

Álgebra lineal y Geometría II Gloria Serrano Sotelo Daniel Hernández Serrano Departamento de MATEMÁTICAS

TEMA 2. MÉTRICAS Y GEOMETRÍA EUCLÍDEA.

ÍNDICE

1. Generalidades sobre métricas.	1
1.1. Métricas.	1
1.2. Cambios de base para métricas.	2
1.3. Radical, polaridad y subespacio ortogonal.	2
2. Geometría Euclídea.	4
2.1. Métricas euclídeas.	4
2.2. Módulo de un vector. Ángulo definido por dos vectores.	5
2.3. Bases ortogonales y ortonormales. Ortonormalización de Gramm-Schmidt.	6
2.4. Distancia en el espacio euclídeo. Subvariedades afines perpendiculares.	7
3. Problemas propuestos.	11

GENERALIDADES SOBRE MÉTRICAS.

Métricas.

Sea E una k-espacio vectorial.

Definición 1.1. Una **métrica** T_2 sobre E es una aplicación

$$T_2 \colon E \times E \to k$$

 $(e, e') \mapsto T_2(e, e')$

que es bilineal, es decir, lineal en ambos argumentos:

- $T_2(\lambda e_1 + \mu e_2, e) = \lambda T_2(e_1, e) + \mu T_2(e_2, e)$ $T_2(e, \lambda e_1 + \mu e_2) = \lambda T_2(e, e_1) + \mu T_2(e, e_2)$

El escalar $T_2(e, e')$ se llama **producto escalar** del vector e por el vector e'.

Definición 1.2. Si $\{e_1,\ldots,e_n\}$ es una base de E, se llama matriz asociada a T_2 en esa base a la matriz cuadrada $G = (g_{ij})$ de orden n y coeficientes $g_{ij} = T_2(e_i, e_j), 1 \le i, j \le n$. Respecto de esta base, la expresión en coordenadas del producto escalar es:

$$T_2(e,e') = T_2(\sum_{i=1}^n x_i e_i, \sum_{j=1}^n x_j' e_j) = \sum_{i=1}^n \sum_{j=1}^n x_i x_j' T_2(e_i, e_j) = \sum_{i=1}^n \sum_{j=1}^n x_i x_j' g_{ij} = (x_1, \dots, x_n) G\begin{pmatrix} x_1' \\ \vdots \\ x_n' \end{pmatrix}$$

Definición 1.3. Una métrica T_2 es **simétrica** si $T_2(e,e') = T_2(e',e)$ para cualesquiera $e,e'\in E$. Una métrica T_2 es **hemisimétrica** si $T_2(e,e')=-T_2(e',e')$ para cualesquiera $e,e'\in E.$ Una métrica es simétrica (respectivamente hemisimétrica) si y solo si su matriz asociada es simétrica: $G = G^t$ (resp. hemisimétrica: $G = -G^t$).

1.2. Cambios de base para métricas.

Sea G la matriz de T_2 respecto de la base $\{e_1, \ldots, e_n\}$ de E y \overline{G} la matriz de T_2 en la base $\{\bar{e}_1, \ldots, \bar{e}_n\}$. Si B es la matriz de cambio de base (de $\{\bar{e}_1, \ldots, \bar{e}_n\}$ a $\{e_1, \ldots, e_n\}$) se verifica: $\overline{G} = B^t G B$. En efecto,

$$\overline{g_{ij}} = T_2(\bar{e}_i, \bar{e}_j) = T_2\left(\sum_{k=1}^n b_{ki}e_k, \sum_{s=1}^n b_{sj}e_s\right) = \sum_{k=1}^n b_{ki}\sum_{s=1}^n b_{sj}g_{ks} = (B^tGB)_{ij}$$

Definición 1.4. Los vectores $e, e' \in E$ son **ortogonales** respecto de T_2 si $T_2(e, e') = 0$.

Definición 1.5. Un vector e se dice que es **isótropo** respecto de T_2 si es ortogonal respecto de sí mismo, es decir, si $T_2(e, e) = 0$.

Ejemplo 1.6. Veamos que la aplicación sobre el \mathbb{R} -espacio vectorial de los números complejos \mathbb{C} definida por

$$T_2 \colon \mathbb{C} \times \mathbb{C} \to \mathbb{R}$$

 $(z, z') \mapsto Re(z \cdot z') = \text{parte real de } z \cdot z'$

define una métrica simétrica. En efecto, para cualesquiera $z, z', z'' \in \mathbb{C}$ y $\lambda, \mu \in \mathbb{R}$ se verifica $T_2(\lambda z + \mu z'', z') = Re(\lambda z \cdot z' + \mu z'' \cdot z') = \lambda Re(z \cdot z') + \mu Re(z'' \cdot z') = \lambda T_2(z, z') + \mu T_2(z'', z')$ Además, se verifica la simetría,

$$T_2(z, z') = Re(z \cdot z') = Re(z' \cdot z) = T_2(z', z)$$

y a partir de ésta y la linealidad en la primera componente se deduce la linealidad en la segunda.

Su matriz asociada en la base $\{1,i\}$ de \mathbb{C} como \mathbb{R} -espacio vectorial es

$$G = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 : $T_2(1,1) = 1$, $T_2(1,i) = T_2(i,1) = 0$, $T_2(i,i) = -1$.

Obsérvese que el vector 1+i es isótropo, pues $T_2(1+i,1+i)=Re(2i)=0$.

Ejemplo 1.7. La aplicación

$$T_2 \colon \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$$

 $((x, y), (x', y')) \mapsto xy' + yx'$

define una métrica simétrica sobre \mathbb{R}^2 cuya matriz asociada es

$$G = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

pues $T_2((1,0),(1,0)) = 0$, $T_2((1,0),(0,1)) = 1 = T_2((0,1),(1,0))$, $T_2((0,1),(0,1)) = 0$. Obsérvese que los vectores de la base (1,0) y (0,1) son isótropos.

