(19) 日本国特許庁(J P)

(12) 公開特許公報(A)

(11)特許出數公開發号 特開2002-338537

(P2002-338537A)

(43)公開日 平成14年11月27日(2002.11.27)

(51) Int.CL. ² C 0 7 C 255/60 A 6 1 K 31/277 31/341 31/438 31/451	裁別記号 報別記号 審査請求	C07C 255/50 4C A61K 31/277 4C 31/341 4C 31/438 4C 31/451 4C	デーマート(参考) 4C037 4C050 4C054 4C063 4C084 (全29頁) 最終頁に続く					
(21)出顧番号 (22)出題日	特爾2001 - 146915(P2001 - 146915) 平成13年 5 月16日(2001.5.16)	(71) 出頭人 000006725 三菱ウェルファーマ株式会社 大阪府大阪が中央区平野町2丁 (72) 発明者 内藤 洋一郎 福岡県築上枢市宮町大字小祝9 ェルファイド株式会社開発研9 年尾 博之 福岡県築上枢市宮町大字小祝9 ェルファイド株式会社開発研9 (72) 発明者 星野 幸夫 福岡県祭上郡吉宮町大字小祝9 ェルファイド株式会社開発研9 エルファイド株式会社開発研9	55番地 ウ で所内 55番地 ウ で所内 955番地 ウ					
	·		最終頁に統・					

(54) 【発明の名称】 アミド化合物およびその医薬用途

(57)【要約】

【課題】 Th2細胞から産生されるサイトカインの中 で、特にアレルギー性疾患の病態形成および進行に深く 関与する | L - 4の産生を選択的に抑制する薬物を提供 することを目的とする。

【解決手段】 一般式 (I)

[161]

(式中、R1 はハロゲン、アルキル、アルコキシなど を 類Qは、置換基を有していてもよいペンゼン 復素 芳香頌等を、R² は水素。アルキル、等を、2はCHま たはNを、R[®] はハロゲン、シアノ、ニトロ、アミノ を R⁵ は、アルキル、荏:N(R^e)(R⁷) (式 中、 R° 、 R^{\dagger} は同一または異なって、それぞれ水素、 アルキル等を示すか、あるいはR⁶ R⁷ が隣接する窒 素原子と一緒になって環状アミンを形成する基等を示

- す。)により表される基等を示す。)により表されるア ミド化台物またはその医薬上許容しろる塩。

[特許請求の範囲] 【請求項 1 】 一般式(I) [(t]

$$R^{2} - Q \longrightarrow R^{2} - R^{3} \qquad (1)$$

(式中、R ! はハロゲン、アルキル、アルコキシ、ニト 換芸を有していてもよいアリール、置換基を有していて もよいアリールアルキル、 置換基を有していてもよいへ テロアリール、窗袋基を有していてもよいヘテロアリー ルアルキル、置換基を有していてもよいシクロアルキル または置換基を有していてもよいシクロアルケニルを示 す。環Qは、置換基を有していてもよいベンゼン、置換 基を有していてもよいシクロヘキサンまたは置換基を有 していてもよい複素芳香環を示す。R® は水素。アルキ ル」ヒドロキシアルキル。アシルオキシアルキル。アミ ノアルキル、ヒドロキシカルボニルアルキルまたはアル 2**0** コキシカルボニルアルキルを示す。 乙はC HまたはNを 示す。R® はハロゲン、シアノ、ニトロ、アミノ、アル キル、アルコキシ、カルボキシ、アルコキシカルボニ ル。カルバモイル、アルケニル、アルキニルまたはハロ アルキルを示す。R* は水素、ハロゲン、シアノまたは ニトロを示す。 R5 は、

アルキル、

ヒドロキシアルキル、

ヒドロキシカルボニルアルキル、

置換基を有していてもよいアミノアルキル、 水酸基、

アルコキシ、

ハロアルコキシ.

アリールオキシ、

シクロアルキルオキシ、

ヒドロキシアルコキシ、

ヒドロキシカルボニルアルコキシ、

置換甚を有していてもよいアミノアルコキシ、

メルカプト、

アルキルチオ、

ヒドロキシアルキルチオ、

ヒドロキシカルボニルアルキルチオ。

置換甚を有していてもよいアミノアルキルチオ

基:〇-Het(基中、Hetは置換基を有していても よい酸素原子または窒素原子から選ばれる複素原子を含 有した飽和復素環を示す。)

基: N (R^s) (R⁷)

(式中、 R^6 、 R^7 は同一または異なって、それぞれ水 素。アルキル。ヒドロキシアルキルまたはアミノアルキ ルを示すか、あるいは $R^e = R^\tau$ が隣接する窒素原子と 50 ハロアルキルを示し、 R^\star は水素である請求項 1 記載の

―絡になって環内に酸素原子、硫黄原子、窒素原子を 1 ないし2個含有していてもよい環状アミンを形成する基 を示す。)または、式

[{k2]

(式中、R® は水素、ハロゲン、アルキル、アルコキ ロ. 画換基を有していてもよいアミノ. ヒドロキシ、置 10 シ. ニトロ、アミノまたはヒドロキシを示す。 X はエチ レンケタールあるいはプロビレンケタール化されたメチ レンを示す。 n は() , 1 、または2を示す。) により表 される基を示す。)により表されるアミド化合物または その医薬上許容しうる塩。

【請求項2】 環Qが下記式

[(£3]

(式中、R**は水素、ハロゲン、アルキル、アルコキ シュニトロ、アミノ、ヒドロキシ、カルボキシルまたは アルコキシカルボニルを示す。RMは水素、アルキル、 アルコキシカルボニルアルキル、ヒドロキシカルボニル アルキル、アシルオキシアルキルまたはヒドロキシアル 30 キルを示す。)により表されるペンゼンまたは複素芳香 環である請求項 1 記載のアミド化合物またはその医薬上 許容しうる塩。他の記号は請求項1の通りである。

【論求項3】 ZがCHを示し、R*が水素を示し、R ⁸ がアニリド華を基準としてフェニル華の3位に置換す るハロゲン、シアノ、ニトロまたはハロアルキルである 請求項1記載のアミド化合物またはその医薬上許容しう る塩。他の記号は請求項1の通りである。

【請求項4.】 環Qが下記式

(1t4)

(R**は水素、ハロゲン、アルキル、アルコキシ、ニト ロ」アミノ、ヒドロキシ。カルボキシ丸またはアルコキ シカルボニルを示す。)により衰されるベンゼンまたは 復素芳香環を示し、2はCHを示し、 R^2 は水素または アルキルを示し、R® はアニリド基を基準としてフェニ ル基の3位に置換するハロゲン、シアノ、ニトロまたは

アミド化台物またはその医薬上許容しろる塩。他の記号 は請求項 1 の通りであるが、R5 はアニリド基を基準と してフェニル基の4位に置換する。

【請求項5】 類Qが下記式 [化5]

(式中、RPは水素、ハロゲン、アルキル、アルコキ アルコキシカルボニルを示す。)を示し、2はCHを示 し、R² は水素またはアルキルを示し、R³ はアニリド 基を基態としてフェニル基の3位に置換するハロゲン、 シアノ、ニトロまたはハロアルキルを示し、R4 は水素 である請求項1記載のアミド化合物またはその医薬上許 容しうる塩。他の記号は請求項1の通りであるが、R5 はアニリド基を基準としてフェニル基の4位に置換す る。

【請求項6】 R⁵ の基: N(R⁶)(R⁷)におい に酸素原子、竊貴原子、窒素原子を1ないし2個含有し ていてもよい環状アミンを形成する基が、式 [166]

(式中、R**は水煮、ハロゲン、アルキル、アルコキ シ、ニトロ、アミノまたはヒドロキシを示す。YはCH 2. CH-R* またはN-R**を示す。mは0. 1ま 30 たは2を示す。ここで、R® はヒドロキシ、アルキル、 ヒドロキシアルキル、4-ピペリジニルまたはモルホリ ノを示し、R10は水素、アルキル、ヒドロキシアルキ ル、4-ピペリジニルまたは3、4、5、6-テトラヒ ドロー2月 - ピランー4 - イルを示す。)により表され る墓である請求項1記載のアミド化合物またはその医薬 上許容しうる塩。

【請求項7】 (1) N- [3-シアノ-4-(4-ヒド ロキシピペリジンー1ーイル)フェニル]ー4ーヨード ベンザミド、(2)4-(4-クロロフェニル)-N- 40 [3-シアノー4-(4-ヒドロキシピペリジン・1-イル) フェニル] ベンザミド、(3) N-[3-シアノ -4- (4-ヒドロキシピペリジン-1-イル) フェニ ル] -3-ヨードベンザミド、(4)3-(4-クロロ フェニル)-N-[3-シアノ-4-(4-ヒドロキシ ピペリジンー1ーイル) フェニル] ベンザミド、(5) 5- (4-クロロフェニル) -N-[3-シアノ-4-(4-ヒドロキシピペリジン-1-イル) フェニル] フ ラン-2-カルポキサミド、(6)5-(4-クロロフ ェニル) - N - [3-シアノ-4-(2,2-ジメチル 56 薬組成物。

-3-ヒドロキシプロポキシ)フェニル]フラン-2-カルボキサミド、(7)5 - (4 - クロロフェニル) -N- [2-(4-ヒドロキシピペリジン-l-イル)ピ リジン-5-イル] フラン-2-カルボキサミド (8) 5 - (4 - クロロフェニル) - N - [3 - シアノ -4- (4-モルホリノヒベリジン-1-イル) フェニ ル] フランー2-カルボキサミド、(9)5- (4-ク ロロフェニル) -N-[3-シアノ-4-[4-(3, 4、5、6ーテトラヒドロー2月-ピランー4ーイル》 シュニトロ、アミノ、ヒドロキシ、カルボキシルまたは 10 ピペラジンー1ーイル] フェニル] フランー2ーカルボ キサミド、(10)5 - (4 - クロロフェニル) - N -(3-シアノ-4-ピペリジノフェニル) フラン・2-カルボキサミド、(11)5-(4-クロロフェニル) -N-[3-シアノ-4-(1, 4-ジオキサー8-ア ザスピロ[4、5] デカー8ーイル) フェニル] フラン -2-カルボキサミド、(12)5-(4-クロロー2 ーニトロフェニル) - N - 〔3 - シアノー4 - (4 - ヒ ドロキシピペリジンー1-イル)フェニル] フランー2 -カルボキサミド、(<u>1</u>3)5 - (4 - クロロフェニ て、R $^{\circ}$ 、R $^{\circ}$ か瞬接する窒素原子と一緒になって環内 20 ル) $^{\circ}$ N $^{\circ}$ [3 -シアノー 4 -(4 -ヒドロキシビベリ シン-1-イル) フェニル] チオフェンー2-カルボキ サミド、 (14) N- [3-シアノ-4- (4-ヒドロ キシピペリジン-1-イル)フェニル]-5-(1-シ クロヘキセニル)チオフェン-2-カルボキサミド, (15) 4-(4-クロロフェニル) -N-[3-シア ノー4-(4-ヒドロキシピペリジン-1-イル)フェ ニル]チアゾールー2ーカルボキサミド、(16)5-(4-クロロフェニル) - N - [3-シアノ-4-(4 - ヒドロキシピペリジン - 1 - イル) フェニル] オキザ ソールー2ーカルボキサミド、(17)3-(4-クロ ロフェニル) - N - [3-シアノ-4-(4-ヒドロキ シピペリジン-1-イル) フェニル] -5-エトキシカ ルポニルベンザミド、(18)3-(4-クロロフェニ ル) -5-{[3-シアノ-4-(4-ヒドロキシピペ リジン-1-イル) フェニル] アミノカルボニル) 安息 香酸、(19)5-(4-クロロフェニル)-N-[3 ーシアノー4ー(4ーヒドロキシピペリジン・1ーイ ル) フェニル] ニコチンアミド、(20)6-(4-ク ロロフェニル) -N-[3-シアノ-4-(4-ヒドロ キシビベリジン-1-イル) フェニル] ピリジン-2-カルボキサミド、(21)N-[3-シアノ-4-(4 -ヒドロキシピペリジン-1-イル)フェニル]-4-シクロヘキシルベンザミド、(22) N-[3-シアノ -4-(4-ヒドロキシピペリジン-1-イル)フェニ ル]-4-(]-ピロロ)ベンザミドから選ばれる請求 項1に記載のアミド化合物またはその医薬上許容しうる 俎.

> 【請求項8】 請求項1記載のアミド化合物またはその 医薬上許容し得る塩と医薬上許容し得る坦体からなる医

【請求項9】 請求項1記載のアミド化合物またはその 医薬上許容しろる塩からなる医薬。

【請求項10】 請求項1記載のアミド化合物またはそ の医薬上許容し得る塩を含有する活性化リンパ球からの サイトカイン産生抑制剤。

【請求項11】 請求項1に記載のアミド化合物または その医薬として許容し得る塩を含有する2型ヘルハー丁 細胞からのインターロイキン4度生に対する選択的抑制

【請求項12】 請求項1に記載のアミド化合物または 10 その医薬上許容し得る塩を含有するアレルギー疾患の予 防または治療薬。

【請求項13】 請求項1に記載のアミド化合物または その医薬上許容し得る塩を含有するアトピー性皮膚炎、 **喘息** またはアレルギー性鼻炎の予防または治療薬。

【請求項14】 請求項1に記載のアミド化合物または その医薬上許容しうる塩 および免疫抑制剤、ステロイ 下剤および抗アレルギー薬から選択される1ないし2以 上の薬剤とからなる併用組成物。

スコマイシンおよびFTY720から選択される請求項 14に記載の併用組成物。

【請求項16】 ステロイド剤がプレドニゾロン メチ ルプレドニゾロン、デキサメサゾン、ヒドロコルチゾ ン。クロベタゾン、フルメタゾン、トリアムシノロンア セトニド、アルクロメタゾン、フルオロシノロンアセト ニド、ベクロメタゾン、ベタメタゾン、デブロドン、ハ ルシフニド、アムシフニド、フルオシフニド、ジブルコ ルトロン、ブデソニド、ジブルペレドナート、ジブロラ ゾン、クロベタゾールおよびそれらの脂肪酸エステル領 30 から選択される請求項14に記載の併用組成物。

【請求項17】 抗アレルギー剤がクロモグリク酸ナト リウム、トラニラスト、アンレキザノクス、レビリナス トーイプジラスト、タザノラスト、ペミロラスト、オザ グレル、スプラタスト、プランルカスト、ケトデフェ ン、アゼラスチン、オキサトミド、メキタジン、テルフ ェナジン、エメダスチン、エピナスチン、アステミゾー ルおよび各種抗ヒスタミン薬から選択される請求項14 に記載の併用組成物。

【請求項18】 請求項1に記載のアミド化合物または 40 その医薬上許容しうる塩、および、免疫抑制剤、ステロ イド剤および航アレルギー剤から選択される1ないし2 以上の薬剤とからなる作用増強剤。

【請求項19】 免疫抑制剤がタクロリムス水和物、ア スコマイシンおよびFTY720から選択される請求項 18に記載の作用増強剤。

【請求項20】 ステロイド剤がプレドニゾロン、メチ ルプレドニゾロン、デキサメサゾン、ヒドロコルチゾ ン。クロベタゾン、フルメタゾン、トリアムシノロンア ニド、ベクロメタゾン、ベタメタゾン、デブロドン、ハ ルシノニド、アムシノニド、フルオシノニド、ジフルコ ルトロン、ブデソニド、ジフルペレドナート、ジフロラ ゾン、クロベタゾールおよびそれらの脂肪酸エステル類 から選択される請求項18に記載の作用増強剤。

【請求項21】 抗アレルギー剤がクロモグリク酸ナト りウム、トラニラスト、アンレキサノクス、レビリナス トーイプジラスト、タザノラスト、ペミロラスト、オザ グレル、スプラタスト、プランルカスト、ケトチフェ ン、アゼラスチン、オキサトミド、メキタジン、テルフ ェナジン、エメダスチン。エピナスチン、アステミゾー および各種抗ヒスタミニン薬から選択される請求項18 に記載の作用増強剤。

【発明の詳細な説明】

100011

【発明の属する技術分野】本発明は、外来抗原あるいは 自己抗原で感作されたT細胞、特に2型ヘルパーT細胞 (以下、Th2細胞と略す)が産生するTh2サイトカ インであるインターロイキン4(以下、「L-4)の産 【論求項15】 免疫抑制剤がタクロリムス水和物、ア 26 生を選択的に抑制する作用を有し、アレルギー性疾患の 予防および治療に有用な新規アミド誘導体およびその薬 学的に許容され得る塩に関するものである。

【従来の技術】国際公開W○00/47558号公報に はリンパ球増殖抑制作用、特に「L-2、「L-4、「 L-7、 | L-9、 | L-13または | L-15 依存性 のリンパ球増殖抑制作用を有し、各種免疫疾患の予防治 **療薬として有用なピラゾールー4ーカルボキサミド誘導** 体などの化合物が関示されている。

【発明が解決しようとする課題】外来統原あるいは自己 抗原によって感作された抗原特異的なヘルパーT細胞 は、エフェクター「細胞およびB細胞の分裂増殖および 分化を促進する生理活性を有する種々のサイトカインを 産生し、抗原に対する特異的な免疫応答を誘導する。未 感作のヘルバーT細胞は、通常抗原で感作された後に、 インターロイキン (j L) 2 (以下、【L-2) を産生 する能力を有する()型ヘルパー丁細胞 (Th()細胞) に 分化した後、産生するサイトカインを異にする2種類の ヘルパーT細胞、すなわち、1型ヘルパーT細胞 (T hl細胞)あるいは2型ヘルパーT細胞(Th2細胞) へと分化することが知られている。Thl細胞はIL-2に加えて、インターフェロンーガンマ(以下、IFN -γ)、腫瘍媒死因子(以下、TNF-α)などのサイ トカインを産生し、主として細胞性免疫を促進する。一 方、Th 2細胞は ! L-4、 ! L-5、 ! L-6、 ! L - 10、『L‐13などのサイトカインを産生し、主と して滅性免疫。すなわち抗体産性を促進する。免疫応答 はTh1細胞とTh2細胞のバランスの上に調節され、 Th 1細胞の産生する!FN-7は、Th 1細胞への分 化を促進し、Th2細胞への分化を阻害する。また、T セトニド、アルクロメタゾン、フルオロシノロンアセト 50 h2細胞の産生する!L-4は、Th2細胞への分化を

