MC Control SARSA Q-Learning Function Approx for V_{π}

Prof. Subrahmanya Swamy

Model-Free Setting so far...

- Prediction (To find V_{π} for a given π)
 - MC First-Visit
 - MC Every-Visit
 - TD
 - N-step TD
 - MC Off-Policy
- Control (To find π^* of an MDP)
 - GPI with MC
 - GPI with TD

Model Known: Policy Iteration (PI)

Policy Iteration

- Policy Evaluation: $V_{k+1}(s) = R_s^{\pi} + \sum_{s'} P_{ss'}^{\pi} V_k(s')$
- Repeat till $V_{k+1} = V_k$
- Policy Improvement: $\pi_{i+1}(s) \coloneqq argmax_a R_s^a + \sum_{s'} P_{ss'}^a V_{\pi_i}(s')$

Policy Evaluation is stopped when $V_{k+1} \approx V_k$

Model Unknown: Generalized Policy Iteration (GPI)

When to stop the Approx. Policy Evaluation?

MC: After one episode

TD: After one time-step

MC (every visit) GPI: Pseudo Code

```
\pi_0 \xrightarrow{} Q_{\pi_0} \xrightarrow{} \pi_1 \xrightarrow{} Q_{\pi_1} \xrightarrow{} \pi_2 \xrightarrow{} Q_{\pi_2} \xrightarrow{} \dots
\text{MC-PE} \quad \epsilon \text{-greedy PI} \quad \text{for} \quad \text{one episode}
```

- Initialize Q(s,a) = 0, $\forall (s,a)$
- Repeat for each episode:
 - $\pi(s) = \epsilon$ -greedy w.r.t. Q(s, a)
 - Generate an episode following $\pi: S_0$, $A_0, R_1, S_1, A_1, R_2, S_2, \dots, S_T$
 - Repeat for each time-step t in the episode:
 - Compute $G_t = \sum_{i=t+1}^{T} \gamma^{i-t-1} R_i$
 - Update $Q(S_t, A_t) = Q(S_t, A_t) + \alpha (G_t Q(S_t, A_t))$
- Output: $\pi^* = greedy(Q)$

SARSA for π^* : Pseudo Code

```
\pi_0 \xrightarrow{} Q_{\pi_0} \xrightarrow{} \pi_1 \xrightarrow{} Q_{\pi_1} \xrightarrow{} \pi_2 \xrightarrow{} Q_{\pi_2} \xrightarrow{} \dots
\text{TD-PE} \quad \epsilon \text{-greedy PI} \quad \text{for} \quad \text{one time-step}
```

- Initialize Q(s,a) = 0, $\forall (s,a)$
- Repeat for each episode:
 - Initialize S_0 randomly
 - Sample $A_0 \sim \epsilon$ -greedy w.r.t. $Q(S_0, a)$
 - **Repeat** for each *time-step t* in the episode:
 - Take action A_t and observe R_{t+1} and S_{t+1}
 - Sample action $A_{t+1} \sim \epsilon$ -greedy w.r.t. $Q(S_{t+1}, a)$
 - $Q(S_t, A_t) = Q(S_t, A_t) + \alpha (R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) Q(S_t, A_t))$
- Output: $\pi^* = greedy(Q)$

What ϵ and α to use?

- Sufficient conditions on α and ϵ to ensure MC/SARSA-based GPI converges to π^*
- *k* episode number
- $\epsilon_k \to 0$ as $k \to \infty$
- $\sum_k \alpha_k = \infty$ and $\sum_k \alpha_k^2 < \infty$

Example:

In the k^{th} episode, $\epsilon_k=\frac{1}{k}$ and $\alpha_k=\frac{1}{k}$ will satisfy the sufficient conditions.

Q-Learning

- SARSA: Based on Policy Iteration
- Q-Learning: Based on Value Iteration (Asynchronous)
- Value Iteration:

$$Q^{*}(s,a) = R_{s}^{a} + \gamma \sum_{s'} P_{ss'}^{a} V^{*}(s')$$

$$= R_{s}^{a} + \gamma \sum_{s'} P_{ss'}^{a} \max_{a'} Q^{*}(s',a')$$

• Q-Learning:

$$Q_{new}(S_t, A_t) = Q_{old}(S_t, A_t) + \alpha (R_{t+1} + \gamma \max_{a'} Q_{old}(S_{t+1}, a') - Q_{old}(S_t, A_t))$$

Which state and action pair should be updated in Q-learning?

