

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
09/950,038	09/10/2001	Eitan Zait	22868.49	8658

26418 7590 12/01/2003

REED SMITH, LLP
ATTN: PATENT RECORDS DEPARTMENT
599 LEXINGTON AVENUE, 29TH FLOOR
NEW YORK, NY 10022-7650

[REDACTED] EXAMINER

ANGEBRANNNDT, MARTIN J

[REDACTED] ART UNIT

[REDACTED] PAPER NUMBER

1756

DATE MAILED: 12/01/2003

Please find below and/or attached an Office communication concerning this application or proceeding.

002

Office Action Summary	Application No.	Applicant(s)
	09/950,038	ZAIT ET AL.
	Examiner Martin J Angebranndt	Art Unit 1756

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a): In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If the period for reply specified above is less than thirty (30) days, a reply within the statutory minimum of thirty (30) days will be considered timely.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133).
- Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on 15 September 2003.
- 2a) This action is FINAL. 2b) This action is non-final.
- 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 1-18 is/are pending in the application.
- 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
- 5) Claim(s) _____ is/are allowed.
- 6) Claim(s) 1-18 is/are rejected.
- 7) Claim(s) _____ is/are objected to.
- 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
- 10) The drawing(s) filed on _____ is/are: a) accepted or b) objected to by the Examiner.
Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
- 11) The proposed drawing correction filed on _____ is: a) approved b) disapproved by the Examiner.
If approved, corrected drawings are required in reply to this Office action.
- 12) The oath or declaration is objected to by the Examiner.

Priority under 35 U.S.C. §§ 119 and 120

- 13) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
a) All b) Some * c) None of:
1. Certified copies of the priority documents have been received.
2. Certified copies of the priority documents have been received in Application No. _____.
3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).
- * See the attached detailed Office action for a list of the certified copies not received.
- 14) Acknowledgment is made of a claim for domestic priority under 35 U.S.C. § 119(e) (to a provisional application).
a) The translation of the foreign language provisional application has been received.
- 15) Acknowledgment is made of a claim for domestic priority under 35 U.S.C. §§ 120 and/or 121.

Attachment(s)

- 1) Notice of References Cited (PTO-892)
2) Notice of Draftsperson's Patent Drawing Review (PTO-948)
3) Information Disclosure Statement(s) (PTO-1449) Paper No(s) _____
- 4) Interview Summary (PTO-413) Paper No(s) _____.
5) Notice of Informal Patent Application (PTO-152)
6) Other: _____

Art Unit: 1756

1. The response provided by the applicant has been read and given careful consideration.

Rejections of the previous office action not found below are withdrawn based upon the amendment and arguments of the applicant. Responses to the arguments of the applicant are found after the first rejection to which they are directed. The examiner has cited the patent issuing from the co-pending application. There is not a PTO -1449 corresponding to that referred to by the applicant on page5 of the response in the record.

2. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

3. Claims 1-4 and 9-12 are rejected under 35 U.S.C. 103(a) as being unpatentable over Hongo et al. '759 and Haight et al., "MARS:Femtosecond laser mask advanced repair system in manufacturing", J Vac. Sci. Technol. B 17(6) pp 3137-3143 (Nov/Dec 1999).

Hongo et al. '759 teach the processing of photomasks to remove defects, where the laser passes through the transparent substrate and ablates the chrome layer. The apparatus is shown in figure 3 where the stage allows translation . The computer controls the stage, laser and the scanning gear. The backside irradiation is disclosed as preventing damage to the lens elements due to redeposition of the chrome (1/29-38). The backside irradiation also prevents alloying of the glass and metal (1/11-28). The back side irradiation is also disclosed as minimizing surface damage (roughness or pit formation) (1/43-50). The use of laser having pulsedwidths of less than 20 nanoseconds is disclosed. (2/40-61). longer pulsedwidths are disclosed as exhibiting

undesirable thermal effects. (7/62-8/16). an argon ion laser was used. (488, 514.5 nm output, 3/43)

Haight et al., "MARS:Femtosecond laser mask advanced repair system in manufacturing", J Vac. Sci. Technol. B 17(6) pp 3137-3143 (Nov/Dec 1999) teach with respect to figure 7, as apparatus which uses a femtosecond laser to ablate chrome defects without thermal effects, particularly thermal damage to the adjacent substrate (see figure 4, page 3137, right column and page 3140, left column). The ablation threshold for quartz is disclosed as much higher than that of Cr. (page 3140, left column). The computer controls the focussing through the objective turret and the condenser assembly as well as the stage location. (page 3142, left column). The use of a Ti:sapphire laser with an 800 nm output is disclosed. The pulses are 10 femtoseconds long. (page 3141, left column)

