A Comparative Analysis Of Ireland's Beef Sector Including Forecasting Prices, As Well As Sentiment Analysis.

Ronan Downes - ID SBA22447

February 19, 2023 Link to GitHub Repository

## Contents

| 1            | Intr | roduction                                                                                | 1         |
|--------------|------|------------------------------------------------------------------------------------------|-----------|
| 2            | Dat  | a Cleaning and pre-processing                                                            | 2         |
|              | 2.1  | Live Animal Cattle stock data stucture                                                   | 2         |
|              | 2.2  | Structure of the data                                                                    | 2         |
|              | 2.3  | The df.nunique() method $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$ | 2         |
|              | 2.4  | Casting the Value floats to integer                                                      | 3         |
|              | 2.5  | Categorical flagging for official, estimated, unofficial and missing figures             | 4         |
|              | 2.6  | Data quality processing                                                                  | 4         |
|              | 2.7  | data completeness analysis by country                                                    | 5         |
|              | 2.8  | data completeness analysis by year                                                       | 5         |
|              | 2.9  | Dropping unwanted atributes                                                              | 5         |
| 3            | nea  | r end working                                                                            | 11        |
| $\mathbf{A}$ | Def  | lator                                                                                    | 12        |
| В            | Dat  | a analysis                                                                               | 13        |
| $\mathbf{C}$ | Tab  | oles                                                                                     | 14        |
| D            | CA   | SP Qualitative research checklist.                                                       | <b>15</b> |
| $\mathbf{E}$ |      |                                                                                          | 16        |
| $\mathbf{F}$ |      |                                                                                          | 17        |
| G            |      |                                                                                          | 18        |

## List of Tables

| 2.1 | Number of unique values in each column. There are 27 European Union (EU) countries so         |    |
|-----|-----------------------------------------------------------------------------------------------|----|
|     | the value of 28 is not expected for Area. There is a mismatch between the expected number     |    |
|     | of unique values in the "Area" column and the actual count. Since the data includes three     |    |
|     | unique values for Belgium ("Belgium", "Luxembourg", and "Belgium-Luxembourg"), the            |    |
|     | actual count is one higher than expected                                                      | 3  |
| 2.2 | Livestock stocks of cattle in various countries                                               | 7  |
| 2.3 | Example table                                                                                 | 8  |
| 2.4 | Features and Data Types for Live Animal Cattle stock                                          | 9  |
| 2.5 | 18.7% of cattle data missing in 1961 to 2021 time period                                      | 9  |
| 2.6 | Livestock stocks in various countries, with a focus on cattle. Each row corresponds to a      |    |
|     | particular country, with information on the year, unit, and number of cattle stocks. Some     |    |
|     | rows also include information on the reliability or official status of the data (indicated by |    |
|     | the "Flag" column)                                                                            | 10 |
| C.1 | CASP Qualitative research checklist                                                           | 14 |
| D 1 | CASP Qualitative research checklist                                                           | 15 |

# List of Figures

| 2.1 | The decision to download a larger dataset than necessary was made to ensure a high level        |
|-----|-------------------------------------------------------------------------------------------------|
|     | of certainty in the workflow, given the relatively small size of the datasets involved. By      |
|     | having a larger dataset, it may be easier to identify and correct any errors or inconsistencies |
|     | that may arise during the data analysis process                                                 |
| 2.2 | msno matrix of missing cattle stock values                                                      |
| 2.3 | Distribution of missing values by year                                                          |

#### Abstract

This paper presents a rigorous comparative analysis of the beef sector in Ireland, encompassing a wide range of key dimensions, including production, consumption, and trade. By leveraging both historical and contemporary data, the paper employs various forecasting models to project future beef prices in the Irish market. Additionally, the study integrates sentiment analysis to extract valuable insights into public perception of the beef industry. Through a combination of quantitative and qualitative analysis, the paper provides a comprehensive understanding of the industry, outlining key trends and offering strategic recommendations for relevant stakeholders. The research was carried out by Ronan Downes, with the goal of contributing to ongoing discussions around the optimisation of Ireland's beef sector.

### Chapter 1

### Introduction

Overview of the purpose and scope of the analysis Research question and provide Background information

The full path of the directory is C:which contains the project Jupyter Notebook a .git folder, holding version control information. The "arch" folder contains archived content while the remaining folders "css", "images", "precipitation<sub>d</sub>ata", "processed<sub>d</sub>ata", and "temperature<sub>d</sub>ata" containdata filesorother resources related to the project.

