Лекция №3

Линейная зависимость и независимость системы вектор-функций. Определитель Вронского.

Вспомним определения линейной зависимости и независимости системы вектор-функций.

Определение. Вектор-функции $x^1(t), x^2(t), \dots, x^k(t)$ называются линейно зависимыми на J (J – интервал или отрезок) если существуют постоянные c_1, c_2, \dots, c_k не все равные нулю, такие что

$$c_1 \mathbf{x}^1(t) + c_2 \mathbf{x}^2(t) + \ldots + c_k \mathbf{x}^k(t) = 0 \quad \forall t \in J.$$
 (1)

Определение. Вектор-функции $x^1(t), x^2(t), \dots, x^k(t)$ называются линейно независимыми на J если равенство (1) на J возможно только тогда, когда все $c_1 = \dots = c_k = 0$.

Определение. Определителем Вронского системы вектор-функций $\boldsymbol{x}^1(t),\dots,\boldsymbol{x}^n(t)$ называется определитель, столбцами которого являются эти вектор-функции, то есть функция

$$W_{\boldsymbol{x}^{1},\dots,\boldsymbol{x}^{n}}(t) = \begin{vmatrix} x_{1}^{1}(t) & x_{1}^{2}(t) & \dots & x_{1}^{n}(t) \\ x_{2}^{1}(t) & x_{2}^{2}(t) & \dots & x_{2}^{n}(t) \\ \vdots & \vdots & \dots & \vdots \\ x_{n}^{1}(t) & x_{n}^{2}(t) & \dots & x_{n}^{n}(t) \end{vmatrix}.$$

Лемма (1). Если функции $\mathbf{x}^{1}(t), \dots, \mathbf{x}^{n}(t)$ линейно зависимы на (a,b), то $W_{\mathbf{x}^{1},\dots,\mathbf{x}^{n}}(t) \equiv 0$ на (a,b).

Доказательство. Линейная зависимость векторфункций равносильна линейной зависимости столбцов определителя Вронского. Следовательно $W_{\boldsymbol{x}^1,\dots,\boldsymbol{x}^n}(t)\equiv 0$ на (a,b).

Обратное утверждение неверно.

Пример.

$$m{x}^1(t) = \left(egin{array}{c} g_1(t) \\ 0 \end{array}
ight), \quad m{x}^2(t) = \left(egin{array}{c} g_2(t) \\ 0 \end{array}
ight),$$

 $arepsilon \partial e \ g_1(t) \ u \ g_2(t)$ – линейно независимы на (a,b).

Лемма (2). Если $W_{\boldsymbol{x}^1,...,\boldsymbol{x}^n}(t_0) \neq 0$, $t_0 \in (a,b)$, то функции $\boldsymbol{x}^1(t),...,\boldsymbol{x}^n(t)$ – линейно независимы на (a,b).

Доказательство. От противного. Предположим, что $\boldsymbol{x}^1(t),\dots,\boldsymbol{x}^n(t)$ – линейно зависимы, тогда по Лемме (1) $W_{\boldsymbol{x}^1,\dots,\boldsymbol{x}^n}(t)\equiv 0$. Получаем противоричие с условием $W_{\boldsymbol{x}^1,\dots,\boldsymbol{x}^n}(t_0)\neq 0$.

Лемма (3). Если $\mathbf{x}^1(t), \dots, \mathbf{x}^n(t)$ – решения линейной однородной системы вида (3) и $W_{\mathbf{x}^1, \dots, \mathbf{x}^n}(t_0) = 0$, $t_0 \in (a, b)$, то функции $\mathbf{x}^1(t), \dots, \mathbf{x}^n(t)$ линейно зависимы на (a, b) и $W_{\mathbf{x}^1, \dots, \mathbf{x}^n}(t) \equiv 0$ на (a, b).

Доказательство. Рассмотрим вектор-функцию

$$\boldsymbol{x}(t) = c_1 \boldsymbol{x}^1(t) + c_2 \boldsymbol{x}^2(t) + \ldots + c_n \boldsymbol{x}^n(t).$$

Эта функция — решение линейной однородной системы. Подберем константы c_1, c_2, \ldots, c_n так чтобы

$$c_1^2 + c_2^2 + \ldots + c_n^2 \neq 0,$$

 $\mathbf{x}(t_0) = 0.$

Это можно сделать, так как эти условия эквивалентны тому, что существует нетривиальное решение линейной однородной алгебраической системы уравнений

$$\begin{cases} c_1 x_1^1(t_0) + c_2 x_1^2(t_0) + \dots + c_n x_1^n(t_0) = 0, \\ c_1 x_2^1(t_0) + c_2 x_2^2(t_0) + \dots + c_n x_2^n(t_0) = 0, \\ \dots & \dots \\ c_1 x_n^1(t_0) + c_2 x_n^2(t_0) + \dots + c_n x_n^n(t_0) = 0 \end{cases}$$

