

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT: Reyes, Gregory R
Yarbough, Patrice O
Bradley, Daniel W
Krawczynski, Krzysztof Z
Tam, Albert
Fry, Kirk E

(ii) TITLE OF INVENTION: DNA Sequences of Enterically Transmitted
Non-A/Non-B Hepatitis Viral Agent

(iii) NUMBER OF SEQUENCES: 20

(iv) CORRESPONDENCE ADDRESS:

(A) ADDRESSEE: Dehlinger & Associates
(B) STREET: 350 Cambridge Avenue, Suite 250
(C) CITY: Palo Alto
(D) STATE: CA
(E) COUNTRY: USA
(F) ZIP: 94306

(v) COMPUTER READABLE FORM:

(A) MEDIUM TYPE: Floppy disk
(B) COMPUTER: IBM PC compatible
(C) OPERATING SYSTEM: PC-DOS/MS-DOS
(D) SOFTWARE: PatentIn Release #1.0, Version #1.25

(vi) CURRENT APPLICATION DATA:

(A) APPLICATION NUMBER: US 09/128,275
(B) FILING DATE: 03-AUG-1998

(vii) PRIOR APPLICATION DATA:

(A) APPLICATION NUMBER: US 08/279,823
(B) FILING DATE: 25-JUL-1994

(viii) PRIOR APPLICATION DATA:

(A) APPLICATION NUMBER: US 07/681,078
(B) FILING DATE: 05-APR-1991

(ix) PRIOR APPLICATION DATA:

(A) APPLICATION NUMBER: US 07/505,888
(B) FILING DATE: 05-APR-1990

(x) PRIOR APPLICATION DATA:

(A) APPLICATION NUMBER: US 07/420,921
(B) FILING DATE: 13-OCT-1989

(xi) PRIOR APPLICATION DATA:

(A) APPLICATION NUMBER: US 07/367,486
(B) FILING DATE: 16-JUN-1989

(xii) PRIOR APPLICATION DATA:

(A) APPLICATION NUMBER: US 07/336,672
(B) FILING DATE: 11-APR-1989

(xiii) PRIOR APPLICATION DATA:

(A) APPLICATION NUMBER: US 07/208,997
(B) FILING DATE: 17-JUN-1988

(viii) ATTORNEY/AGENT INFORMATION:
(A) NAME: Petithory, Joanne R.
(B) REGISTRATION NUMBER: 42,995
(C) REFERENCE/DOCKET NUMBER: 4600-0183.24

(ix) TELECOMMUNICATION INFORMATION:
(A) TELEPHONE: (650) 324-0880
(B) TELEFAX: (650) 324-0960

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 1295 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:

(C) INDIVIDUAL ISOLATE: 1.33 kb EcoRI insert of ET1.1,
forward sequence

(ix) FEATURE:
(A) NAME/KEY: CDS
(B) LOCATION: 1..1293

(ix) FEATURE:
(A) NAME/KEY: CDS
(B) LOCATION: 2..1294

(ix) FEATURE:
(A) NAME/KEY: CDS
(B) LOCATION: 3..1295

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

AGACCTGTCC CTGTTGCAGC TGGTCTACCA CCCTGCCCG AGCTCGAACAA	60
TACCTGCCCG AGGAGCTCAC CACCTGTGAT AGTGTGTAACATT AACAGACATT	120
GTGCACTGCC GCATGGCCGC CCCGAGCCAG CGCAAGGCCG TGCTGTCCAC ACTCGTGGGC	180
CGCTACGGCG GTCGCACAAA GCTCTACAAT GCTTCCACT CTGATGTTCG CGACTCTCTC	240
GCCCCTTTA TCCCGGCCAT TGGCCCCGTA CAGGTTACAA CTTGTGAATT GTACGAGCTA	300
GTGGAGGCCA TGGTCGAGAA GGGCCAGGAT GGCTCCGCCG TCCTTGAGCT TGATCTTGC	360
AACCGTGACG TGTCCAGGAT CACCTCTTC CAGAAAGATT GTAACAAGTT CACCACAGGT	420
GAGACCATTG CCCATGGTAA AGTGGGCCAG GGCATCTCGG CCTGGAGCAA GACCTCTGC	480
GCCCTCTTTG GCCCTGGTT CCGCGCTATT GAGAAGGCTA TTCTGGCCCT GCTCCCTCAG	540
GGTGTGTTT ACGGTGATGC CTTTGATGAC ACCGTCTTCT CGGCGGCTGT GGCCGGCAGCA	600

AAGGCATCCA	TGGTGTGGA	GAATGACTTT	TCTGAGTTG	ACTCCACCCA	GAATAACTTT	660
TCTCTGGGTC	TAGAGTGTGC	TATTATGGAG	GAGTGTGGGA	TGCCGCAGTG	GCTCATCCGC	720
CTGTATCACC	TTATAAGGTC	TGCGTGGATC	TTGCAGGCC	CGAAGGAGTC	TCTGCGAGGG	780
TTTTGGAAGA	AACACTCCGG	TGAGCCCCGC	ACTCTTCTAT	GGAATACTGT	CTGGAATATG	840
GCCGTTATTA	CCCACTGTTA	TGACTTCCGC	GATTTTCAGG	TGGCTGCCTT	TAAAGGTGAT	900
GATTGATAG	TGCTTGCAG	TGAGTATCGT	CAGAGTCCAG	GAGCTGCTGT	CCTGATCGCC	960
GGCTGTGGCT	TGAAGTTGAA	GGTAGATTTC	CGCCCGATCG	GTGGTATGC	AGGTGTTGTG	1020
GTGGCCCCCG	GCCTTGGCGC	GCTCCCTGAT	GTGTCGCGCT	TCGCCGGCCG	GCTTACCGAG	1080
AAGAATTGGG	GCCCTGGCCC	TGAGCAGGGCG	GAGCAGCTCC	GCCTCGCTGT	TAGTGATTTC	1140
CTCCGCAAGC	TCACGAATGT	AGCTCAGATG	TGTGTGGATG	TTGTTTCCCG	TGTTTATGGG	1200
GTTCCTCCCTG	GACTCGTTCA	TAACCTGATT	GGCATGCTAC	AGGCTGTTGC	TGATGGCAAG	1260
GCACATTTCA	CTGAGTCAGT	AAAACCAGTG	CTCGA			1295

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 431 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Arg	Pro	Val	Pro	Val	Ala	Ala	Val	Leu	Pro	Pro	Cys	Pro	Glu	Leu	Glu
1	.	.	.	5	.	.	.	10	15	.	.
Gln	Gly	Leu	Leu	Tyr	Leu	Pro	Gln	Glu	Leu	Thr	Thr	Cys	Asp	Ser	Val
		20					25					30			
Val	Thr	Phe	Glu	Leu	Thr	Asp	Ile	Val	His	Cys	Arg	Met	Ala	Ala	Pro
		35				40					45				
Ser	Gln	Arg	Lys	Ala	Val	Leu	Ser	Thr	Leu	Val	Gly	Arg	Tyr	Gly	Gly
	50				55					60					
Arg	Thr	Lys	Leu	Tyr	Asn	Ala	Ser	His	Ser	Asp	Val	Arg	Asp	Ser	Leu
	65				70				75			80			
Ala	Arg	Phe	Ile	Pro	Ala	Ile	Gly	Pro	Val	Gln	Val	Thr	Thr	Cys	Glu
	85				90				95						
Leu	Tyr	Glu	Leu	Val	Glu	Ala	Met	Val	Glu	Lys	Gly	Gln	Asp	Gly	Ser
	100				105				110						
Ala	Val	Leu	Glu	Leu	Asp	Leu	Cys	Asn	Arg	Asp	Val	Ser	Arg	Ile	Thr
	115				120				125						
Phe	Phe	Gln	Lys	Asp	Cys	Asn	Lys	Phe	Thr	Thr	Gly	Glu	Thr	Ile	Ala
	130				135				140						

His	Gly	Lys	Val	Gly	Gln	Gly	Ile	Ser	Ala	Trp	Ser	Lys	Thr	Phe	Cys
145							150					155			160
Ala	Leu	Phe	Gly	Pro	Trp	Phe	Arg	Ala	Ile	Glu	Lys	Ala	Ile	Leu	Ala
				165					170				175		
Leu	Leu	Pro	Gln	Gly	Val	Phe	Tyr	Gly	Asp	Ala	Phe	Asp	Asp	Thr	Val
					180			185				190			
Phe	Ser	Ala	Ala	Val	Ala	Ala	Ala	Lys	Ala	Ser	Met	Val	Phe	Glu	Asn
					195				200			205			
Asp	Phe	Ser	Glu	Phe	Asp	Ser	Thr	Gln	Asn	Asn	Phe	Ser	Leu	Gly	Leu
					210			215			220				
Glu	Cys	Ala	Ile	Met	Glu	Glu	Cys	Gly	Met	Pro	Gln	Trp	Leu	Ile	Arg
					225		230			235			240		
Leu	Tyr	His	Leu	Ile	Arg	Ser	Ala	Trp	Ile	Leu	Gln	Ala	Pro	Lys	Glu
					245				250			255			
Ser	Leu	Arg	Gly	Phe	Trp	Lys	Lys	His	Ser	Gly	Glu	Pro	Gly	Thr	Leu
					260			265			270				
Leu	Trp	Asn	Thr	Val	Trp	Asn	Met	Ala	Val	Ile	Thr	His	Cys	Tyr	Asp
					275		280				285				
Phe	Arg	Asp	Phe	Gln	Val	Ala	Ala	Phe	Lys	Gly	Asp	Asp	Ser	Ile	Val
					290		295			300			305		
Leu	Cys	Ser	Glu	Tyr	Arg	Gln	Ser	Pro	Gly	Ala	Ala	Val	Leu	Ile	Ala
					305		310			315			320		
Gly	Cys	Gly	Leu	Lys	Leu	Lys	Val	Asp	Phe	Arg	Pro	Ile	Gly	Leu	Tyr
					325			330			335				
Ala	Gly	Val	Val	Val	Ala	Pro	Gly	Leu	Gly	Ala	Leu	Pro	Asp	Val	Val
					340			345			350				
Arg	Phe	Ala	Gly	Arg	Leu	Thr	Glu	Lys	Asn	Trp	Gly	Pro	Gly	Pro	Glu
					355			360			365				
Arg	Ala	Glu	Gln	Leu	Arg	Leu	Ala	Val	Ser	Asp	Phe	Leu	Arg	Lys	Leu
					370			375			380				
Thr	Asn	Val	Ala	Gln	Met	Cys	Val	Asp	Val	Val	Ser	Arg	Val	Tyr	Gly
					385		390			395			400		
Val	Ser	Pro	Gly	Leu	Val	His	Asn	Leu	Ile	Gly	Met	Leu	Gln	Ala	Val
					405				410			415			
Ala	Asp	Gly	Lys	Ala	His	Phe	Thr	Glu	Ser	Val	Lys	Pro	Val	Leu	
					420				425			430			

