Bioinformatik von RNA- und Proteinstrukturen

Inhaltsverzeichnis

1	For	male Sprachen	
	1.1	formale Grammatik G	
	1.2	Klassifikation von formalen Sprachen	
	1.3	Hidden Markov Model	,
2	Ein	leitung	Ę
	2.1	RNA	,
	2.2	R/DNA-Sekundärstruktur	(
	2.3	Strukturabbildungen	,
3	Str	ukturvorhersage	10
	3.1	Nussinov	10
4	Mc	Caskill	11
-	4.1	Turner-Modell (Nearest-Neighbor-Modell)	13
	4.2	Zuker-Algorithmus	13
	1.2	4.2.1 suboptimales Falten	13
	4.3	Wuchty-Algorithmus	13
	1.0	4.3.1 Wuchty-Backtracking	13
	4.4	McCaskill	13
	4.5	stochastisches Backtracking	13
	4.6	Strukturvorhersagen verbessern	13
	4.7	Konsensusstrukturvorhersagen	13
	4.8	Wie kann RNA evolvieren?	13
		4.8.1 Neutrale Netzwerke	13
		4.8.2 SHAPE-Abstraktion	13
		4.8.3 Energielandschaften	13
		4.8.4 Faltungskinetik	13
		4.8.5 Barriers Trees	13
		4.8.6 Flooding-Algorithmus	13
		4.8.7 Co-transcriptional folding	13
5	wei	tere Bindungsarten, erlaubte Basenpaare	14
6	Pro	teine	15
7	Sek	undärstrukturelemente	16
-	7.1		16

1 Formale Sprachen

Formale Sprache ^1 L über Alphabet Σ L $\subseteq \Sigma^*$

 $\operatorname{mit}^- \Sigma^* = \text{Kleensche H\"ulle}^2 \text{ von } \Sigma$

$$\Sigma^* = \bigcup_{n=0}^{\infty} \Sigma^n$$

$$\Sigma^{0} = \{\varepsilon\}, \Sigma^{1} = \Sigma, \Sigma^{2} = \Sigma \times \Sigma$$

$$\varepsilon \to \text{leeres Wort (leere Menge)}$$

Beispiel:
$$\Sigma = \{a\}, \Sigma^* = \{\varepsilon, a, aa, aaa, ...\}, L = \{a, aa, aaaa, ...\}$$

1.1 formale Grammatik G

 $G = (N, \Sigma, P, S)$ mit

- N = Nichtterminale
- $\Sigma = Alphabet$
- P = Produktionsregeln
- $S = Startsymbol (\epsilon N)$

$$P \subseteq (N \cup \Sigma)^* / N(N \cup \Sigma)^* \to (N \cup \Sigma)^*$$

Beispiel:

$$G = (\{S\}, \{a\}, \{S \to aaS, S \to a\}, S)$$

führt zu: S \rightarrow aa
S \rightarrow aaa

1.2 Klassifikation von formalen Sprachen

durch die Comsky-Hierarchie³:

- Typ 0 = rekursiv auszählbar ($\alpha N\beta \rightarrow \gamma$)
- Typ 1 = kontext-sensitiv $(\alpha N\beta \rightarrow \alpha\gamma\beta)$
- Typ 2 = kontext-frei, N \to $(N \cup \Sigma)^* \to$ stochstisch kontextfreie Grammatik (SCFG) \to Dynamics Programming

¹https://de.wikipedia.org/wiki/Formale_Sprache

²https://de.wikipedia.org/wiki/Kleenesche_und_positive_H%C3%BClle

³https://de.wikipedia.org/wiki/Chomsky-Hierarchie

• Typ 3 = regular $(N \to \Sigma | \Sigma N) \to \text{dann immer Hidden Markov Model}$ (HMM) modellierbar

$$\begin{array}{c|c} S \longrightarrow S & \downarrow & S & \downarrow & S & \downarrow & S \\ \hline \end{array}$$

bei Alignments:

Erweiterung mit Wahrscheinlichkeit: $G=(N, \Sigma, P, S, \Omega)$ mit $\Omega =$ Wahrscheinlichkeit für Produktionsregeln

jetzt auf RNA-Vorhersagen:

$$S = S = S = S$$

scoring scheme: Bewertung von σ (\frown) = 1, (σ (\longleftarrow)), σ (\bullet) = 0 scoring function:

- max Basepairs: + (Summe),
- Anzahl der Strukturen: · (Multiplikation)

choice function:

- max Basepairs: max,
- Anzahl der Strukturen: + (Summe)

$$S_{ij} = \begin{cases} S_{i+1,j} + \sigma((\bullet) \\ S_{i+1,k-1} + S_{k+1,j} + \sigma((\frown)) \end{cases}$$

