参数估计*

X. Ling

2022 年 4 月 22 日

第一部分 知识点

1 需要知道的概念

参数和参数空间;

参数估计的形式: 点估计和区间估计;

点估计的主要方法: 矩估计和极大似然估计;

点估计的性质: 相合性, 无偏性, 有效性; Fisher 信息量; C-R 不等式; 有效估计.

区间估计的方法: 枢轴量法; 区间估计的相关概念: 置信区间, 置信限.

定义 1 (弱相合性). 设 $\theta \in \Theta$ 为未知参数, $\hat{\theta}_n = \hat{\theta}_n(x_1, x_2, \dots, x_n)$ 是 θ 的一个估计量,n 是样本容量, 若对于任意的 $\epsilon > 0$, 有

$$\lim_{n \to \infty} P\left(\left| \hat{\theta}_n - \theta \right| \ge \epsilon \right) = 0, \forall \theta \in \Theta,$$

则称 $\hat{\theta}_n$ 为 θ 的一个 (弱) 相合估计.

定义 2 (Fisher 信息量). 设总体的概率函数 $p(x;\theta), \theta \in \Theta$ 满足下列条件:

- (1) 参数空间 Θ 是直线上的一个开区间;
- (2) 集合 $S = \{x : p(x; \theta) > 0\}$ 与 θ 无关;
- (3) 导数 $\frac{\partial}{\partial \theta}p(x;\theta)$ 对一切 $\theta \in \Theta$ 都存在;
- (4) 对 $p(x;\theta)$, 积分和微分运算可以交换顺序, 即

$$\frac{\partial}{\partial \theta} \int_{-\infty}^{\infty} p(x; \theta) dx = \int_{-\infty}^{\infty} \frac{\partial}{\partial \theta} p(x; \theta) dx;$$

(5) 期望 $I(\theta) = E\left[\frac{\partial}{\partial \theta} \ln p(x;\theta)\right]^2$ 存在,

则称该期望 $I(\theta)$ 为总体分布的 Fisher 信息量.

^{*}Reference:

[《]概率论与数理统计教程(第三版)》, 茆诗松,程依明, 濮晓龙, 高等教育出版社;

[《]概率论与数理统计教程(第三版)习题与解答》, 茆诗松, 程依明, 濮晓龙, 高等教育出版社;

[《]统计推断(翻译版·原书第二版)》,(美) George Casella, Roger L. Berger, 张忠占、傅莺莺译, 机械工业出版社.

2 一些重要的定理 2

2 一些重要的定理

定理 1 (最大似然估计的不变性). 若 $\hat{\theta}$ 是 θ 的最大似然估计,则对任一函数 $g(\theta),g(\hat{\theta})$ 是其最大似然估计.

定理 2. 设 $\hat{\theta}_n = \hat{\theta}_n(x_1, x_2, \dots, x_n)$ 是 θ 的一个估计量, 若 $\lim_{n \to \infty} E(\hat{\theta}_n) = \theta$, $\lim_{n \to \infty} Var(\hat{\theta}_n) = 0$, 则 $\hat{\theta}_n$ 是 θ 的相合估计.

证. 对任意的 $\epsilon > 0$, 由切比雪夫不等式

$$P\left(|\hat{\theta}_n - E(\hat{\theta}_n)| \ge \frac{\epsilon}{2}\right) \le \frac{4}{\epsilon^2} Var(\hat{\theta}_n)$$

另一方面,由 $\lim_{n\to\infty} E(\hat{\theta}_n) = \theta$ 可知,当 n 充分大时,有

$$|E(\hat{\theta}_n) - \theta| < \frac{\epsilon}{2}.$$

注意到, 如果此时有 $|\hat{\theta}_n - E(\hat{\theta}_n)| < \frac{\epsilon}{2}$, 就有

$$|\hat{\theta}_n - \theta| \le |\hat{\theta}_n - E(\hat{\theta}_n)| + |E(\hat{\theta}_n) - \theta| < \epsilon, \tag{1}$$

故

$$\left\{|\hat{\theta}_n - E(\hat{\theta}_n)| < \frac{\epsilon}{2}\right\} \subset \{|\hat{\theta}_n - \theta| < \epsilon\},\,$$

等价地

$$\left\{|\hat{\theta}_n - E(\hat{\theta}_n)| \geq \frac{\epsilon}{2}\right\} \supset \{|\hat{\theta}_n - \theta| \geq \epsilon\},$$

由此即有

$$P(|\hat{\theta}_n - \theta| \ge \epsilon) \le P\left(|\hat{\theta} - E(\hat{\theta}_n) \ge \frac{\epsilon}{2}|\right) \le \frac{4}{\epsilon^2} Var(\hat{\theta}_n) \to 0, n \to \infty,$$

由此, 定理得证. □

定理 3 (C-R 不等式). 设 $T = T(x_1, x_2, ..., x_n)$ 是未知参数 $g(\theta)$ 的一个无偏估计, 若 $g'(\theta) = \frac{\partial g(\theta)}{\partial \theta}$ 存在,则在 Fisher 信息量 $I(\theta)$ 也存在的条件下有

$$Var(T) \ge \frac{[g'(\theta)]^2}{nI(\theta)}. (2)$$

上式称为 Cramer-Rao 不等式, $[g'(\theta)]^2/(nI(\theta))$ 称为 $g(\theta)$ 的无偏估计的方差的 C-R 下界,简称 $g(\theta)$ 的 C-R 下界,特别地,对 θ 的无偏估计 $\hat{\theta}$ 有 $Var(\hat{\theta}) \geq (nI(\theta))^{-1}$.

命题 4. 若二阶导数对一切 $\theta \in \Theta$ 存在,则

$$E\left(\frac{\partial}{\partial \theta} \ln p(x;\theta)\right)^{2} = -E\left(\frac{\partial^{2}}{\partial \theta^{2}} \ln p(x;\theta)\right).$$

Rmk: 方差达到 C-R 下界的无偏估计称为有效估计, $e=\frac{(nI(\theta))^{-1}}{D(\hat{\theta_1})}$ 称为无偏估计 $\hat{\theta_1}$ 的有效率. $g(\theta)$ 的 C-R 下界并不是对任意参数函数 $g(\theta)$ 的无偏估计的方差都能达到, 但能达到 C-R 下界的 $g(\theta)$ 的估计 $T=T(x_1,x_2,\ldots,x_n)$ 一定是 $g(\theta)$ 的 UMVUE.

3 一定要记住的一些事情

矩估计: 两种替换. 用样本矩替换总体矩; 用样本矩的函数替换总体矩的函数.

