ANALISIS RAGAM PEUBAH GANDA (MANOVA)

ANOVA VS MANOVA

Analisis Ragam Satu Peubah (Anova)	Analisis Ragam Peubah Ganda (Manova)				
Pengaruh perlakuan terhadap respon tunggal	Pengaruh Perlakuan terhadap multi respons ganda				
Peubah-peubah respons dianggap saling bebas satu sama	Mempertimbangkan adanya ketergantungan antar peubah- peubah respons				

Pembandingan Vektor Nilai Tengah g Populasi

Model linier:

 $\underline{X}_{lj} = \underline{\mu} + \underline{\tau}_l + \underline{e}_{lj}$ Di mana: $j = 1, 2, ..., n_l$ dan l = 1, 2, ..., g \underline{e}_{lj} adalah peubah acak $N_p(\mathbf{0}, \Sigma)$, vektor parameter $\underline{\mu}$ adalah nilai tengah umum, dan vektor pengaruh $\underline{\tau}_l$ mencerminkan pengaruh perlakuan ke-l.

Hipotesis:
$$H_0$$
: $\tau_1 = \tau_2 = ... = \tau_g = 0$

Tabel MANOVA untuk Pembandingan Vektor Nilai Tengah Populasi

Sumber Keragaman	Matriks jumlah kuadrat dan hasil kali	Derajat bebas
Perlakuan	$\mathbf{B} = \sum_{i=1}^{g} n_i (\overline{\mathbf{x}}_i - \overline{\mathbf{x}}) (\overline{\mathbf{x}}_i - \overline{\mathbf{x}})^{T}$	g -1
Galat	$\mathbf{W} = \sum_{l=1}^{g} \sum_{j=1}^{n_l} (\mathbf{x}_{ij} - \overline{\mathbf{x}}_{i}) (\mathbf{x}_{ij} - \overline{\mathbf{x}}_{i})'$	
T otal (terkoreksi dengan nilai tengah)	$\mathbf{B} + \mathbf{W} = \sum_{l=1}^{g} \sum_{j=1}^{n_l} (\mathbf{x}_{ij} - \overline{\mathbf{x}}) (\mathbf{x}_{ij} - \overline{\mathbf{x}})^{T}$	$\sum_{i=1}^{g} n_i - 1$

Statistik Uji

$$\lambda^* = \frac{|\mathbf{W}|}{|\mathbf{B} + \mathbf{W}|} = \frac{\left| \sum_{l=1}^g \sum_{j=1}^{n_l} (\mathbf{x}_{lj} - \overline{\mathbf{x}}_l) (\mathbf{x}_{lj} - \overline{\mathbf{x}}_l)' \right|}{\left| \sum_{l=1}^g \sum_{j=1}^{n_l} (\mathbf{x}_{lj} - \overline{\mathbf{x}}) (\mathbf{x}_{lj} - \overline{\mathbf{x}})' \right|}$$

Tabel 3. Sebaran Lambda Wilks, $\Lambda^* = |\mathbf{W}| / |\mathbf{B} + \mathbf{W}|$

Banyaknya	Banyaknya	Sebaran percontohan untuk data normal
<u>peubah</u>	perlakuan	ganda
p = 1	g ≥ 2	$\left(\frac{\sum n_i - g}{g - 1}\right) \left(\frac{1 - \Lambda^*}{\Lambda^*}\right) \sim F_{g^{-1}, \pi_f - g}$
p = 2	g ≥ 2	$\left(\frac{\sum n_i - g - 1}{g - 1}\right)\left(\frac{1 - \sqrt{\Lambda^*}}{\sqrt{\Lambda^*}}\right) \sim F_{2(g-1),2(\operatorname{Im}_i - g - 1)}$
p≥1	g = 2	$\left(\frac{\sum n_i - p - 1}{p}\right)\left(\frac{1 - \Lambda^*}{\Lambda^*}\right) \sim F_{\rho, \mathbf{I} n_i - \rho - 1}$
p≥1	g = 3	$\left(\frac{\sum n_i - p - 2}{p}\right) \left(\frac{1 - \sqrt{\Lambda^*}}{\sqrt{\Lambda^*}}\right) \sim F_{2\rho,2(\ln_{\rho} - \rho - 2)}$

llustrasi:

Seorang peneliti bidang kedokteran melakukan percobaan untuk meneliti hubungan di antara aktifitas metabolik di antara kelinci-kelinci percobaan dan daya tahan terhadap kuman tuberculosis (tbc). Peneliti menetapkan 4 perlakuan sebagai berikut:

P1 = kontrol (tidak divaksinasi)

P2 = diinfeksi (ditularkan) kuman tbc selama aktifitas metabolik rendah.

