Sri Lanka Institute of Information Technology

Lab Submission Lab sheet No.4

IT24100861

Fernando M.S.F.

Discrete Mathematics | IT1160

B.Sc. (Hons) in Information Technology

Exercise

1. Import the dataset ('Exercise.txt') into R and store it in a data frame called "branch data".

```
setwd("C:\\Users\\it24100861\\Desktop\\IT24100861")
--(Q1)--
branch_data <- read.table("Exercise.txt",header=TRUE,sep = ",")
> setwd("C:\\Users\\it24100861\\Desktop\\IT24100861")
> branch_data <- read.table("Exercise.txt",header=TRUE,sep = ",")</pre>
```

2. Identify the variable type and scale of measurement for each variable.

3. Obtain boxplot for sales and interpret the shape of the sales distribution.

Boxplot of Sales

4. Calculate the five number summary and IQR for advertising variable.

```
--(Q4)--
summary(branch_data$Advertising_X2)

IQR(branch_data$Advertising_X2)

summary(branch_data$Advertising_X2)

Min. 1st Qu. Median Mean 3rd Qu. Max.
80.0 101.2 132.5 134.8 158.8 210.0

> IQR(branch_data$Advertising_X2)

[1] 57.5
```

5. Write an R function to find the outliers in a numeric vector and check for outliers in years variables.

```
> get.outliers <- function(X){
    q1 <- quantile(X, 0.25)
    q3 <- quantile(X, 0.75)
    iqr <- q3 - q1

+    ub <- q3 + 1.5 * iqr
+    lb <- q1 - 1.5 * iqr
+    outliers <- X[X < lb | X > ub]
+    print(paste("Lower bound =", lb))
+    print(paste("upper bound =", ub))
+    print(paste("outliers:", if(length(outliers) == 0) "None" else paste(sort(outliers), collapse = ", ")))
} >    get.outliers(branch_dataSyears)
[1] "Lower bound = -3.5"
[1] "Upper bound = 14.5"
[1] "Outliers: None"

--(Q5)--
get.outliers <- function(X){
    q1 <- quantile(X, 0.25)
    q3 <- quantile(X, 0.75)
    iqr <- q3 - q1
    ub <- q3 + 1.5 * iqr
    outliers <- X[X < lb | X > ub]
    print(paste("Lower bound =", lb))
    print(paste("Lower bound =", lb))
    print(paste("Outliers:", if(length(outliers) == 0) "None" else paste(sort(outliers), collapse = ", ")))
}
get.outliers(branch_dataSyears)

get.outliers(branch_dataSyears)
```