HAM iminuit & Multinest Results

Jiaxi

25 May

NOTE:

- The parameters are sigma for scattering Vpeak; vcut for cutting large scattering Vpeak end; prior: sigma [0,1]; vcut [100,1000]
- Multinest results are analyzer.get_bestfit()['parameters'], errors are not provided because they may not be reliable
- Vpeak distribution functions present the average of 15 realisations with the best fitting results

NOTE:

ELG NGC: parameters

iminuit

sigma = 0.506

Vcut = 266km/s

ELG NGC: correlation function

ELG NGC: Vpeak distribution

ELG SGC: parameters

iminuit

sigma = 0.509

Vcut = 260km/s

ELG SGC: correlation function

ELG SGC: Vpeak distribution

LRG NGC: parameters

iminuit

sigma = 0.463

Vcut = 748km/s

LRG NGC: correlation function

LRG NGC: Vpeak distribution

LRG SGC: parameters

iminuit

sigma = 0.877

Vcut = 998km/s (near the prior boundary)

LRG SGC: correlation function

LRG SGC: Vpeak distribution

Conclusions:

- Monopoles are sensitive to parameters while quadrupoles are not
- Multinest & iminuit results are not consistent except the ELG NGC result.
- iminuit LRG SGC results seems unrealiable because it hits the boundary
- Due to the non-Guassian shape posterior, may be it is not appropriate to determine results as parameter.mean, errors as parameter.err