zadanie 42.

Pokażemy, że język $L = \{w \in \{0,1\}^* : |w|_0 \le |w|_1 \le 2|w|_0\}$ jest bezkontekstowy, tworząc niedeterministyczny automat ze stosem \mathcal{A} rozstrzygający L.

Pomysł:

Chcemy stworzyć automat z licznikiem, będzie on liczył przewagę zer/jedynek. Na jedną jedynkę przypada co najmniej jedno i co najwyżej dwa zera i to chcemy zawrzeć w przejściach. Stan q_2 traktujemy jako możliwość usunięcia "-" drugi raz (ϵ -przejściem), co odpowiada przypisania do 1 drugiego 0.

Rozważmy NPDA \mathcal{A} : $\langle \{0,1\}, \{q_1,q_2\}, \{+,-,Z\}, Z, \delta \rangle$, akceptujemy słowo gdy po jego przeczytaniu mamy pusty stos w q_1 (występuje tylko Z). Zdefinujmy relację δ :

$\delta(q_1, 0, Z, q_1, Z+)$	(1)
$\delta(q_1, 0, Z, q_1, Z + +)$	(2)
$\delta(q_1,0,+,q_1,++)$	(3)
$\delta(q_1, 0, +, q_1, +++)$	(4)
$\delta(q_1,0,-,q_1,\epsilon)$	(5)
$\delta(q_1,0,-,q_2,\epsilon)$	(6)
$\delta(q_1, 1, Z, q_1, Z-)$	(7)
$\delta(q_1,1,-,q_1,)$	(8)
$\delta(q_1,1,+,q_1,\epsilon)$	(9)
$\delta(q_2, 0, Z, q_2, Z+)$	(10)
$\delta(q_2, 0, Z, q_2, Z++)$	(11)
$\delta(q_2, 0, +, q_2, ++)$	(12)
$\delta(q_2, 0, +, q_2, +++)$	(13)
$\delta(q_2,\epsilon,-,q_1,\epsilon)$	(14)
$\delta(q_2, 1, Z, q_2, Z-)$	(15)
$\delta(q_2, 1, +, q_2, +-)$	(16)

Twierdzenie 1. Automat A rozstrzyga język L.

 $Dow \acute{o}d.$ Weźmy dowolne słowo $w\in L$ oraz dwa dowolne słowa $w',w''\notin L,$ tż. $|w'|_1<|w'|_0$ oraz $2|w''|_0<|w''|_1.$

Pokażemy, że dla wistnieje przejście automatu $\mathcal A$ kończące ze stosem pustym, a dla w',w''nie.

\mathbf{w}

Skoro $|w|_0 \le |w|_1 \le 2|w|_0$ to dla każdego zera w słowie jesteśmy w stanie określić czy przypada ono na 1 czy na 2 jedynki. Czytając słowo jedyny niedeterminizm występuje w przypadku czytania zera, wtedy dla zer określonych dla samotnych jedynek używamy przejść 1,3,5,10,12 natomiast dla zer określonych dla par jedynek używamy przejść 2,4,11,13,6+14 (przejście 6 i gdy będzie "-" na górze stosu przejście 14). Jedyną wątpliwością może być, czy zawsze będziemy w stanie wrócić z q_2 gdy chcieliśmy usunąć dwa "-", możemy rozważać wszystkie zera z samotnymi jedynkami na początku a zera dla par jedynek na końcu, wtedy mamy pewność, że w pewnym momencie w q_2 na stosie będzie "-", odpowiada to tym jedynkom, do których przypisane jest zero dla par (zera dla samotnych zostały skasowane pierwszymi jedynkami w q_1) i wtedy używamy ϵ -przejścia 14.

\mathbf{w}'

Każde wystąpienie jedynki w słowie dodaje na stos "-", natomiast każde wystąpienie zera z "-" na górze stosu usuwa co najmniej jeden "-" (gdy Z lub "+" na górze stosu to go powiększamy kolejnym "+"/"++"), skoro zachodzi $|w'|_1 < |w'|_0$ to nie ma możliwości usunięcia wszystkich "-" i skończenia z pustym stosem, zostaną jakieś "+".

\mathbf{w} "

Każda jedynka dodaje "-", ale jedno wystapienie zera może usunąć co najwyżej dwa "-", raz przejściem do q_2 i raz ϵ -przejściem. Skoro $2|w''|_0 < |w''|_1$ to pewne jedynki nie zostaną usunięte zerami i skończymy ze niepustym stosem zawierającym "-".