1.3. Radical, polaridad y subespacio ortogonal.

Definición 1.8. El **radical** de T_2 , Rad T_2 , es el conjunto de los vectores de E que son ortogonales a todos los demás:

$$\operatorname{Rad} T_2 = \{ e \in E \mid T_2(e, e') = 0 \text{ para todo } e' \in E \}$$

Obsérvese que los vectores del radical son todos isótropos.

Definición 1.9. Una métrica T_2 es irreducible o no singular si Rad $T_2 = \{0\}$.

Definición 1.10. La polaridad asociada a la métrica T_2 es la aplicación lineal

$$\phi_{T_2} \colon E \to E^*$$
 $e \mapsto \phi_{T_2}(e)$

 $(\phi_{T_2}(e))(e') := T_2(e, e')$ para cualesquiera $e, e' \in E$.

La matriz asociada a la polaridad, respecto de una base $\{e_1, \ldots, e_n\}$ de E y su base dual $\{\omega_1, \ldots, \omega_n\}$ en E^* , coincide con la **traspuesta de la matriz de** T_2 , G^t . En efecto, sus columnas son las coordenadas de $\phi_{T_2}(e_j)$ en la base $\{\omega_1, \ldots, \omega_n\}$ y por lo tanto, el coeficiente (i, j) de la matriz es $\phi_{T_2}(e_j)(e_i) = T_2(e_j, e_i) = g_{ji}$.

Proposición 1.11. El radical de una métrica T_2 es el núcleo de su polaridad.

Demostración.

$$\ker \phi_{T_2} = \{ e \in E \mid \phi_{T_2}(e) = 0 \} =$$

$$= \{ e \in E \mid \phi_{T_2}(e)(e') = 0 \text{ para todo } e' \in E \} =$$

$$= \{ e \in E \mid T_2(e, e') = 0 \text{ para todo } e' \in E \} = \operatorname{Rad} T_2$$

Definición 1.12. Sea V un subespacio vectorial de E y T_2 una métrica sobre E. Se define su **subespacio ortogonal** como:

$$V^{\perp} = \{ e \in E \mid T_2(e, v) = 0 \text{ para cualquier } v \in V \}.$$

 V^{\perp} es un subespacio de E, pues es cerrado por combinaciones lineales: para todos $e, e' \in V^{\perp}$ y todos $\lambda, \mu \in k$ se tiene que $T_2(\lambda e + \mu e', v) = \lambda T_2(e, v) + \mu T_2(e', v) = 0$ para cada $v \in V$, luego $\lambda e + \mu e' \in V^{\perp}$.

Proposición 1.13 (Caracterización del subespacio ortogonal). El subespacio ortogonal, V^{\perp} , coincide con la antiimagen por la polaridad del subespacio incidente, V^0 :

$$V^{\perp} = \phi_{T_2}^{-1}(V^0)$$

Demostración.

$$\phi_{T_2}^{-1}(V^0) = \{ e \in E \mid \phi_{T_2}(e) \in V^0 \} = \{ e \in E \mid \phi_{T_2}(e)(v) = T_2(e, v) = 0, \forall v \in V \} = V^{\perp}$$

Proposición 1.14. Sea E un k-espacio vectorial de dimensión finita y T_2 una métrica irreducible. Entonces su polaridad es un isomorfismo y

$$\dim_k V^{\perp} = \dim_k E - \dim_k V.$$

Demostración. En efecto, como T_2 es irreducible por definición su radical es cero, luego la polaridad $\phi_{T_2} : E \to E^*$ es inyectiva ya que su núcleo es cero, $\ker \phi_{T_2} = \operatorname{Rad} T_2 = \{0\}$. Como $\dim_k E = \dim_k E^*$ la polaridad es también epiyectiva y por lo tanto $\phi_{T_2} : E \simeq E^*$ es un isomorfismo.

Se tiene entonces que:

$$\dim_k V^{\perp} = \dim_k V^{\circ} = \dim_k E - \dim_k V$$

Observación 1.15. T_2 es irreducible si y sólo si su matriz asociada G es no singular, es decir, si det $G \neq 0$.

Ejemplo 1.16. Sea $E = \langle e_1, e_2 \rangle$ un \mathbb{R} -espacio vectorial de dimensión 2. Calculemos $\langle e_1 \rangle^{\perp}$ y $\langle e_2 \rangle^{\perp}$ para las métricas sobre E cuyas matrices en esta base son

$$a) G = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}; \quad b) G = \begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix}; \quad c) G = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$

En los tres casos la polaridad es un isomorfismo pues det $G \neq 0$, luego $\dim_k \langle e_1 \rangle^{\perp} = 1$ y $\dim_k \langle e_2 \rangle^{\perp} = 1$.

a)
$$\langle e_1 \rangle^{\perp} = \langle e_1 \rangle$$
 pues $T_2(e_1, e_1) = 0$ y $\langle e_2 \rangle^{\perp} = \langle e_2 \rangle$ ya que $T_2(e_2, e_2) = 0$.
b) $\langle e_1 \rangle^{\perp} = \langle e_1 \rangle$ pues $T_2(e_1, e_1) = 0$ y $\langle e_2 \rangle^{\perp} = \langle e_2 - 2e_1 \rangle$ ya que $T_2(e_2, e_2 - 2e_1) = T_2(e_2, e_2) - 2T_2(e_2, e_1) = 2 - 2 = 0$.

c)
$$\langle e_1 \rangle^{\perp} = \langle e_1 + 2e_2 \rangle$$
 ya que $T_2(e_1, e_1 + 2e_2) = T_2(e_1, e_1) + 2T_2(e_1, e_2) = 2 - 2 = 0$ y $\langle e_2 \rangle^{\perp} = \langle e_2 + 2e_1 \rangle$ pues $T_2(e_2, e_2 + 2e_1) = T_2(e_2, e_2) + 2T_2(e_2, e_1) = 2 - 2 = 0$.

