Обобщение инвариантов формальных групп

1 Обозначения и определения

1.1 Локальные поля и связанные с ними кольца

Обозначение 1.1. В качестве формальных переменных будут использоваться $x, t, X = (X_i), Y = (Y_i), Z = (Z_i).$

Обозначение 1.2. Пусть A - коммутативное кольцо с единицей.

Обозначение 1.3. Пусть K - локальное поле, т.е. полное дискретно нормированное поле с совершенным полем вычетов¹.

Примеры:

- 1. $K = \mathbb{Q}_p$.
- 2. $K = \mathbb{Q}_p(\zeta_{p^n})$, где ζ_{p^n} примитивный корень из единицы степени p^n .
- 3. $K = \mathbb{F}_{p^n}((x))$.

Обозначение 1.4. Пусть v_K - нормализованное нормирование поля K, т.е. такое дискретное нормирование на K, что $v_K(K^{\times}) = \mathbb{Z}^2$.

¹[FV01], I.4.6.

²[FV01], I.3.1.

Примеры:

- 1. Пусть $K = \mathbb{Q}_p$. Тогда $v_K = \operatorname{ord}_p$. Более явно, для любого $\alpha \in \mathbb{Q}_p^{\times}$ имеет место $v_K(\alpha) = v$, где $\alpha = p^v \varepsilon$, $\varepsilon \in \mathbb{Z}_p^{\times}$.
- 2. Пусть $K = \mathbb{Q}_p(\zeta_{p^n})$. Тогда для любого $\alpha \in K$ имеет место

$$v_K(\alpha) = \operatorname{ord}_p\left(N_{K/\mathbb{Q}_p}(\alpha)\right).$$

Здесь N_{K/\mathbb{Q}_p} - норма расширения K/\mathbb{Q}_p^3 .

3. Пусть $K = \mathbb{F}_{p^n}((x))$. Тогда для любого $\alpha = \sum_{i=v}^{\infty} a_i x^i \in K$, имеет место $v_K(\alpha) = v$.

Обозначение 1.5. Пусть \mathfrak{O}_K - кольцо целых поля K, т.е.

$$\mathfrak{O}_K = \{ \alpha \in K | v_K(\alpha) \ge 0 \}^4.$$

Это локальное кольцо с максимальным идеалом

$$\mathfrak{M} = \{ \alpha \in K | v_K(\alpha) > 0 \}.$$

Примеры:

- 1. Пусть $K = \mathbb{Q}_p$. Тогда $\mathfrak{O}_K = \mathbb{Z}_p$.
- 2. Пусть $K=\mathbb{Q}_p(\zeta_{p^n})$. Тогда $\mathfrak{O}_K=\mathbb{Z}_p[\zeta_{p^n}]$.
- 3. Пусть $K = \mathbb{F}_{p^n}((x))$. Тогда $\mathfrak{O}_K = \mathbb{F}_{p^n}[[x]]$.

Обозначение 1.6. Пусть \overline{K} - поле вычетов для K, т.е. $\overline{K}=\mathfrak{O}_K/\mathfrak{M}^5$.

Примеры:

1. Пусть $K=\mathbb{Q}_p$. Тогда $\overline{K}=\mathbb{F}_p$.

³[Gou20], 6.3.

⁴[FV01], I.2.2.

⁵[FV01], I.2.2.

- 2. Пусть $K = \mathbb{Q}_p(\zeta_{p^n})$. Так как K/\mathbb{Q}_p вполне разветвлённое расширение⁶, то $1 = f(K/\mathbb{Q}_p) = [\overline{K} : \mathbb{F}_p]$, поэтому $\overline{K} = \mathbb{F}_p$.
- 3. Пусть $K = \mathbb{F}_{p^n}((x))$. Тогда $\overline{K} = \mathbb{F}_{p^n}$.

Обозначение 1.7. Пусть π - униформизующий элемент (локальный параметр) поля K, т.е. такой элемент поля K, для которого $\mathfrak{M} = \pi \mathfrak{O}_K$.

Примеры:

- 1. Пусть $K = \mathbb{Q}_n$. Тогда $\pi = p$.
- 2. Пусть $K = \mathbb{Q}_p(\zeta_{p^n})$. Тогда $\pi = \zeta_{p^n} 1$. В этом случае, $v_K(\pi) = 1$, и если представить $\alpha \in K^{\times}$ в виде $\alpha = \pi^v \varepsilon$, где $\varepsilon \in \mathfrak{O}_K^{\times 7}$, то $v_K(\alpha) = v$.
- 3. Пусть $K = \mathbb{F}_{p^n}((x))$. Тогда $\pi = x$.

Замечание 1.1. С этого момента мы рассматриваем случай, когда $\operatorname{char}(K) = 0$, $\operatorname{char}(\overline{K}) = p > 0$, поэтому $K = \mathbb{F}_{p^n}((x))$ в качестве примера уже не подходит.

Обозначение 1.8. Пусть e - абсолютный индекс ветвления поля K, т.е. $e = v_K(p)^8$.

Примеры:

- 1. Пусть $K = \mathbb{Q}_p$. Тогда e = 1.
- 2. Пусть $K = \mathbb{Q}_p(\zeta_{p^n})$. Тогда

$$e = \operatorname{ord}_p \left(N_{K/\mathbb{Q}_p}(p) \right) = \operatorname{ord}_p \left(p^{[K:\mathbb{Q}_p]} \right) = [K:\mathbb{Q}_p] = (p-1)p^{n-1}.$$

⁶[FV01], IV.1.3.

⁷[FV01], I.3.4.

⁸[FV01], I.5.7.

Обозначение 1.9. Пусть (N, σ) - σ -подполе поля K, такое, что расширение K/N вполне разевтвлено. Это означает, что N - локальное поле, $\operatorname{char}(N) = 0$, $\operatorname{char}(\overline{N}) = p$, $f(K/N) = [\overline{K} : \overline{N}] = 1$, и существует $\sigma \in \operatorname{End}(N)$ удовлетворяющее соотношению

$$\sigma(a) - a^p \in \mathfrak{M}_N, \forall a \in \mathfrak{O}_N,$$

где \mathfrak{O}_N - кольцо целых поля N, а \mathfrak{M}_N - его максимальный идеал⁹. Поле (N,σ) всегда существует¹⁰, N единственно, но σ , как правило, может быть выбрано более чем одним способом¹¹. Мы будем использовать $\sigma(a)=a^p$.

Примеры:

1. Пусть
$$K = \mathbb{Q}_p$$
 или $K = \mathbb{Q}_p(\zeta_{p^n})$. Тогда $N = \mathbb{Q}_p$.

Обозначение 1.10. Через $\mathfrak A$ будет обозначаться произвольное (не обязательно коммутативное) кольцо.

Примеры из рассматриваемых ниже случаев:

1.
$$\mathfrak{A} = K, \mathfrak{O}_K$$
.

2.
$$\mathfrak{A} = K[[\Delta]], \mathfrak{O}_K[[\Delta]].$$

Обозначение 1.11. Пусть $M_m(\mathfrak{A})$ - кольцо матриц над \mathfrak{A} размера $m \times m$, а $M_{m \times n}(\mathfrak{A})$ - модуль матриц размера $m \times n$.

Обозначение 1.12. Пусть Δ - линейный оператор, возводящий формальные переменные в степень p, т.е.

$$\Delta\left(\sum a_i x^i\right) = \sum a_i x^{pi}, a_i \in \mathfrak{A};$$

$$\Delta\left(\sum a_{i_1...i_m} \prod X_j^{i_j}\right) = \sum a_{i_1...i_m} \prod X_j^{pi_j}, a_{i_1...i_m} \in \mathfrak{A}.$$

⁹[Бон06], 2.1.

¹⁰[Бон06], 2.1.1.

¹¹[FV01], II.5.

Если $\Lambda=(\Lambda_{ij})_{i,j}=\left(\sum_k a_{ijk}\Delta^k\right)_{i,j}\in M_m(\mathfrak{A}[[\Delta]]),$ то под $\Lambda(X)$ мы будем подразумевать набор рядов

$$\Lambda(X) = \lambda = (\lambda_i)_i = \left(\sum_{j,k} a_{ijk} X_j^{p^k}\right)_i \in M_{m \times 1}(\mathfrak{A}[[X]]) = (\mathfrak{A}[[X]])^m.$$

Если же $h=(h)_i=\left(\sum\limits_k a_{ik}\Delta^k\right)_i\in (\mathfrak{A}[[\Delta]])^m,$ то под h(x) будет подразумеваться набор рядов

$$h(x) = (h_i(x))_i = \left(\sum_k a_{ik} x^{p^k}\right)_i \in (\mathfrak{A}[[x]])^m.$$

Обозначение 1.13. Обозначим через $N_{\sigma}[[\Delta]]$ кольцо скрученных формальных степенных рядов Хонды¹², т.е. такое некоммутативное кольцо степенных рядов, что $\Delta a = \sigma(a)\Delta$ для всех $a \in N$. Пусть $\mathfrak{O}_{N,\sigma}[[\Delta]]$ - подкольцо $N_{\sigma}[[\Delta]]$, состоящее из рядов с коэффициентами из \mathfrak{O}_N .

Обозначение 1.14. Положим

$$R := \mathfrak{O}_K[[\Delta]] \otimes_{\mathfrak{O}_K} K = \mathfrak{O}_K[[\Delta]] \otimes_{\mathbb{Z}_p} \mathbb{Q}_p = \bigcup_{i>0} p^{-i} \mathfrak{O}_K[[\Delta]] \subset K[[\Delta]].$$

1.2 Формальные групповые законы

Определение 1.15. Набор из m формальных степенных рядов от 2m переменных $F \in (A[[X,Y]])^m$ $(X = (X_1,...,X_m), Y = (Y_1,...,Y_m))$ называется формальным групповым законом (или коммутативной формальной группой) F размерности m над A, если выполнено

$$F(X,0) = F(0,X) = X,$$

 $F(F(X,Y),Z) = F(X,F(Y,Z)),$
 $F(X,Y) = F(Y,X).$

¹²Honda's twisted formal power series ring.

Кроме того, для любого закона F существует такой ряд $\iota_F(X)$, что

$$F(X, \iota_F(X)) = 0.$$

Примеры:

- $m = 1, F = \hat{\mathbb{G}}_{a}(x, y) = x + y.$
- m любое, $F = \hat{\mathbb{G}}_{\mathbf{a}}^m = (\hat{\mathbb{G}}_{\mathbf{a}}(X_i, Y_i))_{i=\overline{1,m}} = (X_i + Y_i)_{i=\overline{1,m}}$
- m = 1, $F = \hat{\mathbb{G}}_{m}(x, y) = x + y + xy = (1 + x)(1 + y) 1$.
- m любое, $F = \hat{\mathbb{G}}_{\mathrm{m}}^m = (X_i + Y_i + X_i Y_i)_{i=\overline{1.m}}$.
- Пусть K числовое локальное поле (т.е. $|\overline{K}| = q < \infty$), $A = \mathfrak{O}_K$, m = 1. Пусть $\gamma(x) = \sum_{i>0} a_i x^i \in A[[x]], \ a_1 \in A^{\times}$. Положим

$$f_{\gamma}(x) = \sum_{i>0} \pi^{-i} \gamma(x^{q^i}).$$

Тогда

$$F_{\gamma}(x,y) = f_{\gamma}^{-1}(f_{\gamma}(x) + f_{\gamma}(y))$$

- формальный групповой закон Любина-Тэйта. Это единственный формальный групповой закон над A, для которого

$$F_{\gamma}(x,y) \equiv x + y \mod \deg 2,$$

 $e_{\gamma}(F_{\gamma}(x,y)) = F_{\gamma}(e_{\gamma}(x), e_{\gamma}(y)),$

где
$$e_{\gamma}(x) = f_{\gamma}^{-1}(\pi f_{\gamma}(x)) \in A[[x]]^{13}$$
.

• Пусть K - числовое локальное поле, $q = |\overline{K}|, A = \mathfrak{D}_K, m$ - любое. Пусть $\Gamma \in M_m(\mathfrak{M})$ таково, что $\pi^{-1}\Gamma \in \mathrm{GL}_m(A)$. Положим

$$f_{\Gamma}(X) = \sum_{i \ge 0} \pi^{-i} (\pi^{-1} \Gamma)^{-i} X^{q^i},$$

 $^{^{13}}$ Подробности можно найти, например, в [Haz12], 8.

