1 Directional Derivatives and the Gradient Vector

Directional Derivatives

We want the rate of change of z at (x_0, y_0) in the direction of an unit vector $\mathbf{u} = \langle a, b \rangle$.

- Consider the surface S of z = f(x, y), the vertical plane that passes through $P(x_0, y_0, z_0)$ in the direction of \mathbf{u} intersects S a curve C.
- \blacktriangleright The slope of tangent line T to C at P is what we need.

If Q(x, y, z) is another point on C and P', Q' are the projections of P, Q onto the xy-plane, then the vector $\overrightarrow{P'Q'}$ is parallel to \mathbf{u} ,

$$\overrightarrow{P'Q'} = h\mathbf{u} = \langle ha, hb \rangle$$

Therefore $x - x_0 = ha$, $y - y_0 = hb$.

$$\frac{\Delta z}{h} = \frac{z - z_0}{h} = \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}$$

If we take limit as $h \to 0$, we obtain the rate of change of z (with respect to distance) in the direction of u.

Definition: Directional Derivatives

The **directional derivative** of f at (x_0, y_0) in the direction of a unit vector $\mathbf{u} = \langle a, b \rangle$ is

$$D_u f(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}$$
$$= f_x(x, y)a + f_y(x, y)b$$
$$= f_x(x, y)\cos\theta + f_y(x, y)\sin\theta \quad (\mathbf{u} \text{ makes an angle } \theta \text{ with the } x^+\text{-axis})$$

The directional derivative $D_{\mathbf{u}} f(1,2)$ in Example 2 represents the rate of change of z in the direction of \mathbf{u} . This is the slope of the tangent line to the curve of intersection of the surface $z=x^3-3xy+4y^2$ and the vertical plane through (1,2,0) in the direction of \mathbf{u} shown in Figure 5.

FIGURE 5

 \bigcirc EXAMPLE. Find the directional derivative $D_u f(x,y)$ if

$$f(x,y) = x^3 - 3xy + 4y^2$$

and **u** is given by $\theta=\pi/6$. What is $D_{\bf u}f(1,2)$? SOLUTION. $f_x(x,y)=3x^2-3y$ $f_y(x,y)=8y-3$ Therefore,

$$D_u f(x,y) = \frac{\sqrt{3}}{2} (3x^2 - 3y) + \frac{1}{2} (8y - 3)$$
$$= \frac{3\sqrt{3}}{2} x^2 + \frac{4 - 3\sqrt{3}}{2} y - \frac{3}{2}$$

Hence
$$D_u f(1,2) = \frac{13 - 3\sqrt{3}}{2}$$

The Gradient Vector

Notice that $D_{\mathbf{u}} = \langle f_x(x,y), f_y(x,y) \rangle \cdot \mathbf{u}$.

Definition: Gradient

The **gradient** of f(x,y) is the vector function ∇f defined by

$$\nabla f(x,y) = \langle f_x(x,y), f_y(x,y) \rangle = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j}$$

The directional derivative of f(x,y) is $D_{\mathbf{u}}f(x,y) = \nabla f(x,y) \cdot \mathbf{u}$

Q EXAMPLE. If $f(x,y) = \sin x + e^{xy}$, then

$$\nabla f(x,y) = \langle f_x, f_y \rangle = \langle \cos x + y e^{xy}, x e^{xy} \rangle$$
$$\nabla f(0,1) = \langle 2, 0 \rangle$$

The gradient vector abla f(2,-1) in Example 4 is shown in Figure 6 with initial point (2, -1). Also shown is the vector \mathbf{v} that gives the direction tion of the directional derivative. Both of these vectors are superimposed on a contour plot of the graph of f

FIGURE 6

Q EXAMPLE. Find the directional derivative of $f(x,y) = x^2y^3 - 4y$ at (2,-1) in the direction of $\mathbf{v} = 2\mathbf{i} + 5\mathbf{j}$.

