Introduction to Deep Learning (CS474)

Lecture 22

Outline

Module 3

Introduction to Recurrent Neural Network (RNN)

Unfolding Computational Graph

- We refer to RNNs as operating on a sequence that contains vectors x (t) with the time step index t ranging from 1 to τ.
- A **computational graph** is a way to formalize the structure of a set of computations, such as those involved in mapping inputs and parameters to outputs and loss.
- For example, consider the classical form of a dynamical system:

$$S(t) = f(S(t-1); \theta),$$
 (Equation 1)

where **s** (t) is called the state of the system.

Equation 1 is recurrent because the definition of \mathbf{s} at time t refers back to the same definition at time t - 1.

Unfolding Computational Graph

Figure 1: The classical dynamical system described by equation 1, illustrated as an unfolded computational graph. Each node represents the state at some time t and the function f maps the state at t to the state at t+1. The same parameters (the same value of θ used to parametrize f) are used for all time steps.

We can process a sequence of vectors **x** by applying a **recurrence formula** at every time step:

We can process a sequence of vectors **x** by applying a **recurrence formula** at every time step:

$$h_t = f_W(h_{t-1}, x_t)$$

Notice: the same function and the same set of parameters are used at every time step.

Slide credit: F. Li & J. Johnson & S. Yeung

Example

Example

Example (forward propagation)

References

• All the contents present in the slides are taken from various online resources. Due credit is given in the respective slides. These slides are used for *academic* purposes only.