

Computational Imaging and Spectroscopy

Scene analysis II: Colour image acquisition

Thierry SOREZE DTU July 2024

DTU Fotonik
Department of Photonics Engineering

Image sensor (CCD vs CMOS)

Image sensor

CCD	CMOS
High quality and low noise	Prone to noise
Expensive to produce	Cheaper to produce
Very high power consumption	Consume low power
High light sensitivity	Low light sensitivity
Very sensitive to blooming	Operate at higher speed

Image sensor (Colour Filter Array (CFA))

Image sensor (Colour Filter Array (CFA))

Spectral response of a Canon T3i APS-C CMOS image sensor with a Bayer pattern CFA

Image sensor spectral sensitivities (i.e.matching functions)

Response curves for CANON D800 D7100 D7200 D50

Image sensor spectral sensitivities (i.e.matching functions)

(a) Measurement Setup

(b) Camera Spectral Sensitivity (Green Channel)

Jiang et al.

Image sensor spectral sensitivities (i.e.matching functions)

Jiang et al.

Image sensor (Quantum efficiency)

Dark current calibration

For a CCD sensor the output signal can be expressed as:

$$O = (PQ_e + D)t + R$$

Q_e Quantum efficiencyD thermal noiseP incident photon fluxR read noiset exposure time

Dark current calibration

Even if no light hit the sensor the thermal noise does not vanish, so in the dark we have:

$$O_D = Dt_0 + R.$$

In the case of high performance CCDs the read noise is negigible, we can then substract the dark output for the sensor outpout:

$$PQ_e t \approx O - \frac{t}{t_0} O_D$$

If the quantum efficiency is known the photon flux can be determined

$$P \approx \frac{1}{Q_e t} \left(O - \frac{t}{t_0} O_D \right)$$

Dark current calibration

After calibration, for a narrow bandfilter the image intensity at a specific pixel x can be expressed as:

$$I(x,\lambda) = \beta_{\lambda} \left(O - \frac{t}{t_0} O_D \right) \approx \beta_{\lambda} P Q_e t$$

where $\beta\lambda$ is a wavelength-dependent quantity that depends on the geometry of the sensor and the spectral transmission of the optical filter or grating used in the imager.

Image formation (BRDF)

Irradiance

$$E_i(\theta_i, \phi_i, \lambda) = L(\lambda) \cos \theta_i d\omega_i$$

BRDF

$$f(\theta_i, \phi_i, \theta_o, \phi_o, \lambda) = \frac{E_o(\theta_i, \phi_i, \theta_o, \phi_o, \lambda)}{E_i(\theta_i, \phi_i, \lambda)}$$

Image formation (surface radiance)

Combining these expressions we have:

$$E_o(\theta_i, \phi_i, \theta_o, \phi_o, \lambda) = f(\theta_i, \phi_i, \theta_o, \phi_o, \lambda) L(\lambda) \cos \theta_i d\omega_i$$

Assuming that the flux radiated from the surface is transmitted through the lens without any loss of energy, the spectral irradiance reaching the image plane is:

$$I_{im}(\lambda) = \frac{\pi}{4} \left(\frac{d}{z}\right)^2 \cos^4 \alpha E_o(\theta_i, \pi, \theta_o, \phi_o, \lambda)$$

$$I_{im}(\lambda) = mf(\theta_i, \phi_i, \theta_o, \phi_o, \lambda)L(\lambda)\cos\theta_i\cos^4\alpha d\omega_i$$

Image formation (surface radiance)

$$m = \frac{\pi}{4} \left(\frac{d}{z}\right)^2$$

Note:

d is the lens diameter, z is the distance between the lens and the image plane, and α is the angle between the optical axis of the camera and the line of sight from the surface patch to the centre of the lens.

Image formation (Colour response)

Let's denote C_c the spectral sensitivities of the camera, i.e. matching functions, we can express the color response

$$I_c = k_c \int_{vis} C_c(\lambda) I_{im}(\lambda) d\lambda$$

$$I_c = mk_c cos\theta_i cos^4 \alpha \times \int_{vis} C_c(\lambda) f(\theta_i, \phi_i, \theta_o, \phi_o, \lambda) L(\lambda) cosd\lambda$$

$$c \in [R, G, B]$$

 κ_c corresponds to the color balance factor of the camera against a predetermined reference.

