Relatório do Laboratório 11: Programação Dinâmica

Isabelle Ferreira de Oliveira

CT-213 - Engenharia da Computação 2020 Instituto Tecnológico de Aeronáutica (ITA) São José dos Campos, Brasil isabelle.ferreira3000@gmail.com

Resumo—Esse relatório documenta a implementação de algoritmos de programação dinâmica no contexto de solução de um Processo Decisório de Markov (Markov Decision Process - MDP). Os algoritmos implementados serão avaliação de política (policy evaluation), iteração de política (policy iteration) e iteração de valor (value iteration), com o objetivo de avaliar políticas e determinar políticas ótimas para um grid world.

Index Terms—MDP, policy evaluation, policy iteration, value iteration

I. IMPLEMENTAÇÃO

A. Implementação de Avaliação de Política

Essa parte do laboratório se tratava da implementação da função *policy_evaluation()*, presente no arquivo *dynamic_programming.py*, fornecido pelo código base do professor.

De maneira simples, essa função consiste em codificar a equação: $v_{k+1}\left(s\right) = \sum_{a \in A} \pi\left(a|s\right) r\left(s,a\right) + \gamma \sum_{a \in A} \sum_{s' \in S} \pi\left(a|s\right) p\left(s'|s,a\right) v_{k}\left(s'\right)$, apresentada de forma bem semelhante no roteiro do laboratório [1].

Para implementá-la, os estados s se tornaram tuplas (i,j), que foram iteradas por todo o grid world. Foram feitos loops também para iterar pelas ações a e pelos possíveis próximos estados s', e os resultados da equação acima foram somados ao valor associado ao estado s em que se estava.

- 1) $\pi(a|s)$ era encontrado em *policy*;
- 2) r(s, a) era encontrado em $grid_world.reward()$;
- 3) p(s'|s,a) era encontrado em $grid_world.transition_probability();$
- 4) $v_k(s')$ era a *policy* para um próximo estado s', encontrado iterando-se sobre $grid_world_get_valid_sucessors()$.

Vale ressaltar que, após um número definido previamente de iterações, ou após a convergência dos valores de $v_{k+1}(s)$, o loop era interrompido.

B. Implementação de Iteração de Valor

Já essa parte tratava-se da implementação da função *value_iteration()*, também presente no arquivo *dynamic_programming.py*, fornecido pelo código base do professor.

Análogo a função anterior, essa função consiste na codificação da equação: $v_{k+1}\left(s\right)=max_{a\in A}\left(r\left(s,a\right)+\gamma\sum_{s'\in S}p\left(s'|s,a\right)v_{k}\left(s'\right)\right)$, também presente no roteiro do laboratório [1].

A implementação também se tornou bastante semelhante à função de Avaliação de Política, com os estados s sendo tuplas (i,j), que foram iteradas por todo o grid world, e loops para iterar pelas ações a e pelos possíveis próximos estados s', dessa vez buscando os valores máximos dos resultados da equação, para serem considerados como valor associado ao estado s em que se estava nessa situação.

- 1) r(s, a) estava em grid world.reward();
- 2) p(s'|s,a) estava em grid_world.transition_probability();
- 3) $v_k(s')$ era a *policy* para um próximo estado s', encontrado iterando-se sobre $grid_world.get_valid_sucessors()$.

Vale ressaltar novamente que, após um número definido previamente de iterações, ou após a convergência dos valores de $v_{k+1}(s)$, o loop também era interrompido.

C. Implementação de Iteração de Política

Por fim, essa parte tratava-se da implementação da função *policy_iteration()*, também presente no arquivo *dynamic_programming.py*, fornecido pelo código base do professor.

Assim com as anteriores, essa função também se tratava de um loop, que era interrompido em duas condições: ou ao chegar em um número máximo de iterações, ou após a convergência tanto da *policy*, quanto do *value*.

Dessa vez, o interior do loop se tratava da atualização dos valores de policy e value da seguinte maneira:

- value era atualizado a partir da chamada da função policy_evaluation(), usando como parâmetros os valores até então de policy e value;
- policy era atualizado a partir da chamada da função greedy_policy(), usando como parâmetros o valor até então de value, ou seja, calculado acima.

