Combinatorial optimization Exercise sheet 2

Solutions by: Anjana E Jeevanand and David Čadež

26. Oktober 2023

Exercise 2.1.

Claim. The number of ears in an odd decomposition of a graph is uniquely determined by the following value:

of ears =
$$1 + \frac{1}{2} \sum_{v \in V(G)} (\deg(v) - 2)$$
.

Proof of claim. With induction on the number of ears. Statement holds if G is an odd circuit. Let $G = (\{r\}, \emptyset) + P_1 + \ldots + P_k$ be an odd ear decomposition. For subgraph $G' = (\{r\}, \emptyset) + P_1 + \ldots + P_{k-1}$ then holds

$$k-1 = 1 + \frac{1}{2} \sum_{v \in V(G')} (\deg(v) - 2).$$

By adding P_k to G' we add only vertices of degree 2 (w.r.t. graph G), but we do increase the degree of 2 vertices (where path P_k connects to G') by 1. Therefore

$$\frac{1}{2} \sum_{v \in V(G)} (\deg(v) - 2) = 1 + \frac{1}{2} \sum_{v \in V(G')} (\deg(v) - 2) = k$$

which proves the claim.

 \square (of claim)

Claim proves that the number of ears is uniquely determined by the graph.

Exercise 2.4. We have a graph G, with n:=|V(G)| even, and for any set $X\subseteq V(G)$ with $|X|\leq \frac{3}{4}n$ we have

$$\left| \bigcup_{x \in X} \Gamma(x) \right| \ge \frac{4}{3} |X|. \tag{1}$$

We have to prove that G has a perfect matching.

Suppose it does not have a perfect matching. Then by Tutte's theorem there exists a set $S \subseteq V(G)$ that violates Tutte condition, i.e. $q_G(S) > |S|$.

First make the following simplification: let the set S be maximal, in the sense that there exists no other $S'\supseteq S$ with $q_G(S')>|S'|$. A direct consequence of that is that $G\backslash S$ does not have even connected components. If it did have an even connected component C, we could take any $v\in C$ and define $S':=S\cup\{v\}$. Then $C\setminus\{v\}$ would contain at least one odd connected component, simply because $C\setminus\{v\}$ has odd number of vertices. This will be useful when considering the case $|S|<\frac{n}{4}$.

• First consider the case when $|S| \geq \frac{n}{4}$. Define the set

$$I = \{ v \in G \setminus S \mid v \text{ isolated in } G \setminus S \}.$$

Using condition 1 on the set $G \setminus S$ we get

$$\frac{4}{3}|G\setminus S| \le \left| \bigcup_{x \in G\setminus S} \Gamma(x) \right|. \tag{2}$$

Observe that

$$\bigcup_{x \in G \backslash S} \Gamma(x) \subseteq G \setminus I,$$

because elements of I are by definition isolated in $G \setminus S$ and therefore have no neighbors in $G \setminus S$. Therefore

$$\left| \bigcup_{x \in G \setminus S} \Gamma(x) \right| \le |G \setminus I| = n - |I|. \tag{3}$$

We input equation 3 in equation 2 to get

$$\frac{4}{3}(n-|S|) \le n-|I| \tag{4}$$

and thus

$$|I| \le \frac{4}{3}|S| - \frac{1}{3}n. \tag{5}$$

Now we count all vertices in G in the following way

$$|I| + 3(q_G(S) - |I|) + |S| \le n.$$
 (6)

Here we summed isolated vertices (|I|), vertices contained in odd components of $G \setminus S$ (using that their size is at least 3 and there is at least $q_G(S) - |I|$ of them) and elements in the set S.

We use equation 5 and inequality $q_G(S) > |S|$ to calculate

$$\begin{split} |I| + 3\left(q_G(S) - |I|\right) + |S| &\leq n \\ -2|I| + 3q_G(S) + |S| &\leq n \\ -2\left(\frac{4}{3}|S| - \frac{1}{3}n\right) + 3q_G(S) + |S| &\leq n \\ -2\left(\frac{4}{3}|S| - \frac{1}{3}n\right) + 4|S| &< n \\ -\frac{8}{3}|S| + \frac{2}{3}n + 4|S| &< n \\ |S| &< \frac{n}{4} \end{split}$$

which is contradiction with assumption $|S| \ge \frac{n}{4}$.