Ejemplo 1.17. En
$$\mathbb{R}^3$$
 se considera la métrica de matriz $G = \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 2 \\ 0 & 2 & 0 \end{pmatrix}$

- 1.- Comprobar que es un métrica simétrica e irreducible.
- 2.- Calcular $T_2(e, e')$ siendo $e = 2e_1 e_3$ y $e' = 3e_1 4e_3$.
- 3.- Calcular el subespacio ortogonal a $\langle e_3 \rangle$. ¿Son suplementarios $\langle e_3 \rangle$ y $\langle e_3 \rangle^{\perp}$?
- 4.- Calcular el subespacio ortogonal al plano π de ecuación x+y-z=0. ¿Son suplementarios π y π^{\perp} ?

Solución.

- 1.- Es simétrica pues $G = G^t$ y es irreducible porque det $G \neq 0$.

$$T_2(e, e') = \begin{pmatrix} 2 & 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 2 \\ 0 & 2 & 0 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix} = 6$$

- 3.- $\dim \langle e_3 \rangle^{\perp} = 2$ y como $T_2(e_3, e_1) = 0$ y $T_2(e_3, e_3) = 0$ se sigue que $\langle e_3 \rangle^{\perp} = \langle e_1, e_3 \rangle$. Los subespacios $\langle e_3 \rangle$ y $\langle e_3 \rangle^{\perp}$ no son suplementarios, de hecho $\langle e_3 \rangle \subset \langle e_3 \rangle^{\perp}$. 4.- El subespacio incidente con el plano π es $\pi^0 = \langle \omega = (1, 1, -1) \rangle$, luego $\pi^{\perp} = \phi_{T_2}^{-1}(\langle \omega \rangle)$
- y como ϕ_{T_2} es un isomorfismo, pues T_2 es irreducible, se tiene que π^{\perp} es la recta $\langle G^{-1}\omega = (\frac{3}{2}, -\frac{1}{2}, -\frac{1}{2})\rangle$, $\pi^{\perp} = \langle (3, -1, -1)\rangle$. El plano π y la recta π^{\perp} son suplementarios, pues el vector (3, -1, -1) no está en

el plano.

2. GEOMETRÍA EUCLÍDEA.

Métricas euclideas.

Sea E un \mathbb{R} -espacio vectorial.

Definición 2.1. Una métrica T_2 sobre E es definido positiva si:

- $T_2(e,e) \ge 0$ para todo $e \in E$.
- $T_2(e,e) = 0$ si y solo si e = 0.

Definición 2.2. Una métrica T_2 sobre E es **euclídea** si es simétrica y definido positiva.

Si T_2 es euclídea representaremos el producto escalar $T_2(e,e')$ por $e\cdot e'$. En la práctica utilizaremos, sin demostrar, que una métrica T_2 es euclídea si y solo si los menores diagonales de su matriz, respecto de cualquier base, son estrictamente positivos.

Nótese que todo subespacio V de un espacio euclídeo (E, T_2) es a su vez un espacio euclídeo $(V, T_{2|V})$ con la restricción de la métrica de E.

Ejemplo 2.3. Sea $E = \langle 1, x, x^2 \rangle$ el \mathbb{R} -espacio vectorial de los polinomios de grado menor o igual a dos. Comprobemos que el producto

$$p(x) \cdot q(x) = \int_0^1 p(x)q(x)dx$$
, para cada $p(x), q(x) \in E$

define un producto escalar euclídeo.

Puede comprobarse fácilmente que el producto definido es una métrica, y que además es simétrica.

Los productos escalares de los polinomios de la base de E son

$$1 \cdot 1 = 1; \ 1 \cdot x = \frac{1}{2} = x \cdot 1; \ 1 \cdot x^2 = x^2 \cdot 1 = \frac{1}{3}; \ x \cdot x = \frac{1}{3}; \ x \cdot x^2 = x^2 \cdot x = \frac{1}{4}; \ x^2 \cdot x^2 = \frac{1}{5}; \ x \cdot x = \frac{1}{5}; \$$

y la matriz $G=\begin{pmatrix}1&\frac{1}{2}&\frac{1}{3}\\\frac{1}{2}&\frac{1}{3}&\frac{1}{4}\\\frac{1}{3}&\frac{1}{4}&\frac{1}{5}\end{pmatrix}$ de la métrica en esa base tiene todos sus menores diagonales positivos:

$$1 > 0; \begin{vmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{3} \end{vmatrix} = \frac{1}{12} > 0; |G| = \frac{1}{2160} > 0$$

Proposición 2.4. El radical de una métrica euclídea es cero. En consecuencia, la polaridad asociada a la métrica euclídea T_2 es un isomorfismo.

Demostración. Si $e \in \operatorname{Rad} T_2$ se verifica que $T_2(e, e') = e \cdot e' = 0$ para todo $e' \in E$. En particular, $e \cdot e = 0$ y por tanto e = 0 pues T_2 es definido positiva. Luego $\ker \phi_{T_2} = \operatorname{Rad} T_2 = \{0\}$, es decir ϕ_{T_2} es inyectiva, y como dim $E = \dim E^*$ también es epiyectiva.

Teorema 2.5. Sea E un \mathbb{R} -espacio vectorial, V un subespacio de E y T_2 una métrica euclídea sobre E. El subespacio V y su ortogonal V^{\perp} respecto de T_2 son suplementarios:

$$E = V \oplus V^{\perp}$$
.

Demostración.

Como la polaridad es un isomorfismo por la proposición anterior, tenemos que

$$\dim_k V^{\perp} = \dim_k V^{\circ} = \dim_k E - \dim_k V$$

y por tanto $\dim V^{\perp} + \dim V = \dim E$.

