${\bf IV~B. Tech~II~Semester~Regular/Supplementary~Examinations,~July~-~2021}$

SATELLITE COMMUNICATIONS

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any FOUR questions from Part-B *****

PART-A(14 Marks)

		PARI-A(14 Marks)	
1.	a)	Explain the basic difference between an active and passive satellite.	[2]
	b)	What are the basic concepts needed to determine look angles and its ranges?	[2]
	c)	Write short notes on Geosynchronous orbit and Geostationary orbit.	[3]
	d)	What is TDMA? What are the advantages?	[2]
	e)	Define Earth segment. Explain about MATV system.	[2]
	f)	Write about Sun synchronous orbit?	[3]
		$\underline{\mathbf{PART}} - \underline{\mathbf{B}}(4x14 = 56 \; Marks)$	
2.	a)	Draw a basic block diagram of satellite communication system and explain	
		each block in detail.	[7]
	b)	State the Kepler's laws. Discuss its importance in satellite communications.	[7]
2			
3.	a)	What are the various approaches used to improve the reliability of the satellite?	[7]
	1 \	Explain any one.	[7]
	b)	Explain the attitude and orbit control system (AOCS) with necessary diagrams.	[7]
4.	a)	Derive an expression for G/T ratio of an earth station receiver.	[7]
	b)	In a satellite link, the propagation loss is 200dB. Margins and other losses	
		account for another 3dB. The receiver G/T is 11dBK ⁻¹ and the EIRP is 5dBW.	
		Calculate the received C/N in dB for a system BW of 36MHz.	[7]
5.	a)	What is intermodulation in FDMA? Describe the calculation of C/N ratio with	
	1 \	intermodulation.	[7]
	b)	Explain the frame structure of TDMA with a neat sketch.	[7]
6.	a)	With the help of a neat block diagram, discuss the operation of earth station	
		receiver.	[7]
	b)	Explain the general aspects of coverage and frequency consideration of low	
		earth orbit.	[7]
_			
7.	a)	Explain the principle of a differential GPS with a neat diagram.	[7]
	b)	Write short notes on GPS codes.	[7]