Mitschrift zur Vorlesung

Analysis einer Variablen

Gehalten von Prof. Dr. Rupert Frank Wi
Se21/22

Inhaltsverzeichnis

1	Zah	ılen	2
	1.1	Das Prinzip der vollständigen Induktion	2
	1.2	Der Existenz- und Eindeutigkeitssatz über die reellen Zahlen	5
	1.3	Folgerungen aus dem Existenz- und Eindeutigkeitssatz	9
	1.4	Konstruktion von $\mathbb R$ durch Dedekindsche Schnitte (1872)	10
	1.5	Dezimaldarstellung und b -adische Darstellung reeller Zahlen	12
	1.6	Abzählbarkeit und Überabzählbarkeit	13
2	Folgen und Reihen		
	2.1	Folgen und Grenzwerte.	15
	2.2	Teilfolgen	19
	2.3	Bestimmte Divergenz	21
	2.4	Unendliche Reihen	22
	2.5	Umordnung von Reihen	27
	2.6	Cauchy-Produkt von Reihen	28
	2.7	Die Exponentialreihe	30
3	Stetige Funktionen 3		
	3.1	Funktionen und Stetigkeit	32
	3.2	Sätze über stetige Funktionen	34
	3.3	Grenzwerte von Funktionen	37
	3.4	Monotone Funktionen	39
	3.5	Logarithmus und allgemeine Potenz	4 0
	3.6	Komplexe Zahlen	43
	3.7	Die Exponentialfunktion im Komplexen und die trigonometrischen Funktionen	48
4		ferentiation	59
	4.1	Ableitung .	59
	4.2	Lokale Extrema und der Mittelwertsatz .	62
	4.3	Ableitungen höherer Ordnung	65
5	Integration 69		
	5.1	Das Riemannsche Integral	69
	5.2	Integration und Differentiation	75
	5.3	Uneigentliche Integrale	79
	5.4	Die Gammafunktion	82
6	Funktionenfolgen 8		
	6.1	Gleichmäßige Konvergenz	85
	6.2	Potenzreihen und Tayloreihen	89

1 Zahlen

1.1 Das Prinzip der vollständigen Induktion

Natürliche Zahlen: $\mathbb{N} = \{1, 2, 3, \ldots\}$ $\mathbb{N}_0 = \mathbb{N} \cup \{0\} = \{0, 1, 2, 3, \ldots\}$

Vorsicht mit Konventionen! (Manchmal gilt $0 \in \mathbb{N}$.)

Definition 1.1. Prinzip der vollständigen Induktion

Gegeben seien Aussagen $A(n), n \in \mathbb{N}$.

Dann folgt aus

- Induktionsanfang. A(1) ist wahr, und
- Induktionsschritt. Wann immer für ein $n \in \mathbb{N}$ die Aussagen A(n) wahr ist, so ist auch A(n+1) wahr.

dass A(n) für alle $n \in \mathbb{N}$ wahr ist.

Beispiel 1.2. Gaußsche Summenformel

$$1 + 2 + 3 + \dots + 99 + 100 = \underbrace{(1 + 100)}_{=101} + \underbrace{(2 + 99)}_{=101} + \underbrace{(3 + 98)}_{=101} + \dots + \underbrace{(50 + 51)}_{=101} = 50 \cdot 101 = 5050$$

Für den allgemeinen Fall s. Satz 1.4.

Notation 1.3. Sind $a_K, a_{K+1}, \ldots, a_L$ Zahlen, so ist

$$\sum_{n=K}^L a_n := a_K + a_{K+1} + \ldots + a_L; \qquad \sum_{n=K}^{K-1} a_n := 0 \text{ "leere Summe"}$$

Satz 1.4. (Die Gaußsche Summenformel) Für alle $N \in \mathbb{N}_0$,

$$\sum_{n=1}^{N} n = \frac{N \cdot (N+1)}{2}$$

Beweis. Induktions and ng, N=0:

$$\sum_{n=1}^{0} n = 0 = \frac{0 \cdot (0+1)}{2} \quad \checkmark$$

Induktions schritt:

$$\sum_{n=1}^{N+1} n = \sum_{\substack{n=1 \\ \frac{\text{IV}}{2} \\ \frac{1}{2} \\ N - (N+1)}}^{N} + (N+1) = \frac{N(N+1) + 2(N+1)}{2} = \frac{(N+2)(N+1)}{2}$$

Satz 1.5. (Geometrische Reihe) Für alle $x \in \mathbb{R} \setminus \{1\}$, wobei \mathbb{R} die Menge der rellen Zahlen bezeichnet, und $n \in \mathbb{N}_0$,

$$\sum_{n=0}^{N} x^n = \frac{1 - x^{N+1}}{1 - x}$$

Eine Herleitung ist durch Polynomdivison möglich.

Beweis. Induktions and nq, N=0:

$$\sum_{n=0}^{0} x^n = x^0 = 1 = \frac{1 - x^{0+1}}{1 - x} \quad \checkmark$$

Induktions schritt:

$$\sum_{n=0}^{N+1} x^n = \sum_{n=0}^{N} x^n + x^{(N+1)} = \frac{1 - x^{N+1} + (1-x)x^{N+1}}{1 - x} = \frac{1 - x^{N+2}}{1 - x}$$

Beispiel 1.6. (Der binomische Lehrsatz)

Erinnerung:

$$(x+y)^0 = 1 \\ (x+y)^1 = x+y \\ (x+y)^2 = x^2 + 2xy + y^2 \\ (x+y)^3 = x^3 + 3x^2y + 3xy^2 + y^3 \\ (x+y)^4 = x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4 \\ \vdots$$
 "Pascalsches Dreieck"
$$1 \\ 1 \\ 2 \\ 1 \\ 3 \\ 3 \\ 1 \\ 1 \\ 4 \\ 6 \\ 4 \\ 1$$

Für den allgemeinen Fall s. Satz 1.10.

Notation 1.7. Sind $a_K, a_{K+1}, \ldots, a_L$ Zahlen, so ist

$$\prod_{n=K}^{L} a_n := a_K \cdot a_{K+1} \cdot \ldots \cdot a_L; \qquad \prod_{n=K}^{K-1} a_n := 1 \text{ "leeres Produkt"}$$

Definition 1.8. (Fakultät) Für $N \in \mathbb{N}_0$,

$$N! := \prod_{n=1}^{N} n$$

Definition 1.9. (Binomialkoefizienten) Für $N, K \in \mathbb{N}_0$ mit $0 \le K \le N$,

$$\binom{N}{K} := \frac{N!}{K! \cdot (N - K)!} = \prod_{k=1}^{K} \frac{N - k + 1}{k}$$

Satz 1.10. (Der binomische Lehrsatz) $F\ddot{u}r \ x, y \in \mathbb{R} \ und \ N \in \mathbb{N}_0$,

$$(x+y)^N = \sum_{n=0}^N \binom{N}{n} x^n y^{N-n}$$

Also sind die Koeffizienten in der N-ten Reihe des Pascalschen Dreiecks gerade $\binom{N}{n}$ mit $n=0,\ldots,N$.

Lemma 1.11. Für alle $N, K \in \mathbb{N}$ mit $1 \le K \le N$,

$$\binom{N}{K-1} + \binom{N}{K} = \binom{N+1}{K}$$

Beweis. (Lemma 1.11)

$$\binom{N}{K-1} + \binom{N}{K} = \frac{N!}{(K-1)!(N-K+1)!} + \frac{N!}{K!(N-K)!}$$

$$= \frac{N!(K+(N-K+1))}{K!(N-K+1)!} = \frac{(N+1)!}{K!((N+1)-K)!} = \binom{N+1}{K}$$

Beweis. (Satz 1.10)

Induktions and q, N = 0:

$$(x+y)^0 = 1 = \sum_{n=0}^{0} {0 \choose n} x^n y^{0-n} \quad \checkmark$$

Induktions schritt:

$$(x+y)^{N+1} = (x+y)^{N} \cdot (x+y) \stackrel{\text{IV}}{=} \left(\sum_{n=0}^{N} \binom{N}{n} x^{n} y^{N-n}\right) \cdot (x+y)$$

$$= \sum_{n=0}^{N} \binom{N}{n} x^{n+1} y^{N-n} + \sum_{n=0}^{N} \binom{N}{n} x^{n} y^{N-n+1}$$

$$= \sum_{k=1}^{N+1} \binom{N}{k-1} x^{k} y^{N-k+1} + \sum_{n=0}^{N} \binom{N}{n} x^{n} y^{N-n+1}$$

$$= \sum_{k=1}^{N} \underbrace{\left(\binom{N}{k-1} + \binom{N}{k}\right)}_{=\binom{N+1}{k}} x^{k} y^{N+1-k} + \underbrace{\binom{N}{N}}_{N} x^{N+1} + \underbrace{\binom{N}{0}}_{=\binom{N+1}{0}} y^{N+1}$$

$$= \sum_{k=1}^{N+1} \binom{N+1}{k} x^{k} y^{N+1-k}$$

Bemerkung:

$$\sum_{n=1}^{N} (2n-1) = N^2, N \in \mathbb{N}_0$$

Beweis. Durch Induktion.

Induktions and q, N = 0:

$$\sum_{n=1}^{0} (2n-1) = 0 = 0^{2} \quad \checkmark$$

Induktions schritt:

$$\sum_{n=1}^{N+1} (2n-1) = \sum_{n=1}^{N} (2n-1) + (2(N+1)-1) = N^2 + 2N + 1 = (N+1)^2$$

Beweis. Direkt.

$$\sum_{n=1}^{N} (2n-1) = 2\sum_{n=1}^{N} n - \sum_{n=1}^{N} 1 = 2 \cdot \frac{N \cdot (N+1)}{2} - N = N^{2}$$

1.2 Der Existenz- und Eindeutigkeitssatz über die reellen Zahlen

Bezeichnung: \mathbb{Q} =Menge der rationalen Zahlen.

Satz 1.12. Es gibt einen angeordneten Körper mit der Supremumseigenschaft. Dieser Körper ist bis auf Isomorphie eindeutig und enthält einen Unterkörper, der zu \mathbb{Q} isomorph ist.

Definition 1.13. Ein $K\"{o}rper$ ist eine Menge K zusammen mit zwei verschiedenen Elementen 0, 1 und vier Funktionen

$$+: K \times K \to K, \qquad \cdot : K \times K \to K, \qquad -: K \to K, \qquad \cdot^{-1} := K \setminus \{0\} \to K \setminus \{0\},$$

so dass für alle $x, y, z \in K$ gilt:

(A1)
$$x + y = y + x$$
 kommutativ

(A2)
$$(x+y)+z=x+(y+z)$$
 assoziativ

(A3) x + 0 = x

(A4)
$$x + (-x) = 0$$

(M1)
$$x \cdot y = y \cdot x$$
 kommutativ

(M2)
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$
 assoziativ

 $(M3) \ x \cdot 1 = x$

(M4)
$$x \cdot (x^{-1}) = 1$$
 falls $x \neq 0$

(D)
$$x \cdot (y+z) = x \cdot y + x \cdot z$$
 distributiv

Notation 1.14. Im folgenden verwenden wir die üblichen Bezeichnungen

$$x + (-y) = x - y,$$
 $x \cdot x = x^2,$ $x \cdot y^{-1} = \frac{x}{y}, \dots$

Beispiel 1.15. Es gilt $x \cdot 0 = 0$:

$$x \cdot 0 + x \cdot 0 = x \cdot (0+0) = x \cdot 0$$

$$\Rightarrow (x \cdot 0 + x \cdot 0) - (x \cdot 0) = \underbrace{x \cdot 0 - x \cdot 0}_{(A3)}$$

$$\Rightarrow x \cdot 0 + \underbrace{(x \cdot 0 - x \cdot 0)}_{(A4)} = 0$$

$$\Rightarrow \underbrace{x \cdot 0 + \underbrace{(x \cdot 0 - x \cdot 0)}_{(A4)}}_{(A3)} = 0$$

$$\Rightarrow \underbrace{x \cdot 0 + 0}_{(A3)} = 0$$

$$\Rightarrow x \cdot 0 = 0$$

Beispiel 1.16. Körper.

- $\bullet \ \mathbb{Q}$ ist ein Körper
- $\mathbb{N}, \mathbb{N}_0, \mathbb{Z} := \mathbb{N}_0 \cup \{-k \mid k \in \mathbb{N}\} = \{\dots, -2, -1, 0, 1, 2, \dots\}$ sind keine Körper
- $\mathbb{F}_2 = \{0, 1\}$ ist ein Körper

Alle neun Körperaxiome sind erfüllt (Nachrechnen)

Definition 1.17. Eine angeordnete Menge ist eine Menge S mit einer Beziehung <, so dass gilt

(i) Für alle $x,y\in S$ gilt genau eine der Aussagen

$$x < y,$$
 $x = y,$ $y < x$

(ii) Für alle $x, y, z \in S$ mit x < y und y < z gilt x < z.

transitiv

Notation 1.18. Wir verwenden die Bezeichnungen $\leq, >, \geq$.

Beispiel 1.19. Angeordnete Mengen.

- $\mathbb{N}, \mathbb{N}_0, \mathbb{Z}, \mathbb{Q}$ sind angeordnete Mengen.
- $\{0,1\}$ ist eine angordnete Menge mit 0 < 1.

Definition 1.20. Ein angeordneter Körper ist ein Körper K, der auch eine angeordnete Menge ist, so dass x, \cdot und < verträglich sind in dem Sinne, dass für alle $x, y, z \in K$ gilt

- (a) Falls y < z, dann ist x + y < x + z.
- (b) Falls x > 0 und y > 0, dann ist $x \cdot y > 0$.

Beispiel 1.21. Angeordnete Körper.

- Q ist ein angeordneter Körper.
- \mathbb{F}_2 ist kein angeordneter Körper: Wir sehen gleich, dass in jedem angeordneten Körper 0 < 1 gilt. Dann folgt 1 = 1 + 0 < 1 + 1 = 0, im Widerspruch zu (i).

Es gelten folgendende Rechenregeln in jedem angeordneten Körper:

- x > 0 $\Rightarrow -x < 0$
- $x > 0, y < z \Rightarrow x \cdot y < x \cdot z$
- $x \neq 0$ $\Rightarrow x^2 > 0$ (insbesondere (mit x = 1): 1 > 0)
- 0 < x < y \Rightarrow $\frac{1}{x} > \frac{1}{y} > 0$

Behauptung: Es gibt kein $q \in \mathbb{Q}$ mit $q^2 = 2$.

Beweis. Durch Widerspruch.

Angenommen es gäbe so ein $q = \frac{n}{m}$ mit $n, m \in \mathbb{Z}, m \neq 0$.

O.B.d.A. sind m und n nicht beide gerade (sonst Kürzen!)

$$\Rightarrow n^2 = 2m^2$$
 ist gerade $\Rightarrow n$ gerade $\Rightarrow m^2 = \frac{1}{2}n^2 = 2(\frac{n}{2})^2$ ist gerade $\Rightarrow m$ gerade, Widerspruch!

Betrachte: $A := \{ p \in \mathbb{Q} : p > 0, p^2 < 2 \}$

Behauptung: A hat kein größtes Element d.h. für jedes $p \in A$ gibt es ein $q \in A$ mit q > p.

Beweis. Setze $q := p + \frac{2-p^2}{p+2} = \frac{2p+2}{p+2}$.

Dann ist
$$q \in \mathbb{Q}$$
 und $q > p > 0$ und $2 - q^2 = \frac{2(p+2)^2 - (2p+2)^2}{(p+2)^2} = \frac{2(2-p^2)}{(p+2)^2} > 0$.

Bezeichnung: Sind E, S Mengen, so heißt E Teilmenge von S, in Zeichen $E \subset S$, falls für jedes $x \in E$ gilt $x \in S$.

Definition 1.22. Sei S eine angeordnete Menge und $E \subset S$. Ein Element $\beta \in S$ heißt eine obere Schranke von E, falls für jedes $x \in E$ gilt $x \leq \beta$, und in diesem Fall heißt E nach oben beschränkt. Ein Element $\beta \in S$ heißt die kleinste obere Schranke (Supremum) von E, falls es eine obere Schranke von E ist und für jedes $\alpha \in S$ mit $\alpha < \beta$ gilt, dass α keine obere Schranke von E ist.

Entsprechend: Ein Element $\beta \in S$ heißt eine untere Schranke von E, falls für jedes $x \in E$ gilt $x \geq \beta$, und in diesem Fall heißt E nach unten beschränkt. Ein Element $\beta \in S$ heißt die größte untere Schranke (Infimum) von E, falls es eine untere Schranke von E ist und für jedes $\alpha \in S$ mit $\alpha > \beta$ gilt, dass α keine untere Schranke von E ist.

Bezeichnung: $\sup E$, $\inf E$.

Beispiel 1.23. Supremum.

- 1. Die Menge A oben ist nach oben beschränkt und besitzt kein Supremum.
- 2. Das Supremum kann, muss aber nicht zu E gehören: $E_1 = \{r \in \mathbb{Q} : r < 0\}, E_2 = \{r \in \mathbb{Q} : r \leq 0\}.$ Dann ist sup $E_1 = \sup E_2 = 0$, aber $0 \notin E_1, 0 \in E_2$.

Definition 1.24. Eine angeordnete Menge S hat die Supremumseigenschaft, falls jede nichtleere, nach oben beschränkte Menge ein Supremum (in S) besitzt.

Beispiel 1.25. Q hat nicht die Supremumseigenschaft.

Lemma 1.26. Sei S eine angeordnete Menge mit der Supremumgseigenschaft. Dann hat jede nichtleere, nach unten beschränkte Menge ein Infimum (in S).

Beweis. Sei B nicht leer und nach unten beschränkt und sei

 $L := \{x \in S : x \text{ ist eine untere Schranke von } B\}.$

Bist nach unten beschränkt $\Rightarrow L$ ist nicht leer Bist nicht leer $\Rightarrow L$ ist nach oben beschränkt $\} \stackrel{\longrightarrow}{\sup} \alpha := \sup L$

Behauptung: $\alpha = \inf B$

- Ist $\gamma < \alpha$, so ist nach der Definition von α als Supremum, γ kein Supremum von L, d.h. es gibt ein $x \in L$ mit x > y. Damit gilt für alle $y \in B$, dass $y \ge x > \gamma$. Insbesondere ist $\gamma \notin B$. Damit haben wir gezeigt, dass $x \ge \alpha$ für alle $x \in B$, d.h. α ist eine untere Schranke von B und damit $\alpha \le \inf B$.
- Ist $\beta > \alpha$, so ist nach der Definition von α als Supremum, β nicht die kleinste obere Schranke von L, d.h. es gibt ein $\beta' < \beta$ mit $x \leq \beta'$ für alle $x \in L$. Insbesondere ist $\beta \notin L$, d.h. β ist keine untere Schranke von B.
- $\Rightarrow \alpha$ ist die größte untere Schranke von B.

1.3 Folgerungen aus dem Existenz- und Eindeutigkeitssatz

Proposition 1.27. 1. Für alle $x, y \in \mathbb{R}$ mit x > 0 gibt es ein $n \in N$ mit nx > y. (Archimedisches Axiom)

2. Für alle $x, y \in \mathbb{R}$ mit x < y gibt es ein $q \in \mathbb{Q}$ mit x < q < y.

Beweis. 1. Sei $A := \{nx \mid n \in \mathbb{N}\}.$

Angenommen 1. wäre falsch. Dann ist y eine obere Schranke von A. Außerdem ist A nichtleer, also nach Supremumseigenschaft $\alpha := \sup A \in \mathbb{R}$. Wegen x > 0 ist $\alpha - x < \alpha$ und damit ist $\alpha - x$ keine obere Schranke von A, d.h. es gibt ein $m \in \mathbb{N}$ mit $\alpha - x < mx \Rightarrow \alpha < \underbrace{(m+1)x}$. Dies ist ein

Widerspruch zu α als obere Schranke.

2. Wegen y-x>0 gibt es nach 1. ein $n\in\mathbb{N}$ mit n(y-x)>1. Außerdem gibt es nach 1. $m_1,m_2\in\mathbb{N}$ mit $m_1>nx,m_2>-nx\Rightarrow -m_2< nx< m$. Nach den Eigenschaften von $\mathbb Z$ gibt es ein $m\in\mathbb Z$ mit $m-1\leq nx< m$.

$$\Rightarrow nx < m \le nx + 1 < (ny - 1) + 1 = ny \qquad \Rightarrow \qquad x < \underbrace{\frac{m}{n}}_{=:q} < y$$

Existenz von Wurzeln

Proposition 1.28. Für jedes $0 < x \in \mathbb{R}$ und jedes $n \in \mathbb{N}$ gibt es genau ein $0 < y \in \mathbb{R}$ mit $y^n = x$.

Notation 1.29.

$$y = x^{1/n}$$
 oder $y = \sqrt[n]{x}$

Es gilt:

$$(xy)^{1/n} = x^{1/n}y^{1/n}$$

Beweis. • Eindeutigkeit: Für $0 < y_1 < y_2 \Rightarrow 0 < y_1^n < y_2^n$

- Existenz: $E := \{t \in \mathbb{R} \mid t > 0, t^n < x\}$
 - E nichtleer: $t := \frac{x}{1+x} \Rightarrow 0 < t < 1 \Rightarrow t^n < t \text{ und } t < x \Rightarrow t \in E$
 - E nach oben beschränkt: $t > 1 + x \Rightarrow t^n > t$, und $t > x \Rightarrow t^n > x, t \notin E$ Also ist 1 + x eine obere Schranke von E.
 - Daher existiert $y := \sup E$. Behauptung: $y^n = x$

Satz 1.30. Nützliche Ungleichung (Bernoullische Ungleichung):

$$b^n - a^n < nb^{n-1}(b-a)$$
 für alle $0 < a < b$

Beweis.

$$b^n - a^n = (b-a) \underbrace{(b^{n-1} + ab^{n-2} + \ldots + a^{n-2}b + a^{n-1})}_{\text{Geometrische Reihe mit } x = \frac{a}{b}} \underbrace{(b^{n-1} + ab^{n-2} + \ldots + a^{n-2}b + a^{n-1})}_{n \text{ Terme, jeder ist } \leq b^{n-1}}$$

 $y^n \ge x$. Angenommen $y^n < x$. Sei 0 < h < 1 mit $h < \frac{x - y^n}{n(y + 1)^{n-1}}(*)$ Mit a = y, b = y + h:

$$(y+h)^n - y^n < n(y+h)^{n-1}h \underset{h<1}{<} n(y+1)^{n-1}h \underset{(*)}{<} x - y^n \Rightarrow (y+h)^n < x$$

$$\Rightarrow y+h \in E, \text{aber } y+h>y = \sup E,$$
 Widerspruch!

 $y^n \leq x.$ Angenommen $y^n > x.$ Sei $k := \frac{y^n - x}{ny^{n-1}}$ und damit 0 < k < y. Mit b = y, a = y - k gilt für $t \geq y - k$:

$$(y+h)^n - y^n < n(y+h)^{n-1}h < n(y+1)^{n-1}h < x - y^n \Rightarrow (y+h)^n < x$$

 $\Rightarrow y-k$ ist obere Schranke von E , aber $y-k < y = \inf E$, Widerspruch!

1.4 Konstruktion von \mathbb{R} durch Dedekindsche Schnitte (1872)

Definition 1.31. Eine Teilmenge $\alpha \subset \mathbb{Q}$ heißt **Dedekindscher Schnitt**, falls

- (a) α nichtleer, $\alpha \neq \mathbb{Q}$
- (b) Für $p \in \alpha, q \in \mathbb{Q}$ mit q < p gilt $q \in \alpha$.
- (c) Für $p \in \alpha$ gibt es ein $r \in \alpha$ mit r > p.

Beispiel 1.32. $\{q \in \mathbb{Q} : q \leq 0\} \cup \{q \in \mathbb{Q} : q > 0, q^2 < 2\}$ ist ein Schnitt.

Definition 1.33. $\mathbb{R} := \{\alpha : \alpha \text{ ist ein Schnitt}\}\$

Zu zeigen:

- 1. \mathbb{Q} kann mit einer Teilmenge von \mathbb{R} identifiziert werden.
- 2. Es gibt eine Addition und Multiplikation auf \mathbb{R} , die die auf \mathbb{Q} fortsetzt.
- 3. Es gibt eine Anordnung auf \mathbb{R} , die die auf \mathbb{Q} fortsetzt.
- 4. Addition und Multiplikation und die Anordnung sind verträglich.
- 5. \mathbb{R} hat die Supremumgseigenschaft.

Beweis.

- 1. Für $r \in \mathbb{Q}$ setze $r^* := \{ q \in \mathbb{Q} : q < r \}$.
 - Das ist ein Schnitt. Für $r_1 \neq r_2 \in \mathbb{Q}$ ist $r_1^* \neq r_2^*$. Mittels $r \mapsto r^*$ können wir \mathbb{Q} als Teilmenge von \mathbb{R} auffassen.

- 2. Für $\alpha, \beta \in \mathbb{R}$ sei $\alpha + \beta := \{r + s : r \in a, s \in \beta\}$
 - $\alpha + \beta$ ist ein Schnitt
 - $\bullet\,$ Die Addition erfüllt die Axiome (A1-4) mit $0=0^*$
 - $(r+s)^* = r^* + s^*$

Definition der Multiplikation

Für $\alpha, \beta > 0^*$ sei

$$\alpha \cdot \beta := \{ p \in \mathbb{Q} : p \le rs \text{ für ein } 0 < r \in \alpha \text{ und ein } 0 < s \in \beta \}$$

Außerdem sei

$$\alpha \cdot \beta := \begin{cases} (-\alpha) \cdot (-\beta) & \text{falls } \alpha < 0^*, \beta < 0^* \\ -((-\alpha) \cdot \beta) & \text{falls } \alpha < 0^*, \beta > 0^* \\ -(\alpha \cdot (-\beta)) & \text{falls } \alpha > 0^*, \beta < 0^* \\ 0^* & \text{falls } \alpha = 0^* \text{ oder } \beta = 0^* \end{cases}$$

- Multiplikations axiome (mit 1*)
- Distributivaxiom
- $(rs)^* = r^*s^*$ für $r, s \in \mathbb{Q}$
- 3. Für $\alpha, \beta \in \mathbb{R}$ sei $\alpha < \beta : \Leftrightarrow \alpha \subseteq \beta$
 - $r < s \text{ in } \mathbb{O} \Rightarrow r^* < s^*$
 - Nachweis der Anordnungsaxiome
 - Klar, dass höchstens eine der Aussagen $\alpha < \beta, \alpha = \beta, \beta < \alpha$ gilt.
 - Nachweis, dass *mindestens* eine gilt:

Nehme an, dass $\alpha \not< \beta$ und $\alpha \neq \beta$; z.z.: $\beta < \alpha$.

 $\alpha \not< \beta$ und $\alpha \neq \beta \Rightarrow \alpha \not\subset \beta$, d.h. es gibt ein $p \in \alpha$ mit $p \notin \beta$.

Behauptung: $\beta \subset \alpha$ (Sei $q \in \beta$. Dann folgt aus Eigenschaft (b) von β , dass q < p. Wegen Eigenschaft (b) von α ist dann aber $q \in \alpha$.)

Wegen $a \neq \beta$ gilt dann sogar $\beta \subsetneq \alpha$, d.h. $\beta < \alpha$.

- Transitivität \checkmark $\alpha < \beta, \beta < \gamma \Rightarrow \alpha < \gamma$

4. Verträglichkeit von Addition und Anordnung: $\beta < \gamma \Rightarrow \alpha + \beta < \alpha + \gamma \checkmark$

Multiplikation: Für $\alpha > 0^*, \beta > 0^*$ gilt $\alpha \cdot \beta > 0^*$.

