Translation of Japanese Patent 6-116555

- (19) Japanese Patent Office (JP) (11) Laid-open patent application
- (12) Laid Open Patent Gazette (A) 6-116555

 (43) Laid Open 26 April 1994
- (51) Int.Cl.⁵ Code Patent Office FI Technical Reference No. designation

C 09 K 15/08

Request for examination not requested

Number of claims 4

(Total 10 pages)

- (21) Application No. 4-271473
- (22) Filing Date 9 October 1992
- (71) Applicant 000003126

Mitsui Toatsu Kagaku [Mitsui

Toatsu Chemicals]

3-2-5 Kasumigaseki, Chiyoda-

ku, Tokyo-to

(72) Inventor

K. Takuma

300 Hirahara, Omuta-shi,

Fukuoka-ken

(54) [Title of the invention]

Bisphenolic photostabilizer for cyanin pigments, and optical recording media containing said photostabilizer.

(57) [Abstract]

(Revised)

[Constitution] Bisphenolic photostabilizers for cyanin pigments represented by the following formula:

 $(R_1-R_4$ indicate a hydrogen atom or alkyl group, and R_5 and R_6 indicate a hydrogen atom, an alkyl group or a perfluoroalkyl group; R_5 and R_6 may also be bound together to form a ring), and optical recording media containing them.

[Benefits] They are highly safe and easy to handle, and are photostabilizers which have a very excellent photostabilizing effect on cyanin dyes, and enable optical recording media to be offered which have outstanding resistance to light.

[Claims]

[Claim 1] Bisphenolic photostabilizer for cyanin pigments represented by General Formula (1) ([Formula 1]).

[Formula 1]

$$HO \longrightarrow \begin{matrix} R_1 & R_2 & R_5 & R_2 & R_1 \\ C & & & & & \\ R_3 & R_4 & R_6 & R_4 & R_3 \end{matrix} \longrightarrow OH$$
 (1)

 $(R_1-R_4 \text{ indicate a hydrogen atom or alkyl group, and } R_5 \text{ and } R_6 \text{ indicate a hydrogen atom, an alkyl group or a perfluoroalkyl group, and } R_5 \text{ and } R_6 \text{ may also be bound together to form a ring).}$

[Claim 2] Photostabilizers for cyanin pigments according to Claim 1 in which R_1 is a t-butyl group.

[Claim 3] Photostabilizers for cyanin pigments according to Claim 1 in which R_1 and R_3 are both t-butyl groups.

[Claim 4] Optical recording medium which contains a bisphenolic photostabilizer for cyanin pigments represented by General Formula (1) ([Formula 1]) of Claim 1.
[Detailed explanation of the invention]

[0001]

[Field of industrial application] The present invention relates to photostabilizers for cyanin pigments, and to optical recording media containing them.

[0002]

[Prior art] Optical recording media include optical disks in which a thin film of cyan dye is used as a

recording layer. The cyan dyes used here have poor photostability on their own, and it is necessary to employ an added photostabilizer.

[0003] Methods using as photostabilizers metal complexes such as nickel compounds having thio ligands have been disclosed in Japanese Unexamined Patent 59-219852, Japanese Unexamined Patent 62-193891, Japanese Unexamined Patent 62-207688, Japanese Unexamined Patent 63-19293 and Japanese Unexamined Patent 63-199248. These methods employ the mechanism of inactivating highly reactive singlet oxygen produced by light and returning it to triplet oxygen; however, they have the problem that decomposition of cyan pigments proceeds to a marked extent on long-term exposure to light.

[0004] As other photostabilizers, methods using nitroso compounds have been disclosed in Japanese Unexamined Patent 2-300288, Japanese Unexamined Patent 2-300288 and Japanese Unexamined Patent 2-300289. However, most of these nitroso compounds have the problem that they have an undesirable nature, such as the fact that they are intensely toxic in themselves or their products of photodecomposition, etc., are intensely toxic so that the employment of nitroso compounds requires measures to ensure human safety, etc.

[0005] Moreover, a method using as photostabilizers compounds having a free trinitrophenylhydrazyl group is disclosed in Japanese Unexamined Patent 2-304055. However, compounds having free trinitrophenylhydrazyl groups are explosive, and

handling them is very problematic.

[0006]

[Problem which the invention is intended to solve]
The purpose of the present invention is to offer photostabilizers which solve these problems: namely, photostabilizers which raise the photostability of cyanin pigments and are easy to handle and highly safe.

