

KIIT Deemed to be University Online End Semester Examination(Autumn Semester-2020)

<u>Subject Name & Code:</u> Design & Analysis of Algorithms (CS-2012) <u>Applicable to Courses:</u> CSE, IT, CSCE, CSSE, ECS

Full Marks=50

Time:2 Hours

DAA SOLUTION & EVALUATION SCHEME

SECTION-A

(Answer All Questions. Each question carries 2 Marks)

Time:30 Minutes

 $(7 \times 2 = 14 \text{ Marks})$

Questi	Questi	Question	Ans
on No	on Type		wer Key
Q.No:	MCQ	Given two functions as $f(n)=n^3+n\log n$, $g(n)=n^3+n^2\log n$. Indicate whether $f(n)$ is O , Ω or Θ of $g(n)$. Note that zero, one or more of these relations may hold for this pair of list of all correct ones. A. O , Ω , Θ B. O C. Ω D. O , Ω	A
	MCQ	Given two functions as $f(n)=\sqrt{\log n}$, $g(n)=\log\sqrt{n}$. Indicate whether $f(n)$ is O , Ω or Θ of $g(n)$. Note that zero, one or more of these relations may hold for this pair of list of all correct ones. A. O , Ω , Θ B. O C. Ω D. O , Ω	В
	MCQ	Given two functions as $f(n)=2^n+1$, $g(n)=2^{n/2}+1$. Indicate whether $f(n)$ is O , Ω or Θ of $g(n)$. Note that zero, one or more of these relations may hold for this pair of list of all correct ones. A. O , Ω , Θ B. O C. Ω D. O , Ω	C
	MCQ	Given two functions as $f(n)=2^n+n$, $g(n)=2^{2n}+n$. Indicate whether $f(n)$ is O , Ω or Θ of $g(n)$. Note that zero, one or more of these relations may hold for this pair of list of all correct ones. A. O , Ω , Θ B. O C. Ω D. O , Ω	В

Q.No:	MCQ	Consider the following function:	В
2		int fun(int n)	
		$\begin{cases} & \text{int } i, j, k = 0; \end{cases}$	
		for $(i = 1; i \le n; i++)$	
		for $(j = 1; j \le n; j = j * 2)$	
		k = k + 1/n;	
		return k; }	
		What is the returned value of the above function?	
		Α. Θ(1)	
		B. $\Theta(\log n)$	
		C. $\Theta(n)$ D. $\Theta(n^2)$	
		D. \(\theta(\text{II})\)	
	MCQ	Consider the following function:	A
		int fun(int n)	
		{ intiik = o	
		int i, j, k = 0; for (i = n; i <n; i="i/2)</th"><th></th></n;>	
		for $(j = 1; j <= n; j++)$	
		k = k + 1/n;	
		return k;	
		What is the returned value of the above function?	
		A. $\Theta(1)$	
		B. $\Theta(\log n)$	
		$C. \Theta(n)$	
		D. $\Theta(n^2)$	
	MCQ	Consider the following function:	D
	Meq		D
	Meq	int fun(int n)	
	WEQ	int fun(int n) {	
	Meq	int fun(int n) { int i, j, k = 0; for (i = 1; i>=1; i)	
	Moq	int fun(int n) { int i, j, k = 0; for (i = 1; i>=1; i) for (j = 1; j <= n; j++)	D
	Moq	<pre>int fun(int n) { int i, j, k = 0; for (i = 1; i>=1; i) for (j = 1; j <= n; j++)</pre>	D
	Moq	<pre>int fun(int n) { int i, j, k = 0; for (i = 1; i>=1; i) for (j = 1; j <= n; j++)</pre>	
	Moq	<pre>int fun(int n) { int i, j, k = 0; for (i = 1; i>=1; i) for (j = 1; j <= n; j++)</pre>	D
	Moq	int fun(int n) { $ \begin{cases} & \text{int } i,j,k=0;\\ & \text{for } (i=1;i>=1;i)\\ & \text{for } (j=1;j<=n;j++)\\ & k=k+n/2;\\ & \text{return } k; \end{cases} $ What is the returned value of the above function? A. $\Theta(1)$	
	Mod	int fun(int n) {	
	Mod	int fun(int n) {	
		int fun(int n) {	
	MCQ	int fun(int n) $ \left\{ \begin{array}{l} \text{int } i,j,k=o; \\ \text{for } (i=1;i>=1;i) \\ \text{for } (j=1;j<=n;j++) \\ k=k+n/2; \\ \text{return } k; \\ \right\} \\ \text{What is the returned value of the above function?} \\ \text{A. } \Theta(1) \\ \text{B. } \Theta(\log n) \\ \text{C. } \Theta(n) \\ \text{D. } \Theta(n^2) \\ \\ \\ \text{Consider the following function:} \\ \end{array} $	C
		int fun(int n) {	
		int fun(int n) {	
		int fun(int n) $ \left\{ \begin{array}{l} \text{int } i,j,k=o; \\ \text{for } (i=1;i>=1;i) \\ \text{for } (j=1;j<=n;j++) \\ k=k+n/2; \\ \text{return } k; \\ \right\} \\ \text{What is the returned value of the above function?} \\ \text{A. } \Theta(1) \\ \text{B. } \Theta(\log n) \\ \text{C. } \Theta(n) \\ \text{D. } \Theta(n^2) \\ \\ \text{Consider the following function:} \\ \text{int } i,j,k=o; \\ \text{for } (i=n;i>=1;i) \\ \end{array} $	
		int fun(int n) $ \left\{ \begin{array}{l} \text{int } i,j,k=0;\\ \text{for } (i=1;i>=1;i)\\ \text{for } (j=1;j<=n;j++)\\ \text{$k=k+n/2$;} \end{array} \right. \\ \text{return } k; \\ \left\{ \begin{array}{l} \text{What is the returned value of the above function?} \\ \text{A. } \Theta(1)\\ \text{B. } \Theta(\log n)\\ \text{C. } \Theta(n)\\ \text{D. } \Theta(n^2) \end{array} \right. \\ \\ \left\{ \begin{array}{l} \text{consider the following function:}\\ \text{int } i,j,k=0;\\ \text{for } (i=n;i>=1;i)\\ \text{for } (j=1;j<=n;j++) \end{array} \right. $	
		int fun(int n) { $ \begin{cases} & \text{int } i,j,k=o; \\ & \text{for } (i=1;i>=1;i) \\ & \text{for } (j=1;j<=n;j++) \\ & k=k+n/2; \end{cases} $ return k; } What is the returned value of the above function? A. $\Theta(1)$ B. $\Theta(\log n)$ C. $\Theta(n)$ D. $\Theta(n^2)$ Consider the following function: int fun(int n) { $ \begin{cases} & \text{int } i,j,k=o; \\ & \text{for } (i=n;i>=1;i) \\ & \text{for } (j=1;j<=n;j++) \\ & k=k+1/n; \end{cases} $	
		int fun(int n) $ \left\{ \begin{array}{l} \text{int } i,j,k=0;\\ \text{for } (i=1;i>=1;i)\\ \text{for } (j=1;j<=n;j++)\\ \text{$k=k+n/2$;} \end{array} \right. \\ \text{return } k; \\ \left\{ \begin{array}{l} \text{What is the returned value of the above function?} \\ \text{A. } \Theta(1)\\ \text{B. } \Theta(\log n)\\ \text{C. } \Theta(n)\\ \text{D. } \Theta(n^2) \end{array} \right. \\ \\ \left\{ \begin{array}{l} \text{consider the following function:}\\ \text{int } i,j,k=0;\\ \text{for } (i=n;i>=1;i)\\ \text{for } (j=1;j<=n;j++) \end{array} \right. $	
		int fun(int n) { int i, j, k = 0; for (i = 1; i>=1; i) for (j = 1; j <= n; j++)	
		int fun(int n) { int i, j, k = 0; for (i = 1; i>=1; i) for (j = 1; j <= n; j++)	
		int fun(int n) { int i, j, k = 0; for (i = 1; i>=1; i) for (j = 1; j <= n; j++)	
		int fun(int n) { int i, j, k = 0; for (i = 1; i>=1; i) for (j = 1; j <= n; j++)	

