高等数学A(上)

第二章

本章重点

导数 — 描述函数变化快慢 微分 — 描述函数变化程度 微分学 — 基本概念是导数与微分

微分学

基本概念是导数与微分

中值定理

罗尔、拉格朗日、柯西

导 数

描述函数变化快慢

应用一

研究函数性质 及曲线性态

微分

描述函数变化程度

应用二

利用导数解决 实际问题

第二章 目录 CONTENTS

第一节 导数与微分的概念

第二节 导数与微分的运算性质

第三节 隐函数及由参数方程所确定的

函数的导数 相关变化率

第四节 高阶导数

第五节 微分中值定理与泰勒公式

第六节 洛必达法则

第七节 函数及其图像性态的研究

第六节 洛必达法则

一、
$$\frac{0}{0}$$
型未定式

二、
$$\frac{\infty}{\infty}$$
 型未定式

三、
$$0\cdot\infty,\infty-\infty,0^0,1^\infty,\infty^0$$
 型未定式

在第二章中已经看到:两个无穷小之商或两个无穷大之商,其极限 都不能直接利用极限运算法则来求.

$$(1)\lim_{x\to 1}\frac{x^2-1}{x-1}\left(\frac{0}{0}\right)$$

(1)
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} \left(\frac{0}{0} \right)$$
 (3) $\lim_{x \to \infty} \frac{x^5 + x - 1}{2x^5 + 3x^2} \left(\frac{\infty}{\infty} \right)$

$$(2) \lim_{x \to 0} \frac{\tan x}{x} \left(\frac{0}{0} \right)$$

$$(2) \lim_{x \to 0} \frac{\tan x}{x} \left(\frac{0}{0} \right) \qquad (4) \lim_{x \to 0^+} \frac{\ln x}{\ln 3x} \left(\frac{\infty}{\infty} \right)$$

未定式的定义 如果当 $x \to a($ 或 $x \to \infty)$ 时, 两个函数f(x)与F(x)

都趋于零或趋于无穷大,则极限 $\lim_{\substack{x\to a\\(x\to\infty)}}\frac{f(x)}{F(x)}$ 称为 $\frac{0}{0}$ 或 $\frac{\infty}{\infty}$ 型未定式.

未定 意味着关于它的极限不能确定出一般的结论, 而并不是在确定的情况下关于它的极限不能确定.

对于 $\frac{0}{0}$ 或 $\frac{\infty}{\infty}$ 型未定式,在第二章中已有一些求的方法.

本节研究

函数之商的极限

洛必达法则

导数之商的极限

$$\lim \frac{f(x)}{g(x)} \left(\frac{0}{0} \stackrel{\textstyle \infty}{\to} \frac{\infty}{\infty} \right)$$

转化

$$\lim \frac{f'(x)}{g'(x)}$$

-、 $\frac{0}{0}$ 型未定式

定理1

- (1) $\lim_{x \to a} f(x) = \lim_{x \to a} F(x) = 0$
- (2) f(x)与F(x) 在 $\ddot{U}(a)$ 内可导,且 $F'(x) \neq 0$
- (3) $\lim_{x \to a} \frac{f'(x)}{F'(x)}$ 存在(或为∞)
- $\lim_{x \to a} \frac{f(x)}{F(x)} = \lim_{x \to a} \frac{f'(x)}{F'(x)}$

这种在一定条 件下通过分子 分母分别求导 再求极限来确 定未定式的值 的方法称为洛 必达法则.

证 定义辅助函数

$$f_1(x) = \begin{cases} f(x), & x \neq a, \\ 0, & x = a, \end{cases}$$
 $F_1(x) = \begin{cases} F(x), & x \neq a, \\ 0, & x = a, \end{cases}$

则 $f_1(x)$ 和 $F_1(x)$ 在以a与x为端点的区间上,满足柯西中值定理条件,

$$\therefore \frac{f(x)}{F(x)} = \frac{f(x) - f(a)}{F(x) - F(a)} = \frac{f'(\xi)}{F'(\xi)} (\xi 在 x 与 a 之间)$$

注意到当
$$x \to a$$
时, $\xi \to a$, 故 $\lim_{x \to a} \frac{f(x)}{F(x)} = \lim_{\xi \to a} \frac{f'(\xi)}{F'(\xi)} = A$. 证毕

洛必达法则
$$\lim_{x \to a} \frac{f(x)}{F(x)} = \lim_{x \to a} \frac{f'(x)}{F'(x)}$$

定理1中的 $x \to a$ 换为 $x \to a^+$, $x \to a^-$, $x \to \infty$, $x \to +\infty$, $x \to -\infty$ 之一,条件(2)作相应的修改,定理1仍然成立.

