Matematika II

Rešena 6. domača naloga za matematiko II

Napisal : Luka Orlić, 28221084

Tutor : Urša Mati Djuraki

Kazalo

1	Prva naloga		2
	1.1	Navodila	2
	1.2	Reševanje Naloge	2
2	2 Druga naloga		2
	2.1	Navodila	2
	2.2	Reševanie Naloge	3

1 Prva naloga

1.1 Navodila

Na prostoru $\mathbb{R}_3[t]$ imamo tak skalarni produkt, da polinomi 1, t-1, $2t^2+t$, t^3-2 v njem sestavljajo ortonormirano bazo. Glede na ta skalarni produkt izračunaj ortogonalno projekcijo polinoma t^3+t+1 na podprostor Span $\{t-1, t^3-2\}$

1.2 Reševanje Naloge

Ravnina je v prostoru definirana s pomočjo vektorjev ki so tudi vekrotji ONB. Torej enostavno razvijemo naš polinom po tej ONB in dobimo:

$$t^3 + t + 1 = 4B_1 + 1B_2 + 1B_4 \tag{1}$$

Opazimo, da je pravzaprav trivialna pravokotna projekcija na ravnino, kajti ravnina vsebuje B_2 in B_4 , ter ima dve normali B_1 in B_3 . Na srečo ima naš polinom le komponento ene normale, specifično B_1 . Torej je pravokotna projekcija:

$$t^3 + t - 3 = B_2 + B_4 \tag{2}$$

2 Druga naloga

2.1 Navodila

Dana naj bosta linearno neodvisna vektorja $\vec{a}, \ \vec{b} \in \mathbb{R}^3$, endomorfizem T prostora \mathbb{R}^3 pa naj bo dan s prepisom:

$$T\vec{x} = (\vec{a} \times \vec{x}) \times \vec{b} \tag{3}$$

Naj bo T^* adjungiran endomorfizem endomorfizma T glede na standardni skalarni produkt. Izrazi vektorja $T^*\vec{x}$ in $(TT^*)\vec{x}$ z vektorji \vec{a} , \vec{b} in \vec{x} .

2.2 Reševanje Naloge

$$\begin{split} T_{*1} &= \vec{a}_1^{\mid} \times \vec{b} = \begin{bmatrix} a_2b_2 + a_3b_3 \\ -a_2b_1 \\ -a_3b_1 \end{bmatrix} \\ T_{*2} &= \vec{a}_2^{\mid} \times \vec{b} = \begin{bmatrix} -a_1b_2 \\ a_1b_1 + a_3b_3 \\ -a_3b_2 \end{bmatrix} \\ T_{*3} &= \vec{a}_3^{\mid} \times \vec{b} = \begin{bmatrix} -1a_1b_3 \\ -a_2b_3 \\ a_1b_1 + a_2b_2 \end{bmatrix} \Longrightarrow \\ [T] &= \begin{bmatrix} a_2b_2 + a_3b_3 & -a_1b_2 & -1a_1b_3 \\ -a_2b_1 & a_1b_1 + a_3b_3 & -a_2b_3 \\ -a_3b_1 & -a_3b_2 & a_1b_1 + a_2b_2 \end{bmatrix} \\ [T^*] &= [T]^t &= \begin{bmatrix} a_2b_2 + a_3b_3 & -a_2b_1 & -1a_3b_1 \\ -a_1b_2 & a_1b_1 + a_3b_3 & -a_3b_2 \\ -a_1b_3 & -a_2b_3 & a_1b_1 + a_2b_2 \end{bmatrix} \end{split}$$

$$T^*\vec{x} = (\vec{b} \times \vec{x}) \times \vec{a}$$

$$TT^*\vec{x} = (\vec{a} \times [\{\vec{b} \times \vec{x}\} \times \vec{a}]) \times \vec{b}$$