CSC7072: Databases, fall 2015

Dr. Kim Bauters

relational model

relational model in detail

	uniqu	ue table name		attribute
i	instructor			
	id	name	dept_name	salary
	10101	Srinivasan	Comp. Sci.	65000
	12121	Wu	Finance	90000
	15151	Mozart	Music	40000
	22222	Einstein	Physics	95000

each named attribute is:

- atomic: cannot be split in smaller data for example: it is not a set of telephone numbers
- taking its values from a domain which always contains null for example: for gender we only allow M or F

relational model in detail

uniqu	attribut		
instructor			
id	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000

changes <u>rarely</u>

a relation schema defines the attributes of our relation: instructor(<u>id</u>, gender, name, salary) specified by Data Definition Language (DDL)

relational model in detail

a relation instance (i.e. the current values) is specified in a table each tuple describes a single entity of the type 'instructor' accessed/specified by Data Manipulation Language (DML)

relational model in detail

what is a database?

consists of multiple relations (i.e. schema and its instance)

information is broken up, each relation storing one part

- instructor stores information about instructors
- teaches stores information about who teaches what
- course store information on the course being offered
- a bad design results in duplication/need for null values course(name, prerequirement_1, prerequirement_2, teacher) what if more than 2 prerequirements?

 what if multiple instructors? over different years?

keys: usage and types

keys allow to <u>uniquely identify tuples</u>

- `key' component of any database!
- can consist of one or more attributes simple key uses one attribute, composite key uses more than one
- help to express connection between relations

keys: usage and types

meet: the superkey

some (or all) of the attributes of a relation schema that are <u>sufficient</u> to uniquely identify any given tuple may include extraneous attributes

id	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000

keys: usage and types

meet: the superkey

some (or all) of the attributes of a relation schema that are sufficient to uniquely identify any given tuple

J	yes		maybe
id	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000
yes			

keys: usage and types

the humble candidate key:

a superkey that is minimal, i.e. no excess attributes

no		maybe	
id	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000
yes			

keys: usage and types

the all-important *primary key*:

a candidate key chosen as the principal means of identifying tuples in a relation: typically listed as first attribute ideally, a value that <u>never</u> (or <u>very rarely</u>) changes

no

<u>id</u> salary dept_name name 10101 Srinivasan Comp. Sci. 65000 12121 90000 Wu Finance 15151 Mozart Music 40000 22222 Physics Einstein 95000

yes

keys: usage and types

the social foreign key:

an attribute that corresponds to the primary key of another relation and which is used to link tuples together

instructor

referring relation

<u>id</u>	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
1657	Kim	Comp. Sci.	
15151	Mozart	Music	40000
22222	Einstein	Physics	95000

instructor_id	course_id	semester	<u>year</u>
1657	CSC7072	1	2015
1657	CSC1023	2	2016

referenced relation

yes

teaches

schema diagrams

instructor

id

course_id
course_id
semester
dept_name
salary

course_id
title
dept_name
dept_name
dept_name
salary

credits

only values occurring in the primary key attribute of the referenced relation may occur in the foreign key attribute of the referencing relation

schema diagram of our running example

relation query languages

a relation query language is used to retrieve info from a DB

SQL is a <u>declarative</u> relation query language

only express what we want to retrieve, not how to retrieve it (= procedural)

SQL is a so-called "pure" language based on relational algebra a table in databases closely resembles a relation in mathematics hence the names!

every operation in SQL:

- applies to a single or a pair of relations/tables (= input)
- gives a relation/table as response (= output)

selection of attributes

student

<u>id</u>	name	dept_name	tot_cred
12345	Shankar	Comp. Sci.	32
54321	Williams	Comp. Sci.	32
76653	Aoi	Elec. Eng.	60
98765	Bourikas	Elec. Eng.	98

"select" dept_name

selection of attributes

student

<u>id</u>	name	dept_name	tot_cred
12345	Shankar	Comp. Sci.	32
54321	Williams	Comp. Sci.	32
76653	Aoi	Elec. Eng.	60
98765	Bourikas	Elec. Eng.	98

"select" dept_name and tot_cred

dept_name	tot_cred
Comp. Sci.	32
Elec. Eng.	60
Elec. Eng.	98

selection of tuples

student

<u>id</u>	name	dept_name	tot_cred
12345	Shankar	Comp. Sci.	32
54321	Williams	Comp. Sci.	32
76653	Aoi	Elec. Eng.	60
98765	Bourikas	Elec. Eng.	98

