Intégration L3 Actuariat Chapitre III: Fonctions mesurables

Pierre-Olivier Goffard

Université de Lyon 1 ISFA pierre-olivier.goffard@univ-lyon1.fr

> ISFA October 18, 2018

Un espace mesuré (Ω,\mathscr{A},μ) étant donné, la théorie de l'intégration a pour objet de déterminer la "mesure" de fonctions numériques définies sur Ω . Mais de même que μ ne peut mesuré que certaine partie de Ω (celle de \mathscr{A}), seules une certaines catégorie de fonctions sont compatible car elle conserve la structure de l'espace de départ. La notion est souvent comparée à la notion de continuité des fonctions définie sur les espaces topologiques. Le terme mesurable prend tout son sens lorsque l'on parle de variables aléatoires.

I. Rappels

1 Image directe et image réciproque de fonctions

Soit (Ω, \mathcal{A}) un espace mesurable et $f: \Omega \mapsto E$ une fonction.

Definition 1 (Image directe et image réciproque)

Soit une fonction $f: \Omega \mapsto E$, on appelle

1 image directe par f d'une partie $A \subset \Omega$ l'ensemble

$$f(A) = \{f(a), a \in A_1\} \subset E.$$

② image réciproque par f d'une partie $B \subset E$ l'ensemble

$$f^{-1}(B) = \{a : a \in \Omega, f(a) \in B\} \subset \Omega.$$

Remarque 1

Le fait de considérer f^{-1} ne suppose pas que f soit bijective. On a toujours $f^{-1}(\emptyset)=\emptyset$ et $f^{-1}(E)=\Omega$.

- On a $f(\emptyset) = \emptyset$ et $f(\Omega) = E$ si f est surjective.
- Si f est bijective alors $\forall b \in E$, il existe un unique $a \in \Omega$ tel que $f^{-1}(b) = a$.

A la différence de la fonction image directe, la fonction image réciproque f^{-1} respecte parfaitement les opérations ensemblistes telles que la réunion, l'intersection et le passage au complémentaire.

Proposition 1 (Propriétés de f^{-1})

Soit une fonction $f: \Omega \mapsto E$.

• Soit $(B_i)_{i \in I}$ une famille de sous-ensemble de E, on a

$$f^{-1}\left(\bigcup_{i\in I}B_i\right)=\bigcup_{i\in I}f^{-1}\left(B_i\right) \text{ et } f^{-1}\left(\bigcap_{i\in I}B_i\right)=\bigcap_{i\in I}f^{-1}\left(B_i\right),$$

où I est un ensemble quelconque d'indice.

2 Pour tout $B \subset E$, $f^{-1}(E/B) = \Omega/f^{-1}(B)$

Proposition 2 $((g \circ f)^{-1})$

Considérons trois ensembles non vides E_1, E_2 et E_3 , et deux fonctions $f: E_1 \mapsto E_2$ et $g: E_2 \mapsto E_3$. Alors pour tout $A_3 \subset E_3$, on a

$$(g \circ f)^{-1}(A_3) = f^{-1}[g^{-1}(A_3)].$$

2. limites sup et limites inf

Toute suite croissante (resp. décroissante) $(x_n)_{n\in\mathbb{N}}$ de $\overline{\mathbb{R}}$, est convergente dans $\overline{\mathbb{R}}$ et

$$\lim_{n \to +\infty} x_n = \sup\{x_n \ ; \ n \ge 1\} \left(\text{ resp. } \lim_{n \to +\infty} x_n = \inf\{x_n \ ; \ n \ge 1\} \right)$$

Definition 2 (lim et lim)

On appelle limite supérieure (resp. limite inférieur) d'une suite de $\overline{\mathbb{R}}$ l'élement de $\overline{\mathbb{R}}$, noté et défini par

$$\overline{\lim_{n \to +\infty}} x_n = \inf_{k \ge 1} \left(\sup_{n \ge k} x_n \right) = \lim_{k \to +\infty} \left(\sup_{n \ge k} x_n \right) \left(\text{ resp. } \underline{\lim_{n \to +\infty}} x_n = \sup_{k \ge 1} \left(\inf_{n \ge k} x_n \right) = \lim_{k \to +\infty} \left(\inf_{n \ge k} x_n \right) \right)$$

