

Geometria Analitica

Videoaula 4.9

Distâncias (parte 2)

Departamento de Matemática (UF\$C)

Professora ALDA MORTARI

Professor CHRISTIAN WAGNER

Professor FELIPE TASCA

Professor GIULIANO BOAVA

Professor LEANDRO MORGADO

Professora MARÍA ASTUDILLO

Professor MYKOLA KHRYPCHENKO

Distância entre dois planos

Paralelos e distintos

 $d(\alpha, \beta)$ é a distância entre um ponto em α e o plano β .

Paralelos e coincidentes

$$d(\alpha,\beta) = 0.$$

Concorrentes

$$d(\alpha, \beta) = 0.$$

Exemplo 1

Determine a distância entre os planos α e β .

$$\alpha : x - 2z + 1 = 0$$

$$\beta : 2x - 4z + 4 = 0$$

Distância entre reta e plano

Reta contida no plano

$$d(r, \alpha) = 0.$$

Reta concorrente (não contida)

$$d(r, \alpha) = 0.$$

Reta paralela (não contida)

 $d(r, \alpha)$ é a distância entre um ponto da reta e o plano α .

Exemplo 2

Calcule a distância entre a reta s e o plano α .

$$\alpha : 2x - y + z - 4 = 0.$$

$$\int x = 1 - t$$

$$s: \begin{cases} x = 1 - t \\ y = 2 \\ z = 3 + 2t \end{cases}$$

Distância entre duas retas

Retas concorrentes

$$d(r,s) = 0$$

Retas coincidentes

$$d(r,s) = 0$$

Retas paralelas

d(r,s) é a distância entre um ponto $P \in r$ e a reta s

Distância entre retas reversas

A distância entre as retas é a altura do parelelepípedo.

Exemplo 3

Calcule a distância entre as retas r e s.

$$r: \begin{cases} x = 0 \\ y = z \end{cases} \qquad s: \begin{cases} y = 3 \\ z = 2x \end{cases}$$