# МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Уфимский государственный нефтяной технический университет»

Кафедра «Автоматизация, телекоммуникация и метрология»

# ИССЛЕДОВАНИЕ ИНТЕРФЕЙСОВ RS422 и RS485

Учебно-методическое пособие для выполнения лабораторной работы по дисциплине «Телеуправление и связь»

Учебно-методическое пособие для выполнения лабораторной работы для обучающихся по направлению подготовки

Составители: Емец С.В., канд. техн. наук, доцент каф. АТМ

Худайбирдин И.М., ст. гр. МАГ01-22-01 каф АТМ

Рецензент: Прахова М.Ю., доц. каф АТМ

<sup>©</sup> Уфимский государственный нефтяной технический университет

# СОДЕРЖАНИЕ

| 1 | Цель работы                                           | 4  |
|---|-------------------------------------------------------|----|
| 2 | Описание лабораторного макета                         | 4  |
|   | 2.1 Модуль периферии RS-485/422                       | 4  |
|   | 2.2 Модуль связи с ПК                                 | 5  |
|   | 2.3 Модуль анализаторов                               | 7  |
| 3 | Методические указания по выполнению работы            | 9  |
|   | 3.1 Датчик расстояния                                 | 9  |
|   | 3.2 Датчик температуры                                | 14 |
|   | 3.3 Датчик освещенности                               | 15 |
|   | 3.4 Сервопривод                                       | 18 |
| 4 | Требования к содержанию отчета                        | 22 |
| 5 | Теоретические сведения                                | 23 |
|   | 5.1 ΠO Terminal                                       | 23 |
|   | 5.2 ΠO Simply Modbus Master                           | 25 |
|   | 5.3 Логический анализатор                             | 27 |
|   | 5.4 Осциллограф                                       | 29 |
|   | 5.5 ПО URMV4HelpMate для работы с датчиком расстояний | 30 |
| 6 | Контрольные вопросы                                   | 31 |

#### 1 ЦЕЛЬ РАБОТЫ

Ознакомиться с возможностями датчиков, протоколами и режимами работы. Организовать управление датчиками и получение данных от датчика с помощью ПК.

#### 2 ОПИСАНИЕ ЛАБОРАТОРНОГО МАКЕТА

#### 2.1 Модуль периферии RS-485/422

Модуль периферии RS-485/422 предназначен для изучения готовых периферийных устройств с интерфейсом RS-485 и RS-422. В его состав входят: датчики расстояния, освещенности и температуры, сервопривод и вспомогательные узлы для коммутации сети. Некоторые выводы данных узлов выведены на лицевую панель и могут коммутироваться между собой соединительными проводами. Для наглядности и более глубокого понимания на лицевой панели представлены схемы строения некоторых узлов.



Модуль периферии условно делится на несколько логических блоков. Функциональное предназначение и особенности каждого блока приведены ниже. Блоки пронумерованы согласно рисунку.

- 1. Датчик расстояния. Работает по интерфейсу RS-485, диапазон измерений от 4 см. до 500 см, точность 1 см. В линию данных встроен терминатор на 180 Ом;
- 2. Сервопривод. Работает по интерфейсу RS-485, с протоколом MODBUS RTU. Имеется возможность задавать скорость вращения и положение сервопривода;
- 3. Датчик освещенности. Работает по интерфейсу RS-422, с протоколом MODBUS ASCII.
- 4. Датчик температуры. Датчик работает по интерфейсу RS-422. На лицевой панели имеется семисегментный трехразрядный индикатор для отображения текущей температуры, кнопка для нагрева датчика, пока кнопка зажата, происходит нагрев.
- 5. Терминаторы. Терминаторы согласующие резисторы, ставятся на конце линии для согласования линии. На лицевой панели модуля доступны терминаторы следующих номиналов: 91 Ом, 120 Ом, 150 Ом, 270 Ом. Терминатор на 180 Ом встроен в линию датчика расстояния.
- 6. Резисторы смещения. На лицевой панели модуля доступны пары резисторов смещения следующих номиналов: 560 Ом, 820 Ом, 1.5 кОм, 2 кОм, 2.4 кОм.
- 7. Шина данных RS-485/422. Служит для наглядного соединения нескольких устройств в одну сеть, светодиод «Активность» вспыхивает при активной передаче данных по шине.

# 2.2 Модуль связи с ПК

Для связи периферийных устройств с интерфейсом RS-485/422 необходим модуль связи с ПК.