A la différence de la limite d'une suite, les limites sup et inf existent toujours. Ces notions sont symétriques au sens où

$$\underline{\lim}_{n \to +\infty} x_n = -\overline{\lim}_{n \to +\infty} (-x_n).$$

Des exemples de suites qui ne converge pas au sens habituelle incluent

•
$$((-1)^n)_{n \in \mathbb{N}}$$

•
$$\left(\sin\left(\frac{k\pi}{4}\right)\right)_{n\in\mathbb{N}}$$

pour lesquels

$$\overline{\lim}_{n \to +\infty} x_n = 1 \text{ et } \underline{\lim}_{n \to +\infty} x_n = -1$$

Proposition 3 (Lien avec la limite classique, monotonie des limites inf et sup)

$$\frac{\lim_{n \to +\infty} x_n}{\lim_{n \to +\infty} x_n} \leq \lim_{n \to +\infty} x_n$$

$$\lim_{n \to +\infty} x_n = \lim_{n \to +\infty} x_n = a \quad \Leftrightarrow \quad \lim_{n \to +\infty} x_n = a$$

$$\lim_{n \to +\infty} x_n = +\infty \quad \Leftrightarrow \quad \lim_{n \to +\infty} x_n = +\infty$$

$$\lim_{n \to +\infty} x_n = -\infty \quad \Leftrightarrow \quad \lim_{n \to +\infty} x_n = -\infty$$

② Les limites inf et sup sont monotones au sens où, pour deux suites $(x_n)_{n\in\mathbb{N}}$ et $(y_n)_{n\in\mathbb{N}}$ vérifiant $x_n \le y_n, \forall n \ge n_0$,

$$\underline{\lim_{n \to +\infty}} x_n \le \underline{\lim_{n \to +\infty}} y_n \ \overline{\lim_{n \to +\infty}} x_n \le \overline{\lim_{n \to +\infty}} y_n$$

Remarque 2

$$\overline{\lim_{n \to +\infty}} x_n \leq \underline{\lim_{n \to +\infty}} x_n \Leftrightarrow (x_n)_{n \in \mathbb{N}} \text{ converge dans } \overline{\mathbb{R}}$$

Proposition 4

Soient $(x_n)_{n\in\mathbb{N}}$ et $(y_n)_{n\in\mathbb{N}}$ de $\overline{\mathbb{R}}$. On a

$$\frac{\lim_{n \to +\infty} x_n + \lim_{n \to +\infty} y_n}{\lim_{n \to +\infty} x_n + \lim_{n \to +\infty} x_n + \lim_{n \to +\infty} y_n} \leq \frac{\lim_{n \to +\infty} x_n + \lim_{n \to +\infty} y_n}{\lim_{n \to +\infty} (x_n + y_n)}
\leq \frac{\lim_{n \to +\infty} x_n + \lim_{n \to +\infty} y_n}{\lim_{n \to +\infty} x_n + \lim_{n \to +\infty} y_n} \tag{2}$$

Chacune des inégalités (1) et (2) devient une égalité si l'une des suites converge.

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonction $f_n: E\mapsto \overline{\mathbb{R}}$, on peut associer la fonction $\varlimsup_{\substack{n\to +\infty}} f_n$ (resp $\varliminf_{\substack{n\to +\infty}} f_n$) prenant pour tout $x\in E$ les valeurs $\varlimsup_{\substack{n\to +\infty}} f_n(x)$ (resp $\varliminf_{\substack{n\to +\infty}} f_n(x)$), appelée limite supérieure (resp. limite inférieure) de la suite $(f_n)_{n\in\mathbb{N}}$. Les propositions 3 et 4 s'applique directement aux suites de fonctions.

II. Fonction mesurables

1 Définitions

Soit (Ω, \mathscr{A}) et (E, \mathscr{B}) deux espaces mesurables, et $f: \Omega \mapsto E$ une application.

Definition 3 (Fonction mesurable)

f est mesurable si $f^{-1}(B) \subset \mathcal{A}$ pour tout $B \in \mathcal{B}$ (soit $f^{-1}(\mathcal{B}) \subset \mathcal{A}$).

