Chapter 6

Association Analysis: Advanced Concepts

Association Analysis: Advanced Concepts

- The association rule mining formulation in Ch.5 assumes that
 - The input data consists of binary attributes called items
 - The presence of an item in a transaction is also assumed to be more important than its absence াধ্যাইনাই চিন্দি ইসাইন্ট্র
 - As a result, an item is treated as an *asymmetric binary attribute* and only frequent patterns are considered interesting
- This chapter extends the formulation to data sets with
 - Categorical attributes
 - Continuous attributes
 - A concept of hierarchy 相社
 - Sequences

Handling Categorical Attributes

Handling Categorical Attributes

- There are many data that contain categorical attributes
 - (ex) Internet survey data with categorical attributes

Gender	Level of Education	State	Computer at Home	Chat Online	Shop Online	Privacy Concerns
Female	Graduate	Illinois	Yes	Yes	Yes	Yes
Male	College	California	No	No	No	No
Male	Graduate	Michigan	Yes	Yes	Yes	Yes
Female	College	Virginia	No	No	Yes	Yes
Female	Graduate	California	Yes	No	No	Yes

- Using association analysis, we may uncover interesting rules
 - (ex) $\{\text{Shop Online} = \text{Yes}\} \rightarrow \{\text{Privacy Concerns} = \text{Yes}\}\$

Transformation of Categorical Attributes

- To extract such patterns, we must transform the categorical attributes into "items" first
 - So that existing association rule mining algorithms can be applied সাদহ আন দ্বৰুগায়ুয়াণ বিষয়ে বিৰোধ কৰিব কৰিব সাদহ কৰিব সাদহ আন কৰিব কৰিব সাদহ কৰিব সা
- We create a new item for each distinct attribute-value pair
 - (ex) Internet survey data after transformation

Male	Female	Education = Graduate ¹	Education = College		Privacy = Yes	Privacy = No	
0	1	1	0		1	0	
1	0	0	1		0	1	
1	0	1	0		1	0	
0	1	0	1		1	0	
0	1	1	0		1	0	

Several Issues to Consider (1/3)

1. Some attribute values may *not* be frequent

- They are not enough to be part of a frequent pattern
- **Solution 1**: group related attribute values into a small number of categories
 - Many state names → Midwest, Pacific Northwest, Southwest, East Cost
- Solution 2: aggregate the less frequent values into a single category
 - Many small state names → Others

Several Issues to Consider (2/3)

2. Some attribute values may be too frequent আ পাল্য মান্ত্র

— For example, if 85% of the survey participants own a home computer, we may potentially generate many redundant patterns পেন্দ্রেশ্যা

```
{Computer at Home = Yes, Shop Online = Yes} → {Privacy Concerns = Yes} 
{..., Computer at Home = Yes, ...} → {...}
```

- Because the high-frequency items correspond to the typical values of an attribute, they *seldom* carry any new information
- Solution: remove such items before applying association analysis
 - It may be more useful to better understand the pattern

Several Issues to Consider (3/3)

Candidate 2015 TCH

3. There can be many *meaningless* candidate itemsets

- For example, we do not have to generate a candidate itemset such as $\{State = X, State = Y, ...\}$ because its support count is 0
- Solution: Avoid generating candidate itemsets that contain more than one item from the *same* attribute

```
{..., Education = Graduate, Education = College, ...} → {...} (X)

{..., Privacy = Yes, Privacy = No, ...} → {...} (X)

X1→V1

(a,b,C)

(a,b,C)

X1→V2

(a,b,C)

X1→V2

X1→V2

SHUDLES X1
```

Handling Continuous Attributes

Handling Continuous Attributes

- There are many data that contain *continuous* attributes
 - (ex) Internet survey data with continuous attributes

Gender	 Age	Annual Income	No. of Hours Spent Online per Week	No. of Email Accounts	Privacy Concern
Female	 26	90K	20	4	Yes
Male	 51	135K	10	2	No
Male	 29	80K	10	3	Yes
Female	 45	120K	15	3	Yes
Female	 31	95K	20	5	Yes
	 	/ valuentidy of	 0 M		

馬松水之子tem是吃气门差升告针出了

- Mining continuous attributes may reveal *useful insights*
 - (ex) {Annual Income > 120K)} \rightarrow {Age \in [45, 60)}
 - (ex) {Email Accounts > 3, Hours Spent Online > 15} \rightarrow {Privacy = Yes}

Discretization-Based Methods

(१९१६ value ३)

पलय क्षार पर नि

- Group the adjacent values of a continuous attribute into a finite number of intervals → থকা হৈ ৪৮০০০০ হয়ঃ
 - (ex) Age \rightarrow Age \in [12, 16), Age \in [16, 20), ..., Age \in [56, 60)
- We can use any of the discretization techniques described before
 - Equal interval width, equal frequency, or clustering
 - (ex) Internet survey data after transformation

273 79% निष्द्रमा पेन्य?!

