

智能嵌入式实训系统 通信协议 V4.2

目 录

目	录.	
一 、	平	² 板电脑数据结构2
_,	竞	5赛平台(从车)数据结构5
三、	朷	l器视觉模组数据结构6
四、	竞	色赛平台(主车和从车)运行状态表7
五、	道	值闸标志物数据结构8
六、	LI	ED 显示标志物数据结构9
七、	<u> </u>	工体显示标志物数据结构10
八、	语	音音播报标志物数据结构12
九、	无	E线充电标志物数据结构15
十、	TI	FT 显示器(A/B)标志物数据结构16
+-	٠,	ETC 标志物数据结构 17
+=	• •	立体车库(A/B)标志物数据结构18
十三		智能交通灯 (A/B) 标志物数据结构19
十匹	,	自动评分终端数据结构20
十五		烽火台标志物修改六字节报警码数据结构21
十六	î,	智能路灯标志物数据结构22
十七	í.	附录 I 修订记录

一、平板电脑数据结构

1.1 平板电脑控制竞赛平台(主车或从车)数据结构

表 1.1.1 平板电脑控制竞赛平台(主车或从车)的数据结构

0X55	0XAA	0Xxx	0Xxx	0Xxx	0Xxx	0Xxx	0XBB
包头		主指令		副指令		校验和	包尾

说明:数据由八个字节组成,前两个字节为数据包头固定不变,第三个字节为主指令,第四个字节至第六个字节为副指令,第七个字节为主指令和三个副指令的直接求和并对 0XFF 取余得到校验值(以下校验和均以此计算得到),第八个字节为数据包尾,固定不变。

注意: 在本协议中数据格式若无特殊说明,一般默认格式为十六进制。

包头第二位 说明 0XAA主车 0X02 从车 0X03 道闸标志物 0X04 LED 显示标志物 0X05 智能停车库(B)标志物 0X06 语音播报标志物 0X07 红外报警台标志物 0X08 TFT 显示(B)标志物 0X09 智能路灯标志物 0X0A无线充电站标志物 0X0BTFT 显示(A)标志物 0X0CETC 系统标志物 0X0D智能停车库(A)标志物 0X0E智能交通灯(A)标志物 0X0F 智能交通灯(B)标志物 0XAF 自动评分终端

表 1.1.2 包头说明

说明:

- 1、平板电脑控制竞赛平台(从车)的数据结构和平板电脑控制竞赛平台(主车)的数据结构除去包头不一致外,主指令和副指令完全一致。校验和同上定义,包尾固定不变。
 - 2、平板电脑控制标志物的数据结构参考下文具体协议。

表 1.1.3 平板电脑控制竞赛平台(主车或从车)的主指令序号表

主指令	主指令说明
0X01	竞赛平台停止
0X02	竞赛平台前进
0X03	竞赛平台后退
0X04	竞赛平台左转(循迹状态)
0X05	竞赛平台右转(循迹状态)
0X06	竞赛平台循迹
0X07	码盘清零(暂不支持主车)
0x08	竞赛平台左转(指定角度,暂不支持)
0x09	竞赛平台右转(指定角度,暂不支持)
0X10	前三字节红外数据
0X11	后三字节红外数据
0X12	发射六字节红外数据
0X20	指示灯
0X30	蜂鸣器
0X40	保留
0X50	相框照片上翻
0X51	相框照片下翻
0X61	光源档位加 1
0X62	光源档位加 2
0X63	光源档位加 3
0X80	竞赛平台(从车)回传数据控制
0X90	语音识别控制命令(暂不支持)

表 1.1.4 主指令对应副指令表

主指令		副指令		
0X01	0X00	0X00	0X00	
0X02	速度值	码盘低八位	码盘高八位	
0X03	速度值	码盘低八位	码盘高八位	
0X04	速度值	0X00	0X00	
0X05	速度值	0X00	0X00	
0X06	速度值	0X00	0X00	
0X07	0X00	0X00	0X00	
0x08	速度值	角度低八位	角度高八位	
0x09	速度值	角度低八位	角度高八位	
0X10	红外数据[1]	红外数据[2]	红外数据[3]	
0X11	红外数据[4]	红外数据[5]	红外数据[6]	
0X12	0X00	0X00	0X00	
0X20	0X01/0X00 (开/关)左灯	0X01/0X00 (开/关)右灯	0X00	
0X30	0X01/0X00(开/关)	0X00	0X00	