1.3 Hidden Markov Model

M: Match, I: Insertion, D: Deletion

Grammatik:

- $\bullet \ \mathrm{M} \to M_{A_A}|...|I|D$
- $I \rightarrow I_{A_{--}}|...|D|M$
- D $\rightarrow D_{-A}|...|M|I$

Beispiel:

Faltungsgrammatik

$$S \to (S)S|.S|\varepsilon$$

Nichtterminale = S, Alphabet = $\{(,), .\}$

Beispiel in Baumdarstellung:

weiteres Beispiel: Sankoff, Kombination von zwei Grammatiken (Alignment und Faltung)

Alignmentgrammatik

$$\begin{split} \mathbf{S} &\to .S|_S|\varepsilon \\ \mathbf{G} &= (N = \{S\}, \Sigma = \{.,_\}, P = \{S \to .S|_S|\varepsilon\}, S) \\ \text{Alignment: } G^2 &= G \times G = (N \times N, \Sigma \times \Sigma, P^2, (S, S)) \\ P^2 &= P \times P = \left(\begin{array}{c} S \\ S \end{array} \right) \end{split}$$

2 Einleitung

Struktur: Form \rightarrow Funktion

Funktion folgt Form, Form folgt Sequenz

Proteine, RNA, DNA: Sequenzen

4 Strukturlevels:

- primäre Struktur (Sequenz): 1 Dimension
- sekundäre Struktur (grobe Annäherung an Struktur): 2 Dimensionen
- tertiäre Struktur (räumliche Struktur): 3 Dimensionen
- quartiäre Struktur (räumliche Anordnung von interagierenden Strukturen): 4 Dimensionen

Behandlung hauptsächlich 2D

2.1 RNA

- ⁴ Funktion:
 - Informationsträger
 - Regulator/Katalysator
 - Theorieder RNA-World
- Nicht-Messenger-RNA: ncRNA (nc non-coding)
 - Aufbau: Zucker-Phosphat-Rückgrat
 - Basen:
 - Purine: Adenin, Guanin
 - Pyrimidine: Cytosin, Uracil
 - Paarung: A-U, G-C
 - RNA einzelsträngige A-Helix (DNA: doppelsträngige B-Helix)

⁴https://de.wikipedia.org/wiki/Ribonukleins%C3%A4ure

2.2 R/DNA-Sekundärstruktur

<u>Definition</u>: Liste von Basenpaaren, sodass gilt (theoretische Regeln):

- 1. erlaubte Basenpaarungen:
 - Watson-Crick: AU, UA, GC, CG
 - Wobble: GU, UG
- 2. zwischen miteinander paarenden Basen müssen mindestens 3 Basen stehen $if(i,j)\epsilon B \rightarrow i < j-3$

Beispiel Paarung A und U: A U
$$\underline{A}$$
 U A U A \underline{U} Beispiel Paarung A und U: A U A U A U A U

- 3. keine Tripletts (Multipletts): eine Base paart maximal mit einer anderen $if(i,j); (i,k) \in B \to j=k$
- 4. keine pseudo-Knoten: Basen kreuzen sich nicht $if(i,j); (k,l) \epsilon B \to i < j < k < l \ und \ i < k < l < j$

Motivation zu Regeln: jedes Basenpaar teilt das Molekül in 2 Teile (innen und außen), die miteinander nicht interagieren (vor allem Regel 3 + 4)

physikalische Eigenschaften:

- 1. Großteil des stabilisierenden Energie für RNA-Struktur kommt aus der Sekundärstruktur
- 2. Sekundärstruktur bildet sich zeitlich vor Tertiärstruktur aus

Experimenteller Nachweis 3D, 4D:

- Röntgenkristallographie: Kristall benötigt \rightarrow oft schwierig
- nuclear magnet resonanz (nmr): stark konzentrierte Lösung benötigt, nur Distanzen zwischen Atomen ermittelbar

<u>für 2D:</u> Methoden, die bevorzugt einzelsträngige oder doppelsträngige Strukturen schneiden

2.3 Strukturabbildungen

1. Strukturplot:

2. Dot-Bracket:

Seq: GAGUACAAUAUGUACCG
Str: ..((((....))))..

