Tema 2 - Operaciones matemáticas básicas ¿Hacia dónde va el Tema 2?

M. en C. Gustavo Contreras Mayén

2 de octubre de 2014

Motivación

Motivación

Sección de área transversal

Motivación

Sección de área transversal

3 Evaluación numérica de la sección transversal

Motivación

Sección de área transversal

3 Evaluación numérica de la sección transversal

Un problema conocido

La dispersión es un proceso muy importante en la física. Desde los sistemas en escala microscópica, como los protones y los neutrones en los núcleos, hasta los que están en la escala astronómica, tales como las galaxias y estrellas; los procesos de dispersión juegan un papel crucial en la determinación de sus estructuras y dinámicas.

En general, un proceso de muchos cuerpos puede ser visto como una suma de muchos eventos de dispersión de dos cuerpos simultáneos si no se presenta un proceso de dispersión uniforme. Tomamos como ejemplo el estudio de la dispersión clásica de dos partículas, que interactúan entre sí a través de un potencial de pares. La mayoría de los proceso de dispersión con potenciales de interacción realistas no se pueden resolver analíticamente. Por lo tanto, las soluciones numéricas de un problema de dispersión se convierten en una herramienta extremadamente valiosa si queremos entender el proceso físico de la interacción entre partículas.

Vamos a suponer que el potencial de interacción entre las dos partículas es esféricamente simétrico. Así, el momento angular total y la energía del sistema se conservan durante la dispersión.

Un sistema de dos partículas

El lagrangiano para un sistema de dos cuerpos en general, se puede escribir como:

$$\mathcal{L} = \frac{m_1}{2}v_1^2 + \frac{m_2}{2}v_2^2 - V(\mathbf{r}_1, \mathbf{r}_2)$$

donde m_i , \mathbf{r}_i y $v_i = |d\mathbf{r}_i/dt|$ con i=1,2 son respectivamente, la masa, el vector de posición y la velocidad de la i-ésima partícula, V es el potencial de interacción entre las dos partículas, el cual consideramos con simetría esférica, esto es: $V(\mathbf{r}_1,\mathbf{r}_2) = V(r_{21})$, con $r_{21} = |\mathbf{r}_2 - \mathbf{r}_1|$, que es la distacia entre las dos partículas.

Podemos siempre realizar una transformación de coordenadas de \mathbf{r}_1 y \mathbf{r}_2 a una coordenada relativa \mathbf{r} y una coordenada del centro de masa \mathbf{r}_c con

$$\mathbf{r} = \mathbf{r}_2 - \mathbf{r}_1 \tag{1}$$

$$\mathbf{r}_c = \frac{m_1 \mathbf{r}_1 + m_2 \mathbf{r}_2}{m_1 + m_2} \tag{2}$$

Por lo que podemos expresar el lagrangiano del sistema en términos de las nuevas coordenadas y sus velocidades correspondientes como

$$\mathcal{L} = \frac{M}{2}v_c^2 + \frac{m}{2}v^2 - V(r)$$
 (3)

$$\mathcal{L} = \frac{M}{2}v_c^2 + \frac{m}{2}v^2 - V(r)$$

donde

- $r = r_{21}$
- $v = |d\mathbf{r}/dt|$ es la distancia y velocidad relativa entre las dos partículas,
- $M = m_1 + m_2$ es la masa total del sistema,
- $m = m_1 m_2/(m_1 + m_2)$ es la masa reducida de las dos partículas,
- $v_c = |d{f r}_c/dt|$ es la velocidad del centro de masa.

Si estudiamos la dispersión en sistema del centro de masa con $\mathbf{v}_c = d\mathbf{r}_c/dt = 0$, el proceso queda entonces representado por el movimiento de una partícula simple de masa m en un potencial central V(r).

En general, un sistema de dos partículas con una interacción simétrica y esférica, puede ser visto como una partícula simple con masa reducida moviéndose en un potencial central, que es idéntica a la interacción del potencial.

Podemos considerar la misma conclusión con las ecuaciones de Newton:

$$m_1 \ddot{\mathbf{r}_1} = \mathbf{f}_1 \tag{4}$$

$$m_2\ddot{\mathbf{r}}_2 = \mathbf{f}_2 \tag{5}$$

donde las aceleraciones y las fuerzas vienen dadas por $\ddot{\mathbf{r}}_i = d^2\mathbf{r_i}/dt^2$ y $\mathbf{f}_i = -\nabla_i V(r_{21}) = -dV(r_{21})/d\mathbf{r}_i$

Sumando las dos ecuaciones anteriores y aplicando la tercera ley de Newton $\mathbf{f}_1 = -\mathbf{f}_2$, o dividiendo la ecuación por m_i , luego restando, obtenemos:

$$m\ddot{r} = \mathbf{f}(\mathbf{r})$$
 (6)

$$M\ddot{r}_c = 0 \tag{7}$$

donde $\mathbf{f}(\mathbf{r}) = -\nabla V(r) = -dV(r)/d\mathbf{r}$ Así el movimiento de un sistema de dos partículas con una interacción isotrópica es equivalente al movimiento de velocidad constante del centro de masa más el movimiento relativo de dos partículas que están descritas por una partícula eficaz de masa m en un potencial central V(r).

Motivación

Sección de área transversal

3 Evaluación numérica de la sección transversal

Sección de área transversal

Ahora sólo tenemos que estudiar el proceso de dispersión de una partícula con una masa m en un potencial central V(r).

