Express Mail No.: EL970311389US Date of Mailing: April 20, 2004

Atty. Docket No.: 22956-261

CLAIMS

1. A biocompatible meniscal repair device, comprising;

a biocompatible tissue repair scaffold adapted to be placed in contact with a defect in a

meniscus, wherein the scaffold comprises a nonwoven polymeric material, and wherein the

scaffold has a modulus of elasticity greater than about 1.5 MPA and a suture pull-out strength

greater than about 6 N.

2. The repair device of claim 1, wherein the tissue repair scaffold has a peak stress greater

than about 2 MPa.

3. The repair device of claim 1, wherein the tissue repair scaffold has a suture pull-out

strength less than about 45 N.

4. The repair device of claim 1, wherein the tissue repair scaffold has a modulus of elasticity

less than about 40 MPa.

5. The repair device of claim 1, wherein the tissue repair scaffold has a thickness in the

range of about 0.5 mm to 1.5 mm.

6. The repair device of claim 1, wherein the tissue repair scaffold further comprises a

biocompatible foam material joined to the nonwoven polymeric material.

7. The repair device of claim 1, the nonwoven polymeric material comprises a synthetic

polymer.

8. The repair device of claim 1, wherein the tissue repair scaffold is bioabsorbable.

9. The repair device of claim 1, wherein the nonwoven polymeric material comprises a

material formed by a dry lay process.

- 27 -

Express Mail No.: EL970311389US Date of Mailing: April 20, 2004

Atty. Docket No.: 22956-261

10. The repair device of claim 1, wherein the nonwoven polymeric material is formed from at

least one polymer derived from monomers selected from the group consisting of glycolide,

lactide, caprolactone, trimethylene carbonate, polyvinyl alcohol, and dioxanone.

11. The repair device of claim 10, wherein the nonwoven polymeric material comprises

polydioxanone.

12. The repair device of claim 10, wherein the nonwoven polymeric material comprises a

copolymer of polyglycolic acid and polylactic acid.

13. The repair device of claim 1, further comprising at least one bioactive substance effective

to stimulate cell growth.

14. The repair device of claim 13, wherein the bioactive substance is selected from the group

consisting of a platelet rich plasma, cartilage-derived morphogenic proteins, recombinant human

growth factors, and combinations thereof.

15. The repair device of claim 1, further comprising a viable tissue sample disposed on the

tissue repair scaffold and effective to integrate with native tissue adjacent to the tissue repair

scaffold.

16. The repair device of claim 1, wherein the nonwoven polymeric material comprises

crimped, synthetic polymer fibers.

17. The repair device of claim 1, wherein the nonwoven polymeric material is heat-set.

18. The repair device of claim 1, wherein the fiber orientation of the nonwoven polymeric

material is isotropic.

19. A biocompatible meniscal repair device, comprising;

- 28 -

Express Mail No.: EL970311389US Date of Mailing: April 20, 2004

Atty. Docket No.: 22956-261

a biocompatible tissue repair scaffold adapted to be placed in contact with a defect in a meniscus, the scaffold including,

- (a) a high-density, dry laid nonwoven polymeric material; and
- (b) a biocompatible foam,

wherein, the scaffold provides increased suture pull-out strength.

- 20. The repair device of claim 19, wherein the tissue repair scaffold has a peak stress in the range of about 2 MPa to 14 MPa.
- 21. The repair device of claim 19, wherein the tissue repair scaffold has a suture pull-out strength in the range of about 6 N to 45 N.
- 22. The repair device of claim 19, wherein the tissue repair scaffold has a modulus of elasticity in the range of about 1.5 MPa to 40 MPa.
- 23. The repair device of claim 19, wherein the tissue repair scaffold has a thickness in the range of about 0.5 mm to 1.5 mm.
- 24. The repair device of claim 19, the nonwoven polymeric material comprises a synthetic polymer.
- 25. The repair device of claim 19, wherein the tissue repair scaffold is bioabsorbable.
- 26. The repair device of claim 19, further comprising at least one bioactive substance effective to stimulate cell growth.
- 27. The repair device of claim 26, wherein the bioactive substance is selected from the group consisting of a platelet rich plasma, cartilage-derived morphogenic proteins, recombinant human

Express Mail No.: EL970311389US Date of Mailing: April 20, 2004 Atty. Docket No.: 22956-261

growth factors, and combinations thereof.

28. The repair device of claim 19, further comprising a viable tissue sample disposed on the tissue repair scaffold and effective to integrate with native tissue adjacent to the tissue repair scaffold.

29. A method of surgically repairing meniscal defects, comprising:

providing a biocompatible tissue repair scaffold having a modulus of elasticity greater than about 1.5 MPA and a suture pull-out strength greater than about 6 N;

positioning the tissue repair scaffold in contact with a tissue defect in a meniscus; and fixing tissue repair scaffold in position with sutures,

wherein the repair scaffold provides increased suture pull-out strength and thereby promotes healing of the meniscus.

- 30. The method of claim 29, wherein at least one bioactive substance effective to stimulate cell growth is implanted with the tissue repair scaffold.
- 31. The method of claim 30, wherein the bioactive substance is selected from the group consisting of a platelet rich plasma, cartilage-derived morphogenic proteins, recombinant human growth factors, and combinations thereof.