Another purpose of the present invention is to offer optical recording media containing said photostabilizers.

[0007]

[Means for solving the problem] The present inventors have arrived at the present invention as the result of concerted investigations to solve the problems above, with the discovery that bisphenol derivatives represented by General Formula (1) ([Formula 2])

[8000]

[Formula 2]

[0009] (R_1-R_4) indicate a hydrogen atom or alkyl group, and R_5 and R_6 indicate a hydrogen atom, an alkyl group or a perfluoroalkyl group, and R_5 and R_6 may also be bound together to form a ring) very considerably raise the photostability of cyanin dyes, and are also by nature easy to handle and highly safe, and that when

said photostabilizers were used in optical recording media they were highly effective. Thus, the present invention is bisphenolic photostabilizers for cyanin pigments represented by General Formula (1) ([Formula 31).

[0010]

[Formula 3]

$$HO \longrightarrow \begin{matrix} R_1 & R_2 & R_5 & R_2 & R_1 \\ C & & & & & \\ R_8 & R_4 & R_3 & R_3 & R_1 \end{matrix}$$

[0011] (R_1-R_4) indicate a hydrogen atom or alkyl group, and R_5 and R_6 indicate a hydrogen atom, an alkyl group or a perfluoroalkyl group; R_5 and R_6 may also be bound together to form a ring).

detail below. Concrete examples of R₁-R₄ in General Formula (1) of the present invention ([Formula 3]) include a hydrogen atom, and alkyl groups such as a methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, t-butyl group, n-pentyl group, 2-methylbutyl group, n-hexyl group, 2,3-dimethylbutyl group, 3,5,5-trimethylhexyl group, n-octyl group, n-dodecyl group and n-octadecyl group, etc.; and concrete examples of R₅ and R₆ include hydrogen, alkyl group and n-butyl group, etc., a perfluoroalkyl group such as a methyl group, pentafluoroethyl group or pentafluoropropyl group, etc., and compounds in

which R_5 and R_6 are bound to form a cyclopentane ring, cyclohexane ring or cyclooctane ring, etc. Of these, bisphenol derivatives having a bulky t-butyl substituent group on R_1 or R_1 and R_3 ortho to the hydroxyl group are preferably used. Representative concrete examples of photostabilizers of the present invention are shown in Table 1 ([Tables 1-2]). These photostabilizers can be used alone or in combinations of ≥ 2 types.

[0013] The quantity of photostabilizer employed is ordinarily 0.01-3.0 mol per mol of cyanin pigment. It is also possible to use 23 mol/mol, but in practice it is undesirable because color density is lowered and absorption is lowered. Similarly, when the quantity is small there may be no clear benefit. There are no particular restrictions as to the cyanin pigments which are stabilized, but examples include the compounds indicated below (C-1 to C-21) ([Formula 4] to [Formula 6]).

[0014]

[Formula 4]

$$C_2H_5$$
 C_2H_5 C_2H_5 C_2H_5 C_2H_5

$$C_{2}H_{5}$$
 $C_{2}H_{5}$ $C_{2}H_{5}$ $C_{2}H_{5}$ $C_{2}H_{5}$ $C_{2}H_{5}$

$$C_2H_6 \xrightarrow{+} CH = CH \xrightarrow{-}_2 CH = CH_5$$
 (C - 3)

$$C_2H_5$$
⁻⁺N-C₂H₅ (C - 4)

$$\begin{array}{c}
C_2 H_5 \\
C_2 H_5
\end{array}$$

$$\begin{array}{c}
C - 5)
\end{array}$$

$$\begin{array}{c}
C - 5)
\end{array}$$

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c}$$

$$\begin{array}{c}
S_{e} \\
C_{2}H_{5}
\end{array}$$

$$\begin{array}{c}
C_{2}H_{5}
\end{array}$$

$$\begin{array}{c}
C_{2}H_{5}
\end{array}$$

$$\begin{array}{c}
C_{2}H_{5}
\end{array}$$

$$\begin{array}{c}
C_{2}H_{5}
\end{array}$$

[0015]

