යියලු ම හිමිකම් ඇවිරි.ඔ/ඟුඟුට பதிப்புரிமையுடையது/All Rights Reserved]

(නව නිර්දේශය / புதிய பாடத்திட்டம்/New Syllabus

ලංකා විභාග ඉදුපාර්තමේතුවල දී අංකුද්ධවල පුදුප්ට ක්රම්මේ අංකු විභාග ඉදුපාර්තමේත්තුව ලී ලංකා විභාග ඉදුපාර්තමේත්තුව ளம் இலங்கைப் ப**ர்ட்கைத் தினைக்களும் இலங்கைப் பர்ட்கிரத்** திணைக்களும் இலங்கைப் ப**ர்ட்**கைத் திணைக்களும் anka Department of **இரைங்கை E Fri Lift ගේන** ක්රම් සහ ප්රේණය ක්රම්මේ Para ඉදුපාර්තමේත්තුව ලී ලංකා විභාග ඉදුපාර්තමේත්තුව ලංකා විභාග ඉදුපාර්තමේත්තුව ලී ලංකා විභාග ඉදුපැරිතුවේ ලී ලංකා විභාග ඉදුපාර්තමේත්තුව ලී ලංකා විභාග ඉදුපාර්තමේත්තුව ளும் இலங்கைப் **පිටිමේට ඉතින්ව ක්රම්මේක් ක්රම්මේක් කරන අදාර්තමේ**ක් ක්රම්මේක් ක්රමේක් ක්රම්මේක් ක්රමේක් ක්රම්මේක් ක්රමේක් ක්රම්මේක් ක්රමේක් ක්රම්මේක් ක්රම්මේක් ක්රම්මේක් ක්රම්මක් ක්රම්මේක් ක්රම්මේක් ක්රම්මේක් ක්රම්මේක් ක්රම්මේක් ක්රම්මේක් ක්රම්මේක් ක්රම්මේක් ක්රමේක් ක්රම්මේක් ක්රමේක් ක්රම්මේක් ක්රම්ක් ක්රම්මේක් ක්රමේක් ක්රම්මේක් ක්රම්මේක් ක්රම්මේක් ක්රම්මේක් ක්රම්මේක් ක්රම්මේක් னக்களம் இலங்கைப் Sri Lanka Department of **இலர்**

අධාායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2020 கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2020 General Certificate of Education (Adv. Level) Examination, 2020

භෞතික විදුපාව

I I பௌதிகவியல் **Physics** I

පැය දෙකයි

இரண்டு மணித்தியாலம் Two hours

උපදෙස් :

- * මෙම පුශ්න පතුයේ පුශ්න 50ක්, පිටු 11ක අඩංගු වේ.
- * සියලු ම පුශ්නවලට පිළිතුරු සපයන්න.
- * පිළිතුරු පතුයේ නියමිත ස්ථානයේ ඔබේ විභාග අංකය ලියන්න.
- * පිළිතුරු පතුයේ පිටුපස දී ඇති උපදෙස් සැලකිලිමත් ව කියවන්න.
- * 1 සිට 50 තෙක් වූ එක් එක් පුශ්නය සඳහා දී ඇති (1), (2), (3), (4), (5) යන පිළිතුරුවලින් **නිවැරදි** හෝ ඉතාමත් හැළපෙන හෝ පිළිතුර තෝරා ගෙන, එය, **පිළිතුරු පතුගේ පිටුපස දැක්වෙන උපදෙස් පරිදි කතිරයකින්** (X) ලකුණු කරන්න.

ගණක යන්තු භාවිතයට ඉඩ දෙනු නො ලැබේ.

 $(g = 10 \text{ m s}^{-2})$

- 1. ප්ලාන්ක් නියතයෙහි මාන වනුයේ,
 - (1) M^2LT
- (2) M^2LT^{-1}
- (3) MLT²
- (4) MLT^{-1}
- (5) ML^2T^{-1}
- 2. ඉද්ද හා කිණිහිරිය එකිනෙක ස්පර්ශව පවතින අවස්ථාවේ දී මයිකොමීටර් ඉස්කුරුප්පු ආමානයක පරිමාණය (a) රූපයෙහි දක්වා ඇත. ලෝහ ගෝලයක් ඉද්ද හා කිණිහිරිය අතර නිවැරදිව තබා ඇති අවස්ථාවේ පරිමාණය (b) රූපයෙහි දක්වා ඇත. ඉස්කුරුප්පු අන්තරාලය 0·5 mm වන අතර වෘත්තාකාර පරිමාණය සමාන කොටස් 50කට බෙදා ඇත.

රූපය (a)

ලෝහ ගෝලයෙහි තිරවදා විෂ්කම්භය කොපමණ ද?

- (1) 3·28 mm
- (2) 3·31 mm
- (3) 3·78 mm
- (4) 3·81 mm
- (5) 3·84 mm
- $oldsymbol{3}$. සාමානා මිනිස් කණක ශුවාතා දේහලීය $10^{-12}\,\mathrm{W\,m^{-2}}$ වේ. මෙයට අනුරූප වන ධ්වනි තීවුතා මට්ටම වන්නේ,
 - (1) 0 dB
- (2) 1 dB
- (3) 10 dB
- (4) 12 dB
- (5) 120 dB
- $oldsymbol{4}$. සරල රේඛාවක් ඔස්සේ ගමන් ගන්නා වස්තුවක පුවේග (v) කාල (t)පුස්තාරය රූපයේ පෙන්වයි. t=0 සිට t=4 s දක්වා වස්තුවේ සාමාන $v \in \mathbb{R}^{-1}$ \mathfrak{h} පුවේගය කොපමණ ද?
 - (1) 1.5 m s^{-1}
- (2) 2.0 m s^{-1}
- (3) 2.5 m s^{-1}
- (4) 2.7 m s^{-1}
- (5) 3·3 ms⁻¹

[පෙවැනි පිටුව බලන්න.

 ${f 5}$. දිග L සහ ස්කන්ධය M වන තුනී ඒකාකාර AB දණ්ඩක් රූපයේ පෙන්වයි. දණ්ඩට සමාන්තරව y දුරකින් පිහිටා ඇති PQ අක්ෂය වටා දණ්ඩේ අවස්ථිති සූර්ණය වන්නේ,

(1) Mv^2

(2) $M(L^2+y^2)$

(3) $\frac{1}{3}ML^2$ (4) $\frac{1}{2}M(L^2+y^2)$

(5) ශූනාපය ය.

පෝටෝනයක (p) හා නියුටුෝනයක (n) ක්වාක් සංයුතිය පිළිවෙළින් දෙනු ලබන්නේ,

(2) udd, uus

(3) ssd, uud

(4) uud, udd

(5) udd, uud

- 7. භූ කම්පන තරංග සම්බන්ධයෙන් කර ඇති පහත පුකාශවලින් අසතා වන්නේ කුමක් ද?
 - (1) සියලුම භූ කම්පන තරංග යාන්තික තරංග වන අතර ඒවා පුගමනය වීම සඳහා මාධායෙක් අවශා වේ.
 - (2) පුාථමික (P) තරංග අන්වායාම තරංග වන අතර ද්විතීයික (S) තරංග තීර්යක් තරංග වේ.
 - (3) P තරංගවල වේගයට වඩා S තරංගවල වේගය අඩුය.
 - (4) S තරංගවලට දුව සහ ඝන යන මාධා දෙක තුළින්ම ගමන් කළ හැකිය.
 - (5) P තරංගවලට දුව සහ ඝන යන මාධා දෙක තුළින්ම ගමන් කළ හැකිය.
- $oldsymbol{8}$. රූපයේ පෙන්වා ඇති පරිදි XY පටු ඒකවර්ණ ආලෝක කදම්බයක් L අභිසරණ කාචය මතට පතනය වේ. කාචයෙන් වර්තනය වූ පසු කදම්බය S ති්රයේ වැදී ආලෝක ලපයක් සාදයි. ආලෝක ලපය පිහිටන ස්ථානය කුමක් විය හැකි ද?

- (1) A
- (2) B
- (3) C
- (4) D
- (5) E
- $oldsymbol{9}$. රූපයේ දක්වා ඇත්තේ +x දිශාවට ගමන් ගන්නා තීර්යක් තරංගයක කිසියම් මොහොතක දී එහි අංශු පිහිටන ආකාරයයි. ක්ෂණික පුවේගයන් සමාන වන අංශු යුගලයක් වන්නේ,

- (1) B සහ F
- (2) A සහ D
- (3) B සහ C
- (4) C සහ F
- (5) B සහ E
- ${f 10}$. ස්කන්ධය ${f 1\cdot 0}$ ${f kg}$ වූ කුඩා උපකරණයක් ගුහලෝකයක් මත තබා ඇත. එම ගුහලෝකයේ ස්කන්ධය පෘථිවියේ ස්කන්ධය මෙන් තුන් ගුණයක් වන අතර අරය, පෘථිවියේ අරය මෙන් දෙගුණයකි. ගුහලෝකයේ පෘෂ්ඨය මත දී උපකරණයේ බර කොපමණ ද? ගුරුත්වාකර්ෂණය හැර අනෙකුත් සියලුම බලපෑම් නොසලකා හරින්න.
- (2) $\frac{20}{3}$ N (3) $\frac{15}{2}$ N (4) 10N
- $11.\ \ x$ අක්ෂය දිගේ පුතිවිරුද්ධ දිශාවන්ට ගමන් කරන සංඛාාතය, $300\,\mathrm{Hz}$ සහ වේගය $30\,\mathrm{m\,s^{-1}}$ වූ සර්වසම තීර්යක් තරංග දෙකක් අධිස්ථාපනය වී ස්ථාවර තරංගයක් ඇතිවේ. නිෂ්පන්දයක සහ ඊට යාබදව පිහිටි පුස්පන්දයක් අතර දුර සමාන වන්නේ,
 - (1) 2.5 cm
- (2) 5·0 cm
- (3) 10·0 cm
- (4) 15·0 cm
- (5) 20.0 cm

f 12. ඉතා දිගු සමාන්තර කම්බි අටක එක එකෙහි $f 10\,A$ ධාරාවක් ගලයි. එක් එක් කම්බියේ ධාරාව ගලන දිශාව රූපයේ පෙන්වා ඇත. මධාා ලක්ෂායෙහි (C)ඇතිවන චුම්බක සුාව ඝනත්වයේ විශාලත්වය සහ දිශාව වනුයේ,

- $(\frac{\mu_0}{4\pi} = 10^{-7} \text{ T m A}^{-1};$ පෘථිවි චුම්බක ක්ෂේතුයේ බලපෑම නොසලකා හරින්න.)

- (1) 20 μ T \downarrow
- (2) 20 μT ↑
- (3) 40 μT ↑ (4) 40 μT ↓

- (5) $40 \mu T \rightarrow$
- ${f 13}$. වසන ලද දොරකින් සම්බන්ධ වූ, එකම උෂ්ණත්වයේ ඇති ${f A}$ සහ ${f B}$ යාබද කාමර දෙකක ආරම්භක සාපේක්ෂ ආර්දුතාව $\left(\mathrm{RH}
 ight)$ පිළිවෙළින් 60% සහ 90% වේ. A කාමරයේ පරිමාව B කාමරයේ පරිමාව මෙන් දෙගුණයකි. එම උෂ්ණත්වයේදීම දොර බොහෝ වේලාවක් විවෘතව තබන ලද්දේ නම් කාමරවල අවසාන සාපේක්ෂ ආර්දුතාව කොපමණ වේ ද?
 - (1) 65%
- (2) 70%
- (3) 75%
- (4) 80%
- (5) 85%
- 14. රූපයේ පෙන්වා ඇති පරිපථයේ සියලුම බැටරිවල අභාාන්තර පුතිරෝධය නොසලකා හැරිය හැක. C යනු පරිපූර්ණ ධාරිතුකයක් නම් එය හරහා විභව අන්තරය කොපමණ ද?

- (3) 2.0 V
- (4) 2·5 V
- (5) 3.5 V
- 15. පහත පුකාශ අතුරෙන් අසතෳ වන්නේ කුමක් ද?
 - (1) නිසග අර්ධ සන්නායකයක උෂ්ණත්වය වැඩි වන විට එහි විදාෘත් සන්නායකතාව වැඩිවේ.
 - (2) පූර්ණ-තරංග සෘජුකාරකයක් මගින් සයිනාකාර පුදානයකින් නියත සරල චෝල්ටීයතා(d.c.) පුතිදානයක් ලබා ගත නොහැක.
 - (3) ද්විධුැව ටුාන්සිස්ටරයක සංගුාහකයේ මාතුණයට වඩා විමෝචකය අධික ලෙස මාතුණය කර ඇත.
 - (4) සන්ධීය ක්ෂේතු ආචරණ ටුාන්සිස්ටරයක $({
 m JFET})$ සොරොව් ධාරාව (I_D) උපරීම වන්නේ ද්වාර පුභව වෝල්ටීයතාව ශුන $x\left(V_{GS}=0
 ight)$ වන විටය.
 - (5) කාරකාත්මක වර්ධකයක්, චෝල්ටීයතා සංසන්දකයක් ලෙස යොදා ගැනීමේ දී එහි සංවෘත පුඩු අවස්ථාව භාවිත කරයි.
- 16. ස්කන්ධය m වූ අංශුවක් සරල අනුවර්තී චලිතයක යෙදේ. අංශුවේ උපරිම පුවේගය සහ උපරිම ත්වරණය පිළිවෙළින් V සහ a නම්, අංශුවේ කෝණික සංඛාහතය $(\, w\,)$ දෙනු ලබන්නේ,
 - (1) $\frac{V}{ma}$
- $(2) \quad \frac{2\pi V}{a} \qquad (3) \quad \frac{2\pi a}{V}$
- (4) $\frac{a}{V}$

17. AB විභවමාන කම්බියේ දිග $600~\mathrm{cm}$ හා පුතිරෝධය $10~\Omega$ වේ. R පුතිරෝධ පෙට්ටියකි. R හි අගය $70~\Omega$ ට සකස් කළ විට සංතුලන දිග $280\,\mathrm{cm}$ ක් විය. R හි අගය $80~\Omega$ ට වෙනස් කළ විට නැවත සංතුලනයක් ලැබීම සදහා J සර්පණ යතුර පෙර පිහිටුමේ සිට කොපමණ දුරකට ගෙන යා යුතු ද?

(2) 40 cm

(3) 35 cm

(4) 30 cm

(5) 25 cm

 $oldsymbol{18}$. දී ඇති පරිපථයේ $oldsymbol{A}, oldsymbol{B}$ සහ $oldsymbol{C}$ තාර්කික පුදානයන් පහත පෙන්වා ඇත.

