Assignment: Time Series Prediction using RNNs with Keras

Objective: Train a Recurrent Neural Network (RNN) using Keras to predict future values of the Airline Passenger dataset. Submit your predictions in a CSV file along with a Jupyter notebook detailing your exploratory data analysis (EDA), architecture selection, training process, and evaluation.

Dataset: You will be provided with the Airline Passenger dataset, which contains monthly totals of international airline passengers from January 1949 to December 1960.

Columns:

- Month: The month and year of the record (e.g., 1949-01, 1949-02, ...).
- Passengers: The number of international airline passengers in thousands.

Tasks:

1. Exploratory Data Analysis (EDA):

- Load the dataset using Pandas.
- Visualize the time series data to understand its patterns, trends, and seasonality.
- Check for any missing values and decide on a strategy to handle them.

2. Data Preprocessing:

- Normalize or standardize the data using tools like MinMaxScaler or StandardScaler from Scikit-learn.
- Convert the time series into a supervised learning problem. For instance, use the past 10 values to predict the next one.
- Split the data into input sequences (X) and their corresponding targets (y).
- Split the data into training and test sets. Use data from January 1949 to December 1958 for training and data from January 1959 to December 1960 for testing.

3. Architecture Selection using Keras:

- Design an RNN architecture using Keras layers like SimpleRNN.
- Decide on the number of hidden units, the type of activation functions, and any regularization techniques (like dropout).
- Choose an appropriate loss function (e.g., Mean Squared Error) and optimization algorithm.
- Compile the model using Keras' compile method.

4. Training:

- Train your RNN model on the training data using Keras' **fit** method.
- Monitor the training
- Implement early stopping or model checkpoints using Keras callbacks to save the best model.

5. **Evaluation**:

- Use the trained model to predict the values in the test set using Keras' predict method.
- Calculate performance metrics like MSE or MAE to evaluate the model's accuracy on the test set.
- Visualize the actual vs. predicted values for the test data.

6. Submission:

- Save your predictions for the test set in a CSV file. The file should have two columns: one for the actual values and one for the predicted values.
- CSV file should contain 2 columns: Month and Passengers!
- Number of passengers is an INTEGER NUMBER!
- From January 1959 to December 1960: 24 values!
- Attached is an example.

 Submit a Jupyter notebook that contains all the steps: EDA, architecture selection, training, and evaluation. Ensure your code is well-commented, and include markdown cells to explain your decisions and observations.

Evaluation Criteria:

- Quality of EDA and the insights derived.
- Appropriateness of data preprocessing steps.
- Rationale behind the chosen RNN architecture and its parameters.
- Training strategy and the model's performance on the training data.
- Accuracy of predictions on the test set.
- Clarity and organization of the submitted Jupyter notebook.