বহুপদী ও বহুপদী সমীকরণ

বহুপদী ও বহুপদী সমীকরণ

TYPE - 01: মূলের প্রকৃতি নির্ণয় বিষয়ক সমস্যাবলী

$$ax^2 + bx + c = 0$$
 এর দুটি মূল, $x = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a}$

ধরি, মূলদ্বয় lpha ও eta তাহলে, $lpha+eta=-rac{b}{a}$, $lphaeta=rac{c}{a}$ দুটি মূল সমান হলে, মূলদ্বয় $rac{-b}{2a}$, $rac{-b}{2a}$;

সমীকরণটির নিশ্চায়ক, $D = b^2 - 4ac = 0$ হবে।

দ্বিঘাত সমীকরণ: $x^2 - ($ মূলদ্বয়ের সমষ্টি) x +মূলদ্বয়ের গুণফল = 0

মূলের প্রকৃতি নির্ণয় : $ax^2+bx+c=0$; সমীকরণের মূলদ্বয় , $\frac{-b+\sqrt{b^2-4ac}}{2a}$ এবং $\frac{-b-\sqrt{b^2-4ac}}{2a}$

(i) $b^2-4ac>0$ হলে এবং পূর্ণবর্গ হলে, মূলদ্বয় (i) বাস্তব (ii) মূলদ (iii) অসমান হবে।

(ii) $b^2-4ac>0$ হলে এবং পূর্ণবর্গ না হলে, মূলদ্বয় (i) বান্তব (ii) অমূলদ (iii) অসমান হবে।

(iii) $b^2-4ac=0$ হলে, মূলদয় (i) বান্তব (ii) মূলদ (iii) সমান হবে।

(iv) $b^2 - 4ac < 0$ হলে, মূলদ্বয় (i) জটিল (ii) অসমান হবে।

অণুবন্ধী মূল ঃ

(1) a ও b বাস্তব হলে, a+ib ও a-ib কে অণুবন্ধী জটিল সংখ্যা বলে

(2) \sqrt{b} অমূলদ হলে, $a+\sqrt{b}$ ও $a-\sqrt{b}$ কে অণুবন্ধী করনী মূল বলে অমূলদ বা জটিল মূলগুলি যুগলরূপে থাকে। মনে হয় একটি অন্যটির প্রতিচ্ছবি।

EXAMPLE – D1 : p এবংq মূলদ হলে, প্রমাণ কর যে, $(p^2-q^2)-x^2+2(p^2+q^2)x+(p^2-q^2)=0$ সমীকরণের মূলদ্বয় সব সময় মূলদ হবে।

SOLVE: প্রদত্ত সমীকরণ, $(p^2-q^2)-x^2+2(p^2+q^2)x+(p^2-q^2)=0$ আমরা জানি, দ্বিঘাত সমীকরণের নিশ্চয়ক পূর্ণ বর্গ হলে উক্ত সমীকরণের মূলদ্বয় সবসময় মূলদ হবে। প্রদত্ত সমীকরণের নিশ্চয়ক,

$$D = {2(p^2 + q^2)}^2 - 4(p^2 - q^2)(p^2 - q^2) = 4(p^2 + q^2)^2 - 4(p^2 - q^2)^2$$
$$= 4(p^2 + q^2 + p^2 - q^2)(p^2 + q^2 - p^2 - q^2) = 4 \times 2p^2 \times 2q^2 = (4pq)^2$$

যদি p ও q মূলদ সংখ্যা হয়, তবে তাদের বর্গও মূলদ হবে। সুতরাং সমীকরণটির মূলদ্বয় মূলদ হবে। (প্রমাণিত)

EXAMPLE - 02: প্রমাণ কর যে, (x-a)(x-b) + (x-b)(x-c) + (x-c)(x-a) = 0 সমীকরণের মূলদ্বয় সর্বদা বাস্তব হবে।

SOLVE: প্রদত্ত সমীকরণ,
$$(x-a)(x-b) + (x-b)(x-c) + (x-c)(x-a) = 0$$

$$\Rightarrow$$
 x² - (a + b)x + ab + x² - (b + c)x + bc + x² - (c + a)x + ca = 0

$$\Rightarrow$$
 3x² - (a + b + b + c + c + a)x + ab + bc + ca = 0

$$\Rightarrow 3x^2 - 2(a+b+c)x + ab + bc + ca = 0$$

আমরা জানি, যে কোন দ্বিঘাত সমীকরণের নিশ্চয়কের মান শূন্য অপেক্ষা বড় বা সমান হলে উক্ত সমীকরণের মূলদ্বয় বাস্তব হবে।

$$\therefore$$
 প্রদত্ত সমীকণের নিশ্চয়ক, $D = \{-2(a+b+c)\}^2 - 4.3(ab+bc+ca)$

$$= 4\{(a+b+c)^2 - 3(ab+bc+ca)\}\$$

$$= 4(a^2 + b^2 + c^2 + 2ab + 2bc + 2ca - 3ab - 3bc - 3ca)$$

$$= 4(a^2 + b^2 + c^2 - ab - bc - ca) = 2(a^2 - 2ab + b^2 + b^2 - 2bc + c^2 + c^2 - 2ca + a^2)$$

$$= 2\{(a-b)^2 + (b-c)^2 + (c-a)^2\}$$

 $a,\,b,\,c$ এর যে কোন বাস্তব মানের জন্য সমীকরণটির নিশ্চয়ক $D\geqslant 0$ হবে সমীকরণের মূলগুলো বাস্তব হবে।

(প্রমাণিত)

EXAMPLE – 03: x^2 - 2px + q = 0 এর মূলদ্বয় সমান হলে দেখাও যে, $(1+y)x^2 - 2(p+y)x + q + y = 0$ এর মূলগুলো বাস্তব ও ভিন্ন হবে [যখন $p \neq 1$] এবং y < 0].

SOLVE : প্রথম সমীকরণের জন্য ঃ মূলদ্বয় সমান \therefore D = 0, $4p^2-4q=0\Rightarrow p^2=q$

দ্বিতীয় সমীকরণের জন্য ঃ $: D = \{-2(p+y)\}^2 -$

$$4(1+y)(q+y)$$

$$=4(p + y)^2 - 4(1 + y)(q + y) =$$

$$4\{(p+y)^2 - (1+y)(q+y)\}$$

$$=4(p^2 + 2py + y^2 - q - y - qy - y^2) =$$

$$4(q + 2py - q - y - qy)$$

$$= -4y(p^2 - 2p + 1) = -4y(1 - p)^2$$
 [:

$$p^2 = q$$

: y < 0 এবং $p \neq 1$ হলে D > 0 হবে এক্ষেত্রে

মূলগুলো বাস্তব ও ভিন্ন হবে।

EXAMPLE – 04: x^2 - 5x + c = 0 সমীকরণের একটি

মূল 4 তাহলে c এর মান এবং অপর মূলটি নির্ণয় কর।

$$16-20 + c = 0$$
: $c = 4$

$$x^2 - 5x + 4 = 0$$

$$\therefore (x - 4)(x - 1) = 0$$

c= মূলদ্বয়ের গুনফল =4 imes1=4

মূলদ্বয়ের গুনফল = 4

মূলদ্বয়ের সমষ্টি = 5

সমীকরণটির একটি মূল অপরটির গুনাত্মক বিপরীত

হলে, χ এর স্থানে $\frac{1}{x}$ বসিয়ে

$$\frac{1}{r^2}$$
 - 5. $\frac{1}{r}$ + 4 = 0

$$1 - 5x + 4x^2 = 0$$

এখানে মূল দ্বয়ের গুনফল $\binom{1}{4}$

এবং মূল দ্বয়ের যোগফল $= \left(\frac{5}{4}\right)$

EXAMPLE - 05: $ax^2 + bx + c = 0$ সমীকরণের দুটি মূল $\frac{1}{2}$ ও 2; a, b, c এর মান নির্ণয় কর। $\left(x - \frac{1}{2}\right)(x - 2) = 0$ $\Rightarrow x^2 - \left(\frac{1}{2} + 2\right)x + 1 = 0$ $\Rightarrow x^2 - 5x + 2 = 0$ a = 2, b = -5, c = 2

EXAMPLE - DG: দেখাও যে, $z = \alpha + i\beta$, $ax^2 + bx + c$ =0 এর একটি মূল হলে অপর মূল $\overline{z} = \alpha - i\beta$ $az^2 + bz + c = 0$ $a(\overline{z})^2 + b(\overline{z}) + c = 0$ সমীকরণের মূল দুটি α^1 , β^1 হলে $\alpha^1 + \beta^1 = -\frac{b}{a} = 2\alpha$ $\alpha^1 \beta^1 = c_{/a} = \alpha^2 - \beta^2$ $\alpha^1 = z = \alpha + i\beta$ $\beta^1 = \overline{z} = \alpha - i\beta$ $x^2 - (2\alpha)x + (\alpha^2 - \beta^2) = 0$ $\Rightarrow x^2 - (-\frac{b}{a})x + c_{/a} = 0$ $\Rightarrow ax^2 + bx + c = 0$ $\Rightarrow ax^2 + bx + c = 0$ $\Rightarrow 1$ $\Rightarrow 1$ ব্যাতিত উক্তিটি সত্য $\therefore p$ $\neq 1$

EXERCISE:

 ${f 01}.\ k$ - এর মান কত হলে, $(k-1)x^2-(k+2)x+4=0$ সমীকরণের মূলগুলি বাস্তব এবং সমান হবে ?

