Theoretische Informatik I, Übung 8

Universität Potsdam, WiSe 2024/25

1 Berechenbarkeit mit Turing-Maschinen

Gegeben sei folgende DTM $M = (\{q_0, q_1, q_2, q_3, q_4, f\}, \{a, b\}, \{a, b, A, B, *\}, \delta, q_0, *, \{f\}),$ mit

δ	a	b	A	B	*
q_0	(q_1, A, L)	(q_2, B, L)	(q_0, A, R)	(q_0, B, R)	$(q_3,*,L)$
q_1			(q_1, A, L)	(q_1, B, L)	(q_0, A, R)
q_2			(q_2, A, L)	(q_2, B, L)	(q_0, B, R)
q_3			(q_3, a, L)	(q_3,b,L)	(f,*,R)

- 1. Werten Sie die Abarbeitung des Wortes aba aus. Was ist die Ausgabe nach der Abarbeitung?
- 2. Geben Sie die von M induzierte Funktion f_M an.

2 Berechenbarkeit der Addition

Wir wollen zeigen, dass die binäre Addition Turing-berechenbar ist. Die induzierte Funktion gibt dabei bei Eingaben der Form u + v (mit $u, v \in \{0, 1\}^+$) eine Binärzahl aus, welche die Summe von u und v ist. Für alle anderen Eingaben ist die Funktion nicht definiert.

Zeigen Sie, dass eine Turing-Maschine existiert, welche die binäre Addition berechnet. (Eine informale Darstellung einer Turing-Maschine ist hier ausreichend.)

3 Rekursive Aufzählbarkeit und berechenbare Funktionen

Begründen Sie jeweils mit den Sätzen aus der Vorlesung:

- 1. Wenn L rekursiv aufzählbar ist, dann ist L der Definitionsbereich einer Turing-berechenbaren Funktion.
- 2. Wenn L der Definitionsbereich einer Turing-berechenbaren Funktion ist, dann ist L rekursiv aufzählbar.
- 3. Wenn L rekursiv aufzählbar ist, dann ist L der Wertebereich einer Turing-berechenbaren Funktion.
- 4. Wenn L der Wertebereich einer Turing-berechenbaren Funktion ist, dann ist L rekursiv aufzählbar.

4 Entscheidbarkeit und rekursive Aufzählbarkeit

Welche der folgenden Aussagen sind widerspruchsfrei oder widersprüchlich? Begründen Sie jeweils mit den Sätzen aus der Vorlesung warum.

- 1. L ist nicht rekursiv aufzählbar, aber rekursiv. \overline{L} nicht rekursiv aufzählbar, aber rekursiv.
- 2. L ist rekursiv aufzählbar, aber nicht rekursiv. \overline{L} nicht rekursiv aufzählbar und nicht rekursiv.
- 3. L ist rekursiv aufzählbar und rekursiv. \overline{L} ist rekursiv aufzählbar und rekursiv.
- 4. L ist rekursiv aufzählbar und rekursiv. \overline{L} ist rekursiv aufzählbar, aber nicht rekursiv.