Analyse

Chapitre 2 : Dualité

Lucie Le Briquer

7 novembre 2018

Table des matières

1	Hilbert	2
2	Théorème de Hahn-Banach	9
3	Convergence faible et convergence faible *	16

1 Hilbert

Dans la suite on se placera dans H un \mathbb{K} -ev avec $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} , on utilisera la notation \bar{z} qui dans \mathbb{R} donne $\bar{z} = z$.

Définition 1 (produit scalaire) -

Un produit scalaire est une application de $H \times H \longrightarrow \mathbb{R}$ notée (.,.) ou $\langle .,. \rangle$, telle que :

1.
$$(x,x) \ge 0$$
, $(x,x) = 0 \Rightarrow x = 0$

2.
$$(x, \lambda y + \mu z) = \lambda(x, y) + \mu(x, z)$$
 pour tout $x, y, z \in H, \lambda, \mu \in \mathbb{K}$

3.
$$(x,y) = \overline{(y,x)} \Rightarrow (\lambda x + \mu y, z) = \overline{\lambda}(x,z) + \overline{\mu}(y,z)$$

- **Théorème 1** (Cauchy-Schwarz) -----

Soit H un $\mathbb{K}-\text{ev}$ quel conque, (.,.) produit scalaire. Pour tout $x,y\in H,$

$$|(x,y)| \leqslant \sqrt{(x,x)}\sqrt{(y,y)}$$

Preuve.

Soit $\lambda \in \mathbb{K}$, $|\lambda| = 1$. On a :

$$0 \leqslant \left\| \|y\|x - \lambda \|x\|y \right\|^2$$

où $||z|| = \sqrt{(z,z)}$.

$$\begin{aligned} \left\| \|y\|x - \lambda \|x\|y \right\|^2 &= (y\|x - \lambda \|x\|y, \|y\|x - \lambda \|x\|y) \\ &= \|y\|^2 \|x\|^2 + \|x\|^2 \|y\|^2 - \|x\| \|y\| \{(x, \lambda y) + (\lambda y, x)\} \\ &= 2\|x\| \|y\| (\|x\| \|y\| - \Re(x, \lambda y)) \end{aligned}$$

Donc,

$$||x||||y|| \geqslant \Re(x, \lambda y)$$

Prenons $\lambda = \frac{\overline{(x,y)}}{|(x,y)|},$ de sorte que $(x,\lambda y) = |(x,y)|.$ D'où le résultat.

Remarque. Cas d'égalité trivial.

Corollaire 1

- 1. $||x|| := \sqrt{(x,x)}$ est une norme.
- 2. $||x + y||^2 + ||x y||^2 = 2||x||^2 + 2||y||^2$

1. •
$$||x|| = 0 \Rightarrow x = 0$$

$$\bullet \ \|\lambda x\| = |\lambda| \|x\|$$

•

$$||x + y||^2 = (x + y, x + y) = ||x||^2 + ||y||^2 + 2\Re(x, y)$$

$$\lesssim ||x||^2 + ||y||^2 + 2||x|| ||y|| = (||x|| + ||y||)^2$$
C.S.

2.

$$||x + y||^2 + ||x - y||^2 = (x + y, x + y) + (x - y, x - y)$$

$$= ||x||^2 + ||y||^2 + 2\Re(x, y)$$

$$+ ||x||^2 + ||y||^2 - 2\Re(x, y)$$

$$= 2||x||^2 2||y||^2$$

- **Définition 2** (espace de Hilbert) —

H est un espace de Hilbert si c'est un \mathbb{K} -ev muni d'un produit scalaire et s'il est complet pour $\|\cdot\| = \sqrt{(\cdot,\cdot)}$.

Exemples.

• \mathbb{R}^d avec $(x,y) = \sum_{i=1}^d x_i y_i$

• $l^2(\mathbb{N}) = (c_n)_{n \in \mathbb{N}}$ tels que $\sum_{n \in \mathbb{N}} |c_n|^2 < +\infty$

• $L^2(\mathbb{R}^d), L^2(\Omega)$

• $H^1(\Omega)$ Sobolev

- Proposition 1 -

Soit H un Hilbert, $A \subset H$ convexe et fermée.

$$\exists ! a \in A, \ \|a\| = \inf_{x \in A} \|x\|$$

Preuve.

 $\exists (x_n)_{n\in\mathbb{N}}, \ \|x_n\| \xrightarrow[n\to+\infty]{} m := \inf_A \|x\|$. Montrons que $(x_n)_{n\in\mathbb{N}}$ converge. Montrons donc que $(x_n)_{n\in\mathbb{N}}$ est de Cauchy. On souhaite estimer $\|x_n-x_p\|$.

$$||x_n + x_p||^2 + ||x_n - x_p||^2 = 2||x_n||^2 + 2||x_p||^2$$

$$||\frac{x_n + x_p}{2}||^2 + ||\frac{x_n - x_p}{2}||^2 = \frac{||x_n||^2 + ||x_p||^2}{2}$$

A est convexe donc $\frac{x_n+x_p}{2}\in A,$ donc la norme de cet élément $\geqslant m.$ Ainsi :

$$m^{2} + \left\| \frac{x_{n} - x_{p}}{2} \right\|^{2} \leqslant \frac{\|x_{n}\|^{2} + \|x_{p}\|^{2}}{2}$$

 $n \longrightarrow +\infty$, $p \longrightarrow +\infty$ à droite $\longrightarrow \frac{m^2}{2} + \frac{m^2}{2} = m^2$. Donc $||x_n - x_p|| \le \varepsilon$ pour $n \ge N$, $p \ge N$. Donc $(x_n)_{n \in \mathbb{N}}$ converge. A fermée $\Rightarrow \lim x_n \in A$ et $||\lim x_n|| = \inf_A ||x||$.

Théorème 2

Soit F un s.e.v. fermé de H. Il existe $P_F \colon H \longrightarrow F$ telle que $||x - P_F(x)|| = \operatorname{dist}(x, F)$ et $x - P_F(x) \in F^{\perp}$ où :

$$F^{\perp} = \{ y \in H : (y, x) = 0 \ \forall x \in F \}$$

- Corollaire 2 -

- 1. Si F est un s.e.v. fermé alors $H = F \oplus F^{\perp}$.
- 2. Si F est un s.e.v. quelconque alors $(F^{\perp})^{\perp} = \overline{F}$
- 3. Si F est un s.e.v. quel conque alors $\overline{F}=H$ ssi $F^{\perp}=\{0\}$.

- **Théorème 3** (Riesz-Fréchet) -

Soit H un espace de Hilbert. $\forall \varphi \in H', \exists ! f \in H$ tel que $\forall v \in H, \varphi(v) = (f, v)$. (où $H' = H^*$ est le dual topologique)

Preuve.

Soit $f \in H$. On pose $\Theta_f(v) = (f, v)$.

$$|\Theta_f(x)| = |(f, v)| \le ||f|| ||v|| \quad \text{donc } \Theta_f \in H'$$

On veut montrer que $\exists f \in H$ tel que $\varphi = \Theta_f$. Si $\varphi = 0$ alors $\varphi = \Theta_0$. Si $\varphi \neq 0$ introduisons $F = \ker(\varphi)$. F est fermé car φ est continue. Donc $H = F \oplus F^{\perp}$.

Montrons que F^{\perp} est de dimension 1. Soit $x,y\in F^{\perp},\ x\neq 0$ et $y\neq 0$. On pose $z=y-\frac{\varphi(y)}{\varphi(x)}x$. $\varphi(x)\neq 0$ car $x\in F^{\perp}$ et $x\neq 0\Rightarrow x\notin F\Rightarrow \varphi(x)\neq 0$. On a $\varphi(z)=0$ donc $z\in F=\ker(\varphi)$. Mais on a aussi $z\in F^{\perp}$ puisque $y\in F^{\perp},\ x\in F^{\perp}$ et F^{\perp} s.e.v.

