МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ **«ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»**

Математический факультет

Кафедра теории функций и геометрии

Программная реализация ((на языке JavaScript) алгоритмов		
генерации ФОС по математике 2024			

Курсовая работа

Направление 010501 Фундаментальные математика и механика

Зав.кафедрой	д.физмат.н., проф.	Е.М. Семёнов
Обучающийся		А.С. Суматохина
Руковолитель	л.физмат.н., проф.	Е М. Семёнов

Содержание

\mathbf{B}	Введение		
1	Гла	ва первая	4
	1.1	Вспомогательные функции	4
		1.1.1 Функции для работы с массивами	4
		1.1.2 Функции для работы с числами	5
		1.1.3 Функции для работы с canvas	5
2	Гла	ва вторая	9
	2.1	Разработка библиотек с помощью Gpt-Chat	9
	2.2	Применение ООП для разработки шаблонов	
	2.3	Вспомогательные функции	13
		2.3.1 Функции для работы с координатами	13
		2.3.2 Функции для работы с canvas	13
	2.4	Этапы разработки шаблоны с вспомогательным чертежом	14
За	аклю	чение	21
П	рило	жение	23

Введение

Единый государственный экзамен (ЕГЭ) — централизованно проводимый в Российской Федерации экзамен в средних учебных заведениях — школах, лицеях и гимназиях, форма проведения ГИА(Государственный Итоговая Аттестация) по образовательным программам среднего общего образования. Служит одновременно выпускным экзаменом из школы и вступительным экзаменом в вузы.

*СТАЩИЛА ИЗ ВЕСНЫ

Но за 10 и 11 класс при подготовке к ЕГЭ школьники сталкиваются с дефицитом заданий по определённым категориям. Так в конце 2021 года в список заданий ЕГЭ были добавлены новые задания под номером 11 по теме "графики функции", а в конце 2023 - задание номер 2 по теме "вектора", количество которых, для прорешивания было очень мало. А по теме "Производная и первообразная" банк заданий с невероятной скоростью.

Так как это преимущественно графические задания, решение их занимает менее минуты, а их составление вручную занимает несоразмерно много времени.

ЕГЭ является относительно неизменяемым экзаменом, поэтому все материалы, которые уже были выложены в открытый доступ имеют полные решения, что приводят к списыванию учениками.

*СТАЩИЛА ИЗ ВЕСНЫ

При этом существуют задания с вспомогательным чертежом. Чаще всего для целого ряда заданий используется одна и та же иллюстрация, которая не всегда соответствуют условиям задачи, а иногда отвлекают от решения. Проект «Час ЕГЭ» позволяет решить все эти проблемы.

«Час ЕГЭ» — компьютерный образовательный проект, разрабатываемый при математическом факультете ВГУ в рамках «ОрепSource кластера» и предназначенный для помощи учащимся старших классов подготовиться к тестовой части единого государственного экзамена. Задания в «Час ЕГЭ» генерируются случайным образом по специализированным алгоритмам, называемых шаблонами, каждый из которых охватывает множество вариантов соответствующей ему задачи. Для пользователей предназначены четыре оболочки (режима работы): «Случайное задание», «Тесты на печать», «Полный тест» и «Мини-интеграция». «Час ЕГЭ» является полностью открытым (код находится под лицензией GNU GPL 3.0) и бесплатным. В настоящее время в проекте полностью реализованы тесты по математике с кратким ответом (бывшая «часть В»). [4] Планируется с течением времени включить в проект тесты по другим предметам школьной программы.

«Мини-интеграция» — это форма сотрудничества с образовательными интернетресурсами, при которой учебно-методический материал на странице ресурса дополняется виджетами тренажера с заданиями, соответствующими теме статьи, для возможности практического применения полученных знаний. В настоящее время достигнуто сотрудничество с двумя образовательными ресурсами: ege-ok.ru и matematikalegko.ru.

1. Глава первая

1.1. Вспомогательные функции

1.1.1. Функции для работы с массивами

Array.prototype.permuteCyclic = function(repeat) Возвращает массив после циклической перестановки.

```
let array = [1,2,3,4,5];
array.permuteCyclic(1);
// [5, 1, 2, 3, 4]
array.permuteCyclic(-2);
// [3, 4, 5, 1, 2]
array.permuteCyclic(0);
// [1 ,2 ,3 ,4 ,5]
```

```
Array.prototype.mt_coordinatesOfIntersectionOfTwoSegments
= function()
```

Возвращает координаты пересечения двух отрезков, задаваемых первыми парами точек из массива.

```
Array.prototype.shuffleJoin = function(separator)
```

