MSIB32500 Advanced Bioinformatics Fall 2017

RNAseq Data Analysis and Clinical Applications, Part III

Riyue Bao, Ph.D.

Research Assistant Professor (Bioinformatics)

Center for Research Informatics & Department of Pediatrics

The University of Chicago

Outline

- Part I (11/18/2017)
 - Introduction to RNAseq technology and clinical applications
 - Hands on: From raw data to gene expression quantification
- Part II (11/25/2017)
 - Differential gene expression analysis and data visualization
 - Hands on: Identification of genes and pathways significantly changed under condition
 - Homework assignment
 - Thanksgiving week Gleacher center physically closed. Class will be on WebEx.
- Part III (12/02/2017)
 - How to associate gene expression data with clinical outcome
 - Hands on: Use gene expression data to discover tumor subtypes and survival analysis
 - ► Homework due tomorrow (12/03) 11:59 PM

Class materials

- GitHub
 - https://github.com/MScBiomedicalInformatics/MSIB32500
 - This lecture note contains the same contents as the notebook. In addition, the notebook also contains hands-on materials
 - lecture10.pdf
 - Handson10.Rmd
- Rstudio (or R console) on personal computers (hands on practice)

Objective

- Learn the background and application of The Cancer Genome Atlas (TCGA)
- Learn the structure and access of Genomics Data Commons (GDC)
- Explore datasets hosted on GDC
- Practice how to associate gene expression with clinical data
 - Use gene expression to identify tumor subtype
 - Detect survival difference between subtypes
 - Produce high-quality plots for publication

Background

Gene Expression

Patient's clinical data

Background

- Correlate gene expression with clinical data (tumor stage, tumor grade, time to death, time to relapse, etc.)
- Identify tumor subtypes through sample clustering
- Detect survival difference between tumor subtypes
- Discover gene signatures to predict patient classes

Sample Data

ARTICLE

doi:10.1038/nature10166

Integrated genomic analyses of ovarian carcinoma

The Cancer Genome Atlas Research Network*

A catalogue of molecular aberrations that cause ovarian cancer is critical for developing and deploying therapies that will improve patients' lives. The Cancer Genome Atlas project has analysed messenger RNA expression, microRNA expression, promoter methylation and DNA copy number in 489 high–grade serous ovarian adenocarcinomas and the DNA sequences of exons from coding genes in 316 of these tumours. Here we report that high–grade serous ovarian cancer is characterized by *TP53* mutations in almost all tumours (96%); low prevalence but statistically recurrent somatic mutations in nine further genes including *NF1*, *BRCA1*, *BRCA2*, *RBI* and *CDK12*; 113 significant focal DNA copy number aberrations; and promoter methylation events involving 168 genes. Analyses delineated four ovarian cancer transcriptional subtypes, three microRNA subtypes, four promoter methylation subtypes and a transcriptional signature associated with survival duration, and shed new light on the impact that tumours with *BRCA1/2* (*BRCA1* or *BRCA2*) and *CCNE1* aberrations have on survival. Pathway analyses suggested that homologous recombination is defective in about half of the tumours analysed, and that NOTCH and FOXM1 signalling are involved in serous ovarian cancer pathophysiology.

Sample Data

ARTICLE

doi:10.1038/nature10166

Integrated genomic analyses of ovarian carcinoma

The Cancer Genome Atlas Research Network*

150 most variable miRNAs for sample clustering

Cluster 1 has significantly better survival

https://portal.gdc.cancer.gov

Infrastructure

Data Release 6.0 - May 9, 2017

Data is continuously being processed and harmonized by the GDC. View GDC system statistics:

Compute Infrastructure 12,800 Cores

4.00 DD II---I

87.96 TB RAM

Documentation

Learn how to use the GDC Data Portal to its full potential with common topics such as:

Browse Data using Facet Search

GDC Applications

14,551

The GDC Data Portal is a robust data-driven platform that allows cancer researchers and bioinformaticians to search and download cancer data for analysis. The GDC applications include:

274,724

https://portal.gdc.cancer.gov

https://portal.gdc.cancer.gov

ID	Disease Type	Primary Site	Program	Cases
TCGA-BRCA	Breast Invasive Carcinoma	Breast	TCGA	1,098
TCGA-GBM	Glioblastoma Multiforme	Brain	TCGA	61
TCGA-OV	Ovarian Serous Cystadenocarcin	Ovary	TCGA	608
TCGA-LUAD	Lung Adenocarcinoma	Lung	TCGA	<u>58</u>
TCGA-UCEC	Uterine Corpus Endometrial Carci	Uterus	TCGA	<u>56</u> 0
TCGA-KIRC	Kidney Renal Clear Cell Carcinoma	Kidney	TCGA	53
TCGA-HNSC	Head and Neck Squamous Cell C	Head and Neck	TCGA	<u>528</u>
TCGA-LGG	Brain Lower Grade Glioma	Brain	TCGA	<u>51</u> (
TCGA-THCA	Thyroid Carcinoma	Thyroid	TCGA	50
TCGA-LUSC	Lung Squamous Cell Carcinoma	Lung	TCGA	<u>50</u> 4
TCGA-PRAD	Prostate Adenocarcinoma	Prostate	TCGA	500
TCGA-SKCM	Skin Cutaneous Melanoma	Skin	TCGA	470
TCGA-COAD	Colon Adenocarcinoma	Colorectal	TCGA	46
TCGA-STAD	Stomach Adenocarcinoma	Stomach	TCGA	44:
TCGA-BLCA	Bladder Urothelial Carcinoma	Bladder	TCGA	412
TCGA-LIHC	Liver Hepatocellular Carcinoma	Liver	TCGA	37
TCGA-CESC	Cervical Squamous Cell Carcino	Cervix	TCGA	30
TCGA-KIRP	Kidney Renal Papillary Cell Carci	Kidney	TCGA	<u>29</u>
TCGA-SARC	Sarcoma	Soft Tissue	TCGA	<u>26</u>
TCGA-LAML	Acute Myeloid Leukemia	Bone Marrow	TCGA	200
TCGA-PAAD	Pancreatic Adenocarcinoma	Pancreas	TCGA	18
TCGA-ESCA	Esophageal Carcinoma	Esophagus	TCGA	18
TCGA-PCPG TCGA-READ	Pheochromocytoma and Paragan Rectum Adenocarcinoma	Adrenal Gland Colorectal	TCGA TCGA	<u>179</u>
TCGA-TGCT	Testicular Germ Cell Tumors	Testis	TCGA	<u>15</u>
TCGA-THYM	Thymoma	Thymus	TCGA	12
TCGA-KICH	Kidney Chromophobe	Kidney	TCGA	<u>11</u>
TCGA-ACC	Adrenocortical Carcinoma	Adrenal Gland	TCGA	9
TCGA-MESO	Mesothelioma	Pleura	TCGA	8
TCGA-UVM	Uveal Melanoma	Eye	TCGA	8
TCGA-DLBC	Lymphoid Neoplasm Diffuse Larg	Lymph Nodes	TCGA	5
TCGA-UCS	Uterine Carcinosarcoma	Uterus	TCGA	5
TCGA-CHOL	GA-CHOL Cholangiocarcinoma		TCGA	5
Total		Bile Duct		11,31

TCGA cancer types (n=33)

- TCGA raw data were harmonized by NCI's GDC team
 - Release 6 June 2017
 - Release 7 available soon
- Data types: from raw files to compiled results
- Result access: public or protected
- Apply for access: dbGap
- Download: GDC

https://cbioportal.gdc.cancer.gov/cbioportal

New modern-looking GDC visualization website available soon!!

HOME

DATA SETS

The GDC cBioPortal is being retired. In its place, the GDC will soon release new Data Analysis, Visualization, and Exploration (DAVE) Tools that will be integrated into the existing GDC Data Portal.

During this transition the GDC cBioPortal will no longer be updated. Starting with Data Release 6.0 the content of the GDC cBioPortal will not reflect the updated MAF files found in the GDC Data Portal. For the most up-to-date mutation information, please refer to data found in the GDC Data Portal.

The GDC cBioPortal is an implementation of cBioPortal that supports the visualization of mutation data. For information on cBioPortal, please refer to cBioPortal.org.