■ Veamos que $V \cap V^{\perp} = \{0\}$. En efecto, si $e \in V \cap V^{\perp}$ como $e \in V$ y $e \in V^{\perp}$ entonces $e \cdot e = 0$, de donde e = 0 ya que T_2 es definido positiva.

2.2. Módulo de un vector. Ángulo definido por dos vectores.

Definición 2.6. Se llama módulo o longitud del vector $e \in E$ respecto de la métrica euclídea T_2 al número real positivo $|e| = \sqrt{T_2(e, e)} = \sqrt{e \cdot e}$.

Proposición 2.7. El módulo de un vector tiene las siguientes propiedades:

- (a) $|e| \ge 0$ para todo $e \in E$ y |e| = 0 si y sólo si e = 0.
- (b) $|\lambda e| = |\lambda| |e|$ cualesquiera que sean $\lambda \in \mathbb{R}$ y $e \in E$.
- (c) Designaldad de Minkowski: $|e \cdot e'| \le |e||e'|$.
- (d) Designaldad de Schwartz: $|e + e'| \le |e| + |e'|$.
- (e) Teorema de Pitágoras: $|e + e'|^2 = |e|^2 + |e'|^2$ si y sólo si $e \cdot e' = 0$.

Demostración. (a) Se deduce de que T_2 es definido positiva.

- (b) $|\lambda e| = \sqrt{T_2(\lambda e, \lambda e)} = \sqrt{\lambda^2 T_2(e, e)} = |\lambda| \sqrt{T_2(e, e)} = |\lambda| |e|$.
- (c) Para cada $\lambda \in \mathbb{R}$ y $e, e' \in E$ se tiene que $(e + \lambda e') \cdot (e + \lambda e') = |e|^2 + \lambda^2 |e'|^2 + 2\lambda e \cdot e' \geq 0$, luego el discriminante de la ecuación de segundo grado en λ , $|e'|^2 \lambda^2 + 2e \cdot e' \lambda + |e|^2 = 0$ debe ser negativo o nulo, esto es, $4(e \cdot e')^2 4|e|^2|e'|^2 \leq 0$, de lo que se deduce que $(e \cdot e')^2 \leq |e|^2|e'|^2$ y por tanto $|e \cdot e'| \leq |e||e'|$.
- (d) Utilizando (c) resulta

$$|e + e'|^2 = |e|^2 + |e'|^2 + 2e \cdot e' \le |e|^2 + |e'|^2 + 2|e \cdot e'| \le$$

$$|e|^2 + |e'|^2 + 2|e||e'| = (|e| + |e'|)^2$$
,

luego
$$|e + e'| \le |e| + |e'|$$
.
(e) $|e + e'|^2 = |e|^2 + |e'|^2 + 2e \cdot e' = |e|^2 + |e'|^2 \Leftrightarrow e \cdot e' = 0$.

Definición 2.8. Un vector $u \in E$ es **unitario** respecto de la métrica euclídea si tiene módulo 1 o, lo que es equivalente, si $u \cdot u = 1$.

Normalizar un vector es convertirlo en otro de módulo 1. Dado un vector no nulo $e \in E$ se pueden construir dos vectores unitarios: $u = \frac{e}{|e|}$ y $-u = -\frac{e}{|e|}$.

De la desigualdad de Minkowsky se sigue que $-1 \le \frac{e \cdot e'}{|e||e'|} \le 1$ y las igualdades se dan si e y e' son vectores proporcionales con diferente o igual sentido respectivamente. Por tanto, tiene sentido definir

$$\cos(e, e') = \frac{e \cdot e'}{|e||e'|}$$

2.3. Bases ortogonales y ortonormales. Ortonormalización de Gramm-Schmidt.

Sea (E, T_2) un espacio euclídeo, esto es, un \mathbb{R} -espacio vectorial E con una métrica euclídea T_2 .

Definición 2.9. Una base $\{e_1, \ldots, e_n\}$ de E es ortogonal si sus vectores son ortogonales dos a dos, esto es, si $e_i \cdot e_j = 0$ para $i \neq j$.

Una base $\{e_1, \ldots, e_n\}$ de E es **ortonormal** si es ortogonal y de vectores unitarios.

Dada una base ortogonal se puede construir una base ortonormal normalizando sus vectores, es decir, dividiéndolos por su módulo.

Proposición 2.10 (Existencia de bases ortonormales). En todo espacio euclídeo (E, T_2) existen bases ortogonales.

Demostración. Lo haremos por inducción sobre la dimensión n del espacio euclídeo E. Si n=1 no hay nada que demostrar.

Para n > 1 supongámoslo cierto para n - 1. Sea e un vector no nulo de E y consideremos el subespacio $\langle e \rangle \subset E$ que genera. Por el Teorema 2.5 se tiene que $E = \langle e \rangle \oplus \langle e \rangle^{\perp}$ y, como $\langle e \rangle^{\perp}$ es un espacio euclídeo (con la métrica restricción) de dimensión n - 1, por hipótesis de inducción $\langle e \rangle^{\perp}$ posee una base ortonormal $\{e_1, \ldots, e_{n-1}\}$. Entonces $\{\frac{e}{|e|}, e_1, \ldots, e_{n-1}\}$ es una base ortonormal de E.

Corolario 2.11. En todo espacio euclídeo (E, T_2) existen bases respecto de las cuales la matriz de T_2 es la identidad.

Ejemplo 2.12. En el espacio euclídeo \mathbb{R}^3 se considera la base $\{e_1, e_2, e_3\}$ dada por las condiciones

$$|e_1| = |e_2| = 2, |e_3| = 1, \angle(e_1, e_2) = \angle(e_2, e_3) = 60, \angle(e_1, e_3) = 90$$

- (a) Calcula la matriz de la métrica euclídea en esa base.
- (b) Calcula una base ortogonal y la matriz de la métrica euclídea respecto de ella.
- (c) Calcula una base ortonormal y la matriz de la métrica euclídea respecto de ella.
- (d) Calcula el plano que pasa por el origen y es perpendicular a la recta $\langle e_1 + e_2 e_3 \rangle$.