 ${f D2}$. প্রমাণ কর যে, কেবল, p=q হলে, $2x^2-2(p+q)x+(p^2+q^2)=0$ এর মূলদ্বয় বাস্তব হতে পারে।

TYPE - 02: মূলের অনুপাত বা প্রকৃতি হতে শর্তনির্ণয় বিষয়ক সমস্যা

মূল-সহগ সম্পর্ক ও কতিপয় সূত্রাবলী ঃ n ঘাত বা মাত্রা বিশিষ্ট বহুপদীর n সংখ্যক মূল থাকবে।

ধরি , \mathbf{n} একটি পূর্ণ সংখ্যা ≥ 0 .এবং $a_0,a_1,a_2,a_3,...$.. $a_n\in R$ $a_0\neq 0$; $a_0\Rightarrow$ বহুপদীটির মূখ্য সহগ ।

বহুপদীটির আকার: $a_0x^n+a_1x^{n-1}+a_2x^{n-2}+a_3x^{n-3}+\dots\dots+a_rx^{n-r}+\dots\dots a_nx^0$

$$= a_0 \left(x^n + \frac{a_1}{a_0} x^{n-1} \frac{a_2}{a_0} x^{n-2} + \frac{a_3}{a_0} x^{n-3} + \dots a_n \right)$$

মূল সহগ সম্পর্কঃ মূলগুলো lpha,eta,r.....n সংখ্যক এর জন্য

$$\sum \alpha = \alpha + \beta + r + \dots = (-1)^{1} \frac{a_{1}}{a_{0}} \sum \alpha \beta = \alpha \beta + r \beta + r \alpha + \dots = (-1)^{2} \frac{a_{2}}{a_{0}} = \frac{a_{2}}{a_{0}}$$

$$\sum \alpha \beta r = (-1)^3 \frac{a^3}{a^{\circ}}, \sum_{n=1}^n \alpha \beta r \dots \dots no, \text{ of } n = (-1)^n \frac{a_n}{a^{\circ}}.$$

EXAMPLE – D1 : দেখাও যে , $(h^2-a^2)x^2-2hkx+k^2-b^2$ রাশিটি পূর্ণ বর্গ হবে যদি $\frac{h^2}{a^2}+\frac{k^2}{h^2}=1$ হয়।

SOLVE: রাশিটি দ্বারা গঠিত সমীকরনের নিশ্চয়ক শূন্য হলে রাশিটি পূর্ণ বর্গ হবে,

শর্তানুযায়ী, নিশ্চায়ক, D = 0 \Rightarrow $(-2hk)^2 - 4(h^2 - a^2)(k^2 - b^2) = 0$

$$\Rightarrow h^2 k^2 - h^2 k^2 + h^2 b^2 + a^2 k^2 - a^2 b^2 = 0 \Rightarrow \frac{h^2}{a^2} + \frac{k^2}{b^2} = 1 [a^2 b^2$$
 দ্বারা ভাগ করে]

EXAMPLE - 02: $ax^2 + bx + c = 0$ মূলদ্বয়ের অনুপাত 4:5 হলে, প্রমাণ কর যে, $20b^2 = 81$ ac.

 ${f SOLVE}$: ধরি, প্রদত্ত সমীকরণ $ax^2+bc+c=0$ এর দুটি মূল 4lpha ও 5lpha

আমরা জানি, $4\alpha+5\alpha=-rac{b}{a}......(i)$

(i) নং সমীকরণ হতে পাই , $9\alpha=-rac{b}{a}\Longrightarrow \alpha=-rac{b}{9a}$ এবং

$$(ii) নং সমীকরণ হতে পাই, $20\alpha^2 = \frac{c}{a} \Longrightarrow 20 \left(-\frac{b}{9a}\right)^2 = \frac{c}{a} \Longrightarrow 20. \frac{b^2}{81a^2} = \frac{c}{a} \Longrightarrow 20b^2 = 81ac$$$

EXAMPLE – 03: k এর মান কত হলে $(k^2-3)x^2+3kx-(3k+1)=0$ সমীকরণের একটি মূল অপরটির উল্টা হবে ?

SOLVE: ধরি, মূলদ্বয়
$$\alpha ext{ ও } \frac{1}{\alpha}$$
 তাহলে, $\alpha ext{.} \frac{1}{\alpha} = \frac{3k+1}{k^2-3} = 1 \Rightarrow k^2 - 3k - 4 = 0$ $\Rightarrow (k-4)(k+1) = 0$ or, $k=4$ বা -1

EXAMPLE - 04: k এর মান কত হলে, $x^2 - 6x - 1 + k(2x + 1) = 0$ সমীকরণের মূলদ্বয় সমান হবে ?

SOLVE : শর্তানুযায়ী ,
$$x^2-(6-2k)x-1+k=0$$
 সমীকরণের নিশ্চায়ক বা নিরূপক , $D=0$ $\Rightarrow (-6+2k)^2-4.1$. $(k-1)=0 \Rightarrow (-3+k)^2-k+1=0$

$$\Rightarrow 9 - 6k + k^2 - k + 1 = 0 \Rightarrow k^2 - 7k + 10 = 0 \Rightarrow (k - 5)(k - 2) = 0$$

k = 5 or, 2 Ans.

EXERCISE :

01.
$$ax^2 + bx + b = 0$$
 মূলদ্বয়ের অনুপাত $m:n$ হলে, প্রমাণ কর যে, $\sqrt{\frac{m}{n}} + \sqrt{\frac{n}{m}} + \sqrt{\frac{b}{a}} = 0$
02. k এর মান কত হলে $(k+1)x^2 + 2(k+3)x + 2k + 3$ রাশিটি একটি পূর্ণ বর্গ হবে? (Ans. 3 বা -2)

TYPE - 03 : মূলের পার্থক্য হতে শর্ত নির্ণয় বিষয়ক সমস্যাবলী

EXAMPLE - 01: $x^2 + px + q = 0$ সমীকরণের মূলদ্বয়ের পার্থক্য 1 হয়, তবে প্রমাণ কর যে, $p^2 + 4q^2 = (1 + 2q)^2$.

 $extsf{SOLVE}$: ধরি , প্রদত্ত সমীকরণ $x^2+px+q=0$ এর মূলদ্বয় lpha ও eta

তাহলে,
$$\alpha + \beta = -p \dots \dots \dots \dots (i)$$

$$\alpha\beta=q\ldots\ldots\ldots(ii)$$

$$\alpha \sim \beta = 1 \dots \dots \dots \dots (iii)$$

প্রশ্নমতে, (iii) নং সমীরকণ হতে পাই,

$$(\alpha \sim \beta)^2 = (\alpha \sim \beta)^2 - 4\alpha\beta \Longrightarrow 1^2 = (-p)^2 - 4q \Longrightarrow 1 = p^2 - 4q \Longrightarrow p^2 = 1 + 4q$$
 $\Longrightarrow p^2 + 4q^2 = 1 + 2.12q + (2q)^2 : p^2 + 4q^2 = (1 + 2q)^2$ (প্রমাণিত)

EXAMPLE – 02 : যদি $x^2 - bx + c = 0$ এবং $x^2 - cx + b = 0$ এর মূলদ্বয়ের পার্থক্য একটি ধ্রুব রাশি হয়, তবে প্রমাণ কর যে, b + c + 4 = 0.