+ 2012 to to total
contidence?
4nppote 1

* 29% SKJ SKJ SKHI
Confidence J
Lupport 1

I								
Male	Female		Age < 13	Age ∈ [13, 21)	Age ∈ [21, 30)		Privacy = Yes	Privacy = No
0	1		0	0	1		1	0
1	0		0	0	0		0	1
1	0		0	0	1		1	0
0	1		0	0	0		1	0
0	1		0	0	0		1	0

- A **key** parameter in attribute discretization
- This parameter is typically provided by the users
 - Equal interval width approach \rightarrow the interval width
 - Equal frequency approach \rightarrow the number of transactions per interval
 - Clustering-based approach → the number of desired clusters

Difficulty in Determining the Interval Width

(2992,27112) 1117

Age Group	Chat Online = Yes	Chat Online = No
[12, 16)	12	13
[16, 20)	11	2
[20, 24)	11	3
[24, 28)	12	13
[28, 32)	14	12
[32, 36)	15	12
[36, 40)	16	14
[40, 44)	16	14
[44, 48)	4	10 Gupport: Myll
[48, 52)	5	11 confidence:
[52, 56)	5	10
[56, 60)	4	11

- There are **two** strong rules (assume minsup = 5%, minconf = 65%)
 - R_1 : Age \in [16, 24) \rightarrow Chat Online = Yes (s = 8.8%, c = 81.5%) R_2 : Age \in [44, 60) \rightarrow Chat Online = No (s = 16.8%, c = 70.5%)

Issues with the Interval Width (1/3)

1. If the interval is too wide

We may lose some patterns because of their lack of confidence

Example

- If the interval width is 24 years, R_1 and R_2 are replaced by follows rules:

$$R_1$$
': Age \in [12, 36) \rightarrow Chat Online = Yes (s = 30%, c = 57.7%)

$$R_2$$
': Age \in [36, 60) \rightarrow Chat Online = No (s = 28%, c = 58.3%)

- Despite their higher supports, their confidences drop below minconf
- As a result, both patterns are lost after discretization

Issues with the Interval Width (2/3)

2. If the interval is too *narrow*

- We may lose some patterns because of their lack of support
 - → Winsup 光知中川 失姑

Example

– If the interval width is 4 years, R_1 is broken up into the following two rules:

$$R_{11}$$
: Age \in [16, 20) \rightarrow Chat Online = Yes ($\mathbf{s} = 4.4\%$, $\mathbf{c} = 84.6\%$)

$$R_{12}$$
: Age \in [20, 24) \rightarrow Chat Online = Yes (s = 4.4%, c = 78.6%)

- Since their supports are less than minsup, R_1 is lost after discretization
- Similarly, R_2 , which is broken up into four subrules, will also be lost because the support of each subrule is less than minsup

Issues with the Interval Width (3/3)

なと

निम् प्रभार्त्र राष्ट्रिय रहि महिन प्रदेश

3. If the interval width is 8 years

 $-R_2$ is broken into the following two subrules:

MACH

$$R_{21}$$
: Age \in [44, 52) \rightarrow Chat Online = No (s = 8.4%, c = 70%)

$$R_{22}$$
: Age \in [52, 60) \rightarrow Chat Online = No (s = 8.4%, c = 70%)

- R_{21} and R_{22} have sufficient support and confidence
 - Thus, we can recover R_2 by aggregating the two subrules

•

- Meanwhile, R_1 is broken into the following two subrules:

hupport (0)
confidence (x)

$$R_{11}$$
: Age \in [12, 20) \rightarrow Chat Online = Yes (s = 9.2%, c = 60.5%)

$$R_{12}$$
: Age \in [20, 28) \rightarrow Chat Online = Yes (s = 9.2%, c = 60.0%)