0X40	保留	保留	保留
0X50	0X00	0X00	0X00
0X51	0X00	0X00	0X00
0X60	0X00	0X00	0X00
0X61	0X00	0X00	0X00
0X62	0X00	0X00	0X00
0X63	0X00	0X00	0X00
0X80	0X01/0X00 (允许/禁止)	0X00	0X00
0X90	0X01/0X00 (开启/关闭)	0X00	0X00

注:

- 1. 速度值取值范围为 $(0^{\sim}100)$
- 2. 码盘值取值范围为 (0[~]65635)

1.2 平板电脑接收竞赛平台(主车或从车)回传数据结构

表 1.2.1 竞赛平台(主车或从车)向平板电脑回传的数据结构

0X55	0XAA /0X02	0Xxx	0Xxx	0Xxx	0Xxx	0Xxx	0Xxx	0Xxx	0Xxx	0Xxx	0Xxx
包头		运行状态	光敏状态	超声 波低 八位	超声 波高 八位	光照 低八 位	光照 高八 位	码盘 低八 位	码盘 高八 位	角度 低八 位	角度 高八 位

说明:数据由十二个字节组成。其中前两个字节为包头,包头的第一字节为 0X55 不变,第二个字节分为两种情况,0XAA 代表这组数据是竞赛平台(主车)的数据,0X02 代表这组数据是竞赛平台(从车)的数据;第三个字节为竞赛平台运行状态;第四个字节为竞赛平台任务板上光敏状态(0/1);第五个和第六个字节为竞赛平台任务板超声波数据(高八位与低八位);第七个和第八个字节为竞赛平台任务板光照强度数据;第九个和第十个字节为竞赛平台电机的码盘值;第十一个和第十二个字节为竞赛平台电子罗盘角度值(暂不支持)。

二、 竞赛平台(从车)数据结构

2.1 竞赛平台(主车)控制竞赛平台(从车)数据结构

表 2.1.1 竞赛平台(主车)控制竞赛平台(从车)的数据结构

包头		主指令		副指令		校验和	包尾
0X55	0X02	0Xxx	0Xxx	0Xxx	0Xxx	0Xxx	0XBB

说明:平板电脑控制竞赛平台(从车),其数据结构和平板电脑控制竞赛平台(主车)的数据结构除去包头不一致外,主指令和副指令是完全一致的。校验和同上定义,包尾固定不变。

表 2.1.2 主指令对应副指令说明

主指令	F	校验和	包尾		
0X80	0X00/0X01 (关闭/打开)	0X00	0X00	0Xxx	0XBB

说明: 竞赛平台(从车)返回的数据包含运行状态、光敏状态、超声波数据、光照数据、码盘值。平板电脑接收竞赛平台(从车)返回的数据需要两个指令: 一是竞赛平台(从车)回传数据到竞赛平台(主车)的指令; 二是竞赛平台(主车)向平板电脑回传竞赛平台(从车)的指令。

三、机器视觉模组数据结构

3.1 竞赛平台(从车)控制机器视觉模组数据结构

表 3.1.1 Arduino 控制 OpenMV 的数据结构

\$44000 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1							
包头		主指令	副指令			校验和	包尾
0X55	0X02	0Xxx	0Xxx	0Xxx	0Xxx	0Xxx	0XBB

表 3.1.2 主指令说明

主指令	说明
0X91	保留
0X92	识别二维码

表 3.1.3 副指令说明

主指令	副指令1	副指令1	副指令1
0X91	保留	保留	保留
0.000	0X01 (开启识别)	0X00	0X00
0X92	0X02 (关闭识别)	0X00	0X00

3.2 机器视觉模组向竞赛平台(从车)回传数据结构

表 3.2.1 机器视觉模组向竞赛平台(从车)回传的数据结构

	次 3.2.1 小t晶 优先 医五下 3.2.1 一							
	包头		数据类 型	识别状态	数据区长 度	数据区		包尾
	0X55	0X02	0X91	保留	0Xxx	0X	XX	0XBB
	0X55		0X02 0X92	0X01 (识别成功)	0Xxx	0X	0Xxx	
		0X02		0X02 (识别失败)	0Xxx	0X00	0X00	0XBB
				0X03 (正在识别)	0Xxx	0X00	0X00	

