### **TensorFlow Lite Micro**

Embedded Machine Learning on TinyML Systems



Robert David, Jared Duke, Advait Jain, **Vijay Janapa-Reddi**, Nat Jeffries, Jian Li, Nick Kreeger, Ian Nappier, Meghna Natraj, Shlomi Regev, Rocky Rhodes, Tiezhen Wang, Pete Warden.



















...

Arduino BLE Sense 33

> Himax WE-I Plus EVB

SparkFun Edge 2

> Espressif EYE

> > •••





**TensorFlow** Lite Micro



### How do you use **TFL Micro**?



## TFLite Micro: Interpreter

### TFLite Micro Design

- TFLite Micro uses an interpreter design
- Store the model as data and loop through its ops at runtime





ops



Interpreter (generally slower than compiled code)



Compiler (generally faster than interpreted code)



### ML is **Different**

Each layer like a Conv
 or softmax can take
 tens of thousands or
 even millions of cycles
 to complete execution



### ML is **Different**

 Parsing overhead is relatively small for the TFMicro interpreter when we consider the overall network graph

| Model                      | Total<br>Cycles | Calculation<br>Cycles | Interpreter<br>Overhead |
|----------------------------|-----------------|-----------------------|-------------------------|
| Visual Wake<br>Words (Ref) | 18,990.8K       | 18,987.1K             | < 0.1%                  |
| Google<br>Hotword<br>(Ref) | 36.4K           | 34.9K                 | 4.1%                    |



Sparkfun Edge 2 (Apollo 3 **Cortex-M4**)

# dispatch

### instruction **ops**

## Interpreter **Advantages**

Change the model
 without recompiling
 the code



### instruction **ops**

## Interpreter **Advantages**

- Change the model
   without recompiling
   the code
- Same operator code
   can be used across
   multiple different
   models in the system

Arduino BLE Sense 33 Himax WE-I Plus EVB

Espressif EYE

SparkFun Edge 2

## Interpreter **Advantages**

serialization format can be used **across a lots of systems**.

## TFLite Micro Interpreter Execution

```
if (op_type == CONV2D) {
   Convolution2d(conv_size, input, output, weights);
} else if (op_type == FULLY_CONNECTED) {
   FullyConnected(input, output, weights)
}
```

## TFLite Micro: Model Format

The FlatBuffer File Format





How is **g\_model** stored?





Serialization



## **Serialization**Libraries

- JSON
- ProtoBuf
- FlatBuffer









### Hardware & Software Limitations

- Limited OS support
- Limited compute
- Limited memory



### What is g\_model?

- Array of bytes, and acts as the equivalent of a file on disk
- Holds all of the information
   about the model, its
   operators, their connections,
   and the trained weights

```
28 alignas(8) const unsigned char g_model[] = {
```

### FlatBuffers

 Does not require copies to be made before using the data inside the model



### FlatBuffers

- Does not require copies to be made before using the data inside the model
- The format is formally specified as a schema file



### FlatBuffers

- Does not require copies to be made before using the data inside the model
- The format is formally specified as a schema file
- Schema file is used to automatically generate code to access the information in the model byte array



### g model FlatBuffer Format

#### Metadata (version, quantization ranges, etc)

| Name    | Args | Input | Output | Weights |
|---------|------|-------|--------|---------|
| Conv2D  | 3x3  | 0     | 1      | 2       |
| FC      | -    | 1     | 3      | 4       |
| Softmax | -    | 3     | 5      | -       |

#### **Weight Buffers**

| Index | Туре  | Values            |
|-------|-------|-------------------|
| 2     | Float | 0.01, 7.45, 9.23, |
| 4     | Int8  | 34, 19, 243,      |
|       |       |                   |

### TFLite Micro: Memory Allocation

The Tensor Arena



# Why Care About **Memory**?

 Embedded systems typically have only hundreds or tens of kilobytes of RAM



# Why Care About **Memory**?

- Embedded systems typically have only hundreds or tens of kilobytes of RAM
- Easy to hit memory limits when building an end-to-end application



