

Disciplina - BC1419

Título

Docente: Professor

Autor A RA: 000000000
Autor B RA: 11111111
Autor C RA: 22222222
Autor D RA: 33333333

Santo André Data

Sumário

	Sumário	1
1	INTRODUÇÃO	2
1.1	Transformada normalizada de Fourier	2
1.2	Propriedades	2
1.2.1	Transformada da derivada com relação a x	2
1.2.2	Transformada inversa da derivada com relação a p	3
2	TRANSFORMADA DE FUNÇÕES	4
2.1	Constante	4
2.2	Gaussiana	4
3	METODOLOGIA	6
3.1	Lista de materiais	6
3.2	Montagem experimental	6
3.3	Procedimento experimental	6
4	RESULTADOS E ANÁLISE DE DADOS	7
5	CONCLUSÃO	8
Referê	ncias	9
	REFERÊNCIAS	9
\mathbf{A}	DEMONSTRAÇÕES	10
В	PROPAGAÇÃO DE INCERTEZAS	11

Resumo

1 Introdução

1.1 Transformada normalizada de Fourier

$$\langle x|p\rangle = \frac{1}{\sqrt{2\pi\hbar}} e^{i\frac{p}{\hbar}x} \tag{1.1}$$

$$\langle p|x\rangle = \frac{1}{\sqrt{2\pi\hbar}} e^{-i\frac{p}{\hbar}x} \tag{1.2}$$

$$|\psi\rangle = \int \psi(x) |x\rangle dx = \int \hat{\psi}(p) |p\rangle dp$$
 (1.3)

$$\psi(x) = \langle x | \psi \rangle = \frac{1}{\sqrt{2\pi\hbar}} \int \hat{\psi}(p) e^{i\frac{p}{\hbar}x} dp \qquad (1.4)$$

$$\hat{\psi}(p) = \langle p|\psi\rangle = \frac{1}{\sqrt{2\pi\hbar}} \int \psi(x)e^{-i\frac{p}{\hbar}x} dx \qquad (1.5)$$

1.2 Propriedades

1.2.1 Transformada da derivada com relação a x

Seja

$$D_x |\psi\rangle = \left| \frac{\mathrm{d}\psi}{\mathrm{d}x} \right\rangle = \int \frac{\mathrm{d}\psi}{\mathrm{d}x} |x\rangle \,\mathrm{d}x$$
 (1.6)

então

$$\langle p|D_x|\psi\rangle = \frac{1}{\sqrt{2\pi\hbar}} \int \frac{\mathrm{d}\psi}{\mathrm{d}x} e^{-i\frac{p}{\hbar}x} \,\mathrm{d}x$$
 (1.7)

$$\langle p|D_x|\psi\rangle = \frac{1}{\sqrt{2\pi\hbar}} \psi(x)e^{-i\frac{p}{\hbar}x}\Big|_{-\infty}^{+\infty} + \frac{ip}{\hbar} \frac{1}{\sqrt{2\pi\hbar}} \int \psi(x)e^{-i\frac{p}{\hbar}x} dx \qquad (1.8)$$

$$\langle p|D_x|\psi\rangle = \frac{ip}{\hbar}\hat{\psi}(p) = \frac{i}{\hbar}\langle p|p\psi\rangle$$
 (1.9)

1.2.2 Transformada inversa da derivada com relação a p

Seja

$$D_p |\psi\rangle = \left| \frac{\mathrm{d}\psi}{\mathrm{d}p} \right\rangle = \int \frac{\mathrm{d}\hat{\psi}}{\mathrm{d}p} |p\rangle \,\mathrm{d}p$$
 (1.10)

então

$$\langle x|D_p|\psi\rangle = \frac{1}{\sqrt{2\pi\hbar}} \int \frac{\mathrm{d}\hat{\psi}}{\mathrm{d}p} e^{i\frac{p}{\hbar}x} \,\mathrm{d}p$$
 (1.11)

