$12a_{0454} (K12a_{0454})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{51} - u^{50} + \dots + 2u + 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 51 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{51} - u^{50} + \dots + 2u + 1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{3} + 2u \\ -u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{7} - 4u^{5} + 4u^{3} \\ u^{7} - 3u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{11} + 6u^{9} - 12u^{7} + 8u^{5} - u^{3} + 2u \\ -u^{11} + 5u^{9} - 8u^{7} + 3u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{15} - 8u^{13} + 24u^{11} - 32u^{9} + 18u^{7} - 8u^{5} + 8u^{3} \\ u^{15} - 7u^{13} + 18u^{11} - 19u^{9} + 6u^{7} - 2u^{5} + 4u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{19} + 10u^{17} - 40u^{15} + 80u^{13} - 83u^{11} + 50u^{9} - 36u^{7} + 24u^{5} - u^{3} + 2u \\ -u^{19} + 9u^{17} - 32u^{15} + 55u^{13} - 45u^{11} + 19u^{9} - 16u^{7} + 10u^{5} + 3u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{38} - 19u^{36} + \cdots + 2u^{2} + 1 \\ u^{38} - 18u^{36} + \cdots + 6u^{4} + u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{21} + 10u^{19} + \cdots + 6u^{3} - u \\ u^{23} - 11u^{21} + \cdots + 6u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^{49} 96u^{47} + \cdots 24u 6$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_5	$u^{51} + 19u^{50} + \dots - 6u - 1$
c_2, c_6	$u^{51} - u^{50} + \dots + 3u^2 + 1$
c_3, c_4, c_{10}	$u^{51} - u^{50} + \dots + 2u + 1$
c_7, c_8, c_{11} c_{12}	$u^{51} + 5u^{50} + \dots + 60u + 7$
<i>C</i> 9	$u^{51} + 3u^{50} + \dots - 2294u - 851$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_5	$y^{51} + 27y^{50} + \dots - 46y - 1$
c_2, c_6	$y^{51} + 19y^{50} + \dots - 6y - 1$
c_3, c_4, c_{10}	$y^{51} - 49y^{50} + \dots - 6y - 1$
c_7, c_8, c_{11} c_{12}	$y^{51} + 63y^{50} + \dots - 1230y - 49$
<i>C</i> 9	$y^{51} - 29y^{50} + \dots + 13032066y - 724201$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.497159 + 0.687033I	-12.69280 + 2.28721I	-7.99809 - 2.91340I
u = -0.497159 - 0.687033I	-12.69280 - 2.28721I	-7.99809 + 2.91340I
u = -0.514014 + 0.669274I	-8.53754 - 4.85587I	-4.54813 + 1.85081I
u = -0.514014 - 0.669274I	-8.53754 + 4.85587I	-4.54813 - 1.85081I
u = -0.476017 + 0.696319I	-8.40118 + 9.40330I	-4.15224 - 7.59831I
u = -0.476017 - 0.696319I	-8.40118 - 9.40330I	-4.15224 + 7.59831I
u = 0.476316 + 0.685506I	-6.77395 - 3.90642I	-1.99681 + 3.09904I
u = 0.476316 - 0.685506I	-6.77395 + 3.90642I	-1.99681 - 3.09904I
u = 0.502151 + 0.665862I	-6.86920 - 0.58725I	-2.24865 + 2.79780I
u = 0.502151 - 0.665862I	-6.86920 + 0.58725I	-2.24865 - 2.79780I
u = -1.230860 + 0.105090I	-0.223422 - 0.095504I	0
u = -1.230860 - 0.105090I	-0.223422 + 0.095504I	0