где
$$X^{q^i} = \begin{pmatrix} X_1^{q^i} \\ \vdots \\ X_m^{q^i} \end{pmatrix}$$
. Тогда

$$F_{\Gamma}(X,Y) = f_{\Gamma}^{-1}(f_{\Gamma}(X) + f_{\Gamma}(Y))$$

- m-мерный формальный групповой закон Любина-Тэйта. Это единственная формальный групповой закон над A, для которого

$$e_{\Gamma}(F_{\Gamma}(X,Y)) = F_{\Gamma}(e_{\Gamma}(X),e_{\Gamma}(Y)),$$

где $e_{\Gamma}(X) = f_{\Gamma}^{-1}(\Gamma f_{\Gamma}(X))^{14}$. У этого примера есть общий частный случай с предыдущим: если рассматривать $\gamma(x) = ax, \ a \in A^{\times}$, то можно получить те же самые групповые законы, что и при m=1 в текущем примере.

Обозначение 1.16. Пусть F - m-мерный формальный групповой закон над A. Через $\mathscr{C}(F)$ обозначим группу, элементами которой являются так называемые $\kappa puebe$ - наборы из m степенных рядов $\xi(x) = (\xi_i(x))_i \in A[[x]]^m$, такие что $\xi(0) = 0$. Сложение в этой группе производится по правилу

$$\xi(x) +_F \eta(x) = F(\xi(x), \eta(x)).$$

Примеры:

•
$$\mathscr{C}(\hat{\mathbb{G}}_a^m) = \bigoplus_{i=1}^m A[[x]]^{+15}$$
.

Обозначение 1.17. Пусть F - m-мерный формальный групповой закон над A, $\xi_{\rm id} = (x, ..., x) \in \mathscr{C}(F)$. Для всякого целого n > 0 положим

$$[n]_F = \underbrace{\xi_{\mathrm{id}} +_F \dots +_F \xi_{\mathrm{id}}}_{n \text{ слагаемых}} \in \mathscr{C}(F).$$

 $^{^{14}}$ Подробности и дальнейшие обобщения можно найти, например, в [Haz12], 13.

 $^{^{15}}A[[x]]^+ = \{\xi \in A[[x]] | \xi(0) = 0\}.$

Примеры:

- $[n]_{\hat{\mathbb{G}}_{\mathbf{a}}^m} = (nx, ..., nx) \in \mathscr{C}(\hat{\mathbb{G}}_{\mathbf{a}}^m).$
- $[n]_{\hat{\mathbb{G}}_{\mathrm{m}}^m} = (S(x),...,S(x)) \in \mathscr{C}(\hat{\mathbb{G}}_{\mathrm{m}}^m)$, где $S(x) = \sum_{i=1}^n \sigma_{n,i}(1,...,1)x^i$, $\sigma_{n,i}$ i-й элементарный симметрический многочлен от n переменных.

Определение 1.18. Пусть F - m-мерный формальный групповой закон над A. Определим операторы $\langle a \rangle$, \mathbf{V}_n , \mathbf{f}_n , действующие на группе $\mathscr{C}(F)$, следующим образом:

• Для $\xi \in \mathscr{C}(F)$, $a \in A$, пусть

$$\langle a \rangle \, \xi(x) = \xi(ax).$$

• Для $\xi \in \mathscr{C}(F)$, $n \in \mathbb{N}$, пусть

$$\mathbf{V}_n \xi(x) = \xi(x^n).$$

• Для $\xi \in \mathscr{C}(F)$, $n \in \mathbb{N}$, пусть

$$\xi(t_1 x^{\frac{1}{n}}) +_F \dots +_F \xi(t_n x^{\frac{1}{n}}) = \alpha(\sigma_1, \dots, \sigma_n, x^{\frac{1}{n}}),$$

для некоторого ряда $\alpha \in A[t_1,...,t_n][[x^{\frac{1}{n}}]]^m$, где $t_1,...,t_n$ - формальные переменные, $\sigma_1,...,\sigma_n$ - элементарные симметрические многочлены от этих переменных. Тогда \mathbf{f}_n можно определить как

$$\mathbf{f}_n \xi(x) = \alpha(0, ..., 0, (-1)^{n-1}, x^{\frac{1}{n}})^{16}.$$

Примеры:

- $\mathbf{f}_1 \xi = \xi$.
- $\mathbf{f}_n[k]_{\hat{\mathbb{G}}_n^m} = 0$ при n > 0.

 $^{^{16}}$ Подробности см. в [Haz12], 15.1.

• Пусть $F = \hat{\mathbb{G}}_m^m$, тогда $\mathbf{f}_n \xi_{\mathrm{id}} = (-1)^{n-1} \xi_{\mathrm{id}}$ при n > 0.

Обозначение 1.19. Пусть F - m-мерный формальный групповой закон над A, p - простое число. Положим

$$\mathscr{C}_p(F) = \{ \xi \in \mathscr{C}(F) | \mathbf{f}_q \xi(x) = 0 \text{ для всех простых } q \neq p \}.$$

Элементы группы $\mathscr{C}_p(F)$ называются p-типическими кривыми.

Примеры:

- $[k]_{\hat{\mathbb{G}}_{\mathbf{a}}^m} \in \mathscr{C}_p(\hat{\mathbb{G}}_{\mathbf{a}}^m).$
- $\xi_{\mathrm{id}} \notin \mathscr{C}_p(\hat{\mathbb{G}}_{\mathrm{m}}^m)$.

Определение 1.20. Пусть F - m-мерный формальный групповой закон над A, G - k-мерный формальный групповой закон над A. Набор из k формальных степенных рядов $f = (f_i(X))_i$, где $f_i \in A[[X_1, ..., X_m]]$, $f_i(X) \equiv 0 \mod \deg 1$, называется гомоморфизмом из F в G, если

$$f(F(X,Y)) = G(f(X), f(Y)).$$

Гомоморфизм f называется uзоморфизмом, если m=k и суещсвтует набор из m рядов $g=(g_i(X))_i$, такой что $(f\circ g)(X)=(g\circ f)(X)=X$. Изоморфизм f называется cтрогим, если $f(X)\equiv I_mX \mod \deg 2$, где $I_m\in M_m(A)$ - единичная матрица.

Примеры:

- Пусть F = G. Тогда f(X) = X является изоморфизмом из F в G.
- ullet Пусть m любое, $F=\hat{\mathbb{G}}^m_{\mathrm{a}},\,k=1,\,G=\hat{\mathbb{G}}_{\mathrm{a}}.$ Тогда

$$f(X_1, ..., X_m) = X_1 + ... + X_m$$

является гомоморфизмом из F в G.

ullet Пусть $m=1,\,F=\hat{\mathbb{G}}_{\mathrm{a}},\,k$ - любое, $G=\hat{\mathbb{G}}_{\mathrm{a}}^k$. Тогда

$$f = (f_1(x), ..., f_k(x)) = (x, ..., x)$$

является гомоморфизмом из F в G.

- Пусть A является \mathbb{Q} -алгеброй, $m=1,\,F=\hat{\mathbb{G}}_{\mathrm{a}},\,k=1,\,G=\hat{\mathbb{G}}_{\mathrm{m}}.$ Тогда $f(x)=\sum\limits_{i>0}\frac{x^{i}}{i!}$ является изоморфизмом из F в G.
- Пусть F_{γ} групповой закон Любина-Тэйта над $A=\mathfrak{O}_{K}$. Для всякого $a\in A$ ряд

$$[a]_{\gamma}(x) = f_{\gamma}^{-1}(af_{\gamma}(x))$$

является эндоморфизмом формальной группового закона F_{γ} для всякого $a \in A^{17}$.

• Пусть F_{Γ} - m-мерный групповой закон Любина-Тэйта над $A=\mathfrak{O}_K$. Для всякой матрицы $\mathrm{B}\in M_m(A)$, коммутирующей с Γ , ряд

$$[B]_{\Gamma}(X) = f_{\Gamma}^{-1}(Bf_{\Gamma}(X))$$

является эндоморфизмом формального группового закона F_{Γ}^{18} .

Определение 1.21. Пусть $\varphi:A\to B$ - гомоморфизм коммутативных колец с единицей,

$$F(X,Y) = \sum_{I,J} a_{IJ} X^I Y^J$$

- формальный групповой закон над $A\ (I,\, J$ - мультииндексы). Тогда

$$\varphi_* F(X, Y) = \sum_{I,J} \varphi(a_{IJ}) X^I Y^J$$

является формальным групповым законом над B, полученным из F(X,Y) путём замены базы.

¹⁷[Haz12], 8.1.5.

¹⁸[Haz12], 13.2.5.

Обозначение 1.22. С этого момента F будет m-мерным формальным групповым законом над \mathfrak{D}_K .

Обозначение 1.23. Пусть \overline{F} - редукция F по модулю π , т.е. $\overline{F} = \kappa_* F$, где $\kappa: \mathfrak{O}_K \to \overline{K}$ - сюръекция $a \mapsto a \mod \pi$.

Обозначение 1.24. Обозначим через h = h(F) высоту группового закона F, то есть, величину

$$h = \dim_{\overline{K}} \left(\mathscr{C}_p(\overline{F})/[p]_{\overline{F}} \mathscr{C}_p(\overline{F}) \right),$$

если она конечна¹⁹.

Примеры:

- $h(\hat{\mathbb{G}}_{\mathbf{a}}^m) = \infty.$
- $h(\hat{\mathbb{G}}_{\mathbf{m}}^m) = 1.$

Обозначение 1.25. Пусть λ_F - логарифм F, т.е. $\lambda_F(X)$ - строгий изоморфизм из ι_*F в $\hat{\mathbb{G}}^m_a$ (который существует и единственен²⁰), где $\iota: \mathfrak{O}_K \to \mathfrak{O}_K \otimes_{\mathbb{Z}} \mathbb{Q} = K$ - вложение.

Примеры:

- Пусть $F = \hat{\mathbb{G}}_{\mathbf{a}}^m$. Тогда $\lambda_F(X) = X$.
- Пусть $F = \hat{\mathbb{G}}_{\mathrm{m}}^m$. Тогда $\lambda_F(X) = (\lambda_i(X))_i$, где $\lambda_i(X) = \sum_{j>0} (-1)^{j+1} \frac{X_i^j}{j}$.
- Пусть $F = F_{\Gamma}$. Тогда $\lambda_F(X) = f_{\Gamma}(X)$.

Определение 1.26. Формальный групповой закон F называется $\kappa pusonune \check{u}ны M$, если λ_F имеет вид

$$\lambda_F(X) = \sum_{i>0} A_i X^i,$$

 $^{^{19}}$ Это определение взято из [Haz12], 28.2.9.

²⁰[Haz12], 11.1.6.

где
$$A_i \in M_m(K)$$
, и $X^i = \begin{pmatrix} X_1^i \\ \vdots \\ X_m^i \end{pmatrix}^{21}$.

Определение 1.27. Пусть $\ell \in \mathbb{Z}$ - некоторое простое число (не обязательно совпадающее с $p = \operatorname{char}\left(\overline{K}\right)$). Формальный групповой закон F называется ℓ -типическим, если λ_F имеет вид

$$\lambda_F(X) = \sum_{i>0} A_i X^{\ell^i},$$

где
$$A_i\in M_m(K),$$
 и $X^{\ell^i}=egin{pmatrix} X_1^{\ell^i} \\ \vdots \\ X_m^{\ell^i} \end{pmatrix}^{22}.$

Замечание 1.2. Любой формальный групповой закон F над \mathfrak{O}_K строго изоморфен некоторому p-типическому²³. Поэтому мы будем изначально рассматривать только p-типические формальные групповые законы (такие как $\hat{\mathbb{G}}_a^m$ и F_{Γ}). Согласно 1.12 и 1.27, это означает, что $\lambda_F = \Lambda_F(X)$ для некоторой матрицы $\Lambda_F \in M_m(K[[\Delta]])$.

Определение 1.28. Пусть G - k-мерный формальный групповой закон над \mathfrak{O}_K , $\alpha: F \to G$ - гомоморфизм. Тогда существуют изоморфизмы $f: F \to F'$ и $g: G \to G'$, такие, что F' и G' криволинейные формальные групповые законы, а $\alpha' = g \circ \alpha \circ f^{-1}: F' \to G'$ имеет вид

$$\alpha'_{1}(X) = X_{1}^{p^{n_{1}}},$$
...,
$$\alpha'_{r}(X) = X_{r}^{p^{n_{r}}},$$

$$\alpha'_{s}(X) = 0, r < s \le k,$$

где $n_1 \le n_2 \le ... \le n_r$ - некоторые натуральные числа²⁴. Мы будем называть число $\operatorname{rank}(\alpha) = r$ рангом гомоморфизма α .

