [Data in [DDRAM														D ₁	D ₀		
	G	rayscale	Palette	P	alette	Α	P	alette	В	Pale	tte C	$\leftarrow \rightarrow$	Р	alette	Α	P	alette	В	Palet	te C
		Segmen	t Driver	9	SEGC	0		SEGB	0	SE	GA ₀	\longleftrightarrow	S	EGC₁	03	S	EGB₁	03	SEG	A ₁₀₃

(4-4-4) Bit Assignment in Fixed 8-level Gradation Mode

16-bit Bus Length (MON=0, PWM=1, C256=0, WLS=1)

HSW	ABS	REF	SWAP								Co	lumı	n Ad	dres	s / C	Display Da	ta / S	Segr	nen	t Dri	ver							
*	0	0	0						X=0	10H						$\leftarrow \rightarrow$						X=6	37H					
*	0	1	1						X=6	7H						\longleftrightarrow						X=()0H					
ı	Display [polov Poto in PDPAM un a la l										۵		2														
	G	rayscale	Palette	F	Pale	tte A		F	Palet	tte B	,	I	Pale	tte ($\leftarrow \rightarrow$	ı	Pale	tte A	A	F	Pale	tte E	3	F	Palet	te C	
		Segmen	t Driver		SE	GA₀			SEC	3B₀			SE	GC₀		\longleftrightarrow	,	SEG	A ₁₀₃	3	-	SEG	B ₁₀₃	3	,	SEG	C ₁₀₃	

HSW	ABS	REF	SWAP							Col	lumr	n Ad	dres	s/D	isplay Da	ta / S	Segr	nen	t Dri	ver							
*	0	0	1					X=0	10H						$\leftarrow \rightarrow$						X=6	37H					
*	0	1	0					X=6	7H						$\leftarrow \rightarrow$						X=0	00H					
	Display [Data in [rayscale		D ₁₅	Pale	tte A	D	_o Pale	മ tte E			ິດ Pale	/	; [5]	\longleftrightarrow	D ₁₅	Pale	د tte A	D		മ Pale	മ് tte E			l	te C	7
		Segmen	t Driver		SE	GC₀		SEC	GB₀			SE	GA₀		$\leftarrow \rightarrow$,	SEG	iC ₁₀₃	3	5	SEG	B ₁₀₃	3	,	SEG	A ₁₀₃	

NOTE) The data indicated with a slash mark (/) is invalid.

HSW	ABS	REF	SWAP								Col	lumr	n Ad	dres	s/D	Display Da	ita / S	Segr	nen	t Dri	ver						
*	1	0	0						X=0)0H						$\leftarrow \rightarrow$						X=6	37H				
*	1	1	1						X=6	37H						$\leftarrow \rightarrow$						X=(H00				
I	. ,	Data in [rayscale		۵		മ ette A	<u>_</u>	_ D ₇	° Pale				² Pale	tte C	/	$\leftarrow \rightarrow$ $\leftarrow \rightarrow$	D ₁₁	ot Oale	മ tte A	ے گ		_ o Pale	ے tte E	<i>/</i>		Δ /c	<u></u>
		Segmen	t Driver		SE	GA₀			SEC	GB₀	·	·	SE	GC₀	·	\longleftrightarrow	,	SEG	A ₁₀₃	3	Ç	SEG	B103	3	SEG	C ₁₀₃	

HSW	ABS	REF	SWAP							Col	lumr	n Ad	dress	: / D	isplay Da	ita / S	Segr	nen	t Dri	ver						
*	1	0	1					X=0	0H						$\leftarrow \rightarrow$						X=6	37H				
*	1	1	0					X=6	7H						\longleftrightarrow						X=0	00H				
	Display [Data in D		D ₁₁	0 ص		ß	°ale		/			tte C	<u></u>	$\leftarrow \rightarrow$ $\leftarrow \rightarrow$	D ₁₁	o ₁ Oalet	മ tte A	/		°ale	ු tte E	/		ے Palet	ත් ති
		Segmen	t Driver		SE	GC₀		SEC	GB₀			SE	GA₀		$\leftarrow \rightarrow$	(SEG	C ₁₀₃	J	S	SEG	B ₁₀₃	3	(SEG	A ₁₀₃

NOTE) The data indicated with a slash mark (/) is invalid.

8-bit Bus Length (MON=0, PWM=1, C256=0, WLS=0)

HSW	ABS	REF	SWAP							Со	lumr	ո Ad	dress	s/D	isplay Da	ita / :	Segr	men	t Dri	ver							
0	0	0	0		Х	=00	Н				Х	=01	Н		$\leftarrow \rightarrow$			Χ	=CE	Н				Х	=CF	Н	
0	0	1	1		X:	=CE	Η				X	=CF	Ή		$\leftarrow \rightarrow$			Х	(=00	Н				Х	(=01	Н	
I		Data in [rayscale		° Pale		/		[∟] Pale	o tte E	<u></u>	P ₄		tte C	Ā	\longleftrightarrow		° Pale		/	_ D ₂	_ Dale		/		<u> </u>	tte C	5
		Segmen	t Driver	SE	GA₀			SE	GB₀		·	SE	GC₀		$\leftarrow \rightarrow$		SEG	A ₁₀₃	3		SEG	B ₁₀	3		SEC	6C ₁₀₃	

HSW	ABS	REF	SWAP								Со	lumr	n Ad	dres	s/D	isplay Da	ita / S	Segr	men	t Dri	ver							
0	0	0	1			X=	00F	1				Х	=01	Н		$\leftarrow \rightarrow$			X:	=CE	Н				Х	=CF	Н	
0	0	1	0			X=	CE	1				X:	=CF	Н		$\leftarrow \rightarrow$			Х	=00	Н				Х	=011	1	
	Display [Data in [D ₇		് tte A	ΔΔ		 Palet		/	D ₄		tte C	_\d_ ;;	\longleftrightarrow	D ₇	° Pale	°Ω tte A	/	_ D ₂	 Pale	tte E	D-	D ₄		d tte C	<u> </u>
		Segmen	t Driver		SE	GC₀			SEC	3B₀			SE	GA₀		\longleftrightarrow	;	SEG	C ₁₀₃	3	,	SEG	B ₁₀₃	3		SEG	A ₁₀₃	

NOTE) The data indicated with a slash mark (/) is invalid.

HSW	ABS	REF	SWAP								Co	lumr	n Ad	dres	s/D	isplay Da	ita / :	Segr	nen	t Dri	ver						
0	1	0	0		X=(D0H					X=0)1H				$\leftarrow \rightarrow$		X=C	ΈH					X=C	FΗ		
0	1	1	1		X=(CEH					X=C	CFH				$\leftarrow \rightarrow$		X=0)0H					X=0)1H		
1	Display [G	Data in [D ₃		tte A	ß	_ D ₇	മ Pale		/			tte C	, D	\longleftrightarrow	_ D ₃	^z Oale	∆ tte A			മ് Pale	S tte E	/		l	te C
		Segmen	t Driver		SE	GA₀			SEC	GB₀			SEC	GC₀		\longleftrightarrow	;	SEG	iA ₁₀₃	3	(SEG	B ₁₀₃	}	ς,	SEG	C ₁₀₃

HSW	ABS	REF	SWAP							Со	lumr	n Ad	dres	s/C	Display Da	ita / :	Segr	nen	t Dri	ver						
0	1	0	1		X=(D0H				X=0)1H				$\leftarrow \rightarrow$		X=C	ΈH					X=C	ΣFH		
0	1	1	0		X=(CEH				X=0	ĴFΗ				$\leftarrow \rightarrow$		X=0)0H					X=0)1H		
	Display [G	Data in [D ₃	<u> </u>	tte A	<u>6</u>	°ale		/			/	<i>V</i>	\longleftrightarrow	D ₃	^z Dale	∆ tte A				ے tte E	/		ر Palet	ත් ති te C
		Segmen	t Driver		SE	GC₀		SEC	GB₀			SE	GA₀		\longleftrightarrow	ţ	SEG	iC ₁₀₃	3	S	SEG	B ₁₀₃	1	ţ	SEG	A ₁₀₃

NOTE) The data indicated with a slash mark (/) is invalid.

						Со	lumi	n Ad	dres	s/D	ispla	ay Da	ata /	Seg	men	t Dri	ver						
			X=9	99H							X=9	АН							X=9)BH			
 D ₇	De	Ds	*	D_3	D_2	D1		D ₇	Pв	\$	*	D³	D_2	D1) Pd	D7	De	D_{S}	*5	D_3	D_2	≠ g	<u>/</u>
 Palette A Palette B						,		Pale	tte C	;		Pale	tte A			Pale	tte B			Pale	tte C		
	Palette A Palette B SEGA ₁₀₂ SEGB ₁₀₂								SEG	C ₁₀₂	2		SEG	A ₁₀₃			SEG	B ₁₀₃			SEC	€C ₁₀₃	

HSW	ABS	REF	SWAP							(Colui	mn A	Addre	ess /	Disp	olay	Data	a / Se	egme	ent D)rive	r						
1	*	0	1				X=()0H							X=()1H							X=(02H				
	Display	Data in [DDRAM	D7	D_6	Ds	ø [‡]	D_3	D_2	D1	J D	D ₇	De	Ž	Æ	D₃	D_2	D1	å	D7	D_6	Ds	<i>\$</i>	D³	D ₂	£ 9	\$.	
	G	Srayscale	Palette		Pale	tte A			Pale	tte B			Pale	tte C	;		Pale	tte A	١	I	Pale	tte B	}		Pale	tte C	Π.	
		Segmer	nt Driver		SE	GC₀			SE	\overline{JB}_0			SE	GA₀			SE	GC₁			SE	GB₁			SE	GA₁		

						Сс	lumi	n Ad	dres	s/D	ispla	ay Da	ata /	Seg	men	t Dri	ver						
			X=9	99H							X=9)AH							X=9	9BH			
								D ₇	D ₆	ø	*	D ₃	D_2	D1	B	D ₇	De	D5	*	D₃	D_2	₹ 	D.
 Palette A Palette B									Pale	tte C	;		Pale	tte A			Pale	tte E	}		Pale	tte C	
	SEGC ₁₀₂ Palette B SEGB ₁₀₂								SEG	A ₁₀₂	!		SEG	C ₁₀₃			SEG	B ₁₀₃			SEC	€A ₁₀₃	

HSW	ABS	REF	SWAP							(Colui	mn A	Addr	ess /	Dis _l	olay	Data	a / Se	egme	ent D)rive	r						
1	*	1	0		X=9	AH.					X=9	BH							X=9	99H					X=9)AH		
	Display	Data in [DDRAM	D3	D_2	D1	ß	D ₇	D_6	D_5	₽	D ₃	D_2	\$	Å	D ₇	D_6	D5	<i>\$</i>	D₃	D_2	D1	ø	D ₇	De	ź	ø [‡]	
	G	rayscale	Palette		Pale	tte A			Pale	tte B			Pale	tte C	;		Pale	tte A			Pale	tte B	}		Pale	tte C		
		Segmer	nt Driver		SE	GC₀			SEC	GB_0			SE	GA₀			SE	GC₁			SE	GB₁			SE	GA₁		

						Co	lum	n Ad	dres	s/D	ispla	ay Da	ata /	Seg	men	t Dri	ver						
	X=()1H					X=()2H							X=0	10H					X=()1H	
 D_3	D_2	D1	ø	D7	D_6	D_S	\$	D3	D_2	₫	Jag /	D ₇	D_6	D_5	P	D_3	D_2	D ₁	ø	D ₇	De	ž	đ
	Pale	tte A			Pale	tte B	}		Pale	tte C	,		Pale	tte A	V.	F	Pale	tte B			Pale	tte C	
	SEG	C_{102}			SEG	B ₁₀₂			SEC	A ₁₀₂			SEG	C ₁₀₃		,	SEG	B ₁₀₃			SEC	A ₁₀₃	

H	ISW	ABS	REF	SWAP							(Colur	nn A	Addre	ess /	Disp	olay	Data	/ Se	egm	ent D)rive	r						
	1	*	1	1		X=9	AH					X=9	ВН							X=9	99H					X=9	9AH		
		Display	Data in [DDRAM	D3	D_2	D1	ø	D ₇	De	Ds	\$	D³	D_2	₽ 	D D	D7	De	D_5	\$	D ₃	D_2	D1	\$	D ₇	De	ź	đ	
		G	Srayscale	Palette		Pale	tte A			Pale	tte B			Pale	te C			Pale	tte A			Pale	tte B	,		Pale	tte C		
			Segmer	nt Driver		SE	GA_0			SE	GB_0			SEC	3C₀			SEC	GA₁			SE	GB₁			SE	GC₁		

						Сс	lumi	n Ad	dres	s/D	ispla	ay Da	ata /	Seg	men	t Dri	ver						
	X=()1H					X=0)2H							X=0	10H					X=()1H	
 D₃	D_2	D_1	A	D ₇	De	D_5	**************************************	D_3	D_2	\$	\$	D ₇	De	D5	**************************************	D_3	D_2	D1	Å	D ₇	De	Ds	D ₄
	Pale	tte A	١		Pale	tte B	,		Pale	tte C	;		Pale	tte A	١	F	Pale	te B			Pale	tte C	;
	SEC	A ₁₀₂			SEG	B ₁₀₂			SEG	C ₁₀₂			SEC	A ₁₀₃		,	SEG	B ₁₀₃			SEG	C ₁₀₃	

New Japan Radio Co., Ltd.

8-bit Bus Length (MON=0, PWM=1, C256=1, WLS=0)

HSW	ABS	REF	SWAP						Co	lumn Ac	ldress / I	Display Da	ita / S	egme	nt Dri	ver				
*	*	0	0				Χ	(=00H	ł			$\leftarrow \rightarrow$)	K=671	1		
*	*	1	1				χ	(=67F	ł			$\leftarrow \rightarrow$				>	K=00H	1		
	Display [Data in [DDRAM	² Q	De	Ds	D ₄	ъ	D_2	D1	Do	$\leftarrow \rightarrow$	D ₇	⁹ Q	P ²	D4	D₃	D ₂	D ₁	Do
	Grayscale Palette				alette	Α	Pa	alette	В	Pale	tte C	\longleftrightarrow	P	alette	Α	Pi	alette	В	Palet	te C
		Segmen	t Driver	93	SEGA	0	5	SEGB	0	SE	GC₀	\longleftrightarrow	S	EGA₁	03	S	EGB₁	03	SEG	C ₁₀₃

HSW	ABS	REF	SWAP						Со	lumn Ac	Idress /	Display Da	ita / S	egme	nt Dri	ver				
*	*	0	1				>	(=00F	ł			$\leftarrow \rightarrow$)	<=67F	1		
*	*	1	0				>	(=67F	ł			$\leftarrow \rightarrow$				>	<=00H	1		
ſ	Display [Data in D	DDRAM	D ₇	D ₆	Ds	D ₄	D ₃	D ₂	D_1	Do	$\leftarrow \rightarrow$	D ₇	De	Ds	D ₄	D_3	D_2	D_1	D ₀
	Grayscale Palette				alette	Α	P	alette	В	Pale	tte C	\longleftrightarrow	P	alette	Α	P	alette	В	Pale	tte C
	Grayscale Palet Segment Driv				SEGO	0	5	SEGB	0	SE	GA₀	\longleftrightarrow	S	EGC ₁	03	S	EGB₁	03	SEG	iA ₁₀₃

(4-4-5) Bit Assignment in B&W Mode

16-bit Bus Length (MON=1, PWM=*, C256=0, WLS=1)

HSW	ABS	REF	SWAP		Co	lumn Address / D	isplay Da	ta / Segment Dri	ver	
*	0	0	0		X=00H		$\leftarrow \rightarrow$		X=67H	
*	0	1	1		X=67H		$\leftarrow \rightarrow$		X=00H	
	Display〔	Data in [Palette A	Palette B	Palette C	$\leftarrow \rightarrow$	Palette A	Palette B	Palette C
	•	a, cou.c			. 6.04.0 2		. ,			. 0.000
		Segmen	nt Driver	SEGA₀	SEGB₀	SEGC₀	$\leftarrow \rightarrow$	SEGA ₁₀₃	SEGB ₁₀₃	SEGC ₁₀₃

HSW	ABS	REF	SWAP		Co	lumn Address / D	Display Da	ta / Segment Dri	ver	
*	0	0	1		X=00H		$\leftarrow \rightarrow$		X=67H	
*	0	1	0		X=67H		$\leftarrow \rightarrow$		X=00H	
ı	Display [Data in [rayscale		Palette A	Palette B	Palette C	$\leftarrow \rightarrow$ $\leftarrow \rightarrow$	Palette A	Palette B	Palette C
		Segmen	nt Driver	SEGC ₀	SEGB₀	SEGA ₀	\longleftrightarrow	SEGC ₁₀₃	SEGB ₁₀₃	SEGA ₁₀₃

HSW	ABS	REF	SWAP		Co	lumn Address / D	Display Da	ta / Segment Dri	ver	
*	1	0	0		X=00H		$\leftarrow \rightarrow$		X=67H	
*	1	1	1		X=67H		$\leftarrow \rightarrow$		X=00H	
	Display〔	Data in [Palette A	Palette B	Palette C	$\longleftrightarrow \\ \longleftrightarrow$	Palette A	Palette B	Palette C
	Segment Driver SEGA ₀				SEGB ₀	SEGC₀	\longleftrightarrow	SEGA ₁₀₃	SEGB ₁₀₃	SEGC ₁₀₃

HSW	ABS	REF	SWAP		Co	lumn Address / D	Display Da	ta / Segment Dri	ver	
*	1	0	1		X=00H		$\leftarrow \rightarrow$		X=67H	
*	1	1	0		X=67H		$\leftarrow \rightarrow$		X=00H	
	Display [Data in [DDRAM							
	G	rayscale	Palette	Palette A	Palette B	Palette C	\longleftrightarrow	Palette A	Palette B	Palette C
		Segmen	nt Driver	SEGC₀	SEGB ₀	SEGA ₀	\longleftrightarrow	SEGC ₁₀₃	SEGB ₁₀₃	SEGA ₁₀₃

NOTE) The data indicated with a slash mark (/) is invalid, and only MSB bits are effective.

8-bit Bus Length (MON=1, PWM=*, C256=0, WLS=0)

HSW	ABS	REF	SWAP					Co	lumn	Add	dress	s / D	isplay Da	ta / S	Segn	nent	Dri	ver							
0	0	0	0		X=00	Н			X=	=01ŀ	Н		$\leftarrow \rightarrow$			X=	=CE	Н				X	=CFI	Η	
0	0	1	1		X=CE	Н			X=	-CFI	Н		$\leftarrow \rightarrow$			X:	=00I	Н				Х	=01F	1	
1	Display [Data in D	DDRAM	-á		D_2			D ₄	کم	D ₂	Á	$\leftarrow \rightarrow$	D ₇	گار	De	D₄	D ₂	6	D	<u>/</u> 6	D_4	کی		<u></u>
	Grayscale Palett		Palette	Pa	lette A	F	Palette	В	Р	Palet	tte C		\longleftrightarrow	F	Palet	te A		P	alet	tte B	3	F	Palet	te C	
		Segmen	nt Driver	S	EGA ₀		SEGB	0		SEC	GC₀		\longleftrightarrow	-	SEG	A ₁₀₃		0)	EG	B ₁₀₃	;	,	SEG	C ₁₀₃	

HSW	ABS	REF	SWAP			Colum	nn Addres	s/D	isplay Da	ta / Seg	ment Dri	iver			
0	0	0	1	X=00)H	,	X=01H		$\leftarrow \rightarrow$		X=CE	Н		X=CF	-H
0	0	1	0	X=CE	H	>	X=CFH		$\leftarrow \rightarrow$		X=00	Н		X=01	IH
1	Display [Data in D	DRAM			Ď ď		þ	\longleftrightarrow	D,	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	D ₂		D ₄	
	G	rayscale	/scale Palette Palette A		Palette B		Palette C	;	\longleftrightarrow	Pale	ette A	Pale	tte B	Pale	ette C
	Segment Drive			SEGC ₀	SEGB₀		SEGA ₀		\longleftrightarrow	SEC	3C ₁₀₃	SEG	B ₁₀₃	SEC	GA ₁₀₃

HSW	ABS	REF	SWAP		Co	lumn Address / D	Display Da	ta / Segment Dri	ver	
0	1	0	0	X=00H	X=()1H	$\leftarrow \rightarrow$	X=CEH	X=(CFH
0	1	1	1	X=CEH	X=0	CFH	$\leftarrow \rightarrow$	X=00H	X=()1H
	Display [Data in D	DRAM				\longleftrightarrow			
	G	rayscale	Palette	Palette A	Palette B	Palette C	\longleftrightarrow	Palette A	Palette B	Palette C
	Segment Drive		t Driver	SEGA ₀	SEGB₀	SEGC₀	\longleftrightarrow	SEGA ₁₀₃	SEGB ₁₀₃	SEGC ₁₀₃

HSW	ABS	REF	SWAP		Со	lumn Address / [Display Da	ta / Segment Dri	ver	
0	1	0	1	X=00H	X=()1H	$\leftarrow \rightarrow$	X=CEH	X=(CFH
0	1	1	0	X=CEH	X=(CFH	$\leftarrow \rightarrow$	X=00H	X=(01H
	Display [G	Data in [S S S S S S S S S S S S S S S S S S S	Palette B	Palette C	\longleftrightarrow	Palette A	Palette B	Palette C
		Segmen		SEGC ₀	SEGB ₀	SEGA ₀	\longleftrightarrow	SEGC ₁₀₃	SEGB ₁₀₃	SEGA ₁₀₃

NOTE) The data indicated with a slash mark (/) is invalid, and only MSB bits are effective.

HSW	ABS	REF	SWAP							(Colu	mn A	Addre	ess /	Disp	olay	Data	/ Se	egm	ent D)river	-					
1	*	0	0				X=(H00							X=0)1H							X=()2H			
	Display	Data in I	DDRAM	D ₇							\$	² O	1 00	\$	\ 	D_3	D&	D.		D ₇	A	\$	*	D_3	ZQ.	≠ g	∄
	Grayscale Palette		Palette		Pale	tte A	١		Pale	tte B			Pale	tte C			Pale	tte A		F	Palet	te B	}		Pale	tte C	
	Segment Driver				SE	GA₀			SEC	GB₀			SE	GC₀			SEC	GA₁			SEC	βB₁			SE	GC₁	

	0-1	A deles / Dis-sel	D-1- / O	4 Duly and			
	Colum	n Address / Displa	ay Data / Segmen	it Driver			
 X=9	99H	X=9	9AH	X=9	9BH		
	<u> </u>						
 Palette A	Palette B	Palette C	Palette A	Palette B	Palette C		
 SEGA ₁₀₂	SEGB ₁₀₂	SEGC ₁₀₂	SEGA ₁₀₃	SEGB ₁₀₃	SEGC ₁₀₃		

	HSW	ABS	REF	SWAP							(Colu	mn A	Addre	ess /	Dis _l	olay	Data	a / Se	egme	ent D)rive	r						
	1	*	0	1				X=(H00							X=()1H							X=0)2H				
_		Display	Data in [DDRAM	D ₇	ø	D.	*	D₃	ð	4	\$	D ₇	å	\$	ø [*]	D ₃	D ₂	4	ø	D ₇	B	Ž	Æ	D₃	ğ	4	D D	
		G	rayscale	Palette	F	Pale	tte A			Pale	tte B			Pale	tte C	;		Pale	tte A	١		Pale	tte B	}		Pale	tte C		
		Segment Driver S				SEC	GC₀			SE	GB_0			SE	GA₀	,		SE	GC₁			SEC	GB₁	,		SE	GA₁		

	Colum	n Address / Displa	ay Data / Segmen	t Driver		
 X=9	99H	X=9	9AH	X=9	9BH	
 Palette A	Palette B	Palette C	Palette A	Palette B	Palette C	
 SEGC ₁₀₂	SEGB ₁₀₂	SEGA ₁₀₂	SEGC ₁₀₃	SEGB ₁₀₃	SEGA ₁₀₃	

HSW	ABS	REF	SWAP						Col	umn /	Addre	ess /	Disp	olay	Data	/ Se	gme	ent D	rive							
1	*	1	0	X=	9AH				X=	9BH							X=9	99H					X=9)AH		
	Display	Data in I	DDRAM	<u>م</u>		8	D7		å å	٥	D.	≠ /	_/ ø	D7	\$	ø (\$	D ₃	ð	ø ∫	\$	D7	8		₫	
	G	Grayscale	Palette	Pal	ette A	١.	ı	Palett	e B		Pale	te C			Palet	te A		F	Palet	te B			Pale	tte C		
	Segment Driver			SE	GC₀			SEG	iB ₀		SEC	GA₀			SEG	C₁			SEC	B₁			SE	GA₁		

	Colum	n Address / Displa	ay Data / Segmen	t Driver	
 X=01H	X=()2H	X=()0H	X=01H
 Palette A	Palette B	Palette C	Palette A	Palette B	Palette C
 SEGC ₁₀₂	SEGB ₁₀₂	SEGA ₁₀₂	SEGC ₁₀₃	SEGB ₁₀₃	SEGA ₁₀₃

Ī	HSW	ABS	REF	SWAP	Column Address / Display Data / Segment Driver																								
	1	*	1	1	X=9AH			X=9BH						X=99H						X=9AH									
_	Display Data in DDRAM				D_3	D ₂	4	ß	D ₇	\$	*	ø [‡]	D_3	D ₂	Þ	Z Z	D7	J.	Ds.	*	D ₃	ð	\$	\$	D7	å	Ź	ø\$	
	Grayscale Palette Segment Driver				Palette A			Palette B			Palette C			Palette A			Palette B			Palette C									
					SEGA₀			SEGB₀			SEGC ₀			SEGA ₁			SEGB ₁			SEGC₁									

Column Address / Display Data / Segment Driver													
	X=01H	X=(02H	X=(X=01H								
	Palette A	Palette B	Palette C	Palette A	Palette B	Palette C							
	SEGA ₁₀₂	SEGB ₁₀₂	SEGC ₁₀₂	SEGA ₁₀₃	SEGB ₁₀₃	SEGC ₁₀₃							

NOTE) The data indicated with a slash mark ($\!\!/$) is invalid, and only MSB bits are effective.