- R_{11} and R_{12} fail the confidence threshold
 - Thus, we cannot recover R_1 by aggregating the two subrules

Handling a Concept Hierarchy

Handling a Concept Hierarchy

A concept hierarchy

- A multilevel organization of the various entities or concepts defined in a particular domain
- (ex) an item taxonomy in market basket analysis
 - e.g., milk is a kind of food, DVD is a kind of home electronics

Advantages of Using Concept Hierarchies

1. Items at the lower levels of a hierarchy may **not** have enough support to appear in any frequent itemset

```
> minsupol 49 252+!
```

Examples

- Although the sale of {AC adaptors} and {docking stations} may be low,
 the sale of {laptop accessories} may be high
- Also, rules involving high-level categories may have lower confidence than ones generated using low-level categories
- ✓ Unless the concept hierarchy is used, there is a potential to miss interesting patterns at *different levels* of categories

Advantages of Using Concept Hierarchies

जिटासाथ,

2. Rules found at the lower levels tend to be *overly specific* and may not be as interesting as rules at the higher levels

Examples

- Staple items such as milk and bread tend to produce many low-level rules
- (ex) {skim milk} → {wheat bread}, {2% milk} → {wheat bread},
 {skim milk} → {white bread}, {2% milk} → {white bread}
- ✓ Using a concept hierarchy, they can be summarized into a single rule
 - (ex) $\{\text{milk}\} \rightarrow \{\text{bread}\}$

Advantages of Using Concept Hierarchies

- - Because such rules may not be of any practical use

Example

- The rule {electronics} \rightarrow {food} may satisfy *minsup* and *minconf*
- However, it is not informative because it overgeneralizes the situation
- ✓ If $\{milk, DVD\}$ are the only items sold together frequently, then we may find $\{milk\}$ \rightarrow $\{DVD\}$ using a concept hierarchy

Extending Standard Association Analysis

```
代記刊告生物x,で川の日生物か
```

• We can extend standard association analysis to incorporate concept hierarchies in the following way:

```
3, 9,446E 46 th ...
```

- Basic strategy
 - Replace each transaction t with its extended transaction t'
 - t' contains all the items in t along with their corresponding **ancestors**
- ors पुनु
 - (ex) $t = \{DVD, wheat\} \rightarrow t' = \{DVD, wheat, home, electronics, bread, food\}$
 - Then apply existing algorithms to the database of extended transactions
 - Such as Apriori and FP-growth
- Such an approach would find rules that span different levels of the concept hierarchy

Limitations of This Extension (1/2)

- 1. Items at the higher levels tend to have higher support counts than those at the lower levels
 - As a result, if *minsup* is set too high, then *only* patterns involving the high-level items are extracted দুখুমুনামান্ত দুখ
 - On the other hand, if minsup is set too low, then the algorithm generates far too many patterns and becomes computationally inefficient

나 너무자칼하는 rule 까지 발전

느셨는 데이터가 집집 귀짐..

- 2. Introduction of a concept hierarchy tends to *increase* the computation time of association analysis algorithms
 - Because of the larger number of items and wider transactions
 - The number of candidate patterns and frequent patterns may also grow exponentially with wider transactions

Limitations of This Extension (2/2)

3. Using a concept hierarchy may produce *redundant* rules

— A rule $X \to Y$ is redundant if there exists a more general rule $X \to Y$, where X' and Y' are the **ancestors** of X and Y, respectively લ શુષ્ટ્રપુરા માદ્રા

- Example
 - Suppose we have the rule {bread} → {milk}
 - Then {white bread} \rightarrow {2% milk}, {wheat bread} \rightarrow {2% milk}, {white bread} \rightarrow {skim milk}, and {wheat bread} \rightarrow {skim milk} are all redundant
 - Because they can be summarized by {bread} → {milk}
 - An itemset such as {skim milk, milk, food} is also redundant
 - Because food and milk are ancestors of skim milk

Fortunately, it is easy to eliminate such redundant rules during frequent itemset generation

• (ex) eliminate a frequent itemset $\{X, Y\}$ if there is a frequent itemset $\{X', Y'\}$

Sequential Patterns

Sequential Patterns (1/2)