Finalement $z \in F \cap F^{\perp} = \{0\}$, donc z = 0 ainsi $y = \lambda x \Rightarrow F^{\perp} = \mathbb{K}x$.

On choisit ensuite $f \in F^{\perp}$ tel que $\varphi(f) = ||f||^2$, alors $\varphi(f) = (f, f)$. Donc $\varphi = \theta_f$ sur F^{\perp} et $\varphi = \theta_f$ sur F (=0). Finalement $\varphi = \theta_f$ sur H.

Définition 3 (convergence faible) —

 $(x_n)_{n\in\mathbb{N}}$ suite dans un espace de Hilbert. On dit que (x_n) converge faiblement vers x si

$$\forall \varphi \in H' \ \varphi(x_n) \xrightarrow[n \to +\infty]{} \varphi(x)$$

$$\Leftrightarrow \forall f \in H, \ (f, x_n) \xrightarrow[n \to +\infty]{} (f, x)$$

On note $x_n \rightharpoonup x$.

Remarque.

- $||x_n x|| \xrightarrow[n \to +\infty]{} 0 \Rightarrow x_n \rightharpoonup x$ si $x_n \rightharpoonup 0$, alors (x_n) est bornée (Banach-Steinhaus)

Exemple. $e_n: x \mapsto e^{inx}, n \in \mathbb{N}. e_n \to 0 \text{ dans } H = L^2(S^1)$ puisque

$$\forall f \in L^2(S^1), \ (f, e_n) = \int_0^{2\pi} f(x)e^{-inx}dx \xrightarrow[n \to +\infty]{} 0$$

Rappels 1

La boule unité n'est pas compacte en dimension infinie.

Théorème 4

Soit H un espace de Hilbert. De toute suite bornée on peut extraire une sous-suite faiblement convergente.

Preuve.

Soit (x_n) une suite bornée. Alors $(x_0, x_n)_{n \in \mathbb{N}}$ est bornée dans \mathbb{K} . Donc $\exists \theta_0$ croissante, $\theta_0 : \mathbb{N} \longrightarrow \mathbb{N}$ telle que $(x_0, x_{\theta_0(n)})$ converge.

 $(x_1, x_{\theta_0(n)})$ est bornée $\Rightarrow \exists \theta_1 \dots$

On construit $(x_k, x_{\theta_0 \circ \dots \circ \theta_k(n)})_n$ qui converge.

Principe d'extraction diagonale, on pose :

$$y_n = x_{\theta_0 \circ \dots \circ \theta_n(n)}$$

Alors $(x_k, y_n)_n$ converge pour tout k. Donc $(x, y_n)_n$ converge pour tout $x \in \text{Vect}\{x_k : k \in \mathbb{N}\}$ noté E. Notons U(x) la limité de $\overline{(x,y_n)}$ pour $x \in E$. $U: E \longrightarrow \mathbb{K}$ est linéaire.

$$|U(x)| \le \left(\sup_{n \in \mathbb{N}} ||y_n||\right) ||x||$$

$$\le \left(\sup_{n \in \mathbb{N}} ||x_n||\right) ||x||$$

$$<+\infty \text{ par hyp}$$

On peut alors étendre U qui est uniformément continue sur $U \colon \overline{E} \longrightarrow \mathbb{K}$.

 $(\overline{E},(.,.))$ s.e.v fermé dans un Hilbert, est un Hilbert. Par Riesz-Fréchet, $\exists f\in\overline{E}$ tel que :

$$U(x) = (f, x) \ \forall x \in \overline{E}$$

Ainsi sur \overline{E} , $(y_n, x) \longrightarrow (f, x)$, sur \overline{E}^{\perp} , $0 \longrightarrow 0$. Donc sur $H = \overline{E} \oplus \overline{E}^{\perp}$ on a:

$$(y_n, x) \xrightarrow[n \to +\infty]{} (f, x)$$

- **Propriété 1** (inégalité de Bessel) —

 $(e_n)_{n\in\mathbb{N}}$ telle que $(e_n,e_m)=\delta_n^m.\ \forall f\in H,$

$$\sum_{n=0}^{+\infty} |(f, e_n)|^2 \leqslant ||f||^2$$

Preuve.

Posons $S_N f = \sum_{n=0}^N \overline{(f, e_n)} e_n$. On a :

1.

$$||S_N f||^2 = \left(\sum_{n \in \mathbb{N}} \overline{(f, e_n)} e_n, \sum_{m \in \mathbb{N}} \overline{(f, e_m)} e_m\right)$$
$$= \sum_n \sum_m \overline{(f, e_n)} \overline{(f, e_n)} (e_n, e_m)$$
$$= \sum_n |(f, e_n)|^2$$

2.

$$(S_N f, f) = \left(\sum_{n \in \mathbb{N}} \overline{(f, e_n)} e_n, f\right)$$
$$= \sum_{n \in \mathbb{N}} \overline{\overline{(f, e_n)}} (e_n, f)$$
$$= \sum_{n \in \mathbb{N}} |(f, e_n)|^2$$

Donc $||S_N f||^2 = (S_N f, f) \leqslant ||S_N f|| ||f||$, ainsi $||S_N f|| \leqslant ||f||$. donc :

$$||S_N f||^2 = \sum_{n=0}^N |(f, e_n)|^2 \le ||f||^2$$

puis passage à la limite.

Théorème 5

Soit H un espace de Hilbert. Soit $(e_n)_{n\in\mathbb{N}}$ telle que $(e_n,e_m)=\delta_n^m$. On a équivalence entre :

- 1. Vect $\{e_n : n \in \mathbb{N}\}$ est dense
- 2. $\forall f \in H, \|f\|^2 = \sum_{n=0}^{+\infty} |(f, e_n)|^2$
- 3. $\forall f \in H$, $\left(\sum_{n \leqslant N} (e_n, f) e_n\right)_N$ converge vers f
- 4. $\forall f \in H \text{ si } (f, e_n) = 0 \text{ pour tout } n \text{ alors } f = 0$

- **Définition 4** (base hilbertienne) -

Une telle famille $(e_n)_{n\in\mathbb{N}}$ est appelée base Hilbertienne.

Preuve.

- $(3) \Rightarrow (1) : immédiat$
- $(3) \Rightarrow (4) : \text{immédiat}$
- $(2)\Rightarrow (3):$ on a vu que $(S_Nf,f)=\|S_Nf\|^2,$ donc $\|f-S_Nf\|^2=\|f\|^2-\|S_Nf\|^2$
- $(1) \Rightarrow (2)$: exercice
- $(4) \Rightarrow (3)$: on pose $a_n = (e_n, f)$ et $S_N f = \sum_{n=0}^{N} a_n e_n$. On a:

$$||S_{N'}f - S_Nf||^2 = \sum_{N+1}^{N'} |a_n|^2$$

Par Bessel on a $(a_n) \in l^2$ alors $S_N f$ est de Cauchy. Comme on est dans un Hilbert, $S_N f$ converge, notons f' la limite. On a :

$$(e_n, f') = a_n \quad \operatorname{car}(e_n, S_N f) = a_n \quad \operatorname{pour} N > n$$

Donc $(e_n, f') = (e_n, f) \ \forall n \Rightarrow f' - f = 0 \ \text{par} \ (4)$. Donc $S_N f$ converge vers f.