8-bit Bus Length (MON=1, PWM=*, C256=1, WLS=0)

HSW	ABS	REF	SWAP		Column Address / Display Data / Segment Driver															
*	*	0	0)	X=00I	Н			$\leftarrow \rightarrow$		X=67H						
*	*	1	1)	X=67I	Н			\longleftrightarrow)	X=00H	1		
ı	Display [Data in [DDRAM	² Q				ρı	°a	\longleftrightarrow	D ₇	ď	Dê	D4	ľa	D ₂	D ₁	OO		
	G	rayscale	Palette	Р	Palette A		Palette B Pale		ette C	\longleftrightarrow	P	alette	Α	P	alette	В	Pale	tte C		
		Segmen	t Driver		SEGA₀		SEGB ₀ SEGC ₀		\longleftrightarrow	S	EGA₁	03	S	EGB₁	03	SEG	GC ₁₀₃			

HSW	ABS	REF	SWAP		Column Address / Display Data / Segment Driver					
*	*	0	1		X=00H		$\leftarrow \rightarrow$		X=67H	
*	*	1	0		X=67H		$\leftarrow \rightarrow$		X=00H	
-	Display [Data in D	DRAM	6 6	D ₂ D ₃	°0	$\leftarrow \rightarrow$	° 0 ° 0 ° 0	D3 D3 D3	°1
	Gı	rayscale	Palette	Palette A	Palette B	Palette C	\longleftrightarrow	Palette A	Palette B	Palette C
		Segmen	t Driver	SEGC₀	SEGB₀	SEGA ₀	\longleftrightarrow	SEGC ₁₀₃	SEGB ₁₀₃	SEGA ₁₀₃

NOTE) The data indicated with a slash mark ($\!\!/$) is invalid, and only MSB bits are effective.

(4-5) Write Data and Read Data

16-bit Bus Length

	ABS=0															
Write Data	D ₁₅	D ₁₄	D ₁₃	D ₁₂	D ₁₁	D ₁₀	D_9	D ₈	D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0
	\downarrow															\downarrow
Read Data	D ₁₅	D ₁₄	D ₁₃	D ₁₂	*	D ₁₀	D ₉	D ₈	D ₇	*	*	D_4	D ₃	D_2	D ₁	*
	400.4															
	ABS=1															
Write Data	ABS=1 D ₁₅	D ₁₄	D ₁₃	D ₁₂	D ₁₁	D ₁₀	D ₉	D ₈	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀
Write Data		D ₁₄	D ₁₃	D ₁₂	D ₁₁	D ₁₀	D ₉	D ₈	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D₀ ↓

8-bit Bus Length

NOTE) *: Invalid Data

(5) GRAYSCALE CONTROL CIRCUIT

(5-1) Display Mode Selection

A display mode is selected by the combination of the D_2 (MON) bit of the "Display Control (1)" instruction and the D_3 (PWM) and D_2 (C256) bits of the "Display Mode Control" instruction, as shown below.

Table 11 Display Mode Selection

MON	PWM	C256 (NOTE1)	Display Mode	Bus L	Oscillation (NOTE2)			
	0	0	Variable 16-grayscale Mode	4096 Colors	8-/16-bit	(WLS=0/1)	face	
0	U	1	Variable 8-grayscale Mode	256 Colors	8-bit	(WLS=0)	t _{OSC1}	
	1	0	Fixed 8-grayscale Mode	256 Colors	8-/16-bit	(WLS=0/1)	f	
	ı	1	Fixed 6-grayscale Mode	250 Colors	8-bit	(WLS=0)	t _{OSC2}	
1	*	0	B&W Mode	Black & White	8-/16-bit	(WLS=0/1)	f _{OSC3}	
		1	Davv Mode	DIACK & WITHE	8-bit	(WLS=0)		

NOTE1) In the variable grayscale mode, "C256" bit selects either 16-grayscale (4K colors) or 8-grayscale (256 colors). When C256="0" (16-grayscale), all 12 bits are assigned to 1 RGB-pixel. When C256="1" (8-grayscale), only 8 bits are assigned and the 8-bit bus length should be used. In the fixed 8-grayscale mode or the B&W mode, the "C256" bit is usually "1". For more information how the display data is assigned, refer to "(4-4) Bit Assignment of Display Data".

NOTE2)Oscillation frequency is decided according to the display mode, and is fine-tuned by the "Frequency Control" Instruction. Refer to "(10) OSCILLATOR" and "OSCILLATION FREQUENCY AND FRAME FREQUENCY".

(5-1-1) Variable 16-grayscale Mode

In this mode, each of the palettes Aj, Bj and Cj (j=0-15) is capable of selecting 16 from 32 grayscales (0/31-31/31) by setting palette data in the grayscale palette. Then, each of the segment drivers SEGAi, SEGBi and SEGCi (i=0 to 103) generates 16 grayscales to achieve 4,096 colors. Refer to Table 12-1 and Table 12-2.

(5-1-2) Variable 8-grayscale Mode

Each of the palettes Aj, Bj and Cj (j=0-15) is capable of selecting 8 from 32 grayscales (0/31-31/31). 2 segment drivers of 1 RGB-group (SEGAi, SEGBi and SEGCi (i=0 to 103)) generate 8 grayscales, and the other driver does 4 grayscales to achieve 256 colors. Refer to Table 13-1 through Table 13-4. The 8-bit bus length is usually used in this mode.

(5-1-3) Fixed 8-grayscale Mode

The palette setting is not necessary, because the palettes Aj, Bj and Cj (j=0-15) are always fixed at 4 or 8 grayscales between 0/7 and 7/7. 2 segment drivers of 1 RGB-group (SEGAi, SEGBi and SEGCi (i=0 to 103)) are fixed at 8 grayscales, and the other driver is 4 grayscales, then results in 256 colors. Refer to Table 14-1 and Table 14-2.

(5-1-4) B&W Mode

The palette setting is not necessary, where the only MSB bits of display data are valid. Refer to Table 15.

(6) GRAYSCALE PALETTE

(6-1) Grayscale Selection in Variable 16-grayscale Mode

Table 12-1 Grayscale selection

Table 12-2 Grayscale Palette

(Palette Ai. Bi. and Ci)

(Talotto / ij, Dj,	
Display Data MSBLSB	Palette Name
0000	Palette A0/B0/C0
0001	Palette A1/B1/C1
0010	Palette A2/B2/C2
0 0 1 1	Palette A3/B3/C3
0100	Palette A4/B4/C4
0101	Palette A5/B5/C5
0110	Palette A6/B6/C6
0111	Palette A7/B7/C7
1000	Palette A8/B8/C8
1001	Palette A9/B9/C9
1010	Palette A10/B10/C10
1011	Palette A11/B11/C11
1100	Palette A12/B12/C12
1101	Palette A13/B13/C13
1110	Palette A14/B14/C14
1111	Palette A15/B15/C15

(Palette Aj, E	Bj, and Cj)				
Palette Data MSBLSB	Grayscale	Default Setting	Palette Data MSBLSB	Grayscale	Default Setting
00000	0	Palette A0/B0/C0	10000	16/31	
00001	1/31		10001	17/31	Palette A8/B8/C8
00010	2/31		10010	18/31	
00011	3/31	Palette A1/B1/C1	10011	19/31	Palette A9/B9/C9
00100	4/31		10100	20/31	
00101	5/31	Palette A2/B2/C2	10101	21/31	Palette A10/B10/C10
00110	6/31		10110	22/31	
00111	7/31	Palette A3/B3/C3	10111	23/31	Palette A11/B11/C11
01000	8/31		11000	24/31	
01001	9/31	Palette A4/B4/C4	11001	25/31	Palette A12/B12/C12
01010	10/31		11010	26/31	
01011	11/31	Palette A5/B5/C5	11011	27/31	Palette A13/B13/C13
01100	12/31		11100	28/31	
01101	13/31	Palette A6/B6/C6	11101	29/31	Palette A14/B14/C14
01110	14/31		11110	30/31	
01111	15/31	Palette A7/B7/C7	11111	31/31	Palette A15/B15/C15

NOTE1) "MON=0", "PWM=0", "C256=0"

NOTE2) Applied to palette Aj, Bj and Cj (j=0 to 15)

(6-2) Grayscale Selection in Variable 8-grayscale Mode

Table 13-1 Grayscale selection

Table 13-2 Grayscale Palette

(Palette Aj and Bj)

	- 1/
Display Data MSBLSB	Palette Name
000*	Palette A1/B1/C1
0 0 1 *	Palette A3/B3/C3
010*	Palette A5/B5/C5
011*	Palette A7/B7/C7
100*	Palette A9/B9/C9
101*	Palette A11/B11/C11
110*	Palette A13/B13/C13
1111*	Palette A15/B15/C15
	·

(Palette Aj	(Palette Aj and Bj)						
Palette Data MSBLSB	Grayscale	Default Setting	Palette Data MSBLSB	Grayscale	Default Setting		
00000	0		10000	16/31			
00001	1/31		10001	17/31			
00010	2/31		10010	18/31			
00011	3/31	Palette A1/B1/C1	10011	19/31	Palette A9/B9/C9		
00100	4/31		10100	20/31			
00101	5/31		10101	21/31			
00110	6/31		10110	22/31			
00111	7/31	Palette A3/B3/C3	10111	23/31	Palette A11/B11/C11		
01000	8/31		11000	24/31			
01001	9/31		11001	25/31			
01010	10/31		11010	26/31			
01011	11/31	Palette A5/B5/C5	11011	27/31	Palette A13/B13/C13		
01100	12/31		11100	28/31			
01101	13/31		11101	29/31			
01110	14/31		11110	30/31			
01111	15/31	Palette A7/B7/C7	11111	31/31	Palette A15/B15/C15		

NOTE1) "MON=0", "PWM=0", "C256=1".

NOTE2) Applied to palette Aj and Bj (j=0 to 15) NOTE3) Palette 0, 2, 4, 6, 8, 10, 12 and 14 are disabled.

Table 13-3 Grayscale selection

Table 13-4 Grayscale Palette

(Dolotto Ci)

(Palette Cj)	
Display Data MSBLSB	Palette Name
0.0 * *	D 1 11 A 0/D 0/O 0
00**	Palette A3/B3/C3
01**	Palette A7/B7/C7
10**	D 1 11 A 44 / D 44 / O 44
10**	Palette A11/B11/C11
11**	Palette A15/B15/C15
-	

(Palette Cj)				
Palette Data MSBLSB	Grayscale	Default Setting	Palette Data MSBLSB	Grayscale	Default Setting
00000	0		10000	16/31	
00001	1/31		10001	17/31	
00010	2/31		10010	18/31	
00011	3/31		10011	19/31	
00100	4/31		10100	20/31	
00101	5/31		10101	21/31	
00110	6/31		10110	22/31	
00111	7/31	Palette A3/B3/C3	10111	23/31	Palette A11/B11/C11
01000	8/31		11000	24/31	
01001	9/31		11001	25/31	
01010	10/31		11010	26/31	
01011	11/31		11011	27/31	
01100	12/31		11100	28/31	
01101	13/31		11101	29/31	
01110	14/31		11110	30/31	
01111	15/31	Palette A7/B7/C7	11111	31/31	Palette A15/B15/C15

NOTE1) "MON=0", "PWM=0", "C256=1"

NOTE2) Applied to palette Cj (j=0 to 15)

NOTE3) Palette 0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 13 and 14 are disabled.

(6-3) Grayscale Selection in Fixed 8-grayscale Mode

Table 14-1 Grayscale Selection

(Palette Ai and Bi)

(Falette Aj aliu bj.)					
Display Data MSBLSB	Grayscale				
000*	0/7				
001*	1/7				
010*	2/7				
011*	3/7				
100*	4/7				
101*	5/7				
110*	6/7				
111*	7/7				

Table 14-2 Grayscale Palette

(Palette Cj)

Display Data MSBLSB	Grayscale
00**	0/7
0 1 * *	3/7
10**	5/7
11**	7/7

NOTE1) "MON=0", "PWM=1", "C256=0 or 1"

(6-4) Grayscale Selection in B&W Mode

Table 15 Grayscale Selection

Display Data MSB LSB	Grayscale
0 * * *	0
1 * * *	1

NOTE1) "MON=1", "PWM=0 or 1" and "C256=0 or 1"

(7) DISPLAY TIMING GENERATOR

The display timing generator generates timing clocks such as the CL (Line Clock), FR (Frame Rate) and FLM (First Line Maker) by dividing an oscillation frequency. These clocks are used inside the LSI, and are activated by setting "1" at the D_0 (SON) bit of the "Duty-1 /Display Clock ON/OFF" instruction.

The CL is used for the line counter and the data latch circuit. At the rising edge of the CL signal, the line counter is counted up, then 312-bit display data is latched into the data latch circuit. At the falling edge of the CL signal, the latch data is released to the grayscale control circuit, then segment drivers Ai, Bi and Ci (i=0 to 103) produce LCD driving waveforms. The internal data-transmission timing between the DDRAM and segment drivers is completely independent of external data-transmission timing, so that MPU makes access to the LSI without concern for the LSI's internal operation.

The FR and FLM are generated by the CL. The FR toggles once every frame in the default status, and is programmed to toggle once every N lines. And the FLM is used to specify an initial display line, which is preset whenever the FLM becomes "H".

(8) DATA LATCH CIRCUIT

The data latch circuit is used to temporarily store display data which is released to the grayscale control circuit. The display data in this circuit is updated in synchronization with the CL. The "All Pixels ON/OFF", "Display ON/OFF" and "Reverse Display ON/OFF" instructions control the data in this circuit, but does not change the data in the DDRAM.

(9) COMMON DRIVERS AND SEGMENT DRIVERS

The LSI includes 80-common drivers and 312-segment drivers. The common drivers generate LCD driving waveforms formed on the V_{LCD} , V_1 , V_4 and V_{SSH} levels. The segment drivers generate waveforms formed on the V_{LCD} , V_2 , V_3 and V_{SSH} levels.

Fig 8 LCD Driving Waveforms (B&W Mode, Color Reverse OFF, 1/81 Duty)

(10) OSCILLATOR

The oscillator is equipped with a resistor and a capacitor, and generates internal clocks used for the display timing generator and the voltage booster. The internal resistor is enabled by setting "0" at the D_1 (CKS) bit of the "Bus Length" instruction. For more accurate frequency, using an external resistor or external clock is recommended.

When using the internal resistor, the resistance is controlled to optimize frame frequency for different LCD panels, by setting the D_2 - D_0 (RF2-RF0) bits of the "Frequency Control" instruction. For more safety, make sure what is the best frequency in the particular application.

(10-1) Using Internal Resistor (CKS=0)

In this case, the OSC1 should be fixed at "H" or "L" and the OSC2 is open. The oscillation frequency is varied according to the display mode, as follows.

Table 16 Oscillation Frequency vs. Display Mode

Symbol	MON	PWM	Display Mode
f _{OSC1}	0	0	Variable 8-/16-grayscale Mode
f _{OSC2}	0	1	Fixed 8-grayscale Mode
f _{OSC3}	1	*	B&W Mode

*· Don't care

(10-2) Using External Resistor (CKS=1)

Be sure to connect the OSC1 and OSC2 with an external resistor. The frequency of the oscillator should be adjusted to the same value generated by the internal resistor.

(10-3) Using External Clock (CKS=1)

Input external clock to the OSC1 and leave the OSC2 open. The external clock with 50% duty is recommended. The frequency of the external clock should be the same value generated by the internal resistor.

(11) LCD POWER SUPPLY

The internal LCD power supply is organized into the voltage converter and the voltage booster. The voltage converter consists of the reference voltage generator, the voltage regulator with EVR and the LCD bias voltage generator. The configuration of the LCD power supply is arranged by setting the D_3 (AMPON) and D_1 (DCON) bits of the "Power Control" instruction. For this configuration, the internal LCD power supply can be partially used in combination with an external supply voltage, as shown in Table 17.

Table 17 Configuration of LCD Power Supply

DCON	AMPON	Voltage Booster	Voltage Converter	External Supply Voltage	NOTE
0	0	Inactive	Inactive	$V_{OUT}, V_{LCD}, V_1, V_2, V_3, V_4$	1, 3, 4
0	1	Inactive	Active	V_{OUT}	2, 3, 4
1	1	Active	Active	_	-

NOTE1) No internal LCD power supply is used. The LCD bias voltages are externally supplied, and the C_{1+} , C_{1-} , C_{2+} , C_{2-} , C_{3+} , C_{3-} , C_{4+} , C_{4-} , C_{5+} , C_{5-} , V_{REF} , V_{REG} and V_{EE} are open.

NOTE2) Only the voltage converter is used. The V_{OUT} is externally supplied, and the C_{1+} , C_{1-} , C_{2+} , C_{2-} , C_{3+} , C_{3-} , C_{4+} , C_{4-} , C_{5+} , C_{5-} and V_{EE} are open. The reference voltage is supplied on the V_{REF} .

NOTE3) The following relation among each LCD bias voltages must be maintained.

$$V_{OUT} \geq V_{LCD} \geq V_1 \geq V_2 \geq V_3 \geq V_4 \geq V_{SSH}$$

NOTE4) If the internal LCD power supply doesn't have enough capability to drive the particular LCD panel, use the external LCD power supply. Otherwise, it may affect display quality.

(11-1) Voltage Booster

The internal voltage booster generates up to $6xV_{EE}$ voltage. The boost level is selected from 2x, 3x, 4x, 5x or 6x by setting the D_2 - D_0 (VU2-VU0) bits of the "Boost Level" instruction. The boost voltage V_{OUT} must not exceed 18.0V, otherwise the voltage stress may cause a permanent damage to the LSI.

Fig 9 Boost Voltage

Fig 10 External Capacitor Connection of Voltage Booster

(11-2) Voltage Converter

(11-2-1) Reference Voltage Generator

The reference voltage generator produces the reference voltage (V_{BA} =0.9x V_{EE}). When using the internal LCD power supply, connect the V_{BA} and the V_{REF} , or supply 0.9x V_{EE} or lower voltage on the V_{REF} . When using an external LCD power supply, the V_{BA} should be open.

(11-2-2) Voltage Regulator

The voltage regulator consists of an operational amplifier with gain control and EVR. The V_{REF} voltage is multiplied to obtain the V_{REG} voltage, and its multiple (boost level) is set by the D_2 - D_0 (VU2-VU0) bits of the "Boost Level" instruction. The formula is shown below.

$$V_{REG} = V_{REF} \times N$$

(N: Boost Level)

(11-2-3) Electrical Variable Resistor (EVR)

The EVR is used to fine-tune the V_{LCD} voltage to optimize display contrast. The EVR value is controlled in 128 steps by setting the D_3 - D_0 (DV₆-DV₀) bits of the "EVR Control" instruction. The formula is shown below.

$$V_{LCD} = 0.5 \text{ x } V_{REG} + M (V_{REG} - 0.5 \text{ x } V_{REG}) / 127$$
 (M: EVR Value)

(11-2-4) LCD Bias Voltage Generator

The LCD bias voltage generator consists of buffer amplifiers and bleeder resistors to generate the LCD bias voltages such as the V_{LCD} , V_1 , V_2 , V_3 and V_4 , and its bias ratio is selected from 1/4, 1/5, 1/6, 1/7, 1/8, 1/9 and 1/10.

As shown in Fig 11, when using only the internal LCD power supply, the capacitors CA2 are connected to the V_{LCD} , V_1 , V_2 , V_3 and V_4 respectively.

As shown in Fig 12, when using no internal LCD power supply, the LCD bias voltages are externally supplied on the V_{LCD} , V_1 , V_2 , V_3 and V_4 , and the internal LCD power supply should be turned off by setting "0" at the "DCON" and "AMPON" bits. And the C_{1+} , C_{1-} , C_{2+} , C_{3-} , C_{3+} , C_{3-} , C_{4+} , C_{5-} , C_{5+} , C_{5-} , V_{EE} , V_{REF} and V_{REG} are open.

Fig 13 and 14 show typical peripheral circuits when partially using the LCD power supply without the reference voltage generator.

Fig 15 shows the circuit when partially using the LCD power supply without the voltage booster.

(11-3) External Components for LCD Power Supply

Using Only Internal LCD Power Supply (6x boost)

Using Only External LCD Power Supply

Fig 11 Fig 12

Reference Values

CA1	1.0 to 4.7μF
CA2	1.0 to 2.2μF
CA3	0.1μF

NOTE1) B grade capacitor is recommended for CA1-CA3. Make sure what is the best capacitor value in the particular application.

NOTE2) Parasitic resistance on the power supply lines (V_{DD}, V_{SS}, V_{EE}, V_{SSH}, V_{OUT}, V_{LCD}, V₁, V₂, V₃ and V₄) reduces step-up efficiency of the voltage booster, and may have an impact on the LSI's operation and display quality. To minimize this impact, be sure to lay out the shortest wires and place capacitors as close to the LSI as possible.

Using Internal LCD Power Supply Without Reference Voltage generator (1) (6x boost)

Using Internal LCD Power Supply Without Reference Voltage generator (2) (6x boost)

Fig 13 Fig 14

Reference Values

CA1	1.0 to 4.7μF
CA2	1.0 to 2.2μF
CA3	0.1μF

- NOTE1) B grade capacitor is recommended for CA1-CA3. Make sure what is the best capacitor value in the particular application.
- NOTE2) Parasitic resistance on the power supply lines (V_{DD} , V_{SS} , V_{EE} , V_{SSH} , V_{OUT} , V_{LCD} , V_1 , V_2 , V_3 and V_4) reduces step-up efficiency of the voltage booster, and may have an impact on the LSI's operation and display quality. To minimize this impact, be sure to lay out the shortest wires and place capacitors as close to the LSI as possible.

Using Internal LCD Power Supply Without Voltage Booster

Fig 15

Reference Values

CA1	1.0 to 4.7μF
CA2	1.0 to 2.2μF
CA3	0.1μF

- NOTE1) B grade capacitor is recommended for CA1-CA3. Make sure what is the best capacitor value in the particular application.
- NOTE2) Parasitic resistance on the power supply lines (V_{DD}, V_{SS}, V_{EE}, V_{SSH}, V_{OUT}, V_{LCD}, V₁, V₂, V₃ and V₄) reduces step-up efficiency of the voltage booster, and may have an impact on the LSI's operation and display quality. To minimize this impact, be sure to lay out the shortest wires and place capacitors as close to the LSI as possible.