Q.No: 3	MCQ	What is the contents of the array just before the final merge procedure of merge sort is applied to the array {1, 3, 6, 5, 7, 8, 4}. The division point in merge sort is (lb+ub)/2, where lb is the lower bound & ub is the upper bound of the array. A. {1, 3, 5, 6, 4, 7, 8} B. {1, 3, 6, 4, 5, 7, 8} C. {1, 3, 6, 4, 7, 5, 8} D. {1, 3, 4, 5, 6, 7, 8}	A
	MCQ	What is the contents of the array just before the final merge procedure of merge sort is applied to the array {1, 3, 6, 7, 5, 8, 4}. The division point in merge sort is (lb+ub)/2, where lb is the lower bound & ub is the upper bound of the array. A. {1, 3, 5, 6, 4, 7, 8} B. {1, 3, 6, 4, 5, 7, 8} C. {1, 3, 6, 7, 4, 5, 8} D. {1, 3, 4, 5, 6, 7, 8}	С
	MCQ	What is the contents of the array just before the final merge procedure of merge sort is applied to the array {1, 3, 4, 5, 6, 7, 8}. The division point in merge sort is (lb+ub)/2, where lb is the lower bound & ub is the upper bound of the array. A. {1, 3, 5, 6, 4, 7, 8} B. {1, 3, 6, 4, 5, 7, 8} C. {1, 3, 6, 7, 4, 5, 8} D. {1, 3, 4, 5, 6, 7, 8}	D
	MCQ	What is the contents of the array just before the final merge of merge sort is applied to the array {1, 3, 4, 6, 8, 7, 5}. The division point in merge sort is (lb+ub)/2, where lb is the lower bound & ub is the upper bound of the array. A. {1, 3, 5, 6, 4, 7, 8} B. {1, 3, 4, 6, 5, 7, 8} C. {1, 3, 6, 4, 5, 7, 8} D. {1, 3, 4, 7, 6, 5, 8}	В
Q.No:	MCQ	Quick Sort uses A. Divide & Conquer Strategy B. Back Tracking C. Greedy Approach D. Dynamic Programming	A
	MCQ	LCS uses A. Divide & Conquer Strategy B. Back Tracking C. Greedy Approach D. Dynamic Programming	D
	MCQ	Activity Selection Problem uses A. Divide & Conquer Strategy B. Back Tracking C. Greedy Approach D. Dynamic Programming	C
	MCQ	Dijkestra's algorithm uses A. Divide & Conquer Strategy B. Back Tracking C. Greedy Approach D. Dynamic Programming	C