[Formula 5]

$$CH_3 CH_3 CH_3 CH_3$$

$$CH_3 CH_3 CH_3$$

$$CH_3 CH_3 CH_3$$

$$CH_3 CH_3 CH_3$$

$$CH_3 CH_3 CH_3$$

$$\begin{array}{c} C_{2} + C_{1} - C_{1} + C_{3} + C_{1} - C_{2} + C_{2} + C_{3} + C_{2} + C_{3} + C_{4} + C_{1} + C_{1} + C_{2} + C_{2} + C_{2} + C_{2} + C_{3} + C_{4} +$$

$$\begin{array}{c|c} CH_3 & CH_3 \\ CH_3 & CH_3 \\ CH=CH)_3 & CH_3 \\ CH_3 & CH_3 \\ \end{array} \qquad (C-11)$$

$$CH_3$$
 CH_3 CH_3 CH_3 CH_4 CH_5 CH_5 CH_5 CH_5 CH_5 CH_6 CH_6 CH_7 CH_8 CH_8

$$CH_3$$
 CH_3 CH_3 CH_8 CH_{-CH} $CH_$

$$CH_3$$
 CH_3 CH_3 CH_3 CH_3 CH_4 CH_5 CH_5 CH_7 CH_8 CH_9 CH_9

$$CH_3$$
 CH_3 CH_3

[0016]

[Formula 6]

$$CI \xrightarrow{N_{+}} CH = CH \xrightarrow{CH - CH - CH} \xrightarrow{N_{+}} CI \qquad (C - 16)$$

$$C_{2}H_{5} \xrightarrow{C} CH = CH \xrightarrow{N_{+}} CH \xrightarrow{C} CH_{2}CH_{2}COOH$$

$$C_{2}H_{5} \xrightarrow{C} CH - CH \xrightarrow{N_{+}} CH_{2}CH_{2}COOH$$

$$C_{2}H_{5} \xrightarrow{C} CH - CH \xrightarrow{N_{+}} C - S \xrightarrow{C} CH_{2}CH_{2}COOH$$

$$C = C - N \xrightarrow{C} CH_{2}CH_{2}CH_{2}COOH$$

$$C = C - N \xrightarrow{C} CH_{2}CH_{2}CH_{2}COOH$$

$$C = C - N \xrightarrow{C} CH_{2}CH_{2}CH_{2}COOH$$

$$C = C - N \xrightarrow{C} CH_{2}CH_{2}COOH$$

$$(C_2H_5)_3N \cdot HO_3S(CH_2)_4 - N$$

$$CH - CH \rightarrow_2 C - S$$

$$O = C - N$$

$$C_2H_6$$

$$N_{BO_{3}} S (CH_{2})_{4} - N \longrightarrow (CH - CH)_{2} C - S \longrightarrow S$$

$$O = C - N \longrightarrow S$$

$$n - C_{4}H_{8}$$
(C - 20)

$$NaO_{3}S(CH_{2})_{4}-N$$

$$CH-CH_{2}C-S$$

$$O-C-N$$

$$n-C_{6}H_{13}$$

$$(C-21)$$

[0017] In the present invention, the bisphenol derivatives can be employed as photostabilizers in thin films of cyan pigments used as recording layers in optical recording media. When these photostabilizers are applied to optical recording media, methods such as dissolving in a solvent together with the pigment and then painting onto the recording medium substrate to form a thin film, etc., can be used.

[0018]

[Embodiments] The present invention is explained in more detail below by means of practical embodiments.

In the embodiments the objects which were colored were polycarbonate plates ordinarily used as substrates for recording media; however, similar results are obtained with other substrates such as glass and polymethacrylates, etc.

Embodiment 1

3 g of a cyanin pigment (C-1) and 2 g of Bisphenol Compound (A) ([Formula 7) below

[0019]

[Formula 7]

[0020] were put into 100 g of ethanol, and after stirring for 1 hour at room temperature the mixture was filtered with a membrane filter (Toyo Filter Paper PTEE, pore size 1.0 µm) to obtain a pigment solution. This pigment solution was coated onto a polycarbonate plate by a spin coater. The colored polycarbonate plate was exposed inside a light-resistance tester (Irie Seisakusho DR 400T) at a distance of 20 cm. After exposure for 10 hours the percentage fading of the cyanin pigment at 715 nm, the wavelength of peak absorption, was 15.1%, which was a good result.

[0021] Embodiments 2-21

Embodiment 1 was repeated with different combinations of cyanin pigments and bisphenol compounds. The results are shown in Table 1 ([Table 1]

to [Table 4]): in every case a good result similar to that in Embodiment 1 was obtained.

