Application No. 09/847,411
Attorney's Docket No. 003510-094
Page 2

susceptible layer and whose solubility in an alkaline developing liquid is lowered by exposure on the exposure surface or the vicinity thereof. Moreover, in the present invention, in an exposure portion, an image excellent in discrimination is formed, and development stability is good since the second layer, having non-permeability to the alkaline developing liquid, functions as a protective layer for the first layer, and stability in an elapsed time is also considered to be secure. Moreover, in a non-exposure portion, an unhardened binder component is quickly dissolved in a developing liquid and dispersed, and further, since the first layer existing adjacent to the supporting body contains a polymer soluble in an alkaline aqueous solution, solubility in a developing liquid is good, for example, even in the case where the developing liquid or the like whose activity has been lowered is employed, the first layer is quickly dissolved without the occurrence of film residue and the like, which is considered as an excellent development property.

Kindly replace the paragraph beginning on page 49, line 25, with the following:

For example, diazonium salt described in S.I. Schlesinger, Photogr. Sci. Eng., 18, 387 (1974), T. S. Bal et al. Polymer, 21, 423 (1980), ammonium salt described in the specification of U.S. Patent No. 4,069,055, JP-A No. 4-36504 and so forth, phosphonium salt described in the respective specifications of U.S. Patent No. 4,069,055 and U.S. Patent No. 4,069,056, iodonium salt described in the specifications of European Patent No. 104,143, U.S. Patent No. 339,049 and U.S. Patent No. 410,201, and JP-A No. 2-150848 and JP-A No. 2-296514, sulfonium salt described in the respective specifications of European Patent No. 370,693, European Patent No. 390,214, European Patent No.

9

233,567, European Patent No. 297,443, and European Patent No. 297,442, U.S. Patent No. 4,933,377, U.S. Patent No. 161,811, U.S. Patent No. 410,201, U.S. Patent No. 339,049, U.S. Patent No. 4,760,013, U.S. Patent No. 4,734,444, and U.S. Patent No. 2,833,827, D.E. Patent No. 2,904,626, and D.E. Patent Nos. 3,604,580, 3,604,581. selenonium salt described in J.V. Crivello et al., Macromolecules, 10 (6), 1307 (1977), J.V. Crivello et al., J. Polymer Sci., Polymer Chem. Ed., 17, 1047 (1979), onium salts such as arsonium salt and the like described in C.S. Wen et al., The, Proc. Conf. Rad. Curing ASIA, pp. 478, Tokyo, Oct (1988), organic halogen compound described in the specification of U.S. Patent No. 3,905,815, JP-B No. 46-4605, JP-A No. 48-36281, JP-A No. 55-32070, JP-No. 60-239736, JP-A No. 61-169835, JP-A No. 61-169837, JP-A No. 62-58241, JP-A No. 62-212401, JP-A No. 63-70243, JP-A No. 63-298339, organic metal / organic halide described in JP-A No. 2-161445, optically acid generating agent having onitrobenzyl type protective group described in European Patent No. 0290,750, European Patent No. 046,083, European Patent No. 156,535, European Patent No. 271,851, and European Patent No. 0,388,343, the respective specifications of U.S. Patent No. 3,901,710, and U.S. Patent No. 4,181,531, JP-A No. 60-198538, and JP-A No. 53-133022, compounds for generating sulfonic acid by performing photolysis represented by iminosulfonate and the like described in European Patent No. 0,199,672, European Patent No. 84515, European Patent No. 199,672, European Patent No. 044,115, and European Patent No. 0101,122, the specifications of U.S. Patent No. 4,618,564, U.S. Patent No. 4,371,605, and U.S. Patent No. 4,431,774, JP-A No. 64-18143, JP-A No. 2-245756, and