Association Rule Mining

CS145 Fall 2015

Mining Various Kinds of Rules or Regularities

- Multi-level, quantitative association rules, correlation and causality, ratio rules, sequential patterns, emerging patterns, temporal associations, partial periodicity
- Classification, clustering, iceberg cubes, etc.

Multiple-level Association Rules

- ▶ Items often form hierarchy
- Flexible support settings: Items at the lower level are expected to have lower support.
- Transaction database can be encoded based on dimensions and levels
- explore shared multi-level mining

reduced support uniform support Level 1 Milk Level 1 min $\sup = 5\%$ [support = 10%] min $\sup = 5\%$ Skim Milk 2% Milk Level 2 Level 2 [support = 6%] [support = 4%] min $\sup = 5\%$ $min_sup = 3\%$

Multi-dimensional Association Rules

- Single-dimensional rules:
 - \blacktriangleright buys(X, "milk") \Rightarrow buys(X, "bread")
- ► MD rules: ≥ 2 dimensions or predicates
 - ▶ Inter-dimension assoc. rules (no repeated predicates)
 - ▶ age(X,"19-25") \land occupation(X,"student") \Rightarrow buys(X,"coke")
 - hybrid-dimension assoc. rules (repeated predicates)
 - ▶ age(X,"19-25") ∧ buys(X, "popcorn") \Rightarrow buys(X, "coke")
- Categorical Attributes: finite number of possible values, no order among values
- Quantitative Attributes: numeric, implicit order

Quantitative/Weighted Association Rules

Numeric attributes are *dynamically* discretized maximize the confidence or compactness of the rules

Income

2-D quantitative association rules: $A_{quan1} \land A_{quan2} \Rightarrow A_{cat}$ Cluster "adjacent" association rules to form general rules

using a 2-D grid.

age(X,"33-34") \land income(X,"30K - 50K") \Rightarrow buys(X,"high resolution TV")

Mining Distance-based Association Rules

 Binning methods do not capture semantics of interval data

Price	Equi-width	Equi-depth	Distance-based
7	[0,10]	[7,20]	[7,7]
20	[11,20]	[22,50]	[20,22]
22	[21,30]	[51,53]	
50	[31,40]		
51	[41,50]		[50,53]
53	[51,60		

- Distance-based partitioning
 - Density/number of points in an interval
 - "Closeness" of points in an interval

CS145: Data Mining

Constraint-based (Query-Directed) Mining

- ► Finding all the patterns in a database autonomously? unrealistic!
 - ▶ The patterns could be too many but not focused!
- Data mining should be an interactive process
 - ► User directs what to be mined using a data mining query language (or a graphical user interface)
- Constraint-based mining
 - ▶ User flexibility: provides constraints on what to be mined
 - Optimization: explores such constraints for efficient mining —
 constraint-based mining: constraint-pushing, similar to push selection first in DB query processing
 - Note: still find all the answers satisfying constraints, not finding some answers in "heuristic search"

Constraints in Data Mining

- Knowledge type constraint:
 - classification, association, etc.
- Data constraint using SQL-like queries
 - ▶ find product pairs sold together in stores in Chicago this year
- Dimension/level constraint
 - ▶ in relevance to region, price, brand, customer category
- Rule (or pattern) constraint
 - small sales (price < \$10) triggers big sales (sum > \$200)
- Interestingness constraint
 - strong rules: min_support ≥ 3%, min_confidence ≥ 60%

Constraint-Based Frequent Pattern Mining

- Pattern space pruning constraints
 - ► Anti-monotonic: If constraint c is violated, its further mining can be terminated
 - ▶ Monotonic: If c is satisfied, no need to check c again
 - Succinct: c must be satisfied, so one can start with the data sets satisfying
 c
 - Convertible: c is not monotonic nor anti-monotonic, but it can be converted into it if items in the transaction can be properly ordered
- Data space pruning constraint
 - Data succinct: Data space can be pruned at the initial pattern mining process
 - Data anti-monotonic: If a transaction t does not satisfy c, t can be pruned from its further mining