[0022] Comparison Example 1

When Embodiment 1 was repeated without adding any bisphenol compound: as shown in Table 1 ([Table 4]) there was marked decomposition of the cyanin pigment.

[0023] Comparison Example 2

When Embodiment 1 was repeated using 2,6-t-butyl-methylphenol instead of Bisphenol Compound (A) ([Formula 7]): as Table 1 ([Table 4]) shows, there was marked decomposition of the cyanin pigment.

[0024]

[Table 1]

Table 1

•	•		
Embodi- ment	Photostabilizer (bisphenol compound)	Cyanin pigment	Fade after 10 hours (%)
2	HO CH3 CH3 CH3 CH3	C-2	16.1
3	C (CH ₃) ₃ C ₄ H ₉ C (CH ₃) ₈	C-3	15.5
4	$\begin{array}{c c} C & (CH_3)_3 & C_3H_7 \\ \hline CH_3 & CH_3 \\ \end{array}$	C-4	1 6.2
5	HO \leftarrow $C (CH_3)_3 C_2H_5 C (CH_3)_3$ $C_2H_5 C (CH_3)_3$	C-5	14.9
6	HO \leftarrow CH (CH ₃) ₃ C (CH ₃) ₃ CH (CH ₃) ₂ CH (CH ₃) ₂	C-6	15.0
7	HO \subset C_2H_5 C_2H_5 C_2H_5 C_2H_5	C-7	14.6

[0025]

[Table 2]

Table 1 (Continued)

Embodi ment	Photostabilizer (bisphenol compound)	Cyanin pigment	Fade after 10 hours (%)
8	C (CH ₃) ₃ CH ₃ C (CH ₃) ₃ CH ₃ C (CH ₃) ₃ CH ₃ C (CH ₃) ₃	C-8	15.1
9	HO CH3 CH3 CH3	C-9	23.4
10	HO C 112 H 37 C 112 H 37	C - 10	25.6
11	HO \leftarrow	C-11	13.7
12	HO — CH ₃ CF ₈ CH— OH CH ₃	C – 12	15.8
13	HO \leftarrow $\stackrel{C}{\bigcirc}$	C – 13	17.1

[0024]

[Table 1]

Table 1

Embodi -	Photostabilizer (bisphenol compound)	Cyanin pigment	Fade after 10 hours (%)
2	HO - CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	C-2	16.1
3	C (CH ₃) ₃ C ₄ H ₉ C (CH ₃) ₈	C-3	15.5
4	$C (CH_3)_3 C_8H_7 C (CH_3)_3$ $CH_3 CH_3 CH_3$	C-4	16 <i>.</i> 2
5	HO \leftarrow $C (CH_3)_3 C_2H_5 C (CH_3)_3$ $C_2H_5 C (CH_3)_3$	C-5	14.9
6	C $(CH_3)_3$ C $(CH_3)_3$ HO $-CH_2$ $-OH$ CH $(CH_3)_2$ CH $(CH_3)_2$	C-6	15.0
7	$\begin{array}{c c} C & (CH_3)_3 & C_2H_5 & C & (CH_3)_3 \\ \hline C_2H_5 & C_2H_5 & C_2H_5 & C_2H_5 \end{array}$	C-7	14.6

[0025]

[Table 2]

Table 1 (Continued)

Embodi ment	Photostabilizer (bisphenol compound)	Cyanin pigment	Fade after 10 hours (%)
8	HO $C_{gH_{17}}$ C_{H_3} $C_{gH_{17}}$ $C_{gH_{17}}$	C-8	15.1
9	HO CH3 CH3 CH3	C - 9	23.4
10	HO — CH ₃ — OH CH ₃ — C ₁₈ H ₃₇	C - 10	25.6
11	HO \leftarrow	C-11	13.7
12	HO CH ₃) ₃ CF ₈ C (CH ₃) ₃ CH ₃ CH ₃	C - 12	15.8
13	$HO \longrightarrow C(CH_3)_3 CF_3 CF_3 OH$ $CF_3 OH$	C – 13	17.1

[0026]

[Table 3]

Table 1 (Continued)

