エミッター・ベース接地トランジスタの特性とhパラメータの測定

Teduka Yuuki 1522063 Collaborator:Nakamura Kouta 1522B02

Lab date: 6th November 2023

概要

この実験の目的は、エミッタ接地トランジスタとベース接地トランジスタの測定回路を組み、それぞれの特性を測定することである。実験では、エミッタ接地トランジスタにおいて、ベース電流 I_B を一定値に定めた状態で、コレクタ-エミッタ間電圧 V_{CE} を変化させながらコレクタ電流 I_C を測定した。次に、 V_{CE} を一定値に定めた状態で、コレクタ-エミッタ間電圧 V_{BE} を測定した。以上から I_{C} - V_{CE} 特性と I_{B} - V_{BE} 特性を求めた。ベース接地トランジスタにおいては、エミッタ電流 I_{E} を一定値に定めた状態で、コレクタ-ベース間電圧 V_{CB} を変化させながらコレクタ電流 I_{C} を測定した。次に、 V_{CB} を一定値に定めた状態で、 I_{E} を変化させながらエミッタ-ベース間電圧 V_{EB} を測定した。以上から I_{C} - V_{CB} 特性と I_{E} - V_{EB} 特性を求めた。さらに、エミッタ接地トランジスタ特性において、 I_{C} - V_{CE} 特性と I_{B} - V_{BE} 特性を、 I_{C} - I_{B} 特性および V_{CE} - V_{BE} 特性に変換し、特性の傾きから I_{C} - I_{CE}

1 Introduction

1.1 トランジスタの静特性曲線と h パラ メータ

Fig1 に、エミッタ接地におけるトランジスタの静特性曲線を示す。

第1象限の特性曲線の傾き $h_{oe}=\Delta I_C/\Delta V_{CE}$ はトランジスタの入力をオープンにした場合の出力アドミタンスを示す定数である。単位はジーメンス [S] である。これは出力端子間に並列に入っている抵抗と言える。言い換えれば、 h_{oe} が 0 に近いほど、理想的な動作をするトランジスタということになる。

第 2 象限の特性曲線の傾き $h_{fe}=\Delta I_C/\Delta I_B$ は、トランジスタの電流増幅率を示す定数で、単位は無次元である。つまり、ベース電流が h_{fe} 倍されてコレクタに流れるということである。

第 3 象限の特性曲線の傾き $h_{ie} = \Delta V_{BE}/\Delta I_B$ は、トランジスタの出力をショートした場合の入力インピーダンスを示す定数であり、単位は Ω でである。

第 4 象限の特性曲線の傾き $h_{re} = \Delta V_{BE}/\Delta V_{CE}$ は電 圧帰還率と呼ばれる定数で、単位は無次元である。

Fig.1 Transistor static characteristic diagram

2 Experimental procedures

使用装置:可変直流定電流電源、可変直流定電圧電源、デジタル電圧計、可動コイル型直流電流計、トランジスタ

2.1 エミッター接地トランジスタの測定

図 2 に、実験で用いたエミッター接地の測定回路を 示す。測定回路内のトランジスターの入力と出力 にコ ンデンサーが並列に接続されているのは、トランジスターの利得による発振を防止するためである。はじめに、ベース電流 I_B を一定値に定めた状態で、コレクタ-エミッタ間電圧 V_{CE} を変化させながらコレクタ電流 I_C を測定した。次に、 V_{CE} を一定値に定めた状態で、 I_B を変化させながらベース-エミッタ間電圧 V_{BE} を測定した。

Fig.2 Emitter grounded circuit

2.2 ベース接地トランジスタの測定

図 3 に、実験で用いたベース接地回路を示す。コンデンサーがある理由は、2.1 と同じである。はじめに、エミッタ電流 I_E を一定値に定めた状態で、コレクターベース間電圧 V_{CB} を変化させながらコレクタ電流 I_C を測定した。次に、 V_{CB} を一定値に定めた状態で、 I_E を変化させながらエミッターベース間電圧 V_{EB} を測定した。

Fig.3 Base grounded circuit

3 Results

3.1 エミッター接地トランジスタ特性

 I_B を 0, 20, 40, 60, 80, 100 μ A に定めた際の、 I_C - V_{CE} 特性の結果を図 4 に示す。飽和領域と、活性領域が観測された。

Fig.4 I_C - V_{CE} characteristics in emitter grounded circuit

 V_{CE} を 0, 0.1, 0.5, 1, 3V に定めた際の、 I_{B} - V_{BE} 特性の結果を図 5 に示す。ベース-ーエミッタ間電圧 V_{BE} が増加するにつれて、ベース電流 I_{B} が指数関数的に増加していることがわかる。一定の閾値電圧 (約 $0.6\sim0.7$ V) を超えると、ベース電流の増加が顕著になる。

