Índice general

5.	\mathbf{Apl}	icaciones Lineales	1
	5.1.	Aplicaciones lineales entre espacios vectoriales	1
		5.1.1. Tipos de aplicaciones	2
	5.2.	Propiedades de las aplicaciones lineales	2
	5.3.	Operaciones entre aplicaciones lineales	3
	5.4.	Núcleo, imagen y carácter de una aplicación lineal	4
	5.5.	Matriz de una aplicación lineal	8
		5.5.1. Cambio de base en una aplicación lineal	9
	5.6.	Ejercicios	12

ii Índice general

Aplicaciones Lineales

5.1. Aplicaciones lineales entre espacios vectoriales.

Sean $(V, +, \cdot)$, $(W, +, \cdot)$ espacios vectoriales sobre \mathbb{R} .

Dada una aplicación

$$f: V \longrightarrow W$$

diremos que f es una aplicación lineal u homomorfismo si conserva en W las operaciones de V.

Esto se verifica si

• Conserva la suma de vectores:

$$f(v + v') = f(v) + f(v'), \quad \forall v, v' \in V.$$

• Conserva el producto de un escalar por un vector:

$$f(\lambda \cdot v) = \lambda \cdot f(v), \quad \forall v \in V, \, \forall \lambda \in \mathbb{R}.$$

Ejemplos 5.1.

1. La aplicación $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ dada por f(x, y, z) = (2x, y + z, 3y) es lineal.

Solución: En efecto, respecto a la suma, se tiene que

$$f((x,y,z) + (x',y',z')) = f(x+x',y+y',z+z')$$

$$= (2(x+x'),(y+y') + (z+z'),3(y+y'))$$

$$= (2x+2x',y+z+y'+z',3y+3y')$$

$$= (2x,y+z,3y) + (2x',y'+z',3y') = f(x,y,z) + f(x',y',z').$$

Por lo que respecta al producto por un escalar,

$$\begin{array}{ll} f(\lambda \cdot (x,y,z)) & = & f(\lambda x, \lambda y, \lambda z) \\ & = & (2\lambda x, \lambda y + \lambda z, 3\lambda y) \\ & = & (\lambda 2x, \lambda (y+z), \lambda 3y) \\ & = & \lambda \cdot (2x, y+z, 3y) = \lambda \cdot f(x,y,z). \end{array}$$

2. La aplicación $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ dada por f(x, y, z) = (1, 0, 0) no es lineal.

Solución: En efecto, si tomamos $(x, y, z), (x', y', z') \in \mathbb{R}^3$, resulta que

$$f((x, y, z) + (x', y', z')) = (1, 0, 0),$$

mientras que

$$f(x, y, z) + f(x', y', z') = (1, 0, 0) + (1, 0, 0) = (2, 0, 0).$$

Se pueden caracterizar las aplicaciones lineales por una sola condición, como se indica en la siguiente

Proposición 5.1. La aplicación $f: V \longrightarrow W$ es homomorfismo si, y sólo si, $\forall v, v' \in V$, $\forall \lambda, \mu \in \mathbb{R}$, se verifica que

$$f(\lambda \cdot v + \mu \cdot v') = \lambda \cdot f(v) + \mu \cdot f(v').$$

Obsérvese que la definición de homomorfismo no exige que V y W deban ser espacios vectoriales distintos.

5.1.1. Tipos de aplicaciones

Sea $f:V\longrightarrow W$ una aplicación lineal entre espacios vectoriales sobre un mismo cuerpo,

$$f:V\longrightarrow W$$

- Si f es inyectiva diremos que f es un monomorfismo.
- Si f es suprayectiva diremos que f es un **epimorfismo**.
- Si f es biyectiva diremos que f es un **isomorfismo**.

Además, en el caso particular de que W = V,

$$f:V\longrightarrow V$$

- ullet Si f es una aplicación lineal diremos que f es un **endomorfismo**.
- \blacksquare Si f es un endomorfismo biyectivo diremos que f es un **automorfismo**.

5.2. Propiedades de las aplicaciones lineales

Si $f:V\longrightarrow W$ es aplicación lineal entre espacios vectoriales, se verifica:

- f(0) = 0.
- $\forall v \in V, \quad f(-v) = -f(v).$
- Si $\{v_1, v_2, \dots, v_k\} \subset V$ es un sistema linelmente dependiente de vectores de V, también lo es el sistema $\{f(v_1), f(v_2), \dots, f(v_k)\} \subset W$.

■ Si $\{f(v_1), f(v_2), \ldots, f(v_p)\}$ ⊂ W es un sistema libre, el sistema $\{v_1, v_2, \ldots, v_p\}$ ⊂ V es también libre.

Es importante observar que la propiedad recíproca de esta última no es cierta. En efecto, hay aplicaciones para las que es posible encontrar un sistema libre $\{v_1, v_2, \dots, v_p\} \subset V$ tal que el sistema $\{f(v_1), f(v_2), \dots, f(v_p)\}$ sea ligado.

Por ejemplo, basta considerar la aplicación f(x,y)=(x+y,x+y) de \mathbb{R}^2 en \mathbb{R}^2 y el sistema libre $\{(1,0),(0,1)\}.$

Determinación de una aplicación lineal

En general, para determinar una aplicación lineal no es preciso conocer las imágenes de todos los vectores del espacio de partida; basta con disponer de las imágenes de los vectores de una base y a partir de éstos, sabiendo que la aplicación es lineal, determinar la imagen de los demás.

