Eléments finis de Barre

A bar is a beam with a join ball on its two sides

Théorème: A bar can work only in traction or compression.

Démonstration: We use the equilibrium.

Eléments finis de Barre

Matrice de rigidité d'une barre à section constante

Area: S

Young Modulus: E

Stiffness matrix of a bar

Stress tensor

$$[\Sigma] = \begin{bmatrix} \sigma_x & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Hooke law

$$\sigma_{x} = \frac{\mathcal{E}_{x}}{E}$$

Strain

$$\varepsilon_{x} = \frac{A'B' - AB}{AB}$$

Internal Energy

$$W = \iiint_{Vol} \frac{1}{2} trace([\Sigma][E]) dv$$

Stiffness matrix of a bar

$$W = \frac{1}{2} \begin{pmatrix} U_A & V_A & U_B & V_B \end{pmatrix} \begin{bmatrix} \frac{ES}{L} & 0 & -\frac{ES}{L} & 0 \\ 0 & 0 & 0 & 0 \\ -\frac{ES}{L} & 0 & \frac{ES}{L} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{pmatrix} U_A \\ V_A \\ U_B \\ V_B \end{pmatrix}$$

The internal energy does not depend of the displacement in the Y direction

Th same for the stresses ans strains

$$K = \frac{ES}{L} \begin{bmatrix} +1 & -1 \\ -1 & +1 \end{bmatrix} , \quad K = \frac{ES}{L} \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

中国民航大学中欧航空工程**师学院**

Work of the external forces

$$V = -\begin{pmatrix} U_A & V_A & U_B & V_B \end{pmatrix} \begin{pmatrix} X_A \\ 0 \\ X_B \\ 0 \end{pmatrix} \qquad V = -\begin{pmatrix} U_A & U_B \end{pmatrix} \begin{pmatrix} X_A \\ X_B \end{pmatrix}$$

Minimum of total energy:

$$\begin{bmatrix} +\frac{ES}{L} & -\frac{ES}{L} \\ -\frac{ES}{L} & +\frac{ES}{L} \end{bmatrix} \begin{pmatrix} U_A \\ U_B \end{pmatrix} = \begin{pmatrix} X_A \\ X_B \end{pmatrix}$$

Bar Element

Displacement

$$\varepsilon_{xx} = \frac{du}{dx} = C^{te} \implies u(x) = ax + b$$

$$u(x) = \left(\frac{q_2 - q_1}{L}\right)x + q_1$$

$$\varepsilon_{xx} = \frac{du}{dx} = \frac{q_2 - q_1}{L}$$

Rigid Body movement

- Mode propres
 - ▶ Mode rigide

Premier Vecteur Propre Mode RIGIDE
$$\begin{pmatrix} U_A \\ U_B \end{pmatrix} = \begin{pmatrix} +1 \\ +1 \end{pmatrix}$$

Valeur propre
$$\lambda_1 = 0$$

Mode élastique

Deuxième Vecteur Propre Mode ELASTIQUE
$$\begin{pmatrix} U_A \\ U_B \end{pmatrix} = \begin{pmatrix} +1 \\ -1 \end{pmatrix}$$

Valeur propre
$$\lambda_2 = 2 \frac{ES}{L}$$

中国民航大学中欧航空工程师学院

General axis system

- All the bars have the same stiffness matrix
- We need to change of axis system

$$\begin{pmatrix} \vec{X} \\ \vec{Y} \end{pmatrix} = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix} \begin{pmatrix} \vec{x} \\ \vec{y} \end{pmatrix}$$

$$\begin{pmatrix} \vec{x} \\ \vec{y} \end{pmatrix} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \begin{pmatrix} \vec{X} \\ \vec{Y} \end{pmatrix}$$

$$(\vec{x} \quad \vec{y}) = (\vec{X} \quad \vec{Y}) \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$$

$$(\overrightarrow{X} \quad \overrightarrow{Y}) = (\overrightarrow{x} \quad \overrightarrow{y}) \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$