Fig.5 I_{B} - V_{BE} characteristics in emitter grounded circuit

3.2 ベース接地トランジスタ特性

 I_B を 0, 2, 4, 6, 8, 10 μ A に定めた際の、 I_C - V_{CE} 特性の結果を図 6 に示す。 V_{CE} が一定まで上昇すると、 I_C の値は飽和し、 I_B の値を取っていることがわかる。

Fig.6 $I_C\text{-}V_{CB}$ characteristics in a base-grounded circuit

 V_{CE} を $0,\,0.1,\,0.5,\,1,\,3$ V に定めた際の、 I_{B} - V_{BE} 特性の結果を図 5 に示す。ベース-ーエミッタ間電圧 V_{BE} が増加するにつれて、ベース電流 I_{B} が指数関数的に増加していることがわかる。

Fig. 7 I_E - V_{EB} characteristics in a base-grounded circuit

4 Discussion

4.1 h パラメータの計算

エミッタ接地トランジスタにおいて、 I_{C} - V_{CE} および、 I_{B} - V_{BE} 特性を、 I_{C} - I_{B} および V_{CE} - V_{BE} 特性に変換して、それぞれの特性の傾きから h パラメータを求めた。

直線的にプロットしている箇所を適当に選び、最小二乗法で近似直線をフィッティングした。図中の数式が近似直線の式である。

Fig.8 I_C - V_{CB} characteristics for I_B =100 μ A in an emitter ground circuit

Fig.9 $\,$ $I_{B}\text{-}V_{BE}$ characteristics for $V_{CE}\text{=}0$ V in an emitter ground circuit

Fig.10 $\,$ $I_{C}\text{-}I_{B}$ characteristics for $V_{CE}\text{=}4.0\text{ V}$ in an emitter ground circuit

Fig.11 V_{BE} - V_{CE} characteristic when I_E =80 μ A in an emitter ground circuit

図 11 エミッタ接地トランジスタの V_{BE} - V_{CE} 特性結果を見ると、理論上は正の傾きを持つ近似直線が引かれるはずであるが、実験結果からは負の傾きを持つ直線が引かれた。考えられる原因として、回路の問題、トランジスタの温度効果、トランジスタの劣化などが挙げられる。

結果、求められた h パラメータは以下のようになった。

$$h_{oe} = 1.1 \times 10^{-3} \text{S}$$

 $h_{fe} = 270$
 $h_{ie} = 510 \Omega$
 $h_{re} = -3.9 \times 10^{-3}$

4.2 ベース接地トランジスタにおける I_E - V_{EB} 特性の V_{CB} による相違

 I_E - V_{EB} 特性において、 V_{CB} =0 のとき:

$$I_E = I_S \left(\exp\left(-\frac{eV_{EB}}{kT}\right) - 1 \right) \tag{1}$$

 I_S は飽和電流、e は電気素量、k はボルツマン定数、T は絶対温度である。

 V_{CB} が正のとき、コレクタ-ベース接合に逆バイアスがかかる。この逆バイアスによって、コレクタからベースへの少数キャリアの流れが制限され、結果的にエミッタ電流が減少する。この効果による減少量は次式で表される:

$$-\beta I_S \left(\exp\left(-\frac{eV_{CB}}{kT}\right) - 1 \right) \tag{2}$$

この式では、トランジスタの増幅率 β が重要な役割を果たしている。

 V_{CE} =0 と V_{CE} > 0 の相違は、 V_{CB} の値によって、 I_E の値が変化することによる。

4.3 エミッタ接地トランジスタにおける I_B - V_{BE} 特性の V_{CB} による相違

5 Conclusion

エミッタ接地トランジスタとベース接地トランジスタの各特性を測定した。その結果として次のような h パラメータが得られた:

$$h_{oe} = 1.1 \times 10^{-3} \text{S}, \quad h_{fe} = 270, \quad h_{ie} = 510 \ \Omega, \quad h_{re} = -3.9 \times 10^{-3}$$

さらに、ベース接地トランジスタでは、 V_{CB} の値が I_{E} - V_{EB} 特性に顕著な影響を及ぼし、エミッタ接地トランジスタでは、 V_{CE} の値が I_{B} - V_{BE} 特性に顕著な影響を及ぼすことがわかった。

参考文献

- [1] http://www.gxk.jp/elec/musen/1ama/H32/html/H3212A06.html, 参照日 2023/11/13
- [2] 参考文献の名前・著者 2
- [3] 参考文献の名前・著者 3

6 Appendix

Table 1 Measurement results of relationship between I_C and V_{CE} in emitter grounded circuits

