

- Class
 - Time and venue:

Mondays: 12:30 - 15:40, 201H1

Tuesdays: 6:50 - 10:00, 401H1; 14:10-17:20, 114H6

Fridays: 6:30 - 09:50, 402B4

- Textbook:
 - [1] Digital Systems Digital Systems: Principles and Applications- Ronald J. Tocci, Neal S. Widmer, Gregory L. Moss
 - 11th Edition, Prentice-Hall 2010
 - 8th Edition", Prentice-Hall 2001
 - [2] "Fundamentals of Digital Logic 2nd edition" Stephen Brown, Zvonko Vranesic, McGraw Hill 2008
 - [3] "Digital Design -3rd Edition" –John F. Wakerly, Prentice-Hall 2001
 - [4] "Digital Logic Design Principles" N. Balabanian, B. Carlson, John Wiley & Sons, Inc , 2004

- Instructor: Assoc. Prof. Dr. Tran Ngoc Thinh
 - Email: tnthinh@hcmut.edu.vn
 - Phone: 38647256 (5843)

• Office: A3 building, CE Department

Office hours: Mondays, 09:00-11:00

dce

Administrative Issues (cont.)

- Grades
 - 10% Lab
 - 10% assignments
 - 10% homework + quizzes
 - 20% midterm
 - 50% final exam (presentation: bonus)

What is This Course All About?

- What is covered?
 - This course provides fundamentals of logic design, such as: number presentation and codes, Boolean algebra and logic gates, analysis and design of combinational and sequential circuits.
 - use Verilog HDL to describe combinational and sequential digital circuits
- Learning outcomes
 - Knowledge: Number presentation and codes, Boolean algebra and logic gates.

 Skill: Design and Analyze combinational circuits and sequential circuits.

lce

Course Outline - Part I

- · Number system and codes
 - Decimal, Binary, Octal, Hexadecimal Number Systems
 - Conversions
 - Codes: Gray, Alphanumeric Codes
 - Parity Method for Error Detection
- Logic gates and Boolean Algebra
 - Boolean Constants and Variables
 - Truth Tables
 - Basic gates: OR AND NOT Operation with OR Gates
 - NOR Gates and NAND Gates
 - Boolean Theorems
 - DeMorgan's, DeMorgan's Theorems

Overview of the course

- ➤ Number presentation and codes
- ➤ Boolean algebra and logic gates
- ➤ Combinational circuits
- ➤ Sequential circuits
- ➤ Introduction to Verilog HDL

Course Outline - Part II

- · Combinational Logic Circuits
 - Sum-of-Product Form
 - Simplifying Logic Circuits
 - Algebraic Simplification
 - Designing Combinational Logic Circuits
 - Karnaugh Map Method
 - Parity Generator and Checker
 - Enable/Disable Circuits
 - Basic Characteristics of Digital ICs
 - Troubleshooting Digital Systems

Course Outline - Part IIB

- Introduction to Verilog HDL
 - Digital circuits design using Verilog HDL structural model.
 - Simulation with Verilog HDL
 - Digital circuits design using Verilog HDL continuous assignment.
 - Digital circuits design using Verilog HDL behavioral model.

lce

Course Outline - Part IV

- · Operation and Circuits
 - Representing Signed Numbers
 - Addition, Subtraction in the 2's-Complement System
 - Multiplication, Division of Binary Numbers
 - BCD Addition
 - Hexadecimal Arithmetic
 - Arithmetic Circuits
 - · Parallel Binary Adder
 - · Design of a Full Adder
 - · Carry Propagation
 - · Integrated Circuit Parallel Adder
 - 2's Complement System
 - BCD Adder
 - ALU Integrated Circuits
 - Verilog HDL Adders

44

dce

Course Outline - Part III

- · Flip-Flops and Related Devices
 - Latches, D Latch
 - Clock Signals and Clocked Flip-Flops
 - S-C, J-K, D Master/Slave Flip-Flops
 - Flip-Flop Application
 - · Detecting an Input Sequence
 - · Data Storage and Transfer
 - · Serial Data Transfer: Shift Registers
 - Frequency Division and Counting
 - · Microcomputer Application
 - Schmitt-Trigger, On-shot Devices
 - Analyzing Sequential & Clock Generator Circuits
 - Sequential Circuits Using HDL
 - HDL Circuits with Multiple Components

10

Course Outline – Part V

- Counters and Registers
 - Asynchronous & Synchronous Counters
 - Up/Down Counters
 - Cascading BCD Counters
 - Synchronous Counter Design
 - Shift-Register Counters
 - Counter Application: Frequency Counter, Digital Clock
 - Integrated-Circuit Registers
 - Some ICs:
 - Parallel In/Parallel Out The 74ALS174/HC174
 - · Serial In/Serial Out The 4731B
 - Parallel In/Serial Out The 74ALS185/HC165
 - Serial In/Parallel Out The 74ALS164/HC164

Course Outline — Part VI • MSI Logic Circuits - Decoders - Encoders - Multiplexers - Demultiplexers

Numerical Representations Analog Representation A continuously variable, proportional indicator. Examples of analog representation: Sound through a microphone causes voltage changes. Mercury thermometer varies over a range of values with temperature. Digital Representation Varies in discrete (separate) steps. Examples of digital representation: Passing time is shown as a change in the display on a digital clock at one minute intervals.

