6. Critére de Convergence Uniforme d'une série de fonction

Donnons tout d'abord une condition nécessaire de CV Simple et Uniforme d'une série :

Proposition 3.4

Soit $(f_n(x))_n$ une suite de fonction définie sur I Si la série $\sum_n f_n(x)$ converge **simplement** (resp. **uniformément**) sur I, alors la suite $(f_n(x))_n$ converge **simplement** (resp. **uniformément**) sur I vers la fonction nulle.

Preuve

On a $\sum_n f_n(x)$ converge uniformément alors \exists une fonction S tq.

$$\lim_{n \to +\infty} \sup_{x \in I} |S_n(x) - S(x)| = 0$$

avec

$$S_n(x) = \sum_{k=0}^n f_k(x)$$

On a aussi, $\forall n \in \mathbb{N}$, $\forall x \in I$

$$f_n(x) = S_n(x) - S_{n-1}(x)$$

 \Rightarrow

$$\sup_{x \in I} |f_n(x)| = \sup_{x \in I} |S_n(x) - S_{n-1}(x)|$$

$$= \sup_{x \in I} |S_n(x) - S(x) + S(x) - S_{n-1}(x)|$$

$$\leq \sup_{x \in I} |S_n(x) - S(x)| + \sup_{x \in I} |S_{n-1}(x) - S(x)|$$

 \Rightarrow

$$0 \le \lim_{n \to +\infty} \sup_{x \in I} |f_n(x)| \le \lim_{n \to +\infty} \sup_{x \in I} |S_n(x) - S(x)| + \lim_{n \to +\infty} \sup_{x \in I} |S_{n-1}(x) - S(x)|$$
$$= 0 + 0$$
$$= 0$$

$$\Rightarrow \lim_{n \to +\infty} \sup_{x \in I} |f_n(x)| = 0$$

D'où la suite de fonction $(f_n(x))_n$ converge uniformément vers 0

Nous donnons deux Critére de Convergence Uniforme

Critére de weierstrass

Soit $(f_n)_n$ une suite de fonction définie sur I, Supposons que

$$\forall n \in \mathbb{N}, \quad \forall x \in I, \qquad |f_n(x)| \le a_n$$

Où a_n est le terme général d'une <u>Série convergente</u> (i.e $\sum_n a_n$ est une série numérique CV).

alors la série $\sum_n f_n(x)$ converge normalement et donc converge uniformément sur I.

Preuve

On a $, \forall n \in \mathbb{N}, \quad \forall x \in I,$

$$|f_n(x)| \le a_n \Rightarrow \sup_{x \in I} |f_n(x)| \le a_n$$

par le Théorème de Comparaison, on a puisque $\sum_n a_n$ CV alors la série $\sup_{x \in I} |f_n(x)|$ converge aussi.

- $\sum_{n} f_n(x)$ converge normalement $\sum_{n} f_n(x)$ converge uniformément. \square

Soit $(f_n(x))_n$ la suite de fonction définie par :

$$f_n(x) = \frac{\sin(nx)}{n^3 + x^2}$$

On a $\forall n \in \mathbb{N}^*, \quad \forall x \in \mathbb{R}$

 $|f_n(x)| \le \frac{1}{n^3 + r^2} \le \frac{1}{n^3} = a_n$

 $(\operatorname{car} \, \forall x \in \mathbb{R}$ $|\sin(nx)| \le 1$

puisque la série $\sum_{n\geq 1} a_n = \sum_{n\geq 1} \frac{1}{n^3}$ est une série de Rieman CV alors par Critere de weierstrass la série de fonction $\sum_{n\geq 1} f_n(x)$ CV normalement et donc CV Uniformément.

Rq: Le Critére de weierstrass est un critére de convergence absolue. Pour les séries qui ne converge pas absolument, on a le critére d'Abel suivant :

Critére d'Abel

Soit $(a_n)_n$ une suite de fonction positive décroissante converge uniformément vers 0. et soit $(b_n)_n$ suite de fonction tq :

 $\exists M \in \mathbb{R}, \quad \forall n \in \mathbb{N}, \quad \forall x \in I, \quad |\sum_{k=0}^{n} b_k(x)| \leq M$

(la suite de sommes partiells de (b_n) bonnée independament de n et de n) Alors la série de fonction $\sum_n a_n(x).b_n(x)$ converge uniformément sur I

Rq: La preuve est basée sur le critére g'Abel pour les séries numeriques

Soit $n \in \mathbb{N}$. $h_n = (-1)^n f_n$ où f_n est une suite de fonctions de I dans \mathbb{R} .

- 1. $\forall x \in I$, la suite $(f_n(x))_n$ est décroissante par rapport à n
- 2. La suite $(f_n(x))_n$ converge uniformément vers 0 sut I.