Image formation (Colour response)

The tristimulus value S_{ref} of the colour reference is given by

$$S_{ref_c} = mk_c d\omega_i \int_{vis} C_c(\lambda) L(\lambda) d\lambda$$

The sample is considered having a brdf equals to 1, and placed perpendicularly to the axis of the camera. By solving this equation for k_c we get

$$I_c = mk_c cos\theta_i cos^4 \alpha d\omega_i \times \frac{\int_{vis} C_c(\lambda) f(\theta_i, \phi_i, \theta_o, \phi_o, \lambda) L(\lambda) cosd\lambda}{\int_{vis} C_c(\lambda) L(\lambda) d\lambda}$$

Image formation (Colour response)

This can be simplified to the following image formation equation, under some assumptions:

$$I_{c} = \frac{\int_{vis} C_{c}(\lambda) L(\lambda) d\lambda}{\int_{vis} L(\lambda) d\lambda}$$

.

Image formation (Camera calibration)

Camera matrix estimation

$$\begin{bmatrix} \hat{X} \\ \hat{Y} \\ \hat{Z} \end{bmatrix}_{\lambda} = M \begin{bmatrix} R \\ G \\ B \end{bmatrix}_{\lambda}$$

$$M = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} \begin{bmatrix} R & G & B \end{bmatrix} \begin{pmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix} \begin{bmatrix} R & G & B \end{bmatrix} \end{pmatrix}^{-1}$$

Image formation (Illuminant estimation and white balancing)

Image formation (Illuminant estimation and white balancing)

Gray World

We assume that $\mathbf{R}_{avg} = \mathbf{B}_{avg} = \mathbf{G}_{avg}$

We calculate

$$\begin{cases} C_{avg} = \frac{1}{MN} \sum_{x=1}^{M} \sum_{y=1}^{N} I_c(x, y) \\ \hat{r} = \frac{G_{avg}}{R_{avg}}, \hat{b} = \frac{G_{avg}}{B_{avg}} \\ \hat{I}_r(x, y) = \hat{r} I_r(x, y), \hat{I}_b(x, y) = \hat{b} I_b(x, y) \end{cases}$$

The Green channel remains untouched

Image formation (Illuminant estimation and white balancing)

Retinex theory

We assume that $\mathbf{R}_{avg} = \mathbf{G}_{avg} = \mathbf{G}_{avg}$ and that the brightest pixels represent the "white point"

We calculate

$$\begin{cases} C_{max} = \max_{x,y} \{I_c(x,y)\} \\ \hat{r} = \frac{G_{max}}{R_{max}}, \hat{b} = \frac{G_{max}}{B_{max}} \\ \hat{I}_r(x,y) = \hat{r}I_r(x,y), \hat{I}_b(x,y) = \hat{b}I_b(x,y) \end{cases}$$

The Green channel remains untouched

BRDF

Image formation (solid angle)

$$d\omega = \frac{dA\cos\Delta\theta}{r^2}$$

$$d\omega = sin\theta d\theta d\phi$$

BRDF

Image formation (BRDF)

BRDF

Image formation (BRDF)

Irradiance

$$E_i(\theta_i, \phi_i, \lambda) = L(\lambda) \cos \theta_i d\omega_i$$

BRDF

$$f(\theta_i, \phi_i, \theta_o, \phi_o, \lambda) = \frac{E_o(\theta_i, \phi_i, \theta_o, \phi_o, \lambda)}{E_i(\theta_i, \phi_i, \lambda)}$$

• Diffuse reflection

$$f_r(\omega_i, \omega_o) = \frac{\rho}{\pi}$$

Specular reflection

$$R\left(\omega_{i}, \vec{\mathbf{n}}\right) = 2\left(\vec{\mathbf{n}} \cdot \omega_{i}\right) \vec{\mathbf{n}} - \omega_{i}$$

• Fresnel term (dielectrics)

$$r_{s} = \frac{n_{i} \cos(\theta_{i}) - n_{o} \cos(\theta_{o})}{n_{i} \cos(\theta_{i}) + n_{o} \cos(\theta_{o})}$$

$$r_{p} = \frac{n_{o} \cos(\theta_{i}) - n_{i} \cos(\theta_{o})}{n_{i} \cos(\theta_{o}) + n_{o} \cos(\theta_{o})}$$

$$F = \frac{\left|r_{p}\right|^{2} + \left|r_{s}\right|^{2}}{2}$$

• Fresnel term (conductors)

$$r_{s} = \frac{n_{i} \cos(\theta_{i}) - (n_{o} - k_{o}) \cos(\theta_{o})}{n_{i} \cos(\theta_{i}) + (n_{i} - k_{i}) \cos(\theta_{o})}$$

$$r_{p} = \frac{(n_{o} - k_{o})(\theta_{i}) - n_{i} \cos(\theta_{o})}{(n_{o} - k_{o})(\theta_{i}) + n_{i} \cos(\theta_{o})}$$

• BRDF (specular)

$$f_r(x, \omega_i, \omega_o) = F(\omega_o) \frac{\delta(\omega_o - R(\omega_i, \bar{\mathbf{n}}))}{|\cos(\theta_i)|}$$

