Analzízis Alkalmazásai. Programtervező informatikus A. szakirány

RöpZh Tételek 2023-2024. tanév 2. félév

Petrányi Bálint

2024. április 15.

Tartalomjegyzék

1.	week		5
	1.1.	Mikor mondjuk, hogy a φ függvény az $f(x,y) = 0$ egyenletnek	
		egy implicit megoldása?	5
	1.2.	Hogyan szól az egyváltozós implicitfüggvény-tétel?	5
	1.3.	Igaz-e a következő állítás? "Az implicitfüggvény-tétel egy expli-	
		cit előállítást ad az $f(x,y)=0$ egyenlet implicit megoldására."	
		A válaszát indokolja meg!	5
	1.4.	A deriválási szabályok alapján hogyan vezethető le az $f(x, \varphi(x)) =$	
		$0 \ (x \in U)$ egyenlőségből az implicit megoldás deriváltjára vo-	
		natkozó összefüggést az U környezetben?	6
	1.5.	Mit jelent az, hogy egy $\mathbb{R}^n \to \mathbb{R}^n$ típusú függvény lokálisan	
		invertálható?	6
	1.6.	Igaz-e, hogy minden $\mathbb{R}^2 \to \mathbb{R}^2$ típusú, folytonos és lokálisan	
		invertálható függvény globálisan is invertálható? A válaszát	
		indokolja meg!	6
	1.7.	Hogyan szól az inverzfüggvény-tétel?	7
	1.8.	Igaz-e a következő állítás? "Az inverzfüggvény-tétel egy exp-	
		licit előállítást ad bizonyos feltételeket teljesítő függvények in-	
		verzére." A válaszát indokolja meg!	7

2.	wee	k	8
	2.1.	Adja meg a két változós valós értékű f függvény a $g=0$ -ra vonatkozó feltételes abszolút maximumának a fogalmát!	8
	2.2.	Adja meg a két változós valós értékű f függvény a $g=0$ -ra	O
		vonatkozó feltételes lokális maximumának a fogalmát	8
	2.3.	Igaz-e, hogy egy feltételes abszolút maximum egyben feltételes lokális maximum? A válaszát indokolja meg!	8
	2.4.	Mondja ki az elsőrendű szükséges feltételről szóló tételt feltételes lokális szélsőértékekre!	8
	2.5.	Mondja ki a másodrendű elégséges feltételről szóló tételt fel-	
	2.6.	tételes lokális szélsőértékekre!	9
	2.7.	mert (nem feltételes) lokális szélsőértékek keresésére szolgáló módszert feltételes lokális szélsőértékek keresésére? Milyen esetben tudjuk a kétváltozós függvényekre vonatkozó	11
	0.0	feltételes szélsőérték-problémát visszavezetni egy egyváltozós függvény szélsőérték-problémájára?	11
	2.8.	Milyen esetekben és hogyan tudjuk a Weierstrass-tételt alkalmazni a feltételes abszolút szélsőrtékek keresésében?	11
3.	wee	k	12
3.	wee : 3.1.	k Mit nevezünk szakaszonként sima útnak?	12 12
3.		Mit nevezünk szakaszonként sima útnak?	
3.	3.1.	Mit nevezünk szakaszonként sima útnak?	12
3.	3.1. 3.2. 3.3.	Mit nevezünk szakaszonként sima útnak?	12 12
3.	3.1. 3.2. 3.3.	Mit nevezünk szakaszonként sima útnak? Mit nevezünk egy út ellentettjének?	12 12 12
3.	3.1. 3.2. 3.3. 3.4.	Mit nevezünk szakaszonként sima útnak?	12 12 12
3.	3.1. 3.2. 3.3. 3.4.	Mit nevezünk szakaszonként sima útnak? Mit nevezünk egy út ellentettjének?	12 12 12 12 13
3.	3.1. 3.2. 3.3. 3.4. 3.5. 3.6.	Mit nevezünk szakaszonként sima útnak? Mit nevezünk egy út ellentettjének?	12 12 12 12 13 13
3.	3.1. 3.2. 3.3. 3.4. 3.5. 3.6. 3.7. 3.8. 3.9.	Mit nevezünk szakaszonként sima útnak?	12 12 12 13 13 13
3.	3.1. 3.2. 3.3. 3.4. 3.5. 3.6. 3.7. 3.8. 3.9.	Mit nevezünk szakaszonként sima útnak? Mit nevezünk egy út ellentettjének?	12 12 12 13 13 13 13
3.	3.1. 3.2. 3.3. 3.4. 3.5. 3.6. 3.7. 3.8. 3.9.	Mit nevezünk szakaszonként sima útnak?	12 12 12 13 13 13 13
3 .	3.1. 3.2. 3.3. 3.4. 3.5. 3.6. 3.7. 3.8. 3.9.	Mit nevezünk szakaszonként sima útnak?	12 12 12 13 13 13 13 14
	3.1. 3.2. 3.3. 3.4. 3.5. 3.6. 3.7. 3.8. 3.9. 3.10.	Mit nevezünk szakaszonként sima útnak?	12 12 12 13 13 13 13 14

	4.3.	Mondja ki a tanult szükséges feltételt primitív függvény létezésére vonatkozóan!	16
	4.4.	Igaz-e a következő állítás? "Minden $f: \mathbb{R}^2 \to \mathbb{R}^2$ folytonos függvénynek van primitív függvénye." A válaszát indokolja meg!	16
	4.5.	Mondja ki a tanult elégséges feltételt primitív függvény léte-	
	4.6.	zésére vonatkozóan!	$\frac{16}{17}$
	4.7. 4.8.	Adja meg egy v vektormező rotációjának fogalmát!	17 17
5.	wee	k	18
	5.1.	Mit nevezünk explicit elsőrendű közönséges differenciálegyen- letnek? Fogalmazza meg pontosan, hogy milyen feladatot ol-	
	5.2.	dunk meg ebben az esetben!	18
		esetben!	18
	5.3. 5.4.	Mit állít a Cauchy Peano-féle egzisztenciatétel?	19
	9.4.	telműen oldható meg?	19
	5.5.	Mit jelent, hogy egy kezdetiérték-probléma lokálisan egyértel- műen oldható meg?	19
	5.6.	Mondja ki a kezdetiérték-problémák globálisan és lokálisan egyértelmű megoldhatóságának a kapcsolatáról szóló tétel!	19
	5.7.	Mit nevezünk szétválasztható változójú differenciálegyenlet- nek? Fogalmazza meg pontosan, hogy milyen feladatot oldunk	
	5.8.	meg ebben az esetben!	20
		tően?	20
6.	wee	k	21
	6.1.	Mit nevezünk egzakt differenciálegyenletnek? Fogalmazza meg pontosan, hogy milyen feladatot oldunk meg ebben az esetben!	21
	6.2.	Milyen tételt ismer az egzaktság eldöntésére?	21
	6.3.	Mit tud mondani az egzakt differenciálegyenletre vonatkozó kezdeti érték-probléma megoldhatóságáról és megoldása előállításáról?	22
	6.4	Mit nevezijnk integráló tényezőnek?	$\frac{22}{22}$

