Homework 04

2. Winding number

Suppose f(z) is holomorphic in the disc $|z| \le \epsilon$ and has a zero at z=0 but nowhere else in the disc $|z| \le \epsilon$. Show by direct integration that

$$\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{f'(z)}{f(z)} dz$$

equals the winding number of the argument of f around the circle $|z| = \epsilon$. Then use the residue theorem to show that this equals the degree of the zero, in agreement with the argument principle.

The integral

$$\int_C \frac{f'(z)}{f(z)} dz = \int_C \frac{1}{f(z)} df(z) = \int_{f(C)} \frac{1}{w} dw$$

effectively measures the total change in the argument of f(z) as z traverses the circle, which equals the winding number of the argument of f.

Since f(z) is holomorphic in the disc $|z| \le \epsilon$ and has a zero at z = 0, f(z) can be locally expressed as $z^n g(z)$, where n is the degree of the zero.

Then, $f'(z) = nz^{n-1}g(z) + z^ng'(z)$, and so

$$\frac{f'(z)}{f(z)} = \frac{n}{z} + \frac{g'(z)}{g(z)}$$

The residue at z=0 is the coefficient of $\frac{1}{z}$ in this expression, which is n, the degree of the zero.

4. Analytic continuation and Fourier coefficents

Give an analytic continuation of $\cos\theta$ from the unit circle $z=e^{i\theta}$ to the complex plane minus the origin.

Conclude that the Fourier coefficients c_n of $e^{-\cos\theta}$ decrease faster than any exponential, meaning $c_n = o(e^{-\alpha n})$ for all α as $n \to \pm \infty$. Compare this to the Fourier series of $1/(\cos\theta - 3/2)$, what is the decay of its Fourier coefficients?

Analytic continuation

On the unit circle $z=e^{i\theta}$, $\cos\theta=\frac{1}{2}\big(e^{i\theta}+e^{-i\theta}\big)=\frac{1}{2}(z+z^{-1})$. This expression provides an analytic continuation of $\cos\theta$ to the complex plane minus the origin, as it is well-defined for all $z\neq 0$.

Fourier coefficents of $e^{-\cos\theta}$

The function $e^{-\cos\theta}$ is smooth and periodic. The Fourier coefficients c_n of a periodic function $f(\theta)$ are given by:

$$c_n = 1/2\pi \int_0^{2\pi} f(\theta) e^{in\theta} d\theta = 1/2\pi \int_0^{2\pi} e^{-\cos\theta + in\theta} d\theta$$

$$1/2\pi \int_0^{2\pi} e^{-\cos\theta + in\theta} d\theta = 1/2\pi \int_{|z|=1}^{2\pi} e^{-z/2 - 1/2z} z^n \frac{dz}{iz} = Res_{z=0} e^{-z/2 - 1/2z} z^{n-1}$$

The coefficient a_{-n} of $g(z)=e^{-z/2-1/2z}$ at the point of z=0 can de derived by expanding by separately $e^{-z/2}$ as Talyor Series and $e^{-1/(2z)}$ as a Laurent Series and then multiplying these series together

$$a_{-n} = \sum_{k=0}^{\infty} \left(-\frac{1}{2} \right)^k \frac{1}{k!} \left(-\frac{1}{2} \right)^{(n+k)} \frac{1}{(n+k)!}$$

So fourier coefficients c_n

$$c_n = a_{-n} \le |a_{-n}| \le \frac{1}{2^n} \frac{1}{n!}$$

decrease faster than any exponential.

Fourier coefficents of $\frac{1}{\cos \theta - 3/2}$

The Fourier coefficients c_n of a periodic function $f(\theta)$ are given by:

$$c_n = \frac{1}{2\pi} \int_0^{2\pi} f(\theta) e^{in\theta} d\theta$$

$$= \frac{1}{2\pi} \int_0^{2\pi} \frac{1}{\cos \theta - 3/2} e^{in\theta} d\theta$$

$$= \frac{1}{2\pi i} \int_{|z|=1}^{2\pi i} \frac{2z}{z^2 - 3z + 1} z^{n-1} dz$$

Let
$$z^2 - 3z + 1 = (z - z_1)(z - z_2)$$
, where $z_1 = \frac{1}{2}(3 - \sqrt{5}), z_2 = \frac{1}{2}(3 + \sqrt{5})$.

$$\begin{split} c_n &= Res_{z=z_1} \frac{2z}{(z-z_1)(z-z_2)} z^{n-1} \\ &= \frac{2z_1}{z_1-z_2} z_1^{n-1} \end{split}$$

5. Laurent series and singularity

Let's consider a function f that is holomorphic in a disc around z_0 except at z_0 itself.

1. Removable Singularity:

If f has a removable singularity at z_0 , it means that f can be extended to a holomorphic function at z_0 . In terms of the Laurent series, this implies that all the coefficients a_n for n < 0 are zero because it reduces to its Taylor series.

Conversely, if all $a_n=0$ for n<0, the Laurent series reduces to a Taylor series, implying that f is holomorphic at z_0 (since it can be expressed as a power series), and thus the singularity is removable.

2. Pole of Order m:

If f has a pole of order m at z_0 , it means that in the Laurent series, there is a term with $(z-z_0)^{-m}$ (where $a_{-m} \neq 0$) and no terms with higher negative powers.

Conversely, if there is some m<0 such that $a_m\neq 0$ but $a_n=0$ for all n< m, then the Laurent series has a term $a_m(z-z_0)^m$ as its term with the highest negative power, indicating a pole of order m.

3. Essential Singularity:

If the singularity at z_0 is neither removable nor a pole, it must be an essential singularity. This is characterized by the fact that there are infinitely many negative powers of $z-z_0$ in the Laurent series with non-zero coefficients. In other words, if the Laurent series has non-zero a_n for infinitely many n<0, then z_0 is an essential singularity.

6. Euler proof of Basel problem

Using the result of the bonus problem, prove that

$$\sin \pi z = \prod (1-z/n)e^{z/n} = \pi z \prod (1-z^2/n^2)$$

Then compare the Taylor series of $\sin \pi z$ to the first couple terms in the expansion of the infinite product to conclude

$$\sum_{n=1}^{\infty} 1/n^2 = \pi^2/6$$

According to the Weierstrass factorization theorem, an entire function can be represented as a product over its zeros. The function $\sin \pi z$ is entire and has zeros at all integers. The product representation for $\sin \pi z$ is given by:

$$\sin \pi z = \pi z \prod_{n=1}^{\infty} \left(1 - \frac{z}{n} \right) \left(1 + \frac{z}{n} \right) = \sin \pi z = \pi z \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{n^2} \right)$$

The Taylor series expansion of $\sin \pi z$ around z = 0 is:

$$\sin \pi z = \pi z - \frac{\pi^3 z^3}{3!} + \frac{\pi^5 z^5}{5!} - \frac{\pi^7 z^7}{7!} + \cdots$$

Now, let's expand the infinite product to the first couple of terms and keeping terms up to z^3 , we get:

$$\pi z \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{n^2} \right) = \pi z \left(1 - \frac{z^2}{1^2} \right) \left(1 - \frac{z^2}{2^2} \right) \left(1 - \frac{z^2}{3^2} \right) \cdots$$
$$= \pi z \left(1 - z^2 \left(\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots \right) + \cdots \right)$$

Comparing the coefficient of z^3 from the Taylor series and the product expansion, we have:

$$-\frac{\pi^3}{6} = -\pi \left(\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots \right)$$

This is the result we want.

Bibliography