促進し、Th1細胞への分化を阻害する。近年、Th1 **/Th2細胞のバランスの破綻によりさまざまな免疫性** 疾患が発症することが明らかになってきており、アレル ギー性疾患や全身的自己免疫疾患においてはTh 2細胞 が、臓器特異的自己免疫疾患においてはThl細胞が優 位な状態であることが報告されている。Th 2細胞の産 生するサイトカインの中で、IL-4はイムノグロブリ ンE (!gE)へのクラススイッチおよびTh2細胞へ の分化誘導などの作用を有し、特にアレルギーの病態形 成に深く関与していることが示唆されている。実際に、 鑑息患者の肺胞洗浄液中で【L-4が高値を示すこと や、アトピー性皮膚炎患者の皮疹部でIL-4のmRN Aの発現が亢進していることが多数報告されており、T h 2 細胞の機能亢進がこれらの疾患の発症および進行に 重要な役割を果たしていると考えられる(Am. J. R espir. Cell Mol. Biol., Vol. 12. pp. 477-487, 1995, J. Imm unol., Vol. 158, pp. 3539-354 4க்கூலு. Exp. Med., Vol. 173. p p. 775-778, 1991)。また、IL-4遺伝 20 子の欠損マウスにおいては、種々のアレルギー性反応が 起こりにくくなることから、動物モデルにおいても、! L-4を産生するTh2細胞が、アレルギー性反応の誘 導にに深く関与していることが示唆されている(N a t ure, Vol. 362, pp. 245-247, 19 9315201. Exp. Med., Vol. 183, p p. 195-201, 1996)。以上のような知見か ら、アレルギー性疾患の患者において、Th2細胞から の11-4産生を選択的に抑制し、Th2細胞が関与す る免疫応答を抑制する薬剤は有用な統アレルギー薬とな 30 り得ると考えられる。現在、アレルギー性疾患の治療薬 としては、ステロイド剤が幅広く使用され、高い有効性 を示している。ステロイド剤は強力な抗炎症作用を有す るが、それに加えて、リンパ球増殖抑制作用、サイトカ インの産生抑制作用、ロイコトリエン等のメディエータ **一の産生抑制作用等を有している。しかし、ステロイド** 剤はその作用が広範に渡るために、長期連用あるいは大 置殺与によって大腿骨骨頭壊死等の重篤な副作用を発現 することが知られており、このような副作用の軽減がス テロイド療法における課題となっている。最近開発され 40 たトシル酸スプラタスト(IPD-1151T)はTh 2細胞からのIL-4およびIL-5の産生を選択的に 抑制する作用を有し、喘息やアトピー性皮膚炎に対して 有効であるという臨床成績が報告されている(臨床医 葉、Voi、8、No、7、1992)。 しかし、IP D-1151Tの!L-4および!L-5の産生抑制作 用は強力ではなく、かつ高濃度でのみ作用を示すととか ら、より強力な作用を有する薬剤の開発が期待されてい る。一方、カルシニューリン経路を阻害することによっ て免疫抑制作用を発揮するタクロリムスは、Th 1細胞 50 していてもよい複素芳香環を示す。R² は水素。アルキ

からの!L-2および!FN-ヶ産生を抑制するぼかり でなく、Th2細胞からのIL-4産生をも強力に抑制 し、急性拒絶反応の抑制に加えて、アトピー性皮膚炎な どのアレルギー性疾患に対しても有効であること明らか にされている。しかし、タクロリムスは神経毒性、腎毒 性などの副作用が発現することに加えて、その作用が! L-4度生に対して選択的ではなく。 IL-2などのサ イトカインの産生を幅広く抑制することから、易感染性 の問題を有している。従って、ステロイド剤あるいはタ クロリムスなどと同等の強い抗アレルギー作用を有し、 かつ。副作用の少ないアレルギー性疾患治療薬の登場が 期待されているのが現状である。Th2細胞からの!L -4等のTh2サイトカインの産生を強力に抑制し、か つThl細胞からの!L-2、!FN-γ産生抑制作用 が弱い、すなわちTh2サイトカインの産生を選択的に 抑制する化合物は、アレルギー患者におけるTh 2細胞 関与の免疫応答の亢進を抑制し、Th1/Th2パラン スの偏向を改善することが可能であり、既存薬と比較し て副作用の少ないアトピー性皮膚炎、気管支喘息。アレ ルギー性鼻炎などのアレルギー性疾患の予防および治療 に有用な薬剤となりうることが期待される。本発明の目 的は、Th2細胞から産生されるサイトカインの中で、 特にアレルギー性疾患の病態形成および進行に深く関与 する [L - 4 の産生を選択的に抑制する薬物を提供する ことである。

100021

【課題を解決するための手段】本発明者等は上記の状況 を鑑み鋭意検討を行った結果、下記の一般式により表さ れるアミド化合物またはその医薬上許容しうる塩が、! L-4の産生を選択的に抑制することを見出し、本発明 を完成するに至った。すなわち、本発明は以下の通りで ある。

1. 一般式(I)

[(t?)

$$\mathbb{R}^1 \longrightarrow \mathbb{R}^2 \longrightarrow \mathbb{R}_3$$

$$\mathbb{R}^1 \longrightarrow \mathbb{R}^2 \longrightarrow \mathbb{R}_3$$

$$\mathbb{R}^1 \longrightarrow \mathbb{R}^2 \longrightarrow \mathbb{R}_3$$

$$\mathbb{R}^1 \longrightarrow \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$

$$\mathbb{R}^1 \longrightarrow \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$

(式中、R! はハロゲン、アルキル、アルコキン、ニト ロ、窗袋基を有していてもよいアミノ、ヒドロキシ、置 換基を有していてもよいアリール、置換基を有していて もよいアリールアルキル、置換基を有していてもよいへ テロアリール、窗袋基を有していてもよいヘテロアリー ルアルキル、置換基を有していてもよいシクロアルキル または置換基を有していてもよいシクロアルケニルを示 す。 環Qは、 置換基を有していてもよいベンゼン、 置換 基を有していてもよいシクロヘキサンまたは置換基を有

ル、ヒドロキシアルキル、アシルオキシアルキル、アミ ノアルキル、ヒドロキシカルボニルアルキルまたはアル コキシカルボニルアルキルを示す。2はCHまたはNを 示す。R® はハロゲン、シアノ、ニトロ、アミノ、アル キル、アルコキシ、カルボキシ、アルコキシカルボニ ル。カルバモイル、アルケニル、アルキニルまたはハロ アルキルを示す。R⁴ は水素、ハロゲン、シアノまたは ニトロを示す。 R5 は、アルキル、ヒドロキシアルキ ル」ヒドロキシカルボニルアルキル、置換基を有してい てもよいアミノアルキル。水酸基、アルコキシ、ハロア 10 記号は前記1の通りである。 ルコキシ、アリールオキシ、シクロアルキルオキシ、ヒ ドロキシアルコキシ、ヒドロキシカルボニルアルコキ シ、置換基を有していてもよいアミノアルコキシ、メル カプト、アルキルチオ、ヒドロキシアルキルチオ、ヒド ロキシカルボニルアルキルチオ、置換基を有していても よいアミノアルキルチオ、

基:〇一月et(基中、Hetは置換墓を有していても よい酸素原子または窒素原子から選ばれる複素原子を含 有した飽和復素環を示す。)

基:N(R⁸)(R⁷)

(式中、 R° 、 R^{7} は同一または異なって、それぞれ水 素。アルキル、ヒドロキシアルキルまたはアミノアルキ ルを示すか、あるいはR®、R7が隣接する窒素原子と 一絡になって環内に酸素原子、硫黄原子、窒素原子を1 ないし2個含有していてもよい環状アミンを形成する基 を示す。) または、式

[ft8]

(式中、R®は水素、ハロゲン、アルキル、アルコキ シ、ニトロ、アミノまたはヒドロキシを示す。Xはエチ レンケタールあるいはプロビレンケタール化されたメチ レンを示す。 n は0 , 1 、または2を示す。) により表 される基を示す。)により表されるアミド化合物または その医薬上許容しうる塩。

2. 環Qが下記式

[(£9]

(式中、RTIは水素、ハロゲン、アルキル、アルコキ シュニトロ、アミノ、ヒドロキシ、カルボキシルまたは アルコキシカルボニルを示す。R里は水素、アルキル、「50」シ、ニトロ、アミノまたはヒドロキシを示す。YはCH

アルコキシカルボニルアルキル、ヒドロキシカルボニル アルキル、アシルオキシアルキルまたほヒドロキシアル キルを示す。)により衰されるベンゼンまたは慢素芳香 **環である前記 1 記載のアミド化合物またはその医薬上許** 容しうる塩。他の記号は前記1の通りである。

2がCHを示し、R⁴が水素を示し、R³がアニ リド基を基準としてフェニル基の3位に置換するハロゲ ン」シアノ、ニトロまたはハロアルキルである前記1記 戯のアミド化合物またはその医薬上許容しうる塩。他の

4. 環Qが下記式

[(k10]

{R**は水素、ハロゲン、アルキル、アルコキシ、ニト ローアミノ、ヒドロキシーカルボキシルまたはアルコキ シカルボニルを示す。)により表されるベンゼンまたは 複素芳香環を示し、2はCHを示し、R²は水素または アルキルを示し、R® はアニリド基を基準としてフェニ ル墓の3位に置換するハロゲン、シアノ、ニトロまたは ハロアルキルを示し、R4 は水素である請求項 1 記載の アミド化合物またはその医薬上許容しうる塩。他の記号 は前記1の通りであるが、R5 はアニリド基を基準とし てフェニル基の4位に置換する。

5. 環Qが下記式

[(k11]

(式中、RFIは水素、ハロゲン、アルキル、アルコキ シニントロ、アミノ、ヒドロキシ、カルボキシルまたは アルコキシカルボニルを示す。)を示し、2はCHを示 し、R² は水素またはアルキルを示し、R³ はアニリド 基を基準としてフェニル基の3位に置換するハロゲン、 シアノ、ニトロまたはハロアルキルを示し、R4 は水素 である前記 1 記載のアミド化合物またはその医薬上許容 しうる塩。他の記号は前記1の通りであるが、R⁵はア ニリド基を基準としてフェニル基の4位に置換する。

49 6. R⁵の墓:N(R⁶)(R⁷)において、R⁶、 R'が隣接する窒素原子と一緒になって環内に酸素原 子 磁黄原子 窒素原子を1ないし2個含有していても よい環状アミンを形成する墓が、式

【化12】

(式中、R**は水素、ハロゲン、アルキル、アルコキ

2. CH-R°. またはN-R'"を示す。mは0. 1ま たは2を示す。ここで、R゚ はヒドロキシ、アルキル、 ヒドロキシアルキル、4-ピペリジニルまたはモルホリ ノを示し、R¹⁰は水素、アルキル、ヒドロキシアルキ ル 4-ピペリジニルまたは3,4.5,6-テトラヒ ・ドロー2月-ビラン・4-イルを示す。)により表され る墓である前記 1 記載のアミド化合物またはその医薬上 許容しうる塩。

7. (1) N-[3-シアノ-4-(4-ヒドロキシピ ペリジンー1-イル)フェニル]-4-ヨードベンザミ 10 F. (2) 4-(4-クロロフェニル) -N-[3-シ アノー4 - (4 -ヒドロキシピペリジン-1-イル) フ ェニル] ベンザミド、(3)N - [3 -シアノ-4-(4-ヒドロキシピペリジン-1-イル) フェニル] -3-ヨードベンザミド、(4)3-(4-クロロフェニ ル) -N- [3-シアノ-4- (4-ヒドロキシピペリ ジン-1-イル) フェニル] ベンザミド、(5)5-{4-クロロフェニル} - N-[3-シアノ-4-{4 ーヒドロキシピペリジン・1ーイル) フェニル] フラン - 2 - カルボキサミド、(6)5-(4-クロロフェニ 20 ル) -N-[3-シアノ-4-(2, 2-ジメチル-3 -ヒドロキシプロボキシ) フェニル] フラン-2-カル ボキサミド、(?)5ー(4ークロロフェニル)-N-[2-(4-ヒドロキシピペリジン-1-イル) ビリジ ン-5-イル] プラン-2-カルボキサミド、(8)5 - (4-クロロフェニル) -N- [3-シアノ-4-(4-モルポリノピペリジン-1-イル) フェニル] フ ラン-2-カルボキサミド、(9)5-(4-クロロフ ェニル) -N-[3-シアノ-4-[4-(3, 4, 5. 6-テトラヒドロー2 Hーピラン-4-イル) ピペー30 許容も得る塩を含有するアレルギー疾患の予防または治 ラジン-1-イル] フェニル] フラン-2-カルボキサ ミド」 (10)5-(4-クロロフェニル)-N-(3 ーシアノー4ーピペリジノフェニル) フランー2ーカル ボキサミド、(11)5-(4-クロロフェニル)-N - [3-シアノ-4- (1、4-ジオキザー8-アザス ピロ[4,5]デカー8ーイル) フェニル] フランー2 ーカルボキサミド、(12)5-(4-クロロー2-二 トロフェニル)-N-[3-シアノ-4-(4-ヒドロ キシピペリジン-1-イル)フェニル] フラン-2-カ ルボキサミド、(13)5-(4-クロロフェニル)- 46 N- (3-シアノ-4-(4-ヒドロキシピペリジン-1-イル) フェニル] チオフェンー2-カルボキサミ F. (14) N-[3-シアノ-4-(4-ヒドロキシ ピペリジンー1ーイル) フェニル] -5-(1-シクロ ヘキセニル} チオフェンー2 - カルボキサミド、(1 5) 4- (4-クロロフェニル) -N-[3-シアノ-4 - (4 -ヒドロキシピペリジン-1 - イル)フェニ ル] チアゾールー2-カルボキサミド、(16)5-(4-クロロフェニル) - N - [3-シアノ-4-(4 ーヒドロキシピペリジン-1-イル)フェニル] オキサ 5G 択される前記14に記載の併用組成物。

ゾールー2ーカルボキサミド、(17)3- (4-クロ ロフェニル》-N-[3-シアノ-4-(4-ヒドロキ シビベリジン・ユーイル) フェニル】 - 5 - エトキシカ ルポニルベンザミド、(18)3-(4-クロロフェニ ル) -5- {[3-シアノ-4-(4-ヒドロキシピペ リジン-1-イル) フェニル] アミノカルボニル) 安息 香酸、(19)5-(4-グロロフェニル)-N-[3 ーシアノー4-(4-ヒドロキシピベリジン-1-イ ル) フェニル] ニコチンアミド、 (20) 6 - (4 - ク ロロフェニル) -N-[3-シアノ-4-(4-ヒドロ キシピペリジン・1 - イル) フェニル] ピリジン・2 -カルポキサミド、 (21) N-[3-シアノ-4-(4 -ヒドロキシピペリジン-1-イル)フェニル]-4-シクロヘキシルベンザミド、 (22) N-[3-シアノ -4-(4-ヒドロキシピペリジン-1-イル) フェニ ル] -4- (1-ピロロ) ベンザミドから選ばれる前記 1に記載のアミド化台物またはその医薬上許容しうる 塩。

- 前記1記載のアミド化合物またはその医薬上許容 し得る塩と医薬上許容し得る坦体からなる医薬組成物。
- 9. 前記1記載のアミド化合物またはその医薬上許容 しろる塩からなる医薬。
- 10. 前記1記載のアミド化合物またはその医薬上許 容し得る塩を含有する活性化リンパ球からのサイトカイ ン産生抑制剤。
- 11. 前記1に記載のアミド化合物またはその医薬と して許容し得る塩を含有する2型ヘルバーT細胞からの インターロイキン4産生に対する選択的抑制剤。
- 12. 前記1に記載のアミド化合物またはその医薬上 獐苺.
- 13. 前記1に記載のアミド化合物またはその医薬上 許容し得る塩を含有するアトピー性皮膚炎、喘息、また はアレルギー性鼻炎の予防または治療薬。
- 14. 前記1に記載のアミド化合物またはその医薬上 許容しうる塩、および免疫抑制剤、ステロイド剤および 抗アレルギー薬から選択される1ないし2以上の薬剤と からなる併用組成物。
- 15. 免疫抑制剤がタクロリムス水和物、アスコマイ シンおよびFTY720から選択される前記14に記載 の併用組成物。
 - 16. ステロイド剤がプレドニゾロン、メチルプレド ニゾロン、デキサメサゾン、ヒドロコルチゾン、クロベ タゾン、フルメタゾン、トリアムシノロンアセトニド、 アルクロメタゾン、フルオロシノロンアセトニド。ベク ロメタゾン、ベタメタゾン、デブロドン、ハルシノニ ド、アムシノニド、フルオシノニド、ジフルコルトロ ン。ブデソニド。ジフルベレドナート。ジフロラゾン、 クロベタゾールおよびそれらの脂肪酸エステル類から選

17. 抗アレルギー剤がクロモグリク酸ナトリウム、 トラニラスト、アンレキサノクス、レビリナスト、イブ ジラスト、タザノラスト、ペミロラスト、オザグレル、 スプラタスト、プランルカスト、ケトチフェン、アゼラ スチン、オキサトミド、メキタジン、テルフェナジン、 エヌダスチン。エピナスチン、アステミゾールおよび各 種抗ヒスタミン薬から選択される前記14に記載の併用 組成物。

18. 前記1に記載のアミド化台物またはその医薬上 び抗アレルギー剤から選択される1ないし2以上の薬剤 とからなる作用増強剤。

免疫抑制剤がタクロリムス水和物、アスコマイ シンおよびFTY720から選択される前記18に記載 の作用増強剤。

20. ステロイド剤がプレドニゾロン、メチルプレド ニゾロン、デキサメサゾン、ヒドロコルチゾン、クロベ タゾン、フルメタゾン、トリアムシノロンアセトニド、 アルクロメタゾン、フルオロシノロンアセトニド、ベク ロメタゾン、ベタメタゾン、デブロドン、ハルシノニ ド、アムシノニド、フルオシノニド、ジフルコルトロ ン。ブデソニド。ジフルベレドナート。ジフロラゾン、 クロベタゾールおよびそれらの脂肪酸エステル類から選 択される前記18に記載の作用増強剤。

21. 抗アレルギー剤がクロモグリク酸ナトリウム、 トラニラスト、アンレキサノクス、レビリナスト、イブ ジラスト、タザノラスト、ベミロラスト、オザグレル、 スプラタスト、プランルカスト、ケトチフェン、アゼラ スチン、オキサトミド、メキタジン、テルフェナジン、 エヌダスチン。エピナスチン、アステミゾーもよび各種 30 抗ヒスタミニン薬から選択される前記18に記載の作用 垮論劑。

100031

【発明の実施の形態】本発明は、抗原で感作されたTh 2細胞から産生され、Th 2細胞への分化誘導をも促進 するIL-4に着目し、Th2細胞からのIL-4産生 を選択的に抑制する作用を有する台成低分子化合物を供 給することを目的とする。ここで、【L-4産生の選択 的抑制作用の背景には、【L-4の転写を調節する転写 因子であるNFAT、c-Maf、NIP45. GAT A-3、Jun Bが存在することから、これら転写因子 の関与する経路の抑制をも包含するものである。さら に、IL-4産生の抑制を介してTh2細胞の分裂増殖 および分化誘導を抑制し、Th2細胞の関与する免疫応 答への偏向を改善することから、Th2細胞からの!L -4産生の抑制に加えて、Th2細胞から産生される! L-5、 i L-6、 i L-13等のTh2サイトカイン 産生をも抑制する化合物を提供することも包含される。 【① ① ① 4 】本明細書における各記号で表される面換基 について以下に説明する。R! におけるハロゲンとは、

