Vorlesung - Angewandte Mathematik 9. Vorlesung

Holger Gerhards

DHBW Mannheim, TINF22IT1 holger.gerhards@dhbw-mannheim.de

25. Oktober 2023

Themenübersicht

- Diskrete Fourier-Transformation
- Kontinuierliche Fourier-Transformation
- Faltung
- \triangleright δ -Distribution
- Anwendung der Fourier-Transformation
- Anmerkungen / Ergänzungen

- Problematik für tatsächlich gemessene Signale
 - Eingangsfunktion nicht kontinuierlich sondern diskret
 - Sampling des Signals
 - Darstellung als Paaren von Amplituden x_i zu Zeitpunkten t_i
 - x_0 entspricht Messung bei $t_0 = 0$
 - x_1 entspricht Messung bei $t_1 = \triangle t$
 - ▶ x_2 entspricht Messung bei $t_2 = 2 \triangle t$
 - **...**
- ▶ Vereinfachungen: $t \rightarrow n$ und $T \rightarrow N$ (vorerst $\triangle t = 1$)
- Idee:

$$x_n = \frac{a_0}{2} + \sum_{k=1}^{N-1} a_k \cos(k\omega n) + \sum_{k=1}^{N-1} b_k \sin(k\omega n) \quad \text{mit} \quad \omega = \frac{2\pi}{N}$$
(1)

▶ Umformung mit komplexen Koeffizienten $Y_k \in \mathbb{C}$ bzw. $Y_k = a_k + ib_k$

$$x_n = \sum_{k=0}^{N-1} Y_k e^{-i\omega nk}$$
 (2)

Plausibilisierung:

$$x_{n} = \sum_{k=0}^{N-1} (a_{k} + ib_{k}) e^{-i\omega nk}$$

$$= \sum_{k=0}^{N-1} (a_{k} + ib_{k}) \left(\cos(\omega nk) - i\sin(\omega nk) \right)$$

$$= \sum_{k=0}^{N-1} a_{k} \cos(\omega nk) + \sum_{k=0}^{N-1} b_{k} \sin(\omega nk) + i\sum_{k=0}^{N-1} \dots$$
 (3)

- Zentrale Gleichungen der diskreten Fourier-Transformation
 - Rücktransformation (vom Frequenzbereich in den Zeitbereich)

$$x_n = \sum_{k=0}^{N-1} Y_k e^{-i\omega nk}$$
 (4)

 Hintransformation (vom Zeitbereich in den Frequenzbereich)

$$Y_k = \frac{1}{N} \sum_{n=0}^{N-1} x_n e^{i\omega nk}$$
 (5)

- Hinweise
 - Y_k ist die komplexe Amplitude zur k-ten Frequenz
 - $A_k = |Y_k|$ entspricht der tatsächlichen Amplitude, da $Y_k = A_k e^{i\varphi_k}$
 - φ_k entspricht der Phasenverschiebung der k-ten Frquenz

Übergang zu physikalischen Größen

- ▶ Zeitbasis Messamplitude x_n zum Zeitpunkt $t_n = n \triangle t$
- Frequenzbasis Komplexe Amplitude Y_k zu Frequenz $\omega_k = 2\pi\,f_k$ mit

$$\omega_k = \frac{2\pi k}{N \triangle t}$$
 bzw. $f_k = \frac{k}{N \triangle t}$ \Longrightarrow $\triangle f = \frac{1}{N \triangle t}$

- Implikationen
 - ▶ maximale Frequenz von Zeitauflösung △t abhängig
 - Zeitauflösung und Frequenzauflösung nicht beliebig wählbar
 - ▶ große Zeitfenster (N groß) bedeutet hohe Frequenzauflösung (△f klein)

Beispielsignal

Diskrete Fourier-Transformation

$$Y_k = \frac{1}{N} \sum_{n=0}^{N-1} x_n e^{i2\pi nk/N}$$

Diskrete Fourier-Transformation des Beispielsignal

Darstellungsformen:

