Package 'thurstonianIRT'

April 17, 2024

Encoding UTF-8 **Type** Package

Title Thurstonian IRT Models

```
Version 0.12.5
Date 2024-04-17
Description Fit Thurstonian Item Response Theory (IRT) models in R. This
     package supports fitting Thurstonian IRT models and its extensions using
     'Stan', 'lavaan', or 'Mplus' for the model estimation. Functionality for
     extracting results, making predictions, and simulating data is provided as
     well. References:
     Brown & Maydeu-Olivares (2011) <doi:10.1177/0013164410375112>;
     Bürkner et al. (2019) <doi:10.1177/0013164419832063>.
License GPL (>= 3)
LazyData true
ByteCompile true
Depends R (>= 3.5.0), Rcpp (>= 0.12.16), methods
Imports dplyr (>= 0.6.0), magrittr, mytnorm, RcppParallel (>= 5.0.1),
     rlang, rstan (\geq 2.26.0), rstantools (\geq 2.1.1), stats, tibble
     (>= 1.3.1), tidyr, lavaan (>= 0.6-1), utils
Suggests MplusAutomation, knitr, testthat (>= 0.9.1), rmarkdown
LinkingTo BH (>= 1.66.0-1), Rcpp (>= 0.12.16), RcppEigen (>=
     0.3.3.4.0), RcppParallel (>= 5.0.1), rstan (>= 2.26.0),
     StanHeaders (\geq 2.26.0)
VignetteBuilder knitr
SystemRequirements GNU make
URL https://github.com/paul-buerkner/thurstonianIRT
BugReports https://github.com/paul-buerkner/thurstonianIRT/issues
NeedsCompilation yes
RoxygenNote 7.3.1
Biarch true
                                                1
```

Author Paul-Christian Bürkner [aut, cre],

Angus Hughes [ctb],

Trustees of Columbia University [cph]

Maintainer Paul-Christian Bürkner <paul.buerkner@gmail.com>

Repository CRAN

Date/Publication 2024-04-17 11:00:02 UTC

R topics documented:

Index		19
	triplets	17
	sim_TIRT_data	
	set_blocks_from_df	
	set_block	
	predict.TIRTfit	12
	make_TIRT_data	11
	make_stan_data	10
	make_sem_data	9
	make_mplus_code	
	make_lavaan_code	
	gof.TIRTfit	
	fit_TIRT_stan	
	fit_TIRT_mplus	5
	fit_TIRT_lavaan	4
	cor_matrix	3
	thurstonianIR1-package	2

thurstonianIRT-package

 $The \ 'thurstonian IRT'\ package.$

Description

This package fits Thurstonian Item Response Theory (IRT) models using 'Stan', 'lavaan', or 'Mplus'. To bring your data into the right format, use the make_TIRT_data function. Models can then be fitted via fit_TIRT_stan, fit_TIRT_lavaan, or fit_TIRT_mplus depending on the desired model fitting engine. Data from Thurstonian IRT models can be simulated via sim_TIRT_data.

Author(s)

Maintainer: Paul-Christian Bürkner <paul.buerkner@gmail.com>

Other contributors:

- Angus Hughes [contributor]
- Trustees of Columbia University [copyright holder]

cor_matrix 3

References

Brown, A., & Maydeu-Olivares, A. (2011). Item response modeling of forced-choice questionnaires. Educational and Psychological Measurement, 71(3), 460-502. doi:10.1177/0013164410375112

Bürkner P. C., Schulte N., & Holling H. (2019). On the Statistical and Practical Limitations of Thurstonian IRT Models. Educational and Psychological Measurement. doi:10.1177/0013164419832063

See Also

Useful links:

- https://github.com/paul-buerkner/thurstonianIRT
- Report bugs at https://github.com/paul-buerkner/thurstonianIRT/issues

cor_matrix

Set up Correlation Matrices

Description

Set up Correlation Matrices

Usage

```
cor_matrix(cors, dim, dimnames = NULL)
```

Arguments

cors vector of unique correlations

dim Dimension of the correlation matrix

dimnames Optional dimnames of the correlation matrix

Value

A correlation matrix of dimension dim.

```
cor_matrix(c(0.2, 0.3, 0.5), dim = 3)
```

fit_TIRT_lavaan

fit_TIRT_lavaan

Fit Thurstonian IRT models in lavaan

Description

Fit Thurstonian IRT models in lavaan

Usage

```
fit_TIRT_lavaan(data, estimator = "ULSMV", ...)
```

Arguments

An object of class 'TIRTdata'. see make_TIRT_data for documentation on how to create one.

estimator

Name of the estimator that should be used. See lavOptions.

Further arguments passed to lavaan.

Value

```
A 'TIRTfit' object.
```

```
# load the data
data("triplets")
# define the blocks of items
blocks <-
  set_block(c("i1", "i2", "i3"), traits = c("t1", "t2", "t3"),
  signs = c(1, 1, 1)) + \\ set\_block(c("i4", "i5", "i6"), traits = c("t1", "t2", "t3"), \\
            signs = c(-1, 1, 1)) +
  set_block(c("i7", "i8", "i9"), traits = c("t1", "t2", "t3"),
            signs = c(1, 1, -1)) +
  set_block(c("i10", "i11", "i12"), traits = c("t1", "t2", "t3"),
            signs = c(1, -1, 1))
# generate the data to be understood by 'thurstonianIRT'
triplets_long <- make_TIRT_data(</pre>
  data = triplets, blocks = blocks, direction = "larger",
  format = "pairwise", family = "bernoulli", range = c(0, 1)
)
# fit the data using lavaan
fit <- fit_TIRT_lavaan(triplets_long)</pre>
print(fit)
predict(fit)
```

fit_TIRT_mplus 5

fit_TIRT_mplus

Fit Thurstonian IRT models in Mplus

Description

Fit Thurstonian IRT models in Mplus

Usage

```
fit_TIRT_mplus(data, ...)
```

Arguments

data An object of class 'TIRTdata'. see make_TIRT_data for documentation on how to create one.

... Further arguments passed to mplusModeler.

Value

```
A 'TIRTfit' object.
```

```
# load the data
data("triplets")
# define the blocks of items
blocks <-
  set_block(c("i1", "i2", "i3"), traits = c("t1", "t2", "t3"),
  signs = c(1, 1, 1)) + \\ set\_block(c("i4", "i5", "i6"), traits = c("t1", "t2", "t3"), \\
            signs = c(-1, 1, 1)) +
  set_block(c("i7", "i8", "i9"), traits = c("t1", "t2", "t3"),
            signs = c(1, 1, -1)) +
  set_block(c("i10", "i11", "i12"), traits = c("t1", "t2", "t3"),
            signs = c(1, -1, 1))
# generate the data to be understood by 'thurstonianIRT'
triplets_long <- make_TIRT_data(</pre>
  data = triplets, blocks = blocks, direction = "larger",
  format = "pairwise", family = "bernoulli", range = c(0, 1)
)
## Not run:
# fit the data using Mplus
fit <- fit_TIRT_mplus(triplets_long)</pre>
```

fit_TIRT_stan

```
print(fit)
predict(fit)
## End(Not run)
```

fit_TIRT_stan

Fit Thurstonian IRT models in Stan

Description

Fit Thurstonian IRT models in Stan

Usage

```
fit_TIRT_stan(data, init = 0, ...)
```

Arguments

An object of class 'TIRTdata'. see make_TIRT_data for documentation on how to create one.

Initial values of the parameters. Defaults to 0 as it proved to be most stable.

Further arguments passed to rstan::sampling.