පුතිදානයේ (X) නිවැරදි හැඩය වනුයේ,

- (1)
- (2)
- (3) ______ (4) ______
- (5)

More Past Papers at

tamilguru.lk

19. රූපයේ දක්වා ඇති සංයුක්ත වස්තුව තනා ඇත්තේ, ඒකාකාර ලෝහ කම්බියකින් සෑදූ අරයන් පිළිවෙළින් r, 2r, 2r සහ 3r වන A, B, C සහ D වළලු හතරක් සම්බන්ධ කිරීමෙනි. සංයුක්ත වස්තුවේ ගුරුත්ව කේන්දුයට X ලක්ෂායේ සිට ඇති දුර වන්නේ,

- (1) r
- (2) $\frac{5r}{4}$
- (3) 2r
- (4) $\frac{5r}{2}$
- (5) ශූනාපය ය.

20. රූපයේ පෙන්වා ඇති පරිදි U-නළයක බාහු දෙකට ජලය සහ පොල්තෙල් වත් කොට ඇත. ජල-තෙල් අතුරුමුහුණත සිරස්ව නළයේ මධායේ පිහිටා ඇති බව උපකල්පනය කරන්න. ($ho_{
m w}$ = ජලයේ ඝනත්වය, $ho_{
m o}$ = පොල්තෙල්වල ඝනත්වය) මේ අවස්ථාව පිළිබඳ පහත පුකාශන සලකා බලන්න.

- (A) P ලක්ෂායේ පීඩනය = Q ලක්ෂායේ පීඩනය
- (B) $h_1 \rho_w = h_2 \rho_o$
- (C) $h_3 \rho_w = h_4 \rho_o$

ඉහත පුකාශනවලින්,

- (2) (B) පමණක් සතා වේ.
- (3) (A) සහ (B) පමණක් සතා වේ.
- (4) (B) සහ (C) පමණක් සතා වේ.
- (5) (A),(B) සහ (C) යන සියල්ලම සතා වේ.

- 21. එකිනෙකෙහි දිග $50\,\mathrm{cm}$ වන සර්වසම විවෘත නළ දෙකක් $15\,^\circ\mathrm{C}$ හි දී එහි මූලික තානවලින් නාද වේ. වාතයේ ධ්වනි පුවේගය v (m s $^{-1}$) උෂ්ණත්වය සමඟ විචලනය $v=331+0.6\,\theta$ යන සමීකරණයෙන් දෙනු ලබයි. මෙහි θ , $^\circ\mathrm{C}$ වලින් මනිනු ලබයි. එක් නළයක උෂ්ණත්වය $30\,^\circ\mathrm{C}$ දක්වා වැඩි කළේ නම්, තත්පරයක දී ඇතිවන නුගැසුම් සංඛ්‍යාව කොපමණ ද?
 - (1) 4
- (2) 6
- (3) 9
- (4) 12
- (5) 14

22. ස්කන්ධයන් පිළිවෙළින් $0.5~{
m kg}$ හා $1.0~{
m kg}$ වූ A හා B කුට්ටි දෙකක් සැහැල්ලු සුමට කප්පියක් වටා යැවූ සැහැල්ලු අවිතනෳ තන්තුවක් මගින් රූපයේ දක්වා ඇති පරිදි සම්බන්ධ කර ඇත. ස්පර්ශ වන සියලුම පෘෂ්ඨ අතර ගතික ඝර්ෂණ සංගුණකය $0.25~{
m e}$ ව්. B කුට්ටිය වම් පසට නියත වේගයකින් චලනය කිරීමට ඒ මත යෙදිය යුතු F බලය කොපමණ ද?

- (1) 2·50 N
- (2) 3·75 N
- (3) 5·00 N
- (4) 6·25 N
- (5) 7·50 N
- 23. පුක්ෂිප්තයක් එහි පථයෙහි ඉහළම ස්ථානයේ දී (P) හදිසියේ සමාන ස්කන්ධ සහිත කැබලි දෙකකට පුපුරා යයි. පෙන්වා ඇති පරිදි එක් කැබැල්ලක් ආරම්භක පුවේගයක් සහිතව සිරස්ව පහළට වැටේ නම් පහත දක්වා ඇති කුමන රූප සටහන මගින් අනෙක් කැබැල්ලේ ගමන් මාර්ගය වඩාත්ම හොඳින් නිරූපණය කරයි ද?

(වාත පුතිරෝධය නොසලකා හරින්න. කඩඉර මගින් පෙන්වා ඇත්තේ පිපිරීම නොවූයේ නම් පුක්ෂිප්තයේ ගමන් මාර්ගයයි.)

- 24. පරිපූර්ණ වායුවක් සහිත සංවෘත පද්ධතියක තාපගතික කිුයාවලි දෙකක් $(a \to b \to c$ සහ $a \to c)$ රූපයේ පෙන්වා ඇත. abc කිුයාවලියේ දී පද්ධතිය a සිට b දක්වා යාමට 6.0 kJ තාප පුමාණයක් අවශෝෂණය කරන අතර b සිට c දක්වා යාමට 1.8 kJ තාප පුමාණයක් අවශෝෂණය කරනු ලබයි. ac කිුයාවලියේ අභාන්තර ශක්ති වෙනස කොපමණ ද?
 - (1) 4·2 kJ
- (2) 5·4 kJ
- (3) 6·3 kJ
- (4) 6·7 kJ
- (5) 10·2 kJ

- ${f 25}$. රූපයේ දක්වා ඇති පරිදි ආරෝපණය + ${f 4q},$ + ${f 3q}$ සහ – ${f q}$ වූ ලක්ෂාායීය ආරෝපණ ${f 3}$ ක් පැත්තක දිග ${f a}$ වූ සමපාද තිුකෝණයක ශීර්ෂවල තබා ඇත. පද්ධතියේ විදාෘත් විභව ශක්තිය දෙනු ලබන්නේ,
 - $(1) \quad \frac{5q^2}{4\pi\varepsilon_0 a} \qquad \qquad (2) \quad \frac{3q^2}{2\pi\varepsilon_0 a}$
- $(4) \ \frac{2q^2}{\pi \varepsilon_0 a}$

26. රූපයේ පෙන්වා ඇති පරිදි තඹ කුට්ටියක් ජල බීකරයකට ඉහළින් දුනු කරාදියක් මගින් එල්ලා ඇත. ජල බීකරය සෙමෙන් ඉහළට ඔසවන විට දී ලැබෙන පහත පිහිටුම් සලකන්න.

පිහිටුම 1 : කුට්ටිය අර්ධ වශයෙන් ගිලී ඇති විට දී

පිහිටුම 2 : කුට්ටිය සම්පූර්ණයෙන් ගිලී ඇති විට දී

පිහිටුම 3 : කුට්ටිය බීකරයේ පතුල මත ඇති විට දී

ඉහත පිහිටුම් 1,2,3 ට අදාළව පිළිවෙළින් උත්ප්ලාවකතා බලයන් B_1,B_2 සහ B_3 ද දුනු තරාදි පාඨාංකයන් W_1,W_2 සහ W_3 ද වේ. ඒවා සම්බන්ධව පහත කුමක් නිවැරදි වේද?

	උත්ප්ලාවකතා බලය	දුනු තරාදි පාඨාංකය
(1)	$B_1 < B_2 < B_3$	$W_1 > W_2 > W_3$
(2)	$B_1 = B_2 < B_3$	$W_1 = W_2 > W_3$
(3)	$B_1 = B_2 < B_3$	$W_1 > W_2 = W_3$
(4)	$B_1 < B_2 = B_3$	$W_1 > W_2 = W_3$
(5)	$B_1 < B_2 = B_3$	$W_1 > W_2 > W_3$

27. ඒකාකාර සිලින්ඩරාකාර ලෝහ දණ්ඩක හරස්කඩ වර්ගඵලය BC කොටසේ දී කුමයෙන් අඩුකොට රූප සටහනේ ඇති පරිදි වස්තුවක් සාදා ඇත. මෙම වස්තුව හොඳින් අවුරා ඇති අතර වස්තුවෙහි දෙකෙළවරෙහි උෂ්ණත්වය 100 °C හා 20 °C හි පවත්වා ගෙන ඇත. අනවරත අවස්ථාවේ දී වස්තුවේ අක්ෂය (l) ඔස්සේ උෂ්ණත්ව (heta) විචලනය වඩාත් හොඳින් නිරූපණය වන්නේ,

28. ආරෝපණය +Q, -Q සහ +Q වූ කුඩා සන්නායක ගෝල තුනක් ඝර්ෂණයෙන් තොර තිරස් පෘෂ්ඨයක තබා ඇත්තේ ABC නම් වූ සමපාද තිුකෝණයක ශීර්ෂයන්හි පිහිටන ආකාරයටය. B සහ C හි ඇති ගෝල අචල ව සවි කොට ඇති අතර, A හි තබා ඇති ගෝලයට නිදහසේ චලනය විය හැකිය. A හි ඇති ගෝලයේ පථය වඩාත් හොඳින් නිරූපණය වන්නේ,

- (1) *a* මගිනි.
- (2) *b* මගිනි.
- (3) c මගිනි.
- (4) *d* මගිනි.
- (5) e මගිනි.
- 29. ඒකාකාර ලෙස වැඩිවන චුම්බක ක්ෂේතුයකට ලම්බකව තබා ඇති සන්නායක පුඩුවක් රූපයේ පෙන්වා ඇත. චුම්බක සාව ඝනත්වයේ වෙනස්වීමේ ශීඝුතාව (R) සමඟ පුඩුවේ ප්‍රෙරණය වන වි.ගා. බලයේ විශාලත්වයෙහි (E) විචලනය වඩාත්ම හොඳින් නිරූපණය වන්නේ පහත කුමන ප්‍රස්තාරයෙන් ද?

30. කාලය t=0 දී නිශ්චලව ඇති ස්කන්ධය m වූ වස්තුවක් F බලයක් යටතේ සරල රේඛාවක් දිගේ චලනය වනවිට එම බලය (F) කාලය (t) සමඟ විචලනය පුස්තාරයෙන් දැක්වේ. පහත දී ඇති ඒවායින් නිවැරදි පුකාශය තෝරන්න.

චලනය ආරම්භයෙන් පසුව වස්තුවේ පුවේගය ශුනා වන්නේ,

- (2) t = 70 s පමණි.
- (3) t = 40 s සහ t = 100 s දී ය.
- (4) t = 70 s සහ t = 120 s දී ය.
- (5) t = 60 s සිට t = 80 s දක්වා වූ කාලාන්තරය තුළ දී ය.

- 31. එක් එක් බිඳිත්තක විදයුත් විභවය එක සමාන 0.01~V වන පරිදි සර්වසම කුඩා ගෝලීය රසදිය බිඳිති ආරෝපණය කොට ඇත. මෙවැනි බිඳිති මිලියනයක් (10^6) එකතුකොට විශාල ගෝලීය බිඳුවක් සාදා ඇතිනම් එම විශාල බිඳුවේ විදයුත් විභවය කොපමණ ද?
 - (1) 0.01 V
- (2) 1·0 V
- (3) 10 V
- (4) 100 V
- (5) 1000 V

- $oldsymbol{32}$. ඒකවර්ණ පටු ආලෝක කදම්බයක් වාතයේ තබා ඇති පිස්මයක් තුළින් ගමන් කරයි. අවම අපගමන කෝණය, D සම්බන්ධව පහත දී ඇති පුකාශ සලකන්න.
 - (A) පුස්මය සාදා ඇති දුවායේ වර්තනාංකය වැඩිවන විට D වැඩිවේ.
 - (B) පතන කෝණය කුමයෙන් වැඩි කරන විට D පළමුව අඩුවී පසුව වැඩි වේ.
 - (C) පුිස්ම කෝණය වැඩි කරන විට D වැඩි වේ.

ඉහත දී ඇති පුකාශවලින්,

- (1) (A) පමණක් සතා වේ.
- (2) (A) සහ (B) පමණක් සතා වේ.
- (3) (A) සහ (C) පමණක් සතා වේ.
- (4) (B) සහ (C) පමණක් සතා වේ.
- (5) (A), (B) සහ (C) සියල්ලම සතා වේ.
- 33. රූපයේ පෙන්වා ඇති පරිදි K දෙමං යතුරක් භාවිත කොට වි.ගා.බ. E සහ අභාන්තර පුතිරෝධය r වන කෝෂයක් පුතිරෝධය $8\,\Omega$ වන පුතිරෝධකයකට හෝ පුතිරෝධය $2\,\Omega$ වන පුතිරෝධකයකට ශ්‍රේණිගතව සම්බන්ධ කළ හැක. එක් එක් පුතිරෝධකයේ ක්ෂමතා උත්සර්ජනය එක සමාන නම් r අභාන්තර පුතිරෝධයේ අගය කොපමණ ද?

- (1) 2Ω
- (2) 4Ω
- (3) 5Ω
- (4) 6Ω
- (5) 8Ω
- 34. උෂ්ණත්වය $30\,^{\circ}$ C හි පවතින කාමරයක එල්ලා ඇති උණුසුම් වස්තුවක උෂ්ණත්වය $60\,^{\circ}$ C සිට $50\,^{\circ}$ C දක්වා සිසිල් වීමට මිනිත්තු 5ක් ගත වේ. එම තත්ත්ව යටතේම වස්තුවේ උෂ්ණත්වය $44\,^{\circ}$ C සිට $36\,^{\circ}$ C දක්වා තව දුරටත් සිසිල් වීමට ගතවන කාලය කුමක් ද?
 - (1) මිනිත්තු 10
- (2) මිනිත්තු 12.5
- (3) මිනිත්තු 15
- (4) මිනිත්තු 20
- (5) මිනිත්තු 25
- 35. නොගිණිය හැකි තාප ධාරිතාවක් සහිත බඳුනක $35~^\circ\mathrm{C}$ හි පවතින ජලය $1~\mathrm{kg}$ තුළ සම්පූර්ණයෙන් දිය කළ හැකි $-5~^\circ\mathrm{C}$ පවතින අයිස්වල උපරිම ස්කන්ධය කොපමණ ද?