SOLVE: প্রদত্ত সমীকরণ দুটি,

ধরি, (i) নং সমীকরণের মূলদ্বয় α ও β তাহলে, $\alpha+\beta=b, \alpha\beta=c$

এবং (ii) নং সমীকণের মূলদ্বয় γ ও δ তাহলে, $\gamma + \delta = c$, $\gamma \delta = b$

প্রশ্নাতে, $\alpha{\sim}\beta=k$ এবং $\gamma{\sim}\delta=k$, তাহলে, $\alpha{\sim}\beta=\gamma{\sim}\delta$

 $\Rightarrow (\alpha \sim \beta)^2 = (\gamma \sim \delta)^2$ [উভয় পক্ষকে বর্গ করে]

$$\Rightarrow$$
 $(\alpha + \beta)^2 - 4\alpha\beta = (\gamma + \delta)^2 - 4\alpha\beta \Rightarrow b^2 - 4c = c^2 - 4b$

 \Rightarrow $b^2 - c^2 - 4c + 4b = 0$ [পক্ষান্তর করে]

$$\Rightarrow (b-c)(b+c) + 4(b-c) = 0 \Rightarrow (b-c)(b+c+4) = 0$$

 $\mathbf{b} \neq \mathbf{c}, \mathbf{b}$ কারণ $\mathbf{b} = \mathbf{c}$ হলে সমীকরণ দুটি একই হয়ে যায়। সুতরাং $\mathbf{b} + \mathbf{c} + \mathbf{4} = \mathbf{0}$ (প্রমাণিত)

EXAMPLE - 03 : যদি $ax^2+bx+c=0$ সমীকরণের দুটি মুলের অনুপাত r হলে দেখাও যে , $\frac{(r+1)^2}{r}=\frac{b^2}{ac}$

 ${f SOLVE}:$ নির্ণয় বিষয়ক সমস্যাবলী : ৬ মূলদ্বয় lpha ও lpha r হলে, $lpha + lpha r = -rac{b}{a} \Rightarrow lpha = rac{-b}{a(1+r)}$

$$\alpha \times \alpha r = \frac{c}{a} \Rightarrow \left\{ \frac{-b}{a(1+r)} \right\}^2 \cdot r = \frac{c}{a} \Rightarrow \frac{b^2}{a^2} \cdot \frac{r}{(1+r)^2} = \frac{c}{a} \Rightarrow \frac{(1+r)^2}{r} = \frac{b^2}{ac}$$

EXAMPLE – 04: \frac{1}{x} + \frac{1}{p-x} = \frac{1}{q} সমীকরণের মূল দুটির অন্তর d হলে, p কে d এবং q এর মাধ্যমে প্রকাশ কর।

SOLVE : সমীকরণটি , $x^2 - px + pq = 0...a$ ও b দুটি মূল হলে , a + b = p , ab = pq , a - b = |d|

$$\Rightarrow$$
 $(a - b)^2 = d^2 \Rightarrow (a + b)^2 - 4ab = d^2 \Rightarrow p^2 - 4pq = d^2$

$$\Rightarrow p^2 - 2. p. 2q + (2q)^2 - 4q^2 = d^2 \Rightarrow (p - 2q)^2 = d^2 + 4q^2 \Rightarrow p = \pm \sqrt{d^2 + 4q^2} + 2q$$

EXERCISE:

- $2x^2 + 2(a+b)x + 3a = 2b$ সমীকরণের একটি মূল অপরটির দিগুণ হলে, প্রমাণ কর যে, a=2b অথবা 4a=11b.
- 02. যদি $a_1x^2+b_1x+c_1=0$ এর মূলদ্বয়ের অনুপাত $a_2x^2+b_2x+c_2=0$ এর মূলদ্বয়ের অনুপাতের সমান হয়, তবে প্রমাণ কর যে, $\frac{b_1^2}{a_1c_1}=\frac{b_2^2}{a_2c_2}$.

TYPE - 04: যখন একটি মূল অপরটির বর্গ

EXAMPLE – 01: যদি $x^2+px+q=0$ সমীকরণের একটি মূল অপরটির বর্গের সমান হয় , তবে প্রমাণ কর যে , $p^3-q(3p-1)+q^2=0$.

 $extsf{SOLVE}$: প্রদত্ত সমীকরণ , $x^2+px+q=0$,ধরি , সমীকরণটি মূলদুটি lpha ও $lpha^2$

তাহল,
$$\alpha + \alpha^2 = -p \dots \dots \dots \dots (i)$$
; $\alpha + \alpha^2 = q \Longrightarrow \alpha^2 = q \dots \dots \dots \dots (ii)$

(i) নং সমীকরণকে ঘন করে পাই, $(\alpha + \alpha^2)^3 = (-p)^3$

$$\Rightarrow \alpha^3 + (\alpha^2)^3 + 3\alpha^3(\alpha + \alpha^2) = -p^3 \Rightarrow p^3 - q(3q - 1) + p^3 = 0$$
 (প্রমাণিত)

EXAMPLE – 02:27x^2-6x-(p+2)=0 সমীকরণের একটি মূল অপরটির বর্গের সমান হলে p এর মান নির্ণয় কর।

 ${f SOLVE}$: প্রদত্ত সমীকরণ , $27x^2-6x-(p+2)=0$,ধরি , সমীকরণটি মূলদুটি lpha ও $lpha^2$;

তাহলৈ,
$$\alpha + \alpha^2 = -\frac{6}{27} = -\frac{2}{9}$$
(i); $\alpha \cdot \alpha^2 = -\frac{p+2}{27}$(ii)

(i) নং সমীকরণ হতে পাই, $9\alpha + 9\alpha^2 + 2 = 0 \Rightarrow (3\alpha + 2)(3\alpha + 1) = 0$,

$$\therefore \alpha = -\frac{2}{3}$$
 বা $-\frac{1}{3}$; (ii) নং সমীকরণ হতে পাই , $(-\frac{2}{3})^3 = -\frac{p+2}{27}$ - 8 = -p - $2\Rightarrow p=6$

পূনরায়,
$$(-\frac{1}{3})^3 = -\frac{p+2}{27} \Rightarrow -1 = -p-2 \Rightarrow p = -1$$
 : p এর মান $(6, -1)$ Ans.

 ${f EXAMPLE-03}: px^2+qx+r=0$ এর একটি মূল অপরটির বর্গের সমান হলে দেখাও যে,

$$p (q - r)^3 = r(q - p)^3$$
.

 ${f SOLVE}:$ ধরি, মূলদ্য lpha ও $lpha^2$, $lpha+lpha^2=-rac{q}{p}$(i), $lpha imeslpha^2=rac{r}{p}$(ii)

যেহেতু lpha উক্ত সমীকরণের একটি মূল \therefore $\mathrm{p}lpha^2 + \mathrm{q}lpha + \mathrm{r} = 0$ এবং

(i) নং সমীকরন হতে পাই , p
$$lpha^2$$
+p $lpha$ +q $=0$,(q $-$ p) $lpha$ + r $-$ q $=0$ \Rightarrow $lpha$ $=$ $\frac{q-r}{q-p}$

(ii) নং সমীকরন হতে পাই ,
$$(\frac{q-r}{q-p})^3 = \frac{r}{p} \Rightarrow p(q-r)^3 = r(q-p)^3$$
 (Showed)

EXERCISE:

- 01. যদি $ax^2 + bx + c = 0$ সমীকরণের একটি মূল অপরটির বর্গ হয়, তবে প্রমাণ কর যে, $c(c-a)^3 = a(a-b)^3$.
- **Q2.** যদি $ax^2 + bx + c = 0$ সমীকরণের একটি মূল অপরটির বগের্র সমান হয়, তবে প্রমাণ কর যে, $a^2c + ac^2 + b^3 = 3abc$.