フッ素、塩素、臭素、ヨウ素を示す。 R! におけるアル キルとは、炭素数1から4個の直鎖または分枝鎖状のア ルキルであって、メチル、エチル、プロピル、イソプロ ビル、ブチル、イソブチル、第3級ブチルなどがあげら れ、好ましくはメチルである。R1 におけるアルコキシ とは、炭素数1から4個の直鎖または分枝鎖状のアルコ キシであって、メトキシ、エトキシ、プロポキシ、イソ プロポキシ、ブトキシ、第3級ブトキシなどがあげられ る。R1における置換基を有していてもよいアミノと 許容しうる塩、および、免疫抑制剤。ステロイド剤およ 10 は、置換基として炭素数1から4個のアルキル(前記と 同義)、炭素数1から4個のアシル(ホルミル、アセチ ル。プロピオニルなど)およびベンゾイルから趣ばれる 置換基によりモノまたはジ置換されていてもよく、具体 的にはアミノ、メチルアミノ、ジメチルアミノ、エチル アミノ、ジエチルアミノ、ホルミルアミノ、アセチルア ミノ、プロピオニルアミノ、ベンゾイルアミノがあげら れる。R! における置換基を有していてもよいアリール とは、フェニル、ナフチルなどを示し、置換基としてハ ロゲン(フッ素:塩素、臭素、ヨウ素)、炭素敷1から 20 4個のアルキル(メチル、エチル、プロビル、イソプロ ビル」ブチルなどと、炭素数1から4個のアルコキシ (メトキシ、エトキシ、プロポキシ、イソプロポキシ、 プトキシなど)。シアノ、ニトロ、カルボキシ、炭素数 1~4個のアルキレンジオキシ (メチレンジオキシ、エ チレンジオキシ、プロピレンジオキシ、1,1-ジメチ ルメチレンジオキシなど)および炭素数1から4個のハ ロアルキル(フルオロメチル、クロロメチル、トリフル オロメチル、2、2、2-トリフルオロエチルなど)か ら遠ばれる基を1~3個有していてもよく、好ましい置 換墓としてはハロゲン、アルキル、アルコキシ、ハロア ルキル、アルキレンジオキシおよびニトロである。置換 アリールの具体例としては、4-クロロフェニル、3-クロロフェニル、2-クロロフェニル、3、4-ジクロ ロフェニル、4-フルオロフェニル、2,4-ジフルオ ロフェニル、3、4ージフルオロフェニル、3ークロロ -4-フルオロフェニル、4-ブロモフェニル、4-ヨ ードフェニル、4-メチルフェニル、4-メトキシフェ ニル、4-エトキシフェニル、3、4-ジメトキシフェ ニル、3、4 - ジエトキシフェニル、4 - シアノフェニ ル、4-カルボキシフェニル、4-トリフルオロメチル フェニル、3-トリフルオロメチルフェニル、2-クロ ロー5ートリフルオロメチルフェニル、4ーニトロフェ ニル、3、4-メチレンジオキシフェニル、3、4-エ チレンジオキシフェニルなどがあげられる。 R 1 におけ る置換基を有していてもよいアリールアルキルとは、ア リール (フェニル、ナフチルなど) が炭素数 1 から 4 個 のアルキルに置換したものであって、例えばフェニルメ チル、2-フェニルエチル、1-フェニルエチル、3-フェニルプロビル、4ーフェニルブテルなどがあげられ 50 る。 置換基としては、前記のアリールと同様の置換基が 挙げられる。R ' における置換基を有していてもよいへ テロアリールとは、窒素原子、硫黄原子および酸素原子 から遊ばれるヘテロ原子を1ないし2個含有する5また は6員環のヘテロアリールであって、面換基として炭素 数1から4個のアルキル、ハロゲン(フラ素、塩素、臭 素など)などが置換していてもよく、例えばピリミジ ル、4、6-ジメチルピリミジル、ビリダジニル、6-クロロビリダジニル、チエニル、5 - メチルチエニル、 5 - クロロチエニル、ピリジルなどがあげられる。R1 における置換基を有していてもよいヘテロアリールアル 10 ル アミノエチル、ジメチルアミノメチル、ジエチルア キルとは、窒素原子、硫黄原子および酸素原子から選ば れるヘテロ原子を1ないし2個含有する5または6貝環 のヘテロアリール(前記と同義)が炭素数1から4個の アルキルに置換したものであって、例えば2 - チエニル メチル、2-(2-チエニル)エチル、3-(2-チエ ニル)プロピル、2-ピリジルメチル、3-ピリジルメ チル 4 ーピリジルメチルなどがあげられる。ヘテロア リールにおける置換基としては、前記へテロアリールと 同様の置換基が挙げられる。R! における置換基を有し ていてもよいシクロアルキルとは、炭素数3から6個の 20 シクロアルキルであって、例えばシクロプロビル、シク ロブチル、シクロベンチル、シクロヘキシルなどがあげ られる。置換基としては、前記アリールと同様の置換基 が挙げられる。R! における置換基を有していてもよい シクロアルケニルとは、炭素数3から6個のシクロアル ケニルであって、例えばシクロプロペニル、シクロプテ ニル、シクロペンテニル、シクロヘキセニルなどがあげ られる。置換基としては、前記アリールと同様の置換基 が挙げられる。

【0005】環Qにおける置換基を有していてもよい復 30 素芳香環とは、窒素原子、確貴原子および酸素原子から 選ばれる複素原子を1ないし3個含有する5または6月 躁の芳香族環であって、たとえばピリジン、ピラジン、 ピリダジン、フラン、チオフェン、オキザゾール、チア ゾール、イミダゾールなどが挙げられ、置換基として炭 素数1から4個のアルキル、ハロゲン(フヵ素、塩素、 臭素など)などが置換していてもよい。躁Qにおけるべ ンゼン、シクロヘキサンは前記の復素芳香譚と同様の置 換基を有することができる。

【①①①6】R*におけるアルキルとは、炭素数1から 4.個の直鎖または分枝鎖状のアルキルであって、メチ ル。エチル、プロピル、イソプロピル。ブチル、イソブ チルなどを示し、好ましくはメチル、エチルである。R *におけるヒドロキシアルキルとは、炭素数1から4個 のアルキル (前記と同義) に水酸基が衝換したものであ って、例えば、ヒドロキシメチル、2 -ヒドロキシエチ ル、3-ヒドロキシプロビル、4-ヒドロキシブチルな どがあげられる。R! R! 2 におけるアシルオキシア ルキルとは、炭素数 1 から 4 個のアルキル(前記と同 義)に炭素数1から4個のアシルオキシ(ホルミルオキ 50 クロロメチル 2,2,2-トリフルオロエチルなどが

シ」アセチルオキシ、プロピオニルオキシ、ブチリルオ ・キシなど)が置換したものであって、具体的にはホルミ ルオキシメチル、2-ホルミルオキシエチル、アセチル オキシメチル、2ーアセチルオキシエチル、3ーアセチ ルオキシプロビル、4-アセチルオキシブチル、プロピ オニルオキシメチルなどがあげられ、好ましくは2-ア セチルオキシエチルである。R*におけるアミノアルキ ルとは、炭素数1から4個のアルキル(前記と同義)に アミノ基が置換したものであって、例えばアミノメチ ミフメチルなどがあげられる。R*、R! * におけるヒ Fロキシカルボニルアルキルとは、炭素数1から4個の アルキル(前記と同義)にヒドロキシカルボニルが置換 したものであって、例えば、ヒドロキシカルボニルメチ ル、2-ヒドロキシカルボニルエチル、3-ヒドロキシ カルボニルプロビル、4 - ヒドロキシカルボニルブチル などがあげられ、好ましくはヒドロキシカルポニルメチ ル、3-ヒドロキシカルボニルプロビルである。R*、 R! * におけるアルコキシカルボニルアルキルとは、炭 素数 1 から 4 個のアルキル(前記と同義)にアルコキシ 部が炭素数1~4個のアルコキシカルボニル(前記と同 義) が置換したものであって、例えば、メトキシカルボ ニルメチル、メトキシカルボニルエチル、メトキシカル ボニルプロピル。メトキシカルボニルプチル、エトキシ カルボニルメチル、プロポキシカルボニルメチル、イソ プロポキシカルボニルメチル、ブトキシカルボニルメチ ルなどがあげられ、好きしくはエトキシカルボニルメチ

16

ルである。 【0007】R'におけるハロゲンとは、フッ素、塩 素、臭素、ヨウ素を示し、好ましくは塩素、臭素であ る。R'におけるアルキルとは、炭素数1から6個の直 鎖または分枝鎖状のアルキルを示し、例えば、メチル、 エチル、プロビル、イソプロビル、ブチル、イソブチ ル、第3級プチル、ペンチル、イソペンチル、ネオペン チルーヘキシルなどがあげられ、炭素数1~3個のアル キルが好ましく、特にメチルが好ましい。R'における アルコキシとは、炭素数1から6個の直鎖または分枝鎖 状のアルコキシを示し、例えばメトキシ、エトキシ、ブ ロボキシ、イソプロボキシ、ブトキシ、イソブトキシ、 第3級ブトキシ、ペンチルオキシ、イソペンチルオキ シ、ネオペンタルオキシ、ヘキシルオキシなどがあげら れ、なかでも炭素数1~3個のアルコキシが好ましい。 R'におけるアルケニルとは、炭素数2~4個の直鎖ま たは分枝鎖状のアルケニルであって、例えばエテニル、 1-プロペニル、1-プテニルなどがあげられ、特にエ テニルが好去しい。R'におけるハロアルキルとは、炭 素数1~4個の直鎖または分枝鎖状のハロアルキルであ って、例えばフルオロメチル、クロロメチル、プロモメ チル、トリフルオロメチル、2-フルオロエチル、2あげられ、特にトリフルオロメチルが好ましい。 R'に おけるアルコキシカルボニルとは、アルコキシ部が炭素 数1から4個のアルコキシカルボニル(前記と同義)を 示し、メトキシカルボニル、エトキシカルボニル、プロ ポキシカルボニル、イソプロポキシカルボニル。プトキ シカルボニル、第3級プトキシカルボニルなどがあけら れる。R'におけるアルキニルとは、炭素数1~4個の 直鎖または分枝鎖状のアルキニルであって、例えばエチ ニル、1-プロビニル、1-プチニルなどがあげられ、 特にエチニルが好ましい。

【0008】R*におけるハロゲンとは、フッ素、塩 素、臭素、ヨウ素を示し、好ましくは塩素である。R* におけるアルキルとは、炭素数1から6個の直鎖または 分技鎖状のアルキルであって、例えば、メチル、エチ ル」プロピル。イソプロピル、ブチル。イソブチル、第 3級プチル、ベンチル、イソベンチル、ネオベンチル、 ヘキシル、イソヘキシル、ネオヘキシルなどがあげち れ、なかでも炭素数4~6個のアルキルが好ましい。R *におけるヒドロキシアルキルとは、炭素数 1 から 4 個 の直鎖または分枝鎖状のアルキル(前記と同義)に水酸 20 直鎖または分枝鎖状のアルコキシにヒドロキシが置換し 基が衝換したものであって、例えば、ヒドロキシメチ ルー2-ヒドロキシエチル、3-ヒドロキシプロビル、 4-ヒドロキシブチルなどがあげられる。R'における ヒドロキシカルボニルアルキルとは、炭素数1から4個 のアルキル (前記と同義) にヒドロキシカルボニルが置 換したものであって、例えば、ヒドロキシカルボニルメ チル、2-ヒドロキシカルボニルエチル、3-ヒドロキ シカルボニルプロピル、4 - ヒドロキシカルボニルブチ ルなどがあげられる。R¹における置換基を有していて もよいアミノアルキルとは、炭素数1から4個のアルキ、30 ル (前記と同義) にアミノ基が置換したものであって、 該アミノ基は置換基として炭素数1から4個のアルキル (前記と同義)、炭素数1から4個のアシル(前記と同 義) およびベンゾイルなどでモノまたはジ體換されてい てもよく、具体的にはアミノメチル、2-アミノエチ ル」ジメチルアミノメチル、2 – ジエチルアミノメチ ル、ホルミルアミノメチル、アセチルアミノメチル、2 ーホルミルアミノエチル、2ーアセチルアミノエチル、 ベンゾイルアミノメチルなどがあげられる。また、該ア ミノ墓は環内に酸素原子、硫黄原子、窒素原子を1ない 40 し2個含有していてもよい環状アミンを形成してもよ く」例えばピロリジン、置換基を有していてもよいピペ リジン、ホモビベリジン、置換基を有していてもよいビ ベラジン、置換基を有していてもよいホモピペラジン、 モルホリンおよびチオモルホリンなどがあげられる。具 体的には、ピペリジノメチル、2-ピペリジノエチル、 モルホリノメテル、2-モルホリノエテル、チオモルホ リフヌチル、ピペラジフメチル、(4-モルホリノピペ リジンー1-イル)メチルなどがあげられる。 【① ① ① 9】 R*におけるアルコキシとは、炭素数 1 か 50 ボキシ、4 ーモルホリノブトキシ、5 - モルホリノベン

ぱメトキシ、エトキシ、プロポキシ. イソプロポキシ、 プトキシ、イソプトキシ、第3級プトキシ、ペンチルオ キシ、イソペンチルオキシ、ネオペンチルオキシ、ヘキ シルオキシ、イソヘキシルオキシ、ネオヘキシルオキシ などがあげられ、なかでも炭素数4~6個のアルコキシ が好ましい。R'におけるハロアルコキシとは、炭素数 1~4個のアルコキシ(前記と同義)にハロゲン(前記 と同義) が置換したものであって、例えばフルオロメト 10 キシ、クロロメトキシ、2-フルオロエトキシ、2, 2. 2-トリフルオロエトキシなどがあげられ、好まし

18 ら6個の直鎖または分枝鎖状のアルコキシであり、例え

くは2,2,2-トリフルオロエトキシである。 R'に おけるアリールオキシとは、フェニルオキシ、ナフチル オキシなどがあげられ、フェニルオキシが好ましい。 【0010】R*におけるシクロアルキルオキシとは、 炭素数3から6個のシクロアルキルオキシであって、例 えばシクロペンチルオキシ、シクロヘキシルオキシなど があげられ、シクロヘキシルオキシが好ましい。 R'に おけるヒドロキシアルコキシとは、炭素数3から6個の たものであって、例えば3 -ヒドロキシプロポキシ、1 ーメチルー1ーヒドロキシエトキシ、4ーヒドロキシブ トキシ、5-ヒドロキシベンチルオキシ、6-ヒドロキ シヘキシルオキシがあげられる。R'におけるヒドロキ シカルボニルアルコキシとは、炭素数 1 から 4 個の直鎖 または分枝鎖状のアルコキシにヒドロキシカルボニルが 置換したものであって、例えばヒドロキシカルボニルメ トキン、2-ヒドロキシカルボニルエトキシ、3-ヒド ロキシカルボニルプロポキシ、4 - ヒドロキシカルボニ ルプトキシがあげられる。

【0011】R¹における置換基を有していてもよいア ミノアルコキシとは、炭素数1から6個の直鎖または分 枝鎖状のアルコキシ (前記と同義) にアミノが置換した ものであり、該アミノ基には置換基として炭素数1から 4.個のアルキル(前記と同義)、炭素数1から4.個のア シル(前記と同義)およびベンゾイルを有していてもよ い。また、該アミノ基は環内に酸素原子、硫黄原子、窒 素原子を1ないし2個含有していてもよい環状アミンを 形成してもよく、例えば、ピロリジン、置換基を有して もよいピペリジン、ホモビペリジン、置換基を有してい てもよいピペラジン、置換墓を有していてもよいホモビ ベラジン、モルホリンおよびチオモルホリンなどがあげ **られる。具体的にはアミノメトキシ、アミノエトキシ、** アミノプロポキシ、メチルアミノメトキシ、ジメチルア ミノメトキシ、2ージメチルアミノエトキシ、ホルミル アミノメトキシ、アセチルアミノメトキシ、プロビオニ ルアミノメトキシ、ベンゾイルアミノメトキシ、モルホ リノメトキシ、2-モルホリノエトキシ、3-モルホリ ノブロポキシ、2、2 - ジメチル - 3 - モルホリノブロ

20

チルオキシ、6-モルホリノヘキシルオキシ、チオモル ホリノメトキシ、2-チオモルホリノエトキシ、3-チ オモルホリノブロボキシ、2,2-ジメチル-3-チオ モルホリノプロポキシ、4-チオモルホリノブトキシ、 5-チオモルホリンペンチルオキシ、6-チオモルホリ ノヘキシルオキシ、ピペリジノメトキン、2-ピペリジ ノエトキシ、3-ピペリジノプロポキシ、2,2-ジメ チルー3-ピベリジノプロポキシ、4-ピベリジノブト キシ、5-ピペリジノベンチルオキシ、6-ピペリジノ ヘキシルオキシ、ピペラジフメトキン、2-ピペラジフ(10)ホリフプロピルチオ、4-チオモルホリフブチルチオ、 エトキシ、3ービペラジノプロポキシ、2、2ージメチ ルー3ーピペラジノプロポキシ、4-ピペラジノブトキ シ、5 - ピペラジノベンチルオキシ、6 - ピペラジノヘ キシルオキシ、2-ピロリジノエトキシ、3-ピロリジ ノブロボキシなどがあげられる。 なかでも、 2 ージメチ ルアミノエトキシ、4ーモルホリノブトキシ、3ーモル ホリノブロポキシ、2 - モルホリノエトキシ、モルホリ ノメトキシ、2、2-ジメチル-3-モルホリノプロポ キシが好ましい。

[0012] R*におけるアルキルチオとは、アルキル 部が炭素数1から6個であって、例えばメチルチオ、エ チルチオ、プロビルチオ、 n ープチルチオ、ペンチルチ オ、ネオペンチルチオ、ヘキシルチオなどがあげられ る。R'におけるヒドロキシアルキルチオとは、アルキ ル部が炭素数1から6個であって、例えばヒドロキシメ チルチオ、2-ヒドロキシエチルチオ、3-ヒドロキシ プロビルチオ、4ーヒドロキシブチルチオ、5ーヒドロ キシベンチルチオ、6-ヒドロキシヘキシルチオがあげ られる。R1におけるヒドロキシカルボニルアルキルチ オとは、アルキル部が炭素数1から4個であって、例え、30 ばヒドロキシカルボニルメチルチオ、2ーヒドロキシカ ルボニルエチルチオ、3-ヒドロキシカルボニルブロビ ルチオ、4 ーヒドロキシカルボニルブチルチオがあげら ns.