D. Comparação entre Grid Worlds diferentes

Para gerar os resultados a serem comparados para Grid Worlds diferentes, bastou alterar-se os valores CORRECT_ACTION_PROB e GAMMA entre os valores propostos no roteiro do laboratório [1] e executar o script test_dynamic_programming.py novamente.

II. RESULTADOS E CONCLUSÕES

A. Primeiro Grid World

Foram gerados os resultados para os parâmetros de Grid World abaixo:

- 1) CORRECT ACTION PROB = 1.0
- 2) GAMMA = 1.0

Primeiro comparando-se os resultados apresentados nas Figuras 2 e 3, é possível notar que eles são idênticos, o que é esperado, uma vez que ambas as técnicas levam a convergência dos valores corretos de *policy* e *value*.

Sobre a Figura 1, a tendência observada é o *value* calculado ser maior em módulo para estados mais distantes do estado objetivo.

Nos três resultados é possível notar o *value* 0.0 para o estado objetivo, o que também condiz com o esperado.

Value functi	.on:				
[-384.09,	-382.73,	-381.19,		-339.93,	-339.93]
[-380.45,	-377.91,	-374.65,		-334.92,	-334.93]
[-374.34,	-368.82,	-359.85,	-344.88,	-324.92,	-324.93]
[-368.76,	-358.18,	-346.03,		-289.95,	-309.94]
[* ,	-344.12,	-315.05,	-250.02,	-229.99,	
,	-354.12,		-200.01,	-145.00,	0.00]
Policy:					
[SURDL ,	SURDL ,			SURDL ,	SURDL]
[SURDL ,		SURDL ,		SURDL ,	SURDL]
[SURDL ,		SURDL ,	SURDL ,	SURDL ,	
[SURDL ,		SURDL ,		SURDL ,	SURDL]
[* ,		SURDL ,	SURDL ,	SURDL ,	
[SURDL ,	SURDL ,		SURDL ,	SURDL ,	

Figura 1. Resultado observado para o teste da *policy_evaluation()*, para a primeira opção de Grid World.

	ue ite ue fur											
	-10.6	90.	-9.0	90,	-8.0	90.			-6.	00.	-7.6	001
		90,		90,		90,				00.		
i			-7.0			90,	-5.6	90,		00.		
ř			-6.0			90,	*	,		00,		
ľ	*			90,		90.	-3.0	าค ้			*	
r r		90.			*			90,		00, 00.		
l Dol	icv:	, 00	-0.0	υ,			-2.0	ου,	-1.	00,	0.0	ן טו
FUL.												
ι	RD		RD		D				D		DL	
[RD		RD		D				D		DL	
[RD		RD		RD						DL	
[RD						D		L	
ĺ			R		R		RD		D			
Ī	R		U				R		R		SURD	

Figura 2. Resultado observado para o teste da *value_iteration()*, para a primeira opção de Grid World.

Policy ite Value func							
		00	0 00			7.00	0.1
[-10.00			-8.00		-6.00	-7.00	
[-9.00	, -8.	00,	-7.00		-5.00	-6.00	9]
[-8.00	, -7.	00,	-6.00	-5.00	-4.00	-5.00	9]
[-7.00		00,	-5.00		-3.00	-4.00	9]
[*		00,	-4.00	-3.00	-2.00		
[-7.00	, -6.	00,		-2.00	-1.00	0.00	9]
Policy:							
[RD	, RD					DL	
[RD	, RD					DL	
[RD	, RD		RD	R		DL	
[R	, RD						
[*				RD			
[R				R		SURD	

Figura 3. Resultado observado para o teste da *policy_iteration()*, para a primeira opção de Grid World.

B. Segundo Grid World

Foram gerados os resultados para os parâmetros de Grid World abaixo:

- 1) CORRECT_ACTION_PROB = 0.8
- 2) GAMMA = 0.98

Primeiro comparando-se os resultados apresentados nas Figuras 5 e 6, também é possível notar que eles são idênticos, o que é novamente esperado, uma vez que ambas as técnicas levam a convergência dos valores corretos de *policy* e *value*.

