Laboratorio 1

Nicolas Morales Galindo

Juan Sebastian Sanchez

Importacion de datos desde google Drive

Ejercicio 1

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
data = {'year': [
         2010, 2011, 2012,
        2010, 2011, 2012,
2010, 2011, 2012
    ],
     'team': [
         'FCBarcelona', 'FCBarcelona', 'FCBarcelona', 'RMadrid',
         'RMadrid', 'RMadrid',
         'ValenciaCF', 'ValenciaCF',
'ValenciaCF'
    ],
     'wins': [30, 28 ,32, 29,32,26,21,17,19],
    'draws': [6, 7, 4,5,4,7,8,10,8],
'losses': [2,3,2,4,2,5,9,11,11],
football = pd.DataFrame(data, columns = ['year', 'team', 'wins', 'draws', 'losses'])
print(football)
→
        year
                       team wins draws losses
       2010 FCBarcelona
                                30
                                          6
                                                   2
        2011 FCBarcelona
                                28
                                                   3
     2 2012
              FCBarcelona
                                32
                                         4
                                                   2
     3
        2010
                    RMadrid
                                29
                                         5
                                                   4
        2011
                    RMadrid
                                32
                                                   2
        2012
                    RMadrid
        2010
                ValenciaCF
                                21
                                         8
        2011
                ValenciaCF
                                17
                                        10
                                                  11
```

11

y Ejercicio 2

2012

ValenciaCF

→		TIME	GEO	Value
	0	2000	European Union (28 countries)	NaN
	1	2001	European Union (28 countries)	NaN

edu.tail()

→*		TIME	GE0	Value
	379	2007	Finland	5.90
	380	2008	Finland	6.10
	381	2009	Finland	6.81
	382	2010	Finland	6.85
	383	2011	Finland	6.76

	¿Cuál de los siguientes, en caso de haber alguno, es tu motivo principal para usar Colab hoy? (Selecciona todas las opciones que correspondan).				
	Aprender sobre AA o ciencia/visualización de datos				
	Dictar o estar a cargo de una clase a nivel universitario				
	Usar Colab en mi trabajo (a tiempo completo o medio tiempo)				
	Aprender a usar Python				
	Trabajar en proyectos personales				
	Realizar investigaciones académicas				
	Ninguna de las anteriores				
Al continuar, aceptas que Google use tus respuestas y la información de tu cuenta y tu sistema para mejorar sus servicios, de acuerdo con la Política de Privacidad y los Términos del Servicio.					

edu.describe()

₹		TIME	Value
	count	384.000000	361.000000
	mean	2005.500000	5.203989
	std	3.456556	1.021694
	min	2000.000000	2.880000
	25%	2002.750000	4.620000
	50%	2005.500000	5.060000
	75%	2008.250000	5.660000
	max	2011.000000	8.810000

edu['Value']

```
→ 0 NaN

1 NaN

2 5.00

3 5.03

4 4.95

...

379 5.90

380 6.10

381 6.81

382 6.85

383 6.76

Name: Value, Length: 384, dtype: float64
```

edu[10:14]

_		TIME	GEO	Value
	10	2010	European Union (28 countries)	5.41
	11	2011	European Union (28 countries)	5.25
	12	2000	European Union (27 countries)	4.91
	13	2001	European Union (27 countries)	4.99

edu.loc[90:94, ['TIME', 'GEO']]

_			
→ ▼		TIME	GE0
	90	2006	Belgium
	91	2007	Belgium
	92	2008	Belgium
	93	2009	Belgium
	94	2010	Belgium

edu[edu['Value'] > 6.5].tail()

→		TIME	GEO	Value
	286	2010	Malta	6.74
	287	2011	Malta	7.96
	381	2009	Finland	6.81
	382	2010	Finland	6.85
	383	2011	Finland	6.76

edu[edu['Value'].isnull()].head()

