Operadores de cruce y reemplazo de individuos Computación evolutiva

7 de octubre de 2015

David Atienza Guillermo Delgado Javier López Rubén Martín Álvaro Muñoz Gustavo Puig

Departamento de Inteligencia Artificial

Índice

Algoritmos genéticos

Operadores de cruce con alfabeto finito

Operadores de cruce con codificación real

Reemplazo de individuos

Algoritmos genéticos Funcionamiento general

- ► Operador cruce:
 - ► Obtener descendientes a partir de los padres
 - ► Los nuevos individuos tienen parte del genotipo de los padres
 - ► Diferentes métodos entre alfabeto finito y codificación real
- Operador reemplazo:
 - Reemplazar individuos de la antigua población por los nuevos individuos

Exploración y explotación

OBJETIVO: Todo algoritmo genético necesita establecer un equilibrio entre dos factores aparentemente opuestos:

- ► Exploración:
 - ▶ Diversidad de soluciones
 - Explorar todo el espacio de soluciones para localizar zonas prometedoras
 - Evitar óptimos locales
- ► Explotación:
 - ► Convergencia de soluciones
 - Centrar la búsqueda en regiones exploradas para mejorar las soluciones encontradas
 - Evitar la búsqueda aleatoria

Exploración y explotación

Exploración y explotación

Existen diversas formas de variar la exploración y la explotación:

- ► Operador mutación: Aumenta la exploración.
- Operador selección: Elegir a los mas aptos aumenta la explotación
- Operador cruce: Descendientes con genotipo similar a los padres aumenta la explotación
- Reemplazo: Eliminar a los individuos menos adaptados aumenta la explotación.

Operadores de cruce con alfabeto finito I Conceptos básicos

► Los puntos de la función a optimizar utilizan un alfabeto finito:

$$A = \{0, 1, ..., m\}$$

Los individuos de la población son los puntos del espacio de búsqueda :

$$c_1, c_2, ..., c_l \quad \forall c_k \in A, k \in \{1, 2, ..., l\}$$

► Individuos seleccionadas de la población (con probabilidad p_c):
Individuos progenitores o padres

Individuos generados por el operador:

Individuos descendientes

Operadores de cruce con alfabeto finito II

Operador de cruce ordinario U operador basado en un punto

► Padres:

▶ Lugar de cruce $k \in [1, 5]$:

010 10
$$k = 3$$

▶ Descendientes:

Operadores de cruce con alfabeto finito III

Operador de cruce basado en dos puntos

► Padres:

▶ Lugares de cruce $k, k' \in [1, 5]$:

► Descendientes:

Operadores de cruce con alfabeto finito IV

Operador de cruce uniforme

► Padres:

Máscara de cruce aleatoria:

$$m = 01001$$

- ▶ ¿Cómo aplicar la máscara?
 - ► Descendiente 1:

$$a_i$$
 si m_i es 0, b_i si m_i es 1

► Descendiente 2:

$$a_i$$
 si m_i es 1, b_i si m_i es 0

▶ Descendientes:

Operadores de cruce con alfabeto finito V

Operador de cruce generalizado

- ▶ Se trabaja con cadenas binarias $S = \{0, 1\}^{I}$.
- ► Existe una función biyectiva para transformar las cadenas:

$$g: S \to \{0, 1, ..., 2^l - 1\}$$

► Descendiente 1:

$$a' \in g^{-1}([g(a \wedge b), g(a \vee b)])$$

► Descendiente 2:

$$b' \in g^{-1}(g(a) + g(b) - g(a')$$

Operadores de cruce con alfabeto finito VI

Reflexiones

- ▶ ¿Qué ocurre con el ordenamiento de los genes?
- ► ¿Y si los padres tienen el mismo gen?
- ¿Puede llegar a ocurrir que se convierta en una búsqueda aleatoria?
- ¿Equilibrio entre exploración y explotación?
- ¿Son capaces todos los operadores de encontrar cualquier solución?
- ► ¿Todos los operadores funcionan de forma similar?

¿Que ocurre si usamos un método de cruce de los explicados anteriormente?