最大似然估计的主要步骤: 1. 写似然函数 $L(\theta) = L(\theta; x_1, x_2, \dots, x_n) = p(x_1; \theta) p(x_2; \theta) \dots p(x_n; \theta)$;

- 2. 写对数似然函数 $\ln L(\theta)$;
- 3. 对对数似然函数求导, 求驻点; 如果没有, 圆回去;
- 4. 检验.

枢轴量法的一般步骤:

- 1. 构造一个样本和 θ 的函数 $G = G(x_1, x_2, \dots, x_n; \theta)$ 使得 G 的分布不依赖于未知参数. 一般称具有这样的性质的 G 为**枢轴量**;
 - 2. 适当地选择两个常数 c,d, 使得对给定的 $\alpha(0 < \alpha < 1)$, 有

$$P(c \le G \le d) = 1 - \alpha.$$

离散场合时,上式的等号改为大等于.

3. 将 $a \le G \le d$ 进行不等式的等价变换化为 $\hat{\theta}_L \le \theta \le \hat{\theta}_U$, 则有

$$P_{\theta}(\hat{\theta}_L \le \theta \le \hat{\theta}_U) = 1 - \alpha,$$

这表明 $[\hat{\theta}_L, \hat{\theta}_U]$ 是 θ 的置信水平为 $1 - \alpha$ 的置信区间.

对正态总体参数进行区间估计时常用的枢轴量:

 $1.\sigma$ 已知, μ 的区间估计: $G = \frac{\bar{x} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$;

 $2.\sigma$ 未知, μ 的区间估计: $t = \frac{\bar{x} - \mu}{s/\sqrt{n}} \sim t(n-1)$;

 $3.\sigma^2$ 的区间估计: $\frac{(n-1)s^2}{\sigma^2} \sim \chi^2(n-1)$;

 $4.\mu_1 - \mu_2$ 的区间估计:

 $(1)\sigma_1^2$ 和 σ_2^2 分别已知, 有 $\bar{x} - \bar{y} \sim N(\mu_1 - \mu_2, \sigma_1^2/m + \sigma_2^2/n)$:

$$u = \frac{\bar{x} - \bar{y} - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{m}}} \sim N(0, 1)$$

 $(2)\sigma_1^2 = \sigma_2^2 = \sigma^2$ 未知, 有

$$\bar{x} - \bar{y} \sim N \left(\mu_1 - \mu_2, \left(\frac{1}{m} + \frac{1}{n} \right) \sigma^2 \right),$$
$$\frac{(m-1)s_x^2 + (n-1)s_y^2}{\sigma^2} \sim \chi^2(m+n-2),$$

由于 $\bar{x}, \bar{y}, s_x^2, s_y^2$ 相互独立,构造服从 t 分布的统计量作为枢轴量

$$t = \sqrt{\frac{mn(m+n-2)}{m+n}} \cdot \frac{\bar{x} - \bar{y} - (\mu_1 - \mu_2)}{\sqrt{(m-1)s_x^2 + (n-1)s_y^2}} = \frac{\bar{x} - \bar{y} - (\mu_1 - \mu_2)}{\sqrt{\left(\frac{1}{m} + \frac{1}{n}\right)s_w^2}} \sim t(m+n-2).$$

其中

$$s_w^2 = \frac{(m-1)s_x^2 + (n-1)s_y^2}{m+n-2}$$

 $5.\sigma_1^2/\sigma_2^2$ 的区间估计: 由于 $(m-1)s_x^2/\sigma_1^2\sim\chi^2(m-1),(n-1)s_y^2/\sigma_2^2\sim\chi^2(n-1),s_x^2$ 和 s_y^2 相互独立,枢轴量

$$F = \frac{s_x^2/\sigma_1^2}{s_y^2/\sigma_2^2} \sim F(m-1, n-1).$$

第二部分 习题

1 第一组

1. 设总体 $x \sim N(\mu, \sigma^2), x_1, x_2, \ldots, x_n$ 是来自该总体的一个样本, 试确定常数 c 使 $c \sum_{i=1}^{n-1} (x_{i+1} - x_i)^2$ 为 σ^2 的无偏估计.

 \mathbf{M} 由于总体 $X \sim N(\mu, \sigma^2)$, 于是

$$E(x_i^2) = Var(x_i) + E^2(x_i);$$

$$E(x_i x_{i-1}) = E(x_i)E(x_{i-1}) = \mu^2, i = 1, 2, \dots, n.$$

于是

$$E(\sum_{i=1}^{n-1} (x_{i+1} - x_i)^2) = E(x_1^2 + 2x_2^2 + \dots + 2x_{n-1}^2 + x_n^2 - 2x_1x_2 - 2x_2x_3 - \dots - 2x_{n-1}x_n)$$
$$= [2(n-1)(\sigma^2 + \mu^2) - 2(n-1)\mu^2] = 2(n-1)\sigma^2.$$

于是要使 $c\sum_{i=1}^{n-1}(x_{i+1}-x_i)^2$ 为 σ^2 的无偏估计,即 $cE\left(\sum_{i=1}^{n-1}(x_{i+1}-x_i)^2\right)=\sigma^2$,可得到 $c=\frac{1}{2(n-1)}.$

2. 设 x_1, x_2, x_3 服从均匀分布 $U(0, \theta)$, 试证 $\frac{4}{3}x_{(3)}$ 和 $4x_{(1)}$ 都是 θ 的无偏估计, 并解释哪个更有效.

解 根据次序统计量的密度函数给出

$$f_1(x) = 3 \cdot \left(\frac{\theta - x}{\theta}\right)^2 \cdot \frac{1}{\theta} = \frac{3}{\theta^3} (\theta - x)^2, 0 < x < \theta,$$

$$f_3(x) = 3 \cdot \left(\frac{x}{\theta}\right)^2 \cdot \frac{1}{\theta} = \frac{3}{\theta^3} x^2, 0 < x < \theta.$$

从而

$$E(x_{(1)}) = \frac{3}{\theta^3} \int_0^\theta x(\theta - x)^2 dx = \frac{\theta}{4}, E(x_{(3)}) = \frac{3}{\theta^3} \int_0^\theta x^3 dx = \frac{3}{4}\theta,$$

于是容易知道 $4x_{(1)}$ 和 $\frac{4}{3}x_{(3)}$ 均为 θ 的无偏估计.