```
\overline{\Rightarrow}
          TIME
                                      GEO Value
      0 2000 European Union (28 countries)
                                              NaN
         2001
                European Union (28 countries)
                                             NaN
      1
      36 2000
                     Euro area (18 countries)
                                             NaN
      37 2001
                     Euro area (18 countries)
                                             NaN
      48 2000
                     Euro area (17 countries)
                                             NaN
edu.max(axis = 0)
→ TIME
               2011
     GEO
              Spain
     Value
               8.81
     dtype: object
print("Pandas max function:", edu['Value'].max())
print("Python max function:", max(edu['Value']))
→ Pandas max function: 8.81
     Python max function: nan
s = edu["Value"]/100
s.head()
₹
    0
             NaN
             NaN
          0.0500
          0.0503
          0.0495
     Name: Value, dtype: float64
s= edu["Value"].apply(np.sqrt)
s.head()
\rightarrow
    0
               NaN
               NaN
          2.236068
          2.242766
     3
          2.224860
     Name: Value, dtype: float64
s = edu['Value'].apply(lambda d: d**2)
s.head()
\rightarrow
              NaN
              NaN
          25.0000
          25.3009
     3
          24.5025
     Name: Value, dtype: float64
edu['valueNorm'] = edu['Value']/edu['Value'].max()
edu.tail()
₹
           TIME
                    GEO Value valueNorm
                                  0.669694
      379 2007 Finland
                           5.90
      380 2008 Finland
                                  0.692395
                           6.10
      381 2009 Finland
                          6.81
                                  0.772985
      382 2010 Finland
                           6.85
                                  0.777526
      383 2011 Finland
                           6.76
                                  0.767310
edu.drop('valueNorm', axis=1, inplace = True)
edu.head()
```

24, 16:25							
	0			_			
		TIME	GEO	Value			
	0	2000	European Union (28 countries)	NaN			
	1	2001	European Union (28 countries)	NaN			
	2	2002	European Union (28 countries)	5.00			
	3	2003	European Union (28 countries)	5.03			
	4	2004	European Union (28 countries)	4.95			
edu.h	ead	1()					
₹		TIME	GEO	Value			
	0	2000	European Union (28 countries)	NaN			
	1	2001	European Union (28 countries)	NaN			
	2	2002	European Union (28 countries)	5.00			
	3	2003	European Union (28 countries)	5.03			

edu.loc[len(edu.index)] = [2000, 5.00, 'a']

4 2004 European Union (28 countries)

4.95

edu.tail()

₹		TIME	GEO	Value
	381	2009	Finland	6.81
	382	2010	Finland	6.85
	383	2011	Finland	6.76
	384	2000	5.0	а
	385	2000	5.0	а

edu.drop(max(edu.index), axis = 0, inplace = True)

edu.tail()

eduDrop = edu.drop(edu[edu["Value"].isnull()].index, axis = 0) eduDrop.head()

```
<del>_</del>_
         TIME
                                       GEO Value
      2 2002 European Union (28 countries)
                                               5.0
      3 2003 European Union (28 countries)
                                              5.03
      4 2004 European Union (28 countries)
                                              4.95
      5 2005 European Union (28 countries)
                                              4.92
      6 2006 European Union (28 countries)
                                              4.91
eduDrop = edu.dropna(how = "any", subset = ["Value"])
```

eduDrop. head()

