# Прогресс по модели газа

9 ноября 2023 г.

Основа всей модели – упругий удар двух молекул, для его подсчёта воспользуемся формулой:

$$v_1' = \frac{2m_2v_2 + v_1(m_1 - m_2)}{m_1 + m_2}$$
$$v_2' = \frac{2m_1v_1 + v_2(m_2 - m_1)}{m_1 + m_2}$$

Но, как вы можете заметить, предыдущая формула верна для одномерного случая, но что делать когда скорость имеет большую размерность? (3 в нашем случае) Заметим, что в столкновении участвует лишь проекция скорости на ось  $\vec{r_2}-\vec{r_1}$ , поэтому воспользуемся предыдущей формулой лишь для неё и посчитаем новую скорость:

$$v_{proj}=\left(v,\ ec{r_2}-ec{r_1}
ight)$$
 $v_{proj}'$  - получаем из формулы  $\Rightarrow$  $v'=v+v_{proj}'-v_{proj}$ 

Теперь обработаем попарно столкновение каждых молекул, а также не забудем про проверку столкновения со стеной. Проверяем независимо по каждой координате:

$$\exists i: r_i > r_i^{corner} \Rightarrow v_i' = -v_i, r_i' = r_i^{corner}$$



### Остаётся собрать метрики!

■ Давление  $P=rac{p}{(\Delta t)\cdot S}$ , где p — импульс стены, полученный за время  $\Delta t$ .

#### Остаётся собрать метрики!

- Давление  $P = \frac{p}{(\Delta t) \cdot S}$ , где p импульс стены, полученный за время  $\Delta t$ .
- Температура  $T = \frac{2}{3K}E$ , где E суммарная кинетическая энергия молекул, а K всеми известная константа.

## Остаётся собрать метрики!

- Давление  $P = \frac{p}{(\Delta t) \cdot S}$ , где p импульс стены, полученный за время  $\Delta t$ .
- Температура  $T = \frac{2}{3K}E$ , где E суммарная кинетическая энергия молекул, а K всеми известная константа.
- Длина свободного пролёта между каждой проверкой столкновений засекаем время и считаем среднее расстояние, которое пролетела молекула за время до столкновения.

■ Проводим эксперимент в коробке с размерами  $(1e^{-8}, 1e^{-8}, 1e^{-8})$ 

- Проводим эксперимент в коробке с размерами  $(1e^{-8}, 1e^{-8}, 1e^{-8})$
- Тестируем на молекулах гелия 4 а.е. с радиус молекул  $31e^{-12}$  метра

- Проводим эксперимент в коробке с размерами  $(1e^{-8}, 1e^{-8}, 1e^{-8})$
- Тестируем на молекулах гелия 4 а.е. с радиус молекул  $31e^{-12}$  метра
- Запускаем пока что 1000 молекул



- Проводим эксперимент в коробке с размерами  $(1e^{-8}, 1e^{-8}, 1e^{-8})$
- Тестируем на молекулах гелия 4 а.е. с радиус молекул  $31e^{-12}$  метра
- Запускаем пока что 1000 молекул
- Получаем давление 1.9 МПа, а температуру порядка  $\sim 13$  К.

■ Считаем столкновения за квадрат

- Считаем столкновения за квадрат
- Из-за метода подсчёта и слишком большого  $\Delta t$  молекулы могут слипаться