又计算

$$E(x_{(1)}^2) = \frac{3}{\theta^3} \int_0^\theta x^2 (\theta - x)^2 dx = \frac{1}{10} \theta^2, E(x_{(3)}^2) = \frac{3}{\theta^3} \int_0^\theta x^4 dx = \frac{3}{5} \theta^2,$$

1 第一组 5

从而

$$Var(4x_{(1)}) = \frac{3}{5}\theta^2 > Var\left(\frac{4}{3}x_{(3)}\right) = \frac{\theta^2}{15}.$$

即 $\frac{4}{3}x_{(3)}$ 更有效.

3. 从均值为 μ , 方差为 σ^2 的总体中分别抽取容量为 n_1,n_2 的独立样本, \bar{x}_1 和 \bar{x}_2 分别为这两个样本的均值. 试证, 对于任意常数 a 以及 $b=1-a,Y=a\bar{x}_1+b\bar{x}_2$ 都是 μ 的无偏估计, 并确定常数 a 使 Var(Y) 达到最小.

Hint: Write Var(Y) as a function of a.

证

$$\begin{split} E(Y) &= aE(\bar{x}_1) + bE(\bar{x}_2) = a\mu + b\mu = \mu, \\ Var(Y) &= a^2 \frac{\sigma^2}{n_1} + (1-a)^2 \frac{\sigma^2}{n_2} = \sigma^2 \left[\left(\frac{1}{n_1} + \frac{1}{n_2} \right) a^2 - \frac{2}{n_2} a + \frac{1}{n_2} \right], \end{split}$$

这是一个关于 a 的二次函数, 找对称轴 $a = n_1/(n_1 + n_2)$ 就行了.

4. 设分别从总体 $N(\mu_1, \sigma^2)$ 和 $N(\mu_2, \sigma^2)$ 中抽取容量为 n_1, n_2 的独立样本, s_1^2 和 s_2^2 分别为这两个样本的方差. 试证, 对于任意常数 a 以及 b = 1 - a, $Z = as_1^2 + bs_2^2$ 都是 σ^2 的无偏估计, 并确定常数 a 使 Var(Z) 达到最小.

解 由已知条件:

$$\frac{(n_1-1)s_1^2}{\sigma^2} \sim \chi^2(n_1-1), \quad \frac{(n_2-1)s_2^2}{\sigma^2} \sim \chi^2(n_2-1),$$

且 s_1^2, s_2^2 独立, 于是 $E(s_1^2) = E(s_2^2) = \sigma^2$, 故

$$E(Z) = E(as_1^2 + bs_2^2) = aE(s_1^2) + bE(s_2^2) = a\sigma^2 + b\sigma^2 = \sigma^2,$$

从而 $Z \neq \sigma^2$ 的无偏估计.

$$\begin{split} Var(Z) &= a^2 Var(s_1^2) + (1-a)^2 Var(s_2^2) \\ &= 2 \left[\frac{n_1 + n_2 - 2}{(n_1 - 1)(n_2 - 1)} a^2 - \frac{2}{n_2 - 1} a + \frac{1}{n_2 - 1} \right] \sigma^4, \end{split}$$

因而当 $a = \frac{n_1 - 1}{n_1 + n_2 - 2}$ 时,Var(Z) 达到最小.

5. 设总体 X 的均值是 μ , 方差是 $\sigma^2, x_1, x_2, \ldots, x_n$ 是来自该总体的一个样本, $T(x_1, x_2, \ldots, x_n)$ 为 μ 的任一线性无偏估计量. 证明: \bar{x} 与 T 的相关系数为 $Corr(T, \bar{x}) = \sqrt{Var(\bar{x})/Var(T)}$.

Hint: Consider the definition of correlation coefficient: $Corr(x,y) = \frac{Cov(x,y)}{\sqrt{Var(x)Var(y)}}$

证 由于 $T(x_1, x_2, ..., x_n)$ 为 μ 的线性无偏估计量, 故 $T(x_1, x_2, ..., x_n) = l_1 x_1 + l_2 x_2 + ... + l_n x_n$, 其中 $\sum_{i=1}^n l_i = 1$. 于是

$$Cov(T, \bar{x}) = \sum_{i=1}^{n} \frac{l_i}{n} Var(x_i) = \frac{\sigma^2}{n},$$

1 第一组

6

而 $Var(\bar{x}) = \frac{\sigma^2}{n}$, 故有 $Cov(T, \bar{x}) = Var(\bar{x})$, 从而

$$Corr(T,\bar{x}) = \frac{Cov(T,\bar{x})}{\sqrt{Var(\bar{x})Var(T)}} = \frac{Var(\bar{x})}{\sqrt{Var(\bar{x})Var(T)}} = \sqrt{\frac{Var(\bar{x})}{Var(T)}}.$$

6. 设总体服从二项分布 b(m,p), 其中 m,p 是未知参数, x_1,x_2,\ldots,x_n 是一个样本. 求 m 和 p 的矩估 计 (注意 m 是正整数).

由二项分布可知, 解

$$E(X) = mp, Var(X) = mp(1 - p),$$

列矩方程组

$$\begin{cases} mp = \bar{x} \\ mp(1-p) = s^2, \end{cases}$$

先通过两式相除解出

$$\hat{p} = 1 - \frac{s^2}{\bar{x}},$$

回代可以解出

$$\hat{m} = \frac{\bar{x}}{\hat{p}},$$

因为m为正整数,所以

$$\hat{m} = \left[\frac{\bar{x}^2}{\bar{x} - s^2}\right].$$

7. 总体概率函数如下, x_1, x_2, \ldots, x_n 是样本, 求未知参数的矩估计.

(1)
$$P(X = k) = (k-1)\theta^2(1-\theta)^{k-2}, k = 2, 3, \dots, 0 < \theta < 1;$$

