RACIOCÍNIO LÓGICO

AULA 3

Prof. André Roberto Guerra

CONVERSA INICIAL

O roteiro proposto contempla, nesta aula, as fórmulas proposicionais especiais.

Serão apresentadas as propriedades semânticas básicas da lógica proposicional (LP): tautologia, contradição e contingência, concluindo com as relações entre as propriedades semânticas.

Definidos os termos e símbolos que compõem a lógica proposicional e o cálculo das sentenças (proposições), permitindo a validação da resposta encontrada, tem-se agora as propriedades semânticas básicas da lógica proposicional (LP), que permitem simplificar ainda mais a solução de complexos cálculos proposicionais.

Objetivos de acordo com a taxonomia de Bloom	Propriedades semânticas Tautologia, contradição e contingência
revisada	Objetivos Específicos

TEMA 1 – FÓRMULAS PROPOSICIONAIS ESPECIAIS

1.1 Interpretação de uma fórmula

Uma interpretação de uma fórmula é o valor lógico resultante de seu cálculo considerando um conjunto de valores lógicos para as suas proposições constituintes.

Se a fórmula for representada por P, sua interpretação é dada por I[P].

Ex.: interpretação de uma fórmula.

Seja a fórmula A(p,q,r): $p \land q \lor r$.

São possíveis então $2^3 = 8$ interpretações para esta fórmula:

$$I[A(V,V,V)] = V$$

 $I[A(V,V,F)] = V$
 $I[A(V,F,V)] = V$
 $I[A(V,F,F)] = F$
 $I[A(F,V,V)] = V$
 $I[A(F,V,F)] = F$
 $I[A(F,V,F)] = V$

I[A(F,F,F)] = F

r	$p \wedge q \vee r$
<	V V
F	V V
V	F V
F	FF
^	F V
F	FF
V	F V
F	F F
	V F V F V

TEMA 2 – TAUTOLOGIA

Tendo como base a definição inicial, *tautologia* é toda proposição composta cujo *conjunto resposta* da *tabela-verdade* é formado em sua totalidade por *V* (verdadeiro).

Em outros termos, é toda proposição composta P(p,q,r,...) cujo valor lógico é sempre V(verdade), quaisquer que sejam os valores lógicos das proposições simples componentes (variáveis) p,q,r,...

Uma fórmula proposicional A é uma tautologia (proposição tautológica/ proposição logicamente verdadeira), se, e somente se, o único valor lógico resultante de sua interpretação é o V (verdadeiro), independente dos valores lógicos dos componentes da fórmula. I[A] = V"

É imediato que as proposições $p \to p$ e $p \leftrightarrow p$ são tautológicas (princípio de identidade para as proposições)

Ex.: A proposição " $\sim (p \land \sim p)$ " (princípio da não contradição) é tautologia, conforme ilustra a sua tabela-verdade:

p	~ p	<i>p</i> ∧ ~ <i>p</i>	$\sim (p \land \sim p)$
٧	F	F	٧
F	>	F	V

Portanto, dizer que uma proposição não pode ser simultaneamente verdadeira e falsa é sempre verdadeiro

A proposição " $p \lor \sim p$ " (princípio do terceiro excluído) é tautologia, como comprovado na tabela-verdade:

$$p \sim p p \vee p$$

٧	F	٧
F	٧	٧

Portanto, o conceito de que uma proposição ou é verdadeira ou é falsa é válido.

A proposição $P(p,q)\colon p\wedge q\vee \sim p\vee \sim q$ é uma tautologia, pois I[P]=V sempre

р	q	pΛ	$q \vee$	~p	٧	~q
٧	٧	٧	٧	F	٧	F
٧	F	F	F	F	٧	٧
F	٧	F	٧	٧	٧	F
F	F	F	٧	٧	٧	٧

Uma fórmula A é satisfazível, se, e somente se, os valores do seu conjunto resposta são V (verdade). Portanto, tautologia também é satisfazível.

TEMA 3 – CONTRADIÇÃO

Seguindo o princípio da definição básica, contradição é toda proposição composta cujo conjunto resposta da tabela-verdade é formado em sua totalidade por F (falso).