අයිස් සහ ජලයේ විශිෂ්ට තාප ධාරිතා පිළිවෙළින් $2\cdot 0\times 10^3~\mathrm{J~kg^{-1}~^{\circ}C^{-1}}$ සහ $4\cdot 0\times 10^3~\mathrm{J~kg^{-1}~^{\circ}C^{-1}}$ ලෙසද අයිස් හි විලයනයේ විශිෂ්ට ගුප්ත තාපය $3\cdot 4\times 10^5~\mathrm{J~kg^{-1}}$ ලෙසද සලකන්න. පරිසරය සමඟ තාපය හුවමාරු නොවූයේ යැයි උපකල්පනය කරන්න.

- (1) 200 g
- (2) 240 g
- (3) 300 g
- (4) 360 g
- (5) 400 g
- 36. සාමානා සීරුමාරුවේ පවතින සංයුක්ත අන්වීක්ෂයක විශාලක බලය 100 වේ. අවනෙත් කාචයේ නාභීය දුර 2·5 cm වන අතර වස්තු දුර 2·6 cm වේ. උපනෙතේ විශාලනය කොපමණ ද?
 - (1) 4
- (2) 5
- (3) 10
- (4) 20
- (5) 25
- 37. චුම්බක ක්ෂේතුයකට ලම්බකව අරය r වූ වෘත්තාකාර පථයක ගමන් ගන්නා ආරෝපිත අංශුවක්, රූපයේ දක්වා ඇති පරිදි තුනී ඇලුමිනියම් තහඩුවක් හරහා විනිවිද යයි. එහි දී අංශුවේ ආරම්භක චාලක ශක්තියෙන් හරි අඩක් හානි වේ නම් අංශුවේ නව පථයේ අරය කොපමණ ද?

- (1) $\frac{r}{2}$
- (2) $\frac{r}{\sqrt{2}}$
- (3) r
- (4) $\sqrt{2} r$
- (5) 2r

ඇලුමිනියම් තහඩුව

38. රූපයේ දක්වා ඇති පරිපථයේ යොදා ගෙන ඇත්තේ පරිපූර්ණ මැද-බිංදු වෝල්ට්මීටරයක් සහ ඇමීටරයකි. විභව අන්තරය 20~
m V වූ කෝෂයේ අභාාන්තර පුතිරෝධය නොගිණිය නැකි තරම් කුඩා වේ. R විචලාා පුතිරෝධය 0 සිට $100~\Omega$ දක්වා විචලනය කළ හැක. K සර්පණ යතුර X හා Y හි ඇති විට ඇමීටරය $\widehat{f A}$ හි සහ වෝල්ට්මීටරය (V) හි පාඨාංකයන් මොනවා ද?

	K , X හි ඇතිවිට		K, Y &	ඇතිවිට
	A	Ø	A	Ø
(1)	200 mA	0	200 mA	+20 V
(2)	400 mA	0	400 mA	+20 V
(3)	200 mA	-12 V	200 mA	+8 V
(4)	400 mA	+12 V	400 mA	-8 V
(5)	400 mA	-12 V	400 mA	+8 V

f 39. දිග f 2 f m සහ හරස්කඩ වර්ගඵලය f 5 $f mm^2$ වන ලෝහ කම්බියක් එකම තිරස් තලයක $2 \ \mathrm{m}$ පරතරයකින් යුත් A සහ B ලක්ෂා දෙකකට දෘඪව කලම්ප කොට ඇත. පසුව කම්බියේ මධා ලක්ෂායෙන් $oldsymbol{A}$ ස්කන්ධය $2\cdot 4$ \mathbf{kg} වන කුට්ටියක් රූපයේ පෙන්වා ඇති පරිදි එල්ලන ලදී. කම්බියේ මධාා ලක්ෂාය ආරම්භක පිහිටුමේ සිට $2\cdot 0$ cm කින් පාතනය වූ අතර කම්බියේ මුළු විතතිය $0.04~\mathrm{cm}$ වේ. ලෝහයේ යං මාපාංකයේ අගය ආසත්ත වශයෙන් කොපමණ වේ ද?

(1) $2 \times 10^{11} \text{ N m}^{-2}$

- (2) $3 \times 10^{11} \text{ N m}^{-2}$
- (3) $4 \times 10^{11} \text{ N m}^{-2}$

(4) $6 \times 10^{11} \text{ N m}^{-2}$

- (5) $12 \times 10^{11} \text{ N m}^{-2}$
- ${f 40}$. z- අක්ෂය මත ඇති අනත්ත දිගක් සහිත සෘජු සිහින් කම්බියක රේඛීය ආරෝපණ ඝනත්වය $-\lambda$ වේ. ස්කන්ධය m වූ කුඩා +q ආරෝපණයක් කම්බිය වටා xy තලයේ ඇති අරය r වූ වෘත්තාකාර පථයක ගමන් කිරීමට සලස්වයි. ආරෝපණයේ ආවර්ත කාලය දෙනු ලබන්නේ,

$$(1) \sqrt{\frac{8\pi^3 r^2 m\varepsilon_0}{\lambda q}}$$

$$(2) \sqrt{\frac{4\pi^2 r^3 m \varepsilon_0}{\lambda q}}$$

$$(3) \sqrt{\frac{\lambda q}{8\pi^3 r^2 m\varepsilon_0}}$$

$$(1)\sqrt{\frac{8\pi^3r^2m\varepsilon_0}{\lambda q}} \qquad (2)\sqrt{\frac{4\pi^2r^3m\varepsilon_0}{\lambda q}} \qquad (3)\sqrt{\frac{\lambda q}{8\pi^3r^2m\varepsilon_0}} \qquad (4)\sqrt{\frac{\lambda q}{4\pi^2r^3m\varepsilon_0}} \qquad (5)\sqrt{\frac{8r^2m\lambda}{\varepsilon_0q}}$$

41. රූපයේ පෙන්වා ඇති පරිදි ABC තිරස් නළයක් හරස්කඩ වර්ගඵලය විශාල වූ ජල ටැංකියකට සම්බන්ධ කොට ඇත. B හි දී නළයේ අභාාන්තර හරස්කඩ වර්ගඵලය C හි දී මෙන් දෙගුණයකි. ආරම්භයේ දී D හි පිහිටා ඇති ජල කරාමය (T) වසා ඇත. කරාමය විවෘත කළ පසු B හි පිහිටුවා ඇති සිරස් බටය තුළ ජල මට්ටමේ උස කොපමණ වේ ද? (ජල පුවාහය අනාකූල හා අනවරත ලෙස උපකල්පනය කරන්න; ජලයේ දුස්සුාවිතාව නොසලකා හරින්න.)

(1) $\frac{1}{4}h$ (2) $\frac{1}{2}h$

(5) $\frac{4}{3}h$

 $oldsymbol{42}$. පැරෂුට්කරුවෙක් කාලය t=0 දී හෙලිකොප්ටරයකින් පිටතට පැමිණේ. යම් වේලාවකට පසුව ඔහුගේ පැරෂුටය විවෘත කරගන්නා අතර ඉන් පසුව පොළොවට ළඟාවේ. පහත සඳහන් පුස්තාර අතුරින් පැරෂුට්කරුගේ පුවේගයේ සිරස් සංරචකයේ (v) විචලනය කාලය (t) සමඟ හොඳින් ම නිරූපණය වන්නේ කුමකින් ද?

- 43. නියැදියක අඩංගු විකිරණශීලි පරමාණුවල අර්ධ-ආයු කාලය $(T_{1/\!\!\!/})$ පිළිබඳව පහත පුකාශ සලකා බලන්න.
 - (A) නියැදියේ පවතින විකිරණශීලි පරමාණු සංඛාාව සමඟ $T_{
 m l/}$ වෙනස් වේ.
 - (B) පිළියෙල කරගත් නියැදියේ දින වකවානු සමඟ $T_{1 extstyle / 1}$ වෙනස් වේ.
 - (C) විකිරණශිලී පරමාණු අයනීකෘත වූවත් $T_{1\!/\!2}$ වෙනස් නොවේ. ඉහත පුකාශවලින්,
 - (1) (A) පමණක් සතා වේ.
- (2) (B) පමණක් සතා වේ.
- (3) (C) පමණක් සතා වේ.
- (4) (A) සහ (B) පමණක් සතා වේ.
- (5) (B) සහ (C) පමණක් සතා වේ.
- 44. රූප සටහනේ කඩ ඉරෙන් දක්වා ඇති මාර්ගය ඔස්සේ කඩදාසියෙහි තලය මත පුදේශ දෙකක් හරහා ඉලෙක්ටෝනයක් ගමන් කරයි. I සහ II පුදේශ දෙක තුළ පිළිවෙළින් B_1 සහ B_2 ඒකාකාර චුම්බක ක්ෂේතු පවතී. I පුදේශයේ පමණක් ඒකාකාර විදයුත් ක්ෂේතුයක් තලය තුළට පවතින අතර එය කතිර (\mathbf{x}) මගින් දක්වා ඇත. පුදේශ I සහ II තුළ පවතින චුම්බක ක්ෂේතුයන්ගේ නිවැරදි දිශාවන් ලබා දෙන්නේ පහත කුමකින් ද?

	B_1	B_2
(1)	↑	\otimes
(2)	↑	•
(3)	•	\otimes
(4)	\otimes	•
(5)	\	•

40 mm

- 45. විශාල හරස්කඩ වර්ගඵලයක් සහිත ජල බඳුනක සිරස්ව ගිල්වා ඇති කේශික නළයක් රූපයේ පෙන්වයි. මෙම පද්ධතිය නිශ්චලව ඇති උත්තෝලකයක් තුළ සවිකොට ඇත. කේශිකයේ විවෘත කෙළවර බඳුනේ ජල මට්ටමේ සිට 40 mm උසකින් පිහිටන අතර කේශික උද්ගමනය 8 mm වේ. උත්තෝලකය,
 - (I) $5 \, {
 m m \ s^{-2}}$ ත්වරණයකින් පහළට ගමන් කරයි නම්
 - (II) නිදහසේ පහළට වැටෙයි නම් අනුරූප කේශික උද්ගමනයන් වන්නේ කුමක් ද?
 - (1) 4 mm, 0

(2) 16 mm, 0

(3) 4 mm, 8 mm

(4) 16 mm, 32 mm

- (5) 16 mm, 40 mm
- 46. සිරස් වීදුරු නළ දෙකක $(T_1$ සහ T_2) පහත කෙළවරවල් කුඩා තිරස් කේශික නළයකින් සම්බන්ධකර දුවයකින් පුරවා ඇත. එක් නළයක් (T_1) 0 °C ඇති අයිස් සහ ජල මිශුණයක ගිල්වා ඇති අතර අනෙක් නළය (T_2) 40 °C නියත උෂ්ණත්වයක ඇති ජලයේ ගිල්වා ඇත. රූපයේ ආකාරයට දුව කඳන් දෙක අතර උසෙහි වෙනස $1\cdot 6$ cm වන අතර 0 °C ඇති දුව කඳේ උස 80 cm වේ (රූපය පරිමාණයට ඇඳ නොමැත). දුවයේ සතා පරිමා පුසාරණතාවය වන්නේ,

- (2) $5.0 \times 10^{-4} \, ^{\circ}\text{C}^{-1}$
- (3) $6.0 \times 10^{-4} \, ^{\circ}\text{C}^{-1}$
- (4) $1.0 \times 10^{-3} \, ^{\circ}\text{C}^{-1}$
- (5) $1.2 \times 10^{-3} \, ^{\circ}\text{C}^{-1}$

- $m{47}$. රූපයේ පෙන්වා ඇති අපරිමිත ඉණිමං පුතිරෝධක ජාලය $1\,\Omega$ පුතිරෝධකවලින් සමන්විත වේ. මෙම ජාලයේ A සහ B ලක්ෂාා අතර සමක පුතිරෝධය R නම්, පහත කුමක් සතාා වේ ද?
 - (1) $R < 2 \Omega$
 - (2) $R=2\Omega$
 - (3) $R>3\Omega$
 - (4) $R=3\Omega$
 - (5) $2\Omega < R < 3\Omega$

- $oldsymbol{48}$. එක එකෙහි ස්කන්ධය m බැගින් වූ තරු තුනක්, පැත්තක දිග a වූ සමපාද තිුකෝණයක ශිර්ෂ මත රූපයේ පෙන්වා ඇති පරිදි පිහිටයි. මෙම තරු තුන තිුකෝණ කේන්දුකය වටා තරු අතර ආරම්භක දුර නොවෙනස්ව පවත්වා ගනිමින් වෘත්තාකාර පථයක චලනය වන ලෙස සලකන්න. අනොහ්නෳ ගුරුත්වාකර්ෂණ බල පමණක් තරු අතර කිුයා කරයි නම් පද්ධතියේ ආවර්ත කාලය දෙනු ලබන්නේ,
 - (1) $2\pi \sqrt{\frac{a^3}{2GM}}$ (2) $2\pi \sqrt{\frac{a^3}{3GM}}$
 - (3) $2\pi \sqrt{\frac{3a^3}{GM}}$ (4) $2\pi \sqrt{\frac{2a^3}{GM}}$
 - (5) $2\pi \sqrt{\frac{3a^3}{2GM}}$

- $oldsymbol{49}$. ඝර්ෂණයෙන් තොර තිරස් පෘෂ්ඨයක් මත ස්කන්ධය $oldsymbol{2}$ $oldsymbol{kg}$ වන $oldsymbol{A}$ කුට්ටියක් තබා ඇත. රූපයේ පෙන්වා ඇති පරිදි කුට්ටිවලට, ස්කන්ධය නොගිණිය හැකි සර්වසම දුනු දෙකක් සවි කොට ඇත. නිසලතාවයේ ඇති B කුට්ටිය වෙතට $2~\mathrm{m~s^{-1}}$ වේගයකින් A කුට්ටිය පුක්ෂේපණය කරනු ලැබේ. දුනු දෙකOම අයත් කර ගත හැකි උපරිම ශක්තිය කොපමණ ද?
 - (1) 0
- (2) 1 J
- \rightarrow 2 m s⁻¹

- (3) 2 J (5) 4J
- (4) 3 J
- $m_{\rm A}=2\,{\rm kg}$

- ${f 50}$. එකිනෙකෙහි වර්ගඵලය A වූ තුනී පැතලි ලෝහ තහඩු පහක් ඒවා අතර සමාන d පරතරයක් පවතින පරිදි සමාන්තරව රික්තයේ තබා ඇත. රූපයේ පරිදි, P තහඩුව S සමඟද, R තහඩුව T සමඟද, සන්නායක කම්බි මගින් සම්බන්ධ කර ඇත්නම් X සහ Y අගු දෙක අතර සමක ධාරණාව දෙනු ලබන්නේ,

සියලු ම හිමිකම් ඇවිරුම් / முழுப் பதிப்புரிமையுடையது / All Rights Reserved]

නව නිර්දේශය/புதிய பாடத்திட்டம்/New Syllabus

ල් ලංකා විභාග පොරතුවෙන්තුව ල් ලංකා විභාග දෙපාර්තමේන්තුව ල් ලංකා විභාග දෙපාර්තමේන්තුව ල් ලංකා විභාග දෙපාර්තමේන්තුව இலங்கைப் பந்த திணைக்களும் இலங்கைப் பந்தே தினைக்களும் இலங்கைப் பந்தே தினைக்களும் இலங்கைப் பந்தே தினைக்களும் இலங்கைப் பந்தே நினைக்களும் இலங்கைப் பந்தே நினைக்களும் இலங்கைப் பந்தே நினைக்களும் இலங்கைப் பந்தே நினைக்களும் இலங்கைப் பந்தே திணைக்களும் இலங்கைப் நிறுக்கு நினைக்களும் இலங்கைப் பந்தே திணைக்களும்

<mark>ඟෞතික විදුනව</mark> பௌதிகவியல் Physics

II)

01 S II

පැය තුනයි

மூன்று மணித்தியாலம் Three hours අමතර කියවීම් කාලය

මිනිත්තු 10 යි

மேலதிக வாசிப்பு நேரம் Additional Reading Time

- 10 நிமிடங்கள்

- 10 minutes

අමතර කියවීම් කාලය පුශ්න පතුය කියවා පුශ්න තෝරා ගැනීමටත් පිළිතුරු ලිවීමේ දී පුමුබත්වය දෙන පුශ්න සංවිධානය කර ගැනීමටත් යොදාගන්න.

