

SE-3002 SOFTWARE QUALITY ENGINEERING

RUBAB JAFFAR

RUBAB.JAFFAR@NU.EDU.PK

Part IV-QUANTIFIABLE QUALITY IMPROVEMENT
Feedback Loop and Activities for Quantifiable Quality
Improvement
Lecture # 36
9 Dec

TODAY'S OUTLINE

- Feedback Loop and Activities for Quantifiable Quality Improvement
- Feedback Loop and Overall Mechanism
- Monitoring and Measurement
- Analysis and Feedback
- Tool and Implementation Support

QUANTIFIABLE QUALITY IMPROVEMENT BASIC ELEMENTS

- Part IV is quantifiable quality improvement, which includes two basic elements:
- Quantification of quality through quantitative measurements and models so that the quantified quality assessment results can be compared to the pre-set quality goals for quality and process management.
- Quality improvement through analyses and follow-up activities by identifying quality improvement possibilities, providing feedback, and initiating follow-up actions.

QUANTIFIABLE QUALITY IMPROVEMENT

- To support quantifiable quality improvement, various parallel and follow-up activities to the main quality assurance (QA) activities are needed, including:
- Monitoring the specific QA activities and the overall software development or maintenance activities, and extracting relevant measurement data.
- Analyzing the data collected above for quality quantification and identification of quality improvement opportunities.
- Providing feedback to the QA and development/maintenance activities and carrying out follow-up actions based on the analysis results above.

QUANTIFIABLE QUALITY IMPROVEMENT

These activities also close the quality engineering feedback loop discussed in part I and refine it into Following:

Software quality engineering (SQE)

IMPORTANCE OF FEEDBACK LOOP

- All QA activities covered in Part II and Part III need additional support: .
- Planning and goal setting
- Management via feedback loop
 - When to stop?
 - Adjustment and improvement, etc.
 - All based on assessments/predictions

IMPORTANCE OF FEEDBACK LOOP

- Feedback loop for quantification/improvement: i.e. Focus of Part IV
 - mechanism and implementation
 - models and measurements.
 - defect analyses and techniques
 - risk identification techniques
 - software reliability engineering

QEACTIVITIES AND PROCESS REVIEW

- Major activities:
- Pre-QA planning (Part I)
- QA (Part II and Part III)
- Post-QA analysis & feedback Part
 IV (maybe parallel instead of "post-")

Software quality engineering (SQE)

QEACTIVITIES AND PROCESS REVIEW

- Feedback loop zoom-in:
- Multiple measurement sources.
- Many types of analysis performed.
- Multiple feedback paths.

FEEDBACK LOOP RELATED ACTIVITIES

- Monitoring and measurement:.
 - defect monitoring ∈ process management
 - defect measurement ∈ defect handling
 - many other related measurements.
- Analysis modeling:
 - Historical baselines and experience
 - Choosing models and analysis techniques
 - Focus on defect/risk/reliability analyses
 - Goal: assessment/prediction/improvement.
- Feedback and follow-up
 - Frequent feedback: assessment/prediction
 - Possible improvement areas identified
 - Overall management and improvement.

QUALITY MONITORING AND MEASUREMENTS

- Quality monitoring needs:
 - Quality as a quantified entity over time
 - Able to assess, predict, and control
 - Various measurement data needed
- Some directly in quality monitoring
- Others via analyses to provide feedback.
- Direct quality measurements:
 - Result, impact and related info. e.g., success vs. failure
- Defect information: directly monitored.
- Mostly used in quality monitoring.

INDIRECT QUALITY MEASUREMENTS

- Indirect quality measurements: Why?
- Other quality measurements (reliability) need additional analyses/data.
- Unavailability of direct quality measurements early in the development cycle ⇒ early (indirect) indicators.
- Used to assess/predict/control quality. (to link to or affect various direct quality measurements)
- Types of indirect quality measurements:
 - Environmental measurements.
 - Product internal measurements.
 - Activity measurements.

INDIRECT MEASUREMENTS: ENVIRONMENT

- Process characteristics
 - Entities and relationships
 - Preparation, execution and follow-up
 - Techniques used
- People characteristics
 - Skills and experience
 - Roles: planners/developers/testers
 - Process management and teams
- Product characteristics
 - Product/market environment
 - Hardware/software environment

INDIRECT MEASUREMENTS: INTERNAL

- Product internal measurements: most studied/understood in SE
- Software artifacts being measured:
 - Mostly code-related
 - Sometimes SRS, design, docs etc.
- Product attributes being measured:
 - Control: e.g., McCabe complexity
 - Data: e.g., Halstead metrics
 - Presentation: e.g., indentation rules

INDIRECT MEASUREMENTS: ACTIVITY

- Execution/activity measurements:
 - Overall: e.g., cycle time, total effort.
 - Phased: profiles/histograms.
 - Detailed: transactions
- Testing activity examples:
 - Timing during testing/usage
 - Path verification (white-box)
 - Usage-component mapping (black-box)
 - Measurement along the path
- Usage of observations/measurements: observation-based and predictive models

IMMEDIATE FOLLOW-UP AND FEEDBACK

- Immediate (without analyses): Why?
 - Immediate action needed right away:
 - critical problems ⇒ immediate fixing
 - most other problems: no need to wait
 - Some feedback as built-in features in various QA alternatives and techniques.
 - Activities related to immediate actions.
- Testing activity examples:
 - Shifting focus from failed runs/areas.
 - Re-test to verify defect fixing.
 - Other defect-related adjustments.
- Defect and activity measurements used.

