UNIVERSITAS CAROLINA

FACULTAS MATHEMATICAE PHYSICAEQUE DISCIPLINAE

STUDIJNÍ PLÁNY Matematicko-fyzikální fakulty 2020/2021

Obsah

Úvodní slovo	5
Průběh studia	6
Průběžná kontrola studia	7
Zápis do ročníku a zápis předmětů	8
Zkoušky a zápočty	9
Státní závěrečná zkouška	9
Výuka jazyků	. 10
Tělesná výchova	
Péče o studenty se speciálními potřebami	. 10
Několik rad závěrem	. 11
Podrobný harmonogram akademického roku 2020/2021	. 13
Přehled bakalářských studijních programů na MFF UK	. 17
Garanti studijních programů	. 18
Přehled navazujících magisterských studijních programů na MFF UK	. 19
Garanti studijních programů	. 20
Studijní plány oblasti vzdělávání MATEMATIKA	. 21
Bakalářské studium od akad. roku 2019/20	. 21
1. Základní informace	. 21
Studijní programy bakalářského studia	. 21
Všeobecné zásady studia	. 22
2. Studijní plány jednotlivých programů	. 24
2.1 Obecná matematika	. 24
2.2 Finanční matematika	. 36
2.3 Matematika pro informační technologie	. 41
2.4 Matematické modelování	. 45
Navazující magisterské studium od akademického roku $2020/21$. 51
1. Základní informace	
Studijní programy nav. magisterského studia v oblasti vzdělávání	
Matematika	. 51
Všeobecné zásady studia	. 51
2. Studijní plány jednotlivých programů	. 53
2.1 Matematické struktury	. 53
2.2 Matematika pro informační technologie	. 57
2.3 Matematická analýza	. 62
2.4 Numerická a výpočtová matematika	. 66
2.5 Matematické modelování ve fyzice a technice	. 70
2.6 Pravděpodobnost, matematická statistika a ekonometrie	. 74
2.7 Finanční a pojistná matematika	. 79
Studijní plány oblasti vzdělávání FYZIKA	
Bakalářské studium od akad. roku 2019/20	. 83
1. Základní informace	. 83
2. Studijní plán	. 84

Navazující magisterské studium od akademického roku $2020/21$	96
1. Základní informace	96
Studijní programy nav. magisterského studia v oblasti vzdělávání Fyzika	96
2. Studijní plány jednotlivých programů	96
1. Astronomie a astrofyzika	96
2. Geofyzika a fyzika planet	102
3. Fyzika atmosféry, meteorologie a klimatologie	
4. Teoretická fyzika	
5. Fyzika kondenzovaných soustav a materiálů	
6. Optika a optoelektronika	
7. Fyzika povrchů a plazmatu	
8. Biofyzika a chemická fyzika	
Specializace: Experimentální biofyzika a chemická fyzika	
Specializace: Teoretická biofyzika a chemická fyzika	
9. Částicová a jaderná fyzika	
10. Matematické a počítačové modelování ve fyzice	
Studijní plány oblasti vzdělávání INFORMATIKA	
Bakalářské studium od akad. roku 2019/20	
1. Základní informace	
2. Studijní plány jednotlivých specializací	
1. Obecná informatika	
2. Programování a vývoj software	
3. Systémové programování	
4. Databáze a web	
5. Umělá inteligence	
6. Počítačová grafika, vidění a vývoj her	
Navazující magisterské studium od akademického roku 2020/21	
1. Základní informace	
2. Studijní plány jednotlivých programů	
1. Informatika - Diskrétní modely a algoritmy	
2. Informatika - Teoretická informatika	
3. Informatika - Softwarové a datové inženýrství	
4. Informatika - Softwarové systémy	
5. Informatika - Jazykové technologie a počítačová lingvistika	
6. Informatika - Umělá inteligence	
7. Informatika – Vizuální výpočty a vývoj počítačových her	
Studijní plány oblasti vzdělávání UČITELSTVÍ	
Bakalářské studium od akad. roku 2019/20	
1. Základní informace	
2. Studijní plány jednotlivých studijních programů	
1. Fyzika se zaměřením na vzdělávání	
2. Matematika se zaměřením na vzdělávání	
3. Deskriptivní geometrie se zaměřením na vzdělávání	
4. Informatika se zaměřením na vzdělávání	
Navazující magisterské studium od akademického roku 2020/21	
1. Základní informace	
2. Studijní plány jednotlivých studijních programů	
- Soughing planty journey on soughing programme	

1.	Učitelství fyziky pro střední školy	265
2.	Učitelství matematiky pro střední školy	270
3.	Učitelství deskriptivní geometrie pro střední školy	274
4.	Učitelství informatiky pro střední školy	277

Úvodní slovo

Vážené studentky a vážení studenti,

tato publikace, nazývaná též Oranžová Karolinka, slouží jako aktuální a důkladný průvodce bakalářskými a na ně navazujícími magisterskými studijními programy, které nabízí Matematicko-fyzikální fakulta Univerzity Karlovy. Publikace je každoročně aktualizována a obsahuje podrobné informace o studijních plánech těchto studijních programů. Další, detailnější, informace o jednotlivých předmětech naleznete ve Studijním informačním systému.

V letošním roce se tato publikace vrací do své obvyklé formy. Na rozdíl od předchozího roku v ní opět naleznete společně bakalářské a navazující magisterské studijní programy. To je důsledkem toho, že v akademickém roce 2020/2021 už budou v obou stupních vyučovány nové programy, akreditované v rámci institucionální akreditace, kterou Univerzita Karlova získala jako první vysoká škola v České republice na jaře roku 2018. Studenti, kteří ještě studují v dobíhajících studijních oborech podle dříve platných akreditací, naleznou informace o svém studiu ve starších Oranžových Karolinkách nebo na webových stránkách fakulty. Pro ně tato publikace určena není.

Hlavním a také nejvíce viditelným rozdílem mezi starými a novými studijními programy je jejich počet. Ten nejvíce vzrostl v oblasti vzdělávání MATEMATIKA, kde se jednotný bakalářský studijní program rozdělil na čtyři nezávislé nově akreditované studijní programy. Stejně narostl i počet programů v oblasti vzdělávání UČITELSTVÍ, kde nyní máme také čtyři studijní programy. Celkem je tedy v akademickém roce 2020/2021 možné na MFF studovat v deseti bakalářských a dvaceti osmi navazujících magisterských programech. Každé oblasti vzdělávání je věnována jedna kapitola této publikace.

Studium každého studenta je řízeno studijními a dalšími předpisy. Z hlediska průběhu studia jsou nejdůležitější dva předpisy, a to **Studijní a zkušební řád UK** a **Pravidla pro organizaci studia na MFF UK**; odkazy na tyto dokumenty najdete na fakultní webové stránce http://www.mff.cuni.cz/fakulta/predpisy/studijni.htm. Na stejném místě jsou i ostatní předpisy důležité pro úspěšný průběh studia, jako např. Stipendijní řád nebo Disciplinární řád pro studenty.

Průběh studia

Bakalářské studijní programy akreditované na MFF mají standardní dobu studia 3 roky a navazující magisterské studijní programy akreditované na MFF mají standardní dobu studia 2 roky. Standardní doba studia je doba, za kterou je možno studijní program zdárně vystudovat při studiu podle doporučených studijních plánů. Doporučený průběh studia je pro každý program vypracován tak, aby na sebe povinné předměty navazovaly, aby studenti získali každý rok kredity potřebné pro zápis do dalšího roku studia a aby včas splnili podmínky pro přihlášení ke státní zkoušce. Doporučený průběh studia je podporován také při tvorbě celofakultního rozvrhu.

Studium je ukončeno státní závěrečnou zkouškou a její úspěšné složení vede k získání titulu bakalář (Bc.) v bakalářských studijních programech a k získání titulu magistr (Mgr.) v magisterských studijních programech. Pokud standardní dobu studia přesáhnete o více než jeden rok, jste povinni hradit fakultě tzv. poplatek za delší studium, jehož výše je určena Přílohou č. 2 Statutu UK Poplatky spojené se studiem. Maximální doba studia v bakalářských studijních programech je 6 let a v magisterských studijních programech 5 let; pokud během této doby nesložíte státní záverečnou zkoušku, bude vám studium ukončeno.

Studium je členěno do tzv. úseků studia, což jsou většinou ročníky (v bakalářských studijních programech v prvním roce studia semestry). Studium ve studijním programu se řídí studijním plánem příslušného studijního programu, případně specializace, pokud studijní program specializace obsahuje. Studijní plán určuje, které předměty jsou povinné (ty je třeba v každém případě před státní závěrečnou zkouškou úspěšně absolvovat), které předměty jsou povinně volitelné (těch je třeba úspěšně absolvovat tolik, abyste získali předepsaný počet kreditů), které jsou volitelné, jaké jsou mezi předměty časové návaznosti, a dále požadavky ke státní zkoušce. Na konci každého úseku studia probíhá tzv. průběžná kontrola studia, při které se ověřuje, zda výsledky vašeho dosavadního studia umožňují zápis do dalšího úseku studia. Pokud jste letos nastoupili ke studiu v nějakém bakalářském studijním programu, první průběžná kontrola vás čeká již po konci zkouškového období po prvním semestru (viz Podrobný harmonogram ak. roku).

Výuka předmětů probíhá v českém nebo anglickém jazyce. V programech, které nabízejí ucelenou výuku v angličtině, jsou povinné předměty vyučovány anglicky každý rok, povinně volitelné předměty alespoň jednou za dva roky. I studenti českých studijních programů by během svého studia měli absolvovat jeden nebo více předmětů v angličtině, aby se lépe připravili na nároky globálního pracovního trhu.

Pokud student během svého bakalářského studia absolvuje nad rámec svých povinností některý z povinných nebo povinně volitelných předmětů magisterského studia, může později v navazujícím magisterském studiu požádat děkana o uznání kreditů za splnění této povinnosti. Přesné podmínky pro uznávání těchto kreditů se řídí čl. 12 Pravidel pro organizaci studia na MFF UK.

Díky programu **Erasmus**+ a některým dalším meziuniverzitním dohodám existuje možnost jeden či dva semestry studia absolvovat na některé zahraniční univerzitě; podrobné informace jsou na stránce http://www.mff.cuni.cz/studium/zahranici/.

Průběžná kontrola studia

Průběžnou kontrolou studia se rozumí kontrola celkového počtu kreditů získaných za vaše dosavadní studium; tato kontrola se koná na konci každého úseku studia. Započítávají se do ní vždy pouze kredity získané do konce předchozího zkouškového období. To je podstatné hlavně po prvním úseku bakalářského studia, kdy se kredity získané po konci zimního zkouškového období již započítají do druhého, nikoli do prvního úseku studia.

Získáte-li v dosavadních úsecích studia celkem nejméně tzv. minimální počet kreditů, máte právo na zápis do dalšího úseku studia. Pokud se vám ale podaří získat tzv. normální počet kreditů (odpovídající obvykle součtu kreditů při studijním plánem doporučeném průběhu studia v dosavadních úsecích studia) a zároveň dosáhnete určitého průměru, splníte tím základní podmínku pro přiznání **stipendia** za vynikající studijní výsledky; podrobnosti jsou popsány v Pravidlech pro přiznávání stipendií na MFF UK. Nezískáte-li alespoň minimální počet kreditů, posuzuje se tato skutečnost jako nesplnění požadavků vyplývajících ze studijního programu, což vede k ukončení studia. Normální a minimální počty kreditů nutné pro zápis do dalšího úseku studia jsou stanoveny takto (bez závorky jsou uvedeny normální počty kreditů a v závorce minimální počty kreditů):

Normální a minimální počty kreditů

Bakalářské studijní programy

- a) 30 (12) kreditů pro zápis do druhého úseku studia (tj. letního semestru 1. ročníku),
- b) 60 (45) kreditů pro zápis do třetího úseku studia (tj. 2. ročníku),
- c) 120 (90) kreditů pro zápis do čtvrtého úseku studia (tj. 3. ročníku),
- d) 180 (135) kreditů pro zápis do pátého úseku studia (tj. 4. ročníku),
- e) 240 (180) kreditů pro zápis do šestého úseku studia (tj. 5. ročníku),
- f) 300 (225) kreditů pro zápis do sedmého úseku studia (tj. 6. ročníku).

Magisterské studijní programy - pro všechny studenty

- a) 60 (45) kreditů pro zápis do druhého úseku studia (tj. 2. ročníku),
- b) 120 (90) kreditů pro zápis do třetího úseku studia (tj. 3. ročníku),
- c) 180 (120) kreditů pro zápis do čtvrtého úseku studia (tj. 4. ročníku),
- d) 240 (165) kreditů pro zápis do pátého úseku studia (tj. 5. ročníku).

Pro účely průběžné kontroly studia se započítávají všechny kredity za absolvované povinné a povinně volitelné předměty; za absolvované volitelné předměty se započítávají kredity až do následujícího rozsahu (v závorce je uveden procentuální podíl tohoto počtu kreditů vzhledem k normálnímu počtu kreditů příslušnému dané průběžné kontrole studia):

Maximální počty kreditů za volitelné předměty v oblastech vzdělávání Matematika, Fyzika a Informatika

Bakalářské studijní programy

- a) 4 kredity (15 %) pro zápis do druhého úseku studia,
- b) 9 kreditů (15 %) pro zápis do třetího úseku studia,
- c) 18 kreditů (15 %) pro zápis do čtvrtého úseku studia,
- d) 54 kreditů (30 %) pro zápis do pátého úseku studia,
- e) 72 kreditů (30 %) pro zápis do šestého úseku studia,

f) 90 kreditů (30 %) pro zápis do sedmého úseku studia.

Magisterské studijní programy

- a) 18 kreditů (30 %) pro zápis do druhého úseku studia,
- b) 60 kreditů (50 %) pro zápis do třetího úseku studia,
- c) 126 kreditů (70 %) pro zápis do čtvrtého úseku studia,
- d) 167 kreditů (70 %) pro zápis do pátého úseku studia.

Maximální počty kreditů za volitelné předměty v oblasti vzdělávání Učitelství

Bakalářské studijní programy - pro studenty zapsané od ak. roku 2019/2020

- a) 3 kredity (10 %) pro zápis do druhého úseku studia,
- b) 6 kreditů (10 %) pro zápis do třetího úseku studia,
- c) 12 kreditů (10 %) pro zápis do čtvrtého úseku studia,
- d) 45 kreditů (25 %) pro zápis do pátého úseku studia,
- e) 60 kreditů (25 %) pro zápis do šestého úseku studia,
- f) 75 kreditů (25 %) pro zápis do sedmého úseku studia.

Magisterské studijní programy - pro studenty zapsané od ak. roku 2019/2020

- a) 6 kreditů (10 %) pro zápis do druhého úseku studia,
- b) 24 kreditů (20 %) pro zápis do třetího úseku studia,
- c) 81 kreditů (45 %) pro zápis do čtvrtého úseku studia,
- d) 108 kreditů (45 %) pro zápis do pátého úseku studia.

Zápis do ročníku a zápis předmětů

Nárok na zápis do prvního úseku studia jste získali rozhodnutím děkana o přijetí na fakultu. Splníte-li požadavky průběžné kontroly studia, máte nárok na zápis do dalšího úseku studia. Zápis do úseku studia je potvrzením toho, že v daném úseku studia na fakultě studujete.

Každý rok studia je tvořen zimním a letním semestrem. Na jejich začátku máte během několika týdnů čas (viz Podrobný harmonogram akademického roku) vybrat si, které předměty chcete v daném semestru absolvovat, a tyto předměty si pak zapsat. Zápis předmětů probíhá elektronicky pomocí Studijního informačního systému. Období pro zápis předmětů je rozděleno do dvou fází: ve fázi tzv. přednostního zápisu (Pozor, toto období končí týden před začátkem každého semestru!) si můžete zapisovat pouze ty předměty, které jsou pro vás primárně určené (stanovením programu, kroužku v prvním ročníku), případně i ty, na něž zápis není takto omezen; ve fázi tzv. volného zápisu si můžete zapsat i libovolné další předměty (až do naplnění kapacity předmětu). Volba předmětů je ponechána na vás, ale je třeba zohledňovat požadavky vašeho studijního plánu i počty kreditů požadované při průběžné kontrole studia na konci každého úseku studia. U všech zapisovaných předmětů je povinný zápis do rozvrhu. Další podrobnosti o termínech zápisu předmětů i zápisu do rozvrhu najdete na stránce http://www.mff.cuni.cz/studium/bcmgr/os/zapis.htm.

Zápis předmětu může být omezen určitými podmínkami, z nichž nejčastější jsou následující:

prerekvizita – pro zápis předmětu X je vyžadováno absolvování jiného předmětu nebo předmětů,

korekvizita – pro zápis předmětu X je vyžadován současný zápis jiného předmětu nebo předmětů, nebo jejich absolvování

neslučitelnost – zápis předmětu X je vyloučen předchozím absolvováním nebo současným zápisem jiného předmětu

V některých případech je stanoveno, že absolvování jednoho předmětu Y je z hlediska plnění studijního plánu považováno za absolvování jiného předmětu X (tzv. **záměnnost**).

Informace o těchto vztazích mezi předměty jsou popsány ve Studijním informačním systému v modulu Předměty (https://is.cuni.cz/studium/predmety) a v Seznamu předmětů MFF UK (tzv. Bílá Karolínka). Protože tyto vztahy jsou nedílnou součástí studijních plánů, doporučujeme jim věnovat patřičnou pozornost: nesplnění předmětu, který je prerekvizitou jiného, který máte v úmyslu si zapsat, může mít za následek prodloužení studia.

Prerekvizity a korekvizity předmětu se nevztahují na studenty těch studijních programů nebo plánů, ve kterých daný předmět (ani žádný předmět s ním záměnný) není povinný ani povinně volitelný (viz Pravidla pro organizaci studia na MFF UK, čl. 6).

Zkoušky a zápočty

U většiny předmětů vyučovaných na fakultě potřebujete pro jejich úspěšné absolvování na konci semestru získat zápočet (klasifikace započteno - Z, v případě neúspěchu pak nezapočteno - K) nebo složit zkoušku (klasifikace výborně, velmi dobře, dobře, neprospěl/a) nebo obojí; u některých předmětů je formou kontroly studia předmětu klasifikovaný zápočet. Zkouška může obsahovat písemnou i ústní část. O úspěšné složení zkoušky se můžete pokusit nejvýše třikrát. Je-li pro absolvování předmětu předepsán zápočet i zkouška, není získání zápočtu podmínkou pro konání zkoušky z daného předmětu, pokud garant předmětu nestanoví na začátku semestru v SIS jinak. Je-li zápočet klasifikován K, není již možné v daném úseku studia předmět úspěšně absolvovat. Podmínky pro získání zápočtu oznamuje vyučující po schválení garantem předmětu na začátku semestru (viz Pravidla pro organizaci studia na MFF UK, čl. 8). Pokud se Vám některý zapsaný předmět nepodaří v daném semestru úspěšně absolvovat, máte možnost si ho zapsat v některém dalším úseku studia znovu, ale během celého studia celkem nejvýše dvakrát.

Státní závěrečná zkouška

Státní závěrečná zkouška se skládá z několika částí (podle odpovídajícího studijního plánu), z nichž jednou je v bakalářských studijních programech vždy obhajoba bakalářské práce a v magisterských studijních programech obhajoba diplomové práce. S výjimkou učitelských studijních programů je předpokladem pro přihlášení se ke státní zkoušce absolvování povinných a povinně volitelných předmětů v rozsahu stanoveném studijním plánem a dále v případě bakalářského studia získání alespoň 180 kreditů a v případě magisterského studia získání alespoň 120 kreditů; předpoklady pro konání státní závěrečné zkoušky v jednotlivých učitelských programech jsou podrobně rozepsány v kapitole Studijní plány oblasti vzdělávání UČITELSTVÍ. Požadované znalosti ke státní zkoušce a přesné podmínky pro přihlášení se ke státní zkoušce nebo její části

jsou součástí studijních plánů a jsou podrobně popsány u jednotlivých studijních programů.

Další informace o zadání, vypracování, odevzdání a obhajobě bakalářské (diplomové) práce najdete v Průvodci po bakalářské (diplomové) práci na stránkách http://www.mff.cuni.cz/studium/bcmgr/prace/bp_pruvodce.htm (http://www.mff.cuni.cz/studium/bcmgr/prace/dp_pruvodce.htm).

Výuka jazyků

Výuku jazyků na fakultě zajišťuje Katedra jazykové přípravy (KJP). Ve všech bakalářských studijních programech poskytuje výuku angličtiny na různých úrovních jako přípravu na povinnou zkoušku z anglického jazyka.

Po složení povinné zkoušky se studentům doporučuje dále pokračovat ve specializovaných kurzech odborné angličtiny (Angličtina pro matematiky, Angličtina pro fyziky, Angličtina pro informatiky, Obchodní angličtina, Akademická angličtina) a v přípravných kurzech na mezinárodní zkoušky (First Certificate in English, Certificate in Advanced English, Certificate of Proficiency in English).

KJP, jako člen mezinárodní organizace CERCLES (Confédération Européenne des Centres de Langues de l'Enseignement Supérieur) a akreditované testovací centrum Unicert(Unicert® Language Accreditation Unit for Universities in Central Europe), umožňuje svým studentům skládat mezinárodní univerzitní zkoušku z odborného anglického jazyka English for Mathematicians, UNIcert® III na úrovni C1 dle mezinárodní klasifikace úrovní jazykových zkoušek. Studenti mohou navštěvovat další jazykové kurzy (francouzština, němčina, španělština, ruština a čeština pro cizince) na různých stupních pokročilosti. Podrobnosti najdete na webové stránce http://www.mff.cuni.cz/fakulta/kjp/.

Tělesná výchova

Výuku tělesné výchovy zajišťuje Katedra tělesné výchovy (KTV). Student v bakalářském studijním programu musí povinně získat 4 kredity z tělesné výchovy, z toho alespoň 3 kredity za absolvování pravidelné semestrální výuky. Čtvrtý kredit lze získat formou absolvování dalšího semestru, nebo účastí na letním nebo zimním výcvikovém kurzu.

Kromě těchto aktivit nabízí KTV zájmovou tělesnou výchovu, která je určena zejména pro studenty se splněnými studijními povinnostmi z TV, buď ve formě pravidelné semestrální výuky nebo letních a zimních výcvikových kurzů.

V nabídce KTV najdete mimo jiné plavání, volejbal, fotbal, basketbal, florbal, softbal, tenis, stolní tenis, badminton. Další podrobnosti najdete na webové stránce http://ktv.mff.cuni.cz/.

Péče o studenty se speciálními potřebami

Prvním předpokladem toho, aby se fakulta mohla postarat o studenty se speciálními potřebami, je to, že o nich musí vědět. Typicky se to dozví již prostřednictvím přihlášek uchazečů ke studiu. Uchazeči mohou vyznačit již při podání přihlášky, zda mají nějaké znevýhodnění a zda potřebují modifikaci přijímacího řízení (např. prodloužený čas, technická úprava zadání).

Jsou-li studenti přijati, jsou informováni o možnosti podpůrných služeb, a v případě, že je potřebují, jsou studijním oddělením odkázáni na kontaktní osobu, která je bude jejich studiem provázet. Kontaktní osoba s každým studentem vždy dělá osobní pohovor, aby zjistila vše potřebné, a domluví se na dalším postupu, frekvenci dalších konzultací apod. Student je poslán na funkční diagnostiku a následně s hotovou diagnostikou na studijní oddělení, kde se registruje jako student se speciálními potřebami. Kontaktní osoba pak pomáhá studentovi zajistit služby a modifikace, které z funkční diagnostiky vyplynou.

Pokud by se nutnost speciálního přístupu objevila až v průběhu studia, může student kdykoliv kontaktovat buď svou příslušnou referentku studijního oddělení, nebo přímo kancelář kontaktní osoby, která je v současnosti personálně obsazená kontaktní osobou Mgr. Lukášem Krumpem, PhD., a asistentkou Kateřinou Šauflovou.

Několik rad závěrem

Na tomto místě bych rád využil rady, které do předešlých vydání této publikace napsal můj předchůdce ve funkci, doc. Kolman. Dávají totiž podle mého názoru nejlepší návod na překonání potíží, které vás zejména při studiu v prvním ročníku bakalářských programů mohou potkat. Proto je doporučuji zejména těm z vás, kteří se studiem na naší fakultě letos začínáte.

Ptejte se. Nikdo učený z nebe nespadl. Nebojte se zeptat, když něčemu nerozumíte. Ptejte se přednášejícího na přednášce nebo po ní, cvičícího na cvičení nebo po něm, spolužáků, kteří (dělají, že) tomu rozumějí. Domluvte si konzultaci s vyučujícím a ptejte se tam. Máte-li otázky týkající se skladby předmětů na vašem studijním programu, ptejte se garanta vašeho programu. Máte-li obecné otázky týkající se studia, ptejte se na Studijním oddělení.

Pište si. Většinou se toho více naučíte, když si budete nejen číst a poslouchat, ale také psát. K řadě přednášek jsou dnes k dispozici výborné psané materiály, přesto pro řadu z vás bude užitečné dělat si při přednášce vlastní poznámky. Především si ale pište a počítejte při učení na zkoušky. Myslíte si, že už rozumíte důkazu? Celý si ho pěkně z hlavy napište, s potřebnými detaily. A chcete-li se naučit dobře programovat, programujte.

Pracujte. A to i tehdy, když vás k tomu nikdo nenutí. Na rozdíl od střední školy vás během semestru písemka či domácí úkol potká spíše ojediněle, zato na konci semestru vás toho na vyzkoušení bude čekat hromada. Počítejte s tím a nenechte si všechno učení až na zkouškové období, ale pracujte už během semestru. Ze školy si toho více odnesete a zkouškové bude lehčí.

Plánujte. Souvisí s předešlým. Na zkoušku se málokdy naučíte za jednu noc. Počítejte s tím a učení si rozvrhněte. Nechte si dost času na přípravu na zkoušky, na zápočtové programy a úkoly, na protokoly a měření. Ať máte čas i na případné opravné termíny. Strategické plánování zkouškových termínů je důležitým krokem k úspěchu. Neodkládejte na další semestr či rok, co byste měli udělat teď. Často už to nedohoníte.

Přemýšlejte. Ne vše, co se dočtete na internetu, je dobře. Dokonce ne vše, co uslyšíte na přednášce, je vždy správně (i mistr tesař se někdy utne). Snažte se všemu porozumět.

Nespokojte se s odpověďmi na otázky jak, ptejte se proč? Máte-li otázku, snažte se nejdřív najít odpověd sami, než sáhnete po knize či začnete hledat na internetu.

S přáním zdárného akademického roku

doc. RNDr. Vladislav Kuboň, Ph.D. proděkan pro koncepci studia

$Podrobný harmonogram \\ akademického roku 2020/2021$

30. 8. – 8. 9. 2020	Seznamovací kurz budoucích studentů 1. r. Bc. studia na Albeři (bez zápisů do studia)
1. 9. 2020	Zápis studentů do 1. ročníku Bc. studia, kteří již studovali na MFF
2. 9. 2020	Zápis studentů do 1. r. Mgr. studia
7. – 20. 9. 2020	Elektronický zápis předmětů vyučovaných v ZS (studenti si zapisují předměty výhradně prostřednictvím systému UK SIS) - přednostní
$810.\ 9.\ 2020$	Zápis studentů do 1. ročníku Bc. studia
$15 16. \ 9. \ 2020$	Zápis studentů do 1. ročníku Bc. studia
17. 9. 2020	Zápis studentů do 1. r. Mgr. studia
21. 9. – 11. 10. 2020	Elektronický zápis předmětů vyučovaných v ZS (studenti si zapisují předměty výhradně prostřednictvím systému UK SIS) - volný
23. 9. 2020	Zápis studentů do 1. r. Mgr. studia
$29. \ 9. \ 2020 - 10. \ 1. \ 2021$	Výuka v zimním semestru
do 30. 9. 2020	Odevzdání ročního hodnocení Ph.D. studentů za rok $2019/20$, včetně aktualizace individuálních studijních plánů na ak. rok $2020/2021$
	Průběžná kontrola studia za ak. r. 2019/2020 a zápis studentů do 2. a vyšších ročníků Bc., Mgr. studia do ak. r. 2020/2021
1. 10. 2020	Zahájení akademického roku a zimního semestru akademického roku 2020/2021
$16.\ 10.\ 2020$	Zápis studentů do 1. ročníku Ph.D. studia
$115.\ 10.\ 2020$	Zpracování ISP doktorandy prvního ročníku
$1.\ 10.\ -\ 31.\ 12.\ 2020$	Zpracování ISP školiteli
$1. \ 10. \ 2020 - 31. \ 1. \ 2021$	Projednání ISP oborovými radami
do 2. 10. 2020	Doporučený termín vypsání témat diplomových a bakalářských prací
12. – 23. 10. 2020	Studijní oddělení provede kontrolu a potvrzení elektronického zápisu předmětů
27. 10. 2020	ZRUŠENO: Imatrikulace studentů 1. ročníku Bc. a Mgr. studia
do 2. 11. 2020	Doporučený termín zadání bakalářských prací
12. 11. 2020	Děkanský sportovní den
20. 11. 2020	Promoce - Bc. studium
23. 11. 2020	Promoce - Bc. studium

26. 11. 2020	Den otevřených dveří
3. 12. 2020	Promoce - Mgr. studium (pro absolventy letního a podzimního termínu SZZ)
11. 12. 2020	Promoce - Ph.D. studium
23. 12. 2020 - 3. 1. 2021	Vánoční prázdniny
do 6. 1. 2021	Odevzdání bakalářských a diplomových prací pro zimní termín státních závěrečných zkoušek - elektronická verze práce
do 7. 1. 2021	Odevzdání bakalářských a diplomových prací pro zimní termín státních závěrečných zkoušek - listinná verze práce
11. 1. – 14. 2. 2021	Zkouškové období v ZS
do 17. 1. 2021	Kontrola splnění všech podmínek závěrečných ročníků bakalářského a magisterského studia pro připuštění k zimnímu termínu SZZ
	Přihlášení se k zimnímu termínu bakalářských a magisterských státních závěrečných zkoušek
1. – 12. 2. 2021	Zimní termín bakalářských a magisterských státních závěrečných zkoušek
$17.\ 2.\ 2021$	Elektronický zápis předmětů vyučovaných v LS (studenti
	si zapisují předměty výhradně prostřednictvím systému UK SIS) - přednostní
8. 2. – 7. 3. 2021	Elektronický zápis předmětů vyučovaných v LS (studenti si zapisují předměty výhradně prostřednictvím systému
	UK SIS) - volný
do 12. 2. 2021	Doporučený termín zadání diplomových prací
15. 2. – 23. 5. 2021	Výuka v letním semestru (u předmětů zařazených v doporučeném průběhu Bc. studia do 6. semestru jen do 14. 5. 2021)
do 28. 2. 2021	Průběžná kontrola studia po 1. úseku studia bakalářského studia a zápis do 2. úseku bakalářského studia
$1 2. \ 3. \ 2021$	Zápis studentů do 1. ročníku Ph.D. studia
$8 19. \ 3. \ 2021$	Studijní oddělení provede kontrolu a potvrzení
	elektronického zápisu předmětů
20. 4. 2021	Promoce - Mgr. studium (pro absolventy ze zimního termínu SZZ - termín promoce může být změněn, pokud se bude, pro nedostatek absolventů MFF, konat společná promoce s jinou fakultou UK)
do 7. 5. 2021	Odevzdání diplomových prací pro letní termín státních závěrečných zkoušek - elektronická verze práce
do 10. 5. 2021	Odevzdání diplomových prací pro letní termín státních závěrečných zkoušek - listinná verze práce
12. 5. 2021	Rektorský den
do 13. 5. 2021	Odevzdání bakalářských prací pro letní termín bakalářských státních závěrečných zkoušek - elektronická verze práce

14. 5. 2021	Promoce - Ph.D. studium
do 17. 5. 2021	Odevzdání bakalářských prací pro letní termín
	bakalářských státních závěrečných zkoušek - listinná verze
	práce
do 24. 5. 2021	Kontrola splnění všech podmínek závěrečných ročníků
	magisterského studia pro připuštění k letnímu termínu SZZ
	Přihlášení se k letnímu termínu magisterských státních
	závěrečných zkoušek
24. 5. – 30. 6. 2021	Zkouškové období v LS
27. 5. – 7. 6. 2021	Doktorandský týden - konkrétní termín bude sdělen dodatečně
do 6. 6. 2021	Kontrola splnění všech podmínek závěrečných ročníků
	bakalářskěho studia pro připuštění k letnímu termínu SZZ
	Přihlášení se k letnímu termínu bakalářských státních závěrečných zkoušek
$7 18. \ 6. \ 2021$	Letní termín státních závěrečných zkoušek magisterského
	studia - promoce absolventů se bude konat v prosinci 2021
$14 25. \ 6. \ 2021$	Letní termín státních závěrečných zkoušek bakalářského
4 - 04 0 0004	studia
1. 7. – 31. 8. 2021	Letní prázdniny
1. 7 30. 9. 2021	Roční hodnocení ISP Ph.D. studentů ze strany studentů
1. 7. – 15. 10. 2021 1. 7. – 31. 10. 2021	Roční hodnocení ISP Ph.D. studentů ze strany školitelů Roční hodnocení ISP Ph.D. studentů oborovými radami
do 22. 7. 2021	Odevzdání bakalářských a diplomových prací pro podzimní
do 22. 1. 2021	termín státních závěrečných zkoušek - elektronická verze
	práce
do 23. 7. 2021	Kontrola splnění všech podmínek závěrečných ročníků
	bakalářského a magisterského studia pro připuštění
	k podzimnímu termínu SZZ Přihlášení se k podzimnímu termínu bakalářských
	a magisterských státních závěrečných zkoušek
do 26. 7. 2021	Odevzdání bakalářských a diplomových prací pro podzimní
do 20. 1. 2021	termín státních závěrečných zkoušek - listinná verze práce
$1 10. \ 9. \ 2021$	Podzimní termín bakalářských státních závěrečných
	zkoušek
$2 15. \ 9. \ 2021$	Podzimní termín magisterských státních závěrečných
	zkoušek - promoce absolventů se bude konat v prosinci
	2021
$20 24. \ 9. \ 2021$	Zkouškové období
do 30. 9. 2021	Odevzdání ročního hodnocení Ph.D. studentů za rok
	2020/21, včetně aktualizace individuálních studijních plánů
	na ak. r. 2021/2022
	Průběžná kontrola studia za ak. r. 2020/2021 a zápis
	studentů do 2. a vyšších ročníků Bc., Mgr. studia do ak. r. 2021/2022
30. 9. 2021	2021/2022 Konec akademického roku 2020/2021
JU. J. 4U41	Troffee anadefficatio fond 2020/ 2021

Přehled bakalářských studijních programů na MFF UK

Oblast vzdělávání Matematika

- Obecná matematika
- Finanční matematika
- Matematické modelování
- Matematika pro informační technologie

Oblast vzdělávání Fyzika

• Fyzika

Oblast vzdělávání Informatika

• Informatika

Tento program má šest specializací:

- Obecná informatika
- Programování a vývoj software
- Sytémové programování
- Databáze a web
- Umělá inteligence
- Počítačová grafika, vidění a vývoj her

Oblast vzdělávání Učitelství

- Fyzika se zaměřením na vzdělávání
- Matematika se zaměřením na vzdělávání
- Informatika se zaměřením na vzdělávání
- Deskriptivní geometrie se zaměřením na vzdělávání

Studijní program Matematika se zaměřením na vzdělávání je možno studovat v kombinaci také s některými studijními programy Filozofické fakulty, Přírodovědecké fakulty a Fakulty tělesné výchovy a sportu.

Studijní program Bioinformatika

Uskutečňován spolu s Přírodovědeckou fakultou UK. Studenti jsou zapsáni na PřF UK.

Garanti studijních programů

Obecná matematika:

Finanční matematika:

Matematika pro informační technologie:

Matematické modelování:

Fyzika:

Informatika:

Fyzika se zaměřením na vzdělávání:

Matematika se zaměřením na vzdělávání:

Deskr. geometrie se zaměř. na vzdělávání:

Informatika se zaměřením na vzdělávání:

doc. Mgr. Petr Kaplický, Ph.D.

doc. RNDr. Ing. Miloš Kopa, Ph.D.

doc. RNDr. David Stanovský, Ph.D.

prof. RNDr. Josef Málek, CSc., DSc.

doc. RNDr. Helena Valentová, Ph.D.

doc. RNDr. Ondřej Čepek, Ph.D.

doc. RNDr. Leoš Dvořák, CSc.

doc. IthDr. Leos Dvorak, Coc.

doc. RNDr. Jarmila Robová, CSc. doc. RNDr. Zbyněk Šír, Ph.D.

doc. RNDr. Pavel Töpfer, CSc.

Přehled navazujících magisterských studijních programů na MFF UK

Oblast vzdělávání Matematika

- Finanční a pojistná matematika
- Matematická analýza
- Matematické modelování ve fyzice a technice
- Matematické struktury
- Matematika pro informační technologie
- Numerická a výpočtová matematika
- Pravděpodobnost, matematická statistika a ekonometrie

Oblast vzdělávání Fyzika

- Astronomie a astrofyzika
- Geofyzika a fyzika planet
- Fyzika atmosféry, meteorologie a klimatologie
- Teoretická fyzika
- Fyzika kondenzovaných soustav a materiálů
- Optika a optoelektronika
- Fyzika povrchů a plazmatu
- Biofyzika a chemická fyzika
- Částicová a jaderná fyzika
- Matematické a počítačové modelování ve fyzice

Oblast vzdělávání Informatika

- Informatika Diskrétní modely a algoritmy
- Informatika Jazykové technologie a počítačová lingvistika
- Informatika Softwarové a datové inženýrství
- Informatika Softwarové systémy
- Informatika Teoretická informatika
- Informatika Umělá inteligence
- Informatika Vizuální výpočty a vývoj počítačových her

Oblast vzdělávání Učitelství

- Učitelství fyziky pro střední školy
- Učitelství matematiky pro střední školy
- Učitelství informatiky pro střední školy
- Učitelství deskriptivní geometrie pro střední školy

Studijní program Učitelství matematiky pro střední školy je možno studovat v kombinaci také s některými studijními programy Filozofické fakulty, Přírodovědecké fakulty a Fakulty tělesné výchovy a sportu.

Garanti studijních programů

Astronomie a astrofyzika:

Biofyzika a chemická fyzika:

Částicová a jaderná fyzika:

Finanční a pojistná matematika:

Fyzika atmosféry, meteorologie

a klimatologie:

Fyzika kondenzovaných soustav

a materiálů:

Fyzika povrchů a plazmatu:

Geofyzika a fyzika planet:

Informatika - Diskrétní modely

a algoritmy:

Informatika - Jazykové technologie

a počítačová lingvistika:

Informatika - Softwarové

a datové inženýrství:

Informatika - Softwarové systémy:

Informatika - Teoretická informatika:

Informatika - Umělá inteligence:

Informatika - Vizuální výpočty

a vývoj počítačových her:

Matematická analýza:

Matematické a počítačové modelování

ve fyzice:

Matematické modelování

ve fyzice a technice:

Matematické struktury:

Matematika pro informační technologie:

Numerická a výpočtová matematika:

Optika a optoelektronika:

Pravděpodobnost, matematická

statistika a ekonometrie:

Teoretická fyzika:

Učitelství deskriptivní geometrie

pro střední školy:

Učitelství fyziky pro střední školy:

Učitelství informatiky pro střední školy:

Učitelství matematiky pro střední školy:

prof. RNDr. David Vokrouhlický, DrSc.

prof. RNDr. Marek Procházka, Ph.D.

prof. RNDr. Pavel Cejnar, Dr., DSc.

prof. RNDr. Tomáš Cipra, DrSc.

doc. RNDr. Petr Pišoft, Ph.D.

doc. RNDr. Stanislav Daniš, Ph.D.

doc. RNDr. Jan Wild, CSc.

prof. RNDr. Ondřej Čadek, CSc.

doc. RNDr. Martin Klazar, Dr.

doc. RNDr. Markéta Lopatková, Ph.D.

prof. RNDr. Tomáš Skopal, Ph.D.

prof. Ing. Petr Tůma, Dr.

prof. Mgr. Michal Koucký, Ph.D.

prof. RNDr. Roman Barták, Ph.D.

doc. RNDr. Tomáš Dvořák, CSc.

prof. RNDr. Ondřej Kalenda, Ph.D., DSc.

doc. RNDr. Martin Čížek, Ph.D.

prof. RNDr. Josef Málek, CSc., DSc.

doc. RNDr. Jan Šťovíček, Ph.D.

doc. Mgr. Pavel Příhoda, Ph.D.

doc. Mgr. Petr Knobloch, Dr., DSc.

prof. RNDr. Petr Malý, DrSc.

doc. Ing. Marek Omelka, Ph.D.

prof. RNDr. Jiří Podolský, CSc., DSc.

doc. RNDr. Zbyněk Šír, Ph.D.

doc. RNDr. Zdeněk Drozd, Ph.D.

doc. RNDr. Pavel Töpfer, CSc.

doc. RNDr. Jarmila Robová, CSc.

Studijní plány oblasti vzdělávání MATEMATIKA

Bakalářské studium od akad. roku 2019/20

1. Základní informace

Studijní programy bakalářského studia

V oblasti vzdělávání Matematika nabízíme na bakalářském stupni studia čtyři odborné programy.

Obecná matematika	2.1
Finanční matematika	2.2
Matematika pro informační technologie	2.3
Matematické modelování	2.4

V rámci oblasti vzdělávání jsou akreditovány také programy určené pro studenty, kteří po absolvování bakalářského studia chtějí pokračovat v navazujícím magisterském studiu učitelství matematiky, a to *Matematika se zaměřením na vzdělávání* a *Deskriptivní geometrie se zaměřením na vzdělávání*. Studijní plány učitelských programů jsou uvedeny ve zvláštní části této publikace.

Program *Obecná matematika* poskytuje širší teoretický základ a je výbornou průpravou pro navazující magisterské studium.

Program Finanční matematika je určen zejména pro studenty, kteří chtějí pokračovat v navazujícím magisterském studiu v programu Finanční a pojistná matematika, nebo kteří plánují po ukončení přechod do praxe. Tomu odpovídají dvě zaměření, ze kterých si student vybírá předměty ve třetím ročníku. Studenti získají matematický základ doplněný o speciální znalosti financí a pojišťovnictví.

Program *Matematika pro informační technologie* nabízí poměrně široký teoretický základ, který je doplněn několika klíčovými předměty tak, aby vedle studia stejnojmenného navazujícího magisterského programu byl možný i přímý přechod do praxe.

Program *Matematické modelování* nabízí studium na pomezí matematiky a fyziky. Studenti získají základní teoretické znalosti o matematických analytických a numerických metodách potřebných pro matematické modelování přírodních jevů. Absolventi mohou pokračovat ve studiu v navazujícím magisterském programu, možný je i přímý přechod do praxe.

Všeobecné zásady studia

Základní informace

Celkem je požadováno získání minimálně 180 kreditů za celé tříleté studium. Pro úspěšné ukončení studia je nutné absolvovat všechny předměty, které jsou studijním plánem stanoveny jako povinné, nebo předměty s nimi záměnné. Studijní plán může též vyžadovat získání určitého počtu kreditů z jednotlivých skupin povinně volitelných předmětů.

Studijní plány

Studijní plán předepisuje povinné předměty programu, požadované počty kreditů z jednotlivých skupin povinně volitelných předmětů, podmínky pro přihlášení ke státní závěrečné zkoušce a požadavky u státní závěrečné zkoušky. Průběh studia není studijními plány pevně určen. Student si zapisuje povinné, povinně volitelné a volitelné předměty tak, aby průběžně splňoval kreditní limity pro zápis do dalšího roku studia a aby splnil podmínky pro přihlášení ke státní závěrečné zkoušce.

Předmětové rekvizity

Zápis předmětů může být podmíněn splněním určitých podmínek stanovených v předmětových rekvizitách. Některé předměty vyžadují předchozí absolvování (prerekvizita) nebo alespoň zápis (korekvizita) jiných předmětů. Naopak, předchozí zápis jiného předmětu může znemožnit zápis předmětu, o který má student zájem (neslučitelnost). Předchozí absolvování jiného předmětu může být automaticky uznáno jako splnění předmětu, který student potřebuje (záměnnost). Předmětové rekvizity jsou uvedeny v Seznamu předmětů MFF UK ("bílé Karolince") a předmětovém modulu Studijního informačního systému.

Doporučujeme všem studentům, aby při zápisu předmětů věnovali předmětovým rekvizitám nejvyšší pozornost. Je zejména vhodné si ověřit, zdali zapsaný předmět není prerekvizitou dalších důležitých předmětů. Nesplnění takového předmětu může mít za následek prodloužení studia.

Doporučený průběh studia

V následujících částech jsou uvedeny studijní plány pro jednotlivé programy a doporučené průběhy studia, které rozepisují povinné předměty a některé povinně volitelné předměty do jednotlivých ročníků a uvádějí další podrobnosti studijních plánů. Povinné předměty jsou v tabulkách uvedeny **tučně**, povinně volitelné předměty obyčejným písmem a volitelné předměty *kurzívou*. V této kapitole jsou rovněž specifikovány podmínky pro přihlášení ke státní závěrečné zkoušce a požadavky k ústní části SZZ.

Doporučený průběh studia není závazný, je však vhodné jej co nejvíce dodržovat, protože je sestaven s ohledem na rekvizity, návaznosti předmětů, tvorbu rozvrhu a na podmínky pro přihlášení ke státní závěrečné zkoušce.

Ukončení studia

Bakalářské studium je ukončeno státní závěrečnou zkouškou.

Na odborném studiu má státní závěrečná zkouška dvě části: obhajobu bakalářské práce a ústní zkoušku. Známkou je hodnocena jak každá část státní závěrečné zkoušky zvlášť, tak celá zkouška dohromady. Při neúspěchu opakuje student ty části státní závěrečné zkoušky, ve kterých dosud neuspěl. Každou část SZZ lze opakovat nejvýše dvakrát.

Požadavky k ústní části státní závěrečné zkoušky jsou uvedeny u studijních plánů jednotlivých programů.

Bakalářská práce je zadávána zpravidla na počátku 3. ročníku. Doporučujeme vybírat si téma především z nabídky pracoviště garantujícího zvolený studijní program; v případě zájmu o téma z nabídky jiného pracoviště nebo o téma vlastní důrazně doporučujeme konzultovat vhodnost tématu s garantem studijního programu.

Termíny pro zadání bakalářské práce, odevzdání bakalářské práce a podání přihlášky ke státní závěrečné zkoušce určuje harmonogram školního roku.

Projekt

Od druhého roku studia může student požádat děkana o zadání projektu. Jeho ohodnocení (max. 9 kreditů) stanoví děkan na základě doporučení zadávajícího učitele a garanta studijního programu.

Převádění kreditů

Převádění kreditů za předměty absolvované v bakalářském studiu do magisterského studia upravuje čl. 12 Pravidel pro organizaci studia na Matematicko-fyzikální fakultě.

Tělesná výchova a angličtina

Studijní plány všech matematických programů vyžadují absolvování čtyř semestrů tělesné výchovy a složení zkoušky z anglického jazyka.

Povinná výuka tělesné výchovy je v doporučeném průběhu studia rozmístěna do prvních čtyř semestrů, je však možné ji plnit kdykoli v průběhu bakalářského studia. Vyžaduje se absolvování těchto čtyř předmětů:

Kód	Název	Kredity	ZS	LS
NTVY014	Tělesná výchova I	1	$0/2 \mathrm{~Z}$	_
NTVY015	Tělesná výchova II	1	_	$0/2 \mathrm{~Z}$
NTVY016	Tělesná výchova III	1	$0/2 \mathrm{~Z}$	
NTVY017	Tělesná výchova IV	1		$0/2 \mathrm{~Z}$

Kterýkoli z předmětů NTVY014, NTVY015, NTVY016 a NTVY017 (ale nejvýše jeden z nich) lze nahradit absolvováním letního výcvikového kursu NTVY018 nebo zimního výcvikového kursu NTVY019. Tyto kursy může student absolvovat kdykoli v průběhu bakalářského studia.

Zkouška z angličtiny vyžaduje zápis povinného předmětu

Kód	Název	Kredity	ZS	LS
NJAZ091	Anglický jazyk	1	0/0 Zk	0/0 Zk

Tento předmět lze zapsat jak v zimním tak v letním semestru. Zkouška z anglického jazyka je v doporučených studijních plánech umístěna do letního semestru 2. ročníku, je však možné ji splnit kdykoli v průběhu bakalářského studia.

Před zápisem zkoušky z angličtiny doporučujeme absolvovat čtyřsemestrální kurs anglického jazyka, a to nejlépe během prvních čtyř semestrů studia. Pro mírně pokročilé jsou určeny předměty:

Kód	Název	Kredity	ZS	LS
NJAZ071	Anglický jazyk pro mírně pokročilé I	1	$0/4 \mathrm{~Z}$	

NJAZ073	Anglický jazyk pro mírně pokročilé II	1	_	$0/4~\mathrm{Z}$
NJAZ075	Anglický jazyk pro mírně pokročilé III	1	$0/4~\mathrm{Z}$	_
NJAZ089	Anglický jazyk pro mírně pokročilé IV	1	_	$0/4~\mathrm{Z}$

Středně pokročilým a pokročilým stačí zapsat předměty s poloviční hodinovou dotací:

Kód	Název	Kredity	ZS	LS
NJAZ070	Anglický jazyk pro středně pokročilé I	1	0/2 Z	_
NJAZ072	Anglický jazyk pro středně pokročilé II	1	_	$0/2 \mathrm{~Z}$
NJAZ074	Anglický jazyk pro středně pokročilé III	1	$0/2 \mathrm{~Z}$	
NJAZ090	Anglický jazyk pro středně pokročilé IV	1	_	$0/2 \mathrm{~Z}$
nebo				
Kód	Název	Kredity	ZS	LS
NJAZ170	Anglický jazyk pro pokročilé I	1	0/2 Z	
NJAZ172	Anglický jazyk pro pokročilé II	1		$0/2 \mathrm{~Z}$
NJAZ174	Anglický jazyk pro pokročilé III	1	$0/2 \mathrm{~Z}$	
NJAZ176	Anglický jazyk pro pokročilé IV	1		$0/2 \mathrm{~Z}$

Po absolvování kurzů připravujících k povinné zkoušce z angličtiny doporučujeme studentům, aby navštěvovali semináře z odborné angličtiny:

Kód	Název	Kredity	ZS	LS
	Anglický jazyk pro matematiky I Anglický jazyk pro matematiky II	3 3	0/2 Z —	$0/2~{ m Z}$

2. Studijní plány jednotlivých programů

2.1 Obecná matematika

Garantující pracoviště: Matematická sekce

Garant programu: doc. Mgr. Petr Kaplický, Ph.D.

Doporučený průběh studia pro první dva ročníky obsahuje téměř výhradně povinné předměty, je společný pro celý program a poskytuje všeobecný matematický základ. Před zápisem do 3. ročníku by si měl student zvolit zaměření, kterému se bude chtít dále věnovat a podle něj si vybrat jeden ze čtyř doporučených průběhů studia pro 3. ročník.

Doplňující informace o programu Obecná matematika je možné nalézt na http://garant.karlin.mff.cuni.cz/stud/index.shtml.

Doporučený průběh studia

1. rok studia

Kód	Název	Kredity	ZS	LS
NMMA10	l Matematická analýza 1	10	4/4 Z+Zk	
NMAG11	l Lineární algebra 1	10	4/2 Z+Zk	
NMIN111	Programování 1	3	$0/2 \mathrm{Z}$	
NMIN105	Diskrétní matematika	5	2/2 Z+Zk	
NTVY014	Tělesná výchova I	1	$0/2 \mathrm{Z}$	
	Anglický jazyk	1	$0/2 \mathrm{~Z}$	
NMMA10	2Matematická analýza 2	10		4/4 Z+Zk
NMAG112	2 Lineární algebra 2	10		4/2 Z+Zk
NMIN112	Programování 2	8		2/4 Z+Zk
NTVY015	Tělesná výchova II	1		$0/2 \mathrm{~Z}$
	Anglický jazyk	1	_	0/2 Z

Doporučené volitelné předměty

Studentům, kteří si na začátku studia chtějí procvičit a zdokonalit základní matematické dovednosti potřebné ke studiu, doporučujeme předměty NMTM161 a NMTM162.

Kód	Název	Kredity	ZS	LS
NMTM16	1 Matematický proseminář I	2	$0/2 \mathrm{~Z}$	_
NMMA16	1 Proseminář z Matematické analýzy	2	$0/2 \mathrm{~Z}$	
NMMA46	5 Řešitelský seminář	3	$0/2 \mathrm{~Z}$	$0/2 \mathrm{~Z}$
NMTM162	2 Matematický proseminář II	2		$0/2 \mathrm{~Z}$
NMMA16	2 Proseminář z Matematické analýzy	2		$0/2 \mathrm{~Z}$
NMSA170	$Pravd\check{e}podobnostn\'i~a~statistick\'e$	2		$0/2 \mathrm{~Z}$
	problémy			
NMAG160) Proseminář z teorie čísel	2	<u>—</u>	$0/2 \mathrm{~Z}$
NMAG164	4 Variace na invarianci	2		$0/2 \mathrm{~Z}$

2. rok studia

Kód	Název	Kredity	ZS	LS
NMMA20	1 Matematická analýza 3	8	4/2 Z+Zk	
NMMA20	5Teorie míry a integrálu 1	5	2/2 Z+Zk	
NMNM20	1 Z áklady numerické matematiky	8	4/2 Z+Zk	
NMAG21	1 Geometrie 1	5	2/2 Z+Zk	
NTVY016	i Tělesná výchova III	1	$0/2 \mathrm{~Z}$	
	Anglický jazyk	1	$0/2 \mathrm{~Z}$	
NMMA20	4Matematická analýza 4	5		2/2 Z+Zk
NMSA202	2 Pravděpodobnost	8		4/2 Z+Zk
	a matematická statistika			
NMAG20	6 Algebra	8		4/2 Z+Zk
NMAG21	2 Geometrie 2	5		2/2 Z+Zk
NTVY017	⁷ Tělesná výchova IV	1		$0/2 \mathrm{~Z}$
	Anglický jazyk	1		$0/2 \mathrm{~Z}$

NJAZ091	Anglický jazyk Povinně volitelné a volitelné předměty	1 3	_	0/0 Zk
Doporučené	volitelné předměty pro 2. ročník			
Kód	Název	Kredity	ZS	LS
NMMA26	Proseminář z Matematické analýzy 3	2	0/2 Z	_
NMMA26	3 Proseminář z Matematické analýzy 4	2		$0/2 \mathrm{~Z}$
NMFM260	Ekonomie	5	_	2/2 Z+Zk
NMAG262	Konvexní tělesa	3	_	2/0 Zk
NMAG261	Proseminář z algebry	2		$0/2 \mathrm{~Z}$
NMFM204	L $\acute{U}vod~do~optimalizace$	5		2/2 Z+Zk
NMMB206	Teorie čísel	5		2/2 Z+Zk
NMSA262	Proseminář z pravděpodobnosti a matematické statistiky	2	_	0/2 Z
NMFY160	Fyzika pro matematiky 1	5	2/2 Z+Zk	
	Elektromagnetické pole a speciální teorie relativity	5	<u>.</u>	2/1 Zk

Rozšiřující výuka programování

Pro zájemce o informatiku, výpočetní techniku a programování nabízíme následující volitelné kursy zaměřené na aspekty informatiky užitečné pro matematiky.

Kód	Název	Kredity	ZS	LS
NMIN201	Programování 3	5	2/2 Z+Zk	
NMIN263	Principy počítačů a operační systémy	3	2/0 Zk	
NMIN203	Mathematica pro začátečníky *	2	$0/2 \mathrm{~Z}$	$0/2 \mathrm{~Z}$
NMIN264	Mathematica pro pokročilé	2		$0/2 \mathrm{~Z}$
NMIN266	Aplikace a využití počítačů v matematice	2	_	$0/2 \mathrm{~Z}$

^{*} Jedná se o jednosemestrální kurz vyučovaný v letním i zímním semestru.

3. rok studia

Na začátku 3. roku studia je potřeba vybrat jedno ze čtyř zaměření. Zaměření určuje jaká užší oblast matematiky bude hlouběji studována a pomáhá studentům vybírat vhodné předměty.

Program Obecná matematika umožňuje specializaci na jedno ze čtyř nabízených zaměření:

- 1. Zaměření **Stochastika** (STOCH) je určeno k přípravě na navazující magisterské studium programů *Pravděpodobnost, matematická statistika a ekonometrie* a *Finanční a pojistná matematika*.
- 2. Zaměření **Matematické struktury** (STR) je určeno k přípravě na navazující magisterské studium programů *Matematické struktury* a *Matematika pro informační technologie*.

- 3. Zaměření **Matematická analýza** (AN) je určeno k přípravě na navazující magisterské studium programu *Matematická analýza*.
- 4. Zaměření **Numerická analýza a matematické modelování** (NM) je určeno k přípravě na navazující magisterské studium programů *Numerická a výpočtová matematika* a *Matematické modelování ve fyzice a technice*.

Volba zaměření

Volba zaměření zahrnuje čtyři postupné kroky:

- o Výběr jedné ze čtyř variant předmětu "Bakalářské konzultace". Pozor, tento předmět se zapisuje až na počátku posledního semestru studia.
- o Výběr povinně volitelných předmětů podle "Bakalářských konzultací", typicky v třetím ročníku.
- o Výběr tématu bakalářské práce, typicky na počátku třetího ročníku.
- Výběr volitelného okruhu ústní části státní závěrečné zkoušky, při přihlašování ke státní závěrečné zkoušce.

Volba povinně volitelných předmětů

Volba povinně volitelných předmětů je usměrňována pomocí prerekvizit jednotlivých variant předmětu "Bakalářské konzultace". Každá varianta vyžaduje splnění určitých požadavků na absolvování předmětů zvoleného zaměření. Tyto prerekvizity se neověřují při zápise předmětu "Bakalářské konzultace", takže tento předmět je možné si zapsat i bez toho, že by student všechny prerekvizity splňoval. Ověřují se však při kontrole plnění studijních povinností, takže student, který v této fázi nesplňuje prerekvizity předmětu "Bakalářské konzultace", nemůže uzavřít studium.

Referativní seminář k bakalářské práci

V posledním semestru bakalářského studia doporučujeme absolvování volitelného "Referativního semináře k bakalářské práci". V tomto semináři se studenti nejdříve seznámí se základy sazby matematických textů pomocí programu LaTeX a zásady prezentace matematických výsledků. Poté si je sami vyzkoušejí na referátech o jejich bakalářských pracích.

3. rok studia — zaměření Stochastika

Kód	Název	Kredity	ZS	LS
NMMA30	1Úvod do komplexní analýzy	5	2/2 Z+Zk	
NMSA331	Matematická statistika 1	8	4/2 Z+Zk	
NMSA333	3 Teorie pravděpodobnosti 1	8	4/2 Z+Zk	
NMMA34	3Teorie míry a integrálu 2	3	2/0 Zk	
NMSA332	2 Matematická statistika 2	5	<u> </u>	2/2 Z+Zk
NMSA334	Náhodné procesy 1	8		4/2 Z+Zk
NMMA34	2 Vybrané partie z funkcionální	5		2/2 Z+Zk
	analýzy			
NMSA349	Bakalářské konzultace: Stochastika	6	_	$0/4~{ m Z}$
NMAT362	2 Referativní seminář k bakalářské	4		$0/2 \mathrm{~Z}$
	$prcute{a}ci$			•
	Povinně volitelné a volitelné	8		
	$p\check{r}edm\check{e}ty$			

Volba povinně volitelných předmětů je určena prerekvizitami předmětu NMSA351 "Bakalářské konzultace: Stochastika". Ten vyžaduje absolvování *všech* těchto předmětů:

Kód	Název	Kredity	ZS	LS
NMSA331	Matematická statistika 1	8	4/2 Z+Zk	_
NMSA333	Teorie pravděpodobnosti 1	8	4/2 Z+Zk	
NMMA34	3 Teorie míry a integrálu 2	3	2/0 Zk	
NMSA332	Matematická statistika 2	5		2/2 Z+Zk
NMSA334	Náhodné procesy 1	8		4/2 Z+Zk
NMMA34	2 Vybrané partie z funkcionální	5		2/2 Z+Zk
	analýzy			

Další doporučené předměty pro 3. ročník, zaměření Stochastika

Kód	Název	Kredity	ZS	LS
	1 Analýza maticových výpočtů 1	5	2/2 Z+Zk	_
NMSA230	Úvod do programování v R	1	$0/1 \mathrm{Z}$	
NMMA33	6Obyčejné diferenciální rovnice	5		2/2 Z+Zk

Dále doporučujeme ostatní povinně volitelné předměty ze Skupiny II níže.

3. rok studia — zaměření Matematické struktury

Kód	Název	Kredity	ZS	LS
NMMA30	1Úvod do komplexní analýzy	5	2/2 Z+Zk	
NMAG30	5 Komutativní algebra	6	3/1 Z+Zk	
NMAG33	5 Úvod do analýzy na varietách	5	2/2 Z+Zk	
NMAG34	9 Bakalářské konzultace: Matematické struktury	6	<u> </u>	$0/4~\mathrm{Z}$
NMAT362	2 Referativní seminář k bakalářské práci	4	_	$0/2 \mathrm{~Z}$
	Povinně volitelné předměty ze Skupiny STR	8		
	Povinně volitelné předměty	14		
	Volitelné předměty	12		

Volba povinně volitelných předmětů je určena prerekvizitami předmětu NMAG351 "Bakalářské konzultace: Matematické struktury". Ten vyžaduje absolvování všech těchto předmětů:

Kód	Název	Kredity	ZS	LS
NMAG21	2 Geometrie 2	5	_	2/2 Z+Zk
	5 Komutativní algebra	6	3/1 Z+Zk	
NMAG33	5 Úvod do analýzy na varietách	5	2/2 Z+Zk	

Předmět Geometrie 2 doporučujeme absolvovat už v letním semestru 2. ročníku. Dále "Bakalářské konzultace: Matematické struktury" vyžadují získání alespoň 8 kreditů ze Skupiny STR.

Skupina STR:

Kód	Název	Kredity	ZS	LS
	7 Úvod do teorie grup (S)	5	2/2 Z+Zk	_
NMAG33	9 Úvod do teorie reprezentací (S)	5	2/2 Z+Zk	
NMAG16	2 Úvod do matematické logiky (S, T)	3		2/0 Zk
NMAG33	6 Úvod do teorie kategorií (S)	6		3/1 Z+Zk
NMAG33	4 Úvod do teorie Lieových grup (S)	5		2/2 Z+Zk
NMIN331	Základy kombinatoriky a teorie	5		2/2 Z+Zk
	grafů (S, T)			

Další doporučené povinně volitelné předměty pro 3. ročník, zaměření Matematické struktury

Kód	Název	Kredity	ZS	LS
NPGR002	Digitální zpracování obrazu (T)	4	$3/0 \mathrm{~Zk}$	_
NMMB43	4 Geometrické modelování (T)	6	2/2 Z+Zk	
NMMA34	5Obecná topologie 1 (T)	6	3/1 Z+Zk	
NMMB30	9 Počítačová algebra (T)	6	3/1 Z+Zk	
NMMB33	7Samoopravné kódy (T)	6	3/1 Z+Zk	
NMMB20	6 Teorie čísel (S, T)	5		2/2 Z+Zk
NMMB21	Teorie informace (T)	6		3/1 Z+Zk
NMMB21	2 Úvod do kryptografie (T)	5		2/2 Z+Zk
NMAG33	7 Úvod do teorie grup (S)	5	2/2 Z+Zk	
NMAG336	6 Úvod do teorie kategorií (S)	6		3/1 Z+Zk
NMAG334	4 Úvod do teorie Lieových grup (S)	5		2/2 Z+Zk
NMAG338	8 Úvod do teorie množin (S)	6		3/1 Z+Zk
NMAG339	9 Úvod do teorie reprezentací (S)	5	2/2 Z+Zk	
NMMA34	2 Vybrané partie z funkcionální	5		2/2 Z+Zk
	analýzy (T)			
NMIN331	Základy kombinatoriky a teorie	5		2/2 Z+Zk
	grafů (T, S)			

Pro zájemce o navazující studijní program Matematické struktury doporučujeme předměty označené S. Pro zájemce o navazující studijní program Matematika pro informační technologie doporučujeme předměty označené T.

Předměty NMMB206, NMMB210, NMMB212, NMAG162 a NMAG338 je možné absolvovat už ve druhém roce studia.

3. rok studia — zaměření Matematická analýza

Kód	Název	Kredity	ZS	LS
NMMA301 Úvod do komplexní analýzy		5	2/2 Z+Zk	
NMMA33	9Úvod do parciálních diferenciálních	5	2/2 Z+Zk	
	rovnic			
	3Teorie míry a integrálu 2	3	2/0 Zk	
NMMA33	31 Úvod do funkcionální analýzy	8	4/2 Z+Zk	
NMMA34	5Obecná topologie 1	6	3/1 Z+Zk	
NMMA33	6Obyčejné diferenciální rovnice	5		2/2 Z+Zk

NMMA351Bakalářské konzultace: Matematická analýza	6		$0/4~\mathrm{Z}$
NMAT362 Referativní seminář k bakalářské práci	4	_	$0/2 \mathrm{~Z}$
Povinně volitelné předměty Volitelné předměty	6 12		

Volba povinně volitelných předmětů je určena prerekvizitami předmětu NMMA351 "Bakalářské konzultace: Matematická analýza". Ten vyžaduje absolvování všech těchto předmětů:

Kód	Název	Kredity	ZS	LS
NMAG212	2 Geometrie 2	5	_	2/2 Z+Zk
NMMA33	9Úvod do parciálních diferenciálních	5	2/2 Z+Zk	
	rovnic			
	3 Teorie míry a integrálu 2	3	$2/0 \mathrm{Zk}$	
NMMA33	1Úvod do funkcionální analýzy	8	4/2 Z+Zk	
NMMA33	6Obyčejné diferenciální rovnice	5		2/2 Z+Zk

Předmět Geometrie 2 doporučujeme absolvovat už v letním semestru 2. ročníku. Doporučené povinně volitelné předměty pro 3. ročník, zaměření Matematická analýza

Kód Název	Kredity	ZS	LS
NMMA337Seminář z teorie reálných funkcí 1	2	0/2 Z	
NMMA347Seminář ze základních vlastností	2	$0/2 \mathrm{~Z}$	
prostorů funkcí 1			
NMMA345Obecná topologie 1	6	3/1 Z+Zk	
NMAG335 Úvod do analýzy na varietách	5	2/2 Z+Zk	
NMMA340Seminář z teorie reálných funkcí 2	2		$0/2 \mathrm{~Z}$
NMMA348Seminář ze základních vlastností	2	_	$0/2 { m Z}$
prostorů funkcí 2			
NMAG162 Úvod do matematické logiky	3		$2/0 \mathrm{Zk}$
NMAG338 Úvod do teorie množin	6		3/1 Z+Zk
NMNM338Numerické řešení parciálních	5		2/2 Z+Zk
diferenciálních rovnic			
NMNM336 Úvod do metody konečných prvků	5		2/2 Z+Zk
NMNM334Úvod do matematického modelování	5	<u> </u>	3/0 Zk

Jako volitelné předměty doporučujeme ostatní povinně volitelné předměty ze Skupiny II níže.

3. rok studia — zaměření Numerická analýza a matematické modelování

Kód	Název	Kredity	ZS	LS
NMMA30	1Úvod do komplexní analýzy	5	2/2 Z+Zk	_
NMNM33	1 Analýza maticových výpočtů 1	5	2/2 Z+Zk	
NMMA33	9Úvod do parciálních diferenciálních	5	2/2 Z+Zk	
	rovnic			
NMMA33	1Úvod do funkcionální analýzy	8	4/2 Z+Zk	

NMNM338Numerické řešení parciálních diferenciálních rovnic	5	_	2/2 Z+Zk
NMMA336Obyčejné diferenciální rovnice	5		2/2 Z+Zk
NMNM334Úvod do matematického modelování	5		$3/0 \mathrm{~Zk}$
NMAT362 Referativní seminář k bakalářské	4		$0/2 \mathrm{~Z}$
$pr\'aci$			
NMNM351Bakalářské konzultace: Numerická	6		$0/4~\mathrm{Z}$
analýza a matematické modelování			
Volitelné předměty	12		

Volba povinně volitelných předmětů je určena prerekvizitami předmětu NMNM351 "Bakalářské konzultace: Numerická analýza a matematické modelování". Ten vyžaduje absolvování $v\check{s}ech$ těchto předmětů:

Kód	Název	Kredity	ZS	LS
NMAG212	2 Geometrie 2	5	_	2/2 Z+Zk
NMNM33	l Analýza maticových výpočtů 1	5	2/2 Z+Zk	
NMMA339	9Úvod do parciálních diferenciálních	5	2/2 Z+Zk	
	rovnic			
NMMA33	l Úvod do funkcionální analýzy	8	4/2 Z+Zk	
NMNM338	8 Numerické řešení parciálních	5	_	2/2 Z+Zk
	diferenciálních rovnic			
NMMA336	Obyčejné diferenciální rovnice	5		2/2 Z+Zk
NMNM334	4Úvod do matematického modelování	5		$3/0 \mathrm{~Zk}$

Předmět Geometrie 2 doporučujeme absolvovat už v letním semestru 2. ročníku. Další doporučené předměty pro 3. ročník, zaměření Numerická analýza a matematické modelování

Kód	Název	Kredity	ZS	LS
NOFY003	Teoretická mechanika	7	3/2 Z+Zk	<u> </u>
NMMB43	4 Geometrické modelování	6	2/2 Z+Zk	
	2 Analýza maticových výpočtů 2	5		2/2 Z+Zk
NMNM33	6Úvod do metody konečných prvků	5	_	2/2 Z+Zk

Shrnutí studijního plánu

Je potřeba splnit všechny povinnosti z povinných předmětů.

Povinné předměty

Kód	Název	Kredity	ZS	LS
NMMA10	1 Matematická analýza 1	10	4/4 Z+Zk	
NMAG11	1 Lineární algebra 1	10	4/2 Z+Zk	
NMIN111	Programování 1	3	$0/2 \mathrm{~Z}$	
NMIN105	Diskrétní matematika	5	2/2 Z+Zk	
NTVY014	4 Tělesná výchova I	1	$0/2 \mathrm{~Z}$	
NMMA10	2Matematická analýza 2	10		4/4 Z+Zk
NMAG11	2 Lineární algebra ${f 2}$	10		4/2 Z+Zk
NMIN112	Programování 2	8		2/4 Z+Zk

NTVY015 Tělesná výchova II NMMA201 Matematická analýza 3 NMMA205 Teorie míry a integrálu 1 NMNM201 Základy numerické matematiky NMAG211 Geometrie 1 NTVY016 Tělesná výchova III NMMA204 Matematická analýza 4 NMSA202 Pravděpodobnost	1 8 5 8 5 1 5 8	 0/2 Z — — — — — 2/2 Z+Zk 4/2 Z+Zk
a matematická statistika NMAG206 A lgebra	8	4/2 Z+Zk
NMAG200 Algebra NTVY017 Tělesná výchova IV NJAZ091 Anglický jazyk NMMA301Úvod do komplexní analýzy	5 1 1 5	 4/2 Z+Zk 0/2 Z 0/0 Zk —

Povinně volitelné předměty

Skupina I.

Čtyři varianty předmětu "Bakalářské konzultace" určené pro jednotlivá zaměření tvoří oddělenou skupinu povinně volitelných předmětů. K úspěšnému ukončení studia je nutné si jednu z těchto variant vybrat a získat z ní zápočet.

Z této skupiny je třeba získat alespoň 6 kreditů. V závorce jsou uvedena zaměření, pro něž je předmět doporučen.

Kód	Název	Kredity	ZS	LS
NMAG35	1 Bakalářské konzultace: Matematické struktury (STR)	6	_	0/4 Z
NMMA35	1 Bakalářské konzultace: Matematická analýza (AN)	6	_	$0/4~\mathrm{Z}$
NMNM35	1 Bakalářské konzultace: Numerická analýza a matematické modelování (NM)	6	_	0/4 Z
NMSA351	Bakalářské konzultace: Stochastika (STOCH)	6	_	$0/4~\mathrm{Z}$

Volba povinně volitelných předmětů ze Skupiny II je usměrňována pomocí prerekvizit jednotlivých variant předmětu "Bakalářské konzultace". Každá varianta vyžaduje splnění určitých požadavků na absolvování předmětů zvoleného zaměření. Tyto prerekvizity se neověřují při zápise předmětu "Bakalářské konzultace", takže tento předmět je možné si zapsat i bez toho, že by student všechny prerekvizity splňoval. Ověřují se však při kontrole plnění studijních povinností, takže student, který v této fázi nesplňuje prerekvizity předmětu "Bakalářské konzultace", nemůže uzavřít studium.

Prerekvizity bakalářských konzultací

Stochastika

Předmět NMSA351 "Bakalářské konzultace: Stochastika" vyžaduje absolvování $v\check{s}ech$ těchto předmětů:

Kód	Název	Kredity	ZS	LS
NMSA331	Matematická statistika 1	8	4/2 Z+Zk	_

NMMA343 Teorie míry a integrálu 2 NMSA333 Teorie pravděpodobnosti 1	3 8	$2/0 \ { m Zk} \ 4/2 \ { m Z+Zk}$	_
NMSA332 Matematická statistika 2	5	——————————————————————————————————————	2/2 Z+Zk
NMSA334 Náhodné procesy 1 NMMA342Vybrané partie z funkcionální	8 5	_	4/2 Z+Zk $2/2$ Z+Zk
analýzy			

Matematické struktury

Předmět NMAG349 "Bakalářské konzultace: Matematické struktury" vyžaduje absolvování $v\check{s}ech$ předmětů uvedených níže.

Kód	Název	Kredity	ZS	LS
NMAG21	2 Geometrie 2	5	_	2/2 Z+Zk
	5 Komutativní algebra	6	3/1 Z+Zk	
NMAG33	5 Úvod do analýzy na varietách	5	2/2 Z+Zk	

Dále předmět "Bakalářské konzultace: Matematické struktury" vyžaduje získání alespoň 8 kreditů z následujících předmětů:

Kód	Název	Kredity	ZS	LS
	7 Úvod do teorie grup	5	2/2 Z+Zk	<u> </u>
NMAG33	9 Úvod do teorie reprezentací	5	2/2 Z+Zk	
NMAG16	2 Úvod do matematické logiky	3		$2/0 \mathrm{Zk}$
NMAG33	6 Úvod do teorie kategorií	6		3/1 Z+Zk
NMAG33	4 Úvod do teorie Lieových grup	5		2/2 Z+Zk
NMIN331	Základy kombinatoriky a teorie	5		2/2 Z+Zk
	grafů			

Matematická analýza

Předmět NMMA351 "Bakalářské konzultace: Matematická analýza" vyžaduje absolvování $v\check{s}ech$ předmětů uvedených níže. Pro úspěšné studium magisterského programu Matematická analýza je navíc žádoucí znalost látky z předmětu NMMA345 Obecná topologie 1.

Kód	Název	Kredity	ZS	LS
NMAG212 Geometrie 2		5	_	2/2 Z+Zk
NMMA33	9Úvod do parciálních diferenciálních	5	2/2 Z+Zk	
	rovnic			
	3 Teorie míry a integrálu 2	3	$2/0 \mathrm{Zk}$	
NMMA33	1Úvod do funkcionální analýzy	8	4/2 Z+Zk	
NMMA33	6Obyčejné diferenciální rovnice	5		2/2 Z+Zk

Numerická analýza a matematické modelování

Předmět NMNM351 "Bakalářské konzultace: Numerická analýza a matematické modelování" vyžaduje absolvování *všech* těchto předmětů:

Kód	Název	Kredity	ZS	LS
NMAG212	2 Geometrie 2	5	_	2/2 Z+Zk
NMNM33	1 Analýza maticových výpočtů 1	5	2/2 Z+Zk	

NMMA339 Úvod do parciálních diferenciálních rovnic	5	2/2 Z+Zk	_
	0	4 /0 7 . 71	
NMMA331 Úvod do funkcionální analýzy	8	4/2 Z+Zk	
NMNM338 Numerické řešení parciálních	5		2/2 Z+Zk
diferenciálních rovnic			
NMMA336Obyčejné diferenciální rovnice	5		2/2 Z+Zk
NMNM334Úvod do matematického modelování	5		3/0 Zk

Skupina II.

 ${\bf Z}$ této skupiny je třeba získat alespo
ň 38 kreditů. V závorce jsou uvedena zaměření, pro něž je předmět doporučen.

Kód	Název	Kredity	ZS	LS
NMNM33	1 Analýza maticových výpočtů 1 (STOCH, NM)	5	2/2 Z+Zk	
NMNM33	2 Analýza maticových výpočtů 2 (NM)	5	_	2/2 Z+Zk
NPGR002	Digitální zpracování obrazu (STR)	4	$3/0 \mathrm{Zk}$	-
NMMB43	4 Geometrické modelování (STR, NM)	6	2/2 Z+Zk	
NMAG212	2 Geometrie 2 (STOCH, STR, MA, NM)	5	_	2/2 Z+Zk
NMAG30	5 Komutativní algebra (STR)	6	3/1 Z+Zk	
NMSA331	Matematická statistika 1 (STOCH)	8	4/2 Z+Zk	
NMSA332	2 Matematická statistika 2 (STOCH)	5		2/2 Z+Zk
NMSA334	Náhodné procesy 1 (STOCH)	8		4/2 Z+Zk
NMNM33	8 Numerické řešení parciálních	5	_	2/2 Z+Zk
	diferenciálních rovnic (MA, NM)			
NMMA34	5 Obecná topologie 1 (MA, STR)	6	3/1 Z+Zk	
NMMA33	6 Obyčejné diferenciální rovnice (MA,	5	_	2/2 Z+Zk
NIMADAO	NM)	C	9 /1 77 + 771	
	9 Počítačová algebra (STR)	6	3/1 Z+Zk	_
	7 Samoopravné kódy (STR)	6	3/1 Z+Zk	
MMMA33	7Seminář z teorie reálných funkcí 1 (MA)	2	$0/2 \mathrm{~Z}$	
NMMA34	0Seminář z teorie reálných	2		$0/2 \mathrm{~Z}$
	funkcí 2 (MA)			•
NMMA34	7Seminář ze základních vlastností prostorů funkcí 1 (MA)	2	$0/2 \mathrm{~Z}$	_
NMMA34	8Seminář ze základních vlastností prostorů funkcí 2 (MA)	2	_	$0/2 \mathrm{~Z}$
NOFY003	Teoretická mechanika (NM)	7	3/2 Z+Zk	
	6 Teorie čísel (STR)	5		2/2 Z+Zk
	0 Teorie informace (STR)	6		3/1 Z+Zk
	3 Teorie míry a integrálu 2 (STOCH,	3	$2/0 \mathrm{~Zk}$	
373.50 1 - : :	MA)	_	. /2 = ==	
	3 Teorie pravděpodobnosti 1 (STOCH)	8	4/2 Z+Zk	
NMAG33	5 Úvod do analýzy na varietách (STR, MA)	5	2/2 Z+Zk	_

NMMA331 Úvod do funkcionální analýzy (MA, NM)	8	4/2 Z+Zk	_
NMMB212 Úvod do kryptografie (STR)	5		2/2 Z+Zk
NMAG162 Úvod do matematické logiky (STR,	3		2/0 Zk
MA)			•
NMNM334Úvod do matematického	5		$3/0 \mathrm{Zk}$
modelování (MA, NM)			
NMNM336 Úvod do metody konečných	5		2/2 Z+Zk
prvků (NM)			
NMMA339 Úvod do parciálních diferenciálních	5	2/2 Z+Zk	
rovnic (MA, NM)			
NMAG337 Úvod do teorie grup (STR)	5	2/2 Z+Zk	
NMAG336 Úvod do teorie kategorií (STR)	6		3/1 Z+Zk
NMAG334 Úvod do teorie Lieových grup (STR)	5		2/2 Z+Zk
NMAG338 Úvod do teorie množin (STR, MA)	6		3/1 Z+Zk
NMAG339 Úvod do teorie reprezentací (STR)	5	2/2 Z+Zk	_
NMMA342Vybrané partie z funkcionální	5		2/2 Z+Zk
analýzy (STOCH, STR)			
NMIN331 Základy kombinatoriky a teorie	5		2/2 Z+Zk
grafů (STR)			

Státní závěrečná zkouška

Podmínky pro přihlášení ke státní závěrečné zkoušce

- Získání alespoň 180 kreditů.
- Splnění všech povinných předmětů studijního plánu.
- Splnění povinně volitelných předmětů ze skupiny I v rozsahu alespoň 6 kreditů.
- Splnění povinně volitelných předmětů ze skupiny II v rozsahu alespoň 38 kreditů.
- Odevzdání vypracované bakalářské práce ve stanoveném termínu.

Ústní část státní závěrečné zkoušky

Zkouška má přehledový charakter. Žádá se, aby posluchač prokázal pochopení základních pojmů, principů a výsledků, byl schopen je ilustrovat na příkladech a předvedl určitou míru syntézy.

Ústní část státní závěrečné zkoušky se skládá ze tří tématických okruhů, z každého dostane student jednu otázku. Dva okruhy (Matematická analýza, Lineární a obecná algebra) jsou povinné, třetí okruh je volitelný a odpovídá zvolenému zaměření. Student si může vybrat třetí okruh z možností:

- Stochastika
- Matematické struktury
- Matematická analýza
- Numerická analýza a matematické modelování

Podrobnosti o organizaci státních závěrečných zkoušek a také podrobnější vysvětlení požadavků pro ústní část státní závěrečné zkoušky lze najít na stránkách http://garant.karlin.mff.cuni.cz/stud/bc_szz_main.shtml

Požadavky pro ústní část státní závěrečné zkoušky

1. Matematická analýza

Posloupnosti a řady čísel a funkcí. Diferenciální a integrální počet funkcí jedné reálné proměnné. Diferenciální počet funkcí více proměnných. Obyčejné diferenciální rovnice.

2. Lineární a obecná algebra

Matice a determinanty, soustavy lineárních rovnic, vektorové prostory, lineární a bilineární formy, základy teorie grup a komutativních okruhů.

3. Volitelný okruh

3A. Stochastika

Teorie pravděpodobnosti: pravděpodobnostní prostor, nezávislost, náhodné veličiny a vektory, zákony velkých čísel, centrální limitní věta. Matematická statistika: náhodný výběr, uspořádaný náhodný výběr, základy teorie odhadu a testování hypotéz.

3B. Matematické struktury

Základy teorie funkcí komplexní proměnné. Rozšíření těles. Kořenová a rozkladová nadtělesa. Galoisova teorie. Polynomiální okruhy. Základy diferenciální geometrie křivek a ploch. Varieta a její tečný prostor. Diferenciální formy. Stokesova věta. Integrace funkcí na plochách a na Riemannově varietě.

3C. Matematická analýza

Základy teorie Lebesgueova integrálu. Banachovy a Hilbertovy prostory. Spojitá lineární zobrazení. Fourierovy řady v Hilbertových prostorech. Bodové chování klasických Fourierových řad. Základy teorie funkcí komplexní proměnné.

3D. Numerická analýza a matematické modelování

Základy teorie Lebesgueova integrálu, Hilbertových prostorů a funkcí komplexní proměnné. Aproximace funkcí, numerická integrace, numerické řešení nelineárních algebraických rovnic, numerické řešení obyčejných diferenciálních rovnic. Přímé a iterační metody řešení lineárních algebraických rovnic. Klasická teorie a numerické řešení parciálních diferenciálních rovnic. Základy matematického modelování ve fyzice kontinua.

2.2 Finanční matematika

Garantující pracoviště: Katedra pravděpodobnosti a matematické statistiky Garant programu: doc. RNDr. Ing. Miloš Kopa, Ph.D.

Doporučený průběh studia

1. rok studia

Kód	Název	Kredity	ZS	LS
NMAG11	1 Lineární algebra 1	10	4/2 Z+Zk	
NMTM10	1 Matematická analýza I	8	4/2 Z+Zk	
NMIN111	Programování 1	3	$0/2 \mathrm{~Z}$	
NMFM10	1 Účetnictví 1	5	2/2 Z+Zk	
NTVY014	4 Tělesná výchova I	1	$0/2 \mathrm{~Z}$	_
	$Anglick\acute{y}\ jazyk$	1	$0/2 \mathrm{~Z}$	_
NMAG11	2 Lineární algebra 2	10		4/2 Z+Zk
NMMA12	2Kalkulus 1	10		4/4 Z+Zk

NMFM104 Úvod do financí	3	 $2/0 \mathrm{\ Zk}$
NTVY015 Tělesná výchova II	1	 $0/2 \mathrm{~Z}$
$Anglick \acute{y}~jazyk$	1	 $0/2 \mathrm{~Z}$
Volitelné předměty	7	

Doporučené volitelné předměty

Velice doporučujeme navštěvovat kursy anglického jazyka. Jejich výběr je popsán v úvodní části oblasti vzdělávání Matematika.

Studentům, kteří si na začátku studia chtějí procvičit a zdokonalit základní matematické dovednosti potřebné ke studiu, doporučujeme předměty NMTM161 a NMTM162.

Kód	Název	Kredity	ZS	LS
NMTM16	1 Matematický proseminář I	2	0/2 Z	
NMTM162	2 Matematický proseminář II	2		$0/2 \mathrm{~Z}$
NMIN112	Programování 2	8		2/4 Z+Zk
NMSA170	$Pravd\check{e}podobnostn\'i~a~statistick\'e$	2		$0/2 \mathrm{~Z}$
	$probl\'emy$			

2. rok studia

Kód	Název	Kredity	ZS	LS
NMMA22	1 Kalkulus 2	8	4/2 Z+Zk	
NMNM21	1Úvod do numerické matematiky	8	4/2 Z+Zk	
NMFM20	7 Matematické metody ve	5	2/2 Z+Zk	
	financích			
NMFM20	5 Matematika ve financích	6	$4/0 \mathrm{Zk}$	
	a pojišťovnictví			
NTVY016	Tělesná výchova III	1	$0/2 \mathrm{~Z}$	
	Anglický jazyk	1	$0/2 \mathrm{~Z}$	
NMFM20	2 Pravděpodobnost pro finanční	8		4/2 Z+Zk
	matematiky			
NMFM20	$4\mathrm{ ext{ ext{$}}Uvod\ do\ optimalizace}$	5		2/2 Z+Zk
NMFM20	l Finanční management	3		$2/0 \mathrm{~Zk}$
NMIN203	Mathematica pro začátečníky	2		$0/2 \mathrm{~Z}$
NTVY017	′ Tělesná výchova IV	1		$0/2 \mathrm{Z}$
NJAZ091	Anglický jazyk	1	_	$0/0 \mathrm{~Zk}$
	$Anglick \acute{y}~jazyk$	1		$0/2 \mathrm{Z}$
	Volitelné předměty	10		

Doporučené volitelné předměty

Kód	Název	Kredity	ZS	LS
	9 Bankovnictví 6 Veřejné finance	5 3	2/2 Z+Zk	
	0 Ekonomie	5	_	2/2 Z+Zk

3. rok studia

Na začátku 3. roku studia je potřeba vybrat jedno ze dvou zaměření. Zaměření určuje jaká užší oblast finanční matematiky bude hlouběji studována a pomáhá studentům vybírat vhodné předměty.

Program Finanční matematika umožňuje specializaci na jedno ze dvou nabízených zaměření:

- 1. Zaměření **Finančně-pojistné výpočty** je určeno pro studenty, kteří chtějí po ukončení bakalářského studia odejít do praxe.
- 2. Zaměření **Finanční modelování** je určeno k přípravě na navazující magisterské studium programu *Finanční a pojistná matematika*.

Donor	učaný	průběh	Finanční	modelování
Dobori	ucenv	bruben -	- Financhi	modelovani

Kód	Název	Kredity	ZS	LS
NMFM301	Statistika pro finanční matematiky	8	4/2 Z+Zk	
NMFM308	Výpočetní prostředky finanční a pojistné matematiky	8	4/2 Z+Zk	
NMFM311	Úvod do pojišťovnictví	5	2/2 Z+Zk	_
	. Kalkulus 3	8	4/2 Z+Zk	
NMFM316	Pojišťovací právo	3		$2/0 \mathrm{~Zk}$
NMFM332	Statistika pro finanční matematiky 2	5	_	2/2 Z+Zk
NMFM334	Základy regrese	5		2/2 Z+Zk
NMAT362	Referativní seminář k bakalářské práci	4	_	$0/2 \mathrm{~Z}$
NSZZ031	Vypracování a konzultace	6		$0/4 \mathrm{~Z}$
	bakalářské práce Volitelné předměty	8		
Doporučený	průběh - Finančně-pojistné výpočty			
Kód	Název	Kredity	ZS	LS
NMFM301	Statistika pro finanční matematiky	8	4/2 Z+Zk	
NMFM308	Výpočetní prostředky finanční a pojistné matematiky	8	4/2 Z+Zk	
NMFM311	Úvod do pojišťovnictví	5	2/2 Z+Zk	_
NMFM316	Pojišťovací právo	3		$2/0 \mathrm{~Zk}$
NMFM336	Finančně-pojistná praxe	15		$0/15 { m Z}$
NMFM338	Vybrané pojistně-matematické metody	3	_	2/0 Zk
NMAT362	Referativní seminář k bakalářské práci	4	_	0/2 Z
NSZZ031	Vypracování a konzultace bakalářské práce	6	_	$0/4 \mathrm{~Z}$
	Volitelné předměty	8		

Doporučené volitelné předměty

Doporučujeme zapsání semináře NMAT362. Dále doporučujeme

Kód Název	Kredity	ZS	LS
NMFM462 Praktické aspekty měření a řízení finančních rizik	3	2/0 Zk	_
NMIN264 Mathematica pro pokročilé NMFM461 Demografie	$\frac{2}{3}$		$0/2 \mathrm{Z}$ $2/0 \mathrm{Zk}$

Shrnutí studijního plánu

Povinné předměty

Všechny předměty z této skupiny je potřeba úspěšně absolvovat.

Kód	Název	Kredity	ZS	LS
NMAG11	l Lineární algebra 1	10	4/2 Z+Zk	
NMTM10	1 Matematická analýza I	8	4/2 Z+Zk	
NMIN111	Programování 1	3	$0/2 \mathrm{~Z}$	
NMFM10	l Účetnictví 1	5	2/2 Z+Zk	
NTVY014	Tělesná výchova I	1	$0/2 \mathrm{~Z}$	
NMAG11	2 Lineární algebra 2	10		4/2 Z+Zk
NMMA12	2Kalkulus 1	10		4/4 Z+Zk
NMFM10	4 Úvod do financí	3		$2/0 \mathrm{Zk}$
NTVY015	Tělesná výchova II	1		$0/2 \mathrm{~Z}$
NMMA22	1Kalkulus 2	8	4/2 Z+Zk	
NMNM21	1Úvod do numerické matematiky	8	4/2 Z+Zk	
NMFM20	7 Matematické metody ve	5	2/2 Z+Zk	
	financích			
NMFM20	5 Matematika ve financích	6	$4/0 \mathrm{Zk}$	_
	a pojišťovnictví		•	
NTVY016	Tělesná výchova III	1	$0/2 \mathrm{~Z}$	
NMFM20	2 Pravděpodobnost pro finanční	8		4/2 Z+Zk
	matematiky			
NMFM20	4 Úvod do optimalizace	5		2/2 Z+Zk
NMFM20	l Finanční management	3		2/0 Zk
NMIN203	Mathematica pro začátečníky	2		$0/2 \mathrm{~Z}$
NTVY017	' Tělesná výchova IV	1		$0/2 \mathrm{~Z}$
NJAZ091	Anglický jazyk	1		0/0 Zk
NMFM30	l Statistika pro finanční	8	4/2 Z+Zk	
	matematiky			
NMFM30	8 Výpočetní prostředky finanční	8	4/2 Z+Zk	
	a pojistné matematiky		•	
NMFM31	1 Úvod do pojišťovnictví	5	2/2 Z+Zk	
	6 Pojišťovací právo	3		2/0 Zk
	Vypracování a konzultace	6		$0/4 \mathrm{~Z}$
	bakalářské práce			,

Z této skupiny je potřeba získat alespoň 18 kreditů. V závorce uvádíme, zda je předmět určen pro teoretické zaměření Finanční modelování (FM) nebo praktické zaměření Finančně-pojistné výpočty (FPV).

Kód	Název	Kredity	ZS	LS
NMMA34	1 Kalkulus 3 (FM)	8	4/2 Z+Zk	_
NMFM33	2 Statistika pro finanční	5		2/2 Z+Zk
	matematiky 2 (FM)			
NMFM33	4 Základy regrese (FM)	5		2/2 Z+Zk
NMFM33	6 Finančně-pojistná praxe (FPV)	15		$0/15 \mathrm{~Z}$
NMFM33	8 Vybrané pojistně-matematické	3		2/0 Zk
	metody (FPV)			

Doporučené volitelné předměty

Kód	Název	Kredity	ZS	LS
NMUM16	1 Matematický proseminář I	2	$0/2 \mathrm{~Z}$	
NMUM16	2 Matematický proseminář II	2	<u>.</u>	$0/2 \mathrm{Z}$
NMFM260	$0\ Ekonomie$	5		2/2 Z+Zk
NMIN112	Programování 2	8		2/4 Z+Zk
NMSA160	Pravděpodobnostní a statistické	5		2/2 Z+Zk
	problémy			
NMFM309	9Bankovnictv i	5	2/2 Z+Zk	
NMFM30	6 Veřejné finance	3		$2/0 \mathrm{~Zk}$
NMFM46	1 Demografie	3		$2/0 \mathrm{Zk}$
NMIN264	Mathematica pro pokročilé	2		$0/2 \mathrm{~Z}$
NMFM462	2 Praktické aspekty měření a řízení	3	2/0 Zk	
	finančních rizik			
NMAT362	2 Referativní seminář k bakalářské	4		$0/2 \mathrm{~Z}$
	$pr\'aci$			•

Státní závěrečná zkouška

Podmínky pro přihlášení ke státní závěrečné zkoušce

- Získání alespoň 180 kreditů.
- Splnění všech povinných předmětů studijního plánu.
- Získání alespoň 18 kreditů ze skupiny povinně volitelných předmětů.
- Odevzdání vypracované bakalářské práce ve stanoveném termínu.

Podrobnosti o organizaci státních závěrečných zkoušek a také podrobnější vysvětlení požadavků pro ústní část státní závěrečné zkoušky lze najít na stránkách http://garant.karlin.mff.cuni.cz/stud/bc_szz_main.shtml.

Ústní část státní závěrečné zkoušky

Zkouška má přehledový charakter. Jsou kladeny jen širší otázky a žádá se, aby posluchač prokázal pochopení základních problémů, byl schopen je ilustrovat na konkrétních situacích a osvědčil určitou míru syntézy a hlubšího pochopení. Z každého z tematických okruhů 1-3 dostane student jednu otázku.

1. tématický okruh: Matematika

Diferenciální počet. Integrální počet. Vázané extrémy funkcí více proměnných. Vektorové prostory. Matice a determinanty, lineární soustavy rovnic. Lineární a bilineární formy.

2. tématický okruh: Finanční matematika a účetnictví

Časová hodnota peněz. Výnosové křivky. Hodnocení finančních investic včetně derivátů. Míry rizika. Metody analýzy trhu cenných papírů. Optimalizace portfolia. Podvojné účetnictví. Oceňování majetku v účetnictví. Úvod do tarifování, druhy technických rezerv, specifika účetnictví pojišťoven.

3. tématický okruh: Pravděpodobnost a statistika

Náhodné veličiny a vektory, rozdělení, kovariance, korelace, podmíněné rozdělení. Konvergence posloupností náhodných veličin. Odhady parametrů a testy hypotéz. Kontingenční tabulky a analýza rozptylu.

2.3 Matematika pro informační technologie

Garantující pracoviště: Katedra algebry

Garant programu: doc. RNDr. David Stanovský, Ph.D.

Doporučený průběh studia

1. rok studia

Kód	Název	Kredity	ZS	LS
NMAG11	l Lineární algebra 1	10	4/2 Z+Zk	_
NMMA10	1 Matematická analýza 1	10	4/4 Z+Zk	
NMIN105	Diskrétní matematika	5	2/2 Z+Zk	
NMIN111	Programování 1	3	$0/2 \mathrm{~Z}$	
NTVY014	Tělesná výchova I	1	$0/2 \mathrm{~Z}$	
	Anglický jazyk	1	$0/2 \mathrm{~Z}$	
NMAG112	2 Lineární algebra 2	10		4/2 Z+Zk
NMMA10	2Matematická analýza 2	10		4/4 Z+Zk
NMIN112	Programování 2	8		2/4 Z+Zk
NTVY015	Tělesná výchova II	1		$0/2 \mathrm{~Z}$
	Anglický jazyk	1	_	0/2 Z

Doporučené volitelné předměty

Velice doporučujeme navštěvovat volitelné kursy anglického jazyka. Jejich výběr je popsán v úvodní části oblasti vzdělávání Matematika.

Studentům, kteří si na začátku studia chtějí procvičit a zdokonalit základní matematické dovednosti potřebné ke studiu, doporučujeme předměty NMTM161 a NMTM162.

Kód	Název	Kredity	ZS	LS
NMTM16	1 Matematický proseminář I	2	$0/2 \mathrm{~Z}$	_
NMTM16	2 Matematický proseminář II	2		$0/2 \mathrm{~Z}$
NMSA170	Pravděpodobnostní a statistické	2		$0/2 \mathrm{~Z}$
	$probl\'emy$			
NMAG160) Proseminář z teorie čísel	2		$0/2 \mathrm{~Z}$

2. rok studia

Kód	Název	Kredity	ZS	LS
NMAG211	l Geometrie 1	5	2/2 Z+Zk	
NMMA20	l Matematická analýza 3	8	4/2 Z+Zk	
NMSA211	Pravděpodobnost	6	2/2 Z+Zk	
NMMB20	3 Z áklady numerické lineární	4	2/1 Z+Zk	
	algebry			
NMIN201	Programování 3	5	2/2 Z+Zk	
NTVY016	Tělesná výchova III	1	$0/2 \mathrm{~Z}$	
	Anglický jazyk	1	$0/2 \mathrm{~Z}$	
NMAG206	3 Algebra	8	<u> </u>	4/2 Z+Zk
NMMB21	OTeorie informace	6		3/1 Z+Zk
NMMB21	$2 ext{ ext{ ext{ ext{ ext{ ext{ ext{ ext$	5		2/2 Z+Zk
NTVY017	Tělesná výchova IV	1		$0/2 \mathrm{~Z}$
NJAZ091	Anglický jazyk	1		$0/0 \mathrm{~Zk}$
	Anglický jazyk	1		$0/2 \mathrm{~Z}$
	Povinně volitelné a volitelné	8		
	předměty			

Povinně volitelné předměty

Z povinně volitelných předmětů je potřeba dohromady ve druhém a třetím roce studia získat 26 kreditů. Předměty vhodné ve druhém ročníku jsou:

Kód	Název	Kredity	ZS	LS
	6 Teorie čísel 2 Úvod do matematické logiky	5 3	_	2/2 Z+Zk $2/0$ Zk

Doporučené volitelné předměty

Samozřejmě doporučujeme jako volitelné předměty zapisovat povinně volitelné předměty uvedené výše. Dále doporučujeme

Kód	Název	Kredity	ZS	LS
NMAG26	1 Proseminář z algebry	2	_	$0/2 \mathrm{~Z}$
NMAG212	2 Geometrie 2	5		2/2 Z+Zk

3. rok studia

Kód	Název	Kredity	ZS	LS
NMMB43	4 Geometrické modelování	6	2/2 Z+Zk	_
NMAG305	5 Komutativní algebra	6	3/1 Z+Zk	
NMMB30	9Počítačová algebra	6	3/1 Z+Zk	
NMAT362	Referativní seminář	4		$0/2 \mathrm{~Z}$
	k bakalářské práci			
NSZZ031	Vypracování a konzultace	6		$0/4 \mathrm{~Z}$
	bakalářské práce			,
	Povinně volitelné a volitelné	32		
	předměty			

Pokud jste ještě neabsolvovali povinně volitelné předměty doporučené v druhém roce studia, můžete si je zapsat nyní. Další povinně volitelné předměty vhodné pro třetí ročník studia jsou:

Kód	Název	Kredity	ZS	LS
NMNM33	l Analýza maticových výpočtů 1	5	2/2 Z+Zk	
NPGR002	Digitální zpracování obrazu	4	3/0 Zk	
NMMB335	5 Matematická kryptografie	4	2/1 Z+Zk	
	a kryptoanalýza I		•	
NPFL129	Úvod do strojového učení	5	2/2 Z+Zk	
	v Pythonu		•	
NMMB337	7 Samoopravné kódy	6	3/1 Z+Zk	
NSWI141	Úvod do počítačových sítí	3	2/0 KZ	
NMMB332	2 Aplikovaná kryptografie	4	<u>.</u>	2/1 Z+Zk
NMMB334	Datové a procesní modely	5		2/2 Z+Zk
NMMB336	Matematická kryptografie	3		$2/0 \mathrm{Zk}$
	a kryptoanalýza II			·
NMIN331	Základy kombinatoriky a teorie	5		2/2 Z+Zk
	grafů			,

Doporučené volitelné předměty

Opět můžete čerpat z povinně volitelných předmětů. Dále doporučujeme

Kód	Název	Kredity	ZS	LS
NMMA46	5 Řešitelský seminář	3	0/2 Z	$0/2 \mathrm{~Z}$

Shrnutí studijního plánu

Povinné předměty

Všechny předměty z této skupiny je potřeba úspěšně absolvovat.