### Chapter 2

### Data Cleaning and pre-processing

#### 2.1 Live Animal Cattle stock data stucture

#### 2.2 Structure of the data

Taking a higher-level view of the data before performing detailed exploratory data analysis (EDA) it helps to understanding the dataset's size and shape, as well as any high-level patterns or trends that may be present. The output of df.shape tells us that the dataset contains 1708 rows and 14 columns which is a small number of data points of low dimensionality. The scope of the analysis need not be reconsidered (Páez and Boisjoly 2023).

| $dC_{moD^{}}$ | niamoD^   | $dC_aerA^$ | aerA^    | $edoCE^{}$ | $tnemel E^{}$ | $edoC\_metI^{}$ | $\mathrm{metI}^{}$ | edoC rY^ | raeY^ t |
|---------------|-----------|------------|----------|------------|---------------|-----------------|--------------------|----------|---------|
| QCL           | Livestock | 724        | Spain    | 5111       | Stocks        | 2111            | Cattle             | 1978     | 1978 I  |
| QCL           | Livestock | 703        | Slovakia | 5111       | Stocks        | 2111            | Cattle             | 2006     | 2006 I  |
| QCL           | Livestock | 348        | Hungary  | 5111       | Stocks        | 2111            | Cattle             | 1962     | 1962 I  |

#### 2.3 The df.nunique() method

The df.nunique() method was used to generate table. Seven of the Columns have unique value and do not provide useful information for exploratory data analysis (EDA). These columns referred to as constant due to their absents of variation and can have no predictive value in our machine learning model.

Nevertheless, data cleaning best practice is to exercise caution before dropping columns in case they are constant due to errors or inconsistencies or if they are constant with missing data everywhere in the data. Therefore, it is still a good practice to identify these columns and verify that they do not contain any useful information before removing them from the dataset.

Viewing a sizable sample of 40 datapoints where the constant string value of 'Crops and livestock products' has been replaced with

To show columns with all exact same entries, you can use the nunique() method to count the number of unique values in each column. If the result is 1, it means all entries in the column are the same. Here's an example code snippet that shows how to do this for a pandas DataFrame called df: This code first creates

Table 2.1: Number of unique values in each column. There are 27 European Union (EU) countries so the value of 28 is not expected for Area. There is a mismatch between the expected number of unique values in the "Area" column and the actual count. Since the data includes three unique values for Belgium ("Belgium", "Luxembourg", and "Belgium-Luxembourg"), the actual count is one higher than expected.

| Column           | Unique Values |
|------------------|---------------|
| Domain Code      | 1             |
| Domain           | 1             |
| Area Code (M49)  | 28            |
| Area             | 28            |
| Element Code     | 1             |
| Element          | 1             |
| Item Code (CPC)  | 1             |
| Item             | 1             |
| Year Code        | 61            |
| Year             | 61            |
| Unit             | 1             |
| Value            | 1365          |
| Flag             | 3             |
| Flag Description | 3             |

a list comprehension that iterates over all columns in df and checks if the number of unique values in each column is equal to 1. The resulting list same  $_entry_colscontains the names of all columns where all entries are the same.$ 

You can modify this code to fit your specific DataFrame and column name

#### 2.4 Casting the Value floats to integer

S

It is better to have data stored in the most appropriate data types for readability, memory and computational reasons. Integer data types use less memory than float data types, so storing integer data in integer form can save memory and speed up processing times. But incorrectly modelling discreet values as real numbers has profound implications for mathematical outcomes in feature engineering. There is a distinction between discrete mathematics, which deals with countable quantities such as integers, and continuous mathematics, which deals with uncountable quantities such as real numbers (Van Der Walt, Colbert, and Varoquaux 2011).

When working with discrete data, it is often important to use integer data types to ensure that mathematical operations are well-defined and that rounding errors and other issues do not arise. On the other hand, continuous data is typically represented using floating-point data types, which can represent a wider range of values but are subject to rounding and precision errors that can affect the results of mathematical operations.

In the case of cattle count data, it is clearly a countable quantity so long as the animals are alive as they are for this dataset and will be represented using the integer data type. Therefore we **cast the data from a float to an integer** to make the most efficient use of memory and to avoid potential inaccuracies when working with the data.



(a) Filtering to the European Union (EU) 27 on FAOSTAT leads to spurious country data and if this is varient will cause problems



(b) downloading supersets for the 195 recognised independent states in the world and data cleaning techniques will be adopted for the rest of the data retrieval

Figure 2.1: The decision to download a larger dataset than necessary was made to ensure a high level of certainty in the workflow, given the relatively small size of the datasets involved. By having a larger dataset, it may be easier to identify and correct any errors or inconsistencies that may arise during the data analysis process.