Solución

(a) Los productos escalares de los vectores de la base son

$$e_1 \cdot e_1 = |e_1|^2 = 4, \ e_2 \cdot e_2 = |e_2|^2 = 4, \ e_3 \cdot e_3 = |e_3|^2 = 1$$

 $e_1 \cdot e_2 = |e_1||e_2|\cos(e_1, e_2) = 2, \ e_1 \cdot e_3 = 0, e_2 \cdot e_3 = |e_2||e_3|\cos(e_1, e_2) = 1$

y la matriz
$$G = \begin{pmatrix} 4 & 2 & 0 \\ 2 & 4 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$
.

(b) Como los vectores e_1 y e_3 son ortogonales, basta calcular un vector v que genere el subespacio ortogonal al plano $\langle e_1, e_3 \rangle$.

La ecuación del plano $\langle e_1, e_3 \rangle$ es y = 0, luego su subespacio incidente está generado por la forma lineal de coordenadas (0, 1, 0) y por tanto su ortogonal, $\langle e_1, e_3 \rangle^{\perp}$ es la

recta
$$\langle G^{-1} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -1/4 \\ 1/2 \\ -1/2 \end{pmatrix} \rangle.$$

Así podemos tomar como generador de esta recta el vector v = (1, -2, 2) y los vectores $\{e_1, e_3, v\}$ forman una base ortogonal, en la que la matriz de la métrica euclídea

es
$$\begin{pmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 8 \end{pmatrix}$$
, pues $e_1 \cdot e_1 = 4$, $e_3 \cdot e_3 = 1$, $v \cdot v = \begin{pmatrix} 1 & -2 & 2 \end{pmatrix} G \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} = 8$.

(c) Normalizando los vectores de la base ortogonal obtenemos una base ortonormal

$$\left\{\frac{e_1}{|e_1|}, \frac{e_3}{|e_3|}, \frac{v}{|v|}\right\} = \left\{\frac{1}{2}e_1, e_3, \frac{1}{\sqrt{8}}v\right\}.$$

Respecto de esta base la matriz de la métrica euclídea es la identidad.

(d) El plano π que pasa por el origen y es perpendicular a la recta $\langle e_1 + e_2 - e_3 \rangle$ es $\langle e_1 + e_2 - e_3 \rangle^{\perp}$. Para cada $e = (x, y, z) \in \pi$ se tiene que verificar

$$0 = \begin{pmatrix} x & y & z \end{pmatrix} G \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} x & y & z \end{pmatrix} \begin{pmatrix} 6 \\ 5 \\ 0 \end{pmatrix}$$

es decir, la ecuación de π es 6x + 5y = 0.

Definición 2.13. Sean $u, e \in E$, la **proyección ortogonal** e' de e sobre u se define por las condiciones

$$\left. \begin{array}{l} e' = \lambda u \\ (e - e') \cdot u = 0 \end{array} \right\} \Rightarrow \left. \begin{array}{l} e' \cdot u = \lambda u \cdot u \\ e \cdot u = e' \cdot u \end{array} \right\} \Rightarrow \lambda = \frac{e \cdot u}{u \cdot u}$$

de las que se deduce que $e' = \frac{e \cdot u}{u \cdot u} u$.

Ortonormalización de Gramm-Schmidt.

Se puede ortonormalizar una base $\{e_1, \ldots, e_n\}$ del espacio euclídeo (E, T_2) . Para ello construiremos primero una base ortogonal $\{u_1, \ldots, u_n\}$:

- $u_1 = e_1$
- u_2 es e_2 menos la proyección ortogonal de e_2 sobre u_1 :

$$u_2 = e_2 - \frac{e_2 \cdot u_1}{u_1 \cdot u_1} u_1$$

■ Se construye u_3 restando de e_3 sus proyecciones ortogonales sobre los vectores anteriores, u_1 y u_2 :

$$u_3 = e_3 - \frac{e_3 \cdot u_1}{u_1 \cdot u_1} u_1 - \frac{e_3 \cdot u_2}{u_2 \cdot u_2} u_2$$

• Procediendo de esta manera se obtiene:

$$u_n = e_n - \frac{e_n \cdot u_1}{u_1 \cdot u_1} u_1 - \dots - \frac{e_n \cdot u_{n-1}}{u_{n-1} \cdot u_{n-1}} u_{n-1}$$

La base ortonormalizada es $\{\frac{u_1}{|u_1|}, \dots, \frac{u_n}{|u_n|}\}.$

2.4. Distancia en el espacio euclídeo. Subvariedades afines perpendiculares. Sea (E,T_2) un espacio euclídeo.

Definición 2.14. Se define la **distancia** entre dos vectores $e, e' \in E$ como el módulo del vector diferencia e - e':

$$d(e, e') = |e' - e|$$

Proposición 2.15. La distancia verifica las siguientes propiedades:

(a)
$$d(e, e') > 0$$
 y $d(e, e') = 0$ si y sólo si $e = e'$.

FIGURA 1. Ortonormalización de Gramm-Schmidt.