Embodi-	Photostabilizer (bisphenol compound)	Cyanin pigment	Fade after 10 hours (%)
14	C (CH ₃) ₃ C ₂ F ₆ C (CH ₃) ₃ HO CH CH ₃ CH ₃	C – 14	17.2
15	HO $C(CH_3)_3$ C_2F_5 $C(CH_3)_3$ C_2F_5 CH_3	C – 15	16.5
16	HO — OH — C (CH ₃) ₈	C – 16	16.4
17	HO C C CH_3 C CH_3 C CH_3 C CH_3	C – 17	17.3
18	HO CH_3 $C(CH_3)_3$ $C(CH_3)_3$	C – 18	15.9
19	HO C (CH ₃) ₃ C (CH ₃) ₃ C (CH ₃) ₃	C – 19	14.8

[0027]

[Table 4]

Table 1 (Continued)

Embodi-	Photostabilizer (bisphenol compound)	Cyanin pigment	Fade after 10 hours (%)
20	HO CH ₃ C (CH ₃) ₃ C (CH ₃) ₃ CH ₃	C - 20	15,8
21	HO C (CH ₃) ₃ C (CH ₃) ₃ C (CH ₃) ₃	C - 21	14.5
Embodi- ment	Photostabilizer (bisphenol compound)	Cyanin pigment	Fade after 10 hours (%)
1		C-1	42.0
	Ć (CH³)²		

[0028]

[Benefits of the invention] The bisphenol compounds of the present invention are highly safe and easy to handle, and are photostabilizers which have a very excellent photostabilizing effect on cyanin dyes. They are also effective as photostabilizers in optical recorders which have been in high demand in recent years, and enable optical recording media to be offered which have outstanding resistance to light.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-116555

(43)公開日 平成6年(1994)4月26日

(51)IntCL'

 FI

技術表示窗所

C 0 9 K 15/08

審査請求 未請求 請求項の数4(全10頁)

(21)出顧番号

特顧平4-271473

(71)出願人 000003128

三井東圧化学株式会社

東京都千代田区護が関三丁目2番5号

(22)出顧日

平成4年(1992)10月9日

(72)発明者 詫摩 啓輔

福岡県大牟田市平原町300番地

(54)【発明の名称】 ピスフェノール系シアニン色素の光安定化剤及び嵌光安定化剤を含有する光配録媒体

(57)【要約】

(修正有)

【構成】 次式

(R1 ~R4 は水素原子またはアルキル基を示し、R5 およびR6 は水素原子、アルキル基またはペルフルオロアルキル基を示し、R5 とR6 はお互いに結合して環を形成してもよい。)で表されるシアニン色素の光安定化剤及びそれを含有する光記録媒体。

【効果】 取扱いが簡単で安全性が高く、シアニン色素 に対する光安定化効果が非常に優れた光安定化剤であ り、耐光性に優れた光記録媒体を提供できる。

*【化1】

【特許請求の範囲】

【請求項1】 一般式(1)(化1)

〔式中、Ri~Riは水素原子またはアルキル基を示し、 R5およびR6は水素原子、アルキル基またはペルフルオ ロアルキル基を示し、RsとRsはお互いに結合して環を 10 するという問題点を有する。 形成していてもよい。〕で表されるピスフェノール系シ アニン色素の光安定化剤。

【請求項2】 R1がt-ブチル基である請求項1記載 のシアニン色素の光安定化剤。

【請求項3】 RiおよびRaが共にtーブチル基である 請求項1記載のシアニン色素の光安定化剤。

【請求項4】 請求項1記載の一般式(1)(化1)で 表されるビスフェノール系シアニン色素の光安定化剤を 含有する光記録媒体。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明はシアニン色素の光安定化 剤及びそれを含有する光記録媒体に関するものである。 [0002]

【従来の技術】光記録媒体いわゆる光ディスクにおいて シアニン色素の薄膜を記録層として用いたものが実用化 されている。ここで用いられるシアニン色素は単独では 光安定性が悪く、光安定化剤を添加して使用する必要が ある.