```
\overline{\Rightarrow}
         TIME
                                      GEO Value
      2 2002 European Union (28 countries)
                                             5.00
      3 2003 European Union (28 countries)
                                             5.03
               European Union (28 countries)
                                             4.95
      4 2004
      5 2005 European Union (28 countries)
                                             4.92
      6 2006 European Union (28 countries)
                                             4.91
eduFilled = edu.fillna(value = {"Value": 0})
eduFilled.head()
₹
         TIME
                                      GEO Value
      0 2000 European Union (28 countries)
                                             0.00
      1 2001
               European Union (28 countries)
                                             0.00
      2 2002 European Union (28 countries)
                                             5.00
      3 2003 European Union (28 countries)
                                             5.03
      4 2004 European Union (28 countries)
                                             4.95
edu.sort_values(by = "Value", ascending = False ,inplace = True)
edu.head()
₹
           TIME
                      GEO Value
      130 2010 Denmark
                             8.81
      131
           2011 Denmark
                             8.75
      129 2009 Denmark
                             8.74
      121
           2001 Denmark
                             8.44
      122 2002 Denmark
                             8.44
edu.sort index( axis = 0, ascending = True , inplace = True)
edu.head()
\overline{\Rightarrow}
         TTME
                                      GEO Value
      0 2000 European Union (28 countries)
                                             NaN
      1 2001
               European Union (28 countries)
                                             NaN
      2 2002 European Union (28 countries)
                                             5.00
      3 2003 European Union (28 countries)
                                             5.03
      4 2004 European Union (28 countries)
                                             4.95
group = edu[["GEO", "Value"]].groupby('GEO').mean()
group.head()
₹
                         Value
                 GEO
                       5.618333
          Austria
         Belgium
                       6.189091
                       4.093333
         Bulgaria
          Cyprus
                       7.023333
      Czech Republic 4.168333
filtered_data = edu[edu["TIME"] > 2005]
pivedu = pd.pivot_table( filtered_data , values = "Value",
index = ["GEO"]
columns = ["TIME"])
pivedu.head()
```

```
\overline{\Rightarrow}
                TIME 2006 2007 2008 2009 2010 2011
                 GEO
          Austria
                       5.40
                            5.33 5.47 5.98 5.91
                                                    5.80
         Belgium
                       5.98
                            6.00
                                  6.43
                                        6.57
                                                    6.55
                                               6.58
         Bulgaria
                      4.04
                            3.88
                                        4.58
                                               4.10
                                                    3.82
                                  4 44
          Cyprus
                       7.02
                            6.95
                                  7.45
                                        7.98 7.92 7.87
      Czech Republic 4.42
                            4.05 3.92
                                        4.36
                                              4.25
                                                    4.51
pivedu.loc[[ "Spain","Portugal"], [2006,2011]]
\rightarrow
         TIME 2006 2011
          GEO
       Spain
                4.26
                     4.82
      Portugal 5.07 5.27
pivedu = pivedu.drop([
"Euro area (13 countries)",
"Euro area (15 countries)",
"Euro area (17 countries)",
"Euro area (18 countries)"
"European Union (25 countries)",
"European Union (27 countries)",
"European Union (28 countries)"
],
axis = 0)
pivedu = pivedu.rename(index = \{"Germany" ( until 1990 former territory of the FRG)": "Germany"\})
pivedu = pivedu.dropna()
pivedu.rank( ascending = False , method = "first").head()
\rightarrow
                TIME 2006 2007 2008 2009 2010 2011
                 GEO
          Austria
                       10.0
                             7.0
                                  11.0
                                          7.0
                                                8.0
                                                      8.0
         Belgium
                       5.0
                              4.0
                                    3.0
                                          4.0
                                                5.0
                                                      5.0
         Bulgaria
                       21.0
                            21.0
                                  20.0
                                         20.0
                                               22.0
                                                     22.0
          Cyprus
                       2.0
                              2.0
                                    2.0
                                          2.0
                                                2.0
                                                      3.0
      Czech Republic 19.0
                            20.0 21.0 21.0 20.0
                                                    19.0
totalSum = pivedu.sum(axis = 1)
totalSum.rank( ascending = False , method = "dense").sort_values(). head()
→ GEO
     Denmark
                1.0
     Cyprus
                2.0
     Finland
                3.0
     Malta
                4.0
     Belgium
                5.0
     dtype: float64
totalSum = pivedu.sum(axis = 1).sort_values(ascending = False)
totalSum.plot( kind = 'bar', style = 'b', alpha = 0.4,
                title = 'Total Values for Country')
```

<Axes: title={'center': 'Total Values for Country'}, xlabel='GEO'>

ax.legend(loc = "center left", bbox_to_anchor = (1, .5))

<matplotlib.legend.Legend at 0x7c358542c370>

