Conditional Log Likelihood Example.

Suppose that (Xb)teZ is ARCH(1)

That is $X_t = T_t Z_t$ $T_t^2 = \alpha_0 + \alpha_1 X_{t-1}^2$ $X_t = \sqrt{\alpha_0 + \alpha_1 X_{t-1}^2}$

Consider the special case where Zt ~ N(0,1), i.i.d.

Then X+ (X+-1 ~ n(0, (x+x, X+-1)

Thus $\log \left[\int_{f=1}^{n} f_{k} |X_{t-1}(X_{t}|X_{t-1}) \right] =$

1 109 [\frac{1}{\int_{27}} \int_{\sqrt{d}_0} \frac{1}{\int_{t-1}} \frac{1}{\int_{0}} \frac{\int_{1} \int_{t-1}}{\int_{0}} \frac{1}{\int_{0}} \frac{1}{\int_{1} \int_{t-1}} \frac{1}{\int_{0}} \frac{1}{\int_{1} \int_{1} \int_{1}} \frac{1}{\int_{0}} \frac{1}{\int_{1} \int_{1} \int_{1}} \frac{1}{\int_{0}} \frac{1}{\int_{1} \int_{1} \int_{1}} \frac{1}{\int_{1} \int_{1} \int_{1}} \frac{1}{\int_{1} \int_{1} \int_{1} \int_{1}} \frac{1}{\int_{0} \int_{1} \int_{1} \int_{1}} \frac{1}{\int_{1} \int_{1} \int_{1} \int_{1} \int_{1}} \frac{1}{\int_{1} \int_{1} \

 $= -\frac{n}{2} \log(2\pi) - \frac{1}{2} \sum_{t=1}^{n} \log(\alpha_0 + \lambda_1 \chi_{t,1}^2) - \frac{1}{2} \sum_{t=1}^{n} \frac{\chi_t}{\alpha_0 + \lambda_1 \chi_{t,1}^2}$