10 信号处理与信号产生电路

- 10.1 滤波电路的基本概念与分类
- 10.2 一阶有源滤波电路
- 10.3 高阶有源滤波电路
- *10.4 开关电容滤波器
- 10.5 正弦波振荡电路的振荡条件
- 10.6 RC正弦波振荡电路
- 10.7 LC正弦波振荡电路
- 10.8 非正弦信号产生电路

10.1 滤波电路的基本概念与分类

1. 基本概念

滤波器: 是一种能使有用频率信号通过而同时抑制或衰减无 用频率信号的电子装置。

有源滤波器: 由有源器件构成的滤波器。

滤波电路传递函数定义

$$A(s) = \frac{V_{_{0}}(s)}{V_{_{i}}(s)}$$

$$s = j\omega$$
 时,有 $A(j\omega) = |A(j\omega)| \angle \varphi(\omega)$

其中
$$|A(j\omega)|$$
 —— 模,幅频响应 $\varphi(\omega)$ —— 相位角,相频响应

$$\tau(\omega) = -\frac{\mathrm{d}\varphi(\omega)}{\mathrm{d}\omega} \quad (s)$$

群时延响应

10.1 滤波电路的基本概念与分类

2. 分类

低通(LPF)

高通(HPF)

带通 (BPF)

带阻(BEF)

全通 (APF)

希望抑制50Hz 的干扰信号,应选 用哪种类型的滤波 电路?

放大音频信号,应选用哪种类型的滤波电路? 20°20K

10.2 一阶有源滤波电路

1. 低通滤波电路

传递函数 $A(s) = \frac{A_0}{1 + \frac{s}{a}}$ $\omega_{\mathbf{c}}$ 其中

$$A_0 = 1 + \frac{R_f}{R_1}$$
 同相比例 放大系数

$$\omega_{\rm c} = \frac{1}{RC}$$
 特征角频率

故,幅频相应为

$$|A(j\omega)| = \frac{A_0}{\sqrt{1 + (\frac{\omega}{\omega_c})^2}}$$

10.2 一阶有源滤波电路

2. 高通滤波电路 电路如何改变? 幅频响应如何变化?

一阶有源滤波电路通带外衰减速率慢(-20dB/十倍频程),与理想情况相差较远。一般用在对滤波要求不高的场合。

有源滤波电路和无源滤波电路相比有何优缺点?

10.3 高阶有源滤波电路

- 10.3.1 有源低通滤波电路
- 10.3.2 有源高通滤波电路
- 10.3.3 有源带通滤波电路
- 10.3.4 二阶有源带阻滤波电路

- 1. 二阶有源低通滤波电路
- 2. 传递函数

$$A_{VF} = 1 + \frac{R_f}{R_1}$$
 (同相比例)
对于滤波电路,有

$$A_{VF} = \frac{V_0(s)}{V_P(s)}$$

$$V_P(s) = \frac{1/sC}{R+1/sC} \cdot V_A(s)$$

$$\frac{V_{i}(s) - V_{A}(s)}{R} - \frac{V_{A}(s) - V_{o}(s)}{1/sC} - \frac{V_{A}(s) - V_{P}(s)}{R} = 0$$

得滤波电路传递函数
$$A(s) = \frac{V_o(s)}{V_i(s)} = \frac{A_{VF}}{1 + (3 - A_{VF})sCR + (sCR)^2}$$
 (二阶)

 $(A_{VF}-1)R_1$

放大电路

2. 传递函数

$$A(s) = \frac{V_{o}(s)}{V_{i}(s)} = \frac{A_{VF}}{1 + (3 - A_{VF})sCR + (sCR)^{2}}$$

令 $A_0 = A_{VF}$ 称为通带增益

$$Q = \frac{1}{3 - A_{LT}}$$
 称为等效品质因数 ふず能化 $^{\flat}$

$$\omega_{\rm c} = \frac{1}{RC}$$
 称为特征角频率

注意:当 $3-A_{VF}>0$,即 $A_{VF}<3$ 时,滤波电路才能稳定工作。

2. 传递函数

用 $s = j\omega$ 代入,可得传递函数的频率响应:

归一化的幅频响应

$$20 \lg \left| \frac{A(j\omega)}{A_0} \right| = 20 \lg \frac{1}{\sqrt{\left[1 - \left(\frac{\omega}{\omega_c}\right)^2\right]^2 + \left(\frac{\omega}{\omega_c Q}\right)^2}}$$

相频响应
$$\varphi(\omega) = -\arctan \frac{\overline{\omega_c Q}}{1 - (\overline{\omega})^2}$$

3. 幅频响应

$$20 \lg \left| \frac{A(j\omega)}{A_0} \right| = 20 \lg \frac{1}{\sqrt{\left[1 - \left(\frac{\omega}{\omega_c}\right)^2\right]^2 + \left(\frac{\omega}{\omega_c Q}\right)^2}}$$

归一化的幅 频响应曲线

4. n阶巴特沃斯传递函数

传递函数为

$$|A(j\omega)| = \frac{A_0}{\sqrt{1 + (\omega/\omega_c)^{2n}}}$$

式中n为阶滤波电路阶数, ω_c 为3dB载止角频率, A_0 为通带电压增益。 $|A(j\omega)|$

10.3.2 有源高通滤波电路

1. 二阶高通滤波电路

将低通电路中的 电容和电阻对换,便成 为高通电路。

传递函数

$$A(s) = \frac{A_0 s^2}{s^2 + \frac{\omega_c}{Q} s + \omega_c^2}$$

归一化的幅频响应

$$\frac{20 \lg \left| \frac{A(j\omega)}{A_0} \right| = 20 \lg \frac{1}{\sqrt{\left[\left(\frac{\omega_c}{\omega} \right)^2 - 1 \right]^2 + \left(\frac{\omega_c}{\omega Q} \right)^2}}$$

10.3.2 有源高通滤波电路

2. 巴特沃斯传递函数及其归一化幅频响应

$$|A(j\omega)| = \frac{A_0}{\sqrt{1 + (\omega_c / \omega)^{2n}}}$$

归一化幅频响应 <u>[A(j∞)</u>]

10.3.3 有源带通滤波电路

1. 电路组成原理

可由低通和高通串联得到

$$\omega_{\rm H} = \frac{1}{R_{\rm s}C_{\rm s}}$$
 低通截止角频率

$$\omega_{\rm L} = \frac{1}{R_2 C_2}$$
 高通截止角频率

必须满足 $\omega_{\rm L} < \omega_{\rm H}$

10.3.3 有源带通滤波电路

2. 例

10.3.3 有源带通滤波电影

3. 二阶有源带通滤波电路

传递函数

$$A(s) = \frac{A_{VF}sCR}{1 + (3 - A_{VF})sCR + (sCR)^{2}}$$

$$\begin{cases}
A_0 = \frac{A_{VF}}{3 - A_{VF}} \\
\omega_0 = \frac{1}{RC} \\
Q = \frac{1}{3 - A_{VF}}
\end{cases}$$

得
$$A(s) = \frac{A_0 \overline{Q\omega_0}}{1 + \frac{s}{Q\omega_0} + (\frac{s}{\omega_0})^2}$$

关于选择性

可由低通和高通并联得到 必须满足 $\omega_{\rm L} > \omega_{\rm H}$

双T选频网络

双T带阻滤波电路

阻滤波电路的幅频特性

积分电路

由电容 C_1 和两个MOS开关管 T_1 、 T_2 等效电阻 R_1 的积分电路

不重叠的两相时钟脉冲 ϕ_1 和 ϕ_2 控制关管的接通 与断开

1. 基本原理

 ϕ_1 为高电平时, T_1 导通,

T2截止

 C_1 被充电,有 $q_{c1} = C_1 \mathbf{v}_{\mathbf{I}}$

 ϕ_2 为高电平时, T_1 截止, T_2 导通

 C_1 所充电荷向 C_2 转移

1. 基本原理

 ϕ_1 为高电平时, T_1 导通, T_2 截止

 C_1 被充电,有 $q_{c1} = C_1 \mathbf{v}_1$ ϕ_2 为高电平时, \mathbf{T}_1 截止, \mathbf{T}_2 导通 C_1 所充电荷向 C_2 转移

