

ВПВ по электродинамике и магнетизму Лабораторная работа 3.3.3 "Опыт Миллекена"

Сурженко Эдуард Б01-304 Сидорчук Максим Б01-304 Иванов Максим Б04-307 **Цель работы:** измерить электромагнитный заряд методом масляных капель. **В работе используется:** плоский конденсатор в защитном кожухе, осветитель, измерительный микроскоп, электростатический вольтметр, секундомер, переключатель напряжения, пульверизатор с маслом.

1. Методика эксперимента

Рис. 1: Схема установки

Через маленькое отверстие верхней пластины конденсатора C разбрызгиваем капли масла. Изза трения о воздух капли приобретают случайный по абсолютной величине и знаку электрический заряд.

Подаём на пластины конденсатора напряжение, которое будем измерять вольтметром V. Ключом K меняем направление поля в конденсаторе, чтобы можно было вернуть каплю на прежнее место и снова произвести измерение. В фокальной плоскости окуляра измерительного микроскопа виден ряд горизонтальных линий, расстояние между которыми равно 0.25 мм. Наблюдая за перемещением капли между линиями, можно определить пройденный каплей путь. Время t свободного падения капли от одной выбранной линии до другой и время t' её обратного подъёма, происходящего под действием сил электрического поля, измеряем секундомером. После размыкании ключа конденсатор разрядится через сопротивление R.

2. Теоретическое введение

Существование элементарного заряда приводит к дискретности значений заряда q:

$$q = 0, \pm e, \pm 2e, \pm 3e, ..., \pm ne...,$$

В данном опыте измеряется заряд малых капель масла, несущих несколько элементарных зарядов. Сравнив заряды между собой мы убедимся в их кратности элементарному заряду e.

Уравнение движения капли

Рассмотрим свободное падение капли, применим второй закон Ньютона:

$$m\frac{dv}{dt} = mg - F_{\text{Tp}},$$

При малых скоростях сила трения для сферической капли определяется формулой Стокса:

$$F_{\rm TD} = 6\pi \eta r v = k v,\tag{1}$$

где r - радиус капли η - коэффициент вязкости трения воздуха. Подставляя (3) в (2) проинтегрируем уравнение по времени ($v_0 = 0$), получим:

$$v = v_{\infty}(1 - e^{-kt/m}),$$

где v_{∞} - установившаяся скорость падения

$$v_{\infty} = \frac{mg}{q} = \frac{\frac{4}{3}\pi\rho r^3 g}{6\pi\rho r} = \frac{2}{9}\frac{\rho}{\eta}gr^2.$$

где ρ - плотность масла. Согласно (4), установление скорости происходит за характерное время:

$$\tau = \frac{m}{k} = \frac{v_{\infty}}{q} = \frac{2}{9} \frac{\rho}{\eta} r^2.$$

Из-за очень малого размера капли, можно считать, что её движение всегда равно установившемуся.

Тогда зная время падения капли. Определим её радиус, обозначим пройденный путь через $h \approx v_{\infty} t$:

$$r = \sqrt{\frac{9\eta h}{2\rho gt}}. (2)$$

Теперь рассмотрим движение капли при наличии электрического поля E=U/l. Если капля движется против g то уравнение принимает вид:

$$m\frac{dv}{dt} = \frac{qU}{l} - mg - kv,$$

Дополнительная константа в правой части не изменяет постоянной времени $\theta = \frac{k}{m}$. Най-дём новую установившуюся скорость, положим, что временем установления скорости можно пренебречь:

$$v_{\infty}' = \frac{qU}{kl} - v_{\infty},\tag{3}$$

пусть $t' = h/v'_{\infty}$ - время подъёма капли на начальную высоту. Используя равенства (1), (2) и (3), получим окончательную расчётную формулу для заряда капли:

$$q = 9\pi \frac{l}{U} \sqrt{\frac{2}{\rho q}} (\eta h)^{3/2} \frac{t + t'}{t^{3/2} t'}.$$
 (4)

Оценка погрешности

Дискретность заряда, можно определить если только погрешность измерения заряда много меньше элементарного заряда. Это условие легко выполнимо если кратность заряда - n - мала. В условиях нашего опыта трудно произвести измерения с точностью лучше 5%. Поэтому необходимо чтобы заряд капли был меньше 20e (оптимально -5e).

Проанализируем погрешность формулы (4). Из всех велчин, входящих в формулу (4), на опыте измеряются только U, t, t'. Погрешность напряжения пренебрежимо мала, поэтому погрешность измерения q определяется в основном погрешностью времени δt .

При визуальных наблюдениях фактором, определяющим величину погрешности, выступает время реакции человека, которое практически не бывает меньше $\delta t \approx 0.2$ с.

Из формулы (4) нетрудно определить погрешность:

$$\frac{\sigma_q}{q} = \sqrt{\frac{\sigma_U^2}{U^2} + \frac{\sigma_t^2 t_0^2}{t^2 (t_0 + t)^2} + \frac{\sigma_{t_0}^2}{4t_0^2} \left(\frac{3t + t_0}{t + t_0}\right)^2}$$
 (5)

Из соотношения (5) следует, что погрешность будет минимальна, если времена t и t' — величины одного порядка. В этом случае для погрешности определения заряда имеем

$$\frac{\sigma_q}{q} = \sqrt{\frac{\sigma_U^2}{U^2} + \frac{\sigma_t^2}{4t_0^2} + \frac{\sigma_{t_0}^2}{t_0^2}}$$

3. Обработка результатов измерений

Условия эксперимента:

Расстояние между пластинами l=0.725 см, плотность масла $\rho=0.898$ г/см³, вязкость воздуха $\eta=1.85\cdot 10^{-5}\,\mathrm{\Pia\cdot c}$ ($T=300~\mathrm{K}$), цена деления окуляра $b=0.25~\mathrm{mm}$, $U_{\mathrm{min}}=300~\mathrm{B}$.