Pattern Space Pruning with Anti-Monotonicity Constraints TDB (min sup=2)

A constraint C is *anti-monotone* if the super pattern satisfies C, all of its sub-patterns do so too

•	In other words, anti-monotonicity: If an itemset S
	violates the constraint, so does any of its superset

- ► Ex. 1. $sum(S.price) \le v$ is anti-monotone
- ► Ex. 2. range(S.profit) \leq 15 is anti-monotone
 - ▶ Itemset *ab* violates C
 - ▶ So does every superset of *ab*
- ► Ex. 3. $sum(S.Price) \ge v$ is not anti-monotone
- Ex. 4. *support count* is anti-monotone: core property used in Apriori

TID	Transaction
10	a, b, c, d, f
20	b, c, d, f, g, h
30	a, c, d, e, f
40	c, e, f, g

Item	Profit
a	40
b	0
С	-20
d	10
е	-30
f	30
g	20
h	-10

Pattern Space Pruning with Monotonicity Constraints TDB (min sup=2)

- A constraint C is *monotone* if the pattern satisfies C, we do not need to check C in subsequent mining
- Alternatively, monotonicity: If an itemset S satisfies the constraint, so does any of its superset
- Ex. 1. $sum(S.Price) \ge v$ is monotone
- Ex. 2. $min(S.Price) \le v$ is monotone
- Ex. 3. C: range(S.profit) \geq 15
 - Itemset ab satisfies C
 - ► So does every superset of *ab*

_ 1 /		
TID	Transaction	
10	a, b, c, d, f	
20	b, c, d, f, g, h	
30	a, c, d, e, f	
40	c, e, f, g	

Item	Profit
a	40
b	0
С	-20
d	10
е	-30
f	30
g	20
h	-10

Data Space Pruning with Data Antimonotonicity TDB (min sup=2)

A constraint c is *data anti-monotone* if, for a pattern p, it cannot be satisfied by a transaction t in p-projected database, it cannot be satisfied by t's projection on p's superset either

•	The key for data anti-monotone is recursive data
	reduction

- ► Ex. 1. $sum(S.Price) \ge v$ is data anti-monotone
- ► Ex. 2. $min(S.Price) \le v$ is data anti-monotone
- ► Ex. 3. C: $range(S.profit) \ge 25$ is data anti-monotone
 - ▶ Itemset {b}'s projected DB:
 - ► T10': {c, d, f, h}, T20': {c, d, f, g, h}, T30': {c, d, f, g}

► C cannot be satisfied by T10', T10' can be pruned

TID	Transaction
10	a, b, c, d, f, h
20	b, c, d, f, g, h
30	b, c, d, f, g
40	c, e, f, g

Item	Profit
a	40
b	0
С	-20
d	-15
е	-30
f	-10
g	20
h	-5

Pattern Space Pruning with Succinctness

Succinctness:

- Given A_{I_i} the set of items satisfying a succinctness constraint C, then any set S satisfying C is based on A_{I_i} , i.e., S contains a subset belonging to A_{I_i}
- ▶ Idea: Without looking at the transaction database, whether an itemset *S* satisfies constraint C can be determined based on the selection of items
- \blacktriangleright min(S.Price) ≤ v is succinct
- ightharpoonup sum(S.Price) ≥ v is not succinct
- ▶ Optimization: If *C* is succinct, *C* is pre-counting pushable

Apriori + Constraint

Constrained Apriori: Push a Succinct Constraint Deep

Constrained FP-Growth: Push a Succinct Constraint Deep

1-Projected DB

TID	Items
100	3 4
300	235

No Need to project on 2, 3, or 5

Constraint:

min{S.price } <= 1

Constrained FP-Growth: Push a Data Anti-monotonic Constraint Deep

Remove from data

Single branch, we are done

Constraint:

min{S.price } <= 1

Constrained FP-Growth: Push a Data Anti-monotonic Constraint Deep

TID	Transaction
10	a, b, c, d, f, h
20	b, c, d, f, g, h
30	b, c, d, f, g
40	c, e, f, g

