CHAPITRE III: INDICATEURS STATISTIQUES

ı

I- Introduction

Méthodologie d'étude d'une série statistique:

- En pratique on est gêné en présence d'un grand nombre de données.
- Si l'intégralité de ces valeurs forme l'information complète, il n'est pas aisé de les manipuler ensemble.
- Il faut donc caractériser une variable statistique par un ensemble de paramètres.
- Les plus utilisées sont les caractéristiques : de position, de dispersion, de forme.

Introduction:

- La meilleure façon de résumer un ensemble de données par une seule valeur est de trouver la valeur la plus représentative, celle qui indique où se situe le **centre de la distribution**.
- C'est ce que l'on appelle la tendance centrale. Les trois mesures de tendance centrale les plus courantes sont :
 - Le mode
 - La moyenne arithmétique
 - La médiane.

II.1 Mode:

- Soit (x_j, n_j) une série statistique de caractère qualitatif ou quantitatif discret, associée à une population E d'effectif total n.
- Le mode est la valeur ou la modalité x_i du caractère qui a le plus grand effectif.

Exemple 1:

Les effectifs cumulés et les fréquences cumulées de la série des 'personnes à charge' sont :

Valeurs	Effectifs	Fréquences	Effectifs	Fréquences
Xi	n _i	f _i	cumulés N _i	cumulées F _i
0	5	0.10	5	0.10
1	8	0.16	13	0.26
2	15	0.30	28	0.56
3	10	0.20	38	0.76
4	7	0.14	45	0.90
5	5	0.10	50	1
Total	50	1	_	_

Le mode de la série des 'Personnes à charge' est $x_3 = 2$ car max $n_i = 15$.

Graphiquement, le mode 2 est la valeur de la variable associé au plus grand bâton dans le Diagramme en bâtons

II.1 Mode: (suite)

Exemple 2:

Reprenons l'exemple de la série statistique des états civils pour des valeurs prises sur 20 personnes.

x_j	n_j	f_j
C	9	0.45
M	7	0.35
V	2	0.10
D	2	0.10
	n = 20	1

Le mode de cette série est $x_1 = C$ car max $n_i = 9$.

II.2 Classe Modale:

- Soit (I_i, n_i) une série statistique de caractère quantitatif continu.
- La classe modale I_i est la classe qui a le plus grand effectif corrigé.

Exemple 3: La série des "Salaires horaires"

Classes	Effectifs	Amplitudes	Effectifs	Effectifs
I_i	n _i	a_i	corrigés n _i *	cumulés N _i
[47, 52[10	5	2	10
[52, 57[30	5	6	40
[57, 60[60	3	20	100
[60, 63]	72	3	24	172
[63, 67]	40	4	10	212
[67,77[38	10	3.8	250
Total	250	30	_	_

effectif corrigé:
$$h_j = n'_j = \frac{n_j}{a_j}$$

La classe modale de la série des 'Salaires Horaires est la classe $I_4 = [60, 63[$ car max $n'_j = 24]$

Graphiquement, la classe modale est la modalité associée au plus grand rectangle dans l'Histogramme des effectifs corrigés

II.2 Classe Modale: (suite)

Remarque:

- 1- Lorsque les classes sont de même amplitudes alors la classe modale est la classe qui a le plus grand effectif.
- 2- Le mode (ou classe modale) n'est pas nécessairement unique : 'Défaut' de cette caractéristique

II.3 Moyenne arithmétique

- C'est une valeur autour de la quelle se repartissent les observations.
- La moyenne peut être calculée pour les séries statistiques à caractère quantitatif
- Une série à caractère qualitatif ne possède pas de moyenne arithmétique.

a) Pour une série discrète (x_i, n_i) :

La moyenne arithmétique est:
$$\bar{X} = \frac{x_1 n_1 + x_2 n_2 + \dots + x_p n_p}{n}$$
 avec n: effectif total

La formule ci-dessus peut être écrite :

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{p} x_i n_i \qquad ou \ \bar{X} = \sum_{i=1}^{p} f_i x_i$$

II.3 Moyenne arithmétique (suite)

b) Pour une série continue (I_j, n_j):

La moyenne arithmétique est définie de la même façon en retenant pour xj les centres des classes Ij:

Exemple 3: La série des "Salaires horaires"

Classes	Effectifs	Amplitudes	Effectifs	Effectifs
I_i	n _i	a_i	corrigés n _i *	cumulés N _i
[47, 52[10	5	2	10
[52, 57]	30	5	6	40
[57, 60]	60	3	20	100
[60, 63]	72	3	24	172
[63, 67]	40	4	10	212
[67,77[38	10	3.8	250
Total	250	30	_	_