- Market basket data often contains temporal information about when an item was purchased by customers
 - (ex) the sequence of transactions made by a customer
 - <{Wine, Wallet} {Lego} {Gift card, Flower}...>
- Similarly, event-based data have an inherent sequential nature
 - (ex) data collected from scientific experiments or the monitoring of physical systems, such as telecommunication networks and computer networks, and wireless sensor networks
 - <...{Low Pressure}...{Heavy Cloud}...{Rain}...>
- However, association rules so far emphasize only "co-occurrence" relationships and disregard the sequential information of the data
 - (ex) {Diapers, Milk} vs. <{Diaper} {Milk}>

Sequential Patterns (2/2)

 The latter information may be valuable for identifying recurring features of a dynamic system or predicting future occurrences of certain events

 SID
 Sequence

 1
 $\langle \{a,b\}, \{c\}, \{f,g\}, \{g\}, \{e\} \rangle$ with support $\geq 60\%$

 2
 $\langle \{a,d\}, \{c\}, \{b\}, \{a,b,e,f\} \rangle$ $\langle \{b\}, \{f,g\} \rangle$

 3
 $\langle \{a\}, \{b\}, \{f,g\}, \{e\} \}$ $\langle \{a\}, \{e\} \rangle$

 4
 $\langle \{b\}, \{f,g\} \rangle$

Winimum Confidencez & !!

 This section presents the basic concept of sequential patterns and an algorithm developed to discover them

FlORENT MINSUP

Preliminaries

- Input: a sequence data set
 - Each row records the occurrences of events with an object at a given time
 - The **timestamp** information enables a different style of association analysis

Object	Timestamp	Events
Α	10	2, 3, 5
Α	20	1, 6
Α	23	1
В	11	4, 5, 6
В	17	2
В	21	1, 2, 7, 8
С	14	1, 6
С	28	1, 7, 8

નાતિક ગુકૂકા જમા હૃટ ક્રમહુક વ્યયુ

A:
$$\{2,3,5\}\{1,6\}\{1\}$$

B:
$$\{4,5,6\}\{2\}\{1,2,7,8\}$$
>

preprocessing
$$C: <\{1,6\}\{1,7,8\}>$$

sequence data set

- Output: association patterns of events that commonly occur in a sequential order across objects
 - (ex)<{6}{1}> (i.e., event 6 is followed by event 1)
 - Such a pattern cannot be inferred using the traditional association analysis

Sequences (1/2)

- A sequence can be denoted as $s = \langle e_1 e_2 e_3 \dots e_n \rangle$
 - $-e_j = \{i_1, i_2, ..., i_k\}$: a collection of one or more **events** (items)
- Examples of sequences
 - Sequence of web pages viewed by a web site visitor
 - (ex) <{Homepage} {Electronics} {Cameras} {Shopping Cart}...>
 - Sequence of events leading to the nuclear accident
 - (ex) < {clogged resin} {outlet valve closure} {loss of feedwater}, ...>
 - Sequence of classes taken by a software major student in each semester
 - (ex) <{Algorithm, OS} {DB, CA} {Network, SE} {Graphics, Mining}, ...>

Sequences (2/2)

k-sequence

- A sequence that contains k events (items)
- Examples
 - 2-sequences: $\{a,b\}>$, $\{a\}\{b\}>$
 - 3-sequences: $\{a,b\}\{c\}>$, $\{a\}\{b\}\{c\}>$, $\{a\}\{b,c\}>$

Examples of sequence data

Sequence Database	Sequence	Element (Transaction)	Event (Item)
Customer	Purchase history of a given customer	A set of items bought by a customer at time t	Books, diary products, CDs, etc
Web Data	Browsing activity of a particular Web visitor	The collection of files viewed by a Web visitor after a single mouse click	Home page, index page, contact info, etc
Event data	History of events generated by a given sensor	Events triggered by a sensor at time t	Types of alarms generated by sensors
Genome sequences	DNA sequence of a particular species	An element of the DNA sequence	Bases A,T,G,C

Subsequences

क्रिम्म्

- A sequence $t = \langle t_1 t_2 ... t_m \rangle$ is a **subsequence** of $s = \langle s_1 s_2 ... s_n \rangle$
- If there exist $1 \le j_1 < j_2 < \ldots < j_m \le n$ such that $t_1 \subseteq s_{j_1}, t_2 \subseteq s_{j_2}, ..., t_m \subseteq s_{j_m}$
 - In other words, t can be derived from s by simply deleting some events from elements in s or even deleting some elements in s completely
 - If t is a subsequence of s, then we say that t is contained in s
 - Examples

らとのけからいりるをつかれたれ?