Перемешивает и соединяет массив с разделителем separator. separator по умолчанию пустая строка.

```
let array = ['A', 'B', 'C', 'D',];
array.shuffleJoin();
```

```
//ADBC
array.shuffleJoin('; ');
//C; D; B; A
```

Array.prototype.joinWithConjunction = function(separator)

Соединяет массив запятыми и соединяет два последних элемента союзом "и".

```
let array = ['A', 'B', 'C', 'D',];
array.joinWithConjunction();
//A, B, Си D
```

1.1.2. Функции для работы с числами

Number.prototype.perfectCubicMultiplier = function()

Возвращает максимальный делитель данного числа, куб которого также является делителем данного числа.

```
let number = 81;

number.perfectCubicMultiplier()
//3

number = 36;
number.perfectCubicMultiplier()
//1

number = -27;
number.perfectCubicMultiplier()
//3
```

Number.prototype.texcbrt = function(p1, p2)

ТеХ-представление кубического корня из данного числа.

Если данное число - полный квадрат, то корень из числа.

Если р1, то из-под корня будут вынесены возможные множители.

Если р1, р2 и из-под корня выносится единица, то она будет опущена

1.1.3. Функции для работы с canvas

CanvasRenderingContext2D.prototype.drawSection = function(vertex,
fillStyle)

Заполняет область цветом fillStyle по вершинам из массива vertex.

```
let paint1 = function(ctx) {
     let h = 400;
     let w = 400;
     ctx.drawCoordinatePlane(w, h, {
          hor: 1,
          ver: 1
     }, {
          x1: '1',
         y1: '1',
          sh1: 16,
     },30);
     ctx.scale(30, -30);
     ctx.drawSection([[1, 3],[-3, 0],[-2, -2],[1, -1],[5,
1],[4, 4],[3, 2]]);
     ctx.drawSection([[-2, 0],[-1, 1],[-4, 3],[-1, 5],[1,
1],[5, 2],[4, -6],[0, 0],[-4, -2],]);
 };
```


CanvasRenderingContext2D.prototype.drawLineAtAngle = function(x, y,
angle, length)

Pucyeт отрезок длины length под углом angle в радианах.

CanvasRenderingContext2D.prototype.strokeInMiddleOfSegment

= function(x1, y1, x2, y2, length, quantity)

Ставит штрихи длины length на середине отрезка перпендикулярно ему.

CanvasRenderingContext2D.prototype.markSegmentWithLetter

= function(x, y, angle, letter, length, maxLength)

Вспомогательная функция для отрисовки текста около некоторого отрезка.

CanvasRenderingContext2D.prototype.signSegmentInMiddle

= function(x1, y1, x2, y2, letter, length, maxLength)

Pucyet letter на середине отрезка.

CanvasRenderingContext2D.prototype.arcBetweenSegments

= function(coordinates, radius)

Рисует знак угла между двумя отрезками в месте их пересечения. coordinates - массив вида [x1, y1, x2, y2].

```
let paint1 = function(ctx) {
     let h = 400;
     let w = 400;
     ctx.drawCoordinatePlane(w, h, {
          hor: 1,
          ver: 1
     }, {
         x1: '1',
          y1: '1',
          sh1: 16,
     }, 30);
     ctx.scale(30, -30);
     ctx.lineWidth = 2 / 30;
     ctx.drawLine(1, 5, 3, -2);
     ctx.drawLine(3, -2, 5, -3);
     ctx.arcBetweenSegments([1, 5, 3, -2, 5, -3], 2);
     ctx.drawLine(2, -5, -4, -2);
     ctx.drawLine(1, -2, -3, -6);
     ctx.arcBetweenSegments([2, -5, -4, -2, -3, -6, 1,
-2,],1);
     ctx.drawLine(1, 5, 1, -2);
 ctx.drawLine(1, -2, 5, -2);
 ctx.strokeStyle = om.secondaryBrandColors.iz();
 ctx.arcBetweenSegments([1, 5, 1, -2, 5, -2], 3);
 };
```


 ${\tt Canvas Rendering Context 2D.prototype.} {\tt arc Between Segments Count}$

= function(coordinates, radius, number, step)

Рисует знак угла между двумя отрезками в месте их пересечения **number** раз с отступом **step**.

CanvasRenderingContext2D.prototype.drawEllipse

= function(x, y, radiusX, radiusY, rotation, startAngle, endAngle,
anticlockwise)

Рисует эллипс.

CanvasRenderingContext2D.prototype.drawArc

= function(x, y, radius, startAngle, endAngle, anticlockwise) Рисует дугу.

2. Глава вторая

2.1. Разработка библиотек с помощью Gpt-Chat

На данный момент в языке JavaScript отсутствуют встроенные средства для изображения трёхмерных фигур. И существует только одна подходящая библиотека Three.js, которая могла бы выполнить проецирование координат фигуры на плоскость с учётом положения наблюдателя. Возможности библиотеки во много раз превосходят требуемую функциональность для нашего проекта.