推论2 若
$$\lim \frac{f'(x)}{F'(x)}$$
 仍属 $\frac{0}{0}$ 型 ,且 $f'(x)$, $F'(x)$ 满足定理1条件,

则
$$\lim \frac{f(x)}{F(x)} = \lim \frac{f'(x)}{F'(x)} = \lim \frac{f''(x)}{F''(x)}$$
.

并且可以以此类推.

例1 求
$$\lim_{x\to 0} \frac{\tan ax}{\tan bx}$$
. $\left(\frac{0}{0}\right)$

$$(\tan x)' = \sec^2 x$$

解 原式 =
$$\lim_{x \to 0} \frac{(\tan ax)'}{(\tan bx)'} = \lim_{x \to 0} \frac{a \sec^2 ax}{b \sec^2 bx} = \frac{a}{b}.$$

例2 求
$$\lim_{x\to 1} \frac{x^3 - 3x + 2}{x^3 - x^2 - x + 1} \cdot \left(\frac{0}{0}\right)$$

解 原式 =
$$\lim_{x \to 1} \frac{3x^2 - 3}{3x^2 - 2x - 1} = \lim_{x \to 1} \frac{6x}{6x - 2} = \frac{3}{2}$$
. 定式不能用洛
少达法则!

注意: 不是未

例3 求
$$\lim_{x \to +\infty} \frac{\frac{\pi}{2} - \arctan x}{\frac{1}{x}} \cdot \left(\frac{0}{0}\right)$$

解 原式 =
$$\lim_{x \to +\infty} \frac{-\frac{1}{1+x^2}}{-\frac{1}{x^2}} = \lim_{x \to +\infty} \frac{x^2}{1+x^2} = 1.$$

思考: 如何求 $\lim_{n\to\infty} \frac{\frac{\pi}{2} - \arctan n}{\frac{1}{n}}$ (n为正整数)?

例4 求
$$\lim_{x\to 0} \frac{\tan x - x}{x^2 \sin x} \cdot \left(\frac{0}{0}\right)$$

解 原式 =
$$\lim_{x \to 0} \frac{\sec^2 x - 1}{2x \sin x + x^2 \cos x}$$

$$= \lim_{x \to 0} \frac{2 \tan x \cdot \sec^2 x}{2 \sin x + 2x \cos x + 2x \cos x - x^2 \sin x} = \cdots$$
 \(\frac{\pi_x}{2}\)

原式 =
$$\lim_{x\to 0} \frac{\tan x - x}{x^3}$$
 = $\lim_{x\to 0} \frac{\sec^2 x - 1}{3x^2}$ = $\lim_{x\to 0} \frac{\tan^2 x}{3x^2}$ = $\lim_{x\to 0} \frac{x^2}{3x^2}$ =

注意: 洛必达法则是求未定式的一种有效方法,但与其他求极限方法结合使用,效果更好

二、一型未定式

定理2

- (1) $\lim_{x \to a} |f(x)| = \lim_{x \to a} |F(x)| = \infty$
- (2) f(x)与F(x) 在U(a)内可导,且 $F'(x) \neq 0$
- (3) $\lim_{x \to a} \frac{f'(x)}{F'(x)}$ 存在(或为 ∞) $\longrightarrow \lim_{x \to a} \frac{f(x)}{F(x)} = \lim_{x \to a} \frac{f'(x)}{F'(x)}$ (洛必达法则)
- 证 仅就极限 $\lim_{x\to a} \frac{f(x)}{F(x)}$ 存在的情形加以证明.

$$(1) \lim_{x \to a} \frac{f(x)}{F(x)} \neq 0$$
的情形

$$\lim_{x \to a} \frac{f(x)}{F(x)} = \lim_{x \to a} \frac{\frac{1}{F(x)}}{\frac{1}{f(x)}} = \lim_{x \to a} \frac{\frac{-1}{F^2(x)} F'(x)}{\frac{-1}{f^2(x)} f'(x)}$$

$$= \lim_{x \to a} \left[\left(\frac{f(x)}{F(x)} \right)^2 \frac{F'(x)}{f'(x)} \right] = \lim_{x \to a} \left(\frac{f(x)}{F(x)} \right)^2 \lim_{x \to a} \frac{F'(x)}{f'(x)}$$

$$\therefore 1 = \lim_{x \to a} \frac{f(x)}{F(x)} \cdot \lim_{x \to a} \frac{F'(x)}{f'(x)} \text{ M} \overline{m} \quad \lim_{x \to a} \frac{f(x)}{F(x)} = \lim_{x \to a} \frac{f'(x)}{F'(x)}.$$

