Shortest Paths

Dijkstra Bellman-Ford Floyd All-pairs paths

Lecturer: Georgy Gimel'farb

COMPSCI 220 Algorithms and Data Structures

- 1 Single-source shortest path
- ② Dijkstra's algorithm

Outline

- 3 Bellman-Ford algorithm
- 4 All-pairs shortest path problem
- 6 Floyd's algorithm

Paths and Distances Revisited

Cost of a walk / path v_0, v_1, \ldots, v_k in a digraph G = (V, E) with edge weights $\{c(u, v) \mid (u, v) \in E\}$:

$$cost(v_0, v_1, \dots, v_k) = \sum_{i=0}^{k-1} c(v_i, v_{i+1})$$

Distance d(u, v) between two vertices u and v of V(G): the minimum cost of a path between u and v.

Eccentricity of a node $u \in V$: $ec[u] = \max_{v \in V} d(u, v)$.

Radius of G: the minimum eccentricity of $u \in V$: $\min_{u \in V} \operatorname{ec}[u]$.

Note: there are analogous definitions for graphs.

Unweighted / Weighted Graphs: Shortest Paths

The shortest path from the vertex A to the vertex D:

$$\min\{2_{A,C,D}, 3_{A,C,E,D}, 3_{A,B,F,D}\}$$

$$\min\{9_{A,C,D}, \mathbf{6}_{A,C,E,D}, 10_{A,B,F,D}\}$$

Single-source Shortest Path (SSSP) in G = (V, E, c)

Given a source node v, find the shortest (minimum weight) path to each other node.

- Weight of a path: the sum of weights (costs) on the arcs.
- BFS works only if all weights c(u,v); $(u,v) \in E$, are equal.
- Dijkstra's algorithm one of the known solutions.
 - A greedy algorithm: each locally best choice is globally best.
 - Works only if all weights are non-negative.
 - Initial paths: one-arc paths from s to v of weight cost(s,v).
 - Each step compares the shortest paths with and without each new node.

Single-source Shortest Path (SSSP) in G = (V, E, c)

- \bullet Build a list S of visited nodes (say, using a priority queue).
- 2 Iterative propagation of the shortest paths:
 - f 0 Choose the closest unvisited node u being on a path with internal nodes in S.
 - 2 If adding the node u has established shorter paths, update distances of remaining unvisited nodes v from the source s.

Complexity depends on data structures used.

- For a priority queue, such as a binary heap, running time $O((m+n)\log n)$ is possible.
 - If every node is reachable from the source: $O(m \log n)$.
- More sophisticated Fibonacci heaps lead to the best complexity of $O(m + n \log n)$.

Dijkstra's Algorithm

```
algorithm Dijkstra( weighted digraph (G,c), node s \in V(G))
    array colour[n] = \{WHITE, ..., WHITE\}
    array dist[n] = \{c[s, 0], \dots, c[s, n-1]\}
    colour[s] \leftarrow \mathsf{BLACK}
    while there is a WHITE node do
         pick a WHITE node u, such that dist[u] is minimum
         colour[u] \leftarrow \mathsf{BLACK}
         for each x adjacent to u do
              if colour[x] = WHITE then
                   dist[x] \leftarrow \min \left\{ dist[x], dist[u] + c[u, x] \right\}
              end if
         end for
    end while
    return dist
end
```


BLACK	dist[x]								
$List\ S$	a	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
\overline{a}	0	3	8	∞	∞				
a b	0	3	8	5	∞				
a b d	0	3	7	5	10				
abcd	0	3	7	5	9				
abcde	0	3	7	5	9				

BLACK	dist[x]						
$List\ S$	a	b	c	d	e		
\overline{a}	0	3	8	∞	∞		
a b	0	3	8	5	∞		
a b d	0	3	7	5	10		
abcd	0	3	7	5	9		
abcde	0	3	7	5	9		

BLACK	dist[x]								
$List\ S$	a	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
a	0	3	8	∞	∞				
a b	0			5					
a b d	0	3	7	5	10				
abcd	0	3	7	5	9				
abcde	0	3	7	5	9				

BLACK	dist[x]							
$List\ S$	a	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
a	0	3	8	∞	∞			
a b	0	3	8	5	∞			
a b d	0	3	7	5	10			
a b c d	0	3	7	5	9			
abcde	0	3	7	5	9			

BLACK		dist[x]						
$List\ S$	a	b	c	d	e			
\overline{a}	0	3	8	∞	∞			
a b	0	3	8	5	∞			
a b d	0	3	7	5	10			
a b c d	0	3	7	5	9			
$a\ b\ c\ d\ e$	0	3	7	5	9			

Why Does Dijkstra's Algorithm Work?

Let an S-path be a path starting at node s and ending at node x with all the intermediate nodes coloured BLACK, i.e., from the list S, except possibly x.

Theorem 6.8: Suppose that all arc weights are nonnegative.

Then these two properties hold at the top of **while**-loop:

- P1: If $x \in V(G)$, then dist[x] is the minimum cost of an S-path from s to x.
- P2: If $colour[w] = \mathsf{BLACK}$ (i.e., $w \in S$), then dist[w] is the minimum cost of a path from s to w.

Once a node u is added to S and dist[u] is updated, dist[u] never changes in subsequent steps. After S=V, dist holds the goal shortest distances.

Proving Why Dijkstra's Algorithm Works

The update rule: $dist[x] \leftarrow \min \{dist[x], dist[u] + c[u, x]\}$.

dist[x] is the length of some path from s to x at every step.

- If $x \in S$, then it is an S-path.
- Updated dist[v] never increases.

To prove P1 and P2: induction on the number of times k of going through the while-loop $(S_k; S_0 = \{s\}; dist[s] = 0).$

- k = 0: P1 and P2 hold as dist[s] = 0.
- Inductive hypothesis: P1 and P2 hold for $k \ge 0$; $S_{k+1} = S_k \bigcup \{u\}$.
- Inductive steps for P2 and P1:
 - Consider any s-to-w S_{k+1} -path $\gamma = (s, \ldots, y, u)$ of the weight $|\gamma|$.
 - If $w \in S_k$, consider the hypothesis.
 - If $w \notin S_k$, γ extends some s-to-y S_k -path $\gamma_1 = (s,\dots,y)$.

