PLAYING

We use cookies to improve your experience on our site and to show you relevant advertising. By browsing this website, you agree to our use of cookies. Learn more

Accept

AtoZmath.com

A O E U I D H T N S ;

College Algebra

Support us

Try our new - Enter problem or search problem

What's new Home

Algebra Matrix & Vector **Numerical Methods**

Statistical Methods

Operation Research

Word Problems

Feedback Calculu

Home > Operation Research calculators > Revised Simplex method example

9. Revised Simplex method example (Enter your problem)

- 1. Standard form-1: Example-1
- 2. Standard form-1: Example-2
- 3. Standard form-1: Example-3
- 4. Standard form-2 using Two-Phase method: Example-1
- 5. Standard form-2 using Two-Phase method: Example-
- 6. Standard form-2 using Two-Phase method: Example-3
- 7. Standard form-2 using Big M method: Example-1
- 8. Standard form-2 using Big M method: Example-2
- 9. Standard form-2 using Big M method: Example-3

- Other related methods
 - 0. Formulate linear programming model
 - 1. Graphical method
 - 2. Simplex method (BigM method)
 - 3. Two-Phase method
 - 4. Primal to dual conversion
 - 5. Dual simplex method
 - 6. Integer simplex method
 - 7. Branch and Bound method
 - 8. 0-1 Integer programming problem
 - 9. Revised Simplex method
- 4. Standard form-2 using Two-Phase method: Example-1 (Previous example)
- 6. Standard form-2 using Two-Phase method

5. Standard form-2 using Two-Phase method: Example-2

Find solution using Revised Simplex (Two-Phase) method

MIN Z = x1 + x2

subject to

x1 + 2x2 >= 74x1 + x2 >= 6

and x1, x2 >= 0

Solution:

Problem is

 $Min Z = x_1 + x_2$

subject to

 $x_1 + 2x_2 \ge 7$

 $4x_1 + x_2 \ge 6$

and $x_1, x_2 \ge 0$;

: Max $Z = -x_1 - x_2$

(Enter your problem)

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropriate

1

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropriate

After introducing surplus, artificial variables

$$Z' + x_1 + x_2 = 0$$

$$-5x_1 - 3x_2 + S_1 + S_2 + x_5 = -13$$

$$x_1 + 2x_2 - S_1 + A_1 = 7$$

$$4x_1 + x_2 - S_2 + A_2 = 6$$

Now represent the new system of constraint equations in the matrix form

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -5 & -3 & 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 2 & -1 & 0 & 1 & 0 & 0 \\ 0 & 4 & 1 & 0 & -1 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} Z' \\ x_1 \\ x_2 \\ S_1 \\ S_2 \\ A_1 \\ A_2 \\ x_5 \end{bmatrix} = \begin{bmatrix} 0 \\ -13 \\ 7 \\ 6 \end{bmatrix}$$

or

$$\begin{bmatrix} 1 & -c \\ 0 & A \end{bmatrix} \begin{bmatrix} Z \\ x \end{bmatrix} = \begin{bmatrix} 0 & b \end{bmatrix}; x \ge 0$$

where
$$e = \beta_0$$
, $a_4 = \beta_1$, $a_5 = \beta_2$, $a_6 = \beta_3$

Step-2: The basis matrix B_1 of order (3+1)=4 can be expressed as

$$B_1 = \begin{bmatrix} \beta_0, \beta_1, \beta_2, \beta_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Then,
$$B_1^{-1} = \begin{bmatrix} 1 & C_B B^{-1} \\ 0 & B^{-1} \end{bmatrix} = 1; B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \beta_1, \beta_2, \beta_3 \end{bmatrix}; C_B = [0, 0, 0]$$

Phase-1

			Basis In	verse B_1^{-1}					Additio	nal
В	X _B	β ₀ Ζ'	β_1 x_5	β_2 A_1	$eta_3 A_2$	$C_k - Z_k$	Min Ratio $\frac{X_B}{y_1}$	<i>x</i> ₁	x ₂	
Z'	0	1	0	0	0			1	1	
<i>x</i> ₅	-13	0	1	0	0		(Enter	<u>your pı</u>	<u>roblem</u>)
A 1	7	0	0	1	0			1	2	Г
A_2	6	0	0	0	1			4	1	

X

1

$$= \operatorname{Min} \left\{ \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 & 0 \\ -5 & -3 & 1 & 1 \\ 1 & 2 & -1 & 0 \\ 4 & 1 & 0 & -1 \end{bmatrix} \right\}$$

$$= \operatorname{Min} \left\{ \begin{bmatrix} -5 & -3 & 1 & 1 \end{bmatrix} \right\}$$

Thus, vector x_1 is selected to enter into the basis, for k = 1

Step-4: To select a basic variable to leave the basis, we compute y_k for k=1, as follows

$$y_1 = B_1^{-1} a_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -5 \\ 1 \\ 4 \end{bmatrix} = \begin{bmatrix} 1 \\ -5 \\ 1 \\ 4 \end{bmatrix}$$