Théorème 6

 $e_n\colon x\mapsto e^{in\cdot x}\ n\in\mathbb{Z}^d$ où $n\cdot x=n_1x_1+\ldots+n_dx_d$. $(e_n)_{n\in\mathbb{Z}^d}$ est une base Hilbertienne de $L^2(\mathbb{T}^d)$

Remarque. $L^2(\mathbb{T}^d)$ est l'ensemble des fonctions de $\mathbb{R}^d \longrightarrow \mathbb{C}$ 2π -périodiques par rapport à chaque variable,

$$\int_{[0,2\pi]^d} |f(x)|^2 dx < +\infty$$

Espace quotienté par équivalence presque partout.

$$\mathbb{T}^1 = S^1$$
 le cercle, $\mathbb{T}^d = S^1 \times \dots S^d$

 $(e^{in\cdot x})_{\mathbb{Z}^d}$ base Hilbertienne de \mathcal{L}^2 . On utilise (4). Montrons que si $(f, e_n) = 0$ pour tout $n \in \mathbb{Z}^d$ alors f = 0. Il suffit alors de démontrer que les polynômes trigonométriques $\mathrm{Vect}\{e_n, n \in \mathbb{Z}^d\}$ sont denses dans $\mathcal{L}^2(\mathbb{T}^d)$. En effet, si c'est vrai, alors $(f, e_n) = 0 \Rightarrow (f, P) = 0 \ \forall P \in \mathrm{Vect}\{e_n\} \Rightarrow (f, f) = 0 \Rightarrow f = 0$.

En fait il suffit de montrer que $\text{Vect}\{e_n\}$ dense dans $\mathcal{C}^0(\mathbb{T}^d,\mathbb{C})$ pour la norme $\|.\|_{\infty} = \sup_{\mathbb{T}^d} |f(x)|$ car $(\mathcal{C}^0,\|.\|_{\infty})$ dense dans $\mathcal{L}^2(\mathbb{T}^d)$. Ce qui suit de Stone-Weierstrass (cf. TD).

Corollaire 3 -

Soit $f \in L^2(\mathbb{T}^d)$. Pour tout $n \in \mathbb{Z}^d$ on introduit :

$$\hat{f}(n) = (e_n, f) = \frac{1}{(2\pi)^d} \int f(x)e^{-in\cdot x} dx$$

 $(g,f) = \frac{1}{(2\pi)^d} \int \overline{g(x)} f(x) dx$. Alors $S_N f = \sum_{|n| \leq N} \hat{f}(n) e_n$ converge vers f dans $L^2(\mathbb{T}^d)$. De plus,

$$\frac{1}{(2\pi)^d} \int |f(x)|^2 dx = \sum_{n \in \mathbb{Z}^d} |\hat{f}(n)|^2$$

Preuve.

Théorème + définition base Hilbertienne.

Proposition 2

Il existe une fonction continue périodique telle que sa série de Fourier diverge en 0.

Preuve.

 $f: \mathbb{R} \longrightarrow \mathbb{C} \ 2\pi$ -périodique.

$$S_N f = \sum_{n=-N}^{N} \hat{f}(n)e^{inx}$$
 série de Fourier de f

$$S_N f = \frac{1}{2\pi} \sum_{n=-N}^{N} \left(\int_0^{2\pi} f(y) e^{-iny} dy \right) e^{inx}$$

On peut réécrire :

$$S_N f(x) = \int_0^{2\pi} D_N(x - y) f(y) dy$$

où
$$D_N(x) = \sum_{n=-N}^{N} \frac{1}{2\pi} e^{inx} = \frac{1}{2\pi} \frac{\sin((N+\frac{1}{2})x)}{\sin(\frac{x}{2})}.$$

On montre qu'il existe f telle que $(S_N f)(x=0)$ ne converge pas. Il suffit de montrer qu'il existe f telle que $((S_N f)(0))_N$ est non bornée. Introduisons :

$$l_N \colon \left\{ \begin{array}{ccc} \mathcal{C}^0 & \longrightarrow & \mathbb{C} \\ f & \longmapsto & (S_N f)(0) \end{array} \right.$$

Les (l_n) sont des formes linéaires continues. On veut $(l_N(f))$ non bornée $\Leftrightarrow (l_N)_N$ n'est pas simplement bornée. D'après Banach-Steinhaus, il suffit donc de montrer que (l_N) n'est pas bornée dans \mathcal{C}^{0*} .

Montrons que $||l_N||_{\mathcal{L}(\mathcal{C}^0,\mathbb{C})}$ est non bornée.

$$l_N(f) = (S_N f)(0) = \int_0^{2\pi} D_N(-y) f(y) dy$$
$$= \int_0^{2\pi} D_N(y) f(y) dy$$

Donc $|l_N(f)| \leq ||D_N||_{\mathcal{L}^1} ||f||_{\mathcal{L}^{\infty}}$. Donc $||l_N||_{\mathcal{L}(\mathcal{C}^0,\mathbb{C})} \leq ||D_N||_{\mathcal{L}^1}$. Posons :

$$f_{\varepsilon} = \frac{D_N}{|D_N| + \varepsilon} \in \mathcal{C}^0$$

Pour $\varepsilon \longrightarrow 0$, $l_n(f_{\varepsilon}) \xrightarrow[\varepsilon \to +\infty]{} \int_0^{2\pi} |D_N(y)| dy, \forall N$. Ainsi:

$$||l_N||_{\mathcal{L}(\mathcal{C}^0,\mathbb{C})} = ||D_N||_{\mathcal{L}^1}$$

Or $||D_N||_{\mathcal{L}^1} \xrightarrow[N \to +\infty]{} +\infty$. En effet :

$$||D_N||_{\mathcal{L}^1} = \frac{1}{2\pi} \int_0^{2\pi} \frac{\left|\sin\left(\left(N + \frac{1}{2}\right)x\right)\right|}{\left|\sin\left(\frac{x}{2}\right)\right|} dx$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\left|\sin\left(\left(N + \frac{1}{2}\right)x\right)\right|}{\left|\sin\left(\frac{x}{2}\right)\right|} dx$$

$$= \frac{1}{\pi} \int_0^{\pi} \frac{\left|\sin\left(\left(N + \frac{1}{2}\right)x\right)\right|}{\left|\sin\left(\frac{x}{2}\right)\right|} dx$$

$$\geqslant \frac{1}{\pi} \int_0^{\pi} \frac{\left|\sin\left(\left(N + \frac{1}{2}\right)x\right)\right|}{\frac{x}{2}} dx$$

Donc finalement,

$$||D_N||_{\mathcal{L}^1} \geqslant \frac{2}{\pi} \int_0^{\left(N + \frac{1}{2}\right)\pi} \frac{|\sin(y)|}{|y|} dy \xrightarrow[N \to +\infty]{} +\infty$$

2 Théorème de Hahn-Banach

Résultats d'existence de formes linéaires continues.

Lemme 1

 $(X,d),\,(Y,\delta)$ deux espaces métriques. D dense dans $X,\,g\colon D\longrightarrow Y$ uniformément continue, (Y,δ) complet. Alors il existe $\tilde{g}\colon X\longrightarrow Y$ continue telle que $\tilde{g}|_D=g$.

Preuve. Vue en TD.

Théorème 7 (Hahn-Banach) -

Soit E un \mathbb{R} —ev normé, $F \subset E$ un s.e.v. et $f \colon F \longrightarrow \mathbb{R}$ une forme linéaire continue. Alors il existe $g \colon E \longrightarrow \mathbb{R}$ linéaire continue telle que $g|_F = f$ et $||g||_{E^*} = ||f||_{F^*}$.

Remarque. Il y a des généralisations, voir [Brézis]

Preuve.

On suppose de plus que E est séparable ; il existe une famille $\{e_n\}_{n\in\mathbb{N}^*}$ dense dans E. On introduit $\{F_n\}_{n\in\mathbb{N}}$ s.e.v. de E définis par :

$$F_0 = F$$
 $F_n = \text{Vect}(F \cup \{e_1, \dots, e_n\})$

 $F_n \subset F_{n+1}$ mais $(F_n = F_{n+1}$ "souvent").

On veut une suite $f_n \colon F_n \longrightarrow \mathbb{R}$ telle que $f_0 = f$, $f_n|_{F_{n-1}} = f_{n-1}$ et $||f_n||_{F_n^*} = ||f_{n-1}||_{F_{n-1}^*}$. On pose ensuite $g(x) = f_n(x)$ si $x \in F_n$.

Remarque. X' ou X^* est le dual topologique : $\lambda \in X^*$ ssi $\lambda \colon X \longrightarrow \mathbb{K}$, λ linéaire continue $\|\lambda\|_{X^*} = \sup_{\|x\|_X \leqslant 1} |\lambda(x)| < +\infty$.