Proving Why Dijkstra's Algorithm Works

Inductive step for P2:

- For $w \in S_{k+1}$ and $w \neq u$, P2 holds by inductive hypothesis.
- For w=u, P2 holds, too, because any S_{k+1} -path $\gamma=(s,\ldots,y,u)$ of weight $|\gamma|$ extends some S_k -path $\gamma_1=(s,\ldots,y)$ of weight $|\gamma_1|$:
 - By the inductive hypothesis, $dist[y] \leq |\gamma_1|$.
 - By the update rule, $dist[u] \leq dist[y] + c(y, u)$.
 - Therefore, $dist[u] \leq |\gamma| = |\gamma_1| + c(y, u)$.

Proving Why Dijkstra's Algorithm Works

Inductive step for P1: $x \in V(G)$; γ – any s-to-x S_{k+1} -path; $S_{k+1} = S_k \bigcup \{u\}$:

- $u \notin \gamma$: γ is an S_k -path and $|\gamma| \leq dist[x]$ by the inductive hypothesis.
- $u \in \gamma = (\overbrace{s,\dots,u}^{\gamma_1},x)$: by the update rule, $|\gamma| = |\gamma_1| + c(u,x) \ge dist[x]$.
- $u \in \gamma = (\overbrace{s, \dots, u, \dots, u}^{1}, x)$, returning to S_k after u: by the update rule,

$$|\gamma| = |\gamma_1| + c(y, x) \ge |\beta| + c(y, x) \ge dist[y] + c(y, x) \ge dist[x]$$

where $|\beta|$ is the min weight of an s-to-y S_k -path.

Dijksra's Algorithm: Example 2

Node u	A	B	C	D E F
	0	7	9	$\infty \propto 14$
A		7	9	$\infty \infty 14$
A B		7	9	$22 \propto 14$
A B C		7	9	$20 \infty 11$
A B C F		7	9	20 20 11
A B C D F		7	9	20 20 11
A B C D E F		7	9	20 20 11

for $u \in V(G)$ $dist[u] \leftarrow c[A, u]$

Dijksra's Algorithm: Example 2

1	Node u	\overline{A}	B	C	D	\overline{E}	\overline{F}
		0	7	9	∞	∞	14
A		0	7	9	∞	∞	14
A B			7	9		∞	14
A B C			7	9		00	
ABC	F		7	9	20		11
ABCI	DF		7	9	20	20	11
ABCI	D E F	0	7	9	20	20	11

 $colour[A] \leftarrow \text{BLACK}; \; dist[A] \leftarrow 0$

Dijksra's Algorithm: Example 2

Node v	$u \mid A$	B	C	D	E F
	0	7	9	∞	∞ 14
A	0	7	9	∞	∞ 14
A B	0	7	9	22	∞ 14
A B C	0	7	9		∞ 11
A B C F	0	7	9	20 2	20 11
A B C D F	0	7	9	20 2	20 11
ABCDEF	7 0	7	9	20 2	

while-loop:

 $\begin{aligned} & \text{WHITE } B, C, D, E, F \colon \min \ dist[B] \\ & colour[B] \leftarrow \text{BLACK} \\ & \text{for } x \in V(G) \\ & dist[x] \leftarrow \\ & \min \left\{ dist[x], dist[B] + c[B, x] \right\} \end{aligned}$

Dijksra's Algorithm: Example 2

	Node u	A	B	C	D	E	F
)		0	7	9	∞	∞	14
A		0	7	9	∞	∞	14
A B		0	7	9	22	∞	14
ABC	7	0	7	9	20	∞	11
ABC	^{c}F		7	9	20		11
ABC	^{c}DF		7	9	20	20	11
ABC	D E F		7	9	20	20	11

while-loop:

 $\begin{aligned} & \text{WHITE } C, D, E, F \colon \min \ dist[C] \\ & colour[C] \leftarrow \text{BLACK}; \\ & \textbf{for} \ x \in V(G) \\ & dist[x] \leftarrow \\ & \min \left\{ dist[x], dist[C] + c[C, x] \right\} \end{aligned}$

Dijksra's Algorithm: Example 2

V	Node u	A	B	C	D E F
1		0	7	9	$\infty \propto 14$
	A	0	7	9	$\infty \propto 14$
	A B	0	7	9	$\frac{22}{2} \propto 14$
	A B C	0	7	9	$20 \propto 11$
	A B C F	0	7	9	20 <mark>20</mark> 11
ĺ	A B C D F		7	9	20 20 11
	A B C D E F		7	9	

while-loop:

 $\begin{aligned} & \text{WHITE } D, E, F \colon \min dist[F] \\ & colour[F] \leftarrow \text{BLACK}; \\ & \textbf{for } x \in V(G) \\ & dist[x] \leftarrow \\ & \min \left\{ dist[x], dist[F] + c[F, x] \right\} \end{aligned}$

4 D > 4 B > 4 B > 4 B >

Dijksra's Algorithm: Example 2

Node u	A	B	C	D E F
	0	7	9	$\infty \propto 14$
A	0	7	9	$\infty \propto 14$
A B	0	7	9	$\frac{22}{2}$ $\propto 14$
A B C	0	7	9	$20 \propto 11$
ABCF	0	7	9	20 <mark>20</mark> 11
A B C D F	0	7	9	20 20 11
ABCDEF	0	7	9	20 20 11

while-loop:

 $\begin{aligned} & \text{WHITE } D, E \text{: min } dist[D] \\ & colour[D] \leftarrow \text{BLACK}; \\ & \text{for } x \in V(G) \\ & dist[x] \leftarrow \\ & \min \left\{ dist[x], dist[D] + c[D, x] \right\} \end{aligned}$

Dijksra's Algorithm: Example 2

	Node u	A	B	C	D	E	F
		0	7	9	∞	∞	14
A		0	7	9	∞	∞	14
A B		0	7	9	22	∞	14
A B C		0	7	9	20	∞	11
ABC	F	0	7	9	20	20	11
ABC	D F	0	7	9	20	20	11
ABC	D E F	0	7	9	20	20	11

while-loop:

 $\begin{aligned} & \text{WHITE } E \text{: min } dist[E] \\ & colour[E] \leftarrow \text{BLACK}; \\ & \text{for } x \in V(G) \\ & dist[x] \leftarrow \\ & \min \left\{ dist[x], dist[E] + c[E, x] \right\} \end{aligned}$