Основными узлами являются непосредственно преобразователи уровней. Преобразователи уровней RS485-TTЛ служат для преобразования сигналов интерфейса RS-485/422 к сигналам TTЛ уровня (UART) и наоборот, а преобразователь уровней TTЛ-USB служит для преобразования сигналов уровней TTЛ (UART) к сигналам USB и наоборот.

Для более глубокого изучения параметров интерфейса в модуль встроен миллиамперметр, помогающий изучить токопотребление интерфесом при различных параметрах сети.

Модуль связи с ПК условно делится на несколько логических блоков. Функциональное предназначение и особенности каждого блока приведены ниже. Блоки пронумерованы согласно рисунку.

- 1. Преобразователи уровней RS-485 ТТЛ служат для преобразования сигналов интерфейса RS-485/422 к сигналам ТТЛ уровня (UART) и наоборот. Используются для подключения периферии к микроконтроллеру и ПК. Все необходимые выводы выведены на лицевую панель;
- 2. Преобразователь уровней USB-TTЛ(USART). Предназначен для преобразования сигналов уровня ТТЛ (USART) в сигналы USB (виртуальный СОМ-порт). Используется для обмена информацией между ПК и периферией или микроконтроллером. На лицевой панели имеется индикация активности приемопередатчика (светодиоды передача, прием), а также выведены дополнительные выводы CBUS, которые могут быть настроены на определенные алгоритмы работы. Внутри стенда приемопередатчик соединен с ПК через USB порт.
- 3. Миллиамперметр. Служит для измерения потребления тока в линии RS-485/422. Позволяет измерять токи от -100 мА до 100мА с дискретностью измерений 0.1 мА. Результаты измерений отображаются на семисегментном индикаторе.
- 4. Светодиоды предназначены для тестирования и контроля сигналов. Светодиоды подключены катодом к «земле» через защитные резисторы 470 Ом, как отображено на лицевой панели. А анод выведен на лицевую панель. Чтобы зажечь светодиод нужно на клемму подать логическую 1.
- 5. Кнопки предназначены для генерирования уровня логического 0. При нажатии на кнопку на клемме соответствующей данной кнопке генерируется уровень логического 0, при отпускании кнопки вывод переходит в высокоимпедансное состояние. Данные переключатели не защищены от «дребезга».

#### 2.3 Модуль анализаторов

Для получения временных диаграмм работы интерфейса служит модуль анализа сигналов. Этот модуль условно делится на несколько узлов.

Основными узлами являются непосредственно логический анализатор, осциллограф которые соединяются с компьютером через интерфейс USB и анализатор трафика RS-485/422.

Для подключения доступны 16 каналов логического анализатора с частотой дискретизации до 48 МГц и 2 канала осциллографа с частотой дискретизации 48 МГц в одноканальном режиме и 24 МГц в двухканальном режиме.



Модуль анализаторов условно делится на несколько логических блоков. Функциональное предназначение и особенности каждого блока приведены ниже. Блоки пронумерованы согласно рисунку.

- 1. Анализатор трафика RS-485/422. Данный блок включает в себя символьный ЖК дисплей, на котором отображается вся необходимая информация, клеммы входных сигналов UART (ТТЛ1 и ТТЛ2) и емкостные кнопки управления. Описание работы с данным блоком описана в следующей главе;
- 2. Блок логического анализатора. В нем выведены клеммы 16 каналов логического анализатора, с частотой дискретизации до 48 МГц. Логический анализатор предназначен для построения временных диаграмм и анализа работы цифровых устройств.

- 3. Блок осциллографа. В данный блок входят генератор меандра с частотой 1 кГц, и 2 входных канала осциллографа. Генератор меандра работает только в режиме осциллографа. Частота дискретизации в одноканальном режиме 48 МГц, а в двухканальном по 24 МГц на канал. Также выведена клемма общего провода. Используется для выравнивания потенциалов земли между модулями;
- 4. Преобразователи уровней RS-485 ТТЛ. Данные узлы служат для преобразования сигналов интерфейса RS-485 в сигналы понятные UART приемопередатчику, и наоборот.

# 3 МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ РАБОТЫ Таблица 1 – Варианты заданий

| Тип        | Вариант             |                    |  |  |  |
|------------|---------------------|--------------------|--|--|--|
| интерфейса | 1                   | 2                  |  |  |  |
| RS485      | Датчик расстояния   | Датчик температуры |  |  |  |
| RS422      | Датчик освещенности | Сервопривод        |  |  |  |

#### 3.1 Датчик расстояния

#### 3.1.1 Задание для выполнения.

Для управления датчиком расстояния будет использоваться блок «Виртуальный СОМ-порт», преобразователь «RS-485 — TTL». Виртуальный СОМ-порт подключен к компьютеру внутри макета. Для связи СОМ-порта и датчика, работающего по RS-485 необходим преобразователь ADM485, который преобразует сигналы TTL с UART в дифференциальный сигнал RS-485.

