CHEM352: Physical Chemistry I Homework Set II - due 12^{th} of Oct, 5.00 pm

Instructor: Dr. Mateusz Marianski Room#: HN-1321B

email: mmarians@hunter.cuny.edu

Lecture: Tue, 2.10-3.25 pm & Fri 2.10-3.25 pm, C111

Office hours: Thu, 4-6 pm, Library - Science Center, 7th floor

Problem 1 CH3/5pts

Using definitions o heat capacities at constant volume and pressure, cyclic rule (equations a/P3.32 and b/P3.37) and expression for $\left(\frac{\partial U}{\partial V}\right)_T = T\left(\frac{\partial P}{\partial T}\right)_V - P$ (equation c/P3.38), prove that:

$$C_P = -\frac{\left(\frac{\partial H}{\partial P}\right)_T}{\left(\frac{\partial T}{\partial P}\right)_H} \tag{1a}$$

$$C_V = -\left(\frac{\partial U}{\partial V}\right)_T \left(\frac{\partial V}{\partial T}\right)_U \tag{1b}$$

$$\left(\frac{\partial C_V}{\partial V}\right)_T = T \left(\frac{\partial^2 P}{\partial T^2}\right)_V \tag{1c}$$

Show that the equation 1c simplifies to 0 for ideal and van der Waals gas (P3.39).

Problem 2 (P4.14 and P4.21)

CH4/5pts

1. From the following data, compute the $\Delta_f H^o$ of $CaC_{2(s)}$ at 298 K.

$$CaC_{2(s)} + 2H_2O_{(l)} \rightarrow Ca(OH)_{2(s)} + C_2H_{2(g)}$$
 $\Delta H_R^o = -127.9[kJ/mol]$ (2a)

$$Ca_{(s)} + \frac{1}{2}O_{2(g)} \to CaO_{(s)}$$
 $\Delta H_R^o = -635.1[kJ/mol]$ (2b)

$$CaO_{(s)} + H_2O(l) \rightarrow Ca(OH)_{2(s)}$$
 $\Delta H_R^o = -65.2[kJ/mol]$ (2c)

The combustion enthalpies of $C_{(s)}$ and $C_2H_{2(g)}$ are -393.5 and -1299.8 kJ/mol respectively. Draw the respective thermodynamic cycle.

2. From the following data, compute $\Delta H_{R,391.4K}^o$ for the $CH_3COOH_{(g)} + 2O_{2(g)} \rightarrow 2H_2O_{(g)} + 2CO_{2(g)}$:

$$CH_3COOH_{(l)} + 2O_{2(g)} \rightarrow 2H_2O_{(l)} + 2CO_{2(g)}$$
 $\Delta H_{R,298.1K}^o = -871.5[kJ/mol]$ (3a)
$$H_2O_{(l)} \rightarrow H_2O_{(g)} \qquad \Delta H_{R,298.1K}^o = 40.6[kJ/mol] \quad \text{(3b)}$$
 $CH_3COOH_{(l)} \rightarrow CH_3COOH_{(g)} \qquad \Delta H_{R,391.4K}^o = 24.4[kJ/mol] \quad \text{(3c)}$

The molar $\frac{C_P}{R}$ are equal 14.9, 3.53, 4.46, 9.055 and 4.048 for $CH_3COOH_{(l)}$, $O_{2(g)}$, $CO_{2(g)}$, $H_2O_{(l)}$ and $H_2O_{(g)}$ respectively $(C_P = \frac{C_P}{R} \cdot R)$. Be careful about the temperature and the states. Draw the respective thermodynamic cycle.

Problem 3 (variation of P5.7)

CH5/5pts

Consider a classical reversible Carnot cycle with 2.5 moles of an ideal gas with $C_V = \frac{5}{2}R$ as a working substance that undergoes, as we discussed in the lecture (figure 5.2 in the book), following transitions:

- 1. $(a \rightarrow b)$ Isothermal expansion from V_a =5.5 L to V_b =21 L at T_{hot} = 780 K
- 2. $(b \rightarrow c)$ Adiabatic expantion until system reaches $T_{cold} = 280$ K
- 3. $(c \rightarrow d)$ Isothermal compression at $T_{cold} = 280$ K.

4. $(d \rightarrow a)$ Adiabatic compression until gas reaches the T_{hot} and V_a =5.5 L.

Please calculate:

- 1. Volume at points c and d $(V_c \text{ and } V_d)$.
- 2. Work for the each step of the cycle and the total work.
- 3. The efficency θ of the cycle and the amount of heat that needs to be extracted from the reservoir T_{hot} to provide 1.5 kJ of work in the surroundings.

Problem 4 (P5.39)

CH5/5pts

- 1. Calculate ΔS if 1.00 mol of liquid water is heated from $0.00^{o}C$ to $10.00^{o}C$ under constant pressure and $C_{P,m}=75.3$ [J/mol·K].
- 2. The melting point of water at the pressure of interest is $0.00^{\circ}C$ and the enthalpy of fusion is 6.010 [kJ/mol]. The boling point is $100^{\circ}C$ and the enthalpy of vaporization is 40.65 [kJ/mol]. Calculate ΔS for the transformation from ice to vapor: $H_2O(s, 0^{\circ}C) \rightarrow H_2O(g, 100^{\circ}C)$

Problem 5 (P6.24)

CH6/5pts

Consider the reaction:

$$FeO_{(s)} + CO_{(g)} \rightleftharpoons Fe_{(s)} + CO_{2(g)}$$
 (4)

for which K_P is found to be equal 0.688 and 0.310 and $700^{\circ}C$ and $1200^{\circ}C$ respectively. Using this data, calculate:

- 1. ΔG_R^o , ΔH_R^o and ΔS_R^o for this reaction at 700K. Assume that ΔH_R^o is independent of the temperature.
- 2. Calculate the mole fraction of $CO_{2(g)}$ present in the gas phase at $700^{\circ}C$.