Équations Différentielles.

semaine du 23 mars 2020

La résolution des équations différentielles linéaires (les plus importantes) utilise tout l'arsenal de l'Algèbre Linéaire.

Équations Différentielles

- Une **équation différentielle** est un cas particulier d'**équation fonctionnelle** : une équation dont chaque solution est une fonction y = f(x) (avec ensembles, de départ et d'arrivée). Mille modèles de lois d'évolutions temporelles (y = f(t)) fournissent de telles équations : Physique, Biologie,...
- **Exemple :** trouver une fonction, de classe C^2 , $f: \mathbb{R} \longrightarrow \mathbb{R}$, telle que : $\forall x \in \mathbb{R}$ f''(x) 2f'(x) + f(x) = 0. C'est une équation fonctionnelle (on cherche une fonction f), **différentielle d'ordre 2** car seules f et ses dérivées f' et f'' apparaissent; on l'écrit : $y \in C^2(\mathbb{R})$, y'' 2y' + y = 0.
- Les problèmes premiers de toute équation sont ceux de l'existence et de l'unicité d'une solution. Les solutions de l'équation ci-dessus forment un sous-ensemble $S \subset \mathcal{C}^2(\mathbb{R})$; S est non vide car la fonction nulle est évidemment solution; un rapide calcul montre aussi : $\exp \in S$. Exercice : $\sin \notin S$.

Équations Différentielles Linéaires

- Constat: les équations différentielles sont impossibles à résoudre en général (approches quantitatives); même l'analyse qualitative des solutions (existence ou unicité) est souvent muette. Reste l'approche quantitative approchée sur ordinateur, telles les simulations météorologiques.
- Il existe cependant un type d'équation où abondent des résultats : les **équations linéaires**. Pour un entier n > 0 et une partie $I \subset \mathbb{R}$ (souvent un intervalle), soient n + 2 fonctions (continues) $I \longrightarrow \mathbb{R}$: les n + 1 **coefficients** $a_n(x)$, $a_{n-1}(x),...,a_0(x)$ et le **2nd membre** b(x). Ils définissent une équation différentielle linéaire d'ordre n : $y \in C^n(I)$, $a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + ... + a_0(x)y = b(x)$.

Deux Équations

- Le premier réflexe à avoir devant l'équation linéaire $(\mathcal{E})\ y \in \mathcal{C}^n(I)$, $a_n(x)y^{(n)} + ... + a_0(x)y = b(x)$ est d'introduire l'équation **homogène** associée : $(\mathcal{E}_0)\ y \in \mathcal{C}^n(I)$, $a_n(x)y^{(n)} + ... + a_0(x)y = 0$.
- Notant S l'ensemble des solutions de (\mathcal{E}) et, S_0 celui de (\mathcal{E}_0) :

Théorème

 S_0 est un s.e.v de $C^n(I)$; S est un s.e.a de $C^n(I)$, dirigé par S_0 .

- Si y_1 est une solution **particulière** (= quelconque) de (\mathcal{E}) , nous avons : $S = y_1 + S_0 = \{y_1 + y_0 | y_0 \in S_0\}$.
- La linéarité de l'équation (\mathcal{E}) induit une géométrie affine sur l'ensemble de ses solutions $S: quid de dim(S) = dim(S_0)$?

Ordre 1 : cas homogène

• Pour un intervalle $I \subset \mathbb{R}$, soit l'équation (différentielle linéaire d'ordre 1) : (\mathcal{E}) $y \in \mathcal{C}^1(I)$, $\alpha(x)y' + \beta(x)y = \gamma(x)$, où α , β et γ sont continues sur I; nous avons l'équation homogène associée : (\mathcal{E}_0) $\alpha(x)y' + \beta(x)y = 0$. Nous supposons que α ne s'annule pas sur I; sinon, on découpera I en intervalles I_k sur lesquels α ne s'annule pas.

Théorème

Soit une solution y_0 de (\mathcal{E}_0) . Pour tout $x_0 \in I$, il existe $C \in \mathbb{R}$ tel que : $y_0(x) = C \exp \int_{x_0}^x -\frac{\beta(s)}{\alpha(s)} ds$ (on suppose $\alpha(s) \neq 0$ sur I).

• Donc S_0 est une droite vectorielle de $\mathcal{C}^1(I)$: toute solution de (\mathcal{E}_0) est multiple de $\exp \int_{x_0}^x -\frac{\beta(s)}{\alpha(s)} ds$.

Variation de la Constante

ullet Pour (\mathcal{E}) , nous avons le théorème de Cauchy-Lipschitz :

Théorème

Pour tout $x_0 \in I$ et tout $y_0 \in \mathbb{R}$, il existe une unique solution y à (\mathcal{E}) telle que $y(x_0) = y_0$.