Zu zeigen: $\{q \in \mathbb{Q} : q < 0\} \subseteq \{p \in \mathbb{Q} : p \leq rs \text{ für ein } 0 < r \in \alpha \text{ und ein } 0 < s \in \beta\}.$

Klar gilt "C", denn für jedes q < 0 und für alle $0 < r \in \alpha, 0 < s \in \beta$ gilt q < 0 < rs. (Solche r und s gibt es wegen $\alpha > 0^*$ und $\beta > 0^*$.)

Außerdem gilt " \neq ", denn für alle $0 < r \in \alpha$ und $0 < s \in \beta$ gilt rs > 0, d.h. $rs \in \{p \in \mathbb{Q} : p \le rs$ für ein $0 < r \in \alpha$ und ein $0 < s \in \beta\}$, aber $rs \notin \{q \in \mathbb{Q} : q < 0\}$.

5. Supremumseigenschaft: Sei $A \subset \mathbb{R}$ nichtleer und nach oben beschränkt und

$$\gamma := \bigcup_{\alpha \in A} \alpha$$
 (das ist eine Teilmenge von \mathbb{Q})

Behauptung: $\gamma \in \mathbb{R}$ und $\gamma = \sup A$.

(a) γ nichtleer: A nichtleer \Rightarrow es gibt ein $\alpha_0 \in A$; wegen Eigenschaft (a) für α_0 ist α_0 nichtleer. Somit ist $\alpha_0 \subset \gamma$ und daher γ nichtleer.

$$\gamma \neq \mathbb{Q}$$
: A ist nach oben beschränkt durch $\beta \in \mathbb{R}$, d.h. für alle $\alpha \in A$ gilt $\alpha < \beta$ ($\alpha \subsetneq \beta$) $\Rightarrow \gamma = \bigcup_{\alpha \in A} \alpha \subset \beta$; wegen (a) für $\beta : \beta \neq \mathbb{Q}$, daher auch $\gamma \neq \mathbb{Q}$

- (b) Sei $p \in \gamma$ und $q \in \mathbb{Q}$ mit q < p. Zu zeigen: $q \in \gamma$. Aus (b) für α_0 folgt $q \in \alpha_0$; wegen $p \in \alpha_0$ für ein $\alpha_0 \in A$ $\alpha_0 \subset \gamma \Rightarrow q \in \gamma$.
- (c) Sei $p \in \gamma$. Dann ist $p \in \alpha_0$ für ein $\alpha_0 \in A$. Aus (c) für α_0 folgt, dass es ein $r \in \alpha_0$ gibt, mit r > p; wegen $a_0 \subset \gamma \Rightarrow r \in \gamma$.

Obere Schranke: Für alle $\alpha \in A$ gilt $\alpha \subset \gamma$, d.h. $\alpha \leq \gamma$.

Kleinste obere Schranke: Sei $\delta < \gamma,$ d.h. $\delta \subsetneq \gamma.$

Dann gibt es ein $s \in \gamma$ mit $s \notin \delta \Rightarrow \alpha_0 \not\subset \delta$, d.h. $\alpha_0 > \delta$. Also ist δ keine obere Schranke von $\Rightarrow s \in \alpha_0$ für ein $\alpha_0 \in A$ $\Rightarrow \delta \subseteq \alpha_0$

A.

Definition 1.34. Absolutbetrag in \mathbb{R} : Für $x \in \mathbb{R}$ sei

$$|x| := \begin{cases} x & \text{für } x \ge 0 \\ -x & \text{für } x < 0 \end{cases}$$

Satz 1.35. (Dreiecksungleichung):

$$|x+y| \le |x| + |y|$$

Beweis. Falls $x + y \ge 0$:

$$|x+y| = x + y \leq |x| + |y|$$

Falls x + y < 0:

$$|x+y| = -x - y \underset{\text{gilt } -x \le |x|}{\overset{+}{\nearrow}} |x| + |y|$$

Satz 1.36.

$$|\alpha x| = |\alpha| \cdot |x|$$

$$||x| - |y|| \le |x - y|$$

1.5 Dezimaldarstellung und b-adische Darstellung reeller Zahlen

Satz 1.37. Sei $2 \leq b \in \mathbb{N}$.

1. Für jedes Vorzeichen \pm , jedes $k \in \mathbb{N}_0$ und alle $n_j \in \{0, 1, \dots, b-1\}, j \geq -k$, definiert

$$x := \pm \sup \{ \sum_{j=-k}^{J} n_j b^{-j} : J \in \mathbb{N} \}$$
 (1)

eine relle Zahl.

2. Umgekehrt gibt es für jedes $x \in \mathbb{R} \pm k$ und n_i wie in 1., so dass (1) gilt.

Bemerkung: Im Allgemeinen ist die Darstellung nicht eindeutig, z.B. 1.000... = 0.999...

12

Beweis.1. Klar ist die Menge nichtleer.

Nach oben beschränkt: Für jedes $J \in \mathbb{N}$ ist

$$\sum_{j=-k}^{J} n_j b^{-j} \leq \sum_{j=-k}^{J} (b-1) b^{-j} = (b-1) b^k \sum_{l=0}^{J-k} b^{-l} = (b-1) b^k \frac{1-b^{-J+k-1}}{1-b^{-1}} = b^{k+1} - b^{-J} \leq b^{k+1}$$

Also ist x wohldefiniert nach der Supremumseigenschaft.

2. Wir nehmen an, dass x > 0 und wählen dann das Vorzeichen +.

Falls x < 1, wähle k = 0 und $n_0 = 0$.

Falls $x \geq 1$, sei $k \in \mathbb{N}_0$ die größte Zahl in \mathbb{N}_0 mit $b^k \leq x$. (Wegen dem Archimedischen Axiom gibt es ein $n \in \mathbb{N}$ mit n > x und verwende, dass $\{k \in \mathbb{N}_0 : b^k \le x\}$ ein größtes Element besitzt.)

Dann gibt es ein $n_{-k} \in \{1, \dots, b-1\}$ mit $n_{-k}b^k \le x$.

Wähle jetzt $n_{-k+1} \in \{0,\ldots,b-1\}$ maximal, so dass $n_{-k}b^k + n_{-k+1}b^{k-1} \le x$, dann $n_{-k+2} \in \{0,\ldots,b-1\}$ $\{0,\ldots,b-1\}$ maximal, so dass $n_{-k}b^k + n_{-k+1}b^{k-1} + n_{-k+2}b^{k-2} \le x$, usw.

Das definiert Zahlen $n_{-k}, n_{-k+1}, n_{-k+2}, \ldots$ und nach (1) eine relle Zahl \tilde{x} .

Zu zeigen: $\tilde{x} = x$.

- $\sum_{j=-k}^{J} n_j b^j \le x \Rightarrow \tilde{x} = \sup \{\sum_{j=-k}^{J} n_j b^{-j} :$ • Nach Konstruktion ist für jedes $J \in \mathbb{N}$ $J \in \mathbb{N} \} \le x$.
- Wir zeigen: Für 0 < y < x gibt es ein J mit sup $\sum_{j=-k}^{J} n_j b^{-j} > y$. (Damit ist y keine obere Schranke und damit $\tilde{x} \geq x$.)

Nach dem Archimedischen Axiom gibt es eine natürliche Zahl größer als $\frac{1}{x-y}$, also auch ein $J\in\mathbb{N}$ mit $b^J>\frac{1}{x-y},$ d.h. $y+b^{-J}< x.$ Nach Konstruktion, da n_J maximal gewählt ist, ist

$$x < \sum_{j=-k}^{J-1} n_j b^{-j} + (n_J + 1)b^{-J} = \sum_{j=-k}^{J} n_j b^{-j} + b^{-J} \Rightarrow y < \sum_{j=-k}^{J} n_j b^{-j}$$

Abzählbarkeit und Überabzählbarkeit 1.6

Definition 1.38. Seien X, Y Mengen und $f: X \to Y$ eine Abbildung.

- 1. f heißt injektiv, falls für alle $x_1, x_2 \in X$ mit $x_1 \neq x_2$ gilt, dass $f(x_1) \neq f(x_2)$.
- 2. f heißt surjektiv, falls es für jedes $y \in Y$ ein $x \in X$ gibt mit f(x) = y.
- 3. f heißt bijektivv, falls f injektiv und surjektiv ist.

Definition 1.39. Eine Menge A heißt abzählbar, wenn sie entweder leer ist oder nichtleer und es eine surjektive Abbildung $\mathbb{N}_0 \to A$ gibt. Eine Menge heißt $\ddot{u}berabz\ddot{a}hlbar$, wenn sie nicht abzählbar

Beispiel 1.40. 1. Jede endliche Menge ist abzählbar. (Denn ist $A = \{a_0, \dots, a_N\}$, so definiert $f(n) := a_n$ für $0 \le n \le N$ und $f(n) := a_N$ für n > N eine surjektive Abbildung $f: \mathbb{N}_0 \to A$.)

- 2. \mathbb{N}_0 ist abzählbar. (Man wähle f(n) = n.)
- 3. \mathbb{Z} ist abzählbar. $(f(2k-1) := k, f(2k) := -k, d.h. 0, 1, -1, 2, -2, 3, -3, \ldots)$

Proposition 1.41. Die Vereinigung abzählbar vieler abzählbarer Mengen ist abzählbar.

Beweis. $M_n, n \in \mathbb{N}$ sind abzählbar, also $M_n = \{x_{nm} : m \in \mathbb{N}_0\}$. (Hier ist $x_{nm} = f_n(m)$, wobei $f_n : \mathbb{N}_0 \to M_n$ surjektiv.)

Durch

wird eine surjektive Abbildung $\mathbb{N}_0 \to \bigcup_n M_n$ definiert.

Korollar 1.42. $\mathbb Q$ ist abzählbar.

Beweis. Da \mathbb{Z} abzählbar ist, ist für jedes $n \geq 1$ die Menge $M_n := \{\frac{m}{n} : m \in \mathbb{Z}\}$ abzählbar. Gemäß Proposition 1.41 ist also auch $\mathbb{Q} = \bigcup_{n \geq 1} M_n$ abzählbar.

Satz 1.43. \mathbb{R} ist überabzählbar. Beachte, dass darauf folgt, dass die Menge $\mathbb{R} \setminus \mathbb{Q}$ überabzählbar ist.

Beweis. Beweis von Cantor.

Wir zeigen, dass $\{x \in \mathbb{R} : 0 \le x \le 1\}$ überabzählbar ist.

Angenommen, diese Menge wäre abzählbar. Schreibe $x_n := f(n)$ mit einer surjektiven Abbildung $f : \mathbb{N} \to \{x \in \mathbb{R} : 0 \le x \le 1\}$.

Fixiere $4 \leq b \in \mathbb{N}$ und schreibe jedes x_n in seiner b-adischen Darstellung.

$$x_0 \sim n_{00}b^{-1} + n_{01}b^{-2} + n_{02}b^{-3} + \dots$$

 $x_1 \sim n_{10}b^{-1} + n_{11}b^{-2} + n_{12}b^{-3} + \dots$
 $x_2 \sim n_{20}b^{-1} + n_{21}b^{-2} + n_{22}b^{-3} + \dots$

Definiere $m_0 := \begin{cases} 1 & \text{falls } n_{00} \neq 1 \\ 2 & \text{falls } n_{00} = 1 \end{cases}$, $m_1 := \begin{cases} 1 & \text{falls } n_{11} \neq 1 \\ 2 & \text{falls } n_{11} = 1 \end{cases}$, $m_2 := \dots$

Definiere $x \sim m_0 b^{-1} + m_1 b^{-2} + m_2 b^{-3} + \dots$ Dann ist $0 \le x \le 1$.

Da die Ziffern 0 und b-1 in der b-adischen Darstellung von x auftreten, ist diese eindeutig.

Wegen $x \neq x_n$ für alle n, ist das ein Widerspruch.

2 Folgen und Reihen

2.1 Folgen und Grenzwerte

Definition 2.1. Eine Folge reller Zahlen ist eine Abbildung $\mathbb{N} \to \mathbb{R}$, d.h. für jedes $n \in \mathbb{N}$ gibt es ein $a_n \in \mathbb{R}$. Man schreibt dann $(a_n)_{n \in \mathbb{N}}$. Allgemeiner kann man als Indexmenge auch eine Menge der Form $\{n \in \mathbb{Z} : n \geq k\}$ nut $k \in \mathbb{Z}$ zulassen. Man schreibt dann $(a_n)_{n > k}$.

Beispiel 2.2. 1. Sei $a \in \mathbb{R}$ und $a_n := a$ für alle $n \in \mathbb{N}$. Konstante Folge (a, a, a, a, ...)

- 2. Sei $a_n := \frac{1}{n}$ für $n \in \mathbb{N}$. $(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots)$
- 3. Sei $a_n:=(-1)^n$ für $n\in\mathbb{N}.$ $(-1,1,-1,1-1,\ldots)$
- 4. Sei $a_n := \frac{n}{n+1}$ für $n \in \mathbb{N}$. $(\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \ldots)$
- 5. Sei $x \in \mathbb{R}$ und $a_n := x^n$. $(x, x^2, x^3, x^4, ...)$
- 6. Fibonacci Zahlen: $f_0:=0, f_1:=1, f_n:=f_{n-1}+f_{n-2}$ für $n\geq 2$. $(f_n)_{n\in\mathbb{N}}=(0,1,1,2,3,5,8,13,21,34,\ldots)$

Definition 2.3. Eine Folge (a_n) reeller Zaheln heißt konvergent, wenn es ein $a \in \mathbb{R}$ gibt, so dass es für jedes $\epsilon > 0$ ein $N \in \mathbb{N}$ gibt, so dass für alle $n \geq N$ gilt $|a_n - a| < \epsilon$.

Lemma 2.4. Sei (a_n) eine konvergente Folge reeller Zahlen. Dann ist a in ?? eindeutig bestimmt.

Notation 2.5. a heißt "Grenzwert" oder "Limes" von (a_n) . Man schreibt auch:

$$a = \lim_{n \to \infty} a_n,$$

$$a_n \to a \text{ für } n \to \infty$$

Beweis. Angenommen, es gäbe ein $b \in \mathbb{R}$ mit $b \neq a$, dass der ?? genügt. Sei $\epsilon := \frac{|a-b|}{2}$. Dann gibt es $N, M \in \mathbb{N}$, so dass für alle $n \geq N$ gilt $|a_n - a| < \epsilon$ und für alle $n \geq M$ gilt $|a_n - b| < \epsilon$. Für $n \geq \max\{N, M\}$ ist dann

$$|\underbrace{a-b}| \le |a-a_n| + |a_n-b| < \epsilon + \epsilon = 2\epsilon = |a-b|$$

$$= (a-a_n) + (a_n-b)$$

Dies ist aber ein Widerspruch.

Definition 2.6. Eine Folge (a_n) heißt nach oben (bzw. unten) beschränkt, wenn die Menge $\{a_n : n \in \mathbb{N}\}$ nach oben (bzw. unten) beschränkt ist. Sie heißt beschränkt, wenn sie nach oben und unten beschränkt ist.

Proposition 2.7. Jede konvergente Folge ist beschränkt.

Beweis. Sei (a_n) eine konvergente Folge und $a := \lim_{n \to \infty} a_n$. Dann gibt es ein $N \in \mathbb{N}$, so dass für alle $n \ge N$ gilt $|a_n - a| < 1$. Damit sit für alle $n \ge N : |a_n| \le |a| + |a_n - a| < |a| + 1$.

Damit ist $M := \max\{|a_1|, |a_2|, \dots, |a_{N-1}|, |a|+1\}$ eine obere Schranke von $\{a_n : n \in \mathbb{N}\}$ und -M eine untere.

Beachte: Die Folge $((-1)^n)$ ist beschränkt, aber *nicht* konvergent.

Beispiel 2.8. Zurück zu den Folgen aus Beispiel 2.2.

- 1. Die konstante Folge (a, a, a, ...) konvergiert gegen a.
- 2. Die Folgen $\left(\frac{1}{n}\right)$ konvergiert gegen 0.

Beweis. Sei $\epsilon > 0$. Dann gibt es nach dem Archimedischen Axiom ein $N \in \mathbb{N}$ mit $N > \frac{1}{\epsilon}$. Damit ist für $n \geq N$:

$$\left|\frac{1}{n} - 0\right| = \frac{1}{n} \le \frac{1}{N} < \epsilon$$

3. Die Folge $((-1)^n)$ konvergiert nicht.

Beweis. Angenommen, es gäbe ein a wie in ??. Wähle $\epsilon = 1$. Dann gibt es ein $N \in \mathbb{N}$, so dass für alle $n \geq N$ gilt $|a_n - a| < 1$. Also ist für alle $n \geq N$:

$$2 = |a_{n+1} - a_n| \le |a_{n+1} - a| + |a - a_n| < 1 + 1 = 2$$

Dies ist offensichtlich ein Widerspruch.

4. Die Folge $\left(\frac{n}{n+1}\right)$ konvergiert gegen 1.

Beweis. Sei $\epsilon>0$. Dann gibt es nach dem Archimedischem Axiom ein $N\in\mathbb{N}$ mit $N\geq\frac{1}{\epsilon}$. Damit gilt für $n\geq N$:

$$\left|\frac{n}{n+1} - 1\right| = \frac{1}{n+1} \le \frac{1}{N+1} < \epsilon$$

5. Für |x| > 1, konvergiert (x^n) nicht, da die Folge unbeschränkt ist.

Für x = -1, konvergiert die Folge nicht, s.o. (3.).

Für x = 1, konvergiert die Folge gegen 1, s.o. (1.).

Für |x| < 1, konvergiert die Folge gegen 0.

6. Durch Induktion sieht man einfach, dass $f_n \ge n$ für alle $n \ge 5$. Also ist (f_n) nicht nach oben beschränkt und daher nicht konvergent.

Proposition 2.9. (Rechenregeln) Seien $(a_n), (b_n)$ konvergente Folgen reeller Zahlen. Dann gilt:

1.

$$\lim_{n \to \infty} (a_n + b_n) = \left(\lim_{n \to \infty} a_n\right) + \left(\lim_{n \to \infty} b_n\right)$$

2.

$$\lim_{n \to \infty} (a_n b_n) = \left(\lim_{n \to \infty} a_n\right) \cdot \left(\lim_{n \to \infty} b_n\right)$$

3. Ist $\lim_{n\to\infty} b_n \neq 0$, so gibt es ein $N_0 \in \mathbb{N}$, so dass für alle $n \geq N_0$ gilt $b_n \neq 0$, und

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n}.$$

Beachte, dass aus 1. und 2. für alle $c, d \in \mathbb{R}$ folgt (mit Hilfe einer konstanten Folge):

$$\lim_{n \to \infty} (ca_n + db_n) = c \left(\lim_{n \to \infty} a_n \right) + d \left(\lim_{n \to \infty} b_n \right)$$

Beweis. Wir schreiben $a := \lim_{n \to \infty} a_n, b := \lim_{n \to \infty} b_n$.

1. Sei $\epsilon > 0$. Dann gibt es $N, M \in \mathbb{N}$, so dass für $n \geq N$ gilt $\left| a_n - a \right| < \frac{\epsilon}{2}$ und für $n \geq M$ gilt $\left| b_n - b \right| < \frac{\epsilon}{2}$. Dann gilt für $n \geq \max\{N, M\}$:

$$\left| \left(a_n + b_n \right) - \left(a + b \right) \right| \le \left| a_n - a \right| + \left| b_n - b \right| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

2. Nach Proposition 2.7 gibt es K, L > 0, so dass für alle $n \in \mathbb{N}$ gilt $|a_n| \le K$ und $|b_n| \le L$. Sei $\epsilon > 0$. Dann gibt es $N, M \in \mathbb{N}$, so dass für $n \ge N$ gilt $|a_n - a| < \frac{\epsilon}{2L}$ und für $n \ge M$ gilt $|b_n - b| < \frac{\epsilon}{2K}$. Dann ist für $n \ge \max\{N, M\}$,

$$\underbrace{|a_nb_n-ab|}_{=a_n(b_n-b)+(a_n-a)b} \leq |a_n|\cdot|b_n-b|+|a_n-a|\cdot|b| < K\cdot\frac{\epsilon}{2K}+\frac{\epsilon}{2L}\cdot L=\epsilon$$
 verwende
$$b|\leq L \text{ (s.u.)}$$

3. Es genügt (wegen 2) den Fall $a_n=1$ für alle n zu betrachten. Es gibt ein $N_0\in\mathbb{N}$, so dass für $n\geq N_0$ gilt $\left|b_n-b\right|<\frac{|b|}{2}=\epsilon$. Damit ist für $n\geq N_0$

$$|b_n| \ge |b| - |b_n - b| > |b| - \frac{|b|}{2} = \frac{|b|}{2} > 0.$$

Sei $\epsilon > 0$. Dann gibt es ein $N_1 \in \mathbb{N}$, so dass für $n \ge N_1$ gilt $\left|b_n - b\right| < \frac{\epsilon |b|^2}{2}$. Für $n \ge \max\{N_0, N_1\}$ ist $\left|\frac{1}{b_n} - \frac{1}{b}\right| = \frac{|b - b_n|}{|b_n| \cdot |b|} < \frac{\frac{\epsilon |b|^2}{2}}{\frac{|b|}{2} \cdot |b|} = \epsilon$.

Beispiel 2.10. Sei $a_n := \frac{3n^2 + 13n}{n^2 - 2}$ für $n \in \mathbb{N}$.

$$a_n = \frac{3 + \frac{13}{n}}{1 - \frac{2}{n^2}}$$

Nach Beispiel 2 ist $\lim_{n\to\infty} \frac{1}{n} = 0$. Damit ist nach den Rechenregeln $\lim_{n\to\infty} \left(3 + \frac{13}{n}\right) = 3$. Außerdem ist $\lim_{n\to\infty} \frac{1}{n^2} = 0$. Damit ist nach den Rechenregeln $\lim_{n\to\infty} \left(1 - \frac{2}{n^2}\right) = 1$.

$$\Rightarrow \lim_{n \to \infty} a_n = \frac{\lim_{n \to \infty} \left(3 + \frac{13}{n}\right)}{\lim_{n \to \infty} \left(1 - \frac{2}{n^2}\right)} = \frac{3}{1} = 3.$$

Proposition 2.11. Seien (a_n) , (b_n) konvergente Folgen reeller Zaheln mit $a_n \leq b_n$ für alle $n \in \mathbb{N}$. Dann ist $\lim_{n\to\infty} a_n \leq \lim_{n\to\infty} b_n$.

Bemerkung:

- 1. Ist $a_n < b_n$ für alle $n \in \mathbb{N}$, so ist *nicht* notwendigerweise $\lim_{n \to \infty} a_n < \lim_{n \to \infty} b_n$. (Bsp.: $a_n = 0$ und $b_n = \frac{1}{n}$.)
- 2. Aus Proposition 2.11 folgt, dass, falls $A \leq a_n \leq B$ für alle $n \in \mathbb{N}$, gilt $A \leq \lim_{n \to \infty} a_n \leq B$.

Beweis. Indem man die Folge $(b_n - a_n)$ betrachet, können wir annehmen, dass $a_n = 0$ für alle n. D.h., es gelte $b_n \ge 0$ für alle n und es ist zu zeigen, dass $\lim_{n \to \infty} b_n \ge 0$.

Angenommen, $-\epsilon := \lim_{n \to \infty} b_n < 0$. Dann gibt es ein $N \in \mathbb{N}$, so dass für $n \ge N$ gilt $|b_n - (-\epsilon)| < \epsilon$. Es ist aber $|b_n - (-\epsilon)| = b_n + \epsilon \ge \epsilon$. Folglich führt die Annahme zum Widerspruch.

Beispiel 2.12. Zurück zu Beispiel 5.:

• Für |x| > 1 ist (x^n) nicht nach oben beschränkt, also nicht konvergent.

Beweis. Nach der Bernoullischen Ungleichung ist für alle $n \in \mathbb{N}$

$$|x|^n = (1 + (|x| + 1))^n \ge 1 + n(|x| - 1)$$

und nach dem Archimedischen Axiom gibt es für jedes vorgegegebenes $K \in \mathbb{R}$ ein $N \in \mathbb{N}$, so dass N(|x|-1) > K-1. Also gilt für alle $n \geq N$, $|x|^n \geq |x|^N \geq 1 + N(|x|-1) > K$.

• Für |x| < 1 konvergiert (x^n) gegen 0.

Beweis. Sei $\epsilon > 0$. Wendet man obiges Argument auf $\frac{1}{|x|} > 1$ und $K := \frac{1}{\epsilon}$ an, so erhält man ein $N \in \mathbb{N}$ mit $\left(\frac{1}{|x|}\right)^N > \frac{1}{\epsilon}$, d.h. $|x|^N < \epsilon$. Damit ist für alle $n \ge N$, $|x|^n \le |x|^N < \epsilon$.

Definition 2.13. Eine Folge (a_n) reeller Zahlen heißt monton wachsend (bzw. fallend), falls für alle $n \in \mathbb{N}$ gilt $a_{n+1} \geq a_n$ (bzw. \leq). Sie heißt monoton, wenn sie entweder monton wachsend oder monoton fallend ist.

Proposition 2.14. Jede beschränkte, monotone Folge konvergiert. Genauer: Eine monoton wachsende Folge (a_n) konvergiert gegen $\sup \{a_n : n \in \mathbb{N}\}$ und eine monoton fallende gegen $\inf \{a_n : n \in \mathbb{N}\}$.

Beweis. Sei $s := \sup\{a_n : n \in \mathbb{N}\}$ (wohldefiniert, da nichtleer und beschränkt). Da s die kleinste obere Schranke ist, gibt es für jedes $\epsilon > 0$ ein $N \in \mathbb{N}$ mit $s - \epsilon < a_N$. Wegen der Monotonie ist dann für alle $n \ge N$:

$$s - \epsilon < a_n \le s < s + \epsilon$$
.

Quadratwurzel

Satz 2.15. Seien $0 < x \in \mathbb{R}$ und $0 < a_0 \in \mathbb{R}$. Für $n \in \mathbb{N}_0$ sei

$$a_{n+1} := \frac{1}{2} \left(a_n + \frac{x}{a_n} \right).$$

Dann konvergiert (a_n) gegen \sqrt{x} .

Beweis. Durch Induktion zeigt man, dass $a_n > 0$ für alle $n \in \mathbb{N}$.

• Es gilt $a_n^2 \ge x$ für alle $n \in \mathbb{N}$, denn

$$a_{n+1}^2 - x = \frac{1}{4} \left(a_n + \frac{x}{a_n} \right)^2 - x = \frac{1}{4} \left(a_n^2 + 2x + \frac{x^2}{a_n^2} - 4x \right) = \frac{1}{4} \left(a_n - \frac{x}{a_n} \right)^2 \ge 0$$

• Es gilt $a_{n+1} \leq a_n$ für alle $n \in \mathbb{N}$, denn

$$a_n - a_{n+1} = a_n - \frac{1}{2} \left(a_n + \frac{x}{a_n} \right) = \frac{1}{2a_n} \left(a^2 - x \right) \ge 0$$

• Nach Proposition 2.14 konvergiert (a_n) als beschränkte monotone Folge. Für den Grenzwert a gilt $a \ge 0$ und $a^2 \ge x$, also insbesondere a > 0. Geht man in der Rekursionsvorschrift zum Grenzwert über, so erhält man $a = \frac{1}{2} \left(a + \frac{x}{a} \right)$, d.h. $\frac{x}{a} = a$, d.h. $a^2 = x$. Da diese Gleichung die eindeutige positive Lösung \sqrt{x} hat, gilt $a = \sqrt{x}$.

2.2 Teilfolgen

Definition 2.16. Sei (a_n) eine Folge reeller Zahlen und $n_1 < n_2 < n_3 < \dots$ eine *streng* monoton wachsende Folge natürlicher Zahlen. Dann heißt $(a_{n_k})_{k \in \mathbb{N}}$ eine *Teilfolge* von (a_n) . Ein $a \in \mathbb{R}$ heißt $H\ddot{a}ufungspunkt$ der Folge (a_n) , falls es eine Teilfolge (a_{n_k}) gibt, die gegen a konvergiert.