Outline

```
Input: weighted digraph (G, c); source node s \in V(G);
          priority queue Q; arrays dist[0..n-1]; colour[0..n-1]
 for u \in V(G) do:
                                    colour[s] \leftarrow GREY
                                                                       \underbrace{(Q.\mathtt{is\_empty}()?)}^{\mathtt{yes}} return dist
  colour[u] \leftarrow \text{WHITE}
                                    Q.\mathtt{insert}(s, \ker_s = 0)
                                                                                  no
                                                           Q.\mathtt{delete}()
                                                                               u \leftarrow Q.\mathtt{peek}()
                                                                               \tau \leftarrow Q.\mathtt{getKey}(u)
                                                             for each x adjacent to u do:
                                                                                    t \leftarrow \tau + c(u, x)
                                           colour[x] \leftarrow GREY
                                               Q.\mathtt{insert}(x,t)
                                                                              colour[x] = WHITE?
                                                                                                 no
                                             \overline{Q.\mathtt{getKey}(x)} > t?
       Q.decreaseKey(x,t)
                                                        no
                                                                                                 no
```

40 > 40 > 43 > 43 >

Start at a

Initialisation:

Priority queue $Q = \{a_{\text{key}=0}\}$

$v \in V$	a	b	c	d	e	f	g
key_v	0						
dist[v]	_	_	_	_	_	_	_

Steps 1 – 2

$$u \leftarrow a; t_1 \leftarrow \text{key}_a = 0; x \in \{b, c, d\}$$

 $x \leftarrow b: t_2 = t_1 + \text{cost}(a, b) = 2; Q = \{a_0, b_2\}$
 $v \in V \mid a \quad b \quad c \quad d \quad e \quad f \quad g$

$$\begin{aligned} u &= a; \ t_1 = \ker_a = 0; \ x \in \{b, c, d\} \\ x &\leftarrow c: \ t_2 = t_1 + \cot(a, c) = 3; \ Q = \{a_0, b_2, c_3\} \\ v &\in V \mid a \quad b \quad c \quad d \quad e \quad f \quad g \end{aligned}$$

$v \in V$	$\mid a \mid$	b	c	d	e	f	g
$\overline{\text{key}_v}$	0	2	3				
dist[v]	_	_	_	_	_	_	_

$$u = a; t_1 = \text{key}_a = 0; x \in \{b, c, d\}$$

 $x \leftarrow d: t_2 = t_1 + \cos(a, d) = 3; Q = \{a_0, b_2, c_3, d_3\}$

Completing the $\mbox{\sc while-loop}$ for u=a

$$dist[a] \leftarrow t_1 = 0; Q = \{b_2, c_3, d_3\}$$

$v \in V$	$\mid a \mid$	b	c	d	e	f	g
$\overline{\text{key}_v}$	0	2	3	3			
$egin{aligned} & \ker_v \ dist[v] \end{aligned}$	0	_	_	_	_	_	_

Steps 6 – 7

$$u \leftarrow b$$
; $t_1 \leftarrow \text{key}_b = 2$; $x \in \{c, e\}$

$$x \leftarrow c$$
: $t_2 = t_1 + \cos(b, c) = 2 + 4 = 6$; $\text{key}_c = 3 < t_2 = 6$

$v \in V$	$\mid a \mid$	b	c	d	e	f	g
key _v	0	2	3	3			
dist[v]	0	_	_	_	_	_	_

$$u = b$$
; $t_1 = \text{key}_b = 2$; $x \in \{c, e\}$

$$x \leftarrow e$$
: $t_2 = t_1 + \cos(b, e) = 2 + 3 = 5$; $Q = \{b_2, c_3, d_3, e_5\}$

$v \in V$	$\mid a \mid$	b	c	d	e	f	g
key_v	0	2	3	3	5		
dist[v]	0	_	_	_	_	_	_

Completing the $\ensuremath{\mathbf{while}}\xspace\text{-loop}$ for u=b

$$dist[b] \leftarrow t_1 = 2; \ Q = \{c_3, d_3, e_5\}$$

$v \in V$	a	b	c	d	e	f	g
key_v	0	2	3	3	5		
$key_v \\ dist[v]$	0	2	_	_	_	_	_

Steps 10 – 11

$$u \leftarrow c; \, t_1 \leftarrow \text{key}_c = 3; \, x \in \{d, e, f\}$$

$$x \leftarrow d$$
: $t_2 = t_1 + \cos(c, d) = 3 + 5 = 8$; $\text{key}_d = 3 < t_2 = 8$

$v \in V$	$\mid a \mid$	b	c	d	e	f	g
key_v	0	2	3	3	5		
$\frac{\ker_v}{dist[v]}$	0	2	_	_	_	_	_

Step 12

$$u = c; t_1 = \text{key}_c = 3; x \in \{d, e, f\}$$

$$x \leftarrow e$$
: $t_2 = t_1 + \cos(c, d) = 3 + 1 = 4$; $\text{key}_e = 5 < t_2 = 4$; $\text{key}_e \leftarrow 4$

Step 13

Completing the $\mbox{while}\mbox{-loop}$ for u=c

$$dist[c] \leftarrow t_1 = 3; \ Q = \{d_3, e_4, f_9\}$$

$v \in V$	$\mid a \mid$	b	c	d	e	f	g
key_v	0	2	3	3	4	9	
$key_v \\ dist[v]$	0	2	3	_	_	_	_

Steps 15 – 16

$$u \leftarrow d; t_1 \leftarrow \text{key}_d = 3; x \in \{f\}$$

$$x \leftarrow f$$
: $t_2 = t_1 + \cos(d, f) = 3 + 7 = 10$; $\text{key}_f = 9 < t_2 = 10$

$v \in V$	$\mid a \mid$	b	c	d	e	f	g
\ker_v	0	2	3	3	4	9	
dist[v]	0	2	3	_	_	_	_

Step 17

Completing the $\mbox{\sc while-loop}$ for u=d

$$dist[d] \leftarrow t_1 = 3; \ Q = \{e_4, f_9\}$$

$v \in V$	a	b	c	d	e	f	g
key_v	0	2	3	3	4	9	
dist[v]	0	2	3	3	_	_	_

Steps 18 – 19

$$u \leftarrow e$$
; $t_1 \leftarrow \text{key}_e = 4$; $x \in \{f\}$

$$x \leftarrow f$$
: $t_2 = t_1 + \text{cost}(e, f) = 4 + 8 = 12$; $\text{key}_f = 9 < t_2 = 12$

$v \in V$	$\mid a \mid$	b	c	d	e	f	g
$\overline{\text{key}_v}$	0	2	3	3	4	9	
dist[v]	0	2	3	3	_	_	_

Completing the **while**-loop for u=e

$$dist[e] \leftarrow t_1 = 4; \ Q = \{f_9\}$$

$v \in V$	$\mid a \mid$	b	c	d	e	f	g
$\frac{\text{key}_v}{dist[v]}$	0	2	3	3	4	9	
dist[v]	0	2	3	3	4	_	_