TYPE - 05: সমীকরণের মূল হতে সংশ্লিষ্ট ভিন্ন মূল দ্বারা সমীকরণ গঠন সম্পর্কিত

EXAMPLE – 🛛 । $4x^2-5x+1=0$ সমীকরণের মূল দুইটি α ও β হলে, $\alpha+\frac{1}{\beta}$ এবং $\beta+\frac{1}{\alpha}$ মূলবিশিষ্ট সমীকরণিটি নির্ণয় কর ।

 $extsf{SOLVE}$: প্রদত্ত সমীকরণ , $4x^2-5x+1=0$ সমীকরণের দুটি মূল $\, lpha \,$ ও $\, eta \,$

তাহলে, $\alpha+\beta=\frac{5}{4}$, $\alpha\beta=\frac{1}{4}$, $\alpha+\frac{1}{\beta}$ ও $\beta+\frac{1}{\alpha}$ মূল বিশিষ্ট সমীকরণ গঠণ করতে গুণফল =0(i)

মূলদ্বয়ের সমষ্টি $= lpha + rac{1}{eta} + eta + rac{1}{lpha}$ মূল বিশিষ্ট সমীকরণ গঠন করতে হবে।

 \therefore নির্ণেয় সমীকরণ, $\mathbf{x}^2-($ মূলদ্বয়ের সমষ্টি) $\mathbf{x}+$ মূলদ্বয়ের গুণফল =0(i)

মূলদ্বয়ের সমষ্টি = $\alpha + \frac{1}{\beta} + \beta + \frac{1}{\alpha} = \frac{\alpha^2 + \alpha + \beta^2 + \beta}{\alpha\beta} = \frac{\alpha^2 + \beta^2 + \alpha + \beta}{\alpha\beta} = \frac{(\alpha + \beta)^2 - 2\alpha\beta + (\alpha + \beta)}{\alpha\beta}$

$$=\frac{\left(\frac{5}{4}\right)^2 - 2 \times \frac{1}{4} + \frac{5}{4}}{\frac{1}{4}} = \frac{\frac{25}{16} - \frac{1}{2} + \frac{5}{4}}{\frac{1}{4}} = \frac{\frac{25 - 8 + 20}{16}}{\frac{1}{4}} = \frac{37}{4}$$

মূলদ্বয়ের গুণফল $=\left(\alpha+\frac{1}{6}\right)\left(\beta+\frac{1}{6}\right)=\alpha\beta+1+1+\frac{1}{66}=\frac{1}{4}+2+\frac{1}{4}=\frac{1}{4}+2+4=\frac{1}{4}+6=\frac{25}{4}$

(i) নং হতে পাই,
$$x^2 - \frac{37}{4}x + \frac{25}{4} = 0 \implies 4x^2 - 37x + 25 = 0$$

 \therefore নির্ণেয় সমীকরণ: $4x^2 - 37x + 25 = 0$

EXERCISE:

- a এমন একটি সমীকরণ নির্ণয় কর যার মূল দুইটি যথাক্রমে $a^2-2bx+b^2-a^2=0$ সমীকরণের মূলদ্বয়ের সমষ্টি এবং অন্তরফলের যোগবোধক মান হবে। $a = a^2 a^2 = 0$ সমীকরণের মূলদ্বয়ের $a = a^2 a^2 = 0$ সমষ্টি এবং অন্তরফলের যোগবোধক মান হবে। $a = a^2 a^2 = 0$ সমীকরণের মূলদ্বয়ের
- **Q2.** $ax^2 + bx a = 0$ সমীকরণের মূলদ্বয় α , β হলে $a\alpha + b$ এবং $a\beta + b$ মূলদ্বয় দ্বারা গঠিত সমীকরণটি নির্ণয় কর । $[\mathbf{Ans} : \mathbf{x}^2 \mathbf{bx} \mathbf{a}^2 = \mathbf{0}]$
- 03. $x^2-25x+150=0$ সমীকরণের দুটি মূল α ও β . এই সমীকরণ সমাধান না করে $\alpha+\beta^2$ ও $\beta+\alpha^2$ মূল বিশিষ্ট সমীকরণ নির্ণয় কর। $\text{Ans. } x^2-350x+27025=0.$

TYPE - 🛮 🛱 : একটা সমীকরনের মূলকে অন্য সমীকরেণর মূলের মাধ্যমে প্রকাশ সম্পর্কিত

EXAMPLE – 01: $ax^2+bx+c=0$ সমীকরণের মূলদ্বয় α ও β হলে, $ac(x^2+1)-(b^2-2ac)x=0$ এর মূলদ্বয়কে α ও β এর মাধ্যমে প্রকাশ কর ।

SOLVE: দেওয়া আছে, $ax^2+bx+c=0$ সমীকণের মূলদ্বয় α ও β তাহলে, $\alpha+\beta=-\frac{b}{a}$ এবং $\alpha\beta=\frac{c}{a}$ $ac(x^2+1)-(b^2-2ac)x=0$ সমীকরণের মূলদ্বয়কে α ও β এর মাধ্যমে প্রকাশ করতে হবে। $ac(x^2+1)-(b^2-2ac)x=0$ সমীকণের সরলীকৃত আকার:

$$\Longrightarrow \frac{c}{a}(x^2+1) - \left\{ \left(\frac{b}{a}\right)^2 - 2.\frac{c}{a} \right\} x = 0[x^2$$
 দ্বারা ভাগ করে]

$$\Rightarrow \alpha\beta(x^2+1) - \{(\alpha+\beta)^2 - 2\alpha\beta\}x = 0 \quad \left[\because \alpha+\beta = -\frac{b}{a} \& \alpha\beta = \frac{c}{a}\right]$$

$$\Rightarrow \alpha \beta x^2 - (\alpha^2 + \beta^2)x + \alpha \beta = 0 \Rightarrow \alpha x(\beta x - \alpha) - \beta(\beta x - \alpha) = 0$$

$$\Rightarrow$$
 $(\beta x - \alpha)(\alpha x - \beta) = 0$

হয়,
$$\beta x - \alpha = 0 \Longrightarrow \beta x = \alpha \Longrightarrow x = \frac{\alpha}{\beta}$$
 অথবা, $\alpha x - \beta = 0 \Longrightarrow \alpha x = \beta \Longrightarrow x = \frac{\beta}{\alpha}$

সুতরাং একটা মূল $\frac{\alpha}{\beta}$ এবং অপর মূল $\frac{\beta}{\alpha}$ ∴িনর্ণেয় মূলদ্বয় , $\frac{\alpha}{\beta}$, $\frac{\beta}{\alpha}$.

EXAMPLE – D2 : $ax^2 + bx + c = 0$ এর একটি মূল $cx^2 + bx + a = 0$ সমীকরণের একটি মূলের দ্বিগুণ হলে, প্রমাণ কর যে, 2a = c অথবা $(2a = c)^2 = 2b^2$.

SOLVE : মনে করি, $cx^2+bx+a=0$ এর একটি মূল lpha তাহলে,

$$a(2\alpha)^2 + b(2\alpha) + c = 0 \Longrightarrow 4a\alpha^2 + 2b\alpha + c = 0 \dots \dots \dots (ii)$$

(i) ও (ii) নং সমীকরণ হতে পাই,
$$\frac{\alpha^2}{bc-2ab} = \frac{\alpha}{4a^2-c^2} = \frac{1}{2bc-4ab}$$
.....(iii)

$$(i)$$
 ও (ii) নং অনুপাত হতে পাই , $\alpha=rac{bc-2ab}{4a^2-c^2}...$ (iv)

$$(ii)$$
 ও (iii) নং অনুপাত হতে পাই , $\alpha=rac{4a^2-c^2}{2bc-4ab}$ (v)

(iv) ও (v) নং সমীকরণ হতে পাই,
$$\frac{bc-2ab}{4a^2-c^2} = \frac{4a^2-c^2}{bc-4ab}$$

$$\Rightarrow$$
 (bc - 2ab)(2bc - 4ab) = $(4a^2 - c^2)^2 \Rightarrow 2b^2(c - 2a)^2 = {(2a - c)(2a + c)}^2$

$$\Rightarrow 2b^{2}(c - 2a)^{2} = (c - 2a)^{2}(2a + c)^{2} \Rightarrow (c - 2a)^{2}(2a + c)^{2} - 2b^{2}(c - 2a)^{2} = 0$$

$$\Rightarrow (c - 2a)^{2} \{ (2a + c)^{2} - 2b^{2} \} = 0$$

হয়,
$$(c-2a)^2=0 \Rightarrow c-2a=0 \Rightarrow c=2a$$
 অথবা, $(2a+c)^2-2b^2=0 \Rightarrow 2b^2=(2a+c)^2$
 $\therefore c=2a$ অথবা, $2b^2=(2a+c)^2$ (প্রমাণিত)

