EEE499 - Real-Time Embedded System Design

New tasks, precedence, multiprocessor scheduling and anomalies

Simple Task Model

- Assumptions:
 - 1. Tasks are periodic and the period is constant
 - Completion-time < period
 - 3. Tasks are independent
 - 4. Runtime is known and deterministic
 - all system overheads are negligible or deemed to be included in task computation times
 - 6. Critical instant defined as the maximum load condition when all tasks release together
- Constraints
 - 1. Deadline = period
 - 2. fixed set of tasks
 - 3. Preemptive

Tasks Arrival

The algorithms we have seen so far do not allow new tasks to be added.

Horn's algorithm (*Earliest Deadline First* or *EDF*) allows for the arrival of new tasks.

Earliest Deadline First (EDF)

- Dynamic priority ordering
- A task will not have the same priority at each execution.
- More complex implementation, but less preemption.

The EDF algorithm is not optimal when there are precedencies

τ_{i}	e _i	D _i	P _i
1	1	2	
2	1	5	
3	1	4	
4	1	3	
5	1	5	
6	1	6	

The EDF algorithm is not optimal when there are precedences

τ_{i}	e _i	D _i	P _i
1	1	2	1
2	1	5	3
3	1	4	2
4	1	3	4
5	1	5	5
6	1	6	6

The EDF algorithm is not optimal when there are

precedences

τ_{i}	e _i	D _i	P _i
1	1	2	1
2	1	5	3
3	1	4	2
4	1	3	4
5	1	5	5
6	1	6	6

The EDF algorithm is not optimal when there are

precedences

τ_{i}	e _i	D _i	P _i
1	1	2	1
2	1	5	3
3	1	4	2
4	1	3	4
5	1	5	5
6	1	6	6

The Lawler algorithm, called *Latest Deadline First* (LDF) allows to take precedence into account more effectively.

- Builds the schedule from the end
- Finite and well-known task set
- Chooses the last task to execute (no dependents and latest deadline).
- Continues until all tasks have been scheduled.

τ_{i}	e _i	D _i	P _i
1	1	2	
2	1	5	
3	1	4	
4	1	3	
5	1	5	
6	1	6	

τ_{i}	e _i	D _i	P _i
1	1	2	
2	1	5	
3	1	4	
4	1	3	
5	1	5	
6	1	6	6

τ_{i}	e _i	D _i	P _i
1	1	2	
2	1	5	
3	1	4	
4	1	3	
5	1	5	5
6	1	6	6

τ_{i}	e _i	D _i	P _i
1	1	2	
2	1	5	
3	1	4	4
4	1	3	
5	1	5	5
6	1	6	6

τ_{i}	e _i	D _i	P _i
1	1	2	
2	1	5	
3	1	4	4
4	1	3	3
5	1	5	5
6	1	6	6

τ_{i}	e _i	D _i	P _i
1	1	2	
2	1	5	2
3	1	4	4
4	1	3	3
5	1	5	5
6	1	6	6

τ_{i}	e _i	D _i	P _i
1	1	2	1
2	1	5	2
3	1	4	4
4	1	3	3
5	1	5	5
6	1	6	6

τ_{i}	e _i	D _i	P _i
1	1	2	1
2	1	5	2
3	1	4	4
4	1	3	3
5	1	5	5
6	1	6	6

- A modification of LDF
- Based on a dynamic change of deadlines based on the dependencies.
- For a set of tasks T where $\tau_i \in T$ and all the dependents of τ_i are in the subset $Q(i) \subset T$
- For all execution of τ_i , a new deadline is computed

$$D_{i}^{'} = \min \left(d_{i}, \min_{j \in Q(i)} \left(D_{j}^{'} - e_{j} \right) \right)$$

$\tau_{\rm i}$	e _i	D _i	P _i
1	1	2	
2	1	5	
3	1	4	
4	1	3	
5	1	5	
6	1	6	

$\tau_{\rm i}$	e _i	D _i	P _i
1	1	2	1
2	1	5	2
3	1	4	4
4	1	3	3
5	1	5	5
6	1	6	6

τ_{i}	e _i	D _i	P _i
1	1	2	1
2	1	5	2
3	1	4	4
4	1	3	3
5	1	5	5
6	1	6	6

A difficult problem when combined with precedence.

The priority can be assigned by Hu's level algorithm.

τ_{i}	e _i	D _i	L _i	P _i
1	1	2	3	
2	1	5	2	
3	1	4	2	
4	1	3	1	
5	1	5	1	
6	1	6	1	

The priority can be assigned by Hu's level algorithm.

τ_{i}	e _i	D _i	L _i	P _i
1	1	2	3	1
2	1	5	2	2
3	1	4	2	2
4	1	3	1	3
5	1	5	1	3
6	1	6	1	3

The priority can be assigned by Hu's level algorithm.

$\tau_{\rm i}$	e _i	D _i	L _i	P _i
1	1	2	3	1
2	1	5	2	3
3	1	4	2	2
4	1	3	1	4
5	1	5	1	5
6	1	6	1	6

τ_{i}	e _i	D _i	L _i	P _i
1	1	2	3	1
2	1	5	2	3
3	1	4	2	2
4	1	3	1	4
5	1	5	1	5
6	1	6	1	6

- Priority inversion
- Deadlocks
- Richard's Anomalies
- Mutual exclusion lock

Richard's Anomalies

"If a task set with fixed priorities, execution times, and precedence constraints is scheduled on a fixed number of processors in accordance with the priorities, then increasing the number of processors, reducing execution times, or weakening precedence constraints can increase the schedule length." [1]

Richard's Anomalies

Proc 2

Proc 3

Richard's Anomalies

Richard's Anomalies

Proc 2

Proc 3

Richard's Anomalies

Proc 2

Proc 3

Proc 4

Proc 1

Proc 2

Proc 3

Proc 4

Richard's Anomalies

Proc 2

Proc 3

Richard's Anomalies

Proc 1

Proc 2

Proc 3

Mutual exclusion lock

Mutual exclusion lock

2

Proc 1

Proc 2

0

References

- [1] Lee, E. A., Seshia, S. A. "Introduction to Embedded Systems - A Cyber-Physical Systems Approach", Second Edition, MIT Press, 2017.
- [2] Burns, A. and Wellings, A., "Real-Time Systems and Programming Languages", Chapter 13, Addison Wesley, 1997
- [3] Gomaa, H., "Software Design Methods for Concurrent and Real-Time Systems", Addison-Wesley, 1993.