Relaciones 02: La venganza

Semestre 2023-1

Desafío 06

Tania Michelle Rubí Rojas

Para cada uno de los siguientes ejercicios, justifica ampliamente tu respuesta:

(1) Sea A un conjunto y $R = \emptyset \subset A^2$ la relación vacía.

Responde:

- i R es reflexiva sobre \emptyset ?
- i R es reflexiva sobre cualquier conjunto $A \neq \emptyset$?
- iR es antirreflexiva?
- iR es simétrica?
- $\ \ \ \ \ \ell R$ es antisimétrica?
- ξR es asimétrica?
- iR es transitiva?
- (2) Para cada uno de los siguientes incisos, **proporciona** un ejemplo de una relación R definida sobre un conjunto A que cumpla lo siguiente y **justifica** tu respuesta, y en caso de que no sea posible, **justifica** por qué no lo es.
 - ullet R es transitiva, pero no es reflexiva sobre A ni simétrica.
 - R no es reflexiva ni antirreflexiva.
 - R es simétrica y transitiva, pero no reflexiva sobre A.
 - R es reflexiva y antisimétrica.
- $(\mathbf{3})$ Sea el conjunto $A=\{1,2,3,4,5\}$. Definimos la relación R como sigue:

$$R = \{(1,1), (1,2), (2,1), (2,2), (3,3), (3,4), (4,3), (4,4), (5,5)\}$$

Realiza lo siguiente:

- Representa gráficamente la relación R usando gráficas dirigidas.
- **Determina** si la relación R es reflexiva sobre A, antirreflexiva sobre A, simétrica, antisimétrica y/o transitiva.
- (4) Sea $A = \{0, 1, 2, 3\}$. Definimos las relaciones R, S y T sobre A de la siguiente manera:

$$R = \{(0,1), (0,2), (1,1), (1,3), (2,2), (3,0)\}$$

$$S = \{(0,0), (0,3), (1,0), (1,2), (2,0), (3,2)\}$$

$$T = \{(0,2), (1,0), (2,3), (3,1)\}$$

Determina la cerradura transitiva de las relaciones R, S y T.

(5) Sea el conjunto $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, cuyo Universo del Discurso es $\mathcal{U} = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$. Definimos las relaciones R y S sobre $\mathcal{P}(A)$ como sigue:

$$R = \{(X, Y) \mid X \cap Y = \emptyset\}$$

$$S = \{(X, Y) \mid X - Y^c\}$$

Determina si R y S son reflexivas, antirreflexivas, simétricas, antisimétricas y transitivas.

- $oxed{6}$ Sean R y S relaciones sobre el conjunto X. Analiza las siguientes afirmaciones. Si alguna es verdadera, explica ampliamente por qué. En caso contrario, proporciona un ejemplo donde no se cumpla.
 - Si R y S son antisimétricas, entonces $R\cap S$ es antisimétrica.
 - Si R es antisimétrica, entonces R^{-1} es antisimétrica.
 - Si R y S son simétricas, entonces $S\circ R$ es simétrica.
- (7) Sean $A = \{1, 2, 3\}$. Definimos la relación R sobre A, respectivamente, como sigue:

$$R = \{(1,1), (1,2), (1,3), (3,1), (2,3)\}$$

Realiza lo siguiente:

- Determina la cerradura reflexiva de R.
- **Determina** la cerradura simétrica de R.
- **Determina** la cerradura transitiva de R.
- 8 Para cada una de las siguientes relaciones, **determina** si son reflexivas, antirreflexivas, simétricas, antisimétricas, asimétricas y transitivas.
 - Sea \mathcal{T} el conjunto de todos los árboles binarios cuyos nodos están etiquetados con elementos en \mathbb{N} . Definimos la relación R como sigue:

$$ARB \Leftrightarrow A$$
 tiene la misma altura que B

• Sea \mathcal{T} el conjunto de todos los árboles binarios cuyos nodos están etiquetados con elementos en \mathbb{N} . Definimos la relación R como sigue:

 $ARB \Leftrightarrow$ el número de nodos de A es mayor que el número de nodos de B

