A practical introduction to programming Tenstorrent accelerators

Nick Brown EPCC University of Edinburgh

Felix Le Clair Tenstorrent

Jake Davies EPCC University of Edinburgh

Motivation

- There is increased focus on moving towards more energy efficient accelerator technologies in HPC whilst maintaining performance
 - Numerous accelerators for ML are being proposed, and some of these (such as Tenstorrent) are being made available for more general workloads

Type	Total cores	Cores in	Cores in X	Performance (GPt/s)	Energy (Joules)
CPU	1		-	1.41	1657
CPU	24	-	-	21.61	588
e150	1	1	1	1.06	2094
e150	2	1	2	2.48	893
e150	4	1	4	2.92	744
e150	8	4	4	7.99	276
e150	32	8	4	9.20	240
e150	64	8	8	12.96	170
e150	72	8	9	17.26	128
e150	108	12	9	22.06	110
e150 x 2	216	24	9	44.12	102
e150 x 4	432	48	9	86.75	108

- A lot of what you need in ML is also beneficial for HPC!
- Tenstorrent decouples the movement of data from compute, potentially helping us with memory bound workloads
- To the left is a stencil code on the Grayskull compared to a 24-core Xeon Platinum
 - Comparable performance, but five times less energy usage

We focus on the Wormhole

- The first generation was the Grayskull
 - This has been End Of Lived now
- The current generation is the Wormhole
- The next generation is the Blackhole
- All built using the Tensix architecture

Tutorial learning objectives

- This tutorial is open to everybody, regardless of experience with HPC and accelerators
 - Is practically driven, where we will walk-through key concepts on the machine itself, and then you can explore the concepts more independently via a series of walk-throughs
- 1. Understand the Tenstorrent architecture & core concepts
 - We will explore the hardware, how it is designed the and key terminology
- 2. Get started with the Tenstorrent tt-metal SDK
 - Exploring key concepts for writing codes for the Tenstorrent architecture and understanding how to build these
- 3. Writing multi-PE codes for the Tensrottent
 - Exploring how we can run over multiple PEs, have these communicate together
- 4. Running on a real Tenstorrent machine
 - Throughout we will be running on real Tenstorrent hardware

Session plan

Time	Title	Туре
9:00 - 9:05	Introduction, welcome and objectives	Presentation
9:05 - 9:30	An Overview of the Tenstorrent architecture	Presentation
9:30 - 9:40	Logging onto the RISC-V testbed for Tenstorrent hardware	Practical
9:40 – 10:30	Introduction to the SDK (lecture and two practicals)	Presentation and practicals
10:30 – 11:00	Break	
11:00 – 11:05	Welcome back and overview of second part	Presentation
11:05 – 11:25	Overview of compute SDK	Presentation
11:25 – 12:25	Practicals three, four and five	Practicals
12:25 – 12:30	Conclusions and audience next steps to continue working with the technologies	Presentation

Materials and the Tenstorrent community

- We will remind people as we progress through the session
- All materials for this tutorial are open source and can be found at
 - https://github.com/RISCVtestbed/tt-tutorial
- More generally if you wish to continue exploring this after the tutorial finishes
 - https://docs.tenstorrent.com/
- There is a Tenstorrent developer community
 - https://tenstorrent.com/developers
 - Discord at https://discord.com/invite/tenstorrent