NPTEL MOOC

PROGRAMMING, DATA STRUCTURES AND ALGORITHMS IN PYTHON

Week 3, Lecture 5

Madhavan Mukund, Chennai Mathematical Institute http://www.cmi.ac.in/~madhavan

Efficiency

- * Measure time taken by an algorithm as a function T(n) with respect to input size n
- * Usually report worst case behaviour
 - * Worst case for searching in a sequence is when value is not found
 - * Worst case is easier to calculate than "average" case or other more reasonable measures

O() notation

- * Interested in broad relationship between input size and running time
- * Is T(n) proportional to log n, n, n log n, n², ..., 2ⁿ?
- * Write T(n) = O(n), $T(n) = O(n \log n)$, ... to indicate this
 - * Linear scan is O(n) for arrays and lists
 - * Binary search is O(log n) for sorted arrays

Typical functions T(n)...

Input	log n	n	n log n	n ²	n ³	2 ⁿ	n!	
10	3.3	10	33	100	1000	1000	10 ⁶	
100	6.6	100	66	104	106	10 ³⁰	10 ¹⁵⁷	
1000	10	1000	104	106	109			
10 ⁴	13	104	105	108	1012			
10 ⁵	17	10 ⁵	106	1010				
10 ⁶	20	106	107	TFL				
10 ⁷	23	10 ⁷	108		Python can do about			
10 ⁸	27	108	109		10 ⁷ steps in a second			
10 ⁹	30	10 ⁹	1010					
10 ¹⁰	33	1010						

Efficiency

- * Theoretically $T(n) = O(n^k)$ is considered efficient
 - * Polynomial time
- * In practice even $T(n) = O(n^2)$ has very limited effective range
 - * Inputs larger than size 5000 take very long