Beispiel 2.17. 1. Die Folge $a_n:=(-1)^n$ besitzt die Häufungspunkte -1 und +1, denn $\lim_{k\to\infty}a_{2k}=1$ und $\lim_{k\to\infty}a_{2k-1})-1$.

- 2. Die Folge $a_n := \begin{cases} -1 & \text{für } n = 4k+1 \\ 0 & \text{für } n = 4k+2 \text{ oder } 4k \text{ besitzt die Häufungspunkte } -1,0,+1. \\ 1 & \text{für } n = 4k+3 \end{cases}$
- 3. Die Folge $a_n:=(-1)^n+\frac{1}{n}$ besitzt die Häufungspunkte -1 und +1, denn $\lim_{k\to\infty}a_{2k}=\lim_{k\to\infty}\left(1+\frac{1}{2k}\right)=1$ und analog $\lim_{k\to\infty}a_{2k-1}=1$.
- 4. Die Folge $a_n := n$ besitzt keine Häufungspunkte, da jede Teilfolge unbeschränkt ist und daher nicht konvergent.
- 5. Die Folge $a_n := \begin{cases} n & \text{für } n \text{ gerade} \\ \frac{1}{n} & \text{für } n \text{ ungerade} \end{cases}$ besitzt den Häufungspunkt 0, da $\lim_{k \to \infty} a_{2k-1} = 0$.
- 6. Ist (a_n) konvergent gegen a, so konvergiert auch jede Teilfoge gegen a und damit ist a der einzige Häufungspunkt.

Definition 2.18. Sei (a_n) eine beschränkte Folge reeller Zahlen. Dann ist für jedes $k \in \mathbb{N}$ die Menge $\{a_n : n \geq k\}$ nichtleer und nach oben beschränkt, also gibt es $b_k := \sup\{a_n : n \geq k\}$. Außerdem ist b_k monoton fallend und beschränkt. Also existiert

$$\limsup_{n\to\infty} a_n := \lim_{k\to\infty} \sup \left\{a_n : n \ge k\right\} \text{ limes superior}$$

Analog,

$$\liminf_{n\to\infty} a_n := \lim_{k\to\infty} \inf \left\{ a_n : n \ge k \right\} \text{ limes inferior}$$

Beispiel 2.19. 1. Sei $a_n := (-1)^n$. Dann ist $\sup \{a_n : n \ge k\} = 1$ und $\inf \{a_n : n \ge k\} = -1$ für alle k, also ist $\limsup_{n \to \infty} a_n = 1$, $\liminf_{n \to \infty} a_n = -1$.

- 2. Sei a_n wie oben. Dann ist wieder $\limsup_{n\to\infty}a_n=1, \liminf_{n\to\infty}a_n=-1$.
- 3. Sei $a_n := (-1)^n \left(1 + \frac{1}{n}\right)$. Dann ist $\sup \{a_n : n \ge k\} = \begin{cases} 1 + \frac{1}{n} & \text{falls } n \text{ gerade} \\ 1 + \frac{1}{n+1} & \text{falls } n \text{ ungerade} \end{cases}$, also $\lim \sup_{n \to \infty} a_n = 1$; entsprechend ist $\lim \inf_{n \to \infty} a_n = -1$

Satz 2.20. Sei (a_n) eine beschränkte Folge reeller Zaheln und H die Menge ihrer Häufungspunkte. Dann ist H nichtleer, beschränkt und

$$\sup H = \limsup_{n \to \infty} a_n \qquad \qquad und \qquad \qquad \inf H = \liminf_{n \to \infty} a_n.$$

Korollar 2.21. (Bolzano-Weierstraß) Jede beschränkte Folge reeller Zahlen besitzt eine konvergente Teilfolge.

Beweis. Sei $b_k := \sup \{a_n : n \ge k\}$. Nach Definition 2.18 ist $\limsup_{n \to \infty} a_n = \lim_{k \to \infty} b_k =: b$. Wir zeigen:

- $b \in H$
- $a \leq b$ für jedes $a \in H$

Das (plus entsprechende Argumente für inf $\{a_n : n \ge k\}$) implizieren Korollar 2.21.

- Zeige $b \in H$: Wir zeigen, dass es für jedes $N \in \mathbb{N}$ und $\epsilon > 0$ ein $n \ge N$ gibt mit $|a_n b| < \epsilon$. (Wende das mit $\epsilon = \frac{1}{k}$ an, um eine Teilfolge zu konstruieren.) Wegen $\lim_{k \to \infty} b_k = b$ gibt es ein $K \ge N$ mit $|b_K - b| < \frac{\epsilon}{2}$. Nach Definition von b_K gibt es ein $n \ge K$ mit $|a_n - b_K| < \frac{\epsilon}{2}$. Damit ist $|a_n - b_K| + |b_K - b| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$.
- Zeige $a \leq b$ für jedes $a \in H$: Nach Definition von $a \in H$ gibt es eine Teilfolge (a_{n_k}) mit $\lim_{l \to \infty} a_{n_l} = a$. Wegen $b_{n_l} \geq a_{n_l}$ gilt $b = \lim_{k \to \infty} b_k = \lim_{l \to \infty} b_{n_l} \geq \lim_{l \to \infty} a_{n_l} = a$.

Satz 2.22. Eine Folge (a_n) reeller Zahlen konvergiert genau dann, wenn es für jedes $\epsilon > 0$ ein $N \in \mathbb{N}$ gibt, so dass für $n, m \geq N$ gilt $|a_n - a_m| < \epsilon$. Cauchy-Kriterium

Definition 2.23. Folgen, die das Cauchy-Kriterium erfüllen, heißen Cauchy-Folgen.

Beweis. " \Rightarrow " Sei $a := \lim_{n \to \infty} a_n$ und $\epsilon > 0$. Dann gibt es ein $N \in \mathbb{N}$, so dass für $n \ge N$ gilt $|a_n - a| < \frac{\epsilon}{2}$. Dann ist für $n, m \ge N : |a_n - a_m| = |a_n - a| + |a_m - a| = \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$. "Sei (a_n) eine Cauchy-Folge. Dann ist (a_n) beschränkt.

Beweis. Es gibt ein $N \in \mathbb{N}$, so dass für $n, m \ge N$ gilt, dass $|a_n - a_m| < 1$, damit ist für $n \ge N : |a_n| \le |a_n - a_N| + |a_N| < 1 + |a_N|$ und damit ist $M := \max\{|a_1|, \ldots, |a_{N-1}|, 1 + |a_N|\}$ eine Schranke von $|a_n|$.

Nach Korollar 2.21 gibt es eine konvergente Teilfolge (a_{n_k}) . Wir zeigen, dass auch (a_n) gegen $a := \lim_{k \to \infty} a_{n_k}$ konvergiert.

Sei $\epsilon > 0$. Dann gibt es ein $N \in \mathbb{N}$, so dass für $n, m \ge N$ gilt $|a_n - a_m| < \frac{\epsilon}{2}$. Außerdem gibt es ein k, so dass $n_k \ge N$ und $|a_{n_k} - a| < \frac{\epsilon}{2}$. Dann ist für alle $n \ge N$: $|a_n - a| \le |a_n - a_{n_k}| + |a_{n_k} - a| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$.

2.3 Bestimmte Divergenz

Manchmal fügen wir zu $\mathbb R$ zwei "ideelle" Elemente $+\infty$ und $-\infty$ hinzu.

$$-\infty < x < +\infty$$
 für alle $x \in \mathbb{R}$

Ist $E \subset \mathbb{R}$ eine nichtleere Menge, die nicht nach oben beschränkt ist, so setzt man

$$\sup E := +\infty$$

Ensprechend inf $E := -\infty$, falls E nichtleer und nicht nach unten beschränkt.

 $\mathbb{R} \cup \{-\infty, +\infty\}$ kann keine Körperstruktur gegeben werden. Trotzdem setzt man

$$x + \infty := +\infty, \qquad x - \infty = -\infty, \qquad \frac{x}{+\infty} = \frac{x}{-\infty} = 0 \qquad \text{für alle } x \in \mathbb{R}$$

und

$$x \cdot (+\infty) = +\infty, \quad x \cdot (-\infty) = -\infty, \quad \text{für } x > 0 \text{ (entsprechand für } x < 0)$$

(Es ist nicht definiert: $+\infty - \infty, 0 \cdot (+\infty), 0 \cdot (-\infty)$.)

Definition 2.24. Eine Folge (a_n) reeller Zahlen heißt bestimmt divergent (oder uneigentlich konvergent) gegen $+\infty$, wenn es zu jedem $K \in \mathbb{R}$ ein $N \in \mathbb{N}$ gibt, so dass für alle $n \geq N$ gilt $a_n \geq K$. Man schreibt dann

$$\lim_{n \to \infty} a_n = +\infty \qquad \text{oder} \qquad a_n \to +\infty \text{ für } n \to \infty.$$

Entsprechend definiert man $\lim_{n\to\infty} a_n = -\infty$.

Beispiel 2.25. 1. Die Folge $a_n := n$ divergiert bestimmt gegen $+\infty$.

- 2. Die Folge $a_n := (-1)^n n$ divergiert nicht bestimmt gegen $+\infty$ oder $-\infty$.
- 3. Die Folge (x^n) divergiert bestimmt gegen $+\infty$ für x>1 und divergiert nicht bestimmt für x<-1.

Proposition 2.26. Sei (a_n) eine Folge reeller Zahlen.

- 1. Divergiert die Folge bestimmt, so gibt es ein $N_0 \in \mathbb{N}$ mit $a_n \neq 0$ für $n \geq N_0$ und $\lim_{n \to \infty} \frac{1}{a_n} = 0$.
- 2. Gilt $\lim_{n\to\infty} a_n = 0$ und $a_n > 0$ für alle $n \in \mathbb{N}$ (bzw. <), so divergiert $\left(\frac{1}{a_n}\right)$ bestimmt gegen $+\infty \ (bzw. -\infty).$

Definition 2.27. Für eine (nicht notwendigerweise beschränkte) Folge (a_n) reeller Zahlen setzt man

$$\limsup_{n \to \infty} a_n := \lim_{k \to \infty} \sup \{a_n : n \ge k\}$$
$$\liminf_{n \to \infty} a_n := \lim_{k \to \infty} \inf \{a_n : n \ge k\}$$

Beispiel 2.28. 1. Für $a_n := n$ ist $\sup \{a_n : n \ge k\} = +\infty$ \Rightarrow $\lim \sup_{n \to \infty} a_n = +\infty$ $\inf \{a_n : n \ge k\} = k$ \Rightarrow $\lim \inf_{n \to \infty} a_n = +\infty$.

2. Für $a_n := (-1)^n n$ ist $\limsup_{n \to \infty} a_n = +\infty$ $\lim \inf_{n \to \infty} a_n = -\infty$

2.4 Unendliche Reihen

Definition 2.29. Sei (a_n) eine Folge reeller Zahlen. Die Partialsummen

$$s_n := \sum_{m=1}^n a_n, \qquad n \in \mathbb{N}$$

definieren eine Folge $(s_n)_{n\in\mathbb{N}}$ reeller Zahlen, genannt die (unendliche) Reihe mit den Gliedern a_n , und wir bezeichnen diese Folge mit $\sum_{m=1}^{\infty} a_m$.

Konvergiert die Folge (s_n) , so wird ihr Grenzwert auch mit $\sum_{m=1}^{\infty} a_m$ bezeichnet.

Entsprechendes gilt für Reihen $\sum_{m=k}^{\infty} a_m$ mit Indexmenge $\{m \in \mathbb{Z} : m \geq k\}$.

1. Unendliche geometrische Reihe: Für alle $x \in \mathbb{R}$ mit |x| < 1 konvergiert die geometrische Reihe $\sum_{m=0}^{\infty} x^m$ gegen $\sum_{m=0}^{\infty} x^m = \frac{1}{1-x}$.

Beweis. Bereits bewiesen: $s_n = \sum_{m=0}^n x^m = \frac{1-x^{n+1}}{1-x}$ und $\lim_{n\to\infty} x^n = 0$ wegen |x| < 1.

Zusatz: Für $x \geq 1$ divergiert die unendliche geometrische Reihe bestimmt gegen $+\infty$. Für

 $x \leq -1$ konvergiert die Reihe nicht und divergert auch nicht bestimmt. Beachte für $x = \frac{1}{2}$: $\sum_{m=0}^{\infty} 2^{-m} = \frac{1}{1-\frac{1}{2}} = 2$. dyadische Blöcke: $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots$

2. Unendliche harmonische Reihe: Die Reihe $\sum_{m=1}^{\infty} \frac{1}{m}$ divergiert bestimmt gegen $+\infty$.

Beweis. Sei $k \in \mathbb{N}_0$ und $n \geq 2^k$. Dann ist

$$s_n = 1 + \frac{1}{2} + \underbrace{\left(\frac{1}{3} + \frac{1}{4}\right)}_{\substack{2 \text{ Terme,} \\ \text{ jeder } \geq \frac{1}{4} \\ \geq 2 \cdot \frac{1}{4} = \frac{1}{2}}}_{\substack{4 \text{ Terme,} \\ \text{ jeder } \geq \frac{1}{8} \\ \geq 4 \cdot \frac{1}{8} = \frac{1}{2}}} + \dots + \underbrace{\left(\frac{1}{2^{k-1} + 1} + \dots + \frac{1}{2^k}\right)}_{\substack{2^{k-1} \text{ Terme,} \\ \text{ jeder } \geq \frac{1}{2^k} \\ \geq 2^{k-1} \cdot \frac{1}{2^k} = \frac{1}{2}}}_{\substack{2 \text{ degree } \geq \frac{1}{2^k} \\ \geq 2^{k-1} \cdot \frac{1}{2^k} = \frac{1}{2}}}$$

 $\geq 1 + k \cdot \frac{1}{2}$, die Partialsummen sind nicht nach oben beschränkt und daher nicht konvergent

3. $\sum_{m=1}^{\infty} \frac{1}{m(m+1)} = 1$

Beweis.
$$\frac{1}{m(m+1)} = \frac{1}{m} - \frac{1}{m+1} \Rightarrow s_n = \sum_{m=1}^n \frac{1}{m(m+1)} = \sum_{m=1}^n \frac{1}{m} - \sum_{m=1}^n \frac{1}{m+1} = \sum_{m=1}^n \frac{1}{m} - \sum_{m=1}^n \frac{1}{m} = \sum_{m=1$$

$$\begin{array}{c} \sum_{l=2}^{n+1}\frac{1}{l}=\frac{1}{1}-\frac{1}{n+1}=1-\frac{1}{n+1}\\ \text{Teleskopsumme} \end{array}$$
 Verwende $\lim_{n\to\infty}\frac{1}{n}=0$

Proposition 2.31. Seien $\sum_{m=1}^{\infty} a_m$ und $\sum_{m=1}^{\infty} b_m$ konvergente Reihen reeller Zahlen und seien $c,d \in \mathbb{R}$. Dann konvergiert $\sum_{m=1}^{\infty} (ca_m + db_m)$ und es gilt $\sum_{m=1}^{\infty} (ca_m + db_m) = c \sum_{m=1}^{\infty} a_m + c \sum_{m=1}^{\infty} (ca_m + db_m)$

Proposition 2.32. Sei $\sum_{m=1}^{\infty} a_m$ eine konvergente Reihe reeller Zahlen. Dann konvergiert (a_n)

Bemerkung: Die Umkehrung stimmt im Allgemeinen nicht (z.B. ist $\lim_{n\to\infty}\frac{1}{n}=0$, aber $\sum_{m=1}^{\infty}\frac{1}{m}=0$

Beweis. Es ist $s_n - s_{n-1} = a_n$. Nach Vorraussetzung konvergiert (s_n) , also nach den Rechenregeln für Folgen konvergiert (a_n) und es ist $\lim_{n\to\infty} a_n = \lim_{n\to\infty} s_n - \lim_{n\to\infty} s_{n-1} = 0$.

Proposition 2.33. Sei (a_n) eine Folge mit $a_n \geq 0$ für alle n. Dann konvergiert $\sum_{m=1}^{\infty} a_m$ genau dann, wenn die Folge der Partialsummen beschränkt ist.

Beweis. "⇒": Eine konvergente Folge ist beschränkt.

"←": Eine monoton wachsende, beschränkte Folge ist konvergent.

Beispiel 2.34. Für $s \in \mathbb{R}$ ist $\sum_{n=1}^{\infty} \frac{1}{n^s}$ konvergent für s > 1 und bestimmt divergent gegen $+\infty$ für $s \leq 1$.

Beweis. Sei zunächst s > 1. Zeige: Partialsummen sind beschränkt.

Für gegebenes $n \in \mathbb{N}$ gibt es ein k mit $2^{k+1} \ge n+1$.

$$s_n = \sum_{m=1}^n \frac{1}{m^s} \le \sum_{m=1}^{2^{k+1}-1} \frac{1}{m^s} = 1 + \underbrace{\left(\frac{1}{2^s} + \frac{1}{3^s}\right)}_{\le 2 \cdot 2^{-s}} + \dots + \sum_{m=2^k}^{2^{k+1}-1} \frac{1}{m^s} \le \sum_{j=0}^k 2^j \frac{1}{(2^j)^s} = \sum_{j=0}^k \left(2^{-s+1}\right)^j$$

$$\le \sum_{j=0}^\infty \left(2^{-s+1}\right)^j = \frac{1}{1 - 2^{-s+1}}$$
geometrische

Sei jetzt $s \leq 1$. Dann ist für jedes $m \in \mathbb{N}$ $\frac{1}{m^s} \geq \frac{1}{m}$, also $\sum_{m=1}^n \frac{1}{m^s} \geq \sum_{m=1}^n \frac{1}{m}$. Wie oben gezeigt, ist $\sum_{m=1}^n \frac{1}{m}$ nicht nach oben beschränkt.

Bemerkung: $\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s} \text{ mit } s > 1 \text{ heißt } Zetafunktion.$

Wir werden später sehen, dass $\zeta(2) = \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$. (Euler 1734)

Satz 2.35. (Leibnizsches Konvergenzkriterium) Sei (a_n) eine monoton fallende Folge mit $\lim_{n\to\infty} a_n = 0$. Dann konvergiert $\sum_{m=1}^{\infty} (-1)^m a_m$.

Beispiel 2.36. 1. Die alternierende harmonische Reihe $\sum_{m=1}^{\infty} \frac{(-1)^{m-1}}{m}$ konvergiert (gegen ln 2, s. später).

2. Allgemeiner konvergiert s>0 die Reihe $\sum_{m=1}^{\infty}\frac{(-1)^{m-1}}{m^s}.$

Intuition zum Beweis: $s_n = \sum_{m=1}^n (-1)^m a_m$.

Beweis. Wegen $s_{2k+2} - s_{2k} = a_{2k+2} - a_{2k+1} \le 0$ gilt $s_2 \ge s_4 \ge s_6 \ge \ldots \ge s_{2k} \ge s_{2k+2} \ge \ldots$

Wegen $s_{2k+1} - s_{2k-1} = -a_{2k+1} + a_{2k} \ge 0$ gilt $s_1 \le s_2 \le s_3 \le \ldots \le s_{2k-1} \le s_{2k+1} \le \ldots$

Außerdem ist wegen $s_{2k-1} - s_{2k} = -a_{2k} \le 0$ auch $s_{2k-1} \le s_{2k}$ für alle $k \in \mathbb{N}$.

Die Folge (s_{2k}) ist monoton falllend und (durch s_1) nach unten beschränkt, also existiert $S := \lim_{k \to \infty} s_{2k}$. Die Folge (s_{2k-1}) ist monoton wachsend und (durch s_2) nach oben beschränkt, also existiert $S' := \lim_{k \to \infty} s_{2k-1}$.

Wegen
$$S - S' = \lim_{k \to \infty} a_{2k} - \lim_{k \to \infty} a_{2k-1} = \lim_{k \to \infty} \left(\underbrace{s_{2k} - s_{2k-1}}_{=g_{2k}} \right) = 0 \text{ ist } S = S'.$$

Noch zu zeigen: die ganze Folge konvergiert gegen S.

Sei $\epsilon > 0$. Dann gibt es $K, K' \in \mathbb{N}$, so dass für alle $k \geq K$ gilt $|s_{2k} - S| < \epsilon$ und für alle $k' \geq K'$ gilt $|s_{2k-1} - S| < \epsilon$.

Damit ist für alle
$$n \ge \max\{2K, 2K' - 1\}: |s_n - S| < \epsilon.$$

Proposition 2.37. (Cauchysches Konvergenzkriterium) Sei (a_n) eine Folge reeller Zahlen. Die Reihe $\sum_{m=1}^{\infty} a_m$ konvergiert genau dann, wenn es für jedes $\epsilon > 0$ ein $N \in \mathbb{N}$ gibt, so dass für alle $l \geq k \geq N$ gilt

$$\left| \sum_{m=k}^{l} a_m \right| < \epsilon.$$

Das ist das Cauchysche Konvergenzkriterium für die Folge der Partialsummen.

Definition 2.38. Eine Reihe $\sum_{m=1}^{\infty} a_m$ heißt absolut konvergent, falls die Reihe $\sum_{m=1}^{\infty} |a_m|$ konvergiert.

Bemerkung: Eine absolut konvergente Reihe konvergiert.

Beweis. Sei $\epsilon > 0$. Dann gibt es nach dem Cauchyschen Konvergenzkriterium ein $N \in \mathbb{N}$, so dass für $l \geq k \geq N$ gilt $\sum_{m=k}^{l} |a_m| < \epsilon$.

Damit ist auch $\left|\sum_{m=k}^{l} a_m\right| \leq \sum_{m=k}^{l} |a_m| < \epsilon$. Nach dem Cauchyschen Konvergenzkriterium ist also $\sum_{m=1}^{\infty} a_m$ konvergent.

Satz 2.39. (Majoranten-Kriterium, Weierstraß'sches Konvergenzkriterium) $Sei \sum_{m=1}^{\infty} c_m$ eine konvergente Reihe mit nicht-negativen Gliedern und (a_n) eine Folge mit $|a_n| \leq c_n$ für alle $n \in \mathbb{N}$. Dann konvergiert die Reihe $\sum_{m=1}^{\infty} a_m$ absolut.

Definition 2.40. In der Situation von Satz 2.39 nennt man $\sum_{m=1}^{\infty} c_m$ eine *Majorante* von $\sum_{m=1}^{\infty} a_m$.

Beweis. Sei $\epsilon>0$. Nach dem Cauchyschen Konvergenzkriterium gibt es ein $N\in\mathbb{N}$, so dass für alle $l\geq k\geq N$ gilt: $\sum_{m=k}^l c_m<\epsilon$. Damit ist auch $\sum_{m=k}^l |a_m|\leq \sum_{m=k}^l c_m<\epsilon$. Wieder nach dem Cauchyschen Konvergenzkriterium konvergiert daher $\sum_{m=1}^\infty |a_m|$.

Bemerkung: Falls $\sum_{m=1}^{\infty} c_m$ eine Reihe ist mit nicht-negativen Gliedern, die bestimmt divergiert, und (a_n) eine Folge ist mit $a_n \geq c_n$ für alle $n \in \mathbb{N}$, so divergiert $\sum_{m=1}^{\infty} a_m$ bestimmt.

(Denn andernfalls wäre $\sum_{m=1}^{\infty} a_m$ eine konvergente Majorante von $\sum_{m=1}^{\infty} c_m$.)

Beispiel 2.41. 1. $\sum_{m=1}^{\infty} \frac{m!}{m^m}$ konvergiert, da $\frac{m!}{m^m} = \frac{1}{m} \cdot \frac{2}{m} \cdots \frac{m}{m} \le \frac{2}{m^m}$ für alle $m \ge 2$ und daher $\sum_{m=2}^{\infty} \frac{2}{m^2}$ eine konvergente Majorante von $\sum_{m=2}^{\infty} \frac{m!}{m}$ ist.

2. $\sum_{m=1}^{\infty} \frac{1}{\sqrt{m(m+1)}}$ divergiert bestimmt gegen $+\infty,$ da

$$\frac{1}{\sqrt{m(m+1)}} \geq \frac{1}{\sqrt{2}m} \text{ für alle } m \geq 1 \quad \left(\Leftrightarrow \sqrt{m} \geq \frac{1}{\sqrt{2}} \sqrt{m+1} \text{ für alle } m \geq 1 \right)$$

und $\sum_{m=1}^{\infty} \frac{1}{\sqrt{2m}}$ divergiert bestimmt gegen $+\infty$.

Satz 2.42. (Wurzelkriterium) Sei (a_n) eine Folge reeller Zahlen und $L := \limsup_{n \to \infty} |a_n|^{\frac{1}{n}}$. Ist L < 1, so konvergiert die Reihe $\sum_{m=1}^{\infty} a_m$. Ist L > 1, so konvergiert sie nicht.

Bemerkung: Gilt L=1, so kann sowohl Konvergenz als auch Nicht-Konvergenz auftreten.

Beispiel 2.43. $a_n := \frac{1}{n^s} \text{ mit } s = 1 \text{ oder } 2.$

Für s=1 gilt $\limsup_{n\to\infty} n^{-\frac{1}{n}}=1$, aber $\sum_{n=1}^{\infty} a_n$ divergiert bestimmt.

Für s=2 gilt ebenfalls $\limsup_{n\to\infty} n^{-\frac{2}{n}}=\left(\limsup_{n\to\infty} n^{-\frac{1}{n}}\right)^2=1^2=1$, aber $\sum_{n=1}^\infty a_n$ konvergiert.

Beweis. Sei L < 1 und wähle L < x < 1. Dann gibt es nach Definition des Limes superior ein $N \in \mathbb{N}$, so dass für ale $n \ge N$ gilt $|a_n|^{\frac{1}{n}} < x$, d.h. $y |a_n| < x^n$. Damit ist $\sum_{m=N}^{\infty} x^m$ eine konvergente Majorante von $\sum_{m=N}^{\infty} |a_m|$.

Ist L > 1, so gibt es unendlich viele $N \in \mathbb{N}$ mit $|a_n|^{\frac{1}{n}} > 1$, d.h. $|a_n| > 1$. Damit konvergiert (a_n) nicht gegen 0 und die Reihe konvergiert nicht.

Korollar 2.44. (Quotientenkriterium) Sei (a_n) eine Folge reeller Zahlen mit $a_n \neq 0$ für alle großen n und $\limsup_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| < 1$. Dann konvergiert $\sum_{m=1}^{\infty} a_m$ absolut.

Beweis. Sei $\limsup_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right| < x < 1$. Dann gibt es ein $N\in\mathbb{N}$, so dass für alle $n\geq N:\left|\frac{a_{n+1}}{a_n}\right| < x$. Damit ist $|a_{n+1}|< x\,|a_n|\,, |a_{n+2}|< x\,|a_{n+1}|< x^2\,|a_n|\,,\ldots,|a_m|< x^{m-N}\,|a_N|$ für $m\geq N$.

 $\Rightarrow |a_m|^{\frac{1}{m}} < x \left(\frac{|\bar{a_N}|}{x^N}\right)^{\frac{1}{m}} \Rightarrow \limsup_{m \to \infty} |a_m|^{\frac{1}{m}} \leq x \limsup_{m \to \infty} \left(\frac{|a_N|}{x^N}\right)^{\frac{1}{m}} = x. \text{ Wegen } x < 1 \text{ folgt absolue Konvergenz aus dem Wurzelkriterium.}$

Bemerkung: Gibt es ein $N \in \mathbb{N}$, so dass für $n \ge N$ gilt $\left| \frac{a_{n+1}}{a_n} \right| \ge 1$, so konvergiert $\sum_{m=1}^{\infty} a_m$ nicht. (Denn es ist $a_N \ne 0$ und $|a_{n+1}| \ge |a_n| \ge |a_{n-1}| \ge \ldots \ge |a_N|$ für alle $n+1 \ge N$ und damit konvergiert (a_n) nicht gegen (a_n)

Bemerkung: Gilt $\limsup_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = 1$ kann Konvergenz oder Nicht-Konvergenz vorliegen. (Bsp.: $a_n = \frac{1}{n^s}$, s = 1, 2; $\left|\frac{a_{n+1}}{a_n}\right| = \frac{n^s}{(n+1)^s} \to 1$.)