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single

(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA
(iii) HYPOTHETICAL: NO
(iv) ANTI-SENSE: NO
(vi) ORIGINAL SOURCE:
(C) INDIVIDUAL ISOLATE: linker - top (5') sequence
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:
GGAATTCGCG GCCGCTCG

18

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA
(iii) HYPOTHETICAL: NO
(iv) ANTI-SENSE: NO
(vi) ORIGINAL SOURCE:
(C) INDIVIDUAL ISOLATE: linker - bottom (3') sequence
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:
CGAGCGGCCG CGAATTCCCTT

20

(2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 1295 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA
(iii) HYPOTHETICAL: NO
(iv) ANTI-SENSE: NO
(vi) ORIGINAL SOURCE:
(C) INDIVIDUAL ISOLATE: 1.33 kb EcoRI insert of ET1.1,
reverse sequence
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:
TCGAGCACTG GTTTACTGA CTCAGTGAAA TGTGCCTTGC CATCAGCAAC AGCCTGTAGC
ATGCCAATCA GGTTATGAAC GAGTCCAGGG GAAACCCCAT AAACACGGGA AACAAACATCC

60

120

ACACACATCT GAGCTACATT CGTGAGCTTG CGGAGGAAAT CACTAACAGC GAGGC GGAGC	180
TGCTCCGCC C GCTCAGGGCC AGGGCCCCAA TTCTTCTCGG TAAGCCGGCC GGCGAAGCGC	240
ACAACATCAG GGAGCGGCC AAGGCCGGG GCCACCACAA CACCTGCATA CAAACCGATC	300
GGCGGAAAT CTACCTTCAA CTTCAAGCCA CAGCCGGCGA TCAGGACAGC AGCTCCTGGA	360
CTCTGACGAT ACTCACTGCA AAGCACTATC GAATCATCAC CTTTAAAGGC AGCCACCTGA	420
AAATCGCGGA AGTCATAACA GTGGGTAATA ACGGCCATAT TCCAGACAGT ATTCCATAGA	480
AGAGTGCCGG GCTCACCGGA GTGTTCTTC CAAAACCCTC GCAGAGACTC CTTCGGGGCC	540
TGCAAGATCC ACGCAGACCT TATAAGGTGA TACAGGCCGA TGAGCCACTG CGGCATCCCA	600
CACTCCTCCA TAATAGCACA CTCTAGACCC AGAGAAAAGT TATTCTGGGT GGAGTCAAAC	660
TCAGAAAAGT CATTCTCAAA CACCATGGAT GCCTTGCTG CGGCCACAGC CGCGAGAAG	720
ACGGTGTCA CAAAGGCATC ACCGTAAAAC ACACCCCTGAG GGAGCAGGGC CAGAATAGCC	780
TTCTCAATAG CGCGGAACCA AGGGCCAAAG AGGGCGCAGA AGGTCTTGCT CCAGGCCGAG	840
ATGCCCTGGC CCACTTTACC ATGGGCAATG GTCTCACCTG TGGTGAACCTT GTTACAATCT	900
TTCTGGAAGA AGGTGATCCT GGACACGTCA CGGTTGCAA GATCAAGCTC AAGGACGGCG	960
GAGCCATCCT GGCCCTTCTC GACCATGGCC TCCACTAGCT CGTACAATTG ACAAGTTGTA	1020
ACCTGTACGG GGCCAATGGC CGGGATAAAA CGGGCGAGAG AGTCGCGAAC ATCAGAGTGG	1080
GAAGCATTGT AGAGCTTGT GCGACCGCCG TAGCGGCCCA CGAGTGTGGA CAGCACGGCC	1140
TTGCGCTGGC TCGGGCGGC CATGCGGCAG TGCACAATGT CTGTTAATTG AAATGTTACG	1200
ACACTATCAC AGGTGGTGAG CTCCTGGGC AGGTAGAGAA GGCCCTGTTG GAGCTCGGGG	1260
CAGGGTGGTA GAACAGCTGC AACAGGGACA GGTCT	1295

(2) INFORMATION FOR SEQ ID NO:6:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 7195 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:

(C) INDIVIDUAL ISOLATE: HEV - Burma strain

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 28..5106

(ix) FEATURE:
(A) NAME/KEY: CDS
(B) LOCATION: 5147..7126

(ix) FEATURE:
(A) NAME/KEY: CDS
(B) LOCATION: 5106..5474

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

AGGCAGACCA CATATGTGGT CGATGCCATG GAGGCCCATC AGTTTATTAA GGCTCCTGGC	60
ATCACTACTG CTATTGAGCA GGCTGCTCTA GCAGCGGCCA ACTCTGCCCT GGCGAATGCT	120
GTGGTAGTTA GGCCTTTCT CTCTCACCAAG CAGATTGAGA TCCTCATTAA CCTAATGCAA	180
CCTCGCCAGC TTGTTTCCG CCCCGAGGTT TTCTGGAATC ATCCCATCCA GCGTGTACATC	240
CATAACGAGC TGGAGCTTTA CTGCCGCGCC CGCTCCGGCC GCTGTCTGA AATTGGCGCC	300
CATCCCCGCT CAATAAAATGA TAATCCTAAT GTGGTCCACC GCTGCTTCCT CCGCCCTGTT	360
GGGCGTGATG TTCAGCGCTG GTATACTGCT CCCACTCGCG GGCGGGCTGC TAATTGCCGG	420
CGTTCCGCGC TGCGCGGCT TCCCGCTGCT GACCGCATT ACTGCCTCGA CGGGTTTCT	480
GGCTGTAACT TTCCCGCCGA GACTGGCATC GGCCTCTACT CCCTTCATGA TATGTCACCA	540
TCTGATGTCG CCGAGGCCAT GTTCCGCCAT GGTATGACGC GGCTCTATGC CGCCCTCCAT	600
CTTCCGCCCTG AGGTCCCTGCT GCCCCCTGGC ACATATCGCA CCGCATCGTA TTTGCTAATT	660
CATGACGGTA GGCGCGTTGT GGTGACGTAT GAGGGTGATA CTAGTGCTGG TTACAACCAC	720
GATGTCTCCA ACTTGCGCTC CTGGATTAGA ACCACCAAGG TTACCGGAGA CCATCCCCTC	780
GTTATCGAGC GGGTAGGGC CATTGGCTGC CACTTGTTC TCTTGCTCAC GGCAGCCCCG	840
GAGCCATCAC CTATGCCCTA TGTTCCCTAC CCCCCGGTCTA CCGAGGTCTA TGTCCGATCG	900
ATCTTCGGCC CGGGTGGCAC CCCTTCCTTA TTCCCAACCT CATGCTCCAC TAAGTCGACC	960
TTCCATGCTG TCCCTGCCCA TATTTGGAC CGTCTTATGC TGTTGGGGC CACCTTGGAT	1020
GACCAAGCCT TTTGCTGCTC CCGTTTAATG ACCTACCTTC GCGGCATTAG CTACAAGGTC	1080
ACTGTTGGTA CCCTTGTGGC TAATGAAGGC TGGAATGCCT CTGAGGACGC CCTCACAGCT	1140
GTTATCACTG CCGCCTACCT TACCATTTGC CACCAGCGGT ATCTCCGCAC CCAGGCTATA	1200
TCCAAGGGGA TGCGTCGTCT GGAACGGGAG CATGCCAGA AGTTTATAAC ACGCCTCTAC	1260
AGCTGGCTCT TCGAGAACGTC CGGCCGTGAT TACATCCCTG GCCGTCAGTT GGAGTTCTAC	1320
GCCCAGTGCA GGCGCTGGCT CTCCGCCGGC TTTCATCTTG ATCCACGGGT GTTGGTTTT	1380
GACGAGTCGG CCCCCCTGCCA TTGTAGGACC GCGATCCGTA AGGCCTCTC AAAGTTTTGC	1440
TGCTTCATGA AGTGGCTTGG TCAGGAGTGC ACCTGCTTCC TTCAGCCTGC AGAAGGCGCC	1500
GTCGGCGACCC AGGGTCATGA TAATGAAGGC TATGAGGGT CCGATGTTGA CCCTGCTGAG	1560

