Molecular Polarisability. Quinoxaline and Some of its Derivatives

By (Miss) J. Hurley and R. J. W. Le Fèvre, University of Sydney, Sydney, N.S.W., Australia

The anisotropies of polarisability of pyridine, quinoxaline, and phenazine are compared with those for benzene, naphthalene, and anthracene. Replacement of =CH- by =N- appears to reduce all principal molecular axes in each case, but no stereospecificity of this diminution can be discerned among the three structural pairs considered. For 2,3-diphenylquinoxaline present measurements indicate a conformation in which the two phenyl rings are rotated in the same sense by ca. 39° out of the heterocyclic plane.

MEASUREMENTS are here reported on quinoxaline (I; R = H), its 2,3-dimethyl and 2,3-diphenyl derivatives

(I; R = Me or Ph), phenazine (II), and 2,3:4,5-dibenzophenazine (III). No molar Kerr constants for

J. L. Snoek, Phys. Z., 1934, 35, 196.
 E. D. Bergmann, L. Engel, and H. Meyer, Ber., 1932, B, 65,

446.

^a I. G. M. Campbell, C. G. Le Fèvre, and E. E. Turner, J. Chem. Soc., 1938, 404.

molecules of these types have been previously recorded. Dielectric polarisations have been examined hitherto only for 2,3-dimethylquinoxaline 1 and phenazine. 2,3 Although CH and a nitrogen atom are isoelectronic, it is known (from molecular refractions) that the mean polarisabilities of planar aromatic hydrocarbons slightly exceed those of their analogous N-containing heterocycles. Earlier attempts 4a,5 to recognise the sources of such differences partly suggested the present work.

⁴ C. G. Le Fèvre and R. J. W. Le Fèvre, (a) J. Chem. Soc., 1955, 2750; (b) ch. XXXVI in "Physical Methods of Organic Chemistry," ed. A. Weissberger, Interscience, New York and London, 3rd edn., 1960, vol. 1, p. 2459; (c) J. Chem. Soc., 1955, 1641; (d) Chem. and Ind., 1955, 1121.

⁵ C. G. Le Fèvre, R. J. W. Le Fèvre, B. Purnachandra Rao, and M. R. Smith, J. Chem. Soc., 1959, 1188.

825 Phys. Org.

EXPERIMENTAL

Solutes.—The quinoxalines were prepared as described by Leonard and Mader. 6 Compound (I; R = H) was purified by distillation, b. p. 220-223°/760 mm., m. p. 27°; the dimethyl and diphenyl derivatives were recrystallised from water, m. p. 106°, and ethanol, m. p. 124°, respectively; (III) had m. p. 217° from benzene. Phenazine was a commercial specimen, m. p. 171°.

Solvents, Apparatus, etc.—Benzene or carbon tetrachloride as solvents were purified as in ref. 7a. Dielectric constants were determined with the apparatus noted by Buckingham et al.,8 and electric birefringences with that of Le Fèvre and Ritchie.9 Extrapolations, calculations, and other procedures have been standard; 4b,7 symbols used below are defined in the references just quoted (cf. also ref. 10a for a collected list).

Measurements and Results.—The increments from solvent to solution, caused by a weight fraction w_2 of solute, in the dielectric constant ε , density d, refractive index n, and Kerr constant B, at 25° , are indicated by the prefix Δ in Table 1. When $w_2 = 0$ the solvents have the following properties:

	ε	d_{4}^{25}	n_{D}^{25}	$10^7 B_{ m D}{}^{25}$
Benzene	2.2725	0.87378	1.4973	0.410
Carbon tetrachloride	2.2270	1.58454	1.4575	0.070

TABLE 1 Observed increments of properties

$10^{5}w_{2}$	$10^4\Delta \varepsilon$	$10^5 \Delta d$	$10^4 \Delta n$	$10^{11}\Delta B$			
Quinoxaline in benzene							
1485	93	322	14	293			
2278	131	491		446			
2318	134	502					
2629	156	586	30	515			
2900				562			
3399	197	752	36	696			
4669			50	901			
1000			00	001			
	2,3-Dimethy	lquinoxalin	e in benzene	!			
494	39	90		173			
508	44	92		194			
890	70	162	_	311			
1087	86	193	_	379			
1231				420			
1242	98	226		433			
1575	121	287	14	534			
1607			14				
1726			15				
1.20			10				
997	imethylquin	avalina in a	aubon totuan	Jani da			
485	68	-340	10	235			
530	71	-380	11	404			
838	115	_	19	609			
896	124		20	652			
988	137	-660	22				
1339	186	-900	31	671			
2,3-Diphenylquinoxaline in benzene							
		-					
454	35	103	6	146			
665	47	150					
767	66	173	13	224			
933	73	196					
993	77	223	16	341			
1006	81	227	16	348			
1121	83	256					
1314	99	297	22	465			

