# Big Data and Math Modeling:

Using Python to Analyze The NYC Subway System

Lauren Shareshian Oregon Episcopal School Portland, OR

#### What is Data Science?



#### Tons of Data Science education is popping up

From the free online materials: <u>UC Berkeley Data 8</u>

To the undergraduate majors: <u>Columbia University</u>

To the expensive bootcamps: Metis, UCSD

#### What is Big Data?

- Volume Lots of it
- Velocity New data continuously coming in
- Variety Data comes in all types of formats

"Big data" refers to the **use of analytics to extract value** from data, and seldom to a particular size of data set.

#### **MTA NYC Subway Data Set**

- Publicly available
- Published weekly
- Info on entries/exits through every turnstile in 4 hour intervals



http://web.mta.info/developers/turnstile.html

#### How big is the data set?

```
In [1]: import pandas as pd
    data = pd.read_csv('subway.csv')
    data.shape
Out[1]: (197209, 11)
```

### If you don't know any programming

Fear not! There's a cleaned up excel spreadsheet:

|                      | Weekday<br>Entries<br>0-4 am | Weekday<br>Entries<br>4-8 am | Weekday<br>Entries<br>8-12 pm | Weekday<br>Entries<br>12-4 pm | Weekday<br>Entries<br>4-8 pm | Weekday<br>Entries<br>8-12 am | Weekend<br>Entries<br>0-4 am |
|----------------------|------------------------------|------------------------------|-------------------------------|-------------------------------|------------------------------|-------------------------------|------------------------------|
| 59 ST                | 1334                         | 7154                         | 15292                         | 16655                         | 32353                        | 9690                          | 1729                         |
| 5<br>AV/59<br>ST     | 586                          | 418                          | 1601                          | 5140                          | 7053                         | 3698                          | 35                           |
| 57 ST-<br>7 AV       | 844                          | 1143                         | 5044                          | 6823                          | 16815                        | 6667                          | 1443                         |
| 49 ST                | 828                          | 644                          | 3515                          | 4610                          | 12580                        | 5889                          | 1407                         |
| TIMES<br>SQ-42<br>ST | 3678                         | 5648                         | 14784                         | 17593                         | 46960                        | 21404                         | 6971                         |

### How big is this data set?

- 376 stations
- 4,695 turnstiles
- Each turnstile reports rider data every four hours (6 times per day) for one week (7 days)
   6\*7\*4,695 = 197,190 rows of data

#### What does the data set look like?

```
data[(data['STATION'] == '34 ST-PENN STA') & (data['DATE'] == '06/12/2017')]
```

|       | C/A  | UNIT | SCP      | STATION        | LINENAME | DIVISION | DATE       | TIME     | DESC    | ENTRIES | EXITS   |
|-------|------|------|----------|----------------|----------|----------|------------|----------|---------|---------|---------|
| 49612 | N067 | R012 | 00-00-00 | 34 ST-PENN STA | ACE      | IND      | 06/12/2017 | 00:00:00 | REGULAR | 1829493 | 1553798 |
| 49613 | N067 | R012 | 00-00-00 | 34 ST-PENN STA | ACE      | IND      | 06/12/2017 | 04:00:00 | REGULAR | 1829495 | 1553801 |
| 49614 | N067 | R012 | 00-00-00 | 34 ST-PENN STA | ACE      | IND      | 06/12/2017 | 08:00:00 | REGULAR | 1829676 | 1553947 |
| 49615 | N067 | R012 | 00-00-00 | 34 ST-PENN STA | ACE      | IND      | 06/12/2017 | 12:00:00 | REGULAR | 1829944 | 1554414 |
| 49616 | N067 | R012 | 00-00-00 | 34 ST-PENN STA | ACE      | IND      | 06/12/2017 | 16:00:00 | REGULAR | 1829981 | 1554571 |

### How does this relate to math modeling?

From this data set we can ask questions that are:

- Interesting
- Purposeful (extracts value)
- Collaborative
- Allow for a variety of solutions
- Open ended



#### What are those variables?

Skills developed: Research skills, resourcefulness



### What are those variables telling me?

Skills developed: Number Sense

Did 1,829,493 people enter through a Penn Station turnstile at midnight?

| 503   | C/A  | UNIT | SCP      | STATION        | LINENAME | DIVISION | DATE       | TIME     | DESC    | ENTRIES | EXITS   |
|-------|------|------|----------|----------------|----------|----------|------------|----------|---------|---------|---------|
| 49612 | N067 | R012 | 00-00-00 | 34 ST-PENN STA | ACE      | IND      | 06/12/2017 | 00:00:00 | REGULAR | 1829493 | 1553798 |
| 49613 | N067 | R012 | 00-00-00 | 34 ST-PENN STA | ACE      | IND      | 06/12/2017 | 04:00:00 | REGULAR | 1829495 | 1553801 |

