3. Электростатика проводников. Конденсаторы

К проводникам относятся твердые тела, имеющие достаточно большую концентрацию свободных носителей электрического заряда и обладающие высокой удельной проводимостью (удельная проводимость, или электропроводность, есть величина обратная удельному сопротивлению). Хорошими проводниками являются металлы, где свободными носителями заряда являются электроны проводимости – коллективизированные валентные электроны атомов, образующих кристаллическую решетку металла. Для металлов концентрация свободных электронов

$$N_a \sim 10^{28} \text{m}^{-3}$$

а удельная проводимость

$$\sigma \sim 10^8 - 10^{10} \text{ Om}^{-1} \text{m}^{-1}$$
.

Если куску металла передать электрический заряд, то под действием кулоновских сил отталкивания он распределится в тонком поверхностном слое толщиной $\sim 10^{-10} \mathrm{M}$ металла таким образом, что электрическое поле внутри всего металла равняется нулю. При этом потенциал во всех точках металла имеет одинаковую величину. В случае металлического шара радиуса R переданный ему заряд q равномерно распределится по всей поверхности шара с постоянной **поверхностной плотностью**

$$\sigma = \frac{dq}{dS} = \frac{q}{4\pi R^2} \ .$$

Вектор напряженности электрического поля, созданного этими поверхностными зарядами, описывается формулой:

$$\vec{E}(\vec{r}) = \begin{cases} 0, & R > r \ge 0; \\ \frac{q}{4\pi\epsilon_0 r^2} \frac{\vec{r}}{r}, & \infty > r > R, \end{cases}$$

где \vec{r} - радиус-вектор точки наблюдения, проведенный из центра шара.

Если кусок металла поместить в постоянное электрическое поле \vec{E} , то под действием силы

$$\vec{F} = q\vec{E}$$

начнется пространственное перераспределение свободных электрических зарядов. Это перераспределение зарядов закончится только тогда, когда суммарное поле $\vec{E}_{\text{сум}}$ внутри металла станет равным нулю

$$\vec{E}_{\scriptscriptstyle \rm CYM} = \vec{E} + \vec{E}' = 0 \ . \label{eq:EYM}$$

Здесь \vec{E}' - вектор напряженности электрического поля, созданного перераспределенными зарядами, которые разместились в тонком поверхностном слое металла. В случае металлического шара распределение этих зарядов, индуцированных внешним электрическим полем \vec{E} , показано на рис. 3.1. Отметим, что суммарное поле вне шара отлично от нуля.

Рис. 3.1

Конденсатор есть система из двух проводников, разделенных непроводящей областью. Если на один из проводников подать положительный заряд q, а на другой проводник - отрицательный заряд -q, то между проводниками возникнет разность потенциалов

$$\varphi_1 - \varphi_2 = \frac{q}{C} .$$

Здесь C - емкость конденсатора, зависящая от его геометрических параметров и свойств непроводящей области.

При зарядке конденсатора совершается работа, связанная с пространственным разделением зарядов противоположного знака. Эта работа определяет энергию заряженного конденсатора

$$W = \frac{q^2}{2C} = \frac{1}{2}Cu^2 ,$$

где $u = \phi_1 - \phi_2$ - электрическое напряжение на конденсаторе.

Носителем энергии заряженного конденсатора является электрическое поле, созданное его зарядами. Энергия электрического поля, приходящаяся на единицу объема, называется плотностью энергии электрического поля и в случае вакуума описывается формулой

$$w = \frac{1}{2} \varepsilon_0 E^2 .$$

Соответственно полная энергия электрического поля заряженного вакуумного или воздушного конденсатора имеет вид:

$$W = \int \frac{1}{2} \varepsilon_0 E^2 dV ,$$

где интегрирование проводится по всему объему V конденсатора (за пределами конденсатора электрическое поле можно считать равным нулю).

В зависимости от формы проводников, называемых обкладками конденсатора, различают плоские, цилиндрические и сферические конденсаторы.

Задача №7

Сферический конденсатор образован двумя концентрическими проводящими сферами с радиусами R_1 и $R_2 > R_1$. Внутренней сфере сообщили заряд +q, а внешней -q (рис. 1). Определите: 1) разность потенциалов $\phi_1 - \phi_2$ между обкладками конденсатора, 2) емкость C конденсатора и 3) энергию W электрического поля конденсатора.

Рис. 1 Решение

Из решения задачи №4 следует, что вектор напряженности электрического поля заряженного конденсатора описывается выражением:

$$\vec{E} = \begin{cases} 0, & R_1 > r \ge 0; \\ \frac{q}{4\pi\epsilon_0 r^2} \frac{\vec{r}}{r}, & R_2 > r \ge R_1; \\ 0, & \infty > r \ge R_2. \end{cases}$$
 (1)

3десь \vec{r} - радиус-вектор, проведенный из центра 0 конденсатора в точку наблюдения.

