Introduction to Statistical Machine Learning CSC/DSCC 265/465

<u>Lecture 7</u>: Supervised Learning – Part IV

Cantay Caliskan

Notes and updates

Notes and updates

■ The deadline for the 3rd Problem Set is **Friday, February 11, 11:59 PM!**

Plan for today

- Model: Logistic Regression
- Bias and Variance
- Cross-Validation

Plan for today

- Model: Logistic Regression
- Bias and Variance
- Cross-Validation

Technical Background of Logistic Regression

Logistic Regression: Hypothesis

Hypothesis:

$$h_{\theta}(x) = g(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}}$$

- Predict **y** = **1** if $h_{\theta}(x) \ge 0.5$
- Predict $\mathbf{y} = \mathbf{0}$ if $h_{\theta}(x) < 0.5$
- Cost function: Cross-entropy

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$
$$= -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

Separating hyperplane is n-dimensional (where n=number of features)

Goal: Minimize $J(\theta)$

Question: What does crossentropy measure?

Logistic Regression

- $-0 \le h_{\theta}(x) \le 1$
- Idea: Using a sigmoid function, map the input vector to (0,1)

$$h_{\theta}(x) = p(y = 1|x)$$

 $h_{\theta}(x) = p(y = 1|x)$ Hypothesis: Probability of 'being member of class 1' given input

Logistic Regression

Sigmoid function

- *First*: We need to create a linear combination z:

$$z = \left(\sum_{i=1}^{n} w_i x_i\right) + b$$
$$z = (\mathbf{w} * \mathbf{x}) + b$$

Question: What can the range for z be?

Answer: - ∞ to + ∞

- **Second**: We will pass **z** through the Sigmoid function **S**:

$$S(z) = \frac{1}{1 + e^{-z}}$$

Sigmoid function

- *Third*: Apply the Sigmoid function to the sum of weighted features:

$$P(y = 1) = S(w.x + b)$$

$$P(y = 1) = \frac{1}{1 + e^{(-(w*x+b))}}$$

$$P(y = 0) = 1 - S(w.x + b)$$

$$P(y = 0) = 1 - \frac{1}{1 + e^{(-(w*x+b))}}$$

Note: Another property: 1 - S(z) = S(-z)

Question: How can we express P(y=0)?

Entropy and Cross-Entropy

- Entropy: A measure that quantifies the 'state of disorder'
 - In ML: A measure that quantifies the purity of a classification result

- Cross-entropy: A measure of the relative entropy between two probability distributions over the same set of events
 - In Logistic Regression: Labels are associated with probabilities
 - Example: For two-class logistic regression (p and q)

Entropy

A mathematical formula that measures the level if *impurity* in a group of examples

Very impure group Less impure impurity

Formula for entropy: $-\sum_{i=1}^{K} p_k * log_2(p_k)$ where p_k denotes the proportion of instances belonging to class k (K=1,...,k).

Example: Entropy

- Entropy: $-\sum_{i=1}^{K} p_k * log_2$
- Let's say we have a cloud of points
- Let's compute the proportion of class k in the set:
- 16/30 are green circles; 14/30 are pink crosses
- $log_2\left(\frac{16}{30}\right) = -.9 \ and \ log_2\left(\frac{14}{30}\right) = -1.1$
- Entropy: (-16/30)*(-.9) (14/30)*(-1.1) = 0.99
- The *higher* the entropy, the *less pure* the information content
 - And the *better* our set for learning!

Properties:

Entropy is **maximized** when elements are heterogenous (impure)

Entropy is **minimized** when elements are homogenous (pure)

Best Parameters

- <u>Clarification</u>: In the logistic regression model, each class is associated with a (linear combination) of <u>log-odds</u> (logarithm of the odds) value
 - Question: Why?
 - Answer: Goodness of fit is measured by the likelihood function and best parameters are obtained when log-likelihood is maximized
- Specifically, (For a two-class logistic function):

$$L = \prod_{i:y_i=1} p_i \prod_{i:y_i=0} (1-p_i)$$

We need to maximize the *likelihood* function.

$$\ell = \sum_{i:y_i=1} \ln(p_i) + \sum_{i:y_i=0} \ln(1-p_i) = \sum_i \left[y_i \ln(p_i) + (1-y_i) \ln(1-p_i)
ight] egin{array}{c} \mathsf{Whom} \\ \mathsf{max} \end{aligned}$$

Which corresponds to maximizing *log-likelihood*.

$$0=rac{\partial \ell}{\partial eta_0}=\sum_i (y_i-p_i)^{-1}$$

Best parameters for our coefficients are found.

$$0=rac{\partial \ell}{\partial eta_1}=\sum_i (y_i-p_i)x_i$$

Question: How do we find the best parameters?