- ► Supongamos que tenemos lo siguiente:
 - ► $a = a_1, a_2, ..., a_l \text{ y } b = b_1, b_2, ..., b_l$ $a_i, b_i \in \mathbb{R}, \forall i \in \{1, ..., l\}$
- ► lo cruzamos y obtenemos:
 - ► $c = c_1, c_2, ..., c_l$ $c_i \in \{a_1, ..., a_l, b_1, ..., b_l\}, \forall i \in \{1, ..., l\}$

3	8	5
6	2	2

Operador de cruce plano (BLX)

- ► A partir de 2 progenitores generamos 2 descendientes
- ▶ Utiliza un intervalo de números reales (intervalo de cruce)
- ► Se escoge un valor aleatorio dentro del intervalo

$$a = a_1, a_2, ..., a_l$$

 $b = b_1, b_2, ..., b_l$

$$c = c_1, c_2, ..., c_l$$

 $d = d_1, d_2, ..., d_l$

$$C_i = [min(a_i, b_i), max(a_i, b_i)]$$

Operador de cruce lineal

- ► A partir de 2 progenitores generamos 3 descendientes
- ► Se escoge en el primer caso el valor intermedio del intervalo
- Los otros individuos se escogen fuera del intervalo de los progenitores, concretamente se alejan la misma distancia que la que hay al centro

$$a = a_1, a_2, ..., a_l$$

 $b = b_1, b_2, ..., b_l$
 $c = c_1, c_2, ..., c_l$
 $d = d_1, d_2, ..., d_l$
 $e = e_1, e_2, ..., e_l$
 $c_i = \frac{a_i + b_i}{2}$
 $d_i = 1, 5 \cdot a_i - 0, 5 \cdot b_i$

 $e_i = -0.5 \cdot a_i + 1.5 \cdot b_i$

Operador de cruce combinado (BLX-a)

- ► A partir de 2 progenitores generamos 2 descendientes
- ► Se escoge un valor aleatorio dentro del intervalo de cruce
- ▶ Generamos un intervalo que puede ser mas grande que el intervalo de los progenitores dado por α

$$a = a_1, a_2, ..., a_l$$

 $b = b_1, b_2, ..., b_l$

$$c = c_1, c_2, ..., c_l$$

 $d = d_1, d_2, ..., d_l$

$$C_i = [a_i - \alpha I, b_i - \alpha I]$$

Operador de cruce morfológico (MMX)

- A partir de un número n impar de progenitores obtenemos dos descendientes
- Se genera un intervalo de cruce que depende de la diversidad genética
- Los descendientes se generan eligiendo números aleatorios dentro del intervalo de cruce
- ▶ Se normaliza el dominio

Operador de cruce morfológico (MMX)

- ► Se ejecutan los siguientes pasos:
 - 1. Cálculo de la medida de la diversidad genética
 - 2. Cálculo de los intervalos de cruce
 - Obtención de la descendencia.

Operador de cruce morfológico Medida de la Diversidad Genética

Definición: anális de la tendencia de la evolución genenética para deducir dinámicamente que técnicas evolutivas aplicar.

- ► Técnicas:
 - 1. Explotación.
 - 2. Exploración.

OBJETIVO: dado un subconjunto de una población de λ individuos, estudiar cuán grande es la variedad genética con respecto al individuo con <u>características medias</u>.

¿CÓMO SE ANALIZA? Utilizando Morfología Matemática aplicada a imágenes binarias — Gradiente Morfológico.

Operador de cruce morfológico Medida de la Diversidad Genética

CONCEPTO DE GRADIENTE:

MORFOLOGÍA MATEMÁTICA SOBRE IMÁGENES:

- ► MORFOLOGÍA → MORFOS → forma.
- ► VISION ARTIFICIAL → Gradiente Morfológico
 - → segmentación de imágenes para obtención de formas.

Original

Grad. Morfológico

Operador de cruce morfológico

Medida de la Diversidad Genética

MATEMÁTICAMENTE SOBRE UNA IMAGEN BIDIMENSIONAL:

Ingeniería inversa: $g_m(f) = dilatation(f) - erotion(f)$

▶ DILATACIÓN: $(f \bigoplus b)(s,t) = \max\{f(s-x,t-y) + b(x,y) : (s-x,t-y) \in D_f; (x,y) \in D_b\}$

➤ Si nuestro objetivo es obtener la máxima variación, el estructurante debe ser nulo para no limitar la dilatación:

Operador de cruce morfológico

Medida de la Diversidad Genética

PARA EL CASO DE LA EROSIÓN:

► $(f \ominus b)(s,t) = \max\{f(s+x,t+y) - b(x,y) : (s+x,t+y) \in D_f; (x,y) \in D_b\}$

➤ Si nuestro objetivo es obtener la máxima variación, el estructurante debe ser nulo para no limitar la erosión:

Operador de cruce morfológico Medida de la Diversidad Genética

EXTRAPOLANDO A NUESTRO CASO:

$$G[matrizprogenitora] = \begin{pmatrix} a_{0,0} & a_{0,1} & \dots & a_{0,l-1} \\ a_{1,0} & a_{1,1} & \dots & a_{1,l-1} \\ a_{2,0} & a_{2,1} & \dots & a_{2,l-1} \\ a_{3,0} & a_{3,1} & \dots & a_{3,l-1} \\ \vdots & \vdots & \dots & \vdots \\ a_{n,0} & a_{n,1} & \dots & a_{n,l-1} \end{pmatrix}$$

donde n $(n \le \lambda)$ es el N. de progenitores y l la longitud de cada cromosoma.

