INTRODUCTIN TO USAF DIGITAL DATCOM

What is DATCOM?

A Software that calculates aerodynamic stability and control characteristics

Aerodynamics forces acting on an Airplane during flight

Steady State Flight

 $C_{L_{lpha}}$

 $C_{n_{\beta}}$

Maneuvers

 C_{m_q}

 $C_{n_{\dot{eta}}}$

Control Deflections

 $C_{m_{de}}$

 $C_{l_{da}}$

How Should I Install It?

- ☐ Run setup file
- ☐ Install Notepad ++
- ☐ Apply these settings in control panel:
- 1. After installing the Datcom+ package, Press Windows key + r. Type in "SystemPropertiesAdvanced.exe".
- 2. Click on the Environment Variables box.
- 3. Change the environment variable for DATCOMROOT, removing the leading and trailing double-quote. Save and get out of this.
- 4. In the Datcom\bin directory on your desktop, edit the Datcom.bat file. On lines 14, 15, and 16, remove the double-quotes (leading and trailing).

```
set PREDAT_PROGRAM="predat"
set DATCOM_PROGRAM="digdat"
set DATCOM_MODELER_PROGRAM="datcom-modeler"
```

5. You should be able to run the programs now.

When does it come in handy?

Any Development?

DATCOM +

Improved Input file

Graphical Representation

XML & CVS Output

MATLAB Toolbox

Direct Import

Is DATCOM Applicable for my case?

CONFIGURATION	SPEED				STAT	IC AEF	RODYN	AMIC C	HARAC	TERIST	IC OUT	PUT						DYN	AMIC S	TABIL	TY OU	TPUT		
CONFIGURATION	REGIME	CDo	CD	CF	Cm	CN	C _A	CLa	C _{mα}	СУВ	Cnp	Clβ	q'q_	ı	de da	CLq	Cmq	CLá	Cmå	C∳P	CYP	Cnp	Cnr	C _Ø ,
BODY	SUBSONIC STRANSONIC SUPERSONIC HYPERSONIC	••••	:	•	:	•	• 0	UTP	:	AVA	: LAE	: BLE				:	:	:	:					:
WING	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	• 0 • •	• • • •	• • • •	•			UTP	ΉT		Y F(OR C								GHT	TAP	ERE	ED SI	JRF
HORIZONTAL Tail	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	• • •	• • • •	• • • •	•	• 4 □ 0	• • • •	•	•	000	000	•				• 0 0	•	• •	•	•	•	•	•	
VERTICAL TAIL OR VENTRAL FIN	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	• • •	•	:	•	• ••	• ••	• • • •	:	• 00	•	• 00				•	:	:	•••	•	•	•	•	
WING-BODY	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	• • •	•	•	•	• 400	• • • •	•	• 🗆 •	:	•	• 0 0				• 🗆 •	• -	• •	• 0 0	•	•	•	•	•
HORIZONTAL TAIL-BODY	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	• • •	• • • •	• 0 0 0	•	0 0 0	• • • •	•	• - •	•	• • • •	• • • •				• 0 •	• • •	• 🗆 •	• 0 0					
VERTICAL TAIL- VENTRAL FIN- BOOY	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	• • •	• 0 • •	•	•	•	•	•	:	• 0.0	• 00	• 00				:	:	:	:					
WING-BODY HORIZONTAL TAIL	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	0000	0 4 0 0	0 4 0 0	0	0 4 0 0	0 • 0	0000	0000	•	•	• 00	0000	0000	0000	0 0	000	000	0	0	0	0		
WING BODY VERTICAL TAIL- VENTRAL FIN	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	• 0 •	• • 0 0	000	•	• • 0 0	•	• -	• • •	:	:	• 00				•	• •	•	•	•	•	•	•	
WING-BODY- / HORIZONTAL TAIL: VERTICAL TAIL- VENTRAL FIN	Î SUBSONIC TRANSONIC À SUPERSONIC HYPERSONIC	0000	00 • 0	0400	О	0 4 0 0	0 4 0 0	0000	0000	•	:	•	0000	0000	0000	000	0 0 0	0 0	000	0	0	0	מ	0

What Are The Limitations?

