1

GATE 2024 STATISTICS

EE25BTECH11022 - SANKEERTHAN

General Aptitud					
) If "→" denotes increasing order of intensity, then the meaning of the words [walk → jog → sprint is analogous to [bothered → → daunted]. Which one of the given options is appropriate to fill the blank?					
a) phased	b) phrased	c) fazed	d) fused		
to mix all these combinations,	e elements in all possible of	rders and work independ	(GATE ST er, air, fire, and earth. They lently. After exhausting all p attempts does each wizard	decide ossible	
a) 24	b) 48	c) 16	d) 12		
The number of	students who like their control like both core and other	re branches is $\frac{1}{4}$ of those	(GATE ST r core branches nor other bra e who like other branches. N number of students who lik	anches. Iumber	
a) 1800	b) 3500	c) 1600	d) 1500		
4) For positive no is:	on-zero real variables x and	1 y, if $\ln(x + \frac{y}{2}) = \frac{1}{2} [\ln(x + \frac{y}{2})]$	(GATE ST x) + $\ln(y)$] then the value of	$\int_{0}^{\infty} \frac{2024}{y} + \frac{y}{x}$	
a) 1	b) $\frac{1}{2}$	c) 2	d) 4		
			(GATE ST	2024)	
5) In the sequenc	e 6, 9, 14, <i>x</i> , 30, 41, a possi	ole value of x is:			
a) 25	b) 21	c) 18	d) 20		
			(CATE ST	2024	

(GATE ST 2024)

6) Sequence the following sentences in a coherent passage. P: This fortuitous geological event generated a colossal amount of energy and heat that resulted in the rocks rising to an average height of 4 km across the contact zone. Q: Thus, the geophysicists tend to think of the Himalayas as an active geological event rather than as a static geological feature. R: The natural process of cooling of this massive edifice absorbed large quantities of atmospheric carbon dioxide, altering the Earth's atmosphere and making it better suited for life. S: Many millennia ago, a breakaway chunk of bedrock from the Antarctic Plate collided with the massive Eurasian Plate.

		_ 1 1 1/		
Fig. 1.				
a) QPSR	b) QSPR	c) SPRQ	d) SRPQ	
· •	different items at the sa ll, the person made:	me price. He made 10%	(GATE S' profit in one item, and 1	
a) 1% profit	b) 2% profit	c) 1% loss	d) 2% loss	
for years 2007 and The renewable sou	2023. urces of electricity gene	ration consist of Hydro	(GATE S' ogies in total electricity geno, Solar and Wind. Assur in renewable share from	neration ne total
a) 25%	b) 50%	c) 77.5%	d) 62.5%	
	t into 8 equal pieces of the cube. Minimum n	_	(GATE S' e. Each cut should be straiuired is:	
a) 3	b) 4	c) 7	d) 8	
number in a cell sh		iate neighbours (adjacer	(GATE S' ther a cross (X) or a numer or diagonal) <i>not</i> having a last row equals:	mber. A

(GATE ST 2024) 11) Let D be the region bounded by the line y = x and the parabola $y = 4x - x^2$. Then $\iint_D x \, dx \, dy$ equals:

a) $\frac{27}{4}$

a) 11

b) $\frac{29}{4}$

b) 10

c) 7

c) 12

d) 6

d) 9

(GATE ST 2024) 12) Let $\{a_n\}_{n\geq 1}$ be a sequence of real numbers such that $a_1=\sqrt{6}$ and $a_{n+1}=\sqrt{6+a_n}$, $n\geq 1$. Consider the following statements: (I) $\{a_n\}_{n\geq 1}$ is an increasing sequence. (II) $\lim_{n\to\infty}a_n=2$. Which of the above statements is/are true?