【0013】R¹における置換基を有していてもよいア ミノアルキルチオとは、アルキル部が炭素数1から6個 の直鎖または分枝鎖状のアルキル(前記と同義)であ り、該アミノ基に置換基として炭素数1から4個のアル キル(前記と同義)、炭素数1から4個のアシル(前記 と同義)およびベンゾイルが置換していてもよい。ま た。該アミノ基は環内に酸素原子、蘿黄原子、窒素原子 を1ないし2個含有していてもよい環状アミンを形成し てもよく、例えば、ピロリジン、置換量を有してもよい ビベリジン、ホモビベリジン、置換器を有していてもよ いピペラジン、置換基を有していてもよいホモビペラジ ン。 モルホリンおよびチオモルホリンなどがあげられ る。具体的にはアミノメチルチオ、2-アミノエチルチ オ、3-アミノプロビルチオ、4-アミノブチルチオ、 ジメチルアミノメチルチオ、ジエチルアミノメチルチ オ」2 - ジメチルアミノエチルチオ」3 - ジメチルアミ 50 (前記と同義); アルコキシ部が炭素数 1 ~ 4 個のアル

ノプロビルチオ、4 ージメチルアミノブチルチオなど、 ホルミルアミノメチルチオ、2-ホルミルアミノエチル チオ」アセチルアミンメチルチオ、2-アセチルアミン エチルチオ、ベンゾイルアミノメチルチオ、2-ベンゾ イルアミノエテルチオ、モルポリノメチルチオ。2 - モ ルポリンエチルチオ、3-モルポリノブロビルチオ、4 ーモルホリンプテルチオ、5ーモルホリンペンチルチ オ、6ーモルホリンヘキシルチオ、テオモルホリノメチ ルチオ、2-チオモルホリノエチルチオ、3-チオモル 5 - チオモルホリンペンチルチオ、6 - チオモルホリン ヘキシルチオ、ピペリジノメチルチオ、2-ピペリジノ エチルチオ、3 - ピペリジノプロピルチオ、4 - ピペリ ジノブチルチオ、5ーピベリジノベンチルチオ、6ーピ ペリジノヘキシルチオ、ビベラジノメチルチオ、2-ピ ペラジノエチルテオ、3 - ピペラジノプロピルチオ、4 ーピペラジノブチルチオ、6 - ピペラジノペンチルチ オ、6-ピペラジノヘキシルチオ、2-ピロリジノエチ ルチオ、3ーピロリジンプロピルチオがあげられる。R °、R'におけるアルキルとは、炭素数1かち4個のアル キル(前記と同義)であって、例えば、メチル、エチ ル」プロピル。イソプロビル、ブチル、イソブチル、第 3級プチルなどがあげられ、好ましくはエチルである。 【①①14】R*、R*におけるヒドロキシアルキルと は、炭素数1から4個のアルキル(前記と同義)に水酸 基が面換したものであって、例えば、ヒドロキシメチ ル、2-ヒドロキシエチル、3-ヒドロキシプロビル、 4-ヒドロキシブチルなどがあげられ、好ましくは2-ヒドロキシェチルである。R°、R'におけるアミノアル キルとは、炭素数1から4個のアルキル(前記と同義) にアミノ基が置換したものであって、該アミノ基は炭素 数1から4個のアルキル(前記と同義)、炭素数1から 4個のアシル(前記と同義) およびベンゾイルにより置 換されていてもよく、具体的にはアミノメチル。アミノ エチル、ジメチルアミノメチル、ジエチルアミノメチ ル、ホルミルアミノメチル、2-ポルミルアミノエチ ル、アセチルアミノメチル、2-アセチルアミノエチ ル、ベンゾイルアミノメチルなどがあげられる。R°. R'における隣接する窒素原子と一緒になって環内に酸 46 素原子、硫黄原子、窒素原子を1ないし2個含有してい てもよい環状アミンを形成する基とは、ピロリジン、置 換墓を有してもよいピペリジン、ホモビペリジン、置換 基を有していてもよいピペラジン、置換基を有していて もよいホモビベラジン、モルホリンおよびチオモルホリ ンから選ばれる環状アミンを意味する。

【①015】前述の置換基を有していてもよいピペリジ ンにおける置換基とは、ヒドロキシ;カルボキシ;アル コキシ部が炭素数1から4個のアルコキシカルボニル (前記と同義) ;炭素数1~4個のヒドロキシアルキル

コキシアルコキシ (メトキシメトキシ、エトキシメトキ シ、プロポキシメトキシ、ブトキシメトキシ、2ーメト キシエトキシ、3ーメトキシプロボキシ、4ーメトキシ ブトキシなど);アルキル部が炭素数1から4個のカル ボキシアルキルカルボニルオキシ(カルボキシメチルカ ルボニルオキシ、2-カルボキシエチルカルボニルオキ シなど);炭素数1から4個のアシルオキシ(前記と同 義) ペンゾイルオキシ: フェニル: 炭素数1から4個 のアルキレンジオキシ(メチレンジオキシ、エチレンジ オキシなど);オキソ;炭素数1から4個のアルキル (前記と同義) アルコキシ部ならびにアルキル部がそ れぞれ炭素数1~4個のアルコキシアルキル(メトキシ メチル、エトキシメチル、2ーメトキシエチル、2ーエ トキシエチルなど)または炭素数1から4個のヒドロキ シアルキル(前記と同義)でモノまたはジ置換していて もよいアミノ;置換基(ヒドロキシ)炭素数1~4個の アルコキシ、オキソなど) を有していてもよいピペリジ ン。モルボリン。チオモルボリン、置換基(炭素数)~ 4.個のアルキル、炭素数1~4.個のアシルなど)を有し ていてもよいピペラジンなどから選ばれる環状アミン (当該環状アミンはN-オキサイドであってもよい); モルホリノメチルなどがあげられる。具体的にはピベリ ジン・1・イル、4・ヒドロキシピペリジン・1・イ ル、4ーカルボキシピペリジンー1ーイル、4ーメトキ シカルボニルピペリジン・1ーイル、4ーエトキシカル ボニルピペリジン-1-イル、4-((2-カルボキシ エチル) カルボニルオキシ) ピペリジンー1ーイル、4 ーベンゾイルオキシピペリジン-1 -イル、4 -ピペリ ジフピペリジン・1 - イル、4 - モルホリフピペリジン - 1 - イル、4 - チオモルホリノピペリジン - 1 - イ ル、4- (N-オキシドモルホリノ) ピペリジン-1-イル、4、4-エチレンジオキシピペリジン-1-イ ル、4ーオキソビペリジン・1 ーイル、4ーアミノビベ リジンー1-イル、4-ジメチルアミノピペリジン-1 ーイル、4-(N-(2-ヒドロキシエチル)アミノ) ピペリジンー1ーイル、4ー(N,N-ピス(2-ヒド ロキシエチル) アミノ) ピペリジン・1ーイル、4ー (N - (2 -ヒドロキシエチル) -N -メチルアミノ) ピペリジン・1-イル、4-(4-メチルピペラジント ドロキシエチル) アミノ) ピペリジン・1ーイル、4ー (ピペラジン・1ーイル) ピペリジン・1ーイル、4ー (4-{4-アセチルピペラジン-1-イル) ピペリジ ン)-1-イル。4-フェニルピペリジン-1-イル、 4- (N- (2-メトキシエチル) アミノ) ピペリジン -1-イル、4- (N-(2-メトキシエチル)-N-メチルアミノ) ピペリジン-1-イル、4-(N. N-ピス (2-メトキシエチル) アミノ) ピペリジン・1-イル、4 -メトキシメトキシピペリジン-1-イル、4

- (2-メトキシエチル) オキシピベリジン-1-イ

ル、4-(2-ヒドロキシエチル) ピペリジン・1-イ ル、4-(4-ヒドロキシピペリジン-1-イル)ピペ リジン-1-イル、4-(4-モルホリノメチル)ピペ リジンー1ーイル、4ー(4ーメトキシピペリジンー1 - イル)ピペリジン・1 - イル、4 - (4 - オキソピペ リジンー1ーイル》ピペリジンー1ーイルなどがあげち ns.

【①①16】前途の置換墓を有していてもよいビベラジ ンにおける置換墓とは、炭素数 1 から 4 個のアルキル - (前記と同義) :アルキル部が炭素数 1 ~ 4 個のカルボ キシアルキル(カルボキシルメチル、カルボキシエチル など);炭素数 1 から 4 個のヒドロキシアルキル(前記 と同義);アルキル部およびアルコキシ部が炭素数1~ 4.個のアルコキシアルキル(前記と同義);アルコキシ 部およびアルキル部がそれぞれ炭素数1から4個のヒド ロキシアルコキシアルキル(ヒドロキシメトキシメチ ル ヒドロキシエトキシエチルなど) (カルボキシ)ア ルコキシ部が炭素数1から4個のアルコキシカルボニル (前記と同義);アルコキシ部あよびアルキル部がそれ 26 ぞれ炭素数1から4個のアルコキシカルボニルアルキル (前記と同義) ;炭素数1から4個のアシル(前記と同 義);アシル部およびアルキル部が炭素数1から4個の アシルオキシアルキル (前記と同義) :置換基を有して いてもよい炭素数1から4個のアミノアルキル(前記と 同義)、アルキル部が炭素数1から4個のカルボキシア ルキルカルボニルオキシ(カルボキシメチルカルボニル オキシ、(2-カルボキシエチル)カルボニルオキシな ど) ; ヘテロアラルキル (炭素数 1 から 4 個のアルキル にピリジル、チエニル、プリルなどのヘテロアリールが 30 置換したもの);ハロゲン(前記と同義)、炭素数1~ 4個のアルキル(前記と同義)および炭素数1~4個の アルコキシ (前記と同義) から選ばれる置換基で置換さ れたフェニル: 3, 4, 5, 6ーテトラヒドロー2Hー ピランー4ーイル:3,4.5,6ーテトラヒドロー2 頁-チオピラン-4-イル:5-メチルインキサゾール -4-イルカルボニル:2-シアノ-3-ヒドロキシク ロトフィルなどがあげられる。具体的にはピペラジンー 1-イル、4-メチルピペラジン-1-イル、4-エチ ルピペラジン・1-イル 4-ヒドロキシメチルピペラ 1 - イル)ピペリジン - 1 - イル、4 - (N - (2 - ヒ 4G ジン - 1 - イル、4 - (2 - ヒドロキシエチル)ピペラ ジン・1-イル、4-(3-ヒドロキシプロピル)ピペ ラジン-1-イル、4-(第3級ブトキシカルボニル) ピペラジンー1-イル、4-(エトキシカルボニルメチ ル) ピペラジンー1ーイル、4ー(2ーエトキシカルボ ニルエチル) ピペラジン・1ーイル、4ー(3ーエトキ シカルボニルプロピル〉ピペラジン・1ーイル、4ー (カルボキシメチル) ピペラジン-1-イル、4-(2) ーカルボキシエチル) ピベラジン-1-イル、4-(3 **ーカルボキシブロビル)ビベラジン・1ーイル、4ー** 50 ((2-カルボキシエチル)カルボニルオキシ)ビベラ ジン・1 - イル、4 - (5 - メチルイソキサゾール・4 - イルカルポニル)ピペラジン - 1 - イル、4 - (2 -シアノー3-ヒドロキシクロトノイル)ピペラジン-1 - イル、4-(ジメチルアミノメチル)ピペラジン-1 - イル、4 - (2 - ジメチルアミノエチル)ピペラジン - 1 - イル、3、5 - ジメチルー 4 - エトキシカルボニ ルメチルピペラジンー1-イル、3、5-ジメチルー4 -カルボキシメチルピペラジン-1-イル、4-(3-(3-ピリジル) プロピル) ピペラジン-1-イル、4 ン-1-イル、4-(2-アセチルオキシエチル) ピベ ラジン-1-イル、4-(3,4,5,6-テトラヒド ロー2日-ピラン-4 -イル)ピペラジン-1-イル、 4 - (3、4、5、6 - テトラヒドロー2Hーチオピラ ンー4ーイル) ピペラジンー1ーイル、4-(4-クロ ロフェニル) ピペラジン・1 ーイル、4 ー(4 ープルオ ロフェニル) ピペラジン・1ーイル、4ー(4ーメチル フェニル) ピペラジンー1-イル、4-(4-メトキシ フェニル) ピペラジンー1-イル、4-メトキシメチル ピペラジン-1-イル、4-(2-メトキシエチル)ピ 29 ペラジンー1-イル、4-(3-メトキシプロビル)ビ ベラジン-1-イルなどがあげられる。

【① ① 17】前途の置換基を有していてもよいホモビベ ラジンとは、置換基として炭素数1~4個のアルキル (前記と同義) 炭素数1~4個のヒドロキシアルキル (前記と同義) が置換していてもよく、具体的にはホモ ピペラジン、4 - (ヒドロキシメチル) ホモピペラジン - 1 - イル、4 - (2 - ヒドロキシエチル)ホモビペラ シン・1ーイル、4ーヌチルホモピベラジン・1ーイル などがあげられる。Hetにおける置換基を有していて もよい酸素原子または窒素原子から遷ばれる復素原子を 含有した飽和複素線とは、5または6員環であり、置換 基としては炭素数1~4個のアルキル(前記と同義)、 アリールアルキル(前記と同義)などがあげられる。具 体的には、ピペリジンー4ーイル、1-メチルピペリジ ンー4ーイル、1ーエチルピペリジン-4ーイル、1ー ペンジルピペリジンー4-イル、ピロリジン=3-イ ル、1ーメチルビロリジン-3-イル、1-エチルピロ リジン=3-イル、1-ベンジルピロリジン=3-イ ル、3、4、5、6ーテトラヒドロー2月ーピランー4 40 のである。 ーイル、2,3、4,5-テトラヒドロフラン-3-イ ルなどがあげられる。

[0018] R°, R°, R°, R°, R°°, R', R' & K おけるアルキルとは、炭素数1から4個の直鎖または分*

*核鎖状のアルキルであって、メチル、エチル、プロピ ル、イソプロビル、ブチル、イソブチル、第3級ブチル などがあけられ、好ましくはメチルである。R°、 R**、R**におけるハロゲンとは、フッ素、塩素、臭 素。ヨウ素を示す。 $R^{m{t}}$ 、 $R^{m{t}}$ 、 $R^{m{t}}$ におけるアルコ キシとは、炭素数1から4個の直鎖または分枝鎖状のア ルコキシであって、メトキシ、エトキシ、プロポキシ、 イソプロポキシ、ブトキシ、第3級ブトキシなどがあげ られる。R*、R! * におけるヒドロキシアルキルと -(2-(2-ヒドロキシエトキシ)エチル)ビベラジ 10 は、炭素数1から4個のアルキル(前記と同義)に水酸 基が置換したものであって、例えば、ヒドロキシメチ ル、2-ヒドロキシエチル、3-ヒドロキシプロビル、 4-ヒドロキシブチルなどがあげられ、好ましくはヒド ロキシメチルである。R'' におけるアルコキシカルボ ニルとは、アルコキシ部が炭素数 1 から 4 個のアルコキ シカルボニル(前記と同義)を示し、メトキシカルボニ ル。エトキシカルボニル。プロポキシカルボニル。イソ プロポキシカルボニル、ブトキシカルボニル、第3級ブ トキシカルボニルなどがあげられる。

【① ① 19】本発明化合物の医薬上許容される塩として は、塩酸塩、臭化水素酸塩、硫酸塩、リン酸塩、硝酸塩 などの無機酸との塩、または酢酸塩、プロピオン酸塩、 コハク酸塩、マレイン酸塩、フマル酸塩、安息香酸塩、 クエン酸塩、リンゴ酸塩、メタンスルボン酸塩、ベンゼ - ンスルホン酸塩 p-トルエンスルホン酸塩などの有機 酸との塩、あるいはカルボキシル基を含む場合は、ナト リウム塩、カリウム塩、カルシウム塩、アルミニウム 塩、マグネシウム塩などの金属塩、トリエチルアミンな どのアミンとの塩またはリジンなどの二塩基性アミノ酸 との塩があげられる。また、本発明化合物は水和物(1 水和物、1/2水和物、3/4水和物、1/4水和物な ど) 恣媒和物なども包含される。さらに、本発明化台 物はN-オキサイド化合物も包含される。本発明化合物 に幾何異性体が存在する場合、本発明はシス体。 トラン ス体さらにはそれらの混合物をも包含するものである。 さらに、本発明にその分子内に1個またはそれ以上の不 斉中心が存在する場合、それらより各種の光学異性体が 存在する。本発明は光学異性体、ラセミ体さらにはジア ステレオ冥性体。およびそれらの混合物をも包含するも

【()()2()】一餟台成法

方法 1:本発明の化合物(1)は以下の方法により製造 することができる。

[(t13]

25

(式中、各記号は前記と同義である。) 化合物 (VI) と化合物 (VII) の縮合反応は、以下の方法 (1)、 (2)、(3)により行うことができる。

(1) 化合物(VI) を塩化チオニル等のハロゲン化剤 を用いて常法により酸ハライドに変換した後、適当な恣 娘(ジクロロメタン、ジクロロエタン、クロロホルムな ど) 中、塩基 (トリエチルアミン、ビリジン、ナトリウ ムメトキシド、ナトリウムエトキシド、水酸化ナトリウ ム、水酸化カリウム、酢酸ナトリウムなど)の存在下、 -20℃から溶媒の還流温度で化合物(V i i)と30 分から12時間縮合させることにより化合物(1)が得 られる。なお、本反応では用いる塩基を溶媒として使用 することもできる。

(2)化合物(VI)を必要に応じて適当な溶媒(ジメ チルホルムアミド、ジメチルスルホキシド、メタノー ル。エタノール。イソプロピルアルコール、ブタノール など) 中、縮合剤 (1、3 - ジシクロヘキシルカルボジ イミド、1-エチルー3-(3-ジメチルアミノプロピ ル) カルボジイミド、カルボニルジイミダゾールなど) 適当な溶媒(ジメチルホルムアミド、ジメチルスルホキ シドなど) 中、シアノリン酸ジエチル等のリン酸エステ ルおよび塩基(トリエチルアミン、ビリジンなど)の存 在下で化合物(Vii)と縮合させることにより化合物 *ち100℃であり、反応時間は通常30分かち24時間 である。なお、積合剤を用いる反応においては、必要に 応じて1-ヒドロキシベンズトリアゾールなどの存在下 で行うこともできる。

(3) 化合物(V)) を低級アルコール (メタノール、 エタノールなど)または炭酸エステル(クロロ炭酸メチ ルークロロ炭酸エチルなど)などとの混合酸無水物に変 換した後、適当な溶媒(メタノール、エタノール、イソ プロビルアルコール、ブタノール、エチレングリコー ル、チトラヒドロフラン、トルエン、ニトロベンゼンあ るいはこれらの混合密媒など)中または無密媒で、塩基 (トリエチルアミン、ピリジン、ナトリウムメトキシ ド. ナトリウムエトキシド. 水酸化ナトリウム. 水酸化 カリウムなど)の存在下、室温から溶媒の還流温度で1 から24時間、化台物(VIi)と縮合させることによ り化合物(!)を得ることができる。なお、本反応にお いて、化合物(Vill)のR*が水素である場合、有機 台成化学の分野において通常用いられる保護基、例えば 第3級プトキシカルボニル墓、9-フルオレニルメトキ の存在下で化合物(V i I)と縮合させるか、あるいは 20 シカルボニル蟇 ベンジルオキシカルボニル基等を使用 して反応を行うこともできる。

> 【0021】方法2:化合物(!)において、Riがア ルキルまたはヒドロキシカルボニルアルキルである化合 物は以下の方法により製造することができる。

[(k 1 4]

(式中、 $WakiR^2$ の置換基における水素以外の基を示 し、Halは塩素、臭素、ヨウ素などのハロゲンを示 し、他の記号は前記と同義である。)

(VIII)

化合物 (V i I I) を適当な恣媒 (ジメチルホルムアミ ド、ジメチルスルホキシド、ベンゼン、トルエン、キシ レン、ヘキサン、テトラヒドロフラン、ジエチルエーテ ル」メタノール。エタノール、イソプロピルアルコー ル、第3級ブチルアルコールなど)中、塩基(水素化ケ リウム、炭酸ナトリウム、ナトリウムメトキシド、ケト リウムエトキシド、トリエチルアミンなど)存在下、化 合物 (V i i I) と-20℃から100℃で30分から 24時間反応させることにより化合物(!-1)を得る ことができる。

【① 022】方法3:本発明の化合物が水酸基を有する 場合。カルボン酸化合物、酸ハライド化合物または酸無 水物化台物と有機台成化学の分野において通常用いられ る総合反応に付すことにより対応するエステル化合物を 製造することができる。また、本発明化合物がカルボン 50