(11-4) Discharge Circuit

The LSI incorporates two discharge circuits which are independently controlled for the V_{LCD} and V_1 - V_4 and for the V_{OUT} . The V_{LCD} and V_1 - V_4 are discharged by setting "1" at the D_0 (DIS) bit of the "Discharge ON/OFF" instruction or the reset by the RESb. And the V_{OUT} (100K Ω internal resistor between V_{OUT} and V_{EE}) is discharged by setting "1" at the D_1 (DIS2) bit of this instruction. Be sure to turned off the internal or external LCD power supply when this instruction is executed, otherwise it may function as a current load and affect an operating current. Refer to "(14-22) Discharge ON/OFF".

(11-5) Power ON/OFF

To protect the LSI from overcurrent, the following sequences must be maintained to turn on and off the power supply. In addition to the following discussions, refer to "(19) TYPICAL INSTRUCTION SEQUENCES".

(11-5-1) Power ON/OFF in Using Internal LCD Power Supply

Power ON

First " V_{DD} and V_{EE} ON", next "Reset by RESb", then "Internal LCD power supply ON". Be sure to execute the "Display ON" instruction later than the completion of this power ON sequence. Otherwise, unexpected pixels may be turned on instantly.

Power OFF

First "Reset by RESb or "HALT" instruction", next " V_{DD} and V_{EE} OFF". If using different power sources for the V_{DD} and the V_{EE} individually, the V_{EE} must be turned off after the reset or the "HALT". After that, the V_{DD} can be turned off, waiting until the LCD bias voltages (V_{LCD} , V_1 , V_2 , V_3 and V_4) drop below the threshold level of LCD pixels.

(11-5-2) Power ON/OFF in Using External LCD Power Supply

Power ON

First " V_{DD} and V_{EE} ON", next "Reset by RESb", then "External LCD power supply ON". When using only external V_{OUT} , first " V_{DD} ON", next "Reset by RESb", then "External V_{OUT} ON", as well.

Power OFF

First "Reset by RESb or "HALT" instruction" to isolate external LCD bias voltages, next " V_{DD} OFF". For more safety, placing a resistor in series on the V_{LCD} line (or the V_{OUT} line in using only the external V_{OUT}) is recommended. That resistance is usually between 50Ω and 100Ω .

(12) RESET FUNCTION

The reset function initializes the LSI to the following default status by setting the RESb to "L". Connecting the RESb with MPU's reset is recommended so that the LSI and MPU is initialized at a time.

Default Status

1 0 1 0 1 000 116	XX 1.0' 1
Display Data in DDRAM	:Undefined
2. Column Address	H(00):
3. Row Address	:(00)H
4. Initial Display Line	:(0)H (1st line)
5. Display ON/OFF	:OFF
6. Reverse Display ON/OFF	:OFF (Normal)
7. Duty Cycle Ratio	:1/81 Duty (DSE=0)
8. N-line Inversion ON/OFF	:OFF
9. COM Scan Direction	$:COM_0 \rightarrow COM_{79}$
10. Increment Control	:Auto-increment OFF (AIM, AXI, AYI)=(0, 0, 0)
11. REF	:REF=0 (Normal)
12. Swap	:OFF (Normal)
13. EVR Value	:(0,0,0,0,0,0,0)
14. Internal LCD Power Supply	:OFF
15. Display Mode	:Grayscale Mode
16. LCD Bias Ratio	:1/9 Bias
17. Palette 0	:(0,0,0,0,0)
18. Palette 1	:(0, 0, 0, 1, 1)
19. Palette 2	:(0, 0, 1, 0, 1)
20. Palette 3	:(0, 0, 1, 1, 1)
21. Palette 4	:(0, 1, 0, 0, 1)
22. Palette 5	:(0, 1, 0, 1, 1)
23. Palette 6	:(0, 1, 1, 0, 1)
24. Palette 7	:(0, 1, 1, 1, 1)
25. Palette 8	:(1,0,0,0,1)
26. Palette 9	:(1,0,0,1,1)
27. Palette 10	:(1,0,1,0,1)
28. Palette 11	:(1, 0, 1, 1, 1)
29. Palette 12	:(1, 1, 0, 0, 1)
30. Palette 13	:(1, 1, 0, 1, 1)
31. Palette 14	:(1, 1, 1, 0, 1)
32. Palette 15	:(1, 1, 1, 1, 1)
33. Display Mode Control	:Variable 16-grayscale Mode (4,096 Colors)
34. Bus Length	:8-bit Bus Length
35. Discharge ON/OFF	:OFF (DIS,DIS2)=(0,0)
_	

- 52 -

(13) INSTRUCTION TABLES

(13-1) Instruction Table and Register Address

The LSI incorporates 6 instruction tables as shown in Fig 16, and each instruction table has a specific address in between "0" and "5". And each instruction register has a specific address in between (0H) and (FH), and instruction is read out from the register by the "Register Address" and "Register Read" instructions.

Fig 17 shows part of the instruction sequence, where the instruction table should be specified prior to other instructions. However, when some instructions of the same table are sequentially executed, the table selection may be omitted. In addition, the "Display Data Write", "Display Data Read" and "Register Read" instructions can be performed in any table.

NOTE) Address (FH) is assigned to "Instruction Table Select" in any table.

Fig 16 Instruction Table Overview

Fig 17 Outline of Instruction Sequence

(13-2) Instruction Table 0 (RE2, RE1, RE0)=(0, 0, 0)

	Instructions/		Со	de (80	Series	MPU I	/F)					С	ode	Funations			
	Register Address [NH]	CSb	RS	RDb	WRb	RE2	RE1	RE0	D ₇	D_6	D_5	D ₄	D_3	D ₂	D ₁	D_0	Functions
1	Display Data Write	0	0	1	0	0/1	0/1	0/1				Write	e Data				Writing Display Data
2	Display Data Read	0	0	0	1	0/1	0/1	0/1				Rea	d Data				Reading Display Data
3	Column Address (Lower) [0H]	0	1	1	0	0	0	0	0	0	0	0	AX3	AX2	AX1	AX0	Setting Column Address for start point
3	Column Address (Upper) [1H]	0	1	1	0	0	0	0	0	0	0	1	AX7	AX6	AX5	AX4	Setting Column Address for start point
4	Row Address (Lower) [2H]	0	1	1	0	0	0	0	0	0	1	0	AY3	AY2	AY1	AY0	Setting Row Address for start point
4	Row Address (Upper) [3H]	0	1	1	0	0	0	0	0	0	1	1	*	AY6	AY5	AY4	Setting Row Address for start point
5	Initial Display Line (Lower) [4H]	0	1	1	0	0	0	0	0	1	0	0	LA3	LA2	LA1	LA0	Setting Row Address for Initial COM
5	Initial Display Line (Upper) [5H]	0	1	1	0	0	0	0	0	1	0	1	*	LA6	LA5	LA4	Setting Row Address for Initial COM
6	N-line Inversion (Lower) [6H]	0	1	1	0	0	0	0	0	1	1	0	N3	N2	N1	N0	Setting the Number of N-line Inversion
0	N-line Inversion (Upper) [7H]	0	1	1	0	0	0	0	0	1	1	1	*	N6	N5	N4	Setting the Number of N-line Inversion
7	Display Control (1) [8H]	0	1	1	0	0	0	0	1	0	0	0	SHIFT	MON	ALL ON	ON/ OFF	SHIFT: Common Scan Direction MON: Grayscale/B/W Mode ALLON: All Pixels ON/OFF ON/OFF: Display ON/OFF
8	Display Control (2) [9H]	0	1	1	0	0	0	0	1	0	0	1	REV	NLIN	SWAP	REF	REV : Reverse Display ON/OFF NLIN : N-line Inversion ON/OFF SWAP : SWAP ON/OFF REF : Segment Direction
9	Increment Control [AH]	0	1	1	0	0	0	0	1	0	1	0	WIN	AIM	AYI	AXI	WIN : Window Area ON/OFF AIM : Read-Modify-Write ON/OFF AYI : Row Increment AXI : Column Increment
10	Power Control [BH]	0	1	1	0	0	0	0	1	0	1	1	AMP ON	HALT	DC ON	ACL	AMPON: Voltage Converter ON/OFF HALT: Power Save ON/OFF DCON: Voltage Booster ON/OFF ACL: Reset
11	Duty Cycle Ratio [CH]	0	1	1	0	0	0	0	1	1	0	0	DS3	DS2	DS1	DS0	Setting LCD Duty Cycle Ratio
12	Boost Level /ID Code Read [DH]	0	1	1	0	0	0	0	1	1	0	1	IDR	VU2	VU1	VU0	IDR : ID Code (Serial I/F) VU2-0 : Setting Boost Level
13	LCD Bias Ratio [EH]	0	1	1	0	0	0	0	1	1	1	0	*	B2	B1	В0	Setting LCD Bias Ratio
14	Instruction Table Select [FH]	0	1	1	0	0/1	0/1	0/1	1	1	1	1	TST0	RE2	RE1	RE0	Setting Instruction Table

NOTE1) * : Don't care. NOTE2) [NH] (N=0-F) : Register Address

NOTE3) Any nonexistent instruction code is prohibited.

NOTE4) Dual instructions except for "EVR Control" are already effective when either upper byte or lower byte is set.

NOTE5) "EVR Control" instruction is finally effective when both upper and lower bytes are set. Send upper byte first, next lower byte.

(13-3) Instruction Table 1 (RE2, RE1, RE0)=(0, 0, 1)

	Instructions/		C	ode (80	series	MPU I/	F)					Сс	ode				Functions
	Register Address [NH]	CSb	RS	RDb	WRb	RE2	RE1	RE0	D ₇	D_6	D ₅	D ₄	D ₃	D_2	D ₁	D ₀	Functions
	Palette A0/A8 (Lower) [0H]	0	1	1	0	0	0	1	0	0	0	0	PA03/ PA83	PA02/ PA82	PA01/ PA81	PA00/ PA80	Setting Palette Data : A0(PS=0) /A8(PS=1)
	Palette A0/A8 (Upper) [1H]	0	1	1	0	0	0	1	0	0	0	1	*	*	*	PA04/ PA84	Setting Palette Data : A0(PS=0) /A8(PS=1)
	Palette A1/A9 (Lower) [2H]	0	1	1	0	0	0	1	0	0	1	0	PA13/ PA93	PA12/ PA92	PA11/ PA91	PA10/ PA90	Setting Palette Data : A1(PS=0) /A9(PS=1)
	Palette A1/A9 (Upper) [3H]	0	1	1	0	0	0	1	0	0	1	1	*	*	*	PA14/ PA94	Setting Palette Data : A1(PS=0) /A9(PS=1)
	Palette A2/A10 (Lower) [4H]	0	1	1	0	0	0	1	0	1	0	0	PA23/ PA103	PA22/ PA102	PA21/ PA101	PA20/ PA100	Setting Palette Data : A2(PS=0) /A10(PS=1)
	Palette A2/A10 (Upper) [5H]	0	1	1	0	0	0	1	0	1	0	1	*	*	*	PA24/ PA104	Setting Palette Data : A2(PS=0) /A10(PS=1)
15	Palette A3/A11 (Lower) [6H]	0	1	1	0	0	0	1	0	1	1	0	PA33/ PA113	PA32/P A112	PA31/ PA111	PA30/ PA110	Setting Palette Data : A3(PS=0) /A11(PS=1)
10	Palette A3/A11 (Upper) [7H]	0	1	1	0	0	0	1	0	1	1	1	*	*	*	PA34/ PA114	Setting Palette Data : A3(PS=0) /A11(PS=1)
	Palette A4/A12 (Lower) [8H]	0	1	1	0	0	0	1	1	0	0	0	PA43/ PA123	PA42/P A122	PA41/ PA121	PA40/ PA120	Setting Palette Data : A4(PS=0) /A12(PS=1)
	Palette A4/A12 (Upper) [9H]	0	1	1	0	0	0	1	1	0	0	1	*	*	*	PA44/ PA124	Setting Palette Data : A4(PS=0) /A12(PS=1)
	Palette A5/A13 (Lower) [AH]	0	1	1	0	0	0	1	1	0	1	0	PA53/ PA133	PA52/P A132	PA51/ PA131	PA50/ PA130	Setting Palette Data : A5(PS=0) /A13(PS=1)
	Palette A5/A13 (Upper) [BH]	0	1	1	0	0	0	1	1	0	1	1	*	*	*	PA54/ PA134	Setting Palette Data : A5(PS=0) /A13(PS=1)
	Palette A6/A14 (Lower) [CH]	0	1	1	0	0	0	1	1	1	0	0	PA63/ PA143	PA62/P A142	PA61/ PA141	PA60/ PA140	Setting Palette Data : A6(PS=0) /A14(PS=1)
	Palette A6/A14 (Upper) [DH]	0	1	1	0	0	0	1	1	1	0	1	*	*	*	PA64/ PA144	Setting Palette Data : A6(PS=0) /A14(PS=1)
14	Instruction Table Select [FH]	0	1	1	0	0/1	0/1	0/1	1	1	1	1	TST0	RE2	RE1	RE0	Setting Instruction Table

NOTE1) * : Don't care.

NOTE2) [NH] (N=0-F): Register Address

NOTE3) Any nonexistent instruction code is prohibited.

NOTE4) Dual instructions except for "EVR Control" are already effective when either upper byte or lower byte is set.

NOTE5) "EVR Control" instruction is finally effective when both upper and lower bytes are set. Send upper byte first, next lower byte.

(13-4) Instruction Table 2 (RE2, RE1, RE0)=(0, 1, 0)

	Instructions/	F)					Co	ode				Functions					
	Register Address [NH]	CSb	RS	RDb	WRb	RE2	RE1	RE0	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	Functions
	Palette A7/A15 (Lower) [0H]	0	1	1	0	0	1	0	0	0	0	0	PA73/ PA153	PA72/P A152	PA71/ PA151	PA70/ PA150	Setting Palette Data : A7(PS=0) /A15(PS=1)
	Palette A7/A15 (Upper) [1H]	0	1	1	0	0	1	0	0	0	0	1	*	*	*	PA74/ PA154	Setting Palette Data : A7(PS=0) /A15(PS=1)
	Palette B0/B8 (Lower) [2H]	0	1	1	0	0	1	0	0	0	1	0	PB03/ PB83	PB02/ PB82	PB01/ PB81	PB00/ PB80	Setting Palette Data : B0(PS=0) /B8(PS=1)
	Palette B0/B8 (Upper) [3H]	0	1	1	0	0	1	0	0	0	1	1	*	*	*	PB04/ PG84	Setting Palette Data : B0(PS=0) /B8(PS=1)
	Palette B1/B9 (Lower) [4H]	0	1	1	0	0	1	0	0	1	0	0	PB13/ PB93	PB12/ PB92	PB11/ PB91	PB10/ PB90	Setting Palette Data : B1(PS=0) /B9(PS=1)
	Palette B1/B9 (Upper) [5H]	0	1	1	0	0	1	0	0	1	0	1	*	*	*	PB14/ PB94	Setting Palette Data : B1(PS=0) /B9(PS=1)
15	Palette B2/B10 (Lower) [6H]	0	1	1	0	0	1	0	0	1	1	0	PB23/ PB103	PB22/ PB102	PB21/ PB101	PB20/ PB100	Setting Palette Data : B2(PS=0) /B10(PS=1)
13	Palette B2/B10 (Upper) [7H]	0	1	1	0	0	1	0	0	1	1	1	*	*	*	PB24/ PB104	Setting Palette Data : B2(PS=0) /B10(PS=1)
	Palette B3/B11 (Lower) [8H]	0	1	1	0	0	1	0	1	0	0	0	PB33/ PB113	PB32/ PB112	PB31/ PB111	PB30/ PB110	Setting Palette Data : B3(PS=0) /B11(PS=1)
	Palette B3/B11 (Upper) [9H]	0	1	1	0	0	1	0	1	0	0	1	*	*	*	PB34/ PB114	Setting Palette Data : B3(PS=0) /B11(PS=1)
	Palette B4/B12 (Lower) [AH]	0	1	1	0	0	1	0	1	0	1	0	PB43/ PB123	PB42/ PB122	PB41/ PB121	PB40/ PB120	Setting Palette Data : B4(PS=0) /B12(PS=1)
	Palette B4/B12 (Upper) [BH]	0	1	1	0	0	1	0	1	0	1	1	*	*	*	PB44/ PB124	Setting Palette Data : B4(PS=0) /B12(PS=1)
	Palette B5/B13 (Lower) [CH]	0	1	1	0	0	1	0	1	1	0	0	PB53/ PB133	PB52/ PB132	PB51/ PB131	PB50/ PB130	Setting Palette Data : B5(PS=0) /B13(PS=1)
	Palette B5/B13 (Upper) [DH]	0	1	1	0	0	1	0	1	1	0	1	*	*	*	PB54/ PB134	Setting Palette Data : B5(PS=0) /B13(PS=1)
14	Instruction Table Select [FH]	0	1	1	0	0/1	0/1	0/1	1	1	1	1	TST0	RE2	RE1	RE0	Setting Instruction Tablet

NOTE1) * : Don't care.

NOTE2) [NH] (N=0-F): Register Address

NOTE3) Any nonexistent instruction code is prohibited.

NOTE4) Dual instructions except for "EVR Control" are already effective when either upper byte or lower byte is set.

NOTE5) "EVR Control" instruction is finally effective when both upper and lower bytes are set. Send upper byte first, next lower byte.

(13-5) Instruction Table 3 (RE2, RE1, RE0)=(0, 1, 1)

	Instructions/		Co	ode (80	series	MPU I/	F)					Co	ode				Functions
	Register Address [NH]	CSb	RS	RDb	WRb	RE2	RE1	RE0	D ₇	D ₆	D_5	D_4	D ₃	D ₂	D ₁	D ₀	Functions
	Palette B6/B14 (Lower) [0H]	0	1	1	0	0	1	1	0	0	0	0	PB63/ PB143	PB62/ PB142	PB61/ PB141	PB60/ PB140	Setting Palette Data : B6(PS=0) /B14(PS=1)
	Palette B6/B14 (Upper) [1H]	0	1	1	0	0	1	1	0	0	0	1	*	*	*	PB64/ PB144	Setting Palette Data : B6(PS=0) /B14(PS=1)
	Palette B7/B15 (Lower) [2H]	0	1	1	0	0	1	1	0	0	1	0	PB73/ PB153	PB72/ PB152	PB71/ PB151	PB70/ PB150	Setting Palette Data : B7(PS=0) /B15(PS=1)
	Palette B7/B15 (Upper) [3H]	0	1	1	0	0	1	1	0	0	1	1	*	*	*	PB74/ PB154	Setting Palette Data : B7(PS=0) /B15(PS=1)
	Palette C0/C8 (Lower) [4H]	0	1	1	0	0	1	1	0	1	0	0	PC03/ PC83	PC02/ PC82	PC01/ PC81	PC00/ PC80	Setting Palette Data : C0(PS=0) /C8(PS=1)
	Palette C0/C8 (Upper) [5H]	0	1	1	0	0	1	1	0	1	0	1	*	*	*	PC04/ PC84	Setting Palette Data : C0(PS=0) /C8(PS=1)
15	Palette C1/C9 (Lower) [6H]	0	1	1	0	0	1	1	0	1	1	0	PC13/ PC93	PC12/ PC92	PC11/ PC91	PC10/ PC90	Setting Palette Data : C1(PS=0) /C9(PS=1)
10	Palette C1/C9 (Upper) [7H]	0	1	1	0	0	1	1	0	1	1	1	*	*	*	PC14/ PC94	Setting Palette Data : C1(PS=0) /C9(PS=1)
	Palette C2/C10 (Lower) [8H]	0	1	1	0	0	1	1	1	0	0	0	PC23/ PC103	PC22/ PC102	PC21/ PC101	PC20/ PC100	Setting Palette Data : C2(PS=0) /C10(PS=1)
	Palette C2/C10 (Upper) [9H]	0	1	1	0	0	1	1	1	0	0	1	*	*	*	PC24/ PC104	Setting Palette Data : C2(PS=0) /C10(PS=1)
	Palette C3/C11 (Lower) [AH]	0	1	1	0	0	1	1	1	0	1	0	PC33P C113	PC32/ PC112	PC31/ PC111	PC30/ PC110	Setting Palette Data : C3(PS=0) /C11(PS=1)
	Palette C3/C11 (Upper) [BH]	0	1	1	0	0	1	1	1	0	1	1	*	*	*	PC34/ PC114	Setting Palette Data : C3(PS=0) /C11(PS=1)
	Palette C4/C12 (Lower) [CH]	0	1	1	0	0	1	1	1	1	0	0	PC43/ PC123	PC42/ PC122	PC41/ PC121	PC40/ PC120	Setting Palette Data : C4(PS=0) /C12(PS=1)
	Palette C4/C12 (Upper) [DH]	0	1	1	0	0	1	1	1	1	0	1	*	*	*	PC44/ PC124	Setting Palette Data : C4(PS=0) /C12(PS=1)
14	Instruction Table Select [FH]	0	1	1	0	0/1	0/1	0/1	1	1	1	1	TST0	RE2	RE1	RE0	Setting Instruction Table

NOTE1) * : Don't care.

NOTE2) [NH] (N=0-F): Register Address

NOTE3) Any nonexistent instruction code is prohibited.

NOTE4) Dual instructions except for "EVR Control" are already effective when either upper byte or lower byte is set.

NOTE5) "EVR Control" instruction is finally effective when both upper and lower bytes are set. Send upper byte first, next lower byte.

(13-6) Instruction Table 4 (RE2, RE1, RE0)=(1, 0, 0)

	Instructions/		Co	de (80	series	MPU I	/F)					Co		Functions			
	Register Address [NH]	CSb	RS	RDb	WRb	RE2	RE1	RE0	D ₇	D_6	D_5	D_4	D_3	D ₂	D ₁	D_0	Functions
	Palette C5/C13 (Lower) [0H]	0	1	1	0	1	0	0	0	0	0	0	PC53/ PC133	PC52/ PC132	PC51/ PC131	PC50/ PC130	Setting Palette Data : C5(PS=0) /C13(PS=1)
	Palette C5/C13 (Upper) [1H]	0	1	1	0	1	0	0	0	0	0	1	*	*	*	PC54/ PC134	Setting Palette Data : C5(PS=0) /C13(PS=1)
15	Palette C6/C14 (Lower) [2H]	0	1	1	0	1	0	0	0	0	1	0	PC63/P C143			PC60/ PC140	Setting Palette Data : C6(PS=0) /C14(PS=1)
10	Palette C6/C14 (Upper) [3H]	0	1	1	0	1	0	0	0	0	1	1	*	*	*	PC64/ PC144	Setting Palette Data : C6(PS=0) /C14(PS=1)
	Palette C7/C15 (Lower) [4H]	0	1	1	0	1	0	0	0	1	0	0	PC73/ PC153	PC72/ PC152	PC71/ PC151	PC70/ PC150	Setting Palette Data : C7(PS=0) /C15(PS=1)
	Palette C7/C15 (Upper) [5H]	0	1	1	0	1	0	0	0	1	0	1	*	*	*	PC74/ PC154	Setting Palette Data : C7(PS=0) /C15(PS=1)
16	Initial COM [6H]	0	1	1	0	1	0	0	0	1	1	0	SC3	SC2	SC1	SC0	Setting start COM for scanning
17	Duty-1 /Display Clock ON/OFF [7H]	0	1	1	0	1	0	0	0	1	1	1	*	*	DSE	SON	SON : Display Clock ON/OFF DSE : Duty-1 ON/OFF
18	Display Mode Control [8H]	0	1	1	0	1	0	0	1	0	0	0	PWM	C256	*	*	PWM : Variable/Fixed Grayscale Mode C256 : 256-color Mode ON/OFF
19	Bus Length [9H]	0	1	1	0	1	0	0	1	0	0	1	HSW	ABS	CKS	WLS	HSW: High Speed Writing ABS: Bit Assignment CKS: Oscillator Set WLS: 8-/16-bit Bus Length
20	EVR Control (Lower) [AH]	0	1	1	0	1	0	0	1	0	1	0	DV3	DV2	DV1	DV0	Setting EVR Value (Lower Bit)
20	EVR Control (Upper) [BH]	0	1	1	0	1	0	0	1	0	1	1	*	DV6	DV5	DV4	Setting EVR Value (Upper Bit)
21	Frequency Control [DH]	0	1	1	0	1	0	0	1	1	0	1	*	RF2	RF1	RF0	Adjusting Oscillation Frequency
22	Discharge ON/OFF [EH]	0	1	1	0	1	0	0	1	1	1	0	*	*	DIS2	DIS	Discharge ON/OFF
23	Register Address [CH]	0	1	1	0	1	0	0	1	1	0	0	Register Address		3	Setting Register Address	
24	Register Read /ID Code Read	0	1	0	1	0/1	0/1	0/1	ID3	ID2	ID1	ID0	Read Data				ID Code (Parallel I/F) Reading Instruction
14	Instruction Table Select [FH]	0	1	1	0	0/1	0/1	0/1	1	1	1	1	TST0	RE2	RE1	RE0	Setting Instruction Table Select

NOTE1) * : Don't care. NOTE2) [NH] (N=0-F) : Register Address

NOTE3) Any nonexistent instruction code is prohibited.