Kód N	Název	Kredity	ZS	LS
NMAG111 L	Lineární algebra 1	10	4/2 Z+Zk	
NMMA101N	Matematická analýza 1	10	4/4 Z+Zk	
NMIN105 I	Diskrétní matematika	5	2/2 Z+Zk	
NMIN111 F	Programování 1	3	$0/2 \mathrm{~Z}$	
NTVY014 T	Γělesná výchova I	1	$0/2 \mathrm{~Z}$	
NMAG112 L	Lineární algebra 2	10		4/2 Z+Zk
NMMA102N	Matematická analýza 2	10	_	$4/4~\mathrm{Z+Zk}$
NMIN112 F	Programování 2	8		2/4 Z+Zk
NTVY015 T	Γělesná výchova II	1		$0/2 \mathrm{~Z}$
NMAG211 C	Geometrie 1	5	2/2 Z+Zk	
NMMA201N	Matematická analýza 3	8	4/2 Z+Zk	
NMSA211 F	${ m Pravd}\check{ m e}{ m podobnost}$	6	2/2 Z+Zk	_
NMMB203 Z	Základy numerické lineární	4	2/1 Z+Zk	
a	llgebry			
NMIN201 F	Programování 3	5	2/2 Z+Zk	
NTVY016 T	Γělesná výchova III	1	$0/2 \mathrm{~Z}$	

NMAG206 Algebra	8		4/2 Z+Zk
NMMB210 Teorie informace	6		3/1 Z+Zk
NMMB212 Úvod do kryptografie	5		2/2 Z+Zk
NTVY017 Tělesná výchova IV	1		$0/2 \mathrm{Z}$
NJAZ091 Anglický jazyk	1		$0/0 \mathrm{Zk}$
NMMB434 Geometrické modelování	6	2/2 Z+Zk	
NMAG305 Komutativní algebra	6	3/1 Z+Zk	
NMMB309 Počítačová algebra	6	3/1 Z+Zk	
NMAT362 Referativní seminář	4		$0/2 \mathrm{~Z}$
k bakalářské práci			
NSZZ031 Vypracování a konzultace	6	_	$0/4 \mathrm{~Z}$
bakalářské práce			,

Z této skupiny je potřeba získat alespoň 26 kreditů.

Kód N	Vázev	Kredity	ZS	LS
NMMB206 T	Ceorie čísel	5		2/2 Z+Zk
NMAG162 Ú	Jvod do matematické logiky	3		2/0 Zk
NMNM331A	analýza maticových výpočtů 1	5	2/2 Z+Zk	
NPGR002 D	Digitální zpracování obrazu	4	3/0 Zk	
NMMB335 M	Iatematická kryptografie	4	2/1 Z+Zk	
a	kryptoanalýza I			
NPFL129 Ú	vod do strojového učení	5	2/2 Z+Zk	
v	Pythonu		,	
${ m NMMB332A}$	aplikovaná kryptografie	4	_	2/1 Z+Zk
NMMB334D	Oatové a procesní modely	5		2/2 Z+Zk
${\rm NMMB336M}$	Iatematická kryptografie	3		$2/0 \mathrm{Zk}$
a	kryptoanalýza II			
${ m NMMB337S}$	amoopravné kódy	6	3/1 Z+Zk	
NSWI141 Ú	vod do počítačových sítí	3	2/0 KZ	
NMIN331 Z	áklady kombinatoriky a teorie	5		2/2 Z+Zk
g	rafů			·

Doporučené volitelné předměty

Kód	Název	Kredity	ZS	LS
NMUM16	1 Matematický proseminář I	2	0/2 Z	
NMUM16	2 Matematický proseminář II	2	<u> </u>	$0/2 \mathrm{~Z}$
NMSA170) Pravděpodobnostní a statistické	2		$0/2 \mathrm{~Z}$
	$probl\'emy$			
NMAG16	0 Proseminář z teorie čísel	2		$0/2 \mathrm{~Z}$
NMAG26	1 Proseminář z algebry	2		$0/2 \mathrm{~Z}$
NMMA46	$5 \check{R}e \check{s}itelsk \acute{y} semin \acute{a}\check{r}$	3	$0/2 \mathrm{~Z}$	$0/2 \mathrm{~Z}$

Státní závěrečná zkouška

Podmínky pro přihlášení ke státní závěrečné zkoušce

- Získání alespoň 180 kreditů.
- Splnění všech povinných předmětů studijního plánu.
- Získání alespoň 26 kreditů ze skupiny povinně volitelných předmětů.
- Odevzdání vypracované bakalářské práce ve stanoveném termínu.

Ústní část státní závěrečné zkoušky

Zkouška má přehledový charakter. Jsou kladeny jen širší otázky a žádá se, aby posluchač prokázal pochopení základních problémů, byl schopen je ilustrovat na konkrétních situacích a osvědčil určitou míru syntézy a hlubšího pochopení. Student dostane po jedné otázce z tematických okruhů 1., 2. a 3., přičemž u tematického okruhu 3 si student volí jednu z variant 3A nebo 3B.

1. Lineární algebra, geometrie a analýza

- Maticový počet, soustavy lineárních rovnic, skalární součin, kvadratické formy. - Afinní a projektivní geometrie, grupy transformací - Posloupnosti a řady, diferenciální počet jedné a více proměnných

2. Obecná algebra

- Základy teorie grup (Lagrangeova věta, cyklické grupy) - Základy komutativní algebry (obory gaussovské, eukleidovské, hlavních ideálů) - Okruhy polynomů, Hilbertova věta o bázi a o nulách

3A. Informační bezpečnost

- Základy pravděpodobnosti, entropie, Shannonova věta - Základní algoritmy pro práci s polynomy, rychlá Fourierova transformace - Základní kryptografické koncepty, RSA, výměna klíče

3B. Počítačová geometrie

- Základy geometrického modelování, Beziérovy křivky a plochy - Maticové rozklady

2.4 Matematické modelování

Garantující pracoviště: Matematický ústav UK

Garant programu: prof. RNDr. Josef Málek, CSc., DSc.

Doporučený průběh studia

1. rok studia

Kód	Název	Kredity	ZS	LS
NOFY151	Matematická analýza I	9	4/3 Z+Zk	_
NMAG11	l Lineární algebra 1	10	4/2 Z+Zk	
NOFY021	Mechanika a molekulová fyzika	8	4/2 Z+Zk	
NTVY014	Tělesná výchova I	1	$0/2 \mathrm{~Z}$	
	Anglický jazyk	1	$0/2 \mathrm{~Z}$	
NOFY152	Matematická analýza II	9		4/3 Z+Zk
NMAG112	2 Lineární algebra 2	10		4/2 Z+Zk
NOFY018	Elektřina a magnetismus	8		4/2 Z+Zk
NTVY015	Tělesná výchova II	1		$0/2 \mathrm{Z}$

Anglický jazyk Volitelné předměty	$egin{array}{ccc} 1 & - & \ 2 & \end{array}$	$0/2~\mathrm{Z}$
vointeine preamery	<u> </u>	

Doporučené volitelné předměty

Velice doporučujeme navštěvovat kurzy anglického jazyka. Jejich výběr je popsán v úvodní části společné pro oblast vzdělávání Matematika. Studentům, kteří si na začátku studia chtějí procvičit a zdokonalit základní matematické dovednosti potřebné ke studiu, doporučujeme předměty NMTM161 a NMTM162. Připomínáme, že jako volitelný předmět si lze zapsat jakýkoliv vyučovaný předmět na Matematicko-fyzikální fakultě.

Kód	Název	Kredity	ZS	LS
NMTM161	Matematický proseminář I	2	$0/2 \mathrm{~Z}$	_
NMTM162	2 Matematický proseminář II	2		$0/2 \mathrm{~Z}$
NMAG166	Ukázky aplikací matematiky	3	2/0 Zk	<u>-</u>
2. rok stu	dia			
Kód	Název	Kredity	ZS	LS
NOFY161	Matematika pro fyziky I	8	4/2 Z+Zk	
NMNM20	Základy numerické matematiky	8	4/2 Z+Zk	
NOFY003	Teoretická mechanika	7	3/2 Z+Zk	
NMSA211	Pravděpodobnost	6	2/2 Z+Zk	
NTVY016	Tělesná výchova III	1	0/2 Z	_
	Anglický jazyk	1	$0/2 \mathrm{~Z}$	_
NOFY162	Matematika pro fyziky II	8		4/2 Z+Zk
NGEO111	Mechanika kontinua	4	_	2/1 Z+Zk
NMMA336	Obyčejné diferenciální rovnice *	5	_	2/2 Z+Zk
	Počítačové řešení fyzikálních	5	_	$0/4~{ m KZ}$
	úloh			,
NTVY017	Tělesná výchova IV	1		$0/2 \mathrm{~Z}$
	Anglický jazyk	1	_	0/0 Zk
	Anglický jazyk	1		$0/2 \mathrm{~Z}$
	Povinně volitelné a volitelné předměty	3		1

 $^{^{\}ast}$ V akademickém roce 2020/2021 není kurs NMMA336 vyučován. Studenti druhého ročníku si místo něj zapíší v zimním semestru kurz NMMA333, který je s ním záměnný.

Povinně volitelné předměty

Z povinně volitelných předmětů je nutné během celého studia celkem získat alespoň 10 kreditů. Povinně volitelné předměty vhodné pro druhý rok studia jsou:

Kód	Název	Kredity	ZS	LS
NMIN111	Programování 1	3	$0/2 \mathrm{~Z}$	_
NOFY023	Speciální teorie relativity	3	2/0 Zk	
	Programování 2	8		2/4 Z+Zk
NOFY127	Úvod do kvantové mechaniky	5		2/2 Z+Zk
NOFY126	Klasická elektrodynamika	5	_	2/2 Z+Zk

Doporučené volitelné předměty

Jako volitelné předměty doporučujeme zapisovat povinně volitelné předměty uvedené výše. Zajímavé by pro vás mohly být i následující předměty:

Kód	Název	Kredity	ZS	LS
NMIN263	Principy počítačů a operační systémy	3	2/0 Zk	_
NMIN266	Aplikace a využití počítačů v matematice	2	_	$0/2 \mathrm{~Z}$
3. rok stu	dia			
Kód	Název	Kredity	ZS	LS
NOFY163	Rovnice matematické fyziky	5	2/1 Z+Zk	_
NOFY036	Termodynamika a statistická	6	3/2 Z+Zk	
	fyzika			
NMNM33	l Analýza maticových výpočtů 1	5	2/2 Z+Zk	
NMMO32	7Seminář k bakalářské práci	3	$0/2 \mathrm{~Z}$	
NMNM33	8 Numerické řešení parciálních	5	<u> </u>	2/2 Z+Zk
	diferenciálních rovnic			
NMMO30	2Funkcionální analýza pro fyziky	8	_	4/2 Z+Zk
NMMO32	8Seminář k bakalářské práci	3		$0/2 \mathrm{~Z}$
NSZZ031	Vypracování a konzultace	6		$0/4 \mathrm{~Z}$
	bakalářské práce			-
	Povinně volitelné a volitelné	19		

Povinně volitelné předměty

předměty

Pokud jste ještě neabsolvovali povinně volitelné předměty doporučené v druhém roce studia, můžete si je zapsat nyní. Další povinně volitelné předměty vhodné pro třetí ročník studia jsou:

Kód	Název	Kredity	ZS	LS
NMIN201	Programování 3	5	2/2 Z+Zk	
NMAG21	1 Geometrie 1	5	2/2 Z+Zk	
NMIN105	Diskrétní matematika	5	2/2 Z+Zk	
NMMB43	4 Geometrické modelování	6	2/2 Z+Zk	
NMAG21	2 Geometrie 2	5		2/2 Z+Zk
NMNM33	2Analýza maticových výpočtů 2	5		2/2 Z+Zk
NMNM33	6Úvod do metody konečných prvků	5	_	2/2 Z+Zk

Doporučené volitelné předměty

Jako volitelné předměty doporučujeme zapisovat povinně volitelné předměty uvedené výše. Zajímavé by pro vás mohly být i následující předměty:

Kód	Název	Kredity	ZS	LS
	Mathematica pro začátečníky Mathematica pro pokročilé	$\frac{2}{2}$	0/2 Z —	

Shrnutí studijního plánu

Povinné předměty

Všechny předměty z této skupiny je nutné úspěšně absolvovat.

Kód	Název	Kredity	ZS	LS
NOFY151	Matematická analýza I	9	4/3 Z+Zk	
	l Lineární algebra 1	10	4/2 Z+Zk	
NOFY021	Mechanika a molekulová fyzika	8	4/2 Z+Zk	
NTVY014	Tělesná výchova I	1	$0/2 \mathrm{~Z}$	
NOFY152	Matematická analýza II	9		4/3 Z+Zk
NMAG11	2 Lineární algebra 2	10		4/2 Z+Zk
NOFY018	Elektřina a magnetismus	8		4/2 Z+Zk
NTVY015	í Tělesná výchova II	1		$0/2 \mathrm{Z}$
NOFY161	Matematika pro fyziky I	8	4/2 Z+Zk	
	1 Z áklady numerické matematiky	8	4/2 Z+Zk	
	B Teoretická mechanika	7	3/2 Z+Zk	
	Pravděpodobnost	6	2/2 Z+Zk	
	Tělesná výchova III	1	$0/2 \mathrm{~Z}$	
	Matematika pro fyziky II	8		4/2 Z+Zk
	Mechanika kontinua	4		2/1 Z+Zk
	6Obyčejné diferenciální rovnice	5		2/2 Z+Zk
NMMO21	2Počítačové řešení fyzikálních	5		$0/4~\mathrm{KZ}$
	úloh			
	⁷ Tělesná výchova IV	1		$0/2 \mathrm{Z}$
	Anglický jazyk	1	$0/0 \mathrm{Zk}$	$0/0 \mathrm{\ Zk}$
	Rovnice matematické fyziky	5	2/1 Z+Zk	
NOFY036	Termodynamika a statistická	6	3/2 Z+Zk	
	fyzika			
	1 Analýza maticových výpočtů 1	5	2/2 Z+Zk	
NMMO32	7Seminář k bakalářské práci	3	$0/2 \mathrm{~Z}$	
NMNM33	8Numerické řešení parciálních	5		2/2 Z+Zk
	diferenciálních rovnic			
NMMO30	2Funkcionální analýza pro fyziky	8		4/2 Z+Zk
NMMO32	7Seminář k bakalářské práci	3	$0/2 \mathrm{~Z}$	_
NSZZ031	Vypracování a konzultace	6	$0/4 \mathrm{~Z}$	$0/4 \mathrm{~Z}$
	bakalářské práce			

Povinně volitelné předměty

Z této skupiny je nutné získat alespoň 10 kreditů.

Kód	Název	Kredity	ZS	LS
NMIN111	Programování 1	3	$0/2 \mathrm{~Z}$	_
NOFY023	Speciální teorie relativity	3	2/0 Zk	
NMIN112	Programování 2	8	<u> </u>	2/4 Z+Zk
NOFY127	Úvod do kvantové mechaniky	5		2/2 Z+Zk
NOFY126	Klasická elektrodynamika	5		2/2 Z+Zk
NMIN201	Programování 3	5	2/2 Z+Zk	<u> </u>

	~		- /	
	Geometrie 1	5	2/2 Z+Zk	
NMIN105	Diskrétní matematika	5	2/2 Z+Zk	_
NMMB434	4 Geometrické modelování	6	2/2 Z+Zk	
NMAG212	2 Geometrie 2	5		2/2 Z+Zk
NMNM33	2 Analýza maticových výpočtů 2	5		2/2 Z+Zk
NMNM336	6Úvod do metody konečných prvků	5	_	2/2 Z+Zk
Doporuče	né volitelné předměty			
Kód	Název	Kredity	ZS	LS
NMIN203	Mathematica pro začátečníky	2	0/2 Z	0/2 Z
NMIN264	Mathematica pro pokročilé	2		$0/2 \mathrm{~Z}$

Státní závěrečná zkouška

Podmínky pro přihlášení ke státní závěrečné zkoušce

- Získání alespoň 180 kreditů.
- Splnění všech povinných předmětů studijního plánu.
- Získání alespoň 10 kreditů ze skupiny povinně volitelných předmětů.
- Odevzdání vypracované bakalářské práce ve stanoveném termínu.

Ústní část státní závěrečné zkoušky

Zkouška má přehledový charakter. Jsou kladeny jen širší otázky a žádá se, aby posluchač prokázal pochopení základních problémů, byl schopen je ilustrovat na konkrétních situacích a osvědčil určitou míru syntézy a hlubšího pochopení. Student zodpoví jednu otázku z každého níže uvedeného tematického okruhu.

1. Základy matematické analýzy, lineární algebry a funkcionální analýzy

Posloupnosti a řady čísel a funkcí, diferenciální a integrální počet funkcí jedné reálné proměnné, diferenciální počet funkcí více proměnných, křivkový a plošný integrál, Stokesova věta. Obyčejné diferenciální rovnice, variační počet. Konečně dimenzionální vektorové prostory, skalární součin, maticový počet, vlastní čísla matice, soustavy lineárních rovnic, lineární a bilineární formy. Funkce komplexní proměnné, holomorfní funkce, mocninné řady, reziduová věta. Lebesgueův integrál, Lebesgueova míra, prostory funkcí, Hilbertovy prostory, ortonormální systémy, Rieszova věta o reprezentaci, spojitý lineární operátor, kompaktní operátor, samoadjungovaný operátor, spektrum operátoru.

2. Základy klasické mechaniky a termodynamiky

Mechanika hmotného bodu a soustav hmotných bodů (Newtonovy zákony, variační formulace, Lagrangeovy rovnice, Hamiltonovy rovnice), kinematika a dynamika tuhého tělesa, kinematika a dynamika spojitého prostředí (tenzor malých deformací, Cauchyho tenzor napětí, Reynoldsova věta o transportu, bilanční rovnice, Eulerovy a Navierovy-Stokesovy rovnice, rovnice linearizované pružnosti). Klasická rovnovážná termodynamika (teplo, teplota, první a druhý zákon termodynamiky, termodynamické potenciály, stavová rovnice, ideální plyn).

3. Numerická analýza a rovnice matematické fyziky

Aproximace funkcí, numerická integrace, numerické řešení nelineárních algebraických rovnic, numerické řešení obyčejných diferenciálních rovnic, přímé a iterační metody řešení lineárních algebraických rovnic, LU a QR rozklady a jejich stabilita, problém

nejmenších čtverců, Schurova věta, metody pro řešení částečného problému vlastních čísel. Klasická teorie lineárních parciálních diferenciálních rovnic a jejich numerického řešení, metoda charakteristik pro transportní rovnici, rovnice vedení tepla, vlnová rovnice, Poissonova rovnice, princip maxima pro eliptické a parabolické rovnice druhého řádu, metoda konečných diferencí, stabilita, konvergence.

Navazující magisterské studium od akademického roku 2020/21

1. Základní informace

Studijní programy nav. magisterského studia v oblasti vzdělávání Matematika

V oblasti vzdělávání Matematika nabízíme na magisterském stupni studia sedm odborných programů.

Matematické struktury	2.1
Matematika pro informační technologie	2.2
Matematická analýza	2.3
Numerická a výpočtová matematika	2.4
Matematické modelování ve fyzice a technice	2.5
Pravděpodobnost, matematická statistika	2.6
a ekonometrie	
Finanční a pojistná matematika	2.7

Programy Matematické struktury, Matematická analýza, Numerická a výpočtová matematika a Pravděpodobnost, matematická statistika a ekonometrie navazují na příslušná zaměření bakalářského programu Obecná matematika.

Programy Matematika pro informační technologie, Matematické modelování ve fyzice a technice a Finanční a pojistná matematika navazují na odpovídající specializované bakakářské programy.

Součástí oblasti vzdělávání Matematika jsou i programy připravující budoucí učitele, zejména *Učitelství matematiky pro střední školy* a *Učitelství deskriptivní geometrie pro střední školy*. Studijní plány učitelských programů jsou uvedeny ve zvláštní části této publikace.

Všeobecné zásady studia

Přechod z bakalářského studia

Jednotlivé programy mají specifické vstupní požadavky na znalosti, které se předpokládají na počátku studia. Studenti, kteří tyto požadavky nesplňují, studují podle individuálního studijního plánu stanoveného garantem studijního programu dle čl. 5 Pravidel pro organizaci studia na Matematicko-fyzikální fakultě.

Některé povinné či povinně volitelné předměty magisterského studia mohl student absolvovat již v průběhu studia bakalářského. Splnění těchto předmětů může být uznáno na základě podané žádosti o uznání splněných studijních povinností. Převádění kreditů za předměty absolvované v bakalářském studiu do magisterského studia upravuje čl. 12 Pravidel pro organizaci studia na Matematicko-fyzikální fakultě. Pokud převedení kreditů za předměty absolvované v bakalářském studiu není možné, důrazně doporučujeme, aby si studenti nechali uznat tyto předměty bez kreditů a kredity do magisterského studia

získávali výhradně zápisem a splněním předmětů, které v bakalářském studiu neabsolvovali.

Základní informace

Standardní doba studia magisterských programů je dva roky. Celkem je požadováno získání minimálně 120 kreditů za celé studium. Pro úspěšné ukončení studia je nutné absolvovat všechny předměty, které jsou studijním plánem stanoveny jako povinné, nebo předměty s nimi záměnné. Studijní plán může též vyžadovat získání určitého počtu kreditů z jednotlivých skupin povinně volitelných předmětů.

Studijní plány

Studijní plán předepisuje povinné předměty programu, požadované počty kreditů z jednotlivých skupin povinně volitelných předmětů, podmínky pro přihlášení ke státní závěrečné zkoušce a požadavky u státní závěrečné zkoušky. Průběh studia není studijními plány pevně určen. Student si zapisuje povinné, povinně volitelné a volitelné předměty tak, aby průběžně splňoval kreditní limity pro zápis do dalšího roku studia a aby splnil podmínky pro přihlášení ke státní závěrečné zkoušce.

Předmětové rekvizity

Zápis předmětů může být podmíněn splněním určitých podmínek stanovených v předmětových rekvizitách. Některé předměty vyžadují předchozí absolvování (prerekvizita) nebo alespoň zápis (korekvizita) jiných předmětů. Naopak, předchozí zápis jiného předmětu může znemožnit zápis předmětu, o který má student zájem (neslučitelnost). Předchozí absolvování jiného předmětu může být automaticky uznáno jako splnění předmětu, který student potřebuje (záměnnost). Předmětové rekvizity jsou uvedeny v Seznamu předmětů MFF UK ("bílé Karolince") a předmětovém modulu Studijního informačního systému.

Doporučujeme všem studentům, aby při zápisu předmětů věnovali předmětovým rekvizitám nejvyšší pozornost.

Doporučený průběh studia

V následujících částech jsou uvedeny studijní plány pro jednotlivé programy a doporučené průběhy studia, které rozepisují povinné předměty a některé povinně volitelné předměty do jednotlivých ročníků a uvádějí další podrobnosti studijních plánů. Povinné předměty jsou v tabulkách uvedeny **tučně**, povinně volitelné předměty obyčejným písmem a volitelné předměty *kurzívou*. V této kapitole jsou rovněž specifikovány podmínky pro přihlášení ke státní závěrečné zkoušce a požadavky k ústní části SZZ.

Doporučený průběh studia není závazný, je však vhodné jej co nejvíce dodržovat, protože je sestaven s ohledem na rekvizity, návaznosti předmětů, tvorbu rozvrhu a na podmínky pro přihlášení ke státní závěrečné zkoušce.

Ukončení studia

Magisterské studium je ukončeno státní závěrečnou zkouškou.

Na odborných programech má státní závěrečná zkouška dvě části: *obhajobu* diplomové práce a *ústní zkoušku*. Známkou je hodnocena jak každá část státní závěrečné zkoušky zvlášť, tak celá zkouška dohromady. Při neúspěchu opakuje student ty části státní závěrečné zkoušky, ve kterých dosud neuspěl. Každou část SZZ lze opakovat nejvýše dvakrát.

Požadavky k ústní části státní závěrečné zkoušky jsou uvedeny u studijních plánů jednotlivých programů.

Diplomová práce je zadávána zpravidla v průběhu 1. ročníku. Doporučujeme vybírat si téma především z nabídky pracoviště garantujícího zvolený studijní program; v případě zájmu o téma z nabídky jiného pracoviště nebo o téma vlastní důrazně doporučujeme konzultovat vhodnost tématu s garantem studijního programu. V souvislosti s diplomovou prací jsou vyžadovány zápočty z předmětů

Kód	Název	Kredity	ZS	LS
NSZZ023	Diplomová práce I	6		$0/4 \mathrm{~Z}$
NSZZ024	Diplomová práce II	9	$0/6 \mathrm{Z}$	
NSZZ025	Diplomová práce III	15		$0/10 \mathrm{~Z}$

Tyto předměty si posluchač zapisuje po dohodě s vedoucím práce, nejdříve však v letním semestru 1. ročníku a nejpozději během posledního semestru svého studia. Nezbytnou podmínkou pro zapsání kteréhokoli z těchto předmětů je předchozí zadání tématu diplomové práce. Jinak lze tyto předměty zapisovat v libovolném semestru a v libovolném pořadí. Zápočty z těchto předmětů uděluje vedoucí diplomové práce. Podmínkou udělení zápočtu z posledního z těchto předmětů je dovedení diplomové práce do téměř dokončené formy.

Termíny pro zadání diplomové práce, odevzdání diplomové práce a podání přihlášky ke státní závěrečné zkoušce určuje harmonogram školního roku.

Projekt

Student může požádat děkana o zadání projektu. Jeho ohodnocení (max. 9 kreditů) stanoví děkan na základě doporučení zadávajícího učitele a garanta studijního programu.

2. Studijní plány jednotlivých programů

2.1 Matematické struktury

Garantující pracoviště: Katedra algebry

Garant programu: doc. RNDr. Jan Šťovíček, Ph.D.

Program matematické struktury je na magisterské úrovni zaměřen na rozšíření všeobecného matematického základu (algebraická geometrie a topologie, Riemannova geometrie, universální algebra a teorie modelů) a na získání hlubších znalostí ve zvolených partiích algebry, geometrie, logiky, či kombinatoriky. Cílem je poskytnout na jedné straně dostatečnou všeobecnou znalost moderní strukturní matematiky, na straně druhé dovést posluchače na práh samostatné tvůrčí činnosti. Důraz je kladen na disciplíny, ve kterých jsou k dispozici vyučující, kteří se světové špičce blíží nebo do ní přímo patří.

Absolvent má velmi pokročilé znalosti algebry, geometrie, kombinatoriky a logiky, které mu v rámci hlouběji studovaného zvoleného užšího zaměření umožnily být v tvůrčím kontaktu s aktuálními vědeckými výsledky. Abstraktní povaha, rozsah a náročnost
studia u absolventa podpořily rozvoj schopnosti analyzovat, strukturovat a řešit problémy složité a náročné povahy. Uplatnění nalezne vedle akademické sféry v nejrůznějších oblastech lidské činnosti na místech, kde je potřeba zvládat a využívat nové
poznatky a rozsáhlé systémy.

Vstupní požadavky

Předpokládáme, že student tohoto programu má na počátku prvního ročníku dostatečné znalosti z následujících oborů a oblastí:

- Kvalitní základy lineární algebry, komplexní a reálné analýzy, teorie pravděpodobnosti.
- Základy teorie grup (Sylowovy věty, volné grupy, nilpotence), analýzy na varietách, komutativní algebry (Galoisova teorie a celistvá rozšíření), matematické logiky (výroková logika a logika prvního řádu, neúplnost, nerozhodnutelnost), teorie množin a teorie kategorií.
- Pasivní znalost angličtiny umožňující dostatečné porozumění matematickým přednáškám a odborným textům.

U konkrétních zaměření je pak výhodou (ale ne nezbytností) hlubší znalost kombinatoriky, teorie reprezentací asociativních algeber (podmínky konečnosti, projektivita a injektivita modulu) nebo teorie Lieových grup a algeber.

Studentům, kteří tyto požadavky nesplňují, může garant studijního programu stanovit způsob jejich doplnění, například absolvováním vybraných předmětů bakalářského studia v rámci individuálního studijního plánu.

Doporučený průběh studia

Podrobnější informace k doporučenému průběhu studia lze najít na stránkách http://garant.karlin.mff.cuni.cz/stud/nmgr_20_str.shtml Při volbě povinně volitelných předmětů v průběhu studia je nutné vzít v úvahu volbu jednoho ze čtyř užších zaměření a odpovídajících požadavků ke státní závěrečné zkoušce.

1. rok studia

Kód	Název	Kredity	ZS	LS
NMAG409 NMAG411	Algebraická geometrie Algebraická topologie 1 Riemannova geometrie 1 Diplomová práce I Volitelné a povinně volitelné předměty	5 5 5 6 39	2/2 Z+Zk 2/2 Z+Zk 2/2 Z+Zk —	
2. rok stu	dia			
Kód	Název	Kredity	ZS	LS
NSZZ024 NSZZ025	Diplomová práce II Diplomová práce III Volitelné a povinně volitelné předměty	9 15 36	0/6 Z —	
Shrnutí s	tudijního plánu			
Povinné p	oředměty			
Kód	Název	Kredity	ZS	LS
NMAG401	Algebraická geometrie	5	2/2 Z+Zk	

2/2 Z+Zk

NMAG409 Algebraická topologie 1

NMAG411	Riemannova geometrie 1	5	2/2 Z+Zk	
NSZZ023	Diplomová práce I	6		$0/4~{ m Z}$
NSZZ024	Diplomová práce II	9	$0/6 \mathrm{~Z}$	
NSZZ025	Diplomová práce III	15		$0/10 \mathrm{~Z}$

Je třeba získat alespoň 48 kreditů z povinně volitelných předmětů.

Kód	Název	Kredity	ZS	LS
NDMI009	Základy kombinatorické a výpočetní geometrie	5	2/2 Z+Zk	
NDMI013	Kombinatorická a výpočetní geometrie 2	5	_	2/2 Z+Zk
NDMI014	Topologické metody v kombinatorice	5		2/2 Z+Zk
NDMI028	Aplikace lineární algebry v kombinatorice	5	2/2 Z+Zk	
NDMI045	Analytická a kombinatorická teorie čísel	3		$2/0 \mathrm{~Zk}$
NDMI073	Kombinatorika a grafy 3	5	2/2 Z+Zk	
NMAG331	Matematická logika	3	$2/0 \mathrm{Zk}$	
NMAG403	3 Kombinatorika	5	2/2 Z+Zk	
NMAG405	Universální algebra 1	5	2/2 Z+Zk	
NMAG407	Teorie modelů	3	2/0 Zk	
NMAG430	Algebraická teorie čísel	6	_	3/1 Z+Zk
NMAG431	Kombinatorická teorie grup	6	3/1 Z+Zk	
	Riemannovy plochy	3	$2/0 \mathrm{Zk}$	
NMAG434	Kategorie modulů a homologická	6		3/1 Z+Zk
	algebra			
NMAG435	Teorie svazů	3	2/0 Zk	
	Křivky a funkční tělesa	6		$4/0 \mathrm{Zk}$
	Seminář z diferenciální geometrie	3	$0/2 \mathrm{~Z}$	$0/2 \mathrm{~Z}$
	Reprezentace grup 1	5		2/2 Z+Zk
NMAG442	2 Teorie reprezentací	6		3/1 Z+Zk
	konečně-dimenzionálních algeber			
	Kombinatorika na slovech	3	$2/0 \mathrm{Zk}$	
	i Logika a složitost	3		2/0 Zk
	Klasické grupy a jejich invarianty	5		2/2 Z+Zk
	Universální algebra 2	4		2/1 Z+Zk
	Fibrované prostory a kalibrační pole	6		3/1 Z+Zk
	Kvadratické formy a třídová tělesa I	3	$2/0 \mathrm{Zk}$	
NMAG456	Kvadratické formy a třídová tělesa II	3		$2/0 \mathrm{~Zk}$
NMAG458	8 Algebraické invarianty v teorii uzlů	4		$2/1 \mathrm{Zk}$
NMAG462	Modulární formy a L-funkce I	3	2/0 Zk	
	Modulární formy a L-funkce II	3		$2/0 \mathrm{~Zk}$
NMAG475	o Výběrový seminář z MSTR	2	$0/2 \mathrm{~Z}$	$0/2 \mathrm{~Z}$

NMAG481 Seminář z harmonické analýzy	3	$0/2 \mathrm{Z}$	$0/2 \mathrm{~Z}$
NMAG498 Výběrová přednáška z MSTR 1	3	$2/0 \mathrm{Zk}$	
NMAG499 Výběrová přednáška z MSTR 2	3		$2/0 \mathrm{Zk}$
NMAG531 Aproximace modulů	3	$2/0 \mathrm{Zk}$	
NMAG532 Algebraická topologie 2	5		2/2 Z+Zk
NMAG533 Principy harmonické analýzy	6	3/1 Z+Zk	
NMAG534 Nekomutativní harmonická analýza	6		3/1 Z+Zk
NMAG535 Výpočetní logika	5	2/2 Z+Zk	
NMAG536 Důkazová složitost a P vs. NP	3		$2/0 \mathrm{Zk}$
problém			
NMAG563 Úvod do složitosti CSP	3	$2/0 \mathrm{~Zk}$	
NMAG569 Matematické metody kvantové teorie	3	$0/2 \mathrm{~Z}$	$0/2 \mathrm{~Z}$
pole		,	•
NMAL430 Latinské čtverce a neasociativní	3		$2/0 \mathrm{~Zk}$
struktury			,
NMMB413 Algoritmy na polynomech	4	2/1 Z+Zk	
NMMB415 Automaty a výpočetní složitost	6	3/1 Z+Zk	
NMMB430 Algoritmy na eliptických křivkách	4		2/1 Z+Zk
NMMB432 Náhodnost a výpočty	4		$2/1 \mathrm{~Zk}$
NMMB433 Geometrie pro počítačovou grafiku	3		$2/0 \mathrm{~Zk}$
NTIN022 Pravděpodobnostní techniky	5	2/2 Z+Zk	
		,	

Tyto předměty jsou také prvky skupiny Povinně volitelných předmětů 1. Alespoň 8 kreditů ze 48 kreditů ze skupiny Povinně volitelných předmětů 1 musí být z následujícího užšího výběru.

Kód	Název	Kredity	ZS	LS
NMAG40	3 Kombinatorika	5	2/2 Z+Zk	
NMAG40	5 Universální algebra 1	5	2/2 Z+Zk	
NMAG40'	7 Teorie modelů	3	2/0 Zk	
NMAG438	8 Reprezentace grup 1	5		2/2 Z+Zk
NMMB41	5 Automaty a výpočetní složitost	6	3/1 Z+Zk	

Státní závěrečná zkouška

Podmínky pro přihlášení ke státní závěrečné zkoušce

- Získání alespoň 120 kreditů.
- Splnění všech povinných předmětů studijního plánu.
- Splnění Povinně volitelných předmětů 1 v rozsahu alespoň 48 kreditů. Z toho alespoň 8 kreditů z užšího výběru Povinně volitelných předmětů 2.
- Odevzdání vypracované diplomové práce ve stanoveném termínu.

Ústní část státní závěrečné zkoušky

Ústní část státní závěrečné zkoušky studijního programu Matematické struktury se skládá ze společných požadavků z tematického okruhu 1. Matematické struktury a z požadavků užšího zaměření. Toto zaměření si posluchač určí volbou jednoho z tematických okruhů 2, 3, 4 nebo 5 uvedených níže.

Podrobnější vysvětlení požadavků k ústní části státní závěrečné zkoušky lze najít na stránkách http://garant.karlin.mff.cuni.cz/stud/nmgr_20_str_szz.shtml.

Požadavky k ústní části státní závěrečné zkoušky Společné požadavky

1. Matematické struktury

Algebraická geometrie. Algebraická topologie.

Užší zaměření

2. Algebra a logika

Konečné grupy a jejich reprezentace. Kombinatorická teorie grup. Binární systémy. Pokročilá universální algebra. Složitost a vyčíslitelnost. Logika prvního řádu. Nerozhodnutelnost v algebraických systémech. Eliminace kvantifikátorů.

3. Geometrie

Harmonická analýza a invarianty klasických grup. Riemannovy plochy. Fíbrované prostory a kovariantní derivace.

4. Teorie reprezentací

Reprezentace grup. Reprezentace konečně dimenzionálních algeber. Kombinatorická teorie grup. Homologická algebra.

5. Kombinatorika

Aplikace lineární algebry a užití pravděpodobnostní metody v kombinatorice a teorii grafů. Analytická a kombinatorická teorie čísel. Kombinatorická a výpočetní geometrie. Strukturální a algoritmická teorie grafů.

2.2 Matematika pro informační technologie

Garantující pracoviště: Katedra algebry

Garant programu: doc. Mgr. Pavel Příhoda, Ph.D.

Studijní program je orientován zejména na prohloubení a algoritmické uchopení teoretických znalostí matematických oborů, které nacházejí uplatnění v informačních technologiích. V rámci studijního programu se lze zaměřit na kryptologii, počítačové vidění a robotiku nebo zpracování obrazu a počítačovou grafiku. Absolvent má rozvinuté analytické schopnosti, je schopen identifikovat matematickou podstatu problémů z IT praxe a umí aplikovat složitější matematickou teorii a další odborné znalosti k řešení těchto problémů. Absolventi naleznou uplatnění ve firmách zaměřených na vývoj náročných, specializovaných aplikací.

Vstupní požadavky

Předpokládáme, že student tohoto programu má na počátku prvního ročníku dostatečné znalosti z následujících oborů a oblastí:

- Kvalitní základy lineární algebry, reálné analýzy a teorie pravděpodobnosti.
- Základy obecné algebry pokrývající dělitelnost v obecných oborech integrity, vlastnosti polynomiáních okruhů, konečná tělesa, základy teorie grup a Galoisovy teorie, elementární teorie čísel.
- Výpočetní aspekty uvedených disciplín: základní maticové algoritmy, diskrétní Fourierova transformace a modulární aritmetika, aritmetika polynomů. Základní ponětí o aplikacích (kryptografie, samoopravné kódy, geometrické modelování). Základy algoritmizace a programování v jazyce Python.

• Pasivní znalost angličtiny umožňující dostatečné porozumění matematickým přenáškám a odborným textům.

Studentům, kteří tyto požadavky nesplňují, může garant studijního programu stanovit způsob jejich doplnění, například absolvováním vybraných předmětů bakalářského studia v rámci individuálního studijního plánu.

Doporučený průběh studia

Podrobnější informace k doporučenému průběhu studia lze najít na stránkách http://garant.karlin.mff.cuni.cz/stud/nmgr_mit_20.shtml. Při volbě povinně volitelných předmětů v průběhu studia je potřeba přihlédnout k požadavkům ke státní závěrečné zkoušce.

1. rok studia

Kód	Název	Kredity	ZS	LS
NMMB40	9 Konvexní optimalizace	9	4/2 Z+Zk	
NMMB41	l Algoritmy na mřížích	4	2/1 Z+Zk	
NMMB41	3 Algoritmy na polynomech	4	2/1 Z+Zk	
NMMB41	5 Automaty a výpočetní složitost	6	3/1 Z+Zk	
NSZZ023	Diplomová práce I	6		$0/4 \mathrm{~Z}$
	Volitelné a povinně volitelné	27		
	$p\check{r}edm\check{e}ty$			
	••			

2. rok studia

Kód	Název	Kredity	ZS	LS
NSZZ024	Diplomová práce II	9	0/6 Z	_
NSZZ025	Diplomová práce III	15	,	$0/10 \mathrm{~Z}$
	Volitelné a povinně volitelné	36		
	$p\check{r}edm\check{e}ty$			

Shrnutí studijního plánu

Povinné předměty

Kód	Název	Kredity	ZS	LS
NMMB40	9Konvexní optimalizace	9	4/2 Z+Zk	_
NMMB41	1 Algoritmy na mřížích	4	2/1 Z+Zk	
NMMB41	3 Algoritmy na polynomech	4	2/1 Z+Zk	
NMMB41	5 Automaty a výpočetní složitost	6	3/1 Z+Zk	
NSZZ023	Diplomová práce I	6		$0/4 \mathrm{~Z}$
NSZZ024	Diplomová práce II	9	$0/6 \mathrm{~Z}$	
NSZZ025	Diplomová práce III	15		$0/10 \mathrm{~Z}$

Povinně volitelné předměty 1

Z těchto předmětů je potřeba získat alespoň 46 kreditů. V závorce je uvedeno, ke kterému tématu státní zkoušky se přednáška vztahuje. Předměty, u kterých tato informace není, jsou obecného charakteru.

Kód	Název	Kredity	ZS	LS
NDMI018	Aproximační a online algoritmy	5	_	2/2 Z+Zk

NDMI025 Pravděpodobnostní algoritmy	5		2/2 Z+Zk
NMAG331 Matematická logika	3	$2/0 \mathrm{\ Zk}$	
NMAG401 Algebraická geometrie	5	2/2 Z+Zk	
NMAG403 Kombinatorika	5	2/2 Z+Zk	
NMAG430 Algebraická teorie čísel	6	_	3/1 Z+Zk
NMAG436 Křivky a funkční tělesa (2C)	6		$4/0 \mathrm{~Zk}$
NMAG535 Výpočetní logika (2A)	5	2/2 Z+Zk	_
NMAG563 Úvod do složitosti CSP	3	$2/0 \mathrm{~Zk}$	
NMMB331 Booleovské funkce (2C)	3	$2/0 \mathrm{\ Zk}$	
NMMB333Základy analýzy dat	5	2/2 Z+Zk	
NMMB402 Číselné algoritmy (2A)	4		2/1 Z+Zk
NMMB404 Kryptoanalýza (2C)	6		3/1 Z+Zk
NMMB430 Algoritmy na eliptických	4		2/1 Z+Zk
křivkách $(2A,2C)$			
NMMB432 Náhodnost a výpočty (2C)	4		$2/1 \mathrm{Zk}$
NMMB433 Geometrie pro počítačovou	3		$2/0 \mathrm{Zk}$
grafiku (2E)			
NMMB437 Právní aspekty ochrany dat (2C)	3	$2/0 \mathrm{Zk}$	
NMMB438 Základy spojité optimalizace (2B)	6	<u>.</u>	2/2 Z+Zk
NMMB440 Geometrie počítačového vidění (2D)	6	2/2 Z+Zk	<u>.</u>
NMMB442 Geometrické problémy	6	<u>.</u>	2/2 Z+Zk
v robotice (2D)			·
NMMB460Kryptoanalýza na úrovni	2		$0/2 \mathrm{~Z}$
instrukcí (2C)			,
NMMB464 Úvod do výpočetní	4		2/1 Z+Zk
topologie $(2A,2D,2E)$,
NMMB498 Výběrová přednáška MIT 1	3	2/0 Zk	
NMMB499 Výběrová přednáška MIT 2	3		$2/0 \mathrm{Zk}$
NMMB501 Zabezpečení síťových protokolů (2C)	5	2/2 Z+Zk	
NMMB531 Číselné síto (2A)	3	$2/0 \mathrm{~Zk}$	
NMMB532 Standardy a kryptografie (2C)	3		2/0 Zk
NMMB534Kvantová informace	6		3/1 Z+Zk
NMMB538 Eliptické křivky a kryptografie (2C)	6	3/1 Z+Zk	
NMMO537Sedlobodové úlohy a jejich	5		2/2 Z+Zk
řešení (2B)			,
NMNV411 Algoritmy maticových iteračních	5	2/2 Z+Zk	
metod (2B)		, .	
NMNV412 Analýza maticových iteračních	6		$4/0 \mathrm{~Zk}$
metod – principy a souvislosti (2B)	Ü		1/ 0 =11
NMNV503 Numerické metody	6	3/1 Z+Zk	
optimalizace 1 (2B)	O	0/1 Z ZK	
NMNV531 Inverzní úlohy a regularizace (2B)	5	2/2 Z+Zk	
NMNV532 Paralelní maticové výpočty (2B)	5	Z/Z $Z+ZK$	$\frac{-}{2/2}$ Z+Zk
NMNV533 Řídké matice v numerické	5 5	$\frac{-}{2/2}$ Z+Zk	2/2
matematice (2B)	9	$2/2$ L \pm LK	
` '	E		9/9 7 + 71-
NOPT016 Celočíselné programování (2B)	5	_	2/2 Z+Zk

	Hluboké učení Pokročilá 3D grafika pro film a hry (2E)	7 5	$\frac{-}{2/2}$ Z+Zk	3/2 Z+Zk —
NPGR013	Speciální funkce a transformace ve zpracování obrazu (2E)	3	_	2/0 Zk
NPGR016	Aplikovaná výpočetní geometrie (2D,2E)	5		2/1 Z+Zk
NPGR029	Variační metody ve zpracování obrazu (2E)	3	_	2/0 Zk
NTIN022	Pravděpodobnostní techniky	5	2/2 Z+Zk	
NTIN104	Foundations of theoretical cryptography (2C)	4	2/1 Z+Zk	

Tyto předměty pokrývají témata zkoušená u státních závěrečných zkoušek. V závorce je uvedeno, ke kterému tématu státní zkoušky se vztahují. Tyto předměty jsou také prvky skupiny Povinně volitelných předmětů 1. Alespoň 17 kreditů ze 46 kreditů ze skupiny Povinně volitelných předmětů 1 musí být z následujícího užšího výběru.

Kód	Název	Kredity	ZS	LS
NMMB33	1 Booleovské funkce (2C)	3	$2/0 \mathrm{~Zk}$	
NMMB40	2 Číselné algoritmy (2A)	4		2/1 Z+Zk
NMMB40	4 Kryptoanalýza (2C)	6		3/1 Z+Zk
NMMB43	2 Náhodnost a výpočty (2C)	4		2/1 Zk
NMMB43	3 Geometrie pro počítačovou grafiku (2E)	3		2/0 Zk
NMMB44	OGeometrie počítačového vidění (2D)	6	2/2 Z+Zk	
NMMB44	2 Geometrické problémy v robotice (2D)	6	_	2/2 Z+Zk
NMNV411	l Algoritmy maticových iteračních metod (2B)	5	2/2 Z+Zk	
NMNV503	3 Numerické metody optimalizace 1 (2B)	6	3/1 Z+Zk	_
NMNV533	B Řídké matice v numerické matematice (2B)	5	2/2 Z+Zk	
NPGR013	Speciální funkce a transformace ve zpracování obrazu (2E)	3	_	2/0 Zk
NPGR029	Variační metody ve zpracování obrazu (2E)	3	_	2/0 Zk

Povinně volitelné předměty 3

Tuto skupinu tvoří vybrané vědecké či pracovní semináře. Za předměty z této skupiny je třeba získat alespoň 4 kredity.

Kód	Název	Kredity	ZS	LS
NMMB36	1 Kryptografické otázky současnosti	2	$0/2 \mathrm{~Z}$	$0/2 \mathrm{~Z}$
NMMB45	1 Aplikace matematiky v informatice	3	$0/2 \ { m Z}$	$0/2 \mathrm{~Z}$

NMMB452 Seminář z matematiky inspirované kryptografií	3	$0/2 \mathrm{~Z}$	$0/2 \mathrm{~Z}$
NMMB453 Studentský logický seminář	2	$0/2 \mathrm{~Z}$	$0/2 \mathrm{~Z}$
NMMB471 Výběrový seminář z MIT	2	$0/2 \mathrm{~Z}$	$0/2 \mathrm{~Z}$
NMMB551 Seminář z kombinatorické,	2	$0/2 \mathrm{Z}$	$0/2 \mathrm{~Z}$
algoritmické a finitní algebry			
NMNV451 Seminář numerické matematiky	2	$0/2 \mathrm{~Z}$	$0/2 { m Z}$

Státní závěrečná zkouška

Podmínky pro přihlášení ke státní závěrečné zkoušce

- Získání alespoň 120 kreditů.
- Splnění všech povinných předmětů studijního plánu.
- Splnění Povinně volitelných předmětů 1 v rozsahu alespoň 46 kreditů. Z toho má být alespoň 17 kreditů z užšího výběru Povinně volitelných předmětů 2.
- Splnění Povinně volitelných předmětů 3 v rozsahu alespoň 4 kredity.
- Odevzdání vypracované diplomové práce ve stanoveném termínu.

Ústní část státní závěrečné zkoušky

Ústní část státní závěrečné zkoušky studijního programu Matematika pro informační technologie se skládá z dvou tematických okruhů. Z tematického okruhu 1 dostane student jednu otázku. Tématický okruh 2 je rozdělen na podokruhy 2A, 2B, 2C, 2D, 2E. Student si vybere dva z nich a ke každému zvolenému tématu dostane jednu otázku. Očekávané kombinace 2A + 2C, 2B + 2D, 2B + 2E odpovídají volbě zaměření.

Podrobnější vysvětlení požadavků k ústní části státní závěrečné zkoušky lze najít na stránkách http://garant.karlin.mff.cuni.cz/stud/nmgr_mit_20_szz.shtml.

Požadavky k ústní části státní závěrečné zkoušky

Tématický okruh 1

1. Matematika pro informační technologie

Výpočetní modely, algoritmická rozhodnutelnost, základní složitostní třídy, regulární jazyky. Základní metody konvexní optimalizace. Gröbnerovy báze a Buchbergerův algoritmus. Mříže a algoritmus LLL.

Tématický okruh 2

2A Algebraické a číselné algoritmy

Rozklady polynomů: Berlekampův algoritmus, Henselovo zdvihání a Berlekampův-Henselův algoritmus. Aplikace Gröbnerových bází v algebraické geometrii. Číselné algoritmy: Pollardova rho a p-1 metoda, algoritmus CFRAC, ECM, kvadratické síto. Souvislost faktorizace a diskrétního algoritmu.

2B Algoritmy pro lineární algebru a optimalizaci

Řídký Choleského a LU rozklad, řídký QR rozklad. Krylovovské iterační metody pro řešení soustav lineárních algebraických rovnic a lineárních aproximačních problémů, včetně konstrukce algebraických předpodmínění. Metody pro řešení nelineárních algebraických rovnic a jejich soustav, metody pro minimalizaci funkcionálu bez omezení, lokální a globální konvergence metod.

2C Kryptologie

Základy Booleovských funkcí (ohnuté funkce, APN a AB funkce, ekvivalence, Sboxy, Walshova transformace a LAT, diferenční uniformita a DDT). Posloupnosti dané posuvnými registry. Základní kryptoanalytické útoky na blokové šifry (diferenciální a lineární kryptoanalýza, útoky vyšších řádů, meet-in-the-middle) a proudové šifry (korelace, algebraické útoky), útoky postranním kanálem. Aplikace mříží: NTRU, aplikace LLL (např. útok na RSA s malým veřejným exponentem). Pravděpodobnostní složitostní třídy, pseudonáhodné generátory.

2D Počítačové vidění a robotika

Matematický model perspektivní kamery. Výpočet pohybu kalibrované kamery z obrazů neznámé scény. 3D rekonstrukce ze dvou obrazů neznámé scény. Geometrie tří kalibrovaných kamer. Denavit-Hartenbergův popis kinematiky manipulátoru. Inverzní kinematická úloha pro šestistupňový sériový manipulátor – formulace a řešení. Kalibrace parametrů manipulátoru – formulace a řešení.

2E Zpracování obrazu a počítačová grafika

Modelování inverzních problémů, regularizační metody, digitalizace obrazu, zaostřování a odšumování obrazu, detekce hran, obrazová registrace, komprese, syntéza obrazu, metody compressed sensing, analytická, kinematická a diferenciální geometrie.

2.3 Matematická analýza

Garantující pracoviště: Katedra matematické analýzy Garant programu: prof. RNDr. Ondřej Kalenda, Ph.D., DSc.

Matematická analýza zahrnuje řadu oblastí matematiky — teorii funkcí reálné a komplexní proměnné, teorii míry a integrálu, funkcionální analýzu, obyčejné i parciální diferenciální rovnice, teorii potenciálu aj. Jejich vývoj byl inspirován také potřebami fyziky, biologie, ekonomie a jiných věd. Díky velmi vysoké adaptabilitě získané studiem a schopnosti podílet se tvořivě na řešení problémů z celé řady oborů je uplatnění absolventů značně univerzální a není omezeno na pracoviště s čistě badatelským zaměřením.

Vstupní požadavky

Předpokládáme, že student tohoto programu má na počátku prvního ročníku dostatečné znalosti z následujících oborů a oblastí:

- Znalost angličtiny na úrovni umožňující studium odborné literatury a sledování odborných přednášek v angličtině
- Diferenciální počet jedné a několika reálných proměnných
- Integrální počet jedné reálné proměnné
- Teorie míry, Lebesgueova míra a Lebesgueův integrál
- Základy algebry (maticový počet, vektorové prostory)
- Základy obecné topologie (metrické a topologické prostory, úplnost a kompaktnost)
- Základy komplexní analýzy (Cauchyova věta, reziduová věta, konformní zobrazení)
- Základy funkcionální analýzy (Banachovy a Hilbertovy prostory, duály, omezené operátory, kompaktní operátory, základy teorie distribucí)
- Základy teorie obyčejných diferenciálních rovnic (základní vlastnosti řešení a maximálních řešení, soustavy lineárních rovnic, stabilita)

• Základy teorie parciálních diferenciálních rovnic (kvazilineární rovnice prvního řádu, Laplaceova rovnice a rovnice vedení tepla fundamentální řešení a princip maxima, vlnová rovnice fundamentální řešení, konečná rychlost šíření vlny)

Studentům, kteří tyto požadavky nesplňují, může garant studijního programu stanovit způsob jejich doplnění, například absolvováním vybraných předmětů bakalářského studia v rámci individuálního studijního plánu.

Doporučený průběh studia

Podrobnější informace k doporučenému průběhu studia lze najít na stránkách http://garant.karlin.mff.cuni.cz/stud/nmgr_20_ma.shtml.

1. rok studia

Kód	Název	Kredity	ZS	LS
NMMA40	l Funkcionální analýza 1	8	4/2 Z+Zk	_
NMMA40	3Reálné funkce 1	4	$2/0 \mathrm{Zk}$	
NMMA40	5Parciální diferenciální rovnice 1	6	3/1 Z+Zk	
NMMA40	7Obyčejné diferenciální rovnice 2	5	2/2 Z+Zk	
NMMA40	2Funkcionální analýza 2	6		3/1 Z+Zk
NMMA40	6Parciální diferenciální rovnice 2	6		3/1 Z+Zk
NMMA40	8Komplexní analýza 2	5		2/2 Z+Zk
NSZZ023	Diplomová práce I	6		$0/4 \mathrm{~Z}$
	Volitelné a povinně volitelné	14		
	$p\check{r}edm\check{e}ty$			

2. rok studia

Kód	Název	Kredity	ZS	LS
NSZZ024	Diplomová práce II	9	$0/6 \mathrm{~Z}$	_
NSZZ025	Diplomová práce III	15	<u> </u>	$0/10 { m Z}$
	Volitelné a povinně volitelné předměty	36		

Shrnutí studijního plánu

Povinné předměty

Kód	Název	Kredity	ZS	LS
NMMA40	l Funkcionální analýza 1	8	4/2 Z+Zk	
NMMA40	2Funkcionální analýza 2	6	<u> </u>	3/1 Z+Zk
NMMA40	3Reálné funkce 1	4	2/0 Zk	
NMMA40	5Parciální diferenciální rovnice 1	6	3/1 Z+Zk	
NMMA40	6Parciální diferenciální rovnice 2	6		3/1 Z+Zk
NMMA40	7Obyčejné diferenciální rovnice 2	5	2/2 Z+Zk	
NMMA40	8Komplexní analýza 2	5		2/2 Z+Zk
NSZZ023	Diplomová práce I	6		$0/4 \mathrm{~Z}$
NSZZ024	Diplomová práce II	9	$0/6 \mathrm{~Z}$	
NSZZ025	Diplomová práce III	15		$0/10 \mathrm{~Z}$

Skupina I.

Tuto skupinu tvoří přednášky, které jsou úvodem do jednotlivých oblastí výzkumu v matematické analýze, do aplikací matematické analýzy či do vybraných oblastí jiných oborů, které s matematickou analýzou souvisejí. Za předměty z této skupiny je třeba získat alespoň 21 kreditů.

Kód	Název	Kredity	ZS	LS
NMAG409	Algebraická topologie 1	5	2/2 Z+Zk	
NMAG433	Riemannovy plochy	3	2/0 Zk	
NMMA40	4Reálné funkce 2	4	<u> </u>	$2/0 \mathrm{Zk}$
NMMA43	3Deskriptivní teorie množin 1	4	$2/0 \mathrm{~Zk}$	
NMMA43	4Deskriptivní teorie množin 2	4		$2/0 \mathrm{Zk}$
NMMA43	5 Topologické metody ve funkcionální	4	2/0 Zk	
	analýze 1			
NMMA43	6Topologické metody ve funkcionální	4		$2/0 \mathrm{Zk}$
	analýze 2			·
NMMA43	7Derivace a integrál pro pokročilé 1	4	2/0 Zk	
NMMA43	8Derivace a integrál pro pokročilé 2	4	<u>.</u>	$2/0 \mathrm{Zk}$
NMMA44	ODiferenciální rovnice v Banachových	4		2/0 Zk
	prostorech			
NMMA50	1 Nelineární funkcionální analýza 1	5	2/2 Z+Zk	
NMMA50	2 Nelineární funkcionální analýza 2	5	<u>.</u>	2/2 Z+Zk
NMMA53	1 Parciální diferenciální rovnice 3	4	2/0 Zk	<u> </u>
NMMA53	3Úvod do teorie interpolací 1	4	2/0 Zk	
NMMA53	4Úvod do teorie interpolací 2	4	<u> </u>	2/0 Zk
NMMO40	1 Mechanika kontinua	6	2/2 Z+Zk	
NMMO53	2Matematická teorie	3		$2/0 \mathrm{Zk}$
	Navierových-Stokesových rovnic			
NMMO53	6Matematické metody v mechanice	3		2/0 Zk
	stlačitelných tekutin			
NMNV405	5 Metoda konečných prvků 1	5	2/2 Z+Zk	<u> </u>

Skupina II.

Tuto skupinu tvoří vybrané vědecké či pracovní semináře. Za předměty z této skupiny je třeba získat alespoň 12 kreditů (za každý z těchto seminářů lze získat 3 kredity za každý semestr). Semináře lze zapisovat opakovaně.

Kód	Název	Kredity	ZS	LS
NMMA43	1Seminář z diferenciálních rovnic	3	0/2 Z	0/2 Z
NMMA45	2Seminář z parciálních diferenciálních	3	$0/2 \mathrm{~Z}$	$0/2 \mathrm{~Z}$
	rovnic			
NMMA45	4Seminář z prostorů funkcí	3	$0/2 \mathrm{~Z}$	$0/2 \mathrm{~Z}$
NMMA45	5Seminář z reálné a abstraktní	3	$0/2 \mathrm{~Z}$	$0/2 \mathrm{~Z}$
	analýzy			
NMMA45	6Seminář z teorie reálných funkcí	3	$0/2 \mathrm{~Z}$	$0/2 \mathrm{~Z}$

			v
NMMA457Seminář ze základních vlastností prostorů funkcí	3	0/2 Z	$0/2~{ m Z}$
NMMA458 Topologický seminář	3	$0/2 \mathrm{~Z}$	$0/2 \mathrm{~Z}$
NMMA459Seminář ze základů funkcionální analýzy	3	0/2 Z	0/2 Z
Doporučené volitelné předměty			
Kód Název	Kredity	ZS	LS
NMMA462 Obecná topologie 2	6		2/2 Z+Zk
NMMA466 Aplikace diferenciálních rovnic v biologii	3		$2/0 \mathrm{~Zk}$
NMMA479 Kapitoly z diskrétních dynamických systémů	3	2/0 Zk	_
NMMA563 Derivace a integrál pro pokročilé 3	3	2/0 Zk	
NMMA564 Derivace a integrál pro pokročilé 4	3		$2/0 \mathrm{~Zk}$
NMMA565 Úvod do teorie aproximací 1	3	2/0 Zk	-
NMMA566 Úvod do teorie aproximací 2	3	_	$2/0 \mathrm{Zk}$
NMMA575 Topologické a geometrické vlastnosti konvexních množin 1	3	$2/0 \mathrm{Zk}$	_
NMMA576 Topologické a geometrické vlastnosti konvexních množin 2	3		2/0 Zk
NMMA577 Kvazikonformní zobrazení 1	3	2/0 Zk	
NMMA578 Kvazikonformní zobrazení 2	3		$2/0 \mathrm{~Zk}$

Státní závěrečná zkouška

Podmínky pro přihlášení ke státní závěrečné zkoušce

- Získání alespoň 120 kreditů.
- Splnění všech povinných předmětů studijního plánu.
- Splnění povinně volitelných předmětů ze skupiny I. v rozsahu alespoň 21 kreditů.
- Splnění povinně volitelných předmětů ze skupiny II. v rozsahu alespoň 12 kreditů.
- Odevzdání vypracované diplomové práce ve stanoveném termínu.

Ústní část státní závěrečné zkoušky

Ústní část státní závěrečné zkoušky studijního programu Matematická analýza se skládá z pěti okruhů, jimiž jsou Reálná analýza, Komplexní analýza, Funkcionální analýza, Obyčejné diferenciální rovnice a Parciální diferenciální rovnice. Z každého okruhu dostane uchazeč zpravidla jednu otázku.

Podrobnější vysvětlení požadavků k ústní části státní závěrečné zkoušky lze najít na stránkách http://garant.karlin.mff.cuni.cz/stud/nmgr_20_ma_szz.shtml.

Požadavky k ústní části státní závěrečné zkoušky

Tematické okruhy pro ústní část SZZ:

1. Reálná analýza

Teorie míry znaménkové míry, Radonovy míry. Absolutně spojité funkce a funkce s konečnou variací. Hausdorffova míra a dimenze.

2. Komplexní analýza

Meromorfní funkce. Konformní zobrazení. Harmonické funkce dvou proměnných. Nulové body holomorfních funkcí. Holomorfní funkce více proměnných. Analytické pokračování.

3. Funkcionální analýza

Topologické lineární prostory. Lokálně konvexní prostory a slabé topologie. Spektrální teorie v Banachových algebrách. Spektrum omezených i neomezených operátorů. Integrální transformace. Teorie distribucí.

4. Obyčejné diferenciální rovnice

Carathéodoryova teorie řešení. Soustavy lineárních rovnic prvního řádu. Stabilita a asymptotická stabilita. Dynamické systémy. Bifurkace.

5. Parciální diferenciální rovnice

Lineární a kvazilineární rovnice prvního řádu. Lineární a nelineární eliptické rovnice. Lineární a nelineární parabolické rovnice. Lineární hyperbolické rovnice. Sobolevovy a Bochnerovy prostory.

2.4 Numerická a výpočtová matematika

Garantující pracoviště: Katedra numerické matematiky Garant programu: doc. Mgr. Petr Knobloch, Dr., DSc.

Numerická a výpočtová matematika se zabývá zpracováním matematických modelů pomocí výpočetní techniky. Realizuje přechod od teoretické matematiky k prakticky použitelným výsledkům. S jejím použitím se lze setkat v technice a v přírodních vědách, v ekonomice, lékařských vědách aj. Student se seznámí jak s teorií výpočtových procesů a algoritmů, tak s aplikacemi v oblastech počítačového modelování, simulace a řízení složitých struktur a procesů. Důraz je kladen též na tvořivou práci s počítačem a vytváření software na vysoké úrovni.

Absolventi nacházejí uplatnění především tam, kde se systematicky používá výpočetní technika (průmysl, školství, základní i aplikovaný výzkum, veřejná správa, justice, banky apod.).

Vstupní požadavky

Předpokládáme, že student tohoto programu má na počátku prvního ročníku dostatečné znalosti z následujících oborů a oblastí:

- Znalost angličtiny na úrovni umožňující studium odborné literatury a sledování odborných přednášek v angličtině.
- Diferenciální počet pro funkce jedné a několika reálných proměnných.
- Integrální počet pro funkce jedné reálné proměnné.
- Teorie míry, Lebesgueova míra a Lebesgueův integrál.
- Základy lineární algebry (maticový počet, vektorové prostory).
- Základy funkcionální analýzy (Banachovy a Hilbertovy prostory, duály, omezené operátory, kompaktní operátory).
- Základy teorie obyčejných diferenciálních rovnic (základní vlastnosti řešení a maximálních řešení, soustavy lineárních rovnic, stabilita).
- Základy teorie parciálních diferenciálních rovnic (kvazilineární rovnice prvního řádu, Laplaceova rovnice, rovnice vedení tepla, vlnová rovnice).

- Základy numerické matematiky (numerická kvadratura, základy numerického řešení obyčejných diferenciálních rovnic, metoda konečných diferencí pro parciální diferenciální rovnice).
- Základy analýzy maticových výpočtů (Schurova věta, ortogonální transformace, rozklady matic, základní iterační metody).

Studentům, kteří tyto požadavky nesplňují, může garant studijního programu stanovit způsob jejich doplnění, například absolvováním vybraných předmětů bakalářského studia v rámci individuálního studijního plánu.

Doporučený průběh studia

Podrobnější informace k doporučenému průběhu studia lze najít na stránkách http://garant.karlin.mff.cuni.cz/stud/nmgr_20_nvm.shtml.

1. rok studia

Kód	Název	Kredity	ZS	LS
NMMA40	5Parciální diferenciální rovnice 1	6	3/1 Z+Zk	
NMNV40	l Funkcionální analýza	5	2/2 Z+Zk	
NMNV40	3 Numerický software 1	5	2/2 Z+Zk	
NMNV40	5 Metoda konečných prvků 1	5	2/2 Z+Zk	
NMNV41	l Algoritmy maticových	5	2/2 Z+Zk	
	iteračních metod			
NMNV45	1 Seminář numerické matematiky	2	$0/2 \mathrm{~Z}$	
NMNV406	6 Nelineární diferenciální rovnice	5	<u> </u>	2/2 Z+Zk
NMNV412	2 Analýza maticových iteračních	6		$4/0 \mathrm{Zk}$
	metod – principy a souvislosti			
NSZZ023	Diplomová práce I	6		$0/4 \mathrm{~Z}$
NMNV45	1 Seminář numerické matematiky	2		$0/2 \mathrm{~Z}$
	Volitelné a povinně volitelné	13		
	$p\check{r}edm\check{e}ty$			
2. rok stu	dia			

2. rc	k	stu	ıdia
-------	---	-----	------

Kód	Název	Kredity	ZS	LS
NMNV50	3 Numerické metody	6	3/1 Z+Zk	
	optimalizace 1			
NSZZ024	Diplomová práce II	9	$0/6 \mathrm{~Z}$	
NMNV45	1 Seminář numerické matematiky	2	$0/2 \mathrm{~Z}$	
NSZZ025	Diplomová práce III	15		$0/10 { m Z}$
NMNV45	1 Seminář numerické matematiky	2		$0/2 \mathrm{~Z}$
	Volitelné a povinně volitelné	26		
	$p\check{r}edm\check{e}ty$			

Shrnutí studijního plánu

Povinné předměty

Kód	Název	Kredity	ZS	LS
NMMA40	5Parciální diferenciální rovnice 1	6	3/1 Z+Zk	_
NMNV40	1 Funkcionální analýza	5	2/2 Z+Zk	

NMNV403 Numerický software 1	5	2/2 Z+Zk	
NMNV405 Metoda konečných prvků 1	5	2/2 Z+Zk	
NMNV406 Nelineární diferenciální rovnice	5		2/2 Z+Zk
NMNV411 Algoritmy maticových	5	2/2 Z+Zk	<u> </u>
iteračních metod			
NMNV412 Analýza maticových iteračních	6		$4/0 \mathrm{Zk}$
${f metod-principy}$ a souvislosti			
NMNV503 Numerické metody	6	3/1 Z+Zk	
${ m optimalizace} \ 1$			
NSZZ023 Diplomová práce I	6		$0/4 \mathrm{~Z}$
NSZZ024 Diplomová práce II	9	$0/6 \mathrm{~Z}$	_
NSZZ025 Diplomová práce III	15		$0/10~\mathrm{Z}$

Je třeba získat alespoň 30 kreditů z povinně volitelných předmětů.

Kód Název		Kredity	ZS	LS
NMMA406Parciální diferenciální rovnice 2		6	_	3/1 Z+Zk
NMNV404 Numerický software 2		5		2/2 Z+Zk
NMNV436 Metoda ko	onečných prvků 2	5		2/2 Z+Zk
NMNV461 Techniky	aposteriorního odhadování	3	$2/0 \mathrm{Zk}$	
chyby				
NMNV464 Aposterio	rní numerická analýza	3		$2/0 \mathrm{Zk}$
metodou	vyvážených toků			
NMNV531 Inverzní ú	lohy a regularizace	5	2/2 Z+Zk	
NMNV532 Paralelní	maticové výpočty	5		2/2 Z+Zk
NMNV533 Řídké mat	tice v numerické	5	2/2 Z+Zk	
matematic	ce			
NMNV537 Matematic	cké metody v mechanice	3	$2/0 \mathrm{Zk}$	
tekutin 1				
NMNV538 Matemati	cké metody v mechanice	3		$2/0 \mathrm{Zk}$
tekutin 2				
NMNV539 Numericke	é řešení ODR	5	2/2 Z+Zk	
NMNV540 Základy n	espojité Galerkinovy	3	<u>.</u>	2/0 Zk
metody				
NMNV543 Aproxima	ce funkcí 1	5	2/2 Z+Zk	
NMNV544 Numericke	é metody optimalizace 2	5	<u>, </u>	2/2 Z+Zk

Doporučené volitelné předměty

Kód	Název	Kredity	ZS	LS
NMMO401 Mechanika kontinua		6	2/2 Z+Zk	
NMMO403 Počítačové řešení úloh fyziky		5		2/2 Z+Zk
	kontinua			
NMMO46	1 Seminář z mechaniky kontinua	2	$0/2 \mathrm{~Z}$	$0/2 \mathrm{~Z}$
NMMO53	5 Matematické metody v mechanice	3	$2/0 \mathrm{Zk}$	
	pevných látek			

NMMO536 Matematické metody v mechanice stlačitelných tekutin	3	_	2/0 Zk
NMMO537 Sedlobodové úlohy a jejich řešení NMMO539 Matematické metody v mechanice	5 3	$\frac{-}{2/0}$ Zk	2/2 Z+Zk —
nenewtonovských tekutin NMNV361 Fraktály a chaotická dynamika NMNV451 Seminář numerické matematiky	$\frac{3}{2}$	$2/0 \mathrm{~Zk}$ $0/2 \mathrm{~Z}$	— 0/2 Z
NMNV466 Metody rozkladu oblasti NMNV541 Tvarová a materiálová	3	$\frac{6/2}{2}$ $\frac{2}{2}$ $\frac{2}{2}$	2/0 Zk
optimalizace 1 NMNV542 Tvarová a materiálová	3	<i>,</i>	$2/0 \mathrm{~Zk}$
optimalizace 2 NMNV561 Bifurkační analýza dynamických	3	2/0 Zk	_
systémů 1 NMNV562 Bifurkační analýza dynamických	3	_	$2/0 \mathrm{\ Zk}$
systémů 2 NMNV568 Aproximace funkcí 2 NMNV569 Numerické výpočty s verifikací	3 5	_	$2/0 { m Zk} \ 2/2 { m Z+Zk}$
NMNV 509 Namerické výpočty s verijkaci NMNV571 Víceúrovňové metody NMST442 Maticové výpočty ve statistice	3 5	2/0 Zk	$\frac{2/2}{2}$ Z+Zk $\frac{2}{2}$ Z+Zk

Státní závěrečná zkouška

Podmínky pro přihlášení ke státní závěrečné zkoušce

- Získání alespoň 120 kreditů.
- Splnění všech povinných předmětů studijního plánu.
- Splnění povinně volitelných předmětů v rozsahu alespoň 30 kreditů.
- Odevzdání vypracované diplomové práce ve stanoveném termínu.

Ústní část státní závěrečné zkoušky

Při ústní zkoušce budou každému studentovi zadány tři otázky z níže uvedených tematických okruhů. Obsah těchto okruhů pokrývají povinné předměty.

Podrobnější vysvětlení požadavků k ústní části státní závěrečné zkoušky lze najít na stránkách http://garant.karlin.mff.cuni.cz/stud/nmgr_20_nvm_szz.shtml.

Požadavky k ústní části státní závěrečné zkoušky

1. Parciální diferenciální rovnice

Lineární eliptické, parabolické a hyperbolické rovnice, nelineární diferenciální rovnice v divergenčním tvaru; Sobolevovy prostory; variační formulace; existence a vlastnosti řešení; monotónní a potenciální operátory.

2. Metoda konečných prvků

Prostory konečných prvků a jejich aproximační vlastnosti; Galerkinova aproximace lineárních eliptických úloh; odhady chyby; řešení nelineární rovnic v divergenčním tvaru.

3. Numerická lineární algebra

Základní přímé a iterační maticové metody; krylovovské metody; projekce a problém momentů; souvislost spektrální informace a konvergence.

4. Adaptivní diskretizační metody

Numerická kvadratura, odhady chyby, adaptivita; numerické metody pro obyčejné diferenciální rovnice, odhady lokální chyby, adaptivní volba časového kroku.

5. Numerické metody optimalizace

Metody pro řešení nelineárních algebraických rovnic a jejich soustav; metody pro minimalizaci funkcionálu bez omezení; lokální a globální konvergence metod.

2.5 Matematické modelování ve fyzice a technice

Garantující pracoviště: Matematický ústav UK

Garant programu: prof. RNDr. Josef Málek, CSc., DSc.

Studijní program Matematické modelování ve fyzice a technice je mezioborovým studiem, které spojuje matematiku a fyziku.

Fyzikální část vede studenta k získání schopnosti formulovat matematické modely pro kvantitativní i kvalitativní analýzu fyzikálních systémů, přičemž studium je zaměřeno především na fyzikálními systémy v termodynamice spojitého prostředí. (Proudění tekutin a jejich směsí, deformace pevných látek, vzájemná interakce pevných látek a tekutin a další.) V rámci rozsáhlé spolupráce s dalšími pracovišti Univerzity Karlovy či Akademie věd se ovšem studenti mohou věnovat i matematickému modelování v jiných oborech přírodních či společenských věd.

Matematická část studia je zaměřena na teorii parciálních diferenciálních rovnic. Student se důkladně seznámí s moderními metodami pro teoretickou analýzu systémů nelineárních parciálních diferenciálních rovnic, a dále také s příslušnými numerickými metodami pro jejich řešení, a to včetně implementace daných metod s pomocí moderních softwarových nástrojů.

Obecným cílem studia je připravit studenta k tvůrčímu využití soudobých matematických prostředků při zkoumání rozmanitých jevů reálného světa a souvisejících ryze matematických problémů. Absolventi matematického modelování jsou připraveni působit jak v akademickém tak v komerčním sektoru, a to nejen díky vynikajícím znalostem matematiky a fyziky, ale také díky samostatnosti, schopnosti rychle se zorientovat v nové problematice a schopnosti konzultovat a řešit problémy ve spolupráci se specialisty z různých vědních oborů jako jsou například fyzikové, inženýři, lékaři, ekonomové a programátoři.

Vstupní požadavky

Předpokládáme, že student tohoto programu má na počátku prvního ročníku dostatečné znalosti z následujících oborů a oblastí:

- Diferenciální počet jedné a několika reálných proměnných. Integrální počet jedné reálné proměnné. Křivkový a plošný integrál, objemový integrál. Teorie míry, Lebesgueův integrál.
- Základy lineární algebry (vektorové prostory, matice, determinanty, Jordanův kanonický tvar, ortogonalizace, vlastní čísla a vlastní vektory, základy multilineární algebry, kvadratické formy). Numerické řešení soustav lineárních algebraických rovnic (Schurova věta, QR rozklad, LU rozklad, singulární rozklad, úlohy nejmenších čtverců, částečný problém vlastních čísel, metoda sdružených gradientů, GMRES, zpětná chyba, citlivost a numerická stabilita, QR algoritmus).
- Základy komplexní analýzy (Cauchyova věta, reziduová věta, konformní zobrazení, Laplaceova transformace).

- Základy funkcionální analýzy a teorie metrických prostorů (Banachovy a Hilbertovy prostory, operátory a funkcionály, Hahn-Banachova věta, duální prostory, omezené operátory, kompaktní operátory, základy teorie distribucí).
- Základy teorie obyčejných diferenciálních rovnic (základní vlastnosti řešení a maximálních řešení, soustavy lineárních rovnic, stabilita) a parciálních diferenciálních rovnic (kvazilineární rovnice prvního řádu, Laplaceova rovnice a rovnice vedení tepla fundamentální řešení a princip maxima, vlnová rovnice fundamentální řešení, konečná rychlost šíření vlny).
- Základy klasické mechaniky (Newtonovy pohybové zákony, Lagrangeovy rovnice, Hamiltonovy rovnice, variační formulace, mechanika tuhého tělesa, setrvačníky).
- Pasivní znalost angličtiny umožňující dostatečné porozumění matematickým přednáškám a odborným textům.

Studentům, kteří tyto požadavky nesplňují, může garant studijního programu stanovit způsob jejich doplnění, například absolvováním vybraných předmětů bakalářského studia v rámci individuálního studijního plánu.

Doporučený průběh studia

Podrobnější informace k doporučenému průběhu studia lze najít na stránkách http://garant.karlin.mff.cuni.cz/stud/nmgr_20_mod.shtml.

1. rok studia

Kód	Název	Kredity	ZS	LS
NMMA40	l Funkcionální analýza 1	8	4/2 Z+Zk	
NMMA40	Parciální diferenciální rovnice 1	6	3/1 Z+Zk	
NMMO40	lMechanika kontinua	6	2/2 Z+Zk	
NOFY036	Termodynamika a statistická	6	3/2 Z+Zk	
	fyzika			
NMNV405	Metoda konečných prvků 1	5	2/2 Z+Zk	
NMMA40	Parciální diferenciální rovnice 2	6		3/1 Z+Zk
NSZZ023	Diplomová práce I	6		$0/4 \mathrm{~Z}$
NMMO40	² Termodynamika a mechanika	5		2/1 Z+Zk
	nenewtonovských tekutin			
NMMO40	3Počítačové řešení úloh fyziky	5		2/2 Z+Zk
	kontinua			
NMMO40	4Termodynamika a mechanika	5		2/1 Z+Zk
	pevných látek			
	Volitelné a povinně volitelné	1		
	$p\check{r}edm\check{e}ty$			

2. rok studia

Kód	Název	Kredity	ZS	LS
NSZZ024	Diplomová práce II	9	0/6 Z	
NMNV412 Analýza maticových iteračních		6		$4/0 \mathrm{~Zk}$
	metod – principy a souvislosti			
NSZZ025	Diplomová práce III	15		$0/10 \mathrm{~Z}$

Volitelné a povinně volitelné předměty

Shrnut i studijn iho plánu

Povinné předměty

Kód	Název	Kredity	ZS	LS
NMMA40	l Funkcionální analýza 1	8	4/2 Z+Zk	
NMMA40	5Parciální diferenciální rovnice 1	6	3/1 Z+Zk	
NMMA40	6Parciální diferenciální rovnice 2	6	<u> </u>	3/1 Z+Zk
NMMO40	$1{f Mechanika\ kontinua}$	6	2/2 Z+Zk	
NMMO40	2Termodynamika a mechanika	5		2/1 Z+Zk
	nenewtonovských tekutin			
NMMO40	3Počítačové řešení úloh fyziky	5		2/2 Z+Zk
	kontinua			
NMMO40	4Termodynamika a mechanika	5		2/1 Z+Zk
	pevných látek			
NMNV405	5 Metoda konečných prvků 1	5	2/2 Z+Zk	
NMNV412	2 Analýza maticových iteračních	6		$4/0 \mathrm{Zk}$
	metod – principy a souvislosti			
NOFY036	Termodynamika a statistická	6	3/2 Z+Zk	
	fyzika			
NSZZ023	Diplomová práce I	6		$0/4 \mathrm{~Z}$
NSZZ024	Diplomová práce II	9	$0/6 \mathrm{~Z}$	
NSZZ025	Diplomová práce III	15	_	$0/10 \mathrm{~Z}$

30

Povinně volitelné předměty

Je třeba získat alespoň 16 kreditů z povinně volitelných předmětů.

Kód Název		Kredity	ZS	LS
NMMA407 Obyčejné difer	enciální rovnice 2	5	2/2 Z+Zk	_
NMMA531 Parciální difere	enciální rovnice 3	4	2/0 Zk	
NMMO432Klasické úlohy	mechaniky kontinua	4		2/1 Z+Zk
NMMO531Biotermodyna	mika	5	2/2 Z+Zk	
NMMO532Matematická t	eorie	3		$2/0 \mathrm{~Zk}$
Navierových-S	tokesových rovnic			
NMMO533Nelineární dife	renciální rovnice	6	3/1 Z+Zk	
a nerovnice 1				
NMMO534Nelineární dife	renciální rovnice	6		3/1 Z+Zk
a nerovnice 2				
NMMO535Matematické n	netody v mechanice	3	$2/0 \mathrm{Zk}$	
pevných látek			,	
NMMO536Matematické n	netody v mechanice	3		$2/0 \mathrm{~Zk}$
stlačitelných te	ekutin			,
NMMO537Sedlobodové ú	lohy a jejich řešení	5		2/2 Z+Zk
NMMO539Matematické n	netody v mechanice	3	$2/0 \mathrm{Zk}$	
nenewtonovský	ch tekutin		•	

NMMO541Teorie směsí NMNV403 Numerický software 1 NMNV404 Numerický software 2 NMNV501 Řešení nelineárních algebraických rovnic *	4 5 5 5	2/1 Z+Zk $2/2 Z+Zk$ $ 2/2 Z+Zk$	
NMNV503 Numerické metody optimalizace 1 NMNV532 Paralelní maticové výpočty NMNV537 Matematické metody v mechanice tekutin 1	6 5 3	$^{3/1}$ Z+Zk $^{-}$ $^{-}$ $^{2/0}$ Zk	
NMNV538 Matematické metody v mechanice tekutin 2	3	_	2/0 Zk
NOFY026 Klasická elektrodynamika NTMF034 Elektromagnetické pole a speciální teorie relativity	6 5	_	2/2 Z+Zk $2/1$ Zk

 $^{^{\}ast}$ Předmět je naposledy vyučován v akademickém roce 2020/2021. Od akademického roku 2021/2022 je nahrazen předmětem Numerické metody optimalizace 1 (NMNV503).

Doporučené volitelné předměty

Kód	Název	Kredity	ZS	LS
NMMA45	2 Seminář z parciálních diferenciálních rovnic	3	0/2 Z	$0/2~{ m Z}$
NMMA46	1 Regularita Navier — Stokesových rovnic	3	$0/2 \mathrm{~Z}$	$0/2 \mathrm{~Z}$
NMMA58	3 Kvalitativní vlastnosti slabých řešení parciálních diferenciálních rovnic	3	2/0 Zk	_
NMMA58	4 Regularita slabých řešení parciálních diferenciálních rovnic	3	_	$0/2 \mathrm{~Z}$
NMMO46	1 Seminář z mechaniky kontinua	2	$0/2 \mathrm{~Z}$	$0/2 \mathrm{~Z}$
NMMO46	3 GENERIC — nerovnovážná termodynamika	4	2/1 Z+Zk	<u>, </u>
NMMO56	1 Regularita řešení Navier-Stokesových rovnic	3	2/0 Zk	_
NMMO56	4 Vybrané problémy matematického modelování	3	_	$0/2 \mathrm{~Z}$
NMMO66	0 Nerovnovážná termodynamika elektrochemie	4	_	2/1 Z+Zk
NMNV40	3 Nelineární diferenciální rovnice	5		2/2 Z+Zk
	1 Tvarová a materiálová optimalizace 1	3	2/0 Zk	
NMNV542	2 Tvarová a materiálová optimalizace 2	3		2/0 Zk

Státní závěrečná zkouška

Podmínky pro přihlášení ke státní závěrečné zkoušce

⁻Získání alespoň 120 kreditů.

- Splnění všech povinných předmětů studijního plánu.
- Splnění povinně volitelných předmětů v rozsahu alespoň 16 kreditů.
- Odevzdání vypracované diplomové práce ve stanoveném termínu.

Ústní část státní závěrečné zkoušky

Student po předchozí přípravě ústně zodpoví šest otázek z teorie parciálních diferenciálních rovnic (jedna otázka), funkcionální analýzy (jedna otázka), teorie metody konečných prvků (jedna otázka), teorie řešení algebraických rovnic (jedna otázka), kinematiky a dynamiky kontinua (jedna otázka) a teorie konstitutivních vztahů pro tekutiny a pevné látky (jedna otázka).

Podrobnější vysvětlení požadavků k ústní části státní závěrečné zkoušky lze najít na stránkách http://garant.karlin.mff.cuni.cz/stud/nmgr_20_mod_szz.shtml.

Požadavky pro ústní část státní závěrečné zkoušky

1. Termodynamika a mechanika kontinua

Kinematika. Tensor napětí. Bilanční rovnice. Konstitutivní vztahy. Modely pro pevné látky a tekutiny.

2. Funkcionální analýza a parciální diferenciální rovnice

Lineární operátory a funkcionály, kompaktní operátory. Distribuce. Prostory funkcí. Slabá řešení lineárních eliptických, parabolických a hyperbolických úloh druhého řádu – základní existenční teorie a kvalitativní vlastnosti řešení.

3. Numerické metody

Numerické metody řešení diferenciálních rovnic. Metoda konečných prvků. Maticové iterační metody.

2.6 Pravděpodobnost, matematická statistika a ekonometrie

Garantující pracoviště: Katedra pravděpodobnosti a matematické statistiky Garant programu: doc. Ing. Marek Omelka, Ph.D.

Program Pravděpodobnost, matematická statistika a ekonometrie je určen pro zájemce o získání teoretických i aplikovaných poznatků v oblasti matematiky náhodných jevů. Hlavní charakteristikou programu je soulad mezi rigorózní matematickou teorií, hloubkou vhledu do jednotlivých oblastí oboru (pravděpodobnost, statistika, ekonometrie) a aplikacemi v nejrůznějších oblastech života. Studenti získávají společný základ absolvováním povinných předmětů z pravděpodobnosti, optimalizace, statistického modelování a náhodných procesů, na které navazují vlastním výběrem povinně volitelných a volitelných přednášek a seminářů, čímž si rozšiřují vzdělání a volí si oblast, které se budou hlouběji věnovat. Na seminářích se učí samostatně pracovat a řešit rozsáhlejší projekty samostatně i v týmu. Velký důraz je kladen na rozvoj analytického a kritického myšlení. Pravděpodobnost, matematická statistika a ekonometrie má blízký vztah k ostatním matematickým oborům (matematické analýze, numerické matematice, diskrétní matematice). V aplikacích se program inspiruje problémy z ekonomie, lékařství, techniky, přírodních věd a fyziky, informatiky. Hlavním cílem programu je připravit absolventy pro úspěšné uplatnění jak v praxi (finance, průmysl, telekomunikace, marketing, lékařství, přírodní vědy), tak i v akademické kariéře.

Absolvent programu Pravděpodobnost, matematická statistika a ekonometrie je do hloubky seznámen s matematickým modelováním náhodných jevů a procesů a jeho aplikacemi v praxi. Vyzná se v základech teorie pravděpodobnosti, matematické statistiky,

teorie náhodných procesů a teorie optimalizace. Všeobecný základ si rozšířil o hlubší znalosti teorie náhodných procesů a stochastické analýzy, moderních metod matematické statistiky, nebo pokročilé optimalizace a analýzy časových řad. Rozumí podstatě studovaných metod, má přehled o jejich vzájemném vztahu a je schopen je aktivně rozvíjet a kriticky používat. Teoretické poznatky umí tvůrčím způsobem aplikovat v praxi. Své schopnosti logicky myslet, analyzovat problémy a nalézat řešení netriviálních úloh využívá k tvůrčí a samostatné práci s přesahem do dalších vědních oborů v praxi nebo v akademické oblasti.

Vstupní požadavky

Předpokládáme, že student tohoto programu má na počátku prvního ročníku dostatečné znalosti z následujících oborů a oblastí:

- Diferenciální a integrální počet více proměnných, teorie míry a Lebesgueův integrál, vektorové prostory a maticová algebra, základy funkcionální a komplexní analýzy.
- Základy teorie pravděpodobnosti.
- Základy matematické statistiky a analýzy dat.
- Teorie markovských řetězců.
- Pasivní znalost angličtiny umožňující dostatečné porozumění matematickým přednáškám a odborným textům.

Studentům, kteří tyto požadavky nesplňují, může garant studijního programu stanovit způsob jejich doplnění, například absolvováním vybraných předmětů bakalářského studia v rámci individuálního studijního plánu.

Doporučený průběh studia

Podrobnější informace k doporučenému průběhu studia lze najít na stránkách http://garant.karlin.mff.cuni.cz/stud/nmgr_20_pmse.shtml.

1. rok studia

Kód	Název	Kredity	ZS	LS
NMSA407	Lineární regrese	8	4/2 Z+Zk	_
NMSA409	Náhodné procesy 2	8	4/2 Z+Zk	
NMSA403	Teorie optimalizace	5	2/2 Z+Zk	
NMSA405	Teorie pravděpodobnosti 2	5	2/2 Z+Zk	
NMSA401	Oborový seminář	2	$0/2 \mathrm{~Z}$	
	Volitelné a povinně volitelné	32		
	$p\check{r}edm\check{e}ty$			

Kód	Název	Kredity	ZS	LS
NSZZ023	Diplomová práce I	6	_	$0/4 \mathrm{~Z}$
NSZZ024	Diplomová práce II	9	$0/6 \mathrm{~Z}$	
NSZZ025	Diplomová práce III	15		$0/10 { m Z}$
	Volitelné a povinně volitelné předměty	30		

Shrnutí studijního plánu

Povinné předměty

Kód	Název	Kredity	ZS	LS
NMSA401	Oborový seminář	2	$0/2 \mathrm{~Z}$	_
NMSA403	Teorie optimalizace	5	2/2 Z+Zk	
NMSA405	Teorie pravděpodobnosti 2	5	2/2 Z+Zk	
NMSA407	Lineární regrese	8	4/2 Z+Zk	_
NMSA409	Náhodné procesy 2	8	4/2 Z+Zk	_
NSZZ023	Diplomová práce I	6		$0/4 \mathrm{~Z}$
NSZZ024	Diplomová práce II	9	$0/6 \mathrm{~Z}$	_
NSZZ025	Diplomová práce III	15		$0/10 \mathrm{~Z}$

Povinně volitelné předměty

Skupina I.

Z této skupiny je třeba získat alespoň 7 kreditů. Studenti si obvykle zapisují dva ekonometrické nebo dva statistické nebo dva pravděpodobnostní semináře. Zápis pokročilejších seminářů je omezen prerekvizitami.

Kód	Název	Kredity	ZS	LS
NMEK450	Ekonometrický seminář 1	2	_	$0/2 \mathrm{~Z}$
NMEK551	Ekonometrický projektový seminář	5	$0/2 \mathrm{~Z}$	
NMST450	Statistický seminář 1	2		$0/2 \mathrm{~Z}$
NMST551	Statistický projektový seminář	5	$0/2 \mathrm{~Z}$	
NMTP450	Pravděpodobnostní seminář 1	2	<u> </u>	$0/2 \mathrm{~Z}$
NMTP551	Pravděpodobnostní seminář 2	5	$0/2 \mathrm{~Z}$	<u>·</u>

Skupina II.

Z této skupiny je třeba získat alespoň 43 kreditů. Při volbě povinně volitelných předmětů doporučujeme brát ohled na vybraná témata volitelných okruhů státní závěrečné zkoušky a také na téma diplomové práce. Povinně volitelné předměty by měly posluchačům umožnit získat jak širší základ oboru, tak i základní specializaci.

Kód	Název	Kredity	ZS	LS
NMEK432	2 Ekonometrie	8	_	4/2 Z+Zk
NMEK436	8 Výpočetní aspekty optimalizace	5		2/2 Z+Zk
NMEK53	l Matematická ekonomie	5	2/2 Z+Zk	
NMEK532	2 Optimalizace s aplikací ve financích	8		4/2 Z+Zk
NMFM43	1 Analýza investic	5	2/2 Z+Zk	
NMFM43	7 Matematika ve financích	6	$4/0 \mathrm{Zk}$	
	a pojišťovnictví			
NMFM53	1 Finanční deriváty 1	3	$2/0 \mathrm{Zk}$	
NMFM53	2 Finanční deriváty 2	3	2/0 Zk	
NMFM53	5 Stochastická analýza ve finanční	5	<u>.</u>	2/2 Z+Zk
	matematice			•
NMFM53	7 Kreditní riziko v bankovnictví	3	$2/0 \mathrm{Zk}$	
NMST431	Bayesovské metody	5	2/2 Z+Zk	

NMST432 Pokročilé regresní modely NMST434 Moderní statistické metody NMST436 Návrhy experimentů	8 8 5		4/2 Z+Zk 4/2 Z+Zk —
NMST438 Výběrová šetření	5	2/2 Z+Zk	
NMST440 Výpočetní prostředí pro statistickou analýzu dat	4	_	$0/2 \mathrm{~Z}$
NMST442 Maticové výpočty ve statistice	5		2/2 Z+Zk
NMST531 Analýza censorovaných dat	5	2/2 Z+Zk	
NMST532 Plánování a analýza lékařských studií	5	_	2/2 Z+Zk
NMST533 Asymptotické metody inference	3	$2/0 \mathrm{~Zk}$	
NMST535 Simulační metody	5		2/2 Z+Zk
NMST537 Časové řady	8	4/2 Z+Zk	
NMST539 Mnohorozměrná analýza	5		2/2 Z+Zk
NMST541 Statistická kontrola jakosti	5		2/2 Z+Zk
NMST543 Prostorová statistika	5	2/2 Z+Zk	
NMST552 Statistické konzultace	2	$0/2 \mathrm{~Z}$	$0/2 \mathrm{~Z}$
NMTP432 Stochastická analýza	8		4/2 Z+Zk
NMTP434 Principy invariance	6		$4/0 \mathrm{Zk}$
NMTP436 Spojité martingaly a čítací procesy	3		$2/0 \mathrm{~Zk}$
NMTP438 Prostorové modelování	8		4/2 Z+Zk
NMTP532 Ergodická teorie	4		$3/0 \mathrm{~Zk}$
NMTP533 Aplikovaná stochastická analýza	5	2/2 Z+Zk	
NMTP535 Vybrané partie z teorie míry	3	$2/0 \mathrm{Zk}$	
NMTP537 Limitní věty pro součty náhodných	3	$2/0 \mathrm{Zk}$	
veličin			
NMTP539 Metody Markov Chain Monte Carlo	5	2/2 Z+Zk	
NMTP541 Stochastická geometrie	3		$2/0 \mathrm{Zk}$
NMTP543 Stochastické diferenciální rovnice	6	$4/0 \mathrm{Zk}$	
NMTP545 Teorie pravděpodobnostních rozdělení	3	2/0 Zk	

Doporučené volitelné předměty

Kód	Název	Kredity	ZS	LS
NMFM46	1 Demografie	3	_	$2/0 \mathrm{~Zk}$
NMST570	Vybraná témata z psychometrie	3	1/1 Z+Zk	
NMST571	Seminář z psychometrie	2		$0/2 \mathrm{~Z}$
NMTP562	2 Markovské procesy	6		$4/0 \mathrm{Zk}$
NMTP563	B Vybrané partie pravděpodobnosti pro	5		2/2 Z+Zk
	statistiku			
NMTP567	Vybrané partie ze stochastické	3	2/0 Zk	
	$anal\acute{y}zy$			
NMTP570) Rozdělení s těžkými chvosty	3		$2/0 \mathrm{Zk}$
NMTP576	S Struktury podmíněné nezávislosti	3	_	$2/0 \mathrm{~Zk}$
	ŭ v	_	_	,

Státní závěrečná zkouška

Podmínky pro přihlášení ke státní závěrečné zkoušce

- Získání alespoň 120 kreditů.
- Splnění všech povinných předmětů studijního plánu.
- Splnění povinně volitelných předmětů ze skupiny I. v rozsahu alespoň 7 kreditů.
- Splnění povinně volitelných předmětů ze skupiny II. v rozsahu alespoň 43 kreditů.
- Odevzdání vypracované diplomové práce ve stanoveném termínu.

Ústní část státní závěrečné zkoušky

Ústní část státní závěrečné zkoušky se skládá ze tří okruhů. První okruh, Základy pravděpodobnosti, statistiky a náhodných procesů, je společný pro všechny posluchače programu. Pro druhý a třetí okruh si student volí z nabídky tří, respektive sedmi volitelných témat.

Podrobnější vysvětlení požadavků k ústní části státní závěrečné zkoušky lze najít na stránkách http://garant.karlin.mff.cuni.cz/stud/nmgr_20_pmse_szz.shtml.

Požadavky pro ústní část státní závěrečné zkoušky

Společný okruh

1. Základy pravděpodobnosti, statistiky a náhodných procesů

Základy teorie markovských řetězců. Stacionární posloupnosti a procesy. Lineární regresní model. Podmíněná střední hodnota. Martingaly s diskrétním časem. Optimalizace, lineární a nelineární programování.

Okruh 2. Pokročilé modely

Student si zvolí jedno ze tří témat

Téma 2A: Ekonometrické a optimalizační metody.

Stacionární posloupnosti a časové řady. Ekonometrie. Pokročilá optimalizace.

Téma 2B: Pokročilá statistická analýza.

Moderní metody odhadování parametrů a statistické inference. Regresní modely pro nenormální a korelovaná data.

Téma 2C: Procesy v čase i v prostoru.

Stochastické procesy se spojitým časem. Martingaly. Principy invariance. Wienerův proces.

Okruh 3. Speciální partie.

Student si zvolí jedno ze sedmi témat

Téma 3A:Ekonometrické modely

Matematická ekonomie. Časové řady s aplikací ve financích. Pokročilé ekonometrické a statistické metody. Mnohorozměrná statistická analýza.

Téma 3B: Optimalizační modely

Obecné optimalizační úlohy, optimální řízení. Aplikace optimalizace v ekonomii a ve financích. Matematická ekonomie. Časové řady.

Téma 3C: Prostorové modelování

Prostorové modelování a prostorová statistika. Základy stochastické analýzy. Limitní věty v teorii pravděpodobnosti.

Téma 3D: Stochastická analýza

Stochastická analýza. Itôova formule. Stochastické diferenciální rovnice. Poissonovy procesy, stacionární prostorové bodové procesy. Limitní věty.

Téma 3E: Statistika pro průmysl, obchod a hospodářství

Výběrová šetření. Návrhy průmyslových experimentů. Časové řady. Statistická kontrola jakosti. Teorie spolehlivosti.

Téma 3F: Statistika v přírodních vědách

Plánování a analýza medicínských experimentů. Mnohorozměrné statistické metody. Analýza přežití. Bayesovské metody.

Téma 3G: Teoretická statistika

Principy invariance. Limitní věty. Analýza censorovaných dat. Mnohorozměrná analýza.

2.7 Finanční a pojistná matematika

Garantující pracoviště: Katedra pravděpodobnosti a matematické statistiky Garant programu: prof. RNDr. Tomáš Cipra, DrSc.

Program Finanční a pojistná matematika zahrnuje matematické metody ve financích s důrazem na aplikace teorie pravděpodobnosti. Na dosti hluboký výklad základních matematických disciplin navazují v magisterském studiu speciální přednášky. Jejich náplň přihlíží k sylabům mezinárodních profesních organizací pojistných matematiků a manažérů rizika při zachování zásad univerzitního vzdělávání. Ve výuce teorie financí a pojišťovnictví je využívána matematická erudice posluchačů. Při zadávání témat diplomových prací je rozvinuta spolupráce s absolventy programu v praxi.

Absolventi programu získají vzdělání požadované profesními organizacemi pojistných matematiků v EU. Kombinace vzdělání v teorii pravděpodobnosti a finanční vědě je základem pro jejich uplatnění při řízení finančních rizik. Mají znalosti finančního modelování s použitím moderního matematického softwaru.

Studium je odbornou přípravou na výkon profese matematika ve finančních institucích a pro samostatnou tvůrčí či vědeckou činnost v oblastech matematické teorie financí a pojišťovnictví. Znalosti získané v bakalářském studiu jsou rozvíjeny do matematických teorií finančních trhů, kapitálové přiměřenosti, oceňování náhodných peněžních toků, tvorby pojistných rezerv apod. Výklad se z velké části opírá o matematické modelování s použitím moderního softwaru. Program představuje současnou formu studia aktuárských věd, která má na Univerzitě Karlově osmdesátiletou tradici. Absolventi se uplatní v pojišťovnách, penzijních a investičních fondech, v bankách, ve státní správě a jako odpovědní pojistní matematikové.

Vstupní požadavky

Předpokládáme, že student tohoto programu má na počátku prvního ročníku dostatečné znalosti z následujících oborů a oblastí:

- Diferenciální a integrální počet více proměnných, teorie míry a Lebesgueův integrál, vektorové prostory a maticová algebra.
- Základy teorie pravděpodobnosti, matematické statistiky a analýzy dat. Teorie markovských řetězců.
- Základy finanční matematiky a účetnictví.
- Základy funkcionálního programování.

• Pasivní znalost angličtiny umožňující dostatečné porozumění matematickým přednáškám a odborným textům.

