Departamento de Matemática, Universidade de A	VEIRO MATEMÁTICA DISCRETA
Exame final, 14 de Junho de 2023, Duração: 2h30m .	A Classificação:
Nome:	N^{o} Mec.:
Declaro que desisto:	Folhas supl.:

1. (1 val) Usando a lógica de primeira ordem indique uma fórmula bem formada que traduza a afirmação

«Todos os portugueses falam português mas nem todos os portugueses falam francês.»,

usando n(x), p(x) e f(x) com o significado de, respectivamente, «x é português», «x fala português» e «x fala francês», e considerando como universo todas as pessoas.

- 2. (3 val) Considere uma linguagem de primeira ordem com os símbolos de predicado P e W de dois argumentos e H, S, L de um argumento, o símbolo de constante A e as variáveis x, y, e considere as fórmulas
 - $\varphi_1 \equiv \forall x ((P(x, A) \land W(x, A)) \rightarrow H(x)),$
 - $\varphi_2 \equiv \forall x \forall y ((S(x) \lor L(x)) \to P(x,y)),$
 - $\varphi_3 \equiv \neg S(A) \wedge L(A)$,
 - $\varphi_4 \equiv \forall x (L(x) \to W(x, A)).$

Utilizando o método de resolução, mostre que $\varphi_1, \varphi_2, \varphi_3, \varphi_4 \models H(A)$.

Departamento de Matemática, Universidade de A	Aveiro Matemática Discreta
EXAME FINAL, 14 de Junho de 2023, Duração: 2h30m	B Classificação:
Nome:	N^{Ω} Mec.:
Declaro que desisto:	Folhas supl.:

3. (2 val) Considere um conjunto A de 30 números inteiros positivos de 7 dígitos. Mostre que existem dois subconjuntos diferentes e não vazios X e Y de A tal que a soma dos elementos de X é igual à soma dos elementos de Y.

Sugestão. $30 \cdot 10^7 < 2^{30} - 1$.

- 4. (5 val) Um hotel tem 20 quartos que vão ser pintados usando 5 cores. Cada quarto é pintado com uma única cor e existe tinta de cada cor suficiente para pintar todos os quartos.
 - a) De quantas maneiras podemos pintar os quartos, tendo em conta que os quartos são indistinguíveis.
 - b) Determine o número de possibilidades de pintar os quartos, considerando que são numerados.
 - c) Considere, agora, que só tem tinta azul (uma das cinco cores) para pintar três quartos e o mesmo acontece relativamente à tinta verde, continuando a ter tinta suficiente de cada uma das restantes três cores para pintar todos os quartos.
 - i. Determine a série geradora correspondente ao problema de determinação do número de possibilidades de pintar n quartos com as cinco cores.
 - ii. A partir da série geradora obtida em (4(c)i) obtenha o valor do coeficiente que dá a solução do problema para os 20 quartos.

DEPARTAMENTO DE MATEMÁTICA, UNIVERSIDADE DE A	VEIRO	Matemática Discreta
EXAME FINAL, 14 de Junho de 2023, Duração: 2h30m	\mathbf{C}	Classificação:
Nome:		N^{o} Mec.:
Declaro que desisto:		_ Folhas supl.:

- 5. (1 val) Determine o coeficiente de x^4y no desenvolvimento de $(xy + \frac{2}{y} 3x)^6$.
- 6. (3 val) Considere o número a_n de sequências de comprimento $n \in \mathbb{N}$ nos algarismos «0» e «1» e no símbolo «X», que não contêm dois algarismos consecutivos.
 - a) Justifique que a sucessão $(a_n)_{n\geq 0}$ satisfaz a equação de recorrência $a_n=a_{n-1}+2a_{n-2}$ $(n\geq 2)$, e indique as condições iniciais.
 - b) Resolva a equação de recorrência indicada em (6a), determinando uma fórmula fechada para a_n .

Nota. Se não resolveu a questão (6a), considere os valores iniciais $a_0 = a_1 = 1$.

Departamento de Matemática, Universidade de .	Aveiro	Matemática Discreta
Exame final, 14 de Junho de 2023, Duração: 2h30m	\mathbf{D}	Classificação:
Nome:	-	Nº Mec.:
Declaro que desisto:		Folhas supl.:

7. (4 val) Seja G o seguinte grafo simples não orientado com custos nas arestas representado na figura 1.

Figura 1: O grafo G

Figura 2: O grafo J

- a) Considere o subgrafo H de G induzido pelo conjunto de vértices $\{a,b,c,d,f\}$. Determine o número $\tau(H)$ de árvores abrangentes de H, aplicando a fórmula recursiva $\tau(H) = \tau(H e) + \tau(H//e)$, sendo e uma aresta de H que não é lacete. Justifique.
- b) Determine um caminho de custo mínimo entre os vértices \mathbf{a} e \mathbf{e} em G, aplicando o algoritmo de Dijkstra. Apresente todos os passos do algoritmo usando uma tabela adequada e indique o custo total do caminho determinado.
- c) Seja J o grafo simples indicado na figura 2. Os grafos G e J são isomorfos? Justifique devidamente e, no caso afirmativo, indique o respetivo isomorfismo.
- 8. (1 val) Numa festa onde estão 31 pessoas é possível que cada uma destas pessoas conheça exatamente 5 das restantes pessoas? Justifique.