Si (E,\mathcal{B}) est un espace topologique alors f est une fonction borélienne.

Exemple 1

Toute fonction constante est mesurable. En effet, supposons que $f(\omega) = b$, pour tout $\omega \in \Omega$. Pour toute partie $B \subset \mathcal{B}$, on a

- $b \in B$ alors $f^{-1}(B) = \Omega \subset \mathcal{A}$
- $b \notin B$ alors $f^{-1}(B) = \emptyset \subset \mathcal{A}$

La définition 3 exige de vérifier que $f^{-1}(B) \in \mathscr{A}$ pour tout $B \subset \mathscr{B}$. Il est possible de se contenter de faire la vérification sur un sous-ensemble convenable de partie \mathscr{B} .

Theoreme 1

- \bullet $f^{-1}(\mathcal{B})$ est une tribu sur Ω
- ② Pour tout $\mathscr{E} \subset \mathscr{P}(E)$: $f^{-1}(\sigma(\mathscr{E})) = \sigma(f^{-1}(\mathscr{E}))$

preuve:

- **1** On exploite les propriétés ensemblistes de f^{-1} ,
 - (i) $f^{-1}(E) = \Omega$ donc $\Omega \in f^{-1}(\mathscr{B})$
 - (ii) Soit $A \in f^{-1}(\mathcal{B}) \subset \mathcal{A}$. Il existe $B \in \mathcal{B}$ tel que $A = f^{-1}(B)$. On a $f^{-1}(B^c) = f^{-1}(B)^c \in \mathcal{A}$ donc $f^{-1}(B)^c \in f^{-1}(\mathcal{B})$
 - (iii) Soit $(A_n)_{n\in\mathbb{N}} \in f^{-1}(\mathscr{B}) \subset \mathscr{A}$. Il existe $B_n \in \mathscr{B}$ tel que $A_n = f^{-1}(B_n)$, $\forall n \in \mathbb{N}$. On a $\bigcup_{n\in\mathbb{N}} A_n = \bigcup_{n\in\mathbb{N}} f^{-1}(B_n) = f^{-1}(\bigcup_{n\in\mathbb{N}} B_n) \in f^{-1}(\mathscr{B})$.
- ② Soit \mathscr{A} une tribu telle que $f^{-1}(\mathscr{E}) \subset \mathscr{A}$. Si l'on pose

$$\mathcal{B} = \{B; B \subset E, f^{-1}(B) \in \mathcal{A}\}\$$

alors on observe que $\mathscr{E} \subset \mathscr{B}$ et que \mathscr{B} est une tribu. En effet

- (i) $E \in \mathcal{B}$ puisque $f^{-1}(E) = \Omega \in \mathcal{A}$
- (ii) Soit $B \in \mathcal{B}$, on a $f^{-1}(B^c) = f^{-1}(B)^c \in \mathcal{A}$
- (iii) Soit $(B_n)_{n\in\mathbb{N}}$, on a $f^{-1}(\bigcup_{n\in\mathbb{N}}B_n)=\bigcup_{n\in\mathbb{N}}f^{-1}(B_n)\in\mathscr{A}$

On observe ainsi que $\mathscr B$ est une tribu sur E contenant $\mathscr E$ et par consequent $\sigma(\mathscr E)$. On a par conséquent $f^{-1}(\sigma(\mathscr E))\in\mathscr A$, qui est une tribu de Ω d'après 1. Il s'agit de

la plus petite tribu de
$$\Omega$$
 contenant $f^{-1}(\mathcal{E})$, on en déduit que $f^{-1}(\sigma(\mathcal{E})) = \sigma(f^{-1}(\mathcal{E}))$.

Corollaire 1 (Caractérisation de la mesurabilité)

Soit $\mathcal{E} \subset \mathcal{B}$ vérifiant $\sigma(\mathcal{E}) = \mathcal{B}$

f est mesurable $\Leftrightarrow f^{-1}(\mathscr{E}) \subset \mathscr{A}$.

preuve:

 \Rightarrow Supposons que f soit mesurable, alors $f^{-1}(\mathscr{E})$ $\subset \mathscr{A}$ découle de la définition de la mesurabilité.

