

QUANTUM CRYPTOGRAPHY

TEAM AVERAGE DODO ENJOYERS

CAPUCINE BERAUD FRANCESCO DE LUCA CARLO ZOLLO LUCA PARADISO LEONARDO CRUCIANI

23.04.2023

AGENDA

- Introduction
 - Cybersecurity in the energy sector
 - Using QC to create randomness
- The Challenge
 - Understanding randomness measurements
 - Studying Toy noise models
 - Extracting randomness

Most Targeted Sectors

Attacks to Energy Companies (EU)

INTRODUCTION

CYBERSECURITY IN THE ENERGY SECTOR

- Energy companies are the 3rd most targeted sector of cyberattacks
- The number of attacks to the sector have been steadily growing for the last 5 years
- Quantum cryptography may provide a useful tool to prevent attacks

RANDOMNESS

- Randomness is *necessary* for cryptography:
- It is used for :
 - cryptographic key generation
 - encryption
 - authentication

CLASSICAL

QUANTUM

Pseudo-randomness

Example: open your slack!

C) / Blog Free trial Contact sales We updated our RSA SSH host key At approximately 05:00 UTC on March 24, out of an abundance of caution, we replaced our RSA SSH host key used to secure Git operations for GitHub.com.

Inherently random

What is the catch? Noise!

environmental interference

THE CHALLENGE

QUANTIFYING RANDOMNESS IN A NOISY QUANTUM CIRCUIT

PRELIMINARY STEP

QUANTIFYING RANDOMNESS

What is randomness? Why do we need it?

$$H_{min} = -\log \max_{\{x\}} p(x)$$

How do we measure it?
Why is the Shannon entropy not good enough?

$$H_{shannon} = -\sum_{x} p(x) \log p(x)$$

- What is the maximum randomness we can get given a number of qubits?
- How do we generate such a state?

TOY NOISE MODEL

ALL HADAMARD CIRCUIT

Noiseless

H AND CNOT CIRCUIT

- A circuit with a lot of non-local gates fares much better than the local variant
- Are non local gates safe against this noise model?

Min Entropy is bounded!

HOW TO HACK THE TOY NOISE MODEL?

How to hack it? The Gandalf gate

GENERAL NOISE MODEL

- Assume there is a general noise model
- Worst case scenario for any circuit : Hmin ≈ 0
- Single circuit is not enough
 - We need a certificate
- We implement it for the simplest case :
 - GHZ state
 - Alice measures in $\{X, Z\}$, Bob measures in a rotated with $\vartheta \{X, Z\}$
 - Use CHSH inequality:
 - With A and B's measurement,

if
$$C \approx 2\sqrt{2}$$

We still output the GHZ state! if $C \ge 2$: pretty good!

We store these results

RANDOMNESS EXTRACTORS

- GHZ is not maximally random ...
- We can use it to extract randomness from it in presence of noise!
- How?
- Study a protocol that guarantees the ouput violates a CHSH inequality
- If the inequality is violated we are guaranteed there's some randomness in it, despite the noise
- A randomness extractor will help us get more from just one: It's part of the Quantum Origin product from Quantinuum

The approach is Device-Independent! No need to know the exact noise model

GENERAL PROTOCOL

OUR CERTIFICATE IMPLEMENTATION

- Build the parametrized circuit
- Collect statistics $(a_1, b_1, ..., a_n, b_n)$ choosing the basis measurement with the string $(x_1, y_1, ..., y_n, y_n)$
- Statistics is used to compute C
- We would not choose every theta value

- Alice has a key $t = (t_1, t_2)$ Takes t_1 to generate a bit string $s = (x_1, y_1, \dots, y_n, y_n)$
- Alice uses s to produce $r = (a_1, b_1, ..., a_n, b_n)$ string of measurements with her device
- If the certificate approves r, Alice uses an extractor and t_2 to have a smaller string \bar{r} which is truly random
- \bar{r} is then added to t to enhance this protocol and have a key of the desired length

• Fixed theta such that the parametrized circuit violates CHSH inequalities

$$\theta > 2$$

• We make a run with 4 shots, receiving a bit string:

$$r = (0, 1, 1, 1, 0, 0, 1, 0)$$

• To remove garbage bits and receive a truly random string we use the extractor, receiving:

$$\bar{r}$$
 = (1, 0, 0, 0)

Thank you for listening

And for a wonderful Hackathon!