University of California, Los Angeles Department of Statistics

Statistics 100B Instructor: Nicolas Christou

Hypothesis testing

- A hypothesis test is a claim about a parameter of a population.
- Given the data we want to make a decision about which of two hypothesis is true (or not true).
- The two hypotheses are called the "null" and "alternative" hypotheses (denoted with H_0 and H_a respectively).
- The test has the following formulation:

 $H_0:\theta\in\Theta_0$

 $H_a: \theta \in \Theta_0'$, where Θ_0' is the complement of Θ_0 .

Assignment Project Exam Help • Examples:

- - 1. Consider the simple regression model: $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$. We wish to test $H_0: \beta_1 = 0$ (the half hypothesis states that there is had association between the response y and the predictor x).

 $H_a: \beta_1 \neq 0$ (the alternative hypothesis states that there is a linear association between y Ard WeChat powcoder

2. Consider an experiment in which a patient is given a treatment (some drug) and we want to test if there is a difference between before and after administrating the drug. We wish to test

 $H_0: \mu_d = 0$ (the null hypothesis states that there is no difference).

 $H_a: \mu_d \neq 0$ (the alternative hypothesis states that there is a difference).

3. Consider an experiment where the goal is to see if on average there is a difference in the production of corn using different fertilizers. We wish to test

 $H_0: \mu_1 = \mu_2 = \ldots = \mu_k$ (the null hypothesis states that the production is the same under the different fertilizers (treatments)).

 H_a : At least two means are not equal (the alternative hypothesis states that there are differences).

4. Test for the proportion of defective items at a certain production line:

 $H_0: p=p_0$

 $H_a: p > p_0.$

- We need to find and evaluate hypothesis tests.
- Find a procedure that will tell us for which sample values H_0 is accepted (and therefore for which sample values H_0 is rejected). These are called the acceptance region (accepts H_0) and the rejection region (rejects H_0).
- Usually the procedure of rejecting (or accepting) involves the so called test statistic $T(\mathbf{X})$ which a function of the data $\mathbf{X} = (X_1, \dots, X_n)'$.
- Type I and Type II error

		ACTUAL SITUATION		
		H_0 IS TRUE	H_0 IS NOT TRUE	
STATISTICAL	$\begin{array}{ c c c c c }\hline \text{DO NOT REJECT}\\ H_0 \end{array}$	Correct Decision $1 - \alpha$	Type II error β	
DECISION	REJECT H_0	Type I Error α	Correct Decision $1 - \beta$ (Power)	

• Testinasini gluppienite. Projectin Exam "Help

1. Best critical region of size α .

Definition Let R denote a subset of the sample space. Then R is called "best critical region P if for every subset P of the sample space for which $P(X_1, \ldots, X_n) \in D[H_0] = \alpha$ it is true that

$$D[H_0] = \alpha$$
 it is true that a. $P[(X_1 Add) \in W_1 Chat powcoder$

b.
$$P[(X_1, ..., X_n) \in R | H_a] \ge P[(X_1, ..., X_n) \in D | H_a].$$

Explanation:

In general, there are many subsets D for which $P[(X_1, \ldots, X_n) \in D|H_0] = \alpha$, but there is one of these subsets, denoted with R, such that the power of the test associated with R is larger than any other subset D.

2. Example:

Suppose $X \sim b(5,p)$. We want to test $H_0: p = \frac{1}{2}$ against $H_a: p = \frac{3}{4}$ using one random value of X. We list all the probabilities of $b(5,\frac{1}{2})$ and $b(5,\frac{3}{4})$ in the next table:

2

Suppose we decided to use $\alpha=\frac{1}{32}$. We want to find the best critical region of size $\alpha=\frac{1}{32}$. We observe that $P(X=0|p=\frac{1}{2})=\frac{1}{32}$ and $P(X=5|p=\frac{1}{2})=\frac{1}{32}$. Therefore, there are two subsets $D_1(x=0)$ and $D_2(x=5)$, for which $P(X\in D_1|H_0)=\frac{1}{32}$ and $P(X\in D_2|H_0)=\frac{1}{32}$. One of these subsets will be our best critical region. Which one of these two subsets has the largest power? We compute: $P(X=0|p=\frac{3}{4})=\frac{1}{1024}$ and $P(X=5|p=\frac{3}{4})=\frac{243}{1024}$, therefore the best critical region of size $\alpha=\frac{1}{32}$ is $R=\{x=5\}$.