Esto se detalla en el siguiente

Teorema 5.2. Sean $(V, +, \cdot)$ $y(W, +, \cdot)$ espacios vectoriales sobre \mathbb{R} .

Si V es de dimensión finita $n, B = \{e_1, e_2, \dots, e_n\}$ es una base de V y $\{u_1, u_2, \dots, u_n\} \subseteq W$ es un sistema cualquiera de vectores de W, existe una única aplicación lineal $f: V \longrightarrow W$ tal que

$$f(e_i) = u_i, \quad \forall i = 1, \dots, n.$$

Ejemplo 5.2. Si elegimos una base cualquiera de \mathbb{R}^3 y tres vectores cualesquiera de \mathbb{R}^2 podemos determinar una aplicación lineal

$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$$
.

En nuestro caso, tomamos la base $\{(1,0,0),(0,1,0),(0,0,1)\}$ de \mathbb{R}^3 y los vectores (1,2), (-1,0) y (3,-1) de \mathbb{R}^2 .

La aplicación $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ se define a partir de las igualdades

$$f(1,0,0) = (1,2), \quad f(0,1,0) = (-1,0), \quad f(0,0,1) = (3,-1),$$

y su expresión se obtiene por linealidad, pues

$$f(x,y,z) = f(x(1,0,0) + y(0,1,0) + z(0,0,1))$$

= $xf(1,0,0) + yf(0,1,0) + zf(0,0,1)$
= $x(1,2) + y(-1,0) + z(3,-1) = (x-y+3z,2x-z)$.

5.3. Operaciones entre aplicaciones lineales

Sean V y W dos espacios vectoriales y denotemos por $\mathcal{L}(V,W)$ al conjunto de aplicaciones lineales de V en W.

Definición 5.1 (Suma de aplicaciones). Dadas $f, g \in \mathcal{L}(V, W)$, se llama **suma de** f **y** g a la aplicación $f + g : V \longrightarrow W$ tal que

$$(f+g)(v) = f(v) + g(v), \quad \forall v \in V.$$

Definición 5.2 (Producto por un escalar). Si $f \in \mathcal{L}(V, W)$ y $\lambda \in \mathbb{R}$, se llama **producto de** λ **por** f a la aplicación $\lambda \cdot f : V \longrightarrow W$ tal que

$$(\lambda \cdot f)(v) = \lambda \cdot f(v), \quad \forall v \in V.$$

Puede comprobarse que las operaciones definidas dotan a $\mathcal{L}(V, W)$ de estructura de espacio vectorial: $(\mathcal{L}(V, W), +, \cdot)$ es un espacio vectorial real.

Definición 5.3 (Composición de aplicaciones). Dadas las aplicaciones lineales $f: V \longrightarrow W$ y $g: W \longrightarrow U$, la composición $g \circ f: V \longrightarrow U$ dada por

$$(g \circ f)(v) = g(f(v))$$

es lineal.

En particular, si V = W = U, la composición es una operación interna en el conjunto de endomorfismos de V, que denotaremos por $\mathcal{L}(V)$.

No es difícil comprobar que la composición verifica las propiedades asociativa y distributiva, así como que el homomorfismo identidad $i_V \in \mathcal{L}(V)$ es el elemento neutro de la composición en $\mathcal{L}(V)$.

Sin embargo, la composición de aplicaciones lineales no es, en general, conmutativa.

Definición 5.4 (Grupo lineal). Llamamos grupo lineal de V, y lo denotamos por $\mathcal{GL}(V)$, al conjunto de automorfismos de V,

$$\mathcal{GL}(V) = \{ f \in \mathcal{L}(V) : f \text{ es automorfismo} \} \subset \mathcal{L}(V)$$

La composición de aplicaciones es una operación interna en $\mathcal{GL}(V)$, puesto que la composición de automorfismos es de nuevo un automorfismo.

Además, para cada $f \in \mathcal{GL}(V)$ la aplicación inversa f^{-1} es también un automorfismo y verifica que

$$f\circ f^{-1}=f^{-1}\circ f=i_V,$$

siendo la identidad i_V de V el elemento neutro para la composición en $\mathcal{L}(V)$, y también en $\mathcal{GL}(V)$.

Por tanto $(\mathcal{GL}(V), \circ)$ es un grupo, y de ahí que lo denominemos grupo lineal.

5.4. Núcleo, imagen y carácter de una aplicación lineal

Sea $f:V\longrightarrow W$ una aplicación lineal y consideremos $A\subseteq V,\,B\subseteq W.$

Definición 5.5. Llamaremos **imagen directa** o imagen de A por f y lo denotaremos por f(A), al conjunto

$$f(A) = \{ f(v) \in W : v \in A \}.$$

Definición 5.6. Al conjunto f(V) se le llama **imagen de la aplicación lineal** f y se le denota por Im(f).

$$Im(f) = \{ f(v) \in W : v \in V \}.$$

Definición 5.7. Llamamos **imagen recíproca** o antiimagen de B por f y lo denotaremos por $f^{-1}(B)$ al conjunto

$$f^{-1}(B) = \{ v \in V : f(v) \in B \}.$$

Definición 5.8. Llamamos **núcleo** de f y lo denotamos por Ker(f), al conjunto de vectores de V cuya imagen es el vector $0 \in W$; por tanto,

$$Ker(f) = \{v \in V : f(v) = 0\} = f^{-1}(\{0\}).$$

Proposición 5.3. Sea $f: V \longrightarrow W$ una aplicación lineal entre espacios vectoriales V y W y sean $V_1 \subseteq V$, $W_1 \subseteq W$ subespacios vectoriales. Entonces:

- $f(V_1) \subseteq W$ es subespacio vectorial. Por tanto, la imagen directa de un subespacio vectorial es un subespacio vectorial.
- $f^{-1}(W_1) \subseteq V$ es subespacio vectorial. Por tanto, la imagen recíproca de un subespacio vectorial es un subespacio vectorial.