在每一时钟周期 T_c 内,从信号源中提取的电荷 $q_{c1}=C_1$ V₁供给了积分电容器 C_2 。因此,在节点1、2之间流过的平均电流为 $i_{av}=\frac{q_{c1}}{T_c}=\frac{C_1}{T_c}$

1. 基本原理

当 T_c 远小于信号周期时,可在两节点之间定义一个等效电阻 R_{eq}

$$R_{\text{eq}} = \frac{\mathbf{v}_{\text{I}}}{\mathbf{i}_{\text{av}}} = \frac{\mathbf{v}_{\text{I}}T_{\text{c}}}{C_{1}\mathbf{v}_{\text{I}}} = \frac{T_{\text{c}}}{C_{1}} = \frac{1}{f_{\text{c}}C_{1}}$$

得等效的积分器时间常数

$$\tau = C_2 R_{\rm eq} = T_{\rm c} \frac{C_2}{C_1}$$

时间常数与脉冲周期和电容比有关

2. 开关电路滤波器举例

一阶低通滤波器电路,传递函数为

$$A(s) = \frac{V_{o}(s)}{V_{i}(s)} = -\frac{R_{f}}{R_{1}} \cdot \frac{1}{1 + sR_{f}C_{f}} = \frac{A_{0}}{1 + s/\omega_{3dB}}$$

等效开关电容滤波器电路

有
$$R_{1} = R_{1\text{eq}} = \frac{1}{f_{c}C_{1}}$$

$$R_{f} = R_{feq} = \frac{1}{f_{c}C_{2}}$$

2. 开关电路滤波器举例

代入传递函数表达式

$$\dot{A}(j\omega) = -\frac{R_{f}}{R_{1}} \cdot \frac{1}{1 + j2\pi f R_{f} C_{f}}$$

$$= -\frac{\frac{1}{f_{c}C_{2}}}{\frac{1}{f_{c}C_{1}}} \cdot \frac{1}{1 + j\frac{2\pi f C_{f}}{f_{c}C_{2}}}$$

$$= -\frac{C_{1}}{C_{2}} \cdot \frac{1}{1 + j\frac{f}{f_{3dB}}}$$

$$= \frac{A_{0}}{1 + j(f/f_{3dB})}$$

2. 开关电路滤波器举例

代入传递函数表达式

$$\dot{A} = \frac{A_0}{1 + \mathbf{j}(f/f_{3dB})}$$

$$A_0 = -\frac{C_1}{C_2}$$

$$A_0 = -\frac{C_1}{C_2}$$
 $f_{3dB} = \frac{f_c C_2}{2\pi C_f}$

一阶低通滤波器的波特图

通过选择 C_1 、 C_2 和时钟频率 f_c ,便可 获得需要的滤波特性

3. 单片集成开关电容滤波器简介

目前已有通用型开关电容滤波器,可组成低通、高通、带通等类型滤波电路,阶数达8阶,某些型号的产品能对微伏数量级的有用信号进行滤波。

开关电容滤波器的滤波特性决定于电容比和时钟频率,设计 简单,可实现高精度和高稳定滤波,同时便于集成。

目前集成开关电容滤波器除工作频率还不够高外(受脉冲频率远大于信号频率的限制),大部分性能指标已达到较高水平。

10.5 正弦波振荡电路的振荡条件

1. 振荡条件

正反馈放大电路框图 (注意与负 反馈方框图 的差别)

$$\dot{X}_{\rm a} = \dot{X}_{\rm i} + \dot{X}_{\rm f}$$

若环路增益 $\dot{A}\dot{F}=1$ 则 $\dot{X}_a=\dot{X}_f$,去掉 \dot{X}_i , \dot{X}_o 仍有稳定的输出。

$$\nabla \dot{A}\dot{F} = \left| \dot{A}\dot{F} \right| \angle \varphi_{a} + \varphi_{f} = AF \angle \varphi_{a} + \varphi_{f}$$