# 2.5 Categorical flagging for official, estimated, unofficial and missing figures

Categorical flagging for official, estimated, unofficial and missing figures can impact statistical analysis and needed be considered here. The flag descriptions for reported stock figures are official, estimated, unofficial or are missing and all are represented in the FAOSTAT dataset (Contu et al. 2019). Two questions arose:

- Will estimation and unofficially sourced data contaminate the study or broaden confidence intervals?
- What is the geographical and temporal distribution of missing figures?

A list of countries with any missing entries reads Austria, Belgium, Belgium-Luxembourg, Bulgaria, Croatia, Cyprus, Czechia, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden

Belgium-Luxembourg is not a country and it was discovered to be some sort of text processing concatenation error and was dropped from the dataset.

#### 2.6 Data quality processing

After loading the live cattle stock data into a pandas dataframe, we observed missing values. This data reflects the number of cattle in stock or alive in a country during a particular year. For example, the

dataset shows that there were 6,649,310 cattle in stock in Ireland in 2021. As the number of cattle in stock is an important variable for our study, it is crucial to carefully consider the missing values. If a significant number of missing values correspond to Ireland and are recent, it could impact our research question. To gain a better understanding of the missing values, we quantified and analyzed them. Table 2.5 shows that 319 values are missing, which accounts for 18.7% of the data. This percentage is too high to delete records without a valid reason. Figure provides a visual representation of the missing data.



Figure 2.2: The figure shows 10 unnamed countries represented by horizontal strip having a significant proportion of missing data. The missingno package provides a matrix() function to create a missing value matrix plot. This plot visualizes the missingness in the data by showing where values are missing with white bars.

#### 2.7 data completeness analysis by country

There are only 10 countries with missing data as seen in table so these could be filtered out in that time interval but as suggested farming in the 20th centuary was significantly different than now so data from any country back then is low in relevance for modelling and prediction.

Drop Belgium-Luxembourg

#### 2.8 data completeness analysis by year

In order to better understand the dataset, we performed a data completeness analysis by year. The data covers the number of cattle in stock in the European Union (EU) member countries from 1961 to 2021. To assess how the missing values are distributed over time, we created a new table that tallied the number of missing values in each row of the dataset, grouped by year. We then visualised this distribution using a bar chart, which can be found in Figure 2.3. The last significant improvements in completeness step was from 1999 to 2000 and for this and the fact that beef farming technology has changed so much since the 20th centuary the decision is made to

#### 2.9 Dropping unwanted atributes



Figure 2.3: Distribution of missing values by year. The initial data studied gives the number of cattle in stock in the European Union (EU) member countries. The data spans from 1961 to 2021 and so it is natural to ascertain how the errors distribute across that interval. We created a new table that counted the number of missing values in each row of the dataset, grouped by year. Then we made a bar chart that showed the distribution of missing values by year