Q.No: 5	MCQ	Given items as {value, weight} pairs {{60,20},{50,25},{20,5}}. The capacity of knapsack=10. Find the maximum value output assuming items to be divisible and nondivisible respectively. A. 35, 20 B. 50, 20 C. 90, 80 D. 100, 80 Given items as {value, weight} pairs {{60,20},{50,25},{20,5}}.	В
		The capacity of knapsack=15. Find the maximum value output assuming items to be divisible and nondivisible respectively. A. 35, 20 B. 50, 20 C. 90, 80 D. 100, 80	
	MCQ	Given items as {value, weight} pairs {{60,20},{50,25},{20,5}}. The capacity of knapsack=30. Find the maximum value output assuming items to be divisible and nondivisible respectively. A. 35, 20 B. 50, 20 C. 90, 80 D. 100, 80	C
	MCQ	Given items as {value, weight} pairs {{60,20},{50,25},{20,5}}. The capacity of knapsack=35. Find the maximum value output assuming items to be divisible and nondivisible respectively. A. 35, 20 B. 50, 20 C. 90, 80 D. 100, 80	D
Q.No:	MCQ	What is the minimum number of scalar multiplications needed to evaluate a matrix-chain product with the sequence of dimensions <2, 2, 2, 2, 2>? A. 24 B. 32 C. 40 D. 64	A
	MCQ	What is the minimum number of scalar multiplications needed to evaluate a matrix-chain product with the sequence of dimensions <2, 2, 2, 2, 2, 2>? A. 24 B. 32 C. 40 D. 64	В
	MCQ	What is the minimum number of scalar multiplications needed to evaluate a matrix-chain product with the sequence of dimensions <2, 2, 2, 2, 2, 2, 2>? A. 24 B. 32 C. 40 D. 64	C

	MCQ	What is the minimum number of scalar multiplications needed to evaluate a matrix-chain product with the sequence of dimensions <4, 4, 4, 4, 4>? A. 32 B. 64 C. 192 D. 256	C
Q.No: 7	MCQ	 Let X be a problem that belongs to the class NP. Then which one of the following is TRUE? A. There is no polynomial time algorithm for X. B. If X can be solved deterministically in polynomial time, then P = NP. C. If X is NP-hard, then it is NP-complete. D. X may be undecidable 	C
	MCQ	is the class of decision problems that can be solved by non-deterministic polynomial algorithms? A. NP B. P C. Hard D. Complete	A
	MCQ	How many conditions have to be met if an NP- complete problem is polynomially reducible? A. 1 B. 2 C. 3 D. 4	В
	MCQ	A problem which is both and is said to be NP complete. A. NP, NP hard B. P, P complete C. Hard, Complete D. NP, P	A

SECTION-B (Answer Any Three Questions. Each Question carries 12 Marks)

Time: 1 Hour and 30 Minutes

(3×12=36 Marks)

Ques		Question						
No	1	Waite the classical control of the c						
Q. No:	a)	Write the algorithm for insertion sort and time complexity.	use step count method to analyze its					
8		Evaluation Scheme						
		Insertion sort algorithm : 6 Marks						
		 Analysis of time complexity: 6 Marks 						
		1 1102y 010 01 011110 00111p.10111y. 0 111111110						
		Answer/Solution						
		Line Insertion Sort Algorithm No.	Cost Times					
		1 INSERTION-SORT(A)	0					
		2 {	0					
		3 for $j\leftarrow 2$ to length[A]	c1 n					
		4 {	0					
		5 $\text{key}\leftarrow A[j]$	c2 n-1					
		6 //Insert A[j] into the sor A[1j-1]	ted sequence 0					
		7 i←j-1	c3 n-1					
		8 while(i>0 and A[i]>key)						
		([]	$\sum_{j=2}^{t_{J}}$					
		9 {	0					
		10 A[i+1]←A[i]	$\sum_{j=2}^{n} (tj-1)$					
		11 i←i-1	c5 $\sum_{j=2}^{n} (tj - 1)$ c6 $\sum_{j=2}^{n} (tj - 1)$					
		12 }	0					
		13 A[i+1]←key	c7 n-1					
		14 }	0					
		15 }	0					
		Analysis of Time Complexity of Insertion S	ort Algorithm					
		To compute T(n), the running time of INSERT						
		sum the products of the cost and times column,						
		$T(n) = c1n + c2(n-1) + c3(n-1) + c4\sum_{j=2}^{n} tj + c5\sum_{j=2}^{n} (tj-1) + c6\sum_{j=2}^{n} (tj-1) + c7(n-1) \dots (1)$						
		Best case Analysis:						
		Best case occurs if the array is already s						
		• For each j=2 to n, we find that A[i]≤ke	=					
		value of j-1. Thus tj=1 for j=2 to n and t T(n)=c1n + c2(n-1) + c3(n-1) + c4(n-1) + c7(n-1)	_					
		Worst case Analysis:	1) 3(1)					
		Worst case occurs if the array is already	sorted in reverse order					
		• In this case, we compare each elemen						
		sorted subarray A[1j-1], so tj=j for j=2						
		• The worst case running time is						
		T(n)=c1n + c2(n-1) + c3(n-1) + c4(n(n+1)/2-1) + c5(n(n-1)/2)	$+ c6(n(n-1)/2) + c7(n-1) = O(n^2)$					

b) Consider the following function int fun(int n) {

if (n<=1) return 1;

else

}

a) What does the above function compute?

return fun(n-1) + fun(n-2);

- b) Executing the function for n=6 results in the function being recursively invoked with the arguments n=1, 2, 3, 4 and 5. Draw a recurrence tree to illustrate this fact.
- c) How many additions are performed to compute fun(6)?
- d) Assuming that each addition taken constant time, write a recurrence relation for the running time of fun(n) & solve the recurrence.

