Quantum Optics

Pierre-François Cohadon
Optomechanics and Quantum Measurement group
Laboratoire Kastler Brossel
cohadon@lkb.upmc.fr

Alexandre Journeaux
PhD in cold atoms experiment
alexandre.journeaux@lkb.ens.fr

Nobel Prize 2022: Bell inequality experiments

Alain Aspect, John F. Clauser and Anton Zeilinger "for experiments with entangled photons, establishing the violation of Bell inequalities and pioneering quantum information science"

A number for experimental progress since the 70's: Fixed measurement axis Detection efficiency loophole Light-cone loophole....

Nobel Prize 2012

Serge Haroche and David Wineland

"for ground-breaking experimental methods that enable measuring and manipulation of individual quantum systems"

HAROCHE METHOD

Microwave photons are placed between two highly reflective mirrors that enable an individual photon to bounce back and forth between them many times.

Rydberg atoms, which have one electron in a high-energy level, are sent through the system to measure and manipulate the photon's quantum state.

WINELAND METHOD

An electric field produced by an arrangement of electrodes holds one or several ions inside a trap.

Laser light is shone on the ion, suppressing its thermal vibration and allowing its quantum state to be measured and controlled.

Kimble, Dagenais & Mandel experiment (1977)

Photon Antibunching in Resonance Fluorescence

Correlations between successive photon detections
Goes to 0 for t→0 because atom needs first
to absorb a photon to emit one
Typical timescale: atomic lifetime (10s of ns)
Requirement: detection area must be limited to a single atom

equirement. detection area must be innited to a single atom

Hong, Ou & Mandel experiment (1987)

Measurement of subpicosecond time intervals between two photons by interference

No. of coincidence counts in 10 min. 800 600 400 20 µm 200 280 300 320 260 340 360 Position of beam splitter (μ m)

1000

Interference between the two amplitudes

The 20-µm interval correspond to the typical 100-fs duration of the photon wavepacket (limited by the IF filters)

Inhibited spontaneous emission experiment

Experience by Serge Haroche (Yale, 1987): Excited atoms go through a cavity smaller than $\lambda/2$

By orienting the atomic dipole, spontaneous emission is inhibited: atoms leave the cavity still excited

Phys. Rev. Lett. 58, 666 (1987)

QUANDELA: a quantum start-up company

Quantum Communication and InformationTechniques commercially available

Casimir force

Casimir force (1948)

Two parallel metallic (non-charged) plates apply an attractive force upon each other because of the quantum fluctuations of the electromagnetic field

Imbalance between the modes inside/outside the cavity

$$\frac{F_{\text{Cas}}}{L^2} = \frac{\pi^2}{240} \frac{\hbar c}{d^4}$$

Advanced Virgo: a gravitational-wave interferometer

Typical Virgo sensitivity curve (1st generation, 2007 - 2010)

Quantum noise reduction for Advanced Virgo

Squeezing quantum noise allows to reduce the noise by a factor 2 at high frequency No excess noise at lower frequency (classical noise)

References

Jean-Michel Raimond, *Atoms and photons Lecture notes of the M2 ICFP course (now by Clément Sayrin)*http://www-lpl.univ-paris13.fr/bec/bec/Teaching/m2icfpatomsphotons.pdf

Claude Fabre, Atomes et lumière – Interaction matière rayonnement (similar, but in french)
https://hal-sfo.ccsd.cnrs.fr/sfo-01581964v1
Evolution and Measurement of Quantum States, M1-ICFP course available on www.phys.ens.fr
(+ a book just published at Cambridge UP)

Online course by Alain Aspect & Michel Brune

Cours École Polytechnique

Quantum Optics 1 : Single Photons

Excellent online course (also with Quantum Optics 2 : Two photons and more) Videos, quizzes and homeworks www.coursera.org

Topics

Introduction:

Examples of harmonic oscillators and TLS

Chap 1: Field Quantization

Chap 2: Quantum states of the field

Vacuum, Fock states, squeezed states...

Chap 3: Coupling of a quantum mode to a TLS

Rabi oscillations, QND measurement

Chap 4: Coupling of two Q modes

Hong-Ou-Mandel experiment

Chap 5: The mode continuum

Spontaneous emission, Casimir force...

Chap 6: Q description of a laser beam

Chap 7: Quantum Sensing

Radiation-pressure Noise and the SQL,

application to GW interferometers

Canonical quantization

Different characterizations:

Wavefunction, density matrix, Wigner function...

