# Bipolo

#### Utilizzatori



$$V = R \times I [V]$$

$$P_{Ass} = V \times I [W]$$

$$P_{Ero} = -V \times I [W]$$

#### Generatori



## Teorema di Tellegen

$$\sum V_n \times I_n = 0$$

## Partitori



$$I_1 = I \times \frac{R_2}{R_1 + R_2}$$

## Trasformazioni

 $\mathbf{Stella} \to \mathbf{triangolo}$ 

$$G_{12} = \frac{G_1 \times G_2}{\sum G_n}$$

Triangolo  $\rightarrow$  stella

$$R_1 = \frac{R_{12} \times R_{13}}{\sum R_n}$$

# $V \overset{+}{\overset{-}{\longrightarrow}} R_1 \overset{R_2}{\overset{-}{\nearrow}} V_1$

$$V_1 = V \times \frac{R_2}{R_1 + R_2}$$

**Nota**: Dovre è presente una maggiore resistenza, sarà presente una minore intensità di corrente ed una maggiore tensione.

|          | $\mathbf{Serie}$         | Parallelo                |
|----------|--------------------------|--------------------------|
| Corrente | $I = I_1 = \ldots = I_n$ | $I = \sum I_n$           |
| Tensione | $V = \sum V_n$           | $V = V_1 = \ldots = V_n$ |

## Equivalenti

### Thévenin



$$\begin{array}{ccc}
R_{Eq} & V_{Eq} = V_{CA} \\
+ & R_{Eq} = \frac{1}{G_{Eq}}
\end{array}$$

#### Norton

