	WINE CLASSIFICATION PROJECT	
In [7]:	<pre>import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import load_wine from sklearn.model_selection import train_test_split</pre>	
In [20]:	<pre>X_train, X_test, y_train, y_test=train_test_split(wine_data.data, wine_data.target, test_size=0.5, random_state=42) df_x_train=pd.DataFrame(X_train, columns=wine_data.feature_names)</pre>	
In [11]:	<pre>DATA UNDERSTANDING #plotting a graph to understand data plt.matshow(df_x_train.corr()) plt.colorbar() plt.show()</pre>	
	0 2 4 6 8 10 12 0.8 0.6	
	4 - 0.4 6 - 0.2 8 - 0.0 100.2	
	DATA PREPARATION	
In [4]:	Transforming raw data that was collected into a form that can be used for modeling. #training dataset X_train, X_test, y_train, y_test=train_test_split(wine_data.data, wine_data.target, test_size=0.5, random_state=42)	
In [12]: Out[12]:	alcohol malic_acid ash alcalinity_of_ash magnesium total_phenols flavanoids nonflavanoid_phenols proanthocyanins color_intensity hue od280/od315_of_diluted_	
	0 12.70 3.87 2.40 23.0 101.0 2.83 2.55 0.43 1.95 2.57 1.19 1 11.84 0.89 2.58 18.0 94.0 2.20 2.21 0.22 2.35 3.05 0.79 2 14.22 3.99 2.51 13.2 128.0 3.00 3.04 0.20 2.08 5.10 0.89 3 12.60 1.34 1.90 18.5 88.0 1.45 1.36 0.29 1.35 2.45 1.04 4 12.16 1.61 2.31 22.8 90.0 1.78 1.69 0.43 1.56 2.45 1.33	3.13 463.0 3.08 520.0 3.53 760.0 2.77 562.0 2.26 495.0
In [13]:	#describing and formatting data to five decimal places #feature identification df_x_train.describe().style.format("{:.5f}")	
Out[13]:	alcohol malic_acid ash alcalinity_of_ash magnesium total_phenols flavanoids nonflavanoid_phenols proanthocyanins color_intensity hue od280/od3 count 89.00000	89.00000 89.00 2.54899 730.85
	std 0.87890 1.10208 0.25634 3.63005 13.33536 0.67975 1.04548 0.13405 0.56620 2.32526 0.23536 min 11.03000 0.89000 1.36000 10.60000 70.00000 1.10000 0.47000 0.13000 0.42000 1.74000 0.48000 25% 12.29000 1.64000 2.25000 18.00000 88.00000 1.70000 1.20000 0.26000 1.25000 3.21000 0.78000 50% 12.96000 1.97000 2.38000 20.00000 100.00000 2.20000 1.84000 0.37000 1.53000 5.00000 0.95000	0.73836 306.43 1.27000 278.00 1.75000 495.00 2.77000 630.00
	75% 13.72000 3.26000 2.54000 22.00000 108.00000 2.88000 2.89000 0.48000 1.87000 6.75000 1.08000 max 14.83000 5.65000 3.23000 30.00000 139.00000 3.88000 5.08000 0.66000 3.58000 10.80000 1.71000 Feature Scaling: To have a same scale for the smallest and largest value for a given feature.	3.16000 920.0C 3.71000 1547.0C
In [14]:	<pre>from sklearn import preprocessing scaler = preprocessing.StandardScaler().fit(X_train) X_scaled = scaler.transform(X_train) X_scaled</pre>	
Out[14]:	array([[-0.29763036, 1.30971359, 0.11769613,, 1.04824751, 0.79134959, -0.87905518], [-1.28167477, -1.40957746, 0.82387293,, -0.66090388, 0.72324853, -0.69198999], [1.44161091, 1.41921525, 0.54924862,, -0.23361603,	
	1.33615805, 0.09565289],, [1.62468894, -0.51531396, 0.03923204,, 1.0909763 ,	
In [15]:	from sklearn.preprocessing import StandardScaler	
	<pre>from sklearn.pipeline import make_pipeline from sklearn import linear_model from sklearn import svm from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.naive_bayes import GaussianNB</pre>	
	<pre>from sklearn.metrics import confusion_matrix from sklearn.metrics import plot_confusion_matrix from sklearn.metrics import plot_roc_curve IMPLEMENTING THREE CLASSIFICATION MODELS</pre>	
In [9]:		
In [41]:	<pre>pipe=make_pipeline(GaussianNB()) pipe.fit(X_train, y_train)</pre>	
Out[41]: In [42]:	<pre>pipe.score(X_train,y_train),pipe.score(X_test,y_test)</pre>	
Out[42]:		
Out[43]: In [65]:	[0, 34, 0], [0, 0, 22]], dtype=int64)	
	<pre>clf = Gaddslamb() clf.fit(X_train, y_train) GaussianNB() plot_confusion_matrix(clf, X_test, y_test) plt.show()</pre>	
	0 - 32 1 0 - 30 - 25	
	- 20 - 15 - 10	
	2 - 0 0 22 - 5 0 1 2 Predicted label	
In [60]:	<pre>Implementing SVM Model pipe=make_pipeline(svm.SVC()) pipe.fit(X_train,y_train)</pre>	
Out[60]: In [61]:	<pre>Pipeline(steps=[('svc', SVC())]) pipe.score(X_train,y_train),pipe.score(X_test,y_test)</pre>	
Out[61]: In [62]:	#EVALUACION	
Out[62]:	<pre>confusion_matrix(y_test,pipe.predict(X_test)) array([[28, 0, 5],</pre>	
In [63]:	<pre>#visualization clf = SVC(random_state=0) clf.fit(X_train, y_train) SVC(random_state=0) plot_confusion_matrix(clf, X_test, y_test)</pre>	
	plt.show() 0-28 0 5 -25	
	- 20	
	2 - 0 15 7 -5	
	o i 2 Predicted label Implementing Logistic Regression	
In [56]: Out[56]:	<pre>pipe=make_pipeline(linear_model.LogisticRegression()) pipe.fit(X_scaled,y_train) #using scaled data here Pipeline(steps=[('logisticregression', LogisticRegression())])</pre>	
<pre>In [57]: Out[57]:</pre>	<pre>pipe.score(X_scaled,y_train),pipe.score(X_test,y_test) (1.0, 0.3707865168539326)</pre>	
In [58]:	confusion_matrix(y_test,pipe.predict(X_test)) array([[33, 0, 0],	
Out[58]: In [59]:	<pre>[34, 0, 0], [22, 0, 0]], dtype=int64) clf = LogisticRegression(random_state=0) clf.fit(X_scaled, y_train)</pre>	
	LogisticRegression(random_state=0) plot_confusion_matrix(clf, X_test, y_test) plt.show()	
	0 - 33 0 0 0 - 25 - 20	
	1 - 34 0 0 2 - 22 0 0	
	0 1 2 Predicted label	