Подобные ей библиотеки проводят проецирование на плоскость с поворотом только вокруг осей OX и OZ. Что при отрисовке более сложных чертежей является недостаточным.

С учётом самых современных технологий, встал закономерный вопрос, сможет ли нейросеть ChatGPT 3.5 сгенерировать код проектора. Ниже представлен диалог с нейросетью:

write a 2D to 3D projector in JS without using libraries. input: point = $\{x,y,z\}$, camera= $\{x,y,z, angleX, angleY, angleZ, scale\}$

```
// Define the point in 2D
const point = { x: 100, y: 50, z: 0 };
// Define the camera parameters
const camera = { x: 0, y: 0, z: 0, angleX: 0, angleY: 0,
angleZ: 0, scale: 1 };
// Function to project 2D point to 3D
function project2Dto3D(point, camera) {
    // Apply rotation around X axis
    const rotatedY = point.y * Math.cos(camera.angleX) -
point.z * Math.sin(camera.angleX);
    const rotatedZ = point.y * Math.sin(camera.angleX) +
point.z * Math.cos(camera.angleX);
    // Apply rotation around Y axis
    const rotatedX = point.x * Math.cos(camera.angleY) +
rotatedZ * Math.sin(camera.angleY);
    const rotatedZ2 = -point.x * Math.sin(camera.angleY) +
rotatedZ * Math.cos(camera.angleY);
    // Apply rotation around Z axis
```

```
const rotatedX2 = rotatedX * Math.cos(camera.angleZ) -
rotatedY * Math.sin(camera.angleZ);
    const rotatedY2 = rotatedX * Math.sin(camera.angleZ) +
rotatedY * Math.cos(camera.angleZ);
    // Apply scaling
    const scaledX = rotatedX2 * camera.scale;
    const scaledY = rotatedY2 * camera.scale;
    // Translate to camera position
    const translatedX = scaledX + camera.x;
    const translatedY = scaledY + camera.y;
    const translatedZ = rotatedZ2 * camera.scale + camera.z;
    return { x: translatedX, y: translatedY, z: translatedZ
};
// Project the point from 2D to 3D
const projectedPoint = project2Dto3D(point, camera);
// Output the result
console.log("Projected 3D point:", projectedPoint);
```

shorten function project2Dto3D

```
function project2Dto3D(point, camera) {
   const { x, y, z } = point;
   const { angleX, angleY, angleZ, scale, x: cx, y: cy, z:
   cz } = camera;

const cosX = Math.cos(angleX);
   const sinX = Math.sin(angleX);
   const cosY = Math.cos(angleY);
   const sinY = Math.sin(angleY);
   const sinY = Math.sin(angleY);
   const cosZ = Math.cos(angleZ);
   const sinZ = Math.sin(angleZ);

const rx = x * cosY * cosZ - y * cosY * sinZ + z * sinY;
   const ry = (x * (sinX * sinY * cosZ + cosX * sinZ) + y
```

```
* (sinX * sinY * sinZ - cosX * cosZ) + z * sinX * cosY) *
scale;
    const rz = (-x * (cosX * sinY * cosZ - sinX * sinZ) - y
* (cosX * sinY * sinZ + sinX * cosZ) + z * cosX * cosY) *
scale;

return { x: rx + cx, y: ry + cy, z: rz + cz };
}
```

add comments in code

```
function project2Dto3D(point, camera) {
    // Extract point coordinates
    const { x, y, z } = point;
    // Extract camera parameters
    const { angleX, angleY, angleZ, scale, x: cx, y: cy, z:
cz } = camera;
    // Precompute trigonometric values for rotation angles
    const cosX = Math.cos(angleX);
    const sinX = Math.sin(angleX);
    const cosY = Math.cos(angleY);
    const sinY = Math.sin(angleY);
    const cosZ = Math.cos(angleZ);
    const sinZ = Math.sin(angleZ);
    // Apply rotation around X axis
    const rx = x * cosY * cosZ - y * cosY * sinZ + z * sinY;
    // Apply rotation around Y axis and scale
    const ry = (x * (sinX * sinY * cosZ + cosX * sinZ) + y
* (\sin X * \sin Y * \sin Z - \cos X * \cos Z) + z * \sin X * \cos Y) *
scale;
    // Apply rotation around Z axis and scale
    const rz = (-x * (cosX * sinY * cosZ - sinX * sinZ) - y
* (\cos X * \sin Y * \sin Z + \sin X * \cos Z) + z * \cos X * \cos Y) *
scale:
    // Translate to camera position
    const translatedX = rx + cx;
    const translatedY = ry + cy;
```

```
const translatedZ = rz + cz;

return { x: translatedX, y: translatedY, z: translatedZ
};
}
```

За несколько шагов удалось получить корректный, оптимизированный код.

