Elliptische Kurven Kryptographie

Kevin Kappelmann, Lukas Stevens

Technische Universität München

27. Mai 2016

Überblick

- 1 Einleitung
- 2 Grundbegriffe
 - Affine Ebenen
 - Projektive Ebenen
- 3 Elliptische Kurven
 - Die unendlich ferne Gerade
 - Weierstraß-Gleichung
 - Affine Darstellung

- 4 Eine Gruppe über *E*
 - Tangenten
 - Die Verknüpfung ⊕
 - Die Gruppenoperation
- 5 Anwendungen
 - Diskretes-Logarithmen-Problem
 - Sicherheit
 - Angriffe

Einleitung

Blubb Lukas

Definition affiner Ebenen

Definition

Es sei \mathcal{A} eine Menge von Punkten und \mathcal{G} eine Menge von Geraden mit $\mathcal{G} \subseteq Pot(A)$. Bei $(\mathcal{A},\mathcal{G})$ handelt es sich um eine affine Ebene, wenn folgende Bedingungen erfüllt sind:

- I Zu je zwei Elementen $a, b \in \mathcal{A}$ mit $a \neq b$ existiert genau ein $G \in \mathcal{G}$ mit $a, b \in G$.
- 2 Zu $G \in \mathcal{G}$ und $a \in \mathcal{A} \setminus G$ existiert genau ein $G' \in \mathcal{G}$ mit $a \in G'$ und $G \cap G' = \emptyset$.
- 3 Es existieren drei Elemente $a, b, c \in A$ mit $c \notin \overline{a, b}$.

Definition projektiver Ebenen

Definition

Es sei \mathcal{A} eine Menge von Punkten und \mathcal{G} eine Menge von Geraden mit $\mathcal{G} \subseteq Pot(A)$. Bei $(\mathcal{A},\mathcal{G})$ handelt es sich um eine projektive Ebene, wenn folgende Bedingungen erfüllt sind:

- I Zu je zwei Elementen $P, Q \in \mathcal{P}$ mit $P \neq Q$ existiert genau ein $G \in \mathcal{G}$ mit $P, Q \in G$.
- **2** Für je zwei $G, H \in \mathcal{G}$ mit $G \neq H$ gilt $|G \cap H| = 1$.
- Es existieren vier verschiedene Elemente in \mathcal{P} , sodass immer höchstens zwei davon in jedem beliebigen $G \in \mathcal{G}$ liegen.

PG(2, **𝔻**)

Grundbegriffe

Die unendlich ferne Gerade

Elliptische Kurven – Die unendlich ferne Gerade

• Wähle $U := \overline{P, Q}$ mit P = (1 : 0 : 0), Q = (0 : 1 : 0).

Elliptische Kurven – Die unendlich ferne Gerade

- Wähle $U := \overline{P, Q}$ mit P = (1 : 0 : 0), Q = (0 : 1 : 0).
- U ist im dreidimensionalen Raum genau die x,y-Ebene mit z = 0.

Elliptische Kurven – Die unendlich ferne Gerade

- Wähle $U := \overline{P, Q}$ mit P = (1 : 0 : 0), Q = (0 : 1 : 0).
- U ist im dreidimensionalen Raum genau die x,y-Ebene mit z = 0.

■ Wir bezeichnen *U* als die **unendlich ferne Gerade**.

Lemma

Gegeben sei die projektive Ebene $(\mathcal{P},\mathcal{G}) = PG(2,\mathbb{F})$ und die unendlich ferne Gerade U, dann ist die Abbildung

$$\phi: \mathbb{F}^2 o \mathcal{P}_U, \ (a,b) \mapsto (a:b:1)$$

bijektiv und bildet Geraden auf Geraden ab, d.h. ϕ ist ein Isomorphismus von affinen Ebenen.

Erinnerung: Punktemenge von PG(2, F)

$$P = \left\{ (x : y : z) \mid (x, y, z) \in \mathbb{F}^3 \setminus \{\mathbf{0}\} \right\}$$

Definition

Eine elliptische Kurve $E \subseteq P$ ist durch die Lösung der Weierstraß-Gleichung

$$0 = Y^2Z + a_1XYZ + a_3YZ^2 - X^3 - a_2X^2Z - a_4XZ^2 - a_6Z^3$$

gegeben, wobei $a_i \in \mathbb{F}$ gilt und die Lösung keine Singularitäten besitzen darf.