Rudder derivatives

Modeling three-surface aircrafts

Drag Estimation

Multi Control Input

Incomplete Dynamic Derivatives

Modeling V-Tail

How Can I Write The Input File?

Use Notepad ++

Save Input file like : filename.dcm

Start By editing sample file

Input numbers in Float Format: (8.23 7.0)

All Characters are UPPERCASE

Arrays are defined like: MACH(1) = 0.1,0.2,0.3,

How Can I Write The Input File?

Control Cards

DIM M

DERIV DEG

DAMP

Derivatives Unit: 1/Deg

Dynamic Derivatives

TABLE 8 INPUT UNIT OPTIONS

UNITS SYSTEM (LENGTH-FORCE-TIME, \$-F-T)	CONTROL CARD	GEOMETRY UNITS (P)	SURFACE ROUGHNESS ROUGFC	PRESSURE P _∞ (F/A)	TEMPERATURE T _∞ (DEG)	REYNOLDS NUMBER PER UNIT LENGTH
FOOT-POUND-SECOND	DIM FT	FOOT	INCH	lb/ft ²	°R ,	1/FT
INCH-POUND-SECOND	DIM IN	INCH	INCH	lb/in ²	o _R	1/FT
METER-NEWTON-SECOND	DIM M	METER	СМ	N/M ²	οκ	1/M
CENTIMETER-NEWTON-SECOND	рім см	СМ	СМ	N/CM ²	°κ	1/M

Structure of the Input File

- Each NAMELIST starts and ends with "\$"
- Order of Input is not important

Flight Condition

Variable	Definition
WT	Take-off Weight
NMACH	Number of Mach numbers
MACH	Array of Mach numbers
NALT	Number of altitudes
ALT	Array of altitudes
NALPHA	Number of angle of attacks
ALSCHD	Array of angle of attacks
LOOP	Program Looping Control

^{= 1} VARY ALTITUDE AND MACH TOGETHER, DEFAULT

^{= 2} VARY MACH, AT FIXED ALTITUDE

^{= 3} VARY ALTITUDE, AT FIXED MACH

OPTIONS

Variable	Definition
SREF	Reference area
CBARR	Mean Aerodynamic chord
BLREF	Wing Span
ROUGFC	Surface Roughness

TYPE OF SURFACE	EQUIVALENT SAND ROUGHNESS						
TITE OF SUNFACE	INCHES	ст					
AERODYNAMICALLY SMOOTH	0	0					
POLISHED METAL OR WOOD	0.02 - 0.08 X 10-3	0.051 - 0.203 X 10-3					
NATURAL SHEET METAL	0.16 X 10-3	0.406 X 10-3					
SMOOTH MATTE PAINT, CAREFULLY APPLIED	0.25 X 10-3	0.635 X 10-3					
STANDARD CAMOUFLAGE PAINT, AVERAGE APPLICATION	0.40 X 10 ⁻³	1.016 X 10-3					
CAMOUFLAGE PAINT, MASS-PRODUCTION SPRAY	1.20 X 10-3	3.048 X 10-3					
DIP-GALVANIZED METAL SURFACE	6 X 10-3	15.240 X 10-3					
NATURAL SURFACE OF CAST IRON	10 X 10-3	25.400 X 10-3					

