ELE 0316 / ELE 0937 - Eletrônica Básica

Departamento de Engenharia Elétrica FEIS - UNESP

Capitulo 08 : Álgebra Booleana

Teoremas e Postulados

Operações lógicas básicas

441	Truth	T
	IPHTD	Iania

A	В	A AND B
0	0	0
0	1	0
1	0	0
1	1	1

OR Truth Table

A	В	A OR B
0	0	0
0	1	1
1	0	1
1	1	1

NAND, NOR, XOR, XNOR Truth Table

A	В	A NAND B	A NOR B	A XOR B	A XNOR B
0	0	1	1	0	1
0	1	1	0	1	0
1	0	1	0	1	0
1	1	0	0	0	1

Operações lógicas básicas

Representação simbólica padrão

Boolean Operation	Operators
AND	*, &
OR	+, I, #
XOR	⊕, ^
NOT	$!,\sim,\overline{\mathbf{A}}$

$$Y = \overline{A \& B} = !(AB)$$

$$Y = \overline{A \oplus B}$$
.

$$Y = (AB + \overline{C} + D) \& \overline{E \oplus F}$$

Obtenha o Circuito Digital que realiza a seguinte expressão:

$$Y = (AB + \overline{C} + D)\&\overline{E \oplus F}$$

Obtenha o Circuito Digital que realiza a seguinte expressão:

$$Y = (AB + \overline{C} + D) \& \overline{E \oplus F}$$

Obtenha o Circuito Digital que realiza a seguinte expressão:

$$Y = (AB + \overline{C} + D) \& \overline{E \oplus F}$$

Para cada circuito lógico existe uma expressão booleana correspondente e vice-versa.

Teoremas de DeMorgan

$$\overline{A.B} = \overline{A} + \overline{B}$$

$$\overline{A+B} = \overline{A}.\overline{B}$$

$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

$$\overline{A + B} = \overline{A} \cdot \overline{B}$$

DeMorgan's theorems

$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

$$\overline{A + B} = \overline{A} \cdot \overline{B}$$

Custo = 12

DeMorgan's theorems

$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

$$\overline{A + B} = \overline{A} \cdot \overline{B}$$

Dada a seguinte expressão booleana, obter o circuito.

$$W = X(\overline{Y} + Z) + \overline{X}Y$$

Dada a seguinte expressão booleana, obter o circuito.

$$W = X(\overline{Y} + Z) + \overline{X}Y$$

$$W = X(\overline{Y} + Z) + \overline{X}Y$$

$$W = X(\overline{Y} + Z) + \overline{X}Y$$

$$W = X(\overline{Y} + Z) + \overline{X}Y$$

$$\mathbf{W} = \mathbf{X}(\overline{\mathbf{Y}} + \mathbf{Z}) + \ \overline{\mathbf{X}}.\mathbf{Y}$$

$$\mathbf{W} = \mathbf{X}.\,\overline{\mathbf{Y}} + \mathbf{X}.\,\mathbf{Z} + \overline{\mathbf{X}}.\,\mathbf{Y}$$

A Álgebra de Boole permite manipular (transformar) e simplificar expressão booleanas

Trata-se do formalismo matemático para dar suporte à Teoria dos Circuitos Lógicos Digitais

Fundamentos da Álgebra de Boole

Postulados (Axiomas):

São proposição assumidas como verdade. Não necessita de provas.

" a menor distâncias entre dois pontos é a linha reta "

Uma proposição é uma afirmação (declaração) que pode ser Verdadeira ou Falsa.

Cálculo de Proposições

Postulados (Axiomas):

Seja X uma variável booleana.

Então
$$X = 0$$
 ou $X = 1$.

