Fraud Prevention with Machine Learning

November 29th, 2016

João António joao.antonio@feedzai.com

Outline

- Primer on Credit Card Fraud
- Data Science
 - Challenges
 - Human Intuition
 - Machine Learning
- Data Engineering
 - Real-time Metrics
 - Batch Metrics
 - Transaction Lifecycle

How do you prevent fraud?

Data Science

Challenges

- Data Volume
 - 20M+ transactions per day
 - ○200+ added features

Challenges

- Data Volume
 - 20M+ transactions per day
 - ○200+ added features
- •(Really) Unbalanced Problem
 - ○Positive Class: 0.1% ~ 1.0%
 - Stratified Sampling
 - Undersampling

Challenges

- Data Volume
 - 20M+ transactions per day
 - ○200+ added features
- •(Really) Unbalanced Problem
 - ∘Positive Class: 0.1% ~ 1.0%
 - Stratified Sampling
 - Undersampling
- Time Series Problem

Human Intuition

- •Real-time Features
 - Distance between consecutive transactions
 - Number of failed attempts in last hour
 - Total money spent in last hour by merchant

Human Intuition

- Real-time Features
 - Distance between consecutive transactions
 - Number of failed attempts in last hour
 - Total money spent in last hour by merchant
- Batch Features
 - Total money spent in last month
 - Average transaction money by merchant in last month
 - Percentage of transactions abroad in last month

Human Intuition

- Real-time Features
 - Distance between consecutive transactions
 - Number of failed attempts in last hour
 - Total money spent in last hour by merchant
- Batch Features
 - Total money spent in last month
 - Average transaction money by merchant in last month
 - Percentage of transactions abroad in last month
- Enrichment Features

Machine Learning

- Literature Algorithms
 - Random Forests
 - ○XGBoost

Machine Learning

- Literature Algorithms
 - Random Forests
 - ∘XGBoost
- •In-house Algorithms
 - Points Of Compromise
 - Cost Sensitive Scoring

Machine Learning

- Literature Algorithms
 - Random Forests
 - ∘XGBoost
- In-house Algorithms
 - Points Of Compromise
 - Cost Sensitive Scoring
 - Others

Data Engineering

Real-time Metrics

- Event Stream Processing
 - Data Studio
 - oPQL
 - •PKernel

Real-time Metrics

- Event Stream Processing
 - Data Studio
 - OPQL
 - •PKernel
- Mission-critical Java
 - Zing® JVM (by Azul Systems®)

Batch Metrics

- •(Replayed) Event Stream Processing
 - Data Studio
 - oPQL
 - •PKernel
 - Cassandra

Batch Metrics

- •(Replayed) Event Stream Processing
 - Data Studio
 - oPQL
 - •PKernel
 - Cassandra
- Yarn / Spark for Job Scheduling

Batch Metrics

- •(Replayed) Event Stream Processing
 - Data Studio
 - oPQL
 - OPKernel
 - Cassandra
- Yarn / Spark for Job Scheduling
- Mission-critical Java
 - Zing® JVM (by Azul Systems®)

Processing time ~ 100 ms on 99.999% percentile

Thank you!