Studentům, kteří tyto požadavky nesplňují, může garant studijního programu stanovit způsob jejich doplnění, například absolvováním vybraných předmětů bakalářského studia v rámci individuálního studijního plánu.

Doporučený průběh studia

Podrobnější informace k doporučenému průběhu studia lze najít na stránkách http://garant.karlin.mff.cuni.cz/stud/nmgr_20_fpm.shtml.

1. rok studia

Kód	Název	Kredity	ZS	LS
NMFM40	l Matematika neživotního	5	2/2 Z+Zk	_
	pojištění 1			
NMFM40	5 Životní pojištění 1	5	2/2 Z+Zk	
NMSA407	Lineární regrese	8	4/2 Z+Zk	
NMSA409	Náhodné procesy 2	8	4/2 Z+Zk	
NMFM40	2 Matematika neživotního	5		2/2 Z+Zk
	pojištění 2			
NMFM40	4 Vybraný software pro finance	3		$2/0 \mathrm{~Zk}$
	a pojišťovnictví			
NMFM40	6 Životní pojištění 2	3		$2/0 \mathrm{~Zk}$
NMFM40	8 Pravděpodobnost pro finance	3		$2/0 \mathrm{~Zk}$
	a pojišťovnictví			
	0 Účetnictví pojišťoven	5	_	2/2 Z+Zk
	6 Životní pojištění 2, cvičení	2		$0/2 \mathrm{Z}$
NSZZ023	Diplomová práce I	6		$0/4~\mathrm{Z}$
	Volitelné a povinně volitelné	7		
	$p\check{r}edm\check{e}ty$			

Kód	Název	Kredity	ZS	LS
NMFM50	l Aktuárský seminář 1	2	$0/2 \mathrm{~Z}$	
NMFM50	3 Teori e rizika	8	4/2 Z+Zk	
NMFM50′	7 Pokročilé partie finančního	2	$2/0 \mathrm{Zk}$	
	managementu			
NMST537	Časové řady	8	4/2 Z+Zk	
NSZZ024	Diplomová práce II	9	$0/6 \mathrm{Z}$	
NMFM50	2 Aktuárský seminář 2	1		$0/2 \mathrm{~Z}$
NMFM50	5 Stochastické modely pro finance	5		2/2 Z+Zk
	a pojišťovnictví			
NSZZ025	Diplomová práce III	15		$0/10 \mathrm{~Z}$
	Volitelné a povinně volitelné	10		
	$p\check{r}edm\check{e}ty$			

Shrnutí studijního plánu

Povinné předměty

Kód	Název	Kredity	ZS	LS
NMFM40	l Matematika neživotního	5	2/2 Z+Zk	
	pojištění 1			
NMFM40	2 Matematika neživotního	5		2/2 Z+Zk
	pojištění 2			
NMFM40	4 Vybraný software pro finance	3		$2/0 \mathrm{Zk}$
	a pojišťovnictví			
NMFM40	5 Životní pojištění 1	5	2/2 Z+Zk	
NMFM40	6 Životní pojištění 2	3		$2/0 \mathrm{Zk}$
NMFM40	8 Pravděpodobnost pro finance	3		$2/0 \mathrm{Zk}$
	a pojišťovnictví			
NMFM41	0 Účetnictví pojišťoven	5		2/2 Z+Zk
NMFM41	6 Životní pojištění 2, cvičení	2		$0/2 \mathrm{~Z}$
NMFM50	l Aktuárský seminář 1	2	$0/2 \mathrm{~Z}$	
	2 Aktuárský seminář 2	1		$0/2 \mathrm{Z}$
NMFM50	3 Teorie rizika	8	4/2 Z+Zk	
NMFM50	5 Stochastické modely pro finance	5		2/2 Z+Zk
	a pojišťovnictví			
NMFM50	7 Pokročilé partie finančního	2	2/0 Zk	
	managementu			
NMSA407	⁷ Lineární regrese	8	4/2 Z+Zk	
NMSA409	Náhodné procesy 2	8	4/2 Z+Zk	
NMST537	Žasové řady	8	4/2 Z+Zk	
	Diplomová práce I	6		$0/4 \mathrm{~Z}$
NSZZ024	Diplomová práce II	9	$0/6 \mathrm{~Z}$	_
NSZZ025	Diplomová práce III	15	_	$0/10 \mathrm{~Z}$

Povinně volitelné předměty

Je třeba získat alespoň 5 kreditů z povinně volitelných předmětů.

Kód	Název	Kredity	ZS	LS
NMFM43	1 Analýza investic	5	2/2 Z+Zk	
NMFM53	1 Finanční deriváty 1	3	$2/0 \mathrm{Zk}$	
NMFM53	2 Finanční deriváty 2	3	$2/0 \mathrm{Zk}$	
NMSA403	3 Teorie optimalizace	5	2/2 Z+Zk	
NMST531	Analýza censorovaných dat	5	2/2 Z+Zk	
NMST539	Mnohorozměrná analýza	5		2/2 Z+Zk

Doporučené volitelné předměty

Kód	Název	Kredity	ZS	LS
NMEK432	Ekonometrie	8	_	4/2 Z+Zk
NMEK532	Optimalizace s aplikací ve financích	8		4/2 Z+Zk
NMFM461	. Demografie	3		$2/0 \mathrm{Zk}$

NMFM462 Praktické aspekty měření a řízení finančních rizik	3	2/0 Zk	_
NMFM535 Stochastická analýza ve finanční matematice	5	_	2/2 Z+Zk
NMFM537 Kreditní riziko v bankovnictví NMSA571 Teorie informace ve financích a statistice	3 3	2/0 Zk —	$\frac{-}{2/0}$ Zk

Státní závěrečná zkouška

Podmínky pro přihlášení ke státní závěrečné zkoušce

- Získání alespoň 120 kreditů.
- Splnění všech povinných předmětů studijního plánu.
- Splnění povinně volitelných předmětů v rozsahu alespoň 5 kreditů.
- Odevzdání vypracované diplomové práce ve stanoveném termínu.

Ústní část státní závěrečné zkoušky

Ústní část státní závěrečné zkoušky studijního programu Finanční a pojistná matematika se skládá z okruhů Pravděpodobnost a statistika, Životní a neživotní pojištění a Finance a účetnictví.

Podrobnější vysvětlení požadavků k ústní části státní závěrečné zkoušky lze najít na stránkách http://garant.karlin.mff.cuni.cz/stud/nmgr_20_fpm_szz.shtml.

Požadavky pro ústní část státní závěrečné zkoušky

1. Pravděpodobnost a statistika

Náhodné veličiny, charakteristiky jejich rozdělení. Náhodné vektory, sdružené rozdělení, kovariance, modelování a měření závislostí. Podmíněné rozdělení. Rozdělení pravděpodobností v pojistné matematice. Odhady parametrů a jejich vlastnosti. Interval spolehlivosti. Principy testování hypotéz. Metoda maximální věrohodnosti a metoda momentů. Jednovýběrové, párové a dvouvýběrové testy. Analýza rozptylu. Model lineární regrese. Bayesův princip. Zákon velkých čísel a centrální limitní věta. Markovovy řetězce. Stacionární procesy. Časové řady. Teorie kredibility. Model kolektivního rizika. Základy stochastické analýzy.

2. Životní a neživotní pojištění

Demografický model životního pojištění. Kapitálové a důchodové pojištění. Rezervy pojistného životních pojištění. Modely pojištění osob s více dekrementy. Pojištění více životů. Solventnost pojišťovny, zajištění. Technické rezervy neživotního pojištění. Tarifování.

3. Finance a účetnictví

Základy financí. Cenné papíry a jejich oceňování. Finanční riziko. Metody analýzy akciového trhu. Účetnictví.

Studijní plány oblasti vzdělávání FYZIKA

Bakalářské studium od akad. roku 2019/20

Garant programu: doc. RNDr. Helena Valentová, Ph.D. Garantující pracoviště: Kabinet výuky obecné fyziky

Za výuku některých povinně volitelných a doporučených volitelných předmětů zodpovídají pracoviště garantující jednotlivé navazující magisterského studijní programy.

1. Základní informace

Bakalářský studijní program Fyzika má standardní dobu studia 3 roky a maximální dobu studia 6 let. Studium je zakončeno státní závěrečnou zkouškou a její úspěšné složení vede k získání titulu bakalář. Bakalářský studijní program Fyzika se nedělí na specializace.

Průběh studia není studijními plány pevně určen, posluchač si volí předměty tak, aby vyhověl požadavkům programu a získal potřebný počet kreditů požadovaných při kontrole studia po prvním semestru a na konci každého studijního roku. Je však vhodné dodržovat doporučený průběh studia, protože je sestaven s ohledem na návaznosti mezi jednotlivými předměty i na podmínky pro přihlášení ke státní závěrečné zkoušce.

První dva roky studia studijního programu Fyzika jsou společné a tvoří je především povinné předměty doplněné o doporučené volitelné předměty. Samostatný blok povinně volitelných předmětů tvoří výuka programování. Ve třetím roce má student možnost volbou dalších povinně volitelných předmětů, volitelných předmětů a tématu své bakalářské práce absolvovat jeden z bloků, na které pak navazuje odpovídající magisterské studium.

Dohromady je požadováno získání minimálně 180 kreditů za celé tříleté studium. Z toho 140 kreditů posluchač obdrží za povinné předměty, včetně 4 kreditů za výuku tělesné výchovy, 1 kreditu za zkoušku z anglického jazyka a 6 kreditů za vypracování bakalářské práce. Dalších celkem 22 kreditů musí získat za povinně volitelné předměty. Ty jsou rozčleněny do tří skupin: Za výuku programování musí získat alespoň 5 kreditů, ve druhé skupině (volba mezi předmětem Praktikum IV anebo Rovnice matematické fyziky) musí získat alespoň 5 kreditů, ve třetí skupině (volba předmětů z některého ze třinácti bloků) musí získat alespoň 12 kreditů. Za povinné a povinně volitelné předměty tak posluchač získá alespoň 162 kreditů. Zbylých 18 kreditů si doplní absolvováním volitelných předmětů, které si může vybrat libovolně (nejlépe z nabídky předmětů navazujícího magisterského programu, v němž posluchač hodlá pokračovat). Dále se doporučuje 4 z těchto kreditů získat za výuku anglického jazyka v prvních čtyřech semestrech.

2. Studijní plán

Charakteristika studijního programu:

Studijní program Fyzika poskytuje základní znalosti z experimentální a teoretické fyziky, matematiky a programování. Ve třetím roce studia si student volí povinně volitelné předměty a téma bakalářské práce (zpravidla podle oboru zamýšleného budoucího navazujícího magisterského studia) a získá prakticky orientované znalostí v některém z následujících zaměření: Astronomie a astrofyzika, Geofyzika a fyzika planet, Fyzika atmosféry, meteorologie a klimatologie, Teoretická fyzika, Fyzika kondenzovaných soustav a materiálů, Optika a optoelektronika, Fyzika povrchů a plazmatu, Biofyzika a chemická fyzika, Částicová a jaderná fyzika, Matematické a počítačové modelování ve fyzice. Absolvent je tak optimálně připraven na navazující magisterské studium těchto oborů fyziky. Pokud bakalář nechce v dalším studiu pokračovat, je schopen po absolvování zvoleného specifického bloku Aplikovaná fyzika pracovat jak ve vědeckých tak průmyslových laboratořích, obsluhovat technicky náročná zařízení, vyhodnocovat výsledky experimentů či počítačových modelací.

Cíle studia:

Cílem studia studijního programu Fyzika je poskytnout studentům ucelené základní vzdělání pokrývající všechny obory fyziky, odpovídající (poměrně rozsáhlé) znalosti z matematiky a základy programování. Na tento základ navazují ve třetím roku studia povinně volitelné a volitelné předměty, s jejichž pomocí může student získat další znalosti v některém z deseti oborů fyziky a připravit se na navazující magisterské studium nebo uzavřít své vzdělání na bakalářské úrovni.

Profil absolventa:

Absolvent studijního programu Fyzika má ucelené znalosti v experimentální a teoretické fyzice pokrývající všechny obory fyziky. Současně získává i velmi solidní znalosti z matematiky a osvojí si i základy programování. Volbou povinně volitelných a doporučených volitelných předmětů student může získat prohloubené znalosti v jednom z deseti oborů fyziky. Vzhledem k šíři vzdělání, přizpůsobivosti a všeobecně oceňované schopnosti abstraktního a tvořivého myšlení je student výborně připraven jak na navazující magisterské studium, tak na zaměstnání v řadě prakticky orientovaných oborů, kde jsou tyto schopnosti vyžadovány.

Doporučený průběh studia

Předměty **povinné** ke státní závěrečné zkoušce jsou vytištěny **tučně**, povinně volitelné předměty normálním písmem, doporučené *volitelné* předměty *kurzívou*.

Kód	Název	Kredity	ZS	LS
NOFY021	Mechanika a molekulová fyzika	8	4/2 Z+Zk	
NOFY055	Úvod do praktické fyziky	2	$0/2 \mathrm{~Z}$	
NOFY151	Matematická analýza I	9	4/3 Z+Zk	
NOFY141	Lineární algebra I	5	2/2 Z+Zk	
NTVY014	Tělesná výchova I ¹	1	$0/2 \mathrm{~Z}$	
NOFY018	Elektřina a magnetismus	8	<u> </u>	4/2 Z+Zk
NOFY066	Praktikum I - Mechanika	5		0/3 KZ
	a molekulová fyzika			

9		4/3 Z+Zk
5		2/2 Z+Zk
1		$0/2 \mathrm{~Z}$
0		·
1	$0/2 \mathrm{~Z}$	_
2	$0/2 \mathrm{~Z}$	
2	$0/1 \mathrm{Z}$	
2	$0/2 \mathrm{~Z}$	
1		$0/2 { m Z}$
2		$0/2 \mathrm{~Z}$
2	_	$0/1 \mathrm{~Z}$
	5 1 0 1 2 2 2 1	$egin{array}{cccccccccccccccccccccccccccccccccccc$

Povinně volitelné předměty – skupina 1 (5 kreditů)

Tuto skupinu předmětů tvoří výuka programování.

Název	Kredity	ZS	LS
Programování pro fyziky	5	2/2 Z+Zk	_
Programování a zpracování dat	4		$1/2~\mathrm{KZ}$
v Pythonu			
Programování prakticky	3		0/2 KZ
C++ pro fyziky	3		$1/1~\mathrm{KZ}$
Fortran pro fyziky	3		$1/1~\mathrm{KZ}$
Použití počítačů ve fyzice	3		$0/2~\mathrm{KZ}$
Úvod do Linuxu ⁴	3	$1/1~\mathrm{KZ}$	
Praktické programování	4	$2/1~\mathrm{KZ}$	
v experimentální fyzice ⁴			
Úvod do programování v prostředí	4		1/2 KZ
MATLAB, Octave a Scilab ⁴			
Programování v IDL — zpracování	3	1/1 KZ	
a vizualizace dat ⁴		•	
	Programování pro fyziky Programování a zpracování dat v Pythonu Programování prakticky C++ pro fyziky Fortran pro fyziky Použití počítačů ve fyzice Úvod do Linuxu ⁴ Praktické programování v experimentální fyzice ⁴ Úvod do programování v prostředí MATLAB, Octave a Scilab ⁴ Programování v IDL — zpracování	Programování pro fyziky Programování a zpracování dat v Pythonu Programování prakticky 3 C++ pro fyziky 3 Fortran pro fyziky 3 Použití počítačů ve fyzice 3 Úvod do Linuxu 4 Praktické programování v experimentální fyzice Úvod do programování v prostředí MATLAB, Octave a Scilab Programování v IDL — zpracování 3	Programování pro fyziky Programování a zpracování dat v Pythonu Programování prakticky C++ pro fyziky Fortran pro fyziky 3 — Fortran pro fyziky 3 — Použití počítačů ve fyzice Úvod do Linuxu Praktické programování v experimentální fyzice Úvod do programování v prostředí MATLAB, Octave a Scilab Programování v IDL — zpracování 3 2/2 Z+Zk 4 — 1 — 2 /2 Z+Zk 4 — 2 /2 Z+Zk 4 — 4 — MATLAB, Octave a Scilab 1 /2 KZ

 $^{^1{\}rm M}$ ísto jednoho z předmětů NTVY014, NTVY015, NTVY016 a NTVY017 je možné si zapsat letní výcvikový kurz NTVY018 nebo zimní výcvikový kurz NTVY019. Tyto kurzy může student absolvovat kdykoli v průběhu bakalářského studia.

Kód	Název	Kredity	ZS	LS
NOFY022	2 Optika	7	3/2 Z+Zk	_

²Podmínkou pro samostatnou práci v laboratoři (zahájení praktik a experimentální bakalářské práce) je absolvování kurzu bezpečnosti práce, který je organizován pro všechny studenty fyziky Kabinetem výuky obecné fyziky, a to jednorázově. Informace jsou dostupné na stránce https://physics.mff.cuni.cz/vyuka/zfp/. Platnost kurzu je dva roky.

 $^{^3}$ Výuka anglického jazyka NJAZ070, NJAZ072, NJAZ074, NJAZ090 v rozsahu 0/2 v každém semestru je určena pro středně pokročilé a pokročilé. Začátečníci a mírně pokročilí si místo ní zapíší předměty NJAZ071, NJAZ073, NJAZ075, NJAZ089 s rozsahem výuky 0/4 v každém semestru.

 $^{^4}$ Doporučeno pro 2. a 3. ročník studia.

NOEW094	Duel-Minner II Flol-Minn	4	0/2 1/7	
NOF Y 024	Praktikum II — Elektřina	4	0/3 KZ	
NODV161	a magnetismus	0	4/0.77 + 771	
	Matematika pro fyziky I	8	4/2 Z+Zk	
	Teoretická mechanika	7	3/2 Z+Zk	
	Speciální teorie relativity	3	2/0 Zk	
	Tělesná výchova III ¹	1	$0/2 \mathrm{~Z}$	
NOFY125	Atomová fyzika a elektronová	5	_	3/1 Z+Zk
	struktura látek			
	Praktikum III — Optika	5	_	$0/4~\mathrm{KZ}$
	Matematika pro fyziky II	8	_	4/2 Z+Zk
	Klasická elektrodynamika	5	_	2/2 Z+Zk
NOFY127	Úvod do kvantové mechaniky	5	_	2/2 Z+Zk
	Tělesná výchova IV ¹	1		$0/2 \mathrm{~Z}$
NJAZ091	Anglický jazyk ²	1		$0/0 \mathrm{Zk}$
NMAI059	Pravděpodobnost a statistika 1	5	2/2 Z+Zk	
NOFY062	Pravděpodobnostní metody fyziky	4		2/1 Z+Zk
NJAZ074	Anglický jazyk pro středně	1	$0/2 \mathrm{~Z}$	
	pokročilé III ²			
NOFY010	Proseminář z optiky	3	$0/2 \mathrm{~Z}$	_
NOFY069	Proseminář z teoretické mechaniky	3	$0/2 \mathrm{~Z}$	
NOFY047	Problémy současné fyziky I	3	0/2 Z	
	Experimentální metody fyziky I	3	0/2 Z	
NPOZ007	Filozofické problémy fyziky	2	0/1 Z	
	Fyzika jako dobrodružství poznání	3		$0/2 \mathrm{~Z}$
	Anglický jazyk pro středně	1		$0/2 \mathrm{~Z}$
	pokročilé IV ²			,
NOFY070	Proseminář z teoretické fyziky	3		$0/2 \mathrm{~Z}$
	Proseminář z kvantové fyziky	3		$0/2 \ { m Z}$
	atomárních soustav			·/
NOFY054	Proseminář z kvantové mechaniky	3		$0/2 \mathrm{~Z}$
	Problémy současné fyziky II	3		$0/2 \ { m Z}$ $0/2 \ { m Z}$
	Experimentální metody fyziky II	3		0/2 Z = 0/2 Z
1101 1000	Daper interiousis includy jyzing 11	J		0/22

 $^{^1\,}$ Místo jednoho z předmětů NTVY014, NTVY015, NTVY016 a NTVY017 je možné si zapsat letní výcvikový kurz NTVY018 nebo zimní výcvikový kurz NTVY019. Tyto kurzy může student absolvovat kdykoli v průběhu bakalářského studia.

Kód	Název	Kredity	ZS	LS
NOFY029	*Jaderná a částicová fyzika	6	3/1 Z+Zk	
NOFY075	$forum{K}{vantov\'a teorie I}^1$	8	4/2 Z+Zk	
NOFY076	${f K}$ vantová teorie I 1	8	4/2 Z+Zk	
NOFY031	Termodynamika a statistická	7	3/2 Z+Zk	
	fyzika ²			

 $^{^2}$ Výuka anglického jazyka NJAZ070, NJAZ072, NJAZ074, NJAZ090 v rozsahu 0/2 v každém semestru je určena pro středně pokročilé a pokročilé. Začátečníci a mírně pokročilí si místo ní zapíší předměty NJAZ071, NJAZ073, NJAZ075, NJAZ089 s rozsahem výuky 0/4 v každém semestru.

NTMF043 Termodynamika a statistická fyzika I ²	7	3/2 Z+Zk	_
NSZZ031 Vypracování a konzultace bakalářské práce	6	_	$0/4~\mathrm{Z}$
Kurz bezpečnosti práce II ³	0		
NJSF148 Proseminář z jaderné a částicové fyziky	3	$0/2 \mathrm{~Z}$	
NBCM144 Proseminář termodynamiky a statistické fyziky	3	$0/2 \mathrm{~Z}$	
NOFY064 Výpočetní technika ve fyzikálním experimentu	4	$0/3~\mathrm{KZ}$	_
NMAF006 Vybrané partie z matematiky pro fyziky	3	_	$2/0 \mathrm{~Zk}$
NGEO090 Proseminář věd o Zemi	3		$0/2 \mathrm{~Z}$
NOFY065 Výběrové praktikum z elektroniky a počítačové techniky	4	_	$0/3~{\rm KZ}$

Studenti si zapisují právě jeden z těchto alternativních předmětů. Předmět NOFY076 je určen především pro budoucí studenty programů Teoretická fyzika a Částicová a jaderná fyzika.

Povinně volitelné předměty – skupina 2 (5 kreditů)

V této skupině má student možnost volby mezi předměty Praktikum IV a Rovnice matematické fyziky. Může ale absolvovat i oba dva.

Kód	Název	Kredity	ZS	LS
NOFY130	Praktikum IV — Atomová a jaderná fyzika	5	$0/3~\mathrm{KZ}$	_
NOFY163	Rovnice matematické fyziky	5	2/1 Z+Zk	_

Povinně volitelné předměty – skupina 3 (12 kreditů)

Povinně volitelné předměty z této rozsáhlé skupiny jsou uspořádány do třinácti bloků. Bloky 1–10 odpovídají příslušným fyzikálním programům navazujícího magisterského studia na MFF UK. Zájemcům o toto studium fyziky se proto doporučuje příslušný blok absolvovat, neboť uvedené předměty tvoří základ znalostí nezbytných pro úspěšné absolvování těchto programů. Výuku předmětů zajišťují příslušná pracoviště.

Studenti, kteří nemají zájem o navazující magisterské studium, si mohou zapsat předměty dle vlastního uvážení. S ohledem na získání ucelených znalostí je však i v tomto případě vhodné dát přednost předmětům jednoho z bloků 11–13 nazvaných Aplikovaná fyzika, případně se poradit s příslušným garantem programu o zapsání dalších vybraných přednášek z navazujícího magisterského studia.

Povinně volitelné předměty jsou vytištěny normálním písmem, doporučené volitelné předměty kurzívou.

² Studenti si zapisují právě jeden z těchto alternativních předmětů. Předmět NTMF043 je určen především pro budoucí studenty programu Teoretická fyzika.

³ Kurz je nezbytný pro studenty, kteří mají zadanou experimentální bakalářskou práci, konají práci v laboratoři nebo navštěvují praktika (například předměty NOFY030, NOFY065, NFPL151, NJSF006 atd.). Kurz zajišťují jednotlivá pracoviště.

1. Astrono	omie a astrofyzika			
Kód	Název	Kredity	ZS	LS
NAST035	Základy astronomie a astrofyziky	12		6/2 Z+Zk
NAST036	Analýza dat a modelování v astronomii	3	_	2/0 Zk
NTMF111	Obecná teorie relativity	4		$3/0 \mathrm{~Zk}$
	Astrofyzika pro fyziky	3	$2/0 \mathrm{Zk}$	
	Fyzika sluneční soustavy	3	$2/0 \mathrm{Zk}$	
NAST110	$Semin\'{a}\check{r}$ $Astronomick\'{e}ho$ ústavu UK (PV)	3	$0/2 \mathrm{~Z}$	$0/2 \mathrm{~Z}$
NAST026	$D\check{e}jiny\ astronomie$	3	$1/1 \mathrm{~Z}$	$1/1 \; \mathrm{Z}$
NAST021	Vybrané kapitoly z astrofyziky	3	2/0 Zk	
2. Geofyz	ika a fyzika planet			
Kód	Název	Kredity	ZS	LS
NGEO110	*Přehled geofyziky	4	2/1 Z+Zk	_
NPRF051*	Počítače v geofyzice	4	2/1 Z+Zk	
NGEO111	*Mechanika kontinua	4		2/1 Z+Zk
NGEO112	*Fourierova spektrální analýza	4		2/1 Z+Zk
NGEO076	Obrácené úlohy a modelování ve fyzice	3	_	2/0 Zk
NMAF001	Vybrané kapitoly z parciálních diferenciálních rovnic	3	_	2/0 Zk
NGEO096	$\dot{U}vod\ do\ plane to logie$	3		$2/0 \mathrm{~Zk}$
3. Fyzika	atmosféry, meteorologie a klimato	logie		
Kód	Název	Kredity	ZS	LS
NMET034	Hydrodynamika	6	3/1 Z+Zk	_
	Šíření akustických	4	3/0 Zk	
	a elektromagnetických vln v atmosféře		,	
NMET012	Všeobecná klimatologie	6		3/1 Z+Zk
NMET050	Statistické metody zpracování fyzikálních dat	6	_	$2/2 \mathrm{~Zk}$
NMET035	Synoptická meteorologie I	3		$2/0 \mathrm{Zk}$
	Deterministický chaos	3		$2/0 \mathrm{~Zk}$
	Zpracování fyzikálních dat v R	3	1/1 Z+Zk	
	Meteorologické přístroje a pozorovací metody	4	3/0 Zk	_
NPRF031	Programování v meteorologii	6	_	$2/2~\mathrm{KZ}$
4. Teoreti	cká fyzika			
Kód	Název	Kredity	ZS	LS
NOFY079	Kvantová teorie II	6	_	3/1 Z+Zk

NTMF044	Termodynamika a statistická	7	_	3/2 Z+Zk
	fyzika II			
	Obecná teorie relativity	4		3/0 Zk
	Kvantová teorie – vybrané aplikace	3		1/1 Z+Zk
	Kvantová teorie - vybraná témata	3		1/1 Z+Zk
NTMF059	Geometrické metody teoretické fyziky I	6	2/2 Z+Zk	
NTMF061	Teorie grup a její aplikace ve fyzice	6	2/2 Z+Zk	
NMAF006	Vybrané partie z matematiky pro fyziky	3		2/0 Zk
NTMF100	Odborné soustředění ÚTF	2	$0/1 \mathrm{~Z}$	_
5. Fyzika	kondenzovaných soustav a materia	álů		
Kód	Název	Kredity	ZS	LS
NFPL252*	Úvod do krystalografie a strukturní analýzy	4	2/1 Z+Zk	_
NFPL502	Úvod do fyziky pevných látek	6		3/1 Z+Zk
NFPL505	Úvod do fyziky měkkých materiálů	3		$1/1 \mathrm{~Z+Zk}$
	Základy makromolekulární fyziky	4		3/0 Zk
NFPL211*	Mechanické vlastnosti materiálů	3	2/1 Z+Zk	_
NFPL168	Fyzika a technika nízkých teplot	3	2/0 Zk	
NFPL192*	Proseminář fyziky kondenzovaných soustav	3	_	0/2 KZ
NOFY034	Metody zpracování fyzikálních měření	3	_	$2/0 \mathrm{~Zk}$
NBCM072	Základy molekulární elektroniky	3	2/0 Zk	
	Fyzika povrchů a tenkých vrstev polymerů	3	2/0 Zk	_
NEVF105	Vakuová technika	5	_	2/1 Z+Zk
	Perspektivní materiály a jejich příprava	3	_	2/0 Zk
NFPL043	Úvod do fyziky organických polovodičů	3	2/0 Zk	
NFPL059	Fyzikální akustika	3	$1/1~\mathrm{KZ}$	
	Praktické užití transmisní elektronové mikroskopie	4	0/3 Z	
NFPL092	Radiofrekvenční spektroskopie pevných látek	3		2/0 Zk
NFPL095	Základy kryotechniky	3	2/0 Zk	_
NFPL115	Elektronová mikroskopie	3	2/0 Zk	
NFPL136	Speciální praktikum fyziky materiálů	$\frac{3}{4}$		$0/3 \mathrm{~Z}$
NFPL141	Kvantová teorie II	5		2/1 Z+Zk
NFPL151	Experimentální cvičení FPL	$\overset{\circ}{3}$		$0/2 \mathrm{Z}$
NFPL155	Studium reálné struktury pevných látek	3	2/0 Zk	
NFPL163	Fyzika magnetických materiálů	3	_	2/0 Zk

NFPL169	Hyperjemné interakce a jaderný magnetismus	3	_	$2/0 \mathrm{~Zk}$
NFPL307	Praktické užití skenovací elektronové mikroskopie	4	_	$0/3 \mathrm{~Z}$
NFPL212*	Zpracování obrazu	3		$1/1~\mathrm{KZ}$
NFPL215	Dielektrické a magnetické vlastnosti látek	3		1/1 Z+Zk
NFPL214	Úvod do pozitronové anihilace	3		1/1 Z+Zk
NFPL213	Příprava monokrystalů pro materiálový výzkum	4		1/2 Z+Zk
NBCM237	Základy přípravy a charakterizace tenkých vrstev	4		1/2 Z+Zk
NBCM238	Technologie vakuové přípravy vrstev a nanostruktur	5	_	1/3 Z+Zk
6. Optika	a optoelektronika			
Kód	Název	Kredity	ZS	LS
NOOE021	Vlnová optika	9	_	4/2 Z+Zk
NOOE001	Základy optické spektroskopie	3	_	$2/0 \mathrm{~Zk}$
NMAF035	Numerické metody zpracování experimentálních dat	3		2/0 Zk
NOOE048	*Základy konstrukce a výroby optických prvků	1	$0/1 \mathrm{~Z}$	_
NOOE114	Nové materiály a technologie	3		$2/0 \mathrm{~Zk}$
	Základy fotoniky	3		$2/0 \mathrm{~Zk}$
	Základní přístroje optické spektroskopie	4	1/2 Z+Zk	
NOOE136	Experimentální metody optické spektroskopie pevných látek	3	1/1 Z+Zk	
7. Fyzika	povrchů a plazmatu			
Kód	Název	Kredity	ZS	LS
NEVF174*	Základy fyziky pevných látek	5	_	3/1 Z+Zk
NEVF169	Teoretické základy fyziky plazmatu	5		3/1 Z+Zk
NEVF140	Úvod do fyziky povrchů	3		$2/0 \mathrm{Zk}$
NEVF100	Úvod do fyziky plazmatu	3	_	$2/0 \mathrm{~Zk}$
	Seminář fyziky povrchů a plazmatu	1		$0/1 \mathrm{~Z}$
	Měření a zpracování dat v materiálovém výzkumu	3	2/0 Zk	<u>'</u>
NEVF101	Základy elektroniky	3		$2/0 \mathrm{Zk}$
NEVF102	Úvod do počítačové fyziky	6		2/2 Z+Zk
	Technika tenkých vrstev	5		2/1 Z+Zk
	Vakuová technika	5		2/1 Z+Zk
	Elektronika povrchů	3		2/0 Zk
	Úvod do statistického zpracování dat	3		2/0 Zk $2/0 Zk$
1,2,1104	ve fyzice povrchů a plazmatu	3		2/ 0 2K

				Fyzika Bo
NEVF165	Moderní přístroje ve fyzikálních experimentech	4	_	2/1 Z+Zk
NEVF166*	Pokročilé metody zkoumání povrchů - fotoelektronová spektroskopie a elektronová difrakce	4	_	2/1 Z+Zk
8. Biofyzi	ka a chemická fyzika			
Kód	Název	Kredity	ZS	LS
	*Obecná chemie Numerické metody zpracování experimentálních dat	4 3		$\frac{2}{1} \frac{Z+Zk}{2}$
NBCM094	Úvod do problémů současné biofyziky	3	_	$0/2 \mathrm{~Z}$
NBCM112	Metody magnetické rezonance v biofyzice	4	_	3/0 Zk
NBCM111	Kvantová teorie II	7		3/2 Z+Zk
NOFY052	Měřicí technika ve fyzice	4	$0/3 \mathrm{~Z}$	
	*Bioorganická chemie	4	2/1 Z+Zk	
	Struktura, dynamika a funkce biologických membrán	3	2/0 Zk	_
NBCM102	Základy klasické radiometrie a fotometrie	3	2/0 Zk	_
NOOE036	Úvod do fyzikální a molekulární akustiky	3	_	2/0 Zk
NBCM026	Experimentální technika v molekulární spektroskopii	3		2/0 Zk
NOOE004	Emisní spektroskopie v biofyzice	3	_	$2/0 \mathrm{Zk}$
NBCM027	*Symetrie molekul	4		2/1 Z+Zk
). Částico	vá a jaderná fyzika			
Kód	Název	Kredity	ZS	LS
NOFY079	Kvantová teorie II	6	_	3/1 Z+Zk
NJSF103	Experimentální metody jaderné a částicové fyziky	6	_	3/1 Z+Zk
NJSF150*	Praktikum jaderné a částicové fyziky	5	_	$0/4~\mathrm{KZ}$
NJSF179	Kvantová teorie - vybraná témata	3		1/1 Z+Zk
NTMF112	Kvantová teorie – vybrané aplikace	3		1/1 Z+Zk
NJSF148	Proseminář z jaderné a částicové fyziky	3	$0/2 \mathrm{~Z}$	_
10. Mater	natické a počítačové modelování v	e fyzice		
Kód	Název	Kredity	ZS	LS
NMNM201	Základy numerické matematiky	8	4/2 Z+Zk	
NMMO212	Počítačové řešení fyzikálních úloh	5	_	$0/4~\mathrm{KZ}$

NGEO111	Mechanika kontinua	4	_	2/1 Z+Zk
NMMA333	B Obyčejné diferenciální rovnice	5	2/2 Z+Zk	'
NMAI059	Pravděpodobnost a statistika 1	5	2/2 Z+Zk	
	S Úvod do metody konečných prvků	5	<u> </u>	2/2 Z+Zk
11. Apliko	ovaná fyzika: Materiály a optoele.	ktronika		
Kód	Název	Kredity	ZS	LS
NAFY102	*Chemie pro fyziky	4	2/1 Z+Zk	
NAFY103	[*] Základy elektroniky	4	2/1 Z+Zk	
NAFY084	*Experimentální metody fyziky materiálů I	6	3/1 Z+Zk	
NFPL211	Mechanické vlastnosti materiálů	4	2/1 Z+Zk	
NAFY100	Fyzika polovodičů	4		2/1 Z+Zk
	Experimentální metody fyziky	6	_	3/1 Z+Zk
NOOE110	materiálů II	0		0 /0 71
	Základy fotoniky	3		2/0 Zk
	Nové materiály a technologie	3		2/0 Zk
	Speciální praktikum pro OOE II	6		0/4 KZ
	Fotovoltaika	3		2/0 Zk
NFPL161	Perspektivní materiály a jejich příprava	3		$2/0 \mathrm{Zk}$
12. Aplika	ovaná fyzika: Fyzika v biomedicín	ıě		
Kód	Název	Kredity	ZS	LS
NAFY101	Fyzikální metody a technika v biomedicíně I	9	4/2 Z+Zk	
NAFY037	Radiobiologie	3	$2/0 \mathrm{Zk}$	
	*Fyzika živých organismů	4		2/1 Z+Zk
	Základy fyziologie člověka	3		$2/0 \mathrm{~Zk}$
	Aplikace nerovnovážného plazmatu v lékařství	3	2/0 Zk	
NBCM010	*Bioorganická chemie	4	2/1 Z+Zk	
	Biochemie	3	= -	$2/0 \mathrm{~Zk}$
				2/ 0 ZK
13. Apliko	ovaná fyzika: Meteorologie			
Kód	Název	Kredity	ZS	LS
NAFY105	*Základy fyziky atmosféry	3	$2/0 \mathrm{Zk}$	
NAFY106	Aplikovaná klimatologie	3	2/0 Zk	
	Základy aplikované meteorologie	4	<u>.</u>	2/1 Z+Zk
	Předpovědní a pozorovací metody	3		$1/1~{ m KZ}$
	Analýza a interpretace meteorologických dat	4	_	1/2 Z+Zk
NAFY110	Numerické metody v meteorologii	4		2/1 Z+Zk
	Aplikovaná fyzika mezní vrstvy	4	2/1 Z+Zk	

Státní závěrečná zkouška

Studium je zakončeno státní závěrečnou zkouškou, která se skládá ze dvou částí:

- z obhajoby bakalářské práce
- z ústní části zkoušky

Podmínky pro přihlášení ke státní závěrečné zkoušce

- získání alespoň 180 kreditů
- splnění všech povinných předmětů programu
- splnění povinně volitelných předmětů v rozsahu alespoň 22 kreditů (z toho musí být alespoň 5 kreditů ze skupiny 1, 5 kreditů ze skupiny 2, 12 kreditů ze skupiny 3)
- odevzdání vypracované bakalářské práce ve stanoveném termínu

Bakalářská práce

Bakalářská práce se zpravidla zadává v zimním semestru třetího roku studia. Téma bakalářské práce si student volí z nabídky fyzikálních pracovišt.

Požadavky k ústní části státní závěrečné zkoušky

Zkouška má přehledový charakter. Jsou kladeny jen širší otázky a žádá se, aby posluchač prokázal pochopení základních problémů, byl schopen je ilustrovat na konkrétních situacích a osvědčil určitou míru syntézy a hlubšího pochopení. Kromě znalosti teorie jevu se tedy předpokládá i znalost základní metodiky měření příslušných veličin. Předmětem zkoušky jsou následující partie fyziky:

1. Mechanika hmotných bodů

Základní kinematické veličiny, Newtonovy pohybové zákony. Inerciální a neinerciální soustavy. První a druhá impulzová věta. Keplerovy zákony. Harmonický oscilátor (netlumený, tlumený, vynucené kmity). Pohyb s vazbami, d'Alembertův princip. Lagrangeovy rovnice 2. druhu. Hamiltonovy kanonické rovnice a Poissonovy závorky. Hamiltonův variační princip.

2. Mechanika tuhého tělesa

Eulerovy úhly a Eulerovy kinematické rovnice. Tenzor setrvačnosti. Eulerovy dynamické rovnice, pohyb jednoduchých setrvačníků.

3. Mechanika kontinua

Tenzor napětí a deformace, Hookův zákon. Rovnice struny a její řešení. Pohybová rovnice ideální tekutiny, rovnice kontinuity, Bernoulliova rovnice. Viskozní tekutiny, Navierovy-Stokesovy rovnice, laminární a turbulentní proudění.

4. Speciální teorie relativity

Otázka éteru a Michelsonův-Morleyův experiment. Výchozí principy teorie relativity, Lorentzova transformace. Minkowského prostoročas, světelný kužel. Relativistická pohybová rovnice, ekvivalence hmotnosti a energie. Maxwellovy rovnice ve čtyřrozměrném formalizmu.

5. Termodynamika a statistická fyzika

Teplo, teplota, tepelná kapacita, tlak. Vnitřní energie, termodynamické potenciály. Hlavní zákony termodynamiky, entropie. Ideální plyn, stavová rovnice, Carnotův cyklus. Fázový prostor, rozdělovací funkce, Liouvilleova rovnice. Maxwellovo-Boltzmannovo rozdělení. Základní statistická rozdělení, statistická entropie.

6. Elektrostatika, stacionární elektrické a magnetické pole

Elektrostatické pole ve vakuu (Gaussův a Coulombův zákon, elektrostatický potenciál). Elektrostatické pole v přítomnosti vodičů a v dielektrikách (polarizace, multipólový rozvoj, susceptibilita a permitivita). Stacionární elektrické pole a elektrický proud. Stacionární magnetické pole (Biotův-Savartův a Ampérův zákon). Magnetické pole v látkovém prostředí (magnetizace, typy magnetických látek, susceptibilita a permeabilita).

7. Elektrodynamika

Elektromagnetická indukce. Kvazistacionární elektrické a magnetické pole. Elektrické obvody (stacionární, střídavé, neustálený stav, metody řešení lineárních obvodů, Kirchhoffova pravidla). Maxwellovy rovnice. Elektromagnetické potenciály a jejich vlastnosti. Zákony zachování v teorii elektromagnetického pole.

8. Elektromagnetické vlny

Vlnová rovnice, rovinná elektromagnetická vlna. Polarizační vlastnosti elektromagnetické vlny. Šíření elektromagnetické vlny v látkovém prostředí (konstanta šíření, útlum, komplexní index lomu, disperze). Odraz a lom elektromagnetických vln na rozhraní dvou prostředí (Fresnelovy vzorce). Elektromagnetické vlny ve vlnovodech. Dipólové elektromagnetické záření.

9. Optika

Interference světla, optické interferometry. Koherence světla. Ohyb světla (Fraunhoferova a Fresnelova aproximace, optická ohybová mřížka, Braggova rovnice). Šíření světla v anizotropních látkách (použití dvojlomných látek). Geometrická optika (eikonálová rovnice, geometrická optika sférických ploch, zobrazovací rovnice). Optické zobrazovací přístroje. Spektrální přístroje a základní metody optické spektroskopie. Základy holografie. Princip laseru. Tepelné záření, zákony záření absolutně černého tělesa.

10. Struktura atomů, molekul a kondenzovaných látek

Dualismus vlna-částice, fotoefekt, Comptonův rozptyl. Bohrův model atomu. Základní typy vazeb mezi atomy, meziatomový potenciál. Popis symetrie molekul a krystalů pomocí grup, kvazikrystaly. Krystalová struktura látek, základní typy mříží, prostorové grupy. Experimentální studium struktury látek pomocí rtg. záření, difrakční podmínky, strukturní faktor. Einsteinův a Debyeův model vibrací atomů v kondenzovaných látkách. Molekulové orbitaly, metoda LCAO, hybridizace orbitalů. Model volných a téměř volných elektronů, pásová struktura pevných látek, Blochův teorém.

11. Formalismus kvantové teorie

Popis stavů kvantového systému (princip superpozice, vlnová funkce, relace neurčitosti). Reprezentace fyzikálních veličin, diskrétní a spojité spektrum, stacionární Schrödingerova rovnice. Souřadnicová, impulsová a maticová formulace kvantové mechaniky. Variační metoda a stacionární poruchová metoda hledání vázaných stavů.

12. Kvantová dynamika

Nestacionární Schrödingerova rovnice, rovnice kontinuity, Ehrenfestovy rovnice. Evoluce obecného kvantového systému, kvantové měření. Integrály pohybu, kvantová čísla, symetrie v kvantové mechanice.

13. Jednoduché kvantové systémy

Kvantování energie pro vázanou částici: pravoúhlá potenciálová jáma a harmonický oscilátor. Volná částice, vlnové balíky, průchod částice potenciálovou bariérou. Orbitální

a spinový moment hybnosti, základy skládání momentů hybnosti. Částice ve sféricky symetrickém potenciálu, atom vodíku. Částice v elektromagnetickém poli: Zeemanovo štěpení hladin, Larmorova precese. Systémy s více částicemi: nerozlišitelnost, Pauliho princip, jednočásticová aproximace.

14. Jaderné záření

Interakce jaderného záření s látkou. Detekce a spektroskopie jaderného záření. Využití jaderného záření.

15. Atomové jádro

Základní vlastnosti a charakteristiky jádra. Jaderné síly, vazbová energie jádra. Radioaktivita, jaderné reakce. Jaderné zdroje energie.

16. Částicová fyzika

Fundamentální částice (kvarky, leptony, intermediální bosony). Hadrony (baryony a mezony). Základní interakce mezi částicemi, zákony zachování. Částicové experimenty.

Navazující magisterské studium od akademického roku 2020/21

1. Základní informace

Studijní programy nav. magisterského studia v oblasti vzdělávání Fyzika

V oblasti vzdělávání Fyzika nabízíme na magisterském stupni studia deset studijních programů.

Astronomie a astrofyzika	1
Geofyzika a fyzika planet	2
Fyzika atmosféry, meteorologie a klimatologie	3
Teoretická fyzika	4
Fyzika kondenzovaných soustav a materiálů	5
Optika a optoelektronika	6
Fyzika povrchů a plazmatu	7
Biofyzika a chemická fyzika	8
Částicová a jaderná fyzika	9
Matematické a počítačové modelování ve fyzice	10

2. Studijní plány jednotlivých programů

1. Astronomie a astrofyzika

Garantující pracoviště: Astronomický ústav UK

Garant programu: prof. RNDr. David Vokrouhlický, DrSc.

Charakteristika studijního programu:

Magisterské studium programu Astronomie a astrofyzika zdokonaluje základní znalosti z fyziky, matematiky a programování. Studenti jsou vedeni k porozumění základům klasické astronomie, tj. astrometrie a nebeské mechaniky, a základům klasické astrofyziky, tj. fyzice plazmatu ve vesmíru, stavbě a vývoji hvězd, teorii hvězdných atmosfér, fyzice těles sluneční soustavy a stavbě a dynamice galaxií. Seznamují se rovněž se sluneční fyzikou, relativistickou astrofyzikou, extragalaktickou astronomií a kosmologií. Prostřednictvím pravidelných seminářů, diplomové práce, praxe na observatořích a tematicky zaměřených přednášek externích odborníků získávají studenti představu o současných problémech řešených v jednotlivých oborech astronomie a astrofyziky a o metodách vědecké práce.

Profil absolventa studijního programu a cíle studia:

Absolventi mají pokročilé znalosti v hlavních partiích klasické a moderní astronomie, astrofyziky a kosmologie, opírající se o spolehlivý základ v obecných oblastech fyziky – teoretické mechanice, kvantové fyzice, termodynamice, statistické fyzice a obecné teorii relativity. Mají přehled o moderní pozorovací technice a metodách, jsou připraveni

na analýzy pozorovacích dat a tvorbu numerických modelů. Jsou rovněž zběhlí ve sdělování odborných poznatků formou prezentací nebo psaných textů, a to též v anglickém jazyce. U většiny absolventů se předpokládá nástup profesní dráhy vědeckého pracovníka. Nabyté obecné vzdělání ve fyzice dovoluje absolventům uplatnění i v příbuzných oborech a všude, kde je třeba abstraktní uvažování nebo řešení náročných problémů.

Doporučený průběh studia

Předpokladem úspěšného magisterského studia tohoto programu je získání základních znalostí na úrovni NAST035 Základy astronomie a astrofyziky. Tento předmět se obvykle zapisuje ve třetím roce studia bakalářského programu Fyzika. Pokud posluchač tento předmět neabsolvoval, měl by si ho ve vlastním zájmu zapsat jako volitelný v prvním roce navazujícího magisterského studia. Obsah uvedeného předmětu je součástí společných požadavků státní závěrečné zkoušky.

1. rok magisterského studia

Kód	Název	Kredity	ZS	LS
NAST013	Astrofyzika I	6	$4/0 \mathrm{Zk}$	_
NAST008	Kosmická elektrodynamika	5	3/1 Z+Zk	
NAST005	Nebeská mechanika I	6	$4/0 \mathrm{Zk}$	
NTMF037	Relativistická fyzika I	9	4/2 Z+Zk	
NAST017	Speciální praktikum I	3	$0/2 \mathrm{~Z}$	
NAST014	Astrofyzika II	6		$4/0 \mathrm{Zk}$
NSZZ023	Diplomová práce I	6		$0/4 \mathrm{~Z}$
NAST024	Elementární procesy v kosmické	4		$3/0 \mathrm{~Zk}$
	fyzice			
NAST003	Galaktická a extragalaktická	4		$3/0 \mathrm{Zk}$
	astronomie I			
NAST009	Kosmologie I	4		$3/0 \mathrm{Zk}$
NAST001	Sluneční fyzika I	3		2/0 Zk
NAST018	Speciální praktikum II	3		$0/2 \mathrm{~Z}$
NAST002	Hvězdné atmosféry	4		$3/0 \mathrm{~Zk}$
NAST011	Nebeská mechanika II	6		$4/0 \mathrm{~Zk}$
NTMF038	Relativistická fyzika II	9		4/2 Z+Zk
NAST031	Diplomový seminář	3	$0/2 \mathrm{~Z}$	$0/2 \mathrm{~Z}$

2. rok magisterského studia

Kód	Název	Kredity	ZS	LS
NSZZ024	Diplomová práce II	9	0/6 Z	
NSZZ025	Diplomová práce III	15		$0/10 \mathrm{~Z}$
NAST020	Fyzika sluneční soustavy	3	2/0 Zk	
NAST004	Galaktická a extragalaktická	4	$3/0 \mathrm{Zk}$	
	astronomie II			
NAST039	Kosmologie II	4	$3/0 \mathrm{Zk}$	
NAST037	Sluneční fyzika II	3	2/0 Zk	
NAST021	Vybrané kapitoly z astrofyziky	3	2/0 Zk	

- 7	•			
NAST110	Seminář Astronomického ústavu UK (PV)	3	0/2 Z	$0/2 \mathrm{~Z}$
Povinně v	rolitelné předměty			
Kód	Název	Kredity	ZS	LS
NAST002	Hvězdné atmosféry	4		3/0 Zk
NAST011	Nebeská mechanika II	6		4/0 Zk
NTMF038	Relativistická fyzika II	9		4/2 Z+Zk
	Diplomový seminář	3	$0/2 \mathrm{~Z}$	$0/2 \mathrm{~Z}$
	Fyzika sluneční soustavy	3	$2/0 \mathrm{~Zk}$	
NAST004	Galaktická a extragalaktická	4	3/0 Zk	_
	astronomie II		•	
NAST039	Kosmologie II	4	$3/0 \mathrm{Zk}$	
	Sluneční fyzika II	3	2/0 Zk	
	Vybrané kapitoly z astrofyziky	3	$2/0 \mathrm{~Zk}$	
	Seminář Astronomického ústavu UK	3	$0/2 \mathrm{~Z}$	$0/2 \mathrm{~Z}$
	(PV)		,	•
Volitelné	předměty			
	•	TZ 114	770	T C
Kód	Název	Kredity	ZS	LS
NAST012	Vznik a vývoj galaxií	3	$2/0 \mathrm{Zk}$	_
NAST019	Dvojhvězdy	3	<u> </u>	2/0 Zk
NAST026	Dějiny astronomie	3	$1/1 \mathrm{Z}$	$1/1 \mathrm{~Z}$
NAST030	Aktivní galaxie	3		$2/0 \mathrm{Zk}$
NAST034	Fyzika galaxií a kompaktních	3	$0/2 \mathrm{~Z}$	$0/2 \mathrm{~Z}$
	objektů			
NAST036	Analýza dat a modelování	3		2/0 Zk
	v astronomii			
NAST038	Pokročilé metody sluneční fyziky	3	$2/0 \mathrm{~Zk}$	_
	Úvod do radioastronomie	3	$2/0 \mathrm{~Zk}$	_
NAST041	Exoplanety	3	2/0 Zk	

Některé předměty se přednášejí ve dvouletém intervalu anebo se zaměřují každý rok na jiná témata. Zapisuje se ten předmět, který se v daném školním roce koná.

Podmínky pro přihlášení ke státní závěrečné zkoušce

- získání alespoň 120 kreditů
- splnění všech povinných předmětů zvoleného programu
- -splnění povinně volitelných předmětů zvoleného programu v rozsahu alespo
ň $25\,$ kreditů
- odevzdání vypracované diplomové práce ve stanoveném termínu

Předmět lze splnit jeho úspěšným absolvováním či uznáním z předchozího studia.

Požadavky k ústní části státní závěrečné zkoušky

A. Společné požadavky

1. Astronomie a astronomická pozorování

Astrometrie a poziční astronomie: Souřadnicové systémy a jejich transformace. Pohyb pozorovatele a zdroje záření, aberace, Dopplerův jev. Vliv atmosféry na pozorování, refrakce, extinkce. Paralaxa. Precese, nutace. Vlastní pohyby hvězd. Metody určování souřadnic. Čas a jeho měření.

Efemeridová astronomie a astrodynamika: Problém dvou těles, elementy dráhy, eliptické rozvoje, výpočet efemeridy. Určování drah těles sluneční soustavy a dvojhvězd. Zatmění a zákryty. Omezený problém tří těles — kruhový a eliptický. Jacobiho integrál. Tisserandovo kritérium a parametr. Hillovy plochy nulové rychlosti. Hillova úloha.

Sluneční soustava: Popis pohybu Měsíce. Planetky, satelity planet, komety. Meziplanetární plyn a magnetické pole, prach a drobná pevná tělíska, vliv záření na jejich pohyb. Meteority. Metody datování. Charakteristické procesy ve vývoji terestrických a obřích planet. Představy o tvorbě planetárních soustav. Základní charakteristiky exoplanetárních soustav.

Přístroje a metody pozorování: Optické systémy, jejich vady, metody navrhování. Dalekohledy. Zpracování snímků fotografických, CCD. Fotometrie. Instrumenty družicových observatoří. Spektrografy, spektroskopie. Radioastronomie, detekce gravitačních vln a neutrin.

Základy spektroskopie: Spojité a čárové spektrum. Stavba atomu vodíku, hélia a těžších prvků. Vlivy určující profily spektrálních čar. Zeemanův jev. Metastabilní hladiny, zakázané čáry, masery. Termodynamická rovnováha — lokální LTE, non-LTE, Boltzmannova a Sahova rovnice, rovnice statistické rovnováhy. Rovnice přenosu záření. Modelování hvězdných atmosfér, šedá atmosféra. Redistribuce.

Stelární astronomie: Fotometrické systémy, magnitudy. Určování hmotností kosmických objektů, dynamická paralaxa, funkce hmotnosti. Určování rozměrů hvězd, efektivní teplota, úhlové průměry. Teploty hvězd, spektrální klasifikace. Hertzsprungův-Russellův diagram (HRD). Vztah hmotnost–zářivý výkon.

Dvojhvězdy: Fotometrie a spektroskopie dvojhvězd, určování elementů. Zvláštnosti vývoje těsných dvojhvězd. Kataklyzmické proměnné. Vícenásobné systémy.

2. Astrofyzika, hvězdy, galaxie

Astrofyzikální procesy: Záření urychleného náboje; brzdné záření. Opacita Thompsonova rozptylu; opacita rozptylu na volných elektronech v poli iontů. Liouvilleův teorém a zachování intenzity podél paprsku. Momenty Boltzmannovy rovnice pro fotony — rovnice přenosu záření. Synchrotronové záření. Comptonův rozptyl; inverzní Comptonův rozptyl. Sunyaevův-Zel'dovičův jev. Základní model pulzaru — vyrovnaný rotátor. Částice a tekutiny v astrofyzice — základní dynamické rovnice. Sféricky symetrická, ustálená akrece. Hvězda letící mlhovinou — Bondiho akrece. Disková akrece — model tenkého disku.

Fyzika plazmatu: Základy statistické fyziky. Rozdělovací funkce, Liouvilleův teorém, Liouvilleova rovnice. Boltzmannova rovnice a její momenty. Termodynamická rovnováha. Maxwellovo-Boltzmannovo rozdělení. Sahova rovnice. Definice plazmatu, teplota, kolektivní chování, kvazineutralita. Debyeova délka. Pohyb nabité testovací částice v magnetických a elektrických polích, Larmorova frekvence a poloměr, drifty. Magnetická zrcadla. Magnetický moment. Radiační pásy. Základy magnetohydrodynamiky. Dvoutekutinový a jednotekutinový model plazmatu. Vlny v plazmatu. Alfvénova rychlost. Difúze a odpor v plazmatu. Ambipolární difúze. Specifický odpor plazmatu. Stabilita plazmatu. Hydromagnetická rovnováha. Parametr beta. Difúze magnetického pole do plazmatu. Plazmové nestability. Landauův útlum.

Vnitřní stavba hvězd: Jaderné reakce ve hvězdách, stavová rovnice hvězdné látky, opacita. Základní rovnice vnitřní stavby, počáteční a okrajové podmínky, numerické řešení. Vývoj osamocených hvězd, stopy a izochrony na HR diagramu, fáze vývoje. Způsoby srovnání s pozorováním; polytropy, Laneova-Emdenova rovnice. Hvězdný vítr, rotace hvězd, vývoj dvojhvězd, Rocheův model. Pulzace, asteroseismologie; protohvězdy, supernovy, příčiny proměnnosti hvězd.

Sluneční fyzika: Globální parametry Slunce, jeho vývoj. Konvekce, teorie směšovací délky. Lineární adiabatické oscilace nerotujícího Slunce ve sférické geometrii. Globální a lokální helioseismologie, přímé a inverzní úlohy. Rotace Slunce, von Zeipelův paradox, velkorozměrový systém proudění v konvektivní zóně. Sluneční magnetismus, cyklus, dynamo. Sluneční skvrny. Protuberance a erupce. Atmosféra Slunce, koróna, ohřev koróny. Sluneční vítr. Kosmické počasí.

Mezihvězdná látka: Rozložení prachu a plynu v Galaxii, typy útvarů mezihvězdné látky, metody pozorování. Atomy a molekuly v mezihvězdném prostoru — spektra, chemické reakce. Oblasti ionizovaného vodíku (HII) a jejich fyzika. Prachová zrna, fyzikální vlastnosti a optické projevy — extinkce, polarizace. Magnetická pole v Galaxii, Faradayova rotace. Dynamika mezihvězdné látky. Vícesložkový model mezihvězdného plynu, role supernov, fyzika rázových vln. Funkce ohřevu a ochlazování. Stabilita oblaků mezihvězdné látky, Jeansovo kritérium, fragmentace, tvoření hvězd, turbulence. Věta o viriálu. Čára 1420 MHz, rozložení a rychlosti vodíku HI. Hmotnost galaxií a skrytá hmota. Molekulární vodík, molekuly CO, molekulární oblaka, anomálie v rozdělení HI.

Galaktická astronomie: Stavba galaxie, hvězdné populace. Rotační křivky galaxií. Oortovy konstanty, elipsoid rychlostí. Pohyb v epicyklu, pohyb kolmo na disk. Dynamická hustota. Boltzmannova rovnice. Jeansovy teorémy. Relaxační čas hvězdných soustav. Jeansovy rovnice. Teorém o viriálu. Dvojice potenciál hustota. Modely galaxií, klasifikace galaxií. Určování vzdáleností, rozložení galaxií ve vesmíru.

Relativistická fyzika, astrofyzika a kosmologie: Prostoročas, čtyřrozměrný formalismus. Paralelní přenos a rovnice geodetiky, kovariatní derivace. Posun frekvence v gravitačním poli. Křivost prostoročasu. Tenzor energie a hybnosti. Einsteinovy rovnice gravitačního pole. Schwarzschildovo a Kerrovo řešení Einsteinových rovnic. Gravitační kolaps a černé díry. Relativistické modely hvězd. Separace sil krátkého a dlouhého dosahu. Rovnice pro hmotu a pro gravitační potenciál; TOV rovnice. Bílí trpaslíci, neutronové hvězdy a Chandrasekharova mez. Stavové rovnice pro chladnou hmotu a jejich integrace. Linearizovaná teorie gravitace a rovinné gravitační vlny. Homogenní a izotropní kosmologické modely. Hubbleův zákon, funkce expanze, decelerační parametr. Role látky a záření, kosmologická konstanta.

B. Užší zaměření

Student si volí jeden z následujících čtyř tematických okruhů.

1. Nebeská mechanika a fyzika těles sluneční soustavy

Nebeská mechanika: Základy teorie poruch. Lagrangeova a Gaussova forma rovnic poruchového počtu. Nesingulární proměnné. Sekulární a periodické členy aproximativního řešení rovnic poruchového počtu. Rozvoj gravitačního pole kosmických těles do

multipólní řady, zonální, teserální a sektorální členy, Stokesovy koeficienty. Sekulární změny dráhy družice vlivem J_2 a J_3 potenciálů. Relativní a Jacobiho souřadnice problému N-těles. Kozaiova úloha, sekulární řešení. Lagrangeova-Laplaceova sekulární teorie pohybu planet, fundamentální frekvence systému, sekulární pohyb asteroidu v gravitačním poli planet, sekulární rezonance.

Fyzika těles sluneční soustavy: Protoplanetární disk, akrece, planetesimály a embrya, migrace planet. Měsíce a slapy, planetky a jejich rodiny, modely srážek. Komety, dynamika prachu, klasifikace meteoritů, radiometrie.

2. Galaktická a extragalaktická astronomie

Morfologie galaxií, příčky a prstence. Chemický vývoj galaxií. Klasifikace dle Hubblea a de Vaucouleurse. Epicyklická aproximace. Dynamika v poli příčky. Lindbladovy rezonance, výměna momentu hybnosti na Lindbladových rezonancích a korotaci. Jeansova gravitační nestabilita. Nestability v rotujících systémech. Nestability v dvourozměrných systémech — Toomreho kritérium. Teorie Lina a Shu.

Relaxační čas. Dynamické tření. Věta o viriálu. Gravotermální katastrofa. Jeansův teorém. Polytropické modely hvězdokup (Plummerova sféra, izotermální sféra). Fokkerova-Planckova aproximace. Rosenbluthovy potenciály. Relaxační procesy v systémech s dominantní černou dírou — Bahcalovo-Wolfovo rozdělení. Rezonanční relaxace.

Aktivní galaktická jádra — observační přehled. Standardní model AGN. Vertikálně průměrovaná řešení akrečních disků (slim disky). S-diagram. Viskózní a termální stabilita akrečních disků.

3. Sluneční fyzika a hvězdné atmosféry

Struktury magnetického pole. Extrapolace magnetických polí. Rekonexe magnetických polí. Emisní procesy v plazmatu. Kvazilineární teorie. Urychlování částic. Svazky částic a jejich nestability. Numerické MHD a částicové kódy. Sluneční rádiová vzplanutí. Sluneční erupce a výrony koronální hmoty.

Opacita, emisivita, rozptyl záření, rovnice přenosu záření, zdrojová funkce. Zářivé a srážkové přechody v čarách a kontinuích. TE a LTE, non-LTE problém pro dvouhladinový model atomu. Vícehladinový atom s kontinuem, rovnice statistické rovnováhy. Metody řešení non-LTE problému (kompletní linearizace, ALI metody). Modelování hvězdných atmosfér, specifické modely (sluneční atmosféra, sférické modely hvězd, vícerozměrný přenos záření). Základy zářivé (magneto)-hydrodynamiky, časově-závislá excitace a ionizace. Fyzikální podmínky konkrétních typů hvězd, planet a akrečních disků a jejich zahrnutí do modelů.

4. Relativistická fyzika a kosmologie

Naivní kosmologické modely (Bruno, Galilei, Newton, Halley,...). Homogenita a izotropie rozložení extragalaktických objektů, vzdálenosti a časové škály ve vesmíru. Olbersův paradox. Rudý posuv a Hubbleův vztah. Homogenita a izotropie; Killingovy vektory, maximálně symetrické variety a podvariety. Ricciho tenzor, Ricciho skalár. Minkowského, de Sitterova a anti-de Sitterova metrika. Metrika steady-state modelu. Friedmannova metrika. Kosmologický princip. Konformní čas. Einsteinovy rovnice bez přítomnosti tlaku a s tlakem, kritická hustota. Kosmologická konstanta. Decelerační parametr. Reliktní záření. Zastoupení helia ve vesmíru. Zrychleně expandující vesmír. Zákony zachování v obecné teorii relativity. 3+1 rozštěpení a počáteční problém v obecné teorii relativity, lagrangeovský a hamiltonovský formalismus.

2. Geofyzika a fyzika planet

Garantující pracoviště: Katedra geofyziky

Garant programu: prof. RNDr. Ondřej Čadek, CSc.

Charakteristika studijního programu:

Obor Geofyzika a fyzika planet se zabývá studiem Země a planetárních těles fyzikálními metodami. Zahrnuje fyziku zemětřesení a problematiku šíření seismických vln, termální vývoj a deformaci zemského tělesa na různých časových škálách, studium tíhového a elektromagnetického pole Země pozemskými i satelitními metodami a výzkum planet a jejich měsíců. K interpretaci geofyzikálních jevů používá metod matematického modelování. Studium prohlubuje základní znalosti fyziky, matematiky a programování a rozvíjí dovednosti potřebné pro uplatnění v základním i aplikovaném geofyzikálním výzkumu. Při výuce je kladen důraz na úzké sepětí studia s posledním vývojem vědeckého bádání, do něhož se studenti zpravidla zapojují již v rámci své diplomové práce.

Profil absolventa studijního programu a cíle studia:

Absolvent má spolehlivé znalosti v obecných oblastech fyziky, zejména v mechanice kontinua, termodynamice a teorii elektromagnetického a gravitačního pole, a hlubší znalosti a dovednosti v hlavních oblastech geofyzikálního výzkumu. Je schopen tvořivě řešit problémy související se vznikem zemětřesení a šířením seismických vln zemským nitrem, analyzovat a interpretovat jevy pozorované v elektromagnetickém a tíhovém poli Země a planet a provádět počítačové simulace termálního a deformačního vývoje planet a jejich měsíců. Při řešení těchto problémů používá metody numerické matematiky a matematického modelování, které dokáže efektivně počítačově implementovat. Výsledky své odborné práce je schopen přehledně a srozumitelně sdělovat formou prezentací a odborných textů v češtině i angličtině.

Doporučený průběh studia

1. rok magisterského studia

Kód	Název	Kredity	ZS	LS
NGEO035	Dynamika pláště a litosféry	6	2/2 Z+Zk	_
NGEO080	Geomagnetismus a geoelektřina	6	3/1 Z+Zk	
NGEO069	Mechanika kontinua II	6	2/2 Z+Zk	
NGEO082	Seismologie	5	2/1 Z+Zk	
NGEO002	Šíření seismických vln	5	2/1 Z+Zk	
NSZZ023	Diplomová práce I	6		$0/4 \mathrm{~Z}$
NGEO057	Metody zpracování	5		2/1 Z+Zk
	geofyzikálních dat			
NGEO022	Numerické metody ve Fortranu	6		3/1 Z+Zk
NGEO081	Obrácené úlohy a modelování	6		2/2 Z+Zk
	v geofyzice			
NGEO072	Desková tektonika a subdukce	3		$2/0 \mathrm{Zk}$
	litosféry			
NGEO061	Elektromagnetická indukce	5		2/1 Z+Zk
	a vodivost Země			·
NGEO074	Fyzika zemětřesného zdroje	5		2/1 Z+Zk
NGEO011	Praktikum ze seismologie	3		$0/2 \mathrm{~Z}$
				•

NGEO099	Struktura a dynamika planet	3	_	$2/0 \mathrm{~Zk}$
	Termodynamika přírodních systémů	5		2/1 Z+Zk
	Vybrané kapitoly z parciálních	3		2/0 Zk
	diferenciálních rovnic			,
NPRF017	Programování ve Fortranu	3	$2/0 \mathrm{Zk}$	
NGEO107	Metoda konečných prvků v geofyzice	3		$0/2 \mathrm{~Z}$
	Spektrální metody řešení parciálních	3	$2/0 \mathrm{Zk}$	2/0 Zk
	diferenciálních rovnic v geofyzice		,	,
2. rok mag	gisterského studia			
Kód	Název	Kredity	ZS	LS
NSZZ024	Diplomová práce II	9	0/6 Z	_
NGEO016	Stavba Země	4	3/0 Zk	
NGEO017	Tíhové pole Země a planet	5	2/1 Z+Zk	_
NSZZ025	Diplomová práce III	15	_	$0/10 \mathrm{~Z}$
NGEO102	Inverzní modelování v geodynamice	3	$2/0 \mathrm{Zk}$	
NGEO032	Paprskové metody v seismice	5	2/1 Z+Zk	
NGEO030	Rotace Země	4	3/0 Zk	
NGEO034	Seismické povrchové vlny	5	2/1 Z+Zk	
NGEO103	Seismologie silných pohybů	3	2/0 Zk	
NGEO104	Vlastní kmity Země	3	2/0 Zk	
NGEO100	Vybrané partie z teorie geodynama	3	$2/0 \mathrm{Zk}$	
NPRF039	Fortran 95 a paralelní programování	3		$2/0 \mathrm{Zk}$
NGEO006	Fyzika ionosféry a magnetosféry	3		$2/0 \mathrm{Zk}$
NGEO105	Základy rotační seismologie	3		$2/0 \mathrm{Zk}$
NGEO109	$Geochemie\ a\ kosmochemie$	5	2/1 Z+Zk	
NGEO108	Povrchové procesy a tektonika	3	2/0 Zk	
	planet			
Povinně v	rolitelné předměty			
Kód	Název	Kredity	ZS	LS
NGEO072	Desková tektonika a subdukce	3		$2/0 \mathrm{~Zk}$
	litosféry			,
NGEO061	Elektromagnetická indukce	5		2/1 Z+Zk
	a vodivost Země			,
NGEO074	Fyzika zemětřesného zdroje	5		2/1 Z+Zk
	Praktikum ze seismologie	3		0/2 Z
	Struktura a dynamika planet	3		2/0 Zk
	Termodynamika přírodních systémů	5		2/1 Z+Zk
	Vybrané kapitoly z parciálních	3		2/0 Zk
1111111 001	diferenciálních rovnic	· ·		_,
NGEO102	Inverzní modelování v geodynamice	3	$2/0 \mathrm{Zk}$	
	Paprskové metody v seismice	5	2/1 Z+Zk	
	Rotace Země	4	3/0 Zk	
	Seismické povrchové vlny	5	2/1 Z+Zk	
	Seismologie silných pohybů	3	2/0 Zk	
		-	,	

NGEO104 Vlastní kmity Země	3	2/0 Zk	
NGEO100 Vybrané partie z teorie geodynama	3	2/0 Zk	
NPRF039 Fortran 95 a paralelní programování	3	_	$2/0 \mathrm{Zk}$
NGEO006 Fyzika ionosféry a magnetosféry	3		$2/0 \mathrm{Zk}$
NGEO105 Základy rotační seismologie	3	_	$2/0 \mathrm{~Zk}$

Doporučené volitelné předměty

Kód	Název	Kredity	ZS	LS
NPRF017	Programování ve Fortranu	3	2/0 Zk	
NGEO107	Metoda konečných prvků v geofyzice	3	<u> </u>	$0/2 \mathrm{~Z}$
NGEO095	Spektrální metody řešení parciálních	3	2/0 Zk	2/0 Zk
	diferenciálních rovnic v geofyzice			
NGEO109	Geochemie a kosmochemie	5	2/1 Z+Zk	
NGEO108	8 Povrchové procesy a tektonika	3	2/0 Zk	
	planet			
NGEO084	Geodynamický seminář	3	$0/2 \mathrm{~Z}$	$0/2 \mathrm{~Z}$
NGEO083	s Seismický seminář	5	$0/3 \mathrm{Z}$	$0/3 \mathrm{~Z}$

Podmínky pro přihlášení ke státní závěrečné zkoušce

- získání alespoň 120 kreditů
- splnění všech povinných předmětů zvoleného programu
- splnění povinně volitelných předmětů zvoleného programu v rozsahu alespoň 24 kreditů
- odevzdání vypracované diplomové práce ve stanoveném termínu

Předmět lze splnit jeho úspěšným absolvováním či uznáním z předchozího studia.

Požadavky k ústní části státní závěrečné zkoušky

A. Společné požadavky

1. Tíhové pole a pohyby Země a planet

Tíhový potenciál. Legendreovy polynomy a sférické harmonické funkce. Multipólový rozvoj pro gravitační potenciál. Tenzor setrvačnosti a Darwinova-Radauova rovnice. Geoid, gravitační anomálie a jejich vztah k hustotní struktuře Země. Izostáze, elastická flexe litosféry a dynamická topografie. Inverze gravitačního pole. Určování skutečného tvaru Země a planet. Rotace planetárních těles. Liouvilleova rovnice. Slapový potenciál.

2. Vnitřní stavba Země a těles sluneční soustavy

Sféricky symetrické modely Země, planet a měsíců. Clapeyronova rovnice, exotermní a endotermní fázové přechody. Fázové přechody. Látkové složení zemského nitra a terestrických planet. Laterální nehomogenity v Zemi, globální modely seismické tomografie.

3. Dynamické procesy

Soustava rovnic popisující přenos tepla a její různé aproximace. Zdroje tepla, tepelný tok. Radioaktivita hornin a stáří povrchu. Tepelná bilance Země a planet. Termální modely oceánské a kontinentální litosféry. Adiabatický gradient. Teplota tání

v plášti a jádře. Reologie materiálů, viskozita a její změny s hloubkou. Desková tektonika a procesy na deskových hranicích. Subdukce litosféry, horké skvrny a plášťové chocholy. Srovnání dynamických procesů v terestrických tělesech.

4. Seismické vlny

Pohybová rovnice v elastickém anizotropním a izotropním prostředí. Separace pohybových rovnic, vlnové rovnice, podélné a příčné vlny. Rovinné vlny v elastickém prostředí, Christoffelova rovnice. Povrchové Rayleighovy a Loveovy vlny, disperze. Vlny ve vertikálně nehomogenním prostředí. Fermatův princip a rovnice paprsku, rovnice hodochrony. Greenův tenzor. Reprezentační teorém. Útlum vln v lineární viskoelasticitě.

5. Seismologie

Makroseismická intenzita, magnitudo a energie zemětřesení. Seismické přístroje a záznamy, seismické sítě. Lokace zemětřesení. Magnitudově četnostní vztahy, seismicita. Seismické vlny v 1D modelech Země, paprsky, hodochrony. Základy seismické tomografie pomocí prostorových vln. Povrchové vlny na kontinentálních a oceánických trasách. Jednoduchý model tektonického zemětřesení, vývoj trhliny na zlomu, mechanizmus ohniska, seismický moment, velikost zlomu, pokles napětí. Společensky přínosné produkty (ShakeMap, PAGER).

6. Geomagnetismus a geoelektřina

Fenomenologický popis magnetického pole Země a jeho časových změn. Geomagnetická měření. Matematický popis geomagnetického pole. Paleomagnetismus. Generování zemského magnetického pole. Magnetohydrodynamika, soustava rovnic magnetického dynama. Kinematická a dynamická teorie dynama. Vnější magnetické pole, jeho časové změny. Elektromagnetická indukce v Zemi vyvolaná změnami vnějšího magnetického pole. Výzkum elektrické vodivosti v Zemi. Pohyb částice v homogenním a nehomogenním magnetickém poli, pohyb v poli magnetického dipólu.

7. Mechanika kontinua

Geometrie deformace, lagrangeovský a eulerovský popis, deformační gradient, tenzor deformace. Materiálová a prostorová časová derivace, Reynoldsův transportní teorém. Objemové a povrchové síly, tenzor napětí. Základní zákony zachování v globálním a lokálním tvaru: rovnice kontinuity, pohybová rovnice, symetrie tenzoru napětí. Základní konstitutivní vztahy: elastická, viskózní a plastická deformace. Zákon zachování energie, disipace mechanické energie. Hraniční podmínky. Předpjatá prostředí, termální napětí. Různé aplikace mechaniky kontinua: termální konvekce v plášti, viskoelastická relaxace Země, proudění oceánů.

8. Metody zpracování časových řad

Fourierovy řady, Fourierův integrál, Laplaceova transformace, Hilbertova transformace. Spektrální analýza diskrétních signálů, vzorkovací teorém, efekt alias, Z-transformace. Analytické signály. Filtrace časových řad, typy filtrů. Náhodný signál, autokorelace, výkonová spektrální hustota. Parametrické a neparametrické odhady výkonových spektrálních hustot.

9. Řešení obrácených úloh

Apriorní, datová a teoretická informace. Definice řešení obrácené úlohy. Lineární úlohy. Gaussova hypotéza a analytické řešení ve smyslu nejmenších čtverců. Nelineární obrácené úlohy. Analýza chyby a rozlišení. Stabilizace obrácené úlohy. Globální a lokální

62 Meteorologie a klimatologie metody. Obrácené úlohy v obecné L_p normě, zvláště v L_1 a $L_{nekonečno}$. Adjungované úlohy. Asimilace dat. Praktické geofyzikální aplikace.

10. Aplikace metod numerické matematiky v geofyzice

Řešení soustav lineárních algebraických rovnic. Aproximace a interpolace. Numerické integrování a derivování. Řešení nelineárních rovnic. Řešení soustav obyčejných diferenciálních rovnic s počátečními a okrajovými podmínkami. Diskretizace soustav parciálních diferenciálních rovnic.

B. Užší zaměření

Student si volí jeden z následujících tří tematických okruhů.

1. Seismologie

Kinematický a dynamický model zemětřesení. Vlnové pole a seismický zdroj, blízká a daleká zóna, nevratné posunutí. Momentový tenzor, smykové a nesmykové složky. Časová funkce zdroje, směrovost. Momentové magnitudo. Seismická energie a pokles napětí. Coulombovo napětí. Měření ze skupinových stanic. Disperze povrchových vln, určování fázové a grupové rychlosti. Seismický šum, Greenovy funkce z křížových korelací šumu. Rychlostní modely z povrchových vln. Odhad seismického ohrožení, pravděpodobnostní a deterministický přístup, empirické útlumové křivky. Modelování silných pohybů při zemětřesení, efekty seismického zdroje a lokální efekty. Empirické Greenovy funkce. Vlastní kmity Země, pohybová rovnice, klasifikace kmitů.

2. Geodynamika

Konvekce jako nelineární dynamický systém, počátek konvekce. Koeficienty v rovnici přenosu tepla a jejich vliv na styl plášťového tečení. Kompoziční nehomogenity v plášti a termochemická konvekce. Modely chladnutí Země. Nelineární reologie a subdukce litosférických desek. Topografie a gravitační pole: korelace a admitance pro různé modely vnitřní struktury a dynamiky. Membránová aproximace deformace litosféry, kompenzační koeficient. Termální a elastická litosféra. Dynamický geoid a určování viskozity v plášti. Viskoelastická deformace Země, postglaciální výzdvih a putování zemské rotační osy. Vícefázové systémy. Zemská kůra – složení, vznik a vývoj, reologie a tektonická napětí. Slapová deformace těles sluneční soustavy. Geofyzikální studium terestrických planet. Termální vývoj planet a jejich měsíců. Pokročilé partie z teorie geodynama: Magnetostrofická aproximace, Taylorovo dynamo, téměř symetrická dynama.

3. Planetologie

Vývoj sluneční soustavy, Niceský model. Pohyby planetárních těles a jejich vzájemné působení. Procesy určující termální vývoj terestrických a ledových těles. Teplota povrchu a jeho stáří. Vnitřní dynamika jednodeskových těles. Základní charakteristiky planet sluneční soustavy, jejich vnitřní struktura a modely jejich termálního vývoje. Dynamické procesy v ledových měsících. Fázové přechody v ledu a jejich role při vývoji ledových těles. Reologie ledu a slapová disipace. Simulace proudění v podpovrchových oceánech ledových měsíců. Exoplanety a možnosti jejich geofyzikálního výzkumu. Magnetické pole Slunce, planet a měsíců. Struktura ionosféry a magnetosféry. Sluneční vítr. Polární záře. Plazma v kosmickém prostoru. Experimentální metody kosmické fyziky. Topologie zemské magnetosféry. Ionosféra. Radiační pásy. Magnetosférická dynamika. Magnetosféry planet.

3. Fyzika atmosféry, meteorologie a klimatologie

Garantující pracoviště: Katedra fyziky atmosféry Garant programu: doc. RNDr. Petr Pišoft, Ph.D.

Charakteristika studijního programu:

Studijní program "Fyzika atmosféry, meteorologie a klimatologie" vede studenty k získávání znalostí a dovedností v oblasti chování atmosféry a souvisejících procesů. V rámci Univerzity Karlovy se jedná o program, který je jedinečný v komplexním pohledu na dynamický systém zemské atmosféry v širokých interdisciplinárních vazbách. I v rámci ČR se jedná o jediný program poskytující komplexní vzdělání v oblasti fyziky atmosféry, meteorologie a klimatologie. Studijní program navazuje na bakalářské studium fyziky, ve kterém si studenti osvojují potřebné matematické znalosti spolu s vědomostmi ze základních oblastí fyziky (mechanika, termodynamika, elektřina a magnetismus, optika a další). Předměty studijního programu jsou nejprve zaměřeny na získávání základních teoretických znalostí v oblasti atmosférické fyziky (hydrodynamika a termodynamika atmosféry), čímž se rozvíjí dříve nabyté znalosti v této oblasti. Dále se studium týká osvojování dovedností potřebných pro praktickou i vědeckou činnost v oboru fyziky atmosféry, tedy především v oblasti numerické matematiky, matematické statistiky, práce s daty a jejich vizualizace. Část předmětů má za cíl připravit absolventy v základních aplikacích atmosférické fyziky, a to v předpovědi počasí, problematice znečištění ovzduší a výzkumu klimatu (včetně modelování a výzkumu vyšších vrstev atmosféry). Další předměty programu slouží k užšímu zaměření studenta či k rozšíření znalostí v oblastech blízkých jiným fyzikálním oborům (např. elektrické, optické a akustické jevy v atmosféře či děje v oceánech). Součástí studia je i vypracování diplomové práce, v rámci které se předpokládá aplikace kompetencí nabytých během absolvování předmětů a zároveň spolupráce na řešení vědeckého problému definovaného zadáním práce.

Profil absolventa studijního programu a cíle studia:

Absolventi mají široké znalosti fyziky, zejména v kontextu atmosférických procesů, a souvisejících matematických metod. Jsou připraveni k řešení úkolů základního i aplikovaného výzkumu i pro využití znalostí v praxi. Vědomostně jsou zaměřeni především na problematiku dynamiky, termodynamiky, energetiky a cirkulace atmosféry s možnou aplikací v oblasti numerických diagnostických a prognostických modelů a v hydrometeorologické službě. Dále jsou obeznámeni s oblastí transportu, transformace a modelování znečišťujících příměsí v atmosféře a s oblastí klimatologie včetně struktury a dynamiky klimatického systému i modelování klimatu, antropogenních vlivů na klima, klimatické změny apod.

Doporučený průběh studia

1. rok magisterského studia

Kód	Název	Kredity	ZS	LS
NMET074	Dynamika atmosféry	6	3/2 Z+Zk	_
NMET002	? Fyzika mezní vrstvy	5	3/1 Z+Zk	
NMET020	Metody dálkového průzkumu	5	3/1 Z+Zk	
	atmosféry			
NMAF013	3 Metody numerické	3	2/0 Zk	
	matematiky I			

NMET036 Synoptická meteorologie II	4	$3/0 \mathrm{~Zk}$	_
NMET078 Analýza a interpretace	6	-	$3/2~\mathrm{KZ}$
povětrnostních map			o/ = ===
a prognostických polí			
NMET003 Fyzika oblaků a srážek	4		3/0 Zk
NMET010 Klimatické změny a jejich	4		2/1 Z+Zk
příčiny	1		
NMET067 Stratosféra	5		2/2 Z+Zk
NSZZ023 Diplomová práce I	6		$0/4~\mathrm{Z}$
NMET024 Dynamické předpovědní metody	7	3/2 Z+Zk	0/4 Z
v i i		,	
NMET009 Regionální klimatologie	6	$4/0 \mathrm{\ Zk}$	
a klimatografie ČR			
NMET011 Statistické metody v meteorologii	6	2/2 Z+Zk	
a klimatologii			
NMET075 Klimatické extrémy a jejich modely	3		$2/0 \mathrm{~Zk}$
NMET066 Meteorologický počítačový seminář	4		$0/3 \mathrm{~Z}$
NMET079 Metody dálkového průzkumu	3		1/1 Z+Zk
atmosféry II			, .
NMAF014 Metody numerické matematiky II	6		2/2 Z+Zk
NMET063 Metody zpracování časových řad	5		2/1 Z+Zk
NMET025 Vlnové pohyby a energetika	4		3/0 Zk
atmosféry	-1		0/ 0 ZK
aumosici y			

2. rok magisterského studia

Kód Název	Kredity	ZS	LS
NMET019 Chemismus atmosféry	5	$3/1 \mathrm{Zk}$	_
NMET061 Projektový seminář I	3	$1/1 \mathrm{Z}$	
NMET062 Projektový seminář II	3		$1/1 \mathrm{~Z}$
NSZZ024 Diplomová práce II	9	$0/6 \mathrm{~Z}$	
NSZZ025 Diplomová práce III	15		$0/10 \mathrm{~Z}$
NMET064 Aerosolové inženýrství	3	2/0 Zk	
NMET031 Mezosynoptická meteorologie	3	2/0 Zk	
NMET068 Oceány v klimatickém systému	6	2/2 Z+Zk	
NMET005 Šíření exhalací v atmosféře	3	$2/0 \mathrm{Zk}$	
NMET059 Techniky modelování pro numerickou	3	$0/2 \mathrm{~Z}$	
předpověď počasí			
NMET032 Turbulence v atmosféře	4	3/0 Zk	
NMET071 Užitá klimatologie I	3	2/0 Zk	
NMET001 Atmosférická elektřina	3		2/0 Zk
NMET073 Silná konvekce v atmosféře	5		3/1 Z+Zk
NMET072 Užitá klimatologie II	3		$2/0 \mathrm{~Zk}$

Seznam bloků podle akreditace:

³¹⁹ Fyzika atmosféry, meteorologie a klimatologie - povinné předměty (\mathbf{P})

³²⁰ Fyzika atmosféry, meteorologie a klimatologie - předměty pro zpracování závěrečné práce (\mathbf{P})

321 Fyzika atmosféry, meteorologie a klimatologie - povinně volitelné předměty (PV) 322 Fyzika atmosféry, meteorologie a klimatologie - doporučené volitelné předměty (V)

319 (P) Fyzika atmosféry, meteorologie a klimatologie - povinné předměty

Kód	Název	Kredity	ZS	LS
NMET074	l Dynamika atmosféry	6	3/2 Z+Zk	
NMET002	2 Fyzika mezní vrstvy	5	3/1 Z+Zk	
NMET020) Metody dálkového průzkumu	5	3/1 Z+Zk	
	atmosféry			
NMAF013	3 Metody numerické	3	$2/0 \mathrm{~Zk}$	
	matematiky I			
NMET036	Synoptická meteorologie II	4	3/0 Zk	
NMET078	3 Analýza a interpretace	6		$3/2~\mathrm{KZ}$
	povětrnostních map			
	a prognostických polí			
NMET003	3 Fyzika oblaků a srážek	4		$3/0 \mathrm{~Zk}$
NMET010) Klimatické změny a jejich	4		2/1 Z+Zk
	příčiny			
NMET067	7 Stratosféra	5		2/2 Z+Zk
NMET019	Chemismus atmosféry	5	3/1 Zk	
NMET061	Projektový seminář I	3	$1/1 \mathrm{~Z}$	
NMET062	2 Projektový seminář II	3	_	$1/1 \mathrm{~Z}$

 $320~(\mathrm{P})$ Fyzika atmosféry, meteorologie a klimatologie - předměty pro zpracování závěrečné práce

Kód	Název	Kredity	ZS	LS
	Diplomová práce I	6	_	$0/4~\mathrm{Z}$
NSZZ024	Diplomová práce II	9	$0/6 \mathrm{~Z}$	
NSZZ025	Diplomová práce III	15		$0/10 \mathrm{~Z}$

 $321~(\mathrm{PV})$ Fyzika atmosféry, meteorologie a klimatologie - povinně volitelné předměty

Kód	Název	Kredity	ZS	LS
NMET024	Dynamické předpovědní metody	7	3/2 Z+Zk	
NMET009	Regionální klimatologie	6	$4/0 \mathrm{Zk}$	
	a klimatografie ČR			
NMET011	Statistické metody v meteorologii	6	2/2 Z+Zk	
	a klimatologii			
NMET075	Klimatické extrémy a jejich modely	3		$2/0 \mathrm{Zk}$
NMET066	Meteorologický počítačový seminář	4		$0/3 \mathrm{~Z}$
NMET079	Metody dálkového průzkumu	3	_	$1/1 \mathrm{~Z+Zk}$
	atmosféry II			
NMAF014	Metody numerické matematiky II	6		2/2 Z+Zk
NMET063	Metody zpracování časových řad	5		2/1 Z+Zk
NMET025	Vlnové pohyby a energetika	4		3/0 Zk
	atmosféry			

NMET064 Aerosolové inženýrství NMET031 Mezosynoptická meteorologie NMET068 Oceány v klimatickém systému NMET005 Šíření exhalací v atmosféře NMET059 Techniky modelování pro numerickou	3 3 6 3	2/0 Zk $2/0 Zk$ $2/2 Z+Zk$ $2/0 Zk$ $0/2 Z$	
předpověď počasí		7	
NMET032 Turbulence v atmosféře	4	$3/0 \mathrm{Zk}$	
NMET071 Užitá klimatologie I	3	$2/0 \mathrm{Zk}$	
NMET001 Atmosférická elektřina	3		$2/0 \mathrm{Zk}$
NMET073 Silná konvekce v atmosféře	5		3/1 Z+Zk
NMET072 Užitá klimatologie II	3		$2/0 \mathrm{~Zk}$

 $322~(\mathrm{V})$ Fyzika atmosféry, meteorologie a klimatologie - doporučené volitelné předměty

Kód	Název	Kredity	ZS	LS
NMET034	Hydrodynamika	6	3/1 Z+Zk	
NMET021	Meteorologické přístroje a pozorovací metody	4	3/0 Zk	
NMET004	l Šíření akustických a elektromagnetických vln v atmosféře	4	3/0 Zk	_
NOFY077	$\acute{U}vod\ do\ Linuxu$	3	$1/1 \mathrm{~KZ}$	
NMAF026	i Deterministický chaos	3		$2/0 \mathrm{~Zk}$
NOFY078	Programování a zpracování dat v Pythonu	4	_	$1/2~\mathrm{KZ}$
NMET050) Statistické metody zpracování fyzikálních dat	6	_	2/2 Zk
NMET035	Synoptická meteorologie I	3		$2/0 \mathrm{Zk}$
NMET012	2. Všeobecná klimatologie	6		3/1 Z+Zk

4. Teoretická fyzika

Garantující pracoviště: Ústav teoretické fyziky

Garant programu: prof. RNDr. Jiří Podolský, CSc., DSc.

Charakteristika studijního programu:

Pojem teoretická fyzika označuje specifický přístup k vědeckému zkoumání, nikoli konkrétní oblast fyzikálního bádání. Metodologicky se tedy uplatňuje téměř ve všech oborech fyziky a astronomie, v oborech přírodovědných i v řadě pokročilých technologických aplikací. Absolvent programu Teoretická fyzika získává ucelený a fundovaný přehled o základních oborech fyziky i znalosti stěžejních směrů teoretické fyziky, především kvantové teorie, obecné teorie relativity a statistické fyziky. Podle výběru ze široké nabídky povinně volitelných předmětů se dále profiluje v některé ze specializovaných oblastí, jako například ve fyzice plazmatu, v astrofyzice a kosmologii, v atomové a molekulové fyzice, fyzice mnohočásticových systémů či fyzice částic a vysokých energií.

Profil absolventa studijního programu a cíle studia:

Absolvent má velmi dobré znalosti stěžejních teorií moderní fyziky — kvantové teorie, teorie relativity a statistické fyziky. Díky tématické šíři nabídky povinně voli-

telných přednášek může získat hlubší vědomosti i v řadě konkrétních oblastí teoretické fyziky. Na druhé straně znalost obecně použitelných pokročilých matematických metod zaručuje absolventovi velkou přizpůsobivost, tedy schopnost uplatnit se nejen v různých oblastech fyziky, ale i v jiných oborech a při činnostech, které vyžadují logické myšlení a analýzu složitých problémů.

Cílem studia je poskytnout absolventovi dobrou znalost základních matematických metod a základních metod teoretické fyziky, které mu umožní rychlé přizpůsobení výzkumným postupům v široké oblasti fyzikálních, ale i mimofyzikálních aplikací.

Doporučený průběh studia

Předpokladem úspěšného magisterského studia tohoto programu je získání základních znalostí na úrovni následujících předmětů:

Kód	Název	Kredity	ZS	LS
NTMF066	Kvantová mechanika I	9	4/2 Z+Zk	_
NTMF043	s Termodynamika a statistická fyzika I ¹	7	3/2 Z+Zk	_
NTMF067	' Kvantová mechanika II	9		4/2 Z+Zk
NTMF111	Obecná teorie relativity	4		3/0 Zk

 $^{^{\}rm 1}$ Ve studijních plánech bakalářského programu Fyzika jde o povinný předmět.

Tyto předměty se obvykle zapisují ve třetím roce studia bakalářského programu Fyzika jako povinné a povinně volitelné. Pokud posluchač tyto nebo jim ekvivalentní předměty neabsolvoval, měl by si je ve vlastním zájmu zapsat jako volitelné v prvním roce navazujícího magisterského studia. Obsah uvedených předmětů je součástí společných požadavků státní závěrečné zkoušky.

1. rok magisterského studia

Kód	Název	Kredity	ZS	LS
NTMF037	Relativistická fyzika I	9	4/2 Z+Zk	
NJSF068	Kvantová teorie pole I 1	9	4/2 Z+Zk	
NJSF145	Kvantová teorie pole I 1	9	4/2 Z+Zk	
NTMF057	Počítačové metody v teoretické	5	2/1 Z+Zk	
	fyzice I			
NTMF020	Základy teorie plazmatu	3	$2/0 \mathrm{Zk}$	
NTMF044	Termodynamika a statistická	7	<u> </u>	3/2 Z+Zk
	fyzika II			
NFPL108	Teorie kondenzovaného stavu I	3		$2/0 \mathrm{Zk}$
NSZZ023	Diplomová práce I	6	_	$0/4 \mathrm{Z}$

¹ Studenti si zapisují právě jeden z těchto alternativních předmětů.

Kód	Název	Kredity	ZS	LS
NSZZ024	Diplomová práce II	9	$0/6 \mathrm{~Z}$	
NSZZ025	Diplomová práce III	15		0/10 Z

Povinně volitelné předměty					
Kód	Název	Kredity	ZS	LS	
Matemat	ické metody				
NMAF006	Vybrané partie z matematiky pro fyziky	3		$2/0 \mathrm{Zk}$	
NTMF059	Geometrické metody teoretické fyziky I	6	2/2 Z+Zk	_	
NTMF060	Geometrické metody teoretické fyziky II	4	_	3/0 Zk	
NTMF061	Teorie grup a její aplikace ve fyzice	6	2/2 Z+Zk	_	
	Symetrie rovnic matematické fyziky a zákony zachování	3	<u></u>	$2/0 \mathrm{Zk}$	
NMAF037	Pokročilá lineární algebra pro fyziky	3	$2/0 \mathrm{~Zk}$		
NMAF038	Pokročilé partie z teorie grup pro fyziky	4	<u></u>	2/1 Z+Zk	
Relativis	tická teorie gravitace				
NTMF038	Relativistická fyzika II	9	_	4/2 Z+Zk	
NTMF088	Přesné prostoročasy ¹	3		2/0 Zk	
NTMF089	Gravitační vlny I ¹	3		2/0 Zk	
	Gravitační vlny II ¹	3		2/0 Zk	
NTMF065	Úvod do kvantové teorie pole na křivém pozadí ¹	4	$2/1 \mathrm{~Zk}$	<u>, </u>	
NTMF063	Vybrané partie obecné relativity I ¹	3	$2/0 \mathrm{~Zk}$		
NTMF073	Vybrané partie obecné relativity II 1	3	2/0 Zk		
Teoretick	á astrofyzika a kosmologie				
NTMF090	Astrophysics of gravitational wave sources ¹	3		$2/0 \mathrm{~Zk}$	
NTMF091	Black hole thermodynamics: classical and quantum 1	3	_	$2/0 \mathrm{~Zk}$	
NTMF070	Zářivé procesy v astrofyzice ¹	3		$2/0 \mathrm{Zk}$	
NTMF222	Teoretická kosmologie I ¹	3	2/0 Zk		
NTMF333	Teoretická kosmologie II 1	3		$2/0 \mathrm{Zk}$	
	í kvantová mechanika				
	Interpretace kvantové mechaniky ¹	4	2/1 Zk		
	Kvantová teorie rozptylu	6	3/1 Z+Zk		
NTMF130	Teorie srážek atomů a molekul	6		3/1 Z+Zk	
	í teorie pole				
NJSF069	Kvantová teorie pole II ²	9		4/2 Z+Zk	
NJSF146	Kvantová teorie pole II ²	9		4/2 Z+Zk	
NJSF082	Vybrané partie teorie kvantovaných polí I	4	3/0 Zk	_	

	ybrané partie teorie kvantovaných	4	_	$3/0 \mathrm{~Zk}$
-	oolí II Casmis kalibna žních malí	4	2 /0 71-	
	Teorie kalibračních polí Základy teorie elektroslabých	$\frac{4}{6}$	3/0 Zk	$\frac{-}{2/2}$ Z+Zk
	nterakcí	U		Z/Z $Z+ZK$
Pokročilá s	statistická fyzika			
	statistická fyzika kvantových	3	$2/0 \mathrm{Zk}$	
n	nnohočásticových systémů I ¹			
	statistická fyzika kvantových	3		$2/0 \mathrm{Zk}$
n	nnohočásticových systémů II ¹			
NFPL109 T	Teorie kondenzovaného stavu II	3	$2/0 \mathrm{Zk}$	
NTMF062 V	ybrané kapitoly z nerovnovážné	3	$2/0 \mathrm{Zk}$	
S	tatistické fyziky I			
NTMF068 V	ybrané kapitoly z nerovnovážné	3		$2/0 \mathrm{Zk}$
S	tatistické fyziky II			,
NTMF071 F	yzika komplexních systémů	3		2/0 Zk
	Pravděpodobnost a matematika	3		2/0 Zk
fa	ázových přechodů I			,
Teorie plaz	zmatu a záření			
NTMF028 T	Teorie kosmického plazmatu	3	_	2/0 Zk
	Teorie vysokoteplotního plazmatu	3		2/0 Zk
	Klasická teorie záření	3	_	2/0 Zk
Pokročilá i	počítačová fyzika			,
	Počítačové metody v teoretické	5		2/1 Z+Zk
	vzice II	9		2/1 L+LK
•		C	9 /1 77 + 771	
	Simulace ve fyzice mnoha částic	6	3/1 Z+Zk	0 /0 71
	Pokročilé simulace ve fyzice mnoha ástic	3		$2/0 \mathrm{~Zk}$

Doporučené volitelné předměty

Kód	Název	Kredity	ZS	LS
NTMF008	S Seminář ústavu teoretické fyziky	3	$0/2 \mathrm{~Z}$	$0/2 \mathrm{~Z}$
NTMF006	i Relativistický seminář	3	$0/2 \mathrm{~Z}$	$0/2 \mathrm{~Z}$
NTMF045	Seminář atomové fyziky	3	$0/2 \mathrm{~Z}$	$0/2 \mathrm{~Z}$
NTMF101	New developments in astrophysics	2	$0/1 \mathrm{~Z}$	$0/1 \mathrm{~Z}$
	and theoretical physics			
NTMF100	Odborné soustředění ÚTF	2	$0/1 \mathrm{~Z}$	_

Podmínky pro přihlášení ke státní závěrečné zkoušce

- -získání alespoň 120 kreditů
- splnění všech povinných předmětů
- splnění povinně volitelných předmětů v rozsahu alespoň 36 kreditů

 $^{^1}$ Tyto předměty se přednášejí ve dvouletém intervalu. 2 Studenti si zapisují právě jeden z těchto alternativních předmětů.

- odevzdání vypracované diplomové práce ve stanoveném termínu

Předmět lze splnit jeho úspěšným absolvováním či uznáním z předchozího studia.

Požadavky k ústní části státní závěrečné zkoušky

A. Společné požadavky

1. Relativistická fyzika

Výchozí principy speciální a obecné teorie relativity. Prostoročas, čtyřrozměrný formalismus, transformace souřadnic. Paralelní přenos a rovnice geodetiky, metrika a afinní konexe, kovariantní derivace. Posun frekvence v gravitačním poli. Křivost prostoročasu. Tenzor energie a hybnosti, zákony zachování a pohybové rovnice. Einsteinovy rovnice gravitačního pole. Schwarzschildovo řešení Einsteinových rovnic. Homogenní a izotropní kosmologické modely.

2. Kvantová fyzika

Popis stavu a pozorovatelných v kvantové teorii. Unitární časový vývoj. Kvantová teorie momentu hybnosti. Základy teorie skládání momentů hybnosti. Systémy několika nerozlišitelných částic. Stacionární poruchová teorie. Ritzův variační princip. Časově závislá poruchová teorie. Částice ve sféricky symetrickém poli. Rovnice relativistické kvantové mechaniky pro částice se spinem 0, 1/2 a 1. Diracova rovnice pro částici v elektromagnetickém poli. Kvantování volných polí a jejich částicová interpretace. Interakce polí: příklady interakčních lagrangiánů. S-matice a jednoduché Feynmanovy diagramy. Výpočet pravděpodobnosti rozpadu a účinného průřezu reakce.

3. Statistická fyzika

Statistický popis termodynamiky. Základní statistické soubory. Fluktuace termodynamických veličin. Kvantová statistická mechanika. Ideální Boseho-Einsteinův plyn hmotných částic. Plyn nehmotných bosonů. Degenerovaný elektronový plyn. Základy teorie neideálních plynů. Základy nerovnovážné statistické fyziky.

