

扫码添加小助手,发送"KubeEdge"加群

Cloud\lative Lives

KubeEdge技术详解与实战

KubeEdge架构与核心技术

华为云原生团队核心成员 & CNCF社区主要贡献者倾力打造

云原生、边缘计算的发展回顾

云简史 - 云原生

- 核心组成部分:
 - 服务器→虚拟机→Buildpacks→容器
- 隔离单元
 - 从更重到更轻、在启动时间和大小
- 不变性
 - 从宠物到牛
- 供应商
 - 从闭源单一供应商到开源跨供应商

持续狂热的Kubernetes

持续丰富的云原生版图

什么是边缘计算

- 万物互联时代快速到来,无线网络普及:网络边缘的设备数量、产生的数据快速增长
- 集中式的数据中心(包括公有云服务)将面临
 实时性、带宽、能耗、数据隐私的挑战。面向
 边缘设备所产生海量数据计算的边缘计算模型
 应运而生。

章鱼就是用"边缘计算" 来解决实际问题的

边缘计算的定义与形态

xref: https://wiki.akraino.org/

边缘计算的价值

联接的广泛性

- 广泛地域的低成本联接
- 可移动、按需部署的联接
- 多制式、多协议的稳定可靠联接
- 边缘设备间互联

数据带宽优化

- 本地数据预处理,减少传输带宽需求
- 数据的分布式计算与存储
- 本地数据缓存(如CDN)

安全与隐私保护

- 设备安全
- 网络安全
- 数据安全
- 应用安全

边缘计算

业务的实时性

- E2E业务时延<10ms
- · AI增量学习,实时更新模型

有限的自治性

- 业务本地自治,保障业务可用性
- 数据处理、机器学习、深度学习等 AI能力在边缘运行
- 联接控制,自动智能运算和决策

边缘计算的发展历程

美国太平洋西北国家 实验室的Ryan首次提 出边缘计算概念

2013

美国韦恩州立大学施巍 松教授团队给出了边缘 计算正式定义

2016.5

AWS、Google、Azure、 华为云、阿里云等云厂商 相继发布边缘计算产品

2018

2015

欧洲电信标准化协会 (ETSI)发表关于移动边缘 计算的白皮书

2016.11

华为、沈阳自动化研究所、信 通院、英特尔、ARM等成立边 缘计算产业联盟,致力于推动 "政产学研用",引领边缘计 算产业的健康可持续发展

2019

KubeEdge进入CNCF官 方项目,LF成立边缘计 算伞形社区LF EDGE

4大因素推动边缘计算快速发展

• 低时延

为满足低时延的要求,靠近业务现场的边缘构建解决方案,减少业务处理时延

• 海量数据

物联网时代边缘数据爆炸性增长,全部上云成本高昂, 数据在本地进行分析和过滤,节省带宽

• 隐私安全

数据涉及到企业生产和经营活动安全,在边缘处理企业 保密信息和个人隐私

• 本地自治

- 不依赖云端的离线处理能力和自我恢复能力

基于K8s构建边缘计算平台

Our View

- 边缘是云的延伸
 - 资源/设备位于边缘,注册上报云端统一管理
 - 应用/函数由云端统一调度部署
- 云-边双向通信
 - 私有网络、防火墙隔断
 - 网络不稳
 - 海量、分散的边缘
- 云-边松耦合
 - 边缘自治: 本地化, 响应快, 可靠
 - 去中心化:边缘之间互相感知
- 边缘节点异构
 - 资源有限
 - 大规模设备管理
 - 多种设备通信协议

成为事实标准的Kubernetes

Kubernetes基本概念

- Pod
 - 应用实例,一组功能相关的Container的封装
 - 共享存储和Network Namespace
 - K8S调度和作业运行的基本单位(Scheduler调度, Kubelet运行)
- Workloads (Deployment, StatefulSet, DaemonSet, Job...)
 - 应用的部署模型,一组功能相关的Pod的封装
- Service , Ingress
 - 应用的访问方式, Pod "防失联"
 - 给一组pod设置反向代理
- Persistent Volume
 - 应用、存储分离,独立于Pod生命周期的存储卷
- Configmap , Secret
 - 部署配置分离

Kubernetes架构

设计理念

- 只有API server可以访问etcd
- 组件通过 API Server 访问集群状态
- API采用声明式设计
- API对象彼此互补、可组合
- 优先使用事件监听而不是轮询
- ...