Synthesis

Define a coordinate system at A/C nose

Synthesis

ENGINEERING SYMBOL	VARIABLE NAME	ARRAY DIMENSION	DEFINITION	UNITS
×cq	XCG	-	LONGITUDINAL LOCATION OF CG, (MOMENT REF. CENTER)	1
z _{cg}	ZCG	-	VERTICAL LOCATION OF CG RELATIVE TO REFERENCE PLANE	ŧ
×W	XW	~	LONGITUDINAL LOCATION OF THEORETICAL WING APEX	1
zW	ZW	-	VERTICAL LOCATION OF THEORETICAL WING APEX RELATIVE TO REFERENCE PLANE	,
iw	ALIW	-	WING ROOT CHORD INCIDENCE ANGLE MEASURED FROM REFERENCE PLANE	DEG
∕ 2× _H	хн	-	LONGITUDINAL LOCATION OF THEORETICAL HORIZONTAL TAIL APEX	2
Æz _H	ZH	-	VERTICAL LOCATION OF THEORETICAL HORIZONTAL TAIL APEX RELATIVE TO REFERENCE PLANE	,
iн	ALIH	-	HORIZONTAL TAIL ROOT CHORD INCIDENCE ANGLE MEASURED FROM REFERENCE PLANE	DEG
×V	XV	-	LONGITUDINAL LOCATION OF THEORETICAL VERTICAL TAIL APEX	9
×V _F	XVF	-	LONGITUDINAL LOCATION OF THEORETICAL VENTRAL FIN APEX	1
z _V	ZV	-	VERTICAL LOCATION OF THEORETICAL VERTICAL TAIL APEX	1
²V _F	ZVF	-	VERTICAL LOCATION OF THEORETICAL VENTRAL TAIL APEX	1
*F	SCALE	-	VEHICLE SCALE FACTOR (MULTIPLIER TO INPUT DIMENSIONS)	-
İ	VERTUP	-	VERTUP = .TRUE. VERTICAL PANEL ABOVE REF PLANE (DEFAULT)	-
		-	VERTUP = .FALSE. VERTICAL PANEL BLEOW REF PLANE	-
⚠ xHG	HINAX	-	LONGITUDINAL LOCATION OF HORIZONTAL TAIL HINGE AXIS	1

FIGURE INDIT FOR MANEL OF STATES

Body

Variable	Definition
NX	Number of Sections
X	Array of longitudinal Distance
ZU	Upper body
ZL	Lower Body
R	Section Equivalent Radius
S	Section Area
P	Section Periphery
ITYPE	= 1 Straight Wing
	=2 Swept Wing

At Least One is Required (2 At most!)

Maximum Array Dimension is 20

WGPLNF - HTPLNF - VTPLNF

Variable	Definition
CHRDTP	Tip Chord
CHRDR	Root Chord
SSPNE	Semi Span (Exposed)
SSPN	Semi Span (Theoretical)
SAVSI	Sweep Angle
CHSTAT	=0.0 Leading edge sweep =1.0 Trailing Edge sweep
TWISTA	Twist angle (negative L.E rotated down)
DHDADI	Dihedral Angle
TYPE	=1.0 Straight Taperd Planform

WGPLNF - HTPLNF - VTPLNF

INF	UT DATA	FOR	ENGINEERING	VARIABLE	ARRAY		
WGPLNF	HTPLNF	VTPLNF VFPLNF	SYMBOL	NAME	DIMENSION	DEFINITION	UNITS
	•	•	c _t b* ₀ /2 b*/2 b*/2 c _b c _r (Λ _{x/c}); (Λ _{x/c})ο x/c Θ	CHROTP SSPN SSPNE SSPN CHROBP CHROR SAVSI SAVSO CHSTAT TWISTA SSPNDO DHOADI		TIP CHORD SEMI-SPAN OUTBOARD PANEL SEMI-SPAN EXPOSED PANEL SEMI-SPAN THEORETICAL PANEL FROM THEORETICAL ROOT CHORD CHORD AT BREAKPOINT ROOT CHORD INBOARD PANEL SWEEP ANGLE OUTBOARD PANEL SWEEP ANGLE REFERENCE CHORD STATION FOR INBOARD AND OUTBOARD PANEL SWEEP ANGLES, FRACTION OF CHORD TWIST ANGLE, NEGATIVE LEADING EDGE ROTATED DOWN (FROM EXPOSED ROOT TO TIP) SEMI-SPAN OF OUTBOARD PANEL WITH DIHEDRAL DIHEDRAL ANGLE OF INBOARD PANEL (IF I; = Io ONLY INPUT I)	L DEG DEG - DEG DEG
:	:	•	Γο	DHDAD ¢ TYPE	- -	DIHEDRAL ANGLE OF OUTBOARD PANEL = 1.0 STRAIGHT TAPERED PLANFORM = 2.0 DOUBLE DELTA PLANFORM (ASPECT RATIO < 3) = 3.0 CRANKED PLANFORM (ASPECT RATIO > 3)	DEG -