	6.5.	Mit nevezünk elsőrendű lineáris differenciálegyenletnek? Fogalmazza meg pontosan,hogy milyen feladatot oldunk meg eb-	
			22
	6.6.	Milyen alakban írható fel egy elsőrendű inhomogén lineáris dif-	
		ferenciálegyenlet általános megoldása bizonyos homogén-inhomogé	n
		O .	23
	6.7.	Mit nevezünk Bernoulli-féle differenciálegyenletnek? Fogal- mazza meg pontosan, hogy milyen feladatot oldunk meg ebben az esetben!	23
	6.8.	Írja fel az explicit elsőrendű közönséges differenciálegyenletre	∠ა
	0.0.		23
	6.9.	·	23
		Mit jelent, hogy az explicit elsőrendű közönséges differenciálegyenletre vonatkozó kezdetiérték-problémának egy megoldá-	
		- 0	24
7.	weel	k 2	25
	7.1.	Mit nevezünk elsőrendű lineáris differenciálegyenlet-rendszernek?	
		Fogalmazza meg pontosan, hogy milyen feladatot oldunk meg	
			25
	7.2.	Mit tudunk mondani egy elsőrendű lineáris differenciálegyenlet-	٥٢
	7 2		25
	7.3.	Mit nevezünk alaprendszernek elsőrendű lineáris differenciálegyenlerendszerek esetén?	et- 25
	7.4.	Mit nevezünk alapmátrixnak elsőrendű lineáris differenciálegyenlet	
	1.1.		26
	7.5.	Mit nevezünk egy megoldásrendszer Wronski-féle determinán-	
			26
	7.6.	Milyen jellegzetes tulajdonsága van egy alaprendszer Wronski-	
			26
	7.7.	Milyen alakban írható fel egy elsőrendű inhomogén lineáris	
		differenciálegyenlet-rendszer általános megoldása bizonyos homogé	
	- 0		27
	7.8.	Tegyük fel, hogy az elsőrendű állandó együtthatós lineáris differenciálegyenlet-rendszer együtthatókból álló $A\in\mathbb{R}^{n\times n}$	
		mátrixnak van n számú különböző valós sajátértéke. Hogyan	
		állíthatjuk elő egy alaprendszert ebben az esetben?	27

- 1.1. Mikor mondjuk, hogy a φ függvény az f(x,y)=0 egyenletnek egy implicit megoldása?
- **1.1. Definíció.** Legyen $f \in \mathbb{R}^2 \to \mathbb{R}$ egy adott függvény. Ha létezik olyan $I \subset \mathbb{R}$ nyílt intervallum és $\varphi : I \to \mathbb{R}$ függvény, hogy

$$f(x, \varphi(x)) = 0 \quad (\forall x \in I)$$

akkor azt mondjuk, hogy a φ függvény az f(x,y)=0 implicit alakban van megadva

- 1.2. Hogyan szól az egyváltozós implicitfüggvény-tétel?
- 1.1. Tétel (Egyváltozós implicitfüggvény-tétel.). Legyen $\Omega \in \mathbb{R}^2$ nyílt halmaz és $f: \Omega \to \mathbb{R}$. Tegyük fel, hogy
 - (a) f folytonosan deriválható Ω -n
 - (b) $az(a,b) \in \Omega$ pointban f(a,b) = 0 és $\partial_2 f(a,b) \neq 0$

Ekkor:

- 1. Van olyan K(a) =: U és K(b) =: V környezet \mathbb{R} -ben, hogy minden $x \in U$ ponthoz létezik egyetlen $\varphi(x) \in V$, amelyre $f(x, \varphi(x)) = 0$
- 2. Az így definiált $\varphi: U \to V$ függvény folytonosan deriválható U-n, továbbá $\forall x \in U$ -ra $\partial_2 f(x, \varphi(x)) \neq 0$ és

$$\varphi'(x) = -\frac{\partial_1 f(x, \varphi(x))}{\partial_2 f(x, \varphi(x))}$$

1.3. Igaz-e a következő állítás? "Az implicitfüggvénytétel egy explicit előállítást ad az f(x,y) = 0 egyenlet implicit megoldására." A válaszát indokolja meg!

Nem igaz

Világos, hogy $\varphi(a)=b$. A φ függvényt az $f(x,\varphi(x))=0$ $(x\in U)$ egyenlőség "implicit" módon definiálja. Innen származik a tétel neve. A tétel csak a φ implicit függvény létezéséről szól, ezt a függvényt általában nem tudjuk explicit képlettel előállítani. Ennek ellenére a $\varphi'(x)$ deriváltat ki tudjuk számítani, ha ismerjük a $\varphi(x)$ függvényértéket.

1.4. A deriválási szabályok alapján hogyan vezethető le az $f(x, \varphi(x)) = 0$ $(x \in U)$ egyenlőségből az implicit megoldás deriváltjára vonatkozó összefüggést az U környezetben?

$$F(x) := f(x, \varphi(x)) \quad (x \in U)$$

Mivel $\forall x \in U$ esetén F(x) = 0, ezért F'(x) = 0. Az összetett függvény deriválási szabálya szerint

$$0 = F'(x) = \partial_1 f(x, \varphi(x)) \cdot 1 + \partial_2 f(x, \varphi(x)) \cdot \varphi'(x) \quad (x \in U)$$
ezért $\forall x \in U$ pontban:

$$\varphi'(x) = -\frac{\partial_1 f(x, \varphi(x))}{\partial_2 f(x, \varphi(x))}$$

- 1.5. Mit jelent az, hogy egy $\mathbb{R}^n \to \mathbb{R}^n$ típusú függvény lokálisan invertálható?
- **1.2. Tétel (Lokális invertálhatóság.).** Legyen $I \subset \mathbb{R}$ nyílt intervallum és $f: I \to \mathbb{R}$.

