

Memory-based CF

- 1st Step: Collect preference data
 - ☐ Represented as a Preference Matrix (bipartite graph)
 - ☐ An entry denotes a user's preference on an item
- 2nd Step: Find neighboring users/items
 - □ Compute Similarity between users/items
 - $\hfill \square$ Determine neighboring users/items for the target user
- 3rd Step: Recommend unrated items
 - ☐ Predict unrated ratings based on neighbors' ratings
 - Recommend highly ranked items to the target user

User-based CF

- Given Preference Matrix **X** and the target user
- Each user is represented as an *M*-dim vector \mathbf{x}_n
 - \square $\mathbf{x}_{u} = [x_{u,1}, x_{u,2}, \dots, x_{u,M}]$ corresponds to the *u*th row in **X**
 - \square $x_{u,m}$ denotes the rating user u provides to item m
- User similarity
 - ☐ Only calculate on the overlapped items between two users
 - ☐ Pearson correlation coefficient and cosine

$$sim(u,v) = \frac{\sum_{m \in I_u \cap I_v} (x_{u,m} - \overline{x}_u)(x_{v,m} - \overline{x}_v)}{\sqrt{\sum_{m \in I_u \cap I_v} (x_{u,m} - \overline{x}_u)^2} \sqrt{\sum_{m \in I_u \cap I_v} (x_{v,m} - \overline{x}_v)^2}}$$

User-based CF

■ User-User Similarity Computation

$$\sin(u,v) = \frac{\sum_{m \in I_u \cap I_v} (x_{u,m} - \bar{x}_u)(x_{v,m} - \bar{x}_v)}{\sqrt{\sum_{m \in I_u \cap I_v} (x_{u,m} - \bar{x}_u)^2} \sqrt{\sum_{m \in I_u \cap I_v} (x_{v,m} - \bar{x}_v)^2}}$$

$$\sin(C,A) = 0$$

$$\sin(C,B) = \frac{(3-3.5)(2-3) + (4-3.5)(3-3)}{\sqrt{(3-3.5)^2 + (4-3.5)^2} \sqrt{(2-3)^2 + (3-3)^2}} = 0.7 \quad \text{a} \quad \text{b} \quad \text{c} \quad \text{d} \quad \text{e} \quad \text{f}$$

$$\sin(C,D) = 0 \quad \text{A} \quad \text{4} \quad \text{3} \quad \text{3}$$

$$\sin(C,E) = \frac{(4-3.5)(5-3.5)}{\sqrt{(4-3.5)^2} \sqrt{(5-3.5)^2}} = 1 \quad \text{B} \quad \text{2} \quad \text{4} \quad \text{3}$$

$$\text{D} \quad \text{4} \quad \text{5} \quad \text{4}$$

$$\text{E} \quad \text{2} \quad \text{5} \quad \text{4}$$

User-based CF

■ Rating Prediction

$$\widehat{x}_{u,m} = \overline{x}_u + \frac{\sum_{v \in N_u} \sin(u, v)(x_{v,m} - \overline{x}_v)}{\sum_{v \in N_u} |\sin(u, v)|}$$

$\hat{\mathbf{r}} = 3.5 \pm$	$\frac{0.7(4-3)}{10.71} = 4.5$
$x_{C,c} - 3.5$	0.7

$$\hat{x}_{C,d} = 3.5 + \frac{1(2-3.5)}{|1|} = 2$$

	а	b	С	d	е	f
Α	4	17.				3
В		2	4		3	
C		3	4.5	2	4	
D	4		5			4
F				2	5	

Item-based CF

- Given Preference Matrix **X** and the target item
- Each item is represented as an *N*-dim vector \mathbf{x}_m

 - \square $x_{m,u}$ denotes the rating user u provides to item m
- Item similarity
 - □ Only calculate on the overlapped users between two items
 - ☐ Cosine and Pearson correlation coefficient

$$sim(m,m') = \frac{\sum_{u \in U_m \cap U_{m'}} x_{m,u} x_{m',u}}{\sqrt{\sum_{u \in U_m \cap U_{m'}} x_{m,u}^2} \sqrt{\sum_{u \in U_m \cap U_{m'}} x_{m',u}^2}}$$