- (b) d(e, e') = d(e', e)
- (c) Designaldad triangular: $d(e, e'') \le d(e, e') + d(e', e'')$

Demostración. Se siguen de las propiedades del módulo (Proposición 2.7). Si $e \equiv (x_1, \ldots, x_n)$ y $e' \equiv (x'_1, \ldots, x'_n)$ son las coordenadas de e y e' en una base de E y G es la matriz de T_2 es dicha base, se tiene que:

$$d(e, e') = \sqrt{(x'_1 - x_1, \dots, x'_n - x_n)G \begin{pmatrix} x'_1 - x_1 \\ \vdots \\ x'_n - x_n \end{pmatrix}}.$$

Cuando la base tomada sea ortonormal, es decir, cuando respecto de esta base G = Id, se tiene:

$$d(e, e') = \sqrt{(x'_1 - x_1)^2 + \dots + (x'_n - x_n)^2}$$

Ejemplo 2.16. Calculemos la matriz del producto escalar euclídeo de \mathbb{R}^3 en la base dada por las condiciones

$$|e_1| = 2, |e_2| = |e_3| = 1, d(e_1, e_2) = 2 = d(e_1, e_3), d(e_2, e_3) = \sqrt{2}$$

Se tiene:

$$4 = d(e_1, e_2)^2 = |e_1 - e_2|^2 = |e_1|^2 + |e_2|^2 - 2e_1 \cdot e_2 \Rightarrow e_1 \cdot e_2 = 1/2$$

$$4 = d(e_1, e_3)^2 = |e_1 - e_3|^2 = |e_1|^2 + |e_3|^2 - 2e_1 \cdot e_3 \Rightarrow e_1 \cdot e_3 = 1/2$$

$$2 = d(e_2, e_3)^2 = |e_2 - e_3|^2 = |e_2|^2 + |e_3|^2 - 2e_2 \cdot e_3 \Rightarrow e_2 \cdot e_3 = 0$$

Luego la matriz es
$$G = \begin{pmatrix} 4 & 1/2 & 1/2 \\ 1/2 & 1 & 0 \\ 1/2 & 0 & 1 \end{pmatrix}$$

Definición 2.17. La distancia entre dos variedades afines H y H' es el mínimo de las distancias entre sus puntos:

$$d(H, H') := \min_{P \in H, P' \in H'} d(P, P') = \min_{P \in H, P' \in H'} |P - P'|.$$

Definición 2.18. Sea $H = e_0 + V$ una subvariedad afín de E, de vector de posición e_0 y subespacio director V. La subvariedad afín que pasa por el punto P y es perpendicular a H viene dada por

$$H_P^{\perp} = OP + V^{\perp}$$

Como (E, T_2) es euclídeo tenemos que $E = V \oplus V^{\perp}$ (Teorema 2.5), luego las subvariedades H y H_P^{\perp} se cortan en un único punto, $Q = H \cap H_P^{\perp}$, que llamaremos proyección ortogonal de P sobre H.

FIGURA 2. H^{\perp} variedad afín perpendicular a H que pasa por P donde θ_1 forma una base de V° y T^2 denota la metrica contravariada inducida por la métrica euclídea T_2 .

Observación 2.19. Si $\dim_k E = n$, $\dim_k V = m$ y $\{\theta_1, \dots, \theta_{n-m}\}$ es una base del incidente V° al subespacio director V de H, un vector e vive en H si y solo si

$$\theta_1(e - e_0) = 0, \dots, \theta_{n-m}(e - e_0) = 0,$$

que son las ecuaciones implícitas de H. Fijada la base $\{e_1, \ldots, e_n\}$ y su base dual $\{w_1, \ldots, w_n\}$, si $e \equiv (x_1, \ldots, x_n)$ son las coordenadas de e en la base de E y $\theta_i \equiv (a_{i,1}, \ldots, a_{i,n})$ las de θ_i en la base dual, las ecuaciones implícitas se escriben:

$$\begin{cases} a_{1,1}x_1 + \dots + a_{1,n}x_n = d_1 \\ \vdots \\ a_{n-m,1}x_1 + \dots + a_{n-m,n}x_n = d_{n-m} \end{cases}$$

donde $d_i = \theta_i(e_0)$. Dado que $V^{\perp} = \phi_{T_2}^{-1}(V^{\circ})$ y que la polaridad es un isomorfismo (G es invertible), se tiene entonces que $\{\phi_{T_2}^{-1}(\theta_1), \ldots, \phi_{T_2}^{-1}(\theta_{n-m})\}$ son una base de V^{\perp} y las coordenadas $(c_{i,1}, \ldots, c_{i,n})$ de cada $\phi_{T_2}^{-1}(\theta_i)$ en la base fijada de E se calculan entonces por la fórmula:

$$\begin{pmatrix} c_{i,1} \\ \vdots \\ c_{i,n} \end{pmatrix} = G^{-1} \begin{pmatrix} a_{i,1} \\ \vdots \\ a_{i,n} \end{pmatrix}.$$

Proposición 2.20. La distancia de un punto P a una subvariedad afín H es

$$d(P, H) = d(P, Q)$$
,

siendo Q la proyección ortogonal de P sobre H.

Demostración. Como $Q \in H$ podemos escribir H = Q + V, luego:

$$d(P, H) := \min_{P' \in H} d(P, P') = \min_{v \in V} d(P, Q + v).$$

Ahora bien, como $Q - P \in V^{\perp}$ para todo $v \in V$ se tiene que:

$$d(P, Q + v) = \sqrt{(Q + v - P) \cdot (Q + v - P)} = \sqrt{(Q - P)^2 + v^2} \ge \sqrt{(Q - P)^2} = d(P, Q),$$

de lo que se concluye que la menor de las distancias se obtiene en Q.

Distancia de un punto a un hiperplano.

Usando lo anterior vamos a dar una fórmula para calcular la distancia de un punto a un hiperplano. Para hacerlo, es útil definir antes la métrica contravariada.

Toda métrica euclídea $T_2: E \times E \to k$ induce una métrica en el dual $T^2: E^* \times E^* \to k$, que llamaremos métrica contravariada, definida por

$$T^2(w,w') := T_2(\phi_{T_2}^{-1}(w),\phi_{T_2}^{-1}(w'))$$
.

 T^2 está bien definida pues al ser T_2 euclídea por la Proposición 2.4 su polaridad ϕ_{T_2} es un isomorfismo (es decir, existe $\phi_{T_2}^{-1}$), y es bilineal por ser $\phi_{T_2}^{-1}$ lineal y T_2 bilineal. Por reflexividad la polaridad de T^2 , ϕ_{T^2} : $E^* \to E^{**} \simeq E$, es $\phi_{T^2} = \phi_{T_2}^{-1}$ y su matriz asociada en la base fijada es G^{-1} .