Value

A 'TIRTfit' object.

```
# load the data
data("triplets")
# define the blocks of items
blocks <-
 set_block(c("i1", "i2", "i3"), traits = c("t1", "t2", "t3"),
          signs = c(1, 1, 1)) +
 set_block(c("i4", "i5", "i6"), traits = c("t1", "t2", "t3"),
            signs = c(-1, 1, 1)) +
 set_block(c("i7", "i8", "i9"), traits = c("t1", "t2", "t3"),
            signs = c(1, 1, -1)) +
 set_block(c("i10", "i11", "i12"), traits = c("t1", "t2", "t3"),
            signs = c(1, -1, 1))
# generate the data to be understood by 'thurstonianIRT'
triplets_long <- make_TIRT_data(</pre>
 data = triplets, blocks = blocks, direction = "larger",
 format = "pairwise", family = "bernoulli", range = c(0, 1)
)
```

gof.TIRTfit 7

```
# fit the data using Stan
fit <- fit_TIRT_stan(triplets_long, chains = 1)
print(fit)
predict(fit)</pre>
```

gof.TIRTfit

Extract corrected goodness of fit statistics

Description

By default **lavaan** will return a value for degrees of freedom that ignores redundancies amongst the estimated model thresholds. This function corrects the degrees of freedom, and then recalculates the associated chi-square test statistic p-value and root mean square error of approximation (RMSEA).

Usage

```
## S3 method for class 'TIRTfit'
gof(object, ...)
gof(object, ...)
```

Arguments

```
object A TIRTfit object. ... currently unused.
```

Details

Note this function is currently only implemented for lavaan.

Value

A vector containing the chi-square value, adjusted degrees of freedom, p-value, and RMSEA.

8 make_lavaan_code

make_lavaan_code

Generate lavaan code for Thurstonian IRT models

Description

Generate lavaan code for Thurstonian IRT models

Usage

```
make_lavaan_code(data)
```

Arguments

data

An object of class 'TIRTdata'. see make_TIRT_data for documentation on how to create one.

Value

A character string of lavaan code for a Thurstonian IRT model.

```
lambdas <- c(runif(6, 0.5, 1), runif(6, -1, -0.5))
sim_data <- sim_TIRT_data(
    npersons = 100,
    ntraits = 3,
    nblocks_per_trait = 4,
    gamma = 0,
    lambda = lambdas,
    Phi = diag(3)
)
cat(make_lavaan_code(sim_data))</pre>
```

make_mplus_code 9

make_mplus_code

Generate Mplus code for Thurstonian IRT models

Description

Generate Mplus code for Thurstonian IRT models

Usage

```
make_mplus_code(data, iter = 1000, eta_file = "eta.csv")
```

Arguments

An object of class 'TIRTdata'. see make_TIRT_data for documentation on how to create one.

iter Maximum number of iterations of the model fitting algorithm.

eta_file optional file name in which predicted trait scores should be stored.

Value

A list of Mplus code snippets to be interpreted by the MplusAutomation package.

Examples

```
sim_data <- sim_TIRT_data(
    npersons = 100,
    ntraits = 3,
    nblocks_per_trait = 4,
    gamma = 0,
    lambda = c(runif(6, 0.5, 1), runif(6, -1, -0.5)),
    Phi = diag(3)
)

# show the created Mplus code
lapply(make_mplus_code(sim_data), cat)</pre>
```

make_sem_data

Prepare data for Thurstonian IRT models fitted with lavaan or Mplus

Description

Prepare data for Thurstonian IRT models fitted with lavaan or Mplus

Usage

```
make_sem_data(data)
```

10 make_stan_data

Arguments

data

An object of class 'TIRTdata'. see make_TIRT_data for documentation on how to create one.

Value

A data. frame ready to be passed to lavaan or Mplus.

Examples

```
# simulate some data
sdata <- sim_TIRT_data(
    npersons = 100,
    ntraits = 3,
    nblocks_per_trait = 4,
    gamma = 0,
    lambda = c(runif(6, 0.5, 1), runif(6, -1, -0.5)),
    Phi = diag(3)
)

# create data ready for use in SEM software
sem_data <- make_sem_data(sdata)
head(sem_data)</pre>
```

make_stan_data

Prepare data for Thurstonian IRT models fitted with Stan

Description

Prepare data for Thurstonian IRT models fitted with Stan

Usage

```
make_stan_data(data)
```

Arguments

data

An object of class data.frame containing data of all variables used in the model.

