国 Numerical on PCA

in space

Fanture	er datas	sample 2	Sample 3	Sample	e 4
a	4	8	V13/0	70	シレ
, Б	Digg- 1	1940	165 Mon	1410	2 HONE

· Step-1: Getting the dataset

sample 1	Sample 2	sample 3	Sample 4
4	8	13	7 K-means
11	4	5	14
	Sample 1	50mple 1 50mple 2 4 8	50mple 1 50mple 2 50mple 3 4 8 13 11 4 5

· step-2: Representing data into a structure

12/	Feat	ine
Teatune	a	b 1 (1) 1/2
Sample 1	4	11
5ample 2	8	.4
50mple3	13	5
Sample 4	'STRUPT 2	149615
	10111	hadbard w

Sho Go

Hep-B: Calculate Mean . day No. of features, n = 2 (a,b) No-of samples, N = 4 (Sample 1, sample 2, sample 3, sample 4) (25)+0.645)+6. Calculating mean ... $\bar{\alpha} = \frac{4+8+13+7}{3+3+1} = 8+01$ $\overline{b} = \frac{11+4+5+14}{4} = 8.5$ Hep-4: Calculation of the covariance matrix Calculating covariance matrix, between features, In the given dataset, ordered features areas, (a,a), (a,b), (b,a), (b,b) $Cov(a_{a}) = \frac{1}{N-1} \sum_{i=1}^{N} (a_{i}-\bar{a})(a_{i}-\bar{a})$ = N-1 (ai-a) [for same feature] $= \frac{1}{4-1} \left[\frac{(4-8)^{2}}{(8-8)^{2}} + \frac{2}{(13-8)^{2}} + \frac{2}{(7-8)^{2}} \right]$ $= \frac{1}{4-1} \left[\frac{(4-8)^{2}}{(-4)^{2}+0+5} + \frac{2}{12} \right]$ $= \frac{(-4)^{2}+0+5}{2} + \frac{2}{12}$

12-) +

$$Cov(a,b) = \frac{1}{N-1} \sum_{k=1}^{N} (ai-\bar{a}) (bi-\bar{b})$$

$$= \frac{1}{4-1} \left[(4-8)(11-8.5)+(8-8)(4-8.5) + (19-8)(14-8.5) + (19-8)(5-8.5)+(7-8)(14-8.5) + (19-8)(5-8.5) + (-1)(5.5)$$

$$=\frac{1}{3}\left[\dot{c}.25+120.25+12.25+30.25\right]$$

$$=\frac{69}{3}$$

$$=23$$

Hence cavariance matrix can be

$$5 = \begin{bmatrix} cov(a,a) & cov(a,b) \end{bmatrix}$$

$$\begin{bmatrix} cov(b,a) & cov(b,b) \end{bmatrix}$$

$$= \begin{bmatrix} 14 & -11 \\ -11 & 23 \end{bmatrix} \frac{1}{108-0001} = \frac{1}{108}$$

step-5: Eigenvalues of the covariance matrix

$$\chi I = \chi \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix}$$

$$\det \left(\begin{bmatrix} 14 & -11 \\ -11 & 29 \end{bmatrix} - \begin{bmatrix} 20 \\ 0 & 2 \end{bmatrix}\right) = 0$$

$$\det \left(\begin{bmatrix} 14 - 2 \\ -11 \end{bmatrix} - \begin{bmatrix} 20 \\ 23 - 2 \end{bmatrix}\right) = 0$$

$$\Rightarrow (14-x)(23-x) - (-11)(-11) = 0$$

$$\Rightarrow 322 - 14x - 23x + x^{2} - 121 = 0$$

$$\Rightarrow x^{2} - 37x + 201 = 0$$

$$x = -b + xb^{2} + 4ac$$

$$2a$$

$$= -(-37) + xb^{2} - 4(1)(201)$$

$$= x + 37 + xb^{2} - 804$$

$$= x + 37 + xb^{2} - xb$$

50, while armanging in descending order 2, >2 >2 > ... Hence 2, = 30.38 $x_2 = 6.62$ step-6: Computation of the eigenvectors First, we are going to find out Figenvector for eigenvalue, 21 = 30.38 $U = \begin{bmatrix} U_1 \\ U_2 \end{bmatrix}^{1/2}$ [0] = (s-21)0 - 1-1-1 $= \begin{bmatrix} 14 - 27 & -11 \\ -11 & 23 - 24 \\ \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ = [(14-21)0, -1102] -110, +(25-71)02 (14-2,7) Up 41/42 + Ou monitor (6) ot -110, + (232×1)02 =0 1 (ii)