T.f.h. $f \in C^1(I)$ és egy $a \in I$ pontban $f'(a) \neq 0$ Ekkor f az a-ban lokálisan invertálható, azaz $\exists U := K(a)$ és V := f[U] nyílt halmaz, hogy az $f_{|U}: U \to V$ függvény bijekció, ezért invertálható. Az $f_{|U}^{-1}$ lokális inverz folytonosan deriválható V-n, és

$$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))} \quad (y \in V)$$

1.6. Igaz-e, hogy minden $\mathbb{R}^2 \to \mathbb{R}^2$ típusú, folytonos és lokálisan invertálható függvény globálisan is invertálható? A válaszát indokolja meg!

Nem igaz Például az

$$f(x,y) := (e^x \cos y, e^x \sin y) \quad ((x,y) \in \mathbb{R}^2)$$

folytonos függvény a sík minden $\pi\text{-nél}$ kisebb sugarú körlapján injektív, de globálisan nem injektív, hiszen

$$f(x, y + 2\pi) = f(x, y) \quad (\forall (x, y) \in \mathbb{R}^2)$$

1.7. Hogyan szól az inverzfüggvény-tétel?

- 1.3. Tétel (Inverzfüggvény-tétel.). Legyen $\Omega \subset \mathbb{R}^n$ $(x \in \mathbb{N})$ nyílt halmaz és $f: \Omega \to \mathbb{R}^n$. T.f.h
 - (a) f folytonosan deriválható Ω -n
 - (b) $egy \ a \in \Omega \ pontban \ \det f'(a) \neq 0$

Ekkor

- 1. f lokálisan invertálható, azaz van olyan, az $a \in \Omega$ pontot tartalmazó U nyílt halmaz, hogy ha V := f[U], akkor az $f_{|U}: U \to V$ függvény bijekció (következésképpen invertálható).
- 2. $Az\left(f_{|_{U}}\right)^{-1}$ lokális inverz folytonosan deriválható V-n és

$$(f^{-1})'(y) = [f'(f^{-1}(y))]^{-1} \quad (y \in V)$$

1.8. Igaz-e a következő állítás? "Az inverzfüggvény-tétel egy explicit előállítást ad bizonyos feltételeket teljesítő függvények inverzére." A válaszát indokolja meg!

Nem igaz

Az f függvény explicit alakjának az ismeretében f^{-1} helyettesítési értékeire általában nincs explicit képlet, viszont

$$(f^{-1})'(y) = [f'(f^{-1}(y))]^{-1} \quad (y \in V)$$

alapján a derivált helyettesítési értékei az f' helyettesítési értékeinek felhasználásával már kiszámíthatók, ha ismerjük az inverz függvény értékét a megfelelő pontban

- 2. week
- 2.1. Adja meg a két változós valós értékű f függvény a g=0-ra vonatkozó feltételes abszolút maximumának a fogalmát!
- **2.1. Definíció.** Legyen $U\subset\mathbb{R}^2$ nyílt halmaz T.f.h $f,g:U\to\mathbb{R}$ adott függvények és

$$H_q := \{ z \in U \mid g(z) = 0 \} \neq 0$$

 $a \in H_g$ pontban felt'eteles~abszol'ut~maximuma~van~ha

$$f(x) \le f(a), \quad \forall x \in H_g \subset \mathcal{D}_f = U$$

- 2.2. Adja meg a két változós valós értékű f függvény a g=0-ra vonatkozó feltételes lokális maximumának a fogalmát
- **2.2. Definíció.** Legyen $U\subset\mathbb{R}^2$ nyílt halmaz T.f.h $f,g:U\to\mathbb{R}$ adott függvények és

$$H_g := \{ z \in U \mid g(z) = 0 \} \neq 0$$

 $a \in H_g$ pontban $felt\'eteles\ lok\'alis\ maximuma\ van\ ha$

$$\exists K(a) \subset U : f(x) \le f(a), \quad \forall x \in K(a) \cap H_q$$

2.3. Igaz-e, hogy egy feltételes abszolút maximum egyben feltételes lokális maximum? A válaszát indokolja meg!

Igen Mert van egy környezet amiben lokális maximum lesz

2.4. Mondja ki az elsőrendű szükséges feltételről szóló tételt feltételes lokális szélsőértékekre!

Általános eset:

- **2.1. Tétel.** T.f.h $n, m \in \mathbb{N}$ m < n, $\emptyset \neq U \subset \mathbb{R}^n$ nyílt halmaz
 - (a) $az \ f: U \to \mathbb{R}$ és $a \ g = (g_1, \dots, g_m): U \to \mathbb{R}^m$ függvények folytonosan deriválhatók az U halmazon
 - (b) az $a = (a_1, ..., a_n) \in U$ pontban az f függvénynek a $g_1 = 0, ..., g_m = 0$ feltételekre vonatkozóan feltételes lokális szélsőértéke van

(c) rang
$$\begin{bmatrix} \partial_1 g_1(a) & \partial_2 g_1(a) & \dots & \partial_n g_1(a) \\ \vdots & \vdots & \vdots & \vdots \\ \partial_1 g_m(a) & \partial_2 g_m(a) & \dots & \partial_n g_m(a) \end{bmatrix} = 0$$

Ekkor léteznek olyan $\lambda_1, \ldots, \lambda_m \in \mathbb{R}$ (Lagrange-szorzók), hogy az

$$\mathcal{L}(x) := f(x) + \lambda_1 g_1(x) + \ldots + \lambda_m g_m(x) \quad (x \in U)$$

Lagrange-függvénynek $a = (a_1, \ldots, a_n)$ stacionárius pontja, azaz

$$\mathcal{L}'(a) = [\partial_1 \mathcal{L}(a), \dots, \partial_n \mathcal{L}(a)] = [0, \dots, 0] = \theta_m \in \mathbb{R}^n$$

vagy 2 változos eset:

2.2. Tétel. *T.f.h*

- (a) $U \subset \mathbb{R}^2$ nyílt halmaz és az $f, g: U \to \mathbb{R}$ függvényeknek léteznek a parciális deriváltjaik és azok folytonosak az U halmazon
- (b) $az(x_0, y_0) \in U$ pontban az f függvénynek a g = 0 feltételre vonatkozóan feltételes lokális szélsőértéke van

(c)
$$g'(x_0, y_0) = (\partial_1 g(x_0, y_0), \partial_2 g(x_0, y_0)) \neq (0, 0)$$

Ekkor van olyan $\lambda \in \mathbb{R}$ valós szám (ezt Lagrange-szorzónak szokás nevezni), hogy az

$$\mathcal{L}(x,y) := f(x,y) + \lambda g(x,y) \quad (() (x,y) \in U)$$

Lagrange-függvénynek (x_0, y_0) stacionárius pontja, azaz

$$\mathcal{L}'(x,y) = (\partial_x \mathcal{L}(x_0, y_0), \partial_y \mathcal{L}(x_0, y_0)) = (0,0)$$