Digital and Analog Systems

- Advantages of digital
 - Ease of design
 - Well suited for storing information.
 - Accuracy and precision are easier to maintain
 - Programmable operation
 - Less affected by noise
 - Ease of fabrication on IC chips

Digital and Analog Systems

 Analog-to-digital conversion (ADC) and digital-to-analog conversion (DAC) complicate circuitry.

Digital and Analog Systems

- There are limits to digital techniques:
 - The world is analog
 - The analog nature of the world requires a time consuming conversion process:
 - 1. Convert the physical variable to an electrical signal (analog).
 - 2. Convert the analog signal to digital form.
 - 3. Process (operate on) the digital information
 - 4. Convert the digital output back to real-world analog form.

Digital and Analog Systems

- The audio CD is a typical hybrid (combination) system.
 - Analog sound is converted into analog voltage.
 - Analog voltage is changed into digital through an ADC in the recorder.
 - Digital information is stored on the CD.
 - At playback the digital information is changed into analog by a DAC in the CD player.
 - The analog voltage is amplified and used to drive a speaker that produces the original analog sound.

Representing Binary Quantities • Exact voltage level is not important in digital systems. • A voltage of 3.6 V will mean the same (binary 1) as a voltage of 4.3 V. | SV | Binary 1 | Invalid voltages | Binary 0 | Binar

Digital Circuits/Logic Circuits Digital circuits - produce and respond to predefined voltage ranges. Logic circuits – used interchangeably with the term, digital circuits. Digital integrated circuits (ICs) – provide logic operations in a small reliable package.

Representing Binary Quantities • Digital Signals and Timing Diagrams - Timing diagrams show voltage versus time. - Horizontal scale represents regular intervals of time beginning at time zero. - Timing diagrams are used to show how digital signals change with time. - Timing diagrams are used to compare two or more digital signals. - The oscilloscope and logic analyzer are used to produce timing diagrams.

Digital Computers

- · Major parts of a computer
 - Input unit processes instructions and data into the memory.
 - Memory unit stores data and instructions.
 - Control unit interprets instructions and sends appropriate signals to other units as instructed.
 - Arithmetic/logic unit arithmetic calculations and logical decisions are performed.
 - Output unit presents information from the memory to the operator or process.
 - The control and arithmetic/logic units are often treated as one and called the central processing unit (CPU)

o=

dce

Conversion

- The hexadecimal number system is introduced.
- Since different number systems may be used in a system, it is important for a technician to understand how to convert between them.
- Binary codes that are used to represent different information are also described.

$$N_{10} = (\mathbf{a}_{n} \mathbf{a}_{n-1} \mathbf{a}_{n-2} \dots \mathbf{a}_{2} \mathbf{a}_{1} \mathbf{a}_{0})_{b}$$

$$= \mathbf{a}_{n} \times \mathbf{b}^{n} + \mathbf{a}_{n-1} \times \mathbf{b}^{n-1} + \mathbf{a}_{n-2} \times \mathbf{b}^{n-2} + \dots + \mathbf{a}_{0} \times \mathbf{b}^{0}$$

$$\frac{N}{h} = a_n * b^{n-1} + a_{n-1} * b^{n-2} + a_{n-2} * b^{n-3} + \dots + a_1 = Q_1 \qquad a_0$$

$$\frac{Q}{b} = a_n * b^{n-2} + a_{n-1} * b^{n-3} + a_{n-2} * b^{n-4} + \dots + a_2 = Q \qquad a_1$$

$$\frac{Q}{h} = a_n * b^{n-3} + a_{n-1} * b^{n-4} + a_{n-2} * b^{n-5} + \dots + a_3 = Q_3 \qquad a_2$$

20

Digital Computers

- Types of computers
 - Microcomputer
 - · Most common (desktop PCs, notebook computers)
 - · Has become very powerful
 - Minicomputer (workstation)
 - Mainframe
 - Microcontroller
 - · Designed for a specific application
 - · Dedicated or embedded controllers
 - Used in appliances, manufacturing processes, auto ignition systems, ABS systems, and many other applications.

38

dc

Binary to Decimal Conversion

 Convert binary to decimal by summing the positions that contain a 1.

$$1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 1_2$$

$$2^5 + 2^4 + 2^3 + 2^2 + 2^1 + 2^0 =$$

$$32 + 0 + 0 + 4 + 0 + 1 = 37_{10}$$

Decimal to Binary Conversion

- Two methods to convert decimal to binary:
 - Reverse process described above
 - Use repeated division

de

Decimal to Binary Conversion

- · Repeated division steps:
 - Divide the decimal number by 2
 - Write the remainder after each division until a quotient of zero is obtained.
 - The first remainder is the LSB and the last is the MSB

$$\frac{41}{2} = 20 \quad a_0 = 1 \qquad \frac{5}{2} = 2 \qquad a_3 = 1$$

$$\frac{20}{2} = 10 \quad a_1 = 0 \qquad \frac{2}{2} = 1 \qquad a_4 = 0$$

$$\frac{10}{2} = 5 \qquad a_2 = 0 \qquad \frac{1}{2} = 0 \qquad a_5 = 1$$

dce

Decimal to Binary Conversion

- Reverse process described above
 - Note that all positions must be accounted for

$$37_{10} = 2^5 + 0 + 0 + 2^2 + 0 + 2^0$$

$$1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 1_2$$

42

dce Decimal to Binary Conversion

· Repeated division -

describes the process and can be used to convert from decimal to any other number system.

