CS3230 Design and Analysis of Algorithms 2. Asymptotic Analysis

AY 25/26 Sem 1 — github/omgeta

1. Algorithms

Algorithms are sequences of instructions to solve problems.

Runtime analysis for T(n) is usually done for worst-case (maximum time for any input) or average-case (expected time over all inputs)

Correctness Proofs

Iterative Algorithms:

- i. Loop Invariant: define I for every call or loop.
- ii. Initialization: show I holds before first iteration.
- iii. Maintenance: assuming I true at start, show I holds true at start of next iteration.
- iv. Termination: show when the loop exits, I together with the exit condition implies correctness.

Recursive Algorithms:

- i. Base Case: show algorithm is correct for base cases
- ii. Inductive Step: assuming correctness for input smaller than n, show algorithm is correct for any input of size n

Mathematical Properties

Logarithm Rules:

i.
$$a = b^{\log_b a}$$
 (Inverse)

ii.
$$\log(ab) = \log a + \log b$$
 (Product)

iii.
$$\log(\frac{a}{b}) = \log a - \log b$$
, $\log(\frac{1}{a}) = -\log a$ (Quotient)

iv.
$$\log_b a = \frac{\log_c a}{\log_c b}$$
, $\log_b a = \frac{1}{\log_a b}$ (Change of Base)

v.
$$\log(a^k) = k \log a$$
 (Power)

Exponential Rules:

i.
$$a^m a^n = a^{m+n}$$
 (Product)

ii.
$$\frac{a^m}{a^n} = a^{m-n}$$
 (Quotient)

iii.
$$(a^m)^n = a^{mn} = (a^n)^m$$
 (Power)

Asymptotic bounds for functions f(n), q(n):

- i. $f(n) \in O(q(n)) \iff f(n) < cq(n)$, where $\exists c, n_0, \forall n > n_0$ (Upper)
- ii. $f(n) \in \Omega(q(n)) \iff f(n) > cq(n)$, where $\exists c, n_0, \forall n > n_0$ (Lower)
- iii. $f(n) \in \Theta(q(n)) \iff c_1 q(n) < f(n) < c_2 q(n)$, where $\exists c_1, c_2, n_0, \forall n > n_0$ (Tight)
- iv. $f(n) \in o(q(n)) \iff f(n) < cq(n)$, where $\forall c > 0, \exists n_0, \forall n > n_0$ (Strict Upper)
- v. $f(n) \in \omega(q(n)) \iff f(n) > cq(n)$, where $\forall c > 0, \exists n_0, \forall n > n_0$ (Strict Lower)

Limits assuming f(n), q(n) > 0:

i.
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty \implies f(n) \in O(g(n))$$

ii.
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} > 0 \implies f(n) \in \Omega(g(n))$$

iii.
$$0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty \implies f(n) \in \Theta(g(n))$$

iv.
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \implies f(n) \in o(g(n))$$

v.
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \implies f(n) \in \omega(g(n))$$

Properties:

- i. Transitivity for $O, \Omega, \Theta, o, \omega$:
 - $f(n) = O(q(n)) \wedge q(n) = O(h(n))$ $\implies f(n) = O(h(n))$
- ii. Reflexivity for O, Ω, Θ :
 - f(n) = O(f(n))
- iii. Symmetry for Θ :
 - $f(n) = \Theta(g(n)) \iff g(n) = \Theta(f(n))$
- iv. Complementarity for O, Ω, o, ω :
 - $f(n) = O(q(n)) \iff q(n) = \Omega(f(n))$
 - $f(n) = o(g(n)) \iff g(n) = \omega(f(n))$

Order of growth is:

$$O(1) < O(\frac{1}{k}^n) < O(\log \log n) < O(\log n) < O(\log^k n) < O(n^{\frac{1}{k}}) < O(n) < O(n \log n) < O(n^k) < O(k^n) < O(n!)$$

3. Divide & Conquer

Divide & Conquer involves:

- i. Divide: split problem into smaller subproblems
- ii. Conquer: solve subproblems recursively
- iii. Combine: merge subresults to form a total solution

Problems

MergeSort divides the array into halves, recursively sorts each half, and merges the sorted halves.

