LAB_Project_comprehensive

First_order

Open-loop-response

closed_loop_first_order

Closed-loop-response

->As you can see here in the closed loop response there is steady state error of 0.5 so will be using pid for the best optimum results

Closed loop with pid controller

After try and error check I was able to reach a kp=13 and ki = 6 and kd = 0.004 which led to steady state error to zero and smoth curve

Second-order-systems

Case1

Open_loop_response

```
%second_order_system
%CASE1
R1=2000;
R2=2000;
C1=0.5e-6;
C2=0.5e-6;
wn=1/(R1*C1);
zeta =((R1*C1)+(R1*C2)+(R2*C2))/(2*wn*(R1*R2*C1*C2));
```


Mbd_Diploma

Closed_loop_response

->As you see here in the closed loop response the settling time is 1.01 and there is steady state error of 0.5

${\sf Closed_loop_response_with_pid_controller}$

After try and error I was able to reach to this system response with no overshoot and steady state error equal to zero

Case 2

```
%second_order_system
%CASE2
R1=4000;
R2=4000;
C1=0.2e-6;
C2=0.2e-6;
wn=1/(R1*C1);
zeta =((R1*C1)+(R1*C2)+(R2*C2))/(2*wn*(R1*R2*C1*C2));
```


->There is an steady state error of 0.5

Closed_loop_controlled

After try and error I was able to reach to this system response with no overshoot and steady state error equal to zero

Case 3

```
%second_order_system
%CASE3
R1=3000;
R2=3000;
C1=0.3e-6;
C2=0.3e-6;
wn=1/(R1*C1);
zeta =((R1*C1)+(R1*C2)+(R2*C2))/(2*wn*(R1*R2*C1*C2));
```


After try and error I was able to reach to this system response with no overshoot and steady state error equal to zero