On construit (f_n) par récurrence :

- Si $F_n = F_{n-1}$ alors on pose $f_n = f_{n-1}$
- Sinon, dans ce cas $e_n \notin F_{n-1}$, et on peut décomposer $u \in F_n$ sous la forme :

$$u = x + te_n, \ x \in F_{n-1}, \ t \in \mathbb{R}$$

On cherche f_n sous la forme $f_n(u) = f_{n-1}(x) + ta_n$, $a_n \in \mathbb{R}$. f_n forme linéaire, $f_n|_{F_{n-1}} = f_{n-1}$ et f_n continue. Il faut montrer que l'on peut choisir a_n tel que $||f_n||_{F_n^*} = ||f_{n-1}||_{F_{n-1}^*}$. Par la propriété de restriction on a déjà $||f_n||_{F_n^*} \ge ||f_{n-1}||_{F_{n-1}^*}$. Montrons donc que :

$$\begin{split} & \|f_n\|_{F_n^*} \leqslant \|f_{n-1}\|_{F_{n-1}^*} \\ \Leftrightarrow & \forall u \in F_n, \ |f_n(u)| \leqslant \|f_{n-1}\|_{F_{n-1}^*} \|\|u\| \\ \Leftrightarrow & \forall x \in F_{n-1}, \ \forall \tau \in \mathbb{R}, \ |f_{n-1}(x) + \tau a_n| \leqslant \|f_{n-1}\|_{F_{n-1}^*} \|x + \tau e_n\| \\ \Leftrightarrow & \forall x \in F_{n-1}, \ \forall t > 0, \ \left\{ \begin{array}{l} f_{n-1}(x) + ta_n \leqslant \|f_{n-1}\|_{F_{n-1}^*} \|x + te_n\| \\ f_{n-1}(x) - ta_n \leqslant \|f_{n-1}\|_{F_{n-1}^*} \|x - te_n\| \end{array} \right. \end{split}$$

 $(x \in F_{n-1} \text{ ssi } -x \in F_{n-1})$. Comme $t^{-1}F_{n-1} = F_{n-1}$, on a :

$$\Leftrightarrow \forall w \in F_{n-1}, \begin{cases} f_{n-1}(w) + a_n \leqslant \|f_{n-1}\|_{F_{n-1}^*} \|w + e_n\| \\ f_{n-1}(w) - a_n \leqslant \|f_{n-1}\|_{F_{n-1}^*} \|w - e_n\| \end{cases}$$

$$\Leftrightarrow \begin{cases} a_n \leqslant M_n \\ a_n \geqslant m_n \end{cases} \text{ où } \begin{cases} M_n = \inf_{w \in F_{n-1}} \left\{ \|f_{n-1}\| \|w + e_n\| - f_{n-1}(w) \right\} \\ m_n = \sup_{w' \in F_{n-1}} \left\{ f_{n-1}(w') - \|f_{n-1}\| \|w' - e_n\| \right\} \end{cases}$$

Or $\forall w, w' \in F_{n-1}$,

$$f_{n-1}(w) + f_{n-1}(w') = f_{n-1}(w + w') \leqslant ||f_{n-1}|| ||w + w'|| \leqslant \ldots \leqslant ||f_{n-1}|| \{ ||w + e_n|| + ||w' - e_n|| \}$$

Donc.

$$|f_{n-1}(w') - ||f_{n-1}|| ||w' - e_n|| \le ||f_{n-1}|| ||w + e_n|| - f_{n-1}(w)$$

Puis en passant au sup en w' et à l'inf en w on a finalement $m_n \leq M_n$. Ainsi le nombre $a_n = m_n$ convient.

- **Définition 5** (relation d'ordre) -

Soit E un ensemble non vide. \leq est une relation d'ordre si c'est une relation binaire sur E, réflexive, antisymétrique et transitive.

– **Définition 6** (totalement ordonné) —

 (E,\preceq) est totalement ordonné si tous les éléments de E sont comparables :

$$\forall x, y$$
, on a $x \leq y$ ou $y \leq x$

Exemple. $E=\{\emptyset, C_0^\infty(\mathbb{R}), L^1(\mathbb{R}), L^2(\mathbb{R})\}$ est ordonné pour l'inclusion $x \leq y$ si $x \in y$ mais pas totalement ordonné.

Définition 7

 (E, \preceq) est inductif si toute partie totalement ordonnée admet un majorant.

- **Lemme 2** (Zorn) -

Tout ensemble ordonné, inductif admet un élément majorant.

Preuve. Admis.

Preuve. (de Hahn-Banach à partir du lemme de Zorn)

On introduit $\mathcal P$ l'ensemble des prolongements possibles de f; un élément de $\mathcal P$ est un couple $(\tilde F,\tilde f)$ tel que :

- 1. $\tilde{F} \subset E$, s.e.v., $F \subset \tilde{F}$
- 2. $\tilde{f} \colon \tilde{F} \longrightarrow \mathbb{R}$ linéaire continue et $\|\tilde{f}\| = \|f\|$

Alors:

- \mathcal{P} est non vide puisque $(F, f) \in \mathcal{P}$
- \mathcal{P} est ordonné pour la relation \leq définie par :

$$(G_1,g_1) \preceq (G_2,g_2)$$
ssi $G_1 \subset G_2$ et $g_2|_{G_1} = g_1$

• \mathcal{P} est inductif car si $(G_{\alpha}, g_{\alpha})_{\alpha \in A}$ est une partie totalement ordonnée, on pose :

$$\left\{ \begin{array}{l} G = \bigcup_{\alpha \in A} G_{\alpha} \\ g \colon G \longrightarrow \mathbb{R}, \ x \longmapsto g_{\alpha}(x) \text{ si } x \in G_{\alpha} \end{array} \right.$$

D'après le lemme de Zorn, il existe un élément maximal (G,g). Alors G=E. Sinon il existerait $e \in E \backslash G$ et on pourrait définir \hat{f} sur $G \oplus \mathbb{R}e$ comme précédemment, qui prolonge g, absurde.

Remarque. En fait on a montré un résultat plus général :

Théorème 8 -

 $E \mathbb{R}-\text{e.v.}, \rho \colon E \longrightarrow [0, +\infty[\text{ telle que } :$

- $\rho(x+y) \le \rho(x) + \rho(y) \ x, y \in E$, $\rho(\lambda x) = \lambda \rho(x) \text{ pour } x \in E, \lambda > 0$

Soit $f: F \longrightarrow \mathbb{R}$ forme linéaire avec F s.e.v. telle que $f(x) \leq \rho(x), \ \forall x \in F$. Alors il existe $\widetilde{f} \colon E \longrightarrow \mathbb{R}$ linéaire telle que $\widetilde{f}|_F = f$ et $\widetilde{f}(x) \leqslant \rho(x) \ \forall x \in E$.

Preuve. Remplacer $\|.\|$ par ρ dans la démonstration précédente.

 $E \mathbb{R}$ -e.v.n., $u \in E$, $u \neq 0$. Il existe $l \in E^*$ tel que $||l||_{E^*} = 1$ et l(u) = ||u||. En particulier :

$$||u|| = \sup_{l \in E^*, ||l||_{E^*} = 1} |l(u)|$$

Preuve.

