

## **General Description**

FS312 is a series of lithium-ion and lithium-polymer rechargeable battery protection ICs with high accurate voltage detection and delay circuits.

These ICs are suitable for protection of single cell lithium-ion or lithium polymer battery packs from over charge, over discharge and over current.

### **Features**

Low supply current

Normal Operation : 3.0  $\mu$  A typ. @VDD=3.9V Power-down mode : 0.3  $\mu$  A max. @VDD=2.0V

Overcharge detection voltage

( VOCU )  $4.0V\sim4.4V$ , Accuracy of  $\pm25mV$ 

Overcharge release voltage

( VOCR ) 3.9V~4.2V Accuracy of ±50mV

Overdischarge detection voltage

( VODL ) 2.2V~2.9V, Accuracy of ±80mV

Overdischarge release voltage

(VODR) 3.0V~3.2V Accuracy of ±80mV

Over current detection voltage

(VOI1) VOI1

Short circuit detection voltage

( VOI2 ) 1.35V

 Delay times are generated by an internal circuit. (External capacitors are unnecessary.)

Charger detection voltage -1.35\

Reset resistance for Over current protection

>500kΩ

Wide supply voltage range
1.5 ~ 9.0V

Small package SOT-23-6

## **Ordering Information**

FS312 **x**Serial code from AR to FR \*

\*: Refer to the product name list on next page.

### **Applications**

 Protection IC for One-Cell Lithium-Ion / Lithium-Polymer Battery Pack



### **Product Name List**

| Model | Package<br>SOT-23-6 | Overcharge<br>detection<br>voltage<br>[VOCU] (V) | Overcharge<br>release<br>voltage<br>[VOCR] (V) | Overdischarge<br>detection<br>voltage<br>[VODL] (V) | Overdischarge<br>release<br>voltage<br>[VODR] (V) | Overcurrent detection voltage [VOI1] (mV) |
|-------|---------------------|--------------------------------------------------|------------------------------------------------|-----------------------------------------------------|---------------------------------------------------|-------------------------------------------|
|       | AR                  | 4.250±0.025                                      | 4.050±0.05                                     | 2.4±0.08                                            | 3.0±0.08                                          | 200±30                                    |
| FS312 | BR                  | 4.350±0.025                                      | 4.150±0.05                                     | 2.4±0.08                                            | 3.0±0.08                                          | 200±30                                    |
|       | CR                  | 4.250±0.025                                      | 4.050±0.05                                     | 2.4±0.08                                            | 3.0±0.08                                          | 150±30                                    |
|       | DR                  | 4.350±0.025                                      | 4.150±0.05                                     | 2.4±0.08                                            | 3.0±0.08                                          | 150±30                                    |
|       | ER                  | 4.280±0.025                                      | 3.980±0.05                                     | 2.3±0.08                                            | 3.1±0.08                                          | 125±30                                    |
|       | FR                  | 4.250±0.025                                      | 4.050±0.05                                     | 2.9±0.08                                            | 3.0±0.08                                          | 150±30                                    |

Overcharge and overdischarge and overcurrent detection voltages can be changed at the customer's request.

# **Pin Configuration**

| Pin No. | Symbol | Description                                   |  |  |
|---------|--------|-----------------------------------------------|--|--|
| 1       | OD     | FET gate connection pin for discharge control |  |  |
| 2       | CSI    | Input pin for current sense, charger detect   |  |  |
| 3       | ОС     | FET gate connection pin for charge control    |  |  |
| 4       | NC     | No connection                                 |  |  |
| 5       | VDD    | Positive power input pin                      |  |  |
| 6       | VSS    | Negative power input pin                      |  |  |

TEL: +886-2-2809-4742

FAX: +886-2-2809-4874





2/14



# **Functional Block Diagram**



# **Typical Application Circuit**





# **Absolute Maximum Ratings**

(VSS=0V, Ta=25°C unless otherwise specified)

| Item                                | Symbol | Rating             | Unit |
|-------------------------------------|--------|--------------------|------|
| Input voltage between VDD and VSS * | VDD    | VSS-0.3 to VSS+12  | V    |
| OC output pin voltage               | VOC    | VDD-26 to VDD+0.3  | V    |
| OD output pin voltage               | VOD    | VSS-0.3 to VDD+0.3 | V    |
| CSI input pin voltage               | VCSI   | VDD-26 to VDD+0.3  | V    |
| Operating Temperature Range         | TOP    | -40 to +85         | °C   |
| Storage Temperature Range           | TST    | -40 to +125        | °C   |

Note: FS312 contains a circuit that will protect it from static discharge; but please take special care that no excessive static electricity or voltage which exceeds the limit of the protection circuit will be applied to it.