- i. Locally sorted prefix in power of 2
- ii. $T(n) = 2T(n/2) + \Theta(n) = \Theta(n \log n)$
- iii. Out-of-place and stable

Exponentiation by squaring computes x^n .

If n even: compute $(x^{n/2})^2$; if n odd: return $x \cdot (x^{\lfloor n/2 \rfloor})^2$.

i.
$$T(n) = T(|n/2|) + \Theta(1) = \Theta(\log n)$$
.

Fibonacci finds F(n) uses F(2k) = F(k)(2F(k+1) - F(k))and $F(2k+1) = F(k+1)^2 + F(k)^2$:

- i. $T(n) = T(|n/2|) + \Theta(1) = \Theta(\log n)$
- ii. Naïve: $T(n) = T(n-1) + T(n-2) + \Theta(1) = \Theta(\varphi^n)$
- iii. Stair Climbing: G(n) = F(n+1)

Matrix Multiplication partitions input A, B into quadrants of size n/2 aand recombine via 8 submatrix products and 4 additions into C:

- i. $T(n) = 8T(n/2) + \Theta(n^2) = \Theta(n^3)$
- ii. Pad non-square input matrices with zeroes

Strassen's Algorithm computes 7 block products of input A. B and recombines via linear combinations to form C:

i.
$$T(n) = 7T(n/2) + \Theta(n^2) = \Theta(n^{\log 7}) \approx \Theta(n^{2.807}).$$

4. Recurrences

Common recurrences:

i.
$$T(n) = T(n/2) + O(1) = O(\log n)$$

ii.
$$T(n) = T(n/2) + O(n) = O(n)$$

iii.
$$T(n) = 2T(n/2) + O(1) = O(n)$$

iv.
$$T(n) = 2T(n/2) + O(n) = O(n \log n)$$

v.
$$T(n) = T(n-1) + O(1) = O(n)$$

vi.
$$T(n) = T(n-1) + O(n) = O(n^2)$$

vii.
$$T(n) = 2T(n-1) + O(1) = O(2^n)$$

Telescoping Method

Given recurrence $T(n) = aT(\frac{n}{b}) + f(n)$, divide expression to get $\frac{T(n)}{g(n)} = \frac{T(n/b)}{g(n/b)} + \frac{f(n)}{g(n)}$

i. Cancel out common terms to solve for T(n)

Recursion Tree

Given recurrence, draw recurrence tree:

i. $Total = depth \times work done per level$

Master Theorem

Dividing function T(n) = aT(n/b) + f(n) where a > 1, b > 1 has cases:

i.
$$f(n) \in O(n^{d-\varepsilon}) \implies T(n) = \Theta(n^{\log_b a})$$

ii.
$$f(n) \in \Theta(n^d \log^p n)$$

 $\land p > -1 \implies T(n) = \Theta(n^k \log^{p+1} n)$
 $\land p = -1 \implies T(n) = \Theta(n^k \log \log n)$
 $\land p < -1 \implies T(n) = \Theta(n^k)$

iii.
$$f(n) \in \Omega(n^{d+\varepsilon}) \land af(n/b) \le cf(n)$$
, for $c < 1$
 $\implies T(n) = \Theta(f(n))$

Decreasing function T(n) = aT(n-b) + f(n) where a > 0, b > 0 has cases:

i.
$$a < 1 \implies T(n) = O(f(n))$$

ii.
$$a = 1 \implies T(n) = O(n \cdot f(n))$$

iii.
$$a > 1 \implies T(n) = O(a^{n/b} \cdot f(n))$$

Substitution Method

Guess T(n) = O(f(n)) and verify by induction:

- i. Choose values of $c > 0, n_0$ from recurrence
- ii. Base case: verify $T(n_0) \le cf(n)$
- iii. Inductive step: assuming $T(k) \le cf(k)$ for $n > k \ge n_0$, prove $T(n) \le cf(n)$ by subbing T(k)

Example

Prove $T(n) = 4T(n/2) + n \in O(n^2)$:

- 1. Induction hypothesis: $T(n) < (c+1)n^2 n$
- 2. Base case: If $n = 1, T(n) = c \le (c+1)n^2 n$
- 3. Inductive step:
 - 3.1. By strong induction, assume $T(k) \leq (c+1)k^2 k \text{ for all } n > k \geq 1$

3.2.
$$T(n) = 4T(n/2) + n$$

3.3.
$$\leq 4(c+1)(n/2)^2 - 4(n/2) + n$$

3.4.
$$= (c+1)n^2 - n$$

4.
$$T(n) \in O(n^2)$$

5. Probabilistic Analysis

Average-case runtime A(n) is the expected running time over the distribution of possible inputs (uniformly over n! permutations for a uniform random permutation).