වැ	ሮග	ත්	•

- 🛠 මෙම පුශ්න පතුය පිටු 16 කින් යුක්ත වේ.
- * මෙම පුශ්න පතුය A සහ B යන කොටස් **දෙකකින්** යුක්ත වේ. **කොටස් දෙකට ම** නියමිත කාලය **පැග** තුනකි.
- 🛪 ගණක යන්තු භාවිතයට ඉඩ දෙනු නො ලැබේ.

A කොටස - ව<u>ප</u>ුහගත රචනා (පිටු 2 - 8)

සියලු ම පුශ්නවලට පිළිතුරු මෙම පතුයේ ම සපයන්න. ඔබේ පිළිතුරු, පුශ්න පතුයේ ඉඩ සලසා ඇති තැන්වල ලිවිය යුතු ය. මේ ඉඩ පුමාණය පිළිතුරු ලිවීමට පුමාණවත් බව ද දීර්ඝ පිළිතුරු බලාපොරොත්තු නො වන බව ද සලකන්න.

B කොටස - රචනා (පිටු 9 - 16)

මෙම කොටස පුශ්න **හයකින්** සමන්විත වන අතර පුශ්න **හතරකට** පමණක් පිළිතුරු සැපයිය යුතු ය. මේ සඳහා සපයනු ලබන කඩදාසි පාවිච්චි කරන්න.

- * සම්පූර්ණ ප්‍රශ්න පත්‍රයට නියමිත කාලය අවසන් වූ පස්‍ර A සහ B කොටස් එක් පිළිතුරු පත්‍රයක් වන සේ, A කොටස B කොටසට උඩින් තිබෙන පරිදි අමුණා, විභාග ශාලාධිපතිට භාර දෙන්න.
- * පුශ්න පතුයේ **B කොටස පමණක්** විභාග ශාලාවෙන් පිටතට ගෙන යාමට ඔබට අවසර ඇත.

විභාග	අංකය	:	 	 	 	···

පරීක්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි					
	දෙවැනි පතුය සඳහා				
කොටස	උශ්න අංක	ලැබූ ලකුණු			
	1				
_	2	·			
A	3				
	4				
	5				
	6				
	7				
	8				
В	9(A)				
	9(B)				
	10(A)				
	10(B)				
	ඉලක්කමෙන්				
එකතුව	අකුරෙන්				

සංකේත අංකඋත්තර පතු පරීක්ෂක 1 උත්තර පතු පරීක්ෂක 2 ලකුණු පරීක්ෂා කළේ අධීක්ෂණය කළේ

${f A}$ කොටය**- ව**හුගග**ා රචනා** පුශ්න **හතරට ම** පිළිකුරු **මෙම පතුයේ ම** සපයන්න. $(g~=~10~{ m m~s^{-2}})$

මෙම තීරයේ කිසිවක් නො ලියන්න

භාරය එදිරියෙන් විතතිය පුස්තාරයක් ඇඳීම මගින් හෙලික්සීය දුන්නක දුනු නියතය (k) නිර්ණය කිරීමට ඔබට නියමව ඇත. රූපයේ පෙන්වා ඇති පරීක්ෂණාගාර ඇටවුමේ, දුන්නේ එක් කෙළවරක් තුලා තැටියකට ඇඳා ඇති අතර අනෙක් කෙළවර ආධාරකයකට දෘඪව සම්බන්ධ කොට ඇත. තුලා තැටියේ සහ දුන්නේ ස්කන්ධ නොසලකා හැරිය හැකියැයි උපකල්පනය කරන්න.

(a) දුන්නට F බලයක් යෙදූවිට දුන්නේ දිග x පුමාණයකින් වැඩිවේ. F සඳහා පුකාශනයක් k සහ x ඇසුරෙන් ලියා දක්වන්න.

(b) (i) තුලා තැටිය මත තබන ස්කන්ධවල අගයයන් (M) සහ ඊට අනුරූප දර්ශකයේ පාඨාංක පහත වගුවේ දී ඇත. වගුවේ ඇති විතති තීරුව සම්පූර්ණ කරන්න.

	-	
තුලා තැටිය මත ඇති ස්කන්ධය, <i>M</i> (ගුැම්)	දර්ශකයේ පාඨාංකය (cm)	දුන්නේ විතතිය <i>x</i> (cm)
0	1.0	0
50	2.0	
100	3.0	
150	4.0	
200	5.2	
250	6.0	
300	6.8	

(ii) තුලා තැටිය මත ඇති ස්කන්ධය $M(\mathfrak{g}_{\mathfrak{f}})$ ට එදිරියෙන් විතතිය x (cm) පුස්තාරයක් පහත ජාලයේ අඳින්න.

			මෙම තීරයේ කිසිවක්
		(iii) ඉහත අඳින ලද පුස්තාරය භාවිත කොට k හි අගය SI ඒකකවලින් නිර්ණය කරන්න.	නො ලියන්න
	(c)	පාඨාංක ගැනීමේ දී ඔබ පිළිපැදිය යුතු අතාවශා පරීක්ෂණාත්මක පියවර දෙකක් ලියා දක්වන්න.	
		(1)	
		(2)	
	(d)	k හි පුතිශත දෝෂය 5% ක් ඇතුළත පවත්වා ගැනීම සඳහා k අගයෙහි තිබිය යුතු උපරිම දෝෂය (Δk) කොපමණ ද?	
			/ `
	(e)	ස්කන්ධය නොගිණිය හැකි වෙනත් දුන්නක් ඉහත දුන්න සමඟ ශේණිගතව සම්බන්ධ කොට කලින්	K
		සඳහන් කළ ස්කන්ධ සමඟ පරීක්ෂණය නැවත කරන ලදී. මේ අවස්ථාව සඳහා බලාපොරොත්තු විය හැකි පුස්තාරය ඉහත (b) (ii) හි ඇති ජාලයේම ඇඳ එය Q ලෙස නම් කරන්න.	
2.		L වූ ක්විල් නළයක් තුළ සිරවී ඇති වියළි වායු කඳක් භාවිතයෙන් වායුගෝලීය පීඩනය නිර්ණය කිරීමට ට නියමව ඇත. පෙන්වා ඇති රූපය අසම්පූර්ණ වන අතර පරිමාණයට ඇඳ නොමැත.	
	W ****		
		/	
		<i></i>	
		"	
	(a)	සුදුසු අයිතමයන් ඇඳ පරීක්ෂණාත්මක ඇටවුම සම්පූර්ණ කර එම අයිතමයන් නම් කරන්න.	
	(b)	මෙම පරීක්ෂණයේ දී භාවිත කරන ක්විල් නළයේ දිග සහ අභාන්තර විෂ්කම්භයේ දළ අගයන් කොපමණ ද?	
		ξω :cm	
		ි අභාන්තර විෂ්කම්භය :	
		•	İ

(c)) පරීක්ෂණයේ දී භාවිත කරන oූර යටින් ඉරක් අඳින්න.	රසදිය කලේ දිග ආස	සන්න වශයෙන් කොපමණ විය යුතු ද? නිවැරදි	තීරයේ කිසිවක් නො ලියන්න
	(1) 2	, cm	(2) 10 cm	(3) 30 cm	
(d)	_	යේ අභාන්තර හරස්කඩ වර්ග න් cm වලින් ඇති අතර A , cr		හ්ලීය පීඩනය H (cm Hg වලින්) වේ. මෙහි l, λ	c
	(i)	සිරවී ඇති වායු කඳෙහි පීඩන දක්වන්න.	ාය (cm Hg වලින්) ස	ඳහා පුකාශනයක් H,h,x සහ L ඇසුරෙන් ලියා	,
			-	ගනිමින් H නිර්ණය කිරීම සඳහා පුකාශනයක	5
					,
					.
		සරල රේඛීය පුස්තාරයක් ඇඹි නැවත සකසන්න.	දීමෙන් <i>H</i> නිර්ණය කි	8රීම සඳහා ඉහත (d) $({ m ii})$ හි ලබාගත් පුකාශනය	3
					.
	(iv)	ඉහත (d) (iii) හි සඳහන් පුස්	්තාරයේ ස්වායත්ත ස	හ පරායත්ත විචලෳයන් හඳුන්වන්න.	
		ස්වායත්ත විචලාය :			
		පරායක්ත විචලෳය :			
		අක්ෂ නම් කරමින්, ඔබ බලා ලෙස නම් කරන්න.	ෟපාරොත්තු වන පුස්	තාරයේ දළ සටහනක් අඳින්න. ඇඳි රේඛාව \emph{F}	,
		•			
		(0	,0)		
	(wi)	`	•	en several and several and a several s	7
		පුසතාටයෙන් උක්හා ගන්නා ල සඳහා පුකාශනයක් ලියා දක්ව		දාළ පරාමිති භාවිතයෙන් වායුගෝලීය පීඩනය H	
			· · · · · · · · · · · · · · · · · · ·		,
		••••			
(e)	•	ායන් විචලනය කිරීම සඳහා ද ් ඉරක් අඳින්න.	<u>පුදුසු</u> තම පරීක්ෂණාත	ග්මක කිුයා පිළිවෙළ කුමක් ද? නිවැරදි පිළිතු ර	5
		අඩු අගයක සිට වැඩි අගයක්	කරා / වැඩි අගයක	සිට අඩු අගයක් කරා	
	(ii)	හේතුව දෙන්න	,		
(A)		කණය කණුවුම ක කුලුල් සිද			$\ $
()				ළි නොවී සංතෘප්ත ජලවාෂ්ප පැවතියේ නම් අතාරයේම ඇඳ එය Q ලෙස නම් කරන්න.	

L/2020/01-	S-II(NEW) - 5 -	
		මෙම තීරයේ කිපිවක්
	උපයෝගී කර ගනිමින් ඇදි කම්බියක තිරියක් තරංගවල වෙගය (1) සෙවම සඳහා ඔබ පෙත ලංකා.	කපවක නො ලියන්න
දෙන ලද	ධ්වනිමාන ඇටවුමක් (1) රූපයේ දැක්වේ. සරසුල් කට්ටලයක් ද ඔබට සපයා ඇත.	
	0 0 0 0 0	
	?	
	(1) <	
	(1) රූපය	
(a) මෙම	පරීක්ෂණයේ දී කම්බියේ මූලික අනුනාද විධිය භාවිත කරයි. මෙයට හේතුව කුමක් ද?	
(b) කම්බි	ය මූලික විධියෙන් කම්පනය වන අවස්ථාවේ P සහ Q සේතු අතර සෑදෙන තරංග රටාව පහත	
(2) ෮	ෑපයේ අඳින්න. කඩදාසි ආරෝහකය තැබිය යුතු හොඳම ස්ථානය එම රූප සටහනේම ඊ හිසක්	
මගින	් පෙන්වා එය X ලෙස නම් කරන්න.	
	P Q	
	(2) රූපය	
(c) (i)	ඉහත (b) කොටසේ සේතු අතර දුර l සහ යොදාගත් සරසුලේ සංඛ $ u$ ාතය f වේ. ධීවනිමාන කම්බිය තුළින් ගමන් කරන තීර්යක් තරංගයේ වේගය (u) සඳහා පුකාශනයක් l හා f ඇසුරෙන්	
	ලියන්න.	
/ **>	09 h h d h m a TT-lan *88	
(11)	සංඛාාත දන්නා සරසුල් කට්ටලය යොදා ගනිමින්, පුස්තාරයේ අනුකුමණයේ මාන LT^{-1} වන පරිදි සරල රේඛීය පුස්තාරයක් ඇඳීමෙන් තරංගයේ වේගය (v) සොයා ගැනීම සඳහා ඉහත (c) (i) හි පුකාශනය නැවත සකස් කරන්න.	
(iii)	ඉහත (c) (ii) හි සඳහන් කරන ලද පුස්තාරයේ ස්වායත්ත හා පරායත්ත විචලාසයන් සඳහන් කරන්න.	
	ස්වායත්ත විචලාය :	
	පරායත්ත විචලාාය :	
(iv)	ඉහත පුස්තාරයේ අනුකුමණය සෙවීම සඳහා තෝරාගත් ලක්ෂා දෙකේ ඛණ්ඩාංක $(0\cdot002,22)$ සහ $(0\cdot004,42)$ වේ. මෙහි l , cm වලින් මැන ඇති අතර f , Hz වලින් වේ. තරංගයේ වේගය (v) , ms^{-1} වලින් සොයන්න.	

