

Formation, Conseil, Ingénierie

SQL

Plus d'informations sur http://www.dawan.fr
Contactez notre service commercial au 09.72.37.73.73 (prix d'un appel local)

Objectifs

- √ Découvrir SQL
- Savoir modéliser une Base de Données
- Être capable de créer les requêtes standards de sélection, d'enregistrement, de modification ou de suppression de données
- Savoir relier des tables entre elles

Plan de l'intervention

- ✓ Introduction
- Commandes simples
- Présentation des SGBDR
- Utilisation avancée

Introduction

Introduction

Bases de données

- Une base de données ?
 - 1) Une base de données est <u>une collection de données</u> organisées de façon à être facilement accessibles, administrées et mises à jour.
 - 2) Les bases de données peuvent être <u>classées</u> par le type de contenu qu'elles renferment : bibliographique, full text, images ou des nombres....

Base de Données

- √ Un SGBD ?
- Système de Gestion de Bases de Données

- √ Le SQL ?
- Structured Query Language

Introduction

Historique, versions et normalisation

1970: Invention du langage par IBM.

1982-1989 : SQL 1.

1992 : SQL 2 : Est développé à partir de SEQUEL de IBM .

1999 : SQL 3 : SQL3 supporte bien sûr la norme précédente SQL2 (compatibilité ascendante) mais propose également des extensions objets.

* 4 niveaux de complexité :Entry ,Transitional, Intermediate et Full

**Chaque implémentation de SQL doit maintenir au moins le niveau « Entry »

SGBD

- Un système de gestion de base de données (SGBD) :-
- Est une application qui sert comme son nom l'indique à stocker et accéder à des données.
- MySQL : Sous licence GPL (gratuite) performante quoique légèrement incomplète
- PostgreSQL : (PSQL) Egalement Open Source performante et offrant de nombreuses fonctionnalités
- Oracle : La base de données professionnelle
- DB2 (IBM): Une autre base de données professionnelle
- SQL Server (MS): La solution proposée par Microsoft

Introduction

Méthode MERISE est une méthode de conception, de développement et de réalisation de projets informatiques.

- Modèle Conceptuel de Données
- Modèle Logique de Données
- Modèle Physique de Données

1. Modèle Conceptuel de Données (MCD)

- Le MCD a été créé pour <u>normaliser l'écriture des données</u>. C'est une représentation des données et de leurs interactions.
- √ Définir les entités et relations de notre BD
- a) Entité : ensemble de propriétés encore appelées attributs ou caractéristiques
- b) Associations : Une association définit un lien sémantique entre une ou plusieurs entités

Libellé Liste des propriétés

Les requêtes de structure

Les Commandes

CREATE DATABASE NomDeLaBase;

SHOW DATABASES;

USE NomDeLaBase;

SHOW TABLES;

Les types de données

Numériques : TINYINT (1 Octets) / SMALLINT (2 octets)

/ INTEGER (4 octets)/ FLOAT / DOUBLE (UNSIGNED)

Textuels: CHAR / VARCHAR / TEXT / LONGTEXT

✓ Temporels : DATE / TIME / DATETIME / TIMESTAMP

Créations d'une table

CREATE TABLE [nomTable] (

[nomChamp] [type] [NULL] [options],

PRIMARY KEY ([nomChamp]));

NULL: champ facultatif

NOT NULL: champ obligatoire

Options: AUTO_INCREMENT, DEFAULT, UNIQUE, CHECK

Modifications de structure de la table

* ALTER TABLE [nomTable] ...

MODIFY [nomChamp] [type] [NULL] [options];

ADD COLUMN [nomChamp] [type] [NULL] [options];

DROP COLUMN [nomChamp];

* DROP TABLE [nomTable];

Insertion de données

INSERT INTO [nomTable] (champX, ...)
VALUES (valeurX, ...);

Insertion sur plusieurs lignes possible.

Insertion de données

Colonne muette:

- Colonne clé avec auto_increment > numéro automatique inséré
- Colonne avec valeur par défaut > valeur par défaut insérée
- Colonne nullable > valeur NULL insérée
- Colonne sans valeur par défaut et non nullable
 - > l'insertion de la ligne est refusée

Modifier les données

Modifier:

UPDATE nomTable

SET *champX* = *valeurX*

WHERE id = 1;

Pas de condition : met à jour toute la table !

Suppression de données

Supprimer:

DELETE FROM nomTable

WHERE id = 1;

Pas de condition : met à jour toute la table !

Vider la table :

TRUNCATE TABLE nomTable;

Accéder aux données

Sélectionner :

SELECT * FROM nomTable;

Alias de colonne :

SELECT prix_ht, prix_ht*1.20 **AS** prix_ttc **FROM** *nomTable* ;

Accéder aux données

Clause WHERE:

SELECT champX, champY FROM nomTable

WHERE condition 1

AND condition2...;

Comparaison: =, <, <=, >, >=, <> / !=, LIKE, BETWEEN

Accéder aux données

Clause ORDER BY:

Organiser les résultats (alphabétique, numérique)

Clause LIMIT:

Limiter le nombre de résultats.

L'agrégation

- SUM calcul la somme de la colonne
- AVG calcul la moyenne de la colonne
- MAX calcul le maximum de la colonne
- MIN calcul le minimum de la colonne
- COUNT dénombre les éléments

Uniquement dans le SELECT

Le regroupement

Clause GROUP BY:

Regrouper les calculs par valeur d'une colonne

SELECT id_genre, COUNT(id_livre) AS nb_livre

FROM livre

GROUP BY id_genre;

L'ordre des mots clés SQL

SELECT... FROM... JOIN... WHERE... AND/OR... **GROUP BY...** HAVING... ORDER BY... LIMIT...

Les Jointures : Requêtes multi-tables UPDATE avec jointures

Modèle Conceptuel de Données (MCD)

Exemple d'Entités et d'Association :

Remarquez bien les cardinalités 0,N/1,N de part et d'autre des entités

Une cardinalité 1.N signifie que chaque entité appartenant à une classe d'entité participe au moins une fois à la relation.

Une cardinalité 0.N signifie que chaque entité appartenant à une classe d'entité ne participe pas forcément à la relation.

2. Modèle Logique de Données (MLD)

- √ Le MLD consiste à décrire la structure de données utilisée sans faire référence à un langage de programmation.
- √ Ainsi, le modèle logique est encore, à ce stade, indépendant du type de base de données utilisé.

3. Modèle Physique de Données (MPD)

✓ Il s'agit avec le MPD de préciser le type de données utilisées lors des traitements.

Ainsi, le modèle logique est, cette fois, dépendant du type de base de données utilisé.

Les associations

Entre les tables SQL – 3 types associations possibles

- \cdot One to One
- One to Many
- Many to Many

One to many

MLD

Jointures : Requêtes multi-tables

Les Jointures:

INNER JOIN

SELECT * FROM A

INNER JOIN B ON A.key = B.key

Présentation des SGBDr

Requête INNER JOIN

Sélection de données sur plusieurs tables

SELECT*

FROM tableA, tableB, tableC

WHERE tableA.id_tabB = tableB.id

AND tableA.id_tabC = tableC.id;

Jointures : Requêtes multi-tables

LEFT JOIN

SELECT * FROM A

LEFT JOIN B **ON** A. key = B. key ;

SELECT * FROM A

LEFT JOIN B **ON** A. key = B. key

WHERE B.key IS NULL;

Jointures : Requêtes multi-tables

RIGHT JOIN

SELECT * FROM A

RIGHT JOIN B **ON** A.key = B.key

SELECT * FROM A

RIGHT JOIN B **ON** A.key = B.key

WHERE A.key IS NULL ;

Jointures : Requêtes multi-tables

FULL JOIN

SELECT * FROM A

FULL JOIN B ON A.key = B.key

Bases de Données Relationnelles

- Base de Données avec relations :
- Une table est liée à une seconde table, ou plus, par une relation de clé étrangère, suivant des contraintes strictes dites « d'intégrité référentielle ».

Définition de la clé étrangère

Définition des clés :

/* Uniquement MySQL */

ALTER TABLE [nomTable1]

ADD CONSTRAINT nomDeLaConstrainte (ex

FK_table_name_nomColonne)

FOREIGN KEY nomTable1 (id_table1)

REFERENCES [nomTable2] (id_table2);

Contraintes d'intégrité référentielle

Définition des actions en chaîne :

... ON UPDATE [value] ON DELETE [value]

- ► CASCADE :- DROP TABLE nom_table CASCADE CONSTRAINTS;
- >SET NULL
- **SET DEFAULT**
- » RESTRICT

- √One-to-one relationships
- √One-to-many relationships
- √Many-to-many relationships
- √Mandatory or not?

Les requêtes imbriquées

Traiter une requête en fonction d'une autre :

```
SELECT * FROM genre
WHERE id_genre [NOT] IN (
SELECT DISTINCT id_genre
FROM livre
```


Les vues : créer / utiliser

Une Vue est une table virtuelle issue d'une requête SQL

- √ d'éviter de taper une requête très longue : la vue sert à donner un nom à la requête pour l'utiliser souvent,.
- de masquer certaines données à certains utilisateurs .

Les vues : modifier / supprimer

•CREATE VIEW view_nomDeLaVue AS

SELECT * **FROM** *nomDeLaVue* ;

. Modifier :

ALTER VIEW nomDeLaVue **AS**

SELECT;

Supprimer :

DROP VIEW nomDeLaVue;

Les vues : limites

- Toujours une requête de sélection
- Une vue : une requête (possibilité d'imbriquer)

Les procédures stockées (approche)

- Ensemble d'instruction de manipulation de données
- (INSERT, UPDATE, DELETE) qui peuvent être exécutés par un simple appel.

L'appel diffère d'un SGBD à l'autre :

(EXEC -SQL Server, CALL -MySQL, ...)

Les procédures stockées (approche)

Exemple de procédure stockée :

DELIMITER //

CREATE PROCEDURE nomProcedure()

BEGIN

...Requête SQL

END//

Les optimisations

· Vérifier la charges des requêtes

Sauvegarder les données ? Archiver ?

Les optimisations

L'outil SQL Explain :- The EXPLAIN statement provides information about how MySQL executes statements. ... EXPLAIN returns a row of information for each table used in the SELECT statement.

EXPLAIN select * from nom_table

```
| id | select_type | table | type | possible_keys | key |
| 1 | SIMPLE | instructor | ALL | NULL | NULL |
| 1 | SIMPLE | grade | ALL | NULL |
```

```
| key_len | ref | rows | Extra |
| NULL | NULL | 5 | Using where; Using temporary; Using filesort |
| NULL | NULL | 6 | Using where; Using join buffer |
```


Les optimisations

√Charge de la requête SQL

√Interpréter les indicateurs Explain

Sauvegarder les données

```
√mysqldump
```

- --user=mon_user
- --password=mon_password
- --all-databases > ALLBD_Backup.sql
- √mysqldump
- √--user=mon_user
- √--password=mon_password

v--databases nom_de_la_base > BD_name_Backup.sql
DAWAN - Reproduction interdite sans autorisation

Restaurez les données

```
√Mysql
```

```
√ --user=user_name
```

√ --password=password < file_Backup.sql
</p>

√Mysql

√--user=user_name

√--password=password database_name < file_Backup.sql</p>

Compresser la sauvegarde

mysqldump <commandes> | gzip >
archive_file_name.sql.gz

SQL

Plus d'informations sur http://www.dawan.fr
Contactez notre service commercial au 0800.10.10.97(prix d'un appel local)