

Statystyczna analiza danych SAD2

Wykład 11

Testy o różnicy wartości średnich dwóch rozkładów normalnych (znane wariancje)

Niech $X_1, X_2, ..., X_{n_1}$ oraz $Y_1, Y_2, ..., Y_{n_2}$ będą dwiema niezależnymi prostymi próbami losowymi z rozkładów normalnych $N(\mu_1, \sigma_1)$ oraz $N(\mu_2, \sigma_2)$, odpowiednio.

$$H_0: \mu_1=\mu_2$$
 lub równoważnie $H_0: \mu_1-\mu_2=0$.

Statystyka testowa

Statystka $\overline{X} - \overline{Y}$ ma rozkład **normalny** o wartości średniej $\boxed{\mu_1 - \mu_2}$ i wariancji

$$\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} \qquad \text{Stad} \ \overline{Z = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{\sigma_1^2 / n_1 + \sigma_2^2 / n_2}}} \sim N(0,1).$$

Testy o różnicy wartości średnich dwóch rozkładów normalnych (znane wariancje)

a)
$$H_0: \mu_1 - \mu_2 = 0$$
, $H_1: \mu_1 - \mu_2 > 0$.

$$|H_1: \mu_1 - \mu_2 > 0|$$

Jeśli
$$H_0$$
 prawdziwa, to $Z = \frac{\overline{X} - \overline{Y}}{\sqrt{\sigma_1^2/n_1 + \sigma_2^2/n_2}} \sim N(0,1)$.

Przyjmujemy $C = \{z : z \ge z_{1-\alpha}\}$ = zbiór krytyczny testu hipotezy H_0

przeciw H_1 na **poziomie istotności** α , gdzie

$$P_{H_0}(Z \in C) = P_{H_0}(Z \ge z_{1-\alpha}) = \alpha$$
,

 $z_{1-\alpha}$ = kwantyl rzędu 1- α rozkładu N(0,1).

Testy o różnicy wartości średnich dwóch rozkładów normalnych (znane wariancje)

b)
$$|H_0: \mu_1 - \mu_2 = 0|$$
, $|H_1: \mu_1 - \mu_2 < 0|$.

$$|H_1: \mu_1 - \mu_2 < 0|$$

Przyjmujemy $C = \{z : z \le z_{\alpha}\}$ = zbiór krytyczny.

(c)
$$H_0: \mu_1 - \mu_2 = 0$$
, $H_1: \mu_1 - \mu_2 \neq 0$

$$H_1: \mu_1 - \mu_2 \neq 0$$

Przyjmujemy $C = \{z : |z| \ge z_{1-\alpha/2}\} =$ zbiór krytyczny

Testy o różnicy wartości średnich dwóch rozkładów normalnych (znane wariancje)

Przykład. Średnia waga losowo wybranych 15 Europejczyków wyniosła \overline{x} = 154 (funty), podczas gdy dla próbki 18 Amerykanów otrzymano \overline{y} = 162 (funty).

Z poprzednich badań wiadomo, że wariancje wag losowo wybranego Europejczyka i Amerykanina wynoszą, odpowiednio: $\sigma_1^2 = 100$ i $\sigma_2^2 = 169$. Czy można twierdzić, że średnie wagi w populacji Europejczyków i Amerykanów są różne? Przyjąć α = 0,05 oraz rozkład normalny wag. **Rozwiązanie:**

1.
$$H_0: \mu_1 - \mu_2 = 0$$
. $H_1: \mu_1 - \mu_2 \neq 0$

2. Statystyka testowa:
$$Z = \frac{\overline{X} - \overline{Y}}{\sqrt{\sigma_1^2 / n_1 + \sigma_2^2 / n_2}}$$

Testy o różnicy wartości średnich dwóch rozkładów normalnych (znane wariancje)

3.
$$\alpha = 0.05, 1 - \alpha/2 = 0.975, z_{0.975} = 1.96.$$

Zbiór krytyczny C =
$$\{z : |z| \ge 1.96\}$$
.

