

MOTIVATION

Are there any existing approaches?

- Global Planners (ex: potential field)
- Local Planners (ex: dynamic window approach)
- Neural Network based approach

Are there any existing approaches?

- Global Planners (ex: potential field) assume complete knowledge of the environment – thus not generalizable
- Local Planners (ex: dynamic window approach) optimize trajectory over a cost function – need good heuristics and measurements
- Neural Network based approach needs an exhaustive set of learning data

Are there any existing approaches?

- Global Planners (ex: potential field) assume complete knowledge of the environment – thus not generalizable
- Local Planners (ex: dynamic window approach) optimize trajectory over a cost function – need good heuristics and measurements
- Neural Network based approach needs an exhaustive set of learning data

Prior Work

- Motion using differential drive robots
- Networks send multiple time steps of data into the network to train
- Have been implemented using sparse rewards
- Some had encoded planners

Proposed Method

- Use LSTM to encode time-series information these networks can implicitly encode critical information about the past into a hidden state and a cell state
- Use **Dense reward** functions allows for faster training than sparse rewards as the agent is provided an incentive for all the states
- Agent motion follows and obeys the Dynamics of a car

Problem Setup

Architecture

- Network: LSTM with one layer
- Input State: lidar readings, distance to goal, angle to goal, robot position>
- Output (Action): Softmax the probability of turning left or right
- Actual action taken: Weighted steer function output

Reward Function

- Reward calculated for every (s, a, s') 3-tuple.
 - If an action is taken that will reduce the angle to the goal, the agent will be positively rewarded, if not the agent will be penalized.
 - If the summation of the difference between LIDAR readings in the current and future state is positive, the agent is rewarded
 - i.e., the agent is rewarded for moving away from an obstacle
- The effects of these rewards are tuned using a scaling factor.

Hyperparameters

- Hyperparameters were tuned specifically for each scenario (no obstacles, static obstacles, dynamic obstacles)
 - Adjusted learning rate and discount factor for neural network update
 - maximum LIDAR distance
 - rollout limit and iterations
 - maximum acceleration and angular velocity
- Scaling of reward function
 - Need to balance the obstacle distance and robot orientation factors

Results: No Obstacles

- Able to reach goal with static robot starting and goal positions
- Generalization for many positions, but not all
 - Lower accuracy with variable starting angles and positions
 - Attempted training on four different configurations; model began to overfit
- Very sensitive to changes in hyperparameters
 - Changes to reward function scaling also caused significant fluctuations in results

Results: Obstacles

- Able to avoid static obstacles in most cases
 - Model prioritizes avoiding obstacle to reaching goal
- Reaching the goal with moving obstacles only in very specific cases
- Model overfits to specific simulation
 - Very low generalization
 - Potentially need more iterations or training data
- Reward function may need work

Video

Programmers: You can't just rerun your program without changing it and expect it to work

Reinforcement Learning Practitioners:

