Week 6 Summary Exercises

Due Aug 6 at 11:59pm **Points** 68 **Questions** 27

Available Jul 30 at 12am - Aug 6 at 11:59pm 8 days Time Limit 360 Minutes Allowed Attempts 2

Take the Quiz Again

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	71 minutes	67 out of 68

Score for this attempt: **67** out of 68 Submitted Aug 3 at 1:06pm This attempt took 71 minutes.

	Question 1	1 / 1 pts
	In a link between Host A, and Host B, we have three intermediary routers:	
	Host A Router Snucky Router Jumpy Router Po Host B	
	Host A's first hop router is Router Snucky .	
	Answer 1:	
Correct!	Snucky	

	Question 2	1 / 1 pts
	The Internet Protocol (IP) implements congestion control.	
	True	
Correct!	False	

	Question 3	1 / 1 pts
	A router's routing table is output by a routing algorithm .	
	Answer 1:	
Correct!	routing algorithm	

In addition to a "default" entry, routing tables in an internet store...

all of the above

a complete path to each of the networks known to the router

the number of hops in the shortest path to each of the networks known to the router

the "first hop" in a path to each of the networks known to the router

Question 5

Upon encountering a router with the following routing table:

	Prefix Match		Port
10011110 000	011110 10001111		0
10011110 000	011110 10001111	000	1
10011110 000	011110 10001111	01	2
10011110 000	011110 10001110	0001	3
Default			4

A datagram with the destination IP address 158.30.143.80 would be routed to Port 2.

Answer 1:

Correct!

Port 2

4 / 4 pts

Question 9 2 / 2 pts

	In network graph terminology, [a] represent direct connections between routers.	
	Weights	
Correct!	Edges	
	Shortest Path	
	Nodes	
	Question 10	2 / 2 pts
	The "traceroute" application (on Windows) sends UDP messages by default.	
	True	
Correct!	False	
	Question 11	2 / 2 pts
	IP datagrams fragments can not be fragmented again.	
	○ True	
Correct!	False	
	Question 12	2 / 2 pts
	In a subnet, there are reserved IP addresses.	
Correct!	2.0000	

orrect Answers

2.0 (with margin: 0)

	Question 13	2 / 2 pts
	It is the responsibility of a routing algorithm to correlate MAC addresses with IP a	ddresses.
	○ True	
Correct!	False	
	Question 14	2 / 2 pts
	When a destination host's IP fragment timer expires, it drops all accumulated frag corresponding to that timer.	ments
Correct!	True	
	○ False	
	Question 15	2 / 2 pts
	ICMP messages are carried within the payload of IP datagrams.	
Correct!	True	
	○ False	
	Question 16	2 / 2 pts

In network graph terminology, a [a] from A to B is the set of edges to traverse to reach B

https://oregonstate.instructure.com/courses/1669736/quizzes/2389088

from A for the lowest total cost.

Question 17 In a fragmented IP datagram, the "offset" IP header field value is exactly equal to the number of bytes of fragmented data preceding this fragment. True False

Routing would be more complicated if we used hardware addresses as network addresses.

True

False

Question 19

The largest amount of data, in bytes, which can be accommodated by a particilar network, link, or physical-layer is called the [a].

Maximum Segment Size (MSS)

Sending Size

Correct!

Correct!

Correct!

Maximum Transmission Unit (MTU)

	Question 20	2 / 2 pts
	It is the responsibility of a routing algorithm to determine a datag	gram's next hop information.
Correct!	True	
	False	

	Question 21 2 / 2 p	ts
	Given an internet represented as a weighted undirected graph, the shortest path between node X and node Y is the path that	
Correct!	has the smallest sum of edge weights.	_
	has the smallest number of hops	
	connects node X to node Y directly	
	begins with the smallest weight on the first hop edge from node X	

	Question 22	2 / 2 pts
	Re-assembly of fragmented IP datagrams is handled by	
	the router in the datagram's path	
Correct!	the destination host.	
	the sending host.	

the next router with a large-enough MTU.

Suppose that a 1600-byte datagram (identification #20) must transit a network which has a 740-byte MTU. Assume the minimum IP and TCP header sizes, i.e., the IP header is 20 bytes and the TCP header is 20 bytes.

1. How many fragments are created?

[Select]

Jetpack's MAC address

Correct!

/2017	Week 6 Summary Exercises: INTRO TO COMPUTER NETWORKS (CS_372_400_U2017)
	2. How many bytes of application data are carried in the first fragment?
	[Select] ▼ bytes
	 3. How many bytes of <u>application data</u> are carried in the second fragment? 720 bytes 4. How many bytes of <u>application data</u> are carried in the last fragment? 140 bytes 5. What is the identification number of the second fragment? # 20
	6. What is the fragment offset in the last fragment?
	Answer 1:
Correct!	3
	Answer 2:
Correct!	700
	Answer 3:
Correct!	720
	Answer 4:
Correct!	140
	Answer 5:
Correct!	20
	Answer 6:
Correct!	180

6 / 6 pts **Question 27**

Using the version of Dijkstra's Algorithm discussed in the lectures (see below), and the network configuration in the graph (see below), to calculate the shortest path from node *H* to node B.

(NOTE#1: *H* is <u>not</u> in the original set S.)

(NOTE#2: A tie goes to the lower node (alphabetically).

(NOTE#3: If you use the textbook version of Dijkstra's Algorithm, find the 3rd node to be added to set S', where $S = \{A,B,C,D,E,F,G\}$ and S' starts as $\{H\}$.)

• What is the 3rd node to be eliminated from the set **S** = {A,B,C,D,E,F,G}?

Ε

- What is the full shortest path from node H to node B? (e.g. for a path from H to D you would type "H-D" without the quotes)
- What is the cost of the shortest path from node H to node B?

 8
- Fill in the complete routing table for node H, as it would be calculated by Dijkstra's algorithm and stored inside router H. (It's OK to do this by inspection; you don't have to crank through Dijkstra's algorithm for each destination.)

	0 , 0
Destination	First Hop
А	G
В	G
C	G
D	D
E	G
F	G
G	G


```
Dijkstra's algorithm
S = {all nodes except source}
for u in S \{ /*initialization*/ \}
   D[u] = edge weight (if edge (source, a)
         exists) or ∞ (otherwise)
   R[u] = u (if edge (source, u) exists) or
            * (otherwise)
   P[u] = source ((if edge (source, u) exists)
            or * (otherwise)
while (not empty(S)) {
   u = \text{node} with smallest value in D
      /* if tie, choose lower (alpha) node */
  if u in S {
      if(D[u] = \infty) {
            error: "no path"; exit;}
      S = S - \{u\};
      for (each v such that edge (u, v) exists) {
         if(v in S) {
            c = D[u] + weight (u, v);
            if(c < D[v]) {
               D[v] = c;
               R[v] = R[u];
               P[v] = u
```

```
Е
  Correct!
                 Answer 2:
                     H-G-E-A-C-B
  Correct!
                     H-G-E-A-C-B
Correct Answer
Correct Answer
                     HGEACB
                     HGEACB
Correct Answer
                 Answer 3:
                     8
  Correct!
                 Answer 4:
                     G
  Correct!
                 Answer 5:
                     G
  Correct!
```

Answer 1:

Quiz Score: 67 out of 68

G

Correct!