Value

A list of data ready to be passed to Stan.

```
#' @examples # simulate some data sim_data <- sim_TIRT_data( npersons = 100, ntraits = 3, nblocks_per_trait = 4, gamma = 0, lambda = c(runif(6, 0.5, 1), runif(6, -1, -0.5)), Phi = diag(3))
```

create data ready for use in Stan stan_data <- make_stan_data(sim_data) str(stan_data)

make_TIRT_data

make	TTRT	data	

Prepare data for Thurstonian IRT models

Description

Prepare data for Thurstonian IRT models

Usage

```
make_TIRT_data(
  data,
  blocks,
  direction = c("larger", "smaller"),
  format = c("ranks", "pairwise"),
  family = "bernoulli",
  partial = FALSE,
  range = c(0, 1)
)
```

Arguments

data	An object of class data.frame containing data of all variables used in the model.
blocks	Object of class TIRTblocks generated by set_block indicating which items belong to which block, trait and more. Ignored if data already contains information on the blocks.
direction	Indicates if "larger" (the default) or "smaller" input values are considered as indicating the favored answer.
format	Format of the item responses. Either "ranks" for responses in ranked format or "pairwise" for responses in pairwise comparison format. If "ranks", each item must have its own column in the data frame which contains its ranks within the block. If "pairwise", each existing item combination must have its own column named after the combination of the two compared items.
family	Name of assumed the response distribution. Either "bernoulli", "cumulative" or "gaussian".
partial	A flag to indicate whether partial comparisons are allowed for responses stored in the "ranks" format.
range	Numeric vector of length two giving the range of the responses when using the "pairwise" format. Defaults to $c(0, 1)$ for use with dichotomous responses.

Value

A data.frame in a specific format and with attributes ready for use with other functions of the **ThurstonianIRT** package.

12 predict.TIRTfit

Examples

```
# load the data
data("triplets")
# define the blocks of items
blocks <-
  set_block(c("i1", "i2", "i3"), traits = c("t1", "t2", "t3"),
          signs = c(1, 1, 1)) +
  set_block(c("i4", "i5", "i6"), traits = c("t1", "t2", "t3"),
            signs = c(-1, 1, 1) +
  set_block(c("i7", "i8", "i9"), traits = c("t1", "t2", "t3"),
            signs = c(1, 1, -1)) +
  set_block(c("i10", "i11", "i12"), traits = c("t1", "t2", "t3"),
            signs = c(1, -1, 1))
# generate the data to be understood by 'thurstonianIRT'
triplets_long <- make_TIRT_data(</pre>
  data = triplets, blocks = blocks, direction = "larger",
  format = "pairwise", family = "bernoulli", range = c(0, 1)
)
# fit the data using Stan
fit <- fit_TIRT_stan(triplets_long, chains = 1)</pre>
print(fit)
predict(fit)
```

predict.TIRTfit

Predict trait scores of Thurstonian IRT models

Description

Predict trait scores of Thurstonian IRT models

Usage

```
## S3 method for class 'TIRTfit'
predict(object, newdata = NULL, ...)
```

Arguments

object An object of class TIRTfit.

newdata Optional TIRTdata object (created via make_TIRT_data) containing data of new

persons for which trait scores should be predicted based on the fitted model. If NULL (the default), trait scores are predicted for the persons whose data was used

to originally fit the model.

. . . Further arguments passed to the underlying methods.

set_block 13

Details

When predicting trait scores of new persons (via newdata), posterior medians of item parameters are used for predictions. This implies that the uncertainty in the new trait scores is underestimated as the uncertainty in the (posterior distribution of) item parameters is ignored.

Value

A data frame with predicted trait scores.

set_block

Prepare blocks of items

Description

Prepare blocks of items and incorporate information about which item belongs to which trait. A block of items is a set of two or more items presented and answered together by fully ranking them or selecting the most and/or least favorit in a forced choice format. A whole test usually contains several blocks and items may reappear in different blocks.

