# Predictive Modeling Series 10

# Exercise 10.1

In this exercise, we will look at the **College** data set which tracks demographic characteristics of college applications in the USA. The dataset has the following structure:

- Private: If the applicant is from a public or private high school
- Apps: Number of applications received
- Accept: Number of applicants accepted
- Enroll: Number of new students enrolled
- Top10perc: New students from top 10% of high school class
- Top25perc: New students from top 25% of high school class
- F. Undergrad: Number of full-time undergraduates
- P. Undergrad: Number of part-time undergraduates
- Outstate: Out-of-state tuition
- Room.Board: Room and board costs
- Books: Estimated book costs
- **Personal**: Estimated personal spending
- PhD: Percent of faculty with Ph.D.'s
- **Terminal**: Percent of faculty with terminal degree
- **S.F.Ratio**: Student/faculty ratio
- perc.alumni: Percent of alumni who donate
- **Expend**: Instructional expenditure per student
- Grad. Rate: Graduation rate

You can read in the data by using

```
college <- read.csv("college.csv")
# or using the ISLR package
library(ISLR)
college <- ISLR::College

# inspect the data using
View(college)</pre>
```

Our goal is to predict the number of applications (Apps) received by using the other variables in the dataset.

- a) Split the data set into a training and a test set.
- b) Fit a linear model using least squares and best subset selection on the training set, and report the test error obtained. **Hint:** Use **regsubsets** from the **leaps** library to find the best subset using BIC
- c) Fit a ridge regression model on the training set, with  $\lambda$  chosen by cross-validation. Report the test error obtained.
- d) Fit a lasso model on the training set, with  $\lambda$  chosen by cross-validation. Report the test error obtained, along with the number of non-zero coefficient estimates. **Hint:** Use **cv.glmnet** with different  $\alpha$  from the **glmnet** library to calculate a cross-validated Ridge and Lasso regression

### Exercise 10.2

In this exercise, we will examine the **Boston** data set which contains housing values in 506 suburbs of Boston and a variety of census values. The dataset is constructed as follows:

- **crim**: Per capita crime rate by town
- zn: Proportion of residential land zoned for lots over 25'000 square feet
- indus: Proportion of non-retail business acres per town
- **chas**: Charles River dummy variable (=1 if tract bounds river, 0 otherwise)
- nox: Nitrogen oxides concentration (parts per 10 million)
- rm: Average number of rooms per dwelling
- age: Proportion of owner-occupied units built prior to 1940
- dis: Weighted mean of distances to five Boston employment centres
- rad: Index of accessibility to radial highways
- tax: Full-value property-tax rate per \$10,000
- ptratio: Pupil-teacher ratio by town
- **1stat**: Lower status of the population (percent)
- medv: Median value of owner-occupied homes in \$1000s

You can read in the data by means of

```
[1]: boston <- read.csv('boston.csv')
# or using the ISLR2 package
boston <- boston <- ISLR2::Boston

# inspect the data using
View(boston)</pre>
```

We will try to predict the per capita crime rate (**crim**) in the data set via the other variables.

- a) Split the data set into a training and a test set.
- b) Fit a linear model using least squares and best subset selection on the training set, and report the test error obtained.
- c) Fit a ridge regression model on the training set, with  $\lambda$  chosen by cross-validation. Report the test error obtained.
- d) Fit a lasso model on the training set, with  $\lambda$  chosen by crossvalidation. Report the test error obtained, along with the number of non-zero coefficient estimates.

#### Exercise 10.3

In this exercise, we will take a look at some model agnostic feature importance metrics for the **College** dataset

- a) Plot the Partial Dependence Plot for each variable on the training and test set
- b) Plot the Accumulated Local Effects for each variable on the training and test set
- c) Plot the Permutation Feature Importance for each variable on the training and test set
- d) Analyse the various feature importance metrics, if and why they highlight different features as significant

**Hint:** All these plots can be generated with the **iml** package

#### Exercise 10.4

In this exercise, we will have look at a toolbox called **caret** which can be used to test a variety of models (classification, regression, and anomaly detection) on a dataset and get an intuition about which models may be followed up.