# Why Care About **Memory**?

- Embedded systems typically have
   only hundreds or tens of kilobytes
   of RAM
- Easy to hit memory limits when building an end-to-end application
- So any framework that integrates with embedded products must offer control over how memory usage



# Long-Running Applications

- Products are expected to run for months or even years, which poses challenges for memory allocation
- Need to guarantee that memory allocation will not end up fragmented → contiguous memory cannot be allocated even if there's enough memory overall



#### Lack of OS Support

- In embedded systems, the standard C and C++ memory APIs (malloc and new) rely on operating system support
- Many devices have no OS,
   or have very limited functionality



Nano 33 BLE Sense Hardware

#### How TFL Micro solves these challenges

1. Ask developers to supply a contiguous area of memory to the interpreter, and in return the framework avoids any other memory allocations

```
constexpr int kTensorArenaSize = 2000;
uint8_t tensor_arena[kTensorArenaSize];
...
static tflite::MicroInterpreter static_interpreter(model, resolver, tensor_arena, kTensorArenaSize, error_reporting);
```

#### How TFL Micro solves these challenges

- 1. Ask developers to **supply a contiguous area of memory** to the interpreter, and in return the framework avoids any other memory allocations
- 2. Framework guarantees that it won't allocate from this "arena" after initialization, so long-running applications won't fail due to fragmentation

#### How TFL Micro solves these challenges

- 1. Ask developers to **supply a contiguous area of memory** to the interpreter, and in return the framework avoids any other memory allocations
- 2. Framework guarantees that it won't allocate from this "arena" after initialization, so long-running applications won't fail due to fragmentation
- 3. Ensures clear budget for the memory used by ML, and that the **framework** has no dependency on OS facilities needed by malloc or new

#### uint8\_t tensor\_arena[kTensorArenaSize]

Operator Variables Interpreter State Operator Inputs and Outputs

#### Arena size?

 Depends on what ops are in the model (and the parameters of those operations)

```
constexpr int kTensorArenaSize = 2000;
uint8_t tensor_arena[kTensorArenaSize];
...
static tflite::MicroInterpreter static_interpreter(model,
    resolver, tensor_arena, kTensorArenaSize, error_reporting);
```

#### Arena size?

- Depends on what ops are in the model (and the parameters of those operations)
- Size of operator inputs and outputs is platform independent, but different devices can have different operator implementations

```
constexpr int kTensorArenaSize = 2000;
uint8_t tensor_arena[kTensorArenaSize];
...
static tflite::MicroInterpreter static_interpreter(model,
    resolver, tensor_arena, kTensorArenaSize, error_reporting);
```

#### Arena size?

- Depends on what ops are in the model (and the parameters of those operations)
- Size of operator inputs and outputs is platform independent, but different devices can have different operator implementations
- → hard to forecast exact
   size of arena needed

```
constexpr int kTensorArenaSize = 2000;
uint8_t tensor_arena[kTensorArenaSize];
...
static tflite::MicroInterpreter static_interpreter(model,
    resolver, tensor_arena, kTensorArenaSize, error_reporting);
```

#### Solution

- Create as large an arena as you can and run your program on-device
- Use the arena\_used\_bytes()
  function to get the actual
  size used.
- Resize the arena to that length and rebuild
- Best to do this on your deployment platform, since different op implementations may need varying scratch buffer sizes

```
constexpr int kTensorArenaSize = 6000;
uint8_t tensor_arena[kTensorArenaSize];
...
static tflite::MicroInterpreter static_interpreter(model,
    resolver, tensor_arena, kTensorArenaSize, error_reporting);
```

# TFLite Micro: NN Operations

The OpsResolver



# Why Care About Binary Size?

 Executable code used by a framework takes up space in Flash



# Why Care About Binary Size?

- Executable code used by a framework takes up space in Flash
- Flash is a limited resource on embedded devices and often just tens of kilobytes available



# Why Care About Binary Size?

- Executable code used by a framework takes up space in Flash
- Flash is a limited resource on embedded devices and often just tens of kilobytes available
- If compiled code is too large, it won't be usable by applications.