Sequence s	Sequence t	Is t a subsequence of s ?
\(\{2,4\}\{3,5,6\}\{8\}\)	({2}{3,6}{8}) もりまっと	Hohotot Yes
({2,4}{3,5,6}{8})	({2}{8})	Yes
({1,2}{3,4}) _ めわりとかる	<u> </u> ({1}{2})	No
({2,4}{2,4}{2,5})	({2}{4})	Yes

Sequential Pattern Discovery

- Let D be a data set that contains one or more data sequences
 - Data sequence: an ordered list of elements associated with a single object
 - (ex) the data set shown below contains five data sequences

Object	Timestamp	Events
Α	1	1, 2, 4
Α	2	2, 3
Α	3	5
В	1	1, 2
В	2	2, 3, 4
С	1	1, 2
С	2	2, 3, 4
С	3	2, 4, 5
D	1	2
D	2	3, 4
D	3	4, 5
E	1	1, 3
E	2	2, 4, 5

A:
$$<\{1,2,4\} \{2,3\} \{5\}>$$
B: $<\{1,2\} \{2,3,4\}>$
C: $<\{1,2\} \{2,3,4\} \{2,4,5\}>$
D: $<\{2\} \{3,4\} \{4,5\}>$
E: $<\{1,3\} \{2,4,5\}>$

5 data sequences

- - The fraction of all data sequences that contain s
 - (ex) the support of $<\{1\}\{2\}> = 4/5 = 80\%$

Problem Definition

Given a sequence data set D and a user-specified minimum support threshold minsup, find **all** sequences with support $\geq minsup$

• Example (minsup = 50%)

Sequence data set *D*:

A: <{1,2,4} {2,3} {5}> B: <{1,2} {2,3,4}> C: <{1,2} {2,3,4} {2,4,5}> D: <{2} {3,4} {4,5}> E: <{1,3} {2,4,5}>

Examples of Sequential Patterns:

Challenges in Sequential Pattern Discovery

- The set of all possible sequences is exponentially large and difficult to enumerate
 - (ex) a collection of n events can result in the following examples of 1sequences, 2-sequences, and 3-sequences:

	1-sequences:	$\left\langle i_{1} ight angle ,\left\langle i_{2} ight angle ,\ldots ,\left\langle i_{n} ight angle$
	2-sequences:	$\left\langle \left\{ i_{1},i_{2}\right\} \right angle ,\left\langle \left\{ i_{1},i_{3}\right\} \right angle ,\ldots ,\left\langle \left\{ i_{n-1},i_{n}\right\} ight angle ,\ldots$
		$\left\langle \left\{ i_{1}\right\} \left\{ i_{1}\right\} \right angle ,\left\langle \left\{ i_{1}\right\} \left\{ i_{2}\right\} \right angle ,\ldots ,\left\langle \left\{ i_{n}\right\} \left\{ i_{n}\right\} \right angle $
	3-sequences:	$\left\langle \left\{ i_{1},i_{2},i_{3}\right\} \right angle ,\left\langle \left\{ i_{1},i_{2},i_{4}\right\} \right angle ,\ldots ,\left\langle \left\{ i_{n-2},i_{n-1},i_{n}\right\} \right angle ,\ldots$
0 5%		$\langle \{\underline{i_1}\}\{\underline{i_1},i_2\} angle , \langle \{i_1\}\{i_1,i_3\} angle , \ldots, \langle \{i_{n-1}\}\{i_{n-1},i_n\} angle , \ldots$
0 5H	भयनेत्र ग्रामिहर्भ	$\left\langle \{i_1,i_2\}\{i_2\} \right angle, \left\langle \{i_1,i_2\}\{i_3\} ight angle, \ldots, \left\langle \{i_{n-1},i_n\}\{i_n\} ight angle, \ldots$
	sequence	$\left\langle \left\{ i_{1}\right\} \left\{ i_{1}\right\} \left\langle i_{1}\right\} \left\{ i_{1}\right\} \left\{ i_{2}\right\} \right\rangle ,\ldots,\left\langle \left\{ i_{n}\right\} \left\{ i_{n}\right\} \left\langle i_{n}\right\} \right\rangle$
ا جا	H40560FB!	