In contrast to the **PyCaret** package which can be used to gain an overview over various models in a short timespan, the **caret** package for **R** is much more designed to be a pipeline for machine learning.

Carry out a regression analysis on the **College** data set with the target variable **Apps** on the training set, and compare your results especially with respect to the feature importance on the training and test data set.

# **Result Checker**

# Predictive Modeling Solutions to Series 10

**Solution 10.1** Transform the predictor variable **Private** to a factor variable.

Read in the data and split it into training and test set

```
library(caTools)
library(ISLR)
college <- ISLR::College
set.seed(42)
college$Private <- as.factor(college$Private)
sample <- sample.split(college$Apps, SplitRatio = 0.7)
train <- college[sample == TRUE, ]
test <- college[sample == FALSE, ]</pre>
```

Let us find the best subset of predictor variables.

The best subset we found on the basis of the Bayesian Information Criterion consists of 8 predictor variables, let us fit a linear model with these eight predictor variables.

```
predictors = names(which(summary_best_subset$which[8, ]))
predictors
## [1] "(Intercept)" "PrivateYes"
                                       "Accept"
## [4] "Enroll" "Top10perc" "Outstate"
## [7] "Room.Board" "PhD"
                                       "Expend"
lin_reg02 <- lm(Apps ~ Private + Accept + Enroll + Top10perc +
   Outstate + Room.Board + PhD + Expend, data = train)
summary(lin_reg02)
##
## Call:
## lm(formula = Apps ~ Private + Accept + Enroll + Top10perc + Outstate +
    Room.Board + PhD + Expend, data = train)
##
## Residuals:
## Min 1Q Median
                                  3Q
                                          Max
## -5393.7 -420.5 3.8 308.7 7690.2
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) -78.25577 278.60400 -0.281 0.778907
## PrivateYes -579.48119 163.93251 -3.535 0.000443 ***
                  1.67565 0.04637 36.139 < 2e-16 ***
-0.80120 0.13780 -5.814 1.05e-08 ***
## Accept
## Enroll
## Top10perc 35.96435 3.97772 9.041 < 2e-16 ***
## Outstate -0.09702 0.02187 -4.437 1.11e-05 ***
## Room.Board 0.20086 0.05851 3.433 0.000644 ***
## PhD -11.80305 3.71160 -3.180 0.001558 **
## Expend 0.07806 0.01326 5.889 6.89e-09 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1071 on 534 degrees of freedom
## Multiple R-squared: 0.9287, Adjusted R-squared: 0.9276
## F-statistic: 869 on 8 and 534 DF, p-value: < 2.2e-16
```

We determine the residual sum of squares on the test the following value as follows:

```
y_pred = predict(lin_reg02, newdata = test)
RSS <- sum((test$Apps - y_pred)^2)
formatC(RSS, format = "e", digits = 4)
## [1] "2.4527e+08"</pre>
```

Thus, the RSS on the test set is given by  $2.4526595 \times 10^8$ .

For the Lasso and ridge regression we have to prepare our data as matrices

```
library(glmnet)

## Loading required package: Matrix

## Loaded glmnet 4.1-1

X_train <- model.matrix(~. - 1, data = subset(train, select = -Apps))
y_train <- subset(train, select = Apps)

X_test <- model.matrix(~. - 1, data = subset(test, select = -Apps))
y_test <- subset(test, select = Apps)</pre>
```

In order to fit a regression model, we need to find an appropriate value for the regularization parameter  $\lambda$ . By means of cross-validation, we determine the regularization parameter for Ridge regression as follows:

We thus find a value of the regularization parameter given by 376.2027063 and an RSS on the test set of  $2.5288354 \times 10^8$ .