► Maximizar información → analizar la evolución de los genes en particular (y no los cromosomas/individuos en general).

$$f_0 = (a_{0,0}, a_{1,0}a_{2,0}a_{3,0} \dots a_{n-1,0})$$

Operador de cruce morfológico Medida de la Diversidad Genética

POLITÉCNICA 26

CASO PARTICULAR:

► Si tomamos n = 5 con cardinal [1,6]; $f_0 = (6, 2, 4, 1, 3, 5)$.

Nuestro interés es averiguar la desviación con respecto el gen que ocupa la posición media.

Teniendo en cuenta que nuestro <u>elemento estructurante</u> es <u>nulo</u> no ofrece restricciones a la dilatación.

- ► El valor máximo dilatado que podemos obtener será 6.
- ► Del mismo modo, la menor de las erosiones de nuestra muestra será el menor de todos los valores: 1.

CONCLUSIÓN: $g_m(f_i) = max(f_i) - min(f_i)$.

ANÁLISIS DE RESULTADOS:

Si $g_m(f_i)$ es muy elevado:

- Los genes de en la posición i de nuestro progenitores toman valores dispersos → nuestra población sobreexplora el espacio de búsqueda.
- ▶ Debemos aplicar cruces que fomenten la explotación → los genes (i) de sus hijos deben tomar valores más centrados en la media de la imagen.

Si $g_m(f_i)$ es muy pequeño:

- ► Los genes de en la posición i de nuestro progenitores toman valores cercanos → nuestra población sobreexplota el espacio de búsqueda.
- ▶ Debemos aplicar cruces que fomenten la exploración → los genes (i) de sus hijos deben tomar valores más separados de la media de la imagen.

Cálculo intervalos de cruce

- ▶ Buscamos los intervalos Ci
- ▶ Estos intervalos dependerán de una función $\varphi : \mathbb{R} \to \mathbb{R}$ denominada función de exploración/explotación.
- ► Sean g_{imax} gen máximo y g_{imin} gen mínimo:

$$g_{imax} = \underbrace{(f_i \oplus b)(E(n/2) + 1)}_{Dilatacinf_i enel puntomedio} -\varphi(g_i) = mx(f_i) - \varphi(g_i)$$

•
$$g_{lmin} = \underbrace{(f_i \ominus b)(E(n/2) + 1)}_{Erosinfi-enellountomedio} + \varphi(g_i) = mn(f_i) + \varphi(g_i)$$

▶ Definiremos los intervalos de cruce: $C_i = [g_{imin}, g_{imax}]$ con i=0,...,l-1.

Cálculo intevalos de cruce

La función de exploración/explotación,FEE,es crucial en la determinación de los intervalos.

- ▶ Si $\varphi(g_i) = 0, \forall g_i$ entonces:
 - ► Los intervalos de cruce serán de la forma C_i = [mn(f_i), mx(f_i)](intervalo definido por los padres o intervalo de referencia).
 - Genera únicamente individuos pertenecientes al intervalo de cruce definido por los padres.
 - ► Aplica únicamente técnicas de explotación →convergencia prematura.
- ► La FEE al depender de *g_i* nos permite establecer una regla que distinga si debemos optar por la exploración o la explotación.

Cálculo intervalos de cruce

Estudio casos:

- ► Si los valores que toma un determinado gen son muy similares(convergencia hacia un punto):
 - ▶ g_i estará próximo a 0.
 - La FEE deberá permitir la expansión del intervalo para evitar la convergencia a un punto que no sea el óptimo(exploración).
 - $\varphi(g_i)$ deberá tomar valores negativos para expandir el intervalo.
- Si los valores son muy distintos(dispersión de la población en el espacio de búsqueda):
 - ▶ g_i estará próximo a 1.
 - La FEE deberá permitir la expansión del intervalo para evitar la convergencia a un punto que no sea el óptimo(exploración).
 - $\varphi(g_i)$ deberá tomar valores positivos para estrechar el intervalo.

