duração: 1h45min _

Álgebra Universal e Categorias

2º teste

Justifique todas as suas respostas, a não ser que seja explicitamente indicado o contrário.

1. Considere a categoria C representada pelo diagrama seguinte

Sem apresentar justificacões, indique se existem, na categoria C, morfismos e objetos nas condições a seguir indicadas. Caso existam, forneça um exemplo correspondente:

(a) Um morfismo que não seja um monomorfismo.

Resposta:

O morfismo p não é um monomorfismo. (Tem-se $p \circ i = q = p \circ j$ e $i \neq j$.)

(b) Um bimorfismo que não seja um isomorfismo.

Resposta:

O morfismo f é um bimorfismo, mas não é um isomorfismo.

(O morfismo f é um epimorfismo e um monomorfismo, logo é um bimorfismo. O morfismo f não é um isomorfismo, pois não existe qualquer morfismo $f': B \to A$ tal que $f \circ f' = id_B$ e $f' \circ f = id_A$.)

(c) Um isomorfismo que não seja um bimorfismo.

Resposta:

Não existe.

(Todo o isomorfismo é um bimorfismo.)

(d) Objetos distintos e isomorfos.

Resposta:

 $A \in E$.

(Os morfismos u e v são isomorfismos, uma vez que $u \circ v = id_E$ e $v \circ u = id_A$.)

2. (a) Sejam ${\bf C}$ uma categoria e $f:A\to B,\ g:B\to C$ morfismos de ${\bf C}$. Mostre que se f e g são epimorfismos, então $g\circ f$ é um epimorfismo.

Resposta:

Recordemos que um morfismo $h:X \to Y$ é **epimorfismo** se, para quaisquer morfismos $u,v:Y \to Z$,

$$u\circ h=v\circ h\Rightarrow u=v.$$

Então, assumindo que f e g são epimorfismos, segue que, para quaisquer C-morfismos $u,v:C\to D$,

$$\begin{array}{lll} u\circ (g\circ f)=v\circ (g\circ f) & \Rightarrow & (u\circ g)\circ f=(v\circ g)\circ f & (\text{associatividade}) \\ & \Rightarrow & u\circ g=v\circ g & (f\text{ \'e epimorfismo}) \\ & \Rightarrow & u=v & (g\text{ \'e epimorfismo}). \end{array}$$

Logo, $g \circ f$ é um epimorfismo.

(b) Dê exemplo de uma categoria ${\bf C}$ na qual existam objetos A,B,C e morfismos $f:A\to B$ e $g:B\to C$ tais que $g\circ f$ é um epimorfismo, mas f não é um epimorfismo.

Resposta:

Seja ${f C}$ a categoria representada por

O morfismo f não é um epimorfismo, pois $g \circ f = r = h \circ f$ e $g \neq h$. O morfismo $g \circ f$ é um epimorfismo, pois o único morfismo com domímio C é id_C ; assim, para quaisquer morfismos $i, j : C \to D$,

$$i \circ (g \circ f) = j \circ (g \circ f) \Rightarrow i = id_C = j.$$

3. Sejam C_1 e C_2 categorias. Mostre que se C_1 e C_2 têm objetos iniciais, então a categoria produto $C_1 \times C_2$ tem objeto inicial.

Resposta:

Sejam C_1 e C_2 categorias e I_1 e I_2 são objetos iniciais de C_1 e C_2 , respetivamente. Mostremos que (I_1, I_2) é um objeto inicial de $C_1 \times C_2$.

Uma vez que I_1 é um objeto inicial de C_1 , então $I_1 \in \mathrm{Obj}(C_1)$ e, para cada $X \in \mathrm{Obj}(C_1)$, existe um e um só C_1 -morfismo $f: I_1 \to X$. Como I_2 é um objeto inicial de C_2 , então $I_2 \in \mathrm{Obj}(C_2)$ e, para cada $Y \in \mathrm{Obj}(C_2)$, existe um e um só C_2 -morfismo $g: I_2 \to Y$.