(2)
$$p(x;\theta) = \sqrt{\theta} x^{\sqrt{\theta}-1}, 0 < x < 1, \theta > 0;$$

(3)
$$p(x;\theta,\mu) = \frac{1}{\theta}e^{-\frac{x-\mu}{\theta}}$$

(1) 总体均值
$$E(X) = \sum_{k=2}^{\infty} k(k-1)\theta^2(1-\theta)^{k-2} = \theta^2 \sum_{k=2}^{\infty} k(k-1)(1-\theta)^{k-2}$$
, 由于

$$\sum_{k=2}^{\infty} k(k-1)(1-\theta)^{k-2} = \frac{2}{\theta^3}$$

于是有
$$E(X) = \theta^2 \times \frac{2}{\theta^3} = \frac{2}{\theta}$$
,即 $\theta = \frac{2}{E(X)}$,从而 θ 的矩估计为 $\hat{\theta} = \frac{2}{\bar{x}}$ (2) 由于 $E(X) = \int_0^1 x \sqrt{\theta} x^{\sqrt{\theta} - 1} dx = \frac{\sqrt{\theta}}{\sqrt{\theta} + 1}$ 可得 $\theta = \left(\frac{E(X)}{1 - E(X)}\right)^2$,于是 θ 的矩估计为

$$\hat{\theta} = \left(\frac{\bar{x}}{1 - \bar{x}}\right)^2.$$

(3) 先计算总体均值和方差

$$\begin{split} E(X) &= \int_{\mu}^{\infty} x \frac{1}{\theta} e^{-\frac{x-\mu}{\theta}} dx \stackrel{t=x-\mu}{=} \int_{0}^{\infty} t \frac{1}{\theta} e^{-\frac{t}{\theta}} dt + \int_{0}^{\infty} \mu \frac{1}{\theta} e^{-\frac{t}{\theta}} dt = \theta + \mu, \\ E(X^{2}) &= \int_{\mu}^{\infty} x^{2} \frac{1}{\theta} e^{-\frac{x-\mu}{\theta}} dx \stackrel{t=x-\mu}{=} \int_{0}^{\infty} (t+\mu)^{2} \frac{1}{\theta} e^{-\frac{t}{\theta}} dt \\ &= \int_{0}^{\infty} t^{2} \frac{1}{\theta} e^{-\frac{t}{\theta}} dt + \int_{0}^{\infty} 2\mu t \frac{1}{\theta} e^{-\frac{t}{\theta}} dt + \int_{0}^{\infty} \mu^{2} \frac{1}{\theta} e^{-\frac{t}{\theta}} dt \\ &= 2\theta^{2} + 2\mu\theta + \mu^{2}, \end{split}$$

$$Var(X) = E(X^2) - (E(X))^2 = \theta^2$$

于是可以推出 $\theta = \sqrt{Var(X)}, \mu = E(X) - \sqrt{Var(X)}, 从而参数 \theta, \mu$ 的矩估计为

$$\hat{\theta} = s, \hat{\mu} = \bar{x} - s$$

8. 总体概率函数如下, x_1, x_2, \ldots, x_n 是样本, 求未知参数的最大似然估计.

(1)
$$p(x;\theta) = \sqrt{\theta}x^{\sqrt{\theta}-1}, 0 < x < 1, \theta > 0;$$

(2)
$$p(x; \theta, \mu) = \frac{1}{4} e^{-\frac{x-\mu}{\theta}}, x > \mu, \theta > 0$$

(3)
$$p(x;\theta) = \frac{1}{2\theta} e^{-|x|/\theta}, \theta > 0$$

(4)
$$p(x; \theta) = 1, \theta - \frac{1}{2} < x < \theta + \frac{1}{2}$$
.

解

(1) 似然函数为 $L(\theta) = (\sqrt{\theta})^n (x_1 x_2 \dots x_n)^{\sqrt{\theta}-1}$, 于是对数似然函数为

$$\ln L(\theta) = \frac{n}{2} \ln \theta + (\sqrt{\theta} - 1) \left(\sum_{i=1}^{n} \ln x_i \right).$$

将 $\ln L(\theta)$ 对 θ 进行求导并令导数为 0 得到似然方程

$$\frac{\partial \ln L(\theta)}{\partial \theta} = \frac{n}{2\theta} + \frac{1}{2\sqrt{\theta}} \left(\sum_{i=1}^{n} \ln x_i \right) = 0$$

解得

$$\hat{\theta} = \left(\frac{1}{n} \sum_{i=1}^{n} \ln x_i\right)^{-2}.$$

检验: 由于

$$\left.\frac{\partial^2 \ln L(\theta)}{\partial \theta^2}\right|_{\hat{\theta}} = \left(-\frac{n}{2\theta^2} - \frac{\sum\limits_{i=1}^n \ln x_i}{4\theta^{\frac{3}{2}}}\right) \right|_{\hat{\theta}} = -\frac{3\left(\sum\limits_{i=1}^n \ln x_i\right)^4}{4n^3} < 0,$$

所以 $\hat{\theta}$ 是 θ 的最大似然估计.

(2) 似然函数

$$L(\theta) = \left(\frac{1}{\theta}\right)^n \exp\left\{-\frac{1}{\theta}\sum_{i=1}^n (x_i - \mu)\right\}, x_{(1)} > \mu.$$

对数似然函数

$$\ln L(\theta, \mu) = -n \ln \theta - \frac{\sum_{i=1}^{n} (x_i - \mu)}{\theta}.$$

由上式可以看出, $\ln L(\theta,\mu)$ 是 μ 的单调增函数, 所以要使其最大, 就要使 μ 的取值尽可能大, 由于限制 $\mu < x_{(1)}$, 于是 μ 的最大似然估计为 $\hat{\mu} = x_{(1)}$.

将 $\ln L(\theta, \hat{\mu})$ 关于 θ 求导并令其等于 0 得到关于 θ 的似然方程

$$\frac{\partial \ln L(\theta, \hat{\mu})}{\partial \theta} = -\frac{n}{\theta} + \frac{\sum_{i=1}^{n} (x_i - \hat{\mu})}{\theta^2} = 0,$$

解得

$$\hat{\theta} = \frac{\sum_{i=1}^{n} (x_i - \hat{\mu})}{n} = \bar{x} - x_{(1)}.$$

经检验, $\hat{\theta}$ 为 θ 的最大似然估计.

(3) 似然函数

$$L(\theta) = \left(\frac{1}{2\theta}\right)^n \exp\left\{\frac{\sum_{i=1}^n |x_i|}{\theta}\right\},$$

对数似然函数

$$\ln L(\theta) = -n \ln 2\theta - \frac{\sum_{i=1}^{n} |x_i|}{\theta}$$

对 θ 求导并令其等于 0 可以得到似然方程

$$\frac{\partial \ln L(\theta)}{\partial \theta} = -\frac{n}{\theta} + \frac{\sum_{i=1}^{n} |x_i|}{\theta^2} = 0,$$

解得

$$\hat{\theta} = \frac{\sum_{i=1}^{n} |x_i|}{n}$$

检验:

$$\left. \frac{\partial^2 \ln L(\theta)}{\partial \theta^2} \right|_{\hat{\theta}} = \left. \left(\frac{n}{\theta^2} - \frac{2 \sum_{i=1}^n |x_i|}{\theta^3} \right) \right|_{\hat{\theta}} = -\frac{n^3}{\left(\sum_{i=1}^n |x_i| \right)^2} < 0,$$

从而 $\hat{\theta}$ 是 θ 的最大似然估计.