$$(2) \lim_{x \to a} \frac{f(x)}{F(x)} = 0 的情形. 取常数k \neq 0.$$

$$\lim_{x \to a} \left[\frac{f(x)}{F(x)} + k \right] = \lim_{x \to a} \frac{f(x) + kF(x)}{F(x)} = k \neq 0, \, \overline{\eta} = 0, \, \overline{\eta} = 0$$

$$= \lim_{x \to a} \frac{f'(x) + kF'(x)}{F'(x)} = \lim_{x \to a} \left[\frac{f'(x)}{F'(x)} + k \right]$$

$$\therefore \lim_{x \to a} \frac{f(x)}{F(x)} = \lim_{x \to a} \frac{f'(x)}{F'(x)}$$

 $(3) \\ \underset{x \to a}{\lim} \frac{f(x)}{F(x)} = \infty$ 时,结论仍然成立.? (证明略)

推论3 定理2中的 $x \to a$ 换为 $x \to a^+, x \to a^-, x \to \infty, x \to +\infty$, $x \to -\infty$ 之一,条件(2)作相应的修改,定理2仍然成立.

推论4 若 $\lim \frac{f'(x)}{F'(x)}$ 仍属 $\frac{\infty}{\infty}$ 型 ,且 f'(x), F'(x)满足定理2条件,

则
$$\lim \frac{f(x)}{F(x)} = \lim \frac{f'(x)}{F'(x)} = \lim \frac{f''(x)}{F''(x)}$$
.

并且可以以此类推.

例5 求
$$\lim_{x \to +\infty} \frac{\ln x}{x^n}$$
 $(n > 0). \left(\frac{\infty}{\infty}\right)$

解 原式 =
$$\lim_{x \to +\infty} \frac{\frac{1}{x}}{nx^{n-1}} = \lim_{x \to +\infty} \frac{1}{nx^n} = 0.$$

例6 求
$$\lim_{x \to +\infty} \frac{x^n}{e^{\lambda x}}$$
 $(n > 0, \lambda > 0).$

解 (1)n为正整数的情形.

原式 =
$$\lim_{x \to +\infty} \frac{nx^{n-1}}{\lambda e^{\lambda x}} = \lim_{x \to +\infty} \frac{n(n-1)x^{n-2}}{\lambda^2 e^{\lambda x}}$$

= $\dots = \lim_{x \to +\infty} \frac{n!}{\lambda^n e^{\lambda x}} = 0.$

(2) n不为正整数的情形.

存在正整数k,使当x > 1时,

$$x^k < x^n < x^{k+1}.$$

于是
$$\frac{x^k}{e^{\lambda x}} < \frac{x^n}{e^{\lambda x}} < \frac{x^{k+1}}{e^{\lambda x}}$$
.

$$\lim_{x \to +\infty} \frac{x^k}{e^{\lambda x}} = \lim_{x \to +\infty} \frac{x^{k+1}}{e^{\lambda x}} = 0,$$

$$\therefore \lim_{x \to +\infty} \frac{x^n}{e^{\lambda x}} = 0.$$

$\ln x = 0 \ (n > 0)$ 和 $\lim_{x \to +\infty} \frac{x^n}{e^{\lambda x}} = 0 \ (n > 0, \lambda > 0)$ 的结果表明,当 $x \to +\infty$ 时, $\ln x$, $x^n \ (n > 0)$, $e^{\lambda x} \ (\lambda > 0)$ 均为无穷大,后者比前者趋于 $+\infty$ 更快.

下表列出了x分别取10, 100, 1000时, 函数 $\ln x$, \sqrt{x} , x^2 及 e^x 相应的函数值. 从中可以看出当 x 增大时这几个函数增大"速度"快慢的情况.

\boldsymbol{x}	10	100	1000
ln x	2.3	4.6	6.9
\sqrt{x}	3.2	10	31.6
x^2	100	10 ⁴	10 ⁶
e^x	2.20×10^{4}	2.69×10^{43}	1.97×10^{434}

(2) 当
$$\lim \frac{f'(x)}{F'(x)}$$
不存在(\neq \infty) 时, $\lim \frac{f(x)}{F(x)} \neq \lim \frac{f'(x)}{F'(x)}$.