We also observe that the best critical region of size $\alpha = \frac{1}{32}$ corresponds to the point in D for which $\frac{P(X=x|p=\frac{1}{2})}{P(X=x|p=\frac{3}{4})}$ is the minimum. We see this in the next table where we compute the ratios $\frac{P(X=x|p=\frac{1}{2})}{P(X=x|p=\frac{3}{4})}$.

Assignment Project Exam Help

Another example Suppopoly Condend region of size $\alpha = \frac{6}{32}$.

3. Neyman-Pearson theorem:

Suppose X is a random variable and we need to decide whether the probability distribution is either $f_0(x)$ or $f_1(x)$. For example, we may want to test that $f_0(x)$ is N(18,1) against the alternative that $f_1(x)$ is N(28,1).

Let k be some positive number, and define the following two sets:

$$A = \left\{ x \left| \frac{f_0(x)}{f_1(x)} > k \right. \right\}$$

and

$$R = \left\{ x \left| \frac{f_0(x)}{f_1(x)} < k \right. \right\}$$

The Neyman-Pearson decision rule is the following:

If data x is in set A, then accept H_0 .

If data x is in set R, then accept H_a .

Let α be the probability of Type I error based on A and R above.

Therefore for the Neyman-Pearson Lemma we have: Assignment Project Exam Help

$$\beta = \frac{https://powcoder.com}{https://powcoder.com}$$

Suppose that there is a competitor test with acceptance region A^* and rejection region R*, And the We Chat powcoder

Therefore for this competitor test we have:

$$\alpha^* = \int_{R^*} f_0(x) dx$$
 and $1 - \alpha^* = \int_{A^*} f_0(x) dx$,

and

$$\beta^* = \int_{A^*} f_1(x) dx$$

The Neyman-Pearson Lemma claims that this test is the best, in the sense that any other competitor test with Type I error α^* such that $\alpha^* \leq \alpha$ will have higher probability of Type II error. Therefore, $\beta^* - \beta \ge 0$.

This is the entire data space:

The value of X must fall here.

This is the data space partitioned by the Neyman-Pearson Lemma:

Assignment Project Exam Help https://powcoder.com Add WeChat powcoder

This is data set R.

This is the data space partitioned by the competitor test:

This is set A^* .	This is set R^* .

This is the final picture showing the partitioned of the data space based on the two tests:

We need to calculate $\beta^* - \beta$:

$$\beta^* - \beta = \int_{A^*} f_1(x) dx - \int_A f_1(x) dx$$

$$= \int_{(A^* \cap A) \cup (A^* \cap R)} f_1(x) dx - \int_{(A \cap A^*) \cup (A \cap R^*)} f_1(x) dx$$

$$= \int_{A^* \cap A} f_1(x) dx + \int_{A^* \cap R} f_1(x) dx - \left\{ \int_{A \cap A^*} f_1(x) dx + \int_{A \cap R^*} f_1(x) dx \right\}$$

$$= \int_{A^* \cap R} f_1(x) dx - \int_{A \cap R^*} f_1(x) dx.$$

For the first integral $\int_{A^* \cap R} f_1(x) dx$, it should be true that $\frac{f_0(x)}{f_1(x)} < k$ because it is done over the subset R. Therefore the integral will be smaller if we replace $f_1(x)$ with $\frac{f_0(x)}{k}$ since $f_1(x) > \frac{f_0(x)}{k}$.