= -5 (corresponds to z_1 - c_1)

and
$$X_B = \begin{bmatrix} 0 \\ -13 \\ 7 \\ 6 \end{bmatrix}$$

Now, calculate the minimum ratio to select the basic variable to leave the basis

$$\frac{x_{Br}}{y_{rk}} = \min\left\{\frac{x_{Bi}}{y_{ik}}, y_{ik} > 0\right\}$$

$$= Min \left\{ \frac{0}{1}, \frac{7}{1}, \frac{6}{4} \right\}$$

$$= \operatorname{Min}\left\{0, 7, \frac{3}{2}\right\}$$

$$= \frac{3}{2} \left(\text{corresponds to } \frac{x_{B3}}{y_{31}} \right)$$

Thus, vector A_2 is selected to leave the basis, for r=3

The table with new entries in column y_1 and the minimum ratio

			Basis In	verse B_1^{-1}					Addition	nal
В	X _B	β ₀ Z'	β_1 x_5	β_2 A_1	β_3 A_2	$C_k - Z_k$	Min Ratio $\frac{X_B}{y_1} \text{ (Enter)}$	<u>yoŭt p</u> i	rob <mark>le</mark> m)
Z'	0	1	0	0	0	1	0	1	1	
<i>x</i> ₅	-13	0	1	0	0	-5		-5	-3	
A 1	7	0	0	1	0	1	7	1	2	

1

For this we apply the following row operations in the same way as in the simplex method

	X_B	β_1	β_2	β_3	<i>y</i> ₁
R_1	0	0	0	0	1
R_2	-13	1	0	0	-5
R_3	7	0	1	0	1
R_4	6	0	0	1	4

$$+R_4(\text{new}) = R_4(\text{old}) \div 4$$

$$+ R_1(\text{new}) = R_1(\text{old}) - R_4(\text{new})$$

$$+ R_2(\text{new}) = R_2(\text{old}) + 5R_4(\text{new})$$

$$+ R_3(\text{new}) = R_3(\text{old}) - R_4(\text{new})$$

The improved solution is

			Basis In	verse B_1^{-1}				Additional		
В	X _B	β ₀ Z'	β ₁ x ₅	β_2 A_1	β_3 x_1	$C_k - Z_k$	Min Ratio $\frac{X_B}{y_1}$	A2	x ₂	
Z'	$-\frac{3}{2}$	1	0	0	- 1/4			0	1	
<i>x</i> ₅	$-\frac{11}{2}$	0	1	0	<u>5</u> 4			0	-3	
A 1	11 2	0	0	1	- 1/4			0	2	
<i>x</i> ₁	$\frac{3}{2}$	0	0	0	$\frac{1}{4}$			1	1	

Iteration=2: Repeat steps 3 to 5 to get new solution **Step-3**: To select the vector corresponding to a non-basic variable to enter into the basis, we compute

$$z_k - c_k = \operatorname{Min}\left\{\left(z_j - c_j\right) < 0;\ \right\}$$

= Min
$$\left\{ \left(2^{nd} \text{ row of } B_1^{-1} \right) \left(\text{Columns } a_j \text{ not in basis} \right) \right\}$$

$$= Min \left\{ \begin{bmatrix} 0 & 1 & 0 & \frac{5}{4} \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & -3 & 1 & 1 \\ 0 & 2 & -1 & 0 \\ 1 & 1 & 0 & -1 \end{bmatrix} \right\}$$

(Enter your problem)

×

1

Thus, vector x_2 is selected to enter into the basis, for k = 2

Step-4: To select a basic variable to leave the basis, we compute y_k for k=2, as follows

$$y_2 = B_1^{-1} a_2 = \begin{bmatrix} 1 & 0 & 0 & -\frac{1}{4} \\ 0 & 1 & 0 & \frac{5}{4} \\ 0 & 0 & 1 & -\frac{1}{4} \\ 0 & 0 & 0 & \frac{1}{4} \end{bmatrix} \begin{bmatrix} 1 \\ -3 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{3}{4} \\ \frac{7}{4} \\ \frac{7}{4} \\ \frac{1}{4} \end{bmatrix}$$

and
$$X_B = \begin{bmatrix} \frac{3}{2} \\ -\frac{11}{2} \\ \frac{11}{2} \\ \frac{3}{2} \end{bmatrix}$$