	a) Only (I)	b) Only (II)	c) Both (I) and (II)	d) Neither (I) nor (II)
13)	Let A be a 3×3 real nois NOT true?	natrix and I_3 be the 3×3	3 identity matrix. Which	(GATE ST 2024) of the following statements
	b) If zero is not an eigec) If A has three distinct	chelon form of A is I_3 , then the root eigenvalues, then the root has a solution for every	w-reduced echelon form ow-reduced echelon form	of A is I_3
14)		be vectors in \mathbb{R}^4 . Let U	<i>I</i> be the span of $\{\mathbf{u}_1, \mathbf{u}_2\}$	(GATE ST 2024) \mathbf{u}_3 and V be the span of
		$(U \cap V) = 2$ and dim $(U \cap V)$ is linearly in		s linearly dependent. (II) If is linearly independent.
	a) Only (I)	b) Only (II)	c) Both (I) and (II)	d) Neither (I) nor (II)
15)	Consider \mathbb{R}^2 with stand then which statement is		$= \begin{pmatrix} a \\ b \end{pmatrix}$ is such that $\langle \mathbf{u}, \begin{pmatrix} 1 \\ 2 \end{pmatrix}$	(GATE ST 2024) $\langle \mathbf{u}, \begin{pmatrix} 4 \\ -2 \end{pmatrix} \rangle = -1,$
	a) $\langle \mathbf{u}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \rangle = \frac{1}{2}$	b) $\langle \mathbf{u}, \begin{pmatrix} -1\\1 \end{pmatrix} \rangle = \frac{3}{5}$	c) $\langle \mathbf{u}, \begin{pmatrix} 2 \\ -\frac{1}{2} \end{pmatrix} \rangle = -\frac{6}{5}$	d) $\langle \mathbf{u}, \begin{pmatrix} -\frac{1}{2} \\ 1 \end{pmatrix} \rangle = \frac{4}{5}$
				(GATE ST 2024)
16)				$(0,0), (b_1,b_2,b_3) \neq (0,0,0),$
	and rank $(A) = 1$. De $(\mathbf{x} \in \mathbb{R}^3 : b_1x_1 + b_2x_2 + \text{Statements: (I) } W = W$ Which is/are true?	$b_3x_3=0)$	$= 0 \} W_1 = \left(\mathbf{x} \in \mathbb{R}^3 : a_1 \right)$	$x_1 + a_2 x_2 + a_3 x_3 = 0) W_2 =$
	a) Only (I)	b) Only (II)	c) Both (I) and (II)	d) Neither (I) nor (II)
17)) Let X take values 1 and	and 2. Let $M_X(\cdot)$ be its n	noment generating funct	(GATE ST 2024) ion. If $E(x) = \frac{10}{7}$, then the

ıe fourth derivative of $M_X(\cdot)$ at 0 equals:

a) $\frac{52}{7}$

b) $\frac{67}{7}$

c) $\frac{48}{7}$

d) $\frac{60}{7}$

(GATE ST 2024)

- 18) Two fair dice (red and blue) are tossed. Let A = red die shows 5 or 6. Let B = sum of outcomes = 7. Let C = sum of outcomes = 8. Which is true?
 - a) A and B are independent, and A and C are independent
 - b) A and B are independent, but A and C are not
 - c) A and C are independent, but A and B are not
 - d) Neither A and B nor A and C are independent

				4
19)	Let X have PDF $f(x)$ $E(X^2) = \frac{1}{6}$, then $\alpha + 3$	() 4-)	$0 < x < 1$ where $\alpha >$	$0, \beta > 0. \text{ If } E(X) = \frac{1}{3} \text{ and }$
	a) 7	b) 5	c) 4	d) 8
20)	a) There exist X, Y witb) There exist X, Y witc) If X and Y are independent	Fs $F_X(\cdot)$ and $F_Y(\cdot)$. Which $F_X(u) = F_Y(u)$ for all u th $F_X(u) = F_Y(u)$ for all u pendent then X^2 and Y^2 and Y^3 dependent then X and Y and Y	$x \in \mathbb{R}$ and $P(X \neq Y) > 0$ $x \in \mathbb{R}$ and $P(X = Y) = 0$ are independent	(GATE ST 2024)
21)	$\frac{x+n}{2n}$, $-n \le x < n$, 1, $x \ge n$. Which statem a) $F_n(x)$ converges for b) $F_n(x)$ converges for c) $F_n(x)$ does not conv	all $x \in \mathbb{R}$ and the limiting all $x \in \mathbb{R}$, but the limiting	g function is a CDF ag function is not a CDF	
22)	a) $E[w(7)] = 0$	c) $2w(1)$ is $\mathcal{N}(0,4)$ d) $E[w(5) \mid w(3) = 3]$	3	(GATE ST 2024)
23)	$T_1 = (X_1 + X_2, X_3), T_1 = (X_1 + X_2, X_3), T_2 = (X_1 + X_2, X_3), T_3 = (X_1 + X_2, X_3), T_4 = (X_1 + X_2, X_3), T_4 = (X_1 + X_2, X_3), T_5 = (X_1 + X_2, X_3), T_6 = (X_1 + X_2, X_3), T_7 = (X_1 + X_2, X_3), T_7 = (X_1 + X_2, X_3), T_8 = (X_1 + X_2$	_	er: (I) Distribution of T_2 §	$p \in (0,1)$ unknown. Define given $T_1 = t_1$ is independent
	a) Only (I)	b) Only (II)	c) Both (I) and (II)	d) Neither (I) nor (II)
24)	$\theta (2-2x)^{\theta-1}$, $\frac{1}{2} < x \le 1$ 0, otherwise, where $\theta >$ a) $n \left[\sum_{i:X_i \le 1/2} \log_e(2X_i) \right]$	> 0. Which is an MLE of $+\sum_{i:X_i>1/2} \log_e (2-2X_i)$ $\left[\sum_{i=1}^n \log_e (2-2X_i) \right]^{-1}$? θ? -1	(GATE ST 2024)
				(GATE ST 2024)