2.5. Mondja ki a másodrendű elégséges feltételről szóló tételt feltételes lokális szélsőértékekre!

Általános eset:

2.3. Tétel. $n, m \in \mathbb{N}$ m < n, $\emptyset \neq U \subset \mathbb{R}^n$ nyílt halmaz T.f.h:

 $f, g_1, \ldots, g_m \in C^2$ és $\lambda_1, \ldots, \lambda_m \in \mathbb{R}$ olyan számok, valamint az $a \in U$ olyan pont, hogy az

$$\mathcal{L} := f + \lambda_1 g_1 + \ldots + \lambda_m g_m$$

függvényre $\mathcal{L}'(a) = \emptyset_n$ továbbá minden olyan $h \in \mathbb{R}^n$, $h \neq \subset_n$ vektorra, amelyre

$$g_1'(a) \cdot h = 0, \ g_2'(a) \cdot h = 0, \dots, \ g_m'(a) \cdot h = 0$$

teljesül úgy, hogy

$$\langle \mathcal{L}''(a) \cdot h, h \rangle > 0$$

Ekkor az f függvénynek a $g_1=0,\ldots,g_m=0$ feltételek mellett feltételes minimuma van az $a\in U$ pontban.

vagy 2 változos eset:

2.4. Tétel. *T.f.h*

- (a) $U \subset \mathbb{R}^2$ nyílt halmaz és $f, g \in C^2(U, \mathbb{R})$
- (b) $az(x_0, y_0) \in U$ pontban $a \lambda_0 \in \mathbb{R}$ számmal teljesül a szükséges feltétel.

Tekintsük ezzel a λ_0 számmal az

$$\mathcal{L}(x,y) := f(x,y) + \lambda_0 g(x,y) \quad ((x,y) \in U)$$

Lagrange-függvényt. Legyen

$$D(x_0, y_0; \lambda_0) := \det \begin{bmatrix} 0 & \partial_1 g(x_0, y_0) & \partial_2 g(x_0, y_0) \\ \partial_1 g(x_0, y_0) & \partial_{11} \mathcal{L}(x_0, y_0) & \partial_{12} \mathcal{L}(x_0, y_0) \\ \partial_2 g(x_0, y_0) & \partial_{21} \mathcal{L}(x_0, y_0) & \partial_{22} \mathcal{L}(x_0, y_0) \end{bmatrix}$$

(a mátrixot kibővített Hesse-mátrixnak szokás nevezni). Ekkor:

- 1. ha $D(x_0, y_0; \lambda_0) > 0 \Leftarrow (x_0, y_0)$ feltételes lokális **maximumhely**
- 2. ha $D(x_0, y_0; \lambda_0) < 0 \Leftarrow (x_0, y_0)$ feltételes lokális **minimumhely**

2.6. Miért nem tudjuk általában alkalmazni a korábban megismert (nem feltételes) lokális szélsőértékek keresésére szolgáló módszert feltételes lokális szélsőértékek keresésére?

Mert mindig feltettük, hogy a vizsgált pont az értelmezési tartomány belső pontja. Könnyen látható azonban, hogy a H_g halmaznak nincs belső pontja.

2.7. Milyen esetben tudjuk a kétváltozós függvényekre vonatkozó feltételes szélsőérték-problémát visszavezetni egy egyváltozós függvény szélsőérték-problémájára?

T.f.h a feltételt megadó g(x,y)=0 egyenletből (például) az y kifejezhető az x változó függvényeként, azaz $\exists \varphi \in \mathbb{R} \to \mathbb{R}$ függvény, amelyre $g(x,\varphi(x))=0$

A $H_g = \{(x,y) \mid g(x,y) = 0\} \subset \mathbb{R}^2$ halmaz tehát a φ függvény garfikonja, ami "jó" esetben egy síkbeli "görbe". Az f függvénynek a H_g halmaz pontjaiban felvett értékeit a $h(x) := f(x, \varphi(x))$ alós-valós függvénnyel lehet kifejezni.

A kétváltozós függvényekre vonatkozó feltételes szélsőérték-problémát a szóban forgó esetben a h egyváltozós függvény szélsőérték-problémájára lehet visszavezetni.

2.8. Milyen esetekben és hogyan tudjuk a Weierstrasstételt alkalmazni a feltételes abszolút szélsőrtékek keresésében?

A feltételes abszolút szélsőértékhelyek megkeresése egy "egyszerűbb" feladathoz vezethet, ha a

$$H_q := \{ x \in U \mid g(x) = 0 \}$$

halmaz korlátos és zárt. Ebben az esetben a Weierstrass-tétel garantálja a feltételes abszolút szélsőértékhelyek létezését, amelyek a Lagrange-függvény stacionárius pontjai lesznek.

3.1. Mit nevezünk szakaszonként sima útnak?

- 3.1. Definíció. $A \varphi : [a, b] \to \mathbb{R}^n$ függvény szakaszonként sima út, ha
 - $\varphi \in C[a,b]$
 - $\exists a = t_0 < t_1 < \ldots < t_m = b \ (m \in \mathbb{N}) \ olyan \ felosztása \ [a,b]-nek$, amelyre tetszőleges $k = 0, 1, \ldots, m-1$ index esetén $\varphi_{|_{[t_k, t_{k+1}]}}$ sima út

3.2. Mit nevezünk egy út ellentettjének?

Egy φ út $\tilde{\varphi}$ ellentettjét így definiáljuk:

$$\tilde{\varphi} := \varphi(b + a - t) \quad (a \le t \le b)$$

3.3. Mit nevezünk az u és v pontokat összekötő szakasznak?

Legyenek adottak az $u, v \in \mathbb{R}^n$ pontok, és legyen

$$\varphi_{uv}(t) := u + t(v - u) \quad (0 \le t \le 1)$$

Ekkor φ_{uv} egy sima út, az u-t és v-t összekötő szakasz, amelynek a $\varphi_{uv}(0) = u$ a kezdőpontja, a $\varphi_{uv}(1) = v$ pedig a végpontja.

3.4. Mikor mondjuk, hogy egy halmaz összefüggő, és mit nevezünk tartománynak?

Azt mondjuk, hogy az $U \subset \mathbb{R}^n$ nyílt halmaz összefüggő, ha bármely két pontja összeköthető U-ban haladó töröttvonallal. Az összefüggő nyílt halmazokat röviden **tartománynak** nevezzük.