La proposición anterior garantiza que tanto Ker(f) como Im(f) son subespacios vectoriales, ya que

- Por ser $\{0\}$ subespacio de W se tiene que $f^{-1}(\{0\}) = \operatorname{Ker}(f) \subseteq V$ es un subespacio vectorial de V.
- Por otra parte, como V subespacio vectorial de V se deduce que $f(V) = \text{Im}(f) \subseteq W$ es subespacio vectorial de W.

Ejemplo 5.3. Hallar el núcleo y la imagen de la aplicación $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ definida por f(x,y,z) = (x+y,x-y).

Solución: Para hallar el núcleo, hacemos

$$\begin{split} \operatorname{Ker}(f) &= \{(x,y,z): f(x,y,z) = (0,0)\} \\ &= \{(x,y,z): (x+y,x-y) = (0,0)\} \\ &= \{(x,y,z): x+y=0, \ x-y=0\} \\ &= \{(x,y,z): x=y=0\} = \{(0,0,z): z \in \mathbb{R}\} \ = \ \langle (0,0,1) \rangle. \end{split}$$

En general, para hallar Ker(f) hay que resolver un sistema lineal homogéneo.

En cuanto a Im(f), está formado por los elementos $(x',y') \in \mathbb{R}^2$ tales que (x',y') = f(x,y,z) para algún $(x,y,z) \in \mathbb{R}^3$. Por tanto, debe ser

$$(x', y') = (x + y, x - y) = (x, x) + (y, -y) = x(1, 1) + y(1, -1)$$

de donde resulta que

$$Im(f) = \langle (1,1), (1,-1) \rangle.$$

Los siguientes resultados son útiles para calcular Im(f).

Proposición 5.4. Sea $f: V \longrightarrow W$ una aplicación lineal, $U \subseteq V$ un subespacio vectorial de V $y \{u_1, u_2, \dots, u_p\}$ un sistema generador de U.

Entonces $\{f(u_1), f(u_2), \dots, f(u_p)\}\$ es un sistema generador del subespacio f(U).

Corolario 5.1. Sea $f: V \longrightarrow W$ una aplicación lineal y sea $B = \{e_1, e_2, \dots, e_n\}$ una base de V.

Entonces $\{f(e_1), f(e_2), \ldots, f(e_n)\}\$ es un sistema generador de Im(f).

Teorema 5.5 (Fórmula de las dimensiones de una aplicación lineal). Sea $f:V\longrightarrow W$ una aplicación lineal entre espacios vectoriales, siendo V de dimensión finita. Se verifica la igualdad

$$\dim(V) = \dim(\operatorname{Ker}(f)) + \dim(\operatorname{Im}(f)).$$

La igualdad que da este teorema se conoce con el nombre de **fórmula de las dimensiones** de una aplicación lineal.

Ejercicio 5.1. Dada la aplicación $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ definida por

$$f(x, y, z) = (3x - y, y + z, 3x + z),$$

se pide:

- 1. Probar que f es un endomorfismo de \mathbb{R}^3 .
- 2. Hallar la dimensión y las ecuaciones implícitas de Im(f).
- 3. Hallar la dimensión y las ecuaciones paramétricas de Ker(f).
- 4. Comprobar la fórmula $\dim(\operatorname{Im}(f)) + \dim(\operatorname{Ker}(f)) = \dim(\mathbb{R}^3)$.

Solución:

1. f es lineal, pues dados $(x, y, z), (x', y', z') \in \mathbb{R}^3, \lambda, \mu \in \mathbb{R}$, se verifica que

$$\begin{split} f(\lambda(x,y,z) + \mu(x',y',z')) \\ &= f(\lambda x + \mu x', \lambda y + \mu y', \lambda z + \mu z') \\ &= (3(\lambda x + \mu x') - (\lambda y + \mu y'), \lambda y + \mu y' + \lambda z + \mu z', 3(\lambda x + \mu x') + \lambda z + \mu z') \\ &= (3\lambda x - \lambda y, \lambda y + \lambda z, 3\lambda x + \lambda z) + (3\mu x' - \mu y', \mu y' + \mu z', 3\mu x' + \mu z') \\ &= \lambda (3x - y, y + z, 3x + z) + \mu (3x' - y', y' + z', 3x' + z') \\ &= \lambda f(x, y, z) + \mu f(x', y', z'). \end{split}$$

Por tanto f es un endomorfismo de \mathbb{R}^3 .

2. Para hallar unas ecuaciones paramétricas de Im(f) tomamos una base de \mathbb{R}^3 (por ejemplo la canónica $B = \{(1,0,0), (0,1,0), (0,0,1)\}$). Sabemos que las imágenes por f de los vectores de la base B constituyen un sistema generador de Im(f). Por tanto

$$\operatorname{Im}(f) = \langle f(1,0,0), f(0,1,0), f(0,0,1) \rangle = \langle (3,0,3), (-1,1,0), (0,1,1) \rangle.$$

Para obtener una base de Im(f), debemos buscar un subsistema libre en el sistema generador anterior.

$$v_1 = (-1, 1, 0)$$
 $v_1 = (-1, 1, 0)$
 $v_2 = (0, 1, 1)$ $v_2 = (0, 1, 1)$
 $v_3 = (3, 0, 3)$ $v_3' = v_3 + 3v_1 = (0, 3, 3)$

Se observa que $v_3' = v_3 + 3v_1 = 3v_2$, lo que nos indica que $v_3 = -3v_1 + 3v_2$ y por tanto depende linealmente de los otros dos, que a su vez son independientes. Por tanto $\{(-1,1,0),(0,1,1)\}$ es una base de Im(f).