2.2. Применение ООП для разработки шаблонов

Стоит отметить, что задач по теме "Стереометрия" огромное множество. Поэтому одной из первостепенных задач было сократить код шаблонов и исключить вычислительные ошибки. Для этого были разработаны классы многогранников, которые содержат в себе длины рёбер, объем, площади оснований, а так же тернарную матрицу связности и канонические координаты вершин.

Матрица может содержать значения: 1, 0, либо специальное значение, указывающий на отображении ребра пунктиром.

Пример канонической матрицы связей:

Листинг 1: Каноническая матрица связей для параллелепипеда

Каноническим положением будем называть такое расположение многогранника, когда его высота, проходящая через центр масс его основания, совпадает с осью аппликат и начало координат делится пополам.

При таком расположении, начало координат можно расположить в центре иллюстрация. Тогда чертёж не будет смещён ни в одну из сторон.

Пример. 1: Каноническое положение для параллелепипеда

Пример. 2: Каноническое положение для правильной пятиугольной призмы

2.3. Вспомогательные функции

2.3.1. Функции для работы с координатами

function verticesInGivenRange(vertex, startX, finishX, startY, finishY) Возвращает true, если двухмерная координата точки vertex вида {x,y} находится в некоторой области, иначе false.

function autoScale(vertex3D, camera, vertex2D, startX, finishX, startY,
finishY, step, maxScale)

Увеличивает свойство объекта camera.scale, пока все двухмерные координаты vertex2D вида {x,y} находится в некоторой области. step по умолчанию 0.1.

function distanceFromPointToSegment(point, segmentStart, segmentEnd) Возвращает длину перпендикуляра между двухмерной точкой point вида {x,y} до отрезка с концами в segmentStart и segmentEnd.

2.3.2. Функции для работы с canvas

CanvasRenderingContext2D.prototype.drawFigure = function(vertex, matrixConequinger). Соединяет линиями точки массива vertex с элементами $\{x,y\}$ в соответствии с матрицей связей matrixConnections, которая является массивом, который может содержать в себе 0, 1 и массив step, указывающий на отрисовку пунктиром.

Пример матрицы связей:

```
let matrixConnections = [
    [1],
    [strok, strok],
    [0, 0, strok],
    [1, 0, 0, 1],
    [0, 1, 0, 1, 1]
];
```

CanvasRenderingContext2D.prototype.drawFigureVer2 = function()

vertex, matrixConnections Coeдиняет линиями точки массива vertex с элементами {x,y} в соответствии с матрицей связей matrixConnections, которая является объектом с числовыми полями (номерами вершин), которые содержат в себе массив с номерами вершин для связи с ними.

Пример матрицы связей:

```
let matrixConnections = {
    0: [1, [3, stroke], 5],
    2: [1, [3, stroke], 7],
    4: [[3, stroke], 5, 7],
    9: [1, 8, 10],
    11: [8, 10, 12],
    13: [5, 8, 12],
    15: [7, 10, 12],
};
```

2.4. Этапы разработки шаблоны с вспомогательным чертежом

Для примера возьмём задание 27074

```
(function () {
  retryWhileError(function () {
    NAinfo.requireApiVersion(0, 2);
    let paint1 = function (ctx) {
    };
    NAtask.setTask({
      text: 'Объем параллелепипеда ABCDA_1B_1C_1D_1 равен 9.
  Найдите объем треугольной пирамиды АВСА_1.',
      answers: 0,
      author: ['Суматохина Александра']
    NAtask.modifiers.addCanvasIllustration({
      width: 400,
      height: 400,
      paint: paint1,
    });
 }, 100000);
})();
```

1. Создадим объект класса Parallelepiped.

```
(function () {
  retryWhileError(function () {
    NAinfo.requireApiVersion(0, 2);
    let par = new Parallelepiped({
      depth: sl(10, 50),
      height: sl(10, 50),
      width: sl(10, 50),
    });
    let paint1 = function (ctx) {
    };
    NAtask.setTask({
      text: 'Объем параллелепипеда ABCDA_1B_1C_1D_1 равен 9.
  Найдите объем треугольной пирамиды АВСА_1.',
      answers: 0,
      author: ['Суматохина Александра']
    NAtask.modifiers.addCanvasIllustration({
      width: 400,
      height: 400,
      paint: paint1,
    });
 }, 100000);
})();
```

