ITCS 8190 Course Project

Predicting Urban Growth using Apache Spark

By Zachery Slocum

This presentation is a limited overview of my project.

Please consult the webpage for more detail:

https://freezurbern.github.io/ITCS8190-CourseProject/

Overview

- Research question: Can we predict urban growth using population, road geometry, and land cover?
- Answer: Yes, but population and road geometry are much better than land cover.

- Using multiple linear regression
 - Independent variables: land cover, population density, road density from 2011
 - Dependent variable: urban land cover from 2016
- Running on Google Cloud Platform's Dataproc service

Beyond Linear Regression

- Distributed Prediction
 - Apache Spark DataFrames using Python
 - Using columns for each step of the equation
 - Calculations for each census tract across cluster

- Data Pipeline using R and ArcGIS Pro
 - R:
 - Census tract population estimates and geometry
 - primary/secondary road geometry
 - ArcGIS Pro:
 - National Land Cover Database raster image → CSV

Cool things I learned

- Plotting images in a notebook running in the cloud
- Keep data safe in a Google Cloud Storage 'Bucket'
 - Accessible by cluster but not stored in the cluster
- GitHub Pages for documentation

Dependent variable from 2016

Results

GEOID	roaddens	popdens	barren	water	nature	agric	urbany	су	
1001020100	0.00678981352	0.00017956058	0.00200455581	0.00145785877	0.65676537585	0.10141230068	0.24036446469	9	0.24816192176
1001020200	0.00632959225	0.00064757175	0.00215749730	0.00080906149	0.34169363538	0.01672060410	0.64077669903	3	0.63979962938
1001020300	0.01908926044	0.00062276864	0.00903010033	0.0000000000	0.31739130435	0.09080267559	0.59180602007	7	0.60003224988
1001020400	0.01431175569	0.00068433141	0.00000000000	0.00014234875	0.30306049822	0.10804270463	0.58875444840)	0.59407910920
1001020500	0.00594801379	0.00089086815	0.00015665387	0.00062661549	0.16417325918	0.15485235372	0.68034777160)	0.67868136601
1001020600	0.00809658603	0.00042732944	0.00256267409	0.00055710306	0.32345403900	0.14896935933	0.52701949861	<u>l</u>	0.52894433391
1001020700	0.00484186922	0.00011919023	0.01676888440	0.03505162643	0.50512382579	0.26721527832	0.19260926947	7	0.19998295296
1001020801	0.00107152947	0.00002342970	0.00222291712	0.04794567109	0.61262100283	0.28207934523	0.05735398086	5	0.06520516270
1001020802	0.00115896453	0.00005584656	0.00054532804	0.00434852103	0.73789465767	0.18120874781	0.07654807349	9	0.08438610733
1001020900	0.00070723386	0.00001892776	0.00160465873	0.00395488546	0.73950835466	0.20842154354	0.04811521634	1	0.05622133741

Independent variables from 2011

Note:

- Each row is a census tract (n=26,129)
- GEOID is the primary key (text)
- Yellow are independent variables (0..1)
- Purple is the actual value of the dependent variable (0..1)
- Green is the predicted value of the dependent variable (0..1)

Beta Values	
intercept	0.9828573
roaddens	0.6322004
popdens	4.082916
barren	0.018703736
water	-0.97532403
nature	-0.97348666
agric	-0.9760582

Predicted Urban for 2016

Southeastern USA

Predictions for North Carolina

Performance Evaluation

- Manually perform prediction
 - Model overestimates percent-urban (Y) by 0.5% for a given census tract
 - 0.5% of a census tract (~2,436 acres) is approximately 121 acres
- R-Squared
 - Calculated in Spark using distributed DataFrames
 - Result: 0.98 → Good enough

Visually inspect performance (less is best)

Possible Improvements

- Use RasterFrames on the cluster for raster processing
 - https://rasterframes.io/getting-started.html
 - Removes the ArcGIS Pro dependency in the data pipeline
- Use 'census' or 'CensusData' packages in Python
 - Removes the R dependency in the data pipeline

End.