²¹[Haz12], 12.1.2.

²²[Haz12], 15.2.6.

²³[Haz12], 16.4.14.

²⁴[Haz12], 28.2.6.

Определение 1.29. Пусть G - k-мерный формальный групповой закон над \mathfrak{O}_K , $\alpha: F \to G$ - гомоморфизм. α называется *изогенией*, если $m = k = \operatorname{rank}(\alpha)$.

1.3 Формальные группы

 Nil_A как подкатегорию в $Compl_A$.

Обозначение 1.30. Обозначим через Nil_A категорию нильпотентных коммутативных A-алгебр²⁵.

Обозначение 1.31. Обозначим через \mathbf{Mod}_A категорию A-модулей. Так как любой A-модуль $M \in \mathbf{Mod}_A$ можно рассматривать как нильпотентную A-алгебру, полагая $M^2 = 0$, то \mathbf{Mod}_A можно рассматривать как подкатегорию в \mathbf{Nil}_A .

Определение 1.32. A-алгебра B со структурным морфизмом $f: A \to B$ называется ayементированной, если задан гомоморфизм A-алгебр $\varepsilon: B \to A$, называемый ayементацией, такой, что $\varepsilon \circ f = \mathrm{id}_A$. Мы также будем пользоваться обозначением $B^+ = \mathrm{Ker}\,(\varepsilon)$. Аугментированная A-алгебра B называется uильпотентной, если $B^+ \in \mathbf{Nil}_A$.

Обозначение 1.33. Обозначим через \mathbf{Compl}_A категорию полных аугментированных A-алгебр. То есть, объектами \mathbf{Compl}_A являются пары $(C, \{\mathfrak{c}_i\})_{i\in\mathbb{N}}$, где C - аугментированная A-алгебра; $\mathfrak{c}_1 = C^+$; $\mathfrak{c}_1 \supset \mathfrak{c}_2 \supset \mathfrak{c}_3 \supset \dots$ - убывающая последовательность идеалов в C, причём $\mathfrak{c}_1/\mathfrak{c}_i \in \mathbf{Nil}_A$ для любого $i \in \mathbb{N}$, и $C = \varprojlim C/\mathfrak{c}_i$. Полагая $C = A \oplus N$, $\mathfrak{c}_1 = N$ и $\mathfrak{c}_i = 0$ при i > 1, мы получаем объект из \mathbf{Compl}_A для любого $N \in \mathbf{Nil}_A$. Поэтому можно рассматривать

Обозначение 1.34. Обозначим через **Sets** категорию множеств.

Обозначение 1.35. Обозначим через **Ab** категорию абелевых групп.

 $^{^{25}} A$ -алгеброй называется кольцо B, снабженное некоторым гомоморфизмом колец $f:A \to B$ ([Лен68], глава V, §1), называемым *структурным морфизмом*. A-алгебра B нильпотентна, если существует такое n>0, что $b_1\cdot\ldots\cdot b_n=0$ для любых $b_1,\ldots,b_n\in B$.

Определение 1.36. Пусть C - аугментированная нильпотентная A-алгебра. Она определяет функтор

$$\operatorname{Spf}(C): \mathbf{Nil}_A \to \mathbf{Sets}$$

следующим образом:

$$\operatorname{Spf}(C): N \mapsto \operatorname{Hom}(C^+, N),$$

$$\operatorname{Spf}(C): (f: N \to M) \mapsto (g \mapsto f \circ g).$$

Функтор $\mathscr{F}: \mathbf{Nil}_A \to \mathbf{Sets}$ называется npedcmaвимым, если он изоморфен функтору вида $\mathrm{Spf}\,(C)$ для некоторой аугментированной нильпотентной A-алгебры C.

Если же $(C, \{\mathfrak{c}_i\}) \in \mathbf{Compl}_A$, то такая алгебра определяет функтор

$$\operatorname{Spf}\left(C,\left\{\mathfrak{c}_{i}\right\}\right):\mathbf{Nil}_{A}\to\mathbf{Sets}$$

как предел представимых функторов:

$$\mathrm{Spf}\left(C,\left\{\mathfrak{c}_{i}\right\}\right):N\mapsto\varliminf\left(\mathrm{Spf}\left(C/\mathfrak{c}_{i}\right)\left(N\right)\right).$$

Функтор $\mathscr{F}: \mathbf{Nil}_A \to \mathbf{Sets}$ называется *пропредставимым*, если он изоморфен функтору вида $\mathrm{Spf}\,(C,\{\mathfrak{c}_i\})$ для некоторой полной аугментированной A-алгебры $(C,\{\mathfrak{c}_i\}) \in \mathbf{Compl}_A$. Очевидно, любой представимый функтор является также пропредставимым²⁶.

Пропредставимый функтор $\mathscr{F}\cong \mathrm{Spf}\,(C,\{\mathfrak{c}_i\})$ называется *строго пропредставимы* если $\mathfrak{c}_1/\mathfrak{c}_i$ является конечнопорождённым проективным A-модулем для каждого $i>1^{27}$.

Соответственно, представимый функтор $\mathscr{F}\cong \mathrm{Spf}\,(C)$ называется $\mathit{строго}$ $\mathit{представимым},$ если он является строго пропредставимым, то есть, если C^+ - конечнопорождённый проективный A-модуль.

Определение 1.37. Формальной группой над A называется точный функтор $\mathscr{F}: \mathbf{Nil}_A \to \mathbf{Ab}$, коммутирующий с бесконечными прямыми суммами²⁸.

 $^{^{27}{\}rm O}$ конечнопорождённых и проективных модулях - [Лен
68], глава III.

²⁸Разъяснения см. в [Zin84], 2.2.

Примеры:

- $\mathbb{G}_{\mathrm{a}}^m: N \mapsto (N, +_N)^m$, где $+_N$ операция сложения в алгебре N.
- $\mathbb{G}_{\mathrm{m}}^m: N \mapsto (1+N,\cdot)^m$, где 1+N множество формальных сумм вида $1+u, u \in N$, и умножение выполняется по правилу

$$(1+u)\cdot(1+v) = 1 + (u +_N v +_N u \cdot_N v),$$

где $u, v \in N, +_N, \cdot_N$ - соответствующие операции сложения и умножения в алгебре N.

• Пусть K - числовое локальное поле, $q = |\overline{K}|$, $A = \mathfrak{O}_K$, $m \in \mathbb{N}$. Зафиксируем некоторое число $h \in \mathbb{N}$, и некоторую матрицу $\Gamma \in M_m(\mathfrak{M})$, для которой $\pi^{-1}\Gamma \in GL_m(A)$. Пусть $e_{\Gamma,h} \in (K[[X_1,...,X_m]])^m$ - такой набор рядов, для которого

$$e_{\Gamma,h}(X) \equiv \Gamma X \mod \deg 2,$$

 $e_{\Gamma,h}(X) \equiv X^{q^h} \mod \pi.$

Тогда для каждого $N \in \mathbf{Nil}_A$ мы можем построить отображение $\varepsilon_{\Gamma,h,N}: N^m \to N^m$ по правилу

$$\varepsilon_{\Gamma,h,N}(a) = e_{\Gamma,h}(a).$$

 $\varepsilon_{\Gamma,h,N}$ определено корректно, так как N - нильпотентная Aалгебра. Согласно теореме 13.3.3 из [Haz12], существует единственная формальная группа $\mathscr{F}_{\Gamma,h}$, такая, что $\varepsilon_{\Gamma,h,N}:\mathscr{F}_{\Gamma,h}(N)\to\mathscr{F}_{\Gamma,h}(N)$ является отображением абелевых групп для каждого $N\in\mathbf{Nil}_A^{29}$. $\mathscr{F}_{\Gamma,h}$ можно называть m-мерной формальной группой ЛюбинаТэйта.

• Для всякого $N \in \mathbf{Nil}_A$ обозначим через $\Lambda(N)$ подгруппу по умножению в N[t], состоящую из многочленов вида $1 + u_1t + ... + u_nt^n$.

 $^{^{29}}$ Отображение $\varepsilon_{\Gamma,h,N}$ переопределено корректно, поскольку $\mathscr{F}_{\Gamma,h}(N)$ и N^m совпадают как множества - это тоже следует из теоремы.

Определение 1.38. Формальная группа \mathscr{F} над A называется представимой (пропредставимой / строго представимой / строго пропредставимой), если композиция \mathscr{F} с забывающим функтором является представимым (пропредставимым / строго представимым / строго пропредставимым) функтором.

Примеры:

- Формальная группа $\mathbb{G}_{\mathbf{a}}^m$ над произвольным A пропредставима.
- Формальная группа $\mathbb{G}_{\mathrm{m}}^m$ над произвольным A пропредставима.
- ullet Формальная группа $\mathscr{F}_{\Gamma,h}$ над $\mathfrak{O}_K{}^{30}$ строго пропредставима.

Замечание 1.3. Пусть \mathscr{F} - формальная группа над A. Можно считать, что функтор \mathscr{F} действует на \mathbf{Compl}_A , полагая

$$\mathscr{F}((C, \{\mathfrak{c}_i\})) = \varprojlim \mathscr{F}(\mathfrak{c}_1/\mathfrak{c}_i)$$

для всякого $(C, \{\mathfrak{c}_i\})_{i \in \mathbb{N}}$.

Определение 1.39. Пусть \mathscr{F} - формальная группа над A. Её *касательным* функтором $t_{\mathscr{F}}$ называется ограничение \mathscr{F} на подкатегорию \mathbf{Mod}_A .

Определение 1.40. Говорят, что формальная группа \mathscr{F} над A конечномерна размерности m, если $t_{\mathscr{F}}(A)$ - свободный конечно порождённый проективный A-модуль ранга m^{31} .

Обозначение 1.41. Пусть $\phi_A: \mathbf{Nil}_A \to \mathbf{Mod}_A$ - функтор, забывающий умножение, и превращающий любую A-алгебру $N \in \mathbf{Nil}_A$ в A-модуль. Это же обозначение мы сохраним для аналогичного функтора, действующего из \mathbf{Compl}_A в \mathbf{Mod}_A .

Определение 1.42. Пусть \mathscr{F} - формальная группа над A. Алгеброй $\mathit{Ли}\ \mathit{группы}\ \mathscr{F}$ называется функтор $\mathrm{Lie}\,(\mathscr{F}) = t_{\mathscr{F}} \circ \phi_A$.

 $^{^{30}}$ Здесь вновь K - числовое локальное поле.

³¹См. [Лен68], глава III.

Утверждение 1.1. Формальные группы связаны с формальными групповыми законами следующим образом:

• Пусть \mathscr{F} - конечномерная формальная группа над A размерности m. Пусть $\mathfrak{a} = A[[X,Y]]^+$. Тогда $\mathfrak{a}/\mathfrak{a}^n \in \mathbf{Nil}_A$ для любого $n \in \mathbb{N}$. Обозначим через $+_{\mathscr{F},n}$ операцию сложения в группе $\mathscr{F}(\mathfrak{a}/\mathfrak{a}^n) \in \mathbf{Ab}^{32}$, и положим

$$(F_1^{(n)}, ..., F_m^{(n)}) = (X_1, ..., X_m) +_{\mathscr{F},n} (Y_1, ..., Y_m).$$

Если теперь для каждого i построить единственный ряд $F_i \in A[[X,Y]],$ такой, что $F_i \equiv F_i^{(n)} \mod \mathfrak{a}^n$, то мы получим формальный групповой закон $F = (F_i)_i$ размерности m над A, соответствующий формальной группе \mathscr{F} .