- Random policy
- ϵ greedy w.r.t Q

Q-Learning: Pseudo Code

- Initialize $Q(s, a) = 0, \forall (s, a)$
- Repeat for each episode:
 - Initialize S_0 randomly
 - **Repeat** for each time-step *t* in the episode:
 - Sample action $A_t \sim \epsilon$ -greedy w.r.t. $Q(S_t, a)$
 - Take action A_t and observe R_{t+1} and S_{t+1}
 - $Q(S_t, A_t) = Q(S_t, A_t) + \alpha (R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) Q(S_t, A_t))$
- Output: $\pi^* = greedy(Q)$

SARSA Vs Q-Learning

SARSA

- On-Policy
- Based on Policy Iteration
- Converges to the best among ϵ -soft policies if fixed ϵ is chosen
- Converges to π^* if ϵ is decreased to zero with time

Q-Learning

- Off-Policy
- Based on Value Iteration
- Converges to π^* even for fixed ϵ

SARSA Vs Q-Learning: Example

- SARSA: Learns Safer path
- Q-Learning: Learns Optimal path

- ▶ Aim: To go in the shortest path from the Start state to the Goal state
- ▶ Reward of -100 for transition into the Cliff region
- Reward of -1 for every other transition

SARSA Vs Q-Learning: Example

- SARSA: Learns Safer path
- Q-Learning: Learns Optimal path

Why does Q-learning have a worse reward, although it learned the optimal policy?

Function Approximation

Prof. Subrahmanya Swamy

Large State Spaces in Real-time Applications

Go game

 $\sim 10^{170}$ states > # Atoms in the universe

Tabular Methods

• Small state/action space: Q(s, a) Table maintained for each (s, a) explicitly

Q-Table has 4 states x 4 actions = 16 entries

- Large state/action spaces: Not feasible!
- Continuous state/action spaces: Not feasible!

Bandits + Supervised Learning

- User (state) represented by features such as age, income $\overline{x} = (x_1, x_2)$
- Model the expected reward for user \bar{x} for pulling arm a as $\mu_a(\bar{x}) = \theta_1^a x_1 + \theta_2^a x_2$

Features and Function Approximation

Cartpole: The goal is to balance the pole by applying forces in the left and right direction

State Features $s = (s_1, s_2, s_3, s_4)$

State \$\overline{s}\$	Min	Max
Cart Position s ₁	-4.8	4.8
Cart Velocity s ₂	-Inf	Inf
Pole Angle \$\sigma_3\$	~ -0.418 rad (-24°)	~ 0.418 rad (24°)
Pole Angular Velocity \$\sigma_4\$	-Inf	Inf

Value fn Approx

$$V_{\theta}(s) \approx s_1 \theta_1 + s_2 \theta_2 + s_3 \theta_3 + s_4 \theta_4$$

a Action Features

0: Push the cart to the LEFT

1: Push the cart to the RIGHT

Q fn Approx
$$Q_w(s, a) \approx s_1 w_1 + s_2 w_2 + s_3 w_3 + s_4 w_4 + a w_5$$

Non-Linear Function Approximation

Neural Network-based Function Approximation

How to find the weights of the neural network?

Function approx. for V_{π}

$$\theta^* = \operatorname{argmin}_{\theta} \mathbb{E}_{\pi} \left[\left(V_{\pi}(s) - V_{\theta}(s) \right)^2 \right]$$

Stochastic Gradient descent:

$$\theta_{new} = \theta_{old} + 2 \alpha \left(V_{\pi}(s) - V_{\theta}(s) \right) \nabla V_{\theta}(s)$$

Challenge:

- $V_{\pi}(s)$ unknown
- No training data available

MC Function approx. for V_{π}

$$\theta^* = \operatorname{argmin}_{\theta} \mathbb{E}_{\pi} \left[\left(V_{\pi}(s) - V_{\theta}(s) \right)^2 \right]$$

$$\theta_{new} = \theta_{old} + 2 \alpha \left(V_{\pi}(s) - V_{\theta}(s) \right) \nabla V_{\theta}(s)$$

 $V_{\pi}(s) \approx G_t$ starting from state s

$$\theta_{new} = \theta_{old} + 2 \alpha \left(\frac{G_t}{I} - V_{\theta}(s) \right) \nabla V_{\theta}(s)$$

TD Function approx. for V_{π}

$$\theta^* = \operatorname{argmin}_{\theta} \mathbb{E}_{\pi} \left[\left(V_{\pi}(s) - V_{\theta}(s) \right)^2 \right]$$

$$\theta_{new} = \theta_{old} + 2 \alpha \left(V_{\pi}(s) - V_{\theta}(s) \right) \nabla V_{\theta}(s)$$

$$V_{\pi}(S_t) \approx R_{t+1} + \gamma V_{\theta}(S_{t+1})$$

$$\theta_{new} = \theta_{old} + 2 \alpha \left(R_{t+1} + \gamma V_{\theta}(S_{t+1}) - V_{\theta}(S) \right) \nabla V_{\theta}(S)$$