TCCGCCATTA	GTGACATATC	TGGGTCTTAT	GTCGTCCCTG	GCACTGCCCT	CCAACCGCTC	1620
TACCAGGCC	TCGATCTCCC	CGCTGAGATT	GTGGCTCGCG	CGGGCCGGCT	GACCGCCACA	1680
GTAAAGGTCT	CCCAGGTCGA	TGGGCGGATC	GATTGCGAGA	CCCTTCTTGG	TAACAAAACC	1740
TTTCGCACGT	CGTTCGTTGA	CGGGGCGGTC	TTAGAGACCA	ATGGCCCAGA	GCGCCACAAT	1800
CTCTCCTTCG	ATGCCAGTCA	GAGCACTATG	GCCGCTGGCC	CTTTCAGTCT	CACCTATGCC	1860
GCCTCTGCAG	CTGGGCTGGA	GGTGCCTAT	GTTGCTGCCG	GGCTTGACCA	TCGGGCGGTT	1920
TTTGCCCCCG	GTGTTTCACC	CCGGTCAGCC	CCCGGCGAGG	TTACCGCCTT	CTGCTCTGCC	1980
CTATAACAGGT	TTAACCGTGA	GGCCCAGCGC	CATTGCTGA	TCGGTAACCTT	ATGGTTCCAT	2040
CCTGAGGGAC	TCATTGGCCT	CTTCGCCCCG	TTTCGCCCCG	GGCATGTTG	GGAGTCGGCT	2100
AATCCATTCT	GTGGCGAGAG	CACACTTAC	ACCCGTACTT	GGTCGGAGGT	TGATGCCGTC	2160
TCTAGTCCAG	CCCGGCCTGA	CTTAGGTTT	ATGTCTGAGC	CTTCTATACC	TAGTAGGGCC	2220
GCCACGCCTA	CCCTGGOGGC	CCCTCTACCC	CCCCCTGCAC	CGGACCCCTTC	CCCCCCTCCC	2280
TCTGCCCCGG	CGCTTGCTGA	GCCGGCTTCT	GGCGCTACCG	CCGGGGCCCC	GGCCATAACT	2340
CACCAGACGG	CCCGGCACCG	CCGCCTGCTC	TTCACCTACC	CGGATGGCTC	TAAGGTATT	2400
GCCGGCTCGC	TGTCGAGTC	GACATGCACG	TGGCTCGTTA	ACCGTCTAA	TGTTGACCAC	2460
CGCCCTGGCG	CGGGGCTTTG	CCATGCATT	TACCAAAGGT	ACCCCGCCTC	CTTTGATGCT	2520
GCCTCTTTG	TGATGCGCGA	CGGCGCGGCC	GCGTACACAC	TAACCCCCCG	GCCAATAATT	2580
CACGCTGTCG	CCCCTGATTA	TAGGTTGGAA	CATAACCAA	AGAGGCTTGA	GGCTGCTTAT	2640
CGGGAAACTT	GCTCCCGCCT	CGGCACCGCT	GCATAACCGC	TCCTCGGGAC	CGGCATATAAC	2700
CAGGTGCCGA	TCGGCCCCAG	TTTGACGCC	TGGGAGCGGA	ACCACCGCCC	CGGGGATGAG	2760
TTGTACCTTC	CTGAGCTTGC	TGCCAGATGG	TTTGAGGCCA	ATAGGCCGAC	CCGCCCCACT	2820
CTCACTATAA	CTGAGGATGT	TGCACGGACA	GCGAATCTGG	CCATCGAGCT	TGACTCAGCC	2880
ACAGATGTCG	GCCGGGCCTG	TGCCGGCTGT	CGGGTCACCC	CCGGCGTTGT	TCAGTACCAAG	2940
TTTACTGCA	GTGTGCCTGG	ATCCGGCAAG	TCCCGCTCTA	TCACCCAAGC	CGATGTGGAC	3000
GTTGTCGTGG	TCCCGACGCG	TGAGTTGCGT	AATGCTGGC	GCCGTCGCGG	CTTGCTGCT	3060
TTTACCCCGC	ATACTGCCGC	CAGAGTCACC	CAGGGGCGCC	GGGTTGTCAT	TGATGAGGCT	3120
CCATCCCTCC	CCCCTCACCT	GCTGCTGCTC	CACATGCAGC	GGGCGGCCAC	CGTCCACCTT	3180
CTTGGCGACC	CGAACCCAGAT	CCCAGCCATC	GACTTGAGC	ACGCTGGCT	CGTCCCCGCC	3240
ATCAGGCCCG	ACTTAGGCC	CACCTCCTGG	TGGCATGTTA	CCCATCGCTG	GCCTGCGGAT	3300
GTATGCGAGC	TCATCCGTGG	TGCATACCCC	ATGATCCAGA	CCACTAGCCG	GGTTCTCCGT	3360
TCGTTGTTCT	GGGGTGAGCC	TGCCGTGGGG	CAGAAACTAG	TGTTCACCCA	GGCGGCCAAG	3420

CCCGCCAACC	CCGGCTCAGT	GACGGTCCAC	GAGGCAGG	GCGCTACCTA	CACGGAGACC	3480
ACTATTATTG	CCACAGCAGA	TGCCCGGGC	CTTATTCA	CGTCTCGGC	TCATGCCATT	3540
GTTGCTCTGA	CGGCCACAC	TGAGAAGTGC	GTCATCAT	ACGCACCAGG	CCTGCTTCGC	3600
GAGGTGGGCA	TCTCCGATGC	AATCGTTAAT	AACTTTTCC	TCGCTGGTGG	CGAAATTGGT	3660
CACCAGCGCC	CATCAGTTAT	TCCCCGTGGC	AACCCTGACG	CCAATGTTGA	CACCCCTGGCT	3720
GCCTTCCC	CGTCTGCCA	GATTAGTGC	TTCCATCA	TGGCTGAGGA	GCTTGGCCAC	3780
AGACCTGTCC	CTGTTGCAGC	TGTTCTACCA	CCCTGCC	AGCTCGAAC	GGGCCTTCTC	3840
TACCTGCC	AGGAGCTCAC	CACCTGTGAT	AGTGTGTA	CATTGAATT	AACAGACATT	3900
GTGCACTGCC	GCATGGCGC	CCCGAGCCAG	CGCAAGGCCG	TGCTGTCCAC	ACTCGTGGC	3960
CGCTACGGCG	GTCGACAAA	GCTCTACA	GCTTCCC	CTGATGTTG	CGACTCTCTC	4020
GCCC	GTTTA	TCCC	GGCCAT	TGG	CCCCGTA	4080
GAGG	TGAGG	GGG	CCAGG	GG	GTCGCC	4140
AACCGTGACG	TGTCCAGGAT	CACCTCTTC	CAGAAAGATT	GTAACAAGTT	CACCACAGGT	4200
GAGACCATTG	CCCATGGTAA	AGTGGGCCAG	GGCATCTCGG	CCTGGAGCAA	GACCTCTGC	4260
GCCCTCTT	TGG	GGT	GGTT	CCGCGCTATT	GAGAAGGCTA	4320
GGTGTGTTT	ACGGTGATGC	CTTGATGAC	ACCGTCTTCT	CGCGGCTGT	GGCCGAGCA	4380
AAGGCATCCA	TGGTGT	TTGA	GAATGACTT	TCTGAGTTG	ACTCCACCCA	4440
TCTCTGGGTC	TAGAGTGTG	TATTATGGAG	GAGTGTGG	TGCCGCAGT	GTCATCCGC	4500
CTGTATCACC	TTATAAGGTC	TGCGTGGATC	TTGCAGGCC	CGAAGGAGTC	TCTGCGAGGG	4560
TTTTGGAAGA	AAACACTCCGG	TGAGCCGGC	ACTCTCTAT	GGAATACTGT	CTGGAATATG	4620
GCCGTTATTA	CCCAC	GT	TGACTTCCGC	GATTTCA	TGGCTGCCTT	4680
GATTGATAG	TGCTTG	CAG	TGAGTATCG	CAGAGTCCAG	GAGCTGCTGT	4740
GGCTGTGGCT	TGAAGTTGAA	GGTAGATT	TCGCCC	GATCG	TTGTATGC	4800
GTGGCCCCCG	GCCTTGGCGC	GCTCC	GTGAT	TGGCTGC	GCTTACCGAG	4860
AAGAATTGGG	GCCCTGGCCC	TGAGCGGGCG	GAGCAGCTCC	GCCTCGCTGT	TAGTGATT	4920
CTCCGCAAGC	TCACGAATGT	AGCTCAGATG	TGTGTGGATG	TTGTTCCCG	TGTTTATGGG	4980
GT	TTCC	CTG	TAACCTGATT	GGCATGCTAC	AGGCTGTTG	5040
GCACATTCA	CTGAGTCAGT	AAAACCAGT	CTCGACTTGA	CAAATTCA	CTTGTGTCGG	5100
GTGGAATGAA	TAACATGTCT	TTTGCTGC	CCATGGGTT	GCGACC	ATGC	5160
TATTTGTTG	CTGCTCCTCA	TGTTTTGCC	TATGCTGCC	GCGCCACC	CGGGTCAG	5220
GTCTGGCCGC	CGTCGTGGC	GGCGCAGCGG	CGGTTCCGGC	GGTGGTTCT	GGGGTGACCG	5280

GGTTGATTCT CAGCCCTTCG CAATCCCCTA TATTCATCCA ACCAACCCCT TCGCCCCGA	5340
TGTCAACCGCT GCGGCCGGGG CTGGACCTCG TGTCGCCAA CCCGCCGAC CACTCGGCTC	5400
CGCTTGGCGT GACCAGGCC AGCGCCCCGC CGTTGCCCTCA CGTCGTAGAC CTACCACAGC	5460
TGGGGCCGCG CCGCTAACCG CGGTGCGCTCC GGCCCAGTGAC ACCCCGCCAG TGCCTGATGT	5520
CGACTCCCCGC GGCGCCATCT TGCGCCGGCA GTATAACCTA TCAACATCTC CCCTTACCTC	5580
TTCCGTGGCC ACCGGCACTA ACCTGGTTCT TTATGCCGCC CCTCTTAGTC CGCTTTTACC	5640
CCTTCAGGAC GGCACCAATA CCCATATAAT GGCCACGGAA GCTTCTAATT ATGCCAGTA	5700
CCGGGTTGCC CGTGCCACAA TCCGTTACCG CCCGCTGGTC CCCAATGCTG TCGGCGGTTA	5760
CGCCATCTCC ATCTCATTCT GGCCACAGAC CACCACCAAC CCGACGTCCG TTGATATGAA	5820
TTCAATAACC TCGACGGATG TTCGTATTT AGTCCAGCCC GGCA TAGCCT CTGAGCTTGT	5880
GATCCCAAGT GAGCGCCTAC ACTATCGTA CCAAGGCTGG CGCTCCGTG AGACCTCTGG	5940
GGTGGCTGAG GAGGAGGCTA CCTCTGGTCT TGTTATGCTT TGCATACATG GCTCACTCGT	6000
AAATTCCAT ACTAATACAC CCTATACCGG TGCCCTCGGG CTGTTGGACT TTGCCCTTGA	6060
GCTTGAGTT CGCAACCTTA CCCCCGGTAA CACCAATACG CGGGTCTCCC GTTATTCCAG	6120
CACTGCTCGC CACCGCCTTC GTCGCGGTGC GGACGGGACT GCCGAGCTCA CCACCACGGC	6180
TGCTACCCGC TTTATGAAGG ACCTCTATT TACTAGTACT AATGGTGTG GTGAGATCGG	6240
CCCGGGATA GCCCTCACCC TGTTCAACCT TGCTGACACT CTGCTGGCG GCCTGCCGAC	6300
AGAATTGATT TCGTCGGCTG GTGGCCAGCT GTTCTACTCC CGTCCCGTTG TCTCAGCCAA	6360
TGGCGAGCCG ACTGTTAAGT TGTATACATC TGTAGAGAAT GCTCAGCAGG ATAAGGGTAT	6420
TGCAATCCCG CATGACATTG ACCTCGGAGA ATCTCGTGTG GTTATTCAAG ATTATGATAA	6480
CCAACATGAA CAAGATCGGC CGACGCCCTC TCCAGCCCCA TCGCGCCCTT TCTCTGTCCT	6540
TCGAGCTAAAT GATGTGCTTT GGCTCTCTCT CACCGCTGCC GAGTATGACC AGTCCACTTA	6600
TGGCTCTCG ACTGGCCAG TTTATGTTTC TGACTCTGTG ACCTTGGTTA ATGTTGCGAC	6660
CGGCGCGCAG GCCGTTGCCG GGTCGCTCGA TTGGACCAAG GTCACACTTG ACGGTCGCC	6720
CCTCTCCACC ATCCAGCAGT ACTCGAAGAC CTTCTTGTC CTGCGCTCC GCGGTAAGCT	6780
CTCTTTCTGG GAGGCAGGCA CAACTAAAGC CGGGTACCCCT TATAATTATA ACACCACTGC	6840
TAGCGACCAA CTGCTTGTG AGAATGCCGC CGGGCACCGG GTCGCTATT CCACCTACAC	6900
CACTAGCCTG GGTGCTGGTC CCGTCTCCAT TTCTGCGGTT GCCGTTTAG CCCCCCACTC	6960
TGCGCTAGCA TTGCTTGAGG ATACCTTGGA CTACCCCTGCC CGCGCCCATA CTTTGATGA	7020
TTTCTGCCCA GAGTGCCGCC CCCTTGGCCT TCAGGGCTGC GCTTCCAGT CTACTGTCGC	7080
TGAGCTTCAG CGCCTTAAGA TGAAGGTGGG TAAAACCTCGG GAGTTGTAGT TTATTGCTT	7140