Table 2.2: Livestock stocks of cattle in various countries

|                            |             | <u></u>         |                    |               |           | ଚ               |                      |           |
|----------------------------|-------------|-----------------|--------------------|---------------|-----------|-----------------|----------------------|-----------|
| a)                         |             | Area Code (M49) |                    | e e           |           | Item Code (CPC) |                      |           |
| Domain Code                |             | (C)             |                    | Element Code  |           | 0)              |                      |           |
| ರ <mark>್</mark> ತ         | _           | əpc             |                    | $\mathcal{O}$ | حب        | эфс             |                      | Year Code |
| ain                        | Domain      | ŭ               |                    | emt           | Element   | ర               |                      | ŭ         |
| omo                        | om          | rea             | Area               | .em           | еш        | <b>m</b> e      | Item                 | ear       |
|                            |             |                 |                    |               |           |                 |                      |           |
| Livestock                  | 246         | Finland         | 5111               | Stocks        | 2111      | Cattle          | 2011                 | 2011      |
| 300                        | Greece      | 5111            | Stocks             | 2111          | Cattle    | 2021            | 2021                 | Head      |
| Slovenia                   | 5111        | Stocks          | 2111               | Cattle        | 2020      | 2020            | Head                 | 48561     |
| 5111                       | Stocks      | 2111            | Cattle             | 2018          | 2018      | Head            | 414000               | A Q       |
| Stocks                     | 2111        | Cattle          | 1987               | 1987          |           |                 | $\operatorname{QCL}$ | Livest    |
| 2111                       | Cattle      | 1996            | 1996               | Head          | 1988810   | A QCL           | Livestock            | 380       |
| Cattle                     | 2019        | 2019            | Head               | 6377230       | A QCL     | Livestock       | 196                  | Cyprı     |
| 2009                       | 2009        | Head            | 54097              | A QCL         | Livestock | 372             | Ireland              | 5111      |
| 1998                       | Head        | 6881600         | A QCL              | Livestock     | 100       | Bulgaria        | 5111                 | Stock     |
| Head                       | 1656317     | A QCL           | Livestock          | 246           | Finland   | 5111            | Stocks               | 2111      |
| 1252300                    | A QCL       | Livestock       | 246                | Finland       | 5111      | Stocks          | 2111                 | Cattle    |
| A QCL                      | Livestock   | 100             | Bulgaria           | 5111          | Stocks    | 2111            | Cattle               | 1971      |
| Livestock 348              | Hungary     | 5111            | Stocks             | 2111          | Cattle    | 1989            | 1989                 | Head      |
| QCL                        | Livestock   | 380             | Italy              | 5111          | Stocks    | 2111            | Cattle               | 2007      |
| QCL                        | Livestock   | 56              | Belgium            | 5111          | Stocks    | 2111            | Cattle               | 1964      |
| QCL                        | Livestock   | 196             | Cyprus             | 5111          | Stocks    | 2111            | Cattle               | 2016      |
| QCL                        | Livestock   | 380             | Italy              | 5111          | Stocks    | 2111            | Cattle               | 1998      |
| QCL                        | Livestock   | 191             | Croatia            | 5111          | Stocks    | 2111            | Cattle               | 2020      |
| QCL                        | Livestock   | 752             | Sweden             | 5111          | Stocks    | 2111            | Cattle               | 1988      |
| QCL                        | Livestock   | 300             | Greece             | 5111          | Stocks    | 2111            | Cattle               | 2015      |
| QCL                        | Livestock   | 250             | France             | 5111          | Stocks    | 2111            | Cattle               | 2009      |
| QCL                        | Livestock   | 372             | Ireland            | 5111          | Stocks    | 2111            | Cattle               | 1970      |
| QCL                        | Livestock   | 442             | Luxembourg         | 5111          | Stocks    | 2111            | Cattle               | 2005      |
| QCL                        | Livestock   | 724             | Spain              | 5111          | Stocks    | 2111            | Cattle               | 2021      |
| QCL                        | Livestock   | 191             | Croatia            | 5111          | Stocks    | 2111            | Cattle               | 2006      |
| QCL                        | Livestock   | 56              | Belgium            | 5111          | Stocks    | 2111            | Cattle               | 2016      |
| QCL                        | Livestock   | 58              | Belgium-Luxembourg | 5111          | Stocks    | 2111            | Cattle               | 2013      |
| m QCL                      | Livestock   | 724             | Spain              | 5111          | Stocks    | 2111            | Cattle               | 1967      |
| m QCL                      | Livestock   | 56              | Belgium            | 5111          | Stocks    | 2111            | Cattle               | 2008      |
| $\widetilde{\mathrm{QCL}}$ | Livestock   | 246             | Finland            | 5111          | Stocks    | 2111            | Cattle               | 2020      |
| $\widetilde{\mathrm{QCL}}$ | Livestock   | 470             | Malta              | 511 1         | Stocks    | 2111            | Cattle               | 1999      |
| $\overline{\mathrm{QCL}}$  | Livestock   | 528             | Netherlands        | 5111          | Stocks    | 2111            | Cattle               | 1968      |
| m QCL                      | Livestock   | 528             | Netherlands        | 5111          | Stocks    | 2111            | Cattle               | 1973      |
| $\widetilde{\mathrm{QCL}}$ | Livestock   | 246             | Finland            | 5111          | Stocks    | 2111            | Cattle               | 1989      |
| $\widetilde{\mathrm{QCL}}$ | Livestock   | 348             | Hungary            | 5111          | Stocks    | 2111            | Cattle               | 2021      |
| $\widetilde{\mathrm{QCL}}$ | Livestock   | 348             | Hungary            | 5111          | Stocks    | 2111            | Cattle               | 1993      |
| $\widetilde{\mathrm{QCL}}$ | Livestock   | 250             | France             | 5111          | Stocks    | 2111            | Cattle               | 1974      |
| $\operatorname{QCL}$       | Livestock   | 208             | Denmark            | 5111          | Stocks    | 2111            | Cattle               | 1965      |
| QCL                        | Livestock   | 100             | Bulgaria           | 5111          | Stocks    | 2111            | Cattle               | 1989      |
| Q 0 <u>2</u>               | 21.00000011 | 200             | 2 4184114          | 0111          | 200011    |                 | 0 00010              | 1000      |

