Elemente de geometrie computațională

Elemente de geometrie cu aplicabilitate în problemele de informatică

Distanța între două puncte

Distanța între două puncte $A(x_A, y_A)$ și $B(x_B, y_B)$ este: $D = sqrt((x_A - x_B)^*(x_A - x_B) + (y_A - y_B)^*(y_A - y_B))$

Ecuația unei drepte

Ecuația unei drepte ce trece prin punctele $A(x_A, y_A)$ și $B(x_B, y_B)$

$$\frac{x - x_A}{x_B - x_A} = \frac{y - y_A}{y_B - y_A}$$

$$x(y_B - y_A) + y(x_A - x_B) + y_A x_B - x_A y_B = 0$$

Mijlocul unui segment

Mijlocul M al segmentului AB are coordonatele:

$$x_{M} = (x_{A} + x_{B})/2$$
 $y_{M} = (y_{A} + y_{B})/2$

Lungimea unui segment

Lungimea segmentului AB=
$$\sqrt{(x_A - x_B)^2 + (y_A - y_B)^2}$$

Poziția unui punct față de o dreaptă

Pentru a afla poziția punctului $C(x_C, y_C)$ introducem coordonatele acestuia în ecuația:

și obținem:
$$x(y_B - y_A) + y(x_A - x_B) + y_A x_B - x_A y_B = 0$$
 $x_C(y_B - y_A) + y_C(x_A - x_B) + y_A x_B - x_A y_B = 0$ dacă $C \in AB$

Poziția unui punct față de o dreaptă

■ Pentru a afla poziția punctului C(x_C, y_C) introducem coordonatele acestuia în ecuația:

și obținem:
$$x(y_B - y_A) + y(x_A - x_B) + y_A x_B - x_A y_B = 0$$

 $x_C(y_B - y_A) + y_C(Aacă_C) + pexo parte adoeptei$

Poziția unui punct față de o dreaptă

■ Pentru a afla poziția punctului C(x_C, y_C) introducem coordonatele acestuia în ecuația:

și obținem:
$$x(y_B - y_A) + y(x_A - x_B) + y_A x_B - x_A y_B = 0$$

 $x_C(y_B - y_A) + y_C \operatorname{dacă}_A C) e pe sealată, parte a dreptei$

Distanța de la un punct la o dreaptă

Distanța de la punctul C(x_C, y_C) la dreapta ax+bx+c=0 este $\frac{|ax_C + by_C + c|}{\sqrt{a^2 + b^2}}$

Din ecuația: $x(y_B - y_A) + y(x_A - x_B) + y_A x_B - x_A y_B = 0$ se obțin a, b și c

Aria unui triunghi

Aria triunghiului determinat de punctele $A(x_A, y_A)$, $B(x_B, y_B)$, $C(x_C, y_C)$

este :
$$\frac{1}{2}\begin{vmatrix} x_A & y_A & 1 \\ x_B & y_B & 1 \\ x_C & y_C & 1 \end{vmatrix}$$
 (jumătate din modului determinantului)

Adică
$$A_{ABC}$$
: $(x_A^* y_B + x_B^* y_C + x_C^* y_A - x_C^* y_B - x_B^* y_A - x_A^* y_C)/2$

Se mai poate folosi formula lui Heron, dar scade precizia

Aria unui poligon

Aria unui poligon de puncte $P_1(x_1, y_1), P_2(x_2, y_2)... P_n(x_n, y_n)$ este $A = \frac{1}{2} \sum_{i=1}^{n} (x_i \cdot y_{i+1} - x_{i+1} \cdot y_i)$

Intersecția a două drepte

■ Dacă dorim să aflăm punctul de intersecție a două drepte a₁*x+b₁*y+c₁=0 și a₂*x+b₂*y+c₂=0 formăm un sistem cu 2 ecuații și 2 necunoscute pe care-l rezolvăm.

Obţinem: $x=(c_2*b_1-c_1*b_2)/(a_1*b_2-a_2*b_1)$ şi prin înlocuire: $y=(-c_1-a_1*x)/b_1$

OBS. Trebuie verificat să nu facem împărțiri prin 0.