Alors la série de fonctions $\sum h_n(x)$ converge uniformément sur I.

Exemple 3.7

Théorème 0

3.2. Série de fonctions

Corollaire 1

Soit

$$h_n(x) = \frac{(-1)^n}{n^x} \qquad x \in [1, +\infty]$$

Exemple 3.8

La série de fonctions $\sum_n h_n(x)$ converge uniformément sur $[1, +\infty]$

 $\forall x \geq 1, \quad f_n(x) = \frac{1}{n^x}, \text{ La suite } (f_n(x))_n \text{ est décroissante}$

$$\frac{1}{n^x} \le \frac{1}{n} \Rightarrow f_n \stackrel{C.U}{\to} 0 \qquad \text{sur}[1, +\infty]$$

2 2 Théorémes Fondamentaux sur les séries de fonctions

1. Théorème de Continuité

Théorème 0

Soit $\sum_n f_n(x)$ une suite de fonction tq la suite de fonction $(f_n)n$ est continue. Si $\sum_n f_n(x)$ Converge Uniformément vers sa somme S(x), alors la fonction S est continue.

Preuve

On a la série $\sum_n f_n(x)$ CV uniformément vers S(x) .

On a de plus la suite de fonction $(S_n)n$ est continue car $(S_n)n$ est une somme des fonctions continues $x \mapsto f_n(x)$.

par théorème de continuité pour les suites de fonctions, on a $\lim_{n\to+\infty} S_n(x) = S(x)$ est une fonction continue.

Le Théorème de continuite se traduit comme suit : Soit $x_0 \in I$ on a S est continue en x_0 C à d.

$$\lim_{x \to x_0} S_n(x) = S(x_0)$$

$$\Leftrightarrow$$

$$\lim_{x \to x_0} \sum_{n=0}^{+\infty} f_n(x) = \sum_{n=0}^{+\infty} f_n(x_0) = \sum_{n=0}^{+\infty} \lim_{x \to x_0} f_n(x)$$

Donc, dans les conditions du Théorème de continuité, on peut Intervertir la limite et la somme infinie ie :

$$\lim_{x \to x_0} \sum_{n=0}^{+\infty} f_n(x) = \sum_{n=0}^{+\infty} \lim_{x \to x_0} f_n(x)$$

2. Théorème d'integration

Soit $\sum_n f_n(x)$ une série de fonctions Convergent Uniformément vers sa somme S(x) sur I=[a,b], et $\forall n\in\mathbb{N},\qquad x\mapsto f_n(x)$ sont continues sur I alors :

1. $\sum_{n=0}^{+\infty} \int_{a}^{b} f_n(t)dt = \int_{a}^{b} \sum_{n=0}^{+\infty} f_n(t)dt = \int_{a}^{b} S(t)dt$

2. La série de fonction $\sum_n V_n(x)$ où $V_n(x)=\int_a^x f_n(t)dt$ converge uniformément sur I vers $\int_a^b S(t)dt$

Preuve

1- On a série de fonctions $\sum_n f_n(x)$ Convergent Uniformément vers sa somme S(x) $(S_n(x))$ Converge Uniformément vers S sur I de plus les fonctions $(S_n(x))_n$ sont continues.

Par le Théorème d'integration pour les suites de fonctios, on a

$$\lim_{n \to +\infty} \int_{a}^{b} S_n(t)dt = \int_{a}^{b} \lim_{n \to +\infty} S_n(t)dt = \int_{a}^{b} S(t)dt$$

donc

$$\lim_{n \to +\infty} \int_{a}^{b} \sum_{k=0}^{n} f_{k}(t)dt = \left(\lim_{n \to +\infty} \sum_{k=0}^{n} \int_{a}^{b} f_{k}(t)dt = \int_{a}^{b} \sum_{n=0}^{+\infty} f_{n}(t)dt = \int_{a}^{b} S(t)dt \right)$$

(Rq: l'integral est lineaire)

On a alors la série $\sum_n \int_a^x f_n(t)dt$ est une série CV si la suite des sommes partielles On a alors la serie $\angle_n \int_a^b f_k(t)dt$ converge vers une limite finie $\int_a^b \int_a^b f_k(t)dt$ converge vers une limite finie $\int_a^b \int_a^b f_k(t)dt$ continue sur un conpact [a,b]

D'où

$$\lim_{n \to +\infty} \sum_{k=0}^{n} \int_{a}^{b} f_{k}(t)dt = \sum_{n=0}^{+\infty} \int_{a}^{b} f_{n}(t)dt$$

Par (**) on a alors
$$\left(\sum_{n=0}^{+\infty} \int_a^b f_n(t)dt = \int_a^b \sum_{n=0}^{+\infty} f_n(t)dt = \int_a^b S(t)dt\right)$$

