

Eagle e Fabricação de Placas de circuitos impressos

Professor Ricardo Kerschbaumer ricardo.kerschbaumer@ifc.edu.br

http://professor.luzerna.ifc.edu.br/ricardo-kerschbaumer/

Introdução

O que são placas de circuito impresso?

Introdução

Terminologia

- Board ou PCB: Se refere a placa de circuito Impresso.
- Schematic: É o diagrama eletrônico do circuito.
- Wires ou Traces: São as trilhas que interconectam eletricamente os componentes.
- Pads: São as ilhas nas extremidades das trilhas nas quais os componentes são soldados.
- Vias: São conexões elétricas que conectam trilhas de diferentes camadas da placa.
- Layers: São as camadas da placa.
- Top Layer: É a camada superior da placa.
- Button Layer: É a cama inferior da placa.
- Component: São os componentes eletrônicos do circuito.
- Package: É a embalagem de um determinado componente.
- Silkscreen: É a camada onde são impressos os textos informativos da placa.

Confecção de Placas

Composição das placas

Confecção de Placas

Métodos de fabricação de placas

Fabricação industrializada de placas de circuito impresso

- Desenho do diagrama esquemático
- Elaboração o layout da placa
- Exportação dos arquivos "Gerber"
- Fabricação das placas de circuito por uma empresa

Fabricação artesanal de placas de circuito impresso

- Desenho do diagrama esquemático
- Elaboração o layout da placa
- Processo de corrosão com produtos químicos
- Fresagem CNC
- Prototipagem a Laser etc

R1 R2	Resistores	(+) (-)	Fonte de	-L ^{Q2} -L	Transistor bipolar	
22 A	Trimpot	99	tensão		. ^{Q4} Transistor	
\$ 1 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ootenciômetro	1	Fonte de corrente		mosfet	
	Capacitor	BAT1 = = = = = = = = = = = = = = = = = = =	Bateria	2 TR Q 3 4 C R DIS 7 5 CV THR 6 1 GND V+ 8	Circuito integrado	
☐C3 ☐C4	Capacitor polarizado	⁵⁵ ↓ ↑	Potencial	3 C2A	Amplificador	
4	Indutor	GND AGND	positivo	2	Amplificador operacional	
. 1			Potencia negativo	3 VI VO 1	Regulador de tensão	
\$1 \$2	chave	-D ^{D1}	Diodo retificador		Cristal	
S4 3 S3 1 3 4	botão	- 73 4	Diodo schottky	TR1	Transformador	
K1 S D	Rele Bobona e contato	D4 -D4	Diodo zener	<u> </u>	Autofalante	
		LED1	LED	SP1		
X1-1 O -) ¹ 1A X1-2 O -) ² 2A	Conector	D2	Fotodiodo	F1	Fusível	

Tipos de componentes

Componentes PTH

Componentes SMD

Layout da placa

- Conheça as restrições mecânicas de sua placa
- Como a placa será montada
- Circuitos integrados com muitos terminais precisam de espaço para o roteamento
- Mantenha Componentes Similares na Mesma Direção para facilitar a fabricação
- Posicione os componentes de forma a minimizar o comprimento das trilhas

Layout da placa

- Posicione primeiro os componentes fixos da placa
- Evite a sobreposição dos componentes
- Coloque todos os componentes do mesmo lado da placa
- Procure manter todos circuitos integrados na mesma direção
- Projete sua placa conforme o esquemático procurando manter agrupados de um subcircuito.
- Planeje as conexões da placa com o restante do circuito

Roteamento das trilhas

- Resista a tentação de usar as ferramentas de autoroteamento
- Conheça as limitações de seu processo de fabricação
- Determine a largura das trilhas
- Deixe espaço suficiente entre as trilhas

Roteamento das trilhas

- Evite ângulos de 90 graus e cantos agudos em suas trilhas
- Tome cuidado com os tamanhos das ilhas nos terminais dos componentes
- Crie planos de terra
- Utilize planos de cobre e vias para remover calor dos componentes
- Utilize termals (Thermal relief)

