### Sujet 1

### ${f I} \mid {f Ressort \ vertical}$

On considère un ressort vertical de constante de raideur k et de longueur à vide  $\ell_0$ . L'extrémité inférieure est en contact avec un support horizontal au point A. Une masse m assimilable à un point matériel M est accrochée à l'autre extrémité. La masse a un mouvement rectiligne vertical.

Dans un premier temps, on suppose que le point A est fixe. On définit l'axe vertical ascendant (O,z). On note  $z_M$  la coordonnée de la masse. A l'équilibre,  $z_M=0$ .



- 1) Établir l'équation différentielle vérifiée par  $z_M$ .
- 2) On suppose que la masse est lâchée depuis la position  $z_M(t=0)=z_0$  et sans vitesse initiale. Exprimer  $z_M(t)$  pour  $t\geq 0$ .
- 3) Exprimer l'énergie potentielle élastique. On prendra l'origine de cette énergie en  $z_M=0$ .
- 4) Exprimer l'énergie potentielle de pesanteur. On prendra l'origine de cette énergie en  $z_M = 0$ .
- 5) Montrer que l'énergie mécanique est conservée.

On suppose désormais que le ressort est posé sur le sol et non fixé

6) Quelle est la condition sur  $z_0$  pour que le ressort ne décolle pas du support.

# Sujet 2

# I | Masse attachée à un ressort sur un plan incliné

Soit un ressort de raideur k et de longueur à vide  $\ell_0$ , dont les extrémités sont reliées respectivement à un point fixe O d'un plan incliné et à un point matériel M de masse m. On pose  $\overrightarrow{OM} = x \overrightarrow{e_x}$  et on supposera qu'il n'y a pas de frottements de glissement au contact du plan incliné.



- 1) Justifier le choix d'une base cartésienne dont l'un des axes est suivant le plan incliné.
- 2) Déterminer l'abscisse  $x=x_e$  à l'équilibre.
- 3) A partir de la position d'équilibre, M est déplacé de D et relâché sans vitesse initiale. Exprimer x en fonction de t.

### Sujet 3

# I | Quelques notions de ski $(\star)$

# A Leçon n° 1 : le remonte-pente

On considère une skieuse de masse m remontant une pente d'angle  $\alpha$  à l'aide d'un téléski. Celui-ci est constitué de perches de longueur L accrochées à un câble parallèle au sol situé à une hauteur h.

On néglige les frottements de la neige sur les skis.



- 1) Quelles sont les trois forces que subit la skieuse?
- 2) Que sait-on sur chacune d'elles a priori?

On considère une skieuse de 50kg sur une pente de 15% (c'est-à-dire que la skieuse s'élève de 15 m lorsqu'elle parcourt horizontalement 100 m). La force exercée par la perche sur la skieuse sera supposée fixée et égale à F = 100N.

3) Existe-t-il un angle limite  $\beta_l$  pour lequel le contact entre les skis et le sol serait rompu?

On suppose maintenant que sa trajectoire est rectiligne et sa vitesse constante.

4) Quelle relation les 3 forces que subit la skieuse doivent-elles vérifier?

On note  $\beta$  l'angle que forme la perche du téléski avec la perpendiculaire à la pente.

- 5) Représenter les trois forces sur une même figure en repérant bien les angles  $\alpha$  et  $\beta$ .
- 6) En déduire une relation entre  $m, g, \alpha, \beta$  et F (la norme de la force exercée par la perche).
- 7) En négligeant la distance entre la rondelle et le sol, exprimer F en fonction  $m, g, \alpha, h$  et L. Comment varie F avec  $\alpha$  et h? Commenter.

## B Leçon n° 2 : le virage

La skieuse est toujours sur le remonte pente et aborde une zone horizontale où sa trajectoire est un cercle de centre C et de rayon d. Sa célérité est toujours constante. On suppose pour les questions suivantes que la perche est contenue dans le plan formé par la droite SC et la verticale.

# et perpendiculaires au plan de la figure



8) Que peut-on dire de son accélération?

On a représenté ci-dessus différentes vues de la situation où la skieuse est modélisée par un point matériel S posé sur le sol. On néglige les frottements, on note  $\overrightarrow{F}$  la force exercée par la perche du téléski et  $\gamma$  l'angle qu'elle forme avec la verticale.

- 9) Déterminer  $F = ||\overrightarrow{F}||$  en fonction de  $m, v = ||\overrightarrow{v}||$  la célérité, d et  $\gamma$ .
- 10) En déduire  $R=||\overrightarrow{R}||$  en fonction de toutes les autres données.
- 11) Comment évolue R lorsque la célérité augmente ?
- 12) En pratique la perche n'est pas rigoureusement orthogonale à la trajectoire mais est également dirigée vers l'avant. Expliquer pourquoi.