Em outros termos, é toda proposição composta P(p, q, r, ...) cujo valor lógico é sempre F (falso), quaisquer sejam os valores lógicos das proposições simples componentes (variáveis) p, q, r, ...

Uma fórmula proposicional A é uma contradição, (proposição contraválida / proposição logicamente falsa), se, e somente se, o único valor lógico resultante de sua interpretação é o F (falso), independente dos valores lógicos dos componentes da fórmula. Para toda interpretação I[A] = F

Como a tautologia é sempre verdadeira (V), a negação de uma tautologia é sempre falsa (F), ou seja, é uma contradição, e vice-versa.

Ex.: a proposição " $p \land \sim p$ "

р	~p	$(p \land \sim p)$
٧	F	F
F	٧	F

Portanto, dizer que uma proposição pode ser simultaneamente verdadeira e falsa é sempre falso.

A proposição P(p,q): $(p \to q) \land p \land \sim q$ é uma contradição, pois I[P] = F como comprovado na tabela-verdade:

р	q	$(p \rightarrow 0)$	$q) \wedge p \wedge \sim q$
٧	٧	V	VFF
٧	F	F	FFV
F	٧	٧	FFF
F	F	٧	FFV

Uma fórmula A é *insatisfazível* (insatisfatível) ou *falsificável*, se, e somente se, os valores do seu conjunto resposta são F (falsos). A contradição também é falsificável.

TEMA 4 – CONTINGÊNCIA

Concluindo as definições das propriedades semânticas básicas da Lógica Proposicional (LP), uma fórmula A é uma contingência se, e somente se, os valores do seu conjunto resposta são diferentes entre si

Em outros termos, é toda proposição composta P(p,q,r,...) cujo valor lógico é alternado entre V (verdadeiro) e F (falso), quaisquer que sejam os valores lógicos das proposições simples componentes (variáveis) p,q,r,...

Uma fórmula proposicional A é uma contingência (proposição contingente / indeterminação) se, e somente se, entre os valores lógicos resultantes de sua interpretação existe pelo menos um F (falso) e ou V (verdadeiro).

Pelo menos uma I[A] = V e ao menos uma I[A] = F

Simplificando, *contingência* é toda proposição composta cujo conjunto resposta:

- não é tautologia e;
- não é contradição

A proposição $P(p,q)\colon (p\to q) \land q \lor p$ é uma contingência, como comprovado na tabela-verdade

р	q	$(p \rightarrow 0)$	q)∧~q∨p
<	٧	V	FFV
<	F	F	F V V

TEMA 5 – PROPRIEDADES SEMÂNTICAS DA LÓGICA PROPOSICIONAL

5.1 Fórmulas proposicionais especiais – Propriedades semânticas

A semântica é o estudo da relação entre as expressões e o que elas representam (significado).

Na lógica proposicional, está associada à atribuição de valores lógicos (V ou F) a fórmulas proposicionais, que podem ter significados na análise lógica.

Nesse sentido, as seguintes fórmulas especiais constituem também propriedades semânticas em relação a uma fórmula proposicional P = P(p1, p2, ..., pn).

5.1.1 Tautologia

Qualquer interpretação da fórmula proposicional é verdade, I[P] = V para qualquer combinação de valores lógicos para (p1, p2, ..., pn). É uma fórmula válida.

5.1.2 Contradição

Qualquer interpretação da fórmula proposicional é falsa, I[P] = F para qualquer combinação de valores lógicos para (p1, p2, ..., pn). Não é uma fórmula válida.

5.1.3 Contingência

Há interpretações verdadeiras e falsas da fórmula proposicional, I[P] = V para algumas combinações de valores lógicos de (p1, p2, ..., pn) e I[P] = F para outras combinações.

Não é uma fórmula válida.

5.1.4 Satisfazibilidade

Uma fórmula proposicional é satisfazível (ou satisfatível / consistente) se existe ao menos uma interpretação que seja V (verdadeira), ou seja, I[P] = V para ao menos uma combinação de valores lógicos para (p1, p2, ..., pn).

