ME766 HW1

Anmol Mishra

150010041

- 1. a) trap_s(serial) and trap_o(openmp) executables have been provided. The respective codes are in trap_s.c and trap_o.c
 - b) mont_s(serial) and mont_o(openmp) executables have been provided. The respective codes are in mont_s.c and mont_o.c

2. a) We compute the integral using trapezoidal method for 5 different divisions. The results are as shown below -

Number of divisions(n)	Trapezoidal integral	Analytical Value	Percentage Error
5	1.933766	2	-3.3117
10	1.983524	2	-0.8238
100	1.999836	2	-0.0082
1000	1.999998	2	-0.0001
10000	2	2	0

Trapezoidal integral vs. Number of divisions(n)

The results obtained are according to expectations. The trapezoidal integral approaches the analytical value 2 from left hand side and the percentage error is decreasing with increasing value of n.

b) We compute the integral using Monte Carlo method for 5 different divisions. The results are as shown below -

Number of divisions(n)	MonteCarlo integral	Analytical Value	Percentage Error	
5	1.256637	2	-37.16815	
10	2.199115	2	9.95575	
100	1.947787	2	-2.61065	
1000	1.994911	2	-0.25445	
10000	2.001195	2	0.05975	

MonteCarlo integral vs. Number of divisions(n)

The results obtained are according to expectations. The Monte Carlo integral oscillates about the analytical value 2 with increasing n but the absolute value of percentage error keeps on decreasing with increasing n.

3. a) We compute the integral using Trapezoidal method for n = 10000 and different number of threads -

Threads(t)	Run1	Run2	Run3	Run4	Run5	Average Time
1(Serial Code)	0.001747	0.001713	0.0017	0.001715	0.001748	0.0017246
2	0.000679	0.001096	0.001086	0.001101	0.00109	0.0010104
4	0.001874	0.003504	0.002114	0.00156	0.000803	0.001971
6	0.001075	0.001177	0.001331	0.001244	0.001227	0.0012108
8	0.001188	0.000876	0.000961	0.001218	0.001203	0.0010892

While the parallelised code takes less time than serial for all cases except t = 4. As the number of thread increases above 4 however, we can see a downward trend of average time due to more efficient work division.

b) We compute the integral using Monte Carlo method for n = 10000 and different number of threads -

Threads(t)	Run1	Run2	Run3	Run4	Run5	Average Time
1(Serial Code)	0.002115	0.002007	0.001966	0.001992	0.001747	0.0019654
2	0.001388	0.001653	0.001437	0.001544	0.00162	0.0015284
4	0.002921	0.00279	0.002688	0.002857	0.002188	0.0026888
6	0.001453	0.000954	0.001591	0.001638	0.001637	0.0014546
8	0.001351	0.001454	0.001542	0.001435	0.001394	0.0014352

While the parallelised code takes less time than serial for all cases except t = 4. As the number of thread increases above 4 however, we can see a downward trend of average time due to more efficient work division.