Definition

Eine Kurve E ist **singulär** in einem Punkt $P = (a : b : c) \in E$, wenn gilt:

$$\frac{\partial F}{\partial X}(P) = \frac{\partial F}{\partial Y}(P) = \frac{\partial F}{\partial Z}(P) = 0$$

Abbildung: Kurven mit Singularitäten (Knoten und Spitze)

Weierstraß-Gleichung

Elliptische Kurven – Weierstraß-Gleichung

■ Wir schränken ein: Die *Charakteristik* des Körpers \mathbb{F} soll nicht 2 und nicht 3 sein: *char* $\mathbb{F} \neq 2,3$.

Weierstraß-Gleichung

Elliptische Kurven – Weierstraß-Gleichung

- Wir schränken ein: Die *Charakteristik* des Körpers \mathbb{F} soll nicht 2 und nicht 3 sein: *char* $\mathbb{F} \neq 2,3$.
- Dies bedeutet, dass $1+1 \neq 0$ bzw. $1+1+1 \neq 0$, wobei 0,1 die neutralen Elemente der Addition bzw. Multiplikation von \mathbb{F} sind.

Elliptische Kurven – Weierstraß-Gleichung

- Wir schränken ein: Die *Charakteristik* des Körpers \mathbb{F} soll nicht 2 und nicht 3 sein: *char* $\mathbb{F} \neq 2,3$.
- Dies bedeutet, dass $1+1 \neq 0$ bzw. $1+1+1 \neq 0$, wobei 0,1 die neutralen Elemente der Addition bzw. Multiplikation von \mathbb{F} sind.
- Unter diesen Voraussetzungen können wir die Weierstraß-Gleichung vereinfachen zu:

$$0 = Y^2 Z - X^3 - aXZ^2 - bZ^3$$

Affine Darstellung

Elliptische Kurven – Affine Darstellung

■ Wir betrachten die elliptische Kurve

$$E = \{(X:Y:Z) \mid 0 = Y^2Z - X^3 - aXZ^2 - bZ^3\}$$

■ Wir betrachten die elliptische Kurve

$$E = \{(X : Y : Z) \mid 0 = Y^2Z - X^3 - aXZ^2 - bZ^3\}$$

Wir erinnern uns an die unendlich fernen Gerade $U = \overline{(0:1:0), (1:0:0)}$.

■ Wir betrachten die elliptische Kurve

$$E = \{(X : Y : Z) \mid 0 = Y^2Z - X^3 - aXZ^2 - bZ^3\}$$

- Wir erinnern uns an die unendlich fernen Gerade U = (0:1:0), (1:0:0).
- Es gilt: $U \cap E = (0:1:0) =: \mathcal{O}$, d.h. es liegt nur \mathcal{O} auf unserer Kurve E.

■ Wir betrachten die elliptische Kurve

$$E = \{(X : Y : Z) \mid 0 = Y^2Z - X^3 - aXZ^2 - bZ^3\}$$

- Wir erinnern uns an die unendlich fernen Gerade U = (0:1:0), (1:0:0).
- Es gilt: $U \cap E = (0:1:0) =: \mathcal{O}$, d.h. es liegt nur \mathcal{O} auf unserer Kurve E.
- Wir bezeichnen O als den unendlich fernen Punkt.

Affine Darstellung

Elliptische Kurven – Affine Darstellung

■ Für alle anderen Punkte $P \in E$ ist die z-Koordinate $\neq 0$, d.h. alle Punkte außer \mathcal{O} liegen im affinen Teil von E.

Affine Darstellung

Elliptische Kurven – Affine Darstellung

- Für alle anderen Punkte $P \in E$ ist die z-Koordinate $\neq 0$, d.h. alle Punkte außer \mathcal{O} liegen im affinen Teil von E.
- Wir können also $P \in \{(x : y : 1) \mid x, y \in \mathbb{F}\}$ annehmen.

- Für alle anderen Punkte $P \in E$ ist die z-Koordinate $\neq 0$, d.h. alle Punkte außer \mathcal{O} liegen im affinen Teil von E.
- Wir können also $P \in \{(x : y : 1) \mid x, y \in \mathbb{F}\}$ annehmen.
- Die Weierstraß-Gleichung für diese Punkte vereinfacht sich zu:

$$f(x,y) := y^2 - x^3 - ax - b$$

- Für alle anderen Punkte $P \in E$ ist die z-Koordinate $\neq 0$, d.h. alle Punkte außer \mathcal{O} liegen im affinen Teil von E.
- Wir können also $P \in \{(x : y : 1) \mid x, y \in \mathbb{F}\}$ annehmen.
- Die Weierstraß-Gleichung für diese Punkte vereinfacht sich zu:

$$f(x,y) := y^2 - x^3 - ax - b$$

Insgesamt gilt also:

$$E = \{(x : y : 1) \mid (x, y) \in \mathbb{F}^2 \land f(x, y) = 0\} \cup \{\mathcal{O}\}\$$

Abbildung: Affine Darstellung elliptischer Kurven

Lemma

Gegeben sei eine eine elliptische Kurve E, die durch die Lösungen der vereinfachten Weierstraß-Gleichung definiert ist:

$$E: Y^2Z = X^3 + aXZ^2 + bZ^3.$$

Dann gilt: Die Kurve E ist genau dann nicht-singulär, wenn das Polynom $f(x) = x^3 + ax + b$ keine mehrfachen Nullstellen besitzt.