EXERCISE:

 $ax^2+bx+c=0$ সমীকরণের মূলদ্বয় lpha, eta হলে , $cx^2-2bx+4a=0$ সমীকরণের মূল দুইটি lpha এবং eta এর মাধ্যমে প্রকাশ কর ।

TYPE - 07: সাধারণ মূলের শর্ত

 $a_1x^2+b_1x+c_1=0$ এবং $a_2x^2+b_2x+c_2=0$ সমীকরণদ্বয়ের একটি সাধারণ মূল থাকার শর্ত, $(a_1b_2-a_2b_1)(b_1c_2-b_2c_1)=(c_1a_2-c_2a_1)^2$

EXAMPLE – 01: x^2 + kx - 6k = 0 এবং $x^2 - 2x - k = 0$ সমীকরণ দুইটির একটিমাত্র সাধারণ মূল থাকলে k এর মান গুলো নির্ণয় কর ।

 ${f SOLVE}$: ধরি, সাধারণ মূলটি lpha তাহলে, $lpha^2+klpha-6k=0$; $lpha^2-2lpha-k=0$

বজ্রগুণন কর পাই ,
$$\frac{\alpha^2}{-k^2-12k}=\frac{-\alpha}{-k+6k}=\frac{1}{-2-k}$$

১ম ও ২য় অনুপাত হতে, $\alpha = \frac{k^2 + 12k}{5k}$, $\alpha = \frac{5k}{2+k} = \frac{k^2 + 12k}{5k}$

$$\Rightarrow$$
 25k² = 2k² + 24k + k³ + 12k² \Rightarrow k³ - 11k² + 24k = 0

$$\Rightarrow$$
 k(k² - 11k + 24) = 0 \Rightarrow k(k - 3)(k - 8) = 0 \therefore k = 0, 3, 8

EXAMPLE – 02: x^2 –ax+b = 0 এবং x^2 –bx+a = 0 (a ≠ b) সমীকরণদ্বয়ের একটি সাধারণ মূল থাকলে দেখাও যে, a+b= -1 এবং এদের অপর মূলগুলো x^2 – x + ab =0 সমীকরণকে সিদ্ধ করে।

সমাধানঃ ধরি সাধারণ মূলটি α $x^2 - ax + b = 0$ (i)

$$x^2 - bx + a = 0$$
(ii)

 a^2 – $a\alpha$ + b = 0 এবং

$$\alpha^2 - b\alpha + a = 0$$

বিয়োগ করি, (-a +b) α +b - a = 0

$$\Rightarrow$$
(b -a) α +b -a =0

$$\Rightarrow$$
 (b –a) (α +1) = 0

 \because a \ne b, α = -1 সাধারণ মূলa = -1 (i) নং সমীকরণ বসিয়ে,

$$\alpha^2 - \alpha a + b = 0 \Rightarrow 1 + a + b = 0 \Rightarrow a + b = -1$$
 showed.

$$\beta \times (-1) = b \Rightarrow \beta = -b$$

(ii) নং সমীকরণের মূলদ্বয়ের গুনফল = a একটি মূল lpha অপর মূল γ হলে $\gamma imes -1$ = a \Rightarrow - γ = a \therefore γ = - a

EXAMPLE – 03: x^2 - px + q = 0 এবং $x^2 - ax + b = 0$ সমীকরণদ্বয়ের দুটির সাধারণ মূল থাকে এবং দ্বিতীয় সমীকরণের দুটি মূল সমান হয় হবে দেখাও যে, $b + q = \frac{1}{2}ap$

সমাধান: ধরি lpha সাধারণ মূল।

$$\alpha^2$$
-p α +q = 0

$$\alpha^2$$
- α a +b = 0

যোগ করি: $2\alpha^2$ –(p+a) α +q+b= 0

$$\Rightarrow q+b = (p+a)\alpha - 2\alpha^2 = (p+a)\frac{a}{2} - 2\frac{a^2}{4}[ii \Rightarrow \alpha + \alpha = a \Rightarrow \alpha = \frac{a}{2}] = \frac{1}{2}ap$$

[অপর সমীকরণের মূল দ্বয় সমান সুতরাং lpha ও lpha মূল]

EXERCISE:

 $px^2 + qx + 1 = 0$ এবং $qx^2 + px + 1 = 0$ এর একটি সাধারণ মূল থাকে হবে দেখাও যে, p = q বা p + q + 1 = 0

 $ax^2 + 2x + 1 = 0$ এবং $x^2 + 2x + a = 0$ $[a \ne 1]$ এর একটি সাধারণ মূল থাকলে সাধারণ মূল ও $ax^2 + 2x + 1 = 0$ এর মান নির্ণয় কর।

Ans. সাধারণ মূল 1 এবং a=3. [সাধারণ মূল -1 এবং a=1 যা গ্রহণযোগ্য নয়]

TYPE - 🛛 🖁 : প্রতিসম রাশির মান নির্ণয়

EXAMPLE – \Omega I: x^3 + ax^2 + bx + c = 0 সমীকরণের মূলগুলো α , β , γ হলে, $\alpha^3 + \beta^3 + \gamma^3$ এর মান নির্ণয় কর।

 $extsf{SOLVE}$: প্রদত্ত সমীকরণ , $extsf{x}^3+a extsf{x}^2+b extsf{x}+c=0$ সমীকরণের মূলগুলো এর lpha, eta, γ

$$\div \sum \alpha = \alpha + \beta + \gamma = \ (-1)^1 a = -a = \sum \beta = \alpha \beta + \alpha \gamma + \beta \gamma = (-1)^2 b = b$$

$$\sum \alpha \beta \gamma = \alpha \beta \gamma = (-1)^3 c = -c = \sum \alpha^3 = \alpha^3 \alpha^3 + \beta^3 + \gamma^3 - 3\alpha \beta \gamma + 3\alpha \beta \gamma$$

$$=\frac{1}{2}(\alpha+\beta+\gamma)\{(\alpha-\beta)^2+(\beta-\gamma)^2+(\gamma-\alpha)^2\}+3\alpha\beta\gamma$$

$$=\frac{1}{2}(\alpha+\beta+\gamma)(2\alpha^2+2\beta^2+2\gamma^2-2\alpha\beta-2\beta\gamma-2\alpha\gamma)+3\alpha\beta\gamma$$

$$= (\alpha + \beta + \gamma)(\alpha^2 + \beta^2 + \gamma^2 - \alpha\beta - \beta\gamma - \alpha\gamma) + 3\alpha\beta\gamma$$

$$= (\alpha + \beta + \gamma)\{(\alpha + \beta + \gamma)^2 - 3(\alpha\beta + \beta\gamma + \alpha\gamma)\} + 3\alpha\beta\gamma$$

$$= -a\{(-a)^2 - 3b\} + 3c - c = 3ab - a^3 - 3c$$

EXAMPLE – 02 : যদি $x^3 - px^2 + qx = 0$ সমীকরণের মূলগুলো a, b, c হয়, তবে $\frac{1}{a^2} + \frac{1}{a^2} + \frac{1}{c^2}$ এর মান নির্ণয় কর।

 ${f SOLVE}$: প্রদত্ত সমীকরণ ${f x}^3-p{f x}^2+q{f x}=0$ এর তিনটি মূল a,b,c

তাহলে,
$$a+b+c=p$$
 , $ab+bc+ca=q$, $abc=r$ $\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{b^2c^2+c^2a^2+a^2b^2}{a^2b^2c^2}$

$$=\frac{(ab+bc+ca)^2-2(abc^2+a^2bc+acb^2)}{a^2b^2c^2}=\frac{q^2-2abc(a+b+c)}{(abc)^2}=\frac{q^2-2rp}{r^2}$$

EXAMPLE - 03 : $x^3+px+q=0$ সমীকরণ এর মূল তিনটি α,β,γ হলে , $\frac{\alpha+\beta}{\gamma^2}$, $\frac{\beta+\gamma}{\alpha^2}$, $\frac{\gamma+\alpha}{\beta^2}$ মূল বিশিষ্ট ত্রিঘাত

সমীকরণ নির্ণয় কর।

SOLVE: সমীকরণটি, $x^3 + 0.x^2 + px + q = 0$

$$\alpha + \beta + \gamma = 0$$
 $\therefore \alpha + \beta = \gamma, \alpha + \gamma = -\beta, \beta + \gamma = -\alpha$ $\therefore \frac{\alpha + \beta}{\gamma^2} = -\frac{1}{\gamma}$

শর্তানুযায়ী ,
$$x=-rac{1}{y} \Rightarrow \gamma=-rac{1}{x}$$
 অনুরূপভাবে $lpha=-rac{1}{x}$, $eta=-rac{1}{x}$

$$\therefore x^3 + px + q = 0$$
 সমীকরণটি $-\frac{1}{x}$ দ্বারাও সিদ্ধ হবে।

$$\left(-\frac{1}{x}\right)^3 + p\left(-\frac{1}{x}\right) + q = 0 \Rightarrow -1 - px^2 + qx^3 = 0 \Rightarrow qx^3 - px^2 - 1 = \mathbf{0}$$
 (Ans.)

