Theorem: Zero Derivative Implies Constant

Let f be a real function that is continuous on the interval [a, b] and differentiable on (a, b) and that $\forall x \in (a, b)$, we have f'(x) = 0

Then
$$f$$
 is contant on $[a, b]$

Let
$$m \in (a,b]$$
 then f satisfies the MVT on $[a,m]$ so we get $k \in (a,m)$ such that

$$f'(k) = \frac{f(m) - f(a)}{m - a}$$

But also we know that f'(k) = 0 therefore f(m) - f(a) = 0 and we have:

f(m) = f(a)