5000 XI - 1 - 11/1 H

$$\frac{U_1}{11} = \frac{U_2}{14-\gamma_1} = A \quad (assigning)$$

$$\frac{1}{11} = \frac{12}{14-21} = A = 1/2 \text{ for } 1$$

$$\frac{1}{14-21} = A = 1/2 \text{ for } 1$$

$$\frac{1}{14-21} = A = 1/2 \text{ for } 1$$

$$\frac{1}{14-21} = A = 1/2 \text{ for } 1$$

$$\frac{1}{14-21} = A = 1/2 \text{ for } 1$$

$$\frac{1}{14-21} = A = 1/2 \text{ for } 1$$

$$\frac{1}{14-21} = A = 1/2 \text{ for } 1$$

$$\frac{1}{14-21} = A = 1/2 \text{ for } 1$$

$$\frac{1}{14-21} = A = 1/2 \text{ for } 1$$

$$\frac{1}{14-21} = A = 1/2 \text{ for } 1$$

$$\frac{1}{14-21} = A = 1/2 \text{ for } 1$$

$$\frac{1}{14-21} = A = 1/2 \text{ for } 1$$

$$\frac{1}{14-21} = A = 1/2 \text{ for } 1$$

$$\frac{1}{14-21} = A = 1/2 \text{ for } 1$$

$$\frac{1}{14-21} = A = 1/2 \text{ for } 1$$

$$\frac{1}{14-21} = A = 1/2 \text{ for } 1$$

$$\frac{1}{14-21} = A = 1/2 \text{ for } 1$$

$$\frac{1}{14-21} = A = 1/2 \text{ for } 1$$

$$\frac{1}{14-21} = A = 1/2 \text{ for } 1$$

$$\frac{1}{14-21} = A = 1/2 \text{ for } 1$$

$$\frac{1}{14-21} = A = 1/2 \text{ for } 1$$

$$\frac{1}{14-21} = A = 1/2 \text{ for } 1$$

$$\frac{1}{14-21} = A = 1/2 \text{ for } 1$$

$$\frac{1}{14-21} = A = 1/2 \text{ for } 1$$

$$\frac{1}{14-21} = A = 1/2 \text{ for } 1$$

$$\frac{1}{14-21} = A = 1/2 \text{ for } 1$$

$$\frac{1}{14-21} = A = 1/2 \text{ for } 1$$

$$\frac{1}{14-21} = A = 1/2 \text{ for } 1$$

$$\frac{1}{14-21} = A = 1/2 \text{ for } 1$$

$$\frac{1}{14-21} = A = 1/2 \text{ for } 1$$

$$\frac{1}{14-21} = A = 1/2 \text{ for } 1$$

$$\frac{1}{14-21} = A = 1/2 \text{ for } 1$$

$$\frac{1}{14-21} = A = 1/2 \text{ for } 1$$

$$\frac{1}{14-21} = A = 1/2 \text{ for } 1$$

$$\frac{1}{14-21} = A = 1/2 \text{ for } 1$$

$$\frac{1}{14-21} = A = 1/2 \text{ for } 1$$

$$\frac{1}{14-21} = A = 1/2 \text{ for } 1$$

$$\frac{1}{14-21} = A = 1/2 \text{ for } 1$$

$$\frac{1}{14-21} = A = 1/2 \text{ for } 1$$

$$\frac{1}{14-21} = A = 1/2 \text{ for } 1$$

$$\frac{1}{14-21} = A = 1/2 \text{ for } 1$$

$$\frac{1}{14-21} = A = 1/2 \text{ for } 1$$

$$\frac{1}{14-21} = A = 1/2 \text{ for } 1$$

$$\frac{1}{14-21} = A = 1/2 \text{ for } 1$$

$$\frac{1}{14-21} = A = 1/2 \text{ for } 1$$