例如: 求
$$\lim_{x\to\infty}\frac{x+\cos x}{x-\cos x}$$
 $\left(\frac{\infty}{\infty}\right)$

洛必达法则失效

解
$$\lim_{x \to \infty} \frac{x + \cos x}{x - \cos x} \neq \lim_{x \to \infty} \frac{1 - \sin x}{1 + \sin x}$$
 极限不存在

事实上 原式 =
$$\lim_{x \to \infty} \frac{1 + \frac{\cos x}{x}}{1 - \frac{\cos x}{x}} = 1$$
. 注意洛必达法则的使用条件

(3) 某些情况下洛必达法则不能解决计算问题.

例如:
$$\left(\frac{\infty}{\infty}\right)$$

$$\lim_{x \to +\infty} \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}} = \lim_{x \to +\infty} \frac{e^{x} + e^{-x}}{e^{x} - e^{-x}} = \lim_{x \to +\infty} \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$

事实上:
$$\lim_{x \to +\infty} \frac{e^x - e^{-x}}{e^x + e^{-x}} = \lim_{x \to +\infty} \frac{1 - e^{-2x}}{1 + e^{-2x}} = 1.$$

三、 $0\cdot\infty$, $\infty-\infty$, 0^0 , 1^∞ , ∞^0 型未定式解法

关键: 将其他类型未定式化为洛必达法则可解决的类型.

$$1, 0 \cdot \infty$$
型
步骤: $0 \cdot \infty \Rightarrow \frac{1}{\infty} \cdot \infty$, 或 $0 \cdot \infty \Rightarrow 0 \cdot \frac{1}{0}$.

例7 求
$$\lim_{x\to 0^+} x^n \ln x \ (n>0)$$
. $(0\cdot\infty)$ 课堂练习

解 原式 =
$$\lim_{x \to 0^+} \frac{\ln x}{x^{-n}}$$
 ($\frac{\infty}{\infty}$)

$$= \lim_{x \to 0^+} \frac{\frac{1}{x}}{-nx^{-n-1}} = \lim_{x \to 0^+} \frac{-x^n}{n} = 0.$$

$$\lim_{x \to +\infty} x^{-2} e^x$$
.

答案 原式 =
$$\lim_{x \to +\infty} \frac{e^x}{2x} = \lim_{x \to +\infty} \frac{e^x}{2}$$
 = $+\infty$.

步骤:
$$\infty - \infty \Rightarrow \frac{1}{0} - \frac{1}{0} \Rightarrow \frac{0 - 0}{0 \cdot 0}$$
.

原式 =
$$\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{\cos x} = \lim_{x \to \frac{\pi}{2}} \frac{-\cos x}{-\sin x} = 0.$$

3、
$$0^0$$
, 1^∞ , ∞^0 型

解1 原式 =
$$\lim_{x \to 0^+} e^{x \ln x} = e^{\lim_{x \to 0^+} x \ln x} = e^{\lim_{x \to 0^+} \frac{\ln x}{\frac{1}{x}}} = e^{\lim_{x \to 0^+} \frac{\frac{1}{x}}{\frac{1}{x^2}}} = e^0 = 1.$$

于是
$$\lim_{x\to 0^+} y = \lim_{x\to 0^+} \ln y = \lim_{x\to 0^+} x \ln x = 0$$
,故 $\lim_{x\to 0^+} y = e^0 = 1$.

例10 求
$$\lim_{x\to 1} x^{\frac{1}{1-x}}$$
.

$$(1^{\infty})$$

解式 =
$$\lim_{x \to 1} e^{\frac{1}{1-x} \ln x} = e^{\lim_{x \to 1} \frac{\ln x}{1-x}} = e^{\lim_{x \to 1} \frac{\frac{1}{x}}{-1}} = e^{-1}$$
.

例11 求
$$\lim_{x\to 0^+} (\cot x)^{\frac{1}{\ln x}}$$
. (∞^0)

$$(\infty^0)$$

原式 =
$$\lim_{x \to 0^{+}} (\cot x)^{\frac{1}{\sin^{2} x}}$$

$$= \lim_{x \to 0^{+}} e^{\frac{1}{\ln x} \cdot \ln(\cot x)} = e^{\frac{\lim_{x \to 0^{+}} \frac{1}{\ln x} \cdot \ln(\cot x)}{\frac{1}{x}} = e^{\frac{\lim_{x \to 0^{+}} \frac{-x}{\cos x \cdot \sin x}}{\frac{1}{x}} = e^{-1}.$$

课堂练习 求 $\lim_{x\to 0^+} x^{\sin x}$.

本PPT为高等教育出版社出版的《高等数学》 (第八版)教材配套课件,仅供受赠老师本人用于 "高等数学"课堂教学。未经许可,任何人不能进 行任何其他方式的传播。