TID	Transaction
10	a, b, c, d, f, h
20	b, c, d, f, g, h
30	b, c, d, f, g
40	c, e, f, g

FP-Tree

B FP-Tree

Recursive Data Pruning

Item	Profit
а	40
b	0
С	-20
d	-15
е	-30
f	-10
g	20
h	-5

B-Projected DB

TID	Transaction
10	3 6 6 6 6
10	d, C, U, I, II
20	c, d, f, g, 📐
30	c, d, f, g

Single branch:

bcdfg: 2

Constraint:

Convertible Constraints: Ordering Data in Transactions

TDB (min_sup=2)

- Convert tough constraints into antimonotone or monotone by properly ordering items
- ► Examine C: $avg(S.profit) \ge 25$
 - Order items in value-descending order
 - ► <a, f, g, d, b, h, c, e>
 - ▶ If an itemset *afb* violates C
 - ► So does *afbh*, *afb**
 - ▶ It becomes anti-monotone!

(<u>-</u>)		
TID	Transaction	
10	a, b, c, d, f	
20	b, c, d, f, g, h	
30	b, c, d, e, f	
40	c, e, f, g	

Item	Profit
a	40
b	0
С	-20
d	10
е	-30
f	30
g	20
h	-10

Strongly Convertible Constraints

- \Rightarrow avg(X) ≥ 25 is convertible anti-monotone w.r.t. item value descending order R: $\langle a, f, g, d, b, h, c, e \rangle$
 - If an itemset *af* violates a constraint C, so does every itemset with *af* as prefix, such as *afd*
- ▶ avg(X) ≥ 25 is convertible monotone w.r.t. item value ascending order R⁻¹: $\langle e, c, h, b, d, g, f, a \rangle$
 - If an itemset d satisfies a constraint C, so does itemsets df and dfa, which having d as a prefix
- ► Thus, $avg(X) \ge 25$ is strongly convertible

Item	Profit
а	40
b	0
С	-20
d	10
е	-30
f	30
g	20
h	-10

Can Apriori Handle Convertible Constraints?

- A convertible, not monotone nor anti-monotone nor succinct constraint cannot be pushed deep into the an Apriori mining algorithm
 - ► Within the level wise framework, no direct pruning based on the constraint can be made
 - ▶ Itemset df violates constraint C: $avg(X) \ge 25$
 - Since adf satisfies C, Apriori needs df to assemble adf, df cannot be pruned
- ► But it can be pushed into frequent-pattern growth framework!

Value
40
0
-20
10
-30
30
20
-10

Pattern Space Pruning w. Convertible Constraints

- C: $avg(X) \ge 25$, $min_sup=2$
- List items in every transaction in value descending order R: <a, f, g, d, b, h, c, e>
 - ► C is convertible anti-monotone w.r.t. R
- Scan TDB once
 - remove infrequent items
 - ▶ Item h is dropped
 - ▶ Itemsets a and f are good, ...
- Projection-based mining
 - ▶ Imposing an appropriate order on item projection
 - Many tough constraints can be converted into (anti)-monotone

Item	Value
а	40
f	30
g	20
d	10
b	0
h	-10
С	-20
е	-30
\overline{D}	2)

 $TDB (min_sup=2)$

TID	Transaction
10	a, f, d, b, c
20	f, g, d, b, c
30	a, f, d, c, e
40	f, g, h, c, e

Handling Multiple Constraints

- Different constraints may require different or even conflicting item-ordering
- If there exists an order R s.t. both C_1 and C_2 are convertible w.r.t. R, then there is no conflict between the two convertible constraints
- ▶ If there exists conflict on order of items
 - ► Try to satisfy one constraint first
 - Then using the order for the other constraint to mine frequent itemsets in the corresponding projected database