P3 = diinfeksi (ditularkan) kuman tbc selama aktifitas metabolik tinggi.

P4 = diinfeksi (ditularkan) kuman tbc selama aktifitas metabolik normal, tetapi terlebih dahulu diirradiasi dengan 400 rontgens.

Perlakuan P1 dan P2 diulang sebanyak 7 kali (n1 = n2 = 7), perlakuan P3 diulang 5 kali (n3 = 5), dan P4 diulang sebanyak 2 kali (n4 = 2). Peubah respon yang diamati ada 2 yaitu:

Y1 = banyaknya basil yang hidup per tubercle formed (mm).

Y2 = banyaknya basil yang hidup per tubercle size (mm).

Data hasil pengamatan seperti pada tabel di bawah ini.

Banyaknya Basil yang Hidup per Tubercle Formed (Y1) dan Tubercle Size (Y2) dalam mm

Ulangan	Р	1	Р	2 P:		3	Р	24	
	Y1	Y2	Y1	Y2	Y1	Y2	Y1	Y2	
1	24.0	3.5	7.4	3.5	16.4	3.2	25.1	2.7	
2	13.3	3.5	13.2	3.0	24.0	2.5	5.9	2.3	
3	12.2	4.0	8.5	3.0	53.0	1.5			
4	14.0	4.0	10.1	3.0	32.7	2.6			
5	22.2	3.6	9.3	2.0	42.8	2.0			
6	16.1	4.3	8.5	2.5					
7	27.9	5.2	4.3	1.5					
total	129.7	28.1	61.3	18.5	168.9	11.8	31.0	5.0	
rata2	18.5286	4.0143	8.7571	2.6428	33.7800	2.3600	15.5000	2.5000	

Langkah-langkah teknis perhitungan: Perhitungan Faktor Koreksi (FK) untuk untuk respon Y_1 dan Y_2

FK untuk respon Y₁

$$FK_{11} = \frac{(Y_{1\bullet\bullet})^2}{n} = \frac{(390.9)^2}{21} = 7276.3243$$

FK untuk respon Y₂

$$FK_{22} = \frac{(Y_{2\bullet\bullet})^2}{n} = \frac{(63.4)^2}{21} = 191.4076$$

FK untuk respon Y₁ dan Y₂

$$FK_{12} = \frac{(Y_{1\bullet\bullet})(Y_{2\bullet\bullet})}{n} = \frac{(390.9)(63.4)}{21} = 1180.1457$$

Perhitungan Jumlah Kuadrat Total Terkoreksi (JKT) dan Jumlah Hasil Kali Total Terkoreksi (JHKT) untuk respon \mathbf{Y}_1 dan \mathbf{Y}_2

JKT untuk respon Y_1

$$JKT_{11} = \sum_{i=1}^{4} \sum_{j=1}^{n_i} Y_{1ij}^2 - FK_{11} = 3152.2657$$

JKT untuk respon Y₂

$$JKT_{22} = \sum_{i=1}^{4} \sum_{j=1}^{n_i} Y_{2ij}^2 - FK_{22} = 17.4124$$

JHKT untuk respon Y₁ dan Y₂

$$JHKT_{12} = \sum_{i=1}^{4} \sum_{j=1}^{n_i} Y_{1ij} \cdot Y_{2ij} - FK_{12} = -39.0257$$

Perhitungan Jumlah Kuadrat Perlakuan Terkoreksi (JKP) dan Jumlah Hasil Kali Perlakuan Terkoreksi (JHKP) untuk respon Y_1 dan Y_2