SOLUTION. We first compute the gradient vector at (2, -1):

$$\nabla f(x,y) = 2xy^3 \mathbf{i} + (3x^2y^2 - 4)\mathbf{i}$$
$$\nabla f(2,-1) = -4\mathbf{i} + 8\mathbf{j}$$

The unit vector in the direction of \mathbf{v} is $\mathbf{u} = \frac{\mathbf{v}}{|\mathbf{v}|} = \frac{2}{\sqrt{29}} \mathbf{i} + \frac{5}{\sqrt{29}} \mathbf{j}$ Therefore we have

$$D_{\mathbf{u}}f(2,-1) = \nabla f(2,-1) \cdot \mathbf{u} = (-4\mathbf{i} + 8\mathbf{j}) \cdot \left(\frac{2}{\sqrt{29}}\mathbf{i} + \frac{5}{\sqrt{29}}\mathbf{j}\right)$$
$$= \frac{-4 \cdot 2 + 8 \cdot 5}{\sqrt{29}} = \frac{32}{\sqrt{29}}$$

Functions of Three Variables

Definition: Directional Derivatives

The directional derivative of f at (x_0, y_0, z_0) in the direction of a unit vector $\mathbf{u} = \langle a, b, c \rangle$ is

$$D_{\mathbf{u}}f(x_0, y_0, z_0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb, z_0 + hc) - f(x_0, y_0, z_0)}{h}$$

The gradient vector is

$$\nabla f = \langle f_x, f_y, f_z \rangle = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j} + \frac{\partial f}{\partial z} \mathbf{k}$$

And the directional derivative is $D_{\mathbf{u}}f(x,y,z) = \nabla f(x,y,z) \cdot \mathbf{u}$

Q EXAMPLE. If $f(x, y, z) = x \sin yz$, (a) find ∇f and (b) find $D_{\mathbf{u}}f(1, 3, 0)$ in the direction of $\mathbf{v} = \mathbf{i} + 2\mathbf{j} - \mathbf{k}$. SOLUTION.

$$\nabla f = \sin yz \cdot \mathbf{i} + xz\cos yz \cdot \mathbf{j} + xy\cos xz \cdot \mathbf{k}$$

The unit vector in the direction of \mathbf{v} is

$$\mathbf{u} = \frac{1}{\sqrt{6}}\mathbf{i} + \frac{2}{\sqrt{6}}\mathbf{j} - \frac{1}{\sqrt{6}}\mathbf{k}$$

Therefore

$$\begin{split} D_{\mathbf{u}} &= \nabla f(1,3,0) \cdot \mathbf{u} \\ &= 3\mathbf{k} \cdot \frac{1}{\sqrt{6}} \mathbf{i} + \frac{2}{\sqrt{6}} \mathbf{j} - \frac{1}{\sqrt{6}} \mathbf{k} \\ &= -\sqrt{\frac{3}{2}} \end{split}$$

1.1 Maximizing the Directional Derivative

Definition: Maximum Value of the Directional Derivative

The maximum value of $D_{\mathbf{u}}f(\mathbf{x})$ is $|\nabla f(\mathbf{x})|$, when \mathbf{u} has the same direction as the gradient vector $\nabla f(\mathbf{x})$.

FIGURE 7

At (2,0) the function in Example 6 increases fastest in the direction of the gradient vector $\nabla f(2,0) = \langle 1,2 \rangle$. Notice from Figure 7 that this vector appears to be perpendicular to the level curve through (2,0). Figure 8 shows the graph of f and the gradient vector.

♀ EXAMPLE.

- (a) If $f(x,y) = xe^y$, find the rate of change of f at P(2,0) in the direction from P to $Q(\frac{1}{2},2)$.
- (b) In what direction, f has max $D_{\mathbf{u}}f$ and what's it?