Les centres
$$x_j$$
:
$$x_1 = \frac{52 + 47}{2} = 49,5$$

$$x_2 = 54,5$$

$$x_3 = 58,5$$

$$x_4 = 61,5$$

$$x_5 = 65$$

$$x_6 = 73$$

$$\bar{X} = \frac{49,5 * 10 + 54,5 * 30 + 58,5 * 60 + 61,5 * 72 + 65 * 40 + 73 * 38}{250}$$

$$\bar{X} = 61,768$$

II.3 Moyenne arithmétique (suite)

Exemple 4 : calculer la moyenne arithmétique de la série des personnes à charge

Les effectifs cumulés et les fréquences cumulées de la série des 'personnes à charge' sont :

Valeurs	Effectifs	Fréquences	Effectifs	Fréquences
Xi	n _i	f _i	cumulés N _i	cumulées F _i
0	5	0.10	5	0.10
1	8	0.16	13	0.26
2	15	0.30	28	0.56
3	10	0.20	38	0.76
4	7	0.14	45	0.90
5	5	0.10	50	1
Total	50	1	_	_

$$\bar{X} = \frac{0*5+1*8+2*15+3*10+4*7+5*5}{50}$$

 $\bar{X}=2,42$ Un salarié a en moyen environ 2.42 personnes à sa charge

II.3 Moyenne arithmétique (suite)

- c) Propriétés de la moyenne arithmétique
- ☐ La moyenne arithmétique est associative
 - La moyenne globale d'une variable statistique sur l'agrégation de plusieurs populations est la moyenne pondérée des moyennes partielles.
 - Soit Pa et Pb deux populations d'effectifs na et nb, x une v. s. de moyennes arithmétiques \bar{X}_a et \bar{X}_b sur Pa et Pb respect.
 - La moyenne arithmétique de x sur l'agrégation des deux populations P= Pa U Pb est:

$$\bar{X} = \frac{n_a \bar{X}_a + n_b \bar{X}_B}{n_a + n_B}$$

L'intérêt pratique: La mise à jour facile de la moyenne dans le cas d'ajout d'une (des) observation(s)

II.3 Moyenne arithmétique (suite)

- c) Propriétés de la moyenne arithmétique
- ☐ *La moyenne arithmétique est associative*

Exemple 5

Le salaire moyen des 8 employés d'une entreprise est $\bar{X} = 26585$ Si l'entreprise recrute deux nouveaux employés qualifiés dont le revenu moyen est 100 000 Dh

Le nouveau revenu moyen des employés $\overline{X'}$ est:

$$\bar{x}' = \frac{8 \times 26585 + 2 \times 100000}{8 + 2} = 41 \ 268 \ Dh$$

II.3 Moyenne arithmétique (suite)

- c) Propriétés de la moyenne arithmétique
 - ☐ La moyenne arithmétique est sensible à la présence des valeurs aberrantes
 - Une valeur aberrante est une valeur qui n'est pas du même ordre de grandeur que la plus part des autres observations

Exemple:

Cette propriété est en faite un 'défaut' de la moyenne arithmétique

II.4 Médiane:

a) Définition:

- La médiane est une valeur du caractère, notée $x_{1/2}$ (ou Me), partageant une série ordonnée en deux sous-ensembles à tailles égales (d'effectifs égaux.).
- La médiane peut être calculée pour les séries statistiques à caractère quantitatif ou qualitatif ordinal
- Une série à caractère qualitatif nominal ne possède pas de médiane.

II.4 Médiane:

- **b) Médiane d'une série discrète** (x_i, n_i) et d'effectif total n:
- S'il existe une valeur x_j telle que son effectif cumulé $N_j = n/2$ alors: $x_{1/2} = \frac{x_{j-1} + x_j}{2}$
- Sinon, la valeur médiane est la plus petite valeur x_j dont l'effectif cumulé dépasse la moitié de l'effectif total:

$$x_{1/2} = x_j \Leftrightarrow N_{j-1} < \frac{n}{2} < N_j$$

On reprend l'exemple 4 : calculer la médiane de la série des personnes à charge

Les effectifs cumulés et les fréquences cumulées de la série des 'personnes à charge' sont :

Valeurs	Effectifs	Fréquences	Effectifs	Fréquences
Xi	n _i	f _i	cumulés N _i	cumulées Fi
0	5	0.10	5	0.10
1	8	0.16	13	0.26
2	15	0.30	28	0.56
3	10	0.20	38	0.76
4	7	0.14	45	0.90
5	5	0.10	50	1
Total	50	1	_	_

$$n = 50$$

Le premier effectif cumulé qui dépasse n/2 = 25 est $N_2 = 28$

$$\Rightarrow x_{1/2} = x_3 = 2$$

Dans cet exemple, la médiane (2) est un peu plus petite que la moyenne (2,42).