- 1. Прописать при помощи ПО Terminal для датчика расстояния произвольный разрешенный адрес и удостовериться в положительном результате (необходимые команды представлены в разделе 5 методического пособия).
- 2. Измерить при помощи ПО Terminal расстояние от датчика до предмета, параллельно замерив его при помощи линейки (необходимые команды представлены в разделе 5 методического пособия)

- 3. Получить при помощи ПО Terminal информацию по измеренному расстоянию и расшифровать полученные результаты, сравнить результаты с датчика и с измеренными линейкой (необходимые команды представлены в разделе 5 методического пособия).
- 4. Наблюдать при помощи осциллографа сигналы TTL на пинах виртуального COM-порта и дифференциальный сигнал на пинах датчика расстояния.

#### 3.1.2 Команды для датчика расстояния.

Для работы с датчиком необходимо подключение по следующей схеме.



# Основные характеристики датчика

| Наименование характеристики          | Значение |
|--------------------------------------|----------|
| Питание, В                           | 5        |
| Диапазон измерений, см               | 4500     |
| Абсолютная погрешность измерений, см | 1        |
| Интерфейс                            | RS-485   |
| Диапазон рабочих температур, °С      | -1070    |

# Параметры соединения

| Наименование характеристики | Значение |
|-----------------------------|----------|
| Скорость                    | 19200    |
| Число бит в сообщении       | 8        |
| Четность                    | None     |
| Стоп-бит                    | 1        |

Для проверки правильности приема команд используется байт контрольной суммы – SUM. Байт контрольной суммы рассчитывается как сумма всех байт в однобайтовом режиме.

# Программа для работы с датчиком:

ПО Terminal (инструкция по работе приведена в пункте 5.6).

#### Команда установки адреса датчика

Примечение: для установки проверочной суммы в конце посылки, формируемой в ПО Terminal достаточно дописать %SUM.

#### Запрос:

| Заголовок |      |      | Длина | Команда | Новый адрес | SUM  |      |
|-----------|------|------|-------|---------|-------------|------|------|
|           | 0x55 | 0xAA | 0xAB  | 0x01    | 0x55        | 0x** | 0x** |

Где новый адрес – устанавливаемый адрес устройства; SUM – проверочный байт.

Стандартный адрес датчика 0x11. Устанавливаемый адрес устройства должен быть в диапазоне от 0x11 до 0x80.

#### Ответ:

| Заголовок |      | Адрес | Длина | Команда | Флаг | SUM  |
|-----------|------|-------|-------|---------|------|------|
| 0x55      | 0xAA | 0x**  | 0x01  | 0x55    | 0x** | 0x** |

Где: адрес – новый адрес устройства, флаг – флаг успешности выполнения команды, SUM – проверочный байт.

Если адрес успешно сменен, то в ответе флаг будет иметь значение 0x01. Если адрес не удалось изменить, то ответное сообщение не отправляется.

#### Пример:

#### Запрос:

0x55 0xaa 0xab 0x01 0x55 0x12 0x12 (Установить адрес 0x12)

#### Ответ:

0х55 0хаа 0х12 0х01 0х55 0х01 0х68 (Адрес удачно изменен)

#### Команда измерения расстояния

#### Запрос:

| Загол | ювок | Адрес | Длина | Команда | SUM  |
|-------|------|-------|-------|---------|------|
| 0x55  | 0xAA | 0x**  | 0x00  | 0x01    | 0x** |

Где адрес – адрес датчика; SUM – проверочный байт (инструкция в п 5.6).

Ответа у данной команды нет. Данные о расстоянии будут доступны после 30мс после запроса. Значение расстояния хранится в буфере. Команда чтения расстояния позволяет считать данные из буфера.

#### Пример:

Запрос:

0x55 0xaa 0x00 0x01 0x00 (Запрос для всех датчиков на линии)
0x55 0xaa 0x11 0x00 0x01 0x11 (Запрос датчику с адресом 0x11)

Ответ

нет

#### Команда чтения расстояния

#### Запрос:

| Заголовок |      | Адрес Длина |      | Команда | SUM  |
|-----------|------|-------------|------|---------|------|
| 0x55      | 0xAA | 0x**        | 0x00 | 0x02    | 0x** |

Где адрес – адрес датчика; SUM – проверочный байт (инструкция в п 5.6).