Converting Log-Odds to Probability

- Question: Why do we convert from log odds to probability?
- Answer: It is difficult to model a variable when it has a restricted range
 - And, probability has a restricted range. Log-odds doesn't.
- Transformation from log-odds to probability is called logit transformation
 - And, sometimes logistic regression is called logit regression

$$logit(p) = log(rac{p}{1-p}) = eta_0 + eta_1 x_1 + \dots + eta_k x_k$$
 Log-odds (i) $rac{1-p}{p} = rac{1}{exp(eta_0 + eta_1 x_1 + \dots + eta_k x_k)}$ $rac{e}{p}$ and take the inverse (ii)

 $rac{1}{p} = 1 + rac{1}{exp(eta_0 + eta_1 x_1 + \cdots + eta_k x_k)} egin{array}{c} \mathsf{Add} \ \mathbf{1} \ \mathsf{to} \ \mathsf{both} \ \mathsf{sides} \ \mathsf{min} \end{pmatrix} = rac{exp(eta_0 + eta_1 x_1 + \cdots + eta_k x_k) + 1}{exp(eta_0 + eta_1 x_1 + \cdots + eta_k x_k)} egin{array}{c} \mathsf{both} \ \mathsf{sides} \ \mathsf{min} \end{pmatrix}$

$$p=rac{exp(eta_0+eta_1x_1+\cdots+eta_kx_k)}{1+exp(eta_0+eta_1x_1+\cdots+eta_kx_k)}$$
 Take the multiplicative inverse again to find the probability

Exponentiate by e and take the inverse (ii)

Add a common denominator(iv)

Example: Converting Log-Odds to Probability

- Idea: Let's say probability of success is s, and probability of failure is f
 - And s = 0.8 and f = 0.2
 - Odds of success: 0.8/0.2 = 4
 - Log odds of success log(0.8/0.2) = log(4)
 - Probabilistically speaking: 62.07%
 - Note: Probability ranges from 0 to 1, odds range from 0 to ∞

Summary: Logistic Function

- What are the different components?
 - 1) *Input*: A feature representation of the input: $[x_1, x_2, ..., x_n]$
 - 2) Function: A classification function that computes \hat{y} via P(y|x) Logistic function uses **sigmoid** or **softmax** function for classification
 - 3) *Cost*: A cost function for learning that helps to minimize error on training set Logistic function uses *cross-entropy* cost function
 - 4) *Optimization*: An algorithm for optimizing the cost function One option: *Stochastic Gradient Descent* algorithm
 - 5) **Result**: Best parameters are log-odds with with respect to a reference category Reference category is usually the 'most usual' / average / expected one Rochester

Let's go through an example and a practical application...

- Let's work out a simple sentiment classification:
 - Suppose we are doing a binary sentiment classification on a movie review text, and we would like assign the sentiment class + or – to a review document.

Positive	Negative	
GREAT movie and the family will love it!! If kids	The script for this movie was probably found in	
are bored one day just pop the tape in and	a hair-ball recently coughed up by a really old	
you'll be so glad you did!!! <br< td=""><td colspan="2">dog. Mostly an amateur film with lame FX. For</td></br<>	dog. Mostly an amateur film with lame FX. For	
/>~~Rube i luv raven-s!	you Zeta-Jones fanatics: she has the credibility	
	of one Mr. Binks.	
Did Sandra (yes, she must have) know we	I would love to have that two hours of my life	
would still be here for her some nine years	back. It seemed to be several clips from Steve's	
later? See it if you haven't, again if	Animal Planet series that was spliced into a	
you have; see her live while you can.	loosely constructed script. Don't Go, If you	
	must see it, wait for the video	
Verry classic plot but a verry fun horror movie	This is without a doubt the worst movie I have	
for home movie party Really gore in the second	ever seen. It is not funny. It is not interesting	
part This movie proves that you can make	and should not have been made.	
something fun with a small budget. I hope that		
the director will make another one		