(2) INFORMATION FOR SEQ ID NO:7:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1693 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

Met	Glu	Ala	His	Gln	Phe	Ile	Lys	Ala	Pro	Gly	Ile	Thr	Thr	Ala	Ile
1					5						10				15
Glu	Gln	Ala	Ala	Leu	Ala	Ala	Asn	Ser	Ala	Leu	Ala	Asn	Ala	Val	
				20				25						30	
Val	Val	Arg	Pro	Phe	Leu	Ser	His	Gln	Gln	Ile	Glu	Ile	Leu	Ile	Asn
					35			40						45	
Leu	Met	Gln	Pro	Arg	Gln	Leu	Val	Phe	Arg	Pro	Glu	Val	Phe	Trp	Asn
					50			55						60	
His	Pro	Ile	Gln	Arg	Val	Ile	His	Asn	Glu	Leu	Glu	Leu	Tyr	Cys	Arg
					65			70			75			80	
Ala	Arg	Ser	Gly	Arg	Cys	Leu	Glu	Ile	Gly	Ala	His	Pro	Arg	Ser	Ile
					85			90						95	
Asn	Asp	Asn	Pro	Asn	Val	Val	His	Arg	Cys	Phe	Leu	Arg	Pro	Val	Gly
					100			105						110	
Arg	Asp	Val	Gln	Arg	Trp	Tyr	Thr	Ala	Pro	Thr	Arg	Gly	Pro	Ala	Ala
					115			120						125	
Asn	Cys	Arg	Arg	Ser	Ala	Leu	Arg	Gly	Leu	Pro	Ala	Ala	Asp	Arg	Thr
					130			135						140	
Tyr	Cys	Leu	Asp	Gly	Phe	Ser	Gly	Cys	Asn	Phe	Pro	Ala	Glu	Thr	Gly
					145			150			155			160	
Ile	Ala	Leu	Tyr	Ser	Leu	His	Asp	Met	Ser	Pro	Ser	Asp	Val	Ala	Glu
					165			170						175	
Ala	Met	Phe	Arg	His	Gly	Met	Thr	Arg	Leu	Tyr	Ala	Ala	Leu	His	Leu
					180			185						190	
Pro	Pro	Glu	Val	Leu	Leu	Pro	Pro	Gly	Thr	Tyr	Arg	Thr	Ala	Ser	Tyr
					195			200						205	
Leu	Leu	Ile	His	Asp	Gly	Arg	Arg	Val	Val	Val	Thr	Tyr	Glu	Gly	Asp
					210			215						220	
Thr	Ser	Ala	Gly	Tyr	Asn	His	Asp	Val	Ser	Asn	Leu	Arg	Ser	Trp	Ile
					225			230			235			240	
Arg	Thr	Thr	Lys	Val	Thr	Gly	Asp	His	Pro	Leu	Val	Ile	Glu	Arg	Val

245	250	255
Arg Ala Ile Gly Cys His Phe Val Leu Leu Leu Thr Ala Ala Pro Glu		
260	265	270
Pro Ser Pro Met Pro Tyr Val Pro Tyr Pro Arg Ser Thr Glu Val Tyr		
275	280	285
Val Arg Ser Ile Phe Gly Pro Gly Gly Thr Pro Ser Leu Phe Pro Thr		
290	295	300
Ser Cys Ser Thr Lys Ser Thr Phe His Ala Val Pro Ala His Ile Trp		
305	310	315
Asp Arg Leu Met Leu Phe Gly Ala Thr Leu Asp Asp Gln Ala Phe Cys		
325	330	335
Cys Ser Arg Leu Met Thr Tyr Leu Arg Gly Ile Ser Tyr Lys Val Thr		
340	345	350
Val Gly Thr Leu Val Ala Asn Glu Gly Trp Asn Ala Ser Glu Asp Ala		
355	360	365
Leu Thr Ala Val Ile Thr Ala Ala Tyr Leu Thr Ile Cys His Gln Arg		
370	375	380
Tyr Leu Arg Thr Gln Ala Ile Ser Lys Gly Met Arg Arg Leu Glu Arg		
385	390	400
Glu His Ala Gln Lys Phe Ile Thr Arg Leu Tyr Ser Trp Leu Phe Glu		
405	410	415
Lys Ser Gly Arg Asp Tyr Ile Pro Gly Arg Gln Leu Glu Phe Tyr Ala		
420	425	430
Gln Cys Arg Arg Trp Leu Ser Ala Gly Phe His Leu Asp Pro Arg Val		
435	440	445
Leu Val Phe Asp Glu Ser Ala Pro Cys His Cys Arg Thr Ala Ile Arg		
450	455	460
Lys Ala Leu Ser Lys Phe Cys Cys Phe Met Lys Trp Leu Gly Gln Glu		
465	470	480
Cys Thr Cys Phe Leu Gln Pro Ala Glu Gly Ala Val Gly Asp Gln Gly		
485	490	495
His Asp Asn Glu Ala Tyr Glu Gly Ser Asp Val Asp Pro Ala Glu Ser		
500	505	510
Ala Ile Ser Asp Ile Ser Gly Ser Tyr Val Val Pro Gly Thr Ala Leu		
515	520	525
Gln Pro Leu Tyr Gln Ala Leu Asp Leu Pro Ala Glu Ile Val Ala Arg		
530	535	540
Ala Gly Arg Leu Thr Ala Thr Val Lys Val Ser Gln Val Asp Gly Arg		
545	550	555
Ile Asp Cys Glu Thr Leu Leu Gly Asn Lys Thr Phe Arg Thr Ser Phe		
565	570	575