说明:该数据包头、数据类型、包尾为固定格式,数据区长度取值范围为 0~43, 识别状态为 0X01 识别成功,0X02 识别失败,0X03 正在识别。当返回识别成功时数据区为识别结果(数据长度不定但最大不会超过 43 个字节),当返回识别失败或正在识别数据时数据区为固定长度二个字节 0X00。

四、 竞赛平台(主车和从车)运行状态表

表 4.1.1 竞赛平台运行状态表

竞赛平台运行状态	状态说明			
0X00	循迹状态			
0X01	十字路口状态			
0X02	转弯完成			
0X03	前进、后退完成			
0X04	出循迹线			
0X05	道闸打开			
0X4A	语音芯片上电初始化成功后,芯片自动发送回传			
0X41	语音芯片收到正确的命令帧			
0X45	语音芯片收到错误的命令帧			
0X4E	语音芯片处在正在合成状态,收到状态查询命令帧			
0X4F	语音芯片处在空闲状态,收到状态查询命令帧; 或一帧数据合成结束,芯片处于空闲状态			
0X06	ETC 系统打开成功			
0X07	交通灯标志物进入识别模式			
0X08	交通灯未能进入识别模式			
0X09	立体车库到达第一层			
0X0A	立体车库到达第二层			
0X0B	立体车库到达第三层			
0X0C	立体车库到达第四层			
0X11	立体车库前侧、后侧红外都触发			
0X22	立体车库前侧、后侧红外都未触发			
0X12	立体车库前侧红外触发、后侧红外未触发			
0X21	立体车库前侧红外未触发、后侧红外触发			

五、道闸标志物数据结构

5.1 道闸标志物控制数据结构

表 5.1.1 竞赛平台(主车或从车)控制道闸标志物的数据结构

包	头	主指令	副指令		效验和	包尾	
0X55	0X03	0Xxx	0Xxx	0Xxx	0Xxx	0Xxx	0XBB

说明:本组数据由八个字节构成,包括两个字节固定包头,一个字节主指令,三个字节副指令,一个字节校验和,一个字节包尾。

表 5.1.2 主指令数据结构说明

主指令	副指令[1]	副指令[2]	副指令[3]	说明			
0X01	0X01/0X02 (打开/关闭)	0X00	0X00	道闸闸门开关控制			
0X10	0Xxx	0Xxx	0Xxx	车牌前三位数据(ASCII)			
0X11	0Xxx	0Xxx	0Xxx	车牌后三位数据(ASCII)			
0X20	0X01	0X00	0X00	道闸状态回传			

说明: 道闸控制,可发送固定指令开启,也可发送任意六个字节车牌信息开启。道闸状态需发送状态回传指令获取。

注: 道闸状态不会自动回传。

5.2 道闸标志物回传数据结构

表 5.2.1 道闸标志物向竞赛平台(主车和从车)回传数据结构

包	.头	主指令		副指令		效验和	包尾
0X55	0X03	0X01	0X00	0Xxx (闸门状态)	0X00	0Xxx	0XBB

说明: 道闸标志物回传的副指令中第二位为道闸门开关状态。

表 5.2.2 道闸标志物回传数据副指令第二位说明

副指令[2]	状态说明
0X05	闸门已开启

注: 道闸关闭状态下不会回传任何数据。

六、 LED 显示标志物数据结构

6.1 LED 显示标志物控制数据结构

表 6.1.1 竞赛平台(主车或从车)控制 LED 显示标志物的数据结构

包	头	主指令	副指令		校验和	包尾	
0X55	0X04	0Xxx	0Xxx	0Xxx	0Xxx	0Xxx	0XBB

说明:本组数据由八个字节构成,包括两个字节固定包头,一个字节主指令,三个字节副指令,一个字节校验和,一个字节包尾。

表 6.1.2 控制 LED 显示标志物主指令

*****	_ , ,, _ ,, _ ,,
主指令	指令说明
0X01	数据写入第一排数码管
0X02	数据写入第二排数码管
0X03	LED 显示标志物进入计时模式
0X04	LED 显示标志物第二排显示距离

表 6.1.3 LED 显示标志物副指令说明

主指令		副指令					
0X01	数据[1]、数据[2]	数据[3]、数据[4]	数据[5]、数据[6]				
0X02	数据[1]、数据[2]	数据[3]、数据[4]	数据[5]、数据[6]				
0X03	0X00/0X01/0X02 (关闭/打开/清零)	0X00	0X00				
0X04 0X00		0X0x	0Xxx				