(a)

$$\nabla f(x,y) = \langle f_x, f_y \rangle = \langle e^y, xe^y \rangle$$
$$\nabla f(2,0) = \langle 1, 2 \rangle$$

The unit vector in the direction \overrightarrow{PQ} is $\mathbf{u} = \left\langle -\frac{3}{5}, \frac{4}{5} \right\rangle$, so we have

$$D_{\mathbf{u}}f(2,0) = \nabla f(2,0) \cdot \mathbf{u} = \langle 1, 2 \rangle \cdot \left\langle -\frac{3}{5}, \frac{4}{5} \right\rangle$$
$$= 1 \left(-\frac{3}{5} \right) + 2 \left(\frac{4}{5} \right) = 1$$

(b) f increases fastest in the direction of $\nabla f(2,0) = \langle 1,2 \rangle$.

$$|\nabla f(2,0)| = |\langle 1,2 \rangle| = \sqrt{5}$$

4 Tangent Planes to Level Surfaces

Suppose S of F(x, y, z) = k, and $P(x_0, y_0, z_0) \in S$. We can write $\nabla F \cdot \mathbf{r}'(t) = 0$

$$\nabla F(x_0, y_0, z_0) \cdot \mathbf{r}'(t_0) = 0$$

We see that the gradient vector $\nabla F(x_0, y_0, z_0)$ is **perpendicular** to the tangent vector to any curve C on S that pass through P.

Definition: Tangent plane

If $\nabla F(x_0, y_0, z_0) \neq \mathbf{0}$, there is a tangent plane to the level surface F(x, y, z) = k at $P(x_0, y_0, z_0)$

$$F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0) = 0$$

The **normal line** to S at P is the line passing through P and perpendicular to the tangent plane. The direction of it is given by $\nabla F(x_0, y_0, z_0)$ and its symmetric equation*s are

$$\frac{x - x_0}{F_x(x_0, y_0, z_0)} = \frac{y - y_0}{F_y(x_0, y_0, z_0)} = \frac{z - z_0}{F_z(x_0, y_0, z_0)}$$

> Special case. When z = f(x, y), then F(x, y, z) = f(x, y) - z = 0, we have

$$f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) - (z - z_0) = 0$$

 \bigcirc EXAMPLE. Find the tangent plane and normal line at (-2,1,-3) to the ellipsoid

$$\frac{x^2}{4} + y^2 + \frac{z^2}{9} = 3$$

SOLUTION. The ellipsoid is the level surface (k=3) of the function

$$F(x,y,z) = \frac{x^2}{4} + y^2 + \frac{z^2}{9}$$

Therefore we have

$$F_x(x, y, z) = \frac{x}{2}$$
 $F_y(x, y, z) = 2y$ $F_z(x, y, z) = \frac{2z}{9}$ $F_x(-2, 1, -3) = -1$ $F_y(-2, 1, -3) = 2$ $F_z(-2, 1, -3) = -\frac{2}{3}$

3

Figure 10 shows the ellipsoid, tangent plane, and normal line in Example 8.

The equation of the tangent plane at (-2, 1, -3) is

$$-1(x+2) + 2(y-1) - \frac{2}{3}(z+3) = 0$$

The symmetric equations of the normal line are

$$\frac{x+2}{-1} = \frac{y-1}{2} = \frac{z+3}{-\frac{2}{3}}$$

FIGURE 10

& Maximum and Minimum Values

Definition: Local extrema

Local maximum f(a,b) if $f(x,y) \leq f(a,b)$ when (x,y) is near (a,b). And the first-order partial derivatives of f exists there, then $f_x(a,b) = 0$ and $f_y(a,b) = 0$.

FIGURE 1

If we put $f_x(a,b) = 0$ and $f_y(a,b) = 0$ in the equation of a tangent plane, we get $z = z_0$. So the tangent plane at a local extrema must be *horizontal*. A point (a,b) is a **critical point** (or *stationary point*) of f if $f_x(a,b) = f_y(a,b) = 0$, or if one of these does not exist.

• EXAMPLE. Let $f(x,y) = x^2 + y^2 - 2x - 6y + 14$. Then

$$f_x(x,y) = 2x - 2$$
 $f_y(x,y) = 2y - 6$

These derivatives are equal to 0 when x = 1, y = 3. So the only critical point is (1,3).

$$f(x,y) = 4 + (x-1)^2 + (y-3)^2$$

We have $f(x,y) \ge 4$. Therefore f(1,3) = 4 is a local minimum, and in fact it is the **absolute minimum** of f.