25) In hypothesis testing, which statement is true?

- a) Type-I error probability cannot be higher than Type-II error probability
- b) Type-II error occurs when the test accepts H_0 when H_0 is false
- c) Type-I error occurs when the test rejects H_0 when H_0 is false
- d) Sum of probabilities of Type-I and Type-II errors must be 1

(GATE ST 2024)

26) A sample of size n = 40 from 4 categories has:

Category	1	2	3	4
Observed Freq	5	8	12	15

Test H_0 : $\theta_i = \frac{1}{4}$ for all i using χ^2 GOF test. Which statement is true?

a) d.f. = 3, test statistic = 5.8

c) d.f. = 4, test statistic = 5.8

b) d.f. = 3, test statistic = 1.4

d) d.f. = 4, test statistic = 1.4

(GATE ST 2024)

- 27) Let X_1, \ldots, X_n be i.i.d. from a continuous distribution having unknown median M. Test $H_0: M = 10$ vs $H_1: M > 10$ at level α using T = number of observations > 10. If t_0 is observed T, then p-value is:

 - a) $\sum_{i=t_0}^{n} \binom{n}{i} (0.5)^n$ b) $\sum_{i=10}^{n} \binom{n}{i} (0.5)^n$ c) $\sum_{i=0}^{10} \binom{n}{i} (0.5)^n$ d) $\sum_{i=0}^{t_0} \binom{n}{i} (0.5)^n$

(GATE ST 2024)

- 28) Consider $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$, ϵ_i i.i.d. mean 0, variance σ^2 . Let \bar{y} be sample mean, $\hat{\beta}_1$ LSE. Which is true?
 - a) $Cov(\bar{y}, \hat{\beta}_1) < 0$ b) $Cov(\bar{y}, \hat{\beta}_1) > 0$

c) $Cov(\bar{y}, \hat{\beta}_1) = 0$ d) $Cov(\bar{y}, \hat{\beta}_1)$ does not exist

- 29) Consider same linear model as Q.28 but with statistics: $T_1 = \frac{1}{n-2} \sum_{i=1}^{n} (y_i \hat{y}_i)^2$, $T_2 = \sum_{i=1}^{n} (\hat{y}_i \bar{y}_i)^2$ Which is true?
 - a) Both T_1 and T_2 are unbiased estimators of σ^2 c) T_1 not unbiased, T_2 unbiased
 - b) T_1 unbiased, T_2 not

d) Neither is unbiased

(GATE ST 2024)