Similarly, when changing the  $\alpha$  to 1, we fit the Lasso model.

```
mod_cv_lasso = cv.glmnet(x = X_train, y = y_train$Apps,
   alpha = 1, nfolds = 5)
coef (mod_cv_lasso)
## 19 x 1 sparse Matrix of class "dgCMatrix"
##
## (Intercept) -424.69517672
## PrivateNo
## PrivateYes
## Accept 1.38008535
## Enroll
## Top10perc 14.67561609
## Top25perc
## F.Undergrad
## P.Undergrad
## Outstate
## Room.Board
## Books
## Personal
## PhD
## Terminal
## S.F.Ratio
## perc.alumni
               0.02571111
## Expend
## Grad.Rate .
mod_cv_lasso$lambda.min
## [1] 2.203427
```

with a regularization parameter value of 2.2034271 and the following non-zero predictor variables

- Accept
- Top10perc

# • Expend

```
y_pred = predict(mod_cv_lasso, newx = X_test)
RSS <- sum((y_test$Apps - y_pred)^2)
formatC(RSS, format = "e", digits = 4)
## [1] "2.6618e+08"</pre>
```

The RSS is given by  $2.6618424 \times 10^8$ .

### Solution 10.2

Read in the data set and split it into training and test set

```
library(caTools)
library(MASS)
boston <- Boston
set.seed(42)
sample <- sample.split(boston$crim, SplitRatio = 0.7)
train <- boston[sample == TRUE, ]
test <- boston[sample == FALSE, ]</pre>
```

We want to determine the best subset of predictor variables:

The best subset of predictor variables as determined on the basis of the Bayesian Information Criterion consists of 2 predictor variables.

```
predictors = names(which(summary_best_subset$which[2, ]))
predictors

## [1] "(Intercept)" "rad" "medv"
```

```
lin_reg02 <- lm(crim ~ rad + medv, data = train)</pre>
summary(lin_reg02)
##
## Call:
## lm(formula = crim ~ rad + medv, data = train)
##
## Residuals:
## Min 1Q Median 3Q
## -8.951 -1.805 -0.670 0.747 75.129
##
## Coefficients:
##
             Estimate Std. Error t value Pr(>|t|)
                       1.37227 1.811
## (Intercept) 2.48521
## rad
              0.55246
                        0.04908 11.256 < 2e-16 ***
            ## medv
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 7.424 on 351 degrees of freedom
## Multiple R-squared: 0.3777, Adjusted R-squared: 0.3741
## F-statistic: 106.5 on 2 and 351 DF, p-value: < 2.2e-16
```

We determine the residual sum of squares (RSS) on the test set as follows:

```
y_pred = predict(lin_reg02, newdata = test)
RSS <- sum((test$crim - y_pred)^2)
formatC(RSS, format = "e", digits = 4)
## [1] "2.4366e+03"</pre>
```

The value of the RSS on the test set is given by of 2436.5753415.

For the Lasso and ridge regression we have to prepare our data set as matrices

```
library(glmnet)
X_train <- model.matrix(~. - 1, data = subset(train, select = -crim))
y_train <- subset(train, select = crim)
X_test <- model.matrix(~. - 1, data = subset(test, select = -crim))
y_test <- subset(test, select = crim)</pre>
```

We then fit a Ridge regression model as follows:

```
mod_cv_ridge = cv.glmnet(x = X_train, y = y_train$crim,
   alpha = 0, nfolds = 5)
coef (mod_cv_ridge)
## 14 x 1 sparse Matrix of class "dgCMatrix"
##
                        1
## (Intercept) 2.062699101
            -0.002844941
## zn
           0.023684391
## indus
## chas
             -0.123228040
## nox
              1.484747033
## rm
             -0.096771641
## age
              0.004976946
## dis
              -0.071659798
## rad
              0.031361350
## tax
              0.001483516
## ptratio 0.056106369
## black -0.001775967
## lstat
              0.026835783
## medv
             -0.018303052
mod_cv_ridge$lambda.min
## [1] 0.554208
y_pred = predict (mod_cv_ridge, newx = X_test)
RSS <- sum((y_test$crim - y_pred)^2)</pre>
formatC(RSS, format = "e", digits = 4)
## [1] "4.7604e+03"
```

The value of the regularization parameter  $\lambda$  is given by 0.554208. The RSS on the test set is 4760.4039792.