• Пусть $F = (F_i)_i$ - формальный групповой закон размерности m над $A, N \in \mathbf{Nil}_A$. Так как N нильпотентная A-алгебра, то выражению $F_i(a,b)$ можно придать очевидный смысл для любых $a,b \in N^m, i=1,...,m$, и, таким образом, мы получаем некоторый элемент из N. Полагая

$$a +_{F,N} b = (F_1(a, b), ..., F_m(a, b)),$$

для любых $a,b \in N^m$, мы определяем таким образом сложение $+_{F,N}$ на N^m . $(N^m,+_{F,N})$ является абелевой группой, следовательно, мы получили некоторый функтор $\mathscr{F}:\mathbf{Nil}_A\to\mathbf{Ab}$. На морфизмах этот функтор действует следующим образом: если $f:N\to M$ - гомоморфизм нильпотентных A-алгебр, то

$$\mathscr{F}(f):(a_1,...,a_m)\mapsto (f(a_1),...,f(a_m))$$

для любого $(a_1, ..., a_m) \in \mathscr{F}(N)$. Функтор \mathscr{F} является формальной группой над A размерности m, соответствующей формальному груповому закону F.

Примеры:

 $^{^{32}}$ Так как $\mathscr F$ имеет размерность m, то $\mathscr F(\mathfrak a/\mathfrak a^n)=\left(\mathfrak a/\mathfrak a^n\right)^m$ как множества, см. [Zin84], 2.32.

- Формальному групповому закону $\hat{\mathbb{G}}_{\mathbf{a}}^m$ соответствует формальная группа $\mathbb{G}_{\mathbf{a}}^m$.
- Формальному групповому закону $\hat{\mathbb{G}}_{\mathrm{m}}^m$ соответствует формальная группа $\mathbb{G}_{\mathrm{m}}^m$.
- Формальному групповому закону Любина-Тэйта F_{Γ} соответствует формальная группа Любина-Тэйта $\mathscr{F}_{\Gamma,1}$.

Обозначение 1.43. Пусть \mathscr{F} - формальная группа над A. Через $M_{\mathscr{F}}$ обозначим группу $\mathscr{F}(A[[x]]^+)^{33}$ и будем называть её элементы $\kappa puвымu$.

Примеры:

•
$$M_{\mathbb{G}_{\mathbf{a}}^m} = \mathscr{C}(\hat{\mathbb{G}}_{\mathbf{a}}^m) = \bigoplus_{i=1}^m A[[x]]^+.$$

Определение 1.44. Пусть \mathscr{F}, \mathscr{G} - формальные группы над A. Естественное преобразование $\varphi: \mathscr{F} \to \mathscr{G}$ называется *гомоморфизмом* формальных групп. Таким образом, для каждого $N \in \mathbf{Nil}_A$ задан гомоморфизм групп $\varphi_N: \mathscr{F}(N) \to \mathscr{G}(N)$, причём для любого гомофоризма алгебр $f: N \to M, N, M \in \mathbf{Nil}_A$, следующая диаграмма коммутативна:

$$\mathcal{F}(N) \xrightarrow{\varphi_N} \mathcal{G}(N)
\mathcal{F}(f) \downarrow \qquad \qquad \downarrow \mathcal{G}(f)
\mathcal{F}(M) \xrightarrow{\varphi_M} \mathcal{G}(M)$$

Естественный изоморфизм $\varphi: \mathscr{F} \to \mathscr{G}$ называется *изоморфизмом* формальных групп. В этом случае, для каждого $N \in \mathbf{Nil}_A$ гомоморфизм φ_N является изоморфизмом абелевых групп.

$$\varepsilon: \sum_{i>0} a_i x^i \mapsto a_0,$$

и $\mathfrak{c}_i = x^i A[[x]]$ для всех $i \in \mathbb{N}$.

 $^{^{33}}A[[x]] \in \mathbf{Compl}_A$. Аугментация $\varepsilon:A[[x]] o A$ имеет вид

Примеры:

- Пусть \mathscr{F} произвольная формальная группа над A, тогда $\mathrm{id}_{\mathscr{F}}:\mathscr{F}\to\mathscr{F}$ соответствующий ей тождественный автоморфизм, который для каждого $N\in\mathbf{Nil}_A$ имеет вид $(\mathrm{id}_{\mathscr{F}})_N=\mathrm{id}_{\mathscr{F}(N)}$.
- Пусть A является \mathbb{Q} -алгеброй, $m \in \mathbb{N}$, $\mathscr{F} = \mathbb{G}_{\mathrm{a}}^m$, $\mathscr{G} = \mathbb{G}_{\mathrm{m}}^m$. Для каждого $N \in \mathbf{Nil}_A$ определим гомоморфизм $\varphi_N : \mathscr{F}(N) \to \mathscr{G}(N)$ следующим образом:

$$\varphi_N: (a_1, ..., a_m) \mapsto \left(\sum_{i>0} \frac{a_1^i}{i!}, ..., \sum_{i>0} \frac{a_m^i}{i!}\right).$$

Определение корректно, так как N - нильпотентная A-алгебра. В таком случае, φ является строгим изоморфизмом из \mathscr{F} в \mathscr{G} .

• Пусть $\mathscr{F}_{\Gamma,1}$ - m-мерная формальная группа Любина-Тэйта над $A = \mathfrak{O}_K$. Для всякой матрицы $B \in M_m(A)$, коммутирующей с Γ , можно построить эндоморфизм $[\beta]_{\Gamma} \in \operatorname{End}(\mathscr{F}_{\Gamma,1})$ следующим образом. Пусть $N \in \operatorname{Nil}_A$, тогда гомоморфизм $([\beta]_{\Gamma})_N : \mathscr{F}_{\Gamma,1}(N) \to \mathscr{F}_{\Gamma,1}(N)$ должен действовать по правилу

$$([\beta]_{\Gamma})_N : a \mapsto [B]_{\Gamma}(a).$$

Утверждение 1.2. Гомоморфизмы формальных групп связаны с гомоморфизмами формальных групповых законов следующим образом:

• Пусть \mathscr{F} - формальная группа над A размерности m, \mathscr{G} - формальная группа над A размерности k, F, G - соответствующие им формальные групповые законы над $A^{34}, \varphi : \mathscr{F} \to \mathscr{G}$ - гомоморфизм. Пусть $\mathfrak{b} = A[[X]]^+$. Тогда $\mathfrak{b}/\mathfrak{b}^n \in \mathbf{Nil}_A$ для любого $n \in \mathbb{N}$. Положим

$$(f_1^{(n)}, ..., f_k^{(n)}) = \varphi_{\mathfrak{b}/\mathfrak{b}^n}(X_1, ..., X_m).$$

 $^{^{34}}$ Построенные таким же образом, как в утверждении 1.1.

Если теперь для каждого i построить единственный ряд $f_i \in A[[X]]$, такой, что $f_i \equiv f_i^{(n)} \mod \mathfrak{b}^n$, то мы получим гомоморфизм $f = (f_i)_i$ из F в G^{35} .

• Пусть F - формальный групповой закон размерности m над A, G - формальный групповой закон размерности k над A, \mathscr{F} , \mathscr{G} - соответствующие им формальные группы над A^{36} , $f=(f_i)_i$ - гомоморфизм из F в G, $N\in\mathbf{Nil}_A$. Вновь мы можем для любых $a\in N^m,\ i=1,...,k$, придать смысл выражению $f_i(a)$, так как алгебра N нильпотентна, т.е. $f(a)\in N^k$. Таким образом, полагая

$$\varphi_N(a) = f(a)$$

для любого $a \in \mathscr{F}(N)$, мы определяем гомоморфизм $\varphi_N : \mathscr{F}(N) \to \mathscr{G}(N)$ для произвольного $N \in \mathbf{Nil}_A$. Прямой проверкой можно убедиться, что набор таких гомоморфизмов определяет естественное преобразование $\varphi : \mathscr{F} \to \mathscr{G}$.

Утверждение 1.3. Пусть $\varphi = \{\varphi_N\}_{N \in \mathbf{Nil}_A} : \mathscr{F} \to \mathscr{G}$ - гомоморфизм формальных групп над A. Для любого $N \in \mathbf{Nil}_A$ пусть N^0 - кольцо, состоящее из тех же элементов, что и N, с той же операцией сложения, но с умножением, задаваемым по правилу $N^0 \cdot N^0 = 0$. Тогда $\mathrm{Lie}\,(\varphi) = \{\varphi_{N^0}\}_{N \in \mathbf{Nil}}$ также является гомоморфизмом формальных групп над A.

Proof. Тривиально.

Определение 1.45. Гомоморфизм $\varphi : \mathscr{F} \to \mathscr{G}$ формальных групп над A одинаковой конечной размерности называется *изогенией*, если функтор $\operatorname{Ker}(\varphi)^{37}$ представим.

$$\operatorname{Ker}(\varphi): N \mapsto \operatorname{Ker}(\varphi_N),$$

$$\operatorname{Ker}(\varphi): (f: N \to M) \mapsto \mathscr{F}(f)|_{\operatorname{Ker}(\varphi_N)}.$$

 $^{^{35}}$ То, что набор рядов $(f_1,...,f_k)$ является гомоморфизмом формальных групповых законов следует из того, что $\varphi_{\mathfrak{b}/\mathfrak{b}^n}$ - гомоморфизм групп.

 $^{^{36}}$ Тоже построенные как в утверждении 1.1.

 $^{^{37}}$ Функтор $\operatorname{Ker}(\varphi): \mathbf{Nil}_A \to \mathbf{Sets}$ определяется следующим образом:

Теорема 1.4. Пусть \mathscr{F} - формальная группа над A. Тогда отображение $\iota_{\mathscr{F}}: \operatorname{Hom}(\Lambda,\mathscr{F}) \to \mathscr{F}(A[[x]]^+)$ вида

$$\iota_{\mathscr{F}}:\Phi\mapsto\Phi_{A[[x]]^+}(1-xt)$$

является изоморфизмом абелевых групп.

Proof. Первая основная теорема теории Картье, см. [Zin84], теорема 3.5.

Обозначение 1.46. Обозначим через $Cart(A) = (End(\Lambda))^{op38}$ кольцо Kapmbe, соответствующее A. Воспользуемся теоремой 1.4 для обозначения некоторых особых элементов этого кольца:

• Для $a \in A$, пусть

$$[a] = \iota_{\Lambda}^{-1}(1 - axt).$$

• Для $n \in \mathbb{N}$, пусть

$$\mathcal{V}_n = \iota_{\Lambda}^{-1}(1 - x^n t).$$

• Для $n \in \mathbb{N}$, пусть

$$\mathcal{F}_n = \iota_{\Lambda}^{-1}(1 - xt^n).$$

Имеет место следующее представление:

$$\operatorname{Cart}(A) = \left\{ \sum_{r=1}^{\infty} \sum_{s=1}^{N_r} \mathcal{V}_r \left[a_{r,s} \right] \mathcal{F}_s \middle| N_r \in \mathbb{N}, a_{r,s} \in A \right\}^{39}.$$

Замечание 1.4. Пусть \mathscr{F} - формальная группа над A. Тогда теорема 1.4 позволяет рассматривать группу кривых $M_{\mathscr{F}}$ как модуль над кольцом Картье $\operatorname{Cart}(A)^{40}$. А именно, для $\Phi \in \operatorname{Cart}(A)$ и $\xi \in M_{\mathscr{F}}$ мы определяем их произведение как

$$\Phi \xi = \iota_{\mathscr{F}} \left(\iota_{\mathscr{F}}^{-1}(\xi) \circ \Phi \right) \in M_{\mathscr{F}}.$$

 $^{^{38}}$ Очевидно, Λ рассматривается над A, и $R^{\rm op}$ для кольца R означает кольцо, совпадающее с R как группа по сложению, но умножение в котором выполняется в обратном порядке относительно умножения в R.

³⁹Теорема 3.12 в [Zin84].

 $^{^{40}}$ Также это позволяет смотреть на элементы кольца $\operatorname{Cart}(A)$ как на операторы, действующие на кривых формальной группы \mathscr{F} .

Обозначение 1.47. Пусть ${\mathscr F}$ - формальная группа над A, p - простое число. Положим

$$M_{\mathscr{F},p} = \{ \xi \in M_{\mathscr{F}} | \mathcal{F}_n \xi = 0 \text{ для всех } (n,p) = 1, n > 1 \}.$$

Элементы группы $M_{\mathscr{F},p}$ называются p-типическими кривыми.

Определение 1.48. Пусть $\varphi: A \to B$ - гомоморфизм коммутативных колец с единицей. Пусть $N \in \mathbf{Nil}_B$, что влечёт существование гомоморфизма колец $f: B \to N$. Тогда гомоморфизмом также является отображение $f \circ \varphi$, следовательно, $N \in \mathbf{Nil}_A$. Таким образом, мы определили функтор

$$b_{\varphi}: \mathbf{Nil}_B \to \mathbf{Nil}_A.$$

Пусть \mathscr{F} - формальная группа над A, тогда $\varphi_*\mathscr{F} = \mathscr{F} \circ b_{\varphi}$ является формальной группой над B, полученной из \mathscr{F} путём замены базы.