Real- und Imaginärteil

$$Y_k = \Re e(Y_k) + i \Im m(Y_k)$$

Betrag und Phase

$$Y_k = A_k e^{i\varphi_k}$$

mit
$$A_k = \sqrt{Y_k \ ar{Y}_k}$$
 und $\varphi_k = \arctan\left(rac{\Im \mathsf{m}(Y_k)}{\Re \mathsf{e}(Y_k)}
ight)$

 Darstellung bzgl. Real- und Imaginärteil (Betrachtung nur der Hälfte der Amplituden Y_k)

Darstellung bzgl. Betrag und Phase

Filterung des Real- und Imaginärteils

Filterung des Betrages und der Phase

Ergebnis des Filtern (Vorher - Nachher)

Filterung der Phase - Vorher

Filterung der Phase - Nachher

Filterung der Phase - Nachher

Ergebnis des Filtern (Vorher - Nachher)

Filtern eines Signals - Ergebnisse

- Betrag der Fourier-Koeffizienten
 - entspricht Wichtung der jeweiligen Frequenz
 - Anwendung diverser Filter
 - Bandpassfilter
 - Tiefpassfilter
 - Hochpassfilter
- Phase der Fourier-Koeffizienten
 - enthält "Strukturinformationen"
 - Unbedachte Manipulation verändert Signal auf mit unter unvorherzusehende Weise

Diskrete Fourier-Transformation - Anmerkung

- ► Problematik: N Datenpunkte *x_n* gehen in die Fourier-Transformation ein
 - \rightarrow Nach Vorschrift scheinbar N komplexe Fourier-Koeffizienten Y_k
 - ⇒ 2N verschiede reelle Zahlen möglich
- ► Realität: nur Y_k für $k = 0, ..., \frac{N-1}{2}$ sind verschieden! ... und maximal verwertbare Frequenz: $f_{max} = \frac{N-1}{2} \frac{1}{N \triangle t}$
- Beweis:

$$Y_k = \frac{1}{N} \sum_{n=0}^{N-1} x_n e^{i\omega nk}$$

$$Y_{N-k} = \frac{1}{N} \sum_{n=0}^{N-1} x_n e^{i\omega n(N-k)} = \frac{1}{N} \sum_{n=0}^{N-1} x_n \underbrace{e^{i\omega nN}}_{=1} e^{-i\omega nk} = \bar{Y}_k$$

$$NR: \quad \text{mit} \quad \omega = \frac{2\pi}{N} \implies \quad e^{i\frac{2\pi}{N}nN} = e^{i2\pi n} = 1$$

Diskrete Fourier-Transformation - Anmerkung

- Abtastfrequenz
 - ▶ Annahme: bandbegrenztes Signal (0 < $f \le f_{max}$)
 - Ziel: Auflösung von f_{max}
 - Bedingung hinsichtlich der Abtastfrequenz

$$f_{abtast} > 2 f_{max}$$
 (6)

Numerische Laufzeit für

$$Y_k = \frac{1}{N} \sum_{n=0}^{N-1} x_n e^{i\omega nk}$$

- ▶ Es gibt N (eigentlich nur N/2) Fourier-Koeffizienten Y_k .
- Je Koeffizient müss mindestens N Rechnungen ausgeführt werden.
- Ordnung der Rechnung beträgt N²
- ▶ Optimierung z.B. Cooley-Tukey-Algorithmus *O*(*n* log *n*) bzw. Verwendung entsprechender Bibliotheken (z.B. FFTW)

Mathematische Formulierung der Hintransformation

$$Y_{kl} = \frac{1}{NM} \sum_{n=0}^{N} \sum_{m=0}^{M} x_{nm} e^{i\omega_M ml} e^{i\omega_N nk}$$
 (7)

Mathematische Formulierung der Rücktransformation

$$X_{nm} = \sum_{n=0}^{N} \sum_{m=0}^{M} Y_{kl} e^{-i\omega_M ml} e^{-i\omega_N nk}$$
 (8)

mit

$$\omega_N = \frac{2\pi}{M} \qquad \omega_M = \frac{2\pi}{N} \tag{9}$$

Stichwörter: Ortsraum, Ortsfrequenzraum, ...