(4) 此处的似然函数为

$$L(\theta) = I_{\left\{\theta - \frac{1}{2} < x_{(1)} < x_{(n)} < \theta + \frac{1}{2}\right\}},$$

它只有两个取值, 即 0 和 1. 为了让其取到 $1,\theta$ 的取值范围应为 $x_{(n)}-\frac{1}{2}<\theta< x_{(1)}+\frac{1}{2}$, 因而 θ 的最大似然估计 $\hat{\theta}$ 可取 $\left(x_{(n)}-\frac{1}{2},x_{(1)}+\frac{1}{2}\right)$ 这个区间中的任意值, 这也说明了最大似然估计可能不止一个.

9. 已知在文学家萧伯纳的 The Intelligent Woman's Guide to Socialism and Capitalism 一书中, 一个句子的单词数 X 近似地服从对数正态分布, 即 $Z = \ln X \sim N(\mu, \sigma^2)$. 现在从该书中随机地取 20 个句子这些句子的单词数分别为: 52, 24, 15, 67, 15, 22, 63, 26, 16, 32, 7, 33, 28, 14, 7, 29, 10, 6, 59, 30, 求该书中一个句子单词数的均值 $E(X) = e^{\mu + \sigma^2/2}$ 的最大似然估计.

Hint: Use theorem 1 on page 2 and MLE of the parameters in normal distribution, which is $\hat{\mu} = \bar{x}, \hat{\sigma}^2 = s^2$.

解 正态分布 $N(\mu, \sigma^2)$ 的参数的最大似然估计分别为样本均值和样本方差, 即

$$\hat{\mu} = \frac{1}{20} \sum_{i=1}^{20} \ln x_i = 3.0890, \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (\ln x_i - 3.0890)^2 = 0.5081,$$

由于最大似然估计具有不变性, 故 $E(X) = \exp\{\mu + \sigma^2/2\}$ 的最大似然估计是

$$\widehat{E(X)} = e^{3.0890 + 0.5081/2} = 28.3053.$$

10. 设 x_1, x_2, \ldots, x_n 是来自密度函数为 $p(x; \theta) = e^{-(x-\theta)}, x > \theta$ 的总体的样本, 分别求 θ 的最大似然估计 $\hat{\theta}_1$ 和矩估计 $\hat{\theta}_2$, 并判断它们是否为相合估计和无偏估计.

解 最大似然估计: 似然函数为

$$L(\theta) = \prod_{i=1}^{n} (e^{-(x_i - \theta)} I_{(x_i > \theta)}) = \exp\{-\sum_{i=1}^{n} x_i + n\theta\} I_{x_{(1)} > \theta}.$$

显然似然函数在示性函数为 1 的时候是 θ 的递增函数, 因此 θ 的最大似然估计是 $\hat{\theta}_1 = x_{(1)}$.

又 $x_{(1)}$ 的密度函数为 $f(x) = ne^{-n(x-\theta)}, x > \theta, x > \theta$, 故

$$E(\hat{\theta}_1) = \int_0^\infty x n e^{-n(x-\theta)} dx = \frac{1}{n} + \theta,$$

故 $\hat{\theta}_1$ 不是 θ 的无偏估计, 但是渐近无偏估计.

又

$$\begin{split} P(|\hat{\theta} - \theta| > \epsilon) &= P(\hat{\theta} < \theta - \epsilon) + P(\hat{\theta} > \theta + \epsilon) \\ &= \int_{\theta + \epsilon}^{\infty} e^{-n(x - \theta)} dx \\ &= \frac{1}{n} e^{-n\epsilon} \to 0, n \to \infty. \end{split}$$

所以 $\hat{\theta}$ 是 θ 的相合估计.

矩估计:

$$E(X) = \int_{\theta}^{\infty} x e^{-(x-\theta)} dx = \theta + 1, E(X^2) = \int_{\theta}^{\infty} x^2 e^{-(x-\theta)} dx = \theta^2 + 2\theta + 2,$$

于是 θ 的矩估计为

$$\hat{\theta}_2 = \bar{x} - 1.$$

1 第一组 10

容易验证

$$E(\hat{\theta}_2) = E(\bar{x} - 1) = \theta, Var(\hat{\theta}_2) = \frac{1}{n}Var(\theta) = \frac{1}{n} \to 0, n \to \infty,$$

于是 $\hat{\theta}_2$ 既是无偏估计, 也是相合估计 (也可以用辛钦大数定律说明相合性).

11. 总体密度函数如下, 求 Fisher 信息量:

(1)
$$p(x;\theta) = \frac{2\theta}{x^3} e^{-\theta/x^2}, x > 0, \theta > 0;$$

(2)
$$P(X = x) = (x - 1)\theta^2(1 - \theta)^{x-2}, x = 2, 3, \dots, 0 < \theta < 1;$$

解 (1) 对数密度函数为

$$\ln p(x;\theta) = \ln \theta + \ln 2 - 3 \ln x - \frac{\theta}{x^2},$$

于是

$$\frac{\partial \ln p(x;\theta)}{\partial \theta} = \frac{1}{\theta} - \frac{1}{x^2}, \frac{\partial^2 \ln p(x;\theta)}{\partial \theta^2} = -\frac{1}{\theta^2},$$

由此,

$$I(\theta) = -E\left(\frac{\partial^2 \ln p(x;\theta)}{\partial \theta^2}\right) = \frac{1}{\theta^2}.$$

(2) 对数分布列为

$$\ln P(X = x) = \ln(x - 1) + 2\ln\theta + (x - 2)\ln(1 - \theta).$$

求一, 二阶导数, 有

$$\frac{\partial \ln P(X=x)}{\partial \theta} = \frac{2}{\theta} - \frac{x-2}{1-\theta}, \frac{\partial^2 \ln P(X=x)}{\partial \theta^2} = -\frac{2}{\theta^2} - \frac{x-2}{(1-\theta)^2}$$

又在题 7(1) 中我们算得 $E(x) = 2/\theta$, 于是

$$I(\theta) = -E\left(\frac{\partial^2 \ln P(X=x)}{\partial \theta^2}\right) = \frac{2}{\theta^2} + \frac{E(x) - 2}{(1-\theta)^2} = \frac{2}{\theta^2(1-\theta)}.$$

12. 总体 $x\sim N(\mu,\sigma^2),\sigma^2$ 已知,问样本容量 n 多大时才能保证 μ 的置信水平为 95% 的置信区间的长度不大于 k.

