- 1. Jeśli problem jest liniowo separowalny to ile granic decyzyjnych może oddzielić pozytywne przykłady od negatywnych? Którą granicę decyzji wybierze SVM?
- 2. Zdefiniuj problem optymalizacyjny SVM dla następującego zbioru danych.

x_1	x_2	У
1	1	+1
3	2	+1
1	4	+1
2	4	-1
5	1	-1
6	3	-1
5	5	-1
5	4	-1

3. Prawo Heapsa w języku naturalnym określa zależność pomiędzy liczbą unikalnych słów |V| występujących w tekście a jego długością N. Zależność ta jest określana wzorem

$$|V| = \alpha N^{\beta}$$

gdzie α i β są parametrami zależącymi od języka (angielski, polski) ale też rodzaju tekstu (czat, literatura piękna) i muszą być szacowane empirycznie. Mając do dyspozycji jeden długi tekst (np. "Pan Tadeusz") zaproponuj metodę estymacji parametrów α i β technikami uczenia maszynowego.

- 4. W jaki sposób moglibyśmy uzyskać nieliniową granicę decyzji używając liniowego SVM? Jakie są ograniczenia podanego sposobu?
- 5. Dokonaj transformacji problemu (hard) SVM do postaci dualnej.
- 6. W formulacji dualnej problemu SVM optymalizowane są zmienne, które zwykle oznaczamy jako α_i i nie są to wagi. W jaki sposób zatem znajdowana jest hiperpłaszczyzna separująca?
- 7. Czym jest tzw. trick jądrowy? Czym jest funkcja jądrowa?
- 8. Pokaż, że wielomianowa funkcja jądrowa $K(x,z)=(x^Tz+1)^2$ policzona na dwuwymiarowych przykładach uczących tj. $x=[x_1,x_2]$, daje taki sam wynik jak funkcja liniowa $K(x,z)=x^Tz$ policzona na rozszerzonej przestrzeni cech transformatą $\Theta(x)=[1,\sqrt{2}x_1,\sqrt{2}y_2,y_1^2,y_2^2,\sqrt{2}y_1y_2]$.
- 9. Podsumuj wady i zalety stosowania metody SVM.