NOTE4) Dual instructions except for "EVR Control" are already effective when either upper byte or lower byte is set.

NOTE5) "EVR Control" instruction is finally effective when both upper and lower bytes are set. Send upper byte first, next lower byte.

(13-7) Instruction Table 5 (RE2, RE1, RE0)=(1, 0, 1)

	Instructions/		Co	de (80	series	MPU I	/F)					Сс	de				Functions
	Register Address [NH]	CSb	RS	RDb	WRb	RE2	RE1	RE0	D ₇	D_6	D ₅	D ₄	D_3	D ₂	D ₁	D_0	T unctions
25	Window End Column Address (Lower) [0H]	0	1	1	0	1	0	1	0	0	0	0	EX3	EX2	EX1	EX0	Setting Column Address for end point
25	Window End Column Address (Upper) [1H]	0	1	1	0	1	0	1	0	0	0	1	EX7	EX6	EX5	EX4	Setting Column Address for end point
26	Window End Row Address (Lower) [2H]	0	1	1	0	1	0	1	0	0	1	0	EY3	EY2	EY1	EY0	Setting Row Address for end point
20	Window End Row Address (Upper) [3H]	0	1	1	0	1	0	1	0	0	1	1	*	EY6	EY5	EY4	Setting Row Address for end point
27	Initial Line-reverse Address (Lower) [4H]	0	1	1	0	1	0	1	0	1	0	0	LS3	LS2	LS1	LS0	Setting Start Line for Line-reverse Display
21	Initial Line-reverse Address (Upper) [5H]	0	1	1	0	1	0	1	0	1	0	1	*	LS6	LS5	LS4	Setting Start Line for Line-reverse Display
28	Last Line-reverse Address (Lower) [6H]	0	1	1	0	1	0	1	0	1	1	0	LE3	LE2	LE1	LE0	Setting End Line for Line-reverse Display
20	Last Line-reverse Address (Upper) [7H]	0	1	1	0	1	0	1	0	1	1	1	*	LE6	LE5	LE4	Setting End Line for Line-reverse Display
29	Line Reverse ON/OFF [8H]	0	1	1	0	1	0	1	1	0	0	0	*	*	ВТ	LREV	BT : Blink Set LREV : Line-reverse ON/OFF
30	Upper/Lower Palette Select [9H]	0	1	1	0	1	0	1	1	0	0	1	*	*	*	PS	PS : Upper/Lower Palette Register
31	PWM Control [AH]	0	1	1	0	1	0	1	1	0	1	0	PWM S	PWM A	PWM B	PWM C	Setting PWM Mode
14	Instruction Table Select [FH]	0	1	1	0	0/1	0/1	0/1	1	1	1	1	TST0	RE2	RE1	RE0	Setting Instruction Table

NOTE1) * : Don't care. NOTE2) [NH] (N=0-F) : Register Address

NOTE3) Any nonexistent instruction code is prohibited.

NOTE4) Dual instructions except for "EVR Control" are already effective when either upper byte or lower byte is set.

NOTE5) "EVR Control" instruction is finally effective when both upper and lower bytes are set. Send upper byte first, next lower byte.

(14) INSTRUCTION DESCRIPTIONS

This chapter provides detailed descriptions about each instruction. These descriptions are written with the assumption that 80-series MPU is used. When using 68-series MPU, the polarities of the E and R/W signals differ from those of the RDb and WRb signals.

(14-1) Display Data Write

The "Display Data Write" instruction writes display data on a specified DDRAM address.

	CSb	RS	RDb	WRb	RE2	RE1	RE0
Γ	0	0	1	0	0/1	0/1	0/1

D_7	D ₆	D_5	D_4	D_3	D ₂	D ₁	D_0			
	Display Data									

(14-2) Display Data Read

The "Display Data Read" instruction reads out display data from a specified DDRAM address. One dummy read is necessary right after DDRAM address setting.

CSb	R	S	RDb	WRb	RE2	RE1	RE0
0	()	0	1	0/1	0/1	0/1

D ₇	D ₆	D_5	D_4	D_3	D ₂	D_1	D_0		
Display Data									

(14-3) Column Address

The "Column Address" instruction specifies the column address of the start point. The setting order is lower byte first, then upper byte.

CSb	RS	RDb	WRb	RE2	RE1	RE0
0	1	1	0	0	0	0

D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀		
0	0	0	0	AX3	AX2	AX1	AX0		
(Default: AX3-AX0=0H / Register Address: 0H)									

CSb	RS	RDb	WRb	RE2	RE1	RE0
0	1	1	0	0	0	0

D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀
0	0	0	1	AX7	AX6	AX5	AX4

(Default: AX7-AX4=0H / Register Address: 1H)

(14-4) Row Address

The "Row Address" instruction specifies the row address of the start point. Available setting range is from (00H) to (4FH), and outside this range is not allowed. The setting order is lower byte first, then upper byte.

CSb	RS	RDb	WRb	RE2	RE1	RE0
0	1	1	0	0	0	0

D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀			
0	0	1	0	AY3	AY2	AY1	AY0			
(Default: AY3-AY0=0H / Register Address: 2H)										

CSt) F	เร	RDb	WRb	RE2	RE1	RE0
0		1	1	0	0	0	0

		_	_	_	_	_	_
D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0
0	0	1	1	*	AY6	AY5	AY4

(Default: AY6-AY4=0H / Register Address: 3H)

(14-5) Initial Display Line

This instruction sets the row address, which corresponds to an initial COM and is normally positioned on top of a screen in full display. For more information, refer to "(14-16) Initial COM". The setting order is lower byte first, then upper byte.

CSb	RS	RDb	WRb	RE2	RE1	RE0
0	1	1	0	0	0	0

D ₇	D ₆	D ₅	D_4	D ₃	D ₂	D ₁	D_0			
0	1	0	0	LA3	LA2	LA1	LA0			
	(Default: LA3-LA0=0H / Register Address: 4H)									

CSb	RS	RDb	WRb	RE2	RE1	RE0
0	1	1	0	0	0	0

D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0
0	1	0	1	*	LA6	LA5	LA4

(Default: LA6-LA4=0H / Register Address: 5H)

Table 18 Initial Display Line Address

LA6	LA5	LA4	LA3	LA2	LA1	LA0	Row Address
0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1
			•				
			•				•
1	0	0	1	1	1	1	79

(14-6) N-line Inversion

The number of N line is selected in between "2" and "80". When the N-line inversion is enabled by setting "1" at the D_2 (NLIN) bit of the "Display Control (2)" instruction, the FR toggles once every N lines. When the N-line inversion is disabled by setting "0" at this bit, the FR toggles by the frame.

CSb	RS	RDb	WRb	RE2	RE1	RE0
0	1	1	0	0	0	0

D ₇	D ₆	D_5	D ₄	D_3	D ₂	D ₁	D_0
0	1	1	0	N3	N2	N1	N0

(Default: N3-N0=0H / Register Address: 6H)

CSb	RS	RDb	WRb	RE2	RE1	RE0
0	1	1	0	0	0	0

D ₇	D ₆	D ₅	D₄	D_3	D_2	D₁	Dο
	٥		יַר	ر			D 0
0	1	1	1	*	N6	N5	N4

(Default: N6-N4=0H / Register Address: 7H)

Table 19 N-line Inversion

N6	N5	N4	N3	N2	N1	N0	N Line
0	0	0	0	0	0	0	Inhibited
0	0	0	0	0	0	1	2
			:				:
			:				:
			:				:
1	0	0	1	1	1	1	80

NOTE1) N Line=(N Value)+1

N-line inversion OFF

N-line inversion ON

Fig 18 N-line Inversion Timing (1/81 Duty)

(14-7) Display Control (1)

The "Display Control (1)" instruction controls display conditions.

CSb	RS	RDb	WRb	RE2	RE1	RE0
0	1	1	0	0	0	0

ı	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀
	1	0	0	0	SHIFT	MON	ALL ON	ON /OFF

(Default: [SHIFT,MON,ALLON,ON/OFF]=0H / Register Address: 8H)

D₀ (ON/OFF)

ON/OFF=0 : Display OFF (All COM/SEG fixed at V_{SSH} level)

ON/OFF=1 : Display ON

D₁ (ALLON)

This bit forcibly turns on all pixels regardless of display data. This bit has a priority over the "REV" bit of the "Display Control (2)" instruction.

ALLON=0 : Normal

ALLON=1 : All pixels ON

D₂ (MON)

MON=0 : Grayscale Mode (Variable 16-grayscale, Variable 8-grayscale or Fixed 8-grayscale Mode)

MON=1 : B&W Mode

D₃ (SHIFT)

 $\begin{array}{ll} SHIFT=0 & :COM_0 \rightarrow COM_{79} \\ SHIFT=1 & :COM_0 \leftarrow COM_{79} \end{array}$

(14-8) Display Control (2)

The "Display Control (2)" instruction controls display conditions.

CSb	RS	RDb	WRb	RE2	RE1	RE0
0	1	1	0	0	0	0

D ₇	D_6	D_5	D_4	D_3	D ₂	D_1	D_0
1	0	0	1	REV	NLIN	SWAP	REF

(Default: [REV,NLIN,SWAP,REF]=0H / Register Address: 9H)

D₀ (REF)

This bit controls the DDRAM access direction which reverses the segment direction for reducing the restrictions on the IC position of an LCD module. For more information, refer to "(17) SWAP FUNCTION".

D₁ (SWAP)

This bit swaps palettes Aj and palettes Cj (j=0-15). This function reduces the restrictions on the IC position of an LCD module. Refer to "(16) SWAP FUNCTION".

SWAP=0 : SWAP OFF SWAP=1 : SWAP ON

D₂ (NLIN)

This bit enables the N-line inversion.

NLIN=0 : N-line Inversion OFF (FR toggles by the frame.) NLIN=1 : N-line Inversion ON (FR toggles once every N lines.)

D₃ (REV)

This bit enables the reverse display function that reverses the polarities of all display data without changing the DDRAM.

REV=0 : Reverse Display OFF (Normal)

REV=1 : Reverse Display ON

Table 20 Reverse Display ON/OFF

REV	Display	DDRAM Data → Display Data		
0	Normal	0	0	
U	Nomiai	1	1	
1	Reverse	0	1	
l l	Reverse	1	0	

(14-9) Increment Control

The "AIM", "AYI" and "AXI" bits set an auto-increment operation to the column address and row address individually. Once this mode is set up, the column address, row address or both are automatically counted up, whenever the DDRAM is accessed. The "WIN" bits enables/disables the window area access.

CSb	RS	RDb	WRb	RE2	RE1	RE0
0	1	1	0	0	0	0

D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀
1	0	1	0	WIN	AIM	AYI	AXI

(Default: [WIN,AIM,AYI,AXI]=0H / Register Address: AH)

D₂ (AIM)

Table 21 Read-modify-write ON/OFF

AIM	Increment Mode	NOTE
0	Read-modify-write OFF	1
1	Read-modify-write ON	2

NOTE1) Increment in writing and reading display data

NOTE2) Increment in writing display data only

D₁, D₀ (AYI, AXI)

Table 22 Column/Row Increment

AYI	AXI	Column/Row Increment	NOTE
0	0	Non Increment	1
0	1	Column Address Increment	2
1	0	Row Address Increment	3
1	1	Column & Row Addresses Increment	4

NOTE1) Non increment. The "AIM" bit is disabled.

NOTE2) Column address increment. The "AIM" bit is enabled.

NOTE3) Row address increment. The "AIM" bit is enabled.

NOTE4) Column & row addresses increment. The "AIM" bit is enabled.

D₃ (WIN)

The window access should be enabled (WIN=1) in combination with the auto-increment operation (AXI=1, AYI=1). The typical sequence of the window area setting is discussed in "(4-2) Window Area for DDRAM Access".

WIN=0 : Window Area Access OFF (Normal DDRAM Access)

WIN=1 : Window Area Access ON

(14-10) Power Control

CSb	RS	RDb	WRb	RE2	RE1	RE0
0	1	1	0	0	0	0

D ₇	D ₆	D ₅	D ₄	D ₃	D_2	D_1	D_0
1	0	1	1	AMPON	HALT	DCON	ACL

(Default: [AMPON,HALT,DCON,ACL]=0H / Register Address: BH)

D₀ (ACL)

This bit initializes the internal LCD power supply.

ACL=0 : Initialization OFF (Normal)

ACL=1 : Initialization ON

NOTE) During the initialization, "1" is read out as the status of the "ACL" bit by the "Register Read" instruction. After the initialization, it is "0". As the CLK triggers the initialization, the "wait time" at least equivalent to 2 cycles of the CLK is required for the next instruction.

D₁ (DCON)

The "DCON" bit activates the voltage booster.

DCON=0 : Voltage Booster OFF DCON=1 : Voltage Booster ON

D₂ (HALT)

The "HALT" bit enables the power save mode. During the power save, operating current is down to the stand-by level. The internal state of the LSI in the power save mode is listed below.

HALT=0 : Power Save OFF (Normal)

HALT=1 : Power Save ON

Internal State in Power Save Mode (HALT="1")

- Internal oscillator and internal LCD power supply are halted.
- All segment and common drivers are fixed at V_{SSH} level.
- External clock to the OSC1 cannot be accepted.
- Display data in the DDRAM is being maintained.
- Data in the instruction registers are being maintained.
- V_{LCD}, V₁, V₂, V₃ and V₄ are in high impedance.

NOTE) In the power save ON sequence, execute the "Display OFF" prior to the "Power Save ON". In the power save OFF sequence, execute the "Power save OFF" prior to the "Display ON". If the "Power Save ON/OFF" instruction is executed during the "Display ON", unexpected pixels may be turned on instantly.

D₃ (AMPON)

The "AMPON" bit activates the voltage converter which includes the reference voltage generator, the voltage regulator and the LCD bias generator.

AMPON=0 : Voltage Converter OFF AMPON=1 : Voltage Converter ON

(14-11) Duty Cycle Ratio

The "Duty Cycle Ratio" instruction selects LCD duty cycle ratio, and is used to carry out the partial display in combination with other instructions such as the "Boost Level", the "LCD Bias Ratio" and the "EVR Control".

CSb	RS	RDb	WRb	RE2	RE1	RE0
0	1	1	0	0	0	0

D ₇	D_6	D_5	D ₄	D_3	D ₂	D ₁	D_0
1	1	0	0	DS3	DS2	DS1	DS0

(Default: DS3-DS0=0H / Register Address: CH)

Table 23 Duty Cycle Ratio

	b Duty Cycle Rane								
DS3	DS2	DS1	DS0	Duty Cy	cle Ratio	# of Commons			
DSS	D32	ופט	טפע	DSE=0	DES=1	# 01 COMMINGES			
0	0	0	0	1/81	80 commons				
0	0	0	1	1/77	1/76	76 commons			
0	0	1	0	1/69	1/68	68 commons			
0	0	1	1	1/57	1/56	56 commons			
0	1	0	0	1/47	1/46	46 commons			
0	1	0	1	1/39	1/38	38 commons			
0	1	1	0	1/33	32 commons				
0	1	1	1	1/27	1/26	26 commons			
1	0	0	0	1/17	1/16	16 commons			
1	0	0	1	1/13	1/12	12 commons			
1	0	1	0		Inhibited				
1	0	1	1		Inhibited				
1	1	0	0		Inhibited				
1	1	0	1	Inhibited					
1	1	1	0	Inhibited					
1	1	1	1	Inhibited					

NOTE) Duty cycle ratio is subtracted by 1 (Duty-1) from the original duty cycle ratio by setting "1" at the D₁ (DSE) bit of the "Duty-1 ON/OFF" instruction. Refer to "(14-17) Duty-1 /Display Clock ON/OFF".

(14-12) Boost Level /ID Code Read

The "Boost Level" selects the multiple of the voltage booster, the "ID Code Read" enables reading out the ID code.

CSb	RS	RDb	WRb	RE2	RE1	RE0
0	1	1	0	0	0	0

D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀
1	1	0	1	IDR	VU2	VU1	VU0

(Default: IDR, VU2-VU0=0H / Register Address: DH)

D₂, D₁, D₀ (VU2, VU1, VU0)

Table 24 Boost Level

VU2	VU1	VU0	Boost Level						
0	0	0	1 time (No boost)						
0	0	1	2 times						
0	1	0	3 times						
0	1	1	4 times						
1	0	0	5 times						
1	0	1	6 times						
1	1	0	Inhibited						
1	1	1	Inhibited						

D₃ (IDR)

This bit is used only in the serial interface mode, and the ID code is read out by setting "1" at this bit. Refer to "(15) CHIP IDENTIFICATION (ID) CODE" for more information.

(14-13) LCD Bias Ratio

The "LCD bias ratio" selects LCD bias ratio.

CSb	RS	RDb	WRb	RE2	RE1	RE0
0	1	1	0	0	0	0

D_7	D ₆	D_5	D ₄	D_3	D_2	D_1	D_0
1	1	1	0	*	B2	B1	B0

(Default: B2-B0=0H / Register Address: EH)

Table 25 LCD Bias Ratio

B2	B1	B0	LCD Bias Ratio
0	0	0	1/9
0	0	1	1/8
0	1	0	1/7
0	1	1	1/6
1	0	0	1/5
1	0	1	1/4
1	1	0	1/10
1	1	1	Inhibited

(14-14) Instruction Table Select

This instruction specifies an instruction table, and should be executed prior to other instructions.

CSb	RS	RDb	WRb	RE2	RE1	RE0
0	1	1	0	0/1	0/1	0/1

D ₇	D ₆	D ₅	D ₄	D ₃	D_2	D ₁	D ₀
1	1	1	1	TST0	RE2	RE1	RE0

(Default: TST0, RE2-RE0=0H / Register Address: FH)

Table 26 Instruction Table Select

RE2	RE1	RE0	Instructions					
0	0	0	Instruction Table (0)					
0	0	1	Instruction Table (1)					
0	1	0	Instruction Table (2)					
0	1	1	Instruction Table (3)					
1	0	0	Instruction Table (4)					
1	0	1	Instruction Table (5)					

NOTE) "TST0" bit must be "0". This is used for maker tests only.

 D_0

PA00/ PA80

(14-15) Palette A / B / C

	i dictio	יון טה	<i>,</i> –0 <i>,,</i> , ,	aictic A	<u>-0 11 0</u>	<u>'/</u>		_					
	CSb	RS	RDb	WRb	RE2	RE1	RE0		D ₇	D ₆	D_5	D ₄	D
	0	1	1	0	0	0	1		0	0	0	0	PA PA
_													

(Register Address: 0H)

CSb	RS	RDb	WRb	RE2	RE1	RE0	1	D ₇	D ₆	D_5	D ₄	D_3	D_2	D_1	
0	1	1	0	0	0	1		0	0	0	1	*	*	*	PA PA

(Register Address: 1H)

Dalatta	A4 (DC	0) / D	alette A	0 (DO 4		
0	1	1	0	0	0	1

	(- - ,		- 1	-,		-					
CSb	RS	RDb	WRb	RE2	RE1	RE0		D ₇	D ₆	D ₅	D ₄	
0	1	1	0	0	0	1		0	0	1	0	I

PA93 PA92 PA91 PA90 (Register Address: 2H)

PA11/ PA10/

 D_2

PA02/

PA82

PA12/

 D_1

PA01/

PA81

CSb	RS	RDb	WRb	RE2	RE1	RE0
0	1	1	0	0	0	1

D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀
0	0	1	1	*	*	*	PA14/ PA94
					(Registe	er Addre	ss: 3H)

PA13/

Palette A2 (PS=0) / Palette A10 (PS=1)

. 4.0	· · · - / · · ·	<i>–•, ,</i>	4.0110 / 1		- · <i>,</i>	
CSb	RS	RDb	WRb	RE2	RE1	RE0
0	1	1	0	0	0	1

D ₇	D ₆	D_5	D_4	D_3	D_2	D_1	D ₀
0	1	0	0	PA23/	PA22/	PA21/	PA20/
U	'	U	U		PA102	PA101	PA100

(Register Address: 4H)

CSb	RS	RDb	WRb	RE2	RE1	RE0
0	1	1	0	0	0	1

D_7	D ₆	D_5	D_4	D_3	D_2	D_1	D_0
0	1	0	1	*	*	*	PA24/ PA104
<u> </u>					(Registe	er Addre	ss: 5H)

Palette A3 (PS=0) / Palette A11 (PS=1)

CSb	RS	RDb	WRb	RE2	RE1	RE0
0	1	1	0	0	0	1

D_7	D ₆	D_5	D_4	D_3	D_2	D_1	D_0
0	1	1		PA33/ PA113			
					(Registe	er Addre	ss: 6H)

CSb	RS	RDb	WRb	RE2	RE1	RE0
0	1	1	0	0	0	1

D ₇	D ₆	D_5	D ₄	D_3	D ₂	D ₁	D_0
0	1	1	1	*	*	*	PA34/ PA114

(Register Address: 7H)

CSb	RS	RDb	WRb	RE2	RE1	RE0
0	1	1	0	0	0	1

D_7 D_6 D_5 D_4 D_3 D_2 D_1									
1	0	0					PA40/ PA120		
(Desister Address OII)									

(Register Address: 8H)

CSb	RS	RDb	WRb	RE2	RE1	RE0
0	1	1	0	0	0	1

D ₇	D ₆	D_5	D ₄	D_3	D_2	D ₁	D_0
1	0	0	1	*	*	*	PA44/ PA124

(Register Address: 9H)

Palette A5 (PS=0) / Palette A13 (PS=1)

						_
CSb	RS	RDb	WRb	RE2	RE1	RE0
0	1	1	0	0	0	1

1 0 1 0 PA53/ PA52/ PA51/ PA50 PA133 PA132 PA131 PA13	D ₇	D ₆	D_5	D_4	D_3	D_2	D ₁	D_0
	1	0	1					

(Register Address: AH)

CSb	RS	RDb	WRb	RE2	RE1	RE0
0	1	1	0	0	0	1

D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D_0
1	0	1	1	*	*		PA54/
)						PA134

(Register Address: BH)

Palette A6	(PS=0)	/ Palette	A14	(PS=1)

CSb	RS	RDb	WRb	RE2	RE1	RE0
0	1	1	0	0	0	1

1 1 0 0 PA63/ PA62/ PA61/ PA60/ PA143 PA142 PA141 PA140	D ₇	D ₆	D_5	D ₄	D ₃	D ₂	D ₁	D ₀
	1	1	0					

(Register Address: CH)

CSb	RS	RDb	WRb	RE2	RE1	RE0
0	1	1	0	0	0	1

							_
D_7	D_6	D_5	D_4	D_3	D_2	D ₁	D_0
1	1	0	1	*	*	*	PA64/ PA144

(Register Address: DH)

Palette A7 (PS=0) / Palette A15 (PS=1)

i dictio	ין יה	<i>,</i> –0 <i>,,</i> , ,	aictic A	10 (10-	- · <i>/</i>	
CSb	RS	RDb	WRb	RE2	RE1	RE0
0	1	1	0	0	1	0

D_7	D ₆	D_5	D_4	D_3	D_2	D ₁	D_0
0	0	0	<i>(</i>)	PA73/ PA153			-

(Register Address: 0H)

CSb	RS	RDb	WRb	RE2	RE1	RE0
0	1	1	0	0	1	0

D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀
	0	0	4	*	*	*	PA74/
U	U	U	I				PA154