Table 1 (Continued)

228	15	62	2	
251	17	68	4	
302	20	81	5	_
311	21	84	5	_
374				241
381				269
397	27	103	6	
404			6	269
416				287
427			7	290

$10^5 w_2 \dots \dots 10^{11} \Delta B \dots \dots$						
---	--	--	--	--	--	--

TABLE 2 Calculations from Table 1

Solute {	D (I)	(I)	(I) *	D (I)	(II)	(III)
	K = H	$\mathbf{R} = \mathbf{M}\mathbf{e}$	$\mathbf{K} = \mathbf{M}\mathbf{e}$	K = PR		
αε ₁	0.587	0.790	1.381	0.773	0.570†	0.672
β		0.207	-0.430	0.256	0.288†	0.306
$_{\infty}P_{2}$ (c.c.)		66.26	64.60	112.65	63.05†	101.64
$\gamma' n_1^{2} \cdots$		0.263	0.650	0.483	0.570†	0.452
$R_{\rm D}$ (c.c.)		49.97	50.36	96.40	62.59 †	89.33
μ (D) ‡		0.82	0.76	0.75	ca. 0†	0.62
γ		0.059	0.153	0.107_{5}	0.127	0.100
δ		8.483	89.81	8.19	13.90	16.51
$10^{12} \infty (_{ m m} K_2)$		105.7	$107 \cdot 1$	180.6	193.5	$355 \cdot 4$

* Solvent: carbon tetrachloride. † From ref. 3. ‡ Calc. assuming $1.05R_D$ δ distortion polarisation.

DISCUSSION

Polarisability Semi-axes for Quinoxaline.—A knowledge of these is required for further discussion of quinoxaline derivations. If b_1 , b_2 , and b_3 (in 10^{-24} c.c. units) are the principal polarisabilities of (I; R = H), then from the measurements by Brühl 11 we obtain (cf. ref. 7b, pp. 36 and 44) $R_{\infty} = 38.183$ c.c. and

$$b_1 + b_2 + b_3 = 45.403 \tag{1}$$

Only one other equation based on experiment is available, namely (2),

$$\theta_1 + \theta_2 = 1214 \times 10^{-37} \tag{2}$$

(cf. ref. 7b, pp. 44 and 45 for expansions of θ_1 and θ_2); some assumption regarding one of the three unknowns in (1) is therefore unavoidable.

We note that the $_{\infty}(_{m}K_{2})$ of quinoxaline is near that $(48\cdot1\times10^{-12})$ recorded 4c for naphthalene and for the θ_1 -containing component (49.0 imes 10⁻¹²) in the $_\infty(_{
m m}K_2)$ of quinoline; 5 $R_{\rm p}$'s are likewise close (quinoxaline, 40.6; naphthalene, 44.4; quinoline, 41.9 c.c.). As these molecules are similar in shape and planarity, and since

6 N. J. Leonard and P. M. Mader, J. Amer. Chem. Soc., 1950,

72, 5388.

⁷ R. J. W. Le Fèvre, (a) "Dipole Moments," Methuen, London, 3rd edn., 1953; (b) Adv. Phys. Org. Chem., 1965, 3, 1.

⁸ A. D. Buckingham, J. Y. H. Chau, H. C. Freeman, R. J. W. Le Fèvre, D. A. A. S. Narayana Rao, and J. Tardif, J. Chem.

Soc., 1956, 1405.

⁹ R. J. W. Le Fèvre and G. L. D. Ritchie, J. Chem. Soc., 1963,

10 R. J. W. Le Fèvre and K. M. S. Sundaram, (a) J. Chem. Soc., 1962, 1494; (b) 1963, 4442.
11 J. W. Brühl, Z. phys. Chem., 1897, 22, 390.

J. Chem. Soc. (B), 1967

 b_1 and b_2 in quinoline and naphthalene do not differ greatly, a rough estimate may be made by supposing that $b_1 = b_2$ in quinoxaline. Solution of (1) and (2) on this basis yields $b_1 = b_2 = 18.09$ and $b_3 = 9.23$.

