Aula 17 - BGP, Roteamento Broadcast e Multicast

Diego Passos

Universidade Federal Fluminense

Redes de Computadores

Material adaptado a partir dos slides originais de J.F Kurose and K.W. Ross.

Roteamento Inter-AS

Roteamento Inter-AS na Internet: BGP

- BGP (Border Gateway Protocol): o padrão de facto para roteamento inter-domínios.
 - "A cola que mantém a Internet junta".
- BGP provê a cada AS uma maneira de:
 - eBGP: obter informações sobre sub-redes alcançáveis de ASs vizinhos.
 - **iBGP:** propagar informações de sub-redes externas alcançáveis para todos os roteadores do AS.
 - Determinar "boas" rotas para outras redes com base nas informações das sub-redes alcançáveis e políticas diversas.
- Permite a uma sub-rede anunciar sua existência para o resto da Internet: "estou aqui!"

BGP: Conceitos Básicos

- Sessão BGP: dois roteadores BGP ("peers") trocam mensagens BGP.
 - Anunciam **caminhos** para vários prefixos de sub-redes diferentes (protocolo baseado em "vetor de caminhos").
 - Trocadas sobre conexões TCP semi-permanentes.
- Quando o AS3 anuncia um prefixo para o AS1:
 - AS3 se compromete a encaminhar datagramas em direção àquele prefixo.
 - AS3 pode agregar prefixos nos seus anúnicios.

BGP: Distribuindo Informação de Caminhos

- Usando a sessão eBGP entre 3a e 1c, AS3 envia prefixos alcançáveis para o AS1.
 - 1c pode, então, usar o iBGP para distribuir novas informações de prefixos conhecidos para todos os roteadores no AS1.
 - 1b pode, então, re-anunciar a informação de prefixos alcançáveis para o AS2 através da sessão eBGP entre 1b e 2a.
- Quanto roteador aprende um novo prefixo, ele cria uma entrada para o prefixo na sua tabela de roteamento.

Atributos de Caminhos e Rotas BGP

- Prefixos anunciados incluem atributos BGP.
 - prefixo + atributos = "rota".
- Dois atributos importantes:
 - AS-PATH: contém lista de ASs pelos quais o anúncio do prefixo passou: e.g., AS 67, AS 17.
 - NEXT-HOP: indica roteador do AS de próximo salto (que pode estar a vários saltos do AS atual).
- Roteador gateway que recebe anúncios utiliza política de importação para aceitá-los ou não.
 - e.g., nunca encaminhe para o AS x.
 - Roteamento baseado em políticas.

BGP: Seleção de Rota

- Roteador pode aprender múltiplas rotas para um AS de destino. Seleção é baseada em:
 - 1. Valor do atributo Local Preference: decisão baseada em política.
 - 2. AS-PATH mais curto.
 - 3. Roteador NEXT-HOP mais próximo: roteamento batata-quente.
 - 4. Critérios adicionais.

Mensagens BGP

- Mensagens BGP trocadas entre peers sobre conexão TCP.
- Mensagens BGP:
 - **OPEN:** abre conexão TCP para o peer e autentica transmissor.
 - **UPDATE**: anuncia novo caminho (ou anula anúnicio antigo).
 - **KEEPALIVE:** mantém a conexão aberta em caso de inatividade prolongada; também serve de ACK para mensagem OPEN.
 - NOTIFICATION: reporta erros na mensagem anterior; também usada para fechar conexão.

Juntando Tudo

- Como uma entrada é colocada na tabela de roteamento de um roteador?
 - Resposta é complicada!
 - Junta Roteamento Hierárquico, BGP e OSPF.
 - Provê boa visão geral do funcionamento do BGP!

Como a Entrada é Inserida na Tabela de Roteamento? (I)

Como a Entrada é Inserida na Tabela de Roteamento? (II)

Visão de alto nível:

- 1. Roteador passa a conhecer o prefixo.
- 2. Roteador determina a porta de saída para alcançar o prefixo.
- 3. Roteador insere mapeamento porta-prefixo na tabela de roteamento.

Roteador Passa a Conhecer o Prefixo

- Mensagem BGP contém "rotas".
- "Rota" é um prefixo, mais seus atributos: AS-PATH, NEXT-HOP, ...
- Exemplo de rota BGP:
 - Prefixo: 138.16.64/22.
 - AS-PATH: AS3 AS131.
 - NEXT-HOP: 201.44.13.125.