By changing the value of  $\alpha$  to 1, we fit a Lasso model to the data:

```
mod_cv_lasso = cv.glmnet(x = X_train, y = y_train$crim,
   alpha = 1, nfolds = 5)
coef (mod_cv_lasso)
## 14 x 1 sparse Matrix of class "dgCMatrix"
##
## (Intercept) 1.4969043
## zn
## indus
## chas
## nox
## rm
## age
## dis
## rad
              0.2346782
## tax
## ptratio
## black
## lstat
## medv
mod_cv_lasso$lambda.min
## [1] 0.03027238
```

The best  $\lambda$  value is found to be 0.0302724 and the following predictor variables are non-zero:

• rad

```
y_pred <- predict(mod_cv_lasso, newx = X_test)
RSS <- sum((y_test$crim - y_pred)^2)
formatC(RSS, format = "e", digits = 4)
## [1] "3.8754e+03"</pre>
```

The RSS on the test set is given by 3875.4399355.

# Solution 10.3

```
library(iml)
library(caTools)
library(ISLR)
college <- ISLR::College
set.seed(42)
college$Private <- as.factor(college$Private)
sample <- sample.split(college$Apps, SplitRatio = 0.7)
train <- college[sample == TRUE, ]
test <- college[sample == FALSE, ]
lin_reg01 <- lm(Apps ~ ., data = train)
mod <- Predictor$new(lin_reg01, data = test)</pre>
```

```
eff <- FeatureEffects$new(mod, method = "pdp")
eff$plot()</pre>
```



#### (a) Partial Dependence Plot on the training set.

eff\_test <- FeatureEffects\$new(mod\_test, method = "pdp")
eff\_test\$plot()</pre>



(b) Partial Dependence Plot on the test set.

```
eff <- FeatureEffects$new(mod, method = "ale")
eff$plot()</pre>
```



#### (a) Accumulated Local Effects on the training set.

eff\_test <- FeatureEffects\$new(mod\_test, method = "ale")
eff\_test\$plot()</pre>



(b) Accumulated Local Effects on the test set.





# (a) Permutation Feature Importance on the training set.

```
mod_test <- Predictor$new(lin_reg01, data = test)
imp_test <- FeatureImp$new(mod_test, loss = "mae")
plot(imp_test)</pre>
```



(b) Permutation Feature Importance on the test set. 12

As we can see, most agnostic metrics agree on the importance of **Accept**, **Enroll**, **Top10perc**, and **Outstate**.

**Solution 10.4** Let us use the train and test sets we created in exercise 1 to construct a cross-validated linear regression model using **caret** 

```
[1]: library(caret)

# Specify cross-validation as training method with 10 folds
train_control <- trainControl (method='cv', number=10)
# Other models can be found in https://rdrr.io/cran/caret/man/models.html
model <- train(Apps ~ ., data=train, method='lm', trControl=train_control)

# print model parameters
model
# and get the classic coefficients and metrics summary
summary(model)

# get the feature importance
vimp <- varImp(model)
vimp
plot(vimp)</pre>
```



Figure 4: Caret feature importance on the linear regression model.

New data can be predicted as usual:

```
[1]: test$predicted <- predict(model, newdata = test)
cor(log(test$Apps), test$predicted)

SSR = sum((test$Apps - test$predicted)**2)
formatC(SSR, format = "e", digits = 4)</pre>
```

Try out some other models from **Caret** and get an intuition about the opportunities this package offers.