Steps 21 – 22

$$u \leftarrow f; t_1 \leftarrow \ker_f = 9; x \in \{g\}$$

$$x \leftarrow g$$
: $t_2 = t_1 + \cot(f, g) = 9 + 9 = 18$; $Q = \{f_9, g_{18}\}$

v	$\in V$	$\mid a \mid$	b	c	d	e	f	g
ke	y_v	0	2	3	3	4	9	18
di	ist[v]	0	2	3	3	4	_	_

Completing the $\mbox{\sc while}\mbox{-loop}$ for u=f

$$dist[f] \leftarrow t_1 = 9; \ Q = \{g_{18}\}$$

[]	_				(0 -	- ,	
$v \in V$	$\mid a \mid$	b	c	d	e	f	g
$\frac{\ker_v}{dist[v]}$	0	2	3	3	4	9	18
dist[v]	0	2	3	3	4	9	_

Steps 24 – 25

Completing the **while**-loop for u=g

 $dist[g] \leftarrow t_1 = 18$; no adjacent verices for g; empty $Q = \{\}$

$v \in V$	a	b	c	d	e	f	g
key_v	0	2	3	3	4	9	18
dist[v]		2	3	3	4	9	18

SSSP: Bellman-Ford Algorithm

```
algorithm Bellman-Ford( weighted digraph (G, c); node s)
    array dist[n] = \{\infty, \infty, \ldots\}
    dist[s] \leftarrow 0
    for i from 0 to n-1 do
         for x \in V(G) do
              for v \in V(G) do
                   dist[v] \leftarrow \min(dist[v], dist[x] + c(x, v))
              end for
         end for
    end for
    return dist
end
```

Time complexity – $\Theta(n^3)$; unlike the Dijkstra's algorithm, it handles negative weight arcs (but no negative weight cycles making the SSSP senseless).

SSSP: Bellman-Ford Algorithm (Alternative Form)

```
 \begin{array}{l} \text{algorithm Bellman-Ford( weighted digraph } (G,c); \ \mathsf{node}\ s\ ) \\ & \text{array } dist[n] = \{\infty,\infty,\ldots\} \\ & dist[s] \leftarrow 0 \\ & \text{for } i \ \mathsf{from}\ 0 \ \mathsf{to}\ n-1 \ \mathsf{do} \\ & \quad \mathsf{for}\ (x,v) \in E(G) \ \mathsf{do} \\ & \quad dist[v] \leftarrow \min(dist[v], dist[x] + c(x,v)) \\ & \quad \mathsf{end}\ \mathsf{for} \\ & \quad \mathsf{end}\ \mathsf{for} \\ & \quad \mathsf{return}\ dist \\ & \quad \mathsf{end} \\ \end{array}
```

Replacing the two nested for-loops by the nodes $x,v\in V(G)$ with a single for-loop by the arcs $(x,v)\in E(G)$.

Time complexity: $\Theta(mn)$ using adjacency lists vs. $\Theta(n^3)$ using an adjacency matrix.

Bellman-Ford Algorithm

Slower than Dijkstra's algorithm when all arcs are nonnegative.

Basic idea as in Dijkstra's: to find the single-source shortest paths (SSSP) under progressively relaxing restrictions.

- Dikstra's: one node a time based on their current distance estimate.
- Bellman-Ford: all nodes at "level" $0, 1, \ldots, n-1$ in turn.
 - Level of a node v the minimum possible number of arcs in a minimum weight path to that node from the source s.

Theorem 6.9

If a graph G contains no negative weight cycles, then after the $i^{\rm th}$ iteration of the outer **for**-loop, the element dist[v] contains the minimum weight of a path to v for all nodes v with level at most i.

Proving Why Bellman-Ford Algorithm Works

Just as for Dijkstra's, the update ensures dist[v] never increases.

Induction by the level i of the nodes:

• Base case: i = 0; the result is true due to initialisation:

$$dist[s] = 0$$
; $dist[v] = \infty$; $v \in V \setminus s$.

- Induction hypothesis: dist[v]; $v \in V$, are true for i 1.
- Induction step for a node v at level i:
 - Due to no negative weight cycles, a min-weight s-to-v path, γ , has i arcs.
 - If y is the last node before v and γ_1 the subpath to y, then $dist[y] \leq |\gamma_1|$ by the induction hypothesis.
 - Thus by the update rule:

$$dist[v] \le dist[y] + c(y, v) \le |\gamma_1| + c(y, v) \le |\gamma|$$

as required at level i.

i	dist[x]									
	a	b	c	\overline{d}	e					
0	0	∞	∞	∞	∞					
1	0	3	-1	00	00					
2	0		-1	3	5					
3	0	0	-1	2						
4	0	0	-1	2	-1					

i	dist[x]								
	\overline{a}	b	c	\overline{d}	e				
0	0	∞	∞	∞	∞				
1	0	3	-1	∞	∞				
2	0		-1	3	5				
3	0	0	-1	2					
4	0	0	-1	2	-1				

i	dist[x]								
	\overline{a}	b	c	\overline{d}	e				
0	0	∞	∞	∞	∞				
1	0	3	-1	∞	∞				
2	0	0	-1	3	5				
3	()	()	-1	2	0				
4	0	0	-1	2	-1				

i	dist[x]								
	a	b	c	d	e				
0	0	∞	∞	∞	∞				
1	0	3	-1	∞	∞				
2	0	0	-1	3	5				
3	0	0	-1	2	0				
4	0	()	-1	2	-1				

i	dist[x]								
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
0	0	∞	∞	∞	∞				
1	0	3	-1	∞	∞				
2	0	0	-1	3	5				
3	0	0	-1	2	0				
4	0	0	-1	2	-1				

Illustrating Bellman-Ford Algorithm (Alternative Form)

$$\begin{array}{|c|c|c|c|c|c|c|c|c|}\hline Arc \ (x,v) \colon & a,b & a,c & b,a & b,d & c,b & c,d & c,e & d,b & d,c & d,e \\\hline \hline \ c(x,v) \colon & 3 & -1 & 2 & 2 & 1 & 4 & 6 & -2 & 2 & -3 \\\hline \end{array}$$