WGSCHR - HTSCHR - VTSCHR

Happy NACA [©]

```
NACA-W-6-65-210
NACA-V-4-0012
NACA-H-4-0012
```

Custom Airfoil (3)

```
$WGSCHR TYPEIN=1.0, NPTS=49.0, DWASH=1.0,
XCORD=0.00000, 0.00102, 0.00422, 0.00960, 0.01702, 0.02650,
    0.03802, 0.05158, 0.06694, 0.08422, 0.10330, 0.12403,
    0.14643, 0.17037, 0.19558, 0.22221, 0.24998, 0.27891,
    0.30861, 0.33933, 0.37056, 0.40243, 0.43469, 0.46733,
    0.49997, 0.53274, 0.56525, 0.59750, 0.62938, 0.66074,
                 0.69133, 0.72115, 0.74995, 0.77773, 0.80435, 0.82970,
    0.85350, 0.87590, 0.89644, 0.91571, 0.93299, 0.94848,
    0.96192, 0.97344, 0.98291, 0.99034, 0.99571, 0.99891,
    1.00000,
YUPPER=0.00000, 0.00850, 0.01791, 0.02600, 0.03369, 0.04047,
    0.05044, 0.05781, 0.06739, 0.07483, 0.08384, 0.09093,
    0.09914, 0.10557, 0.11262, 0.11794, 0.12347, 0.12732,
    0.13099, 0.13306, 0.13444, 0.13385, 0.13176, 0.12776,
    0.12294, 0.11695, 0.11046, 0.10334, 0.09602, 0.08828,
    0.08058, 0.07274, 0.06512, 0.05754, 0.05032, 0.04338,
    0.03695, 0.03094, 0.02551, 0.02060, 0.01627, 0.01244,
    0.00918, 0.00643, 0.00415, 0.00235, 0.00107, 0.00026,
    0.00000,
YLOWER=0.00000, -0.00350, -0.00800, -0.01293, -0.01603,
    -0.02164, -0.02484, -0.02993, -0.03315, -0.03790,
    -0.04104, -0.04540, -0.04826, -0.05208, -0.05447,
    -0.05747, -0.05906, -0.06103, -0.06162, -0.06225,
    -0.06143, -0.06026, -0.05699, -0.05322, -0.04826,
    -0.04337, -0.03793, -0.03278, -0.02744, -0.02259,
    -0.01783, -0.01362, -0.00970, -0.00633, -0.00333,
    -0.00093, 0.00111, 0.00258, 0.00363, 0.00425,
     0.00450, 0.00438, 0.00395, 0.00324, 0.00236,
     0.00147, 0.00070, 0.00019, 0.00000$
```

These data can be easily obtained Using airfoil databases.

Asymmetric Flap (Modeling Aileron)

Variable	Definition
STYPE	=4.0 Plain Flap Aileron
SPANFI	Inboard Span
SPANFO	Outboard Span
NDELTA	Number of deflection
DELTAL	Right Aileron Deflection
DELTAR	Left Aileron Deflection
CHRDFI	Inboard Chord
CHRDFO	Outboard Chord

Symmetric Flap (Modeling Flap And Elevator)

You Can't model both flap and elevator at the same time

Wing-Body-Htail -> SYMFLP= Elevator

Wing-Body -> SYMFLP=Wing Flap

FTYPE

= 1.0 PLAIN FLAPS

= 2.0 SINGLE SLOTTED FLAPS

= 3.0 FOWLER FLAPS

= 4.0 DOUBLE SLOTTED FLAPS

= 5.0 SPLIT FLAPS

= 6.0 LEADING EDGE FLAP

= 7.0 LEADING EDGE SLATS

= 8.0 KRUEGER

Symmetric Flap (Modeling Flap And Elevator)

