Engenharia de Computação Estrutura de Dados 2

Aula 10 – Busca e Ordenação

Prof. Muriel de Souza Godoi muriel@utfpr.edu.br

Exemplos de busca

Registros de tamanho fixo:

- 1. Recupere os dados relativos ao Joao
- 2. Recupere os dados relativos ao Pedro

Exemplos de busca

Registro de tamanho variável:

```
M A R I A | R U A b 1 | S A O b C A R L O S | J O A O | R U A b A | R I O b C L A R O | P E D R O | R U A b X V | S A O b C A R L O S | A N T O N I A | R U A b X V b D E b M A I O | I B A T E | A N A | R U A b A U G U S T O b P A I V A | I B A T E |
```

- 1. Recupere os dados relativos ao Joao
- 2. Recupere os dados relativos ao Pedro

Ordenação

- Facilita a busca
- Pode ajudar a diminuir o número de acessos a disco
- Busca sequencial:
 - recupera cada registro do arquivo, verificando se os valores dos atributos satisfazem à condição de seleção
- Busca binária:
 - recupera registros quando a condição de seleção envolve uma comparação de igualdade no atributo que determina a ordenação do arquivo

Custo: Comparações

- n: número de registros que são comparados
- todos os registros são varridos (pior caso)
- complexidade: O(n)

- n: número de registros que são comparados
- complexidade: O(log n)

Custo: Acessos a disco

- b: número de blocos que contêm os registros
- todos os blocos são varridos

Custo
$$_{\text{busca_binária}} = \log_2 (b) + \lceil s/bfr \rceil - 1$$

- log₂(b): custo para localizar o primeiro registro
- [s/bfr]: blocos ocupados pelos registros que satisfazem à condição de seleção
 - s = tamanho total dos dados / bfr = tamanho do buffer
- 1: custo para recuperar o primeiro registro

Como ordenar o arquivo

- Arquivo completo cabe em RAM
- Estratégia
 - leitura de todos os registros armazenados em disco para a RAM
 - ordenação dos registros em RAM
 - escolha do campo base para ordenação
 - o uso de um método de ordenação
 - escrita de todos os registros armazenados em RAM para o disco

Arquivo ordenado

Registros de tamanho fixo:

```
ANA | RUABAUGUSTOBPAIVA | IBATE | bb
ANTONIA | RUABXVBDEBMAIO | IBATE | b
JOAO | RUABA | RIOBCLARO | bbbbbbbb
MARIA | RUAB1 | SAOBCARLOS | bbbbbb
PEDRO | RUABXV | SAOBCARLOS | bbbbbb
```

ordenação baseada em um determinado campo, usando suas chaves

Chave (KEY)

- Está associada a um registro e permite a sua recuperação
- Chave primária
 - identifica univocamente um registro
 - não tem repetição
- Chave secundária
 - não identifica univocamente um registro
 - tem repetição

Forma Canônica da Chave

- Uma única representação para uma determinada chave
 - Exemplo: "Ana", "ANA", ou "ana" devem indicar o mesmo registro

- Exemplo de regra para a Forma canônica
 - todos os caracteres em letras maiúsculas → ANA

Como Ordenar o Arquivo

- Arquivo completo n\(\tilde{a}\)o cabe em RAM
- Estratégia: ordenação por chave
 - conhecida como keysorting
 - armazena e ordena em RAM somente
 - chaves para ordenação
 - RRNs ou byte offsets dos registros

 1. Leitura completa do arquivo de dados, trazendo para a RAM a chave e o RRN (ou byte offset) dos registros

chave	RRN
MARIA	0
J O A O	1
P E D R O	2
ANTONIA	3
ANA	4

vetor em RAM

```
      MARIA | RUAb1 | S...

      JOAO | RUAbA | RI...

      PEDRO | RUAbXV | ...

      ANTONIA | RUAbX...

      ANA | RUAbAUGUS...
```

arquivo desordenado em disco

- 2. Ordenação do vetor em RAM
 - uso de um método de ordenação

cha	ve				RRN	
М	A R	I	Α		0	
J	0 A	0			1	
Р	E D	R	0		2	
Α	N T	0	N	IA	3	
Α	N A	l			4	

chave	RRN
ANA	4
ANTONIA	3
J 0 A 0	1
MARIA	0
PEDRO	2

vetor em RAM

vetor ordenado em RAM

- 3. Para cada registro do vetor em RAM
 - obtém o RRN;
 - identifica o byte offset do registro em disco (byte offset = RRN * tamRegistro)
 - lê o registro do arquivo em disco;
 - arquivo de entrada desordenado
 - escreve o registro de forma ordenada em outro arquivo
 - arquivo de saída ordenado

- 5. Apaga o arquivo anterior
 - Renomeia o arquivo gerado com o come do anterior
- Arquivo ordenado em disco

Ordenação

- Perguntas
 - e se a busca for feita por outro campo que não seja o campo ordenado?
 - o que acontece quando BEATRIZ é inserida?

Pensando em Índices

Por que realizar a tarefa custosa de escrever em disco a versão ordenada do arquivo?

- Solução melhor
 - grava-se a ordenação da chave em um novo arquivo (arquivo de índice)
 - realiza-se busca binária no arquivo de índice, e recupera-se o RRN ou byte offset
 - realiza-se acesso direto no arquivo original (arquivo de dados)