2. Определим переменную camera, которая будет отвечать за положение наблюдателя. И спроецируем канонические координаты параллелепипеда на двухмерную плоскость при помощи функции project3DTo2D. И отмасштабируем полученные координаты так, чтобы они занимали максимально заполняли спрайт, функцией autoScale.

```
(function () {
    retryWhileError(function () {
        NAinfo.requireApiVersion(0, 2);

    let par = new Parallelepiped({
            depth: sl(10, 50),
            height: sl(10, 50),
            width: sl(10, 50),
        });
```

```
let camera = {
          x: 0,
          y: 0,
          z: 0,
          scale: 5,
          rotationX: -Math.PI / 2 + Math.PI / 14,
          rotationY: 0,
          rotationZ: 2 * Math.PI / 3,
      };
      let point2DPar =
par.verticesOfFigure.map((coord3D) =>
project3DTo2D(coord3D, camera));
      autoScale(par.verticesOfFigure, camera,
point2DPar, {
          startX: -180,
          finishX: 160,
          startY: -160,
          finishY: 160,
          maxScale: 50,
      });
      point2DPar = par.verticesOfFigure.map((coord3D)
=> project3DTo2D(coord3D, camera));
      let paint1 = function (ctx) {
      };
      NAtask.setTask({
          text: 'Объем параллелепипеда ABCDA_1B_1C_1D_1
равен 9. Найдите объем треугольной пирамиды АВСА_1.',
          answers: 0,
          author: ['Суматохина Александра']
      });
      NAtask.modifiers.addCanvasIllustration({
          width: 400,
          height: 400,
          paint: paint1,
      });
  }, 100000);
```

})();

3. Перемещаемся в середину спрайта. Отрисовываем фигуру функцией drawFigure, отдав в неё матрицу связей для параллелепипеда.

```
(function () {
    retryWhileError(function () {
        NAinfo.requireApiVersion(0, 2);
        let par = new Parallelepiped({
            depth: sl(10, 50),
            height: sl(10, 50),
            width: sl(10, 50),
        });
        let camera = {
            x: 0,
            y: 0,
            z: 0,
            scale: 5,
            rotationX: -Math.PI / 2 + Math.PI / 14,
            rotationY: 0,
            rotationZ: 2 * Math.PI / 3,
        };
        let point2DPar =
  par.verticesOfFigure.map((coord3D) =>
  project3DTo2D(coord3D, camera));
        autoScale(par.verticesOfFigure, camera,
  point2DPar, {
            startX: -180,
            finishX: 160,
            startY: -160,
            finishY: 160,
            maxScale: 50,
        });
        point2DPar = par.verticesOfFigure.map((coord3D)
  => project3DTo2D(coord3D, camera));
        let paint1 = function (ctx) {
```

```
let h = 400;
            let w = 400;
            ctx.translate(h / 2, w / 2);
             ctx.lineWidth = 2:
             ctx.strokeStyle = om.secondaryBrandColors;
            let strok = [5, 4];
             ctx.drawFigure(point2DPar, [
                 [strok],
                 [0, 1],
                 [strok, 0, 1],
                 [0, 0, 0, 1],
                 [strok, 0, 0, 0, 1],
                 [0, 1, 0, 0, 0, 1],
                 [0, 0, 1, 0, 1, 0, 1],
            ]);
        };
        NAtask.setTask({
            text: 'Объем параллелепипеда ABCDA_1B_1C_1D_1
  равен 9. Найдите объем треугольной пирамиды АВСА_1.',
            answers: 0,
            author: ['Суматохина Александра']
        });
        NAtask.modifiers.addCanvasIllustration({
            width: 400,
            height: 400,
            paint: paint1,
        });
    }, 100000);
})();
```