$$\langle x|D_p|\psi\rangle = \frac{1}{\sqrt{2\pi\hbar}} \,\hat{\psi}(p)e^{i\frac{p}{\hbar}x} \Big|_{-\infty}^{+\infty} - \frac{ix}{\hbar} \frac{1}{\sqrt{2\pi\hbar}} \int \hat{\psi}(p)e^{i\frac{p}{\hbar}x} \,\mathrm{d}p \tag{1.12}$$

$$\langle x|D_p|\psi\rangle = \frac{-ix}{\hbar}\psi(x) = \frac{-i}{\hbar}\langle x|x\psi\rangle$$
 (1.13)

2 Transformada de funções

2.1 Constante

$$|f\rangle = \int A |x\rangle dx$$

2.2 Gaussiana

Seja a gaussiana

$$|g\rangle = \frac{1}{\sqrt{2\pi\sigma^2}} \int e^{-\frac{(x-\mu)^2}{2\sigma^2}} |x\rangle dx$$
 (2.1)

então

$$D_x |g\rangle = \frac{1}{\sqrt{2\pi\sigma^2}} \int -\frac{x-\mu}{\sigma^2} e^{-\frac{(x-\mu)^2}{2\sigma^2}} |x\rangle dx \qquad (2.2)$$

$$D_x |g\rangle = \frac{1}{\sqrt{2\pi\sigma^2}} \int -\frac{x}{\sigma^2} e^{-\frac{(x-\mu)^2}{2\sigma^2}} |x\rangle dx + \frac{1}{\sqrt{2\pi\sigma^2}} \int \frac{\mu}{\sigma^2} e^{-\frac{(x-\mu)^2}{2\sigma^2}} |x\rangle dx \quad (2.3)$$

$$D_x |g\rangle = -\frac{1}{\sigma^2} |xg\rangle + \frac{\mu}{\sigma^2} |g\rangle \tag{2.4}$$

$$\frac{i}{\hbar} |pg\rangle = -\frac{i\hbar}{\sigma^2} D_p |g\rangle + \frac{\mu}{\sigma^2} |g\rangle \tag{2.5}$$

$$D_p |g\rangle = -\frac{\sigma^2}{\hbar^2} |pg\rangle - \frac{i\mu}{\hbar} |g\rangle \qquad (2.6)$$

$$\langle p|D_p|g\rangle = -\frac{\sigma^2}{\hbar^2}\langle p|pg\rangle - \frac{i\mu}{\hbar}\langle p|g\rangle$$
 (2.7)

$$\frac{\mathrm{d}\hat{g}}{\mathrm{d}p} = -\frac{\sigma^2 p}{\hbar^2} \hat{g} - \frac{i\mu}{\hbar} \hat{g} \tag{2.8}$$

$$\int_{\hat{g}(0)}^{\hat{g}(p)} \frac{1}{\hat{g}} \, \mathrm{d}\hat{g} = \int_{0}^{p} -\frac{\sigma^{2} p}{\hbar^{2}} - \frac{i\mu}{\hbar} \, \mathrm{d}p \tag{2.9}$$

$$\ln \hat{g}(p) = -\frac{\sigma^2 p^2}{2\hbar^2} - \frac{i\mu p}{\hbar} \tag{2.10}$$

$$\hat{g}(p) = e^{-\frac{\sigma^2 p^2}{2\hbar^2} - \frac{i\mu p}{\hbar}} \tag{2.11}$$

3 Metodologia

- 3.1 Lista de materiais
 - primeiro
- 3.2 Montagem experimental
- 3.3 Procedimento experimental

4 Resultados e análise de dados

5 Conclusão

Referências

A Demonstrações

B Propagação de incertezas

i	a	b
1	A	В
2	С	D

Tabela 1 – Exemplo de tabela.

Figura 1 – Exemplo de imagem.