3. Zirkulärplot:

4. Bogenplot:

5. Mountainplot:

6. Dotplot:

3 Strukturvorhersage

- durch Aufteilung kann Dynamics Programming verwendet werden
- Beginn: einzelne Basen \rightarrow keine Struktur

3.1 Nussinov

- von Ruth Nussinov (1978)
- Versuch Struktur mit der maximalen Anzahl der Basenpaare zu finden (Grundlage ist Sequenz)

Dynamics Programming

- Initialisierung:
 - N(i,i) = 0
 - N(i, j) = 0 if $i < j \le i + 3$ (siehe Regel 2)
 - N(j+1,j) = 0
- Brechnung:

$$N(i,j) = \max \begin{cases} N(i+1,j) \ (ungepaart) \\ \max_{i+3 < k \le j} N(i+1,k-1) + N(k+1,j) + F(i,k) \end{cases}$$

$$\text{mit } F(i,k) = \begin{cases} 1 \text{ if } i,k \text{ } \epsilon \text{ } \{AU,GC,GU\} \\ -\infty \text{ } else \end{cases}$$

Basenpaarung mit i und k teilt Sequenz in inneren und äußeren Teil:

 \rightarrow höchste Punktzahl wahrscheinlichste Sekundärstruktur

Resourcenbedarf:

- Speicher: $\mathcal{O}(n^2)$
- Prozessor: $\mathcal{O}(n^3)$

4 McCaskill

McCaskill stellt eine Methode zur Berechnung der Partitionsfunktion für RNA-Sequenzen basierend auf der Boltzmann Verteilung vor, um die Strukturverteilung einer RNA-Sequenz zu berechnen.

Das Problem bei Zuker ist, dass die sekundäre RNA-Struktur mit minimaler Energie nicht immer die biologisch relevanteste ist. Für sekundäre RNA-Strukturen mit geringer Energie ist es möglich, biologisch relevanter zu sein, als alle anderen möglichen sekundären RNA-Strukturen. Daher wird eine neue Möglichkeit benötigt, um diejenige RNA-Struktur heraus zu finden, die biologisch am relevantesten ist. McCaskill berechnet für eine RNA-Sequenz die Wahrscheinlichkeit der Basenpaare mit Hilfe der Boltzmann-Verteilung. Anhand der Basenpaar-Wahrscheinlichkeiten lässt sich die wahrscheinlichste sekundäre RNA-Struktur ermitteln.

Definition (Boltzmann-Verteilung)

Sei P(x) die Wahrscheinlichkeit für eine RNA-Struktur x. Dann ist eine Boltzmann - Verteilung gegeben durch:

$$\beta = \frac{1}{k_{\rm B} * T} \tag{1}$$

$$Z = \sum_{x'} e^{-\beta E(x')} \tag{2}$$

$$P(x) = \frac{e^{-\beta E(x)}}{Z} \tag{3}$$

wobei E(x) die Energie von x, T die Temperatur, $k_{\rm B}$ die Boltzmann-Konstante und x' eine mögliche sekundäre RNA-Struktur ist.

Definition (Partitionsfunktion für eine RNA-Sequenz)

Die Partitionsfunktion für eine RNA-Sequenz s ist:

$$Z = \sum_{R} e^{-\beta E(R)} \tag{4}$$

wobei R eine sekundäre RNA-Struktur von $s,\,T$ die Temperatur und $k_{\rm B}$ die Boltzmann-Konstante ist.

Der Algorithmus von McCaskill berechnet die Partitionsfunktion Z für eine RNA-Sequenz s effizient. Als Energiemodell für sekundäre RNA-Strukturen wird das Modell von Zuker benutzt. Das bedeutet, dass die Energie einer sekundären RNA-Struktur der Summe aller möglichen sekundären RNA-Strukturelemente entspricht.

- 4.1 Turner-Modell (Nearest-Neighbor-Modell)
- 4.2 Zuker-Algorithmus
- 4.2.1 suboptimales Falten
- 4.3 Wuchty-Algorithmus
- 4.3.1 Wuchty-Backtracking
- 4.4 McCaskill
- 4.5 stochastisches Backtracking
- 4.6 Strukturvorhersagen verbessern
- 4.7 Konsensusstrukturvorhersagen
- 4.8 Wie kann RNA evolvieren?
- 4.8.1 Neutrale Netzwerke
- 4.8.2 SHAPE-Abstraktion
- 4.8.3 Energielandschaften
- 4.8.4 Faltungskinetik
- 4.8.5 Barriers Trees
- 4.8.6 Flooding-Algorithmus
- 4.8.7 Co-transcriptional folding

5 weitere Bindungsarten, erlaubte Basenpaare

- Hoogsteen base pair⁵

Jede Base kann mit jeder ihrer Kanten zu jeder Kante jeder Base ein Basenpaar bilden.

Non-Standard Basepairs:

Strukturmotive: Pattern von Standard basepairs führt zu speziellen 3D-Struktur (Kink-Turn)

Bifurcations (tripletts meistens) 12 * 12 * 2 mögliche Basenpaare: Warum 288?