- Une preuve est donnée par la méthode de la **variation de la constante**, laquelle méthode énonce qu'il existe une solution particulière de (\mathcal{E}) qui s'écrit $y_1(x) = C(x) \exp \int_{x_0}^x -\frac{\beta(s)}{\alpha(s)} ds$. On fait "varier" C! Cf. exemple, page suivante.
- **Remarques.** 1) Les solutions de (\mathcal{E}) forment une droite affine de vecteur directeur la fonction $\exp \int_{x_0}^x -\frac{\beta(s)}{\alpha(s)} ds$. 2) Les graphes des solutions de (\mathcal{E}) sont disjoints et recouvrent $I \times \mathbb{R}$.

Exemple

Exemple : trouver la solution ω de l'équation différentielle linéaire (\mathcal{E}) $y \in \mathcal{C}^1(\mathbb{R}^*)$, y' + y/t = 1, telle que $\omega(1) = 1$.

- L'équation homogène associée à (\mathcal{E}) est (\mathcal{E}_0) y' + y/t = 0.
- L'ensemble S_0 des solutions de (\mathcal{E}_0) est formé des fonctions : $y_0(t) = C \exp \int_1^t \frac{ds}{s} = C/t$ (S_0 est une droite vectorielle).
- La méthode de la variation de la constante propose de poser $y_1(t) = C(t)/t$: C est une fonction! Remplaçons dans (\mathcal{E}) :
- $y'_1(t) + y_1(t)/t = (C'(t)t C(t))/t^2 + C(t)/t^2 = C'(t)/t$. Avec C'(t)/t = 1, on prend $C(t) = t^2/2$; d'où $y_1(t) = t/2$.
- Toute solution y de (\mathcal{E}) s'écrit donc $y(t) = y_1(t) + y_0(t)$, où $y_0 \in S_0 : y(t) = t/2 + C/t$, pour un certain $C \in \mathbb{R}$.
- La "condition de Cauchy" $\omega(1)=1$ devient 1=1/2+C, soit C=1/2 . On en déduit : $\omega(t)=t/2+1/(2t)$.

Ordres Supérieurs

L'équation (E) y ∈ Cⁿ(I), a_n(x)y⁽ⁿ⁾ + ... + a₀(x)y = b(x) (ordre n) se ramène à une équation différentielle d'ordre 1 matricielle ou, aussi, à un système différentiel d'ordre 1. On dispose d'un théorème de Cauchy-Lipschitz "vectoriel".

Théorème

Si I est un intervalle et a_n ne s'y annule pas, alors dim(S) = n.

• **Principe de superposition.** Supposons une décomposition $b(x) = \beta_1 b_1(x) + \beta_2 b_2(x)$ et introduisons les fonctions : y_1 , solution de (\mathcal{E}_1) $a_n(x)y^{(n)} + ... + a_0(x)y = b_1(x)$ et y_2 , solution de (\mathcal{E}_2) $a_n(x)y^{(n)} + ... + a_0(x)y = b_2(x)$.

Théorème

 $y = \beta_1 y_1 + \beta_2 y_2$ est solution de (\mathcal{E}) .

Coefficients Constants

Soit S_0 l'espace vectoriel des solutions de l'équation différentielle $y \in \mathcal{C}^n(I)$, $a_n y^{(n)} + ... + a_0 y = 0$, avec des constantes a_i ($a_n \neq 0$). On définit un **polynôme caractéristique** $P(r) = \sum_{i=0}^n a_i r^i$ ainsi qu'une **équation caractéristique** $\sum_{i=0}^n a_i r^i = 0$. Rappel : P(r) possède n racines réelles ou complexes, multiplicités comprises.

Théorème

- 1) Si r est une racine réelle de P, d'ordre m, alors $(e^{rx}, xe^{rx}, ..., x^{m-1}e^{rx})$ est une famille libre m de vecteurs de S_0 .
- 2) Si $\alpha + i\beta$ est une racine complexe (avec $\beta \neq 0$) de P, d'ordre m, $(e^{\alpha x}\cos(\beta x), e^{\alpha x}\sin(\beta x), ..., x^{m-1}e^{\alpha x}\cos(\beta x), x^{m-1}e^{\alpha x}\sin(\beta x))$ est une famille libre de 2m vecteurs de S_0 .
- 3) L'union de toutes ces familles libres est une base de S_0 .

Exemples : ordre 2

Soit l'équation (différentielle d'ordre 2, linéaire à coefficients constants) : $y \in C^2(\mathbb{R})$, ay'' + by' + cy = 0; $a, b, c \in \mathbb{R}$ et $a \neq 0$.