Consequentemente, uma fórmula proposicional é insatisfazível quando qualquer interpretação é falsa I[P] = F.

Se uma fórmula é satisfazível em qualquer interpretação, então ela é uma tautologia.

5.1.5 Falseabilidade

Uma fórmula proposicional é falsificável (insatisfazível ou insatisfatível / inconsistente) se existe ao menos uma interpretação F (falsa), ou seja, I[P] = F para ao menos uma combinação de valores lógicos para (p1, p2, ..., pn).

Se uma fórmula é insatisfazível em qualquer interpretação, então ela é uma contradição.

5.2 Relações entre as propriedades semânticas

- Toda fórmula válida (tautologia) é satisfazível
- Toda fórmula contraditória (insatisfazível) é falsificável
- Uma fórmula não pode ser satisfazível e contraditória
- Uma fórmula não pode ser uma tautologia e falsificável
- Se A é uma tautologia, então $\sim A$ é contraditória
- Se A é contraditória, então, $\sim A$ é uma tautologia
- Se A é satisfazível, então $\sim A$ é falsificável, e vice-versa

Há fórmulas que são tanto satisfazíveis quanto falsificáveis, i.e., são contingências ou fórmulas indeterminadas

A classificação de fórmulas extensas não é um processo trivial.

Um dos grandes desafios da computação é encontrar métodos (algoritmos) eficientes para decidir se uma fórmula é:

- satisfazível falsificável
- contradição tautologia

5.3 Validade e invalidade

Os métodos de dedução apresentados são capazes de mostrar a validade de um argumento, através do cálculo proposicional, que, com base nas premissas, produz uma série de conclusões parciais, até chegar à conclusão final do argumento.

Esse processo, no entanto, não serve para provar a invalidade de um argumento; de fato, se, durante o processo de dedução, não chegar à conclusão, não é possível inferir que não é possível obter tal conclusão.

Portanto, para mostrar a invalidade de um argumento, é necessário outro método. Um argumento é, na verdade, uma operação de condicionamento.

Se o argumento for válido, essa condicional é tautológica, isto é, é verdadeira para qualquer combinação possível de valores lógicos das proposições que constituem o argumento; se, no entanto, existir pelo menos uma combinação de valores lógicos das proposições que torne a condicional falsa, o argumento é inválido.

A condição para uma condicional ser falsa é: quando o antecedente é verdadeiro e o consequente é falso. Mas, em um argumento, o antecedente é uma conjunção de premissas, e o consequente é a conclusão; então, para que o antecedente seja verdadeiro, é necessário que todas as premissas sejam verdadeiras, e para que o consequente seja falso, é necessário que a conclusão seja falsa.

Então, para mostrar que um argumento é inválido, é suficiente encontrar uma combinação de valores lógicos para as proposições simples envolvidas, de forma que torne cada premissa verdadeira, e a conclusão falsa.

Ex.: Considere o seguinte argumento:

"Se José comprar ações e o mercado baixar, ele perderá seu dinheiro."

O mercado não vai baixar.

Logo, ou José compra ações ou perderá seu dinheiro."

Para que a especificação seja *válida (consistente)*, deve ser *satisfazível* em alguma interpretação.

Sejam as proposições simples:

p: "José comprar ações"

q: "O mercado baixar"

r: "José perder dinheiro"

Aplicando à especificação acima, simbolicamente, o argumento fica representado por:

"Se José comprar ações e o mercado baixar, ele perderá seu dinheiro" $p \wedge q o r$

"O mercado **não** vai baixar" ~q

"Logo, José compra ações **ou** perderá seu dinheiro." $\vdash p \lor r$

A proposição correspondente a esta especificação é, portanto, a seguinte:

$$p \land q \rightarrow r \land \sim q \vdash p \lor r$$

A tabela verdade para esta proposição é mostrada a seguir.

p	q	r	$p \wedge q$	$\rightarrow r$	٨	~q	\Rightarrow	$(p \lor r)$
٧	٧	٧	٧	٧	F	F	٧	٧
٧	٧	F	٧	F	F	F	٧	٧
٧	F	٧	F	٧	٧	٧	٧	٧
٧	F	F	F	٧	٧	٧	٧	٧
F	٧	٧	F	٧	F	F	٧	٧
F	٧	F	F	٧	F	F	٧	F
F	F	٧	F	٧	٧	٧	٧	٧
F	F	F	F	٧	٧	٧	F	F

Quando VL(p) = V e VL(q) = F e VL(r) = V, tem-se o abaixo.