(d)	සරසුල්වල ඇති දැතිවල දිග සලකා පළමු පාඨාංකය ලබා ගැනීම සඳහා වඩාත්ම සුදුසු සරසුල කුමක්ද?	මෙම තීරයේ කිසිවක් නො ලියන්න
	ඔබගේ පිළිතුරට හේතුව දෙන්න.	
	යොදා ගන්නා සරසුල :	
	හේතුව :	
(0)	කිසියම් මොහොතක දී සරසුලේ දැති කම්පනය වන දිශාවන් (3) රූපයේ ඊ හිස් මගින් පෙන්වා ඇත.	
(6)	සුදුසු පරිදි ඊ හිසක් යොදා ගනිමින්, එම මොහොතේම සරසුල් බඥේ (S) අංශුන් කම්පනය වන දිශාව	
	එම රූපයේම ඇඳ දක්වන්න.	
	(3) රූපය	
(f)	1 kg, 2 kg සහ 3 kg ස්කන්ධයන් ධ්වනිමාන කම්බිය ඇදීම සඳහා යොදා ගත හැක. මෙම පරීක්ෂණය	
•	සඳහා වඩාත් සුදුසු ස්කන්ධය කුමක් ද? ඔබේ තෝරා ගැනීමට හේතුව දක්වන්න.	
	වඩාත් සුදුසු ස්කන්ධය :	
	හේතුව :	
(g)	කම්බිය f සංඛාාතයකින් අනුනාද වන්නේ නම්, කඩදාසි ආරෝහකය යන්තමින් විසි වන අවස්ථාවේ කම්බියේ විස්තාරය (A) සඳහා පුකාශනයක් f සහ g ඇසුරෙන් ලියා දක්වන්න.	
(h)	මෙම පරීක්ෂණයේ දී අනුනාද දිග l නිර්ණය කිරීමේ දී සිදුවිය හැකි දෝෂයක් සඳහන් කර එය අවම කර ගැනීමට ඔබ ගන්නා කිුිිියා මාර්ගය ලියා දක්වන්න.	
	ලද ් ෂය :	
	කිුයා මාර්ගය :	ĺ
		()
		$\bigvee $

More Past Papers at tamilguru.lk

මෙම තීරයේ (f) මෙම පරීක්ෂණයේ දී ශිෂාායා විසින් අඳින ලද පුස්තාරය පහත දැක්වේ. V (volt) 1.6 1.4 1.2 1.0 8.0 I (mA) 40 60 20 80 100 120 (i) සුදුසු ලක්ෂායන් දෙකක් භාවිත කර පුස්තාරයේ අනුකුමණය ගණනය කරන්න. (ii) කෝෂයේ අභාzන්තර පුතිරෝධය r නිර්ණය කරන්න. (iii) කෝෂයේ වී.ගා.බ. E නිර්ණය කරන්න. (i) දෙන ලද කෝෂයෙන් ලබාගත හැකි ලුහුවත් ධාරාව (ඇම්පියර්වලින්) කොපමණ ද? ඔබේ පිළිතුර **(g)** දශමස්ථාන දෙකකට දෙන්න. (ii) අදාළ පුතිරෝධයක් සම්බන්ධ කිරීමෙන් මෙම කෝෂයෙන් ලබාගත හැකි උපරිම ක්ෂමතාවය කොපමණ ද? (h) දෙන ලද කෝෂයේ අගයයන්ට වඩා අඩු වි.ගා.බලයක් සහ අඩු අභාාන්තර පුතිරෝධයක් සහිත නිකල්-කැඩ්මියම් (Ni-Cd) කෝෂයක් සඳහා ඉහත පරීක්ෂණය සිදු කළහොත් බලාපොරොත්තු වන රේඛාවේ දළ සටහනක් ඉහත (f) හි දී ඇති ජාලයේම අඳින්න.

සියලු ම හිමිකම් ඇව්රිනී / முழுப் பதிப்புரிமையுடையது / All Rights Reserved]

II

II

II

නව නිර්දේශය/புதிய பாடத்திட்டம்/New Syllabus

ල් இத**ா Levy and Articles (මූ ලංකා විභාග දෙපාර්තමේන්ලි ලංකා විභාග දෙපාර්තමේන්තුව**ා විභාග දෙපාර්තමේන්තුව මී ලංකා විභාග දෙපාර්තමේන්තුව ந்த திணைக்களம் இலங்கைப் ப<u>ரீட்ணுக்களில் இரு இது இந்த இந்த இ</u>ழுக்கு இருக்கு இருக்கு இருக்கு இலங்கைப் ப**ரீட்சைத்** திணைக்களும் Department of Examinations, Sri Lanka Department of Examinations, Sri Lanka Department of Examinations, Sri Lanka

අධානයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2020 கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2020 General Certificate of Education (Adv. Level) Examination, 2020

<mark>භෞතික විදුපාව</mark> பௌதிகவியல் Physics

 ${f B}$ කොටස- රචනා

පුශ්න **හතරකට** පමණක් පිළිතුරු සපයන්න. $(g=10~{
m m~s}^{-2})$

- ${f 5.}\ (a)$ ස්කන්ධය M වූ ඒකාකාර කුට්ටියක් ආරම්භයේ දී රඑ තිරස් තලයක් මත නිශ්චලව ඇත. පසුව ශූනාායේ සිට කුමයෙන් වැඩිකරනු ලබන තිරස් බලයක් (P) කුට්ටිය මත යොදනු ලැබේ. ඝර්ෂණ බලය F ලෙස සලකන්න.
 - (i) ඉහත අවස්ථාව සඳහා කුට්ටියේ නිදහස්-වස්තු රූප සටහනක් ඇඳ සියලුම බල නම් කරන්න.
 - (ii) ආරම්භක අවස්ථාවේ සිට කුට්ටිය ත්වරණයෙන් ගමන් ගන්නා අවස්ථාව තෙක් P ට එදිරිව F පුස්තාරයේ දළ සටහනක් අඳින්න. සීමාකාරී ඝර්ෂණ බලය $(F_{
 m L})$ හා ගතික ඝර්ෂණ බලය $(F_{
 m D})$ එම පුස්තාරයේ ලකුණු කරන්න.
 - (iii) සීමාකාරී ඝර්ෂණ සංගුණකය $\mu_{
 m L}$ සහ ගතික ඝර්ෂණ සංගුණකය $\mu_{
 m D}$ සඳහා පුකාශන ලියන්න.
 - (b) පෙර-රෝද එළැවුම් (front-wheel drive) මෝටර් රථවල එන්පීම ඇක්සල මගින් පෙර-රෝද දෙකට සම්බන්ධ කර ධාවනය කරවයි. සෘජු තිරස් රඑ තාර පාරක ධාවනය වන, රූපයේ පෙන්වා ඇති පෙර-රෝද එළැවුම් මෝටර් රථයක් සලකන්න. ටයර සහ තාර පාර අතර ඝර්ෂණ සංගුණක පිළිවෙළින් $\mu_{\rm L} = 0.8$ හා $\mu_{\rm D} = 0.5$ වේ. වෙනත් ආකාරයකින් සඳහන් කර නොමැති නම් පමණක් පහත ගැටලු විසඳීමේ දී ධාවනය වන මෝටර් රථය මත ඇතිවන සීමාකාරී හෝ ගතික ඝර්ෂණ බල පමණක් සලකන්න.

- (i) මෝටර් රථය තිරස් ඍජු රළු මාර්ගයක ත්වරණයෙන් ගමන් ගන්නා අවස්ථාව රූපයේ පෙන්වා ඇත. A සහ B රෝද ඔබගේ පිළිතුරු පතුයේ පිටපත් කර ඝර්ෂණය නිසා ඉදිරිපස රෝදයක් (A) මත බලය F_A ලෙස ද, පසුපස රෝදයක් (B) මත බලය F_B ලෙස ද ලකුණු කරන්න. එසේම ත්වරණය වන විට F_A හා F_B හි විශාලත්ව සසඳන්න.
- (ii) රියදුරු සමඟ පෙර-රෝද එළැවුම් මෝටර් රථයේ ස්කන්ධය $1200~{
 m kg}$ ද, එහි බර රෝද හතර මත සමානව බෙදෙන බව ද සලකන්න. මෙහිදී කිුිිියාත්මක වන ඝර්ෂණ සංගුණකය නිවැරදිව හඳුනා ගෙන ති්රස් සෘජු පාරේ දී මෝටර් රථයේ උපරිම ආරම්භක එළැවුම් බලය ගණනය කරන්න.
- (iii) මෝටර් රථය තිරස් සෘජු පාරේ $72~{
 m km}~{
 m h}^{-1}$ ඒකාකාර පුවේගයෙන් ගමන් ගන්නා විට චලිතයට එරෙහි මුළු පුතිරෝධී බලය $520~{
 m N}$ වේ. එම පුවේගයේ දී මෝටර් රථයේ ජවය (ක්ෂමතාව) සොයන්න.
- (iv) පසුව මෝටර් රථය තිරසට 12° වූ ආනත නැග්මක් සහිත මාර්ගයක ඉහත (b)(iii) හි ජවයෙන්ම ඉහළට ගමන් කරයි. මෙහිදී චලිතයට එරෙහි මුළු පුතිරෝධී බලය $200~\mathrm{N}$ නම් රථය ඉහළට ගමන් කරන උපරිම පුවේගය සොයන්න. $\sin{(12^\circ)} = 0.2$ ලෙස ගන්න.
- (v) (I) මෝටර් රථය නැවත තිරස් සෘජු මාර්ගයේ 72 km h⁻¹ ක ඒකාකාර පුවේගයෙන් ගමන් කරන විට 35 m ක් ඉදිරියේ ඇති බාධකයක් රියදුරු හදිසියේම දුටුවේය. ඔහු ක්ෂණිකව තිරිංග පැඩලය පෑගු විට, රෝද හතර අගුළු වැටී, ටයර පෙරළීමකින් තොරව ලිස්සන ලදී. මෙහිදී කිුයාත්මක වන ඝර්ෂණ සංගුණකය නිවැරදිව හඳුනා ගෙන අදාළ හේතු සහ ගණනය කිරීම් දෙමින්, මෝටර් රථය බාධකයේ ගැටේ ද නොගැටේ ද යන්න සඳහන් කරන්න. තිරිංග තද කිරීමට පෙර රියදුරුගේ පුතිකිුයා කාලය නොසලකා හරින්න.
 - (II) තිරිංග යෙදීමේ දී ටයර ලිස්සීම සිදුවුවහොත් මෝටර් රථය පාලනයෙන් තොරව සෘජු රේඛාවක වැඩි දුරක් චලනය වීම නිසා අනතුරු සිදුවිය හැක. ටයර ලිස්සීම වැළැක්වීමට මෝටර් රථවල පුති-අගුළු තිරිංග පද්ධතියක් (Anti-lock Braking System- ABS) යොදනු ලැබේ. ටයර ලිස්සීම ආරම්භ වන විට එමඟින් ස්වයංකියව තිරිංග නිදහස් කර ටයර නැවත පෙරළීමට ඉඩ සලසයි. මෙම කියාව තත්පරයකට කිහිපවතාවක් සිදුවන අතර, එනිසා ඇතිවන සඵල ඝර්ෂණ සංගුණකය, සීමාකාරී ඝර්ෂණ සංගුණකයට ආසන්න අගයක් ගනී. මෝටර් රථයට ABS පද්ධතියක් යෙදූ විට සඵල ඝර්ෂණ සංගුණකය 0.75ක් වේ. ඉහත (b)(v)(I) හි සඳහන් අවස්ථාව සඳහා ABS පද්ධතිය යෙදූ මෝටර් රථයේ නව නැවතුම් දුර ගණනය කරන්න.
- (vi) පසුව මෝටර් රථය වකුතා අරය $18\,\mathrm{m}$ වූ තිරස් වෘත්තාකාර මාර්ගයකට පිවිසෙයි. මෙහිදී ද ඝර්ෂණ සංගුණක ඉහත (b) හි අගයන් ම වේ නම්, මෝටර් රථය ලිස්සීමකින් තොරව ආරක්ෂාකාරීව ධාවනය කළ හැකි උපරිම පුවේගය සොයන්න.

6. පහත ඡේදය කියවා පුශ්නවලට පිළිතුරු සපයන්න.

මිනිස් ඇසක හරස්කඩක් (1) රූපයේ පෙන්වා ඇත. ස්වච්ඡ සහ අක්ෂි කාච සංයුක්තය මගින් ආලෝකය දෘෂ්ටි විතානය මතට නාභිගත කරයි. නමුත් වාතය $(n_a=1)$ සහ ස්වච්ඡය $(n_c=1\cdot38)$ අතර ඇති වර්තනාංක වෙනස විශාල නිසා ආලෝකය වැඩියෙන්ම වර්තනය වන්නේ වාතයේ සිට ස්වච්ඡය හරහා යෑමේදීය. ස්වච්ඡ කාචය සහ අක්ෂි කාචය පිළිවෙළින් නිශ්චිත නාභි දුරක් සහ විචලා නාභි දුරක් සහිත උත්තල කාච ලෙසට සැලකිය හැක. පුතියෝජක පේශිවල කියාකාරිත්වය මගින් අක්ෂි කාචයේ නාභි දුර වෙනස් කළ හැක. මෙම සංයුක්තය එකිනෙකට ස්පර්ශව පවතින තුනී උත්තල කාච දෙකක් ලෙසට සැලකිය හැක.

අවිදුර දෘෂ්ටිකත්වය සහ දුර දෘෂ්ටිකත්වය යනු පොදු දෘෂ්ටි දෝෂ දෙකකි. සුදුසු කාච භාවිත කිරීම මගින් සාමානායෙන් මෙම දෝෂ නිවැරදි කර ගත හැක. වර්තමානයේ පරිගණක මගින් පාලනය වන පාරජම්බුල (UV) ලේසර් කිරණ මගින් ස්වච්ඡයේ අඩංගු පටක අන්වීක්ෂීය පුමාණවලින් ඉවත් කොට ස්වච්ඡය අලුතින් හැඩ ගැන්වීම මගින් ද මෙම දෝෂ නිවැරදි කළ හැක. මෙම කිුිියාවලිය ලැසික් (LASIK) සැත්කමක් ලෙස හැඳින්වේ. මෙහි අරමුණ වන්නේ ඇස් කණ්ණාඩි හෝ සිවි කාච නොමැතිව දෘෂ්ටිය යථාතත්වයට පත් කර ගැනීමයි.

