Análisis Matemático para Inteligencia Artificial

Martín Errázquin (merrazquin@fi.uba.ar)

Especialización en Inteligencia Artificial

Clase 6

Temario

Optimización en ML

- 2 Opt. sin restricciones
 - Gradient Descent
 - Extensiones
 - Batch size

Optimización en ML

Optimización en ML

Convención: Todos los casos van a asumirse de minimización, sin pérdida de generalidad ya que maximizar f equivale a minimizar f' = -f.

Optimización en general: buscamos minimizar $J(\theta)$, tenemos toda la información necesaria disponible.

Optimización en ML: buscamos minimizar $J(\theta)$, sólo disponemos de un $\hat{J}(\theta)$ basado en el dataset disponible.

Conclusión: no son el mismo problema.

Aprendizaje supervisado: esquema

Dada una observación (x, y) fija, entonces la predicción $\hat{y} = h_{\theta}(x)$ depende puramente de los parámetros θ del modelo, y por lo tanto también la pérdida/error.

Para un dataset $(x_1, y_1), \dots, (x_n, y_n)$ fijo, definimos entonces una función de costo $J(\theta)$ que sólo depende de los parámetros del modelo, y queremos minimizarla. deteret = extensin 1(8)

Proxy target/surrogate loss

Importante: Definida una función de pérdida por observación $\mathcal{L}(\hat{y}, y)$, la función de costo típicamente se define como

$$J(\theta) = \mathbb{E}[\mathcal{L}(\hat{y}, y)]$$

مه (دنه کز) ۶۱۵۵۵ ۱۰۹۰-۱۳

de donde

$$\hat{J}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(\hat{y}_i, y_i) \qquad \qquad \underbrace{1}_{n} \sum_{i=1}^{n} \chi(h_{\mathbf{y}}(\mathbf{x}), y_i)$$
 Denominamos proxy o surrogate a una función f' que queremos minimizar

Denominamos proxy o surrogate a una función f' que queremos minimizar como medio para minimizar otra función f que es la que verdaderamente nos interesa.

El esquema entonces resulta:

- ullet aprendemos vía train set o necesitamos minimizar $J_{train}(heta)$
- ullet predecimos vía test set o queremos minimizar $J_{ ext{test}}(heta)$

Ejemplo

Supongamos un caso de clasificación binaria donde definimos la función de pérdida como el accuracy, definido como

definido como
$$\mathcal{L}(\hat{y}, y) = 1\{\hat{y} \neq y\} = \begin{cases} 1 & \text{if } \hat{y} \neq y \\ 0 & \text{if } \hat{y} = y \end{cases}$$

Como podemos ver, esta función de pérdida es *muy mala* para minimizar.

Planteamos entonces entrenar sobre la cross-entropy loss NLL

$$\mathcal{L}_{train}(\hat{y}, y) = -y \cdot log(\hat{y}) - (1 - y) \cdot log(1 - \hat{y})$$
 وري الراب المرابع المرابع

que nos permite ya no sólo trabajar con $\hat{y} \in \{0,1\}$ sino todo el rango continuo [0, 1] de probabilidades, además de, especialmente, ser derivable respecto de \hat{y} .

Taxonomía

Ahora que nuestro problema es minimizar $J_{train}(\theta)$, podemos separarlo en varios casos:

Opt. sin restricciones

Caso trivial

Analicemos el caso más simple: se conoce la solución analítica. Ejemplo: modelo lineal con $\hat{y} = <\theta, x>$, matriz de diseño X, vector de targets Y, $\mathcal{L}(\hat{y},y) = (\hat{y}-y)^2$, entonces el θ óptimo resulta:

$$\theta^* = \operatorname*{arg\,min}_{\theta} J(\theta) = (X^T X)^{-1} X^T Y$$

Importante: si ese cálculo nosotros lo realizamos mediante cierto método iterativo en vez de calcularlo directamente es decisión de implementación nuestra, la expresión de θ^* ya la tenemos.

Gradient Descent

Intuición

¿Qué ocurre si no existe solución analítica? En términos generales, la única estrategia posible es *prueba y error* en forma *iterativa*.

Planteemos el caso de $J(\theta)$, $\theta \in \mathbb{R}$. En cada punto ¿Cómo saber hacia

donde moverme?

- Si J es derivable, J' informa la inclinación de J para cada θ .
- Como mínimo, informa la dirección de crecimiento y (en sentido contrario)
 la dirección de decrecimiento

Definición

Sea $f: \mathbb{R}^n \to \mathbb{R}$ differenciable, entonces:

- $\nabla_f(x)^T$ apunta en la dirección de *máximo crecimiento*.
- $-\nabla_f(x)^T$ apunta en la dirección de *máximo decrecimiento*.

Se define entonces el algoritmo de minimización de *descenso por gradiente* (GD) como:

$$x_{t+1} = x_t - \gamma \cdot \nabla_f(x)^T$$

donde $\gamma >$ 0 es el *learning rate*, un valor pequeño que controla *cuánto* moverse por paso.