"Se José comprar ações e o mercado baixar, ele perderá seu dinheiro"

$$p \wedge q \rightarrow r = F \rightarrow V = V$$

"O mercado não vai baixar"

$$\sim q = \sim F = V$$

"Logo, José compra ações **ou** perderá seu dinheiro." ⊢ **p** ∨ **r**

$$p \lor r = V = V$$

Isto é, todas as frases formam proposições V (verdadeiras), de forma que não há contradição entre elas. Assim, essa especificação é consistente.

Um outro exemplo. Considere o argumento:

"Ou estudo ou trabalho ou vou à praia;

se estudo sou aprovado;

não trabalho.

Logo, sou aprovado."

Para que a especificação seja *válida (consistente)*, deve ser *satisfazível* em alguma interpretação.

Sejam as proposições simples:

p: "estudo"

q: "trabalho"

r: "vou à praia"

s: "sou aprovado"

Aplicando à especificação acima, simbolicamente, o argumento fica representado por:

"estudo **ou** trabalho **ou** vou à praia" $p \lor q \lor r$

"se estudo sou aprovado" $p \rightarrow s$

"**não** trabalho" ~*q*

"Logo, sou aprovado" $\vdash s$

A proposição correspondente a esta especificação é, portanto, a seguinte:

$$p \lor q \lor r \land p \rightarrow s \land \sim q \vdash s$$

A tabela verdade para essa proposição é mostrada a seguir.

p	q	r	S	$p \vee q$	$q \lor r$	Λ	$p \rightarrow s$	Λ	~ q	\Rightarrow	S
٧	٧	٧	٧	٧	٧	٧	٧	F	F	٧	٧
٧	٧	٧	F	٧	٧	F	F	F	F	٧	F
٧	٧	F	٧	٧	٧	٧	٧	F	F	٧	٧
٧	٧	F	F	٧	٧	F	F	F	F	٧	F
٧	F	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧
٧	F	٧	F	٧	٧	F	F	F	٧	٧	F
٧	F	F	٧	٧	٧	٧	٧	٧	٧	٧	٧
٧	F	F	F	٧	٧	F	F	F	٧	٧	F
F	٧	٧	٧	٧	٧	٧	٧	F	F	٧	٧
F	٧	٧	F	٧	٧	٧	٧	F	F	٧	F
F	٧	F	٧	٧	٧	٧	٧	F	F	٧	٧
F	٧	F	F	٧	٧	٧	٧	F	F	٧	F
F	F	٧	٧	F	٧	٧	٧	٧	٧	٧	٧
F	F	٧	F	F	٧	٧	٧	٧	٧	F	F
F	F	F	٧	F	F	F	٧	F	٧	٧	٧
F	F	F	F	F	F	F	٧	F	>	>	F

Quando VL(p)=F e VL(q)=F e VL(r)=V e VL(s)=F, tem-se como a seguir.

[&]quot;estudo **ou** trabalho **ou** vou à praia" $p \lor q \lor r$

$$p \lor q \lor r = F \lor V = V$$

"**se** estudo sou aprovado" $p \rightarrow s$

$$p \rightarrow s = F \rightarrow F = V$$

"**não** trabalho" ~*q*

$$\sim q = \sim F = V$$

"Logo, sou aprovado" $\vdash s$

$$s = F = F$$

Isto é, na linha destacada há uma combinação de valores que satisfazem a condição de **invalidade**. O argumento é, portanto, **inválido**.

Se não for possível atribuir valores verdade aos enunciados simples dos componentes de argumento, de modo que suas premissas se tornem verdadeiras e sua conclusão falsa, então o argumento é válido.

