國立成功大學

工程科學系

112 學年度第二學期 電子學實驗課程

第九實驗報告

工程科學系 2年級

E94114073 張哲維

繳交日期: 2023/5/13

一、 實驗目的

瞭解比較器為基礎的運算放大器的應用電路,並討探其工作原理。

二、 實驗步驟

1. Window circuit:

- i. 調整 R₁、R₂、R₃,讓 V_a、V_b = 5V、-5V。
- ii. 觀察 $V_i \setminus V_o$ 的電壓波型及 X-Y 檔的 $V_i V_o$ 關係圖。
- iii. 調整 Va、Vb 觀察 Vo的變化
- iv. 說明 $V_i \cdot V_o$ 之間的關係。

2. Schimtt trigger:

- i. 令 V_i 為正弦波
- ii. 觀察 V_i、V_o的電壓波型及 X-Y 檔的 V_i-V_o關係圖。
- iii. 說明 V_i、V_o之間的關係。

3. 方波震盪器:

- i. 觀察 V。並記錄其震盪頻率
- ii. 將電容改變重複i步驟
- iii. 請說明 Vo的振盪頻率與電路中電阻及電容的關係。

三、實驗結果

1. Window circuit:

|Va| ≒ |Vb|

方波頻率穩定

X-Y 圖低電位在中間

|Va| < | Vb|

方波在波谷區間頻率變快

X-Y 圖低電位靠近左邊

|Va| > |Vb|

方波在波峰區間頻率變快

X-Y 圖低電位靠近右邊

 $V_a \times V_b$ 的改變是透過變化 $R_1 \times R_2 \times R_3$ 的阻值, R_1 為改變分配到 V_a 的電壓; R_3 為改變分配到 V_b 的電壓, R_2 為改變低電壓區間寬度

V。會在特定輸入電壓(V_a~V_b)為低電壓,而在非特定輸入電壓為高電壓,因此可以透過改變 V_a、V_b去將此區間移動,如同拉窗戶。

$$V_a = (R_2 + R_3) / (R_1 + R_2 + R_3) * V_{cc} - R_1 / (R_1 + R_2 + R_3) * V_{cc}$$

$$V_b = -(R_2 + R_3) / (R_1 + R_2 + R_3) * V_{cc} + R_1 / (R_1 + R_2 + R_3) * V_{cc}$$

低電位區間寬度 $= V_a - V_b$

2. Schimtt trigger:

當波為正半週時,輸出為負的 V_i 透過正回饋使負電壓提高直到電路到達負飽和($-V_{cc}$);波為負半週,輸出為正的 V_i 透過正回饋使正電壓提高直到電路達正飽和(V_{cc})。輸入電壓的大小必須高於 $|V_{TH}|$ 才會進行切換。上下限闊值電壓($\pm V_{TH}$) = R_1 /(R_1 + R_2) * $\pm V_{CC}$

因為使用比較器電路,所以會產生遲滯。遲滯的電壓 = 2V_{TH}

輸入電壓為 8V_{p-p}

$$V_{TH} = 3.04V$$

$$-V_{TH} = -3.2V$$

輸入電壓為 10V_{p-p}

$$V_{TH} = 3.12V$$

$$-V_{TH} = -3.12V$$

輸入電壓為 12V_{p-p}

$$V_{TH} = 2.96V$$

$$-V_{TH} = -3.2V$$

3. 方波震盪器:

電容為 $0.1 \, \mu$ F f_{ideal} = 455.12 err = 10.04%

電容為 1 μ F f_{ideal} = 45.51 err = 7.71%

當 $V_O = +V_{CC}$,電容通過電阻充電,V-提高,

此時 V₊ = R₁ / (R₁ + R₂) * V_{CC} , 當超過 V_{TH}→ V_O = -V_{CC}

當 $V_O = -V_{CC}$,電容通過電阻反極性充電,V-降低,

此時 V₊ = R₁ / (R₁ + R₂) * -V_{CC},當低於 V_{TH}→ V_O = V_{CC}

此電路會重複上面步驟產生震盪。

其頻率 = $1/(2*R_t*C*In(1+2R_2/R_1)$,與電容量呈反比

四、 問題與討論

在 Window circuit 實驗中發現 V。並未對稱,正電壓部分比較小。 →電路中有一個 1K 電阻接到-V_{CC} 導致輸出正電壓的部分分流。

實驗中發現 Vin 如果沒有超過 | Vcc | · V。沒辦法呈現出來。

在 schimtt trigger 電路中使用不同規格的稽納二極體會有不同輸出電壓(V_{TH} 會改變)

這次實驗會有很多地方(op amp. 、 外接直流源)需要用到± V_{cc} 所以需要規畫好線段走向。

五、 心得

這次實驗是關於比較器和觸發器,透過 X-Y 模式觀察輸出與輸入電壓,在這次實驗中我覺得比較難的部分是接電路,需要稍微的規畫一下電路。透過改變不同的參數(電壓、電阻)去調整輸出的電壓、 闊值、延遲,並在示波器上呈現,中間也跟助教討論一下關於電路 設計上的問題。