EXERCISE:

- \mathbf{DI} . $\mathbf{x}^3 + \mathbf{x} \mathbf{1} = \mathbf{0}$ এর মূল α, β, γ হলে (a) $\alpha^2, \beta^2, \gamma^2$ এর মান নির্ণয় কর Ans: 2.
- $\Box 2. \qquad rac{1}{1-lpha} \ , rac{1}{1-eta} \ , rac{1}{1-\gamma}$ মূল বিশিষ্ট সমীকরণ নির্ণয় কর । $Ans. \ (rac{x-1}{x})^3 \left(rac{x-1}{x}
 ight) 1 = 0 \ .$
- 03. $2x^3 x^2 + 3x 1 = 0$ এর মূল তিনটি α, β, γ হলে, $\frac{1}{2\beta+1}$, $\frac{1}{2\gamma+1}$, $\frac{1}{2\alpha+1}$ মূল বিশিষ্ট সমীকরণ নির্ণয় কর । Ans. $12x^3 11x^2 + 4x 1 = 0$

EXAMPLE - 04: $(a+b+c)x^2+(b+2c)x+c=0$ এর দুটি মূল α ও β হলে $\frac{\alpha}{\alpha+1}$ এবং $\frac{\beta}{\beta+1}$ মূল

বিশিষ্ট সমীকরণটি নির্ণয় কর।

$$\frac{\alpha}{\alpha+1}=x\Rightarrow \alpha=\alpha x+x\Rightarrow \alpha(1-x)=x, \ \alpha=\frac{x}{1-x}$$
 , xএর ছলে $\frac{x}{1-x}$ বসিয়ে পাই।

$$(a+b+c)\left(\frac{x}{1-x}\right)^2 + (b+2c)\left(\frac{x}{1-x}\right) + c = 0$$

$$\Rightarrow (a+b+c) x^2 + (b+2c)x(1-x) + c(1-x)^2 = 0$$

 \Rightarrow ax² + bx + c = 0 Ans

EXAMPLE – 05: $x^2-6x+p=0$ এর মূল α , β এবং $8x^2+10x+q=0$ এর মূল $\frac{1-\alpha}{\alpha}$ এবং $(1-\beta)/\beta$ হলে p ও

q এর মান নির্ণয় কর।

$$\frac{1-\alpha}{\alpha} = x$$
 হয় তবে $1-x = \alpha x \Rightarrow \alpha = \frac{1}{1+x}$

$$\left| \left(\frac{1}{1+x} \right)^2 - 6 \left(\frac{1}{1+x} \right) + p \right| = 0$$

$$\Rightarrow 1 - 6(1+x) + p(1+x)^2 = 0$$

$$\Rightarrow 1 - 6 - 6x + p + 2px + px^2 = 0$$

$$\Rightarrow px^2 + (2p-6)x + p - 5 = 0$$
 যা $px^2 + 10x + 2 = 0$ এর সমতুল্য।

$$2p - 6 = 10 \Rightarrow p = 8$$

$$q = p - 5 = 8 - 5 = 3$$

TYPE - 09: মূল নির্ণয়

EXAMPLE – 01: $x^4 + 4x^3 + 5x^2 + 2x - 2 = 0$ সমীকরণের একটি মূল-1 + i হলে অপর মূল নির্ণয় কর।

SOLVE:
$$x = -1 + i \Rightarrow (x + 1)^2 = i^2 \Rightarrow x^2 + 2x + 2 = 0 : x^4 + 4x^3 + 5x^2 + 2x - 2$$

$$= x^4 + 2x^3 + 2x^2 + 2x^3 + 4x^2 + 4x - x^2 - 2x - 2$$

$$= x^{2}(x^{2} + 2x + 2) + 2x(x^{2} + 2x + 2) - 1(x^{2} + 2x + 2)$$

=
$$(x^2 + 2x + 2) (x^2 + 2x - 1) = 0 : x^2 + 2x - 1 = 0 \Rightarrow x = \frac{-2 \pm \sqrt{4+4}}{2}$$

$$\Rightarrow$$
 x = $\pm\sqrt{2}-1$: নির্পেয় মূল চারটি , $-1\pm i, \pm\sqrt{2}-1$ (Ans.)

নিজে কর:(i) একটি মূল $3+\sqrt{2}$ হলে x^4 - $9x^3+27x^2-33x+14=0$ সমীকরণটি সমাধান কর। Ans. $3\pm\sqrt{2}$, 2, 1

(ii) একটি মূল 1+i হলে $x^4 + 2x^3 - 5x^2 + 6x + 2 = 0$ এর সমাধান কর। Ans. $1 \pm i$, $-2 \pm \sqrt{3}$

EXAMPLE - 02 : $2x^3 - 19x^2 + 38x + 24 = 0$ এর দুটি মূলের অনুপাত 2:3 হলে মূল তিনটি নির্ণয় কর।

SOLVE : ধরি, মূল তিনটি 2α , 3α , β

$$\Rightarrow 10\alpha^3 - 4 = 19\alpha^2$$

$$2\alpha.3\alpha.$$
 $\beta = -\frac{24}{2} \Rightarrow 6\alpha^2\beta = -12 \Rightarrow \alpha^2\beta = -2$

$$\Rightarrow$$
 10 α^3 – 19 α^2 – 4 = 0,

$$2\alpha+3\alpha+\beta=\frac{19}{2}\Rightarrow 5\alpha+\beta=\frac{19}{2}$$

$$\alpha=2,-\frac{1}{2},-\frac{1}{2}$$

$$\Rightarrow 5\alpha + \left(-\frac{2}{\alpha^2}\right) = \frac{19}{2} \Rightarrow 5\alpha^3 - 2 = \frac{19}{2}\alpha^2$$

তাহলে মানগুলো ঃ 2α , 3α , $\beta = 4$, 6, $-\frac{1}{2}$ (Ans:)

EXAMPLE – \mathbf{03}: $\mathbf{x}^3 - 15\mathbf{x}^2 + 71\mathbf{x} - 105 = 0$ সমীকরণের তিনটি মূল সমান্তর ধারায় থাকলে মূল তিনটি নির্ণয় কর।

SOLVE: ধরি, মূল তিনটি a - k, a, a + k তাহলে, $a - ka + a + a + k = -(-15) = 15 <math>\Rightarrow$

$$3a = 15 \therefore a = 5$$

$$(a - k)a + a(a + k) + (a + k)(a - k) = 71 \implies a^2 - ka + a^2 + ka + a^2 - k^2 = 71$$

$$\Rightarrow$$
 $3a^2 - k^2 = 75 = 4 \Rightarrow k = \pm 2(k = 2, a = 5) : a - k, a, a + k = 3, 5 agg 7 (Ans:)$

EXAMPLE – 04: $8x^3-42x^2+63x-27=0$ সমীকরণের মূলগুলো গুণোত্তর ধারায় আছে মূলগুলি নির্ণয় কর।

SOLVE: ধরি, মূলগুলো $\frac{\alpha}{r}$, α , αr .

