LEX3: Regexps are Trees

Lexical Analysis

CMPT 379: Compilers

Instructor: Anoop Sarkar

anoopsarkar.github.io/compilers-class

xkcd.com/208

Regular Expressions are Trees

Regular Expressions are ambiguous

Regexp operator precedence rules

- 1. Grouping using parentheses ()
- 2. Unary operator *
- 3. Binary operator for concatenation
- 4. Binary operator for alternation

Q: Find the smallest set of strings that can find the above operator precedence rules for the regexp ac | bc.

Hint: Compare the matching on input strings between the original regexp ac | bc and the 5 unambiguous regexps.

Regular expressions are trees

Q: Provide the unambiguous bracketed tree for regexp ab* | c* using the precedence and associativity rules

Equivalence of Regular Expressions

Equivalence of Regexps
$$(0(10)*1)|(01)* == (01)*$$
?

•
$$(R|S) == (S|R)$$

•
$$R*R* == (R*)*$$

•
$$(R|S)^* == (R^*S^*)^*$$

•
$$(R*S)*R* == (R*|S*)*$$

•
$$RR^* == R^*R$$

•
$$R|R = R\varepsilon$$

debuggex.com

Equivalence of Regexps

$$(0(10)*1)|(01)* == (01)*?$$

Equivalence of Regexps

•
$$(0(10)*1)|(01)*$$
 (RS)*R == R(SR)*

- (01(01)*)|(01)*
- (01(01)*)|(01)* RS == (RS)

- ((01)(01)*)|(01)*
- $((01)(01)^*)(01)^* \sqrt{R} + == RR^*$

- (01)+|(01)*
- (01)+|(01)*

$$R + |R^*| = (RR^*)|R^*| = R^*$$

(01)*