ЛАБОЛАТОРНАЯ РАБОТА ПО КУРСУ «КВАНТОВЫЙ КОМПЬЮТЕР» Двухкубитовые квантовые схемы

Плотников Антон, A4101 Санкт-Петербург, 2017

1. Цель работы

Изучение простейших двухкубитовых квантовых логических схем.

2. Задачи

- 1. Изучение работы квантовых логических схем, составленных из элементов алгоритмов CNOT, X, Z и H.
- 2. Прогнозирование результатов виртуального эксперимента и сравнение результатов теоретических и экспериментальных расчетов.

3. Методика проведения исследования

Собираем квантовую схему используя квантовые логические элементы CNOT, X, H и Z, подаем на вход цепочки элементов двухкубитовое состояние кубит, получаем выходное двухкубитовое состояниие и, используя матричное представление схемы, сравниваем результаты теоретических расчетов с полученными экспериментальными данными.

4. Анализ погрешностей

Пусть $|\phi 1\rangle$ — состояние, соответствующее первой альтернативе, а $|\phi 2\rangle$ — состояние, соответствующее второй альтернативе. Пусть перед измерением система находилась в состоянии c_1 $|\phi 1\rangle$ + c_2 $|\phi 2\rangle$. Тогда с вероятностью $|c_1|^2$ измерение даст первый результат, и система окажется после измерения в состоянии $|\phi 1\rangle$, а с вероятностью $|c_2|^2$ измерение даст второй результат, и система окажется после измерения в состоянии $|\phi 2\rangle$.

5. Результаты

Исходный вектор:

$$\begin{aligned} |\phi_1\rangle &= |1\rangle \\ |\phi_2\rangle &= |1\rangle \\ |\phi\rangle &= |\phi_1\rangle \otimes |\phi_2\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \end{aligned}$$

Квантовая схема:

Теоретические расчеты:

Экспериментальные расчеты:

5. Выводы

Изучив работу квантовых логических схем, составленных из элементов алгоритмов CNOT, X, Z и H, сравнили результаты теоретических и экспериментальных расчетов. В результате получили одинаковые результаты.