 $F = \mathbb{R}u$

$$f \colon \left\{ \begin{array}{ccc} F & \longrightarrow & \mathbb{R} \\ tu & \longmapsto & t \|u\| \end{array} \right.$$

D'après Hahn-Banach, il existe $l: E \longrightarrow \mathbb{R}$ telle que $l|_F = f$ et $||l||_{E^*} = ||f||_{F^*}$. Donc :

$$||l||_{E^*} = \sup_{x \in F, x \neq 0} \frac{|f(x)|}{||x||_F} = \sup_{t \in \mathbb{R}^*} \frac{t||u||}{||tu||} = 1$$

$$l(u) = f(u) = ||u||.$$

Corollaire 5

 $E \mathbb{R}$ -e.v.n., F un s.e.v. fermé. Soit $u \in E \backslash F$. Il existe $l \in E^*$ telle que :

$$\begin{cases} l(u) = 1 \\ l(w) = 0 \quad \forall w \in F \end{cases}$$

On introduit l'espace quotient E/F et la norme quotient (rappel : E/F est l'ensemble des classes d'équivalence pour la relation d'équivalence. $v \sim w$ ssi $v - w \in F$). Alors :

$$\dot{v} = \{ w \in F \mid v \sim w \} = v + F = \{ v + x \; ; \; x \in F \}$$

On pose:

$$\|\dot{v}\|_{E/F} = \inf_{w \in \dot{v}} \|w\|_{E}$$

Alors,

$$\|\dot{w}\|_{E/F} = \inf_{x \in F} \|w + x\|_E = \inf_{x \in F} \|w - x\|_E = \operatorname{dist}(w, F)$$

On vérifie que c'est une norme. On définit :

$$f \colon \left\{ \begin{array}{ccc} \mathbb{R} \dot{u} & \longrightarrow & \mathbb{R} \\ t \dot{u} & \longmapsto & t \end{array} \right.$$

Alors f est continue et d'après Hahn-Banach il existe $\tilde{l} : E/F \longrightarrow \mathbb{R}$ qui prolonge f avec $\|\tilde{l}\|_{(E/F)^*} = \|f\|$. On définit ensuite $l : E \longrightarrow \mathbb{R}$ par $l(v) = \tilde{l}(\dot{v})$. Alors $l(u) = \tilde{l}(\dot{u}) = f(\dot{u}) = 1$ et si $w \in F$, $l(w) = \tilde{l}(\dot{0}) = 0$. De plus, l est continue car :

$$|l(v)| = |\tilde{l}(\dot{v})| \le ||\tilde{l}|| ||\dot{v}|| \le ||\tilde{l}|| ||v||$$

car $||\dot{v}|| = \text{dist}(v, F) \leq ||v||$ puisque $0 \in F$. Donc :

$$\sup_{v \neq 0} \frac{|l(v)|}{\|v\|} < +\infty \implies l \text{ continue}$$

Corollaire 6

 $E \mathbb{R}$ -e.v.n. et $F \subset E$ s.e.v. Alors F est dense si et seulement si :

$$\forall l \in E^*, \ l|_F = 0 \Leftrightarrow l = 0$$

 ${\bf Preuve.}\ {\bf Imm\'ediat}.$

Remarque. Généralise F s.e.v. de H Hilbert dense ssi $F^{\perp} = \{0\}$.

Proposition 3 -

Soit (a_n) une suite de nombres réels dans $]1, +\infty[$ telle que $a_n \xrightarrow[n \to +\infty]{} +\infty.$ On introduit $f_{a_n} \in C^0([0,1])$ définie par $f_{a_n}(x) = \frac{1}{x-a_n}$. Alors,

$$\operatorname{Vect}\{f_{a_n}:n\in\mathbb{N}\}\ \text{est dense dans}\ C^0([0,1])$$

Remarque : $C^0([0,1])$ est séparable. Soit μ une forme linéaire continue $C^0([0,1])^*$ telle que $\mu(f_{a_n})=0$, montrons que $\mu=0$. La série $\sum_{k\geqslant 0}\frac{x^k}{a_n^k}$ converge normalement sur [0,1] vers $\frac{1}{1-\frac{x}{a_n}}=-a_nf_{a_n}(x)$. Donc :

$$\sum_{k \ge 0} \frac{\mu(x \mapsto x^k)}{a_n^k} = 0$$

 $\mu(\sum) = \sum (\mu)$ car convergence normale. Posons $\varphi(z) = \sum_{k \in \mathbb{N}} \mu(x \mapsto x^k) z^k$. La suite $|\mu(x \mapsto x^k)|$ est bornée par :

$$\|\mu\|\|x\mapsto x^k\|_{C^0([0,1])} = \|\mu\| \times 1 = \|\mu\|$$

Donc φ est holomorphe sur $\{|z| < 1\}$. Par ailleurs :

$$\varphi\left(\frac{1}{a_n}\right) = \sum_{k>0} \frac{\mu(x \mapsto x^k)}{a_n^k} = 0$$

Comme $\frac{1}{a_n} \xrightarrow[n \to +\infty]{} 0$ on a nécessairement $\varphi \equiv 0$ (théorème des 0 isolés). Donc $\mu(x \mapsto x^k) = 0$ $\forall k \in \mathbb{N}$. Or $\text{Vect}\{x \mapsto x^k : k \in \mathbb{N}\}$ est dense (Weierstrass) dans $C^0([0,1])$. Donc $\mu \equiv 0$.

– **Théorème 9** (Hahn-Banach géométrique) —

 $E \mathbb{R}$ -e.v.n. A, B convexes, non vides et $A \cap B = \emptyset$.

1. Si A est ouvert, il existe $f \in E^* \setminus \{0\}$ telle que :

$$\sup_A f \leqslant \inf_B f$$

(séparation par un hyperplan)

2. Si A est fermé et B compact, $\exists f \in E^*$ telle que :

$$\sup_{\Delta} f < \inf_{B} f$$

Preuve.

1. (a) A ouvert, $0 \in A$, $B = \{u\}$ singleton. On note μ la jauge de Minkowski :

$$\mu(x) = \inf\{t > 0 : x \in tA\}$$

Alors (déjà vu),

i.
$$\mu(x+y) \le \mu(x) + \mu(y) \ (x, y \in E)$$

ii.
$$\mu(\lambda x) = \lambda \mu(x) \ (\lambda \geqslant 0, x \in E)$$

iii.
$$A = \mu^{-1}([0,1[)$$

On introduit \tilde{f} : $\left\{ \begin{array}{ccc} \mathbb{R}u & \longrightarrow & \mathbb{R} \\ tu & \longmapsto & t \end{array} \right.$ Alors \tilde{f} est une forme linéaire sur $\mathbb{R}u$ et :

$$\tilde{f}(tu) \leqslant \mu(tu)$$

car pour t > 0, $\tilde{f}(tu) = t \leqslant t\mu(u) = \mu(tu)$ puisque $\mu(u) \geqslant 1$ puisque $u \notin A$ car $A \cap B = \emptyset$. Pour t < 0, évident puis $\tilde{f}(tu) \leqslant 0$ et $\mu(tu) \geqslant 0$.

D'après la version de Hahn-Banach Théorème 8, il existe $f: E \longrightarrow \mathbb{R}$ telle que f est linéaire, $f|_{\mathbb{R}u} = \tilde{f}$ et $f(x) \leqslant \mu(x) \ \forall x \in E$. Alors $\forall x \in A$, on a $f(x) \leqslant \mu(x) \leqslant 1 = f(u)$, donc $\sup_A f \leqslant \inf_B f$.

Montrons que f est continue. $\exists R > 0, \mathcal{B}_E(0,R) \subset A$, on a :

$$\sup_{\mathcal{B}_E(0,R)} f \leqslant f(u)$$

Donc $f(x) \leq f(u) \ \forall x \in \mathcal{B}_E(0, R) \ \text{donc} \ f(-x) \leq f(u) \ \forall x \in \mathcal{B}_E(0, R) \ \text{ainsi} \ -f(x) \leq f(u) \ \forall x \in \mathcal{B}_E(0, R).$ Finalement $|f(x)| \leq f(u) \ \forall x \in \mathcal{B}_E(0, R)$. Donc $f \in E^*$.