 $A(\omega) \cdot F(\omega) = 1$ 振幅平衡条件

$$\varphi_{a}(\omega) + \varphi_{f}(\omega) = 2n\pi$$
 相位平衡条件

#振荡电路是单口网络,无须输入信号就能起振,起振的信号源来自何处? 电路器件内部噪声以及电源接通扰动

噪声中,满足相位平衡条件的某一频率 ω_0 的噪声信号被放大,成为振荡电路的输出信号。

稳幅的作用就是,当输出信号幅值增加到一定程度时, 使振幅平衡条件从 AF > 1 回到AF = 1。

3. 振荡电路基本组成部分

- 4放大电路(包括负反馈放大电路)
- 4反馈网络(构成正反馈的)
- 4选频网络(选择满足相位平衡条件的一个频率。经常与反馈网络合二为一。)
- 4稳幅环节

10.6 RC正弦波振荡电路

- 1. 电路组成
- 2. RC串并联选频网络的选频特性
- 3. 振荡电路工作原理
- 4. 稳幅措施
- 5. 移相式正弦波振荡电路

1. 电路组成

RC桥式振荡电路

反馈网络兼做选频 网络

2. RC串并联选频网络的选频特性

反馈系数

反馈系数
$$F_{V}(s) = \frac{V_{f}(s)}{V_{o}(s)} = \frac{Z_{2}}{Z_{1} + Z_{2}} = \frac{sCR}{1 + 3sCR + (sCR)^{2}}$$
 又 $s = j\omega$ 且令 $\omega_{0} = \frac{1}{RC}$ 则 $\dot{F}_{V} = \frac{1}{3 + j(\frac{\omega}{\omega_{0}} - \frac{\omega_{0}}{\omega})}$ 幅频响应 $F_{V} = \frac{1}{\sqrt{3^{2} + (\frac{\omega}{\omega_{0}} - \frac{\omega_{0}}{\omega})^{2}}}$ 相频响应 $\varphi_{f} = -\arctan \frac{(\frac{\omega}{\omega_{0}} - \frac{\omega_{0}}{\omega})}{3}$

2. RC串并联选频网络的选频特性

$$F_{V} = \frac{1}{\sqrt{3^{2} + (\frac{\omega}{\omega_{0}} - \frac{\omega_{0}}{\omega})^{2}}}$$

$$\varphi_{f} = -\arctan \frac{(\frac{\omega}{\omega_{0}} - \frac{\omega_{0}}{\omega})}{3}$$

幅频响应有最大值

 $F_{V\max} = \frac{1}{3} \quad \begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$

相频响应 $\varphi_{\rm f}=0$

珍敬蛇阻负温波系数

3. 振荡电路工作原理

当
$$\omega = \omega_0 = \frac{1}{RC}$$
时, $\varphi_f = 0$

断开环路某一点,用瞬 时极性法判断可知,电路满足 相位平衡条件: $\varphi_a + \varphi_f = 2n\pi$

此时若放大电路的电压增益为 $A_{\nu} = 1 + \frac{R_{\rm f}}{R} = 3$

则振荡电路满足振幅平衡条件
$$A_{\nu}F_{\nu} = 3 \times \frac{1}{2} = 1$$

$$A_V F_V = 3 \times \frac{1}{3} = 1$$

电路可以输出频率为
$$f_0 = \frac{1}{2\pi RC}$$
 的正弦波

RC正弦波振荡电路一般用于产生频率低于 1 MHz 的正弦波

4. 稳幅措施

采用非线性元件

4热敏元件

起振时,
$$A_V=1+rac{R_{
m f}}{R_{
m 1}}>3$$
即 $A_VF_V>1$

热敏电阻的作用

$$|\dot{V_o}|^{\uparrow}$$
— $|\dot{I_o}|^{\uparrow}$ — R_f 功耗 \uparrow — R_f 温度 \uparrow — R_f 阻值 \downarrow —

$$A_V \downarrow A_V = 3 \longrightarrow A_V F_V = 1$$
 稳幅

4. 稳幅措施

采用非线性元件

4场效应管 (JFET)