Утверждение 1.5. Пусть \mathscr{F} - формальная группа над A. Тогда:

ullet если $\varphi:A o B$ и $\psi:B o C$ - гомоморфизмы колец, то

$$\psi_* (\varphi_* \mathscr{F}) = (\psi \circ \varphi)_* \mathscr{F};$$

ullet если $\varphi:A o B$ - гомоморфизм колец, то

$$\varphi_* \operatorname{Lie}(\mathscr{F}) = \operatorname{Lie}(\varphi_* \mathscr{F});$$

• если \mathscr{G} - другая формальная группа над $A, \alpha = \{\alpha_N\}_{N \in \mathbf{Nil}_A} : \mathscr{F} \to \mathscr{G}$ - гомомофризм формальных групп над $A, \varphi : A \to B$ - гомоморфизм колец, то $\varphi_*\alpha = \{\alpha_{b_\varphi(N)}\}_{N \in \mathbf{Nil}_B} : \varphi_*\mathscr{F} \to \varphi_*\mathscr{G}$ является гомоморфизмом формальных групп над B.

Proof. Проверяется легко.

Обозначение 1.49. С этого момента \mathscr{F} будет конечномерной формальной группой размерности m над \mathfrak{O}_K .

Обозначение 1.50. Пусть $\overline{\mathscr{F}}$ - редукция \mathscr{F} по модулю π , т.е. $\overline{\mathscr{F}} = \kappa_* \mathscr{F}$, где $\kappa : \mathfrak{O}_K \to \overline{K}$ - сюръекция $a \mapsto a \mod \pi$.

Определение 1.51. Пусть \mathscr{G} - формальная группа размерности m над $\mathfrak{D}_K,\ \varphi:\mathscr{F}\to\mathscr{G}$ - изогения, $\mathrm{Ker}\,(\varphi)\cong\mathrm{Spf}\,(A)$ для некоторой аугментированной нильпотентной \mathfrak{D}_K -алгебры A. Для любого простого идеала $\mathfrak{p}\subset\mathfrak{D}_K$ пусть $\kappa(\mathfrak{p})$ - его поле вычетов, тогда

$$h(\mathfrak{p}) = \log_p \left(\dim_{\kappa(\mathfrak{p})} A \otimes_{\mathfrak{O}_K} \kappa(\mathfrak{p}) \right) \in \mathbb{N}^{41}.$$

Если существует такое число $h \in \mathbb{N}$, что $h(\mathfrak{p}) = h$ для всех $\mathfrak{p} \subset \mathfrak{O}_K$, то это h мы обозначим через $h(\varphi)$ и назовём высотой изогении φ^{42} .

Обозначение 1.52. Если для \mathscr{F} определена высота $h\left([p]_{\mathscr{F}}\right)$ умножения на p, то это число мы обозначим через $h=h(\mathscr{F})\in\mathbb{N}$ и назовём высотой формальной группы \mathscr{F} .

Обозначение 1.53. Для любого $n \in \mathbb{N}$ обозначим через $[n]_{\mathscr{F}} \in \operatorname{End}(\mathscr{F})$ эндоморфизм умножения на n. То есть, такой морфизм, что для любого $N \in \operatorname{Nil}_{\mathfrak{O}_K}$:

$$([n]_{\mathscr{F}})_N: a \mapsto \underbrace{a +_{\mathscr{F}(N)} \dots +_{\mathscr{F}(N)} a}_{n \text{ слагаемых}},$$

где $a \in \mathscr{F}(N), +_{\mathscr{F}(N)}$ - операция сложения в группе $\mathscr{F}(N)$.

Определение 1.54. Формальная группа \mathscr{F} называется p-делимой, если $[p]_{\mathscr{F}}$ является изогенией 43 .

Примеры:

- ullet Формальная группа $\mathbb{G}^m_{\mathrm{a}}$ над \mathfrak{O}_K не является p-делимой 44 .
- Формальная группа $\mathbb{G}_{\mathrm{m}}^{m}$ p-делима над \mathfrak{O}_{K}^{45} .

 $^{^{41}}$ [Zin84], замечание 5.6.

 $^{^{42}}$ Такого числа может не быть, и в этом случае высота изогении просто не определена.

⁴³Здесь, как и ранее, $p = \operatorname{char}(\overline{K}) > 0$.

 $^{^{44}}$ Проверить, что $\mathbb{G}_{\rm a}^m$ не p-делима над \overline{K} можно, например, с помощью [Zin84], 5.27. Так как свойство p-делимости сохраняется при замене базы ([Zin84], 5.6), то $\mathbb{G}_{\rm a}^m$ не p-делима и над \mathfrak{O}_K .

 $^{^{45}}$ Вновь можно воспользоваться заменой базы. Над \overline{K} m-мерный случай аналогичен одномерному, рассмотренному в [Zin84], в начале $\S4$ раздела 5.

ullet Формальная группа $\mathscr{F}_{\Gamma,1}$ p-делима над \mathfrak{O}_K^{46} .

Замечание 1.5. С этого момента под \mathscr{F} подразумевается некоторая p-делимая формальная группа размерности m над \mathfrak{O}_K (например, $\mathbb{G}_{\mathrm{m}}^m$ или $\mathscr{F}_{\Gamma,h}$).

Теорема 1.6. Если формальная группа \mathscr{F} строго пропредставима, то существует единственный функториальный по \mathscr{F}^{47} изоморфизм $\exp_{\mathscr{F}} = \exp_{\iota_*\mathscr{F}} : \operatorname{Lie}(\iota_*\mathscr{F}) \to \iota_*\mathscr{F}$, где $\iota : \mathfrak{O}_K \to K$ - вложение.

Proof. [Zin], предложение 1.38.

Замечание 1.6. Теперь рассматриваемая p-делимая m-мерная формальная группа \mathscr{F} над \mathfrak{O}_K также должна быть строго пропредставимой (в качестве примеров всё ещё подходят $\mathbb{G}_{\mathrm{m}}^m$ или $\mathscr{F}_{\Gamma,h}$).

Обозначение 1.55. Пусть $\lambda_{\mathscr{F}}$ - логарифм \mathscr{F} , т.е. $\lambda_{\mathscr{F}} = \exp_{\mathscr{F}}^{-1}$.

1.4 Логарифм формальной группы представимый в виде ряда

Обозначение 1.56. Для $(C, \{\mathfrak{c}_i\}) \in \mathbf{Compl}_K$ пусть $\phi_K^C : C \to \phi_K(C)$ - морфизм, который действует как тождественный на множестве C, если забыть про все структуры на нём. Мы также обозначим через $\phi_K^{-C} : \phi_K(C) \to C$ обратный к ϕ_K^C морфизм. Эти морфизмы сохраняют аддитивную структуру, но не мультипликативную.

$$[p]_{\mathscr{F}_{\Gamma,1}}(\xi) = [pI_m]_{\Gamma}(\xi) = f_{\Gamma}^{-1}(pf_{\Gamma}(\xi)) = \xi^p + \dots,$$

поэтому $[p]_{\mathscr{F}_{\Gamma,1}}$ инъективно на $M_{\mathscr{F}_{\Gamma,1}}$. Следовательно, по [Zin84], 5.27, $\mathscr{F}_{\Gamma,1}$ p-делима над \overline{K} , а значит и над \mathfrak{O}_K .

На самом деле, аналогичные рассуждения применимы и для $\mathscr{F}_{\Gamma,h}$ при h>1.

 $[\]overline{^{46}}$ Переходим к \overline{K} . Для любого $\xi \in M_{\mathscr{F}_{\Gamma,1}} \cong \mathscr{C}(F_{\Gamma})$:

 $^{^{47}}$ Подразумевается, что ехр ведёт себя как функтор, то есть, для каждого гомоморфизма строго пропредставимых формальных групп $\varphi: \mathscr{F} \to \mathscr{G}$ над K определён также некоторый гомоморфизм $\mathrm{Lie}\,(\varphi): \mathrm{Lie}\,(\mathscr{F}) \to \mathrm{Lie}\,(\mathscr{G}),$ причём $\varphi \circ \exp_{\mathscr{F}} = \exp_{\mathscr{G}} \circ \mathrm{Lie}\,(\varphi),$ $\mathrm{Lie}\,(\mathrm{id}_{\mathscr{F}}) = \mathrm{id}_{\mathrm{Lie}(\mathscr{F})}$ и $\mathrm{Lie}\,(\psi \circ \varphi) = \mathrm{Lie}\,(\psi) \circ \mathrm{Lie}\,(\varphi).$

Обозначение 1.57. Для $(C, \{\mathfrak{c}_i\}) \in \mathbf{Compl}_K$ обозначим через $s_C : K \to C$ структурный морфизм K-алгебры C, а через $\alpha_C : K \to \mathrm{End}\,(C)$ - гомоморфизм, задающий структуру K-модуля на C^{48} . Таким образом, $\alpha_C(a)(f) = s_C(a) \cdot f$ для всех $a \in K, f \in C$.

Если $N \in \mathbf{Nil}_K$, то такой K-алгебре будут соответствовать структурный морфизм $s_N : K \to N$ и гомоморфизм $\alpha_N : K \to \mathrm{End}\,(N)$, согласованные с вложением категории \mathbf{Nil}_K в \mathbf{Compl}_K .

Если же $M \in \mathbf{Mod}_K$, то структурного морфизма мы не имеем, но можно также через $\alpha_M : K \to \mathrm{End}(M)$ обозначить гомоморфизм, задающий структуру K-модуля на M. Тогда для $(C, \{\mathfrak{c}_i\}) \in \mathbf{Compl}_K$ будет иметь место

$$\alpha_{\phi_K(C)}(a) \left(\phi_K^C(f) \right) = \phi_K^C \left(s_C(a) \cdot f \right), a \in K, f \in C.$$

Обозначение 1.58. Пусть \mathscr{F} - формальная группа над $K, \mathscr{L} = \mathrm{Lie}\,(\mathscr{F})$. Для любого $(C, \{\mathfrak{c}_i\}) \in \mathbf{Compl}_K$ обозначим через $\varphi_{\mathscr{F},C} : C \to \mathrm{End}\,(\mathscr{L}(C))$ - гомоморфизм колец $\varphi_{\mathscr{F},C} : f \mapsto t_{\mathscr{F}}([f]_C)$, где $[f]_C : \phi_K(C) \to \phi_K(C)$, $[f]_C : g \mapsto \phi_K^C \left(f \cdot \phi_K^{-C}(g) \right)$. При этом, $[s_C(a)]_C = \alpha_{\phi_K(C)}(a)$ для всякого $a \in K$. Получается, что гомоморфизм $\varphi_{\mathscr{F},C}$ задаёт структуру C-модуля на $\mathscr{L}(C)$.

Определение 1.59. Пусть \mathscr{F} - формальная группа над $K, \mathscr{L} = \mathrm{Lie}\,(\mathscr{F})$. Предположим также, что K-модуль $\mathscr{L}(K) = t_{\mathscr{L}}(K) \cong M_{\mathscr{L}}/M_{\mathscr{L}}^{2}$ свободен 50 , и что $\mathrm{Cart}(K)$ -модуль $M_{\mathscr{L}}$ обладает стандартным V-базисом $\{\delta_i\}_{i\in I}^{51}$ для некоторого (не обязательно конечного или даже счётного) множества индексов I. Тогда кольцо эндоморфизмов модуля $\mathscr{L}(K)$ можно представить в виде

$$\operatorname{End}(\mathscr{L}(K)) = M_I(K) = \{ \xi : I \times I \to K | \forall i \in I : \# \{ j \in I | \xi(i,j) \neq 0 \} < \infty \},$$

51
 То есть $(\delta_i)_j = \begin{cases} x, & \text{если } i = j, \\ 0, & \text{иначе} \end{cases}$, где $i,j \in I.$

 $^{^{48}}$ Другими словами, можно сказать, что α_C - представление K, ассоциированное с C (см. $[{\rm Pas}04]).$

⁴⁹См. [Zin84], 4.18 и 4.23.

 $^{^{50}}$ Согласно [Zin84], 4.7, это означает, что $\mathscr{L}(C)\cong\bigoplus_{i\in I}\phi_K(C)$ для всех $(C,\{\mathfrak{c}_i\})\in\mathbf{Compl}_K$.