- (b) A ouvert, B quelconque, $A \neq \emptyset$, $B \neq \emptyset$. Prenons $a \in A$ et $b \in B$. On pose C = A B a + b. C est convexe, ouvert et contient 0. On applique (a) avec C et $\{a b\}$.
- 2. A fermé, B compact. Soit $\varepsilon > 0$. Notons :

$$A_{\varepsilon} = \{ x \in E : \operatorname{dist}(x, A) < \varepsilon \}$$
 $B_{\varepsilon} = \{ x \in E : \operatorname{dist}(x, B) \leqslant \varepsilon \}$

 A_{ε} et B_{ε} sont des convexes. A_{ε} est ouvert et $A_{\varepsilon} \cap B_{\varepsilon} = \emptyset$ pour ε assez petit. En effet soit $x \in A_{\varepsilon}, y \in A_{\varepsilon}, \lambda \in [0, 1]$.

$$\exists a_1 \in A \mid \|x - a_1\| < \varepsilon \qquad \exists a_2 \in A \mid \|y - a_2\| < \varepsilon$$

Alors,

$$\|\lambda x + (1 - \lambda)y - (\lambda a_1 + (1 - \lambda)a_2)\| \le \lambda \|x - a_1\| + (1 - \lambda)\|y - a_2\| < \varepsilon$$

et $\lambda a_1 + (1 - \lambda)a_2 \in A \Rightarrow \operatorname{dist}(\lambda x + (1 - \lambda)y, A) < \varepsilon$). Donc A_{ε} convexe, de même B_{ε} convexe.

 A_{ε} est bien ouvert : si $x \in A_{\varepsilon}$, $\exists a \in A$ tel que $||x - a|| < \varepsilon$ donc $||x + y - a|| < \varepsilon$ pour $y \in \mathcal{B}_E(0, \delta)$ avec $\delta = \frac{\varepsilon - ||x - a||}{3}$.

Enfin montrons que $A_{\varepsilon} \cap B_{\varepsilon} = \emptyset$ pour ε assez petit. Par l'absurde :

$$\exists a_n \in A, \ b_n \in B \mid ||a_n - b_n|| \leqslant \frac{1}{n}$$

B compact, A fermé. On extrait donc $(b_{\theta(n)})$ convergente, alors $(a_{\theta(n)})$ converge $\Rightarrow A \cap B \neq \emptyset$ absurde. Ainsi par le cas 1. $\exists f \in E^*$ telle que $\sup_{A_{\varepsilon}} f \leqslant \inf B_{\varepsilon} f$,

$$\Rightarrow \forall a \in A, \forall b \in B, \forall w, w' \in \mathcal{B}_E(0,1) \quad f(a+\varepsilon w) \leqslant f(b+\varepsilon w')$$

Donc:

$$f(a) + \varepsilon \sup_{w \in \mathcal{B}_E(0,1)} f(w) \leqslant f(b) + \varepsilon \inf_{\mathcal{B}_E(0,1)} f(w')$$

 $\text{Or } \sup_{w \in \mathcal{B}_E(0,1)} f(w) = \sup_{w \in \mathcal{B}_E(0,1)} |f(w)| = ||f|| \text{ et } \inf_{w' \in \mathcal{B}_E(0,1)} f(w') = -\sup_{\mathcal{B}_E(0,1)} |f(w')| = -||f||.$ Donc :

$$f(a) + \varepsilon ||f|| \le f(b) - \varepsilon ||f||$$

D'où:

$$\sup_{A} f \leqslant \inf_{B} f - 2\varepsilon \|f\| \quad \Rightarrow \quad \sup_{A} f < \inf_{B} f$$

3 Convergence faible et convergence faible *

 $(E, ||.||_E)$ espace normé réel. E^* dual topologique.

$$||f||_{E^*} = \sup_{||x||_E \le 1} |f(x)|$$

 $(E^*, \|.\|_{E^*})$ est de Banach. On rappelle que $\mathcal{L}(E, F)$ est de Banach dès que F est de Banach (ici \mathbb{R} est complet).

- **Définition 8** (topologie) —

X ensemble, $\mathcal{T} \subset \mathcal{P}(X)$ est une topologie si :

- 1. \mathcal{T} contient \emptyset et X
- 2. \mathcal{T} est stable par réunion quelconque
- 3. \mathcal{T} est stable par intersection finie

Remarques.

- $\mathcal{P}(X)$ est une topologie sur X
- Si \mathcal{T}_1 et \mathcal{T}_2 sont deux topologies alors $\mathcal{T}_1 \cap \mathcal{T}_2$ est une topologie. En fait si $(\mathcal{T}_{\alpha})_{\alpha \in A}$ est une famille de topologies, alors $\bigcap_{\alpha \in A} \mathcal{T}_{\alpha}$ est une topologie.

Corollaire 7 -

En particulier, si $\mathcal{A} \subset \mathcal{P}(X)$ alors :

$$\mathcal{T}_{\mathcal{A}} := \bigcap_{\tau \text{ top sur } X, \mathcal{A} \subset \tau} \tau$$

est une topologie. Alors $\mathcal{T}_{\mathcal{A}}$ est la topologie engendrée par \mathcal{A} , c'est la plus petite topologie sur X contenant \mathcal{A} .

Proposition 4 -

 \mathcal{T}_A est la réunion de \emptyset, X et de toutes les réunions d'intersections finies d'éléments de \mathcal{A} .

Preuve.

 $\mathcal{B} := \text{(intersections finies d'éléments de } \mathcal{A}) \cup X$. Soit $\tau = \{U \in \mathcal{P}(X) : \forall x \in U, \exists V \in \mathcal{B} \text{ tq } x \in V \subset U\}$. Alors $\tau = \text{réunions d'éléments de } \mathcal{B}$. Alors $\tau = \text{tune topologie (en exercice)}$. $\tau = \text{tune topologie qui contient } \mathcal{A}, \tau \subset \mathcal{T}$. Donc $\tau = \mathcal{T}_{\mathcal{A}}$.

Soient X un ensemble, (Y, \mathcal{T}_Y) un espace topologique et $\mathcal{F} = \{f_\alpha \colon X \longrightarrow Y\}_{\alpha \in A}$ une famille de fonctions. On cherche la topologique minimale sur X qui rende toutes les f_α continues. Posons :

$$\mathcal{A} = \left\{ f_{\alpha}^{-1}(U); \alpha \in A, U \in \mathcal{T}_Y \right\}$$

On pose $\mathcal{T}_{\mathcal{F}} = \mathcal{T}_{\mathcal{A}}$ la topologie induite par \mathcal{F} sur X.

Définition 9 (topologie faible, topologie faible-*) -

Soit E un e.v.n., E^* son dual.

1. La topologie faible sur E, noté $\sigma(E, E^*)$ est :

$$\sigma(E, E^*) := \mathcal{T}_{E^*}$$

(topologie minimale qui rende continues les formes linéaires $f\colon E\longrightarrow \mathbb{R})$

- 2. On note $E^{**} = (E^*)^*$ appelé le bi-dual de E. La topologie faible sur E^* est $\sigma(E^*, E^{**})$.
- 3. La topologie faible-* sur E^* , notée $\sigma(E^*, E)$, est la topologie induite par la famille :

$$\mathcal{F} := \{J_x; x \in E\} \text{ où } J_x \colon E^* \longrightarrow \mathbb{R} \text{ avec } J_x(f) = f(x)$$

Définition 10 -

On dit que E est réflexif si $J: E \longrightarrow E^{**}$ est un isomorphisme (J linéaire, bijective, J^{-1} linéaire, J et J^{-1} continues). Dans ce cas $\sigma(E^*, E^{**}) = \sigma(E^*, E)$.

Remarque. Il existe un espace non réflexif mais isomorphe à son bi-dual.

- Proposition 5 -

 $J \colon E \longrightarrow \mathbb{E}^{**}$ est toujours une isométrie

$$||J_x||_{E^{**}} = ||x||_E$$

En particulier, E est réflexif ssi $J \colon E \longrightarrow E^{**}$ est surjective.

Preuve.

On utlise le Corollaire 4 de Hahn-Banach :

$$||x||_E = \sup_{||f||_{E^*}=1} |f(x)|$$

Donc,

$$||x||_E = \sup_{||f||_{E^*}=1} |J_x(f)| = ||J_x||_{E^{**}}$$

On note que $x \mapsto J_x$ est linéaire.