4. Далее вырезаем из условия значения и заменяем их данными из класса. Впишем ответ. Обособляем имена фигур в \$\$. Добавляем буквы на вершины параллелепипеда. Добавим модификаторы NAtask.modifiers.assertSaneDecimals (исключает нецелый ответ) и NAtask.modifiers.variativeABC(letter) (заменяет все буквы в задании на случайные).

```
(function() {
  retryWhileError(function() {
    NAinfo.requireApiVersion(0, 2);

let par = new Parallelepiped({
    depth: sl(10, 50),
```

```
height: sl(10, 50),
   width: sl(10, 50),
 });
 let pyr = new Pyramid({
   height: par.height,
   baseArea: 0.5 * par.baseArea,
 });
 let camera = {
   x: 0,
   y: 0,
   z: 0,
   scale: 5,
   rotationX: -Math.PI / 2 + Math.PI / 14,
   rotationY: 0,
   rotationZ: 2 * Math.PI / 3,
 };
 let point2DPar = par.verticesOfFigure.map((coord3D)
=> project3DTo2D(coord3D, camera));
 autoScale(par.verticesOfFigure, camera, point2DPar, {
   startX: -180,
   finishX: 160,
   startY: -160,
   finishY: 160,
   maxScale: 50,
 });
 point2DPar = par.verticesOfFigure.map((coord3D) =>
project3DTo2D(coord3D, camera));
 let letter = ['A', 'B', 'C', 'D', 'D', 'MD', 'MB', 'MB']
'⊠C',];
 let paint1 = function(ctx) {
   let h = 400;
   let w = 400;
   ctx.translate(h / 2, w / 2);
   ctx.lineWidth = 2;
   ctx.strokeStyle = om.secondaryBrandColors;
```

```
let strok = [5, 4];
      ctx.drawFigure(point2DPar, [
        [strok],
        [0, 1],
        [strok, 0, 1],
        [0, 0, 0, 1],
        [strok, 0, 0, 0, 1],
        [0, 1, 0, 0, 0, 1],
        [0, 0, 1, 0, 1, 0, 1],
      ]);
      ctx.font = "25px liberation_sans";
            point2DPar.forEach((elem, i) =>
  ctx.fillText(letter[i], elem.x, elem.y + ((i <</pre>
  point2DPar.length / 2) ? 15 : -10)));
    };
    NAtask.setTask({
      text: 'Объем параллелепипеда $ABCDA_1B_1C_1D_1$ равен
  $'+par.volume+'$. Найдите объем треугольной пирамиды
  $ABCA_1$.',
      answers: par.volume/6,
      author: ['Суматохина Александра']
    });
    NAtask.modifiers.assertSaneDecimals();
    NAtask.modifiers.variativeABC(letter);
    NAtask.modifiers.addCanvasIllustration({
      width: 400,
      height: 400,
      paint: paint1,
    });
 }, 100000);
})();
```

Заключение

В данной работе были приведены архитектура проекта «Час ЕГЭ», его библиотеки и примеры генерируемых задач. Обоснована релевантность проекта по сравнению с другими открытыми ресурсами.

Список литературы

- [1] Момот Е. А., Арахов Н. Д. Разработка и внедрение ПО для сбора статистики результатов подготовки к ЕГЭ по математике профильного уровня //Актуальные проблемы прикладной математики, информатики и механики. 2021. С. 1-2.
- [2] Открытый банк задач ЕГЭ по Математике. Профильный уровень. – URL: https://prof.mathege.ru/
- [3] Пошаговая инструкция по созданию элементарных шаблонов. URL: https://math.vsu.ru/chas-ege/doc/shabl-b1-po-shagam.html
- [4] Федеральный институт педагогических измерений. URL: https://fipi.ru/ege/otkrytyy-bank-zadaniy-ege
- [5] Единый государственный экзамен. URL: https://ru.wikipedia.org/wiki/Единый_государственный_экзамен

Приложение

Шаблоны по теме Стереометрия

```
(function() {
 retryWhileError(function() {
    lx_declareClarifiedPhrase('сторона', 'основания');
    NAinfo.requireApiVersion(0, 2);
    let pyr = new RegularPyramid({
      height: s1(20, 50),
      baseSide: sl(20, 40),
      numberSide: 4
    });
   pyr.verticesOfFigure.push({
      x: 0,
      y: 0,
      z: pyr.verticesOfFigure[0].z
    });
    let question = [
      [sklonlxkand('боковое ребро'), pyr.sideEdge],
      [sklonlxkand('объём'), pyr.volume],
    ].shuffle();
    question.unshift([sklonlxkand('сторона основания'),
  pyr.baseSide]);
    let camera = {
      x: 0,
      y: 0,
      z: 0,
      scale: 5,
      rotationX: -Math.PI / 2 + Math.PI / 14,
      rotationY: 0,
     rotationZ: [1, 2].iz() * Math.PI / 3,
   };
    let point2DPyr = pyr.verticesOfFigure.map((coord3D) =>
  project3DTo2D(coord3D, camera));
    autoScale(pyr.verticesOfFigure, camera, point2DPyr, {
```

```
startX: -180,
   finishX: 160,
    startY: -160,
   finishY: 160,
   maxScale: 50,
 });
 point2DPyr = pyr.verticesOfFigure.map((coord3D) =>
project3DTo2D(coord3D, camera));
 let letters = ['A', 'B', 'C', 'D', 'S', 'O'];
 let strok = [5, 4];
 let paint1 = function(ctx) {
   let h = 400;
   let w = 400;
    ctx.translate(h / 2, w / 2);
    ctx.lineWidth = 2;
    ctx.strokeStyle = om.secondaryBrandColors;
    ctx.drawFigure(point2DPyr, [
      [1],
      [strok, strok],
      [1, strok, strok],
      [1, 1, strok, 1, 0, strok],
   ]);
    ctx.font = "30px liberation_sans";
   point2DPyr.forEach((elem, i) =>
ctx.fillText(letters[i], elem.x, elem.y + ((i !=
point2DPyr.length - 2) ? 15 : -
      10)));
 };
 NAtask.setTask({
   text: 'В правильной четырёхугольной пирамиде $SABCD$ с ' +
'основанием $ABCD$ ' +
      [question[0][0].ie + ' pab' + ['eh', 'ha',
'но'][question[0][0].rod] + ' $' +
question[0][1].pow(2).texsqrt(1) + '$',
      question[1][0].ie + ' pab' + ['eh', 'ha',
'но'][question[1][0].rod] + ' $' +
```

```
question[1][1].pow(2).texsqrt(1) +'$'
        ].shuffleJoin(', ') +
        '. Найдите ' + question[2][0].ve + ' пирамиды.',
      answers: question[2][1],
      author: ['Суматохина Александра'],
    NAtask.modifiers.variativeABC(letters);
    NAtask.modifiers.multiplyAnswerBySqrt(13);
    NAtask.modifiers.allDecimalsToStandard(true);
    NAtask.modifiers.assertSaneDecimals();
    NAtask.modifiers.addCanvasIllustration({
      width: 400,
      height: 400,
      paint: paint1,
    });
  },10);
})();
//https://ege314.ru/8-stereometriya-ege/reshenie-3011/
//3011
```