Ex.: Satisfazibilidade e consistência de especificação.

Seja a seguinte especificação:

"Uma mensagem é armazenada no *buffer* ou ela é transmitida para um *site* vizinho. Uma mensagem não é armazenada no *buffer*. Se a mensagem é armazenada no *buffer*, então é transmitida para um site vizinho."

Para que a especificação seja *consistente*, deve ser *satisfazível* em alguma interpretação.

Sejam as proposições simples:

p: "Uma mensagem é armazenada no buffer."

q: "Uma mensagem é transmitida para um site vizinho."

Aplicando à especificação acima, tem-se o abaixo.

"Uma mensagem é armazenada no buffer ou ela é transmitida para um site vizinho." $p \lor q$

"Uma mensagem **não** é armazenada no *buffer*." ~ *p*

"Se a mensagem é armazenada no buffer, então é transmitida para um site vizinho" p o q

A proposição correspondente a esta especificação é, portanto, a seguinte: $(p \lor q) \land \sim p \land (p \to q).$

A tabela verdade para esta proposição é mostrada abaixo.

٧	٧	٧	F	F	F	٧
٧	F	٧	F	F	F	F
F	٧	٧	٧	٧	٧	٧
F	F	F	F	٧	F	٧

Quando $VL(p) = F \in VL(q) = V$, tem-se o abaixo.

"Uma mensagem não é armazenada no *buffer* ou ela é transmitida para um *site* vizinho."

$$p \lor q = F \lor V = V$$

"Uma mensagem é armazenada no buffer."

$$\sim p = \sim F = V$$

"Se a mensagem não é armazenada no *buffer*, então é transmitida para um *sit*e vizinho"

$$p \rightarrow q = F \rightarrow V = V$$

Ou seja, todas as frases formam proposições \emph{V} (verdadeiras), de forma que não há contradição entre elas.

Assim, essa especificação é consistente.

Ex.: Se adicionar a seguinte proposição: "Uma mensagem não é transmitida para um site vizinho." ao exemplo anterior, ela continuaria consistente?

"Uma mensagem **não** é transmitida para um *site* vizinho."

 $\sim q$

A proposição correspondente a esta especificação é, portanto, a seguinte:

$$(p \lor q) \land \sim p \land (p \rightarrow q) \land \sim q$$

A tabela verdade para esta proposição é mostrada a seguir.

p	q	$(p \lor q)$	٨	~ p	٨	$(p \rightarrow q)$	٨	~q
٧	٧	٧	F	F	F	٧	F	F
٧	F	٧	F	F	F	F	F	٧
F	٧	٧	٧	٧	٧	٧	F	F
F	F	F	F	٧	F	٧	F	٧

Ou seja, em nenhuma das frases são formadas proposições V (verdadeiras), de forma que não há tautologia entre elas.

Assim, essa especificação é *inconsistente*.

Resumindo, temos as seguintes situações na dedução de um argumento: Um argumento é válido quando:

- o conjunto de premissas é contraditório.
- a conclusão é uma tautologia.
- a conclusão pode ser deduzida das premissas.

Um argumento é inválido quando:

 existe pelo menos um conjunto de valores para as proposições simples que tornam as premissas verdadeiras e a conclusão falsa.

Portanto, dado um argumento, para provar a sua validade ou invalidade, devemos chegar a uma das conclusões acima.

FINALIZANDO

Nesta aula foram apresentados os conteúdos que descrevem as Propriedades semânticas básicas da lógica proposicional (LP):

- Tautologia
- Contradição
- Contingência
- Satisfazível
- Falsificável

REFERÊNCIAS

ABAR, C. A. A. P. Noções de lógica matemática. São Paulo: PUCSP, 2011.

CASTANHEIRA, N. P.; LEITE A. E. Raciocínio lógico e lógica quantitativa.

Curitiba: InterSaberes, 2017. (Série Desmistificando a Matemática, 6).

COPPIN, B. Inteligência artificial. Rio de Janeiro: LTC, 2017.

LUGER, G. F. Inteligência artificial. 6. ed. São Paulo: Pearson, 2013.