1- Dans les conditions du Théorème d'integration, on peut Intervertir la somme Infinie et l'intégration ie

$$\left(\sum_{n=0}^{+\infty} \int_{a}^{b} f_n(t)dt = \int_{a}^{b} \sum_{n=0}^{+\infty} f_n(t)dt\right)$$

2- Dans le Théorème d'integration on peut renplacer les conditions $\forall n \in \mathbb{N}, \quad x \mapsto f_n(x)$ sont continues sur [a,b] par $\forall n \in \mathbb{N}, \quad x \mapsto f_n(x)$ est Rieman Integrable sur [a,b] dans ce cas la somme Sest aussi R-Integrable

3. Théorème de dérivabilité

Soit $\sum_{n} f_n(x)$ une série de fonctions sur I = [a, b] telle que :

- 1. $\forall n \in \mathbb{N}, \quad x \mapsto f_n(x) \text{ est de } \mathcal{C}^1$
- 2. $\exists x_0 \in I$ telle que la série numerique $\sum_n f_n(x_0)$ CV
- 3. La série $\sum_{n}f_{n}^{'}(x_{0})$ converge uniformément sur tout intervalle fermé, borné I=[a,b]

Alors

- a- La série $\sum_n f_n(x)$ converge uniformément sur tout intervalle fermé, borné I=[a,b]
- b- La somme $S(x) = \sum_{n=0}^{+\infty} f_n(x)$ est de \mathcal{C}^1) sur I et on a

$$\left(\sum_{n=0}^{+\infty} f_n(x)\right)' = \sum_{n=0}^{+\infty} f_n(x)'$$

C'est un permetation de somme infinie et dérivable.on dit, on derive la série termes à terme

 $\underline{\underline{\mathbf{Preuve}}}:$ La preuve est basée sur le Théoreme de dérivabilité pour les suites de fonctios.

Théoreme de dérivation locale

Soit $\sum_{n} f_n(x)$ une série de fonctions définie sur I = [a, b] telle que :

- 1. $\forall n \in \mathbb{N}, \quad x \mapsto f_n(x) \text{ est de } \mathcal{C}^1$
- 2. $\exists x_0 \in [a, b]$ telle que la série numerique $\sum_n f_n(x_0)$ CV
- 3. La série $\sum_{n}f_{n}^{'}(x_{0})$ converge uniformément sur tout sous segment [c,d] de [a,b]

Alors:

Théorème 0

- a- La série $\sum_n f_n(x)$ converge uniformément sur [c,d] de [a,b]
- b- La somme $S(x) = \sum_{n=0}^{+\infty} f_n(x)$ est de \mathcal{C}^1) sur [c,d] de [a,b]et on a

$$\left(\sum_{n=0}^{+\infty} f_n(x)\right)' = \sum_{n=0}^{+\infty} f_n(x)'$$

Soit $(f_n)_n$ une suite de fonctions définie sur un intervalle J : On suppose que

- 1. $\forall n \in \mathbb{N}, \quad x \mapsto f_n(x)$ est de \mathcal{C}^1 sur un intervalle J:
- 2. $\exists x_0 \in J$ telle que la série numerique $\sum_n f_n(x_0)$ CV
- 3. La suite de fonctions $(f'_n(x))_n$ converge uniformément sur tout segment [a,b] de J

Alors:

- a- $(f_n(x))_n$ converge uniformément sur tout segment [a,b] de J
- b- Sa somme $S(x) = \sum_{n=0}^{+\infty} f_n(x)$ est de \mathcal{C}^1) sur J et on a

$$\left(\sum_{n}^{+\infty} f_n(x)\right)' = \sum_{n}^{+\infty} f_n(x)'$$

Rq: la preuve est basé sur le Théoreme de dérivation pour les suites de fonctions.

Etude d'une somme d'une série de fonctions aux bornes d'un intervalle ouvert.

Soit J un intervalle de \mathbb{R} , ouvert en au moins une de ses extrimites notée a $(a=+\infty,$ ou non)

Soit $\sum_{n} f_n(x)$ une série de fonctions définie sur J à valeurs dans \mathbb{R} telle que :

- 1. La série $\sum_{n} f_n(x)$ converge uniformément sur J:
- 2. Pour tout $n \in \mathbb{N}$, $x \mapsto f_n(x)$ admet une limitte b_n en a , c.à. d.

 $\lim_{n \to +\infty} f_n(x) = b_n$

3. La série $\sum_{n} b_n$ CV

Alors:

la somme de la série $S(x) = \sum_{n=0}^{+\infty} f_n(x)$ admet $\sum_{n=0}^{+\infty} b_n$ comme limite en a c.à. d.

$$\lim_{n \to +\infty} \sum_{n=0}^{+\infty} f_n(x) = \sum_{n=0}^{+\infty} \lim_{n \to +\infty} f_n(x)$$

Théorème 0