• Suppose now $|S| < \frac{n}{4}$. First prove the following claim.

Claim. Let G be a graph with n := V(G) even. Assume it satisfies condition 1. Then for every set $T \subseteq V(G)$ with $|T| \leq \frac{n}{4}$ the subgraph $G \setminus T$ has no isolated vertices.

Proof of claim. We suppose there exists a set T with $|T| \leq \frac{n}{4}$ such that $G \setminus T$ has an isolated vertex. Fix any isolated vertex $v \in G \setminus T$.

Consider cases when n divisible by 4 and when it is not separately.

– Let n=4m for some $m\in\mathbb{N}$. We will pick a subset $X\subseteq G\setminus T$ of exactly the size 3m (it exists because $T\leq \frac{n}{4}$). It fulfils the condition $|X|\leq \frac{3}{4}n=3m$, and therefore by assumption

$$\left| \bigcup_{x \in X} \Gamma(x) \right| \ge \frac{4}{3} |X|.$$

But left side is at most n-1, because v is not a neighbor of any element in X, and the right one is exactly 4m. That would mean $n-1 \ge 4m = n$, so we arrive at a contradiction.

- Let n=4m+2 for some $m \in \mathbb{N}$. We pick a subset $X \subseteq G \setminus T$ of exactly the size 3m+1 (it exists because $T \leq \frac{n}{4}$). Since $3m+1 \leq \frac{3}{4}n$, the set X fulfils condition $|X| \leq \frac{3}{4}n$, and therefore we must have

$$\left| \bigcup_{x \in X} \Gamma(x) \right| \ge \frac{4}{3} |X|.$$

But left side is at most n-1, because v is not a neighbor of any element in X, and the right one is exactly $\frac{4}{3}(3m+1) = 4m + \frac{4}{3}$. That would mean

$$n-1 \ge 4m + \frac{4}{3} = n - 1 + \frac{1}{3},$$

so we arrive at a contradiction.

This proves the claim.

 \square (of claim)

The claim therefore show that the subgraph $G \setminus S$ cannot have isolated vertices.

We prove another claim.

Claim. Assume current environment variables, mainly $|S| < \frac{n}{4}$. Then for every connected component C of $G \setminus S$ we have

$$\frac{n}{4} - |S| < |C| - 1.$$

Proof of claim. Suppose the statement wouldn't hold. Let C be a connected component in $G \setminus S$ with $\frac{n}{4} - |S| \ge |C| - 1$. Pick an element $v \in C$. Then the set $S' := S \cup (C \setminus \{v\})$ violates first claim, because v by assumption does not have any neighbors in the set $G \setminus S'$ and is thus an isolated vertex in $G \setminus S'$, but $|S'| \le \frac{n}{4}$ also holds. This proves the claim. \square (of claim)

Note that $q_G(S) \ge |S| + 2$, because $q_G(S)$ and |S| have same parity (i.e. $q_G(S) - |S| = 0 \mod 2$), which we argued during the lectures already when we proved Tutte's theorem. It is a direct consequence of V(G) being even and all components being odd.

We consider cases when n is divisible by 4 and when it is not separately. Consider n=4m for some $m\in\mathbb{N}$. We make a simple estimate for amount of vertices in $G\setminus S$:

$$n - |S| > 3(|S| + 2)$$

which simplifies to $n \geq 4|S|+6$ and further to $m \geq |S|+\frac{3}{2}$. Since all involved variables are natural numbers, we must have $m \geq |S|+2$. We can now show that every connected component in $G \setminus S$ has to be at least of size 5. Using last claim we have that the value $\frac{n}{4}-|S|+1 \geq |S|+2-|S|+1=3$ must be strictly less than the size of any component. So all components must be of cardinality at least 5.

Therefore we have $n - |S| \ge 5(|S| + 2)$ (simply by giving rough lower bound for amount of vertices in $G \setminus S$).