#### Ответ:

| Заголовок |      | Адрес | Длина | Команда | Старший | Младший | SUM  |
|-----------|------|-------|-------|---------|---------|---------|------|
|           |      |       |       |         | байт    | байт    |      |
| 0x55      | 0xAA | 0x**  | 0x02  | 0x02    | 0x**    | 0x**    | 0x** |

Где адрес – адрес датчика; старший и младший байты – значение расстояния; SUM – проверочный байт (инструкция в п 5.6).

Команда возвращает измеренное расстояние. Значение состоит из двух байт, старший и младший байты. Если измерить расстояние не удалось или находится вне диапазона, то возвращенные байты будут равны 0xFF.

#### Ответ об ошибке измерений:

| Заголовок |      | Адрес | Длина | Команда | Старший | Младший | SUM  |
|-----------|------|-------|-------|---------|---------|---------|------|
|           |      |       |       |         | байт    | байт    |      |
| 0x55      | 0xAA | 0x**  | 0x02  | 0x02    | 0xFF    | 0xFF    | 0x** |

Пример:

Запрос:

0x55 0xaa 0x11 0x00 0x02 0x12

Ответ:

0x55 0xaa 0x11 0x02 0x02 0x01 0x0A 0x11 (Дистанция 266 мм) 0x55 0xaa 0x11 0x02 0x02 0xFF 0xFF 0x1F (Вне диапазона)

Для получения измеренного расстояния можно воспользоваться калькулятором Windows и перевести полученное число из шестнадцатеричной системы в десятичную.

#### Команда чтения температуры датчиком расстояния

В датчике встроен датчик температуры, позволяющий учесть температурный коэффициент искажения измерений.

#### Запрос:

| Загол | товок | Адрес | Длина | Команда | SUM  |
|-------|-------|-------|-------|---------|------|
| 0x55  | 0xAA  | 0x**  | 0x00  | 0x03    | 0x** |

 $\Gamma$ де адрес – адрес датчика; SUM – проверочный байт (инструкция в п 5.6).

#### Ответ:

| Заголовок |      | Адрес | Длина | Команда | Старший | Младший | SUM  |
|-----------|------|-------|-------|---------|---------|---------|------|
|           |      |       |       |         | байт    | байт    |      |
| 0x55      | 0xAA | 0x**  | 0x02  | 0x03    | 0xFF    | 0xFF    | 0x** |

 $\Gamma$ де адрес – адрес датчика; старший и младший байты – значение температуры; SUM – проверочный байт.

Команда возвращает значение температуры. Значение состоит из двух байт, старший и младший байты. Если температура выше 0 по Цельсию, то первые четыре бита старшего байта будут равны 0, а если ниже 0 по Цельсию, первые четыре бита старшего байта будут равны 1.

Последние 4 бита старшего байта и весь младший байт (12 бит) составляют значение температуры. Полученное число есть температура в градусах Цельсия умноженное на 10. Т.е. чтобы получить температуру в градусах Цельсия, данное число необходимо разделить на 10.

Если не удается считать температуру, то возвращенные байты данных будут равны 0xFF.

Пример:

Запрос:

0x55 0xaa 0x11 0x00 0x03 0x13

Ответ:

0x55 0xaa 0x11 0x02 0x03 0xF0 0x0A 0x11 (+1°C)

0x55 0xaa 0x11 0x02 0x03 0x00 0x0A 0x20 (-1°C)

0x55 0xaa 0x11 0x02 0x03 0xFF 0xFF 0x20 (данные вне диапазона)

#### 3.2 Датчик температуры

#### 3.2.1 Задание для выполнения.

Для управления датчиком температуры будет использоваться блок «Виртуальный СОМ-порт», преобразователи «RS-485 — TTL». Виртуальный СОМ-порт подключен к компьютеру внутри макета. Для связи СОМ-порта и датчика, работающего по RS-422 необходимы преобразователи ADM485, которые преобразуют сигналы TTL с UART в дифференциальный сигнал RS-422 в режиме полного дуплекса.

- 1. При помощи ПО Terminal выполнить запрос на измерение температуры. Получить диаграммы отправленной и полученной посылок при помощи логического анализатора.
  - 2. Расшифровать полученное значение и сравнить с значением на дисплее.
- 3. Включить нагрев до 35-40 градусов и выполнить запрос температуры в ПО Terminal.
  - 4. Расшифровать значение и сравнить с значением на дисплее.

