Clase 7 - Calor y Primera Ley

Física 2 - 2024

Calor (Q)

Esma de transfeir energia entre un mergo y su entomo delido a una diferencia de temperatura

- Mecanismos de transmission: conducción, convekción, radiación
- le portir de Q re puede définir el color específico C:

Calor en sólidos y líquidos

- Li NO HAY combio de fose: Q = c m ΔT
- Li HAY cambrio de fose: Q = m L Cabor latente (depende del cambrio de fose)
- En el cambio de fose (ebullición, solidificación, etc) la temperatura permanere constrante.

Calor específico

1 cal = 4,186 J

Sustancia	c [J/(g°C)]	c[cal/g°C]
Agua	4.182	1.0
Aire seco	1.009	0.241
Aluminio	0.896	0.214
Bronce	0.385	0.092
Cobre	0.385	0.092
Concreto	0.92	0.22
Hielo (a 0°c)	2.09	0.5
Plomo	0.13	0.031
Vidrio	0.779	0.186
Zinc	0.389	0.093

Calor latente

Sustancia	Punto de fusión (°C)	Calor latente de fusión (J/kg)	Punto de ebullición (°C)	Calor latente de vaporización (J/kg)
Helio	-269.65	5.23×10^{3}	-268.93	2.09×10^{4}
Nitrógeno	-209.97	2.55×10^4	-195.81	2.01×10^{5}
Oxígeno	-218.79	1.38 × 104	-182.97	2.13 × 10 ⁵
Alcohol etílico	-114	1.04×10^{5}	78	8.54×10^{5}
Agua	0.00	3.33×10^{5}	100.00	2.26×10^{6}
Azufre	119	3.81 × 10 ⁴	444.60	3.26 × 10 ⁵
Plomo	327.3	2.45 × 104	1 750	8.70×10^{5}
Aluminio	660	3.97 × 10 ⁵	2 450	1.14×10^{7}
Plata	960.80	8.82 × 10 ⁴	2 193	2.33×10^{6}
Oro	1 063.00	6.44 × 10 ⁴	2 660	1.58×10^{6}
Cobre	1 083	1.34×10^{5}	1 187	5.06×10^{6}

Calor en gas ideal

· Proceso isolaro:

Proceso issócoro:

Primera Ley de la Termodinámica

En el fondo es la mítico...

"La energía no se vreo ni se destruye; aolo se transforma"

· Lava aplieur este principio a sistemas termodinámicos definimos una nueva variable U, conocida como energia interna.

>) = Luma de las energías de todas las portículas constituyentes

La 1º ley nos dice que: Tormas en los que puedo efectuor ese cambio Cambio en la energía total del aistema DU = Q+W

- En gos ideal W = WSOBRE = ∫P(V) dV
- Q y W dependen de la trayectoria, pero na ∆U

Teoría Cinética

• En gos ideal la energia interna U se puede relacionar con la grado de libertad del gas.

Prodo de libertad (G1) = nº de somos en que codo portículo del gos puede moverse

Monoatómico: 6L= 3 de troslación = 3

Divitómico: 61 = 3 de troslación = 5
2 de rotación

Poliatornico: 61 = 3 de troslación = 6 3 de rotación

Le puede probar que
$$\Delta V = nc_V \Delta T \Rightarrow C_V = \frac{6L}{2}R$$

y que $C_P = C_V + R$

Diotómico:
$$U = \frac{5}{2} \, \text{nRT} \, / \, C_V = \frac{5}{2} \, / \, C_P = \frac{7}{2}$$

Doliatorius:
$$U = \frac{6}{2} \, nRT \, , \, C_V = \frac{6}{2} \, , \, C_P = \frac{8}{2}$$