【0003】光安定化剤としてチオ配位子を有するニッ 30 た光記録媒体を提供することである。 ケル化合物などの金属錯体を用いた方法が、特開昭59 -219852号、特開昭62-193891号、特開 昭62-207688号、特開昭63-19293号、 特開昭63-199248号に示されている。この方法 は光によって生成する反応性の高い一重項酸素を失活さ※

※せ、三重項酸素に戻す機構を利用したものであるが、長 時間光にさらされるとシアニン色素の分解がかなり進行

【0004】また、他の光安定化剤として、ニトロソ化 合物を用いた方法が、特開平2-300287号、特開 平2-300288号、特開平2-300289号に示 されている。しかし、このニトロソ化合物類は、それ自 体毒性が強いか、あるいは光分解物の毒性が強い等の問 題を有しているものが多く、ニトロソ化合物を使用する 上で人体に対する安全対策が必要である等、好ましくな い性質を有している。

【0005】さらに、光安定化剤としてトリニトロフェ 20 ニルヒドラジル遊配基を有する化合物を用いる方法が、 特開平2-304055号に示されている。しかし、ト リニトロフェニルヒドラジル遊離基を有する化合物は、 爆発性を有しており、取り扱い上、非常に問題である。 [0006]

【発明が解決しようとする課題】本発明の目的は、これ らの同題点を解決した光安定化剤、すなわちシアニン色 素の光安定性を向上させ、取り扱いが簡単で、しかも安 全性の高い光安定化剤を提供することである。また、本 発明の別の目的は、該光安定化剤を含んだ耐光性に優れ

[0007]

【発明を解決するための手段】本発明者らは、上記課題 を解決すべく鋭意検討した結果、一般式(1)(化2) [0008]

【化2】

【0009】〔式中、R1~R1は水素原子またはアルキ ル基を示し、RsおよびRsは水素原子、アルキル基また はペルフルオロアルキル基を示し、RsとReはお互いに 結合して環を形成していてもよい。〕で表されるビスフ ェノール誘導体がシアニン色素の光安定性を極めて向上 ざせ、しかも取り扱いが簡単でかつ安全性の高い性質を★ ★有すること、また、該光安定化剤をシアニン色素を含有 する光記録媒体に適用した場合にも、極めて効果的であ ることを見い出し、本発明を完成した。すなわち、本発 明は一般式(1)(化3)

[0010]

【化3】

【0011】〔式中、Ri~Riは水素原子またはアルキ ル基を示し、RsおよびRsは水素原子、アルキル基また はペルフルオロアルキル基を示し、RsとRsはお互いに 結合して環を形成していてもよい。〕で表されるビスフ を含有する光記録媒体である。

【0012】以下、本発明を詳しく説明する。本発明の 一般式(1)(化3)におけるR1~R4の具体例として は、水素原子、メチル基、エチル基、n-プロピル基、 i-プロピル基、n-ブチル基、i-ブチル基、t-ブ チル基、n-ペンチル基、2-メチループチル基、n-ヘキシル基、2、3ージメチルブチル基、3、5、5-トリメチルヘキシル基、nーオクチル基、nードデシル 基、n-オクタデシル基などのアルキル基が挙げられ、 またR5、R6の具体例としては、水素原子、メチル基、 エチル基、プロビル基、n-ブチル基等のアルキル基、 トリフルオロメチル基、ペンタフルオロエチル基、ペン タフルオロプロピル基などのペンタフルオロアルキル 基、およびRsとRsが結合し、シクロペンタン環、シク*

*ロヘキサン環、シクロオクタン環を形成した化合物など を挙げることができる。中でも水酸基のオルト位である Ri または、Ri およびRaにかさ高い置換基である t-ブチル基を有するピスフェノール誘導体が好ましく用い ェノール系シアニン色素の光安定化剤及び該光安定化剤 10 られる。本発明の光安定化剤の具体的代表例を第1表 (表1~2)に示す。これらの光安定化剤は、一種類も しくは二種類以上の組み合わせによっても使用できる。 【0013】光安定化剤の使用量はシアニン色素に対し て、通常、0.01~3.0モル比である。さらに3. 0 モル比以上を用いてもよいが、シアニン色素の色素濃 度が低くなり、吸光度が低くなるため、用途によっては 不都合を生じる場合がある。また、使用量が少ない場合 には効果が明確でないことがある。一方、光安定化の対 象となるシアニン色素は、特に限定されるものではない 20 が、下記に示される化合物(C-1~C-21)(化4 ~化6)が例示される。

> [0014] 【化4】

(C - 1)

$$C_2H_5$$
-+N-CH=CH-CH-CH-CH-CH-CH-(C - 4)