 $D \setminus R_4 \setminus C_3$ 整流滤波

T为压控电阻

$$A_V = 1 + \frac{R_{\rm p3}}{R_3 + R_{\rm DS}} > 3$$

稳幅原理

$$|\dot{V}_{o}|^{\uparrow}$$
 — $|V_{GS}(\mathbf{\hat{Q}}\mathbf{\hat{G}})|^{\uparrow}$ $A_{V} \downarrow A_{V} \downarrow R_{DS}$ 个 解析 $A_{V} = 3$ — $A_{V}F_{V} = 1$ 稳幅

可变电阻区, 斜率随 _{VGS}不同 而变化

5. 移相式正弦波振荡电路

每节RC电路相移小于 90°

当相位移接近^{90°}时, R两端电压接近零,所以, 两节RC电路组成的反馈网 络(兼选频网络)很难既 满足相位条件,又满足幅 值条件。

采用 3 节 R C移相电路,在特定频率 6 下移相 180 °,加上放大电路产生的 180 °相移则满足相位平衡条件。

只要适当调节 R_f 的值,使 A_V 适当,便可满足振幅条件, 产生正弦振荡。

10.7 LC正弦波振荡电路

- 10.7.1 LC选频放大电路
- 10.7.2 变压器反馈式LC振荡电

路

- 10.7.3 三点式LC振荡电路
- 10.7.4 石英晶体振荡电路

10.7.1 LC选频放大电路

1. 并联谐振回路

$$Z = \frac{\frac{1}{j\omega C}(R + j\omega L)}{\frac{1}{j\omega C} + R + j\omega L}$$

$$Z = \frac{\frac{L}{C}}{R + j(\omega L - \frac{1}{\omega C})}$$

当
$$\omega = \omega_0 = \frac{1}{\sqrt{IC}}$$
 时,电路谐振

$$Z = \frac{\frac{1}{j\omega C}(R+j\omega L)}{\frac{1}{j\omega C}+R+j\omega L}$$
一般有 $R << \omega L$ 则 $Z = \frac{L/C}{R+j(\omega L-\frac{1}{\omega C})}$ 当 $\omega = \omega_0 = \frac{1}{\sqrt{LC}}$ 时,电路谐振 $\omega_0 = \frac{1}{\sqrt{LC}}$ 为谐振频率

谐振时 阻抗最大,且为纯阻性
$$Z_0 = \frac{L}{RC} = Q\omega_0 L = \frac{Q}{\omega_0 C}$$

其中
$$Q = \frac{\omega_0 L}{R} = \frac{1}{\omega_0 RC} = \frac{1}{R} \sqrt{\frac{L}{C}}$$
 为品质因数

$$\dot{I}_{\rm c} = Q \dot{I}_{\rm s}$$

同时有
$$|\dot{I}_c| = Q|\dot{I}_s|$$
 即 $|\dot{I}_c| \approx |\dot{I}_L| >> |\dot{I}_s|$

10.7.1 LC选频放大电路

阻抗频率响应

(a) 幅频响应

b)相频响应

10.7.1 LC选频放大电路

2. 选频放大电路

10.7.2 变压器反馈式LC振荡电路

(定性分析)