<sup>\*</sup> Pulse (  $\mu$  sec) noise exceeding the above input voltage (VSS+12V) may cause damage to the IC.



# **Electrical Characteristics**

(VSS=0V, Ta=25°C unless otherwise specified)

| PARAMETER                          | CONDITIONS                    | SYMBOL | Min            | Тур   | Max            | UNIT        |
|------------------------------------|-------------------------------|--------|----------------|-------|----------------|-------------|
| CURRENT CONSUMPTION                |                               |        |                |       |                |             |
| Supply Current                     | VDD=3.9V                      | IDD    |                | 3.0   | 6.0            | $\mu$ A     |
| Power-Down Current                 | VDD=2.0V                      | IPD    |                | 0.3   | 0.6            | $\mu$ A     |
| OPERATING VOLTAGE                  |                               |        |                |       |                |             |
| Operating input voltage            | VDD-VSS                       | VDS1   | 1.5            |       | 9.0            | V           |
| DETECTION VOLTAGE                  |                               |        |                |       |                |             |
| Overcharge detection voltage       |                               | VOCU   | VOCU<br>-0.025 | VOCU  | VOCU<br>+0.025 | V           |
| Overcharge release voltage         |                               | VOCR   | VOCR<br>-0.050 | VOCR  | VOCR<br>+0.050 | V           |
| Overdischarge detection voltage    |                               | VODL   | VODL<br>-0.080 | VODL  | VODL<br>+0.080 | V           |
| Overdischarge release voltage      |                               | VODR   | VODR<br>-0.080 | VODR  | VODR<br>+0.080 | <b>&gt;</b> |
| Over current detection voltage     |                               | VOI1   | VOI1<br>-0.030 | VOI1  | VOI1<br>+0.030 | V           |
| Short circuit detection voltage    | VDD=3.0V                      | VOI2   | 1.0            | 1.35  | 1.7            | V           |
| Reset resistance for Over current  | VDD=3.6V                      | Rshort | 400            | 500   | 600            | kΩ          |
| protection                         |                               |        |                |       |                |             |
| Charger detection voltage          |                               | VCH    | -1.7           | -1.35 | -1.0           | V           |
| DELAY TIME                         |                               |        |                |       |                |             |
| Overcharge detection delay time    | VDD=3.6V to 4.4V              | TOC    | 50             | 100   | 150            | ms          |
| Overdischarge detection delay time | VDD=VODL+ 0.2V ~<br>VODL-0.2V | TOD    | 5              | 17    | 30             | ms          |
| Over current detection delay time  | VDD=3.0V                      | TOI1   | 2              | 5     | 10             | ms          |
| Short circuit detection delay time | VDD=3.0V                      | TOI2   |                | 10    | 50             | μ <b>S</b>  |
| OTHER                              |                               |        |                |       |                |             |
| OC pin output "H" voltage          | VDD=3.9V, loh=-50 $\mu$ A     | Voh1   | 3.4            | 3.7   |                | V           |
| OC pin output "L" voltage          | VDD=4.4V, CSI=0V              | Vol1   |                | 0.1   | 0.5            | V           |
| OD pin output "H" voltage          | VDD=3.9V, loh=-50 $\mu$ A     | Voh2   | 3.4            | 3.7   |                | V           |
| OD pin output "L" voltage          | VDD=2.2V, Iol=50 $\mu$ A      | Vol2   |                | 0.1   | 0.5            | V           |



# **State Diagram of Operation**



6/14



### **Description of Operation**

#### 1. Normal Condition

If VODL<VDD<VOCU and VCH<VCSI<VOI1, M1 and M2 are both turned on. The charging and discharging processes can be operated normally.

### 2. Overcharge Detection

If the battery voltage detected from VDD reaches VOCU, charging from a charger is inhibited for overcharge protection. When VDD is larger than VOCU over a delay time of TOC, M2 will be turned off

#### 3. Release of Overcharge Condition

There are two ways to return to normal condition from overcharge condition.