• EXAMPLE. Find the extreme values of $f(x,y) = x^2 + y^2$.

f(x,y) is either maxima or minima depends on directions. So (0,0) is a saddle point of f. Then how to determine?

FIGURE 3 $z = y^2 - x^2$

${\bf Definition: Second\ Derivatives\ Test}$

Suppose $f_x(a,b) = f_y(a,b) = 0$. Let

$$D = D(a,b) = f_{xx}(a,b)f_{yy}(a,b) - [f_{xy}(a,b)]^{2}$$
$$= \begin{vmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{vmatrix} = f_{xx}f_{yy} - (f_{xy})^{2}$$

- (a) **Local minimum:** $D > 0, f_{xx}(a, b) > 0.$
- (b) **Local maximum:** $D > 0, f_{xx}(a, b) < 0.$
- (c) Neither: D < 0.
- \triangleright Note. If D=0, we have no idea.

Q EXAMPLE. Find the local maximum and minimum ad saddle points of $f(x,y) = x^4 + y^4 - 4xy + 1$.

First we have

which implies $0 = x^9 - x = x(x^2 - 1)(x^2 + 1)(x^4 + 1)$, so there're 3 roots: 0, 1, -1. The 3 critical points are (0,0), (1,1), (-1,-1).

Next we calculate the second partial derivatives and D(x,y)

$$f_{xx} = 12x^2$$
 $f_{xy} = -4$ $f_y y = 12y^2$
$$D(x, y) = f_{xx} f_{yy} - (f_{xy})^2 = 144x^2 y^2 - 16$$

Since D(0,0) = -16 < 0, it follows that (0,0) is a saddle point. And D(1,1) = 128 > 0, $f_{xx}(1,1) = 12 > 0$, so it's a local minimum. Similarly, (-1,-1) is a local minimum.

 \bigcirc EXAMPLE. Find the shortest distance from (1,0,-2) to the plane x+2y+z=4.

The distance from (x, y, z) to (1, 0, -2) is

$$d^{2} = f(x,y) = (x-1)^{2} + y^{2} + (6-x-2y)^{2}$$

By solving the equation

$$f_x = 4x + 4y - 14 = 0$$
$$f_y = 4x + 10y - 24 = 0$$

we find that the only critical point is $(\frac{11}{6}, \frac{5}{3})$. Since $f_{xx} = 4$, $f_{xy} = 4$, $f_{yy} = 10$, $D(x, y) = f_{xx}f_{yy} - (f_{xy})^2 = 24 > 0$, so f has a local minimum at $(\frac{11}{6}, \frac{5}{3})$. There must be a point on the given plane that is closest to (1,0,-2). We also find that $d = \frac{5}{6}\sqrt{6}$.

4 Absolute Maximum and Minimum Values

Definition: Extreme Value Theorem

If f is continuous on a closed, bounded set $D \in \mathbb{R}^2$ then f attains an absolute maximum value $f(x_1, y_1)$ and an absolute minimum value $f(x_2, y_2)$. To find it,

- 1. Find the values of f at the critical points of f in D.
- **2.** Find the extreme values of f on the boundary of D.
- 3. Determine the largest and smallest ones.

Q EXAMPLE. Find the absolute maximum and minimum of $f(x,y) = x^2 - 2xy + 2y$ on the rectangle $D = \{(x,y) | 0 \le x \le 3, 0 \le y \le 2\}.$

Since f is a polynominal, it's continuous on D. First find the critical points

$$f_x = 2x - 2y = 0$$
 $f_y = -2x + 2 = 0$

So the only critical point is (1,1), and f(1,1) = 1.

Now we look at the values of f on the boundary of D, which consists of the four line segments L_1, L_2, L_3, L_4 .

FIGURE 13 $f(x, y) = x^2 - 2xy + 2y$

On L_1 , we have y = 0 and

$$f(x,0) = x^2 \qquad 0 \le x \le 3$$

Its minimum value is f(0,0) = 0 and maximum value is f(3,0) = 9.