- 30) Power series $\sum_{n=0}^{\infty} a_n x^n$ with $a_{2n+1} = \frac{1}{2^{2n+1}}$, $a_{2n} = \frac{1}{3^{2n}}$ has radius of convergence equal to ____ (integer).
- 31) Let X be a random variable having Poisson (λ) distribution with $\lambda > 0$ such that P(X = 4) = 02P(X=5). If $p_k = P(X=k)$ for $k=0,1,2,\ldots$, and $p_\alpha = \max_k p_k$, then $\alpha =$ (GATE ST 2024)
- 32) Let X_1, X_2, X_3 be i.i.d. random variables with PDF f(x) = 2x, 0 < x < 1, 0, otherwise. Then $P(\min\{X_1, X_2, X_3\}) \ge E(X_1) =$ (round to two decimal places). ST 2024)
- 33) Let (x, y) have a bivariate normal distribution with E(x) = E(Y) = 0. Let $Var(X \mid Y = 1)$ be the conditional variance of X given Y = 1 and similarly for $Var(Y \mid X = 2)$. If $\frac{E(Y \mid X = 2)}{E(X \mid Y = 1)} = 8$, then $\frac{Var(Y \mid X = 2)}{Var(X \mid Y = 1)} = 8$
- 34) Let X be a random sample of size one from $N0, \sigma^2$ with $\sigma > 0$ unknown. Let $\Phi(\cdot)$ be the CDF of $\mathcal{N}(0,1)$. Let $\chi^2_{\nu\alpha}$ be the $(1-\alpha)$ -quantile of the central chi-square with ν degrees of freedom. Given: $\Phi(1.96) = 0.975$, $\Phi(1.64) = 0.95$, $\chi^2_{1,0.05} = 3.841$, $\chi^2_{2,0.05} = 5.991$. Test $H_0: \sigma^2 = 1$ vs $H_1: \sigma^2 = 2$ using NP most powerful test of size 0.05: reject when $\lambda(x) > c$, where $\lambda(x) = \frac{f(x;\sigma^2=2)}{f(x;\sigma^2=1)}$. Find c =(GATÉ ST 2024) (round to two decimal places).
- 35) Linear regression: $y_i = \beta_1 x_i + \epsilon_i$, i = 1, ..., n, with β_1 unknown, ϵ_i uncorrelated mean 0, variance $\sigma^2 > 1$ 0. 5 data points: $(x_1, y_1) = (2, 5)$, $(x_2, y_2) = (1, 6)$, $(x_3, y_3) = (3, 4)$, $(x_4, y_4) = (2, 3)$, $(x_5, y_5) = (4, 6)$. LSE of $\beta_1 = \underline{\hspace{1cm}}$ (round to two decimal places).

(GATE ST 2024)

36) $f: \mathbb{R}^2 \to \mathbb{R}$ given by: $f(x, y) = 108xy - 2x^2y - 2xy^2$. Which is NOT true?

c) f has a local maximum at (18, 18)

d) f has two or more saddle points

37)	$f: \mathbb{R}^2 \to \mathbb{R}$ given by: $f(x,y) = (0,0)$ Let $f(x,y) = (0,0)$	$f(x,y) = \frac{x^3 - y^3}{x^2 + y^2}, (x,y) \neq (0,$ and f_y denote partial deri	0) vatives. Which is NOT t	rue?	(07112 01 2021)
	a) f is continuous at (0 b) $f_x(0,0) \neq f_y(0,0)$), (1)	 c) f_x is continuous at (d) f_y is not continuous 		
38)	X has PDF: $f(x) = \frac{3}{8}$ (0, otherwise. If $Y = 1$	$(x + 1)^2$, $-1 < x < 1$, $(x + 1)^2$, find $(x + 1)^2$			(GATE ST 2024)
	a) $\frac{19}{32}$	b) ⁹ / ₁₆	c) $\frac{15}{32}$	d) $\frac{5}{8}$	
39)	X has PDF: $f(x) = \frac{c_1}{\sqrt{x}}$ $\frac{c_2}{x^2}, 1 < x < \infty$,				(GATE ST 2024)
		c_2 are constants. If $P(X \in \mathcal{C}_2)$ not have finite expectation		er: (I) <i>P</i> ($X \in [3, 5]$) = 1/12
	a) Only (I)	b) Only (II)	c) Both (I) and (II)	d) Neit	her (I) nor (II)
40)		ce time T (in minutes) hay, you see 1 person in serve your total time > 15).			(GATE ST 2024) e independence of
	a) $\frac{5}{2}e^{-3/2}$	b) $\frac{3}{2}e^{-3/2}$	c) $\frac{3}{2}e^{-5/2}$	d) $\frac{5}{2}e^{-5}$	/2
41)	X has a discrete uniform	n distribution on $\{1, 3, 5, \ldots\}$.,99}. Then $E(X \mid X \text{is n})$	ot a mult	(GATE ST 2024) iple of 15) equals:
	a) $\frac{2365}{47}$	b) $\frac{2365}{50}$	c) 50	d) 47	
			$\sqrt{5}$	_	(GATE ST 2024)
42)	Let $X_1,, X_n$ be i.i.d. then $n = 2$. (II) $E[(-\log x)]$ Which is/are true?	$\mathcal{N}\left(\mu, \sigma^2\right), \mu \in \mathbb{R}, \sigma > 0.5$ $\log_e \Phi\left(\frac{X_1 - \mu}{\sigma}\right)^3 = 6, \text{ where}$	Statements: (I) If $\frac{1}{\sigma(2n+1)}$ $\Phi(\cdot)$ is CDF of $\mathcal{N}(0,1)$	$\frac{1}{n-1}\sum_{i=1}^{n} \left(\frac{1}{n-1}\right)^{i}$	$X_i - \mu$) $\sim \mathcal{N}(0, 1)$,
	a) Only (I)	b) Only (II)	c) Both (I) and (II)	d) Neit	her (I) nor (II)
43)	Let X_n be i.i.d. with F $\lim_{n\to\infty} E [\min \{X_1, \ldots, W\}]$ Which is/are true?	PDF $f(x) = e^{-(x-\theta)}$ for x X_n }] = θ .	$\geq \theta, \ \theta > 0. \ (I) \ \frac{1}{n} \sum_{i=1}^{n} S_{i}$	$X_i \to_p \frac{\theta+}{2}$	(GATE ST 2024) $\frac{1}{n}$ as $n \to \infty$. (II)