3.5. Adja meg az f függvény φ útra vett vonalintegráljának fogalmát!

3.2. Definíció. $T.f.h\ U \subset \mathbb{R}^n \quad (n \in \mathbb{R}^n) \ tartomány, \ az \ f: U \to \mathbb{R}^n \ függvény folytonos, továbbá <math>\varphi: [a,b] \to \mathbb{R}^n \ egy \ U$ -ban haladó szakaszonként sima út. Ekkor az f függvény φ út vett vonalintegrálját így értelmezzük:

$$\int\limits_{\varphi} f := \int\limits_{a}^{b} \langle f \circ \varphi, \varphi' \rangle = \int\limits_{a}^{b} \langle f(\varphi(t)), \varphi'(t) \rangle dt.$$

3.6. Mondja ki a vonalintegrál utak egyesítéséről szóló állítás!

3.1. Tétel. Legyen $U \subset \mathbb{R}^n$ $(n \in \mathbb{N})$ egy tartomány és t.f.h az $f, g: U \to \mathbb{R}^n$ függvények folytonosak. Ha a φ, ψ utak U-beliek és létezik a $\varphi \lor \psi$ egyesítésük, akkor

$$\int_{\varphi \vee \psi} f = \int_{\varphi} f + \int_{\psi} f$$

3.7. Mondja ki a vonalintegrál utak ellentettjéről szóló állítás!

3.2. Tétel. Legyen $U \subset \mathbb{R}^n$ $(n \in \mathbb{N})$ egy tartomány és t.f.h az $f, g: U \to \mathbb{R}^n$ függvények folytonosak. bármilyen U-beli φ út $\tilde{\varphi}$ ellentettjére

$$\int_{\tilde{\varphi}} f = -\int_{\varphi} f$$

3.8. Adja meg egy f vektormező primitív függvényének fogalmát!

3.3. Definíció. Legyen $U \subset \mathbb{R}^n$ egy tartomány és $f = (f_1, \dots, \varphi_n) : U \to \mathbb{R}^n$ adott vektormező Azt mondjuk, hogy a $F : U \to \mathbb{R}$ függvény a f függvény primitív függvénye ha F differenciálható U-ban, és F' = f azaz ha minden $x \in U$ pontban

$$F'(x) = (\partial_1 F(x), \dots, \partial_n F(x)) = (f_1(x), \dots, f_n(x))$$

3.9. Mondja ki a Newton-Leibniz-tételt!

3.3. Tétel (Newton–Leibniz). Legye $U \subset \mathbb{R}^n$ egy tartomány, és t.f.h. az $f: U \to \mathbb{R}^n$ folytonos függvénynek van primitív függvénye. Ekkor tetszőleges U-ban haladó $\varphi: [a,b] \to U$ szakaszonként sima út esetén a f bármelyik F primitív függvényével

$$\int_{\varphi} f = F(\varphi(b)) - F(\varphi(a))$$

3.10. Igaz-e a következő állítás? "Ha a folytonos $f: U \to \mathbb{R}^n$ függvénynek van primitív függvénye, akkor f vonalintegráltjának értéke nulla tetszőleges U-ban haladó zárt úton" A válaszát indokolja meg!

- 4.1. Mit jelent, hogy egy vonalintegrál független az úttól?
- **4.1. Tétel.** Legyen $U \subset \mathbb{R}^n$ tartomány és $f = (f_1, \dots, f_n) : U \to \mathbb{R}^n$ folytonos függvény.

A vonalintegrál független az úttól. Ez azt jelenti, hogy ha az U-be

$$\varphi: [a,b] \to U \quad \text{\'es} \quad \psi: [c,d] \to U$$

szakaszonként sima utak $\varphi(a) = \psi(c)$ és $\varphi(b) = \psi(d)$ azaz a φ, ψ utak ugyanazt a kezdőpontot és végpontot köti össze U-ban, akkor

$$\int_{\varphi} f = \int_{\psi} f$$

- 4.2. Milyen állításokat ismer, amelyek ekvivalensek azzal, hogy minden vonalintegrál független az úttól?
- **4.2. Tétel.** Legyen $U \subset \mathbb{R}^n$ tartomány és $f = (f_1, \dots, f_n) : U \to \mathbb{R}^n$ folytonos függvény.
 - 1. A f-nek létezik primitív függvénye U-n, vagyis $\exists F: U \to \mathbb{R}$ differenciálható függvény, amelyre minden $x \in U$ pontban

$$F'(x) = (\partial_1 F(x), \dots, \partial_n F(x)) = (f(x), \dots, f_n(x))$$

2. Minden U-ban haladó $\varphi:[a,b]\to U$ U szakaszonként sima zárt (az $\varphi(a)=\varphi(b)$) útra

$$\oint_{\varphi} f = 0$$

- 4.3. Mondja ki a tanult szükséges feltételt primitív függvény létezésére vonatkozóan!
- 4.3. Tétel (Szükséges feltétel primitív függvény létezésére). Legye $U \subset \mathbb{R}^n$ tartomány és $f = (f_1, \ldots, f_n) : U \to \mathbb{R}^n$ deriválható függvény. Ha fnek létezik primitív függvénye U-n, akkor az f' deriváltmátrix szimmetrikus, azaz minden $x \in U$ pontban

$$\partial_i f_j(x) = \partial_j f_i(x) \quad (i, j = 1, 2, \dots, n)$$

4.4. Igaz-e a következő állítás? "Minden $f: \mathbb{R}^2 \to \mathbb{R}^2$ folytonos függvénynek van primitív függvénye." A válaszát indokolja meg!

Nem igaz Például

$$f(x,y) := \left(-\frac{y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right) \quad \left((0,0) \neq (x,y) \in \mathbb{R}^2\right)$$

Ennek a függvénynek $\int_{\varphi} f \neq 0$ Mivel φ zárt út \mathcal{D}_f -ben ezért f-nek nincs primitív függvénye. Az az deriválható még sincs primitív függvénye

- 4.5. Mondja ki a tanult elégséges feltételt primitív függvény létezésére vonatkozóan!
- 4.4. Tétel (Elégséges feltétel primitív függvény létezésére). Tekintsük az $U \subset \mathbb{R}^n$ $(n \in \mathbb{N})$ csillagtartományon értelmezett

 $f = (f_1, \ldots, \varphi_n) : U \to \mathbb{R}^n$ folytonosan deriválható függvényt. T.f.h $\forall x \in U$ esetén az f'(x) deriváltmátrix szimmetrikus, azaz minden $x \in U$ pontban

$$\partial_i f_j(x) = \partial_j f_i(x) \quad (i, j = 1, 2, \dots, n)$$

Ekkor f-nek van primitív függvénye, azaz $\exists F: U \to \mathbb{R}$ differenciálható függvény, hogy $\forall i = 1, \ldots, n$ index esetén $\forall x \in U$ pontban $\partial_i F(x) = f_i(x)$

4.6. Adja meg egy v vektormező divergenciájának fogalmát!

4.1. Definíció. A $v=(v_1,v_2,v_3):D\to\mathbb{R}^3$ $(D\subset\mathbb{R}^3\ tartomány)\ deriválható vektormező v' deriváltmátrixának főátlójában álló elemeinek összegét, azaz a$

$$div \ \mathbf{v} := \partial_1 v_1 + \partial_2 v_2 + \partial_3 v_3 : D \to \mathbb{R}$$

függvényt a v vektormező divergenciájának nevezzük.