Beispiel 2.45.
$$(a_n) = \left(\frac{1}{2}, \boxed{\frac{1}{3}, \frac{1}{2^2}}, \frac{1}{3^2}, \frac{1}{2^3}, \frac{1}{3^3}, \dots, \frac{1}{2^k}, \boxed{\frac{1}{3^k}, \frac{1}{2^{k+1}}}, \frac{1}{3^{k+1}}, \dots\right).$$

Dann ist $\limsup_{n\to\infty} \frac{a_{n+1}}{a_n} \stackrel{!}{=} \limsup_{k\to\infty} \frac{1}{2} \left(\frac{3}{2}\right)^k = +\infty$, also ist das Quotientenkriterium nicht anwendbar.

Andererseits ist $\limsup_{n\to\infty} a_n^{\frac{1}{n}} \stackrel{!}{=} \limsup_{k\to\infty} \left(2^{-2k+1}\right)^{\frac{1}{2k}} = \frac{1}{\sqrt{2}} < 1$, also ist das Wurzelkriterium anwendbar.

 \sim Reihe $\sum_{m=1}^{\infty} a_m$ ist konvergent.

2.5 Umordnung von Reihen

Sei $\sum_{n=1}^{\infty} a_n$ eine konvergente Reihe und sei $\tau: \mathbb{N} \to \mathbb{N}$ eine bijektive Abbildung.

Frage: Konvergiert $\sum_{l=1}^{\infty} a_{\tau(l)}$?

Im Allgemeinen ist die Antwort nein.

Beispiel 2.46. Wir betrachten die alternierende harmonische Reihe und konstruieren $\tau: \mathbb{N} \to \mathbb{N}$, so dass $\sum_{l=1}^{\infty} \frac{(-1)^{\tau(l)-1}}{l}$ bestimmmt gegen $+\infty$ divergiert.

$$1 - \frac{1}{2} + \left(\frac{1}{3}\right) - \frac{1}{4}$$

$$+ \left(\frac{1}{5} + \frac{1}{7}\right) - \frac{1}{6}$$

$$+ \left(\frac{1}{9} + \frac{1}{11} + \frac{1}{13} + \frac{1}{15}\right) - \frac{1}{8}$$

$$\vdots$$

$$+ \left(\frac{1}{2^k + 1} + \frac{1}{2^k + 3} + \dots + \frac{1}{2^{k+1} - 1}\right) - \frac{1}{2k + 2}$$

$$\vdots$$

Wegen
$$\underbrace{\frac{1}{2^k+1} + \frac{1}{2^k+3} + \ldots + \frac{1}{2^{k+1}-1}}_{2^{k-1} \text{ Terme, jeder } \ge \frac{1}{2^{k+1}-1} > \frac{1}{2^{k+1}}}_{\ge 2^{k-1}} > 2^{k-1} \cdot \frac{1}{2^{k+1}} = \frac{1}{4}.$$

Für
$$k \ge 2$$
 ist $\frac{1}{2k+2} \le \frac{1}{6}$, also $\left(\frac{1}{2^k+1} + \frac{1}{2^k+3} + \ldots + \frac{1}{2^{k+1}-1}\right) - \frac{1}{2^k+2} > \frac{1}{4} - \frac{1}{6} = \frac{1}{12}$.

Beispiel 2.47. Es gibt eine Umordnung der alternierenden harmonische Reihe, die gegen $\frac{1}{2}$ -mal den ursprünglichen Grenzwert konvergiert. Sei S der ursprüngliche Grenzwert, also $S = \sum_{m=1}^{\infty} \frac{(-1)^{m-1}}{m}$.

$$1 - \frac{1}{2} - \frac{1}{4}$$

$$+ \frac{1}{3} - \frac{1}{6} - \frac{1}{8}$$

$$+ \frac{1}{5} - \frac{1}{10} - \frac{1}{12}$$

$$\vdots$$

$$+ \frac{1}{2k-1} - \frac{1}{4k-2} - \frac{1}{4k}$$

$$\vdots$$

Seien s_n und t_n die Partialsummen der ursprünglichen und der ungeordneten Reihe.

Wegen
$$\frac{1}{2k-1} - \frac{1}{4k-2} - \frac{1}{4k} = \frac{1}{2} \left(\frac{1}{2k-1} - \frac{1}{2k} \right)$$
 gilt $t_{3l} = \frac{1}{2} s_{2l}$ für alle $l \in \mathbb{N}$.

Also gilt $\lim_{l\to\infty} t_{3l} = \frac{1}{2} \lim_{l\to\infty} s_{2l} = \frac{1}{2} S$. Weil die Reihenglieder gegen 0 konvergieren, folgt daraus schon dass $\lim_{n\to\infty} t_n = \frac{1}{2} S$.

Satz 2.48. Sei $\sum_{m=1}^{\infty} a_m$ eine absolut konvergente Reihe und $\tau : \mathbb{N} \to \mathbb{N}$ eine bijektive Abbildung. Dann konvergiert $\sum_{l=1}^{\infty} a_{\tau(l)}$ absolut und ihr Grenzwert ist $\sum_{m=1}^{\infty} a_m$.

Beweis. Sei $A := \sum_{m=1}^{\infty} a_m$ der Grenzwert. Sei $\epsilon > 0$. Dann gibt es ein $N \in \mathbb{N}$, so dass $\sum_{m=N}^{\infty} |a_m| < \frac{\epsilon}{2}$. Insbesondere ist

$$\left| \sum_{m=1}^{N-1} a_m - A \right| = \left| \sum_{n=N}^{\infty} a_n \right| \le \sum_{m=N}^{\infty} |a_n| < \frac{\epsilon}{2}.$$

Weil es für jedes m = 1, ..., N - 1 ein l gibt mit $\tau(l) = m$, gibt es ein $L \in \mathbb{N}$, so dass

$$\{1, \dots, N-1\} \subset \{\tau(1), \dots, \tau(l)\}$$

Für $M \geq L$ ist dann

$$\left| \sum_{m=1}^{M} a_{\tau(l)} - \sum_{m=1}^{N-1} a_m \right| \le \sum_{m=N}^{\infty} |a_m| \stackrel{\text{s.o.}}{<} \frac{\epsilon}{2}$$

 \Rightarrow für $M \ge L$:

$$\left| \sum_{m=1}^{M} a_{\tau(l)} - A \right| \leq \left| \sum_{m=1}^{M} a_{\tau(l)} - \sum_{m=1}^{N-1} a_m \right| + \left| \sum_{m=1}^{N-1} a_m - A \right| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Damit konvergiert $\sum_{l=1}^{\infty} a_{\tau(l)}$ gegen A.

Wendet man dasselbe Argument auf die Reihe $\sum_{m=1}^{\infty} |a_m|$ an, so sieht man dass $\sum_{l=1}^{\infty} |a_{\tau(l)}|$ konvergiert gegen $\sum_{m=1}^{\infty} |a_m|$. Insbesondere konvergiert $\sum_{l=1}^{\infty} a_{\tau(l)}$ absolut.

2.6 Cauchy-Produkt von Reihen

Definition 2.49. Für zwei Reihen $\sum_{m=0}^{\infty} a_m$ und $\sum_{m=0}^{\infty} b_m$ heißt die Reihe $\sum_{m=0}^{\infty} c_m$ mit $c_m := \sum_{n=0}^{m} a_{m-n}b_n$ das Cauchy-Produkt von $\sum_{m=0}^{\infty} a_m$ und $\sum_{m=0}^{\infty} b_m$. Sind $\sum a_m$ und $\sum b_m$ endliche Summen, so ist

$$\sum_{m=0}^{\infty} c_m = \left(\sum_{m=0}^{\infty} a_m\right) \cdot \left(\sum_{m=0}^{\infty} b_m\right)$$

Beispiel 2.50.

$$(a_0 + a_1 + a_2)(b_0 + b_1 + b_2) = a_0b_0 + (a_0b_1 + a_1b_0) + (a_0b_2 + a_1b_1 + a_2b_0) + (a_0b_3 + a_1b_2 + a_3b_0) + (a_0b_4 + a_1b_3 + a_2b_2 + a_3b_1 + a_4b_0)$$

Beispiel 2.51. Diese Identität gilt im Allgemeinen nicht für konvergente Reihen.

 $a_n = b_n = \frac{(-1)^n}{\sqrt{n+1}}, n \in \mathbb{N}_0 \leadsto \sum a_n, \sum b_n$ konvergieren nach dem Leibnizschen Konvergenzkriterium

Für das Cauchy-Produkt gilt $c_m = \sum_{n=0}^m \frac{(-1)^{m-n}}{\sqrt{m-n+1}} \cdot \frac{(-1)^n}{\sqrt{n+1}} = (-1)^m \sum_{n=0}^m \frac{1}{\sqrt{m-n+1} \cdot \sqrt{n+1}}$

Wir zeigen, dass $|c_m|$ nicht gegen 0 konvergiert.

$$(m-n+1)(n+1) = \left(\frac{m}{2}+1\right)^2 - \left(\frac{m}{2}+1\right)^2 \le \left(\frac{m}{2}+1\right)^2$$

 $\Rightarrow |c_m| \ge \sum_{n=0}^m \frac{1}{\frac{m}{2}+1} = \frac{m+1}{\frac{m}{2}+1} \to 2 \text{ für } n \to \infty, \text{ also nicht } |c_m| \to 0.$

Proposition 2.52. Seien $\sum_{m=0}^{\infty} a_m$ und $\sum_{m=0}^{\infty} b_m$ absolut konvergente Reihen. Dann ist das Cauchy-Produkt $\sum_{m=0}^{\infty} c_m$ absolut konvergent und es gilt $\sum_{m=0}^{\infty} c_m = (\sum_{m=0}^{\infty} a_m) \cdot (\sum_{m=0}^{\infty} a_m)$.

Anmerkung: Es gibt auch ähnlich Sätze, welche hier aber nicht bewiesen werden, z.B. $\sum a_m$ und $\sum b_m$ absolut konvergent und konvergent, so konvergiert das Cauchy-Produkt; wenn beide konvergieren und das Cauchy-Produkt konvergiert, so gilt die Produktformel.

Beweis. Seien $A_n := \sum_{m=0}^n a_m, B_n := \sum_{m=0}^n b_m$. Dann gilt

$$A_n B_n = \sum_{(k,l) \in Q_n} a_k b_{l-k}$$
 mit $Q_n := \{(k,l) : 0 \le k, l \le n\}$

Nach Definition gilt für $C_n := \sum_{m=0}^n c_m = \sum_{l=0}^n c_l$

$$C_n = \sum_{(k,l)\in D_n} a_k b_{l-k}$$
 mit $D_n := \{(k,l) : k+l \le n\}$

$$\Rightarrow A_n B_n - C_n = \sum_{(k,l) \in Q_n \setminus D_n} a_k b_{l-k}$$

Für $A_n^* = \sum_{m=0}^n \mid a_m \mid, B_n^* = \sum_{m=0}^n \mid b_m \mid$ gilt entsprechend

$$A_n^* B_n^* = \sum_{(k,l) \in Q_n} |a_k| \cdot |b_{l-k}|$$

$$\text{Wegen } Q_{\lfloor \frac{n}{2} \rfloor} \subset D_N \text{ ist } Q_n \setminus D_n \subset Q_n \setminus Q_{\lfloor \frac{n}{2} \rfloor} \text{ und damit } \mid A_n B_n - C_n \mid \leq \sum_{(k,l) \in Q_n \setminus Q_{\lfloor \frac{n}{2} \rfloor}} \mid a_k \mid \cdot \mid b_{l-k} \mid = 1 \text{ and } A_n B_n - C_n \mid \leq \sum_{(k,l) \in Q_n \setminus Q_{\lfloor \frac{n}{2} \rfloor}} \mid a_k \mid \cdot \mid b_{l-k} \mid = 1 \text{ and } A_n B_n - C_n \mid \leq \sum_{(k,l) \in Q_n \setminus Q_{\lfloor \frac{n}{2} \rfloor}} \mid a_k \mid \cdot \mid b_{l-k} \mid = 1 \text{ and } A_n B_n - C_n \mid \leq \sum_{(k,l) \in Q_n \setminus Q_{\lfloor \frac{n}{2} \rfloor}} \mid a_k \mid \cdot \mid b_{l-k} \mid = 1 \text{ and } A_n B_n - C_n \mid \leq \sum_{(k,l) \in Q_n \setminus Q_{\lfloor \frac{n}{2} \rfloor}} \mid a_k \mid \cdot \mid b_{l-k} \mid = 1 \text{ and } A_n B_n - C_n \mid \leq \sum_{(k,l) \in Q_n \setminus Q_{\lfloor \frac{n}{2} \rfloor}} \mid a_k \mid \cdot \mid b_{l-k} \mid = 1 \text{ and } A_n B_n - C_n \mid \leq \sum_{(k,l) \in Q_n \setminus Q_{\lfloor \frac{n}{2} \rfloor}} \mid a_k \mid \cdot \mid b_{l-k} \mid = 1 \text{ and } A_n B_n - C_n \mid \leq \sum_{(k,l) \in Q_n \setminus Q_{\lfloor \frac{n}{2} \rfloor}} \mid a_k \mid \cdot \mid b_{l-k} \mid = 1 \text{ and } A_n B_n - C_n \mid \leq \sum_{(k,l) \in Q_n \setminus Q_{\lfloor \frac{n}{2} \rfloor}} \mid a_k \mid \cdot \mid b_{l-k} \mid = 1 \text{ and } A_n B_n - C_n \mid \leq \sum_{(k,l) \in Q_n \setminus Q_{\lfloor \frac{n}{2} \rfloor}} \mid a_k \mid \cdot \mid b_{l-k} \mid = 1 \text{ and } A_n B_n - C_n \mid \leq \sum_{(k,l) \in Q_n \setminus Q_{\lfloor \frac{n}{2} \rfloor}} \mid a_k \mid \cdot \mid b_{l-k} \mid = 1 \text{ and } A_n B_n - C_n \mid \leq \sum_{(k,l) \in Q_n \setminus Q_{\lfloor \frac{n}{2} \rfloor}} \mid a_k \mid$$

$$A_n^* B_n^* - A_{\lfloor \frac{n}{2} \rfloor}^* B_{\lfloor \frac{n}{2} \rfloor}^*.$$

Weil (A_n^*) und (B_n^*) konvergieren, konvergiert auch $(A_n^*B_n^*)$ und $\left(A_{\lfloor \frac{n}{2}\rfloor}^*B_{\lfloor \frac{n}{2}\rfloor}^*\right)$ und die Grenzwerte sind dieselben. Daher konvergiert $(A_nB_n-C_n)$ gegen 0. Da (A_n) und (B_n) konvergieren, konvergiert auch (A_nB_n) mit $\lim_{n\to\infty}A_nB_n=\lim_{n\to\infty}A_n\cdot\lim_{n\to\infty}B_n$. Daher konvergiert C_n gegen $\lim_{n\to\infty}A_n\cdot\lim_{n\to\infty}B_n$, wie behauptet.

Wendet man das bewiesene auf die Reihen $\sum \mid a_m \mid$ und $\sum \mid b_m \mid$ an, so erhält man, dass ihr Cauchy-Produkt $\sum d_m$ konvergiert mit $d_m := \sum_{n=0}^m \mid a_m \mid \cdot \mid b_{m-n} \mid$. Wegen $\mid c_m \mid \leq d_m$ für $m \in \mathbb{N}_0$ ist $\sum d_m$ eine konvergente Majorante für $\sum_{m=0}^{\infty} \mid c_m \mid$. Nach dem Majorantenkriterium konvergiert daher $\sum c_m$ absolut.

2.7 Die Exponentialreihe

Behauptung: Für jedes $x \in \mathbb{R}$ ist die Reihe

$$\exp(x) := \sum_{m=0}^{\infty} \frac{x^m}{m!}$$
 Exponential reine

absolut konvergent.

 $\textit{Beweis.} \ \ \text{Das folgt aus dem Quotientekriterium, da für alle} \ m \geq 2|x| : \left| \frac{x^{m+1}}{(m+1)!} \cdot \frac{m!}{x^m} \right| = \frac{|x|}{m+1} \leq \frac{1}{2}. \\$

Wir nennen $e := \exp(1)$ die Eulersche Zahl.

Proposition 2.53. e ist irrational.

Beweis. 1. Für die n-te Partialsumme s_n von $e = \exp(1)$ gilt

$$\mathrm{e} - s_n = \sum_{m=n+1}^{\infty} \frac{1}{m!} = \frac{1}{(n+1)!} \sum_{m=n+1}^{\infty} \underbrace{\frac{(n+1)!}{m!}}_{\substack{m = n+1 \\ (n+2)(n+3) \cdot \ldots \cdot m}} < \frac{1}{(n+1)!} \sum_{m=n+1}^{\infty} \frac{1}{(n+1)^{m-n-1}} \mathop{=}_{\substack{n = n+1 \\ \text{Reihe}}}^{\text{demonstrates}} \frac{1}{n! \cdot n}$$

2. Angenommen, e = $\frac{p}{q}$ mit $p, q \in \mathbb{N}$. Nach 1. ist

$$0 < q!(e - s_q) < \frac{1}{q}$$

Nach Annahme st $q!e = (q-1)!p \in \mathbb{N}$. Außerdem ist

$$q!s_q = q!\left(1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \ldots + \frac{1}{q!}\right) \in \mathbb{N}$$

 $\Rightarrow q!(e-s_q) \in \mathbb{N}.$ Das ist ein Widerspruch zu $0 < q!(e-s_q) < \frac{1}{q} \leq 1$.

e = 2.7182818... (numerisch)

Satz 2.54. Für alle $x, y \in \mathbb{R}$ ist $\exp(x) \exp(y) = \exp(x + y)$.

Beweis. Das Cauchyprodukt von $\exp(x) = \sum_{m=0}^{\infty} \frac{x^m}{m!}$ und $\exp(y) = \sum_{m=0}^{\infty} \frac{y^m}{m!}$ hat Glieder

$$c_m = \sum_{n=0}^m \frac{x^n}{n!} \cdot \frac{y^{m-n}}{(m-n)!} = \frac{1}{m!} \sum_{n=0}^m \frac{m!}{n! \cdot (m-n)!} \cdot x^n y^{m-n} = \frac{1}{m!} (x+y)^m$$

$$\underset{\text{Lehrsatz}}{\overset{\text{binom.}}{\uparrow}}$$

Also ist $\sum_{m=0}^{\infty} c_m = \exp(x+y)$. Daher folgt die Behauptung aus dem Satz vom Cauchyprodukt.

Proposition 2.55. 1. Für alle $x \in \mathbb{R}$ ist $\exp(x) > 0$ und $\frac{1}{\exp(x)} = \exp(x)$.

- 2. Für alle x > 0 ist $\exp(x) > 1$ und für alle x < 0 ist $\exp(x) < 1$.
- 3. Für jedes $n \in \mathbb{Z}$ ist $\exp(n) = e^n$ und für alle $n \in \mathbb{N}$ ist $\exp(\frac{1}{n}) = e^{\frac{1}{n}}$.

Bemerkung: Wir werden später sehen/definieren $\exp(x) = e^x$.

Beweis. Nach Satz 2.54 ist $\exp(x) \exp(-x) = \exp(x-x) = \exp(0) = 1$, also $\exp(x) \neq 0$ und $\frac{1}{\exp(x)} = \exp(x) = 1$

Für x>0 ist $\exp(x)=1+\sum_{m=1}^{\infty}\frac{x^m}{m!}>1.$ Für x<0 ist $\exp(x)=\frac{1}{\exp(-x)}.$ Das ist >0 und <1.

Wir zeigen jetzt $\exp(n) = e^n$ für $n \in \mathbb{N}_0$ durch Induktion in n.

Induktions and fang: $\exp(0) = 1$.

$$\begin{split} &Induktionsschritt: \exp(n+1) = \exp(n) \exp(1) \stackrel{IV}{=} \mathrm{e}^n \cdot \mathrm{e} = \mathrm{e}^{n+1}. \\ &\overset{\mathrm{Satz}}{=} 2.54 \\ &\mathrm{F\"{u}r} \ 0 > n \in \mathbb{Z} \ \mathrm{ist} \ \exp(n) = \frac{1}{\exp(-n)} = \frac{1}{\mathrm{e}^{-n}} = \mathrm{e}^n. \end{split}$$

Um zu zeigen, dass für $n \in \mathbb{N}$ gilt $\exp(\frac{1}{n}) = e^{\frac{1}{n}}$ müssen wir zeigen, dass $\exp(\frac{1}{n}) > 0$ \checkmark und dass $(\exp(\frac{1}{n}))^n = e$. Letzteres folgt aus dem Satz.

3 Stetige Funktionen

3.1 Funktionen und Stetigkeit

Abbildungen $f: D \to \mathbb{R}$ werden typischerweise Funktionen genannt und D heißt der Definitionsbereich von f. Das Bild von f ist $f(D) = \{f(x) \in \mathbb{R} : x \in D\}$, und der Graph von f ist $\{(x, f(x)) \in D \times \mathbb{R} : x \in D\}$.

In diesem Kapitel betrachten wir vor allem den Fall, dass $D \subseteq \mathbb{R}$.

Oft wird D ein Intervall sein. Bezeichnungen für $-\infty < a \le b < +\infty$:

$$(a,b) := \{x \in \mathbb{R} : a < x < b\},$$

$$[a,b] := \{x \in \mathbb{R} : a \le x \le b\},$$

$$[a,b] := \{x \in \mathbb{R} : a \le x \le b\},$$

$$[a,b] := \{x \in \mathbb{R} : a \le x \le b\},$$

Im Fall von ",(" oder ",)" erlauben wir auch $a = -\infty, b = +\infty$; z.B. $(0, +\infty)$.

Alternative Notation, z.B. im Forster-Buch: "]" statt "(", "[" statt ")".

Beispiel 3.1. 1.
$$\operatorname{sgn} x := \begin{cases} 1, & \text{für } x > 0 \\ 0, & \text{für } x = 0 \\ -1, & \text{für } x < 0 \end{cases}$$

2.
$$f(x) := \begin{cases} 1, & \text{für } x \in \mathbb{Q} \\ 0, & \text{für } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$
 Dirichlet-Funktion

Definition 3.2. Sind $f, g: D \to \mathbb{R}$ Funktionen, so sind die Funktionen $f + g, fg: D \to \mathbb{R}$ definiert durch

$$(f+g)(x):=f(x)+g(x), \qquad (fg)(x):=f(x)g(x) \qquad \text{für alle } x\in D$$

Mit $D' := \{x \in D : g(x) \neq 0\}$ ist die Funktion $\frac{f}{g} : D' \to \mathbb{R}$ definiert durch

$$\left(\frac{f}{g}\right)(x) := \frac{f(x)}{g(x)}$$
 für alle $x \in D'$

Ist $h: E \to \mathbb{R}$ eine Funktion mit $f(D) \subset E$, so ist die Funktion $h \circ f: D \to \mathbb{R}$ definiert durch

$$(h \circ f)(x) := h(f(x))$$
 für alle $x \in D$

Vorsicht: f(x) ist eine Zahl, f eine Funktion!

Definition 3.3. Sei $D \subset \mathbb{R}, x_0 \in D$ und $f: D \to \mathbb{R}$. Dann heißt f stetig im Punkt x_0 , wenn es für jedes $\epsilon > 0$ ein $\delta > 0$ gibt, so dass für alle $x \in D$ mit $|x - x_0| < \delta$ gilt $|f(x) - f(x_0)| < \epsilon$.

Bemerkung: f ist stetig in x_0 genau dann, wenn für jede Folge $(x_n) \subseteq D$ mit $x_n \to x_0$ gilt, dass $f(x_n) \to f(x_0)$.

Beweis. " \Rightarrow " Sei f stetig in x_0 und sei $(x_n) \subseteq D$ mit $x_n \to x_0$. Sei $\epsilon > 0$. Nach Definition von "stetig" gibt es dann ein $\delta > 0$, so dass für alle $x \in D$ mit $|x - x_0| < \delta$ gilt, dass $|f(x) - f(x_0)| < \epsilon$. Nach Definition von "konvergent" gibt es ein $N \in \mathbb{N}$, so dass für alle $n \geq N$ gilt $|x_n - x_0| < \delta$. Damit ist also für $n \geq N : |f(x_n) - f(x_0)| < \epsilon$.

"\equiv Es gelte die Folgenbedingung. Angenommen, f wäre nicht stetig in x_0 . Dann gibt es ein $\epsilon_0 > 0$, so dass für jedes $n \in \mathbb{N}$ ein $x_n \in D$ existiert mit $|x_n - x_0| < \frac{1}{n}, |f(x_n) - f(x_0)| \ge \epsilon_0$. Dann gilt $(x_n) \subseteq D$, $x_n \to x_0$, aber $f(x_n) \not\to f(x_0)$. Dies ist aber ein Widerspruch zur Folgenbedingung.

Beispiel 3.4. 1. Die Funktion sgn ist nicht stetig in $x_0 = 0$. (Z.B. $\operatorname{sgn}(\frac{1}{n}) = 1$, aber $\operatorname{sgn} 0 = 0$)

- 2. Die Funktion f aus Beispiel 3.1 (Dirichlet-Funktion) ist in keinem Punkt $x_0 \in \mathbb{R}$ stetig. (Denn für jedes $x \in \mathbb{R} \setminus \mathbb{Q}$ gibt es $(x_n) \subseteq \mathbb{Q}$ mit $x_n \to x_0$ (s.o.) und für jedes $x \in \mathbb{Q}$ gibt es $(x_n) \subseteq \mathbb{R} \setminus \mathbb{Q}$ mit $x_n \to x_0$ (Übung).)
- 3. Für $x \in (0,1]$ sei $f(x) := \begin{cases} \frac{1}{q}, & \text{falls } x = \frac{p}{q} \text{ mit } p,q \in \mathbb{N} \text{ teilerfremd} \\ 0, & \text{falls } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$ Dann kann man zeigen, dass f in jedem Punkt $x_0 \in (0,1] \setminus \mathbb{Q}$ stetig ist.

Rechenregeln:

Proposition 3.5. Seien $f, g: D \to \mathbb{R}$ stetig in $x_0 \in D$. Dann sind f + g und fg stetig in x_0 und, falls $g(x_0) \neq 0$, auch $\frac{f}{g}$.

Beweis. Z.B. durch Folgenkriterien und Rechenregeln für Grenzwerte von Folgen.

Beispiel 3.6. Seien P,Q Polynome, d.h. $P(x) = \sum_{m=0}^{n} a_m x^m$ mit $a_0,\ldots,a_n \in \mathbb{R}$ und entsprechend für Q, dann ist die rationale Funktion $\frac{P}{Q}$ stetig in jedem Punkt $x_0 \in \mathbb{R}$ mit $Q(x_0) \neq 0$.

Beweis. Nach Proposition 3.5 genügt es, die Stetigkeit der konstanten Funktion $x \mapsto a$ und der Identitätsfunktion $x \mapsto x$ zu zeigen. Das ist aber offensichtlich aus dem Folgenkriterium.

Proposition 3.7. Seien $f: D \to \mathbb{R}$ und $h: E \to \mathbb{R}$ Funktionen mit $f(D) \subseteq E$. Sei f stetig in $x_0 \in D$ und h in $f(x_0) \in E$. Dann ist $h \circ f$ stetig in x_0 .

Beweis. Sei $(x_n) \subseteq D$ mit $x_n \to x$. Dann gilt wegen der Stetigkeit von f, dass $f(x_n) \to f(x_0)$. Wegen der Stetigkeit von h gilt $h(f(x_n)) \to h(f(x_0))$, d.h. $(h \circ f)(x_n) \to (h \circ f)(x_0)$.

Beispiel 3.8. Ist $f: D \to \mathbb{R}$ stetig, so ist $|f|: D \to \mathbb{R}$, definiert durch |f|(x) := |f(x)| für $x \in D$ stetig in x_0 .