A unidade de medida "Mil"

O mil é a mínima unidade de comprimento do sistema inglês de medidas

- 1 mil é equivalente a 0,001 in (polegadas)
- 1 mil também é equivalente a 0,0254 mm

Roteamento das trilhas

Capacidade de corrente das trilhas em amperes (A)

	Incremento na temperatura								
	10 °C			20 °C		30 °C			
mil / mm	0,5 oz	1 oz	2 oz	0,5 oz	1 oz	2 oz	0,5 oz	1 oz	2 oz
10 / 0,254	0,5	1	1,4	0,6	1,2	1,6	0,7	1,5	2,2
15 / 0,381	0,7	1,2	1,6	0,8	1,3	2,4	1	1,6	3
20 / 0,508	0,8	1,3	2,1	1	1,7	3	1,2	2,4	3,6
25 / 0,635	0,9	1,7	2,5	1,2	2,2	3,3	1,5	2,8	4
30 / 0,762	1,1	1,9	3	1,4	2,5	4	1,7	3,2	5
50 / 1,27	1,5	2,6	4	2	3,6	6	2,6	4,4	7,3
75 / 1,905	2	3,5	5,7	2,8	4,5	7,8	3,5	6	10
100 / 2,54	2,6	4,2	6,9	3,5	6	9,9	4,3	7,5	12,5
200 / 5,08	4,2	7	11,5	6	10	11	7,5	13	20,5
250 / 6,35	5	8,3	12,3	7,2	12,3	20	9	15	24

Produção Artesanal da placa

Existem diversas técnicas artesanais

- Desenho a mão com canetinha
- Adesivos
- Ploter CNC
- Silk Screen
- Transferência de toner
- Etc

Transferência de toner

- Escala de impressão
- Imprimir somente as trilhas, ilhas e vias
- Espelhamento do desenho
- Papel fotográfico do tipo "glossy paper"
- A impressora deve ser laser
- Não se deve tocar o desenho impresso

Transferência do desenho

- Corte um pedaço de placa virgem do tamanho do desenho ou um pouco maior
- Limpe bem a placa com esponja de aço
- · Posicione o papel cuidadosamente sobre a placa
- Pressione firmemente com o ferro de passar roupas previamente aquecido

Transferência do desenho

- Movimente o ferro para aquecer e pressionar toda a placa tomando cuidado para não mover o papel
- Mantenha a pressão e o calor por uns 5 minutos
- · Remova o papel com a ajuda de água
- · Remova os resíduos de papel da placa

Corrosão da placa

- Não esqueça de utilizar óculos e luvas de proteção
- Evite o contato da solução com a pele
- Prepare a solução de percloreto de ferro conforma a indicação do fabricante
- Se possível aqueça um pouco (não muito) a solução
- Amarre a placa com um fio não metálico
- Mergulhe a placa na solução e permaneça fazendo movimentos suaves
- O tempo para a corrosão depende da placa e da qualidade da solução

Corrosão da placa

- Verifique de tempos em tempos como está a corrosão da placa
- Quando todo o cobre exposto da placa for removido a corrosão está concluída
- Lave a placa em água corrente tomando cuidado com os resíduos de percloreto de ferro

Corrosão da placa

- Remova a impressão da placa usando uma esponja de aço
- Seque a placa com toalha de papel ou algo parecido
- Não esqueça de guardar a solução em um vasilhame apropriado para reaproveitá-la
- futuramente

Furação da placa

- Não esqueça os óculos de proteção
- Utilize um punção de bico ou outra ferramenta parecida para marcar os furos