4.7. Adja meg egy v vektormező rotációjának fogalmát!

4.2. Definíció. $A \ v = (v_1, v_2, v_3) : D \to \mathbb{R}^3 \ (D \subset \mathbb{R}^3 \ tartomány) \ deriválható vektormező$ **rotációjának**a

rot
$$\mathbf{v} := [\partial_2 V_3 - \partial_3 V_2 \ \partial_3 V_1 - \partial_1 V_3 \ \partial_1 V_2 - \partial_2 V_1]$$

függvényt nevezzük.

4.8. Mondja ki a Green-tételt!

4.5. Tétel (Green-tétel). $T.f.h \ \varphi : [0,1] \to \mathbb{R}^2$ pozitív irányítású, szakaszonként sima, egyszerű, zárt görbe, és $S \subset \mathbb{R}^2$ az általa határolt síkrész. Legye $f \in \mathbb{R}^2 \to \mathbb{R}^2, S \subset \mathcal{D}_f$ folytonosan differenciálható függvény. Ekkor

$$\int_{\partial S} f = \iint_{s} (\partial_1 f_2 - \partial_2 f_1)$$

ahol ∂S az S határát jelöli és φ a ∂S egy paraméterezése.

- 5. week
- 5.1. Mit nevezünk explicit elsőrendű közönséges differenciálegyenletnek? Fogalmazza meg pontosan, hogy milyen feladatot oldunk meg ebben az esetben!

5.1. Definíció. Feladat

Adott:

- $D \subset \mathbb{R}^2 \ tartom\acute{a}ny$
- $f: D \to \mathbb{R}$ folytonos függvény

<u>Keresünk</u> olyan $I \subset R$ nyílt intervallumot és $\varphi : I \to R$ deriválható függvényt, amelyre igazak a következő állítások:

$$(x, \varphi(x)) \in D \quad (\forall x \in I)$$

 $\varphi'(x) = f(x, \varphi(x)) \quad (\forall x \in I)$

Ezt a feladatot explicit elsőrendű közönséges differenciálegyenletnek fogjuk nevezni.

- 5.2. Mit nevezünk az explicit elsőrendű közönséges differenciálegyenletre vonatkozó kezdetiérték problémának? Fogalmazza meg pontosan, hogy milyen feladatot oldunk meg ebben az esetben!
- **5.2. Definíció.** Tekintsük az $y' = f \circ (id, y)$ differenciálegyenletet, ahol $f: D \to \mathbb{R}$ ($D \subset \mathbb{R}^2$ tartomány) folytonos függvény. Legyen $(\tau, \xi) \in D$ egy tetszőleges pont. Keressünk olyan $I \subset \mathbb{R}$ nyílt intervallumot és $\varphi: I \to R$ függvényt, amelyre a következők teljesülnek:
 - φ az $y' = f \circ (id, y)$ d.e. megoldása I-n
 - $\tau \in I$
 - $\varphi(\tau) = \xi$

Ezt a feladatot kezdetiérték-problémának nevezzük.

- 5.3. Mit állít a Cauchy Peano-féle egzisztenciatétel?
- **5.1. Tétel (A Cauchy–Peano-féle egzisztenciatétel).** $T.f.h \ a \ D \subset \mathbb{R}^2$ $tartományon értelmezett <math>f: D \to \mathbb{R}$ függvény folytonos. Ekkor bármely $(\tau, \xi) \in D$ esetén az

$$y' = f \circ (id, y)$$
 $y(\tau) = \xi$

kezdetiérték-problémának van megoldása.

- 5.4. Mit jelent, hogy egy kezdetiérték-probléma globálisan egyértelműen oldható meg?
- 5.3. Definíció. $Az\ y'=f\circ (id,y)\,,\ y(\tau)=\xi\ k.\acute{e}.p\ globálisan\ egyértelmű-en\ oldható\ meg,\ ha\ létezik\ olyan\ \widetilde{I}\subset\mathbb{R}\ nyílt\ intervallum\ és\ olyan\ \widetilde{\varphi}:\widetilde{I}\to\mathbb{R}$ megoldása a k.é.p.-nak, hogy annak bármely más megoldása $\widetilde{\varphi}$ egy leszűkítése. Ebben az esetben a $\widetilde{\varphi}$ függvényt a k.é.p. teljes megoldásának nevezzük.
- **5.2. Tétel.** $Az\ y' = f \circ (id,y),\ y(\tau) = \xi\ k.\acute{e}.p\ globálisan\ egyértelműen\ oldható\ meg,\ akkor\ \acute{e}s\ csak\ akkor\ ha\ a\ k.\acute{e}.p\ bármely\ \varphi,\psi\ megoldására\ a$

$$\varphi(x) = \psi(x) \quad (x \in \mathcal{D}_{\varphi} \cap \mathcal{D}_{\psi})$$

egyenlőség teljesül.

- 5.5. Mit jelent, hogy egy kezdetiérték-probléma lokálisan egyértelműen oldható meg?
- **5.4.** Definíció. $Az \ y' = f \circ (id, y) \ , \ y(\tau) = \xi \ k. \'e.p lokálisan egyértelműen oldható meg, vagy a megoldása lokálisan egyértelmű, ha a <math>(\tau, \xi)$ pontnak létezik olyan $K(\tau, \xi) \subset \mathbb{R} \times \mathbb{R}$ környezete, hogy az f függvényt erre leszűkítve a megfelelő k. 'e.p. már globálisan egyértelműen oldható meg.
- 5.6. Mondja ki a kezdetiérték-problémák globálisan és lokálisan egyértelmű megoldhatóságának a kapcsolatáról szóló tétel!
- **5.3. Tétel.** $Az\ y'=f\circ (id,y)\,,\ y(\tau)=\xi\ k.\acute{e}.p\ minden\ (\tau,\xi)\in D\ eset\'en\ lokálisan\ egyértelműen\ oldható\ meg\ akkor\ minden\ k.\acute{e}.p.\ megoldása\ globálisan\ is\ egyértelmű.$

5.7. Mit nevezünk szétválasztható változójú differenciálegyenletnek? Fogalmazza meg pontosan, hogy milyen feladatot oldunk meg ebben az esetben!