4. Fyzika plazmatu a pevných látek

Základní pojmy teorie plazmatu. Drifty plazmatu v elektrickém a magnetickém poli. Kinetická teorie plazmatu, Landauův útlum. Srážkový člen a relaxace. Magnetohydrodynamický popis plazmatu. Pevná látka jako kvantově mechanický problém mnoha částic. Harmonické přiblížení pohybu atomů. Difrakce na mřížce. Elektronová pásová struktura. Termodynamické vlastnosti krystalů.

5. Počítačová fyzika

Reprezentace reálných čísel na počítači, zaokrouhlovací chyba. Stabilita algoritmu a podmíněnost úlohy. Aproximace a interpolace funkcí. Numerická derivace funkcí, konečné diference. Numerická integrace funkcí. Řešení nelineárních rovnic. Řešení soustav lineárních rovnic. Základní metody integrace obyčejných diferenciálních rovnic.

B. Užší zaměření

Student si volí dva z následujících osmi tematických okruhů.

1. Matematické metody

Základy teorie míry. Banachovy a Hilbertovy prostory, lineární operátory a funkcionály. Rovnice matematické fyziky a jejich základní vlastnosti, speciální funkce. Definice distribuce a základní operace s distribucemi. Fourierova transformace funkcí a distribucí. Diferencovatelné variety a jejich tečné prostory, vnější kalkulus. Riemannova geometrie a kovariantní derivace. Vektorové bandly. Lieovy grupy a Lieovy algebry. Základy teorie reprezentací grup. Reprezentace grup SO(3) a SU(2).

2. Relativistická teorie gravitace

Lieova derivace, symetrie a Killingovy vektory. Riemannův a Weylův tenzor křivosti, geodetická deviace. Algebraická klasifikace prostoročasů. Časupodobné a světelné kongruence. Prostory konstantní křivosti (Minkowski, de Sitter, anti-de Sitter). Přesná řešení Einsteinových rovnic popisující stacionární černé díry, zákony dynamiky. Linearizovaná teorie gravitace a rovinné gravitační vlny. Přesné prostoročasy s gravitačními vlnami. Lagrangeovský formalismus v obecné relativitě, zákony zachování. 3+1 rozštěpení prostoročasu, počáteční problém a Hamiltonovský formalismus v obecné relativitě.

3. Teoretická astrofyzika a kosmologie

Klasická a relativistická teorie hvězdné stavby, radiální oscilace a stabilita. Hvězdný vývoj a jeho závěrečné etapy, gravitační kolaps, supernovy, černé díry. Stavové rovnice pro degenerovaný plyn, bílí trpaslíci, neutronové hvězdy. Nerelativistické zářivé procesy v astrofyzice. Relativistické zářivé procesy v astrofyzice. Homogenní a izotropní kosmologické modely. Kosmologické vzdálenosti, šíření světla, gravitační čočkování. Raný vesmír a jeho tepelná historie. Vývoj kosmického plazmatu v lineární perturbační teorii. Vývoj hustotních perturbací, vznik struktur. Reliktní záření a jeho anizotropie.

4. Pokročilá kvantová mechanika

Základy kvantové teorie rozptylu částice na vnějším potenciálu. Rozptyl na sféricky symetrickém potenciálu a analytické vlastnosti rozptylových veličin. Základy mnohokanálové teorie rozptylu. Přibližné metody pro vícečásticové systémy. Struktura atomů a molekul. Přibližné metody teorie rozptylu a jejich aplikace. Dekoherence a efektivní redukce. Kvantová mechanika a teorie skrytých proměnných. Feynmanovská formulace kvantové mechaniky. Interpretace kvantové mechaniky.

5. Kvantová teorie pole

Propagátor kvantovaného pole. Kovariantní kvantování elektromagnetického pole. Systematika Dysonova rozvoje S-matice v interakční reprezentaci. Procesy 2. řádu v kvantové elektrodynamice. Diagramy s uzavřenou smyčkou vnitřních linií: ultrafialové divergence a jejich regularizace. Index divergence jednočásticově ireducibilního diagramu. Techniky praktického výpočtu jednosmyčkových Feynmanových diagramů. Příklady spočitatelných diagramů bez ultrafialových divergencí. Základní techniky renormalizace. Typy renormalizačních kontrčlenů v kvantové elektrodynamice.

6. Pokročilá statistická fyzika

Fázové přechody. Kritické jevy a univerzalita. Komplexní systémy. Diagramatické metody pro mnohočásticové kvantové systémy. Systémy interagujících fermionů. Teorie supravodivosti. Teorie lineární odezvy. Mnohočásticové kvantové systémy mimo rovnováhu. Kinetické rovnice. Stochastické procesy.

7. Teorie plazmatu a záření

Vysokoteplotní a termonukleární plazma. Magnetohydrodynamická rovnováha. Magnetohydrodynamická stabilita. Principy udržení plazmatu. Transport v plazmatu. Zářivé procesy. Zářivá (magneto)hydrodynamika. Obecně-relativistická kinetická teorie. Numerické modelování plazmatu.

8. Pokročilá počítačová fyzika

Faktorizace matic a jejich využití v numerické lineární algebře. Iterační metody numerické lineární algebry. Integrace obyčejných diferenciálních rovnic. Metoda koneč-

ných diferencí pro parciální diferenciální rovnice. Metoda konečných prvků pro okrajové úlohy. Diskrétní Fourierova transformace a její využití. Základy metody Monte Carlo. Základy metody molekulární dynamiky. Základy kvantových simulací.

5. Fyzika kondenzovaných soustav a materiálů

Garantující pracoviště: Katedra fyziky kondenzovaných látek

Garant programu: doc. RNDr. Stanislav Daniš, Ph.D.

Charakteristika studijního programu:

Program je věnován experimentálnímu a teoretickému studiu vlastností kondenzovaných soustav, jejich mikrofyzikální interpretaci a možnostem aplikací, zejména se zřetelem na současný rozvoj materiálového výzkumu. K výuce společné pro celý program si studenti mohou volit jedno ze zaměření: Fyzika atomových a elektronových struktur, Fyzika makromolekulárních látek, Fyzika materiálů, Fyzika nízkých teplot, Fyzika povrchových modifikací. Každý z uvedených tématických bloků zabezpečuje obecné vzdělání v oboru na současné úrovni poznání a profiluje absolventa ve zvoleném zaměření.

Profil absolventa studijního programu a cíle studia:

Absolventi mají široké znalosti základů kvantové teorie, termodynamiky a statistické fyziky kondenzovaných soustav a příslušných výpočetních metod. Dovedou popsat strukturu těchto látek v různých formách, jejich mechanické, elektrické, magnetické i optické vlastnosti. Mají přehled o řadě experimentálních metod charakterizace struktury, složení i vlastností kondenzovaných látek, jako jsou metody difrakční, spektroskopické i mikroskopické, a dovedou je prakticky používat. Vhodným uplatněním jsou zejména pracoviště základního fyzikálního, chemického a biomedicínského výzkumu, vysoké školy uvedeného zaměření, laboratoře aplikovaného materiálového výzkumu a vývoje, zkušební laboratoře a pracoviště v hygienické a ekologické službě.

Cílem studia je poskytnout široké vzdělání v kvantové teorii, termodynamice a statistické fyzice ve vazbě na současné přístupy teorie kondenzovaných soustav, a to soustav jak anorganických, tak organických a makromolekulárních. Současně je cílem studia poskytnout studentům přehled principů moderních experimetálních metod a technologických postupů. Ve vybraném zaměření je studentům poskytnuto hlubší vzdělání a praktické dovednosti.

Doporučený průběh studia

1. rok magisterského studia

Předpokladem úspěšného magisterského studia tohoto programu je získání základních znalostí na úrovni následujících předmětů:

Kód	Název	Kredity	ZS	LS
NBCM110	Kvantová teorie I	9	4/2 Z+Zk	_
NFPL141	Kvantová teorie II ¹	5		2/1 Z+Zk
	Úvod do fyziky pevných látek	6		3/1 Z+Zk
NFPL505	Úvod do fyziky měkkých materiálů	3		1/1 Z+Zk
NFPL192	Proseminář fyziky kondenzovaných	3		$0/2 \mathrm{~Z}$
	soustav			

Pro magisterské studium zaměření: Fyzika atomových a elektronových struktur a Fyzika nízkých teplot.

Tyto předměty se obvykle zapisují ve třetím roce studia bakalářského programu Fyzika jako povinné a povinně volitelné. Pokud posluchač tyto nebo jim ekvivalentní předměty neabsolvoval, měl by si je ve vlastním zájmu zapsat jako volitelné v prvním roce navazujícího magisterského studia. Obsah uvedených předmětů je součástí společných požadavků státní závěrečné zkoušky.

Povinné a povinně volitelné předměty profilujícího základu (25 kreditů z povinně volitelných předmětů profilujícího základu)

Studenti si volí jedno z pěti zaměření - Fyzika atomových a elektronových struktur, Fyzika makromolekulárních látek, Fyzika matriálů, Fyzika nízkých teplot a Fyzika povrchových modifikací.

Kód	Název	Kredity	ZS	LS
NFPL145	Experimentální metody fyziky kondenzovaných soustav I	9	3/3 Z+Zk	_
NFPL146	Experimentální metody fyziky kondenzovaných soustav II	9		3/3 Z+Zk
NFPL800	Termodynamika	5	2/1 Z+Zk	
	kondenzovaných soustav			
	Oborový seminář I ¹	3	$0/2 \mathrm{~Z}$	
	Oborový seminář II ¹	3		0/2 Z
NSZZ023	Diplomová práce I	6	_	$0/4 \mathrm{~Z}$
Fyzika at	tomových a elektronových struktu	r		
NFPL143	Fyzika pevných látek I	9	4/2 Z+Zk	
NFPL144	Struktura látek a strukturní analýza	7	3/2 Z+Zk	
NFPL147	Fyzika pevných látek II	9		4/2 Z+Zk
Fyzika m	nakromolekulárních látek			
NBCM066	Základy makromolekulární chemie	5	2/1 Z+Zk	
NBCM208	Základy makromolekulární fyziky	4		$3/0 \mathrm{Zk}$
NBCM058	Relaxační chování polymerů	3		2/0 Zk
NBCM038	Elektrické a optické vlastnosti	3		2/0 Zk
	polymerů			
NBCM231	Aplikovaná termodynamika	3		2/0 Zk
Fyzika m	nateriálů			
NFPL132	Teorie kondenzovaných látek	6	3/1 Z+Zk	
NFPL133	Struktura materiálů	4	3/0 Zk	
NFPL135	Fyzika materiálů I	4	2/1 Z+Zk	
NFPL139	Fyzika materiálů II	4	-	2/1 Z+Zk
NFPL137	Technologie materiálů	3		2/0 Zk
NFPL136	Speciální praktikum fyziky	4		0/3 Z
	materiálů			•
Fyzika n	ízkých teplot			
NFPL143	Fyzika pevných látek I	9	4/2 Z+Zk	_

NFPL168	Fyzika a technika nízkých teplot	3	$2/0 \mathrm{~Zk}$	
	Anihilace pozitronů v pevných	3	2/0 Zk	_
	látkách			
NFPL169	Hyperjemné interakce a jaderný magnetismus	3		$2/0 \mathrm{Zk}$
NFPL092	Radiofrekvenční spektroskopie	3		$2/0 \mathrm{~Zk}$
	pevných látek			
NFPL206	Vybrané kapitoly z kvantové fyziky	7		3/2 Z+Zk
	pevných látek			
Fyzika p	ovrchových modifikací			
NBCM066	Základy makromolekulární chemie	5	2/1 Z+Zk	
NBCM213	Fyzika přípravy tenkých vrstev	3	2/0 Zk	
NBCM233	Metody analýzy povrchů a tenkých	5	2/1 Z+Zk	
	vrstev			
NBCM214	Procesy plazmové polymerace	3	$2/0 \mathrm{Zk}$	
NBCM231	Aplikovaná termodynamika	3		2/0 Zk

¹ Jako Oborový seminář studenti navštěvují právě jeden z následujících seminářů: Seminář strukturní analýzy (NFPL037), Seminář teorie kondenzovaného stavu (NFPL062), Seminář z magnetismu (NFPL118), Seminář z fyziky nízkých teplot (NFPL098), Seminář fyziky materiálů (NFPL113), Seminář z fyziky polymerů (NBCM091), Studijní seminář plazmových polymerů (NBCM200).

Kód	Název	Kredity	ZS	LS
NSZZ024	Diplomová práce II	9	0/6 Z	
NFPL124	Experimentální metody fyziky	6	2/2 Z+Zk	
	kondenzovaných látek III			
NSZZ025	Diplomová práce III	15		$0/10 \mathrm{~Z}$
Fyzika a	tomových a elektronových struktu	r		
Fyzika m	nakromolekulárních látek			
NBCM217	Moderní směry ve fyzice	4	$3/0 \mathrm{~Zk}$	
	makromolekul			
NBCM142	2 Diplomový seminář KMF	3		$0/2 \mathrm{~Z}$
Fyzika m	nateriálů			
Fyzika n	ízkých teplot			
_				
Fyzika povrchových modifikací				
NBCM219	Vybrané problémy fyziky reálných	3	2/0 Zk	_
	povrchů			
NBCM142	2 Diplomový seminář KMF	3		$0/2 \mathrm{~Z}$

Povinně volitelné předměty - 15 kreditů						
Kód	Název	Kredity	ZS	LS		
Fyzika atomových a elektronových struktur						
NFPL115	Elektronová mikroskopie	3	$2/0 \mathrm{~Zk}$			
NFPL122	Magnetické vlastnosti pevných látek	3	2/0 Zk			
NFPL014	Dielektrické vlastnosti pevných látek	3	2/0 Zk	_		
${\rm NFPL040}$	Aplikovaná strukturní analýza	3		$1/1 \mathrm{~Z+Zk}$		
NFPL154	Neutronové a synchrotronové záření v magnetických látkách	6	_	2/2 Z+Zk		
NFPL030	Rtg metody studia struktury a mikrostruktury materiálů	5		2/1 Z+Zk		
NFPL082	Magnetismus a elektronová struktura kovových systémů	3	2/0 Zk	_		
NFPL013	Rozptyl rtg záření na tenkých vrstvách	3	2/0 Zk	_		
NFPL155	Studium reálné struktury pevných látek	3	2/0 Zk			
NFPL157	Fyzika ve vysokých magnetických polích	3	2/0 Zk			
NFPL156	Fyzika ve vysokých tlacích	3	$2/0 \mathrm{~Zk}$	_		
NFPL158	Magnetické struktury	4	2/2 Z+Zk			
NFPL550	Tepelná kapacita pevných látek	3	$2/0 \mathrm{~Zk}$			
NFPL011	Výpočtová fyzika a návrh materiálů	3	$2/0 \mathrm{~Zk}$			
NFPL004	Nerovnovážná statistická fyzika a termodynamika	3	2/0 Zk	_		
NFPL039	Metody řešení a upřesňování krystalových struktur monokrystalů	3		1/1 Z+Zk		
NFPL159	Moderní materiály s aplikačním potenciálem	3	_	2/0 Zk		
NFPL551	Korelace v mnohoelektronových systémech	3	_	2/0 Zk		
Fyzika m	nakromolekulárních látek					
NBCM098	Rentgenová a elektronová strukturní analýza biomolekul a makromolekul	3	$2/0 \mathrm{~Zk}$	_		
NBCM211	Měřicí metody elektrických vlastností polovodivých a nevodivých materiálů	3	1/1 Z+Zk	_		
NFPL018	Transportní a povrchové vlastnosti pevných látek	3	2/0 Zk	_		
NBCM230	NMR spektroskopie polymerů	3		$2/0 \mathrm{Zk}$		
	Pravděpodobnostní metody fyziky makromolekul	3	_	$2/0 \mathrm{~Zk}$		
NBCM076	Teorie polymerních struktur	3	2/0 Zk	_		

NBCM072	Základy molekulární elektroniky	3	$2/0 \mathrm{Zk}$	_
	Strukturní teorie relaxačního chování	3	2/0 Zk	_
	polymerů		,	
Fyzika m	nateriálů			
NFPL107	Základy krystalografie	3	1/1 Z+Zk	
NFPL115	Elektronová mikroskopie	3	2/0 Zk	
NFPL055	Kinetika fázových transformací	3		$2/0 \mathrm{Zk}$
NFPL305	Magnetismus materiálů	3		$2/0 \mathrm{~Zk}$
NFPL197	Základy mechaniky kontinua a teorie dislokací	3	_	$2/0 \mathrm{~Zk}$
NFPL198	Teorie poruch krystalu	3		$2/0 \mathrm{~Zk}$
NFPL080	Akustika ve fyzice kondenzovaného stavu	6		3/1 KZ
NFPL140	Fyzika materiálů III ¹	3	$2/0 \mathrm{~Zk}$	$2/0 \mathrm{Zk}$
NFPL103	Anihilace pozitronů v pevných	3	2/0 Zk	-
	látkách		•	
Fyzika n	ízkých teplot			
NFPL171	Makroskopické kvantové jevy I	3	2/0 Zk	
NFPL172	Makroskopické kvantové jevy II	3		2/0 Zk
NFPL093	Vybrané kapitoly z teorie	3	2/0 Zk	
	a metodiky magnetické rezonance		_/ =	
NFPL097	Jaderně spektroskopické metody	3		1/1 Z+Zk
1111 2001	studia hyperjemných interakcí	9		1/1 2 2K
NFPL174	Základy mechaniky tekutin	3	$2/0 \mathrm{~Zk}$	
MITLITIE	a turbulence	3	2/0 ZK	
NFPL210	Turbulence	3	$2/0 \mathrm{~Zk}$	
NFPL096			•	
NFPL175	Mössbauerova spektroskopie	$\frac{3}{3}$	2/0 Zk	
NLLT119	NMR v magneticky uspořádaných	Э	1/1 Z+Zk	
NEDI 100	látkách	9	0 /0 771	
NFPL129	Jaderné metody studia magnetických	3	$2/0 \mathrm{Zk}$	
NIDDI 00F	systémů	0	0 /0 771	
NFPL095	Základy kryotechniky	3	2/0 Zk	
NFPL128	Vybrané partie z pozitronové anihilační spektroskopie	3	1/1 Z+Zk	1/1 Z+Zk
NFPL184	Seminář radiofrekvenční	3	$0/2 \mathrm{~Z}$	$0/2 \mathrm{Z}$
	spektroskopie kondenzovaných látek			
NFPL204	Magnetické nanočástice	3	2/0 Zk	
NFPL179	Kvantový popis NMR	5		2/1 Z+Zk
Fyzika p	ovrchových modifikací			
NFPL107	Základy krystalografie	3	1/1 Z+Zk	_
	Konstrukce depozičních aparatur	5	2/1 Z+Zk	
	Základy fyziky plazmatu	3	$2/0 \mathrm{~Zk}$	
	Rentgenografické studium reálné	3		$2/0 \mathrm{~Zk}$
	struktury tenkých vrstev			,
	· ·			

NBCM215 Modifikace povrchů a její aplikace NBCM236 Nanokompozitní	3 3		$2/0 \mathrm{\ Zk}$ $2/0 \mathrm{\ Zk}$
a nanostrukturované tenké vrstvy NBCM220 Tvrdé a supertvrdé vrstvy a jejich aplikace	3	2/0 Zk	_
NBCM232 Elektrické vlastnosti tenkých vrstev NBCM222 Optické vlastnosti tenkých vrstev	3 3	$2/0 \mathrm{\ Zk}$ $2/0 \mathrm{\ Zk}$	_

 $^{^{1}}$ Předmět lze zapsat buď v letním nebo v zimním semestru.

Fyzika kondenzovaných soustav a materiálů - volitelné předměty

Kód	Název	Kredity	ZS	LS
NFPL038	Difrakce rentgenového záření dokonalými krystaly	3	$2/0 \mathrm{~Zk}$	_
NFPL130	Fyzikální metalurgie hliníkových slitin pro tváření	3	2/0 Zk	
NFPL199	Fyzikální metody studia nanostruktur	3	_	$2/0 \mathrm{~Zk}$
NEVF106	Mikroskopie povrchů a tenkých vrstev	5	2/1 Z+Zk	
NFPL120	Moderní problémy fyziky materiálů	3	$2/0 \mathrm{Zk}$	
NFPL006	Řešení výpočetně náročných úloh ve fyzice	3	1/1 Z+Zk	
NFPL177	Supravodivost	5	2/1 Z+Zk	
NFPL072	Systémy s korelovanými f-elektrony	3	$2/0 \mathrm{Zk}$	
NFPL141	Kvantová teorie II	5	2/1 Z+Zk	2/1 Z+Zk
NFPL051	Mechanické vlastnosti nekovových materiálů	3	$2/0 \mathrm{~Zk}$	
NFPL500	Praktické užití mikroskopie atomárních sil (AFM)	2	_	$0/2 \mathrm{~Z}$
NFPL192	Proseminář fyziky kondenzovaných soustav	3		$0/2 \mathrm{~Z}$
NFPL505	Úvod do fyziky měkkých materiálů	3		1/1 Z+Zk
NFPL502	Úvod do fyziky pevných látek	6		3/1 Z+Zk
NBCM060	Základy vytváření polymerních struktur	3		2/0 Zk
NFPL074	Praktické užití transmisní elektronové mikroskopie	4	$0/3 \mathrm{~Z}$	$0/3 \mathrm{~Z}$

Podmínky pro přihlášení ke státní závěrečné zkoušce

- získání alespoň 120 kreditů
- splnění všech povinných předmětů zvoleného zaměření
- získání alespoň 25 kreditů z povinně volitelných předmětů profilujícího základu
- získání alespoň 15 kreditů z povinně volitelných předmětů
- odevzdání diplomové práce ve stanoveném termínu

Předmět lze splnit jeho úspěšným absolvováním či uznáním z předchozího studia.

Požadavky k ústní části státní závěrečné zkoušky

A. Společné požadavky

Elektronové stavy v pevných látkách - pásová struktura a metody jejího výpočtu: jednoelektronové přiblížení a metody řešení efektivních rovnic (metoda LCAO, téměř volné elektrony, LAPW, pseudopotenciály). Adiabatická aproximace, variační princip a poruchový počet.

Interakce mezi elektrony - druhé kvantování, Hartree-Fockova aproximace, teorie funkcionálu hustoty. Kvazičástice v kondenzovaných soustavách.

Interakce elektromagnetického záření s látkou - absorpce a emise fotonu. Stimulovaná a spontánní emise, výběrová pravidla. Doba života kvantových stavů, přirozená šířka spektrální čáry.

2. Termodynamika a statistická fyzika kondenzovaných soustav

Termodynamická rovnováha, stavové veličiny a stavové rovnice. Hlavní termodynamické věty a jejich důsledky, entropie a absolutní teplota. Termodynamické potenciály, podmínky rovnováhy a stability. Kritické jevy, fázové přechody, Landauova teorie fázových přechodů. Popis nerovnovážných procesů, lineární nerovnovážná termodynamika. Statistický popis stavu, distribuční funkce a matice hustoty. Liouvilleova rovnice. Gibbsovy stacionární soubory, souborové středování, odvození stavových rovnic. Klasické a kvantové systémy neinteragujících částic. Brownův pohyb, difuze ve vnějším poli.

3. Základy fyziky kondenzovaných látek

Struktura kondenzovaných soustav - krystalová struktura, bodová a translační symetrie, základy krystalografie. Reciproký prostor, Brillouinova zóna.

Reálná struktura látek - poruchy krystalové struktury, uspořádání na dlouhou a krátkou vzdálenost. Amorfní látky a jejich popis, párové distribuční funkce. Popis topologie, prostorové a elektronové struktury makromolekul.

Pohyb atomů a molekul v kondenzovaných látkách - difuze, kmity mřížky, fonony, tepelná kapacita.

Elektrické vlastnosti - polarizační mechanismy, dielektrická susceptibilita. Interakce mřížky iontového krystalu s elektromagnetickou vlnou. Vedení elektrického proudu - Sommerfeldův model, elektrony v periodickém poli, pásová struktura kovů a polovodičů. Základní poznatky o supravodivosti.

Magnetické vlastnosti - diamagnetismus a paramagnetismus, magnetizace, magnetická susceptibilita. Spontánní uspořádání magnetických momentů. Magnetizační procesy ve feromagnetikách.

Mechanické silové pole - elastická a plastická deformace, viskozita. Viskoelasticita a kaučuková elasticita polymerních systémů, skelný přechod, princip časově-teplotní superpozice.

4. Experimentální metody

Metody určování struktury - základní difrakční metody: difrakce a rozptyl rtg záření, elektronů, neutronů, atomů a iontů. Mikroskopické metody - světelná, řádkovací a transmisní elektronová mikroskopie.

Makroskopické a mikroskopické metody studia mechanických, tepelných, dielektrických, optických, transportních a magnetických vlastností látek.

Základní spektroskopické metody (radiofrekvenční, mikrovlnné, optické, rentgenové, gama, fotoemisní) a jejich použití.

B. Užší zaměření

Student si volí okruh otázek odpovídající jeho zaměření.

1. Fyzika atomových a elektronových struktur

Atomová struktura látek

Bodové a prostorové grupy. Symetrie fyzikálních vlastností. Struktura krystalů, kvazikrystalů, modulovaných struktur a amorfních látek. Používání strukturních databází. Kinematická teorie difrakce - rozptyl na elektronu, atomu a molekule; rozptyl na periodických a nízkodimenzionálnálních strukturách. Základy dynamické teorie difrakce. Využití neutronů a synchrotronového záření ke studiu struktury látek. Počítačové simulace, ab-initio výpočty.

Elektronová strutkura a fyzikální vlastnosti látek

Vodivostní elektrony v materiálech (klasický a kvantový popis), elektrony v periodickém potenciálu. Elektronová struktura kovů, polovodičů a izolátorů, optické vlastnosti. Chemická vazba, koheze, hybridizace elektronových stavů. Elektron-fononová interakce, elektrický a tepelný transport. Coulombovská a výměnná interakce, elektronové korelace, vznik magnetického momentu. Magnetické uspořádání, symetrie. Mikroskopické modely magnetismu. Nízkodimenzionální systémy. Měrné teplo, teplotní roztažnost. Magnetotransportní a magnetoelastické jevy. Dielektrika, elektrická permitivita, feroelektrika a antiferoelektrika. Elektrooptické a magnetooptické jevy. Využití mikroskopických a makroskopických metod. Vliv vnějšího tlaku, fyzika ve vysokých magnetických polích. Ab initio výpočty elektronové struktury a fyzikálních vlastností. Aplikační využití elektronových vlastností materiálů. Nanomateriály.

Kolektivní jevy

Spontánní narušení symetrie a parametr uspořádání. Mikroskopický popis fázových přechodů, teorie středního pole, fluktuace. Strukturní a magnetické fázové přechody. Spontánní uspořádání jaderných momentů. Kondo mřížka a systémy s těžkými fermiony. Bose-Einsteinova kondenzace atomu. Supravodivost a supratekutost. Kooperativní jevy mimo rovnováhu, lasery.

2. Fyzika makromolekulárních látek

$Struktura\ makromolekul$

Konfigurace, konformace, takticita a stereoregularita polymerních řetězců. Architektura makromolekulárních systémů. Způsoby přípravy makromolekulárních systémů, chemická struktura polymerů, způsoby výstavby polymerních sítí, bod gelace. Distribuce a průměry molárních hmotností.

Fyzikální vlastnosti makromolekulárních systémů

Relaxační vlastnosti, skelný přechod a teorie volného objemu, časově-teplotní superpozice. Pojem lineární viskoelasticity, viskoelastické funkce, Boltzmannův princip superpozice. Termodynamika polymerních roztoků, směsí a blokových kopolymerů — fázové diagramy. Flory-Hugginsova teorie, botnací rovnováha. Koligativní vlastnosti polymerních roztoků. Přechod klubko-globule. Krystalizace polymerů. Elektrické a optické vlastnosti polymerů, generace a transport náboje v organických strukturách.

Experimentální metody

Metody studia skelného přechodu, měření reologických a viskoelastických vlastností, dynamická mechanická analýza. Měření dielektrických a elektrických vlastností, termální depolarizace. Detekce teplotních přechodů, diferenciální skenovací kalorimetrie. Metody určování molekulových hmotností a struktury polymerů. Difrakční/rozptylové a spektroskopické metody pro studium struktury makromolekulárních systémů.

3. Fyzika materiálů

Poruchy krystalové mřížky

Krystalová mřížka, vakance, intersticiály, vrstevné chyby, subhranice, hranice zrn, dvojčata, inkluze, dispersoidy, precipitáty. Interakce poruch krystalové mřížky. Experimentální metody studia poruch krystalové mřížky: mechanické zkoušky, difrakční a zobrazovací metody, termická analýza, akustická emise.

Mechanické vlastnosti

Plastická deformace, teorie zpevnění, creep a lom. Statické a dynamické odpevnění, zotavení poruch mřížky, superplasticita, nestabilita plastické deformace, tvarová paměť.

Termodynamika vícesložkových systémů

Binární a ternární fázové diagramy, model párových vazeb, pákové pravidlo, intermediální fáze. Fázové transformace, tuhnutí slitin, segregační procesy. Difuzní a bezdifuzní transformace v pevných látkách, TTT-diagramy, Avramiho rovnice. Difuze v pevných látkách.

Moderní materiály a technologie

Intermetalické sloučeniny, keramické a kompozitní materiály, submikrokrystalické a nanokrystalické materiály, kvazikrystaly, materiály s tvarovou pamětí, technologie přípravy moderních materiálů.

4. Fyzika nízkých teplot

Elektronová struktura pevných látek

Metody výpočtu elektronové struktury. Elektronová struktura a magnetické vlastnosti pevných látek. Magnetické momenty volného atomu/iontu, interakce s krystalovým polem, korelační jevy, výměnné interakce, lokalizované a itinerantní magnetické momenty.

Fyzika a technika nízkých teplot

Metody získávání nízkých a velmi nízkých teplot, základní vlastnosti kryokapalin. Nízkoteplotní termometrie.

Makroskopické kvantové jevy

Supravodivost, Cooperovy páry, Meissnerův jev, slabá supravodivost. Supravodiče I. a II. druhu, vysokoteplotní supravodivost. Supratekutost ⁴He, ³He, makroskopická vlnová funkce, Boseova-Einsteinova kondenzace.

Hyperjemné interakce a jaderný magnetismus

Elektrické a magnetické momenty atomových jader, elektrická a magnetická hyperjemná interakce. Spinový hamiltonián, hyperjemné štěpení energetických hladin, role symetrie okolí jádra.

Experimentální metody studia hyperjemných interakcí (jaderná magnetická rezonance, elektronová paramagnetická rezonance, mionová spinová rotace, Mössbauerův

jev, jaderná orientace, metoda porušených úhlových korelací) a jejich využití pro studium atomové, elektronové a magnetické struktury.

5. Fyzika reálných povrchů

Fyzika povrchů

Vazba molekuly na povrchu, absorpce, ideální a reálný povrch, elektronová struktura povrchů, povrchové stavy, výstupní práce, emise nabitých částic, emise elektronu, princip elektronové spektroskopie, interakce částic a záření s povrchem, fotoemise, princip fotoelektronové spektroskopie, sekundární elektronové emise, difrakce. Energie povrchů a rozhraní.

Experimentální metody studia povrchu

Metody elektronové spektroskopie (AES, REED), metody iontové spektroskopie (SIMS, SNMS), metody fotoelektronové spektroskopie (UPS, XPS) a jejich praktické použití. Metody elektronové mikroskopie. Měření povrchové energie: statické a dynamické metody měření kontaktního úhlu. Infračervená spektroskopie ATR FTIR, metody rtg. difrakce — maloúhlový rozptyl.

Příprava tenkých vrstev

Definice tenké vrstvy, pojem tloušťky tenké vrstvy, počáteční stadium a mechanismy růstu vrstvy. Základní metody jejich přípravy: vypařování ve vakuu, stejnoměrné a vysokofrekvenční rozprašování, CVD, PE CVD anorganických a organických vrstev (plazmová polymerace). Metody diagnostiky růstu tenké vrstvy, měření rychlosti nanášení a tloušťky, určování struktury a morfologie, mechanických, elektrických a optických vlastností. Modifikace povrchu, změny povrchové energie a chemické aktivity. Použití tenkých vrstev — tvrdá, oděruvzdorná pokrytí, ochranné a pasivační vrstvy, optické tenké vrstvy, vrstvy pro mikroelektroniku.

6. Optika a optoelektronika

Garantující pracoviště: Katedra chemické fyziky a optiky

Garant programu: prof. RNDr. Petr Malý, DrSc.

Charakteristika studijního programu:

Program je nabízen studentům, kteří chtějí získat širší fyzikální rozhled a detailní znalosti i praktické dovednosti potřebné k výzkumné a vědecké činnosti v oboru optiky a optoelektroniky. Výuka připravuje studenty jak pro samostatnou tvůrčí činnost, tak i pro týmovou spolupráci. Získaný širší přehled vytváří předpoklady také pro práci v mezioborových oblastech na rozhraní fyziky, biologie a technických oborů. Důraz je kladen na vysokou profesionalitu v optice a optoelektronice s dobrou znalostí výpočetní techniky. Student si vybírá podle zájmu a tématu diplomové práce jedno ze dvou zaměření. Kromě obecných společných základů tak získává hlubší znalosti ve zvolených oblastech. Zaměření Kvantová a nelineární optika se soustředí zejména na vlastnosti světelných polí v rámci klasické i kvantové optiky, na nelineárně optické jevy a na metody laserové spektroskopie. Zaměření Optoelektronika a fotonika se podrobně zabývá interakcí světla s pevnými látkami, detekcí světla, a technologií přípravy polovodičových materiálů pro optoelektronické a fotonické aplikace. Součástí studijního plánu na obou zaměřeních je praktická výuka vedená v laboratořích vybavených na současné světové úrovni, která zajišťuje kompetence absolventů v oblasti experimentálního výzkumu, optické spektroskopie, aplikované optiky, optoelektroniky a spintroniky. Výběrové přednášky pokrývají ve světě se nově rozvíjející obory jako opto-spintronika,

fyzika metamateriálů či terahertzová spektroskopie. Zasahování optiky do řady oborů (fyzika, biologie, chemie, medicína) i její stále rostoucí aplikace v každodenním životě zvyšují adaptibilitu absolventů a možnosti jejich uplatnění ve vědecké práci i v praxi. Absolventi jsou zcela připraveni k dalšímu doktorskému studiu v ČR nebo v zahraničí.

Profil absolventa studijního programu a cíle studia:

Absolvent má hluboké teoretické i experimentální znalosti z klasické i kvantové optiky a optoelektroniky. Zvládá matematické modelování fyzikálních procesů v optice a optoelektronice. Tyto znalosti a dovednosti je schopen uplatnit ve výzkumné a vědecké činnosti v oborech optika, optoelektronika, spintronika, fotonika, fyzika laserů, statistická a koherenční optika, nelineární optika, optické sdělování a zpracování informace, přístrojová optika, i v řadě oborů, kde se optika nebo optická spektroskopie využívá (biologie, chemie, medicína). Fyzikální vzdělání spojené se získáním dovedností v oblasti počítačového programování, informačních technologií i organizace týmové vědecké práce zvyšuje možnosti uplatnění na vysokých školách a vědeckých ústavech i v průmyslu. Absolvent je schopen odborně komunikovat v českém i anglickém jazyce a má zkušenosti s přípravou a navrhováním grantových projektů a s organizací vědecké práce. Je mu otevřena možnost dalšího doktorského studia nebo vědecké a pedagogické činnosti na vysokých školách a vědeckých ústavech v ČR i v zahraničí. Absolventi se uplatní i jako vědecko-výzkumní a vývojoví pracovníci nebo řídící pracovníci v soukromých firmách a institucích.

Doporučený průběh studia

Předpokladem úspěšného magisterského studia tohoto programu je získání základních znalostí na úrovni následujících předmětů:

Kód	Název	Kredity	ZS	LS
NOOE021	Vlnová optika	9		4/2 Z+Zk
NOOE001	Základy optické spektroskopie	3		$2/0 \mathrm{Zk}$

Tyto předměty se obvykle zapisují ve třetím roce bakalářského studia programu Fyzika jako povinně volitelné. Pokud posluchač tyto nebo jim ekvivalentní předměty neabsolvoval, měl by si je ve vlastním zájmu zapsat jako volitelné v prvním roce navazujícího magisterského studia. Obsah uvedených předmětů je součástí společných požadavků státní závěrečné zkoušky.

Povinné a povinně volitelné předměty

Studenti si volí jedno ze dvou zaměření: Kvantová a nelineární optika, Optoelektronika a fotonika. Vzhledem k odlišným požadavkům k ústní části státní závěrečné zkoušky se doporučuje v rámci povinně výběrových předmětů volba předmětů profilujícího základu takto: pro zaměření Kvantová a nelineární optika předměty Kvantová optika I, Kvantová optika II, Integrovaná a vláknová optika, a pro zaměření Optoelektronika a fotonika-předměty Fyzika polovodičů pro optoelektroniku II, Fyzika polovodičů pro optoelektroniku III, Elektronový transport v kvantových systémech.

Kód	Název	Kredity	ZS	LS
NOOE002	2 Fyzika polovodičů pro	3	$2/0 \mathrm{~Zk}$	
	optoelektroniku I			

NOOE003 Optoelektronické materiály a technologie	3	2/0 Zk	_
NOOE046 Speciální praktikum pro OOE I	6	$0/4~\mathrm{KZ}$	_
NFPL182 Teorie pevných látek	9	4/2 Z+Zk	
NOOE027 Základy kvantové a nelineární optiky I	6	3/1 Z+Zk	_
NSZZ023 Diplomová práce I	6	_	$0/4 \mathrm{~Z}$
NOOE016 Speciální praktikum pro	6		0/4 KZ
OOE II			
NOOE072 Teorie prostorových symetrií	3		$2/0 \mathrm{~Zk}$
pro optiku			
NOOE028 Základy kvantové a nelineární	6		3/1 Z+Zk
optiky II			
NBCM067 Kvantová optika I $^{\rm 1}$	5	2/1 Z+Zk	
NBCM093 Kvantová optika II 1	5		2/1 Z+Zk
NBCM096 Elektronový transport v kvantových systémech 2	5	_	2/1 Z+Zk
NOOE008 Fyzika polovodičů pro optoelektroniku II 2	3	_	$2/0 \mathrm{~Zk}$

2. rok magisterského studia

Kód	Název	Kredity	ZS	LS
NSZZ024	Diplomová práce II	9	0/6 Z	
NOOE061	Nelineární optika	5	2/1 Z+Zk	
	polovodičových nanostruktur			
NSZZ025	Diplomová práce III	15		$0/10 \mathrm{~Z}$
NOOE005	Fyzika polovodičů pro	5	2/1 Z+Zk	
	optoelektroniku III ²			
NOOE007	Integrovaná a vláknová optika ¹	3	2/0 Zk	
NOOE034	Teorie laseru	3	2/0 Zk	
NOOE026	Ultrakrátké laserové pulzy	3	2/0 Zk	
NOOE033	Speciální seminář z kvantové	3	$0/2 \mathrm{~Z}$	$0/2 \mathrm{~Z}$
	a nelineární optiky ¹			
NOOE010	Speciální seminář	3	$0/2 \mathrm{~Z}$	$0/2 \mathrm{~Z}$
	z optoelektroniky 2		•	•

 $[\]frac{1}{2}$ Doporučeno pro zaměření Kvantová a nelineární optika. $\frac{2}{2}$ Doporučeno pro zaměření Optoelektronika a fotonika.

Doporučené volitelné předměty

Kód	Název	Kredity	ZS	LS
NBCM101	Detekce a spektroskopie jednotlivých	3	2/0 Zk	_
	molekul			

 $[\]frac{1}{2}$ Doporučeno pro zaměření Kvantová a nelineární optika. $\frac{2}{2}$ Doporučeno pro zaměření Optoelektronika a fotonika.

NOOE124	Fotonické struktury	3	$2/0 \mathrm{~Zk}$	
	a elektromagnetické metamateriály		·	
NOOE047	Integrovaná optika	3	$2/0 \mathrm{~Zk}$	
NOOE113	Laserová metrologie	3	$2/0 \mathrm{~Zk}$	
NFPL004	Nerovnovážná statistická fyzika	3	2/0 Zk	
	$a\ termodynamika$			
NBCM305	Optické senzory	3	$2/0 \mathrm{Zk}$	
NOOE074	$Teorie\ magnetooptiky$	3	$2/0 \mathrm{Zk}$	
NOOE133	Topologické vlastnosti světla	3	$2/0 \mathrm{~Zk}$	
	$a\ hmoty$			
NBCM102	Základy klasické radiometrie	3	$2/0 \mathrm{~Zk}$	_
	$a\ fotometrie$			
NOOE048	Základy konstrukce a výroby	2	$0/1 \mathrm{~Z}$	
	optických prvků			
NOOE119	Nelineární optická spektroskopie	3		$2/0 \mathrm{Zk}$
NOOE011	Optika tenkých vrstev a vrstevnatých	3		$2/0 \mathrm{~Zk}$
	struktur			
NOOE130	Rentgenové lasery a rentgenová	3		$2/0 \mathrm{~Zk}$
	optika			
NOOE015	Seminář	2		$0/1 \mathrm{~Z}$
NOOE125	Spektroskopie v terahertzové	3		$2/0 \mathrm{~Zk}$
	spektrální oblasti			
NOOE073	Moderní mikroskopie	3	$2/0 \mathrm{~Zk}$	$2/0 \mathrm{Zk}$
NOOE126	Seminář femtosekundové laserové	2	$0/2 \mathrm{~Z}$	$0/2 \mathrm{~Z}$
	spektroskopie			
NBCM323	Seminář teorie otevřených	1	$0/1 \mathrm{~Z}$	$0/1 \mathrm{~Z}$
	kvantových systémů			

Podmínky pro přihlášení ke státní závěrečné zkoušce

- získání alespoň 120 kreditů
- splnění všech povinných předmětů
- získání alespoň 31 kreditů z povinně volitelných předmětů
- odevzdání vypracované diplomové práce ve stanoveném termínu

Předmět lze splnit jeho úspěšným absolvováním či uznáním z předchozího studia.

Státní závěrečná zkouška se skládá ze dvou částí:

- I Obhajoba diplomové práce
- II Ústní část

Požadavky k ústní části státní závěrečné zkoušky

Poznámka: Student dostane dvě otázky z části A a jednu otázku z části B. V části B si student volí okruh otázek podle svého zaměření.

A Společné požadavky

1. Pokročilá kvantová mechanika, kvantová teorie pevných látek

Role symetrie ve fyzice, vlastní stavy a jejich degenerace. Výběrová pravidla fyzikálních procesů v atomech, molekulách a pevných látkách. Problém mnoha částic

v kvantové teorii. Atomy a molekuly. Elektronové a vibrační vlastnosti pevných látek. Druhé kvantování. Kvantování elektromagnetického pole. Interakce atomu se zářením. Základy relativistické kvantové teorie elektronu. Jednoelektronová aproximace v kvantové teorii pevných látek, Blochův teorém, Brillouinovy zóny. Vliv porušení translační symetrie, Wannierův teorém, supermřížky a kvantové struktury. Termodynamika a statistická fyzika elementárních excitací. Pohyb elektronu v elektrickém a magnetickém poli. Dielektrické vlastnosti pevných látek. Kvazičástice v pevných látkách.

2. Vlnová optika, základy kvantové a nelineární optiky

Světlo jako elektromagnetické vlnění. Polarizace světla a její matematický popis. Optické konstanty, Kramers-Kronigovy relace. Jevy na rozhraní mezi prostředími. Světelné vlny v absorbujícím prostředí. Komplexní reprezentace optických polí. Vlnová teorie optické koherence. Skalární teorie difrakce. Fourierovská optika a holografie. Gaussovské svazky, další typy optických svazků. Optické rezonátory. Šíření světla ve vlnovodech, optická vlákna. Interakce světla s látkou, klasický a semiklasický popis. Popis laseru, aproximace kinetických rovnic a semiklasická teorie. Dynamické vlastnosti laseru. Typy laserů. Lineární a nelineární optika. Nelineární jevy druhého řádu. Nelineární jevy třetího řádu. Spontánní a stimulované rozptyly. Nestacionární koherentní jevy.

3. Základy fyziky a technologie polovodičů pro optoelektroniku

Polovodičové materiály a jejich parametry. Fázové rovnováhy. Růst krystalů. Poruchy krystalů. Příměsi v krystalech. Pasivace a metalizace povrchů. Příprava monokrystalů a tenkých vrstev. Elektrony, díry, pásová struktura objemových polovodičů. Drift, difúze, generace, rekombinace, zachycení a tunelování nosičů náboje. Nízkodimenzionální polovodičové struktury. Lineární a nelineární optické vlastnosti polovodičů a jejich nanostruktur.

4. Experimentální metody

Metody měření vlastností optického záření. Měření parametrů světelných svazků. Zdroje a detektory optického záření. Spektroskopické přístroje. Metody měření optických konstant látek. Spektroskopické metody zkoumání látek podle druhu interakce. Základní experimenty klasické a kvantové optiky.

B Užší zaměření

Zaměření Kvantová a nelineární optika

1. Kvantová optika

Kvantování elektromagnetického pole. Fotonové, koherentní a tepelné stavy pole. Interakce světla s látkou. Spontánní, stimulovaná emise a absorpce. Doba života, tvar spektrální čáry. Interakce atomu s koherentním světlem. Blochovy rovnice. Redukovaná matice hustoty. Relaxace v otevřených systémech, řídicí rovnice, stochastická kvantová dynamika. Kubova teorie odezvy. Korelace polí prvního a druhého řádu, Mach-Zenderův a Hanbury Brown-Twissův interferometr. Štěpení svazku. Mnohomodové světlo. Spojitá frekvenční a časová reprezentace. Fotonové echo. Einstein-Podolsky-Rosenův paradox. Entanglované stavy. Kvantová kryptografie a teleportace. Metody kvantového popisu laseru, kinetické rovnice. Fluktuace v kvantových systémech, stabilita laseru, statistika výstupního pole. Kvantový popis nelineárních optických procesů.

2. Integrovaná a vláknová optika

Optika rozhraní, tenkých filmů a multivrstev. Maticový popis šíření světla vrstevnatými strukturami. Periodické struktury. Základy teorie fotonických krystalů. Křemí-

ková fotonika. Fotonická pásová struktura. Mikrodutiny. Metody charakterizace vlnovodných struktur. Základy technologie integrované optiky. Pasivní struktury a dynamické součástky integrované optiky. Šíření optických vln ve vlnovodech, módy. Charakteristiky vlnovodů. Vazební prvky pro optické vlnovody. Cylindrický dielektrický vlnovod. Jednomódová a mnohomódová optická vlákna. Aplikace struktur integrované fotoniky v optickém sdělování, informačních technologiích a senzorech.

3. Metody optické spektroskopie

Optická absorpční a luminiscenční spektroskopie. Luminiscenční spektroskopie polovodičů. Studium vlastností elektronů, excitonů, fotonů, příměsových stavů. Efekty silného buzení. Stimulovaná emise v polovodičích a jejich nanostrukturách. Způsoby generace a detekce spinově polarizovaných nosičů náboje. Metody optické spektroskopie pro studium spinově polarizovaných nosičů v polovodičích. Vlastnosti ultrakrátkých laserových pulsů a jejich šíření prostředím. Metody spektroskopie s vysokým časovým rozlišením.

Zaměření Optoelektronika a fotonika

1. Fyzika polovodičů pro optoelektroniku

Metody excitace nosičů náboje v polovodičích. Rekombinace nosičů náboje v polovodičích. Zářivé a nezářivé přechody. Horké nosiče, relaxace. Fotovodivost při nehomogenní excitaci. Povrchové stavy, povrchová vodivost a rekombinace. Přechod P-N a jeho charakteristiky. Schottkyho kontakt, základní přístupy k transportu náboje. Struktura MIS. Heterogenní přechody. Nízkodimenzionální polovodičové struktury, elektronové stavy kvantových mříží, drátů a bodů. Fotovoltaické jevy, ozářený přechod P-N, ozářený Schottkyho kontakt.

2. Optické a transportní vlastnosti polovodičů a jejich nanostruktur

Disperzní relace a obecné vlastnosti optických konstant. Kramers-Kronigovy relace. Kvantová teorie optických přechodů. Mezipásové přechody. Dovolené a zakázané, přímé a nepřímé přechody. Příměsová absorpce. Reflexe v oblasti kmitů mříže. Neporuchový popis interakcí v krystalu, kvazičástice (fonon, plasmon, exciton, polariton). Model volných elektronů. Plazmová hrana. Mezipásová rekombinace. Stimulovaná emise. Nízkodimenzionální polovodičové struktury, jejich optické vlastnosti, magnetotransport a rezonanční tunelování. Klasický, semiklasický a kvantově- mechanický popis elektronového transportu. Aharonův-Bohmův jev. Rezonanční tunelování a Coulombická blokáda. Kvantový Hallův jev. Spintronika.

3. Optoelektronické a fotonické prvky

Polovodičové zdroje optického záření. Elektroluminiscenční vrstvy, luminiscenční diody. Polovodičové lasery. Kvantové kaskádové lasery. Polovodičové detektory, faktory ovlivňující detektivitu. Fotoodpory, fotodiody, lavinové fotodiody, fototransistory. Polovodičové snímací prvky. Vidikon, struktury s přenosem náboje. Fotovoltaické články. Struktury integrované optiky. Mikrorezonátory, křemíková fotonika. Fotonická zrcadla, vlnovody, vlákna, rezonátory, optické filtry, zařízení založená na negativním indexu lomu. Plazmonické struktury.

7. Fyzika povrchů a plazmatu

Garantující pracoviště: Katedra fyziky povrchů a plazmatu

Garant programu: doc. RNDr. Jan Wild, CSc.

Charakteristika studijního programu:

Fyzika povrchů a plazmatu je magisterský studijní program interdisciplinárního charakteru, který zahrnuje fundamentální poznatky o interakcích neutrálních a nabitých částic ve vakuu, plynu i kondenzované fázi a na rozhraních těchto prostředí. Program poskytuje odborné znalosti z fyziky povrchů a tenkých vrstev, zejména o atomárních a molekulárních nanostrukturách na površích pevných látek s významnou vazbou na fyzikálně–chemické a transportní děje s aplikacemi na poli katalyzátorů, senzorů nebo molekulární elektroniky. Program v oblasti fyziky laboratorního a kosmického plazmatu zasahuje do oborů plazmochemie, laserových směsí, horkého a fúzního plazmatu a některých partií astrofyziky. Během studia je možno si osvojit použití moderních diagnostických metod v materiálovém výzkumu, ve vakuových a plazmových technologiích a při analýze různých druhů kosmického plazmatu či řízené termonukleární fúze. Jednotlivé disciplíny přitom mohou být orientovány experimentálně, teoreticky nebo řešeny metodami počítačové fyziky.

Profil absolventa studijního programu a cíle studia:

Absolvent studijního programu Fyzika povrchů a plazmatu má široké znalosti fyzikálních základů oboru a prokazuje porozumění příslušnému matematickému aparátu včetně schopnosti ho aplikovat. Ovládá pokročilé diagnostické metody i vytváření počítačových modelů, což mu umožňuje porozumět jednak chování atomárních a molekulárních struktur na površích pevných látek a s ním spojeným významným problémům aplikačním, jednak fundamentálním procesům v ionizovaných prostředích charakteristickým pro rozličné obory od astrofyziky přes plazmochemii až po magnetohydrodynamiku. Absolvent je dále schopen samostatně formulovat hypotézy, vytvářet počítačové simulace a kriticky analyzovat výstupy. Své poznatky a závěry dokáže představit odborné i laické veřejnosti formou prezentací nebo psaných textů, a to i v cizím jazyce. Získané znalosti, dovednosti a tvůrčí schopnosti uplatňuje také v příbuzných oborech zaměřených jak na základní, tak aplikovaný výzkum na vysokých školách, v ústavech Akademie, ve vědeckých a technologických centrech (např. synchrotrony, ITER, ELI, ESA), ale i v průmyslové sféře a veřejné správě.

Doporučený průběh studia

Předpokladem úspěšného magisterského studia tohoto programu je získání základních znalostí na úrovni následujících předmětů:

Kód	Název	Kredity	ZS	LS
	Úvod do fyziky plazmatu	3	_	2/0 Zk
NEVF140	Úvod do fyziky povrchů	3		$2/0 \mathrm{Zk}$
NEVF158	Základy fyziky pevných látek	6		3/1 Z+Zk
NEVF169	Teoretické základy fyziky plazmatu	5		3/1 Z+Zk

Tyto předměty se obvykle zapisují ve třetím roce bakalářského studia programu Fyzika jako povinně volitelné. Pokud posluchač tyto nebo jim ekvivalentní předměty neabsolvoval, měl by si je ve vlastním zájmu zapsat jako volitelné v prvním roce navazujícího magisterského studia. Obsah uvedených předmětů je součástí společných požadavků státní závěrečné zkoušky.

1.	rok	magisterského	studia
----	-----	---------------	--------

Kód	Název	Kredity	ZS	LS
NEVF122	Fyzika plazmatu	5	2/1 Z+Zk	_
NEVF129	Fyzika povrchů	5	2/1 Z+Zk	
NEVF191	Odborné soustředění I	2	$0/2 \mathrm{~Z}$	
NEVF151	Diplomový seminář FPP I	3	$0/2 \mathrm{~Z}$	
NEVF154	Diplomový seminář FPP II	3		$0/2 \mathrm{~Z}$
NSZZ023	Diplomová práce I	6		$0/4 \mathrm{~Z}$

2. rok magisterského studia

Kód	Název	Kredity	ZS	LS
NEVF192	Odborné soustředění II	2	$0/2 \mathrm{~Z}$	_
NEVF152	Diplomový seminář FPP III	1	$0/1 \mathrm{Z}$	
NEVF153	Diplomový seminář FPP IV	1	_	$0/1 \mathrm{~Z}$
NSZZ024	Diplomová práce II	9	$0/6 \mathrm{~Z}$	
NSZZ025	Diplomová práce III	15		$0/10 \mathrm{~Z}$

Tematické bloky odpovídající okruhům otázek ke státní závěrečné zkoušce

Předpokládá se, že si studenti zapíší povinně volitelné předměty z alespoň tří tematických bloků, ze kterých budou později skládat státní závěrečnou zkoušku. V jednotlivých blocích jsou uvedené i rozšiřující volitelné předměty (psané kurzívou), jejichž absolvování není pro vykonání státní závěrečné zkoušky nezbytné.

Kód	Název	Kredity	ZS	LS			
Fyzika p	Fyzika plazmatu						
NEVF120	Pokročilá fyzika plazmatu	7		2/2 Z+Zk			
	Horké plazma, problematika fúze	3	$2/0 \mathrm{Zk}$	<u>.</u>			
NEVF149	Elementární procesy a reakce	5	<u></u>	2/1 Z+Zk			
	v plazmatu						
Procesy	v plazmatu a jejich diagnostika						
NEVF123	Kvantová elektronika	5	2/1 Z+Zk				
	a optoelektronika						
NEVF162	Optická spektroskopie plazmatu	5	2/1 Z+Zk				
NEVF130	Vybrané partie z fyzikální chemie	5		2/1 Z+Zk			
Kosmick	á fyzika						
NEVF145	Plazma v kosmickém prostoru	5		2/1 Z+Zk			
NEVF117	Vlny v plazmatu	5	2/1 Z+Zk				
NEVF173	Měřící metody v kosmickém	5	2/1 Z+Zk				
	prostoru						
Fyzika povrchů a tenkých vrstev							
NEVF170	Fyzikální elektronika povrchů	5		2/1 Z+Zk			
NEVF114	Fyzika tenkých vrstev	5	2/1 Z+Zk				
NEVF134	Adsorpce na pevných látkách	5		2/1 Z+Zk			

		<u>-</u>	Jama povici	Ta a plaziliata
NEVF109	Vybrané partie z fyziky tenkých vrstev	3	_	2/0 Zk
NEVF163	Vybrané kapitoly z nanoelektroniky	3	2/0 Zk	_
Struktura	a a morfologie povrchů a tenkých	vrstev		
NEVF103	Technika tenkých vrstev	5		2/1 Z+Zk
NEVF106	Mikroskopie povrchů a tenkých vrstev	5	2/1 Z+Zk	<u>, </u>
NEVF136	Struktura povrchů a elektronová difrakce	5	2/1 Z+Zk	_
NEVF172	Nanomateriály a jejich vlastnosti	3		$2/0 \mathrm{Zk}$
Fyzikálne	ě chemické vlastnosti povrchů a t	enkých v	rstev	
NEVF113	Elektronové spektroskopie	5		2/1 Z+Zk
NEVF168	Iontové a vibrační spektroskopie	5	2/1 Z+Zk	_
NEVF171	Metody operando	5	2/1 Z+Zk	
NEVF108	Pokročilé metody ve fyzice povrchů	3	$2/0 \mathrm{Zk}$	
NEVF148	Molekulová a iontová spektroskopie	3	$2/0 \mathrm{Zk}$	
NEVF167	Elektrochemie povrchů a rozhraní	3		$2/0 \mathrm{~Zk}$
Vakuová	fyzika			
NEVF126	Vakuová fyzika	5	2/1 Z+Zk	
NEVF105	Vakuová technika	5		2/1 Z+Zk
${\rm NEVF} 125$	Hmotnostní spektrometrie	5	2/1 Z+Zk	
Automat	izace experimentu a sběr dat			
NEVF115	Elektronika pro fyziky	5	2/1 Z+Zk	
	Kybernetizace experimentu I	5		2/1 Z+Zk
	Vysokofrekvenční technika ve fyzice	5	2/1 Z+Zk	
	Kybernetizace experimentu II	3	2/0 Zk	
	Aplikovaná elektronika	5		2/1 Z+Zk
Počítačov	vá fyzika			
NEVF141	Základy počítačové fyziky I	7	2/2 Z+Zk	
NEVF138	Základy počítačové fyziky II	3		$2/0 \mathrm{Zk}$
	Moderní počítačová fyzika I	5	$2/1~\mathrm{KZ}$	
	Moderní počítačová fyzika II	5		$2/1~\mathrm{KZ}$
Další dop	oručené volitelné předměty			
Kód	Název	Kredity	ZS	LS
NEVF135	Programování v IDL — zpracování a vizualizace dat	3	$1/1~\mathrm{KZ}$	
NEVF143	Statistika a teorie informace	3	2/0 Zk	
NEVF107	C++ pro fyziky	3	-	$1/1~\mathrm{KZ}$
NEVF111	Fortran 90/95 pro fyziky	3	_	$1/1~{ m KZ}$
	Fluktuace ve fyzikálních systémech	3		$2/0 \mathrm{~Zk}$

Podmínky pro přihlášení ke státní závěrečné zkoušce:

- získání alespoň 120 kreditů,
- splnění všech povinných předmětů,
- splnění povinně volitelných předmětů v rozsahu alespoň 55 kreditů,
- odevzdání vypracované diplomové práce ve stanoveném termínu.

Předmět lze splnit jeho úspěšným absolvováním či uznáním z předchozího studia.

Požadavky k ústní části státní závěrečné zkoušky

Student dostane jednu otázku ze společného základu, tj. z tematických okruhů 1 až 3, a tři otázky z užšího volitelného zaměření, tj. z tematických okruhů 4 až 12 dle zvoleného zaměření.

A. Společný základ

1. Fyzika pevných látek

Krystalografie a struktura pevných látek (PL). Typy vazeb, struktura prvků a jednoduchých sloučenin, rtg difrakce. Kmity krystalové mříže, optické a akustické fonony, interakce s elektromagnetickým zářením. Sommerfeldův model kovu, elektronový plyn, hustota stavů, Fermiho energie. Elektronová struktura PL, pásová teorie, pohyb nosičů náboje v PL. Vlastní a příměsové polovodiče, P–N přechod, fotoelektrické vlastnosti polovodičů.

2. Fyzika ionizovaných prostředí

Základy kinetické teorie plynů. Pohyb nabitých částic v elektromagnetických polích. Popis plazmatu, základní pojmy a druhy plazmatu. Kinetický popis plazmatu. Transportní procesy v plazmatu. Spojitý popis plazmatu.

3. Základy fyziky plazmatu, povrchů a tenkých vrstev

Morfologie povrchů, krystalografická a elektronová struktura povrchů. Interakce záření a částic s povrchy pevných látek. Experimentální metody fyziky povrchů a tenkých vrstev — difrakční, fotoemisní a v blízkém poli. Výboje v plynech. Srážkové a elementární procesy v plazmatu. Diagnostika plazmatu.

B. Volitelná část dle zaměření:

Student si předem volí tři tematické okruhy.

4. Fyzika plazmatu

Kolektivní chování plazmatu. Transportní jevy v plazmatu. Pokročilé výboje v plynech. Plazmatické světelné zdroje. Magnetohydrodynamický popis plazmatu a jeho nestabilit. Podmínky fúze v horkém plazmatu, inerciální udržení. Udržení horkého plazmatu v magnetickém poli. Diagnostika horkého plazmatu. Reakční kinetika v plazmatu. Reakce iontů s molekulami a vliv molekulární excitace. Experimentální metody pro studium elementárních procesů v plazmatu. Elementární procesy v plazmatu — rekombinace, relaxační procesy, interakce s povrchy.

5. Procesy v plazmatu a jejich diagnostika

Základy kvantové elektroniky, inverze hladin, stimulovaná emise. Kvantové zesilovače a generátory v mikrovlnném pásmu. Druhy a vlastnosti laserů. Použití laserů, optické komunikace. Základní pojmy absorpční a emisní spektroskopie. Spektra atomů a molekul. Metody emisní a absorpční spektroskopie. Vyhodnocení parametrů plazmatu z naměřených spekter. Molekulová struktura a chemická vazba. Určování molekulární

struktury. Chemické reakce, reakční kinetika a dynamika. Experimentální techniky fyzikální chemie.

6. Kosmická fyzika

Slunce, sluneční vítr, meziplanetární magnetické pole. Interakce slunečního větru s překážkami. Magnetosféra a ionosféra. Přepojování magnetických polí, geomagnetická aktivita. Disperzní relace vln v plazmatu. Polarizace vln v magnetizovaném plazmatu. Hvizdový mód v kosmickém plazmatu. Radiové emise v kosmickém plazmatu. Měření parametrů plazmatu a rozdělovacích funkcí elektronů, iontů. Metody určení hmotového spektra, detektory částic, detekce kosmického prachu. Měření elektrických a magnetických polí na družicích, potenciál družice. Pozemní měření pro studium procesů v ionosféře a magnetosféře, geomagnetické indexy.

7. Fyzika povrchů a tenkých vrstev

Elektronová struktura povrchů, povrchové stavy, ohyb pásů. Emise elektronů, výstupní práce. Interakce záření a částic s pevnou látkou (excitace, rozptyl). Jevy na rozhraní pevných látek. Mody a fáze růstu TV, základní procesy při depozici. Migrace adatomů, nukleace, vliv schodů na růst TV. Kinetické rovnice pro popis růstu TV. Amorfní, polykrystalické a epitaxní vrstvy. Vliv pnutí při heteroepitaxi — Stranski–Krastanov růst. Adsorpce molekul na povrchu, klasifikace a popis interakce povrchu s molekulami plynů, potenciálová teorie adsorpce. Kinetika a dynamika adsorpce a desorpce, adsorpční izotermy. Metody založené na interakci povrchu s molekulami plynů (MB, TPD/TPR, BET). Reakce na povrchu pevné látky, reakční mechanizmy, reakční kinetika a dynamika.

8. Struktura a morfologie povrchů a tenkých vrstev

Vakuové napařování. Naprašování vrstev. Metody měření depoziční rychlosti a tloušťky tenkých vrstev. Iontové leptání, litografie. Elektronové mikroskopie a kontrast v různých módech zobrazování. Mikroskopie s atomárním rozlišením. Elektronová struktura povrchu a spektroskopie tunelujících elektronů. Skenovací mikroskopie v blízkém poli (STM, AFM, SNOM). Struktura a popis ideálního povrchu. Geometrická struktura povrchu — relaxace, rekonstrukce, ideální a reálný povrch. Teorie difrakce (geometrická a kinematická). Elektronové difrakční metody.

9. Fyzikálně chemické vlastnosti povrchů a tenkých vrstev

Přehled elektronových spektroskopií, srovnání, experimentální požadavky, přístrojové vybavení (zdroje, analyzátory, detektory). Fotoelektronové spektroskopie. Spektroskopie Augerových elektronů. Spektroskopie charakteristických ztrát elektronů. Vibrační a rotační stavy molekul, teoretický popis a klasifikace. Spektroskopické metody založené na (ro-)vibračních excitacích — IR a Ramanova spektroskopie. Interakce iontů s povrchem pevné látky. Iontové metody zkoumání povrchů (LEIS, SIMS). Základní fyzikální principy a přehled metod operando (experimentální uspořádání, výhody a omezení, příklady aplikací). Operando spektroskopie. Operando mikroskopie. Aplikace operando metod v heterogenní katalýze.

10. Vakuová fyzika

Transportní jevy při nízkých tlacích. Reálné plyny, tenze par, vypařování a kondenzace. Interakce plynu s pevnou látkou na jejím povrchu a v objemu. Proudění plynu, režimy proudění, vakuová vodivost. Vakuový systém a jeho parametry, teorie čerpacího procesu. Fyzikální principy metod získávání nízkých tlaků. Fyzikální principy měření nízkých tlaků, totální a parciální tlak. Vakuové měřicí metody. Principy hmotnostních

analyzátorů. Ionizační techniky, elektronová ionizace. Metody detekce iontů. Interpretace spekter, kvalitativní a kvantitativní analýza.

11. Automatizace experimentu a sběr dat

Analýza stejnosměrných a střídavých elektrických obvodů s lineárními prvky. Operační zesilovače, vlastnosti a základní aplikace. Základy analogového zpracování signálů, filtrace, potlačování šumu. Zdroje napětí a proudů. Sběr dat a řízení fyzikálních experimentů, převodníky fyzikálních veličin. Techniky a problémy převodu A-D a D-A. Číslicové zpracování signálů, aplikace mikroprocesorů. Základy regulace, dynamické vlastnosti regulačního obvodu, regulátory PI, PID. Obvody při velmi vysokých frekvencích, skin efekt a vnitřní impedance. Parametry dlouhého homogenního vedení. Vlnovody a rezonátory. Generování vysokofrekvenčního výkonu.

12. Počítačová fyzika

Numerické metody v počítačové fyzice, hledání řešení rovnic a minim funkcí, integrace. Modelování metodou molekulární dynamiky, pohyb ve vnějších polích, problémy mnoha těles. Stochastické metody v počítačové fyzice, generování a charakterizace náhodných veličin. Spojité a hybridní modelování, srovnání s čistě částicovými modely. Řešení obyčejných diferenciálních rovnic, přesnost operací, chyby výpočtů, stabilita algoritmů. Řešení soustav lineárních rovnic a parciálních diferenciálních rovnic. Integrální transformace v počítačové fyzice, rychlá Fourierova transformace. Metoda konečných prvků. Evoluční programování, kódování, ohodnocení, operátory, evoluční algoritmy. Genetický algoritmus a genetické programování, křížení, NP problémy, syntaktické stromy. Efektivní výpočet silového působení mnoha těles. Modelování srážek.

8. Biofyzika a chemická fyzika

Garantující pracoviště: Fyzikální ústav UK

Garant programu: prof. RNDr. Marek Procházka, Ph.D.

Charakteristika studijního programu:

Těžiště tohoto programu leží na rozhraní fyziky, biologie a chemie. Výuka navazuje na základní fyzikální vzdělání, které prohlubuje v oblastech teoretické a experimentální fyziky důležitých pro popis a zkoumání molekul, biopolymerů, nadmolekulárních soustav a biologických objektů. Absolvent získá znalosti z kvantové teorie a statistické fyziky molekul a molekulárních systémů, z experimentálních metod biofyziky a chemické fyziky, zejména optických a dalších spektroskopických metod, strukturní analýzy a zobrazovacích technik. Studenti si vybírají jednu ze dvou specializací: teoretická nebo experimentální biofyzika a chemická fyzika. V teoretické specializaci získají hlubší znalosti v oblasti kvantové chemie, molekulární dynamiky či pokročilé teoretické spektroskopie; v experimentální v oblasti biochemie a molekulární biologie, biofyziky fotosyntézy či strukturních metod. Prostřednictvím pravidelných seminářů, diplomové práce, a tematicky zaměřených přednášek získávají studenti představu o současných problémech řešených v jednotlivých oborech a o metodách vědecké práce. Díky širokému okruhu znalostí mají absolventi možnost uplatnění ve výzkumných i aplikovaných oborech souvisejících s fyzikou, biologií, chemií, medicínou, materiálovým výzkumem, bio- a nano-technologiemi, farmacií apod.

Profil absolventa studijního programu a cíle studia:

Absolvent má znalosti z kvantové teorie a statistické fyziky molekul a molekulárních systémů, z experimentálních metod biofyziky a chemické fyziky, zejména optic-

kých a dalších spektroskopických metod, strukturní analýzy a zobrazovacích technik. Absolventi teoretické specializace získají hlubší znalosti v oblasti kvantové chemie, molekulární dynamiky či pokročilé teoretické spektroskopie. Absolventi experimentální specializace získají hlubší znalosti v oblasti v oblasti biochemie a molekulární biologie, biofyziky fotosyntézy či strukturních metod. Prostřednictvím pravidelných seminářů získají studenti představu o současných problémech řešených v jednotlivých oborech a o metodách vědecké práce. Jsou zběhlí ve sdělování odborných poznatků formou prezentací anebo psaných textů, a to též v anglickém jazyce. U mnoha absolventů se předpokládá nástup profesní dráhy vědeckého pracovníka. Nabyté vzdělání nabízí absolventům uplatnění i v mezioborových týmech zabývajících se fyzikou, biologií, chemií, medicínou, materiálovým výzkumem, bio- a nano-technologiemi či farmacií.

Doporučený průběh studia

Program nabízí studentům dvě specializace – experimentální a teoretickou. Výběr specializace studenti standardně provádějí po ukončení prvního semestru (1. ročník NMgr. studia, zimní semestr). Do té doby je průběh studia v obou specializacích shodný.

V rámci každé specializace mají studenti možnost dalšího užšího zaměření studia, které se projeví ve volbě okruhů otázek ke státní závěrečné zkoušce. Studenti si vybírají dva tematické okruhy (ze tří možných) a k nim předměty z povinně volitelných předmětů skupiny I. U experimentální specializace se jedná o okruhy: 1. Biochemie a molekulární biologie (předměty NBCM012, NBCM008), 2. Optická spektroskopie a biofyzika fotosyntézy (předměty NBCM179, NBCM088) a 3. Strukturní metody (předměty NBCM098, NBCM112). U teoretické specializace se jedná o okruhy: 1. Kvantová chemie (předměty NBCM121, NBCM122, NBCM155), 2. Molekulární dynamika a statistika (předměty NBCM346, NBCM100, NFPL004) a 3. Pokročilá teoretická spektroskopie (předměty NBCM154, NBCM027, NOOE119).

Součástí společných požadavků státní závěrečné zkoušky je i obsah dvou předmětů (Kvantová teorie I, kód NBCM110 nebo NOFY075 a Obecná chemie, kód NBCM035 nebo NBCM183) zapisovaných obvykle ve třetím roce bakalářského studijního programu Fyzika jako povinně volitelné. Pokud posluchač tyto nebo jim ekvivalentní předměty neabsolvoval, měl by si je ve vlastním zájmu zapsat jako volitelné v prvním roce navazujícího magisterského studia.

Specializace: Experimentální biofyzika a chemická fyzika

Povinné a povinně volitelné předměty – skupina I (25 kreditů)

Kód	Název	Kredity	ZS	LS
NBCM010	Bioorganická chemie	5	2/1 Z+Zk	
NBCM177	Experimentální metody	6	$4/0 \mathrm{Zk}$	
	biofyziky a chemické fyziky I			
NBCM160	Klasická a kvantová statistická	4	3/0 Zk	
	fyzika molekulárních systémů			
NBCM039	Kvantová teorie molekul	7	3/2 Z+Zk	
NBCM095	Praktikum z experimentálních	7	$0/5~\mathrm{KZ}$	
	metod biofyziky a chemické			
	fyziky I			

NSZZ023	Diplomová práce I	6	_	$0/4~\mathrm{Z}$
NBCM178	Experimentální metody	3	_	2/0 Zk
NID CIMOOO	biofyziky a chemické fyziky II	0		0 /0 71
NBCM088 NBCM012	Biofyzika fotosyntézy Riochemie	$\frac{3}{3}$	<u> </u>	2/0 Zk 2/0 Zk
	Metody magnetické rezonance	4		3/0 Zk
112011112	v biofyzice	-		0,0 211
NBCM179	Pokročilé metody optické spektroskopie	4	_	3/0 Zk
NBCM103	Praktikum z experimentálních metod	7		$0/5~\mathrm{KZ}$
	biofyziky a chemické fyziky II			,
2. rok mag	gisterského studia			
Kód	Název	Kredity	ZS	LS
NSZZ024	Diplomová práce II	9	0/6 Z	_
NBCM175	Seminář z biofyziky a chemické fyziky I	3	$0/2 \mathrm{~Z}$	
NSZZ025	Diplomová práce III	15		$0/10 \; { m Z}$
NBCM176	Seminář z biofyziky a chemické fyziky II	3	_	$0/2 \mathrm{~Z}$
NBCM008	Molekulární a buněčná biologie pro biofyziky	4	3/0 Zk	_
NBCM098	Rentgenová a elektronová strukturní	3	2/0 Zk	_
NBCM165	analýza biomolekul a makromolekul Teoretické základy molekulární	3	$2/0 \mathrm{~Zk}$	
112011100	spektroskopie	ŭ	2/ 0 222	
Povinně v	olitelné předměty skupiny II (15 k	reditů)		
Kód	Název	Kredity	ZS	LS
NBCM101	Detekce a spektroskopie jednotlivých molekul	3	2/0 Zk	_
NBCM033	Fyzikální základy fotosyntézy	3	2/0 Zk	
NFPL185	Pokročilá NMR spektroskopie vysokého rozlišení	5	2/1 Z+Zk	
NBCM158	Praktické aspekty zpracování experimentálních dat	3	$1/1 \mathrm{Zk}$	_
NBCM014	Struktura, dynamika a funkce biologických membrán	3	2/0 Zk	
NBCM023	Význam a funkce kovových iontů v biologických systémech	3	2/0 Zk	_
NBCM102	Základy klasické radiometrie a fotometrie	3	2/0 Zk	_
NBCM026	Experimentální technika	3	_	2/0 Zk
NFPL179	v molekulární spektroskopii Kvantový popis NMR	5	_	2/1 Z+Zk

NBCM114 Optická mikroskopie a vybrané	3	_	$2/0 \mathrm{~Zk}$
biofyzikální zobrazovací techniky NOOE012 Rozptylové metody v optické spektroskopii	3	_	$2/0 \mathrm{~Zk}$
NBCM097 Spektroskopie povrchem zesíleného Ramanova rozptylu	3	_	2/0 Zk
NBCM172 Dvoudimenzionální elektronová spektroskopie	3	1/1 Z+Zk	1/1 Z+Zk
NBCM316 Počítačové modelování biomolekul NBCM018 Turnusová praktika z biochemie	$\frac{4}{3}$	$^{1/2}_{0/2} ^{\mathrm{Z+Zk}}_{\mathrm{Z}}$	$^{1/2}_{0/2} ^{\mathrm{Z+Zk}}_{\mathrm{Z}}$

Doporučené volitelné předměty

Kód	Název	Kredity	ZS	LS
NBCM121	Ab-initio metody a teorie hustotního funkcionálu I	5	_	2/1 Z+Zk
NBCM122	2 Ab-initio metody a teorie hustotního funkcionálu II	3	$2/0 \mathrm{~Zk}$	
NBCM173	B Ab-initio metody pro periodické systémy	3	$2/0 \mathrm{~Zk}$	_
NBCM307	${\it Astrobiologie}$	3	$2/1 \mathrm{Zk}$	_
NBCM024	Biologie kvasinek	3	<u></u>	$2/0 \mathrm{Zk}$
NBCM150	Fyzikální pozorovaní nanoobjektů	5	2/1 Z+Zk	2/1 Z+Zk
NAFY018	Chemie pro fyziky	5	2/1 Z+Zk	
NBCM106	6 Chemie pro fyziky II — Analytická chemie	6		2/2 Z+Zk
NBCM156	S Chiroptická spektroskopie	3		$2/0 \mathrm{~Zk}$
NBCM154	Kvantová elektrodynamika	3		2/0 Zk
NBCM134	Kvantová teorie rezonancí	3	_	2/0 Zk
NBCM051	Metody molekulové dynamiky a Monte Carlo	5	2/1 Z+Zk	<u>.</u>
NBCM346	6 Molekulární dynamika I	5		2/1 Z+Zk
	' Molekulární dynamika II	5	2/1 Z+Zk	
NBCM181	Molekulární dynamika — výpočty volné energie	3	1/2 KZ	$1/2~\mathrm{KZ}$
NBCM055	o Molekulární simulace při řešení struktur materiálů	5	2/1 Z+Zk	2/1 Z+Zk
NBCM149	$Nanotechnologie\ v\ biologii$	3	$2/0 \mathrm{Z}$	$2/0 \mathrm{Z}$
NOOE119	Nelineární optická spektroskopie	3	<u> </u>	$2/0 \mathrm{Zk}$
NFPL004	Nerovnovážná statistická fyzika a termodynamika	3	$2/0 \mathrm{~Zk}$	<u> </u>
NBCM305	o Optické senzory	3	2/0 Zk	
	Praktická cvičení z kvantové teorie molekul I	4	<u>·</u>	$0/3 \mathrm{~Z}$
NBCM116	S Praktická cvičení z kvantové teorie molekul II	4	$0/3 \mathrm{~Z}$	_

NAFY080 Příprava biologických vzorků NOOE015 Seminář NFPL186 Seminář spektroskopie NMR vysokého rozlišení	3 2 3	 0/2 Z	$2/0 \text{ Zk} \\ 0/1 \text{ Z} \\ 0/2 \text{ Z}$
NBCM027 Symetrie molekul	5	2/1 Z+Zk	
NFPL003 Syntetické problémy kvantové teorie	3	-	$2/0 \mathrm{Z}$
NBCM115 Vědecká fotografie a příbuzné zobrazovací techniky	3	$1/1 \mathrm{~Zk}$	<u>-</u>
NPRF005 UNIX a LINUX pro fyziky	3	$2/0 \mathrm{~Z}$	
NBCM159 Úvod do počítačového řízení experimentu	4	<u>, </u>	$1/2~\mathrm{KZ}$
NBCM308 Úvod do studia struktury proteinů	3		$2/0 \mathrm{Zk}$
NBCM100 Výpočetní experimenty v teorii molekul I	4		0/3 KZ
NBCM125 Výpočetní experimenty v teorii molekul II	6	_	$0/4~\mathrm{KZ}$
NBCM041 Základy teorie přenosu energie v molekulárních systémech I	3	2/0 Zk	_

Specializace: Teoretická biofyzika a chemická fyzika

Povinné a povinně volitelné předměty – skupina I (25 kreditů)

Kód	Název	Kredity	ZS	LS
NBCM010	Bioorganická chemie	5	2/1 Z+Zk	
NBCM177	Experimentální metody	6	$4/0 \mathrm{Zk}$	
	biofyziky a chemické fyziky I			
NBCM160	Klasická a kvantová statistická	4	$3/0 \mathrm{Zk}$	
	fyzika molekulárních systémů			
NBCM039	Kvantová teorie molekul	7	3/2 Z+Zk	
NBCM095	Praktikum z experimentálních	7	$0/5~\mathrm{KZ}$	
	metod biofyziky a chemické			
	fyziky I			
NSZZ023	Diplomová práce I	6		$0/4 \mathrm{~Z}$
NBCM178	Experimentální metody	3		$2/0 \mathrm{Zk}$
	biofyziky a chemické fyziky II			
NBCM121	Ab-initio metody a teorie hustotního	5		2/1 Z+Zk
	funkcionálu I			
NBCM154	4 Kvantová elektrodynamika	3		$2/0 \mathrm{Zk}$
NBCM346	3 Molekulární dynamika I	5		2/1 Z+Zk
NBCM100	Výpočetní experimenty v teorii	4		$0/3~\mathrm{KZ}$
	molekul I			

2. rok magisterského studia					
Kód	Název	Kredity	ZS	LS	
	Diplomová práce II	9	0/6 Z	_	
NBCM175	Seminář z biofyziky a chemické fyziky I	3	$0/2 \mathrm{~Z}$	_	
NSZZ025	Diplomová práce III	15	_	$0/10 \mathrm{~Z}$	
NBCM176	Seminář z biofyziky a chemické fyziky II	3	_	0/2 Z	
NBCM122	Ab-initio metody a teorie hustotního funkcionálu II	3	2/0 Zk		
NBCM155	Metody teorie pole v teorii mnoha částic	3	2/0 Zk	_	
NFPL004	Nerovnovážná statistická fyzika a termodynamika	3	2/0 Zk		
NBCM027	Symetrie molekul	5	2/1 Z+Zk		
	Teoretické základy molekulární	3	2/0 Zk		
	spektroskopie				
NOOE119	Nelineární optická spektroskopie	3	_	$2/0 \mathrm{Zk}$	
D	-1'4 -1 ' Y 1 Y1 ' TT /1F 1	1.4.8.\			
	olitelné předměty skupiny II (15 k	,	7 0	TO	
Kód	Název	Kredity	ZS	LS	
NBCM067	Kvantová optika I	5	2/1 Z+Zk		
NBCM347	Molekulární dynamika II	5	2/1 Z+Zk		
NBCM131	Pokročilé metody molekulové	3	$2/0 \mathrm{~Zk}$		
	dynamiky				
NBCM041	Základy teorie přenosu energie v molekulárních systémech I	3	2/0 Zk		
NBCM093	Kvantová optika II	5		2/1 Z+Zk	
	Kvantová teorie rezonancí	3		2/0 Zk	
NBCM099	Praktická cvičení z kvantové teorie molekul I	4	_	$0/3 \mathrm{~Z}$	
NBCM116	Praktická cvičení z kvantové teorie molekul II	4	$0/3 \mathrm{~Z}$	_	
NBCM125	Výpočetní experimenty v teorii molekul II	6		$0/4~\mathrm{KZ}$	
NBCM055	Molekulární simulace při řešení struktur materiálů	5	2/1 Z+Zk	2/1 Z+Zk	
NBCM180	Teoretický seminář biofyziky a chemické fyziky	4	0/1 Z	0/1 Z	
Doporučené volitelné předměty					
Kód	Název	Kredity	ZS	LS	
NBCM173	Ab-initio metody pro periodické systémy	3	2/0 Zk	_	

NBCM307	Astrobiologie	3	2/1 Zk	
NBCM184	Asymptotické metody ve fyzice	5	2/1 Z+Zk	
NBCM088	Biofyzika fotosyntézy	3		$2/0 \mathrm{~Zk}$
	Biochemie	3		$2^{'}\!/0~{ m Zk}$
	Detekce a spektroskopie jednotlivých	3	2/0 Zk	
112011101	molekul	9	_,	
NRCM172	Dvoudimenzionální elektronová	3	1/1 Z+Zk	1/1 Z+Zk
NDCWII12	spektroskopie	9	1/1 2 21	1/1 2 21
NDCM096	-	3		2 /0 71-
NDCM020	Experimentální technika	3		2/0 Zk
NID CIMITO	v molekulární spektroskopii	-	0 /1 7 + 71	0/1/7 71
	Fyzikální pozorovaní nanoobjektů	5	2/1 Z+Zk	2/1 Z+Zk
	Fyzikální základy fotosyntézy	3	2/0 Zk	
	Chiroptická spektroskopie	3		$2/0 \mathrm{\ Zk}$
	Kvantová optika I	5	2/1 Z+Zk	
	Kvantový popis NMR	5		2/1 Z+Zk
NBCM112	Metody magnetické rezonance	4		$3/0 \mathrm{~Zk}$
	$v\ biofyzice$			
NBCM051	Metody molekulové dynamiky	5	2/1 Z+Zk	
	a Monte Carlo			
NBCM008	Molekulární a buněčná biologie pro	4	3/0 Zk	
	biofyziky		,	
NBCM181	Molekulární dynamika — výpočty	3	1/2 KZ	$1/2~\mathrm{KZ}$
112011101	volné energie	J	1/2 112	1/2 112
NRCM114	Optická mikroskopie a vybrané	3		$2/0 \mathrm{Zk}$
NDCM114	biofyzikální zobrazovací techniky	J		2/0 ZK
NDCM216	Počítačové modelování biomolekul	4	1 /9 7 + 71-	1 /9 7 + 71-
		4	1/2 Z+Zk	1/2 Z+Zk
	Pokročilá kvantová teorie	6	3/1 Z+Zk	_
NFPL185	Pokročilá NMR spektroskopie	5	2/1 Z+Zk	
	vysokého rozlišení			
NBCM179	Pokročilé metody optické	4		$3/0 \mathrm{Zk}$
	spektroskopie			
NBCM158	Praktické aspekty zpracování	3	$1/1 \mathrm{Zk}$	_
	experimentálních dat			
NBCM103	Praktikum z experimentálních metod	7		0/5 KZ
	biofyziky a chemické fyziky II			,
NBCM098	Rentgenová a elektronová strukturní	3	$2/0 \mathrm{Zk}$	
	analýza biomolekul a makromolekul		, -	
NOOE012	Rozptylové metody v optické	3		$2/0 \mathrm{~Zk}$
11002012	spektroskopii	9		2/0211
NOOE015	_	2		$0/1 \mathrm{~Z}$
		$\frac{2}{3}$	0/2.7	,
NFPL186	Seminář spektroskopie NMR	3	$0/2 \mathrm{~Z}$	$0/2 \mathrm{~Z}$
NEDI 000	vysokého rozlišení	9		2/0.7
NFPL003	Syntetické problémy kvantové teorie	3		$2/0 \mathrm{~Z}$
	UNIX a LINUX pro fyziky	3	$2/0 \mathrm{~Z}$	
NBCM159	Úvod do počítačového řízení	4		1/2 KZ
	experimentu			

NBCM308 Úvod do studia struktury proteinů	3		2/0 Zk
NBCM115 Vědecká fotografie a příbuzné zobrazovací techniky	3	$1/1 \mathrm{Zk}$	
NBCM102 Základy klasické radiometrie a fotometrie	3	$2/0 \mathrm{Zk}$	
NBCM042 Základy teorie přenosu energie v molekulárních systémech II	3	_	$2/0 \mathrm{~Zk}$

Podmínky pro přihlášení ke státní závěrečné zkoušce

- získání alespoň 120 kreditů
- splnění všech povinných předmětů zvoleného programu
- získání alespoň 25 kreditů z povinně volitelných předmětů programu ze skupiny I
- získání alespoň 15 kreditů z povinně volitelných předmětů programu ze skupiny II
- odevzdání vypracované diplomové práce ve stanoveném termínu

Předmět lze splnit jeho úspěšným absolvováním či uznáním z předchozího studia.

Požadavky k ústní části státní závěrečné zkoušky

A. Společné požadavky

- 1. Kvantová teorie a statistická fyzika molekul a molekulárních systémů (jedna otázka u SZZ)
 - Antisymetrie vlnové funkce, výměnná interakce.
 - Bornova-Oppenheimerova a adiabatická aproximace.
 - Molekula vodíku. Atomové a molekulové orbitaly.
 - Metoda LCAO a metoda valenčních vazeb, klasifikace elektronových hladin, Hückelova metoda.
 - Jednočásticová aproximace, Hartreeho a Hartreeho-Fockovy rovnice, Roothaanovy rovnice.
 - Základy teorie hustotního funkcionálu, Hohenbergovy-Kohnovy teorémy.
 - Úvod do metod konfigurační interakce, vázaných klastrů a poruchové teorie, základní rovnice a vlastnosti, Brillouinův theorém.
 - Pauliho a Diracova rovnice. Spin-orbitální a spin-spinová interakce.
 - Orbitální a spinový magnetický moment a jejich interakce s vnějšími poli.
 - Kvantování elektromagnetického pole, interakce elektromagnetického záření s molekulami. Fermiho zlaté pravidlo.
 - Absorpce, stimulovaná a spontánní emise. Dipólová aproximace, výběrová pravidla.
 - Silová pole v molekulárních soustavách.
 - Základní statistické soubory a distribuce, ergodický teorém.
 - Metoda Monte Carlo.
 - Klasická molekulární dynamika.
 - Liouvillova rovnice.
 - Matice hustoty. Wignerova hustota.
 - Základní kvantová statistická rozdělení.
 - Evoluce matice hustoty (Liouvillova-von Neumannova rovnice).
 - Kvantové řídicí rovnice, redukované hustoty.

2. Experimentální metody biofyziky a chemické fyziky (jedna otázka u SZZ)

- Zdroje, detektory a spektrální analyzátory v optické spektroskopii.
- Interakce optického záření s izolovanou molekulou. Výběrová pravidla pro elektronové, vibrační a rotační optické přechody.
- Metody a použití elektronové absorpční spektroskopie. Metoda excitace a sondování.
- Metody a použití vibrační absorpční spektroskopie.
- Metody elastického, dynamického a Brillouinova rozptylu a jejich využití.
- Ramanův rozptyl, metody měření a využití.
- Použití polarizovaného záření a jeho analýzy v optické spektroskopii. Lineární a cirkulární dichroismus, emisní anizotropie.
- Principy a základní pojmy luminiscence (typy luminescence, Jablonského diagram, kinetiky, kvantový výtěžek, doby života, Franck-Condonův princip).
- Vliv mezimolekulárních interakcí na parametry luminiscence (vliv prostředí, rezonanční přenos energie, zhášení emise).
- Single-molekulární spektroskopie. Vliv interakce s okolím na tvar spektrální čáry.
- Měření stacionární a časově rozlišené luminiscence.
- Rozptyl a difrakce rentgenového záření, elektronů a neutronů.
- Principy základních difrakčních metod. Symetrie a struktura krystalů a jejich určení z difrakčního obrazu.
- Elektronová mikroskopie, mikroskopie atomárních sil a skenovací tunelová mikroskopie.
- Hmotnostní spektrometrie.
- Jaderná magnetická rezonance: princip, experimentální uspořádání, excitace a detekce signálu, základní pulsní sekvence.
- NMR vysokého rozlišení organických látek v kapalinách: interpretace spekter.
- Elektronová paramagnetická rezonance: princip, experimentální uspořádání, použití
- Separační metody (centrifugace, chromatografie, elektroforéza).

B Specializace Experimentální biofyzika a chemická fyzika

Třetí otázka SZZ je volena ze dvou tematických okruhů, které si student vybere dle svého zaměření.

1. Biochemie a molekulární biologie

- Složení a struktura základních biomolekul (nukleové kyseliny, proteiny, sacharidy).
- Glykolýza a glykolytické reakce. Anaerobní odbourávání cukrů. Coriho cyklus.
- Aerobní odbourávání cukrů. Vznik acetylkoenzymu A.
- Citrátový cyklus a jeho amfibolická povaha. Oxidativní fosforylace.
- Biologické membrány, selektivní permeabilita biologických membrán, typy transportu biologickou membránou.
- Struktura bakteriálních a eukaryotických buněk, buněčné dělení, buněčný cyklus.
- Uspořádání DNA v buňkách, struktura a funkce chromosomů, chromatinu a nukleosomů, funkce centromer a telomer, histony, epigenetická dědičnost a priony.
- Zpracování genetické informace, replikace DNA, transkripce a úpravy RNA, RNA svět, prokaryotická a eukaryotická translace.

- Základní principy regulace genové exprese, regulace prokaryotické a eukaryotické iniciace transkripce, umlčování genů.
- Mutace a mutageneze, poškození DNA a reparace poškozené DNA, oprava chyb vzniklých při replikaci DNA.
- Metody studia DNA a genové exprese, genové inženýrství, fluorescenční proteiny.

2. Optická spektroskopie a biofyzika fotosyntézy

- Fluorescenční značky a sondy, fluorescenční proteiny, fluorescence proteinů.
- Nelineární metody Ramanova rozptylu (HRS, SRS, CARS), Ramanova optická aktivita (ROA).
- Pokročilé techniky Ramanovy spektroskopie (SERS, CRM, DCDR).
- Generace a charakterizace femtosekundových pulsů. Základy 2DES spektroskopie.
- Nelineární optické jevy a jejich využití v optické spektroskopii.
- Metody vysokého spektrálního rozlišení. Nízkoteplotní spektroskopie.
- Přenos a zhášení excitace ve fotosyntetických anténách.
- Rozdělení a přenos náboje v nízko- a vysokopotenciálových reakčních centrech.
- Přenos elektronu fotosyntetickou membránou, fosforylace, srovnání s respirační membránou.
- Fixace uhlíku ve fotosyntéze.
- Biofyzikální metody zkoumání a měření fotosyntézy (variabilní fluorescence, gazometrie, fotoakustická spektroskopie).

3. Strukturní metody

- Teplotní kmity a jejich vliv na difrakční záznam. Pattersonova funkce a její využití při řešení krystalových struktur.
- Metody řešení fázového problému strukturní analýzy.
- Strukturní faktor a Friedelův zákon.
- Přednostní orientace krystalitů textura.
- Porovnání, konstrukce a použití transmisního a skenovacího elektronového mikroskopu.
- Principy a zásady přípravy preparátů pro TEM a SEM. Mechanismus tvorby obrazu v TEM a SEM.
- Elektrické a magnetické momenty atomových jader, energie v elektrickém a magnetickém poli, jev jaderné magnetické rezonance. Jaderný paramagnetismus, relaxační procesy.
- NMR spektroskopie vysokého rozlišení v kapalné a pevné fázi: spinový hamiltonián, typy interakci a jejich projevy ve spektrech, metody vysokého rozlišení v pevné fázi.
- Jedno- a více-dimenzionální pulzní NMR: koncepce, základní pulzní sekvence, využití koherentního transferu polarizace a nukleárního Overhauserova jevu.
- Zobrazování MR: přístrojové vybavení, princip dosažení prostorového rozlišení, metody získání kontrastu, speciální aplikace (angiografie, fMRI, spektroskopie MRI).
- Elektronová spinová (paramagnetická) rezonance: kontinuální a pulsní metodika experimentu, spinový hamiltonián, interakce a jejich projevy ve spektrech.

B Specializace Teoretická biofyzika a chemická fyzika

Třetí otázka SZZ je volena ze dvou tematických okruhů, které si student vybere dle svého zaměření.

1. Kvantová chemie

- Porovnání restricted a unrestricted Hartreeho-Fockových rovnic a jejich vlastností.
- Metody konfigurační interakce, formulace a charakteristika.
- Použití poruchové teorie k výpočtu korelační energie, Møllerova-Plessetova metoda.
- Metoda vázaných klastrů, excitační operátory, rovnice a základní vlastnosti.
- Koncepční teorie hustotního funkcionálu chemický potenciál, tvrdost a měkkost elektronové hustoty, Fukuiho funkce, časově závislá teorie.
- Slabé mezimolekulové interakce, multipolová aproximace.

2. Molekulární dynamika a statistika

- Numerické propagátory odvozené z Liouvillova operátoru.
- Algoritmy pro kontrolu tlaku, algoritmy pro kontrolu teploty. Fixace a omezení stupňů volnosti.
- Nerovnovážná molekulární dynamika.
- Molekulární mechanika, parametrizace silových polí.
- Metody molekulárních simulací započítávání nevazebných interakcí, analýza trajektorií.
- Stochastické procesy (Langevinovské dynamiky, normální a anomální difuze).
- Stochastická kvantová dynamika.
- Entropie v nerovnovážných dějích (Boltzmannův H-, Jarzynského a fluktuační teorémy).

3. Pokročilá teoretická spektroskopie

- Symetrie v kvantové mechanice (kvantová čísla, bloková diagonalizace hamiltoniánu).
- Symetrie ve spektroskopii atomů a molekul (výběrová pravidla, povolené a zakázané přechody, snížení symetrie ve vnějších elektromagnetických polích).
- Rozptyl fotonů na atomu (Rayleighův, Ramanův, rezonanční a Thomsonův rozptyl).
- Radiační korekce k atomovým spektrům (Lambův posuv, vlastní energie elektronu a fotonu).
- Tvar absorpční čáry (teorie lineární odezvy, korelační funkce lázně).
- Poruchová teorie pro časově rozlišené nelineární spektroskopie (metoda excitace a sondování, fotonové echo).

9. Částicová a jaderná fyzika

Garantující pracoviště: Ústav částicové a jaderné fyziky Garant programu: prof. RNDr. Pavel Cejnar, Dr., DSc.

Charakteristika studijního programu:

Částicová fyzika (fyzika vysokých energií, subjaderná fyzika) zkoumá strukturu hmoty na úrovni elementárních částic a jejich fundamentálních interakcí. Jaderná fyzika studuje strukturu atomových jader a obecněji chování konečných kvantových soustav vzájemně interagujících částic. Studium je založeno na komplexních kursech teoretické a experimentální částicové a jaderné fyziky, opřené o rozsáhlé kursy kvantové mechaniky a kvantové teorie pole. Důraz je kladen na zvládnutí relevantních teoretických výpočetních postupů a na osvojení si metod získávání a zpracování experimentálních dat,

včetně efektivního ovládnutí výpočetní techniky a pokročilých softwarových nástrojů. S pomocí výběrových přednášek a diplomové práce studenti získávají hlubší vzdělání ve vybrané oblasti a volí tak příklon k teorii nebo experimentu.

Profil absolventa studijního programu a cíle studia:

Absolventi mají pokročilé znalosti částicové a jaderné fyziky, a to jak v experimentální, tak v teoretické oblasti. Ovládají kvantovou teorii, rozumí základním přístupům k popisu mikrosvěta a znají experimentální techniky jeho studia. Nacházejí uplatnění především v základním experimentálním a teoretickém výzkumu, ale také v relevantním aplikovaném výzkumu, např. ve fyzice detektorů, nukleární medicíně apod. Absolventi jsou připraveni tvůrčím způsobem rozvíjet oblast svého odborného zaměření a začlenit se do mezinárodních výzkumných týmů. Zběhlost v práci s pokročilými softwarovými nástroji otevírá možnost uplatnění např. v oblasti informačních technologií.

Doporučený průběh studia

Předpokladem úspěšného magisterského studia tohoto programu je získání základních znalostí na úrovni následujících předmětů:

Kód	Název	Kredity	ZS	LS
NTMF066	${f K}$ vantová mechanika I 1	9	4/2 Z+Zk	_
NTMF067	$^{\prime}$ Kvantová mechanika II 2	9		4/2 Z+Zk
NJSF103	Experimentální metody jaderné	6		3/1 Z+Zk
	a částicové fyziky			
NJSF006	Praktikum jaderné fyziky	6		$0/4~\mathrm{KZ}$
NJSF148	Proseminář z jaderné a částicové	3	$0/2 \mathrm{~Z}$	<u>.</u>
	fyziky		·	

 $^{^{1}\,}$ Místo této přednášky lze zapsat NJSF094 (Kvantová mechanika I)

Tyto předměty se obvykle zapisují ve třetím roce studia bakalářského programu Fyzika jako povinné a povinně volitelné. Pokud posluchač tyto nebo jim ekvivalentní předměty neabsolvoval, měl by si je ve vlastním zájmu zapsat jako volitelné v prvním roce navazujícího magisterského studia. Obsah uvedených předmětů je součástí společných požadavků státní závěrečné zkoušky.

1. rok magisterského studia

Kód	Název	Kredity	ZS	LS
NJSF041	Experimentální a aplikovaná	6	$4/0 \mathrm{~Zk}$	_
	jaderná fyzika			
NJSF064	Fyzika atomového jádra	7	3/2 Z+Zk	
NJSF105	Fyzika elementárních částic	7	3/2 Z+Zk	
NJSF068	Kvantová teorie pole I 1	9	4/2 Z+Zk	
NJSF145	Kvantová teorie pole I 1	9	4/2 Z+Zk	
NJSF086	Kvarky, partony a kvantová	6	_	2/2 Z+Zk
	chromodynamika			
NJSF037	Mikroskopická teorie jádra	6		$4/0 \mathrm{Zk}$
NJSF085	Základy teorie elektroslabých	6		2/2 Z+Zk
	interakcí			

 $^{^2\,}$ Místo této přednášky lze zapsat NJSF095 (Kvantová mechanika II)

NSZZ023 Diplomová práce I	6 —	$0/4~\mathrm{Z}$
---------------------------	-----	------------------

 $^{^{1}}$ Studenti si zapisují právě jeden z těchto alternativních předmětů.