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

$$\begin{array}{c|c}
 & \text{Se} \\
 & \text{CH} = \text{CH} \xrightarrow{3} \text{CH} = \begin{array}{c}
 & \text{Se} \\
 & \text{N} & \text{C} & \text{C} & \text{C} \\
 & \text{C}_{2} & \text{H}_{5} & \text{C}_{2} & \text{H}_{5}
\end{array}$$
(C - 8)

[0015]

* * 【化5】

$$\begin{array}{c|c}
C_{1} & C_{1} & C_{1} & C_{2} & C_{2} & C_{2} & C_{3} & C_{4} & C_{5} & C_{5$$

$$\begin{array}{c|c} CH_3 & CH_3 \\ CH_3 & CH_3 \\ CH = CH \\ ClO_4 & CH_3 \end{array} \qquad (C-11)$$

$$CH_3 CH_3 CH_3 CH_3$$

$$CH_3 CH_3 CH_4$$

$$CH_3 CH_4$$

$$CH_3 CH_4$$

$$CH_3 CH_4$$

$$CH_3 CH_3$$

$$CH_3 CH_3$$

$$CH_3 CH_3$$

$$CH_3 CH_3$$

$$CH_3$$
 CH_3 CH_3 CH_3 CH_3 CH_4 CH_5 CH_5 CH_7 CH_8 CH_9 CH_9

$$CH_3$$
 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_4 CH_2 CH_3 CH_3

[0016]

$$\begin{array}{c}
\text{S} \\
\text{CH} = \text{CH} \xrightarrow{3} \text{CH} = \text{CH}_{2} \text{CH}_{2} \text{COOH} \\
\text{C}_{2} \text{H}_{5}
\end{array}$$
(C - 17)

$$NaO_3S(CH_2)_3 - N \longrightarrow (CH - CH)_2 C - S \longrightarrow S$$

$$O - C - N \longrightarrow C_2H_5$$
(C - 18)

$$(C_2H_5)_3N \cdot HO_3S(CH_2)_4 - N$$
 $(CH - CH)_2C - S$ $O = C - N$ $C - 19)$

NaO₃ S (CH₂)₄ -N (CH - CH
$$\frac{1}{2}$$
 C - S
O - C - N S (C - 20)

$$NaO_3 S (CH_2)_4 - N \longrightarrow (CH - CH)_2 C - S$$

$$O - C - N$$

$$n - C_6 H_{13}$$

$$(C - 21)$$

【0017】本発明におけるビスフェノール誘導体は、 シアニン色素の薄膜を記録層として用いる光記録媒体中 30 が、ガラスやポリメタアクリレートなどの他の基盤を用 に光安定化剤として添加使用することができる。これら の光安定化剤を光記録媒体に適用する場合、色素ととも に各種溶剤に溶解後、記録媒体の基盤に塗布し薄膜を形 成するなどの方法によって行うことができる。

[0018]

【実施例】以下、本発明を実施例によりさらに詳しく説 明する。実施例における被着色体としては、通常、光記* * 録媒体の基盤として用いるポリカーボネート板とした

実施例1

シアニン色素(C-1)3gおよび下記ピスフェノール 化合物(A)(化7)

[0019]

【化7】

【0020】2gをエタノール100g中に入れ1時間 室温下で撹拌した後、メンブランフィルター(東洋沪紙 製PTEE、ポアーサイズ1、Oμm)を用いて沪過 し、色素溶液を得た。本色素溶液をポリカーボネート板 基盤上にスピンコート法によって塗布した。この着色ボ リカーボネート基盤を耐光試験器(入江製作所製 DR 400T) 内で20cmの距離から光照射した。10時 ※おける退色率は15.1%と良好な結果であった。

【0021】実施例2~21

いても同様な結果が得られる。

実施例1と全く同様にして、シアニン色素とピスフェノ ール化合物の組み合わせを代えて行った。結果を第1表 (表1~表4)に示すが、いずれも実施例1同様、良好 な結果を得た.

【0022】比較例1

間光照射後のシアニン色素の吸収極大波長715nmに※50 実施例1において、ビスフェノール化合物を全く添加せ

ずに行ったところ第1表(表4)に示すようにシアニン色素がかなり分解した。

【0023】比較例2

実施例1において、ビスフェノール化合物(A)(化7)の代わりに2.6-ジーt-ブチル-4-メチルフ*

*ェノールを用いて行ったところ、第1表 (表4) に示す ようにシアニン色素がかなり分解した。

12

[0024]

【表1】

. .

