Parallel & Distributed Processing II: parallel processing on manycore chips Manycore Architectures

Eric Aubanel Winter 2010, UNB Fredericton

Focus on 4

- NVIDIA
- AMD
- ▶ Intel Larrabee
- ▶ STI Cell BE

GPUs: AMD and NVIDIA

Programmable processors

- SIMD hardware
- Can alternate among tasks in graphics pipeline
- Can be used for general purpose applications

SIMT execution model

- Large number of threads to mask memory latency
 - The infamous memory wall
 - E.g. NVIDIA GeForce 285 GTX: 7 flops for every byte transferred to/ from off-chip memory
 - ▶ CPUs use large caches for this
- Scheduled in groups ("warps" for NVIDIA, "wavefronts" for AMD)
- ▶ Threads can be masked to allow conditional execution
 - As in conventional SIMD processor arrays

NVIDIA Tesla

Source: http://www.nvidia.com/docs/IO/55972/22040 I_Reprint.pdf

Streaming Multiprocessor

Source: Patrick LeGresley, NVIDIA

NVIDIA GeForce GTX 285

- ▶ 240 cores
- ▶ I Tflop peak single-precision
- ▶ I GB on-board memory
- ▶ 124 GB/s memory bandwidth

CUDA

Source: NVIDIA CUDA Programming Guide 2.2.1

CUDA

Source: Patrick LeGresley, NVIDIA

NVIDIA Performance: flops

Source: NVIDIA CUDA Programming Guide 2.2.1

NVIDIA Performance: bandwidth

Source: NVIDIA CUDA Programming Guide 2.2.1

ATI/AMD: FireStream 9270 GPU

AMD Stream Processor

Source: http://developer.amd.com/gpu_assets/Stream_Computing_Overview.pdf

AMD Stream Processor

- Made up of thread processors
 - 5-way VLIW processor
 - One core can handle transcendental functions
 - Like NVIDIA's SFU
 - All thread processors in a SP execute same instruction each cycle
 - Up to four threads can issue four VLIW instructions over four cycles
 - ▶ To hide latency
 - Threads scheduled as wavefronts
 - Threads within wavefront subject to divergence during conditional execution

Wavefronts

- Size of wavefront differs on different stream processors
- Composed of quads

Source: http://developer.amd.com/gpu_assets/Stream_Computing_Overview.pdf

Wavefront Divergence

- If two branches take the same amount of time t to execute over a wavefront, then the total time if any thread diverges is ...
 - ▶ 2t
- If a single loop iteration takes time t, and within a wavefront all threads execute the loop one time except one thread that executes the loop 100 times, then the total time is ...
 - ▶ 100*t*

From http://developer.amd.com/gpu_assets/Stream_Computing_Overview.pdf

FireStream9250

- ▶ 800 SIMD superscalar processors
- Supports SSE-like vec4 operations
- ▶ IEEE single/double precision
- ▶ I TFLOP peak single precision
- ▶ 200 GFLOPS peak double-precision
- ▶ I GB GDDR3 on-board memory
- ▶ 108.8 GB/s Peak memory bandwidth

Stream SDK

Source: http://developer.amd.com/gpu_assets/Stream_Computing_Overview.pdf

Intel Larrabee

- Hybrid multicore CPU/GPU
- First revealed in 2007
- ▶ Release as consumer graphics card cancelled in Dec. 2009

Source: Wikipedia

Intel Larrabee

- Enhanced x86 cores
 - Simplified: such as in-order execution only
 - Vector processing capability: 16 single-precision operations at a time
 - ▶ 4 times wider than most x86 processors
 - Initial release was to have 32 cores
- ▶ L2 cache with cache coherence
- ▶ Each core supports 4-way simultaneous multithreading
- Future?
 - May still be developed as accelerator card for HPC

Larrabee Performance

Which is better?

Larrabee	Nehalem		
32	4	cores	
64 KB	64 KB	LI cache/core	
256 KB	256 KB	L2 cache/core	
	2048 KB	L3 cache/core	
16	4	Vector width (single prec.)	
4	2	Multithreading width	
2	4	Instruction issue width	

STI Cell Broadband Engine

- Jointly developed by Sony, Toshiba, and IBM (STI) in early 2000s
- First commercialized in Sony PlayStation 3
- As with GPUs, favors throughput (bandwidth) over latency
- Software developer's kit includes an SPE management for accessing and managing SPEs.
- Unique architecture has proved challenging to application developers
- Nov. 2009: further development cancelled

STI Cell Broadband Engine

local store is explicitly managed by software (compiler or programmer)

Source: Computing in Science & Engineering, Jan./Feb. 2010

Cell Example Execution

Source: Computing in Science & Engineering, Jan./Feb. 2010

STI Cell & HPC

- ▶ PowerXCell 8i: peak of about 12.8 GFLOPS/SPE, for total of 102.4 GFLOPS for eight SPEs.
- ▶ IBM Roadrunner supercomputer
 - ▶ 12240 PowerXCell 8i processors
 - ▶ 6562 AMD Opteron processors.
- Application example: Quantum Chromodynamics

8×8×16×16 lattice		16×16×16×16 lattice			
Execution time			Execution time		
Intel Xeon	Cell/B.E.	speedup	Intel Xeon	Cell/B.E.	speedup
15.4 sec	4.5 sec	3.4×	100.2 sec	17.5 sec	5.7×

Source: Computing in Science & Engineering, Jan./Feb. 2010