QuickSort rearranges the array by \leq and > a chosen pivot in $\Theta(n)$, then recurses on both partitions.

- i. Elements before pivot are \leq , after pivot are >
- ii. $T(n) = T(j-1) + T(n-j) + \Theta(n)$, where pivot is j^{th} smallest element.
- iii. Worst: $T(n) = T(0) + T(n-1) + cn = \Theta(n^2)$, when $j = 1 \lor j = n$
- iv. Average: $A(n) = \frac{1}{n} \sum_{j=1}^{n} [A(j-1) + A(n-j) + cn]$ = $cn + \frac{2}{n} \sum_{j=0}^{n-1} A(j) = O(n \log n)$ (by telescoping)
- v. In-place but unstable

6. Randomized Algorithms

Randomized algorithms are dependent on random bits:

- i. Las Vegas: always correct, running time is random
- ii. Monte Carlo: may be wrong, running time is finite

Tools

Union Bound can upper bound probability that bad event $\varepsilon = \varepsilon_1 \cup \cdots \cup \varepsilon_n$ occurs: $\Pr[\varepsilon] \leq \Pr[\varepsilon_1] + \cdots + \Pr[\varepsilon_n]$

i.
$$: \Pr[\varepsilon_i] \leq \frac{f}{n}, \forall i \in [n] \implies \Pr[\varepsilon] \leq f$$

Markov Inequality can turn a Las Vegas into Monte Carlo: $X \ge 0 \land a > 0 \Rightarrow \Pr[X \ge a\mathbb{E}[X]] \le \frac{1}{a}$

Indicator Random Variable $\mathbf{1}_{\varepsilon}$ is a binary RV for event $\varepsilon\textsc{:}$

i.
$$\mathbb{E}[\mathbf{1}_{\varepsilon}] = \Pr(\varepsilon)$$

Linearity of Expectation: $\mathbb{E}[A+B] = \mathbb{E}[A] + \mathbb{E}[B]$

Problems

Randomized QuickSort chooses a random pivot:

i. Average:
$$A(n) = \mathbb{E}[T(n)] = O(n \log n)$$
 (LoE)

Approximate Median is a pivot selection algorithm. Pick a random pivot with probability $\geq \frac{1}{2}$ to be an approximate median of rank $\left[\frac{n}{4}, \frac{3n}{4}\right]$, repeating \tilde{k} times for boosting.

- i. A(n) = O(n) (QuickSelect)
- ii. Error Rate: 2^{-k} , less than $\frac{1}{n^2}$ if $k = 1 + 10 \log n$

Freivalds' Algorithm verifies if matrices AB = C by picking random bit vector \vec{r} and check if $AB\vec{r} - C\vec{r} = \vec{0}$, repeating k times with accepting if all successes:

- i. $A(n) = O(kn^2)$ (3 matrix-vector multiplications)
- ii. Error Rate: 2^{-k} when $AB \neq C$

```
FREIVALDS (A, B, C, k)
  n = rows(A)
  for i = 1 to k
    r = RANDOM - O1 - VECTOR(n)
    ABr = DOT(A, DOT(B, r))
    Cr = DOT(C, r)
    if ABr != Cr then
      return FALSE
  return TRUE
```

Balls-and-Bins deals with placing m balls into n bins:

- i. For a fixed bin, $\Pr[\text{empty}] = (1 \frac{1}{n})^m \le e^{-m/n}$ (using $1 + x < e^x$)
- ii. $Pr[\exists \text{ empty bin}] < n e^{-m/n} \text{ (union bound)}$
- iii. Taking $m \geq 2n \ln n$ makes $\Pr[\exists \text{ empty bin}] \leq \frac{1}{n}$ (so all bins nonempty with probability $\geq 1 - \frac{n}{n}$).