Item-based CF

■ Item-Item Similarity Computation

$$sim(m, m') = \frac{\sum_{u \in U_m \cap U_{m'}} x_{m,u} x_{m',u}}{\sqrt{\sum_{u \in U_m \cap U_{m'}} x_{m,u}^2} \sqrt{\sum_{u \in U_m \cap U_{m'}} x_{m',u}^2}}$$

$$sim(b, a) = 0$$

$$sim(b,c) = \frac{3 \times 4}{\sqrt{3^2} \sqrt{4^2}} = 1$$

$$sim(b,d) = 0$$

$$sim(b,e) = \frac{3 \times 3 + 3 \times 4}{\sqrt{3^2 + 3^2} \sqrt{3^2 + 4^2}} \approx 1$$

$$sim(b, f) = 0$$

	а	b	С	d	е	f
Α	4	1				З
В		3	4		3	
C		3			4	
D	4		5			4
Ε			ĺ	2	5	

Item-based CF

■ Rating Prediction

$$\widehat{x}_{m,u} = \frac{\sum_{m' \in I_m} \sin(m, m') x_{m',u}}{\sum_{m' \in I_m} |\sin(m, m')|}$$

<u> </u>	1×5_5
$X_{b,D} =$	$-\frac{1}{ 1 } - 3$

$$\widehat{x}_{b,E} = \frac{1 \times 5}{|1|} = 5$$

	а	b	C	d	е	f
Α	4	Li	V	7		3
В		3	4		3	
С		3			4	
D	4	5	5			4
Ε		5		2	5	

- Preference (Rating) Matrix Reconstruction
 - ☐ Predict missing ratings in the rating matrix

4		5			3
	3	4		3	
3.8	3			4	
4			3.7		4
			2	5	

- Remaining problems
 - \square Why we can assume rank-K matrices (K latent variables)?
 - \square How to compute rank-K matrices (user/item feature matrices)?

Model-based CF

- Why K latent variables?
 - We don't know exact number of features in advance
 - \blacksquare We can assume there are indeed L (>> K) features, so

User feature matrix : $\mathbf{F}_0 \in \mathbb{R}^{N \times L}$

Item feature matrix : $\mathbf{G}_0 \in R^{M \times L}$

 \blacksquare We do a linear projection to \mathbf{F}_0 and \mathbf{G}_0 (feature reduction)

Projection matrix : $\mathbf{A} \in R^{L \times L}$, $\mathbf{A}^{T} \mathbf{A} = \mathbf{I}$

User feature matrix : $\mathbf{F} = \mathbf{F}_0 \mathbf{A}_{1:K} \in \mathbb{R}^{N \times K}$

Item feature matrix : $\mathbf{G} = \mathbf{G}_0 \mathbf{A}_{1:K} \in \mathbb{R}^{M \times K}$

■ Now we can directly compute **F** and **G** (without noisy features)

- How to get rank-*K* feature matrices
 - Low-rank matrix factorization problem
 - Minimize the reconstruction and the observed preference matrix
- Regularized risk minimization
 - ☐ Many ML methods can be applied

Given the preference matrix $\mathbf{X} \in \mathbb{R}^{N \times M}$ and rank K

$$\min_{\left\{\mathbf{F} \in R^{N \times K}, \mathbf{G} \in R^{M \times K}\right\}} \left\| \left(\mathbf{X} - \mathbf{F} \mathbf{G}^{\mathsf{T}}\right) \circ \mathbf{W} \right\|_{F}^{2} + \lambda (\left\|\mathbf{F}\right\|_{F}^{2} + \left\|\mathbf{G}\right\|_{F}^{2})$$

where $\mathbf{W} \in \{0,1\}^{N \times M}$ indicates observed entries in \mathbf{X}

Model-based CF

- Probabilistic Matrix Factorization (PMF)
 - □ Assume user/item features and ratings are generated from Gaussians

$$p(\mathbf{X} \mid \mathbf{F}, \mathbf{G}) = \prod_{w_{u,m}=1} p(x_{u,m} \mid \mathbf{f}_{u}^{\mathsf{T}} \mathbf{g}_{m}, \sigma_{R}^{2})$$
$$p(\mathbf{F} \mid \mathbf{0}) = \prod_{u=1}^{N} p(\mathbf{f}_{u} \mid \mathbf{0}, \sigma_{F}^{2})$$

$$p(\mathbf{G} \mid \mathbf{0}) = \prod_{m=1}^{M} p(\mathbf{g}_m \mid \mathbf{0}, \sigma_G^2)$$