Val Asp Gly Ala Val Leu Glu Thr Asn Gly Pro Glu Arg His Asn Leu
580 585 590

Ser Phe Asp Ala Ser Gln Ser Thr Met Ala Ala Gly Pro Phe Ser Leu
595 600 605

Thr Tyr Ala Ala Ser Ala Ala Gly Leu Glu Val Arg Tyr Val Ala Ala
610 615 620

Gly Leu Asp His Arg Ala Val Phe Ala Pro Gly Val Ser Pro Arg Ser
625 630 635 640

Ala Pro Gly Glu Val Thr Ala Phe Cys Ser Ala Leu Tyr Arg Phe Asn
645 650 655

Arg Glu Ala Gln Arg His Ser Leu Ile Gly Asn Leu Trp Phe His Pro
660 665 670

Glu Gly Leu Ile Gly Leu Phe Ala Pro Phe Ser Pro Gly His Val Trp
675 680 685

Glu Ser Ala Asn Pro Phe Cys Gly Glu Ser Thr Leu Tyr Thr Arg Thr
690 695 700

Trp Ser Glu Val Asp Ala Val Ser Ser Pro Ala Arg Pro Asp Leu Gly
705 710 715 720

Phe Met Ser Glu Pro Ser Ile Pro Ser Arg Ala Ala Thr Pro Thr Leu
725 730 735

Ala Ala Pro Leu Pro Pro Pro Ala Pro Asp Pro Ser Pro Pro Ser
740 745 750

Ala Pro Ala Leu Ala Glu Pro Ala Ser Gly Ala Thr Ala Gly Ala Pro
755 760 765

Ala Ile Thr His Gln Thr Ala Arg His Arg Arg Leu Leu Phe Thr Tyr
770 775 780

Pro Asp Gly Ser Lys Val Phe Ala Gly Ser Leu Phe Glu Ser Thr Cys
785 790 795 800

Thr Trp Leu Val Asn Ala Ser Asn Val Asp His Arg Pro Gly Gly
805 810 815

Leu Cys His Ala Phe Tyr Gln Arg Tyr Pro Ala Ser Phe Asp Ala Ala
820 825 830

Ser Phe Val Met Arg Asp Gly Ala Ala Ala Tyr Thr Leu Thr Pro Arg
835 840 845

Pro Ile Ile His Ala Val Ala Pro Asp Tyr Arg Leu Glu His Asn Pro
850 855 860

Lys Arg Leu Glu Ala Ala Tyr Arg Glu Thr Cys Ser Arg Leu Gly Thr
865 870 875 880

Ala Ala Tyr Pro Leu Leu Gly Thr Gly Ile Tyr Gln Val Pro Ile Gly
885 890 895

Pro Ser Phe Asp Ala Trp Glu Arg Asn His Arg Pro Gly Asp Glu Leu
900 905 910

Tyr Leu Pro Glu Leu Ala Ala Arg Trp Phe Glu Ala Asn Arg Pro Thr
 915 920 925
 Arg Pro Thr Leu Thr Ile Thr Glu Asp Val Ala Arg Thr Ala Asn Leu
 930 935 940
 Ala Ile Glu Leu Asp Ser Ala Thr Asp Val Gly Arg Ala Cys Ala Gly
 945 950 955 960
 Cys Arg Val Thr Pro Gly Val Val Gln Tyr Gln Phe Thr Ala Gly Val
 965 970 975
 Pro Gly Ser Gly Lys Ser Arg Ser Ile Thr Gln Ala Asp Val Asp Val
 980 985 990
 Val Val Val Pro Thr Arg Glu Leu Arg Asn Ala Trp Arg Arg Arg Gly
 995 1000 1005
 Phe Ala Ala Phe Thr Pro His Thr Ala Ala Arg Val Thr Gln Gly Arg
 1010 1015 1020
 Arg Val Val Ile Asp Glu Ala Pro Ser Leu Pro Pro His Leu Leu Leu
 1025 1030 1035 1040
 Leu His Met Gln Arg Ala Ala Thr Val His Leu Leu Gly Asp Pro Asn
 1045 1050 1055
 Gln Ile Pro Ala Ile Asp Phe Glu His Ala Gly Leu Val Pro Ala Ile
 1060 1065 1070
 Arg Pro Asp Leu Gly Pro Thr Ser Trp Trp His Val Thr His Arg Trp
 1075 1080 1085
 Pro Ala Asp Val Cys Glu Leu Ile Arg Gly Ala Tyr Pro Met Ile Gln
 1090 1095 1100
 Thr Thr Ser Arg Val Leu Arg Ser Leu Phe Trp Gly Glu Pro Ala Val
 1105 1110 1115 1120
 Gly Gln Lys Leu Val Phe Thr Gln Ala Ala Lys Pro Ala Asn Pro Gly
 1125 1130 1135
 Ser Val Thr Val His Glu Ala Gln Gly Ala Thr Tyr Thr Glu Thr Thr
 1140 1145 1150
 Ile Ile Ala Thr Ala Asp Ala Arg Gly Leu Ile Gln Ser Ser Arg Ala
 1155 1160 1165
 His Ala Ile Val Ala Leu Thr Arg His Thr Glu Lys Cys Val Ile Ile
 1170 1175 1180
 Asp Ala Pro Gly Leu Leu Arg Glu Val Gly Ile Ser Asp Ala Ile Val
 1185 1190 1195 1200
 Asn Asn Phe Phe Leu Ala Gly Gly Glu Ile Gly His Gln Arg Pro Ser
 1205 1210 1215
 Val Ile Pro Arg Gly Asn Pro Asp Ala Asn Val Asp Thr Leu Ala Ala
 1220 1225 1230
 Phe Pro Pro Ser Cys Gln Ile Ser Ala Phe His Gln Leu Ala Glu Glu

1235

1240

1245

Leu Gly His Arg Pro Val Pro Val Ala Ala Val Leu Pro Pro Cys Pro
 1250 1255 1260

Glu Leu Glu Gln Gly Leu Leu Tyr Leu Pro Gln Glu Leu Thr Thr Cys
 1265 1270 1275 1280

Asp Ser Val Val Thr Phe Glu Leu Thr Asp Ile Val His Cys Arg Met
 1285 1290 1295

Ala Ala Pro Ser Gln Arg Lys Ala Val Leu Ser Thr Leu Val Gly Arg
 1300 1305 1310

Tyr Gly Arg Thr Lys Leu Tyr Asn Ala Ser His Ser Asp Val Arg
 1315 1320 1325

Asp Ser Leu Ala Arg Phe Ile Pro Ala Ile Gly Pro Val Gln Val Thr
 1330 1335 1340

Thr Cys Glu Leu Tyr Glu Leu Val Glu Ala Met Val Glu Lys Gly Gln
 1345 1350 1355 1360

Asp Gly Ser Ala Val Leu Glu Leu Asp Leu Cys Asn Arg Asp Val Ser
 1365 1370 1375

Arg Ile Thr Phe Phe Gln Lys Asp Cys Asn Lys Phe Thr Thr Gly Glu
 1380 1385 1390

Thr Ile Ala His Gly Lys Val Gly Gln Gly Ile Ser Ala Trp Ser Lys
 1395 1400 1405

Thr Phe Cys Ala Leu Phe Gly Pro Trp Phe Arg Ala Ile Glu Lys Ala
 1410 1415 1420

Ile Leu Ala Leu Leu Pro Gln Gly Val Phe Tyr Gly Asp Ala Phe Asp
 1425 1430 1435 1440

Asp Thr Val Phe Ser Ala Ala Val Ala Ala Lys Ala Ser Met Val
 1445 1450 1455

Phe Glu Asn Asp Phe Ser Glu Phe Asp Ser Thr Gln Asn Asn Phe Ser
 1460 1465 1470

Leu Gly Leu Glu Cys Ala Ile Met Glu Glu Cys Gly Met Pro Gln Trp
 1475 1480 1485

Leu Ile Arg Leu Tyr His Leu Ile Arg Ser Ala Trp Ile Leu Gln Ala
 1490 1495 1500

Pro Lys Glu Ser Leu Arg Gly Phe Trp Lys Lys His Ser Gly Glu Pro
 1505 1510 1515 1520

Gly Thr Leu Leu Trp Asn Thr Val Trp Asn Met Ala Val Ile Thr His
 1525 1530 1535

Cys Tyr Asp Phe Arg Asp Phe Gln Val Ala Ala Phe Lys Gly Asp Asp
 1540 1545 1550

Ser Ile Val Leu Cys Ser Glu Tyr Arg Gln Ser Pro Gly Ala Ala Val
 1555 1560 1565

Leu Ile Ala Gly Cys Gly Leu Lys Leu Lys Val Asp Phe Arg Pro Ile
 1570 1575 1580
 Gly Leu Tyr Ala Gly Val Val Val Ala Pro Gly Leu Gly Ala Leu Pro
 1585 1590 1595 1600
 Asp Val Val Arg Phe Ala Gly Arg Leu Thr Glu Lys Asn Trp Gly Pro
 1605 1610 1615
 Gly Pro Glu Arg Ala Glu Gln Leu Arg Leu Ala Val Ser Asp Phe Leu
 1620 1625 1630
 Arg Lys Leu Thr Asn Val Ala Gln Met Cys Val Asp Val Val Ser Arg
 1635 1640 1645
 Val Tyr Gly Val Ser Pro Gly Leu Val His Asn Leu Ile Gly Met Leu
 1650 1655 1660
 Gln Ala Val Ala Asp Gly Lys Ala His Phe Thr Glu Ser Val Lys Pro
 1665 1670 1675 1680
 Val Leu Asp Leu Thr Asn Ser Ile Leu Cys Arg Val Glu
 1685 1690

(2) INFORMATION FOR SEQ ID NO:8:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 660 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Met Arg Pro Arg Pro Ile Leu Leu Leu Leu Met Phe Leu Pro Met
 1 5 10 15
 Leu Pro Ala Pro Pro Pro Gly Gln Pro Ser Gly Arg Arg Arg Gly Arg
 20 25 30
 Arg Ser Gly Gly Ser Gly Gly Gly Phe Trp Gly Asp Arg Val Asp Ser
 35 40 45
 Gln Pro Phe Ala Ile Pro Tyr Ile His Pro Thr Asn Pro Phe Ala Pro
 50 55 60
 Asp Val Thr Ala Ala Ala Gly Ala Gly Pro Arg Val Arg Gln Pro Ala
 65 70 75 80
 Arg Pro Leu Gly Ser Ala Trp Arg Asp Gln Ala Gln Arg Pro Ala Val
 85 90 95
 Ala Ser Arg Arg Arg Pro Thr Thr Ala Gly Ala Ala Pro Leu Thr Ala
 100 105 110
 Val Ala Pro Ala His Asp Thr Pro Pro Val Pro Asp Val Asp Ser Arg
 115 120 125
 Gly Ala Ile Leu Arg Arg Gln Tyr Asn Leu Ser Thr Ser Pro Leu Thr
 130 135 140

Ser Ser Val Ala Thr Gly Thr Asn Leu Val Leu Tyr Ala Ala Pro Leu
 145 150 155 160
 Ser Pro Leu Leu Pro Leu Gln Asp Gly Thr Asn Thr His Ile Met Ala
 165 170 175
 Thr Glu Ala Ser Asn Tyr Ala Gln Tyr Arg Val Ala Arg Ala Thr Ile
 180 185 190
 Arg Tyr Arg Pro Leu Val Pro Asn Ala Val Gly Gly Tyr Ala Ile Ser
 195 200 205
 Ile Ser Phe Trp Pro Gln Thr Thr Thr Pro Thr Ser Val Asp Met
 210 215 220
 Asn Ser Ile Thr Ser Thr Asp Val Arg Ile Leu Val Gln Pro Gly Ile
 225 230 235 240
 Ala Ser Glu Leu Val Ile Pro Ser Glu Arg Leu His Tyr Arg Asn Gln
 245 250 255
 Gly Trp Arg Ser Val Glu Thr Ser Gly Val Ala Glu Glu Ala Thr
 260 265 270
 Ser Gly Leu Val Met Leu Cys Ile His Gly Ser Leu Val Asn Ser Tyr
 275 280 285
 Thr Asn Thr Pro Tyr Thr Gly Ala Leu Gly Leu Leu Asp Phe Ala Leu
 290 295 300
 Glu Leu Glu Phe Arg Asn Leu Thr Pro Gly Asn Thr Asn Thr Arg Val
 305 310 315 320
 Ser Arg Tyr Ser Ser Thr Ala Arg His Arg Leu Arg Arg Gly Ala Asp
 325 330 335
 Gly Thr Ala Glu Leu Thr Thr Ala Ala Thr Arg Phe Met Lys Asp
 340 345 350
 Leu Tyr Phe Thr Ser Thr Asn Gly Val Gly Glu Ile Gly Arg Gly Ile
 355 360 365
 Ala Leu Thr Leu Phe Asn Leu Ala Asp Thr Leu Leu Gly Gly Leu Pro
 370 375 380
 Thr Glu Leu Ile Ser Ser Ala Gly Gly Gln Leu Phe Tyr Ser Arg Pro
 385 390 395 400
 Val Val Ser Ala Asn Gly Glu Pro Thr Val Lys Leu Tyr Thr Ser Val
 405 410 415
 Glu Asn Ala Gln Gln Asp Lys Gly Ile Ala Ile Pro His Asp Ile Asp
 420 425 430
 Leu Gly Glu Ser Arg Val Val Ile Gln Asp Tyr Asp Asn Gln His Glu
 435 440 445
 Gln Asp Arg Pro Thr Pro Ser Pro Ala Pro Ser Arg Pro Phe Ser Val
 450 455 460

