Tema 6. Circuitos electrónicos básicos

6.1. El amplificador operacional: Aplicaciones

- Configuración inversora
- Configuración no inversora
- Sumador
- Derivador
- Integrador
- Comparador

6.2. Conversion Digital Analógica Analógica Digital

Conversión D/A (Digital/Analógica)

Conversor en escalera R-2R

Conversión A/D(Analógico/Digital)

Proceso de conversión
Teorema de Shannon
Convertidores A/D

Convertidores en lazo abierto Convertidores realimentados

6.1. El amplificador operacional.

El Amplificador Operacional (AOP) es una amplificador de gran ganancia, utilizado para realizar operaciones lineales y no lineales sin más que cambiar los elementos externos tales como resistencias, condensadores, diodos, etc.

Circuito integrado básico:

Esquema del Amplificador Operacional 741

Etapas del amplificador operacional

El AOP está constituido básicamente por tres etapas:

- Etapa de entrada
- Etapa amplificadora
- Etapa en seguidor de tensión

Chip

El operacional está compuesto por muchos transistores

Trabajaremos con un chip, por ejemplo el $\,\mu$ A741

Modelo lineal del amplificador operacional

Cuando el comportamiento del AOP es lineal, se puede sustituir por el siguiente modelo lineal:

Respuesta en frecuencia de un AOP típico a circuito abierto

Aproximación ideal del amplificador operacional

- Los límites de saturación son los voltajes de alimentación ($V_{pos\ y}V_{neg}$)

-
$$A_v$$
 muy alta => $A_v \rightarrow \infty$

-
$$R_i$$
 muy alta => $R_i \rightarrow \infty$ $V^+ = V^-$

- R_o muy baja => $R_o \rightarrow 0$ $V_o = A_v(V^+_V^-)$

Realimentación

Se establece una conexión entre la entrada y la salida.

Hay dos tipos de realimentación:

Realimentación positiva:

$$V^->V^+=>(V^+>V^-)<0=>V_0\downarrow=>V^+\downarrow=>(V^+-V^-)\downarrow=>V_0\downarrow$$
 V_o se limita a -V_{cc}

$$V^- < V^+ => (V^+ > V^-) > 0 => V_0 \uparrow => V^+ \uparrow => (V^+ - V^-) \uparrow => V_0 \uparrow V_0$$
 se limita a $+V_{cc}$

Realimentación negativa:

$$V^->V^+=>(V^+>V^-)<0=>V_0\downarrow=>V^-\downarrow=>(V^+-V^-)\uparrow=>V_0\uparrow$$
 equilibrio $V^-=V^+$

$$V^- < V^+ => (V^+ > V^-) > 0 => V_0 \uparrow => V^- \uparrow => (V^+ - V^-) \downarrow => V_0 \downarrow$$
 equilibrio $V^- = V^+$

Configuración inversora

Función de transferencia:

$$\frac{V_o}{V_i} = -\frac{R_2}{R_1}$$

Leyes de Kirchoff:
$$\frac{V_i - V^-}{R_1} = \frac{V^- - V_o}{R_2}$$

Condiciones ideales: $V^- = V^+ = 0$

Ejemplo 1:

$$V_i = A sen(\omega t)$$

$$A = 5$$

$$R_1 = R_2$$

Ejemplo 2:

$$V_i = A sen(\omega t)$$

$$A = 5$$

$$R_2 = 4R_1$$

saturación

Configuración no inversora

Leyes de Kirchoff: $\frac{0-V^{-}}{R_{1}} = \frac{V^{-}-V_{o}}{R_{2}}$

Condiciones ideales: $V^- = V^+ = V_i$

Función de transferencia:

$$\frac{V_o}{V_i} = \left(1 + \frac{R_2}{R_1}\right)$$

Ejemplo 1:

$$V_i = A sen(\omega t)$$

$$A = 5$$

$$R_2 = R_1$$

Ejemplo 2:

$$V_i = A sen(\omega t)$$

$$A = 5$$

$$R_2 = 3R_1$$

Sumador inversor

Leyes de Kirchoff:

$$\frac{V_1 - V^-}{R_1} + \frac{V_2 - V^-}{R_2} = \frac{V^- - V_o}{R_F}$$

Condiciones ideales:

$$V^- = V^+ = 0$$

$$V_o = -R_F \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} \right)$$

$$R_1 = R_2 = R_F \implies V_o = -(V_1 + V_2)$$

* Ejercicio: sumador no inversor

- Analizar este circuito
- Obtener su función de transferencia

Derivador

Condiciones ideales:

$$V^- = V^+ = 0$$

$$i_c(t) = C \frac{dV_i(t)}{dt}$$

$$V_o(t) = -RC \frac{dV_i(t)}{dt}$$

$$V_o(s) = -RCsV_I(s)$$

La señal de salida es la derivada de la señal de entrada

En el dominio de la frecuencia

Ejemplo 1:

 V_i señal triangular

Ejemplo 2:

 $V_i = sen\omega t$

 $V_o = -RC\omega\cos\omega t$

- Amplitud: $|T(j\omega)| = RC\omega$

- Fase:
$$\phi(\omega) = tg^{-1}(\infty) = -\frac{\pi}{2}$$

Integrador

Condiciones ideales:

$$V^- = V^+ = 0$$

$$V_i = -RC \frac{dV_o}{dt}$$

$$V_o = -\frac{1}{RC} \int V_i dt$$

$$V_o(s) = -\frac{1}{RCs}V_i(s)$$

La señal de salida es la integral de la señal de entrada

En el dominio de la frecuencia

Ejemplo 1:

 V_i señal cuadrada

Ejemplo 2:

$$V_i = sen\omega t$$

$$V_o = \frac{1}{RC\omega}\cos\omega t$$

Problema de estabilidad: en continua el condensador se comporta como un circuito abierto y no hay realimentación negativa. Cualquier pequeña componente de continua en V_i teóricamente produce una salida infinita.

$$V_{o} = k + sen\omega t$$

$$V_{o} = -\frac{1}{RC} \int (k + sen\omega t) dt$$

$$V_{o} = -\frac{1}{RC} \left(kt - \frac{1}{\omega} \cos \omega t + V_{o}(0) \right)$$

En la práctica la salida del amplificador se satura a un voltaje cercano +Vcc o –Vcc, dependiendo de la polaridad de la señal de entrada.

Integrador

El problema de ganancia muy alta de cd del integrador se resuelve al conectar R_2 . La resistencia cierra el circuito de realimentación y proporciona una ganancia finita de cd de $-R_2/R_1$.

$$\frac{V_o}{V_i} = -\frac{R_2}{R_1} \frac{1}{1 + R_2 Cs}$$

Filtro paso-bajo frecuencia de corte $\omega_o = (R_2 C)^{-1}$

$$\omega > \omega_o \quad \Rightarrow \quad \frac{V_o}{V_i} \approx -\frac{1}{R_1 C s}$$

El integrador resultante ya no es ideal, pero se puede reducir al mínimo la imperfección seleccionando una R_2 tan grande como sea posible.

- Amplitud:
$$|T(j\omega)| = \frac{R_2}{R_1} \frac{1}{\sqrt{1 + (R_2 C\omega)}}$$

 $20\log |T(j\omega)| (dB)$

- Fase:
$$\phi(\omega) = tg^{-1} \left(\frac{\omega R_2 C}{-1}\right) + \pi$$
 $\omega \to 0 \quad \phi \to tg^{-1}(0) + \pi = \pi$
 $20 \log |T(j\omega)| \ (dB)$
 $\omega \to \omega_o \quad \phi \to tg^{-1}(-1) + \pi = \frac{-\pi}{4} + \pi = \frac{3\pi}{4}$
 $\omega \to \infty \quad \phi \to tg^{-1}(-\infty) + \pi = \frac{-\pi}{2} + \pi = \frac{\pi}{2}$
 $3\pi/4$
 $\pi/2$
 $\pi/2$

1.E-01 1,E+00 1,E+01 1,E+02 1,E+03 1,E+04 1,E+05 1,E+06 1,E+07

Circuitos comparadores

Comparador básico

$$V_{in} > V_{ref} = > (V_{in} - V_{ref}) > 0 = > V_{o} = V_{pos}$$
 $V_{in} < V_{ref} = > (V_{in} - V_{ref}) < 0 = > V_{o} = V_{neg}$

Problemas:

- rapidez
- niveles de salida
- oscilaciones a la salida

Disparador de Schmitt

$$V_{i} << V_{ref} => V^{-} < V^{+} => V'_{o} = V_{OH} => V'_{o} = (V_{1} + |V_{Z2}|)$$

$$\frac{V^{+} - V_{ref}}{R_{2}} = \frac{V_{OH}^{'}}{R_{1}} \implies \frac{(R_{1} + R_{2})V^{+}}{R_{1}R_{2}} = \frac{R_{1}V_{ref} + R_{2}V_{OH}^{'}}{R_{1}R_{2}}$$

$$V^{+} = \frac{R_{1}V_{ref} + R_{2}V_{OH}^{'}}{R_{1} + R_{2}} = V_{ref H}$$

$$V_i = V^- > V_{RH} => V^- > V^+ => V_o = V_{OL} => V_o = V_{OL} = -(V_2 + |V_{Z1}|)$$

$$V^{+} = \frac{R_{1}V_{ref} + R_{2}V_{OL}^{'}}{R_{1} + R_{2}} = V_{RL}$$

$$V_i = V^- > V_{RL} = V^- < V^+ = V_0 = V_{OH} = V'_0 = V'_{OH} = (V_1 + |V_{Z2}|)$$

6.2 Conversion Digital Analógica Analógica Digital

A lo largo de la asignatura hemos trabajado con dos tipo de datos: Analógico y Digitales.