$$P = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$

$$P^{-1} = P^{T} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$

General Axis system

$$\begin{pmatrix} \vec{X} \\ \vec{Y} \end{pmatrix} = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix} \begin{pmatrix} \vec{x} \\ \vec{y} \end{pmatrix} \\
\begin{pmatrix} \vec{x} \\ \vec{y} \end{pmatrix} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \begin{pmatrix} \vec{X} \\ \vec{Y} \end{pmatrix} \\
\begin{pmatrix} \vec{x} \\ \vec{y} \end{pmatrix} = \begin{pmatrix} \vec{X} \\ \vec{Y} \end{pmatrix} \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \\
\begin{pmatrix} \vec{X} \\ \vec{Y} \end{pmatrix} = \begin{pmatrix} \vec{x} \\ \vec{Y} \end{pmatrix} \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \\
P = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \\
P^{-1} = P^{T} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$

Stiffness Matrix in the global axix system

$$W = \frac{1}{2} \begin{pmatrix} U_A & V_A & U_B & V_B \end{pmatrix} \begin{bmatrix} \frac{ES}{L} & 0 & -\frac{ES}{L} & 0 \\ 0 & 0 & 0 & 0 \\ -\frac{ES}{L} & 0 & \frac{ES}{L} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{pmatrix} U_A \\ V_A \\ U_B \\ V_B \end{pmatrix}$$

$$W = \frac{1}{2} \begin{pmatrix} u_A & v_A & u_B & v_B \end{pmatrix} \begin{bmatrix} \cos \alpha & -\sin \alpha & 0 & 0 \\ \sin \alpha & \cos \alpha & 0 & 0 \\ 0 & 0 & \cos \alpha & -\sin \alpha \\ 0 & 0 & \sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} \frac{ES}{L} & 0 & -\frac{ES}{L} & 0 \\ 0 & 0 & 0 & 0 \\ -\frac{ES}{L} & 0 & \frac{ES}{L} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \cos \alpha & \sin \alpha & 0 & 0 \\ -\sin \alpha & \cos \alpha & 0 & 0 \\ 0 & 0 & \cos \alpha & \sin \alpha \\ 0 & 0 & -\sin \alpha & \cos \alpha \end{bmatrix} \begin{pmatrix} u_A \\ v_A \\ u_B \\ v_B \end{pmatrix}$$

$$W = \frac{1}{2} \begin{pmatrix} u_A & v_A & u_B & v_B \end{pmatrix} \begin{bmatrix} P & O \\ O & P \end{bmatrix} \begin{bmatrix} \frac{ES}{L} & 0 & -\frac{ES}{L} & 0 \\ 0 & 0 & 0 & 0 \\ -\frac{ES}{L} & 0 & \frac{ES}{L} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} P^T & O \\ O & P^T \end{bmatrix} \begin{pmatrix} u_A \\ v_A \\ u_B \\ v_B \end{pmatrix}$$

中国民航大学中欧航空工程**师学院** Page 11

Exemple

TREILLIS

ENERGIE BARRE 1

ENERGIE BARRE 2

Example

$$W = \frac{1}{2} \begin{pmatrix} u_A & v_A & u_B & v_B \end{pmatrix} \begin{bmatrix} P & O \\ O & P \end{bmatrix} \begin{bmatrix} \frac{ES}{L} & 0 & -\frac{ES}{L} & 0 \\ 0 & 0 & 0 & 0 \\ -\frac{ES}{L} & 0 & \frac{ES}{L} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} P^T & O \\ O & P^T \end{bmatrix} \begin{pmatrix} u_A \\ v_A \\ u_B \\ v_B \end{pmatrix}$$

Exemple

Energie barre 2
$$W = \frac{1}{W}$$

$$W = \frac{1}{2} \begin{pmatrix} u_A & v_A & u_B & v_B \end{pmatrix} \begin{bmatrix} P & O \\ O & P \end{bmatrix} \begin{bmatrix} \frac{ES}{L} & 0 & -\frac{ES}{L} & 0 \\ 0 & 0 & 0 & 0 \\ -\frac{ES}{L} & 0 & \frac{ES}{L} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} P^T & O \\ O & P^T \end{bmatrix} \begin{pmatrix} u_A \\ v_A \\ u_B \\ v_B \end{pmatrix}$$

