

كلاس را چگونه مىگذرانيم؟ _ تغييرات

- كوئيزك ساده كلاسي
- سازوکار مناسب
- سوالهای سلیقهای و سوالهای خیلی ساده
 - سوال _> دست بلند کردن _>
- کوئیز (با اعلام قبلی) کتاب_باز: ۵
 - کلاس حل تمرین

- ◄ نمرهدهي
- ◄ كوئيزك: ٢ نمره (از ۴ نمره)
 - ▶ كوئيز: ٢
 - ◄ ميانترم: ٢
 - ◄ پايانترم: ۵
 - ▶ تمرین: ۴ نمره
 - ◄ بدون تاخير
- ▶ نظری و عملی (متلب+پایتون [آموزش داده میشود]+جاوا+آر)
- ◄ ۵ تا تمرین. مشابهش در کوئیز و میان و پایانترم. عملی تصحیحی.
 - ◄ جزوه: ١
 - **▶** + نمودار
 - ◄ راستی آزمایی نهایی در صورت تشخیص تقلب

آدرس کوئیزک

or991quiz@gmail.com •

برنامهریزی خطی _ مقدمه Maximize the value among all vectors $(x_1, x_2) \in \mathbb{R}^2$ satisfying the constraints

$$x_1 + x_2$$

$$x_1 \ge 0$$

$$x_2 \ge 0$$

 $x_2 - x_1 \le 1$
 $x_1 + 6x_2 \le 15$
 $4x_1 - x_2 \le 10$.

Maximize the value among all vectors $(x_1, x_2) \in \mathbb{R}^2$ satisfying the constraints

$$x_1 + x_2$$

$$x_1 \ge 0$$

 $x_2 \ge 0$
 $x_2 - x_1 \le 1$
 $x_1 + 6x_2 \le 15$
 $4x_1 - x_2 \le 10$.

سطوح تراز

تابع هدف (OBJECTIVE FUNCTION)

بیش از یک جواب بهینه

تابع هدف متناظر با بردار جهت

بیش از یک جواب بهینه

بدون جواب شدنی

تا ہے نھایت ...

حالت كلي

Maximize the value of c^Tx among all vectors $x \in R^n$ satisfying $Ax \le b$

	Basic problem	Algorithm	Solution set
Linear	system of	Gaussian	affine
algebra	linear equations	elimination	subspace
Linear	system of	simplex	convex
programming	linear inequalities	method	polyhedron

A linear program is efficiently solvable both in theory and in practice

مثالها

مدلهای خطی چقدر قدرتمندند!

Food	Carrot,	White	Cucumber,	Required
	Raw	Cabbage, Raw	Pickled	per dish
Vitamin A [mg/kg]	35	0.5	0.5	$0.5\mathrm{mg}$
Vitamin C [mg/kg]	60	300	10	$15\mathrm{mg}$
Dietary Fiber [g/kg]	30	20	10	4 g
price [€/kg]	0.75	0.5	0.15^{*}	

^{*}Residual accounting price of the inventory, most likely unsaleable.

برنامه غذایی

X,	Kr	Xx
—		/

Food	Carrot,	White	Cucumber,	Required
	Raw	Cabbage, Raw	Pickled	per dish
Vitamin A [mg/kg]	35	0.5	0.5	$0.5\mathrm{mg}$
Vitamin C [mg/kg]	60	300	10	$15\mathrm{mg}$
Dietary Fiber [g/kg]	30	20	10	$4\mathrm{g}$
price [€/kg]	0.75	0.5	0.15*	

^{*}Residual accounting price of the inventory, most likely unsaleable.

Minimize
$$0.75x_1 + 0.5x_2 + 0.15x_3$$

subject to $x_1 \ge 0$
 $x_2 \ge 0$
 $x_3 \ge 0$
 $35x_1 + 0.5x_2 + 0.5x_3 \ge 0.5$
 $60x_1 + 300x_2 + 10x_3 \ge 15$
 $30x_1 + 20x_2 + 10x_3 \ge 4$.

جواب بهينه: €70.0

- carrot 9.5 g,
- cabbage 38 g,
- pickled cucumber 290 g

تاريخچه

- اولین مساله واقعی با برنامهریزی خطی (1947)
 - برنامه غذایی
 - 77 متغییر
 - 9 قيد
 - ۰ ۱۲۰ نفر ـ روز
- بعدها، برنامه غذایی George Dantzig برای خودش
 - باكامپيوتر
 - روزانه چندین لیتر سرکه، حذف
 - ه کذف bouillon cubes ۲۰۰۰ ه

مثال: مثال

برنامهریزی خطی [با هم تولید کنیم]

 $x_{ad} + x_{cd} - x_{Jn} = 0$ max $x_{0a} + x_{0b} + x_{0c}$

الع هرن: عرض الحرف: دن عرب العرب المرب ال

Maximize $x_{oa} + x_{ob} + x_{oc}$ subject to $-3 \le x_{oa} \le 3$, $-1 \le x_{ob} \le 1$, $-1 \le x_{oc} \le 1$ $-1 \le x_{ab} \le 1$, $-1 \le x_{ad} \le 1$, $-3 \le x_{be} \le 3$ $-4 \le x_{cd} \le 4$, $-4 \le x_{ce} \le 4$, $-4 \le x_{dn} \le 4$ $-1 \le x_{en} \le 1$ $x_{oa} = x_{ab} + x_{ad}$ $x_{ob} + x_{ab} = x_{be}$ $x_{oc} = x_{cd} + x_{ce}$ $x_{ad} + x_{cd} = x_{dn}$ $x_{be} + x_{ce} = x_{en}$.

شار بیشینه، برش کمینه

شار بیشینه / برش کمینه

اگر برای مبدا شروط اضافه نگذاریم چه می شود؟

جواب بهينه

اگر بگذاریم از هر دو جهت یال همزمان شار بگذرد:

تاريخچه

- ◄ اولين بار:
- ◄ ارتش آمريكا
- ◄ اختلال شبكه ريلي شوروى