Course Outline

- Introduction in software and applications
- Parallel machines and architectures
 Overview of parallel machines
 Cluster computers (Myrinet)
- Programming methods, languages, and environments
 Message passing (SR, MPI, Java)
 Higher-level languages: Linda, Orca, HPF
- Applications
 N-body problems, graphics, game tree search
- World-wide parallel computing (Globus)

Parallel Machines

Parallel Computing - Theory and Practice (2/e)Chapter 3

Michael J. Quinn

mcGraw-Hill, Inc., 1994

Overview

- Processor organizations
- Types of parallel machines
 - Processor arrays
 - Shared-memory multiprocessors
 - Distributed-memory multicomputers
- Taxonomy parallel machines
- Network of workstations & processor pools
- Myrinet
- Performance metrics

Processor Organization

- Network topology is a graph
 - A node is a processor
 - An edge is a communication path
- Evaluation criteria
 - Diameter (maximum distance)Bisection width

 - Number of edges per node
 - Maximum edge length

Mesh

q-dimensional lattice

$$q=2 \Rightarrow 2-D$$
 grid

Number of nodes k^2

Diameter 2(k-1)

Bisection width k

Edges per node 4

Binary Tree

Number of nodes $2^k - 1$

Diameter 2(k-1)

Bisection width 1

Edges per node 3

Hypertree

Tree with multiple roots (see Figure 3-3), gives better bisection width

4-ary tree:

Number of nodes $2^k(2^{k+1}-1)$

Diameter 2k

Bisection width 2^{k+1}

Edges per node 6

Hypercube

k-dimensional cube, each node has binary value, nodes that differ in 1 bit are connected

Number of nodes 2^k

Diameter *i*

Bisection width 2^{k-1}

Edges per node k

Hypercube

Label nodes with binary value, connect nodes that differ in 1 coordinate

Number of nodes 2^k

Diameter k

Bisection width 2^{k-1}

Edges per node k

3 types of parallel machines

- Processor arrays
- Shared-memory multiprocessors
- Distributed-memory multicomputers

Processor Arrays (1)

Instructions operate on scalars or vectors

Processor array = front-end + synchronized processing elements

Processor Arrays (2)

Front-end

Sequential machine that executes program

Vector operations are broadcast to PEs

Processing element

Performs operation on its part of the vector

Communicates with other PEs through a network

Examples: CM-200, Maspar MP-1, MP-2, ICL DAP

Shared-Memory Multiprocessors

Bus easily gets saturated \Rightarrow add caches to CPUs

Central problem: cache coherency

Snooping cache: monitor bus, invalidate copy on write Write-through or copy-back

Bus-based multiprocessors do not scale

Other Multiprocessor Designs

- Switch-based multiprocessors (e.g., crossbar)
- Non-Uniform Memory Access (NUMA) multiprocessors

Switch-based multiprocessors

Expensive (requires many very fast components)

NUMA

- Memory is distributed
- Some memory is faster to access than other memory

Distributed-Memory Multicomputers

Each processor only has a local memory

Processors communicate by sending messages over a network

Routing of messages:

Store-and-forward (1st generation)

Circuit-switched message routing (2nd generation)

Store-and-forward Routing

Messages are forwarded one node at a time

Forwarding is done in software

Every processor on path from source to destination is involved

Latency linear to $distance \times message_length$

Examples: Parsytec GCel (T800 transputers), Intel iPSC

Circuit-switched Message Routing

- Each node has a routing module
- Circuit set up between source and destination
- Latency linear to
 distance + message_length
- Example: Intel iPSC/2

Flynn's Taxonomy (1)

Instruction stream: sequence of instructions

Data stream: sequence of data manipulated by instructions

	Single Data	Multiple Data
Single Instruction	SISD	SIMD
Multiple Instruction	MISD	MIMD

Flynn's Taxonomy (2)

SISD: Single Instruction Single Data Traditional uniprocessors

SIMD: Single Instruction Multiple Data Processor arrays

MISD: Multiple Instruction Single Data Nonexistent?

MIMD: Multiple Instruction Multiple Data Multiprocessors and multicomputers