The examiner has read the breadth of the claims to include repair of masks/reticles.
It would have been obvious to one of ordinary skill in the art to modify the process of Hongo et al. '759 by using the femtosecond lasers and computer controlled focusing of Haight et al., "MARS:Femtosecond laser mask advanced repair system in manufacturing", J Vac. Sci. Technol. B 17(6) pp 3137-3143 (Nov/Dec 1999) to further decrease the thermal effects and allow the automation of the focusing as well with a reasonable expectation of gaining these advantages, particularly in view of the direction within Hongo et al. '759 to shorter laser pulses and/or it would have been obvious to one skilled in the art to modify the teachings of Haight et al., "MARS:Femtosecond laser mask advanced repair system in manufacturing", J Vac. Sci. Technol. B 17(6) pp 3137-3143 (Nov/Dec 1999) by using the backside irradiation disclosed by Hongo et al. '759 to reduce the damage to the substrate, to reduce damage to the optics from

Art Unit: 1756

redeposition of the chrome on the optics and alloying of the substrate and chrome with a reasonable expectation of success based upon the reference being in the same field of endeavor and the desirability of reducing unintentional damage to the substrate in both the references.

In response to applicant's arguments against the references individually, one cannot show nonobviousness by attacking references individually where the rejections are based on combinations of references. See *In re Keller*, 642 F.2d 413, 208 USPQ 871 (CCPA 1981); *In re Merck & Co.*, 800 F.2d 1091, 231 USPQ 375 (Fed. Cir. 1986). The issue is the obviousness of the combination of the references, each of which describe benefits due to either backside irradiation or ultrashort pulse lengths and one of ordinary skill in the art would clearly expect to combination of the teachings of the references to realize the ascribed benefits. The issue of powers in the range of tens of nanojoules is unrecited. Only the pulselength and wavelengths are recited in the claims. To make the claims commensurate ion scope with this argument and active recitation must be present in the claims. Currently, the argued limitation is unrecited and therefore the arguments is not commensurate with the scope of coverage sought.

4. Claims 1-5 and 9-12 are rejected under 35 U.S.C. 103(a) as being unpatentable over Hongo et al. '759 and Haight et al., "MARS:Femtosecond laser mask advanced repair system in manufacturing", J Vac. Sci. Technol. B 17(6) pp 3137-3143 (Nov/Dec 1999), in view of Lou et al. '272.

Lou et al. '272 teach with respect to figures 2a-c, the use of AR films. The use of these in laser machining of chromium masks is disclosed. (7/10-23)

In addition to the basis provided above, the examiner holds that it would have been obvious to one skilled in the art to modify the combination of Hongo et al. '759 and Haight et al.,

Art Unit: 1756

"MARS:Femtosecond laser mask advanced repair system in manufacturing", J Vac. Sci. Technol. B 17(6) pp 3137-3143 (Nov/Dec 1999) by adding an AR coating as disclosed by Lou et al. '272 to be useful in laser machining of chromium masks.

The rejection stands without further comment beyond those presented above.

5. Claims 1-4 and 9-18 are rejected under 35 U.S.C. 103(a) as being unpatentable over Hongo et al. '759 and Haight et al., "MARS:Femtosecond laser mask advanced repair system in manufacturing", J Vac. Sci. Technol. B 17(6) pp 3137-3143 (Nov/Dec 1999), in view of Gelbart et al. '818.

Gelbart et al. '818 teach ablation as a means for forming phase shift masks. In figure 4, the light absorbing polyimide layer (16) is placed beneath the overcoat (19). (3/53-63) In figure 5, a positive resist layer (20) is coated beneath the polyimide layer. (3/64-4/19). The prior art attempts to directly ablate chrome or polymer layers were hampered by the very short wavelengths required and the low repetition rate of the excimer lasers. The thickness of these layers is disclosed as facilitating a 180 degree phase shift ($\lambda/2n$) and may be in the range of 0.1 to 2 microns in thickness.

In addition to the basis provided above, the examiner holds that it would have been obvious to one skilled in the art to modify the invention of Hongo et al. '759 and Haight et al., "MARS:Femtosecond laser mask advanced repair system in manufacturing", J Vac. Sci. Technol. B 17(6) pp 3137-3143 (Nov/Dec 1999) by adding adjacent phase shifting layers to allow phase shift masks to be formed.

The rejection stands without further comment beyond those presented above.