ENGR SYMBOL	VARIABLE NAME	ARRAY	DEFINITION		UNITS	PIAIN FLAD	LAPS SIONED	OOUR ER FLADS	FLAPS ESLOTTED	LEAD.	140 MG EOGE 1 EAQ	SCA75 MC EDGE	JANGGER FLAD
δ; tan(ΦΤΕ/2) Cf; Cfo b; bo c; c2; C2, C3, C4, 2 Ccη;	FTYPE NDELTA DELTA DELTA PHETE PHETEP CHRDF0 SPANF0 CPRME0 CAPINB CAPOUT DØBDEF DØBCIN DØBCET SCLD SCMD CB TC	9	= 1.0 PLAIN FLAPS = 2.0 SINGLE SLOTTED FLAPS = 3.0 FOWLER FLAPS = 3.0 FOWLER FLAPS = 4.0 DOUBLE SLOTTED FLAPS = 5.0 SPLIT FLAPS = 6.0 LEADING EDGE FLAP = 7.0 LEADING EDGE FLAP = 7.0 LEADING EDGE SLATS = 8.0 KRUEGER NUMBER OF FLAP OB SLAT DEFLECTION ANGLES, MAX 9 FLAP DEFLECTION ANGLE MEASURED STEAMWISE TANGENT OF AIRFOIL TRAILINE EDGE ANGLE BASED ON ORDINATES AT 90 AND 99 PERCENT CHORD TANGENT OF AIRFOIL TRAILING EDGE ANGLE BASED ON ORDINATES AT 95 AND 99 PERCENT CHORD FLAP CHORD AT INBOARD END OF FLAP, MEASURED PARALLEL TO LONGITUDINAL AXIS FLAP CHORD AT OUTBOARD END OF FLAP, MEASURED PARALLEL TO LONGITUDINAL AXIS FLAP CHORD AT OUTBOARD END OF FLAP, MEASURED PERPENDICULAR TO VERTICAL PLANE OF SYMMETRY SPAN LOCATION OF INBOARD END OF FLAP, MEASURED PERPENDICULAR TO VERTICAL PLANE OF SYMMETRY SPAN LOCATION OF OUTBOARD END OF FLAP, MEASURED PERPENDICULAR TO VERTICAL PLANE OF SYMMETRY TOTAL WING CHORD AT INBOARD END OF FLAP (TRANS- LATING DEVICES ONLY) MEASURED PARALLEL TO LONGITUDINAL AXIS TOTAL WING CHORD AT OUTBOARD END OF FLAP (TRANS- LATING DEVICES ONLY) MEASURED PARALLEL TO LONGITUDINAL AXIS INCREMENT IN SECTION LIFT COEFFICIENT DUE TO DEFLECTING FLAP TO THE ANGLE &; INCREMENT IN SECTION PITCHING MOMENT COEFFICIENT DUE TO DEFLECTING FLAP TO ANGLE &; AVERAGE CHORD OF THE BALANCE		FG					37	37		22.
Cµ bj jeff	JETFLP CMU DELJET EFFJET	_	AVERAGE THICKNESS OF THE CONTROL AT HINGE LINE - 1.0 ROUND NOSE FLAP - 2.0 ELLIPTIC NOSE FLAP - 3.0 SHARP NOSE FLAP - 1.0 PURE JET FLAP - 2.0 IBF - 3.0 EBF - 4.0 COMBINATION MECHANICAL AND PURE JET FLAP - WO-OIMENSIONAL JET EFFLUX COEFFICIENT ET OEFLECTION ANGLE BF EFFECTIVE JET DEFLECTION ANGLE	DEG DEG	•								

Symmetric Flap (Modeling Flap And Elevator)

$$\tan (\phi_{TE}/2) = 1/2 \left[\frac{Y_{90} - Y_{99}}{9} \right]$$

$$\tan (\phi_{TE}/2) = 1/2 \left[\frac{Y_{95} - Y_{99}}{4} \right]$$

CONTROL BALANCE INPUT VARIABLES

Any Last Words???

Error handling

Output File Structure

Control Derivatives

Other Options...

AVL http://web.mit.edu/drela/Public/web/avl/

OPENVSP http://openvsp.org/

Tornado https://tornado.redhammer.se/

VOGEL https://www.openvogel.org/