

Figure 1: General structure of activators of non-genomic Estrogen-Like Signalling (ANGELS).

Figure 2: Estrogen deficiency causes increased apoptosis of osteoblasts and osteocytes in murine vertebral bone.

Figure 3: Inhibition of apoptosis of osteoblastic cells.

Figure 4: Inhibition of apoptosis of MLO-Y4 osteocytic cells by ANGELS

Figure 5: Blockade of the anti-apoptotic effect of estrogen and ANGELS by ICI 182,780 in osteoblastic cells

Figure 6: Inhibition of the antiapoptotic effect of estrogen and ANGELS by ICI 182,780 in MLO-Y4 osteocytic cells

Figure 7: Estrogen receptor α or β is required for the antiapoptotic effects of 17 β estradiol, 17 α estradiol, and estratriene-3-ol on etoposide-induced apoptosis (experiment 1/21/99).

Figure 8: Activation of Extracellular Signal Regulated Kinases (ERKs)

Figure 9: The effect of estrogenic compounds on the activation of ERK1/2 is blocked by a specific inhibitor.

Figure 10: The specific inhibitor of ERK activation abolishes the anti-apoptotic effect of the estrogenic compounds.

Figure 11: Unlike 17 β estradiol, estratriene-3-ol does not transactivate an estrogen response element through ER α .

[2S-(2a,4ac,10af)]-1,2,3,4,4a,9,10,10a-
Octahydro-7-hydroxy-2-methyl-2-
phenanthrenecarboxaldehyde

C₁₆H₂₂O₂
MW=246

[2S-(2a,4ac,10af)]-1,2,3,4,4a,9,10,10a-
Octahydro-7-hydroxy-2-methyl-2-
phenanthrenemethanol

Figure 12

Figure 13

Figure 14: Mechanisms of Estrogen Receptor Action

Formation occurs only on sites of previous osteoclastic bone resorption.

Anti-resorptive

Non anti-resorptive (i.e. ANGELS)

**Small and slow increase
in trabecular thickness**

**Large and rapid increase
in trabecular thickness**

**Anti-fracture efficacy
(through inhibition of osteocyte apoptosis)**

Figure 15: Implications of the effects of anti-resorptive vs. non anti-resorptive agents on apoptosis

R AND/OR R' SUBSTITUTION	
	STRUCTURE
HCO ₂	-OH
Et ⁺	-CH ₃
METHYL E ⁺	-OCH ₃
AC ⁺	O-C(=O)-CH ₃
ETHYL ET ⁺	O-CH ₂ -CH ₃
3, 3, 3, FOR 1 ⁺ DIMETHYL E ⁺	OCH ₃ OCH ₃
ETHY-	C≡CH CH ₃
BENZ ⁺	O-C(=O)-C ₆ H ₅
BENZYL ET ⁺	OCH ₂ -C ₆ H ₅
GLUCURONIC ACID	C ₆ H ₈ O ₆
SULFATE SODIUM :	OSO ₃ Na
C ⁺	=
VAL ⁺	-C ₅ H ₈ C
CYCLOPENTYLPROPI ⁺	-O-C(=C)-C ₅ H ₉
PROPI ⁺	-O-C(=C)-CH ₂ CH ₃
HEMISUCC ⁺	-C ₄ H ₆ O ₃
PAL ⁺	-C ₁₆ H ₃₂ O ₂

Figure 16A

R₁ AND/OR R₂ SUBSTITUTIONS

	STRUCTURE
SODIUM PHOSPHENANTH	-O-PO ₃ Na ₂
GLUCURONIDE SODIUM S-	-C ₆ H ₈ O ₃ Na
STEAP	-C ₁₈ H ₃₄ O
TRETHYL AMMONIUM S-	-N-(C ₂ H ₅) ₃
CYPIC	

© 1994 Schering-Plough Research Institute

17B EST...

17a EST...

Figure 16B

Figure 17

Figure 18

Figure 19: Effect of the all peptide on the 17 β E $_2$ -induced ERE activity in 293 cells

Figure 20: Effect of the all peptide on the 17 β E $_2$ -induced inhibition of IL-6 activity in 293 cells

Figure 21: Effect of the all peptide on the Etoposide-induced apoptosis of 17 β -BSA-activated 293 cells