4. Mamy
$$\bar{x} = 154$$
, $\bar{y} = 162$, $\sigma_1^2 = 100$, $\sigma_2^2 = 169$, $n_1 = 15$, $n_2 = 18$.

Stąd
$$z = \frac{154 - 162}{\sqrt{100/15 + 169/18}} = \frac{-8}{\sqrt{16,056}} = -2.$$

5.
$$|-2| = 2 \ge 1,96$$
, więc odrzucamy H_0 .

Odpowiedź: Na poziomie istotności $\alpha = 0.05$ stwierdzamy, że średnia waga Europejczyka różni się od średniej wagi Amerykanina, przy czym dane sugerują, że średnio Amerykanie ważą więcej niż Europejczycy.

Test o różnicy wartości średnich dwóch rozkładów normalnych (nieznane równe wariancje)

Założenie dodatkowe: $\sigma_1 = \sigma_2 = \sigma$, σ - nieznane.

$$H_0: \mu_1 = \mu_2,$$

$$H_0: \mu_1=\mu_2$$
, lub równoważnie $H_0: \mu_1-\mu_2=0$.

Statystyka testowa:
$$Z = \frac{\overline{X} - \overline{Y}}{\sqrt{\sigma_1^2 / n_1 + \sigma_2^2 / n_2}} = \frac{\overline{X} - \overline{Y}}{\sigma \sqrt{1 / n_1 + 1 / n_2}}$$

$$=\frac{\overline{X}-\overline{Y}}{\sigma\sqrt{1/n_1+1/n_2}}$$

Jeśli H_0 prawdziwa, to $Z \sim N(0,1)$.

Wiadomo, że
$$Var(\overline{X} - \overline{Y}) = \sigma^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)$$
, oraz

$$S_1^2 = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (X_i - \overline{X})^2, \quad S_2^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (Y_i - \overline{Y})^2$$

nieobciążone estymatory σ^2 .

Estymatorem nieobciążonym $\ \sigma^2$, opartym na dwu próbach łącznie, jest statystyka

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}.$$

Wówczas we wzorze na ${\it Z}$ podstawiając $S_p = \sqrt{S_p^2}$ zamiast σ otrzymujemy statystykę

$$T = \frac{\overline{X} - \overline{Y}}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t_{n_1 + n_2 - 2}$$

Test o różnicy wartości średnich dwóch rozkładów normalnych (nieznane równe wariancje)

$$T = \frac{\overline{X} - \overline{Y}}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t_{n_1 + n_2 - 2}$$

Dla trzech przypadków możliwych hipotez alternatywnych (a), (b), (c) z modelu poprzedniego mamy analogiczne obszary krytyczne, przy czym kwantyle rozkładu N(0,1) zastępujemy kwantylami rozkładu $t_{n.+n.-2}$.

Test o różnicy wartości średnich dwóch rozkładów normalnych (nieznane równe wariancje)

Przykład. Klasyczne tranzystory domieszkowane złotem (występujące w układach scalonych) mają tzw. czas magazynowania ładunku rzędu 7 ns. Producent ma nadzieję, że pewna zmiana technologii zmniejszyła czas magazynowania. Producent chciałby przetestować hipotezę $H_0: \mu_1 = \mu_2$ przeciw $H_1: \mu_1 > \mu_2$, gdzie μ_1 oznacza średni czas magazynowania przy starej technologii a μ_2 przy nowej technologii. Z poprzednich badań wiadomo, że obie technologie dają w przybliżeniu normalne rozkłady czasu magazynowania, oraz że odchylenia standardowe obu rozkładów są takie same. Producent pobrał 2 niezależne 50 elementowe próbki tranzystorów, produkowanych starą i nowa technologią.

Średnie czasy magazynowania dla obu próbek wyniosły

$$\bar{x} = 6.6$$
, $\bar{y} = 6.3$ oraz $s_p = 0.5$.

Test o różnicy wartości średnich dwóch rozkładów normalnych (nieznane równe wariancje)

Statystyka testowa:

$$T = \frac{\overline{X} - \overline{Y}}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}.$$

Wartość statystyki testowej:

$$t = \frac{6,6-6,3}{0,5\sqrt{\frac{1}{50} + \frac{1}{50}}} = 3,0.$$

Test o różnicy wartości średnich dwóch rozkładów normalnych (nieznane równe wariancje)

$$H_0: \mu_1 = \mu_2$$
, $H_1: \mu_1 > \mu_2$.

$$H_1: \mu_1 > \mu_2$$

Stąd obszar krytyczny $C = \{t : t \ge t_{1-\alpha/2.98} = z_{1-\alpha/2}\},$

oraz **p-wartość** testu wynosi $P_{H_0}(T \ge 3.0) = 0.002$. Zatem, można przyjąć, że nowa technologia zmniejszyła średni czas magazynowania ładunku.