Evaluation Scheme

- Part-a: Mentioning the task of function fun(): 2 Marks
- Part-b: Drawing recurrence tree for function fun(6): 4 Marks
- Part-c: Mentioning number of additions performed by calling fun(6): 2 Marks
- Part-d: Writting a recurrence relation for the running time of fun(n) & solving the recurrence: 4 Marks

Answer/Solution

- a) The function fun() computes the (n-1)th fibanacci number in the fibanacci sequence starting from 1, 1, 2, 3,.....
- b) Recurrence Tree for fun(6)

- Total number of additions are performed to compute fun(6) = 12
- d) Assuming that each addition taken constant time, the recurrence relation for the running time of fun(n) is as follows:

T(n) = T(n-1) + T(n-2) + 1(I)

Now the recurrence is solved as follows:

Establishing a lower bound by approximating that $T(n-1) \sim T(n-2)$, though $T(n-1) \geq T(n-2)$, hence lower bound, the recurrence eq-1 becomes

$$T(n) = T(n-2) + T(n-2) + 1$$

$$= 2T(n-2) + 1$$

$$= 2\{2T(n-4) + 1\} + 1$$

$$= 2^{2}T(n-4) + 3$$

$$= 2^{2}\{2T(n-6) + 1\} + 3$$

$$= 2^{3}T(n-6) + 7$$

$$= 2^{3}\{2T(n-8) + 1\} + 7$$

$$= 2^{4}T(n-8) + 15$$
.....
.....
$$= 2^{i}T(n-2*i) + 2^{i}-1$$

To find out the value of i for which: $n - 2*i = 0 \Rightarrow i = n/2$

$$\begin{split} &= 2^{n/2}T(0) + 2^{n/2}\text{-}1 \\ &= 2^{n/2}x1 + 2^{n/2}\text{-}1 \\ &= 2^{n/2} + 2^{n/2}\text{-}1 \quad \sim O(2^{n/2}) \end{split}$$

Establishing an upper bound by approximating that $T(n-2) \sim T(n-1)$, though $T(n-1) \ge T(n-2)$, hence upper bound, the recurrence eq-1 becomes

$$T(n) = T(n-1) + T(n-1) + 1$$

$$= 2T(n-1) + 1$$

$$= 2\{2T(n-2) + 1\} + 1$$

$$= 2^{2}T(n-2) + 3$$

$$= 2^{2}\{2T(n-3) + 1\} + 3$$

$$= 2^{3}T(n-3) + 7$$

$$= 2^{3}\{2T(n-4) + 1\} + 7$$

$$= 2^{4}T(n-4) + 15$$
.....
$$= 2^{i}T(n-i) + 2^{i} - 1$$

To find out the value of i for which: $n - i = 0 \Rightarrow i = n$

```
= 2^{n}T(0) + 2^{n}-1
= 2^{n}x1 + 2^{n}-1
= 2^{n} + 2^{n}-1 \sim O(2^{n})
```

Hence, the time complexity of function fun() in worst case = $O(2^n)$

- **C)** Deduce the running time T(n) in asymptotic Θ-notation for all of these recurrences using the method mentioned against each case:
 - (i) T(n) = 3T(n/3) + n if n > 3 and T(1) = 1 (Use Master Theorem)
 - (ii) $T(n) = \sqrt{n} T(\sqrt{n}) + n \log n$, if n > 2 and T(2) = 2

(Use repeated Recurrence Relation)

(iii) T(n) = T(2n/3) + T(n/3) + n, if n > 1 and T(1) = 1 (Use Recurrence Tree)

Evaluation Scheme

- Solving each recurence by the specific procedure as directed: 4 Marks
- Solving each recurrence other than specified method: 2 Marks

Answer/Solution

(i) T(n) = 3T(n/3) + n if n > 3 and T(1) = 1 (Use Master Theorem) Solution to the recurrence => $T(n) = \Theta(n \log n)$ Explanation

Type:-1 (Master Theorem as per CLRS)

Master Theorem

The Master Theorem applies to recurrences of the following form:

$$T(n) = aT(n/b) + f(n)$$

where $a \ge 1$ and b > 1 are constants and f(n) is an asymptotically positive function. T(n) is defined on the non-negative integers by the recurrence.

T(n) can be bounded asymptotically as follows: There are 3 cases:

a) Case-1: If
$$f(n) = O(n^{\log_b a - \epsilon})$$
 for some constant $\epsilon > 0$,

then
$$T(n) =$$

$$\Theta(n^{\log_b a})$$

b) Case- 2: If
$$f(n) = \Theta(n^{\log_b a})$$
, then $T(n) = \Theta(n^{\log_b a} \log n)$

c) Case-3: If
$$f(n) = \Omega(n^{\log_b a^+ \epsilon})$$
 with $\epsilon > 0$, and : $af(n/b) \le cf(n)$, then $T(n) = \Theta(f(n))$, for some constant $c < 1$ and all sufficiently large n, then $T(n) = \Theta(f(n))$

Solution of recurrence

$$T(n) = 3T(n/3) + n$$

Given,
$$a=3$$
, $b=3$, $f(n)=n$

Step-1 (Guess)

 $\overline{n^{\log}_b}^a = \overline{n^{\log}_3}^3 = n$, Comparing $n^{\log}_b{}^a$ with f(n), f(n) is found same as $n^{\log}_b{}^a$. So case-2 of master theorem is guessed.

Step-2

As per case-2 of master theorem, So the solution is

$$T(n) = \Theta(n^{\log_b a} \log n) = \Theta(n \log n)$$

Type:-2 (Master Theorem)

Master Theorem

If the recurrence is of the form

$$T(n) = aT(n/b) + n^k \log^p n,$$

where $a \ge 1$, b > 1, $k \ge 0$ and p is a real number, then comapre a with b^k and conclude the solution as per the following cases.