තීරු-කේත (bar-codes) කියවනයන්හි භාවිත වන සන්තතික ලේසර මෙන් නොව මේවා ස්පන්දිත ලේසර (pulsed lasers) වර්ගයට අයත් වේ. මේවා $10 \, \mathrm{fs} \, (1 \, \mathrm{fs} = 10^{-15} \, \mathrm{s})$ පමණ කාල පුාන්තරයක් සහිත කෙටි ස්පන්ද ආකාරයෙන් ශක්තිය මුදා හරී. පාරජම්බුල ආලෝකයේ අධි තීවුතා ස්පන්ද ස්වච්ඡයේ ඉතා තුනී පටක ස්තරයක් මගින් පමණක් අවශෝෂණය කර ගන්නා නිසා මෙවැනි ලේසර, අක්ෂි සැත්කම් සඳහා භාවිත කිරීම යෝගා වේ. පතනය වන UV ආලෝකය මගින් තුනී පටක ස්තරය කුඩා අණු සහිත වාෂ්පයකට වියෝජනය වී ස්වච්ඡ පෘෂ්ඨයෙන් ඉතා වේගයෙන් ඉවතට විසිවී යන්නේ අසල පිහිටි පටකවලට කිසිදු හානියක් කිරීමට පුමාණවත් ශක්තියක් ඉතිරි නොකරමිනි.

ක්ෂුදු ඉලෙක්ටොනික (microelectronic) උපාංග සහ අර්ධ සන්නායක සංගෘහිත පරිපථ (IC) නිෂ්පාදනය කිරීමේදී ද මෙම වර්ගයේ ස්පන්දිත ලේසර සුලබව භාවිත වේ.

[ඉඟිය: අභිසාරී කාචයක බලය ධන වන අතර එය ඩයොප්ටර (D) වලින් දෙනු ලැබේ.]

- (a) ඇසට ඇතුළු වන ආලෝකය වැඩියෙන්ම වර්තනය වන්නේ වාත-ස්වච්ඡ අතුරු මුහුණතේ දී ය. මෙයට හේතුව කුමක් ද?
- (b) (i) ස්වච්ඡයට ඇතුළු වන ඒකවර්ණ ආලෝක කි්රණයක පතන කෝණය i සහ වර්තන කෝණය r නම් ස්වච්ඡයේ වර්තනාංකය $n_{_{\! c}}$, සඳහා පුකාශනයක් i සහ r ඇසුරෙන් ලියා දක්වන්න.
 - (ii) $i=30^\circ$ වන විට $r=21^\circ 14'$ වේ. මෙම අවස්ථාවේ දී කිරණයේ අපගමන කෝණය කොපමණ ද?
- (c) (i) සංයුක්ත කාචයේ සිට දෘෂ්ටි විතානයට සහ ඇසේ අවිදුර ලක්ෂායට ඇති දුර පිළිවෙළින් $2.5~{
 m cm}$ සහ $25.0~{
 m cm}$ වේ. අනුරූප කි්රණ සටහන් ඇඳ සංයුක්ත කාචයේ අවම සහ උපරිම බලයන් ගණනය කරන්න.
 - (ii) ස්වච්ඡයෙන් සෑදෙන කාචයේ බලය $+30\,\mathrm{D}$ නම් ඉහත (c) (i) හි සඳහන් කොට ඇති අවස්ථා දෙක සඳහා අනුරූප අක්ෂි කාචයේ බලයන් ගණනය කරන්න.
- (d) (i) පුද්ගලයකුගේ දෝෂ සහිත ඇසක අවිදුර ලක්ෂාය 50 cm වේ. මෙම පුද්ගලයා දෝෂ සහිත ඇසේ සිට 50 cm ඇතින් තබා ඇති පුවත්පතක් කියවන විට ඔහුගේ ඇසේ සංයුක්ත කාචයේ බලය කොපමණ ද?
 - (ii) ස්වච්ඡයෙන් සැදෙන කාචයේ බලය $+30\,\mathrm{D}$ නම් මෙම අවස්ථාවට අනුරුප අක්ෂි කාචයේ බලය කොපමණ ද?
 - (iii) ඇස් කණ්ණාඩි නොපැළඳ ලැසික් සැත්කමක් මගින් තම දෘෂ්ටිය නිවැරදි කර ගැනීමට පුද්ගලයා තීරණය කරයි නම් අලුතින් හැඩගැස්වූ ස්වච්ඡ කාචයට කොපමණ බලයක් තිබිය යුතු ද?
 - (iv) ලේසර් සැත්කමක් නොකර ඇස් කණ්ණාඩි පැළඳීමට පුද්ගලයා අදහස් කරයි නම් එම පුද්ගලයා පැළඳිය යුතු ඇස් කණ්ණාඩි වර්ගය සහ එහි බලය කුමක් ද?
- (e) අක්ෂි සැත්කම් සඳහා සන්තතික ලේසර වෙනුවට ස්පන්දිත ${
 m UV}$ ලේසර භාවිත කිරීමේ වාසිය කුමක් ද?
- (f) ලේසර් සැත්කමක දී කෙටි පාරජම්බුල ස්පන්දයක් රෝගියකුගේ ස්වච්ඡය මතට පුක්ෂේපණය කරන ලදී. එය අරය $0.55~\rm mm$ වන ලපයක් ස්වච්ඡය මත සාදන අතර $0.55~\rm mJ$ ශක්තියක් ස්වච්ඡ පටකයේ ලපයට ලබා දේ. ස්වච්ඡ පෘෂ්ඨයෙන් ඉවත්වන පටකයේ ඝනකම ගණනය කරන්න. ස්වච්ඡ පටකයේ ආරම්භක උෂ්ණත්වය $30~\rm ^{\circ}C$ වේ. ඉවත්වන පටකයේ උෂ්ණත්වය $100~\rm ^{\circ}C$ දක්වා ඉහළ නැග ඉන් පසු තවදුරටත් උෂ්ණත්වය වැඩි නොවී එය වාෂ්පීකරණය වන බව උපකල්පනය කරන්න. [ස්වච්ඡ පටකවල ඝනත්වය = $10^3~\rm kg~m^{-3}$; ස්වච්ඡ පටකවල වාෂ්පීකරණයේ විශිෂ්ට ගුප්ත තාපය = $2.52 \times 10^6~\rm J~kg^{-1}$; $\pi = \frac{22}{7}~\rm ege$ ගන්න]
- (g) ස්පන්දිත UV ලේසරයක් මගින් සාදන ලද ස්පන්ද පෙළක් (2) රූපයේ පෙන්වා ඇත. තනි ස්පන්දයක ගබඩා වී ඇති ශක්තිය $20~\mathrm{mJ}$ වේ.
 - (i) තනි ස්පන්දයක පළල 10 fs නම් ලේසර් කදම්බයේ උච්ච ක්ෂමතාව (තනි ස්පන්දයක ක්ෂමතාව) නිර්ණය කරන්න.
 - (ii) ස්පන්ද පුනරාවර්තන ශීඝුතාව 500 Hz නම් ලේසර් කදම්බයේ මධානා ක්ෂමතාව නිර්ණය කරන්න.
- (\it{h}) ස්පන්දිත ${
 m UV}$ ලේසරවල වෙනත් භාවිතයක් සඳහන් කරන්න.

10 fs

- - (ii) කම්බිය C ලක්ෂායෙන් දක්වා ඇති අගය තෙක් ඇද මුදා හරිනු ලැබුවහොත් කම්බියට කුමක් සිදුවේ ද?
 - (iii) පුතාහබල-විකිුයා වකුයෙන් මායිම්වන වර්ගඵලයෙන් නිරූපණය වන්නේ කුමක් ද?

(b) ගොඩනැගිලි සහ වුහුහයන් ඉදිකිරීමේ දී විශාල භාරයන් දරා ගැනීම සඳහා යකඩ බාල්ක භාවිත කෙරේ. දෙකෙළවරින් රඳවා ඇති සෘජුකෝණාසුාකාර හරස්කඩක් සහිත බාල්කයක් මතට ඒකාකාර ලෙස වනාප්ත වූ භාරයක් යොදා ඇති විට බාල්කයේ ඉහළ කොටස සම්පීඩනය වී දිගෙන් අඩුවේ. එලෙසම බාල්කයේ පහළ කොටස ඇදී දිගෙන් වැඩිවේ. බාල්කයේ මැද ස්තරයේ දිග නොවෙනස්ව පවතින අතර එය උදාසීන අක්ෂය ලෙසින් හැඳින්වේ.

ඝනකම d වූ යකඩ බාල්කයේ ඉහළ කොටස මත ඇතිවන බලවල වාාාප්තිය (2) රූපයේ නිරූපණය කොට ඇත. රූපය පරිමාණයට ඇඳ නොමැත. මෙම රූපය ඔබගේ පිළිතුරු පතුයේ පිටපත් කර බාල්කයේ පහළ කොටසේ ඇතිවන බල වාාාප්තිය ඇඳ දක්වන්න.

- (c) (2) රූපයේ ඇති බාල්කයේ පහළ කොටස (3) රූපයෙන් පෙන්වා ඇත. උදාසීන අක්ෂයේ වකුතා අරය r වන අතර එය O කේන්දුයෙහි a කෝණයක් (රේඩියන වලින්) ආපාතනය කරයි. බාල්කයේ ඇති උදාසීන අක්ෂයේ දිග l වේ.
 - (i) l සඳහා පුකාශනයක් r සහ lpha ඇසුරෙන් ලියා දක්වන්න.
 - (ii) l' සඳහා පුකාශනයක් $r,\,d$ සහ a ඇසුරෙන් ලියා දක්වන්න. මෙහි l'යනු බාල්කයේ පහළ කොටසේ පතුලේ පිහිටි ස්තරයේ (B) දිග වේ.
 - (iii) බාල්කයේ පහළ කොටස මත පවතින විකිුයාවේ සාමාන ${f x}$ (average) අගය ${d\over d{f r}}$ මගින් ලබාදෙන බව පෙන්වන්න.
- (d) (i) උදාසීන අක්ෂය (NN') ඔස්සේ කිුයා කරන බලය කොපමණ ද?
 - (ii) බාල්කයේ පහළ කොටස මත කිුිිිිිිිිිි සාතනා බලයේ සාමානා (average) අගය F නම් පහළ කොටසේ පතුලේ පිහිටි ස්තරය (B) ඔස්සේ කිුිිිිිිිි කරන බලය කොපමණ ද?
 - (iii) බාල්කයේ පළල w සහ යකඩවල යං මාපාංකය Y නම් F බලය $F=rac{wd^2Y}{8r}$ මගින් ලබා දෙන බව පෙන්වන්න.
 - (iv) බාල්කයේ පහළ කොටස $1\cdot 0 \times 10^8~{
 m N~m^{-2}}$ වූ සාමානෳ ආතනෳ පුතෲබලයකට යටත්ව ඇතිවිට r අරයේ අගය නිර්ණය කරන්න. යකඩවල යං මාපාංකය $Y=2\cdot 0 \times 10^{11}~{
 m N~m^{-2}}$; $d=20~{
 m cm}$.
 - (v) $l=5.0~\mathrm{m}$ නම් α හි අගය රේඩියනවලින් නිර්ණය කරන්න.
 - $({
 m vi}) \; \cos(rac{lpha}{2}\,) = 0.9997$ ලෙස සලකමින් බාල්කයේ උදාසීන අක්ෂයේ මධා ලක්ෂායේ (M) පාතනය δ ගණනය කරන්න.
- (e) යකඩවලින් සාදා ඇති සෘජුකෝණාසුාකාර බාල්කයක් සහ I (හෝ H) -හැඩය ඇති බාල්කයක් (4) රූපයේ පෙන්වා ඇත. ඉදිකිරීම් ක්ෂේතුයේ දී සෘජුකෝණාසුාකාර බාල්ක වෙනුවට සාමානෲයෙන් භාවිත කරන්නේ I-හැඩය ඇති බාල්කයන්ය. හේතු දක්වමින් මෙහි ඇති වාසිය සඳහන් කරන්න.

8. ඩිෆිබුලේටරය (defibrillator) යනු වෛදා උපකරණයක් වන අතර එය හෘදයාබාධයකින් හදවත අකර්මණා වූ රෝගියකුගේ හදවතේ රිද්මයානුකූල රටාව නැවත යථා තත්වයට ගෙන ඒම සඳහා භාවිත කරනු ලබයි. මෙම උපකරණයේ ඇති ආරෝපිත ධාරිතුකයක් ඉතාමත් කෙටි කාලයක දී විසර්ජනය කර එතුළ ගබඩා වී ඇති ආරෝපණ, උපකරණයට සම්බන්ධකර ඇති ඉලෙක්ටෝඩ කට්ටලයක් මගින් අධි ශක්ති විදාපුත් කම්පනයක් ලෙස රෝගියාගේ පපුව හරහා හදවතට ලබා දෙයි.

