Exercise 04

1.

For the Bernoulli model, we have:

$$p(y_i|\boldsymbol{x}_i,\omega) = \sigma(\omega^{\mathrm{T}}\boldsymbol{x}_i)^{y_i} \big(1 - \sigma(\omega^{\mathrm{T}}\boldsymbol{x}_i)\big)^{1-y_i}$$

The log-likelihood is then given by:

$$\begin{split} L(\omega) &= \log \prod_{i=1}^{N} \sigma(\omega^{\mathrm{T}} \boldsymbol{x}_{i})^{y_{i}} \big(1 - \sigma(\omega^{\mathrm{T}} \boldsymbol{x}_{i})\big)^{1 - y_{i}} \\ &= \sum_{i=1}^{N} \big(y_{i} \log \sigma(\omega^{\mathrm{T}} \boldsymbol{x}_{i}) + (1 - y_{i}) \log \big(1 - \sigma(\omega^{\mathrm{T}} \boldsymbol{x}_{i})\big)\big) \\ &= \sum_{i=1}^{N} \big(y_{i} \log \sigma(\omega^{\mathrm{T}} \boldsymbol{x}_{i}) + (1 - y_{i}) \log \sigma(-\omega^{\mathrm{T}} \boldsymbol{x}_{i})\big) \\ &= \bigg(\sum_{y_{i}=1} + \sum_{y_{i}=0} \bigg) \big(y_{i} \log \sigma(\omega^{\mathrm{T}} \boldsymbol{x}_{i}) + (1 - y_{i}) \log \sigma(-\omega^{\mathrm{T}} \boldsymbol{x}_{i})\big) \\ &= \sum_{y_{i}=1} \log \sigma(\omega^{\mathrm{T}} \boldsymbol{x}_{i}) + \sum_{y_{i}=0} \log \sigma(-\omega^{\mathrm{T}} \boldsymbol{x}_{i}). \end{split}$$

2.

(a)

Easy to show by noticing that $-\partial^2 L(\omega) \ge 0$ always holds. (The computation is not easy though) Convexity is the solid guarantee that we can find the global minimality.

(b)

This is also trivial, since $\mathcal{L}_{\mathrm{BCE}}(\omega)$ is only different from the task by a negative constant $-\frac{1}{N}$, which indicates the equivalence between maximizing binary cross-entropy and minimizing log-likelihood function.

3.

(a)

As $k \to \infty$, $\log \sigma(\omega^T x_i)$ becomes $\log(1)$ which is zero, whereas $\log \sigma(-\omega^T x_i)$ turns into infinity, hence preventing the convergence for linearly separable data.

(b)

We can introduce regularization term to make the new objective function strictly convex.