Proposition 6 -

- 1. $\sigma(E, E^*) \subset \mathcal{T}_{\|.\|_E}$
- 2. $\sigma(E^*, E) \subset \sigma(E^*, E^{**})$ (= si réflexif)
- 3. $\sigma(E^*, E)$ séparée
- 4. $\sigma(E, E^*)$ séparée

- 1. Par définition.
- 2. Par définition.
- 3. Soit $f \in E^*$ et $f' \in E^*$ avec $f \neq f'$. Il existe $x \in E$, $f(x) \neq f'(x)$. Posons $\varepsilon = |f(x) f'(x)| > 0$ et :

$$V := \left\{ g \in E^* : |g(x) - f(x)| < \frac{\varepsilon}{2} \right\}$$

$$V' := \left\{ g' \in E^* : |g'(x) - f'(x)| < \frac{\varepsilon}{2} \right\}$$

Alors $f \in V$, $f' \in V'$, $V \cap V' = \emptyset$ et $V, V' \in \sigma(E^*, E)$ (puisqu'ils s'écrivent en fonction des fonctions d'évaluation).

4. On utilise le Théorème 9 Hahn-Banach géométrique. Soit $x, y \in E, x \neq y$. On pose $A = \{x\}$, $B = \{y\}$. Alors A est convexe et compact, B est convexe et fermé. Il existe $f \in E^*$ telle que :

$$\sup_A f < \inf_B f$$

D'où f(x) < f(y). Alors on pose $\lambda = \frac{1}{2}(f(x) + f(y))$. Soit $U = f^{-1}(] - \infty, \lambda[)$ et $V = f^{-1}(]\lambda, +\infty[)$. On a $x \in U, y \in V, U \cap V = \emptyset$ et U, Y ouverts de $\sigma(E, E^*)$.

- Proposition $7\,$ -

- 1. $(E, \sigma(E, E^*))$ est un e.v.t.
- 2. $(E^*, \sigma(E^*, E))$ est un e.v.t

Preuve. En exercice.

Corollaire 8

En dimension finie,

$$\sigma(E, E^*) = \mathcal{T}_{\|.\|_E}$$

- **Définition 11** (suites) -

Soit $(x_n)_{n\in\mathbb{N}}$ suite de points de E.

- 1. On dit que (x_n) c.v. fortement vers x si $||x_n x|| \xrightarrow[n \to +\infty]{} 0$. On note $x_n \xrightarrow[n \to +\infty]{} x$.
- 2. On dit que (x_n) c.v. faiblement vers x si $f(x_n) \xrightarrow[n \to +\infty]{} f(x)$ pour tout $f \in E^*$. On note $x_n \to x$.

- Proposition 8 —

 (x_n) suite de points de E un espace de Banach réel.

- 1. $x_n \longrightarrow x \Rightarrow x_n \rightharpoonup x$
- 2. $x_n \rightharpoonup x$ ssi (x_n) converge vers x pour $\sigma(E, E^*)$
- 3. $x_n \rightharpoonup x$ et $x_n \rightharpoonup x' \Rightarrow x = x'$
- 4. si $x_n \to x$ alors (x_n) est bornée dans E et $||x|| \leq \underline{\lim} ||x_n||$

Preuve.

- 1. Si $x_n \longrightarrow x$ et $f \in E^*$ alors $f(x_n) \longrightarrow f(x)$ par continuité de f. Donc $x_n \rightharpoonup x$.
- 2. Supposons $x_n \rightharpoonup x$. Soit V un voisinage de x dans $\sigma(E, E^*)$. On veut montrer que $x_n \in V$ à partir d'un certain rang. On peut supposer que V est de la forme :

$$V = \bigcap_{i=1}^{N} f_i^{-1}(V_i), \ N \in \mathbb{N}^*, \ f_i \in E^*, \ V_i$$
 voisinage de $f_i(x)$

 $x_n \to x \Rightarrow \forall f \in E^*, \ f(x_n) \xrightarrow[n \to +\infty]{} f(x)$. Donc $\forall i \in \{1, \dots, N\}, \ \exists N_i \in \mathbb{N} \ \text{tel que } x_n \in f_i^{-1}(V_i) \ \text{pour } n \geqslant N_i$. Donc $x \in V$ pour $n \geqslant \max_{1 \leqslant i \leqslant N} N_i$. Donc (x_n) converge vers x pour $\sigma(E, E^*)$.

Réciproquement si (x_n) c.v. vers x pour $\sigma(E, E^*)$, comme $f: E \longrightarrow \mathbb{R}$ est continue pour $\sigma(E, E^*)$ pour tout $f \in E^*$, on a $f(x_n) \longrightarrow f(x)$ donc $x_n \rightharpoonup x$.

- 3. Car $\sigma(E, E^*)$ est séparée.
- 4. Montrons que si $x_n \rightharpoonup x$ alors (x_n) est bornée (Banach-Steinhaus). Soit :

$$T_n \colon \left\{ \begin{array}{ccc} E^* & \longrightarrow & \mathbb{R} \\ f & \longmapsto & f(x_n) \end{array} \right.$$

 $x_n \rightharpoonup x \Rightarrow f(x_n) \longrightarrow f(x)$ et a fortiori $f(x_n)$ est bornée. Donc $(T_n(f))_{n \in \mathbb{N}}$ est bornée pour tout $f \in E^*$. La famille $(T_n)_{n \in \mathbb{N}}$ est simplement bornée. Donc $(T_n)_{n \in \mathbb{N}}$ est bornée d'après Banach-Steinhaus :

$$\exists c > 0, \ \forall n \in \mathbb{N}, \ \forall f \in E^*, \quad |T_n(f)| \leqslant c||f||_{E^*}$$

Donc $|f(x_n)| \leq c||f||_{E^*}$ pour tout $f \in E^*$. Or :

$$||x_n||_E = \sup_{||l||_{E^*} = 1} |l(x_n)|$$

d'après Hahn-Banach (analytique), d'où $||x_n||_E \leqslant c$. La suite est donc bornée.

Proposition 9

Soit E un e.v.n. réel et C convexe de E. Alors C est faiblement fermé ssi C est fortement fermé. En particulier, si $x_n \in C$ et $x_n \rightharpoonup x$ on a $x \in C$ pour C convexe fortement fermé.

 \Rightarrow : Tout ouvert faible est un ouvert fort $(\sigma(E, E^*) \subset \mathcal{T}_{\|\cdot\|_E})$ donc tout fermé faible est fermé fort (sans besoin de convexité).

 \Leftarrow : Montrons que C convexe fortement fermé $\Rightarrow C$ faiblement fermé. Montrons que $E \setminus C$ est faiblement ouvert. Montrons que $E \setminus C$ est un voisinage de chacun de ses points pour $\sigma(E, E^*)$. Soit $x_0 \in E \setminus C$. Alors $\{x_0\}$ et C sont deux convexes disjoints. C est fermé et x_0 compact. Donc $\exists f \in E^*, \exists \lambda \in \mathbb{R}$ tel que :

$$\forall x \in C, \ f(x) < \lambda < f(x_0)$$

Alors $U = \{x \in E \mid f(x) > \lambda\}$ est un ouvert faible, contenant x_0 , inclus dans $E \setminus C$. Donc C est faiblement fermé.

Proposition 10 —

Soient E, F espaces de Banach réels. $T \colon E \longrightarrow F$ est fortement continue ssi T est faiblement continue.

Preuve.

 \Rightarrow : T fortement continue \Rightarrow T faiblement continue \Leftarrow : T faiblement continue \Rightarrow T fortement continue. E et F sont des espaces de Banach, on peut donc appliquer le théorème du graphe fermé.

$$G(T) = \{(x, y) \in E \times F : y = Tx\}$$

Montrons que G(T) est fermé. Notons que G(T) est convexe. Il suffit de montrer que G(T) est faiblement fermé.

$$G(T) = \phi^{-1}(\{0\})$$
 où $\phi(x, y) = y - Tx$

 ϕ est faiblement continue donc $\phi^{-1}(\{0\})$ est faiblement fermé.