DISCLAIMER: This application has been reviewed for compliance with Section 508 accessibility standards and we know that there are accessibility issues. If you experience any accessibility issues when using this application, please contact the GDC Help Desk (support@nci-gdc.datacommons.io) for assistance.

Query

Download Data

Select Cancer Study:

Search...

Access GDC data

```
[rbao@cri16in002 ~]$ gdc-client -h
usage: gdc-client [-h] [--version] {download,upload,interactive} ...
The Genomic Data Commons Command Line Client
optional arguments:
 -h, --help
                      show this help message and exit
                      show program's version number and exit
 --version
commands:
 {download,upload,interactive}
                      for more information, specify -h after a command
   download
                      download data from the GDC
                      upload data to the GDC
   upload
   interactive
                      run in interactive mode
```

Bioconductor packages

- library(TCGAbiolinks)
 - https://goo.gl/ytPe07
- library(GenomicDataCommons)
 - https://goo.gl/cbUfp3

The GDC Application Programming Interface (API): An Overview

The GDC API drives the GDC Data and Submission Portals and provides programmatic access to GDC functionality. This includes searching for, downloading, and submitting data and metadata. The GDC API uses JSON as its communication format, and standard HTTP methods like GET, PUT, POST and DELETE.

curl https://api.gdc.cancer.gov/files/d853e541-f16a-4345-9f00-88e03c2dc0bc?pretty=true

	mad [‡]		
HSA-MIR-205	2.6824804		
HSA-MIR-449A	2.3890068		
HSA-MIR-31	1.8097683		
HSA-MIR-224	1.6650244		
HSA-MIR-451	1.6289215		
HSA-MIR-10A	1.4811346		
HSA-MIR-10B	1.4523870		
HSA-MIR-31*	1.4370410		
HSA-MIR-363	1.3751314		
HSA-MIR-96	1.3709655		
HSA-MIR-203	1.3489193		
HSA-MIR-494	1.2932659		
Showing 1 to 13 of 150 entries			

Median absolute deviation (MAD)

$$MAD = median_i (|X_i - median_j(X_j)|)$$

Non-negative matrix factorization (NMF), also non-negative matrix approximation is a group of algorithms in multivariate analysis and linear algebra where a matrix V is factorized into (usually) two matrices W and H, with the property that all three matrices have no negative elements.

sample [‡]	cluster [‡]
TCGA.04.1331	1
TCGA.04.1338	1
TCGA.04.1341	1
TCGA.04.1343	1
TCGA.04.1348	1
TCGA.04.1362	1
TCGA.04.1365	1
TCGA.04.1530	1
TCGA.04.1542	1
TCGA.04.1648	1
TCGA.04.1649	1
TCGA.04.1651	1

gene ÷	cluster [‡]
HSA-MIR-205	1
HSA-MIR-494	1
HSA-MIR-144	1
HSA-MIR-142-5P	1
HSA-MIR-181A	1
HSA-MIR-151-3P	1
HSA-MIR-1225-5P	1
HSA-MIR-222	1
HSA-MIR-638	1
EBV-MIR-BART19-3P	1
HSA-MIR-21*	1
HSA-MIR-630	1

Sample clusters

Gene clusters

	sample [‡]	vital.status [‡]	overall.survival.month $^{\hat{\neg}}$	age.at.diagnosis.year	tumor.stage [‡]	tumor.grade [‡]
1	TCGA.04.1331	DECEASED	43.80	79.04	IIIC	G3
5	TCGA.04.1338	LIVING	46.49	78.87	IIIC	G3
6	TCGA.04.1341	LIVING	NA	85.52	NA	G3
8	TCGA.04.1343	DECEASED	11.84	72.41	IV	G3
11	TCGA.04.1348	DECEASED	48.62	44.48	IIIB	G3
17	TCGA.04.1362	DECEASED	44.20	59.58	IIC	G3
19	TCGA.04.1365	LIVING	76.33	87.47	IIIB	G3
25	TCGA.04.1530	DECEASED	118.75	68.53	IIIC	G3
26	TCGA.04.1542	DECEASED	83.97	52.78	IIIB	G2
29	TCGA.04.1648	DECEASED	28.56	57.84	IIIC	G2
30	TCGA.04.1649	LIVING	64.46	74.42	IIIC	G3
31	TCCA 04 1651	DECEASED	36.07	52.70	IIIC	CS
4	✓ [III]					
Showing 1 to 13 of 486 entries						