Themenübersicht

- Diskrete Fourier-Transformation
- Kontinuierliche Fourier-Transformation
- Faltung
- δ-Distribution
- Anwendung der Fourier-Transformation
- Anmerkungen / Ergänzungen

Kontinuierliche Fourier-Transformation

 Grundlage: Gegeben sei eine Funktion g(t) mit der Bedingung

$$\int_{-\infty}^{\infty} g(t)dt < \infty \tag{10}$$

also

$$\lim_{t \to \infty} g(t) = 0$$
 und $\lim_{t \to -\infty} g(t) = 0$

Hintransformation (Transformation in den Frequenzbereich)

$$G(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} g(t) e^{i\omega t} dt$$
 (11)

Rücktransformation (Transformation in den Zeitbereich)

$$g(t) = \int_{-\infty}^{\infty} G(\omega) e^{-i\omega t} d\omega$$
 (12)

Kontinuierliche Fourier-Transformation

Motivation

- Ausgangssignal (physikalische Zeitsignal) Ton oder Licht
- System reagiert unterschiedlich auf verschiedene Frequenzen
 - stärkere Dämpfung höherer Frequezen
 - z.B. Relaxation von Wassermolekülen (siehe Mikrowelle)
- Prinzipielle Arbeitsweise in der Physik
 - ightharpoonup Eingangssignal g(t)
 - ▶ Spektrum des Eingangssignal $G(\omega)$
 - Veränderung der einzelnen Frequenzkomponenten durch das Medium
 - ▶ Resultat: Spektrum des Ausgangssignal $\tilde{G}(\omega)$
 - ightharpoonup Zeitsignal des Ausgangs $\widetilde{g}(t)$

Video-Empfehlungen fürs Verständnis

- 3Blue1Brown But what is a Fourier series? From heat flow to circle drawings (https://www.youtube.com/watch?v=r6sGWTCMz2k)
- ▶ 3Blue1Brown But what is the Fourier Transform? A visual introduction. (https://www.youtube.com/watch?v=spUNpyF58BY)

Themenübersicht

- Diskrete Fourier-Transformation
- Kontinuierliche Fourier-Transformation
- Faltung
- \triangleright δ -Distribution
- Anwendung der Fourier-Transformation
- Anmerkungen / Ergänzungen

Faltung

- Anknüpfungen an Überlegungen zur Fourier-Transformation
 Medien verändern unterschiedliche Frequenzanteile unterschiedlich
- Eingangssignal

$$g(t) = \int_{-\infty}^{\infty} G(\omega) \, e^{-\mathrm{i}\omega t} d\omega$$
 bzw. $G(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} g(t) \, e^{\mathrm{i}\omega t} dt$

Manipulation / Filterung im Frequenzbereich

$$H(\omega) = F(\omega) \cdot G(\omega) \tag{13}$$

mit $F(\omega)$ als Filterfunktion (Anwort- bzw. Responsfunktion) und $H(\omega)$ als resultierendes Signal im Frequenzbereich

Faltung

- ► Ziel: Berechnung des resultierenden Signals h(t) im Zeitbereich
- Lösung

$$h(t) = \int_{-\infty}^{\infty} H(\omega) e^{-i\omega t} d\omega = \int_{-\infty}^{\infty} F(\omega) G(\omega) e^{-i\omega t} d\omega$$

$$G(\omega) \text{ bzgl. } g(t') \text{ ausdrücken}$$

$$= \int_{-\infty}^{\infty} F(\omega) \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} g(t') e^{i\omega t'} dt' \right) e^{-i\omega t} d\omega$$

Integralsachen vertauschen und neu sortieren

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} g(t') \left(\int_{-\infty}^{\infty} F(\omega) e^{i\omega t'} e^{-i\omega t} d\omega \right) dt'$$

$$h(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} g(t') f(t - t') dt'$$
(14)

Faltung

Definition der Faltung

$$(f \star g)(t) = \int_{-\infty}^{\infty} g(t') f(t - t') dt'$$
 (15)

- ► Hinweis: Faltungsintegral üblicherweise ohne Faktor $\frac{1}{2\pi}$
- Eigenschaften:
 - ► Kommutativität: $f \star g = g \star f$
 - Assoziativität: $f \star (g \star h) = (f \star g) \star h$
 - ▶ Distributivität: $f \star (g + h) = (f \star g) + (f \star h)$
 - ▶ Ableitungsregel: $D(f \star g) = (Df) \star g = f \star (Dg)$