第1表

			
実施例	光安定化剤(ビスフェノール化合物)	シアニン 色素	10 時間後の 光退色率 (%)
2	HO $\stackrel{C}{\longleftrightarrow}$ \stackrel	C – 2	16.1
3	HO \leftarrow CH ₃) ₃ C ₄ H ₉ C (CH ₃) ₃ \leftarrow OH	C-3	15.5
4	HO \leftarrow CH ₃) ₃ C ₃ H ₇ C (CH ₃) ₃ CH \leftarrow OH	C-4	16.2
5	HO \subset $(CH_3)_3$ C_2H_5 \subset $(CH_3)_3$ C_2H_5 \subset $(CH_3)_3$ \subset $(CH_3)_3$	C – 5	14.9
6	HO \leftarrow CH (CH ₃) ₃ C (CH ₃) ₃ OH CH (CH ₃) ₂ CH (CH ₃) ₂	C - 6	15.0
7	HO C_2H_5 C_2H_5 C_2H_5 C_2H_5 C_2H_5	C-7	14.6

[0025]

※ ※【表2】

	第1 表(続き)		
実施例	光安定化剤(ビスフェノール化合物)	シアニン 色素	10時間後の 光退色率(%)
8	$HO \xrightarrow{C} \xrightarrow{C} \xrightarrow{C} \xrightarrow{C} \xrightarrow{C} \xrightarrow{C} \xrightarrow{C} \xrightarrow{C}$	C-8	15.1
9	HO $\stackrel{\text{CH}_3}{\longleftrightarrow}$ $\stackrel{\text{CH}_3}{\longleftrightarrow}$ $\stackrel{\text{CH}_3}{\longleftrightarrow}$ $\stackrel{\text{CH}_3}{\longleftrightarrow}$ $\stackrel{\text{CH}_3}{\longleftrightarrow}$	C – 9	23.4
10	HO — СН ₃ — ОН СН ₃ — С ₁₈ Н ₃₇	C - 10	25.6
11	HO \subset $(CH_3)_3$ CF_3 C $(CH_3)_3$ CF_3 C $(CH_3)_3$ C $(CH_3)_3$	C-11	13.7
12	HO $\stackrel{C}{\longleftrightarrow}$ $\stackrel{CH_3}{\longleftrightarrow}$ $\stackrel{CF_3}{\longleftrightarrow}$ $\stackrel{C}{\longleftrightarrow}$ $\stackrel{CH_3}{\longleftrightarrow}$	C – 12	15.8
13	HO \leftarrow	C – 13	17.1

[0026]

* *【表3】

第1表(続き)

	77 T & (01 C)		
実施例	光安定化剤 (ビスフェノール化合物)	シアニン 色素	10時間後の 光退色率 (%)
14	$C (CH_3)_3 C_2F_5$ $CH \longrightarrow CH_3$ $CH_3 CH_3$	C – 14	17.2
15	HO C	C - 15	16.5
16	HO \leftarrow	C - 16	16.4
17	HO \leftarrow CH ₃ \rightarrow CH ₃ \rightarrow C (CH ₃) ₃ \rightarrow C (CH ₃) ₃	C – 17	17.3
18	HO CH_3 $C(CH_3)_3$ $C(CH_3)_3$ CH_3	C – 18	15.9
19	HO \subset $(CH_3)_3$ \subset $(CH_3)_3$ \subset $(CH_3)_3$	C – 19	14.8

[0027]

* *【表4】

第 1 表 (続き)

実施例	光安定化剤(ビスフェノール化合物)	シアニン 色素	10時間後の 光退色率(%)
20	HO CH_3 CCH_3 CCH_3 CCH_3 CCH_3 CCH_3	C - 20	15.8
21	HO \subset $(CH_3)_3$ \subset $(CH_3)_3$ \subset $(CH_3)_3$ \subset $(CH_3)_3$	C – 21	14.5
			
比較例	光安定化剂	シアニン 色素	10時間後の 光退色率 (%)
上較例	光安定化剤		10時間後の 光退色率 (%) 42.0

[0028]

【発明の効果】本発明のビスフェノール系化合物は、取り扱いが簡単で安全性が高く、しかもシアニン色素に対する光安定化効果が非常に優れた光安定化剤である。ま*30

*た、近年需要の高い光記録媒体の光安定化剤としても有 効であるので、耐光性に優れた光記録媒体を提供するこ とができる。