(Nach Proposition 3.7 genügt es, die Stetigkeit von $x \mapsto |x|$ zu zeigen. Diese folgt aber einfach aus dem Folgenkriterium.)

Beispiel 3.9. Die Funktion $x \mapsto \exp(x)$ ist stetig in jedem $x_0 \in \mathbb{R}$.

Beweis. Angenommen, wir haben das schon für $x_0 = 0$ gezeigt. Dann ist für $x_0 \neq 0$ und $x_n \to x_0$

$$\exp(x_n) = \exp(x_0) \underbrace{\exp(\underbrace{x_n - x_0})}_{\rightarrow \exp(0) = 1} \rightarrow \exp(x_0)$$

Wir zeigen jetzt Stetigkeit in $x_0 = 0$. Wir zerlegen (für beliebiges $n \in \mathbb{N}_0$)

$$\exp(x) = \sum_{m=0}^{n} \frac{x^m}{m!} + R_n(x), \qquad R_n(x) := \sum_{m=n+1}^{\infty} \frac{x^m}{m!}$$

Wie oben zeigt man, dass für |x| < n + 1 gilt

$$|R_n(x)| < \frac{|x|^{n+1}}{n! (n+1-|x|)}$$
 (für $|x|=1$ haben wir das oben abgeschätzt.)
 $\leq \frac{2}{(n+1)!} |x|^{n+1}$ falls $|x| \leq \frac{n+1}{2}$

Für $\epsilon > 0$ gibt es wegen Stetigkeit des Polynoms $\sum_{m=0}^{n} \frac{x^m}{m!}$ ein $\delta > 0$, so dass für $|x| < \delta$ gilt $\left|\sum_{m=0}^{n} \frac{x^m}{m!} - 1\right| < \frac{\epsilon}{2}$. Außerdem gibt es ein $\delta' > 0$, so dass für $|x| < \delta'$ gilt $\frac{2}{(n+1)!} |x|^{n+1} < \frac{\epsilon}{2}$. Also für $|x| < \min{\{\delta, \delta'\}}$

$$\left|\exp(x) - 1\right| \le \left|\sum_{m=0}^{n} \frac{x^m}{m!} - 1\right| + \left|R_n(x)\right| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

 $(n \in \mathbb{N}_0 \text{ ist beliebig. Wir können z.B. } n = 0 \text{ wählen.})$

3.2 Sätze über stetige Funktionen

Definition 3.10. Eine Funktion $f: D \to \mathbb{R}$ heißt stetig (in D), wenn sie in jedem $x_0 \in D$ stetig ist.

Satz 3.11. (Zwischenwertsatz) Sei
$$f:[a,b]\to\mathbb{R}$$
 stetig mit $f(a)\leq 0\leq f(b)$. Dann gibt es ein abgeschlossenes Intervall, $-\infty < a \leq b < +\infty$

 $c \in [a, b]$ mit f(c) = 0.

Beweis. Die Menge $M:=\{x\in [a,b]: f(x)\leq 0\}$ ist nicht-leer $(a\in M)$ und nach oben beschränkt (durch b). Also gibt es nach der Supremumseigenschaft von \mathbb{R} $c:=\sup M$. Zu zeigen: f(c)=0.

Zeige $f(c) \leq 0$: Nach Definition des Supremums gibt es $(x_n) \subset M$ mit $x_n \to c$. Also $f(x_n) \leq 0$ und wegen der Stetigkeit, $f(c) = \lim_{n \to \infty} f(x_n) \leq 0$. (Rechenregeln für Folgen bei \leq .)

Zeige $f(c) \ge 0$: Falls c = b, so folgt das nach Voraussetzung. Andernfalls gilt für $x \in (c, b]$, dass f(x) > 0 (denn sonst wäre $x \in M$). Für $x_n := c + \frac{b-c}{n}$ gilt $x_n \to c$ und $x_n > c$, also $f(x_n) > 0$ und wegen Stetigkeit $f(c) = \lim_{n \to \infty} f(x_n) \ge 0$. (Rechenregeln für Folgen bei \ge .)

Bemerkung: Für die Gültigkeit des Satzes ist es wesentlich, dass f auf einem Intervall definiert ist. Zum Beispiel für $f: [-1,1] \setminus \{0\} \to \mathbb{R}, x \mapsto \frac{1}{x}$, gibt es kein $c \in [-1,1] \setminus \{0\}$ mit f(c) = 0.

Korollar 3.12. Sei $I \subset \mathbb{R}$ ein Intervall und $f: I \to \mathbb{R}$ stetig. Dann ist f(I) ein Intervall.

Beweis. Sei $B := \sup \{f(x) : x \in I\} \in \mathbb{R} \cup \{+\infty\}$ und $A := \inf \{f(x) : x \in I\} \in \mathbb{R} \cup \{-\infty\}$.

- Zeige $(A,B) \subset f(I)$: Sei A < y < B. Dann gibt es nach Definition von A und B $a,b \in I$ mit f(a) < y < f(b). Wende den Zwischenwertsatz auf die stetige Funktion f y an und erhalte ein $c \in [a,b]$ mit f(c) y = 0, d.h. $y = f(c) \in f(I)$.
- Andererseits ist $f(I) \setminus (A, B) \in \{A, B\}$ falls A und B endlich (nach Definition von A und B), entsprechend wenn eines oder zwei von A und B unendlich sind.
- Damit ist f(I) eines von (A, B), [A, B], [A, B], [A, B] (wobei "[" oder "]" ausgeschlossen ist, falls der Endpunkt unendlich ist.)

Definition 3.13. Eine Funktion $f: D \to \mathbb{R}$ heißt nach oben (bzw. unten) beschränkt, wenn f(D) nach oben, bzw. nach unten beschränkt ist. Sie heißt beschränkt, wenn sie nach oben und unten beschränkt ist.

Satz 3.14. Ist $f:[a,b] \to \mathbb{R}$ stetig, so ist sie beschränkt und es gibt $p,q \in [a,b]$ mit $f(p) = \sup\{f(x): x \in [a,b]\}$ und $f(q) = \inf\{f(x): x \in [a,b]\}$.

Bemerkung: Es ist wesentlich, dass f auf einem abgeschlossenen Intervall stetig ist. Als Beispiele betrachte:

- $f: \mathbb{R} \to \mathbb{R}, x \mapsto x$ ist unbeschränkt.
- $f:(-1,1)\to\mathbb{R}, x\mapsto \frac{1}{(x+1)(x-1)}$ ist beschränkt, aber nimmt nicht sein Supremum an.
- $f: \mathbb{R} \to \mathbb{R}, x \mapsto \frac{1}{1+x^2}$ ist beschränkt, aber nimmt nicht sein Infimum an.
- $f:(-1,1)\to\mathbb{R},x\mapsto x$ ist beschränkt, aber nimmt weder sein Supremum noch sein Infimum an.

Beweis. Wir zeigen "nach oben beschränkt" und Existenz von p. (Rest: $f \to -f$)

Sei $B := \sup\{f(x) : x \in [a,b]\} \in \mathbb{R} \cup \{+\infty\}$. Dann gibt es nach Defintion des Supremums $(x_n) \in [a,b]$ mit $f(x_n) \to B$. Weil (x_n) beschränkt ist, gibt es nach Bolzano-Weierstraß eine Teilfolge (x_{n_k}) und ein $p \in \{a,b]$ mit $x_{n_k} \to p$ für $k \to \infty$.

Wege Stetigkeit ist $\lim_{k\to\infty} f(x_{n_k}) = f(p)$. Damit ist $B < +\infty$ und f(p) = B.

Gleichmäßige Stetigkeit

Erinnerung: Eine Funktion $f: D \to \mathbb{R}$ ist stetig, falls es für jedes $\epsilon > 0$ und jedes $x_0 \in D$ ein $\delta > 0$ gibt, so dass für alle $x \in D$ mit $|x - x_0| < \delta$ gilt $|f(x) - f(x_0)| < \epsilon$.

Definition 3.15. Eine Funktion $f: D \to \mathbb{R}$ heißt gleichmäßig stetig, falls es für jedes $\epsilon > 0$ ein $\delta > 0$ gibt, so dass für alle $x, x_0 \in D$ mit $|x - x_0| < \delta$ gilt $|f(x) - f(x_0)| < \epsilon$. Im Gegensatz zu stetig muss man δ unabhängig von x_0 wählen können.

Beispiel 3.16. Die Funktion $f:(0,1]\to\mathbb{R}, x\mapsto \frac{1}{x}$ ist nicht gleichmäßig stetig. Angenommen sie wäre es und sei δ wie in Definition 3.15 mit $\epsilon=1$. Sei $n>\frac{1}{2\delta}$ und $n\geq 1$. Dann ist $\left|\frac{1}{n}-\frac{1}{2n}\right|=\frac{1}{2n}<\delta$, aber es ist $\left|f\left(\frac{1}{n}\right)-f\left(\frac{1}{2n}\right)\right|=|n-2n|=n\geq 1$. Dies ist aber ein Widerspruch.

Satz 3.17. Ist $f:[a,b] \to \mathbb{R}$ stetig, so ist f auch gleichmäßig stetig.

Beweis. Angenommen f wäre nicht gleichmäßig stetig. Dann gibt es ein $\epsilon_0 > 0$ und $(x_n), (y_n) \subset [a,b]$ mit $|x_n - y_n| < \frac{1}{n}$ und $|f(x_n) - f(y_n)| \ge \epsilon_0$. Nach Bolzano-Weierstraß gibt es eine Teilfolge (x_{n_k}) und ein $x \in [a,b]$ mit $x_{n_k} \to x$ für $k \to \infty$. Wegen $|x_{n_k} - y_{n_k}| < \frac{1}{n_k}$ konvergiert dann auch $y_{n_k} \to x$. Da f stetig ist, folgt $\lim_{k\to\infty} (f(x_{n_k}) - f(y_{n_k})) = \lim_{k\to\infty} f(x_{n_k}) - \lim_{k\to\infty} f(y_{n_k}) = f(x) - f(x) = 0$, im Widerspruch zu $|f(x_{n_k}) - f(y_{n_k})| \ge \epsilon_0$.

Eine Funktion $\varphi : [a, b] \to \mathbb{R}$ heißt Treppenfunktion, wenn es $N \in \mathbb{N}$, $a = t_0 < t_1 < \ldots < t_N = b$ und $c_1, \ldots, c_N \in \mathbb{R}$ gibt, so dass $\varphi(t) = c_n$ für alle $t \in (t_{n-1}, t_n)$, $n = 1, \ldots, N$. Für N = 5:

Die Werte an den Stellen t_n sind beliebig.

Proposition 3.18. Sei $f:[a,b] \to \mathbb{R}$ stetig und $\epsilon > 0$. Dann gibt es Treppenfunktionen $\varphi, \psi:[a,b] \to \mathbb{R}$ mit

$$\begin{split} \varphi(x) & \leq f(x) \leq \psi(x) \qquad \text{für alle } x \in [a,b] \\ |\varphi(x) - \psi(x)| & < \epsilon \qquad \text{für alle } x \in [a,b] \end{split}$$

Beweis. Nach Satz 3.17 ist f gleichmäßig stetig, also gibt es ein $\delta > 0$, so dass für alle $x, x_0 \in [a, b]$ mit $|x - x_0| < \delta$ gilt $|f(x) - f(x_0)| < \epsilon$.

Sei $N \in \mathbb{N}$ so groß, dass $\frac{b-a}{N} < \delta$ (Archimedes!), und sei $t_n := a + n \cdot \frac{b-a}{N}, n = 0, \dots, N$.

Dann ist $t_n - t_{n-1} = \frac{b-a}{N} < \delta$. Für $1 \le n \le N$ sei

$$c_n := \inf \{ f(x) : x \in [t_{n-1}, t_n] \}, \qquad d_n := \sup \{ f(x) : x \in [t_{n-1}, t_n] \}$$

Nach obigem Satz gibt es für jedes $1 \le n \le N, p_n, q_n \in [t_{n-1}, t_n]$ mit $f(p_n) = d_n$ und $f(q_n) = c_n$. Wegen $|p_n - q_n| \le t_n - t_{n-1} < \delta$ ist $|d_n - c_n| = |f(p_n) - f(q_n)| < \epsilon$.

Wir definieren
$$\varphi(x) := c_n$$
 und $\psi(x) := d_n$ für $x \in [t_{n-1}, t_n]$, $n = 1, \dots, N$, $\varphi(a) := \psi(a) := f(a)$.

3.3 Grenzwerte von Funktionen

Definition 3.19. Ein Punkt $x_0 \in \mathbb{R}$ heißt $H\ddot{a}ufungspunkt$ einer Menge $A \subset \mathbb{R}$, wenn es für jedes $\epsilon > 0$ ein $a \in (A \setminus \{x_0\}) \cap (x_0 - \epsilon, x_0 + \epsilon)$ gibt.

Bemerkung:

- 1. x_0 ist ein Häufungspunkt von A genau dann, wenn es für jedes $\epsilon > 0$ unendlich viele Punkte in $A \cap (x_0 \epsilon, x_0 + \epsilon)$ gibt.
- 2. Früher Häufungspunkt einer Folge: verwandter, aber verschiedener Begriff.

Beispiel 3.20. 1. Die Menge der Häufungspunkte von (a, b) mit $-\infty < a < b < +\infty$ ist [a, b].

- 2. Die Menge der Häufungspunkte von \mathbb{Q} ist \mathbb{R} .
- 3. Die Menge der Häufungspunkte von $\left\{\frac{1}{n}:n\in\mathbb{N}\right\}$ ist $\{0\}$.

Definition 3.21. Sei $f: D \to \mathbb{R}$, x_0 ein Häufungspunkt von D und $y_0 \in \mathbb{R}$. Dann sagt man, dass f(x) für $x \to x_0$ gegen y_0 konvergiert und schreibt

$$y_0 = \lim_{x \to x_0} f(x)$$
 oder $f(x) \to y_0$ für $x \to x_0$,

falls für jede Folge $(x_n) \subset D \setminus \{x_0\}$ mit $x_n \to x_0$ gilt $f(x_n) \to y_0$.

Beachte: Forster betrachtet $(x_n) \subset D$.

piel 3.22. 1. Für $n \in \mathbb{N}$ gilt $\lim_{x \to 0} \frac{(1+x)^n - 1}{x} = n$. (Hier $D = \mathbb{R} \setminus \{0\}$) Nach dem binomischen Lehrsatz ist $(1+x)^n = \sum_{m=0}^n \binom{n}{m} x^m$, also

$$(1+x)^n - 1 = \sum_{m=1}^n \binom{n}{m} x^m = x \sum_{l=0}^{n-1} \binom{n}{l+1} x^l, \text{ also z.z. } \lim_{x \to 0} \sum_{l=0}^{n-1} \binom{n}{l+1} x^l = n.$$

Das folgt aus der Stetigkeit von Polynomen.

2. $\lim_{x\to 0} \frac{e^x - 1}{x} = 1$.

Nach der Restgliedabschätzung für exp ist $e^x = \exp(x) = 1 + x + R_1(x)$ mit $|R_1(x)| \le |x|^2$ für $|x| \le \frac{3}{2}$; also $\left|\frac{e^x - 1}{x} - 1\right| = \frac{|R_1(x)|}{|x|} \le |x|$ für $|x| \le \frac{3}{2}$.

Definition 3.23. Sei $f: D \to \mathbb{R}$, sei x_0 ein Häufungspunkt von $D \cap (-\infty, x_0)$ (bzw. von $D \cap (x_0, \infty)$) und sei $y_0 \in \mathbb{R}$. Dann sagt man, dass f in x_0 den links- (bzw. rechts-)seitigen Grenzwert y_0 hat, falls für jede Folge $(x_n) \subset D \cap (-\infty, x_0)$ (bzw. $D \cap (x_0, \infty)$) mit $x_n \to x_0$ gilt $f(x_n) \to y$. Man schreibt

$$\lim_{x \nearrow x_0} f(x) = y_0 \text{ (bzw. } \lim_{x \searrow x_0} f(x_0)) \qquad \text{oder} \qquad f(x) \to y_0 \text{ für } x \nearrow x_0 \text{ (bzw. } x \searrow x_0)$$

(Auch gebräuchlich: $f(x_0-)=y_0$, bzw. $f(x_0+)=y_0$.)

Beispiel 3.24.

$$\lim_{x \nearrow 0} \operatorname{sgn} x = -1, \lim_{x \searrow 0} \operatorname{sgn} x = +1$$

Man schreibt

$$\lim_{x \to \infty} f(x) = y_0 \quad \text{bzw.} \quad f(x) \to y_0 \text{ für } x \to \infty,$$

falls D nicht nach oben beschränkt ist und für jede Folge $(x_n) \subset D$ mit $x_n \to \infty$ gilt $f(x_n) \to y_0$. (Entsprechend für $-\infty$).

Man schreibt

$$\lim_{x \to x_0} f(x) = \infty \quad \text{bzw.} \quad f(x) \to \infty \text{ für } x \to x_0,$$

falls x_0 ein Häufungspunkt von D ist und für jede Folge $(x_n) \subset D \setminus \{x_0\}$ mit $x_n \to x_0$ gilt $f(x_n) \to \infty$. (Entsprechend für $-\infty$.)

Man schreibt

$$\lim_{x \to \infty} f(x) = \infty \quad \text{bzw.} \quad f(x) \to \infty \text{ für } x \to \infty,$$

falls D unbeschränkt ist und für jede Folge $(x_n) \subset D$ mit $x_n \to \infty$ gilt $f(x_n) \to \infty$. (Entsprechend für $-\infty/+\infty$ (3 Möglichkeiten)).

Beispiel 3.25. 1. Für s>0 (evtl. rational, bzw. später sogar reell) ist $\lim_{x\to\infty}\frac{1}{x^s}=0$. Denn für (x_n) mit $x_n\to\infty$ und $\epsilon>0$ gibt es ein $N\in\mathbb{N}$, so dass für $n\geq N$ gilt $x_n\geq \epsilon^{-1/s}$. Für solche n ist dann $\left|\frac{1}{x_n^s}\right|\leq \frac{1}{\left(\epsilon^{-1/s}\right)^s}=\epsilon$.

$$\begin{array}{l} 2. \ \lim_{x \to \infty} \left(\sqrt{x+1} - \sqrt{x} \right) = 0. \\ \text{Denn es ist } 0 < \sqrt{x+1} - \sqrt{x} = \frac{\sqrt{x+1}^2 - \sqrt{x^2}}{\sqrt{x+1} + \sqrt{x}} = \frac{1}{\sqrt{x+1} + \sqrt{x}} < \frac{1}{2\sqrt{x}} \to 0 \text{ nach } 1. \end{array}$$

3. Sei $P(x) = \sum_{m=0}^{n} a_m x^m$ ein Polynom mit $n \ge 1$ und $a_n > 0$. Dann gilt

$$\lim_{x \to \infty} P(x) = \infty, \qquad \lim_{x \to -\infty} P(x) = \begin{cases} +\infty & \text{für } n \text{ gerade,} \\ -\infty & \text{für } n \text{ ungerade.} \end{cases}$$

Beweis. Für $x \neq 0$ ist $P(x) = x^n \left(a_n + \frac{a_{n-1}}{x} + \ldots + \frac{a_0}{x^n} \right)$. Dann gilt für

$$x \ge \max \left\{ \frac{2n |a_{n-1}|}{a_n}, \left(\frac{2n |a_{n-2}|}{a_n} \right)^{1/2}, \dots, \left(\frac{2n |a_0|}{a_n} \right)^{1/n} \right\} =: C,$$

$$\left| a_n + \frac{a_{n-1}}{x} + \ldots + \frac{a_0}{x^n} \right| \ge |a_n| - \underbrace{\frac{|a_{n-1}|}{x}}_{\le \frac{a_n}{2n}} - \ldots - \underbrace{\frac{|a_0|}{x^n}}_{\le \frac{a_n}{2n}} \ge a_n - n \cdot \frac{a_n}{2n} = \frac{a_n}{2}$$

Damit ist für $x \ge C$ auch $P(x) \ge \frac{a_n}{2} x^n$, und daraus folgt $P(x) \to \infty$ für $x \to \infty$. Für die zweite Behauptung schreiben wir $P(-x) = (-1)^n Q(x)$ mit $Q(x) = \sum_{m=0}^n (-1)^{m-n} a_n x^m$ und wenden die erste Behauptung an.

3.4 Monotone Funktionen

Definition 3.26. Sei $D \subset \mathbb{R}$. Eine Funktion $f: D \to \mathbb{R}$ heißt monoton wachsend (bzw. fallend), falls für alle $x, x' \in D$ mit x < x' gilt $f(x) \le f(x')$ (bzw. $f(x) \ge f(x')$). Sie heißt monton, wenn sie entweder monoton wachsend oder fallend ist.

Sie heißt streng monoton wachsend (bzw. fallend), falls für alle $x, x' \in D$ mit x < x' gilt f(x) < f(x') (bzw. f(x) > f(x')).

Proposition 3.27. Set $f:(a,b)\to\mathbb{R}$ monoton wachsend. Dann existieren für jedes $x_0\in(a,b)$, $\lim_{x\nearrow x_0}f(x)$ und $\lim_{x\searrow x_0}f(x)$ und es gilt

$$\sup_{a < x < x_0} f(x) = \lim_{x \nearrow x_0} f(x) \le \lim_{x \searrow x_0} f(x) = \inf_{x_0 < x < b} f(x).$$

Hier schreiben wir $\sup_{a < x < x_0} f(x) := \sup \{ f(x) : a < x < x_0 \}$ und entsprechend für inf.

Beweis. Die Menge $\{f(x): a < x < x_0\}$ ist nichtleer und nach oben beschränkt (durch $f(x_0)$), daher hat sie ein Supremum A. Zu zeigen: $A = \lim_{x \nearrow x_0} f(x)$. (Daraus folgt dann die Proposition.)

Sei
$$(x_n) \subset (a, x_0)$$
 mit $x_n \to x_0$. Zu zeigen: $f(x_n) \to A$.

Sei $\epsilon > 0$. Nach Definition des Supremums gibt es ein $\delta > 0$ (mit $x_0 - \delta > a$), so dass $f(x_0 - \delta) > A - \epsilon$. Wegen der Konvergenz gibt es ein $N \in \mathbb{N}$, so dass für alle $n \geq N$ gilt $|x_n - x_0| < \delta$. Für solche x_n ist also $f(x_n) \geq f(x_0 - \delta) > A - \epsilon$ (da $x_n > x_0 - \delta$). Wegen $f(x_n) \leq A$ ist also $|f(x_n) - A| < \epsilon$.

Korollar 3.28. Sei $f:(a,b) \to \mathbb{R}$ monoton. Dann ist $\{x_0 \in (a,b) : f \text{ ist nicht stetig in } x_0\}$ abzählbar.

Beweis. Sei z.B. f monoton wachsend und E die Menge im Korollar. Für jedes $x_0 \in E$ ist $\lim_{x \nearrow x_0} f(x) < \lim_{x \searrow x_0} f(x)$ (bei Gleichheit wäre f an dieser Stelle stetig), also gibt es ein $f(x_0) \in \mathbb{Q}$ mit $\lim_{x \nearrow x_0} f(x) < \lim_{x \nearrow x_0} f(x)$

 $r(x_0) < \lim_{x \searrow x_0} f(x)$. Die Abbildung $E \ni x_0 \mapsto r(x_0) \in \mathbb{Q}$ ist injektiv, denn für $x_1, x_2 \in E$ mit $x_1 < x_2$

$$r\left(x_{1}\right) < \lim_{x \searrow x_{1}} f(x) = \inf_{x_{1} < x < b} f(x) = \inf_{\substack{\uparrow \\ f \text{ monoton}}} f(x) \le \sup_{x_{1} < x < x_{2}} f(x) \le \sup_{\substack{\uparrow \\ f \text{ monoton}}} f(x) = \sup_{\substack{\uparrow \\ f \text{ monoton}}} f(x) = \lim_{\substack{\chi \nearrow x_{2}}} f(x) < r\left(x_{2}\right).$$

Da \mathbb{Q} abzählbar ist, ist r(E) abzählbar, d.h. es gibt $\tau: \mathbb{N} \to r(E)$ surjektiv. Weil $r: E \to r(E)$ bijektiv ist, gibt es ein $\tilde{\tau}: \mathbb{N} \to E$ surjektiv, d.h. E ist abzählbar.

Definition 3.29. Sind A, B Mengen und $f: A \to B$ bijektiv, so ist die Umkehrabbildung f^{-1} : $B \to A$ definiert durch

$$f^{-1}(y) := x$$
 wo $f(x) = y$, $y \in B, x \in A$.

Satz 3.30. Sei $I \subset \mathbb{R}$ ein Intervall und $f: I \to \mathbb{R}$ streng monoton. Dann ist $f: I \to f(I)$ bijektiv und die Umkehrfunktion $f^{-1}: f(I) \to \mathbb{R}$ ist stetig und streng monoton.

Beweis. f^{-1} streng monoton einfach. Wir zeigen, f^{-1} ist stetig. Sei z.B. f streng monoton wachsend und sei $y_0 \in f(I)$. Wir betrachten zunächst den Fall, dass $x_0 := f^{-1}(y_0)$ kein Randpunkt von I ist. Sei $\epsilon > 0$. Nach eventueller Verkleinerung von ϵ können wir annehmen, dass

$$[x_0 - \epsilon, x_0 + \epsilon] \subset I$$

Wegen strenger Monotonie ist $f(x_0 - \epsilon) < f(x_0) < f(x_0 + \epsilon)$. Mit

$$\delta := \min \{ f(x_0) - f(x_0 - \epsilon), f(x_0 + \epsilon) - f(x_0) \} > 0$$

gilt für $|y - y_0| < \delta$, dass $y < y_0 + \delta \le f(x_0) + (f(x_0 + \epsilon) - f(x_0)) = f(x_0 + \epsilon)$. Wegen der Monotonie folgt daraus $f^{-1}(y) < x_0 + \epsilon = f^{-1}(y_0) + \epsilon$.

Genauso: $f^{-1}(y) > f^{-1}(y_0) - \epsilon$, also $|f^{-1}(y) - f^{-1}(y_0)| < \epsilon$. Der Fall, dass x_0 ein Randpunkt ist, geht ähnlich (man lässt beispielsweise beim rechten Randpunkt Argumentationsschritt mit $x_0 + \epsilon$ einfach weg).

Korollar 3.31. Für $n \in \mathbb{N}$ ist $[0, \infty) \ni x \mapsto x^{1/n}$ stetig.

Beweis. $f:[0,\infty)\to\mathbb{R},y\mapsto y^n$ ist streng monoton wachsend und bildet $[0,\infty)$ bijektiv auf $[0,\infty)$ ab (folgt z.B. aus der Stetigkeit von f und dem Satz, dass $f([0,\infty))$ ein Intervall ist.)

Nach dem vorherigen Satz ist die Umkehrfunktion $f^{-1}:[0,\infty) \to \mathbb{R}$ streng monoton wachsend und stetig.

Bemerkung: Ist n ungerade, so ist $\mathbb{R} \ni y \mapsto y^n$ streng monoton wachsend und daher kann die n-te Wurzel auf \mathbb{R} und nicht nur auf $[0, \infty)$ definiert werden.

Logarithmus und allgemeine Potenz 3.5

Die Exponentialfunktion exp : $\mathbb{R} \to \mathbb{R}$ ist treng monoton wachsend, stetig und bildet \mathbb{R} bijektiv auf $(0, \infty)$

Beweis. Für
$$x < x'$$
 ist $\exp(x) = \exp(\underbrace{x - x'}_{<0}) \underbrace{\exp(x')}_{>0} < \exp(x')$.

Stetig: s.o.