Quasi-classical and quantum regimes

State estimation

Heisenberg picture

Combining Q concepts with real experiments

Open systems and Quantum Langevin equations

Squeezing with Nonlinear optics

Organization

	8h30 - 10h30	10h45 - 12h45
Sep 4th	Introduction: Examples of harmonic oscillators and two-level systems	Exercise 1: Introduction and properties of Wigner functions
	Chapter 1: Field Quantization	
Sep 11th	Chapter 2: Quantum states of the field	Exercise 2: Quantum LC-circuits; Transmon and Fluxonium qubits
	Vacuum, Fock states, coherent states, squeezed states, non-gaussian states	
Sep 18th	Chapter 3: Coupling of a Quantum mode to a TLS	Ex 3: Q squeezed states of trapped cold Cs atoms
	Generic Hamiltonian, dressed atom formalism	
	Resonant interaction: Rabi oscillations, generation of cat states	
Sep 25th	Detuned (dispersive) Interaction	Chapter 4: Coupling of two Quantum modes
	QND measurement of a cavity field	Beamsplitter interaction
Oct 2nd	Chapter 5: The Q continuum	Ex 4: Coupling of a TLS to a mechanical resonator
	Spontaneous emission, The Casimir force, Q mechanical effects in chemistry	
Oct 9th	Charter C. O description of a least because	Ex 5: Introduction to decoherence
Oct 9th	Chapter 6: Q description of a laser beam	Ex 5: Introduction to deconerence
Oct 16th	Chapter 7: Quantum Sensing	Ex 6: Measurement of a Wigner function
oct 10th	Quantum Radiation Pressure Noise and the Standard Quantum Limit	Ex of Meddarement of a Wigher function
	Squeezed light applications	
	oqueeted ng.n. approacher	
Oct 23rd	Ex 7: The Standard Q Limit	Ex 8: Vacuum squeezing generation

Exercise sessions with Alexandre are an essential part of the course Texts will be given with a 1-week delay for you to work on it Most (possibly all) texts will be associated with (at least) on research article

(Handwritten) lecture notes
Slides used during the lectures
Exercise notes
Related articles
Documents...
will be available on the course moodle

Organization (and validation)

	8h30 - 10h30	10h45 - 12h45	Homework
Sep 4th In	ntroduction: Examples of harmonic oscillators and two-level systems	Exercise 1: Introduction and properties of Wigner functions	python notebook to be emailed
C	Chapter 1: Field Quantization		to alexandre.journeaux@lkb.ens.fr
Sep 11th C	Chapter 2: Quantum states of the field	Exercise 2: Quantum LC-circuits; Transmon and Fluxonium qubits	
V	/acuum, Fock states, coherent states, squeezed states, non-gaussian states		
Sep 18th C	Chapter 3: Coupling of a Quantum mode to a TLS	Ex 3: Q squeezed states of trapped cold Cs atoms	(Ex 2) Phys Rev X 2024 : Heavy fluxonium Qubit
G	Generic Hamiltonian, dressed atom formalism		
R	Resonant interaction: Rabi oscillations, generation of cat states		
1			
Sep 25th D	Detuned (dispersive) Interaction	Chapter 4: Coupling of two Quantum modes	(Ex 3) PRL 1999: Squeezed states of Cs atoms
· ·	QND measurement of a cavity field	Beamsplitter interaction	, , , , , , , , , , , , , , , , , , , ,
1			
Oct 2nd C	Chapter 5: The Q continuum	Ex 4: Coupling of a TLS to a mechanical resonator	
S	Spontaneous emission, The Casimir force, Q mechanical effects in chemistry		
1			
Oct 9th C	Chapter 6: Q description of a laser beam	Ex 5: Introduction to decoherence	(Ex 4) Nature 2010 : Quantum Ground State
1			of a mechanical resonator
1			
Oct 16th C	Chapter 7: Quantum Sensing	Ex 6: Measurement of a Wigner function	(Ex 5) To be announced
C	Quantum Radiation Pressure Noise and the Standard Quantum Limit		
S	Squeezed light applications		
1			
1		*	(Ex 6) Nature 2023 : cat-state of a mechanical
Oct 23rd Ex	x 7: The Standard Q Limit	Ex 8: Vacuum squeezing generation	resonator
Nov 4th			(Ex 7) Nature 2018 :
			SQL of a nanomechanical membrane

You are expected to work (fits of experimental data, python codes...) on the results discussed in the articles and email a notebook to Alexandre 2 weeks later (at most) Your best 3 notebooks will be used to validate the course (details to be discussed later)