Kruskal's Algorithm

Algorithm that is guaranteed to find a minimum spanning tree in a graph

- 1. Rank your edges from lowest to highest cost
- 2. Have all vertices been connected to the minimum spanning tree?
 - A. If yes, stop. You have found the minimum spanning tree.
 - B. If no, go to step 3.
- 3. Pick one edge with the lowest cost that has not yet been added to the minimum spanning tree
 - A. Does the edge create a cycle?
 - If yes, eliminate the edge from consideration and go to step 3
 - If no, add the edge to the minimum spanning tree and go to step 2

Example taken from Kenji Ikeda http://www-b2.is.tokushima-u.ac.jp/~ikeda/

$$A - B = 5$$

 $D - E = 5$
 $B - D = 10$
 $C - D = 10$
 $C - E = 15$
 $E - F = 15$
 $C - B = 20$
 $D - F = 20$
 $A - C = 30$

$$A - B = 5$$
 $D - E = 5$
 $B - D = 10$
 $C - D = 10$
 $C - E = 15$
 $E - F = 15$
 $C - B = 20$
 $D - F = 20$
 $A - C = 30$

$$A - B = 5$$
 $D - E = 5$
 $B - D = 10$
 $C - D = 10$
 $C - E = 15$
 $E - F = 15$
 $C - B = 20$
 $D - F = 20$
 $A - C = 30$

$$A - B = 5$$

 $D - E = 5$
 $B - D = 10$
 $C - D = 10$
 $C - E = 15$
 $E - F = 15$
 $C - B = 20$
 $D - F = 20$
 $A - C = 30$

$$A - B = 5$$
 $D - E = 5$
 $B - D = 10$
 $C - D = 10$
 $C - E = 15$
 $E - F = 15$
 $C - B = 20$
 $D - F = 20$
 $A - C = 30$

You Try It

You Try It

You Try It