基于K8s构建边缘计算平台

Advantages

- 容器化应用封装
 - Build once, run anywhere
 - 轻量化基础镜像,降低资源占用
- 通用的应用抽象定义
 - 业界事实标准
 - 云上、边缘统一管理
- 松耦合的架构
 - 易扩展的API框架
 - 易于定制平台组件

基于K8s构建边缘计算平台

Advantages

- 容器化应用封装
 - Build once, run anywhere
 - 轻量化基础镜像,降低资源占用
- 通用的应用抽象定义
 - 业界事实标准
 - 云上、边缘统一管理
- 松耦合的架构
 - 易扩展的API框架
 - 易于定制平台组件

Challenges

- 资源有限
 - 往往很少
- 网络受限
 - 私网,带宽有限,延迟高
- 边缘如何离线自治
 - 网络不稳,随时可能离线
 - 离线状态下,边缘应用继续工作
- 设备接入和管理
 - 缺少设备抽象

Cluster vs. Nodes at the Edge?

KubeEdge项目

KubeEdge项目

- KubeEdge致力于将Kubernetes的能力拓展到边缘:
 - 业界首个边缘容器平台项目
 - Apache 2.0协议
 - 2019年3月捐给CNCF基金会
 - K8s IoT Edge WG参考架构
 - 基于Kubernetes构建,100%兼容K8s API
 - 6个特性版本,最新版本为v1.1.0

KubeEdge社区

- 1800+ Star , 440+ Fork , **200+贡献者**
- 周平均Issue + PR: **190**+
- 参与社区贡献的企业包括:中国联通,
 ARM,中国移动,时速云,JD.com,浙
 大SEL实验室,EMQ,InfoBlox,Inovex,
 Midokura等

核心理念

云边协同

- 双向多路复用消息通道,支持边缘节点位于私有网络
- Websocket + 消息封装,大幅减少通信压力,高时延下仍可正常工作

• 边缘离线自治

- 节点元数据持久化,实现节点级离线自治
- 节点故障恢复无需List-watch,降低网络压力,快速ready

• 极致轻量

- 重组Kubelet功能模块,极致轻量化(~10mb内存占用)
 - · 移除内嵌存储驱动,通过CSI接入
- 支持CRI集成Containerd、CRI-O,优化runtime资源消耗

KubeEdge架构

KubeEdge 云端组件

- EdgeController
 - 边缘节点管理
 - 应用状态元数据云边协同
- 设备抽象API/DeviceController
 - 接入和管理边缘设备
 - 设备元数据云边协同
- CSI Driver
 - 同步存储数据到边缘
- Admission Webhook
 - 校验进入KubeEdge对象的合法性

KubeEdge 边缘组件

- EdgeHub
 - Messaging over WebSocket 提供可靠的云边信息同步
- MetaManager
 - 元数据本地持久化
- Edged
 - Kubelet-lite
 - 轻量化实现Pod生命周期
- DeviceTwin
 - 同步设备信息到云端
- EventBus
 - MQTT client
- ServiceBus
 - HTTP client

KubeEdge关键能力

支持CRI接口,可集成Containerd,CRI-O

支持CSI接口在边缘集成容器存储

边缘设备管理

EdgeMesh: ServiceMesh at edge

- EdgeMesh-proxy负责边缘侧流量转发
- 边缘内置域名解析能力,不依赖中心DNS
- 支持L4,L7流量治理
- 支持跨越边云的一致的服务发现和访问体验
- · *使用标准的istio进行服务治理控制
- *P2P技术跨子网通信

EdgeSite:边缘集群

- 在边缘运行(轻量化的) K8s集群
- · 提供标准一致的K8s集群能力
- 利用KubeEdge插件框架实现功能定制
- 支持集群模式下的边缘设备管理

针对边缘集群的云边协同

公众号容器魔方

每日推送图文 社区最新动态、直播课程、技术干货

KubeEdge技术交流群

添加小助手,发送KubeEdge加群 社区专家入驻,技术问题随时答疑

Thank You

https://bbs.huaweicloud.com/webinar/91fadcd3ea2a435f 91771fc13d5136b8

直播 每周四 晚20:00