■ Probabilistic interpretation of the optimization problem

$$\max_{\{\mathbf{F},\mathbf{G}\}} \ln[p(\mathbf{X} \mid \mathbf{F}, \mathbf{G})p(\mathbf{F} \mid \mathbf{0})p(\mathbf{G} \mid \mathbf{0})]$$

$$\Rightarrow \min_{\{\mathbf{F},\mathbf{G}\}} \sum_{w_{u,m}=1} (x_{u,m} - \mathbf{f}_{u}^{\mathrm{T}} \mathbf{g}_{m})^{2} + c_{1} \sum_{u=1}^{N} \|\mathbf{f}_{u}\|^{2} + c_{2} \sum_{m=1}^{M} \|\mathbf{g}_{m}\|^{2}$$

$$\Rightarrow \min_{\{\mathbf{F},\mathbf{G}\}} \|(\mathbf{X} - \mathbf{F} \mathbf{G}^{\mathrm{T}}) \circ \mathbf{W}\|_{F}^{2} + c_{1} \|\mathbf{F}\|_{F}^{2} + c_{2} \|\mathbf{G}\|_{F}^{2}$$

[1] Salakhutdinov & Mnih: Probabilistic Matrix Factorization, NIPS 2008.

- Singular Value Decomposition (SVD)
 - Most straightforward way to matrix factorization
 - But SVD is not defined for missing entries
 - Use average rating to stuff missing entries
 - ☐ Inaccurate for sparse matrices (tries to fit too many stuff entries)

4	3.7	5	3.7	3.7	3
3.7	3	4	3.7	3	3.7
3.7	3	3.7	3.7	4	3.7
4	3.7	3.7	3.7	3.7	4
3.7	3.7	3.7	2	5	3.7

Filled matrix : $\widetilde{\mathbf{X}} \in R^{N \times M}$

User feature matrix : $\mathbf{F} \in \mathbb{R}^{N \times K}$

Item feature matrix : $\mathbf{G} \in \mathbb{R}^{M \times K}$

$$SVD : \widetilde{\mathbf{X}} = \mathbf{U}\mathbf{S}\mathbf{V}^{T} = \left(\mathbf{U}\sqrt{\mathbf{S}}\right)\!\!\left(\sqrt{\mathbf{S}}\mathbf{V}\right)^{\!T} = \mathbf{F}\mathbf{G}^{T}$$

Model-based CF

- Alternative Least Squares (ALS)
 - lacksquare Optimize lacksquare assuming lacksquare is known
 - □ Optimize **G** assuming **F** is known
 - ☐ Each step is a standard least square problem
 - ☐ Converge to a local minimum over alternative iterations

$$\min_{\left\{\mathbf{F} \in R^{N \times K}, \mathbf{G} \in R^{M \times K}\right\}} \left\| \left(\mathbf{X} - \mathbf{F} \mathbf{G}^{\mathrm{T}}\right) \circ \mathbf{W} \right\|_{F}^{2} + \lambda \left\| \mathbf{F} \right\|_{F}^{2} + \left\| \mathbf{G} \right\|_{F}^{2}$$

$$\Rightarrow \begin{cases} \min_{\mathbf{F} \in R^{N \times K}} \left\| \left(\mathbf{X} - \mathbf{F} \widehat{\mathbf{G}}^{\mathrm{T}}\right) \circ \mathbf{W} \right\|_{F}^{2} + \lambda \left\| \mathbf{F} \right\|_{F}^{2} \\ \min_{\mathbf{G} \in R^{M \times K}} \left\| \left(\mathbf{X} - \widehat{\mathbf{F}} \mathbf{G}^{\mathrm{T}}\right) \circ \mathbf{W} \right\|_{F}^{2} + \lambda \left\| \mathbf{G} \right\|_{F}^{2} \end{cases}$$