Case-1: If
$$a > b^k$$
, then $T(n) = \Theta(n^{\log_b a})$

Case-2: If
$$a = b^k$$
, then

a) If
$$p > -1$$
, then

$$T(n) = \Theta(n^{\log_b a} \log^{p+1} n)$$

b) If
$$p = -1$$
, then

$$T(n) = \Theta(n^{\log_b a} \log \log n)$$

c) If
$$p < -1$$
, then $T(n) = \Theta(n^{\log_b a})$

Case-3: If $a < b^k$, then

a) If
$$p \ge 0$$
, then $T(n) = \Theta(n^k \log^p n)$

b) If
$$p < 0$$
, then $T(n) = \Theta(n^k)$

Solution of recurrence

$$T(n) = 3T(n/3) + n$$

$$b^k = 3^1 = 3$$

Comparing a with b^k , we found a is same as b^k , so this will fit to case-2. Now p=0, so case-2.a solution is the recurrence solution that is

If
$$p > -1$$
, then

$$T(n) = \Theta(n^{\log_b a} \log^{p+1} n)$$

$$T(n) = \Theta(n \log n)$$

(ii) $T(n) = \sqrt{n} T(\sqrt{n}) + n \log n$, if n > 2 and T(2) = 2 (Use repeated Recurrence Relation)

Explanation

$$T(n) = \sqrt{n} T (\sqrt{n}) + n \log n$$

$$T(n) = \sqrt{n} T(n) + n \log n$$

$$= n^{\frac{1}{2}} T(n^{\frac{1}{2}}) + n \log n$$

$$= n^{\frac{1}{2}} \left\{ n^{\frac{1}{2}} T(n^{\frac{1}{2}}) + n^{\frac{1}{2}} \log n^{\frac{1}{2}} \right\} + n \log n$$

$$= n^{\frac{1}{2} + \frac{1}{2}} T(n^{\frac{1}{2}}) + n^{\frac{1}{2}} \log n^{\frac{1}{2}} + n \log n$$

$$= n^{\frac{1}{2} + \frac{1}{2}} T(n^{\frac{1}{2}}) + n \log n^{\frac{1}{2}} + n \log n$$

$$= n^{\frac{1}{2} + \frac{1}{2}} T(n^{\frac{1}{2}}) + n^{\frac{1}{2}} \log n^{\frac{1}{2}} + n \log n$$

$$= n^{\frac{1}{2} + \frac{1}{2}} T(n^{\frac{1}{2}}) + n^{\frac{1}{2}} \log n^{\frac{1}{2}} + n \log n$$

$$= n^{\frac{1}{2} + \frac{1}{2}} T(n^{\frac{1}{2}}) + n \log n^{\frac{1}{2}} + n \log n$$

$$= n^{\frac{1}{2} + \frac{1}{2}} T(n^{\frac{1}{2}}) + n \log n^{\frac{1}{2}} + n \log n$$

$$= n^{\frac{1}{2} + \frac{1}{2}} T(n^{\frac{1}{2}}) + n \log n^{\frac{1}{2}} + n \log n$$

$$= n^{\frac{1}{2} + \frac{1}{2}} T(n^{\frac{1}{2}}) + n \log n^{\frac{1}{2}} T(n^{\frac{1}{2}}) +$$

$$det \quad n^{2i} = 2 \quad (T(2) = 2 \quad Given)$$

$$\Rightarrow [i = log log n]$$

$$\frac{1}{2} + \frac{1}{2}z + \frac{1}{2}z + \cdots + \frac{1}{2} r_{glign} = \sum_{i=1}^{log log n} (\frac{1}{2})^{i}$$

$$\frac{1 - \frac{1}{2} liglign}{l-1} = (\frac{1}{2})^{i} = \frac{1}{2} r_{glign} = \sum_{i=1}^{log log n} (\frac{1}{2})^{i}$$

$$= 2 (1 - \frac{1}{2} lig lign) - 1 \quad \text{If } Gip Sentes.$$

$$\frac{1}{2}i + \frac{1}{2}z + \cdots + \frac{1}{2} r_{glign} = 2 (\frac{1}{2} r_{glign})$$

$$= \sum_{i=0}^{log log n} (\frac{1}{2})^{i} = \frac{1 - \frac{1}{2} r_{glign}}{1 - \frac{1}{2}} = 2 (\frac{1}{2} r_{glign})$$

$$= \sum_{i=0}^{log log n} (\frac{1}{2})^{i} = \frac{1 - \frac{1}{2} r_{glign}}{1 - \frac{1}{2}} = 2 (\frac{1}{2} r_{glign})$$

$$= \sum_{i=0}^{log log n} (\frac{1}{2})^{i} = \frac{1 - \frac{1}{2} r_{glign}}{1 - \frac{1}{2}} = 2 (\frac{1}{2} r_{glign})$$

$$= \sum_{i=0}^{log log n} (\frac{1}{2})^{i} = \frac{1 - \frac{1}{2} r_{glign}}{1 - \frac{1}{2}} = 2 (\frac{1}{2} r_{glign})$$

$$= \sum_{i=0}^{log log n} (\frac{1}{2})^{i} = \frac{1 - \frac{1}{2} r_{glign}}{1 - \frac{1}{2}} = 2 (\frac{1}{2} r_{glign})$$

$$= \sum_{i=0}^{log log n} (\frac{1}{2})^{i} = \frac{1 - \frac{1}{2} r_{glign}}{1 - \frac{1}{2}} = 2 (\frac{1}{2} r_{glign})$$

$$= \sum_{i=0}^{log log n} (\frac{1}{2})^{i} = \frac{1 - \frac{1}{2} r_{glign}}{1 - \frac{1}{2}} = 2 (\frac{1}{2} r_{glign})$$

$$= \sum_{i=0}^{log log n} (\frac{1}{2})^{i} = \frac{1 - \frac{1}{2} r_{glign}}{1 - \frac{1}{2}} = \frac{1 - \frac{1}{2} r_{glign}}{1 - \frac{1}{$$

(iii) T(n) = T(2n/3) + T(n/3) + n, if n > 1 and T(1) = 1 (Use Recurrence Tree) Solution to the recurrence => T(n)= $\Theta(n \log n)$ Explanation

In the recurrence tree, the leaves are between the levels $\log_3 n$ and $\log_{3/2} n$. From the computation tree, it is clear that the maximum height is $\log_{3/2} n$. Therefore, the cost is at most $\log_{3/2} n \cdot cn = O(n \log n)$. Similarly, the minimum height is $\log_3 n$. Therefore, the cost is at least $\log_3 n \cdot cn = \Omega(n \log n)$. Thus, $T(n) = \Theta(n \log n)$

Q. No: 9

a) Given a sorted array with n distinct elements, we are required to find three such distinct elements whose sum is equal to x. Design an $O(n^2)$ algorithm that implements the above mentioned requirements and analyze its time complexity.