Leu Arg Ala Asn Asp Val Leu Trp Leu Ser Leu Thr Ala Ala Glu Tyr
 465 470 475 480
 Asp Gln Ser Thr Tyr Gly Ser Ser Thr Gly Pro Val Tyr Val Ser Asp
 485 490 495
 Ser Val Thr Leu Val Asn Val Ala Thr Gly Ala Gln Ala Val Ala Arg
 500 505 510
 Ser Leu Asp Trp Thr Lys Val Thr Leu Asp Gly Arg Pro Leu Ser Thr
 515 520 525
 Ile Gln Gln Tyr Ser Lys Thr Phe Phe Val Leu Pro Leu Arg Gly Lys
 530 535 540
 Leu Ser Phe Trp Glu Ala Gly Thr Thr Lys Ala Gly Tyr Pro Tyr Asn
 545 550 555 560
 Tyr Asn Thr Thr Ala Ser Asp Gln Leu Leu Val Glu Asn Ala Ala Gly
 565 570 575
 His Arg Val Ala Ile Ser Thr Tyr Thr Ser Leu Gly Ala Gly Pro
 580 585 590
 Val Ser Ile Ser Ala Val Ala Val Leu Ala Pro His Ser Ala Leu Ala
 595 600 605
 Leu Leu Glu Asp Thr Leu Asp Tyr Pro Ala Arg Ala His Thr Phe Asp
 610 615 620
 Asp Phe Cys Pro Glu Cys Arg Pro Leu Gly Leu Gln Gly Cys Ala Phe
 625 630 635 640
 Gln Ser Thr Val Ala Glu Leu Gln Arg Leu Lys Met Lys Val Gly Lys
 645 650 655
 Thr Arg Glu Leu
 660

(2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 123 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

Met Asn Asn Met Ser Phe Ala Ala Pro Met Gly Ser Arg Pro Cys Ala
 1 5 10 15
 Leu Gly Leu Phe Cys Cys Cys Ser Ser Cys Phe Cys Leu Cys Cys Pro
 20 25 30
 Arg His Arg Pro Val Ser Arg Leu Ala Ala Val Val Gly Gly Ala Ala
 35 40 45
 Ala Val Pro Ala Val Val Ser Gly Val Thr Gly Leu Ile Leu Ser Pro
 50 55 60

Ser Gln Ser Pro Ile Phe Ile Gln Pro Thr Pro Ser Pro Pro Pro Met Ser
 65 70 75 80
 Pro Leu Arg Pro Gly Leu Asp Leu Val Phe Ala Asn Pro Pro Asp His
 85 90 95
 Ser Ala Pro Leu Gly Val Thr Arg Pro Ser Ala Pro Pro Leu Pro His
 100 105 110
 Val Val Asp Leu Pro Gln Leu Gly Pro Arg Arg
 115 120

(2) INFORMATION FOR SEQ ID NO:10:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 7171 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:

(C) INDIVIDUAL ISOLATE: Composite Mexico strain

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

GCCATGGAGG CCCACCAAGTT CATTAAGGCT CCTGGCATCA CTACTGCTAT TGAGCAAGCA	60
GCTCTAGCAG CGGCCAACTC CGCCCTTGCG AATGCTGTGG TGGTCCGGCC TTTCCCTTCC	120
CATCAGCAGG TTGAGATCCT TATAAAATCTC ATGCAACCTC GGCAGCTGGT GTTTCGTCT	180
GAGGTTTTT GGAATCACCC GATTCAACGT GTTATACATA ATGAGCTTGA GCAGTATTGC	240
CGTGCTCGCT CGGGTCGCTG CCTTGAGATT GGAGCCCACC CACGCTCCAT TAATGATAAT	300
CCTAATGTCC TCCATCGCTG CTTTCTCCAC CCCGTCGGCC GGGATGTTCA GCGCTGGTAC	360
ACAGCCCCGA CTAGGGGACC TGCGGCGAAC TGTCGCCGCT CGGCACTTCG TGGTCTGCCA	420
CCAGCCGACC GCACTTACTG TTTTGATGGC TTTGCCGGCT GCCGTTTGC CGCCGAGACT	480
GGTGTGGCTC TCTATTCTCT CCATGACTTG CAGCCGGCTG ATGTTGCCGA GGCGATGGCT	540
CGCCACGGCA TGACCCGCCT TTATGCAGCT TTCCACTTGC CTCCAGAGGT GCTCCTGCCT	600
CCTGGCACCT ACCGGACATC ATCCTACTTG CTGATCCACG ATGGTAAGCG CGCGGTTGTC	660
ACTTATGAGG GTGACACTAG CGCCGGTTAC AATCATGATG TTGCCACCCCT CGGCACATGG	720
ATCAGGACAA CTAAGGTTGT GGGTGAACAC CCTTTGGTGA TCGAGCGGGT GCGGGGTATT	780
GGCTGTCACT TTGTGTTGTT GATCACTGCG GCCCCTGAGC CCTCCCCGAT GCCCTACGTT	840
CCTTACCCGC GTTCGACGGA GGTCTATGTC CGGTCTATCT TTGGGCCCGG CGGGTCCCCG	900

TCGCTGTTCC CGACCGCTTG TGCTGTCAAG TCCACTTTTC ACGCCGTCCC CACGCACATC	960
TGGGACCGTC TCATGCTCTT TGGGGCCACC CTCGACGACC AGGCCTTTG CTGCTCCAGG	1020
CTTATGACGT ACCTTCGTGG CATTAGCTAT AAGGTAAC TG GGGTGCCT GGTCGCTAAT	1080
GAAGGCTGGA ATGCCACCGA GGATGCGCTC ACTGCAGTTA TTACGGCGGC TTACCTCACA	1140
ATATGTCATC AGCGTTATTT GCGGACCCAG GCGATTCTA AGGGCATGCG CCGGCTTGAG	1200
CTTGAACATG CTCAGAAATT TATTCACCGC CTCTACAGCT GGCTATTGA GAAGTCAGGT	1260
CGTGATTACA TCCCAGGCCG CCAGCTGCAG TTCTACGCTC AGTGCAGGCCG CTGGTTATCT	1320
GCGGGTTCC ATCTCGACCC CCGCACCTTA GTTTTGATG AGTCAGTGCC TTGTAGCTGC	1380
CGAACACCACCA TCCGGCGGAT CGCTGGAAAA TTTTGCTGTT TTATGAAGTG GCTCGGTAG	1440
GAGTGTCTT GTTTCTCCA GCCCGCCGAG GGGCTGGCGG GCGACCAAGG TCATGACAAT	1500
GAGGCCTATG AAGGCTCTGA TGTTGATACT GCTGAGCCTG CCACCCCTAGA CATTACAGGC	1560
TCATACATCG TGGATGGTCG GTCTCTGCAA ACTGTCTATC AAGCTCTCGA CCTGCCAGCT	1620
GACCTGGTAG CTCGCGCAGC CCGACTGTCT GCTACAGTTA CTGTTACTGA AACCTCTGGC	1680
CGTCTGGATT GCCAAACAAT GATCGGCAAT AAGACTTTTC TCACTACCTT TGTTGATGGG	1740
GCACGCCTTG AGGTTAACGG GCCTGAGCAG CTTAACCTCT CTTTGACAG CCAGCAGTGT	1800
AGTATGGCAG CCGGCCCCGTT TTGCCTCACC TATGCTGCCG TAGATGGCGG GCTGGAAGTT	1860
CATTTTCCA CCGCTGGCCT CGAGAGCCGT GTTGTGTTCC CCCCTGGTAA TGCCCCGACT	1920
GCCCCGCCGA GTGAGGTCAC CGCCTCTGC TCAGCTCTT ATAGGCACAA CCGGCAGAGC	1980
CAGCCGCAGT CGGTTATTGG TAGTTGCTGG CTGCACCCCTG AAGGTTGCT CGGCCTGTT	2040
CCGCCCTTTT CACCCGGGCA TGAGTGGCGG TCTGCTAACCC CATTGCGGG CGAGAGCACG	2100
CTCTACACCC GCACTGGTC CACAATTACA GACACACCCCT TAACTGTCGG GCTAATTTC	2160
GGTCATTGG ATGCTGCTCC CCACTCGGGG GGGCACCTG CTACTGCCAC AGGCCCTGCT	2220
GTAGGCTCGT CTGACTCTCC AGACCCTGAC CCGCTACCTG ATGTTACAGA TGGCTCACGC	2280
CCCTCTGGGG CCCGTCCGGC TGGCCCCAAC CCGAATGGCG TTCCGCAGCG CCGCTTACTA	2340
CACACCTACC CTGACGGCGC TAAGATCTAT GTCGGCTCCA TTTTCGAGTC TGAGTGCACC	2400
TGGCTTGTC ACGCATCTAA CGCCGGCCAC CGCCCTGGTG GCGGGCTTTG TCATGCTTT	2460
TTTCAGCGTT ACCCTGATTC GTTGACGCC ACCAAGTTTG TGATGCGTGA TGGCTTGCC	2520
CGGTATACCC TTACACCCCG GCCGATCATT CATGCGGTGG CCCCAGACTA TCGATTGGAA	2580
CATAACCCCA AGAGGCTCGA GGCTGCCTAC CGCGAGACTT GCGCCCGCCG AGGCAGTGCT	2640
GCCTATCCAC TCTTAGGGCGC TGGCATTAC CAGGTGCCTG TTAGTTGAG TTTTGATGCC	2700
TGGGAGCGGA ACCACCGCCC GTTGACGAG CTTTACCTAA CAGAGCTGGC GGCTCGGTGG	2760

