An evaluation of machine learning and traditional statistical methods for discovery in large-scale data

Megan Hollister

Vanderbilt University Department of Biostatistics

March 25th, 2019

 Megan Hollister
 March 25th, 2019
 1 / 17

Table of Contents

- Background
- Q Goals
- Methods
- 4 Second Generation p-values
- Results
- 6 Conclusions

Megan Hollister

Background

Statistics versus machine learning sample, and machine learning finds generalizable

Statistics draws population inferences from a predictive patterns.

POINTS OF STGNIFTCANCE

a given gene expression pattern has a disease. Prediction makes it without requiring understanding of the underlying mechanisms. In value-we want to know how biological processes work and what will happen next. For example, we might want to infer which bioa disease, as well as detect whether a subject has the disease and Many methods from statistics and machine learning (ML) may.

- Recent paper in Nature Methods on statistical discovery in large-scale data
- Concluded random forests outperformed Benjamini-Hochberg p-value based approaches
- Based on simulations of dysregulated genes in expression data

 Not all approaches were given the same a priori information

Goals

ightarrow Paper received much press and substantial twitter discussion

Objectives:

- Examine claims using unbiased and fair comparisons
- Estimate accuracy of machine learning and "traditional" methods
- Identify methods with the best performance characteristics

Megan Hollister March 25th, 2019 4 / 1

Methods

Simulated Gene Expression Data

- 40 genes ; 20 people
- 10 phenotype positive ; 10 negative
- 25% (10) of genes are "dysregulated" across phenotype
- Computed pseudo-counts = normalized counts (Robinson and Smyth, 2008)
- Allowed within person correlation across genes (new)

March 25th, 2019

Phenotype

Methods

Discovery Methods

Traditional	Machine Learning
Nominal <i>p</i> -values	Random Forest importance levels
Bonferroni adjusted <i>p</i> -values	Neural Net prediction weights
Benjamini-Hochberg Emp FDRs	Penalized Regression (forthcoming)
Second-generation <i>p</i> -values	

- 5% significance level / FWER / FDR
- 2 Top 10 ranked genes by ML criteria
- Top 10 ranked genes by Traditional criteria (new)

(ロ) (個) (E) (E) (E) (O)(O)

6 / 17

Second Generation *p*-values

Overview

- SGPV is in [0,1] and denoted by p_{δ}
- ullet δ indicates dependence on (pre-specified) interval null hypothesis
- SGPV reports the fraction of data-supported effect sizes that are null or trivial
- Adjustment for multiple comparisons is automatic
- Cases:
 - **1** $p_{\delta} = 0$ when data incompatible with null region
 - 2 $p_{\delta}=1$ when data compatible with null region
 - 3 $0 < p_{\delta} < 1$ when data are inconclusive

Megan Hollister March 25th, 2019

Second Generation *p*-values

Illustration 1

8 / 17

Megan Hollister March 25th, 2019

Second Generation *p*-values

Illustration 2

$$p_{\delta}=1$$

9 / 17

Megan Hollister March 25th, 2019

Heatmaps of p-values

- Heatmap of discovery *p*-values by nominal *p*-values
- Values below horizontal line less than 0.05

March 25th, 2019 Megan Hollister

Heatmaps of Rankings

- Heatmap of gene rankings by FDR (Benjamini-Hochberg)
- Top 10 rankings below horizontal line

Megan Hollister March 25th, 2019 11 / 17

Heatmaps of Rankings

 \bullet Heatmaps of rankings of the original gene expression counts

Comparisons

Accuracy statistics:

- Power
 - → Proportion of "dysregulated" genes identified as "dysregulated"
- Type I Error rate
 - ightarrow Proportion of "properly regulated" genes identified as "dysregulated"

◆ロト ◆個ト ◆恵ト ◆恵ト ・恵 ・ からで

 Megan Hollister
 March 25th, 2019
 13 / 17

Comparisons

Nominal P-value(rank) Bonferroni

Nominal P-value

Benjamini-Hochberg

Benjamini-Hochberg(rank) Random Forest(rank) Neural Net(rank)

Second Generation P-value(rank)

14 / 17

March 25th, 2019 Megan Hollister

Comparisons

Megan Hollister March 25th, 2019

15 / 17

Conclusions

- Normalizing step is critical for some methods
- Methods perform identically when properly compared (by rankings)
- Comparing ranking vs threshold discovery gives false impression of differential statistical accuracy (ie, Nature Methods)

	Traditional Methods	Machine Learning
Pros	Significance level criterion	Handles complexity with ease
	• Can be ranked	Variety of flexible algorithms
	• Interpretable coefficients	
Cons	Complexity poses challenges	Must pre-specify number of findings
	• Significance criterion not universal	No threshold criterion
	Models can be simplistic	Coefficients hard to interpret

Acknowledgments

NIH Clinical and Translational Science Awards (CTSA) TL1 Training Grant Statistical Evidence in Data Science (SEDS) Lab:

- Dr. Jeffrey D. Blume (PI) www.statisticalevidence.com
- Dr. Thomas Stewart
- Valerie Welty

References:

- Bzdok, Danilo and Altman, Naomi and Krzywinski, and Martin (2018). Statistics versus machine learning. Nature Methods 15, 233-234. https://doi.org/10.1038/nmeth.4642
- Robinson MD, McCarthy DJ and Smyth GK (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139-140
- Slume JD, Greevy RA Jr., Welty VF, Smith JR, Dupont WD (2019). An Introduction to Second-generation p-values. The American Statistician. https://doi.org/10.1080/00031305.2018.1537893

Megan Hollister March 25th, 2019 17 / 17