$$\frac{1}{14-21} = A = 1/2 \text{ for } 1$$

$$\frac{1}{14-21} = A = 1/2 \text{ for } 1$$

$$\frac{1}{14-21} = A = 1/2 \text{ for } 1$$

$$\frac{1}{14-21} = A = 1/2 \text{ for } 1$$

$$\frac{1}{14-21} = A = 1/2 \text{ for } 1$$

$$\frac{1}{14-21} = A = 1/2 \text{ for } 1$$

$$\frac{1}{14-21} = A = 1/2 \text{ for } 1$$

$$\frac{1}{14-21} = A = 1/2 \text{ for } 1$$

$$\frac{1}{14-21} = A = 1/2 \text{ for } 1$$

$$\frac{1}{14-21} = A = 1/2 \text{ for } 1$$

$$\frac{1}{14-21} = A = 1/2 \text{ for } 1$$

$$\frac{1}{14-21} = A = 1/2 \text{ for } 1$$

$$\frac{1}{14-21} = A = 1/2 \text{ for } 1$$

$$\frac{$$

$$\frac{U_1}{11}=1 \Rightarrow U_1=11$$

$$\frac{v_2}{14-7} = 1 \Rightarrow v_2 = 14-74$$

$$= 14-30.38$$

$$1 = -16.38$$

Hence, Eigenvector for xi

$$\Rightarrow \begin{bmatrix} 0_1 \\ 0_2 \end{bmatrix} = \begin{bmatrix} -16.38 \end{bmatrix}$$

To a find a unit eigenvector, we compute the length of U_1 which is given by $|U_1|^2 = \sqrt{11^2 + (-16.38)^2}$

$$= \sqrt{121+268.30}$$

$$= 19.79$$

$$= 11/11U_{1}11$$

$$= [0.98/11U_{1}11]$$

$$= [0$$

Assume,
$$B=1$$

$$\frac{U_1}{11} = \frac{U_2}{14-\chi_2} = B=1$$
Hence, $\frac{U_1}{11} = 1 \Rightarrow U_2 = 14-\chi_2$

$$= \frac{14-\chi_2}{14-\chi_2} = 1 \Rightarrow U_2 = 14-\chi_2$$

$$= \frac{14-\chi_2}{14-\chi_2} = \frac{14-\chi_2}{11}$$
Hence, Eigenvector for $\chi_2 = \frac{11}{7.38}$
To find a unit eigenvector, we compute the length wift U_2 ! which is given by, $11U_211 = \sqrt{11^2 + (2.98)^2}$

$$= \frac{13.24}{7.38/110211} = \frac{11/13.24}{7.38/110211} = \frac{11/13.24}{13.24} = \frac{13.24}{3.5891} = \frac{13.24}{3.5891}$$

5tep-7: Computation of first principle components

Frature	Samples	3ample2	Samples	Sample 4
a	4	8	.13	7
b	- 11	104	5	14

$$P_{11} = e_1^T \begin{bmatrix} 4-8 \\ 11-8.6 \end{bmatrix} = 8.0$$

$$= \begin{bmatrix} 0.5575 & -0.8902 \end{bmatrix} \begin{bmatrix} -4 \\ 2.5 \end{bmatrix}$$

$$=$$
 $\left(-2.23 - 2.0755\right)$

$$P_{13} = e_1^T \begin{bmatrix} 13 - 8 \\ 5 - 8.5 \end{bmatrix}$$

$$= \begin{bmatrix} 0.5575 & -0.8302 \end{bmatrix} \begin{bmatrix} 5 \\ 3.5 \end{bmatrix}$$

$$P_{13} = 2.787 + 2.905$$
.

 $P_{14} = 6$, $F_{14-8.5}$
 $F_{14} = 6$, $F_{14-8.5}$
 F