说明: LED 显示标志物在第二排显示距离时,第二位和第三位副指令中的"x"代表要显示的距离值(注意: 距离显示格式为十进制,单位毫米)。

6.2 LED 显示标志物回传数据结构

注: LED 显示标志物无回传数据。

七、立体显示标志物数据结构

7.1 立体显示标志物控制数据结构

表 7.1.1 竞赛平台(主车或从车)控制立体显示标志物的数据结构

ſ	0XFF	0Xxx	0Xxx	0Xxx	0Xxx	0Xxx
	起始位	模式	数据[1]	数据[2]	数据[3]	数据[4]

说明:立体显示标志物控制指令共六个字节,其中第一个字节为起始位固定不变, 第二个字节为模式编号,第三个至第六个字节为可变数据。

表 7.1.2 立体显示标志物控制指令模式说明

及 / 1112 三十 显					
模式	说明				
0X20	接收前四位车牌信息模式				
0X10	接收后两位车牌信息与两位坐标信息模式				
0.210	并显示				
0X11	显示距离模式				
0X12	显示图形模式				
0X13	显示颜色模式				
0X14	显示路况模式				
0X15	显示默认模式				

表 7.1.3 车牌显示模式数据说明

模式	数据[1]	数据[2]	数据[3]	数据[4]
0X20	车牌[1]	车牌[2]	车牌[3]	车牌[4]
0X10	车牌[5]	车牌[6]	横坐标	纵坐标

说明:在车牌显示模式下,车牌信息包括六个车牌字符和地图上某个位置的横纵坐标,共八个字符(注意:车牌字符格式为ASCII)。

表 7.1.4 距离显示模式数据说明

模式	数据[1]	数据[2]	数据[3]	数据[4]
0X11	距离十位	距离个位	0X00	0X00

说明:在距离显示模式下,数据[1]至数据[2]为需要显示的距离信息(注意:距离显示格式为十进制)。其余字节为0X00,保留不用。

表 7.1.5 图形显示模式数据说明

模式	数据[1]	数据[2]至数据[4]	说明(显示汉字内容)
	0X01	均为 0X00	矩形
0V12	0X02	均为 0X00	圆形
0X12	0X03	均为 0X00	三角形
	0X04	均为 0X00	菱形

百科荣创(北京)科技发展有限公司

WWW.R8C.COM 400-065-7899 BJBKRC@163.COM

0X05	均为 0X00	梯形
0X06	均为 0X00	饼图
0X07	均为 0X00	靶图
0X08	均为 0X00	条形图

说明:在图形显示模式下,数据[1]为图形信息。其余位为0X00,保留不用。

表 7.1.6 颜色显示模式数据说明

模式	数据[1]	数据[2]至数据[4]	说明(显示汉字内容)
	0X01	均为 0X00	红色
	0X02	均为 0X00	绿色
	0X03	均为 0X00	蓝色
0X13	0X04	均为 0X00	黄色
UAIS	0X05	均为 0X00	紫色
	0X06	均为 0X00	青色
	0X07 均为 0X00	均为 0X00	黑色
	0X08	均为 0X00	白色

说明:在颜色显示模式下,数据[1]为颜色信息。其余位为0X00,保留不用。

表 7.1.7 路况显示模式数据说明

模式 数据[1] 数据[2]至数据[4]		数据[2]至数据[4]	说明(显示汉字内容)
0V14	0X01	均为 0X00	隧道有事故,请绕行
0X14	0X02	均为 0X00	前方施工,请绕行