Alternatively, use may be made of the empirical fact that the "vertical" semi-axes of the polarisability ellipsoids of the C-C, C=C, and C≡C bonds, 12,13 are related to the carbon-carbon inter-centre distances r(in A) by

$$b_{\nabla} = 11 \cdot 183 - 12 \cdot 384r + 3 \cdot 434r^2 \tag{3}$$

If the C-H link is isotropic 4d,7b,12 with $b_{\nabla} = 0.65$, then, since $r(C \cdot \cdot \cdot C)$ in pyridine is 1.3944 Å and b_3 (pyridine) is 5 6.45, it follows that each CN bond in this heterocycle contributes a b_{∇} of 0.41_5 to the polarisability perpendicular to the ring-plane. No bond lengths in quinoxalines seem yet to have been determined, but as the $r(C \cdot \cdot \cdot N)$'s in pyridine, pyrazine, acridine, and phenazine are all 14 within the range 1.334—1.350 Å we may reasonably take $b_{\rm V}({\rm CN})$ as the same throughout. Entry 167 s., in ref. 14, provides metrical details for phenazine; the mean $r(C \cdot \cdot \cdot C)$ is 1.406 Å. If r =1.406 Å is valid also for quinoxaline, the predicted b_3 becomes 9.48 and b_1 and \hat{b}_2 follow as 18.72 and 17.21, respectively. The reported 4a semi-axes for naphthalene are $b_1: b_2: b_3 = 21.5: 17.6: 10.3$; each of these is slightly higher than the corresponding value for quinoxaline; benzene and pyridine are related in the same way $(11\cdot2:11\cdot2:7\cdot36; 10\cdot7:10\cdot4:6\cdot45)$.

Polarisability Semi-axes for 2,3-Dimethylquinoxaline.— Addition of b_v 's for two C-C and four C-H bonds to the b_3 of quinoxaline gives 12.60 as the b_3 (calc.) for the dimethyl derivative. The data in Table 2, with $_{\rm E}P =$ $R_{\infty} = 0.944 R_{\rm D}$ (i.e., using the $R_{\infty}/R_{\rm D}$ ratio displayed by quinoxaline), yield $b_1: b_2: b_3 = 23.9: 19.6: 12.6$ or 24.5:19.4:12.6 from the measurements in benzene or carbon tetrachloride, respectively. An assumption that $b_1 = b_2$ leads to $b_1 = b_2 = 22.5$ or 22.7 and $b_3 = 11.0$ or 11.1 in these solvents. If, in 2,3-dimethylquinoxaline the two C-Me units are mutually inclined at 60° in the ring-plane and carry the usual 12 C-C and C-H polarisabilities, then computation from the semi-axes of quinoxaline requires $b_1 = 22.9$, $b_2 = 20.7$, and $b_3 =$ 12.6.

Polarisability Semi-axes for Phenazine.—The b_3 for (II) should be near $2 \times b_3$ (benzene) plus $4 \times b_{\nabla}$ (CN) minus $4 \times b_{\nabla}(CH)$, i.e., ca. 13.8. However, the mean r(CC) in phenazine is a little greater than in benzene.¹⁴ Using r(CC) = 1.406 Å in equation (3), b_3 (phenazine) appears as 13.57, whence (with other details from Table 2) $b_1 = 35.9$ and $b_2 = 20.8$. These are different from the corresponding data (viz., $b_1:b_2:b_3=$ 33.9:29.2:12.9) for anthracene, deduced in ref. 10bunder difficulties from low solubility, by the visual method of measuring electric birefringences. Currently,

repetitions 15 by the photometric technique 9 are indicating that the $_{\infty}(_{m}K_{2})$ recorded previously 10b was probably too high; a more correct b_3 for anthracene appears to be ca. 16 (as would be expected from the C···C distances listed in ref. 14 for this hydrocarbon) with b_1 and b_2 being 36 and 24, respectively.

Polarisability Semi-axes for Dibenzophenazine (III).— Noting that r(CC) tends to increase with the size of the polynuclear hydrocarbon containing such bonds,¹⁴ we may take 1.41 Å as a likely mean C···C separation in (III); proceeding as above, therefore, the b_3 expected for this molecule is 21.56. Then, provided that $_{\rm E}P=$ $0.944R_{\rm D}$, the mK and μ of Table 2 yield 7b $b_1=47.7_6$ and $b_2 = 30.9_5$ (b_1 being measured parallel to $\mu_{resultant}$). A computation on the basis that $b_1 = b_2$ leads to semiaxes of 42, 42, and 17. No data on the related dibenzoanthracene are available for comparison. From the bond electronic polarisations of Le Fèvre and Steel, 16 the total $b_1 + b_2 + b_3$ for (III) should exceed that for (II) by some 38 polarisability units; from observation, the excess is about 30. An equation analogous to (3), but developed for longitudinal polarisabilities, suggests that an aromatic CC bond with r(CC) = 1.41 Å should have $b_L(CC) = 2.2$; since $b_V(CC)$ is ca. 0.55 for this length, $b_{\rm T}({\rm CC})$, by difference from the total polarisability (3.027) of the $C_{Ar}-C_{Ar}$ link, ¹⁶ becomes 0.29. Addition of ten CC and four CH bonds to (II) to produce (III) would (were all six-membered rings regular hexagons) cause increase in b_1 , b_2 , and b_3 of 14, 16, and 8, respectively. Present results indicate increments of 12, 10, and 8. We suspect, therefore, that some "negative exaltation " is occurring across the direction of action of