- Para una sucesión γ_t apropiada está demostrado que GD converge a un mínimo *local*.
- Son dos problemas a resolver:
 - Cómo seleccionar el punto inicial x₀
 - Cómo seleccionar γ (o γ_t)

No GD-based

¿Pausa! ¿Por qué Gradient Descent?

- GD pide muy poco, que f sea diferenciable (y recordemos que nosotros la construimos...)
- GD es una aproximación lineal

¿Podemos hacer algo mejor que lineal?

Recordemos el polinomio de Taylor de grado 2 de una función f(x) alrededor de un punto x_t evaluada en un punto $\tilde{x} = x_t + \Delta$ con Δ pequeño:

$$f(\tilde{x}) \approx f(x_t) + f'(x_t)(\tilde{x} - x_t) + \frac{1}{2}f''(x_t)(\tilde{x} - x_t)^2$$
$$f(x_t + \Delta) \approx f(x_t) + f'(x_t)\Delta + \frac{1}{2}f''(x_t)\Delta^2$$

Método de Newton

Para el caso anterior (desarrollo de Taylor de orden 2) el máximo ocurre en $f'(x_t + \Delta^*) = 0$ para $\Delta^* = -\frac{f'(x_t)}{f''(x_t)}$. Luego, el método de Newton plantea:

$$x_{t+1} = x_t - \frac{f'(x_t)}{f''(x_t)}$$

riada:

 $x_{t+1} = x_t - H^{-1}\nabla_f(x_t)$
 yev_{t}
 $yev_$

O en su versión multivariada:

$$x_{t+1} = x_t - H^{-1} \nabla_f (x_t)^T$$

Pros:

 Incorpora curvatura para corrección → mayor velocidad de convergencia

Cons:

- Newton en particular no converge a mínimo, sino a punto crítico: surgen los saddle points como peligro.
- La estimación de Hessiano requiere muchas observaciones. Goodfellow compara 10^2 obs. para $\nabla_f(x)$ vs 10^4 para $H^{-1}\nabla_f(x)^T$.

Extensiones

EWMA/EMA/Exponential Smoothing

Idea: quiero ir promediando (o algo parecido) pero darle más peso a lo reciente para que lo muy viejo no condicione tanto.

Dada una sucesión de valores a medir x_1, \ldots, x_t el λ -Exponentially Weighted Moving Average es:

$$a_t = \lambda \cdot a_{t-1} + (1 - \lambda) \cdot x_t$$

Podemos ver que, aproximadamente, a_n toma la forma de $\sum_{i=1}^n \lambda^{n-i} x_i = x_n + \lambda x_{n-1} + \lambda^2 x_{n-2} + \lambda^3 x_{n-3} + \dots$ Usando $\lambda \in (0,1)$ es un promedio ponderado que favorece valores recientes.

Y algo muy importante: es $\mathcal{O}(1)$ en memoria y $\mathcal{O}(1)$ para actualizar!

Nota: El valor inicial a_0 es un hiperparámetro, aunque es bastante común usar 0, la media global de x (\overline{x}) o directamente el primer valor x_1 .

EWMA vs Windowed-Average (SMA)

Recapitulación

Queremos seguir utilizando gradient descent (GD/VGD), la idea es proponer adaptaciones del mismo que ataquen los problemas del original, a saber:

- ullet elección de $heta_0$
- ullet elección de γ_t
- convergencia lenta

Recordemos la expresión de (Vanilla) Gradient Descent:

$$\theta_{t+1} = \theta_t - \gamma \cdot \mathbf{g}$$

$$\operatorname{con}\, g = \nabla_f(\theta_t).$$

2) us of any (5) chulas

) L= NAV F/

(4) meho de 1

Scheduler

Idea: al principio está bien aprender de forma agresiva, luego hay que ir $refinando \rightarrow \gamma$ decrece con t.

$$\theta_{t+1} = \theta_t - \gamma_t \cdot \mathsf{g}$$

con diferentes opciones de γ_t decreciente, entre ellas:

- polinomial: $\gamma_t = \gamma_0(\frac{1}{t})^k = \gamma_0 \cdot t^{-k}$
- exponencial: $\gamma_t = \gamma_0(\frac{1}{k})^t = \gamma_0 \cdot k^{-t}$
- restringida: $\gamma_t = \begin{cases} (1 \frac{t}{t_{max}})\gamma_0 + \frac{t}{t_{max}}\gamma_{min} & \text{si } 0 \leq t < t_{max} \\ \gamma_{min} & \text{si } t \geq t_{max} \end{cases}$

con hiperparámetros $k, \gamma_0, \gamma_{min}$ menos sensibles que γ constante.

Momentum

Idea: adaptar el γ según consistencia (tener en cuenta steps anteriores) \rightarrow agregar memoria.

$$\begin{cases} v_t = \alpha v_{t-1} - \gamma \cdot g \\ \theta_{t+1} = \theta_t + v_t \end{cases}$$

• $\alpha \in (0,1)$ es la *viscosidad* (en términos físicos) o retención de memoria de valores anteriores.