Analógicos:

- pueden tomar cualquier valor entre un rango continuo
- no sólo nos interesa el estado de los dispositivos

Digitales:

- formados por una palabra con unos "1" y ceros "0"
- nos interesa el estado de los dispositivos, ON u OFF
- Dentro de los circuitos analógicos tenemos a los amplificadores, derivadores, osciladores, generadores de señal, ... Con respecto a los digitales tenemos puertas lógicas, memorias, ALUs, ...

■ A veces interesa "convertir" un valor digital a uno analógico. Los conversores son circuitos que convierten un valor analógico a un valor digital o viceversa.

Convertidores Digital/Analógico

■ Si la palabra digital es : S_N S_{N-1} ...S₁ S₀ su valor analógico será

$$K[S_N 2^N + S_{N-1} 2^{N-1} + ... + S_1 2^N + S_0]$$

- Estudiaremos dos tipos de conversores D/A
 - ✓ Sumador analógico
 - ✓ Convertidor en escalera R-2R

Convertidor en Escalera R-2R

Debido a la pequeña dispersión en valores de resistencia, esta red suele preferirse sobre el esquema anterior, especialmente para *N*>4.

$$I_{1} = \frac{S_{1}V_{R} - V_{th0}}{4R} \qquad R_{th1} = 2R \parallel 2R = R$$

$$V_{th1} = S_{1}V_{R} - I_{1}2R = S_{1}V_{R} - \frac{\left(S_{1}V_{R} - V_{th0}\right)}{4R} 2R$$

$$V_{th1} = \frac{S_{1}V_{R}}{2} + \frac{V_{th0}}{2} = \frac{S_{1}V_{R}}{2} + \frac{S_{0}V_{R}}{4}$$

.

•

•

$$V_{thn} = \frac{S_n V_R}{2} + \frac{S_{n-1} V_R}{4} + \dots + \frac{S_0 V_R}{2^{n+1}}$$

$$\begin{cases} V_{thn} = \frac{V_R}{2^{n-1}} \left(S_0 + 2S_1 + 4S_2 \dots + 2^n S_n \right) \\ R_{thn} = R \end{cases}$$

$$\frac{V_{thn}}{R + R_S} = \frac{-V_o}{R_f} \implies V_o = \frac{-R_f}{R + R_S} V_{thn}$$

$$V_o = \frac{-R_f}{R + R_S} \frac{V_R}{2^{n+1}} \left[S_0 + 2S_1 + ... + 2^n S_n \right]$$

Conversión A/D(Analógico/Digital)

Proceso de conversión
Muestro
Mantenimiento
Cuantización
Codificación

Circuitos de Muestreo y mantenimiento. Teorema de Shannon

Convertidores A/D
Convertidores en lazo abierto
Convertidores realimentados
Convertidor Contador
Convertidor en aproximaciones sucesivas

Proceso de conversión

 En este tema, complementando el anterior, vamos a estudiar la conversión analógica/digital (A/D).

- Cuatro fases:
 - ✓ Muestreo
 - ✓ Mantenimiento
 - ✓ Cuantificación
 - ✓ Codificación

1) Muestreo

Se toma periódicamente el valor de la señal analógica.

2) Mantenimiento

Durante el tiempo que se tarda en transformar la señal analógica a digital se mantiene el valor de la señal muestreada.

3) Cuantificación

Consiste en aproximar el valor mantenido a un múltiple entero de una cantidad asociada con la resolución del convertidor, la sensibilidad del convertidor.

4) Codificación

Consiste en el paso del número de nivel a valor binario o al código deseado

MUESTREO

CUANTIFICACIÓN

Características de un convertidor A/D

- a) Número de bits: N, determina el número de posibles salidas, 2^{N} .
- b) Rango de entrada: V_R , rango de tensión de entrada que el conversor es capaz de analizar.

Ejemplo:

Rango [0, 5] V interesa que la señal a convertir sea entre 0V y 5V, si fuera una señal entre 0V y 0.5V estaríamos desaprovechando el conversor. Tendríamos primero que amplificar la señal para ajustarla al rango.