Escolha a broca apropriada ao diâmetro do termina do

componente

 Apoie a placa sobre uma madeira de sacrifício

 Com uma furadeira manual, de bancada ou retífica faça os furos

Acabamento da placa

- Após a furação é necessário fazer alguns acabamentos na placa
- Se desejado pode-se repetir o processo de transferência com as informações do lado de

cima da placa

A placa finalizada

- Utilize óculos de proteção
- Evite tocar a trilhas da placa
- Escolher um ferro de solda com potência apropriada
- Utilize a solda apropriada, de preferência 63% estanho e 37% chumbo
- Se possível utilize algum dispositivo para fixar a placa a mesa
- Mantenha seu rosto afastado da placa, pois as fumaças são tóxicas
- Elabore uma estratégia de montagem

- Tome cuidado com a fixação mecânica dos componentes
- Posicione o componente o mais próximo possível da placa
- · Aplique um pouco de solda na ponta do ferro de solda
- Com o ferro de solda toque a ilha da placa e o terminal de componente ao mesmo tempo, de forma a aquecê-

los

- Aplique um pouco de solda no ponto de junção entre o componente e a ilha
- Pare quando toda a ilha for coberta por solda, mantendo o ferro de solda por mais uns 2 segundos
- Cuidado para não aquecer muito a placa ou o componente e para não aquecer pouco a solda

Com a solda finalizada corte o excesso dos terminais

do componente

 Mantenha a ponta do ferro de solda limpa com a ajuda de uma esponja vegetal umedecida

Repita o processo para todos os componentes da

placa

Finalização da placa

Após a limpeza é interessante passar uma camada de verniz ou algo parecido para evitar a corrosão das trilhas.

Eagle é uma plataforma de software para confecção de placas de circuito impresso.

EAGLE Free

Software limitado para projetos de placa de circuito impresso, destinado a usuários ocasionais e criadores.

EAGLE Standard

Versão mais popular. Recursos suficientes para suprir suas necessidades diárias de engenharia com amplo espaço de placa.

EAGLE Premium

Para profissionais respeitados. Oferece área de placa máxima e a possibilidade de ir além dos limites do projeto de placa de circuito impresso.

Gratuito

DOWNLOAD GRATUITO

O QUE VOCÊ GANHA

- 2 folhas esquemáticas
- 2 camadas de sinal ou de plano
- Área de placa com 80 cm² (12,4 pol²)

USE PARA:

- Placas de ensaio e componentes eletrônicos de aprendizagem para usuários ocasionais
- Layouts de placa de circuito impresso com camada de um só ou dois lados
- Esquemas básicos
- · Acesso ao conteúdo de bibliotecas

R\$302,55 /ano (Impostos inclusos)

ASSINAR

O QUE VOCÊ GANHA

- 99 folhas esquemáticas
- 4 camadas de sinal ou de plano
- Área de placa com 160 cm² (24,8 pol²)

USE PARA:

- Projetos de produtos e componentes eletrônicos básicos
- Layouts de placa de circuito impresso de múltiplas camadas
- Esquemas de múltiplas folhas
- Construir e gerenciar conteúdos de bibliotecas (individual)

R\$1.599,19 /ano (Impostos inclusos)

ASSINAR

O QUE VOCÊ GANHA

- 999 folhas esquemáticas
- 16 camadas de sinal ou de plano
- Área de placa ilimitada

USE PARA:

- Produtos prontos para produção e projetos avançados de placa
- Layouts complexos de placa de circuito impresso de múltiplas camadas
- Esquemas de múltiplas folhas e hierárquicos
- Construir e gerenciar conteúdos de bibliotecas (equipe)

Existe também uma versão educacional com características premium

Página do Autodesk Eagle https://www.autodesk.com.br/products/eagle/overview

Download Gratuito https://www.autodesk.com.br/products/eagle/free-download

Baixe a versão gratuita do EAGLE.						
Versão limitada para usuários ocasionais, incluindo duas folhas esquemáticas, duas camadas de sinal e uma área de placa com 80 cm² (12,4 pol²). Comparar versões						
DOWNLOAD PARA WINDOWS						
DOWNLOAD PARA MAC						
DOWNLOAD PARA LINUX ≚						

Não há versão em português!

