Docentes:

Ing. Paula Acuña R Ing. Gustavo Chica Ing. Cristian Marquez Ing. José Ariza

Proyecto Final

1. Objetivos

1.1. General

■ Diseñar e implementar un medidor de humedad en la tierra para cultivos de flores.

1.2. Específicos

- Adquirir habilidades en el diseño de soluciones a un problema práctico considerando las restricciones aplicables.
- Aplicar los conceptos y habilidades adquiridas a lo largo del curso de Electrónica Análoga.
- Estimular el diseño óptimo (mayor calidad y menor costo) a través de la presentación de los productos resultantes y la selección de los mejores de acuerdo con los criterios de evaluación.

2. Problema

Se requiere un circuito capaz de detectar cambios de humedad de la tierra en los cultivos de flores. Adicionalmente, este circuito debe emitir una señal audible en respuesta a condiciones de humedad crítica.

3. Consideraciones del Diseño

- 1. Tiempo para la realización: 2 meses.
- Grupos de trabajo: El proyecto será desarrollado por los grupos conformados al inicio del semestre para las prácticas de laboratorio.
- 3. **Diseño:** El diseño debe cumplir las especificaciones mínimas de funcionamiento empleando únicamente elementos discretos como transistores, resistores y condensadores. El uso de elementos integrados como compuertas y amplificadores está prohibido.
- 4. Bono: Funciones adicionales tendrán bonificación.
- 5. **Metodología** Con el fin de familiarizarse con el proceso de diseño a nivel empresarial, se deben seguir y documentar en detalle las siguentes etapas en el desarrollo del proyecto:
 - Definición de la estrategia de implementación (diagrama de flujo definición de funciones).
 - Diseño de los circuitos requeridos para cumplir las funciones definidas en la etapa anterior eligiendo componentes, referencias y estimando el costo total.
 - Simulación y ajustes de los circuitos diseñados.
 - Implementación y validación del sistema.

- 6. **Premiación:** Al final del semestre se hará un reconocimiento especial al mejor proyecto con base en los siguientes criterios:
 - Funcionamiento
 - Estética del producto
 - Cumplimiento de las especificaciones de operación
 - Facilidad de uso
 - Eficiencia del diseño

Nota: Al igual que durante el desarrollo de las prácticas de laboratorio, el desarrollo del proyecto debe estar registrado en la bitácora, ubicando allí el diseño de los circuitos, cálculos, simulaciones y mediciones.

4. Productos para Entrega

- Producto en funconamiento.
- Informe con la descripción de todas las etapas del diseño
- Presentación de máximo 7 minutos (estrictos) con la descripción de las etapas de diseño y 3 minutos para preguntas.

5. Especificaciones del sistema a implementar

5.1. Diseño del Sensor

El sensor se basa en la variación en la conductividad de la tierra en respuesta a cambios de humedad. Típicamente la humedad aumenta la conductividad de la tierra, de manera que se puede usar el esquema en la Fig. 1 para detectar cambios de humedad midiendo cambios en la corriente de circuito. Mayor información puede consultarse en [1].

Figura 1: Sensor Sencillo

5.2. Diagrama de bloques general

En la Fig. 2 y Fig. 3 se muestra el diagrama de bloques propuesto para el sistema de detección de humedad que se debe construir.

Figura 2: Diagrama de Bloques

Figura 3: Diagrama de Bloques 2

6. Evaluación

La evaluación del proyecto estará dividida de la siguiente manera:

- Implementación del Sistema (40 %)
- Infome Detallado del Diseño (40 %)
- Presentación y Sustentación Individual (20 %)

7. Fecha de Entrega

Semana del 31 de Mayo al 3 de Junio de 2011.

8. Bibliografía

[1] Para consultar generalidades sobre la medición de la resistividad de tierras se recomienda revisar la sección 13-2 del artículo "IEEE Guide for Safety in AC Sunstation Grounding", el cual pueden encontrar en la siguiente dirección http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6948