ACTUARIAL MATHEMATICS NOTES

MORITZ M. KONARSKI

Contents

1. Class 01.09.2020	2
1.1. General Introduction	2
1.2. Accumulation Function	2
1.3. Simple Interest	4
2. Class 03.09.2020	5
2.1. Compound Interest	5
3. Class 08.09.2020	6
3.1. Present Value and Discount	6
4. Class 10.09.2020	8
4.1. Nominal Rate of Interest	8
4.2. Force of Interest	8
5. Class 15.09.2020	10
5.1. Equation of Value	10
6. Class 24.09.2020	12
6.1. Arithmetic and geometric sequences	12
6.2. Basic Results	12
7. Class 06.10.2020	14
7.1. Annuities	14
7.2. Perpetuities	14
7.3. Unknown time and unknown rate of interest	14
8. Class 13.10.2020	15

Date: November 2, 2020.

8.1. Varying Annuities	15
9. Class 15.10.2020	17
9.1. Amortization	17
9.2. Amortization Schedules	17
10. Class 22.10.2020	19
10.1. Sinking Funds	19
10.2 Yield Rates	19

1 Class 01.09.2020

1.1. General Introduction.

- introduction of professor
- this is course 1 of 2
- quite popular elective course he is not sure why
- we'll dig deep inside the workings of insurance and the like
- it's a very well paid profession
- who is an actuary:
 - completely independent professional
 - actuarial association assigns audits to actuaries
 - basically a type of auditor
 - actuarial expertise is needed to make investments
- this course will teach us the basics
- to become an actuary, you will have to pass 6 exams, we'll learn stuff for the first 2
- re-insurance: some of the richest companies in the world
- Parmenter is the main text book
- course content: chapters 1, 2, 3, and 4

1.2. Accumulation Function.

• the simplest financial transaction is an investment

- principal: initial investment
- accumulated value: total amount the money grows to
- Amount Function: amount of money at time t from investment of the principal -A(t), t is measured in years, A(0) is the principal
- Accumulation Function: how much money increases as a percent value, where a(0) = 1 (as there has been no change)

$$a(t) = \frac{A(t)}{A(0)}$$

- accumulation functions can be any function where a(0) = 1, additionally one would hope that it is increasing
- continuity is not required, depends on how interest is paid if fractional values of t make sense it may be continuous, but if interest is paid discretely, it may be stepwise
- three types of accumulation functions
 - (1) amount of interest earned each year is constant linear graph, simple interest
 - (2) the amount of interest increases over the years exponential graph, compound interest
 - (3) if interest is paid out at fixed periods of time a piecewise function is used the amount of interest might be constant or increasing
- Interest = Accumulated Value Principal
- ullet to make this more practical, the effective rate of interest i is used
- *i* is the interest earned on a principal of 1 over the period of 1 year amount of interest earned over 1 year divided by the value at the beginning of the year

$$i = a(1) - 1$$

• i can also be calculated with the amount function

$$i = \frac{a(1) - a(0)}{a(0)} = \frac{A(1) - A(0)}{A(0)}$$

 \bullet i can be calculated for the nth year by

$$i = \frac{a(n) - a(n-1)}{a(n-1)} = \frac{A(n) - A(n-1)}{A(n-1)}$$

1.3. Simple Interest.

- primarily used between integer periods of time
- a(t) is a straight line here the increase is linear
- general form of the equation is

$$a(t) = 1 + it$$

- interest earned each year is constant interest does not earn interest
- if the principal is k at t=0

$$A(t) = k(1+it)$$

• the effective rate of interest is not constant, it decreases over time

$$i_n = \frac{i}{1 + i(n-1)}$$

• exact simple interest: count the last day, not the first

$$t = \frac{\text{number of days}}{365}$$

• ordinary simple interest (Banker's Rule): count the last day, not the first

$$t = \frac{\text{number of days}}{360}$$

• international markets use ordinary simple interest

2. Class 03.09.2020

2.1. Compound Interest.

- most important special case
- effective interest rate is fixed
- interest earns interest itself
- because the interest affects itself, the function is exponential

$$a(t) = (1+i)^t, \quad t \ge 0$$

• amount function for compound interest is

$$A(t) = k(1+i)^t$$

- the effective interest rate for compound interest is constant
- what values to choose for t is done like with simple interest, either exact or ordinary
- if we want to find some value between integers, we linearly interpolate it

$$A(t) = A(|t|) + (t - |t|) \cdot (A(\lceil t \rceil) - A(|t|))$$

• to find the time it takes a principal to accumulate to a certain value, use logs

$$t = \frac{\log\left(\frac{\text{future value}}{\text{principal}}\right)}{\log(1+i)}$$