Entonces, unas ecuaciones paramétricas de este subespacio son

$$\begin{cases} x = -t \\ y = t + s \\ z = s \end{cases}$$

de modo que

$$\begin{array}{lcl} \mathrm{Im}(f) & = & \{(x,y,z) \in \mathbb{R}^3 : (x,y,z) = t(-1,1,0) + s(0,1,1)\} \\ & = & \langle (-1,1,0), (0,1,1) \rangle. \end{array}$$

Así, $\dim(\operatorname{Im}(f)) = 2$. El subespacio $\operatorname{Im}(f)$ tiene un número de ecuaciones cartesianas o implícitas igual a $(3-n^{\circ}$ de parámetros)=1, y se obtiene sin dificultad que

$$Im(f) = \{(x, y, z) : x + y - z = 0\}.$$

3. $\operatorname{Ker}(f) = \{(x, y, z) \in \mathbb{R}^3 : (3x - y, y + z, 3x + z) = (0, 0, 0)\}.$

Resolvemos el sistema

$$\begin{cases} 3x - y = 0 \\ y + z = 0 \\ 3x + z = 0 \end{cases}$$

cuya solución es $x = \lambda$, $y = 3\lambda$, $z = -3\lambda$. Por tanto dim(Ker(f)) = 1.

Una base de Ker(f) es $\{(1,3,-3)\}$, y unas ecuaciones paramétricas son las que expresan la solución del sistema anterior,

$$\begin{cases} x = \lambda \\ y = 3\lambda \\ z = -3\lambda \end{cases}$$

4. Es inmediato que $\dim(\operatorname{Im}(f)) + \dim(\operatorname{Ker}(f)) = 2 + 1 = 3 = \dim(\mathbb{R}^3)$.

A partir de Ker(f) e Im(f) se puede caracterizar una aplicación lineal, pues se verifican las siguientes proposiciones.

Proposición 5.6. Sea $f: V \longrightarrow W$ una aplicación lineal. Entonces f es epimorfismo si, y sólo si, su imagen es todo el espacio de llegada, es decir, Im(f) = W.

Proposición 5.7. Sea $f: V \longrightarrow W$ una aplicación lineal. Entonces f es monomorfismo si, y sólo si, $Ker(f) = \{0\}$.

Si V es de dimensión finita y $f:V\longrightarrow W$ una aplicación lineal, se verifica la siguiente

Proposición 5.8. Sea V de dimensión finita y sea $\{e_1, \ldots, e_n\}$ una base de de V. Entonces f es un monomorfismo si, y sólo si, $\{f(e_1), \ldots, f(e_n)\}$ es un sistema libre de W.

Corolario 5.2. Sea $f: V \longrightarrow W$ una aplicación lineal entre dos espacios vectoriales de dimensión finita $y B = \{e_1, \ldots, e_n\}$ una base de V. Entonces f es un isomorfismo si, y sólo si, $\{f(e_1), \ldots, f(e_n)\}$ es una base de W.

Teorema 5.9. Dos espacios vectoriales V y W de dimensión finita son isomorfos si, y sólo si, tienen la misma dimensión.

Se verifican por tanto las equivalencias

$$f$$
 es inyectiva \Leftrightarrow $\operatorname{Ker}(f) = \{0\}$ \Leftrightarrow $\dim(\operatorname{Im}(f)) = \dim(V) = \dim(W)$ \Leftrightarrow f es suprayectiva \Leftrightarrow f es biyectiva.

Definición 5.9. Sea $f: V \longrightarrow W$ una aplicación lineal.

Se llama \mathbf{rango} de f al número

$$rang(f) = dim(Im(f)).$$

Puede comprobarse que

$$\operatorname{rang}(f) = \dim(\langle f(e_1), \dots, f(e_n) \rangle) = \operatorname{rang}(f(e_1), \dots, f(e_n))$$

siendo $\{e_1, e_2, \ldots, e_n\}$ una base de de V.

Estudio matricial de las aplicaciones lineales

Recordemos que el conjunto

$$\mathcal{L}(V, W) = \{ f : V \longrightarrow W : f \text{ es lineal} \}$$

tiene estructura de espacio vectorial sobre \mathbb{R} con las operaciones ya conocidas. Además, si $\dim(V) = n \text{ y } \dim(W) = m, \mathcal{L}(V, W)$ es de dimensión finita y verifica que $\dim(\mathcal{L}(V, W)) = n \cdot m$.

Es más, los espacios vectoriales $\mathcal{M}_{m\times n}(\mathbb{R})$ y $\mathcal{L}(V,W)$ son isomorfos. Eso permite definir las operaciones entre aplicaciones lineales a partir de las correspondientes operaciones entre matrices.

Si A y B son las matrices de las aplicaciones f y g en bases adecuadas, entonces

- La matriz de f + g en esas bases es A + B.
- La matriz de λf es λA .
- $B \cdot A$ es la matriz de la aplicación $g \circ f$.

5.5. Matriz de una aplicación lineal

Sea $f:V\longrightarrow W$ una aplicación lineal entre espacios vectoriales de dimensión finita y sea $v\in V$ tal que f(v)=w.