Next: Screenshots

National Land Cover Database

Roadways

Census Tracts

R Studio

Census tract data

© 0_getCensusData.Rmd × © 2_combine_PR-LC.Rmd ×									
↓□ ¬ Filter									
•	GEOID [‡]	NAME	variable [‡]	estimate [‡]	moe [‡]	geometry			
1	01099076200	Census Tract 762, Monroe County, Alabama	B01003_001	1637	283	list(list(c(-87.784378, -87.781681, -87.780076, -87.771374, -8			
2	01101002100	Census Tract 21, Montgomery County, Alabama	B01003_001	4027	384	list(list(c(-86.299615, -86.294088, -86.290362, -86.288723, -8			
3	01101005302	Census Tract 53.02, Montgomery County, Alabama	B01003_001	2178	272	list(list(c(-86.23964, -86.237495, -86.23762, -86.239558, -86			
4	01101005606	Census Tract 56.06, Montgomery County, Alabama	B01003_001	4203	699	list(list(c(-86.233767, -86.232232, -86.23161, -86.22884, -86			
5	01103000300	Census Tract 3, Morgan County, Alabama	B01003_001	2850	366	list(list(c(-86.984562, -86.976697, -86.972917, -86.967527, -8			
6	01103005303	Census Tract 53.03, Morgan County, Alabama	B01003_001	3871	355	list(list(c(-86.95923, -86.959222, -86.956708, -86.954739, -86			
7	01103005500	Census Tract 55, Morgan County, Alabama	B01003_001	5356	483	list(list(c(-87.028764, -87.027291, -87.025354, -87.023192, -8			
8	01105686800	Census Tract 6868, Perry County, Alabama	B01003_001	1104	279	list(list(c(-87.273701, -87.270902, -87.269211, -87.26494, -87 🔍			
9	01111000100	Census Tract 1, Randolph County, Alabama	B01003_001	3325	372	list(list(c(-85.648139, -85.646238, -85.64599, -85.644217, -85			
10	01111000300	Census Tract 3, Randolph County, Alabama	B01003_001	3934	386	list(list(c(-85.651041, -85.651138, -85.650466, -85.641435, -8 Q			

Road density dataset

length (meters) / area (m^2) = rlm (meters of road per square meter of census tract

O_getcensusdata

```
169
170
171 → # Write shapefiles to disk
172 → ## Census Tracts w/ Pop and Road Lines
173 → ```{r}
174 st write(r2011, "shapes/r2011.shp", delete layer = TRUE)
175 st write(r2013, "shapes/r2013.shp", delete layer = TRUE)
176 st write(r2016, "shapes/r2016.shp", delete layer = TRUE)
177
178 st write(c2011, "shapes/c2011.shp", delete layer = TRUE)
179 st write(c2013, "shapes/c2013.shp", delete layer = TRUE)
180 st write(c2016, "shapes/c2016.shp", delete layer = TRUE)
181 - ` `
     Writing layer `r2011' to data source `shapes/r2011.shp' using driver `ESRI Shapefile'
     Writing 159266 features with 5 fields and geometry type Multi Line String.
     Writing layer `r2013' to data source `shapes/r2013.shp' using driver `ESRI Shapefile'
     Writing 141574 features with 4 fields and geometry type Unknown (any).
     Writing layer `r2016' to data source `shapes/r2016.shp' using driver `ESRI Shapefile'
     Writing 141041 features with 5 fields and geometry type Unknown (any).
     Writing layer `c2011' to data source `shapes/c2011.shp' using driver `ESRI Shapefile'
     Writing 26129 features with 5 fields and geometry type Multi Polygon.
     Writing layer `c2013' to data source `shapes/c2013.shp' using driver `ESRI Shapefile'
     Writing 26129 features with 5 fields and geometry type Multi Polygon.
     Writing layer `c2016' to data source `shapes/c2016.shp' using driver `ESRI Shapefile'
     Writing 26129 features with 5 fields and geometry type Multi Polygon.
```

GCP: Dataproc

Cluster configuration page

GCP: Dataproc

Web interfaces available through 'Component gateway'

GCP: Bucket access

GCP: Cluster Virtual Machines

Local Jupyter Notebook development

Run Jupyter Notebook Server with pyspark

```
zachery@ubu20lake:~/cc-jnb$ cat run-spark-nb.sh
#!/bin/bash
export PYSPARK_DRIVER_PYTHON=jupyter
export PYSPARK_DRIVER_PYTHON_OPTS='notebook --config /opt/hadoop-3.3.0/pyspark-jnb-config.py'
nohup pyspark &
```

GCP Billing page