Eine Gruppe über E – Voraussetzungen

- Es gelte *char* $\mathbb{F} \neq 2,3$
- *E* sei nicht singulär.

Eine Gruppe über E – Tangenten

Blub

Die Verknüpfung \oplus

Eine Gruppe über E – Die Gruppenoperation

Wir definieren die Verknüpfung + für $P, Q \in E$ folgendermaßen:

$$P + Q := \mathcal{O} \oplus (P \oplus Q) = -(P \oplus Q).$$

Satz

(E,+) ist eine abelsche Gruppe mit neutralem Element \mathcal{O} .

Die Gruppenoperation

Eine Gruppe über E – Die Gruppenoperation

Abbildung: Grafische Addition in (E, +)

Anwendungen - Diskretes-Logarithmen-Problem

Definition

Sei G eine Gruppe und seien $x,y\in G$. Das Finden von $m\in\mathbb{N}$, so dass gilt

$$x^m = y$$
,

wird Diskretes-Logarithmen-Problem (kurz DLP) genannt.

Anwendungen – Diskretes-Logarithmen-Problem

Definition

Sei G eine Gruppe und seien $x, y \in G$. Das Finden von $m \in \mathbb{N}$, so dass gilt

$$x^m = y$$
,

wird **Diskretes-Logarithmen-Problem** (kurz DLP) genannt.

Über elliptische Kurven:

■ Wähle $P, Q \in E$ und ein $m \in \mathbb{N}$. Das DLP ist dann die Lösung der Gleichung mP = Q, wobei P und Q bekannt sind.

Anwendungen – Diskretes-Logarithmen-Problem

Definition

Sei G eine Gruppe und seien $x,y\in G$. Das Finden von $m\in\mathbb{N}$, so dass gilt

$$x^m = y$$
,

wird **Diskretes-Logarithmen-Problem** (kurz DLP) genannt.

Über elliptische Kurven:

- Wähle $P, Q \in E$ und ein $m \in \mathbb{N}$. Das DLP ist dann die Lösung der Gleichung mP = Q, wobei P und Q bekannt sind.
- Die skalare Multiplikation des Punktes P wird durch wiederholtes Addieren des Punktes mit sich selbst dargestellt.

Sicherheit

Anwendungen – Sicherheit

■ Naives Probieren: O(|E|).

Sicherheit

Anwendungen – Sicherheit

■ Naives Probieren: O(|E|).

Wir erinnern uns:

■ DLP beispielsweise mit Babystep-Giantstep in $O(\sqrt{|E|})$ lösbar.

Anwendungen – Sicherheit

■ Naives Probieren: O(|E|).

Wir erinnern uns:

- DLP beispielsweise mit Babystep-Giantstep in $O(\sqrt{|E|})$ lösbar.
- DLP mit Hilfe von Primzahlen mit Index-Calculus-Algorithmen subexponentiell lösbar.

■ Naives Probieren: O(|E|).

Wir erinnern uns:

- DLP beispielsweise mit Babystep-Giantstep in $O(\sqrt{|E|})$ lösbar.
- DLP mit Hilfe von Primzahlen mit Index-Calculus-Algorithmen subexponentiell lösbar.

Aber: Elliptische Kurven besitzen keine "Primzahlen".

Anwendungen – Angriffe

Beispiel: Wir wollen 13P berechnen:

Abbildung: Effiziente Skalarmultiplikation mit Additionsbaum

Anwendungen - Angriffe

Beispiel: Wir wollen 13P berechnen:

Abbildung: Effiziente Skalarmultiplikation mit Additionsbaum

Fallunterscheidungen bei Addition notwendig.

Beispiel: Wir wollen 13P berechnen:

Abbildung: Effiziente Skalarmultiplikation mit Additionsbaum

- Fallunterscheidungen bei Addition notwendig.
 - ⇒ Rückschlüsse über Schlüssel mit Seitenkanalangriff möglich.

The End

Zusammengefasst: Elliptische Kurven sind einfach super.