NATIONAL INSTITUTE OF TECHNOLOGY CALICUT

Department of Mathematics, Winter Semester 2019-2020 MA1002D MATHEMATICS II, Tutorial-4

1. Find the spectrum and eigenvectors of the following matrices

$$\begin{bmatrix} 10 & -4 \\ 18 & -12 \end{bmatrix} \qquad \begin{bmatrix} 3 & 0 & 0 \\ 0 & -8 & 0 \\ 0 & 0 & 4 \end{bmatrix} \qquad \begin{bmatrix} 3 & 5 & 3 \\ 0 & 4 & 6 \\ 0 & 0 & 1 \end{bmatrix}$$

2. Are the following matrices symmetric, skew symmetric or orthogonal? Find their eigenvalues

0.96	-0.28	$\begin{bmatrix} 1 & 4 \end{bmatrix}$	[1	0	0 7	,	0	9	-12]
0.28	0.96	4_1_	0	$\cos\theta$	- sin θ		-9	0	20
a)		b)	c) 0	$\sin\theta$	$\cos\theta$	d)	_12	-20	0

3. Prove the following for a square matrix A

- (a) $\lambda = 0$ is an eigenvalue of A if and only if A is nonsingular
- (b) If λ is an eigenvalue of A, then $a_0\lambda^2 + a_1 \lambda + a_2$ is the eigenvalue of $B = a_0A^2 + a_1 A + a_2I$
- (c) Both A and A^T have the same eigenvalues

(d) If A is nonsingular and if λ is an eigenvalue of A then $\frac{1}{\lambda}$ is an eigenvalues of A.

- (e) If λ is an eigenvalue of A then λ^k is an eigenvalue of A^k for any positive integer k
- (f) If λ is an eigenvalue of A then $\lambda + k$ is an eigenvalue of A +kI where k is a scalar.
- (g) Let λ_1 & λ_2 be the distinct eigenvalues of A and x_1 , x_2 be the corresponding eigenvectors. Prove that $x_1 + x_2$ is not an eigenvector of A.
- (h) Eigenvalues of an idempotent matrix A are either zero or one.
- (i) For a real symmetric matrix, show that the eigenvectors corresponding to two distinct eigenvalues are orthogonal.
- (j) If λ is an eigenvalue of an orthogonal matrix A, then $1/\lambda$ is also an eigenvalue of A

4. Prove that

- (a) If is any square matrix of order, then the matrix is always symmetric matrix.
- (b) If is any square matrix of order, then the matrix is always skew symmetric matrix.
- (c) Any square matrix can be expressed as sum of symmetric matrix and skew symmetric matrix.
- 5. Without (actually) finding all eigenvalues, find the sum and the product of the eigenvalues of each of the following matrices A, B and C

6. A matrix B is said to be similar to A if $B = P^{-1}AP$, for an invertible matrix P. Prove that similar matrices have same eigenvalues. Verify this for the following. Also show that X = PY if X is an eigenvector of A and Y an eigenvector of $P^{-1}AP$.

$$A = \begin{bmatrix} 10 & -3 & 5 \\ 0 & 1 & 0 \\ -15 & 9 & -10 \end{bmatrix}, \quad P = \begin{bmatrix} 2 & 0 & 3 \\ 0 & 1 & 0 \\ 3 & 0 & 5 \end{bmatrix}$$

7. Prove that

- (a) If A and B are symmetric matrices, then AB is symmetric if and only if AB = BA.
- (b) If a matrix A can be diagonalized using an orthogonal matrix, then A is symmetric.
- (c) If A and B are symmetric matrices, then AB and BA have same eigenvalues but different eigenvectors.
- (d) If A and B are symmetric matrices, then A-1B and BA-1 have same eigenvalues but different eigenvectors.
- 8. If possible, diagonalize the matrix and compute
- 9. If A, then compute, where .
- 10. The eigenvectors of a 3 x 3 matrix A corresponding to the eigenvalues 1, 1, 3 are $[1 \ 0 \ -1]^{\mathsf{T}}, [0 \ 1 \ -1]^{\mathsf{T}}, [1 \ 1 \ 0]^{\mathsf{T}}$ respectively. Find the matrix A.
- 11. Find the defect of each of the eigenvalues of the following matrices. If possible, find a basis of eigenvectors and hence diagonalize the following matrices.

a) b)
$$\begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix}$$
b)
$$\begin{bmatrix} 16 & 0 & 0 \\ 48 & -8 & 0 \\ 84 & -24 & 4 \end{bmatrix}$$
c)
$$\begin{bmatrix} 5 & 10 & -10 \\ 10 & 5 & -20 \\ 5 & -5 & -10 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 4 \\ -1 & 0 & 3 \\ 2 & 1 & -2 \end{bmatrix}$$

- 12. Use Cayley Hamilton theorem to find the inverse of
- 13. If $A = \begin{bmatrix} 1 & 1 & 2 \end{bmatrix}$, verify Cayley Hamilton theorem and hence find the matrix represented by $A^8 - 5A^7 + 7A^6 - 3A^5 + A^4 - 5A^3 - 8A^2 - 2A + 1$.
- 14. Find the symmetric coefficient matrix C of the quadratic form $Q = X^{T}CX$ given by

a)
$$4x_1^2 - 8x_1x_2 + 5x_2^2$$

b)
$$-2x_1^2 + 2x_1x_3 + 4x_2x_3 - 9x_3^2$$

a)
$$4x_1^2 - 8x_1x_2 + 5x_2^2$$
 b) $-2x_1^2 + 2x_1x_3 + 4x_2x_3 - 9x_3^2$ c) $0.5x_1^2 + 0.8x_1x_2 - 1.4x_2x_3$

d)
$$(x_1 - 2x_2 + 3x_3 - x_4)^2 e) (x_1 - x_2)^2 - 4x_3^2$$

15. Classify each of the following quadratic forms:

(a)
$$3x_1^2 + 3x_2^2 + 6x_3^2 - 2x_1x_2 - 4x_1x_2$$

(b)
$$x_1^2 + 4x_2^2 + 4x_3^2 + 4x_1x_2 + 4x_1x_3 + 6x_2x_3$$

(c)
$$x_1^2 + 2x_2^3 + 2x_3^2 + 4x_4^2 - 2x_1x_2 + 2x_2x_3 + 6x_3x_4$$

16. Find out the conic section represented by the given quadratic form. Transform it into principal axes

a)
$$7x_1^2 + 6x_1x_2 + 7x_2^2 = 200$$

b)
$$9x_1^2 - 6x_1x_2 + x_2^2 = 40$$

a)
$$7x_1^2 + 6x_1x_2 + 7x_2^2 = 200$$
 b) $9x_1^2 - 6x_1x_2 + x_2^2 = 40$ c) $32x_1^2 - 60x_1x_2 + 7x_2^2 = -52$

17. Reduce the quadratic forms to sum of squares form/Canonocal form/ Principal axes form, and find the corresponding linear transformation. Also find the index and signature

a)
$$6x_1^2 + 3x_2^2 + 3x_3^2 - 4x_1x_2 - 2x_2x_3 + 4x_3x_1$$

b)
$$10x^2 + 2y^2 + 5z^2 + 6yz - 10zx - 4xz$$

c)
$$4x^2 + 3y^2 + z^2 - 8xy - 6yz + 4yz$$