Week Assignment 9

Question 1

Use a weather forecast website, and utilize the psychrometric chart and the formula we went through in the class to determine the absolute humidity, the wet-bulb temperature and the mass of water vapour in the air in Classroom A (Aula A) of Piacenza campus in the moment that you are solving this exercise (provide the inputs that you utilized)

Solution

On 2 December 2019, 10pm Effective Temperature = $8^{\circ}C$ Atmospheric Pressure = 102 kPa Relative Humidity = 92%

Absolute Humidity (ω) = 0.006 ($\frac{kg_{vapour}}{kg_{dry\;air}}$) Wet bulb temperature = 7.2°C Mass of water vapor, $m_v = \frac{P_v V_v}{R_v T}$

$$\phi = \frac{m_v}{m_g} = \frac{P_v}{P_g}$$

At 8°C, P_g = 1.07 kPa (from steam table)

SATURATED	STEAM.	TEMPERATI	IDE TARI E
SALUKALED	O I E PAIVI "	LEIVIEERALL	JICE LADIE

T °C	P bar	Spec. vol. m³=kg		Int. Ener. kJ/kg		Enthalpy kJ/kg		Entropy kJ=(kg°K)	
		Sat. liq. v _f X1000	Sat. vap. v _g	Sat. liq. u _r	Sat. vap. u _g	Sat. liq. h _f	Sat. vap. h _g	Sat. liq. s _f	Sat. vap. s _g
0.01	0.0061	1.0002	206.1	0.01	2376	0.01	2501	0	9.156
4	0.0081	1.0001	157.2	16.79	2381	16.79	2509	0.061	9.051
5	0.0087	1.0001	147.1	21.00	2383	21	2511	0.0762	9.026
6	0.0093	1.0001	137.7	25.21	2384	25.21	2512	0.0912	9.000
8	0.0107	1.0001	120.9	33.61	2387	33.61	2516	0.1212	8.950
10	0.0123	1.0001	106.4	42.01	2389	42.01	2520	0.151	8.901
11	0.0131	1.0007	99.86	46.19	2391	46.19	2522	0.1658	8.876
12	0.0140	1 0007	93 79	50.40	2292	50.4	2523	0.1006	0.052

$$P_v = \phi \ X \ P_g$$
 = 0.92 X 1.07 = 0.9844 kPa R_v = 0.4615

Volume (Aula A) = 10 X 20 X 3 = 600
$$m^2$$

$$m_v = \frac{0.9844 \, X \, 600}{0.4615 \, X \, 281} = 4.55 \, \text{kg}$$

Question 2

Utilize the same methodology we went through in the class and determine the sensible and latent load corresponding to internal gains, the ventilation, and the infiltration in a house with a *good* construction quality and with the same geometry as that of the example which is located in Brindisi, Italy

Solution

Room height, h=2.5m Good construction quality – 2 occupants, 1 bedroom Conditioned floor area = $200 \ m^2$ Wall Area = $144 \ m^2$

Internal Gains

$$\dot{Q}ig_{sensible} = 136 + 2.2 \text{ X } A_{cf} + 22N_{oc} = 136 + 2.2 \text{(200)} + 22 \text{(2)} = 620 \text{ W} \\ \dot{Q}ig_{latent} = 20 + 0.22 \text{ X } A_{cf} + 12N_{oc} = 20 + 0.22 \text{(200)} + 12 \text{(2)} = 88 \text{ W}$$

<u>Infiltration</u>

 $\overline{A_{es}}$ (exposed surface area) = 200+144 = 344 m^2

 A_{ul} (unit leakage area for good quality construction) = 1.4 $\frac{cm^2}{m^2}$

Table 3 Unit Leakage Areas

Construction	Description	A_{ul} , cm ² /m ²	
Tight	Construction supervised by air-sealing specialist	0.7	
Good	Carefully sealed construction by knowledgeable builder	1.4	
Average	Typical current production housing	2.8	
Leaky	Typical pre-1970 houses	5.6	
Very leaky	Old houses in original condition	10.4	

 A_L (Leakage area) = A_{es} X A_{ul} = 344 X 1.4 = 481.6 cm^2

H, m	Heating Design Temperature, °C					Cooling Design Temperature, °C			
	-40	-30	-20	-10	0	10	30	35	40
2.5	0.10	0.095	0.086	0.077	0.069	0.060	0.031	0.035	0.040
3	0.11	0.10	0.093	0.083	0.072	0.061	0.032	0.038	0.043
4	0.14	0.12	0.11	0.093	0.079	0.065	0.034	0.042	0.049
5	0.16	0.14	0.12	0.10	0.086	0.069	0.036	0.046	0.055
6	0.18	0.16	0.14	0.11	0.093	0.072	0.039	0.050	0.061
7	0.20	0.17	0.15	0.12	0.10	0.075	0.041	0.051	0.068
8	0.22	0.19	0.16	0.14	0.11	0.079	0.043	0.058	0.074

Heating Design Temperature = 4.1 °C Cooling Design Temperature = 31.1 °C

Volume

$$V_{infiltration_{heating}} = A_L \times IDF_{heating} = 481.6 \times 0.065 = 31.304 \frac{L}{s}$$

 $V_{infiltration_{cooling}} = A_L \times IDF_{cooling} = 481.6 \times 0.0317 = 15.266 \frac{L}{s}$

Ventilation

$$\begin{split} \dot{v}_v &= 0.05 \, A_{cf} + 3.5 \, (N_{br} + 1) = 0.05(200) + 3.5(1 + 1) = 17 \, \frac{L}{s} \\ \dot{Q}_{infiltration_{heating}} &= 31.304 + 17 = 48.304 \, \frac{L}{s} \\ \dot{Q}_{infiltration_{cooling}} &= 15.266 + 17 = 32.266 \, \frac{L}{s} \end{split}$$

$$\dot{Q}_{inf-ventilation_{heating_{sensible}}} = C_{sensible} \; \dot{v} \; \Delta T_{heating} = 1.23 \; \text{X 48.304 X (20-4.1)} = 944.681 \; \text{W}$$

$$\dot{Q}_{inf-ventilation_{cooling_{sensible}}} = C_{sensible} \; \dot{v} \; \Delta T_{cooling} = 1.23 \; \text{X 32.266 X (31.1-24)} = 281.779 \; \text{W}$$

For latent load calculation, we need $\Delta\omega_{cooling}$ Refer to psychometric chart (DB = 31.1°C, WB = 24.3°C

$$\omega_{out}=0.016$$

 $\omega_{in}=0.0093$

 $\Delta\omega_{cooling} = 0.0067$

Therefore,

$$\dot{Q}_{inf-ventilation_{cooling}_{latent}} = C_{latent} \; \dot{v} \; \Delta \omega_{cooling} = 3010 \; \text{X} \; 32.266 \; \text{X} \; 0.0067 = 650.708 \; \text{W}$$