Simple Linear Regression I

Simple Linear Regression (SLR)

Parameter Estimation in SLR

Residual Analysis

Lecture 22

Simple Linear Regression I

Readings: IntroStat Chapter 11; OpenIntro Chapter 8

STAT 8010 Statistical Methods I June 16, 2023

> Whitney Huang Clemson University

Parameter Estimation in SLR

Residual Analysis

Simple Linear Regression (SLR)

Parameter Estimation in SLR

predictor variable(s)

We will focus on simple linear regression in this class

Simple Linear Regression (SLR)

Posidual Apalysia

Scatterplot: Is Linear Trend Reasonable?

The relationship appears to be linear. What about the **direction** and **strength** of this linear relationship?

```
> cov(age, maxHeartRate)
[1] -243.9524
```


Regression (SLR)

Scatterplot: Is Linear Trend Reasonable?

The relationship appears to be linear. What about the **direction** and **strength** of this linear relationship?

Regression (SLR)

- Y: dependent (response) variable; X: independent (predictor) variable
 - In SLR we assume there is a linear relationship between X and Y:

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

- We need to estimate β_0 (intercept) and β_1 (slope)
- We can use the estimated regression equation to
 - make predictions
 - study the relationship between response and predictor
 - control the response
- Yet we need to quantify our estimation uncertainty regarding the linear relationship (will talk about this next time)

- β_0 : E[Y] when X = 0
- β_1 : $E[\Delta Y]$ when X increases by 1

Simple Linear Regression (SLR)

in SLR

Residual Analysis

In order to estimate β_0 and β_1 , we make the following assumptions about ε

- $\bullet \ \mathrm{E}[\varepsilon_i] = 0$
- $Var[\varepsilon_i] = \sigma^2$
- $\bullet \operatorname{Cov}[\varepsilon_i, \varepsilon_j] = 0, \quad i \neq j$

Therefore, we have

$$\mathrm{E}[Y_i] = \beta_0 + \beta_1 X_i, \text{ and}$$
 $\mathrm{Var}[Y_i] = \sigma^2$

The regression line $\beta_0 + \beta_1 X$ represents the **conditional expectation curve** whereas σ^2 measures the magnitude of the **variation** around the regression curve

For the given observations $(x_i, y_i)_{i=1}^n$, choose β_0 and β_1 to minimize the *sum of squared errors*:

$$L(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

Solving the above minimization problem requires some knowledge from Calculus....

Simple Linear Regression I

Regression (SLR)

in SLR

For the given observations $(x_i, y_i)_{i=1}^n$, choose β_0 and β_1 to minimize the *sum of squared errors*:

$$L(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

Solving the above minimization problem requires some knowledge from Calculus....

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^n (X_i - \bar{X})^2}$$

Simple Linear Regression I

Regression (SLR)

in SLR

residual Arialysis

For the given observations $(x_i, y_i)_{i=1}^n$, choose β_0 and β_1 to minimize the *sum of squared errors*:

$$L(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

Solving the above minimization problem requires some knowledge from Calculus....

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^n (X_i - \bar{X})^2}$$

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta_1} \bar{X}$$

Regression (SLR)

in SLR

nesiduai Ariaiysis

For the given observations $(x_i, y_i)_{i=1}^n$, choose β_0 and β_1 to minimize the *sum of squared errors*:

$$L(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

Solving the above minimization problem requires some knowledge from Calculus....

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^n (X_i - \bar{X})^2}$$

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta_1} \bar{X}$$

Regression (SLR)

in SLR

nesiduai Ariaiysis

For the given observations $(x_i, y_i)_{i=1}^n$, choose β_0 and β_1 to minimize the *sum of squared errors*:

$$L(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

Solving the above minimization problem requires some knowledge from Calculus....

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^n (X_i - \bar{X})^2}$$

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta_1} \bar{X}$$

We also need to **estimate** σ^2

Simple Linear Regression (SLR)

in SLR

residual Arialysis

For the given observations $(x_i, y_i)_{i=1}^n$, choose β_0 and β_1 to minimize the *sum of squared errors*:

$$L(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

Solving the above minimization problem requires some knowledge from Calculus....

$$\hat{\beta}_1 = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^{n} (X_i - \bar{X})^2}$$

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta_1} \bar{X}$$

We also need to **estimate** σ^2

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^n (Y_i - \hat{Y}_i)^2}{n-2},$$
 where $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$

Simple Linear Regression (SLR)

Parameter Estimation in SLR

- Gauss-Markov theorem states that in a linear regression these least squares estimators
 - Are unbiased, i.e.,
 - $E[\hat{\beta}_1] = \beta_1; E[\hat{\beta}_0] = \beta_0$
 - $\bullet \ \mathrm{E}[\hat{\sigma}^2] = \sigma^2$
 - Have minimum variance among all unbiased linear estimators

Note that we do not make any distributional assumption on ε_i

Example: Maximum Heart Rate vs. Age

The maximum heart rate MaxHeartRate of a person is often said to be related to age Age by the equation:

MaxHeartRate = 220 - Age.