Листинг 2: 3011.js

Примеры генерируемых задач 3011.js

В правильной четырёхугольной пирамиде OQSDX с основанием QSDX боковое ребро равно $\sqrt{1489,5}$, сторона основания равна 39. Найдите объём пирамиды.

Ответ: 13689

Пример. 3

В правильной четырёхугольной пирамиде VEBXI с основанием EBXI боковое ребро равно $\sqrt{848,5}$, сторона основания равна 27. Найдите объём пирамиды.

Ответ: 5346

Пример. 4

В правильной четырёхугольной пирамиде WYFDC с основанием YFDC боковое ребро равно $\sqrt{1513}$, сторона основания равна 24. Найдите объём пирамиды.

Ответ: 6720

Пример. 5

```
(function() {
 retryWhileError(function() {
    let pyr1 = new RegularPyramid({
     height: sl(30, 70),
     baseSide: s1(20, 50),
     numberSide: 4
   });
   let pyr2 = new Pyramid({
     height: 0.5 * pyr1.height,
     baseArea: 0.5 * pyr1.baseArea,
   });
   pyr1.verticesOfFigure =
  coordinatesMiddleOfSegment3D(pyr1.verticesOfFigure[0],
  pyr1.verticesOfFigure[4]);
    let camera = {
     x: 0,
     y: 0,
     z: 0,
      scale: 5,
     rotationX: -Math.PI / 2 + Math.PI / 14,
     rotationY: 0,
     rotationZ: [1, 2].iz() * Math.PI / 3,
   };
    let point2DPyr = pyr1.verticesOfFigure.map((coord3D) =>
  project3DTo2D(coord3D, camera));
    autoScale(pyr1.verticesOfFigure, camera, point2DPyr, {
      startX: -180,
     finishX: 160,
      startY: -160,
     finishY: 160,
     maxScale: 50,
   });
    point2DPyr = pyr1.verticesOfFigure.map((coord3D) =>
  project3DTo2D(coord3D, camera));
```

```
let letters = ['A', 'B', 'C', 'D', 'S', 'E'];
  let strok = [5, 4];
 let paint1 = function(ctx) {
    let h = 400;
   let w = 400;
    ctx.translate(h / 2, w / 2);
    ctx.lineWidth = 2;
    ctx.strokeStyle = om.secondaryBrandColors;
    ctx.drawFigure(point2DPyr, [
      [1],
      [0, strok],
      [1, strok, strok],
      [1, 1, strok, 1, ],
      [0, 1, 0, 1, 0]
   ]);
    ctx.font = "30px liberation_sans";
   point2DPyr.forEach((elem, i) =>
ctx.fillText(letters[i], elem.x, elem.y + ((i <=
point2DPyr.length - 3) ? 15 : -
      10)));
 };
 NAtask.setTask({
    text: 'Объём правильной четырёхугольной пирамиды $SABCD$
равен $' + pyr1.volume.pow(2).texsqrt(1) + '$. ' +
      'Точка $E$ - середина ребра $SA$. Найдите объём
треугольной пирамиды $EABD$.',
    answers: pyr2.volume,
    author: ['Суматохина Александра'],
  });
 NAtask.modifiers.variativeABC(letters);
 NAtask.modifiers.multiplyAnswerBySqrt(13);
 NAtask.modifiers.allDecimalsToStandard(true);
 NAtask.modifiers.assertSaneDecimals();
 NAtask.modifiers.addCanvasIllustration({
   width: 400,
   height: 400,
   paint: paint1,
  });
```

```
});
})();
//27114 75015 75063 519535 75017 75019 75021 75023 75025
   75027 75029 75031 75033 75035 75037 75039 75041 75043 75045
   75047 75049 75051 75053 75055 75057 75059 75061
```