|   | nan<br>13                | nan<br>OCL | nan<br>CLP             | 40  | Austria            | 5111                                  | Stocks  |
|---|--------------------------|------------|------------------------|-----|--------------------|---------------------------------------|---------|
|   | 2.6242e+06               | A          | Official figure        |     | -                  |                                       | ,       |
|   | 1520<br>446112           | QCL<br>A   | CLP<br>Official foure  | 703 | Slovakia           | 5111                                  | Stocks  |
|   | 4 4                      | dcr<br>dcr | CLP                    | 40  | Austria            | 5111                                  | Stocks  |
|   | 2.35027e+06<br>871       | A<br>QCL   | Official figure<br>CLP | 372 | Ireland            | 5111                                  | Stocks  |
|   | 6.2455e+06               | A          | Official figure        | 90  |                    | , , , , , , , , , , , , , , , , , , , | -       |
|   | 353<br>54097             | QCL<br>A   | CLP<br>Official figure | 196 | Cyprus             | 5111                                  | Stocks  |
|   | 809                      | QCL<br>\$  | CLP                    | 348 | Hungary            | 5111                                  | Stocks  |
|   | 1.887e+00<br>728         | A<br>QCL   | Omciai ngure<br>CLP    | 276 | Germany            | 5111                                  | Stocks  |
|   | 1.19491e+07 354          | A<br>QCL   | Official figure<br>CLP | 196 | Cyprus             | 5111                                  | Stocks  |
|   | 54715<br>393             | A<br>OCI,  | Official figure        | 203 | Czechia            | 1117                                  | Stocks  |
|   | nan                      | nan        | nan                    |     |                    |                                       | SWOOD O |
|   | 1574<br>472878           | QCL<br>A   | CLP<br>Official figure | 705 | Slovenia           | 5111                                  | Stocks  |
|   | 1335                     | gcr        | CLP<br>CLP             | 616 | Poland             | 5111                                  | Stocks  |
|   | 5.30003e⊤00<br>1053      | A<br>QCL   | CLP                    | 440 | Lithuania          | 5111                                  | Stocks  |
|   | nan<br>369               | nan<br>QCL | nan<br>CLP             | 203 | Czechia            | 5111                                  | Stocks  |
|   | nan<br>1205              | nan<br>QCL | nan<br>CLP             | 470 | Malta              | 5111                                  | Stocks  |
|   | 19233<br>45.5            | Å          | Official figure        | 800 | Downord            |                                       | C+0012  |
|   | $^{455}_{2.221e+06}$     | A<br>A     | Official figure        | 208 | Denmark            | 1110                                  | Stocks  |
| 8 | 217                      | QCL        | CLP<br>Official forms  | 100 | Bulgaria           | 5111                                  | Stocks  |
|   | 1035                     | A<br>QCL   | CLP                    | 428 | Latvia             | 5111                                  | Stocks  |
|   | 398990<br>1218           | A<br>QCL   | Official figure<br>CLP | 470 | Malta              | 5111                                  | Stocks  |
|   | 14290                    | Ą          | Official figure        |     |                    | 7                                     | -       |
|   | 1601<br>4.40784e+06      | QCL<br>A   | CLP<br>Official figure | 724 | Spain              | 5111                                  | Stocks  |
|   | 1325                     | ocr<br>Ocr | CLP                    | 616 | Poland             | 5111                                  | Stocks  |
|   | 5.48329e+06<br>607       | A<br>QCL   | Official figure<br>CLP | 246 | Finland            | 5111                                  | Stocks  |
|   | 840740<br>1002           | A<br>QCL   | Official figure<br>CLP | 428 | Latvia             | 5111                                  | Stocks  |
|   | nan<br>1140              | nan        | nan                    | 743 | Livemboing         |                                       | Stocks  |
|   | 189674                   | A          | Official figure        |     |                    |                                       | SWOOD C |
|   | 796<br>1 88336e+06       | QCL<br>A   | CLP<br>Official foure  | 348 | Hungary            | 5111                                  | Stocks  |
|   | 346                      | ÖCF        | CLP                    | 196 | Cyprus             | 5111                                  | Stocks  |
|   | 58156<br>172             | A<br>QCL   | Official figure<br>CLP | 578 | Belgium-Luxembourg | 5111                                  | Stocks  |
|   | nan<br>374               | nan        | nan<br>Cr D            | 903 |                    |                                       | C+ooles |
|   | or4<br>nan               | nan        | nan                    | 400 | Czecnia            |                                       | Stocks  |
|   | 823                      | QCL<br>A   | CLP                    | 348 | Hungary            | 5111                                  | Stocks  |
|   | 1.371e+00<br>1060        | QCL        | Omeial ngure<br>CLP    | 440 | Lithuania          | 5111                                  | Stocks  |
|   | nan<br>137               | nan<br>QCL | nan<br>CLP             | 228 | Belgium-Luxembourg | 5111                                  | Stocks  |
|   | 3.01071e+06              | Å          | Official figure        | 086 |                    |                                       | C+0012  |
|   | $6.09147\mathrm{e}{+06}$ | A<br>A     | Official figure        | 900 | Lidaly             | 0111                                  | SLOCKS  |