- 1. 电路结构
- 2. 相位平衡条件
- 3. 幅值平衡条件

通过选择高增益的场效应管和调整变压器的匝数比,可以满足 |AF| > 1 使电路可以起振。

4. 稳幅

BJT进入非线性区,波形出现失真, 从而幅值不再增加,达到稳幅目的。

5. 选频

虽然波形出现了失真,但由于LC谐振电路的Q值很高,选频特性好,所以仍能选出 ω_0 的正弦波信号。

10.7.3 三点式LC振荡电路

1. 三点式LC并联电路

仍然由*LC*并联谐振电路构成选频网络中间端的瞬时电位一定在首、尾端电位之间。

三点的相位关系

- A. 若中间点交流接地,则首端与尾端 相位相反。
- B. 若首端或尾端交流接地,则其他两端相位相同。

10.7.3 三点式LC振荡电路

2. 电感三点式振荡电路

10.7.3 三点式LC振荡电路

3. 电容三点式振荡电路

1. 频率稳定问题

频率稳定度一般由 $\frac{\Delta f}{f_0}$ 来衡量

△f ──频率偏移量。

 f_0 —振荡频率。

Q值越高,选频特性越好,频率越稳定。

LC振荡电路 Q ——数百

石英晶体振荡电路 $Q - 10000 \sim 500000$

2. 石英晶体的基本特性与等效电路

结构

极板间加电场

晶体机械变形

极板间加机械力

晶体产生电场

压电效应

交变电压 — 机械振动 — 交变电压 机械振动的固有频率与晶片尺寸有关,稳定性高

当交变电压频率 = 固有频率时,振幅最大 压电谐振

2. 石英晶体的基本特性与等效电路

等效电路

特性

A. 串联谐振

$$f_{\rm s} = \frac{1}{2\pi\sqrt{LC}}$$

晶体等效阻 抗为纯阻性

(密性)
 (容性)
 (c)

- (a) 代表符号
- (b) 电路模型
- (c) 电抗-频率响应特性

B. 并联谐振
$$f_{p} = \frac{1}{2\pi\sqrt{LC}}\sqrt{1 + \frac{C}{C_{0}}} = f_{s}\sqrt{1 + \frac{C}{C_{0}}}$$

通常 $C << C_0$ 所以 f_s 与 f_p 很接近

2. 石英晶体的基本特性与等效电路

实际使用时外接一小电容 C_s

则新的谐振频率为

$$f_{s}' = \frac{1}{2\pi\sqrt{LC}}\sqrt{1 + \frac{C}{C_{0} + C_{s}}} = f_{s}\sqrt{1 + \frac{C}{C_{0} + C_{s}}}$$

由于
$$C \ll C_0 + C_s$$

$$f_s' = f_s \left[1 + \frac{C}{2(C_0 + C_s)} \right]$$

由此看出
$$C_{
m s}
ightarrow 0$$
时, $f_{
m s}' = f_{
m p}$; $C_{
m s}
ightarrow \infty$ 时, $f_{
m s}' = f_{
m s}$

调整 C_s 可使 f'_s 在 f_s 和 f_p 之间变化

3. 石英晶体振荡电路

10.8 非正弦信号产生电路

10.8.1 电压比较器

10.8.2 方波产生电路

10.8.3 锯齿波产生电路

1. 单门限电压比较器

特点:开环,虚短不成立

增益 A_0 大于 10^5

$$-V_{\rm EE} \le v_{\rm o} \le +V_{\rm CC}$$

运算放大器工作在非线性状态下

(1) 过零比较器
$$(假设 | -V_{EE}| = | +V_{CC}| = V_{M})$$

$$|v_{\rm I}| \ge \frac{V_{\rm M}}{A_{\rm 0}}$$
 时, $|v_{\rm O}| = |A_{\rm 0}v_{\rm I}| > V_{\rm M}$,由于 $|v_{\rm O}|$ 不可能超过 $V_{\rm M}$,

所以 $|v_{\text{omax}}| = V_{\text{M}}$ (忽略了放大器输出级的饱和压降)

当
$$|+V_{CC}| = |-V_{EE}| = V_{M} = 15V$$
, $A_0 = 10^5$ 时, $\frac{V_{M}}{A_0} = \frac{15}{10^5} = 0.15 \text{mV} \approx 0$

可以认为
$$\begin{cases} v_{\rm I} > 0$$
 时, $v_{\rm Omax} = +V_{\rm CC} \\ v_{\rm I} < 0$ 时, $v_{\rm Omax} = -V_{\rm EE} \end{cases}$ (过零比较器)

1. 单门限电压比较器

特点:开环,虚短不成立 增益 A_0 大于10⁵

$$-V_{\rm EE} \le v_{\rm o} \le +V_{\rm CC}$$

(1) 过零比较器 输入为正负对称的正弦 波时,输出为方波。

转换

- 1. 若过零比较器如左图所示,则它的电压传输特性将是怎样的?
- 2. 输入为正负对称的正弦 波时,输出波形是怎样的?