7. Dynamic Programming (DP)

Dynamic Programming involves:

- i. Divide: split problem into smaller overlapping subproblems
- ii. Conquer: solve subproblems recursively with memoization/bottom-up approach
- iii. Combine: merge subresults to form a total solution
- iv. Optimal Substructure: optimal solution can be constructed from optimal solutions of subproblems
 - Cut-and-paste Proof: Suppose not, i.e. exists "optimal" solution S with suboptimal subsolution S', if replacement by optimal subsolution S_{opt}^{\prime} strictly improves solution to $S_{opt} \to \text{contradicts optimality of } S$, justifying optimal substructure.

Problems

Longest Common Subsequence (LCS) of A[:i] and B[:j]:

i.
$$LCS(i,j) =$$

$$\begin{cases}
0, & i = 0 \lor j = 0 \\
LCS(i-1,j-1) + 1, & A[i] = B[j] \\
\max\{LCS(i-1,j), LCS(i,j-1)\}, & A[i] \neq B[j]
\end{cases}$$
i. $dp(n) =$

$$\begin{cases}
0, & n = 0 \\
1 + \min_{i \in A} \inf\{dp(i-d_i)\}
\end{cases}$$

- ii. $T(n) = \Theta(nm)$
- iii. Longest Palindromic Subsequence (LPS) in A[i:j]is just LCS of A and B = reversed(A)

```
LCS(A, B)
m = |A|
n = |B|
alloc 2D array L[0..m][0..n] = 0
for i = 1 to m
  for j = 1 to n
    if A[i] = B[j] then
     L[i][j] = L[i-1][j-1] + 1
     L[i][j] = max(L[i-1][j], L[i][j-1])
return L[m][n]
```

Knapsack finds maximum value v achievable given items[:i] with (v_i, w_i) and maximum weight W:

i.
$$\begin{split} dp(i,j) &= \\ \begin{cases} 0, & i=0 \lor j=0 \\ \max\left\{dp(i-1,j), dp(i-1,j-w_i)+v_i\right\}, & w_i \leq j \\ dp(i-1,j), & \text{otherwise} \\ \end{split} \end{split}$$

- ii. $T(n) = \Theta(nW)$
- iii. If item counts are unbounded, loop through items $dp(j) = \max_{i:w_i < j} \{ dp(j - w_i) + v_i \}$

```
KNAPSACK-01(v, w, W)
 n = |v|
 alloc table DP[0..n][0..W] = 0
 for i = 1 to n
   for j = 0 to W
     if w[i] <= j then
       DP[i][j] = max(DP[i-1][j],
          DP[i-1][j-w[i]] + v[i])
     else
       DP[i][j] = DP[i-1][j]
 return DP[n][W]
```

i.
$$dp(n) = \begin{cases} 0, & n=0\\ 1+\min_{i\in[k]}\{dp(j-d_i)\} \end{cases}$$
 ii.
$$T(n) = O(nk)$$

COIN-CHANGE (D, N) alloc array C[0..N] = INFINITY C[0] = 0for v = 1 to N for coin in D if coin <= v</pre> C[v] = min(C[v], C[v-coin] + 1)return C[N]

8. Greedy Algorithms

Greedy algorithms solve only one subproblem at each step, a locally optimal choice hoping it's globally optimal. It outperforms DP, and D&C when it works. It involves:

- i. Optimal Substructure
- ii. Greedy Choice Property: a locally optimal choice must be globally optimal
 - Exchange Argument: Suppose exists optimal solution S, if exchange of local choice before reduction with greedy choice does not hurt optimality, new solution S_{opt} stays optimal, justifying greedy choice.

Problems

Fractional Knapsack allows taking fractions of a item:

- i. Greedy by sorted maximum value/kg v_i, w_i , fill capacity, then take next item
- ii. $T(n) = O(n \log n)$
- iii. Greedy Choice Property: if j^* is item with maximum value/kg v_j/w_j , there exists optimal knapsack containing min $\{w_h, W\}$ kg of item h^*

```
FRACTIONAL - KNAPSACK(I, W)
sort I by (v_i/ w_i) desending
totalValue = 0
for each (v, w) in I
    if W = 0
        return totalValue
    take = min(w, W)
    totalValue += take * (v / w)
    W -= take
return totalValue
```

Huffman Code is an optimal variable length prefix coding, where no prefix $\gamma(x)$ is prefix of $\gamma(y)$, and average bit length $ABL(\gamma) = \sum_{x \in A} freq(x)|\gamma(x)|$ is minimised:

- i. Using a min-heap, repeatedly extract two least frequent a, b, create parent z with weight freq(a) + freq(b), and reinsert z. Final tree is an optimal code, where left branch adds 0, and right branch adds 1 to the code.
- ii. $T(n) = O(n \log n)$ (using heap)
- iii. Greedy Choice Property: any merge not using two smallest nodes increases cost no less than merging the two smallest at every step

HUFFMAN(C) n = |C| Q = C for i = 1 to n - 1 allocate a new node z x = EXTRACT-MIN(Q) y = EXTRACT-MIN(Q) z.left = x z.right = y z.freq = x.freq + y.freq INSERT(Q, z) return EXTRACT-MIN(Q)

9. Amortized Analysis

Amortized analysis is used over sequence of operations to show that average cost per operation is small, even if some operations are expensive.

i. Guarantee average cost over k operations $\leq kT(n)$ in the worst-case

Methods:

- i. Aggregate: $\frac{1}{k} \sum_{i=1}^{k} t(i)$; sum of costs divided by k
- ii. Accounting: Overcharge cheap operations to "pay" for expensive operations later
- iii. Potential: pick $\phi(0)=0, \ \phi(i)\geq 0;$ am. cost= $t(i)+\phi(i)-\phi(i-1)$ such that \sum am. cost of op $i\geq$ actual cost of n ops = $\sum t(i)$

Problems

Increment k-bit Binary Counter, counting bit flips:

- i. Aggregate: bit j flips $\frac{n}{2^j} \Rightarrow T(n) < 2n \Rightarrow \text{am. } O(1)$
- ii. Accounting: charge \$2 per $0 \rightarrow 1$, use saved \$1 per $1 \rightarrow 0$ reset; banked = no. of $1s \ge 0 \Rightarrow am$. O(1)
- iii. Potential: let $\phi(i)=\#$ of 1s after op i; am. cost = $(\ell_i+1)+(-\ell_i+1)=2=O(1)$

Dynamic Table, when full, alloc size 2n and copy n items:

- i. Aggregate: $T(n) \le n + \sum_{j=0}^{\log(n-1)} 2^j \le 3n$ \Rightarrow am. O(1)
- ii. Accounting: charge \$2/insert, use saved \$1/copy per item; bank never negative \implies am. O(1)
- iii. Potential: let $\phi(i) = 2i \text{size}(T)$; full case am. = i + (3 - i) = 3 = O(1); not-full case am. = 1 + 2 = 3 = O(1)

10. Problem Reduction

Problem A reduces to problem B if we can:

- 1. convert an instance α of A to an instance β of B, where an instance denotes input
- 2. solve β with B to obtain solution $B(\beta)$,
- 3. convert $B(\beta)$ back into a solution $A(\alpha)$ for α .

p(n)-time Reduction

Polynomial-time reduction from A to B, $A \leq_P B$, exists if:

- i. Converting $\alpha \to \beta$, $B(\beta) \to A(\alpha)$ take $\leq p(n)$ time, and new β takes $\leq p(n)$ size, where $p(n) \in O(n^c)$
- ii. Consequence:
 - B is easy (p(n)-time) \implies A is easy
 - A is hard (no p(n)-time) \implies B is hard
- iii. Length encoding: $n = |\alpha|$ is measured in length of bits, e.g. $\ell = \lceil \log n \rceil$ bits for numeric inputs.
- iv. Pseudo-polynomial time: if running time is p(n) in numeric value (e.g. O(n) iFib, O(nW) knapsack) but exponential in the bit-length (e.g. $O(2^{\ell})$).

Running-time Composition:

i. If $A \leq_P B$ and B can be solved in T(n) time, then A can be solved in (T(p(n)) + O(p(n))) time.

Problems

Longest Palindromic Subsequence \leq_P LCS:

- i. $LPS(\alpha) = LCS(\alpha, reversed(\alpha))$
- ii. Reverse and call LCS in $O(|\alpha|) \implies$ polynomial

Matrix Square \leq_P Matrix Multiplication:

- i. MAT-SQR(C) = MAT-MULTI(C, C)
- ii. Copying C in $O(n^2)$ + one mult \implies polynomial

Matrix Multiplication \leq_P Matrix Square:

- i. $\mathrm{MAT\text{-}MULTI}(A,B) = \mathrm{MAT\text{-}SQR}(\begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix})_{1,1}$
- ii. Build M and find result in $O(n^2) \implies \text{polynomial}$.