- (a) ඩිෆිබුලේටරයක් තුළ ආරම්භයේ $400~{
 m V}$ විභව අන්තරයකට ආරෝපණය කොට ඇති ධාරිතුකයක් විසර්ජනය කිරීමෙන් හෘද රෝගියකුට $48~{
 m J}$ ශක්ති පුමාණයක් ලබාදෙයි.
 - (i) ධාරිතුකයක ගබඩා වී ඇති ශක්තිය W සඳහා පුකාශනයක් එහි ධාරණාව C සහ ධාරිතුකය හරහා පවතින විභව අන්තරය V ඇසුරින් වාූත්පන්න කරන්න.
 - (ii) උපකරණයේ ඇති ධාරිතුකයේ ධාරණාව කොපමණ ද?
 - (iii) ධාරිතුකය තුළ ගබඩා වී තිබූ ආරෝපණ පුමාණය ගණනය කරන්න.
 - (iv) ඉහත (iii) කොටසේ දී ගණනය කරන ලද සම්පූර්ණ ආරෝපණ පුමාණය 12 ms කාලයක දී නියත ධාරාවක් ශරීරයට යැවීමට පුමාණවත් වූයේ යැයි උපකල්පනය කර එම නියත ධාරාව ගණනය කරන්න.
 - (v) ඉහත (a) (iv) හි ගණනය කළ ධාරාව ගමන් කරන ලද මාර්ගයේ සඵල පුතිරෝධය කොපමණ ද?
- (b) (i) සමාන්තර තහඩු ධාරිතුකයක් පාරවිදයුත් නියතය k වූ මාධානයකින් පුරවා ඇත. ගවුස්ගේ නියමය භාවිත කරමින් මාධානය තුළ විදයුත් ක්ෂේතු තීවුතාවය E සඳහා පුකාශනයක් ධාරිතුකයේ ගබඩා වී ඇති ආරෝපණය Q, තහඩු වර්ගඵලය A, නිදහස් අවකාශයේ පාරවේදනතාව \mathcal{E}_0 සහ k ඇසුරෙන් ලබාගන්න.
 - (ii) ඉහත (a) කොටසෙහි සඳහන් ආරෝපිත ධාරිතුකය පාරවිදාපුත් නියතය k=5000 වන මාධායෙකින් පිරී තිබෙන තහඩු වර්ගඵලය $80~{\rm cm}^2$ වූ සමාන්තර තහඩු ධාරිතුකයක් නම් මාධායෙය් විදාපුත් ක්ෂේතු තීවුතාවයේ අගය කොපමණ ද? නිදහස් අවකාශයේ පාරවේදාපතාව $\mathcal{E}_0=9\cdot0\times10^{-12}\,{\rm F\,m}^{-1}$ වේ.
 - (iii) මෙම ධාරිතුකයේ තහඩු අතර පරතරය d නිර්ණය කරන්න.
- (c) (i) රෝගියා මත පදනම්ව නියමිත ශක්තියකින් යුතු විදුපුත් ස්පන්දයක් මගින් සුදුසු කම්පනයක් ලබාදීම සඳහා එක් ධාරිතුකයක් වෙනුවට එක් එක් ධාරිතුකයක් හරහා $400\,\mathrm{V}$ ට සමාන විභව අන්තරයක් සහිතව ඉහත (a) කොටසේ සඳහන් කරන ලද ධාරිතුක පහක් එකිනෙකට ශේණිගතව සම්බන්ධ කර ඇත. මෙසේ ධාරිතුක පහක් එකිනෙකට ශේණිගතව සම්බන්ධ ක්රීමෙන් පසුව රෝගියකුට ලබාදිය හැකි උපරිම ශක්ති පුමාණය ගණනය කරන්න.
 - (ii) ඉහත (a) කොටසේ සඳහන් කරන ලද වර්ගයේ සමාන ධාරණාවෙන් යුතු ධාරිතුක පහක් 400~V විභව අන්තරයක් යටතේ සමාන්තරගතව සම්බන්ධ කළහොත් රෝගියකුට සැපයිය හැකි උපරිම ශක්ති පුමාණය කොපමණ ද?
 - (iii) ඉහත (c) (i) සහ (c) (ii) හි සඳහන් කර ඇති ශ්‍රේණිගතව සහ සමාන්තරගතව සම්බන්ධ කරන ලද ධාරිතුක අතුරින් ඉහත ඩිෆිබුිලේටරය සඳහා ශ්‍රේණිගත සම්බන්ධතාවය සුදුසු යැයි නිර්දේශ කර ඇත. හේතු දක්වමින් මෙය කෙටියෙන් පැහැදිලි කරන්න.
- (d) (i) තුඩු හෝ රස් වළලු (corona) විසර්ජන කිුිියාවලිය සඳහා බලපාන සාධක ලියන්න.
 - (ii) ඉහත (b) (ii) හි සඳහන් මාධායෙහි බිඳවැටීමේ විදාුත් ක්ෂේතු තීවුතාවය (break down electric field intensity) $8.0 \times 10^8 \, \mathrm{V m}^{-1}$ නම්, මෙම ධාරිතුකයට හානි සිදු වේ ද? හේතු දක්වන්න.
- (e) ඉහත (b) හි සඳහන් ධාරිතුකයට ආරම්භයේ දී Q_0 ආරෝපණ පුමාණයක් ඇති අතර එහි විභව අන්තරයේ අගය V_0 වේ. $12~{
 m ms}$ කට පසුව ඇති ආරෝපණ පුමාණය සහ විභව අන්තරය පිළිවෙළින් $0.37Q_0$ සහ $0.37V_0$ නම් මෙම කාලාන්තරය තුළ දී ධාරිතුකයේ ගබඩා වී ඇති ශක්ති පුමාණයෙන් කොපමණ පුතිශතයක් රෝගියාට නිදහස් කර තිබේ ද? $[(0.37)^2=0.14$ ලෙස ගන්න]

$oldsymbol{9.}$ (\mathbf{A}) කොටසට හෝ (\mathbf{B}) කොටසට හෝ පමණක් පිළිතුරු සපයන්න.

(A) කොටස

- (i) R පුතිරෝධයක් හරහා I සරල ධාරාවක් $(\mathrm{d.c.})$ t කාලයක් තුළ ගලා යාමේ දී උත්සර්ජනය වන ශක්තිය සඳහා පුකාශනයක් ලියන්න.
 - $({
 m ii})$ සයිනාකාර පුතුාවර්ත වෝල්ටීයතාවයක් V, කාලය t සමඟ වීචලනය වන ආකාරය (1) රූපයේ දැක්වේ. වර්ග මධානා මූල වෝල්ටීයතාව $V_{
 m rms}$ සඳහා පුකාශනයක් උච්ච වෝල්ටීයතාවය $V_{
 m p}$ ඇසුරින් ලියන්න.
 - (iii) (1) රූපයේ පෙන්වා ඇති A,B,C හා D රේඛා ඇසුරින් පිළිවෙළින් V හා $V_{
 m p}$ නිරූපණය වන්නේ කුමන රේඛා මගින් ද?

- $({f v})$ ඉහත (a) $({f i})$ හි ශක්ති උත්සර්ජනය සඳහා ලබාගත් පුකාශනය පුතාාවර්ත ධාරා සඳහා නැවත සකස් කර ලියන්න.
- (b) පුතුහාවර්ත ජව සැපයුමකට සම්බන්ධ කරන ලද විදුපුත් පරිපථයක කොටසක් (2) රූපයේ දැක්වේ.

හරස්කඩ ක්ෂේතුඵලය $1~\mathrm{mm}^2$ හා දිග $10~\mathrm{m}$ වූ AB තඹ කම්බියක් මගින් පහත විදාුත් උපකරණ 230 V වූ පුදානයට සම්බන්ධ කර ඇත. AB හරහා ඇතිවන විභව බැස්ම නොසලකා හැරිය හැකි තරම් කුඩා

 $L_{
m j}$ – ශීතකරණය $300~{
m W}$

 $L_{
m _3}$ – විදුලි කේතලය $800~{
m W}$

(1) රූපය

- (ii) කම්බිය තුළින් උපරිම ධාරාව $10~{
 m s}$ ක කාලයක් තුළ ගලා ගියේ නම් එහි උෂ්ණත්වය ඉහළ ගිය පුමාණය ගණනය කරන්න. කම්බිය සම්පූර්ණයෙන්ම තාප පරිවරණය කර ඇතැයි සහ බාහිර පරිසරයට තාපය හානි නොවේ යැයි සලකන්න. කම්බියේ ස්කන්ධය $100\,\mathrm{g}$ කි. තඹවල පුතිරෝධකතාව සහ විශිෂ්ට තාප ධාරිතාව පිළිවෙළින් $1.8 \times 10^{-8} \ \Omega \ \mathrm{m}$ සහ $360 \ \mathrm{J \ kg^{-1} \ ^{\circ}} \mathrm{C^{-1}}$ වේ.
- (iii) අධි ධාරා ගලා යන අවස්ථාවල දී තනි තඹ කම්බියක් වෙනුවට කම්බි කිහිපයක් සමාන්තරව එකතු කොට සාදන ලද සංයුක්ත කම්බියක් භාවිත කරයි. මෙම සැකැස්ම තාප උත්සර්ජනය අවම කරන්නේ කෙසේ දැයි පැහැදිලි කරන්න.

(c) විදුලි මීටරයක් මගින් විදුවුත් ශක්ති පරිභෝජන පුමාණය ${
m kW}\,{
m h}$ වලින් මනිනු ලබයි. එහි ඇති තුනී ඇලුමිනියම් තැටිය භුමණය කරවීම සඳහා සුළි ධාරා යොදා ගනී. ඇලුමිනියම් තැටිය භුමණය වන වට ගණන විදයුත් ශක්ති පරිභෝජනයට අනුලෝමව සමානුපාතික වේ.

(i) (3) රූපයේ දැක්වෙන පරිදි තැටියේ තලයට ලම්බකව සිරස්ව ඉහළින් පරිනාලිකාවක් තබා ඇත. රූපයේ දක්වා ඇති දිශාවට අනුව පරිනාලිකාව තුළින් ගලා යන ධාරාව වැඩි වේ යැයි සලකන්න. (3) රූපය පිළිතුරු පතුයට පිටපත් කර පරිනාලිකාව තුළින් ගලා යන ධාරාව නිසා ඇති වන චුම්බක සුාව රේඛා සහ තැටිය මත ඇතිවන සුළි ධාරා ඒවායේ දිශාවන් දක්වමින් අඳින්න.

- (ii) විදුලි පරිභෝජනය නතර වූ පසු තැටියේ ඇති නිදහස් භුමණ නතර කිරීම සඳහා ස්ථීර චුම්බකයක් යොදා ඇති ආකාරය (4) රූපයේ දැක්වේ. තැටියේ මන්දනය සිදුවන ආකාරය පැහැදිලි කරන්න.
- (d) එක්තරා නිවසක කිසියම් දිනයක දී පස්වරු 6.00 සිට පස්වරු 10.00 අතර කාලයේ දී තැටිය මිනිත්තුවකට කැරකෙන වට ගණන (r.p.m.) මනිනු ලැබේ. එහි සිදුවූ විචලනය (5) රූපයේ දැක්වේ. විදුලි මීටරය කුමාංකනය කර ඇත්තේ භුමණ 500ක් 1~kW~h \circ සමක වන පරිදිය.

(i) පස්වරු 8.30 දී විදුයුත් ක්ෂමතා පරිභෝජනය ගණනය කරන්න.

(ii) පස්වරු 7.00 සිට පස්වරු 9.00 දක්වා විදුලි ඒකකයක මිල එක් k ${
m W}$ h යකට රු. 40.00 ලෙසත් අනෙකුත් වේලාවන් සඳහා එක් kW h යකට රු. 10.00 ලෙසත් වේ නම්, පස්වරු 6.00 සිට පස්වරු 10.00 දක්වා කාලය තුළ දී අයවිය යුතු මුළු මුදල ගණනය කරන්න.

(B) කොටස

- (a) සෘණ පුතිපෝෂණ විධියේ කිුයාත්මක වන පරිපූර්ණ කාරකාත්මක වර්ධකයකට (op amp) අදාළ 'ස්වර්ණමය නීති' (golden rules) ලියා දක්වන්න.
- (b) (1) රූපයේ පෙන්වා ඇති කාරකාත්මක වර්ධක පරිපථය V_2 සහ V_1 පුදාන වෝල්ටීයතා අතර ඇති අන්තරය වර්ධනය කරන නිසා එය 'ආන්තරික වර්ධකයක්' (differential amplifier) ලෙසට හැඳින්වේ. V_+ සහ V_- යනු පිළිවෙළින් කාරකාත්මක වර්ධක පරිපථයේ අපවර්තන නොවන සහ අපවර්තන පුදානවල වෝල්ටීයතා වන අතර V_0 යනු වර්ධකයේ පුතිදාන වෝල්ටීයතාවයයි.

- (i) V_{\perp} සඳහා පුකාශනයක් V_{2},R_{1} සහ R_{2} ඇසුරෙන් ලියා දක්වන්න.
- (1) රූපය
- (ii) V_{\perp} සඳහා පුකාශනයක් V_{γ} , R_{1} සහ R_{γ} ඇසුරෙන් ලියා දක්වන්න.
- (iii) V_0 සඳහා පුකාශනයක් V_1, V_2, R_1 සහ R_2 ඇසුරෙන් වනුත්පන්න කරන්න.
- (iv) $R_1 = R_2 = R$ නම් V_0 සඳහා පුකාශනයක් අපෝහනය කරන්න.
- (c) සොරෙකු ඇතුළුවීම දනවන අනතුරු ඇඟවීමේ නළාවක් කියාත්මක කිරීම සඳහා ඉහත (1) රූපයේ පරිපථය විකරණය කළ හැක. එම විකරණය කරන ලද පරිපථය (2) රූපයේ පෙන්වා ඇත. සේතු පරිපථයේ දකුණු බාහුව එක සමාන R_1 පුතිරෝධවලින් යුතු පුතිරෝධක දෙකකින් ද වම් බාහුව $50~\Omega$ පුතිරෝධකයකින් හා අධෝරක්ත (IR) ආලෝකයට සංවේදී පුතිරෝධකයකින් (LDR) සමන්විත වේ. පටු IR කදම්බයක් LDR එක මතට නොනවත්වා පතනය වීමට සලස්වා ඇත. සොරෙකු (B) ගොඩනැගිල්ලට ඇතුළු වූ විට ඔහු LDR මතට වැටෙන IR කදම්බය අවහිර කරයි.

- (i) LDR එක මතට IR කදම්බය පතනය වන විට එහි පුතිරෝධය $50~\Omega$ වේ. මෙවිට V_1,V_2 සහ V_0 හි අනුරූප අගයන් නිර්ණය කරන්න.
- (ii) සොරා මගින් IR කදම්බය අවහිර කරන විට LDR හි පුතිරෝධය $10^6~\Omega$ දක්වා ඉහළ යයි. මෙම අවස්ථාවේ දී V_1,V_2 සහ V_0 හි අනුරූප අගයන් නිර්ණය කරන්න.
- (d) (i) දැන් (3) රූපයේ පෙන්වා ඇති පරිදි op-amp හි V_0 පුතිදානය S-R පිළි-පොළක S පුදානයට සම්බන්ධ කරනු ලැබේ. R පුදානය දෙමං ස්වීචයක් හරහා භූගත කොට ඇත. Q=1 වූ විට අනතුරු ඇඟවීමේ නළාව කියාත්මක විය යුතුය.

පහත දැක්වෙන අවස්ථා දෙක සඳහා S සහ R හි පුදාන තාර්කික මට්ටම් ලියා දක්වන්න.

- (1) LDR එක මතට IR කදම්බය පතනය වන විට
- (2) සොරා මගින් IR කදම්බය අවහිර වන විට
- (ii) S-R පිළි-පොළක සතාාතා වගුව ලියා දක්වන්න.
- (iii) සොරා මගින් IR කදම්බය අවහිර වන විට අනතුරු ඇඟවීමේ නළාව නාද වන බව පෙන්වන්න.
- (iv) මෙම අවස්ථාවේ දී පිළි-පොළක් භාවිත කිරීම යෝගා වන්නේ ඇයි දැයි පහදා දෙන්න.
- (v) පසුව, නළාව නාද වීම නැවැත්විය යුතුය. මෙය සාක්ෂාත් කරගන්නේ කෙසේ ද? ඔබගේ පිළිතුරට හේතු දෙන්න.

${f 10.}\ ({f A})$ කොටසට හෝ $({f B})$ කොටසට හෝ පමණක් පිළිතුරු සපයන්න.