в котором операции сложения и умножения выглядят следующим образом:

$$(\xi + \eta)(i, j) = \xi(i, j) + \eta(i, j),$$

 $(\xi \eta)(i, j) = \sum_{k \in I} \xi(k, j) \eta(i, k).$

На $\mathscr{L}(K)$ такие эндоморфизмы будут действовать по правилу

$$\xi: (a_i)_{i \in I} \mapsto \left(\sum_{j \in I} \alpha_K(\xi(j, i))(a_j)\right)_{i \in I}.$$

Определим отображение $\sigma_{K[[x]]^+}: \operatorname{End}\left(\mathscr{L}(K)\right) \to \operatorname{End}\left(M_{\mathscr{L}}\right)$ так:

$$\sigma_{K[[x]]^+}(\xi): \delta_i \mapsto \sum_{j \in I} \langle \xi(i,j) \rangle \, {\delta_j}^{52}.$$

Корректность определения связана со свойствами $\xi \in M_I(K)$. Далее, рассмотрим произвольный $N \in \mathbf{Nil}_K$. Следующим шагом будет определение отображения $\sigma_N : \mathrm{End}\,(\mathscr{L}(K)) \to \mathrm{End}\,(\mathscr{L}(N))$. Пусть $\xi \in \mathrm{End}\,(\mathscr{L}(K)), \ \nu \in \mathscr{L}(N), \ \mathrm{u}$ элементу ν соответствует пара (u,γ) относительно изоморфизма $\mathscr{L}(N) \cong \Lambda(N) \overline{\otimes}_{\mathrm{Cart}(K)} M_{\mathscr{L}}^{53}, \ \mathrm{rge}\,\,u = 1 + u_1 t + \ldots + u_n t \gamma \in M_{\mathscr{L}}.$ Пусть $v_i^n : K[[x]]^+ \to K[[X_1, \ldots, X_n]]^+$ - гомоморфизм вида $v_i^n : x \mapsto X_i, \ \mathrm{u} \ v_{\mathscr{L}}^n = \sum_{i=1}^n \mathscr{L}(v_i^n) : M_{\mathscr{L}} \to \mathscr{L}(K[[X_1, \ldots, X_n]]^+).$ Пусть $\rho_n^u : K[[X_1, \ldots, X_n]]^+ \to N$ - гомоморфизм вида $\rho_n^u : X_i \mapsto (-1)^i u_i.$ Тогда положим

$$\sigma_N(\xi): \nu \mapsto \mathscr{L}(\rho_n^u) \left(v_\mathscr{L}^n \left(\sigma_{K[[x]]^+}(\xi)(\gamma) \right) \right).$$

Таким образом, зафиксировав некоторый V-базис Cart(K)-модуля $M_{\mathscr{L}}$, мы можем построить по нему систему морфизмов $\sigma = \{\sigma_N\}_{N \in \mathbf{Nil}_K}$, которую назовём переносом эндоморфизмов над \mathbf{Nil}_K для \mathscr{F} . Также

⁵³См. [Zin84], 3.28.

 $^{^{52}}$ Так как любой элемент из $M_{\mathscr L}$ представим через элементы V-базиса, то достаточно определить действие гомоморфизма $\sigma_{K[[x]]^+}(\xi)$ на $\{\delta_i\}_{i\in I}$

иногда будем говорить, что \mathscr{F} допускает перенос эндоморфизмов над \mathbf{Nil}_K посредством σ^{54} .

Утверждение 1.7. Пусть \mathscr{F} - формальная группа над $K, \mathscr{L} = \mathrm{Lie}\,(\mathscr{F}),$ и \mathscr{F} допускает перенос эндоморфизмов над \mathbf{Nil}_K посредством $\sigma = \{\sigma_N\}_{N \in \mathbf{Nil}_K}.$ Пусть $N, M \in \mathbf{Nil}_K,$ и $f \in \mathrm{Hom}_{\mathbf{Mod}_K}(\phi_K(N), \phi_K(M))$ - гомоморфизм K-модулей. Тогда, $\forall \xi \in \mathrm{End}\,(\mathscr{L}(K))$:

$$\mathcal{L}(N) \xrightarrow{\sigma_N(\xi)} \mathcal{L}(N)
t_{\mathscr{F}}(f) \downarrow \qquad \qquad \downarrow t_{\mathscr{F}}(f)
\mathcal{L}(M) \xrightarrow{\sigma_M(\xi)} \mathcal{L}(M)$$

- коммутативная диаграмма.

Proof. Из [Zin84] известно, что изоморфизм $\Lambda(N) \overline{\otimes}_{\operatorname{Cart}(K)} M_{\mathscr{L}} \cong \mathscr{L}(N)$ действует по правилу $(u, \gamma) \mapsto \mathscr{L}(\rho_n^u) (v_{\mathscr{L}}^n(\gamma))^{55}$. Используя этот факт, а также определения \mathscr{L} , σ_N и свойства функторов, не трудно убедиться в истинности утверждения.

Определение 1.60. Благодаря 1.7, мы можем дополнить определение 1.59.

Пусть \mathscr{F} - формальная группа над $K, \mathscr{L} = \mathrm{Lie}\,(\mathscr{F})$, и \mathscr{F} допускает перенос эндоморфизмов над \mathbf{Nil}_K посредством $\sigma = \{\sigma_N\}_{N \in \mathbf{Nil}_K}$. Пусть $(C, \{\mathfrak{c}_i\}) \in \mathbf{Compl}_K$. Определим отображение $\sigma_C : \mathrm{End}\,(\mathscr{L}(K)) \to \mathrm{End}\,(\mathscr{L}(K))$ Пусть $\xi \in \mathrm{End}\,(\mathscr{L}(K)), \, \varphi \in \mathscr{L}(C)$. По определению $\mathscr{L}(C), \, \varphi$ имеет вид $\varphi = (\varphi_i)_{i=1}^\infty$, где $\varphi_i \in \mathscr{L}(\mathfrak{c}_1/\mathfrak{c}_i)$ и $\varphi_i = \mathscr{L}(f_{ij})(\varphi_j)$ при $i \leq j$, и $f_{ij} : \mathfrak{c}_1/\mathfrak{c}_i \to \mathfrak{c}_1/\mathfrak{c}_i, \, f_{ij} : f \mod \mathfrak{c}_j \mapsto f \mod \mathfrak{c}_i$. Тогда положим

$$\sigma_C(\xi)(\varphi) = \left(\sigma_{\mathfrak{c}_1/\mathfrak{c}_i}(\xi)(\varphi_i)\right)_{i=1}^{\infty}.$$

Именно корректность этого определения проверяется с помощью 1.7. Теперь систему морфизмов $\sigma = \{\sigma_C\}_{(C,\{\mathfrak{c}_i\})\in\mathbf{Compl}_K}$ мы можем назвать переносом эндоморфизмов для \mathscr{F} , и иногда говорить, что \mathscr{F} допускает перенос эндоморфизмов посредством σ .

 $^{^{54}}$ Другими словами, если мы говорим, что \mathscr{F} допускает перенос эндоморфизмов посредством σ , то мы подразумеваем, что $M_{\mathscr{L}}$ обладает стандартным V-базисом, и что σ строится с помощью этого базиса так, как это указано в данном определении.

⁵⁵См. [Zin84], 3.28. Обозначения взяты из определения 1.59.

Утверждение 1.8. Пусть \mathscr{F} - формальная группа над $K, \mathscr{L} = \mathrm{Lie}\,(\mathscr{F}),$ и \mathscr{F} допускает перенос эндоморфизмов посредством $\sigma = \{\sigma_C\}_{(C,\{\mathfrak{c}_i\})\in\mathbf{Compl}_K}.$ Тогда

• Пусть $C, D \in \mathbf{Compl}_K$, и $f \in \mathrm{Hom}_{\mathbf{Mod}_K}(\phi_K(C), \phi_K(D))$ - гомоморфизм K-модулей. Тогда, $\forall \xi \in \mathrm{End}\,(\mathscr{L}(K))$:

$$\mathcal{L}(C) \xrightarrow{\sigma_C(\xi)} \mathcal{L}(C)$$

$$t_{\mathscr{F}}(f) \downarrow \qquad \qquad \downarrow t_{\mathscr{F}}(f)$$

$$\mathcal{L}(D) \xrightarrow{\sigma_D(\xi)} \mathcal{L}(D)$$

- коммутативная диаграмма,
- $\forall (C, \{\mathfrak{c}_i\}) \in \mathbf{Compl}_K : \sigma_C : \mathrm{End}\,(\mathscr{L}(K)) \to \mathrm{End}\,(\mathscr{L}(C))$ гомоморфизм колец,
- $\forall (C, \{\mathfrak{c}_i\}) \in \mathbf{Compl}_K: \sigma_C \circ \varphi_{\mathscr{F},K} = \varphi_{\mathscr{F},C} \circ s_C.$

Proof. Первое свойство проверяется с помощью 1.7.

Чтобы проверить второе свойство, достаточно использовать определение и уже доказанное свойство σ_C , свойства проективных пределов и тот факт, что σ_N является гомоморфизмом колец для любого $N \in \mathbf{Nil}_K$. А это, в свою очередь, следует из определения σ_N , и того, что для любых $\xi, \eta \in \mathcal{L}(K)$ и $\gamma \in M_{\mathcal{L}}$:

$$\sigma_{K[[x]]^{+}}(\xi + \eta)(\gamma) = \sigma_{K[[x]]^{+}}(\xi)(\gamma) + \sigma_{K[[x]]^{+}}(\eta)(\gamma),$$

$$\sigma_{K[[x]]^{+}}(\xi\eta)(\gamma) = \sigma_{K[[x]]^{+}}(\xi) \left(\sigma_{K[[x]]^{+}}(\eta)(\gamma)\right).$$

Для проверки этих утверждений, можно ограничиться случаем $\gamma = \delta_i$, где $\{\delta_i\}_{i \in I}$ - стандартный V-базис $M_{\mathscr L}$. Дальше надо использовать определение $\sigma_{K[[x]]^+}$, а также свойство $\langle a+b\rangle\,\delta_i = \langle a\rangle\,\delta_i + \langle b\rangle\,\delta_i$ для любых $a,b\in K$ - именно из-за этого свойства предпочтительно брать стандартный базис $M_{\mathscr L}$, а не любой другой, иначе пришлось бы вносить корректировки в определение $\sigma_{K[[x]]^+}$ и в обоснование данного свойства.

Докажем третье свойство. Используя определения σ_C и $\varphi_{\mathscr{F},C}$, можно свести его к случаю, когда $C=N\in\mathbf{Nil}_K$. Далее, используя разложение элементов из $M_{\mathscr{L}}$ по V-базису, можно ограничиться доказательством того факта, что

$$\mathscr{L}(\rho_n^u)\left(v_{\mathscr{L}}^n\left(\sigma_{K[[x]]^+}\left(\varphi_{\mathscr{F},K}(a)\right)\left(V_r\left\langle b\right\rangle \delta_i\right)\right)\right) = \varphi_{\mathscr{F},N}(s_N(a))(\nu),$$

где элементу $\nu \in \mathcal{L}(N)$ соответствует пара $(u, V_r \langle b \rangle \delta_i)$ относительно изоморфизма $\mathcal{L}(N) \cong \Lambda(N) \overline{\times}_{\operatorname{Cart}(K)} M_{\mathcal{L}}$, где $r \geq 1, i \in I, a, b \in K, u \in \Lambda(N), \deg(u) = n$. На самом деле, проверить это не сложно - все так же пользуясь лишь определениями и уже известными свойствами $\sigma_{K[[x]]^+}, \varphi_{\mathscr{F},N}, \rho_n^u$ и $v_{\mathscr{L}}^n$.