11. NP-Completeness

Decision problems map an instance space I into the solution set {YES, NO}.

i. Given decision problems $A \leq_P B$, α is YES-instance for $A \Leftrightarrow \beta$ is YES-instance for B

Complexity classes for decision problems in a deterministic Turing Machine:

- i. P: solvable in p(n) time; $P \subseteq NP$
- ii. NP: certificate verifiable in p(n) time
 - Proof: give p(n)-time verifier
- iii. NP-Hard: if for every problem $X \in NP$, $X \leq_P A$
 - Proof: can show p(n)-time reduction to known NP-Complete problem
- iv. NP-Complete: in NP and NP-Hard
 - Proof: prove both NP and NP-Hard

NP-Complete Problems

CSAT checks if DAG with AND, OR, NOT gate nodes and n binary inputs can output 1.

- i NP: evaluate certificate with DAG in O(n)
- ii NP-Hard: any p(n)-time NP verifier Q can be built into circuit C in $\Theta(p(n)^2)$ and solved by CSAT, hence all NP problems \leq_P CSAT

CNF-SAT checks satisfiability of CNF (product-of-sums):

- i NP-Hard: convert each gate of circuit C to a new var + O(1) clauses. Hence, CSAT \leq_P CNF-SAT
- $3\text{-}\mathrm{SAT}$ checks satisfiability of CNF with 3 literals/clause:
 - i NP-Hard: for any unrestricted CNF formula ϕ , split every clause with > 3 literals into a chain of 3-literal clauses with auxiliary variables in O(n). Hence, CNF-SAT $\leq_P 3$ -SAT

Independent Set (IS) checks if $\leq k$ nodes in graph G = (V, E) can share no edges:

- i. $IS(G, k) = VC(G, |V| k) \implies IS \leq_P VC$
- ii. NP: reject if any edge has both ends in X in O(|E|)
- iii. NP-Hard: given a 3-SAT formula, create a graph

with one node per literal, connecting pairs in the same clause and pairs of complementary literals. Hence, 3-SAT \leq_P IS

Vertex Cover (VC) checks if $\leq k$ nodes in graph G = (V, E) can cover every edge:

- i. NP: ensure all edges are adjacent to X in $\Theta(|E|)$
- ii. NP-Hard: $VC(G, k) = IS(G, |V| k) \Rightarrow VC \leq_P IS$

Hitting-Set (HS) checks if set H of $\leq k$ elements can have non-empty intersection with all S_i in $S = \{S_1, \dots, S_n\}$:

- i NP: $\forall S_i$ ensure $H \cap S_i \neq \emptyset$ in $\Theta(\sum_i |S_i|)$.
- ii NP-Hard: $VC(G, k) = HS(S = \{\{e\} : e \in E\}, k)$, where reduction is $\Theta(n)$. Hence, $VC \leq_P HS$.

CLIQUE checks if $\geq k$ nodes in G = (V, E) can form clique:

- i. NP: check all nodes are adjacent in $\Theta(k^2)$
- ii. NP-Hard: $CLIQUE(G, k) = IS(\overline{G}, k)$, where reduction is $\Theta(|E|)$. Hence, $CLIQUE \leq_P IS$

Additional Information

Stirling Approximation: $n! \sim \sqrt{2\pi n} (\frac{n}{e})^n$

Arithmetic Series:

i.
$$a_n = a_1 + (n-1)d$$

ii.
$$S_n = \frac{n}{2}(2a_1 + (n-1)d) = \frac{n \times (a_1 + a_n)}{2} \in \Theta(n^2)$$

Geometric Series:

i.
$$g_n = g_1 \times r^{n-1}$$

ii.
$$S_n = \frac{a(1-r^n)}{1-r}$$

ii.
$$S_n = \frac{a(1-r^n)}{1-r}$$

iii. $S_{\infty} = \frac{a}{1-r}$ when $|x| < 1$

Harmonic Series:

i.
$$H_n = 1 + \frac{1}{2} \frac{1}{3} + \dots + \frac{1}{n} = \ln n + O(1)$$