Quantization + Pruning

Bach-Hoang Ngo

Motivation

Summary

Quantization

- Floating Point
- Quantization
- Quantization Aware Training
- Post Training Quantization

Naïve Quantization -> degradation in model accuracy QAT -> Simulating the quantization effects during training

Quantization

- Floating Point
- Quantization
- Quantization Aware Training
- Post Training Quantization

Post-Training Quantization

Post Training Quantization

Post-Training Quantization

Feature	PTQ (Post-Training Quantization)	QAT (Quantization-Aware Training)		
Model Size Reduction	Effective in reducing model size	Can achieve similar or slightly better size reduction compared to PTQ		
Inference Speed	Improves inference speed due to lower precision calculations	Can lead to even faster inference speed compared to PTQ		
Accuracy	May experience larger accuracy degradation	Generally preserves accuracy better than PTQ		
Training Complexity	Simpler to implement, requires minimal modification	More complex to implement, requires modifying training loop		

Quantization Memory

7B LLM -> OOM

```
[ ] 1 # using huggingface from_pretrained
2 model_name = 'vilm/vinallama-7b-chat'
3 model = AutoModel.from_pretrained(model_name, device_map='cuda') # lead to 00M in cuda mem
```

4bit quantization -> OK

```
1 # using bitsandbyte
 2 model name = 'vilm/vinallama-7b-chat'
 3 device map = {
       "transformer.word embeddings": 0, # 0 mean gpu
       "transformer.word embeddings layernorm": 0,
       "lm head": "cpu", # offload lm head to cpu
       "transformer.h": 0,
       "transformer.ln f": 0,
 8
 9 }
10 quantization config = BitsAndBytesConfig(load in 4bit=True, bnb 4bit compute dtype=torch.bfloat16)
11 nf4 config = BitsAndBytesConfig(
      load in 4bit=True,
12
13
      bnb 4bit quant type="nf4",
14)
15 model nf4 = AutoModelForCausalLM.from pretrained(model name, quantization config=nf4 config)
```

Quantization Speed

7B LLM -> 67s

time take to forward 1 without quantization is: 67.70194411277771

4bit quantization -> 5.5s

Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. time take to forward 1 without quantization is: 5.531926870346069

Pruning

- What is Pruning?
- Unstructured vs. Structured pruning
- When to prune?
- Lottery Ticket Hypothesis

What is pruning

What is pruning

Research on Pruning

Main Questions

Pruning

- What is Pruning?
- Unstructured vs. Structured pruning
- When to prune?
- Lottery Ticket Hypothesis

Unstructured Pruning

What does this mean?

Unstructured Pruning

3

0.4	0.8	0.9	6.2
-8.7	-4.3	2.5	5.1
6.7	9.9	1.0	2.4

1.127.512.431.1

This is connection!

Unstructured Pruning

34

0.4	0.8	0.9	0
-8.7	-4.3	2.5	5.1
6.7	0	0	2.4

1.1 -12.1 8.4 24.9

*

This is connection!

Unstructured Pruning

0.4	0.8	0.9	6.2		1	1	1	0		0.4	0.8	0.9	0	
-8.7	-4.3	2.5	5.1	*	1	1	1	1	=	-8.7	-4.3	2.5	5.1	
6.7	9.9	1.0	2.4		1	0	0	1		6.7	0	0	2.4	

Need for Special Software!!!

Structured Pruning

Structured Pruning

Structured Pruning

Structured vs. Unstructured

	Unstructured	Structured
High sparsity with minor accuracy drop	Yes	Hard
Speedup w/o specific hardware	Hard	Yes
Speedup w/o specific software	Hard	Yes
Really compressed with significant acceleration	Hard	Yes
Structure coupling	No	Yes

Pruning

- What is Pruning?
- Unstructured vs. Structured pruning
- How & when to prune?
- Lottery Ticket Hypothesis

Magnitude-based Pruning

1.2	2.4	-5.6
3.2	-4.1	1.0
0.8	4.4	-2.2

Prune Ratio: 40%

0.8	1.0	1.2	2.2	2.4	3.2	4.1	4.4	5.6
0.0	1.0	1.2	2.2	2	J.2	1.1		2.0

How To Prune?