- When the battery is self discharging and VDD<VOCR occurs, M2 will be turned on and back to normal condition.
- 2) Remove the charger and connect FS312 to a load, the discharging current will flow through the parasitic diode of M2. While VOCR<VDD<VOCU and VCSI>VOI1 occurs, M2 will be turned on and back to normal condition.

#### 4. Overdischarge Detection

When the battery voltage falls below the overdischarge detection voltage (VODL) during discharging condition over a delay time of TOD, M1 will be turned off. In the meanwhile, CSI is pulled up to VDD by way of internal resistance. If VCSI>VOI2, FS312 will enter into power-down mode. (Its current consumption is lower than  $0.3 \,\mu$  A.)

#### 5. Release of Power-Down mode

A charger is connected while the battery remains in Power-down mode. If VCH<VCSI<VOI2 and VDD<VODR occurs, M1 is still be off but FS312 will release power-down mode. When VDD>VODR occurs, M1 will be turned on and back to normal condition.

### 6. Charger Detection

While connecting to a charger after entering into power-down mode, then if VCSI<VCH, M1 will be turned on when VDD>VODL and the system will back to normal condition.

#### 7. Abnormal Charge Current Condition

FAX: +886-2-2809-4874

When a charger is connected to the battery system in normal condition, then if VCSI<VCH occurs through a delay time longer than TOC (delay time of overcharge detection), M2 will be turned off to stop this charging status.



#### **Over Current / Short Circuit Condition** 8.

When the current is too large during discharging under normal condition as a result of the voltage detected by CSI is greater than VOI1 (or VOI2) through a delay time longer than TOI1 (or TOI2), it satisfies the over current (or short circuit) condition. Then M1 will be turned off and CSI will be pulled down to VSS through an internal resistance.

- If the over current / short circuit is detected and it keeps longer than the overdischarge detection delay time with the same circumstance, the condition will be changed to power-down mode when the battery voltage falls below the overdischarge detection voltage.
- If the battery voltage falls below the overdischarge detection voltage (VODL) due to the over current / short circuit, the discharging control FET (M1) will be turned off when it has been detected. After overdischarge detection delay time (TOD) expired, if the battery voltage is still equal to or lower than the overdischarge detection voltage, the condition will then be changed to power-down mode.

#### 9. Release of Over Current / Short Circuit Condition

While the protection IC remains in Over current / Short circuit condition, then if the load is removed or the impedance between VBAT+ and VBAT- is larger than 500k $\Omega$  as well as VCSI<VOI1, M1 will be turned on and then back to normal condition.

Note: When a battery is connected to FS312 for the first time, it may not enter the normal condition (dischargeable may not be enabled). In this case, short the CSI and VSS pins or connect to a charger to restore to the normal condition.



# **Timing Diagram**

### 1. Overcharge Condition → Self Discharge → Normal Condition





## 2. Overcharge Condition → Load Discharge → Normal Condition





### 3. Overdischarge Condition → Charging by a Charger → Normal Condition





### 4. Overdischarge Condition → Abnormal Charging → Normal Condition



FAX: +886-2-2809-4874

12/14



### 5. Overcurrent / Short circuit Condition → Normal Condition



TEL: +886-2-2809-4742

FAX: +886-2-2809-4874



# **Package Outline**

### **Dimension (Package A)**











### **Dimension (Package B)**





| SYMBOL | MIN.      | TYP. | MAX. |  |  |
|--------|-----------|------|------|--|--|
| Α      | 1.05      | -    | 1.35 |  |  |
| A1     | 0.05      | -    | 0.15 |  |  |
| A2     | 1.00      | 1.10 | 1.20 |  |  |
| b      | 0.40      | -    | 0.55 |  |  |
| b2     | 0.25      | -    | 0.40 |  |  |
| С      | 0.08      | -    | 0.20 |  |  |
| D      | 2.70      | 2.90 | 3.00 |  |  |
| E      | 2.60      | 2.80 | 3.00 |  |  |
| E1     | 1.50      | 1.60 | 1.70 |  |  |
| L      | 0.35      | 0.45 | 0.55 |  |  |
| L1     | 0.60 REF. |      |      |  |  |
| е      | 0.95 BSC. |      |      |  |  |
| e1     | 1.90 BSC. |      |      |  |  |
| θ      | 0°        | 5°   | 10°  |  |  |
| θ1     | 3°        | 5°   | 7°   |  |  |
| θ2     | 6°        | 8°   | 10°  |  |  |

Unit : mm