Sign in			_		×
Options View					
	Criar conta		Δ		
	Nome	Sobrenome			
	email				
	Confirmar email				
	Senha				
Eu concordo com os Termos de serviço da Autodesk e a Declaração de privacidade da Autodesk.					
CRIAR CONTA					

JÁ TEM UMA CONTA? FAÇA LOGIN

Ativação do Autodesk Eagle

Configuração das pastas do Eagle

Estrutura de pastas

Editando bibliotecas

Bibliotecas Eagle

Habilitando e desabilitando bibliotecas

Criando um novo projeto

Eagle

Antes de começas algumas dicas importantes

- Sempre mantenha seu editor esquemático e de layout abertos juntos
- Atenha-se às configurações de grade padrão
- Use apenas a ferramenta de linha "Line" para fins artísticos
- Pesquise com precisão ou use caracteres curingas
- Escolha as ações primeiro e depois os objetos
- Saiba onde você está salvando seu trabalho
- Sempre termine suas conexões na extremidade exata de um pino
- Redesenhe suas redes "nets" em vez de movê-las
- Aproveite as bibliotecas gratuitas de componentes

Barra de ações

Camadas do desenho

Ajustar camadas Informações Seleção em grupo

> Mover Rotacionar

> > Copiar **Apagar**

Adicionar bloco Adicionar modulo

Adicionar ligação conectar

Nome do componente

♠ / Espelhar

Ajustar parâmetros

Valor do componente

Cortar = Rolo de pintura 🔁 😂 Distribuir Inversão de pinos 📢 🗱 Inversão de portas Otimizar 💢 🕪 Invocar portas

Desenhar linha / A Adicionar texto Desenhar arco — 🔿 Desenhar polígono

Desenhar círculo 🔾 🗌 Desenhar retângulo Marcar referência 上 🖰 Cotar

Verificar erros 👺 🔔 Mostrar erros

Um pequeno exemplo

Nome	Valor	Componente
C1	1 u	CPOL-EUE3.5-8
C2	10n	C-EU025-025X050
D1	1N4004	1N4004
D2	1N4004	1N4004
D3	1N4004	1N4004
D4	1N4004	1N4004
IC1	LM7812	278XXS
IC2	NE555	NE555
LED1	Vermelh	o LED5MM
R1	10K	R-EU_0207/10
R2	68K	R-EU_0207/10
R3	560	R-EU_0207/10
X1	MSTBA:	2 MSTBA2

Barra de ações

Camadas do desenho

Trilhas superior
Trilhas inferior
Ilhas
Vias de passagem
Ligações
Limites da placa
Comp. superior
Comp. inferior
Origem Superior
Origem Inferior

Regras de design (DRC)

Ajustar camadas Informações Seleção em grupo Mover Rotacionar

> Copiar **Apagar**

Fazer trilha **Fanout**

Inserir via Inserir polígono Organizar ligação 🔀 🕶 Fazer ligação Dividir

Ajustar parâmetros

🔧 🥄 Remover trilha

Auto roteamento

Inserir furo

Cortar **Adicionar bloco** Nome do componente Reposiciona Atrib. **Editar em 3D**

> Rolo de pintura 🔁 😂 **Travar**

Otimizar II **Desenhar linha**

Desenhar círculo Marcar referência

> Verificar erros **Mostrar erros**

Balancear trilhas Adicionar componente Valor do componente Substituir componente Adicionar atributo

Distribuir Inversão de pinos

Desenhar arco Desenhar retângulo Cotar

Regras de design

Layout da placa Exemplo

Layout da placa Manufacturing

Layout da placa CAM

Exercício

Nome	Valor	Componente
C1	1 u	CPOL-EUE3.5-8
C2	10n	C-EU025-025X050
D1	1N4004	1N4004
D2	1N4004	1N4004
D3	1N4004	1N4004
D4	1N4004	1N4004
IC1	LM7812	278XXS
IC2	NE555	NE555
LED1	Vermelh	o LED5MM
R1	10K	R-EU_0207/10
R2	68K	R-EU 0207/10
R3	560	R-EU 0207/10
 X1	MSTBA:	2 MSTBA2