Iteration i = 0

x, v	Dista	nce a	$d[v] \leftarrow \min$	$\{d[v], d[x]\}$	+c(a	(x,v)	a	b	c	d	е
							0	∞	∞	∞	∞
a, b	d[b]	\leftarrow	$\min\{\infty,$	$0+3$ }	=	3	0	3	∞	∞	∞
a, c	d[c]	\leftarrow	$\min\{\infty,$	0 - 1	=	-1	0	3	-1	∞	∞
b, a	d[a]	\leftarrow	$\min\{0,$	3+2	=	0	0	3	-1	∞	∞
b, d	d[d]	\leftarrow	$\min\{\infty,$	3+2	=	5	0	3	-1	5	∞
c, b	d[b]	\leftarrow	$\min\{3,$	-1+1	=	0	0	0	-1	5	∞
c, d	d[d]	\leftarrow	$\min\{5,$	-1+4	=	3	0	0	-1	3	∞
c, e	d[e]	\leftarrow	$\min\{\infty,$	-1+6	=	5	0	0	-1	3	5
d, b	d[b]	\leftarrow	$\min\{0,$	3 - 2	=	0	0	0	-1	3	5
d, c	d[c]	\leftarrow	$\min\{-1,$	3+2	=	-1	0	0	-1	3	5
d, e	d[e]	\leftarrow	$\min\{5,$	3 - 3	=	0	0	0	-1	3	0

Illustrating Bellman-Ford Algorithm (Alternative Form)

Iteration i = 1

	x, v	Dista	nce d	$d[v] \leftarrow \min$	$\{d[v], d[x]\}$	+c(c)	(x,v)	a	b	c	d	e
								0	0	-1	3	0
ĺ	a, b	d[b]	\leftarrow	$\min\{0,$	$0+3$ }	=	0	0	0	-1	3	0
	a, c	d[c]	\leftarrow	$\min\{-1,$	0 - 1	=	-1	0	0	-1	3	0
	b, a	d[a]	\leftarrow	$\min\{0,$	0+2	=	0	0	0	-1	3	0
	b, d	d[d]	\leftarrow	$\min\{3,$	0+2	=	2	0	0	-1	2	0
	c, b	d[b]	\leftarrow	$\min\{0,$	-1+1	=	0	0	0	-1	2	0
	c, d	d[d]	\leftarrow	$\min\{2,$	-1+4	=	2	0	0	-1	2	0
	c, e	d[e]	\leftarrow	$\min\{0,$	-1+6	=	0	0	0	-1	2	0
	d, b	d[b]	\leftarrow	$\min\{0,$	2 - 2	=	0	0	0	-1	2	0
	d, c	d[c]	\leftarrow	$\min\{-1,$	2 + 2	=	-1	0	0	-1	2	0
	d, e	d[e]	\leftarrow	$\min\{0,$	2 - 3	=	-1	0	0	-1	2	-1

Illustrating Bellman-Ford Algorithm (Alternative Form)

Iteration i = 2..4

x, v	Dista	nce d	$d[v] \leftarrow \min c$	d[v], d[x]	+c(c)	(x,v)	a	b	c	d	e
							0	0	-1	2	-1
a, b	d[b]	\leftarrow	$\min\{0,$	$0+3$ }	=	0	0	0	-1	2	$\overline{-1}$
a, c	d[c]	\leftarrow	$\min\{-1,$	0 - 1	=	-1	0	0	-1	2	-1
b, a	d[a]	\leftarrow	$\min\{0,$	0+2	=	0	0	0	-1	2	-1
b, d	d[d]	\leftarrow	$\min\{2,$	0+2	=	2	0	0	-1	2	-1
c, b	d[b]	\leftarrow	$\min\{0,$	-1+1	=	0	0	0	-1	2	-1
c, d	d[d]	\leftarrow	$\min\{2,$	-1+4	=	2	0	0	-1	2	-1
c, e	d[e]	\leftarrow	$\min\{-1,$	-1+6	=	-1	0	0	-1	2	-1
d, b	d[b]	\leftarrow	$\min\{0,$	3 - 2	=	0	0	0	-1	2	-1
d, c	d[c]	\leftarrow	$\min\{-1,$	3 + 2	=	-1	0	0	-1	2	-1
d, e	d[e]	\leftarrow	$\min\{-1,$	3 - 3	=	-1	0	0	-1	2	-1

Comments on Bellman-Ford Algorithm

- This (non-greedy) algorithm handles negative weight arcs, but not negative weight cycles.
- Running time with the two innermost nested **for**-loops: $\mathrm{O}(n^3)$.
 - Runs slower than the Dijkstra's algorithm since considers all nodes at "level" $i=0,1,\ldots,n-1$, in turn.
- The alternative form where the two inner-most **for**-loops are replaced with: **for** $(u,v) \in E(V)$ runs in time O(nm).
 - The outer **for**-loop (by i) in this case can be terminated after no distance changes during the iteration (e.g., after i=2 in the example on Slide 39).
- Bellman-Ford algorithm can be modified to detect negative weight cycle (see Textbook, Exercise 6.3.4)

All Pairs Shortest Path (APSP) Problem

Given a weighted digraph (G, c), determine for each pair of nodes $u, v \in V(G)$ (the length of) a minimum weight path from u to v.

Convenient output: a distance matrix $D = \left[D[u,v]\right]_{u,v \in V(G)}$

- Time complexity $\Theta(nA_{n,m})$ of computing the matrix D by finding the single-source shortest paths (SSSP) from each node as the source in turn.
 - $A_{n=|V(G)|,m=|E(G)|}$ the complexity of the SSSP algorithm.
 - The APSP complexity $\Theta(n^3)$ for the adjacency matrix version of the Dijkstra's SSSP algorithm: $A_{n,m}=n^2$.
 - The APSP complexity $\Theta(n^2m)$ for the Bellman-Ford SSSP algorithm: $A_{n,m}=mn$.

All Pairs Shortest Path (APSP) Problem

Floyd's algorithm – one of the known simpler algorithms for computing the distance matrix (three nested **for**-loops; $\Theta(n^3)$ time complexity):

- **1** Number all nodes (say, from 0 to n-1).
- 2 At each step k, maintain the matrix of shortest distances from node i to node j, not passing through nodes higher than k.
- $oldsymbol{3}$ Update the matrix at each step to see whether the node k shortens the current best distance.

An alternative to running the SSSP algorithm from each node.

- Better than the Dijkstra's algorithm for dense graphs, probably not for sparse ones.
- Unlike the Dijkstra's algorithm, can handle negative costs.
- Based on Warshall's algorithm (just tells whether there is a path from node i to node j, not concerned with length).

