Math 104 Homework 6

UC Berkeley, Summer 2021 Due by Friday, July 30, 11:59pm PDT

- 1. (Ross 18.10) Suppose f is continuous on [0,2] and f(0)=f(2). Prove that there exist $x,y \in [0,2]$ such that |y-x|=1 and f(x)=f(y). (Hint: Consider g(x)=f(x+1)-f(x) on [0,1].)
- **2.** Prove that if $f: \mathbb{R} \to \mathbb{R}$ is uniformly continuous on an open interval (a,b), then f is bounded on (a,b), i.e. there exists M>0 such that $|f(x)|\leq M$ for all $x\in(a,b)$.
- **3.** (a) Let f and g be two continuous real-valued functions on \mathbb{R} . Prove that if f(q) = g(q) for every $q \in \mathbb{Q}$, then f(x) = g(x) for all $x \in \mathbb{R}$.
- (b) Let (X, d_X) and (Y, d_Y) be two metric spaces, and let f and g be two continuous functions from X to Y. Formulate and prove a generalization of part (a).
- **4.** For any rational number $q \in \mathbb{Q}$, let $\varphi(q) := \min\{n \in \mathbb{N} : \exists m \in \mathbb{Z} \text{ such that } q = \frac{m}{n}\}$. Define $f : \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}, \\ \frac{1}{\varphi(x)} & \text{if } x \in \mathbb{Q}. \end{cases}$$

Prove that f is discontinuous at every $x \in \mathbb{Q}$ and continuous at every $x \in \mathbb{R} \setminus \mathbb{Q}$.

- 5. (a) Let (X, d) be a metric space. Consider the metric space $(X \times X, d^*)$ where $d^*((x, y), (u, v)) = \max\{d(x, u), d(y, v)\}$ (see Homework 5 Problem 1.) Show that the original metric $d: X \times X \to \mathbb{R}$ is a uniformly continuous real-valued function on the metric space $X \times X$. (b) Let E be a nonempty compact subset of X, and let $\delta = \sup\{d(x, y) : x, y \in E\}$. Use part
- (a) and Homework 5 Problem 1(d) to prove that there exist $x, y \in E$ such that $d(x, y) = \delta$
- (cf. Homework 4 Problem 3.)
- **6.** (a) Let (X,d) be a metric space, and let A be any nonempty subset of X. Define $f: X \to \mathbb{R}$ by $f(x) := d(x,A) = \inf\{d(x,y) : y \in A\}$ (see Homework 4 Problem 4.) Show that f is uniformly continuous on X. (Hint: Carefully argue the following skeleton of implications: $d(x,A) \le d(x,a) \le d(x,y) + d(y,a) \Rightarrow d(y,a) \ge d(x,A) d(x,y) \Rightarrow d(x,A) d(y,A) \le d(x,y)$.)
- (b) Let E be a nonempty compact subset of X. Use part (a) to show that there exists $x_0 \in E$ such that $f(x_0) = \inf\{d(x,A) : x \in E\}$. In particular, if $A = \{a\}$ is a *singleton* (a set with only one element), then E has a closest element to a (cf. Homework 4 Problem 4.)
- (c) Prove that if E is a nonempty compact subset of X and A is a closed subset of X and $E \cap A = \emptyset$, then $\inf\{d(x,a) : x \in E, a \in A\} > 0$ (there is a "gap" between E and A.)
- (d) Find a counterexample to show that the conclusion in part (c) can fail if E is assumed to be closed but not compact.

- 7. Let (X, d_X) be a discrete metric space, and let (Y, d_Y) be any metric space. Prove that any function $f: X \to Y$ is continuous.
- 8. Let (X,d) be a metric space. A contraction is a continuous function $f: X \to X$ with the property that there exists c < 1 that $d(f(x), f(y)) \le c \cdot d(x, y)$ for all $x, y \in X$. Prove that if X is complete, then every contraction on X has a unique fixed point. (A fixed point of f is an element $x \in X$ such that f(x) = x.) (Hint: Construct a sequence beginning with some $x_0 \in X$ by repeatedly applying f; then argue that the sequence is Cauchy and hence convergent by completeness of X and verify that the limit is in fact a fixed point. Don't forget to show uniqueness.)
- **9.** Let (X,d) be a metric space, and let $f:X\to\mathbb{R}$ be a continuous function. Define $Z(f):=\{x\in X:f(x)=0\}$. Prove that Z(f) is a closed subset of X.
- **10.** Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function such that f(U) is open for every open set $U \subseteq \mathbb{R}$. Prove that f is monotonic.