CAD and CFD Wing Design Competition

The aim for this competition is to design and analyse half a wing (must be a symmetrical design) with dimensions less than (span x chord x thickness) 0.75m x 0.2m x 0.1m (half the wing must fit in a box of these dimensions, and we will CFD half the wing to get the results). You will assess the wing at an angle of attack of 0 deg and 15 deg. Both simulations will be with atmospheric air at 10m/s.

Watch the **CAD** tutorial to get started

Suggested steps: (Feel free to skip or add features to your wing, the only rule is it fits in the described box [see above].)

- 1. http://airfoiltools.com/calculator/reynoldsnumber go to this website and calculate the reynolds number for your design.
- 2. Use http://airfoiltools.com/search/index and sort by lift to drag at Reynolds number you just calculated.

Airfoil database search

Search the 1638 airfoils available in the databases filtering by name, thickness and camber. Click on an airfoil image to display a larger preview picture. There are links to the original airfoil source and dat file and the details page with polar diagrams for a range of Reynolds numbers.

3. Use the onshape plugin shown in the youtube tutorial to import a wing cross section and extrude to form a wing

Watch the CFD tutorial to learn how to run the simulation

Compulsory steps: (make sure the simulation volume you use is big enough not to interfere with the flow around the wing)

- 4. Use <u>simscale.com</u> to import and simulate airflow at 0 deg and 15 deg AOA (angle of attack) at 10m/s. Use the tutorial below to help, as you are designing half a wing one side must be set to the symmetry condition all others must simulate a side open to the free stream of air.
 - External Aerodynamics of an Ahmed Body

To have a valid entry:

- Two completed SimScale simulations must be completed, one at 0 deg. angle of attack and the other at 15 deg. Both with the free air speed set to 10m/s. All values must be left at default unless otherwise shown in the video. E.g. Reference Area must be left at 1.
- You must upload a onshape file of your design even if it was made using another CAD program, this can be done by importing the design.
- The wing must be judged to be of a reasonable size to the dimensions of the box [dimensions less than (span x chord x thickness) 0.75m x 0.2m x 0.1m] (no extremely small designs, minimum recommended span is 0.4m), although you are allowed to make as complex a design as you like extremely thin elements may be disqualified due to being unrealistic and exploiting the simulation (see Formula 1 car aero parts to understand the limit of manufacturing aerodynamic elements). Using small elements on a surface (e.g. to simulate roughness) are allowed.
- If any calculations of lift to drag ratio are incorrect it is your responsibility to contact tag49@cam.ac.uk with the name you used on your entry to correct the issue.
- Make your submission using this link before the 25th August: https://forms.office.com/Pages/ResponsePage.aspx?id=BHB_DPEnhE2_REEsp HGgrVPBoAuhrypDjWhRo6AQbzZUQVIzSENVWkhUMlo1MkUxMDFBS1VXM VVCWi4u