2. rok magisterského stud	ia	ia	studia	kého	magisters	rok	2 .
---------------------------	----	----	--------	------	-----------	-----	------------

Kód	Název	Kredity	ZS	LS
NJSF191	Seminář částicové a jaderné fyziky III	3	$0/2 \mathrm{~Z}$	_
NJSF192	Seminář částicové a jaderné fyziky IV	3	_	$0/2 \mathrm{~Z}$
NSZZ024	Diplomová práce II	9	$0/6 \ { m Z}$	
NSZZ025	Diplomová práce III	15		0/10 Z
Povinně	volitelné předměty			
Kód	Název	Kredity	ZS	LS
Kvantov	á teorie pole			
NJSF069	Kvantová teorie pole II 1	9	_	4/2 Z+Zk
NJSF146	Kvantová teorie pole II ¹	9	_	4/2 Z+Zk
NJSF139	Částicová fyzika za standardním modelem I	4	2/1 Zk	_
NJSF140	Částicová fyzika za standardním modelem II	4	_	2/1 Zk
NJSF082	Vybrané partie teorie kvantovaných polí I	4	3/0 Zk	
NJSF083	Vybrané partie teorie kvantovaných polí II	4		3/0 Zk
NTMF022	2 Teorie kalibračních polí	4	3/0 Zk	
NJSF084	Chirální symetrie silných interakcí	3		2/0 Zk
NJSF030	Kvantová teorie pole při konečné teplotě	3	_	$2/0 \mathrm{~Zk}$
NJSF129	Pokročilé koncepty symetrie	5	_	$2/2 \mathrm{Zk}$
NJSF142	Teorie grup a algeber v částicové fyzice	4		$2/1 \mathrm{~Zk}$
Teorie m	nohočásticových systémů			
NJSF196	Mikroskopická teorie jádra II	3	$2/0 \mathrm{~Zk}$	
NJSF107	Statistická jaderná fyzika	3	$2/0 \mathrm{~Zk}$	
NJSF193	Kolektivní dynamika mnohočásticových systémů	3	2/0 Zk	_
NJSF031	Klasický a kvantový chaos	3		$2/0 \mathrm{\ Zk}$
NJSF157	Fyzika máločásticových jaderných systémů	3	2/0 Zk	
NJSF158	Úvod do počítačové jaderné fyziky	3	$1/1 \mathrm{~Zk}$	_

Experim	entální částicová fyzika			
NJSF073	Experimentální prověrka	4		2/1 Z+Zk
	standardního modelu			
NJSF195	Silná interakce při vysokých	3	$2/0 \mathrm{~Zk}$	
	energiích		•	
NJSF102	Jaderná astrofyzika	3	$2/0 \mathrm{Zk}$	
NJSF130	Kosmické záření	3	<u>.</u>	$2/0 \mathrm{Zk}$
NJSF131	Difrakce v částicové fyzice	4	$2/1 \mathrm{\ Zk}$	<u>.</u>
Experim	entální metody, zpracování dat, ap	likace		
NJSF070	Detektory a urychlovače částic	3	$2/0 \mathrm{~Zk}$	
NJSF159	Fyzika urychlovačů částic	4	$2/1 \mathrm{Zk}$	
NJSF101	Polovodičové detektory v jaderné	3	$2/0 \mathrm{\ Zk}$	
	a subjaderné fyzice.			
NJSF081	Software a zpracování dat ve fyzice	3	$1/1 \mathrm{\ Zk}$	
	částic I			
NJSF109	Software a zpracování dat ve fyzice	4		$2/1 \mathrm{Zk}$
	částic II			
NJSF143	Statistické metody ve fyzice	4	3/0 Zk	
	vysokých energií			
NJSF067	Metody sběru dat v částicové	4	$2/1 \mathrm{Zk}$	
	a jaderné fyzice			
NJSF138	Neuronové sítě v částicové fyzice	4	$2/1 \mathrm{Zk}$	
NJSF024	Jaderné analytické metody	3	$2/0 \mathrm{~Zk}$	
NJSF008	Biologické účinky ionizujícího záření	3		$2/0 \mathrm{~Zk}$
NJSF141	Zpracování experimentálních dat	3		$2/0 \mathrm{~Zk}$
Další pov	vinně volitelné předměty			
NJSF091	Seminář částicové a jaderné fyziky I	3	$0/2 \mathrm{~Z}$	
NJSF092	Seminář částicové a jaderné	3		$0/2 \mathrm{Z}$
	fyziky II			

 $^{^{1}}$ Studenti si zapisují právě jeden z těchto alternativních předmětů.

Doporučené volitelné předměty

Kód	Název	Kredity	ZS	LS
NJSF079	Kvantová teorie pole III	9	4/2 Z+Zk	_
NJSF132	Teorie nanoskopických systémů I	3	2/0 Zk	
NJSF133	Teorie nanoskopických systémů II	3	<u>.</u>	$2/0 \mathrm{~Zk}$

Podmínky pro přihlášení ke státní závěrečné zkoušce

- -získání alespoň 120 kreditů
- splnění všech povinných předmětů
- splnění povinně volitelných předmětů v rozsahu alespoň 25 kreditů
- odevzdání vypracované diplomové práce ve stanoveném termínu

Předmět lze splnit jeho úspěšným absolvováním či uznáním z předchozího studia.

Požadavky k ústní části státní závěrečné zkoušky

Student dostane celkem 3 otázky z následujících tematických okruhů A, B a C (po jedné otázce z každého okruhu):

A. Kvantová teorie

1. Formalismus kvantové teorie

Hilbertův prostor. Čisté a smíšené stavy. Kompatibilní a nekompatibilní veličiny. Diskrétní a spojité spektrum. Otevřené systémy. Klasická limita.

2. Evoluce kvantového systému

Schrödingerova rovnice a evoluční operátor. Greenuv operátor. Reprezentace časového vývoje. Evoluce generovaná časově závislým hamiltoniánem.

3. Symetrie a zákony zachování v kvantové mechanice

Spojité časoprostorové symetrie a jejich generátory. Inverze prostoru a času. Zákony zachování. Skaláry, vektory a spinory.

4. Poruchový počet v kvantové mechanice

Stacionární poruchová teorie pro nedegenerované a degenerované spektrum. Nestacionární poruchová metoda, skoková a periodická porucha, Fermiho pravidlo.

5. Moment hybnosti v kvantové mechanice

Kvantování momentu hybnosti. Skládání 2 či více momentů hybnosti. Tenzorové operátory, výběrová pravidla

6. Teorie rozptylu

Lippmanova-Schwingerova rovnice. Amplituda rozptylu, Bornova řada. Metoda parciálních vln.

7. Systémy nerozlišitelných částic

Bosony a fermiony. Fokův prostor, reprezentace obsazovacích čísel. Kreační a anihilační operátory, n-částicové operátory.

8. Rovnice relativistické kvantové mechaniky pro volnou částici se spinem 0, 1/2 a 1

Klein-Gordonova a Diracova rovnice, řešení s kladnou a zápornou energií, rovnice kontinuity, vlastnosti symetrie. Weylova rovnice. Procova rovnice.

9. Diracova rovnice pro částici v elektromagnetickém poli

Přechod k Pauliho rovnici a spinový magnetický moment. Atom vodíkového typu a jemná struktura hladin energie.

10. Kvantování volných polí a jejich částicová interpretace

Metoda kanonického kvantování. Energie a impuls kvantovaného pole. Částice a antičástice. Diracovo pole, antikomutační relace. Elektromagnetické a Procovo pole. Propagátor kvantovaného pole.

11. Interakce polí, poruchový rozvoj S-matice a Feynmanovy diagramy

Příklady interakčních lagrangiánů, princip kalibrační symetrie. Dysonův rozvoj v interakční reprezentaci. Feynmanovy diagramy na stromové úrovni. Pravděpodobnost rozpadu a účinný průřez.

12. Základy kvantové elektrodynamiky

Rozptyl nabité částice ve vnějším elektromagnetickém poli. Procesy druhého řádu. Příklady diagramů s uzavřenou smyčkou.

B. Fyzika elementárních částic

1. Klasifikace elementárních částic

Leptony, hadrony, nositelé interakcí. Přibližná symetrie SU(3) a multiplety hadronů. Kvarkový model. Barva, experimentální evidence pro barvy kvarků. Kvarky u, d, s. Těžké kvarky c a b. Rozpady hadronů (neutronu, pionů, podivných částic)

2. Vlastnosti hadronů a jejich měření

Spin, magnetický moment, prostorová, nábojová a G-parita, izospin, podivnost, hypernáboj. Zákony zachování v jednotlivých typech interakcí. Příklady měření.

3. Vlastnosti leptonů

Slabé a elektromagnetické interakce leptonů: produkce mionového páru v elektron-pozitronové anihilaci, neutrinový rozptyl, rozpad mionu a leptonu tau. Helicita neutrina, oscilace neutrin, nezachování P a CP. Neutrinové experimenty.

4. Metody měření a identifikace částic v experimentech

Měření energie, hybnosti a doby letu, čerenkovské a přechodové záření, invariantní hmota produktů rozpadu. Příklady použití detekčních technik při objevech elementárních částic.

5. Experimenty na urychlovačích částic

Lineární a kruhové urychlovače částic, vstřícné svazky, luminozita. Současné urychlovače. Produkce částic v hadronových a leptonových srážkách.

6. Pojmové základy standardního modelu elektroslabých interakcí

Kalibrační invariance. Yang-Millsovo pole. Higgsův mechanismus.

7. Typy interakcí částic ve standardním modelu elektroslabých interakcí

Interakce vektorových bosonů, interakce Higgsova bosonu, neutrální a nabité proudy. Objev vektorových bosonů W a Z, objev Higgsova bosonu.

8. Směšování v kvarkovém sektoru standardního modelu

Generování hmot prostřednictvím yukawovských interakcí, Cabibbo-Kobayashi-Maskawova matice, narušení CP. Objev kvarků c, b a t.

9. Systémy neutrálních mezonů

Oscilace a regenerace. Přímé a nepřímé narušení CP a jejich projevy.

10. Struktura nukleonu a partonový model

Pružný rozptyl elektronu na protonu a formfaktory. Hluboce nepružný rozptyl, strukturní funkce, Bjorkenovo škálovaní. Formulace partonového modelu a pojem partonové distribuční funkce.

11. Aplikace partonového modelu

Popis základních procesů v partonovém modelu: produkce hadronů v elektronpozitronové anihilaci, Drell-Yanův proces. Fragmentační funkce, hluboce nepružný rozptyl, měření strukturních funkcí nukleonu a distribučních funkcí partonů. Produkce jetů, objev gluonu.

12. Kvantová chromodynamika

Lagrangián QCD a princip kalibrační invariance. Běžící vazbová konstanta, asymptotická volnost, uvěznění barvy. Popis kvarkonií. Infračervené a kolineární singularity, jety, evoluční rovnice pro partonové distribuční funkce.

C. Jaderná fyzika

1. Charakteristiky jader a jejich měření

Vazbová energie, Weizsäckerova formule. Spin, parita. Magnetický dipólový a elektrický kvadrupólový moment. Parametry deformace.

2. Rozpady jader a radioaktivita

Rozpad beta, spektrum elektronu/pozitronu, výběrová pravidla, záchyt elektronu. Rozpad alfa, rozpadové řady. Rozpady gama, základy teorie elektromagnetických přechodů, typy a multipolarity, výběrová pravidla.

3. Nukleon-nukleonové interakce

Fenomenologické a mikroskopické nukleon-nukleonové potenciály, principy symetrie, izospin, výměny mezonů a jejich kvarková interpretace. Efektivní interakce v jaderném prostředí. Deuteron.

4. Střední pole a jednočásticové pohyby v jádrech

Hartree-Fokova metoda konstrukce středního pole. Spin-orbitální vazba, magická čísla. Nilssonův model, deformace.

5. Párování nukleonů a jeho důsledky

Zbytkové interakce krátkého dosahu. Bardeen-Cooper-Schriefferova teorie supravodivosti. Projevy párování v jádrech.

6. Kolektivní pohyby jader

Rotační a vibrační spektra jader a jejich fenomenologický a mikroskopický popis. Gigantické rezonance. Štěpení jader.

7. Jaderné reakce a vysoce excitované stavy

Přímé reakce a reakce přes složené jádro, příklady a charakteristické vlastnosti, základy teoretického popisu. Produkce excitovaných stavů a statistické modelování jejich rozpadu, yrast linie.

8. Průchod ionizujícího záření prostředím

Procesy při průchodu těžkých a lehkých nabitých částic látkou. Interakce záření gama s látkou. Průchod neutronů.

9. Principy detekce jaderného záření

Spektrometrie nabitých a neutrálních částic. Základní typy používaných detektorů a jejich charakteristiky.

10. Využití jaderné fyziky k materiálovým analýzám a datování

Měření prvkových a izotopických příměsí. Jaderné sondy v materiálech. Jaderné metody datování.

11. Aplikace jaderné fyziky v medicíně

Zobrazování pomocí jaderného záření, funkční tomografie. Radioterapie a hadronová terapie.

12. Jaderná energie

Štěpení a fúze jader. Jaderný reaktor, tokamak. Jaderné procesy ve hvězdách.

10. Matematické a počítačové modelování ve fyzice

Garantující pracoviště: Ústav teoretické fyziky Garant programu: doc. RNDr. Martin Čížek, Ph.D. Na koncepci matematické části studijního programu a přípravě státních zkoušek se podstatně podílí Matematický ústav UK. Kontaktní osobou je Mgr. Vít Průša, Ph.D. *Charakteristika studijního programu:*

Studijní program "Matematické a počítačové modelování ve fyzice" je mezioborovým studiem, které spojuje matematiku a fyziku. Ve společném základu si studenti prohlubují znalosti z moderních partií matematiky s důrazem na diferenciální rovnice a numerické metody. V oblasti fyzikálních disciplín si vyberou jeden směr užšího zaměření, v němž získají hlubší znalosti a složí příslušnou část státní závěrečné zkoušky. Fyzikální předměty jsou přednášeny odborníky z řad fyziků, matematické předměty jsou pak prezentovány specialisty z řad matematiků. Studijní program je svou náplní obdobný programu "Matematické modelování ve fyzice a technice" oblasti vzdělávání Matematika, liší se ale tím, že absolventi bakalářského studia vstupují do magisterského studia s hlubším základem z fyziky a naopak si více doplňují svůj matematický rozhled. Znalosti z fyziky si pak prohlubují především v jednom zvoleném směru užšího zaměření.

Profil absolventa studijního programu a cíle studia:

Velmi dobré znalosti matematických i fyzikálních disciplín, vysoká flexibilita, schopnost problémy formulovat, analyzovat a následně i numericky řešit, jsou zárukou velmi dobrého uplatnění v řadě oblastí a to v akademických (nejen v oblastech aplikované matematiky a fyziky, ale i v jiných vědních oborech jako např. vědě o materiálech, biologii, lékařství) i v komerčních sférách (bankovnictví, softwarové firmy, průmysl).

Doporučený průběh studia

Předpokladem úspěšného magisterského studia tohoto programu je získání základních znalostí na úrovni následujících předmětů:

Kód	Název	Kredity	ZS	LS
NTMF066	S Kvantová mechanika I ¹	9	4/2 Z+Zk	
NMNM20	1 Základy numerické matematiky	8	4/2 Z+Zk	
NMMA33	4 Úvod do parciálních diferenciálních	10		4/4 Z+Zk
	rovnic			

¹ Znalosti z tohoto předmětu jsou nutné pro užší zaměření Mnohočásticové systémy, Kvantové systémy a Částicová fyzika. Místo této přednášky lze také absolvovat NJSF094 Kvantová mechanika I nebo NBCM110 Kvantová teorie I.

Tyto předměty se obvykle zapisují ve třetím roce studia bakalářského programu Fyzika jako povinné a povinně volitelné. Pokud posluchač tyto nebo jim ekvivalentní předměty neabsolvoval, měl by si je ve vlastním zájmu zapsat jako volitelné v prvním roce navazujícího magisterského studia. Obsah uvedených předmětů je součástí společných požadavků státní závěrečné zkoušky.

1. rok magisterského studia

Kód	Název	Kredity	ZS	LS
NMNM33	l Analýza maticových výpočtů 1	5	2/2 Z+Zk	<u> </u>
NMNV40	5 Metoda konečných prvků 1	5	2/2 Z+Zk	_
NMNV53	9 Numerické řešení ODR	5	2/2 Z+Zk	
NMMA40	5Parciální diferenciální rovnice 1	6	3/1 Z+Zk	
NTMF02	l Simulace ve fyzice mnoha částic	6	3/1 Z+Zk	

NMMA93	l Úvod do funkcionální analýzy (O)	8	4/2 Z+Zk	_
NMMA406	Parciální diferenciální rovnice 2	6		3/1 Z+Zk
NSZZ023	Diplomová práce I	6	_	$0/4 \mathrm{~Z}$
2. rok ma	gisterského studia			
Kód	Název	Kredity	ZS	LS
NMNV412	Analýza maticových iteračních metod – principy a souvislosti	6		4/0 Zk
NSZZ024 NSZZ025	Diplomová práce II Diplomová práce III	9 15	0/6 Z —	— 0/10 Z
Povinně v	volitelné předměty			
Kód	Název	Kredity	ZS	LS
Mechanil	ka kontinua			
	1 Mechanika kontinua	6	2/2 Z+Zk	
	Řešení nelineárních algebraických rovnic ¹	5	2/2 Z+Zk	_
NMMO54	l Teorie směsí	4	2/1 Z+Zk	
	Numerické řešení evolučních rovnic	3		$2/0 \mathrm{~Zk}$
	3Počítačové řešení úloh fyziky kontinua	5		2/2 Z+Zk
NMMO402	2Termodynamika a mechanika nenewtonovských tekutin	5	_	2/1 Z+Zk
NMMO404	4Termodynamika a mechanika pevných látek	5	_	2/1 Z+Zk
Mnohočá	sticové systémy			
NEVF160	Moderní počítačová fyzika I	5	$2/1~\mathrm{KZ}$	_
NMAI061	Metody matematické statistiky	5	<u>.</u>	2/1 Z+Zk
NTMF024	Pokročilé simulace ve fyzice mnoha částic	3	_	$2/0 \mathrm{~Zk}$
NTMF044	Termodynamika a statistická fyzika II	7	_	3/2 Z+Zk
NBCM316	Počítačové modelování biomolekul	4	1/2 Z+Zk	1/2 Z+Zk
Kvantove	é systémy			
NTMF030	Kvantová teorie rozptylu	6	3/1 Z+Zk	
NTMF061	Teorie grup a její aplikace ve fyzice	6	2/2 Z+Zk	
NTMF067	Kvantová mechanika II 2	9		4/2 Z+Zk
NBCM039	Kvantová teorie molekul	7	3/2 Z+Zk	
NTMF130	Teorie srážek atomů a molekul	6	_	3/1 Z+Zk
Relativis	tická fyzika			
NTMF059	Geometrické metody teoretické fyziky I	6	2/2 Z+Zk	_

	Relativistická fyzika I	9	4/2 Z+Zk		
NMAG335	ó Úvod do analýzy na varietách	5	2/2 Z+Zk		
NTMF107	Základy numerického studia	4	$3/0 \mathrm{Zk}$		
	prostoročasů				
NTMF060	Geometrické metody teoretické	4		$3/0 \mathrm{Zk}$	
	fyziky II			,	
NTMF111	Obecná teorie relativity	4	_	$3/0 \mathrm{~Zk}$	
Částicová fyzika					
NJSF134	Částice a pole I	5	$2/2 \mathrm{~Zk}$		
NJSF105	Fyzika elementárních částic	7	3/2 Z+Zk		
NJSF138	Neuronové sítě v částicové fyzice	4	2/1 Zk		
NJSF081	Software a zpracování dat ve fyzice	3	$1/1 \mathrm{~Zk}$	_	
	částic I				
NJSF082	Vybrané partie teorie kvantovaných	4	3/0 Zk		
	polí I		,		
NJSF086	Kvarky, partony a kvantová	6		2/2 Z+Zk	
	chromodynamika			,	
NJSF109	Software a zpracování dat ve fyzice	4		$2/1 \mathrm{Zk}$	
	částic II			7	
NJSF085	Základy teorie elektroslabých	6		2/2 Z+Zk	
	interakcí	· ·		_/	
D 177	• • • • • • • • • • • • • • • • • • • •				
	vině volitelné předměty				
	l Funkcionální analýza 1	8	4/2 Z+Zk		
	7 Obyčejné diferenciální rovnice 2	5	2/2 Z+Zk		
NMMA53	1 Parciální diferenciální rovnice 3	4	$2/0 \mathrm{~Zk}$	_	
NJSF132	Teorie nanoskopických systémů I	3	$2/0 \mathrm{~Zk}$		
NEVF161	Moderní počítačová fyzika II	5	_	$2/1~\mathrm{KZ}$	

 $^{^1}$ Předmět je naposledy vyučován v akademickém roce 2020/2021. Od akademického roku 2021/2022 je nahrazen předmětem Numerické metody optimalizace 1 (NMNV503)

Doporučené volitelné předměty

Kód	Název	Kredity	ZS	LS
NMNM20	1 Základy numerické matematiky	8	4/2 Z+Zk	_
NMNV532	2 Paralelní maticové výpočty	5		2/2 Z+Zk
NMMA33	4 Úvod do parciálních diferenciálních	10		4/4 Z+Zk
	rovnic			
NMMO56	4 Vybrané problémy matematického modelování	3	_	$0/2 \mathrm{~Z}$
NMMO46	1 Seminář z mechaniky kontinua	2	$0/2 \mathrm{~Z}$	$0/2 \mathrm{~Z}$
NMMO46	3 GENERIC — nerovnovážná	4	2/1 Z+Zk	<u> </u>
	termodynamika			

 $^{^2\,}$ Místo této přednášky lze také zapsat NJSF095 Kvantová mechanika II nebo NFPL141 Kvantová teorie II.

NMMO660 Nerovnovážná termodynamika elektrochemie

4 -

2/1 Z+Zk

Podmínky pro přihlášení ke státní závěrečné zkoušce

- získání alespoň 120 kreditů
- splnění všech povinných předmětů zvoleného programu
- splnění povinně volitelných předmětů zvoleného programu v rozsahu alespoň 30 kreditů
- odevzdání vypracované diplomové práce ve stanoveném termínu

Předmět lze splnit jeho úspěšným absolvováním či uznáním z předchozího studia.

Požadavky k ústní části státní závěrečné zkoušky

A. Společné požadavky

1. Parciální diferenciální rovnice

Sobolevovy prostory. Slabá řešení pro lineární eliptické rovnice na omezené oblasti. Slabá řešení pro nelineární eliptické rovnice na omezené oblasti. Lineární parabolické rovnice 2. řádu, Lineární hyperbolické rovnice 2. řádu.

2. Numerická matematika

Metoda konečných prvků pro řešení eliptických rovnic. Metody pro řešení soustav algebraických rovnic a výpočet vlastních čísel.

3. Funkcionální analýza

Hilbertovy a Banachovy prostory. Spojitá lineární zobrazení. Věty o pevných bodech. Integrální transformace a základy teorie distribucí.

B. Užší zaměření

Student si volí jeden z následujících pěti tematických okruhů odpovídající jeho zaměření.

1. Mechanika kontinua

Kinematika kontinua. Dynamika kontinua. Jednoduché konstitutivní vztahy. Nenewtonské tekutiny. Pevné látky. Reologické modely.

2. Mnohočásticové systémy

Základy statistické fyziky. Základy simulace fyzikálních systémů metodou Monte Carlo. Základy molekulární dynamiky. Určování termodynamických a strukturních vlastností ze simulací. Pokročilé metody simulace mnoha částic. Základy modelování fyziky plazmatu.

3. Kvantové systémy

Základy kvantové mechaniky. Řešitelné systémy. Moment hybnosti a spin. Základní přibližné metody. Teorie rozptylu. Základní metody mnohočásticové kvantové fyziky. Výpočetní metody teorie rozptylu.

4. Relativistická fyzika

Výchozí principy speciální a obecné teorie relativity. Einsteinův gravitační zákon a jeho důsledky. Relativistická astrofyzika a kosmologie. Vlastnosti Einsteinových rovnic.

5. Částicová fyzika

Základní představy a metody kvantové teorie pole. Klasifikace a vlastnosti elementárních částic. Struktura hadronů. Základy standardního modelu elementárních částic. Interakce částic s prostředím a metody měření částic v experimentech. Metody analýzy dat v experimentech fyziky částic.

Studijní plány oblasti vzdělávání INFORMATIKA

Bakalářské studium od akad. roku 2019/20

Garant studijního programu: doc. RNDr. Ondřej Čepek, Ph.D.

1. Základní informace

Studijní specializace

Bakalářský studijní program Informatika má společný první ročník a od druhého ročníku se dělí na šest specializací:

- Obecná informatika
- Programování a vývoj software
- Systémové programování
- Databáze a web
- Umělá inteligence
- Počítačová grafika, vidění a vývoj her

Specializaci si studenti vybírají v souladu se studijními předpisy v průběhu druhého ročníku studia.

Studijní plány

Studium v jednotlivých specializacích je určeno studijními plány. Studijní plány určují skladbu povinných a povinně volitelných předmětů a dále požadavky ke státní zkoušce. Povinně volitelné předměty jsou pro každou specializaci rozděleny do několika skupin. Kromě celkového minimálního počtu kreditů za všechny povinně volitelné předměty může být také pro některé skupiny těchto předmětů určen minimální počet kreditů, který je z dané skupiny třeba získat před přihlášením se ke státní zkoušce. Vedle povinných předmětů a předepsaného množství povinně volitelných předmětů si může každý student podle vlastního výběru zapisovat další předměty vyučované na naší fakultě, v případě zájmu i na jiných fakultách naší univerzity (tzv. volitelné předměty). V souladu s platnou akreditací jsou některé povinně volitelné předměty vyučovány v některých akademických rocích pouze v angličtině.

Všech šest specializací má rozsáhlou společnou část tvořenou povinnými předměty pokrývajícími základy matematiky, teoretické informatiky, programování a softwarových systémů. Většina těchto povinných předmětů spadá do prvního ročníku studia, který je pro celý studijní program Informatika společný. Níže uvedený doporučený průběh studia v 1. ročníku zahrnuje všechny povinné předměty pro 1. ročník vyznačené tučně a několik volitelných předmětů vyznačených kurzívou.

-4	1		1.
	rok	St.11	สเล

Kód	Název	Kredity	ZS	LS
NPRG062	Algoritmizace	4	2/1 Z+Zk	
NPRG030	Programování 1	5	$2/2 \mathrm{~Z}$	
NSWI120	Principy počítačů	3	2/0 Zk	
NSWI141	Úvod do počítačových sítí	3	2/0 KZ	
NDMI002	Diskrétní matematika	5	2/2 Z+Zk	
NMAI057	Lineární algebra 1	5	2/2 Z+Zk	
NTVY014	Tělesná výchova I ¹	1	$0/2 \mathrm{~Z}$	
NMAI069	Matematické dovednosti ²	2	$0/2 \mathrm{~Z}$	
NJAZ070	Anglický jazyk pro středně	1	$0/2 \mathrm{~Z}$	
	pokročilé I ³			
NTIN060	Algoritmy a datové struktury 1	5		2/2 Z+Zk
NPRG031	Programování 2	5		2/2 Z+Zk
NSWI170	Počítačové systémy	5		2/2 Z+Zk
NSWI177	Úvod do Linuxu	4		1/2 KZ
NMAI054	Matematická analýza 1	5		2/2 Z+Zk
NMAI058	Lineární algebra 2	5		2/2 Z+Zk
NTVY015	Tělesná výchova II ¹	1		$0/2 \mathrm{~Z}$
NJAZ072	Anglický jazyk pro středně	1		$0/2 \mathrm{~Z}$
	pokročilé II ³			

 $^{^1}$ Místo jednoho z předmětů NTVY014 a NTVY015 je možné si zapsat letní výcvikový kurz NTVY018 nebo zimní výcvikový kurz NTVY019. Tyto kurzy může student absolvovat kdykoli v průběhu studia.

Menší počet povinných předmětů společných pro všechny specializace pak spadá do 2. a 3. ročníku. Níže je jejich seznam doplněný o volitelné předměty výuky anglického jazyka.

Společné povinné předměty v 2. a 3. roku studia a výuka angličtiny

Kód	Název	Kredity	ZS	LS
NTIN061	Algoritmy a datové struktury 2	5	2/2 Z+Zk	
NDBI025	Databázové systémy	5	2/2 Z+Zk	
NDMI011	Kombinatorika a grafy 1	5	2/2 Z+Zk	
NAIL062	Výroková a predikátová logika	5	2/2 Z+Zk	
NTVY016	Tělesná výchova III ⁴	1	$0/2 \mathrm{~Z}$	
NJAZ074	Anglický jazyk pro středně	1	$0/2 \mathrm{~Z}$	
	pokročilé III ⁵			
NTIN071	Automaty a gramatiky	5		2/2 Z+Zk
NMAI059	Pravděpodobnost a statistika 1	5		2/2 Z+Zk
NPRG045	Ročníkový projekt ⁶	4		$0/1 \mathrm{~Z}$
NSZZ031	Vypracování a konzultace	6		$0/4 \mathrm{~Z}$
	bakalářské práce			

² Předmět NMAI069 Matematické dovednosti je určen a vřele doporučen studentům, kteří si chtějí osvojit a procvičit základní matematické dovednosti používané v matematických předmětech na MFF. Důraz je kladen na korektní matematické vyjadřování a základní důkazové techniky.

 $^{^3}$ Výuka anglického jazyka NJAZ070, NJAZ072 v rozsahu 0/2 v každém semestru je určena pro středně pokročilé a pokročilé. Pro začátečníky a mírně pokročilé jsou určeny předměty NJAZ071, NJAZ073 s rozsahem výuky 0/4 v každém semestru.

NTVY017	Tělesná výchova IV 4	1	 $0/2 \mathrm{~Z}$
NJAZ090	Anglický jazyk pro středně	1	 $0/2 \mathrm{~Z}$
	pokročilé IV ⁵		
NJAZ091	Anglický jazyk ⁷	1	 $0/0 \mathrm{\ Zk}$

⁴ Pokud student splnil předměty NTVY014 a NTVY015, tak je možné si místo jednoho z předmětů NTVY016 a NTVY017 zapsat letní výcvikový kurz NTVY018 nebo zimní výcvikový kurz NTVY019. Výcvikové kurzy může student absolvovat kdykoli v průběhu studia.

Pro jednotlivé specializace jsou předepsány další povinné předměty a skupiny povinně volitelných předmětů. Detailní studijní plány pro jednotlivé specializace jsou uvedeny v dalším textu.

Doporučený průběh studia v 2. a 3. roku studia

Doporučený průběh studia je pro každou specializaci vypracován tak, aby na sebe povinné předměty navazovaly, aby student získal včas kredity potřebné pro zápis do dalšího úseku studia a aby včas splnil podmínky pro přihlášení se ke státní zkoušce. Většina povinných předmětů je v doporučeném průběhu studia zařazena do 1. a 2. ročníku studia a jenom minimum z nich je ponecháno do 3. ročníku, ve kterém je větší prostor ponechán na předměty povinně volitelné a volitelné. Doporučený průběh studia je podporován také při tvorbě celofakultního rozvrhu. Doporučené průběhy studia pro jednotlivé specializace jsou uvedeny v další části textu u popisu specializací.

Zaměření

Některé specializace se dále člení na zaměření. Jednotlivá zaměření téže specializace se od sebe liší požadavky posledního okruhu bakalářské státní zkoušky z informatiky. Posluchač má sám možnost přizpůsobit výběr svých povinně volitelných a volitelných předmětů tomu, v jakém zaměření bude studium končit a jaké odborné znalosti k tomu bude potřebovat. Volbu svého zaměření oznámí s přihláškou k bakalářské státní závěrečné zkoušce.

Státní závěrečná zkouška a ukončení studia

Státní závěrečná zkouška se skládá ze dvou částí:

- obhajoba bakalářské práce
- zkouška z matematiky a informatiky

Každá část státní závěrečné zkoušky je hodnocena známkou. Na základě obou známek je pak určena celková známka státní závěrečné zkoušky. Ke každé části státní závěrečné zkoušky se posluchač může přihlásit samostatně. Studium je úspěšně zakončeno úspěšným absolvováním obou částí. Při neúspěchu opakuje student ty části státní závěrečné zkoušky, ve kterých neuspěl. Opakovat část státní závěrečné zkoušky lze nejvýše dvakrát.

Podmínky pro přihlášení ke státní závěrečné zkoušce nebo její části jsou následující:

- získání alespoň 180 kreditů
- splnění všech povinných předmětů zvolené specializace
- splnění povinně volitelných předmětů zvolené specializace ve stanoveném rozsahu

Výuka anglického jazyka NJAZ074, NJAZ090 v rozsahu 0/2 v každém semestru je určena pro středně pokročilé a pokročilé. Pro začátečníky a mírně pokročilé jsou určeny předměty NJAZ075, NJAZ089 s rozsahem výuky 0/4 v každém semestru.

⁶ Předmět NPRG045 lze zapsat v ZS i v LS, standardně je zapisován v LS.

 $^{^{7}}$ Povinnou zkoušku z anglického jazyka NJAZ091 je možné absolvovat jak v ZS tak v LS.

 odevzdání vypracované bakalářské práce ve stanoveném termínu (pro přihlášení k obhajobě bakalářské práce).

Bakalářská práce je zadávána zpravidla na počátku 3. ročníku. Typicky má charakter softwarového díla, které může navazovat na ročníkový projekt (viz studijní plány), nebo odborné teoretické práce. Doporučujeme vybírat si téma především z nabídky pracoviště garantujícího zvolenou specializaci; v případě zájmu o téma z nabídky jiného pracoviště nebo o téma vlastní důrazně doporučujeme konzultovat vhodnost tématu s garantem specializace.

Seznam požadavků ke zkouškám z matematiky a informatiky je rozdělen na část společnou pro všechny specializace a na část specializační. Seznam společných požadavků je uveden níže pod tímto odstavcem, specializační seznamy požadavků jsou specifikovány v textech věnovaných studijním plánům jednotlivých specializací.

Požadavky znalostí ke státní závěrečné zkoušce společné pro všechny specializace

Matematika

1. Základy diferenciálního a integrálního počtu

Posloupnosti reálných čísel a jejich vlastnosti (vlastnosti limit a aritmetických operací). Reálné funkce jedné reálné proměnné. Spojitost, limita funkce v bodě (vlastní i nevlastní). Derivace: definice a základní pravidla. Některé aplikace (průběhy funkcí, Taylorův polynom se zbytkem). Primitivní funkce (definice, jednoznačnost, existence), metody výpočtu.

Související předměty:

– Matematická analýza 1 (NMAI054)

2. Algebra a lineární algebra

Grupy a podgrupy, definice, příklady, komutativita. Tělesa - definice, charakteristika tělesa, konečná tělesa. Vektorové prostory a podprostory, jejich vlastnosti, základní pojmy (lineární kombinace, lineární obal, generátory, lineární závislost a nezávislost, báze, dimenze, souřadnice) a jejich použití. Praktická dovednost testování lineární závislosti a nezávislosti, nalezení báze, určení dimenze atp. Skalární součin a jeho vlastnosti. Norma a vztah se skalárním součinem, příklady. Kolmost, ortonormální báze, její vlastnosti a použití (např. pro nalezení souřadnic a pro projekci). Soustavy lineárních rovnic a množina řešení. Metody řešení, Gaussova a Gaussova-Jordanova eliminace, odstupňovaný tvar matice a jeho jednoznačnost (bez důkazu). Matice a operace s maticemi (součet, součin, transpozice atp.), interpretace součinu matic pomocí skládání lineárních zobrazení. Hodnost matice a její transpozice. Vlastní čísla a vlastní vektory matice a jejich geometrický význam a vlastnosti, vícenásobná vlastní čísla, spektrální poloměr. Charakteristický polynom, vztah vlastních čísel s kořeny polynomů.

Související předměty:

- Lineární algebra 1 (NMAI057)
- Lineární algebra 2 (NMAI058)

3. Diskrétní matematika

Relace, vlastnosti binárních relací (reflexivita, symetrie, antisymetri, tranzitivita). Ekvivalence a rozkladové třídy. Částečná uspořádání, základní pojmy (minimální a maximální prvky, nejmenší a největší prvky, řetězec, antiřetězec), výška a šířka částečně

uspořádané množiny a věta o jejich vztahu (o dlouhém a širokém). Funkce, typy funkcí (prostá, na, bijekce) a počty různých typů funkcí mezi dvěma konečnými množinami. Permutace a jejich základní vlastnosti (počet, pevný bod atd.). Kombinační čísla a vztahy mezi nimi, binomická věta a její aplikace. Princip inkluze a exkluze, obecná formulace (a důkaz) a použití (problém šatnářky, Eulerova funkce pro počet dělitelů, počet surjekcí apod.). Hallova věta o systému různých reprezentantů a její vztah k párování v bipartitním grafu, princip důkazu a algoritmické aspekty (polynomiální algoritmus pro nalezení SRR).

Související předměty:

- Diskrétní matematika (NDMI002)
- Kombinatorika a grafy 1 (NDMI011)

4. Teorie grafů

Základní pojmy (graf, vrcholy a hrany, izomorfismus grafů, podgraf, okolí vrcholu a stupeň vrcholu, doplněk grafu, bipartitní graf), základní příklady grafů (úplný graf a úplný bipartitní graf, cesty a kružnice). Souvislost grafů, komponenty souvislosti, vzdálenost v grafu. Stromy, definice a základní vlastnosti (existence listů, počet hran stromu), ekvivalentní charakteristiky stromů. Rovinné grafy, definice a základní pojmy (rovinný graf a rovinné nakreslení grafu, stěny), Eulerova formule a maximální počet hran rovinného grafu (důkaz a použití). Barevnost grafů, definice dobrého obarvení, vztah barevnosti a klikovosti grafu. Hranová a vrcholová souvislost grafů, hranová a vrcholová verze Mengerovy věty. Orientované grafy, silná a slabá souvislost. Toky v sítích. Definice sítě a toku v ní, existence maximálního toku (bez důkazu), princip hledání max. toku v síti s celočíselnými kapacitami (např. pomocí Ford-Fulkersonova algoritmu).

Související předměty:

- Diskrétní matematika (NDMI002)
- Kombinatorika a grafy 1 (NDMI011)

5. Pravděpodobnost a statistika

Náhodné jevy, podmíněná pravděpodobnost, nezávislost náhodných jevů - definice uvedených termínů, Bayesův vzorec, aplikace. Náhodné veličiny, střední hodnota, rozdělení náhodných veličin, geometrické, binomické a normální rozdělení. Lineární kombinace náhodných veličin - linearita střední hodnoty, aplikace. Bodové odhady, intervaly spolehlivosti, testování hypotéz.

Související předměty:

- Diskrétní matematika (NDMI002)
- Pravděpodobnost a statistika 1 (NMAI059)

6. Logika

Syntaxe - znalost a práce se základními pojmy syntaxe výrokové a predikátové logiky (jazyk, otevřená a uzavřená formule apod.). Normální tvary výrokových formulí, prenexní tvary formulí predikátové logiky - znalost základních normálních tvarů (CNF, DNF, PNF), převody na normální tvary, použití pro algoritmy (SAT, rezoluce). Sémantika, pravdivost, lživost, nezávislost formule vzhledem k teorii, splnitelnost, tautologie, důsledek, pojem modelu teorie, extenze teorií.

Související předměty:

Výroková a predikátová logika (NAIL062)

Informatika

1. Automaty a jazyky

Regulární jazyky: konečný automat, jazyk přijímaný konečným automatem, deterministický, nedeterministický, lambda přechody, regulární výrazy, Kleeneho věta, iterační (pumping) lemma pro konečné automaty, regulární gramatiky. Bezkontextové jazyky: bezkontextová gramatika, jazyk generovaný gramatikou, zásobníkový automat, třída jazyků přijímaných zásobníkovými automaty. Turingův stroj: gramatika typu 0, diagonální jazyk, univerzální jazyk. Chomského hierarchie: určení ekvivalence či inkluze tříd jazyků generovaných výše uvedenými automaty a gramatikami, schopnost zařazení konkrétního jazyka do Chomského hierarchie (zpravidla sestrojení odpovídajícího automatu či gramatiky a důkaz iteračním lemmatem, že jazyk není v nižší třídě).

Související předměty:

- Automaty a gramatiky (NTIN071)

2. Algoritmy a datové stuktury

Časová složitost algoritmů: čas a prostor výpočtu pro konkrétní vstup, časová a prostorová složitost algoritmu, měření velikosti dat, složitost v nejlepším, nejhorším a průměrném případě, asymptotická notace. Třídy složitosti: třídy P a NP, převoditelnost problémů, NP-těžkost a NP-úplnost, příklady NP-úplných problémů a převodů mezi nimi. Metoda "rozděl a panuj": princip rekurzivního dělení problému na podproblémy, výpočet složitosti pomocí rekurentních rovnic, kuchařková věta (Master theorem), aplikace (Mergesort, násobení dlouhých čísel, Strassenův algoritmus). Binarní vyhledávací stromy: definice vyhledávacího stromu, operace s nevyvažovanými stromy, AVL stromy (jen definice). Haldy: binární halda. Hešování: hešování s přihrádkami, otevřená adresace. Třídění: primitivní třídicí algoritmy (Bubblesort, Insertsort apod.), třídění haldou (Heapsort), Quicksort, dolní odhad složitosti porovnávacích třídicích algoritmů, přihrádkové třídění čísel a řetězců. Grafové algoritmy: prohledávání do šířky a do hloubky, detekce komponent souvislosti, topologické třídění orientovaných grafů, nejkratší cesty v ohodnocených grafech (Dijkstrův a Bellmanův-Fordův algoritmus), minimální kostra grafu (Jarníkův a Borůvkův algoritmus), toky v sítích (algoritmus Ford-Fulkerson). Algebraické algoritmy: Euklidův algoritmus.

Související předměty:

- Algoritmy a datové struktury 1 (NTIN060)
- Algoritmy a datové struktury 2 (NTIN061)

3. Programovací jazyky

Pojmy a principy objektového návrhu: třídy, rozhraní, metody, atributy, dědičnost (viditelnost elementů, namespaces, dělení do balíčků/modulů), vícenásobná dědičnost a její problémy (mechanismy k řešení problémů podle jazyka, vícenásobná a virtuální dědičnost v C++, jednoduchá dedičnost a defaultní metody v Javě), implementace rozhraní (interface), polymorfismus (statický vs. dynamický polymorfismus), funkcionální prvky objektových jazyků (funktory, lambdy, podpora standardních knihoven). Implementace objektových jazyků: základní objektové koncepty v konkrétním jazyce

(Java, C++, C#), primitivní typy vs. objekty (implementace primitivních typů, paměťová reprezentace složených typů a objektů), implementace virtuálních metod (tabulka virtuálních metod), životnost objektů (alokace a inicializace objektů (statická, na zásobníku, na haldě), konstruktory, volání zděděných konstruktorů, likvidace objektů, explicitní delete/dispose, garbage collector, automatická likvidace, shared_ptr/unique_ptr, destruktory, finalizátory), vlákna a podpora synchronizace (implementace vláken, základní konstrukce pro synchronizaci, datové typy s atomickým přístupem), ošetření chyb, výjimky (šíření a odchytávání výjimek: try-catch-finally, práce s prostředky: try-with-resources (Java), RAII (C++), using (C#)). Oddělený překlad, sestavení, řízení překladu: kompilace vs. interpretace, role sestavení, JIT.

Související předměty:

- Programování 1 (NPRG030)
- Programování 2 (NPRG031)
- Principy počítačů (NSWI120)
- Podle volby programovacího jazyka: Programování v jazyce C# (NPRG035) nebo
 Programování v C++ (NPRG041) nebo Programování v jazyce Java (NPRG013)

4. Architektura počítačů a operačních systémů

Reprezentace dat: kódování a způsob uložení dat v paměti, bitové operace a jejich využití. Organizace počítače: von Neumannova a harvardská architektura, operační a sekundární paměti, adresové prostory, vstupně/výstupní zařízení. Architektura počítače: typické architektury, instrukce procesoru, běžné konstrukce vyššího programovacícho jazyka a jejich reprezentace pomocí instrukcí, základní představa o SMP multiprocesoru se sdílenou pamětí. Operační systémy: boot počítače a operačního systému, jádro OS, ovladače zařízení, privilegovaný a neprivilegovaný režim CPU, rozhraní mezi OS a programovacím jazykem, správa uživatelů a jejich oprávnění. Rozhraní HW a OS: ovladače zařízení a driver stack, obsluha přerušení na úrovni CPU a OS, výjimky procesoru a jejich obsloužení a vazba na runtime programovacího jazyka. Procesy a vlákna: kontext procesu a vlákna, kooperativní a preemptivní multitasking, plánování, typické stavy vlákna, aktivní vs. pasivní čekání. Race condition, kritická sekce, vzájemné vyloučení, synchronizační primitiva, deadlock a livelock (znalost konceptu). Typická rozhraní pro přístup a práci se soubory a sockety, file descriptory, použití souborového API pro přístup k zařízením v OS, standardní vstup a výstup a jejich přesměrování, roury (pipes) jako meziprocesová komunikace.

Související předměty:

- Principy počítačů (NSWI120)
- Úvod do počítačových sítí (NSWI141)
- Úvod do Linuxu (NSWI177)
- Podle volby programovacího jazyka: Programování v jazyce C# (NPRG035) nebo
 Programování v C++ (NPRG041) nebo Programování v jazyce Java (NPRG013)

2. Studijní plány jednotlivých specializací

Další text je rozčleněn podle jednotlivých specializací. Pro každou specializaci je uveden seznam povinných a povinně volitelných předmětů, doporučený průběh studia a požadavky znalostí ke státní závěrečné zkoušce.

1. Obecná informatika

Garantující pracoviště: Informatický ústav Univerzity Karlovy a Katedra aplikované matematiky

Garant specializace: doc. Mgr. Robert Šámal, Ph.D.

Specializace obecná informatika je určena především studentům se zájmem o důkladné základy informatiky i matematiky, kteří mají v úmyslu po absolvování bakalářského studia pokračovat v navazujícím magisterském studiu. Zároveň je připraví na přímé uplatnění v praxi. Specializace dovoluje studentovi zaměřit se na algoritmy, optimalizaci, na jejich teoretické principy a také na diskrétní matematiku.

Povinné předměty studijního programu Informatika

Povinné předměty společné pro všechny specializace jsou uvedeny v úvodní části.

Povinné předměty specializace

Kód	Název	Kredity	ZS	LS
NPRG005	Neprocedurální programování	5	_	2/2 Z+Zk
NOPT048	Lineární programování	5		2/2 Z+Zk
	a kombinatorická optimalizace			
NMAI055	Matematická analýza 2	5	2/2 Z+Zk	

Povinně volitelné předměty – skupina 1

Podmínkou pro přihlášení ke státní závěrečné zkoušce je získání 30 kreditů za předměty z této skupiny.

Kód	Název	Kredity	ZS	LS
NDMI084	Úvod do aproximačních	5	2/1 Z+Zk	_
	a pravděpodobnostních algoritmů			
NDMI098	Algoritmická teorie her	5	2/2 Z+Zk	
NDMI010	Grafové algoritmy	3	2/0 Zk	
NDMI012	Kombinatorika a grafy 2	5		2/2 Z+Zk
NDMI009	Základy kombinatorické a výpočetní	5	2/2 Z+Zk	
	geometrie			
NOPT046	Diskrétní a spojitá optimalizace	5		2/2 Z+Zk
NMAI062	Algebra 1	5	2/2 Z+Zk	
NMAI063	Algebra 2	3		$2/0 \mathrm{~Zk}$
NMAI056	Matematická analýza 3	5		2/2 Z+Zk
NMAI042	Numerická matematika	5		2/2 Z+Zk
	Pravděpodobnost a statistika 2	5	2/2 Z+Zk	
NAIL063	Teorie množin	3		2/0 Zk
NAIL124	Cvičení z teorie množin	3	_	0/2 Z

Povinně volitelné předměty – skupina 2

Podmínkou pro přihlášení ke státní závěrečné zkoušce je získání 5 kreditů za předměty z této skupiny (tzn. je třeba splnit alespoň jeden předmět z této skupiny).

Kód	Název	Kredity	ZS	LS
NPRG041	Programování v C++	5	2/2 Z+Zk	_
NPRG013	Programování v jazyce Java	5	2/2 Z+Zk	_

NPRG035 Programování v jazyce C#	5	2/2 Z+Zk		
----------------------------------	---	----------	--	--

Povinně volitelné předměty – skupina 3

Podmínkou pro přihlášení ke státní závěrečné zkoušce je získání alespoň 45 kreditů za povinně volitelné předměty všech tří skupin. Samostatný limit pro třetí skupinu není.

Kód	Název	Kredity	ZS	LS
NPFL129	Úvod do strojového učení v Pythonu	5	2/2 Z+Zk	
NPFL054	Úvod do strojového učení v systému R	5	2/2 Z+Zk	
NPGR035	Strojové učení v počítačovém vidění	5	2/2 Z+Zk	
NAIL120	Úvod do umělé inteligence	5		2/2 Z+Zk
NPGR003	Základy počítačové grafiky	5	2/2 Z+Zk	
NPGR002	Digitální zpracování obrazu	4	3/0 Zk	
NPGR038	Základy vývoje počítačových her	5		2/2 Z+Zk
NPFL124	Zpracování přirozeného jazyka	4		2/1 Z+Zk
NPFL012	Úvod do počítačové lingvistiky	3	$2/0 \mathrm{~Zk}$	
NSWI004	Operační systémy	4	2/1 KZ	
NPRG036	Datové formáty	5	<u>.</u>	2/2 Z+Zk
NSWI090	Počítačové sítě	3		2/0 Zk
NSWI143	Architektura počítačů	3	_	2/0 Zk
NDBI007	Databázové přístupové metody	4	2/1 Z+Zk	
	Moderní databázové systémy	5	2/2 Z+Zk	
	Principy překladačů	6	2/2 Z+Zk	
NPRG042	Programování v paralelním prostředí	6	<u>, </u>	2/2 Z+Zk
NSWI142	Programování webových aplikací	5	2/2 Z+Zk	_
	Vývoj vysoce výkonného software	6	<u></u>	2/2 Z+Zk
	Pokročilé programování v C++	5		2/2 Z+Zk
	Pokročilé programování v jazyce	5		2/2 Z+Zk
	Java			
NPRG038	Pokročilé programování v jazyce C#	5		2/2 Z+Zk

Doporučený průběh studia

Doporučený průběh studia zahrnuje všechny povinné předměty a některé další povinně volitelné nebo volitelné předměty. Posluchač si ho musí sám doplnit dalšími povinně volitelnými a volitelnými předměty podle vlastního výběru. Povinné předměty jsou v tabulkách doporučeného průběhu studia vyznačeny tučně, povinně volitelné běžným písmem a volitelné kurzívou.

1. rok studia

Společné pro všechny specializace, viz předchozí část.

2. rok studia

Kód	Název	Kredity	ZS	LS	
NTIN061	Algoritmy a datové struktury 2	5	2/2 Z+Zk		

NDBI025	Databázové systémy	5	2/2 Z+Zk	
Kód	Název	Kredity	ZS	LS
3. rok stu	dia			
	Volitelné předměty			
	Povinně volitelné předměty			
	Povinně volitelný předmět skupiny 1	5		2/2 Z+Zk
NTVY017	Tělesná výchova IV ³	1		$0/2 \mathrm{~Z}$
	Anglický jazyk ²	1		$0/0 \mathrm{\ Zk}$
110112000	pokročilé IV 1	1		0/2 2
NJAZ090	v - v	1		0/1 Z $0/2 Z$
	Ročníkový projekt	$\frac{3}{4}$		$0/1 \mathrm{Z}$
NM 4 1050	Pravděpodobnost a statistika 1	5		2/2 Z+Zk
1101 1040	a kombinatorická optimalizace	0		
	Lineární programování	5		2/2 Z+Zk $2/2$ Z+Zk
	Neprocedurální programování	5		2/2 Z+Zk $2/2$ Z+Zk
NTIN071	· ·	5	0/ 2 Z	${2/2}$ Z+Zk
NTVV016	pokročilé III ¹ Tělesná výchova III ³	1	$0/2 \mathrm{~Z}$	
NJAZ074	3 0 3 0 1	1	$0/2 \mathrm{~Z}$	
	Java/C++/C#		•	
	Programování v jazyce	5	2/2 Z+Zk	
NDMI011	Kombinatorika a grafy 1	5	2/2 Z+Zk	
NMAI055	Matematická analýza 2	5	2/2 Z+Zk	
NAIL062	Výroková a predikátová logika	5	2/2 Z+Zk	

35

14

 $0/4 \ Z$

Doporučené povinně volitelné předměty

NSZZ031 Vypracování a konzultace

bakalářské práce

Volitelné předměty

Povinně volitelné předměty

Pro přípravu ke státním zkouškám, jakož i pro další studium informatiky, doporučujeme zejména následující předměty.

Kód	Název	Kredity	ZS	LS
	Diskrétní a spojitá optimalizace	5		2/2 Z+Zk
NDMI084	Úvod do aproximačních	5	2/1 Z+Zk	
	a pravděpodobnostních algoritmů			
NDMI010	Grafové algoritmy	3	2/0 Zk	

 $^{^1}$ Výuka anglického jazyka NJAZ070, NJAZ072, NJAZ074, NJAZ090 v rozsahu 0/2 v každém semestru je určena pro středně pokročilé a pokročilé. Pro začátečníky a mírně pokročilé jsou určeny předměty NJAZ071, NJAZ073, NJAZ075, NJAZ089 s rozsahem výuky 0/4 v každém semestru.

 $^{^2}$ Zkoušku z anglického jazyka NJAZ091 je možné absolvovat v zimním nebo v letním semestru.

 $^{^3}$ Místo jednoho z předmětů NTVY014, NTVY015, NTVY016 a NTVY017 je možné si zapsat letní výcvikový kurz NTVY018 nebo zimní výcvikový kurz NTVY019. Tyto kurzy může student absolvovat kdykoli v průběhu bakalářského studia.

NDMI009	Základy kombinatorické a výpočetní geometrie	5	2/2 Z+Zk	
	Kombinatorika a grafy 2	5		2/2 Z+Zk
	Teorie množin	3		2/0 Zk
	Algebra 1	5	2/2 Z+Zk	—

Požadavky znalostí ke státní závěrečné zkoušce

V první části studijních plánů programu jsou popsány okruhy státní zkoušky společné pro všechny specializace. Studenti specializace Obecná informatika budou navíc zkoušeni podle rozpisu níže z témat 1.-3. a ze dvou témat vybraných z 4.-7. Výběr těchto dvou témat student oznámí při přihlášení ke státní zkoušce. Pro každou oblast je uveden orientační přehled témat a předměty v rámci specializace, které danou oblast pokrývají. V případě tématického překryvu s požadavky ze společné části závěrečné zkoušky se v rámci specializace očekává hlubší pochopení problematiky. Detailnější přehled požadavků odrážející požadovanou hloubku znalostí bude k dispozici v elektronické podobě v dostatečném předstihu před konáním státní závěrečné zkoušky.

1. Základy sítí

Taxonomie počítačových sítí. Architektura ISO/OSI. Přehled síťového modelu TCP/IP. Směrování. Koncept adresy, portu, socketu. Architektura klient/server. Základy fungování protokolů HTTP, FTP a SMTP.

Související předměty:

Úvod do počítačových sítí (NSWI141)

2. Kombinatorika

Vytvořující funkce. Odhady faktoriálů a kombinačních čísel. Ramseyovy věty. Samoopravné kódy.

Související předměty:

- Kombinatorika a grafy 1 (NDMI011)
- Kombinatorika a grafy 2 (NDMI012)

3. Diferenciální a integrální počet ve více rozměrech

Riemannův integrál. Extrémy funkcí více proměnných. Metrický prostor, otevřené a uzavřené množiny, kompaktnost.

Související předměty:

– Matematická analýza 2 (NMAI055)

4. Optimalizace

Mnohostěny, Minkowského-Weylova věta. Základy lineárního programování, věty o dualitě, metody řešení. Edmondsův algoritmus. Celočíselné programování. Aproximační algoritmy pro kombinatorické problémy (splnitelnost, nezávislé množiny, množinové pokrytí, rozvrhování). Použití lineárního programování pro aproximační algoritmy. Využití pravděpodobnosti při návrhu algoritmů.

Související předměty:

- Lineární programování a kombinatorická optimalizace (NOPT048)
- Diskrétní a spojitá optimalizace (NOPT046)

5. Pokročilé Algoritmy a datové struktury

Výpočetní model RAM. Dynamické programování. Komponenty silné souvislosti orientovaných grafů. Maximální toky: Dinicův a Goldbergův algoritmus. Aplikace toků: disjunktní cesty, párování v bipartitních grafech. Toky a cesty v celočíselně ohodnocených grafech. Vyhledávání v textu: algoritmy Knuth-Morris-Pratt, Aho-Corasicková a Rabin-Karp. Diskrétní Fourierova transformace a její aplikace. Aproximační algoritmy a schémata. Paralelní algoritmy v hradlových a komparátorových sítích.

Související předměty:

- Algoritmy a datové struktury 1 (NTIN060)
- Algoritmy a datové struktury 2 (NTIN061)
- Grafové algoritmy (NDMI010)

6. Geometrie

Základní věty o konvexních množinách (Hellyho, Radonova, o oddělování). Minkowského věta o mřížkách. Konvexní mnohostěny (zákadní vlastnosti, V-mnohostěny, H-mnohostěny, kombinatorická složitost). Geometrická dualita. Voroného diagramy, arrangementy (komplexy) nadrovin, incidence bodů a přímek, základní algoritmy výpočetní geometrie (konstrukce arrangementu přímek v rovině, konstrukce konvexního obalu v rovině).

Související předměty:

Základy kombinatorické a výpočetní geometrie (NDMI009)

7. Pokročilá diskrétní matematika

Barvení grafů (Brooksova a Vizingova věta). Tutteova věta. Extremální kombinatorika (Turánova věta, Erdös-Ko-Radova věta). Kreslení grafů na plochách. Množiny a zobrazení. Subvalence a ekvivalence množin. Dobré uspořádání. Axiom výběru (Zermelova věta, Zornovo lemma).

Související předměty:

- Kombinatorika a grafy 2 (NDMI012)
- Teorie množin (NAIL063)

2. Programování a vývoj software

Garantující pracoviště: Katedra softwarového inženýrství

Garant specializace: RNDr. Filip Zavoral, Ph.D.

Specializace Programování a vývoj software je zaměřena na principy, technologie, jazyky a nástroje využitelné v oblasti návrhu, vývoje a údržby softwarových systémů. Výuka zahrnuje solidní teoretické základy informatiky, principy fungování počítačů a operačních systémů, programovací jazyky, moderní paralelní, mobilní a internetové technologie i metody softwarového inženýrství.

Společné povinné předměty programu Informatika

Povinné předměty společné pro všechny specializace jsou uvedeny v předchozí části.

Povinné předměty specializace

Kód	Název	Kredity	ZS	LS
NSWI004	Operační systémy	4	$2/1~\mathrm{KZ}$	_
NPRG041	Programování v C++	5	2/2 Z+Zk	
NSWI142	Programování webových	5	2/2 Z+Zk	
	aplikací			
NSWI154	Nástroje pro vývoj software	2	$0/2 \mathrm{~Z}$	_
NSWI041	Úvod do softwarového	5	-	2/2 Z+Zk
	inženýrství			
NPRG043	Doporučené postupy	5		$2/2~\mathrm{KZ}$
	v programování			•

Povinně volitelné předměty

Podmínkou pro přihlášení ke státní závěrečné zkoušce je získání celkem 37 kreditů za všechny povinně volitelné předměty.

Povinně volitelné předměty – skupina 1

Podmínkou pro přihlášení ke státní závěrečné zkoušce je získání 5 kreditů za předměty z této skupiny.

Kód	Název	Kredity	ZS	LS
NPRG013	Programování v jazyce Java	5	2/2 Z+Zk	_
NPRG035	Programování v jazyce C#	5	2/2 Z+Zk	

Povinně volitelné předměty – skupina 2

Podmínkou pro přihlášení ke státní závěrečné zkoušce je získání 10 kreditů za předměty z této skupiny.

Kód	Název	Kredity	ZS	LS
NPRG051	Pokročilé programování v C++	5		2/2 Z+Zk
NPRG021	Pokročilé programování v jazyce	5		2/2 Z+Zk
	Java			
NPRG038	Pokročilé programování v jazyce	5		2/2 Z+Zk
	C#			
NSWI153	Pokročilé programování webových	5		2/2 Z+Zk
	aplikací			
NPRG056	Programování mobilních zařízení	3	$0/2 \mathrm{~Z}$	

Povinně volitelné předměty – skupina 3

Podmínkou pro přihlášení ke státní závěrečné zkoušce je získání 10 kreditů za předměty z této skupiny.

Kód	Název	Kredity	ZS	LS
NPRG024	Návrhové vzory	3	_	$0/2~{ m KZ}$
NSWI143	Architektura počítačů	3		2/0 Zk
NPRG036	Datové formáty	5		2/2 Z+Zk
NSWI130	Architektury softwarových systémů	5	2/2 Z+Zk	

NSWI090 Počítačové sítě	3 —	$2/0 \mathrm{~Zk}$
-------------------------	-----	--------------------

Povinně volitelné předměty – skupina 4

Podmínkou pro přihlášení ke státní závěrečné zkoušce je získání 6 kreditů za předměty z této skupiny.

Kód	Název	Kredity	ZS	LS
NSWI098	Principy překladačů	6	2/2 Z+Zk	
NPRG054	Vývoj vysoce výkonného software	6		2/2 Z+Zk
NPRG042	Programování v paralelním	6		2/2 Z+Zk
	prostředí			

Povinně volitelné předměty – skupina 5

Samostatný limit pro skupinu 5 není stanoven. Z této skupiny tedy není nutné absolvovat žádný předmět, pokud je splněn celkový počet 37 kreditů za absolvované předměty z předchozích skupin.

Kód	Název	Kredity	ZS	LS
NPGR038	Základy vývoje počítačových her	5	_	2/2 Z+Zk
NPGR003	Základy počítačové grafiky	5	2/2 Z+Zk	
NDBI007	Databázové přístupové metody	4	2/1 Z+Zk	
NDBI040	Moderní databázové systémy	5	2/2 Z+Zk	
NSWI162	Sémantika programů	1	$0/1 \mathrm{~Z}$	
NSWI163	Úvod do middleware	1	0/1 KZ	
NPFL129	Úvod do strojového učení	5	2/2 Z+Zk	
	v Pythonu			
NAIL120	Úvod do umělé inteligence	5	_	2/2 Z+Zk
NPRG005	Neprocedurální programování	5	_	2/2 Z+Zk
NMAI055	Matematická analýza 2	5	2/2 Z+Zk	<u>.</u>

Doporučený průběh studia

Doporučený průběh studia zahrnuje všechny povinné předměty a některé další povinně volitelné nebo volitelné předměty. Posluchač si ho musí sám doplnit dalšími povinně volitelnými a volitelnými předměty podle vlastního výběru. Povinné předměty jsou v tabulkách doporučeného průběhu studia vyznačeny tučně, povinně volitelné běžným písmem a volitelné kurzívou.

1. rok studia

Společné pro všechny specializace, viz předchozí část.

2. rok studia

Kód	Název	Kredity	ZS	LS
	Programování v jazyce	5	2/2 Z+Zk	_
	Java/C++/C#			
NDBI025	Databázové systémy	5	2/2 Z+Zk	
NSWI142	Programování webových	5	2/2 Z+Zk	
	aplikací			
NTIN061	Algoritmy a datové struktury 2	5	2/2 Z+Zk	

NDMI011	Výroková a predikátová logika Kombinatorika a grafy 1 Anglický jazyk pro středně pokročilé III ¹	5 5 1	2/2 Z+Zk 2/2 Z+Zk 0/2 Z	
NTVY016	Tělesná výchova III ³	1	$0/2 \mathrm{~Z}$	_
	Pokročilé programování v jazyce Java/C++/C#	5	_	2/2 Z+Zk
NTIN071	Automaty a gramatiky	5	_	2/2 Z+Zk
NMAI059	Pravděpodobnost a statistika 1	5	_	2/2 Z+Zk
NPRG045	Ročníkový projekt	4		$0/1 \mathrm{Z}$
NJAZ090	Anglický jazyk pro středně pokročilé IV ²	1	_	0/2 Z
NJAZ091	Anglický jazyk ²	1		0/0 Zk
NTVY017	Tělesná výchova IV ³ Povinně volitelné předměty Volitelné předměty	1	_	0/2 Z

3. rok studia

Kód	Název	Kredity	ZS	LS
	Programování v jazyce Java/C++/C# ⁴	5	2/2 Z+Zk	
	Pokročilé programování v jazyce Java/C++/C# 4	5		2/2 Z+Zk
NSWI098	Principy překladačů ⁵	6	2/2 Z+Zk	
NPRG054	Vývoj vysoce výkonného software ⁵	6	<u></u>	2/2 Z+Zk
NPRG042	Programování v paralelním prostředí ⁵	6	_	2/2 Z+Zk
NSZZ031	Vypracování a konzultace bakalářské práce	6	_	$0/4~\mathrm{Z}$
	Povinně volitelné předměty Volitelné předměty			

 $^{^1}$ Výuka anglického jazyka NJAZ070, NJAZ072, NJAZ074, NJAZ090 v rozsahu 0/2 v každém semestru je určena pro středně pokročilé a pokročilé. Pro začátečníky a mírně pokročilé jsou určeny předměty NJAZ071, NJAZ073, NJAZ075, NJAZ089 s rozsahem výuky 0/4 v každém semestru.

Požadavky znalostí ke státní závěrečné zkoušce

1. Architektura počítačů, operačních systémů a sítí

Organizace paměti za běhu programů. Paměťová reprezentace polí, struktur a tříd. Cache a její vliv na výkonnost, NUMA. Virtuální paměť. Provádění instrukcí proce-

² Zkoušku z anglického jazyka NJAZ091 je možné absolvovat v zimním nebo v letním semestru.

 $^{^3}$ Místo jednoho z předmětů NTVY014, NTVY015, NTVY016 a NTVY017 je možné si zapsat letní výc
vikový kurz NTVY018 nebo zimní výcvikový kurz NTVY019. Tyto kurzy může student absolvovat k
dykoli v průběhu bakalářského studia.

 $^{^4}$ Studenti si ve 3. ročníku typicky zapisují ten z vybraných programovacích jazyků, který neabsolvovali v 2. ročníku.

⁵ Pro splnění předepsaného počtu kreditů je nutné absolvovat alespoň jeden z těchto předmětů. Předměty je vhodné kvůli návaznostem absolvovat ve 3. ročníku.

sorem. Procesy a vlákna, přepínání kontextu, irq, asynchronní I/O. Multicore, multisocket. Síťová, linková a transportni vrstva. Propojování, VLAN. Adresování v TCP/IP.

Pokryto přednáškami

- NSWI120 Principy počítačů
- NSWI170 Počítačové systémy
- NSWI143 Architektura počítačů
- NSWI090 Počítačové sítě

2. Programovací jazyky

Životnost objektů. Komponenty, dependency injection. Paralelní programování, vlákna. Ošetření chyb, výjimky. Reflexe a introspekce. Principy dynamických jazyků. Funkcionální prvky objektových jazyků. Statický vs. dynamický polymorfismus, generické programování, typová dedukce. Standardní knihovny. Návrhové vzory. Principy WWW, HTTP, URL. Statické webové stránky. Principy webových aplikací. Programování na straně klienta. API webových aplikací.

Pokryto přednáškami

- NSWI170 Počítačové systémy
- Programování v jazyce Java/C++/C#
- Pokročilé programování v jazyce Java/C++/C#
- NSWI142 Programování webových aplikací
- NPRG024 Návrhové vzory

3. Softwarové inženýrství

Procesy vývoje software, analýza požadavků, testování, údržba, analýza rizik. Správa verzí. Sestavování. Měření výkonnosti. Návrh API, tříd a metod, objektový návrh. Základy bezpečnosti webových aplikací.

Pokryto přednáškami

- NSWI041 Úvod do softwarového inženýrství
- NPRG043 Doporučené postupy v programování
- NSWI154 Nástroje pro vývoj software
- NSWI130 Architektury softwarových systémů

4. Databáze

Architektury databázových systémů. Normální formy. Návrh db schématu, klíče, indexy, integritní omezení. Transakční zpracování, vlastnosti transakcí. SQL - běžné příkazy, vnořené dotazy. SQL procedury a funkce, triggery. NoSQL databáze.

Pokryto přednáškami

- NDBI025 Databázové systémy
- NDBI007 Databázové přístupové metody
- NDBI040 Moderní databázové koncepty

3. Systémové programování

Garantující pracoviště: Katedra distribuovaných a spolehlivých systémů Garant specializace: doc. Ing. Lubomír Bulej, Ph.D.

Specializace Systémové programování je zaměřena na pochopení principů a rozvoj znalostí a dovedností potřebných pro návrh, vývoj a údržbu efektivního systémového software, který poskytuje základní stavební prvky pro software aplikační. Tematické okruhy proto zahrnují architektury počítačů, operační systémy, paralelní a distribuované systémy a middleware. Důraz je kladen také na hlubší znalost moderních programovacích jazyků používaných pro vývoj systémového software a schopnost používat moderní vývojové nástroje a postupy.

Společné povinné předměty programu Informatika

Povinné předměty společné pro všechny specializace jsou uvedeny v předchozí části.

Povinné předměty specializace

Kód	Název	Kredity	ZS	LS
NSWI004	Operační systémy	4	2/1 KZ	_
NPRG041	Programování v C++	5	2/2 Z+Zk	
NSWI143	Architektura počítačů	3		$2/0 \mathrm{~Zk}$
NSWI098	Principy překladačů	6	2/2 Z+Zk	
NSWI163	Úvod do middleware	1	$0/1 \mathrm{~KZ}$	
NSWI162	Sémantika programů	1	$0/1 \mathrm{~Z}$	
NPRG054	Vývoj vysoce výkonného	6		2/2 Z+Zk
	software			
NPRG042	Programování v paralelním	6		2/2 Z+Zk
	prostředí			•
NSWI090	Počítačové sítě	3	_	2/0 Zk

Povinně volitelné předměty

Podmínkou pro přihlášení ke státní závěrečné zkoušce je získání celkem 27 kreditů za všechny povinně volitelné předměty.

Povinně volitelné předměty – skupina 1

Podmínkou pro přihlášení ke státní závěrečné zkoušce je získání 5 kreditů za předměty z této skupiny.

Kód	Název	Kredity	ZS	LS
NPRG035	Programování v jazyce C#	5	2/2 Z+Zk	_
NPRG013	Programování v jazyce Java	5	2/2 Z+Zk	

Povinně volitelné předměty – skupina 2

Podmínkou pro přihlášení ke státní závěrečné zkoušce je získání 5 kreditů za předměty z této skupiny.

Kód	Název	Kredity	ZS	LS
	Pokročilé programování v C++ Pokročilé programování v jazyce C#	5 5	_	$\frac{2/2 \text{ Z+Zk}}{2/2 \text{ Z+Zk}}$

NPRG021 Pokročilé programování v jazyce	5	 $2/2 \mathrm{~Z+Zk}$
Java		

Povinně volitelné předměty – skupina 3

Podmínkou pro přihlášení ke státní závěrečné zkoušce je získání 7 kreditů za předměty z této skupiny.

Kód	Název	Kredity	ZS	LS
NSWI154	Nástroje pro vývoj software	2	0/2 Z	
NPRG043	Doporučené postupy	5		$2/2~\mathrm{KZ}$
	v programování			
NPRG024	Návrhové vzory	3		$0/2~\mathrm{KZ}$
NSWI041	Úvod do softwarového inženýrství	5		2/2 Z+Zk
NSWI054	Softwarové inženýrství pro spolehlivé	3		$0/2 \mathrm{~Z}$
	systémy			
NSWI130	Architektury softwarových systémů	5	2/2 Z+Zk	

Povinně volitelné předměty – skupina 4

Podmínkou pro přihlášení ke státní závěrečné zkoušce je získání 10 kreditů za předměty z této skupiny.

Kód Název	Kredity	ZS	LS
NMAI055 Matematická analýza 2	5	2/2 Z+Zk	
NPRG005 Neprocedurální programov	vání 5		2/2 Z+Zk
NPFL054 Úvod do strojového učení	v systému 5	2/2 Z+Zk	
R			
NPFL129 Úvod do strojového učení	5	2/2 Z+Zk	
v Pythonu		•	
NAIL120 Úvod do umělé inteligence	= 5	_	2/2 Z+Zk
NPGR035 Strojové učení v počítačov		2/2 Z+Zk	<u>.</u>
NPGR002 Digitální zpracování obraz	u 4	3/0 Zk	
NPGR036 Počítačové vidění	5	<u>.</u>	2/2 Z+Zk
NPGR003 Základy počítačové grafiky	y 5	2/2 Z+Zk	
NPGR019 Realtime grafika na GPU	5	<u> </u>	2/2 Z+Zk
NAIL028 Úvod do robotiky	5	2/2 Z+Zk	
NPRG037 Programování mikrokontro	olerů 5	2/2 Z+Zk	
NPGR038 Základy vývoje počítačový	ych her 5		2/2 Z+Zk

Doporučený průběh studia

Doporučený průběh studia zahrnuje všechny povinné předměty a některé další povinně volitelné nebo volitelné předměty. Posluchač si ho musí sám doplnit dalšími povinně volitelnými a volitelnými předměty podle vlastního výběru. Povinné předměty jsou v tabulkách doporučeného průběhu studia vyznačeny tučně, povinně volitelné běžným písmem a volitelné kurzívou.

1. rok studia

Doporučený průběh je společný pro všechny specializace, viz předchozí část.

2. rok studia					
Kód	Název	Kredity	ZS	LS	
NTIN061	Algoritmy a datové struktury 2	5	2/2 Z+Zk	_	
NDBI025	Databázové systémy	5	2/2 Z+Zk		
NAIL062	Výroková a predikátová logika	5	2/2 Z+Zk		
NSWI004	Operační systémy	4	2/1 KZ		
NPRG041	Programování v C++	5	2/2 Z+Zk		
	Programování v jazyce C#/Java	5	2/2 Z+Zk		
NTVY016	Tělesná výchova III ³	1	$0/2 \mathrm{Z}$		
NJAZ074	Anglický jazyk pro středně pokročilé III ¹	1	$0/2 \mathrm{~Z}$	_	
NTIN071	Automaty a gramatiky	5		2/2 Z+Zk	
NMAI059	Pravděpodobnost a statistika 1	5		2/2 Z+Zk	
NSWI143	Architektura počítačů	3		$2/0 \mathrm{Zk}$	
	Pokročilé programování v jazyce C++/C#/Java	5	_	2/2 Z+Zk	
	Povinně volitelné předměty				
NTVY017	Tělesná výchova IV ³	1		$0/2 \mathrm{~Z}$	
NJAZ090	Anglický jazyk pro středně pokročilé IV ¹	1	_	0/2 Z	
NJAZ091	Anglický jazyk 2	1	_	$0/0 \mathrm{~Zk}$	
3. rok stud	dia				
		TZ 114	70	TC	
Kód	Název	Kredity		LS	
	Kombinatorika a grafy 1	5	2/2 Z+Zk		
	Principy překladačů	6	2/2 Z+Zk		
	Úvod do middleware	1	$0/1~\mathrm{KZ}$		
	Sémantika programů	1	$0/1 \mathrm{~Z}$		
NPRG045	Ročníkový projekt	4	$0/1 \mathrm{~Z}$		
	Povinně volitelné předměty				
	Volitelné předměty				
	Počítačové sítě	3		$2/0 \mathrm{\ Zk}$	
NPRG054	Vývoj vysoce výkonného software	6	_	2/2 Z+Zk	
NPRG042	Programování v paralelním prostředí	6	_	2/2 Z+Zk	
NSZZ031	Vypracování a konzultace	6		$0/4 \mathrm{~Z}$	
	bakalářské práce			•	
	Povinně volitelné předměty Volitelné předměty				

 $^{^1}$ Výuka anglického jazyka NJAZ070, NJAZ072, NJAZ074, NJAZ090 v rozsahu 0/2 v každém semestru je určena pro středně pokročilé a pokročilé. Pro začátečníky a mírně pokročilé jsou určeny předměty NJAZ071, NJAZ073, NJAZ075, NJAZ089 s rozsahem výuky 0/4 v každém semestru.

 $^{^2}$ Zkoušku z anglického jazyka NJAZ091 je možné absolvovat v zimním nebo v letním semestru.

 3 Místo jednoho z předmětů NTVY014, NTVY015, NTVY016 a NTVY017 je možné si zapsat letní výcvikový kurz NTVY018 nebo zimní výcvikový kurz NTVY019. Tyto kurzy může student absolvovat kdykoli v průběhu bakalářského studia.

Požadavky znalostí ke státní závěrečné zkoušce

V první části studijních plánů programu jsou popsány okruhy státní zkoušky společné pro všechny specializace. Studenti specializace Systémové programování budou navíc zkoušeni v rámci tématických oblastí uvedených níže. Pro každou oblast je uveden orientační přehled témat a předměty v rámci specializace, které danou oblast pokrývají. V případě tématického překryvu s požadavky ze společné části závěrečné zkoušky se v rámci specializace očekává hlubší pochopení problematiky. Detailnější přehled požadavků odrážející požadovanou hloubku znalostí bude k dispozici v elektronické podobě v dostatečném předstihu před konáním státní závěrečné zkoušky.

1. Architektura počítačů

Výkonnost počítače a procesoru, metriky a omezení. Zpracování instrukcí procesorem, paralelismus, predikce a spekulace. Architektura paměťového subsystému, architektura cache. Multi-core a multi-socket systémy, koherence cache. Komunikace se zařízeními.

Související předměty:

Architektura počítačů (NSWI143)

2. Operační systémy

Správa procesů a vláken, plánování, komunikace, synchronizace. Správa paměti, stránkování, správa paměti uvnitř procesů, sdílení paměti. Souborové systémy, koncepty a rozhraní, typické diskové struktury. Správa periferií, ovladače zařízení.

Související předměty:

Operační systémy (NSWI004)

3. Počítačové sítě

Linková vrstva, adresace v Ethernetu, VLAN. Síťová vrstva, adresace v IPv4 a IPv6, statické směrování, NAT, IP tunely, VPN. Transportní vrstva, adresace v TCP a UDP, spolehlivost, řízení toku. Aplikační rozhraní a abstrakce pro síťovou komunikaci. Zabezpečení komunikace, autentizace, šifrování.

Související předměty:

Počítačové sítě (NSWI090)

4. Překladače a programovací jazyky

Architektura překladače, AOT a JIT překlad. Vnitřní reprezentace programu. Optimalizace programu překladačem. Generování kódu pro cílový procesor.

Související předměty:

Principy překladačů (NSWI098)

Správa paměti v běhových prostředích, životní cyklus objektů. Polymorfismus, generické programování, typová inference. Významné prvky standardních knihoven a jejich aplikace.

Související předměty:

Témata jsou pokryta povinnými a povinně volitelnými předměty zaměřenými na programovací jazyky. V rámci specializace je nutné absolvovat minimálně 3 takové předměty:

- Programování v C++ (NPRG041)
- V rámci PV předmětů skupiny 1: Programování v jazyce Java (NPRG013) nebo Programování v jazyce C# (NPRG035).
- V rámci PV předmětů skupiny 2: Pokročilé programování v C++ (NPRG051) nebo Pokročilé programování v jazyce Java (NPRG021) nebo Pokročilé programování v jazyce C# (NPRG038).

5. Návrh a tvorba software

Principy objektového návrhu, návrh API, tříd a metod, návrhové vzory.

Související předměty:

Téma prostupuje řadou povinných a povinně volitelných předmětů zaměřených na programování. Specificky v tomto případě se očekává doplnění znalostí absolvováním vhodné kombinace PV předmětů ze skupiny 3.

- Doporučené postupy v programování (NPRG043) nebo Návrhové vzory (NPRG024)
- Úvod do softwarového inženýrství (NSWI041) nebo Architektury softwarových systémů (NSWI054) nebo Softwarové inženýrství pro spolehlivé systémy (NSWI054)

Paralelní programování, paměťový model, atomické operace a neblokující datové struktury.

Související předměty:

– Programování v paralelním prostředí (NPRG042)

Správa verzí, systémy pro sestavování software, nástroje pro testování software.

Související předměty:

Nástroje pro vývoj software (NSWI154)

V rámci specializace se očekává, že získání potřebných znalostí a dovedností v této oblasti bude primárně výsledkem absolvování předmětů, u kterých je tvorba programů důležitým aspektem hodnocení. Základem jsou povinné a povinně volitelné předměty (skupiny 1 a 2) věnované programovacím jazykům doplněné o vhodný výběr povinně volitelných předmětů ze skupiny 3.

4. Databáze a web

Garantující pracoviště: Katedra softwarového inženýrství

Garant specializace: Prof. RNDr. Tomáš Skopal, Ph.D.

Specializace Databáze a web nabízí škálu předmětů zaměřených na databázové a webové metody a technologie, analýzu dat, databázovou administraci, programování a vývoj tradičních, webových, databázových a datově intenzivních aplikací. Důraz je

kladen na relační i nerelační databáze, analýzu sociálních sítí, webové a multimediální vyhledávače, metody extrakce vlastností z dat. Vedle tohoto profilujícího zaměření nabízí specializace také tradiční informatický základ, který absolventa připraví na navazující magisterské studium informatiky.

Společné povinné předměty programu Informatika

Povinné předměty společné pro všechny specializace jsou uvedeny v předchozí části.

Povinné předměty specializace

Kód	Název	Kredity	ZS	LS
NSWI142	Programování webových	5	2/2 Z+Zk	
	aplikací			
NDBI026	Databázové aplikace	4		1/2 KZ
NDBI007	Databázové přístupové metody	4	2/1 Z+Zk	
NDBI040	Moderní databázové systémy	5	2/2 Z+Zk	
NSWI153	Pokročilé programování	5		2/2 Z+Zk
	webových aplikací			
NPRG036	Datové formáty	5		2/2 Z+Zk
NDBI046	Datový management	5		2/2 Z+Zk
NDBI038	Vyhledávání na webu	4		2/1 Z+Zk

Povinně volitelné předměty – skupina 1

Podmínkou pro přihlášení ke státní závěrečné zkoušce je získání 15 kreditů za předměty z této skupiny.

Kód	Název	Kredity	ZS	LS
NPRG041	Programování v C++	5	2/2 Z+Zk	
NPRG013	Programování v jazyce Java	5	2/2 Z+Zk	
NPRG035	Programování v jazyce C#	5	2/2 Z+Zk	
NPRG051	Pokročilé programování v C++	5		2/2 Z+Zk
NPRG021	Pokročilé programování v jazyce	5		2/2 Z+Zk
	Java			
NPRG038	Pokročilé programování v jazyce	5		2/2 Z+Zk
	C#			
NPRG005	Neprocedurální programování	5		2/2 Z+Zk

Povinně volitelné předměty – skupina 2

Podmínkou pro přihlášení ke státní závěrečné zkoušce je získání 6 kreditů za předměty z této skupiny.

Kód	Název	Kredity	ZS	LS
NSWI004	Operační systémy	4	$2/1~\mathrm{KZ}$	_
NPFL054	Úvod do strojového učení v systému	5	2/2 Z+Zk	
	R			
NDBI045	Vyhledávání a explorace ve videu	5		2/2 Z+Zk
NDBI037	Informační modely s uspořádáním	4	2/1 Z+Zk	
NDBI013	Administrace Oracle	2		$0/2 \mathrm{~Z}$

Povinně volitelné předměty – skupina 3

Podmínkou pro přihlášení ke státní závěrečné zkoušce je získání 3 kredity za předměty z této skupiny.

Kód	Název	Kredity	ZS	LS
NMAI055	Matematická analýza 2	5	2/2 Z+Zk	
NPRG056	Programování mobilních zařízení	3	$0/2 \mathrm{~Z}$	
NAIL120	Úvod do umělé inteligence	5		2/2 Z+Zk
NSWI130	Architektury softwarových systémů	5	2/2 Z+Zk	
NSWI090	Počítačové sítě	3		$2/0 \mathrm{~Zk}$
NPGR036	Počítačové vidění	5		2/2 Z+Zk
NPGR002	Digitální zpracování obrazu	4	3/0 Zk	
NAIL121	Seminář dobývání znalostí	4		$1/2 \mathrm{KZ}$
NPGR035	Strojové učení v počítačovém vidění	5	2/2 Z+Zk	

Doporučený průběh studia

Doporučený průběh studia zahrnuje všechny povinné předměty a některé další povinně volitelné nebo volitelné předměty. Posluchač si ho musí sám doplnit dalšími povinně volitelnými a volitelnými předměty podle vlastního výběru. Povinné předměty jsou v tabulkách doporučeného průběhu studia vyznačeny tučně, povinně volitelné běžným písmem a volitelné kurzívou.

1. rok studia

Společné pro všechny specializace, viz předchozí část.

2. rok studia

Kód	Název	Kredity	ZS	LS
	Programování v jazyce	5	2/2 Z+Zk	_
	Java/C++/C#			
NDBI025	Databázové systémy	5	2/2 Z+Zk	
NSWI142	Programování webových	5	2/2 Z+Zk	
	aplikací			
NTIN061	Algoritmy a datové struktury 2	5	2/2 Z+Zk	
NAIL062	Výroková a predikátová logika	5	2/2 Z+Zk	
NDMI011	Kombinatorika a grafy 1	5	2/2 Z+Zk	
NJAZ074	0 00 0 1	1	$0/2 \mathrm{~Z}$	
	pokročilé III ²			
NTVY016	Tělesná výchova III ⁴	1	$0/2 \mathrm{~Z}$	
NSWI153	Pokročilé programování	5		2/2 Z+Zk
	webových aplikací			
NTIN071	Automaty a gramatiky	5		2/2 Z+Zk
NMAI059	Pravděpodobnost a statistika 1	5		2/2 Z+Zk
NPRG045	Ročníkový projekt	4		$0/1 \mathrm{~Z}$
NJAZ090	Anglický jazyk pro středně	1	_	$0/2 \mathrm{Z}$
	pokročilé IV ²			
NJAZ091	${f Anglick\acute{y}\ jazyk}\ ^3$	1		$0/0 \mathrm{~Zk}$
NTVY017	Tělesná výchova IV ⁴	1		$0/2 \mathrm{Z}$

Povinně volitelné předměty Volitelné předměty

3. rok studia					
$\operatorname{K\'{o}d}$	Název	Kredity	ZS	LS	
NDBI026	Databázové aplikace	4	_	1/2 KZ	
NDBI007	Databázové přístupové metody	4	2/1 Z+Zk		
NDBI040	Moderní databázové systémy	5	2/2 Z+Zk		
NPRG036	Datové formáty	5		2/2 Z+Zk	
NDBI046	Datový management	5		2/2 Z+Zk	
NDBI038	Vyhledávání na webu	4		2/1 Z+Zk	
NSZZ031	Vypracování a konzultace	6		$0/4 \mathrm{~Z}$	
	bakalářské práce				
	Povinně volitelné předměty				
	Volitelné předměty				

 $^{^2}$ Výuka anglického jazyka NJAZ070, NJAZ072, NJAZ074, NJAZ090 v rozsahu 0/2 v každém semestru je určena pro středně pokročilé a pokročilé. Pro začátečníky a mírně pokročilé jsou určeny předměty NJAZ071, NJAZ073, NJAZ075, NJAZ089 s rozsahem výuky 0/4 v každém semestru.

Požadavky znalostí ke státní závěrečné zkoušce

1. Databáze

Architektury databázových systémů. Konceptuální, logická a fyzická úroveň pohledů na data. Algoritmy návrhu schémat relací, normální formy, referenční integrita. Důvody pro normalizaci relací. Transakční zpracování, vlastnosti transakcí, uzamykací protokoly, zablokování. Řešení problému uváznutí v databázi. Izolace transakcí v SQL. Konceptuální modelování. Rámcově převod konceptuálního modelu na (relační) logický datový model. Přehled SQL. Základní dotazy. Seskupování dat a agregace. Spojování tabulek. Vnořené dotazy, operátory, testy na NULL hodnotu. Uložené procedury, triggery, funkce. Moderní databázové koncepty. MapReduce - princip, vlastnosti, kritika, alternativní přístupy. NoSQL databáze. Grafové databáze. Data s více modely. Multimodel databáze. Polystores. Jazyk SQL v prostředí Big Data. NewSQL databáze.

Pokryto přednáškami

- NDBI025 Databázové systémy
- NDBI026 Databázové aplikace
- NDBI040 Moderní databázové koncepty

2. Datový management

Datové formáty. Základní typy strukturovaných dat, příklady užití. Formáty pro tabulková data, schémata, jazyky pro transformaci dat. Formáty pro stromová a grafová data, schémata, jazyky pro transformaci dat. Formáty pro geodata. Základy grafických a multimediálních formátů. Sémantický popis dat, slovníky. Procesy zpracování dat. Předzpracování dat. Katalogizace dat, metadata. Kódování a komprese dat. Základy šifrování dat. Základy indexování. Typy organizace souborů, přímé/nepřímé indexování,

³ Zkoušku z anglického jazyka NJAZ091 je možné absolvovat v zimním nebo v letním semestru.

⁴ Místo jednoho z předmětů NTVY014, NTVY015, NTVY016 a NTVY017 je možné si zapsat letní výcvikový kurz NTVY018 nebo zimní výcvikový kurz NTVY019. Tyto kurzy může student absolvovat kdykoli v průběhu bakalářského studia.

primární/sekundární index. Hashování na vnější paměti. Cormack, Larson Kalja, Faginovo rozšiřitelné hashování, Lineární hashování. Hierarchické indexování. Indexování v prostorových databázích, prostorové spojení, prostorové dotazování.

Pokryto přednáškami

- NPRG036 Datové formáty
- NDBI046 Datový management
- NDBI007 Databázové přístupové metody

3. Web

World Wide Web. Základní principy www, chápání webu jako distribuované databáze a jako aplikační platformy. Tvorba statických webových stránek. Principy a syntax značkovacích jazyků a jejich interpretace prohlížečem (vizualizace, DOM). Ovlivňování vzhledu webové stránky pomocí CSS. Základy interakce s uživatelem. Architektury a základní principy webových aplikací. CGI a CGI-like aplikace. AJAX, Single-page aplikace, souvislost s REST API, klasické přístupy k návrhu SPA a udržování stavu aplikace. Návaznost na protokol HTTP, udržování uživatelské relace, cookies. Nejpoužívanější návrhové vzory a techniky. Programování na straně klienta. Základní syntaxe JavaScriptu, principy prototypového OOP, funkcionální konstrukce. Práce s DOM. Zpracování událostí v DOM, event driven model, asynchronní programování v JavaScriptu. Standardní API v prohlížeči. API webových aplikací. Způsob návrhu REST API, OpenAPI. Webové služby. WebSocket, WebRTC. Základy bezpečnosti webových aplikací. Autentizace, Autorizace, příklady bezpečnostních modelů. Šifrování, hašovací funkce a jejich použití v rámci web aplikací. Vyhledávání na webu. Booleovské a vektorové modely, word2vec. Vyhledávání v hypertextu, ranking, PageRank, optimalizace webových stránek pro vyhledávače. Podobnostní vyhledávání v multimediálních databázích. Metrické indexování podobnosti.

Pokryto přednáškami

- NSWI142 Programování webových aplikací
- NSWI153 Pokročilé programování webových aplikací
- NDBI038 Vyhledávání na webu

5. Umělá inteligence

Garantující pracoviště: Katedra teoretické informatiky a matematické logiky Garant specializace: Prof. RNDr. Roman Barták, Ph.D.

Specializace Umělá inteligence klade důraz na propojení základních teoretických znalostí informatiky s jejich praktickým využitím při návrhu systémů pro řešení komplexních úloh, jako je automatické rozhodování, plánování a rozvrhování akcí, zpracování přirozeného jazyka, textové, obrazové a multimediální informace, strojové učení, zpracování velkých dat, vytěžování znalostí z dat, autonomní robotika a počítačové vidění. Vychází z porozumění základních principů počítačových systémů založených na matematických a logických základech a zahrnuje jejich praktické využití při návrhu inteligentních systémů.

Studijní specializace Umělá inteligence nabízí následující zaměření:

- Robotika
- Strojové učení
- Zpracování přirozeného jazyka

Pro všechna zaměření platí stejné podmínky studia, stejné povinné a povinně volitelné předměty a společný první zkušební okruh bakalářské státní závěrečné zkoušky. Jednotlivá zaměření pak mají vlastní zkušební okruh přizpůsobený požadavkům svých disciplin.

Společné povinné předměty programu Informatika

Povinné předměty společné pro všechny specializace jsou uvedeny v předchozí části.

Povinné předměty specializace

Kód	Název	Kredity	ZS	LS
NAIL120	Úvod do umělé inteligence	5	_	2/2 Z+Zk
NPRG005	Neprocedurální programování	5		2/2 Z+Zk
NMAI055	Matematická analýza 2	5	2/2 Z+Zk	

Povinně volitelné předměty – skupina 1

Podmínkou pro přihlášení ke státní závěrečné zkoušce je získání 25 kreditů za předměty z této skupiny.

$\operatorname{K\'{o}d}$	Název	Kredity	ZS	LS
NAIL028	Úvod do robotiky	5	2/2 Z+Zk	_
NPGR002	Digitální zpracování obrazu	4	3/0 Zk	
NPGR036	Počítačové vidění	5	<u> </u>	2/2 Z+Zk
NPFL054	Úvod do strojového učení v systému	5	2/2 Z+Zk	
	R			
NPFL129	Úvod do strojového učení	5	2/2 Z+Zk	
	v Pythonu			
NPGR035	Strojové učení v počítačovém vidění	5	2/2 Z+Zk	
NAIL121	Seminář dobývání znalostí	4	<u> </u>	1/2 KZ
NDMI098	Algoritmická teorie her	5	2/2 Z+Zk	
NPFL012	Úvod do počítačové lingvistiky	3	$2/0 \mathrm{Zk}$	
NPFL125	Zpracování textu v UNIXu	3	$0/2 \mathrm{~KZ}$	
NPFL124	Zpracování přirozeného jazyka	4		2/1 Z+Zk
NPFL101	Soutěžní strojový překlad	3	$0/2 \mathrm{~Z}$	
NPFL123	Dialogové systémy	5		2/2 Z+Zk
NAIL119	Přírodou inspirované algoritmy	5	_	2/2 Z+Zk

Povinně volitelné předměty – skupina 2

Podmínkou pro přihlášení ke státní závěrečné zkoušce je získání 10 kreditů za předměty z této skupiny.

Kód	Název	Kredity	ZS	LS
NPRG041	Programování v C++	5	2/2 Z+Zk	_
NPRG013	Programování v jazyce Java	5	2/2 Z+Zk	
NPRG035	Programování v jazyce C#	5	2/2 Z+Zk	_

Povinně volitelné předměty – skupina 3

Podmínkou pro přihlášení ke státní závěrečné zkoušce je získání 10 kreditů za předměty z této skupiny.

Kód	Název	Kredity	ZS	LS
NPRG051	Pokročilé programování v C++	5	_	2/2 Z+Zk
NPRG021	Pokročilé programování v jazyce	5	_	2/2 Z+Zk
	Java			
NPRG038	Pokročilé programování v jazyce	5		2/2 Z+Zk
	C#			
NPRG042	Programování v paralelním	6		2/2 Z+Zk
	prostředí			
NPRG036	Datové formáty	5		2/2 Z+Zk
	Pravděpodobnost a statistika 2	5	2/2 Z+Zk	
	Vyhledávání a explorace ve videu	5		2/2 Z+Zk
	Diskrétní a spojitá optimalizace	5		2/2 Z+Zk
	Základy vývoje počítačových her	5		2/2 Z+Zk
NPRG037	Programování mikrokontrolerů	5	2/2 Z+Zk	

Doporučený průběh studia

Doporučený průběh studia zahrnuje všechny povinné předměty a některé další povinně volitelné nebo volitelné předměty. Posluchač si ho musí sám doplnit dalšími povinně volitelnými a volitelnými předměty podle vlastního výběru. Povinné předměty jsou v tabulkách doporučeného průběhu studia vyznačeny tučně, povinně volitelné běžným písmem a volitelné kurzívou.

1. rok studia

Společné pro všechny specializace, viz předchozí část.

2. rok studia

Kód	Název	Kredity	ZS	LS
NAIL062	Výroková a predikátová logika	5	2/2 Z+Zk	
NTIN061	Algoritmy a datové struktury 2	5	2/2 Z+Zk	
NDMI011	Kombinatorika a grafy 1	5	2/2 Z+Zk	
NMAI055	Matematická analýza 2	5	2/2 Z+Zk	
NAIL028	Úvod do robotiky	5	2/2 Z+Zk	
NPRG041	Programování v C++	5	2/2 Z+Zk	
NJAZ074	Anglický jazyk pro středně	1	$0/2 \mathrm{~Z}$	
	pokročilé III ¹			
NTVY016	Tělesná výchova III ³	1	$0/2 \mathrm{~Z}$	
NTIN071	Automaty a gramatiky	5		2/2 Z+Zk
NMAI059	Pravděpodobnost a statistika 1	5		2/2 Z+Zk
NPRG045	Ročníkový projekt	4		$0/1 \mathrm{~Z}$
NPRG051	Pokročilé programování v C++	5		2/2 Z+Zk
NAIL120	Úvod do umělé inteligence	5		2/2 Z+Zk
NPRG005	Neprocedurální programování	5		2/2 Z+Zk
NJAZ090	Anglický jazyk pro středně pokročilé IV ¹	1	_	$0/2 \mathrm{~Z}$

NJAZ091 Anglický jazyk ² NTVY017 Tělesná výchova IV ³	1 1	_ _	$0/0~{ m Zk} \ 0/2~{ m Z}$
Povinně volitelné předměty			
$Voliteln\'e~p\'redm\'ety$			

3. rok studia Kód Název Kredity ZS LS NDBI025 Databázové systémy 5 2/2 Z+Zk NPFL054 Úvod do strojového učení v systému 5 2/2 Z+Zk NPFL129 Úvod do strojového učení 5 2/2 Z+Zk v Pythonu NPRG013 Programování v jazyce Java 2/2 Z+Zk 5 NPFL012 Úvod do počítačové lingvistiky 3 $2/0 \mathrm{Zk}$ NPGR036 Počítačové vidění 5 2/2 Z+Zk NAIL121 Seminář dobývání znalostí 4 1/2 KZNPFL124 Zpracování přirozeného jazyka 2/1 Z+ZkNPRG036 Datové formáty 5 2/2 Z+Zk NSZZ031 Vypracování a konzultace $0/4 \, {\rm Z}$ 6 bakalářské práce Povinně volitelné předměty Volitelné předměty

Požadavky znalostí ke státní závěrečné zkoušce

Zkušební okruh Základy umělé inteligence je požadován ve všech zaměřeních. Jednotlivá zaměření mají dále vlastní zkušební okruh.

Základy umělé inteligence

Řešení úloh prohledáváním (algoritmus A*); splňování podmínek. Logické uvažování (dopředné a zpětné řetězení, rezoluce, SAT); pravděpodobnostní uvažování (Bayesovské sítě); reprezentace znalostí (situační kalkulus, Markovské modely). Automatické plánování; Markovské rozhodovací procesy. Hry a teorie her. Strojové učení (rozhodovací stromy, regrese, zpětnovazební učení).

Doporučené předměty:

Kód	Název	Kredity ZS	LS
NAIL120	Úvod do umělé inteligence	5 —	2/2 Z+Zk

Robotika

Kinematika: pohyb a transformace, řešení základních úloh. Řídicí systémy: architektury, implementace, specifická běhová prostředí. Pohyb, senzorika: způsob pohybu,

 $^{^1}$ Výuka anglického jazyka NJAZ070, NJAZ072, NJAZ074, NJAZ090 v rozsahu 0/2 v každém semestru je určena pro středně pokročilé a pokročilé. Pro začátečníky a mírně pokročilé jsou určeny předměty NJAZ071, NJAZ073, NJAZ075, NJAZ089 s rozsahem výuky 0/4 v každém semestru.

 $^{^2}$ Zkoušku z anglického jazyka NJAZ091 je možné absolvovat v zimním nebo v letním semestru.

³ Místo jednoho z předmětů NTVY014, NTVY015, NTVY016 a NTVY017 je možné si zapsat letní výcvikový kurz NTVY018 nebo zimní výcvikový kurz NTVY019. Tyto kurzy může student absolvovat kdykoli v průběhu bakalářského studia.

základní typy aktuátorů a senzorů, zpětnovazební řízení, zpracování vstupních dat. Lokalizace a mapování: způsoby určování polohy, typy map, volba použití v modelových situacích, simultánní lokalizace a mapování. Zpracování obrazu a počítačové vidění: vyhledávání a sledování objektů.

Doporučené předměty:

Kód	Název	Kredity	ZS	LS
NAIL028	Úvod do robotiky	5	2/2 Z+Zk	_
NPGR036	i Počítačové vidění	5		2/2 Z+Zk
NPRG037	Programování mikrokontrolerů	5	2/2 Z+Zk	

Strojové učení

Učení s učitelem: klasifikace a regrese, míry chyby, ohodnocení modelu (testovací data, křížová validace, maximální věrohodnost), přeučení a regularizace, prokletí dimenzionality. Učení založené na příkladech, lineární a logistická regrese, rozhodovací stromy, prořezávání, kombinace více modelů (bagging, boosting, náhodný les), metoda podpůrných vektorů. Statistické testy t-test, chí-kvadrát. Učení bez učitele, shlukování.

Doporučené předměty:

$\operatorname{K\'{o}d}$	Název	Kredity	ZS	LS
NPFL054	Úvod do strojového učení v systému	5	2/2 Z+Zk	_
NPFL129	R Úvod do strojového učení v Pythonu	5	2/2 Z+Zk	_
	Seminář dobývání znalostí Strojové učení v počítačovém vidění	$\frac{4}{5}$	-2/2 Z+Zk	1/2 KZ —

Zpracování přirozeného jazyka

Roviny popisu jazyka, morfologická a syntaktická analýza. Základy teorie pravděpodobnosti a teorie informace. Statistické metody zpracování přirozeného jazyka, jazykové modely. Strojové učení, klasifikace, regrese. Odhad generalizační chyby, přetrénování, regularizace. Vektorové reprezentace slov, základy hlubokého strojového učení. Aplikace zpracování přirozeného jazyka, příklady evaluačních měr.

Doporučené předměty:

Kód	Název	Kredity	ZS	LS
NPFL054	Úvod do strojového učení v systému R	5	2/2 Z+Zk	
NPFL129	Úvod do strojového učení v Pythonu	5	2/2 Z+Zk	
	Úvod do počítačové lingvistiky Zpracování přirozeného jazyka	$\frac{3}{4}$	2/0 Zk —	$\frac{-}{2/1}$ Z+Zk

6. Počítačová grafika, vidění a vývoj her

Garantující pracoviště: Katedra softwaru a výuky informatiky

Garant specializace: RNDr. Josef Pelikán

Specializace Počítačová grafika, vidění a vývoj her je určena studentům se zájmem o vizuální obory informatiky – syntézu obrazu, analýzu obrazu a programování počítačových her. V magisterském studiu potom mohou navázat studiem oboru Vizuální výpočty a vývoj počítačových her, kde se budou věnovat svému oboru ještě více do hloubky. Již absolvování bakalářské specializace však postačí k dobrému uplatnění v praxi (podle jednotlivých zaměření):

- Návrh a vývoj grafických aplikací, například vizuálních efektů nebo fotorealistické visualizace (postprodukční týmy, architektonické visualizace, vývoj realistických herních enginů a shaderů, apod.)
- Uplatnění všude tam, kde se využívá digitální zpracování obrazu a počítačové vidění (strojírenský a elektrotechnický průmysl, vývoj robotických systémů, medicína, ochrana a bezpečnost, automatická kontrola, dálkový průzkum Země, apod.)
- Vývoj počítačových her na mnoha úrovních (programátor herního engine, GPU programátor /shadery/, nástroje pro přípravu obsahu hry, logika hry, programování a konfigurace herní umělé inteligence, příprava dat /levelů/ hry, apod.)

Studijní specializace Počítačová grafika, vidění a vývoj her nabízí následující zaměření:

- Počítačová grafika
- Počítačové vidění
- Vývoj počítačových her

Pro všechna zaměření platí stejné podmínky studia, stejné povinné a povinně volitelné předměty a společné tři zkušební okruhy bakalářské státní závěrečné zkoušky (jedná se o okruhy 1. až 3. – viz níže). Jednotlivá zaměření pak mají odlišné zkušební okruhy přizpůsobené požadavkům svých disciplin.

Povinné předměty programu Informatika

Povinné předměty společné pro všechny specializace jsou uvedeny v předchozí části.

Povinné předměty specializace

Kód	Název	Kredity	ZS	LS
NPGR003	Základy počítačové grafiky	5	2/2 Z+Zk	_
NMAI055	Matematická analýza 2	5	2/2 Z+Zk	
NPRG041	Programování v C++	5	2/2 Z+Zk	
NPRG035	Programování v jazyce C#	5	2/2 Z+Zk	_

Povinně volitelné předměty

Podmínkou pro přihlášení ke státní závěrečné zkoušce je získání 43 kreditů za povinně volitelný předměty. Konkrétní výběr předmětů by měl být prováděn na základě zaměření, ke kterému studium směřuje. Zkušební okruhy u státních zkoušek jsou totiž dalším vodítkem při rozhodování, které předměty je třeba studovat.

Kód	Název	Kredity	ZS	LS
NPGR025	Introduction to Colour Science	3	$2/0 \mathrm{~Zk}$	
NPGR002	Digitální zpracování obrazu	4	3/0 Zk	
NPGR035	Strojové učení v počítačovém vidění	5	2/2 Z+Zk	
NPGR037	Praktikum z Matlabu	3	$0/2 \mathrm{~Z}$	

NSWI160	Herní middleware	6	$0/4 \mathrm{~Z}$	
NSWI159	Praktikum z vývoje počítačových	2	$0/1 \mathrm{Z}$	$0/1 \mathrm{~Z}$
	her ¹			
NPGR004	Fotorealistická grafika	5		2/2 Z+Zk
NPGR019	Realtime grafika na GPU	5	_	2/2 Z+Zk
NPGR020	Geometrie pro počítačovou grafiku	3	_	$2/0 \mathrm{Zk}$
NPGR036	Počítačové vidění	5	_	2/2 Z+Zk
	Základy vývoje počítačových her	5	_	2/2 Z+Zk
	Operační systémy	4	2/1 KZ	
	Úvod do robotiky	5	2/2 Z+Zk	
	Pravděpodobnost a statistika 2	5	2/2 Z+Zk	
	Matematická analýza 3	5		2/2 Z+Zk
	Pokročilé programování v C++	5		2/2 Z+Zk
NPRG038	Pokročilé programování v jazyce	5	_	2/2 Z+Zk
	C#			
	Neprocedurální programování	5	_	2/2 Z+Zk
NAIL120	Úvod do umělé inteligence	5		2/2 Z+Zk
	Vývoj vysoce výkonného software	6	_	2/2 Z+Zk
NPRG042	Programování v paralelním	6	_	2/2 Z+Zk
	prostředí			
NMAI042	Numerická matematika	5	_	2/2 Z+Zk
NDBI045	Vyhledávání a explorace ve videu	5		2/2 Z+Zk
NOPT046	Diskrétní a spojitá optimalizace	5	_	2/2 Z+Zk

¹ Předmět Praktikum z vývoje počítačových her je vyučován v obou semestrech a smí se zapisovat opakovaně (za každý absolvovaný semestr jsou dva kredity). Studentům zaměření Vývoj počítačových her doporučujeme absolvovat ho minimálně jednou.

Doporučený průběh studia

Doporučený průběh studia zahrnuje všechny povinné předměty a některé další povinně volitelné nebo volitelné předměty – tzv. profilující předměty – pro jednotlivá zaměření.

Protože mají tři různá zaměření různé požadavky ke státním zkouškám, uvádíme zde příklady tří průběhů studia. Pro úplnost byly vytvořeny kompletní průběhy včetně volitelných předmětů. Formálně povinné předměty jsou v tabulkách vyznačeny tučně, povinně volitelné běžným písmem a volitelné kurzívou.

Volitelnost předmětů by se však mohla chápat více prakticky – vůči konkrétnímu zaměření. To znamená, že některá přednáška může být obecně pro celou specializaci povinně volitelná, ale pro konkrétní zaměření může být důležitá (profilující), protože znalosti jsou potřeba ke státním zkouškám. V jiném zaměření však poslouží třeba jen jako výběrový předmět, protože ke státním zkouškám potřeba není.

V následujících ukázkách průchodů se k naznačení důležitosti předmětu používají poznámky pod čarou: profilující předměty (znalosti ke státním zkouškám) jsou označeny jedničkou¹, předměty doporučované dvojkou². Pokud není předmět vysázený tučně ani nemá jednu z těchto poznámek^{1,2}, je pro dané zaměření úplně volitelný a lze ho libovolně nahradit.

1. rok studia

Společné pro všechny specializace, viz předchozí část.

2. rok studia – počítačová grafika				
Kód	Název	Kredity	ZS	LS
NTIN061	Algoritmy a datové struktury 2	5	2/2 Z+Zk	
NDMI011	Kombinatorika a grafy 1	5	2/2 Z+Zk	
NMAI055	Matematická analýza 2	5	2/2 Z+Zk	
NPRG041	Programování v C++	5	2/2 Z+Zk	
NPRG035	Programování v jazyce C#	5	2/2 Z+Zk	
NPGR003	Základy počítačové grafiky	5	2/2 Z+Zk	
NJAZ074	Anglický jazyk pro středně pokročilé III ³	1	$0/2 \mathrm{~Z}$	_
NTVY016	Tělesná výchova III ⁵	1	$0/2 \mathrm{~Z}$	
	Automaty a gramatiky	5		2/2 Z+Zk
NMAI059	Pravděpodobnost a statistika 1	5		2/2 Z+Zk
NPRG045	Ročníkový projekt	4		$0/1 \mathrm{Z}$
NPGR004	Fotorealistická grafika ¹	5		2/2 Z+Zk
NMAI056	Matematická analýza 3 ²	5		2/2 Z+Zk
NPRG051	Pokročilé programování v C++ ²	5		2/2 Z+Zk
NMAI042	Numerická matematika	5		2/2 Z+Zk
NJAZ090	Anglický jazyk pro středně pokročilé IV ³	1	_	$0/2 \mathrm{~Z}$
NJAZ091	Anglický jazyk ⁴	1		$0/0 \mathrm{Zk}$
	Tělesná výchova IV ⁵	1	_	0/2 Z
3. rok stud	dia – počítačová grafika			
Kód	Název	Kredity	ZS	LS
NAIL062	Výroková a predikátová logika	5	2/2 Z+Zk	
NDBI025	Databázové systémy	5	2/2 Z+Zk	
NPGR025	Introduction to Colour Science ¹	3	$2/0 \mathrm{Zk}$	
NPGR002	Digitální zpracování obrazu ²	4	$3/0 \mathrm{Zk}$	
NMAI073	Pravděpodobnost a statistika 2 ²	5	2/2 Z+Zk	
NPGR037	Praktikum z Matlabu	3	$0/2 \mathrm{~Z}$	
NSWI004	Operační systémy	4	$2/1 \mathrm{~KZ}$	
NSZZ031	Vypracování a konzultace	6	_	$0/4 \mathrm{~Z}$
	bakalářské práce			
NPGR020	Geometrie pro počítačovou grafiku ¹	3		$2/0 \mathrm{~Zk}$
NPGR036	Počítačové vidění ²	5		2/2 Z+Zk
NPRG054	Vývoj vysoce výkonného software	6		2/2 Z+Zk
NOPT046	Diskrétní a spojitá optimalizace	5		2/2 Z+Zk
NPGR019	Realtime grafika na GPU	5	_	2/2 Z+Zk

 $^{^{1}}$ Profilové předměty k danému zaměření. Okruhy státních zkoušek jsou na jejich znalosti založené.

 $^{^2}$ Další doporučované předměty pro dané zaměření. Formálně Vás nic nenutí si je zapsat, my bychom Vám to však doporučovali. Předměty, které nejsou povinné a nemají žádnou poznámku, lze libovolně nahradit

jinými podle Vašeho zájmu. 3 Výuka anglického jazyka NJAZ070, NJAZ072, NJAZ074, NJAZ090 v rozsahu 0/2 v každém semestru je určena pro středně pokročilé a pokročilé. Pro začátečníky a mírně pokročilé jsou určeny předměty NJAZ071, NJAZ073, NJAZ075, NJAZ089 s rozsahem výuky 0/4 v každém semestru.

2. rok studia – počítačové vidění

Kód	Název	Kredity	ZS	LS
NTIN061	Algoritmy a datové struktury 2	5	2/2 Z+Zk	
NDMI011	Kombinatorika a grafy 1	5	2/2 Z+Zk	
NMAI055	Matematická analýza 2	5	2/2 Z+Zk	
NPRG035	Programování v jazyce C#	5	2/2 Z+Zk	
NPGR003	Základy počítačové grafiky	5	2/2 Z+Zk	
	Digitální zpracování obrazu ¹	4	3/0 Zk	
NPGR037	Praktikum z Matlabu ²	3	$0/2 \mathrm{~Z}$	
NJAZ074	Anglický jazyk pro středně	1	$0/2 \mathrm{~Z}$	
	pokročilé III ³			
NTVY016	Tělesná výchova III 5	1	$0/2 \mathrm{~Z}$	
NTIN071	Automaty a gramatiky	5		2/2 Z+Zk
NMAI059	Pravděpodobnost a statistika 1	5		2/2 Z+Zk
NPRG045	Ročníkový projekt	4		$0/1 \mathrm{~Z}$
NPGR036	Počítačové vidění ¹	5		2/2 Z+Zk
NPGR020	Geometrie pro počítačovou grafiku ²	3		$2/0 \mathrm{~Zk}$
NMAI056	Matematická analýza 3 2	5		2/2 Z+Zk
NOPT046	Diskrétní a spojitá optimalizace ²	5		2/2 Z+Zk
NJAZ090	Anglický jazyk pro středně	1		$0/2 \mathrm{~Z}$
	pokročilé IV ³			
NJAZ091	Anglický jazyk ⁴	1		$0/0 \mathrm{~Zk}$
NTVY017	Tělesná výchova IV 5	1	_	0/2 Z

3. rok studia – počítačové vidění

Kód	Název	Kredity	ZS	LS
NAIL062	Výroková a predikátová logika	5	2/2 Z+Zk	
NDBI025	Databázové systémy	5	2/2 Z+Zk	
NPRG041	Programování v C++	5	2/2 Z+Zk	
NPGR035	Strojové učení v počítačovém vidění ¹	5	2/2 Z+Zk	
NAIL028	Úvod do robotiky ²	5	2/2 Z+Zk	
NMAI073	Pravděpodobnost a statistika 2 ²	5	2/2 Z+Zk	
NSZZ031	Vypracování a konzultace	6	<u></u>	$0/4 \mathrm{~Z}$
	bakalářské práce			
NMAI042	Numerická matematika ²	5		2/2 Z+Zk
NPGR004	Fotorealistická grafika	5		2/2 Z+Zk
NPGR019	Realtime grafika na GPU	5		2/2 Z+Zk
NPRG054	Vývoj vysoce výkonného software	6		2/2 Z+Zk

 $^{^4}$ Zkoušku z anglického jazyka NJAZ091 je možné absolvovat v zimním nebo v letním semestru.

 $^{^5\,}$ Místo jednoho z předmětů NTVY014, NTVY015, NTVY016 a NTVY017 je možné si zapsat letní výcvikový kurz NTVY018 nebo zimní výcvikový kurz NTVY019. Tyto kurzy může student absolvovat kdykoli v průběhu bakalářského studia.

2. rok studia – vývoj počítačových her

Kód	Název	Kredity	ZS	LS
NTIN061	Algoritmy a datové struktury 2	5	2/2 Z+Zk	
NDMI011	Kombinatorika a grafy 1	5	2/2 Z+Zk	
NMAI055	Matematická analýza 2	5	2/2 Z+Zk	
NPRG035	Programování v jazyce C#	5	2/2 Z+Zk	
NPRG041	Programování v C++	5	2/2 Z+Zk	
NPGR003	Základy počítačové grafiky	5	2/2 Z+Zk	
NJAZ074	Anglický jazyk pro středně	1	$0/2 \mathrm{~Z}$	
	pokročilé III ³			
NTVY016	${f T}$ ělesná výchova III 5	1	$0/2 \mathrm{~Z}$	
NTIN071	Automaty a gramatiky	5		2/2 Z+Zk
NMAI059	Pravděpodobnost a statistika 1	5		2/2 Z+Zk
NPRG045	Ročníkový projekt	4		$0/1 \mathrm{~Z}$
NPGR019	Realtime grafika na GPU ¹	5		2/2 Z+Zk
NPGR038	Základy vývoje počítačových her ¹	5	_	2/2 Z+Zk
NPRG038	Pokročilé programování v jazyce	5		2/2 Z+Zk
	$C\#^2$			
NPRG051	Pokročilé programování v C++ ²	5		2/2 Z+Zk
NJAZ090	Anglický jazyk pro středně	1		$0/2 \mathrm{~Z}$
	pokročilé IV ³			
NJAZ091	Anglický jazyk ⁴	1		$0/0 \mathrm{Zk}$
NTVY017	Tělesná výchova IV 5	1	_	$0/2 \mathrm{~Z}$

3. rok studia – vývoj počítačových her

Kód	Název	Kredity	ZS	LS
NAIL062	Výroková a predikátová logika	5	2/2 Z+Zk	
NDBI025	Databázové systémy	5	2/2 Z+Zk	
NSWI160	Herní middleware 2	6	$0/4 \mathrm{~Z}$	
NSWI159	Praktikum z vývoje počítačových	2	$0/1 \mathrm{~Z}$	$0/1 \mathrm{~Z}$
	her ²			
NAIL028	Úvod do robotiky	5	2/2 Z+Zk	
NSWI004	Operační systémy	4	2/1 KZ	
NPGR002	Digitální zpracování obrazu	4	3/0 Zk	
NSZZ031	Vypracování a konzultace	6		$0/4 \mathrm{~Z}$
	bakalářské práce			
NPGR020	Geometrie pro počítačovou grafiku ¹	3		$2/0 \mathrm{Zk}$
NAIL120	Úvod do umělé inteligence	5		2/2 Z+Zk
NPGR004	Fotorealistická grafika	5		2/2 Z+Zk
NPGR036	Počítačové vidění	5		2/2 Z+Zk

Požadavky znalostí ke státní závěrečné zkoušce

Některá témata studijního oboru Informatika jsou požadována ve všech specializacích, viz první část.

Studenti specializace Počítačová grafika, vidění a vývoj her mají další okruhy 1. až 3. pokryté povinnými přednáškami NMAI055 Matematická analýza 2 a NPGR003 Základy počítačové grafiky.

1. Matematická analýza

Diferenciální a integrální počet ve více rozměrech. Riemannův integrál. Extrémy funkcí více proměnných. Metrický prostor, otevřené a uzavřené množiny, kompaktnost.

2. Základy 2D počítačové grafiky

Základy lidského vidění, barvy, jejich vnímání a reprezentace na počítači, barevné systémy RGB, CMY a HSV. HDR grafika. Průhlednost (alfa-kanál). Rastrová a vektorová grafika, příklady rastrových a vektorových formátů a jejich použití. Základy rasterizace (vykreslování tvarů do 2D rastru).

3. Základy 3D počítačové grafiky

Systémy 3D souřadnic a transformací, Skládání praktických složitějších transformací, reprezentace orientace. Projekce pro zobrazování 3D scén. Základy GPU knihovny OpenGL. Architektura GPU, formáty dat posílané do GPU, princip programování shaderů. Reprezentace 3D scén v počítači, hierarchické reprezentace, základy stínování a princip rekurzivního sledování paprsku.

Požadavky pro jednotlivá zaměření

Studenti jednotlivých zaměření se musí dále připravit na zkušební okruhy vycházející z příslušných profilových přednášek.

Požadavky pro zaměření Počítačová grafika

Zkušební okruhy 4. až 6. jsou pokryté přednáškami Fotorealistická grafika (NPGR004), Introduction to Colour Science (NPGR025) a Geometrie pro počítačovou grafiku (NPGR020).

4. Fotorealistická grafika

Rekurzivní sledování paprsku: vlastnosti naivního algoritmu. Výpočet průsečíků paprsku s 3D scénou a jeho urychlování. Modely odrazu světla na povrchu těles: empirické a fyzikálně věrnější přístupy. Textury, modelování přírodních fenoménů, spojité šumové funkce. Anti-aliasing v paprskově založených metodách, vzorkovací algoritmy, distribuované sledování paprsku. Moderní Monte-Carlo přístupy v realistickém zobrazování.

5. Základy vědy o barvách

Fundamental causes of colour, human eye and function of its parts. Colour spaces and colour collections, gamuts, color mixing, color matching experiments. Examples of Colour ordering systems (Munsell, Pantone). Colour measurement devices. Printing technology, ICC profiles.

6. Geometrie pro počítačovou grafiku

Eukleidovské shodnosti v rovině a prostoru, jejich aplikace, animace spojitého pohybu. Kvaterniony a jejich využití pro animaci a pohyb v prostoru, LERP a SLERP. Projektivní prostor a projektivní zobrazení, aplikace na panoramatické lepení fotografií a rekonstrukci scény. Dvojpoměr a jeho využití při odečítání velikostí ze snímků.

Požadavky pro zaměření Počítačové vidění

Zkušební okruhy 7. až 9. jsou pokryté přednáškami NPGR002 Digitální zpracování obrazu, NPGR036 Počítačové vidění a NPGR035 Strojové učení v počítačovém vidění.

7. Digitální zpracování obrazu

Vzorkování a kvantizace obrazu, Shannonova věta. Základní operace nad obrázky, histogram, změny kontrastu, redukce šumu, zvyšování ostrosti. lineární filtrace obrazu v obrazovém a spektrálním prostoru. Konvoluce a Fourierova transformace. Detekce hran a rohů. Matematické modelování degradace obrazu. Potlačování základních zkreslení obrazu (rozmazání pohybem, rozostření), inverzní a Wienerův filtr.

8. Počítačové vidění

Pořizování obrazu, vlastnosti digitálního obrazu. Matematická morfologie. Segmentace obrazu. Registrace a porovnávání obrazu. Popis plošných objektů – základní principy. Invarianty pro rozpoznávání 2D objektů. Detekce, popis a párování lokálních příznaků. Významné oblasti v obraze. Detekce a Sledování objektů, optický tok.

9. Strojové učení

Výběr a předzpracování příznaků. Bayesovská teorie rozhodování, kritérium minimální chyby. Rozhodovací stromy. Diskriminační analýza, lineární klasifikátor. Rozpoznávání objektů, klasifikátory s učitelem (k-NN, lineární, Bayes). Support Vector Machines (SVM). Shluková analýza, iterační a hierarchické metody. Hodnocení kvality klasifikace.

Požadavky pro zaměření Vývoj počítačových her

Zkušební okruhy 10., 11. a 6. jsou pokryté přednáškami NPGR038 Základy vývoje počítačových her, NPGR019 Realtime grafika na GPU a NPGR020 Geometrie pro počítačovou grafiku.

10. Vývoj počítačových her

2D hry: sprite-based animace, 2D kostra, parallax scrolling, dlaždicové systémy, pixel art. 3D hry: 3D scény, modely, kosterní animace, rigging. 3D rendering: shadery, stíny, částicové systémy, billboards, screenspace efekty. Zvuk: zvukové efekty, 3D zvuk, sound engine, kompozice zvuku. Návrh architektury herního kódu, návrhové vzory pro počítačové hry. Herní design: definice, historie, taxonomie hráčů. Úvod do architektury herních engine, engine Unity. Řízení vývoje počítačových her a životní cyklus herního projektu.

11. GPU grafika

Princip fungování programovatelné rasterizační pipeliny na GPU. Buffery, constant buffery, efektivní předávání dat do GPU. Textury a texturovací jednotky, funkce jednotlivých druhů shaderů. Vyšší programovací jazyky shaderů (GLSL, HLSL). Řešení osvětlení ve scéně (materiály, výpočet stínů). Stencil buffer a jeho použití. Víceprůchodový rendering, deffered shading a screen-space efekty. Realtime raytracing. GPGPU – masivně paralelní algoritmy na GPU, základy CUDA/OpenCL.

6. Geometrie pro počítačovou grafiku

Eukleidovské shodnosti v rovině a prostoru, jejich aplikace, animace spojitého pohybu. Kvaterniony a jejich využití pro animaci a pohyb v prostoru, LERP a SLERP. Projektivní prostor a projektivní zobrazení, aplikace na panoramatické lepení fotografií a rekonstrukci scény. Dvojpoměr a jeho využití při odečítání velikostí ze snímků.

Navazující magisterské studium od akademického roku 2020/21

1. Základní informace

Studijní programy a jejich zaměření

- 1. Informatika Diskrétní modely a algoritmy
- diskrétní matematika a algoritmy
- geometrie a matematické struktury v informatice
- optimalizace
- 2. Informatika Teoretická informatika
- 3. Informatika Softwarové a datové inženýrství
- softwarové inženýrství
- vývoj software
- webové inženýrství
- databázové systémy
- analýza a zpracování rozsáhlých dat
- 4. Informatika Softwarové systémy
- systémové programování
- spolehlivé systémy
- výkonné systémy
- 5. Informatika Jazykové technologie a počítačová lingvistika
- počítačová a formální lingvistika
- statistické metody a metody strojového učení pro zpracování jazyka
- 6. Informatika Umělá inteligence
- inteligentní agenti
- strojové učení
- robotika
- 7. Informatika Vizuální výpočty a vývoj počítačových her
- vizuální výpočty
- vývoj počítačových her

Uchazeči o navazující magisterské studium se hlásí na zvolený studijní program. Volba konkrétního zaměření je ponechána na pozdější rozhodnutí posluchače. Pro každý studijní program je stanoveno garantující pracoviště zajišťující převážnou část výuky v tomto programu a je jmenován garant studijního programu.

Informatika je dynamicky se rozvíjející disciplínou, a proto důležitým novým trendům průběžně přizpůsobujeme i obsah studia. Posluchači by ve vlastním zájmu měli sledovat aktuální stav studijních plánů, kde může docházet k rozšíření a úpravě nabídky předmětů, případně k dalším drobným změnám. Některé předměty mohou být vyučovány anglicky.

Návaznost na bakalářské studium

Pro úspěšné absolvování magisterského studia informatiky se předpokládají vstupní znalosti alespoň v rozsahu výuky povinných bakalářských předmětů NDMI002

Diskrétní matematika, NTIN060 Algoritmy a datové struktury 1, NTIN061 Algoritmy a datové struktury 2, NTIN071 Automaty a gramatiky, NAIL062 Výroková a predikátová logika. Pokud posluchač ve svém dřívějším studiu neabsolvoval tyto nebo obsahově podobné předměty, měl by si ve vlastním zájmu zapsat v prvním roce magisterského studia ty z uvedených bakalářských předmětů, jejichž znalosti mu chybějí.

V magisterském studiu se dále předpokládá dobrá znalost matematiky alespoň na úrovni povinných bakalářských předmětů NMAI054 Matematická analýza 1, NMAI058 Lineární algebra 2, NMAI059 Pravděpodobnost a statistika 1. Chybějící znalosti z uvedených předmětů by si měl každý posluchač rovněž doplnit v prvním roce magisterského studia.

Pro úspěšné absolvování studia je nezbytná také dobrá znalost programování alespoň v rozsahu základních kurzů NPRG030 Programování 1 a NPRG031 Programování 2. Posluchačům, kteří podobný kurz neabsolvovali ve svém předchozím studiu, doporučujeme zapsat si v úvodu magisterského studia uvedené předměty.

Pokud posluchač ve svém předchozím bakalářském studiu na MFF úspěšně absolvoval některý z povinných nebo povinně volitelných předmětů studovaného programu, může požádat o uznání splnění těchto povinností. Posluchač přicházející na MFF po získání bakalářského vzdělání na jiné vysoké škole může požádat o uznání povinného nebo povinně volitelného předmětu na základě předchozího absolvování obdobného předmětu. Udělování kreditů za předměty absolvované v bakalářském studiu do magisterského studia upravuje čl. 12 Pravidel pro organizaci studia na Matematicko-fyzikální fakultě.

Týmový projekt

Studijní plány magisterských studijních programů v oblasti vzdělávání Informatika nabízejí studentům možnost účasti v týmovém projektu. V programech Softwarové systémy, Softwarové a datové inženýrství, Vizuální výpočty a vývoj počítačových her je týmový projekt povinný, v programech Umělá inteligence, Jazykové technologie a počítačová lingvistika je povinně volitelný. Týmový projekt se nabízí ve třech typech, ze kterých si student vybírá jeden - Softwarový projekt, Výzkumný projekt, Firemní projekt. Softwarový projekt je klasickým ryze studentským projektem, kde tým 3-6 studentů realizuje větší softwarové dílo. Výzkumný projekt umožňuje studentovi zapojit se do stávajících výzkumných projektů na fakultě a stát se dočasně členem již existujícího týmu, v rámci něhož realizuje dílčí výzkumně-softwarový úkol. Firemní projekt umožňuje studentovi realizovat týmový softwarový projekt vně fakulty, ve firemním prostředí, za podmínek srovnatelných s ostatními typy projektů. V případě náročnějšího zadání lze prostřednictvím předmětu Zvýšený rozsah projektu získat vyšší kreditové ohodnocení projektu. Schvalování a hodnocení projektu se řídí aktuálními pokyny garanta příslušného studijního programu.

Státní závěrečná zkouška

Studium je zakončeno státní závěrečnou zkouškou. Ta má dvě části, jimiž jsou obhajoba diplomové práce a ústní část. K oběma částem státní závěrečné zkoušky se posluchač může přihlásit samostatně. Studium je úspěšně zakončeno po úspěšném absolvování obou těchto částí.

Podmínky pro přihlášení ke státní závěrečné zkoušce nebo její části

– získání alespoň 120 kreditů

- splnění všech povinných předmětů zvoleného studijního programu
- splnění povinně volitelných předmětů zvoleného programu, resp. zaměření, ve stanoveném rozsahu
- odevzdání vypracované diplomové práce ve stanoveném termínu (pro přihlášení k obhajobě diplomové práce).

Diplomová práce

Téma diplomové práce si posluchač typicky vybere na konci zimního semestru předposledního roku studia. Doporučujeme vybírat si téma především z nabídky pracoviště garantujícího zvolený studijní program; v případě zájmu o téma z nabídky jiného pracoviště nebo o téma vlastní důrazně doporučujeme konzultovat vhodnost tématu s garantem studijního programu.

Po zadání diplomové práce si každý posluchač postupně zapíše povinné předměty společné pro všechny programy:

Kód	Název	Kredity	ZS	LS
NSZZ023	Diplomová práce I	6		$0/4~\mathrm{Z}$
NSZZ024	Diplomová práce II	9	$0/6 \mathrm{Z}$	
NSZZ025	Diplomová práce III	15		$0/10~\mathrm{Z}$

Zápočty z povinných předmětů NSZZ023 Diplomová práce I, NSZZ024 Diplomová práce II, NSZZ025 Diplomová práce III uděluje vedoucí diplomové práce jako doklad o úspěšné práci posluchače na stanoveném diplomovém úkolu. Předmět Diplomová práce I si posluchač zapíše zpravidla v letním semestru předposledního roku studia, předměty Diplomová práce II a Diplomová práce III pak návazně v zimním a v letním semestru posledního roku svého studia. V případě potřeby lze zvolit i jiné uspořádání, každý z těchto předmětů je možné zapsat v zimním nebo v letním semestru v období zápisu vymezeném v harmonogramu akademického roku.

Ústní část SZZ

Ústní část státní závěrečné zkoušky má na všech studijních programech oblasti vzdělávání Informatika podobnou strukturu. Posluchač je zkoušen ze znalostí několika zkušebních okruhů, z nichž některé mohou být povinné a další volitelné. Podrobnější popis najdete u jednotlivých studijních programů.

2. Studijní plány jednotlivých programů

U každého studijního programu je uvedeno garantující pracoviště, garant programu a podmínky pro absolvování studia (povinné a povinně volitelné předměty). Pro každý studijní program a všechna jeho zaměření jsou pak vypsány zkušební okruhy ke státní závěrečné zkoušce a požadavky znalostí k jednotlivým zkušebním okruhům.

1. Informatika - Diskrétní modely a algoritmy

Garantující pracoviště: Katedra aplikované matematiky

Garant programu: Doc. RNDr. Martin Klazar, Dr.

Zaměření:

- diskrétní matematika a algoritmy
- geometrie a matematické struktury v informatice
- optimalizace

Studijní program Diskrétní modely a algoritmy poskytuje široké vzdělání v teoretických a matematických základech informatiky. Student získá znalosti v oblasti diskrétních modelů a souvisejících algoritmických a datových technik a různých matematických metod pro jejich návrh. Program studenta seznámí jak se současnými poznatky v oblasti diskrétních modelů, algoritmů a optimalizace, tak s možnostmi a omezeními řešení souvisejících algoritmických problémů. Student získá důkladné matematické znalosti potřebné pro analýzu a návrh diskrétních modelů a algoritmů.

Absolvent dobře ovládá problematiku modelování pomocí diskrétních struktur spolu s jeho praktickými algoritmickými a výpočetními aspekty. Tím pádem rozumí modelům výpočtů a jejich vzájemným vztahům a zná omezení efektivních výpočtů. Má povědomí o algoritmických technikách a datových strukturách. Má také přehled o některých optimalizačních postupech, technikách a výsledcích. Absolvent se během studia seznámil s matematickými přístupy k diskrétním modelům a algoritmům, což vedle vždy přítomné kombinatoriky a diskrétní matematiky zahrnuje geometrické, topologické, algebraické, číselně-teoretické, logické a v neposlední řadě pravděpodobnostní metody. Absolvent umí posoudit vhodnost a použitelnost těchto metod pro konkrétní diskrétní model. Rovněž dokáže sledovat nejnovější výzkumné trendy v daných oblastech. Absolvent nalezne uplatnění při návrhu a analýze diskrétních modelů a jejich algoritmické implementace a při vývoji odpovídajících technologií. Může tedy pracovat ve špičkových společnostech a institucích zabývajících se vývojem a výzkumem nových technologií, analýzou dat či modelováním reálných procesů (doprava, finance, ekonomie a podobně). Je připraven pro následné doktorské studium teoretické informatiky a příbuzných oborů u nás i ve světě.

Povinné předměty

Kód	Název	Kredity	ZS	LS
NTIN090	Základy složitosti a vyčíslitelnosti	4	2/1 Z+Zk	_
NTIN066	Datové struktury 1	6	2/2 Z+Zk	
NMAI064	Matematické struktury	5	<u> </u>	2/2 Z+Zk
NSZZ023	Diplomová práce I	6		$0/4~{ m Z}$
NSZZ024	Diplomová práce II	9	$0/6 \mathrm{~Z}$	
NSZZ025	Diplomová práce III	15	_	$0/10 \mathrm{~Z}$

Povinně volitelné předměty - skupina 1

Je požadováno splnění povinně volitelných předmětů z následujícího seznamu v rozsahu alespoň 45 kreditů. Předměty NDMI055 a NDMI056 mohou navštěvovat studenti magisterského i doktorského studia.

Kód	Název	Kredity	ZS	LS
NAIL076	Logické programování 1	3	2/0 Zk	_
NDMI010	Grafové algoritmy	3	2/0 Zk	
NDMI013	Kombinatorická a výpočetní	5		2/2 Z+Zk
	geometrie 2			
NDMI014	Topologické metody	5		2/2 Z+Zk
	v kombinatorice			
NDMI015	Kombinatorické počítání	3		$2/0 \mathrm{~Zk}$

NDMI018 Aproximační a online algoritmy 5					
NDMI028	NDMI018	Aproximační a online algoritmy	5		2/2 Z+Zk
V kombinatoricé NDMI036 Kombinatorické struktury 3	NDMI025	Pravděpodobnostní algoritmy	5		2/2 Z+Zk
NDMI036 Kombinatorické struktury 3	NDMI028	Aplikace lineární algebry	5	2/2 Z+Zk	
NDMI037 Geometrické reprezentace grafů 1 3 2/0 Zk		v kombinatorice			
NDMI037 Geometrické reprezentace grafů 1 3 2/0 Zk	NDMI036	Kombinatorické struktury	3		2/0 Zk
NDMI045		· ·	3	$2/0 \mathrm{Zk}$	
Kösel NDMI055 Vybrané kapitoly z kombinatoriky 1 3 2/0 Zk — NDMI056 Vybrané kapitoly z kombinatoriky 2 3 — 2/0 Zk NDMI059 Grafové minory a stromové rozklady 3 2/0 Zk — NDMI060 Barevnost grafů a kombinatorických 3 2/0 Zk — NDMI064 Aplikovaná diskrétní matematika 3 2/0 Zk — NDMI065 Teorie matroidů 5 — 2/2 Z+Zk NDMI066 Algebraická teorie čísel 3 2/0 Zk — NDMI067 Toky, cesty a řezy 3 2/0 Zk — NDMI087 Analytická kombinatorika 4 — 2/1 Zk NDMI088 Grafové algoritmy 2 3 — 2/2 Z+Zk NMAG337 Úvod do teorie čísel 3 2/0 Zk — NMA1040 Úvod do teorie čísel 3 2/0 Zk — NMA1067 Logika v informatice 3 2/0 Zk — NMA3007 Úvod do komplexní analýzy (O) 5 2/2 Z+Zk —		-			2/0 Zk
NDMI056		· ·			,
NDMI056	NDMI055	Vybrané kapitoly z kombinatoriky 1	3	2/0 Zk	
NDMI059 Grafové minory a stromové rozklady NDMI060 Barevnost grafů a kombinatorických Struktur Str					2/0 Zk
NDMI060 Barevnost grafū a kombinatorických struktur Struktur		- v		2/0 Zk	-
NDMI064 Aplikovaná diskrétní matematika 3 2/0 Zk —		· · · · · · · · · · · · · · · · · · ·		•	
NDMI064 Aplikovaná diskrétní matematika 3 2/0 Zk	1121111000		0	2/ 0 ZIX	
NDMI065 Teorie matroidů 5 — 2/2 Z+Zk NDMI066 Algebraická teorie čísel 3 2/0 Zk — NDMI074 Algoritmy a jejich implementace 5 — 2/2 Z+Zk NDMI087 Analytická kombinatorika 4 — 2/1 Zk NDMI088 Grafové algoritmy 2 3 — 2/0 Zk NMAG337 Úvod do teorie čísel 3 2/0 Zk — NMAI040 Úvod do teorie čísel 3 2/0 Zk — NMAI065 Základy teorie kategorií pro informatiky 3 2/0 Zk — NMAI066 Topologické a algebraické metody 3 — 2/0 Zk NMAI067 Logika v informatice 3 2/0 Zk — NMAI071 Matematika++ 5 — 2/2 Z+Zk NMMA931 Úvod do komplexní analýzy (O) 5 2/2 Z+Zk — NOPT008 Algoritmy nelineární optimalizace 5 — 2/2 Z+Zk NOPT010 (Celočíselné programování 5 — 2/2 Z+Zk </td <td>NDMI064</td> <td></td> <td>Q</td> <td>2/0.71</td> <td></td>	NDMI064		Q	2/0.71	
NDMI066 Algebraická teorie čísel 3 2/0 Zk — NDMI067 Toky, cesty a řezy 3 2/0 Zk — NDMI087 Alagoritmy a jejich implementace 5 — 2/2 Z+Zk NDMI088 Analytická kombinatorika 4 — 2/0 Zk NDMI088 Grafové algoritmy 2 3 — 2/0 Zk NMAI040 Úvod do teorie čísel 3 2/0 Zk — NMAI065 Základy teorie kategorií pro informatiky 3 2/0 Zk — NMAI066 Topologické a algebraické metody 3 — 2/0 Zk NMAI067 Logika v informatice 3 2/0 Zk — NMAI071 Matematika++ 5 — 2/2 Z+Zk NMMA931 Úvod do komplexní analýzy (O) 5 2/2 Z+Zk — NOPT008 Algoritmy nelineární optimalizace 5 — 2/2 Z+Zk NOPT016 Celočíselné programování 5 — 2/2 Z+Zk NOPT034 Matematické programování 5 2/2 Z		-		2/0 ZK	9/9.7 + 71
NDMI067 Toky, cesty a řezy 3 2/0 Zk — NDMI074 Algoritmy a jejich implementace 5 — 2/2 Z+Zk NDMI087 Analytická kombinatorika 4 — 2/1 Zk NDMI088 Grafové algoritmy 2 3 — 2/0 Zk NMAG337 Úvod do teorie grup 5 2/2 Z+Zk — NMAI040 Úvod do teorie čísel 3 2/0 Zk — NMAI065 Základy teorie kategorií pro informatiky 3 2/0 Zk — NMAI066 Topologické a algebraické metody 3 — 2/0 Zk NMAI067 Logika v informatice 3 2/0 Zk — NMAI067 Logika v informatice 3 2/0 Zk — NMAI071 Matematika++ 5 — 2/2 Z+Zk — NMMA901 Úvod do komplexní analýzy (O) 8 4/2 Z+Zk — NOPT008 Algoritmy nelineární optimalizace 5 — 2/2 Z+Zk NOPT016 Celočíselné programování <t< td=""><td></td><td></td><td></td><td></td><td>Z/Z $Z+ZK$</td></t<>					Z/Z $Z+ZK$
NDMI074 Algoritmy a jejich implementace 5 — 2/2 Z+Zk NDMI087 Analytická kombinatorika 4 — 2/1 Zk NDMI088 Grafové algoritmy 2 3 — 2/0 Zk NMAG337 Úvod do teorie čísel 3 2/0 Zk — NMAI060 Základy teorie kategorií pro informatiky 3 2/0 Zk — NMAI066 Topologické a algebraické metody 3 — 2/0 Zk NMAI067 Logika v informatice 3 2/0 Zk — NMAI071 Matematika++ 5 — 2/2 Z+Zk — NOPT008 Algoritmy nelineární optimalizace 5 — 2/2 Z+Zk — NOPT017 Vicekriteriální optimalizace <td></td> <td>~</td> <td></td> <td>,</td> <td></td>		~		,	
NDMI087 Analytická kombinatorika 4 — 2/1 Zk NDMI088 Grafové algoritmy 2 3 — 2/0 Zk NMAG337 Úvod do teorie čísel 3 2/0 Zk — NMAI040 Úvod do teorie čísel 3 2/0 Zk — NMAI065 Základy teorie kategorií pro informatiky 3 2/0 Zk — NMAI066 Topologické a algebraické metody 3 — 2/0 Zk NMAI067 Logika v informatice 3 2/0 Zk — NMAI071 Matematika++ 5 — 2/2 Z+Zk NMMA901 Úvod do komplexní analýzy (O) 5 2/2 Z+Zk — NOPT008 Algoritmy nelineární optimalizace 5 — 2/2 Z+Zk NOPT016 Celočíselné programování 5 — 2/2 Z+Zk NOPT017 Vícekriteriální optimalizace 3 — 2/0 Zk NOPT034 Matematické programování 5 2/2 Z+Zk — NOPT042 Programování s omezujícími 5 2/2 Z		* . * * * * * * * * * * * * * * * * * *		2/0 ZK	
NDMI088 Grafové algoritmy 2 3 — 2/0 Zk NMAG337 Úvod do teorie grup 5 2/2 Z+Zk — NMAI040 Úvod do teorie čísel 3 2/0 Zk — NMAI065 Základy teorie kategorií pro informatiky 3 2/0 Zk — NMAI066 Topologické a algebraické metody 3 — 2/0 Zk NMAI067 Logika v informatice 3 2/0 Zk — NMAI071 Matematika++ 5 — 2/2 Z+Zk NMMA901 Úvod do komplexní analýzy (O) 5 2/2 Z+Zk — NMMA931 Úvod do funkcionální analýzy (O) 8 4/2 Z+Zk — NOPT008 Algoritmy nelineární optimalizace 5 — 2/2 Z+Zk NOPT016 Celočíselné programování 5 — 2/2 Z+Zk NOPT034 Matematické programování 4 2/1 Z+Zk — NOPT042 Programování s omezujícími 5 2/2 Z+Zk — NOPT051 Intervalové metody 5 2/2 Z+Zk — NTIN017 Paralelní algoritmy 3 — 2/0 Zk NTIN023 Dynamické grafové datové					
NMAG337 Úvod do teorie grup 5 2/2 Z+Zk — NMAI040 Úvod do teorie čísel 3 2/0 Zk — NMAI065 Základy teorie kategorií pro informatiky 3 2/0 Zk — NMAI066 Topologické a algebraické metody 3 — 2/0 Zk NMAI067 Logika v informatice 3 2/0 Zk — NMAI071 Matematika++ 5 — 2/2 Z+Zk NMMA901 Úvod do komplexní analýzy (O) 5 2/2 Z+Zk — NMMA931 Úvod do funkcionální analýzy (O) 8 4/2 Z+Zk — NOPT008 Algoritmy nelineární optimalizace 5 — 2/2 Z+Zk NOPT016 Celočíselné programování 5 — 2/2 Z+Zk NOPT034 Matematické programování 4 2/1 Z+Zk — NOPT042 Programování s omezujícími 5 2/2 Z+Zk — NOPT051 Intervalové metody 5 2/2 Z+Zk — NTIN017 Paralelní algoritmy 3 — 2/0 Zk NTIN022 Pravděpodobnostní techniky 5 2/2 Z+Zk — NTIN063 Složitost		· ·			
NMAI040 Úvod do teorie čísel 3 2/0 Zk — NMAI065 Základy teorie kategorií pro informatiky 3 2/0 Zk — NMAI066 Topologické a algebraické metody 3 — 2/0 Zk NMAI067 Logika v informatice 3 2/0 Zk — NMAI071 Matematika++ 5 — 2/2 Z+Zk NMMA901 Úvod do komplexní analýzy (O) 5 2/2 Z+Zk — NMMA931 Úvod do funkcionální analýzy (O) 8 4/2 Z+Zk — NOPT08 Algoritmy nelineární optimalizace 5 — 2/2 Z+Zk NOPT016 Celočíselné programování 5 — 2/2 Z+Zk NOPT017 Vícekriteriální optimalizace 3 — 2/0 Zk NOPT034 Matematické programování 4 2/1 Z+Zk — NOPT042 Programování s omezujícími 5 2/2 Z+Zk — NOPT051 Intervalové metody 5 2/2 Z+Zk — NTIN017 Paralelní algoritmy 3 —					•
NMAI065 Základy teorie kategorií pro informatiky 3 2/0 Zk — NMAI066 Topologické a algebraické metody 3 — 2/0 Zk NMAI067 Logika v informatice 3 2/0 Zk — NMAI071 Matematika++ 5 — 2/2 Z+Zk NMMA901 Úvod do komplexní analýzy (O) 5 2/2 Z+Zk — NMMA931 Úvod do funkcionální analýzy (O) 8 4/2 Z+Zk — NOPT008 Algoritmy nelineární optimalizace 5 — 2/2 Z+Zk NOPT016 Celočíselné programování 5 — 2/2 Z+Zk NOPT017 Vícekriteriální optimalizace 3 — 2/0 Zk NOPT034 Matematické programování 4 2/1 Z+Zk — NOPT042 Programování s omezujícími 5 2/2 Z+Zk — NOPT051 Intervalové metody 5 2/2 Z+Zk — NTIN017 Paralelní algoritmy 3 — 2/0 Zk NTIN022 Pravděpodobnostní techniky 5 2/2 Z+Zk — NTIN063 Složitost 4 — </td <td></td> <td></td> <td></td> <td>,</td> <td>_</td>				,	_
informatiky NMAI066 Topologické a algebraické metody NMAI067 Logika v informatice NMAI071 Matematika++ NMAI071 Matematika++ NMMA901 Úvod do komplexní analýzy (O) NOPT008 Algoritmy nelineární optimalizace NOPT016 Celočíselné programování NOPT017 Vícekriteriální optimalizace NOPT034 Matematické programování NOPT042 Programování s omezujícími podmínkami NOPT051 Intervalové metody NOPT051 Intervalové metody NOPT051 Intervalové metody NTIN017 Paralelní algoritmy NTIN022 Pravděpodobnostní techniky NTIN023 Dynamické grafové datové struktury NTIN023 Složitost NTIN063 Složitost NTIN064 Vyčíslitelnost NTIN067 Datové struktury 2 NTIN067 Datové struktury 2 NTIN067 Datové struktury 2 NTIN106 Základy přenosu a zpracování 3 2/0 Zk NTIN106 Základy přenosu a zpracování 4 2/1 Z+Zk				,	
NMAI066 Topologické a algebraické metody 3 — 2/0 Zk NMAI067 Logika v informatice 3 2/0 Zk — NMAI071 Matematika++ 5 — 2/2 Z+Zk NMMA901 Úvod do komplexní analýzy (O) 5 2/2 Z+Zk — NMMA931 Úvod do funkcionální analýzy (O) 8 4/2 Z+Zk — NOPT008 Algoritmy nelineární optimalizace 5 — 2/2 Z+Zk NOPT016 Celočíselné programování 5 — 2/2 Z+Zk NOPT017 Vícekriteriální optimalizace 3 — 2/0 Zk NOPT034 Matematické programování 4 2/1 Z+Zk — NOPT042 Programování s omezujícími 5 2/2 Z+Zk — NOPT051 Intervalové metody 5 2/2 Z+Zk — NTIN017 Paralelní algoritmy 3 — 2/0 Zk NTIN023 Dynamické grafové datové struktury 3 2/0 Zk — NTIN064 Vyčíslitelnost 3 — 2/1	NMA1065	· -	3	2/0 Zk	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		· ·			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				_	$2/0 \mathrm{Zk}$
NMMA901 Úvod do komplexní analýzy (O) 5 $2/2 \text{ Z}+\text{Zk}$ — NMMA931 Úvod do funkcionální analýzy (O) 8 $4/2 \text{ Z}+\text{Zk}$ — NOPT008 Algoritmy nelineární optimalizace 5 — $2/2 \text{ Z}+\text{Zk}$ NOPT016 Celočíselné programování 5 — $2/2 \text{ Z}+\text{Zk}$ NOPT017 Vícekriteriální optimalizace 3 — $2/0 \text{ Zk}$ NOPT034 Matematické programování 4 $2/1 \text{ Z}+\text{Zk}$ — a polyedrální kombinatorika NOPT042 Programování 5 $2/2 \text{ Z}+\text{Zk}$ — podmínkami $2/2 \text{ Z}+\text{Zk}$ — podmínkami $2/2 \text{ Z}+\text{Zk}$ — NTIN017 Paralelní algoritmy $2/2 \text{ Z}+\text{Zk}$ — $2/2 \text{ Z}+\text{Zk}$ NTIN022 Pravděpodobnostní techniky $2/2 \text{ Z}+\text{Zk}$ — NTIN023 Dynamické grafové datové struktury $2/2 \text{ Z}+\text{Zk}$ NTIN064 Vyčíslitelnost $2/2 \text{ Z}+\text{Zk}$ NTIN067 Datové struktury $2/2 \text{ Z}+\text{Zk}$ NTIN067 Datové struktury $2/2 \text{ Z}+\text{Zk}$ NTIN067 Základy přenosu a zpracování $2/2 \text{ Z}+\text{Zk}$		9		$2/0 \mathrm{Zk}$	
NMMA931 Úvod do funkcionální analýzy (O) 8 4/2 Z+Zk — NOPT008 Algoritmy nelineární optimalizace 5 — $2/2$ Z+Zk NOPT016 Celočíselné programování 5 — $2/2$ Z+Zk NOPT017 Vícekriteriální optimalizace 3 — $2/0$ Zk NOPT034 Matematické programování 4 $2/1$ Z+Zk — a polyedrální kombinatorika NOPT042 Programování 5 $2/2$ Z+Zk — podmínkami NOPT051 Intervalové metody 5 $2/2$ Z+Zk — NTIN017 Paralelní algoritmy 3 — $2/0$ Zk NTIN022 Pravděpodobnostní techniky 5 $2/2$ Z+Zk — NTIN023 Dynamické grafové datové struktury 3 $2/0$ Zk — NTIN063 Složitost 4 — $2/1$ Z+Zk NTIN064 Vyčíslitelnost 3 — $2/0$ Zk NTIN067 Datové struktury 2 3 — $2/0$ Zk NTIN067 Datové struktury 2 3 — $2/0$ Zk NTIN100 Základy přenosu a zpracování 4 — $2/1$ Z+Zk					2/2 Z+Zk
NOPT008 Algoritmy nelineární optimalizace 5 — 2/2 Z+Zk NOPT016 Celočíselné programování 5 — 2/2 Z+Zk NOPT017 Vícekriteriální optimalizace 3 — 2/0 Zk NOPT034 Matematické programování 4 2/1 Z+Zk — a polyedrální kombinatorika NOPT042 Programování 5 2/2 Z+Zk — podmínkami 5 2/2 Z+Zk — nopdmínkami 5 2/2 Z+Zk — nopdmínkami 5 2/2 Z+Zk — nopdmínkami 7 2/0 Zk NTIN017 Paralelní algoritmy 7 2/0 Zk NTIN022 Pravděpodobnostní techniky 7 2/2 Z+Zk — nopdmínkami 7 2/0 Zk NTIN023 Dynamické grafové datové struktury 7 2/0 Zk NTIN063 Složitost 7 2/2 Z+Zk NTIN064 Vyčíslitelnost 7 2/0 Zk NTIN064 Vyčíslitelnost 7 2/0 Zk NTIN067 Datové struktury 2 3 — 2/0 Zk NTIN067 Datové struktury 2 3 — 2/0 Zk NTIN100 Základy přenosu a zpracování 4 — 2/1 Z+Zk	NMMA90	l Úvod do komplexní analýzy (O)	5	2/2 Z+Zk	
NOPT016 Celočíselné programování 5 — 2/2 Z+Zk NOPT017 Vícekriteriální optimalizace 3 — 2/0 Zk NOPT034 Matematické programování 4 2/1 Z+Zk — a polyedrální kombinatorika NOPT042 Programování 5 2/2 Z+Zk — podmínkami 5 2/2 Z+Zk — NTIN017 Paralelní algoritmy 5 2/2 Z+Zk — NTIN022 Pravděpodobnostní techniky 5 2/2 Z+Zk — NTIN023 Dynamické grafové datové struktury 3 2/0 Zk NTIN063 Složitost 4 — 2/1 Z+Zk NTIN064 Vyčíslitelnost 3 — 2/0 Zk NTIN067 Datové struktury 2 3 — 2/0 Zk NTIN067 Datové struktury 2 3 — 2/0 Zk NTIN100 Základy přenosu a zpracování 4 — 2/1 Z+Zk	NMMA93	l Úvod do funkcionální analýzy (O)	8	4/2 Z+Zk	
NOPT017 Vícekriteriální optimalizace 3 — 2/0 Zk NOPT034 Matematické programování 4 2/1 Z+Zk — a polyedrální kombinatorika NOPT042 Programování s omezujícími 5 2/2 Z+Zk — podmínkami 5 2/2 Z+Zk — NTIN017 Paralelní algoritmy 3 — 2/0 Zk NTIN022 Pravděpodobnostní techniky 5 2/2 Z+Zk — NTIN023 Dynamické grafové datové struktury 3 2/0 Zk NTIN063 Složitost 4 — 2/1 Z+Zk NTIN064 Vyčíslitelnost 3 — 2/0 Zk NTIN067 Datové struktury 2 3 — 2/0 Zk NTIN067 Datové struktury 2 3 — 2/0 Zk NTIN100 Základy přenosu a zpracování 4 — 2/1 Z+Zk	NOPT008	Algoritmy nelineární optimalizace	5		2/2 Z+Zk
NOPT034 Matematické programování 4 2/1 Z+Zk — a polyedrální kombinatorika NOPT042 Programování s omezujícími 5 2/2 Z+Zk — podmínkami NOPT051 Intervalové metody 5 2/2 Z+Zk — NTIN017 Paralelní algoritmy 3 — 2/0 Zk NTIN022 Pravděpodobnostní techniky 5 2/2 Z+Zk — NTIN023 Dynamické grafové datové struktury 3 2/0 Zk — NTIN063 Složitost 4 — 2/1 Z+Zk NTIN064 Vyčíslitelnost 3 — 2/0 Zk NTIN067 Datové struktury 2 3 — 2/0 Zk NTIN100 Základy přenosu a zpracování 4 — 2/1 Z+Zk	NOPT016	Celočíselné programování	5	_	
a polyedrální kombinatorika NOPT042 Programování s omezujícími 5 2/2 Z+Zk — podmínkami NOPT051 Intervalové metody 5 2/2 Z+Zk — NTIN017 Paralelní algoritmy 3 — 2/0 Zk NTIN022 Pravděpodobnostní techniky 5 2/2 Z+Zk — NTIN023 Dynamické grafové datové struktury 3 2/0 Zk — NTIN063 Složitost 4 — 2/1 Z+Zk NTIN064 Vyčíslitelnost 3 — 2/0 Zk NTIN067 Datové struktury 2 3 — 2/0 Zk NTIN100 Základy přenosu a zpracování 4 — 2/1 Z+Zk	NOPT017	Vícekriteriální optimalizace	3	_	$2/0 \mathrm{~Zk}$
NOPT042 Programování s omezujícími 5 2/2 Z+Zk — podmínkami NOPT051 Intervalové metody 5 2/2 Z+Zk — NTIN017 Paralelní algoritmy 3 — 2/0 Zk NTIN022 Pravděpodobnostní techniky 5 2/2 Z+Zk — NTIN023 Dynamické grafové datové struktury 3 2/0 Zk — NTIN063 Složitost 4 — 2/1 Z+Zk NTIN064 Vyčíslitelnost 3 — 2/0 Zk NTIN067 Datové struktury 2 3 — 2/0 Zk NTIN1007 Datové struktury 2 3 — 2/0 Zk NTIN100 Základy přenosu a zpracování 4 — 2/1 Z+Zk	NOPT034	Matematické programování	4	2/1 Z+Zk	
podmínkami NOPT051 Intervalové metody 5 2/2 Z+Zk — NTIN017 Paralelní algoritmy 3 — 2/0 Zk NTIN022 Pravděpodobnostní techniky 5 2/2 Z+Zk — NTIN023 Dynamické grafové datové struktury 3 2/0 Zk — NTIN063 Složitost 4 — 2/1 Z+Zk NTIN064 Vyčíslitelnost 3 — 2/0 Zk NTIN067 Datové struktury 2 3 — 2/0 Zk NTIN100 Základy přenosu a zpracování 4 — 2/1 Z+Zk		a polyedrální kombinatorika			
podmínkami NOPT051 Intervalové metody 5 2/2 Z+Zk — NTIN017 Paralelní algoritmy 3 — 2/0 Zk NTIN022 Pravděpodobnostní techniky 5 2/2 Z+Zk — NTIN023 Dynamické grafové datové struktury 3 2/0 Zk — NTIN063 Složitost 4 — 2/1 Z+Zk NTIN064 Vyčíslitelnost 3 — 2/0 Zk NTIN067 Datové struktury 2 3 — 2/0 Zk NTIN100 Základy přenosu a zpracování 4 — 2/1 Z+Zk	NOPT042	Programování s omezujícími	5	2/2 Z+Zk	
NTIN017 Paralelní algoritmy 3 — 2/0 Zk NTIN022 Pravděpodobnostní techniky 5 2/2 Z+Zk — NTIN023 Dynamické grafové datové struktury 3 2/0 Zk — NTIN063 Složitost 4 — 2/1 Z+Zk NTIN064 Vyčíslitelnost 3 — 2/0 Zk NTIN067 Datové struktury 2 3 — 2/0 Zk NTIN100 Základy přenosu a zpracování 4 — 2/1 Z+Zk		podmínkami		,	
NTIN017 Paralelní algoritmy 3 — 2/0 Zk NTIN022 Pravděpodobnostní techniky 5 2/2 Z+Zk — NTIN023 Dynamické grafové datové struktury 3 2/0 Zk — NTIN063 Složitost 4 — 2/1 Z+Zk NTIN064 Vyčíslitelnost 3 — 2/0 Zk NTIN067 Datové struktury 2 3 — 2/0 Zk NTIN100 Základy přenosu a zpracování 4 — 2/1 Z+Zk	NOPT051	Intervalové metody	5	2/2 Z+Zk	
NTIN022 Pravděpodobnostní techniky 5 $2/2 \text{ Z}+\text{Zk}$ — NTIN023 Dynamické grafové datové struktury 3 $2/0 \text{ Zk}$ — NTIN063 Složitost 4 — $2/1 \text{ Z}+\text{Zk}$ NTIN064 Vyčíslitelnost 3 — $2/0 \text{ Zk}$ NTIN067 Datové struktury 2 3 — $2/0 \text{ Zk}$ NTIN100 Základy přenosu a zpracování 4 — $2/1 \text{ Z}+\text{Zk}$		ů,			2/0 Zk
NTIN023 Dynamické grafové datové struktury 3 $2/0$ Zk $-$ NTIN063 Složitost 4 $ 2/1$ Z+Zk NTIN064 Vyčíslitelnost 3 $ 2/0$ Zk NTIN067 Datové struktury 2 3 $ 2/0$ Zk NTIN100 Základy přenosu a zpracování 4 $ 2/1$ Z+Zk		~ · ·		2/2 Z+Zk	
NTIN063 Složitost 4 — 2/1 Z+Zk NTIN064 Vyčíslitelnost 3 — 2/0 Zk NTIN067 Datové struktury 2 3 — 2/0 Zk NTIN100 Základy přenosu a zpracování 4 — 2/1 Z+Zk				,	
NTIN064 Vyčíslitelnost 3 — 2/0 Zk NTIN067 Datové struktury 2 3 — 2/0 Zk NTIN100 Základy přenosu a zpracování 4 — 2/1 Z+Zk		· · ·			2/1 Z+Zk
NTIN067 Datové struktury 2 3 — $2/0$ Zk NTIN100 Základy přenosu a zpracování 4 — $2/1$ Z+Zk					•
NTIN100 Základy přenosu a zpracování 4 — $2/1 Z+Zk$		·			,
		· ·			,
		informace	-		-,

NTIN103	Introduction to Parameterized	5	2/2 Z+Zk	_	
	Algorithms				

Povinně volitelné předměty - skupina 2¹

Je požadováno splnění povinně volitelných předmětů z následujícího seznamu v rozsahu alespoň 5 kreditů:

Kód	Název	Kredity	ZS	LS
NDMI073	Kombinatorika a grafy 3	5	2/2 Z+Zk	_
NOPT018	Základy nelineární optimalizace	5	2/2 Z+Zk	

¹Pro dvě zaměření Diskrétní matematika a algoritmy a Geometrie a matematické struktury v informatice je doporučen předmět NDMI073, pro zaměření Optimalizace předmět NOPT018. Po absolvování jednoho předmětu ze skupiny 2 jsou kredity počítány pouze do skupiny 2, která je tak splněna. Jsou-li absolvovány oba předměty ze skupiny 2, jsou kredity za druhý z nich započítány v rámci kreditů pro volbu studenta.

Doporučené volitelné předměty

Seznam doporučených volitelných předmětů obsahuje pouze jeden předmět, daný požadavky zkušebního okruhu Kombinatorická a výpočetní geometrie. Další volitelné předměty lze volit ze široké nabídky předmětů na MFF UK.

Kód	Název	Kredity	ZS	LS
NDMI009	Základy kombinatorické a výpočetní geometrie	5	2/2 Z+Zk	_

Státní závěrečná zkouška

Student dostane pět otázek, dvě ze společného základu (jednu z Úvodu do složitosti a vyčíslitelnosti a jednu z Datových struktur) a po jedné ze tří studentem zvolených zkušebních okruhů uvedených v následujících seznamech. Alespoň dva z těchto zkušebních okruhů musejí náležet do zvoleného studentova zaměření, jeden zkušební okruh může být z jiného zaměření.

Zkušební okruhy

- 1. Úvod do složitosti a vyčíslitelnosti
- 2. Datové struktury

Zkušební požadavky

1. Úvod do složitosti a vyčíslitelnosti

Výpočetní modely (Turingovy stroje, RAM). Základní třídy složitosti a jejich vztahy. Aproximační algoritmy a schémata.

Doporučené předměty

Kód	Název	Kredity	ZS	LS
NTIN090	Základy složitosti a vyčíslitelnosti	4	2/1 Z+Zk	_

Zkušební požadavky

2. Datové struktury

Vyhledávací stromy ((a,b)-stromy, splay stromy). Haldy (regulární, binomiální). Hašování, řešení kolizí, univerzální hašování, výběr hašovací funkce.

Doporučené předměty

Kód	Název	Kredity	ZS	LS
NTIN066	Datové struktury 1	6	2/2 Z+Zk	

a) Zaměření **Diskrétní matematika a algoritmy**

Zkušební okruhy

- 1. Kombinatorika a teorie grafů
- 2. Pravděpodobnostní techniky a kombinatorická enumerace
- 3. Polyedrální optimalizace
- 4. Grafové algoritmy

Zkušební požadavky

1. Kombinatorika a teorie grafů

Barevnost grafů a její varianty, např. tzv. vybíravost. Grafové minory, stromová šířka a její souvislost se složitostí. Geometrické reprezentace grafů (charakterizační věty, rozpoznávací algoritmy), algebraické vlastnosti grafů, teorie párování. Ramseyova teorie a Szemerédiho lemma o regularitě. Množinové systémy, např. Steinerovy systémy trojic a konečné geometrie.

Doporučené předměty

Kód	Název	Kredity	ZS	LS
NDMI037	Geometrické reprezentace grafů 1	3	$2/0 \mathrm{~Zk}$	_
NDMI059	Grafové minory a stromové rozklady	3	2/0 Zk	
NDMI060	Barevnost grafů a kombinatorických	3	$2/0 \mathrm{Zk}$	
	struktur			
NDMI073	Kombinatorika a grafy 3	5	2/2 Z+Zk	_

2. Pravděpodobnostní techniky a kombinatorická enumerace

Kombinatorické počítání, vytvořující funkce, rekurence, asymptotické odhady funkcí. Základní pravděpodobnostní modely, linearita střední hodnoty, použití rozptylu, Markovova nerovnost a aplikace na konkrétní příklady. Černovova nerovnost. Lovászovo lokální lemma. Pravděpodobnostní konstrukce a algoritmy.

Doporučené předměty

Kód	Název	Kredity	ZS	LS
NDMI015	Kombinatorické počítání	3	_	$2/0 \mathrm{~Zk}$
NDMI087	Analytická kombinatorika	4		$2/1 \mathrm{Zk}$
NDMI025	Pravděpodobnostní algoritmy	5		2/2 Z+Zk
NTIN022	Pravděpodobnostní techniky	5	2/2 Z+Zk	

3. Polyedrální optimalizace

Teorie mnohostěnů, problém obchodního cestujícího, speciální matice, celočíselnost, párování a toky v sítích, teorie matroidů, elipsoidová metoda.

Doporučené předměty

Kód	Název	Kredity	ZS	LS	
NTIN090	Základy složitosti a vyčíslitelnosti	4	2/1 Z+Zk		

a polyedrální kombinatorika	NDMI065 Teorie matroidů NOPT034 Matematické programování a polyedrální kombinatorika	5 4	$\frac{-}{2/1}$ Z+Zk	2/2 Z+Zk —
-----------------------------	--	--------	----------------------	---------------

4. Grafové algoritmy

Pokročilé algoritmy pro nejkratší cesty, tranzitivní uzávěr, toky v sítích, řezy, párování a minimální kostry, testování rovinnosti grafů a kreslení do roviny. Grafové datové struktury: union-find, link/cut stromy, E-T stromy, plně dynamické udržování komponent souvislosti, společní předchůdci ve stromech (LCA).

Recommended courses

Kód	Název	Kredity	ZS	LS
NDMI010	Grafové algoritmy	3	2/0 Zk	_
NDMI088	Grafové algoritmy 2	3		$2/0 \mathrm{Zk}$
NTIN067	Datové struktury 2	3	_	2/0 Zk

b) Zaměření Geometrie a matematické struktury v informatice

Zkušební okruhy

- 1. Kombinatorická a výpočetní geometrie
- 2. Struktury v informatice
- 3. Topologie v informatice a kombinatorice
- 4. Teorie kategorií v informatice
- 5. Teorie čísel v informatice

Zkušební požadavky

1. Kombinatorická a výpočetní geometrie

Základní věty o konvexních množinách (Hellyho, Radonova, Carathéodoryho, o oddělování) a jejich rozšíření (zlomková Hellyho věta, barevná Carathéodoryho věta, Tverbergova věta), Minkowského věta o mřížkách, incidence bodů a přímek, geometrická dualita, konvexní mnohostěny (základní vlastnosti, kombinatorická složitost), Voroného diagramy, konvexně nezávislé množiny, půlící přímky, složitost dolní obálky úseček.

Doporučené předměty

Kód	Název	Kredity	ZS	LS
NDMI009	Základy kombinatorické a výpočetní	5	2/2 Z+Zk	
NDMI013	geometrie Kombinatorická a výpočetní geometrie 2	5	_	2/2 Z+Zk

2. Struktury v informatice

Relace a relační struktury. Částečně uspořádané množiny. Suprema a infima, polosvazy a svazy. Věty o pevných bodech. Distributivní svazy, Booleovy a Heytingovy algebry. Základy univerzální algebry. Základy obecné topologie a základní topologické konstrukce. Scottova topologie. DCPO a domény.

Doporučené předměty

Kód	Název	Kredity	ZS	LS
NMAI064	Matematické struktury	5	_	2/2 Z+Zk

NMAI066 Topologické a algebraic	eké metody 3		2/0 Zk
---------------------------------	--------------	--	--------

3. Topologie v informatice a kombinatorice

Základy metrické a obecné topologie. Topologické konstrukce, speciální prostory, kompaktnost a souvislost. Simpliciální komplexy, simpliciální zobrazení. Jordanova věta o kružnici (informativně, její místo v diskrétní matematice). Borsukova–Ulamova věta a její aplikace: věta o sendviči, věta o náhrdelníku, barevnost Kneserových grafů. Brouwerova věta o pevném bodu.

Doporučené předměty

Kód	Název	Kredity	ZS	LS
NMAI064	Matematické struktury	5	_	2/2 Z+Zk
NDMI014	Topologické metody	5		2/2 Z+Zk
	v kombinatorice			

4. Teorie kategorií v informatice

Kategorie, funktory, transformace, konkrétní příklady. Limity a kolimity, speciální konstrukce a vytváření dalších. Adjunkce, vztah ke kategoriálním konstrukcím. Reflexe a koreflexe. Konkrétní příklady adjungovaných situací. Kartézsky uzavřené kategorie. Kategorie a struktury, zejména struktury užívané v informatice. Monadické algebry.

Doporučené předměty

Kód	Název	Kredity	ZS	LS
NMAI065	Základy teorie kategorií pro informatiky	3	2/0 Zk	_

5. Teorie čísel v informatice

Diofantické aproximace (Dirichletova věta, Fareyovy zlomky, transcendentní čísla). Diofantické rovnice (Pellova rovnice, Thueho rovnice, věta o čtyřech čtvercích, desátý Hilbertův problém). Prvočísla (odhady počtů prvočísel, Dirichletova věta). Geometrie čísel (mřížky, Minkowskiho věta). Kongruence (kvadratické zbytky). Číselné rozklady (rozkladové identity, např. pentagonální identita).

Doporučené předměty

Kód	Název	Kredity	ZS	LS
NMAI040	Úvod do teorie čísel	3	2/0 Zk	

c) Zaměření **Optimalizace**

Zkušební okruhy

- 1. Nelineární programování
- 2. Diskrétní optimalizační procesy
- 3. Vícekriteriální a celočíselné programování
- 4. Parametrické programování a intervalové metody

Zkušební požadavky

1. Nelineární programování

Vlastnosti konvexních množin a konvexních funkcí. Zobecnění konvexních funkcí. Nutné a postačující podmínky optimality pro volné a vázané extrémy úloh nelineárního programování. Kvadratické programování. Semidefinitní programování. Dualita

v nelineárním programování. Metody řešení úloh na volný a vázaný extrém, včetně penalizačních a bariérových metod. Jednorozměrná optimalizace.

Doporučené předměty

Kód	Název	Kredity	ZS	LS
	Algoritmy nelineární optimalizace Základy nelineární optimalizace	5 5		2/2 Z+Zk

2. Diskrétní optimalizační procesy

Algoritmická teorie her, volební mechanismy, elektronické aukce, využití submodulárních funkcí v ekonomii. Optimalizace pomocí enumerací, generující funkce hranových řezů a perfektních párování, enumerační duality, problém maximálního řezu pro grafy vnořené na plochách.

Doporučené předměty

Kód	Název	Kredity	ZS	LS
NDMI064	Aplikovaná diskrétní matematika	3	$2/0 \mathrm{~Zk}$	
NOPT018	Základy nelineární optimalizace	5	2/2 Z+Zk	

3. Vícekriteriální a celočíselné programování

Různé přístupy k řešení úloh s více kritérii. Funkcionál přiřazený k dané úloze vektorového programování. Pareto-optimální řešení. Úlohy lineární a nelineární vektorové optimalizace. Metody pro získání Pareto-optimálních řešení. Úlohy lineárního programování s podmínkami celočíselnosti, resp. s binárními proměnnými. Nelineární optimalizační problémy s podmínkami celočíselnosti.

Doporučené předměty

Kód	Název	Kredity	ZS	LS
	Celočíselné programování Vícekriteriální optimalizace	0	_	$\begin{array}{c} 2/2 \text{ Z+Zk} \\ 2/0 \text{ Zk} \end{array}$

4. Parametrické programování a intervalové metody

Obory stability řešení, jednoparametrické a víceparametrické programování, vztah k vícekriteriální optimalizaci. Intervalová lineární algebra (soustavy lineárních rovnic, regularita, vlastní čísla). Lineární programování s nepřesnými daty. Deterministická globální optimalizace, horní a dolní odhady na účelovou funkci a optimální hodnotu.

Doporučené předměty

Kód	Název	Kredity	ZS	LS
	Vícekriteriální optimalizace Intervalové metody	•		2/0 Zk

2. Informatika - Teoretická informatika

Garantující pracoviště: Katedra teoretické informatiky a matematické logiky, Informatický ústav Univerzity Karlovy

Garant programu: Prof. Mgr. Michal Koucký, Ph.D.

Program se nedělí na zaměření

Cílem tohoto studijního programu je poskytnout studentům široké vzdělání v teoretických základech informatiky. Program předpokládá dobré matematické základy a rozvíjí schopnosti přesného myšlení. Absolventi a absolventky získají přehled a porozumění v mnoha oblastech současné teoretické informatiky - od kryptografie a limitů výpočetních systémů po pokročilé algoritmické techniky. Zároveň se dostanou v oblastech svého zájmu ke hranicím současného poznání. Součástí studia tak může být práce v mezinárodních týmech vedených předními odborníky například při řešení diplomové práce. Absolventi a absolventky jsou vyhledávání firmami vyvíjející technologie pro budoucnost založené na nynějším výzkumu. Zároveň je studijní program znamenitě připraví pro doktorské studium na kterékoliv světové univerzitě.

Část výuky může probíhat v anglickém jazyce.

Povinné předměty

Kód	Název	Kredity	ZS	LS
NTIN090	Základy složitosti	4	2/1 Z+Zk	_
	a vyčíslitelnosti			
NTIN066	Datové struktury 1	6	2/2 Z+Zk	
NTIN022	Pravděpodobnostní techniky	5	2/2 Z+Zk	
NTIN063	Složitost	4		2/1 Z+Zk
NTIN100	Základy přenosu a zpracování	4		2/1 Z+Zk
	informace			
NSZZ023	Diplomová práce I	6		$0/4 \mathrm{~Z}$
NSZZ024	Diplomová práce II	9	$0/6 \mathrm{~Z}$	
NSZZ025	Diplomová práce III	15	_	$0/10 \mathrm{~Z}$

Povinně volitelné předměty

Je požadováno splnění povinně volitelných předmětů z následujícího seznamu v rozsahu alespoň 47 kreditů:

Kód	Název	Kredity	ZS	LS
NAIL021	Booleovské funkce a jejich aplikace	3	$2/0 \mathrm{~Zk}$	
NTIN096	Pseudo-Booleovská optimalizace	3		2/0 Zk
NAIL094	Rozhodovací procedury a SAT/SMT	5		2/2 Z+Zk
	řešiče			
NDMI010	Grafové algoritmy	3	2/0 Zk	
NDMI018	Aproximační a online algoritmy	5		2/2 Z+Zk
NDMI025	Pravděpodobnostní algoritmy	5		2/2 Z+Zk
NSWI072	Algoritmy komprese dat	3	$2/0 \mathrm{Zk}$	
NTIN067	Datové struktury 2	3		$2/0 \mathrm{Zk}$
NDMI074	Algoritmy a jejich implementace	5		2/2 Z+Zk
NTIN081	Výpočetní složitost a interaktivni	3	_	$2/0 \mathrm{Zk}$
	protokoly			
NTIN082	Neuniformní výpočetní modely	3		2/0 Zk
NTIN087	Textové algoritmy	3	$2/0 \mathrm{Zk}$	
NTIN097	Struktury v hyperkrychlích	3	$2/0 \mathrm{Zk}$	
NTIN099	Algoritmy pro reprezentaci znalostí	3	_	2/0 Zk

NTIN103	Introduction to Parameterized Algorithms	5	2/2 Z+Zk	_
NOPT034	Matematické programování a polyedrální kombinatorika	4	2/1 Z+Zk	_
NTIN104	Foundations of theoretical	4	2/1 Z+Zk	
NDMI067	cryptography	3	2/0.71-	
	Toky, cesty a řezy	3	2/0 Zk	$\frac{-}{2/0}$ Zk
	Algoritmy pro specifické třídy grafů Grafové algoritmy 2	3		2/0 Zk $2/0 Zk$
	Graiove algoritmy 2 5 Důkazová složitost a P vs. NP	ა 3		,
NMAG930	problém	3		$2/0 \mathrm{Zk}$
NMAI067	Logika v informatice	3	$2/0 \mathrm{~Zk}$	
	Paralelní algoritmy	3		$2/0 \mathrm{Zk}$
	Dynamické grafové datové struktury	3	$2/0 \mathrm{~Zk}$	
	Vyčíslitelnost	3		$2/0 \mathrm{~Zk}$
NTIN073	Rekurze	3	$2/0 \mathrm{~Zk}$	
NTIN084	Bioinformatické algoritmy	5	$^{\prime}\!/2~\mathrm{Z+Zk}$	
NTIN085	Vybrané kapitoly z výpočetní	4	2/1 Z+Zk	
	složitosti I		•	
NTIN086	Vybrané kapitoly z výpočetní	4		2/1 Z+Zk
	složitosti II			
NTIN101	Selected Topics in Algorithms	3	$2/0 \mathrm{~Zk}$	
NTIN111	Selected Topics in Algorithms II	3		$2/0 \mathrm{~Zk}$
NTIN110	Vybrané kapitoly z datových	3	$2/0 \mathrm{\ Zk}$	
	struktur			
NTIN088	Algoritmická náhodnost	3		$2/0 \mathrm{Zk}$
NTIN102	Seminář z teoretické informatiky	3	$0/2 \mathrm{~Z}$	$0/2 \; \mathrm{Z}$
NDMI093	Seminář z algoritmů a datových	3		$0/2 \mathrm{~Z}$
	struktur			

Některé předměty jsou vyučovány pouze jednou za dva roky.

Doporučené volitelné předměty

Uvedený seznam volitelných předmětů obsahuje předměty, které přímo navazují a rozšiřují látku relevantní pro tento studijní program. Student má dále možnost vybrat si další předměty volitelně ze široké nabídky informatických předmětů nabízených MFF UK.

Kód	Název	Kredity	ZS	LS
NDMI007	Kombinatorické algoritmy	5	_	2/2 Z+Zk
NAIL116	Sociální sítě a jejich analýza	5	2/2 Z+Zk	
NOPT042	Programování s omezujícími	5	2/2 Z+Zk	
	podmínkami			
NAIL076	Logické programování 1	3	$2/0 \mathrm{~Zk}$	_

Státní závěrečná zkouška

Student si zvolí tři okruhy z následující nabídky, z nichž dostane po jedné otázce. Otázky k jednotlivým okruhům vychází z látky probrané v rámci povinných předmětů

a předmětů doporučených k jednotlivým okruhům. Celkem tedy každý student dostane tři otázky.

Zkušební okruhy

- 1. Složitost a kryptografie
- 2. Reprezentace znalostí v binární doméně
- 3. Algoritmy
- 4. Datové struktury

Zkušební požadavky

1. Složitost a kryptografie

Výpočty s orákuly a relativizované výpočetní třídy. Polynomiální hierarchie. Pravděpodobnostní výpočetní třídy. Neuniformní modely výpočtu. Interaktivní protokoly. Komunikační složitost. Vztahy a separace různých tříd složitosti. Kryptografie založená na předpokladech výpočetní obtížnosti. Jednosměrné funkce a hard-core predikáty. Pseudonáhodné generátory. Integrita dat (message authentication codes). Kryptografické hašovací funkce. Schémata pro commitment. Zero-knowledge důkazové systémy.

Doporučené předměty

Kód	Název	Kredity	ZS	LS
NTIN063	Složitost	4	_	2/1 Z+Zk
NTIN081	Výpočetní složitost a interaktivni	3		$2/0 \mathrm{~Zk}$
	protokoly			
NTIN082	Neuniformní výpočetní modely	3		2/0 Zk
NTIN104	Foundations of theoretical	4	2/1 Z+Zk	<u> </u>
	cryptography			

2. Reprezentace znalostí v binární doméně

Rezoluce a její úplnost. Dualizace. Třídy booleovských funkcí a formulí se speciálními vlastnostmi. Exponenciální algoritmy pro k-SAT a obecný SAT. Parametrizované algoritmy pro SAT. Algoritmy pro MAXSAT. Reprezentace znalostí založené na NNF. Řešiče pro SAT založené na DPLL a CDCL a jejich využití pro SMT. Parciální krychle a mediánové grafy. Grayovy kódy. Isoperimetrické nerovnosti a lineární rozvržení. Turánovské problémy. Obvody, třída P/poly a její vlastnosti. QBF a jejich vlastnosti vzhledem k polynomiální hierarchii a třídě PSPACE. Algoritmy pro rozhodování QBF. Samo-opravné kódy.

Doporučené předměty

Kód	Název	Kredity	ZS	LS
	Algoritmy pro reprezentaci znalostí	3	_	2/0 Zk
NAIL094	Rozhodovací procedury a SAT/SMT řešiče	5		2/2 Z+Zk
NTIN097	Struktury v hyperkrychlích	3	$2/0 \mathrm{~Zk}$	
NAIL021	Booleovské funkce a jejich aplikace	3	$2/0 \mathrm{~Zk}$	

3. Algoritmy

Pokročilé grafové algoritmy, toky v síti. Lineární a semidefinitní programování, polynomiální algoritmy pro ně, použití v grafových a aproximačních algoritmech. Kombinatorické aproximační algoritmy a schémata. Pseudopolynomiální algoritmy, silná

NP-úplnost. Parametrizované algoritmy - FPT, parametrizované dolní odhady, parametrizované aproximační algoritmy. Pravděpodobnostní algoritmy, přibližné počítání, hašování a jeho aplikace. Interaktivní protokoly a verifikace, PCP věta a její aplikace.

Doporučené předměty

Kód	Název	Kredity	ZS	LS
NDMI010	Grafové algoritmy	3	2/0 Zk	_
NDMI018	Aproximační a online algoritmy	5		2/2 Z+Zk
NDMI025	Pravděpodobnostní algoritmy	5		2/2 Z+Zk
NTIN103	Introduction to Parameterized	5	2/2 Z+Zk	
	Algorithms			

4. Datové struktury

Výpočetní modely (RAM a jeho varianty). Entropie a informace. Samoopravné kódy. Komprese dat. Vyhledávací stromy. Hešování. Pokročilé haldy. Datové struktury pro práci s celými čísly. Vícerozměrné datové struktury. Datové struktury pro práci s řetězci. Textové algoritmy. Struktury pro práci s grafy. Dynamizace a persistence. Práce s paměťovou hierarchií. Data-streamové problémy.

Doporučené předměty

$\operatorname{K\'od}$	Název	Kredity	ZS	LS
NTIN100	Základy přenosu a zpracování informace	4	_	2/1 Z+Zk
NTIN087 NDMI010	Datové struktury 2 Textové algoritmy Grafové algoritmy Algoritmy komprese dat	3 3 3 3		2/0 Zk — — —

3. Informatika - Softwarové a datové inženýrství

Garantující pracoviště: Katedra softwarového inženýrství Garant programu: Prof. RNDr. Tomáš Skopal, Ph.D.

Zaměření:

- softwarové inženýrství
- vývoj software
- webové inženýrství
- databázové systémy
- analýza a zpracování rozsáhlých dat

Absolvent má hluboké softwarově a datově inženýrské znalosti v rámci zvoleného zaměření. Tyto znalosti nesledují pouze aktuální technologické trendy, ale jejich jádro je tvořeno hlubokým teoretickým základem. Absolvováním zaměření Softwarové inženýrství umí absolvent analyzovat požadavky na kvalitu a funkcionalitu softwarových řešení, navrhovat odpovídající architekturu a řídit proces vývoje a monitorování kvality. Absolvent zaměření Vývoj software je schopen navrhovat architekturu software a vést jeho implementaci v různých prostředích včetně paralelních nebo cloudových. Zaměření

Webové inženýrství učí absolventy navrhovat a implementovat software fungující v prostředí webu, cloudu a dalších síťových technologií s důrazem na škálovatelnost, robustnost a bezpečnost. Se zaměřením Databázové systémy je absolvent připraven navrhovat a integrovat schémata v různých typech databází a na jejich základě pak implementovat a administrovat databázové aplikace. Absolvent zaměření Analýza a zpracování rozsáhlých dat se uplatní jako vědecky orientovaný odborník na dobývání znalostí z dat a jejich interpretaci uživateli, např. jako datový analytik (data scientist).

Povinné předměty

Kód Název		Kredity	ZS	LS
NTIN090 Základy		4	2/1 Z+Zk	_
a vyčísli		e	9/9 7 + 71-	
NTIN066 Datové s NSZZ023 Diplomo	•	6 6	2/2 Z+Zk —	$0/4 \mathrm{~Z}$
NSZZ024 Diplomo	_	•	0/6 Z	
NSZZ025 Diplomo	_	15		$0/10 \mathrm{~Z}$

Týmový projekt

Student si volí právě jeden z trojice předmětů Softwarový projekt, Výzkumný projekt a Firemní projekt.

Kód	Název	Kredity	ZS	LS
NPRG069	Softwarový projekt	12	0/8 Z	0/8 Z
NPRG070	Výzkumný projekt	9	$0/6 \mathrm{Z}$	$0/6 \mathrm{~Z}$
NPRG071	Firemní projekt	6	$0/4 \mathrm{~Z}$	$0/4 \mathrm{~Z}$
NPRG072	Zvýšený rozsah projektu	3	$0/2 \mathrm{~Z}$	$0/2 \mathrm{~Z}$

Povinně volitelné profilující předměty

Je požadováno splnění povinně volitelných profilujících předmětů z následujícího seznamu v rozsahu alespoň 41 kreditů. Předměty je doporučené volit tak, aby pokrývaly zvolené studijní okruhy státní závěrečné zkoušky.

Kód	Název	Kredity	ZS	LS
NPRG014	Koncepty moderních programovacích jazyků	4	$0/3 \mathrm{~Z}$	_
NPRG043	Doporučené postupy v programování	5		2/2 KZ
NPRG024	Návrhové vzory	3		$0/2~\mathrm{KZ}$
NSWI126	Pokročilé nástroje pro vývoj a monitorování software	2		$0/2 \; \mathrm{Z}$
NPRG059	Praktikum z pokročilého objektového programování	2	$0/1 \mathrm{~Z}$	_
NPRG058	Pokročilé programování v paralelním prostředí	6	2/2 Z+Zk	_
NSWI150	Virtualizace a cloud computing	3	$2/0 \mathrm{~Zk}$	
NSWI153	Pokročilé programování webových aplikací	5	<u> </u>	2/2 Z+Zk

NSWI145	Webové služby	5	_	2/2 Z+Zk
NSWI144	Data na Webu	5	2/1 Z+Zk	<u>.</u>
NSWI130	Architektury softwarových systémů	5	2/2 Z+Zk	
NSWI026	Pokročilé aspekty softwarového inženýrství	5	<u>, </u>	2/2 Z+Zk
NTIN043	Formální základy softwarového inženýrství	5	2/2 Z+Zk	
NDBI034	Vyhledávání multimediálního obsahu na webu	4	2/1 Z+Zk	
NDBI040	Moderní databázové systémy	5	2/2 Z+Zk	_
NDBI042	Techniky vizualizace dat	4		2/1 Z+Zk
NPFL114	Hluboké učení	7		3/2 Z+Zk
NDBI023	Dobývání znalostí	5		2/2 Z+Zk
NDBI016	Transakce	3		$2/0 \mathrm{Zk}$
NDBI001	Dotazovací jazyky 1	5	2/2 Z+Zk	
NDBI006	Dotazovací jazyky 2	5		2/2 Z+Zk
NDBI021	Zákaznické preference	4		2/1 Z+Zk
NSWI072	Algoritmy komprese dat	3	$2/0 \mathrm{~Zk}$	_

Povinně volitelné předměty

Je požadováno splnění povinně volitelných předmětů z následujícího seznamu v rozsahu alespoň $15~{\rm kredit}$ ů.

Kód	Název	Kredity	ZS	LS
NMAI060	Pravděpodobnostní metody	3	2/0 Zk	_
NPRG042	Programování v paralelním	6		2/2 Z+Zk
	prostředí			
NPRG054	Vývoj vysoce výkonného software	6		2/2 Z+Zk
NSWI035	Principy distribuovaných systémů	3	2/0 Zk	
NSWI080	Middleware	4		2/1 KZ
NSWI101	Modely a verifikace chování systémů	5	2/2 Z+Zk	
NSWI131	Vyhodnocování výkonnosti	4		2/1 Z+Zk
	počítačových systémů			
NSWI149	Softwarové inženýrství v praxi	3		$2/0 \mathrm{~Z}$
NSWI152	Vývoj cloudových aplikací	2		$0/2 \mathrm{~Z}$
NTIN067	Datové struktury 2	3		$2/0 \mathrm{Zk}$
NSWI166	Úvod do doporučovacích systémů	4	2/1 Z+Zk	
NPFL104	Metody strojového učení	4		1/2 Z+Zk

Státní závěrečná zkouška

Student si vybere tři okruhy podle zvoleného zaměření. Dva z těchto okruhů jsou povinné pro zvolené zaměření, třetí je volitelný.

Zkušební okruhy

- 1. Analýza a architektury software (povinný pro zaměření: Softwarové inženýrství)
- 2. Rozšířené programování (povinný pro zaměření: Softwarové inženýrství, Vývoj software)
- 3. Softwarové technologie (povinný pro zaměření: Vývoj software)

- 4. Webové technologie (povinný pro zaměření: Webové inženýrství)
- 5. Databáze formální základy a dotazovací jazyky (povinný pro zaměření: Webové inženýrství, Databázové systémy)
- 6. Databáze implementace a administrace (povinný pro zaměření: Databázové systémy)
- 7. Zpracování rozsáhlých a nestrukturovaných dat (povinný pro zaměření: Analýza a zpracování rozsáhlých dat)
- 8. Data mining (povinný pro zaměření: Analýza a zpracování rozsáhlých dat)

Zkušební požadavky

1. Analýza a architektury software

Procesy vývoje SW a jejich fáze. Podnikové procesy a jejich modelování pomocí BPMN. UML a jeho využití pro analýzu a návrh struktury a chování SW. Návrhové vzory. Testování SW, dopadová a změnová analýza. Plánování SW projektů, odhad nákladů, úrovně řízení projektů. Právní aspekty SW, hlavní zákony důležité pro IT projekty. Typy pohledů na SW architekturu. Modelování a dokumentace SW architektury. Klasifikace atributů kvality SW architektury, jejich popis pomocí scénářů a taktik. Servisně orientované architektury. Algebraické metody formálních specifikací, vícedruhové algebry, iniciální modely. Temporální logika. Formální základy jazyka UML. OCL jako specifikační jazyk a formální základy dle specifikace.

Doporučené předměty

Kód	Název	Kredity	ZS	LS
	Architektury softwarových systémů Pokročilé aspekty softwarového	5 5	2/2 Z+Zk —	- $2/2$ Z+Zk
NTIN043	inženýrství Formální základy softwarového inženýrství	5	2/2 Z+Zk	_

2. Rozšířené programování

Moderní konstrukce a pokročilé aspekty programovacích jazyků. Generické programování a metaprogramování, generika a šablony, politiky, traits, typová dedukce, reflexe. Výjimky a bezpečné programování v prostředí s výjimkami. Implementace objektových vlastností, běhová podpora, volací konvence, garbage collection. Vliv moderních konstrukcí na výkonnost kódu. Paralelní programování, Amdahlův zákon, synchronizační primitiva, task stealing. Návrhové vzory a jejich využití. Skriptovací jazyky, prototype-based jazyky. Domain Specific Languages. Funkcionální programování. Principy tvorby kvalitního kódu, doporučené postupy. Refaktorizace. Testování funkčnosti, hledání chyb, monitorování programů.

Doporučené předměty

Kód	Název	Kredity	ZS	LS
NPRG014	Koncepty moderních programovacích jazyků	4	$0/3 \mathrm{~Z}$	_
NPRG024	Návrhové vzory	3	_	$0/2~\mathrm{KZ}$
NPRG043	Doporučené postupy	5	_	2/2 KZ
	v programování			

NPRG042 Programování v paralelním	6	_	2/2 Z+Zk
prostředí NPRG059 Praktikum z pokročilého objektového programování	2	$0/1~{ m Z}$	_

3. Softwarové technologie

Architektury operačních systémů, správa procesů, správa paměti, komunikace a synchronizace, paralelismus, virtualizace, stránkování. Souborové systémy, přístupová práva a bezpečnost. Přenositelnost a multiplatformnost aplikací. Testování a monitorování funkčnosti a výkonnosti. Architektura webových aplikací, skriptování na straně serveru a klienta, spolupráce s databázovými systémy. Architektura datového serveru, transakce, optimalizace výkonu. Cloudové služby, IaaS, PaaS a SaaS. Virtualizace, kontejnerizace, orchestrace, edge computing, IoT. Vyvažování zátěže, vysoká dostupnost. MapReduce.

Doporučené předměty

Kód	Název	Kredity	ZS	LS
NSWI126	Pokročilé nástroje pro vývoj a monitorování software	2		0/2 Z
NSWI153	Pokročilé programování webových aplikací	5		2/2 Z+Zk
NSWI150	Virtualizace a cloud computing	3	$2/0 \mathrm{~Zk}$	_

4. Webové technologie

Obecný přehled základní webových technologií. Síťové služby pro webové technologie. Webové služby. Architektura klient-server aplikací, skriptování na straně serveru a klienta, webové frameworky. Použití databázových systémů ve webových aplikacích, NoSQL databáze, multimediální databáze. Indexace a prohledávání dokumentů, principy fungování webových vyhledávačů. Linked Data, integrace sémantických dat do webových stránek. Zajištění bezpečnosti informačních systémů v prostředí internetu, autentizace, autorizace, bezpečnostní modely, základy šifrování, ochrana dat.

Doporučené předměty

Kód	Název	Kredity	ZS	LS
NSWI130	Architektury softwarových systémů	5	2/2 Z+Zk	_
NSWI153	Pokročilé programování webových	5		2/2 Z+Zk
	aplikací			
NSWI145	Webové služby	5		2/2 Z+Zk
NDBI034	Vyhledávání multimediálního obsahu	4	2/1 Z+Zk	_
	na webu			
NPRG043	Doporučené postupy	5		$2/2~\mathrm{KZ}$
	v programování			

5. Databáze - formální základy a dotazovací jazyky

Relační kalkuly, relační algebry. Relační úplnost. Bezpečné výrazy, ekvivalence relačních dotazovacích jazyků. Věta o tranzitivním uzávěru relace. Sémantika SQL. Standardy SQL. Objektové rozšíření relačního modelu dat. Databáze textů – Booleovský a vektorový model, vyhledávání a indexování, uspořádání odpovědí, top-k operátor.

Datalog. Rekurze v SQL. Datový model XML. Datový model RDF, dotazovací jazyk SPARQL. Podobnostní dotazy v multimediálních databázích, metrické indexační metody. Modelování preferencí a dotazování s preferencemi.

Doporučené předměty

Kód	Název	Kredity	ZS	LS
	Moderní databázové systémy	5	2/2 Z+Zk	
NDBI034	Vyhledávání multimediálního obsahu	4	2/1 Z+Zk	
	na webu			
NDBI001	Dotazovací jazyky 1	5	2/2 Z+Zk	
NDBI006	Dotazovací jazyky 2	5		2/2 Z+Zk
NDBI021	Zákaznické preference	4		2/1 Z+Zk

6. Databáze - implementace a administrace

Architektury databázových systému. Modely a vlastnosti transakcí: uzamykací protokoly, časová razítka. Izolace transakcí, alokace prostředků. Distribuované transakce. Zotavení z chyb, žurnály. Distribuce s horizontální fragmentací, implementace NoSQL databází, CAP teorém. Indexace relačních dat. Přístupové metody k prostorovým objektům. Algoritmy implementace relačních operací, agregačních funkcí. Vyhodnocování a optimalizace dotazů. Komprese dat: Huffmanovo kódování, aritmetické kódování, LZ algoritmy, Burrows-Wheelerova transformace.

Doporučené předměty

Kód	Název	Kredity	ZS	LS
NDBI016	Transakce	3	_	2/0 Zk
NSWI072	Algoritmy komprese dat	3	$2/0 \mathrm{Zk}$	
NSWI144	Data na Webu	5	2/1 Z+Zk	
NDBI040	Moderní databázové systémy	5	2/2 Z+Zk	
NTIN066	Datové struktury 1	6	2/2 Z+Zk	_

7. Zpracování rozsáhlých a nestrukturovaných dat

Distribuce s horizontální fragmentací, implementace NoSQL databází, CAP teorém. Big Data management - distribuce, škálování, replikace, transakce. Paralelní a distribuované zpracování rozsáhlých dat, MapReduce. Úložiště typu klíč - hodnota. Sloupcová úložiště. Dokumentová úložiště. Modely pro fulltextové dotazování - vektorový, booleovský model, uspořádání odpovědí, top-k operátor. Podobnostní dotazy v multimediálních databázích, metrické indexační metody. Techniky vizualizace dat.

Doporučené předměty

Kód	Název	Kredity	ZS	LS
NDBI040	Moderní databázové systémy	5	2/2 Z+Zk	
NDBI034	Vyhledávání multimediálního obsahu	4	2/1 Z+Zk	
	na webu			
NDBI042	Techniky vizualizace dat	4		2/1 Z+Zk

8. Data mining

Základní principy databázových systémů, datových skladů a technologie OLAP. Dobývání znalostí z databází - příprava dat a jejich předzpracování, techniky pro popis

konceptů, metody pro dobývání asociativních pravidel, metody pro klasifikaci a predikci dat, metody pro klastrovou analýzu, dobývání znalostí v databázových systémech. Statistické metody pro data mining. Hledání různých typů závislostí. Bayesovská analýza, bayesovské sítě. Pravděpodobnostní modely dokumentografického informačního systému. Metody řízeného učení pro klasifikaci a regresi. Support Vector Machines a kernelové funkce. Evaluace experimentů. Techniky vizualizace dat.

Doporučené předměty

Kód	Název	Kredity	ZS	LS
NDBI023	Dobývání znalostí	5	_	2/2 Z+Zk
NAIL029	Strojové učení	3		$2/0 \mathrm{~Zk}$
NDBI042	Techniky vizualizace dat	4		2/1 Z+Zk

4. Informatika - Softwarové systémy

Garantující pracoviště: Katedra distribuovaných a spolehlivých systémů

Garant programu: Prof. Ing. Petr Tůma, Dr.

Zaměření:

- systémové programování
- spolehlivé systémy
- výkonné systémy

Tento program je určen studentům se zájmem o hluboké znalosti z oblasti programovacích jazyků a počítačových systémů. Nabízí tři zaměření - Systémové programování, které vybaví absolventa znalostmi o moderních operačních systémech a souvisejících technologiích jako middleware či virtual machines, Spolehlivé systémy, které se soustředí na metody systematické konstrukce systémů s vysokou spolehlivostí, a konečně Výkonné systémy, které kladou důraz na znalosti potřebné pro vývoj software na moderních paralelních a distribuovaných systémech.

Povinné předměty

Kód	Název	Kredity	ZS	LS
	Datové struktury 1	6	2/2 Z+Zk	_
NTIN090	Základy složitosti	4	2/1 Z+Zk	
	a vyčíslitelnosti			
NSZZ023	Diplomová práce I	6		$0/4~{ m Z}$
NSZZ024	Diplomová práce II	9	$0/6 \ { m Z}$	
NSZZ025	Diplomová práce III	15	_	$0/10 \mathrm{~Z}$

Povinně volitelné předměty

Hlavní náplň programu představují následující povinně volitelné předměty, u kterých program požaduje studium podle preferencí studenta v objemu nejméně 48 kreditů. Při volbě předmětů je vhodné zohlednit také budoucí zaměření odborné části státní závěrečné zkoušky.