说明:在路况显示模式下,数据[1]为路况信息。其余位为 0X00,保留不用。

表 7.1.8 默认显示模式数据说明

模式	数据[1]	数据[2]至数据[4]	说明
0X15	0X01	0X00	显示默认信息

说明:在默认显示模式下,立体显示标志物为默认显示状态。

7.2 立体显示标志物回传数据结构

注: 立体显示标志物无回传数据。

八、语音播报标志物数据结构

8.1 语音播报标志物控制数据结构

8.1.1 语音数据帧

表 8.1.1 语音数据帧

帧头	数据区长度	数据区	
0XFD	0Xxx、0Xxx	data	

说明: 所有语音控制命令都需要用"帧"的方式进行封装后传输。帧结构由帧头标志、数据区长度和数据区三部分组成。在本协议中为保证无线通信质量,规定每帧数据长度不超过 200 字节(包含帧头、数据区长度、数据)。

8.1.2 状态查询命令数据帧

表 8.1.2 状态查询命令数据帧

帧头	数据区长度		数据区
0XFD	高字节	低字节	命令字
	0X00	0X01	0X21

说明:通过该命令获取相应参数,来判断 TTS 语音芯片是否处在合成状

态,返回 OX4E 表明芯片仍在合成中,返回 OX4F 表明芯片处于空闲状态。

8.1.3 (启动)语音合成命令数据帧

表 8.1.3 语音合成命令数据帧

帧头	数据区长度		数据区			
0XFD	高字节	低字节	命令字	文本编码格式	待合成文本	
	0Xxx	0Xxx	0X01	0Xxx	•••••	

表 8.1.4 文本编码格式说明

取值参数	文本编码格式	
0X00	GB2312	
0X01	GBK	
0X02	BIG5	
0X03	UNICODE	

说明: 当语音芯片正在合成文本时,如果再次接收到一帧有效的合成命令帧,芯片会立即停止当前正在合成的文本,转而合成新收到的文本。

8.1.4 (停止、暂停、恢复) 合成语音命令数据帧

表 8.1.5 停止合成语音命令数据帧

帧头 数据区长度	数据区
-------------	-----

OVED	高字节	低字节	命令字
UALD	0X00	0X01	0X02

说明:命令字 0X02 停止合成语音命令。

表 8.1.6 暂停合成语音命令数据帧

	*** ***********************************					
	帧头	数据区长度		数据区		
	0XFD	高字节	低字节	命令字		
		0X00	0X01	0X03		

说明: 命令字 0X03 暂停合成语音命令。

表 8.1.7 恢复合成语音命令数据帧

帧头	数据区长度		数据区
OXED	高字节	低字节	命令字
UAFD	0X00	0X01	0X04

说明:命令字0X04恢复合成语音命令。

8.1.5 固定语音控制指令

表 8.1.8 语音控制指令

0X55	0X06	0Xxx	0Xxx	0Xxx	0Xxx	0Xxx	0XBB
	头	主指令	副指令			校验和	包尾

表 8.1.9 语音控制命令主指令说明

* *	· · · · · · · · · · · · · · · · · · ·
主指令	说明
0X10	特定语音命令
0X20	随机语音命令

说明:在主指令 0X10 下,第一副指令为特定语音命令编号,第二、三副指令保留为 0X00;在主指令 0X20下,第一副指令为 0X01,表示开启随机语音命令,第二、三副指令保留为 0X00,如下表 8.1.10 所示:

表 8.1.10 语音控制命令主指令对应副指令说明

主指令	副指令[1]	副指令[2]、[3]		
	0X01 语音唤醒词,如语音驾驶等,可修改	0X00		
	0X02 美好生活	0X00		
07/10	0X03 秀丽山河	0X00		
0X10	0X04 追逐梦想	0X00		
	0X05 杨帆启航	0X00		
	0X06 齐头并进	0X00		
0X20	0X01 随机语音命令 随机出现特定语音命令 2~6	0X00		

8.1.6 语音播报标志物回传数据结构

表 8.2.1 语音状态回传数据结构

包	.头	命令字	状态数据	保留		校验和	包尾
0X55	0X06	0X01	0Xxx	0X00	0X00	0Xxx	0XBB

语音芯片在上电初始化成功时会向上位机发送一个字节的"初始化成功"状态,初始化不成功时不发送此状态;在收到一个命令帧后会判断此命令帧正确与否,如果命令帧正确返回"收到正确命令帧"状态,如果命令帧错误则返回"收到错误命令帧"状态;在收到状态查询命令时,如果芯片正处于合成状态则返回"芯片忙碌"状态,如果芯片处于空闲状态则返回"芯片空闲"状态。在一帧数据合成完毕后会自动返回一次"芯片空闲"的状态。返回状态值如下表 8. 2. 2 所示。

