Python in Hel(l) – Day 2 Biblioteka Processing

Kurs programowania w QGIS za pomocą Pythona

Ćwiczenia do samodzielnej pracy

Przy podawaniu ścieżek do plików warto przed stringiem, dodać literkę r, co eliminuje problemy z ich odczytem, tj. r"D:\Python\Python_QGIS\D1\moje\info.txt", można też użyć podwójnych backslashów: "D:\Python\Python_QGIS\\D1\\moje\\info.txt"

Zadanie 1.

Wskazówka:

najpierw wykonaj dla 1 strefy a potem zrób pętle po wszystkich

Dla stacji pomiarowych w Krakowie stwórz strefy 100, 200, 500 i 1000 metrów.

Następnie dodaj informację o średniej wysokości i różnicy wysokości (range = max. – min.) w strefie wokół każdego punktu pomiarowego (zonal statistics).

Potem dodaj informację na temat zabudowy w strefie wokół każdego punktu – powierzchnię zabudowy i % pokrycia bufora obszarami zabudowy (clip bufora przez zabudowę i łączenie pól).

W wyniku mamy mieć 4 warstwy stref – w każdej 9 poligonów. Do każdego poligonu w tabeli atrybutowej przypisana ma być informacja: średnia wysokość, różnica wysokości, powierzchnia zabudowy, procent pokrycia poligonu przez zabudowę.

Zadanie 2.

Napisz program który tworzy największy możliwy poligon na około wybranego punktu pomiarowego taki, że w każdym miejscu tego poligonu wysokość nie jest większa o więcej niż D m od wysokości tego punktu.

Parametry:

- IDPP punktu :pl_stacje_pom_Krak
- dem: dem_Krak
- przewyższenie D [m]

Wynik: warstwa wektorowa z poligonem

Kroki realizacji:

- 1. Wyodrębnij punkt o zadanym IDPP
- 2. Sczytaj jego wysokość z DEM: https://docs.qgis.org/testing/en/docs/pyqgis_developer_cookbook/raster.html#query-values oraz 27 i 22 slajd z prezentacji QGIS_Python_1_19
- 3. Wylicz granicę (wysokość punktu + D) i przeprowadź reklasyfikację
- 4. ...

Zadanie 1 org.

Uzupełnij warstwę buforów wykonanych dla punktów (na warsztatach) o pole PROCZB z procentem pokrycia każdego bufora przez zabudowę (kody 11100 i 11210) w warstwie urban_cover_Krak_zab_drogi3

	AirQuali_1	DYST	layer	path	IDD	PROCZAB
1	PL0501A	100.000	www 100	C:\JACEK2\QGIS	3	32.409
2	PL0273A	100.000	www100	C:\JACEK2\QGIS	2	79.836
3	PL0039A	100.000	www.100	C:\JACEK2\QGIS	1	6.991
4	PL0012A	100.000	www 100	C:\JACEK2\QGIS	0	65.060
5	PL0669A	100.000	www 100	C:\JACEK2\QGIS	7	9.763
_	DI 0643A	100,000	MONEY 100	C+\1ACEK2\OGTS		60.757

Zadanie 2 org.

Napisz program który tworzy największy możliwy poligon na około wybranego punktu pomiarowego taki, że w każdym miejscu tego poligonu wysokość nie jest większa o więcej niż D m od średniej wysokości otoczenia tego punkt (koło o promieniu 25 m)

Parametry:

- IDPP punktu :pl_stacje_pom_Krak

dem: dem_Krakprzewyższenie D [m]

Wynik: warstwa wektorowa z poligonem