JKP untuk respon Y₁

$$JKP_{11} = \sum_{i=1}^{4} \frac{Y_{1i\bullet}^2}{n_i} - FK_{11} = 1849.5862$$

JKP untuk respon Y₂

$$JKP_{22} = \sum_{i=1}^{4} \frac{Y_{2i\bullet}^2}{n_i} - FK_{22} = 10.6346$$

JHKP untuk respon Y_1 dan Y_2

$$JHKP_{12} = \sum_{i=1}^{4} \frac{Y_{1i\bullet} \cdot Y_{2i\bullet}}{n_i} - FK_{12} = -21.3810$$

Perhitungan Jumlah Kuadrat Galat (JKG) dan Jumlah Hasil Kali Galat (JHKG) untuk respon Y₁ dan Y₂

JKG untuk respon Y₁

$$JKG_{11} = JKT_{11} - JKP_{11} = 1302.6795$$

JKG untuk respon Y₂

$$JKG_{22} = JKT_{22} - JKP_{22} = 6.7778$$

JHKG untuk respon Y_1 dan Y_2

$$JHKG_{12} = JHKT_{12} - JHKP_{12} = -17.6447$$

Hasil perhitungan yang diperoleh sebelumnya dapat dirangkum dalam suatu tabel analisis ragam peubah ganda satu arah (*Oneway Manova*) seperti berikut:

Tabel Analisis Ragam Peubah Ganda Satu Arah (One-way Manova)

Sumber Keragaman	Derajat Bebas (db)	JK dan JHK
Perlakuan (P)	3	$\mathbf{P} = \begin{pmatrix} 1849.5862 & -21.3810 \\ -21.3810 & 10.6346 \end{pmatrix}$
Galat (G)	17	$\mathbf{G} = \begin{pmatrix} 1302.6795 & -17.6447 \\ -17.6447 & 6.7778 \end{pmatrix}$
Total (T)	20	$\mathbf{T} = \begin{pmatrix} 3152.2657 & -39.0257 \\ -39.0257 & 17.4124 \end{pmatrix}$

Statistik uji Lambda-Wilks (Λ -Wilks), sebagai berikut:

$$\Lambda = \frac{|\mathbf{G}|}{|\mathbf{G} + \mathbf{P}|} = \frac{|\mathbf{G}|}{|\mathbf{T}|}$$

di mana:

|G| = determinan dari matriks galat (6)

 $|\mathbf{T}|$ = determinan dari matriks total (T)

Selanjutnya besaran Λ yang dihitung dari rumus di atas dibandingkan dengan tabel distribusi U dengan kaidah keputusan sebagai berikut:

jika
$$\Lambda \begin{cases} > U^{\alpha}_{p;db_{P};db_{G}} \text{ maka terima } H_{0} \\ \leq U^{\alpha}_{p;db_{P};db_{G}} \text{ maka tolak } H_{0} \end{cases}$$

di mana:

p = banyaknya peubah respon yang diamati.

 db_p = derajat bebas perlakuan.

 db_G = derajat bebas galat.

Berdasarkan tabel di atas diperoleh:

$$|\mathbf{G}| = 8517.9657$$

$$|\mathbf{T}| = 53365.5060$$

$$\Lambda = \frac{|\mathbf{G}|}{|\mathbf{T}|} = \frac{8517.9657}{53365.5060} = 0.1596$$

Nilai tabel U diperoleh

$$U_{2;3;17}^{0.01} = 0.370654$$

karena
$$\Lambda$$
 = 0.1596 < $U_{2;3;17}^{0.01}$ = 0.370654

maka sesuai dengan kaidah keputusan di atas maka HO ditolak.

Dalam kasus di atas, p=2, $db_p=3$, hal ini berarti sesuai dengan kriteria transformasi F untuk p=2 dan $db_p\geq 1$, sehingga transformasi dari Λ ke F dapat dilakukan sebagai berikut:

$$\mathbf{F} = \left(\frac{1 - \sqrt{\Lambda}}{\sqrt{\Lambda}}\right) \left(\frac{db_G - 1}{db_P}\right) = 8.017$$

Selanjutnya besaran F ini dibandingkan dengan nilai dari tabel F dengan derajat bebas 2 db_p ; $2(db_G-1)$. Jika kita menetapkan α =0.01, maka $F_{0.01;6;32}$ = 3.434. Karena besaran F = 8.017 > $F_{0.01;6;32}$ = 3.434, maka kita menolak H_0 pada taraf α =0.01.