Table 2.4: Features and Data Types for Live Animal Cattle stock

| Feature          | Data Type |
|------------------|-----------|
| Area Code (M49)  | int64     |
| Area             | object    |
| Element Code     | int64     |
| Element          | object    |
| Item Code (CPC)  | int64     |
| Item             | object    |
| Year Code        | int64     |
| Year             | int64     |
| Unit             | object    |
| Value            | float64   |
| Flag             | object    |
| Flag Description | object    |

Table 2.5: 18.7% of cattle data missing in 1961 to 2021 time period

| Column           | NAs |
|------------------|-----|
| Domain Code      | N/A |
| Domain           | 0   |
| Area Code (M49)  | 0   |
| Area             | 0   |
| Element Code     | 0   |
| Element          | 0   |
| Item Code (CPC)  | 0   |
| Item             | 0   |
| Year Code        | 0   |
| Year             | 0   |
| Unit             | 319 |
| Value            | 319 |
| Flag             | 319 |
| Flag Description | 319 |

|      |                            |           |         |             | DG 1  |         | T.    | <u> </u> | T.     | ** O 1  | 3.7  |
|------|----------------------------|-----------|---------|-------------|-------|---------|-------|----------|--------|---------|------|
|      | Dom_Cd                     | Domain    | Area_Cd | Area        | ECode | Element | Item_ | Code     | Item   | Yr Code | Year |
| 538  | QCL                        | Livestock | 233     | Estonia     | 5111  | Stocks  |       | 2111     | Cattle | 2011    | 2011 |
| 1375 | QCL                        | Livestock | 620     | Portugal    | 5111  | Stocks  |       | 2111     | Cattle | 1994    | 1994 |
| 769  | QCL                        | Livestock | 300     | Greece      | 5111  | Stocks  |       | 2111     | Cattle | 1998    | 1998 |
| 693  | QCL                        | Livestock | 276     | Germany     | 5111  | Stocks  |       | 2111     | Cattle | 1983    | 1983 |
| 179  | QCL                        | Livestock | 58      | Bel_Lux     | 5111  | Stocks  |       | 2111     | Cattle | 2018    | 2018 |
| 1172 | QCL                        | Livestock | 470     | Malta       | 5111  | Stocks  |       | 2111     | Cattle | 1974    | 1974 |
| 1580 | QCL                        | Livestock | 705     | Slovenia    | 5111  | Stocks  |       | 2111     | Cattle | 2016    | 2016 |
| 341  | QCL                        | Livestock | 196     | Cyprus      | 5111  | Stocks  |       | 2111     | Cattle | 1997    | 1997 |
| 1134 | QCL                        | Livestock | 442     | Luxembourg  | 5111  | Stocks  |       | 2111     | Cattle | 1997    | 1997 |
| 1144 | QCL                        | Livestock | 442     | Luxembourg  | 5111  | Stocks  |       | 2111     | Cattle | 2007    | 2007 |
| 592  | QCL                        | Livestock | 246     | Finland     | 5111  | Stocks  |       | 2111     | Cattle | 2004    | 2004 |
| 257  | QCL                        | Livestock | 191     | Croatia     | 5111  | Stocks  |       | 2111     | Cattle | 1974    | 1974 |
| 369  | QCL                        | Livestock | 203     | Czechia     | 5111  | Stocks  |       | 2111     | Cattle | 1964    | 1964 |
| 147  | QCL                        | Livestock | 58      | $Bel_Lux$   | 5111  | Stocks  |       | 2111     | Cattle | 1986    | 1986 |
| 1362 | QCL                        | Livestock | 620     | Portugal    | 5111  | Stocks  |       | 2111     | Cattle | 1981    | 1981 |
| 1130 | QCL                        | Livestock | 442     | Luxembourg  | 5111  | Stocks  |       | 2111     | Cattle | 1993    | 1993 |
| 1484 | QCL                        | Livestock | 703     | Slovakia    | 5111  | Stocks  |       | 2111     | Cattle | 1981    | 1981 |
| 440  | QCL                        | Livestock | 208     | Denmark     | 5111  | Stocks  |       | 2111     | Cattle | 1974    | 1974 |
| 1394 | QCL                        | Livestock | 620     | Portugal    | 5111  | Stocks  |       | 2111     | Cattle | 2013    | 2013 |
