German University in Cairo Media Engineering and Technology Dr. Wael Abouelsaadat

Data Bases II, Spring 2017 Practice Assignment 1

Part One: Practical Problems

Exercise 1-1

For the given dummy relation below, called "Fiction_Character", do each of the following:

- a) Page the relation appropriately assuming a page can hold two records, or four key-pointer pairs
- b) Construct primary, secondary, dense, sparse, and multi-level indices; briefly explain what data columns can be chosen for each type of index
- c) In case of a dense primary index is constructed, show the steps of:
 - i. Inserting a tuple given as follows,:

Minnie	Mouse	123 Fantasy Way	Anaheim	72
1.111111	1,10000	120 1 00110005 1 1 00 5		. –

- ii. Deleting record number 3
- iii. Updating Tweety's age to be 29

Char_ID	First Name	Last Name	Address	City	Age
1	Mickey	Mouse	123 Fantasy Way	Anaheim	73
2	Bat	Man	321 Cavern Ave	Gotham	54
3	Wonder	Woman	987 Truth Way	Paradise	39
4	Donald	Duck	555 Quack Street	Mallard	65
5	Bugs	Bunny	567 Carrot Street	Rascal	58
6	Wiley	Coyote	999 Acme Way	Canyon	61
7	Cat	Woman	234 Purrfect Street	Hairball	32
8	Tweety	Bird	543	Itotltaw	28

-Figure 1.1: Fiction_Character Relation-

Solution: (In-Class Activity)

Exercise 1-2

Assume that a page can hold up to two rows. If we have a Table D with 16 rows with the following keys:

 $D = \{50, 80, 100, 100, 100, 150, 150, 200, 200, 300, 410, 410, 410, 420, 430, 450\}$

Build a 3-level index on D – one of which must be dense. Clearly explain how you handle duplicates.

Solution:

Part Two: Theoretical Questions

Exercise 1-3 True or False

- a) When a sparse index is used, each record must have an entry in the index.
- b) Secondary indices are always dense.
- c) Considering 2 levels of indices, any of them can be either sparse or dense.
- d) You can only use a sparse index if the data file is sorted by the search key, while a dense index can be used for any search key.
- e) In multilevel indexes, a primary index created for its first level is classified as the first level of multilevel index.
- f) A type of index which is based on any candidate key or a non-key field which may have duplicate values is classified as a primary index.

Solution:

- a) False, each block must have an entry in the index.
- b) True, because these indexes are for columns other than the one the table is sorted with.
- c) False, the first level has to be dense.
- d) True, because when a sparse index is used, data in the pages/blocks has to be sorted.
- e) False, in multilevel indexes, a primary index created for its first level is classified as the second level of multilevel index.
- f) False, a type of index which is based on any candidate key or a non-key field which may have duplicate values is classified as a secondary index.

Part Three: Text Book Questions

Exercise 1-4

Suppose blocks hold either three records, or ten key-pointer pairs. As a function of n "the number of records", how many blocks do we need to hold a data file and:

- a) A dense index
- b) A sparse index

Solution:

a) For dense index we need a key-pointer pair for each record, and so will need $\frac{n}{10}$ blocks.

For the data, we will need $\frac{n}{3}$ block.

So the total number of blocks is $\frac{13 n}{30}$.

b) For sparse index we need a key-pointer pair for each of the data block, and so will need $\frac{n}{30}$ blocks.

For the data, we will need $\frac{n}{3}$ blocks.

So the total number of blocks is $\frac{11 n}{30}$.

Exercise 1-5

Repeat the exercise above if we use as many levels of index as is appropriate, until the final level of index has only one block.

Solution:

a) For dense, we will need $\log_{10} n$ levels. Total number of blocks is:

$$1 + 10 + 10^{2} + 10^{3} + \dots + n$$

$$= 1 + 10 + 10^{2} + 10^{3} + \dots + 10^{\log_{10} n}$$

$$= \sum_{i=0}^{\log_{10} n} 10^{i}$$

$$= \frac{1 - 10^{\log_{10} n}}{1 - 10}$$

$$= \frac{1 - n}{-9}$$

$$= \frac{n - 1}{9}$$

Alongside the $\frac{n}{3}$ blocks for the table, the total is

$$\frac{4n-1}{9}$$

b) For sparse,

$$1 + 10 + 10^{2} + 10^{3} + \dots + \frac{n}{3}$$

$$= 1 + 10 + 10^{2} + 10^{3} + \dots + 10^{\log_{10} n/3}$$

$$= \sum_{\log_{10} n/3} 10^{i}$$

$$= \frac{1 - 10^{\log_{10} n/3}}{1 - 10}$$

$$= \frac{1 - \frac{n}{3}}{-9}$$

$$= \frac{n - 3}{27}$$
for the table, the total is

Alongside the $\frac{n}{3}$ blocks for the table, the total is

$$\frac{10n-3}{27}$$