Usage

```
set_block(items, traits, names = items, signs = 1)
empty_block()
```

Arguments

items	Names of item comparisons to be combined into one block. Should correspond to variables in the data.
traits	Names of the traits to which each item belongs
names	Optional names of the items in the output. Can be used to equate parameters of items across blocks, if the same item was used in different blocks.
signs	Expected signs of the item loadings (1 or -1).

See Also

```
set_blocks_from_df
```

```
set_block(
  items = c("i1", "i2", "i3"),
  traits = c("A", "B", "C")
) +
set_block(
  items = c("i4", "i5", "i6"),
  traits = c("A", "B", "C")
```

set_blocks_from_df

```
# Support items i1 and i4 were the same so that they have the same parameters
set_block(
   items = c("i1", "i2", "i3"),
   traits = c("A", "B", "C"),
   names = c("item1", "item2", "item3")
) +
set_block(
   items = c("i4", "i5", "i6"),
   traits = c("A", "B", "C"),
   names = c("item1", "item5", "item6")
)
```

set_blocks_from_df

Prepare blocks of items from a data frame

Description

Prepare blocks of items and incorporate information about which item belongs to which trait from a pre-existing dataframe. This is a wrapper function for set_block, eliminating the need to manually set each item, trait, name and sign (loading) info per block.

Usage

```
set_blocks_from_df(
  data,
  blocks = "block",
  items = "item",
  traits = "trait",
  names = items,
  signs = "sign"
)
```

Arguments

data	A data.frame containing all the required columns (see the arguments below) to specify the item blocks.
blocks	Name of column vector denoting the block each item corresponds to. Each block must have an equal number of items.
items	Name of column vector denoting items to be combined into one block. Should correspond to variables in the data.
traits	Names of column vector denoting the traits to which each item belongs.
names	Optional column vector of item names in the output. Can be used to equate parameters of items across blocks, if the same item was used in different blocks.
signs	Name of column vector with expected signs of the item loadings (1 or -1).

sim_TIRT_data 15

Details

A block of items is a set of two or more items presented and answered together by fully ranking them or selecting the most and/or least favorite in a forced choice format. A whole test usually contains several blocks and items may reappear in different blocks.

See Also

```
set_block
```

Examples

sim_TIRT_data

Simulate Thurstonian IRT data

Description

Simulate Thurstonian IRT data

Usage

```
sim_TIRT_data(
  npersons,
  ntraits,
  lambda,
  gamma,
  psi = NULL,
  Phi = NULL,
  eta = NULL,
  family = "bernoulli",
  nblocks_per_trait = 5,
  nitems_per_block = 3,
  comb_blocks = c("random", "fixed")
)
```

16 sim_TIRT_data

Arguments

npersons Number of persons. ntraits Number of traits. lambda Item factor loadings. gamma Baseline attractiveness parameters of the first item versus the second item in the pairwise comparisons. Can be thought of as intercept parameters. Optional item uniquenesses. If not provided, they will be computed as psi = 1psi lambda^2 in which case lambda are taken to be the standardized factor loadings. Phi Optional trait correlation matrix from which to sample person factor scores. Only used if eta is not provided. eta Optional person factor scores. If provided, argument Phi will be ignored. family Name of assumed the response distribution. Either "bernoulli", "cumulative", or "gaussian". nblocks_per_trait Number of blocks per trait. nitems_per_block Number of items per block. comb_blocks Indicates how to combine traits to blocks. "fixed" implies a simple nonrandom design that may combine certain traits which each other disproportion-

Value

A data. frame of the same structure as returned by make_TIRT_data. Parameter values from which the data were simulated are stored as attributes of the returned object.