解 构造枢轴量 $U = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}}$, 由 $P(\Phi_{\alpha/2} \leq U \leq \Phi_{1-\alpha/2}) = 0.05$ 知, μ 的 0.95 置信区间为

$$[\bar{x} - \Phi_{1-\alpha/2}\sigma/\sqrt{n}, \bar{x} + \Phi_{1-\alpha/2}\sigma/\sqrt{n}]$$

其区间长度为 $2\Phi_{1-\alpha/2}\sigma/\sqrt{n}$, 要使 $2\Phi_{1-\alpha/2}\sigma/\sqrt{n} \leq k$, 解得

$$n \geq (1/k)^2 \sigma^2 \Phi_{1-\alpha/2}^2$$

这里 $\alpha = 0.05$, 故 $\Phi_{1-\alpha/2} = 1.96$, 于是样本容量至少取 $\left(\frac{3.92\sigma}{k}\right)^2$ 时, 才能保证 μ 的置信水平为 95% 的置信区间的长度不大于 k.

13. 已知某种材料的抗压强度 $X \sim N(\mu, \sigma^2)$, 现随机地抽取 10 个试件进行试验, 测得数据如下:

482 493 457 471 510 446 435 418 394 469.

- (1) 求平均抗压强度 μ 的置信水平为 95% 的置信区间;
- (2) 若已知 $\sigma = 30$, 求平均抗压强度 μ 的置信水平为 95% 的置信区间;
- (3) 求 σ 的置信水平为 95% 的置信区间.

解 (1) 计算得 \bar{x} =457.5,s=35.2176, 在 σ 未知时, 枢轴量 $t = \frac{\bar{x}-\mu}{s/\sqrt{n}}$, 使 $P(-t_{1-\alpha/2}(n-1) \le t \le$ $t_{1-\alpha/2}(n-1)$), 可得 μ 的置信水平为 95% 的置信区间为

$$[\bar{x} - t_{1-\alpha/2}(n-1)s/\sqrt{n}, \bar{x} + t_{1-\alpha/2}(n-1)s/\sqrt{n}]$$

查表计算得区间 [432.3064, 482.6936].

 $(2)\sigma = 30$ 已知, μ 的置信水平为 95% 的置信区间为

$$[\bar{x} - \Phi_{1-\alpha/2}\sigma/\sqrt{n}, \bar{x} + \Phi_{1-\alpha/2}\sigma/\sqrt{n}]$$

查表计算,区间为 [438.9058,476.0942].

(3) 构造枢轴量 $\frac{(n-1)s^2}{\sigma^2} \sim \chi^2(n-1)$, 要使 $P(\chi^2_{\alpha/2} \leq \frac{(n-1)s^2}{\sigma^2} \leq \chi^2_{1-\alpha/2})$, 解得 σ^2 的置信水平为 $1-\alpha$ 的 置信区间为

$$\left[\frac{(n-1)s^2}{\chi^2_{1-\alpha/2}(n-1)}, \frac{(n-1)s^2}{\chi^2_{\alpha/2}(n-1)}\right]$$

查表计算得 σ 的置信水平为 95% 的置信区间为 [24.2339, 64.2935].

14. 在一批货物中随机抽取 80 件, 发现 11 件不合格品, 求这批货物的不合格率的置信水平为 90% 的 置信区间.

Hint: Approximate the real distribution with normal distribution.

解 此处 n=80 较大,可以用正态分布求其近似置信区间,构造枢轴量 $U=\frac{\bar{x}-\mu}{s/\sqrt{n}}\sim N(0,1)$ (两个近 似: 中心极限定理和 t 分布自由度趋于无穷的近似), 令 $P(-\Phi_{1-\alpha/2} \le U \le \Phi_{1-\alpha/2}) = 1-\alpha$, 可得不合格 品率的 $1-\alpha$ 近似区间为

$$\left[\bar{x} - u_{1-\alpha/2}\sqrt{\frac{\bar{x}(1-\bar{x})}{n}}, \bar{x} + u_{1-\alpha/2}\sqrt{\frac{\bar{x}(1-\bar{x})}{n}}\right]$$

代入 $\bar{x} = 11/80$ 计算得, 不合格率的置信水平为 0.9 的置信区间为 [0.0742, 0.2008].

- 15. 设从总体 $X \sim N(\mu_1, \sigma_1^2)$ 和总体 $X \sim N(\mu_2, \sigma_2^2)$ 中分别抽取容量为 $n_1 = 10, n_2 = 15$ 的独立样本, 计算得 $\bar{x} = 82, \bar{y} = 76, s_x^2 = 56.5, s_y^2 = 52.4.$
 - (1) 若已知 $\sigma_1^2 = 64$, $\sigma_2^2 = 49$, 求 $\mu_1 \mu_2$ 的置信水平为 95% 的置信区间;
 - (2) 若已知 $\sigma_1^2 = \sigma_2^2$, 求 $\mu_1 \mu_2$ 的置信水平为 95% 的置信区间;
 - (3) 求 σ_1^2/σ_2^2 的置信水平为 95% 的置信区间.

 - 解 (1) 枢轴量 $U = \frac{\bar{x} \bar{y} (\mu_1 \mu_2)}{\sqrt{\sigma_1^2/n_1 + \sigma_2^2/n_2}} \sim N(0, 1)$ 置信区间 [-0.0939, 12.0939]; (2) 枢轴量 $t = \frac{\bar{x} \bar{y} (\mu_1 \mu_2)}{\sqrt{\frac{s_w}{n_1} + s_w^2/n_2}} t(n_1 + n_2 2),$ 置信区间 [-0.2063, 12.2063];
 - (3) 枢轴量 $F = \frac{s_x^2/\sigma_1^2}{s_x^2/\sigma_2^2} \sim F(n_1 1, n_2 1)$, 置信区间 [0.3359, 4.0973].

$\mathbf{2}$ 第二组

16. 设 x_1, x_2, \ldots, x_n 独立同分布, x_1 的取值有四种可能, 概率分别为

$$p_1 = 1 - \theta, p_2 = \theta - \theta^2, p_3 = \theta^2 - \theta^3, p_4 = \theta^3,$$

记 $N_j, j=1,2,3,4$ 为 x_1,x_2,\ldots,x_n 中出现四种可能结果的次数, $N_1+N_2+N_3+N_4=n$. (1) 确定 a_1,a_2,a_3,a_4 , 使 $T=\sum_{i=1}^4 a_iN_i$ 为 θ 的无偏估计; (2) 将 Var(T) 与 θ 的无偏估计方差的 C-R 下界比较,并以此判断该 T 是否为 θ 的有效估计.