Test o różnicy wartości średnich rozkładów brzegowych (dane "sparowane")

Niech $(X_1,Y_1),(X_2,Y_2),...,(X_n,Y_n)$ będzie prostą próbą losową z rozkładu dwuwymiarowego. Niech $D_i=X_i-Y_i, i=1,...,n$, tworzą prostą próbę losową z rozkładu normalnego o nieznanej średniej μ_D .

Hipoteza zerowa:

$$H_0: \mu_D = 0,$$

Możliwe hipotezy alternatywne:

$$H_1: \mu_D > 0$$

$$|H_1: \mu_D < 0|$$

$$|H_1: \mu_D \neq 0|$$

Statystyka testowa:

$$T = \frac{\overline{D}}{S_D / \sqrt{n}}$$

Test o różnicy wartości średnich rozkładów brzegowych

Jeśli H_0 prawdziwa, to $T \sim t_{n-1}$

Zatem, obszary krytyczne takie same jak przy

testowaniu hipotez o wartości średniej jednej

populacji normalnej przy nieznanym odchyleniu standardowym.

Test o różnicy wartości średnich dla danych "sparowanych"

Przykład. Zmierzono ciśnienie tętnicze wśród losowo wybranej grupy chorych na pewną chorobę przed i po podaniu takiego samego leku każdemu z pacjentów. Otrzymano następujące wyniki:

Pacjent: 1 2 3 4 5 6 7

Przed: 210 180 260 270 190 250 180 **Po**: 180 160 220 260 200 230 180

Czy można twierdzić, na poziomie istotności 0,05, że lek powoduje zmniejszenie wartości średniej ciśnienia?(podać odpowiednie założenia).

1.
$$H_0: \mu_1 = \mu_2 = H_0: \mu_D = \mu_1 - \mu_2 = 0$$

$$H_1: \mu_1 > \mu_2$$
 = $H_1: \mu_D = \mu_1 - \mu_2 > 0$

3. Statystyka testowa: $T = \frac{D}{S_D / \sqrt{n}}$.

Test o różnicy wartości średnich dla danych "sparowanych"

4. d_i : 30, 20, 40, 10, -10, 20, 0, $\overline{d} = 15,7$, $s_D = 15,9$, n = 7.

$$t = \frac{15,7}{15,9/\sqrt{7}} = 2,24$$

5.
$$\alpha = 0.05$$
, $1 - \alpha = 0.95$, $n - 1 = 7 - 1 = 6$,

$$t_{0,95,6} = 1,94$$

6. 2,24 >1,94, więc odrzucamy hipotezę zerową.

Odpowiedź. Można twierdzić, że lek obniżył wartość średnią ciśnienia w populacji pacjentów, na poziomie istotności 0,05.

Test dla proporcji (wskaźnika struktury)

Niech $X_1, X_2, ..., X_n$ będzie prostą próbą losową z rozkładu Bernoulli'ego o nieznanym parametrze p. Wówczas $\mu = E(X_1) = p$, $\sigma^2 = p(1-p)$. Np. gdy p jest proporcją obiektów populacji mających pewną własność, przyjmujemy $X_i = 1$ (0) gdy wylosowany obiekt posiada (nie posiada) tę własność. Niech $\hat{p} = \overline{X} =$ częstość = proporcja elementów próby o danej własności. Z CTG dla dostatecznie dużego n zmienna losowa

$$\dfrac{\hat{p}-p}{\sqrt{\dfrac{p(1-p)}{n}}}$$
 ma rozkład bliski rozkładowi standardowemu normalnemu

N(0,1). (musi zachodzić $np \ge 5, n(1-p) \ge 5$).