ally often. We thus recommend to use a "random" block design (the default)

that combines all traits with all other traits equally often on average.

```
# simulate some data
sdata <- sim_TIRT_data(
    npersons = 100,
    ntraits = 3,
    nblocks_per_trait = 4,
    gamma = 0,
    lambda = c(runif(6, 0.5, 1), runif(6, -1, -0.5)),
    Phi = diag(3)
)

# take a look at the data
head(sdata)
str(attributes(sdata))

# fit a Thurstonian IRT model using lavaan
fit <- fit_TIRT_lavaan(sdata)
print(fit)</pre>
```

triplets 17

triplets

Triplets of Pairwise Comparisons

Description

This data set contains synthetic data of the first 200 out of a total of 2000 participants on 4 triplets, originally generated as part of Brown and Maydeu-Olivares (2012). In each triplet, participants had to rank the three alternative items according to their preference. Responses were then converted into a set of dichotomous pairwise responses between all the three alternatives. More details can be found in Brown and Maydeu-Olivares (2012).

Usage

triplets

Format

A data frame of 200 observations containing information on 12 variables. Overall, the 12 items measure 3 different traits. Items 1, 4, 7, and 10 load on trait 1, items 2, 5, 8, and 11 load on trait 2, and items 3, 6, 9, and 12 load on trait 3. Moreover, items 4, 9, and 11 are inverted.

- i1i2 Response preferences between item 1 and 2.
- i1i3 Response preferences between item 1 and 3.
- i2i3 Response preferences between item 2 and 3.
- **i4i5** Response preferences between item 4 and 5.
- i4i6 Response preferences between item 4 and 6.
- **i5i6** Response preferences between item 5 and 6.
- **i7i8** Response preferences between item 7 and 8.
- **i7i9** Response preferences between item 7 and 9.
- **i8i9** Response preferences between item 8 and 9.
- i10i11 Response preferences between item 10 and 11.
- **i10i12** Response preferences between item 10 and 12.
- **i11i12** Response preferences between item 11 and 12.

Source

Brown, A. & Maydeu-Olivares, A. (2012). Fitting a Thurstonian IRT model to forced-choice data using Mplus. Behavior Research Methods, 44, 1135–1147. DOI: 10.3758/s13428-012-0217-x

18 triplets

```
# load the data
data("triplets")
# define the blocks of items
blocks <-
  set_block(c("i1", "i2", "i3"), traits = c("t1", "t2", "t3"),
          signs = c(1, 1, 1)) +
  set_block(c("i4", "i5", "i6"), traits = c("t1", "t2", "t3"),
 signs = c(-1, 1, 1)) +
set_block(c("i7", "i8", "i9"), traits = c("t1", "t2", "t3"),
            signs = c(1, 1, -1)) +
  set_block(c("i10", "i11", "i12"), traits = c("t1", "t2", "t3"),
            signs = c(1, -1, 1))
# generate the data to be understood by 'thurstonianIRT'
tdat <- make_TIRT_data(</pre>
  triplets, blocks, direction = "larger",
  format = "pairwise", family = "bernoulli", range = c(0, 1)
)
# fit the data using Stan
fit <- fit_TIRT_stan(tdat, chains = 1)</pre>
print(fit)
predict(fit)
```

Index

```
* datasets
    triplets, 17
cor_matrix, 3
empty_block (set_block), 13
fit_TIRT_lavaan, 2, 4
fit\_TIRT\_mplus, 2, 5
fit_TIRT_stan, 2, 6
gof (gof.TIRTfit), 7
gof.TIRTfit, 7
lavaan, 4
lavOptions, 4
make_lavaan_code, 8
make_mplus_code, 9
make_sem_data, 9
\verb|make_stan_data|, 10
{\tt make\_TIRT\_data}, 2, \textit{4--6}, \textit{8--10}, \textit{11}, \textit{12}, \textit{16}
mplusModeler, 5
predict.TIRTfit, 12
rstan::sampling, 6
set_block, 11, 13, 14, 15
set_blocks_from_df, 13, 14
sim_TIRT_data, 2, 15
thurstonianIRT
         (thurstonianIRT-package), 2
thurstonianIRT-package, 2
triplets, 17
```