5.5. Definíció. Feladat

Adott:

- $I, J \subset \mathbb{R}$ nyı́lt intervallum
- $g: I \to \mathbb{R}$ és $h: J \to \mathbb{R}$ folytonos függvények

<u>Keresünk</u> olyan $I_1 \subset I$ nyílt intervallumot és $\varphi: I_1 \to J$ függvényt, amelyre:

$$\varphi'(x) = g(x) \cdot h(\varphi(x)) \quad (\forall x \in I_1)$$

Ezt a feladatot szétválasztható változójú d.e.-nek nevezzük

5.8. Mit tud mondani a szétválasztható változójú differenciálegyenletre vonatkozó kezdetiérték problémák megoldhatóságát illetően?

- 6.1. Mit nevezünk egzakt differenciálegyenletnek? Fogalmazza meg pontosan, hogy milyen feladatot oldunk meg ebben az esetben!
- **6.1. Definíció.** Legyen adott $H \subset \mathbb{R}^2$ tartomány és a $g, h : H \to \mathbb{R}$ folytonos függvények. Tegyük fel még azt is, hogy $0 \notin \mathcal{R}_h$. Keresünk olyan $\varphi : \mathbb{R} \to \mathbb{R}$ differenciálható függvényt amelyre \mathcal{D}_{φ} nyílt intervallum $(x, \varphi(x)) \in H$ és:

$$\varphi'(x) = -\frac{g(x, (\varphi(x)))}{h(x, \varphi(x))} \quad (x \in \mathcal{D}_{\varphi})$$

Ezt a feladatot egzakt differenciálegyenletnek nevezzük, ha az

$$\mathbb{R}^2 \supset H \ni (u, v) \mapsto (g(u, v), h(u, v)) \in \mathbb{R}^2$$

függvénynek van primitív függvénye, azaz létezik olyan $F: H \to \mathbb{R}$ differenciálható függvény, amelyre az igaz, hogy

$$grad F = (\partial_1 F, \partial_2 F) = (g, h)$$

- 6.2. Milyen tételt ismer az egzaktság eldöntésére?
- **6.1. Tétel (Az egzaktság eldöntése.).** Legye $H \subset \mathbb{R}^2$ csillagtartomány (pl. konvex halmaz). T.f.h. $g,h \in C^1(H,\mathbb{R})$ valamint $0 \notin \mathcal{R}_h$ Ekkor a

$$\frac{dy}{dx} = \frac{g(x,y)}{h(x,y)} \quad ((x,y) \in H)$$

d.e. pontosan akkor egzakt d.e., ha

$$\partial_2 g(u,v) = \partial_1 h(u,v) \quad (\forall (u,v) \in H)$$

- 6.3. Mit tud mondani az egzakt differenciálegyenletre vonatkozó kezdeti érték-probléma megoldhatóságáról és megoldása előállításáról?
- **6.2. Tétel (Az egzakt d.e. megoldásainak előállítása.).** Legyen $H \subset \mathbb{R}^2$ egy tetszőleges tartomány. T.f.h. $g,h \in C(H,\mathbb{R})$ és $0 \notin \mathcal{R}_h$. Ekkor minden $(\tau,\varepsilon) \in H$ esetén a

$$\frac{dy}{dx} = -\frac{g(x,y)}{h(x,y)} \quad ((x,y) \in H) \quad y(\tau) = \varepsilon$$

kezdetiérték-probléma globálisan egyértelműen oldható meg. Ha $F: H \to \mathbb{R}$ jelöli a $(g,h): H \to \mathbb{R}^2$ függvény egy primitív függvényét, akkor a (τ,ε) ponton átmenő $\tilde{\varphi}$ teljes megoldásra az

$$F(x, \tilde{\varphi}(x)) = F(\tau, \varepsilon) \quad (x \in CD_{\tilde{\varphi}})$$

implicit egyenlet teljesül.

6.4. Mit nevezünk integráló tényezőnek?

Előfordulhat hogy a

$$g(x,y)dx + h(x,y)dy = 0$$

d.e. nem egzakt, de egzakt
tá tehető, vagyis az egyenlet egzakt lesz, ha megszorozzuk egy alkalmas pl
. pozitív $\mu \in \mathbb{R}^2 \to \mathbb{R}$ függvénnyel, amelyet integráló tényezőnek vagy multiplikátornak szokás nevezni

- 6.5. Mit nevezünk elsőrendű lineáris differenciálegyenletnek? Fogalmazza meg pontosan,hogy milyen feladatot oldunk meg ebben az esetben!
- **6.2. Definíció.** Legyen $I \subset \mathbb{R}$ nyílt intervallum, és t.f.h. $f,g:I \to \mathbb{R}$ folytonos függvények. Az

$$y'(x) + f(x) \cdot y(x) = g(x)$$
 $(x \in I)$ vagy $y' + f \cdot y = g$

feladatot elsőrendű lineáris d.e.-nek nevezzük.

- 6.6. Milyen alakban írható fel egy elsőrendű inhomogén lineáris differenciálegyenlet általános megoldása bizonyos homogén-inhomogén megoldások ismeretében?
- 6.7. Mit nevezünk Bernoulli-féle differenciálegyenletnek? Fogalmazza meg pontosan, hogy milyen feladatot oldunk meg ebben az esetben!
- **6.3. Definíció.** Legyen $I \in \mathbb{R}$ nyílt intervallum. T.f.h. $f, g \in C(I, \mathbb{R})$ és $\alpha \in \mathbb{R} \setminus \{0, 1\}$ Ekkor az:

$$y' + f \cdot y = g \cdot y^{\alpha} \quad (y > 0)$$

feladatot Bernoulli-féle d.e.-nek nevezzük.

- 6.8. Írja fel az explicit elsőrendű közönséges differenciálegyenletre vonatkozó kezdetiérték-problémát integrálegyenlet alakjában!
- 6.9. Mit állít a Picard Lindelöf-féle egzisztencia- és unicitástétel?
- **6.3. Tétel.** Legyen $n \in \mathbb{N}$, $D \subset \mathbb{R} \times \mathbb{R}^n$ egy tartomány és $(\tau, \varepsilon) \in D$ teszőleges. Tegyük fel, hogy
 - 1. $az f: D \to \mathbb{R}^n$ függvény folytonos D-n,
 - 2. az f függvény a (τ, ε) pontban a második változójában lokális Lipschitzfeltételnek tesz eleget, azaz

$$\exists K(\tau, \varepsilon) \subset D \subset \mathbb{R} \times \mathbb{R}^n \text{ \'es } \exists L := L_{(\tau, \varepsilon)} > 0 \text{ hogy}$$
$$||f(x, u) - f(x, v)|| \le L||u - v|| \quad ((x, u), (x, v) \in K(\tau, \varepsilon))$$

Ekkor az $y' = f \circ (id, y), \ y(\tau) = \varepsilon \ kezdetiérték-problémának létezik megoldása,$ és az lokálisan (következésképpen globálisan is) egyértelmű.

