LUNDS TEKNISKA HÖGSKOLA MATEMATIK

LÖSNINGAR LINJÄR ALGEBRA 2013-10-21

1. Enligt huvudsatsen har systemet precis en lösning då

$$0 \neq \begin{vmatrix} 1 & 1 & -2 \\ 2 & a & -4 \\ 1 & -3 & a \end{vmatrix} = \begin{vmatrix} 1 & 1 & -2 \\ 0 & a - 2 & 0 \\ 0 & -4 & a + 2 \end{vmatrix} = \begin{vmatrix} a - 2 & 0 \\ -4 & a + 2 \end{vmatrix} = (a - 2)(a + 2).$$

Alltså har systemet precis en lösning då $a \neq \pm 2$. Då a = -2 blir systemet

$$\begin{cases} x + y - 2z = 1, \\ 2x - 2y - 4z = 3, \\ x - 3y - 2z = 2, \end{cases} \Leftrightarrow \begin{cases} x + y - 2z = 1, \\ -4y = 1, \\ -4y = 1, \end{cases}$$

där den sista ekvationen kan strykas och man ser att systemet har oändligt många lösningar. Då a=2 blir systemet istället

$$\begin{cases} x + y - 2z = 1, \\ 2x + 2y - 4z = 3, \\ x - 3y + 2z = 2, \end{cases}$$

och om man jämför de två första ekvationerna så ser man att systemet saknar lösning.

2. Vektorn $\mathbf{v}=(3,3,5)-(2,1,2)=(1,2,3)$ är en riktningsvektor för linjen och vektorn $\mathbf{u}=(3,1,-3)-(2,1,2)=(1,0,-5)$ är en vektor mellan linjen och den givna punkten utanför linjen. Komposantuppdela $\mathbf{u}=\mathbf{u}_{\parallel}+\mathbf{u}_{\perp}$ i en vektor \mathbf{u}_{\parallel} parallell med \mathbf{v} och en vektor \mathbf{u}_{\perp} vinkelrät mot \mathbf{v} . Projektionsformeln ger

$$\mathbf{u}_{\parallel} = \frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v} = \frac{-14}{14} (1, 2, 3) = -(1, 2, 3)$$

och därmed ${\bf u}_\perp={\bf u}-{\bf u}_\parallel=(1,0-5)+(1,2,3)=(2,2,2)$. Avståndet mellan linjen och punkten är längden av ${\bf u}_\perp$, alltså $2\sqrt{3}$ längdenheter.

3. Att diagonalisera A innebär att man finner en inverterbar matris S och en diagonalmatris D sådana att $S^{-1}AS = D$.

Matrisen A' = 2A har det karakteristiska polynomet

$$\det(\lambda \mathbf{I} - \mathbf{A}') = \begin{vmatrix} \lambda - 1 & -5 \\ -5 & \lambda - 1 \end{vmatrix} = (\lambda - 1)^2 - 5^2$$

som har nollställena 1 ± 5 , dvs 6 och -4. Egenvektorerna löser de homogena ekvationssystemen ($\lambda I - A'$)X = 0. För egenvärdet $\lambda = 6$ får man egenvektorerna s(1, 1), $s \in \mathbb{R}$, $s \neq 0$ och för egenvärdet $\lambda = -4$ får man egenvektorerna t(1, -1), $t \in \mathbb{R}$, $t \neq 0$. Eftersom egenvärdena för A är hälften av de till A' men egenvektorer är de samma ger detta till exempel diagonalmatrisen $D = \begin{pmatrix} 3 & 0 \\ 0 & -2 \end{pmatrix}$ och $S = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ (S uppenbart inverterbar).

4. Ekvationen kan skrivas

$$(A-2I)X = A^T$$

med entydig lösning

$$\mathbf{X} = (\mathbf{A} - 2\mathbf{I})^{-1}\mathbf{A}^T$$

förutsatt att inversen existerar. Beräkning av inversen

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 2 & 2 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & -1 & 1 & 0 \\ 0 & -1 & 0 & -1 & 0 & 1 \end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix} 1 & 0 & 0 & 2 & -1 & 0 \\ 0 & 1 & 1 & -1 & 1 & 0 \\ 0 & 0 & 1 & -2 & 1 & 1 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 1 & 0 & 0 & 2 & -1 & 0 \\ 0 & 1 & 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -2 & 1 & 1 \end{pmatrix}$$

går bra varför den entydiga lösningen till matrisekvationen är

$$\mathbf{X} = (\mathbf{A} - 2\mathbf{I})^{-1} \mathbf{A}^T = \begin{pmatrix} 2 & -1 & 0 \\ 1 & 0 & -1 \\ -2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 3 & 1 & 1 \\ 1 & 4 & 0 \\ 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 5 & -2 & 2 \\ 2 & -1 & -2 \\ -4 & 4 & 1 \end{pmatrix}.$$

- 5. Välj först \mathbf{e}_1' parallell med \mathbf{u} och med längd 1, alltså $\mathbf{e}_1' = \frac{1}{\sqrt{3}}(1,1,1)$ (eller omvänt tecken). Välj sen \mathbf{e}_3' vinkelrät mot \mathbf{e}_1' och \mathbf{v} , det vill säga parallell med $\mathbf{e}_1' \times \mathbf{v} = \frac{1}{\sqrt{3}}(3,-3,0)$. Efter normering blir då $\mathbf{e}_3' = \frac{1}{\sqrt{2}}(1,-1,0)$ (även omvänt tecken möjligt). Slutligen sätt $\mathbf{e}_2' = \mathbf{e}_3' \times \mathbf{e}_1' = \frac{1}{\sqrt{6}}(-1,-1,2)$. Eftersom $\mathbf{e}_1' = \frac{1}{\sqrt{3}}\mathbf{u}$ får \mathbf{u} koordinaterna $(\sqrt{3},0,0)$ i det nya koordinatsystemet. Koordinaterna för \mathbf{v} bestäms lättast av skalärprodukterna mellan \mathbf{v} och de nya basvektorerna. Detta ger att \mathbf{v} får koordinaterna $(4\sqrt{3},\sqrt{6},0)$ i det nya koordinatsystemet.
- **6.** Matrisen för rotation $\pi/2$ är $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. En normalvektor för linjen är $N = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ och då ges avbildningsmatrisen av

$$\mathbf{B} = \mathbf{I} - 2\frac{\mathbf{N} \, \mathbf{N}^T}{\mathbf{N}^T \mathbf{N}} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \frac{2}{5} \begin{pmatrix} 4 & 2 \\ 2 & 1 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} -3 & -4 \\ -4 & 3 \end{pmatrix}.$$

Matrisen för den sammansatta avbildningen blir

$$BA = \frac{1}{5} \begin{pmatrix} -3 & -4 \\ -4 & 3 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} -4 & 3 \\ 3 & 4 \end{pmatrix}.$$

Denna matris har egenvärdena 1 och -1 med motsvarande egenvektor s(1,3) respektive t(3,-1) för $s,t\neq 0$. Detta svarar mot en ortogonal spegling i linjen genom origo med normalvektor (3,-1), det vill säga i linjen 3x-y=0.