Now, calculate the minimum ratio to select the basic variable to leave the basis

$$\frac{x_{Br}}{y_{rk}} = \min\left\{\frac{x_{Bi}}{y_{ik}}, y_{ik} > 0\right\}$$

$$= \operatorname{Min}\left(\frac{\frac{3}{2}, \frac{11}{2}, \frac{3}{2}}{\frac{3}{4}, \frac{7}{4}, \frac{1}{4}}\right)$$

$$= Min \left\{ -2, \frac{22}{7}, 6 \right\}$$

$$= \frac{22}{7} \left(\text{correspnds to } \frac{x_{B2}}{y_{22}} \right)$$

Thus, vector A_1 is selected to leave the basis, for r = 2

The table with new entries in column \boldsymbol{y}_2 and the minimum ratio

			Basis In	verse B_1^{-1}			(Enter	<u>your pr</u>	øld littina r	— n)al
В	X_B	β ₀ Ζ'	β_1 x_5	$eta_2 A_1$	β_3 x_1	$C_k - Z_k$	Min Ratio $\frac{X_B}{y_2}$	A_2	x ₂	

×

1

A_1	$\frac{11}{2}$	0	0	1	$-\frac{1}{4}$	$\frac{7}{4}$	$\frac{22}{7}$	0	2	
x_1	$\frac{3}{2}$	0	0	0	$\frac{1}{4}$	$\frac{1}{4}$	6	1	1	

The table solution is now updated by replacing variable A_1 with the variable x_2 into the basis.

For this we apply the following row operations in the same way as in the simplex method

	X_B	β_1	β_2	β_3	<i>y</i> ₂
R_1	$-\frac{3}{2}$	0	0	$-\frac{1}{4}$	3 4
R_2	$-\frac{11}{2}$	1	0	$\frac{5}{4}$	$-\frac{7}{4}$
R_3	$\frac{11}{2}$	0	1	$-\frac{1}{4}$	$\frac{7}{4}$
R_4	$\frac{3}{2}$	0	0	$\frac{1}{4}$	$\frac{1}{4}$

$$+R_3(\text{new}) = R_3(\text{old}) \times \frac{4}{7}$$

$$+R_1(\text{new}) = R_1(\text{old}) - \frac{3}{4}R_3(\text{new})$$

$$+ R_2(\text{new}) = R_2(\text{old}) + \frac{7}{4}R_3(\text{new})$$

$$+ R_4(\text{new}) = R_4(\text{old}) - \frac{1}{4}R_3(\text{new})$$

The improved solution is

			Basis In	verse B_1^{-1}				Additional		
В	X _B	β ₀ Z'	β_1 x_5	β_2 x_2	β_3 x_1	$C_k - Z_k$	Min Ratio $\frac{X_B}{y_2}$	A ₂	A ₁	
Z'	$-\frac{27}{7}$	1	0	$-\frac{3}{7}$	- 1 7			0	0	
<i>x</i> ₅	0	0	1	1	1			0	0	
<i>x</i> ₂	$\frac{22}{7}$	0	0	$\frac{4}{7}$	$-\frac{1}{7}$			0	1	
<i>x</i> ₁	<u>5</u> 7	0	0	$-\frac{1}{7}$	$\frac{2}{7}$		(<u>Enter</u>	<u>your pr</u>	oblem)	

$$x_5 = 0$$

В	$X_{\mathcal{B}}$	β ₀ Ζ'	β_1 x_5	β_2 x_2	β_3 x_1	$C_k - Z_k$	Min Ratio $\frac{X_B}{y_2}$	S ₁
Z'	- 27 7	1	0	$-\frac{3}{7}$	$-\frac{1}{7}$			0
<i>x</i> ₅	0	0	1	1	1			1
x ₂	<u>22</u> 7	0	0	$\frac{4}{7}$	$-\frac{1}{7}$			-1
<i>x</i> ₁	$\frac{5}{7}$	0	0	$-\frac{1}{7}$	$\frac{2}{7}$			0

Iteration=1: Repeat steps 3 to 5 to get new solution

Step-3: To select the vector corresponding to a non-basic variable to enter into the basis, we compute

$$z_k - c_k = \operatorname{Min}\left\{ \left(z_j - c_j \right) < 0; \right\}$$

= Min
$$\left\{ \left(1^{St} \text{ row of } B_1^{-1}\right) \left(\text{Columns } a_j \text{ not in basis}\right) \right\}$$

$$= Min \left\{ \begin{bmatrix} 1 & 0 & -\frac{3}{7} & -\frac{1}{7} \\ \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ -1 & 0 \\ 0 & -1 \end{bmatrix} \right\}$$

$$= \operatorname{Min} \left\{ \left[\frac{3}{7} \quad \frac{1}{7} \right] \right\}$$

Since all Z_j - $C_j \ge 0$

Hence, optimal solution is arrived with value of variables as :

$$x_1 = \frac{5}{7}, x_2 = \frac{22}{7}$$

Max
$$Z = -\frac{27}{7}$$

$$\therefore \operatorname{Min} Z = \frac{27}{7}$$

This material is intended as a summary. Use your textbook for detail explanation.

Any bug, improvement, feedback then Submit Here

4. Standard form-2 using Two-Phase method : Example-1 (Previous example)

6. Standard form-2 using Two-Phase metho
(No.)

(Enter your problem)

Copyright © 2024. All rights reserved. Terms, Privacy

(Enter your problem)