Листинг 3: 27114.js

Примеры генерируемых задач 3011.js

Объём правильной четырёхугольной пирамиды UCXOZ равен 31164. Точка Y — середина ребра UC. Найдите объём треугольной пирамиды YCXZ.

Ответ: 7791

Пример. 6

Объём правильной четырёхугольной пирамиды TKUWG равен 4800. Точка L — середина ребра TK. Найдите объём треугольной пирамиды LKUG.

Ответ: 1200

Пример. 7

Объём правильной четырёхугольной пирамиды UOVSZ равен 25650. Точка B — середина ребра UO. Найдите объём треугольной пирамиды BOVZ.

Ответ: 6412,5

Пример. 8

```
(function() {
 retryWhileError(function() {
    let pyr1 = new RegularPyramid({
     height: sl(10, 30)*(3).sqrt(),
     baseSide: s1(20, 50),
     numberSide: 3
   });
   let pyr2 = new RegularPyramid({
     height: pyr1.height,
     baseSide: 0.5 * pyr1.baseSide,
     numberSide: 3
   });
  pyr1.verticesOfFigure.push(coordinatesMiddleOfSegment3D(pyr1.ver
  pyr1.verticesOfFigure[1]));
  pyr1.verticesOfFigure.push(coordinatesMiddleOfSegment3D(pyr1.ver
  pyr1.verticesOfFigure[2]));
   let strok = [5, 4];
   let camera = {
     x: 0,
     y: 0,
     z: 0,
     scale: 5,
     rotationX: -Math.PI / 2 + Math.PI / 14,
     rotationY: 0,
     rotationZ: sl(1,2)* Math.PI / 8,
   };
    let point2DPyr = pyr1.verticesOfFigure.map((coord3D) =>
  project3DTo2D(coord3D, camera));
    autoScale(pyr1.verticesOfFigure, camera, point2DPyr, {
      startX: -180,
     finishX: 160,
      startY: -160,
```

```
finishY: 160,
      maxScale: 50,
    });
    point2DPyr = pyr1.verticesOfFigure.map((coord3D) =>
  project3DTo2D(coord3D, camera));
    let paint1 = function(ctx) {
      let h = 400;
      let w = 400;
      ctx.translate(h / 2, w / 2);
      ctx.lineWidth = 2;
      ctx.strokeStyle = om.secondaryBrandColors;
      ctx.drawFigure(point2DPyr, [
        [1],
        [strok, strok],
        [1, 1, strok, 0, 1, strok],
        [0, 0, 0, 0, 0, strok]
      ]);
    };
    NAtask.setTask({
      text: 'Объём треугольной пирамиды равен $' + pyr1.volume +
  '$. ' +
        'Через вершину пирамиды и среднюю линию её основания
  проведена плоскость см(. рисунок). ' +
        'Найдите объём отсечённой треугольной пирамиды.',
      answers: pyr2.volume,
      author: ['Суматохина Александра'],
    });
    NAtask.modifiers.multiplyAnswerBySqrt(13);
    NAtask.modifiers.allDecimalsToStandard(true);
    NAtask.modifiers.assertSaneDecimals();
    NAtask.modifiers.addCanvasIllustration({
      width: 400,
      height: 400,
      paint: paint1,
    });
  }, 1000);
})();
//27115 75065 75109 75113 514460 75067 75069 75071 75073
  75075 75077 75079 75081 75083 75085 75087 75089 75091 75093
  75095 75097 75099 75101 75103 75105 75107 75111
```

Листинг 4: 3011.js

Примеры генерируемых задач 27115.js

Объём треугольной пирамиды равен 2560. Через вершину пирамиды и среднюю линию её основания проведена плоскость (см. рисунок). Найдите объём отсечённой треугольной пирамиды.

Ответ: 640

Пример. 9

Объём треугольной пирамиды равен 4950. Через вершину пирамиды и среднюю линию её основания проведена плоскость (см. рисунок). Найдите объём отсечённой треугольной пирамиды.

Ответ: 1237,5

Пример. 10

Объём треугольной пирамиды равен 12096. Через вершину пирамиды и среднюю линию её основания проведена плоскость (см. рисунок). Найдите объём отсечённой треугольной пирамиды.

Ответ: 3024

Пример. 11