Утверждение 1.9. Пусть \mathscr{F} - формальная группа над $K, \mathscr{L} = \mathrm{Lie}(\mathscr{F})$. Пусть $\sigma = \{\sigma_C : \mathrm{End}(\mathscr{L}(K)) \to \mathrm{End}(\mathscr{L}(C))\}_{(C,\{\mathfrak{c}_i\}) \in \mathbf{Compl}_K}$ - набор гомоморфизмож колец, такой, что:

• Для любого $\xi \in \operatorname{End}(\mathscr{L}(K))$

$$\sigma_{K[[x]]^+}(\xi): \delta_i \mapsto \sum_{j \in I} \langle \xi(i,j) \rangle \, \delta_j.$$

• Пусть $C, D \in \mathbf{Compl}_K$, и $f \in \mathrm{Hom}_{\mathbf{Mod}_K}(\phi_K(C), \phi_K(D))$ - гомоморфизм K-модулей. Тогда, $\forall \xi \in \mathrm{End}\,(\mathscr{L}(K))$:

$$\mathcal{L}(C) \xrightarrow{\sigma_C(\xi)} \mathcal{L}(C)$$

$$t_{\mathscr{F}}(f) \downarrow \qquad \qquad \downarrow t_{\mathscr{F}}(f)$$

$$\mathcal{L}(D) \xrightarrow{\sigma_D(\xi)} \mathcal{L}(D)$$

- коммутативная диаграмма.

Тогда система σ является переносом эндоморфизмов для \mathscr{F} .

Proof. Доказывается просто.

Замечание 1.7. Утверждение 1.8 даёт необходимые, а 1.9 - достаточные условия для того, чтобы система гомоморфизмов σ была переносом эндоморфизмов для формальной группы \mathscr{F} .

Утверждение 1.10. Пусть \mathscr{F} - конечномерная формальная группа размерности m над K, $\mathscr{L} = \mathrm{Lie}\,(\mathscr{F})$. Тогда $\mathrm{End}\,(\mathscr{L}(C)) = M_m\,(\mathrm{End}\,(\phi_K(C)))$ для любого $(C,\{\mathfrak{c}_i\}) \in \mathbf{Compl}_K$, $\mathrm{End}\,(\mathscr{L}(K)) = M_m(K)$, и \mathscr{F} допускает перенос эндоморфизмов посредством $\sigma = \{\sigma_C\}_{(C,\{\mathfrak{c}_i\}) \in \mathbf{Compl}_K}$, где

$$\sigma_C: \begin{pmatrix} a_{11} & \dots & a_{1m} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mm} \end{pmatrix} \mapsto \begin{pmatrix} \alpha_{\phi_K(C)}(a_{11}) & \dots & \alpha_{\phi_K(C)}(a_{1m}) \\ \vdots & & & \vdots \\ \alpha_{\phi_K(C)}(a_{m1}) & \dots & \alpha_{\phi_K(C)}(a_{mm}) \end{pmatrix}$$

Proof. Кольцо End $(\mathcal{L}(C))$ принимает указанный вид потому, что $\mathcal{L} \cong \mathbb{G}_a^m$, согласно теореме 1.39 из [Zin].

Для доказательства проще всего воспользоваться критерием 1.9. Свойства матриц и $\alpha_{\phi_K(C)}$ влекут тот факт, что σ_C - гомоморфизм колец. Остальные условия также проверяются напрямую по определению.

Обозначение 1.61. Пусть $\mathscr{F} \cong \mathrm{Spf}\,(C,\{\mathfrak{c}_k\})$ - пропредставимая формальная группа над полем $K,\,(C,\{\mathfrak{c}_k\}) \in \mathbf{Compl}_K$. Обозначим изоморфизм $\mathscr{F} \to \mathrm{Spf}\,(C,\{\mathfrak{c}_k\})$ через $\phi_{\mathscr{F},C}$.

Обозначение 1.62. Пусть $\mathscr{F} \cong \mathrm{Spf}\,(C,\{\mathfrak{c}_k\})$ - строго пропредставимая формальная группа над полем $K,(C,\{\mathfrak{c}_k\})\in \mathbf{Compl}_K$. Пусть $\{\varepsilon_i\}_{i\in I}^{56}$ - множество элементов из \mathfrak{c}_1 , таких, что $\{\varepsilon_i \mod \mathfrak{c}_2\}_{i\in I}$ - базис модуля $\mathfrak{c}_1/\mathfrak{c}_2$. Пусть $P_C = K\langle\langle Z_i\rangle\rangle_{i\in I}$ - K-алгебра формальных степенных рядов от некоммутирующих переменных $Z_i, \alpha_C: P_C \to C$ - сюръективный гомоморфизм S^{57} , отправляющий S_i в S_i . Пусть S_i : S_i - S_i - S_i - изоморфизм S_i - отправляющий следующим образом: S_i - S_i -

 $^{^{56}|}I|<\infty$, согласно определению строгой пропредставимости.

⁵⁷см. [Qui69], следствие А.1.7.

n>0 пусть $d_{C,k}^n \in \operatorname{End}_{K\text{-alg}}\left(\alpha_C^{-1}(\mathfrak{c}_1)/\alpha_C^{-1}(\mathfrak{c}_k)\right)$ определяется следующим образом: $d_{C,k}^n: \overline{s(Z_i)_{i\in I}} \mapsto \overline{s(Z_i^n)_{i\in I}}$, то есть, $d_{C,k}^n$ заменяет каждый Z_i на Z_i^n в элементах из $\alpha_C^{-1}(\mathfrak{c}_1)/\alpha_C^{-1}(\mathfrak{c}_k)$. Тогда для того же n>0 пусть $d_{C,k,N}^n: \operatorname{Hom}\left(\alpha_C^{-1}(\mathfrak{c}_1)/\alpha_C^{-1}(\mathfrak{c}_k), N\right) \to \operatorname{Hom}\left(\alpha_C^{-1}(\mathfrak{c}_1)/\alpha_C^{-1}(\mathfrak{c}_k), N\right)$ - отображение вида $d_{C,k,N}^n: s\mapsto s\circ d_{C,k}^n$. Это приводит к корректному определению отображения $D_{C,k,N}^n=\tau_{C,k,N}^{-1}\circ d_{C,k,N}^n\circ \tau_{C,k,N}$, действующего на множестве $\operatorname{Hom}\left(\mathfrak{c}_1/\mathfrak{c}_k, N\right)$. Так как такие отображения коммутируют с морфизмами направленной системы $\{\operatorname{Hom}\left(\mathfrak{c}_1/\mathfrak{c}_k, N\right)\}_{k>0}$, то по ним можно однозначно восстановить отображение между индуктивными пределами $D_{C,N}^n:\operatorname{Spf}\left(C,\{\mathfrak{c}_k\}\right)(N)\to\operatorname{Spf}\left(C,\{\mathfrak{c}_k\}\right)(N)$. В таком случае, обозначим $D_{\mathcal{F}(N)}^n:\operatorname{Cp}\left(\mathfrak{F}(N)\right)=(\mathfrak{F}(N))=(\mathfrak{F}(N))=(\mathfrak{F}(N))$, где по-прежнему $p=\operatorname{char}\left(\overline{K}\right)>0$. Дополнительно обозначим $\Delta_{\mathcal{F}(N)}^0=\operatorname{id}_{\mathcal{F}(N)}$ и $\Delta_{\mathcal{F}(N)}^n=\Delta_{\mathcal{F}(N)}\circ\Delta_{\mathcal{F}(N)}^{n-1}$ для любого целого n>0.

Замечание 1.8. В 1.62 множество раз встаёт вопрос корректности, существования и единственности тех или иных обозначений и определений. Однако, по отдельности они проверяются относительно легко и не требуют подробных разъяснений.

Замечание 1.9. Итоговое отображение $\Delta_{\mathscr{F}(N)}$ из 1.62, в общем случае, не обязано быть эндоморфизмом абелевой группы $\mathscr{F}(N)$. Его надо воспринимать именно как отображение множества в себя.

Утверждение 1.11. Система отображений $\{\Delta_{\mathscr{F}(N)}\}_{N\in\mathbf{Nil}_K}$ из 1.62 обладает следующим свойством: для любых $N,M\in\mathbf{Nil}_K$ и любого $f\in\mathrm{Hom}\,(N,M)$ коммутативна следующая диаграмма:

$$\begin{array}{ccc} \mathscr{F}(N) \xrightarrow{\Delta_{\mathscr{F}(N)}} \mathscr{F}(N) \\ \\ \mathscr{F}(f) \downarrow & & \downarrow \mathscr{F}(f) \\ \\ \mathscr{F}(M) \xrightarrow{\Delta_{\mathscr{F}(M)}} \mathscr{F}(M) \end{array}$$

Следовательно, $\Delta_{\mathscr{F}} = \{\Delta_{\mathscr{F}(N)}\}_{N \in \mathbf{Nil}_K}$ является естественным преобразованием функтора \mathscr{F} , если рассматривать его как функтор из \mathbf{Nil}_K в \mathbf{Sets} .

Proof. Без труда проверяется по определению.

Утверждение 1.12. Пусть \mathscr{F} - строго пропредставимая формальная группа над полем $K, N \in \mathbf{Nil}_K$. Тогда для любого $\nu \in \mathscr{F}(N)$ существует некоторое целое $n \geq 0$, такое, что $\Delta^n_{\mathscr{F}(N)}(\nu) = 0$.

Proof. Доказывается не сложно, надо лишь использовать нильпотентность N и строгую пропредставимость \mathscr{F} .

Утверждение 1.13. Пусть \mathscr{F} - конечномерная формальная группа размерности m над K. Тогда $\Delta_{\mathscr{F}(N)}:\mathscr{F}(N)\to\mathscr{F}(N)$ принимает вид $\Delta_{\mathscr{F}(N)}:(\nu_1,...,\nu_m)\mapsto (\nu_1^p,...,\nu_m^p).$

Proof. Известно, что $\mathscr{F} \cong \mathrm{Spf}\,(C,\{\mathfrak{c}_k\})$, где $C=K[[X_1,...,X_m]]$, и $\mathfrak{c}_k=(X_1,...,X_m)^k$. Используя этот факт и определение 1.62, можно непосредственно получить требуемое.

Обозначение 1.63. Пусть \mathscr{F} , \mathscr{G} - пропредставимые формальные группы над полем K, такие, что $\mathscr{F} \cong \mathscr{G} \cong \mathrm{Spf}\,(C,\{\mathfrak{c}_k\})$ для некоторого $(C,\{\mathfrak{c}_k\}) \in \mathbf{Compl}_K$. Введём обозначение $\phi_{\mathscr{F},\mathscr{G}} = \phi_{\mathscr{G},C}^{-1} \circ \phi_{\mathscr{F},C}$.

Замечание 1.10. Изоморфизм $\phi_{\mathscr{F},\mathscr{G}}$ из 1.63 в общем случае не является изоморфизмом формальных групп. Это лишь изоморфизм двух функторов из \mathbf{Nil}_K в \mathbf{Sets} .

Утверждение 1.14. Пусть \mathscr{F} - конечномерная формальная группа размерности m над K, $\mathscr{L} = \mathrm{Lie}\,(\mathscr{F})$. Тогда для любого $N \in \mathbf{Nil}_K$ биекция $(\phi_{\mathscr{F},\mathscr{L}})_N : \mathscr{F}(N) \to \mathscr{L}(N)$ действует следующим образом: $(\nu_1,...,\nu_m) \mapsto \left(\phi_K^N(\nu_1),...,\phi_K^N(\nu_m)\right) \in (\phi_K(N)^m,+_{t_{\mathscr{F}}}) = (N^m,+_{\mathscr{L}}).$

Proof. Легко следует из определения.

Определение 1.64. Пусть \mathscr{F} , \mathscr{G} - строго пропредставимые формальные группы над полем K, $\mathscr{L} = \mathrm{Lie}\,(\mathscr{G}) \cong \mathrm{Lie}\,(\mathscr{F})$, и пусть \mathscr{G} допускает перенос эндоморфизмов посредством σ . Пусть $\Lambda = \sum_{k=0}^{\infty} \Lambda_k \Delta^k \in \mathrm{End}\,(\mathscr{L}(K))\,[[\Delta]]$. Обозначим через $\Lambda^{\mathscr{F},\mathscr{G}}$ естественное преобразование, соответствующее

 Λ , переводящее \mathscr{F} в \mathscr{G} , которые рассматриваются как функторы из \mathbf{Nil}_K в \mathbf{Sets} . Действие $\Lambda^{\mathscr{F},\mathscr{G}}$ определим следующим образом:

$$\Lambda_N^{\mathscr{F},\mathscr{G}}: \nu \mapsto (\phi_{\mathscr{L},\mathscr{G}})_N \left(\sum_{k=0}^{\infty} \sigma_N(\Lambda_k) \left((\phi_{\mathscr{F},\mathscr{L}})_N \left(\Delta_{\mathscr{F}(N)}^k(\nu) \right) \right) \right),$$

где $\nu \in \mathscr{F}(N)$, и суммирование ведётся с помощью операции $+_{\mathscr{L}}$ в $\mathscr{L}(N)$. Корректность определения 58 вытекает из утверждений 1.11, 1.12 и свойств σ .