Определение величины элементарного заряда:

Для 14 капель проведём измерение их зарядов q, результаты представлены в таблице:

$N_{\rm sap}$	$U_{\text{конд}}, \ \mathbf{B}$	t_0, c	t, c	$q_{\rm cp} \cdot 10^{-19} \ {\rm K}$ л	$n_{\scriptscriptstyle m IIIT}$
1	300	32.68	9.59	(6.09 ± 1.506)	4
2	400	28.88	7.91	(5.81 ± 1.245)	4
3	400	26.48	8.06	(6.08 ± 1.528)	4
4	400	18.46	3.06	(17.17 ± 3.163)	10
5	400	16.11	3.39	(17.18 ± 3.484)	10
6	400	22.47	10.15	(5.83 ± 0.923)	4
7	400	26.26	9.05	(5.62 ± 1.523)	3
8	400	25.44	8.86	(5.87 ± 1.531)	4
9	400	21.69	10.33	(5.95 ± 1.681)	4
10	400	32.03	6.90	(6.03 ± 1.530)	4
11	400	24.04	3.77	(12.13 ± 3.194)	7
12	400	27.91	7.22	(6.40 ± 1.827)	4
13	400	8.72	7.20	(1.65 ± 0.271)	1
14	400	12.24	4.52	(16.72 ± 3.531)	10

Таблица 1: Таблица с результатами измерений

Рис. 2: График зависимости заряда капли масла от кол-ва элементарных зарядов

По наклону графика можно определить элементарный заряд электрона $|e^-|=(1.67\pm0.06)*10^-19~\mathrm{K}$ л.

4. Сравнение с опытом Толмена

Пусть в единице объёма металла n свободных электронов. Так как движение зарядов хаотично и равновероятно, то их плотность тока равна 0. Пусть в какой-то момент возникло упорядоченное движение электронов со средней скоростью u. Тогда плотность возникшего тока через единицу площади равна:

$$j = enu$$

Рассмотрим неравномерное вращение металогического кольца вокруг своей оси (линейная скорость равна v). Если бы свободные электроны были крепко связанны с атомами и двигались совместно то движения положительных и отрицательных зарядов создавали бы токи равные и противоположно направленные, если же электроны были неподвижны то ток определялся бы только движением положительных зарядов:

$$j = -env = enu$$

Однако в действительности неравномерное движение кристаллической решётки увлекает за собой часть электронов, вследствие чего будет возникать переменный ток. Уравнение движения электронов примет вид:

$$m\frac{d}{dt}(v_w + u) = F$$

где $(v_w + u)$ - полная скорость электрона, а F - действующая на него сила. Характеризуемая столкновениями между электронами и решёткой характеризуемое сопротивлением металла R и ЭДС индукции, сопротивляющаяся всякому изменению силы тока в проводнике характеризуемое индуктивностью металла L. Обе эти силы зависят от u а не от полной скорости электронов, тогда получим:

$$m\frac{du}{dt} = F(u) - m\frac{dv_w}{dt}$$

где последнее слагаемое представляет собой силу инерции относительно движущейся системы. Воспользуемся непосредственно общим уравнением переменных токов.

$$\frac{1}{c}L\frac{dJ}{dt} + RI = \oint E_s^{\text{crp}} dS,$$

приравняв сторонней силе $eE_s^{\text{стр}}$ силу инерции $\frac{dv_w}{dt}$ получим:

$$\frac{1}{c}L\frac{dJ}{dt} + RI = -\frac{m}{e} \oint \frac{dv_w}{dt} dS = -\frac{ms}{e} \frac{dv_w}{dt}$$

где s -длинна кольца. Проинтегрировав по времени получим от $t=t_1$ до $t=t_2$ пологая, что в эти промежутки ток обращается в 0.

$$R \int_{t_2}^{t_1} J \, dt = -\frac{ms}{e} (v_w(t_2) - v_w(t_1))$$

Этим соотношением Толмен воспользовался для определения отношения e/m в металле. Круглая проволочная катушка приводилась в движение и затем (в момент времени t_1) тормозилась и приводилась в состояние покоя $(v_w(t_2)=0)$ в течение доли секунды. В течении этого промежутка времени по катушке тёк ток, измеряемый неподвижным гальванометром. Измерив $R \int_{t_2}^{t_1} J \, dt$ и $v_w(t_1)$ и учтя все все побочные эффекты, можно рассчитать отношение m/e для носителей тока в металле.

полученное экспериментальное значение в опытах Толмена оказалось равным:

$$m/e = 4,58 \cdot 10^{-9}$$
г/Кл = $1,53 \cdot 10^{-18}$ абс. ед. СГС,

$$e = 1.986 \cdot 10^{-19}$$
Кл

Что согласуется по порядку величины со значением полученным при измерениях над свободными электронами в катодных лучах

$$m/e = 5,66 \cdot 10^{-9}$$
г/Кл = $1,9 \cdot 10^{-18}$ абс. ед. СГС,

$$e = 1,608 \cdot 10^{-19}$$
Кл

5. Вывод

В данном опыте мы получили значение элементарного заряда методом Миллекена $e^-=1.665\cdot 10^{-19}$ Кл, что в пределах погрешности сходится с теоретическим значением, сравнив с методом получения элементарного заряда по Толмену, мы пришли к выводу, что в нашей работе реальный заряд электрона e^- определяется точнее, относительная погрешность в опыте Миллекена равняется 4.4%, в опыте Толмена она равна 23.05~%.