Unit Productions

Example 1: $S \to 0A \mid 1B \mid C$ $A \to 0S \mid 00$ $B \to 1 \mid A$ $C \to 01$

 $S \to C$ is a unit production. But while removing $S \to C$ we have to consider what C gives. So, we can add a rule to S.

 $S \rightarrow 0A \mid 1B \mid 01$

Similarly, $B \rightarrow A$ is also a unit production so we can modify it as

 $B \rightarrow 1 \mid 0S \mid 00$

Thus finally we can write CFG without unit production as

 $S \rightarrow 0A \mid 1B \mid 01$

 $A \rightarrow 0S \mid 00$

 $B \rightarrow 1 \mid 0S \mid 00$

 $C \rightarrow 01$

Example 2:

 $S \rightarrow AB$

 $A \rightarrow a$

 $B \rightarrow C/b$

 $C \rightarrow D$

 $D \rightarrow E$

E -> a

Solution:

There are 3 unit production in the grammar

 $B \rightarrow C$

 $C \rightarrow D$

 $D \rightarrow E$

For production $D \to E$ there is $E \to a$ so we add $D \to a$ to the grammar and add $D \to E$ from the grammar. Now we have $C \to D$ so we add a production $C \to a$ to the grammar and delete $C \to D$ from the grammar. Similarly we have $B \to C$ by adding $B \to a$ and removing $B \to C$ we get the final grammar free of unit production as:

 $S \rightarrow AB$

A -> a

 $B \rightarrow a/b$

C -> a

D -> a

E -> a

We can see that C, D and E are unreachable symbols so to get a completely reduced grammar we remove them from the CFG. The final CFG is:

S -> AB

A -> a

 $B \rightarrow a/b$

Example 3:

 $S \rightarrow S + T/T$

T -> T * F/F

F -> (S)/a

 $S \rightarrow T$ and $T \rightarrow F$ are the two unit productions in the CFG.

For productions $T \to F$ we have $F \to (S)/a$ so we add $T \to (S)/a$ to the grammar and remove $T \to F$ from the grammar. Now for production $S \to T$ we have production $T \to T * F/(S)/a$ so we add $S \to T * F/(S)/a$ to the grammar. So the grammar after removal of unit production is:

$$S->S+T/T*F/(S)/a$$

T -> T * F/F

F -> (S)/a

Example 4:

Remove unit productions from a grammar (G1) whose production rule is given by P: $S \rightarrow XY$, $X \rightarrow a$, $Y \rightarrow Z \mid b$, $Z \rightarrow M$, $M \rightarrow N$, $N \rightarrow a$ // Grammar (G1)

In above grammar (G1) Unit Productions are

 $Y \rightarrow |Z$

 $Z \rightarrow \dot{M}$

 $M \rightarrow N$

The production unit which is removed easily is considered first. Let see,

For the Removal of Third Unit Production $(M \rightarrow N)$

As $N \rightarrow a$ So, Unit Production $M \rightarrow N$ is updated to $M \rightarrow a$.

For the Removal of Second Unit Production $(Z \rightarrow M)$

As we derived M \rightarrow a in above case, So, Unit Production Z \rightarrow M is updated to Z \rightarrow a

For the Removal of First Unit Production $(Y \rightarrow Z)$

As we derived $Z\rightarrow a$, So, Unit Production $Y\rightarrow Z$ is updated to $Y\rightarrow a$

After Removal Unit Productions the Updated Grammar (G2) is given below

P: $S \rightarrow XY$, $X \rightarrow a$, $Y \rightarrow a$ b, $Z \rightarrow a$, $M \rightarrow a$, $N \rightarrow a$ // Grammar (G2)

We can remove the unreachable states from above grammar (G2). So Finally, Grammar (G2) is given below

P: $S \rightarrow XY$, $X \rightarrow a$, $Y \rightarrow a$ b. // Grammar (G2)

Example 5:

Remove unit productions from a grammar (G1) whose production rule is given by

P: $S \rightarrow aA \mid B, A \rightarrow ba \mid bb, B \rightarrow A \mid bba$

// Grammar (G1)

In above grammar Unit Production is

 $S \rightarrow B$

 $B \rightarrow A$

The production unit which is removed easily is considered first. Let see,

For the Removal of 2^{nd} Unit Production (B \rightarrow A)

As $A \rightarrow ba \mid bb$. So, Unit Production $B \rightarrow A \mid bba$ is updated to $B \rightarrow ba \mid bb$.

For the Removal of first Unit Production (S \rightarrow B)

As $B \rightarrow A \mid ba \mid bb$ and $A \rightarrow ba \mid bb$ Therefore $B \rightarrow ba \mid bb \mid bba$. So, Unit Production $S \rightarrow B$ is updated to $S \rightarrow ba \mid bb \mid bba$.

After Removal Unit Productions the Updated Grammar (G2) is given below

P: $S \rightarrow aA \mid ba \mid bb \mid bba$, $A \rightarrow ba \mid bb$, $B \rightarrow A \mid bba$

// Grammar (G1)

We can remove the unreachable states from above grammar (G2). So Finally, Grammar (G2) is given below

P: $S \rightarrow aA \mid ba \mid bb \mid bba, A \rightarrow ba \mid bb$

// Grammar (G2)

Example 6:

consider a grammar as an example.

 $G_1: S \rightarrow Aa|B, B \rightarrow A|bb, A \rightarrow a|bc|B$

Step 1:

First, we create a dependency graph of all unit production.

 $S \rightarrow B$, BA and $A \rightarrow B$

So, SB,SA,B \Rightarrow A and A \Rightarrow B

Step 2:

Now we write grammar without unit production:

$$S \rightarrow Aa S \rightarrow bb + S \rightarrow a|bc [Reason S \Rightarrow B, S \Rightarrow A]$$

 $B \rightarrow bb + B \rightarrow a|bc$

[Reason $B \Rightarrow A$]

 $A \rightarrow abc + A \rightarrow bb$

[Reason $A \Rightarrow B$]

Whatever we derive from B, we same way derive from A because $A \Rightarrow B$, and same things happen for all production.

New grammar:

G2: $S \rightarrow Aa|bb|a|bc$

 $A \rightarrow a|bc|bb$

 $B \rightarrow bb|a|bc$

So, $G_1 = G_2$ and $L(G_1) = L(G_2)$

Example 7:

 $S \rightarrow Aa \mid B$

A -> b | BB -> A | a

Lets add all the non-unit productions of 'G' in 'Guf'. 'Guf' now becomes -

S -> Aa

 $A \rightarrow b$

B -> a

Now we find all the variables that satisfy 'X *=> Z'. These are 'S*=>B', 'A *=> B' and 'B *=> A'. For 'A *=> B', we add 'A -> a' because 'B ->a' exists in 'Guf'. 'Guf' now becomes

 $S \rightarrow Aa$

A -> b | a

B -> a

For 'B *=> A', we add 'B -> b' because 'A -> b' exists in 'Guf'. The new grammar now becomes

S -> Aa

A -> b | a

B -> a | b

We follow the same step for 'S*=>B' and finally get the following grammar –

 $S \rightarrow Aa \mid b \mid a$

 $A \rightarrow b \mid a$

 $B \rightarrow a \mid b$

Now remove $B \rightarrow a|b$, since it doesnt occur in the production 'S', then the following grammar becomes,

S->Aa|b|a

A->b|a