Anwendung der Faltung / Filterung

▶ Hintergrund:

	Eingang	System	Ausgang
Zeitbereich	e(t)	$(e \star r)(t)$	$a(t) = (e \star r)(t)$
Frequenzbereich	$E(\omega)$	$E(\omega) \cdot R(\omega)$	$A(\omega) = E(\omega) \cdot R(\omega)$

Problem:

Messung von a(t), aber r(t) bzw. $R(\omega)$ initial unbekannt

Ziel:

Bestimmung von e(t) zur Verbesserung der Datenqualität

► Lösungsidee:

- bekanntes Eingangssignal $\tilde{e}(t)$ bzw. $\tilde{E}(\omega)$
- ightharpoons \Longrightarrow Messung von $\tilde{a}(t)$ bzw. $\tilde{A}(\omega)$
- ightharpoonup Bestimmung von $R(\omega) = \tilde{A}(\omega)/\tilde{E}(\omega)$

Abschluss:

Berechnung von e(t) (unbekanntes Eingangssignal) durch a(t) (bekanntes / gemessenes Ausgangssignal), da $E(\omega) = A(\omega)/R(\omega) \Longrightarrow e(t)$ durch Fourier-Trafo.

Themenübersicht

- Diskrete Fourier-Transformation
- Kontinuierliche Fourier-Transformation
- Faltung
- δ-Distribution
- Anwendung der Fourier-Transformation
- Anmerkungen / Ergänzungen

δ -Distribution

Definition

$$\delta(t) = \begin{cases} \infty & \text{für } t = 0 \\ 0 & \text{sonst.} \end{cases} \quad \text{und} \quad \int_{-\infty}^{+\infty} \delta(t) \, dt = 1 \quad (16)$$

analog

$$\delta(t-t') = \begin{cases} \infty & \text{für } t = t' \\ 0 & \text{sonst.} \end{cases} \quad \text{und} \quad \int_{-\infty}^{+\infty} \delta(t-t') \, dt = 1$$

sowie

$$\int_{-\infty}^{+\infty} f(t') \, \delta(t - t') \, dt' = f(t) \tag{17}$$

Anwendung: Punktladung Beschreibung der Ladungungsdichte am Punkt \vec{r} als $q \delta(\vec{r})$

Gesamtladung:
$$\int_{\mathbb{R}^3} q \, \delta(\vec{r}) \, dV = q$$

δ-Distribution - Rechenbeispiele

Berechnen Sie:

$$\int_{-\infty}^{+\infty} t^2 \, \delta(t) \, dt = \dots$$

$$\int_{-\infty}^{+\infty} (x^2 - 1) \, \delta(x - 2) \, dx = \dots$$

$$\int_{-\infty}^{+\infty} \sin(u) \, \delta(u - \pi) \, du = \dots$$

$$\int_{-\infty}^{+\infty} x^{10} \, \delta(x + 2) \, dx = \dots$$

Interpretation der Faltung mit Hilfe der δ -Distribution

- Annahmen
 - g(t) ist Eingangssignal mit $G(\omega)$
 - f(t) ist Antwortfunktion mit $F(\omega)$
 - h(t) ist Ergebnisfunktion mit $H(\omega) = G(\omega) \cdot F(\omega)$
- ► Beispiel 1:

$$g(t) = \delta(t)$$

$$f(t) = \begin{cases} 0 & \text{für } t < 0 \\ Ae^{-\alpha t} & \text{für } t \ge 0 \end{cases}$$

$$h(t) = (g \star f)(t) = \int_{-\infty}^{+\infty} \delta(t - t') f(t') dt = f(t)$$

Beispiel 2:

$$g(t) = \sum_{i} \alpha_{i} \, \delta(t - t_{i}) \qquad \Longrightarrow \quad h(t) = \sum_{i} \alpha_{i} \, f(t - t_{i})$$

Themenübersicht

- Diskrete Fourier-Transformation
- Kontinuierliche Fourier-Transformation
- Faltung
- \triangleright δ -Distribution
- Anwendung der Fourier-Transformation
- Anmerkungen / Ergänzungen