Supongamos que la partícula está entrando desde la izquierda con un parámetro de impacto b, es decir, la distancia más corta entre la partícula y el centro potencial si $V(r) \to 0$. Un esquema del proceso se muestra en la siguiente figura.

Proceso de dispersión de una partícula en un potencial central

La sección transversal completa en el proceso de dispersión está dada por la expresión:

$$\sigma = \int \sigma(\theta) d\Omega \tag{8}$$

donde $\sigma(\theta)$ es la sección transversal diferencial, o la probabilidad de que una partícula se encuentre en el elemento de ángulo sólido $d\Omega=2\pi\sin\theta d\theta$, con el ángulo de deflexión θ .

Si las partículas llegan con una densidad de flujo I (número de partículas por unidad de área transversal y por unidad de tiempo), entonces el número de partículas por unidad de tiempo dentro del rango $d\theta$ del parámetro de impacto b es $2\pi Ibdb$.

Debido a que todas las partículas entrantes en esta área, quedarán dentro del elemento de ángulo sólido $d\Omega$ con la probabilidad $\sigma(\theta)$, tenemos que

$$2\pi Ibdb = I\sigma(\theta)d\Omega \tag{9}$$

lo que nos proporciona una sección diferencial de área

$$\sigma(\theta) = \frac{b}{\sin \theta} \left| \frac{db}{d\theta} \right| \tag{10}$$

Se toma el valor absoluto del valor de $db/d\theta$ en la ecuación anterior, ya que $db/d\theta$ puede ser positivo o negativo dependiendo de la forma y potencial y el parámetro de impacto, además $\sigma(\theta)$ debe de ser positivo ya que es valor de probabilidad.

Motivación

Sección de área transversal

3 Evaluación numérica de la sección transversal

Evaluación numérica de la sección transversal

Dado que la interacción entre dos partículas está descrita por un potencial esférico simétrico, el momento angular y la energía total del sistema se conservan durante la dispersión. Tenemos que

$$l = mbv_o = mr^2\phi \tag{11}$$

y además

$$E = \frac{m}{2}v_0^2 = \frac{m}{2}\left(\dot{r}^2 + r^2\dot{\phi}^2\right) + V(r)$$
 (12)

que representan respectivamente el momento total y la energía total, siendo constantes las dos cantidades. La variable r es la coordenada radial, ϕ es el ángulo polar, v_0 es la velocidad de impacto inicial.

Combinando las ecuaciones (11) y (12), con

$$\frac{d\theta}{dr} = \frac{d\phi}{dt}\frac{dt}{dr} \tag{13}$$

se obtiene

$$\frac{d\phi}{dr} = \pm \frac{b}{r^2 \sqrt{1 - b^2/r^2 - V(r)/E}}$$
 (14)

esta expresión nos relaciona las cantidades ϕ y r para valores dados de E, b y V(r). Los signos \pm corresponden a las dos partes simétricas de la trayectoria.

La ecuación anterior puede ser utilizada para calcular el ángulo de deflexión θ a través de

$$\theta = \pi - 2\Delta\phi \tag{15}$$

donde $\Delta \phi$ es el cambio en el ángulo polar cuando r cambia desde infinito hasta un valor mínimo r_m . De la ecuación (14), se tiene que

$$\Delta \phi = b \int_{r_m}^{\infty} \frac{dr}{r^2 \sqrt{1 - b^2/r^2 - V(r)/E}}$$

$$= -b \int_{\infty}^{r_m} \frac{dr}{r^2 \sqrt{1 - b^2/r^2 - V(r)/E}}$$
(16)

Si consideramos que tanto la energía como el momento angular se conservan (Eqs. (11) y (12)), se puede demostrar que r_m está dada por

$$1 - \frac{b^2}{r_m^2} - \frac{V(r_m)}{E} = 0 ag{17}$$

que es la componente cero de la velocidad de r, es decir, $\dot{r}=0$.

Dado que el cambio en el ángulo polar $\Delta\phi=\pi/2$ para V(r)=0, podemos escribir la ecuación (15) como

$$\theta = 2b \left[\int_{b}^{\infty} \frac{dr}{r^2 \sqrt{1 - b^2/r^2}} - \int_{r_m}^{\infty} \frac{dr}{r^2 \sqrt{1 - b^2/r^2 - V(r)/E}} \right] 8)$$

La razón por la que se re-escribe π como una integral en la expresión anterior para θ , es una estrategia numérica que reduce la posibilidad de errores debidos al trucamiento en la región de integración, en los límites del segundo término.

El valor de la primera integral diverge cuando $r \leftarrow b$ de la misma forma que el valor de la segunda integral cuando $r \leftarrow r_m$.

Los errores del primer y segundo términos se cancelan mutuamente, al menos parcialmente, dado que tienen signos contrarios. Para realizar el ejercicio numérico con Python, consideremos el potencial de Yukawa, dado por

$$V(r) = \frac{\kappa}{r}e^{-r/a}$$

Los valores de κ y a son parámetros positivos que reflejan respectivamente el rango y la fuerza del potencial, y éstos valores se pueden ajustar.

Se usará el método de la secante para resolver la ecuación (17) para un b y E dados.

Luego podemos usar la regla de Simpson para calcular las integrales en la ecuación (18), para posteriormente usar diferenciación numérica para obtener $d\theta/db$, todos los cálculos anteriores nos devuelven la sección diferencial de área mostrada en la ecuación (10). Por simplicidad considera: $E=m=\kappa=1$