SST1 Übungsstunde 3

Matteo Dietz

September 2024

Organisatorisches

• Ich bin im Militär nächste Woche (15. Oktober)

 Vorlesungsskript und Ubungsskript auf der Vorlesungswebsite Username: sigsys2024, Passwort: Fourier2024

Link zu meinen Handouts ebenfalls auf der Vorlesungswebsite

Themenüberblick

Systeme und Systemeigenschaften:

Linearität, Nullraum und Bildraum, Stetigkeit Das inverse System Darstellung linearer Systeme über Matrizen

• Eigenschaften zeitkontinuierlicher linearer Systeme Zeitinvarianz, Kausalität, Gedächtnis, BIBO-Stabilität

Aufgaben für diese Woche

25, 26, **27**, **28**, **29**, 30, **32**

Die **fettgedruckten** Übungen empfehle ich, weil sie wesentlich zu eurem Verständnis der Theorie beitragen und/oder sehr prüfungsrelevant sind.

Repetition: Systeme

Ein System hat folgendes Blockschaltbild:

Dabei ist $x \in X$ und $y \in Y$, wobei X und Y lineare Räume sind.

Repetition: Linearität

- Ein System $H: X \to Y$ ist **linear**, wenn:
 - (i) Additivität: $H(x_1 + x_2) = Hx_1 + Hx_2$, für alle $x_1, x_2 \in X$
 - (ii) **Homogenität**: $H(\alpha x) = \alpha H x$, für alle $x \in X$ und alle $\alpha \in \mathbb{C}$
- Falls das System $(i) \lor (ii)$ nicht erfüllt, heisst H nichtlinear.

Repetition: Linearität

• Wenn H ein lineares System ist, dann muss H0 = 0 immer gelten.

• Wenn dies also nicht erfüllt ist, dann muss H nichtlinear sein.

Nullraum

• Sei $H: X \rightarrow Y$ ein lineares System

Der Nullraum von H ist die Teilmenge von X definiert durch $\mathcal{N}(H) = \{x \in X : Hx = 0\}.$

 $\mathcal{N}(H)$ ist ein linearer Unterraum von X.

Bildraum

• Sei $H: X \rightarrow Y$ ein lineares System

Der Bildraum von H ist die Teilmenge von Y definiert durch $\mathcal{R}(H) = \{y = Hx : x \in X\}.$

 $\mathcal{R}(H)$ ist ein linearer Unterraum von Y.

Nullraum und Bildraum

Stetige Systeme

• Theorem: Das System H ist linear und stetig \Leftrightarrow Für jede konvergente Reihe $\sum_{i=1}^{\infty} \alpha_i x_i$ gilt:

$$H\left(\sum_{i=1}^{\infty}\alpha_{i}x_{i}\right)=\sum_{i=1}^{\infty}\alpha_{i}Hx_{i}$$

$\varepsilon - \delta$ Stetigkeit

• Seien $(X, ||\cdot||)$ und $(Y, ||\cdot||)$ normierte lineare Räume.

Das System $H: X \to Y$ ist **stetig** in $x_0 \in X$, falls es zu jedem $\varepsilon > 0$ ein nur von ε abhängiges $\delta > 0$ gibt, so dass:

$$\forall x \in X \text{ mit } ||x - x_0|| < \delta \text{ folgt, dass } ||Hx - Hx_0|| \le \varepsilon.$$

Das Inverse System

• $H: X \to Y$ ist **invertierbar**, wenn $G: Y \to X$ existiert, sodass: $GH = I_X$ und $HG = I_Y$,

wobei I_X bzw. I_Y die Identitätsabbildungen auf X bzw. Y sind. (D.h. $I_X x = x$, für alle $x \in X$ und $I_Y y = y$, für alle $y \in Y$.)

• Man schreibt $H^{-1} = G$.

Das Inverse System

 Wenn ein System invertierbar ist, dann ist seine Inverse eindeutig.

Das Inverse System

• Die Inverse eines linearen Systems ist auch linear.

- Wir betrachten allgemeine endlich-dimensionale lineare Systeme $H: X \to Y$ und beschreiben diese durch eine Matrix.
- Die linearen Räume X und Y haben als Basen $B_1 = \{x_1, \dots, x_n\}$ und $B_2 = \{y_1, \dots, y_m\}$.

$$x = \alpha_1 x_1 + \dots + \alpha_n x_n$$

$$y = \beta_1 y_1 + \cdots + \beta_m y_m$$

In Matrixform:

$$\begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_m \end{bmatrix} = \underbrace{\begin{bmatrix} t_{11} & t_{12} & \dots & t_{1n} \\ t_{21} & t_{22} & \dots & t_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ t_{m1} & t_{m2} & \dots & t_{mn} \end{bmatrix}}_{\mathbf{H}} \cdot \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \dots \\ \alpha_n \end{bmatrix}$$

• Die $m \times n$ Matrix **H** stellt das System H in den Basen B_1 und B_2 dar.

Aufgabe 25 & 26

Eigenschaften zeitkontinuierlicher linearer Systeme

7eitinvarianz

Kausalität

Gedächtnis

BIBO-Stabilität

Zeitinvarianz

• **Definition**: Ein System $H: X \to Y$ ist **zeitinvariant**, wenn

$$HT_{\tau}x = T_{\tau}Hx$$
, für alle $x \in X$, $\tau \in \mathbb{R}$

Zeitverschiebungsoperator: $(T_{\tau}x)(t) := x(t-\tau)$

• Ein System, das nicht zeitinvariant ist, heisst zeitvariant.

• Intuition: Zeitverschiebung am Eingang des Systems führt zu derselben Zeitverschiebung am Ausgang des Systems.

Kausalität

• **Definition**: Ein System $H: X \to Y$ ist **kausal**, wenn für alle $x_1, x_2 \in X$ und jedes $T \in \mathbb{R}$ gilt

$$x_1(t) = x_2(t)$$
, für alle $t \le T$
 $\implies (Hx_1)(t) = (Hx_2)(t)$, für alle $t \le T$

Kausalität

• **Intuition**: Das Ausgangssignal zu dem Zeitpunkt *T* ist nur von dem momentanen oder vergangenen Zeitpunkten abhängig.

• Echtzeitrealisierungen sind immer kausal.

Gedächtnis

• **Definition**: Ein System $H: X \to Y$ ist **gedächtnislos**, wenn für alle $x \in X$ und alle Zeitpunkte $t_0 \in \mathbb{R}$ das Ausgangssignal (Hx)(t) zum Zeitpunkt t_0 nur von $x(t_0)$ abhängt.

- Sonst heisst das System **gedächtnisbehaftet**.
- Gedächtnislosigkeit ⇒ Kausalität (aber nicht umgekehrt)

BIBO-Stabilität

• **Definition**: Ein System $H: X \to Y$ ist **BIBO-stabil**, wenn:

für alle $x \in X$ mit $|x(t)| \le B_x < \infty$, für alle t, existiert ein $B_y \in \mathbb{R}$ mit $B_y < \infty$, sodass

 $|y(t)| \le B_y$, für alle t, wobei y = Hx.

Aufgaben 28, 29 & Prüfungsaufgabe