MATH 60604 Modélisation statistique § 4d - Régression de Poisson

HEC Montréal Département de sciences de la décision

Régression de Poisson

• La régression de Poisson spécifie une loi de Poisson pour la variable réponse Y_i avec paramètre $\mu_i, Y_i \sim \text{Po}(\mu_i)$, où

$$\mu_i = \mathsf{E}\left(Y_i\right) = \mathsf{Var}\left(Y_i\right)$$
.

• On considère le logarithme naturel $\ln(x)$ comme fonction de liaison,

$$g\{E(Y_i)\} = g(\mu_i) = \ln\{E(Y_i)\} = \beta_0 + \beta_1 X_{i1} + \dots + \beta_p X_{ip}.$$

• De manière équivalente, la moyenne de la réponse de l'individu i est

$$\mathsf{E}(Y_i) = \mu_i = \exp(\beta_0 + \beta_1 \mathsf{X}_{i1} + \dots + \beta_p \mathsf{X}_{ip}).$$

Interprétation du coefficient dans la régression Poisson

• Soit x, x_+ deux ensembles de variables explicatives identiques hormis pour la ke composante, respectivement x_k et $x_k + 1$.

Si $\mathbf{X} = x$, le modèle liant la moyenne de Y aux prédicteurs est

$$\mu_i(x) = \mathsf{E}\left(Y_i \mid \mathbf{X} = x\right) = \exp\left(\beta_0 + \sum_{j=1}^p \beta_j x_j\right),$$

tandis que pour $\mathbf{X} = x_+$, on a plutôt

$$\mu_i(x_+) = E(Y_i \mid \mathbf{X} = x_+) = \exp\left(\beta_0 + \sum_{j=1}^p \beta_j x_j + \beta_k\right).$$

- Le rapport des deux moyennes, $\mu_i(x_+)/\mu_i(x)$, est $\exp(\beta_k)$.
- Quand X_k augmente d'une unité, la moyenne de Y est multipliée par $\exp(\beta_k)$.

Ajustement d'une régression de Poisson avec proc genmod

On considère un modèle de Poisson pour le nombre d'items achetés suite au visionnement de la publicité.

Code SAS pour ajuster une régression Poisson

```
proc genmod data=modstat.intention;
class educ revenu;
model nachat=sexe age revenu educ statut
    fixation emotion / dist=poisson link=log
    lrci type3;
run;
```

Tests du rapport de vraisemblance pour les paramètres - effets globaux

Statistique LR pour Analyse de Type 3							
Source	DDL	Khi-2	Pr > khi-2				
sexe	1	10.97	0.0009				
age	1	1.58	0.2089				
revenu	2	65.18	<.0001				
educ	2	4.11	0.1281				
statut	1	7.40	0.0065				
fixation	1	76.25	<.0001				
emotion	1	30.61	<.0001				

Cinq variables explicatives ont un effet non-nul selon les tests du rapport de vraisemblance.

Estimés des paramètres du modèle de Poisson

Analyse des paramètres estimés du maximum de vraisemblance								
Paramètre		DDL	Estimation	Erreur type	Rapport de vraisemblance Intervalle d	e confiance à95%	Khi-2 de Wald	Pr > khi-2
Intercept		1	-1.6305	0.6618	-2.9427	-0.3466	6.07	0.013
sexe		1	0.5361	0.1649	0.2168	0.8640	10.57	0.001
age		1	-0.0228	0.0183	-0.0590	0.0127	1.56	0.211
revenu	1	1	1.2463	0.2461	0.7712	1.7374	25.64	<.000
revenu	2	1	-0.1250	0.2532	-0.6213	0.3736	0.24	0.621
revenu	3	0	0.0000	0.0000	0.0000	0.0000		
educ	1	1	0.2497	0.2226	-0.1800	0.6948	1.26	0.262
educ	2	1	0.4040	0.2044	0.0123	0.8159	3.90	0.048
educ	3	0	0.0000	0.0000	0.0000	0.0000		
statut		1	-0.4218	0.1558	-0.7291	-0.1175	7.33	0.006
fixation		1	0.5501	0.0614	0.4296	0.6708	80.16	<.000
emotion		1	0.7887	0.1396	0.5133	1.0610	31.92	<.000
Echelle		0	1.0000	0.0000	1.0000	1.0000		

Le paramètre d'échelle est un parce que la variance est complètement déterminée par le modèle pour la moyenne.

Interprétation des paramètres significatifs

- Les femmes font plus d'achat, en moyenne, que les hommes. Lorsque les autres variables demeurent fixes, la moyenne du nombre d'achats des femmes est $\exp(0.5361)=1.71$ fois celle des hommes. Ainsi, le nombre d'achats moyen des femmes augmente de 71% par rapport à celle des hommes.
- L'estimé du paramètre de fixation est $\widehat{\beta}_{ extsf{fixation}} = 0,55$. Plus le temps de fixation augment, plus le nombre moyen d'achat est élevé. Toutes choses étant égales par ailleurs, augmenter fixation de un multiplie la moyenne du nombre d'achat par $\exp(0,55) = 1,73$.
- Ceteris paribus, le nombre moyen d'achat dans la catégorie à faible revenu achètent en moyenne 3,47 fois plus que ceux dont le revenu est élevé, une augmentation moyenne de 247%.

Qualité de l'ajustement

- La sortie SAS inclut un tableau qui contient la valeur de la log-vraisemblance (log-vraisemblance complète) et les critères d'information.
- Pour le modèle de régression de Poisson, deux statistiques, la déviance et la statistique X² de Pearson, servent à mesurer la qualité de l'ajustement et à déterminer si le modèle est adéquat.

Critères d'évaluation de l'adéquation						
Critère	DDL	Valeur	Valeur/DDL			
Ecart	110	203.2710	1.8479			
Déviance normalisée	110	203.2710	1.8479			
Khi2 de Pearson	110	216.2705	1.9661			
Pearson normalisé X2	110	216.2705	1.9661			
Log-vraisemblance		3.2104				
Log-vraisemblance complète		-186.1639				
AIC (préférer les petites valeurs)		392.3279				
AICC (préférer les petites valeurs)		394.3462				
BIC (préférer les petites valeurs)		420.2028				

Les premières lignes sont dupliquées; c'est dû au fait que la variance du modèle de Poisson est complètement déterminée par la