For the second integral $\int_{A \cap R^*} f_1(x) dx$, it should be true that $\frac{f_0(x)}{f_1(x)} > k$ because it is done over the subset A. Therefore the integral will be larger if we replace $f_1(x)$ with $\frac{f_0(x)}{k}$ since $f_1(x) < \frac{f_0(x)}{k}$.

These two changes above will give us:

$$\beta^* - \beta \ge \int_{A^* \cap R} \frac{1}{k} f_0(x) dx - \int_{A \cap R^*} \frac{1}{k} f_0(x) dx$$
$$= \frac{1}{k} \int_{A^* \cap R} f_0(x) dx - \frac{1}{k} \int_{A \cap R^*} f_0(x) dx.$$

Now, add an subtract $\frac{1}{k} \int_{A \cap A^*} f_0(x) dx$ to get:

$$\beta^* - \beta \ge \frac{1}{k} \int_{A^* \cap R} f_0(x) dx + \frac{1}{k} \int_{A \cap A^*} f_0(x) dx$$

Assignment franciect Fixam Help

Because, $https:A/poweoderAcom(A \cap R^*)$ we finally get: $\beta^* - \beta \geq \frac{1}{k} \int_{A^*} f_0(x) dx - \frac{1}{k} \int_A f_0(x) dx$

Add $(WeC_k^n at)$ powcoder $\geq \frac{1}{h}(\alpha - \alpha^*) \geq 0.$

Therefore, the competitor test with equal or better Type I error probability must have larger Type II error probability.

4. Neyman-Pearson theorem. Summary and examples:

Suppose we wish to test the simple hypothesis

 $H_0: \theta = \theta_0$

against the alternative simple hypothesis

 $H_a: \theta = \theta_a.$

As always, a sample of X_1, X_2, \ldots, X_n is selected from a probability distribution with unknown parameter θ . Let $L(\theta_0)$ denote the likelihood function when $\theta = \theta_0$ and $L(\theta_a)$ denote the likelihood function when $\theta = \theta_a$. Then for a given significance level α , the test that maximizes the power has a rejection region determined by $\frac{L(\theta_0)}{L(\theta_a)} < k$, where k is some constant. This test will be the most powerful test for testing H_0 against H_a .

The previous result applies to simple hypotheses. Usually one of the two hypotheses is composite. For example: $H_0: \theta = \theta_0$ against the alternative composite hypothesis

 $H_a: \theta > \theta_0.$

We say that a test that is most powerful for every simple alternative in H_a is uniformly most powerful.

Example 1:

Let X be a single observation from the probability density function $f(x) = \theta x^{\theta-1}, 0 < x < 1$. Find the most powerful test using significance level $\alpha = 0.05$ for testing

 $H_0: \theta = 1$ $H_a: \theta = 2.$

 $H_0: \mu = \mu_0$

 $H_a: \mu > h$ ttps://powcoder.com

Example 3:

Let $X \sim exp(\frac{1}{\lambda})$. Therefore, $f(x) = \frac{1}{\lambda}e^{-\frac{1}{\lambda}x}, \lambda > 0, x > 0$. Let X_1, X_2, \ldots, X_n be a random sample from this distribution.

a. Show that the best critical region for testing

$$H_0: \lambda = 3$$

 $H_a: \lambda = 5$
is based on $\sum_{i=1}^n x_i$.

Assignment Project Exam Help

https://powcoder.com b. If n=12 and using $\frac{2}{\lambda}\sum_{i=1}^n x_i \sim \chi_{24}^2$ find the best critical region when the significance level $\alpha=0.05$.

Example 4:

Suppose X has the possible values 0,1,2,3,4. Suppose that the null hypothesis says that X is uniform on these integers, while the alternative hypothesis says that $X \sim b(4, \frac{1}{2})$. Let's see what happens if we let k of the Neyman-Pearson lemma be equal to 0.6. Complete the next table and find the best critical region when k = 0.6 and compute the power of the test.

x	0	1	2	3	4
$P(X = x H_0)$					
$P(X = x H_a)$					
$\frac{P(X=x H_0)}{P(X=x H_a)}$					

Assignment Project Exam Help

https://powcoder.com