Como $I_1 \in \mathrm{Obj}(\mathbf{C}_1)$ e $I_2 \in \mathrm{Obj}(\mathbf{C}_2)$, então $(I_1,I_2) \in \mathrm{Obj}(\mathbf{C}_1 \times \mathbf{C}_2)$. Mostremos que, para todo $(X,Y) \in \mathrm{Obj}(\mathbf{C}_1 \times \mathbf{C}_2)$, existe um e um só $\mathbf{C}_1 \times \mathbf{C}_2$ -morfismo de (I_1,I_2) em (X,Y). Como $(X,Y) \in \mathrm{Obj}(\mathbf{C}_1 \times \mathbf{C}_2)$, então X é um objeto de \mathbf{C}_1 e Y é um objeto de \mathbf{C}_2 . Logo, existe um \mathbf{C}_1 -morfismo $f:I_1 \to X$ e existe um \mathbf{C}_2 -morfismo $g:I_2 \to Y$. Assim, (f,g) é um $\mathbf{C}_1 \times \mathbf{C}_2$ -morfismo de (I_1,I_2) em (X,Y). Além disso, é simples verificar que (f,g) é o único $\mathbf{C}_1 \times \mathbf{C}_2$ -morfismo de (I_1,I_2) em (X,Y). De facto, se (f',g') é um $\mathbf{C}_1 \times \mathbf{C}_2$ -morfismo de (I_1,I_2) em (X,Y), então f' é um \mathbf{C}_1 -morfismo de I_1 em X e g' é um \mathbf{C}_2 -morfismo de I_2 em Y. Logo, atendendo a que f é o único morfismo de I_1 em X e g é o único morfismo de I_2 em Y, segue que Y' = f e Y' = g. Portanto, Y' = f0. Desta forma, provámos que Y' = f1 e Y' = f2.

4. Na categoria **Set**, considere os conjuntos $\{1\}$ e \mathbb{Z} e as funções i, f e g definidas por

Mostre que $(\{1\}, i)$ é um igualizador de f e g.

Resposta:

Pretende-se mostrar que $(\{1\}, i)$ é um igualizador de f e g, isto é, que:

- (i) $f \circ i = g \circ i$;
- (ii) para qualquer $K \in \mathrm{Obj}(\mathbf{C})$ e para qualquer \mathbf{C} -morfismo $k : K \to A$ tal que $f \circ k = g \circ k$, existe um, e um só, morfismo $u : K \to \{1\}$ tal que $i \circ u = k$.

$$\begin{cases}
1 \\
\downarrow \\
u
\end{cases} \xrightarrow{i} A \xrightarrow{f} B$$

$$\downarrow u
\end{cases} \xrightarrow{K} K$$

(i) A prova desta condição é imediata, pois as funções $f\circ i$ e $g\circ i$ têm o mesmo domínio e codomínio e, para qualquer $x\in\{1\}$,

$$(f \circ i)(x) = f(i(x)) = f(1) = 3 + 1 = 4 = 5 - 1 = g(1) = g(i(x)) = (g \circ i)(x).$$

(ii) Sejam $K \in \mathrm{Obj}(\mathbf{C})$ e $k: K \to A$ um **C**-morfismo tais que $f \circ k = g \circ k$. Então, para qualquer $x \in K$,

$$(f \circ k)(x) = (g \circ k)(x),$$

donde resulta

$$3 + k(x) = 5 - k(x)$$

e, portanto, k(x) = 1, para todo $x \in K$. Assim, k é a função definida por

$$k: K \rightarrow A$$
 $x \mapsto 1$

Pretende-se mostrar que existe uma, e uma só, função $u:K\to\{1\}$ tal que $i\circ u=k$. Claramente, existe uma única função de K em $\{1\}$ (pois $\{1\}$ é um objeto terminal) - tal função é a função definida por

$$k: K \rightarrow \{1\}$$
 $x \mapsto 1$

As funções $i\circ u$ e k têm o mesmo domínio e codomínio e, para qualquer $x\in K$, $(i\circ u)(x)=1=k(x)$. Logo, $i\circ u=k$.

5. Sejam ${\bf C}$ uma categoria e A, B, C, I objetos de ${\bf C}$ tais que I é um objeto inicial. Considere os morfismos $f_A:I\to A,\ f_B:I\to B,\ i_A:A\to C,\ i_B:B\to C$ em ${\bf C}.$ Mostre que se $(C,(i_A,i_B))$ é uma soma amalgamada de (f_A,f_B) , então $(C,(i_A,i_B))$ é um coproduto de A e B.

Resposta:

Sejam $\mathbf C$ uma categoria com objeto inicial I e morfismos $f_A:I\to A$ e $f_B:I\to B$.

Admitamos que $(C,(i_A,i_B))$ é uma soma amalgamada de (f_A,f_B) . Então:

- (1) $i_A \circ f_A = i_B \circ f_B$;
- (2) para qualquer objeto K de ${\bf C}$ e para quaisquer ${\bf C}$ -morfismos $h_A:A\to K$ e $h_B:B\to K$ tais que $h_A\circ f_A=h_B\circ f_B$, existe um, e um só, morfismo $v:C\to K$ tal que $v\circ i_A=h_A$ e $v\circ i_B=h_B$.