II.4 Médiane:

Avantage:

- L'avantage d'utiliser la médiane plutôt que la moyenne est qu'elle est plus robuste aux valeurs extrêmes qui pourraient surgir à l'une des extrémités de la distribution.
- Il est donc important de vérifier si les données comptent des valeurs extrêmes avant de choisir quelle mesure de tendance centrale doit être utilisée.

Exercice 1:

Nous avons demandez aux 30 élèves d'une classe combien de personnes vivent dans leur ménage. Nous avons obtenu le tableau des effectifs suivant:

	•
Valeurs	Effectifs
x_j	n_j
2	3
3	4
4	10
5	4
6	2
7	3
8	1
9	2
10	1

- a) Compléter le tableau des effectifs (fréq, eff. Cum., fréq, cum.)
- b) Dessiner sa Courbe cumulative.
- c) Calculer la moyenne arithmétique
- d) Calculer la médiane
- e) Un nouvel élève est récemment inscrit en classe. Son ménage compte 18 résidents. Calculer la nouvelle moyenne et médiane.
- f) Laquelle des ces 2 caractéristiques est la plus robuste aux valeurs extrêmes?

II.4 Médiane:

c) Médiane d'une série continue:

- La détermination de la médiane $x_{1/2}$ se fait en 2 étapes:
 - 1) Détermination de la classe médiane $I_m = [x_m^-, x_m^+]$: c'est la 1ère classe dont l'éffectif cumulé dépasse n/2
 - 2) Détermination de la valeur médiane par une interpolation linéaire suivant la formule suivante:

$$X_{1/2} = X_m^- + (X_m^+ - X_m^-) \times \frac{n/2 - N_{m-1}}{N_m - N_{m-1}}$$

 Exemple 3: Considérons par exemple la distribution des salaires observés en continu:

Salaires	Effectifs n _i	Effectifs cumulés N _i
[1000, 2000[20	20
[2000, 4000]	50	70
[4000, 6000[30	100
Total	100	-

la classe médiane est
$$I_2 = [2000, 4000[$$
 ayant N2 =70 > 50
 $\Rightarrow x_{1/2} \in I_m = I_2$

II.4 Médiane:

- c) Médiane d'une série continue: (suite)
 - La détermination de la médiane $x_{1/2}$ peut se faire graphiquement:
 - 1) On trace la courbe cumulative N(x) (une fonction linéaire par morceaux)
 - 2) On localise sur l'axe des abscisses la valeur correspondante à la valeur n/2 sur l'axe des ordonnées ; cette valeur est la médiane

Courbe cumulative:

On interpole les effectifs cumulés par une ligne brisée joignant les points d'abscisses (x_i^+, Nj)

Chapter III: Indicateurs Statistiques

II- Caractéristiques de position

 Exemple 3: Considérons par exemple la distribution des salaires observés en continu:

Salaires	Effectifs n _i	Effectifs cumulés N _i
[1000, 2000[20	20
[2000, 4000[50	70
[4000, 6000[30	100
Total	100	_

II.5 Quantiles:

- On généralise l'idée de médiane, en utilisant la notion de quantile où l'on va partager la distribution en plusieurs sous distributions de même taille.
- On appelle quantile d'ordre α (où $0 < \alpha < 1$) la valeur x_{α} de la variable telle que au moins ($\alpha *100$) % des observations sont inférieures ou égales à x_{α} .
- La médiane est un quantile particulier d'ordre $\alpha = 0.5$

a) Quartiles:

- Pour une série statistique dont les valeurs sont classées par ordre croissant, la médiane partage la série en deux parties de même effectif.
- On peut aussi partager en 4 parties de même effectif. On obtient ainsi trois valeurs Q₁, Q₂, Q₃ appelés quartiles.

b) Déciles:

Lorsque l'étude porte sur une population très importante, on utilise souvent les déciles qui partagent la population en 10 parties de même effectif.