• BRDF (Phong)

$$f_r(x, \omega_i, \omega_o) = k_a + k_s \frac{(\vec{\mathbf{V}} \cdot \vec{\mathbf{R}})^n}{\vec{\mathbf{n}} \cdot \omega_i} + \frac{\rho}{\pi}$$

• BRDF (Blinn-Phong)

$$f_r(x, \omega_i, \omega_o) = k_s \frac{\left(\vec{\mathbf{n}} \cdot \vec{\mathbf{H}}\right)^n}{\vec{\mathbf{n}} \cdot \omega_i} + \frac{\rho}{\pi}$$

• BRDF (Modified Blinn-Phong)

$$f_r(x, \omega_i, \omega_o) = k_s (\vec{\mathbf{n}} \cdot \vec{\mathbf{H}})^n + \frac{\rho}{\pi}$$

• Micro-facets theory

Micro-facets theory (generic model)

$$f_r(x, \omega_i, \omega_o) = \frac{D(\omega_h)G(\omega_i, \omega_o)F_r(\omega_o)}{4\cos(\theta_i)\cos(\theta_o)}$$

• Micro-facets theory (Distribution)

$$D_{Gaussian}\left(\omega_{h}\right) = \frac{1}{\sqrt{2\pi m}} \exp\left(-\frac{\arccos\left(\vec{\mathbf{n}}\cdot\omega_{h}\right)^{2}}{2m^{2}}\right)$$

$$D_{Beckamnn}(\omega_h) = \frac{\exp(-\tan^2(\arccos(\mathbf{n}\cdot\omega_h))/m^2)}{\pi m^2 \cos^4(\arccos(\mathbf{n}\cdot\omega_h))}$$

$$D_{anisotropic}\left(\omega_{h}\right) = \frac{\sqrt{\left(e_{x}+2\right)\left(e_{y}+2\right)}}{2\pi}\left(\omega_{h}\cdot\vec{\mathbf{n}}\right)^{e_{x}\cos^{2}(\phi)+e_{y}\sin^{2}(\phi)}$$

Micro-facets theory (Distribution)

Geometry of the anisotropic distribution

Isotropic vs anisotropic microfacets highlights

Micro-facets theory (Geometric term)

$$G_{CT}(\omega_o, \omega_i) = \min\left(1, \min\left(\frac{2(\vec{\mathbf{n}} \cdot \omega_h)(\vec{\mathbf{n}} \cdot \omega_o)}{\omega_o \cdot \omega_h}, \frac{2(\vec{\mathbf{n}} \cdot \omega_h)(\vec{\mathbf{n}} \cdot \omega_i)}{\omega_o \cdot \omega_h}\right)\right)$$

• Micro-facets theory (Schlick's approximation)

$$F(\theta) = R_0 + (1 - R_0)(1 - \cos(\theta))^5$$

$$R_0 = \left(\frac{n_1 - n_2}{n_1 + n_2}\right)^2$$

$$\cos(\theta) = \mathbf{n} \cdot \omega_i$$

Micro-facets theory (GGX)

$$D_{GGX}\left(\omega_{h}\right) = \frac{m^{2}}{\pi\left(\left(\vec{\mathbf{n}}\cdot\omega_{h}\right)^{2}\left(m^{2}-1\right)+1\right)^{2}}$$

$$G_{Smith}\left(\omega_{o},\omega_{i}\right) = \frac{2\left(\vec{\mathbf{n}}\cdot\omega_{i}\right)\left(\vec{\mathbf{n}}\cdot\omega_{o}\right)}{\left(\vec{\mathbf{n}}\cdot\omega_{o}\right)\sqrt{m^{2} + \left(1 - m^{2}\right)\left(\vec{\mathbf{n}}\cdot\omega_{i}\right)^{2}} + \left(\vec{\mathbf{n}}\cdot\omega_{i}\right)\sqrt{m^{2} + \left(1 - m^{2}\right)\left(\vec{\mathbf{n}}\cdot\omega_{o}\right)^{2}}}$$

Micro-facets theory (GGX)

Image formation (Illuminant estimation and white balancing)

Application 1

Color balance the blue_cast.jpg image using both methods Compare your results and conclude

Camera CANON EOS 550D

.

Image formation (Illuminant estimation and white balancing)

Application 2 (WB_girl images)

Use CAT02 to perform the white balance (Output White is D65)

- 1 Estimate the white point (Retinex) for each channel
- 2 Calculate the adaptation matrix (diagonal)
- 3 Calculate (M^-1sRGB x M^-1CAT02) x adatM x (MCAT02 x MsRGB)
- 4 Try with arbitrary input White points

.