PROBLEM 1

Given the joint CDF of random variables X_1 and X_2 ,

$$F_{X_1,X_2}(x_1,x_2) = 1 - \exp(-x_1) - \exp(-x_2) + \exp(-x_1 - x_2 - x_1 x_2), \quad x_1, x_2 \ge 0,$$
 (1)

we are tasked with finding the marginal CDF $F_{X_1}(x_1)$ and the conditional CDF $F_{X_2|X_1}(x_2|x_1)$, and subsequently generating realizations of X_1, X_2 using the inversion method.

The marginal CDF of X_1 is trivially calculated in the limit $x_2 \to \infty$ as

$$F_{X_1}(x_1) = F_{X_1, X_2}(x_1, \infty) = 1 - \exp(-x_1).$$
 (2)

Applying the relation

$$F_{X_2|X_1}(x_2|x_1) = \left(\int_0^{x_2} f_{X_1,X_2}(x_1,t_2)dt_2\right) / f_{X_1}(x_1), \tag{3}$$

where the marginal and joint pdfs are

$$\begin{split} f_{X_1}(x_1) &= \partial_{x_1} F_{X_1}(x_1) \\ f_{X_1,X_2}(x_1,x_2) &= \partial_{x_1} \partial_{x_2} F_{X_1,X_2}(x_1,x_2), \end{split}$$

it can be shown that

$$F_{X_2|X_1}(x_2|x_1) = 1 - (1+x_2) \exp(-[1+x_1]x_2), \tag{4}$$

which is impossible to invert analytically, though computational root-finding methods show success.

Realizations of X_1, X_2 are generated in the standard manner: for each i = 1, ..., N, a random variable $U_1^i \sim U[0,1]$ is generated, and set equal to $F_{X_1}(x_1)$, which can be solved for realization x_1^i . Another random variable $U_2^i \sim U[0,1]$ is generated and set equal to $F_{X_2|X_1}(x_2|x_1)$, which is then solved numerically for x_2^i , given x_1^i . We choose Matlab's fzero function as our root finder.

In Figure 1, we generate N = 10,000 realizations and compare the cumulative expectation of the first n samples to the analytical expectations

$$\langle x_1 \rangle = 1.0$$

$$\langle x_1 \rangle = 1.0$$

$$\langle x_1 x_2 \rangle = 0.596347$$
(5)

All three quantities approach their analytical values, and the relative error in each quantity is seen to decrease as n increases.

This method of verification is by no means rigorous. The mean square error of the empirical CDF or pdf would be a better way of checking the validity of our answers, but this suffices for the purposes of this exercise.

PROBLEM 2

This problem concerns a derivation from scratch of the Bayesian MAP estimate of a random variable V, assuming a Gaussian prior $V \sim N(V_0, \sigma_0^2)$. Further details are worked by hand on the attached sheets.

Figure 1: Expectation values of various functions of x_1 and x_2 , using the first n cumulative samples. Analytical expectation values plotted to show convergence, as well as relative error.

PROBLEM 3

2.5

Bloop!