Test dla proporcji

Hipoteza zerowa:
$$H_0$$
: $p = p_0$

$$H_0: p = p_0$$

Statystyka testowa

$$Z = \frac{p - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} \sim \text{bliski } N(0,1),$$

jeśli hipoteza H_0 jest prawdziwa. Możliwe sytuacje:

$$H_1: p > p_0, \quad C = \{z: z \ge z_{1-\alpha}\}$$

$$H_1: p < p_0, \quad C = \{z: z \le -z_{1-\alpha}\}$$

$$H_1: p \neq p_0, \quad C = \{z: |z| \geq z_{1-\alpha/2}\}$$

Test dla proporcji

Przykład. Przypuszczamy, że proporcja samochodów w Warszawie używających gazu jako paliwa jest mniejsza niż 0,15. W próbie 200 losowo samochodów 21 było samochodami na gaz. Czy te dane potwierdzają nasze przypuszczenie, przy poziomie istotności 0,05?

1.
$$H_0: p = 0.15$$
, $H_1: p < 0.15$

2. Statystyka testowa

$$Z = \frac{p - 0.15}{\sqrt{\frac{0.15 \times 0.85}{200}}} \sim \text{bliski } N(0.1), \text{ jeśli hipoteza } H_0 \text{ jest prawdziwa.}$$

Test dla proporcji

3. Wartość statystyki testowej dla próbki:

$$Z = \frac{21/200 - 0.15}{\sqrt{\frac{0.15 \times 0.85}{200}}} = -1.79$$

- 4. Kwantyl $z_{0.95} = 1,64$
- 5. Zbiór krytyczny $C = \{z : z \le -1,64\}$
- 6. $-1,79 \in C$, więc stwierdzamy, że proporcja samochodów na gaz jest mniejsza niż 0,15, przyjmując poziom istotności 0,05 (0,05 = prawdopodobieństwo, że nasza decyzja jest błędna)

Niech $X_1, X_2, ..., X_{n_1}$ oraz $Y_1, Y_2, ..., Y_{n_2}$ będą dwoma niezależnymi prostymi próbami losowymi z dwu populacji mających rozkłady Bernoulli'ego o nieznanych parametrach p_1, p_2 , odpowiednio.

Niech K_1 oraz K_2 będą liczbami elementów próby X' ów oraz Y' ów o wartościach 1, odpowiednio. Estymatory proporcji p_1, p_2 :

$$\hat{p}_1 = \frac{K_1}{n_1}$$
, $\hat{p}_2 = \frac{K_2}{n_2}$, odpowiednio

Estymator p, jeśli H_0 : $p_1 = p_2 = p$ jest prawdziwa:

$$\hat{p} = \frac{K_1 + K_2}{n_1 + n_2}$$

Hipoteza zerowa

$$H_0: p_1 = p_2$$

Statystyka testowa

$$Z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)\hat{p}(1 - \hat{p})}}$$

ma rozkład bliski N(0,1), jeśli H_0 prawdziwa

oraz

$$n_1\hat{p}_1 \ge 5$$
, $n_1(1-\hat{p}_1) \ge 5$, $n_2\hat{p}_2 \ge 5$, $n_2(1-\hat{p}_2) \ge 5$

Możliwe sytuacje

- $H_1: p_1 > p_2$, wówczas $C = \{z: z \ge z_{1-\alpha}\}$
- $H_1: p_1 < p_2$, wówczas $C = \{z: z \le -z_{1-\alpha}\}$
- $H_1: p_1 \neq p_2$, wówczas $C = \{z: |z| \leq z_{1-\alpha/2}\}$

Przykład. Porównywano monitory firmy A i B. Spośród 200-tu monitorów firmy A 10 wymagało naprawy w okresie gwarancji, natomiast spośród 150-ciu monitorów firmy B 12 wymagało naprawy w okresie gwarancji. Czy można twierdzić, że prawdopodobieństwo awarii monitora firmy A jest mniejsze niż prawdopodobieństwo awarii monitora firmy B.