Se X = 0 então $\overline{X} = 1$ e vice-versa.

$$2. \ 0.0 = 0$$

$$3. \ 0 \cdot 1 = 1 \cdot 0 = 0$$

$$4. \ 1 \cdot 1 = 1$$

$$5.0+0=0$$

$$6. 0+1=1+0=1$$

$$7. 1 + 1 = 1$$

Teoremas:

a.
$$A \cdot B = B \cdot A$$

b.
$$A + B = B + A$$

Leis Associativa.

a.
$$(A \cdot B) \cdot C = A \cdot (B \cdot C)$$

b.
$$(A + B) + C = A + (B + C)$$

Leis Distributiva.

a.
$$A \cdot (B + C) = A \cdot B + A \cdot C$$

b.
$$A + (B \cdot C) = (A + B) \cdot (A + C)$$

Leis Identidade.

a.
$$A \cdot A = A$$

b.
$$A + A = A$$

Teoremas:

a.
$$\overline{(A)} = \overline{A}$$

b.
$$\overline{(\overline{A})} = \overline{\overline{A}} = A$$

Leis da Redundância.

a.
$$A \cdot (A + B) = A$$

b.
$$A + (A \cdot B) = A$$

7.

a.
$$0 \cdot A = 0$$

b.
$$1 \cdot A = A$$

$$c. \quad 0 + A = A$$

d.
$$1 + A = 1$$

Teoremas:

a.
$$A \cdot \overline{A} = 0$$

b.
$$A + \overline{A} = 1$$

9.

a.
$$A \cdot (\overline{A} + B) = A \cdot B$$

b.
$$A + (\overline{A} \cdot B) = A + B$$

DeMorgan's theorems

a.
$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

b.
$$\overline{A + B} = \overline{A} \cdot \overline{B}$$

Exemplo 02.

Simplifique e Implemente a seguinte expressão booleana $D = \overline{A}BC + A\overline{B}C + ABC + B\overline{C}$.

Exemplo 02.

Simplifique e Implemente a seguinte expressão booleana $D = \overline{A}BC + A\overline{B}C + ABC + B\overline{C}$. Solução:

Pode-se adicionar o termo ABC pois X + X = X

$$D = \overline{A}BC + ABC + A\overline{B}C + ABC + B\overline{C}$$

Pode-se por os termos BC e AC em evidência -> associatividade

$$= BC(A + \overline{A}) + AC(B + \overline{B}) + B\overline{C}$$
 sabe-se que $A + \overline{A} = 1$

sabe-se que
$$A + \overline{A} = 1$$

$$= BC + AC + B\overline{C}$$

$$= B(C + \overline{C}) + AC$$

$$= B + AC$$

Exemplo 03.

Obtenha a expressão para a função D e simplifique o circuito.

Exemplo 03.

Obtenha a expressão para a função D e simplifique o circuito.

Solução:

Solução:

Solução:

$$D = (\overline{AB} + \overline{C})(A + C) = (\overline{AB}C)(A + C) = [(A + \overline{B})C](A + C)$$

$$= (A + \overline{B})(AC + CC) = (A + \overline{B})(AC + C) = AAC + AC + A\overline{B}C + \overline{B}C$$

$$= AC + AC + \overline{B}C(A + 1) = AC + \overline{B}C(1) = AC + \overline{B}C$$

$$= (A + \overline{B})C$$

1) Exercícios: Prove a igualdade entre as seguintes expressões:

1.
$$A + AB = A$$

2.
$$A + \overline{A}B = A + B$$

3.
$$A(A + B) = A$$

$$4. A(\overline{A} + B) = AB$$

5.
$$(\overline{AB} + \overline{A}.\overline{B}) = A\overline{B} + \overline{A}B$$

6.
$$(A\overline{B} + \overline{A}B) = (A + B) + (\overline{A}.\overline{B})$$

7.
$$(A + B) \cdot (A + \overline{B}) = A$$

2) Simplifique a expressão numa forma mínima: $\mathbf{A} + \overline{\mathbf{A}}\mathbf{B} + \overline{\mathbf{A}}\mathbf{B}\mathbf{C}$ Mostre que os dois circuitos (expressão original e expressão simplificada) são equivalentes.