Evaluation Scheme

- Correct Algorithm with O(n²) Time Complexity: 12 Marks
- Other Correct Algorithm more than O(n²): 8 Marks
- Incorrect algorithm, but some valid steps: step marks (1-5 Marks)

Answer/Solution

```
void findTripletsSumX(int a[], int n)
  int i, j, k;
  for(i = 0; i < n-2; i++)
      // index of the first element in the remaining elements.
      i = i + 1;
     // index of the last element.
      k = n - 1;
     while (i < k)
             if((a[i] + a[j]) + a[k] = x)
                 printf("\n %d + %d + %d = %d", a[i], a[i], a[k], x);
                 return;
             else if ((a[i] + a[j]) + a[k] > x)
                   k--;
             else
                   j++;
   printf("\nNo three elements are found, whose sum is equal to %d.", x);
```

Time Complexity = $O(n^2)$

- b) a) Write a pseudocode for a divide-and-conquer algorithm for the exponentiation problem of computing an where a > 0 and n is a positive integer.
 - b) Set up and solve a recurrence relation for the number of multiplications made by this algorithm.
 - c) How does this algorithm compare with the brute-force algorithm for this problem?

Evaluation Scheme

- Part-a: Writing correct psedocode for computing an by divide-and-conquer algorithm: 4 Marks
- Part-b: Set up and solve a recurrence relation for an: 4 Marks
- Part-c: Comparision of divide-conquer approach with brute-force approach for solving exponentiation problem of computing aⁿ: 4 Marks

Answer/Solution

Part-a

```
//Computes an by a divide-and-conquer algorithm
//Input: A positive number a and a positive integer n
//Output: The value of a<sup>n</sup>
Algorithm DivConqPower(a, n)
   if (n = 1)
       return a;
   else return DivConqPower(a, n/2) * DivConqPower(a, n/2);
} x0007
```

Part-b

The recurrence for the number of multiplications is

```
T(n) = 2T(n/2) + 1 for n > 1, T(1) = 0
```

By solving the master theorem,

a=2, b=2, k=0, p=0

 $b^k=2^0=1 \Rightarrow$ Comparing a with b^k , a is found greater than b^k . So it is Case-1 of master theorem. The solution is

 $T(n) = \Theta(n^{\log_b a}) = \Theta(n)$

Part-c

Comparision

- In brutefore approach the recurrence relation for a^n is T(n) = T(n-1) + 1 as an is thought be $a^n = a*a^{n-1}$, The solution is $T(n) = \Theta(n)$.
- By comparing in terms of time complexity, both exibits the same means the same number of multiplications.
- Though the algorithm makes the same number of multiplications as the brute-force method, it has to be considered inferior to the latter because of the recursion overhead.
- **c**) A and B are playing a guessing game where B first thinks up an integer X (positive, negative or zero, and could be of arbitrarily large magnitude) and A tries to guess it. In response to A's guess, B gives exactly one of the following three replies:
 - i) Try a bigger number
 - ii) Try a smaller number or
 - iii) You got it.

Write a program by designing an efficient algorithm to minimize the number of guesses A has to make. An example (not necessarily an efficient one) below:

Let B thinks up the number 35

B's response A's guess

Try a bigger number 10 Try a bigger number 20 Try a bigger number 30

40 Try a smaller number

You got it 35

Evaluation Scheme

- Solving the problem by Binary Search Algorithm: 12 Marks
- Solving other than binary search: 0-6 Marks

Answer/Solution

/*You think a number x in between low & high, where x, low & high are integers. Computer will gues it with minimum number of attempt with your three types of feedback suck as Try a bigger number or Try a smaller number or You got it after each attempt.*/

```
void BINARY-SEARCH-GUESS(int low, int high, int x)
        int ag;
        while(1)
            printf("\nYou: Guess a number:");
            //Function to generate random number within a range
            ag=RANDOM-NUM(low, high);
            printf("\nComputer: The number is %d.", ag);
            if (ag = = x)
              printf("\nYou: You Got it");
              break:
            else if(ag\leqx)
              printf("\nYou: Try a bigger number ");
              low=ag;
           else
             printf("\nTry a smaller number ");
             high=ag;
       }
a)
```

Q. No: 10

Given two halls and 10 activities, A=<A1, A2,....,A10> along with their start time (si) and finish time (fi) as si=<2,3,2,8,5,7,6,4,7,2> and fi=<3,4,5,9,6,8,7,7,9,5>. Determine an efficient algorithm & apply to the above data where largest number of activities can be scheduled in these two halls.