- 9 Para cada una de las siguientes relaciones, determina si son reflexivas, antirreflexivas, simétricas, antisimétricas, asimétricas y transitivas.
 - Sea \mathcal{T} el conjunto de todos los árboles binarios cuyos nodos están etiquetados con elementos en \mathbb{N} . Definimos la relación R como sigue:

$$ARB \Leftrightarrow A$$
 tiene el mismo número de hojas que B

• Sea \mathcal{L}_A el conjunto de todas las listas cuyos elementos se encuentran en el conjunto A. Definimos la relación R como sigue:

 $(l_1,l_2)\in R\Leftrightarrow$ la cabeza de la lista l_1 es diferente a la cabeza de la lista l_2

- Para cada una de las siguientes relaciones, **determina** si son reflexivas, antirreflexivas, simétricas, antisimétricas, asimétricas y transitivas.
 - Sea \mathcal{L}_A el conjunto de todas las listas cuyos elementos se encuentran en el conjunto A. Definimos la relación R como sigue:

 $(l_1, l_2) \in R \Leftrightarrow$ la longitud de la lista l_1 es mayor o igual que la longitud de la lista l_2

• Sea \mathcal{L}_A el conjunto de todas las listas cuyos elementos se encuentran en el conjunto A. Definimos la relación R como sigue:

 $(l_1, l_2) \in R \Leftrightarrow$ los elementos de la lista l_1 son iguales a los elementos de la lista l_2

- Sean R y S relaciones sobre el conjunto X. Analiza las siguientes afirmaciones. Si alguna es verdadera, **explica** ampliamente por qué. En caso contrario, **proporciona** un ejemplo donde no se cumpla.
 - Si R y S son reflexivas, entonces $R \cup S$ es reflexiva.
 - Si R es transitiva, entonces R^{-1} es transitiva.
 - Si R y S son transitivas, entonces $S \circ R$ es transitiva.
- **Analiza** las siguientes afirmaciones. Si alguna es verdadera, **explica** ampliamente por qué. En caso contrario, **proporciona** un ejemplo donde no se cumpla.
 - Todas las relaciones que son asimétricas también son antirreflexivas.
 - Todas las relaciones que son antisimétricas y transitivas también son asimétricas.
 - Todas las relaciones que no son transitivas son antirreflexivas.
- (13) Analiza las siguientes afirmaciones. Si alguna es verdadera, explica ampliamente por qué. En caso contrario, proporciona un ejemplo donde no se cumpla.
 - Existe una relación R sobre un conjunto X que es reflexiva, pero no transitiva.
 - Existe una relación R sobre un conjunto X que no es reflexiva pero sí es asimétrica.
 - Existe una relación R sobre un conjunto X que es reflexiva y transitiva, pero no es asimétrica.
 - Existe una relación R sobre un conjunto X que no es simétrica, pero sí es transitiva y antirreflexiva.
- Para cada una de las siguientes relaciones, **determina** si son reflexivas, antirreflexivas, simétricas, antisimétricas, asimétricas y transitivas.
 - Sea ${\cal P}$ el conjunto de todas las personas vivas. Definimos la relación ${\cal R}$ como sigue:

$$(p,q) \in R \Leftrightarrow p \text{ y } q \text{ se conocen}$$

• Sea P el conjunto de todas las personas vivas. Definimos la relación R como sigue:

$$pRq \Leftrightarrow p \neq q$$
 hablan el mismo idioma

- Para cada una de las siguientes relaciones, **determina** si son reflexivas, antirreflexivas, simétricas, antisimétricas, asimétricas y transitivas.
 - ullet Sea P el conjunto de todas las personas vivas. Definimos la relación R como sigue:

$$pRq \Leftrightarrow p$$
 y q tienen la misma edad

ullet Sea P el conjunto de todas las personas vivas. Definimos la relación R como sigue:

$$pRq \Leftrightarrow p$$
 y q tienen un amigo en común

- Para cada una de las siguientes relaciones, **determina** si son reflexivas, antirreflexivas, simétricas, antisimétricas, asimétricas y transitivas.
 - Definimos la relación R sobre $\mathbb Z$ como sigue:

$$R = \{(a, b) \mid a - b \text{ es un número entero positivo impar}\}$$

• Definimos la relación S sobre \mathbb{Z} como sigue:

$$S = \{(a, b) \mid a = b^2\}$$