Floyd's Algorithm

```
algorithm Floyd( weighted digraph (G,c) ) 
 Initialisation: for u,v\in V(G) do D[u,v]\leftarrow c(u,v) end for for x\in V(G) do for u\in V(G) do for v\in V(G) do D[u,v]\leftarrow \min\{D[u,v],D[u,x]+D[x,v]\} end for end for end for
```

This algorithm is based on dynamic programming principles.

At the bottom of the outer **for**-x-loop, D[u,v] for each $u,v\in V(G)$ is the length of the shortest path from u to v passing through intermediate nodes x having been seen in that loop.

Illustrating Floyd's Algorithm

Adjacency/cost matrix c[u,v]

Illustrating Floyd's Algorithm: x = 0

		0	1	2	3	4
0	Γ	0	3	-1	∞	∞
1		2	0	1	2	∞
2	İ	∞	1	0	4	6
3		∞	-2	2	0	-3
4	L	∞	∞	∞	∞	0

Distance matrix $D_0[u, v]$ $D_0[1, 2] = \min\{\infty, \frac{2}{c[1, 0]} - \frac{1}{c[0, 1]}\} = 1$

Illustrating Floyd's Algorithm: x = 1

	0	1	2	3	4
0	0	3	-1	5	∞
1	2	0	1	2	∞
2	3	1	0	3	6
3	0	-2	-1	0	-3
4	∞	∞	∞	∞	0

Distance matrix $D_1[u,v]$

$$\begin{split} D_1[0,3] &= \min\{\infty, 3_{D_0[0,1]} + 2_{D_0[1,3]}\} = 5 \\ D_1[2,3] &= \min\{4, 1_{D_0[2,1]} + 2_{D_0[1,3]}\} = 3 \\ D_1[3,2] &= \min\{2, -2_{D_0[3,1]} + 1_{D_0[1,2]}\} = -1 \end{split}$$

Illustrating Floyd's Algorithm: x = 2

Distance matrix $D_2[u,v]$

$$\begin{aligned} D_2[0,1] &= \min\{3, -1_{D_1[0,2]} + 1_{D_1[2,1]}\} = 0 \\ D_2[0,3] &= \min\{5, -1_{D_1[0,2]} + 3_{D_1[2,3]}\} = 2 \\ D_2[0,4] &= \min\{\infty, -1_{D_1[0,2]} + 6_{D_1[2,4]}\} = 5 \\ D_2[1,4] &= \min\{\infty, 1_{D_1[1,2]} + 6_{D_1[2,4]}\} = 7 \end{aligned}$$

Illustrating Floyd's Algorithm: x = 3

	0	1	2	3	4
0	0	0	-1	2	-1
1	2	0	1	2	-1
2	3	1	0	3	0
3	0	-2	-1	0	-3
4	$-\infty$	∞	∞	∞	0

Distance matrix $D_3[u,v]$

$$D_3[0,4] = \min\{5, 2_{D_2[0,3]} - 3_{D_2[3,4]}\} = -1$$

$$D_3[1,4] = \min\{7, 2_{D_1[1,3]} - 3_{D_1[3,4]}\} = -1$$

$$D_3[2,4] = \min\{6, 3_{D_1[2,3]} - 3_{D_1[3,4]}\} = 0$$

Illustrating Floyd's Algorithm: x = 4

$$\begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & -1 & 2 & -1 \\ 1 & 2 & 0 & 1 & 2 & -1 \\ 2 & 3 & 1 & 0 & 3 & 0 \\ 3 & 0 & -2 & -1 & 0 & -3 \\ 4 & \infty & \infty & \infty & \infty & 0 \end{bmatrix}$$

Final distance matrix $D \equiv D_4[u, v]$

Proving Why Floyd's Algorithm Works

Theorem 6.12: At the bottom of the outer **for**-loop, for all nodes u and v,

D[u,v] contains the minimum length of all paths from u to v that are restricted to using only intermediate nodes that have been seen in the outer **for**-loop.

When algorithm terminates, all nodes have been seen and D[u,v] is the length of the shortest u-to-v path.

Notation: S_k – the set of nodes seen after k passes through this loop; S_k -path – one with all intermediate nodes in S_k ; D_k – the corresponding value of D. Induction on the outer **for**-loop:

- Base case: k = 0; $S_0 = \emptyset$, and the result holds.
- Induction hypothesis: It holds after $k \ge 0$ times through the loop.
- Inductive step: To show that $D_{k+1}[u,v]$ after k+1 passes through this loop is the minimum length of an u-to-v S_{k+1} -path.

Proving Why Floyd's Algorithm Works

Inductive step:

Suppose that x is the last node seen in the loop, so $S_{k+1} = S_k \bigcup \{x\}$.

- Fix an arbitrary pair of nodes $u,v\in V(G)$ and let L be the min-length of an u-to-v S_{k+1} -path, so that obviously $L\leq D_{k+1}[u,v].$
- To show that also $D_{k+1}[u,v] \leq L$, choose an u-to-v S_{k+1} -path γ of length L. If $x \notin \gamma$, the result follows from the induction hypothesis.
- If $x \in \gamma$, let γ_1 and γ_2 be, respectively, the u-to-x and x-to-v subpaths. Then γ_1 and γ_2 are S_k -paths and by the inductive hypothesis,

$$L \ge |\gamma_1| + |\gamma_2| \ge D_k[u, x] + D_k[x, v] \ge D_{k+1}[u, v]$$

Non-negativity of the weights is not used in the proof, and Floyd's algorithm works for negative weights (but negative weight cycles should not be present).

Floyd's Algorithm: Example 2

Computing all-pairs shortest paths

Floyd's Algorithm: Example 2

Initialisation

```
[D[u,v]]_{u,v \in V(G)} \leftarrow \begin{bmatrix} 0 & 2 & 3 & 3 & \infty & \infty & \infty \\ b & 2 & 0 & 4 & \infty & 3 & \infty & \infty \\ 2 & 0 & 4 & \infty & 3 & \infty & \infty \\ 3 & 4 & 0 & 5 & 1 & 6 & \infty \\ 3 & \infty & 5 & 0 & \infty & 7 & \infty \\ \infty & 3 & 1 & \infty & 0 & 8 & \infty \\ \infty & \infty & 6 & 7 & 8 & 0 & 9 \\ \infty & \infty & \infty & \infty & \infty & \infty & 9 & 0 \\ a & b & c & d & e & f & g \end{bmatrix}
```

```
\begin{array}{l} \text{for } x \in V = \{a,b,c,d,e,f,g\} \text{ do} \\ \text{for } u \in V = \{a,b,c,d,e,f,g\} \text{ do} \\ \text{for } v \in V = \{a,b,c,d,e,f,g\} \text{ do} \\ D[u,v] \leftarrow \min \left\{ D[u,v], \ D[u,x] + D[x,v] \right\} \\ \text{end for} \\ \text{end for} \\ \text{end for} \end{array}
```

