Lecture 26

ARIMA and SARIMA models

Arnab Hazra

ARIMA models: definition (recap)

▶ A process X_t is said to be ARIMA(p, d, q) if $\nabla^d X_t = (1 - B)^d X_t$ is ARMA(p, q).

▶ In general, we will write the model as $\phi(B)(1-B)^dX_t = \theta(B)W_t$.

If $E(\nabla^d X_t) = \mu$, we write the model as $\phi(B)(1-B)^d X_t = \delta + \theta(B)W_t$, where $\delta = \mu(1-\phi_1-\ldots-\phi_p)$.

Random Walk with Drift (recap)

- We consider the model $X_t = \delta + X_{t-1} + W_t$, for t = 1, 2, ..., and $X_0 = 0$, which we can write as an ARIMA(0, 1, 0) model.
- ightharpoonup Given data X_1, \ldots, X_T , the one-step-ahead forecast is given by

$$X_{T+1}^T = E(X_{T+1}|X_T,\ldots,X_1) = E(\delta + X_T + W_{T+1}|X_T,\ldots,X_1) = \delta + X_T.$$

► The two-step-ahead forecast is given by

$$X_{T+2}^T = E(X_{T+2}|X_T,\ldots,X_1) = E(\delta + X_{T+1} + W_{T+2}|X_T,\ldots,X_1) = 2\delta + X_T.$$

▶ Consequently, the m-step-ahead forecast, for m = 1, 2, ..., is

$$X_{T+m}^T = m\delta + X_T.$$

Random Walk with Drift (contd.)

- ▶ To obtain the forecast errors, we rewrite $X_t = t\delta + \sum_{i=1}^{T} W_i$.
- ▶ We may write

$$X_{T+m} = (T+m)\delta + \sum_{j=1}^{T+m} W_j = m\delta + \left\{ T\delta + \sum_{j=1}^{T} W_j \right\} + \sum_{j=T+1}^{T+m} W_j = m\delta + X_T + \sum_{j=T+1}^{T+m} W_j.$$

From this it follows that the *m*-step-ahead prediction error is given by

$$P_{T+m}^{T} = E[(X_{T+m} - X_{T+m}^{T})^{2}] = E\left[\left(\sum_{j=T+1}^{T+m} W_{j}\right)^{2}\right] = E\left[\sum_{j=T+1}^{T+m} W_{j}^{2}\right] = m\sigma_{W}^{2}.$$

▶ Hence, unlike the stationary case, as the forecast horizon grows, the prediction errors increase without bound and the forecasts follow a straight line with slope δ starting from X_T .

Regression with Autocorrelated Errors

- We discuss the modifications to the regression model when the errors are correlated.
- ► That is, consider the regression model

$$Y_t = \sum_{j=1}^r \beta_j z_{tj} + X_t$$

- ▶ Here X_t is a process with some covariance function $\gamma_X(s,t)$.
- In ordinary least squares, the assumption is that X_t is white Gaussian noise, in which case $\gamma_X(s,t)=0$ for $s\neq t$ and $\gamma_X(t,t)=\sigma^2$, independent of t.
- If this is not the case, then weighted least squares should be used.

Regression with Autocorrelated Errors (contd.)

Write the model in vector notation,

$$\mathbf{Y} = \mathbf{Z}\boldsymbol{\beta} + \mathbf{X},$$

where $\mathbf{Y} = (Y_1, \dots, Y_T)'$ and $\mathbf{X} = (X_1, \dots, X_T)'$, $\boldsymbol{\beta} = (\beta_1, \dots, \beta_r)'$, and \mathbf{Z} is the $n \times r$ matrix composed of the input variables.

- ► The weighted estimate of β is $\hat{\beta} = (Z'\Gamma^{-1}Z)^{-1}Z'\Gamma^{-1}Y$, and the variance-covariance matrix of the estimator is $V(\hat{\beta}) = (Z'\Gamma^{-1}Z)^{-1}$.
- ▶ In case of **X** being white noise, $\Gamma = \sigma^2 I_T$ and $\hat{\beta} = (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{Y}$.