Suppose we have 15 people of varying ages are tested for their maximum heart rate (bpm) (link to the "dataset": http:

//whitneyhuang83.github.io/maxHeartRate.csv)

- Compute the estimates for the regression coefficients
- Compute the fitted values
- **Output Output O**

Regression (SLR)

in SLR

- Y_i and X_i are the Maximum Heart Rate and Age of the ith individual
 - To obtain $\hat{\beta}_1$
 - Ompute $\bar{Y} = \frac{\sum_{i=1}^{n} Y_i}{2}$, $\bar{X} = \frac{\sum_{i=1}^{n} X_i}{2}$
 - Compute $Y_i \bar{Y}$, $X_i \bar{X}$, and $(X_i \bar{X})^2$ for each observation
 - Compute $\sum_{i=1}^{n} (X_i \bar{X})(Y_i \bar{Y})$ divived by $\sum_{i=1}^{n} (X_i \bar{X})^2$
 - $\hat{\beta}_0$: Compute $\bar{Y} \hat{\beta}_1 \bar{X}$
 - $\hat{\sigma}^2$
 - Compute the fitted values: $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$, $i = 1, \dots, n$
 - Compute the **residuals** $e_i = Y_i \hat{Y}_i$, $i = 1, \dots, n$
 - Compute the residual sum of squares (RSS) = $\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$ and divided by n-2 (why?)

Let's Do the Calculations

Simple Linear Regression (SLR)

Parameter Estimation in SLR

$$\bar{X} = \sum_{i=1}^{15} \frac{18 + 23 + \dots + 39 + 37}{15} = 37.33$$

$$\bar{Y} = \sum_{i=1}^{15} \frac{202 + 186 + \dots + 183 + 178}{15} = 180.27$$

Ŋ	(18	23	25	35	65	54	34	56	72	19	23	42	18	39	37
Y	-	202	186	187	180	156	169	174	172	153	199	193	174	198	183	178
		-19.33	-14.33	-12.33	-2.33	27.67	16.67	-3.33	18.67	34.67	-18.33	-14.33	4.67	-19.33	1.67	-0.33
		21.73	5.73	6.73	-0.27	-24.27	-11.27	-6.27	-8.27	-27.27	18.73	12.73	-6.27	17.73	2.73	-2.27
		420.18	-82.18	-83.04	0.62	-671.38	-187.78	20.89	-154.31	-945.24	-343.44	-182.51	-29.24	-342.84	4.56	0.76
		373.78	205.44	152.11	5.44	765.44	277.78	11.11	348.44	1201.78	336.11	205.44	21.78	373.78	2.78	0.11
_		195.69	191.70	190.11	182.13	158.20	166.97	182.93	165.38	152.61	194.89	191.70	176.54	195.69	178.94	180.53

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^n (X_i - \bar{X})^2} = -0.7977$$

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X} = 210.0485$$

•
$$\hat{\sigma}^2 = \frac{\sum_{i=1}^{15} (Y_i - \hat{Y}_i)^2}{13} = 20.9563 \Rightarrow \hat{\sigma} = 4.5778$$

```
> fit <- lm(MaxHeartRate ~ Age)</pre>
> summary(fit)
Call:
lm(formula = MaxHeartRate \sim Age)
Residuals:
    Min
            10 Median
                            30
                                   Max
<u>-8.9258 -2.5383</u> 0.3879 3.1867 6.6242
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 210.04846 2.86694 73.27 < 2e-16 ***
            -0.79773 0.06996 -11.40 3.85e-08 ***
Age
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.578 on 13 degrees of freedom
Multiple R-squared: 0.9091, Adjusted R-squared: 0.9021
F-statistic: 130 on 1 and 13 DF, p-value: 3.848e-08
```

Linear Regression Fit

Question: Is linear relationship between max heart rate and age reasonable? \Rightarrow Residual Analysis

Age

Regression (SLR)

Residuals

 The residuals are the differences between the observed and fitted values:

$$e_i = Y_i - \hat{Y}_i$$

where
$$\hat{Y}_i$$
 = $\hat{\beta}_0$ + $\hat{\beta}_1 X_i$

- ullet e_i is NOT the error term ε_i = Y_i $\mathrm{E}[Y_i]$
- Residuals are very useful in assessing the appropriateness of the assumptions on ε_i . Recall
 - $E[\varepsilon_i] = 0$
 - $Var[\varepsilon_i] = \sigma^2$
 - $\operatorname{Cov}[\varepsilon_i, \varepsilon_j] = 0, \quad i \neq j$

imple Linear egression (SLR)

in SLR

nesidual Arialysis

CLEMS#N

Simple Linear Regression (SLR)

Parameter Estimation in SLR

Interpreting Residual Plots

Simple Linear Regression I

Simple Linear Regression (SLR)

in SLR

Interpreting Residual Plots

Figure: Figure courtesy of Faraway's Linear Models with R (2005, p. 59).

Simple Linear Regression I

Regression (SLR)

Summary

Simple Linear Regression (SLR)

in SLR

Residual Analysis

In this lecture, we learned

- Simple Linear Regression
- Least Squares Estimation
- Residual Analysis