II.5 Quantiles: (suite)

• Résumons les quantiles usuels :

Quantiles	Ordres α	Notations	Sous-groupes
Médiane	0.5	Me	2 × 50%
Quartiles	(0.25, 0.50, 0.75)	(Q_1, Q_2, Q_3)	4 × 25%
Deciles	$(0.10, 0.20, \ldots, 0.90)$	(D_1,\ldots,D_9)	10 × 10%
Centiles	$(0.01, 0.02, \ldots, 0.99)$	(C_1,\ldots,C_{99})	100 × 1%

Remarques:

- Le premier quartile Q_1 est la plus petite valeur de la série telle que 25% des valeurs de la série lui soient inférieures ou égales.
- *Le deuxième quartile Q₂est la médiane*
- Le troisième quartile Q_3 est la plus petite valeur de la série telle que 75% des valeurs de la série lui soient inférieures ou égales.

II.5 Quantiles: (suite)

Exemple 6: Observons la série statistique des lancers de javelot suivante :

Longueur (en m)	37	39	40	41	42	43	44	48
Effectif	4	3	4	2	2	4	5	2
Effectif cumulés	4	7	11	13	15	19	24	26

-Le premier quartile Q1: Le premier effectif cumulé qui dépasse n/4 = 26/4 = 6,5 est $N_2 = 7$

$$Q1=39m$$

- Le $2^{\hat{e}me}$ quartile Q1 ou La médiane: Me = 40, 5m.
- Le 3ème quartile Q3 Le premier effectif cumulé qui dépasse 3*n/4 = 3*6,5=19,5 est $N_7 = 24$ Q3 = 44m

Enfin, l'intervalle $[Q_1;Q_3] = [39;44]$ contient 50% de la population.

II.5 Quantiles: (suite)

c) Cas d'une série continue

La détermination du quantile x_{α} est identique à celle de la médiane :

- ① Détermination de la classe $I_m := [x_m^-, x_m^+]$ qui inclue le quantile: c'est la première classe dont l'effectif cumulé dépasse $\alpha * n$
- ② Détermination du quantile d'ordre α par l'interpolation linéaire :

$$X_{\alpha} = X_{m}^{-} + (X_{m}^{+} - X_{m}^{-}) \times \frac{\alpha \, n - N_{m-1}}{N_{m} - N_{m-1}}.$$

II.5 Quantiles: (suite)

$$X_{\alpha} = X_{m}^{-} + (X_{m}^{+} - X_{m}^{-}) \times \frac{\alpha \, n - N_{m-1}}{N_{m} - N_{m-1}}.$$

c) Cas d'une série continue

 Exemple 3: Considérons par exemple la distribution des salaires observés en continu:

Salaires	Effectifs n _i	Effectifs cumulés N _i
[1000, 2000[20	20
[2000, 4000[50	70
[4000, 6000[30	100
Total	100	_

Déterminons les quartiles Q1,Q2,Q3

- Premier quartile Q₁ = $x_{1/4}$: Le premier effectif cumulé qui dépasse n/4 = 100/4 = 25 est N_2 = 70

Alors
$$Q_1 \in I_2 = [2000, 4000[$$
 $Q_1 = 2000 + (4000 - 2000) \times \frac{25 - 20}{70 - 20} = \boxed{2200}.$

- troisième quartile Q₃ = $x_{3/4}$: Le premier effectif cumulé qui dépasse 3*n/4 = 75 est $N_3 = 100$

Alors
$$Q_3 \in I_3 = [4000, 6000[$$
 $Q_3 = 4000 + (6000 - 4000) \times \frac{75 - 70}{100 - 70} \approx \boxed{4333.33}.$

II.6 Diagramme de Tukey

- Un diagramme de Tukey (aussi appelé « boîte à moustache ») est un résumé, sur un axe gradué, des quantiles.
- Ce diagramme est constitué:
 - 1- d'une boîte (dont la hauteur est prise de manière arbitraire) délimitée par le 1er et 3ème quartiles (Q1 et Q3).
 - 2- Cette même boite est ensuite partagée par la médiane.
 - 3- Deux segments « moustaches » sortent des deux côtés du rectangle et sont délimitées par les valeurs D1 et D9

II.7 Conclusion

Le tableau ci-dessous résume les paramètres de position envisageable en fonction du type de la variable étudiée :

	Quantitative	Ordinale	Nominale
Moyenne	OUI	NON	NON
Médiane	OUI	OUI	NON
Quantiles	OUI	OUI	NON
Modes	OUI	OUI	OUI