- **Définition 12** (convergence faible-*) —

- 1. $f_n \longrightarrow f$ fortement dans E^* ssi $||f_n f||_{E^*} \longrightarrow 0$
- 2. $f_n \rightharpoonup f$ faible-* ssi $f_n(x) \longrightarrow f(x) \ \forall x \in E$ (c'est la convergence simple)

- Proposition 11 -

Soit E un e.v.n. réel.

- 1. $f_n \longrightarrow f$ fortement $\Rightarrow f_n \rightharpoonup f$ faible-*
- 2. $f_n \rightharpoonup f$ faible-* ssi (f_n) c.v. vers f pour $\sigma(E^*, E)$
- 3. $f_n \rightharpoonup f$ faible-* et $f_n \rightharpoonup f'$ faible-* $\Rightarrow f = f'$
- 4. $f_n \rightharpoonup f$ faible-* $\Rightarrow (f_n)$ bornée dans E^*

Preuve. Analogue à la démonstration de Proposition 8.

Remarque. Réciproquement $(f_n)_n$ bornée dans E^* , existence d'une sous-suite qui converge faiblement-*?

- Théorème 10 (Banach-Alaoglu) -

Soit E un espace de Banach séparable (version non séparable : Banach-Bourbaki-Alaoglu). Toute suite bornée dans E^* admet une sous-suite qui converge faiblement-*.

Preuve.

 $D = \{e_j\}_{j \in \mathbb{N}}$ partie dense dans E. $(f_n(e_0))$ est bornée car $|f_n(e_0)| \leq ||f_n||_{E^*} ||e_0||_E$ et (f_n) bornée dans E^* . Donc il existe une extraction θ_0 telle que $(f_{\theta_0(n)}(e_0))_{n \in \mathbb{N}}$ converge.

On construite de proche en proche $\theta_k \colon \mathbb{N} \longrightarrow \mathbb{N}$ croissante telle que :

$$(f_{\theta_0 \circ \dots \circ \theta_k(n)}(e_k))$$
 converge

Posons $g_n = f_{\theta_0 \circ ... \circ \theta_n(n)}$. Alors $(g_n(e))_{n \in \mathbb{N}}$ converge pour tout $e \in D$. On note $g \colon D \longrightarrow \mathbb{R}$ la limite. Comme $(g_n)_n$ est bornée dans E^* , $\exists M > 0$ tel que :

$$\forall x \in E, |g_n(x)| \le M ||x||_E \quad (M = \sup_{n \in \mathbb{N}} ||f_n||_{E^*})$$

. . .

Montrons que $g_n(x) \xrightarrow[n \to +\infty]{} \tilde{g}(x) \ \forall x \in E$. Soit $x \in E$, $\varepsilon > 0$, $\exists e \in D$ tel que :

$$M\|x - e\|_E \leqslant \frac{\varepsilon}{3}$$

 $\exists N \in \mathbb{N} \text{ tel que } \forall n \geqslant N, |g_n(e) - \tilde{g}(e)| < \frac{\varepsilon}{3}. \text{ Donc si } n \geqslant N, \text{ on a :}$

$$|g_n(x) - \tilde{g}(x)| \leq |g_n(x) - g_n(e)|$$

$$+ |g_n(e) - \tilde{g}(e)|$$

$$+ |\tilde{g}(e) - g(x)|$$

Donc g_n , \tilde{g} M-lipschitzienne implique que :

$$|g_n(x) - \tilde{g}(x)| < M||x - e||_E + \frac{\varepsilon}{3} + M||x - e||_E < \varepsilon$$

On montre que \tilde{g} est linéaire.

Corollaire 9

Soit E un espace de Banach réflexif dont le dual est séparable. Alors toute suite (x_n) bornée dans E admet une sous-suite faiblement convergente.

Preuve.

Soit (x_n) bornée dans E. Alors (J_{x_n}) est bornée dans E^{**} . Par hypothèse E^* est séparable. Donc par Banach-Alaoglu, $\exists \theta \colon \mathbb{N} \longrightarrow \mathbb{N}$ croissante tel que $(J_{x_{\theta(n)}})$ converge faiblement-* vers $\lambda \in E^{**}$. Ce qui signifie par défnition que :

$$J_{x_{\theta(n)}}(f) \xrightarrow[n \to +\infty]{} \lambda(f) \quad \forall f \in E^*$$

Donc:

$$f(x_{\theta(n)}) \xrightarrow[n \to +\infty]{} \lambda(f) \quad \forall f \in E^*$$

Or E est réflexif, donc $J: E \longrightarrow E^{**}$ est surjective. Donc $\exists x \in E$ tel que $\lambda = J_x$. Donc $\lambda(f) = f(x)$. Ainsi $f(x_{\theta(n)}) \longrightarrow f(x) \ \forall f \in E^*$ i.e. $x_{\theta(n)} \rightharpoonup x$ dans E.

Théorème 11

 $\Omega \subset \mathbb{R}^n$ ouvert.

- 1. Si $1 \leq p < +\infty$, $L^p(\Omega)$ est séparable.
- 2. Si $1\leqslant p<+\infty,$ et $q=\frac{p}{p-1}$ l'exposant conjugué, alors pour toute forme linéaire $\Lambda\colon L^p(\Omega)\longrightarrow \mathbb{R}$ continue, $\exists f\in L^q(\Omega)$ telle que :

$$\Lambda(u) = \int_{\Omega} f(x)u(x)dx$$

Preuve. C.f. mail

- Proposition 12

 $\exists \text{ forme lin\'eaire } \Lambda \colon L^{\infty}(\mathbb{R}) \longrightarrow \mathbb{R} \text{ telle que } \Lambda \neq \theta_f \text{ où } \theta_f(u) = \int_{\mathbb{R}} f u dx \text{ pour tout } f \in L^1(\mathbb{R}).$

Preuve.

Introduisons

$$F = \{u \in C^0(\mathbb{R}) : u \text{ born\'ee et } \lim_{\infty} u \text{ existe et dans } \mathbb{R}\}$$

Notons $l: F \longrightarrow \mathbb{R}$, $l(u) = \lim_{+\infty} u$. $|l(u)| \leq ||u||_{L^{\infty}(\mathbb{R})}$. Par Hahn-Banach, $\exists \Lambda \colon L^{\infty}(\mathbb{R}) \longrightarrow \mathbb{R}$ telle que $\Lambda|_F = l$.

Soit $\xi \in \mathbb{R}$, $\varepsilon > 0$ alors :

$$\cos(n\xi)e^{-\varepsilon x^2} \in F$$
 et $\sin(n\xi)e^{-\varepsilon x^2} \in F$

Alors,

$$\int_{\mathbb{R}} f(x) \cos(x\xi) e^{-\varepsilon x^2} dx = \theta_f \left(\cos(x\xi) e^{-\varepsilon x^2} \right)$$
$$= \Lambda \left(\cos(x\xi) e^{-\varepsilon x^2} \right)$$
$$= l \left(\cos(x\xi) e^{-\varepsilon x^2} \right)$$
$$= 0$$

Comme $f \in L^1(\mathbb{R})$, par convergence dominée,

$$\int f(x)\cos(x\xi)e^{-\varepsilon x^2}dx \xrightarrow[0\to 0]{} \int f(x)\cos(x\xi)dx$$

Donc $\int f(x)\cos(x\xi)dx = 0$. De même $\int f(x)\sin(x\xi)dx = 0$. Donc $\forall \xi \in \mathbb{R}$,

$$\hat{f}(\xi) = \int f(x)e^{-ix\xi}dx = 0$$

Or $f \in L^1$ et $\hat{f} = 0 \Rightarrow f = 0$. Donc $\theta_f = \theta_0 = 0$. Or $l \neq 0$, donc $\Lambda \neq 0$. Absurde.