- The number of candidate sequences is even substantially larger than the number of candidate itemsets
 - Which makes their enumeration difficult

Reasons for Additional Candidates (1/2)

- 1. An item can appear at most once in an itemset, but an event can appear *more than once* in a sequence
 - (ex) Given two items i_1 and i_2
 - Candidate 2-itemsets: $\{i_1,i_2\}$ (only one)
 - Candidate 2-sequences: $<\{i_1\}\{i_1\}>$, $<\{i_1\}\{i_2\}>$, $<\{i_2\}\{i_1\}>$, $<\{i_2\}\{i_2\}>$, $<\{i_1,i_2\}>$
- 2. Order *matters* in sequence, but not for itemsets
 - (ex) Given two items i_1 and i_2
 - $\{i_1,i_2\}$ and $\{i_2,i_1\}$ are the same itemset
 - $\{i_1\}\{i_2\}$ >, $\{i_2\}\{i_1\}$ >, and $\{i_1,i_2\}$ > are different sequences, and thus must be generated separately

Reasons for Additional Candidates (2/2)

- 3. For n items, the number of possible itemsets is $(2^n 1)$, whereas the number of possible sequences are *infinite*
 - (ex) comparing the number of itemsets with the number of sequences generated using two events (items)

1-subsequences:

2-subsequences:

3-subsequences:

•

Apriori Principle for Sequential Data

• Despite these challenges, the **Apriori principle** still holds $\frac{3}{2}$

- If a sequence is frequent, all of its subsequences must also be frequent
- (ex) if $\langle a \rangle \langle b \rangle$ is frequent, then $\langle a \rangle$ and $\langle b \rangle$ must be frequent

Thus, it is possible to generate candidate k-sequences from the frequent (k-1)-sequences using the Apriori principle

 This allows us to extract sequential patterns from a sequence data set using an *Apriori-like* algorithm

 $\frac{4a_1b_1c_1}{5a_1b_1c_1d_1} \rightarrow \frac{5a_1b_1c_1d_1}{6a_1b_1d_1}$ (% EHM) = 50++1

Apriori-Like Algorithm for Sequential Data

- Initially, find all frequent 1-subsequences, F_1 % ଧରମ ମଧ୍ୟ ଲେ ଲେ କଥା ଥିଏ
 - $(ex)F_1 = \{ <\{a\}>, <\{b\}>, <\{c\}>, <\{d\}>, ... \}$
- Next, iteratively perform the following for $k=2,3,\ldots$ শাধ্যাৰ প্ৰচাল
 - **1.** Generate candidate k-sequences C_k from frequent (k-1)-sequences F_{k-1}
 - **2.** Prune candidates in C_k whose (k-1)-subsequences are infrequent
 - **3.** Determine F_k by making an additional pass over the data set and counting the supports of the remaining candidates in C_k
- 4. Terminate if $F_k = \emptyset$ $\{\{a\}, \{b\}, \{c\}\}\}$ $\{\{a\}, \{a\}\}\}$ $\{\{a\}, \{a\}\}\}$ $\{\{a\}, \{a\}\}\}$ $\{\{a\}, \{a\}\}\}$
 - ✓ Notice that the structure of the algorithm is almost *identical* to Apriori algorithm for frequent itemset discovery

Candidate Generation

• We generate candidate k-sequences by merging a pair of frequent (k-1)-sequences

- (ex)
$$<$$
{1}{2}{3}>+ $<$ {2}{3}{4}>= $<$ {1}{2}{3}{4}>

- Although this approach is similar to the $F_{k-1} \times F_{k-1}$ strategy for generating candidate itemsets, there are certain **differences**:
 - ① We can merge a (k-1)-sequence with *itself* to produce a k-sequence
 - $(ex) < \{a\} > + < \{a\} > = < \{a\} \{a\} >$
 - ② Although we still use the lexicographical order for arranging events within an element, the arrangement of elements in a sequence may not follow the lexicographical order
 - (ex) <{b,c} {a} {d}> (O), <{c,b} {a} {d}> (X) ধ্রুম্বর্ধ প্র
 - (ex) $\{a\}\{b\}\{c\} > (O), \{c\}\{b\}\{a\} > (O)$ transition the alphabet sorting (o)

Sequence Merging Procedure (1/2)

K-1

• Let s_1 and s_2 be two sequences

- We arrange the events within every elements *lexicographically*
- (ex) <{a, b}, {b, c, d}> (O), <{b, a}, {c, d, b}> (X) → 5৸ भीनेष्रिः!

