עבודת בית 4

- $\vec{v}\in V$ כך שעבור כל $\vec{u}\in V$ יהי . \mathbb{C} או מעל \mathbb{R} או מעל פנימית מכפלה פנימית מעל . $\vec{u}=\vec{0}$ הוכיחו ש $\vec{v}=\vec{0}$ הוכיחו ש $\vec{v}=\vec{0}$ הוכיחו ש $\vec{v}=\vec{0}$ מתקיים השויון
 - $M_{k imes n}(\mathbb{R})$ בנימית מכפלה פנימית $\langle A,B
 angle = Trace(AB^t)$. הוכיחו שהנוסחה .2
 - תיתקה לינארית העתקה \mathbb{C} או מעל \mathbb{R} או מעל פנימית מכפלה פנימית מעל 3. יהי v מרחב מכפלה פנימית מעל $\|T(\vec{u}+\vec{v})\| = \|\vec{u}\| + \|\vec{v}\| T:V \to V$
- או מעל $T:V\to V$ העתקה לינארית \mathbb{R} או מעל \mathbb{R} העתקה לינארית 4. $T:V\to V$ יהי $T:V\to V$ הוכיחו ש $T:V\to V$ עבור כל $T:V\to V$
- -ש מרחב מכפלה פנימית מעל \mathbb{C} . תהי $T:V\to V$ העתקה לינארית כך ש- 5. יהי V מרחב מכפלה פנימית מעל \mathbb{R} . הוכיחו ש $T:V\to V$ הוכיחו \mathbb{R} הטענה לא נכונה. T=0 הוכיחו \mathbb{R} עבור כל $T(\vec{u})$ עבור כל $T(\vec{u})$ הוכיחו T=0 הוכיחו T=0 עבור כל $T(\vec{u})$ הוכיחו T=0 הוכיחו T
 - : מרחב מכפלה פנימית מעל \mathbb{R} או מעל מעל המקבילית: 6. מרחב מכפלה פנימית מעל $\|\vec{u}+\vec{v}\|^2+\|\vec{u}-\vec{v}\|^2=2\left(\|\vec{u}\|^2+\|\vec{v}\|^2\right)$