1. 单门限电压比较器

(2) 门限电压不为零的比较器 (门限电压为 V_{REF})

电压传输特性

输入为正负对称的正弦波 时,输出波形如图所示。

例

电路如图所示,当输入信号如图c所示的正弦波时,定性

画出 v_{o} 、 v'_{o} 及 v_{L} 的波形。

解: (1) A 构成过零比较器

- (2) *RC* 为微分电路, *RC*<<*T*
- (3) D削波(限幅、检波)

图示为另一种形式的单门限电压比较器,试求出其门限电

压(阈值电压) V_{T} ,画出其电压传输特性。设运放输出的高、

低电平分别为 $V_{\rm OH}$ 和 $V_{\rm OL}$ 。

利用叠加原理可得

$$\mathbf{v}_{\mathrm{p}} = \frac{R_{2}}{R_{1} + R_{2}} V_{\mathrm{REF}} + \frac{R_{1}}{R_{1} + R_{2}} \mathbf{v}_{\mathrm{I}} \qquad V_{\mathrm{REF}} \sim \frac{V_{\mathrm{REF}} \sim R_{1}}{V_{\mathrm{I}} \sim R_{1}}$$

理想情况下,输出电压发生跳变

时对应的 $v_{\rm P} = v_{\rm N} = 0$,即

$$R_2 V_{\text{REF}} + R_1 V_1 = 0$$

门限电压
$$V_{\rm T} = (V_{\rm I} =) - \frac{R_2}{R_1} V_{\rm REF}$$

单门限比较器的抗干扰能力

应为高电平

2. 迟滞比较器

- (1) 电路组成

$$V_{p}: \frac{V_{0}-V_{0}\tau_{1}}{R_{1}+R_{2}} P_{1} V_{REF}=1V 100\Omega$$

$$RV_{DF7}+V_{0}P_{2}$$

(1) 电路组成
$$v_{\rm p}$$
 为门限电压, $v_{\rm p}$ 为门限电压, $v_{\rm p}$ 为门限电压, $v_{\rm p}$ 时, $v_{\rm o} = V_{\rm old}$ (低电平) $v_{\rm i} < v_{\rm p}$ 时, $v_{\rm o} = V_{\rm old}$ (高电平)

 m_{ν_p} 与 ν_0 有关,对应 ν_0 的两个电压值, ν_p 的两个门限电压

$$V_{T+} = rac{R_1 V_{REF}}{R_1 + R_2} + rac{R_2 V_{OH}}{R_1 + R_2}$$
 上门限电压 $V_{T-} = rac{R_1 V_{REF}}{R_1 + R_2} + rac{R_2 V_{OL}}{R_1 + R_2}$ 下门限电压

$$V_{\text{T-}} = \frac{R_1 V_{\text{REF}}}{R_1 + R_2} + \frac{R_2 V_{\text{OL}}}{R_1 + R_2}$$

$$\Delta V_{\rm T} = V_{\rm T+} - V_{\rm T-} = \frac{R_2(V_{\rm OH} - V_{\rm OL})}{R_1 + R_2}$$

2. 迟滞比较器

(3) 传输特性

$$V_{T+} = \frac{R_1 V_{REF}}{R_1 + R_2} + \frac{R_2 V_{OH}}{R_1 + R_2}$$
$$V_{T-} = \frac{R_1 V_{REF}}{R_1 + R_2} + \frac{R_2 V_{OL}}{R_1 + R_2}$$

(4) 分析要点

- > 门限电压与输出电压有关
- > 任何时刻只有一个门限电压有效
- 》当输入介于两门限之间时输出不变。只有当输入高于有效的上门限或低于有效的下门限时,输出才翻转。翻转方向取决于输入输出的相位关系。