a) f has four critical points

b) f has a local minimum at (0,0)

- a) Only (I)
- b) Only (II)
- c) Both (I) and (II)
- d) Neither (I) nor (II)

- 44) Let $X_n \sim \text{Poisson}(\lambda_n)$ where $\lambda_n = \lambda + \frac{1}{2n}$, $\lambda > 0$. Which statement +is true?
- a) $\frac{1}{n} \sum X_i$ is an unbiased estimator of λ b) $\frac{1}{n} \sum X_i$ is a consistent estimator of λ
 - c) $\sum X_i$ is a consistent estimator of λ d) $\frac{1}{n^2} \sum X_i$ is an unbiased estimator of λ

- (GATE ST 2024) 45) Let $\mathbf{X}_1, \dots, \mathbf{X}_{25} \overset{i.i.d.}{\sim} N_3(\mu, \Sigma)$, Σ nonsingular unknown. Let $S = \frac{1}{24} \sum_{j=1}^{25} \left(\mathbf{X}_j \bar{\mathbf{X}} \right) \left(\mathbf{X}_j \bar{\mathbf{X}} \right)^{\mathsf{T}}$, and $B = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $\begin{pmatrix} 1 & 2 & 3 \\ -1 & 0 & 1 \end{pmatrix}$. Which is true?
 - a) $24BSB^{T}$ is Wishart of order 3, df=24
- c) $24BSB^{T}$ is Wishart of order 2, df=24
- b) $24BSB^{T}$ is Wishart of order 2, df=25
- d) $24BSB^{T}$ is Wishart of order 3, df=25

(GATE ST 2024)

- 46) Regression $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$, ϵ_i uncorrelated mean 0 var σ^2 . Statements: (I) The 95% joint confidence region for (β_0, β_1) is bounded by an ellipse. (II) Covariance between $\hat{\beta}_0$ and $\hat{\beta}_1$ does not involve σ^2 . Which is/are true?
 - a) Only (I)
- b) Only (II)
- c) Both (I) and (II)
- d) Neither (I) nor (II)

(GATE ST 2024)

- 47) Let $f: [-2,2] \to \mathbb{R}$ continuous. Which are true?
 - a) $F(x) = \int_0^x f(t) dt$ is differentiable on (0,2)
 - b) For any $x_1, \ldots, x_{10} \in [-2, 2]$, there exists $x_0 \in [-2, 2]$ such that $f(x_0) = \frac{1}{10} \sum_{i=1}^{10} f(x_i)$
 - c) f is bounded on [-2, 2]
 - d) If f differentiable at 0 and f(0) = 0, then $\lim_{x\to 0} \frac{f(x) + f(x^2) + \dots + f(x^{10})}{x} = 10f'(0)$

- 48) Let A be an $n \times n$ real matrix. Which are true?
 - a) If A symmetri

(GATE ST 2024)c and $A + \epsilon I_n$ PSD for all $\epsilon > 0$, then A is PSD

- b) If n odd, then $A A^{T}$ not invertible
- c) If A symmetric and all singular values > 0, then A positive definite
- d) If 1 is the only singular value of A, then A is orthogonal

(GATE ST 2024)