# 3.2.2 Команды для датчика температуры.

Для работы с датчиком необходимо подключение по следующей схеме.



#### Основные характеристики датчика

| Наименование характеристики | Значение |  |  |
|-----------------------------|----------|--|--|
| Интерфейс                   | RS-422   |  |  |

#### Параметры соединения

| Наименование характеристики | Значение |
|-----------------------------|----------|
| Скорость                    | 9600     |
| Число бит в сообщении       | 8        |
| Четность                    | Even     |
| Стоп-бит                    | 2        |

#### Программа для работы с датчиком:

ПО Terminal (инструкция по работе приведена в пункте 5.6).

#### Команда чтения температуры

Команды запрашиваются в обычном текстовом формате в ASCII режиме:

#### Запрос:

TEMPERATURE?#013#010

Где #013#010 байты конца сообщения.

#### Ответ:

Temperature=25.67#013#010

Где #013#010 байты конца сообщения.

#### 3.3 Датчик освещенности

#### 3.3.1 Задание для выполнения.

Для управления датчиком освещенности будет использоваться блок «Виртуальный СОМ-порт», преобразователи «RS-485 — TTL». Виртуальный СОМ-порт подключен к компьютеру внутри макета. Для связи СОМ-порта и датчика, работающего по RS-422 необходимы преобразователи ADM485, которые преобразуют сигналы TTL с UART в дифференциальный сигнал RS-422 в режиме полного дуплекса.

- 1. При помощи ПО Simply Modbus Master выполнить запрос на измерение уровня освещенности. Получить диаграммы полученной и отправленной посылок при помощи осциллографа.
- 2. Прикрыть датчик освещенности листом бумаги, измерить освещенность.

- 3. Прикрыть датчик освещенности светонепроницаемым предметом, измерить освещенность.
  - 4. Расшифровать полученные значения освещенности, сравнить значения.
  - 3.3.2 Команды для датчика освещенности.

Для работы с датчиком необходимо подключение по следующей схеме.



#### Основные характеристики датчика

| Наименование характеристики | Значение     |
|-----------------------------|--------------|
| Интерфейс                   | RS-422       |
| Протокол                    | MODBUS ASCII |

#### Параметры соединения

| Наименование характеристики | Значение |
|-----------------------------|----------|
| Скорость                    | 115200   |
| Число бит в сообщении       | 8        |
| Четность                    | None     |
| Стоп-бит                    | 2        |

#### Программа для работы с датчиком:

ПО Simply Modbus Master (инструкция по работе приведена в пункте 5.7).

#### Команда запроса освещенности

Запрос:

| Начало<br>передачи | Адрес | Код<br>функции | Начальный<br>адрес | Количество<br>элементов | LRC | Конец<br>передачи |
|--------------------|-------|----------------|--------------------|-------------------------|-----|-------------------|
| :                  | 02    | 03             | 0000               | 0001                    | FA  | CR/LF             |

#### Ответ:

| Начало<br>передачи | Адрес | Код<br>функции | Число<br>байт | Данные | LRC | Конец<br>передачи |
|--------------------|-------|----------------|---------------|--------|-----|-------------------|
| :                  | 02    | 03             | 0002          | 0000   | F9  | CR/LF             |

# Ошибки:

Адрес вне диапазона

Если адрес регистра > 01

| Начало<br>передачи | Адрес 1<br>байт | Код<br>функции<br>1 байт | Код<br>ошибки | LRC | Конец<br>передачи |
|--------------------|-----------------|--------------------------|---------------|-----|-------------------|
| :                  | 02              | 83                       | 02            | 79  | CR/LF             |

# Настройка размерности

Для изменения параметра размерности выдаваемых данных предусмотрен perucтp 01h.

Для изменения данного параметра используйте следующую команду:

| Начало   | Адрес | Код     | Начальный | Данные | LRC | Конец    |
|----------|-------|---------|-----------|--------|-----|----------|
| передачи |       | функции | адрес     |        |     | передачи |
|          |       |         |           |        |     |          |
| :        | 02    | 06      | 0001      | 14E2   | 89  | CR/LF    |

Параметр данные может принимать значения от 100 до 20000 в десятичной системе счисления.

Если команда выполнена успешно, ответ полностью повторяет запрос.