例

电路如图9.4.6a所示,试求门限电压,画出传输特性和图c所

示输入信号下的输出电压波形。

解:(1) 门限电压

$$V_{\text{REF}} = 0$$
 $V_{\text{O}} = \pm 10 \text{V}$

$$V_{\text{T+}} = \frac{R_1 V_{\text{REF}}}{R_1 + R_2} + \frac{R_2 V_{\text{OH}}}{R_1 + R_2} = 5 \text{V}$$

$$V_{\text{T-}} = \frac{R_1 V_{\text{REF}}}{R_1 + R_2} + \frac{R_2 V_{\text{OL}}}{R_1 + R_2} = -5 \text{V}$$

- (2) 传输特性
- (3) 输出电压波形

与单门限相比,迟 滞比较器在电路翻 转时有何特点?

电路如图示,试求门限电压,画出传输特性。

解: (1) 门限电压

$$v_{\rm P} = \frac{R_2 v_{\rm I}}{R_1 + R_2} + \frac{R_1 v_{\rm O}}{R_1 + R_2}$$

$$v_0 = \pm V_2$$

$$v_{\rm I} = -\frac{R_1}{R_2} (\pm V_{\rm Z})$$

翻转时刻,
$$v_{\rm P}=v_{\rm N}=0$$
 $v_{\rm O}=\pm V_{\rm Z}$ $v_{\rm O}=-\frac{R_{\rm I}}{R_{\rm Z}}(\pm V_{\rm Z})$ $V_{\rm T-}=-\frac{R_{\rm I}}{R_{\rm Z}}\cdot V_{\rm Z}$

$$V_{\mathrm{T}^{-}} = -\frac{R_{1}}{R_{2}} \cdot V_{\mathrm{Z}}$$

3. 集成电压比较器

集成电压比较器与集成运算放大器比较:

开环增益低、失调电压大、共模抑制比小,灵敏度往往不如用集成运放构成的比较器高。

但集成电压比较器中无频率补偿电容,因此转换速率高, 改变输出状态的典型响应时间是30~200ns。

相同条件下741集成运算放大器的响应时间为30µs左右。

1. 电路组成(多谐振荡电路)

较器

2. 工作原理

由于迟滞比较器中正反馈的作用,电源接通后瞬间,输出便进入饱和状态。 假设为正向饱和状态

$$F = \frac{R_2}{R_1 + R_2}$$

3. 振荡周期

利用三要素法公式

$$\mathbf{V}_{\mathbf{C}}(t) = [\mathbf{V}_{\mathbf{C}}(0+) - \mathbf{V}_{\mathbf{C}}(\infty)]e^{-\frac{t}{\tau}} + \mathbf{V}_{\mathbf{C}}(\infty) _{-FV_{\mathbf{C}}}^{-FV_{\mathbf{C}}}$$

其中
$$\mathbf{v}_{\mathbf{C}}(\infty) = -V_{\mathbf{Z}} \quad \mathbf{v}_{\mathbf{C}}(0+) = FV_{\mathbf{Z}}$$

$$au = R_{\rm f} C \quad V_{\rm C}(T_2) = -FV_{\rm Z} \quad F = \frac{R_2}{R_1 + R_2}$$

则
$$-FV_z = [FV_z + V_z]e^{-\frac{T_z}{R_fC}} - V_z$$

$$\implies T_2 = R_f C \ln \frac{1+F}{1-F}$$

$$=R_{\rm f}C\ln(1+\frac{2R_2}{R_1})$$

$$\nabla T_1 = T_2$$

$$\implies T = 2R_{\rm f}C\ln(1+\frac{2R_2}{R_1})$$

当
$$F = 0.462$$
时 $f = \frac{1}{T} = \frac{1}{2R_{\rm f}C}$

4. 占空比可变的方波产生电路

10.8.3 锯齿波产生电路

充放电时间常数不同

 V_{T-}

 t_3

#该电路可否称为 方波产生电路?