Art Unit: 1756

6. Claims 1-4,9-13,15 and 16 are rejected under 35 U.S.C. 103(a) as being unpatentable over Hongo et al. '759 and Haight et al., "MARS:Femtosecond laser mask advanced repair system in manufacturing", J Vac. Sci. Technol. B 17(6) pp 3137-3143 (Nov/Dec 1999), in view of Zhang et al., "Study of microprocessing of glass", Proc. SPIE vol. 3933 pp. 332-337 and Okamoto '606.

Zhang et al., "Study of microprocessing of glass", Proc. SPIE vol. 3933 pp. 332-337 teaches the use of laser machining to form phase shifting grating structures.

Okamoto '606 teaches the use of ion beams to etch both the metal layer and the substrate to form a phase shifting groove at the same time to save time. (18/47-52)

In addition to the basis provided above, the examiner holds that it would have been obvious to one skilled in the art to modify the invention of Hongo et al. '759 and Haight et al., "MARS:Femtosecond laser mask advanced repair system in manufacturing", J Vac. Sci. Technol. B 17(6) pp 3137-3143 (Nov/Dec 1999) by using the laser disclosed by Haight et al., "MARS:Femtosecond laser mask advanced repair system in manufacturing", J Vac. Sci. Technol. B 17(6) pp 3137-3143 (Nov/Dec 1999) as able to damage the substrate to form phase shifting grooves in the substrate in the manner taught by Zhang et al., "Study of microprocessing of glass", Proc. SPIE vol. 3933 pp. 332-337 to save time in photomask manufacture as taught by Okamoto '606.

This covers the embodiment shown in figure 3b of the instant specification, where the substrate is etched.

The examiner notes that the claims do not limit the damage areas to subsurface regions and certainly do not preclude ablation.

Art Unit: 1756

7. Claims 1-4, 6-12 are rejected under 35 U.S.C. 103(a) as being unpatentable over James et al. '200 combined with Hongo et al. '759 and Haight et al., "MARS:Femtosecond laser mask advanced repair system in manufacturing", J Vac. Sci. Technol. B 17(6) pp 3137-3143 (Nov/Dec 1999), in view of Jensen et al. '718.

James et al. '200 teaches with respect to figures 11,13 and 15, a laser source (10), such as a YAG layer, which is divided into separate beams as indicated in figure 11 and focussed by the microlens array (14), which may be shifted as indicated by indicia (12?, with the arrows) and then the light is modulated using computer control using the transmissive device (26) shown in figure 13 or the reflective device (26a) shown in figure 15. The workpiece adjustment means (20a) shown in figure 1 also allows the workpiece to be shifted relative to the focus of the lenses. (5/8-19). The mask 22 or 22a may alternatively be computer controlled. (7/15-8/7). The individually controllable

Jensen et al. '718 (2/49-59) disclose the use of lasers to form masks.

It would have been obvious to one skilled in the art to modify the invention of James et al. '200 by providing computer control means for the stage holding the workpiece as taught by Hongo et al. '759 and Haight et al., "MARS:Femtosecond laser mask advanced repair system in manufacturing", J Vac. Sci. Technol. B 17(6) pp 3137-3143 (Nov/Dec 1999) with a reasonable expectation of gaining increased flexibility in forming the patterns and/or it would have been obvious to modify the invention of Hongo et al. '759 and Haight et al., "MARS:Femtosecond laser mask advanced repair system in manufacturing", J Vac. Sci. Technol. B 17(6) pp 3137-3143 (Nov/Dec 1999) as discussed above by using beam division with independent control of the individual beams to increase productivity in forming masks as taught by Jensen et al. '718

Art Unit: 1756

without any thermal effects as discussed by Haight et al., "MARS:Femtosecond laser mask advanced repair system in manufacturing", J Vac. Sci. Technol. B 17(6) pp 3137-3143 (Nov/Dec 1999).

The rejection stands without further comment beyond those presented above.

8 THIS ACTION IS MADE FINAL. Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the mailing date of this final action.

9 Any inquiry concerning this communication or earlier communications from the examiner should be directed to Martin J Angebranndt whose telephone number is 703-308-4397. The examiner can normally be reached on Mondays-Thursday and alternate Fridays.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Mark Huff can be reached on 703-308-2464. The fax phone numbers for the organization where this application or proceeding is assigned are 703-872-9310 for regular communications and 703-872-9311 for After Final communications.

Art Unit: 1756

Any inquiry of a general nature or relating to the status of this application or proceeding should be directed to the receptionist whose telephone number is 703-308-0661.

Martin J Angebranndt
Primary Examiner
Art Unit 1756

November 26, 2003