4. Equações básicas na forma integral para um volume de controle

4. Equações básicas na forma integral para um volume de controle

- ✓ Estudaremos os fluidos em movimentos;
- ✓ Usaremos a definição de Volume de Controle.

O que é um volume de controle ?

VOLUME DE CONTROLE – Volume imaginário ou real através do qual ocorre escoamento de massa para dentro ou para fora do objeto em estudo (também chamado sistema aberto).

SUPERFÍCIE DE CONTROLE (SC) — Superficie que delimita o volume de controle. Massa, calor, trabalho e quantidade de movimento podem atravessar a S.C.

4. Equações básicas na forma integral para um volume de controle

Por que não fazer a análise em um Sistema ?

Por que é difícil identificar e seguir a mesma massa de fluido em todos os instantes e porque não estamos interessados no movimento de uma massa de fluido, mas sim no efeito do movimento global do fluido sobre algum dispositivo ou estrutura (ex.: efeito das forças de arrasto e de sustentação sobre a asa de um avião, vazão de um fluido dentro de uma tubulação, etc).

Leis básicas para um Sistema

Conservação da massa

$$\frac{dM}{dt}\Big|_{SISTEMA} = 0$$

$$dm = \rho d \forall$$

$$M_{SISTEMA} = \int_{SISTEMA} dm = \int_{VOLUME} \rho dV$$

Segunda Lei de Newton

A soma de todas as forças externas agindo sobre um sistema é igual à taxa de variação da quantidade de movimento linear.

$$\overrightarrow{F} = \frac{\overrightarrow{dP}}{\overrightarrow{dt}} \bigg|_{SISTEMA}$$

$$\overrightarrow{P}_{SISTEMA} = \int_{M(SISTEMA)} \overrightarrow{V} dm = \int_{\forall (SISTEMA)} \overrightarrow{V} .p.d \forall$$

Primeira Lei da Termodinâmica

$$\dot{Q} - \dot{W} = \frac{dE}{dt}\Big|_{SISTEMA}$$

- ✓ A taxa de transferência de calor é positiva quando calor é adicionado ao sistema pela sua vizinhança.
- ✓ A taxa de trabalho é positiva quando trabalho é realizado pelo sistema sobre sua vizinhança.

A energia total do sistema (E) é dado por:

$$E_{SISTEMA} = \int_{M(sistema)} e.dm = \int_{\forall (sistema)} e.\rho.d \forall$$

$$e = u + \frac{V^2}{2} + g.z$$

Como converter as equações acima aplicadas a sistema para aplicações em volumes de controle?

Seja N uma propriedade extensiva do sistema (quantidade de massa, ou movimento linear, ou energia).

Seja η uma propriedade intensiva correspondente (propriedade extensiva por unidade de massa).

De uma maneira genérica podemos escrever:

$$N_{SISTEMA} = \int_{M(sistema)} \eta.dm = \int_{\forall (sistema)} \eta.\rho.d \forall$$

Se N = M então
$$\eta$$
 = 1, logo

$$M_{SISTEMA} = \int_{M(sistema)} dm = \int_{\forall (sistema)} \rho.d \forall$$

$$N_{SISTEMA} = \int_{M(sistema)} \eta.dm = \int_{\forall (sistema)} \eta.\rho.d \forall$$

Se N = E então η = e, logo

$$E_{SISTEMA} = \int_{M(sistema)} e.dm = \int_{\forall (sistema)} e.p.d \forall$$

Se
$$N = P$$
 então $\eta = V$, logo

$$\overrightarrow{P}_{SISTEMA} = \int_{M(SISTEMA)} \overrightarrow{V} dm = \int_{\forall (SISTEMA)} \overrightarrow{V} .p.d \forall$$

Imagine um VC e um sistema que possuem num dado instante a mesma quantidade de matéria e que o sistema esteja se deslocando, passando pelo volume de controle. Neste instante (t_o) ambos coincidem. Isto é como uma quantidade de fluido estivesse escoando pelo VC, o qual está fixo no espaço relativo às coordenadas xyz. Chamamos a atenção novamente para o fato de que neste momento o sistema coincide com o VC. Após um tempo infinitesimal Δt o sistema com aquela quantidade de massa terá se deslocado em relação ao VC, estando numa outra posição no instante $t_o + \Delta t$.

Queremos estabelecer um relação entre a taxa de variação de qualquer propriedade extensiva arbitrária N do sistema, com quantidades associadas com o volume de controle.

Então vamos trabalhar com a derivada, que é uma taxa de variação.

