(anti)Reflexive Relations

Let
$$A = \{1, 2, 3, 4\}$$

Consider the following binary relations on ${\cal A}$

$$R_0 = \{(1,1), (2,2), (3,3), (4,4)\}$$
 is reflexive

$$R_3 = \{(1,1), (1,2), (1,3), (2,1), (2,2), (3,3), (4,1), (4,4)\}$$
 is reflexive

$$R_2 = \{(1,1),(3,3)\}$$
 is not reflexive

R_0	1	2	3	4
1	1	0	0	0
2	0	1	0	0
3	0	0	1	0
4	0	0	0	1

R_3	1	2	3	4
1	1	1	0	1
2	1	1	0	0
3	0	0	1	0
4	1	0	0	1

R_2	1	2	3	4
1	1	0	0	0
2	0	0	0	0
3	0	0	1	0
4	0	0	0	0

A binary relation R on the set A

is antireflexive exactly when

for each $a \in A$ it is not the case that $(a, a) \in R$

Example

The following binary relations on $\{1, 2, 3, 4\}$ are <u>antireflexive</u>

$$\{\} = \emptyset$$

$$\{(1,2),(1,4),(2,1),(4,1)\}$$

(anti)Symmetric Relations

Symmetry

Let A be a set and 12 be a binary relation on A. R is symmetric exactly when for each $a \in A$ and $b \in A$, R(a,b) if andy only if R(b,a)

Example

The follwing relations on $\{1, 2, 3, 4\}$

$$R_0 = \{(1,1), (1,2), (2,1)\}$$
 is symmetric

$$R_1 = \{(1,1), (4,3)\}$$
 is not symmetric

R_0	1	2	3	4
1	1	1	0	0
2	1	0	0	0
3	0	0	0	0
4	0	0	0	0

R_1	1	2	3	4
1	1	0	0	0
2	0	0	0	0
3	0		0	0
4	0	0	1	0

Antisymmetry

Let A be a set and R be a binary relation on A. R is <u>antisymmetric</u> exactly when for each $a \in A$ and $b \in B$, if R(a,b) and R(b,a) then a=b

Example

Let
$$A = \{1, 2, 3, 4\}$$

$$\{\} = \emptyset$$
 is antisymmetric

$$R_0 = \{(1,1), (2,1), (3,1), (3,2), (4,1), (4,2), (4,3)\}$$
 is antisymmetric

$$R_1 = \{(2,3)\}$$

R_1	1	2	3	4
1	0	0	0	0
2	0	0	1	0
3	0	U	0	0
4	0	0	0	0

Both Symmetric and Antisymmetric

If all elements are self loops $\{(a, a), (b, b)\}$

$$\{1, 2, 3, 4\}$$

$$\{\} = \emptyset$$

$$\{(1, 1)\}$$

$$\{(1, 1), (2, 2)\}$$

Neither Symmetric or AntiSymmetric

$$\{(1,2),(3,4),(4,3)\}$$

Transative Relations

Let A be a set and let R be a binary relation on A. R is <u>transative</u> exactly when for each $a,b,c\in A$, if R(a,b) and R(b,a) then R(a,c)

Examples

The follwing binary relations on {1,2,3,4} are <u>transative</u>

$$R_0 = \{(2,1), (3,1), (3,2), (4,1), (4,2), (4,3)\}$$