- Sample ID
- Vital status
- Overall survival
- Age at diagnosis
- Tumor stage
- Tumor grade
- Sample cluster (from the previous step)

Survival analysis

- Study the time between entry to a study or an event (such as death)
- Calculate survival/risk difference and detect significance between groups
- Build models to predict prognosis

Survival data

- Time to event (in year, month, etc.)
- Status (whether the event has happened?)
 - Censoring: only some individuals have experienced the event by the last follow up, while for others, the time is unknown
- "cumulative" survival time

Survival methods

- Kaplan-Meier estimator
- Log-rank test (Mantel-Haenzel test)
- Cox regression model (proportional hazard model)

Right Censoring

Figure I Converting calendar time in the ovarian cancer study to a survival analysis format. Dashed vertical line is the date of the last follow-up, R = relapse, D = death from ovarian cancer, Do = death from other cause, A = attended last clinic visit (alive), L = loss to follow-up, X = death, D = censored.

- Kaplan-Meier estimator
 - Stepwise function
 - Does not account for effect of other covariates (<u>univariate</u> <u>test</u>)

- Log-rank test
 - Chi-square test
 - Efficient in comparing groups differed by categorical variables, but not continuous ones
 - Univariate test

$$HR = \frac{O_1/E_1}{O_2/E_2}$$

The hazard ratio (HR) is a measure of the relative survival experience in the two groups

O: Observed

E: Expected (if no difference between group 1 and 2)

- Cox Proportional hazard model
 - Conveniently access the effect of continuous and categorical variables
 - Test the significance of factor of interest adjusting for other factors
 - Multivariate test!

```
S ~ sample.cluster +
    patient.age +
    tumor.grade
```

Cox Proportional hazard model

- β: coefficient of explanatory variables or predictors
- exp(β): the ratio of the hazards between two individuals whose values of x differ by one unit when all other covariates are held constant (hazard ratio, analogous to an odds ratio in the setting of multiple logistic regression analysis)
- Z: Wald statistics calculated by dividing β by its standard error
- P: P-value that corresponds to Z statistics. If P<0.05, then the null hypothesis of β equal to zero can be rejected at 95% confidence level

Cox Proportional hazard model

Call:

- Survival methods
 - Kaplan-Meier estimator
 - Log-rank test (Mantel-Haenzel test)
 - Cox regression model (proportional hazard model)

Library(survival)

survfit

survdiff

coxph

Integration of multi-omics data

- Multiple types of genomic data, e.g. mRNA, miRNA, methylation
- SNF: similarity network fusion <u>http://compbio.cs.toronto.edu/SNF/SNF/Software.html</u>
- iClusterPlus: a joint latent variable model for integrative clustering https://bioconductor.org/packages/release/bioc/html/iClusterPlus.html

Patient similarity matrices Patients

Fused patient

Similarity network fusion for aggregating data types on a genomic scale

Bo Wang^{1,5}, Aziz M Mezlini^{1,2}, Feyyaz Demir^{1,2}, Marc Fiume², Zhuowen Tu³, Michael Brudno^{1,2}, Benjamin Haibe-Kains^{4,5} & Anna Goldenberg^{1,2}

Recent technologies have made it cost-effective to collect diverse types of genome-wide data. Computational methods are needed to combine these data to create a comprehensive view of a given disease or a biological process. Similarity network fusion (SNF) solves this problem by constructing networks of samples (e.g., patients) for each available data type and then efficiently fusing these into one network that represents the full spectrum of underlying data. For example, to create a comprehensive view of a disease given a cohort of patients, SNF computes and fuses patient similarity networks obtained from each of their data types separately, taking advantage of the complementarity in the data. We used SNF to combine mRNA expression, DNA methylation and microRNA (miRNA) expression data for five cancer data sets. SNF substantially outperforms single data type analysis and established integrative approaches when identifying cancer subtypes and is effective for predicting survival.

DNA methylation-based

Thank you!

Questions