- 49) Which statements are true?
 - a) If A is 3×3 real with 3 dis

(GATE ST 2024)tinct eigenvalues, then A is diagonalizable

- b) If A^2 is diagonalizable, then A is diagonalizable
- c) For real a, b, c, if $\begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix}$ is diagonalizable, then a = b = c = 0
- d) If $A = \begin{pmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{pmatrix}$ is diagonalizable, then $AA^{\top} = A^{\top}A$

(GATE ST 2024)

- 50) $\Omega = [1, 2, 3, \dots]$. \mathcal{H} all subsets of Ω , $P(k) = 1/2^k$. Let $X(\omega) = \omega$. Which are true?
 - a) $\exists k \text{ with } P(X = k) < 10^{-6}$
 - b) $\lim_{n\to\infty} P(X \ge 4 + 1/n) = 1/16$

c)
$$\lim_{n\to\infty} P(4+1/n^2 \le X < 5-1/n) = 1/16$$

c)
$$\lim_{n\to\infty} P(4+1/n^2 \le X < 5-1/n) = 1/16$$

d) If $x_n = 3 + (-1)^n/n$, then $\lim_{n\to\infty} P(X \le x_n) = 7/8$

- 51) Let (x, y) have joint PDF $f_{X,Y}(x, y) = \frac{3}{4}, x^2 \le y < 1, -1 \le x \le 1$, 0, otherwise. Which statements are true?
 - a) X has the same distribution as -X
- c) Corr (x, y) = 0

b) $E(Y \mid X = 0) = \frac{1}{2}$

d) X and Y are independent

(GATE ST 2024)

- 52) Let $[X_n]_{n\geq 1}$ be independent with PDF $f_n(x) = \frac{1}{\lambda_n} e^{-x/\lambda_n}, x \geq 0$, 0, otherwise, where $\lambda_n = 10 - \sum_{i=1}^n \frac{5}{2^{i-1}}$. Which statements are true?
 - a) $\{X_n\}$ converges in distribution to the zero random variable
 - b) $\{X_n\}$ converges in probability to the zero random variable
 - c) $\{X_n\}$ converges in distribution to a Poisson(10) random variable
 - d) $\{X_n\}$ converges in probability to a Poisson(10) random variable

(GATE ST 2024)

- 53) A Markov chain with state space (0, 1, 2) has transition matrix $\begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$. Which statements are true?
 - a) 0 and 1 are recurrent

c) Chain has unique stationary distribution

b) 2 is transient

d) Chain is irreducible

- (GATE ST 2024) 54) Let X_1, \ldots, X_n be i.i.d. Poisson (λ) , $\lambda > 0$ unknown. $T_1 = \bar{X}$, $T_2 = \sqrt{\frac{1}{n-1} \sum \left(X_i \bar{X}\right)^2}$. Which statements are true?
 - a) T_1 is unbiased for λ

c) T_2^2 is unbiased for λ

b) T_2 is unbiased for $\sqrt{\lambda}$

d) Both T_1 and T_2 estimate λ and λ^2

- (GATE ST 2024)
 55) Bernoulli(p) sample $X_1, X_2, X_3, p \in (0, 1)$ unknown. Define $T_1(X_i, X_j, X_k) = X_i X_j(1 X_k), T_2(X_i, X_j, X_k) = \frac{1}{2} (Y_i Y_i + Y_i Y_i)$ where $X_i = X_i X_j(1 X_k)$ and $X_i = X_i X_j(1 X_k)$ and $X_i = X_i X_j(1 X_k)$. $\frac{1}{2}(X_iX_j + X_jX_k)$. Which statements are true?
 - a) $T_1(X_1, X_2, X_3)$ has same distribution as $T_1(X_2, X_3, X_1)$, but they may differ for realizations
 - b) $T_2(X_1, X_2, X_3)$ and $T_2(X_3, X_2, X_1)$ are both unbiased for p^2
 - c) $T_1(\cdot)$ forms unbiased estimators for p^2 and always equal for cyclic permutations
 - d) $T_2(X_1, X_2, X_3) = T_2(X_3, X_2, X_1)$ for all realizations

(GATE ST 2024)