1.
$$H_0: p_1 = p_2$$
, $H_1: p_1 < p_2$

2. Statystyka testowa

$$Z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)\hat{p}(1 - \hat{p})}}$$

3.
$$z = \frac{\frac{10}{200} - \frac{12}{150}}{\sqrt{\left(\frac{1}{200} + \frac{1}{150}\right) \frac{10 + 12}{200 + 150} \left(1 - \frac{22}{350}\right)}} =$$

$$\frac{0,05-0,08}{\sqrt{\frac{200+150}{200\cdot150}}\cdot0,063\cdot0,932} = -1,14$$

- 4. $1 \alpha = 0.94$, $Z_{0.94} = 1.55$, $C = (-\infty, -1.55]$
- 5. -1,14 nie należy do C
- 6. Na poziomie istotności 0,06 nie można odrzucić hipotezy, że monitory obu firm mają jednakowe prawdopodobieństwo awarii w okresie gwarancji

- 1. Badana cecha jednostek populacji może przyjmować k różnych wartości (może należeć do k różnych klas, kategorii): c_1 , c_2 ,..., c_k . Niech zmienna losowa X oznacza kategorię (klasę) losowo wybranej jednostki.
- 2. $H_0: P(X = c_1) = p_1$, $P(X = c_2) = p_2$, ..., $P(X = c_k) = p_k$.
- 3. Dla próby losowej cech n losowo wybranych jednostek populacji niech $N_1, N_2, ..., N_k$ oznaczają liczności jednostek o cechach $c_1, c_2, ..., c_k$, odpowiednio.
- 4. Jeśli hipoteza zerowa jest prawdziwa to oczekiwane liczności wynoszą:

$$EN_1 = np_1, EN_2 = np_2, ..., EN_k = np_k.$$

5. Odstępstwo empirycznych liczności (z próby) od oczekiwanych liczności jest mierzone za pomocą statystyki chi-kwadrat χ^2 postaci:

$$\frac{(N_1 - EN_1)^2}{EN_1} + \frac{(N_2 - EN_2)^2}{EN_2} + \dots + \frac{(N_k - EN_k)^2}{EN_k}.$$

6. Jeśli wszystkie oczekiwane liczności są nie mniejsze niż 5, tzn $EN_j \geq 5$, j=1,2,...,k, to rozkład χ^2 można przybliżyć rozkładem chi-kwadrat. Jest k kategorii więc liczba stopni swobody rozkładu chi-kwadrat wynosi k-1.

7. Jeśli H_0 jest prawdziwa, to odstępstwo empirycznych liczności od oczekiwanych liczności powinno być małe. Stąd wartości statystyki χ^2 też powinny być małe. Z kolei jeśli występuje duża rozbieżność pomiędzy obserwowanymi ślicznościami kategorii a "teoretycznymi", to wątpimy o prawdziwości H_0 w przypadku dużych wartości statystyki χ^2 . Stąd zbiór krytyczny ma postać:

$$C = \left\{ \chi^2 \colon \chi^2 \ge \chi^2_{1-\alpha,k-1} \right\} = \left[\chi^2_{1-\alpha,k-1}, \infty \right).$$

8. Reguła decyzyjna: Odrzucenie H_0 jeśli obliczona wartość $\chi^2 \geq \chi^2_{1-\alpha,k-1}$

Przykład. Przypuszcza się, że proporcje ludzi z grupami krwi: A, B, AB, and O wynoszą, odpowiednio: 0.4, 0.2, 0.1, 0.3. Wśród 400-tu losowo wybranych osób liczby osób o powyższych grupach krwi wyniosły: 148, 96, 50, 106. Czy na poziomie istotności 5% można zaprzeczyć powyższemu przypuszczeniu?

Rozwiązanie.

$$H_0$$
: $p_A = 0.4$, $p_B = 0.2$, $p_{AB} = 0.1$, $p_0 = 0.3$.

Obliczenie wartości χ^2 :

Grupa krwi	Liczności z próbki N	1: 4 -:	(N – EN)	$(N - EN)^2$	$(N - EN)^2/EN$
Α	148	160	- 12	144	0.90
В	96	80	16	256	3.20
AB	50	40	10	196	2.50
0	106	120	-14	100	1.63
suma	400	400	0		8.23

Liczba stopni swobody: k - 1 = 4 - 1 = 3Poziom istotności testu $\alpha = 0,05$, stąd $1 - \alpha = 0,95$ Kwantyl $\chi^2_{0.95.3} = 7,81$.

Wartość statystyki chi-kwadrat 8,23 > 7,81, więc odrzucamy hipotezę zerową.