- 6.10. Mit jelent, hogy az explicit elsőrendű közönséges differenciálegyenletre vonatkozó kezdetiérték-problémának egy megoldása határtól határig halad egy tartományban!
- **6.4. Definíció.** Legyen $f: D \to \mathbb{R}^n$, ahol $D \subset \mathbb{R} \times \mathbb{R}^n$. Azt mondjuk, hogy az $y' = f \circ (id, y) \ y(\tau) = \varepsilon \ k. é.p. \ \varphi \ megoldása \ D$ -ben határtól határig halad, ha D bármely K kompakt részhalmazához vannak olyan $x_1, x_2 \in \mathcal{D}_{\varphi}, x_1 < \tau < x_2$ pontok amellyel

$$(x_1, \varphi(x_1)) \notin K$$
 és $(x_2, \varphi(x_2)) \notin K$

- 7.1. Mit nevezünk elsőrendű lineáris differenciálegyenletrendszernek? Fogalmazza meg pontosan, hogy milyen feladatot oldunk meg ebben az esetben!
- 7.1. Definíció. Legyen $n \in \mathbb{N}, I \subset \mathbb{R}$ nyílt intervallum, és t.f.h. az

$$A: I \to \mathbb{R}^{n \times n}$$
 és $a \quad b: I \to \mathbb{R}^n$

adott folytonos függvények. Ekkor az

$$y'(x) = A(x) \cdot y(x) + b(x)$$
 $(x \in I)$ $vagy$ $y' = A \cdot y + b$

 $feladatot\ elsőrendű\ lineáris\ differenciálegyenlet-rendszernek\ (röviden\ lineáris\ d.e.r.)\ nevezzük.$

- 7.2. Mit tudunk mondani egy elsőrendű lineáris differenciálegyenletrendszerre vonatkozó kezdetiérték-probléma megoldhatóságáról?
- **7.1. Tétel.** Az (LKEP) k.é.p. minden $\tau \in I$ és $\varepsilon \in \mathbb{R}^n$ esetén globálisan egyértelműen oldható meg, és a teljes megoldás értelmezési tartománya az egész I intervallum.
- 7.3. Mit nevezünk alaprendszernek elsőrendű lineáris differenciálegyenle rendszerek esetén?
- 7.2. Tétel. $Az \mathcal{M}_h$ lineáris térnek egy

$$\varphi^{(k)} = \left(\varphi_1^{(k)}, \varphi_2^{(k)}, \dots, \varphi_n^{(k)}\right) \quad (k = 1, 2, \dots, n)$$

bázisát az $y' = A \cdot y$ homogén d.e.r. egy alaprendszerének nevezzük

7.4. Mit nevezünk alapmátrixnak elsőrendű lineáris differenciálegyenletrendszerek esetén?

7.3. Tétel. Az \mathcal{M}_h lineáris térnek az alaprendszereiből mint oszlopvektorokból képzett

$$\Phi := \left[\varphi^{(1)} \ \varphi^{(2)} \ \dots \ \varphi^{(n)} \right] = \begin{bmatrix} \varphi_1^{(1)} & \varphi_1^{(2)} & \dots & \varphi_1^{(n)} \\ \varphi_1^{(2)} & \varphi_2^{(2)} & \dots & \varphi_2^{(n)} \\ \vdots & \vdots & \vdots & \vdots \\ \varphi_n^{(1)} & \varphi_n^{(2)} & \dots & \varphi_n^{(n)} \end{bmatrix}$$

mátrixfüggvényt az egyenlet egy alapmátrixának nevezzük

7.5. Mit nevezünk egy megoldásrendszer Wronski-féle determinánsának elsőrendű lineáris differenciálegyenletrendszerek esetén?

7.4. Tétel. Az \mathcal{M}_h lineáris térnek és ahol Φ az $y' = A \cdot y$ homogén lineáris d.e.r. egy alapmátrixa

$$W(x) := \det \Phi(x) \quad (x \in I)$$

képlettel definiált W függvény a megoldásrendszer Wronski-féle determinánsa.

7.6. Milyen jellegzetes tulajdonsága van egy alaprendszer Wronski-féle determinánsának?

Nagyon nem vagyok ebben biztos:

7.5. Tétel. Legyen $\varphi^{(1)}, \varphi^{(2)}, \ldots, \varphi^{(n)}$ az $y' = A \cdot y$ homogén d.e.r. egy alaprendszere és Φ egy alapmátrixa. Ekkor a $\Phi: I \to \mathbb{R}^{n \times n}$ mátrixfüggvény a homogén egyenletnek akkor és csak akkor alapmátrixa, ha valamilyen $x_0 \in I$ esetén

$$W(x_0) := \det \Phi(x_0) \neq 0$$

7.7. Milyen alakban írható fel egy elsőrendű inhomogén lineáris differenciálegyenlet-rendszer általános megoldása bizonyos homogén-inhomogén megoldások ismeretében?

7.6. Tétel. Legyen ψ_p az (IH) d.e.r egy ismert (ún. partikuláris) megoldása. Ekkor

$$\mathcal{M}_i h = \mathcal{M}_h + \psi_p := \{ \varphi + \psi_p | \varphi \in \mathcal{M}_h \}$$

Az inhomogén lineáris d.e.r. általános megoldása:

$$\psi(x) = \Phi(x) \cdot c + \psi_p(x) \quad (x \in I)$$

alakú ahol Φ az $y' = A \cdot y$ homogén lineáris d.e.r. egy alapmátrixa és $c \in \mathbb{R}^{n \times 1}$ tetszőleges oszlopvektor

7.8. Tegyük fel, hogy az elsőrendű állandó együtthatós lineáris differenciálegyenlet-rendszer együtthatókból álló $A \in \mathbb{R}^{n \times n}$ mátrixnak van n számú különböző valós sajátértéke. Hogyan állíthatjuk elő egy alaprendszert ebben az esetben?

Ilvenkor egy alaprendszere:

$$\varphi^{i}(x) = e^{\lambda_{i}x} \cdot s^{(i)} \quad (x \in \mathbb{R}, i = 1, 2, \dots, n)$$