Convergencia con codificación binaria

Cálculo intervalos de cruce

Resumen de las condiciones que debe cumplir $\varphi(g_i)$:

- ► 1- Debe proporcionar valores positivos para valores elevados de g_i y negativos para valores próximos a 0.
- ► 2- Coste computacional bajo.
- ▶ 3- El dominio debe ser el intervalo real [0,1]
- ▶ 4- Se debe cumplir que $g_{imin} \leq g_{imax}$
- ▶ 5- $\varphi(g_i) \neq 0$

- ▶ Una vez conocidos los intervalos de cruce C_i de cada gen, podemos calcular nuevos individuos.
- ► Crearemos dos individuos, $o = (o_0, ..., o_{l-1})$ y $o' = (o'_0, ..., o'_{l-1})$.
- Como cada gen tiene un intervalo de cruce diferente, se debe aplicar el siguiente procedimiento por cada gen:
 - 1. o_i se escoge aleatoriamente en el intervalo de cruce C_i .
 - 2. o' se calcula con la expresión:

$$o'_i = (min(f_i) + max(f_i)) - o_i$$

- ▶ Se demuestra que $g_{imin} \le o'_i \le g_{imax}$.
- o_i y o'_i se encuentran equidistantes al centro del intervalo de cruce.

Coste computacional del cruce morfológico

Algunas consideraciones iniciales:

- ► Es importante asegurarse de que el coste computacional del cruce no sea demasiado elevado ⇒ se repite muchas veces.
- ► La multiplicación es una operación más costosa que una suma / resta.
- ► Repetiremos el proceso de creación de o_i y o'_i una vez por cada gen, es decir, / veces. Ese proceso debería ser lo menos costoso posible.
- ► Estamos realizando el mismo proceso en los / genes ⇒ fácilmente paralelizable en un ordenador con / procesadores.

Coste computacional del cruce morfológico

Podemos dividir el proceso de cruce en tres partes, que se deben repetir en cada gen:

1. En primer lugar se calcula el gradiente morfológico,

$$g = max(f_i) - min(f_i)$$
.

- Para calcular el valor máximo / mínimo, necesitamos realizar n sumas / restas.
- 2. Posteriormente, se calcula el intervalo $[g_{imin}, g_{imax}]$.

•
$$g_{imin} = max(f_i) - \varphi(x)$$

•
$$g_{imax} = min(f_i) + \varphi(x)$$

- Calcular $\varphi(x)$ supone una multiplicación y una suma.
- 3. Por último, se calculan los descendientes o_i y o'_i .

► En total se realizan 2*n* + 6 sumas y 1 multiplicación por cada gen.

- Se dispone de una población con λ individuos y conocemos cómo generar descendientes utilizando el operador de cruce.
- Se deben obtener λ individuos que formaran parte de la población de la siguiente generación.
- ¿Cómo decidir que individuos formarán parte de la siguiente generación?

- La tasa de reemplazamiento generacional, t_{tg}, indica el porcentaje de hijos generados respecto al total de la población inicial.
- ► Con $t_{tg} = \lambda^{-1}$, se realiza la sustitución de un individuo de la población por un descendiente.
- Aquellos algoritmos genéticos en los que se sustituyen unos pocos individuos se los denomina SSGA (Steady-State Replacement Genetic Algorithms).

Otros reemplazamientos:

- ► Reducción simple: se realiza un reemplazamiento en bloque, esto es, t_{ta} = 1.
- ▶ Reducción elitista de grado λ : Se seleccionan a los λ mejores individuos a partir de los λ individuos iniciales y λ descendientes.
- ► Algoritmos genéticos modificados:
 - ► *r*₁ individuos seleccionados por la reproducción para ser cruzados.
 - ► r₂ individuos seleccionados para morir.
 - ▶ $\lambda (r_1 + r_2)$ individuos neutros.
 - Cuanto más adaptado está un individuo tiene más probabilidades de ser seleccionado por la reproducción y menores sus probabilidades de morir

Operadores catastróficos

Los operadores catastróficos evalúan la convergencia para evitar acabar en un optimo local.

- Se sustituyen individuos de la población por otros nuevos (y generados aleatoriamente).
- Se aplican cuando el algoritmo esta convergiendo para escapar de un óptimo local mediante exploración.
- ▶ No se eliminan a los mejores individuos de la población.
- ► Principales operadores catastróficos:
 - Empaquetado: Todos los individuos con el mismo valor de adaptación son eliminados excepto uno. Evita los individuos repetidos.
 - El día del juicio final: Solo se conserva el individuo más adaptado. El resto se eliminan.

¿Alguna pregunta?

CAMPUS DE EXCELENCIA INTERNACIONAL