- Consider cleaning the data: Remove HTML links, stopwords, emojis, non-alphabetic characters, programming code, words that are too short
- 2) Consider tokenization and part-of-speech-tagging and stemming and lemmatization:
 - Tokenization: Break down a sentence to understand the functions of individual words

Oh, we need another supervised model here!

- 3) Consider tokenization and part-of-speech-tagging and stemming and lemmatization:
 - **Stemming**: The process of finding the root of the words

- Lemmatization: The process of finding the form of the related word in the dictionary (not equal to stemming)
 - Use lexical knowledge instead of base of words

```
Stemming

adjustable \rightarrow adjust

formality \rightarrow formaliti

formaliti \rightarrow formal

airliner \rightarrow airlin \triangle

Lemmatization

was \rightarrow (to) be
better \rightarrow good
meeting \rightarrow meeting
```


- How can ve vectorize the word representations?
 - 1) **Bag of Words**: Extract all the unique words in the corpus and then count how many times a particular word appears

```
It was the best of times,
it was the worst of times,
it was the age of wisdom,
it was the age of foolishness.
Unique words:
"it", "was", "the", "best", "of", "times", "worst", "age", "wisdom"
"foolishness"
```


- How can ve vectorize the word representations?
 - 1) **Bag of Words**: Extract all the unique words in the corpus and then count how many times a particular word appears

```
"it was the worst of times" = [1, 1, 1, 0, 1, 1, 1, 0, 0, 0]
"it was the age of wisdom" = [1, 1, 1, 0, 1, 0, 0, 1, 1, 0]
"it was the age of foolishness" = [1, 1, 1, 0, 1, 0, 0, 1, 0, 1]
```

Question: What is the disadvantage here?

- How can ve vectorize the word representations?
 - 2) Word2Vec: A 2013 algorithm invented by a Google employee
 - Idea: Have words occupy spatially close vector spaces.

Create a vector space for documents by using:

- context(s) for the predicting word (CBOW)
- word(s) for predicting the context (skip-gram)

- How can ve vectorize the word representations?
 - 3) *TF-IDF*: Term-frequency-inverse-document-frequency
 - <u>Idea</u>: Calculate the measure of how important a Word is in the document to calculate the importance of a document

$$Tf = \frac{number\ of\ times\ term\ appears\ in\ document}{total\ number\ of\ words\ in\ document}$$

$$Idf = \ln\left(\frac{total\ number\ of\ documents}{number\ of\ documents\ with\ term\ in\ them}\right)$$

$$TfIdf = Tf \times Idf$$

- How do we compute the *classes*?

By using *linear combinations* and the *sigmoid function*:

Var	Definition	Value in Fig. 5.2
x_1	$count(positive lexicon words \in doc)$	3
x_2	$count(negative lexicon words \in doc)$	2
x_3	$\begin{cases} 1 & \text{if "no"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$	1
x_4	$count(1st and 2nd pronouns \in doc)$	3
<i>x</i> ₅	$\begin{cases} 1 & \text{if "!"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$	0
x_6	log(word count of doc)	ln(66) = 4.19

Let's say $w_1 = 2,5$ and $w_2 = -5$:

$$p(+|x) = P(y = 1|x) = \sigma(\mathbf{w} \cdot \mathbf{x} + b)$$

$$= \sigma([2.5, -5.0, -1.2, 0.5, 2.0, 0.7] \cdot [3, 2, 1, 3, 0, 4.19] + 0.1)$$

$$= \sigma(.833)$$

$$= 0.70$$

$$p(-|x) = P(y = 0|x) = 1 - \sigma(\mathbf{w} \cdot \mathbf{x} + b)$$

$$= 0.30$$
(5.7)

Source: Jurafsky