Sobre a Figura 4, a mesma tendência que no primeiro Grid World é observada, ou seja, o *value* calculado é maior em módulo para estados mais distantes do estado objetivo.

Nos três resultados também é possível notar o *value* 0.0 para o estado objetivo, o que também condiz com o esperado.

Value function:	· · ·	, , ,
[-47.19, -47.11,	-47.01, * ,	-45.13, -45.15]
[-46.97, -46.81,	-46.60, * ,	-44.58, -44.65]
[-46.58, -46.21,	-45.62, -44.79,	-43.40, -43.63]
[-46.20, -45.41,	-44.42, * ,	-39.87, -42.17]
[* , -44.31,	-41.64, -35.28,	-32.96, *]
[-45.73, -45.28,	* , -29.68,	-21.88, 0.00]
Policy:		
[SURDL , SURDL ,	SURDL , * ,	SURDL , SURDL]
[SURDL , SURDL ,	SURDL , * ,	SURDL , SURDL]
[SURDL , SURDL ,	SURDL , SURDL ,	SURDL , SURDL]
[SURDL , SURDL ,	SURDL , * ,	SURDL , SURDL]
[* , SURDL ,	SURDL , SURDL ,	SURDL , *]
[SURDL , SURDL ,	* , SURDL ,	SURDL , S]

Figura 4. Resultado observado para o teste da *policy_evaluation()*, para a segunda opção de Grid World.

Value iterati	ion:				
Value function	on:				
[-11.65,	-10.78,	-9.86,		-7.79,	-8.53]
[-10.72,	-9.78,	-8.78,		-6.67,	-7.52]
[-9.72, [-8.70,	-8.70,	-7.59,	-6.61,	-5.44,	-6.42]
[-8.70,	-7.58,	-6.43,		-4.09,	-5.30]
[* ,	-6.43,	-5.17,	-3.87,	-2.76,	*]
[-8.63,	-7.58,		-2.69,	-1.40,	0.00]
Policy:					
[Ď,					D]
[D ,					D]
[RD ,					D]
[R ,	RD ,				L]
[* ,					*]
[R ,					S]

Figura 5. Resultado observado para o teste da *value_iteration()*, para a segunda opção de Grid World.

Por fim, comparando-se as duas situações de Grid World, é possível notar que, com a adição do desconto *GAMMA*, e agora com a probabilidade de o agente executar uma ação diferente da escolhida para cada estado, tem-se que os *value* referentes a cada estado são maiores em módulo do que os calculados na primeira situação.

Isso se justifica e condiz com o esperado, uma vez que não se sabendo deterministicamente a ação tomada em cada estado, a função valor entende esse estado como "pior"quando comparado a situação na qual *CORRECT_ACTION_PROB* = 1. Além disso, o fator *GAMMA* adiciona mais imediatismo à recompensa das ações do agente, o que também diminui a medida de quão "bom"é determinado estado em comparação

Policy iteration: Value function:									
[-11.65,	-10.78,	-9.86,		-7.79,	-8.53]				
[-10.72,	-9.78,	-8.78,		-6.67,	-7.52]				
[-9.72, [-8.70,	-8.70,	-7.59,	-6.61,	-5.44,	-6.42]				
[-8.70,	-7.58,	-6.43,		-4.09,	-5.30]				
[* ,	-6.43,	-5.17,	-3.87,	-2.76,	*]				
[-8.63,	-7.58,		-2.69,	-1.40,	0.00]				
Policy:									
[D ,					D]				
[D ,					D]				
[R ,					D]				
[R ,					L]				
[* ,					*]				
[R ,					S]				

Figura 6. Resultado observado para o teste da $policy_iteration()$, para a segunda opção de Grid World.

a situação no qual todas as recompensas até o objetivo são igualmente contabilizadas.

REFERÊNCIAS

[1] M. Maximo, "Roteiro: Laboratório 11 - Programação Dinâmica". Instituto Tecnológico de Aeronáutica, Departamento de Computação. CT-213, 2019.