Kód	Název	Kredity	ZS	LS
NSWI151	Administrace virtualizační infrastruktury	3	_	$0/2 \mathrm{~Z}$
NSWI132	Analýza programů a verifikace kódu	5		2/2 Z+Zk
NSWI176	Dynamický překlad prakticky	2		$0/2 \mathrm{~Z}$
NSWI133	Firemní semináře	2	$0/2 \mathrm{~Z}$	$0/2 \mathrm{~Z}$
NTIN043	Formální základy softwarového inženýrství	5	2/2 Z+Zk	_
NPRG014	Koncepty moderních programovacích jazyků	4	$0/3 \mathrm{~Z}$	
NSWI109	Konstrukce překladačů	4		2/1 Z+Zk
NSWI080	Middleware	4		2/1 KZ
NSWI164	Modelem řízený vývoj	2	$0/1 \mathrm{~Z}$	
NSWI101	Modely a verifikace chování systémů	5	2/2 Z+Zk	
NSWI089	Ochrana informací 1	3	2/0 Zk	
NSWI071	Ochrana informací 2	3		$2/0 \mathrm{~Zk}$
NSWI026	Pokročilé aspekty softwarového inženýrství	5		2/2 Z+Zk
NSWI126	Pokročilé nástroje pro vývoj a monitorování software	2	_	$0/2 \mathrm{~Z}$
NSWI161	Pokročilé operační systémy	3		$2/0 \mathrm{Zk}$
	Pokročilé programování v paralelním prostředí	6	2/2 Z+Zk	'
NMAI060	Pravděpodobnostní metody	3	$2/0 \mathrm{Zk}$	
	Principy distribuovaných systémů	3	2/0 Zk	_
NAIL094	Rozhodovací procedury a SAT/SMT řešiče	5	<u></u>	2/2 Z+Zk
NSWI054	Softwarové inženýrství pro spolehlivé systémy	3		$0/2~{ m Z}$
NDBI042	· · · · · ·	4		2/1 Z+Zk
	Vestavěné systémy a systémy reálného času	5		2/2 Z+Zk
NSWI150	Virtualizace a cloud computing	3	$2/0 \mathrm{Zk}$	
	Vyhodnocování výkonnosti	$\frac{3}{4}$		2/1 Z+Zk
,,1101	počítačových systémů	-		-/
NSWI057	Výběrový seminář z distribuovaných a komponentových systémů I	3	$0/2 \mathrm{~Z}$	$0/2 \mathrm{~Z}$
NSWI152	Vývoj cloudových aplikací	2		$0/2 \mathrm{~Z}$

Povinně volitelné předměty z bakalářského programu

Program dává prostor pro další studium předmětů předchozího bakalářského programu v objemu nejméně 8 kreditů. Tuto povinnost je možné splnit také uznáním předmětů z předchozího bakalářského studia podle platných studijních předpisů. Započítané předměty bakalářského programu jsou:

Kód	Název	Kredity	ZS	LS
NPRG038	Pokročilé programování v jazyce C#	5	_	2/2 Z+Zk
NPRG051	Pokročilé programování v C++	5		2/2 Z+Zk
NPRG021	Pokročilé programování v jazyce Java	5	_	2/2 Z+Zk
NSWI153	Pokročilé programování webových aplikací	5	_	2/2 Z+Zk
NPRG043	Doporučené postupy v programování	5	_	2/2 KZ
NPRG054	Vývoj vysoce výkonného software	6		2/2 Z+Zk
	Programování mobilních zařízení	3	$0/2 \mathrm{~Z}$	
	Programování v paralelním prostředí	6		2/2 Z+Zk
NSWI143	Architektura počítačů	3		$2/0 \mathrm{Zk}$
	Principy překladačů	6	2/2 Z+Zk	

Povinně volitelné předměty týmového projektu

Program požaduje absolvovat jeden z předmětů týmového projektu:

Kód	Název	Kredity	ZS	LS
	Softwarový projekt	12	0/8 Z	0/8 Z
NPRG070	Výzkumný projekt	9	$0/6 \mathrm{~Z}$	$0/6 \mathrm{~Z}$
NPRG071	Firemní projekt	6	$0/4 \mathrm{~Z}$	$0/4 \mathrm{~Z}$

Státní závěrečná zkouška

Požadavky k odborné části státní závěrečné zkoušky jsou dány zvoleným zaměřením programu.

a) Zaměření Systémové programování

Toto zaměření ověřuje znalosti a dovednosti týkající se systémového programování a vnitřní funkce softwarových systémů, zkoušené v rozsahu následujících profilujících předmětů:

Kód	Název	Kredity	ZS	LS
NPRG014	Koncepty moderních programovacích jazyků	4	0/3 Z	
NSWI161	Middleware Pokročilé operační systémy Pokročilé programování v paralelním prostředí	4 3 6		2/1 KZ 2/0 Zk —
NSWI035	Principy distribuovaných systémů	3	2/0 Zk	_

b) Zaměření **Spolehlivé systémy**

Toto zaměření ověřuje znalosti a dovednosti týkající se konstrukce spolehlivých softwarových systémů, zkoušené v rozsahu následujících profilujících předmětů:

Kód	Název	Kredity	ZS	LS
NSWI132	Analýza programů a verifikace kódu	5	_	2/2 Z+Zk
NTIN043	Formální základy softwarového	5	2/2 Z+Zk	
	inženýrství			
NSWI164	Modelem řízený vývoj	2	$0/1 \mathrm{~Z}$	
NSWI101	Modely a verifikace chování systémů	5	2/2 Z+Zk	
NSWE001	Vestavěné systémy a systémy	5		2/2 Z+Zk
	reálného času			

c) Zaměření **Výkonné systémy**

Toto zaměření ověřuje znalosti a dovednosti týkající se konstrukce softwarových systémů s vysokým výpočetním výkonem, zkoušené v rozsahu následujících profilujících předmětů:

Kód	Název	Kredity	ZS	LS
NSWI109	Konstrukce překladačů	4	_	2/1 Z+Zk
NPRG058	Pokročilé programování v paralelním	6	2/2 Z+Zk	_
	prostředí			
NSWI035	Principy distribuovaných systémů	3	$2/0 \mathrm{Zk}$	
NSWI150	Virtualizace a cloud computing	3	$2/0 \mathrm{~Zk}$	
NSWI131	Vyhodnocování výkonnosti	4		2/1 Z+Zk
	počítačových systémů			

5. Informatika - Jazykové technologie a počítačová lingvistika

Garantující pracoviště: Ústav formální a aplikované lingvistiky Garant programu: Doc. RNDr. Markéta Lopatková, Ph.D.

Zaměření:

- počítačová a formální lingvistika
- statistické metody a metody strojového učení pro zpracování jazyka

Absolventa charakterizuje porozumění matematicko-informatickým základům počítačového zpracování přirozených jazyků a teoretickým základům jejich formálního popisu. Má dobrou znalost obecných metod strojového učení, a to včetně nejmodernějších metod hlubokého učení. Získané znalosti je schopen uplatňovat v návrhu a realizaci systémů pro zpracování přirozených jazyků v psané i mluvené formě stejně jako systémů pro práci s rozsáhlými kolekcemi nestrukturovaných i strukturovaných dat obecně (ve finančnictví, ekonomice, biologii, lékařství a dalších oborech využívajících metod umělé inteligence). Absolvent disponuje potřebnými znalostmi a praktickými dovednostmi (programování, práce v týmu), které najdou uplatnění v informačních a komunikačních technologiích (ICT).

Povinné předměty

Kód	Název	Kredity	ZS	LS
NTIN066	Datové struktury 1	6	2/2 Z+Zk	

NTIN090	Základy složitosti a vyčíslitelnosti	4	2/1 Z+Zk	_
NPFL063	Úvod do obecné lingvistiky	4	2/1 Z+Zk	
NPFL067	Statistické metody zpracování	5	2/2 Z+Zk	
	přirozených jazyků I		•	
NPFL114	Hluboké učení	7		3/2 Z+Zk
NSZZ023	Diplomová práce I	6		$0/4 \mathrm{~Z}$
NSZZ024	Diplomová práce II	9	$0/6 \mathrm{~Z}$	<u> </u>
NSZZ025	Diplomová práce III	15		$0/10 \mathrm{~Z}$

Povinně volitelné předměty - skupina 1

Student musí získat celkem alespoň 40 kreditů za povinně volitelné předměty, z nichž může být až 6 kreditů za projektové předměty (tedy předměty ze skupiny 2) a až 10 kreditů za předměty z bloku doplňujících povinně volitelných předmětů (tedy ze skupiny 3).

Kód	Název	Kredity	ZS	LS
NPFL006	Úvod do formální lingvistiky	3	$2/0 \mathrm{~Zk}$	
NPFL038	Základy rozpoznávání a generování	5	2/2 Z+Zk	
	mluvené řeči			
NPFL068	Statistické metody zpracování	5		2/2 Z+Zk
	přirozených jazyků II			
NPFL070	Zdroje jazykových dat	4	$1/2~\mathrm{KZ}$	
NPFL075	Závislostní gramatiky a korpusy	5		2/2 Z+Zk
NPFL079	Algoritmy rozpoznávání mluvené	5		2/2 Z+Zk
	řeči			
NPFL082	Informační struktura věty	2		$0/2 \mathrm{Z}$
	a výstavba diskurzu	výstavba diskurzu		
NPFL083	Lingvistické teorie a gramatické	5		2/2 Z+Zk
	formalismy			
NPFL087	Statistický strojový překlad	5		2/2 Z+Zk
NPFL093	Aplikace NLP	4		$2/1~\mathrm{KZ}$
NPFL094		3	$2/0~\mathrm{KZ}$	
NPFL095	Moderní metody v počítačové	3	$0/2 \mathrm{~Z}$	
	lingvistice			
NPFL097	Neřízené strojové učení v NLP	3	$1/1 \mathrm{~Z}$	
NPFL099	Statistické dialogové systémy	4	2/1 Z+Zk	
NPFL100	Variabilita jazyků v čase a prostoru	2	$1/1 \mathrm{~Z}$	
NPFL103	Vyhledávání informací	5	2/2 Z+Zk	
NPFL104	v v	4		1/2 Z+Zk
NPFL122	Hluboké zpětnovazební učení	5	2/2 Z+Zk	
NPFL128	Jazykové technologie v praxi	4		2/1 KZ

Povinně volitelné předměty - skupina 2 (projektové předměty)

Student si jako povinně volitelný může zvolit nejvýše jeden z projektových předmětů z této skupiny, ze získaných kreditů se mu započítá až 6 kreditů jako kredity

za povinně volitelné předměty. (Případné další kredity za předměty z této skupiny se započítávají jako kredity za volitelné předměty.)

Kód	Název	Kredity	ZS	LS
NPRG069	Softwarový projekt	12	$0/8 \mathrm{~Z}$	0/8 Z
NPRG070	Výzkumný projekt	9	$0/6 \mathrm{~Z}$	$0/6 \mathrm{~Z}$
NPRG071	Firemní projekt	6	$0/4 \mathrm{~Z}$	$0/4 \mathrm{~Z}$

Povinně volitelné předměty - skupina 3 (doplňující předměty)

Student si může zvolit jakékoliv předměty z této skupiny, ze získaných kreditů se mu započítá až 10 kreditů jako kredity za povinně volitelné předměty. (Případné další předměty z této skupiny se započítávají jako volitelné předměty.)

Kód	Název	Kredity	ZS	LS
NAIL025	Evoluční algoritmy 1	5	2/2 Z+Zk	_
NAIL069	Umělá inteligence 1	4	2/1 Z+Zk	
NAIL070	Umělá inteligence 2	3		$2/0 \mathrm{~Zk}$
NAIL104	Pravděpodobnostní grafické modely	3	2/0 Zk	
NPGR036	Počítačové vidění	5		2/2 Z+Zk

Státní závěrečná zkouška

Program Jazykové technologie a počítačová lingvistika má jeden společný povinný okruh pro obě zaměření (okruh 1), jeden povinný okruh dle zvoleného zaměření (okruh 2, nebo okruh 3) a jeden okruh si student vybírá z volitelných okruhů (okruhy 4 a 5). Jako tento poslední okruh si student může zvolit také povinný okruh druhého zaměření tohoto programu. Celkem tedy každý student dostane otázky ze tří okruhů.

Zkušební okruhy

- 1. Základy počítačového zpracování přirozeného jazyka (povinný okruh pro obě zaměření)
- 2. Lingvistické teorie a formalismy (povinný okruh pro zaměření počítačová a formální lingvistika)
- 3. Statistické metody a strojové učení v počítačové lingvistice (povinný okruh pro zaměření statistické metody a metody strojového učení pro zpracování jazyka)
- 4. Zpracování řeči, dialogové systémy a multimodální systémy (volitelný okruh)
- 5. Aplikace metod zpracování přirozeného jazyka (volitelný okruh)

Zkušební požadavky

1. Základy počítačového zpracování přirozeného jazyka

Fonetika, fonologie, morfologie, syntax, sémantika, pragmatika. Ambiguita, arbitrárnost. Deskripce vs. preskripce. Diachronní vs. synchronní popis jazyka. Základní pojmy z teorie informace. Markovovy modely. Jazykové modely a vyhlazování. Třídy slov. Anotované korpusy. Návrh a vyhodnocení lingvistických experimentů, evaluační metriky. Morfologické značkování a syntaktická analýza. Přehled základních klasifikačních a regresních algoritmů.

D	~	,	v 1	· v.
Doporu	ıće	nė	pred	lmétv

Kód	Název	Kredity	ZS	LS
	Úvod do obecné lingvistiky Statistické metody zpracování přirozených jazyků I	4 5	2/1 Z+Zk 2/2 Z+Zk	

2. Lingvistické teorie a formalismy

Funkční generativní popis. Pražský závislostní korpus. Universal Dependencies. Další gramatické formalismy - přehled a základní charakteristika. Fonetika, fonologie. Komputační morfologie. Povrchová a hloubková stavba věty; valence. Počítačová lexikografie. Aktuální členění věty; informační struktura, diskurz. Koreference. Typologie jazyků. Formální gramatiky a jejich využití v pravidlové morfologii. Parsing.

Doporučené předměty

Kód	Název	Kredity	ZS	LS
NPFL063	Úvod do obecné lingvistiky	4	2/1 Z+Zk	_
NPFL006	Úvod do formální lingvistiky	3	2/0 Zk	
NPFL075	Závislostní gramatiky a korpusy	5	<u> </u>	2/2 Z+Zk
NPFL083	Lingvistické teorie a gramatické	5		2/2 Z+Zk
	formalismy			
NPFL094	Morfologická a syntaktická analýza	3	$2/0~\mathrm{KZ}$	_

3. Statistické metody a strojové učení v počítačové lingvistice

Generativní a diskriminativní modely. Metody řízeného učení pro klasifikaci a regresi (lineární modely, ostatní metody: naive Bayes, rozhodovací stromy, učení založené na příkladech, SVM a kernely, logistická regrese). Metody neřízeného učení. Jazykové modely a modely kanálu. Vyhlazování modelů, kombinace modelů. HMM, trellis, Viterbi, Baum-Welch. Algoritmy pro statistický tagging. Algoritmy pro složkový a závislostní statistický parsing. Strojové učení s využitím neuronových sítí. Konvoluční a rekurentní sítě. Slovní embeddingy.

Doporučené předměty

Kód	Název	Kredity	ZS	LS
NPFL067	Statistické metody zpracování přirozených jazyků I	5	2/2 Z+Zk	_
	Hluboké učení Statistické metody zpracování přirozených jazyků II	7 5		3/2 Z+Zk $2/2$ Z+Zk

4. Zpracování řeči, dialogové systémy a multimodální systémy

Základy tvoření a vnímání mluvené řeči. Metody zpracování řečového signálu. Modelování akustiky fonémů pomocí HMM. Implementace Baum-Welch a Viterbi algoritmu pro rozpoznávání řeči. Neuronové modely řeči. Metody syntézy řeči. Řečové aplikace. Základní komponenty dialogového systému. Porozumění jazyku v dialogových systémech. Sledování dialogového stavu. Metody řízení dialogu. End-to-end neuronové dialogové systémy. Architektury pro dialogové systémy v otevřené doméně. Generování přirozeného jazyka. Evaluace dialogových systémů. Vizuální dialog a multimodální systémy.

Doporučené předměty					
Kód	Název	Kredity	ZS	LS	
NPFL038	Základy rozpoznávání a generování mluvené řeči	5	2/2 Z+Zk		
NPFL079	Algoritmy rozpoznávání mluvené řeči	5	_	2/2 Z+Zk	
NPFL099	Statistické dialogové systémy	4	2/1 Z+Zk	_	

5. Aplikace metod zpracování přirozeného jazyka

Kontrola překlepů, kontrola gramatické správnosti. Strojový překlad. Počítačem podporovaný překlad. Statistické metody ve strojovém překladu. Vyhodnocování kvality překladu. Strojový překlad mluvené řeči. Vyhledávání informací, vyhledávací modely. Rozšiřování dotazů a relevance feedback. Shlukování dokumentů. Hledání duplicit a detekce plagiátorství. Evaluace vyhledávání informací. Postojová analýza (sentiment analysis). Soubory nástrojů (GATE, NLTK, NLPTools, Lucene, Terrier).

Doporučené předměty

Kód	Název	Kredity	ZS	LS
NPFL087	Statistický strojový překlad	5	_	2/2 Z+Zk
NPFL093	Aplikace NLP	4	_	2/1 KZ
NPFL103	Vyhledávání informací	5	2/2 Z+Zk	
NPFL128	Jazykové technologie v praxi	4	-	$2/1~\mathrm{KZ}$

6. Informatika - Umělá inteligence

Garantující pracoviště: Katedra teoretické informatiky a matematické logiky Garant programu: Prof. RNDr. Roman Barták, Ph.D.

Zaměření:

- inteligentní agenti
- strojové učení
- robotika

Cílem programu Informatika - Umělá inteligence je vychovávat absolventy, kteří dokáží používat a vyvíjet techniky umělé inteligence zejména pak v následujících oblastech: řešení úloh a rozhodovacích problémů, automatické plánování a rozvrhování, přírodou inspirované techniky, strojové učení včetně neuronových sítí a robotika včetně práce s přirozeným jazykem a obrazem. Absolvent programu dokáže aplikovat a dále rozvíjet různé techniky návrhu inteligentních systémů, jako je automatické řešení úloh, řízení autonomních agentů (jak virtuálních, tak fyzických), plánování, strojové učení a dolování dat. Je schopen analyzovat a formálně popsat komplexní rozhodovací problém, navrhnout vhodnou řešící techniku a tuto techniku také implementovat. Program má tři zaměření: inteligentní agenti, strojové učení a robotika.

Povinné předměty

Kód	Název	Kredity	ZS	LS
NAIL069	Umělá inteligence 1	4	2/1 Z+Zk	_

NAIL070	Umělá inteligence 2	3		$2/0 \mathrm{~Zk}$
NTIN066	Datové struktury 1	6	2/2	Z+Zk —
NTIN090	Základy složitosti	4	2/1	Z+Zk —
	a vyčíslitelnosti			
NSZZ023	Diplomová práce I	6	_	$0/4 \mathrm{~Z}$
NSZZ024	Diplomová práce II	9	0/6	Z —
NSZZ025	Diplomová práce III	15		$0/10~\mathrm{Z}$

Povinně volitelné profilující předměty

Je požadováno splnění povinně volitelných předmětů z následujícího seznamu v rozsahu alespoň 38 kreditů. Předměty je doporučené volit tak, aby pokrývaly zvolené studijní okruhy státní závěrečné zkoušky.

Kód	Název	Kredity	ZS	LS
NAIL002	Neuronové sítě	8	4/2 Z+Zk	
NAIL013	Aplikace teorie neuronových sítí	3	<u>.</u>	$2/0 \mathrm{Zk}$
NAIL025	Evoluční algoritmy 1	5	2/2 Z+Zk	
NAIL029	Strojové učení	3		$2/0 \mathrm{Zk}$
NAIL060	Implementace neuronových sítí 1	5	2/2 Z+Zk	
NAIL065	Evoluční robotika	4		2/1 Z+Zk
NAIL068	Umělé bytosti	5		2/2 Z+Zk
NAIL071	Plánování a rozvrhování	3		$2/0 \mathrm{~Zk}$
NAIL076	Logické programování 1	3	$2/0 \mathrm{Zk}$	
NAIL078	Lambda-kalkulus a funkcionální	4	2/1 Z+Zk	
	programování 1			
NAIL086	Evoluční algoritmy 2	5		2/2 Z+Zk
NAIL094	Rozhodovací procedury a SAT/SMT	5		2/2 Z+Zk
	řešiče			
NAIL101	Pravděpodobnostní robotika	5		2/2 Z+Zk
NAIL104	Pravděpodobnostní grafické modely	3	$2/0 \mathrm{~Zk}$	-
NAIL105	Internet a klasifikační metody	2	<u>.</u>	1/1 Z+Zk
NAIL106	Multiagentní systémy	5		2/2 Z+Zk
NAIL107	Strojové učení v bioinformatice	5		2/2 Z+Zk
NAIL108	Mobilní robotika	3		1/1 KZ
NAIL116	Sociální sítě a jejich analýza	5	2/2 Z+Zk	<u> </u>
NAIL126	Základy robotiky	5	2/2 Z+Zk	
NOPT042	Programování s omezujícími	5	2/2 Z+Zk	
	podmínkami			
NDBI023	Dobývání znalostí	5		2/2 Z+Zk
NSWE001	Vestavěné systémy a systémy	5		2/2 Z+Zk
	reálného času			
NSWI035	Principy distribuovaných systémů	3	$2/0 \mathrm{Zk}$	
	Počítačové vidění	5		2/2 Z+Zk
NPFL067	Statistické metody zpracování	5	2/2 Z+Zk	
	přirozených jazyků I		,	
NPFL103	Vyhledávání informací	5	2/2 Z+Zk	

Povinně volitelné předměty rozšiřující

Je požadováno splnění povinně volitelných předmětů z následujícího seznamu v rozsahu alespoň 15 kreditů.

NAIL004 Seminář z umělé inteligence 1 2 0/2 Z — NAIL015 Implementace neuronových sítí 2 5 — 2/2 Z+Zk NAIL021 Booleovské funkce a jejich aplikace 3 2/0 Zk — NAIL052 Seminář z umělé inteligence 2 2 — 0/2 Z NAIL061 Seminář z mobilní robotiky 3 — 0/2 Z NAIL073 Robot 1 3 0/2 Z — NAIL074 Robot 2 3 — 0/2 Z NAIL075 Logické programování 2 3 — 0/2 Z NAIL079 Lambda-kalkulus a funkcionální 4 — 2/1 Z+Zk programování 2 - 3/1 Z+Zk — NAIL087 Informatika a kognitivní vědy 1 6 3/1 Z+Zk — NAIL088 Informatika a kognitivní vědy 2 6 — 3/1 Z+Zk NAIL109 Aplikace metod výpočetní 5 0/4 Z — NMAIL060 Pravděpodobnostní metody 3 2/0 Zk —	Kód	Název	Kredity	ZS	LS
NAIL021 Booleovské funkce a jejich aplikace 3 2/0 Zk — NAIL052 Seminář z umělé inteligence 2 2 — 0/2 Z NAIL061 Seminář z mobilní robotiky 3 — 0/2 Z NAIL073 Robot 1 3 0/2 Z — NAIL074 Robot 2 3 — 0/2 Z NAIL077 Logické programování 2 3 — 2/0 Zk NAIL079 Lambda-kalkulus a funkcionální 4 — 2/1 Z+Zk programování 2 — 3/1 Z+Zk — NAIL087 Informatika a kognitivní vědy 1 6 3/1 Z+Zk — NAIL1088 Informatika a kognitivní vědy 2 6 — 3/1 Z+Zk NAIL109 Aplikace metod výpočetní 5 0/4 Z — NOPT021 Teorie her 3 2/0 Zk — NMAI060 Pravděpodobnostní metody 3 2/0 Zk — NPFL114 Hluboké učení 7 — 3/2 Z+Zk NPS	NAIL004	Seminář z umělé inteligence 1	2	$0/2 \mathrm{~Z}$	_
NAIL052 Seminář z umělé inteligence 2 2 — 0/2 Z NAIL061 Seminář z mobilní robotiky 3 — 0/2 Z NAIL073 Robot 1 3 0/2 Z — NAIL074 Robot 2 3 — 0/2 Z NAIL077 Logické programování 2 3 — 2/0 Zk NAIL079 Lambda-kalkulus a funkcionální programování 2 4 — 2/1 Z+Zk NAIL081 Informatika a kognitivní vědy 1 6 3/1 Z+Zk — NAIL082 Informatika a kognitivní vědy 2 6 — 3/1 Z+Zk NAIL109 Aplikace metod výpočetní inteligence 5 0/4 Z — NOPT021 Teorie her 3 2/0 Zk — NMAI060 Pravděpodobnostní metody 3 2/0 Zk — NPFL114 Hluboké učení 7 — 3/2 Z+Zk NPFL123 Dialogové systémy 5 — 2/2 Z+Zk NDBI031 Statistické metody v systémech pro dobývání znalostí z dat 5	NAIL015	Implementace neuronových sítí 2	5	<u>.</u>	2/2 Z+Zk
NAIL061 Seminář z mobilní robotiky 3 — 0/2 Z NAIL073 Robot 1 3 0/2 Z — NAIL074 Robot 2 3 — 0/2 Z NAIL077 Logické programování 2 3 — 2/0 Zk NAIL079 Lambda-kalkulus a funkcionální programování 2 4 — 2/1 Z+Zk NAIL087 Informatika a kognitivní vědy 1 6 3/1 Z+Zk — NAIL109 Aplikace metod výpočetní inteligence 5 0/4 Z — NOPT021 Teorie her 3 2/0 Zk — NMAI060 Pravděpodobnostní metody 3 2/0 Zk — NPFL114 Hluboké učení 7 — 3/2 Z+Zk NPFL123 Dialogové systémy 5 — 2/2 Z+Zk NDBI031 Statistické metody v systémech pro dobývání znalostí z dat 5 2/2 Zk — NPGR002 Digitální zpracování obrazu 4 3/0 Zk — NPGR035 Strojové učení v počítačovém vidění 5 2/2 Z+Zk —	NAIL021	Booleovské funkce a jejich aplikace	3	$2/0 \mathrm{Zk}$	
NAIL073 Robot 1 3 0/2 Z — NAIL074 Robot 2 3 — 0/2 Z NAIL077 Logické programování 2 3 — 2/0 Zk NAIL079 Lambda-kalkulus a funkcionální programování 2 4 — 2/1 Z+Zk NAIL087 Informatika a kognitivní vědy 1 6 3/1 Z+Zk — NAIL088 Informatika a kognitivní vědy 2 6 — 3/1 Z+Zk NAIL109 Aplikace metod výpočetní inteligence 5 0/4 Z — NOPT021 Teorie her 3 2/0 Zk — NMAI060 Pravděpodobnostní metody 3 2/0 Zk — NPFL114 Hluboké učení 7 — 3/2 Z+Zk NPFL123 Dialogové systémy 5 — 2/2 Z+Zk NDBI031 Statistické metody v systémech pro dobývání znalostí z dat 5 2/2 Zk — NPGR001 3D počítačové vidění 5 2/2 Zk — NPGR002 Digitální zpracování obrazu 4 3/0 Zk — NPGR035 Strojové učení v počítačovém vidění	NAIL052	Seminář z umělé inteligence 2	2		$0/2 \mathrm{~Z}$
NAIL074 Robot 2 NAIL077 Logické programování 2 NAIL079 Lambda-kalkulus a funkcionální programování 2 NAIL087 Informatika a kognitivní vědy 1 NAIL088 Informatika a kognitivní vědy 2 NAIL109 Aplikace metod výpočetní inteligence NOPT021 Teorie her NMAI060 Pravděpodobnostní metody NMAI067 Logika v informatice NPFL114 Hluboké učení NPFL123 Dialogové systémy NDBI031 Statistické metody v systémech pro dobývání znalostí z dat NPGR001 3D počítačové vidění NPGR002 Digitální zpracování obrazu NPGR0035 Strojové učení v počítačovém vidění 3	NAIL061	Seminář z mobilní robotiky	3		$0/2 \mathrm{~Z}$
NAIL077 Logické programování 2 3 — 2/0 Zk NAIL079 Lambda-kalkulus a funkcionální 4 — 2/1 Z+Zk programování 2 NAIL087 Informatika a kognitivní vědy 1 6 3/1 Z+Zk — NAIL088 Informatika a kognitivní vědy 2 6 — 3/1 Z+Zk NAIL109 Aplikace metod výpočetní 5 0/4 Z — inteligence NOPT021 Teorie her 3 2/0 Zk — NMAI060 Pravděpodobnostní metody 3 2/0 Zk — NMAI067 Logika v informatice 3 2/0 Zk — NPFL114 Hluboké učení 7 — 3/2 Z+Zk NPFL123 Dialogové systémy 5 — 2/2 Z+Zk NDBI031 Statistické metody v systémech pro dobývání znalostí z dat NPGR001 3D počítačové vidění 5 2/2 Zk — NPGR002 Digitální zpracování obrazu 4 3/0 Zk — NPGR035 Strojové učení v počítačovém vidění 5 2/2 Z+Zk —	NAIL073	Robot 1	3	$0/2 \mathrm{~Z}$	
NAIL079 Lambda-kalkulus a funkcionální 4 — 2/1 Z+Zk programování 2 NAIL087 Informatika a kognitivní vědy 1 6 3/1 Z+Zk — NAIL088 Informatika a kognitivní vědy 2 6 — 3/1 Z+Zk NAIL109 Aplikace metod výpočetní 5 0/4 Z — inteligence NOPT021 Teorie her 3 2/0 Zk — NMAI060 Pravděpodobnostní metody 3 2/0 Zk — NMAI067 Logika v informatice 3 2/0 Zk — NPFL114 Hluboké učení 7 — 3/2 Z+Zk NPFL123 Dialogové systémy 5 — 2/2 Z+Zk NDBI031 Statistické metody v systémech pro dobývání znalostí z dat NPGR001 3D počítačové vidění 5 2/2 Zk — NPGR002 Digitální zpracování obrazu 4 3/0 Zk — NPGR035 Strojové učení v počítačovém vidění 5 2/2 Z+Zk —	NAIL074	Robot 2	3		$0/2 \mathrm{~Z}$
programování 2 NAIL087 Informatika a kognitivní vědy 1 6 3/1 Z+Zk — NAIL088 Informatika a kognitivní vědy 2 6 — 3/1 Z+Zk NAIL109 Aplikace metod výpočetní 5 0/4 Z — inteligence NOPT021 Teorie her 3 2/0 Zk — NMAI060 Pravděpodobnostní metody 3 2/0 Zk — NMAI067 Logika v informatice 3 2/0 Zk — NPFL114 Hluboké učení 7 — 3/2 Z+Zk NPFL123 Dialogové systémy 5 — 2/2 Z+Zk NDBI031 Statistické metody v systémech pro dobývání znalostí z dat NPGR001 3D počítačové vidění 5 2/2 Zk — NPGR002 Digitální zpracování obrazu 4 3/0 Zk — NPGR035 Strojové učení v počítačovém vidění 5 2/2 Z+Zk —	NAIL077	Logické programování 2	3		$2/0 \mathrm{~Zk}$
NAIL087 Informatika a kognitivní vědy 1 6 3/1 Z+Zk — NAIL088 Informatika a kognitivní vědy 2 6 — 3/1 Z+Zk NAIL109 Aplikace metod výpočetní 5 0/4 Z — inteligence NOPT021 Teorie her 3 2/0 Zk — NMAI060 Pravděpodobnostní metody 3 2/0 Zk — NMAI067 Logika v informatice 3 2/0 Zk — NPFL114 Hluboké učení 7 — 3/2 Z+Zk NPFL123 Dialogové systémy 5 — 2/2 Z+Zk NDBI031 Statistické metody v systémech pro dobývání znalostí z dat NPGR001 3D počítačové vidění 5 2/2 Zk — NPGR002 Digitální zpracování obrazu 4 3/0 Zk — NPGR035 Strojové učení v počítačovém vidění 5 2/2 Z+Zk —	NAIL079	Lambda-kalkulus a funkcionální	4		2/1 Z+Zk
NAIL088 Informatika a kognitivní vědy 2 6 — 3/1 Z+Zk NAIL109 Aplikace metod výpočetní 5 0/4 Z — inteligence NOPT021 Teorie her 3 2/0 Zk — NMAI060 Pravděpodobnostní metody 3 2/0 Zk — NMAI067 Logika v informatice 3 2/0 Zk — NPFL114 Hluboké učení 7 — 3/2 Z+Zk NPFL123 Dialogové systémy 5 — 2/2 Z+Zk NDBI031 Statistické metody v systémech pro 2 1/1 Z+Zk — dobývání znalostí z dat NPGR001 3D počítačové vidění 5 2/2 Zk — NPGR002 Digitální zpracování obrazu 4 3/0 Zk — NPGR035 Strojové učení v počítačovém vidění 5 2/2 Z+Zk —		programování 2			
NAIL1088 Informatika a kognitivní vědy 2 6 — 3/1 Z+Zk NAIL109 Aplikace metod výpočetní 5 0/4 Z — inteligence NOPT021 Teorie her 3 2/0 Zk — NMAI060 Pravděpodobnostní metody 3 2/0 Zk — NMAI067 Logika v informatice 3 2/0 Zk — NPFL114 Hluboké učení 7 — 3/2 Z+Zk NPFL123 Dialogové systémy 5 — 2/2 Z+Zk NDBI031 Statistické metody v systémech pro dobývání znalostí z dat NPGR001 3D počítačové vidění 5 2/2 Zk — NPGR002 Digitální zpracování obrazu 4 3/0 Zk — NPGR035 Strojové učení v počítačovém vidění 5 2/2 Z+Zk —	NAIL087	Informatika a kognitivní vědy 1	6	3/1 Z+Zk	
inteligence NOPT021 Teorie her NMAI060 Pravděpodobnostní metody NMAI067 Logika v informatice NPFL114 Hluboké učení NPFL123 Dialogové systémy NDBI031 Statistické metody v systémech pro dobývání znalostí z dat NPGR001 3D počítačové vidění NPGR002 Digitální zpracování obrazu NPGR005 Strojové učení v počítačovém vidění S 2/0 Zk	NAIL088	Informatika a kognitivní vědy 2	6	<u>.</u>	3/1 Z+Zk
NOPT021 Teorie her NMAI060 Pravděpodobnostní metody NMAI067 Logika v informatice NPFL114 Hluboké učení NPFL123 Dialogové systémy NDBI031 Statistické metody v systémech pro dobývání znalostí z dat NPGR001 3D počítačové vidění NPGR002 Digitální zpracování obrazu NPGR0035 Strojové učení v počítačovém vidění 3 2/0 Zk - 3/2 Zk - 3/2 Z+Zk NPT Z+Zk - 2/2 Zk - 3/0 Zk	NAIL109	Aplikace metod výpočetní	5	$0/4 \mathrm{~Z}$	
NMAI060 Pravděpodobnostní metody NMAI067 Logika v informatice NPFL114 Hluboké učení NPFL123 Dialogové systémy NDBI031 Statistické metody v systémech pro dobývání znalostí z dat NPGR001 3D počítačové vidění NPGR002 Digitální zpracování obrazu NPGR0035 Strojové učení v počítačovém vidění 3 2/0 Zk - 3/2 Z+Zk 7 - 3/2 Z+Zk 1/1 Z+Zk - 1/1 Z+Zk - 3/0 Zk - 3/0 Zk - 2/2 Zk NPGR005 Strojové učení v počítačovém vidění 3 2/0 Zk - 2/2 Z+Zk		inteligence		•	
NMAI060 Pravděpodobnostní metody NMAI067 Logika v informatice NPFL114 Hluboké učení NPFL123 Dialogové systémy NDBI031 Statistické metody v systémech pro dobývání znalostí z dat NPGR001 3D počítačové vidění NPGR002 Digitální zpracování obrazu NPGR0035 Strojové učení v počítačovém vidění 3 2/0 Zk - 3/2 Z+Zk 7 - 3/2 Z+Zk 1/1 Z+Zk - 1/1 Z+Zk - 3/0 Zk - 3/0 Zk - 2/2 Z+Zk NPGR002 Digitální zpracování obrazu NPGR0035 Strojové učení v počítačovém vidění 3 2/0 Zk - 3/2 Z+Zk - 3/0 Zk - 3/0 Zk - 3/0 Zk - 3/0 Zk	NOPT021	Teorie her	3	2/0 Zk	
NMAI067 Logika v informatice NPFL114 Hluboké učení NPFL123 Dialogové systémy NDBI031 Statistické metody v systémech pro dobývání znalostí z dat NPGR001 3D počítačové vidění NPGR002 Digitální zpracování obrazu NPGR035 Strojové učení v počítačovém vidění 3 2/0 Zk — 3/2 Z+Zk 1/1 Z+Zk — 2/2 Z+Zk 2/2 Zk — 3/0 Zk NPGR0035 Strojové učení v počítačovém vidění 3 2/0 Zk — 3/2 Z+Zk				,	
NPFL114 Hluboké učení 7 — 3/2 Z+Zk NPFL123 Dialogové systémy 5 — 2/2 Z+Zk NDBI031 Statistické metody v systémech pro dobývání znalostí z dat NPGR001 3D počítačové vidění 5 2/2 Zk — NPGR002 Digitální zpracování obrazu 4 3/0 Zk — NPGR035 Strojové učení v počítačovém vidění 5 2/2 Z+Zk —			3	,	
NPFL123 Dialogové systémy 5 — 2/2 Z+Zk NDBI031 Statistické metody v systémech pro dobývání znalostí z dat NPGR001 3D počítačové vidění 5 2/2 Zk — NPGR002 Digitální zpracování obrazu 4 3/0 Zk — NPGR035 Strojové učení v počítačovém vidění 5 2/2 Z+Zk —		~	7		3/2 Z+Zk
NDBI031 Statistické metody v systémech pro dobývání znalostí z dat NPGR001 3D počítačové vidění 5 2/2 Zk — NPGR002 Digitální zpracování obrazu 4 3/0 Zk — NPGR035 Strojové učení v počítačovém vidění 5 2/2 Z+Zk —	NPFL123	Dialogové systémy	5		,
dobývání znalostí z dat NPGR001 3D počítačové vidění 5 2/2 Zk — NPGR002 Digitální zpracování obrazu 4 3/0 Zk — NPGR035 Strojové učení v počítačovém vidění 5 2/2 Z+Zk —			2	1/1 Z+Zk	
NPGR002 Digitální zpracování obrazu 4 3/0 Zk — NPGR035 Strojové učení v počítačovém vidění 5 2/2 Z+Zk —				•	
NPGR002 Digitální zpracování obrazu 4 3/0 Zk — NPGR035 Strojové učení v počítačovém vidění 5 2/2 Z+Zk —	NPGR001	3D počítačové vidění	5	2/2 Zk	
NPGR035 Strojové učení v počítačovém vidění 5 $2/2$ Z+Zk —		-	4		
		_	5	,	
,		<u>-</u>	3		$0/2 \mathrm{~Z}$
systémy		systémy			,
NPRG037 Programování mikrokontrolerů 5 2/2 Z+Zk —	NPRG037	Programování mikrokontrolerů	5	2/2 Z+Zk	
NPRG069 Softwarový projekt 12 0/8 Z 0/8 Z		~	12	•	$0/8 \mathrm{~Z}$
NPRG070 Výzkumný projekt 9 0/6 Z 0/6 Z				,	,
NPRG071 Firemní projekt $6 \frac{0}{4}$ Z $0/4$ Z				,	,
NPRG072 Zvýšený rozsah projektu 3 $0/2$ Z		- ·		,	,

Státní závěrečná zkouška

Student si zvolí tři okruhy z nabídky daného zaměření a z každého dostane po jedné otázce. Jeden okruh si může student vybrat z nabídky jiného zaměření programu. Celkově tedy každý student dostane tři otázky.

a) Zaměření Inteligentní agenti

Zkušební okruhy

- 1. Reprezentace znalostí a řešení úloh
- 2. Neprocedurální programování
- 3. Multiagentní systémy

4. Přírodou inspirované počítání

Zkušební požadavky

1. Reprezentace znalostí a řešení úloh

Výroková a predikátová logika; splnitelnost a dokazatelnost, strojové dokazování vět, model checking (DPLL), dopředné a zpětné řetězení, rezoluční metoda a unifikace. Podmíněná nezávislost, Bayesovské sítě, výpočet v Bayesovské síti, markovské rozhodovací procesy, částečně pozorovatelné markovské rozhodovací procesy, zpětnovazební učení. Prohledávací algoritmy; stavový prostor, stromové, grafové a lokální prohledávání, neinformované a heuristické prohledávání. Hry a základy teorie her. Splňování omezujících podmínek; konzistenční techniky, globální podmínky. Automatické plánování; plánovací doména a problém, plánovací operátory, základní plánovací techniky a algoritmy.

Doporučené předměty

Kód	Název	Kredity	ZS	LS
NAIL069	Umělá inteligence 1	4	2/1 Z+Zk	_
NAIL070	Umělá inteligence 2	3		$2/0 \mathrm{~Zk}$
NAIL071	Plánování a rozvrhování	3		$2/0 \mathrm{Zk}$
NOPT042	Programování s omezujícími	5	2/2 Z+Zk	<u> </u>
	podmínkami			
NAIL094	Rozhodovací procedury a SAT/SMT	5		2/2 Z+Zk
	řešiče			
NAIL104	Pravděpodobnostní grafické modely	3	$2/0 \mathrm{~Zk}$	

2. Neprocedurální programování

Odlišnost procedurálního a neprocedurálního způsobu programování. Principy funkcionálního a logického programování. Lambda kalkulus, syntax, principy redukce. Churchova a Rosserova vlastnost a konsistence kalkulu. Věty o pevném bodu. Normální tvar objektů. Typovaný lambda kalkul. Substituce a unifikace. Hornovy klauzule, SLD-rezoluce a logické programy. Čistý Prolog, negace definovaná neúspěchem, obecné logické programy. Postačující podmínky ukončení výpočtu. Implementace Prologu. Logické programování s omezujícími podmínkami.

Doporučené předměty

Kód	Název	Kredity	ZS	LS
NAIL076	Logické programování 1	3	2/0 Zk	_
NAIL077	Logické programování 2	3	<u> </u>	$2/0 \mathrm{Zk}$
NAIL078	Lambda-kalkulus a funkcionální	4	2/1 Z+Zk	<u> </u>
	programování 1			
NOPT042	Programování s omezujícími	5	2/2 Z+Zk	
	podmínkami			

3. Multiagentní systémy

Architektura autonomního agenta; percepce, mechanismus výběru akcí, paměť; psychologické inspirace. Metody pro řízení agentů; symbolické a konekcionistické reaktivní plánování, hybridní přístupy. Problém hledání cesty; navigační pravidla, reprezentace terénu. Komunikace a znalosti v multiagentních systémech, ontologie, řečové akty,

FIPA-ACL, protokoly. Distribuované řešení problémů, kooperace, Nashova ekvilibria, Paretova efektivita, alokace zdrojů, aukce. Etologické motivace, modely populační dynamiky. Metody pro učení agentů; zpětnovazební učení, základní formy učení zvířat. Metodologie návrhu, jazyky a prostředí multiagentních systémů.

Doporučené předměty

Kód	Název	Kredity	ZS	LS
	Multiagentní systémy Umělé bytosti	5	_	2/2 Z+Zk $2/2$ Z+Zk

4. Přírodou inspirované počítání

Genetické algoritmy, genetické a evoluční programování. Teorie schémat, pravděpodobnostní modely jednoduchého genetického algoritmu. Evoluční strategie, diferenciální evoluce, koevoluce, otevřená evoluce. Rojové optimalizační algoritmy. Memetické algoritmy, hill climbing, simulované žíhání. Aplikace evolučních algoritmů (evoluce expertních systémů, neuroevoluce, řešení kombinatorických úloh, vícekriteriální optimalizace).

Doporučené předměty

Kód	Název	Kredity	ZS	LS
NAIL025	Evoluční algoritmy 1	5	2/2 Z+Zk	_
NAIL086	Evoluční algoritmy 2	5	<u> </u>	2/2 Z+Zk
NAIL065	Evoluční robotika	4		2/1 Z+Zk

b) Zaměření **Strojové učení**

Zkušební okruhy

- 1. Strojové učení a jeho aplikace
- 2. Neuronové sítě
- 3. Dobývání znalostí

Zkušební požadavky

1. Strojové učení a jeho aplikace

Strojové učení; učení s učitelem a bez učitele, zpětnovazební učení, teoretické aspekty strojového učení. Pravděpodobnostní přístupy; neorientované grafické modely, Gaussovské procesy. Evoluční algoritmy; základní pojmy a teoretické poznatky, hypotéza o stavebních blocích, koevoluce, aplikace evolučních algoritmů. Strojové učení v počítačové lingvistice. Algoritmy pro analýzu biologických sekvencí; hledání motivů v DNA, Markovské modely a strategie pro detekci genů či predikci struktury proteinů.

Kód	Název	Kredity	ZS	LS
NAIL029	Strojové učení	3	_	2/0 Zk
NPFL067	Statistické metody zpracování přirozených jazyků I	5	2/2 Z+Zk	_
NAIL025	Evoluční algoritmy 1	5	2/2 Z+Zk	
NAIL107	Strojové učení v bioinformatice	5		2/2 Z+Zk

2. Neuronové sítě

Modely pro učení s učitelem; algoritmus zpětného šíření, strategie pro urychlení učení, regularizační techniky a generalizace. Asociativní paměti; Hebbovské učení a hledání suboptimálních řešení, stochastické modely. Umělé neuronové sítě založené na principu učení bez učitele. Modulární, hierarchické a hybridní modely neuronových sítí. Modely hlubokých neuronových sítí; konvoluční neuronové sítě, sítě typu DBN a LSTM-sítě. Evoluční učení neuronových sítí a jeho aplikace.

Doporučené předměty

Kód	Název	Kredity	ZS	LS
NAIL002	Neuronové sítě	8	4/2 Z+Zk	_
NAIL060	Implementace neuronových sítí 1	5	2/2 Z+Zk	
NAIL013	Aplikace teorie neuronových sítí	3		$2/0 \mathrm{Zk}$
NAIL065	Evoluční robotika	4		2/1 Z+Zk

3. Dobývání znalostí

Základní paradigmata dobývání znalostí. Příprava dat; výběr atributů a metody pro analýzu jejich relevance. Metody pro dobývání znalostí; asociační pravidla, přístupy založené na principu učení s učitelem a klastrová analýza. Metody pro extrakci charakteristických diskriminačních pravidel a měření jejich zajímavosti. Reprezentace, vyhodnocování a vizualizace získaných znalostí. Modely pro analýzu sociálních sítí; míry centrality, detekce komunit. Praktické využití technik pro dobývání znalostí a analýzu sociálních sítí.

Doporučené předměty

Kód	Název	Kredity	ZS	LS
NDBI023	Dobývání znalostí	5		2/2 Z+Zk
NAIL116	Sociální sítě a jejich analýza	5	2/2 Z+Zk	
NAIL105	Internet a klasifikační metody	2		$1/1 \mathrm{~Z+Zk}$
NAIL099	Seminář strojového učení	2	$0/1 \; { m Z}$	
	a modelování 1			

c) Zaměření **Robotika**

Zkušební okruhy

- 1. Lokalizace a mapování
- 2. Řídící systémy
- 3. Robotické systémy
- 4. Plánování a navigace

Zkušební požadavky

1. Lokalizace a mapování

Základní typy lokalizace. Pravděpodobnostní lokalizace, částicové filtry, metody Monte-Carlo. Reprezentace prostředí, reprezentace map, problém korespondence, mapování v dynamickém prostředí. Vztah lokalizace a mapování, SLAM.

Kód	Název	Kredity	ZS	LS
NAIL126	Základy robotiky	5	2/2 Z+Zk	_

NAIL101	Pravděpodobnostní robotika	5	 2/2 Z+Zk
NAIL108	Mobilní robotika	3	 1/1 KZ

2. Řídící systémy

Řídící systémy robotů. Zpracování signálu, rozpoznávání, feature matching and tracking. Systémy pro modelování, virtuální robotika, simulátory. Distribuované algoritmy, systémy řízení pro multirobotické systémy, komunikace, synchronizace, koordinace. Softwarová realizace, programování pro specifické běhové prostředí, ladící prostředky a postupy.

Doporučené předměty

Kód Název	Kredity	ZS	LS
NAIL126 Základy robotiky	5	2/2 Z+Zk	
NPGR001 3D počítačové vidění	5	2/2 Zk	
NPGR002 Digitální zpracování obrazu	4	3/0 Zk	
NSWI035 Principy distribuovaných systé	ėmů 3	$2/0 \mathrm{Zk}$	

3. Robotické systémy

Základní kinematický a dynamický model, inverzní kinematika a dynamika. Nízkoúrovňový hardware a software, vestavěné systémy. Typy senzorů a aktuátorů, principy a typické oblasti použití. Vysokoúrovňové robotické systémy a jejich řízení: manipulátory, mobilní robotika, autonomní robotika.

Doporučené předměty

Kód	Název	Kredity	ZS	LS
NAIL126	Základy robotiky	5	2/2 Z+Zk	_
NAIL108	Mobilní robotika	3	<u> </u>	$1/1 \mathrm{~KZ}$
NSWE001	Vestavěné systémy a systémy	5		2/2 Z+Zk
	reálného času			

4. Plánování a navigace

Základní navigační postupy: dead-reckoning, odometrie, triangulace a trilaterace, inerciální navigace. Navigační a prohledávací algoritmy. Plánování akcí, formulace plánovacího problému, základní plánovací algoritmy, plánování s časem a zdroji.

Doporučené předměty

Kód	Název	Kredity	ZS	LS
NAIL126	Základy robotiky	5	2/2 Z+Zk	_
NAIL108	Mobilní robotika	3		$1/1 \mathrm{~KZ}$
NAIL071	Plánování a rozvrhování	3	_	2/0 Zk

7. Informatika – Vizuální výpočty a vývoj počítačových her

Garantující pracoviště: Katedra softwaru a výuky informatiky

Garant programu: Doc. RNDr. Tomáš Dvořák, CSc.

Studijní plán nabízí posluchačům dvě úzce propojená zaměření, která se liší okruhy, z nichž jsou pokládány otázky u státní závěrečné zkoušky. Předměty je vhodné volit

tak, aby svým obsahem tyto zkušební okruhy pokryly. Část výuky může probíhat v anglickém jazyce.

Zaměření:

- vizuální výpočty
- vývoj počítačových her

Absolvent je zdatným programátorem v jazycích typu C++, C či Java, umí vytvářet programy pro klasické i masivně paralelní procesory (GPU) a pro malá zařízení (tablety, mobilní telefony). Umí využívat nástroje pro správu rozsáhlých softwarových projektů, je schopen navrhnout a realizovat komplexní grafický systém anebo počítačovou hru. Podle zvoleného zaměření je vybaven buď hlubokými znalostmi z počítačové grafiky a analýzy obrazu, anebo - v zaměření na vývoj počítačových her - jeho znalosti pokrývají programování rozsáhlých herních projektů, aplikací pracujících v reálném čase, programování malých zařízení, jakožto i základy umělé inteligence a základy počítačové grafiky v kontextu počítačových her. Absolvent umí tyto znalosti aplikovat při řešení konkrétních praktických úkolů.

Povinné předměty

Kód	Název	Kredity	ZS	LS
NTIN090	Základy složitosti a vyčíslitelnosti	4	2/1 Z+Zk	
	Datové struktury 1	6	2/2 Z+Zk	
	Diplomová práce I	6		$0/4~\mathrm{Z}$
	Diplomová práce II	9	$0/6 \mathrm{~Z}$	
NSZZ025	Diplomová práce III	15		0/10 Z

Povinně volitelné předměty

Je požadováno splnění povinně volitelných předmětů z následujícího seznamu v rozsahu alespoň 56 kreditů, přitom je jako povinně volitelný třeba zvolit jeden z předmětů NPRG071 Firemní projekt, NPRG070 Výzkumný projekt a NPRG069 Softwarový projekt. Absolvuje-li posluchač další předmět z této trojice, počítá se již jen jako volitelný.

Kredity	ZS	LS
6	$0/4 \mathrm{~Z}$	$0/4 \mathrm{~Z}$
9	$0/6 \mathrm{~Z}$	$0/6 \mathrm{~Z}$
12	$0/8 \mathrm{~Z}$	$0/8 \mathrm{~Z}$
3	$0/2 \mathrm{~Z}$	$0/2 \mathrm{~Z}$
3	2/0 Zk	
iky 5		2/1 Z+Zk
5	2/2 Zk	
n a hry 5	2/2 Z+Zk	
ace ve 3	_	$2/0 \mathrm{Zk}$
etrie 5		2/1 Z+Zk
5	2/2 Z+Zk	<u> </u>
3	<u>·</u>	0/2 Z
)	6 9 12 3 3 iky 5 5 n a hry nace ve 3 etrie 5 5	6 0/4 Z 9 0/6 Z 12 0/8 Z 3 0/2 Z 3 2/0 Zk iky 5 — 5 2/2 Zk m a hry 5 2/2 Z+Zk etrie 5 — 5 2/2 Z+Zk

NDCDooc		4		0 /1 7 + 71
NPGR026	Predictive Image Synthesis Technologies	4		2/1 Z+Zk
NPGR027	Shading Languages	5		2/1 Z+Zk
NPGR028	High Performance Ray Tracing	3		2/0 Zk
NPGR029	Variační metody ve zpracování	3		2/0 Zk
	obrazu			•
NPGR033	Počítačová grafika pro vývoj her	5		2/2 Z+Zk
	Vybrané kapitoly z počítačového	5	2/2 Z+Zk	
	vidění		, .	
NCGD001	Vývoj počítačových her 1	6		2/2 Z+Zk
	Programování herních mechanik	4	1/2 Z+Zk	
	Úvod do herního designu	3	1/1 Z+Zk	
	Konstrukce herního zážitku	3	1/1 Z+Zk	
	Praktikum z herního vývoje	3	$0/2 \mathrm{~Z}$	
1.00200.	v nativním kódu	J	o/ = =	
NCGD008	Praktikum z herního vývoje	3	$0/2 \mathrm{~Z}$	
TTC GE 000	s řízeným kódem	0	0/22	
NAFFOO3	Introduction to Game Studies	3	$0/2 \mathrm{~Zk}$	
	Contemporary Issues in Game	3	0/ 2 ZK	$0/2 \mathrm{~Zk}$
NAI I 004	Studies	J		0/2 ZK
NDDC042		5		2/2 K7
NI IIG045	Doporučené postupy v programování	9		2/2 KZ
NDDCOE		G	2/27 71-	
NPRG058	Pokročilé programování v paralelním	6	2/2 Z+Zk	
NCHILOGG	prostředí	-		0/07 + 71
NSWI026	Pokročilé aspekty softwarového	5		2/2 Z+Zk
	inženýrství	_	- /	
	Algoritmy komprese dat	3	2/0 Zk	_
NSWI130	Architektury softwarových systémů	5	2/2 Z+Zk	
NSWI131	Vyhodnocování výkonnosti	4		2/1 Z+Zk
	počítačových systémů			
	Webové služby	5		2/2 Z+Zk
NSWI153	Pokročilé programování webových	5		2/2 Z+Zk
	aplikací			
NTIN043	Formální základy softwarového	5	2/2 Z+Zk	_
	inženýrství			
NDBI034	Vyhledávání multimediálního obsahu	4	2/1 Z+Zk	
	na webu			
NAIL068	Umělé bytosti	5	_	2/2 Z+Zk
NAIL069	Umělá inteligence 1	4	2/1 Z+Zk	
NAIL070	Umělá inteligence 2	3	<u>.</u>	$2/0 \mathrm{Zk}$
NAIL106	Multiagentní systémy	5	_	2/2 Z+Zk
NAIL122	Umělá inteligence pro počítačové	3		1/1 Z+Zk
	hry			
NAIL123	Procedurální generování obsahu	3		1/1 Z+Zk
	počítačových her			,
	_ *			

NPFL114 Hluboké učení	7 —	3/2 Z+Zk
-----------------------	-----	----------

Doporučené volitelné předměty

Seznam doporučených volitelných předmětů obsahuje pouze předměty, které doplňují či rozšiřují látku podstatnou pro tento studijní program. Volba dalších je ponechána na posluchači, který může volit ze široké nabídky předmětů nabízených na fakultě.

Kód	Název	Kredity	ZS	LS
NPGR004	Fotorealistická grafika	5		2/2 Z+Zk
	Seminář z počítačové grafiky	2	$0/2 \mathrm{~Z}$	$0/2 \mathrm{~Z}$
	a vidění		,	•
NPGR019	Realtime grafika na GPU	5		2/2 Z+Zk
NPGR022	Speciální seminář ze zpracování	2	$0/2 \mathrm{~Z}$	$0/2 \mathrm{~Z}$
	obrazu			
NPGR030	Optika pro počítačovou grafiku	3	$2/0 \mathrm{Zk}$	
NPGR036	Počítačové vidění	5		2/2 Z+Zk
NCGD002	Vývoj počítačových her 2	3	$1/1 \mathrm{~Z+Zk}$	
NCGD006	Praktikum z vývoje počítačových	2		$0/1 \mathrm{~Z}$
	her v limitovaném čase			
NPRG042	Programování v paralelním	6		2/2 Z+Zk
	prostředí			
NPRG054	Vývoj vysoce výkonného software	6		2/2 Z+Zk
NPRG056	Programování mobilních zařízení	3	$0/2 \mathrm{~Z}$	
NPRG059	Praktikum z pokročilého	2	$0/1 \mathrm{~Z}$	
	objektového programování			
NSWI041	Úvod do softwarového inženýrství	5		2/2 Z+Zk
NSWI158	Seminář z počítačových her	3	$0/2 \mathrm{~Z}$	$0/2 \mathrm{~Z}$
NAIL025	Evoluční algoritmy 1	5	2/2 Z+Zk	
	Úvod do robotiky	5	2/2 Z+Zk	
NAIL071	Plánování a rozvrhování	3		$2/0 \mathrm{Zk}$
NAIL082	Seminář z umělých bytostí	3	$0/2 \mathrm{~Z}$	$0/2 { m Z}$
NAIL087	Informatika a kognitivní vědy 1	6	3/1 Z+Zk	
NAIL108	Mobilní robotika	3		1/1 KZ
NDBI045	Vyhledávání a explorace ve videu	5		2/2 Z+Zk

Státní závěrečná zkouška

Posluchač si zvolí tři okruhy z nabídky daného zaměření dle podmínek specifikovaných níže. Z každého zvoleného okruhu obdrží po jedné otázce.

a) Zaměření Vizuální výpočty

Posluchač si zvolí alespoň dva z okruhů 1 až 3. Třetí okruh zvolí libovolně ze všech okruhů nabízených v zaměřeních Vizuální výpočty a Vývoj počítačových her kromě okruhu "Počítačová grafika pro hry".

Zkušební okruhy

- 1. Realistická syntéza obrazu
- 2. Analýza a zpracování obrazu, komprese obrazu, počítačové vidění
- 3. Geometrické modelování a výpočetní geometrie

Zkušební požadavky

1. Realistická syntéza obrazu

Metody reprezentace 3D scén, výpočet viditelnosti, výpočet vržených stínů, modely osvětlení a stínovací algoritmy, rekurzivní sledování paprsku, textury, anti-aliasing, generování izoploch. Architektura grafického akcelerátoru, předávání dat do GPU, textury v GPU, programování GPU - shaderů, základy OpenGL, jazyka HLSL a GLSL, CUDA. Fyzikální model šíření světla (radiometrie, BRDF, zobrazovací rovnice), Monte Carlo integrování (importance sampling a MIS), Monte Carlo přístupy ve výpočtu osvětlení (path tracing, bi-directional path tracing), přibližné metody globálního osvětlení (photon mapping, irradiance caching). Monte Carlo metody výpočtu spektrálního osvětlení, participating media, měření a verifikace zobrazovacích metod. Stínovací jazyky (Renderman shading language, OSL). Obecné a specifické techniky pro urychlování ray-tracingu.

Doporučené předměty

Kód	Název	Kredity	ZS	LS
	Pokročilá 3D grafika pro film a hry Predictive Image Synthesis Technologies	$5\\4$	2/2 Z+Zk —	
	Shading Languages High Performance Ray Tracing	$\frac{5}{3}$		$^{2/1}$ Z+Zk $^{2/0}$ Zk

2. Analýza a zpracování obrazu, komprese obrazu, počítačové vidění

Změna kontrastu a jasu, HDR, odstranění šumu, detekce hran. Určení vzájemné polohy snímků, korespondence bodu a objektu, odstranění geometrických zkreslení, detekce hranic objektu, detekce oblastí. Příznaky pro popis a rozpoznávání 2D objektů, momentové invarianty, vlnková transformace a její použití. Statistická teorie rozpoznávání, klasifikace s učením a bez učení, konvoluční sítě. Komprese rastrové 2D grafiky, skalární a vektorová kvantizace, prediktivní komprese, transformační kompresní metody, komprese videosignálu, časová predikce (kompenzace pohybu), standardy JPEG a MPEG. Geometrie jedné a více kamer, esenciální matice, rekonstrukce 3D scény.

Doporučené předměty

Kód	Název	Kredity	ZS	LS
NPGR041	Vybrané kapitoly z počítačového vidění	5	2/2 Z+Zk	_
NPGR029	Variační metody ve zpracování obrazu	3	_	2/0 Zk
NPGR013	S Speciální funkce a transformace ve zpracování obrazu	3	_	2/0 Zk
	Algoritmy komprese dat 3D počítačové vidění	3 5	2/0 Zk 2/2 Zk	_

3. Geometrické modelování a výpočetní geometrie

Diferenciální geometrie křivek a ploch, jejich aproximace a interpolace. Bézierovy křivky a plochy, de Casteljau algoritmus. B-spline funkce a křivky, de Boor algoritmus, racionální křivky a plochy, NURBS, Coonsův plát.

Geometrické vyhledávání. Konvexní obálky. Voroného diagramy, jejich aplikace a zobecnění. Rovinné triangulace množiny bodů a jejich aplikace. Tetrahedronizace a jejich aplikace. Triangulace polygonu. Střední osa. Průsečíky a průniky.

Doporučené předměty

Kód	Název	Kredity	ZS	LS
NPGR021	Geometrické modelování	5	2/2 Z+Zk	
NPGR016	S Aplikovaná výpočetní geometrie	5		2/1 Z+Zk

b) Zaměření Vývoj počítačových her

Posluchač obdrží po jedné otázce z následujících okruhů:

- 1. Okruh "Vývoj počítačových her", který je pro zaměření Vývoj počítačových her povinný.
- 2. Buď okruh "Počítačová grafika pro hry", nebo libovolný z okruhů ze zaměření Vizuální výpočty.
- 3. Jeden ze zkušebních okruhů 3 až 7 dle výběru posluchače.

Zkušební okruhy

- 1. Vývoj počítačových her (povinný okruh pro zaměření Vývoj počítačových her)
- 2. Počítačová grafika pro hry
- 3. Umělá inteligence pro počítačové hry
- 4. Počítačové hry jako sociokulturní fenomén
- 5. Analýza a architektury softwaru
- 6. Webové technologie
- 7. Vývoj výkonných systémů

Zkušební požadavky

1. Vývoj počítačových her

Programování počítačových her; problematika herních mechanik, herní návrhové vzory, skriptování her. Architektura herních engine; vrstvy architektur, výpočetní modely, entity-component system, správa paměti, příklady konkrétních instancí architektur. Herní design; kdo je herní designér, osy herního designu, herní žánry, specifika herních platforem, game design dokument (vlastnosti, struktura, UML diagramy pro popis herních mechanismů, herní prostor, postavy, specifikace dialogů), historie herního trhu. Vývojový cyklus počítačové hry; fáze vývojového cyklu, herní design řízený daty, správa dat, testování počítačových her, vývojářské role, herní analytiky, vodopádový model a agilní metodiky návrhu her, obchodní modely komercializace her. Narativita a hry; rozdíl mezi games of emergence a games of progression, chtěná a nechtěná emergence, environmentální storytelling, procedurální rétorika, ludonarativní disonance.

Kód	Název	Kredity	ZS	LS
NCGD001	Vývoj počítačových her 1	6	_	2/2 Z+Zk
	Programování herních mechanik	4	1/2 Z+Zk	
NCGD004	Úvod do herního designu	3	1/1 Z+Zk	_

2. Počítačová grafika pro hry

Homogenní souřadnice, afinní a projektivní transformace v rovině a v prostoru, kvaterniony. Spline funkce, interpolace kubickými spliny, Bézierovy křivky, Catmull-Rom spliny, B-spliny. Vzorkování a kvantování obrazu, anti-aliasing, textury, změna kontrastu a jasu, kompozice poloprůhledných obrázků. Reprezentace 3D scén, výpočet viditelnosti, výpočet vržených stínů, měkké stíny, rozptyl světla pod povrchem, modely osvětlení a stínovací algoritmy, rekurzivní sledování paprsku, fyzikální model šíření světla (radiometrie, zobrazovací rovnice), algoritmus sledování cest, předpočítané globální osvětlení, výpočet globálního osvětlení v reaálném čase, stínování založené na sférických harmonických funkcích, předpočítaný přenos radiance. Animace postav, skinning, rigging, morphing. Architektura grafického akcelerátoru, předávání dat do GPU, textury a GPU buffery, programování GPU - shaderů. Základy OpenGL, GLSL, CUDA a OpenCL. Principy komprese rastrové 2D grafiky, standard JPEG, komprese videosignálu.

Doporučené předměty

Kód	Název	Kredity	ZS	LS
	Počítačová grafika pro vývoj her Algoritmy komprese dat	5 3	-2/0 Zk	2/2 Z+Zk

3. Umělá inteligence pro počítačové hry

Architektura autonomního agenta; percepce, mechanismus výběru akcí, paměť; psychologické inspirace. Metody pro řízení agentů; symbolické a konekcionistické reaktivní plánování, hybridní přístupy, prostor rozhodování, if-then pravidla, skriptování, sekvenční konečný automat, stromy chování. Problém hledání cesty; lokální navigační pravidla (Raynoldsovy steeringy, VO, RVO, Context steering), hledání cesty (A*, JPS+, goal bounding, RRT, RRT*, LPA*, MPAA*, obousměrné prohledávání), reprezentace prostoru (geometrie, viditelnost). Komunikace a znalosti v multiagentních systémech, ontologie, řečové akty, FIPA-ACL, protokoly. Distribuované řešení problémů, kooperace, Nashova ekvilibria, Paretova efektivita, alokace zdrojů, aukce. Metody pro učení agentů; zpětnovazební učení, základní formy učení zvířat. Procedurální modelování stavového prostoru (forward model) a jeho prohledávání; A*, ABCD, MCTS a UCB a další varianty, PGS, PGS-II, prostor skriptů (Kiting, AV, NOK-AV), efektivní implementace. Klasifikace metod procedurálního generování. Přístupy pro generování terénu, vizuálních efektů, hudby, předmětů, bludišť a dungeonů. Šumové funkce (Perlin, Simplex, Worley). Celulární automaty, L-systémy, grafové a tvarové gramatiky. Answer set programming. Algoritmus kolapsu vlnové funkce. Metody smíšené iniciativy.

Kód	Název	Kredity	ZS	LS
NAIL068	Umělé bytosti	5	_	2/2 Z+Zk
NAIL106	Multiagentní systémy	5		2/2 Z+Zk
NAIL122	Umělá inteligence pro počítačové	3		1/1 Z+Zk
	hry			
NAIL123	Procedurální generování obsahu	3		1/1 Z+Zk
	počítačových her			

4. Počítačové hry jako sociokulturní fenomén

Teorie herních studií; definice herních studií, vztah herních studií k dalším vědním oborům, kulturní, sociální a politické aspekty počítačových her, definice počítačové hry, rozdíl mezi počítačovými hrami a jiných audiovizuálních médií a implikace pro výzkum. Historie počítačových her; okolnosti vzniku počítačových her, technologické a kulturní kořeny počítačových her, klíčové milníky historie počítačových her, archeologie médii v herních studiích, konvergentní evoluce. Metody výzkumu v herních studiích; druhy metod výzkumu, formální obsahová analýza her. Výzkum systémů pravidel ve hrách; metody výzkumu, subjektivní zkušenost ze hry, hráčské komunity. Sociální aspekty počítačových her; pozitivní a negativní sociální aspekty počítačových her, herní komunita, demografický profil hráče počítačových her a jeho vývoj v čase, MMO a výzkum sociálních aspektů her. Psychologické a kognitivní aspekty počítačových her; pozitivní a negativní psychologické aspekty počítačových her, metody výzkumu, vliv paměti, emoce, pozornost a motivace hráče na herní zážitek, vztah mezi násilím zobrazeným ve hrách a agresivním chování, vliv krátkodobého a dlouhodobého hraní her na rozvoj kognitivních schopností, imerze a flow ve vztahu k počítačovým hrám. Vážné, výukové a persvazivní hry; definice, procedurální rétorika a její význam pro herní studia, teoretické základy koncepce výuky pomocí počítačových her, výhody a nevýhody zapojení počítačových her do formální výuky, počítačové hry a jejich vliv na postoje hráčů, gamifikace a její výhody a limity.

Doporučené předměty

Kód	Název	Kredity	ZS	LS
NCGD005	Konstrukce herního zážitku	3	1/1 Z+Zk	_
NAFF003	Introduction to Game Studies	3	0/2 Zk	
NAFF004	Contemporary Issues in Game Studies	3		$0/2 \mathrm{~Zk}$

5. Analýza a architektury softwaru

Procesy vývoje SW a jejich fáze. Podnikové procesy a jejich modelování pomocí BPMN. UML a jeho využití pro analýzu a návrh struktury a chování SW. Návrhové vzory. Testování SW, dopadová a změnová analýza. Plánování SW projektů, odhad nákladů, úrovně řízení projektů. Právní aspekty SW, hlavní zákony důležité pro IT projekty. Typy pohledů na SW architekturu. Modelování a dokumentace SW architektury. Klasifikace atributů kvality SW architektury, jejich popis pomocí scénářů a taktik. Servisně orientované architektury. Algebraické metody, vícedruhové algebry, iniciální modely. Formální základy jazyka UML. OCL jako specifikační jazyk a formální základy dle specifikace. Formální základy RDF a jazyka OWL, deskripční logika.

Kód	Název	Kredity	ZS	LS
NSWI130	Architektury softwarových systémů	5	2/2 Z+Zk	_
NSWI026	Pokročilé aspekty softwarového inženýrství	5	_	2/2 Z+Zk
NTIN043	Formální základy softwarového inženýrství	5	2/2 Z+Zk	

6. Webové technologie

Obecný přehled základní webových technologií. Síťové služby pro webové technologie. Webové služby. Architektura klient-server aplikací, skriptování na straně serveru a klienta, webové frameworky. Použití databázových systémů ve webových aplikacích, NoSQL databáze, multimediální databáze. Indexace a prohledávání dokumentů, principy fungování webových vyhledávačů. Linked Data, integrace sémantických dat do webových stránek. Zajištění bezpečnosti informačních systémů v prostředí internetu, autentizace, autorizace, bezpečnostní modely, základy šifrování, ochrana dat.

Doporučené předměty

Kód	Název	Kredity	ZS	LS
NSWI130	Architektury softwarových systémů	5	2/2 Z+Zk	_
NSWI153	Pokročilé programování webových	5	<u>.</u>	2/2 Z+Zk
	aplikací			
NSWI145	Webové služby	5		2/2 Z+Zk
NDBI034	Vyhledávání multimediálního obsahu	4	2/1 Z+Zk	
	na webu			
NPRG043	Doporučené postupy	5		$2/2~\mathrm{KZ}$
	v programování			

7. Vývoj výkonných systémů

Toto zaměření ověřuje znalosti a dovednosti týkající se konstrukce softwarových systémů s vysokým výpočetním výkonem, zkoušené v rozsahu následujících profilujících předmětů:

Kód	Název	Kredity	ZS	LS
NPRG058	Pokročilé programování v paralelním prostředí	6	2/2 Z+Zk	_
NSWI131	Vyhodnocování výkonnosti počítačových systémů	4	_	2/1 Z+Zk

Studijní plány oblasti vzdělávání UČITELSTVÍ

Vedle odborných studijních programů nabízí MFF UK také studium několika programů učitelského zaměření. Celé studium vedoucí k získání kvalifikace pro učitelské povolání je rozděleno na tříleté bakalářské a na něj navazující dvouleté magisterské studium.

V obou stupních studia jde o sdružené studium sestávající ze dvou studijních programů. V tom, který si student zvolil jako hlavní, studuje podle hlavního studijního plánu (maior), ve druhém programu studuje podle přidruženého studijního plánu (minor). V hlavním studijním programu absolvuje student pedagogicko-psychologickou průpravu a předměty univerzitního základu; v každém z obou programů pak předměty týkající se oboru, pro jehož výuku je připravován (včetně didaktiky daného oboru a pedagogické praxe). Na MFF UK je student na oba zvolené obory připravován ve stejném rozsahu a stejně kvalitně nezávisle na tom, který studijní program má jako hlavní a který jako přidružený. Bakalářskou práci student vypracovává jen v hlavním studijním programu; tím je přirozeně ovlivněno téma dané práce.

Bakalářské studium od akad. roku 2019/20

1. Základní informace

V rámci bakalářského studia má MFF UK od akademického roku 2019/2020 akreditovány následující bakalářské studijní programy (se studijními plány maior a minor) týkající se učitelství:

- Fyzika se zaměřením na vzdělávání
- Matematika se zaměřením na vzdělávání
- Deskriptivní geometrie se zaměřením na vzdělávání
- Informatika se zaměřením na vzdělávání

Tyto studijní programy se ve sdruženém studiu kombinují. V současné době jsou nabízeny kombinace:

Fyzika se zaměřením na vzdělávání - Matematika se zaměřením na vzdělávání,

Matematika se zaměřením na vzdělávání - Deskriptivní geometrie se zaměřením na vzdělávání,

Matematika se zaměřením na vzdělávání - Informatika se zaměřením na vzdělávání. Každý student si může zvolit, který ze studijních programů je pro něj hlavní a který přidružený.

Se studijním programem Matematika se zaměřením na vzdělávání se sdružují i jiné studijní programy z dalších fakult UK.

Studijní plány

Studijní plány určují skladbu povinných a povinně volitelných předmětů a dále požadavky ke státní závěrečné zkoušce. Povinně volitelné předměty jsou pro každý studijní program rozděleny do několika skupin a pro každou skupinu je určen minimální počet kreditů, který je z dané skupiny třeba získat před přihlášením ke státní závěrečné zkoušce. Vedle povinných předmětů a povinně volitelných předmětů si může každý student podle vlastního výběru zapisovat další předměty vyučované na naší fakultě, v případě zájmu i na jiných fakultách naší univerzity (tzv. volitelné předměty). Ve studijních plánech jsou přitom pro každý studijní program uvedeny některé volitelné předměty jako doporučené.

Doporučený průběh studia

Doporučený průběh studia je pro každý studijní program vypracován tak, aby na sebe povinné předměty navazovaly, aby student získal včas kredity potřebné pro zápis do dalšího úseku studia a aby včas splnil podmínky pro přihlášení ke státní závěrečné zkoušce. Doporučený průběh studia je podporován také při tvorbě celofakultního rozvrhu. Doporučené průběhy studia jsou uvedeny v další části textu u popisu jednotlivých studijních programů.

Státní závěrečná zkouška

Bakalářské studium je zakončeno státní závěrečnou zkouškou, která má tři části:

- obhajoba bakalářské práce (v rámci hlavního studijního plánu),
- ústní zkouška dle požadavků v hlavním (maior) studijním plánu,
- ústní zkouška dle požadavků v přidruženém (minor) studijním plánu.

Nezáleží přitom na pořadí, v jakém jsou tyto části skládány. Podmínky pro přihlášení ke státní závěrečné zkoušce jsou uvedeny ve studijních předpisech.

2. Studijní plány jednotlivých studijních programů

1. Fyzika se zaměřením na vzdělávání

Garantující pracoviště: Katedra didaktiky fyziky

Garant studijního programu: doc. RNDr. Mgr. Vojtěch Žák, Ph.D.

Doporučený průběh studia

Předměty **povinné** jsou vytištěny **tučně**, povinně volitelné předměty normálním písmem, *doporučené volitelné* předměty *kurzívou*.

V následujících studijních plánech jsou uvedeny jen vybrané doporučené volitelné předměty.

Hlavní studijní plán (maior)

1. rok studia

Kód	Název	Kredity	ZS	LS
NFUF101	Mechanika	8	4/2 Z+Zk	_

NFUF102	Úvod do fyzikálních měření	1	0/1 Z	_
	Informační technologie pro	3	$1/2~\mathrm{KZ}$	
	učitele		,	
NTVY014	Tělesná výchova I ¹	1	$0/2 \mathrm{~Z}$	
NJAZ070	Anglický jazyk pro středně pokročilé I ²	1	0/2 Z	
NFUF801	Fyzika I prakticky	1	$0/1 \mathrm{~Z}$	
	Řešení problémů	1	$0/1 \mathrm{Z}$	
NFUF803	Seminář z mechaniky	1	$0/1 \mathrm{~Z}$	
NFUF804	Úvod do matematických metod fyziky	3	$0/3 \mathrm{~Z}$	
NFUF808	Praxe v mimoškolním fyzikálním vzdělávání I	1	$0/1 \mathrm{~Z}$	
NFUF103	Elektřina a magnetismus	8		4/2 Z+Zk
NFUF104	Molekulová fyzika	2	_	2/0 Zk
NFUF105	Praktikum I - Mechanika	3		0/3 KZ
	a molekulová fyzika			
NFUF106	Matematické metody ve fyzice	4		2/2 Z+Zk
NTVY015	Tělesná výchova II ¹	1		$0/2 \mathrm{~Z}$
NJAZ072	Anglický jazyk pro středně pokročilé II ²	1		0/2 Z
NFUF805	Elektřina a magnetizmus krok za krokem	2	_	$0/2 \mathrm{~Z}$
NFUF806	Molekulová fyzika	2		$0/2 \mathrm{~Z}$
	Elektřina kolem nás	2		$0/2 \mathrm{~Z}$
NFUF809	Praxe v mimoškolním fyzikálním vzdělávání II	1	_	$0/1 \mathrm{Z}$
	Kurz bezpečnosti práce I 3	0		

 $^{^1\,}$ Místo jednoho z předmětů NTVY014, NTVY015, NTVY016, NTVY017 je možné si zapsat Letní výcvikový kurz NTVY018 nebo Zimní výcvikový kurz NTVY019. Tyto kurzy může student absolvovat kdykoli v průběhu studia.

2. rok studia

Kód	Název	Kredity	ZS	LS
NFUF201	Optika	7	3/2 Z+Zk	_
NFUF202	Teoretická mechanika	2	2/0 Zk	
NFUF203	Praktikum II — Elektřina	3	$0/3~\mathrm{KZ}$	
	a magnetismus			
NTVY016	Tělesná výchova III ¹	1	$0/2 \mathrm{~Z}$	
NJAZ074	Anglický jazyk pro středně	1	$0/2 \mathrm{~Z}$	
	pokročilé III ²			
NUFY085	Matematické metody ve fyzice II	3	$0/2 \mathrm{~Z}$	

 $^{^2}$ Výuka anglického jazyka NJAZ070, NJAZ072 v rozsahu 0/2 v každém semestru je určena pro středně pokročilé a pokročilé. Pro začátečníky a mírně pokročilé jsou určeny předměty NJAZ071, NJAZ073 s rozsahem výuky 0/4 v každém semestru.

výuky 0/4 v každém semestru. Kurz je organizován jednorázově zpravidla v letním semestru. Informace jsou vždy před začátkem semestru na http://physics.mff.cuni.cz/vyuka/zfp/ .

NUFY113 Optika krok za krokem	3	$0/2 \mathrm{~Z}$	
NUFY029 Teoretická mechanika	3	$0/2 \mathrm{~Z}$	
NFUF204 Úvod do kvantové mechaniky	8	<u></u>	4/2 Z+Zk
a kvantové teorie			
NFUF205 Klasická elektrodynamika	2	_	$2/0 \mathrm{~Zk}$
NFUF206 Praktikum III — Optika	3		0/3 KZ
a atomová fyzika			
NTVY017 Tělesná výchova IV ¹	1		$0/2 \mathrm{~Z}$
NJAZ090 Anglický jazyk pro středně	1		$0/2 \mathrm{~Z}$
pokročilé IV ²			
NJAZ091 Anglický jazyk ³	1	$0/0 \mathrm{\ Zk}$	$0/0 \mathrm{~Zk}$

 $^{^1\,}$ Místo jednoho z předmětů NTVY014, NTVY015, NTVY016, NTVY017 je možné si zapsat Letní výcvikový kurz NTVY018 nebo Zimní výcvikový kurz NTVY019. Tyto kurzy může student absolvovat kdykoli v průběhu studia.

3. rok studia

Kód	Název	Kredity	ZS	LS
NFUF301	Atomová fyzika	5	2/2 Z+Zk	
NFUF302	Termodynamika a statistická	7	3/2 Z+Zk	
	fyzika			
NFUF303	Praktický úvod do elektroniky	2	$0/2 \mathrm{~Z}$	
NPEP301	Úvod do psychologie	3	2/0 Zk	
NFUF305	Proseminář výuky fyziky I	2	$0/2 \mathrm{~Z}$	
NFUF304	Speciální teorie relativity	2		$2/0 \mathrm{~Zk}$
NPEP606	Pedagogická propedeutika	3		$0/2 \mathrm{~Z}$
NFUF333	Vypracování a konzultace	6		$0/4 \mathrm{~Z}$
	bakalářské práce			
NFUF306	Pedagogická praxe z fyziky I	2		$1 \ \mathrm{den} \ \mathrm{t\acute{y}dn\check{e}} \ \mathrm{Z}$
	Povinně volitelné předměty	4		

Povinně volitelné předměty (minimálně 4 kredity)

Kód	Název	Kredity	ZS	LS
NPEP601	Rétorika a komunikace s lidmi I	2	$0/2 \mathrm{~Z}$	_
NPEP602	Sociální dovednosti a práce s lidmi I	2	$0/2 \mathrm{~Z}$	
NPEP603	Rétorika a komunikace s lidmi II	2		$0/2 \mathrm{~Z}$
NPEP604	Sociální dovednosti a práce	2		$0/2 \mathrm{~Z}$
	s lidmi II			

 $^{^2}$ Výuka anglického jazyka NJAZ074, NJAZ090 v rozsahu 0/2 v každém semestru je určena pro středně pokročilé a pokročilé. Pro začátečníky a mírně pokročilé jsou určeny předměty NJAZ075, NJAZ089 s rozsahem výuky 0/4 v každém semestru.

 $^{^3}$ Povinnou zkoušku z anglického jazyka NJAZ091 je možné absolvovat v ZS nebo v LS.

Přidružený studijní plán (minor)

1. rok studia

Kód	Název	Kredity	ZS	LS
NFUF101	Mechanika	8	4/2 Z+Zk	
NFUF102	Úvod do fyzikálních měření	1	$0/1 \mathrm{Z}$	
NFUF801	Fyzika I prakticky	1	$0/1 \mathrm{Z}$	
NFUF802	Řešení problémů	1	$0/1 \mathrm{Z}$	
NFUF803	Seminář z mechaniky	1	$0/1 \mathrm{Z}$	
NFUF804	Úvod do matematických metod	3	$0/3 \mathrm{~Z}$	
	fyziky			
NFUF808	Praxe v mimoškolním fyzikálním	1	$0/1 \mathrm{~Z}$	
	vzdělávání I			
NFUF103	Elektřina a magnetismus	8		4/2 Z+Zk
NFUF104	Molekulová fyzika	2		2/0 Zk
NFUF105	Praktikum I - Mechanika	3		0/3 KZ
	a molekulová fyzika			
NFUF106	Matematické metody ve fyzice	4		2/2 Z+Zk
NFUF805	Elektřina a magnetizmus krok za	2		$0/2 \mathrm{Z}$
	krokem			
NFUF806	Molekulová fyzika	2	_	$0/2 \mathrm{~Z}$
NFUF807	Elektřina kolem nás	2		$0/2 \mathrm{~Z}$
NFUF809	Praxe v mimoškolním fyzikálním	1		0/1 Z
	vzdělávání II			
	Kurz bezpečnosti práce I 1	0		

 $^{^1}$ Kurz je organizován jednorázově zpravidla v letním semestru. Informace jsou vždy před začátkem semestru na http://physics.mff.cuni.cz/vyuka/zfp/ .

2. rok studia

Kód	Název	Kredity	ZS	LS
NFUF201	Optika	7	3/2 Z+Zk	_
NFUF202	Teoretická mechanika	2	2/0 Zk	
NFUF203	Praktikum II — Elektřina	3	0/3 KZ	
	a magnetismus			
NUFY085	Matematické metody ve fyzice II	3	$0/2 \mathrm{~Z}$	
NUFY113	Optika krok za krokem	3	$0/2 \mathrm{~Z}$	
NUFY029	Teoretická mechanika	3	$0/2 \mathrm{~Z}$	
NFUF204	Úvod do kvantové mechaniky	8		4/2 Z+Zk
	a kvantové teorie			
NFUF205	Klasická elektrodynamika	2		$2/0 \mathrm{Zk}$
NFUF206	Praktikum III — Optika	3		$0/3~\mathrm{KZ}$
	a atomová fyzika			
3. rok stu	dia			
Kód	Název	Kredity	ZS	LS
NFUF301	Atomová fyzika	5	2/2 Z+Zk	_

NFUF302	Termodynamika a statistická fyzika	7	3/2 Z+Zk	
NFUF303	Praktický úvod do elektroniky	2	$0/2 \mathrm{~Z}$	
	Proseminář výuky fyziky I	2	$0/2 \mathrm{~Z}$	
NFUF304	Speciální teorie relativity	2	<u>.</u>	$2/0 \mathrm{Zk}$
NFUF306	Pedagogická praxe z fyziky I	2		1 den týdně Z

Požadavky znalostí ke státní závěrečné zkoušce

Student musí prokázat znalost základních veličin, jejich souvislostí, metod měření, fyzikálních zákonů a jejich důsledků a vztahu experimentálních a teoretických výsledků. Musí též prokázat schopnost aplikovat tyto znalosti na řešení úloh a na vysvětlení jevů z běžného života i technické praxe.

1. Mechanika

Kinematika hmotného bodu, soustav hmotných bodů a tuhého tělesa. Základní dynamické veličiny, impulzové věty, zákony zachování. Inerciální a neinerciální soustavy, setrvačné síly. Rovnováha soustav hmotných bodů a těles, princip virtuální práce. Pohybové rovnice: 2. Newtonův zákon, Lagrangeovy rovnice 2. druhu, Hamiltonovy rovnice. Variační formulace pohybových rovnic klasické mechaniky. Pohyby částic a těles: pohyb pod vlivem odporové síly, pohyb v poli centrální síly, částice v elektrickém a magnetickém poli, srážky (rozptyl); setrvačníky. Kmity: skládání kmitů, tlumené, vynucené a vázané kmity, rezonance; malé kmity soustav hmotných bodů. Příklady systémů, v nichž může vzniknout deterministický chaos. Postupné a stojaté vlnění, rovnice struny. Dopplerův jev. Základy mechaniky kontinua: deformace, napětí, reologické vlastnosti látek. Rovnováha a pohyb ideálních a vazkých tekutin.

2. Elektřina, magnetismus a klasická elektrodynamika

Elektrostatika: Coulombův zákon, intenzita a potenciál, kapacita, kondenzátor, polarizace dielektrika, okrajové podmínky. Elektrický proud: rovnice kontinuity, Ohmův zákon, Kirchhoffovy zákony, práce a výkon elektrického proudu; výboj v plynech. Magnetické pole vodiče, Ampérův zákon, síla působící na vodič v magnetickém poli, magnetický moment smyčky, Faradayův indukční zákon, vlastní a vzájemná indukčnost. Magnetické pole v látce, magnetická polarizace. Střídavý proud, transformátor, obvody RLC. Oscilační obvod, rezonance. Maxwellovy rovnice, jejich vlastnosti a základní důsledky. Kvazistacionární děje. Elektromagnetické potenciály, kalibrační transformace. Vlnová rovnice, elektromagnetické vlny; generování elektromagnetických vln, retardace. Energie a hybnost elektromagnetického pole. Meze klasické elektrodynamiky.

3. Optika

Rovinná elektromagnetická vlna. Vlastnosti optického záření: spektrální složení, mohutnost, polarizace, koherence, šíření ve vakuu. Interference. Průchod izotropním, dvojlomým a absorbujícím prostředím. Odraz a lom, rozptyl. Zobrazení zrcadlem a čočkou. Jednoduché optické přístroje. Lidské oko. Zdroje optického záření. Monochromátor, interferometr. Polarizační soustavy. Detektory optického záření.

4. Termodynamika, statistická fyzika a molekulová fyzika

Základní termodynamické veličiny (termodynamický i statistický přístup). Termodynamické postuláty a zavedení teploty. První termodynamický zákon a jeho důsledky. Vlastnosti ideálního a reálného plynu, jednoduché děje. Druhý termodynamický zákon a Carnotův cyklus. Fázový diagram a klasifikace fázových přechodů. Východiska

statistické fyziky (fázový prostor, ergodická hypotéza, Liouvilleův teorém). Kanonický soubor a jeho rozdělení. Statistická rozdělení nerozlišitelných částic. Entropie z termodynamického i statistického pohledu. Ekvipartiční teorém. Zákony záření černého tělesa.

Maxwellovo-Boltzmannovo rozdělení rychlostí molekul plynu. Rozdělení molekul plynu v tíhovém poli a v libovolném konzervativním silovém poli (Boltzmannův zákon). Transportní jevy v plynech (hustota toku, srážky molekul, difúze, tepelná vodivost, viskózní tok). Vlastnosti povrchové vrstvy kapalin (molekulární tlak, povrchové napětí, kapilární jevy, kapilární tlak).

5. Atomová a kvantová fyzika

Vývoj názorů na chování objektů v mikrosvětě a na podstatu světla, experimentální důvody vzniku kvantové teorie. Optické spektrum atomu vodíku. Atomová hypotéza a modely atomu (Thomsonův, Rutherfordův, Bohrův, kvantově mechanický). Základní pojmy a postuláty kvantové mechaniky (vlnová funkce, operátory fyzikálních veličin a fyzikální význam jejich vlastních čísel a funkcí, popis měření v kvantové mechanice, relace neurčitosti). Schrödingerova rovnice (časová i bezčasová, jejich vzájemný vztah, ilustrace řešení pro vybrané jednoduché jednorozměrné případy). Základní myšlenky metod přibližného řešení úloh v kvantové mechanice, ilustrace na konkrétních příkladech. Orbitální a spinový moment hybnosti, magnetický moment atomu, spinorbitální vazba. Systémy mnoha částic (popis systému mnoha částic, princip nerozlišitelnosti a jeho důsledky – Pauliho princip, bosony a fermiony, jednočásticové přiblížení a další metody řešení systémů více částic). Kvantový pohled na atomy a molekuly (atom vodíku, Mendělejevova periodická tabulka prvků, optická a rtg. spektra atomů, základy chemické vazby). Specifika chování objektů v mikrosvětě a přechod mezi klasickou a kvantovou mechanikou.

6. Teorie relativity

Pokusy vedoucí ke speciální teorii relativity (STR). Základní postuláty STR. Lorentzova transformace a její kinematické důsledky (kontrakce délek, dilatace času, relativita současnosti, skládání rychlostí a jejich aplikace). Kauzalita a STR. Hybnost a energie v STR, relativistická pohybová rovnice, ekvivalence hmotnosti a energie. Vztah klasické mechaniky a speciální teorie relativity.

2. Matematika se zaměřením na vzdělávání

Garantující pracoviště: Katedra didaktiky matematiky Garantka studijního programu: doc. RNDr. Jarmila Robová, CSc.

Doporučený průběh studia

Předměty **povinné** jsou vytištěny **tučně**, povinně volitelné předměty normálním písmem, *doporučené volitelné* předměty *kurzívou*.

Hlavní studijní plán (maior)

1. rok studia

Kód	Název	Kredity	ZS	LS
	Povinné předměty – obecná část:			
NTVY014	${f I}$ Tělesná výchova ${f I}$ tv	1	$0/2 \mathrm{~Z}$	
NTVY015	$\mathbf{\hat{s}}$ Tělesná výchova II tv	1		$0/2 \mathrm{Z}$

${ m NMTM110}$ Informační technologie pro učitele it	3		$1/2~\mathrm{KZ}$
$Anglick \acute{y}~jazyk~^a$			
Povinné předměty – oborová část:			
NMTM101 Matematická analýza I	8	4/2 Z+Zk	
NMTM103 Lineární algebra I	4	2/2 Z+Zk	
NMTM105 Aritmetika a algebra I	3	2/1 Z+Zk	
NMTM102 Matematická analýza II	4		2/2 Z+Zk
NMTM104 Lineární algebra II	4		2/2 Z+Zk
NMTM106 Základy planimetrie	4		2/2 Z+Zk

it Tento předmět si studenti postupující dle plánu Fyzika se zaměřením na vzdělávání (plán maior i minor) a Informatika se zaměřením na vzdělávání (plán maior i minor) zapisují v zimním semestru. V letním semestru si předmět zapisují studenti postupující dle plánu Deskriptivní geometrie se zaměřením na vzdělávání (plán maior i minor) a studenti Matematika se zaměřením na vzdělávání v kombinaci s dalším programem na FF UK.

2. rok studia

Kód	Název	Kredity	ZS	LS
	Povinné předměty – obecná část:			
NTVY016	${f T}$ ělesná výchova III tv	1	$0/2 \mathrm{~Z}$	
NTVY017	$m{T}$ ělesná výchova IV tv	1	<u> </u>	$0/2 \mathrm{~Z}$
NJAZ091	${f A}$ nglický jazyk a	1	$0/0 \mathrm{Zk}$	$0/0 \mathrm{Zk}$
	Povinné předměty – oborová část:			
NMTM20	l Matematická analýza III	4	2/2 Z+Zk	
NMTM20	3 Geometrie I	4	2/2 Z+Zk	
NMTM20	$5\mathbf{Stereometrie}$	3	1/2 Z+Zk	
NMTM20	7Finanční matematika	2	$0/2 \mathrm{~Z}$	
NMTM20	2Matematická analýza IV	4		2/2 Z+Zk
NMTM20	4 Geometrie II	4		2/2 Z+Zk
NMTM20	6 A ritmetika a algebra II	3		2/1 Z+Zk
NMTM20	8Kombinatorika	3	_	$2/0 \mathrm{~Zk}$

^a Jednosemestrální předmět NJAZ091 se skládá pouze z povinné zkoušky z anglického jazyka, kterou je možno absolvovat buď v ZS, nebo v LS. Před povinnou zkouškou doporučujeme absolvovat výuku anglického jazyka v rámci volitelných předmětů dle své úrovně. Pro mírně pokročilé: NJAZ071, NJAZ073, NJAZ075, NJAZ089, pro středně pokročilé: NJAZ070, NJAZ072, NJAZ074, NJAZ090, pro pokročilé: NJAZ170, NJAZ172, NJAZ174, NJAZ176.

3. rok studia

Kód	Název	Kredity	ZS	LS
NPEP606	Povinné předměty – obecná část: Úvod do psychologie Pedagogická propedeutika	3 3	2/0 Zk —	 0/2 Z 0/4 Z
NSZZ091	Vypracování a konzultace bakalářské práce bc	O	$0/4 \mathrm{~Z}$	0/4 Z

 $^{^{}tv}$ Místo kteréhokoli z předmětů NTVY014, NTVY015, NTVY016, NTVY017 (ale nejvýše jednoho z nich) si lze zapsat buď Letní výcvikový kurz NTVY018, nebo Zimní výcvikový kurz NTVY019. Tyto kurzy může student absolvovat kdykoli v průběhu studia.

Povinně volitelné předměty – obecná	4		
část			
Povinně volitelné předměty –	2		
oborová část			
Povinné předměty – oborová část:			
NMTM301 Diferenciální geometrie	4	2/2 Z+Zk	
NMTM303 Základy zobrazovacích metod	2	$1/1~\mathrm{KZ}$	
NMTM305 Dějiny matematiky I	2	$2/0~{ m Kv}$	
NMTM307 Metody řešení matematických	2	$0/2 \mathrm{~Z}$	
úloh			
NMTM306 Dějiny matematiky II	2		$2/0 \mathrm{Kv}$
NMTM310 Pedagogická praxe	2	_	$0/1 \mathrm{~Z}$
z matematiky I			

 $^{^{}bc}$ Předmět je jednosemestrální, je možno si jej zapsat v zimním, nebo v letním semestru. Doporučený semestr: letní.

Povinně volitelné předměty – obecná část (alespoň 4 kredity)

Kód	Název	Kredity	ZS	LS
NPEP601	Rétorika a komunikace s lidmi I	2	$0/2 \mathrm{~Z}$	_
NPEP602	Sociální dovednosti a práce s lidmi I	2	$0/2 \mathrm{~Z}$	
NPEP603	Rétorika a komunikace s lidmi II	2		$0/2 \mathrm{~Z}$
NPEP604	Sociální dovednosti a práce	2		$0/2 \mathrm{~Z}$
	s lidmi II			

Povinně volitelné předměty – oborová část (alespoň 2 kredity)

Kód	Název	Kredity	ZS	LS
NMTM33	1 Bakalářský seminář z matematiky I ¹	2	$0/2 \mathrm{~Z}$	_
NMTM33	² Bakalářský seminář z matematiky II ¹	2	_	$0/2 \mathrm{~Z}$

 $^{^{1}\}mathrm{P}$ ředměty Bakalářský seminář z matematiky I a II si lze zapsat oba, nebo kterýkoli z nich.

Doporučené volitelné předměty

Kód	Název	Kredity	ZS	LS
NMTM16	1 Matematický proseminář I	2	$0/2 \mathrm{~Z}$	
NMTM16	2 Matematický proseminář II	2		$0/2 \mathrm{~Z}$
NMIN203	Mathematica pro začátečníky ²	2	$0/2 \mathrm{~Z}$	$0/2 \mathrm{~Z}$
NMIN264	Mathematica pro pokročilé ³	2	<u> </u>	$0/2 \mathrm{~Z}$
NMUM36	5 Seminář z kombinatoriky a teorie	2		$0/2 \mathrm{~Z}$
	$graf \mathring{u}$			
NMUG36	1 Aplikace deskriptivní geometrie	2	$2/0 \mathrm{~Z}$	_
NUMV09	0 Teorie her	2	<u>·</u>	$2/0 \mathrm{Z}$
NUMV04	7 Pravděpodobnost a finanční	3	$0/2 \mathrm{~Z}$	<u>.</u>
	matematika pro střední školu		·	

NUMV048 Statistika a pojistná matematika pro střední školu	3	_	$0/2 \mathrm{~Z}$
NUMV058 Řecké matematické texty I	3	$0/2 \mathrm{~Z}$	

 $^{^2}$ Volitelný předmět je jednosemestrální, je možno jej absolvovat v zimním, nebo v letním semestru. 3 Volitelný předmět bývá vyučován zpravidla jednou za dva roky.

Některé volitelné předměty nemusejí být v tomto akademickém roce vyučovány.

Přidružený studijní plán (minor)

NMTM202 Matematická analýza IV

NMTM206 Aritmetika a algebra II

NMTM204 Geometrie II

NMTM208 Kombinatorika

1. rok studia			
Kód Název	Kredity	ZS	LS
NMTM101 Matematická analýza I	8	4/2 Z+Zk	
NMTM103 Lineární algebra I	4	2/2 Z+Zk	
NMTM105 Aritmetika a algebra I	3	2/1 Z+Zk	
NMTM102 Matematická analýza II	4		2/2 Z+Zk
NMTM104 Lineární algebra II	4		2/2 Z+Zk
NMTM106 Základy planimetrie	4		2/2 Z+Zk
2. rok studia			
Kód Název	Kredity	ZS	LS
NMTM201 Matematická analýza III	4	2/2 Z+Zk	_
NMTM203 Geometrie I	4	2/2 Z+Zk	
NMTM205 Stereometrie	3	1/2 Z+Zk	
NMTM207 Finanční matematika	2	$0/2 \mathrm{~Z}$	

4

4

3

3

2/2 Z+Zk

2/2 Z+Zk

2/1 Z+Zk 2/0 Zk

3. rok studia

Kód	Název	Kredity	ZS	LS
	Povinně volitelné předměty –	2		
	oborová část			
NMTM30	1 Diferenciální geometrie	4	2/2 Z+Zk	
NMTM30	3 Z áklady zobrazovacích metod	2	$1/1~\mathrm{KZ}$	
NMTM30	5 D ějiny matematiky I	2	$2/0 \mathrm{\ Kv}$	
NMTM30	7 Metody řešení matematických	2	$0/2 \mathrm{~Z}$	_
	úloh			
NMTM30	6Dějiny matematiky II	2		2/0 Kv
NMTM31	0Pedagogická praxe	2		$0/1 \mathrm{~Z}$
	z matematiky I			

Povinně volitelné předměty – oborová část (2 kredity)

Kód	Název	Kredity	ZS	LS
NMTM33	1 Bakalářský seminář	2	$0/2 \mathrm{~Z}$	_
	z matematiky I ¹			

NMTM332Bakalářský seminář	2 —	$0/2 \mathrm{~Z}$
z matematiky II 1		·

 $^{^{1}\}mathrm{P}\check{\mathrm{r}}\mathrm{e}\mathrm{d}\mathrm{m}\check{\mathrm{e}}\mathrm{t}\mathrm{y}$ Bakalářský seminář z matematiky I a II si lze zapsat oba, nebo kterýkoli z nich.

Doporučené volitelné předměty

Kód	Název	Kredity	ZS	LS
NMTM11	Informační technologie pro	3	_	1/2 KZ
	učitele			
NMTM16	1 Matematický proseminář I	2	$0/2 \mathrm{~Z}$	
NMTM16	2 Matematický proseminář II	2		$0/2 \mathrm{~Z}$
NMIN203	Mathematica pro začátečníky ²	2	$0/2 \mathrm{~Z}$	$0/2 \mathrm{~Z}$
NMIN264	Mathematica pro pokročilé ³	2		$0/2 \mathrm{~Z}$
NMUM36	5 Seminář z kombinatoriky a teorie	2		$0/2 \mathrm{~Z}$
	$graf\mathring{u}$			
NMUG36	1 Aplikace deskriptivní geometrie	2	$2/0 \mathrm{Z}$	
NUMV090) Teorie her	2	<u> </u>	$2/0 \mathrm{~Z}$
NUMV047	7 Pravděpodobnost a finanční	3	$0/2 \mathrm{~Z}$	
	matematika pro střední školu			
NUMV048	3 Statistika a pojistná matematika pro	3		$0/2 \mathrm{~Z}$
	střední školu			
NUMV058	8 Řecké matematické texty I	3	0/2 Z	_

² Volitelný předmět je jednosemestrální, je možno jej absolvovat v zimním, nebo v letním semestru.

Některé volitelné předměty nemusejí být v tomto akademickém roce vyučovány.

Požadavky znalostí ke státní závěrečné zkoušce

Matematická analýza

1. Posloupnosti reálných čísel, limity.

Limita posloupnosti (vlastní a nevlastní), Bolzanova-Cauchyova podmínka. Věty o limitách. Vybrané posloupnosti.

2. Elementární funkce a jejich zavedení.

Goniometrické funkce a cyklometrické funkce. Exponenciální funkce, přirozený a obecný logaritmus, obecná mocnina, odmocnina. Vlastnosti těchto funkcí a jejich vzájemné vztahy.