মূল তিনটির গুণফল=
$$\frac{\alpha}{r} \times \alpha \times \alpha r = -\frac{-27}{8} \Rightarrow \alpha^3 = \frac{27}{8} \Rightarrow \alpha = \frac{3}{2}$$

মূল তিনটির সমষ্টি ,
$$\frac{\alpha}{r}+\alpha+\alpha r=-\frac{-42}{8}\Rightarrow \alpha\left(\frac{1}{r}+1+r\right)=\frac{-21}{8}$$

$$\Rightarrow$$
 1+r+r² = $\frac{21}{4} \times \frac{2}{3}$ r \Rightarrow r²+r+1 = $\frac{7}{2}$ r \Rightarrow 2r² + 5r + 2 = 0 \Rightarrow 2r - 4r - r + 2 = 0

$$\Rightarrow 2r(r-2) - 1(r-2) = 0 \Rightarrow (2r-1)(r-2) = 0$$

$$r = \frac{1}{2}$$
 , 2; $r = \frac{1}{2}$ হলে মূল তিনটি 3, $\frac{3}{2}$, $\frac{3}{4}$; $r = 2$ হলে মূল তিনটি $\frac{3}{4}$, $\frac{3}{2}$, 3 Ans.

EXERCISE:

 \mathbf{II} . $32x^3-48x^2+22x-3=0$ সমীকরণের মূলগুলি সমান্তর ধারায় আছে। মূলগুলি নির্ণয় কর Ans. $\frac{1}{4}$, $\frac{1}{2}$, $\frac{3}{4}$

EXAMPLE – 05: $4x^2+2x-1=0$ সমীকরণের একটি মূল α হলে দেখাও যে অপর মূল $4\alpha^3-3\alpha$

সমাধান: α দারা সমীকরণটি সিদ্ধ করি,

$$4 \alpha^2 + 2 \alpha - 1 = 0 \Rightarrow 2 \alpha^2 + \alpha = \frac{1}{2}$$

ধরি অপর মূল b, $\alpha + b = -\frac{2}{4} = \frac{1}{2} \Rightarrow b = -\frac{1}{2} - \alpha$

 α

$$=-\frac{1}{2}-\alpha=b$$
 Showed

নিজে চেষ্টা কর:

 $(i)32x^3-48x^2+22x-3=0$ সমীকরণের মূলগুলি সমান্তর ধারায় আছে। মূলগুলি নির্নয় কর

Ans. $\frac{1}{4}, \frac{1}{2}, \frac{3}{4}$

(ii)27 x^4 -195 x^3 +494 x^2 -520x +192 = সমীকরণে মূলগুলো গুনোন্তর প্রগমনভূক্ত হলে মূল গুলো নির্ণয় কর । $(\frac{8}{9},\frac{4}{3},2,3)$

 $(iii)2x^4-15x^3+35x^2-30x+8=0$ সমীকরণের মূলগুলো গুনোত্তর ধারায় থাকলে মূলগুলি নির্ণয় কর। $(\frac{1}{2}$,1,2,4)

EXAMPLE - DG: $\frac{1}{x} + \frac{1}{p-x} = \frac{1}{q}$ সমীকরণের মূল দুটির অন্তর d হলে, p কে d এবং q এর মাধ্যমে প্রকাশ কর।

সমাধান: সমীকরণটি, x^2 -px+pq = 0....a ও b দুটি মূল হলে
a+b = p
ab = pq
a-b = |d| $\Rightarrow (a-b)^2 = d^2$

 $\Rightarrow (a+b)^2-4ab = d^2$ $\Rightarrow p^2 -4pq = d^2$ $\Rightarrow p^2 - 2 \cdot p \cdot 2q + (2q)^2 - 4q^2 = d^2$ $\Rightarrow (p-2q)^2 = d^2 + 4q^2$ $\Rightarrow p = \pm \sqrt{d^2 + 4q^2} + 2q$

নিজে চেষ্টা কর: (1) $x^2+px+q=0$ সমীকরণের মূল দয়ের পার্থক্য 1 হলে প্রমাণ কর যে, $p^2+4q^2=(1+2q)^2$ (2) যদি $x^2-bn+c=0$ এবং $x^2-cn+b=0$ ($b\neq c$) মূল দয়ের পার্থক্য একটি ধ্রুব রাশি হয় হবে প্রমান কর যে, b+c+4=0

EXAMPLE – \Box 7: যদি $ax^2 + bx + c = 0$ এর একটি মূল $cx^2 + bx + a = 0$ সমীকরণের একটি মূলের দিগুন হয় তবে দেখাও যে, 2a = c অথবা $(2a + c)^2 = 2b^2$

 cx^2 +bx +a = 0 এর মূল দুটি α , β ax² +bx +c = 0 এর মূল দুটি 2α , γ $\alpha+\beta=-\frac{b}{c}$, $\alpha\beta=a/c$ $2\alpha+\gamma=-b/a$, $2\alpha\gamma=c/a$ ও 2α দারা cx^2 +bx+a =0 এবং ax² +bx+c = 0 সমীকরণদ্বাকে যথাক্রমে সিদ্ধ করি । $c\alpha^2$ + $b\alpha$ +a = 0......(i) $4a\alpha^2+2b\alpha+c=0$ (ii)

From(ii)-2×(i) \Rightarrow 2(2a-c) α^2 +(c-2a)=0 \Rightarrow (c-2a)($2\alpha^2-1$)=0: c=2a or, $\alpha^2=1/2$ From(ii) \Rightarrow $4a \times \frac{1}{2} + c = -2b \ \alpha \Rightarrow 2a + c = -2b \ \alpha$(iii) From(iii)² \Rightarrow (2a+ c)² = 2b² [$\alpha^2=1/2$] EXAMPLE – OB: যদি $ax^2 + bx + c = 0$ সমীকরণের দুটি মুলের অনুপাত r হলে দেখাও যে, $\frac{(r+1)^2}{r} = \frac{b^2}{ac}$

সমাধান: মূলদ্বয় lpha ও lpha r হলে

$$\alpha + \alpha r = -\frac{b}{a} \Rightarrow \alpha = \frac{-b}{a(1+r)}$$
$$\alpha \times \alpha r = \frac{c}{a}$$

$$\alpha \times \alpha r = \frac{c}{a}$$

 $\Rightarrow \{\frac{-b}{a(1+r)}\}^2 . r = \frac{c}{a}$

$$\Rightarrow \frac{b^2}{a^2} \cdot \frac{r}{(1+r)^2} = \frac{c}{a}$$
$$\Rightarrow \frac{(1+r)^2}{r} = \frac{b^2}{ac}$$

নিজে চেষ্টা কর:(1) 2bx² + 2(a+b)x + 3a -2b=0 একটি মূল অপরটির দ্বিগুন হলে প্রমান কর a =2b অথবা 4a =11b.

(2) যদি ax²+bx+c =0 এর মূল দুটি বাস্তব সংখ্যা a,b (a<-1 ও b>1) হয় তবে ,দেখাও যে,

$$1 + \left| \frac{b}{a} \right| + \frac{c}{a} < 0$$

(3). (x-a)(x-b) +(x-b)(x-c) + (x-c)(x-a) = 0 সমীকরণের মুলগুলো সমান হলে দেখাও যে, a=b=c

(4). (b-c)
$$x^2$$
 + (c-a) x + (a+b) = 0 এর মূলদ্বয় সমান হলে দেখাও যে, $b = \frac{1}{2}$ (c+a)

EXAMPLE – 09: $px^2 + qx + r = 0$ এর একটি মূল অপরটির বর্গের সমান হলে দেখাও যে, $p (q-r)^3 = r(q-p)^3$

সমাধান: ধরি মূল দ্বয় lphaও $lpha^2$

$$\alpha + \alpha^2 = -\frac{q}{p}$$
....(i)

$$\alpha \times \alpha^2 = \frac{r}{n}$$
....(ii)

যেহেতু α উক্ত সমীকরণের একটি মূল

$$\therefore$$
 p α^2 +q α +r = 0 এবং p α^2 +p α +q =0 (i হতে)

$$(q-p)\alpha + r-q=0$$

$$\Rightarrow \alpha = \frac{q-r}{q-p}$$
(ii) $\Rightarrow (\frac{q-r}{q-p})^3 = \frac{r}{p}$

$$\Rightarrow p(q-r)^3 = r(q-p)^3 \text{ Showed (i)}$$

নিজে কর:

- (1). 27x² +6x-(p+2) =0 এর একটি মূল অপরটির বর্গের সমান। p এর মান নির্ণয় কর। Ans [-1বা, 6]
- (2). 8x² -6x +(k-1)=0 এর একটি মূল অপরটির বর্গের সমান। kএর মান নির্ণয় কর। ans [-26 বা , 2]
- (3). $ax^2 + bx + c = 0$ সমীকরণের একটি মূল অপরটির n গুন হলে প্রমাণ কর যে, $nb^2 = ac (1+n)^2$
- (4). kএর মান কত হলে (3-k)x²+2 (k+3)x+8k+9 = 0 সমীকরণের মূলদ্বয় সমান হবে । Ans [2,-1]
- (5) $2x^4 9x^3 + 6x^2 + 11x 6 = 0$ এর দুটি মূলের গুনফল 1 হলে মূল চারটি নির্ণয় কর। (-1, 2, $\frac{1}{2}$, 3)