Darstellung:

⁵https://en.wikipedia.org/wiki/Hoogsteen_base_pair

Isoelektrische Basenpaare

Änderung eines isoelektrischen Basenpaars gegen ein anderes ändert nichts an der Struktur

Listen von isoelektrischen Basenpaaren erstellt von Leontis und Westhof

Programme: MC-Fold, RNAWolf

6 Proteine

• 20 Aminosäuren

- drei positiv geladene Aminosäuren (basisch): Arg (R), His (H), Lys (K)
- zwei negativ geladene Aminosäuren (sauer): Asp (D), Glutaminsäure (E)
- sehr unterschiedlich in den Seitenketten
- Verbindung durch Peptidbindung

Frage: Wie rotieren Aminosäuren, die durch eine Peptidbindung verbunden sind, im Räum?

Stichworte: Cis, Torsionswinkel

Ramachandran Plot:⁶

allgemeines Beispiel:

 $^{^6 {\}tt https://en.wikipedia.org/wiki/Ramachandran_plot}$

7 Sekundärstrukturelemente

- Unterscheidung in drei Haupttypen⁷ Proteine:
 - Helix α -Helix (häufigstes)
 - coiled-coli-Struktur: Helix umgeben mit einer Helix
 - Transmembranhelices: 20 30 Aminosäuren, hydrophob, gehen durch die Zellmembran durch
 - Extended-Faltblatt: mindestens zwei Faltblätter immer zusammen, da dieses sich gegenseitig stabilisieren
 - parallel, antiparallel
 - Turn (drehen der Backbonerichtung)
 - Coil (Rest)

drei Helixe: Unterscheidung, was und wie viel zwischen den Wasserstoffbrückenbindungen steht 8

- $\alpha Helix$: 3,6,13-Helix (Helix zwischen 3. und 6. Atom, dazwischen liegen 13 Atome)
- $\pi Helix: 4,1,16$

7.1 Chou-Fasman (Sekundärstrukturvorhersage von Proteinen)

- ca. 50% Genauigkeit

⁷https://de.wikipedia.org/wiki/Sekund%C3%A4rstruktur

 $^{^{8} \}verb|https://en.wikipedia.org/wiki/Protein_secondary_structure|$

- \bullet 3 Tabellen mit Scores für α (Helix), β (Faltblatt) und t (Turn) für alle Aminosäuren
 - z.B. gut für Helix: Glu (1,51), Met Ala, Leu
 - schlecht für Helix: Pro, Gly (0,57)
 - gut für Faltblatt: Val (1,7), Ile (1,6)
 - schlecht für Faltblatt: Asp, Glu (0,37), Pro (0,55)
- Unabhängig voneinander α, β, t bewerten:
 - nucleation: 4 von 6 Aminosäuren haben $S_{(\alpha)}$; 1,03 Erweitern nach links und rechts, bis Durchschnitt der letzten 4 AS $S_{(\alpha)}$; 1 haben
 - $-\beta$: 3 von 5 Aminosäuren sollen $S_{(\beta)}$; 1 haben, letzten 4AS $S_{(\beta)}$; 1
- Turn: $score(t) = S_{(t)}(x1) \cdot S_{(t)}(x2) \cdot S_{(t)}(x3) \cdot S_{(t)}(x4)$

Weiterentwicklung:

- nicht nur eine Aminosäure sondern gesamte Umgebung anschauen

GOR-Algorithmus:⁹

- bis zu 70% genau es gibt GOR1 bis GOR5, unterschiedliche Berechnungen
 - drei Matritzen mit Scores 20 x 17 Matritze $(\alpha, \beta, turn)$ Beispiel für α : waagerecht: -8 bis +8, senkrecht alle Aminosäuren
 - Score aus Summierung über Matrixeinträge, dann ähnliche wie Chou-Fasman

Beispiel: ACCTYRARRGHSTFYSW

für R
$$S_{\alpha} = S^{\alpha}(-8, A) + S^{\alpha}(-7, C) + \dots + S^{\alpha}(8, W)$$

- das für alle Sekundärstrukturelemente

weiterer Algorithmus: SPIDER2

- ca. 80% genau
- Winkel zwischen Aminosäuren berechnen
- Surface Accesible Area
- Sekundärstrukturen

Physikalische Eigenschaften von Aminosäuren:

⁹https://en.wikipedia.org/wiki/GOR_method

- sterischer Parameter (graph shape index: dünnes oder dickes Molekül)
- Hydrophobizität
- Polarisierbarkeit
- Isoelektrischen Punkt
- Helix Wahrscheinlichkeit
- Volumen
- Falblattwahrscheinlichkeit
- zusätzlich mit psi-Blast: PSSM ermitteln (kein Ergebnis für Struktur sondern nur für Sequenz!)

dann alle diese Parameter in neuronales Netz stecken:

weitere Möglichkeit: Meta Server

- ruft mehrere Algorithmen auf
- höhere Wahrscheinlickeit durch vergleichen der Ergebnisse (z.B. majority vote)