Roteador Pode Receber Múltiplas Rotas

- Roteador pode receber múltiplos anúncios de rotas para um mesmo prefixo.
- Precisa selecionar um.

Seleção da Melhor Rota BGP para o Prefixo

- Roteador seleciona rota com base no AS-PATH mais curto.
- Por exemplo:
 - AS2 AS17 para alcançar 138.16.64/22 (selecionada).
 - AS3 AS131 AS201 para alcançar 138.16.64/22.
- E se ocorrer um empate? Voltaremos a este ponto em breve!

Encontrar Melhor Rota Interna para a Rota BGP

- Use o atributo NEXT-HOP da rota selecionada.
 - É o endereço IP da interface do roteamento que inicia o AS PATH.
- Exemplo:
 - AS-PATH: AS2 AS17; NEXT-HOP: 111.99.86.55.
- Roteador usa OSPF para encontrar caminho mais curto de 1c para 111.99.86.55.

Roteador Identifica Porta para Rota

- Identifica porta no caminho mais curto apontado pelo OSPF.
- Adiciona entrada mapeamento o prefixo à porta na sua tabela de roteamento.
 - (183.16.64/22, porta 4).

Roteamento Batata-Quente

- Suponha que haja duas ou mais melhores rotas BGP.
- Então escolha aquela com o NEXT-HOP mais próximo.
 - Use o OSPF para determinar qual gateway está mais próximo.
 - Pergunta: de 1c, escolher AS3 AS131 ou AS2 AS17?
 - Resposta: rota AS3 AS 131, já que NEXT-HOP é mais próximo.

Como uma Entrada é Inserida na Tabela de Roteamento?

- Sumário:
 - 1. Roteador passa a conhecer o prefixo.
 - Através de anúncios BGP de outros roteadores.
 - 2. Determina porta de saída para o prefixo.
 - Usa seleção de rotas BGP para encontrar a melhor rota BGP.
 - Usa OSPF para encontrar melhor rota interna ao AS que leva o pacote até o início da melhor rota BGP.
 - Roteador identifica porta de saída para esta rota.
 - 3. Insere o mapeamento (prefixo, porta) na tabela de roteamento.

BGP: Políticas de Roteamento (I)

- A, B e C são redes de provedores.
- X, W, e Y são consumidores (clientes dos provedores).
- X é *dual-homed*: se conecta à Internet por dois provedores diferentes.
 - X não quer rotear pacotes de B para C.
 - ...logo, X não irá anunciar para B uma rota para C.

BGP: Políticas de Roteamento (II)

- A anuncia caminho AW para B.
- B anuncia caminho BAW para X.
- B deve anunciar caminho BAW para C?
 - Claro que não! B não lucra roteando CBAW, já que nem W nem C são clientes de B.
 - B quer forçar C a rotear para W por A.
 - B quer rotear apenas tráfego de e para seus clientes!

Por que Roteamentos Diferentes Intra- e Inter-AS?

Políticas:

- Inter-AS: administrador quer controle sobre como seu tráfego é roteado, quem roteia pela sua rede.
- Intra-AS: único administrador, não são necessárias decisões políticas.

Escala:

 Roteamento hierárquico reduz tamanho das tabelas, reduz tráfego de atualização de rotas.

• Desempenho:

- Intra-AS: foco no desempenho.
- Inter-AS: políticas podem dominar decisões.

Roteamento Broadcast

Roteamento Broadcast

- Entrega pacotes da origem a todos os outros nós.
- Replicação na origem é ineficiente:

• Replicação na origem: como a origem determina o endereço dos destinatários?

Replicação na Rede

- **Inundação:** quando nó recebe pacote em *broadcast*, envia cópias para todos os seus vizinhos.
 - Problemas: ciclos e tempestade de broadcast.
- Inundação Controlada: nó só envia cópias se está é a primeira recepção deste pacote.
 - Nós mantêm lista dos IDs dos pacotes já replicados.
 - Outra alternativa é o Reverse Path Forwarding (RPF): apenas replicar pacotes que chegaram pelo enlace de próximo salto do caminho entre o nó corrente e a origem.
- Árvore Geradora (Spanning Tree):
 - Nós nunca recebem pacotes redundantes.