Floyd

Floyd's Algorithm: Example 2

$$\begin{bmatrix} a & b & c & d & e & f & g \\ 0 & 2 & 3 & 3 & \infty & \infty & \infty \\ 2 & 0 & 4 & 5 & 3 & \infty & \infty \\ c & 3 & 4 & 0 & 5 & 1 & 6 & \infty \\ d & 3 & 5 & 5 & 0 & \infty & 7 & \infty \\ e & \infty & 3 & 1 & \infty & 0 & 8 & \infty \\ f & \infty & \infty & 6 & 7 & 8 & 0 & 9 \\ g & \infty & \infty & \infty & \infty & \infty & 9 & 0 \end{bmatrix}$$

$$D[u, v] \leftarrow \min \{D[u, v], D[u, a] + D[a, v]\}; \\ (u, v) \in V^2$$

E.g.,

$$D[b,d] \leftarrow \min\{D[b,d], D[b,a] + D[a,d]\} \\ = \min\{\infty, 2+3\} = 5$$

Floyd's Algorithm: Example 2

$$D[u, v] \leftarrow \min \{D[u, v], D[u, b] + D[b, v]\}; (u, v) \in V^2$$

E.g.,

$$D[a,e] \leftarrow \min\{D[a,e], D[a,b] + D[b,e]\}$$

= $\min\{\infty, 2+3\} = 5$

Floyd's Algorithm: Example 2

$$\begin{bmatrix} a & b & c & d & e & f & g \\ 0 & 2 & 3 & 3 & 4 & 9 & \infty \\ b & 2 & 0 & 4 & 5 & 3 & 10 & \infty \\ c & 3 & 4 & 0 & 5 & 1 & 6 & \infty \\ d & 3 & 5 & 5 & 0 & 6 & 7 & \infty \\ e & 4 & 3 & 1 & 6 & 0 & 7 & \infty \\ f & 9 & 10 & 6 & 7 & 7 & 0 & 9 \\ g & \infty & \infty & \infty & \infty & \infty & 9 & 0 \end{bmatrix}$$

$$D[u, v] \leftarrow \min \{D[u, v], D[u, c] + D[c, v]\}; (u, v) \in V^2$$

E.g.,

$$D[a, f] \leftarrow \min\{D[a, f], D[a, c] + D[c, f]\}$$

= $\min\{\infty, 3 + 6\} = 9$

Floyd's Algorithm: Example 2

$$\begin{bmatrix} a & b & c & d & e & f & g \\ 0 & 2 & 3 & 3 & 4 & 9 & \infty \\ 2 & 0 & 4 & 5 & 3 & 10 & \infty \\ 3 & 4 & 0 & 5 & 1 & 6 & \infty \\ d & 3 & 5 & 5 & 0 & 8 & 7 & \infty \\ e & 4 & 3 & 1 & 8 & 0 & 7 & \infty \\ f & 9 & 10 & 6 & 7 & 7 & 0 & 9 \\ g & \infty & \infty & \infty & \infty & \infty & 9 & 0 \end{bmatrix}$$

$$D[u,v] \leftarrow \min \left\{ D[u,v], \ D[u,d] + D[d,v] \right\};$$

$$(u,v) \in V^2$$

E.g.,

$$D[a, f] \leftarrow \min\{D[a, f], D[a, d] + D[d, f]\}$$

= $\min\{9, 3 + 7\} = 9$

Floyd

Floyd's Algorithm: Example 2

$$\begin{bmatrix} a & b & c & d & e & f & g \\ 0 & 2 & 3 & 3 & 4 & 9 & \infty \\ b & 2 & 0 & 4 & 5 & 3 & 10 & \infty \\ c & 3 & 4 & 0 & 5 & 1 & 6 & \infty \\ d & 3 & 5 & 5 & 0 & 8 & 7 & \infty \\ e & 4 & 3 & 1 & 8 & 0 & 7 & \infty \\ f & 9 & 10 & 6 & 7 & 7 & 0 & 9 \\ g & \infty & \infty & \infty & \infty & \infty & 9 & 0 \end{bmatrix}$$

$$\begin{split} D[u,v] \leftarrow \min \left\{ D[u,v], \ D[u,e] + D[e,v] \right\}; \\ (u,v) \in V^2 \end{split}$$
 E.g.,

$$D[b, f] \leftarrow \min\{D[b, f], D[b, e] + D[e, f]\}$$

= $\min\{9, 3 + 7\} = 9$

Floyd's Algorithm: Example 2


```
 \begin{bmatrix} a & b & c & d & e & f & g \\ 0 & 2 & 3 & 3 & 4 & 9 & 18 \\ b & 2 & 0 & 4 & 5 & 3 & 10 & 19 \\ c & 3 & 4 & 0 & 5 & 1 & 6 & 15 \\ d & 3 & 5 & 5 & 0 & 8 & 7 & 16 \\ e & 4 & 3 & 1 & 8 & 0 & 7 & 16 \\ f & 9 & 10 & 6 & 7 & 7 & 0 & 9 \\ g & 18 & 19 & 15 & 16 & 16 & 9 & 0 \\ \end{bmatrix}
```

$$D[u,v] \leftarrow \min \left\{ D[u,v], \ D[u,f] + D[f,v] \right\};$$

$$(u,v) \in V^2$$

$$D[a, g] \leftarrow \min\{D[a, g], D[a, f] + D[f, g]\}$$

= \(\pi\in\{\infty}, 9 + 9\} = 18

Computing Actual Shortest Paths

- In addition to knowing the shortest distances, the shortest paths are often to be reconstructed.
- The Floyd's algorithm can be enhanced to compute also the **predecessor matrix** $\Pi = [\pi_{ij}]_{i,j=1,1}^{n,n}$ where vertex $\pi_{i,j}$ precedes vertex j on a shortest path from vertex i; $1 \le i, j \le n$.

Compute a sequence $\Pi^{(0)},\Pi^{(1)},\dots\Pi^{(n)}$

where vertex $\pi_{i,j}^{(k)}$ precedes the vertex j on a shortest path from vertex i with all intermediate vertices in $V_{(k)} = \{1, 2, \dots, k\}$.

