UNIVERSIDADE FEDERAL DO PARANÁ

RELATÓRIO DE PROCESSAMENTO DE IMAGENS Filtros

Luan Marko Kujavski - GRR20221236

CURITIBA 2024

I. Introdução ao problema

O objetivo deste laboratório é testar e comparar diferentes tipos de filtros para a remoção de ruído "salt and pepper". Para isso, os seguintes filtros foram testados

- 1. cvBlur
- cvGaussianBlur
- cvMedianBlur
- 4. Stacking
- 5. cvBilateral
- 6. cvNlMeans

Para evitar somente uma análise visual utilizamos a métrica PSNR. Quanto maior o valor do PSNR, mais similares são as imagens.

II. Protocolo de testes

Para testarmos todos os métodos da maneira correta, gerei 200 imagens para cada uma das porcentagem de ruídos. Para os filtros cvBlur, cvGaussianBlur e cvMedianBlur é feito uma média para o resultado com cada uma das 200 imagens. Ao todo são feitas cinco médias, já que estamos usando ruídos de 0.01, 0.02, 0.05, 0.07 e 0.1. Já para o filtro Stacking, estou empilhando de 10 em 10 imagens até que chegue aos 200 totais.

Para os filtros cvBlur, cvGaussianBlur e cvMedianBlur foi constatado que o kernel de tamanho 3 é geralmente o melhor. Por causa disso, usaremos o kernel de tamanho 3 para todos os testes nesses três filtros.

Para o filtro Stacking, tiramos os resultados para o número de imagens máximo (no caso 200).

Os resultados são os seguintes:

Filter x Noise	0.01	0.02	0.05	0.07	0.1
Mean Blur	27.91	26.75	24.26	23.03	21.55
Median Blur	30.12	30.05	29.79	29.60	29.23
Gaussian Blur	28.89	27.21	24.10	22.73	21.14
Stacking	45.13	40.82	33.80	31.04	28.06

Nele, vemos que o Stacking foi o melhor filtro. Porém não chegou em um número desejável, já que um PSNR perfeito tem valor 361.20 para a imagem em questão.

Então, testaremos outros filtros em busca de um resultado mais satisfatório.

Filter x Noise	0.01	0.02	0.05	0.07	0.1
Bilateral	23.42	20.74	16.97	15.55	14.02
NIMeans	23.98	21.07	17.07	15.59	14.04

Como o stacking foi o melhor, vamos explorá-lo mais. Existe uma estratégia mais inteligente do que usar a média dos pixels: a mediana.

Nessa abordagem, 17 stacks já foram perfeitos para obtermos scores perfeitos

Filter x Noise	0.01	0.02	0.05	0.07	0.1
Stacking mediana	361.20	361.20	361.20	361.20	361.20

Então, o melhor filtro é o stacking usando a mediana.