		I_C [m.	A]		
$I_B=0 [\mu A]$	20	40	60	80	100
0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.20	0.60	0.98	1.38	1.61
0.00	1.61	3.18	4.30	5.23	6.18
0.00	4.60	8.21	10.98	13.20	15.09
0.00	5.01	9.59	11.08	16.02	18.49
0.00	5.01	10.01	14.01	17.40	20.19
0.00	5.08	10.20	14.60	18.39	21.40
0.00	5.09	10.30	15.21	20.19	24.82
0.00	5.18	10.50	15.68	20.08	25.80
0.00	5.30	10.70	15.90	21.21	26.41
0.00	5.40	10.90	16.15	22.08	27.80
0.00	5.42	11.00	16.60	23.40	29.40
	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.20 0.00 1.61 0.00 4.60 0.00 5.01 0.00 5.08 0.00 5.09 0.00 5.18 0.00 5.30 0.00 5.40	I_B =0 [µA]20400.000.000.000.000.200.600.001.613.180.004.608.210.005.019.590.005.0110.010.005.0810.200.005.0910.300.005.1810.500.005.3010.700.005.4010.90	0.00 0.00 0.00 0.00 0.00 0.20 0.60 0.98 0.00 1.61 3.18 4.30 0.00 4.60 8.21 10.98 0.00 5.01 9.59 11.08 0.00 5.01 10.01 14.01 0.00 5.08 10.20 14.60 0.00 5.09 10.30 15.21 0.00 5.18 10.50 15.68 0.00 5.30 10.70 15.90 0.00 5.40 10.90 16.15	I_B =0 [μA]204060800.000.000.000.000.000.000.200.600.981.380.001.613.184.305.230.004.608.2110.9813.200.005.019.5911.0816.020.005.0110.0114.0117.400.005.0810.2014.6018.390.005.0910.3015.2120.190.005.1810.5015.6820.080.005.3010.7015.9021.210.005.4010.9016.1522.08

Table 2 Measurement results of relationship between I_B and V_{BE} in emitter grounded circuits

I_B [μ A]	$V_{BE} \; [\mathrm{mV}]$					
	$V_{CE}=0$ [V]	0.1	0.5	1.0	3.0	
0.2	450.3	535.5	553.3	553.4	551.1	
0.5	458.1	543.3	567.5	567.8	566.2	
1.0	474.6	559.3	583.8	583.8	582.7	
2.0	496.2	580.4	604.8	604.8	603.9	
4.0	521.4	605.1	630.0	629.8	628.8	
7.0	541.1	624.2	649.4	649.2	647.8	
10	552.4	634.8	660.5	660.1	658.5	
20	573.5	653.6	681.0	680.4	677.0	
40	595.4	672.0	702.4	701.6	697.0	
60	608.5	682.4	715.4	714.5	708.2	
80	618.3	689.9	724.8	724.1	715.5	
100	625.9	695.7	730.0	731.5	716.0	

Table 3 Measurement results of relationship between V_{CB} and I_{C} in a base-grounded circuit

V_{CB} [V]	$I_{C} \; [\mathrm{mA}]$					
	$I_E=0$ [mA]	2	4	6	8	10
-0.85	-18.40	-17.50	-18.60	-17.95	-14.20	-17.20
-0.80	-8.40	-6.80	-7.60	-6.40	-3.40	-0.91
-0.70	-0.60	1.00	2.60	3.40	4.40	6.80
-0.50	0.00	2.00	3.95	6.00	7.95	9.95
-0.30	0.00	2.00	3.95	6.00	7.95	9.95
0.00	0.00	2.00	3.95	6.00	7.95	9.95
1.00	0.00	2.00	3.95	6.00	8.00	9.95
2.00	0.00	2.00	3.95	6.00	8.00	9.95
3.00	0.00	2.00	4.00	6.00	8.00	9.95
4.00	0.00	2.05	4.00	6.00	8.00	9.95
5.00	0.00	2.05	4.00	6.00	8.00	9.95

Table 4 Measurement results of relationship between I_E and V_{EB} in a base-grounded circuit I_E [mA] V_{EB} [V]

I_E [mA]	$V_{EB} [{ m V}]$				
	$V_{CB}=0$ [V]	0.1	1	5.0	
0.01	0.500	0.509	0.5095	0.5090	
0.1	0.5704	0.5703	0.5700	0.5693	
0.3	0.5770	0.5830	0.5870	0.5900	
0.6	0.6120	0.6135	0.6144	0.6160	
0.8	0.6240	0.6243	0.6241	0.6227	
1.0	0.6290	0.6295	0.6294	0.6280	
2.0	0.6477	0.6479	0.6475	0.6447	
4	0.6650	0.6660	0.6650	0.6594	
8	0.6850	0.6856	0.6847	0.6750	
10	0.6880	0.6900	0.6890	0.6790	