u = 1.252200 + 0.136529I	-0.53663 - 5.16209I	0
u = 1.252200 - 0.136529I	-0.53663 + 5.16209I	0
u = -1.30322	-3.07453	0
u = 0.288268 + 0.603646I	0.37640 - 6.82727I	-0.33113 + 9.54781I
u = 0.288268 - 0.603646I	0.37640 + 6.82727I	-0.33113 - 9.54781I
u = 0.379930 + 0.522272I	-3.67336 - 1.67891I	-7.63362 + 4.68207I
u = 0.379930 - 0.522272I	-3.67336 + 1.67891I	-7.63362 - 4.68207I
u = -0.255571 + 0.575911I	1.26731 + 1.64575I	2.07350 - 4.49112I
u = -0.255571 - 0.575911I	1.26731 - 1.64575I	2.07350 + 4.49112I
u = 1.378680 + 0.061133I	-5.19429 - 2.37699I	0
u = 1.378680 - 0.061133I	-5.19429 + 2.37699I	0
u = 0.479281 + 0.376899I	-0.51645 + 3.54279I	-3.97592 - 2.38269I
u = 0.479281 - 0.376899I	-0.51645 - 3.54279I	-3.97592 + 2.38269I
u = 1.384830 + 0.203376I	-3.94332 - 4.47861I	0
u = 1.384830 - 0.203376I	-3.94332 + 4.47861I	0
u = 1.395460 + 0.136782I	-5.14352 - 2.78940I	0
u = 1.395460 - 0.136782I	-5.14352 + 2.78940I	0
u = -1.396860 + 0.217411I	-4.98503 + 9.81269I	0

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.396860 - 0.217411I	-4.98503 - 9.81269I	0
u = -0.023873 + 0.568833I	3.28231 + 2.57953I	6.80307 - 3.85321I
u = -0.023873 - 0.568833I	3.28231 - 2.57953I	6.80307 + 3.85321I
u = -1.42782 + 0.18011I	-9.44989 + 4.23941I	0
u = -1.42782 - 0.18011I	-9.44989 - 4.23941I	0
u = -1.43604 + 0.12595I	-6.55813 - 1.72068I	0
u = -1.43604 - 0.12595I	-6.55813 + 1.72068I	0
u = -0.429960 + 0.261562I	0.244440 + 1.222020I	-3.00114 - 3.76024I
u = -0.429960 - 0.261562I	0.244440 - 1.222020I	-3.00114 + 3.76024I
u = -1.49311 + 0.24266I	-13.1596 + 7.2936I	0
u = -1.49311 - 0.24266I	-13.1596 - 7.2936I	0
u = 1.49510 + 0.24697I	-14.7939 - 12.8461I	0
u = 1.49510 - 0.24697I	-14.7939 + 12.8461I	0
u = -1.49838 + 0.22938I	-13.36680 + 3.84685I	0
u = -1.49838 - 0.22938I	-13.36680 - 3.84685I	0
u = 1.50158 + 0.23862I	-19.1879 - 5.6622I	0
u = 1.50158 - 0.23862I	-19.1879 + 5.6622I	0
u = 1.50376 + 0.22747I	-15.1019 + 1.5937I	0
u = 1.50376 - 0.22747I	-15.1019 - 1.5937I	0
u = -0.206294 + 0.390192I	0.029465 + 0.870630I	0.74153 - 7.77097I
u = -0.206294 - 0.390192I	0.029465 - 0.870630I	0.74153 + 7.77097I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_5	$u^{51} + 19u^{50} + \dots - 6u - 1$
c_2, c_6	$u^{51} - u^{50} + \dots + 3u^2 + 1$
c_3, c_4, c_{10}	$u^{51} - u^{50} + \dots + 2u + 1$
$c_7, c_8, c_{11} \\ c_{12}$	$u^{51} + 5u^{50} + \dots + 60u + 7$
<i>C</i> 9	$u^{51} + 3u^{50} + \dots - 2294u - 851$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1,c_5	$y^{51} + 27y^{50} + \dots - 46y - 1$
c_2, c_6	$y^{51} + 19y^{50} + \dots - 6y - 1$
c_3, c_4, c_{10}	$y^{51} - 49y^{50} + \dots - 6y - 1$
c_7, c_8, c_{11} c_{12}	$y^{51} + 63y^{50} + \dots - 1230y - 49$
<i>C</i> 9	$y^{51} - 29y^{50} + \dots + 13032066y - 724201$