- L'ensemble S_0 des solutions est un plan vectoriel de $\mathcal{C}^2(\mathbb{R})$. Pour en préciser une base \mathcal{B} , introduisons le polynôme caractéristique $ar^2 + br + c$, de discriminant $\Delta = b^2 4ac$.
- Pour $\Delta > 0$, nous avons les racines réelles distinctes : $r_+ = \frac{-b + \sqrt{\Delta}}{2a}$, $r_- = \frac{-b \sqrt{\Delta}}{2a}$ et $\mathcal{B} = (e^{r_+ x}, e^{r_- x})$.
- Pour $\Delta=0$, nous avons une unique racine, réelle et double : $r_0=\frac{-b}{2a}$; d'où une base pour $S_0:\mathcal{B}=\left(e^{r_0x},xe^{r_0x}\right)$.
- Pour $\Delta < 0$, nous avons deux racines complexes conjuguées $\alpha \pm i\beta$, avec $\alpha = \frac{-b}{2a}$ et $\beta = \frac{\sqrt{-\Delta}}{2a}$; nous en déduisons une base de solutions : $\mathcal{B} = (e^{\alpha x}\cos(\beta x), e^{\alpha x}\sin(\beta x))$.

Équation Inhomogène

Il existe des méthodes pour trouver une solution à une équation (différentielle, linéaire, à coefficients constants) non homogène, à commencer par **la variation des constantes**. Celle-ci ne sera pas d'une grande utilité pour les seconds membres envisagés ici :

- x^m (monômes), avec $m \in \mathbb{N}$;
- $e^{\alpha x}$ (exponentielles), avec $\alpha \in \mathbb{R}^*$;
- $cos(\beta x)$ et $sin(\beta x)$ (trigonométrie de base), avec $\beta \in \mathbb{R}^*$;
- tous leurs produits : $x^m e^{\alpha x}$, $\sin(\beta x) e^{\alpha x}$, $x^m e^{\alpha x} \cos(\beta x)$,...

Notons que le principe de superposition autorise des combinaisons linéaires telles : x^3-x^2+5 (polynômes), $x^2e^{2x}-5\cos(x)e^{-3x},...$ L'idée est la suivante : **construire une solution qui ressemble au second membre**, avec un (ou plusieurs) coefficient(s) libre(s). Cette méthode "par ressemblance", marche assez souvent; encore faut-il la comprendre et bien l'appliquer...

Non Résonance

Soit l'équation (\mathcal{E}) $a_n y^{(n)} + ... + a_0 y = b(x)$ (coefficients constants), de polynôme caractéristique P(r). Définissons le nombre $\rho = \alpha + i\beta$ si $b(x) = x^m e^{\alpha x} \cos(\beta x)$ ou $b(x) = x^m e^{\alpha x} \sin(\beta x)$.

Définition. ρ est une **valeur de résonance** si $P(\rho)=0$. Quand ρ n'est pas en résonance, l'équation (\mathcal{E}) est plus facile à résoudre : on trouvera une solution particulière $y_1(x)$ de la forme

- $y_1(x) = k_1$, si $b(x) = 1 \ (\rho = 0)$;
- $y_1(x) = k_1 e^{\alpha x}$, si $b(x) = e^{\alpha x} (\rho = \alpha)$;
- $y_1(x) = k_1x + k_2$, si $b(x) = x \ (\rho = 0)$;
- $y_1(x) = (k_1x + k_2)e^{\alpha x}$, si $b(x) = xe^{\alpha x} (\rho = \alpha)$;
- $y_1(x) = k_1 \sin(\beta x) + k_2 \cos(\beta x)$, si $b(x) = \cos(\beta x) (\rho = i\beta)$;
- Etc. À chaque fois, il convient de vérifier la non résonance!

Reste ensuite à trouver les valeurs de k_1 , de k_2 ,... Elles s'obtiennent en injectant directement $y_1(x)$ dans l'équation (\mathcal{E}) .

