Design and Modeling of Fluid Power Systems ME 597/ABE 591 - Lecture 13

Dr. Monika Ivantysynova MAHA Professor Fluid Power Systems

MAHA Fluid Power Research Center Purdue University

Displacement Controlled Systems

- Design and modeling of electrohydraulic pump control system
- Displacement controlled linear actuator
- Displacement controlled rotary actuator
- Secundary controlled actuator

Swash plate control system

Electrohydraulic swash plate control system

Swash plate moment M_{Sx}

$$M_{Sx} = \frac{R}{\cos^2 \beta} \cdot \sum_{i=1}^{z} F_{AKi} \cos \varphi_i$$

$$Q_{S} = f(\Delta p, n, V_{i}, \mu)$$

f(p_i) instantaneous cylinder pressure

$$F_{AK} = F_{DK} + F_{aK} + F_{TK}$$

$$\frac{dp}{d\boldsymbol{\varphi}} = -\frac{K}{\boldsymbol{\omega}} \left(\frac{\boldsymbol{v}_{K} \cdot \boldsymbol{A}_{K} - \boldsymbol{Q}_{r} - \boldsymbol{Q}_{SK} - \boldsymbol{Q}_{SB} - \boldsymbol{Q}_{SG}}{\boldsymbol{V}_{0} - \boldsymbol{s}_{K} \cdot \boldsymbol{A}_{K}} \right)$$

$$F_{DK} = A_K \cdot (\boldsymbol{p} - \boldsymbol{p}_e)$$

$$M_{Sx} = f(\Delta p, n, V_i, \mu) /$$

Real profile
$$\varphi$$

 $d\varphi = \omega \cdot dt$

Swash plate moment M_{Sx}

$$M_{Sx} = \frac{R}{\cos^2 \beta} \cdot \sum_{i=1}^{z} F_{AKi} \cdot \cos \varphi_i$$

$$V_i = 20 \%$$

$$V_i = 100 \%$$

$$V_i = 100 \%$$

$$Angle \varphi [deg]$$

$$\Delta p = 300 \text{ bar}$$

$$n = 2000 \text{ rpm}$$

$$M_{Sx} = f \langle p, n, V_i, \mu \rangle$$

Design and Modeling of Fluid Power Systems, ME 597/ABE 591

Influence of the Valve Plate Design

$$M_{Sx} = f \Phi$$

Swash Plate Control Mechanism

$$H = 2 \cdot x_{\text{max}} = 2 \cdot r_c \cdot \tan \beta_{\text{max}}$$
 (2)

Connecting rod less

Connecting rod joint

Swash Plate Bearing Design Examples

Swash Plate Bearing — Design Examples

In case of variable displacement pumps very often radial bearings are used

Swash plate

swash plate bearing

$$F_{S} = \sqrt{F_{Sy}^2 + F_{Sz}^2} \qquad M_{Sz} = -R \cdot \left($$

Swash Plate Bearing — Design

Swash plate control cylinder $H = 2 \cdot x_{max} = 2 \cdot r_c \cdot \tan \beta_{max}$

m... moveable mass
$$m \cdot \frac{d^2x}{dt^2} + d \cdot \frac{dx}{dt} + F + c \cdot x = A(p_A - p_B)$$

d... coefficient of viscous friction

$$M_{Sx} = \frac{R}{\cos^2 \beta} \cdot \sum_{i=1}^{z} F_{AKi} \cdot \cos \varphi_i$$

$$\frac{dp_A}{dt} = \frac{1}{C_{HA}} \left(Q_A - Q_{Si} - A \cdot \frac{dx}{dt} \right)$$

$$\frac{dp_{B}}{dt} = \frac{1}{C_{HB}} \left(-Q_{B} + Q_{Si} + A \cdot \frac{dx}{dt} \right)$$

$$C_{\mathit{HA}} = rac{V_{\mathit{deadA}} + A \cdot ig(x_{\max} + xig)}{K}$$

$$C_{HB} = \frac{V_{deadB} + A \cdot (x_{max} - x)}{K}$$

 p_{nomSV} =70 bar

 $p_L = p_A - p_B$

 $Q = Q_A = Q_B$

Selection of control valve

Valve size:

$$Q_{nom} = B \cdot y_{max} \sqrt{\frac{p_{nom}}{2}} B = \alpha_D \cdot \pi \cdot d \cdot \sqrt{\frac{2}{\rho}}$$

Required flow rate:

$$Q = A \cdot \dot{x}_{\text{max}} \qquad \dot{x}_{\text{max}} = Q \cdot \sqrt{\frac{p_{\text{nom}}}{p_0 - p_L}}$$

$$B = \alpha_D \cdot \pi \cdot d \cdot \underline{}$$

$$= \frac{2 \cdot x_{\text{max}}}{t}$$

$$\frac{z x_{\text{max}}}{t_{\text{min}}}$$

Linear Drive

Main design requirements:

- Low power
- High bandwidth

 $Q_{nom} = Q \cdot \sqrt{\frac{p_{nom}}{p_0 - p_L}}$

Maximal flow rate

• Min time t_{min} for $\beta=0$ to $\beta=\beta_{max}$ (20 ms up to 200 ms)

$$\dot{x} = \hat{x} \cdot \omega \cdot \cos \left(\boldsymbol{\psi} \cdot \boldsymbol{t} \right)$$

$$\ddot{x} = -\hat{x} \cdot \omega^2 \cdot \sin \left(\boldsymbol{\phi} \cdot \boldsymbol{t} \right)$$

Servovalve input current

$$i = \hat{i} \cdot \sin \phi \cdot t$$

Pressure required to realized necessary acceleration

$$A \cdot p_{\ddot{x}} = m \cdot \ddot{x}$$

$$p_{\ddot{x}} = \frac{m}{A} \cdot \hat{x} \cdot \omega^2 \cdot \sin \left(\boldsymbol{\phi} \cdot t \right)$$

Pressure required for velocity

$$A \cdot \dot{x} = Q_{nom} \cdot \sqrt{\frac{p_{\dot{x}}}{p_{nom}}}$$

$$A \cdot \dot{x} = Q_{nom} \cdot \sqrt{\frac{p_{\dot{x}}}{p_{nom}}} \qquad p_{\dot{x}} = \frac{p_{nom}}{Q_{nom}^2} \cdot (\cdot \omega \cdot \cos (\cdot t) \cdot A^2)$$

Maximal value

$$\frac{dp_{dyn}}{dt} = 0$$

$$\frac{dp_{dyn}}{dt} = \frac{p_{nom}}{Q_{nom}^2} \cdot \hat{x}^2 \cdot \omega^3 \cdot 2 \cdot \cos \boldsymbol{\phi} \cdot t \sin \boldsymbol{\phi} \cdot t A^2 + \frac{m}{A} \cdot \hat{x} \cdot \omega^3 \cdot \cos \boldsymbol{\phi} \cdot t = 0$$

Maximal value
$$\implies \sin \bullet \cdot t = \frac{m \cdot Q_{nom}^2}{2 \cdot p_{nom} \cdot \hat{x} \cdot A^3}$$

Swash plate moment M_{Sx}

Supply pressure p₀

$$F = \frac{M_{sx}}{r_c}$$

Effective piston area of control cylinder

Response time, adjusting time

Servovalve or proportional valve size

Swash plate controller

Displacement controlled actuator

Advanced Energy Saving Actuator Technology

Successfully tested on laboratory test rig

New Valveless Rotary Actuator

Design and Modeling of Fluid Power Systems, ME 597/ABE 591

Displacement controlled actuator

Pump control instead valve control

What are the advantages?

New Linear Actuator

Better Utilization of Primary Energy

Energy Recovery

Easier to Control

System Simplification

Less weight & space

Less fuel consumption

Displacement controlled actuator

Displacement Controlled Linear Actuator

Using a Differential Cylinder

New linear actuator with single road cylinder

Joint Low Pressure Net for Connected Actuators

Displacement controlled rotary actuator

Possible applications?

Steering System

Stabilizer – roll control

Vehicle Suspension System – active damping control

Power Split Drive Technology using Hydrostatic Transmission

Cabriolet Roof Actuation and others

Systems with linear or rotary actuator movement

Active roll stabilization

Valve controlled system

Active roll stabilization

Alternative Solution

Fuel savings by valveless actuator technology

EHA with fixed displacement pump

Examples - Primary Flight Control

EHA with variable displacement pump

Secondary controlled actuator

Requires constant pressure supply

$$M_{Sx} = \frac{R}{\cos^2 \beta} \cdot \sum_{i=1}^{z} F_{AKi} \cdot \cos \varphi_i$$

Displacement Controlled Rotary Drive

Secondary Controlled Drive

$$F = \frac{M_{Sx}}{r_{c}}$$

Design and Modeling of Fluid Power Systems, ME 597/ABE 591

Examples - High Lift System

Secondary controlled actuator

Hydraulic actuator principles

Hydraulic actuator principles

Classification & Main System Properties

Valve Controlled
Actuator

Proportional valve

Servovalve

LS- valve

Energy Dissipation

High Bandwith

Central Pressure Supply

Energy Recover

Displacement Controlled

Actuator

Pump Control

Secondary Control

Central Pressure Supply

Energy Recover

High Bandwith

Central Pressure Supply

Speed Controlled

Actuator

Electric Motor Control

Central Pressure Supply

Energy Recover

© Dr. Monika Ivantysynova

30

Design and Modeling of Fluid Power Systems, ME 597/ABE 591