Además, si e y e' son los únicos vectores de E tales que $w = \phi_{T_2}(e)$ y $w' = \phi_{T_2}(e')$, podemos escribir:

$$e \cdot e' = T_2(e, e') = \phi_{T_2}(e)(e') = w(e') = e'(w) = \phi_{T_2}(w')(w) = T^2(w', w) = w' \cdot w$$

Sea $H = e_0 + V$ un hiperplano y sea $P \in E$ un punto que no está en H. Calculemos la distancia de P a H. Como $\dim_k V = n - 1$ entonces $\dim_k V^{\circ} = 1$, sea entonces $\{\theta_1\}$ una base de V° . Se tiene que una base de V^{\perp} es $\{\phi_{T_2}^{-1}(\theta_1)\} = \{\phi_{T_2}(\theta_1)\}$ y denotemos \bar{e} al único vector de E tal que $\theta_1 = \phi_{T_2}(\bar{e})$.

Tenemos que $Q - P \in V^{\perp} = \langle \bar{e} \rangle$ y por tanto $Q = P + \lambda \bar{e}$ para cierto $\lambda \in k$, que podemos determinar usando el hecho de que al ser $Q - e_0 \in V$, entonces:

$$0 = \theta_1(Q - e_0) = \theta_1(P + \lambda \bar{e} - e_0) = \theta_1(P - e_0) + \lambda \theta_1(\bar{e}) = \theta_1(P - e_0) + \lambda \phi_{T_2}(\bar{e})(\bar{e}) =$$

$$= \theta_1(P - e_0) + \lambda T_2(\bar{e}, \bar{e}) = \theta_1(P - e_0) + \lambda T^2(\theta_1, \theta_1) = \theta_1(P - e_0) + \lambda \theta_1 \cdot \theta_1,$$

luego $\lambda = -\frac{\theta_1(P-e_0)}{\theta_1 \cdot \theta_1}$ En consecuencia:

$$\begin{split} d(P,H) &= d(P,Q) = d(P,P - \frac{\theta_1(P - e_0)}{\theta_1 \cdot \theta_1} \cdot \bar{e}) = \sqrt{\left(-\frac{\theta_1(P - e_0)}{\theta_1 \cdot \theta_1} \cdot \bar{e}\right)^2} \\ &= \sqrt{\left(\frac{\theta_1(P - e_0)}{\theta_1 \cdot \theta_1}\right)^2 \bar{e} \cdot \bar{e}} = \sqrt{\left(\frac{\theta_1(P - e_0)}{\theta_1 \cdot \theta_1}\right)^2 \theta_1 \cdot \theta_1} = \frac{|\theta_1(P - e_0)|}{\sqrt{\theta_1 \cdot \theta_1}} \end{split}$$

Sea $\{e_1, \ldots, e_n\}$ una base de E y $\{w_1, \ldots, w_n\}$ su base dual. Tomando coordenadas respecto de estas bases sea $P \equiv (\alpha_1, \ldots, \alpha_n) \in E_{\{e_i\}}$ y $\theta_1 \equiv (a_1, \ldots, a_n) \in E_{\{w_i\}}^*$. La ecuación del hiperplano H es:

$$a_1x_1 + \cdots + a_nx_n = d$$

con $\theta_1(e_0) = d$ y $w(P - e_0) = a_1\alpha_1 + \dots + a_n\alpha_n - d$. Entonces:

$$d(P,H) = \frac{|a_1\alpha_1 + \dots + a_n\alpha_n - d|}{\sqrt{(a_1,\dots,a_n)G^{-1} \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}}}$$

Ejemplo 2.21. Respecto de la métrica con matriz asociada $G = \begin{pmatrix} 4 & 1/2 & 1/2 \\ 1/2 & 1 & 0 \\ 1/2 & 0 & 1 \end{pmatrix}$ calcular la distancia del punto $P = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$ a la rocta r = r + 1 = r = r

la distancia del punto P = (1, 1, 1) a la recta $r \equiv x + 1 = -y = z$.

■ La subvariedad afín que pasa por P y es ortogonal a la recta r es el plano $\pi = OP + \langle \omega \rangle^0$, donde $\omega = Ge$, siendo e = (1, -1, 1) un vector director de r.

$$Ge = \begin{pmatrix} 4 & 1/2 & 1/2 \\ 1/2 & 1 & 0 \\ 1/2 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ -1/2 \\ 3/2 \end{pmatrix}$$

 $\pi \equiv 8x - y + 6z = 10.$

• Calculamos $Q = r \cap \pi$.

$$\left. \begin{array}{l} Q \in r \Rightarrow Q = (-1+\lambda, -\lambda, \lambda) \\ Q \in \pi \Rightarrow 8(-1+\lambda) + \lambda + 3\lambda = 10 \Rightarrow \lambda = \frac{3}{2} \end{array} \right\} = Q = (\frac{1}{2}, -\frac{3}{2}, \frac{3}{2})$$

• $d(P,r) = d(P,Q) = |PQ| = |(-1/2, -5/2, 1/2)| = \frac{\sqrt{134}}{4}$

$$|PQ|^2 = |(-1/2, -5/2, 1/2)|^2 = (-1/2 -5/2 1/2) G \begin{pmatrix} -1/2 \\ -5/2 \\ 1/2 \end{pmatrix} = \frac{67}{8}$$

- 3. Problemas propuestos.
- **3.1.** Dado un k-espacio vectorial E de dimensión 3, demuestra que la aplicación:

$$E \times E \to k$$
$$((x, y, z), (x', y', z')) \mapsto xx' + yy' + 3zz' - 2xz' - 2zx'$$

define una métrica simétrica.