Exemple Non Résonant

Résoudre l'équation: (\mathcal{E}) $y \in \mathcal{C}^2(\mathbb{R})$, $y'' - 4y = 7e^x - 3\cos(2x)$. 1) C'est une équation différentielle d'ordre 2, linéaire à coefficients constants; son polynôme caractéristique $P(r) = r^2 - 4$ a 2 racines réelles distinctes : $r_{+}=2$ et $r_{-}=-2$ ($\Delta=16$). Les solutions de l'équation homogène s'écrivent : $y = Ae^{2x} + Be^{-2x}$ $(A, B \in \mathbb{R})$. 2) Cherchons des solutions particulières y_1 et y_2 aux 2 équations : (\mathcal{E}_1) $y''-2y=e^x$ et (\mathcal{E}_2) $y''-2y=\cos(2x)$. Nous posons $\rho_1=1$ pour (\mathcal{E}_1) et $\rho_2 = 2i$ pour (\mathcal{E}_2) : **non résonantes**, nous tentons les solutions $y_1 = ke^x$ et $y_2 = k_1 \cos(2x) + k_2 \sin(2x)$. Remplaçant y_1 dans (\mathcal{E}_1) , il vient : k = -7/3, soit $y_1(x) = -7e^x/3$. Pour y_2 dans $(\mathcal{E}_2): -8k_1\cos(2x) - 8k_2\sin(2x) = \cos(2x)$; on trouve $k_1 = -1/8$ et $k_2 = 0$, soit $y_2(x) = -\cos(2x)/8$. Solution **particulière** de (\mathcal{E}) : $7y_1 - 3y_2 = -49e^x/3 + 3\cos(2x)/8$ (principe de **superposition**). 3) Toutes les solutions de (\mathcal{E}) : $y = Ae^{2x} + Be^{-2x} - \frac{49}{3}e^x + \frac{3}{8}\cos(2x)$.

Résonance

Soit l'équation (\mathcal{E}) $a_n y^{(n)} + ... + a_0 y = b(x)$ $(a_i \text{ constants}, a_n \neq 0)$, où $b(x) = x^m e^{\alpha x} \cos(\beta x)$ ou $b(x) = x^m e^{\alpha x} \sin(\beta x)$. Notons P(r) le polynôme caractéristique et posons $\rho = \alpha + i\beta$.

Non résonance : si $P(\rho) \neq 0$, il existe des polynômes Q et R, de degrés $\leq m$, tels que $y_1(x) = Q(x)e^{\alpha x}\cos(\beta x) + R(x)e^{\alpha x}\sin(\beta x)$ soit solution de (\mathcal{E}) ; si $b(x) = x^m e^{\alpha x}$, ρ est réel et R = 0. Il s'agit d'expliciter les coefficients k_i de $Q(x) = \sum_{i=0}^m k_i x^i$ (ainsi que ceux de R) : on injecte $y_1(x)$ dans (\mathcal{E}) et l'on résout un système linéaire. **Résonance :** $P(\rho) = 0$; on note μ la multiplicité de la racine ρ . Il existe des polynômes Q et R, de degrés $\leq m + \mu$, tels que $y_1(x) = Q(x)e^{\alpha x}\cos(\beta x) + R(x)e^{\alpha x}\sin(\beta x)$ soit solution de (\mathcal{E}) . Le système linéaire obtenu est encore avec 2m + 2 inconnues, car nous avons $Q(x) = \sum_{i=\mu}^{m+\mu} k_i x^i$ (idem pour R).

Exemple Résonant

```
Trouver la solution de (\mathcal{E}) v \in \mathcal{C}^2(\mathbb{R}), v'' - 3v' + 2v = ch(x).
telle que y(0) = 0 et y'(0) = 1 (conditions de Cauchy).
1) Polynôme caractéristique : P(r) = r^2 - 3r + 2, de racines
r_{+}=2 et r_{-}=1 (réelles distinctes). Les solutions de l'équation
homogène forment un plan vectoriel S_0 = \{Ae^{2x} + Be^x | A, B \in \mathbb{R}\}.
2) Puisque ch(x) = (e^x + e^{-x})/2, introduisons les deux équations
(\mathcal{E}_1) \ v'' - 3v' + 2v = e^x \ \text{et} \ (\mathcal{E}_2) \ v'' - 3v' + 2y = e^{-x} \ \text{(superposition)}.
3) Il y a une solution de (\mathcal{E}_1) de la forme y_1 = kxe^x (résonance
simple pour \rho_1 = 1). Replaçons \gamma_1 dans (\mathcal{E}_1): nous obtenons
y_1'' - 3y_1' + 2y_1 = -ke^x, d'où k = -1 et y_1 = -xe^x.
4) L'équation (\mathcal{E}_2) a une solution de la forme y_2 = \ell e^{-x} (pas de
résonance pour \rho_2 = -1); en remplaçant, il vient \ell = \frac{1}{6} et y_2 = \frac{e^{-x}}{6}.
5) Les solutions de (\mathcal{E}): y = Ae^{2x} + (-x/2 + B)e^x + e^{-x}/12.
6) Donc v' = 2Ae^{2x} + (-x/2 + B - 1/2)e^x - e^{-x}/12; conditions
initiales : 0 = A + B + 1/12 et 1 = 2A + B - 1/2 - 1/12, de là
A = 5/3, B = -7/4. La solution : y = \frac{5}{3}e^{2x} - (\frac{x}{2} + \frac{7}{4})e^{x} + \frac{1}{12}e^{-x}.
```