Corso di Studi in Ingegneria Informatica

FISICA GENERALE

Esercitazione n.2

I.	Un ragazzo lancia una palla contro un muro, posto a distanza $d = 14.5$ m, con una velocita
	iniziale di 15 m/s e ad un angolo di 45° rispetto all'orizzontale. Supponendo che il lancio
	avvenga a livello del suolo e trascurando la resistenza dell'aria, determinare le componenti
	orizzontale e verticale della velocità della palla quando arriva alla quota
	massima
2.	Riferendosi all'esercizio precedente, determinare le componenti radiale e tangenziale
	dell'accelerazione della palla quando arriva alla quota massima
3.	Riferendosi all'esercizio 1, determinare l'altezza massima del muro per cui la palla lo
	supera
4.	Riferendosi all'es.1 e supponendo che il muro sia sufficientemente basso da essere superato
	dalla palla, determinare le componenti orizzontale e verticale della velocità della palla
	quando tocca terra
5.	Un ragazzino fa ruotare un sasso legato ad una cordicella lunga R = 1,5 m su un cerchio
	orizzontale ad una altezza h = 2,0 m dal suolo. La cordicella si rompe ed il sasso fila via
	orizzontalmente andando a cadere ad una distanza orizzontale d = 10 m. Quale era
	l'accelerazione centripeta del sasso in moto circolare?
6.	Una particella si muove lungo una traiettoria circolare ed è soggetta ad una accelerazione
	angolare costante $\alpha = -0,500 \text{ rad/s}^2$. Se all'istante $t = 0$ la velocità angolare della particella è
	10 rad/s, determinare la velocità angolare al tempo t = 10 s
7.	Riferendosi all'esercizio precedente, quanti giri compie la particella prima di invertire il suo
	moto?
8.	La pioggia sta cadendo verticalmente ad una velocità costante di 9,0 m/s. A quale angolo
	rispetto alla verticale sembra diretta la pioggia per un automobilista che viaggia alla velocità
	di 45 km/h?
9.	Una barca, volgendo la prua a nord, attraversa un fiume largo d = 200 m con una velocità di
	4,0 m/s rispetto all'acqua. La corrente del fiume scorre ad una velocità di 1,1 m/s verso est.
	Quanto tempo impiega la barca ad attraversare il fiume?
10.	Riferendosi all'esercizio precedente, in che direzione la barca deve puntare la prua se vuole
	spostarsi verso nord, attraversando il fiume perpendicolarmente alle sue
	sponde?

1