

Description

The VSM30P10 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications. It is ESD protested.

General Features

- V_{DS} =-100V, I_{D} =-30A $R_{DS(ON)}$ <58mΩ @ V_{GS} =-10V (Typ:44mΩ) $R_{DS(ON)}$ <65mΩ @ V_{GS} =-4.5V (Typ:48mΩ)
- Super high dense cell design
- Advanced trench process technology
- Reliable and rugged
- High density cell design for ultra low On-Resistance

Application

Portable equipment and battery powered systems

TO-263

Schematic Diagram

Package Marking and Ordering Information

	Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
ſ	VSM30P10-T3	VSM30P10	TO-263	-	_	-

Absolute Maximum Ratings (T_c=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	VDS	-100	V
Gate-Source Voltage	Vgs	±20	V
Drain Current-Continuous	I _D	-30	А
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	-21	Α
Pulsed Drain Current	I _{DM}	-120	А
Maximum Power Dissipation	P _D	120	W
Single pulse avalanche energy (Note 5)	E _{AS}	420	mJ
Derating factor		0.8	W/℃
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	$^{\circ}\!\mathbb{C}$

Thermal Characteristic

Thermal Resistance, Junction-to-Case (Note 2)	R _{θJc}	1.25	°C/W

Shenzhen VSEEI Semiconductor Co., Ltd

Electrical Characteristics (T_C=25 °C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics			•			•
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =-250μA	-100	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =-100V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±10	μA
On Characteristics (Note 3)						
Gate Threshold Voltage	V _{GS(th)}	V _{DS} =V _{GS} ,I _D =-250μA	-1.5	-1.9	-2.5	V
Orain-Source On-State Resistance	D	V _{GS} =-10V, I _D =-15A	-	44	58	mΩ
	R _{DS(ON)}	V _{GS} =-4.5V, I _D =-15A	-	48	65	
Forward Transconductance	g FS	V _{DS} =-50V,I _D =-10A	5	-	-	S
Dynamic Characteristics (Note4)	·					
Input Capacitance	C _{lss})/ 50\/\/ 0\/	-	8049	-	PF
Output Capacitance	Coss	V_{DS} =-50V, V_{GS} =0V, F=1.0MHz	-	184.5	-	PF
Reverse Transfer Capacitance	C _{rss}	F = 1.0WILIZ	-	179	-	PF
Switching Characteristics (Note 4)	·					
Turn-on Delay Time	t _{d(on)}	V _{DD} =-50V,I _D =-15A	-	17	-	nS
Turn-on Rise Time	t _r		-	80	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =-10 V , R_{GEN} =9.1 Ω	-	45	-	nS
Turn-Off Fall Time	t _f		-	65	-	nS
Total Gate Charge	Qg	.,	-	120	-	nC
Gate-Source Charge	Q _{gs}	V_{DS} =-50V, I_{D} =-15A, V_{GS} =-10V	-	22	-	nC
Gate-Drain Charge	Q_{gd}	V _{GS} 10V	-	26.4	-	nC
Drain-Source Diode Characteristics			•			•
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =-10A	-	-	-1.2	V
Diode Forward Current (Note 2)	I _S	-	-	-	-30	А
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF =-15A	-	90	-	nS
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note3)	-	150	-	nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production
- **5.** EAS condition: Tj=25 $^{\circ}$ C,V_{DD}=-50V,V_G=-10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} Test Circuit

2) Gate Charge Test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 Drain Current vs Case Temperature

Figure 8 Safe Operation Area

Figure 10 Power De-rating

Figure 11 Normalized Maximum Transient Thermal Impedance