(Register Address: 1H)

)	RS	RDb	WRb	RE2	RE1	RE0	D_7	D_6	D_5	D_4	D ₃	D_2	D_1	ľ
	1	1	0	0	1	0	0	0	1	0	PB03/ PB83	PB02/ PB82	PB01/ PB81	
												(Registe	er Addre	95
Sb	RS	RDb	WRb	RE2	RE1	RE0	D_7	D ₆	D ₅	D_4	D ₃	D_2	D ₁	
)	1	1	0	0	1	0	0	0	1	1	*	*	*	
ette	B1 (P	S=0) / P	alette B	9 (PS=	1)							(Registe	er Addre	es
Sb	RS	RDb	WRb	RE2	RE1	RE0	D_7	D ₆	D ₅	D ₄	D_3	D ₂	D_1	
)	1	1	0	0	1	0	0	1	0	0	PB13/ PB93	PB12/ PB92	PB11/ PB91	
												(Registe		
Sb	RS	RDb	WRb	RE2	RE1	RE0	D_7	D ₆	D_5	D_4	D_3	D_2	D_1	Ī
)	1	1	0	0	1	0	0	1	0	1	*	*	*	
		<u> </u>				0	0	1	0	1		* (Registe		
ette		1 S=0) / P				0 RE0	D ₇	1 D ₆	0 D ₅	1 D ₄		(Registe	er Addre	es
	B2 (PS	S=0) / P	alette B	10 (PS	=1)			<u> </u>	1		D ₃ PB23/	(Registe D ₂ PB22/	er Addre D ₁ PB21/	es
ette Sb	B2 (P S	S=0) / P	alette B	10 (PS	= 1) RE1	RE0	D ₇	D ₆	D ₅	D ₄	D ₃ PB23/ PB103	(Registe	D ₁ PB21/ PB101	es I
ette Sb	B2 (P S	S=0) / P	alette B	10 (PS	= 1) RE1	RE0	D ₇	D ₆	D ₅	D ₄	D ₃ PB23/ PB103	(Registe D ₂ PB22/ PB102	D ₁ PB21/ PB101	es I
ette Sb	8 B2 (P\$ RS	S=0) / P RDb	alette B WRb	10 (PS: RE2	= 1) RE1	RE0 0	D ₇	D ₆	D ₅	D ₄	D ₃ PB23/ PB103	(Registe D ₂ PB22/ PB102 (Registe	D ₁ PB21/ PB101 er Addre	F
ette Sb)	RS 1 RS 1	S=0) / P RDb 1 RDb 1	alette B WRb 0	10 (PS: RE2 0	=1) RE1 1 RE1 1	RE0 0	D ₇	D ₆	D ₅	D ₄ 0	D ₃ PB23/PB103	D ₂ PB22/ PB102 (Registe	D ₁ PB21/ PB101 er Addre	F
ette Sb)	RS 1 RS 1	S=0) / P RDb 1	alette B WRb 0	10 (PS: RE2 0	=1) RE1 1 RE1 1	RE0 0	D ₇	D ₆	D ₅	D ₄ 0	D ₃ PB23/PB103	(Registe D ₂ PB22/ PB102 (Registe D ₂	D ₁ PB21/ PB101 er Addre	I F

CSb	RS	RDb	WRb	RE2	RE1	RE0
0	1	1	0	0	1	0

D ₇	D_6	D_5	D_4	D_3	D_2	D_1	D_0
1	0	0	1	*	*	*	PB34/ PB114
					(Registe	er Addre	ss: 9H)

Palette B4 (PS=0) / Palette B12 (PS=1)

	 	<i></i>	u.oo _	\. •	,	
CSb	RS	RDb	WRb	RE2	RE1	RE0
0	1	1	0	0	1	0

D_7	D ₆	D_5	D_4	D_3	D_2	D_1	D_0
1	0	4	0	PB43/	PB42/	PB41/	PB40/
I	U	I	U	PB123	PB122	PB121	PB120
					Registe	r Addre	98. VH)

CSb	RS	RDb	WRb	RE2	RE1	RE0
0	1	1	0	0	1	0

1 0 1 1 * * PB	D ₇	D ₆	D ₅	D_4	D ₃	D ₂	D ₁	D_0
	1	0	1	1	*	*	*	PB44/ PB124

(Register Address: BH)

Palette B5 (PS=0) / Palette B13 (PS=1)

Palette B6 (PS=0) / Palette B14 (PS=1)

	1	<u> </u>				
CSb	RS	RDb	WRb	RE2	RE1	RE0
0	1	1	0	0	1	0

D ₇	D ₆	D_5	D_4	D_3	D_2	D_1	D_0		
1	1	0	0				PB50/ PB130		
(Register Address: C									

CSb	RS	RDb	WRb	RE2	RE1	RE0
0	1	1	0	0	1	0

	D ₇	D ₆	D_5	D ₄	D_3	D ₂	D ₁	D_0
	1	1	0	1	*	*	*	PB54/
ı	'	'	U	'				PB134

(Register Address: DH)

0	1	1	0	0	1	0

0 1 1 0 0 1 1 0 0 0 1 PB61/ PB61/ PB61/ PB61/ PB14	CSb	RS	RDb	WRb	RE2	RE1	RE0	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀
	0	1	1	0	0	1	1	0	0	0	0	PR143	_	-	PB60/ PB140

(Register Address: 0H)

CSb	RS	RDb	WRb	RE2	RE1	RE0
0	1	1	0	0	1	1

D ₇	D ₆	D ₅	D ₄	D ₃	D_2	D ₁	D ₀
0	0	0	1	*	*	*	PB64/ PB144

(Register Address: 1H)

Palette B7	(PS=0)	/ Palette	B15	(PS=1)
------------	--------	-----------	-----	--------

. 4.0	 (- (, 	<u> </u>	.0 (. 0	<u>- · / </u>	
CSb	RS	RDb	WRb	RE2	RE1	RE0
0	1	1	0	0	1	1

D_7	D ₆	D_5	D_4	D ₃	D ₂	D_1	D_0
0	0	1	0	PB73/ PB153			PB70/ PB150

(Register Address: 2H)

CS	b	RS	RDb	WRb	RE2	RE1	RE0
0		1	1	0	0	1	1

D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0
0	0	1	1	*	*	*	PB74/
U	U		1				PB154

(Register Address: 3H)

O	alette	C0 (PS	S=0) / P	alette C	8 (PS=	1)		i	=							
CSb	CSb	RS	RDb	WRb	RE2	RE1	RE0		D_7	D ₆	D_5	D_4				[
D7 D6 D5 D4 D3 D2 D1	0	1	1	0	0	1	1		0	1	0	0				P(
O								,						(Registe	er Addre	SS:
CSb	CSb	RS	RDb	WRb	RE2	RE1	RE0		D_7	D_6	D ₅	D_4	D ₃	D ₂	D_1	
Palette C1 (PS=0) / Palette C9 (PS=1) PS=1 PS	0	1	1	0	0	1	1		0	1	0	1	*	*	*	P(
D7 D6 D5 D4 D3 D2 D1 D6 D5 D4 D3 PC93 PC3	Palette	C1 (PS	S=0) / P	alette C	9 (PS=	1)		, i						(Registe	er Addre	:SS
O							RE0		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D_1	I
CSb	0	1	1	0	0	1	1		0			0				
O								!!						(Registe	er Addre	SS
O	CSb	RS	RDb	WRb	RE2	RE1	RE0		D_7	D_6	D_5	D_4	D ₃	D_2	D_1	
Palette C2 (PS=0) / Palette C10 (PS=1) CSb RS RDb WRb RE2 RE1 RE0 1 0 0 0 0 PC23/ PC22/ PC21/ PROTECTION PC103 PC102 PC101 PC103 PC102 PC103 PC102 PC101 PC103 PC102 PC103 PC102 PC101 PC103 PC103 PC103 PC102 PC101 PC103 PC103 PC103 PC103 PC103 PC1	0	1	1	0	0	1	1								*	P(
D ₇ D ₆ D ₅ D ₄ D ₃ D ₂ D ₁	Palette	C2 (PS	S=0) / P	alette C	:10 (PS	=1)		, i						(Registe	er Addre	SS
1				_			RE0		D_7	D_6	D_5	D_4	D_3	D_2	D_1	
CSb	0	1	1	0	0	1	1		1							
1														(Registe	er Addre	SS
CSb	CSb	RS	RDb	WRb	RE2	RE1	RE0		D ₇	D ₆	D_5	D ₄	D ₃	D_2	D ₁	
Palette C3 (PS=0) / Palette C11 (PS=1) CSb	0	1	1	0	0	1	1		1	0	0	1	*	*	*	PO PO
CSb	Palette	C3 (PS	S=0) / P	alette C	:11 (PS:	=1)								(Registe	er Addre	SS
CSb RS RDb WRb RE2 RE1 RE0 O							RE0		D ₇	D ₆	D ₅	D ₄				
CSb RS RDb WRb RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1	0	1	1	0	0	1	1		1	0	1	0				
1												-				
CSb	CSb	RS	RDb	WRb	RE2	RE1	RE0		D ₇	D ₆	D ₅	D_4	D ₃	D ₂	D ₁	
CSb	0	1	1	0	0	1	1		1	0	1	1	*	*	*	P(
CSb RS RDb WRb RE2 RE1 RE0 0 1 1 0 0 1 1 1 0	Palette	C4 (PS	S=0) / P	alette C	12 (PS	=1)		i					((Registe	r Addre	
0 1 1 0 0 1 1 1 0 0 0 PC43/ PC42/ PC41/ PC123 PC122 PC121 PC125 PC125 PC125 PC125 PC126 PC							RE0		D_7	D_6	D_5	D_4	D_3	D_2	D ₁	
CSb RS RDb WRb RE2 RE1 RE0 D ₇ D ₆ D ₅ D ₄ D ₃ D ₂ D ₁															PC41/	P
								ļi								
	CSb	RS	RDb	WRb	RE2	RE1	RE0		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	
							Ī									P(

NOTE) Refer to the tables in "(6) GRAYSCALE PALETTE" for default setting.

(Register Address: DH)

Palette C5 (PS=0) / Palette C13 (PS=1)

CSb	RS	RDb	WRb	RE2	RE1	RE0
0	1	1	0	1	0	0

D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀
0	0	0		PC53/ PC133			

(Register Address: 0H)

CSb	RS	RDb	WRb	RE2	RE1	RE0
0	1	1	0	1	0	0

D ₇	D ₆	D_5	D ₄	D ₃	D_2	D ₁	D_0	
0	0	0	1	*	*	*	PC54/ PC134	
(Register Address: 1H)								

Palette C6 (PS=0) / Palette C14 (PS=1)

÷	4.0110		• ,		(. •		
	CSb	RS	RDb	WRb	RE2	RE1	RE0
	0	1	1	0	1	0	0

D ₇	D ₆	D_5	D_4	D_3	D ₂	D ₁	D_0
0	0	1	0	PC63/	PC62/	PC61/	PC60/
U	U	!	U	PC143	PC142	PB141	PB140

(Register Address: 2H)

CSb	RS	RDb	WRb	RE2	RE1	RE0
0	1	1	0	1	0	0

D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D_0
0	0	1	1	*	*	*	PC64/ PC144

(Register Address: 3H)

Palette C7 (PS=0) / Palette C15 (PS=1)

CSb	RS	RDb	WRb	RE2	RE1	RE0		
0	1	1	0	1	0	0		

D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0	
0	1	0	0	PC73/ PC153	PC72/ PC152			
(Pegister Address: 4H)								

CSb	RS	RDb	WRb	RE2	RE1	RE0
0	1	1	0	1	0	0

D ₇	D ₆	D_5	D_4	D_3	D_2	D_1	D_0
0	1	0	1	*	*	*	PC74/
U	ı	U	ı				PC154

(Register Address: 5H)

(14-16) Initial COM

The "Initial COM" instruction specifies the common driver for a scan start common.

С	Sb	RS	RDb	WRb	RE2	RE1	RE0
	0	1	1	0	1	0	0

D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀
0	1	1	0	SC3	SC2	SC1	SC0

(Default: SC3-SC0=0H / Register Address: 6H)

Table 27 Initial COM

SC3	SC2	SC1	SC0	Initial COM (SHIFT=0)	Initial COM (SHIFT=1)				
0	0	0	0	COM_0	COM ₇₉				
0	0	0	1	COM ₄	COM ₇₅				
0	0	1	0	COM ₈	COM ₇₁				
0	0	1	1	COM ₁₆	COM ₆₃				
0	1	0	0	COM ₂₄	COM ₅₅				
0	1	0	1	COM ₃₂	COM ₄₇				
0	1	1	0	COM ₄₀ COM ₃₉					
0	1	1	1	COM ₄₈ COM ₃₁					
1	0	0	0	COM ₅₆ COM ₂₃					
1	0	0	1	COM ₆₄	COM ₁₅				
1	0	1	0	COM ₇₂	COM ₇				
1	0	1	1	Inhit	pited				
1	1	0	0	Inhibited					
1	1	0	1	Inhibited					
1	1	1	0	Inhibited					
1	1	1	1	Inhit	pited				

(14-17) Duty-1 /Display Clock ON/OFF

This instruction controls ON (Duty-1) /OFF (Duty-0) and Display Clock ON/OFF.

CSb	RS	RDb	WRb	RE2	RE1	RE0
0	1	1	0	1	0	0

D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D_0
0	1	1	1	*	*	DSE	SON

(Default: SON,DSE=0H / Register Address: 7H)

D₀ (SON)

SON=0 : CL, FLM, FR, and CLK are fixed at "L" level.

SON=1 : CL, FLM, FR, and CLK are enabled.

D₁ (DSE)

The duty cycle ratio is subtracted by 1 (Duty-1) from the original duty cycle ratio by setting "1" at the "DSE" bit.

DSE=0 : OFF (Duty-0) DSE=1 : ON (Duty-1)

NOTE) For the last common timing at "DSE=0", all common drivers generate non-selective waveforms, and segment drivers generate the same waveforms as for the previous common timing. For instance, in 1/81 duty cycle, the segment waveforms for 81st common timing are the same as for 80th common timing (last line).

(14-18) Display Mode Control

The "Display Mode Control" instruction sets up display modes such as the variable or fixed grayscale mode and the variable 8- or 16-grayscale mode. The D_2 (MON) bit of the "Display Control (1)" is used in combination. Refer to "(5) GRAY SCALE CONTROL CIRCUIT" and "(14-7) Display Control (1)."

CSb	RS	RDb	WRb	RE2	RE1	RE0
0	1	1	0	1	0	0

D_7	D ₆	D_5	D ₄	D_3	D ₂	D_1	D_0
1	0	0	0	PWM	C256	*	*

(Default: PWM,C256=0H / Register Address: 8H)

D₃ (PWM)

PWM=0: Variable grayscale Mode (Variable 8-/16-grayscale Mode)

PWM=1: Fixed 8-grayscale Mode

D₂ (C256)

C256=0: Variable 16-grayscale Mode at "PWM=0" (4096 colors) C256=1 : Variable 8-grayscale Mode at "PWM=0" (256 colors)

(14-19) Bus Length

This instruction selects 8- or 16-bit bus length, and sets oscillator configuration, ABS mode ON/OFF and high speed writing ON/OFF as well.

CSb	RS	RDb	WRb	RE2	RE1	RE0
0	1	1	0	1	0	0

1 0 0 1 HSW ABS CKS WLS	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀
	1	0	0	1	HSW	ABS	CKS	WLS

(Default: HSW,ABS,CKS,WLS=0H / Register Address: 9H)

D₀ (WLS)

WLS=0: 8-bit Bus Length WLS=1: 16-bit Bus Length

D₁ (CKS)

CKS =0: Internal Oscillator using an internal resistor

CKS =1: External Clock, or Internal Oscillator using an external resistor

NOTE) Refer to "(10) OSCILLATOR".

D₂ (ABS)

ABS=0: ABS Mode OFF (Normal)

ABS=1: ABS Mode ON

D₃ (HSW)

HSW=0: High Speed Writing OFF (Normal)

HSW=1: High Speed Writing ON

(14-20) EVR Control

The "EVR Control" instruction adjusts V_{LCD} to optimize display contrast. This instruction is finally effective when both upper and lower bytes are transmitted in order to prevent high V_{LCD}. The setting order is upper byte first, then lower byte. Refer to "(11-2-3) Electrical Variable Resistor (EVR)".

CSb	RS	RDb	WRb	RE2	RE1	RE0
0	1	1	0	1	0	0

D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0			
1	0	1	0	DV_3	DV_2	DV ₁	DV0			
(Default: DV DV0=0H / Degister Address: AH)										

CSb	RS	RDb	WRb	RE2	RE1	RE0
0	1	1	0	1	0	0

D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0
1	0	1	1	*	DV6	DV_5	DV_4

(Default: DV6-DV4=0H / Register Address: BH)

Table 28 EVR Control

DV6	DV ₅	DV_4	DV ₃	DV_2	DV ₁	DV0	V_{LCD}					
0	0	0	0	0	0	0	Low					
0	0	0	0	0	0	1	:					
			:									
			:									
1	1	1	1	1	1	1	High					

Formula of VLCD

VLCD[V] = 0.5x VREG + M (VREG - 0.5x VREG) / 127

VBA = VEE x 0.9 VBA : Output of the reference voltage generator

VREG = VREF x N VREF : Input of the voltage regulator

VREG : Output of the voltage regulator

N : Boost level M : EVR Value

(14-21) Frequency Control

The "Frequency Control" instruction adjusts the frame frequency.

CSb	RS	RDb	WRb	RE2	RE1	RE0
0	1	1	0	1	0	0

D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀
1	1	0	1	*	Rf2	Rf1	Rf0

(Default: DV₃-DV0=0H / Register Address: DH)

Table 29 Frequency Control

Rf 2	Rf 1	Rf 0	Feedback Resistor Value					
0	0	0	Reference Value					
0	0	1	0.8 x Reference Value					
0	1	0	0.9 x Reference Value					
0	1	1	1.1 x Reference Value					
1	0	0	1.2 x Reference Value					
1	0	1	0.7 x Reference Value					
1	1	0	1.3 x Reference Value					
1	1	1	Inhibited					

(14-22) Discharge ON/OFF

Discharge circuit is used to discharge out of the stabilizing capacitors placed on the V_{LCD} , V_1 , V_2 , V_3 , V_4 and V_{OUT} . Refer to "(11-4) Discharge Circuit".

CSb	RS	RDb	WRb	RE2	RE1	RE0
0	1	1	0	1	0	0

D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D_0
1	1	1	0	*	*	DIS2	DIS

(Default: DIS2,DIS1=0H / Register Address: EH)

D₀ (DIS)

DIS=0 : Discharge OFF

DIS=1 : Discharge ON (Discharge from V_{LCD} , V_1 , V_2 , V_3 and V_4)

D₁ (DIS2)

DIS2=0 : Discharge OFF

DIS2=1 : Discharge ON (Discharge from V_{OUT} through the internal resistor between V_{OUT} and V_{EE})

NOTE) Resistance is $100K\Omega$ typical.

(14-23) Register Address

The "Register Address" instruction specifies a register address.

CSb	RS	RDb	WRb	RE2	RE1	RE0
0	1	1	0	1	0	0

D ₇	D ₆	D_5	D ₄	D_3	D_2	D ₁	D_0
1	1	0	0	RA3	RA2	RA1	RA0

(Default: RA3-RA0=BH / Register Address: CH)

(14-24) Register Read /ID Code Read

The "Register Read /ID Code Read" instruction reads out instruction data from the register which address is specified by the "Register Address" instruction. And it reads out the ID code set by the ID_3 - ID_0 terminals. Note that this instruction is used in the parallel interface mode only.

CSb	RS	RDb	WRb	RE2	RE1	RE0
0	1	0	1	0/1	0/1	0/1

D_7	D ₆	D_5	D ₄	D_3	D ₂	D ₁	D_0
ID3	ID2	ID1	ID0	Int	ernal re	gister da	ata

(14-25) Window End Column Address

The "Window End Column Address" instruction specifies the column address of the end point. Refer to "(4-2) Window Area for DDRAM Access". The setting order is lower byte first, then upper byte.

CSb	RS	RDb	WRb	RE2	RE1	RE0
0	1	1	0	1	0	1

D ₇	D ₆	D_5	D ₄	D_3	D_2	D_1	D_0
0	0	0	0	EX3	EX2	EX1	EX0
	(I	Default:	EX3-EX	(0=0H /	Registe	er Addre	ss: 0H)

CSb	RS	RDb	WRb	RE2	RE1	RE0
0	1	1	0	1	0	1

D ₇	D ₆	D_5	D ₄	D_3	D ₂	D ₁	D_0
0	0	0	1	EX7	EX6	EX5	EX4

(Default: EX7-EX4=0H / Register Address: 1H)

(14-26) Window End Row Address

The "Window End Row Address" instruction specifies the row address of the end point. Refer to "(4-2) Window Area for DDRAM Access". The setting order is lower byte first, then upper byte.

CSb	RS	RDb	WRb	RE2	RE1	RE0
0	1	1	0	1	0	1

D ₇	D ₆	D_5	D_4	D_3	D_2	D_1	D_0
0	0	1	0	EY3	EY2	EY1	EY0
	(I	Default:	EY3-E	/0=0H/	Registe	er Addre	ss: 2H)

CSb	RS	RDb	WRb	RE2	RE1	RE0
0	1	1	0	1	0	1

D ₇	D ₆	D_5	D_4	D_3	D_2	D_1	D_0
0	0	1	1	*	EY6	EY5	EY4

(Default: EY6-EY4=0H / Register Address: 3H)

(14-27) Initial Line-reverse Address

The "Initial Line-reverse Address" instruction specifies the start line of the line-reverse display area. The setting order is lower byte first, then upper byte.

CSb	RS	RDb	WRb	RE2	RE1	RE0
0	1	1	0	1	0	1

	D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0
	0	1	0	0	LS3	LS2	LS1	LS0
•		(Default:	LS3-LS	S0=0H /	Registe	er Addre	ss: 4H)

CSb	RS	RDb	WRb	RE2	RE1	RE0
0	1	1	0	1	0	1

D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀
0	1	0	1	*	LS6	LS5	LS4

(Default: LS6-LS4=0H / Register Address: 5H)

(14-28) Last Line-reverse Address

The "Last Line-reverse Address" instruction specifies the end line of the line-reverse display area. The setting order is lower byte first, then upper byte.

CSb	RS	RDb	WRb	RE2	RE1	RE0
0	1	1	0	1	0	1

D_7	D ₆	D_5	D ₄	D_3	D ₂	D ₁	D_0			
0	1	1	0	LE3	LE2	LE1	LE0			
(Defects EQ EQ OH Desistes Address of OH)										

(Default: LE3-LE0=0H / Register Address: 6H)

CSb	RS	RDb	WRb	RE2	RE1	RE0
0	1	1	0	1	0	1

D_7	D ₆	D_5	D_4	D_3	D_2	D_1	D_0
0	1	1	1	*	LE6	LE5	LE4

(Default: LE6-LE4=0H / Register Address: 7H)

(14-29) Line Reverse ON/OFF

The "Line Reverse ON/OFF" instruction enables the line-reverse display, and blink function as well. Note that the line reverse display cannot be used for entire display area. In this case, use the reverse display function by the D_3 (REV) bit of the "Display Control (2)" instruction.

CSb	RS	RDb	WRb	RE2	RE1	RE0
0	1	1	0	1	0	1

D ₇	D ₆	D_5	D_4	D_3	D ₂	D_1	D_0
1	0	0	0	*	*	BT	LREV

(Default: BT,LREV=0H / Register Address: 8H)

D₀ (LREV)

LREV =0 : Line Reverse OFF (Normal)

LREV =1 : Line Reverse ON

D₁ (BT)

BT =0 : No Blink

BT =1 : Blink once every 32 frames

Fig 19 On-screen Image in Using Line-reverse Display and Blink Function

(14-30) Upper/Lower Palette Select

The "Upper/Lower Palette Select" instruction selects either upper or lower palette register.

CSb	RS	RDb	WRb	RE2	RE1	RE0
0	1	1	0	1	0	1

D ₇	D ₆	D_5	D ₄	D ₃	D ₂	D ₁	D ₀
1	0	0	1	*	*	*	PS

(Default: PS=0 / Register Address: 9H)

D₀ (PS)

PS=0 : Lower Palettes (PA00, PA01, PA02, PA03, ..., PC74) PS=1 : Upper Palettes (PA80, PA81, PA82, PA83, ..., PC154)

(14-31) PWM Control

The "PWM control" instruction selects PWM type, as shown in Fig 20.