• We merge s_1 and s_2 only if

- Let s'_1 be the subsequence obtained by dropping the **first event** in s_1
- Let s'_2 be the subsequence obtained by dropping the *last event* in s_2
- We merge s_1 with s_2 only if $s'_1 = s'_2$

Examples (oding \$ t + \$ k > 10 + 5 t ...!

$$- <{1}{2}{3}>+<{2}{3}{4}>=<{1}{2}{3}{4}>$$

$$- <\{1\} \underbrace{\{5\} \{3\}}_{S'_1} > + < \underbrace{\{5\} \{3,4\}}_{S'_2} > = <\{1\} \{5\} \{3,4\}>$$

Sequence Merging Procedure (2/2)

- How can we merge s_1 with s_2 to obtain the merged sequence?
- Case 1: If the last element of s_2 has only one event
 - Append the last element of s_2 to the end of s_1

- (ex)
$$<\{1\}\{2\}\{3\}>+<\{2\}\{3\}\{4\}>=<\{1\}\{2\}\{3\}\{4\}>$$
 From sequence a philot transition of the events of the events of the events.

- Case 2: If the last element of s_2 has more than one event
 - Append the last event from the last element of s_2 to the last element of s_1

- (ex)
$$<\{1\}\{5\}\{3\}>+<\{5\}\{3,4\}>=<\{1\}\{5\}\{3,4\}>$$

Analysis of the Merging Procedure (1/2)

TEST frequent by 722

- The sequence merging procedure is complete
 - i.e., it generate *every* frequent k-sequences
 - This is because every frequent k-sequences s includes
 - A frequent (k-1)-sequence s_1 that does not contain the last event of s_1
 - A frequent (k-1)-sequence s_2 that does not contain the first event of s_2
 - Since s_1 and s_2 are frequent and follow the criteria for merging sequences, they will be merged to produce every frequent k-sequences s

$$\begin{array}{c|c} & s_1 & s_2 & s_3 \\ \hline & s_1 & s_2 & s_2 \\ \hline & s_1 & s_2 & s_2 \\ \hline & s_1 & s_2 & s_2 \\ \hline & s_2 & s_2 & s_3 \end{array}$$

Analysis of the Merging Procedure (2/2)

- The sequence merging procedure is non-redundant
 - i.e., it does not generate duplicate candidate sequences
 - Because the sequence merging procedure ensures that there is a *unique* way of generating s only by merging s_1 and s_2
 - Examples

- <{1}{2,5}>+<{2,5}{3}>=<{1}{2,5}{3}> (allowed) ✓ ০০৮ খেল দেল।
- $<\{1\}\{2\}\{3\}>+<\{1\}\{2,5\}>=<\{1\}\{2,5\}\{3\}>$ (not allowed)
- In other words, $<\{1\}\{2,5\}\{3\}>$ is generated *only* by merging $<\{1\}\{2,5\}>$ and $<\{2,5\}\{3\}>$

```
(andidate = bt== pruning= btack)
```

```
    ○ くら2,53,533)
    ○ くいい(5),(3)>
    ○ くいい(2),(3)>
    ○ くいい(2,5)7
```

Candidate Pruning

• We prune a candidate k-sequence if at least one of its (k-1)sequence is *infrequent*

Example

- $<\{1\}\{2\}\{3\}\{4\}>$ can be eliminated because $<\{1\}\{2\}\{4\}>$ is infrequent
- $<\{1\}\{2,5\}\{3\}>$ survives because all of its 3-sequences are frequent

Support Counting

- During support counting
 - We identify all candidate k-sequences belonging to a particular data sequence and increment their support counts
- After performing this step for each data sequence
 - We identify the frequent k-sequences and discard all candidate sequences whose support < minsup

$$<\{1,2,5\} \{2,3\} \{5\} > \mathsf{officient}$$

$$<\{1,2,5\} \{2,3,5\} > \mathsf{officient}$$

$$<\{1,2\} \{2,3,4\} \{3,4,5\} > \mathsf{officient}$$

$$<\{1,2\} \{2,3,4\} \{3,4,5\} > \mathsf{officient}$$

$$<\{1,2\} \{2,3,4\} \{3,4,5\} > \mathsf{officient}$$

$$<\{1,3\} \{2,4,5\} > \mathsf{officient}$$

Sequence data set

Candidate 3-sequences