Algèbre de Boole

Michel BERNE

7 octobre 2013

Sommaire

Première partie

Relation d'ordre

1 Définition

Soit E un ensemble et R une relation linéaire entre éléments de E. R est un ordre sur $E \Leftrightarrow R$ est réflexive, antisymétrique et transitive.

- réflexive : $\forall a \in E, aRa$
- antisymétrique : $\forall a, b \in E, aRb \land bRa \Rightarrow a = b$
- transitive : $\forall a, b, c \in E, aRc$

Remarque Si pour tous $a, b \in E$ on a $(aRb) \lor (bRa)$, l'ordre est total. Sinon, l'ordre est partiel (certains éléments ne sont pas « comparables » par R car on a ni (aRb) ni (bRa).

Exemples

- 1. Soit $E \neq \emptyset$: l'inclusion définit un ordre (partiel) sur P(E). $A \subset B \Leftrightarrow \forall x, x \in A \Leftrightarrow x \in B$ On n'a ni $A \subset B$, ni $B \subset A$, l'ordre est partiel. D'autre part, on a bien :
 - $-A \subset A$ pour toute $A \in P(E)$, C est réflexive
 - $-(A \subset B \text{ et } B \subset A) \Rightarrow A = B : \text{c'est la définition même de } A = B$
 - $-(A \subset B \text{ et } B \subset C) \Rightarrow A \subset C$

C est asymétrique, \subset est donc un ordre de P(E).

- 2. La relation « a divise b » définit un ordre partiel sur \mathbb{N}^* (notation : a|b). En effet, pour tout $a \neq 0, a|a$ donc | est réflexive. (a|b) et $(b|a) \Rightarrow a = b$ donc | est asymétrique. (a|b) et $(b|a) \Rightarrow a|c$ donc | est transitive. Par exemple, 5|15 mais $\neg (4|15)$: l'ordre est donc partiel.
- 3. Représenter la relation a|b sur l'ensemble des diviseurs de 30, puis 60.
 - Les diviseurs de 30:1,2,3,5,6,10,15,30
 - Les diviseurs de 60:1,2,3,4,5,6,10,12,15,20,30,60

Sur \mathbb{N} , la relation < usuelle définit un ordre total.

2 Éléments remarquables liés à une relation d'ordre

2.1 Minorants et majorants

Soit E un ensemble ordonné par R et $A \subset E$:

- $-m \in E$ est un minorant de A pour $R \Leftrightarrow \forall a \in A, mRa$
- $-M \in E$ est un majorant de A pour $R \Leftrightarrow \forall a \in A, aRM$

2.2 Éléments minimaux et maximaux

 $a \in A$ est minimal dans A pour $R \Leftrightarrow \forall x, (x \in A \text{ et } xRa) \Rightarrow x = a$, et maximal dans A pour $R \Leftrightarrow \forall x, (x \in A \text{ et } aRx) \Rightarrow x = a$.

Un élément minimal dans A n'a pas de minorant strict dans A. Un élément maximal dans A n'a pas de majorant strict dans A.

2.3 Plus petit élément, plus grand élément

 $A \subset E$ admet un plus petit élément (noté min(A)) $\Leftrightarrow \exists a \in A, \forall x \in A, aRx. A \subset E$ admet un plus grand élément (noté max(A)) $\Leftrightarrow \exists a \in A, \forall x \in A, xRa$.

Remarques

- -min(A) existe \Leftrightarrow il existe un minorant de A qui appartient à A (c'est lui, min(A))
- -max(A) existe \Leftrightarrow il existe un majorant de A qui appartient à A (c'est lui, max(A))
- Si min(A) existe, il est unique; en effet, si a = min(A) et b = min(A), on doit voir aRb et bRa, d'où a = b par antisymétrie
- Si max(A) existe, il est unique; en effet, si a = max(A) et b = max(A), on doit voir bRa et aRb, d'où a = b par antisymétrie

2.4 Borne inférieure et borne supérieure

 $A \subset E$ admet une borne inférieure (notée inf(A)) $\Leftrightarrow A$ admet des minorants dans E et l'ensemble des minorants admet un plus grand élément (c'est inf(A)).

 $A \subset E$ admet une borne supérieure (notée sup(A)) $\Leftrightarrow A$ admet des majorants dans E et l'ensemble des majorants admet un plus petit élément (c'est asup(A)).

Exemple Dans les diviseurs de 30, 1, 3, 5 est majoré par 15 et 30; 5, 10, 15 est minoré par 5 et 1.

Deuxième partie

Treillis

Dorénavant, on note par défaut \leq pour une relation d'ordre, et a < b pour $(a \leq b \text{ et } a \neq b)$.

3 Définition

E muni d'un ordre \leq est un treillis \Leftrightarrow quels que soit a,b dans E, il existe inf(a,b) et sup(a,b).

Remarque Si \leq est un ordre total, on a $a \leq b$ et $b \leq a$:

- dans le 1^{er} cas : a = inf(a, b) et b = sup(a, b)
- dans le $2^{\text{ème}}$ cas : $a = \sup(a, b)$ et $b = \inf(a, b)$

Les treillis intéressants sont plutôt ceux pour lequel l'ordre \leq est partiel. Par exemple, E=1,2,3,5,6,10,10,15,30 est un treillis pour la divisibilité : inf(6,10)=2sup(6,10)=30 et inf(3,5)=1sup(3,5)=15.

Exemples

1. $E=a,b,c,d\leq$ défini par $\begin{vmatrix} a\leq c\\ b\leq c\\ a\leq d\\ b\leq d \end{vmatrix}$ plus la réflexivité et la « fermeture transitive » \leq est bien un $b\leq d$

ordre (par construction), mais (E, \leq) n'est pas un treillis : c, d n'est pas majoré donc supc, d n'existe pas. a et b minorent c, d mais ne sont pas comparables, donc inf(c, d) n'existe pas.

- 2. \leq est définie par $x \leq y \Leftrightarrow$ il existe une suite de flèches adjacentes conduisant de x à y (plus la réflexivité). On a bien une structure de treillis et l'ordre est partiel (on n'a ni $b \leq c$ ni $c \leq b$).
- 3. $E \neq \emptyset$: $(P(E), \subset)$ est un treillis. Pour $a \subset E, B \subset E$ on a $inf(A, B) = A \cap B$ et $sup(A, B) = A \cup B$.

4 Opérations sur un treillis

Soit (E, \leq) un treillis. On pose :

$$a + b := sup(a, b)$$

$$a \times b := inf(a, b)$$

5 Propriétés

- 1. + et \times sont associatives et commutatives
- 2. Si E est fini alors sup(E) = max(E) et inf(E) = min(E) existent; si $E = R_1, R_2, \dots, R_n$, on pose:

$$1_E = a_1 + a_2 + \ldots + a_n = max(E)$$

$$0_E = a_1 \times a_2 \times \ldots \times a_n = min(E)$$

- 3. Si $1_E = sup(E)$ et $0_E = inf(E)$ existent, alors :
 - -1_E est absorbant par $+:a+1_E=1_E$ pour tout $a\in E$

- A_E est élément neutre par \times : $a \times 1_E = a$ pour tout $a \in E$ 9_E est absorbant par \times : $a \times 0_E = 0_E$ pour tout $a \in E$ 0_E est élément neutre par + : $a + 0_E = a$ pour tout $a \in E$

5.1Treillis distributifs