CSb	RS	RDb	WRb	RE2	RE1	RE0
0	1	1	0	1	0	1

D ₇	D ₆	D_5	D ₄	D ₃	D ₂	D ₁	D ₀
4	0	4	0	PWM	PWM	PWM	PWM
ı	U		U	S	Α	В	С

(Default: PWMS,PWMA,PWMB,PWMC=0H / Register Address: AH)

D₃ (PWMS)

PWMS=0 : Type 1 PWMS=1 : Type 2

D₂ (PWMA), D₁ (PWMB), D₀ (PWMC)

PWMZ=0 (Z=A, B and C): Type 1-O PWMZ=1 (Z=A, B and C): Type 1-E

PWM Type 1 (PWMS=0)

PWM Type 2 (PWMS=1)

Fig 20 PWM Control

(15) CHIP IDENTIFICATION (ID) CODE

The ID code is decided by setting the ID_3 , ID_2 , ID_1 and ID_0 terminals. In the parallel interface mode, the ID code is read out through the data bus (D₇, D₆, D₅ and D₄) by the "Register Read /ID Code Read" instruction. In the 3 or 4-line serial interface mode, the ID code is read out by the "Boost Level /ID Code Read" instruction, as follows.

When using the 4-line serial interface mode, set "1" at the "IDR" bit of the "Boost Level /ID Code Read" instruction. Then, the SDA becomes in high-impedance (Hi-Z) at the falling edge of the 8th SCL signal, and the ID code (ID₃, ID₂, ID₁ and ID₀) is read out bit by bit at the rising edges of the 9th,...12th SCL. After that, the ID code operation continues up to the 16th SCL, then returns to the normal operation. When using the 3-line serial interface mode, the SDA becomes in high-impedance at the 9th SCL, and the ID code is read out at the 10th,...13th SCL. Then, the ID code operation continues up to the 18th SCL.

4-Line Serial Interface

3-Line Serial Interface

Fig 21 ID Code Reading Operation

NOTE1) The AC timing of the ID code operation is different from the timing of the normal operation. Refer to " (6) Read Operation (Serial Interface)".

NOTE2) After setting "1" at the "IDR" bit, the CS should remain "L" until the ID code operation is completed. Once the CS becomes "H", the ID code operation is released.

(16) PARTIAL DISPLAY FUNCTION

The partial display function activates specified area on an LCD screen, or equivalently, common drivers are simply scanning this specified area. This function allows LCD modules to work in a minimum duty cycle ratio to minimize power consumption. The partial display function is carried out by the combination of the "Duty Cycle Ratio", "LCD Bias Ratio", "Boost Level" and "EVR Control" instructions. For more information, refer to "(14-11) Duty Cycle Ratio", "(14-12) Boost Level /ID Code Read", "(14-13) LCD Bias Ratio" and "(14-20) EVR Control". Typical setting sequence is shown in "(19-4) Partial Display Sequence".

Fig 22 On-screen Image in Using Partial Display Function

(17) SWAP FUNCTION

The swap function switches the palettes Aj and the palettes Cj (j=0-15), and is controlled by the D_1 (SWAP) bit of the "Display Control (2)" instruction. This function reduces the restrictions on the IC position of an LCD module. Fig 23 "Overview of Swap Function" illustrates general outlines of internal operations, and (17-1-1) through (17-1-4) show each configuration on a mode-by-mode basis.

Fig 23 Overview of SWAP Function

(17-1) Swap Function in Variable 16-grayscale Mode

16-bit Bus Length

(REF, SWAP)=(0,0) or (1,1)

		SE	GAi			SE	GBi			SE	GCi		(i=0-103)
<u>'</u>		,	Î .			1	Ì			1	<u> </u>		_
		0/31 ([Default)			7/31 (E	Default)			31/31 (Default)		Grayscale Level
	_	î			\uparrow				\uparrow				
		Pale	tte A0			Palet	te B3		Palette C15			Grayscale Palette	
	1	↑	1	↑	↑	↑	↑	\uparrow	1	↑	1	1	
	0	0	0	0	0	0	1	1	1	1	1	1	Display Data
	MSB			LSB	MSB			LSB	MSB			LSB	in Grayscale Control Circuit
	<u> </u>	↑	1	1	\uparrow	1	1	\uparrow	1	1	1	1	
	0	0	0	0	0	0	1	1	1	1	1	1	Display Data
	D ₁₅	D ₁₄	D ₁₃	D ₁₂	D ₁₀	D ₉	D ₈	D ₇	D_4	D ₃	D_2	D ₁	from MPU to LSI
ABS=1	D ₁₁	D_{10}	D_9	D_8	D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0	

(REF, SWAP)=(0,1) or (1,0)

		SE	GAi			SE	GBi			SE	GCi		(i=0-103)
·		,	↑			1	Î .			1	î .		<u>-</u>
		31/31 (Default)		7/31 (Default)				0/31 (Default)				Grayscale Level
·			↑		\uparrow				\uparrow				_
		Palett	te C15			Palet	te B3		Palette A0				Grayscale Palette
!	1	↑	1	1	\uparrow	1	1	↑	\uparrow	\uparrow	1	1	•
	1	1	1	1	1	1	0	0	0	0	0	0	Display Data
!	LSB			MSB	LSB			MSB	LSB			MSB	in Grayscale Control Circuit
													_
	0	0	0	0	0	0	1	1	1	1	1	1	Display Data
•	D ₁₅	D ₁₄	D ₁₃	D ₁₂	D ₁₀	D ₉	D ₈	D_7	D_4	D_3	D_2	D ₁	from MPU to LSI
ABS=1	D ₁₁	D_{10}	D_9	D_8	D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0	

NOTE1) Without a special note on the left, the ABS, HSW and C256 bits are regarded as "0".

8-bit Bus Length

(REF, SWAP)=(0,0) or (1,1)

		SE	GAi			SE	GBi			SE	GCi		(i=0-103)
	,		\uparrow			1	<u> </u>			1	1		•
		0/31 (Default)			7/31 (E	Default)			31/31 (I	Default)		Grayscale Level
	î				\uparrow				\uparrow				_
		Pale	tte A0			Palet	te B3		Palette C15			Grayscale Palette	
	\uparrow	\uparrow	1	1	\uparrow	1	1	\uparrow	\uparrow	↑	1	1	•
	0	0	0	0	0	0	1	1	1	1	1	1	Display Data
	MSB			LSB	MSB			LSB	MSB			LSB	in Grayscale Control Circuit
	↑	\uparrow	\uparrow	\uparrow	\uparrow	_							
	0	0	0	0	0	0	1	1	1	1	1	1	Display Data
	D ₇	D_6	D_5	D_4	D_2	D_1	D_0	D_7	D_4	D_3	D_2	D_1	from MPU to LSI
ABS=1	D_3	D_2	D_1	D_0	D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0	
HSW=1	D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0	D_7	D_6	D_5	D_4	

(REF, SWAP)=(0,1) or (1,0)

		SE	GAi			SE	GBi			SE	GCi		(i=0-103)
			↑			1	Ì			1	1		<u>.</u>
		31/31 ((Default)			7/31 (E	Default)			0/31 (efault)		Grayscale Level
			\uparrow			1	ì			1	1		-
		Palet	te C15			Palet	te B3			Palet	te A0		Grayscale Palette
	1	1	1	1	\uparrow	1	1	1	\uparrow	1	1	1	-
	1	1	1	1	1	1	0	0	0	0	0	0	Display Data
	LSB			MSB	LSB			MSB	LSB			MSB	in Grayscale Control Circuit
	<u> </u>												
													<u>-</u>
	0	0	0	0	0	0	1	1	1	1	1	1	Display Data
	D_7	D_6	D_5	D_4	D_2	D_1	D_0	D_7	D_4	D_3	D_2	D_1	from MPU to LSI
ABS=1	D_3	D_2	D_1	D_0	D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0	
HSW=1	D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0	D_7	D_6	D_5	D_4	

NOTE1) Without a special note on the left, the ABS, HSW and C256 bits are regarded as "0".

(17-2) Swap Function in Variable 8-grayscale Mode

8-bit Bus Length

(REF, SWAP)=(0,0) or (1,1)

	SE	GAi			SE	GBi			SE	GCi		(i=0-103)
		\uparrow			1	<u> </u>			1	Î		
	3/31 (I	Default)			7/31 (E	Default)			31/31 (Default)		Grayscale Level
-		\uparrow			1	î			1	ì		•
	Pale	tte A0			Palet	te B3			Palett	e C15		Grayscale Palette
\uparrow	\uparrow	\uparrow	↑	\uparrow	1	\uparrow	\uparrow	1	\uparrow	\uparrow	\uparrow	•
0	0	0	*	0	0	1	*	1	1	*	*	Display Data
MSB			LSB	MSB			LSB	MSB			LSB	in Grayscale Control Circuit
1	\uparrow	_										
0	0	0	*	0	0	1	*	1	1	*	*	Display Data
D_7	D_6	D_5	*	D_4	D_3	D_2	*	D_1	D_0	*	*	from MPU to LSI

(REF, SWAP)=(0,1) or (1,0)

	SE	GAi			SE	GBi			SE	GCi		(i=0-103)
_		↑			1	↑			1	1		_
	31/31 (Default)			7/31 (0	Default)			3/31 (Default)		Grayscale Level
		Î			1	↑			1	1		
	Palet	te C15			Palet	te B3			Palet	te A0		Grayscale Palette
\uparrow	1	1	1	1	\uparrow	1	\uparrow	\uparrow	1	1	1	_
*	*	1	1	*	1	0	0	*	0	0	0	Display Data
LSB			MSB	LSB			MSB	LSB			MSB	in Grayscale Control Circuit
l												
												_
0	0	0	*	0	0	1	*	1	1	*	*	Display Data
D ₇	D ₆	D ₅	*	D_4	D_3	D_2	*	D ₁	D_0	*	*	from MPU to LSI

NOTE1) Without a special note on the left, the ABS, HSW and C256 bits are regarded as "0".

(17-3) Swap Function in Fixed 8-grayscale Mode

16-bit Bus Length

(REF, SWAP)=(0,0) or (1,1)

		SE	GAi			SE	GBi			SE	GCi		(i=0-103)
·			<u> </u>			1	<u> </u>				↑		•
		0	/7			1.	/7			7	7/7		Grayscale Level
	-		Î			1	î				î		
			-				-				-		
	1	↑	↑	↑	↑	1	1	↑	↑	\uparrow	1	1	
	0	0	0	8	0	0	1	1	1	1	1	1	Display Data
	MSB			LSB	MSB			LSB	MSB			LSB	in Grayscale Control Circuit
i	1	↑	1	1	↑	1	1	↑	↑	↑	1	1	
	0	0	0	8	0	0	1	1	1	1	1	1	Display Data
	D ₁₅	D ₁₄	D ₁₃	D ₁₂	D ₁₀	D ₉	D ₈	D ₇	D ₄	D ₃	D_2	D ₁	from MPU to LSI
ABS=1	D_{11}	D_{10}	D_9	D_8	D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0	

(REF, SWAP)=(0,1) or (1,0)

		SE	GAi			SE	GBi			SE	GCi		(i=0-103)
·		1	1			1	<u> </u>			,	↑		<u>.</u>
		7.	/7			1.	/7			0	/7		Grayscale Level
		1	1			1	↑				Î		
			-				-				-		
	1	↑	1	1	↑	↑	↑	↑	↑	↑	1	↑	•
	1	1	1	1	1	1	0	0	8	0	0	0	Display Data
•	LSB			MSB	LSB			MSB	LSB			MSB	in Grayscale Control Circuit
ı													_
	0	0	0	8	0	0	1	1	1	1	1	1	Display Data
	D_{15}	D_{14}	D_{13}	D_{12}	D_{10}	D_9	D_8	D_7	D_4	D_3	D_2	D_1	from MPU to LSI
ABS=1	D ₁₁	D_{10}	D_9	D_8	D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0	

NOTE1) Without a special note on the left, the ABS, HSW and C256 bits are regarded as "0". NOTE2) The data indicated with a slash mark (\prime) is invalid.

8-bit Bus Length

(REF, SWAP)=(0,0) or (1,1)

		SE	GAi			SE	GBi			SE	GCi		(i=0-103)
<u>'</u>			↑			1	Ì				↑		•
		0	/7			1.	/7			7	7/7		Grayscale Level
·			↑			1	1				↑		
			-				-				-		
·	↑	↑	1	1	↑	↑	↑	↑	↑	↑	1	1	
	0	0	0	0	0	0	1	1	1	1	1	1	Display Data
•	MSB			LSB	MSB			LSB	MSB			LSB	in Grayscale Control Circuit
	↑	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	1	_
	0	0	0	0	0	0	1	1	1	1	1	1	Display Data
	D ₇	D ₆	D_5	D_4	D ₂	D ₁	D_0	D ₇	D ₄	D_3	D_2	D ₁	from MPU to LSI
ABS=1	D_3	D_2	D_1	D_0	D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0	
HSW=1	D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0	D_7	D_6	D_5	D_4	
C256=1	D_7	D_6	D_5	*	D_4	D_3	D_2	*	D_1	D_0	*	*	

(REF, SWAP)=(0,1) or (1,0)

		SE	GAi			SE	GBi			SE	GCi		(i=0-103)
	_	1	Ì	·		1	1				Î .		_
		7/	/7			1,	7			0	/7		Grayscale Level
		1	Ì			1	1				Î		-
			-								-		
	1	\uparrow	1	1	↑	\uparrow	1	\uparrow	\uparrow	\uparrow	↑	1	-
	1	1	1	1	1	1	0	0	8	0	0	0	Display Data
	LSB			MSB	LSB			MSB	LSB			MSB	in Grayscale Control Circuit
											,		•
	0	0	0	0	0	0	1	1	1	1	1	1	Display Data
	D_7	D_6	D_5	D_4	D_2	D_1	D_0	D_7	D_4	D_3	D_2	D_1	from MPU to LSI
ABS=1	D_3	D_2	D_1	D_0	D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0	
HSW=1	D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0	D_7	D_6	D_5	D_4	
C256=1	D_7	D_6	D_5	*	D_4	D_3	D_2	*	D_1	D_0	*	*	

NOTE1) Without a special note on the left, the ABS, HSW and C256 bits are regarded as "0". NOTE2) The data indicated with a slash mark (\prime) is invalid.

(17-4) Swap Function in B&W Mode

16-bit Bus Length

(REF, SWAP)=(0,0) or (1,1)

		SE	GAi			SE	GBi			SE	GCi		(i=0-103)
		1	<u>î</u>			1	<u> </u>			1	<u> </u>		
		0/1 (OFF)			0/1 (OFF)			1/1	(ON)		Grayscale Level
		1	î			1	Î .			1	î		
			-				-				-		
	1	\uparrow	\uparrow	\uparrow	1	↑	\uparrow	↑	\uparrow	↑	\uparrow	1	
	0	Ø	Ø	Ø	0	0	1	1	1	1	1	1	Display Data
	MSB			LSB	MSB			LSB	MSB			LSB	in Grayscale Control Circuit
ı	1	↑	↑	↑	1	↑	\uparrow	1	1	↑	1	1	•
	0	Ø	Ø	8	0	0	1	1	1	1	1	1	Display Data
	D ₁₅	D ₁₄	D ₁₃	D ₁₂	D ₁₀	D_9	D ₈	D_7	D_4	D_3	D_2	D_1	from MPU to LSI
ABS=1	D_{11}	D_{10}	D_9	D_8	D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0	

(REF, SWAP)=(0,1) or (1,0)

NOTE1) Without a special note on the left, the ABS, HSW and C256 bits are regarded as "0". NOTE2) The data indicated with a slash mark (/) is invalid.

8-bit Bus Length

SWAP=0

		SE	GAi			SE	GBi			SE	GCi		(i=0-103)
!			\uparrow				\uparrow			1	Î .		•
		0/1 ((OFF)			0/1 ((OFF)			1/1 ((ON)		Grayscale Level
													•
			-				-				-		
	\uparrow	↑	↑	1	\uparrow	1	1	↑	↑	↑	1	↑	
	0	Ø	8	0	0	0	1	1	1	1	1	1	Display Data
	MSB			LSB	MSB			LSB	MSB			LSB	in Grayscale Control Circuit
	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	
	0	8	0	0	0	0	1	1	1	1	1	1	Display Data
	D_7	D_6	D_5	D_4	D_2	D ₁	D_0	D_7	D ₄	D_3	D_2	D ₁	from MPU to LSI
ABS=1	D_3	D_2	D_1	D_0	D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0	
HSW=1	D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0	D_7	D_6	D_5	D_4	
C256=1	D_7	D_6	D_5	*	D_4	D_3	D_2	*	D_1	D_0	*	*	

SWAP=1

NOTE1) Without a special note on the left, the ABS, HSW and C256 bits are regarded as "0". NOTE2) The data indicated with a slash mark (/) is invalid.

(18) RELATION BETWEEN ROW ADDRESS AND COMMON DRIVER

The relation between row address and common driver is changed by the D_3 (SHIFT) bit of the "Display Control (1)" and the "Duty Cycle Ratio", "Initial Display Line" and "Initial COM" instructions.

When the "Initial Display Line" is set to (LA6:LA0=00H: Address "0"), the row address corresponding to an initial COM is "0". However, if the "Initial Display Line" is other than "0", the row address is shifted from "0" by just that address. For instance, when the initial display line address is (LA6:LA0=05H: Address "5") and the initial COM is (SC3:SC0=1H), the row address on the initial COM is "5" and the initial COM is "COM₄".

(18-1) through (18-5) illustrate the examples of the relation between row address and common driver.

(18-1) SHIFT=0, Initial Display Line "0", Duty Cycle Ratio "1/81"

SC3 - SC0 0000 0001 0010 0011 0100 0110 0110 0111 1000 1001 0011 0000 0001	1010 8 4 4 4 4 4 4 4 4 4 4 4 4 4
COM0	8
COM1	
COM2	
COM3	
COM4	
COM5	
COM6	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
COM7	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
COM8 COM9 COM10 COM10 COM10 COM11 COM11 COM11 COM12 COM12 COM13 COM13 COM13 COM13 COM14 COM15 COM15 COM15 COM15 COM16 COM16 COM16 COM16 COM17 COM16 COM17 COM16 COM17 COM18 COM17 COM18 COM18 COM18 COM18 COM18 COM18 COM18 COM19 COM20 COM30 CO	
COM9	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
COM10	
COM11	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
COM12	
COM13	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
COM13	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
COM14	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
COM15	\
COM16	\
COM17 COM18 L L L L L L L L L L L L L L L L L L	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
COM18	↓ ↓ ↓ ↓ ↓
COM19	↓ ↓ ↓ ↓ ↓
COM20	↓ ↓ ↓ ↓
COM21	↓ ↓ ↓
COM22	↓
COM23	J.
COM23	Ţ
COM24	Ţ
COM25	
COM26	
COM27	1
COM28	
COM29	<u> </u>
COM30	↓
COM31	1
COM32	1
COM32	1
COM33	1
COM34	i
COM35	Ţ
COM36 ↓ <td>*</td>	*
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
COM38	1
	Ļ
COM39	1
	↓
COM40	Ţ
COM41	Ţ
COM42	i
COM43	i i
COM44	Ť
COM45	<u> </u>
COM46	1
COM47	↓
COM48	1
COM49	1
COM50	j
COM51	Ť
COM52	1
COM53	<u> </u>
COM54	Ļ
COM55	↓
COM56	1
COM57	1
COM58	į.
COM59	Ĭ
COM60	Ť
COM61	Ť
COM62	<u> </u>
COM63	.
COM64	1
COM65	↓
COM66	
COM67	↓
COM68	
	Ţ
COM69	1
COM70	1 1 1
COM71	↓ ↓ ↓
COM72	1 1 1
	↓ ↓ ↓
	↓ ↓ ↓ √ 79
COM73	↓ ↓ ↓ 79 0 ↓
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	↓ ↓ ↓ 79 0 ↓
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	↓ ↓ ↓ 79 0 ↓ ↓
COM73	1

Fig 24 Relation between Row address and Common Driver (1)

NOTE1) DS: Duty Cycle Ratio / SC: Initial COM / LA: Initial Display Line Address NOTE2) Segment waveforms for 81st COM timing are the same as for 80th COM timing (Row address "79").

(18-2) SHIFT=0, Initial Display Line "0", Duty Cycle Ratio "1/13"

			SHIFT=0, [DS3-0=(1.0).0.1). LA6	S-LA0=(0.0	.0.0.0.0.0)	. DSE=0			
SC3 - SC0	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010
COM0	0										8
COM1	1										1
COM2	1										1
COM3	→					ļ		ļ			11
COM4	+	0									
COM5	<u></u>	<u> </u>									
COM6 COM7	<u>↓</u>	- -									
COM7	<u></u>	1	0								
COM9	<u> </u>	Ť	J.								
COM10	Ť	Ť	Ť								
COM11	11	Ĭ	Ĭ								
COM12		ì	i								
COM13		Į.	1								
COM14		1	1								
COM15		11	Ţ								
COM16			1	0							
COM17			Ļ	Ļ							
COM18			↓	<u> </u>							
COM19		-	11	+		 		 			
COM20 COM21				<u></u>							
COM21		l		<u></u>		1		1			
COM22 COM23		1		1		1		1			
COM24				1	0	1		 			
COM25		1		Ť	j			1			
COM26				Ť	Ť						
COM27		İ		11	Ĭ	İ		İ			
COM28					į.						
COM29					→						
COM30					1						
COM31					↓						
COM32					↓	0					
COM33					+	<u> </u>					
COM34					↓	. ↓					
COM35					11	Ļ					
COM36						<u> </u>					
COM37 COM38						+					
						<u> </u>					
COM39 COM40						—	0				
COM41						1	J				
COM42						Ť	Ĭ				
COM43						11	Ť				
COM44							ĭ				
COM45							Ĭ				
COM46							1				
COM47							1				
COM48							↓	0			
COM49							↓	1			
COM50							1	Ļ			
COM51							11	1			
COM52								<u> </u>			
COM53		-				 		↓			
COM54 COM55								-			
COM55 COM56		-				-		1	0		
COM57		1				1		1	J		
COM58						 		1	, i		
COM59								11	Ť		
COM60		1				1		 	Ť		
COM61									Ť		
COM62		İ				İ		İ	Ĭ		
COM63		İ				İ		İ	Ĭ		
COM64									į.	0	
COM65									↓	↓	
COM66									Ţ	Ţ	
COM67									11	1	
COM68										.	
COM69										Ļ	
COM70										<u></u>	
COM71										→	
COM72										<u></u>	0
COM73		-									<u> </u>
COM74		-				 		 		↓ 11	+
COM75 COM76		-				 		 		п	+
COM76 COM77						-		-			1
COM78		1				1		1			1
COM78		1				1		1			7
13 th COM Timing	11	11	11	11	11	11	11	11	11	11	11
13 COM HIHING	- "		- 1	- "	- 1						

Fig 25 Relation between Row address and Common Driver (2)

NOTE1) DS: Duty Cycle Ratio / SC: Initial COM / LA: Initial Display Line Address NOTE2) Segment waveforms for 13th COM timing are the same as for 12th COM timing (Row address "11").