■ Alternative Least Squares (ALS)

$$\min_{\mathbf{F} \in \mathbb{R}^{N \times K}} \left\| \left(\mathbf{X} - \mathbf{F} \hat{\mathbf{G}}^{\mathsf{T}} \right) \circ \mathbf{W} \right\|_{F}^{2} + \lambda \|\mathbf{F}\|_{F}^{2}
\Rightarrow \min_{\mathbf{f}_{u} \in \mathbb{R}^{K}} \sum_{w_{u,m}=1} \left(x_{u,m} - \mathbf{f}_{u}^{\mathsf{T}} \hat{\mathbf{g}}_{m} \right)^{2} + \lambda \|\mathbf{f}_{u}\|^{2}, \text{ for } u \in U
\Rightarrow \mathbf{f}_{u} \leftarrow \left(\lambda + \sum_{w_{u,m}=1} \hat{\mathbf{g}}_{m} \hat{\mathbf{g}}_{m}^{\mathsf{T}} \right)^{-1} \sum_{w_{u,m}=1} \hat{\mathbf{g}}_{m} x_{u,m}
\min_{\mathbf{G} \in \mathbb{R}^{M \times K}} \left\| \left(\mathbf{X} - \hat{\mathbf{F}} \mathbf{G}^{\mathsf{T}} \right) \circ \mathbf{W} \right\|_{F}^{2} + \lambda \|\mathbf{G}\|_{F}^{2}
\Rightarrow \min_{\mathbf{g}_{m} \in \mathbb{R}^{K}} \sum_{w_{u,m}=1} \left(x_{u,m} - \hat{\mathbf{f}}_{u}^{\mathsf{T}} \mathbf{g}_{m} \right)^{2} + \lambda \|\mathbf{g}_{m}\|^{2}, \text{ for } m \in I
\Rightarrow \mathbf{g}_{m} \leftarrow \left(\lambda + \sum_{w_{u,m}=1} \hat{\mathbf{f}}_{u} \hat{\mathbf{f}}_{u}^{\mathsf{T}} \right)^{-1} \sum_{w_{u,m}=1} \hat{\mathbf{f}}_{u} x_{u,m}$$

Model-based CF

- Stochastic Gradient Descent (SGD)
 - ☐ Minimize an objective in the form of a sum of differentiable functions
 - All ratings in the rating matrix are shuffled and fed in sequentially
 - Each time a user/item feature vector is optimized on a single rating

$$\min_{\left\{\mathbf{F} \in R^{N \times K}, \mathbf{G} \in R^{M \times K}\right\}} \left\| \left(\mathbf{X} - \mathbf{F} \mathbf{G}^{\mathrm{T}}\right) \circ \mathbf{W} \right\|_{F}^{2} + \lambda \left\| \mathbf{F} \right\|_{F}^{2} + \left\| \mathbf{G} \right\|_{F}^{2} \right)$$

$$\Rightarrow \min_{\left\{\mathbf{F}, \mathbf{G}\right\}} \sum_{w_{u,m}=1} \left(x_{u,m} - \mathbf{f}_{u}^{\mathrm{T}} \mathbf{g}_{m}\right)^{2} + \lambda \left(\sum_{u=1}^{N} \left\|\mathbf{f}_{u}\right\|^{2} + \sum_{m=1}^{M} \left\|\mathbf{g}_{m}\right\|^{2} \right)$$

$$\Rightarrow \begin{cases} \mathbf{f}_{u} \leftarrow (1 - \alpha \lambda) \mathbf{f}_{u} - \alpha \mathbf{g}_{m} \left(x_{u,m} - \mathbf{f}_{u}^{\mathrm{T}} \mathbf{g}_{m}\right) \\ \mathbf{g}_{m} \leftarrow (1 - \alpha \lambda) \mathbf{g}_{m} - \alpha \mathbf{f}_{u} \left(x_{u,m} - \mathbf{f}_{u}^{\mathrm{T}} \mathbf{g}_{m}\right) \end{cases} \text{ for all } \left\{x_{u,m}\right\}$$

- SVD++^[1]: Netflix Winner's Method
 - ☐ An improvement of SVD
 - lacktriangle Consider user bias b_u and item bias b_m

$$\begin{aligned} \min_{\left\{\mathbf{F} \in R^{N \times K}, \mathbf{G} \in R^{M \times K}\right\}} & \left\| \left(\mathbf{X} - \mathbf{F} \mathbf{G}^{\mathrm{T}}\right) \circ \mathbf{W} \right\|_{F}^{2} + \lambda \left\| \mathbf{F} \right\|_{F}^{2} + \left\| \mathbf{G} \right\|_{F}^{2} \right) \\ \Rightarrow \min_{\left\{\mathbf{F}, \mathbf{G}\right\}} & \sum_{w_{u,m}=1} \left(x_{u,m} - \left(\mu + b_{u} + b_{m} + \mathbf{f}_{u}^{\mathrm{T}} \mathbf{g}_{m} \right) \right)^{2} \\ & + \lambda \left(\sum_{u=1}^{N} \left\| \mathbf{f}_{u} \right\|^{2} + \sum_{m=1}^{M} \left\| \mathbf{g}_{m} \right\|^{2} + \sum_{u=1}^{N} \left\| b_{u} \right\|^{2} + \sum_{m=1}^{M} \left\| b_{m} \right\|^{2} \right) \end{aligned}$$

