Problem 0: Domino Tiling

(Medium)

Accifibon has a weird chessboard. It only has two rows but has N columns. Accifibon also has a set of N dominos. A domino can be thought of like a 2×1 tile (or a 1×2 tile after rotating it). Accifibon is interested to find out the **number of ways that he can tile his chessboard** using his N dominos. He does not want to split the dominos, nor can the dominos overlap with one another.

Input Format

The only line of input contains a single integer N, representing the number of columns Accifibon has on his chessboard.

Constraints

• $1 \le N \le 10^4$

The time limit for this problem is 1 second.

Output Format

The only line of output should contain the number of ways that Accifibon can tile his chessboard. As this number is large, give your answer ${\bf modulo}\ 10^9+7$.

Sample Input 1

2

Sample Output 1

2

Explanation 1

There are 2 ways to tile a 2×2 chessboard using 2×1 dominos.

Sample Input 2

Sample Output 2

3

Explanation 2

There are 3 ways to tile a 2×3 chessboard using 2×1 dominos.

Hints

- 1. Consider the cases where N=1, N=2, N=3, N=4, N=5, N=6, and N=7. Do you see a pattern?
- 2. Accifibon is an apt name.
- 3. Bar, Gjb, Guerr, Svir, Rvtug, Guvegrra, Gjragl-bar.