Разность потенциалов между положительно заряженной внутренней обкладкой и отрицательно заряженной внешней обкладкой имеет вид:

$$\phi_{1} - \phi_{2} = \int_{1}^{2} (\vec{E}\vec{\tau}) dl = \int_{R_{1}}^{R_{2}} \frac{q}{4\pi\epsilon_{0}r^{2}} (\vec{r} \cdot \vec{r}) dr = \frac{q}{4\pi\epsilon_{0}} \int_{R_{1}}^{R_{2}} \frac{dr}{r^{2}} = \frac{q}{4\pi\epsilon_{0}} (\frac{1}{R_{1}} - \frac{1}{R_{2}}) = \frac{q}{4\pi\epsilon_{0}} \frac{R_{2} - R_{1}}{R_{1}R_{2}}$$
(2)

Здесь интегрирование выполняется вдоль силовой линии электрического поля, представляющей собой прямую, начинающуюся на внутренней обкладке в точке 1 и заканчивающуюся на внешней обкладке в точке 2. При этом продолжение силовой линии проходит через центр конденсатора. Поскольку обкладки конденсатора есть эквипотенциальные поверхности, где во всех точках ϕ_1 =const и ϕ_2 =const, то для расчета разности потенциалов можно выбрать любой путь интегрирования, соединяющий эти обкладки.

Согласно определению емкости конденсатора

$$\varphi_1 - \varphi_2 = \frac{q}{C} \tag{3}$$

и формуле (2) емкость сферического конденсатора

$$C = \frac{q}{\varphi_1 - \varphi_2} = 4\pi \varepsilon_0 \frac{R_1 R_2}{R_2 - R_1} \ . \tag{4}$$

Энергия электрического поля конденсатора распределена в области между обкладками конденсатора и описывается выражением:

$$W = \int_{V} \frac{1}{2} \varepsilon_0 E^2 dV = \int_{R_1}^{R_2} \frac{1}{2} \varepsilon_0 \frac{q}{(4\pi\varepsilon_0)^2} \frac{1}{r^4} 4\pi r^2 dr = \frac{1}{2} \frac{q^2}{4\pi\varepsilon_0} \int_{R_1}^{R_2} \frac{1}{r^2} dr = \frac{1}{2} \frac{q^2}{4\pi\varepsilon_0} \frac{R_2 - R_1}{R_1 R_2} = \frac{q^2}{2C}$$
 (5)

Otbet:
$$\phi_1 - \phi_2 = \frac{q}{4\pi\epsilon_0} \frac{R_2 - R_1}{R_1 R_2}$$
, $C = 4\pi\epsilon_0 \frac{R_1 R_2}{R_2 - R_1}$, $W = \frac{q^2}{2C}$.

Задача №8

Плоский воздушный конденсатор с площадью пластин S и расстоянием d между ними подключен к источнику с постоянной ЭДС ε . В конденсатор параллельно его обкладкам вдвигают незаряженную проводящую пластину толщиной l < d (рис.1). Определите: 1) электрические заряды +q' и -q'', индуцированные на поверхности пластины; 2) напряженность электрического поля E во всем пространстве; 3) емкость C' полученной системы пластин.

Рис.1

Решение

При внесении пластины в заряженный конденсатор его электрическое поле индуцирует на поверхностях пластины положительный заряд q' и отрицательный заряд -q''. Поскольку в пластине происходит только пространственное разделение зарядов и она остается электрически нейтральной, то

$$q' - q'' = 0, \quad q' = q''$$
 (1)

В случае однородного электрического поля плоского конденсатора индуцированные заряды равномерно распределены по соответствующим поверхностям пластины с плотностями

$$\sigma' = \frac{q'}{S}, \quad \sigma'' = \frac{q''}{S} = -\frac{q'}{S} = -\sigma'.$$
 (2)

Величина заряда q' находится из условия равенства нулю полного электрического поля $E_{\rm IV}$ внутри внесенной пластины. Это поле создают 4 параллельные равномерно заряженные плоскости, показанные на рис.1. Векторы напряженности соответствующих электрических полей перпендикулярны поверхностям пластин, а их величины определяются поверхностной плотностью заряда σ в соответствии с формулой

$$E = \frac{\sigma}{2\varepsilon_0}. ag{3}$$

Здесь для приближенного описания E используется формула, справедливая, строго говоря, только для неограниченной заряженной плоскости.

С учетом (2) и (3) напряженность полного электрического поля внутри внесенной пластины запишется в виде:

$$\frac{q}{2\varepsilon_0 S} - \frac{q'}{2\varepsilon_0 S} - \frac{q'}{2\varepsilon_0 S} + \frac{q}{2\varepsilon_0 S} = 0. \tag{4}$$

Отсюда находим, что

$$q' = q. (5)$$

При выполнении равенства (5) электрическое поле, созданное индуцированными зарядами внутри внесенной пластины, полностью компенсирует электрическое поле, созданное зарядами +q и -q на пластинах конденсатора.