• compound and simple interest graphs only intersect at (0,1) and at (1,1+i), this furthermore gives two cases

$$\begin{cases} & \text{simple i.} > \text{compound i.} & \text{for} \quad 0 < t < 1 \\ & \text{compound i.} > \text{simple i.} & \text{for} \quad t > 1 \end{cases}$$

3. Class 08.09.2020

3.1. Present Value and Discount.

3.1.1. Present Value.

- we define the *present value t years in the past* as the amount of money that will accumulate to the principal in t years
- this is the reverse of what we have been calculating thus far

ullet v is the amount of money needed to accumulate to 1 within 1 year

$$v = \frac{1}{1+i}$$

• how v works can be seen in this timeline that shows the evolution of a(t)

 \bullet for compound interest, v is

$$v^t = \frac{1}{(1+i)^t} (3.1)$$

- this is simply an inverted formula of a(t) for compound interest
- \bullet for simple interest the present value is called x

$$x = \frac{1}{1 + it}$$

3.1.2. Discount.

- imagine \$100 was invested and accumulated to \$112 in 1 year
- \$100 was the starting figure and interest (\$12) was added to it

- we could look at it the other way around and say \$112 is the starting value and at the start of the year \$12 was subtracted from it
- \$12 here is an amount of discount
- it's the same as interest, only the point of view is different
- discount focuses on the end of the year, so it is defined as

$$d = \frac{a(1) - 1}{a(1)}$$

- this only differs from the definition of i in the denominator, which is a(0) for i because the beginning of the year is the focus
- \bullet effective rate of discount in the *n*th year is

$$d_n = \frac{a(n) - a(n-1)}{a(n)}$$

• some identities relating to i are

$$d < i$$

$$d = \frac{i}{1+i}$$

$$1 - d = v$$

$$i = \frac{d}{1-d}$$

 now the rules for finding the present and accumulated values are reversed

present value:
$$(1-d)^t$$

accumulated value:
$$\frac{1}{(1-d)^t}$$

4. Class 10.09.2020

4.1. Nominal Rate of Interest.

- $a(t) = (1+i)^t$ will be assumed in this section
- effective rates of interest can be given for any length of time
- to apply our previous formulae, we need to make sure that t is the number of effective interest periods
- generally, these periods are not years, but shorter periods
- a yearly rate or 12% "convertible semiannually" actually means that you pay 6% twice a year in this case it would actually be 12.36%
- the effective interest rate increases the shorter the intervals between payments are
- the 12% is a **nominal rate of interest**, meaning it is convertible over a period other than 1 year
- $i^{(m)}$ denotes the nominal rate of interest convertible m times a year

$$1 + i = \left[1 + \frac{i^{(m)}}{m}\right]^m$$

• we can also define a nominal rate of discount $d^{(m)}$

$$1 - d = \left[1 - \frac{d^{(m)}}{m}\right]^m$$

• we also see that

$$\left[1 + \frac{i^{(m)}}{m}\right]^m = \left[1 - \frac{d^{(n)}}{n}\right]^{-n}$$

4.2. Force of Interest.

- our goal is to find nominal rates of interest that are equivalent to a certain effective annual rate of interest
- for example i = 0.12 with the functions above gives the values

m	1	2	5	10	50
$i^{(m)}$	0.12	0.1166	0.1146	0.1140	0.1135

- we see that $i^{(m)}$ decreases as m increases
- ullet m is approaching a limit, using L'Hopital's rule we can find it

$$\delta = \ln(1+i)$$
$$e^{\delta} = 1+i$$

- δ is called the **force of interest**
- it represents the nominal rate of interest that is convertible continuously serving as a good approximation of $i^{(m)}$ for large m, like dayly conversions
- ullet the second form of δ is useful because it makes conversions easier
- the derivative of $(1+i)^t$ by t (D) can be rewritten to be

$$\delta = \ln(1+i) = \frac{D[(1+i)^t]}{(1+i)^t} = \frac{D[a(t)]}{a(t)}$$

• for compound interest $\delta = \ln(1+i)$, but for arbitrary accumulation functions it is

$$\delta_t = \frac{D[a(t)]}{a(t)}$$
$$\delta_t = D[\ln(a(t))]$$

• if δ_r is given and we want to find a(t) we use

$$a(t) = e^{\int_0^t \delta_r dr}$$

- we note that $i > \delta$
- the force of discount is the same as the force of interest