酸基を有する場合、アルコール化合物またはフェノール 化合物と有機合成化学の分野において通常用いられる縮 台反応に付すことにより対応するエステル化合物を製造 することができる。さらに、本発明化合物がエステル基 を有する場合。酸(塩酸、硫酸など)または塩基(水酸 化ナトリウム、水酸化カリウムなど) と鴬法により加水 分解することによって対応するカルボン酸化合物を製造 することができる。また、本発明化合物が、アミノ基を トリウム、水酸化ナトリウム、水酸化カリウム、炭酸カ 40 有する場合、塩基(トリエチルアミン、ピリジンなど) 存在下でアルキルハライドまたはアシルハライドを用い て常法によりN-アルキル化またはN-アシル化するこ とができる。

【0023】方法4:化合物(VII)において、R2 が水素である化合物は以下の方法により製造することが できる。

【化15】

(式中、各記号は前記と同義である。) 化合物(X)を有機合成化学の分野において通常用いら れる還元法、例えば適当な溶媒(水、メタノール、エタ ノール、プロパノール、ブタノール、エチレングリコー 16 ルまたはそれらの復合溶媒など) 中、鉄粉を触媒として 希塩酸あるいは触媒型の塩化アンモニウムと処理する方 法、あるいはニッケル、バラジウム、白金等の触媒の存 在下、水素添加を行う接触還元法、塩化鉄とヒドラジン を用いる方法、液体アンモニア中、ナトリウムやリチウ ム等のアルカリ金属を用いたバーチ(Birch)還元 法等によって化合物 (VII-1) が得られる。反応温 度は通常変温から密媒の還流温度であり、反応時間は通 焦1から24時間である。

り製造することもできる。

[化16]

HOOC
$$\mathbb{R}^3$$
 \mathbb{R}^3 \mathbb{R}^5 \mathbb{R}^5 \mathbb{R}^5 (XI)

(式中、各記号は前記と同義である。)

化合物 (X | I) をシュミット (Schmidt) 反応 30 を利用して、適当な溶媒(水、メタノール、エタノー ル、プロパノール、ブタノール、第3級プチルアルコー ル。エチレングリコール。ベンゼン。トルエン。キシレ ン、好ましくはベンゼン)中、アジド化ナトリウムおよ び強酸(硫酸、トリフルオロ酢酸など)と室温から溶媒 の遠流温度で1から24時間処理するか、または適当な **密媒(メタノール、エタノール、イソプロピルアルコー** ル、ブタノール、第3級ブタノール、好ましくは第3級 ブタノール) 中、トリエチルアミンおよびジフェニルホ スポニルアジドと室温から溶媒の還流温度で1から24 時間反応させた後、酸(塩酸、硫酸など)にて処理する ことにより、化合物(XI)が得られる。

【0025】方法6: 化合物 (X) において、R* がア ルコキシ、ハロアルコキシ、アリールオキシ、シクロア ルキルオキシ、ヒドロキシアルコキシ、ヒドロキシカル ボニルアルコキシ、置換基を有していてもよいアミノア ルコキシ、アルキルチオ、ヒドロキシアルキルチオ、ヒ ドロキシカルボニルアルキルチオ、置換基を有していて もよいアミノアルキルチオまたは基N(R°)(R⁷) である場合、以下の方法により製造することができる。

(式中、Yaはアルコキシ、ハロアルコキシ、アリール オキシ、シクロアルキルオキシ、ヒドロキシアルコキ シ」ヒドロキシカルボニルアルコキシ、置換基を有して いてもよいアミノアルコキシ、アルキルチオ、ヒドロキ シアルキルチオ、ヒドロキシカルボニルアルキルチオ、 置換量を有していてもよいアミノアルキルチオまたは基 N(R*)(R*)を示し、他の記号は前記と同義であ る。)

化合物(X i I I)を適当な溶媒(クロロボルム、アセ トニトリル、水、メタノール、エタノール、テトラヒド ロフラン、ジエチルエーテル、ジメチルホルムアミド、 ジメチルスルホキシドまたはそれらの混合溶媒など)中 【① 0 2 4】方法5:化合物(X 1)は以下の方法によ 20 または無溶媒で、塩基(水酸化ナトリウム、ナトリウム メトキシド、ナトリウムエトキシド、水素化ナトリウ ム」ブチルリチウムなど)の存在下、化合物(XIV) と−20℃から100℃で1から24時間反応させるこ とにより化合物(XV)が得られる。

> 【0026】方法7:化合物 (XIII) において、R * がシアノである化合物は以下の方法により製造するこ とができる。

(式中、Gはニトロまたはカルボキシを示し、他の記号 は前記と同義である。)

化合物(XVI)を適当な溶媒(水、メタノール、エタ ノール、プロパノール、エチレングリコール、ジメチル スルホキシド、ジメチルホルムアミドまたはその混合溶 - 媒など) 卓、シアノ化剤(シアン化ナトリウム、シアン 化カリウム、シアン化第一銅など)と室温から100℃ で1から24時間反応させることにより化合物(XV! () を得ることができる。

[0027]方法8:化合物(XIX)は、以下の方法 により製造することができる。

[(19]

30

*24時間反応させることにより化合物(X ! X)を得る

ことができる。また、化合物(XVIII)をアミノ基

の保護基として通常用いられる第3級プトキシカルボニ ル基などで常法により保護した後、金属ナトリウム、水 業化ナトリウムあるいはナトリウムアミドなどの存在

下、化合物(IX)と反応させ、常法により脱保護することにより化合物(XIX)を得ることもできる。

【0028】方法9:化合物(1)は、以下の方法によ

り製造することができる。

【化20】

(式中、各記号は前記と同義である。) 化合物(XVIII)を酢酸ナトリウムの存在下。無溶 媒あるいは適当な溶媒(テトラヒドロフラン、ジエチル エーテル、ジメチルホルムアミド、ジメチルスルホキシ 10 ドなど)中、化合物(IX)と室温から60℃で1から*

Half Q
$$R^3$$
 R^5 R^5

(式中、各記号は前記と同義である。)

ハロゲン置換したベンゼンあるいは複素芳香環を有する カルボン酸(XX)と化合物(V I I)を方法 I の手法 により縮台させアミド体(XXI)を得ることができ る。得られたアミド体(XXI)をテトラキストリフェ ニルホスフィンパラジウム等のパラジウム触媒存在下、 アリールボランあるいはヘテロアリールボランを用い、 適当な密媒(水)メタノール、エタノール、プロバノー ル。ブタノール。第3級ブチルアルコール、エチレング リコール、ベンゼン、トルエン、キシレン、ジメチルホ ルムアミドなど) 中、炭酸ナトリウムあるいは炭酸カリ ウム水溶液等の塩基を用い、室温から溶媒の還流温度で 1から24時間処理するスズキカップリング法にて処理 することにより化合物(1)が得られる。または、得ら れたアミド体(XXi)をテトラキストリフェニルホス - フィンパラジウム等のパラジウム無媒存在下、アリール トリメチルスズあるいはヘテロアリールトリメチルスズ 等のアルキルスズを用い、適当な溶媒(水、メタノー ル、エタノール、プロパノール、ブタノール、第3級ブ チルアルコール、エチレングリコール、ベンゼン、トル エン、キシレン、ジメチルホルムアミドなど)中、室温 から溶媒の還流温度で1から24時間処理するスティル カップリング法にて処理することにより化合物(Ⅰ)が 得られる。

【① ① 2 9】本発明の化合物は、必要に応じて適当な溶 な散または塩基との塩による分別結晶法により、もしく 媒(水、メタノール、エタノール、プロパノール、イソ 50 は光学活性な组体を充填したカラムを通すことにより、

プロビルアルコール、ジエチルエーテル、テトラヒドロ フラン、ジオキサン等)中、酸(塩酸、臭化水素酸、硫 酸、リン酸、硝酸等の無機酸、または酢酸、プロビオン 酸、コハク酸、マレイン酸、フマル酸、安息香酸、クエ ン酸、リンゴ酸、メタンスルホン酸、ベンゼンスルホン 30 酸等の有機酸)と処理することにより酸付加塩とするこ とができる。得られた化合物がカルボキシル基を含む場 合は、水酸化ナトリウム、水酸化カリウム、水酸化カル シウム、水酸化アルミニウム、水酸化マグネシウム、ナ トリウムアルコラート等と処理することにより対応する 金属塩とすることができ、また、必要に応じて適当な恣 媒中、トリエチルアミン等のアミン、あるいはリジン等 の二塩基性アミノ酸と処理することにより対応する塩と することができる。また、本発明化合物の結晶が無水物 である場合、水、含水溶媒またはその他の溶媒と処理す ることにより、水和物(1水和物、1/2水和物、3/ 4水和物など) 恣媒和物とすることができる。さら に、本発明化合物を過酸化水素、メタクロロ過安息香酸 などの酸化剤と常法により処理することによりN-オキ サイド化台物に変換することができる。

【0030】このようにして得られる本発明化合物は再結晶法、カラムクロマト法などの有機合成化学の分野における公知の方法により単能精製することができる。得られる生成物がラセミ体である場合。たとえば光学活性な酸または塩基との塩による分別結晶法により。もしくは光学活性な組体を充端したカラムを消すことにより、

所望の光学活性体に分割することができる。これらは光 学活性な原料化合物などを用いることによっても製造す るととができる。

【①031】本発明化合物またはその医薬上許容しうる 塩は、抗原などで活性化されたTh2細胞からのIL-4 産生を選択的に抑制する作用を有することから、Th 2細胞の関与する先疫応答の選択的抑制薬として各種ア レルギー性疾患の予防薬または治療薬として有効であ る。さらに詳細には、本発明化合物またはその医薬上許 容しうる塩は、Th 2細胞の異常増殖あるいは機能亢進 10 に起因する疾患。たとえば、全身性紅斑性狼瘡、ネフロ 一七症候群狼瘡,稀本甲状腺腫、多発性硬化症,重症筋 魚力症、ネフローゼ症候群、ステロイド依存性およびス テロイド抵抗性ネフローゼ、アレルギー性脳脊髓炎、な ちびに糸球体腎炎等の治療および予防に使用できる。ま た。炎症性、増殖性および超増殖性皮膚疾患、ならびに 免疫媒介疾患の皮膚における発症、たとえば乾癬、乾癬 楊関節炎。アトピー性湿疹(アトピー性皮膚炎)。接触 性皮膚炎、さらには湿疹皮膚炎、脂源性皮膚炎、偏平苔 癬・天疱瘡、水泡性類天疱疹、表皮水泡症、じんま疹、 脈管浮膛、脈管炎、紅斑、皮膚好酸球増加症、ざ盛、円 形脱毛症、好酸球性筋膜炎および帯状硬化症の治療にも 使用できる。

【① 032】本発明の化合物は呼吸器疾患、たとえばサ ルコイドーシス、肺繊維症、特発性間質性肺炎ならびに 可逆的閉塞性気道疾息、たとえば気管支喘息、小児喘 息。アレルギー性喘息、内因性喘息、外因性喘息および 塵埃性喘息、特に慢性もしくは難治性喘息(たとえば遅 発性喘息および気道過敏)、気管支炎等を含む喘息のよ うな症状の治療にも適用可能である。本発明化合物は虚 30 血に関連した肝障害の治療にも使用できる。さらに、特 定の眼疾患、たとえばアレルギー性結膜炎、角結膜炎、 角膜炎、春季カタル、ベーチェット病に関連したブドウ 膜炎。ヘルペス性角膜炎。内錐角膜、角膜上皮変性症、 角膜白斑、眼天疱瘡、モーレン潰瘍、強膜炎、グレイブ ス眼病、重症眼内炎症等にも有効である。本発明組成物 は間質性腎炎。グッドバスチャー症候群、溶血性尿毒性 症候群ねよび経尿病性ネフロバシーのような腎疾患;多 発性筋炎、ギランバレー症候群、メニエール病および神 経根症から選択される神経病:甲状腺機能亢進症および バセドウ氏病のような内分泌疾患;サルコイドーシス、 肺総維症および特発性間質性肺炎のような呼吸器疾患: 皮膚筋炎、尋常性白斑、尋常性魚鱗癬、光アレルギー性 敏感症および皮膚下細胞リンパ腫のような皮膚病:動脈 硬化、大動脈炎、結節性多発動脈炎および心筋症のよう な循環器疾患:強皮症、ベグネル肉芽腫およびシェーグ レン症候群のような膵原病:脂肪症:好酸性筋膜炎:歯 周疾患;ネフローゼ症候群;溶血性尿毒性症候群;なら びに務ジストロフィーの治療または予防でも使用でき る。本発明化合物は腸の炎症/アレルギー、たとえばC 50 担体(賦形剤、結合剤、崩壊剤、矯味剤、矯臭剤、乳化

oellac病。直腸炎、好酸球性胃腸炎、肥満細胞 症。クローン病および潰瘍性大腸炎ならびに食品に関連 したアレルギー性疾息であって、胃腸管には直接関係の ない症状を示すもの、たとえば偏頭痛、鼻炎および湿疹 の予防または治療にも適している。さらに、肝臓再生活 性および/または肝細胞の肥大および過形成を促進する 活性を有することから、本発明化合物は免疫原性疾患 (たとえば、自己免疫性肝炎、原発性胆汁性肝硬変およ び硬化性胆管炎を含む慢性自己免疫性肝疾患) B型ウ ィルス性肝炎。非A型/非B型肝炎および肝硬変のよう な肝疾患の治療および予防に使用できる。

【0033】本発明化合物は、また、シャイ・ドレーガ 一症候群、膿疱性乾癬、ベーチェット病、全身性エリテ マトーデス、内分泌性眼障害、進行性全身性硬化症、混 台性結合組織病。大動脈炎症候群、ウェゲナー内芽腫、 活動性慢性肝炎、エバンス症候群、花粉症、特発性副甲 状腺機能低下症 アジソン病 (自己免疫性副腎炎)、自 己免疫性毒丸炎,自己免疫性卵巢炎,寒冷血球凝集素 症、発作性寒冷血色素尿症、悪性貧血、成人性丁細胞白 20 血病。自己免疫性萎縮性胃炎、ルポイド肝炎、尿細管間 賢性腎炎、膜性腎炎、筋萎縮性側索硬化症、リウマチ 熱。心筋梗塞後症候群、交感性眼炎の予防または治療に 使用することができる。本発明の化合物またはその医薬 上許容しうる塩は、場合によっては他の免疫抑制剤(タ クロリムス水和物、アスコマイシン、FTY720な ど)、ステロイド剤(プレドニゾロン、メチルプレドニ ゾロン、デキサメサゾン、ヒドロコルチゾン、クロベタ ゾン、ブルヌタゾン、トリアムシノロンアセトニド、ア ルクロメタゾン。フルオロシノロンアセトエド。ベクロ 「ヌタゾン、ベタヌタゾン」デプロドン、ハルシノニド、 アムシノニド。プルオシノニド、ジブルコルトロン、ブ デソニド、ジブルペレドナート、ジブロラゾン。 クロベ タゾールまたはそれらの脂肪酸エステル類など)、 抗ア レルギー剤(クロモグリク酸ナトリウム、トラニラス ト、アンレキサノクス、レビリナスト、イプジラスト、 タザノラスト、ペミロラスト、オザグレル、スプラタス ト、プランルカスト、ケトチフェン、アゼラスチン、オ キサトミド、メキタジン、テルフェナジン、エメダスチ ン、エピナスチン、アステミゾーまたは各種抗ヒスタミ ニンなど)などと一緒に使用することができる。

【①①3.4】前途のように、本発明化合物またはその医 薬上許容しうる塩はTh2細胞からのIL-4産生を選 択的に抑制する新規作用機序を有し、各種アレルギー性 疾患あるいは自己免疫疾患の治療に使用される既存の免 疫抑制剤、ステロイド剤あるいは抗アレルギー剤などと は異なる作用機序を有することから、既存の前記薬剤と 併用した場合において相乗作用を示すことが期待でき る。本発明の化合物またはその医薬上許容しうる塩を医 葉として用いる場合、本発明化合物を製薬上許容しうる 剤、希釈剤、溶解補助剤など)と混合して得られる医薬 組成物あるいは製剤(錠剤、ビル剤、カフセル剤、駅粒 剤、散在、シロップ剤、エマルジョン剤、エリキシル 剂、壁稠剂、溶液剂、注射剂、点滴用剂、点眼剂、眼軟 膏剤、整剤、軟膏剤あるいはローション剤など)の形態 で経口的または非経口的に投与することができる。

【①①35】医薬組成物は通常の方法にしたがって製剤 化することができる。本明細書において非経口とは、皮 下注射、静脈內注射、筋肉內注射、腹腔内注射、点滴法 あるいは点眼法などを含むものである。注射用調剤、た 10 とえば無菌注射用水性懸濁物あるいは油性懸濁物は、適 当な分散化剤または湿化剤および懸濁化剤を用いて当該 分野で知られた方法で調製することができる。その無菌 注射用調剤は、たとえば水溶液などの非毒性の、非経口 投与することのできる希釈剤あるいは溶剤中の無菌の注 射できる溶液または懸濁液であってもよい。使用するこ とのできるベーヒクルあるいは溶剤として許されるもの としては、水、リンゲル液、等張食塩液などがあげられ る。さらに、通常溶剤または懸瀾化溶媒として無菌の不 揮発性袖を用いることができる。このためには、いかな 20 る不揮発性独も脂肪酸も使用でき、天然、台成あるいは 半合成の脂肪性油または脂肪酸、そして天然、合成ある いは半台成のモノ、ジあるいはトリグリセリド類も包含 される。注射剤とする場合は、必要により適当な疑例化 剤、非イオン性界面活性剤、溶解補助剤などを併用して もよい。直腸投与用の整剤は、その薬物と適当な非刺激 性の補形剤、たとえば、ココアバターやポリエチレング リコール類といった常温では固体であるが、腸管内の温 度では液体で、直腸内で融解し、薬物を放出するものな どと混合して製造することができる。経口投与用の固形 30 投与剤型としては、粉剤、顆粒剤、錠剤、ビル剤カブセ ル剤などの上記したものがあげられる。そのような剤型 において、活性成分化合物は少なくとも1つの添加物、 たとえばショ鑑、乳糖、セルロース鑑。マンニトール、 マルチトール。デキストラン、デンプン類、寒天。アル ギネート類、キチン類、キトサン類、ベクチン類。トラ ガントガム類、アラビアゴム類、ゼラチン類、コラーゲ ン類。カゼイン、アルブミン、合成または半合成のポリ マー類、またはグリセリド類と混合することができる。 そのような剤型物は、通常のように、さらなる添加物を 含むことができ、たとえば不活性希釈剤、マグネシウム ステアレートなどの滑沢剤、パラベン類、ソルビン類な どの保存剤、アルコルビン酸、αートコフェロール、シ ステインなどの抗酸化剤、崩解剤、結合剤、増鮎剤、経 衡剤、甘味付与剤、フレーバー付与剤、パーフェーム剤 などがあげられる。錠剤およびビル剤は、さらにエンテ リックコーティングされて製造することもできる。経口 投与用の液剤は、医薬として許容されるエマルジョン 剤。シロップ剤。エリキシル剤、懸濁剤、溶液剤などが

活性希釈剤、たとえば水などを含んでもよい。点眼剤と する場合は、水性液剤または水溶液が用いられ、特に無 菌の注射用水溶液があげられる。この点眼用液剤には緩 (資剤) 等張化剤 | 溶解補助剤、保存剤 | 粘稠剤 | キレー ト剤、p.H調整剤、芳香剤のような各種添加剤を適宜添 加してもよい。軟膏剤とする場合は、油脂性基剤、乳剤 性基剤、水溶性基剤、懸濁性基剤などが用いられ、溶解 - 吸収促進剤を適宜配合することもできる。ローション 剤とする場合は、液体媒体に分散または一部溶解させ、 乳化剤、溶解・吸収促造剤、粘稠化剤および安定化剤を 適宜配合することができる。