The Conformation of 2,3-Diphenylquinoxaline.—Let rectangular co-ordinates OX, OY, and OZ be located in (I; R = Ph), as drawn, with the positive OX and OY directions running, respectively, to the right-hand side

TABLE 3 Calculation of molar Kerr constants for 2,3-diphenylquinoxaline

φ°	b_{xx}	$b_{\mathbf{y}\mathbf{y}}$	b_{zz}	b_{xx}	$b_{ t yz}$	10^{12} _m K (calc.)
Ó	41.7	36.6	22.1	0	0	232
35 s. } 35 u. }	41.1	34.7	$24 \cdot 6_5$	$0 \frac{1.81}{0}$	$0 \\ -3.13$	179 189
40 s. } 40 u. }	40.9	34.2	25.3	1·90 0	$^{0}_{-3\cdot28}$	$\frac{167}{178}$
45 s. } 45 u. }	40.8	33.7	26.0	$0 \\ 1 \cdot 92_5$	$0 \\ -3.33$	155 167
90	39.8	30.8	29.8	0	0	104

and the top of the page. In the absence of structural information we assume that the two Ph-C bonds are mutually inclined at 60°. The phenyl groups may be twisted out of the OX,OY plane by ϕ° to produce

¹² R. J. W. Le Fèvre, B. J. Orr, and G. L. D. Ritchie, J. Chem.

Soc. (B), 1966, 273, 281.

13 R. Bramley, C. G. Le Fèvre, R. J. W. Le Fèvre, and B. Purnachandra Rao, J. Chem. Soc., 1959, 1183.

^{14 &}quot;Interatomic Distances Supplement," ed. L. E. Sutton, Chem. Soc. Spec. Publ. No. 18, 1965.

15 R. J. W. Le Fèvre, L. Radom, and G. L. D. Ritchie, J. Chem.

Soc. (B), 1967, 595.

16 R. J. W. Le Fèvre and K. D. Steel, Chem. and Ind., 1961,

Phys. Org. 827

alternative conformations which are either (a) symmetrical or (b) unsymmetrical about the OZ,OX plane. Since each C_6H_5 is attached next to an N atom, it seems unlikely that conjugative effects will act to twist one ring more than the other; accordingly, we consider only rotations of $+\phi$, $-\phi$ and $+\phi$, $+\phi$. In terms of the polarisability tensor shown as equation 33 in ref. 7b, all non-diagonal elements will be zero when $\phi = 0^{\circ}$ or 90° , but for intermediate values of this angle the b_{xy} (= b_{xy}) in cases of type (a) and the b_{yz} (= b_{zy}) in cases of type (b) will not vanish. Table 3 includes computations of molar Kerr constants for a few conformations (cf. ref. 7b, pp. 47, 53—55).

The observed value is 181×10^{-12} . Leybold models suggest that when ϕ is ca. 35° the symmetrical form is sterically hindered while adoption of the unsym-

¹⁷ I. L. Karle and L. O. Brockway, J. Amer. Chem. Soc., 1944, 66, 1974. metrical version is unimpeded. Predicted $_{\rm m}K's$ for unsymmetrical rotations can be summarised by

$$_{\rm m}K(\phi) = 104 + 128 \cos^2\!\phi$$

whence the measured $_{\rm m}K$ corresponds to $\phi=39^{\circ}$, a credible result (cf. o-terphenyl ¹⁷).

Conclusion.—Present results indicate that each of principal polarisabilities in pyridine, quinoxaline, or phenazine is less than the corresponding value for benzene, naphthalene, or anthracene, respectively. The differences show no regularities along the b_1 , b_2 , and b_3 directions of the related hydrocarbons and heterocycles; they appear unrelated to the sums $b_1 + b_2 + b_3$ for the six molecules just named (27.55, 45.41, 70.3, 29.76, 49.4, and 76.2) or to the $b_L + b_T + b_V$ totals expected ¹⁶ for (CHCH)_{Ar}, CH=CH, and CH=N bonds.

[6/1653 Received, December 29th, 1966]