(A) කොටස

භූ තාපජ ශක්තිය යනු පෘථිවිය තුළ ඇති 'රත් තැන්' (hot spots) ලෙස හඳුන්වන උණුසුම් පුදේශවල සිරවී ඇති තාප ශක්තියයි. භූගත ජලය 'රත් තැන්' සමඟ ස්පර්ශ වන විට අධිතාපන ජලය ජනනය වන අතර ඒවා අධි පීඩනයක් යටතේ උණු වතුර තටාක ලෙස පාෂාණ අතර සිරවී පවතී.

(a) පරිමාව $1.0 \times 10^8 \,\mathrm{m}^3$ ක් වූ $200 \,^{\circ}\mathrm{C}$ උෂ්ණත්වයක් යටතේ අධි පීඩනයේ පවතින භුගත උණු වතුර තටාකයක් 'රත් තැන්' කලාපයක (hot spot region) පවතී. උණු වතුර තටාකය දක්වා පොළොව සිදුරු කර (1) රූපයේ දැක්වෙන පරිදි (පරිමාණයට නොවේ) හුමාලය සිරස් සිලින්ඩරාකාර නළයක් හරහා ටර්බයිනයකට යාමට සලස්වනු ලැබේ. අධි තාපනය වූ ජලයේ $200 \,^{\circ}\mathrm{C}$ සිට $100 \,^{\circ}\mathrm{C}$ දක්වා මධානා විශිෂ්ට තාප ධාරිතාවය සහ මධානා සනන්වය පිළිවෙළින් $4.5 \times 10^3 \,\mathrm{J \ kg^{-1} \ K^{-1}}$ සහ $900 \,\mathrm{kg} \,\mathrm{m}^{-3}$ යැයි උපකල්පනය කරන්න.

- (i) විශිෂ්ට තාප ධාරිතාවය c සහ ස්කන්ධය m වූ වස්තුවක උෂ්ණත්වය $\Delta \theta$ වලින් අඩුකළ විට එම වස්තුව මගින් පිටකරන තාපය ΔQ සඳහා සමීකරණයක් ලියන්න.
- (ii) තටාකයේ ඇති අධි තාපනය වූ $200~^\circ\mathrm{C}$ ජලය, ජලයේ තාපාංකය $(100~^\circ\mathrm{C})$ දක්වා අඩුකළ විට අධි තාපනය වූ ජලය මගින් නිකුත් වන තාප පුමාණය ගණනය කරන්න. නළය තටාකයට ඇතුළු කළ පසුව, වායුගෝලීය පීඩනයේ දී අධිතාපනය වූ ජලයේ උෂ්ණත්වය $100~^\circ\mathrm{C}$ දක්වා පහත වැටේ යැයි උපකල්පනය කරන්න.
- (iii) ඉහත (a)(ii) හි ගණනය කළ අධි තාපනය වූ ජලය මුදා හරින ලද ශක්තිය භාවිතයෙන් නිපදවිය හැකි හුමාලයේ මුළු ස්කන්ධය ගණනය කරන්න. ජලයේ වාෂ්පීකරණයේ විශිෂ්ට ගුජන තාපය $2\cdot 5 \times 10^6 \, \mathrm{J\,kg^{-1}}$ වේ.
- (b) පිළිවෙළින් ඇතුළත අරය r_1 සහ පිටත අරය r_2 වූ තාප සන්නායකතාවය k_1 වන ලෝහයකින් සෑදූ සිලින්ඩරාකාර නළයක් තාප සන්නායකතාවය k_2 වන සනකම් පරිවාරක දුවායකින් ආවරණය කර ඇත. සංයුක්ත නළයේ පිටත අරය r_3 වේ. නළයේ හරස්කඩක් (2) රූපයේ දැක්වේ. අනවරත අවස්ථාවේ දී නළයේ අභාන්තර සහ බාහිර උෂ්ණත්වයන් පිළිවෙළින් θ_1 සහ $\theta_2(\theta_1>\theta_2)$ වේ. සංයුක්ත නළයේ ඒකීය දිගක් හරහා අරීයව පිටතට තාපය ගැලීමේ ශීඝුතාවය $\frac{Q}{t}$, $\frac{Q}{k_1\pi(r_2+r_1)} + \frac{(r_3-r_2)}{k_2\pi(r_3+r_2)}$

(2) රූපය

මගින් ලබා දෙන බව පෙන්වන්න.

- (c) තු තාපජ විදුලි බලාගාර විදුලිය නිපදවන්නේ භූ තාපජ ශක්තිය භාවිතයෙනි. ඉහත (a) හි භූගත තටාකයෙන් ලබා ගන්නා $100\,^{\circ}\mathrm{C}$ ඇති හුමාලය පිළිවෙළින් ඇතුළත අරය $48~\mathrm{cm}$ සහ පිටත අරය $52~\mathrm{cm}$ වූ සිලින්ඩරාකාර ලෝහ නළයක් හරහා ටර්බයිනයට සපයනු ලැබේ. මෙම නළය ඝනකම $6~\mathrm{cm}$ වූ පරිවාරක දුවායෙකින් ආවරණය කර ඇත. ලෝහයේ සහ පරිවාරක දුවායෙහි තාප සන්නායකතාවයන් පිළිවෙළින් $100~\mathrm{W}~\mathrm{m}^{-1}~\mathrm{K}^{-1}$ සහ $\frac{2}{11}~\mathrm{W}~\mathrm{m}^{-1}~\mathrm{K}^{-1}$ වේ.
 - (i) පරිසරයේ සාමාන $_{\rm S}$ උෂ්ණත්වය $30\,^{\circ}{\rm C}$ නම්, අනවරත අවස්ථාවේ දී B සහ C අතර ඇති ්ත්ළයේ ඒකීය දිගක ඇති $100\,^{\circ}{\rm C}$ හුමාලය මගින් පරිසරයට සිදුවන තාපය හානිවීමේ ශීඝුතාවය ගණනය කරන්න. $\pi=3$ ලෙස සලකන්න. ගණනය කිරීමේ දී 10^{-1} පදය හා සසඳන විට 10^{-4} අඩංගු පදය නොසලකා හරින්න.
 - (ii) පෘථිවි පෘෂ්ඨයේ සිට ටර්බයිනය දක්වා ඇති නළයේ (B හා C අතර) දිග $500\,\mathrm{m}$ නම් B සිට C දක්වා හුමාලය මගින් පරිසරයට සිදුවන තාපය හානිවීමේ ශීඝුතාවය ගණනය කරන්න.
 - (iii) පෘථිවිය තුළ (A සිට B දක්වා) ඒකීය දිගක තාපය හානිවීමේ ශීඝුතාවය B සිට C දක්වා ඒකීය දිගක තාපය හානිවීමේ ශීඝුතාවය මෙන් හරි අඩක් යැයි උපකල්පනය කරන්න. AB හි දිග 2 km කි. සම්පූර්ණ නළයෙන්ම (A සිට C දක්වා) සිදුවන මුළු තාපය හානිවීමේ ශීඝුතාවය ගණනය කරන්න.
 - (iv) හුමාලය භාවිත කරමින් ටර්බයිනය 8·58 MW ක යාන්තුික ක්ෂමතාවක් (පුතිදාන ක්ෂමතාවක්) නිපදවයි. ටර්බයිනයේ යාන්තුික කාර්යක්ෂමතාවය 40% නම්, හුමාලය මගින් ටර්බයිනයට ලබාදෙන පුදාන ක්ෂමතාව ගණනය කරන්න.
 - (v) ඉහත (a) (ii) හි ගණනය කරන ලද අධි තාපන ජලය මගින් මුදා හැරෙන තාප ශක්තිය මගින් මෙම භූ තාපජ බලාගාරය කොපමණ වසර ගණනක් කිුියාත්මක කළ හැකි ද? (2සර $1=3\times10^7~{
 m s}$ ලෙස ගන්න)

(B) කොටස

ඒකවර්ණකාරකයක් (monochromator) යනු පුකාශ උපකරණයක් වන අතර එය ඒකවර්ණ පෝටෝන කදම්බයක් නිපදවීමට භාවිත කළ හැක. පුකාශ විදුහුත් පරීක්ෂණයක දී ඒකවර්ණකාරකය විසින් නිපදවන ඒකවර්ණ පෝටෝන කදම්බය (1) රූපයේ දැක්වෙන පරිදි සෘජුකෝණාසාකාර විවරයක් හරහා ගමන් කොට රික්ත කුටීරයක තබා ඇති ලෝහ තහඩුවක් මත ලම්බකව පතිත වේ.

ආරම්භයේ දී, ඒකවර්ණකාරකය තරංග ආයාමය 100 nm වන පෝටෝන කදම්බයක් නිපදවයි.

අදාළ සියලු ගුණනයන් සඳහා $hc=1240~{
m eV}$ nm ලෙස ගන්න. මෙහි h යනු ප්ලාන්ක් නියතය වන අතර c යනු ආලෝකයේ වේගය වේ.

- (a) (i) විදාපුත් චුම්බක වර්ණාවලියෙහි $100\,\mathrm{nm}$ තරංග ආයාමය අයිතිවන පුදේශයෙහි නම කුමක් ද?
 - (ii) 100 nm පෝටෝනයකට අදාළ ශක්තිය eV වලින් ගණනය කරන්න.
 - (iii) තරංග-අංශු ද්වෛතය සැලකිල්ලට ගනිමින්, ඉහත ශක්තිය ඇති පෝටෝනයක ගමාතාවය ගණනය කරන්න. ($h=6.6\times10^{-34}\,\mathrm{J\,s}$)
- (b) (i) එක් එක් පෝටෝනයක ශක්තිය E වන පෝටෝන n සංඛාාවක් සහිත සමාන්තර ඒකවර්ණ පෝටෝන කදම්බයක් A වර්ගඵලයක් හරහා t කාලයක් තුළ ගමන් කිරීමේ දී එහි තීවුතාවය I (ඒකක වර්ගඵලයක් හරහා ඒකක කාලයක දී ගලායන ශක්තිය) සඳහා පුකාශනයක් වුහුත්පන්න කරන්න.
 - (ii) ඉහත (1) රූපයේ පෙන්වා ඇති $100\,\mathrm{nm}$ ඒකවර්ණ කදම්බයේ තීවුතාවය $9\cdot 92\,\times 10^{-8}\,\mathrm{W\,m^{-2}}$ නම් සහ සෘජුකෝණාසුකාර විවරයෙහි වර්ගඵලය $3\,\mathrm{mm}\times 4\,\mathrm{mm}$ නම්, ඒකක කාලයක දී මෙම විවරය හරහා ගමන් කරන පෝටෝන සංඛ්යාව කොපමණ ද? $(1\,\mathrm{eV}=1\cdot 6\times 10^{-19}\,\mathrm{J})$
 - (iii) පෙන්වා ඇති ලෝහ තහඩුව වර්ගඵලය 2mm×2mm වන රිදී තහඩුවක් නම්, පතිත වන සෑම පෝටෝනයක්ම එක් පුකාශ ඉලෙක්ටුෝනයක් විමෝචනය කරන බව උපකල්පනය කරමින්, රිදී තහඩුවෙන් ඒකක කාලයක දී විමෝචනය වන පුකාශ ඉලෙක්ටුෝන සංඛ්‍යාව ගණනය කරන්න.
- (c) (i) මෙම පරීක්ෂණය සඳහා භාවිත කළ රිදී තහඩුවේ කාර්ය ශුිතය $4\cdot 0$ eV වේ. විමෝචනය වන පුකාශ ඉලෙක්ටෝනවල අවම හා උපරිම චාලක ශක්ති අගයන් eV වලින් සොයන්න.
 - (ii) $50 \, \mathrm{nm}$ බැගින් වූ වැඩිවීම්වලින් යුක්තව $100 \, \mathrm{nm}$ සිට $500 \, \mathrm{nm}$ දක්වා තරංග ආයාම සහිත පෝටෝන කදම්බ නිපදවීම සඳහා ඒකවර්ණකාරකය සකස් කර ඒ සෑම තරංග ආයාමයකදීම රිදී තහඩුවෙන් විමෝචනය වන පුකාශ ඉලෙක්ටෝනවල උපරිම චාලක ශක්තිය (K_{max}) මනිනු ලබයි. පෝටෝන කදම්බයේ තරංග ආයාමය සමඟ K_{max} හි විචලනය (2) රූපයේ දැක්වේ. A හා B ලක්ෂායන්හි අනුරූප අගයන් මොනවා ද?
 - ි. ම් වි. ම් වි
 - (iii) කාර්ය ශි්තය 5·0 eV වන රත් තහඩුවක් සඳහා ඉහත සඳහන් පරීක්ෂණය නැවත සිදු කරයි. (2) රූපයේ පුස්තාරය ඔබේ පිළිතුරු පතුයේ පිටපත් කර රත් තහඩුව සඳහා අනුරූප වකුය එම පුස්තාරයේම පැහැදිලිව ඇඳ දක්වත්න.
 - (iv) තරංග ආයාමය $200~{\rm nm}$ වූ එකම පෝටෝන කදම්බයක් තහඩු දෙක මත වෙන වෙනම පතිත කරනු ලබයි. රිදී හා රන් තහඩු සඳහා මනිනු ලබන පුකාශ ධාරා පිළිවෙළින් $i_{\rm S}$ සහ $i_{\rm g}$ වේ. $i_{\rm g}=i_{\rm S}$, $i_{\rm g}>i_{\rm S}$ සහ $i_{\rm g}< i_{\rm S}$ යන පුකාශයන්ගෙන් කුමක් සතා වේ ද? ඔබේ පිළිතුරට හේතු දක්වන්න. තහඩු මත පතිතවන සෑම පෝටෝනයක්ම එක් පුකාශ ඉලෙක්ටෝනයක් වීමෝචනය කරන බව උපකල්පනය කරන්න.
- (d) කොවිඩ්-19 (Covid-19) වෛරස අකිය කිරීම සඳහා 222 nm විකිරණ භාවිත කළ හැකි බව වාර්තා වී ඇත. නමුත් වෛදා විදාහත්මක යෙදීම්වල දී 222 nm විකිරණ මිනිස් සිරුරකට භාවිත කළ හැකි උපරිම නිරාවරණ සීමාව වන්නේ පැය 8ක් තුළ 24 mJ cm $^{-2}$ ය. පුද්ගලයකුගේ කොවිඩ්-19 වෛරස් සහිත අත්ලක සිට 20 cm ඇතින් තබා ඇති 222 nm විකිරණ විමෝචනය කරන ලක්ෂායීය පුභවයකට තිබිය යුතු උපරිම ක්ෂමතාව කොපමණ ද? ($\pi=3$ ලෙස ගන්න.)