Stiffness matrix of the system

$$W_1 + W_2 = \frac{1}{2} \begin{bmatrix} u_1 \\ v_1 \\ u_2 \\ v_2 \\ u_3 \\ v_3 \end{bmatrix} \frac{2ES}{L}$$

$$\begin{bmatrix} u_1 \\ v_1 \\ u_2 \\ v_2 \\ u_3 \\ v_3 \end{bmatrix}$$

Equation résolvante

$$\frac{2ES}{L} \begin{bmatrix} 1 & 1 & -1 & -1 & 0 & 0 \\ 1 & 1 & -1 & -1 & 0 & 0 \\ -1 & -1 & 1+1 & 1-1 & -1 & 1 \\ -1 & -1 & 1-1 & 1+1 & 1 & -1 \\ 0 & 0 & -1 & 1 & 1 & -1 \\ 0 & 0 & 1 & -1 & -1 & 1 \end{bmatrix} \begin{bmatrix} U_1 \\ V_1 \\ U_2 \\ V_2 \\ U_3 \\ V_3 \end{bmatrix} = \begin{bmatrix} X_1 \\ Y_1 \\ X_2 \\ Y_2 \\ X_3 \\ Y_3 \end{bmatrix}$$

 La Matrice de raideur est singulière car les mouvements de corps rigides n'ont pas été supprimés.

Conditions aux limites :

$$\begin{pmatrix} u_{1} = \\ v_{1} = \\ u_{2} = \\ v_{2} = \\ u_{3} = \\ v_{3} = \end{pmatrix} \implies \begin{pmatrix} X_{1} = \\ Y_{1} = \\ X_{2} = \\ Y_{2} = \\ X_{3} = \\ Y_{3} = \\ Y_{3} = \end{pmatrix}$$

Résultats

$$u_2 = FL/ES$$

$$v_2 = 0$$

$$X_1 = -F/2$$

$$X_3 = -F/2$$

$$Y_1 = -F/2$$

$$Y_2 = F / 2$$

From these results we must verify that the structure is under a state of equilibrium

Etude de ce problème avec NASTRAN

中国民航大学中欧航空工程师学院 Chapitre 2 - Page 18

La carte GRID pour la création de nœuds

GRID Grid Point

Defines the location of a geometric grid point, the directions of its displacement, and its permanent single-point constraints.

Format:

1	2	3	4	5	6	7	8	9	10
GRID	ID	CP	X1	X2	X3	CD	PS	SEID	

Example:

and the same of th							
GRID	2	3	1.0	-2.0	3.0	316	

Contents
Grid point identification number. (0 < Integer < 100000000)
Identification number of coordinate system in which the location of the grid point is defined. (Integer ≥ 0 or blank*)
Location of the grid point in coordinate system CP. (Real; Default = 0.0)
Identification number of coordinate system in which the displacements, degrees-of- freedom, constraints, and solution vectors are defined at the grid point. (Integer ≥ - 1 or blank)*
Permanent single-point constraints associated with the grid point. (Any of the Integers 1 through 6 with no embedded blanks, or blank*.)
Superelement identification number. (Integer ≥ 0 ; Default = 0)

^{*}See the GRDSET entry for default options for the CP, CD, PS, and SEID fields.

中国民航大学中欧航空工程**师学院** Page 19

La carte GRID pour la création de noeuds

Remarks:

- All grid point identification numbers must be unique with respect to all other structural, scalar, and fluid points.
- The meaning of X1, X2, and X3 depends on the type of coordinate system CP as follows (see the CORDij entry descriptions):

Туре	X1	X2	Х3
Rectangular	X	Y	Z
Cylindrical	R	θ(degrees)	Z
Spherical	R	θ(degrees)	φ(degrees)

Extrait du fichier BDF : Création des nœuds (3 dans notre exemple)

\$ Nodes	of the	e Entire	Model		
GRID	1		0.	0.	0.
GRID	2		1000.	1000.	0.
GRID	4		2000.	Ο.	0.