определитель которой равен $W_{\boldsymbol{x}^1,\dots,\boldsymbol{x}^n}(t_0)$ и следовательно равен 0. По теореме существования и единственности решения задачи Коши $\boldsymbol{x}(t)\equiv 0$. Таким образом функции $\boldsymbol{x}^1(t),\dots,\boldsymbol{x}^n(t)$ – линейно зависимы и по Лемме (1) $W_{\boldsymbol{x}^1,\dots,\boldsymbol{x}^n}(t)\equiv 0$.

Замечание (1). Матрица столбцы которой являются решениями системы (3) называется матрицей решений системы (3). Из Лемм (2) и (3) следует, что матрица решений системы (3) X(t) является фундаментальной матрицей системы (3) тогда и только тогд, когда $\exists t_0$, $|X(t_0)| \neq 0 \ (\forall t, |X(t)| \neq 0)$.

Формула Лиувилля-Остроградского.

Теорема. Пусть $\mathbf{x}^1(t), \dots, \mathbf{x}^n(t)$ – решения системы (3), $t \in (a,b)$ и $W(t) = W_{\mathbf{x}^1,\dots,\mathbf{x}^n}(t)$ – определитель Вронского этой системы решений. Тогда $\forall t, t_0 \in (a,b)$

$$W(t) = W(t_0) e^{\int_{t_0}^t \operatorname{tr} A(\tau) \, d\tau},$$
 где $\operatorname{tr} A(t) = a_{11}(t) + a_{22}(t) + \ldots + a_{nn}(t)$ – след $A(t)$. Доказательство.

$$\dot{W}(t) = egin{array}{c|c} \dot{oldsymbol{x}}_1 \ \dot{oldsymbol{x}}_2 \ \dot{oldsymbol{z}}_n \ \dot{oldsymbol{x}}_n \$$

где x_1, \ldots, x_n — строки W(t). Матрица X(t), соответствующая определителю W(t), удовлетворяет матричному уравнению

$$\dot{X} = AX$$

так как столбцы $x^1(t), \ldots, x^n(t)$ матрицы X являются решениями системы (3). Значит для всякой строки матрицы X выполняется соотношение

$$\dot{\boldsymbol{x}}_i = a_{i1}\boldsymbol{x}_1 + \ldots + a_{in}\boldsymbol{x}_n$$

и следовательно

$$\dot{W}(t) = \begin{vmatrix} a_{11}\mathbf{x}_1 + \dots + a_{1n}\mathbf{x}_n \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_n \end{vmatrix} + \begin{vmatrix} \mathbf{x}_1 \\ a_{21}\mathbf{x}_1 + \dots + a_{2n}\mathbf{x}_n \\ \vdots \\ \mathbf{x}_n \end{vmatrix} + \dots + \begin{vmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_n \end{vmatrix} + a_{12} \begin{vmatrix} \mathbf{x}_2 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_n \end{vmatrix} + \dots + a_{1n} \begin{vmatrix} \mathbf{x}_n \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_n \end{vmatrix} + a_{12} \begin{vmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_n \end{vmatrix} + \dots + a_{1n} \begin{vmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_n \end{vmatrix} + a_{22} \begin{vmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_n \end{vmatrix} + \dots + a_{nn} \begin{vmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_n \end{vmatrix} = \operatorname{tr} A(t)W(t).$$

Таким образом W(t) удовлетворяет уравнению с разделяющимися переменными

$$\dot{W}(t) = \operatorname{tr} A(t)W(t),$$

решая которое получаем, что

$$W(t) = W(t_0)e^{\int_{t_0}^t \operatorname{tr} A(\tau) d\tau}.$$

Замечание. Если решения $\boldsymbol{x}^1(t),\dots,\boldsymbol{x}^n(t)$ – линейно независимы, то

$$\frac{W(t)}{W(t_0)} > 0,$$

иначе существовала бы точка t_1 такая, что $W(t_1) = 0$. Если решения $\boldsymbol{x}^1(t), \dots, \boldsymbol{x}^n(t)$ – линейно зависимы, то

$$W(t) = W(t_0) = 0, \quad \forall t, t_0.$$