5. Class 15.09.2020

5.1. Equation of Value.

- interest problems only involve 4 quantities:
 - (1) principal value
 - (2) accumulated value
 - (3) period of investment
 - (4) rate of interest
- each one of them can be calculated if the other 3 are known
- when multiple investments are made, the time diagram is the most important tool
- then an equation of value is set up to find the value
- again, be careful with interpolation between integral durations with compound interest
- finding an appropriate rate of interest such that money increases generally involves logarithms involves

5.1.1. Example 1.

- Alice borrows 5,000 at 18% convertible semiannually
- after 2 years, she pays back 3,000
- 3 years after that she pays 2,000
- how much does she owe 7 years after taking out the loan?
- time diagram:

- because the interest rate is convertible semiannually, our nominal rate is i = 0.09
- using the diagram we see

$$X = 5,000(1.09)^{14} - 3,000(1.09)^{10} - 2,000(1.09)^{4} = 6,783.38$$

• in the same way payments here are negative loans, withdrawals can be seen as negative deposits

5.1.2. Example 2.

- John borrows 3,000
- 2 years later he borrows another 4,000
- 2 years after that he borrows 5,000
- i = 0.18
- at what time would a single loan of 12,000 be equivalent? at what time would the amount owed be the same as a loan of 12,000?
- draw a timeline:

• solution:

$$12,000v^{t} = 3,000 + 4,000v^{2} + 5,000v^{4}$$

$$v = \frac{1}{1.18}$$

$$v^{t} = \frac{3 + 4v^{2} + 5v^{4}}{12}$$

$$t = \frac{\ln(3 + 4v^{2} + 5v^{4}) - \ln(12)}{\ln(v)}$$

$$t = 2.11789$$

6. Class 24.09.2020

6.1. Arithmetic and geometric sequences.

6.1.1. Arithmetic sequences.

- a, a + d, a + 2d, a + 3d
- nth term: $a_n = a + (n-1)d$
- sum of first n terms: $S_n = \frac{n}{2} [2a + (n-1)d]$

6.1.2. Geometric sequences.

- a, ar, ar^2, ar^3
- nth term: $a_n = ar^{n-1}$
- sum of first *n* terms: $S_n = \frac{a(1-r^n)}{a-r}$

6.2. Basic Results.

- annuity payments made of regular intervals
- generally, all the payments are of the same magnitude
- \bullet annuity is generally a payment of 1 over n periods
- we do have to find the equivalent rate of interest for the payment periods
- a payment plan for a general annuity

• present value of the annuity is $a_{\overline{n}}$

$$a_{\overline{n}|} = \frac{v(1-v^n)}{1-v} = \frac{1-v^n}{i}$$

• accumulated value of the annuity is $s_{\overline{n}|}$

$$s_{\overline{n}|} = a_{\overline{n}|} (1+i)^n = \frac{(1+i)^n - 1}{i}$$

• to find actual value, we can multiply the present value with the actual value • other symbols and values for annuities

• present value of the annuity described on the first payment $\ddot{a}_{\overline{n}|}$

$$\ddot{a}_{\overline{n}|} = \frac{1 - v^n}{d}$$

• accumulated value one period after the last payment $\ddot{s}_{\overline{n}|}$

$$\ddot{s}_{\overline{n}|} = \frac{(1+i)^n - 1}{d}$$

• we note two more identities

$$\ddot{s}_{\overline{n}|} = \ddot{a}_{\overline{n}|}(1+i)^n$$

$$1 = d \cdot \ddot{a}_{\overline{n}|} + v^n$$

7. Class 06.10.2020

7.1. Annuities.

- annuities can be viewed from many different angles with the same result
- annuity-immediate are payments at the end of periods
- annuity-due are payments made at the beginning of periods