Pretendemos mostrar que $(C,(i_A,i_B))$ é um coproduto de A e B, ou seja, temos de provar que:

- (3) $i_A \in \operatorname{Mor}_{\mathbf{C}}(A, C)$ e $i_B \in \operatorname{Mor}_{\mathbf{C}}(B, C)$;
- (4) para qualquer objeto X de ${\bf C}$ e para quaisquer ${\bf C}$ -morfismos $g_A:A\to X$ e $g_B:B\to X$, existe um, e um só, morfismo $u:C\to X$ tal que $u\circ i_A=g_A$ e $u\circ i_B=g_B$.

- (3) É imediato pelo enunciado.
- (4) Sejam $X \in \mathrm{Obj}(\mathbf{C})$ e $g_A: A \to X$ e $g_B: B \to X$ morfismos de \mathbf{C} . Como $g_A \circ f_A \in \mathrm{Mor}_{\mathbf{C}}(I,X)$, $g_B \circ f_B \in \mathrm{Mor}_{\mathbf{C}}(I,X)$ e I é um objeto inicial, segue que $g_A \circ f_A = g_B \circ f_B$. Logo, por (2), existe um, e um só, morfismo $u: C \to X$ tal que $u \circ i_A = g_A$ e $u \circ i_B = g_B$.

Logo $(C, (i_A, i_B))$ é um coproduto de A e B.

- 6. Seja $S = \{0,1\}$. Considere o funtor $F = (F_{Obj}, F_{Mor})$ da categoria **Set** nela própria tal que:
 - $F_{Obj}: \mathrm{Obj}(\mathbf{Set}) \to \mathrm{Obj}(\mathbf{Set})$ é a função que a cada conjunto A associa o conjunto $A \times S$,
 - $F_{Mor}: \mathrm{Mor}(\mathbf{Set}) o \mathrm{Mor}(\mathbf{Set})$ é a função que a cada \mathbf{Set} -morfismo f: A o B associa a função

$$F_{Mor}(f): F(A) \rightarrow F(B)$$

 $(x,y) \mapsto (f(x),y)$.

(a) Diga se o funtor F é fiel.

Resposta:

O funtor F é fiel se, para quaisquer **Set**-morfismos $f, g: A \to B$,

$$F(f) = F(g) \Rightarrow f = g.$$

Uma vez que, para quaisquer **Set**-morfismos $f, g: A \rightarrow B$,

$$\begin{split} F(f) &= F(g) &\Rightarrow &\forall (x,y) \in A \times S, F(f)(x,y) = F(g)(x,y) \\ &\Rightarrow &\forall (x,y) \in A \times S, (f(x),y)) = (g(x),y) \\ &\Rightarrow &\forall (x,y) \in A \times S, f(x) = g(x) \text{ e } y = y \\ &\Rightarrow &\forall x \in A, f(x) = g(x) \\ &\Rightarrow &f = g \quad \text{(as funções f e g têm o mesmo domínio e codomínio),} \end{split}$$

então o funtor F é fiel.

(b) Justifique que o funtor F não é pleno.

Resposta:

O funtor F é pleno se, para quaisquer $A, B \in \mathrm{Obj}(\mathbf{Set})$ e para qualquer \mathbf{Set} -morfismo $g : F(A) \to F(B)$, existe um \mathbf{Set} -morfismo $f : A \to B$, tal que F(f) = g.

Se consideramos a função g a seguir definida

$$\begin{array}{cccc} g: \{(a,0),(a,1)\} & \to & \{(b,0),(b,1)\} \\ & (a,0) & \mapsto & (b,0) \\ & (a,1) & \mapsto & (b,0) \end{array},$$

a função tem domínio $F(\{a\})$ e codomínio $F(\{b\})$, com $\{a\}, \{b\} \in \mathrm{Obj}(\mathbf{Set})$, e não existe qualquer função $f: \{a\} \to \{b\}$ tal que F(f) = g, uma vez que, por definição de F, $F(f)(a,1) \neq (x,0)$, para todo $x \in \{b\}$.

Logo, o funtor F não é pleno.

(c) Diga se o funtor F preserva objetos terminais.

Resposta:

O funtor F preserva objetos terminais se, para qualquer $A \in \mathrm{Obj}(\mathbf{Set})$,

A é objeto terminal $\Rightarrow F(A)$ é objeto terminal.

Na categoria **Set**, os objetos terminais são os conjuntos singulares. Então F não preserva objetos terminais, pois $A = \{a\}$ é um objeto terminal e $F(A) = \{(a,0),(a,1)\}$ não é um objeto terminal.