表 8.2.2 语音状态回传表

WOLLS MILKE							
回传数据类型	状态数据	触发条件					
初始化成功	0X4A	芯片初始化成功					
收到正确命令帧	0X41	收到正确的命令帧					
收到错误命令帧	0X45	收到错误的命令帧					
芯片忙碌	0X4E	收到"状态查询命令",芯片处于合成文本状态回传 0X4E					
芯片空闲	0X4F	当一帧数据合成完以后,芯片进入空闲状态回传 0X4F;当芯片收到"状态查询命令",芯片处于空闲 状态回传 0X4F					

九、无线充电标志物数据结构

9.1 无线充电标志物控制数据结构

表 9.1.1 竞赛平台(主车或从车)控制无线充电标志物的数据结构

0X55	0X0A	0X01	0X01	0X00	0X00	0Xxx	0XBB
包头		主指令	副	指令		校验和	包尾

说明:本组数据由八个字节构成,包括两个字节固定包头,一个字节主指令,三个字节副指令,一个字节校验和,一个字节包尾。副指令第一位 0X01 作为无线充电开启命令。暂不支持关闭指令。

9.2 无线充电标志物回传数据结构

注:无线充电标志物无回传数据。

十、TFT 显示器 (A/B) 标志物数据结构

10.1 TFT 显示器 (A/B) 标志物控制数据结构

表 10.1.1 竞赛平台(主车或从车)控制 TFT 显示器(A/B)标志物的数据结构

0X55	0X0B/0X08	0Xxx	0Xxx	0Xxx	0Xxx	0Xxx	0XBB
包头		主指令		副指令		校验和	包尾

说明:本组协议由八个字节构成,包括两个字节包头(TFT 显示器标志物 A 和 B 除第二包头不一致以外其他数据结构一致,其中 0X0B 为 TFT 显示器 A 标志物协议包头、0X08 为 TFT 显示器 B 标志物协议包头),一个字节主指令,三个字节副指令,一个字节校验和,一个字节包尾。

表 10.1.2 TFT 显示器 (A/B) 标志物控制主指令说明

·	
主指令	说明
0X10	图片显示模式
0X20	车牌显示数据前三字节(ASCII)
0X21	车牌显示数据后三字节(ASCII)
0X30	计时模式
0X40	HEX 显示模块
0X50	距离显示模式(十进制)

表 10.1.3 副指令说明

主指令	副指令[1]	副指令[2]	副指令[3]	说明
	0X00	0X01 ~ 0X20	0X00	由第二副指令指定显示那张图片
0X10	0X01	0X00	0X00	图片向上翻页
	0X02	0X00	0X00	图片向下翻页
	0X03	0X00	0X00	图片自动向下翻页显示,间隔时间 10S
0X20	0Xxx	0Xxx	0Xxx	车牌前三位数据(ASCII)
0X21	0Xxx	0Xxx	0Xxx	车牌后三位数据(ASCII)
	0X00	0X00	0X00	计时模式关闭
0X30	0X01	0X00	0X00	计时模式打开
	0X02	0X00	0X00	计时模式清零
0X40	0Xxx	0Xxx	0Xxx	六位显示数据(HEX 格式)
0X50	0X00	0X0x	0Xxx	距离显示模式 (十进制)

说明:在图片显示模式下,即主指令为 0X10 时,当第一位副指令为 0X00 表示指定显示某张图片,其第二位副指令表示图片序号,图片序号范围 0X01 至 0X20。

10.2 TFT 显示器 (A/B) 标志物回传数据结构

注: TFT 显示器 (A/B) 标志物无回传数据。

十一、 ETC 标志物数据结构

11.1 ETC 标志物控制数据结构

注: ETC 标志物无控制指令; 需经 ETC 标签触发开启。

11.2 ETC 标志物回传数据结构

表 11.2.1 ETC 标志物向竞赛平台(主车和从车)回传的数据结构

0X55	0X0C	0X01	0X01	0X06	0X00	0X08	0XBB
包头		主指令		副指令		校验位	包尾

说明:本组数据由八个字节构成,包括两字节固定包头,一个字节主指令,三个字节副指令,一个字节校验位(固定为 0x08),一个字节包尾。副指令第二位为(0x06)开启成功返回状态。

