

86

86

### **Restriction Class**

- Define new classes in terms of existing classes
  - By restriction of those classes
- Example: An active faculty member is one who is teaching at least one course or has at least one research grant

#### Restrictions

 A restriction is a class that is defined by a description of its members in terms of its existing properties and classes

```
- owl:Restriction rdfs:subClassOf
  owl:Class
```

- Restriction definition based on:
  - A property P of instances in the restriction class
  - A restriction on the range R of the property
  - $-C = \{ x \mid (x P y) \text{ for } y \in R \}$

88

88

#### Restrictions

- $C = \{ x \mid (x P y) \text{ for } y \in R \}$
- owl:onProperty: specify the property that is used in the definition of the restriction class
- Forms of restrictions:

- owl:someValuesFrom

- owl:allValuesFrom

- owl:hasValue

### Restrictions (2)

If restriction is owl:someValuesFrom:
 C = { x | (x P y) for some y ∈ R }

If restriction is owl:allValuesFrom:
 C = { x | for all y s.t. (x P y), y ∈ R }

If restriction is owl:hasValue:C = { x | (x P V) }

90

90

# Example: From Undergrad Advisees to Undergrad Advisor

- An undergrad advisor is a restriction class for which:
  - Students are advised
  - at least one advised student is undergraduate

```
:UGAdvisor owl:equivalentClass
[ a owl:Restriction;
  owl:onProperty :advises;
  owl:someValuesFrom :Undergraduate].

Anonymous class
```

# Example: From Undergrad Advisees to Undergrad Advisor

Suppose:

 :Duggan : advises : Joe.
 :Joe a : Undergraduate.

 Infer:

 :Duggan a
 [ a owl:Restriction ;
 owl:onProperty : advises ;
 owl:someValuesFrom : Undergraduate]

 So:

 :Duggan a : UGAdvisor.

92

92

# Example: From Research Supervisor to Research Student

Class of faculty members supervising only research students

```
[ a owl:Restriction;
    owl:onProperty :supervises;
    owl:allValuesFrom :ResearchStudent]
```

# Example: From Research Supervisor to Research Student

 Research faculty only supervise research students:

```
:ResearchFaculty rdfs:subClassOf
  [ a owl:Restriction;
     owl:onProperty :supervises;
     owl:allValuesFrom :ResearchStudent]
```

94

94

## Example: From Research Supervisor to Research Student

• Suppose:

:ProfBigShot a :ResearchFaculty

:Jane a :ResearchStudent.

0

#### **Example: Priority Items**

• Define priority levels:

```
q:PriorityLevel a owl:Class .
q:High a q:PriorityLevel .
```

• Property for priority level:

```
q:hasPriority rdfs:range q:PriorityLevel .
```

• Define class of high-priority items:

96

96

#### Exar

 We can filter data based on values that denote type tags

| Product |                 |                          |                  |                         |        |           |
|---------|-----------------|--------------------------|------------------|-------------------------|--------|-----------|
| ID      | Model<br>Number | Division                 | Product<br>Line  | Manufacture<br>Location | sku    | Available |
| 1       | ZX-3            | Manufacturing<br>Support | Paper<br>Machine | Sacramento              | FB3524 | 23        |
| 2       | ZX-3P           | Manufacturing<br>Support | Paper<br>Machine | Sacramento              | KD5243 | 4         |
| 3       | ZX-3S           | Manufacturing<br>Support | Paper<br>Machine | Sacramento              | IL4028 | 34        |
| 4       | B-1430          | Control<br>Engineering   | Feedback<br>Line | Elizabeth               | KS4520 | 23        |
| 5       | B-1430X         | Control<br>Engineering   | Feedback<br>Line | Elizabeth               | CL5934 | 14        |
| 6       | B-1431          | Control<br>Engineering   | Active Sensor    | Secul                   | KK3945 | 0         |
| 7       | DBB-12          | Accessories              | Monitor          | Hong Kong               | ND5520 | 100       |
| 8       | SP-1234         | Safety                   | Safety Valve     | Cleveland               | HI4554 | 4         |
| 9       | SPX-1234        | Safety                   | Safety Valve     | Cleveland               | OP5333 | 14        |

```
ns:Paper_Machine rdf:type owl:Class .
```

```
ns:Paper_Machine owl:equivalentClass
  [ a owl:Restriction;
    owl:onProperty mfg:Product_Product_Line;
    owl:hasValue "Paper machine" ] .
```

So e.g. mfg:Product1 rdf:type ns:Paper\_Machine

#### Set Intersection in OWL

• Example: Undergraduate research students

98

98

#### Set Union in OWL

• Example: Researchers are either students or faculty

```
:Researcher owl:equivalentClass
[ a owl:Class;
          owl:unionOf
          ( :ResearchFaculty
          :ResearchStudent) ] .
```

#### **Enumerating Sets**

- Set membership assumed open
- owl:oneOf allows a complete enumeration:

 Note: This does not state that the planets are distinct!

100

100

### **Differentiating Individuals**

- · Non-unique naming assumption
- Instances must be explicitly distinguished:

```
ss:Earth owl:differentFrom ss:Mars .
```

To distinguish large numbers of individuals:

```
[ a owl:AllDifferent;
  owl:distinctMembers (
      ss:Mercury ss:Venus ss:Earth ss:Mars
      ss:Jupiter ss:Saturn ss:Uranus ss:Neptune) ] .
```

101

### Example

```
    James Dean made 3 movies
        :JamesDeanMovie a owl:Class;
        owl:oneOf (:Giant :EastOfEden :Rebel)
    We can infer e.g.
        :Giant rdf:type :JamesDeanMovie
    If John has a move he likes such that
        :JohnsMovie rdf:type :JamesDeanMovie
    then it must be one of the above three
    If we learn:
        :JohnsMovie owl:differentFrom :Giant
        :JohnsMovie owl:differentFrom :EastOfEden
    then we can infer:
        :JohnsMovie owl:sameAs :Rebel
```

102

#### Set Complement

• We have to be careful:

• Here is the fix:

103

### **Conclusions**

- Semantic Web
  - RDF: Knowledge Representation
  - RDF Schema: Classification
  - OWL: Ontologies
- From database to knowledge base
- Application: Organizing enterprise knowledge
- Application: B2B knowledge sharing

104