NB-IoT (5G)

Nhat Luan TRUONG Thomas ZENNARO Michael EJIGU Andy XU

Contents

Introduction

- I. Physical layer of Nb-IoT
- II. MAC layer
- III. Power Consumption
- IV. Security

Conclusion

The geographical representation of countries with the ongoing NB-IoT real-life deployments for diverse use cases (May 2019).

In Release 13 of Nb-IoT:

 Mode of operation: standalone, in-band, guard-band

NB-IoT operation mode.

In Release 13 of Nb-IoT:

- Multi-tone transmission support:
 - -Uplink: 3.75 kHz or 15 kHz of transmission bandwidth based on the SC-FDMA (Single Carrier Frequency Division Multiple Access) scheme
 - -Downlink: 5 kHz of transmission bandwidth with OFDM (Orthogonal Frequency Division Multiplexing) scheme as LTE.
- Complexity and cost reduction technique:
 - Nb-IoT uses Binary Phase Shift Keying (BPSK) and Quadrature Phase Shift Keying (QPSK) modulation

Parameters	NB-IoT		
Access Medium	UL: SC-FDMADL: OFDMA		
Carrier Spacing	• UL: QPSK, $\frac{\pi}{4}$ QPSK, $\frac{\pi}{2}$ BPSK • DL: QPSK		
Modulation	UL: 15kHz, 3.75kHzDL: 15kHz		
Max Payload	UL: 1000 bitsDL: 680 bits		
Bandwidth	 Standalone Mode: 200kHz In-band Mode: 180 kHz in LTE spectrum Guard-band mode: 180 kHz in LTE spectrum 		

Summary table of layer 1 (Physical layer) of NB-IoT

II. MAC layer : Downlink

OFDM

250 kb/s

Synchronization

Localization

II. MAC layer : Uplink

- SC-FDMA
 - 2267 kb/s
- Data(NPUSCH), Quality (DMRS) and Control Channels (NP**RAC**H)
- Initial Access Channel and Slotted Aloha

III. Power consumption

III. Power consumption

III. Power consumption

Payload size (D)	100 Bytes
Battery capacity (C_{bat})	27.7 Wh (C-cell)
Sensor average power consumption (P_{device})	0 W
Safety factor (SF_{bat})	1/3
Data rate (R)	300 bps
Transmit interval (t_i)	[1 h, 24 h]

t_i	Technology	I-eDRX	PSM	Power cycle
1 h	3GPP [4]	88 d (0.2 y)	256 d (0.7 y)	108 d (0.3 y)
	Device A	17 d (0.0 y)	230 d (0.6 y)	103 d (0.3 y)
24 h	3GPP [4]	126 d (0.3 y)	4998 d (13.7 y)	2583 d (7.1 y)
	Device A	18 d (0.1 y)	4677 d (12.8 y)	2462 d (6.7 y)

IV. Security

main NB-IoT/5G security characteristics:

- authorization/authentication process
- ensuring data integrity
- confidentiality
- encryption

¤ NB-IoT net:

- secure data within the network
- UDP protocol
 - → low consumption
 - → non connected mode

IV. Security

¤ Improving security methods:

- Access Point Name
 - ★ Advantage: security level increased
 - ★ *Drawback*: expensive

Securing UDP : DTLS protocol to secured exchanged data

Conclusion

References

- C. Mwakwata, H. Malik, M. Alam, Y. Le Moullec, S. Parand, and S. Mumtaz, "Narrowband internet of things (nb-iot): From physical (phy) and media access control (mac) layers perspectives," Sensors, vol. 19, 06 2019.
- [2] E. Rastogi, N. Saxena, A. Roy, and D. R. Shin, "Narrowband internet of things: A comprehensive study," *Computer Networks*, vol. 173, p. 107209, 2020. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1389128619313593
- [3] M. Mwakwata, "Narrowband internet of things (nb-iot): From physical (phy) and media access control (mac) layers perspectives," June 2019. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6603562/
- [5] T. Group, "Narrowband iot (nb-iot)." [Online]. Available: https://www.thalesgroup.com/en/markets/digital-identity-and-security/iot/resources/innovation-technology/nb-iot

- [6] Thales Group, "The low power modes of the cellular iot." [Online]. Available: https://www.thalesgroup.com/en/markets/digital-identity-and-security/iot/resources/developers/cellular-iot-low-power-mode
- [7] M. Lauridsen, R. Krigslund, M. Rohr, and G. Madueno, "An empirical nb-iot power consumption model for battery lifetime estimation," in 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), 2018, pp. 1–5. [Online]. Available: https://ieeexplore.ieee.org/document/8417653
- [8] L. Liu and M. Han, Privacy and Security Issues in the 5G-Enabled Internet of Things, 05 2019, pp. 241–268.
- [10] R. Ligero and O. Patau, "The security of nb-iot devices," Sep 2019. [Online]. Available: https://accent-systems.com/blog/security-of-nb-iot-devices/