Árvores Geradoras

- Primeiramente, construa uma árvore geradora.
 - Grafo acíclico conectando todos os nós.
- Os nós, então, encaminham/criam cópias dos pacotes apenas nos enlaces da árvore geradora.

(a) broadcast iniciado em A

(b) broadcast iniciado em D

Árvores Geradoras: Criação Distribuída

- Elege-se um nó central.
 - e.g., origem do tráfego broadcast.
- Cada nó envia uma mensagem join em unicast para o nó central.
 - Mensagem encaminhada normalmente até que chega a um nó que já pertence à árvore geradora.

(a) construção passo a passo da árvore geradora (centro: E)

(b) árvore geradora construída

Roteamento Multicast

Roteamento Multicast: Definição do Problema

- Objetivo: encontrar uma árvore (ou árvores) conectando roteadores membros de um grupo multicast.
- Mais definições:
 - Árvore: nem todos os enlaces da rede são usados.
 - Árvore Compartilhada: uma mesma árvore é usada por todos os membros do grupo.
 - Enraizada na Fonte: árvores diferentes para cada transmissor do grupo.

árvores enraizadas na fonte

legenda

membro do grupo

não membro

roteador com membro do grupo

roteador sem membro do grupo

Abordagens para Construção de Árvores Multicast

- Árvores enraizadas na fonte: uma árvore por fonte.
 - Árvore de caminhos mais curtos.
 - Encaminhamento baseado no caminho reverso.
- Árvores compartilhadas: grupo todo usa árvore única.
 - Árvore de custo mínimo (Árvore de Steiner).
 - Árvore baseadas em nó central.
- Veremos cada uma destas abordagens.

Árvore de Caminhos mais Curtos

- Árvore de encaminhamento *multicast*: árvore composta pelos caminhos mais curtos da origem até cada destinatário.
 - Sub-produto do Algoritmo de Dijkstra.

Legenda

enlace usado para encaminhamento, i indica quando foi adicionado

Encaminhamento baseado no Caminho Reverso

- Se baseia no conhecimento dos roteadores sobre os caminhos *unicast* mais curtos para a origem.
- Cada roteador aplica o seguinte algoritmo para realizar o encaminhamento:

Se (datagrama *multicast* foi recebido no enlace de próximo salto no caminho mais curto de volta à origem)

Então inunde datagrama para todos os enlaces de saída.

Senão ignore datagrama.

Encaminhamento baseado no Caminho Reverso: Exemplo

- Resultado é uma árvore específica para nó de origem.
 - Árvore de caminhos mais curtos reversa.
 - Pode não ser uma boa escolha se enlaces forem muito assimétricos.

Encaminhamento baseado no Caminho Reverso: Poda

- Árvore de encaminhamento contém sub-árvores sem membros do grupo multicast.
 - Não é necessário encaminhar datagramas por estas sub-árvores.
 - Mensagens de "poda" enviadas em direção à origem por roteadores sem membros conectados.

Árvore Compartilhada: Árvore de Steiner

- Árvore de Steiner: árvore de custo mínimo conectando todos os roteadores que possuem membros do grupo.
- Problema é NP-Difícil.
 - *i.e.*, hoje não conhecemos algoritmos ótimos eficientes.
 - E é possível que não existam.
- Mas há excelentes heurísticas disponíveis.
- Mesmo assim, não é utilizado na prática:
 - Complexidade computacional.
 - Necessidade de informação sobre toda a rede.
 - Monolítico: re-execução é necessária sempre que um novo roteador entra/sai do grupo.

Árvores Baseadas em Nó Central

- Uma única árvore de encaminhamento compartilhada por todos os nós.
- Um roteador se define como o "centro" da árvore.
- Para se juntar ao grupo:
 - Roteador de borda envia mensagem *unicast* do tipo *join* endereçada ao centro da árvore.
 - Mensagem é "processada" pelos roteadores intermediários e encaminhada em direção ao centro.
 - A mensagem de join ou chega ao centro ou chega a algum ramo já existente da árvore.
 - Caminho usado pela mensagem *join* se torna, então, um novo ramo da árvore conectando o novo roteador.

Árvores Baseadas em Nó Central: Exemplo

• Suponha que R6 seja escolhido como centro.

Legenda

ordem na qual as mensagens join foram geradas