 \leftarrow Supposons que $f^{-1}(\mathscr{E}) \subset \mathscr{A}$ alors on a

$$f^{-1}(\mathcal{B}) = f^{-1}(\sigma(\mathcal{E})) = \sigma(f^{-1}(\mathcal{E})) \subset \mathcal{A}$$

car $f^{-1}(\mathscr{E})\subset\mathscr{A}$ et $\sigma(f^{-1}(\mathscr{E}))$ est la plus petite tribu de Ω contenant $f^{-1}(\mathscr{E})$. Cela implique que f est mesurable.

Corollaire 2 (Continuité et mesurabilité)

Soient que (E_1, \mathscr{O}_1) et (E_2, \mathscr{O}_2) deux espaces topologiques et \mathscr{B}_1 et \mathscr{B}_2 leur tribu borélienne associée, et $f: E_1 \to E_2$ une application. On a

f est continue $\Rightarrow f$ est mesurable.

preuve:

On note simplement que $\mathcal{O}_2 \subset \mathcal{B}_2$ et $\sigma(\mathcal{O}_2) \subset \mathcal{B}_2$ puis

$$f^{-1}(\mathcal{O}_2)\subset\mathcal{O}_1\subset\mathcal{B}_1$$

f est mesurable d'après le corollaire 1.

2. Propriétés des fonction mesurables (numériques)

Proposition 5 (Composée et vecteur de fonctions mesurables)

- La composée de deux fonctions mesurables est mesurables.
- ② Sif et g sont deux fonctions mesurables de (Ω, \mathcal{A}) dans $(\mathbb{R}, \mathbb{B}(\mathbb{R}))$ alors $h: \omega \in \Omega \mapsto (f(\omega), g(\omega))$ est une fonction mesurable de (Ω, \mathcal{A}) dans $(\mathbb{R}^2, \mathscr{B}(\mathbb{R}^2))$

preuve:

• Soit $(\Omega_i, \mathcal{A}_i)$, i = 1, 2, 3 des espaces mesurables et $f: \Omega_1 \mapsto \Omega_2$ et $g: \Omega_2 \mapsto \Omega_3$. Pour tout $A_3 \in \mathcal{A}_3$, on a

$$(g \circ f)^{-1}(A_3) = f^{-1}(g^{-1}(A_3))$$

avec $g^{-1}(A_3) \in \mathcal{A}_2$ puis $f^{-1}(g^{-1}(A_3)) \in \mathcal{A}_1$, ce qui permet de conclure que $(g \circ f)$ est mesurable.

② Soit $A \times B$ un rectangle dans $\mathscr{B}(\mathbb{R}^2)$, on a

$$h^{-1}(A \times B) = f^{-1}(A) \cap f^{-1}(B) \in \mathcal{A}$$

Comme $\sigma(A \times B) = \mathcal{B}(\mathbb{R}^2)$ alors h est mesurable par application du corollaire 1.

4□ > 4回 > 4 至 > 4 至 > 至 900

soit $f,g:\Omega\mapsto\mathbb{R}$ deux fonctions mesurables.

Proposition 6 (Stabilité des fonctions mesurables)

Soit $\alpha \in \mathbb{R}$, on a

- $(\alpha f)(\omega) = \alpha f(\omega)$ est mesurable
- $(f+g)(\omega) = f(\omega) + g(\omega)$ est mesurable
- $(f \times g)(\omega) = f(\omega)g(\omega)$ est mesurable
- $(f \lor g)(\omega) = \max(f(\omega), g(\omega))$ est mesurable (valable pour le minimum également)

preuve:

- La fonction constante égale à α est mesurable, donc la fonction $h: \omega \mapsto (\alpha, f(\omega))$ est mesurable d'après la proposition 5. αf est mesusable en tant que composée de la fonction h et de la fonction continue $(x,y)\mapsto xy$.
- La fonction $h: \omega \mapsto (f(\omega), g(\omega))$ est mesurable d'après la proposition 5. f+g (resp. fg resp. $f \lor g$) est mesurable comme composée de h et de la fonction continue $(x,y) \mapsto x+y$ (resp. $(x,y) \mapsto xy$ resp. $(x,y) \mapsto x \lor y$).

Probleme 1

Soit $f: \Omega \mapsto \mathbb{R}$ une fonction mesurable, montrer que |f| est mesurable.