TTTGAATCCA ACCGCCCGG TCAGCCCACG TTGAACATAA CTGAGGATAC CGCCCGTGCG	2820
GCCAAACCTGG CCCTGGAGCT TGACTCCGGG AGTGAAGTAG GCGCGCATG TGCCGGGTGT	2880
AAAGTCGAGC CTGGCGTTGT GCGGTATCAG TTTACAGCCG GTGTCCCCGG CTCTGGCAAG	2940
TCAAAGTCCG TGCAACAGGC GGATGTGGAT GTTGTGTTG TGCCCACTCG CGAGCTTCGG	3000
AACGCTTGGC GGCGCCGGGG CTTTGCAGCA TTCACTCCGC ACACTGCGGC CCGTGTCACT	3060
AGCGGCCGTA GGGTTGTCAT TGATGAGGCC CCTTCGCTCC CCCCCACACTT GCTGCTTTA	3120
CATATGCAGC GTGCTGCATC TGTGCACCTC CTTGGGGACC CGAACATCAGAT CCCC GCCATA	3180
GATTTTGAGC ACACCGGTCT GATTCCAGCA ATACGGCCGG AGTTGGTCCC GACTTCATGG	3240
TGGCATGTCA CCCACCGTTG CCCTGCAGAT GTCTGTGAGT TAGTCCGTGG TGCTTACCC	3300
AAAATCCAGA CTACAAGTAA GGTGCTCCGT TCCCTTTCT GGGGAGAGCC AGCTGTCGGC	3360
CAGAAGCTAG TGTTCACACA GGCTGCTAAG GCCGCGCACC CCGGATCTAT AACGGTCCAT	3420
GAGGCCAGG GTGCCACTTT TACCACTACA ACTATAATTG CAACTGCAGA TGCCCGTGGC	3480
CTCATACAGT CCTCCCGGGC TCACGCTATA GTTGCTCTCA CTAGGCATAC TGAAAAATGT	3540
GTTATACTTG ACTCTCCGG CCTGTTGCGT GAGGTGGTA TCTCAGATGC CATTGTTAAT	3600
AATTCTTCC TTTCGGGTGG CGAGGTTGGT CACCAGAGAC CATCGGTCA TCCGCGAGGC	3660
AACCCTGACC GCAATGTTGA CGTGCTTGCG GCGTTCCAC CTTCATGCCA AATAAGCGCC	3720
TTCCATCAGC TTGCTGAGGA GCTGGGCCAC CGGCCGGCGC CGGTGGCGGC TGTGCTACCT	3780
CCCTGCCCTG AGCTTGAGCA GGGCCTTCTC TATCTGCCAC AGGAGCTAGC CTCCTGTGAC	3840
AGTGTGTTGA CATTGAGCT AACTGACATT GTGCACTGCC GCATGGCGGC CCCTAGCCAA	3900
AGGAAAGCTG TTTTGTCCAC GCTGGTAGGC CGGTATGGCA GACGCACAAG GCTTTATGAT	3960
GCGGGTCACA CCGATGTCCG CGCCTCCCTT GCGCGTTTA TTCCCACCTCT CGGGCGGGTT	4020
ACTGCCACCA CCTGTGAACCT TTTGAGCTT GTAGAGGCGA TGGTGGAGAA GGGCCAAGAC	4080
GGTTCAGCCG TCCTCGAGTT GGATTTGTGC AGCCGAGATG TCTCCCGCAT AACCTTTTC	4140
CAGAAGGATT GTAACAAGTT CACGACCGGC GAGACAATTG CGCATGGCAA AGTCGGTCAG	4200
GGTATCTTCC GCTGGAGTAA GACGTTTGT GCCCTGTTG GCCCCTGGTT CCGTGCAGATT	4260
GAGAAGGCTA TTCTATCCCT TTTACCACAA GCTGTGTTCT ACGGGGATGC TTATGACGAC	4320
TCAGTATTCT CTGCTGCCGT GGCTGGCGCC AGCCATGCCA TGGTGTGTTGA AAATGATT	4380
TCTGAGTTTG ACTCGACTCA GAATAACTTT TCCCTAGGTC TTGAGTGCAG CATTATGGAA	4440
GAGTGTGGTA TGCCCCAGTG GCTTGTCAAGG TTGTACCATG CCGTCCGGTC GGCGTGGATC	4500
CTGCAGGCC CAAAAGAGTC TTTGAGAGGG TTCTGGAAGA AGCATTCTGG TGAGCCGGGC	4560
AGCTTGCTCT GGAATACGGT GTGGAACATG GCAATCATTG CCCATTGCTA TGAGTTCCGG	4620

GACCTCCAGG TTGCCGCCTT CAAGGGCGAC GACTCGGTCG TCCTCTGTAG TGAATACCGC	4680
CAGAGCCCAG CGGCCGGTTC GCTTATAGCA GGCTGTGGTT TGAAGTTGAA GGCTGACTTC	4740
CGGCCGATTG GGCTGTATGC CGGGGTTGTC GTGCCCGCGG GGCTCGGGGC CCTACCCGAT	4800
GTCGTTCGAT TCGCCGGACG GCTTCGGAG AAGAACTGGG GCCCTGATCC GGAGCGGGCA	4860
GAGCAGCTCC GCCTCGCCGT GCAGGATTTC CTCCGTAGGT TAACGAATGT GGCCCAGATT	4920
TGTGTTGAGG TGGTGTCTAG AGTTTACGGG GTTTCCCCGG GTCTGGTTCA TAACCTGATA	4980
GGCATGCTCC AGACTATTGG TGATGGTAAG GCGCATTAA CAGAGTCTGT TAAGCCTATA	5040
CTTGACCTTA CACACTCAAT TATGCACCGG TCTGAATGAA TAACATGTGG TTTGCTGCGC	5100
CCATGGGTTTC GCCACCATGC GCCCTAGGCC TCTTTGCTG TTGTTCTCT TGTTTCTGCC	5160
TATGTTGCCCG GCGCCACCGA CCGGTCAGCC GTCTGGCCGC CGTCGTGGGC GGCGCAGCGG	5220
CGGTACCGGC GGTGGTTCT GGGGTGACCG GGTTGATTCT CAGCCCTTCG CAATCCCCTA	5280
TATTCATCCA ACCAACCCCT TTGCCCCAGA CGTTGCCGCT GCGTCCGGGT CTGGACCTCG	5340
CCTTCGCCAA CCAGCCCGGC CACTTGGCTC CACTTGGCGA GATCAGGCC AGCGCCCTC	5400
CGCTGCCTCC CGTCGCCGAC CTGCCACAGC CGGGGCTGCG GCGCTGACGG CTGTGGGCC	5460
TGCCCCATGAC ACCTCACCCG TCCCGGACGT TGATTCTCGC GGTGCAATT TACGCCGCCA	5520
GTATAATTG TCTACTTCAC CCCTGACATC CTCTGTGGCC TCTGGCACTA ATTTAGTCCT	5580
GTATGCAGCC CCCCTTAATC CGCCTCTGCC GCTGCAGGAC GGTACTAATA CTCACATTAT	5640
GGCCACAGAG GCCTCCAATT ATGCACAGTA CCGGGTTGCC CGCGCTACTA TCCGTTACCG	5700
GCCCCTAGTG CCTAATGCAG TTGGAGGCTA TGCTATATCC ATTTCTTCT GGCCTCAAAC	5760
AACCACAACC CCTACATCTG TTGACATGAA TTCCATTACT TCCACTGATG TCAGGATTCT	5820
TGTTCAACCT GGCATAGCAT CTGAATTGGT CATCCAAGC GAGCGCCTTC ACTACCGCAA	5880
TCAAGGGTGG CGCTCGGTTG AGACATCTGG TGTTGCTGAG GAGGAAGCCA CCTCCGGTCT	5940
TGTCATGTTA TGCATACATG GCTCTCCAGT TAACTCCTAT ACCAATACCC CTTATACCGG	6000
TGCCCTTGGC TTACTGGACT TTGCCTAGA GCTTGAGTT CGCAATCTCA CCACCTGTAA	6060
CACCAATACA CGTGTGTCCC GTTACTCCAG CACTGCTCGT CACTCCGCC GAGGGGCCGA	6120
CGGGACTGCG GAGCTGACCA CAACTGCAGC CACCAGGTT ATGAAAGATC TCCACTTAC	6180
CGGCCTTAAT GGGGTAGGTG AAGTCGGCCG CGGGATAGCT CTAACATTAC TTAACCTTGC	6240
TGACACGCTC CTCGGCGGGC TCCCGACAGA ATTAATTTCG TCGGCTGGCG GGCAACTGTT	6300
TTATTCCCGC CCGGTTGTCT CAGCCAATGG CGAGCCAACC GTGAAGCTCT ATACATCAGT	6360
GGAGAATGCT CAGCAGGATA AGGGTGTGC TATCCCCAC GATATCGATC TTGGTGATTC	6420
GCGTGTGGTC ATTCAAGGATT ATGACAACCA GCATGAGCAG GATCGGCCCA CCCCGTCGCC	6480

TGCGCCATCT CGGCCTTTT CTGTTCTCCG AGCAAATGAT GTACTTGCG TGTCCTCAC	6540
TGCAGCCGAG TATGACCAGT CCACTTACGG GTCGTCAACT GGCCCGGTTT ATATCTCGGA	6600
CAGCGTGACT TTGGTGAATG TTGCGACTGG CGCGCAGGCC GTAGCCCGAT CGCTTGACTG	6660
GTCCAAAGTC ACCCTCGACG GGCGGCCCC CCCGACTGTT GAGCAATATT CCAAGACATT	6720
CTTTGTGCTC CCCCTTCGTG GCAAGCTCTC CTTTTGGAG GCCGGCACAA CAAAAGCAGG	6780
TTATCCTTAT AATTATAATA CTACTGCTAG TGACCAGATT CTGATTGAAA ATGCTGCCGG	6840
CCATCGGGTC GCCATTCAA CCTATACCAC CAGGCTTGGG GCCGGTCCGG TCGCCATTTC	6900
TGCGGCCGCG GTTTGGCTC CACGCTCCGC CCTGGCTCTG CTGGAGGATA CTTTGATTA	6960
TCCGGGGCGG GCGCACACAT TTGATGACTT CTGCCCTGAA TGCCGCGCTT TAGGCCTCCA	7020
GGGTTGTGCT TTCCAGTCAA CTGTCGCTGA GCTCCAGCGC CTTAAAGTTA AGGTGGGTAA	7080
AACTCGGGAG TTGTAGTTA TTTGGCTGTG CCCACCTACT TATATCTGCT GATTCCTTT	7140
ATTCCTTT TCTCGGTCCC GCGCTCCCTG A	7171

(2) INFORMATION FOR SEQ ID NO:11:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1575 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:

(C) INDIVIDUAL ISOLATE: T: Mexican strain

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

GTTGCGTGAG GTGGGTATCT CAGATGCCAT TGTTAATAAT TTCTTCCTTT CGGGTGGCGA	60
GGTTGGTCAC CAGAGACCAT CGGTCAATTCC GCGAGGCAAC CCTGACCGCA ATGTTGACGT	120
GCTTGCAGCG TTTCCACCTT CATGCCAAAT AAGGCCCTTC CATCAGCTTG CTGAGGAGCT	180
GGGCCACCGG CGCGGCCGG TGGCGGCTGT GCTACCTCCC TGCCCTGAGC TTGAGCAGGG	240
CCTTCTCTAT CTGCCACAGG AGCTAGCCTC CTGTGACAGT GTTGTGACAT TTGAGCTAAC	300
TGACATTGTG CACTGCCGCA TGGCGGCCCG TAGCCAAAGG AAAGCTGTT TGTCCACGCT	360
GGTAGGCCGG TATGGCAGAC GCACAAGGCT TTATGATGCG GGTACACCCG ATGTCCGCGC	420
CTCCCTTGCG CGCTTATTTC CCACTCTCGG GCGGGTTACT GCCACCACCT GTGAACCTT	480
TGAGCTTGTA GAGGCGATGG TGGAGAAGGG CCAAGACGGT TCAGCCGTCC TCGAGTTGGA	540