Bild: Wegen Stetigkeit ist $\exp(\mathbb{R})$ ein Intervall. Wegen $\exp(x) > 0$ für alle $x \in \mathbb{R}$ ist $\exp(\mathbb{R}) \subset (0, \infty)$. Wegen $\exp(x) = \sum_{m=0}^{\infty} \frac{x^m}{m!} \ge 1 + x$ für $x \ge 0$ ist $\exp(\mathbb{R})$ nicht nach oben beschränkt. Außerdem folgt aus $\exp(-x) = \frac{1}{\exp(x)} \le \frac{1}{1+x}$ für $x \ge 0$, dass inf $\exp(\mathbb{R}) \le 0$.

Definition 3.32. Die Umkehrfunktion von exp : $\mathbb{R} \to \mathbb{R}$ heißt natürlicher Logarithmus und wird mit $\ln: (0, \infty) \to \mathbb{R}$ bezeichnet.

Nach dem vorherigen Satz ist l
n streng monoton wachsend, stetig und bildet $(0, \infty)$ bijektiv auf \mathbb{R} ab. Außerdem folgt aus der Funktionalgleichung für exp, dass

$$\ln(xy) = \ln x + \ln y$$
 für alle $x, y > 0$.

Bemerkung: Es gilt $\exp\left(\frac{p}{q}\ln a\right)=\left(a^p\right)^{\frac{1}{q}}$ für $p\in\mathbb{Z},q\in\mathbb{N},a\in(0,\infty).$

Beweis. Aus der Funktionalgleichung für den Logarithmus folgt $p \ln a = \ln(a^p)$ (zunächst für $p \in \mathbb{N}_0$ durch Induktion mit der vorherigen Formel für Produkte als Argument, dann für p = -1 mit $\ln 1 = 0$ und $1 = aa^{-1}$, dann für alle p durch Induktion).

$$\Rightarrow \exp\left(\frac{p}{q}\ln a\right) = \exp\left(\frac{1}{q}\ln\left(a^p\right)\right) \underset{\text{s.o.}}{=} (\exp\left(\ln\left(a^p\right)\right))^{1/q} = (a^p)^{1/q}.$$

Wir definieren jetzt allgemeine Potenzen

$$a^x := \exp(x \ln a)$$
 für $x \in \mathbb{R}, a \in (0, \infty)$

Nach der Bemerkung steht das nicht im Konflikt mit bestehender Notation für Potenzen und Wurzeln. Als Komposition stetiger Funktionen sind folgende Funktionen stetig:

$$x \mapsto a^x, \qquad a \mapsto a^x$$

Korollar 3.33. Für alle $a \in (0, \infty)$ gilt $\lim_{x \to \infty} a^{1/x} = 1$.

Beweis.

$$\lim_{x \to \infty} a^{1/x} = \lim_{x \to \infty} \exp\left(\frac{1}{x} \ln a\right) = \exp\left(\lim_{x \to \infty} \frac{1}{x} \ln a\right) = \exp\left(0\right) = 1.$$

Rechenregeln: Für alle $a,b\in(0,\infty)$ und $x,y\in\mathbb{R}$ gilt

- $1. \ a^x a^y = a^{x+y}$
- 2. $(a^x)^y = a^{xy}$
- 3. $a^x b^x = (ab)^x$
- 4. $\left(\frac{1}{a}\right)^x = a^{-x}$

Beweis. 1. Aus Funktionalgleichung von exp.

- 2. Aus $a^x = \exp(x \ln a)$ folgt $\ln(a^x) = x \ln(a)$ und damit $(a^x)^y = \exp(y \ln(a^x)) = \exp(xy \ln a) = a^{xy}$.
- 3. $a^x b^x = \exp(x \ln a) \exp(x \ln b) = \exp(x \ln a + x \ln b) = (\exp(\ln a) \exp(\ln b))^x = (ab)^x$.
- 4. $\left(\frac{1}{a}\right)^x = \exp\left(x\ln\frac{1}{a}\right) = \exp\left(x(-\ln a)\right) = (\exp(\ln a))^{-x} = a^{-x}$.

Satz 3.34. Sei $f: \mathbb{R} \to \mathbb{R}$ stetig und es gelte für alle $x, y \in \mathbb{R}$, dass $f(x + y) = f(x) \cdot f(y)$. Dann ist entweder f(x) = 0 für alle $x \in \mathbb{R}$ oder es ist a := f(1) > 0 und $f(x) = a^x$ für alle $x \in \mathbb{R}$.

Beweis. Es ist $f(1) = f\left(\frac{1}{2}\right)^2 \ge 0$.

- Sei zunächst a:=f(1)>0. Wegen $a=f(1+0)=f(1)\cdot f(0)=a\cdot f(0)$ ist f(0)=1. Wie in der Bemerkung oben zeigt man jetzt $f\left(\frac{p}{q}\right)=\left(a^p\right)^{1/q}$ für alle $p\in\mathbb{Z}, q\in\mathbb{N}$. D.h. es gilt $f(x)=a^x$ für alle $x\in\mathbb{Q}$. Wegen Stetigkeit folgt daraus $f(x)=a^x$ für alle $x\in\mathbb{R}$.
- Sei jetzt f(1) = 0. Dann ist für alle $x \in \mathbb{R}$: $f(x) = f((x-1)+1) = f(x-1) \cdot \underbrace{f(1)}_{=0} = 0$.

Asymptotisches Verhalten des Logarithmus und der allgemeinen Potenzen

1. Für alle $n \in \mathbb{N}_0$ gilt $\lim_{x \to \infty} \frac{\mathrm{e}^x}{x^n} = +\infty$. "Die Exponentialfunktion wächst schneller als jede Potenz." Außerdem ist $\lim_{x \to \infty} x^n \, \mathrm{e}^{-x} = 0$ und $\lim_{x \searrow 0} x^n \, \mathrm{e}^{1/x} = \infty$.

Beweis. Für alle x>0 ist $e^x=\sum_{m=0}^\infty \frac{x^m}{m!}>\frac{x^{n+1}}{(n+1)!}\Rightarrow \frac{e^x}{x^n}>\frac{x}{(n+1)!}$. Die zweite Aussage folgt wegen $x^n\,e^{-x}=\left(\frac{e^x}{x^n}\right)^{-1}$. Die dritte Aussagen folgt wegen $x^n\,e^{1/x}=\frac{e^y}{y}$ mit $y=\frac{1}{x}$.

2. $\lim_{x\to\infty} \ln x = +\infty$, $\lim_{x\to 0} \ln x = -\infty$.

Beweis. Folgt, da das Bild von l
n gleich $\mathbb R$ ist und l
n monoton ist. \square

3. Für $\alpha > 0$ gilt $\lim_{x \searrow 0} x^{\alpha} = 0$ und $\lim_{x \searrow 0} x^{-\alpha} = +\infty$.

Beweis. Sei $(x_n) \subset (0, \infty)$ mit $x_n \to 0$. Nach 2. ist $\lim_{n \to \infty} \alpha \ln x_n = -\infty$, also wegen 1. (mit n = 0) $\lim_{n \to \infty} x_n^{\alpha} = \lim_{n \to \infty} e^{\alpha \ln x_n} = 0$. Zweite Aussage: $x^{-\alpha} = (x^{\alpha})^{-1}$.

Man definiert $0^{\alpha} := 0$ für $\alpha > 0$. Nach 3. ist $[0, \infty) \ni x \mapsto x^{\alpha}$ stetig.

Für alle $\alpha>0$ ist $\lim_{x\to\infty}\frac{\ln x}{x^\alpha}=0$. "Der Logarithmus wächst langsamer als jede positive Potenz von x."

Beweis. Sei $(x_n) \subset (0,\infty)$ mit $x_n \to \infty$ und $y_n := \alpha \ln x$. Dann gilt nach 2. $y_n \to \infty$ und damit $\frac{\ln x_n}{x_n^\alpha} = \frac{1}{\alpha} \frac{y_n}{\mathrm{e}^{y_n}} \xrightarrow{1} 0$.

5. Für alle $\alpha > 0$ ist $\lim_{x \searrow 0} x^{\alpha} \ln x = 0$.

Beweis. Folgt aus 4., da $x^{\alpha} \ln x = -\frac{\ln \frac{1}{x}}{\left(\frac{1}{x}\right)^{\alpha}} \to 0.$

6. $\lim_{\substack{x \to 0 \\ x \neq 0}} \frac{\ln(1+x)}{x} = 1.$

Beweis. Wir wissen $\lim_{\substack{y\to 0\\y\neq 0}}\frac{\mathrm{e}^y-1}{y}=1$. Mit $y=\ln{(1+x)}$ ist $\frac{\ln{(1+x)}}{x}=\frac{y}{\mathrm{e}^y-1}\to\frac{1}{1}=1$ für $x\to 0$.

Korollar 3.35. Für $x \in \mathbb{R}$ ist $\lim_{n\to\infty} \left(1+\frac{x}{n}\right)^n = \exp\left(x\right)$.

Beweis. Wegen der Stetigkeit von exp genügt es, zu zeigen, dass $\ln\left(\left(1+\frac{x}{n}\right)^n\right)=n\ln\left(1+\frac{x}{n}\right)\stackrel{n\to\infty}{\longrightarrow} x$, d.h. $\frac{\ln(1+x/n)}{x/n}\to 1$. Das gilt nach 6.

3.6 Komplexe Zahlen

Auf der Menge $\mathbb{R} \times \mathbb{R}$ führen wir zwei Abbildungen ("Addition" und "Multiplikation") ein durch

$$(x_1, y_1) + (x_2, y_2) := (x_1 + x_2, y_1 + y_2),$$

 $(x_1, y_1) \cdot (x_2, y_2) := (x_1x_2 - y_1y_2, x_1y_2 + y_1x_2).$

Zusammen mit dem Nullelement (0,0), dem Einselement (1,0), dem additiv Inversem

$$-(x_1,y_1) := (-x_1,-y_1)$$

und dem multiplikativ Inversem

$$(x_1, y_1)^{-1} := \left(\frac{x_1}{x_1^2 + y_1^2}, \frac{-y_1}{x_1^2 + y_1^2}\right)$$
 für $(x_1, y_1) \neq (0, 0)$

erfüllt das die Körperaxiome. Der entstandene Körper heißt $K\"{o}rper$ der komplexen Zahlen und wird mit $\mathbb C$ bezeichnet.

Z.B. Nachweis des Distributivgesetzes:

$$(x_1, y_1) \cdot ((x_2, y_2) + (x_3, y_3)) = (x_1, y_1) \cdot (x_2 + x_3, y_2 + y_3)$$

$$= (x_1 (x_2 + x_3) - y_1 (y_2 + y_3), x_1 (y_2 + y_3) + y_1 (x_2 + x_3))$$

$$(x_1, y_1) \cdot (x_2, y_2) + (x_1, y_1) \cdot (x_3, y_3) = (x_1 x_2 - y_1 y_2, x_1 y_2 + y_1 x_2) + (x_1 x_3 - y_1 y_3, x_1 y_3 + y_1 x_3)$$

$$= (x_1 x_2 + x_1 x_3 - y_1 y_2 - y_1 y_3, x_1 y_2 + x_1 y_3 + y_1 x_2 + y_1 x_3)$$

Für spezielle komplexe Zahlen der Gestalt $(x,0), x \in \mathbb{R}$ gilt

$$(x_1, 0) + (x_2, 0) = (x_1 + x_2, 0),$$

 $(x_1, 0) \cdot (x_2, 0) = (x_1 x_2, 0),$

d.h. sie werden wie reelle Zahlen addiert und multipliziert. Man identifiziert daher oft (x,0) mit x und betrachtet $\mathbb R$ als Teilmenge von $\mathbb C$.

Eine wichtige komplexe Zahl ist i := (0, 1). Es gilt

$$i^2 = (0,1) \cdot (0,1) = (0-1,0+0) = (-1,0) = -1.$$
Identifikation

Mit Hilfe von i können wir schreiben:

$$(x,y) = \underbrace{(x,0)}_{=x}\underbrace{(1,0)}_{=1} + \underbrace{(y,0)}_{=y}\underbrace{(0,1)}_{=\mathbf{i}} = x + \mathbf{i}\,y \quad \text{für } x,y \in \mathbb{R}.$$

Addition ist Vektoraddition in \mathbb{R}^2 , für Multiplikation: s.u.

Bemerkung: Es gibt keine Anordnung auf $\mathbb{R} \times \mathbb{R}$, die \mathbb{C} zu einem angeordneten Körper macht. (Denn in jedem angeordneten Körper gilt $x^2 \geq 0$ für alle x, aber es ist $\mathbf{i}^2 = -1 < 0$.)

Für eine komplexe Zahl $z=x+\mathrm{i}\,y,\,x,y\in\mathbb{R}$ werden Real- und Imaginärteil definiert durch

$$\operatorname{Re} z = x, \qquad \operatorname{Im} z = y,$$

und die komplex konjugierte Zahl durch

$$\overline{z} = x - i y.$$

Der Betrag von z ist

$$|z| := \sqrt{x^2 + y^2} = \sqrt{(x - iy)(x + iy)} = \sqrt{\overline{z}z}.$$

Das ist die euklidische Länge des Vektor $\begin{pmatrix} x \\ y \end{pmatrix}$.

Rechenregeln: Für $z_1, z_2 \in \mathbb{C}$ gilt

Real- und Imaginärteil:

- Re $z = \frac{1}{2} (z + \overline{z})$
- $\operatorname{Im} z = \frac{1}{2i} (z \overline{z})$

Komplexe Konjugation:

- $\overline{\overline{z_1}} = z_1$
- $\bullet \ \overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$
- $\bullet \ \overline{z_1 z_2} = \overline{z_1 z_2}$

Betrag:

- $|z_1| \ge 0$ und $|z_1| = 0 \Leftrightarrow z_1 = 0$.
- $|\operatorname{Re} z_1| \le |z_1|$ und $|\operatorname{Im} z_1| \le |z_1|$.
- $|z_1z_2| = |z_1||z_2|$
- $|z_1 + z_2| \le |z_1| + |z_2|$ (Dreiecksungleichung)

Beweis. 5.)
$$|z_1 z_2|^2 = \overline{(z_1 z_2)} (z_1 z_2) = (\overline{z_1} z_1) (\overline{z_2} z_2) = |z_1|^2 |z_2|^2$$
.
6.) $|z_1 + z_2|^2 = \overline{(z_1 + z_2)} (z_1 + z_2) = |z_1|^2 + \underline{\overline{z_1} z_2 + \overline{z_2} z_1} + |z_2|^2 \le |z_1|^2 + 2 |z_1| |z_2| + |z_2|^2 = (|z_1| + |z_2|)^2$.

Konvergenz im Komplexen

Eine Folge (z_n) komplexer Zahlen heißt konvergent gegen ein $z \in \mathbb{C}$, falls es zu jedem $\epsilon > 0$ ein $N \in \mathbb{N}$ gibt, so dass für alle $n \geq N$ gilt $|z_n - z| < \epsilon$. Wir schreiben dann

$$\lim_{n \to \infty} z_n = z \qquad \text{oder} \qquad z_n \to z \text{ für } n \to \infty.$$

Proposition 3.36. Sei $(z_n) \subset \mathbb{C}$. Dann konvergiert (z_n) genau dann, wenn $(\operatorname{Re} z_n)$ und $(\operatorname{Im} z_n)$ konvergieren, und in diesem Fall gilt

$$\lim_{n \to \infty} z_n = \lim_{n \to \infty} \operatorname{Re} z_n + i \lim_{n \to \infty} \operatorname{Im} z_n.$$

Beweis. " \Rightarrow ": Sei $z:=\lim_{n\to\infty}z_n$ und sei $\epsilon>0$. Dann gibt es ein $N\in\mathbb{N}$, so dass für $n\geq N$ gilt $|z_n-z|<\epsilon$. Damit ist für $n\geq N$ auch $|\operatorname{Re} z_n-\operatorname{Re} z|<\epsilon$ und $|\operatorname{Im} z_n-\operatorname{Im} z|<\epsilon$.

"\equives": Seien $x:=\lim_{n\to\infty}\operatorname{Re} z_n,y:=\lim_{n\to\infty}\operatorname{Im} z_n$ und sei $\epsilon>0$. Dann gibt es $N,M\in\mathbb{N}$, so dass für $n\geq N$ gilt $|\operatorname{Re} z_n-x|<\frac{\epsilon}{2}$ und für $n\geq M$ gilt $|\operatorname{Im} z_n-y|<\frac{\epsilon}{2}$. Damit ist für $n\geq \max\{N,M\}$:

$$|z_n - (x + iy)| = |(\operatorname{Re} z_n - x) + i(\operatorname{Im} z_n - y)| \le |\operatorname{Re} z_n - x| + |\operatorname{Im} z_n - y| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Insbesondere folgt aus der Konvergenz von (z_n) die von $(\overline{z_n})$ und es gilt

$$\lim_{n\to\infty} \overline{z_n} = \overline{\lim_{n\to\infty} z_n}.$$

Definition 3.37. Eine Menge $A \subset \mathbb{C}$ heißt beschränkt, falls $\{|z| : z \in A\}$ beschränkt ist. Eine Folge (z_n) komplexer Zahlen heißt beschränkt, falls $\{z_n : n \in \mathbb{N}\}$ beschränkt ist.

Definition einer Teilfolge wie im Reellen.

Bemerkung: Eine beschränkte Folge komplexer Zahlen hat eine konvergente Teilfolge. (Bolzano-Weierstraß)

Definition 3.38. Eine Folge $(z_n) \subset \mathbb{C}$ heißt Cauchy-Folge, falls es für jedes $\epsilon > 0$ ein $N \in \mathbb{N}$ gibt, so dass für $n, m \geq N$ gilt $|z_n - z_m| < \epsilon$.

Eine Folge (z_n) ist Cauchy genau dann, wenn $(\operatorname{Re} z_n)$ und $(\operatorname{Im} z_n)$ Cauchy sind. Insbesondere ist eine Folge komplexer Zahlen konvergent, genau dann, wenn sie Cauchy ist.

Rechenregeln

Seien $(z_n), (w_n) \subset \mathbb{C}$ konvergent. Dann konvergieren auch $(z_n + w_n)$ und $(z_n w_n)$ und es gilt

$$\lim_{n \to \infty} (z_n + w_n) = \lim_{n \to \infty} z_n + \lim_{n \to \infty} w_n,$$
$$\lim_{n \to \infty} (z_n w_n) = \lim_{n \to \infty} z_n \cdot \lim_{n \to \infty} w_n.$$

Ist $\lim_{n\to\infty} w_n \neq 0$, so gilt $w_n \neq 0$ für alle genügend großen n (d.h. es gibt ein $N \in \mathbb{N}$, so dass für alle $n \geq N$ gilt...) und $\left(\frac{z_n}{w_n}\right)$ konvergiert mit

$$\lim_{n \to \infty} \frac{z_n}{w_n} = \frac{\lim_{n \to \infty} z_n}{\lim_{n \to \infty} w_n}.$$

Definition 3.39. Sei $(c_n) \subset \mathbb{C}$. Dann heißt die Reihe $\sum_{m=1}^{\infty} c_m$ konvergent, falls die Folge $(\sum_{m=1}^{n} c_m)_{n \in \mathbb{N}}$ konvergiert. Sie heißt absolut konvergent, falls $\sum_{m=1}^{\infty} |c_m|$ konvergiert.

Bemerkung: Eine absolut konvergente Reihe ist konvergent.

Satz 3.40. Majorantenkriterium: Sei $\sum_{m=1}^{\infty} a_m$ eine konvergente Reihe nicht-negativer Zahlen und sei (c_n) eine Folge mit $|c_n| \leq a_n$ für alle $n \in \mathbb{N}$. Dann ist $\sum_{m=1}^{\infty} c_m$ absolut konvergent.

Entsprechend gelten das Wurzel- und Quotientekriterium (mit $\limsup |c_n|^{1/n}$ und $\limsup \left|\frac{c_{n+1}}{c_n}\right|$).

Definition 3.41. Sei $D \subset \mathbb{C}$ und $z_0 \in D$. Eine Funktion $f: D \to \mathbb{C}$ heißt stetig in z_0 , falls es für jedes $\epsilon > 0$ ein δ gibt, so dass für alle $z \in D$ mit $|z - z_0| < \delta$ gilt $|f(z) - f(z_0)| < \epsilon$.

Bemerkung: Eine Funktion $f: D \to \mathbb{C}$ ist stetig in $z_0 \in D$ genau dann, wenn für jede Folge $(z_n) \subset D$ mit $z_n \to z_0$ für $n \to \infty$ gilt, dass $f(z_n) \to f(z_0)$ für $n \to \infty$.

Rechenregeln:

Summe, Produkt, Quotient und Komposition stetiger Funktionen sind stetig.

Insbesondere sind Polynome stetig (d.h. $P(z) = \sum_{m=0}^{n} a_m z^m$ mit $a_m \in \mathbb{C}$) und auch rationale Funktionen (d.h. Quotienten von zwei Polynomen).

Die Funktion $z \mapsto |z|$ ist stetig (denn $z \mapsto z$ und $z \mapsto \overline{z}$ ist stetig, also ist $z \mapsto |z|^2 = \overline{z}z$ stetig und damit auch $z \mapsto |z| = \left(|z|^2\right)^{1/2}$).

Definition 3.42. Sei $D \subset \mathbb{C}$. Eine Funktion $f: D \to \mathbb{C}$ heißt stetig, falls sie stetig in jedem $z_0 \in D$ ist.

Definition 3.43. Sei $\mathbb{K} = \mathbb{R}$ oder \mathbb{C} . Eine Menge $A \subset \mathbb{K}$ heißt *abgeschlossen* (in \mathbb{K}), falls für jede konvergente Folge $(z_n) \subset A$ gilt $\lim_{n \to \infty} z_n \in A$.

Beispiele:

- 1. K ist abgeschlossen.
- 2. Sei $-\infty < a \le b < \infty$. Dann ist $[a, b] \subset \mathbb{R} \subset \mathbb{K}$ abgeschlossen.
- 3. Sei $w \in \mathbb{C}$ und $0 \le r < \infty$. Dann ist $\{z \in \mathbb{C} : |z w| \le r\}$ abgeschlossen.
- 4. Sei $-\infty < a < b \le \infty$. Dann ist $(a,b) \subset \mathbb{R}$ nicht abgeschlossen. (Z.B.: $z_n := a + \frac{1}{n} \stackrel{n \to \infty}{\longrightarrow} a \notin (a,b)$.)

Definition 3.44. Sei $D \subset \mathbb{C}$. Eine Funktion $f: D \to \mathbb{C}$ heißt beschränkt, falls $\{f(z): z \in D\}$ beschränkt ist.

Satz 3.45. Sei $K \subset \mathbb{C}$ abgeschlossen und beschränkt und sei $f: K \to \mathbb{R}$ stetig. Dann ist f beschränkt und es gibt $v, w \in K$ mit $f(v) = \inf_{z \in K} f(z), f(w) = \sup_{z \in K} f(z)$.

Beweis. Wir zeigen "nach oben beschränkt" und die Existenz von w.

Sei $B := \sup_{z \in K} f(z)$. Dann gibt es nach der Definition des Supremums eine Folge $(z_n) \subset K$ mit $f(z_n) \to B$ für $n \to \infty$. Wegen K beschränkt ist (z_n) beschränkt und nach Bolzano-Weierstraß gibt es ein $w \in \mathbb{C}$

für $n \to \infty$. Wegen K beschränkt ist (z_n) beschränkt und nach Bolzano-Weierstraß gibt es ein $w \in \mathbb{C}$ und eine Teilfolge (z_{n_k}) mit $(z_{n_k}) \to w$ für $k \to \infty$. Wegen K abgeschlossen ist $w \in K$. Wegen f stetig gilt $f(z_{n_k}) \to f(w)$. Damit ist $B = f(w) < \infty$.

Fundamentalsatz der Algebra

Polynom $\sum_{m=0}^{n} a_m z^m$ mit $a_m \in \mathbb{C}$; ist $a_n \neq 0$, so heißt n der Grad von P.

Satz 3.46. Sei
$$P(z) = \sum_{m=0}^{n} a_m z^m$$
 ein Polynom von Grad n. Dann gibt es $z_1, \ldots, z_n \in \mathbb{C}$ mit $P(z) = a_n (z - z_1) \cdot \ldots \cdot (z - z_n)$ für alle $z \in \mathbb{C}$.

Beweis. Behauptung: Ist P ein Polynom von Grad ≥ 1 , so gibt es ein $z_0 \in \mathbb{C}$ mit $P(z_0) = 0$.

Zeige: Behauptung \Rightarrow Satz. Durch Induktion über n. Für n=0 ist nichts zu zeigen. Sei jetzt $n \ge 1$ und der Satz gelte für alle kleineren n. Nach der Behauptung gibt es ein $z_0 \in \mathbb{C}$ mit $P(z_0) = 0$.

Mit dem binomischen Lehrsatz sieht man, dass $\tilde{P}(w) := P(w + z_0)$ wieder ein Polynom von Grad n ist, d.h. $\tilde{P}(w) = \sum_{m=0}^{n} b_m w^m$ mit $b_n = a_n \neq 0$. Außerdem ist $b_0 = \tilde{P}(0) = P(z_0) = 0$. Daraus folgt, dass $\tilde{P}(w) = wQ(w)$ mit $Q(w) = \sum_{m=0}^{n-1} b_{n-1} w^m$. Nach IV ist

$$Q(w) = a_n (w - w_1) \cdot \ldots \cdot (w - w_{n-1})$$
 für alle $w \in \mathbb{C}$.

Also ist

$$P(z) = \tilde{P}(z - z_0) = (z - z_0) Q(z - z_0) = (z - z_0) a_n (z - z_0 - w_1) \cdot \dots \cdot (z - z_0 - w_{n-1}).$$

Mit $z_m := z_0 + w_m$, m = 1, ..., n-1 und $z_n := z_0$ ist das die behauptete Gestalt.

Jetzt Beweis der Behauptung.

Schritt 1. |P| nimmt sein Minimum auf \mathbb{C} ein.

Sei $\mu := \inf_{z \in \mathbb{C}} |P(z)|$. Es gilt für

$$|z| \ge \max \left\{ \frac{2n |a_{n-1}|}{|a_n|}, \left(\frac{2n |a_{n-2}|}{|a_n|} \right)^{1/2}, \dots, \left(\frac{2n |a_0|}{|a_n|} \right)^{1/n} \right\} =: R_0,$$

dass

$$|P(z)| = |a_n| |z|^n \left| 1 + \frac{a_{n-1}}{a_n} \frac{1}{z} + \frac{a_{n-2}}{a_n} \frac{1}{z^2} + \dots + \frac{a_0}{a_n} \frac{1}{z^n} \right|$$

$$\geq |a_n| |z|^n \left(1 - \underbrace{\frac{|a_{n-1}|}{|a_n|} \frac{1}{|z|}}_{\leq \frac{1}{2n}} - \underbrace{\frac{|a_{n-2}|}{|a_n|} \frac{1}{|z|^2}}_{\leq \frac{1}{2n}} - \dots - \underbrace{\frac{|a_0|}{|a_n|} \frac{1}{|z|^n}}_{\leq \frac{1}{2n}} \right)$$

$$\geq |a_n| |z|^n \left(1 - n \cdot \frac{1}{2n} \right) = \frac{1}{2} |a_n| |z|^n.$$

Ist $|z| > \left(\frac{\mu^2}{|a_n|}\right)^{1/n} =: R_1$, so ist die Rechte Seite $> \mu$. Also ist

$$\mu = \inf_{|z| \le \max\{R_0, R_1\}} |P(z)|.$$

Weil $\{z \in \mathbb{C} : |z| \le \max\{R_0, R_1\}\}$ beschränkt und abgeschlossen ist, gibt es nach Satz 3.45 ein z_0 in dieser Menge mit $|P(z_0)| = \mu$.

Schritt 2. Wir zeigen $P(z_0) = 0$.

