

Outline and Reading The Greedy Method Technique (§5.1) Fractional Knapsack Problem (§5.1.1) Task Scheduling (§5.1.2)

The Greedy Method Technique

- The greedy method is a general algorithm design paradigm, built on the following elements:
 - configurations: different choices, collections, or values to find
 - objective function: a score assigned to configurations, which we want to either maximize or minimize
- It works best when applied to problems with the greedy-choice property:
 - a globally-optimal solution can always be found by a series of local improvements from a starting configuration.

The Greedy Method

3

Making Change

- Problem: A dollar amount to reach and a collection of coin amounts to use to get there.
- Configuration: A dollar amount yet to return to a customer plus the coins already returned
- Objective function: Minimize number of coins returned.
- Greedy solution: Always return the largest coin you can
- ◆ Example 1: Coins are valued \$.32, \$.08, \$.01
 - Has the greedy-choice property, since no amount over \$.32 can be made with a minimum number of coins by omitting a \$.32 coin (similarly for amounts over \$.08, but under \$.32).
- Example 2: Coins are valued \$.30, \$.20, \$.05, \$.01
 - Does not have greedy-choice property, since \$.40 is best made with two \$.20's, but the greedy solution will pick three coins (which ones?)

The Greedy Method

4

The Fractional Knapsack Problem

- Given: A set S of n items, with each item i having
 - b_i a positive benefit
 - w_i a positive weight
- Goal: Choose items with maximum total benefit but with weight at most W.
- If we are allowed to take fractional amounts, then this is the fractional knapsack problem.
 - In this case, we let x denote the amount we take of item i
 - Objective: maximize $\sum_{i \in S} b_i(x_i / w_i)$

Example Given: A set S of n items, with each item i having b_i - a positive benefit w_i - a positive weight Goal: Choose items with maximum total benefit but with weight at most W. "knapsack" Solution: Items: 2 ml of 3 6 ml of 4 Weight: 4 ml 8 ml 2 ml 1 ml 1 ml of 2 Benefit: \$12 \$32 \$40 \$30 \$50 10 ml Value: 3 4 20 5 50 (\$ per ml) The Greedy Method

The Fractional Knapsack Algorithm

 Greedy choice: Keep taking item with highest value (benefit to weight ratio)

• Since $\sum b_i(x_i/w_i) = \sum (b_i/w_i)x_i$

■ Run time: O(nlogn). Why?

 Correctness: this problem satisfies greedy choice property

there is an item i with higher value than a chosen item j (i.e., v_i<v_j) but x_i<w_i and x_j>0 If we substitute some i with j, we get a better solution

How much of i: min{w_i-x_i, x_i}

Thus, there is no better solution than the greedy one

Algorithm fractionalKnapsack(S, W)
Input: set S of items w/ benefit b.

and weight w_i ; max. weight WOutput: amount x_i of each item ito maximize benefit with
weight at most W

for each item i in S

 $x_i \leftarrow 0$ $v_i \leftarrow b_i / w_i$

{value} {total weight}

while w < W

remove item i with highest v_i

 $x_i \leftarrow \min\{w_i, W - w\}$ $w \leftarrow w + x_i$

The Greedy Method

/

Task Scheduling

- Given: a set T of n tasks, each having:
 - A start time, s_i
 - A finish time, f_i (where s_i < f_i)
- Goal: Perform all the tasks using a minimum number of "machines."

Task Scheduling Algorithm

- Greedy choice: consider tasks by their start time and use as few machines as possible with this order.
 - Run time: O(n log n). Why?
- Correctness: Suppose there is a better schedule.
 - We can use k-1 machines
 - The algorithm uses k
 - Let i be first task scheduled on machine k
 - Machine i must conflict with k-1 other tasks
 - But that means there is no non-conflicting schedule using k-1 machines

Algorithm taskSchedule(T)

Input: set T of tasks w/ start time s_i and finish time f_i

Output: non-conflicting schedule with minimum number of machines $m \leftarrow 0$ {no. of machines}

while T is not empty

remove task i w/ smallest s_i

if there's a machine j for i then

schedule i on machine j

else

 $m \leftarrow m + 1$

schedule i on machine m

The Greedy Method

- 19

Example

- Given: a set T of n tasks, each having:
 - A start time, s_i
 - A finish time, f_i (where s_i < f_i)
 - [1,4], [1,3], [2,5], [3,7], [4,7], [6,9], [7,8] (ordered by start)
- Goal: Perform all tasks on min. number of machines