解

(1) 由于 $N_i \sim b(n, p_i)$, i = 1, 2, 3, 4, 所以 $E(N_i) = np_i$, 从而有

$$E(T) = \sum_{j=1}^{4} a_j E(N_j)$$

$$= a_1 n(1 - \theta) + a_2 n(\theta - \theta^2) + a_3 n(\theta^2 - \theta^3) + a_4 n\theta^3$$

$$= na_1 + n(a_2 - a_1)\theta + n(a_3 - a_2)\theta^2 + n(a_4 - a_3)\theta^3.$$

要使 T 为 θ 的无偏估计, 即要求

$$\begin{cases}
na_1 = 0 \\
n(a_2 - a_1) = 1 \\
n(a_3 - a_2) = 0 \\
n(a_4 - a_3) = 0,
\end{cases}$$

解得

$$a_1 = 0, a_2 = a_3 = a_4 = \frac{1}{n}$$

即 $T = (N_2 + N_3 + N_4)/n$ 是 θ 的无偏估计.

(2) 先写出似然函数

$$P(N_j = n_j, j = 1, 2, 3, 4)$$

$$= \frac{n!}{n_1! n_2! n_3! n_4!} (1 - \theta)^{n_1} (\theta - \theta^2)^{n_2} (\theta^2 - \theta^3)^{n_3} (\theta^3)^{n_4}$$

$$= \frac{n!}{n_1! n_2! n_3! n_4!} \theta^{n_2 + 2n_3 + 3n_4} (1 - \theta)^{n_1 + n_2 + n_3},$$

对数似然函数为

$$\ln L = (n_2 + 2n_3 + 3n_4) \ln \theta + (n_1 + n_2 + n_3) \ln(1 - \theta) + c,$$

其中 c 是一个与 θ 无关的常数. 于是求导可得

$$\begin{split} \frac{\partial \ln L}{\partial \theta} &= \frac{n_2 + 2n_3 + 3n_4}{\theta} - \frac{n_1 + n_2 + n_3}{1 - \theta}, \\ \frac{\partial^2 \ln L}{\partial \theta^2} &= -\frac{n_2 + 2n_3 + 3n_4}{\theta^2} - \frac{n_1 + n_2 + n_3}{(1 - \theta)^2}, \end{split}$$

注意到观测量 n_j , j = 1, 2, 3, 4 是随机变量 (样本的两重性), 且有 $E(n_j) = np_j$, 故

$$E(n_2 + 2n_3 + 3n_4) = n(\theta + \theta^2 + \theta^3), E(n_1 + n_2 + n_3) = n(1 - \theta^3).$$

从而 Fisher 信息量为

$$I(\theta) = -E\left(\frac{\partial^2 \ln L}{\partial \theta^2}\right) = \frac{n(\theta + \theta^2 + \theta^3)}{\theta^2} + \frac{n(1 - \theta^3)}{(1 - \theta)^2} = \frac{n(1 + \theta + \theta^2)}{\theta(1 - \theta)},$$

所以 θ 的无偏估计的方差的 C-R 下界为

$$\frac{1}{nI(\theta)} = \frac{\theta(1-\theta)}{n^2(1+\theta+\theta^2)}.$$

又由于 $N_2 + N_3 + N_4 = n - N_1 \sim b(n, \theta)$, 于是 $T = (N_2 + N_3 + N_4)/n$ 的方差为

$$Var(T) = \frac{1}{n^2} Var(N_2 + N_3 + N_4) = \frac{\theta(1-\theta)}{n} > \frac{\theta(1-\theta)}{n^2(1+\theta+\theta^2)},$$

即 T 的方差没有达到 θ 的无偏估计的 C-R 下界.

17. 设 x_1, x_2, \ldots, x_n 为取自正态总体 $N(\mu, \sigma^2)$ 的一个样本, 若均值 μ 已知, 求证:

$$(1)\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \mu)^2$$
 是 σ^2 的有效估计;

 $(2)\hat{\sigma} = \frac{1}{n}\sqrt{\frac{\pi}{2}}\sum_{i=1}^{n}|x_i - \mu|$ 是 σ 的无偏估计, 但不是有效估计, 并求有效率.

解

(1) 由 $\frac{n\hat{\sigma}^2}{\sigma^2} \sim \chi^2(n)$ 知, $E(\hat{\sigma}^2) = \sigma^2$, $Var(\hat{\sigma}^2) = \frac{2\sigma^4}{n}$,为了得到 σ^2 的无偏估计的 C-R 下界, 需要 Fisher 信息量,正态分布的 $N(\mu, \sigma^2)$ 的密度函数 p(x) 的对数是

$$\ln p(x) = -\frac{1}{2} \ln 2\pi - \frac{1}{2} \ln \sigma^2 - \frac{(x-\mu)^2}{2\sigma^2},$$

求导,

$$\begin{split} \frac{\partial \ln p(x)}{\partial \sigma^2} &= -\frac{1}{2\sigma^2} + \frac{(x-\mu)^2}{2\sigma^4} \\ \frac{\partial^2 \ln p(x)}{\partial (\sigma^2)^2} &= \frac{1}{2\sigma^4} - \frac{(x-\mu)^2}{\sigma^6} \end{split}$$

由此可得 Fisher 信息量为

$$I(\sigma^2) = -E\left(\frac{\partial^2 \ln p(x)}{\partial (\sigma^2)^2}\right) = -\frac{1}{2\sigma^4} + \frac{E(x-\mu)^2}{\sigma^6} = \frac{1}{2\sigma^4}$$

从而 σ^2 的无偏估计的 C-R 下界为

$$[nI(\sigma^2)]^{-1} = \left[\frac{n}{2\sigma^4}\right]^{-1} = \frac{2\sigma^4}{n} = Var(\hat{\sigma}^2).$$

从而 $\hat{\sigma}^2$ 是 σ^2 的有效估计.