Angenommen, es wäre $P(z_0) \neq 0$. Dann ist

$$Q(w) := \frac{P(z_0 + w)}{P(z_0)}$$

ein Polynom von Grad n (der höchste Term ist $\frac{a_n}{P(z_0)}w^n$) mit Q(0)=1 und $|Q(w)|\geq 1$ für alle $w\in\mathbb{C}$ (wegen $\mu=|P(z_0)|$). Es gibt ein $K\in\{1,\ldots,n\}$ mit

$$Q(w) = 1 + b_K w^K + \ldots + b_n w^n \quad \text{und } b_K \neq 0.$$

Wir verwenden jetzt die Tatsache, dass es ein $\zeta \in \mathbb{C}$ gibt mit $\zeta^K = -\frac{|b_K|}{b_K}$. (Beweis in Kürze).

Dann gilt für $0 \le r \le |b_K|^{1/K}$:

$$\left|1 + b_K \left(r\zeta\right)^K\right| = \left|1 + b_K r^K \left(-\frac{|b_K|}{b_K}\right)\right| = \left|1 - |b_K| r^K\right| = \underbrace{1 - |b_K| r^K}_{\text{Das ist } < 1}.$$

Also gilt für $0 \le r < |b_K|^{1/K}$:

$$|Q(r\zeta)| \leq \underbrace{\left[1 + b_K (r\zeta)^K\right]}_{=1 - |b_K| r^K} + \underbrace{\left[b_{K+1} (r\zeta)^{K+1}\right]}_{\stackrel{(*)}{=} |b_{K+1}| r^{K+1}} + \dots + \underbrace{\left[b_n (r\zeta)^n\right]}_{\stackrel{(*)}{=} |b_n| r^n}$$

$$= 1 - |b_K| r^K \left(1 - \frac{|b_{K+1}|}{|b_K|} r - \dots - \frac{|b_n|}{|b_K|} r^{n-K}\right).$$

Bei (*) wurde verwendet, dass $\zeta^K = -\frac{|b_K|}{b_K} \Rightarrow |\zeta|^K = \left|-\frac{|b_K|}{b_K}\right| = 1 \Rightarrow |\zeta| = 1$. Ist nun

$$r < \min \left\{ \frac{|b_K|}{(n-K)|b_{K+1}|}, \dots, \left(\frac{|b_K|}{(n-K)|b_n|} \right)^{\frac{1}{n-K}} \right\},$$

so ist

$$1 - \frac{|b_{K+1}|}{|b_K|}r - \dots - \frac{|b_n|}{|b_K|}r^{n-K} > 1 - \frac{1}{n-K} - \dots - \frac{1}{n-K} = 0,$$

also

$$|Q(r\zeta)| < 1,$$

im Widerspruch zu $Q(w) \ge 1$ für alle $w \in \mathbb{C}$.

3.7 Die Exponentialfunktion im Komplexen und die trigonometrischen Funktionen

Für alle $z \in \mathbb{C}$ ist die Exponentialreihe

$$\sum_{m=0}^{\infty} \frac{z^m}{m!} =: \exp(z)$$

absolut konvergent. (Denn $\sum_{m=0}^{\infty} \left| \frac{z^m}{m!} \right| = \sum_{m=0}^{\infty} \frac{|z|^m}{m!} = \exp(|z|)$) und damit konvergent. Abschätzung des Restglieds

$$\exp(z) = \sum_{m=0}^{n} \frac{z^m}{m!} + R_n(z)$$

mit $|R_n(z)| \le 2 \frac{|z|^{n+1}}{(n+1)!}$ für alle $|z| \le 1 + \frac{n}{2}$.

Funktionalgleichung: Für alle $z_1, z_2 \in \mathbb{C}$ ist

$$\exp\left(z_{1}+z_{2}\right)=\exp\left(z_{1}\right)\exp\left(z_{2}\right).$$

Insbesondere ist $\exp(z) \neq 0$ für alle $z \in \mathbb{C}$. (Denn: $\exp(z) \exp(-z) = \exp(z-z) = \exp(0) = 1 \neq 0$). Bemerkung: $\exp(\overline{z}) = \exp(\overline{z})$ für alle $z \in \mathbb{C}$.

Beweis. Mit $s_n(z):=\sum_{m=0}^n\frac{z^m}{m!}$ ist $\overline{s_n(z)}=\sum_{m=0}^n\frac{\overline{z}^m}{m!}=s_n(\overline{z}),$ also

$$\overline{\exp(z)} = \overline{\lim_{n \to \infty} s_n(z)} = \lim_{n \to \infty} \overline{s_n(z)} = \lim_{n \to \infty} s_n(\overline{z}) = \exp(\overline{z})$$

Insbesondere ist $|\exp(i x)| = 1$ für $x \in \mathbb{R}$.

Beweis.
$$|\exp(ix)|^2 = \overline{\exp(ix)} \exp(ix) = \exp(\overline{ix}) \exp(ix) = \exp(-ix + ix) = \exp(0) = 1.$$

Proposition 3.47. exp ist stetig in \mathbb{C} .

Beweis. Wie im Reellen genügt es wegen der Funktionalgleichung die Stetigkeit in z=0 zu zeigen. Wegen der Restgliedabschätzung ist $|\exp(z)-1|\leq 2\,|z|$ für $|z|\leq 1$ und für $(z_n)\subset\mathbb{C}$ mit $z_n\to 0$ folgt $|\exp(z_n)-1|\leq 2\,|z_n|\to 0$ für $n\to\infty$.

Bemerkung: $\lim_{z\to 0} \frac{\exp(z)-1}{z} = 1$.

Beweis. Wie im Reellen, verwende Restgliedabschätzung mit n = 1.

Wir schreiben im Folgenden oft auch $e^z := \exp(z)$.

Definition 3.48. Die Sinus- und Kosinusfunktion sin : $\mathbb{R} \to \mathbb{R}$, cos : $\mathbb{R} \to \mathbb{R}$ sind definiert durch

$$\sin(x) := \operatorname{Im} e^{ix}, \quad \cos(x) := \operatorname{Re} e^{ix}.$$

(Wir schreiben oft $\sin x$ und $\cos x$ statt $\sin(x)$ und $\cos(x)$.)

Nach Definition gilt die sogenannte Eulersche Formel

$$e^{ix} = \cos(x) + i\sin(x)$$
 für alle $x \in \mathbb{R}$.

Geometrische Deutung:

Aus der Definition folgt sofort:

$$\cos x = \frac{1}{2} \left(e^{i x} + e^{-i x} \right) \quad \sin x = \frac{1}{2i} \left(e^{i x} - e^{-i x} \right)$$

$$\cos x = \cos (-x) \quad \sin x = -\sin (-x) \quad \cos, \text{gerade}, \text{ sin, ungerade},$$

$$\cos^2 x + \sin^2 x = 1, \text{wobei} \quad \cos^2 x = (\cos x)^2 \quad \sin^2 x = (\sin x)^2$$

Proposition 3.49. (Additions theoreme) Für alle $x, y \in \mathbb{R}$ ist

$$\cos(x+y) = \cos x \cos y - \sin x \sin y$$
$$\sin(x+y) = \cos x \sin y + \sin x \cos y$$
$$\cos x - \cos y = -2\sin\frac{x+y}{2}\sin\frac{x-y}{2}$$
$$\sin x - \sin y = 2\cos\frac{x+y}{2}\sin\frac{x-y}{2}$$

Beweis. Nach der Funktionalgleichung der Exponentialfunktion ist

$$\cos(x+y) + i\sin(x+y) = e^{i(x+y)} = e^{ix} e^{iy} = (\cos x + i\sin x)(\cos y + i\sin y)$$
$$= (\cos x \cos y - \sin x \sin y) + i(\cos x \sin y + \sin x \cos y)$$

Setzt man hier x + y = u, x - y = v, also $x = \frac{u+v}{2}, y = \frac{u-v}{2}$, so erhält man

$$\cos u + \mathrm{i}\sin u = \left(\cos\frac{u+v}{2}\cos\frac{u-v}{2} - \sin\frac{u+v}{2}\sin\frac{u-v}{2}\right) + \mathrm{i}\left(\cos\frac{u+v}{2}\sin\frac{u-v}{2} + \sin\frac{u+v}{2}\cos\frac{u-v}{2}\right)$$

Vertauscht man die Rollen von u und v, erhält man

$$\cos v + \mathrm{i}\sin v = \left(\cos \tfrac{u+v}{2}\cos \tfrac{u-v}{2} + \sin \tfrac{u+v}{2}\sin \tfrac{u-v}{2}\right) + \mathrm{i}\left(-\cos \tfrac{u+v}{2}\sin \tfrac{u-v}{2} + \sin \tfrac{u+v}{2}\cos \tfrac{u-v}{2}\right)$$

Durch Subtraktion erhält man

$$(\cos u - \cos v) + i(\sin u - \sin v) = -2\sin\frac{u+v}{2}\sin\frac{u-v}{2} + i2\cos\frac{u+v}{2}\sin\frac{u-v}{2}.$$

Insbesondere ist:

$$cos(2x) = cos2 x - sin2 x = 2 cos2 x - 1$$

$$sin(2x) = 2 cos x sin x$$

Proposition 3.50. Die Funktionen cos und sin sind auf \mathbb{R} stetig.

Beweis. Eine Funktion $f:D\to\mathbb{C}$ ist stetig genau dann, wenn $\operatorname{Re} f:D\to\mathbb{R}$ und $\operatorname{Im} f:D\to\mathbb{R}$ stetig sind. Weil die Exponentialfunktion auf \mathbb{C} stetig ist, sind daher Re exp und Im exp auf \mathbb{C} stetig und daher ihre Restriktionen auf i \mathbb{R} cos und sin auf \mathbb{R} stetig.

Bemerkung: $\lim_{x\to 0} \frac{\sin x}{x} = 1$.

$$Beweis. \ \ \frac{\sin x}{x} = \operatorname{Im} \frac{\operatorname{e}^{\operatorname{i} x} - 1}{x} = \operatorname{Im} \operatorname{i} \underbrace{\frac{\operatorname{e}^{\operatorname{i} x} - 1}{\operatorname{i} x}}_{\to 1} = \operatorname{Im} \operatorname{i} \underbrace{\frac{\operatorname{e}^{\operatorname{i} x} - 1}{\operatorname{i} x}}_{\to 1}_{\to 1} \to \operatorname{Im} i = 1.$$

Satz 3.51. Für $x \in \mathbb{R}$ gilt

$$\cos x = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!}, \qquad \sin x = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}.$$

Die beiden Reihen sind absolut konvergent. Außerdem gilt für jedes $n \in \mathbb{N}_0$

$$\cos x = \sum_{k=0}^{n} (-1)^k \frac{x^{2k}}{(2k)!} + r_{2n}(x), \qquad \sin x = \sum_{k=0}^{n} (-1)^k \frac{x^{2k+1}}{(2k+1)!} + r_{2n+1}(x)$$

mit

$$|r_{2n}(x)| \le \frac{|x|^{2n+2}}{(2n+2)!} f \ddot{u} r |x| \le 2n+3,$$
 $|r_{2n+1}(x)| \le \frac{|x|^{2n+3}}{(2n+3)!} f \ddot{u} r |x| \le 2n+4.$

Beweis. Die absolute Konvergenz folgt sofort aus der absoluten Konvergenz der Exponentialreihe. Wir verwenden

$$\mathbf{i}^{m} = \begin{cases} 1 & \text{falls } m = 4l \\ \mathbf{i} & \text{falls } m = 4l + 1 \\ -1 & \text{falls } m = 4l + 2 \\ -\mathbf{i} & \text{falls } m = 4l + 3 \end{cases}$$

Damit ist

$$\exp(ix) = \sum_{m=0}^{\infty} \frac{(ix)^m}{m!} = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!} + i\sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)!}$$

Jetzt nehme Real- und Imaginärteil.

$$r_{2n}(x) = \sum_{k=n+1}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} \underset{k=n+1+l}{\overset{\uparrow}{=}} (-1)^{n+1} \frac{x^{2n+2}}{(2n+2)!} \sum_{l=0}^{\infty} (-1)^l \underbrace{\frac{(2n+2)!}{(2n+2+2l)!} x^{2l}}_{}$$

Behauptung: (a_l) ist monton fallend und konvergiert gegen Null.

$$\frac{a_{l+1}}{a_l} = \frac{(2n+2+2l)!}{(2n+2+2l+2)!} \frac{x^{2l+2}}{x^{2l}} = \frac{x^2}{(2n+2+2l+2)(2n+2+2l+1)}$$

Für $|x| \le 2n + 3$ ist

$$x^2 \le (2n+3)^2 < (2n+3)(2n+4) \le (2n+2+2l+1)(2n+2+2l+2)$$
 für alle $l \in \mathbb{N}_0$ $\Rightarrow \frac{a_{l+1}}{a_l} \le \text{const.} < 1 \Rightarrow \text{Behauptung.}$

Aus dem Beweis des Leibnizschen Konvergenzkriteriums folgt

$$0 \le \sum_{l=0}^{\infty} (-1)^l a_l \le a_0 = 1$$

Also ist

$$|r_{2n}(x)| = \frac{x^{2n+2}}{(2n+2)!} \left| \sum_{l=0}^{\infty} (-1)^l a_l \right| \le \frac{x^{2n+2}}{(2n+2)!} \text{ für } |x| \le 2n+3$$

Entsprechend für r_{2n+1} .

Satz 3.52. (und Definition) Die Kosinusfunktion hat in [0,2] genau eine Nullstelle. Diese bezeichnet man mit $\frac{\pi}{2}$ und es gilt $\cos \frac{\pi}{2} = 0$ und $\sin \frac{\pi}{2} = 1$.

Beweis. Nach den Restgliedabschätzungen gilt

$$\left|\cos x - 1 + \frac{x^2}{2}\right| \le \frac{x^4}{24} \text{ für } |x| \le 5,$$

 $\left|\sin x - x\right| \le \frac{|x|^3}{6} \text{ für } |x| \le 4.$

Aus ersterem folgt, dass\cos $2 \le 1 - \frac{2^2}{2} + \frac{2^4}{24} = 1 - 2 + \frac{2}{3} = -\frac{1}{3} < 0$.

Wegen $\cos 0 = 1$ und Stetigkeit hat cos nach dem Zwischenwertsatz eine Nullstelle in (0,2).

Um die Eindeutigkeit zu zeigen, zeigen wir, dass cos in [0, 2] streng monton fallend ist.

Seien $0 \le x < y \le 2$. Dann ist nach dem Additionstheorem

$$\cos y - \cos x = -2\sin\underbrace{\frac{x+y}{2}}_{\in (0,2)} \sin\underbrace{\frac{y-x}{2}}_{\in (0,2]}$$

Also genügt es zu zeigen, dass $\sin u > 0$ für $u \in (0, 2]$.

$$\sin u \ge u - \frac{u^3}{6} = u \left(1 - \underbrace{\frac{u^2}{6}}_{\le \frac{2^2}{6} = \frac{2}{3}} \right) \ge \frac{1}{3}n > 0.$$

Wegen $\sin^2 + \cos^2 = 1$ gilt $\sin^2 \frac{\pi}{2} = 1$. Wegen $\sin \frac{\pi}{2} > 0$ ist daher $\sin \frac{\pi}{2} = 1$.

Numerisch ist

$$\pi = 3.14159...$$

Korollar 3.53. $e^{i\frac{\pi}{2}} = i$, $e^{i\pi} = -1$, $e^{i\frac{3\pi}{2}} = -i$, $e^{i2\pi} = 1$.

Beweis. $e^{i\frac{\pi}{2}} = \cos\frac{\pi}{2} + i\sin\frac{\pi}{2} = 0 + i\cdot 1 = i$. Die übrigen Aussagen folgen durch Potenzieren.

Korollar 3.54. Für alle $x \in \mathbb{R}$ gilt

- $\cos(x + 2\pi) = \cos x$, $\sin(x + 2\pi) = \sin x$. $_{"}2\pi$ -Periodizität" $\cos(x + \pi) = -\cos x$, $\sin(x + \pi) = -\sin x$. $\cos x = \sin(\frac{\pi}{2} x)$, $\sin x = \cos(\frac{\pi}{2} x)$.

Beweis. Additions theorem und vorheriges Korollar.

Korollar 3.55.

$$\{x \in \mathbb{R} : \sin x = 0\} = \{k\pi : k \in \mathbb{Z}\},$$
$$\{x \in \mathbb{R} : \cos x = 0\} = \left\{ \left(k + \frac{1}{2}\right)\pi : k \in \mathbb{Z}\right\}$$
$$\{x \in \mathbb{R} : e^{ix} = 1\} = \{k2\pi : k \in \mathbb{Z}\}$$

Beweis. Nach Definition von $\frac{\pi}{2}$, wegen $\cos 0 = 1 > 0$ und wegen $\cos (-x) = \cos x$ gilt $\cos x > 0$ für $-\frac{\pi}{2} < x < \frac{\pi}{2}$.

Wegen $\sin x = \cos\left(\frac{\pi}{2} - x\right)$ folgt daraus $\sin x > 0$ für $0 < x < \pi$.

Wegen $\sin(x + \pi) = -\sin x$ folgt daraus $\sin x < 0$ für $\pi < x < 2\pi$.

Also haben wir gezeigt, dass $0, \pi$ die einzigen Nullstellen von sin in $[0, 2\pi)$ sind. Wegen der 2π -Periodizität folgt daraus die erste Behauptung.

Die zweite Behauptung folgt aus der ersten wegen $\cos x = \sin(\frac{\pi}{2} - x)$.

Wegen $\sin \frac{x}{2} = \frac{1}{2i} \left(e^{i \frac{x}{2}} - e^{-i \frac{x}{2}} \right) = \frac{e^{-i x/2}}{2i} \left(e^{i x} - 1 \right)$ und $e^{-i x/2} \neq 0$ gilt $e^{i x} = 1$ genau dann, wenn $\sin \frac{x}{2} = 0$. Damit folgt die dritte Behauptung aus der ersten.

Definition 3.56. Die Tangens- und Kotangensfunktion tan : $\mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi : k \in \mathbb{Z} \right\} \to \mathbb{R}$, cot : $\mathbb{R} \setminus \left\{ k\pi : k \in \mathbb{Z} \right\} \to \mathbb{R}$ sind definiert durch

$$\tan x := \frac{\sin x}{\cos x}, \qquad \cot x := \frac{\cos x}{\sin x}$$

Satz 3.57. (und Definition)

- 1. cos ist in $[0,\pi]$ streng monoton fallend und bildet dieses Intervall bijektiv auf [-1,1] ab. Die Umkehrfunktion $\arccos:[-1,1]\to\mathbb{R}$ heißt Arcus-Kosinus.
- 2. sin ist in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ streng monoton wachsend und bildet dieses Intervall bijektiv auf [-1, 1] ab. Die Umkehrfunktion arcsin : $[-1, 1] \to \mathbb{R}$ heißt Arcus. Sinus.
- 3. tan ist in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ streng monoton wachsend und bildet dieses Intervall bijektiv auf \mathbb{R} ab. Die Umkehrfunktion $\operatorname{arctan}: \mathbb{R} \to \mathbb{R}$ heißt Arcus-Tangens.

Wegen $\cot x : \frac{\cos x}{\sin x} = \frac{\sin(\frac{\pi}{2} - x)}{\cos(\frac{\pi}{2} - x)} = \tan(\frac{\pi}{2} - x)$ behandeln wir den \cot nicht gesondert.

Nach dem Satz von der Umkehrfunktion sind arccos, arcsin und arctan stetig.

- Beweis. 1. Wie im letzten Satz gezeigt ist cos in [0,2] und insbesondere in $\left[0,\frac{\pi}{2}\right]$ streng monoton fallend. Wegen $\cos x = -\cos(\pi x)$ für alle x ist cos auch in $\left[\frac{\pi}{2},\pi\right]$ streng monoton fallend. Außerdem ist $\cos 0 = 1$ und, nach einem Korollar oben, $\cos \pi = -1$. Wegen Stetigkeit folgt daraus die Behauptung.
 - 2. Wegen $\sin x = \cos\left(\frac{\pi}{2} x\right)$ für alle x folgt 2. aus 1.
 - 3. Monotonie: Seien $0 \le x < y < \frac{\pi}{2}$. Dann gilt nach 1. und 2. $\cos x > \cos y$ und $\sin x < \sin y$, also $\tan x = \frac{\sin x}{\cos x} < \frac{\sin y}{\cos y} = \tan y$. Damit gilt die strenge Monotonie in $[0, \frac{\pi}{2})$ und wegen $\tan x = -\tan -x$ auch in $(-\frac{\pi}{2}, 0]$.
 - (a) Bild: Wegen Stetigkeit ist $\tan\left(\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\right)$ ein Intervall. Wir zeigen $\lim_{x \nearrow \frac{\pi}{2}} \tan x = +\infty$. Wegen der Ungeradheit folgt daraus auch $\lim_{x \searrow -\frac{\pi}{2}} \tan x = -\infty$, und damit $\tan\left(\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\right) = \mathbb{R}$. Sei $(x_n) \subset \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ mit $x_n \to \frac{\pi}{2}$. Dann gilt für alle genügend großen n, dass $x_n > 0$ und damit $y_n := \frac{\cos x_n}{\sin x_n} > 0$. Außerdem ist $\lim_{n \to \infty} y_n = \frac{\cos \frac{\pi}{2}}{\sin \frac{\pi}{2}} = 0$. Daraus folgt $\lim_{n \to \infty} \tan x_n = \lim_{n \to \infty} \frac{1}{y_n} = +\infty$.

Polarkoordinaten

Satz 3.58. Für jedes $z \in \mathbb{C}$ gibt es ein $r \in [0, \infty)$ und ein $\varphi \in \mathbb{R}$ mit $z = r e^{i\varphi}$. Es gilt r = |z| und für $z \neq 0$ ist φ bis auf ein ganzzahliges Vielfaches von 2π eindeutig bestimmt.

 φ ist der Winkel (im Bogenmaß) zwischen der positiven reellen Achse und dem Ortsvektor von z in der komplexen Ebene. Man nennt φ das Argument (genauer: ein Argument) von z.

Beweis. Für z=0 ist $z=0\cdot \mathrm{e}^{\mathrm{i}\,\varphi}$ für alle $\varphi\in\mathbb{R}$. Sei jetzt $z\neq 0$ und r:=|z| und $\zeta:=\frac{z}{r}$. Dann ist $|\zeta|=1$ und insbesondere ist $\mathrm{Re}\,\zeta\in[-1,1]$. Damit ist $\alpha:=\arccos\mathrm{Re}\,\zeta$ definiert und es gilt $\sin^2\alpha=1-\cos^2\alpha=1-(\mathrm{Re}\,\zeta)^2=(\mathrm{Im}\,\zeta)^2$, also $\sin\alpha$ ist entweder $+\mathrm{Im}\,\zeta$ oder $-\mathrm{Im}\,\zeta$. Wir setzen

$$\varphi := \begin{cases} \alpha & \text{falls } \sin \alpha = \text{Im } \zeta, \\ -\alpha & \text{falls } \sin \alpha = -\text{Im } \zeta. \end{cases}$$

Damit ist $e^{i\varphi} = \cos \varphi + i \sin \varphi = \operatorname{Re} \zeta + i \operatorname{Im} \zeta = \zeta$, also $z = r\zeta = r e^{i\varphi}$.

Gilt
$$z = r e^{i\varphi} = r' e^{i\varphi'}$$
, so ist $r = |z| = r'$ und $e^{i(\varphi - \varphi')} = e^{i\varphi} \left(e^{i\varphi'}\right)^{-1} = \frac{z}{r} \left(\frac{z}{r}\right)^{-1} = 1$. Nach Korollar 3.55 ist dann $\varphi - \varphi' = k2\pi$ für ein $k \in \mathbb{Z}$.

Geometrische Deutung der komplexen Multiplikation

$$z_1 = r_1 e^{i \varphi_1}, \qquad z_2 = r_2 e^{i \varphi_2} \qquad \sim \qquad z_1 z_2 = (r_1 r_2) e^{i(\varphi_1 + \varphi_2)}$$

Korollar 3.59. Sei $N \in \mathbb{N}$ und $c \in \mathbb{C}$. Dann gibt es ein $w \in \mathbb{C}$ mit $w^N = c$ und

$$\{z \in \mathbb{C} : z^N = c\} = \{w e^{i\frac{2\pi n}{N}} : n = 0, \dots, N - 1\}.$$

Die Zahlen $e^{i\frac{2\pi n}{N}}$, $n=0,\ldots,N-1$, erfüllen $z^N=1$ und heißen N-te Einheitswurzeln.

Dieses Korollar wurde im Beweis des Fundamentalsatzes der Algebra verwendet.

Beweis. Sei $c=|c|\,\mathrm{e}^{\mathrm{i}\,\gamma}$. Dann erfüllt $w:=|c|^{1/N}\,\mathrm{e}^{\mathrm{i}\,\gamma/N}$ die Gleichung $w^N=c$. Dasselbe gilt für $w\,\mathrm{e}^{\mathrm{i}\,\frac{2\pi n}{N}}$ mit $n=0,1,\ldots,N-1$.

Es bleibt also zu zeigen, dass jede Lösung von $z^N=c$ von dieser Gestalt ist. Wir können außerdem $c\neq 0$ annehmen.

Nach dem Satz können wir schreiben

$$\frac{z}{w} = r \operatorname{e}^{\operatorname{i} \varphi} \ \operatorname{mit} \ r \in [0, \infty) \ \operatorname{und} \ \varphi \in [0, 2\pi).$$

Es ist
$$r^N e^{i N\varphi} = \left(\frac{z}{w}\right)^N = \frac{c}{c} = 1$$
, also

$$r^N = |r^N e^{iN\varphi}| = 1, \text{ d.h.} r = 1$$

und damit $e^{\mathrm{i}\,N\varphi}=1$. Nach Korollar 3.55 ist $N\varphi=2\pi k$ für ein $k\in\mathbb{Z}$, d.h. $\varphi=\frac{2\pi k}{N}$. Wegen $0\leq\varphi<2\pi$ ist $k\in\{0,\ldots,N-1\}$, d.h. $z=wr\,\mathrm{e}^{\mathrm{i}\,\varphi}=w\,\mathrm{e}^{\mathrm{i}\,\frac{2\pi k}{N}}$.

Einschub

Die Cantor-Menge und die Cantor-Funktion

Es sei

$$C_0 := [0,1].$$

Aus C_0 entfernen wir das mittlere Drittelintervall und erhalten

$$C_1 := \left[0, \frac{1}{3}\right] \cup \left[\frac{2}{3}, 1\right].$$

Aus C_1 entfernen wir die beiden mittleren Drittelintervalle und erhalten

$$C_2 := \left[0, \frac{1}{9}\right] \cup \left[\frac{2}{9}, \frac{1}{3}\right] \cup \left[\frac{2}{3}, \frac{7}{9}\right] \cup \left[\frac{8}{9}, 1\right].$$

So fortfahrend erhalten wir Mengen

$$C_0 \supset C_1 \supset C_2 \supset \ldots \supset C_n \supset C_{n+1} \supset \ldots$$

Wir definieren die Cantor-Menge

$$C := \bigcap_{n=1}^{\infty} C_n.$$

Satz 3.60. 1. C ist beschränkt, abgeschlossen und jeder Punkt von C ist ein Häufungspunkt von C.

- 2. C enthält kein (nicht-triviales) Intervall und für jedes $\epsilon > 0$ ist C enthalten in einer endlichen Vereinigung von Intervallen der Gesamtlänge $< \epsilon$.
- 3. C ist überabzählbar.

Beweis. 1. Wegen $C \subset C_0 = [0,1]$ ist C beschränkt.

Wir haben gesehen, dass [a, b] abgeschlossen ist. Daher folgt die Abgeschlossenheit von C aus dem folgenden Lemma:

Lemma 3.61. Eine endliche Vereinigung abgeschlossener Mengen ist abgeschlossen und ein (beliebiger) Durchschnitt abgeschlossener Mengen ist abgeschlossen.

Aus dem ersten Teil folgt dann die Abgeschlossenheit von C_n , aus dem zweiten Teil die Abgeschlossenheit von C.

