

AcsuA-m = 2d+2/log_n/ m- bits tallognold DCSuA B 04 Lgy Lpy Gerl Pel Ja B12

-> obligatorier transport de intrare o

Comparare latenta

	$CS_{e}A$		
b ₂ = 18d	b _Z = 258d	b= 31d	b==512d
Scout = 17d	Scout 258d	Scout 19d	Scout = 512d

Operar	Rank	7	7	(3	5	5	4	T	3		2	T	1	T	0	7
X		1	0	4	61	4	41	0		(1	1	0	+	1	+
Y)		1		1	1		0		1		0	1	1	1
Block level	Carry in	С	S	C	S	C	S	С	S	C	S	С	S	С	S	С	S
i=0	c _{in} =0	0	1	0	1	0	1	0	1	0	1	1	0	0	0	1	0
	c _{in} =1	1	0	1	0	1	0	1	0	1	0	1	1	0	1	VIII	7//
i=1	c _{in} =0															1	44
	c _{in} =1															T	
i=2	c _{in} =0		B														
	c _{in} =1																
i=3	c _{in} =0																
	c _{in} =1																

Carry Sove Adder

-> Jumā sn formā nedemobent -> 2 vectori < transport -> ademorea multi operand x, y, S, T pe 4 bit; Z= X+y+S+T

sumă în format redundant: 2 vectori sumă transport

vectorul transport este cu o poziție mai semnificativ decât cel sumă
 permite realizarea adunării multi-operand

Se consideră operanzii X, Y, S și T, pe 4 biți. Suma Z = X + Y + S + T poate fi calculata astfel:

2.3.3 Carry Save Adder (contin.)

► facilitează realizarea operației de înmulțire (combinațional)

Fie X și Y fără semn pe 6 biți. Produsul P = X * Y este obținut prin adunarea produselor de 1-bit $M_i = x_i * Y * 2^i$

Sumatoare binare cu control de garitate

$$\begin{array}{cccc}
\times & & \times & \\
\times & & \times & \\
Y & & & YP
\end{array}$$

$$\begin{array}{ccccc}
XS & & & & & \\
Z & & & & & \\
Cout & & & & \\
\end{array}$$

$$\begin{array}{lll}
\times p &=& \times \\
 & \times \\$$