Constraint-Based Mining — A General Picture

Constraint	Anti-monotone	Monotone	Succinct
v ∈ S	no	yes	yes
S⊆V	no	yes	yes
S⊆V	yes	no	yes
min(S) ≤ v	no	yes	yes
min(S) ≥ v	yes	no	yes
max(S) ≤ v	yes	no	yes
max(S) ≥ v	no	yes	yes
count(S) ≤ v	yes	no	weakly
count(S) ≥ v	no	yes	weakly
sum(S) ≤ v (a ∈ S, a ≥ 0)	yes	no	no
sum(S) ≥ v (a ∈ S, a ≥ 0)	no	yes	no
range(S) ≤ v	yes	no	no
range(S) ≥ v	no	yes	no
$avg(S) \theta v, \theta \in \{ =, \le, \ge \}$	convertible	convertible	no
support(S) ≥ ξ	yes	no	no
support(S) ≤ ξ	no	yes	no

CS145: Data Mining

What Constraints Are Convertible?

Constraint	Convertible anti- monotone	Convertible monotone	Strongly convertible
avg(S) ≤ , ≥ v	Yes	Yes	Yes
$median(S) \le , \ge v$	Yes	Yes	Yes
sum(S) \leq v (items could be of any value, $v \geq 0$)	Yes	No	No
$sum(S) \le v$ (items could be of any value, $v \le 0$)	No	Yes	No
sum(S) \geq v (items could be of any value, $v \geq 0$)	No	Yes	No
sum(S) \geq v (items could be of any value, $v \leq 0$)	Yes	No	No

CS145: Data Mining

Classification of Constraints

Sequential Pattern Mining

- Why sequential pattern mining?
- GSP algorithm
- FreeSpan and PrefixSpan
- Boarder Collapsing
- Constraints and extensions

Sequence Databases and Sequential Pattern Analysis

- ▶ (Temporal) order is important in many situations
 - ► Time-series databases and sequence databases
 - ► Frequent patterns → (frequent) sequential patterns
- Applications of sequential pattern mining
 - Customer shopping sequences:
 - ► First buy computer, then CD-ROM, and then digital camera, within 3 months.
 - Medical treatment, natural disasters (e.g., earthquakes), science & engineering processes, stocks and markets, telephone calling patterns, Weblog click streams, DNA sequences and gene structures

What Is Sequential Pattern Mining?

▶ Given a set of sequences, find the complete set of frequent subsequences

A <u>sequence</u>: < (ef) (ab) (df) c b >

A <u>sequence</u> database

SID	sequence
10	<a(<u>abc)(a<u>c</u>)d(cf)></a(<u>
20	<(ad)c(bc)(ae)>
30	<(ef)(<u>ab</u>)(df) <u>c</u> b>
40	<eg(af)cbc></eg(af)cbc>

An element may contain a set of items. Items within an element are unordered and we list them alphabetically.

Given <u>support threshold</u> min_sup = 2, <(ab)c> is a sequential pattern

Challenges on Sequential Pattern Mining

- A huge number of possible sequential patterns are hidden in databases
- A mining algorithm should
 - ► Find the complete set of patterns satisfying the minimum support (frequency) threshold
 - ► Be highly efficient, scalable, involving only a small number of database scans
 - ▶ Be able to incorporate various kinds of userspecific constraints

A Basic Property of Sequential Patterns: Apriori

- ► A basic property: Apriori (Agrawal & Sirkant'94)
 - ▶ If a sequence S is not frequent
 - ▶ Then none of the super-sequences of S is frequent
 - ▶ E.g, $\langle hb \rangle$ is infrequent \rightarrow so do $\langle hab \rangle$ and $\langle (ah)b \rangle$