#### Ошибки:

Данные вне диапазона (<100 и >20000)

| Начало   | Адрес 1 | Код     | Код    | LRC | Конец    |
|----------|---------|---------|--------|-----|----------|
| передачи | байт    | функции | ошибки |     | передачи |

|   |    | 1 байт |    |    |       |
|---|----|--------|----|----|-------|
| : | 02 | 86     | 03 | 75 | CR/LF |

Адрес вне диапазона, если адрес регистра  $\neq 1$ 

| Начало   | Адрес 1 | Код     | Код    | LRC | Конец    |
|----------|---------|---------|--------|-----|----------|
| передачи | байт    | функции | ошибки |     | передачи |
|          |         | 1 байт  |        |     |          |
| :        | 02      | 86      | 02     | 76  | CR/LF    |

#### 3.4 Сервопривод

#### 3.4.1 Задание для выполнения.

Для управления сервоприводом будет использоваться блок «Виртуальный СОМ-порт», преобразователь «RS-485 – TTL». Виртуальный СОМ-порт подключен к компьютеру внутри макета. Для связи СОМ-порта и датчика, работающего по RS-485 необходим преобразователь ADM485, который преобразуют сигналы TTL с UART в дифференциальный сигнал RS-485.

- 1. При помощи ПО Simply Modbus Master установить угол поворота сервопривода. Получить диаграмму посылки при помощи логического анализатора.
- 2. Выполнить запрос на измерение угла поворота. Расшифровать полученное значение, сравнить с значением на корпусе сервопривода.

#### 3.4.2 Команды для сервопривода.

Для работы с датчиком необходимо подключение по следующей схеме.



# Основные характеристики

| Наименование характеристики | Значение |  |  |
|-----------------------------|----------|--|--|
| Интерфейс                   | RS485    |  |  |

#### Параметры соединения:

| Наименование характеристики | Значение |
|-----------------------------|----------|
| Скорость                    | 115200   |
| Число бит в сообщении       | 8        |
| Четность                    | None     |
| Стоп-бит                    | 2        |

#### Программа для работы с датчиком:

ПО Simply Modbus Master (инструкция по работе приведена в пункте 5.7).

#### Структура запроса:

| Адрес  | Код функции | Данные    | CRC     |
|--------|-------------|-----------|---------|
| 1 байт | 1 байт      | 0255 байт | 2 байта |
| 01     | XX          | XX        | XX XX   |

Все данные передаются в ASCII символах.

# Регистры:

00h – скорость, в радиан\*10/сек.

01h – угол положения сервопривода, в градусах.

#### Команда записи скорости вращения

| Адрес  | Код функции | Адрес регистра | Данные  | CRC     |
|--------|-------------|----------------|---------|---------|
| 1 байт | 1 байт      | 2 байта        | 2 байта | 2 байта |
| 01     | 06          | 00 00          | XX XX   | XX XX   |

Данные в данной команде должны быть в диапазоне 0x00 - 0x3C (0 – 60 радиан\*10/сек).

Пример (запись значения 0001 в регистр):

01 06 00 00 00 01 48 0A

Ответ в случае успешного выполнения операции полностью повторяет запрос.

В случае, если происходит попытка записи данных, выходящих за допустимый диапазон, генерируется ошибка данных.

| Адрес  | Код функции | Код ошибки | CRC     |
|--------|-------------|------------|---------|
| 1 байт | 1 байт      | 1 байт     | 2 байта |
| 01     | 86          | 03         | 61 02   |

# Команда установки угла

| Адрес  | Код функции | Адрес регистра | Данные  | CRC     |
|--------|-------------|----------------|---------|---------|
| 1 байт | 1 байт      | 2 байта        | 2 байта | 2 байта |
| 01     | 06          | 00 01          | XX XX   | XX XX   |

Данные в данной команде должны быть в диапазоне 0x00-0xB4 ( $0^{\circ}-180^{\circ}$ ).

Пример (запись значения 00В4 в регистр):

01 06 00 01 00 B4 D8 7D

Ответ в случае успешного выполнения операции полностью повторяет запрос.

В случае, если происходит попытка записи данных, выходящих за допустимый диапазон, генерируется ошибка данных.

| Адрес  | Код функции | Код ошибки | CRC     |
|--------|-------------|------------|---------|
| 1 байт | 1 байт      | 1 байт     | 2 байта |
| 01     | 86          | 03         | 61 02   |

Если при записи параметров в регистры, адрес регистра выходит за диапазон 0x0000-0x0001, то устройство генерирует ошибку:

| Адрес  | Код функции | Код ошибки | CRC     |
|--------|-------------|------------|---------|
| 1 байт | 1 байт      | 1 байт     | 2 байта |
| 01     | 86          | 02         | A1 C3   |

# Команда изменения скорости через маску

| Адрес  | Код функции | Адрес регистра | Маска И | Маска ИЛИ | CRC     |
|--------|-------------|----------------|---------|-----------|---------|
| 1 байт | 1 байт      | 2 байта        | 2 байта | 2 байта   | 2 байта |
| 01     | 16          | 00 00          | XX XX   | XX XX     | XX XX   |

Результат = (Текущее\_значение AND Mаска\_И) OR (Маска\_ИЛИ AND (NOT Mаска\_И))

Пример:

(Маска И 0х000F, маска ИЛИ 0х0030 на регистр 0):

01 16 00 00 0F 00 30 C6 11

Ответ в случае успешного выполнения команды полностью повторяет запрос.