| 1478 | QCL                        | Livestock | 703     | Slovakia    | 5111  | Stocks  |       | 2111     | Cattle | 1975    | 1975 |
| 1363 | QCL                        | Livestock | 620     | Portugal    | 5111  | Stocks  |       | 2111     | Cattle | 1982    | 1982 |
| 449  | QCL                        | Livestock | 208     | Denmark     | 5111  | Stocks  |       | 2111     | Cattle | 1983    | 1983 |
| 1024 | QCL                        | Livestock | 428     | Latvia      | 5111  | Stocks  |       | 2111     | Cattle | 2009    | 2009 |
| 851  | QCL                        | Livestock | 348     | Hungary     | 5111  | Stocks  |       | 2111     | Cattle | 2019    | 2019 |
| 928  | QCL                        | Livestock | 380     | Italy       | 5111  | Stocks  |       | 2111     | Cattle | 1974    | 1974 |
| 1276 | QCL                        | Livestock | 528     | Netherlands | 5111  | Stocks  |       | 2111     | Cattle | 2017    | 2017 |
| 161  | QCL                        | Livestock | 58      | Bel Lux     | 5111  | Stocks  |       | 2111     | Cattle | 2000    | 2000 |
| 1568 | QCL                        | Livestock | 705     | Slovenia    | 5111  | Stocks  |       | 2111     | Cattle | 2004    | 2004 |
| 1301 | QCL                        | Livestock | 616     | Poland      | 5111  | Stocks  |       | 2111     | Cattle | 1981    | 1981 |
| 701  | QCL                        | Livestock | 276     | Germany     | 5111  | Stocks  |       | 2111     | Cattle | 1991    | 1991 |
| 1468 | QCL                        | Livestock | 703     | Slovakia    | 5111  | Stocks  |       | 2111     | Cattle | 1965    | 1965 |
| 672  | $\overline{\mathrm{QCL}}$  | Livestock | 276     | Germany     | 5111  | Stocks  |       | 2111     | Cattle | 1962    | 1962 |
| 1018 | $\overline{\mathrm{QCL}}$  | Livestock | 428     | Latvia      | 5111  | Stocks  |       | 2111     | Cattle | 2003    | 2003 |
| 41   | $\overline{\mathrm{QCL}}$  | Livestock | 40      | Austria     | 5111  | Stocks  |       | 2111     | Cattle | 2002    | 2002 |
| 29   | $\widetilde{\mathrm{QCL}}$ | Livestock | 40      | Austria     | 5111  | Stocks  |       | 2111     | Cattle | 1990    | 1990 |
| 740  | $\widetilde{\mathrm{QCL}}$ | Livestock | 300     | Greece      | 5111  | Stocks  |       | 2111     | Cattle | 1969    | 1969 |
| 166  | $\widetilde{\mathrm{QCL}}$ | Livestock | 58      | Bel Lux     | 5111  | Stocks  |       | 2111     | Cattle | 2005    | 2005 |
| 483  | $\operatorname{QCL}$       | Livestock | 208     | Denmark     | 5111  | Stocks  |       | 2111     | Cattle | 2017    | 2017 |
| 1612 | QCL                        | Livestock | 724     | Spain       | 5111  | Stocks  |       | 2111     | Cattle | 1987    | 1987 |
| 193  | $\operatorname{QCL}$       | Livestock | 100     | Bulgaria    | 5111  | Stocks  |       | 2111     | Cattle | 1971    | 1971 |

Table 2.6: Livestock stocks in various countries, with a focus on cattle. Each row corresponds to a particular country, with information on the year, unit, and number of cattle stocks. Some rows also include information on the reliability or official status of the data (indicated by the "Flag" column).

### Chapter 3

near end working

### Appendix A

### Deflator

In economics, a deflator is a measure used to adjust nominal values for inflation, allowing for comparison with real, inflation-adjusted values. The deflator is calculated by dividing a nominal value (such as GDP or a price index) by a price index representing the general level of prices in the economy.

In Exploratory Data Analysis (EDA), deflators can be used to adjust for inflation when analyzing historical data. For example, if you are analyzing sales data over several years, it may be necessary to adjust for inflation to get a true sense of how sales have changed over time. By using a deflator, you can convert nominal values (such as sales revenue) into real values (inflation-adjusted sales revenue), which makes it easier to compare values across different time periods.

