## CS303T Theory of Computation

#### R. Kabaleeshwaran



August 9, 2022

#### Outline

#### Recap

- Language
- Problem
- Language vs Problem
- Deterministic Finite Automata (DFA)
- DFA-Examples

#### Today

- More Examples for DFA
- Language to Transition Diagram
- Transition Diagram to Language
- Non-deterministic Finite Automata (NFA)

# Deterministic Finite Automata (DFA)

DFA is a five tuple  $(Q, \Sigma, \delta, q_0, F)$ ,

- A finite set of states, Q
- $\bullet$  A finite set of input symbols,  $\Sigma$
- A transition function (denoted  $\delta$ ) that takes as arguments a state and an input symbol and returns a state. i.e.,  $\delta: Q \times \Sigma \to Q$
- A start state  $q_0 \in Q$
- A set of final or accepting states  $F \subseteq Q$

## **DFA** Representation

Transition Diagram



Transition Table

## Language to Transition Diagram - Example

- Qn. Can you construct a transition diagram from the given language?
- Design a DFA to accept the language  $L = \{w | w \text{ has both an even number of 0's and an even number of 1's }$
- Steps:
  - Determine the role of each state to count the number of 0's and 1's modulo 2
  - q<sub>0</sub> Both the number of 0's seen so far and the number of 1's seen so far are even
  - q<sub>1</sub> The number of 0's seen so far is even but the number of 1's seen so far is odd
  - q<sub>2</sub> The number of 0's seen so far is even but the number of 1's seen so far is odd
  - $ightharpoonup q_0$  Both the number of 0's seen so far and the number of 1's seen so far are odd

#### Continue...

• Transition Diagram for the given language



• Qn. Can you determine the language from the transition diagram?

• Qn. Can you determine the language from the transition diagram?



• Qn. Can you determine the language from the transition diagram?



DFA's for languages

• Qn. Can you determine the language from the transition diagram?







• A DFA for the language of strings that contain a number of 1's that is a multiple of 2



• A DFA for the language of strings that contain a number of 1's that is a multiple of 2





 A DFA for the language of strings that contain a number of 1's that is a multiple of 2



• A DFA for the language of strings that contain a number of 1's that is a multiple of 3





• A DFA for the language of strings that contain the substring 001





• A DFA for the language of strings of length at least two that begin and end with the same symbol





• A DFA for the language of strings whose digits add to a multiple of 3





• A DFA for the language of strings whose digits add to a multiple of 4

#### Questions

Give DFA's for the following languages, where  $\Sigma = \{0, 1\}$ .

- The language of strings that contain at least one 1
- The language of strings that contain exactly one 1
- The language of strings that contain at least two 1's
- The language of strings that contain less than two 1's
- The language of strings of length at least two whose first two symbols are the same
- The language of strings of length at least two whose last two symbols are the same
- The language of strings of length at least two that have a 1 in the second-to-last position

#### Questions

- The language of strings of length at least two that begin with 0 and end in 1
- The language of strings of length at least two that have a 1 as their second symbol
- The language of strings that contain the string 001 as a substring
- $lue{lue}$  The language of strings that contain the string 001 as a subsequence
- The language of strings that do not contain the string 001 as a subsequence
- The language of strings that have even length and begin with the string 01