Proposition 7

0

f est mesurable $\Leftrightarrow \forall a \in \mathbb{R}, \{f < a\} \in \mathcal{A}$

Valide aussi avec $\{f \le a\}$, $\{f > a\}$, et $\{f \ge a\}$.

2

 $f,g \;\; mesurables \; \Rightarrow \{f < g\}, \{f \leq g\}, \{f = g\}, \{f \neq g\} \in \mathscr{A}$

③ Soit $(f_n)_{n \in \mathbb{N}}$ une suite de fonction mesurable, alors

 $\sup_{n\geq 1} f_n, \ \inf_{n\geq 1} f_n, \ \lim_{n\to +\infty} f_n, \ et \ \underline{\lim_{n\to +\infty}} f_n \ sont \ mesurables$

preuve:

① On remarque simplement que $\{f < a\} = f^{-1}(]-\infty, a[)$

② Soit $\omega \in \{f < g\}$ alors

$$\begin{split} f(\omega) < g(\omega) &\Leftrightarrow & \exists r \in \mathbb{Q}, \ f(\omega) < r < g(\omega) \\ &\Leftrightarrow & \exists r \in \mathbb{Q} \ \omega \in \{f < r\} \cap \{g > r\} \\ &\Leftrightarrow & \omega \in \bigcup_{r \in \mathbb{Q}} \{f < r\} \cap \{g > r\} \end{split}$$

On en déduit que $\{f < g\} = \bigcup_{r \in \mathbb{Q}} \{f < r\} \cap \{g > r\} \in \mathbb{A}$. Les autres propriétés se déduisent des observations suivantes

$$\{f \le g\} = \Omega/\{f > g\}, \ \{f = g\} = \{f \ge g\} \cap \{f \le g\} \text{ et } \{f \ne g\} = \Omega/\{f = g\}$$

3 La mesurabilité de sup f_n résulte de n>1

$$\{\sup_{n\geq 1} f_n \leq a\} = \bigcap_{n\geq 1} \{f_n \leq a\}$$

La mesurabilité de $\inf_{n\geq 1}f_n$ résulte de $\inf_{n\geq 1}f_n=\sup_{n\geq 1}-f_n$. La mesurabilité de

$$\overline{\lim_{n \to +\infty}} f_n, \text{ et } \underline{\lim_{n \to +\infty}} f_n \text{ résulte de la définition de } \overline{\lim_{n \to +\infty}} \text{ et } \underline{\lim_{n \to +\infty}}$$

Soit $(f_n)_{n\in N}$ une suite de fonctions mesurables de Ω vers \mathbb{R} .

Corollaire 3 (Suite (f_n) convergente),

Si
$$(f_n)_{n\in\mathbb{N}}$$
 converge simplement vers $f:\Omega\mapsto\mathbb{R}$ alors f est mesurable

preuve:

On remarque que

$$\lim_{n\to+\infty} f_n = \overline{\lim}_{n\to+\infty} f_n = \underline{\lim}_{n\to+\infty} f_n$$

Definition 4 (Mesure image)

Soit f une application mesurable d'un espace mesuré $(\Omega, \mathscr{A}, \mu)$ dans un espace mesurable (E, \mathscr{B}) . L'application $\mu^f : \mathbb{B} \mapsto \overline{\mathbb{R}}_+$ définie par $\mu^f(A) = \mu[f^{-1}(A)]$ définit une mesure sur (E, \mathscr{B}) appelé mesure image de μ par f.

Références bibliographiques I

Mes notes se basent sur les ouvrages suivants [1, 3, 2, 4]

Philippe Barbe and Michel Ledoux.

Probabilité.

L'Editeur: EDP Sciences, 2007.

Thierry Gallouët and Raphaèle Herbin.

Mesure, intégration, probabilités.

Ellipses, https://cel.archives-ouvertes.fr/file/index/docid/637007/filename/mes-int-pro.pdf, 2013.

Jacques Gapaillard.

Intégration pour la licence: cours avec exercices corrigés.

Masson, 1997.

Olivier Garet and Aline Kurtzmann.

De l'intégration aux probabilités, volume 470.

Ellipses, 2011.