[1] Koren: Factorization meets the neighborhood: a multifaceted collaborative filtering model, KDD 2008

Model-based CF

- SVD++: Netflix Winner's Method
 - Stochastic Gradient Descent solution

$$\min_{\{\mathbf{F},\mathbf{G}\}} \sum_{w_{u,m}=1} (x_{u,m} - (\mu + b_u + b_m + \mathbf{f}_u^T \mathbf{g}_m))^2 \\ + \lambda \left(\sum_{u=1}^N \|\mathbf{f}_u\|^2 + \sum_{m=1}^M \|\mathbf{g}_m\|^2 + \sum_{u=1}^N \|b_u\|^2 + \sum_{m=1}^M \|b_m\|^2 \right) \\ \Rightarrow \begin{cases} \mathbf{f}_u \leftarrow (1 - \alpha \lambda) \mathbf{f}_u - \alpha \mathbf{g}_m \delta_{u,m} \\ \mathbf{g}_m \leftarrow (1 - \alpha \lambda) \mathbf{g}_m - \alpha \mathbf{f}_u \delta_{u,m} \\ b_u \leftarrow (1 - \alpha \lambda) b_u - \alpha \delta_{u,m} \end{cases}, \text{ for all } \{x_{u,m}\} \\ b_m \leftarrow (1 - \alpha \lambda) b_m - \alpha \delta_{u,m} \end{cases}$$

$$\text{where } \delta_{u,m} = x_{u,m} - (\mu + b_u + b_m + \mathbf{f}_u^T \mathbf{g}_m)$$

Block Models for Network Data

- Matrix Reconstruction
 - □ Predict missing ratings in the preference matrix

4	3			5		
4	4					
3.7		3	3	4		~
		3	4	3.4		
			5		2	

3.7	5	1	1	0	0	0	0
3.7	3.4	0	0	1	1	1	1

Block Models for Network Data

- Clustering users and items separately
 - Most straightforward way for co-clustering
 - $\hfill \square$ Clustering one side using the other side as features
 - ☐ Any clustering algorithm can be applied (e.g., *K*-Means)

1	0	4		5			3
0	1		3	4		3	
0	1		3			4	
1	0	4					4
0	1				2	5	

0	0 1 5	0	0	0 3
P		1	1	
	5			3
,				
2	4		3	
3	4			
3			4	
				4
		2	5	7)
	3		3	3 4

Block Models for Network Data

- Group-level rating matrix
 - Each entry is the average rating of a user-item joint group

4	3			5	
4	4				
		3	3	4	
		3	4		
			5		2

$$\mathbf{B}_{1,1} = (3+4+4+4)/4 = 3.7$$

$$\mathbf{B}_{1,2} = 5/1 = 5$$

$$\mathbf{B}_{2,1} = (2+3\times4+4\times5+5\times2)/12 = 3.7$$

$$\mathbf{B}_{2,2} = (2+3+3+3+4+4+5)/7 = 3.4$$

Block Models for Network Data

- Flexible Mixture Model^[1] (FMM)
 - ☐ From hard-membership to soft-membership
 - \blacksquare Each user/item has a distribution over K user/L item groups

$$\hat{\mathbf{X}} = \mathbf{P} \mathbf{B} \mathbf{Q}^{\mathrm{T}}$$
 where $\mathbf{B}_{k,l} = \sum_{r} r p(r \mid k, l)$