Hexadecimal Number System

- Most digital systems deal with groups of bits in even powers of 2 such as 8, 16, 32, and 64 bits.
- · Hexadecimal uses groups of 4 bits.
- Base 16
 - 16 possible symbols
 - 0-9 and A-F
- Allows for convenient handling of long binary strings.

45

Hexadecimal Number System

- Convert from decimal to hex by using the repeated division method used for decimal to binary and decimal to octal conversion.
- Divide the decimal number by 16
- The first remainder is the LSB and the last is the MSB.
 - Note, when done on a calculator a decimal remainder can be multiplied by 16 to get the result.
 If the remainder is greater than 9, the letters A through F are used.

dce 2018

Hexadecimal Number System

• Convert from hex to decimal by multiplying each hex digit by its positional weight.

Example: 163₁₆

$$163_{16} = 1 \times (16^{2}) + 6 \times (16^{1}) + 3 \times (16^{0})$$
$$= 1 \times 256 + 6 \times 16 + 3 \times 1$$
$$= 355_{10}$$

Hexadecimal Number System

• Example of hex to binary conversion:

Decimal	Binary	Octal	Hexa
0	0000	0.0	0
1	0001	01	1
2	0010	02	2
3	0011	03	3
4	0100	0.4	4
5	0101	0.5	5
6	0110	06	6
7	0111	0.7	7
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F

dce 2018 BCD

To convert the number 874₁₀ to BCD:

8 7 41000 0111 0100 = 100001110100_{BCD}

- Each decimal digit is represented using 4 bits.
- Each 4-bit group can never be greater than 9.
- Reverse the process to convert BCD to decimal.

Gray Code

- The gray code is used in applications where numbers change rapidly.
- In the gray code, only one bit changes from each value to the next.

<u>Binary</u>	Gray Code
000	000
001	001
010	011
011	010
100	110
101	111
110	101
111	100

- BCD is not a number system.
- BCD is a decimal number with each digit encoded to its binary equivalent.
- A BCD number is not the same as a straight binary number.
- The primary advantage of BCD is the relative ease of converting to and from decimal.

1 bit	2 bit	3 bit	4 bit
0	00	000	0000
1	01	001	0001
8 .	11	011	0011
	10	010	0010
		110	0110
		111	0111
		101	0101
		100	0100
			1100
			1101
			1111
			1110
			1010
			1011
			1001
			1000

• Represents characters and fund

- Represents characters and functions found on a computer keyboard.
- ASCII American Standard Code for Information Interchange.
 - Seven bit code: 2^7 = 128 possible code groups
 - Examples of use are: to transfer information between computers, between computers and printers, and for internal storage.

- 1 byte = 8 bits
- 1 nibble = 4 bits
- 1 word = size depends on data pathway size.
 - Word size in a simple system may be one byte (8 bits)
 - Word size in a PC is eight bytes (64 bits)

Parity Method for Error Detection

- Binary data and codes are frequently moved between locations. For example:
 - Digitized voice over a microwave link.
 - Storage and retrieval of data from magnetic and optical disks.
 - Communication between computer systems over telephone lines using a modem.
- Electrical noise can cause errors during transmission.
- Many digital systems employ methods for error detection (and sometimes correction).

Parity Method for Error Detection

- The parity method of error detection requires the addition of an extra bit to a code group.
- This extra bit is called the parity bit.
- The bit can be either a 0 or 1, depending on the number of 1s in the code group.
- There are two methods, even and odd.

Parity Method for Error Detection

- Odd parity method the total number of bits in a group including the parity bit must add up to an odd number.
 - The binary group 1 1 1 1 would require the addition of a parity bit 1 1 1 1 1

Parity Method for Error Detection

- Even parity method the total number of bits in a group including the parity bit must add up to an even number.
 - The binary group 1 0 1 1 would require the addition of a parity bit 1 1 0 1 1

Parity Method for Error Detection

- The transmitter and receiver must "agree" on the type of parity checking used.
- Two bit errors would not indicate a parity error.
- Both odd and even parity methods are used, but even seems to be used more often.

Odd Parity Error Detection Original data 10011010 With Odd Parity 110011010 1-bit error 110111010 Number of 1s even indicates 1-bit error

• 2-bit error 110<u>1</u>1<u>0</u>010

• Number of 1s odd no error indicated

• 3-bit error 1<u>0</u>0<u>1</u>1<u>0</u>010

Number of 1s even indicates error