Seq. ID	Sequence
10	<(bd)cb(ac)>
20	<(bf)(ce)b(fg)>
30	<(ah)(bf)abf>
40	<(be)(ce)d>
50	<a(bd)bcb(ade)></a(bd)bcb(ade)>

Given <u>support threshold</u> min_sup =2

Basic Algorithm: Breadth First Search (GSP)

- ▶ L=1
- ▶ While (Result_L!= NULL)
 - ► Candidate Generate
 - Prune
 - Test
 - L=L+1

Finding Length-1 Sequential Patterns

► Initial candidates: all singleton sequences

Scan database once, count support for candidates

$min_sup = 2$

Seq. ID	Sequence
10	<(bd)cb(ac)>
20	<(bf)(ce)b(fg)>
30	<(ah)(bf)abf>
40	<(be)(ce)d>
50	<a(bd)bcb(ade)></a(bd)bcb(ade)>

Cand	Sup
<a>>	3
>	5
<c></c>	4
<d>></d>	3
<e></e>	3
<f></f>	2
>g>	1
>h>	1

The Mining Process

Cand. cannot pass 5th scan: 1 cand. 1 length-5 seq. <(bd)cba> sup. threshold pat. Cand, not in DB at all <abba> <(bd)bc> ... 4th scan: 8 cand. 6 length-4 seq. pat. 3rd scan: 46 cand. 19 length-3 seq. <abb> <aab> <aba> <bab> ... pat. 20 cand. not in DB at all 2nd scan: 51 cand. 19 length-2 seq. <aa> <ab> ... <af> <ba> <bb> ... <ff> <(ab)> ... <(ef)> pat. 10 cand. not in DB at all 1st scan: 8 cand. 6 length-1 seq. <a> <c> <d> <e> <f> <q> <h> pat.

min_sup =2

Seq. ID	Sequence
10	<(bd)cb(ac)>
20	<(bf)(ce)b(fg)>
30	<(ah)(bf)abf>
40	<(be)(ce)d>
50	<a(bd)bcb(ade)></a(bd)bcb(ade)>

Generating Length-2 Candidates

51 length-2 Candidates

	<a>>	>	<c></c>	< d >	<e></e>	<f></f>
<a>>	<aa></aa>	<ab></ab>	<ac></ac>	<ad></ad>	<ae></ae>	<af></af>
	<ba></ba>	<bb></bb>	<bc></bc>	<bd></bd>	<be></be>	 bf>
<c></c>	<ca></ca>	<cb></cb>	<cc></cc>	<cd></cd>	<ce></ce>	<cf></cf>
<d>></d>	<da></da>	<db></db>	<dc></dc>	<dd></dd>	<de></de>	<df></df>
<e></e>	<ea></ea>	<eb></eb>	<ec></ec>	<ed></ed>	<ee></ee>	<ef></ef>
<f></f>	<fa></fa>	<fb></fb>	<fc></fc>	<fd></fd>	<fe></fe>	<ff></ff>

	<a>>		<c></c>	<d>></d>	<e></e>	<f></f>
<a>>		<(ab)>	<(ac)>	<(ad)>	<(ae)>	<(af)>
>			<(bc)>	<(bd)>	<(be)>	<(bf)>
<c></c>				<(cd)>	<(ce)>	<(cf)>
<d>></d>					<(de)>	<(df)>
<e></e>						<(ef)>
<f></f>						

Without Apriori property, 8*8+8*7/2=92 candidates

Apriori prunes 44.57% candidates

Pattern Growth (prefixSpan)

- Prefix and Suffix (Projection)
 - <a>, <aa>, <a(ab)> and <a(abc)> are <u>prefixes</u> of sequence <a(abc)(ac)d(cf)>
 - ► Given sequence <a(abc)(ac)d(cf)>

Prefix	Suffix (Prefix-Based Projection)
<a>>	<(abc)(ac)d(cf)>
<aa></aa>	<(_bc)(ac)d(cf)>
<ab></ab>	<(_c)(ac)d(cf)>