С помощью (3) и (5) можно найти напряженность электрического поля во всем пространстве:

$$E_{\rm I} = 0, \qquad E_{\rm III} = \frac{q}{\varepsilon_0 S}, \qquad E_{\rm IV} = 0, \qquad E_{\rm V} = \frac{q}{\varepsilon_0 S}, \qquad E_{\rm VI} = 0, \qquad E_{\rm VII} = 0.$$
 (6)

Разность потенциалов между положительно заряженной пластиной и отрицательно заряженной пластиной конденсатора описывается выражением:

$$\phi_{1} - \phi_{2} = \int_{1}^{2} (\vec{E}\vec{\tau})dl = E_{III}d_{1} + E_{V}d_{2} = \frac{q}{\varepsilon_{0}S}(d_{1} + d_{2}) = \frac{q}{\varepsilon_{0}S}(d - l) = \frac{q}{C'}.$$
 (7)

Здесь интегрирование ведется вдоль силовой линии электрического поля конденсатора, начинающейся в точке 1 на поверхности положительно заряженной пластины и оканчивающейся в точке 2 на поверхности отрицательно заряженной пластины.

Таким образом, емкость системы пластин

$$C' = \frac{\varepsilon_0 S}{d - l} \tag{8}$$

Это эквивалентная емкость двух последовательно соединенных плоских конденсаторов с расстояниями между пластинами d_1 и d_2 при одинаковой площади пластин S.

Согласно условиям задачи разность потенциалов на пластинах конденсатора определяется величиной ЭДС є источника

$$\varphi_1 - \varphi_2 = \varepsilon = \frac{q}{C} , \qquad (9)$$

поэтому

$$q = C\varepsilon = \frac{\varepsilon_0 S}{d - l}\varepsilon\tag{10}$$

и с учетом (6)

$$E_{\text{III}} = E_{\text{IV}} = \frac{\varepsilon}{d-l}$$
.

Otbet:
$$q' = q'' = \frac{\varepsilon_0 S}{d-l} \varepsilon$$
, $E_I = E_{II} = E_{IV} = E_{VII} = E_{VII} = 0$, $E_{III} = E_V = \frac{\varepsilon}{d-l}$, $C' = \frac{\varepsilon_0 S}{d-l}$

.

Задача №9

На плоский воздушный конденсатор с площадью пластин $S=100~{\rm cm}^2$ подается постоянное напряжение $U=220{\rm B}$ (рис.1). Напряженность электрического поля внутри конденсатора $E=560{\rm B/cm}$. Определите:

- 1) поверхностную плотность о положительного заряда конденсатора;
- 2) энергию W электрического поля конденсатора; 3) силу притяжения F пластин конденсатора.

Рис. 1

Решение

Поверхностные плотности зарядов о и -о на пластинах конденсатора можно приближенно считать одинаковыми во всех точках поверхности соответствующих пластин, поэтому электрическое поле внутри воздушного конденсатора определяется формулой для равномерно заряженной неограниченной плоскости:

$$E = \frac{\sigma}{\varepsilon_0} \ . \tag{1}$$

Отсюда находится соответствующая поверхностная плотность положительного заряда:

$$\sigma = \varepsilon_0 E = 5.57 \cdot 10^{-7} \frac{\text{K}_{\Pi}}{\text{M}^2} \ . \tag{2}$$

Энергия электрического поля заряженного воздушного плоского конденсатора

$$W = \int_{V} \frac{1}{2} \varepsilon_0 E^2 dV = \frac{1}{2} \varepsilon_0 E^2 V = \frac{1}{2} \varepsilon_0 E^2 S d , \qquad (3)$$

где V=Sd – объем области между обкладками конденсатора и d - расстояние между ними.

Расстояние d находится с помощью разности потенциалов

$$\phi_1 - \phi_2 = U = \int_1^2 (\vec{E}\vec{\tau})dl = Ed$$
(4)

где интегрирование ведется вдоль силовой линии электрического поля внутри конденсатора. Отсюда получаем, что

$$d = \frac{U}{E} \ . \tag{5}$$

С учетом (5) энергия электрического поля конденсатора (3) запишется в виде:

$$W = \frac{1}{2} \varepsilon_0 EUS = \frac{1}{2} \sigma US = \frac{1}{2} qU = 8 \cdot 10^{-7} \text{Дж} , \qquad (6)$$

где $q=\sigma S$ - положительный заряд конденсатора.

Сила притяжения между пластинами конденсатора

$$F = \frac{1}{2}qE = 1,6 \cdot 10^{-4} \text{H} . \tag{7}$$

Здесь учитывается только то электрическое поле, которое создано зарядами противоположного знака, находящимися на другой пластине конденсатора.

Ответ:
$$\sigma = 5,7 \cdot 10^{-7} \text{ Kл/м}^2$$
, $W = 8 \cdot 10^{-7} \text{ Дж}$, $F = 1,6 \cdot 10^{-4} \text{ H}$.