For case of no intermediate vertices:

$$\pi_{i,j}^{(0)} = \left\{ \begin{array}{ll} \mathsf{NIL} & \mathsf{if} \ i = j \ \mathsf{or} \ c[i,j] = \infty \\ i & \mathsf{if} \ i \neq j \ \mathsf{and} \ c[i,j] < \infty \end{array} \right.$$

Computing Actual Shortest Paths

- In addition to knowing the shortest distances, the shortest paths are often to be reconstructed.
- The Floyd's algorithm can be enhanced to compute also the **predecessor matrix** $\Pi = [\pi_{ij}]_{i,j=1,1}^{n,n}$ where vertex $\pi_{i,j}$ precedes vertex j on a shortest path from vertex i; $1 \le i, j \le n$.

Compute a sequence $\Pi^{(0)},\Pi^{(1)},\dots\Pi^{(n)}$,

where vertex $\pi_{i,j}^{(k)}$ precedes the vertex j on a shortest path from vertex i with all intermediate vertices in $V_{(k)} = \{1, 2, \dots, k\}$.

For case of no intermediate vertices:

$$\pi_{i,j}^{(0)} = \left\{ \begin{array}{ll} \mathsf{NIL} & \text{if } i = j \text{ or } c[i,j] = \infty \\ i & \text{if } i \neq j \text{ and } c[i,j] < \infty \end{array} \right.$$

Floyd's Algorithm with Predecessors

```
algorithm FloydPred( weighted digraph (G, c))
                Create initial distance matrix from weights.
D \leftarrow c
\Pi \leftarrow \Pi^{(0)}
                Initialize predecessors from c as in Slide 60.
for k from 1 to n do
     for i from 1 to n do
         for i from 1 to n do
              if D[i, j] > D[i, k] + D[k, j] then
                   D[i,j] \leftarrow D[i,k] + D[k,j]; \quad \Pi[i,j] \leftarrow \Pi[k,j]
              end if
         end for
     end for
end for
```


$$D^{(0)} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{bmatrix}$$

$$\Pi^{(0)} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ & \text{NIL} & 1 & 1 & \text{NIL} & 1 \\ 2 & \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ & \text{NIL} & 3 & \text{NIL} & \text{NIL} & \text{NIL} \\ 4 & \text{NIL} & 4 & \text{NIL} & \text{NIL} \\ 5 & \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{bmatrix}$$

$$D^{(1)} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & \infty & 6 & 0 \end{bmatrix}$$

$$\Pi^{(1)} = \begin{matrix} \begin{matrix} 1 & 2 & 3 & 4 & 5 \\ NIL & 1 & 1 & NIL & 1 \\ NIL & NIL & NIL & 2 & 2 \\ NIL & 3 & NIL & NIL & NIL \\ 4 & 1 & 4 & NIL & 1 \\ NIL & NIL & NIL & NIL & 5 & NIL \end{matrix}$$

$$D^{(2)} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & 5 & -5 & 0 & -2 \\ 5 & \infty & \infty & \infty & 6 & 0 \end{bmatrix}$$

$$\Pi^{(2)} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ NIL & 1 & 1 & 2 & 1 \\ NIL & NIL & NIL & 2 & 2 \\ NIL & 3 & NIL & 2 & 2 \\ 4 & 4 & 1 & 4 & NIL & 1 \\ 5 & NIL & NIL & NIL & 5 & NIL \end{bmatrix}$$

$$D^{(3)} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ \infty & \infty & \infty & \infty & 6 & 0 \end{bmatrix}$$

$$\Pi^{(3)} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ NIL & 1 & 1 & 2 & 1 \\ 2 & NIL & NIL & NIL & 2 & 2 \\ NIL & 3 & NIL & 2 & 2 \\ 4 & 3 & 4 & NIL & 1 \\ 5 & NIL & NIL & NIL & NIL & 5 & NIL \end{bmatrix}$$

$$D^{(4)} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 3 & -1 & 4 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{bmatrix}$$

$$\Pi^{(4)} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ NIL & 1 & 4 & 2 & 1 \\ 2 & 4 & NIL & 4 & 2 & 1 \\ 4 & 3 & NIL & 2 & 1 \\ 4 & 3 & 4 & NIL & 1 \\ 5 & 4 & 3 & 4 & 5 & NIL \end{bmatrix}$$

$$D^{(5)} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{bmatrix}$$

$$\Pi^{(5)} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ NIL & 3 & 4 & 5 & 1 \\ 2 & 4 & NIL & 4 & 2 & 1 \\ 4 & 3 & NIL & 2 & 1 \\ 4 & 3 & 4 & NIL & 1 \\ 5 & 4 & 3 & 4 & 5 & NIL \end{bmatrix}$$

Getting Shortest Paths from Π Matrix

The recursive algorithm using the predecessor matrix $\Pi = \Pi^{(n)}$ to print **the shortest path** between vertices i and j:

```
algorithm PrintPath( \Pi,\ i,\ j ) if i=j then print i else  \begin{aligned} &\text{if } \pi_{i,j} = \text{NIL then print "no path from } i \text{ to } j" \\ &\text{else} \\ &\text{PrintPath(} \ \Pi,\ i,\ \pi_{i,j} \ ) \\ &\text{print } j \\ &\text{end if} \end{aligned}
```

print 2

Illustrating PrintPath Algorithm

```
\Pi^{(5)} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ NIL & 3 & 4 & 5 & 1 \\ 4 & NIL & 4 & 2 & 1 \\ 4 & 3 & NIL & 2 & 1 \\ 4 & 3 & 4 & NIL & 1 \\ 5 & 4 & 3 & 4 & 5 & NIL \end{bmatrix}
```



```
\begin{array}{lll} \operatorname{PrintPath}(\Pi^{(5)},\,5,\,3\,) & \operatorname{PrintPath}(\Pi^{(5)},\,1,\,2\,) \\ \to \operatorname{PrintPath}(\Pi^{(5)},\,5,\,\pi_{5,3}=4) & \to \operatorname{PrintPath}(\Pi^{(5)},\,1,\,\pi_{1,2}=3) \\ \to \operatorname{PrintPath}(\Pi^{(5)},\,5,\,\pi_{5,4}=5) & \to \operatorname{PrintPath}(\Pi^{(5)},\,1,\,\pi_{1,3}=3) \\ & \operatorname{print}\,5 & \to \operatorname{PrintPath}(\Pi^{(5)},\,1,\,\pi_{1,3}=3) \\ & \operatorname{print}\,4 & \to \operatorname{PrintPath}(\Pi^{(5)},\,1,\,\pi_{1,3}=3) \\ & \operatorname{PrintPath}(\Pi^{(5)},\,1
```