# **Optimizing** Operator Usage in TFL Micro

 There are many operators in TensorFlow (~1400 and growing)



# **Optimizing** Operator Usage in TFL Micro

- There are many operators in
   TensorFlow (~1400 and growing)
- Not all operators are used or even needed to perform inference



# **Optimizing** Operator Usage in TFL Micro

- There are many operators in
   TensorFlow (~1400 and growing)
- Not all operators are used or even needed to perform inference
- Bring in or load only those that are important to conserve memory usage



### How to **Reduce the Size** Taken by Ops?

Allow developers to specify which ops they want to be included in the binary

```
tflite::MicroMutableOpResolver<4>
op_resolver(error_reporter);
if (op_resolver.AddDepthwiseConv2D() != kTfLiteOk) {
    return;
}
```



#### Hello!





```
static tflite::MicroMutableOpResolver<4> micro_op_resolver(error_reporter);
if (micro_op_resolver.AddDepthwiseConv2D() != kTfLiteOk) {
  return;
if (micro_op_resolver.AddFullyConnected() != kTfLite0k) {
  return;
if (micro_op_resolver.AddSoftmax() != kTfLiteOk) {
  return;
if (micro_op_resolver.AddReshape() != kTfLite0k) {
  return;
```



```
static tflite::MicroMutableOpResolver<4> micro_op_resolver(error_reporter);
if (micro_op_resolver.AddDepthwiseConv2D() != kTfLiteOk) {
  return;
if (micro_op_resolver.AddFullyConnected() != kTfLite0k) {
  return;
if (micro_op_resolver.AddSoftmax() != kTfLite0k) {
  return;
if (micro_op_resolver.AddReshape() != kTfLiteOk) {
  return;
```



```
static tflite::MicroMutableOpResolver<4> micro_op_resolver(error_reporter);
if (micro_op_resolver.AddDepthwiseConv2D() != kTfLiteOk) {
  return;
if (micro_op_resolver.AddFullyConnected() != kTfLite0k) {
  return;
if (micro_op_resolver.AddSoftmax() != kTfLiteOk) {
  return;
if (micro_op_resolver.AddReshape() != kTfLiteOk) {
  return;
```



```
static tflite::MicroMutableOpResolver<4> micro_op_resolver(error_reporter);
if (micro_op_resolver.AddDepthwiseConv2D() != kTfLiteOk) {
  return;
if (micro_op_resolver.AddFullyConnected() != kTfLite0k) {
  return;
if (micro_op_resolver.AddSoftmax() != kTfLite0k) {
  return;
if (micro_op_resolver.AddReshape() != kTfLiteOk) {
  return;
```



```
static tflite::MicroMutableOpResolver<4> micro_op_resolver(error_reporter);
if (micro_op_resolver.AddDepthwiseConv2D() != kTfLiteOk) {
  return;
if (micro_op_resolver.AddFullyConnected() != kTfLite0k) {
  return;
if (micro_op_resolver.AddSoftmax() != kTfLiteOk) {
  return;
if (micro_op_resolver.AddReshape() != kTfLite0k) {
  return;
```

# Which Ops to Include?





If memory is not an issue, you can choose to simply include all operators, both used and unused, at the expense of increased memory consumption

```
static tflite::AllOpsResolver resolver;

// Build an interpreter to run the model with.
static tflite::MicroInterpreter static_interpreter(
   model, resolver, tensor_arena, kTensorArenaSize, error_reporter);
interpreter = &static_interpreter;
```

# Memory Improvements

- Selective op registration reduces memory consumption by 30%
- Memory reduction varies by model, depending on the operators used by the model



#### In Summary, what is TensorFlow Lite Micro?

Compatible with the TensorFlow training environment.



#### Built to fit on embedded systems:

- Very small binary footprint
- **No** dynamic memory allocation
- No dependencies on complex parts of the standard C/C++ libraries
- No operating system dependencies, can run on bare metal
- Designed to be **portable** across a wide variety of systems

### Thank You!