7.2. Perpetuities.

• annuity whose payments continue forever

$$a_{\overline{\infty}|} = \lim_{n \to \infty} a_{\overline{n}|}$$
$$= \frac{1}{i}$$

• we also have the perpetuity at the time of the first payment

$$\ddot{a}_{\overline{\infty}|} = a_{\overline{\infty}|}(1+i)$$
$$= \frac{1}{d}$$

7.3. Unknown time and unknown rate of interest.

• a fund of 5,000 will be used to award scholarships of 500 for as long as possible. If i = 0.09, how many scholarships can be awarded?

$$500 \cdot a_{\overline{n}|} \le 5,000 < 500 \cdot a_{\overline{n+1}|}$$

$$a_{\overline{n}|} \le 10 < a_{\overline{n+1}|}$$

$$a_{\overline{n}|} = 10$$

$$\frac{1 - v^n}{i} = 10$$

$$n = \frac{\ln(1 - 10i)}{\ln(v)}$$

8. Class 13.10.2020

8.1. Varying Annuities.

• general type of a varying annuity

• we can find the value 1 year before the first payment with

$$A = Pa_{\overline{n}|} + Q\left[\frac{a_{\overline{n}|} - nv^n}{i}\right]$$

• the accumulated value of these payments is

$$A(1+i)^{n} = Ps_{\overline{n}|} + Q\left[\frac{s_{\overline{n}|} - n}{i}\right]$$

8.1.1. Increasing Annuity.

- here P = Q = 1
- the present value for this annuity is

$$(Ia)_{\overline{n}|} = \frac{\ddot{a}_{\overline{n}|} - nv^n}{i}$$

• the accumulated value for this annuity is

$$(Is)_{\overline{n}|} = \frac{\ddot{s}_{\overline{n}|} - n}{i}$$

8.1.2. Decreasing Annuity.

- here P = 1 and Q = -1
- the present value for this annuity is

$$(Da)_{\overline{n}|} = \frac{n - a_{\overline{n}|}}{i}$$

• the accumulated value for this annuity is

$$(Ds)_{\overline{n}|} = \frac{n(1+i)^n - s_{\overline{n}|}}{i}$$

8.1.3. Geometric Annuity.

- \bullet here Q changes in a geometric way, by c
- then the sum of this annuity can be found with

$$r = \frac{1+i}{c}$$

$$S_n = Q(c)^{n-1} \left[\frac{1-r^n}{1-r} \right]$$

• to find the present value

$$r = \frac{1+i}{c}$$

$$P_n = Q(c) \left[\frac{1-r^n}{1-r} \right]$$

9. Class 15.10.2020

9.1. Amortization.

- repay a loan by the *amortization method* installment payments at periodic intervals
- knowing the outstanding principal is important because you need to know how much you owe
- prospective method: outstanding principal is the present value of the outstanding payments at that time
- retrospective method: original principal accumulated until then minus the accumulated value of all the payments made until then
- this means that we either need to find $a_{\overline{n}|}$ or "original principal $s_{\overline{n}|}$ —
 payments $s_{\overline{n}|}$ "

9.2. Amortization Schedules.

- a payment X can be divided into its principal and interest parts like so:
 - (1) know or find the outstanding principal 1 time interval before X, let's call it P
 - (2) the interest portion of X is iP
 - (3) the principal portion of X is X iP
- if a loan in paid back in equal payments of X for n years, the interest part of the kth payment is

$$X(1-v^{n-k+1})$$

 \bullet the principal part of the kth payment is

$$Xv^{n-k+1}$$

• an amortization schedule is simply a table showing the payments and how they are made up

Duration	Payment	Interest	Principal	Outstanding
			Repaid	Principal
0				1,000.00
1	150	110.00	40.00	960.00
2	150	105.60	44.40	915.60
3	150	100.72	49.28	866.32
:	150	:	:	:
12	150	23.93	126.07	91.51
13	101.58	10.07	91.51	0.00

10. Class 22.10.2020

10.1. Sinking Funds.

- you pay interest each month but nothing more
- at the end you simply pay the full loan amount back
- generally you invest the money into a **sinking fund** in the meantime if you get a higher interest rate than you pay, you could even make money

10.2. Yield Rates.

- only the payments made directly by or to the person(s) should be considered for that person(s)'s yield rate
- simply solve the problem you are given using a calculator