- c) Tiempo de conversión: T_C , tiempo que se tarda en convertir la señal analógica a la palabra digital. Conviene que este tiempo sea lo más pequeño posible y debe ser menor que el periodo de muestreo.
- d) Sensibilidad: Δ , mínimo incremento de la entrada capaz de apreciar el conversor A/D: $\Delta = \frac{V_R}{2^N 1}$

Ejemplo:

Rango [0, 5]
$$\Rightarrow V_R = 5V$$

 $N = 10$ bits $\Delta = 5/1023 \cong 5$ mV

Aproximación + 1 LSB, ± ½ LSB

Ejemplo:

 $V \in [0, 5] \Rightarrow N = 2$, numero de niveles: $2^N = 4$

 $2^{2}-1 = 3$ intervalos $\Delta = 5/(2^{2}-1) = 1.66$ V/interv

+ 1 LSB

$$\begin{aligned} &V_a = 0 \text{ V} & \rightarrow & \text{Nivel } 0 & \rightarrow & 00 \\ &0 \text{ V} < V_a \le \Delta & \rightarrow & \text{Nivel } 1 & \rightarrow & 01 \\ &\Delta \le V_a < 2\Delta & \rightarrow & \text{Nivel } 2 & \rightarrow & 10 \\ &2\Delta \le V_a < 3\Delta & \rightarrow & \text{Nivel } 3 & \rightarrow & 11 \end{aligned}$$

± ½ LSB

$$0 \text{ V} \leq V_a \leq \frac{1}{2}\Delta \quad \rightarrow \text{ Nivel } 0 \quad \rightarrow \quad 00$$

$$\frac{1}{2}\Delta \leq V_a \leq \frac{3}{2}\Delta \quad \rightarrow \text{ Nivel } 1 \quad \rightarrow \quad 01$$

$$\frac{3}{2}\Delta \leq V_a < \frac{5}{2}\Delta \quad \rightarrow \text{ Nivel } 2 \quad \rightarrow \quad 10$$

$$\frac{5}{2}\Delta \leq V_a < 5 \text{ V} \quad \rightarrow \text{ Nivel } 3 \quad \rightarrow \quad 11$$

Ejemplo:

Convertidor de 8 bits, N = 8, rango entre 0 V y 5 V, $V_R = 5$ V.

Tenemos $2^8 = 256$ niveles. Sensibilidad $\Delta = 5/255 = 19.6$ mV.

Suponemos una señal analógica de 3.38 V, corresponde al nivel 3.83 V / 19.6 mV = 195.408:

- → 196 + 1 LSB Codificación → 11000100
- \rightarrow 195 ± ½ LSB Codificación \rightarrow 11000011

Circuitos de muestreo y mantenimiento Teorema de Shannon

- El siguiente circuito es el que se suele utilizar como muestreadorretenedor.
- Consiste en dos seguidores de tensión con una puerta de paso y un condensador.

■ El transistor o la puerta de paso hace las funciones de interruptor:

- Si V_c =1 \Rightarrow C se carga al valor V_i

Muestreo

- Si V_c =0 \Rightarrow C mantiene el voltaje V_i

Mantenimiento

Problema grave:

¿Con qué frecuencia debemos muestrear?

Teorema de Shannon:

La frecuencia de muestreo debe ser dos veces mayor que la frecuencia máxima de la señal de entrada:

$$f_{muestreo} \ge 2f_{max}$$

Consecuencia:

Una señal que no esté limitada en banda no se va a poder muestrear sin que se pierda información. Lo que se hace con una señal de este tipo es pasarla primero por un filtro paso-baja de manera que limitemos la frecuencia máxima.

Convertidores A/D

Convertidor en lazo abierto

Ejemplo: convertidor A/D de 8 bits.

$$N \text{ de 1a 255} \rightarrow V_N = \frac{V_{ref}}{255 R} \left[\frac{R}{2} + (N-1)R \right]$$

Si la tensión de entrada V_a está comprendida entre V_{N-1} y V_N desde el comparador 1 hasta el N-1 dan salida "1" y la de los otros comparadores es "0".

- Ventaja: rápido T_c = 1 ciclo de reloj.
- Inconveniente: mucha circuitería.

Se utiliza si el numero de bits no es demasiado grande.

Convertidores realimentados

Convertidor en lazo cerrado Convertidor Contador

El contador inicia una cuenta desde 000...0 hasta que la salida digital convertida a analógica supera a V_a , en ese momento se para la cuenta.

Convertidor en aproximaciones sucesivas

Mejora el tiempo de conversión del anterior.

Pasos:

- 1) Se coloca un registro de longitud N (número de bits) y se pone inicialmente a 000...0.
- 2) Se hace 1 el bit más significativo.
- 3) Se compara el valor analógico correspondiente a 100...0 con el valor V_a de entrada.

Si
$$V_a > \Rightarrow$$
 El bit 1 se mantiene

Si
$$V_a < \Rightarrow$$
 El bit 1 se transforma en 0

Se repite el proceso para los *N* bits, primero con el segundo bit más significativo y así con todos. Se tardan *N*+2 pulsos de reloj, 1 por cada bit, 1 para el inicio y otro para pasar la palabra digital a la salida.