Using all the things we calculated by now we can count vertices in G once again to obtain

$$|S| + (|S| + 2)\left(\frac{n}{4} - |S| + 2\right) \le n$$
 (7)

where we sum |S| and product of amount of connected components with

lower bound for their size. Manipulating this inequality gives:

$$\begin{split} |S| + (|S| + 2) \left(\frac{n}{4} - |S| + 2\right) &\leq n \\ |S| + |S| \frac{n}{4} - |S|^2 + 4 &\leq \frac{n}{2} \\ (|S| - 2) \frac{n}{4} &\leq |S|^2 - |S| - 4 \\ \frac{n}{4} &\leq \frac{|S|^2 - |S| - 4}{|S| - 2} \\ \frac{n}{4} &\leq |S| + 2 - \frac{|S|}{|S| - 2}. \end{split}$$

Lets treat edge cases, since we divided by |S| - 2 in the calculation, which could in general be non-positive.

- If |S| = 0, then G would not be connected, which would clearly violate condition 1 by picking X to be the smallest component.
- If |S|=1, then using condition 1 on any connected component $C\subseteq G\setminus S$ yields $|C|\le 3$. At the same time there are no isolated vertices in $G\setminus S$, so all connected components in $G\setminus S$ must be of size 3. And there are at least 3 connected components in $G\setminus S$, since S violates Tutte condition. Pick S to be a union of two components in S0, so S1, so S2, so S3, so S4, so S5, so S6. Then

$$\frac{4}{3}|X| \le |\bigcup_{x \in X} \Gamma(x)| \le |X \cup S| = 7$$

gives contradiction in the case |S| = 1.

- If |S| = 2, then equation 7 yields $2 \le 0$.

Then we just plug in n > 6|S| + 10 which we calculated earlier to get

$$\frac{6|S|+10}{4} \le |S|+2-\frac{|S|}{|S|-2}$$

$$\frac{1}{2}|S|+\frac{1}{2} \le -\frac{|S|}{|S|-2}$$

another contradiction, this time with existance of such S in case when n is divisible by 4.

Suppose now n is not divisible by 4. It is even, so it must of the form n=4m+2 for some $m\in\mathbb{N}$. We again make an estimate for amount of vertices in $G\setminus S$.

$$n - |S| \ge 3(|S| + 2)$$
$$n \ge 4|S| + 6$$

which gives estimate $m \geq |S| + 1$. That is "worse estimate" than we got in case when n was divisible by 4. But if there would exist a connected component in $G \setminus S$ with at least 5 elements, then we can get estimate $|S| + 2 \leq m$ as in the case when n was divisible by 4. Concretely we get

$$|S| + 3(|S| + 1) + 5 \le 4m + 2$$

 $|S| + \frac{3}{2} \le m$.
 $|S| + 2 \le m$

If there are more than |S|+2 connected components in $G\setminus S$, we also get estimate $|S|+2\leq m$ just like in the case when n was divisible by 4, concretely

$$|S| + 3(|S| + 3) \le 4m + 2$$

 $|S| + \frac{7}{4} \le m$
 $|S| + 2 \le m$.

So in these two cases (when $G \setminus S$ has either more connected components than |S|+2 or it has one of size more than 5), we do exact same argument as when n was divisible by 4. That argument did not use that n is divisible by 4 from that point on. Therefore arrive at the contradiction with such S existing and n being of the form 4m+2 and $G \setminus S$ either having a component at least of size 5 or having strictly more than |S|+2 connected components.

Now we focus on the last case, if $G \setminus S$ only contains components of size 3 and exactly |S|+2 of them. Then n=|S|+3(|S|+2), so m=|S|+1. Pick any connected component of the subgraph $G \setminus S$ and denote it with C. We use the condition 1 on the set $X:=G \setminus (S \cup C)$. Note that C does not have any neighbors in other connected components in $G \setminus S$, so

$$\left| \bigcup_{x \in X} \Gamma(x) \right| \le n - 3$$

We also know |X| = 3(|S| + 1). Using condition we get

$$\frac{4}{3}|X| \le n-3$$

$$4(|S|+1) \le n-3$$

$$4m \le 4m+2-3$$

$$4m \le 4m-1$$

which contradicts the fact that S violating Tutte condition with $|S|<\frac{n}{4}$ exists in G.

We covered all cases now, so there is no set S that would violate Tutte condition, which means G has a perfect matching by Tutte's theorem.