Magnitude-based Pruning

1.2	2.4	-5.6
3.2	-4.1	1.0
0.8	4.4	-2.2

1.2	2.4	-5.6
3.2	-4.1	1.0
0.8	4.4	-2.2

Prune Ratio: 40%

0.8	1.0	1.2	2.2	2.4	3.2	4.1	4.4	5.6
0.0	1.0	1.2	2.2	∠.⊤	3.2	7.1	т.т	5.0

Magnitude-based Pruning

1.2	2.4	-5.6
3.2	-4.1	1.0
0.8	4.4	-2.2

Prune Ratio: 40%

0.8	10 12	2 2	2.4	3.2	<i>1</i> 1	11	5.6
0.0	1.0	2.2	2.4	3.2	4.1	4.4	3.0

L2 Norm Pruning

9.21

$$\sqrt{\sum_{i=1}^{n} |x_i|^2}$$

11.57

6 9

8

14.79

L2 Norm Pruning

-8

9.21

1 -4

$$\sqrt{\sum_{i=1}^{n} |x_i|^2}$$

11.57

6 9

1 -4

8

14.79

When to prune?

Prune Before Training

Simplest Method: Random Pruning!

Prune Before Training

More important!

AI VIETNAM All-in-One Course

$$s_j = \frac{|g_j(w; D)|}{\sum_{k=1}^m |g_k(w; D)|}$$

$$S_1 = \frac{0.8}{0.8 + 0.2 + 0.1} = 0.73$$

$$S_1 = \frac{0.2}{0.8 + 0.2 + 0.1} = 0.18$$

$$S_1 = \frac{0.1}{0.8 + 0.2 + 0.1} = ?$$

Câu 1: Mục tiêu của việc pruning trong mạng nơ-ron là gì?

- A) Tăng khả năng giải thích của mô hình
- B) Giảm kích thước model và nguồn lực tính toán
- C) Cải thiện dữ liệu huấn luyện
- D) Tối đa hóa số lớp

Câu 2: Unstructured pruning nhắm vào mục tiêu nào sau đây?

- A) Toàn bộ các lớp
- B) Kiến trúc cụ thể
- C) Các trọng số trong một lớp
- D) Đặc điểm đầu vào của dữ liệu

Câu 3: Structured pruning được đặc trưng bởi việc loại bỏ:

- A) Trọng số ngẫu nhiên
- B) Toàn bộ nơ-ron hoặc kênh
- C) Điểm dữ liệu đầu vào
- D) Tốc độ học

Câu 4: Magnitude Pruning thường liên quan đến:

- A) Tia các trọng số gần giá trị trung bình nhất
- B) Tỉa các trọng số được cập nhật gần đây nhất
- C) Tia trọng số dựa trên mã màu
- D) Tỉa các trọng số có độ lớn nhỏ nhất

Bài 5: Thách thức chính trong việc áp dụng các phương pháp pruning là:

- A) Làm cho mô hình lớn hơn
- B) Duy trì hiệu suất mô hình trong khi giảm độ phức tạp
- C) Tăng số lượng tham số
- D) Đơn giản hóa kiến trúc mô hình một cách không cần thiết

AI VIETNAM All-in-One Course

When to prune?

Prune During Training

Update Weights + Mask

Prune During Training

When to prune?

When to prune?

Iterative Magnitude Pruning

Iterative Pruning

Iterative Magnitude Pruning

AI VIETNAM
All-in-One Course

Pruning

- What is Pruning?
- Unstructured vs. Structured pruning
- How & When to prune?
- Lottery Ticket Hypothesis

Lottery Ticket Hypothesis

AI VIETNAM All-in-One Course

Lottery Ticket Hypothesis

Larger Models ~ Buy more tickets

Lottery Ticket Hypothesis

Iterative Magnitude Pruning

Iterative Pruning

Identify the winning ticket

```
Step 1: Randomly initialize a network
```

Step 2: Train the network for j iteration

Step 3: Prune p% of the parameters

Step 4: Reset the parameters to their original values

Step 5: Retrain from scratch

Step 6: Loop

Step 7: Achieve Winning Ticket

Further research

Early Bird Ticket: 1909.11957.pdf (arxiv.org)

Mathematical Proof: 2002.00585.pdf (arxiv.org)

Summary

Pruning

