From ATL tableaux to Alternating Automata Highlights 2013

Amélie David and Serenella Cerrito

Laboratoire IBISC Université d'Evry Val d'Essonne, France

Paris, september 2013

Motivation: satisfiability of ATL formulas

Motivation: satisfiability of ATL formulas

Problem

The Alternating Tree Automaton must be able to recognize models for an ATL formula

Problem

The Alternating Tree Automaton must be able to recognize models for an ATL formula

Concurrent Game Structure

Problem

The Alternating Tree Automaton must be able to recognize models for an ATL formula

Concurrent Game Structure

$$\varepsilon$$
 { p } s_0

Agent 1 has only 1 choice – Agent 2 has 2 choices

From the ATL tableau: construction of a new automaton "Joker Automaton" able to read this kind of tree

Conclusion

First step to transform a tableau into an alternating tree automaton for ATL.

Conclusion

First step to transform a tableau into an alternating tree automaton for ATL.

Perspective

Add to the implementation TATL (Tableaux for ATL) the implementation of the Joker Automaton

Thank you for your attention!

Any Questions?