

Dermatology Dataset

Javier Rodas ¹ Cristopher Garcia ² Abel Alvarez ²

Seminario Profesional I

Proyecto Redes Neuronales

Introducción

El uso de IA con Python y TensorFlow, en particular con las Redes Neuronales, puede ser aprovechado para detectar enfermedades dermatológicas. Mediante el entrenamiento de modelos de RN con datos de la piel, se puede capturar la secuencia y el contexto de las características dermatológicas relevantes para el diagnóstico. Esto permite que el modelo aprenda patrones a lo largo del tiempo y realice predicciones más precisas en base a los datos. El enfoque con RNN proporciona una capacidad adicional para capturar la relación temporal en el desarrollo y evolución de las enfermedades cutáneas, mejorando así la detección y diagnóstico en comparación con enfoques puramente convolucionales.

Descripción del Dataset

¿Cuál es el problema a resolver? Realizar un IA que sea capaz de clasificar los problemas de enefermedades dermatológicas.

Tipo de problema Problema de clasificación

Observaciones

- 366 datos de los cuales 8 valores son nulos en la columna de edad
- Balanceo de clases
- No es necesario hacer encoding ya que todos los datos son numeros
- Tenemos 6 clases

Metodología

• Recopilación de datos: En nuestro caso obtencion del dataset a utiliza con los datos necesarios para ir al preentrenamiento.

• Preprocesamiento de datos: Se procesan y preparan los datos para el uso de ellos en el entrenamiento del modelo. Aqui incluimos la normalizacion, balanceo y depende de la cantidad de datos se ve el underfitting o overfitting.

• Diseño y entrenamiento del modelo: Seleccionamos una arquitectura de red neuronal adecuada y se entrenan los modelos utilizando técnicas de aprendizaje.

• Evaluación del modelo: Se evalúa el modelo entrenado. Se calculan métricas de evaluación, como precisión, sensibilidad, entre otros. Todo esto se hace para medir la capacidad del modelo para detectar enfermedades dermatologicas

Resultados

Figure 1. Matriz de Confusión

Figure 2. 91.67% de Accuracy

Conclusiones

Los resultados obtenidos respaldan la viabilidad y eficacia de utilizar inteligencia artificial para detectar enfermedades dermatológicas con una alta precisión. Esto puede tener un impacto significativo en la atención médica dermatológica, mejorando el diagnóstico, permitiendo abrir puertas a futuras mejoras y avances en el campo.

Mejoras a futuro

Si integramos una arquitectura CNN en un modelo RNN para detectar enfermedades de la piel, podemos mejorar la precisión de detección. Las CNN son buenas para reconocer características visuales en imágenes y las RNN pueden procesar secuencias de datos, como imágenes en orden. Además, podríamos mejorar el modelo utilizando transferencia de aprendizaje desde modelos pre-entrenados, aumentando los datos disponibles, explorando arquitecturas más avanzadas y añadiendo información clínica adicional. Estas mejoras prometen incrementar la precisión y eficiencia en la detección de enfermedades dermatológicas.

Figure 3. No Balanceada Figure 4. Balanceada

Figure 5. Matriz de Correlación