Утверждение 1.15. Пусть \mathscr{F} - конечномерная формальная группа размерности m над \mathfrak{O}_K , $\mathscr{L}=\mathrm{Lie}\,(\iota_*\mathscr{F})$, а F - соответствующий ей групповой закон. Тогда групповой закон F является p-типическим в том и только том случае, когда существует ряд $\Lambda \in \mathrm{End}\,(\mathscr{L}(K))$ [[Δ]], определяющий логарифм \mathscr{F} , то есть, когда $\lambda_{\mathscr{F}}=\Lambda^{\iota_*\mathscr{F},\mathscr{L}}$.

Proof. Следует из 1.2, 1.10, 1.13 и 1.14.

Замечание 1.11. 1.15 означает, что в некоторых случаях логарифм формальной группы полностью определяется некоторым рядом $\Lambda \in \operatorname{End}(\mathcal{L}(K))$ [[Именно такие формальные группы будут интересовать нас далее.

Определение 1.65. Пусть \mathscr{F} - строго пропредставимая формальная группа над \mathfrak{O}_K , допускающая перенос эндоморфизмов, $\mathscr{L} = \mathrm{Lie}\,(\iota_*\mathscr{F})$. Если существует ряд $\Lambda \in \mathrm{End}\,(\mathscr{L}(K))\,[[\Delta]]$, такой, что $\lambda_{\mathscr{F}} = \Lambda^{\iota_*\mathscr{F},\mathscr{L}}$, то мы будем говорить, что Λ соответствуют формальной группе \mathscr{F} .

Предположение 1. Пусть \widehat{W} - формальная группа векторов Витта над K^{59} . Тогда существует ряд $\Lambda \in \operatorname{End}\left(\operatorname{Lie}\left(\mathscr{F}\right)(K)\right)[[\Delta]]$, соответствующий \widehat{W}^{60} .

 $[\]overline{^{58}}$ Все морфизмы применимы, сумма конечна, и набор $\{\Lambda_N^{\mathscr{F},\mathscr{G}}\}_{N\in\mathbf{Nil}_K}$ действительно определяет естественное преобразование функторов, т.е. $\Lambda_M^{\mathscr{F},\mathscr{G}}\circ\mathscr{F}(f)=\mathscr{G}(f)\circ\Lambda_N^{\mathscr{F},\mathscr{G}}$ для любого гомоморфизма K-алгебр $f\in\mathrm{Hom}\,(N,M)$.

 $^{^{59}\}widehat{W}:N\mapsto \Lambda(N)arepsilon_1$ для любого $N\in\mathbf{Nil}_K,$ где $arepsilon_1=\prod_{\ell\neq p}\left(1-rac{1}{\ell}\mathbf{V}_\ell\mathbf{f}_\ell
ight),\,p=\mathrm{char}\left(\overline{K}
ight)>0.$

 $^{^{60}}$ Это пример, выходящий за пределы утверждения 1.15, поскольку формальная группа \widehat{W} бесконечномерна.

Предположение 2. Пусть \mathscr{F} - строго пропредставимая формальная группа над \mathfrak{O}_K , $\mathscr{L}=\mathrm{Lie}\left(\iota_*\mathscr{F}\right)\cong\bigoplus_{i\in I}\mathbb{G}_{\mathrm{a}}$ для некоторого множества индексов I, и $M_{\mathscr{L}}$ содержит только p-типические элементы⁶¹. Тогда существует ряд $\Lambda \in \operatorname{End}(\mathscr{L}(K))[[\Delta]]$, соответствующий формальной группе \mathscr{F} .

Обозначение 1.66. Пусть I - множество индексов, $p = \operatorname{char}(\overline{K})$. Положим

$$p_I = \sum_{k=0}^{\infty} p_{I,k} \Delta^k \in M_I(K)[[\Delta]],$$

где

$$p_{I,0}: (i,j) \mapsto \begin{cases} p, & i = j, \\ 0, & i \neq j; \end{cases}$$

 $p_{I,k}: (i,j) \mapsto 0, k > 0.$

Определение 1.67. Пусть M - V-плоский Cart(K)-модуль. Предположим, что существует такое множество индексов I, что $\iota: M \to \bigoplus_{i \in I} \mathbb{G}_{\mathbf{a}}(K[[x]]^+)$

- изоморфизм $\mathrm{Cart}(K)$ -модулей. Пусть $\{\delta_i\}_{i\in I}$ - стандартный Vбазис для $\bigoplus_{i\in I}\mathbb{G}_{\mathbf{a}}(K[[x]]^+)$. Тогда мы назовём V-базис $\{\delta_i^M=\iota^{-1}(\delta_i)\}_{i\in I}$ cmandapmным V-базиcom для M.

Определение 1.68. Пусть M и N - V-плоские Cart(K)-модули, обладающие стандартными V-базисами $\{\delta_i^M\}_{i\in I}$ и $\{\delta_i^N\}_{i\in I}$ для одного и того же множества индексов I. Пусть $\Lambda = \sum_{k=0}^{\infty} \Lambda_k \Delta^k \in M_I(K)[[\Delta]].$

Обозначим через $\Lambda^{\scriptscriptstyle M,N}:M o N$ гомоморфизм модулей, соотвтетсвующий

 $^{^{61}}p = \operatorname{char}\left(\overline{K}\right) > 0.$

Возможно, это примерно то же самое, что требовать от формальной группы равенства $\mathscr{F} = \widehat{\mathscr{F}}$, где $\widehat{\mathscr{F}} : \mathbf{Nil}_K \to \mathbf{Ab}, \widehat{\mathscr{F}} : N \mapsto \mathscr{F}(N)\varepsilon_1$.

Более точным могло бы быть требование, чтобы все элементы $M_{\mathscr L}$ имели вид $\sum_{k>0}\sum_{i\in I}V_{p^k}\langle a_{k,i}\rangle\,\delta_i$, где $\{\delta_i\}_{i\in I}$ - стандартный базис $M_{\mathscr{L}}.$

 Λ , действующий следующим образом:

$$\Lambda^{\scriptscriptstyle M,N}: \delta^{\scriptscriptstyle M}_i \mapsto \sum_{k=0}^\infty \sum_{j\in I} \left< \Lambda_k(i,j) \right> \mathbf{V}_{p^k} \delta^{\scriptscriptstyle N}_j.$$

Так как $N = \varprojlim_k N/V_{p^k}N$ и $\#\{j \in I | \Lambda_k(i,j) \neq 0\} < \infty$, $\forall i \in I, k \geq 0$, то сумма в правой части формулы всегда конечна, поэтому гомоморфизм определён корректно.

Предположение 3. Пусть \mathscr{F} - строго пропредставимая формальная группа над \mathfrak{O}_K , допускающая перенос эндоморфизмов, $\mathscr{L} = \mathrm{Lie}\,(\iota_*\mathscr{F})$, и $\Lambda \in \mathrm{End}\,(\mathscr{L}(K))\,[[\Delta]]$ соответствует \mathscr{F} . Тогда $(\lambda_{\mathscr{F}})_{K[[x]]^+} = \Lambda^{M_{\iota_*\mathscr{F}},M_{\mathscr{L}}}$.

2 Инвариант дробной части r(F)

Теорема 2.1. Пусть $\Lambda_F \in M_m(K[[\Delta]])$ соответствует формальному групповому закону F (т.е. $\Lambda_F(X)$ является логарифмом F), Λ_G соответствует формальному групповому закону G над \mathfrak{O}_N , при этом редукции F и G равны. Тогда Λ_F можно представить в виде vu^{-1} , где $vp^l\pi^{-p^l} \in M_m(\mathfrak{O}_K[[\Delta]]), l = \left|\log_p\left(\frac{e}{p-1}\right)\right|$, а $u = p\Lambda_G^{-1} \in M_m(\mathfrak{O}_{N,\sigma}[[\Delta]]).$

Proof. См. [Бон06], теорема 4.2.1.

Замечание 2.1. Тот факт, что $p\Lambda_G^{-1} \in M_m(\mathfrak{O}_{N,\sigma}[[\Delta]])$, следует из доказательства теоремы 4.2.1 в [Бон06].

Замечание 2.2. На практике, $p\Lambda_G^{-1}$ можно вычислять с помощью доказательства теормы, используя также [Haz12], 20.3. Кроме того, можно попытаться вычислить $\Lambda_G^{-1}(X)$ непосредственно, используя [Haz12], A.4.6.

Примеры:

• Пусть $K = \mathbb{Q}_p(\zeta_{p^n}), N = \mathbb{Q}_p, F = \hat{\mathbb{G}}_a^m, G = \hat{\mathbb{G}}_a^m$. Тогда $\Lambda_F = I_m, \Lambda_G = I_m, u = pI_m, v = pI_m$.

Предположение 4. Пусть $\iota: \mathfrak{O}_K \to K$, $\omega: \mathfrak{O}_N \to N$ и $\alpha: N \to K$ - вложения. Пусть \mathscr{F} - строго пропредставимая p-делимая формальная группа над \mathfrak{O}_K , Lie $(\iota_*\mathscr{F}) \cong \bigoplus_{i \in I} \mathbb{G}_{\mathbf{a}}$ и $\Lambda_{\mathscr{F}} \in M_I(K)[[\Delta]]$ соответствует

 \mathscr{F} . Пусть \mathscr{G} - строго пропредставимая p-делимая формальная группа над \mathfrak{O}_N , Lie $(\omega_*\mathscr{G})\cong\bigoplus_{j\in J}\mathbb{G}_{\mathbf{a}}$ и $\Lambda_\mathscr{G}\in M_J(N)[[\Delta]]$ соответствует \mathscr{G} . Предположим также, что $\overline{\mathscr{F}}=\overline{\mathscr{G}}$. Тогда

- 1. $I \simeq J$; это позволяет ввести обозначение $[p_I] = p_I^{(\alpha \circ \omega)_* \mathscr{G}, \iota_* \mathscr{F}}$;
- 2. диаграмма

$$(\alpha \circ \omega)_* \mathscr{G} \xrightarrow{\alpha_* \lambda_{\mathscr{G}}} \operatorname{Lie} ((\alpha \circ \omega)_* \mathscr{G})$$

$$\downarrow^{\operatorname{Lie}([p_I])}$$

$$\iota_* \mathscr{F} \xrightarrow{\lambda_{\mathscr{F}}} \operatorname{Lie} (\iota_* \mathscr{F})$$

коммутативна;

- 3. $[p_I]$ и Lie $([p_I])$ изогении формальных групп;
- 4. существует такой ряд $u \in M_I(\mathfrak{O}_N)[[\Delta]]$, что $[p_I] \circ (\alpha_* \lambda_\mathscr{G})^{-1} = u^{\text{Lie}((\alpha \circ \omega)_* \mathscr{G}), \iota_* \mathscr{F}};$
- 5. существует такой ряд $v \in M_I(K)[[\Delta]]$, что $\operatorname{Lie}([p_I]) = v^{\operatorname{Lie}((\alpha \circ \omega)_* \mathscr{G}), \operatorname{Lie}(\iota_* \mathscr{F})}$, причём $vp^l\pi^{-p^l} \in M_I(\mathfrak{O}_K)[[\Delta]]$, где $l = \left\lfloor \log_p \left(\frac{e}{p-1}\right) \right\rfloor$.

Список литературы

- [Лен68] С. Ленг. Алгебра. 1968.
- [Qui69] D. Quillen. Rational Homotopy Theory. 1969.
- [Zin84] T. Zink. Cartier Theory of Commutative Formal Groups. 1984.
- [FV01] I.B. Fesenko and S.V. Vostokov. *Local Fields and Their Extensions*. 2001.
- [Pas04] D. Passman. A Course in Ring Theory. 2004.
- [Бон06] М.В. Бондарко. "Явные конструкции в теории формальных групп и конечных групповых схем и их приложения к арифметической геометрии". PhD thesis. 2006.
- [Haz12] M. Hazewinkel. Formal Groups and Applications. 2012.
- [Gou20] F. Gouvêa. p-adic numbers: An introduction. 2020.
- [Zin] T. Zink. "Lectures on p-divisible group". Lecture notes. URL: https://www.math.uni-bielefeld.de/~zink/pDivGr1.pdf.