#### Put the data in a form we can work with

|       | C/A  | UNIT | SCP                 | STATION           | LINENAME | DATE       | TIME     | ENTRIES | EXITS   | ENTRY_DIFF | EXIT_DIFF |
|-------|------|------|---------------------|-------------------|----------|------------|----------|---------|---------|------------|-----------|
| 49612 | N067 | R012 | 00-00-              | 34 ST-PENN<br>STA | ACE      | 06/12/2017 | 00:00:00 | 1829493 | 1553798 | 0          | 0         |
| 49613 | N067 | R012 | 00-00-              | 34 ST-PENN<br>STA | ACE      | 06/12/2017 | 04:00:00 | 1829495 | 1553801 | 2          | 3         |
| 49614 | N067 | R012 | 00-00-<br>00        | 34 ST-PENN<br>STA | ACE      | 06/12/2017 | 08:00:00 | 1829676 | 1553947 | 181        | 146       |
| 49615 | N067 | R012 | 00 <del>-</del> 00- | 34 ST-PENN<br>STA | ACE      | 06/12/2017 | 12:00:00 | 1829944 | 1554414 | 268        | 467       |
| 49616 | N067 | R012 | 00-00-              | 34 ST-PENN<br>STA | ACE      | 06/12/2017 | 16:00:00 | 1829981 | 1554571 | 37         | 157       |
| 49617 | N067 | R012 | 00-00-              | 34 ST-PENN<br>STA | ACE      | 06/12/2017 | 20:00:00 | 1830036 | 1555166 | 55         | 595       |

#### Riders on Monday, June 12, 2017

```
import matplotlib.pyplot as plt
%matplotlib inline

plt.bar(station, riders)
plt.xlabel('station number')
plt.ylabel('rider exits')
```



#### What were the busiest stations?

```
rider list.sort(reverse = True)
for rider info in rider list:
    print(rider info)
(136834, '34 ST-PENN STA')
(135077, 'GRD CNTRL-42 ST')
(109563, '34 ST-HERALD SQ')
(91048, 'TIMES SQ-42 ST')
(88400, '14 ST-UNION SQ')
(85480, '23 ST')
(81102, 'FULTON ST')
(72934, '42 ST-PORT AUTH')
(72796, '86 ST')
(62141, '47-50 STS ROCK')
```

### **Modeling Task**

Coding Chicks has an annual gala this summer. Please help us **optimize the placement** of our street teams in the subway. Our goal is to gather the most contact info from women who will **attend the gala and donate**.

We have **ten volunteers** to advertise in the subway for **four hours each** per day (in one four-hour shift or in 2 two-hour shifts). They can help **seven days** in a row, so we plan on doing all of our advertising during one seven-day blitz.

Please give us a clear, detailed presentation outlining your suggestions. **We** will hire the most compelling business solution.

#### Lots of complexity to consider

- 1. Focusing on where women in technology are located.
- 2. Focusing on where wealthier donors are located.
- 3. Differentiating between weekday and weekend placement.
- 4. Differentiating between what subway turnstile entries versus exits tell you.
- 5. Differentiating between morning and evening placement.
- 6. Differentiating between tourist and commuter stops.





According to BuiltinNYC, the largest 10 tech companies in New York City are as follows:

| 1.  | Bloomberg       | 9,000 employees |
|-----|-----------------|-----------------|
| 2.  | Oath            | 1,400           |
| 3.  | CA Technologies | 1,230           |
| 4.  | Vice Media      | 1,217           |
| 5.  | Blue Apron      | 890             |
| 6.  | E*Trade         | 827             |
| 7.  | BuzzFeed        | 730             |
| 8.  | Yext            | 675             |
| 9.  | FreshDirect     | 657             |
| 10. | Etsy            | 622             |
|     |                 |                 |



Established VS Startups





#### <u>STATIONS</u>

- 23rd St
- ❖ 28th St

#### **Student Work: Focusing on Wealthier Donors**

#### Our Strategy: Optimizing Donations + People

This graph shows how much wealthier Upper East Siders in each percentile are than their NY counterparts.



**Student Work: Focusing on Weekends** 



#### **Huge Debate: Subway entrances vs. exits**

What about the stations that have separate entrances and exits?

- Targeting entrances: riders will have time to read pamphlets on train
- But will they be in too much of a rush to make the train?

- Targeting exits: riders won't be in a rush to make the train
- But will they discard the pamphlet before reading it?