Example

Sequence_id	Sequence
10	<a(abc)(ac)d(cf)></a(abc)(ac)d(cf)>
20	<(ad)c(bc)(ae)>
30	<(ef)(ab)(df)cb>
40	<eg(af)cbc></eg(af)cbc>

An Example (min_sup=2):

Prefix	Sequential Patterns
<a>	<pre><a>,<aa>,<ab><a(bc)>,<a(bc)a>,<aba>,<abc>,<(ab)>,<(ab)c>,<(a b)d>,<(ab)f>,<(ab)dc>,<ac>,<ac>,<acb>,<acc>,<ad>,<ad>,<af></af></ad></ad></acc></acb></ac></ac></abc></aba></a(bc)a></a(bc)></ab></aa></pre>
	, <ba>, <bc>, <(bc)>, <(bc)a>, <bd>, <bdc>, <bf></bf></bdc></bd></bc></ba>
<c></c>	<c>, <ca>, <cb>, <cc></cc></cb></ca></c>
<d>></d>	<d>,<db>,<dc>,<dcb></dcb></dc></db></d>
<e></e>	<pre><ea>,<ea>,<eab>,<eac>,<eb>,<eb>,<ef>,<efb >,<efc>,<efb< p=""></efb<></efc></efb </ef></eb></eb></eac></eab></ea></ea></pre>
<f></f>	<f>,<fb>,<fbc>,<fc>,<fcb> CS145: Data Min</fcb></fc></fbc></fb></f>

PrefixSpan (the example to be continued)

Step1: Find length-1 sequential patterns;

Step2: Divide search space; six subsets according to the six prefixes;

Step3: Find subsets of sequential patterns;

By constructing corresponding projected databases and mine each recursively.

Example to be continued

Sequence_id	Sequence	Projected(suffix) databases
10	<a(abc)(ac)d(cf)></a(abc)(ac)d(cf)>	<a(abc)(ac)d(cf)></a(abc)(ac)d(cf)>
20	<(ad)c(bc)(ae)>	<(ad)c(bc)(ae)>
30	<(ef)(ab)(df)cb>	<(ef)(ab)(df)cb>
40	<eg(af)cbc></eg(af)cbc>	<eg(af)cbc></eg(af)cbc>

Prefix	Projected(suffix) databases	Sequential Patterns
<a>>	<(abc)(ac)d(cf)>, <(_d)c(bc)(ae)>, <(_b)(df)cb>, <(_f)cbc>	<a>>,<aa>,<ab><a(bc)>,<a(bc)a>, <aba>,<abc>,<(ab)>,<(ab)c>,<(ab)d>,<(ab)f>,<(ab)dc>,<ac>,<aca>, <acb>,<acc>,<ad>,<af></af></ad></acc></acb></aca></ac></abc></aba></a(bc)a></a(bc)></ab></aa>

Example

Find sequential patterns having prefix <a>:

- 1. Scan sequence database S once. Sequences in S containing <a> are projected w.r.t <a> to form the <a> projected database.
- 2. Scan <a>-projected database once, get six length-2 sequential patterns having prefix <a>:

- 3. Recursively, all sequential patterns having prefix <a> can be further partitioned into 6 subsets. Construct respective projected databases and mine each.
 - e.g. <aa>-projected database has two sequences :

$$<(_bc)(ac)d(cf)>$$
 and $<(_e)>$.

PrefixSpan Algorithm

Main Idea: Use frequent prefixes to divide the search space and to project sequence databases. only search the relevant sequences.

PrefixSpan(α , i, S| α)

- 1. Scan S $|\alpha$ once, find the set of frequent items b such that
 - b can be assembled to the last element of α to form a sequential pattern; or
 - can be appended to α to form a sequential pattern.
- 2. For each frequent item b, appended it to α to form a sequential pattern α , and output α ;
- 3. For each α ', construct α '-projected database $S|\alpha$ ', and call PrefixSpan(α ', i+1,S| α ').