-Un \$ en tête de ligne signifie un commentaire non pris en compte par le compilateur

-Il y a 10 champs de 8 caractères par ligne. Attention de ne pas mettre une donnée sur plusieurs champs

中国民航大学中欧航空工程**师学院** Page 20

La carte Crod création élément et connectivité

Field	Contents
EID	Element identification number. (Integer > 0)
PID	Property identification number of a PROD entry. (Integer > 0; Default = EID)
G1, G2	Grid point identification numbers of connection points. (Integer > 0; G1 # G2)

Remarks:

- Element identification numbers should be unique with respect to all other element identification numbers.
- 2. See CONROD, 1183 for alternative method of rod definition.
- 3. Only one element may be defined on a single entry.

Chapitre 2 - Page 21

中国民航大学中欧航空工程**师学院**

Carte Property – Propriété de l'élement

L'ordre des cartes n'a
pas d'importance

Field	Contents	
PID	Property identification number. (Integer > 0)	
MID	Material identification number. See Remarks 2. and 3. (Integer > 0)	
A	Area of the rod. (Real)	
J	Torsional constant. (Real)	
C	Coefficient to determine torsional stress. (Real; Default = 0.0)	
NSM	Nonstructural mass per unit length. (Real)	

Remarks:

- 1. PROD entries must all have unique property identification numbers.
- 2. For structural problems, MID must reference a MAT1 material entry.
- 3. For heat transfer problems, MID must reference a reference MAT4 or MAT5 entry.
- 4. The formula used to calculate torsional stress is

$$\tau = \frac{CM_0}{I}$$

where M_{θ} is the torsional moment.

\$ Elements and Element Properties for region : Propertyrod PROD 1 1 1000.

Method of resolution

- We take in account the boundary conditions
 - We create two set for the displacment ans s

$$q = \begin{cases} \boxed{q_l} \\ \boxed{q_r} \end{cases}$$

$$F = \begin{cases} F_l \\ F_r \end{cases}$$

- ▶ Degree of Freedom: *l*
 - Unknown displacements: q₁
 - Applied load known: F_I

- ▶ Degree restrained: r
 - Dispacement known (imposeds) : q_r
 - Unknown reaction : F_r

$$\mathbf{F}_{r} = \begin{cases} u_{1} \\ v_{1} \\ u_{2} \\ v_{1} \end{cases}$$

$$q_r = \begin{cases} u_1 \\ v_1 \\ u_2 \end{cases}$$

$$F_r = \begin{cases} Y_1 \\ X_2 \\ Y \end{cases}$$

Méthodes de résolution

- Prise en compte des conditions aux limites
 - Partitionnement du système linéaire

$$\begin{bmatrix} K_{ll} & K_{lr} \\ K_{rl} & K_{rr} \end{bmatrix} \begin{bmatrix} q_l \\ q_r \end{bmatrix} = \begin{bmatrix} F_l \\ F_r \end{bmatrix}$$

▶ Etape 1

$$K_{ll}q_{l} + K_{lr}q_{r} = F_{l} \qquad \Rightarrow \qquad q_{l} = K_{ll}^{-1}(F_{l} - K_{lr}q_{r})$$

▶ Etape 2

$$F_r = K_{rl}q_l + K_{rr}q_r$$

Méthodes de résolution

- Prise en compte des conditions aux limites
 - Cas particulier : degrés restreints bloqués
 - Encastrement
 - Appui simple
 - **—** ...

$$\Rightarrow q_r = 0$$

• Etape 1

$$q_l = K_{ll}^{-1} F_l$$

▶ Etape 2

$$F_r = K_{rl}q_l$$

Liaison cinématique

Lorsque des éléments ont des rigidités très différentes la matrice de raideur pourra être mal conditionnée. On préférera créer une liaison cinématique.

Exemple.

中国民航大学中欧航空工程**师学院** Chapitre 2 - Page 26

Liaison cinématique

Matrice de raideur

$$W = \frac{1}{2} \begin{pmatrix} u_A \\ u_B \\ u_C \\ u_D \end{pmatrix}^T \begin{bmatrix} u_A \\ u_B \\ u_C \\ u_D \end{pmatrix}$$

Liaison cinématique : On écrit que le déplacement du point B est le même que le déplacement du point C : \nearrow

$$u_B = u_C \qquad \begin{pmatrix} u_A \\ u_B \\ u_C \\ u_D \end{pmatrix} = \begin{pmatrix} u_A \\ u_B \\ u_D \end{pmatrix}$$