Evaluation Scheme

- Greedy Activity Selector Algorithm: 6 Marks
- Solution to the problem with proper explanation: 6 Marks

Answer/Solution

```
GREEDY-ACTIVITY-SELECTOR
                                        TWO-STAGE-GREEDY-ACTIVITY-SELE
-MODIFIED (s, f, status)
                                        CTOR(s, f)
  n \leftarrow length[s]
                                          Sort the activities as per their finishing
  //Selection of first activity of an
                                        times
optimal set of a stage
                                          //Initially no activity is selected
                                           for k \leftarrow 1 to n
  for k \leftarrow 1 to n
     if (status[k] == 0)
                                              status[k] = 0;
     A \leftarrow \{ak\}
     i \leftarrow k
                                           for i \leftarrow 1 to 2
     status[k]=1;
     break;
                                           A ←
                                        GREEDY-ACTIVITY-SELECTOR-MODIF
                                        IED (s, f, status)
 //Selection of rest activities of an
                                           print Stage-i Optimal Activity Set: A
optimal set of a stage
                                           }
  for m \leftarrow i+1 to n
```

```
{
    if (status[m]==0 and sm ≥ fi)
    {
        A ← A U {am}
        i ← m
        status[m]=1;
    }
    return A
}
```

Given,

```
ai = <A1, A2, A3, A4, A5, A6, A7, A8, A9, A10>
si = <2, 3, 2, 8, 5, 7, 6, 4, 7, 2>
fi = <3, 4, 5, 9, 6, 8, 7, 7, 9, 5>
```

Arranging the activities in increasing order with their finishing time.

$\mathbf{a_i}$	Si	fi	First Stage Selection (Yes/No)	Second Stage Selection (Yes/No)
A1	2	3		
A2	3	4	V	
A3	2	5	X	$\sqrt{}$
A10	2	5	X	X
A5	5	6		
A7	6	7		
A8	4	7	X	Х
A6	7	8		
A4	8	9		
A9	7	9	X	

Optimal Schedule: Stage-1 = <A1, A2, A5, A7, A6, A4> Stage-II = <A3, A9>

b) PRINT-LCS() function is used to print LCS of two given sequences X & Y with lenths m & n respectively. Write an algorithm by using PRINT-LCS() function to print all possible LCS & apply to the following data.

X=<0,1,0,0,1,1,0>

Y=<1,1,0,1,0,1>

Evaluation Scheme

- Correct Algorithm to print all possible LCS with PRINT-LCS function: 6 Marks
- Finding all possible LCS: 6 Marks
- Finding only one LCS: 3 Marks

Answer/Solution

Given X=<0,1,0, Y=<1,1,0,											
In	dex	j	0	1	1	2	3	4	4	5	6
	i		Уj	1	l	1	0	1		0	1
(0	Xi	0	()	0	0	0	(0	0
	1	0	0	0	^	0^	1\	1<	1	1\	1\
	2	1	0	1	.\	1\	1^	2 \	2	<	2\
·	3	0	0	1	^	1^	2\	2^	3	3\	3<
•	4	0	0	1	^	1^	2\	2^	3	<mark>3\</mark>	3^
;	5	1	0	1	.\	2\	2^	3\	3	<u>^</u>	4\
(6	1	0	1	.\	2\	2^	3\	3	,^	<mark>4\</mark>
By calling				X, 7, 6)				3^	4	1\	4^
	; PRIN PRIN	NT-LC NT-LC 0> >	CS(b, X	X, 7, 6)	=> LCS	S-1: 01	01		5	6	4^
By calling <u>Given</u> X=<0,1,0, Y=<1,1,0,	; PRIN PRIN 0,1,1,	NT-LC NT-LC ,0> >	CS(b, X	X, 7, 6) X, 7, 5)	=> LC;	S-1: 01 S-2: 10	01	ļ			
Given X=<0,1,0, Y=<1,1,0,	; PRIN PRIN 0,1,1,	NT-LC NT-LC (0> >	CS(b, X CS(b, X	X, 7, 6) X, 7, 5)	=> LCS => LCS	S-1: 01 S-2:10	01 10	 	5	6	
Given X=<0,1,0, Y=<1,1,0, Index	; PRIN PRIN 0,1,1, 1,0,1; j	NT-LC NT-LC 0 > >	CS(b, X) CS(b, X)	X, 7, 6) X, 7, 5)	=> LCS => LCS 2	3 0	01 10 4	ļ.)	5	6	
By calling Given X=<0,1,0, Y=<1,1,0, Index i	; PRIN PRIN 0,1,1, 1,0,1; j	NT-LC NT-LC	CS(b, X) CS(b, Z)	1 0	=> LCS => LCS	3 0	01 10 4		5 1 0	6 1 0	
By calling Given X=<0,1,0, Y=<1,1,0, Index i 0 1	yi	NT-LC NT-LC	0 0 0	1 0 0	=> LCS => LCS	3 0	01 10 4 0		5 1 0	6 1 0	1 2
Eiven X=<0,1,0, Y=<1,1,0, Index i 0 1 2	j PRIN PRIN 0,1,1, 1,0,1; j	NT-LC NT-LC	0 0 0 0	1 0 0 0 0^	=> LCS => LCS 2 1	3 0 1^	01 10 4 0 1		5 1 0 1\	6 1 0 1\ 2\	1 2
Eiven X=<0,1,0, Y=<1,1,0, Index i 0 1 2 3	yi 1 0	NT-LC NT-LC 0> >	CS(b, X) CS(b, X) 0 0 0 0 0	1 0 0 0^ 1\	=> LCS => LCS 2 1 0 1\1	3 0 0 1^ 2\	01 10 4 0 1 1 2		5 1 0 1\ 2\	6 1 0 1\ 2\ 2^	1 2 3

```
By calling PRINT-LCS(b, X, 6, 7) => LCS-3: 1110
PRINT-LCS(b, X, 6, 6) => LCS-4:1011
PRINT-LCS(b, X, 6, 5) => LCS-5:1001
```

