# Pseudo one-sided rectangular duals

By Sander Beekhuis

#### Structure

# Problem Results Conjecture

# Rectangular layout

#### Rectangular layout L

Partition of a rectangle into finitely many interior disjoint rectangles



 Layouts are equivalent when they have the same adjacencies with the same orientation (horizontal/vertical)

#### **Rectangular Cartograms**

visualize statistical data about sets of regions; regions are rectangles; area proportional to some geographic variable



#### **Rectangular Cartograms**

introduced by Raisz in 1934







#### Area-universal layout L

For every assignment of sizes to the areas of L there is a equivalent layout realizing these sizes



#### Area-universal layout L

For every assignment of sizes to the areas of L there is a equivalent layout realizing these sizes





#### Area-universal layout L

For every assignment of sizes to the areas of L there is a equivalent layout realizing these sizes







#### Area-universal layout L

For every assignment of sizes to the areas of L there is a equivalent layout realizing these sizes







#### Uses

Animations; layout first – function later

#### One-sided

#### One-sided layout L

Every maximal line segment in L is the side of a rectangle



#### One-sided

#### One-sided layout L

Every maximal line segment in L is the side of a rectangle



#### One-sided

#### One-sided layout L

Every maximal line segment in L is the side of a rectangle



# Comparison

**Area-Universal** 

The same layout fits any area assignment

One-sided

Every maximal segment is the side of a rectangle

These are equivalent [Eppstein et al., 2012]

Not all graphs have an area-universal/one-sided dual [Rinsma, 1987]

# Rectangular dual

#### Rectangular dual of a graph G

- Rectangular layout
- Same adjacencies as G



# Rectangular dual

#### [Kozminski & Kinnen '85]

A planar graph G has a rectangular dual with 4 rectangles on the boundary if and only if

- every interior face is a triangle and the exterior face is a quadrangle
- G has no separating triangles



# Extended Graph

- Bring other graphs in this form
- Do this by adding 4 vertices (poles)



Without creating a separating triangle

A extended graph corresponds to a certain corner assignment





# Extended Graphs do not fix layout







# Regular edge labeling

- Oriented coloring of the extended graph
- Exterior vertex condition
- Interior vertex condition



# Regular edge labeling

- Corresponds to a equivalence class of layouts
  - Red: Vertical adjacency
  - Blue: Horizontal adjacency



# Properties of a REL

- Two acyclic flows
  - Inside a cycle there is another cycle
- No mono-colored triangles



# Separating k-cycle

 A separating k-cycle is a cycle whose removal disconnects the graph



A separating 4-cycle

# Properties of a REL

Interior of a separating 4-cycle

The color and orientation of a single interior edge adjacent to a cycle vertex determines the color and orientation of all edges adjacent to a cycle vertex





# Not all graphs are one-sided

- We can show this by enumerating all possible REL's
- In the results section we will show for some graphs that they are not one-sided



#### So what can we do?

 We will call our dual k-sided if every maximal segment is the boundary of at most k adjacent rectangles all on the same side of the line



• Do graphs without an one-sided dual admit a k-sided dual for some k? (hopefully small)

#### So what can we do?

 We will call our dual k-sided if every maximal segment is the boundary of at most k adjacent rectangles all on the same side of the line



 Do graphs without an one-sided dual admit a ksided dual for some k? (hopefully small)

#### What does k-sided look like in the REL?

 Red and blue faces with one of the two paths having at most k+1 vertices



#### Structure

Problem
Results
Conjecture

#### Fixing a extended graph

- We can consider a single extended graph of G, E(G) = G'...
   by considering rectangular duals of G'
- Because then there is only one choice for E(G')



Note that this uses a separating 4-cycle







• 4-cycles ...







#### ∞-sided graphs with 4-cycles

Any extended graph with separating 4 cycles can be  $\infty$ -sided, even if all these cycles go trough a pole.



### ∞-sided graphs with 4-cycles

• 4-cycles ...

• Problem!

color inside

Any extended graph with separating 4 cycles can be  $\infty$ -sided, even if all these cycles go trough a pole.



### ∞-sided graphs with 4-cycles

• 4-cycles ...

• Problem!

color inside

Any extended graph with separating 4 cycles can be  $\infty$ -sided, even if all these cycles go trough a pole.



#### Structure

Problem
Results
Conjecture

### Conjecture

 What about extended graphs without any separating 4-cycle?

Maybe they are all 2-sided!

 The lack of 4-cycles gives a lot of freedom in most cases

But sometimes we can restrict this quite a lot

• Graph

• Graph



• Graph

• Suppose blue



• Graph

Suppose blue











Graph

Suppose blue

•••

Incoming red

•••

Contradiction

 Repeat this argument



Graph

Suppose blue

•••

Incoming red

•••

Contradiction

 Repeat this argument



Graph

Suppose blue

• • •

Incoming red

•••

Contradiction

- Repeat this argument
- Color change at corner



Graph

Suppose blue

•••

Incoming red

•••

Contradiction

- Repeat this argument
- Color change at corner



Graph

Suppose blue ...
 Incoming red ...
 Contradiction

- Repeat this argument
- Color change at corner
- Interior vertex condition



Graph

Suppose blue ...
 Incoming red ...
 Contradiction

- Repeat this argument
- Color change at corner
- Interior vertex condition



- Graph
- Suppose blue ...
   Incoming red ...
   Contradiction
- Repeat this argument
- Color change at corner
- Interior vertex condition
- Problem ...



- Graph
- Suppose blue ...
   Incoming red ...
   Contradiction
- Repeat this argument
- Color change at corner
- Interior vertex condition
- Problem ...



- Graph
- Suppose blue ...Incoming red ...Contradiction
- Repeat this argument
- Color change at corner
- Interior vertex condition
- Problem ...Solution!



- Graph
- Suppose blue ...
   Incoming red ...
   Contradiction
- Repeat this argument
- Color change at corner
- Interior vertex condition
- Problem ...Solution!



#### Conclusion

- A graph has multiple extended graphs E(G)
  - If E(G) has a separating 3-cycle this corner assignment has no dual
  - If E(G) has a separating 4-cycle this corner assignment gives a rectangular dual of G. But it may be ∞-sided
  - If E(G) has neither we hopefully show that it is 2-sided
- Current approach is with a constricting sweepcycle
  - Has to do quite specific things, see previous example.

Questions?