Intersecția a 2 segmente

2 segmente AB și CD se intersectează dacă:

- C și D se află de o parte și de alta a dreptei determinată de punctele A și B
- A și B se află de o parte și de alta a dreptei determinată de punctele C și D

Punct în poligon

Dacă vrem să verificăm că un punct (A sau B) sunt în poligon sau nu, unim punctul respectiv cu un punct care sigur nu e în poligon (C) și calculăm numărul de intersecții dintre segmentul respectiv și laturile poligonului. Dacă numărul de intersecții e impar (A) atunci punctul e în poligon, altfel nu.

Înfășurătoare convexă

Noțiunea de înfășurătoare convexă în plan este intuitiv simplă: pentru o mulțime *S* de puncte ale planului, înfășurătoarea convexă este mulțimea de vârfuri ale poligonului convex1 cu cea mai mică arie, care conține toate punctele mulțimii *S*. Înfășurătoarea convexă poate fi modelată cu ajutorul unei benzi elastice, întinse în jurul mulțimii *S*. La eliberare, banda elastică va repeta conturul înfășurătorii convexe

Înfășurătoare convexă. Algoritmul Graham. Varianta Andrew.

Algoritmul se bazează pe următorul principiu: partea superioară (după y) a înfășurătorii convexe este bombată (în sus) pentru oricare 3 puncte consecutive ale sale, cea inferioară – bombată (în jos).

Algoritmul lui Graham. Pași.

- 1. se determine două puncte p1(pfin) din S cu abscisa minimă (maximă).
- 2. se determină segmentul de dreaptă, care le unește
- se separă S în Ssup și Sinf după poziția punctelor față de segmentul $[p_1, pfin]$. Ssup punctele extreme și cele din stânga vectorului p_1 pfin, Sinf punctele extreme și cele din dreapta vectorului p1pfin.
- 4. se sortează Ssup, Sinf după creșterea abscisei.
- 5. se verifică toate tripletele consecutive p_i , p_{i+1} , $p_{i+2} \in Ssup$. Dacă p_{i+1} se află în stânga vectorului p_i p_{i+2} se va trece la tripletul p_{i+1} , p_{i+2} , p_{i+3} . Dacă p_{i+1} se află în dreapta vectorului p_i p_{i+2} se va elimina p_{i+1} și se va cerceta tripletul p_i , p_{i+2} , p_{i+3} . Dacă la o parcurgere de la p_1 la p_{fin} nu se elimină nici un punct, cele rămase formează partea superioară a înfășurătoarei convexe.

Algoritmul lui Graham. Pași.

- 6. se determine două puncte p1(pfin) din S cu abscisa minimă (maximă).
- 7. se determină segmentul de dreaptă, care le unește
- 8. se separă S în Ssup și Sinf după poziția punctelor față de segmentul $[p_1, pfin]$. Ssup punctele extreme și cele din stânga vectorului p_1 pfin, Sinf punctele extreme și cele din dreapta vectorului p1pfin.
- 9. se sortează S_{sup}, S_{inf} după creșterea abscisei.
- se verifică toate tripletele consecutive p_i , p_{i+1} , $p_{i+2} \in S_{sup}$. Dacă p_{i+1} se află în stânga vectorului p_i p_{i+2} se va trece la tripletul p_{i+1} , p_{i+2} , p_{i+3} . Dacă p_{i+1} se află în dreapta vectorului p_i p_{i+2} se va elimina p_{i+1} și se va cerceta tripletul p_i , p_{i+2} , p_{i+3} . Dacă la o parcurgere de la p_1 la p_{fin} nu se elimină nici un punct, cele rămase formează partea superioară a înfășurătoarei convexe.
- se verifică toate tripletele consecutive p_i , p_{i+1} , $p_{i+2} \in S_{inf}$. Dacă p_{i+1} se află în stânga vectorului p_i p_{i+2} se va trece la tripletul p_{i+1} , p_{i+2} , p_{i+3} . Dacă p_{i+1} se află în dreapta vectorului p_i p_{i+2} se va elimina p_{i+1} și se va cerceta tripletul p_i , p_{i+2} , p_{i+3} . Dacă la o parcurgere de la p_1 la p_{fin} nu se elimină nici un punct, cele rămase formează partea superioară a înfășurătoarei convexe.
- 12. Înfășurătoarea e formată din reunirea S_{sup} cu S_{inf}

Funcții utile

- sin(unghi_in_radiani)
- cos(unghi_in_radiani)
- atan2(y, x) calculează arctangenta pentru un x şi un y dat, rezultă un unghi, în radiani în intervalul –PI, PI

Transformare grade-radiani

Unghi*M_PI/180