(18-3) SHIFT=1, Initial Display Line "0", Duty Cycle Ratio "1/81"

		,	SHIFT=1, [DS3-0=(0,0	0,0,0), LA6	6-LA0=(0,0),0,0,0,0,0)	, DSE=0			
SC3 - SC0	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010
COMO	79	75	71	63	55	47	39	31	23	15	7
COM1	<u>↑</u>	1	1	<u> </u>	<u>↑</u>	1	<u> </u>	<u></u>	<u></u>	1	<u>↑</u>
COM2	1	1	1	<u> </u>	1	1	<u> </u>	1	<u> </u>	1	<u> </u>
COM3	1	1	1	1	1	1	1	1	1	1	1
COM4	1	1	1	1	1	1	1	1	1	1	1
COM5	1	1	1	1	1	1	1	1	1	1	1
COM6	Ť	<u>†</u>	Ť	<u> </u>	<u>†</u>	<u>†</u>	Ť	Ť	Ť	Ť	Ť
COM7	1	1	1	<u> </u>	↑	1	1	1	↑	1	0
COM8	1	1	1	1	1	1	1	1	1	1	79
COM9	1	1	1	1	1	1	1	1	1	1	1
COM10	1	1	1	1	1	1	Ť	1	1	1	1
COM11	1	1	1	1	1	1	1	†	1	1	1
COM12	i i	<u> </u>	Ť	<u> </u>	i i	i	Ť	i i	†	`	i i
COM13	1	1	1	1	1	1	1	1	1	1	1
COM14	1	1	1	1	1	1	1	1	1	1	1
COM15	1	1	1	1	1	1	1	1	1	0	1
COM16	1	1	1	1	1	1	1	1	1	79	1
COM17	1	1	1	1	1	1	1	1	1	1	1
COM18	<u> </u>	<u>†</u>	Ť	Ť	<u> </u>	Ť	†	Ť	<u>†</u>	Ť	<u>†</u>
COM19	<u>↑</u>	1	<u>↑</u>	1	1	1	<u>↑</u>	<u>↑</u>	1	1	<u>↑</u>
COM20	1	1	1	1	1	1	1	1	1	1	1
COM21	1	1	1	1	1	1	1	1	1	1	1
COM22	1	1	1	1	1	1	1	1	1	1	1
COM23	†	<u> </u>	Ť	<u> </u>	Ť	<u>†</u>	†	Ť	0	Ť	i i
COM24	<u> </u>	 	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	79	<u> </u>	<u> </u>
COM25	1	1	1	1	1	1	<u> </u>	1	<u> </u>	1	1
COM26	1	1	1	1	1	1	1	1	1	1	1
COM27	1	1	1	1	1	1	1	1	1	1	1
COM28	1	Ť	1	1	1	Ť	†	<u>†</u>	1	1	Ť
COM29	†	<u> </u>	Ť	<u> </u>	†	<u> </u>	†	<u> </u>	<u>†</u>	<u>†</u>	<u>†</u>
COM30	1	1	1	<u> </u>	1	1	<u> </u>	1	<u> </u>	1	1
COM31	1	1	1	1	1	1	1	0	1	1	1
COM32	1	1	1	1	1	1	1	79	1	1	1
COM33	Ť	i i	Ť	<u>†</u>	Ť	i i	Ť	1	†	Ť	Ť
COM34	<u>†</u>	†	Ť	<u> </u>	<u>†</u>	<u>†</u>	†	<u>†</u>	†	<u>†</u>	Ť
COM35	1	1	1	1	1	1	↑	1	Ţ.	1	1
COM36	1	1	1	1	1	1	1	1	1	1	1
COM37	1	1	1	1	1	1	1	1	1	1	1
COM38	1	1	1	1	1	1	1	1	1	1	1
COM39	Ť	<u> </u>	Ť	<u> </u>	Ť	i i	0	Ť	†	Ť	Ť
COM40	<u>↑</u>	1	1	1	1	1	79	Ţ.	Ţ.	1	1
COM41	1	1	1	1	1	1	1	1	1	1	1
COM42	1	1	1	1	1	1	1	1	1	1	1
COM43	1	1	1	1	1	1	1	1	1	1	1
COM44	†	†	1	1	1	†	†	†	†	†	1
COM45	1	1	1	<u>↑</u>	<u>↑</u>	1	<u> </u>	1	<u> </u>	1	1
COM46	1	1	1	1	1	1	1	1	1	1	1
COM47	1	1	1	1	1	0	1	1	1	1	1
COM48	1	1	1	1	1	79	Î	1	Ť	1	1
COM49	Ť	<u>†</u>	Ť	1	Ť	1	Ť	Ť	Ť	Ť	1
COM50	†	<u> </u>	†	<u> </u>	†	†	Ť	†	Ť	†	Ť
COM51	1	1	1	1	1	1	1	1	1	1	1
COM52	1	1	1	1	1	1	1	1	1	1	1
COM53	1	1	1	1	1	1	1	1	1	1	1
COM54	1	1	1	1	1	1	1	1	1	1	1
COM55	<u> </u>	<u> </u>	Ť	<u>†</u>	0	Ť	†	<u>†</u>	Ť	<u>†</u>	Ť
COM56	<u> </u>	<u> </u>	<u>†</u>	<u> </u>		<u> </u>					
					79						
COM57	1								1	1	1
COM58		1	1	<u> </u>	1	1	1	1			
	1	<u> </u>	Ť	T	1	↑ ↑	↑ ↑	↑ ↑	1	1	1
COM59	<u>↑</u>								↑ ↑	<u>↑</u>	↑ ↑
		Ť	<u>†</u>	1	↑ ↑	Ť	1	Ť			1
COM60	↑ ↑	↑ ↑	† †	† † †	↑ ↑	† †	↑ ↑	† †	↑ ↑	↑ ↑	↑
COM60 COM61	↑ ↑	↑ ↑ ↑	† † †	↑ ↑ ↑	↑ ↑ ↑	↑ ↑ ↑	↑ ↑ ↑	↑ ↑	† †	↑ ↑	† †
COM60 COM61 COM62	↑ ↑	↑ ↑	† †	† † †	↑ ↑ ↑						
COM60 COM61 COM62 COM63	↑ ↑	↑ ↑ ↑	† † †	↑ ↑ ↑	↑ ↑ ↑	↑ ↑ ↑	↑ ↑ ↑	↑ ↑	† †	↑ ↑	† †
COM60 COM61 COM62	↑ ↑	↑ ↑ ↑	† † †	† † †	↑ ↑ ↑						
COM60 COM61 COM62 COM63 COM64	↑ ↑ ↑	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	↑ ↑ ↑	↑ ↑ ↑ ↑	↑ ↑ ↑
COM60 COM61 COM62 COM63 COM64 COM65	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	↑ ↑ ↑ ↑
COM60 COM61 COM62 COM63 COM64 COM65	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †
COM60 COM61 COM62 COM63 COM64 COM65 COM66 COM66	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †
COM60 COM61 COM62 COM63 COM64 COM65 COM66 COM66 COM67	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †
COM60 COM61 COM62 COM63 COM64 COM65 COM66 COM66	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †
COM60 COM61 COM62 COM63 COM64 COM65 COM66 COM67 COM68	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †
COM60 COM61 COM62 COM63 COM64 COM65 COM66 COM66 COM66 COM67 COM68 COM69	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †
COM60 COM61 COM62 COM62 COM63 COM64 COM65 COM66 COM67 COM68 COM69 COM70	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †
COM60 COM61 COM62 COM63 COM64 COM65 COM66 COM66 COM66 COM66 COM69 COM70 COM71 COM72	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †
COM60 COM61 COM62 COM62 COM63 COM64 COM65 COM66 COM67 COM68 COM69 COM70	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	
COM60 COM61 COM62 COM63 COM64 COM65 COM66 COM66 COM66 COM66 COM69 COM70 COM71 COM72	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †
COM60 COM61 COM62 COM63 COM64 COM65 COM66 COM67 COM68 COM69 COM70 COM71 COM72 COM73	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †
COM60 COM61 COM62 COM63 COM63 COM65 COM66 COM66 COM66 COM69 COM71 COM71 COM72 COM73 COM74 COM75	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †
COM60 COM61 COM62 COM63 COM64 COM65 COM66 COM66 COM67 COM68 COM67 COM70 COM71 COM71 COM72 COM73 COM74 COM75 COM75	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †		† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	
COM60 COM61 COM62 COM62 COM63 COM65 COM65 COM66 COM67 COM68 COM70 COM71 COM72 COM73 COM74 COM75 COM76 COM76 COM76 COM77	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †
COM60 COM61 COM62 COM63 COM64 COM65 COM66 COM66 COM67 COM68 COM67 COM70 COM71 COM71 COM72 COM73 COM74 COM75 COM75	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †		† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †
COM60 COM61 COM62 COM62 COM63 COM64 COM65 COM66 COM67 COM68 COM70 COM71 COM72 COM73 COM74 COM75 COM76 COM76 COM76 COM776 COM776 COM776	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †
COM60 COM61 COM62 COM63 COM64 COM65 COM66 COM66 COM66 COM69 COM71 COM72 COM71 COM72 COM73 COM74 COM75 COM76 COM76 COM76 COM77	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †		† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † †	

Fig 26 Relation between Row address and Common Driver (3)

NOTE1) DS: Duty Cycle Ratio / SC: Initial COM / LA: Initial Display Line Address NOTE2) Segment waveforms for 81st COM timing are the same as for 80th COM timing (Row address "79").

(18-4) SHIFT=0, Initial Display Line "5", Duty Cycle Ratio "1/81"

SHIFT=0, DS3-0=(0,0,0,0), LA6-LA0=(0,0,0,0,1,0,1), DSE=0											
SC3 - SC0	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010
COM0	5	1	77	69	61	53	45	37	29	21	13
COM1	↓	↓	78	→	↓	↓	↓	↓	→	→	1
COM2	↓	↓	79	→	→	↓	↓	↓	→	→	1
COM3	Į.	↓	0	.	Ļ	Į.	Ļ	Ļ	Ļ	Ļ	↓
COM4	Ļ	5	. ↓	<u> </u>	Ļ	<u> </u>	Ļ	Ļ	<u> </u>	Ļ	ļ.
COM5 COM6	<u> </u>	<u> </u>	<u> </u>	 	<u> </u>	<u> </u>	ļ	<u> </u>	+	<u> </u>	+
COM6 COM7	+	-	+		 	+	↓		<u> </u>	<u></u>	+
COM7	1	1	5 ↓	<u></u>	<u></u>	1	1	1	1	 	<u>T</u>
COM9	Ť	Ţ	Ţ	1	1	i i	1	T T		Ť	1
COM10	Ĭ.	ľ	Ţ	79	Ť	Ť	ı.	ı.	ı.	Ť	Ĭ.
COM11	Ĭ	Ĭ	ì	0	Ĭ	Ĭ	Ĭ	Ĭ	Ĭ	Ĭ	Ĭ
COM12	Ĭ	ĭ	Ĭ	1	Ĭ	ĭ	Ĭ	ĭ	Ĭ	Ĭ	ĭ
COM13	Ĭ	Ĭ	ì	ì	Ĭ	ì	Ĭ	Ĭ	j	Ĭ	Ĭ
COM14	1	1	1	→	→	1	1	1	1	→	1
COM15	1	1	1	↓	↓	↓	1	Ţ	\downarrow	1	↓
COM16	↓	↓	↓	5	→	→	↓	↓	→	→	↓
COM17	1	↓	1	1	1	↓	ļ	↓	↓	↓	1
COM18	↓	Į.	↓	1	79	. ↓	↓ ·	Į.	↓	. ↓	. ↓
COM19	Ļ	Ļ	Į.	<u></u>	0	<u> </u>	ļ .	ļ.	Ļ	Ļ	Ļ
COM20	<u> </u>	ļ	<u> </u>	<u></u>	<u></u>	<u> </u>	<u> </u>	<u> </u>	.	<u> </u>	<u> </u>
COM21	.	- -	+		<u></u>	.		-	.	+	<u> </u>
COM22	+	ļ	+		<u>↑</u>	+	.	-	+	<u></u>	<u> </u>
COM23 COM24	1	<u>↓</u>	1	<u>↓</u>	5	+		<u>↓</u>		<u></u>	1
COM24 COM25	<u> </u>	1	1		. ↓	↓	1	1	Ť	1	<u> </u>
COM26	<u> </u>	*	1	- 	<u></u>	79	<u> </u>	*	<u> </u>	<u></u>	*
COM27	*	, t	1	1	*	0	Ť	T T	1	Ť	*
COM28	Ť	*	Ţ	<u> </u>	Ť	ĭ	Ť	T T	Ĭ	*	Ť
COM29	Ĭ	Ť	Ĭ	Ť	Ť	Ť	Ť	Ť	Ĭ	Ť	ĭ
COM30	Ĭ	Ĭ	Ĭ	Ĭ	Ĭ	Ĭ	ĭ	ĭ	Ĭ	Ĭ	ĭ
COM31	j	Ĭ	Ì	Ì	j	ì	Ĭ	Ĭ	j	Ĭ	Ĭ
COM32	1	1	1	1	1	5	↓	1	↓	1	↓
COM33	1	↓	1	→	J	↓	→	↓	↓	→	↓
COM34	1	1	1	→	1	1	79	1	↓	↓	Ţ
COM35	1	↓	1	→	→	↓	0	↓	↓	→	↓
COM36	1	Ţ	1	Ţ	1	1	Ţ	Ţ	Ţ	Ţ	Ţ
COM37	1	↓	1	1	1	1	. ↓	↓	↓	↓	Ţ
COM38	↓	↓	1	1	. ↓	↓	↓	↓ ·	↓	. ↓	1
COM39	Ļ	. ↓	Ļ	+	Ļ	Ļ	↓	Ļ	.	Ļ	<u> </u>
COM40	<u> </u>	<u> </u>	<u> </u>	<u></u>	<u> </u>	<u> </u>	5	<u> </u>	.	<u> </u>	<u> </u>
COM41 COM42	<u> </u>	ļ	<u> </u>	 	<u> </u>	<u> </u>	<u> </u>	↓ 70	.	<u> </u>	<u> </u>
COM42	+	.	1		<u></u>	<u> </u>	.	79 0		<u></u>	<u> </u>
COM44	1	↓	1	<u></u>	+	1	↓	j i	i i	<u>↓</u>	1
COM45	Ť	Ť	1	<u> </u>	<u> </u>	1	Ť	*	*	*	*
COM46	ĭ	ĭ	Ţ	Ĭ	ĭ	Ť	ĭ	ĭ	Ţ	Ĭ	Ĭ
COM47	Ĭ	Ĭ	Ĭ	Ĭ	Ĭ	Ĭ	Ĭ	Ĭ	Ĭ	Ĭ	Ĭ
COM48	j	ĭ	ì	ì	Ĭ	Ĭ	ĭ	5	Ĭ	Ĭ	Ĭ
COM49	i	Ĭ	į	i	i	Ĭ	Ĭ	↓	Ì	Ĭ	Ĭ
COM50	1	1	1	→	→	Ţ	1	Į.	79	→	Ţ
COM51	Ţ	Ţ	Ţ	→	Ţ	Ţ	Ţ	Ţ	0	Ţ	Ţ
COM52	1	Ţ	1	1	1	Ţ	↓	Ţ	↓ ·	Ţ	Ţ
COM53	1	1	1	↓	1	↓	↓ ·	↓	↓	ļ	Ţ
COM54	1	↓	↓	→	.	↓	↓	↓	→	↓	.
COM55	. ↓	Ļ	.	<u></u>	<u></u>	<u> </u>	Ļ	Ļ	↓	Ļ	Ļ
COM56	<u> </u>	<u> </u>	<u> </u>	<u></u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	5	<u> </u>	<u> </u>
COM57 COM58	+	+	+		<u></u>	+	.	+	.	↓ 70	<u> </u>
COM58 COM59	+	+	+			+	—	—	+	79	+
COM59 COM60		<u>↑</u>	1	1	<u></u>	1	<u></u>	<u> </u>	<u>↑</u>	0 ↓	<u> </u>
COM60	<u> </u>	*	1			1	<u></u>	*	i i	<u></u>	Ţ
COM62	1	1	1	<u> </u>	<u></u>	1	1	*	1	<u></u>	*
COM62	*	*	1	- 	<u></u>	1	, i	*	1	*	1
COM64	Ť	i i	1	1	1	i i	1	*	1	5	Ť.
COM65	ĭ	ĭ	Ĭ	Ť	ĭ	Ť	ĭ	ĭ	ĭ	Ţ	ľ
COM66	Ĭ	Ĭ	Ĭ	Ť	Ĭ	Ĭ	Ĭ	Ĭ	Ĭ	Ĭ	79
COM67	i	Ĭ	i	i	Ĭ	i	ĭ	ĭ	Ĭ	Ĭ	0
COM68	į.	j	į.	į.	į.	į.	į.	į.	j	j	1
COM69	į.	į.	į	.	į.	į.	į.	į.	j	J	į.
COM70	1	1	1	1	1	Ţ	↓	1	↓ ·	1	Ţ
COM71	↓ ·	↓	1	↓	. ↓	↓	. ↓	↓	↓	ļ	Ţ
COM72	↓	↓	1	↓	. ↓	↓	. ↓	↓	↓	ļ	5
COM73	1	Ļ	.	→.	.	. ↓	Ļ	Ļ	+	, ,	Į.
COM74	79	ļ .	Į.	<u></u>	Ļ	<u> </u>	Ļ	ļ.	<u> </u>	Ļ	<u> </u>
COM75	0	<u> </u>	<u> </u>	<u></u>	<u></u>	<u> </u>	Ļ	ļ.	+	<u> </u>	<u> </u>
COM76	+	.	+		 	.	.		+	↓	,
COM77	+	↓ 79	+		+	+	.	-	+	<u>+</u>	<u> </u>
COM78 COM79	4	0	↓ 76	68	60	↓ 52	↓ 44	36	↓ 28	20	↓ 12
81 st COM Timing											
• al COM liming	4	4	4	4	4	4	4	4	4	4	4

Fig 27 Relation between Row address and Common Driver (4)

NOTE1) DS: Duty Cycle Ratio / SC: Initial COM / LA: Initial Display Line Address NOTE2) Segment waveforms for 81st COM timing are the same as for 80th COM timing (Row address "79").

(18-5) SHIFT=0, Initial Display Line "0", Duty Cycle Ratio "1/81", Duty-1 ON

Fig 28 Relation between Row address and Common Driver (5)

NOTE1) DS: Duty Cycle Ratio / SC: Initial COM / LA: Initial Display Line Address

(19) TYPICAL INSTRUCTION SEQUENCES

(19-1) Initialization Sequence in Using Internal LCD Power Supply

NOTE1) If different power sources are applied to the V_{DD} and the V_{EE} , turn on the V_{DD} first.

NOTE2) Wait until the V_{DD} and V_{EE} are stabilized.

NOTE3) Wait 10 [us] or more.

NOTE4) Wait until the V_{OUT} is stabilized.

NOTE5) Wait until the V_{LCD} and V₁-V₄ are stabilized.

(19-2) Initialization Sequence in Using External LCD Power Supply

NOTE1) Wait until the V_{DD} is stabilized.

NOTE2) Wait 10 [us] or more.

NOTE3) Wait until the external LCD power supply (V_{OUT}, V_{LCD}, V₁-V₄) are stabilized.

(19-3) Display Data Write Sequence

(19-4) Partial Display Sequence

Optional Status	Instruction Code	Setting (Example)
	$oxed{D_7} oxed{D_6} oxed{D_5} oxed{D_4} oxed{D_3} oxed{D_2} oxed{D_1} oxed{D_0}$	
INSTRUCTION TABLE SELECT	1 1 1 1 0 0 0 0	- Instruction Table Select (0,0,0)
Display Control (1)	1 0 0 0 0 0 0 0 0	- Display OFF
Power Control	1 0 1 1 0 0 1 0	- Voltage Converter OFF
Power Control	1 0 1 1 0 0 0 0	- Voltage Booster OFF
WAIT (NOTE1)		
Display Setting		
Duty Cycle Ratio	1 1 0 0 0 1 1 0	- 1/33 Duty
Initial Display Line (Lower)	0 1 0 0 0 0 0 0	- Initial Display Line (00)H
Initial Display Line (Upper)	0 1 0 1 * 0 0 0	- Illitial Display Ellic (00)11
INSTRUCTION TABLE SELECT	1 1 1 1 0 1 0 0	- Instruction Table Select (1,0,0)
Initial COM	0 1 1 0 0 0 0 0	- Initial COM: COM0
Power Setting		
EVR Control (Upper)	1 0 1 1 * 0 1 1	
EVR Control (Lower)	1 0 1 0 1 1 0 0	- M=60
INSTRUCTION TABLE SELECT	1 1 1 1 0 0 0 0	- Instruction Table Select (0,0,0)
Boost Level	1 1 0 1 * 0 1 0	- 3-times Booster
LCD Bias Ratio	1 1 1 0 * 1 0 0	- 1/5 Bias
Power Control		- Voltage Booster ON
WAIT (NOTE2)		
` ´		
Power Control	1 0 1 1 1 0 1 0	- Voltage Converter ON
WAIT (NOTE3)		
Display Control (1)	1 0 0 0 0 0 0 1	- Display ON
 END		

NOTE1) Wait until the voltage booster is completely turned off. Make sure what is the wait time in the particular application. NOTE2) Wait until the V_{OUT} is stabilized.

NOTE3) Wait until the V_{LCD} and V_1 - V_4 are stabilized.

(19-5) Power OFF Sequence

NOTE) Wait until the Discharge is completed.

■ ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	CONDITION	TERMINAL	RATING	UNIT
Supply Voltage (1)	V_{DD}		V_{DD}	-0.3 to +4.0	V
Supply Voltage (2)	V_{EE}		V_{EE}	-0.3 to +4.0	V
Supply Voltage (3)	V_{OUT}	V _{SS} =0V	V_{OUT}	-0.3 to +19.0	V
Supply Voltage (4)	V_{REG}	V _{SSH} =0V	V_{REG}	-0.3 to +19.0	V
Supply Voltage (5)	V_{LCD}	Ta = +25°C	V_{LCD}	-0.3 to +19.0	V
Supply Voltage (6)	V_1, V_2, V_3, V_4		V_1, V_2, V_3, V_4	-0.3 to $V_{LCD} + 0.3$	V
Input Voltage	V_{I}		*1	-0.3 to $V_{DD} + 0.3$	V
Storage Temperature	Tstg		·	-45 to +125	°C

NOTE1) D₀ to D₁₅, CSb, RS, RDb, WRb, OSC1, RESb, TEST1, and TEST2

NOTE2) To stabilize the LSI operation, place decoupling capacitors between V_{DD} and V_{SS} and between V_{EE} and V_{SSH}.

■ RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	TERMINAL	MIN	TYP	MAX	UNIT	NOTE
	V_{DD1}	V_{DD}	1.7		3.3	V	1
Supply Voltage	V_{DD2}	עט י	2.4		3.3	V	2
	V_{EE}	V_{EE}	2.4		3.3	V	3
	V_{LCD}	V_{LCD}	5		18.0	V	4
Operating Voltage	V_{OUT}	V_{OUT}			18.0	V	
Operating Voltage	V_{REG}	V_{REG}			$V_{OUT} \times 0.9$	V	
	V_{REF}	V_{REF}	2.1		3.3	V	5
Operating Temperature	Topr		-30		85	°C	

NOTE1) Applied to the condition when the reference voltage generator is not used.

NOTE2) Applied to the condition when the reference voltage generator is used.

NOTE3) Applied to the condition when the voltage booster is used.

NOTE4) The following relation among the LCD bias voltages must be maintained.

V_{SSH}<V₄<V₃<V₂<V₁<V_{LCD}<V_{OUT}

NOTE5) Relation: $V_{\text{REF}} < V_{\text{EE}}$ must be maintained.

