ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ

Σειρά ασκήσεων 3 Ακαδημαϊκό έτος 2021-2022 7° εξάμηνο

Νικόλαος Μπέλλος | ΑΜ : el18183

Άσκηση 1

1.

Perceptron training

Epoch	x(k) - input	y(k)	f(x(k)) - output	correction β(y(k)-f(x(k)))x(k)	weights initial (1,1,-1,-1)
1	(1, 0, -1, 4)	1	$1+0+1-4=-3 \to 0$	(0.2, 0, -0.2, 0.8)	(1.2, 1, -1.2, -0.2)
1	(1, 4, 0, -1)	0	$1.2+4+0+0.2=5.4 \rightarrow 1$	(-0.2, -0.8, 0, 0.2)	(1, 0.2, 1.2, 0)
1	(1, 2, 2, -1)	1	$1+0.4+2.4+0=3.8 \rightarrow 1$	(0, 0, 0, 0)	(1, 0.2, 1.2, 0)
1	(1, 3, -1, 0)	0	$1+0.6 -1.2+0=0.4 \rightarrow 1$	(-0.2, -0.6, 0.2, 0)	(0.8, -0.4, 1.4, 0)
1	(1, -2, 1, -3)	1	$0.8+0.8+1.4+0=3 \rightarrow 1$	(0, 0, 0, 0)	(0.8, -0.4, 1.4, 0)
1	(1, 0, -2, -1)	0	$0.8+0 - 2.8 + 0 = -2 \rightarrow 0$	(0, 0, 0, 0)	(0.8, -0.4, 1.4, 0)
2	(1, 0, -1, 4)	1	$0.8+0 - 1.4 + 0 = -0.6 \longrightarrow 0$	(0.2, 0, -0.2, 0.8)	(1, -0.4, 1.2, 0.8)
2	(1, 4, 0, -1)	0	$1 - 1.6 + 0 - 0.8 = -1.4 \rightarrow 0$	(0, 0, 0, 0)	(1, -0.4, 1.2, 0.8)
2	(1, 2, 2, -1)	1	$1 - 0.8 + 2.4 - 0.8 = 1.8 \rightarrow 1$	(0, 0, 0, 0)	(1, -0.4, 1.2, 0.8)
2	(1, 3, -1, 0)	0	$1 - 1.2 - 1.2 + 0 = -1.4 \rightarrow 0$	(0, 0, 0, 0)	(1, -0.4, 1.2, 0.8)
2	(1, -2, 1, -3)	1	$1+0.8+1.2-2.4=0.6 \rightarrow 1$	(0, 0, 0, 0)	(1, -0.4, 1.2, 0.8)
2	(1, 0, -2, -1)	0	$1+0 - 2.4 - 0.8 = -2.2 \rightarrow 0$	(0, 0, 0, 0)	(1, -0.4, 1.2, 0.8)
3	(1, 0, -1, 4)	1	$1+0-1.2+3.2=3 \rightarrow 1$	(0, 0, 0, 0)	(1, -0.4, 1.2, 0.8)
3	(1, 4, 0, -1)	0	0	(0, 0, 0, 0)	(1, -0.4, 1.2, 0.8)
3	(1, 2, 2, -1)	1	1	(0, 0, 0, 0)	(1, -0.4, 1.2, 0.8)
3	(1, 3, -1, 0)	0	0	(0, 0, 0, 0)	(1, -0.4, 1.2, 0.8)
3	(1, -2, 1, -3)	1	1	(0, 0, 0, 0)	(1, -0.4, 1.2, 0.8)
3	(1, 0, -2, -1)	0	0	(0, 0, 0, 0)	(1, -0.4, 1.2, 0.8)

2. Το διάνυσμα (-1, 2, 2) το perceptron θα το ταξινομήσει στη κλάση **B** Διότι $f(x) = 1 + (-1)^*(-0.4) + 2^*1.2 + 2^*0.8 = 6.4 > 0 \rightarrow 1$ (κλάση B)

Άσκηση 2

Αρχικά, πρέπει να υπολογίσουμε την ευκλείδεια απόσταση του διανύσματος (-1, 2, 2) από όλα τα υπόλοιπα διανύσματα που μας δίνονται. Ο τύπος για αυτό είναι

$$d = \sqrt{(y_a - x_a)^2 + (y_b - x_b)^2 + (y_c - x_c)^2}$$

Vertex	Distance (d)
$(0,-1,4) \in B$	3.74
$(4,0,-1) \in A$	6.16
$(2, 2, -1) \in B$	4.24
$(3,-1,0) \in A$	5.38
$(-2, 1, -3) \in B$	5.19
$(0,-2,-1) \in A$	5.09

Πλησιέστερος γείτονας : $(0,-1,4) \rightarrow \text{Κλάση B}$

3 Πλησιέστεροι γείτονες:

 $(0,-1,4) \rightarrow$ Κλάση Β

 $(2, 2, -1) \to$ Κλάση Β

(0,-2,-1) \rightarrow Κλάση Α

Επομένως και στους δύο ταξινομητές το διάνυσμα θα ταξινομηθεί στη κλάση ${\bf B}$

Άσκηση 3

- **1.** Αν γνωρίζουμε ότι στους 100 ενήλικες οι 51 είναι άνδρες, τότε η πιθανότητα το άτομο που επιλέξαμε να είναι άνδρας είναι 51/100= **0.51**
- 2. Ψάχνουμε τη πιθανότητα το άτομο να είναι άνδρας δεδομένου ότι είναι καπνιστής. Για αυτό θα χρησιμοποιήσουμε το κανόνα του Bayes για υπολογισμό δεσμευμένης πιθανότητας.
 Ο κανόνας είναι ο παρακάτω:

$$P(A_i|B) = \frac{P(A_i)P(B|A_i)}{P(B)}$$

Επομένως, αν ξέρουμε ότι:

$$P(A_i) = 0.51$$

$$P(B|A_i) = 0.095$$

$$P(B) = 0.095 + 0.017 = 0.112$$

Προκύπτει ότι

$$P(A_i|B) = P(man|smokes) = \frac{0.51*0.095}{0.112} = 0.433$$

Άσκηση 4

Από την συνεπαγωγή Mamdani για ασαφή συστήματα μπορούμε να παράξουμε τα παρακάτω ασαφή σύνολα :

*Λόγω του ασαφή κανόνα που μας δίνεται και του λεκτικού τροποποιητή 'σχετικά' (sqrt(a)) για την A_2 Η A_2 γίνεται : $A_2=1/y_1+0.3/y_2$

1.
$$A_{12} = J_{min}(A_1, A_2) = 0.2/x_1, y_1 + 0.2/x_1, y_2 + 1/x_2, y_1 + 0.3/x_2, y_2 + 0.8/x_3, y_1 + 0.3/x_3, y_2$$

Γνωρίζοντας ότι η τιμή εισόδου για την X είναι η x_2 και για την Y είναι η y_1 αντίστοιχα για να υπολογίσουμε το σύνολο εξόδου θα χρησιμοποιήσουμε μόνο τη τιμή $1/x_2,y_1$ Άρα το σύνολο εξόδου θα είναι :

$$0.7/x_2,y_1,z_1 + 1/x_2,y_1,z_2$$