(6)
$$bx^2+cx+c=0$$
 সমীকরণের দুটি মূল $lpha$ ও eta হলে দেখাও যে , $\sqrt{rac{lpha}{eta}}+\sqrt{rac{eta}{a}}+\sqrt{rac{c}{b}}=0$

EXAMPLE – 10: দুটি মূলের সমষ্টি শূন্য হলে $4x^4 - 4x^3 - 13x^2 + 9x + 9 = 0$ সমীকরণটি সমাধান কর। সমাধান: a, -a, b, r

$$\sum a = a - a + b + r = 1$$

$$\Rightarrow b + r = 1, b = 1 - r$$

$$\sum abrd = (a)(-a)br = -a^2 br = \frac{9}{4}$$

$$\sum ab = a(-a) + ab + ar + (-a)b + (-ar) + br = -\frac{13}{4}$$

$$\sum abr = a(-a)b + a(-a)r + (-a)br + bra = -\frac{9}{4}$$

$$\Rightarrow a(-ab - ar - br + br) = -\frac{9}{4}$$

$$\Rightarrow -a^2 (b+r) = -\frac{9}{4}$$

$$\Rightarrow a = \frac{3}{2}$$

$$\sum ab = -a^2 + br = -\frac{13}{4}$$

$$\Rightarrow br = -\frac{13}{4} + a^2$$

$$\Rightarrow \frac{13}{4} - \frac{9}{4} = -br \Rightarrow (1 - r)r = -1$$

$$\Rightarrow r - r^2 + 1 = 0 \Rightarrow r^2 - r - 1 = 0$$

$$\Rightarrow r = \frac{1 \pm \sqrt{1^2 - 4.1(-1)}}{2} = \frac{1 \pm \sqrt{5}}{2}$$

$$\ \, \div \, b \, = \, 1 \, - \, \frac{(1 \pm \sqrt{5})}{2} = \frac{2 - 1 \mp \sqrt{5}}{2} = \frac{1 \mp \sqrt{5}}{2} \, \operatorname{Ans} \, \frac{3}{2} \, , - \, \frac{3}{2} \, \, , \frac{1 \pm \sqrt{5}}{2}$$

নিজে চেষ্টা কর: (1) একটি মূল অন্য মূল দুটির যোগফলের অর্ধেক হলে $4x^3$ - $11x^2$ + 10x - 3=0 সমীকরনটি সমাধান কর । Ans $\frac{3}{2}$, $\frac{1}{2}$, 1

(2) দুইটি মূলের পরমমান সমান কিন্তু বিপরীত চিহ্নযুক্ত হলে $8x^4$ - $2x^3$ - $27x^2$ +6x +9 = 0 সমীকরণটি সমাধান কর । Ans $\pm\sqrt{3}$, $\frac{3}{4}$, $-\frac{1}{2}$

EXAMPLE – 11: k এর মান কত হলে $(k^2-3)x^2+3kx-(3k+1)=0$ সমীকরণের একটি মূল অপরটির উল্টা হবে? ধরি, মূলদ্বয় α ও $\frac{1}{a}$

$$a \cdot \frac{1}{a} = \frac{3k+1}{k^2 - 3} = 1$$

$$\Rightarrow k^2 - 3k - 4 = 0$$

$$\Rightarrow (k-4)(k+1) = 0$$

$$k = 4 \text{ at } -1$$

EXAMPLE – 12: $27x^2 - 6x - (p+2) = 0$ সমীকরণের একটি মূল অপরটির বর্গের সমান হলে p এর মান নির্ণয় কর।

$$\alpha + \alpha^{2} = -\frac{6}{27} = -\frac{2}{9}$$
(i)

$$\alpha.\alpha^{2} = -\frac{p+2}{27}$$
(ii)
From(i) \Rightarrow

$$9\alpha + 9\alpha^{2} + 2 = 0$$

$$\Rightarrow 9\alpha^{2} + 6\alpha + 3\alpha + 2 = 0$$

$$\Rightarrow 3\alpha(3\alpha + 2) + 1(3\alpha + 2) = 0$$

$$\Rightarrow (3\alpha + 2)(3\alpha + 1) = 0$$

$$\alpha = -\frac{2}{3} = -\frac{1}{3}$$

From(ii)
$$\Rightarrow$$

$$(-\frac{2}{3})^3 = -\frac{p+2}{27}$$

$$-8 = -p - 2$$

$$\Rightarrow p = 6$$
again $(-\frac{1}{3})^3 = -\frac{p+2}{27}$

$$\Rightarrow -1 = -p - 2$$

$$\Rightarrow p = -1$$

$$\therefore p$$
 এর মান 6, -1 Ans.

1. $x^2 - (\alpha + \beta)x - \alpha\beta = 0$ এবং $x^2 - (\alpha^2 + \beta^2)x + \alpha^2\beta^2 = 0$ সমীকরণ দুটি অভিন্ন হলে , সঠিক সমীকরণ কোনটি?

Ans. x²+x+1 =0 , এটা ছাড়াও সঠিক সমীকরণ আছে

নিজে চেষ্টা কর:k এর মান কত হলে $(k+1)x^2+2(k+3)x+2k+3$ রাশিটি একটি পূর্ণ বর্গ হবে? Ans. 3 বা -2

[বি: দ্র: রাশিটি দ্বারা গঠিত সমীকরণের মূলদুটি সমান হলে রাশিটি পূর্ণ বর্গ হবে। অর্থাৎ নিশ্চয়নের মান শূন্য হলে কেবল রাশিটি পূর্ণ বর্গ হবে]।

EXAMPLE - 13: দেখাও যে, $(h^2 - a^2)^2 - 2hkx + k^2 - b^2$ রাশিটি পূর্ণ বর্গ হবে

যদি
$$\frac{h^2}{a^2} + \frac{k^2}{h^2} = 1$$
 হয়।

সমাধান: শর্তানুযায়ী নিশ্চায়ক D = 0

$$\Rightarrow (-2hk)^2 - 4(h^2 - a^2)(k^2 - b^2) = 0$$

$$\Rightarrow h^2 k^2 - h^2 k^2 + h^2 b^2 + a^2 k^2 - a^2 b^2 = 0$$

$$\Rightarrow \frac{h^2}{a^2} + \frac{k^2}{b^2} = 1 [a^2 b^2$$
 দ্বারা ভাগ করে]

নিজে চেষ্টা কর:

$$rac{1}{x-a}+rac{1}{x-b}+rac{1}{x-c}$$
 রাশিটি পূর্ণ বর্গ হলে দেখাও যে , $a=b=c$ হবে।

EXAMPLE - 14: বাস্তব সহগ বিশিষ্ট দ্বিঘাত সমীকরণ গঠন কর যার একটি মূল $\sqrt{-5}-1$

 \therefore অপর মূল $-\sqrt{-5}-1$

$$x^{2} - (\sqrt{-5} - 1 - \sqrt{-5} - 1)x + (\sqrt{-5} - 1)(\sqrt{-5} - 1) = 0$$

$$x^2 + 2x + 6 = 0$$

নিজে চেষ্টা কর: (i) কি শর্তে $ax^2 + bx + c = 0$ সমীকরণের একটি মূল অপরটির n ঘাতের সমান হবে?

Ans.
$$(\frac{c}{a})^{\frac{1}{n+1}} + (\frac{c}{a})^{\frac{n}{n+1}} = -\frac{a}{b}$$

- (ii) $ax^2 + bx + c = 0$ সমীকরণের মূলদ্বয়ের অনুপাত 3:4 হলে দেখাও যে, $12b^2 = 49ac$
- (iii) $a_1x^2 + b_1x + c_1 = 0$ সমীকরণের দুটি মূলের অনুপাত $a_2x^2 + b_2x + c_2 = 0$ সমীকরণ দুটি মূলের অনুপাতের সমান হলে দেখাও যে, $\frac{b_1^2}{b_2^2} = \frac{a_1c_1}{a_2c_2}$