【0036】また、本発明の一般式(I)により表され る化合物またはその医薬上許容しうる塩は、免疫抑制 剤、ステロイド剤あるいは抗アレルギー剤と併用するこ。 とにより優れた治療上の効果を期待することができる。 ここで、「併用」とは、本発明化合物またはその医薬上 許容しうる塩と免疫抑制剤、ステロイド剤あるいは抗ア レルギー剤との併用組成物、および本発明化合物または その医薬上許容しうる塩を含む免疫抑制剤、ステロイド 剤あるいは抗アレルギー剤の作用増強剤としての使用を 意味し、複合せずに、同時に用いる場合あるいは時間差 を設けて用いる場合の両方を含み、組み合わせての使用 および併用を含むものである。上記一般式(1)により 表される化台物またはその医薬上許容しうる塩および免 疫抑制剤、ステロイド剤あるいは抗アレルギー剤とを併 用することを特徴とする本発明の医薬は、本発明一般式 (1) により表される化合物またはその医薬上許容しう る塩と免疫抑制剤、ステロイド剤あるいは抗アレルギー 割とを組み合わせて用いる限り、その使用形態は特に限 定されない。たとえば、(A) 一般式(!) で表される 化合物またはその医薬上許容しうる塩、および(B)先 疫抑制剤、ステロイト剤あるいは抗アレルギー剤とをそ れぞれ通常投与されるような製剤として配していてもよ いし、それらを予め合わせた組成物であってもよい。 本 発明の併用医薬としては、例えば、一般式(1)により 表される化台物またはその医薬上許容しうる塩と、免疫 抑制剤、ステロイド剤あるいは抗アレルギー剤とを、公 知の製剤学的製造法に進じ、所望により業学的に許容さ れ得る希釈剤、賦形剤などを用い、混合して一剤とする か、それぞれを別途、所望により薬学的に許容され得る 希釈剤、賦形剤などを用い善製剤とするか、またはそれ ぞれを別途製剤化したものを一つの容器に極包した組み 台わせ製剤(セット、キット、バック)としてもよい。 例えば、本発明の併用医薬は、(1)一般式(1)によ り表される化合物またはその医薬上許容しうる塩を含有 する製剤と、免疫抑制剤、ステロイド剤あるいは抗アレ ルギー剤の同一または別々の製剤が梱包された組み合わ せ製剤、または(2)一般式(1)により表される化台 物またはその医薬上許容しうる塩と、免疫抑制剤、ステ あげられ、それらは当該分野において通常用いられる不 50 ロイド剤あるいは抗アレルギー剤とを含有する組成物と

して用いることができる。

【① 037】本発明の併用医薬の投与経路としては、上 記した本発明化合物の医薬の投与経路と同じように、経 口投与、非経口投与のいずれであってもよく、具体的に は、対象とする疾患の部位などを考慮して決められる。 本発明化合物またはその医薬上許容しうる塩と免疫抑制 剤、ステロイド剤あるいは抗アレルギー剤とを別途製剤 化した場合、とれらは別々に、同時に、または時間差を おいて、同一対象に対して同一経路または異なった経路 で投与してもよい。本発明の併用医薬を投与するに除 し、本発明の化合物またはその医薬上許容しうる塩、あ るいは免疫抑制剤、ステロイド剤あるいは抗アレルギー 剤は、それぞれ上記と同じような常法によって、調製さ、 れた創形で投与できる。本発明の化合物またはその医薬 上許容しうる塩を医薬または併用医薬として用いる場 合、その投与量は、年齢、体重、一般的な健康状態、性 別、食事、投与時間、投与方法、緋港遠度、薬物の組み 台わせ、息者のその時に治療を行っている病状の程度に 応じ、あるいは、その他の妄因を考慮して決められる。 本発明化合物またはその医薬上許容しろる塩は、低毒性 20 で安全に使用することができ、その1日の投与量は、息 者の状態や体重。化合物の種類、投与経路などによって 異なるが、たとえば非経口的には、皮下、静脈内、筋肉 内または直腸内に、約0.01から100mg/人/ 日、好ましくはり、0.1から5.0mg/入/日殺与さ れ、また、経口的には約0.01から1000mg/人 **/日、好ましくは0.01から500mg/入/日投与** されることが好ましい。

【実施例】以下、本発明を原料台成例、実施例、実験例 により詳細に説明するが、本発明はこれらに限定される 30 ものではない。

【0038】原斜台成例1:5-アミノー2-(4-ヒ **ドロキシピペリジン-1-イル)ピリジン** [化21]

2-クロロー5-エトロビリジン(10g)、4-ヒド ロキシピペリジン(7.78)のジメチルホルムアミド (50mL) の溶液中にジイソプロビルエチルアミン (22mL)を加え110℃で2時間撹拌した。氷冷 後、水を加え術出した固体をろ取した。得られた固体、 メタノール (200mL)、ヒドラジン・1 水和物 (7.2g)、無水塩化第一鉄(0.2g)および活性 炭(2g)の壁濁液を60℃で2時間撹拌した。反応 後、セライトる過し、濃縮した。残渣をクロロホルム/ メタノール(4/1)で抽出し飽和食塩水で洗浄した。 硫酸マグネシウムで乾燥後、シリカゲルカラムクロマト グラフィー (クロロホルム/メタノール) に付し赤褐色 液体を得た (2.9 g)。

- 1.8 (2H, m), 2.75 -2.85 (2H, m), 3.55 - 3.65 (1 H, m), 3.7 = 3.8 (2H, m), 4.50 (2H, s), 4.61(1H, d. J = 4.4 Hz), 6.61 (1H, d, J = 8.8 Hz), 5.89 (1 H. dd. J = 8.8, 3.0 Hz), 7.57 (1H, d, J = 3.0 Hz). 【0039】原料台成例2:5-(1-シクロヘキセニ ル) チオフェン-2-カルボン酸 [ft22]

a) 1-(1-シクロヘキセニル)チオフェン [(t23]

氷冷したチオフェン (20g) のテトラヒドロフラン (200mL) 溶液中に、1.6規定Nープチルリチウ ム/ヘキサン溶液(182mL)を滴下した。 反応液を 0℃で0.5時間撹拌し-30℃に冷却後、シクロヘキ サノン (288)を適下し、-30℃~-15℃で1時 間撹拌した。反応液を4鍋定塩酸水溶液中に加え、有機 層をエーテル(ウ、5L)で抽出し、エーテル層を水、 飽和食塩水で洗浄した。硫酸マグネシウムで乾燥後濃縮 し淡褐色液体(48g)を得た。この液体(26g)中 に30%硫酸水溶液(150mL)を加え室温でり、5 時間撹拌した後、炭酸カリウムで溶液を中和し、 エーテ ルで抽出した。有機層を水、飽和食塩水で洗浄し硫酸マ グネシウムで乾燥し、濃縮後、淡褐色液体(228)を 得た。

*H_NNR (400 MHz, DMSO-da): 1.5 - 1.6 (2H, m), 1.65 - 1.7 (2H, m), 2.1 -2.2 (2H, m), 2.3 - 2.4 (2H, m), 6.95 - 6.15 (1H, m), 6.95 - 7.05 (2H, m), 7.15 - 7.35 (1H, m).

り)5-(1-シクロヘキセニル)チオフェンー2-カ ルボン酸 [(t24)

46 氷冷した1-(1-シクロヘキセニル)チオフェン(1 5g)のテトラヒドロフラン(200mL)溶液中に 1. 6規定N-ブチルリチウム/ヘキサン密液 (73m) L)を適下し、0℃で15分間撹拌し-60℃に冷却し た。ついでドライアイス(15g程度)を加え、同温度 で1時間撹拌した。反応液を1規定塩酸水溶液中にあ け、酢酸エチルで抽出した。有機圏を氷冷し10%炭酸 カリウム水溶液で溶液のpHを10とし水層を分離し た。水層を酢酸エチルで洗浄し再び冷却後、 4 規定塩酸 で水層のpHを2とし析出した固体を3取した。アセト ¹H-NMR(400 MHz, DMSO-d。): 1.3 - 1.4 (2H, m)、1.7 50 ン/水より再結晶を行い淡黄色結晶を得た。

(19)

37

*H-NMR (400 MHz, DMEO-d₆): 1.5 - 1.6 (2H, m), 1.65 - 1.75 (2H, m), 2.1 -2.2 (2H, m), 2.3 - 2.4 (2H, m), 6.3 - 6.4 (1H, m), 7.69 (1H, d, J = 3.9Hz), 7.59 (1H, d, J = 3.9 Hz), 12.95 (1H, brs).

[10040] 原料合成例3:4-(4-クロロフェニ

【() () 4 (() 】原料合成例3:4 - (4 - クロロフェンル) チアゾール-2 - カルボン酸 ナトリウム塩 【化25】

a) 4 - (4 - クロロフェニル) チアゾール <math>- 2 - カル 水ン酸 エチルエステル

[(£26]

4-クロロフェナシルプロミド (2.4g)、エチルチオオキサメート (1.35g)のエタノール溶液を2時間遠流した。溶媒を図去し残渣を酢酸エチルで抽出後、有機層を水、飽和食塩水で洗浄し硫酸マグネシウムで乾 20燥した。濃縮後、酢酸エチル/シイソプロピルエーテル/ヘキサンより新出化し淡黄色固体を得た (1.25g)

²H-NNR (400 MHz, DMSO-d₆): 1.36 (3H, t, J = 6.9 H z), 4.42 (2H, q, J = 6.9 Hz), 7.56 (2H, d, J = 8.8 Hz), 8.64 (2H, d, J = 8.8 Hz), 8.66 (1H, s), b) 4 - (4-クロロフェニル) チアゾールー2 - カルボン酸 ナトリウム塩

[(k27]

4-(4-クロロフェニル) チアゾール-2-カルボン酸 エチルエステル(1.25g).10 規定水酸化ナトリウム水溶液(1mL) およびエタノール(20mL)の溶液を2時間加熱湿流を行った後、ジイソプロビルエーテルを加え、析出した固体を3取した(1.27g)。

 1 H-NNR (400 MHz, DMSO-d_b): 7.48 (2H, d, J = 8.3 Hz), 8.00 (2H, d, J = 8.3 Hz), 8.06 (1H, s).

[0041]原斜台成例4:5-(4-クロロフェニル) オキサゾール-2-カルボン酸エチルエステル (化28)

a) 2-アミノ-4′-クロロアセトフェノン塩酸塩 【化29】

2-プロモー4 - クロロアセトフェノン(12.7g). フタルイミドカリウム(10.1g)のジメチルホルムアミド(50mL)溶液を空温で3時間損拌した。水を加え折出した固体をろ取し水洗した。得られた固体に酢酸(100mL) および塩酸(100mL)を加え15時間加熱環藻を行った。冷却後、溶媒を濃縮し、新出した固体をろ取し、クロロホルムで洗浄することによって淡黄色固体を得た(5.0g)。

³H-NAR (400 MHz, DMSO-d_s): 4.59 (2H, s), 7.68 (2H, d, J = 8.3 Hz), 8.05(2H, d, J = 8.3 Hz), 8.52 (2 H, s).

b) N-(4^{*}-クロロフェナシル) オキザミン酸エチルエステル

[(£30]

2-アミノー4'-クロロアセトフェノン塩酸塩(5.0g)、エチルクロロオキソアセテート(3.3g)のベンゼン(50mL) 懸濁液を15時間加熱最流した後、溶媒を図去し、水/アセトンより新出化し淡黄色固体を得た。

¹ H-NMR (400 MHz, DMSO-d₆): 1.30 (3H, t, J=6.8 Hz), 4.28 (2H, q, J=6.8 Hz), 4.70 (2H, d, J=5.8 Hz), 7.62 (2H, d, J=8.8 Hz), 8.03 (2H, d, J=8.8 Hz), 9.14 (1H, t, J=5.8 Hz).

c) 5-{4-クロロフェニル)オキサゾール-2-カルボン酸エチルエステル

【化31】

N-(4'-クロロフェナシル)オキサミン酸エチルエステル(3.6g)のペンゼン(20mL)溶液中にオ45 キシ塩化リン(6.2mL)を加え5時間加熱遺流を行った後、溶媒を留去した。 残渣をエーテル抽出し、有機層を水、飽和食塩水で洗浄し硫酸マグネシウムで乾燥した。溶媒を濃縮後、エーテル/ヘキサンより再結晶を行い淡赤色結晶を得た。

¹H-NNR (400 MHz, DMSO-d_s): 1.35 (3H, t, J = 7.3 Hz), 4.40 (2H, q, J = 7.3 Hz), 7.61 (2H, d, J = 8.7 Hz), 7.85 (2H, d, J = 8.7 Hz), 8.04 (1H, s).

【0042】原斜合成例5:5-(4-クロロフェニル)-3-エトキシカルボニル安息香酸

50 【化32】

(21)

10

a) ジメチル 5-(4-クロロフェニル)イソフタレー [(£33]

氷冷したジメチル 5-ヒドロキシイソフタレート() 0g)のピリジン(100mL)溶液中にトリフルオロ メタンスルホン酸無水物(8.8mL)を滴下し 1時間 鎖袢した後、溶媒を図去し酢酸エチルで抽出した。有機 層を水、飽和食塩水で洗浄し硫酸マグネシウムで乾燥、 濃縮し、淡褐色オイル(15g)を得た。 得られたオイ ル (5g)、4-クロロフェニルボロン酸(3.0g) のエタノール液(10mし)、2 M炭酸ナトリウム水溶 、 液 (1 8 m L) およびトルエン (3 0 m L) を窒素置換 20 した。得られた反応液にテトラキストリフェニルホスフ ィンパラジウム(1.7g)を加え3時間加熱還流を行 い、ついで水および酢酸エチルを加え抽出した。有機層 を水および飽和食塩水で洗浄し、硫酸マグネシウムで乾 燥した。濃縮後、シリカゲルカラムクロマトグラフィー (クロロホルム/ヘキサン)に付し淡黄色固体を得た (3.78).

"H-NKR (400 MHz, DM50-d₆): 3.93 (6H, s), 7.57 (2H, d, J = 8.3 Hz), 7.79(2H, d, J = 8.3 Hz), 8.39 (2) H. d. J = 1.4 Hz), 8.45 (1H, t, J = 1.4 Hz). b) 5 - (4 - クロロフェニル) - 3 - エトキシカルボ ニル安息香酸

【化34】

ジメチル 5-(4-クロロフェニル) イソフタレート (3.1g) のエタノール (30 mL)、テトラヒドロ フラン (1 5 m L) の溶液中に水酸化ナトリウム (0 . . 41g)の水溶液(1mL)を加えた。この溶液を室温 で15時間撹拌したのち、エーテルを加え析出固体をろ 取し、ろ取した固体に1規定塩酸を加え酢酸エテルで抽 出した。有機層を飽和食塩水で洗浄し硫酸マグネシウム で乾燥した。濃縮後、シリカゲルカラムクロマトグラフ ィー(クロロホルム/メタノール)に付し白色固体を得 た(2.48)。

 3 H-NMR (400 MHz, DMSO-d₆): 1.37 (3H, t, J = 7.3 H z), 4.39 (2H, q, J = 7.3 Hz), 7.57 (2H, d, J = 8.7Hz), 7.79 (2H, d, J = 8.7 Hz), 8.37 (1H, d, J = 1. 50 8 - 1.9 (2H, m), 2.85 - 2.95 (2H, m), 3.3 - 3.4 (2H, m), 3.3 - 3.4 (2H, m)

4 Hz), 8.39 (1H, d, J = 1.4 Hz), 8.47 (1H, s), 13. 50 (1H. brs).

【0043】実施例1:N-[3-シアノ-4-(4-ヒドロキシピペリジン・1 - イル) フェニル] - 4 - ヨ ードベンザミド

[(£35]

WO00/47558号公報に記載の5-アミノ-2-(4-ヒドロキシピペリジン-1-イル) ベンゾニトリ ル (5g) および4-ヨード安息香酸(6.3g)、1 -ヒドロキシベンゾトリアゾール 1水和物(HOBT: 3. 7g), 1-エチル-3-(3-ジメチルアミノブ ロビル) カルボジイミド塩酸塩 (WSC!:5.3g) およびジメチルホルムアミド(100mL)を加え室温 にて2日間鎖針した。反応液に水(200mL)を加え 析出固体をろ取し、得られた固体をアセトン/水より再 結晶し淡褐色結晶を得た(9.3g)。

3 H-NKR (400 KHz, DM50-d₆)δ:1.4 - 1.6 (2H, m), 1. 8 - 1.9 (2H, m), 2.85- 2.95 (2H, m), 3.3 - 3.4 (2 H. m), 3.6 - 3.7 (1H, m), 4.75 (1H, d, 3 = 3.9 H z), 7.19 (1H, d, J = 8.8 Hz), 7.74 (2H, d, J = 8.3Hz), 7.85 - 7.9 (1H, m), 7.93 (2H, d, J = 8.3 Hz), 8.08 (1H, d, J = 2.0 Hz), 10.41 (1H, s).

融点:176-180℃.

【0044】実施例2:4-(4-クロロフェニル)-N-[3-シアノ-4-(4-ヒドロキシピペリジン-30 <u>1</u> - イル〉フェニル] ベンザミド

[fb36]

実能例1で得られたN-[3-シアノ-4-(4-ヒド ロキシピペリジンー! -イル) フェニル] -4-ヨード ベンザミド(0.5g)、4-クロロフェニルボロン酸 (i). 27g). 2M炭酸ナトリウム水溶液(). 5m 46 L)およびジメチルホルムアミド(10mL)を窒素體 換した。得られた反応液にテトラキストリフェニルホス フィンパラジウム (0.66g) を加え80℃で15時 間撹拌した。反応後、水および酢酸エテルを加え独出し た。有機層を水および飽和食塩水で洗浄し、硫酸マグネ シウムで乾燥した。濃縮後、シリカグルカラムクロマト グラフィー (クロロホルム/メタノール) に付し、さら にアセトン/水より再結晶を行い淡黄色結晶を得た (0.18g).

"H-NNR (400 KHz, DM50-d₆)δ: 1.5 - 1.6 (2H, m), 1.

H, m), 3.6 - 3.7 (1H, m), 4.73 (1H, d, J = 4.4 H z), 7.21 (1H, d, J = 9.2 Hz), 7.57 (2H, d, J = 8.8 Hz), 7.81 (2H, d, J = 8.8 Hz), 7.86 (2H, d, J = 8.3 Hz), 7.93 (1H, dd, J = 2.5, 9.2 Hz), 8.66 (2H, d, J = 8.3 Hz), 8.13 (1H, d, J = 2.5 Hz), 19.42 (1H, brs).

融点:230-235℃、

[0045] 実施例3:N-[3-シアノ-4-(4-ヒドロキシピペリジン-1-イル) フェニル]-3-ヨードベンザミド

[fk37]

5-アミノー2-(4-ヒドロキシピペリジン-1-イル) ベンゾニトリル実施例1と同様な操作を行うことにより、淡黄色結晶を得た。

¹H-NMR (400 MHz, DMSO-d_c) δ : 1.5 - 1.6 (2H, m), 1. 85 - 1.95 (2H, m), 2.85 - 2.95 (2H, m), 3.3 - 3.4 20 (2H, m), 3.6 - 3.7 (1H, m), 4.70-4.75 (1H, m), 7.2 6 (1H, d, J = 8.7 Hz), 7.35 (1H, dd, J = 7.8, 7.8 Hz), 7.8 - 8.9 (3H, m), 8.05 - 8.1 (1H, m), 8.29 (1H, s), 10.42 (1H, s).