ANALYSES, FEEDBACK, AND FOLLOW-UP

- Most feedback/followup relies on analyses.
- Types of analyses:
 - Product release decision related.
 - For other project management decisions, at the phase or overall project level.
 - Longer-term or wider-scope analyses.
- Types of feedback paths:
 - Shorter vs. longer feedback loops.
 - Frequency and time duration variations.
 - Overall scope of the feedback.
 - Data source refinement.
 - Feedback destinations.

ANALYSIS FOR PRODUCT RELEASE DECISIONS

- Most important usage of analysis results
 - Prominent in SQE and modified SQE Figure
 - Related to: "when to stop testing?"
- Basis for decision making:
 - Without explicit quality assessment:
 - implicit: planned activities,
 - indirect: coverage goals,
 - other factors: time/\$-based.
 - With explicit quality assessment:
 - failure-based: reliability,
 - fault-based: defect count & density.
- Criteria preference:
 - reliability defect coverage activity.

ANALYSES FOR OTHER DECISIONS

- Transition from one (sub-)phase to another:
 - Later ones: similar to product release.
 - Earlier ones: reliability undefined
 - defects coverage activity,
 - inspection and other early QA
- Other decisions/management-activities:
 - Schedule adjustment.
 - Resource allocation and adjustment.
 - Planning for post-release support.
 - Planning for future products or updates.
- These are product-level or sub-product-level decisions and activities

OTHER FEEDBACK AND FOLLOWUP

- Other (less frequent) feedback/followup:
 - Goal adjustment (justified/approved).
 - Self-feedback (measurement & analysis)
 - Longer term, project-level feedback.
 - May even carry over to followup projects.
- Beyond a single-project duration/scope:
 - Future product quality improvement
 - overall goal/strategy/model/data,
 - especially for defect prevention.
- Process improvement.
- More experienced people

FEEDBACK LOOP IMPLEMENTATION

- Key question: sources and destinations. (Analysis and modeling activity at center.)
- Sources of feedback loop = data sources:
 - Result and defect data:
 - the QA activities themselves.
 - Activity data:
 - both QA and development activities.
 - Product internal data: product. (produced by development activities)
 - Environmental data: environment.
- Additional sources of feedback loop:
 - From project/QA planning.
 - Extended environment: measurement data and models beyond project scope.

FEEDBACK LOOP IMPLEMENTATION

- Feedback loop at different duration/scope levels.
- Immediate feedback to current development activities (locally).
- Short-term or sub-project-level feedback:
 - most of the feedback/followup
 - transition, schedule, resource,
 - destination: development activities.
- Medium-term or project-level feedback:
 - overall project adjustment and release
 - destination: major blocks
- Longer-term or multi-project feedback:
 - to external destinations

FEEDBACK LOOP IMPLEMENTATION

IMPLEMENTATION SUPPORT TOOLS

- Type of tools:
 - Data gathering tools.
 - Analysis and modeling tools.
 - Presentation tools.
- Data gathering tools:
 - Defects/direct quality measurements:
 - from defect tracking tools.
 - Environmental data: project db.
 - Activity measurements: logs.
 - Product internal measurements:
 - commercial/home-build tools.
 - New tools/APIs might be needed.

IMPLEMENTATION SUPPORT TOOLS

- Analysis and modeling tools:
 - Dedicated modeling tools:
 - e.g., SMERFS and CASRE for SRE
 - General modeling tools/packages:
 - e.g., multi-purpose S-Plus, SAS.
 - Utility programs often needed for data screening and processing.
- Presentation tools:
 - Aim: easy interpretation of feedback \Rightarrow more likely to act on.
 - Graphical presentation preferred.
 - Some "what-if"/exploration capability.

STRATEGY FOR TOOL SUPPORT

- Using existing tools ⇒ cost↓:
 - Functionality and availability/cost.
 - Usability.
 - Flexibility and programmability.
 - Integration with other tools.
- Tool integration issues:
 - Assumption: multiple tools used. (All-purpose tools not feasible/practical.)
 - External rules for inter-operability,
 - common data format and repository.
 - Multi-purpose tools.
 - Utilities for inter-operability.

TOOL SUPPORT EXAMPLE

That is all