- 56) X_1, \ldots, X_n i.i.d. $\operatorname{Exp}(\lambda), \lambda > 0$ unknown. $T_1 = \sum X_i, T_2 = 1/\sum X_i$. Testing $H_0: \lambda = \lambda_0$ vs $H_1: \lambda > \lambda_0$, which tests are UMP level α ?
 - a) Reject if $\frac{2}{\lambda_0}T_1 > \chi^2_{n,\alpha}$ b) Reject if $\frac{2}{\lambda_0}T_1 > \chi^2_{n,1-\alpha}$ c) Reject if $\frac{\lambda_0}{2}T_2 > \chi^2_{n,\alpha}$ d) Reject if $\frac{\lambda_0}{2}T_2 > \chi^2_{n,1-\alpha}$

(GATE ST 2024)

57) Two samples: $\{1,6,5,3\}$ and $\{11,7,15,4\}$. Mann-Whitney U_{MW} statistic has probabilities given: $P(U_{MW} > 12) \le 0.10, \ P(U_{MW} > 14) \le 0.05, \ P(U_{MW} > 15) \le 0.025, \ P(U_{MW} > 16) \le 0.01.$ Which statements are true?

- a) H_0 rejected at $\alpha = 0.10$ c) H_0 rejected at $\alpha = 0.01$
- b) H_0 rejected at $\alpha = 0.05$ 0.025

58) $(X_1, X_2, X_3) \sim N_3(\mu, \Sigma)$ with $\mu = \begin{bmatrix} 2, -3, 1 \end{bmatrix}^{\mathsf{T}}$ and $\Sigma = \begin{pmatrix} 25 & -2 & 4 \\ -2 & 4 & 1 \\ 4 & 1 & 9 \end{pmatrix}$ For which **a** are X_2 and X_2 – $\mathbf{a}^{\top} [X_1, X_2]^{\top}$ independent?

b) $\begin{pmatrix} -1 \\ -1 \end{pmatrix}$ c) $\begin{pmatrix} 0 \\ 2 \end{pmatrix}$ d) $\binom{2}{2}$

(GATE ST 2024)

- 59) A is 2×2 with tr(A) = 5, det(A) = 6. Let the characteristic polynomial of $(A + I_2)^{-1}$ be $x^2 bx + c$. Find b/c = ___ (integer).
- 60) Markov chain, states $\{0, 1, 2\}$, transition $\begin{pmatrix} 0 & 1 & 0 \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \end{pmatrix}$, $P(X_0 = 0) = P(X_0 = 1) = \frac{1}{4}$. Find $32 E(X_2) = \frac{1}{4} = \frac{1}$ (integer). (GATE ST 2024)
- 61) $\overline{(x,y)}$ has MGF $M_{X,Y}(u,v) = \frac{e^{u^2/2}}{(1-2v)^3}$, $v < \frac{1}{2}$. Find $E\left(\frac{6X^2}{Y}\right) = \frac{(2decimals)}{(1-3v)^3}$. (GATE ST 2024) 62) $\{N(t)\}$ Poisson process with rate λ . Potholes at distances: 0.9, $\overline{1.3}$, $\overline{1.8}$, $\overline{2.7}$, $\overline{3.4}$, $\overline{4.1}$, $\overline{4.7}$, $\overline{5.5}$, $\overline{6.2}$, $\overline{6.8}$, $\overline{7.4}$, $\overline{8.1}$, $\overline{8.9}$, $\overline{9.1}$
- MoM estimate of $\lambda =$ (2decimals). (GATE ST 2024)
- 63) Sample size 4 from $U(0,\theta)$. Let $X_{(4)}$ be max. Test $H_0: \theta = 1$ vs $H_1: \theta = 0.1$; reject if $X_{(4)} < 0.3$. Let p be Type-I error. Find 100p =(2decimals). (GATE ST 2024)
- 64) Sample mean 0.16 from size 4 normal with unknown mean, variance 1. Φ (2.28) = 0.989, Φ (1.96) = 0.975, $\Phi((1.64) = 0.95)$. LRT at $\alpha = 0.05$ for $H_0: \mu = 0$ vs $H_1: \mu \neq 0$. Find power at $\bar{x} = 0.16 = 0.05$ (3 decimals).
- 65) Multiple regression $y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \varepsilon_i$, n = 25. Test $H_0: \beta_1 = \beta_2 = 0$ with $F_0 = \frac{1}{1} \cdot \frac{R^2}{1 R^2}$. Reject if $F_0 > F_{\alpha,2,22}$. Given $F_{0.025,2,22} = 4.38$, $F_{0.05,2,22} = 3.44$. Find smallest R^2 to reject at $\alpha = 0.05 = 10^{-1.02}$ (GATE ST 2024) (2decimals). (GATE ST 2024)