3. Diferenciální počet funkcí jedné reálné proměnné. Vlastnosti spojitých funkcí na uzavřeném intervalu. Průběh funkce, užití vyšších derivací.

Limita funkce, aritmetika limit, limita složené funkce, limitní přechod v nerovnosti, limita monotónní funkce. Spojitost funkce v bodě a na intervalu, Heineova definice spojitosti, vlastnosti spojitých funkcí na uzavřeném intervalu. Derivace funkce, početní pravidla pro derivování, derivace inverzní funkce. Věty o střední hodnotě: Rolleova, Lagrangeova a Cauchyova. L'Hospitalovo pravidlo. Vztah derivace a monotonie funkce, nutné a postačující podmínky pro extrém. Taylorův polynom, Taylorova věta. Konvexnost a konkávnost a jejich souvislost s druhou derivací funkce. Asymptoty.

 $^{^3}$ Volitelný předmět bývá vyučován zpravidla jednou za dva roky.

4. Primitivní funkce, Newtonův integrál.

Základní primitivní funkce. Integrace per partes. První a druhá věta o substituci. Integrace racionálních funkcí, základní typy substitucí.

5. Riemannův integrál.

Zavedení Riemannova integrálu, geometrická interpretace. Riemannův integrál jako funkce horní meze. Newtonova-Leibnizova formule. Existenční věty pro Riemannův integrál. Nevlastní integrál. Délka křivky zadané parametricky, objem rotačního tělesa a povrch jeho pláště, obsah plochy zadané parametricky.

6. Nekonečné číselné řady, mocninné řady.

Součet řady, konvergentní a divergentní řady, Bolzanova-Cauchyova podmínka, nutná podmínka konvergence. Řady s nezápornými členy a kritéria jejich konvergence: srovnávací, odmocninové, podílové a integrální kritérium, limitní tvary kritérií. Řady se střídavými znaménky, Leibnizovo kritérium. Absolutně a neabsolutně konvergentní řady. Mocninná řada a její konvergence, poloměr konvergence. Derivace a integrace mocninné řady člen po členu.

7. Diferenciální rovnice.

Věty o existenci a jednoznačnosti řešení počáteční úlohy. Metody řešení diferenciálních rovnic (rovnice se separovanými proměnnými, lineární rovnice prvního a vyššího řádu). Lineární rovnice prvního a vyššího řádu: existence a jednoznačnost řešení, struktura množiny řešení, variace konstant, rovnice s konstantními koeficienty, speciální tvary pravé strany.

8. Funkce více proměnných.

Limita a spojitost. Parciální derivace, derivace ve směru, totální diferenciál, gradient. Derivace složené funkce. Věta o inverzní funkci. Věta o implicitní funkci. Lokální extrémy, vázané extrémy, metoda Lagrangeových multiplikátorů.

Algebra a lineární algebra

1. Relace, zobrazení a jejich základní vlastnosti.

Relace a jejich vlastnosti. Ekvivalence, uspořádání, úplné uspořádání, příklady. Rozklad množiny podle ekvivalence. Zobrazení (injektivní, surjektivní a bijektivní), skládání zobrazení; jádro a obraz zobrazení, rozklad zobrazení na surjekci, bijekci a injekci.

2. Vektorový prostor, báze, dimenze, lineární zobrazení. Vektorový prostor se skalárním součinem.

Příklady vektorových prostorů, lineární závislost a nezávislost, báze a dimenze konečně generovaného vektorového prostoru, věta o dimenzích spojení a průniku. Vlastnosti homomorfismu, věta o hodnosti a defektu. Skalární součin na reálném vektorovém prostoru, ortonormální báze, ortogonální doplněk podprostoru. Prostor se skalárním součinem, Cauchyova-Schwarzova nerovnost, trojúhelníková nerovnost, Gramův-Schmidtův ortogonalizační proces.

3. Matice a jejich vlastnosti, užití k řešení soustav lineárních rovnic. Podobnost matic.

Hodnost matice, regulární a singulární matice, inverzní matice, matice homomorfismu. Frobeniova věta o řešitelnosti soustavy lineárních rovnic. Věta o dimenzi vektorového prostoru všech řešení homogenní soustavy. Užití matic k řešení soustav lineárních rovnic, Gaussova eliminační metoda. Vlastní čísla a vlastní vektory, podobnost matic, Jordanova báze, Jordanův kanonický tvar. Charakteristický a minimální polynom.

4. Lineární a bilineární formy.

Lineární formy, duální prostor, duální báze. Bilineární a kvadratické formy a jejich matice, polární báze, normální báze, Sylvesterův zákon setrvačnosti kvadratických forem, signatura.

5. Determinanty a jejich vlastnosti, Cramerovo pravidlo.

Definice determinantu, Sarrusovo pravidlo, věta o rozvoji determinantu, charakterizace regulárních matic pomocí determinantů. Výpočet inverzní matice pomocí determinantů. Věta o násobení determinantů. Řešení soustav lineárních rovnic pomocí Cramerova pravidla.

6. Přirozená a celá čísla, dělitelnost.

Přirozená čísla, Peanovy axiomy, matematická indukce, dobré uspořádání. Konstrukce oboru integrity celých čísel. Dělitelnost, největší společný dělitel, nejmenší společný násobek. Eukleidův algoritmus a Bézoutova věta, Eukleidovo lémma, Základní věta aritmetiky. Numerační soustavy o různých základech. Prvočísla, Eratosthenovo síto, mohutnost množiny všech prvočísel. Fermatova čísla a prvočísla. Přirozená čísla jako svaz. Kongruence modulo n, odvození kritérií dělitelnosti. Malá Fermatova věta.

7. Čísla racionální, reálná a komplexní.

Konstrukce pole racionálních čísel, podílové pole. Reálná čísla (Dedekindovy řezy, desetinné rozvoje, cauchyovské posloupnosti, axiomatický popis R), iracionalita. Řetězové zlomky, konvergenty, aproximace reálných čísel racionálními. Algebraická a transcendentní čísla. Pole komplexních čísel, zavedení, vlastnosti. Algebraický a goniometrický tvar, operace a jejich geometrické znázornění, Moivreova věta a její aplikace. Mohutnosti číselných oborů.

8. Grupy a jejich homomorfismy. Algebraické struktury se dvěma binárními operacemi.

Binární operace na množině. Pojem grupy, grupa permutací, grupy symetrií pravidelných *n*-úhelníků, další příklady. Podgrupy a jejich vlastnosti, svaz podgrup. Cyklické grupy a jejich vlastnosti. Lagrangeova věta. Homomorfismy grup, příklady. Jádro a obraz homomorfismu a jejich vlastnosti. Faktorizace grupy podle normální podgrupy. Příklady. Okruh, obor integrity, těleso, pole, příklady.

9. Základní pojmy dělitelnosti v komutativním oboru integrity.

Relace dělitelnosti a asociovanosti v oboru integrity. Příklady eukleidovských oborů integrity a příklady na užití Eukleidova algoritmu. Ireducibilní prvek, prvočinitel.

10. Rovnice.

Základní věta algebry. Rovnice 1., 2. a 3. stupně, metody jejich řešení řešení, casus irreducibilis. Vietovy vzorce. Racionální a celočíselné kořeny algebraických rovnic s celočíselnými koeficienty, algebraická a transcendentní čísla. Reciproké rovnice. Lineární diofantické rovnice, Pellova rovnice.

11. Posloupnosti, průměry.

Aritmetická a geometrická posloupnost. Aritmetické posloupnosti vyšších řádů. Geometrická řada a harmonická řada. Aritmetický, geometrický a harmonický průměr, jejich vztah a geometrické znázornění.

Geometrie

Syntetická geometrie

1. Planimetrie (věty i s důkazy).

Pojmy: části přímky (úsečka, polopřímka), vzájemná poloha dvou přímek v rovině, odchylka přímek, části roviny (úhel, polorovina, rovinný pás), dvojice úhlů (vrcholové, vedlejší, souhlasné, střídavé úhly).

Základní věty geometrie trojúhelníku: Thalétova, Eukleidovy, Pýthagorova a její zobecnění (např. Hippokratovy měsíčky), sinová, kosinová, součet vnitřních úhlů. Trojúhelníková nerovnost. Těžiště a ortocentrum, Eulerova přímka, střední příčky, osy stran a osy úhlů, kružnice opsaná, vepsaná a připsaná. Konstrukce trojúhelníku z daných prvků. Aplikace vět o shodnosti a podobnosti trojúhelníků.

Klasifikace a vlastnosti čtyřúhelníků, konstrukce; vlastnosti tečnových a tětivových čtyřúhelníků (Ptolemaiova věta, součty vnitřních úhlů). Konvexní mnohoúhelníky (součet vnitřních úhlů, počet úhlopříček), pravidelné n-úhelníky a jejich vlastnosti.

Kružnice a její vlastnosti (tečny, tětivy, obvodové a středové úhly, úsekový úhel, mocnost bodu ke kružnici, chordála dvou kružnic), konstrukce. Vzájemná poloha dvou kružnic. Apollóniovy úlohy.

Obvody a obsahy rovinných útvarů, např. obsah trojúhelníku, Hérónův vzorec, obsah čtyřúhelníku a *n*-úhelníku. Obsah a obvod kruhu a jeho částí.

Shodnosti, podobnosti, stejnolehlost. Užití shodností a stejnolehlosti v konstrukčních úlohách. Skládání shodností, posunutá souměrnost. Kruhová inverze.

Axiomatický přístup k výstavbě geometrie.

2. Stereometrie (věty i s důkazy).

Obrazy těles ve volném rovnoběžném promítání. Základní stereometrické věty a jejich důkazy (rovnoběžnost přímky a roviny, rovnoběžnost dvou rovin, vzájemná poloha tří rovin, kolmost přímky a roviny, kolmost dvou rovin). Průnik přímky s tělesem, průsečnice rovin, řezy mnohostěnů. Vzdálenosti a odchylky bodů, přímek, rovin. Mnohostěny, Eulerova věta. Pravidelné mnohostěny (Platónská tělesa, jejich počet a vlastnosti). Objem a povrch těles a jejich částí, Cavalieriho princip. Geometrická zobrazení v prostoru (shodnosti, podobnosti).

3. Zobrazovací metody.

Princip rovnoběžného a středového promítání. Osová afinita, elipsa jako afinní obraz kružnice, konstrukce elipsy vycházející z osové afinity (Rytzova, trojúhelníková), užití osové afinity při konstrukci řezů hranolů a válců. Základy Mongeova promítání. Základy kosoúhlého promítání a průměty jednoduchých těles. Základy lineární perspektivy.

Analytická geometrie

1. Afinní prostor.

Afinní prostor a jeho zaměření. Lineární kombinace bodů. Lineární soustava souřadnic. Podprostor a jeho parametrické vyjádření. Obecná rovnice nadroviny (odvození pomocí lineárních forem), podprostor jako průnik nadrovin, obecné rovnice podprostoru. Vzájemná poloha podprostorů. Orientace afinního prostoru.

2. Eukleidovský prostor.

Skalární součin, eukleidovský prostor a jeho podprostory, obecná rovnice nadroviny. Vnější součin, vektorový součin a jejich základní vlastnosti. Kartézská soustava souřadnic. Kolmost podprostorů. Odchylka dvou přímek, dvou nadrovin, přímky a nadroviny, odchylka přímky a podprostoru. Vzdálenost bodu od podprostoru, vzdálenost bodu

od nadroviny, vzdálenost podprostorů; osa dvou mimoběžných podprostorů, Gramův determinant. Příklady v E^2 a E^3 .

3. Množiny bodů daných vlastností, kuželosečky.

Apollóniova kružnice. Kuželosečky jako řezy kuželové plochy, Quételetova-Dandelinova věta. Definice, vlastnosti a klasifikace kuželoseček. Kanonické rovnice kuželoseček a jejich transformace. Ohnisková a vrcholová rovnice kuželosečky. Parametrické vyjádření kuželoseček a rovnice kuželoseček v polárních souřadnicích. Bodové konstrukce elipsy (proužková součtová a rozdílová, trojúhelníková, bodová podle definice), paraboly (bodová dle definice), hyperboly (bodová dle definice). Vzájemná poloha přímky a kuželosečky.

4. Grupy geometrických zobrazení.

Dělicí poměr, afinní zobrazení, asociovaný homomorfismus. Afinity (základní afinity, homothetie), samodružné body a směry, příklady v A^2 a A^3 včetně analytického vyjádření. Projekce. Shodnosti, podobnosti, samodružné body a směry, příklady v E^2 a E^3 včetně analytického vyjádření, klasifikace v E^2 . Stereografická projekce, analytické vyjádření a vlastnosti kruhové inverze. Grupy geometrických transformací.

Diferenciální geometrie

1. Křivky v rovině a v prostoru.

Parametrické vyjádření křivky, příklady. Délka křivky, parametrizace obloukem. Frenetův repér a Frenetovy vzorce v rovině a v prostoru, křivost a torze.

2. Plochy v prostoru.

Parametrické vyjádření plochy, příklady. Tečná rovina, normála. První a druhá základní forma plochy a jejich užití. Hlavní směry a hlavní křivosti plochy, střední a Gaussova křivost. Zobrazení mezi plochami (izometrie, konformní zobrazení).

3. Deskriptivní geometrie se zaměřením na vzdělávání

Garantující pracoviště: Katedra didaktiky matematiky Garant studijního programu: doc. RNDr. Zbyněk Šír, Ph.D. (MÚ UK)

Doporučený průběh studia

Předměty **povinné** jsou vytištěny **tučně**, povinně volitelné předměty normálním písmem, *doporučené volitelné* předměty *kurzívou*.

Hlavní studijní plán (maior)

1. rok studia

Kód	Název	Kredity	ZS	LS
	Povinné předměty – obecná část:			
NTVY014	${f T}$ ělesná výchova I tv	1	$0/2 \mathrm{~Z}$	
NTVY015	\mathbf{f} Tělesná výchova II tv	1		$0/2 \mathrm{Z}$
NMTM11	0Informační technologie pro	3		1/2 KZ
	učitele			
	Anglický jazyk ^a			
	Povinné předměty – oborová část:			
NMTD10	l Deskriptivní geometrie I	10	4/3 Z+Zk	
NMTD10	Programování pro deskriptivní	3	$1/2 \mathrm{Z}$	
	geometrii I			

NMTD102	Deskriptivní geometrie II	5	_	2/2 Z+Zk
NMTD104	Programování pro deskriptivní	4		2/2 Z+Zk
	geometrii II			
NMTD108	Grafický software	2		$0/1 \mathrm{~Z}$
2. rok stu	dia			
Kód	Název	Kredity	ZS	LS
	Povinné předměty – obecná část:			
NTVY016	Tělesná výchova III tv	1	$0/2 \mathrm{~Z}$	
NTVY017	Tělesná výchova IV tv	1		$0/2 \mathrm{~Z}$
NJAZ091	${f Anglick\acute{y}}$ jazyk a	1	$0/0 \mathrm{Zk}$	0/0 Zk
	Povinné předměty – oborová část:			
NMTD201	Deskriptivní geometrie III	7	4/2 Z+Zk	
NMTD203	Seminář z deskriptivní	2	$0/2 \mathrm{~Z}$	
	geometrie I			
NMTD205	Projektivní geometrie I	5	2/2 Z+Zk	
NMTD202	Deskriptivní geometrie IV	7	<u> </u>	2/4 Z+Zk
NMTD204	Seminář z deskriptivní	2		$0/2 \mathrm{~Z}$
	geometrie II			
NMTD206	Projektivní geometrie II	5	_	2/2 Z+Zk

 $[^]a$ Jednosemestrální předmět NJAZ091 se skládá pouze z povinné zkoušky z anglického jazyka, kterou je možno absolvovat buď v ZS, nebo v LS. Před povinnou zkouškou doporučujeme absolvovat výuku anglického jazyka v rámci volitelných předmětů dle své úrovně. Pro mírně pokročilé: NJAZ071, NJAZ073, NJAZ075, NJAZ089, pro středně pokročilé: NJAZ070, NJAZ072, NJAZ074, NJAZ090, pro pokročilé: NJAZ170, NJAZ172, NJAZ174, NJAZ176.

Kód	Název	Kredity	ZS	LS
	Povinné předměty – obecná část:			
NPEP301	Úvod do psychologie	3	$2/0 \mathrm{~Zk}$	
NPEP606	Pedagogická propedeutika	3		$0/2 \mathrm{~Z}$
NSZZ031	Vypracování a konzultace	6	$0/4 \mathrm{~Z}$	$0/4 \mathrm{~Z}$
	bakalářské práce bc			
	Povinně volitelné předměty – obecná	4		
	část			
	Povinné předměty – oborová část:			
NMTD301	Počítačová geometrie I	5	2/2 Z+Zk	
NMTD303	3 Vybrané kapitoly z deskriptivní	2	$0/2~\mathrm{KZ}$	
	geometrie			
NMTD305	Dějiny deskriptivní geometrie	2	2/0 Zk	
NMTD302	2 Počítačová geometrie II	7		4/2 Z+Zk
NMTD310) Pedagogická praxe	2	$0/1 \mathrm{~Z}$	
	z deskriptivní geometrie I			

 $^{^{}tv}$ Místo kteréhokoli z předmětů NTVY014, NTVY015, NTVY016, NTVY017 (ale nejvýše jednoho z nich) si lze zapsat buď Letní výcvikový kurz NTVY018, nebo Zimní výcvikový kurz NTVY019. Tyto kurzy může student absolvovat kdykoli v průběhu studia.

 bc Předmět je jednosemestrální, je možno si jej zapsat v zimním, nebo v letním semestru. Doporučený semestr: letní.

Povinně volitelné	předměty – obecná část	(alespoň 4 kredity)	

Kód	Název	Kredity	ZS	LS
NPEP601	Rétorika a komunikace s lidmi I	2	$0/2 \mathrm{~Z}$	
NPEP602	Sociální dovednosti a práce s lidmi I	2	$0/2 \mathrm{~Z}$	
NPEP603	Rétorika a komunikace s lidmi II	2	·	$0/2 \mathrm{Z}$
NPEP604	Sociální dovednosti a práce	2		$0/2 \mathrm{~Z}$
	s lidmi II			
Doporuče	né volitelné předměty			
Kód	Název	Kredity	ZS	LS
NMUG264	1 Stereotomie	2	_	2/0 Z
NMUG361	Aplikace deskriptivní geometrie	2	$2/0 \mathrm{~Z}$	_

Některé volitelné předměty nemusejí být v tomto akademickém roce vyučovány. Přidružený studijní plán (minor)

1. rok studia

Kód	Název	Kredity	ZS	LS
NMTD101	Deskriptivní geometrie I	10	4/3 Z+Zk	_
NMTD103	Programování pro deskriptivní	3	$1/2 \mathrm{~Z}$	
	geometrii I			
NMTD102	2 Deskriptivní geometrie II	5		2/2 Z+Zk
NMTD104	Programování pro deskriptivní	4		2/2 Z+Zk
	geometrii II			
NMTD108	Grafický software	2	_	$0/1 \mathrm{~Z}$

2. rok studia

Kód	Název	Kredity	ZS	LS
NMTD201	l Deskriptivní geometrie III	7	4/2 Z+Zk	
NMTD203	Seminář z deskriptivní	2	0/2 Z	
	geometrie I			
NMTD205	o Projektivní geometrie I	5	2/2 Z+Zk	
NMTD202	2 Deskriptivní geometrie IV	7		2/4 Z+Zk
NMTD204	4 Seminář z deskriptivní	2		$0/2 \mathrm{Z}$
	geometrie II			
NMTD206	³ Projektivní geometrie II	5		2/2 Z+Zk

Kód	Název	Kredity	ZS	LS
NMTD30	l Počítačová geometrie I	5	2/2 Z+Zk	_
NMTD30	3 Vybrané kapitoly z deskriptivní	2	0/2 KZ	_
	geometrie			
NMTD30	5 Dějiny deskriptivní geometrie	2	$2/0 \mathrm{Zk}$	

	Počítačová geometrie II Pedagogická praxe z deskriptivní geometrie I	7 2	 0/1 Z	4/2 Z+Zk —
Doporučené volitelné předměty				
Kód	Název	Kredity	ZS	LS
	1 Stereotomie 1 Aplikace deskriptivní geometrie	2 2		2/0 Z —

Některé volitelné předměty nemusejí být v tomto akademickém roce vyučovány.

Požadavky znalostí ke státní závěrečné zkoušce

Zobrazovací metody

Základy konstrukční geometrie

1. Planimetrie a stereometrie.

Bod, přímka, rovina, incidence geometrických útvarů, polohové a metrické vlastnosti geometrických útvarů v rovině, svazek přímek, euklidovské konstrukce, tečna ke kružnici, společné tečny dvou kružnic, stejnolehlost, středový a obvodový úhel, Thalétova kružnice, konstrukce pravidelných n-úhelníků, mocnost bodu ke kružnici, chordála, potenční střed, svazek kružnic. Polohové a metrické vlastnosti geometrických útvarů v trojrozměrném prostoru (včetně definic a kritérií rovnoběžnosti přímky a roviny, rovnoběžnosti dvou rovin, kolmosti přímky a roviny, kolmosti dvou rovin), příčky mimoběžek. Tečné roviny těles. Řezy těles, průniky přímky a těles.

2. Osová afinita, perspektivní kolineace.

Perspektivní kolineace mezi dvěma různoběžnými rovinami. Perspektivní kolineace v rovině, střed, osa, úběžnice a protiúběžnice kolineace. Využití perspektivní kolineace při konstrukci řezů těles a při konstrukci kuželoseček.

Osová afinita mezi dvěma rovinami, osová afinita v rovině; osa, směr a charakteristika osové afinity. Dělení afinit. Využití osové afinity při konstrukci řezů těles a v úlohách o elipse (speciálně při odvození trojúhelníkové konstrukce elipsy a Rytzově konstrukci vrcholů elipsy).

3. Kuželosečky.

Definice jednotlivých kuželoseček, společná poměrová definice kuželoseček, ohniskové vlastnosti kuželoseček, kuželosečky jako řezy kuželových ploch, Quételetovy-Dandelinovy věty. Konstrukce tečen kuželoseček, konstrukce středů hyperoskulačních kružnic. Bodové konstrukce kuželoseček. Konstrukce kuželoseček z různých podmínek.

Zobrazovací metody

1. Základní vlastnosti středového a rovnoběžného promítání.

Dělení promítání, princip promítání (středového, rovnoběžného). Vlastnosti rovnoběžného (speciálně pravoúhlého) promítání. Volné rovnoběžné promítání. Zobrazení přímek a rovin.

2. Kótované promítání.

Princip promítání (směr promítání, průmětna, orientace poloprostorů, kóta, zobrazení bodu). Zobrazení přímky, stopník přímky, promítací rovina přímky a její sklápění do průmětny, skutečná velikost úsečky, odchylka přímky od průmětny, stupňování přímky, spád a interval přímky. Zobrazení roviny, stopa roviny, hlavní a spádové přímky

roviny, stupňování roviny, spád a interval roviny, zobrazení dvojice rovin. Průsečnice dvou rovin, průsečík přímky s rovinou, přímka kolmá k rovině, rovina kolmá k přímce, vzdálenost bodu od roviny, otáčení roviny, zobrazení útvarů v obecné rovině. Zobrazení hranatých těles, skutečný a zdánlivý obrys. Zobrazení kružnice, kulové plochy.

3. Mongeovo promítání.

Princip promítání (směr promítání, průmětny, zobrazení bodu, půdorys a nárys bodu, základnice, ordinála). Zobrazení přímky, stopníky přímky, půdorysně a nárysně promítací roviny přímky a jejich sklápění do průměten. Zobrazení roviny, stopy roviny, hlavní a spádové přímky roviny. Průsečnice dvou rovin, průsečík přímky s rovinou, přímka kolmá k rovině, rovina kolmá k přímce, vzdálenost bodu od roviny. Odchylka roviny od průměten, otáčení roviny. Třetí průmětna. Rovina totožnosti a rovina souměrnosti. Zobrazení hranatých těles, jejich řezy rovinami, průnik přímky a těles, viditelnost. Vzájemné průniky hranatých těles. Zobrazení kružnice, kulové plochy, řezy kulové plochy. Zobrazení válcových a kuželových ploch, jejich řezy rovinami, průnik přímky a válcové nebo kuželové plochy. Osvětlení.

4. Kosoúhlé promítání.

Princip promítání (směr promítání, průmětny, trimetrie, dimetrie, izometrie, zobrazení bodu). Zobrazení přímky, stopníky přímky. Zobrazení roviny, stopy roviny, hlavní přímky roviny. Průsečnice dvou rovin, průsečík přímky s rovinou, přímka kolmá k rovině, vzdálenost bodu od roviny. Otáčení obecné roviny. Zobrazení útvarů (včetně kružnice) v souřadnicových rovinách i v obecné rovině. Zobrazení tělesa v kosoúhlém promítání ze znalosti jeho pravoúhlých průmětů. Zobrazení těles s podstavami v pomocných průmětnách i v obecných rovinách. Řezy hranatých těles, průnik přímky a tělesa. Vzájemné průniky hranatých těles. Zobrazení kulové, kuželové, válcové plochy. Řezy kuželových a válcových ploch, průnik přímky a válcové nebo kuželové plochy. Osvětlení.

5. Pravoúhlá axonometrie.

Princip promítání (směr promítání, průmětny, axonometrický trojúhelník, axonometrický osový kříž, zobrazení bodu). Zobrazení přímky, stopníky přímky. Zobrazení roviny, stopy roviny, hlavní přímky roviny. Průsečnice dvou rovin, průsečík přímky s rovinou. Otáčení obecné roviny. Zobrazení útvarů (včetně kružnic) v souřadnicových rovinách i v obecné rovině. Axonometrická stopa roviny a axonometrický stopník přímky. Přímka kolmá k rovině, rovina kolmá k přímce. Rovina rovnoběžná s některou ze souřadnicových os a zobrazení útvarů (včetně kružnice) v ní ležících. Vzdálenost bodu od axonometrické průmětny, vzdálenost bodu od počátku souřadnicového systému, skutečná délka úsečky. Zobrazení těles s podstavami v pomocných průmětnách i v obecných rovinách. Zářezová metoda. Řezy hranatých těles, průnik přímky a tělesa. Vzájemné průniky hranatých těles. Zobrazení kulové, kuželové, válcové plochy. Řezy kuželových a válcových ploch, průnik přímky a válcové nebo kuželové plochy. Osvětlení.

6. Kosoúhlá axonometrie.

Princip promítání (směr promítání, průmětny, zobrazení bodu). Pohlkeova věta.

7. Středové promítání.

Princip promítání (střed promítání, průmětna, hlavní bod, distance, zobrazení bodu, středový a pravoúhlý průmět bodu). Zobrazení přímky, stopník a úběžník přímky, dělicí bod, skutečná velikost úsečky. Zobrazení roviny, stopa a úběžnice roviny, hlavní a spádová přímka roviny, úběžník spádových přímek, normála k rovině, úběžník normál,

rovina kolmá k přímce. Průsečnice dvou rovin, průsečík přímky s rovinou, otáčení roviny. Středový průmět kružnice (přesná konstrukce, osmibodová konstrukce). Středové průměty jednoduchých těles, jejich řezy rovinami. Rovnoběžné osvětlení ve středovém promítání (stín vlastní, vržený, do dutiny).

Projektivní geometrie

1. Projektivní geometrie syntetická.

Projektivní rozšíření roviny, projektivnost, zejména involuce. Princip duality. Projektivní vytvoření kuželosečky, polární vlastnosti. Věta Pascalova a Brianchonova. Svazek a řada kuželoseček, Desarguesova involuce. Ohniskové vlastnosti kuželoseček, konstrukce kuželoseček.

2. Projektivní geometrie analytická.

Definice projektivního prostoru, homogenní souřadnice, projektivní rozšíření afinního prostoru. Kolineace a jejich reálné Jordanovy tvary, věta o dimenzi, polární vlastnosti kvadrik, maximální lineární podprostory na kvadrice, vrchol, obecná projektivní a afinní klasifikace kvadrik s aplikací pro n=2,3. Dotyková kuželová plocha.

Aplikace deskriptivní geometrie a počítačová geometrie

1. Plochy stavební praxe.

Rotační plochy. Vlastnosti obecných rotačních ploch (osa plochy, rovnoběžkové kružnice, meridián, tečná rovina plochy, normála plochy, eliptické, parabolické a hyperbolické body na ploše), jejich zobrazení v rovnoběžných promítáních a užití v praxi. Anuloid (parametrické vyjádření, řez anuloidu rovinou rovnoběžnou s osou, řez bitangenciální rovinou), rotační plochy druhého stupně (obrazy v prostorové afinitě a kolineaci). Obrysy, řezy rovinami, průniky rotačních ploch a jejich osvětlení v rovnoběžných promítáních.

Přímkové plochy. Rozvinutelné a zborcené přímkové plochy (stupně 2, 3 a 4, hyperbolický paraboloid, zborcený hyperboloid, konoidy). Chaslesova věta. Vlastnosti přímkových ploch (řídicí křivky, stupeň plochy, regulární a torzální přímky plochy, kuspidální body), tečná rovina plochy, jejich zobrazení v rovnoběžných promítáních a užití v praxi.

Šroubové plochy (šroubovice, přímkové a cyklické šroubové plochy). Vlastnosti šroubových ploch, tečná rovina plochy a užití v praxi.

Další významné plochy technické praxe – translační, klínové, součtové a obalové plochy, jejich vlastnosti a zobrazování, konstrukce tečné roviny.

2. Počítačová geometrie.

Algoritmy počítačové geometrie. Transformace v rovině a v prostoru. Analytická vyjádření zobrazovacích metod. Geometrické modelování (zobrazování těles, určování viditelnosti). Geometrické vyhledávání, operace s konvexními množinami, teorie grafů, triangulace. Křivky a plochy počítačové grafiky – interpolace a aproximace: Lagrangeův a Newtonův tvar interpolačního polynomu, Hermitova interpolace, metoda nejmenších čtverců. Bézierovy křivky, Fergusonova a Coonsova kubika, B-spline a NURBS křivky. Plochy vzniklé rotací, šroubováním, vytažením a šablonováním. Plochy zadané okrajovými křivkami, Bézierovy, B-spline a NURBS plochy.

3. Další aplikace deskriptivní geometrie.

Lineární perspektiva – princip zobrazení, jedno-, dvou- a tříúběžníková perspektiva, průsečná metoda, volné metody, osvětlení, zrcadlení ve svislé a vodorovné rovině.

Stereoskopické promítání (anaglyfy). Perspektivní reliéf – konstrukce reliéfu bodů, přímek, rovin, prostorových útvarů, afinní reliéf jako speciální případ perspektivního reliéfu. Konstruktivní fotogrammetrie – rekonstrukce svislého a šikmého snímku. Aplikace deskriptivní geometrie v technických oborech (stavebnictví, architektura apod.) a umění. Teoretické řešení střech. Topografické plochy (zabudování komunikací a plošin do terénu).

4. Informatika se zaměřením na vzdělávání

Garantující pracoviště: Katedra softwaru a výuky informatiky Garant studijního programu: doc. RNDr. Pavel Töpfer, CSc.

Doporučený průběh studia

Předměty **povinné** jsou vytištěny **tučně**, povinně volitelné předměty normálním písmem, *doporučené volitelné* předměty *kurzívou*.

Hlavní studijní plán (maior)

1. rok studia

Kód	Název	Kredity	ZS	LS
NDMI002	Diskrétní matematika	5	2/2 Z+Zk	
NPRG062	Algoritmizace	4	2/1 Z+Zk	
NPRG030	Programování 1	5	$2/2 \mathrm{Z}$	
NMTM11	0Informační technologie pro	3	1/2 KZ	
	učitele			
NTVY014	Tělesná výchova I ¹	1	$0/2 \mathrm{~Z}$	_
NJAZ070	Anglický jazyk pro středně	1	$0/2 \mathrm{~Z}$	
	pokročilé I ²			
NTIN060	Algoritmy a datové struktury 1	5		2/2 Z+Zk
NPRG031	Programování 2	5		2/2 Z+Zk
NDIN019	Dětské programovací jazyky	3		$0/2 \mathrm{~Z}$
NTVY015	Tělesná výchova II ¹	1		$0/2 \mathrm{~Z}$
NJAZ072	Anglický jazyk pro středně	1		$0/2 \mathrm{~Z}$
	pokročilé II ²			

Místo jednoho z předmětů NTVY014, NTVY015, NTVY016, NTVY017 je možné si zapsat letní výcvikový kurz NTVY018 nebo zimní výcvikový kurz NTVY019. Tyto kurzy může student absolvovat kdykoli v průběhu studia.

Kód	Název	Kredity	ZS	LS
NTIN061	Algoritmy a datové struktury 2	5	2/2 Z+Zk	_
	Principy počítačů	3	2/0 Zk	
NSWI141	Úvod do počítačových sítí	3	2/0 KZ	
NDIN011	Aplikační software — pro	4	2/1 KZ	
	učitele			
NTVY016	Tělesná výchova III ¹	1	$0/2 \mathrm{~Z}$	

 $^{^2}$ Výuka anglického jazyka NJAZ070, NJAZ072 v rozsahu 0/2 v každém semestru je určena pro středně pokročilé a pokročilé. Pro začátečníky a mírně pokročilé jsou určeny předměty NJAZ071, NJAZ073 s rozsahem výuky 0/4 v každém semestru.

NJAZ074	Anglický jazyk pro středně pokročilé III ²	1	$0/2 \mathrm{~Z}$	_
NTIN071	Automaty a gramatiky	5		2/2 Z+Zk
NSWI170	Počítačové systémy	5		2/2 Z+Zk
NSWI177	$ m \acute{U}vod~do~Linuxu~^4$	4		$1/2~\mathrm{KZ}$
NTVY017	Tělesná výchova IV ¹	1		$0/2 \mathrm{~Z}$
NJAZ090	Anglický jazyk pro středně	1		$0/2 \mathrm{~Z}$
	pokročilé IV ²			
NJAZ091	Anglický jazyk 3	1	$0/0 \mathrm{~Zk}$	$0/0 \mathrm{Zk}$

Místo jednoho z předmětů NTVY014, NTVY015, NTVY016, NTVY017 je možné si zapsat letní výcvikový kurz NTVY018 nebo zimní výcvikový kurz NTVY019. Tyto kurzy může student absolvovat kdykoli v průběhu studia.

3. rok studia

Kód	Název	Kredity	ZS	LS
NDBI025	Databázové systémy	5	2/2 Z+Zk	
NUIN018	Vývoj počítačových her — pro	4	2/1 KZ	
	učitele			
NPEP301	Úvod do psychologie	3	2/0 Zk	
NSWI090	Počítačové sítě	3		$2/0 \mathrm{Zk}$
NPEP606	Pedagogická propedeutika	3		$0/2 \mathrm{~Z}$
NSZZ031	Vypracování a konzultace	6		$0/4 \mathrm{~Z}$
	bakalářské práce			
NDIX006	Pedagogická praxe	2		1 týden Z
	z informatiky 1			
	Povinně volitelné předměty	4		
		\		

Povinně volitelné předměty (minimálně 4 kredity)

Kód	Název	Kredity	ZS	LS
NPEP601	Rétorika a komunikace s lidmi I	2	$0/2 \mathrm{~Z}$	_
NPEP602	Sociální dovednosti a práce s lidmi I	2	$0/2 \mathrm{~Z}$	
NPEP603	Rétorika a komunikace s lidmi II	2		$0/2 \mathrm{~Z}$
NPEP604	Sociální dovednosti a práce	2		$0/2 \mathrm{~Z}$
	s lidmi II			

Doporučené volitelné předměty

Kód	Název	Kredity	ZS	LS
NMIN201	Programování 3	5	2/2 Z+Zk	_
	Programování v jazyce Java	5	2/2 Z+Zk	
NAIL028	$\acute{U}vod\ do\ robotiky$	5	2/2 Z+Zk	

 $^{^2}$ Výuka anglického jazyka NJAZ074, NJAZ090 v rozsahu 0/2 v každém semestru je určena pro středně pokročilé a pokročilé. Pro začátečníky a mírně pokročilé jsou určeny předměty NJAZ075, NJAZ089 s rozsahem výuky 0/4 v každém semestru.

 $^{^3}$ Povinnou zkoušku z anglického jazyka NJAZ091 je možné absolvovat v ZS nebo v LS.

 $^{^4}$ Posluchači, kteří absolvovali předmět NSWI177 Úvod do Linuxu v 1. roce svého studia v akademickém roce 2019/20, si místo něj zapíší v akademickém roce 2020/21 předmět NDIN019 Dětské programovací jazyky, který byl ve vzorovém průchodu přesunut do 1. ročníku.

	Úvod do počítačové lingvistiky Multimediální vzdělávání v pojetí psychologického výzkumu	3 3	$2/0 \mathrm{~Zk}$ $1/1 \mathrm{~KZ}$	_
NPRG005	Neprocedurální programování	5		2/2 Z+Zk
	Úvod do umělé inteligence	5		2/2 Z+Zk
NPRG036	Datové formáty	5	_	2/2 Z+Zk
NPRG003	Metodika programování a filozofie	3	_	2/0 Zk
	programovacích jazyků			
NPRG045	Ročníkový projekt	4		$0/1 \mathrm{~Z}$

Přidružený studijní plán (minor)

1. rok studia

Kód	Název	Kredity	ZS	LS
NDMI002	Diskrétní matematika	5	2/2 Z+Zk	_
NPRG062	Algoritmizace	4	2/1 Z+Zk	
NPRG030	Programování 1	5	$2/2 \mathrm{~Z}$	
NTIN060	Algoritmy a datové struktury 1	5		2/2 Z+Zk
NPRG031	Programování 2	5		2/2 Z+Zk
NDIN019	Dětské programovací jazyky	3	_	$0/2 \mathrm{~Z}$

2. rok studia

Kód	Název	Kredity	ZS	LS
NTIN061	Algoritmy a datové struktury 2	5	2/2 Z+Zk	_
NSWI120	Principy počítačů	3	2/0 Zk	
NSWI141	Úvod do počítačových sítí	3	2/0 KZ	
NDIN011	Aplikační software — pro	4	$2/1~\mathrm{KZ}$	
	učitele			
NTIN071	Automaty a gramatiky	5		2/2 Z+Zk
NSWI170	Počítačové systémy	5		2/2 Z+Zk
NSWI177	Úvod do Linuxu *	4		$1/2~\mathrm{KZ}$

 $^{^{\}ast}$ Posluchači, kteří absolvovali předmět NSWI177 Úvod do Linuxu v 1. roce svého studia v akademickém roce 2019/20, si místo něj zapíší v akademickém roce 2020/21 předmět NDIN019 Dětské programovací jazyky, který byl ve vzorovém průchodu přesunut do 1. ročníku.

Kód	Název	Kredity	ZS	LS
NDBI025	Databázové systémy	5	2/2 Z+Zk	
NUIN018	Vývoj počítačových her — pro	4	$2/1~\mathrm{KZ}$	
	učitele			
NSWI090	Počítačové sítě	3		2/0 Zk
NDIX006	Pedagogická praxe	2		1 týden Z
	z informatiky 1			

Dopor	učené	volite	lné	nředr	nětv
Dobor	ucciic	VOIIUC	1110	preur	11009

Kód	Název	Kredity	ZS	LS
NMIN201	Programování 3	5	2/2 Z+Zk	
NPRG013	Programování v jazyce Java	5	2/2 Z+Zk	
NAIL028	Úvod do robotiky	5	2/2 Z+Zk	
NPFL012	Úvod do počítačové lingvistiky	3	2/0 Zk	
NPED045	Multimediální vzdělávání v pojetí	3	1/1 KZ	
	psychologického výzkumu		•	
NPRG005	Neprocedurální programování	5	_	2/2 Z+Zk
NAIL120	Úvod do umělé inteligence	5		2/2 Z+Zk
NPRG036	Datové formáty	5		2/2 Z+Zk
NPRG003	Metodika programování a filozofie	3		$2/0 \mathrm{~Zk}$
	programovacích jazyků			,
NPRG045	Ročníkový projekt	4	_	0/1 Z

Požadavky znalostí ke státní závěrečné zkoušce

1. Algoritmy a datové struktury

Časová složitost algoritmů: čas a prostor výpočtu pro konkrétní vstup, časová a prostorová složitost algoritmu, složitost v nejlepším, nejhorším a průměrném případě, asymptotická notace. Třídy složitosti: třídy P a NP, převoditelnost problémů, NP-těžkost a NP-úplnost, příklady NP-úplných problémů a převodů mezi nimi. Metoda "rozděl a panuj": princip rekurzivního dělení problému na podproblémy, výpočet složitosti pomocí rekurentních rovnic, kuchařková věta (Master theorem), aplikace (Mergesort, násobení dlouhých čísel, Strassenův algoritmus). Dynamické programování. Binární vyhledávací stromy: definice vyhledávacího stromu, operace s nevyvažovanými stromy, AVL stromy (jen definice). Haldy: binární halda. Hešování: hešování s přihrádkami, otevřená adresace. Třídění: primitivní třídicí algoritmy (Bubblesort, Insertsort apod.), třídění haldou (Heapsort), Quicksort, dolní odhad složitosti porovnávacích třídicích algoritmů, přihrádkové třídění čísel a řetězců. Grafové algoritmy: prohledávání do šířky a do hloubky, detekce komponent souvislosti, topologické třídění orientovaných grafů, nejkratší cesty v ohodnocených grafech (Dijkstrův algoritmus), minimální kostra grafu (Kruskalův, Jarníkův a Borůvkův algoritmus), toky v sítích (algoritmus Fordův-Fulkersonův). Algoritmy vyhledávání v textu. Algebraické algoritmy: Eukleidův algoritmus.

2. Programovací jazyky

Typické prostředky programovacích jazyků. Pojmy a principy objektového návrhu: třídy, rozhraní, metody, atributy, dědičnost, vícenásobná dědičnost a její problémy, polymorfismus, primitivní typy vs. objekty (implementace primitivních typů, paměťová reprezentace složených typů a objektů), implementace virtuálních metod (tabulka virtuálních metod), životnost objektů (alokace objektů statická, na zásobníku, na haldě), konstruktory, explicitní delete/dispose, garbage collector, výjimky (šíření a odchytávání výjimek: try-catch-finally). Oddělený překlad, sestavení, řízení překladu: kompilace vs. interpretace, role sestavení. Neprocedurální programování, logické programování.

3. Automaty a jazyky

Regulární jazyky: konečný automat, jazyk přijímaný konečným automatem, deterministický, nedeterministický, lambda přechody, regulární výrazy, Kleeneho věta, iterační (pumping) lemma pro konečné automaty, Nerodova věta, regulární gramatiky. Bezkontextové jazyky: bezkontextová gramatika, jazyk generovaný gramatikou, zásobníkový automat, třídy jazyků přijímaných nedeterministickými a deterministickými zásobníkovými automaty. Turingův stroj: gramatika typu 0, diagonální jazyk, univerzální jazyk. Chomského hierarchie: určení ekvivalence či inkluze tříd jazyků generovaných výše uvedenými automaty a gramatikami, schopnost zařazení konkrétního jazyka do Chomského hierarchie (zpravidla sestrojení odpovídajícího automatu či gramatiky a důkaz iteračním lemmatem, že jazyk není v nižší třídě).

4. Databáze

Podstata a architektury databázových systémů. Konceptuální, logická a fyzická úroveň pohledů na data, B-stromy a jejich varianty. Relační datový model, relační algebra, normální formy, referenční integrita. Základy jazyka SQL. Transakční zpracování, vlastnosti transakcí.

5. Architektury počítačů, operačních systémů a sítí

Reprezentace dat: kódování a způsob uložení dat v paměti, bitové operace a jejich využití. Organizace počítače: von Neumannova a harvardská architektura, operační a sekundární paměti, adresové prostory, vstupně/výstupní zařízení. Architektura počítače: typické architektury, instrukce procesoru, běžné konstrukce vyššího programovacícho jazyka a jejich reprezentace pomocí instrukcí, základní představa o SMP multiprocesoru se sdílenou pamětí. Operační systémy: boot počítače a operačního systému, jádro OS, ovladače zařízení, privilegovaný a neprivilegovaný režim CPU, rozhraní mezi OS a programovacím jazykem, správa uživatelů a jejich oprávnění. Rozhraní HW a OS: ovladače zařízení a driver stack, obsluha přerušení na úrovni CPU a OS, výjimky procesoru a jejich obsloužení a vazba na runtime programovacího jazyka. Procesy a vlákna: kontext procesu a vlákna, kooperativní a preemptivní multitasking, plánování, typické stavy vlákna, aktivní vs. pasivní čekání. Race condition, kritická sekce, vzájemné vyloučení, synchronizační primitiva, deadlock a livelock (znalost konceptu). Typická rozhraní pro přístup a práci se soubory a sockety, file descriptory, použití souborového API pro přístup k zařízením v OS, standardní vstup a výstup a jejich přesměrování, roury (pipes) jako meziprocesová komunikace. Bezpečnost, autentifikace, autorizace, přístupová práva. ISO/OSI vrstevnatá architektura sítí. TCP/IP. Spojované a nespojované služby, spolehlivost, zabezpečení protokolů.

Navazující magisterské studium od akademického roku 2020/21

Vedle odborných studijních programů nabízí MFF také studium několika programů učitelského zaměření. Celé studium vedoucí k získání kvalifikace pro učitelské povolání je rozděleno na tříleté bakalářské a na něj navazující dvouleté magisterské studium.

Stejně jako v bakalářském stupni studia, jedná se i u studia magisterského o sdružené studium sestávající ze dvou studijních programů: maior a minor. V tom programu, který si student zvolil jako hlavní, studuje podle hlavního studijního plánu (maior), v druhém programu studuje podle přidruženého studijního plánu (minor). V hlavním studijním programu absolvuje student pedagogicko-psychologickou průpravu a v každém z obou programů pak předměty týkající se oboru, pro jehož výuku je připravován (včetně didaktiky daného oboru a pedagogické praxe). Na MFF UK je student na oba zvolené obory připravován ve stejném rozsahu a stejně kvalitně nezávisle na tom, který studijní program má jako hlavní a který jako přidružený. Diplomovou práci student vypracovává jen v hlavním studijním programu. Tím je přirozeně ovlivněno téma dané práce.

1. Základní informace

V rámci navazujícího magisterského studia má MFF UK od akademického roku 2020/21 akreditovány následující magisterské studijní programy (se studijními plány maior a minor) týkající se učitelství:

- Učitelství fyziky pro střední školy
- Učitelství matematiky pro střední školy
- Učitelství deskriptivní geometrie pro střední školy
- Učitelství informatiky pro střední školy

Tyto studijní programy se ve sdruženém studiu kombinují. V současné době jsou nabízeny kombinace:

Fyzika pro střední školy - Matematika pro střední školy,

Matematika pro střední školy - Deskriptivní geometrie pro střední školy,

Matematika pro střední školy - Informatika pro střední školy.

Každý posluchač si může zvolit, který ze studijních programů je pro něj hlavní a který přidružený.

Se studijním programem Matematika pro střední školy se sdružují i jiné studijní programy z dalších fakult UK.

Studijní plány

Studijní plány určují skladbu povinných a povinně volitelných předmětů a dále požadavky ke státní závěrečné zkoušce. Povinně volitelné předměty jsou pro každý studijní program rozděleny do několika skupin a pro každou skupinu je určen minimální počet kreditů, který je z dané skupiny třeba získat před přihlášením se ke státní závěrečné zkoušce. Vedle povinných předmětů a povinně volitelných předmětů si může každý student podle vlastního výběru zapisovat další předměty vyučované na naší fakultě, v případě zájmu i na jiných fakultách naší univerzity (tzv. volitelné předměty).

Ve studijních plánech jsou přitom pro každý studijní program uvedeny některé volitelné předměty jako doporučené.

Doporučený průběh studia

Doporučený průběh studia je pro každý studijní program vypracován tak, aby na sebe povinné předměty navazovaly, aby student získal včas kredity potřebné pro zápis do dalšího úseku studia a aby včas splnil podmínky pro přihlášení ke státní závěrečné zkoušce. Doporučený průběh studia je podporován také při tvorbě celofakultního rozvrhu. Doporučené průběhy studia jsou uvedeny v další části textu u popisu jednotlivých studijních programů.

Státní závěrečná zkouška

Magisterské studium je zakončeno státní závěrečnou zkouškou, která má tyto části:

- obhajoba diplomové práce (v rámci hlavního studijního plánu),
- ústní zkouška dle požadavků v hlavním (maior) studijním plánu,
- ústní zkouška dle požadavků v přidruženém (minor) studijním plánu,
- ústní zkouška z pedagogiky a psychologie.

Nezáleží přitom na pořadí, v jakém jsou tyto části skládány. Podmínky pro přihlášení ke státní závěrečné zkoušce jsou uvedeny ve studijních předpisech.

Požadavky znalostí ke státní závěrečné zkoušce z pedagogiky a psychologie

Při zkoušce student prokáže znalost základních pedagogických a psychologických pojmů a dovednost používat je v odpovídajících souvislostech. Dokáže analyzovat konkrétní pedagogické situace, identifikovat v nich obsažené problémy, zaujmout k nim vlastní stanovisko a zdůvodnit je v kontextu jiných možných řešení. Prokáže schopnost integrovat poznatky z psychologie osobnosti, vývojové psychologie, pedagogické psychologie, sociální psychologie a školní psychologie. Je schopen aplikovat poznatky z pedagogiky a psychologie na daný problém. Při rozpravě nad konkrétními pedagogickými situacemi bude schopen hlouběji analyzovat a vyhodnotit jevy edukační reality a prokáže tak připravenost k převzetí role učitele. Prokáže rovněž, na základě předložené studijní literatury, připravenost k samostatnému dalšímu vzdělávání v oblasti pedagogiky a psychologie. Specifikace otázek, problémů a situací bude odpovídat stupni školy, pro který je student připravován. Zkouška se koná ústní formou.

Témata z oblasti pedagogiky

1. Cíle vzdělávání a výchovy

Cíle vzdělávání a výchovy, jejich hierarchizace a taxonomie. Znalosti, dovednosti, kompetence, gramotnosti jako cílové kategorie a možnosti jejich ověřování. Bloomova taxonomie kognitivních cílů. Cíle v činnosti učitele a žáků, plánování výuky. Cíle v aktuálních kurikulárních dokumentech v ČR.

2. Obsah vzdělávání

Kultura, věda, technika, umění jako zdroj vzdělávacích obsahů. Didaktická transformace a její úrovně. Obsah vzdělávání, kurikulum, učivo. Materiální a formální vzdělávání, všeobecné a odborné vzdělávání. Snahy o modernizaci vzdělávacích obsahů: strukturalismus, exemplární přístup, základní učivo. Integrace předmětů, integrace přírodovědného vzdělávání, mezipředmětové vztahy. Základní školské dokumenty vymezující obsah vzdělávání. Učební plán, učební osnovy, rámcové vzdělávací programy, školní

vzdělávací programy, katalogy požadavků ke společné části maturitní zkoušky. Učebnice, metodické příručky, další literatura pro žáky a učitele rozvíjející vzdělávací obsah a podporující práci učitele a žáka s ním.

3. Vyučovací metody a organizační formy

?"Neuvědomělý" metodický přístup učitele: intuice a nápodoba. Vyučovací metody a organizační formy výuky a jejich rámcová klasifikace. Metody aktivizující žáka a jejich zavádění do výuky. Strategie řešení problémů, problémové vyučování, projektová výuka, kooperativní výuka, heuristická metoda, diskuse, týmové vyučování, případová metoda, inscenační metoda. Didaktické hry a soutěže. Konstruktivistický přístup. Zážitková pedagogika. Vyučovací hodina, její typy a fáze. Frontální, skupinová a individuální výuka. Diferenciace a individualizace ve vyučování. Žáci se speciálními vzdělávacími potřebami a jejich integrace do běžných tříd. Vliv nových technologií: distanční výuka, multimediální prostředky.

4. Hodnocení a evaluace ve vzdělávání

Hodnocení výsledků učení žáků učitelem, jeho cíle, funkce, typy a metody. Formativní hodnocení. Diagnostické a klasifikační metody. Didaktické testy. Mezinárodní výzkumy výsledků vzdělávání. Přijímací zkoušky na víceletá gymnázia a střední školy. Maturitní zkouška. Česká školní inspekce a její činnost. Autoevaluace škol. Kvalita a efektivita ve vzdělávání, kritéria a indikátory.

5. Učitel a jeho sociální role

Osobnost učitele, výukové styly. Role učitele v proměnách času, autorita. Sociální dovednosti učitele. Kompetence učitelů. Problémy začínajících učitelů. Učitel v sociální interakci se žáky a rodiči. Hodnocení a sebehodnocení učitele, podpora profesního růstu učitele. Příprava a další vzdělávání učitelů.

6. Vzdělávací soustava

Druhy a typy škol, vzdělávací soustava v ČR, školy a školská zařízení. Základní legislativní dokumenty. Mezinárodní klasifikace stupňů vzdělávání. Vzdělávací soustava ve vybrané zemi. Řízení škol a odpovědnost. Financování škol. Autonomie škol. Alternativní a inovativní školy - příklady a charakteristika. Domácí vzdělávání. Současné otázky stavu vývoje vzdělávací soustavy v ČR. Inkluzivní vzdělávání. Pedagogický výzkum.

Témata z oblasti psychologie

1. Psychologie osobnosti učitele a učitelské profese

Analýza učitelské profese - učitelská profese a její nároky (klinická náročnost učitelství, nejistoty, ambivalence a dilemata učitelství, prestiž a obtížnost učitelské profese). Posuny v žákovské populaci a jejich dopady na učitelskou profesi. Subjektivní zodpovědnost za úspěchy a neúspěchy žáků. Autodiagnostika učitele - individuální pojetí učitelství, zjišťování vlastních specifik pedagogického působení.

2. Sociální aspekty vzdělávání. Socializace

Pojem a podstata socializace. Mechanismy socializace (sociální učení). Stávání se žákem. Rozdíly mezi rodinnou a školní socializací. Psychologické aspekty spolupráce s rodinou. Interakce učitel - žák (žáci). Sociální poznávání a hodnocení. Percepce žáka učitelem. Zákonitosti procesu připisování příčin po úspěchu a neúspěchu. Kauzální atribuce a školní výkon. Učitelova očekávání ("sebenaplňující proroctví"). Vznik, funkce a změna postojů. Předsudky a stereotypy Typizování žáků, preferenční postoje učitele,

kategorizace učitelů žáky. Struktura a dynamika malé sociální skupiny. Psychologie školní třídy a možnosti intervence v práci se třídou. Činitelé ovlivňující stav a vývoj školní třídy. Sociometrie, metody zjišťování vztahů ve skupině (SORAD). Klima ve školní třídě a ve škole - pojem a základní dimenze (diagnostika třídního a školního klimatu).

3. Psychický vývoj

Periodizace lidského života, základní pojmy vývojové psychologie (vývoj, zrání, učení). Hlavní vývojové oblasti (tělesná, motorická, percepční, kognitivní, řečová a jazyková, osobnostní, sociální, morální). Vývoj v jednotlivých životních etapách: předškolní věk, mladší a starší školní věk, adolescence, dospělost a stáří. Hlavní vývojové koncepce (Erikson, Piaget, Vygotskij).

4. Motivace ve škole

Motivace učební činnosti (struktura žákovské motivace: výkonová motivace, poznávací motivace, sociální motivace, instrumentální motivace, odměny a tresty). Diagnostika žákovské motivace k učení. Krátkodobé i dlouhodobé strategie ovlivňování žákovské motivace. Žákovské zaujetí školní prací (úkolem). Žák v širších biodromálních souvislostech. Vztah k budoucnosti jako činitel žákovské motivace. Volní procesy a jejich diagnostika. Postoje žáků ke škole a vyučovacím předmětům. Žákovská nemotivovanost a motivační vlivy převážně snižující školní výkon (strach a nuda ve škole, motivační konflikty). Překonávání motivačních krizí ve vztahu ke škole. Psychologická rizika a úskalí spojená s hodnocením. Školní úspěšnost - pojetí školní úspěšnosti (rozvoj potencialit žáka - facilitující a inhibující faktory).

5. Učení a poznávání

Pojem učení - podoby učení, vybrané teorie učení a druhy učení. Učení ve školním kontextu: Učení a chyba - práce s chybou. Autoregulace učení - vzdělávací autoregulace (diagnostika a rozvoj). Strategie efektivního učení. Individuální zvláštnosti učení: Kognitivní styl, učební styl (žákovo pojetí učení, učební strategie, učební přístupy). Dětská interpretace světa - žákovo pojetí učiva. Pojem metakognice. Specifické poruchy učení - výskyt, nejčastější projevy, diagnostika, přístup učitele, náprava. Žáci se specifickými edukačními potřebami - žáci s potížemi při učení, žáci pracující pod a nad své schopnosti, nadaní žáci, žáci s poruchami chování.

6. Systém poradenských služeb ve školství

Odborné kompetence pracovníků v systému poradenských služeb ve školství: výchovní poradci, školní metodik prevence, odborník na reedukaci SPU, školní psycholog. Spolupráce s PPP, SPC, SVP. Náročné životní situace. Stres a jeho zvládání. Copingové strategie. Krizová intervence. Lidský vztah jako součást profese. Syndrom vyhoření a jeho prevence. Žáci s poruchami chování. Šikana ve škole a její prevence.

2. Studijní plány jednotlivých studijních programů

1. Učitelství fyziky pro střední školy

Garantující pracoviště: Katedra didaktiky fyziky Garant programu: doc. RNDr. Zdeněk Drozd, Ph.D.

Doporučený průběh studia

Předměty **povinné** jsou vytištěny **tučně**, povinně volitelné předměty normálním písmem, doporučené volitelné předměty kurzívou.

Hlavní studijní plán (maior)

Kód	Název	Kredity	ZS	LS
NPEP401	Pedagogika I	3	1/1 Z	
NFUF401	Fyzika kondenzovaného stavu	4	3/0 Zk	
NFUF402	Praktikum školních pokusů I	3	$0/3 \mathrm{~Z}$	
NFUF403	Didaktika fyziky I	4	2/1 Z+Zk	
NFUF404	Pedagogická praxe z fyziky II	5		2 týdny Z
NFUF701	Praktické aplikace fyziky	3	$0/2 \mathrm{~Z}$	
	kondenzovaného stavu			
NPEP402	Pedagogika II	3	_	$1/1 \mathrm{~Z}$
	Psychologie	6	_	$2/2 \mathrm{~Z}$
NFUF405	Jaderná a částicová fyzika	3		$2/0 \mathrm{~Zk}$
	Praktikum školních pokusů II	3	_	$0/4 \mathrm{~Z}$
Doporuče	né volitelné předměty			
Kód	Název	Kredity	ZS	LS
NPED015	Pedagogický seminář I	3	$0/2 \mathrm{~Z}$	
	Heuristické metody ve výuce fyziky I	3	$0/2 \mathrm{~Z}$	
	Pedagogický seminář II	3		$0/2 \mathrm{~Z}$
	Heuristické metody ve výuce	3		$0/2 \mathrm{~Z}$
	fyziky II			1
2. rok stu	dia			
Kód	Název	Kredity	ZS	LS
NPEP501	Diagnostika a autodiagnostika	2	0/1 Z	_
	pro učitele			
NFUF501	Astronomie a astrofyzika	3	$2/0 \mathrm{~Zk}$	
NFUF502	Didaktika fyziky II	3	$0/2 \mathrm{~Z}$	
NFUF503	Fyzikální obraz světa	3	$2/0 \mathrm{~Zk}$	
NFUF555	Diplomová práce I	8	$0/6 \mathrm{~Z}$	
NFUF407	Pedagogická praxe z fyziky III	5	2 týdny Z	
NFUF704	Obecná teorie relativity pro učitele	2	$2/0 \mathrm{Zk}$	
NFUF703			0 /0 51	
	Nové materiály a technologie	2	$2/0 \mathrm{Zk}$	
NFUF702	Nové materiály a technologie Vybrané partie ze základů	$rac{2}{2}$	2/0 Zk 2/0 Zk	_
NFUF702	Vybrané partie ze základů elektrotechniky pro budoucí učitele		,	
	Vybrané partie ze základů		,	
NFUF556	Vybrané partie ze základů elektrotechniky pro budoucí učitele fyziky	2	,	
NFUF556	Vybrané partie ze základů elektrotechniky pro budoucí učitele fyziky Diplomová práce II	2	,	

NDFY048 Praktikum školních pokusů IV	4	 $0/3 \mathrm{~Z}$
NDFY049 $Praktikum$ školních pokusů V	4	 $0/3 \mathrm{~Z}$

Přidružený studijní plán (minor)

1. rok studia

Kód	Název	Kredity	ZS	LS
NFUF401	Fyzika kondenzovaného stavu	4	$3/0 \mathrm{~Zk}$	_
NFUF402	Praktikum školních pokusů I	3	$0/3 \mathrm{~Z}$	
NFUF403	Didaktika fyziky I	4	2/1 Z+Zk	
NFUF404	Pedagogická praxe z fyziky II	5		2 týdny Z
NFUF701	Praktické aplikace fyziky	3	$0/2 \mathrm{~Z}$	
	kondenzovaného stavu			
NPEP402	Pedagogika II	3		$1/1 \mathrm{Z}$
NFUF405	Jaderná a částicová fyzika	3		$2/0 \mathrm{Zk}$
NFUF406	Praktikum školních pokusů II	3		$0/4 \mathrm{~Z}$

Doporučené volitelné předměty

Kód	Název	Kredity	ZS	LS
NPED015	Pedagogický seminář I	3	$0/2 \mathrm{~Z}$	_
NDFY051	Heuristické metody ve výuce fyziky I	3	$0/2 \mathrm{~Z}$	
NPED016	Pedagogický seminář II	3		$0/2 \mathrm{~Z}$
NDFY053	Heuristické metody ve výuce	3		$0/2 \mathrm{~Z}$
	fyziky II			

2. rok studia

Kód	Název	Kredity	ZS	LS
NFUF501	Astronomie a astrofyzika	3	2/0 Zk	_
NFUF502	Didaktika fyziky II	3	$0/2 \mathrm{~Z}$	
NFUF503	Fyzikální obraz světa	3	2/0 Zk	
NFUF407	Pedagogická praxe z fyziky III	5	2 týdny Z	
NFUF704	Obecná teorie relativity pro učitele	2	2/0 Zk	
NFUF703	Nové materiály a technologie	2	$2/0 \mathrm{Zk}$	
NFUF702	Vybrané partie ze základů	2	$2/0 \mathrm{Zk}$	
	elektrotechniky pro budoucí učitele			
	fyziky			

Doporučené volitelné předměty

Kód	Název	Kredity	ZS	LS
NDFY047	Praktikum školních pokusů III	4	$0/3 \mathrm{~Z}$	
NDFY048	Praktikum školních pokusů IV	4		$0/3 \mathrm{~Z}$
NDFY049	Praktikum školních pokusů V	4		$0/3 \mathrm{~Z}$

Požadavky znalostí ke státní závěrečné zkoušce z fyziky a didaktiky fyziky Odborná témata

Student musí prokázat dostatečný fyzikální nadhled nad partiemi fyziky, které bude ve své praxi vyučovat. Musí proto prokázat znalost klíčových experimentů a základních fyzikálních teorií a jejich vzájemných souvislostí. Musí umět vysvětlit a ilustrovat podstatu a význam základních fyzikálních veličin, zákonů a jejich důsledků, experimentálních metod a praktických aplikací. K tomu patří pochopení pojmů a zákonů prolínajících celou fyzikou (energie, hybnost, zákony zachování, rovnice kontinuity, potenciály, pohybové rovnice, oscilace, vlny, postuláty základních teorií), vztahů jednotlivých partií a mezí jejich platnosti a znalost jednotek veličin a hodnot základních fyzikálních konstant.

1. Klasická mechanika a teorie relativity

Základní principy nerelativistické mechaniky. Kinematický popis a pohybové rovnice soustavy částic, tuhého tělesa a kontinua. Zákony zachování. Inerciální a neinerciální soustavy souřadnic. Pohyb částic v homogenním a centrálním silovém poli. Kmity. Vlny v pružném prostředí a tekutinách. Meze klasické mechaniky. Základní postuláty speciální teorie relativity, význam a důsledky Lorentzovy transformace. Relativistická dynamika. Pokusy ověřující důsledky STR. Vztah klasické mechaniky a STR. Prostor, čas a kauzalita; čtyřrozměrný prostoročas. Základní ideje obecné teorie relativity.

2. Elektrodynamika

Maxwellovy rovnice v diferenciálním a integrálním tvaru. Základní elektrické a magnetické jevy a jejich kvantitativní formulace. Pohyb částice s nábojem v elektrickém a magnetickém poli. Elektromagnetické pole jako samostatný objekt, jeho energie a hybnost. Rovinné elektromagnetické vlny, jejich matematický popis. Odraz a lom elektromagnetických vln. Polarizace, ohyb, interference a koherence elektromagnetických vln. Generování elektromagnetických vln a retardace. Meze klasické elektrodynamiky.

3. Termodynamika a statistická fyzika

Přehled základních termodynamických zákonů a jejich důsledků. Teoretická východiska statistické fyziky a statistický popis různých typů systému. Základní veličiny popisující stav systému v termodynamice a ve statistické fyzice, propojení obou popisů.

4. Fyzika mikrosvěta

Experimenty vedoucí ke vzniku kvantové fyziky, příklady odlišného chování mikroskopických objektů v porovnání s klasickými systémy. Formální schéma kvantové mechaniky (přehled postulátů a jejich hlavních důsledků). Současný popis částicového složení látky na různých škálách (molekuly, atomy, jádra, ...). Atomové jádro (složení, charakteristiky). Vazebná energie jádra, vazebné síly. Modely jader. Radioaktivita. Jaderné reakce (s využitím v energetice). Elementární částice, jejich vlastnosti a interakce. Experimenty jaderné a částicové fyziky.

5. Fyzika kondenzovaného stavu

Struktura kondenzovaných látek. Vazby v kondenzovaných látkách. Difrakce rentgenového záření na krystalech. Poruchy krystalových struktur. Deformace krystalických látek (elastická deformace, plastická deformace monokrystalů a polykrystalů). Kmity mříže a tepelné kapacity pevných látek. Elektrony v krystalických látkách (Drudeho model, Sommerfeldův model). Elektrická a tepelná vodivost pevných látek. Teplotní roztažnost kondenzovaných látek. Polovodiče a jejich aplikace.

6. Fyzika hvězd a vesmíru

Základy moderních astronomických a astrofyzikálních představ o hvězdách a vesmíru. Sférická astronomie. Nebeská mechanika. Základy astrofyziky. Stelární a galaktická astronomie. Sluneční soustava.

Didaktická témata

Student musí mikrovýstupem prokázat schopnost samostatně vyložit zadané téma z níže uvedených okruhů učiva. Součástí mikrovýstupu je vhodný experiment. Musí umět vysvětlit souvislost pokročilejších partií s příslušnými částmi látky probíranými na střední i základní škole a bez nepřípustného zkreslení objasnit danou problematiku na úrovni přístupné žákům střední, popřípadě základní školy. Musí prokázat znalost cílů a obsahu fyzikálního vzdělávání na střední a základní škole a schopnost navrhovat alternativní způsoby projekce fyzikálních poznatků do učiva příslušných typů škol. Předmětem diskuse může být i struktura učiva fyziky na SŠ a ZŠ, zavádění fyzikálních veličin, zákonů a teorií do učiva, metody a prostředky ve výuce fyziky, metodika řešení fyzikálních úloh a didaktické funkce pokusů, diagnostické metody.

Student také musí při mikrovýstupu prokázat znalost obsluhy a fyzikálního principu činnosti přístrojů užívaných ve výuce fyziky na školách.

Témata výstupů

- 1. Zákon zachování hybnosti
- 2. Rovnoměrně zrychlený přímočarý pohyb
- 3. Archimédův zákon pro kapaliny a plyny
- 4. Hydrostatická tlaková síla a hydrostatický tlak
- 5. Mechanické vlnění
- 6. Mechanické kmitání
- 7. Odraz a lom světla
- 8. Jednoduché optické přístroje (lupa, mikroskop, dalekohled)
- 9. Interference světla
- 10. Přenos tepla (vedením, prouděním, zářením)
- 11. Teplotní roztažnost (délková i objemová)
- 12. Elektrostatická indukce
- 13. Ohmův zákon
- 14. Magnetické pole vodiče a cívky s proudem
- 15. Elektromagnetická indukce
- 16. Transformátor
- 17. Polovodičová dioda a její použití
- 18. Bipolární tranzistor a jeho užití jako spínače nebo zesilovače
- 19. Obvod střídavého proudu s R, L, C

2. Učitelství matematiky pro střední školy

Garantující pracoviště: Katedra didaktiky matematiky Garant programu: doc. RNDr. Jarmila Robová, CSc.

Doporučený průběh studia

Předměty **povinné** jsou vytištěny **tučně**, povinně volitelné předměty normálním písmem, doporučené volitelné předměty kurzívou.

Hlavní studijní plán (maior)

Kód	Název	Kredity	ZS	LS
NMTM401	l Matematická analýza V	4	2/2 Z+Zk	
NMTM403	${f 8Pravd\check{e}podobnost}$	4	2/2 Z+Zk	
	a matematická statistika I			
NMTM405	Didaktika matematiky I	5	2/2 Z+Zk	
	Pedagogika I	3	$1/1 \mathrm{~Z}$	
NMTM402	2 Matematická analýza VI	3		2/2 Z+Zk
NMTM404	$4 \operatorname{Pravd} ent{\check{e}} onumber podobnost$	2		$2/0 \mathrm{Zk}$
	a matematická statistika II			
NMTM406	Didaktika matematiky II	5		2/2 Z+Zk
NMTM410	Pedagogická praxe	5		2 týdny Z
	z matematiky II			
	Pedagogika II	3		$1/1 \mathrm{~Z}$
NPEP403	Psychologie	6		$2/2 \mathrm{~Z}$
2. rok stu	dia			
Kód	Název	Kredity	ZS	LS
NMTM50	l Algebra	2	2/0 Zk	
NMTM503	Logika a teorie množin	2	2/0 Zk	
NMTM505	$5\mathrm{Geometrie}$	2	$2/0 \mathrm{Zk}$	_
NMTM511	l Pedagogická praxe	5	2 týdny Z	
	z matematiky III			
NSZZ501	Diplomová práce I	8	$0/6 \mathrm{~Z}$	
NPEP501	Diagnostika a autodiagnostika	2	$0/1 \mathrm{~Z}$	_
	pro učitele			
NSZZ502	Diplomová práce II	12		0/10 Z
Doporuče	né volitelné předměty			
Kód	Název	Kredity	ZS	LS
NMUM468	8 Praktické aspekty vyučování matematice	2	_	$0/2 \mathrm{~Z}$
NUMV090) Teorie her	2		$2/0 \mathrm{Z}$
	1 Vybrané kapitoly z diferenciální	5		2/2 Z+Zk
	geometrie			,
NMUM36	5 Seminář z kombinatoriky a teorie grafů	2	_	$0/2 \mathrm{~Z}$

NMIN203 Mathematica pro začátečníky ¹ NMIN264 Mathematica pro pokročilé ²	$\frac{2}{2}$	0/2 Z	$0/2 \; { m Z} \ 0/2 \; { m Z}$
NMUG361 Aplikace deskriptivní geometrie	2	$2/0 \mathrm{Z}$	——————————————————————————————————————
NUMV047 Pravděpodobnost a finanční	3	$0/2 \mathrm{~Z}$	_
matematika pro střední školu			
NUMV048 Statistika a pojistná matematika pro	3		$0/2 \; \mathrm{Z}$
$st\check{r}edni\;\check{s}kolu$			

Některé volitelné předměty nemusí být v tomto akademickém roce vyučovány.

Přidružený studijní plán (minor)

1. rok studia

Kód	Název	Kredity	ZS	LS
NMTM40	l Matematická analýza V	4	2/2 Z+Zk	
NMTM40	3 Pravděpodobnost	4	2/2 Z+Zk	
	a matematická statistika I			
NMTM40	5Didaktika matematiky I	5	2/2 Z+Zk	
NMTM40	2 Matematická analýza VI	3	_	2/2 Z+Zk
NMTM40	4Pravděpodobnost	2		$2/0 \mathrm{~Zk}$
	a matematická statistika II			
NMTM40	6Didaktika matematiky II	5		2/2 Z+Zk
NMTM41	0Pedagogická praxe	5		2 týdny Z
	z matematiky II			
2. rok stu	dia			
Kód	Název	Kredity	ZS	LS
NMTM50	l A lgebra	2	2/0 Zk	_
NMTM50	3Logika a teorie množin	2	$2/0 \mathrm{Zk}$	
NMTM50	$5{f Geometrie}$	2	2/0 Zk	
NMTM51	1 Pedagogická praxe	5	2 týdny Z	
	z matematiky III			

Doporučené volitelné předměty

Doporučujeme stejné volitelné předměty jako u plánu maior.

Požadavky znalostí ke státní závěrečné zkoušce z matematiky a didaktiky matematiky

Matematická analýza

Teorie míry a integrálu

Základy teorie míry, Lebesgueova míra, měřitelné funkce. Lebesgueův integrál funkcí jedné a více proměnných, Fubiniova věta, věta o substituci, příklady substitucí

¹ Volitelný předmět je jednosemestrální, je možno jej absolvovat v zimním nebo v letním semestru.

² Volitelný předmět bývá vyučován zpravidla jednou za dva roky.

(polární souřadnice, sférické, válcové souřadnice). Aplikace vícerozměrných integrálů (objemy, obsahy ploch zadaných parametricky, těžiště). Záměna pořadí limity a integrálu (věta Leviho a Lebesgueova).

Fourierovy řady

Ortonormální systémy, Fourierovy koeficienty, Parsevalova rovnost, Besselova nerovnost; bodová konvergence.

Metrické prostory

Metrické prostory, normované lineární prostory, prostory se skalárním součinem. Metrické pojmy: průměr množiny, omezené množiny, vzdálenosti bodů a množin. Otevřené a uzavřené množiny, vnitřek, hranice, uzávěr, klasifikace bodů. Limita posloupnosti, cauchyovská posloupnost. Vztah mezi konvergencí, uzávěrem a hromadnými body. Spojitá zobrazení, nutné a postačující podmínky pro spojitost. Lipschitzovská zobrazení a kontrakce. Úplné prostory, Cantorova věta, Banachova věta o pevném bodu a její aplikace (výpočet odmocnin, existence a jednoznačnost řešení ODR).

Pravděpodobnost a matematická statistika

Kombinatorika

Pravidla součinu a součtu, variace, permutace, kombinace, kombinační čísla a Pascalův trojúhelník. Princip inkluze a exkluze, permutace bez pevných bodů. Řešení rekurentních rovnic, generující funkce. Fibonacciho čísla.

$Pravd\check{e}podobnost$

Pravděpodobnostní prostor, různé definice pravděpodobnosti. Podmíněná pravděpodobnost a nezávislost náhodných jevů. Náhodné veličiny – základní charakteristiky, nezávislost. Diskrétní a spojitá rozdělení náhodných veličin. Náhodné vektory. Zákon velkých čísel, centrální limitní věta.

Matematická statistika

Popisná statistika. Korelace, regresní přímka. Odhady parametrů a testy hypotéz. Lineární model a jeho speciální případy, lineární regrese.

Algebra

Polynomy a jejich kořeny

Definice polynomu a polynomiální funkce. Hornerovo schéma, Lagrangeova interpolace. Základní věta algebry a její důsledky. Derivace polynomu, násobnost kořenů polynomu. Elementární úvod ke Galoisově teorii: Lagrangeova postupná symetrizace na příkladu kubické rovnice (aplikace Vietových vět, symetrických polynomů, cyklických grup, faktorizace grup permutací), normální řada pro obecnou kubickou a kvartickou rovnici, věta o řešitelnosti algebraické rovnice v radikálech. Hlavní věta o symetrických polynomech. Diskriminant, vyjádření pomocí determinantů.

Grupy, pole

Grupy cyklické a abelovské – příklady a souvislosti. Jednoduché grupy. Eisensteinovo kritérium. Prvopole konečného i nekonečného pole, struktura konečných polí. Kořenové a rozkladové pole, příklady; Kroneckerova věta, aplikace při zavedení komplexních čísel.

Geometrie

Konstruovatelnost pravítkem a kružítkem

Eukleidovsky konstruovatelné body a čísla; zdvojení krychle, trisekce úhlu, kvadratura kruhu, rektifikace kružnice. Konstruovatelnost pravidelných n-úhelníků.

Klasifikace geometrií

Základní orientace v tématech: Axiomatizace eukleidovské geometrie, absolutní geometrie, Lobačevského pangeometrie. Neeukleidovské geometrie a jejich modely. Kleinův Erlangenský program, klasifikace geometrií. Riemannovská klasifikace geometrií, hyperbolické a eliptické geometrie.

Logika a teorie množin

Axiomatická teorie množin, ZFC. Množina, třída, Russellův paradox. Konečné, spočetné a nespočetné množiny. Dobré uspořádání. Kardinální a ordinální čísla. Axiom výběru a jeho ekvivalenty (zejména Zornovo lémma). Model přirozených čísel v teorii množin. Čísla celá, racionální, reálná. Mohutnosti oborů přirozených, celých, racionálních a reálných čísel. Cantorova věta (potenční množina má větší kardinalitu než množina sama), Cantorova-Bernsteinova věta. Hypotéza kontinua.

Didaktika matematiky

Student prokáže znalost cílů a obsahu matematického vzdělávání na střední škole a druhém stupni základní školy. Je schopen transformovat znalosti z matematiky získané na vysoké škole do roviny školské matematiky. Vysvětlí souvislosti mezi partiemi probíranými na základní škole a na škole střední.

Student dokáže aplikovat metody vhodné pro výuku školské matematiky, metody řešení matematických úloh včetně diagnostických metod. Užívá účelně množinovělogickou symboliku. Student prokáže schopnost vyložit zadané téma z následujících okruhů učiva. Zaměří se na motivaci pojmů a vět s důrazem na matematické modely a na objekty z reálného světa, na zavedení pojmů a studium jejich vlastností. Umí je využívat při řešení matematických úloh včetně úloh z praxe.

- Množiny, výroky (induktivní a deduktivní postupy, metody důkazů).
- Číselné obory (čísla přirozená, celá, racionální, reálná a komplexní).
- Výrazy s proměnnými (mocniny a odmocniny, mnohočleny, lomené výrazy).
- Poměry a procenta.
- Funkce a jejich vlastnosti (lineární, kvadratické, mocninné, lineární lomené, exponenciální a logaritmické, goniometrické).
- Rovnice, nerovnice a jejich soustavy včetně úloh s parametry (lineární, s absolutními hodnotami, kvadratické, exponenciální a logaritmické, goniometrické).
- Posloupnosti a nekonečné řady (aritmetická a geometrická posloupnost, jednoduché a složené úročení, limita posloupnosti, nekonečná geometrická řada).
- Trigonometrie (Pýthagorova věta, Eukleidovy věty, sinová a kosinová věta).
- Planimetrie (množiny bodů dané vlastnosti, konstrukční úlohy, shodnost, podobnost a stejnolehlost; obvody a obsahy rovinných útvarů).
- Stereometrie (vzájemná poloha přímek a rovin, řezy těles, odchylky a vzdálenosti; povrchy a objemy těles), rozvíjení prostorové představivosti.
- Analytická geometrie (operace s vektory, skalární a vektorový součin, rovnice přímek a rovin, odchylky a vzdálenosti, kuželosečky).
- Kombinatorika, pravděpodobnost a statistika (variace, permutace, kombinace, binomická věta; náhodný jev a jeho pravděpodobnost, nezávislé jevy, podmíněná pravděpodobnost; relativní četnost, charakteristiky polohy a variability).
- Základy diferenciálního a integrálního počtu (spojitost funkce, limita, derivace, průběh funkce, primitivní funkce, určitý integrál).

3. Učitelství deskriptivní geometrie pro střední školy

Garantující pracoviště: Katedra didaktiky matematiky

Garant programu: doc. RNDr. Zbyněk Šír, Ph.D.

Doporučený průběh studia

Předměty **povinné** jsou vytištěny **tučně**, povinně volitelné předměty normálním písmem, *doporučené volitelné* předměty *kurzívou*.

Hlavní studijní plán (maior)

1. rok studia

Kód	Název	Kredity	ZS	LS
NMTD401	Neeukleidovská geometrie	4	2/2 Z+Zk	_
NMTD403	3 Algebraická geometrie	3	2/2 Z+Zk	
NMTD405	Didaktika deskriptivní	5	2/2 Z+Zk	
	geometrie I			
NPEP401	Pedagogika I	3	$1/1 \mathrm{Z}$	
NMTD402	Vybrané kapitoly z diferenciální	4		2/2 Z+Zk
	geometrie			
NMTD404	l Kartografie	2		$2/0 \mathrm{Zk}$
NMTD406	i Didaktika deskriptivní	5		2/2 Z+Zk
	geometrie II			
NMTD410	Pedagogická praxe	5		2 týdny Z
	z deskriptivní geometrie II			
NPEP402	Pedagogika II	3		$1/1 \mathrm{~Z}$
NPEP403	Psychologie	6		$2/2 \mathrm{~Z}$

Některé předměty mohou být vyučovány jednou za dva roky.

2. rok studia

Kód	Název	Kredity	ZS	LS
NMTD501	Kinematická geometrie	4	2/2 Z+Zk	_
NMTD503	3 Vybrané kapitoly z geometrie	2	$2/0 \mathrm{Zk}$	
NMTD511	l Pedagogická praxe	5	2 týdny Z	
	z deskriptivní geometrie III			
NSZZ501	Diplomová práce I	8	$0/6 \mathrm{~Z}$	
NPEP501	Diagnostika a autodiagnostika	2	$0/1 \mathrm{~Z}$	
	pro učitele			
NSZZ502	Diplomová práce II	12		0/10 Z

Některé předměty mohou být vyučovány jednou za dva roky.

Doporučené volitelné předměty

Kód	Název	Kredity	ZS	LS
NMUG361	Aplikace deskriptivní geometrie	2	$2/0 \mathrm{~Z}$	_
NMUM46	8 Praktické aspekty vyučování	2		$0/2 \mathrm{~Z}$
	matematice			
NMIN203	Mathematica pro začátečníky ¹	2	$0/2 \mathrm{~Z}$	$0/2 \mathrm{~Z}$

NMIN264 $Mathematica\ pro\ pokročil\'e^{\ 2}$ 2 — 0/2 Z

Některé volitelné předměty nemusí být v tomto akademickém roce vyučovány.

Přidružený studijní plán (minor)

1. rok studia

Kód	Název	Kredity	ZS	LS
NMTD40	l Neeukleidovská geometrie	4	2/2 Z+Zk	_
NMTD40	3 Algebraická geometrie	3	2/2 Z+Zk	
NMTD40	5 Didaktika deskriptivní	5	2/2 Z+Zk	
	geometrie I			
NMTD402	2 Vybrané kapitoly z diferenciální	4		2/2 Z+Zk
	geometrie			
NMTD404	4 Kartografie	2		$2/0 \mathrm{Zk}$
NMTD40	6 Didaktika deskriptivní	5		2/2 Z+Zk
	geometrie II			
NMTD410) Pedagogická praxe	5		2 týdny Z
	z deskriptivní geometrie II			

Některé předměty mohou být vyučovány jednou za dva roky.

2. rok studia

Kód	Název	Kredity	ZS	LS
NMTD50	l Kinematická geometrie	4	2/2 Z+Zk	<u> </u>
NMTD50	3 Vybrané kapitoly z geometrie	2	2/0 Zk	
NMTD51	l Pedagogická praxe	5	2 týdny Z	
	z deskriptivní geometrie III			

Některé předměty mohou být vyučovány jednou za dva roky.

Doporučené volitelné předměty

Doporučujeme stejné volitelné předměty jako u plánu maior.

Požadavky znalostí ke státní závěrečné zkoušce z deskriptivní geometrie a didaktiky deskriptivní geometrie

Odborná témata

1. Neeukleidovská a projektivní geometrie

Axiomatická výstavba geometrie, absolutní geometrie, axiom rovnoběžnosti a věty s ním ekvivalentní, Saccheriho a Lambertův čtyřúhelník, základní pojmy a vztahy hyperbolické geometrie: Lobačevského rovnoběžky, základní vlastnosti různoběžek, souběžek a rozběžek, úhel rovnoběžnosti a Lobačevského funkce, defekt trojúhelníka, definice

¹ Volitelný předmět je jednosemestrální, je možno jej absolvovat v zimním nebo v letním semestru.

² Volitelný předmět bývá vyučován zpravidla jednou za dva roky.

a vlastnosti kružnice, horocyklu a ekvidistanty. Modely neeukleidovské geometrie: Poincarého polorovinný, Beltrami-Kleinův: přímky a kružnice, vzdálenosti a úhly v těchto modelech.

Afinní a projektivní rovina a prostor, afinní a homogenní souřadnice, afinní a projektivní zobrazení, afinní a projektivní klasifikace kuželoseček a kvadrik.

2. Algebraická geometrie

Algebraická křivka, algebraická plocha. Regulární a singulární body. Společné body přímky a algebraické plochy. Polarita. Hessián. Inflexní body algebraické křivky. Průnik křivek, resultant. Plückerovy vzorce. Tečnová rovnice křivky.

3. Kinematická geometrie

Kinematická geometrie (základní pojmy, definice nejdůležitějších pojmů a popis jejich vlastností, speciální pohyby). Základy kinematické geometrie v rovině, určenost pohybu pomocí trajektorií a obálek. Pevná a hybná polodie, jejich konstrukce. Vratný pohyb. První a druhá základní věta kinematické geometrie. Ponceletova konstrukce trajektorií a obálek. Speciální pohyby (kardioidický, eliptický, cyklický, konchoidální, úpatnicový). Středy křivostí trajektorií a obálek.

4. Diferenciální geometrie a její aplikace

Znaménková křivost a rotační index rovinné křivky. Obsahy rovinných útvarů, izoperimetrické úlohy pro mnohoúhelníky a uzavřené křivky. Geodetické křivky na plochách, souvislost s hledáním nejkratší spojnice dvou bodů na ploše. Geodetiky na rotačních plochách, Clairautova věta. Geodetické polární souřadnice. Gaussova křivost, Mindingova věta, rozvinutelné plochy.

5. Kartografie

Přehled kartografických zobrazení a jejich vlastností. Souřadnicové soustavy (zeměpisné a kartografické souřadnice), důležité křivky (loxodroma, ortodroma), kartografická zkreslení. Zobrazení elipsoidu na kulovou plochu, aplikace deskriptivní geometrie v kartografii (konstrukce sítí poledníků a rovnoběžek v jednoduchých zobrazeních).

Didaktika deskriptivní geometrie

Klasifikace promítacích metod deskriptivní geometrie a jejich porovnání z hlediska názornosti, obtížnosti řešení úloh, aplikovatelnosti v praxi. Mezipředmětové vztahy deskriptivní geometrie. Využití technologií ve výuce deskriptivní geometrie. Evaluace práce žáků, přijímací a závěrečné zkoušky z deskriptivní geometrie.

Znalost obsahu a metody výkladu následujících témat, jejich pozice ve středoškolském kurikulu, vzájemné vazby mezi nimi a různé postupy při řešení úloh:

- Kótované promítání (průmět bodu, přímky, roviny; hlavní a spádové přímky roviny; polohové a metrické úlohy o přímkách a rovinách; kolmice k rovině; sklopení promítací roviny do průmětny; otočení obecné roviny do průmětny; průmět mnohoúhelníku a mnohostěnu).
- Mongeovo promítání (průmět bodu, přímky, roviny; hlavní a spádové přímky roviny; polohové a metrické úlohy o přímkách a rovinách; kolmice k rovině; sklopení promítací roviny do průmětny; otočení obecné roviny do průmětny; 3. průmětna; průmět mnohoúhelníku a kružnice; průmět mnohostěnu, koule, válce, kužele; průnik tělesa s přímkou/rovinou).
- Pravoúhlá axonometrie (axonometrický kříž a trojúhelník; průmět bodu, přímky, roviny; otočení pomocné průmětny do axonometrické roviny; sklopení promítací

roviny souřadnicové osy do axonometrické průmětny; hlavní a spádové přímky roviny; polohové úlohy o přímkách a rovinách; průmět rovinného útvaru v rovině rovnoběžné s pomocnou průmětnou; průmět hranolu, jehlanu, válce a kužele s podstavou v rovině rovnoběžné s pomocnou průmětnou a jejich řezy vhodnými rovinami; průmět koule a její řez rovinou rovnoběžnou s pomocnou průmětnou; zářezová metoda).

- Kosoúhlé promítání (průmět bodu, přímky, roviny; přidružené Mongeovo promítání; průmět mnohostěnu, koule, válce, kužele; průnik tělesa s přímkou/rovinou).
- Středové promítání (průmět bodu, přímky, roviny; úběžník a úběžnice; speciálně lineární perspektiva, průsečná metoda).
- Středová kolineace a osová afinita jejich zavedení a užití v deskriptivní geometrii.
- Kuželosečky (klasifikace kuželoseček; kuželosečka jako řez kuželové plochy; definice a ohniskové vlastnosti elipsy, paraboly, hyperboly; afinní obraz kružnice).
- Křivky a plochy technické praxe (kuželosečky; cykloida; šroubovice; rotační plochy 2. stupně; přímkové a translační plochy).
- Rovnoběžné osvětlení (osvětlení rovinného útvaru; osvětlení základních těles vlastní a vržený stín a jejich mez).

4. Učitelství informatiky pro střední školy

Garantující pracoviště: Katedra softwaru a výuky informatiky

Garant programu: doc. RNDr. Pavel Töpfer, CSc.

Doporučený průběh studia

Předměty **povinné** jsou vytištěny **tučně**, povinně volitelné předměty normálním písmem, *doporučené volitelné* předměty *kurzívou*.

Hlavní studijní plán (maior)

Kód	Název	Kredity	ZS	LS
NPEP401	Pedagogika I	3	1/1 Z	
NSWI142	Programování webových	5	2/2 Z+Zk	_
	aplikací			
NPGR003	Základy počítačové grafiky	5	2/2 Z+Zk	
NPEP402	Pedagogika II	3		$1/1 \mathrm{~Z}$
NPEP403	Psychologie	6		$2/2 \mathrm{~Z}$
NUIN014	Informační technologie ¹	4		2/1 Z+Zk
NDIN015	${f Didaktika\ informatiky}\ ^1$	5		$2/1 \mathrm{~Z}$
NDIN012	Didaktika uživatelského	3		$0/2 \mathrm{Z}$
	software ¹			
NDIN007	Pedagogická praxe	5		2 týdny Z
	z informatiky 2			

Předmět není vyučován v každém akademickém roce, je vyučován zpravidla jednou za dva roky. Zapište si jej podle toho v 1. nebo ve 2. roce svého studia.

2. rok studia

Kód	Název	Kredity	ZS	LS
NPEP501	Diagnostika a autodiagnostika	2	0/1 Z	
	pro učitele			
NTIN090	Základy složitosti	4	2/1 Z+Zk	
	a vyčíslitelnosti			
NDIX008	Pedagogická praxe	5	2 týdny Z	
	z informatiky 3			
NSZZ501	Diplomová práce I	8	$0/6 \mathrm{Z}$	
NUIN014	Informační technologie ¹	4		2/1 Z+Zk
NDIN015	${f Didaktika\ informatiky}\ ^1$	5		$2/1 \mathrm{~Z}$
NDIN012	Didaktika uživatelského	3		$0/2 \mathrm{~Z}$
	$\mathbf{software}^{\ 1}$			
NUIN017	Speciální oborový seminář	2		$0/2 \mathrm{~Z}$
NSZZ502	Diplomová práce II	12	_	0/10 Z

 $^{^1}$ Předmět není vyučován v každém akademickém roce, je vyučován zpravidla jednou za dva roky. Zapište si jej podle toho v 1. nebo ve 2. roce svého studia.

Doporučené volitelné předměty

Kód	Název	Kredity	ZS	LS
NPFL012	Úvod do počítačové lingvistiky	3	2/0 Zk	
NAIL028	Úvod do robotiky	5	2/2 Z+Zk	
NPED045	Multimediální vzdělávání v pojetí	3	$1/1~\mathrm{KZ}$	
	psychologického výzkumu			
NPED015	Pedagogický seminář I	3	$0/2 \mathrm{~Z}$	
NAIL120	$\acute{U}vod\ do\ um\check{e}l\acute{e}\ inteligence$	5	<u> </u>	2/2 Z+Zk
NPRG036	$Datov\'e form\'aty$	5		2/2 Z+Zk
NPRG003	Metodika programování a filozofie	3		$2/0 \mathrm{Zk}$
	programovacích jazyků			
NPED016	Pedagogický seminář II	3	_	$0/2 \mathrm{~Z}$

Přidružený studijní plán (minor)

Kód	Název	Kredity	ZS	LS
NSWI142	Programování webových	5	2/2 Z+Zk	_
	aplikací			
NPGR003	Základy počítačové grafiky	5	2/2 Z+Zk	
NUIN014	Informační technologie 1	4		2/1 Z+Zk
NDIN015	${f Didaktika\ informatiky}\ ^1$	5		$2/1 \mathrm{~Z}$
NDIN012	Didaktika uživatelského	3		$0/2 \mathrm{~Z}$
	${f software}\ ^1$			
NDIN007	Pedagogická praxe	5		2 týdny Z
	z informatiky 2			

2. rok studia

Kód	Název	Kredity	ZS	LS
NTIN090	Základy složitosti	4	2/1 Z+Zk	
NDIX008	a vyčíslitelnosti Pedagogická praxe	5	2 týdny Z	
NDIA000	z informatiky 3	0	z tydny z	
NUIN014	Informační technologie ¹	4	_	2/1 Z+Zk
NDIN015	Didaktika informatiky ¹	5		$2/1 \mathrm{Z}$
NDIN012	Didaktika uživatelského	3		$0/2 \mathrm{~Z}$
	$\mathbf{software}^{\ 1}$			
NUIN017	Speciální oborový seminář	2		$0/2 \mathrm{~Z}$

Předmět není vyučován v každém akademickém roce, je vyučován zpravidla jednou za dva roky. Zapište si jej podle toho v 1. nebo ve 2. roce svého studia.

Doporučené volitelné předměty

Kód	Název	Kredity	ZS	LS
NPFL012	Úvod do počítačové lingvistiky	3	2/0 Zk	
NAIL028	$\acute{U}vod\ do\ robotiky$	5	2/2 Z+Zk	
NPED045	Multimediální vzdělávání v pojetí	3	$1/1~\mathrm{KZ}$	
	psychologického výzkumu			
NPED015	Pedagogický seminář I	3	$0/2 \mathrm{~Z}$	
NAIL120	$\acute{U}vod\ do\ um\check{e}l\acute{e}\ inteligence$	5	<u> </u>	2/2 Z+Zk
NPRG036	$Datov\'e form\'aty$	5		2/2 Z+Zk
NPRG003	Metodika programování a filozofie	3		$2/0 \mathrm{Zk}$
	programovacích jazyků			
NPED016	Pedagogický seminář II	3	_	$0/2 \mathrm{~Z}$

Požadavky znalostí ke státní závěrečné zkoušce z informatiky a didaktiky informatiky

Odborná témata

1. Zobrazení dat v počítači

Zobrazení celých a reálných čísel v počítači, algoritmy základních početních operací. Reprezentace znaků a řetězců. Implementace datových struktur (pole, záznamy, množiny).

2. Principy počítačů, operačních systémů a počítačových sítí

Architektury počítačů. Typické instrukce strojového kódu. Přerušovací systémy. Paměťové systémy. Sběrnice, způsob připojení a programové obsluhy typických periférií. Role a základní úkoly operačního systému, příklady konkrétních operačních systémů (Windows, Unix). Správa prostředků, algoritmy prevence uváznutí. Popis paralelismu a synchronizace procesů. Počítačové sítě, standard ISO, TCP/IP, Internet, elektronická pošta.

Předmět není vyučován v každém akademickém roce, je vyučován zpravidla jednou za dva roky. Zapište si jej podle toho v 1. nebo ve 2. roce svého studia.

3. Datové a řídicí struktury programovacích jazyků (programátorský a implementační pohled)

Jednoduché a strukturované datové typy. Podprogramy, komunikace podprogramu s okolím (globální proměnné, parametry, typy předávání parametrů, moduly a separátní kompilace). Porovnání vybraných programovacích jazyků z hlediska jejich datových a řídicích struktur. Principy překladu programovacích jazyků, překlad a interpretace, podprogramy a makra. Formální popisy syntaxe programovacích jazyků.

4. Metodika programování

Vývoj metodiky programování. Strukturované programování, modulární a objektové programování, abstraktní datové typy. Událostmi řízené programy. Logické a funkcionální programování. Dětské programovací jazyky.

5. Správnost a složitost algoritmů

Částečná správnost algoritmu, konečnost algoritmu, invarianty. Časová, paměťová, asymptotická složitost algoritmu - nejhorší, nejlepší, průměrný případ (definice jednotlivých pojmů). Odhad asymptotické složitosti jednoduchých algoritmů. Časová a prostorová složitost - vztah determinismu a nedeterminismu. Polynomiální převeditelnost, P- a NP-problémy, NP-úplnost.

6. Základní programovací techniky a návrh datových struktur

Různé reprezentace abstraktních datových typů (množina, zásobník, fronta, prioritní fronta). Složitost vyhledávání, vkládání a vypouštění prvků, hledání minimálního a k-tého nejmenšího, průchod všemi prvky. Reprezentace faktorové množiny. Hashování. Reprezentace aritmetických výrazů a algoritmy pro výpočet jejich hodnoty. Obecnější metody návrhu efektivních algoritmů (metoda rozděl a panuj, dynamické programování atd.).

7. Algoritmy vnitřního a vnějšího třídění

Dolní odhady časové složitosti úlohy vnitřního třídění pro nejhorší a průměrný případ. Jednoduché algoritmy kvadratické složitosti. Třídění sléváním, heapsort, quicksort, přihrádkové třídění. Odlišnost vnějšího třídění od vnitřního třídění, základní myšlenky, přirozené slučování, polyfázové třídění.

8. Základní numerické algoritmy

Řešení soustav lineárních rovnic - metody přímé a iterační, metody řešení nelineárních rovnic. Interpolace funkcí polynomy, jiné metody aproximace funkcí. Numerická integrace.

9. Teorie automatů a jazyků

Chomského hierarchie, charakterizace jejich tříd pomocí gramatik a automatů. Různé ekvivalentní definice regulárních jazyků. Nerodova věta. Uzávěrové vlastnosti regulárních jazyků. Bezkontexové gramatiky, derivační stromy, normální tvary gramatik, zásobníkové automaty, uzávěrové vlastnosti, deterministické jazyky.

10. Kombinatorika a teorie grafů

Základní pojmy teorie grafů, různé možnosti datové reprezentace grafu. Základní kombinatorické pojmy a metody. Základní kombinatorické a grafové algoritmy (např. nejkratší cesta v grafu, minimální kostra, prohledávání grafu, určování různých typů souvislosti, acykličnost grafu, toky v sítích, maximální párování v grafech).

11. Vyčíslitelnost

Algoritmicky vyčíslitelné funkce, jejich vlastnosti, Churchova teze. Rekursivní a rekursivně spočetné množiny a jejich vlastnosti. Algoritmicky neřešitelné problémy. Gödelova věta o neúplnosti.

12. Informační systémy

Organizace souborů - sekvenční, indexsekvenční, indexované, hashovací metody, B-stromy. Databázové systémy - problematika návrhu, konceptuální, logické a fyzické schéma. Relační datový model. Pojem dotazu, dotazovací jazyky (SQL).

13. Počítačová geometrie a grafika

Algoritmy 2D grafiky: kreslení čar, vyplňování, půltónování a rozptylování barev. Barevné systémy, zobrazování barev na počítači. Transformace a projekce. 3D grafika: metody reprezentace 3D scén, zobrazovací algoritmy, výpočet viditelnosti.

14. Umělá inteligence

Heuristické metody řešení úloh. Neuronové sítě. Programování her - algoritmus minimaxu, alfa-beta prořezávání.

15. Vybrané oblasti použití počítačů

Databázové systémy, programy pro přípravu textů, programy pro přípravu prezentací, tabulkové kalkulátory, počítačová grafika a animace, formáty multimediálních souborů (grafika, audio, video). WWW - vyhledávání informací. Počítačové modelování a simulace. Kryptografie s veřejným klíčem, elektronický podpis.

Didaktická témata

Metodicky zajímavý krátký výklad jednoho z předem známých témat. Hodnotí se především metodický přístup k výkladu a vystižení podstaty problematiky.

- Vyhledávání v poli (sekvenční, binární, pomocí zarážky)
- Výpočet hodnoty polynomu Hornerovým schématem
- Generování všech permutací v lexikografickém uspořádání
- Jednoduchý třídicí algoritmus
- Quicksort
- Heapsort
- Vnější třídění
- Rekurzivní podprogramy
- Reflexívní, symetrický a tranzitivní uzávěr
- Práce s lineárním spojovým seznamem, srovnání s polem
- Průchod stromem do hloubky a do šířky (rekurze, zásobník, fronta)
- Prohledávání s návratem (backtracking)
- Vyhledávání, vkládání a vypouštění v binárním vyhledávacím stromu
- Problém stabilních manželství
- Algoritmus minimaxu
- Algoritmy vyčíslení hodnoty aritmetického výrazu
- Nalezení minimální kostry grafu
- Dijkstrův algoritmus
- Určení délky nejdelší rostoucí vybrané podposloupnosti
- Způsoby předávání parametrů procedur a funkcí
- Statické a virtuální metody a jejich srovnání