十二、 立体车库 (A/B) 标志物数据结构

12.1 立体车库(A/B)标志物控制数据结构

表 12.1.1 竞赛平台(主车或从车)控制立体车库(A/B)标志物的数据结构

0X55	0X0D/0X05	0Xxx	0Xxx	0Xxx	0X00	0Xxx	0XBB
	包头			副指令		校验和	包尾

说明:本组协议由八个字节构成,包括两个字节包头(TFT 显示器标志物 A 和 B 除第二包头不一致以外其他数据结构一致,其中 0X0D 为立体车库 A 标志物协议包头、0X05 为立体车库 B 标志物协议包头),一个字节主指令,三个字节副指令,一个字节校验和,一个字节包尾。

表 12.1.2 主指令说明

	— ,,, , , , , , , , , , , , , , , , , ,			
主指令	说明			
0X01	控制指令			
0X02	请求返回指令			

表 12.1.3 副指令说明

主指令	副指令[1]	副指令[2]	副指令[3]	说明						
	0X01	0X00	0X00	到达第一层						
0X01	0X02	0X00	0X00	到达第二层						
UAUI	0X03	0X00	0X00	到达第三层						
	0X04	0X00	0X00	到达第四层						
0X02	0X01	0X00	0X00	请求返回车库位于第几层						
UAU2	0X02	0X00	0X00	请求返回前后侧红外状态						

12.2 立体车库(A/B) 标志物回传数据结构

表 12.2.1 立体车库(A/B)标志物向竞赛平台(主车和从车)回传的数据结构

0X55	0X0D/0X05	0X03	0Xxx	0Xxx	0X00	0Xxx	0XBB
包头		主指令	副指令			校验和	包尾

表 12.2.2 主副指令说明

主指令	副指令[1]	副指令[2]	副指令[3]	说明	
		0X01	0X00	返回车库位于第一层	
	0X01	0X02	0X00	返回车库位于第二层	
	0201	0X03	0X00	返回车库位于第三层	
0X03		0X04	0X00	返回车库位于第四层	
		(前侧)	(后侧)		
	0X02	0X01(触 发)	0X01(触 发)	返回前后侧红外状态	
		0X02(未触发)	0X02(未触发)		

十三、 智能交通灯 (A/B) 标志物数据结构

13.1 智能交通灯(A/B)标志物控制数据结构

表 13.1.1 竞赛平台(主车或从车)控制智能交通灯(A/B)标志物的数据结构

包头		主指令	副指令			校验和	包尾
0X55	0X0E/0X0F	0Xxx	0Xxx	0Xxx	0Xxx	0Xxx	0XBB

说明:本组协议由八个字节构成,包含两个字节包头(TFT 显示器标志物 A 和 B 除第二包头不一致以外其他数据结构一致,其中 0X0E 为智能交通灯 A 标志物包头、0X0F 为智能交通灯 B 标志物包头),一个字节主指令,三个字节副指令,一个字节校验和,一个字节包尾。

表 13.1.2 主指令说明

主指令	说明			
0X01	进入识别模式			
0X02	请求确认识别结果			

表 13.1.3 主副指令说明

主指令	副指令[1]	副指令[2]	副指令[3]	说明
0X01	0X00	0X00 0X00		进入识别模式
	0X01 (红灯)	0X00	0X00	识别结果为红色请求确认
0X02	0X02(绿灯)	0X00	0X00	识别结果为绿色请求确认
	0X03(黄灯)	0X00	0X00	识别结果为黄色请求确认