 \blacksquare On L_2 , we have x=3 and

$$f(3,y) = 9 - 4y$$
 $0 \le y \le 2$

The maximum value is f(3,0) = 9 and the minimum value is f(3,2) = 1.

 \blacksquare On L_3 we have y=2 and

$$f(x,2) = x^2 - 4x + 4 = (x-2)^2$$
 $0 \le x \le 3$

The minimum value is f(2,2) = 0 and the maximum value is f(0,2) = 4.

 \blacksquare On L_4 we have x=0 and

$$f(0,y) = 2y \qquad 0 \le y \le 2$$

with maximum value f(0,2) = 4 and minimum value f(0,0) = 0. Thus, on the boundary, the minimum value is 0 and the maximum is 9.

FIGURE 12

FIGURE 1

TEC Visual 14.8 animates Figure 1 for both level curves and level surfaces.

& Lagrange Multipliers

We will discover Lagrange's methods for maximizing or minimizing a general function f(x, y, z) to a constraint (or side contidition) of the form g(x, y, z) = k.

Definition : Method of Lagrange Multipliers

To find the maximum and minimum values of f(x, y, z) to the constraint g(x, y, z) = k (assume they exist and $\nabla g \neq \mathbf{0}$ on the surface g(x, y, z) = k):

(a) Find all x, y, z and λ (Lagrange multiplier) such that

$$\nabla f(x, y, z) = \lambda \nabla g(x, y, z)$$
$$g(x, y, z) = k$$

(b) Evaluate f at all these points and find the largest and smallest ones.

Write (a) in terms of components

$$f_x = \lambda g_x$$
 $f_y = \lambda g_y$ $f_z = \lambda g_z$ $g(x, y, z) = k$

It's not necessary to find explicit values for λ .

EXAMPLE. A rectangular box without a lid is to be made from 12 m² of cardboard. Find the maximum volume.

SOLUTION. We wish to maximize V = xyz, where x, y, z are the length, width and height of the box, subject to the constraint

$$g(x, y, z) = 2xz + 2yz + xy = 12$$

We look for x, y, z, λ that $\nabla V = \lambda \nabla g$ and g(x, y, z) = 12.

$$V_x = \lambda g_x$$

$$V_y = \lambda g_y$$

$$V_z = \lambda q_z$$

$$2xz + 2yz + xy = 12$$

which become

$$yz = \lambda(2z + y)$$

$$xz = \lambda(2z + x)$$

$$xy = \lambda(2x + 2y)$$

$$2xz + 2yz + xy = 12$$

Observe that $\lambda \neq 0$, and we have 2xz + xy = 2yz + xy which gives xz = yz. But $z \neq 0$, or V = 0. So x = y. We also have x = y = 2z.

$$4z^2 + 4z^2 + 4z^2 = 12$$

Therefore we have x = y = 2, and z = 1.

In geometric terms, Example 2 asks for the highest and lowest points on the curve C in Figure 2 that lie on the paraboloid $z=x^2+2y^2$ and directly above the constraint circle $x^2+y^2=1$.

FIGURE 2

The geometry behind the use of Lagrange multipliers in Example 2 is shown in Figure 3. The extreme values of $f(x,y)=x^2+2y^2$ correspond to the level curves that touch the circle $x^2+y^2=1$.

FIGURE 3

• EXAMPLE. Find the extreme values of $f(x,y) = x^2 + 2y^2$ on the circle $x^2 + y^2 = 1$.

Solve the equation

$$f_x = \lambda g_x$$
, $f_y = \lambda g_y$, $g(x, y) = 1$
 $2x = 2x\lambda$
 $4y = 2y\lambda$
 $x^2 + y^2 = 1$

- x = 0, then $y = \pm 1$.
- $\lambda = 1$, then y = 0, and $x = \pm 1$.

Evaluating f at these 4 points, we find that $f_{\rm max}=f(0,\pm 1)=2$ and $f_{\rm min}=f(\pm 1,0)=1.$

Q EXAMPLE. Find the points on the sphere $x^2 + y^2 + z^2 = 4$ that are closest and farthest from (3, 1, -1).