Observar que

$$\theta_{t+1} = \theta_t - \gamma (g_t + \alpha g_{t-1} + \alpha^2 g_{t-2} + \dots) = \theta_t - \gamma \sum_{i=0}^t \alpha^i g_{t-i}$$

$$6 \text{ Note: } \Delta \theta : -\delta \cdot g_t$$

$$\text{Mon: } \Delta \theta = -\delta \cdot \sum_{i=0}^t \alpha^i g_{t-i}$$

$$\text{Algabeta} g_t = 0.9$$

RMSProp

Idea: "reescalar" el gradiente para tener más estabilidad. El reescalamiento se hace a nivel de *feature* para que variaciones grandes sobre un feature no anulen a otros que aún no variaron.

$$\begin{cases} s_t = \lambda s_{t-1} + (1 - \lambda)g^2 \\ \theta_{t+1} = \theta_t - \frac{\gamma}{\sqrt{s_t + \epsilon}} \odot g \end{cases}$$

con ² y $\sqrt{}$ aplicados *element-wise*, e.g. $g^2 = g \odot g = (g_1^2, g_2^2, \dots, g_n^2)$.

- $\lambda \in (0,1)$ es la retención de memoria de valores anteriores.
- $0 < \epsilon \ll 1$ es una constante para estabilidad numérica. Valores típicos rondan 10^{-6} .

rondan
$$10^{-6}$$
.
A. $GD: g = (g_1, g_2, g_3, ..., g_n)$

$$g_{\pi}(s_1, s_2, ..., g_n)$$

$$g_{\pi}(s_1, s_2, ..., g_n)$$

$$g_{\pi}(s_1, s_2, ..., g_n)$$

Adam

Idea: Momentum y RMSProp hacen cosas distintas y ambas están buenas ¡Mezclemos!

$$\begin{cases} v_t = \beta_1 v_{t-1} + (1-\beta_1)g & \leftarrow \text{ mem} \\ s_t = \beta_2 s_{t-1} + (1-\beta_2)g^2 & \leftarrow \text{ prsp} \\ v_t' = \frac{v_t}{1-\beta_1^t} \\ s_t' = \frac{s_t}{1-\beta_2^t} \end{cases} \text{ rescaling} \\ \theta_{t+1} = \theta_t - \frac{\gamma}{\sqrt{s_t' + \epsilon}} \odot v_t' \\ \text{ prsp} \text{ premate} \end{cases}$$

- $\beta_1, \beta_2 \in (0, 1)$ son la retención de memoria de valores anteriores de media y variabilidad del gradiente. Valores default son $\beta_1 = 0.99, \beta_2 = 0.999$.
- 0 < $\epsilon \ll$ 1 es una constante para estabilidad numérica. Valor default es 10^{-8} .

De dónde sale el rescaling

Formato de promedio común es como ponderar todo con $\frac{1}{n}$:

$$\frac{\sum_{i=1}^{n} x_i}{n} = \frac{1}{n} \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} \frac{1}{n} x_i$$
. Importante: $\sum_{i=1}^{n} \frac{1}{n} = 1$.

¿Qué pasa con el EWMA? Para una sucesión que inicia en t=0 con $a_{-1}=0$, tenemos $a_n=\sum_{i=0}^n \lambda^{n-i}(1-\lambda)x_i$. Veamos que:

$$\lambda^0 + \lambda^1 + \dots + \lambda^n = \sum_{i=0}^n \lambda^i = \frac{1 - \lambda^n}{1 - \lambda}$$

Entonces,

$$\sum_{i=0}^{n} \lambda^{n-i} (1-\lambda) = \sum_{i=0}^{n} \lambda^{i} (1-\lambda) = \frac{1-\lambda^{n}}{1-\lambda} (1-\lambda) = 1-\lambda^{n}$$

La suma de los pesos no da 1! Si n>>0 entonces $1-\lambda^n\approx 1$, pero en n chicos se nota mucho. Por ej. $\lambda=0.99, n=10\Rightarrow 1-\lambda^n\approx 0.0956$. La solución? Reescalar dividiendo por $1-\lambda^n$.

Batch size

Estimación de ∇_f

En todos estos casos estamos partiendo de la base que conocemos perfectamente $\nabla_f(\theta)$, pero la realidad es que no. En el mejor de los casos, podemos calcular el promedio sobre las n observaciones del dataset.

El problema: ¿cuántas m observaciones utilizamos para estimar $\nabla_f(\theta)$?

Si recordamos que $\sigma_{\bar{x}} \propto \frac{1}{\sqrt{m}}$, reducir 10x el error estándar de la estimación requiere 100x más observaciones. \to no rinde. Al mismo tiempo, hardware tipo GPU/TPU nos permite procesar múltiples entradas en paralelo.

Se definen 3 enfoques generales:

- stochastic (*): m = 1
- minibatch: $1 < m \ll n$ según hardware
- batch: m = n
- (*) Hay un conflicto en la literatura, donde a cualquier m < n se le llama stochastic, especialmente dada la preponderancia del esquema de minibatch por sobre los demás.