Viewing in 3D – Part II

Foley & Van Dam, Chapter 6

Viewing in 3D – Part II

- Viewing Window
- Viewing Volume
- Defining the Viewing Volume
- Canonical Viewing Volume
- Viewport Transformation

Viewing Window

- After objects were projected onto the viewing plane, an image is taken from a Viewing Window
- A viewing window can be placed anywhere on the view plane
- In general the view window is aligned with the viewing coordinates and is defined by its extreme points: (l,b) and (r,t)

Viewing Volume

- Given the specification of the *viewing window*, we can set up a *Viewing Volume*
- Only objects inside the viewing volume will appear in the display, the rest are clipped

Viewing Volume

- In order to limit the infinite viewing volume we define two additional planes: *Near Plane* and *Far Plane*
- Only objects in the bounded viewing volume will appear
- The near and far planes are parallel to the viewing plane and specified by $z_{\rm near}$ and $z_{\rm far}$
- A limited viewing volume is defined:
 - For orthographic: a rectangular parallelpiped
 - For oblique: an oblique parallelpiped
 - For perspective: a frustum

Defining the Viewing Volume

Definition for Orthographic Projection:


```
glMatrixMode(GL_PROJECTION);
glLoadIdentity(); /* camera "looks" down */
glOrtho(left, right, bottom, top, near, far);
```

• Note: In all definitions, *near* and *far* are distances (always positive). Near = 50 means that the near plane intersect the z-axis at z = -50

Defining the Viewing Volume

Definition for general Perspective Projection:


```
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glFrustum(left, right, bottom, top, near, far);
```

Defining the Viewing Volume

Definition for a Standard Perspective Projection:


```
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
aspectRatio = w/h;
gluPerspective(viewAngle, aspectRatio, near, far);
```

Position of the Viewing Plane

- Parallel projection: viewing-plane positioning does not affect the projected image
- Perspective projection: viewing-plane positioning does affect the projected image

Canonical Viewing Volume

- In order to determine the objects that are seen in the viewing window we have to clip objects against six planes forming the view volume
- Clipping against arbitrary 3D planes requires considerable computation
- For fast clipping we transform the viewing volume into a *canonical viewing volume* against which clipping is easy to apply

Canonical Volume: Parallel Projection

Depth-preserving shear

$$\begin{bmatrix} x & c \\ y & c \\ z & c \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & a \cos \phi & 0 \\ 0 & 1 & a \sin \phi & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x & v \\ y & v \\ z & v \\ 1 \end{bmatrix} = \begin{bmatrix} x & v + z & a \cos \phi \\ y & v + z & a \sin \phi \\ z & v \\ 1 \end{bmatrix}$$

Canonical Volume: Parallel Projection

Translation

$$\begin{bmatrix} x & c \\ y & c \\ z & c \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & -\frac{r+l}{2} \\ 0 & 1 & 0 & -\frac{t+b}{2} \\ 0 & 0 & 1 & \frac{f+n}{2} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x & c \\ y & c \\ z & c \\ 1 \end{bmatrix} = \begin{bmatrix} x & c & -\frac{r+l}{2} \\ y & c & -\frac{t+b}{2} \\ z & c & -\frac{t+b}{2} \\ z & c & -\frac{t+b}{2} \\ 1 \end{bmatrix}$$

Canonical Volume: Parallel Projection

Scaling

$$\begin{bmatrix} x \ z'' \\ y \ z'' \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{2}{r-l} & 0 & 0 & 0 \\ 0 & \frac{2}{t-b} & 0 & 0 \\ 0 & 0 & \frac{-2}{f-n} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x'c \\ y'c \\ z'c \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{2 \cdot x'c}{r-l} \\ \frac{2 \cdot y'c}{t-b} \\ \frac{-2 \cdot z'c}{f-n} \\ 1 \end{bmatrix}$$

Canonical Volume: Perspective Projection

Depth-preserving shear

$$\begin{bmatrix} x & c \\ y & c \\ z & c \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & \frac{r+l}{2n} & 0 \\ 0 & 1 & \frac{t+b}{2n} & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x & v \\ y & v \\ z & v \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x & c \\ y & c \\ z & c \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & \frac{r+l}{2n} & 0 \\ 0 & 1 & \frac{t+b}{2n} & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x & v \\ y & v \\ z & v \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & \frac{r+l}{2n} & 0 \\ 0 & 1 & \frac{t+b}{2n} & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{r+l}{2} \\ \frac{t+b}{2} \\ -n \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -n \\ 1 \end{bmatrix}$$

Canonical Volume: Perspective Projection

Scaling

$$\begin{bmatrix} x & c \\ y & c \\ z & c \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{2n}{r-l} & 0 & 0 & 0 \\ 0 & \frac{2n}{t-b} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x & c \\ y & c \\ z & c \\ 1 \end{bmatrix}$$

Canonical Volume: Perspective Projection

Perspective transformation

$$\begin{bmatrix} x \ z'' \\ y \ c' \\ z \ c' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -\frac{f+n}{f-n} & -2\frac{fn}{f-n} \\ 0 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} x \ c \\ y \ c \\ z \ c' \\ 1 \end{bmatrix}$$

$$\frac{x''}{1} = \frac{x'}{-z'} \Rightarrow x'' = \frac{x'}{-z'}$$

$$\frac{x''}{1} = \frac{x'}{-z'} \Rightarrow x'' = \frac{x'}{-z'}$$

$$\frac{y''}{1} = \frac{y'}{-z'} \Rightarrow y'' = \frac{y'}{-z'}$$

$$\begin{bmatrix} 0 & 0 & -n & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 0 & -1 & 1 \end{bmatrix} \quad \begin{bmatrix} 0 & 0 & -f & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 0 & 1 & 1 \end{bmatrix}$$

Viewport Transformation

$$\begin{pmatrix} x_{win} \\ y_{win} \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & x_0 \\ 0 & 1 & y_0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{width}{2} & 0 & 0 \\ 0 & \frac{height}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_c'' \\ y_c'' \\ 1 \end{pmatrix}$$

glViewport(x₀, y₀, width, height);
/* You can have multiple viewports on your window */