3.2. Dar las ecuaciones de las métricas definidas por las matrices:

$$T_2 = \begin{pmatrix} 0 & 1 & 1 \\ -2 & 0 & 1 \\ -1 & -1 & 0 \end{pmatrix} \qquad T_2 = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 0 & 1 \\ 3 & 1 & 5 \end{pmatrix} ,$$

Calcula su radical y decide si son o no irreducibles.

- **3.3.** Sea $\{e_1, e_2\}$ una base del k-espacio vectorial E y T_2 la métrica cuya matriz asociada en dicha base es $\begin{pmatrix} 1 & 2 \\ 3 & -1 \end{pmatrix}$. Calcular la matriz de T_2 en la base $e'_1 = 3e_1 + 2e_2$, $e'_2 = e_1 + e_2$.
- **3.4.** En un k-espacio vectorial E de dimensión 3, se considera la métrica T_2 cuya matriz asociada en la base dada es $T_2 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 0 & 0 \end{pmatrix}$. Calcular la restricción de T_2 al subespacio generado por los vectores $e_1' = e_1 e_2 + e_3$, $e_2' = 2e_1 + e_2 2e_3$.
- **3.5.** Sobre el \mathbb{R} -espacio vectorial E de dimensión 4, con base $\{e_1, e_2, e_3, e_4\}$, se considera la métrica de matriz:

$$\begin{pmatrix}
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 3 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

- (a) Calcular el radical de T_2 .
- (b) Calcular la expresión de T_2 en la base $\{e_1 e_3, e_2 e_4, e_1 + e_2 + e_3, e_2 e_3 e_4\}$.

3.6. Sea E un \mathbb{R} -espacio vectorial de dimensión 3, se considera una métrica euclídea en E cuya matriz asociada en la base $\{e_1, e_2, e_3\}$ es:

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 3
\end{pmatrix}$$

- (a) Calcula la restricción de esta métrica al subespacio \bar{E} de E generado por los vectores $\{\bar{e}_1 = e_1 + e_2, \bar{e}_2 = e_3\}.$
- (b) Calcula una base ortonormal de \bar{E} .
- **3.7.** En el espacio euclídeo \mathbb{R}^3 calcula la matriz de la métrica euclídea en la base $\{e_1, e_2, e_3\}$ definida por:

$$|e_1| = 1$$
, $|e_2| = 2$, $|e_3| = \sqrt{2}$, $\angle(e_1, e_2) = 45^\circ$, $\angle(e_1, e_3) = 45^\circ$, $\angle(e_2, e_3) = 45^\circ$

- (a) Calcula una base ortogonal y la matriz de la métrica en dicha base.
- (b) Calcula una base ortonormal y la matriz de la métrica en dicha base.
- **3.8.** En el espacio euclídeo \mathbb{R}^3 con la métrica habitual calcula los ángulos que forma la recta:

$$\frac{x-1}{2} = \frac{y-2}{2} = \frac{z-3}{5}$$

con los ejes coordenados.

3.9. En el espacio euclídeo \mathbb{R}^3 calcula la matriz de la métrica euclídea en la base $\{e_1, e_2, e_3\}$ definida por:

$$|e_1| = 1$$
, $|e_2| = 2$, $|e_3| = \sqrt{2}$, $\angle(e_1, e_2) = 90^\circ$, $\angle(e_1, e_3) = 45^\circ$, $\angle(e_2, e_3) = 60^\circ$

Dados los vectores $e = 2e_1 - 3e_2$ y $e' = e_1 + e_2 - e_3$ calcula su producto escalar $e \cdot e'$ y el ángulo que determinan.

3.10. En un plano euclídeo se da una base con las condiciones siguientes:

$$|e_1| = 1, |e_2| = 2, \angle(e_1, e_2) = 60^{\circ}$$

Calcula la matriz de la métrica en esta base y el ángulo que determinan las rectas de ecuaciones 3x + 2y = 0, x - y = 0, siendo $\{x, y\}$ las coordenadas en esa base.

3.11. En el espacio euclídeo tridimensional se considera el sistema de referencia de base $\{e_1, e_2, e_3\}$ dada por las condiciones:

$$|e_1| = |e_2| = |e_3| = 1, \ \angle(e_1, e_2) = 60^{\circ}, \ \angle(e_1, e_3) = \angle(e_2, e_3) = 90^{\circ}$$

Calcula la distancia entre los puntos P y Q de coordenadas en este sistema de referencia P=(1,1,0) y Q=(-2,3,1).

- **3.12.** Hallar la ecuación de la recta que pasa por el punto (1,1,1) y corta perpendicularmente a la recta $\frac{x-1}{1} = \frac{y}{2} = \frac{z-1}{1}$.
- **3.13.** Determinar la ecuación del plano que pasa por el punto (2, -3, -4) y es perpendicular a los planos π_1 : x + 2y z = 0, π_2 : 7x 2y + z = 0.
- **3.14.** En un plano euclídeo se da una base $\{e_1, e_2\}$ con las condiciones $|e_1| = 2$, $|e_2| = \sqrt{2}$, $\angle(e_1, e_2) = 45^\circ$. Calcula la ecuación de la circunferencia de radio unidad y centro el punto $P = 2e_1 + e_2$.
- **3.15.** En el espacio \mathbb{R}^3 se considera una métrica euclídea T_2 definida en la base $\{e_1, e_2, e_3\}$ por las condiciones:

$$|e_1| = |e_2| = \sqrt{2}, |e_3| = 2, \angle(e_1, e_2) = 60^{\circ}, \angle(e_1, e_3) = \angle(e_2, e_3) = 90^{\circ}.$$

- (a) Calcula la matriz asociada a la métrica euclídea en la base $\{e_1, e_2, e_3\}$.
- (b) Calcula la distancia del punto P = (2, 1, 1) al plano de ecuación implícita x y + z = 1.