1. If A and B are sets, then $(A - B) \cup (A \cap B)$ equals Α. φ $\mathbf{B}.\ B$ $\mathbf{C}.\ A\cap B$ D. *A* **ANSWER: D** 2. Let $A=\{1,2,3\}, B=\{2,3,4\}, C=\{4,5,6\}$ and $D=\{6,7,8\}$. Then $(A \times C) \cap (B \times D)$ is —— A. $\{(2,6),(3,6)\}$ **B.** $\{(2,6), (2,7), (3,6), (3,8)\}$ C. $\{(2,6), (2,7), (2,8), (3,6)\}$ D. $\{(2,6), (2,7), (3,7), (3,8)\}$ **ANSWER: A** 3. If the set 'A' has n elements then the number of possible subsets of $A \times A$ is -----A. n^2 B. 2^{n} C. 2^{n^2} **D**. *n* **ANSWER: C** 4. If $R_1 = \{(1,2), (2,3), (3,4)\}$ and $R_2 = \{(1,1), (1,2), (2,1), (2,2), (2,3), (3,1), (3,2), (3$ $(3,2),(3,3),(3,4)\}$ be the relations from $\{1,2,3\}$ to $\{1,2,3,4\}$ then — A. $R_1 \cup R_2 = R_1$

B. $R_1 \cap R_2 = R_2$

C.
$$R_1 - R_2 = \phi$$

D.
$$R_2 - R_1 = \phi$$

ANSWER: C

- 5. The union of two equivalence relation is ————
 - A. equivalance relation
 - B. equivalance class
 - C. partial ordering relation
 - D. not necessarily an equivalance relation

ANSWER: D

- 6. If no vertex has loop in a digraph of a relation R, then R is
 - A. reflexive
 - B. irreflexive
 - C. symmetric
 - D. antisymmetric

ANSWER: B

- 7. For the poset $[\{2, 3, 5, 30, 60, 120, 180, 360\}; divisor of]$, the minimal elements are
 - A. 2, 3, 5, 30
 - B. 2, 5
 - C. 2, 3, 5
 - D. 2, 3

ANSWER: C

8. If $R = \{(x, x^2)\}$ and $S = \{(x, 2x)\}$, where x is a non - negative integer, then $R \cap S$ equals

A.
$$\{(0,0)\}$$

B. does not exist

C.
$$\{(1,2),(3,4)\}$$

D.
$$\{(0,0),(2,4)\}$$

ANSWER: D

9. If g is a function from R to R defined by g(x) = -2x + 6, then $g^{-1}(4)$ equals

A.
$$-1$$

B. 3

C. 1

D. 2

ANSWER: C

10. If $f,g:R\to R$ are defined by f(x)=x+2 and g(x)=3x, then $f\circ g$ equals

A.
$$x + 2$$

C.
$$3x + 2$$

D.
$$3x^2 + 2$$

ANSWER: C

11. If f is a function from $S = \{0, 1, 2, 3, 4, 5\}$ to S defined by f(x) = (4x) mod 6, then the ordered pairs of f equals

A.
$$\{(0,0),(1,4),(2,2)\}$$

B.
$$\{(0,0),(1,4),(2,2),(3,0),(4,4),(5,2)\}$$

C.
$$\{(0,5), (1,3), (3,0), (4,4), (5,2), (1,4)\}$$

D.
$$\{(0,0),(1,1),(2,2),(3,3)(4,4),(5,5)\}$$

ANSWER: B

12. If $f: R \to R$ defined by $f(x) = 3x^3 + x$, then f is

A. neither one to one nor onto

B. onto but not one to one

C. both one to one and onto

D. one to one but not onto

ANSWER: C