Deflators can also be useful when analyzing economic data, such as GDP or employment figures. By using a deflator to adjust for inflation, you can get a more accurate picture of how the economy is performing over time. For example, if GDP has increased by 10

In summary, deflators are an important tool in both economics and data analysis, as they allow us to adjust for inflation and make accurate comparisons of values over time.

### Appendix B

### Data analysis

Data analysis is the process of inspecting, cleaning, transforming, and modeling data with the goal of discovering useful information, drawing conclusions, and supporting decision-making. It involves various methods and techniques such as descriptive statistics, inferential statistics, data visualization, and machine learning.

Data analysis can be applied in a variety of fields, including business, finance, healthcare, social sciences, and engineering, among others. In business, for example, data analysis can be used to analyze customer behavior, identify trends, and make predictions about future sales. In healthcare, data analysis can be used to identify risk factors for diseases, develop treatment plans, and monitor the effectiveness of interventions.

The process of data analysis typically involves several steps, including defining the problem or research question, collecting and preparing the data, exploring and visualizing the data, performing statistical analyses, interpreting the results, and communicating the findings. Effective data analysis requires a combination of technical skills, critical thinking, and domain knowledge.

### Appendix C

### **Tables**

Table C.1: Quality assessment based on the CASP qualitative research checklist.  $y=yes,\ n=no,\ u=unclear.$ 

| Index   | Question                                                                             | gilmore2013unklærkssam200tg5hammenroe2015decisio |      |      |  |  |
|---------|--------------------------------------------------------------------------------------|--------------------------------------------------|------|------|--|--|
| 1       | Was there a clear statement of the aims of the research?                             | у                                                | У    | у    |  |  |
| 2       | Is a qualitative methodology appropriate?                                            | У                                                | У    | У    |  |  |
| 3       | Was the research design appropriate to address the aims of the research?             | У                                                | У    | У    |  |  |
| 4       | Was the recruitment strategy appropriate to the aims of the research?                | У                                                | У    | У    |  |  |
| 5       | Was the data collected in a way that addressed the research issue?                   | У                                                | У    | У    |  |  |
| 6       | Has the relationship between researcher and participants been adequately considered? | u                                                | u    | u    |  |  |
| 7       | Have ethical issues been taken into consideration?                                   | У                                                | У    | У    |  |  |
| 8       | Was the data analysis sufficiently rigorous?                                         | У                                                | У    | У    |  |  |
| 9       | Is there a clear statement of findings?                                              | У                                                | У    | У    |  |  |
| 10      | How valuable is the research?                                                        | У                                                | У    | У    |  |  |
| Assessn | nent quality                                                                         | high                                             | high | high |  |  |

### Appendix D

# CASP Qualitative research checklist.

Table D.1: Quality assessment based on the CASP qualitative research checklist.  $y=yes,\ n=no,\ u=unclear.$ 

| Index   | Question                                                                             | gilmore2013unkærksand201g5hamænroe2015decis |      |      |  |  |
|---------|--------------------------------------------------------------------------------------|---------------------------------------------|------|------|--|--|
| 1       | Was there a clear statement of the aims of the research?                             | у                                           | У    | у    |  |  |
| 2       | Is a qualitative methodology appropriate?                                            | У                                           | У    | у    |  |  |
| 3       | Was the research design appropriate to address the aims of the research?             | У                                           | У    | У    |  |  |
| 4       | Was the recruitment strategy appropriate to the aims of the research?                | У                                           | У    | У    |  |  |
| 5       | Was the data collected in a way that addressed the research issue?                   | У                                           | У    | У    |  |  |
| 6       | Has the relationship between researcher and participants been adequately considered? | u                                           | u    | u    |  |  |
| 7       | Have ethical issues been taken into consideration?                                   | У                                           | У    | у    |  |  |
| 8       | Was the data analysis sufficiently rigorous?                                         | У                                           | У    | у    |  |  |
| 9       | Is there a clear statement of findings?                                              | У                                           | У    | у    |  |  |
| 10      | How valuable is the research?                                                        | У                                           | У    | у    |  |  |
| Assessr | nent quality                                                                         | high                                        | high | high |  |  |

### Appendix E

# Appendix F

### Appendix G

### References

Contu, Giulia et al. (2019). "The impact of Airbnb on hidden and sustainable tourism: the case of Italy". In: *International Journal of Tourism Policy* 9.2, pp. 99–130.

Páez, Antonio and Geneviève Boisjoly (2023). "Exploratory Data Analysis". In: Discrete Choice Analysis with R. Springer, pp. 25–64.

Van Der Walt, Stefan, S Chris Colbert, and Gael Varoquaux (2011). "The NumPy array: a structure for efficient numerical computation". In: Computing in science & engineering 13.2, pp. 22–30.