Optimization

- It is possible to assume a stationary covariance structure for the error process X_t that corresponds to a linear process and try to find an ARMA representation for X_t .
- ▶ If the error process is ARMA(p, q), i.e., $\phi(B)X_t = \theta(B)W_t$, we transform by $\pi(B)X_t = W_t$, where $\pi(B) = \theta(B)^{-1}\phi(B)$.
- ▶ Multiplying the regression equation $Y_t = \sum_{j=1}^r \beta_j z_{tj} + X_t$ through by the transformation $\pi(B)$ yields,

$$\pi(B)Y_t = \sum_{j=1}^r \beta_j \pi(B) z_{tj} + \pi(B) X_t,$$

where $\pi(B)X_t = W_t$.

▶ In this case the error sum of squares depends on β , ϕ , θ :

$$S(\phi, \theta, \beta) = \sum_{t=1}^{T} W_t^2 = \sum_{t=1}^{T} \left[\pi(B) Y_t - \sum_{j=1}^{r} \beta_j \pi(B) z_{tj} \right]^2.$$

Practical procedure

i First, run an ordinary regression of Y_t on z_{t1}, \ldots, z_{tr} (acting as if the errors are uncorrelated). Retain the residuals, $\hat{X}_t = Y_t - \sum_{j=1}^r \beta_j z_{tj}$.

- ii Identify ARMA model(s) for the residuals \hat{X}_t .
- iii Run weighted least squares (or MLE) on the regression model with autocorrelated errors using the model specified in step (ii).
- iv Inspect the residuals \widehat{W}_t for whiteness, and adjust the model if necessary.

Multiplicative Seasonal ARIMA Models: motivation

- We next discuss several modifications to the ARIMA model to account for seasonal and nonstationary behavior.
- ▶ Often, the dependence on the past tends to occur most strongly at multiples of some underlying seasonal lag s.
- For example, with monthly economic data, there is a strong yearly component occurring at lags that are multiples of s = 12, because of the strong connections of all activity to the calendar year.
- ightharpoonup Data taken quarterly will exhibit the yearly repetitive period at s=4 quarters.
- Natural phenomena such as temperature also have strong components corresponding to seasons.
- ► Hence, the natural variability of many physical, biological, and economic processes tends to match with seasonal fluctuations.

Seasonal AR operator and seasonal MA operator

- ▶ We first introduce AR and MA polynomials that identify with the seasonal lags.
- The resulting pure seasonal autoregressive moving average model, say, $ARMA(P, Q)_s$, then takes the form

$$\Phi_P(B^s)X_t = \Theta_Q(B^s)W_t,$$

$$\Phi_P(B^s) = 1 - \Phi_1B^s - \Phi_2B^{2s} - \dots - \Phi_PB^{Ps}$$

$$\Theta_Q(B^s) = 1 + \Theta_1B^s + \Theta_2B^{2s} + \dots + \Theta_QB^{Qs}$$

where the operators $\Phi_P(B^s)$ and $\Theta_Q(B^s)$ are the seasonal AR and MA operators of orders P and Q, respectively, with seasonal period s.

- ▶ ARMA(P, Q) $_s$ is causal only when the roots of $\Phi_P(z^s)$ lie outside the unit circle.
- It is invertible only when the roots of $\Theta_Q(z^s)$ lie outside the unit circle.

Definition of SARIMA models

► The multiplicative seasonal autoregressive integrated moving average model, or SARIMA model is given by

$$\Phi_P(B^s)\phi(B)\nabla_s^D\nabla^dX_t = \delta + \Theta_Q(B^s)\theta(B)W_t,$$

where W_t is the usual Gaussian white noise process.

- ▶ The general model is denoted as $ARIMA(p, d, q) \times (P, D, Q)_s$.
- The ordinary AR and MA components are represented by polynomials $\phi(B)$ and $\theta(B)$ of orders p and q, respectively.
- ► The seasonal AR and MA components are represented by $\Phi_P(B^s)$ and $\Theta_Q(B^s)$ of orders P and Q.
- ▶ Ordinary and seasonal difference components are represented by $\nabla^d = (1 B)^d$ and $\nabla^D_s = (1 B^s)^D$.

Air passenger data

Fig. 3.22. R data set AirPassengers, which are the monthly totals of international airline passengers x, and the transformed data: $1x = \log x_t$, $d1x = \nabla \log x_t$, and $dd1x = \nabla_{12}\nabla \log x_t$.

ACF and PACF

Fig. 3.23. Sample ACF and PACF of ddlx $(\nabla_{12}\nabla \log x_t)$.

► Here ARIMA(0,1,1) × $(0,1,1)_{12}$ and ARIMA(1,1,0) × $(0,1,1)_{12}$ appear to be reasonable models.

Thank you!