Se quisermos conhecer a taxa de variação num intervalo de tempo pequeno basta fazer $\Delta t \rightarrow 0$. Neste caso o VC coincidirá com o sistema e todas as relações aplicadas ao sistema serão válidas para o VC, ou seja, aquilo que está acontencendo dentro do sistema estará também acontecendo dentro do VC, pois no limite, quando $\Delta t \rightarrow 0$, o sistema e o VC ocupam o mesmo volume e tem as mesmas fronteiras.

Demonstra-se, portanto, que:

$$\frac{dN}{dt}\bigg|_{SISTEMA} = \frac{\partial}{\partial t} \int_{\forall C} \eta \rho d \forall + \int_{SC} \eta \rho \overrightarrow{V} . d\overrightarrow{A}$$

Teorema de transporte de Reynolds

Significados dos termos da equação básica:

$$\left. \frac{dN}{dt} \right|_{SISTEMA}$$

Representa a taxa de variação de qualquer propriedade extensiva (massa, energia, etc) arbitrária do sistema.

$$\frac{\partial}{\partial \mathsf{t}} \, \int_{\,\, \forall \mathsf{c}} \mathsf{n} \mathsf{p} \mathsf{d} \, \forall$$

∂t ∫ ηρd ∀ Representa a taxa de variação da quantidade da propriedade extensiva N dentro do VC.

 $\eta - \acute{e}$ a propriedade intensiva correspondente a N; $\eta = N$ por unidade de massa;

p.dV – elemento de massa contido no VC.

 $\int_{VC} \mathbf{n} \mathbf{p} \mathbf{d}$ - quantidade total da propriedade extensiva N dentro do VC.

 $\int_{SC} \eta \rho V.dA$

- taxa líquida de fluxo da propriedade extensiva N através da superfície de controle

 $\rho V.dA$

- taxa de fluxo de massa através do elemento de área dA

- taxa de fuxo da propriedade extensiva N através da área dA

Equação da conservação da massa (equação da continuidade)

Se a propriedade extensiva N = M e $\eta = 1$ então a equação

$$\frac{dN}{dt}\bigg|_{SISTEMA} = \frac{\partial}{\partial t} \int_{VC} \eta \rho d \forall + \int_{SC} \eta \rho \overset{\longrightarrow}{V} \overset{\longrightarrow}{A}$$
 torna-se

$$\frac{dM}{dt}\bigg|_{SISTEMA} = \frac{\partial}{\partial t} \int_{VC} \rho d \, \forall + \int_{SC} \rho \stackrel{\longrightarrow}{V} . d\stackrel{\longrightarrow}{A}$$

Como num sistema não ocorre variação da massa com o tempo:

$$\frac{\partial}{\partial t} \int_{VC} \rho d \, \forall + \int_{SC} \rho \, \overrightarrow{V} . d\overrightarrow{A} = 0$$

equação da conservação da massa aplicada a um VC.

$$\frac{\partial}{\partial t} \int_{VC} \rho d \, \forall + \int_{SC} \rho \, \overrightarrow{V} . d \, \overrightarrow{A} = 0$$

Ou seja, a soma da taxa de variação da massa dentro do VC com a taxa líquida de fluxo de massa através da SC é igual a zero.

Podemos ainda escrever que a taxa de aumento de massa no VC deve-se a variação da taxa líquida de massa através da SC.

$$\frac{\partial}{\partial t} \int_{VC} \rho d \forall = - \int_{SC} \rho \vec{V} . d\vec{A}$$

Atenção:

Se escomento incompressível:

$$\rho \frac{\partial}{\partial t} \int_{VC} d \nabla + \rho \int_{SC} \overrightarrow{V} \cdot \overrightarrow{dA} = 0$$

$$\frac{\partial}{\partial t} \forall + \int_{SC} \overrightarrow{V} \cdot \overrightarrow{dA} = 0$$

Se o VC é indeformável, V = constante (não varia com o tempo)

$$\int_{SC} \overrightarrow{V} \cdot \overrightarrow{dA} = 0$$

Equação da quantidade de movimento para um volume de controle inercial (estacionário)

Seja a propriedade extensiva $N = P e \eta = V então a equação$

$$\frac{dN}{dt}\bigg|_{\text{system}} = \frac{\partial}{\partial t} \int_{\text{CV}} \eta \rho dV + \int_{\text{CS}} \eta \rho \vec{V} \cdot d\vec{A}$$

torna-se

$$\frac{d\vec{P}}{dt}\bigg|_{\text{system}} = \frac{\partial}{\partial t} \int_{\text{CV}} \vec{V} \rho \, dV + \int_{\text{CS}} \vec{V} \rho \vec{V} \cdot d\vec{A}$$
UFV

Sabemos que as forças que atuam sobre um sistema são as forças de corpo \mathbf{F}_{B} e as forças de superfície \mathbf{F}_{S} , que são as mesmas que atuam no VC quando o sistema e o VC coincidem em t_{O} .