3 Simplifique as expressões

a)
$$\overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + A\overline{B}\overline{C}$$

b)
$$ABCD + (\overline{ABCD})$$

$$(\underline{C})(\overline{\overline{A} + B + C + D}) + (A\overline{B}\overline{C}D)$$

Circuitos Aritméticos

Somadores: soma 2 valores binários

• •
$$0 + 0 = 0$$

• •
$$0 + 1 = 1$$

• •
$$1 + 0 = 1$$

•
$$\mathbf{1} + 1 = 10$$

Somadores: meio somador

Α	В	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Somadores: meio somador

Α	В	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Somadores: somador completo

Α	В	Carry in	Sum	Carry out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Somadores: somador completo Carry in

Α	В	Carry in	Sum	Carry out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Lista 04 – Portas Lógicas

Livro: Sistemas Digitais, Ronald Tocci, 10^a. Edição, Capítulo 3 - 1, 2, 6, 12, 15, 16, 17, 19, 21, 26, 28

2 alunos - Data:

- **3.1** Desenhe a forma de onda de saída para a porta OR da Figura 3.52.
- **3.2** Suponha que a entrada A na Figura 3.52 seja, não intencionalmente, curto-circuitada para o terra (isto é, A = 0). Desenhe a forma de onda de saída resultante.

3.3 Suponha que a entrada *A* na Figura 3.52 seja, não intencionalmente, curto-circuitada para a linha de alimentação +5 V (isto é, *A* = 1). Desenhe a forma de onda de saída resultante.

- 3.6 Troque a porta OR na Figura 3.52 por uma porta AND.
 - (a)* Desenhe a forma de onda de saída.
 - (b) Desenhe a forma de onda de saída se a entrada A for permanentemente curto-circuitada para o terra.
 - (c) Desenhe a forma de onda de saída se a entrada A for permanentemente curto-circuitada para +5 V.

- 3.12 (a)* Escreva a expressão booleana para a saída x na Figura 3.53(a). Determine o valor de x para todas as condições possíveis de entrada e relacione os resultados em uma tabela-verdade.
 - (b) Repita para o circuito da Figura 3.53(b).

FIGURA 3.53

3.15 Determine a tabela-verdade dos circuitos seguintes.

3.16 Para cada uma das expressões a seguir, desenhe o circuito lógico correspondente usando portas AND, OR e INVERSORES.

(a)*
$$x = \overline{AB(C+D)}$$

(b)*
$$z = \overline{A + B + \overline{C}D\overline{E}} + \overline{B}C\overline{D}$$

(c)
$$y = (\overline{M+N} + \overline{PQ})$$

(d)
$$x = \overline{W + P\overline{Q}}$$

(e)
$$z = MN(P + \overline{N})$$

(f)
$$x = (A + B)(\overline{A} + \overline{B})$$

3.21 Modifique os circuitos construídos no Problema 3.16 para usar as portas NAND e NOR onde for apropriado. 3.19* Escreva a expressão para a saída do circuito da Figura 3.55 e use-a para determinar a tabela-verdade completa. Em seguida, aplique as formas de onda mostradas na Figura 3.54 às entradas do circuito e desenhe a forma de onda de saída resultante.

3.20 Determine a tabela-verdade para o circuito da Figura 3.24.

FIGURA 3.24

- (a)* $\overline{\overline{A}B}\overline{\overline{C}}$
- (b) $\overline{\overline{A}} + \overline{\overline{B}}C$
- $(c)^* \overline{ABCD}$
- (d) $\overline{A} + \overline{B}$
- (e)* \overline{AB}

(f)
$$\overline{A} + \overline{C} + \overline{D}$$

(g)*
$$\overline{A(\overline{B}+\overline{C})D}$$

(h)
$$(M + \overline{N})(\overline{M} + N)$$

(i) \overline{ABCD}

- 3.27* Use os teoremas de DeMorgan para simplificar a expressão de saída do circuito da Figura 3.55.
- 3.28 Converta o circuito da Figura 3.53(b) para um circuito que use apenas portas NAND. Em seguida, escreva a expressão de saída para o novo circuito, simplifique-a usando os teoremas de DeMorgan e compare-a com a expressão do circuito original.