EPhOt

Первый тур, 11В Условие Страница 1 из 1

11 класс Гироскоп

Оборудование: гироскоп (волчок); нитка длиной около 90 см; нитка длиной около 10 см; подставка с остриём; груз массой m_1 (около 1 кг); секундомер с памятью этапов (до 30 этапов); струбцина быстрозажимная; линейка; скрепка; кусочек пластилина; зубочистка; инструкция к секундомеру.

Теоретическая справка: В прямом переводе слово гироскоп — прибор для обнаружения вращения. В широком смысле гироскопом называется быстро вращающееся твердое тело, ось которого может менять положение в пространстве. Гироскоп, в особенности, когда на него действуют внешние силы, может совершать удивительные движения, кажущиеся на первый взгляд неожиданными и непонятными. Вся теория гироскопов построена на векторном уравнении для момента импульса относительно точки опоры О:

$$\frac{d\vec{L}}{dt} = \vec{M} \tag{1}$$

точки O, \vec{L} — момент импульса относительно точки O. Если ось вращающегося волчка отклонена от вертикали, то под действием силы тяжести ось описывает в пространстве круговой конус с вертикальной осью. Такое движение волчка называют вынужденной прецессией.

Экспериментальные советы:

- 1) Для раскручивания волчка на его оси проделано отверстие, проденьте в него конец длинной нити (не привязывайте ничего к оси волчка!) и намотайте ее на ось волчка, повесьте на другой конец нити груз, отпустите волчок, держа гироскоп за защитную оболочку, и дайте волчку раскрутиться под тяжестью груза.
- 2) В частях 2 и 3 волчок должен находиться на специальной подставке с торчащим острием, для установки на это острие на оси симметрии гироскопа в защитной оболочке имеется круглое отверстие, после раскручивания волчка устанавливайте его этим отверстием на острие.
- 3) Для того, чтобы вам не пришлось повторять ваши измерения, советуем устанавливать гироскоп на подставку/подвес сразу же после разгона, пока угловая скорость волчка не успеет измениться.
- 4) В 4-ом пункте вам понадобится измерить угол наклона гироскопа, пластилин и зубочистка даны вам именно для этих целей (при необходимости зубочистку можно укорачивать).
- 5) Подвешивайте гироскоп на горизонтально вкрученный в подставку саморез.
- 6) К особенностям движения гироскопа нужно привыкнуть, человеческий мозг, не привыкший встречаться с гироскопами в повседневной жизни, воспринимает их как обычные тела, не обладающие большим моментом инерции, и пытается ими так же управлять, что зачастую приводит к многократному падению гироскопа на пол. Пожалуйста, во избежание поломок оборудования:
 - а. Подстраховывайте гироскоп, стоящий на подставке, рукой, крепко удерживайте защитную оболочку за пластиковую часть при разгоне гироскопа.
 - b. Перед тем, как пытаться "поправить" гироскоп на подставке, сначала подумайте, как надо приложить к нему силу для того, чтобы он отклонился в нужную сторону
 - с. Не касайтесь быстро вращающихся частей гироскопа.

Первый тур, 11В Условие Страница 2 из 1

Часть 1. Период прецессии. (1 балл)

Теоретически получите выражение для периода прецессии волчка T_1 . Используйте следующие обозначения:

I – момент инерции ротора волчка относительно оси симметрии,

 ω – угловая частота вращения ротора волчка вдоль оси симметрии,

 $m = 127 \ \Gamma$ – общая масса ротора и рамы волчка,

 $g = 9.8 \text{ м/}c^2$ – ускорение свободного падения,

r – расстояние от точки опоры O до центра масс волчка

Используйте такие приближения:

- 1) Пренебрегите силой трения, учитывайте только силу тяжести. Тогда $\vec{M} = [\vec{r}, m\vec{g}]$
- 2) Считайте, что момент импульса \vec{L} направлен вдоль оси волчка, а его модуль $|\vec{L}| = I\omega$.
- 3) Пренебрегите потерями энергии: считайте, что модуль момента импульса остаётся постоянным.

Часть 2. Момент инерции волчка. (4 балла)

- 2.1 Раскрутите волчок с помощью груза m_1 и измерьте период его прецессии. Используя эти данные и проведя необходимые дополнительные измерения геометрических размеров, определите момент инерции ротора волчка I и частоту вращения волчка (в Γ ц) в эксперименте.
- 2.2 До какой максимальной частоты удаётся раскрутить волчок, дёргая за нить рукой? Ответ выразите в герцах.

Часть 3. Момент силы трения. (3 балла)

Момент силы тяжести только поворачивает момент импульса волчка. Момент силы трения между ротором и рамой изменяет его модуль.

- 3.1 Раскрутите волчок и поставьте на подставку. Постройте график зависимости частоты вращения ротора волчка (в герцах) от времени до того момента, как частота уменьшится в 2 раза.
- 3.2 На основе графика сделайте качественный вывод о зависимости момента силы трения, действующего на ротор, от скорости вращения волчка. Определите средний момент силы трения.

Часть 4. Другая прецессия. (2 балла)

Чтобы наблюдать другой вид прецессии волчка, его нужно подвесить на нитке за железный обруч и отклонить на угол α от вертикали.

- 4.1 Теоретически выведите формулу для периода прецессии T_2 этом случае.

Назначение кнопок секундомера