Cel: testowanie hipotezy, że dwie cechy jednostek populacji są niezależne.

Przykłady:

Grupa krwi i kolor oczu

Wiek i zapatrywania polityczne

Kolor oczu i kolor włosów

Picie alkoholu i palenie papiersów

Dochód i wykształcenie

Podatki i PKB

Niezawodność systemu i producent

Tablica kontyngencyjna

	d_1	d_2	$d_{ m j}$	$d_{\rm r}$	
C_1	n_{11}	n_{12}	n_{1i}	n_{1r}	n_{1} .
<i>C</i> ₂	n_{21}	n_{22}	n_{2i}	n_{2r}	n_{2} .
Ci	n_{i1}	n _{i2}	n _{ij}	n_{jr}	n _{i•}
C_k	n_{k1}	n_{k2}	n_{kj}	n_{kr}	$n_{k\bullet}$
	n •1	n.2	n _{•j}	n _{•r}	n

Założenia oraz test

- 1. Jednostka populacji scharakteryzowana jest parą cech (atrybutów). Niech (X,Y) będzie parą atrybutów wybranej losowo jednostki populacji. Możliwe wartości X należą do k różnych klas (kategorii): $c_1, c_2, ..., c_k$ liwe wartości cechy Y należą do Y różnych klas (kategorii): $d_1, d_2, ..., d_r$.
- 2. H_0 : X, Y są niezależnymi zmiennymi losowymi:

$$H_0: P(X = c_1, Y = d_1) = P(X = c_1)P(Y = d_1), ...,$$

 $P(X = c_k, Y = d_r) = P(X = c_k)P(Y = d_r).$

Założenia oraz test (kont.)

3. Niech n_{ij} będzie liczbą elementów ralizacji prostej próby losowej (próbki) z tej populacji, dla których cechą pierwszą jest klasa i, a druga klasa j:

 n_{ij} = liczba elementów próbki o charakterystykach

$$c_i, d_j, i = 1, 2, ..., k, j = 1, 2, ..., r.$$

4. Jeśli H_0 prawdziwa, to oczekiwane liczby obserwacji o charakterystykach (c_i, d_j) wynoszą:

$$np_{ij} = np_i.p_{\cdot j}$$
,

gdzie
$$p_{i\cdot} = P(X = c_i), p_{\cdot j} = P(Y = d_j).$$

5. Odstępstwo obserwowanych liczebności w klasach od wartości ich estymatorów przy założeniu, że hipoteza zerowa jest prawdziwa wyraża wartośc statystyki chikwadrat:

$$\chi^{2} = \sum_{i=1}^{k} \sum_{j=1}^{r} \frac{(n_{ij} - \hat{n}_{ij})^{2}}{\hat{n}_{ij}} = \sum_{i=1}^{k} \sum_{j=1}^{r} \left(\frac{\hat{n}_{ij}^{2}}{\hat{n}_{ij}}\right) - n$$

gdzie

$$\widehat{n}_{ij} = \frac{n_i \cdot n_{\cdot j}}{n}$$

6. Jeśli wszystkie $\hat{n}_{ij} \geq 5$, to można przyjąć, że rozkład statystyki chi-kwadrat jest bliski rozkładowi chi-kwadrat o liczbie stopni swobody

$$(k-1)(r-1)$$
.

Przykład Na pewnej uczelni technicznej mającej 3 wydziały A,B,C przeprowadzono egzamin semestralny ze statystyki. Niech X oznacza przynależność losowo wybranego studenta do wydziału (1 = A, 2 = B, 3 = C), a wartość Y wynosi 1, jeśli student zdał egzamin, 0 w przypadku przeciwnym.

Wyniki badania

У	1	0	
X			
1	350	50	400
2	450	150	600
3	200	100	300
	1000	300	1300

Obliczona wartość statystyki chi-kwadrat wynosi 44,2.

Niech poziom istotności $\alpha = 0.01$.

Liczba stopni swobody (3-1)(2-1) = 2

Kwantyl $\chi^2_{0.99} = 9,210$

Zbiór krytyczny $C = [9.210, \infty), 44, 2 \in C$

Decyzja: Wynik egzaminu zależy od wydziału, przy założonym poziomie istotności 0,01.