

Function and Interconnection

Computer Components

- Contemporary computer designs are based on concepts developed by John von Neumann at the Institute for Advanced Studies, Princeton
- Referred to as the von Neumann architecture and is based on three key concepts:
 - Data and instructions are stored in a single read-write memory
 - The contents of this memory are addressable by location, without regard to the type of data contained there
 - Execution occurs in a sequential fashion (unless explicitly modified) from one instruction to the next
- Hardwired program
 - The result of the process of connecting the various components in the desired configuration

Results

Results

Software

- A sequence of codes or instructions
- Part of the hardware interprets each instruction and generates control signals
- Provide a new sequence of codes for each new program instead of rewiring the hardware

Major components:

- · CPU
 - Instruction interpreter
 - Module of general-purpose arithmetic and logic functions
- I/O Components
 - · Input module
 - Contains basic components for accepting data and instructions and converting them into an internal form of signals usable by the system
 - Output module
 - Means of reporting results

Software

I/O Components

Memory address register (MAR)

 Specifies the address in memory for the next read or write

Memory buffer register (MBR)

 Contains the data to be written into memory or receives the data read from memory

MEMORY

MAR

I/O address register (I/OAR)

Specifies a particular I/O device

I/O buffer register (I/OBR)

 Used for the exchange of data between an I/O module and the CPU

MBR

Fetch Cycle

- At the beginning of each instruction cycle the processor fetches an instruction from memory
- The program counter (PC) holds the address of the instruction to be fetched next
- The processor increments the PC after each instruction fetch so that it will fetch the next instruction in sequence
- The fetched instruction is loaded into the instruction register (IR)
- The processor interprets the instruction and performs the required action

Action Categories Data transferred from •Data transferred to or processor to memory from a peripheral or from memory to device by transferring processor between the processor and an I/O module Processor-Processormemory **Data** Control processing An instruction may •The processor may specify that the perform some sequence of execution arithmetic or logic be altered operation on data

(b) Integer format

Program Counter (PC) = Address of instruction Instruction Register (IR) = Instruction being executed Accumulator (AC) = Temporary storage

(c) Internal CPU registers

0001 = Load AC from Memory 0010 = Store AC to Memory 0101 = Add to AC from Memory

(d) Partial list of opcodes

Figure 3.4 Characteristics of a Hypothetical Machine

Figure 3.5 Example of Program Execution (contents of memory and registers in hexadecimal)

Instruction Cycle State Diagram

Figure 3.6 Instruction Cycle State Diagram

Classes of Interrupts

Program	Generated by some condition that occurs as a result of an instruction execution, such as arithmetic overflow, division by zero, attempt to execute an illegal machine instruction, or reference outside a user's allowed memory space.
Timer	Generated by a timer within the processor. This allows the operating system to perform certain functions on a regular basis.
I/O	Generated by an I/O controller, to signal normal completion of an operation, request service from the processor, or to signal a variety of error conditions.
Hardware failure	Generated by a failure such as power failure or memory parity error.

Program Flow Control

Figure 3.7 Program Flow of Control Without and With Interrupts

Figure 3.8 Transfer of Control via Interrupts

Instruction Cycle With Interrupts

Figure 3.9 Instruction Cycle with Interrupts

I/O Function

- I/O module can exchange data directly with the processor
- Processor can read data from or write data to an I/O module
 - Processor identifies a specific device that is controlled by a particular I/O module
 - I/O instructions rather than memory referencing instructions
- In some cases it is desirable to allow I/O exchanges to occur directly with memory
 - The processor grants to an I/O module the authority to read from or write to memory so that the I/O memory transfer can occur without tying up the processor
 - The I/O module issues read or write commands to memory relieving the processor of responsibility for the exchange
 - This operation is known as direct memory access (DMA)

The interconnection structure must support the following types of transfers:

Processor reads an instruction or a unit of data from memory

Processor to memory

Processor writes a unit of data to memory

I/O to processor

Processor reads data from an I/O device via an I/O module

Processor to I/O

Processor sends data to the I/O device

I/O to or from memory

An I/O
module is
allowed to
exchange
data
directly
with
memory
without
going
through the
processor
using direct
memory
access

Signals transmitted by any one device are available for A communication pathway connecting two or more devices reception by all other devices attached to the bus • Key characteristic is that it is a shared transmission medium If two devices transmit during the same time period their signals will overlap and become garbled n n Typically consists of multiple B Computer systems contain a communication lines number of different buses • Each line is capable of that provide pathways e transmitting signals representing binary 1 and binary 0 between components at various levels of the \mathbf{u} computer system hierarchy r S System bus • A bus that connects major The most common computer computer components (processor, interconnection structures memory, I/O) are based on the use of one n or more system buses n

Data Bus

- Data lines that provide a path for moving data among system modules
- May consist of 32, 64, 128, or more separate lines
- The number of lines is referred to as the width of the data bus
- The number of lines determines how many bits can be transferred at a time
- The width of the data bus is a key factor in determining overall system performance

Address Bus

- Used to designate the source or destination of the data on the data bus
 - If the processor wishes to read a word of data from memory it puts the address of the desired word on the address lines
- Width determines the maximum possible memory capacity of the system
- Also used to address I/O ports
 - The higher order bits are used to select a particular module on the bus and the lower order bits select a memory location or I/O port within the module

Control Bus

- Used to control the access and the use of the data and address lines
- Because the data and address lines are shared by all components there must be a means of controlling their use
- Control signals transmit both command and timing information among system modules
- Timing signals indicate the validity of data and address information
- Command signals specify operations to be performed

Bus Interconnection Scheme

Figure 3.16 Bus Interconnection Scheme

Timing

Elements of Bus Design

Type	Bus	Width

Dedicated Address Multiplexed Data

Method of Arbitration Data Transfer Type

Centralized Read Distributed Write

Read-modify-write Synchronous Read-after-write

Asynchronous Block

Figure 3.18 Timing of Synchronous Bus Operations

Timing of Asynchronous Bus Operations

Figure 3.19 Timing of Asynchronous Bus Operations

Summary

Chapter 3

- Computer components
- Computer function
 - Instruction fetch and execute
 - Interrupts
 - I/O function
- Interconnection structures
- Bus interconnection
 - Bus structure
 - Multiple bus hierarchies
 - Elements of bus design

A Top-Level View of Computer Function and Interconnection

- Point-to-point interconnect
 - QPI physical layer
 - QPI link layer
 - QPI routing layer
 - QPI protocol layer
- PCI express
 - PCI physical and logical architecture
 - PCIe physical layer
 - PCIe transaction layer
 - PCIe data link layer