(2) 由于

$$E(|x_i - \mu|) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} |x - \mu| \exp\left\{-\frac{(x - \mu)^2}{2\sigma^2}\right\} dx \stackrel{y = \frac{(x - \mu)}{\sigma}}{=} \frac{2\sigma}{\sqrt{2\pi}} \int_{0}^{\infty} y e^{-\frac{y^2}{2}} dy = \sqrt{\frac{2}{\pi}\sigma}.$$

可知 $E(\hat{\sigma}) = \sigma$, 即 $\hat{\sigma}$ 是 σ 的无偏估计, 方差为

$$Var(\hat{\sigma}) = \frac{\pi}{2n^2} \sum_{i=1}^n Var(|x_i - \mu|) = \frac{\pi}{2n} [E(x_i - \mu)^2 - (E|x_i - \mu|)^2]$$
$$= \frac{\pi}{2n} \left(\sigma^2 - \frac{2}{\pi}\sigma^2\right) = \frac{\pi - 2}{2n}\sigma^2.$$

为了获得 σ 的无偏估计的 C-R 下界, 需要知道 σ 的 Fisher 信息量, 由于

$$\frac{\partial \ln p(x)}{\partial \sigma} = -\frac{1}{\sigma} + \frac{(x-\mu)^2}{\sigma^3}$$
$$\frac{\partial^2 \ln p(x)}{\partial \sigma^2} = \frac{1}{\sigma^2} - 3\frac{(x-\mu)^2}{\sigma^4}$$

于是

$$I(\sigma) = -E\left(\frac{\partial^2 \ln p(x)}{\partial \sigma^2}\right) = -\frac{1}{\sigma^2} + 3\frac{E(x-\mu)^2}{\sigma^4} = \frac{2}{\sigma^2},$$

则有 σ 的无偏估计的 C-R 下界为

$$[nI(\sigma)]^{-1} = \left[\frac{2n}{\sigma^2}\right]^{-1} = \frac{\sigma^2}{2n} < \frac{\pi - 2}{2n}\sigma^2,$$

故 $\hat{\sigma}$ 不是 σ 的有效估计, 有效率为

$$\frac{\sigma^2/(2n)}{(\pi-2)\sigma^2/(2n)} = \frac{1}{\pi-2} = 0.876.$$

18. 设 x_1, x_2, \ldots, x_n 是来自泊松分布 $P(\lambda)$ 的样本, 证明: λ 的近似 $1 - \alpha$ 置信区间为

$$\left[\bar{x} + \frac{1}{2n} u_{1-\alpha/2}^2 - \frac{1}{2} \sqrt{\left(2\bar{x} + \frac{1}{n} u_{1-\alpha/2}^2\right)^2 - 4\bar{x}^2}, \bar{x} + \frac{1}{2n} u_{1-\alpha/2}^2 + \frac{1}{2} \sqrt{\left(2\bar{x} + \frac{1}{n} u_{1-\alpha/2}^2\right)^2 - 4\bar{x}^2} \right].$$

解 由中心极限定理知, 当样本量 n 较大时, 样本均值 $\bar{x} \sim N(\lambda, \lambda/n)$ (poisson 分布 $P(\lambda)$ 的期望和 方差都是 λ), 因而

$$u = \frac{\bar{x} - \lambda}{\sqrt{\lambda/n}} \stackrel{\cdot}{\sim} N(0, 1),$$

用这个 u 作为枢轴量, 对给定的 α , 利用标准正态分布的 $1-\alpha/2$ 分位数构造

$$P\left(\left|\frac{\bar{x}-\lambda}{\sqrt{\lambda/n}}\right| \le u_{1-\alpha/2}\right) \stackrel{\cdot}{=} 1-\alpha,$$

括号里的事件等价于 $(\bar{x} - \lambda)^2 \le u_{1-\alpha/2}^2 \lambda/n$, 因而有

$$\lambda^2 - \left(2\bar{x} + \frac{1}{n}u_{1-\alpha/2}^2\right)\lambda + \bar{x}^2 \le 0.$$

上式左侧关于 λ 的二次多项式二次项系数为正, 故二次曲线开口向上, 其判别式

$$\left(2\bar{x} + \frac{u_{1-\alpha/2}^2}{n}\right)^2 - 4\bar{x}^2 = \frac{2\bar{x}u_{1-\alpha/2}^2}{n} + \left(\frac{u_{1-\alpha/2}^2}{n}\right)^2 > 0,$$

2 第二组 15

因此这条二次曲线和 λ 轴有两个交点记为 $\lambda_L, \lambda_U,$ 有 $P(\lambda_L \le \lambda \le \lambda_U) = 1 - \alpha$, 其中 λ_L 和 λ_U 分别为

$$\frac{2\bar{x} + \frac{1}{n}u_{1-\alpha/2}^2 \pm \sqrt{\left(2\bar{x} + \frac{1}{n}u_{1-\alpha/2}^2\right)^2 - 4\bar{x}^2}}{2}$$

于是有 λ 的近似 $1-\alpha$ 置信区间为

$$\left[\bar{x} + \frac{1}{2n} u_{1-\alpha/2}^2 - \frac{1}{2} \sqrt{\left(2\bar{x} + \frac{1}{n} u_{1-\alpha/2}^2\right)^2 - 4\bar{x}^2}, \bar{x} + \frac{1}{2n} u_{1-\alpha/2}^2 + \frac{1}{2} \sqrt{\left(2\bar{x} + \frac{1}{n} u_{1-\alpha/2}^2\right)^2 - 4\bar{x}^2} \right].$$

19. 设 x_1, x_2, \ldots, x_n 为取自正态总体 $N(\mu, \sigma^2)$ 的简单随机样本, 求证

$$\frac{\bar{x} - (\mu + k\sigma)}{\left[\sum_{i=1}^{n} (x_i - \bar{x})^2\right]^{1/2}}$$

为枢轴量, 其中 k 为已知常数.

解 因为

$$\frac{\bar{x} - (\mu + k\sigma)}{\sigma} \sim N\left(-k, \frac{1}{n}\right), \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \bar{x})^2 \sim \chi^2(n-1),$$

故

$$\left[\frac{\bar{x} - (\mu + k\sigma)}{\sigma}\right] / \left[\frac{1}{(n-1)\sigma^2} \sum_{i=1}^{n} (x_i - \bar{x})^2\right]^{1/2} \sim t(n-1,\delta),$$

这里的 $t(n-1,\delta)$ 为自由度为 n-1 的非中心 t 分布, 非中心参数 $\delta=-k/\sqrt{n}$ 为已知常数, 又

$$\frac{\bar{x} - (\mu + k\sigma)}{\left[\sum_{i=1}^{n} (x_i - \bar{x})^2\right]^{1/2}} = \left[\frac{\bar{x} - (\mu + k\sigma)}{\sigma}\right] / \left[\frac{1}{\sigma^2} \sum_{i=1}^{n} (x_i - \bar{x})^2\right]^{1/2},$$

所以 $[\bar{x} - (\mu + k\sigma)] / \left[\sum_{i=1}^{n} (x_i - \bar{x})^2 \right]^{1/2}$ 的分布与 (μ, σ^2) 无关,即为枢轴量.