■ DC CHARACTERISTICS

 V_{SS} =0V, V_{SSH} =0V, V_{DD} =+1.7 to +3.3V, Ta=-30 to +85°C

	0)/84			V _{SS} -UV, V _{SS}	SH=UV, V _{DD} =+1	1.7 10 13.50, 1	1000	
PARAMETER	SYM BOL	CONDI	TION	MIN	TYP	MAX	UNIT	NOTE
"H" Level Input Voltage	V_{IH}			$0.8 V_{DD}$		V_{DD}	V	1
"L" Level Input Voltage	V_{IL}			0		$0.2V_{DD}$	V	1
"H" Level Output Voltage	V_{OH1}	$I_{OH} = -0.4 \text{mA}$		V _{DD} - 0.4			V	2
"L" Level Output Voltage	V _{OL1}	$I_{OL} = 0.4 \text{mA}$				0.4	V	2
"H" Level Output Voltage	V_{OH2}	$I_{OH} = -0.1 \text{mA}$		V _{DD} - 0.4			V	3
"L" Level Output Voltage	V_{OL2}	$I_{OL} = 0.1 \text{mA}$		-10		0.4	V	3
Input Leakage Current	ILI	$V_I = V_{SS}$ or V_{DD}				10	μΑ	4
Output Leakage Current	I _{LO}	$V_I = V_{SS}$ or V_{DD}		-10		10	μΑ	5
Driver ON-resistance	В		$V_{LCD} = 10V$		1	1 2	1.0	6
Driver ON-resistance	R _{ON1}	$ \Delta V_{ON} = 0.5V$	V _{LCD} = 6V		2	4	kΩ	0
Stand-by Current	I _{STB}	CSb=V _{DD} , Ta=25°C	V _{DD} = 3V			15	μА	7
Ossillation Francisco	f _{OSC1}	V _{DD} = 3V		309	377	445		8
Oscillation Frequency	f _{OSC2}	Ta = 25°C			85	101	kHz	9
Using Internal Resistor	f _{OSC3}	ia = 25°C		10	12.2	14.4	1	10
	f _{r1}	Rf=24kΩ	Rf=24kΩ		382			
Oscillation Frequency	f _{r2}	Rf=120kΩ			84		kHz	11
Using External Resistor	f _{r3}	Rf=820kΩ			12.8			
Voltage Booster		N-time boost (N:	=2 to 6)	(N x V _{EE})				
Output Voltage	V _{OUT}	RL = $500k\Omega$ (V _O		x 0.95			V	12
		$V_{DD} = 3V$, 6-time		X 0.00				
Operating Current (1)	I _{DD1}	All pixels ON			760	1140		
0 " 0 1(0)		V_{DD} = 3V, 6-time	boost		000	4.400		
Operating Current (2)	I _{DD2}	Checker flag dis			930	1400		
0 1: 0 1:0		V_{DD} = 3V, 5-time			500	700		
Operating Current (3)	I _{DD3}	All pixels ON			520	780		40
Operation Comment (4)		V_{DD} = 3V, 5-time	boost		650	000	μΑ	13
Operating Current (4)	I _{DD4}	Checker flag dis			650	980		
Operation Compant (F)		$V_{DD} = 3V$, 4-time			200	540		
Operating Current (5)	I _{DD5}	All pixels ON			360	540		
Operating Current (6)		V_{DD} = 3V, 4-time	boost		450	680		
Operating Current (6)	I _{DD6}	Checker flag dis	play		450	680		
V _{BA} Output Voltage	V _{BA}	V _{EE} = 2.4 to 3.3\	1	(0.9 V _{EE})	0.9 V _{EE}	(0.9 V _{EE})	V	14
VBA Output Voltage	V _{BA}	VEE = 2.4 (0 3.3)	/	x 0.98	U.9 VEE	x 1.02	V	14
		V _{EE} = 2.4 to 3.3\		(V _{REF} x N)		(\/ v N)		
V _{REG} Output Voltage	V_{REG}	$V_{REF} = 0.9 \times V_{EE}$		x 0.97	(V _{REF} x N)	(V _{REF} x N) x 1.03	V	15
		N-time boost (N=	=2 to 6)	X 0.91		X 1.05		
	V_2			-100	0	+100		
	V ₃	7		-100	0	+100		
LCD Bias Voltages	V _{D12}			-30	0	+30	mV	16
	V _{D34}	1		-30	0	+30	1	
	V _{D24}	1		-30	0	+30	1	
	V D24	I.				. 50		1

■ OSCILLATION FREQUENCY AND FRAME FREQUENCY

OSCILLATOR	SYM		FRAME FREQUENCY (FLM)					
/EXTERNAL BOL		DISPLAY MODE	DUTY CYC 1/81-1/57	<dse=0> 1/17-1/13</dse=0>				
	f _{OSC1}	Variable 8-/16-level Grayscale Mode	f _{osc} / (62xD)	f _{OSC} / (62xDx2)	f _{OSC} / (62xDx4)			
Using Internal Oscillator	f _{OSC2}	Fixed 8-level Grayscale Mode	f _{osc} / (14xD)	f _{OSC} / (14xDx2)	f _{osc} / (14xDx4)			
	f _{OSC3}	B&W Mode	f _{OSC} / (2xD)	f _{OSC} / (2xDx2)	f _{OSC} / (2xDx4)			
	f _{CK1}	Variable 8-/16-level Grayscale Mode	f _{CK} / (62xD)	f _{CK} / (62xDx2)	f _{CK} / (62xDx4)			
Using External Clock	f _{CK2}	Fixed 8-level Grayscale Mode	f _{CK} / (14xD)	f _{CK} / (14xDx2)	f _{CK} / (14xDx4)			
	f _{CK3}	B&W Mode	f _{CK} / (2xD)	f _{CK} / (2xDx2)	f _{CK} / (2xDx4)			

NOTE1) D₀-D₁₅, CSb, RS, RDb, WRb, P/S, SEL68 and RESb

NOTE2) D₀-D₁₅

CL, FLM, FR and CLK NOTE3)

NOTE4) CSb, RS, SEL68, RDb, WRb, P/S, RESb and OSC1

NOTE5) D₀-D₁₅ in high impedance

NOTE6) SEGA₀-SEGA₁₀₃, SEGB₀-SEGB₁₀₃, SEGC₀-SEGC₁₀₃ and COM₀-COM₇₉

This parameter defines the resistance between each COM/SEG and each LCD bias (V_{LCD}, V₁, V₂, V₃ and V₄).

- 0.5V Difference / 1/9 LCD Bias

NOTE7) V_{DD}

Oscillator is halted.

- CSb=1 (Disabled) / No-load on COM/SEG

NOTE8)

This parameter defines the oscillation frequency by using the internal resistor, in the Variable grayscale mode.

-(Rf2, Rf1, Rf0)=(0,0,0)

NOTE9)

This parameter defines the oscillation frequency by using the internal resistor, in the 8-level fixed grayscale mode.

- (Rf2, Rf1, Rf0)=(0,0,0)

NOTE10) CLK

This parameter defines the oscillation frequency by using the internal resistor, in the B&W mode.

- (Rf2, Rf1, Rf0)=(0,0,0)

NOTE11) OSC2

- V_{DD}=3V / Ta=25°C

NOTE12) Vout

This parameter is applied to the condition that the internal LCD power supply and the internal oscillator are used.

- V_{EE}=2.4V to 3.3V / EVR= (1,1,1,1,1,1,1) / 1/4 to 1/10 LCD Bias / 1/81 Duty Cycle / No-load on COM/SEG /

RL=500k Ω between V_{OUT} and V_{SSH} / CA1=CA2=1.0uF / CA3=0.1uF / DCON="1" / AMPON="1"

NOTE13) V_{SS}, V_{SSH}

This parameter is applied to the condition that the internal LCD power supply and the internal oscillator are used. - EVR= (1,1,1,1,1,1,1) / All Pixels ON or Checker Flag Display / No-load on COM/SEG / No-access from MPU /

V_{DD}=V_{EE} / V_{REF}=0.9V_{EE} / CA1=CA2=1.0uF / CA3=0.1uF / DCON="1" / AMPON="1" / NLIN="0" / 1/81 Duty cycle / Ta=25°C

NOTE14) V_{BA}

- V_{BA}=V_{REF} / Boost Level (N)="1",/ DCON="0" / V_{OUT}=13.5V

NOTE15) V_{REG}

- Vee=2.4V to 3.3V / Vee=0.9Vee / VOUT=18V / 1/4 to 1/10 LCD bias ratio / 1/81 duty cycle / EVR=(1,1,1,1,1,1) / Checker flag display / No-load on COM/SEG / Boost Level (N)="2" to "6" / CA1=CA2=1.0uF / CA3=0.1uF /

DCON="0" / AMPON="1" / NLIN="0"

NOTE16) V_{LCD} , V_1 , V_2 , V_3 and V_4

- VEE=3.0V / VREF=0.9VEE / VOUT=15V/ 1/4 to 1/10 LCD Bias / EVR= (1,1,1,1,1,1,1) / Display OFF / No-load on COM/SEG / Boost Level (N)="5" / CA1=CA2=1.0uF / CA3=0.1uF / DCON="0" / AMPON="1"

(1)	─_V _{LCD}
♦ (2)	V ₁
	V ₂
(3)	V_3 V_4
♦ (4)	— V ₄ ——V _{SSH}
	v 550

V_{D12}: (1)-(2) V_{D34}: (3)-(4)

V_{D24}: (2)-(4)

(VD24 is applied to the condition that VD12 and VD34 are

out of specifications.)

■ AC CHARACTERISTICS

(1) Write Operation (Parallel Interface / 80-series MPU)

(V_{DD}=2.5 to 3.3V. Ta=-30 to +85°C)

					(- DD = - 0	0.0 v, 1a 00 to 100 0)
PARAMETER	SYMBOL	CONDITION	MIN.	MAX.	UNIT	TERMINAL
Address hold time Address setup time	t _{AH8} t _{AS8}		0 0		ns ns	CSb RS
System cycle time Enable "L" level pulse width Enable "H" level pulse width	t _{CYC8} t _{WRLW8} t _{WRHW8}		90 35 35		ns ns ns	WRb
Data setup time Data hold time	t _{DS8} t _{DH8}		30 5		ns ns	D ₀ to D ₁₅

 $(V_{DD}=2.2 \text{ to } 2.5\text{V}, \text{Ta}=-30 \text{ to } +85^{\circ}\text{C})$

					(- DD = -= ++	72.04, 10 00 to 100 0)
PARAMETER	SYMBOL	CONDITION	MIN.	MAX.	UNIT	TERMINAL
Address hold time Address setup time	t _{AH8} t _{AS8}		0 0		ns ns	CSb RS
System cycle time Enable "L" level pulse width Enable "H" level pulse width	tcycs twrlws twrhws		160 70 70		ns ns ns	WRb
Data setup time Data hold time	t _{DS8} t _{DH8}		40 5		ns ns	D ₀ to D ₁₅

 $(V_{DD}=1.7 \text{ to } 2.2V, Ta=-30 \text{ to } +85^{\circ}C)$

PARAMETER	SYMBOL	CONDITION	MIN.	MAX.	UNIT	TERMINAL
Address hold time Address setup time	t _{AH8} t _{AS8}		0		ns ns	CSb RS
System cycle time Enable "L" level pulse width Enable "H" level pulse width	tcyc8 twrlw8 twrhw8		180 80 80		ns ns ns	WRb
Data setup time Data hold time	t _{DS8} t _{DH8}		70 10		ns ns	D ₀ to D ₁₅

NOTE) Each timing is specified based on 20% and 80% of V_{DD} .

(2) Read Operation (Parallel Interface / 80-series MPU)

 $(V_{DD}=2.5 \text{ to } 3.3V, Ta=-30 \text{ to } +85^{\circ}C)$

					, 55	7 0.0 1, 1a. 00 to 00 0 ₁
PARAMETER	SYMBOL	CONDITION	MIN.	MAX.	UNIT	TERMINAL
Address hold time Address setup time	t _{AH8} t _{AS8}		0		ns ns	CSb RS
System cycle time Enable "L" level pulse width Enable "H" level pulse width	t _{CYC8} t _{WRLR8} t _{WRHR8}		180 80 80		ns ns ns	RDb
Read Data delay time Read Data hold time	t _{RDD8} t _{RDH8}	CL=15pF	0	60	ns ns	D ₀ to D ₁₅

 $(V_{DD}=2.2 \text{ to } 2.5V, Ta=-30 \text{ to } +85^{\circ}C)$

PARAMETER	SYMBOL	CONDITION	MIN.	MAX.	UNIT	TERMINAL
Address hold time Address setup time	t _{AH8} t _{AS8}		0		ns ns	CSb RS
System cycle time Enable "L" level pulse width Enable "H" level pulse width	t _{CYC8} t _{WRLR8} t _{WRHR8}		180 80 80		ns ns ns	RDb
Read Data delay time Read Data hold time	t _{RDD8} t _{RDH8}	CL=15pF	0	60	ns ns	D ₀ to D ₁₅

(V_{DD}=1.7 to 2.2V, Ta=-30 to +85 $^{\circ}$ C)

PARAMETER	SYMBOL	CONDITION	MIN.	MAX.	UNIT	TERMINAL
Address hold time Address setup time	t _{AH8}		0 0		ns ns	CSb RS
System cycle time Enable "L" level pulse width Enable "H" level pulse width	t _{CYC8} t _{WRLR8} t _{WRHR8}		300 140 140		ns ns ns	RDb
Read Data delay time Read Data hold time	t _{RDD8}	CL=15pF	0	130	ns ns	D ₀ to D ₁₅

NOTE) Each timing is specified based on 20% and 80% of V_{DD} .

(3) Write Operation (Parallel Interface / 68-series MPU)

 $(V_{DD}=2.5 \text{ to } 3.3V, Ta=-30 \text{ to } +85^{\circ}C)$

PARAMETER	SYMBOL	CONDITION	MIN.	MAX.	UNIT	TERMINAL
Address hold time Address setup time	t _{AH6}		0 0		ns ns	CSb RS
System cycle time Enable "L" level pulse width Enable "H" level pulse width	t _{CYC6} t _{ELW6} t _{EHW6}		90 35 35		ns ns ns	E
Data setup time Data hold time	t _{DS6} t _{DH6}		40 5		ns ns	D ₀ to D ₁₅

 $(V_{DD}=2.2 \text{ to } 2.5V, Ta=-30 \text{ to } +85^{\circ}C)$

PARAMETER	SYMBOL	CONDITION	MIN.	MAX.	UNIT	TERMINAL
Address hold time Address setup time	t _{AH6} t _{AS6}		0 0		ns ns	CSb RS
System cycle time Enable "L" level pulse width Enable "H" level pulse width	t _{CYC6} t _{ELW6} t _{EHW6}		160 70 70		ns ns ns	E
Data setup time Data hold time	t _{DS6} t _{DH6}		50 5		ns ns	D ₀ to D ₁₅

 $(V_{DD}$ =1.7 to 2.2V, Ta=-30 to +85°C)

PARAMETER	SYMBOL	CONDITION	MIN.	MAX.	UNIT	TERMINAL
Address hold time Address setup time	t _{AH6} t _{AS6}		0 0		ns ns	CSb RS
System cycle time Enable "L" level pulse width Enable "H" level pulse width	t _{CYC6} t _{ELW6} t _{EHW6}		180 80 80		ns ns ns	E
Data setup time Data hold time	t _{DS6} t _{DH6}		70 10		ns ns	D ₀ to D ₁₅

NOTE) Each timing is specified based on 20% and 80% of V_{DD} .

(4) Read Operation (Parallel Interface / 68-series MPU)

 $(V_{DD}=2.5 \text{ to } 3.3 \text{V}, \text{Ta}=-30 \text{ to } +85^{\circ}\text{C})$

	(v Di)-2.5 to 3.5	v, 1a=-30 to +65 C)			
PARAMETER	SYMBOL	CONDITION	MIN.	MAX.	UNIT	TERMINAL
Address hold time Address setup time	t _{AH6} t _{AS6}		0 0		ns ns	CSb RS
System cycle time Enable "L" level pulse width Enable "H" level pulse width	tcyc6 t _{ELR6} t _{EHR6}		180 80 80		ns ns ns	Е
Read Data delay time Read Data hold time	t _{RDD6}	CL=15pF	0	70	ns ns	D ₀ to D ₁₅

 $(V_{DD}=2.2 \text{ to } 2.5V, Ta=-30 \text{ to } +85^{\circ}C)$

					(V _{DD} =2.2 to 2.5 V, 1a=-30 to +85°C)			
PARAMETER	SYMBOL	CONDITION	MIN.	MAX.	UNIT	TERMINAL		
Address hold time Address setup time	t _{AH6} t _{AS6}		0 0		ns ns	CSb RS		
System cycle time Enable "L" level pulse width Enable "H" level pulse width	t _{CYC6} t _{ELR6} t _{EHR6}		180 80 80		ns ns ns	Е		
Read Data delay time Read Data hold time	t _{RDD6} t _{RDH6}	CL=15pF	0	70	ns ns	D ₀ to D ₁₅		

 $(V_{DD}=1.7 \text{ to } 2.2V, Ta=-30 \text{ to } +85^{\circ}C)$

PARAMETER	SYMBOL	CONDITION	MIN.	MAX.	UNIT	TERMINAL
Address hold time Address setup time	t _{ah6} t _{as6}		0 0		ns ns	CSb RS
System cycle time Enable "L" level pulse width Enable "H" level pulse width	tcyc6 t _{ELR6} t _{EHR6}		300 140 140		ns ns ns	Ш
Read Data delay time Read Data hold time	t _{RDD6} t _{RDH6}	CL=15pF	0	130	ns ns	D ₀ to D ₁₅

NOTE) Each timing is specified based on 20% and 80% of V_{DD} .

(5) Write Operation (Serial Interface)

 $(V_{DD}=2.5 \text{ to } 3.3V, Ta=-30 \text{ to } +85^{\circ}C)$

PARAMETER	SYMBOL	CONDITION	MIN.	MAX.	UNIT	TERMINAL
Serial clock cycle	t _{CYCS}		50		ns	
SCL "H" level pulse width	t _{SHW}		20		ns	SCL
SCL "L" level pulse width	t _{SLW}		20		ns	
Address setup time	t _{ASS}		20		ns	RS
Address hold time	t _{AHS}		20		ns	Ko
Data setup time	t _{DSS}		20		ns	SDA
Data hold time	t _{DHS}		20		ns	SDA
CSb – SCL time	tcss		20		ns	CCh
CSb hold time	t _{CSH}		20		ns	CSb

 $(V_{DD}=2.2 \text{ to } 2.5V, Ta=-30 \text{ to } +85^{\circ}C)$

						· · · · · · · · · · · · · · · · · · ·
PARAMETER	SYMBOL	CONDITION	MIN.	MAX.	UNIT	TERMINAL
Serial clock cycle SCL "H" level pulse width SCL "L" level pulse width	t _{CYCS} t _{SHW} t _{SLW}		50 20 20		ns ns ns	SCL
Address setup time Address hold time	tass tahs		20 20		ns ns	RS
Data setup time Data hold time	t _{DSS} t _{DHS}		20 20		ns ns	SDA
CSb – SCL time CSb hold time	t _{css} t _{csн}		20 20		ns ns	CSb

 $(V_{DD}=1.7 \text{ to } 2.2V, Ta=-30 \text{ to } +85^{\circ}C)$

Ver.2004-06-25

PARAMETER	SYMBOL	CONDITION	MIN.	MAX.	UNIT	TERMINAL
Serial clock cycle	t _{CYCS}		80		ns	
SCL "H" level pulse width	t _{SHW}		35		ns	SCL
SCL "L" level pulse width	t _{SLW}		35		ns	
Address setup time	t _{ASS}		35		ns	RS
Address hold time	t _{AHS}		35		ns	Ro
Data setup time	t _{DSS}		35		ns	SDA
Data hold time	t _{DHS}		35		ns	SDA
CSb – SCL time	t _{CSS}		35		ns	004
CSb hold time	t _{CSH}		35		ns	CSb

NOTE) Each timing is specified based on 20% and 80% of V_{DD} .

(6) Read Operation (Serial Interface)

 $(V_{DD}=2.5 to 3.3V, Ta=-30 to +85^{\circ}C)$

PARAMETER	SYMBOL	CONDITION	MIN.	MAX.	UNIT	TERMINAL
Serial clock cycle	tcycsr		400		ns	
SCL "H" level pulse width	t _{SHWR}	NOTE2)	300		ns	SCL
SCL "L" level pulse width	t _{SLWR}		75		ns	
Read Data delay time	t _{RDDR}		80		ns	CSb

 $(V_{DD}=2.2 \text{ to } 2.5V, Ta=-30 \text{ to } +85^{\circ}C)$

						·
PARAMETER	SYMBOL	CONDITION	MIN.	MAX.	UNIT	TERMINAL
Serial clock cycle	t _{CYCSR}		520		ns	
SCL "H" level pulse width	t shwr	NOTE2)	400		ns	SCL
SCL "L" level pulse width	t _{SLWR}		95		ns	
Read Data delay time	t _{RDDR}		100		ns	CSb

 $(V_{DD}$ =1.7 to 2.2V, Ta=-30 to +85°C)

PARAMETER	SYMBOL	CONDITION	MIN.	MAX.	UNIT	TERMINAL
Serial clock cycle	tcycsr		660		ns	
SCL "H" level pulse width	t_{SHWR}	NOTE2)	500		ns	SCL
SCL "L" level pulse width	t _{SLWR}		135		ns	
Read Data delay time	t _{RDDR}		140		ns	CSb

NOTE1) Each timing is specified based on 20% and 80% of VDD.

NOTE2) t_{CYCSR} is applied to the timing from the 8th clock and later in the 4-line serial interface, or the 9th and later in the 3-line serial interface.

(7) Display Control Timing

Output timing

 $(V_{DD}=2.4 \text{ to } 3.3V, Ta=-30 \text{ to } +85^{\circ}C)$

PARAMETER	SYMBOL	CONDITION	MIN.	MAX.	UNIT	TERMINAL
FLM delay time	t _{DFLM}	CL=15pF	0	500	ns	FLM
FR delay time	$t_{\sf FR}$		0	500	ns	FR
CL delay time	t _{DCL}		0	200	ns	CL

Output timing

 $(V_{DD}=1.7 \text{ to } 2.4V, Ta=-30 \text{ to } +85^{\circ}C)$

PARAMETER	SYMBOL	CONDITION	MIN.	MAX.	UNIT	TERMINAL
FLM delay time	t _{DFLM}	CL=15pF	0	1000	ns	FLM
FR delay time	t_{FR}		0	1000	ns	FR
CL delay time	t _{DCL}		0	200	ns	CL

NOTE) Each timing is specified based on 20% and 80% of V_{DD} .

(8) Input Clock Timing

 $(V_{DD}=1.7 \text{ to } 3.3V, Ta=-30 \text{ to } +85^{\circ}C)$

PARAMETER	SYMBOL	CONDITION	MIN.	MAX.	UNIT	TERMINAL
OSC1 "H" level pulse width (1)	t _{CKHW1}		1.12	1.62	μs	OSC1
OSC1 "L" level pulse width (1)	t _{CKLW1}		1.12	1.62	μs	(NOTE2)
OSC1 "H" level pulse width (2)	t _{CKHW2}		4.95	7.25	μs	OSC1
OSC1 "L" level pulse width (2)	t _{CKLW2}		4.95	7.25	μs	(NOTE3)
OSC1 "H" level pulse width (3)	t _{CKHW3}		34.7	50.0	μs	OSC1
OSC1 "L" level pulse width (3)	t _{CKLW3}		34.7	50.0	μs	(NOTE4)

NOTE1) Each timing is specified based on 20% and 80% of V_{DD} . NOTE2) Applied to Variable 8-/16-level grayscale mode (MON="0",PWM="0")

NOTE3) Applied to fixed 8-level grayscale mode (MON="0",PWM="1")

NOTE4) Applied to B&W mode (MON="1")

(9) Reset Input Timing

 $(V_{DD}=2.4 \text{ to } 3.3\text{V}, \text{Ta}=-30 \text{ to } +85^{\circ}\text{C})$

	(.DD =:: to old i, i.e. od to od					
PARAMETER	SYMBOL	CONDITION	MIN.	MAX.	UNIT	Terminal
Reset time	t _R			1.0	μs	
RESb "L" level pulse width	t _{RW}		10.0		μs	RESb

 $(V_{DD}=1.7 \text{ to } 2.4V, Ta=-30 \text{ to } +85^{\circ}C)$

PARAMETER	SYMBOL	CONDITION	MIN.	MAX.	UNIT	Terminal
Reset time	t _R			1.5	μs	
RESb "L" level pulse width	t _{RW}		10.0		μs	RESb

NOTE) Each timing is specified based on 20% and 80% of V_{DD} .

(10) Delay Time of Gate

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Delay time of gate	Ta=+25°C, V _{SS} =0V, V _{DD} =3.0V		10		ns

INPUT/OUTPUT BLOCK DIAGRAMS

Input Block Diagram

Terminals CSb, RS, RDb, WRb, SEL68, P/S, RESb

V_{DD} Input signal V_{SS}(0V)

Output Block Diagram

Terminals: FLM, CL, FR, CLK

Input/Output Block Diagram

Terminals: D₀ - D₁₅

COM/SEG Driver Block Diagram

Terminals: $SEGA_0/B_0/C_0 - SEGA_{103}/B_{103}/C_{103}$, $COM_0 - COM_{79}$

■ MPU CONNECTIONS

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.