离散信号的周期卷积与线性卷积

Dezeming Family

2022年4月16日

DezemingFamily 系列书和小册子因为是电子书,所以可以很方便地进行修改和重新发布。如果您获得了 DezemingFamily 的系列书,可以从我们的网站 [https://dezeming.top/] 找到最新版。对书的内容建议和出现的错误欢迎在网站留言。

目录

_	离散	期信号的傅里叶级数与周期卷积	1
	1 1]期卷积	1
		E明	
	1 3	-个例子	1
=	DFT	与循环移位	2
Ξ	DFT	与循环卷积	3
四	DFT	与线性卷积	3
参:	考文献		4

一 离散周期信号的傅里叶级数与周期卷积

11 周期卷积

设有两个周期离散信号 (周期都是 N) $\tilde{x}_1[n]$ 与 $\tilde{x}_2[n]$,它们的傅里叶级数的系数分别是 $\tilde{X}_1[k]$ 和 $\tilde{X}_2[k]$ 。如果将傅里叶级数相乘:

$$\tilde{X}_3[k] = \tilde{X}_1[k]\tilde{X}_2[k] \tag{-.1}$$

则以 $\tilde{X}_3[k]$ 为傅里叶级数系数的周期序列 $\tilde{x}_3[n]$ 为:

$$\tilde{x}_3[n] = \sum_{m=0}^{N-1} \tilde{x}_1[m]\tilde{x}_2[n-m] \tag{-.2}$$

卷积只在一个周期里进行,所以叫周期卷积。它也是可以交换的:

$$\tilde{x}_3[n] = \sum_{m=0}^{N-1} \tilde{x}_2[m]\tilde{x}_1[n-m] \tag{--.3}$$

同时,还有对偶性。若:

$$\tilde{x}_3[n] = \tilde{x}_1[n]\tilde{x}_2[n] \tag{--.4}$$

则 $\tilde{x}_3[n]$ 对应的傅里叶级数是:

$$\tilde{X}_3[k] = \frac{1}{N} \sum_{l=0}^{N-1} \tilde{X}_1[l] \tilde{X}_2[k-l] \tag{-.5}$$

12 证明

证明较为简单。我们求一下 $\tilde{X}_3[k]$:

$$\tilde{X}_{3}[k] = \sum_{n=0}^{N-1} \left(\sum_{m=0}^{N-1} \tilde{x}_{1}[m] \tilde{x}_{2}[n-m] \right) W_{N}^{kn}
= \sum_{m=0}^{N-1} \tilde{x}_{1}[m] \left(\sum_{n=0}^{N-1} \tilde{x}_{2}[n-m] W_{N}^{kn} \right)
= \sum_{m=0}^{N-1} \tilde{x}_{1}[m] \left(W_{N}^{km} \tilde{X}_{2}[k] \right)
= \tilde{X}_{2}[k] \left(\sum_{m=0}^{N-1} \tilde{x}_{1}[m] W_{N}^{km} \right)
= \tilde{X}_{1}[k] \tilde{X}_{2}[k]$$
(-.6)

其中,第一.6步和一.7步利用了傅里叶级数的移位特性。

13 一个例子

以 [1] 中的例子为例,假设有两个周期序列 $\tilde{x}_1[n]$ 与 $\tilde{x}_2[n]$:

而周期卷积,就是在一个周期里, $\tilde{x}_1[m]$ 分别与 $\tilde{x}_2[-m]$ 、 $\tilde{x}_2[-m+1]$ 等信号乘加。

二 DFT 与循环移位

虽然循环卷积和循环移位并不同,但思想都是一样的。在做离散傅里叶变换时,信号都是有限长的(设傅里叶变换),因此移位性质不能简单用移位得到,而是循环移位,比如循环移动 m 位:

$$x[((n-m))_N], \quad 0 \le n \le N-1 \longleftrightarrow e^{-j\frac{2\pi k}{N}m}X[k] = W_N^m X[k]$$
 (\square .1)

这里的 $x[((n-m))_N]$ 表示有限长度为 N 的序列循环移位 m 以后值(比如这里 N=6, m=2):

所以, $x[((n-2))_N]$ 就表示为:

三 DFT 与循环卷积

其实循环卷积我们在前面已经介绍过,这里我们从 DFT 的角度再看一下。两个有限长长度为 N 的序列 $x_1[n]$ 与 $x_2[n]$,傅里叶变换是 $X_1[k]$ 和 $X_2[k]$,设:

$$X_3[k] = X_1[k]X_2[k]$$
 (Ξ .1)

设 $x_3[n]$ 的 DFT 是 $X_3[k]$, 则 $x_3[n]$ 就是周期卷积的结果:

$$x_3[n] = \sum_{m=0}^{N-1} x_1[m] x_2[((n-m))_N]$$
 (Ξ .2)

同理, DFT 也有对偶性, 若:

$$x_3[n] = x_1[n]x_2[n]$$
 (Ξ .3)

则其 DFT 结果为:

$$X_3[k] = \frac{1}{N} \sum_{l=0}^{N-1} X_1[l] X_2[((k-l))_N]$$
 (Ξ .4)

四 DFT 与线性卷积

我们已经知道,对于有限长序列 $x_1[n]$ 与 $x_2[n]$ (设长度都是 N),它们的 DFT 结果相乘得到的 DFT 值是周期卷积的 DFT,那么有什么办法可以获得线性卷积的结果呢?我们可以想象,它们有值的长度都是 N,如果我们设其卷积的周期为 2N,这样得到的结果会不会就是线性卷积的结果了?

答案是肯定的,大家自己画个图就能明白。但是我们希望得到更一般的结果。

设 $x_1[n]$ 长度为 L, $x_2[n]$ 长度为 P, 则只要 DFT 长度 N 满足 $N \geq L + P - 1$,则对应的 DFT $X_1[k]X_2[k]$ 的逆变换结果就等于 DTFT $X_1(e^{j\omega})X_2(e^{j\omega})$ 的逆变换结果。

信号 $x_1[n]$ 和 $x_2[-n]$ 分别如下:

我们来看卷积 (取反加 n):

于是得证(当 n=L+P-1 时,两个信号就再也没有交叠的地方,从而卷积结果都是 0 了)。注意,如果信号并不是从 0 开始的,要转化为从 0 开始,或者用其他的处理手段(信号移位等)。

参考文献

[1] Signals and Systems Alan V. Oppenheim, Alan S. Willsky, with S. Hamid Nawab. Prentice Hall, 2013.