Analisis Ragam Peubah Ganda Dua Arah (*Two-way Manova*)

Model Linier

$$Y_{ij} = \mu + \tau_i + \beta_j + \varepsilon_{ij}$$

i=1,2,...,g dan k=1,2,...,b

Di mana e_{ij} adalah peubah acak N_p $(0,\Sigma)$. Di sini vektor parameter μ adalah nilai tengah umum, T_i mencerminkan pengaruh perlakuan ke-1, dan β mencerminkan pengaruh kelompok ke-b.

Hipotesis:

$$H_0: \underline{\tau}_1 = \underline{\tau}_2 = \dots = \underline{\tau}_t = \underline{0}$$

$$H_1: \exists i, \underline{\tau}_i \neq 0, i = 1, 2, \dots, t$$

Contoh:

Dari data yang mempunyai 3 peubah respon Y1, Y2, dan Y3, yang diamati dari 5 perlakuan yaitu P1, P2, P3, P4, dan P5, yang dikenakan pada 4 kelompok yaitu K1, K2, K3, dan K4, seperti di bawah ini:

Data untuk Analisis Ragam Peubah Ganda Dua Arah

perl	· '		Kelompok 2		Kelompok 3		Kelompok 4			total					
aku an	у1	y2	Y3	Y1	Y2	Y3	Y1	Y2	Y3	Y1	Y2	Y3	Y1	Y2	уЗ
р1	96	10	725	142	16	700	122	13	655	111	13	680	417	52	2760
p2	102	15	695	106	10	710	95	14	705	93	12	680	396	51	2790
р3	109	15	690	113	15	690	101	14	680	100	19	685	423	63	2745
р4	103	17	680	97	16	690	99	13	730	135	12	670	434	58	2770
р5	98	17	680	97	14	695	105	16	680	86	22	710	386	69	2765
tota I	508	74	3470	555	71	3485	522	70	3450	525	78	3425	2110	293	13830

Tabel Manova: (Tehnik perhitungan mirip seperti Manova satu arah)

Tabel Analisis Ragam Peubah Ganda Dua Arah

Sumber keragaman	Derajat bebas	JK dan JHK
Kelompok (k)	3	$\mathbf{K} = \begin{pmatrix} 234.60 & -14.10 & 127.00 \\ -14.10 & 7.75 & -36.50 \\ 127.00 & -36.50 & 405.00 \end{pmatrix}$
Perlakuan (p)	4	$\mathbf{P} = \begin{pmatrix} 1129.50 & -125.75 & -213.75 \\ -125.75 & 57.30 & -62.00 \\ -213.75 & -62.00 & 267.50 \end{pmatrix}$
Galat(g)	12	$\mathbf{G} = \begin{pmatrix} 2258.90 & -24.65 & -1658.25 \\ -24.65 & 91.50 & 4.00 \\ -1658.25 & 4.00 & 5532.50 \end{pmatrix}$
Total(t)	19	$\mathbf{T} = \begin{pmatrix} 3623.00 & -164.50 & -1745.00 \\ -164.50 & 156.55 & -94.50 \\ -1745.00 & -94.50 & 6205.00 \end{pmatrix}$

Statistik uji Lambda-Wilks sebagai berikut:

$$\Lambda = \frac{|\mathbf{G}|}{|\mathbf{G} + \mathbf{P}|} = \frac{8.888319 \times 10^8}{2.227617 \times 10^9} = 0.399006$$

Kesimpulan:

Nilai Tabel $U_{3;4;12}^{0.05}$ =0.168939, jadi karena Λ =0.399006 > $U_{3;4;12}^{0.05}$

=0.168939, maka kita menerima H_0 , dan menyatakan bahwa berdasarkan data yang ada kita belum dapat menolak hipotesis kesamaan pengaruh perlakuan.