13.2 智能交通灯(A/B)标志物回传数据结构

表 13.2.1 智能交通灯(A/B)标志物向竞赛平台(主车和从车)回传的数据结构

包头		主指令	副指令			校验和	包尾
0X55	0X0E/0X0F	0X01	0X01	0Xxx	0X00	0Xxx	0XBB

表 13.2.2 主指令说明

副指令2	说明
0X07	进入识别模式
0X08	未能进入识别模式

十四、自动评分终端数据结构

竞赛平台(主车或从车)向自动评分终端发送的数据结构

表 14.1.1 竞赛平台(主车或从车)向自动评分终端发送的数据结构

包	头	序号	副指令			固定码	包尾
0XAF	0X06	0Xxx	0X02	0X00	0X00	0X01	0XBB

表 14.1.2 序号说明

语音播报内容说明
保留
美好生活
秀丽山河
追逐梦想
扬帆起航
齐头并进

14.1 自动评分终端回传数据结构

注: 自动评分终端无回传数据。

14.2 自动评分终端注意事项

数据包头与包尾保持不变;

序号: 竞赛平台(主车或从车)通过语音识别模块,识别语音播报系统发出语音的编号;(该序号与语音播报内容仅供训练使用)。

副指令: 固定不变,第一副指令必须为 0X02;

固定码: 0X01 固定不变。

十五、烽火台标志物修改六字节报警码数据结构

15.1 烽火台标志物修改六字节报警码的数据结构

表 15.1.1 竞赛平台(主车或从车)修改六字节报警码数据结构

包	头	主指令	副指令		校验和	包尾	
0X55	0X07	0Xxx	0Xxx	OXvv OXvv OXvv		0Xxx	0XBB

表 15.1.2 主指令说明

主指令	副指令[1]	副指令[2]	副指令[3]	说明
0X10	0Xxx	0Xxx	0Xxx	开启码前三字节
0X11	0Xxx	0Xxx	0Xxx	开启码后三字节

15.2 烽火台标志物回传数据结构

注: 烽火台标志物无回传数据。

注意事项:

- 1、烽火台六字节开启码修改完成标志物将自动开启一次表示更新成功;
- 2、烽火台标志物修改完成掉电不丢失;
- 3、按键 S4 可将烽火台恢复为默认开启码(0x03, 0x05, 0x14, 0x45, 0xDE, 0x92)。

十六、智能路灯标志物数据结构

16.1 智能路灯标志物控制数据结构

表 16.1.1 竞赛平台(主车或从车)控制智能路灯标志物的数据结构

数据[1]	数据[2]	数据[3]	数据[4]	说明
0X00	0XFF	0X0C	~(0X0C)	加一档
0X00	0XFF	0X18	~(0X18)	加二档
0X00	0XFF	0X5E	~(0X5E)	加三档

说明:智能路灯标志物控制指令共四个字节,其中数据[4]为数据[3]取反得到。

16.2 智能路灯标志物回传数据结构

注:智能路灯标志物无回传数据结构。

十七、 附录 I 修订记录

2019 年智能小车通信协议				
修订版本	修订时间	修订内容	备注	
V1.0	2017.03.10	1、在 2016 年基础上修订此版本。 2、增加语音播报标志物语音控制命令。 3、新增标志物磁悬浮 无线充电标志物控制命令。 4、新增智能 TFT 显示器标志物控制命令。		
		5、新增语音识别控制命令。 6、新增 ETC 系统打开返回标志位。		
V2.0	2018.04.03	1.在 2017 年基础上修订此版本。 2、增加道闸标志物返回数据协议。 3、增加 ETC 标志物返回数据协议。 4、竞赛平台增加角度回传功能。 4、竞赛平台控制增加指定角度转弯。		
V3.0	2018.04.20	1.增加 OpenMV 相关协议。 2.增加立体车库相关协议。 3.增加智能交通灯相关协议。		
V4.0	2018.05.10	 增加道闸发送指定车牌开启协议,同时兼容发送指定命令开启协议。 道闸标志物状态返回修改为指令请求返回。不支持自动返回。 		
V4.1	2018.05.10	 增加竞赛平台向自动评分终端返回语音识别结果数据结构。 修改语音播报指定指令播报内容。 		

续上表

		1. 开放从车权限可控制标志物及接收信息。 2. 新增 TFT 显示器(B)标志物、立体车库(B)、智能交通灯(B)的指令协议。	
V4.2	2019.05.11	3. 修改道闸标志物接收到任意完整车牌信息即开启道闸。	
		4. 新增烽火台修改六字节开启码数据协议。	
		5. 语音随机播报内容更改。	