#### Команда изменения угла через маску

| Адрес  | Код функции | Адрес регистра | Маска И | Маска ИЛИ | CRC     |
|--------|-------------|----------------|---------|-----------|---------|
| 1 байт | 1 байт      | 2 байта        | 2 байта | 2 байта   | 2 байта |
| 01     | 16          | 00 01          | XX XX   | XX XX     | XX XX   |

Результат = (Текущее\_значение AND Macкa\_И) OR (Маска\_ИЛИ AND (NOT Macкa И))

Ответ датчика на команду изменения скорости/угла через маску в случае, если адрес регистра вне диапазона:

| Адрес  | Код функции | Код ошибки | CRC     |
|--------|-------------|------------|---------|
| 1 байт | 1 байт      | 1 байт     | 2 байта |
| 01     | 96          | 03         | 61 CE   |

#### Команда чтения скорости

| Адрес  | Код функции | Адрес начального ре- | Количество | CRC   |
|--------|-------------|----------------------|------------|-------|
| 1 байт | 1 байт      | гистра               | элементов  | CRC   |
| 01     | 03          | 00 00                | 00 01      | XX XX |

Пример (чтение регистра угла):

01 03 00 00 00 01 84 0A

Ответ датчика:

| Адрес<br>1 байт | Код функции<br>1 байт | Число байт | Данные | CRC   |
|-----------------|-----------------------|------------|--------|-------|
| 01              | 03                    | 02         | XX XX  | XX XX |

#### Команда чтения угла

| Адрес  | Код функции | Адрес начального ре- | Количество | CRC   |
|--------|-------------|----------------------|------------|-------|
| 1 байт | 1 байт      | гистра               | элементов  | CRC   |
| 01     | 03          | 00 01                | 00 01      | XX XX |

Пример (чтение двух регистров):

01 03 00 00 00 02 C4 0B

#### Ответ датчика:

| Адрес<br>1 байт | Код функции<br>1 байт | Число байт | Данные | CRC   |
|-----------------|-----------------------|------------|--------|-------|
| 01              | 03                    | 02         | XX XX  | XX XX |

#### Ошибки на команды чтения:

Адрес регистра вне диапазона (адрес > 01)

| Адрес  | Код функции | Код ошибки | CRC     |
|--------|-------------|------------|---------|
| 1 байт | 1 байт      | 1 байт     | 2 байта |
| 01     | 83          | 02         | C0 F1   |

# 4 ТРЕБОВАНИЯ К СОДЕРЖАНИЮ ОТЧЕТА

- цель работы;
- краткие теоретические сведения об интерфейсах RS485, RS422, протоколах Modbus.
- скриншоты работы в программах ПО Terminal и ПО Simply Modbus Master соответственно варианту заданий;
  - расшифрованные результаты;
- скриншоты осциллограмм и скриншоты результатов, полученных в логическом анализаторе;
  - выводы.

#### 5 ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

#### 5.1 ΠO Terminal



Интерфейс и основные настройки подключения по порту рассмотрены на рисунке



- Connect для подключения к выбранному СОМ-порту (при успешном подключении в нижнем углу окна программы будет отображено «Connected»;
- COM Port выбор номера порта (виртуальный СОМ-порт макета подключен к СОМ6);
  - Baud rate выбор скорости СОМ-порта;
  - Data bits выбор кол-ва бит, передаваемых за раз;

- Parity выбор типа четности;
- Stop bits выбор количества стоп-бит.



Приведено описание областей, помеченных цифрами на рисунке:

- 1. Поле для ввода сообщения (АТ-команды, байта и последовательности байт).
- 2. Кнопка для отчистки области отправленных команд, который располагается под областью с поз. 1.
- 3. Область, где отображаются принятые от модема данные (ответы), в случае, когда в модеме включен режим "Эхо" в этой области также будут отображаться и отправленные в модем данные (запросы).
- 4. Кнопа отчистки области для отображения принятых данных (ответов) с поз 3.
- 5. Переключатели для изменения области для отображения принятых данных (ответов) с поз 3.