Si $\dim(V) = n$, $\dim(W) = m$ y $B = \{e_1, \dots, e_n\}$, $B' = \{u_1, \dots, u_m\}$ son bases de V y W respectivamente, un vector $v \in V$ se expresa como

$$v = x_1 e_1 + x_2 e_2 + \dots + x_n e_n$$
.

Sea X_B la matriz columna de las coordenadas del vector v en la base B, es decir

$$X_B = \left(\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array}\right)$$

Dicha matriz es la **representación matricial** de v en la base B.

Análogamente se obtiene la representación matricial de $w \in W$ en la base $B', Y_{B'}$.

Si se consideran las igualdades

$$f(e_1) = \alpha_{11}u_1 + \alpha_{21}u_2 + \dots + \alpha_{m1}u_m$$

$$f(e_2) = \alpha_{12}u_1 + \alpha_{22}u_2 + \dots + \alpha_{m2}u_m$$

$$\dots \qquad \dots \qquad \dots$$

$$f(e_n) = \alpha_{1n}u_1 + \alpha_{2n}u_2 + \dots + \alpha_{mn}u_m$$

que expresan las imágenes de los elementos de la base de V en función de los de la base de W, entonces la expresión f(v) = w puede escribirse matricialmente como

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix} = \begin{pmatrix} \alpha_{11} & \alpha_{12} & \dots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \dots & \alpha_{2n} \\ \vdots & \vdots & \dots & \vdots \\ \alpha_{m1} & \alpha_{m2} & \dots & \alpha_{mn} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

o, en forma abreviada,

$$Y_{B'} = (f)_{BB'} \cdot X_B$$

En ocasiones escribiremos esta expresión como

$$Y = A \cdot X$$

sin hacer referencia a las bases de trabajo.

Esta igualdad se llama expresión matricial de la aplicación lineal.

La matriz $A = (f)_{BB'}$ es la matriz de f respecto de las bases $B \mathbf{y} B'$.

Si $f: V \longrightarrow V$ es un endomorfismo, la matriz A de f es siempre cuadrada, $A \in \mathcal{M}_n(\mathbb{R})$.

Un endomorfismo $f:V\longrightarrow V$ se dice **regular** cuando es isomorfismo. En caso contrario, f es **singular**.

Recordemos que una matriz $A \in \mathcal{M}_n(\mathbb{R})$ se dice **regular** si existe $B \in \mathcal{M}_n(\mathbb{R})$ tal que $A \cdot B = B \cdot A = I$. Si no existe tal matriz B se dice que la matriz A es **singular**. Esta matriz B, cuando existe, se llama **inversa** de A y se representa por A^{-1} .

5.5.1. Cambio de base en una aplicación lineal

Si V y W son espacios vectoriales de dimensión finita y consideramos las bases $B = \{v_1, v_2, \ldots, v_n\}$ de V y $B_1 = \{w_1, w_2, \ldots, w_m\}$ de W, dada la aplicación lineal $f: V \longrightarrow W$ existe una matriz A (la matriz de f en las bases citadas), tal que

$$Y_{B_1} = A \cdot X_B \tag{1}$$

siendo X_B las coordenadas de un vector de V en la base B e Y_{B_1} las coordenadas de su imagen en B_1 .

Si consideramos otras bases, $B' = \{v'_1, v'_2, \dots, v'_n\}$ de V y $B'_1 = \{w'_1, w'_2, \dots, w'_m\}$ de W, la matriz A' de la aplicación f en dichas bases verifica una igualdad similar,

$$Y_{B_1'} = A' \cdot X_{B'} \tag{2}$$

Por otra parte podemos considerar las matrices del cambio de base en cada espacio vectorial, que son matrices regulares P y Q tales que

$$X_B = P \cdot X_{B'}$$

$$Y_{B_1} = Q \cdot Y_{B'_1}$$

$$(3)$$

De todo ello resulta el siguiente diagrama conmutativo:

$$\begin{array}{ccc}
V_B & \xrightarrow{A} & W_{B_1} \\
P \uparrow & & \uparrow Q \\
V_{B'} & \xrightarrow{A'} & W_{B'_1}
\end{array}$$

En él se observa cómo si en la ecuación (1), $Y_{B_1} = A \cdot X_B$, sustituimos Y_{B_1} y X_B (ver (4) y (3)), resulta

$$Q \cdot Y_{B_1'} = A \cdot P \cdot X_{B'}$$

Multiplicando por Q^{-1} a la izquierda (Q es regular) se obtiene

$$Y_{B_1'} = Q^{-1} \cdot A \cdot P \cdot X_{B'}.$$

Comparando esta última expresión con la igualdad (2) se deduce la igualdad

$$A' = Q^{-1} \cdot A \cdot P$$

que es la expresión matricial de un cambio de base para un endomorfismo.

Veamos por último unas definiciones.

Definición 5.10 (Matrices equivalentes). Sean $A, B \in \mathcal{M}_{m \times n}(\mathbb{R})$ dos matrices del mismo orden.

Se dice que A y B son **equivalentes** si existen una matriz $P \in \mathcal{M}_n(\mathbb{R})$ invertible y una matriz $Q \in \mathcal{M}_m(\mathbb{R})$ invertible tales que

$$B = Q^{-1} \cdot A \cdot P.$$

Definición 5.11 (Matrices semejantes). Sean $A, B \in \mathcal{M}_n(\mathbb{R})$ dos matrices cuadradas del mismo orden. Se dice que A y B son **semejantes** si existe una matriz P invertible, $P \in \mathcal{M}_n(\mathbb{R})$, tal que

$$B = P^{-1} \cdot A \cdot P.$$

Dos matrices semejantes tienen que ser necesariamente cuadradas y del mismo orden.

