Reverse Breakdown

- 2 Mechanisms:
 - > Zener
 - > Avalanche
- Zener:
 - For junctions with both sides very heavily doped
 - > Thin depletion region, through which carriers tunnel through (quantum mechanical process)
 - $\succ Typical |V_{br}| < 3 V$

• Avalanche:

- > Classical breakdown process
- > At least one side must be lightly doped
- > Carrier multiplication due to impact ionization
- $ightharpoonup Typical |V_{br}| > 5 V$
- For diodes having $|V_{br}|$ in between 3 V and 5 V, a combination of these two processes
- Breakdowns are generally destructive, unless the current is controlled by external means, e.g., by a resistor

Piece-Wise Linear (PWL) Model

Note: The forward and reverse current scales are not same

PWL Regions

- $0 \le V_D \le V_{\gamma}$: Forward Blocking
 - $\triangleright V_{\gamma}$: Cut-in Voltage ($\sim 0.6 \ V$ for Si diodes)
 - $> I_D = 0$
- $V_D \ge V_{\gamma}$: Forward Conduction
 - $\succ I_D$ increases linearly with V_D with an inverse slope of r_E
 - $ightharpoonup r_F$: Diode Forward Resistance (~ 10s of Ω) = $[dI_D/dV_D]^{-1}$

- Diodes under *forward bias* and for $V_D \ge V_{\gamma}$, offer *small resistance* (results from the *exponential* I-V characteristic)
- V_D negative and $0 \le |V_D| \le |V_{br}|$: *Reverse Blocking*

$$> I_D = 0$$

- V_D negative and $|V_D| \ge |V_{br}|$: *Reverse Breakdown*
 - > $|I_D|$ increases linearly with $|V_D|$ with an inverse slope of r_Z

- $ightharpoonup r_Z$: Zener Resistance (~ 50-200 Ω) = $[d|I_D|/d|V_D|]^{-1}$
- Diodes under *reverse bias* and for $|V_D| \ge |V_{br}|$, offer *small resistance*
 - ⇒ If current is not controlled by external means, then it may damage the device completely
- Generally, diodes, unless they are to be operated in *breakdown mode*, e.g., in a *voltage regulator*, have *very high* $|V_{br}|$, typically of the order of *100s of V*