#### Student work: Subway entrances vs. exits

# **Overall Strategy**

- Morning: EXITS
- Evening: ENTRIES
- Stops with most people AND near tech firms

#### **Student Work: Finding commuter stops**

#### Top commuter exits

```
commuter_list = []
for station, indexes in commuter_dict.items():
    commuter_list.append((np.median(indexes), station))

for info in sorted(commuter_list, reverse = True):
    print(info)
```

```
for info in commuter list:
    print(info)
(0.9997511653754915, 'NEW LOTS AV')
(0.9972474538948527, 'PENNSYLVANIA AV')
(0.9970398631758979, 'GREENPOINT AV')
(0.9961351862511307, 'SARATOGA AV')
(0.9921383647798743, 'FLUSHING AV')
(0.9918046924566759, 'MYRTLE-WILLOUGH')
(0.9913849588662121, 'NASSAU AV')
(0.9353417649566577, 'BAY 50 ST')
(0.9308408339103008, 'BOWLING GREEN')
(0.891933474979852, '25 AV')
(0.861607050713121, 'THIRTY ST')
(0.852875091487838, '5 AV/53 ST')
(0.8420157984201581, 'LACKAWANNA')
(0.8378077200096461, 'WALL ST')
(0.8260323427878745, 'NEWARK HW BMEBE')
(0.816057346842834, 'FULTON ST')
```

### **Commuter exit example: Wall Street**



#### **Tourist Heavy Exits**

```
(0.4747766989931784, 'W 8 ST-AQUARIUM')
(0.4734389561975769, 'AQUEDUCT RACETR')
(0.47101464369779406, 'BEACH 67 ST')
(0.46644685616510784, 'YORK ST')
(0.45683375916137037, 'BEDFORD-NOSTRAN')
(0.44300097434231894, '161/YANKEE STAD')
(0.42861861117991906, 'ROCKAWAY PARK B')
(0.41661173368490445, 'RIT-ROOSEVELT')
(0.41037735849056606, 'ORCHARD BEACH')
(0.4077757685352622, 'BROAD CHANNEL')
(0.38241839762611274, 'BEACH 105 ST')
(0.3743996764572064, 'BEACH 98 ST')
(0.37098983490736065, 'BEACH 90 ST')
(0.3441427853192559, 'AVENUE N')
```



#### **Professional Presentation Requirements**

- 1. You need extremely clear slides and explanations.
- YOU CANNOT HAVE TOO MUCH TEXT ON YOUR SLIDES.
- 3. You should create maps and charts to help visualize your suggestions.
- 4. Your analysis needs to be accurate and thoughtful.
- 5. Have at least one thing that is unique to your group, or else, why would this organization choose to hire YOUR company?

### Student Work #1: Concluding summary



#### **Takeaways**

- We recommend putting 2 people at each station working shifts of:
  - o 7am-9am, 4pm-6pm on weekdays
  - o 10am-2pm on weekends
- What sets us apart:
  - We focus on subway exits instead of entrances
  - Weekend stops target residences
  - Weekday stops target both major tech companies AND large commuter stops

# **Student Work #2: Concluding summary**



# **Many extensions**

- Graphical packages
- Google API
- Data cleaning

#### **Extension #1: Animations**



# Extension #2: Working with Google Maps API

```
import requests
import json

url = 'http://maps.googleapis.com/maps/api/geocode/json?'

address = 'Penn Station New York City'

params = {'address': address}
data = requests.get(url, params=params)

js = json.loads(data.text)

print(js['results'])
```



### Extension #3: Data Cleaning

If the data is correct, the count at each turnstile should be monotonically

increasing like this:



#### Type of Errors

59 turnstiles have incorrect data, in 3 types

Monotonic Decreasing

2 Garbage Values

3 Turnstile Resets

#### Monotonic Decreasing



#### Garbage Value



#### Turnstile Reset



#### Tech required for data analysis

Python 3.6 in a Jupyter Notebook (<u>www.anaconda.com/download/</u>)

- matplotlib (plotting)
- pandas (spreadsheets)
- NumPy (arrays, math functions, linear algebra)

#### Free Resources

- UC Berkeley Foundations of Data Science: <a href="http://data8.org/">http://data8.org/</a>
- Think Stats 2e & Think Python 2e, Allen B. Downey <u>http://greenteapress.com/wp/think-stats-2e/</u>
- Python For Everyone, Charles Severance: <u>https://www.py4e.com/html3/</u>
- My course materials:
- https://github.com/laurenshareshian/Python For Math Teachers
- https://github.com/laurenshareshian/Python Course Lessons

#### Thanks!

Lauren Shareshian

Oregon Episcopal School

shareshianl@oes.edu