User u's membership in user group $k : \mathbf{P}_{u,k} = p(k \mid u)$

$$p(k | u) \propto p(u | k) p(k)$$

Item m's membership in item group $l : \mathbf{Q}_{m,l} = p(l \mid m)$

$$p(l \mid m) \propto p(m \mid l) p(l)$$

[1] Si & Jin: Flexible mixture model for collaborative filtering, ICML 2003

Block Models for Network Data

$$E-Step:$$

$$p(k, l \mid x_{u,m}) = \frac{p(x_{u,m} \mid k, l) p(u \mid k) p(k) p(m \mid l) p(l)}{\sum_{k,l} p(x_{u,m} \mid k, l) p(u \mid k) p(k) p(m \mid l) p(l)}$$

$$M-Step:$$

$$M-\text{Step:}$$

$$p(k) = \frac{\sum_{l} \sum_{w_{u,m}=1} p(k, l \mid x_{u,m})}{\sum_{(u,m)} w_{u,m}}, \quad p(l) = \frac{\sum_{k} \sum_{w_{u,m}=1} p(k, l \mid x_{u,m})}{\sum_{(u,m)} w_{u,m}}$$

$$p(u \mid k) = \frac{\sum_{l} \sum_{w_{v,m}=1 \cap v=u} p(k, l \mid x_{v,m})}{p(k) \sum_{(u,m)} w_{u,m}}, \quad p(m \mid l) = \frac{\sum_{k} \sum_{w_{u,m}=1 \cap m'=m} p(k, l \mid x_{u,m'})}{p(l) \sum_{(u,m)} w_{u,m}}$$

$$p(r \mid k, l) = \frac{\sum_{w_{u,m}=1 \cap x_{u,m}=r} p(k, l \mid x_{u,m})}{\sum_{w_{u,m}=1} p(k, l \mid x_{u,m})}$$

$$p(r \mid k, l) = \frac{\sum_{w_{u,m} = l \cap x_{u,m} = r} p(k, l \mid x_{u,m})}{\sum_{w_{u,m} = l} p(k, l \mid x_{u,m})}$$

Cold-Start Problem

- A major limitation of CF
 - A reason that real-world RSs adopts hybrid strategies
- Solutions for user cold-start
 - Demography-based
 - □ Popularity-based (most popular items)
 - □ Social relationship based (friends' preference)
 - ☐ Implicit preference based (e.g., browsed items)
- Solutions for item cold-start
 - Content-based
 - Ratings borrowed from items of the same category

Temporal Changes

- A major challenge of CF
 - Real RSs usually take into account temporal factors
- Causes of temporal changes from users
 - Changing bias
 - Changing interest
 - Changing context
- Causes of temporal changes from items
 - ☐ Seasonal effects (Valentine's day, Mid-autumn day)
 - ☐ Trending (fashions, digital products)

Temporal CF

- TimeSVD++^[1]: Netflix Winner's Method
 - An improvement of SVD++ for temporal CF
 - □ TimeSVD++ considers time-dependent factors: user rating bias $b_u(t)$, item rating bias $b_m(t)$, and user feature vector $\mathbf{f}_u(t)$

$$x_{u,m,t} = \mu + b_u(t) + b_m(t) + \mathbf{g}_m^{\mathrm{T}} \mathbf{f}_u(t)$$

Timestamp t-1

Timestamp t

amp t Time

Timestamp t+1

[1] Y. Koren: Collaborative Filtering with Temporal Dynamics, KDD 2009

Noise Problem

- Spammer Detection (malicious users)
 - Promote certain items with misleading information
 - $\hfill \Box$ Usually formulate as a classification problem to detect malicious users
- Shilling Detection (malicious users)
 - A group of colluded users inserting untruthful profiles to promote or degrade certain items
 - Fake profiles are usually generated according to certain distributions
 - ☐ Usually formulate as a clustering or principal component analysis problem to detect colluded users

Noise Problem

- Natural Noise Detection (nonmalicious users)
 - ☐ Difficult to detect because no patterns
 - ☐ Difficult to define natural noisy users
 - □ Difficult to quantify the noise
- Solutions: Consistency of Preference
 - ☐ The larger the difference, the more likely a user is to be noisy
 - E.g., consistency between observed and predicted ratings
 - $\hfill \blacksquare$ E.g., consistency between multiple ratings on same items

Implicit Feedback

- Implicit Feedback Data
 - □ Click-through records, purchased records, etc
 - Easy and cheap to obtain
 - ☐ Large amount
 - Noisy

Implicit Feedback

- Characteristics of Implicit Feedbacks
 - ☐ Simple (usually binary data)
 - Abundant
 - Noisy
 - Sequential
- A Better Approach Online Learning
 - ☐ Binary data is simpler for online learning
 - ☐ Performance can be reinforced using noisy but abundant data
 - ☐ Sequential arrived data is natural for online learning