Algorithm Algorithm For Computing a c table for For Constructing an LCS getting the length of an LCS & table for printing the LCS LCS-LENGTH (X, Y) PRINT-LCS(b, X, i, j) if i = 0 or j = 0 $m \leftarrow length[X]$ $n \leftarrow length[Y]$ then return for $i \leftarrow 0$ to m if b[i][i] = "" $c[i][0] \leftarrow 0$ for $j \leftarrow 1$ to n PRINT-LCS(b, X, i - 1, j - 1) $c[0][i] \leftarrow 0$ print xi for $i \leftarrow 1$ to m elseif $b[i][j] = "^"$ for $j \leftarrow 1$ to n PRINT-LCS(b, X, i - 1, j) if(xi == yj)PRINT-LCS(b, X, i, j - 1) } $c[i][j] \leftarrow c[i-1][j-1]+1$ $b[i, j] \leftarrow "\"$ else if $c[i - 1][j] \ge c[i][j - 1]$ $c[i][j] \leftarrow c[i-1][j]$ $b[i,j] \leftarrow "^{"}$ else $c[i][j] \leftarrow c[i][j-1]$ $b[i][j] \leftarrow "<"$ } //end for inner for } //end of outer for return c and b

c) Suppose a file contains 1 lakh characters & the characters in the data occur with following frequencies.

character	frequency
a	38,000
b	14,000
c	11,000
d	15,000
e	12,000
f	10,000

Write Huffman code algorithm & apply on the above data to encode each character. A variable-length code can do considerably better than a fixed-length code. Justify your answer by taking the above data as an example.

Evaluation Scheme

- Huffman code algorithm : 4 Marks
- Huffman tree construction with the given data: 5 Marks
- Comparing huffman with fixed code: 3 Marks

Answer/Solution

Huffman Code Algorithm

```
\label{eq:huffman} \begin{split} &HUFFMAN(C) \\ &\{ &n \leftarrow |C| \\ &Q \leftarrow C \\ &\text{for } I \leftarrow 1 \text{ to } n-1 \\ &\text{do allocate a new node } z \\ &\text{left}[z] \leftarrow x \leftarrow EXTRACT\text{-MIN }(Q) \\ &\text{right}[z] \leftarrow y \leftarrow EXTRACT\text{-MIN }(Q) \\ &\text{f}\left[z\right] \leftarrow f\left[x\right] + f\left[y\right] \\ &\text{INSERT}(Q,z) \\ &\text{return } EXTRACT\text{-MIN}(Q) \text{ //Return the root of the tree.} \end{split}
```

Given Data

character	frequency	Frequency/1000
a	38,000	38
Ъ	14,000	14
c	11,000	11
d	15,000	15
e	12,000	12
f	10,000	10

- Initially Construct a min heap by taking value as each character's frequency
- Each step extract two chacters with min. values (let min-1 & ymin-2 & add the values min-1 & min-2, let the addition is z. Construct a binary tree with z as the root with left child as min-1 & right child as min-2. After that insert z back to min priority queue.

Drawing of Huffman Tree &Codes

Sl. No.	Character	Frequen cy	Huffman Code
1	a	38, 000	0
2	b	14,000	101
3	c	11,000	1111
4	d	15, 000	110
5	e	12,000	100
6	f	10,000	1110

Number of bits required in Huffman Code (Variable code) = 38000*1 + 14000*3 + 11000*4 + 15000*3 + 12000*3 + 10000*4 = 245000 bits With Fixed code=100000 *3 = 300000 bits.

Comaring both Variable code is better.

Q. No: a) Consider the adjacency list of the directed graph given below.

 $A \rightarrow B$, E, F; $B \rightarrow C$, D; $C \rightarrow A$; $D \rightarrow A$, F; $E \rightarrow G$; $F \rightarrow NIL$; $G \rightarrow F$

Demonstrate the DFS (depth-first search) algorithm on it. Write the initialization and explain how the relevant parameters and data structures are updated during the execution. In the final step, you should write the DFS tree(s), and also the forward edges, cross edges, and back edges, if any. Use node 'A' as source node while answering the question.

Evaluation Scheme

- Explanation of DFS algorithm through DFS tree/forest: 8 Marks
- Explanation/marking of tree edges, forward edges, cross edges, and back edges on final step of the DFS tree/forest or on the given graph: 4 Marks

Answer/Solution

DFS Sequencs: A, B, C, D, F, E, G

b) Execute Dijkstra's algorithm on the following graph where a is the source vertex.

Show the intermediate steps through diagrams that will indicate the following.

- a) The order in which the vertices are removed from the priority queue.
- b) The final distance values d[] for each vertex.

Evaluation Scheme

- Missing weight (b, e) will be assumed 1 (default). If any other value is assumed by the students, also will be accepted. Accordingly answer will vary.
- Execute Dijkstra's algorithm through step by step diagram: 12 Marks

c) Consider the following graph:

Consider the adjacency list of this graph given below.

 $a \rightarrow b$, c, d, e; $b \rightarrow a$, d, f; $c \rightarrow a$, g; $d \rightarrow a$, b, f; $e \rightarrow a$, g; $f \rightarrow b$, d

- a) Compute the DFS tree starting with vertex 'a' and draw the tree edges, forward edges, back edges and cross edges.
- b) Write the order in which the vertices were reached for the first (i.e.pushed into the stack)
- c) Write the order in which the vertices became dead ends (i.e. popped from the stack)

Evaluation Scheme

- Compuing the DFS tree starting with vertex 'a' and draw the tree edges, forward edges, back edges and cross edges: 8 Marks
- Writing the correct order in which the vertices were reached for the first: 2 Marks
- Writing the correct order in which the vertices became dead ends: 2 Marks

Answer/Solution

Part-a

Part-b:

The correct order in which the vertices were reached for the first is as follows: a, b, d, f, c, g, e

Part-c:

The correct order in which the vertices became dead ends is as follows: f, d, b, e, g, c, a