Ejercicio 5.2. Sea $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ una aplicación lineal que tiene por matriz asociada

$$A = \left(\begin{array}{ccc} 1 & -1 & 2 \\ 0 & 1 & 1 \end{array}\right)$$

Se pide:

- 1. ¿Cuál es la imagen del vector (2, 1, -1) según f?
- 2. Calcular la matriz de f respecto de las bases $B = \{(1,1,0), (0,1,1), (1,0,1)\}$ de \mathbb{R}^3 y $B' = \{(1,1), (1,-1)\}$ de \mathbb{R}^2 .
- 3. Dada la base C de \mathbb{R}^3 , $C = \{(1,0,0), (0,1,0), (0,0,1)\}$, expresar el vector $v = (2,1,-1)_C$ con respecto a la base B.
- 4. Comprobar que las matrices de cambio de base de B a C y de C a B son inversas.

Solución:

1. De la expresión matricial de f se sigue que

$$\left(\begin{array}{ccc} 1 & -1 & 2 \\ 0 & 1 & 1 \end{array}\right) \cdot \left(\begin{array}{c} 2 \\ 1 \\ -1 \end{array}\right) = \left(\begin{array}{c} -1 \\ 0 \end{array}\right)$$

luego f(2,1,-1) = (-1,0).

2. Sea $C' = \{(1,0), (0,1)\}$ base de \mathbb{R}^2 y consideremos las bases B' de \mathbb{R}^2 y B, C de \mathbb{R}^3 .

La matriz de f respecto de las bases C y C' es $A = \begin{pmatrix} 1 & -1 & 2 \\ 0 & 1 & 1 \end{pmatrix}$;

verifica la igualdad $A \cdot X_C = Y_{C'}$.

La matriz de cambio de base en \mathbb{R}^3 , de B a C, es $P = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$; verifica que $P \cdot X_B = X_B$

La matriz de cambio de base en \mathbb{R}^2 , de B' a C', es $Q = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$; verifica la igualdad $Q \cdot X_{B'} = X_{C'}$.

Por tanto, la matriz buscada es $A' = Q^{-1} \cdot A \cdot P$ y puesto que

$$Q^{-1} = \left(\begin{array}{cc} 1/2 & 1/2 \\ 1/2 & -1/2 \end{array}\right)$$

resulta

$$A' = Q^{-1} \cdot A \cdot P = \begin{pmatrix} 1/2 & 3/2 & 2 \\ -1/2 & -1/2 & 1 \end{pmatrix}.$$

3. Sabemos que P es la matriz del cambio de la base B a la base C y verifica $P \cdot X_B = X_C$. Pero como queremos hacer el cambio inverso, entonces

$$\begin{array}{ll} P \cdot X_B = X_C & \Rightarrow & P^{-1} \cdot P \cdot X_B = P^{-1} \cdot X_C \\ & \Rightarrow & X_B = P^{-1} \cdot X_C \end{array}$$

La matriz del cambio de la base C a la base B es

$$P^{-1} = \begin{pmatrix} 1/2 & 1/2 & -1/2 \\ -1/2 & 1/2 & 1/2 \\ 1/2 & -1/2 & 1/2 \end{pmatrix}$$

Entonces, se verifica

$$P^{-1} \cdot X_C = \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix}$$

y por consiguiente, $(2, 1, -1)_C = (2, -1, 0)_B$.

4. Ya está comprobado en el apartado anterior, donde vimos que

$$P \cdot X_B = X_C \Leftrightarrow P^{-1} \cdot X_C = X_B.$$

Ejercicios 5.6.

1. Estudiar si las aplicaciones siguientes son lineales. En caso afirmativo, calcular su núcleo e imagen.

$$\begin{array}{cccc} b) & f: & \mathbb{R}^3 & \longrightarrow & \mathbb{R}^2 \\ & (x,y,z) & \leadsto & (x+y,0) \end{array}$$

c)
$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$

 $(x,y,z) \rightsquigarrow (x^2+y,z,x+z)$

- 2. Sea $\mathbb{R}_n[x]$ el espacio vectorial de los polinomios con coeficientes reales de grado menor o igual que n. Sea $f: \mathbb{R}_n[x] \longrightarrow \mathbb{R}_n[x]$ dada por f(p(x)) = p(x) - p'(x).
 - a) Demostrar que f es endomorfismo.
 - b) Demostrar que f es invertible.
- 3. Sea $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^4$ la aplicación dada por

$$f(x_1, x_2, x_3) = (x_1 + x_2 + 2x_3, x_3 + x_1, 2x_1 + x_2, x_2).$$

- a) Demostrar que f es lineal.
- b) Hallar la matriz de f en las bases canónicas de \mathbb{R}^3 y \mathbb{R}^4 .
- c) Haciendo uso de la expresión matricial de f en estas bases, hallar $\mathrm{Ker}(f)$ e $\mathrm{Im}(f)$.
- 4. Sean E_3 y E_4 dos espacios vectoriales de dimensiones 3 y 4 y con bases respectivas B = $\{e_1, e_2, e_3\}$ y $B' = \{u_1, u_2, u_3, u_4\}$. Sea f una aplicación lineal de E_3 en E_4 de la que se sabe que

$$f(e_1 - e_3) = u_1;$$
 $f(e_2 - e_3) = u_1 - u_2;$ $f(2e_3) = 2u_1 + 2u_3.$

Se pide:

- a) Matriz de f en las bases B y B'.
- b) Ecuaciones implícitas y paramétricas de Im(f).
- c) Núcleo de f.
- d) Ampliando una base del núcleo a una de E_3 , hallar la matriz de f en dicha base y en la base B' de E_4 .
- 5. Sean E_3 y E_4 los espacios del ejercicio anterior, y sean $B^* = \{e_1 e_2, 2e_1 + e_2, e_1 + 3e_2 + e_3\}$ y $B'^* = \{u_2 + 2u_3 + u_4, -u_1 - 2u_3 - u_4, u_1 + u_2 + 2u_3 + u_4, u_2 + u_3 + u_4\}.$
 - a) Demostrar que B^* es base de E_3 y que B'^* es base de E_4 .
 - b) Hallar las expresiones matriciales de los cambios de coordenadas de B^* a B y de B'a B'^* .

5.6 Ejercicios 13

- c) Hallar las coordenadas del vector $v = e_1 + e_2$ en la base B^* .
- d) Si un vector w tiene coordenadas (1,1,1) en base B^* , ¿cuáles son sus coordenadas en base B?
- e) Hallar la expresión matricial de f en las bases B^* y B'^* .
- 6. Sea V un espacio vectorial de dimensión n (n > 1) y f un endomorfismo de V tal que $f^{n-1} \neq 0$ y $f^n = 0$ (donde 0 denota el endomorfismo nulo).
 - a) Demostrar que existe un elemento $x \in V$ tal que $S = \{x, f(x), f^2(x), \dots, f^{n-1}(x)\}$ es una base de V.
 - b) Calcular la matriz de f en la base anterior.
 - c) Calcular Ker(f) e Im(f) en la base anterior. ¿Es f inversible?
- 7. En \mathbb{R}^3 se considera la base $B = \{e_1, e_2, e_3\}.$

Clasificar el endomorfismo $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ dado por

$$f(e_1) = ae_1 + e_2 + e_3,$$
 $f(e_2) = e_1 + e_2 + e_3,$ $f(e_3) = e_1 + be_2 + e_3,$

según los valores de a y b.

8. Se consideran los espacios vectoriales E, F y G siendo E el espacio vectorial de los polinomios de grado menor o igual que 1, F las matrices siétricas de orden 2 y $G = \mathbb{R}^3$. Se definen las aplicaciones

$$\begin{split} f:E \longrightarrow F & g:F \longrightarrow G \\ f(ax+b) = \left(\begin{array}{cc} a & b \\ b & a \end{array} \right) & g \left(\begin{array}{cc} a & b \\ b & c \end{array} \right) = (a,c,a+c) \end{split}$$

$$\begin{aligned} & \text{Sean } B = \{x,1\}, B' = \left\{ \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right) \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right) \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right) \right\} \\ & \text{las bases canonicas de } E, F \neq G. \end{aligned}$$

- a) Demostrar que f y g son lineales.
- b) Hallar las matrices de los homomorfismos $f, g y g \circ f$ en las bases anteriores.
- c) Calcular el subespacio $(g \circ f)(V)$ siendo V el subespacio de E

$$V = \{ax + a : a \in \mathbb{R}\}$$

- d) Si en F utilizamos la base $B'_* = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \right\}$, hallar las matrices de f, g y $g \circ f$ en las bases B, B'_* y B''.
- e) Utilizando la expresión matricial del cambio de coordenadas de B' a B'_* hallar las coordenadas de la matriz $\begin{pmatrix} 2 & -3 \\ -3 & 5 \end{pmatrix}$ en la base B'_* .
- f) Hallar $g^{-1}(2,2,4)$, $g^{-1}(1,3,0)$, $f^{-1}\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$.

- 9. ¿Son ciertas las siguientes afirmaciones? Demostrar o negar con un contraejemplo, según corresponda.
 - a) Dado E espacio vectorial sobre \mathbb{R} y $f: E \longrightarrow E$ aplicación tales que se verifican

$$f(-\alpha x) = -\alpha f(x), \qquad f(x-y) = f(x) - f(y), \qquad \forall x, y \in E, \ \forall \alpha \in \mathbb{R},$$

entonces f es lineal.

- b) Si E y F son espacios vectoriales sobre \mathbb{R} y $f: E \longrightarrow F$ y $g: E \longrightarrow F$ son monomorfismos, entonces f+g es monomorfismo.
- 10. Consideremos los espacios vectoriales de matrices $\mathcal{M}_{2\times 2}(\mathbb{R})$ y $\mathcal{M}_{2\times 3}(\mathbb{R})$. Sea

$$M(a,b,c) = \left\{ \begin{pmatrix} a & b & c \\ 3c & a - 3c & b \end{pmatrix} : a,b,c \in \mathbb{R} \right\} \subset \mathcal{M}_{2\times 3}(\mathbb{R})$$

subespacio de $\mathcal{M}_{2\times 3}(\mathbb{R})$.