TTTGTGCAGC CGAGATGTCT CCCGCATAAC CTTTTCCAG AAGGATTGTA ACAAGTCAC	600
GACCGGGCGAG ACAATTGCGC ATGGCAAAGT CGGTCAAGGT ATCTTCCGCT GGAGTAAGAC	660
CTTTGTGCC CTGTTGGCC CCTGGTCCG TGCGATTGAG AAGGCTATTG TATCCCTTT	720
ACCACAAGCT GTGTTCTACG GGGATGCTTA TGACGACTCA GTATTCTCTG CTGCCGTGGC	780
TGGCGCCAGC CATGCCATGG TGTTGAAAA TGATTTCT GAGTTGACT CGACTCAGAA	840
TAACCTTCC CTAGGTCTTG AGTGCACCAT TATGGAAGAG TGTGGTATGC CCCAGTGGCT	900
TGTCAGGTTG TACCATGCCG TCCGGTCGGC GTGGATCCTG CAGGCCCAA AAGAGTCTTT	960
GAGAGGGTTC TGGAAGAAC ATTCTGGTGA GCCGGCACG TTGCTCTGGA ATACGGTGTG	1020
GAACATGGCA ATCATTGCC ATTGCTATGA GTTCCGGGAC CTCCAGGTTG CCGCCTCAA	1080
GGCGACGAC TCGGTCGTCC TCTGTAGTGA ATACGCCAG AGCCCAGGCG CCGGTTCGCT	1140
TATAGCAGGC TGTGGTTGA AGTTGAAGGC TGACTTCCGG CCGATTGGGC TGTATGCCGG	1200
GGTTGTCGTC GCCCCGGGGC TCGGGGCCCT ACCCGATGTC GTTCGATTG CCGGACGGCT	1260
TTCGGAGAAG AACTGGGGGC CTGATCCGGA GCGGGCAGAG CAGCTCCGCC TCGCCGTGCA	1320
GGATTCCTC CGTAGGTTAA CGAATGTGGC CCAGATTGT GTTGAGGTGG TGTCTAGAGT	1380
TTACGGGGTT TCCCCGGGTC TGGTCATAA CCTGATAGGC ATGCTCCAGA CTATTGGTGA	1440
TGGTAAGGCG CATTTCACAG AGTCTGTTAA GCCTATACTT GACCTTACAC ACTCAATTAT	1500
GCACCGGTCT GAATGAATAA CATGTGGTTT GCTGCGCCCA TGGGTTCGCC ACCATGCGCC	1560
CTAGGCCTCT TTTGC	1575

(2) INFORMATION FOR SEQ ID NO:12:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 874 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:
 (C) INDIVIDUAL ISOLATE: Tashkent strain

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

CGGGCCCCGT ACAGGTCACA ACCTGTGAGT TGTACGAGCT AGTGGAGGCC ATGGTCGAGA	60
AAGGCCAGGA TGGCTCCGCC GTCCTTGAGC TCGATCTCTG CAACCGTGAC GTGTCCAGGA	120
TCACCTTTT CCAGAAAGAT TGCAATAAGT TCACCACGGG AGAGACCATC GCCCATGGTA	180

AAGTGGGCCA	GGGCATTCG	GCCTGGAGTA	AGACCTTCTG	TGCCCTTTG	GGCCCTGGT	240
TCCGTGCTAT	TGAGAAGGCT	ATTCTGGCCC	TGCTCCCTCA	GGGTGTGTTT	TATGGGGATG	300
CCTTGATGA	CACCGTCTTC	TCGGCGCGTG	TGGCCGCAGC	AAAGGCGTCC	ATGGTGTGTTG	360
AGAATGACTT	TTCTGAGTTT	GACTCCACCC	AGAATAATT	TTCCCTGGGC	CTAGAGTGTG	420
CTATTATGGA	GAAGTGTGGG	ATGCCGAAGT	GGCTCATCCG	CTTGTACCAC	CTTATAAGGT	480
CTGCGTGGAT	CCTGCAGGCC	CCGAAGGAGT	CCCTGCGAGG	GTGTTGGAAG	AAACACTCCG	540
GTGAGCCCCG	CACTCTTCTA	TGGAATACTG	TCTGGAACAT	GGCCGTTATC	ACCCATTGTT	600
ACGATTTCGG	CGATTGCGAG	GTGGCTGCCT	TTAAAGGTGA	TGATTGATA	GTGCTTGCA	660
GTGAGTACCG	TCAGAGTCCA	GGGGCTGCTG	TCCTGATTGC	TGGCTGTGGC	TTAAAGCTGA	720
AGGTGGGTTT	CCGTCCGATT	GGTTTGTATG	CAGGTGTTGT	GGTGACCCCC	GGCCTGGCG	780
CGCTTCCCGA	CGTCGTGCGC	TTGTCCGGCC	GGCTTACTGA	GAAGAATTGG	GGCCCTGGCC	840
CTGAGCGGGC	GGAGCAGCTC	CGCCTTGCTG	TGCG			874

(2) INFORMATION FOR SEQ ID NO:13:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 449 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA to mRNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:

(C) INDIVIDUAL ISOLATE: Clone 406.4-2 cDNA

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 2..100

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

C	GCC	AAC	CAG	CCC	GGC	CAC	TTG	GCT	CCA	CTT	GGC	GAG	ATC	AGG	CCC	46
	Ala	Asn	Gln	Pro	Gly	His	Leu	Ala	Pro	Leu	Gly	Glu	Ile	Arg	Pro	
	1			5				10					15			
AGC	GCC	CCT	CCG	CTG	CCT	CCC	GTC	GCC	GAC	CTG	CCA	CAG	CCG	GGG	CTG	94
Ser	Ala	Pro	Pro	Leu	Pro	Pro	Val	Ala	Asp	Leu	Pro	Gln	Pro	Gly	Leu	
				20					25				30			
CGG	CGC	TGACGGCTGT	GGCGCCTGCC	CATGACACCT	CACCCGTCCC	GGACGTTGAT		150								
Arg	Arg															
TCTCGCGGTG	CAATTCTACG	CCGCCAGTAT	AATTTGTCTA	CTTCACCCCT	GACATCCTCT		210									

GTGGCCTCTG GCACTAATT AGTCCTGTAT GCAGCCCCC TTAATCCGCC TCTGCCGCTG	270
CAGGACGGTA CTAATACTCA CATTATGGCC ACAGAGGCCT CCAATTATGC ACAGTACCGG	330
GTTGCCCGCG CTACTATCCG TTACCGGCC CTAGTGCCTA ATGCAGTTGG AGGCTATGCT	390
ATATCCATT CTTCTGGCC TCAAACAACC ACAACCCCTA CATCTGTTGA CATGAATT	449

(2) INFORMATION FOR SEQ ID NO:14:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 33 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

Ala Asn Gln Pro Gly His Leu Ala Pro Leu Gly Glu Ile Arg Pro Ser	
1 5 10 15	

Ala Pro Pro Leu Pro Pro Val Ala Asp Leu Pro Gln Pro Gly Leu Arg	
20 25 30	

Arg

(2) INFORMATION FOR SEQ ID NO:15:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 130 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA to mRNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:

(C) INDIVIDUAL ISOLATE: Clone 406.3-2

(ix) FEATURE:

(A) NAME/KEY: CDS
 (B) LOCATION: 5..130

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

GGAT ACT TTT GAT TAT CCG GGG CGG GCG CAC ACA TTT GAT GAC TTC TGC	49
Thr Phe Asp Tyr Pro Gly Arg Ala His Thr Phe Asp Asp Phe Cys	
1 5 10 15	

CCT GAA TGC CGC GCT TTA GGC CTC CAG GGT TGT GCT TTC CAG TCA ACT	97
Pro Glu Cys Arg Ala Leu Gly Leu Gln Gly Cys Ala Phe Gln Ser Thr	
20 25 30	

GTC GCT GAG CTC CAG CGC CTT AAA GTT AAG GTT	130
---	-----

Val Ala Glu Leu Gln Arg Leu Lys Val Lys Val
35 40

(2) INFORMATION FOR SEQ ID NO:16:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 42 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

Thr Phe Asp Tyr Pro Gly Arg Ala His Thr Phe Asp Asp Phe Cys Pro
1 5 10 15

Glu Cys Arg Ala Leu Gly Leu Gln Gly Cys Ala Phe Gln Ser Thr Val
20 25 30

Ala Glu Leu Gln Arg Leu Lys Val Lys Val
35 40

(2) INFORMATION FOR SEQ ID NO:17:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 33 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:

(C) INDIVIDUAL ISOLATE: 406.4-2 epitope - Mexican strain

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

Ala Asn Gln Pro Gly His Leu Ala Pro Leu Gly Glu Ile Arg Pro Ser
1 5 10 15

Ala Pro Pro Leu Pro Pro Val Ala Asp Leu Pro Gln Pro Gly Leu Arg
20 25 30

Arg

(2) INFORMATION FOR SEQ ID NO:18:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 33 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: unknown

- (ii) MOLECULE TYPE: peptide
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (C) INDIVIDUAL ISOLATE: 406.4-2 epitope - Burma strain

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

Ala Asn Pro Pro Asp His Ser Ala Pro Leu Gly Val Thr Arg Pro Ser
1 5 10 15

Ala Pro Pro Leu Pro His Val Val Asp Leu Pro Gln Leu Gly Pro Arg
20 25 30

Arg

(2) INFORMATION FOR SEQ ID NO:19:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 42 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: unknown

- (ii) MOLECULE TYPE: peptide

- (iii) HYPOTHETICAL: NO

- (iv) ANTI-SENSE: NO

- (vi) ORIGINAL SOURCE:
 - (C) INDIVIDUAL ISOLATE: 406.3-2 epitope - Mexican strain

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

Thr Phe Asp Tyr Pro Gly Arg Ala His Thr Phe Asp Asp Phe Cys Pro
1 5 10 15

Glu Cys Arg Ala Leu Gly Leu Gln Gly Cys Ala Phe Gln Ser Thr Val
20 25 30

Ala Glu Leu Gln Arg Leu Lys Val Lys Val
35 40

(2) INFORMATION FOR SEQ ID NO:20:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 42 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: unknown

- (ii) MOLECULE TYPE: peptide

- (iii) HYPOTHETICAL: NO

- (iv) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:

(C) INDIVIDUAL ISOLATE: 406.3-2 epitope - Burma strain

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

Thr Leu Asp Tyr Pro Ala Arg Ala His Thr Phe Asp Asp Phe Cys Pro
1 5 10 15

Glu Cys Arg Pro Leu Gly Leu Gln Gly Cys Ala Phe Gln Ser Thr Val
20 25 30

Ala Glu Leu Gln Arg Leu Lys Met Lys Val
35 40