融点:178-182℃.

【0.04.6】実施例4:3-(4-)ロロフェニル)-N-[3-シアノー4-(4-)ヒドロキシピペリジン-1-イル)フェニル] ベンザミド

[(£38]

実縮例3で得られた化合物と4 - クロロフェニルボロン 酸を用いて実施例2 と同様な操作を行うことにより、白 色結晶を得た。

¹H-NMR (400 MHz, DMSO-d_c) δ : 1.55 - 1.65 (2H, m), 1.85 - 1.95 (2H, m), 2.85 - 2.95 (2H, m), 3.3 - 3. 4 (2H, m), 3.6 - 3.7 (1H, m), 4.74 (1H, d, J= 4.4 Hz), 7.22 (1H, d, J= 8.8 Hz), 7.58 (2H, d, J= 8. 40 3 Hz), 7.64 (1H, dd, J= 7.8, 7.8 Hz), 7.81 (2H, d, J= 8.3 Hz), 7.9 - 8.0 (3H, m), 8.11 (1H, d, J= 2.5 Hz), 8.22 (1H, s), 10.45 (1H, s).

融点:125-127℃.

[0047] 実能例5: N-[3-シアノ-4-(2, 2-ジメチル-3-ヒドロキシブロボキシ) フェニル] -4-ヨードベンザミド

[化39]

5-アミノー2-(2,2-ジメチル-3-ヒドロキシプロポキシ)ベンゾニトリルと4-ヨード安息香酸を用いて実施例1と同様な操作を行うことにより、白色結晶を得た。

¹H-NNR (400 MHz, $ONSO-d_{c}$) δ : 0.95 (6H, s), 3.31 (2 10 H, d, J = 5.4 Hz), 3.85 (2H, s), 4.69 (1H, τ , J = 5.4 Hz), 7.26 (1H, d, J = 9.2 Hz), 7.74 (2H,d, J = 8.3 Hz), 7.9 - 8.0 (3H, m), 8.08 (1H, d, J = 3.0 Hz), 10.41 (1H,s).

融点:128-130℃.

[0048]実施例6:4-(4-クロロフェニル)-N-[3-シアノ-4-(2, 2-ジメチル-3-ヒドロキシプロポキシ)フェニル]ベンザミド

【化40】

実施例5で得られた化合物と4-クロロフェニルボロン 酸を用いて実施例2と同様な操作を行うことにより、淡 黄色結晶を得た。

¹H-NNR (400 MHz, DMSO-d_b) δ : 0.97 (6H, s), 3.3 - 3.35 (2H, m), 3.86 (2H,s), 4.65 - 4.75 (1H, m), 7. 28 (1H, d, J = 9.3 Hz), 7.57 (2H, d, J = 8.3 Hz), 7.81 (2H, d, J = 8.8 Hz), 7.87 (2H, d, J = 8.3 Hz), 7.9 - 8.0 (1H,m), 8.07 (2H, d, J = 8.8 Hz), 8. 1 - 8.15 (1H, m), 10.43 (1H, s).

融点:185-187℃.

【0049】実施例7:N-[3-シアノ-4-(2, 2-ジメチル-3-ヒドロキシプロポキシ)フェニル] -3-ヨードベンザミド

[(t41]

5-アミノー2-(2,2-ジメチル-3-ヒドロキシ プロポキシ)ベンゾニトリルと3-ヨード安息香酸を用いて実施例1と同様な媒作を行うことにより、淡黄色箱 品を得た。

³ H-NNR (400 MHz, DMSO-d₆) δ : 0.96 (6H, s), 3.3 - 3.4 (2H, m), 3.85 (2H,s), 4.65 - 4.75 (1H, m), 7.2 - 7.4 (2H, m), 7.9 - 8.0 (3H, m), 8.08 (1H,d, J = 2.5 Hz), 8.30 (1H, s), 10.43 (1H, s).

50 融点:145-147℃.

【① 050】実施例8:3-(4-クロロフェニル)-ロキシプロポキシ) フェニル] ベンザミド [(k42]

実施例7 で得られた化合物と4 - クロロフェニルボロン 酸を用いて実施例2と同様な操作を行うことにより、淡(16)ピリジン-5-イル] フラン-2-カルボキサミド **昔色結晶を得た。**

 3 H-NMR (400 MHz, DMSO-d₆) δ : 0.97 (6H, s), 3.3 -3.4 (2H, m), 3.86 (2H,s), 4.65 - 4.75 (1H, m), 7.2 8 (1H, d, 3 = 8.8 Hz), 7.5 - 7.7 (3H, m), 7.82 (2) H_1 , d_1 , J = 7.4 Hz), 7.9 - 8.0 (3H, m), 8.11 (1H, s), 8.23 (1H, s), 10.46 (1H, s).

融点:140-142℃.

【0051】実施例9:5-(4-グロロフェニル)-N- (3-シアノ-4-(4-ヒドロキシピペリジン-1-イル) フェニル] フラン-2-カルボキサミド [(t43]

5-アミノー2- (2, 2-ジメチル-3-ヒドロキシ プロポキシ) ベンゾニトリルとちー(4-クロロフェニ ル) フランー2-カルボン酸を用いて実施例1と同様な 操作を行うことにより、淡黄色結晶を得た。

³H-NMR (400 MHz, DMSO-d₆): 1.55 - 1.65 (2H, m), 1. 30 【化46】 85 - 1.95 (2H, m), 2.85 - 2.95 (2H, m), 3.3 - 3.4 (2H, m), 3.6 - 3.7 (1H, m), 4.74 (1H, d, J = 3.9 H)z), 7.2 = 7.3 (2H, m), 7.40 (1H, d, J = 3.4 Hz), 7.58 (2H, d, J =8.3 Hz), 7.85 - 7.95 (1H, m), 8.01(2H, d, J = 8.3 Hz), 8.06 (1H, s), 10.31 (1H, s).融点:139-140℃,

【0052】実施例10:5- (4-クロロフェニル) -N-[3-シアノー4-(2, 2-ジメチル-3-E ドロキシブロポキシ)フェニル] フランー2-カルボキ サミド

[(k44)

5-アミノー2-(2、2-ジメチル-3-ヒドロキシ プロポキシ)ベンゾニトリルと5-(4-クロロフェニ ル) フラン-2-カルボン酸を用いて実施例1と同様な **機作を行うことにより、淡黄色結晶を得た。**

d, J = 5.4 Hz), 3.86(2H, s), $4.79(1H, \tau, J = 5.4)$ Hz), 7.25 (1H, d, J = 3.9 Hz), 7.29 (1H, d, J =9.3 Hz), 7.40 (1H, d, J = 3.9 Hz), 7.58 (2H, d, J = 8.8 Hz), 7.95(1H, dd,) = 9.3, 2.9 Hz), 8.01 (2)H, d, J = 8.8 Hz), 8.07 (1H, d, J = 2.9 Hz), 10.32(1H, s).

融点:155-157℃、

【①①53】実施例11:5-(4-グロロフェニル) -N- [2-(4-ヒドロキシピペリジン-l-イル) 【化45】

原料合成例1で得られた5-アミノー2-(4-ヒドロ キシピペリジン-1-イル)ピリジンと5-(4-クロ ロフェニル) フラン-2-カルボン酸を用いて実施例! と同様な操作を行うことにより淡黄色結晶を得た。

H-NNR (400 MHz, DMSO-d_s): 1.3 - 1.4 (2H, m), 1.65 - 1.75 (2H, m), 3.0 -3.1 (2H, m), 3.65 - 3.75 (1 H. m), 3.95 - 4.05 (2H. m), 4.69 (1H. s), 6.88 (1 H, d, J = 9.3 Hz), 7.22 (1H, d, J = 3.4 Hz), 7.34 (1H, d, 3 = 3.4 Hz), 7.57 (2H, d, 3 = 8.7 Hz), 7.83 (1H, dd, J = 9.3, 2.4 Hz), 8.61 (2H,d, J = 8.7 H)z), 8.40 (1H, d, J = 2.4 Hz), 19.12 (1H, s). 融点:187-190℃.

【0054】実施例12:5-(4-クロロフェニル) -N-[3-シアノー4-(4-モルホリノピベリジン - 1 - イル) フェニル] フラン-2-カルボキサミド

5-アミノー2-(4-モルポリノピペリジンー1-イ ル) ベンゾニトリルと5-(4-クロロフェニル)フラ ンー2-カルボン酸を用いて実施例1と同様な操作を行 うととにより、淡黄色結晶を得た。

³H-NMR (400 MHz, DMSO-d_e): 1.5 - 1.6 (2H, m), 1.85 - 1.95 (2H, m), 2.25- 2.35 (1H, m), 2.45 - 2.55 (4H, m), 2.75 = 2.85 (2H, m), 3.45 = 3.55 (2H, m),3.5 - 3.6 (4H, m), 7.21 (1H, d, 3 = 8.8 Hz), 7.25(1H, d, J = 3.9Hz), 7.40 (1H, d, J = 3.9 Hz), 7.58(2H, d, J = 8.8 Hz), 7.85 - 7.95 (1H, m), 8.00 (2)H, d, J = 8.8 Hz), 8.96 (1H, d, J = 2.5 Hz), 10.31 (1H, 5).

融点:214-216℃.

【0055】実施例13:5-(4-クロロフェニル) -N - [3-977-4-[4-(3,4,5,6-7³H-NNR(400 NHz,DMSO-d。):0.97(6H,s)、3.32(2H、 50 トラヒドロー2H-ピラン-4 -イル)ピペラジン-1

- イル] フェニル] フラン-2-カルボキザミド [(k47]

5-アミノー2- [4-(3, 4, 5, 6-テトラヒド ロー2H-ピラン-4 -イル)ピペラジン-1-イル] ベンゾニトリルと5ー(4ークロロフェニル)フランー 2-カルボン酸を用いて実施例1と同様な操作を行うこ 10 融点:187-189℃. とにより、淡黄色結晶を得た。

¹H-NNR (400 MHz, DM50-d₀): 1.35 - 1.45 (2H, m), 1. 7 - 1.8 (2H, m), 2.4 -2.5 (1H, m), 2.6 - 2.7 (4H, m), 3.95 - 3.15 (4H, m), 3.25 - 3.35 (2H, m), 3.85 -3.95 (2H, m), 7.20 (1H, d, J = 8.8 Hz), 7.24 (1 H. d, J = 3.4 Hz), 7.41 (1H, d, J = 3.4 Hz), 7.57 (2H, d, J = 8.8 Hz), 7.93 (1H, dd, J= 8.8, 2.5 H)z), 8.60 (2H, d, J = 8.8 Hz), 8.08 (1H, d, J = 2.5Hz), 10.32 (1H, 5).

融点:226-227℃,

【0056】実施例14:5-(4-クロロフェニル) -N-(3-シアノー4-ビベリジノフェニル) フラン -2-カルボキサミド

[化48]

5-アミノー2-ピペリジノベンゾニトリルと5-(4 ークロロフェニル) フラン・2ーカルボン酸を用いて実 30 融点:224-226℃. 施例1と同様な操作を行うことにより、淡黄色結晶を得 16.

 1 H-NMR (400 MHz, DMSO-d_e): 1.5 - 1.6 (2H, m), 1.65 - 1.75 (4H, m), 3.05- 3.19 (4H, m), 7.29 (1H, d, J = 8.8 Hz), 7.25 (1H, d, J = 3.4 Hz), 7.40(1H, d, J = 3.4 Hz, 7.58 (2H, d, J = 8.3 Hz), 7.91 (1H, dd, J = 2.5, 8.8 Hz), 8.01 (2H, d, J = 8.3 Hz), 8. 96 (1H, d, 3 = 2.5 Hz), 10.31 (1H, s).

融点:145-147℃. 【0057】実施例15:5- (4-クロロフェニル) -N - [3 -シアノー4 - (1, 4 -ジオキザー8 -ア ザスピロ [4、5] デカー8ーイル) フェニル] フラン -2-カルボキサミド

[(449]

[4、5] デカー8ーイル) ベンゾノトリルと5ー(4 - クロロフェニル)フラン - 2 - カルボン酸を用いて寒 施例1と同様な操作を行うことにより、淡費色結晶を得

"H-NKR (400 KHz, DM50-ds): 1.75 - 1.85 (4H, m), 3. 15 - 3.25 (4H, m), 3.93 (4H, s), 7.2 - 7.3 (2H, m), 7.41 (1H, d, J = 3.5 Hz), 7.58 (2H, d, J = 8.3) Hz), 7.9 - 7.95 (1H, m), 8.00 (2H, d, J = 8.3 Hz), 8.08 (1H, d, J = 2.4 Hz), 10.32 (1H, 5).

[0058]実施例16:5-(4-グロロー2-エト ロフェニル》-N-[3-シアノ-4-(4-ヒドロキ シビベリジンー1ーイル) フェニル] フランー2ーカル ボキサミド

[{{tb50}} CI NO2 OH O-OH

5-アミノー2-(4-ヒドロキシピペリジンー1-イ ル) ベンゾニトリルと5 - (4 - クロロー2 - ニトロフ ェニル} フランー2ーカルボン酸を用いて実施例1と同 **檬な操作を行うことにより、淡黄色結晶を得た。** H-NNR (400 MHz, DMSO-da): 1.5 - 1.6 (2H, m), 1.8 - 1.9 (2H, m), 2.85 -2.95 (2H, m), 3.3 - 3.4 (2H, m), 3.6 - 3.7 (1H, m), 4.72 (1H, d, 3 = 4.4Hz), 6. 99 (1H, d, 3 = 4.4 Hz), 7.19 (1H, d, 3 = 8.7 Hz), 7.45 (1H, d, 3=3.9 Hz), 7.8-8.05 (4H, m), 8.22 $(\underline{1}H, d, 3 = 1.9 Hz), \underline{10.32} (\underline{1}H, s).$

[0 0.5 9] 実施例17:5-ブロモ-N-[3-シア ノー4ー(4-ヒドロキシピペリジン-1-イル)フェ ニル]チオフェン-2-カルボキザミド [(£51]

5-アミノー2-(4-ヒドロキシピペリジン-1-イ 46 ル) ベンゾニトリルと5 - プロモチオフェン - 2 - カル ボン酸を用いて実施例1と同様な操作を行うことによ り、淡黄色結晶を得た。

H-NNR (400 MHz, DMSO-ds): 1.5 - 1.6 (2H, m), 1.8 - 1.9 (2H, m), 2.85 -2.95 (2H, m), 3.3 - 3.4 (2H, m), 3.6 - 3.7 (1H, m), 4.73 (1H, brs), 7.19(1H, d, J = 8.8 Hz), 7.37 (1H, d, J = 3.4 Hz), 7.75 - 7.8 5 (2H, m), 8.90 (1H, d, J = 2.5 Hz), 19.39 (1H, br)

【0060】実施例18:5-(4-クロロフェニル) 5-アミノー2-(1,4-ジオキサー8-アザスピロ SO -N-[3-シアノー4-(4-ヒドロキシピペリジン

48 CN ОН

47 - 1 - イル) フェニル] チオフェン- 2 - カルボキサミ ド 【化5 2】

実施例17で得た5-プロモーN-[3-シアノ-4-(4-ヒドロキシピペリジン-1-イル)フェニル]チオフェン-2-カルボキサミドと4-クロロフェニルボ 10ロン酸を用いて実施例2と同様な操作を行うことにより、淡黄色結晶を得た。

¹H-NMR (400 MHz, DMSO-d₄): 1.5 - 1.6 (2H, m), 1.85 - 1.95 (2H, m), 2.85- 2.95 (2H, m), 3.3 - 3.4 (2 H, m), 3.6 - 3.7 (1H, m), 4.74 (1H, d, J = 4.4 H z), 7.21 (1H, d, J = 9.3 Hz), 7.53 (2H, d, J = 8.1 Hz), 7.67 (1H, d, J = 3.9 Hz), 7.78 (2H, d, J = 8.1 Hz), 7.8 - 7.9 (1H, m), 7.99 (1H, d, J = 3.9 Hz), 8.9 - 8.1 (1H, m), 19.38 (1H, s).

融点:246-249℃.

【0061】実施例19:N-[3-シアノ-4-(4-ヒドロキシピベリジン-1-イル)フェニル]-5-(1-シクロヘキセニル)チオフェン-2-カルボキサミド

[ft53]

5-アミノ-2-(4-ヒドロキシピペリジン-1-イル) ベンゾニトリルと原料合成例2で得られた5-(1-シクロヘキセニル) チオフェン-2-カルボン酸を用いて実施例1と同様な操作を行うことにより、淡黄色結晶を得た。

¹H-NNR (400 MHz, DMSO-d_s): 1.5 - 1.6 (4H, m), 1.65 - 1.7 (2H, m), 1.8 -1.9 (2H, m), 2.1 - 2.2 (2H, m), 2.3 - 2.4 (2H, m), 2.8 - 2.9 (2H, m), 3.25 - 3.35 (2H, m), 3.6 - 3.7 (1H, m), 4.72 (1H, d, J = 4.4 Hz), 6.25 - 6.35 (1H, m), 7.12 (1H, d, J = 3.9 Hz), 7.17 (1H, d, J = 9.2 Hz), 7.8 - 7.9 (2H, m), 40 8.01 (1H, d, J = 2.5 Hz), 10.24 (1H, s).

融点:180-182℃.

 $[0\,0\,6\,2]$ 実施例 $2\,0:4-(4-)$ ロロフェニル) -N-[3-)アノー4-(4-)ドロキシピペリジン-1-4ル)フェニル] テアゾール-2-カルボキザミド

[(£54]

5-アミノー2-(4-ヒドロキシビベリジン-1-イル) ベンゾニトリルと原料合成例3で得られた4-(4-クロロフェニル) チアゾール-2-カルボン酸ナトリウム塩を用いて実施例1と同様な操作を行うことにより、淡黄色結晶を得た。

¹H-NMR (400 MHz, DMSO-d_c): 1.55 - 1.65 (2H, m), 1.85 - 1.95 (2H, m), 2.85 - 2.95 (2H, m), 3.3 - 3.4 (2H, m), 3.6 - 3.7 (1H, m), 4.75 (1H, d, J = 3.9 H z), 7.23 (1H, d, J = 9.3 Hz), 7.59 (2H, d, J = 8.3 Hz), 8.03 (1H, dd, J = 9.3, 2.9 Hz), 8.1 - 8.2 (3 H, m), 8.57 (1H, s), 10.77 (1H, s).

融点:104-107℃.