- a) Hallar una base de M(a, b, c).
- b) Hallar una aplicación lineal $f: \mathcal{M}_{2\times 2}(\mathbb{R}) \longrightarrow \mathcal{M}_{2\times 3}(\mathbb{R})$ tal que $\operatorname{Im}(f) = M(a, b, c)$.
- c) Hallar una aplicación lineal $g: \mathcal{M}_{2\times 3}(\mathbb{R}) \longrightarrow \mathcal{M}_{2\times 2}(\mathbb{R})$ tal que $\operatorname{Ker}(g) = M(a, b, c)$.
- d) ¿Puede algún homomorfismo de b) ser monomorfismo?
- e) Puede algún homomorfismo de c) ser epimorfismo?
- 11. Sea $E = \{f : \mathbb{R} \longrightarrow \mathbb{R} : f \text{ es aplicación}\}$. E es espacio vectorial sobre \mathbb{R} con la suma y producto por un escalar usuales. Sea $S = \{e^{3x}, xe^{3x}, x^2e^{3x}\}$. Se pide:
 - a) Probar que S es libre y obtener el subespacio U engendrado por S.
 - b) Si T es la aplicación lineal

$$T: U \longrightarrow U$$
 donde $T(f(x)) = \frac{\partial f(x)}{\partial x}$

- 1) Obtener la matriz A de T en la base S.
- 2) Hallar Ker(T), Im(T) y dar la dimensión una base una base de cada uno de ellos. Clasificar T.
- 3) Dado el vector $f(x) = 2e^{3x} + 4xe^{3x} (x^2 + 4)e^{3x}$, determinar su imagen utilizando la matriz A y comprobar el resultado mediante derivación.
- 4) Si consideramos $B = \{v_1, v_2, v_3\}$ la base de U dada por

$$v_1 = e^{3x} + 2x^2e^{3x}, \quad v_2 = xe^{3x}, \quad v_3 = (-1 + x^2)e^{3x}$$

hallar la matriz de T en la base B.

12. Sea $P_3(x) = \mathbb{R}_3[x]$ el espacio vectorial real de los polinomios de grado menor o igual que 3 con coeficientes en \mathbb{R} , y $\mathcal{M}_2(\mathbb{R})$ el espacio vectorial real de las matrices cuadradas de tamaño 2 definidas sobre \mathbb{R} .

Consideremos la aplicación $f: P_3(x) \longrightarrow \mathcal{M}_2(\mathbb{R})$ definida por

$$f(a+bx+cx^2+dx^3) = \begin{pmatrix} d & c+b \\ c-b & a \end{pmatrix}$$

5.6 Ejercicios 15

- a) Comprobar que es lineal.
- b) Demostrar que $B = \{1, 1 + x, 1 + x^3, x + x^2\}$ es una base de $P_3(x)$.
- c) Obtener una base B' del subespacio de $\mathcal{M}_2(\mathbb{R})$ siguiente:

$$H = \left\{ \left(\begin{array}{cc} d & c+b \\ c-b & a \end{array} \right) : a, b, c, d \in \mathbb{R} \right\}.$$

¿Es B' una base de $\mathcal{M}_2(\mathbb{R})$?

- d) En caso de ser afirmativa la respuesta al apartado anterior, hallar la expresión matricial de f referida a las bases B y B'.
- e) Calcular Ker(f) e Im(f).
- f) Clasificar f.
- 13. Sea $B = \{e_1, e_2, e_3, e_4\}$ una base del espacio vectorial \mathbb{R}^4 y sea f el endomorfismo de \mathbb{R}^4 dado por:

$$f(e_1) = e_1 - 2e_2 + e_4,$$
 $f(e_2) = 4e_2 + e_3 - 2e_4,$ $f(e_3) = -2e_1 - 4e_2 - 2e_3 + 2e_4,$ $f(e_4) = -e_1 - 6e_2 - 2e_3 + 3e_4.$

- a) Hallar Ker(f) + Im(f) y $Ker(f) \cap Im(f)$.
- b) Completar una base de Ker(f) hasta una base de \mathbb{R}^4 .
- c) Hallar la matriz de f en la base de \mathbb{R}^4 obtenida en el apartado anterior.
- 14. Consideremos los espacios vectoriales \mathbb{R}^3 y $\mathcal{M}_2(\mathbb{R})$.

Sea $B = \{(1,0,0),(0,1,0),(0,0,1)\}$ la base canónica de \mathbb{R}^3 , y sean B' y B'' las siguientes bases de $\mathcal{M}_2(\mathbb{R})$

$$B' = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$
$$B'' = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ -1 & 0 \end{pmatrix} \right\}$$

Si $b \in \mathbb{R}$ y f es la aplicación lineal

$$f: \mathbb{R}^3 \longrightarrow \mathcal{M}_2(\mathbb{R})$$

$$f(x, y, z) = \begin{pmatrix} 2x + y + 3z & by + z \\ 3x + 4y + 4z & x + 3y + z \end{pmatrix} \quad \forall (x, y, z) \in \mathbb{R}^3$$

se pide:

- a) Hallar $A = (f)_{BB'}$ y $C = (f)_{BB''}$. Dar las expresiones matriciales correspondientes. ¿Qué relación hay entre las matrices A y C?
- b) Hallar f(1,1,0) haciendo uso de ambas expresiones matriciales y comprobar que los resultados coinciden.
- c) Discutir el subespacio Im(f) en función del parámetro b, dando su dimensión y una base en cada caso.

- d) Hallar la antiimagen por f de la matriz $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. ¿Es este conjunto un subespacio de \mathbb{R}^3 ?
- e) Para b = -5:
 - 1) Hallar $T=f^{-1}((0))$, donde (0) representa la matriz nula del espacio $\mathcal{M}_3(\mathbb{R})$. ¿Qué representa este subespacio T? Dar unas ecuaciones paramétricas y unas implícitas suyas.
 - 2) Dar un subespacio suplementario para T.
 - 3) ¿Puedes dar un subespacio U tal que $U \cap T \neq \{(0,0,0)\}$ y $T \nsubseteq U$?