Переключатель ASCII/HEX позволяет менять режим отображения принимаемых данных.

Переключатели Hex/Dec/Bin позволяют включить отображения дополнительных областей, где будут отображаться приходящие сообщения в соответствующем виде.

6. Кнопки DTR и RTS позволяют задействовать аппаратные возможности контроля передачи данных COM. По умолчанию рекомендуется их оставлять вы-

ключенными, но, если Вы уверены, что верно настроили СОМ, к которому подключен модем, а модем не отвечает, можете попробовать включить вначале RTS, потом DTR. Иногда это помогает, и модем начинает передавать ответы.

- 7. Кнопка отправки сообщения (АТ-команды, байта и последовательности байт), равносильна нажатию клавиши "ВВОД (Enter)".
- 8. Флажок для добавления так называемой "корректики" к сообщению. Этот флажок необходимо включать при передаче АТ-команд в текстовом (ASCII) виде, и необходимо выключать при передаче байтов и последовательности из байтов.

То есть при отправке команд (AT, AT+CSQ и т.д.) данный флажок должен быть включен, а при передаче сообщения \$2B\$2B выключен.

Еще несколько правил формирований сообщений для отправки через ПО Terminal:

Для отправки 16-ричных символов последовательно с компьютера (при помощи программы Terminal) нужно в поле ввода ввести:

\$ab\$cd

где a, b, c, d – необходимые числа в 16-ричной системе

Для вычисления контрольной суммы в конце посылки необходимо добавить в конце %SUM:

\$ab\$cd%**SUM** 

- 5.2 ΠΟ Simply Modbus Master
- 1. В программе Simply Modbus Master открыть опции записи «WRITE».



2. Установить параметры записи согласно разделу 5. Выбрать mode ASCII или RTU для датчика освещенности и сервопривода соответственно. СОМ-порт выбрать COM6. Установить необходимые параметры сообщения в зависимости от датчика. Slave ID (адрес устройства) оставить равным 1 по умолчанию. Установить в первом регистре значение равное 40001, либо 40002 в зависимости от адреса регистра для передачи команды, число передаваемых сообщений равное 1. В поле «Values to Write» ввести необходимое число согласно команде.

Отправляемая посылка отображается в поле «Command».



- 3. Для передачи сообщения нажать «SEND».
- 4. В поле «Response» отобразится принимаемое сообщение.

# 5.3 Логический анализатор

Для работы с логическим анализатором необходимо запустить программу Logic 1.2.17 и дождаться подключения логического анализатора, о чем будет свидетельствовать надпись «[Connected]» сверху окна.



Далее необходимо подключить выход передатчику к разъему PIO логического анализатора (при исследовании сигнала TTL) либо подключить канал A и В к разъемам PIO и PI1 логического анализатора соответственно (при исследовании сигнала RS-485). В настройке «Channel 0» выбрать настройку триггера по отрицательному фронту (переход с верхнего уровня на нижний, с направлением стрелки вниз).



Для начала отслеживания, необходимо нажать «Start», где начнется ожидание отрицательного фронта сигнала.

Далее при подаче сигнала с виртуального СОМ-порта на логический анализатор отрицательный фронт стартового бита запустит анализ посылки и отобразится переданная посылка.



Для анализа следующих посылок также нажать кнопку «Start» и подать посылку на разъемы логического анализатора.

# 5.4 Осциллограф

Для работы с осциллографом используется приложение Multi VirAnalyzer.



Для начала работы необходимо нажать на кнопку для подключенного канала осциллографа

После чего подать на разъем осциллографа исследуемый сигнал. Осциллограмма отобразится автоматически в графическом поле.



В поле настроек можно настраивать работу каналов осциллографа, либо выбрать автоматический режим.

# 5.5 ПО URMV4HelpMate для работы с датчиком расстояний Для работы с датчиком расстояний имеется программа URMV4HelpMate.



Для связи с датчиком расстояний необходимо подключить его к виртуальному СОМ-порту через преобразователь TTL–RS-485. В программе выбрать СОМ-порт №6. Скорость передачи данных выбрать для датчика расстояний и нажать «Connect».

Далее для запроса чтения расстояния необходимо нажать «Read Distance» и в поле «Distance» отобразится измеренное расстояние. Для запроса чтения температуры нажать кнопку «Read Temperature».



# 6 КОНТРОЛЬНЫЕ ВОПРОСЫ