Formulierung

$$\frac{\partial}{\partial t}c(x,t) - D\frac{\partial^2}{\partial x^2}c(x,t) = \left(\frac{\partial}{\partial t} - D\frac{\partial^2}{\partial x^2}\right)c(x,t) = 0$$
 (18)

mit c(x, t) als Konzentrationsverteilung in Abhängigkeit vom Ort x und der Zeit t sowei D für die Diffusionskonstante

Ansatz

$$c(x,t) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} C(k,\omega) e^{-ikx} e^{-i\omega t} dk d\omega \qquad (19)$$

$$0 = \left(\frac{\partial}{\partial t} - D \frac{\partial^2}{\partial x^2}\right) c(x, t)$$

$$= \left(\frac{\partial}{\partial t} - D \frac{\partial^2}{\partial x^2}\right) \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} C(k, \omega) e^{-ikx} e^{-i\omega t} dk d\omega$$

... und weiter geht es ...

$$0 = \left(\frac{\partial}{\partial t} - D\frac{\partial^{2}}{\partial x^{2}}\right) c(x, t)$$

$$= \left(\frac{\partial}{\partial t} - D\frac{\partial^{2}}{\partial x^{2}}\right) \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} C(k, \omega) e^{-ikx} e^{-i\omega t} dk d\omega$$

$$= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} C(k, \omega) \left(\frac{\partial}{\partial t} - D\frac{\partial^{2}}{\partial x^{2}}\right) e^{-ikx} e^{-i\omega t} dk d\omega$$

$$= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} C(k, \omega) \left(-i\omega + k^{2}D\right) e^{-ikx} e^{-i\omega t} dk d\omega$$

$$\implies C(k,\omega)(-i\omega + k^2D) = 0$$

$$\implies C(k,\omega) = C(k,\omega_0) \delta(\omega - \omega_0) \text{ mit } \omega_0 = -ik^2D$$

Damit ergibt sich die Lösung zu:

$$c(x,t) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} C(k,\omega_0) \, \delta(\omega - \omega_0) \, e^{-ikx} e^{-i\omega t} \, dk \, d\omega$$

$$= \int_{-\infty}^{+\infty} C(k,\omega_0) \, e^{-ikx} e^{-i\omega_0 t} \, dk$$

$$= \int_{-\infty}^{+\infty} C(k,\omega_0) \, e^{-ikx} e^{-i(-ik^2D)t} \, dk$$

$$= \int_{-\infty}^{+\infty} C(k,\omega_0) \, e^{-ikx} e^{-k^2Dt} \, dk$$

$$c(x,t) = \int_{-\infty}^{+\infty} \left(C(k,\omega_0) e^{-k^2 D t} \right) e^{-ikx} dk$$

Vorgehen zur Berechnung von c(x, t)

- Ansatz einer Anfangsverteilung c(x, 0)
- ▶ Berechnung der Koeffizienten $C(k, \omega_0)$ aus c(x, 0)

$$C(k,\omega_0)=rac{1}{2\pi}\int_{-\infty}^{+\infty}c(x,0)\,e^{\mathrm{i}kx}\,dx$$

- ▶ Berechnung der Werte $g(k, t) = C(k, \omega_0) e^{-k^2 Dt}$
- Lösungsberechnung durch

$$c(x,t) = \int_{-\infty}^{+\infty} g(k,t) e^{-ikx} dk$$

Themenübersicht

- Diskrete Fourier-Transformation
- Kontinuierliche Fourier-Transformation
- Faltung
- δ-Distribution
- Anwendung der Fourier-Transformation
- Anmerkungen / Ergänzungen

Problem: Chirp-Funktion

Gefensterte-FourierTransformation der Chirp-Funktion

Einzel-Fenster-Auswertung mit spezieller Fensterfunktion

ightharpoonup Einzel-Fenster-Auswertung bei $\sigma=0,25$ s

▶ Einzel-Fenster-Auswertung bei $\sigma = 0,5$ s

▶ Spektrogramm bei $\sigma = 0,25s$

▶ Spektrogramm bei $\sigma = 0,5s$