"select tuples" where tot_cred >= 40

<u>id</u>	name	dept_name	tot_cred
76653	Aoi	Elec. Eng.	60
98765	Bourikas	Elec. Eng.	98

Cartesian product

instructor

<u>id</u>	name	dept_name
3412	Sophia	CS
0657	Singh	CS

course

course id	credits
CSC7072	3
CSC7075	2
CSC7076	3

Cartesian product of instructor and course: instructor ${\bf x}$ course gives all possible combinations

<u>id</u>	name	dept_name	course_ID	credits
3412	Sophia	CS	CSC7072	3
0657	Singh	CS	CSC7075	2
3412	Sophia	CS	CSC7076	3
0657	Singh	CS	CSC7072	3
3412	Sophia	CS	CSC7075	2
0657	Singh	CS	CSC7076	3

union of two relations

course_in_2014

course_id	credits
CSC7072	3
CSC7075	2
CSC7074	4

course_in_2015

course_id	credits
CSC7072	3
CSC7075	2
CSC7076	3

union gives us elements from both relations without duplicates course_in_2014 U course_in_2015

course_id	credits
CSC7072	3
CSC7075	2
CSC7074	4
CSC7076	3

which courses were thought in 2014 and/or 2015?

union of two relations

course_in_2014

7072 7074 ₇₀₇₅

course_id	credits
CSC7072	3
CSC7075	2
CSC7074	4

course_in_2015

course_id	credits
CSC7072	3
CSC7075	2
CSC7076	3

union gives us elements from both relations without duplicates course_in_2014 U course_in_2015

course_id	credits
CSC7072	3
CSC7075	2
CSC7074	4
CSC7076	3

which courses were thought in 2014 and/or 2015?

union of two relations

course_in_2014

course_id	credits
CSC7072	3
CSC7075	2
CSC7074	4

course_in_2015

course_id	credits
CSC7072	3
CSC7075	2
CSC7076	3

union gives us elements from both relations without duplicates course_in_2014 U course_in_2015

course_id	credits
CSC7072	3
CSC7075	2
CSC7074	4
CSC7076	3

which courses were thought in 2014 and/or 2015?

intersection of two relations

course_in_2014

course_id	credits
CSC7072	3
CSC7075	2
CSC7074	4

course_in_2015

course_id	credits
CSC7072	3
CSC7075	2
CSC7076	3

intersection gives us elements found in both relations course_in_2014 ∩ course_in_2015

course id	credits
CSC7072	3
CSC7075	2

which courses were thought both in 2014 and 2015?

intersection of two relations

course_in_2014

7072 7074 ₇₀₇₅

course_id	credits
CSC7072	3
CSC7075	2
CSC7074	4

course_in_2015

course_id	credits
CSC7072	3
CSC7075	2
CSC7076	3

intersection gives us elements found in both relations course_in_2014 ∩ course_in_2015

course id	credits
CSC7072	3
CSC7075	2

which courses were thought both in 2014 and 2015?

difference of two relations

course_in_2014

course_id	credits
CSC7072	3
CSC7075	2
CSC7074	4

course_in_2015

course_id	credits
CSC7072	3
CSC7075	2
CSC7076	3

difference gives us elements in one but not in the other relation course_in_2014 / course_in_2015

course_id	credits
CSC7074	4

which courses were thought in 2014 but not in 2015?

difference of two relations

course_in_2014

course_id	credits
CSC7072	3
CSC7075	2
CSC7074	4

course_in_2015

course_id	credits
CSC7072	3
CSC7075	2
CSC7076	3

difference gives us elements in one but not in the other relation course_in_2014 / course_in_2015

course_id	credits
CSC7074	4

which courses were thought in 2014 but not in 2015?

natural join

when two relations have (some) attributes in common, combine the two relations based on these attributes

instructor

<u>id</u>	name (dept_name
3412	Sophia	CS
0657	Singh	CS
1287	Mary	EE

department

dept_name	building	budget
CS	ВСВ	162
PS	DK	42
EE	ECIT	249

natural join of instructor and department is:

<u>id</u>	name	dept_name	building	budget
3412	Sophia	CS	ВСВ	162
0657	Singh	CS	ВСВ	162
1287	Mary	EE	ECIT	249