61. The double-width transceiver of claim 60, wherein the second plug in the pair of plugs includes

an electrical interface configured to transfer electrical power from the host board system through a corresponding electrical interface included in the set of adjacent connectors to the double-width transceiver.

62. The double-width transceiver of claim 60, wherein the second plug in the pair of plugs includes

an electrical interface configured to ground the double-width transceiver to the host board system through a corresponding electrical interface included in the set of adjacent connectors.

63. The double-width transceiver of claim 60, wherein the second plug in the pair of plugs includes

an electrical interface configured to exchange electrical data signals between the double-width transceiver and the host board system through a corresponding electrical interface included in the set of adjacent connectors.

64. The double-width transceiver of claim 58, wherein the first plug in the pair of plugs includes

a first electrical interface configured to transfer electrical power from the host board system through a corresponding electrical interface included in the set of adjacent connectors to the double-width transceiver;

a second electrical interface configured to ground the double-width transceiver to the host board system through a corresponding electrical interface included in the set of adjacent connectors; and

a third electrical interface configured to exchange electrical data signals between the double-width transceiver and the host board system through a corresponding electrical interface included in the set of adjacent connectors.

65. The double-width transceiver of claim 58, further including

李克

a flange, said flange extending around a perimeter of the double-width transceiver, said flange configured to abut the host board system when said double-width transceiver is coupled to the set of adjacent connectors on said host board system.

66. The double-width transceiver of claim 65, further including

a guide rail attached to a second side of the double-width transceiver, said guide rail positioned to slidably engage said double-width transceiver to a slot formed on the host board system in a direction substantially perpendicular to a plane formed by the flange.

67. The double-width transceiver of claim 58, further including

a guide rail attached to a second side of the double-width transceiver, said guide rail positioned to slidably engage said double-width transceiver to a slot formed on the host board system.

68. The double-width transceiver of claim 67, further including

a flange, said flange extending around a perimeter of the double-width transceiver, said flange configured to abut the host board system when said double-width transceiver is coupled to the set of adjacent connectors on said host board system, said flange forming a plane that is perpendicular to a direction in which said guide rail slidably engages the slot formed on the host board system.

69. The double-width transceiver of claim 58, wherein

the double-width transceiver is sized to permit a set of double-width transceivers to simultaneously couple mechanically with an adjacent set of adjacent connectors on the host board system.

70. The double-width transceiver of claim 58, wherein

the first plug in said pair of plugs is suitable for use by a single-width transceiver to mechanically and electrically couple said single-width transceiver to either connector in said

set of adjacent connectors.

71. A system comprising

a host board and a double-width transceiver;

the host board including a set of connectors mounted on said host board and a set of slots, each slot from the set of slots open to an edge of the host board;

the double-width transceiver sized to accommodate a pair of plugs disposed on a first side of the double-width transceiver; and

the set of connectors positioned with respect to the set of slots to enable the doublewidth transceiver to slidably engage a slot in the set of slots so as to mechanically and electrically couple said double-width transceiver to two adjacent connectors in said set of connectors.

72. The system of claim 71, wherein

each plug in the pair of plugs is configured to mechanically couple said double-width transceiver to the two adjacent connectors.

73. The system of claim 72, wherein

a first plug in the pair of plugs is configured to electrically couple said double-width transceiver to said host board system through a first connector in the two adjacent connectors.

74. The system of claim 73, wherein

a second plug in the pair of plugs forms a cap covering electrical interfaces of a second connector in the two adjacent connectors.

75. The system of claim 73, wherein

a second plug in the pair of plugs also electrically couples said double-width transceiver to a second connector in the two adjacent connectors.

76. The system of claim 75, wherein the second plug in the pair of plugs includes

ry g

an electrical interface configured to transfer electrical power from the host board to the double-width transceiver through a corresponding electrical interface included in the two adjacent connectors.

- 77. The system of claim 75, wherein the second plug in the pair of plugs includes an electrical interface configured to ground the double-width transceiver to the host board through a corresponding electrical interface included in the two adjacent connectors.
- 78. The system of claim 75, wherein the second plug in the pair of plugs includes an electrical interface configured to exchange electrical data signals between the double-width transceiver and the host board through a corresponding electrical interface included in the two adjacent connectors.
- 79. The system of claim 73, wherein the first plug in the pair of plugs includes a first electrical interface configured to transfer electrical power from the host board to the double-width transceiver through a corresponding electrical interface included in the two adjacent connectors;

a second electrical interface configured to ground the double-width transceiver to the host board through a corresponding electrical interface included in the two adjacent connectors; and

a third electrical interface configured to exchange electrical data signals between the double-width transceiver and the host board through a corresponding electrical interface included in the two adjacent connectors.

80. The system of claim 73, wherein

the first plug in said pair of plugs is suitable for use by a single-width transceiver to mechanically and electrically couple said single-width transceiver to either of the two adjacent connectors.

81. The system of claim 71, wherein double-width transceiver further includes

a guide rail attached to a second side of the double-width transceiver, said guide rail positioned to enable the double-width transceiver to slidably engage the slot in the set of slots and mechanically and electrically couple the two adjacent connectors.

82. The system of claim 71, wherein

the double-width transceiver is sized to permit a set of double-width transceivers to simultaneously couple with an adjacent set of two adjacent connectors.

- 83. The system of claim 71, wherein double-width transceiver further includes a flange, said flange extending around a perimeter of the double-width transceiver, said flange configured to abut a rigid body fastened to said host board when said double-width transceiver is coupled to the two adjacent connectors.
- 84. A transceiver, the transceiver sized to accommodate a pair of plugs disposed on a first side of said transceiver, each plug of said pair of plugs configured to simultaneously couple said transceiver to a respective connector of a set of adjacent connectors on a host board system, said each of said pair of plugs being of a size suitable to couple a single-width transceiver to either of the connectors in the set of adjacent connectors.
- 85. A transceiver, the transceiver sized to accommodate a pair of plugs disposed on a first side of said transceiver, each plug of said pair of plugs configured to simultaneously couple said transceiver to a respective connector of a set of adjacent connectors on a host board system, said each of said pair of plugs being of a size suitable to couple a small form factor transceiver to either of the connectors in the set of adjacent connectors.
- 86. A transceiver, the transceiver sized to accommodate a pair of plugs disposed on a first side of said transceiver, each plug of said pair of plugs configured to simultaneously couple said transceiver to a respective connector of a set of adjacent connectors on a host board system, said each of said pair of plugs being of a size suitable to couple a narrow transceiver to either of the connectors in the set of adjacent connectors.