【0063】 実施例21:5-(4-クロロフェニル)
 N-[3-シアノ-4-(4-ヒドロキシピペリジン-1-イル) フェニル] オキサゾール-2-カルボキサ
 ミド

I(£55]

原料合成例4で得られた5-(4-クロロフェニル)オキサゾール-2-カルボン酸エチルエステル(2.0g). 水酸化ナトリウム(0.48g)および50%エタノール水溶液を1時間加熱環流した。溶媒を留去後、残渣を1規定塩酸で処理し黄土色固体(1.5g)を得た。この固体を60℃で原乾しそのまま次の反応に用いた。上記手法で得られた5-(4-クロロフェニル)オキサゾール-2-カルボン酸と5-アミノー2-(4-ヒドロキシピペリジン-1-イル)ベンゾニトリルを用い実能例1と同様な操作を行うことにより黄色結晶を得た。

¹H-NNR (400 MHz, DMSO-d_s): 1.55 - 1.6 (2H, m), 1.8 5 - 1.90 (2H, m), 2.85 - 2.95 (2H, m), 3.3 - 3.4 (2 H, m), 3.6 - 3.7 (1H, m), 4.73 (1H, d, J = 4.4 Hz), 7.21 (1H, d, J = 8.8 Hz), 7.62 (2H, d, J = 8.2 H z), 7.89 (2H, d, J = 8.2 Hz), 7.98 (1H, dd, J = 8.8, 2.4 Hz), 8.07 (1H, s), 8.11 (1H, d, J = 2.4 H z), 11.01 (1H, s).

. 融点:193-195℃。

【0064】実施例22:3-(4-クロロフェニル) -N-[3-シアノ-4-(4-ヒドロキシピペリジン -1-イル) フェニル]-5-エトキシカルボニルベン ザミド

[(156]

20

СООЕ! ⁴⁹ СN СН СТИОН

5-アミノー2-(4-ヒドロキシピペリジン-1-イル)ベンゾニトリルと原料合成例5で得られた5-(4-クロロフェニル)-3-エトキシカルボニル安息香酸を用いて実施例1と同様な操作を行うことにより、淡黄色結晶を得た。

*H-NMR (400 MHz, DMSO-d₆): 1.38 (3H, d, J = 7.3 H 10 z), 1.55 - 1.65 (2H, m), 1.85 - 1.95 (2H, m), 2.85 - 2.95 (2H, m), 3.3 - 3.4 (2H, m), 3.6 - 3.7(1H, m), 4.35 - 4.45 (2H, m), 4.74 (1H, d, J = 3.9 Hz), 7.21 (1H, d, J = 8.8 Hz), 7.60 (2H, d, J = 8.3 Hz), 7.84 (2H, d, J = 8.3 Hz), 7.85 - 7.95 (1H, m), 8.10 (1H, d, J = 2.4 Hz), 8.34 (1H, s), 8.46 (1H, s), 8.49 (1H, s), 10.60 (1H, s).

【① 0 6 5 】実施例2 3 : 3 - (4 - クロロフェニル) -5 - [[3 - シアノー4 - (4 - ヒドロキシピペリジ ン-1-イル) フェニル] アミノカルボニル] 安息香酸 20 【化5 7】

実施例22で得られた3-(4-クロロフェニル)-N-[3-シアノ-4-(4-ヒドロキシピペリジン-1-イル)フェニル]-5-エトキシカルボニルベンザミド(1g)のエタノール溶液中に2規定水酸化ナトリウム水溶液(5mil)を加え室温で3時間撹拌した。次い-30で溶媒を図去し、1規定塩酸で中和後、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥し溶媒を図去した。N-メチルピロリドン/水より再結晶を行い褐色結晶を得た(0.32g)。

¹H-NMR (400 MHz, DMSO-d_a): 1.55 - 1.65 (2H, m), 1.85 - 1.95 (2H, m), 2.85 - 2.95 (2H, m), 3.3 - 3.4 (2H, m), 3.6 - 3.7 (1H, m), 4.74 (1H, brs), 7.22 (1H, d, J = 8.8 Hz), 7.60 (2H, d, J = 8.8 Hz), 7.84 (2H, d, J = 8.8Hz), 7.9 - 7.95 (1H, m), 8.11 (1H, d, J = 2.5 Hz), 8.36 (1H, s), 8.44 (1H, s), 8.52 (1H, s), 10.62 (1H, s).

融点:120-125℃

[0066] 実施例24:5-プロモ-N-[3-シア ノ-4-(4-ヒドロキシピペリジン-1-イル) フェニル] ニコチンアミド

[1L58]

5-アミノー2-(4-ヒドロキシピペリジン-1-イ 50

ル)ベンゾニトリルと5-プロモニコチン酸を用いて実 施例 1 と同様な操作を行うことにより、淡黄色固体を定 置的に得た。

*H-NNR(400 MHz,DMSO-d。): 1.5 - 1.6 (2H, m), 1.8 - 1.9 (2H, m), 2.8 - 2.9 (2H, m), 3.3 - 3.4 (2H, m), 3.6 - 3.7 (1H, m), 4.75 (1H, brs), 7.19 (1H, d, J = 8.7 Hz), 7.84 (1H, d, J = 8.8 Hz), 8.05 (1H, s), 8.51 (1H, s), 8.89 (1H, s), 9.04 (1H, s).

[① 0 6 7] 実施例25:5-(4-クロロフェニル)-N-[3-シアノ-4-(4-ヒドロキシピペリジン-1-イル)フェニル]ニュチンアミド塩酸塩

実施例24で得られた化合物と4ークロロフェニルボロン酸を用いて実施例2と同様な手法により行った。得られた租生成物は、4規定塩酸/ジオキサンを加え塩酸塩としNーメチルー2ーピロリドン/エーテル/水より結晶化を行い淡黄色結晶を得た。

¹H-NNR (400 MHz, DMSO-d_a): 1.5 - 1.6 (2H, m), 1.8 - 1.9 (2H, m), 2.85 -2.95 (2H, m), 3.25 - 3.35 (2 H, m), 3.6 - 3.7 (1H, m), 4.34 (1H, s), 7.22(1H, d, J = 8.8 Hz), 7.63 (2H, d, J = 8.8 Hz), 7.9 - 8.0 (3H, m), 8.13(1H, d, J = 2.4 Hz), 8.73 (1H, s), 9.13 (1H, d, J = 1.9 Hz), 9.15 (1H, d, J = 1.9 Hz), 10.83 (1H, s).

融点:195-200℃.

[化59]

 [0068] 実施例26:6-プロモーN-[3-シア ノー4-(4-ヒドロキシビペリジン-1-イル)フェニル] ピリジン-2-カルボキサミド 【化60】

5-アミノー2-(4-ヒドロキシビベリジン-1-イル) ベンゾニトリルと6-ブロモビリジン-2-カルボン酸を用いて実施例1と同様な操作を行うことにより、 49 後黄色アモルファスを得た。

³ H-NNR (400 MHz, DMSO-d_a): 1.55 - 1.6 (2H, m), 1.8 - 1.9 (2H, m), 2.85 -2.95 (2H, m), 3.3 - 3.4 (2H, m), 3.6 - 3.7 (1H, m), 4.73 (1H, d, J = 4.4 Hz), 7.20 (1H, d, J = 8.8 Hz), 7.9 - 8.35 (5H, m), 10.5 9 (1H, s).

[0069] 実施例27:6-(4-クロロフェニル) -N-[3-シアノ-4-(4-ヒドロキシピペリジン-1-イル) フェニル] ビリジン-2-カルボキサミド 【化61】

実施例26で得られた化合物と4-クロロフェニルボロ ン酸を用いて実施例2と同様な操作を行うことにより。 淡黄色アモルファスを得た。

³ H-NKR (400 KHz, DMSO-d_s): 1.55 - 1.65 (2H, m), 1. 85 - 1.95 (2H, m), 2.85 - 2.95 (2H, m), 3.3 - 3.4 (2H, m), 3.6 - 3.7 (1H, m), 4.75 (1H, d, 3 = 4.4 H 10 z), 7.23 (1H, d, 3 = 8.8 Hz), 7.61 (2H, d, 3 = 8.3 Hz), 8.05 - 8.35 (5H, m), 8.43 (2H, d, 3 = 8.3 Hz), 10.62 (1H, s).

融点:98-100℃.

[0070] 実施例28: N-[3-シアノ-4-(4--ヒドロキシピペリジン-1-イル) フェニル]-4-シクロヘキシルベンザミド

[(£62]

5-アミノ-2-(4-ヒドロキシピペリジン-1-イル)ベンゾニトリルと4-シクロヘキシル安息香酸を用いて実施例1と同様な操作を行うことにより、白色結晶を得た。

*H_NKR (400 MHz, DMSO-d,) 8:1.2 - 1.85 (14H, m), 2.5 - 2.6 (1H, m), 2.8- 2.9 (2H, m), 3.25 - 3.35 * 製剤処方例1

本発明化合物	
乳糖	1
微結晶セルロース	
軽質無水ケイ酸	
ステアリン酸マグネシウム	

本発明の化台物30g、乳鑑328.8gおよび敞箱晶セルロース82.2gを混合する。混合物をローラーコンパクターを用いて圧縮成形し、フレーク状圧縮物を得る。ハンマーミルを用い、フレーク状圧縮物を紛砕し、粉砕品を20メッシュ篩を用いて篩過する。篩過品に軽質無水ケイ酸4.5gおよびステアリン酸マグネシウム4.5gを加え、混合した。混合品を直径7.5mmの臼杵を用いて打錠し、一錠重置150mgの錠剤3000錠を得る。

[0073]以下、実験例により本発明の効果を詳述する。

実験例1:マイトーゲンあるいは抗原で刺激されたマウスT細胞からのIL-4および!FN-7産生に対する 抑制作用

* (2H, m), 3.6 - 3.7 (1H, m), 4.72 (1H, d, J = 4.4 H z), 7.17 (1H, d, J = 9.3 Hz), 7.36 (2H, d, J = 7.8 Hz), 7.8 - 7.9(3H, m), 8.69 (1H, d, J = 2.4 Hz), 19.26 (1H, s).

融点:218-220℃

[0071] 実施例29:N-[3-シアノ-4-(4-ヒドロキシピペリジン-1-イル) フェニル]-4-(1-ピロロ) ベンザミド 【化63】

5-アミノー2-(4-ヒドロキシピペリジン-1-イル) ベンゾニトリルと4-(1-ピロロ) 安息香酸を用いて実施例1と同様な操作を行うことにより、白色結晶を得た。

*H-NAR (400 MHz, DMSD-d₆)8: 1.5 - 1.6 (2H, m), 1.8 - 1.9 (2H, m), 2.85- 2.9 (2H, m), 3.3 - 3.4 (2H, 20 m), 3.5 - 3.7 (1H, m), 4.72 (1H, d, J = 3.9 Hz), 6.31 (2H, dd, J = 2.0, 1.9 Hz), 7.19 (1H, d, J = 9.3 Hz), 7.52 (2H, dd, J = 2.0, 1.9 Hz), 7.76 (2H, d, J = 8.7 Hz), 7.90 (1H, dd, J = 9.3, 2.9 Hz), 8.04 (2H, d, J = 8.8 Hz), 8.11 (1H, d, J = 2.5 Hz), 10.35 (1H, s).

融点:236-238℃.

[0072]

(m 8) 10.0 109.6 27.4 1.5

150.0(1錠)

本発明の化合物の存在下でマウス脾臓 T細胞を培養し、マイトーゲンとしてこのncanavalin A (Con A)を添加して活性化した際に、培養上清中40 に産生される I L - 4 および I F N - r を、特異抗体を用いた酵素抗体法によって定置することによって、本発明の化合物の I L - 4 および I F N - r 産生に対する作用を評価した。以下にその実験方法を述べる。6~12 週齢の雄性 B A L B / c マウスから脾臓を 原菌的に 橋出し、10%の熱不活化ウン胎児血清 (F C S)を添加した R P M I 1640 培地 (シグマ性製)中でピンセットを使用してほぐし、低張処理によって赤血球を除去した後に、R P M I 1640 培地で3回洗浄することによって、脾細胞の単一細胞浮遊液を調製した。なお、F 50 C S は、あらかじめ56でで30 分間の熱不活化処理を

したものを使用し、RPMI 1640培地には、10 mmo!/Lの2-[4-{2-ヒドロキシエチル}-1 - ビベラジニル]エタンスルホン酸(HEPES). 6 θ μ g / m L の硫酸カナマイシンおよび 1 θ 万単位/ mしのペニシリンGカリウムを添加して使用した。脾細 胞を2.5×10° c個/ウェルで48穴プレートに添 加し、本発明の化台物を0.0001~10μmo!/ L の各濃度で添加し、10μg/mLのCon A (タイプ [Ⅴ] シグマ社製)の存在下、CO₂ インキュ ベータを使用して37℃、5%CO2-95%空気の条 16 が示唆された。 件下で2.4時間培養した。なお、各ウェルの最終容置は 1. 0 m L とした。培養終了後に、培養上清を回収し て、IL-4およびIFN-7の定量に使用した。なお 培養上清は、定量に使用するまでの期間−20℃で保存 した。培養上清中の I L - 4 および I F N - γ を定置は 以下の方法で実施した。96穴マイクロテストプレート に、l μg/mLのラット抗マウス!L-4モノクロ ーナル抗体 (ファーミンジェン社製) あるいはラット抗 マウスIFN-ヶモノクローナル抗体(ファーミンジェ ン社製)を50 μL/ウェルで添加し、4℃で一晩篩 置した。 洗浄液で3回洗浄した後、ブロックエース(大 日本製業株式会社)を200 μL/ウェルで添加し、 室温で2時間静置することによってブロッキングを行っ た。洗浄液で3回洗浄した後、培養上清サンプルを50 μL/ウェルで添加し、4°Cで一晩静置した。洗浄液で 4回洗浄した後、1 µg/mしのビオチン標識ラット 抗マウス!L-4モノクローナル抗体(ファーミンジェ ン社製)あるいはビオチン標識ラット航マウスIFNγモノクローナル抗体 (ファーミンジェン社製) を50 **ルレノウェルで添加し、室温で 1 時間静置した。洗浄液 30** で6回洗浄した後、アビジンーペルオキシダーゼを50 μし/ウェルで添加し室温で40分間辞遺し、さらに、 6回洗浄した後、基質である0-フェニレンジアミンおよ ひ過酸化水素を添加して発色させた。 1420 マルチラ ベルカウンター(ファルマシア・バイオテク社製)を使 用して、各ウェルの490 nmにおける吸光度を測定 した。標準サンプルとしてリコンピナントマウスIL-4 (ファーミンジェン社製) またはリコンピナントマ ウスIFN-ァ(ファーミンジェン社製)を使用して、 標準曲線から各培養上清中の「L-4あるいはIFNγの 濃度を定置した。 本発明の化合物の Ι L - 4 ある いはIFN-ヶ産生に対する抑制作用については、用置 反応曲線をもとにした非線形回帰によって,50%抑制 濃度 (ICs。) を求めた。その結果、本発明化台物 はIL-4産生に対して0.0001から0.01 A mol/Lmol/Lの濃度範囲で強力な抑制作用を示し た。一方、iFN-γ産生に対する抑制作用は、IL-

4 産生に対する抑制作用の 1 / 10~1/1000と弱 く、本発明の化合物は「し-4 産生に対して選択的な抑 制作用を示すことが見出された。また、BALB/cマ ウス由来の脾臓T細胞を、卵白アルブミンを抗原として 用いて活性化した際に誘導される!L-4産生、および マウスTh2細胞株、D10.G4.1細胞を、本細胞 の特異抗原であるコンアルブミンで刺激した際に誘導さ れる I L - 4 産生に対しても、上述と同様の方法で評価 した結果、本発明の化合物は強力な抑制作用を示すこと

【① ①74】実験例2 :卵白アルブミン誘発マウス二相 性耳浮腫に対する作用

卵白アルブミン10mg(シグマ社製)および1mgの 水酸化アルミニウムゲルをふくむ生理食塩水()。 5 m.) を6~7週齢の雄性BALB/cマウス (日本チャール スリバー株式会社)の腹腔内に、2週間間隔で2回免疫 した。その1週間後に、卵白アルブミン10μgをマウ スの耳介部に皮下注射してチャレンジすることによっ て、チャレンジの1時間後および24時間後に二峰性の 20 浮騰を伴う二組性耳浮胆を誘発させた。本発明の化合物 またはその医薬上許容しろる塩は、0.5%ヒドロキシ プロビルメチルセルロースに懸瀾または溶解させて、 0.01~100mg/kg体重の用量で、経口ゾンデ を用いて、初回免疫日から3週間反復経口投与した。 本 モデルにおいて、マウスの耳介の厚さを、ダイアル式ゲ ージを使用して測定し、耳浮腫の指標とした。耳介の厚 さについては、各群(n=5~10)どとに平均値およ 7)標準誤差で表し、媒体のみを投与した群を対照とし て、ダネット法で統計解析し、p値が0. 05以下の場 台、有意であると判定した。本発明の化台物またはその 医薬上許容しろる塩は、上記インビボ試験において、 1~100mg/kg体重の反復経□投与で、チャ レンジの1時間後の即時相および24時間後の遅発相の 双方の浮瞳の誘導を、媒体のみを投与した対照群に比べ て、有意かつ用量依存的に抑制し、Th2細胞が関与す

実験例3:壽性試験

本発明化合物100mg/kgを雄性のSDラットおよ び雄性のBALB/cマウスに14日間反復経口殺与し たが、死亡例はみられなかった。

るアレルギー反応を抑制することが示唆された。

100751

【発明の効果】上記実験例から明らかなように、本発明 の化合物は、抗原で感作されたTh2細胞からのIL-4 産生を選択的に抑制する作用をすることから、アレル ギー性疾患の予防または治療剤として有用である。ま た。各種自己免疫性疾患の予防または治療剤としても有 用である。

フロントページの続き

(51) Int .Cl .'	識別記号		FI					ĵ-	・マユート・	(参考)
A61K			A 6 1 K	31/452	5			Á	4 C 0	86
	31/4535			3 <u>1</u> /453	5			4	4 C 2	06
	31/454			31/454	ļ			4	4 H ()	06
	31/4545			31/454	5					
	45/06			45/06				-		
A61P	11/02		A61P	11/62						
	17/60			17/00						
-	37/98			37/08						
	43/00 1.1.1			43/00			1 1 1			
C07D	211/46		C07D	211/46						
	307/68			307/68						
	401/12			401/12						
	405/12			405/12						
	495/14			405/14						
	407/12			407/12						
	409/12			409/12						
	413/12			413/12						
	417/12			417/12	_				•	
	491/113			491/11	3					
	et Table Traffe		Fターム((会全)	4 C037	EGA93	•			
(72)芫明省	處子鸙 正彦 埼玉県入間市小谷田三丁目7番25号	ሰ	1 2 1-1	••	40050		BB07	CC17	EE01	FF01
	ルファイド株式会社創業研究所内	, ~				6601				
(77) This at	尾下 浩一				40054			DD91	EE01	FF24
(72)完明有		ウェ			40053	AA01	AA03	BB09	CC19	CC12
	ルファイド株式会社創薬研究所内	•				CC52	CC52	CC75	CC78	CC92
(四) 齊阳老	片岡 裕敏					DD04	0010	DD12	DD75	EE01
(12)36-31-12	埼玉県入間市小谷田三丁目7番25号	ウェ			40084	AA19	NA 02	K452	NAO5	NA14
	ルファイド株式会社創薬研究所内					ZA34	ZA89	Z813		
(72)発明者					40086	AA01	AA02	AA 03	BA03	BC21
(14),73,74		ウェ				CBZZ	GA02	GA04	GA07	GA08
	ルファイド株式会社創薬研究所内					GA09	GA10	GA12	MA01	MA02
						NA52	NAO5	NA14	ZA34	ZA89
						ZB 13				
					4C206					
									NA13	
	• •								NA14	ZA34
							Z813			
					4H006	AA01	AAQ3	; AB20)	