$$\overrightarrow{F} = \frac{\overrightarrow{dP}}{\overrightarrow{dt}} \Big|_{SISTEMA} = \overrightarrow{F}_s + \overrightarrow{F}_B \Big|_{sobre \, o \, volume \, de \, controle}$$

$$\vec{F} = \vec{F}_S + \vec{F}_B = \frac{\partial}{\partial t} \int_{CV} \vec{V} \rho \, dV + \int_{CS} \vec{V} \rho \vec{V} \cdot d\vec{A}$$

Ou seja:

A soma das forças de superfície e de campo sobre um VC é igual a soma da taxa de variação da quantidade de movimento dentro do VC, mais o fuxo líquido de quantidade de movimento pela superfície de controle

Como a quantidade de movimento é uma grandeza vetorial, suas componentes escalares são:

$$F_{x} = F_{S_{x}} + F_{B_{x}} = \frac{\partial}{\partial t} \int_{CV} u \, \rho \, dV + \int_{CS} u \, \rho \vec{V} \cdot d\vec{A}$$

$$F_{y} = F_{S_{y}} + F_{B_{y}} = \frac{\partial}{\partial t} \int_{CV} v \, \rho \, dV + \int_{CS} v \, \rho \vec{V} \cdot d\vec{A}$$

$$F_{z} = F_{S_{z}} + F_{B_{z}} = \frac{\partial}{\partial t} \int_{CV} w \, \rho \, dV + \int_{CS} w \, \rho \vec{V} \cdot d\vec{A}$$

Primeira Lei da Termodinâmica Aplicada a Volume de Controle

$$\dot{Q} - \dot{W} = \frac{dE}{dt}\Big|_{SISTEMA}$$

Se a propriedade extensiva N = E e $\eta = e$ então a equação

$$\frac{dN}{dt}\bigg|_{\text{system}} = \frac{\partial}{\partial t} \int_{\text{CV}} \eta \rho \, d\Psi + \int_{\text{CS}} \eta \, \rho \vec{V} \cdot d\vec{A}$$

Torna-se:

$$\frac{dE}{dt}\Big|_{\text{system}} = \frac{\partial}{\partial t} \int_{\text{CV}} e \ \rho \, d\Psi + \int_{\text{CS}} e \ \rho \vec{V} \cdot d\vec{A}$$
 2

Fazendo 1 = 2, tem-se:

$$\dot{\mathbf{Q}} - \dot{\mathbf{W}} = \frac{\partial}{\partial t} \int_{CV} \mathbf{e} \ \rho \, d\mathbf{\Psi} + \int_{CS} \mathbf{e} \ \rho \vec{V} \cdot d\vec{A}$$

onde
$$e = u + \frac{V^2}{2} + g.z$$
 representa a energia por unidade de massa

e
$$\dot{\mathbf{W}} = \dot{\mathbf{W}}_{eixo} + \dot{\mathbf{W}}_{normal} + \dot{\mathbf{W}}_{cisalhante} + \dot{\mathbf{W}}_{outros}$$

Para uma formulação mais abrangente, no caso de ocorrer variação de pressão no fluido entre a entrada e saída no VC, deve-se considerar o trabalho realizado por pv (trabalho de fluxo ou de escoamento). A energia total passa então a:

$$e = u + pv + \frac{V^2}{2} + g.z$$

Onde u + pv = h (entalpia do sistema).

Logo, a formulação geral da primeira lei aplicada a volume de controle é dada por:

$$\dot{Q} - \dot{W}_s - \dot{W}_{\text{shear}} = \frac{\partial}{\partial t} \int_{CV} e \, \rho \, dV + \int_{CS} \left(u + pv + \frac{V^2}{2} + gz \right) \rho \vec{V} \cdot d\vec{A}$$

Obs.: Na maioria dos casos o trabalho cisalhante é nulo, uma vez que a tensão cisalhante atua num plano normal a velocidade do escoamento.

Em que termo da equação acima está incluído o trabalho realizado por tensões normais na superfície de controle?

Exercícios capítulo 4

6 ed	7 ed	6 ed
12	35	26
15	37	28
14	38	29
16	40	32
-	42	33
-	43	35
-	44	36
18	45	-
17	-	-
-	61	51
-	62	52
-	67	-
-	68	55
-	72	58
19	198	183
20	200	185
21	202	186
23	203	188
25	205	189
	12 15 14 16 18 17 19 20 21 23	12 35 15 37 14 38 16 40 - 42 - 43 - 44 18 45 17 - - 61 - 62 - 67 - 68 - 72 19 198 20 200 21 202 23 203

Itens excluídos:

Análise de volume de controle diferencial.

Itens 4.5, 4.6, 4.7 e 4.9