Bemerkung: Das Lemma gilt nur für endliche Vereinigungen, z.B. ist $\bigcup_{n \in \mathbb{N}} \underbrace{\left[\frac{1}{n}, 1\right]}_{\text{abgeschlossen}} = (0, 1] \ nicht$

abgeschlossen.

Beweis. 1.) Seien A_1,\ldots,A_n abgeschlossen und $A:=\bigcup_{n=1}^N A_n$. Sei $(x_j)\subset A$ eine Folge mit $x_j\to x\in\mathbb{R}$. Dann gibt es ein $n_0\in\{1,\ldots,N\}$, so dass unendlich viele x_j in A_{n_0} liegen, d.h. $(x_{j_k})\subset A_{n_0}$ für eine Teilfolge. Wegen A_{n_0} abgeschlossen, ist $x=\lim_{k\to\infty}x_{j_k}\in A_{n_0}\subset A$.

2.) Seien A_{α} abgeschlossen und $\bigcap_{\alpha} A_{\alpha}$. Sei $(x_j) \subset A$ eine Folge mit $x_j \to x \in \mathbb{R}$. Dann gilt für jedes $\alpha, (x_j) \subset A_{\alpha}$, also wegen A_{α} abgeschlossen $x \in A_{\alpha}$. Also $x \in \bigcap_{\alpha} A_{\alpha} = A$.

Wir zeigen jetzt, dass jeder Punkt von C ein Häufungspunkt von C ist.

Sei P die Menge aller Randpunkte aller Mengen C_n . Dann ist $P \subset C$. Wir zeigen, dass jeder Punkt in C ein Häufungspunkt von P ist. Ist $x \in C$, so gibt es für jedes n einen Randpunkt p_n von C_n mit $|p_n - x| \leq \frac{1}{2} \left(\frac{1}{3}\right)^n$. (denn C_n besteht aus Teilintervallen der Länge $\left(\frac{1}{3}\right)^n$). Damit gilt $(p_n) \subset P$ und $p_n \to x$.

- 2. Sei $\epsilon > 0$ und n so, dass $\left(\frac{1}{3}\right)^n < \epsilon$. Dann enthält C_n kein Intervall der Länge ϵ . Also enthält auch $C \subset C_n$ kein solches Intervall. Ist umgekehrt $\left(\frac{2}{3}\right)^n < \epsilon$, so ist C_n erhalten in einer Vereinigung von 2^n Intervallen der Länge $\left(\frac{1}{3}\right)^n$, also der Gesamtlänge $2^n \cdot \left(\frac{1}{3}\right)^n = \left(\frac{2}{3}\right)^n < \epsilon$.
- 3. Wir zeigen

$$C = \left\{ \sum_{m=1}^{\infty} \frac{a_m}{3^m} : a_m \in \{0, 2\} \text{ für alle } m \in \mathbb{N} \right\},\,$$

d.h. C besteht gerade aus solchen Zahlen, die eine triadische Entwicklung haben, in der die Ziffer 1 nicht vorkommt. Genauer zeigen wir

$$C_n:=\left\{\sum_{m=1}^\infty\frac{a_m}{3^m}:a_m\in\{0,2\}\text{ für }m\leq n\text{ und }a_m\in\{0,1,2\}\text{ für }m>n\right\}.$$

Beweis durch Induktion nach n: n = 0 ist trivial. Sei jetzt $n \ge 1$. Dann gilt

$$C_n = \left\{ \frac{x}{3} : x \in C_{n-1} \right\} \cup \left\{ \frac{x+2}{3} : x \in C_{n-1} \right\}$$

Die Elemente in der ersten Teilmenge haben $a_1 = 0$, die in der zweiten $a_1 = 2$. Die restlichen a_n kommen aus der Induktion.

Wir definieren jetzt eine Funktion $f:[0,1]\to\mathbb{R}$, die Cantor-Funktion.

Wir definieren zunächst f nur auf C. Ist $x \in C$, so besitzt, wie gezeigt, x eine 3-adische Entwicklung $\sum_{m=1}^{\infty} \frac{a_m}{3^m}$ mit $a_m \in \{0,2\}$ und wir definieren

$$f(x) := \frac{1}{2} \sum_{m=1}^{\infty} \frac{a_m}{2^m}.$$

Das ist eine binäre Entwicklung, da $\frac{a_m}{2} \in \{0,1\}$. Das ist wohldefiniert, denn ist $\sum_{m=1}^{\infty} \frac{a'_m}{3^m}$ mit $a'_m \in \{0,1,2\}$ eine andere triadische Entwicklung von x, so gilt (s. Übung) $a_m = a'_m$ für m < N und $a_N = a'_N \pm 1$. Damit ist $a'_N = 1$, d.h. die triadische Entwicklung von $x \in C$ mit Ziffern $x \in \{0,2\}$ ist eindeutig.

Bsp.: f(0) = 0, f(1) = 1, $f(\frac{1}{3}) = f(\frac{2}{3}) = \frac{1}{2}$, $f(\frac{1}{9}) = f(\frac{2}{9}) = \frac{1}{4}$, $f(\frac{7}{9}) = f(\frac{8}{9}) = \frac{3}{4}$.

Behauptung: f(C) = [0, 1].

Beweis. Klar ist $0 \leq \frac{1}{2} \sum_{m=1}^{\infty} \frac{a_m}{2^m} \leq \frac{1}{2} \sum_{m=1}^{\infty} \frac{2}{2^m} = 1$. Ist $y \in [0,1]$, so besitzt y eine binäre geometrische Reihe Entwicklung $\sum_{m=1}^{\infty} \frac{b_m}{2^m}$ mit $b_m \in \{0,1\}$. Mit $a_m := 2b_m$ ist dann $x := \sum_{m=1}^{\infty} \frac{a_m}{3^m} \in C$ und $f(x) = \frac{1}{2} \sum_{m=1}^{\infty} \frac{a_m}{2^m} = \sum_{m=1}^{\infty} \frac{b_m}{2^m} = y$.

Als Folgerung der Surjektivität von $f:C\to [0,1]$ und der Überabzählbarkeit von [0,1] erhalten wir die Überabzählbarkeit von C.

Behauptung: $f: C \to [0,1]$ ist monoton wachsend.

Beweis. Sei $\sum_{m=1}^{\infty} \frac{a_m}{3^m} = x < x' = \sum_{m=1}^{\infty} \frac{a'_m}{3^m}$. Dann gibt es ein maximales K mit $a_m = a'_m$ für $m \le K-1$. Es ist dann $a_K < a'_K$, denn wäre $a_K \ge a'_K$, so wäre

$$x - x' = \frac{a_K - a_K'}{3^K} + \sum_{m=K+1}^{\infty} \frac{a_m - a_m'}{3^m} \ge \frac{1}{3^K} - \underbrace{\sum_{m=K+1}^{\infty} \frac{2}{3^m}}_{=\frac{2}{3^{K+1}} \sum_{l=0}^{\infty} \left(\frac{1}{3}\right)^l}_{=\frac{2}{3^{K+1}} \frac{1}{1 - \frac{1}{3}} = \frac{1}{3^K}} = 0.$$

Damit ist $a_K = a_K' - 2$, also

$$f\left(x'\right) - f\left(x\right) = \frac{1}{2} \frac{a_K' - a_K}{2^K} + \frac{1}{2} \sum_{m=K+1}^{\infty} \frac{a_m' - a_m}{2^m} \ge \frac{1}{2} \frac{2}{2^K} - \frac{1}{2} \sum_{m=K+1}^{\infty} \frac{2}{2^m} \stackrel{\text{vgl. o.}}{=} 0.$$

Wir setzten f jetzt auf [0,1] fort durch

$$f(x) := \sup \{ f(y) : y \in C \cap [0, x] \} \text{ für } y \in [0, 1] \setminus C$$

Nach Definition ist f monoton wachsend.

Bemerkung: f ist stetig.

Beweis. Denn als monotone Funktion hat f links- und rechtsseitige Grenzwerte. Würden diese nicht übereinstimmen, so wäre dass Bild von f nicht [0,1].

4 Differentiation

4.1 Ableitung

Definition 4.1. Sei $D \subset \mathbb{R}$, $f: D \to \mathbb{R}$ eine Funktion und $x_0 \in D$. Dann heißt f differenzierbar in $x_0 \in D$, wenn x_0 ein Häufungspunkt von D ist und der Grenzwert

$$f'(x_0) := \lim_{\substack{x \to x_0 \\ x \in D \setminus \{x_0\}}} \frac{f(x) - f(x_0)}{x - x_0}$$

existiert. Dieser heißt die Ableitung von f an x_0 . Alternative Bezeichnung: $\frac{\mathrm{d}f}{\mathrm{d}x}(x_0)$.

Geometrische Interpretation:

Bemerkung: Eine Funktion f ist in x_0 differenzierbar genau dann, wenn es eine Konstante $c \in \mathbb{R}$ und eine Funktion $\varphi : D \to \mathbb{R}$ gibt, so dass gilt

$$f\left(x\right) = \underbrace{f\left(x_{0}\right) + c\left(x - x_{0}\right)}_{\text{affin-lineare Approximation}} + \varphi\left(x\right) \text{ für } x \in D \text{ und } \lim_{x \to x_{0}} \frac{\varphi\left(x\right)}{x - x_{0}} = 0.$$

Es ist dann $c = f'(x_0)$.

Insbesondere sieht man, dass aus "f differenzierbar in x_0 " "f stetig in x_0 " folgt. Die Umkehrung gilt aber nicht.

Wichtige Ableitungen:

Die folgenden Funktionen sind in jedem Punkt ihres Definitionsbereichs differenzierbar und es gilt:

1.
$$f(x) = x^n, n \in \mathbb{N}_0,$$
 $f'(x) = nx^{n-1}$

2.
$$f(x) = e^{cx}, c \in \mathbb{R},$$
 $f'(x) = ce^{cx}$

3.
$$f(x) = \ln x$$
, $f'(x) = \frac{1}{x}$

$$4. \ f(x) = \cos x, \qquad \qquad f'(x) = -\sin x$$

$$5. \ f(x) = \sin x, \qquad f'(x) = \cos x$$

$$Beweis. \qquad 1. \ \, \underbrace{\frac{x^n - x_0^n}{x - x_0}}_{n \ \text{Terme, jeder} \to x_0^{n-1} \ \text{für } x \to x_0} \xrightarrow{x \to x_0} n x_0^{n-1}$$

2.
$$\frac{e^{cx} - e^{cx_0}}{x - x_0} = c e^{cx_0} \xrightarrow{\frac{e^{c(x - x_0)} - 1}{c(x - x_0)}} c e^{cx_0} \text{ (da } \xrightarrow{\frac{e^y}{y} - 1} \xrightarrow{y \to 0} 1, \text{ s.o.)}$$

3.
$$\frac{\ln x - \ln x_0}{x - x_0} = \frac{\ln \frac{x}{x_0}}{x - x_0} = \frac{1}{x_0} \frac{\ln \left(1 + \frac{x - x_0}{x_0}\right)}{\frac{x - x_0}{x_0}} \xrightarrow{x \to x_0} \frac{1}{x_0} \text{ (da } \frac{\ln (1 + y)}{y} \xrightarrow{y \to 0} 1, \text{ s.o.)}$$

4.
$$\frac{\cos x - \cos x_0}{x - x_0} = -\sin \frac{x + x_0}{2} \xrightarrow{\frac{x - x_0}{2}} \xrightarrow{x \to x_0} -\sin x_0 \text{ (da } \frac{\sin y}{y} \xrightarrow{y \to 0} 1, \text{ s.o.)}$$

5. wie 4.

Beispiel 4.2. Sei f(x) := |x| für $x \in \mathbb{R}$. Dann ist f nicht in 0 differenzierbar. Denn für $x_n = (-1)^n \frac{1}{n}$ ist $x_n \to 0$, aber $\frac{f(x_n) - f(0)}{x_n - 0} = \frac{\frac{1}{n}}{(-1)^n \frac{1}{n}} = (-1)^n$ konvergiert nicht.

Rechenregeln

Proposition 4.3. Seign $f, g: D \to \mathbb{R}$ in $x_0 \in D$ differenzierbare Funktionen. Dann sind f + g, fgund, falls $g(x_0) \neq 0$, $\frac{f}{g}$ in x_0 differenzierbar und es gilt

$$(f+g)'(x_0) = f'(x_0) + g'(x_0)$$

$$(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0) \qquad Produktregel$$

$$\left(\frac{f}{g}\right)'(x_0) = \frac{g(x_0)f'(x_0) - f(x_0)g'(x_0)}{g(x_0)^2} \qquad Quotientenregel$$

Beweis. (Produktregel)

$$\frac{f(x)g(x) - f\left(x_{0}\right)g\left(x_{0}\right)}{x - x_{0}} = \underbrace{\frac{f\left(x\right) - f\left(x_{0}\right)}{x - x_{0}}}_{\rightarrow f'(x_{0})} \underbrace{\frac{g\left(x\right)}{y - g\left(x_{0}\right)}}_{\text{da } g \text{ stetig in } x_{0}} + f\left(x_{0}\right) \underbrace{\frac{g\left(x\right) - g\left(x_{0}\right)}{x - x_{0}}}_{\rightarrow g'(x_{0})}$$

Beispiel 4.4. 1. Jede rationale Funktion ist in jedem Punkt ihres Definitionsbereichs differen-

2.
$$\tan' = \frac{1}{\cos^2} \left(\tan' = \left(\frac{\sin}{\cos} \right)' = \frac{\cos^2 + \sin^2}{\cos^2} = \frac{1}{\cos^2} \right)$$

Proposition 4.5. Seien $f: D \to \mathbb{R}, g: E \to \mathbb{R}$ Funktionen mit $f(D) \subset E$. Sei f in $x_0 \in D$ differenzierbar und g in $f(x_0)$ differenzierbar. Dann ist $g \circ f: D \to \mathbb{R}$ in x_0 differenzierbar und es

$$(g \circ f)'(x_0) = g'(f(x_0)) f'(x_0)$$
. Kettenregel

Beweis. Sei $y_0 := f(x_0)$ und sei $h: E \to \mathbb{R}$ definiert durch

$$h(y) := \begin{cases} \frac{g(y) - g(y_0)}{y - y_0} & \text{für } y \in E \setminus \{y_0\}, \\ g'(y_0) & \text{für } y = y_0. \end{cases}$$

Wegen g differenzierbar in y_0 ist h stetig in y_0 .

$$\frac{g\left(f\left(x\right)\right) - g\left(f\left(x_{0}\right)\right)}{x - x_{0}} = \frac{g\left(f\left(x\right)\right) - g\left(f\left(x_{0}\right)\right)}{f\left(x\right) - f\left(x_{0}\right)} \frac{f\left(x\right) - f\left(x_{0}\right)}{x - x_{0}}$$

$$= \underbrace{h\left(f\left(x\right)\right)}_{\substack{\rightarrow h\left(f\left(x_{0}\right)\right), \\ = g'\left(f\left(x_{0}\right)\right), \\ \text{und } h \text{ stetig in } x_{0} \\ \text{und } h \text{ stetig in } y_{0}} \cdot \underbrace{\frac{f\left(x\right) - f\left(x_{0}\right)}{x - x_{0}}}_{\substack{\rightarrow f'\left(x_{0}\right), \\ \text{da } f \text{ differenzierbar} \\ \text{in } x_{0}}}_{\substack{\rightarrow f'\left(x_{0}\right), \\ \text{da } f \text{ differenzierbar} \\ \text{in } x_{0}}$$

Proposition 4.6. Sei $I \subset \mathbb{R}$ ein Intervall, dass aus mehr als einem Punkt besteht. Sei $f: I \to \mathbb{R}$ eine streng monotone Funktion, die in einem Punkt $x_0 \in I$ differenzierbar ist mit $f'(x_0) \neq 0$. Dann ist die Umkehrfunktion f^{-1} in $f(x_0)$ differenzierbar und es gilt

$$(f^{-1})'(f(x_0)) = \frac{1}{f'(x_0)}.$$

Beweis. Sei $y_0 := f(x_0)$ und sei $(y_n) \subset f(I) \setminus \{y_0\}$ eine Folge mit $y_n \to y_0$. Sei $x_n := f^{-1}(y_n)$. Wie bereits bewiesen, ist f^{-1} stetig und daher ist $x_n = f^{-1}(y_n) \to f^{-1}(y_0) = x_0$. Weil f streng monoton ist, ist $x_n \neq x_0$ für alle n. Damit ist

$$\frac{f^{-1}(y_n) - f^{-1}(y_0)}{y_n - y_0} = \frac{x_n - x_0}{f(x_n) - f(x_0)} = \left(\frac{f(x_n) - f(x_0)}{x_n - x_0}\right)^{-1} \longrightarrow \left(f'(x_0)\right)^{-1} = \frac{1}{f'(x_0)}.$$

Beispiel 4.7. 1. $\arctan' x = \frac{1}{1+x^2}$ für $x \in \mathbb{R}$. (Denn mit $f = \tan: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \mathbb{R}$ ist $\arctan'(\tan x_0) = \cos^2 x_0$ und $\frac{1}{\cos^2 x_0} = 1 + \tan^2 x_0$.)

2. $\arcsin' x = \frac{1}{\sqrt{1-x^2}} \text{ für } x \in (-1,1).$

4.2 Lokale Extrema und der Mittelwertsatz

Definition 4.8. Sei $f: D \to \mathbb{R}$ eine Funktion. Man sagt, f habe in $x_0 \in D$ ein lokales Maximum (bzw. Minimum), wenn es ein $\epsilon > 0$ gibt, so dass für alle $x \in D$ mit $|x - x_0| < \epsilon$ gilt $f(x) \le f(x_0)$ (bzw. \ge). Ein lokales Extremum ist ein lokales Maximum oder Minimum.

Proposition 4.9. Sei $I \subset \mathbb{R}$ ein offenes Intervall und $f: I \to \mathbb{R}$ habe in $x_0 \in I$ ein lokales Extremum und sei dort differenzierbar. Dann ist $f'(x_0) = 0$.

Beweis. Wir betrachten den Fall eines lokalen Maximums. Nach Voraussetzung gibt es ein $\epsilon > 0$ mit $(x_0 - \epsilon, x_0 + \epsilon) \subset I$ und $f(x) \leq f(x_0)$ für alle $x \in (x_0 - \epsilon, x_0 + \epsilon)$. Daher ist

$$\frac{f(x) - f(x_0)}{x - x_0} \begin{cases} \leq 0 & \text{für } x \in (x_0, x_0 + \epsilon) \\ \geq 0 & \text{für } x \in (x_0 - \epsilon, x_0) \end{cases}$$

Wegen f differenzierbar in x_0 ist $f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$ und es ist

$$\underbrace{\lim_{x \searrow x_0} \underbrace{\frac{f\left(x\right) - f\left(x_0\right)}{x - x_0}}_{\leq 0} = \underbrace{\lim_{x \nearrow x_0} \underbrace{\frac{f\left(x\right) - f\left(x_0\right)}{x - x_0}}_{\geq 0} \Longrightarrow f'\left(x_0\right) = 0.$$

Bemerkung:

1. $f'(x_0) = 0$ ist notwendig, aber nicht hinreichend für ein lokales Extremum. Z.B. $f(x) = x^3$ hat f'(0) = 0, aber 0 ist kein lokales Extremum (falls 0 im Inneren des Definitionsbereiches).

2. Liegt ein lokales Extremum am Rand von I muss dort nicht $f'(x_0) = 0$ gelten. Z.B. f(x) = x hat lokale Extrema a und b im Intervall I = [a, b], aber dort verschwindet f' nicht.

Definition 4.10. Eine Funktion $f: D \to \mathbb{R}$ heißt differenzierbar in einer Menge $E \subset D$, wenn sie in jedem Punkt $x_0 \in D$ differenzierbar ist.

Satz 4.11. (Mittelwertsatz) Sei a < b und $f : [a,b] \to \mathbb{R}$ eine stetige Funktion, die in (a,b) differenzierbar ist. Dann gibt es ein $x_0 \in (a,b)$ mit

$$\frac{f(b)-f(a)}{b-a}=f'(x_0).$$

Verallgemeinerung:

Satz 4.12. Sei a < b und seien $f, g : [a, b] \to \mathbb{R}$ stetige Funktionen, die in (a, b) differenzierbar sind. Dann gibt es ein $x_0 \in (a, b)$ mit

$$(f(b) - f(a)) g'(x_0) = (g(b) - g(a)) f'(x_0).$$

Der Mittelwertsatz oben entspricht genau dem Fall g(x) = x.

Beweis. Sei h(x) := (f(b) - f(a)) g(x) - (g(b) - g(a)) f(x). Dann ist h stetig in [a, b] und differenzierbar in (a, b). Es ist zu zeigen, dass es ein $x_0 \in (a, b)$ gibt mit $h'(x_0) = 0$. Ist h konstant, so ist das klar. Andernfalls gibt es ein $x_1 \in (a, b)$ mit $h(x_1) \neq h(a)$. Ist $h(x_1) > h(a)$, so nimmt h als stetige Funktion auf [a, b] in einem Punkt $x_0 \in [a, b]$ sein (globales) Maximum an. Es ist $x_0 \neq a$ (wegen $h(x_1) > h(a)$) und $x_0 \neq b$ (wegen $h(b) = h(a) < h(x_1)$), also ist $x_0 \in (a, b)$. Nach Proposition 4.9 ist $h'(x_0) = 0$. Ist $h(x_1) < h(a)$, so argumentiert man entsprechend mit einem (globalen) Minimum statt Maximum.

Korollar 4.13. Sei $f:(a,b) \to \mathbb{R}$ differenzierbar.

- 1. Gilt f'(x) = 0 für alle $x \in (a, b)$, so ist f konstant.
- 2. Gilt $f'(x) \ge 0$ (bzw. ≤ 0) für alle $x \in (a,b)$, so ist f monoton wachsend (bzw. fallend).
- 3. Gilt f'(x) > 0 (bzw. < 0) für alle $x \in (a,b)$, so ist f streng monoton wachsend (bzw. fallend).

Beweis. Für $a < x_1 < x_2 < b$ gibt es nach dem Mittelwertsatz ein $x_1 < x < x_2$ mit

$$f(x_2) - f(x_1) = f'(x)(x_2 - x_1).$$

Daraus folgt das Korollar.

Bemerkung:

- 1. Ist f monoton wachsend (bzw. fallend) und differenzierbar, so ist $f'(x) \ge 0$ für alle $x \in (a, b)$ (bzw. \le). (Folgt sofort aus der Definition von f'.)
- 2. Ist f streng monoton wachsend (bzw. fallend) und differenzierbar, so gilt nicht notwendigerweise f'(x) > 0 für alle $x \in (a, b)$ (bzw. <). Z.B. ist $f(x) = x^3$ streng monoton wachsend, aber f'(0) = 0.

Satz 4.14. (L'Hospitalsche Regel) $Sei - \infty \le a < b \le + \infty$ und $seien \ f, g : (a, b) \to \mathbb{R}$ differenzierbar mit $g'(x) \ne 0$ für alle $x \in (a, b)$. Es existiere der Grenzwert

$$C := \lim_{x \nearrow b} \frac{f'(x)}{g'(x)} \in \mathbb{R} \cup \{\pm \infty\}$$

und es gelte

$$\operatorname{entweder} \lim_{x \nearrow b} g(x) = \lim_{x \nearrow b} f(x) = 0 \qquad \operatorname{oder} \qquad \lim_{x \nearrow b} g(x) = \pm \infty.$$

Dann gilt $g(x) \neq 0$ für alle $x \in (a,b)$ genügend nahe an b und es ist

$$\lim_{x \nearrow b} \frac{f(x)}{g(x)} = C.$$

Entsprechende Aussage bei $x \searrow a$.

Einfach, falls $\lim_{x \nearrow b} f(x) = \lim_{x \nearrow b} g(x) = 0$ und $\lim_{x \nearrow b} f'(x)$ und $\lim_{x \nearrow b} g'(x)$ existieren.

Beispiel 4.15. $\lim_{x\to 0} \frac{e^x-1}{x} = 1$ (wegen Restgliedabschätzung). Mit L'Hospital:

$$f(x) = e^x - 1, g(x) = x : \frac{f'(x)}{g'(x)} = \frac{e^x}{1} \to 1.$$

Beispiel 4.16.
$$\lim_{x\to 0} \left(\frac{1}{\sin x} - \frac{1}{x} \right) = 0.$$

$$\frac{1}{\sin x} - \frac{1}{x} = \frac{x - \sin x}{x \sin x}, \qquad f(x) = x - \sin x, \quad g(x) = x \sin x$$

$$f'(x) = 1 - \cos x, g'(x) = \sin x + x \cos x$$
Existiert $\lim_{x \to 0} \frac{f'(x)}{g'(x)}$? unklar, wieder $\int_0^{\infty} f''(x) = \sin x, \quad g''(x) = 2 \cos x - x \sin x$
Existiert $\lim_{x \to 0} \frac{f''(x)}{g''(x)}$? Ja! $\lim_{x \to 0} \frac{f''(x)}{g''(x)} = \frac{0}{2} = 0.$

Beweis. Wir zeigen, dass es im Fall $-\infty \le C < \infty$ für jedes $C' \in \mathbb{R}$ mit C' > C ein $c \in (a,b)$ gibt, so dass für alle $x \in (c,b)$ gilt $\frac{f(x)}{g(x)} < C'$.

Entsprechend kann man zeigen, dass es im Fall $-\infty < C \le +\infty$ für jedes $C' \in \mathbb{R}$ mit C' < C ein $c \in (a,b)$ gibt, so dass für alle $x \in (c,b)$ gilt $\frac{f(x)}{g(x)} > C'$.

Diese beiden Aussagen zusammen implizieren die Behauptung.

Sei jetzt also $C' \in \mathbb{R}$ mit C' > C. Wähle $C'' \in (C, C')$. Nach Voraussetzung gibt es ein $c_1 \in [a, b)$ mit $\frac{f'(x)}{g'(x)} < C''$ für alle $c_1 < x < b$. (*)

Nach dem verallgemeinerten Mittelwertsatz gibt es für alle $c_1 < x < y < b$ ein $x_0 \in (x, y)$ mit

$$\frac{f(y) - f(x)}{g(y) - g(x)} = \frac{f'(x_0)}{g'(x_0)} \stackrel{(*)}{<} C'' \qquad (**)$$

Im Fall, dass $\lim_{x \nearrow b} f(x) = \lim_{x \nearrow b} g(x) = 0$, können wir in (**) $y \nearrow b$ gehen lassen und erhalten $\frac{f(x)}{g(x)} \le C''$. Wegen C'' < C' ist das die Behauptung.

Es gelte jetzt $\lim_{x \nearrow b} g(x) = \pm \infty$. Für festes $x \in (c_1, b)$ wählen wir ein $c_2 \in [c_1, b)$, so dass für $y \in (c_2, b)$ gilt $\pm g(y) > \pm g(x)$ und $\pm g(y) > 0$. Indem wir (**) mit $\frac{g(y) - g(x)}{g(y)} > 0$ multiplizieren, erhalten wir für $c_2 < x < y < b$:

$$\frac{f(y) - f(x)}{g(y)} \le C'' \frac{g(y) - g(x)}{g(y)}$$
$$\Leftrightarrow \frac{f(y)}{g(y)} < C'' - C'' \frac{g(x)}{g(y)} + \frac{f(x)}{g(y)}$$

Für $y \nearrow b$ konvergiert die rechte Seite gegen C''. Wegen C'' < C' gibt es also ein $c_3 \in [c_2, b)$, so dass für $c_3 < y < b$ gilt $C'' - C'' \frac{g(x)}{g(y)} + \frac{f(x)}{g(y)} < C'$, daher gilt für solche y auch $\frac{f(y)}{g(y)} < C'$, wie behauptet.

4.3 Ableitungen höherer Ordnung

Definition 4.17. Die Funktion $f:D\to\mathbb{R}$ sei in $E\subset D$ differenzierbar, Falls die Ableitung $f':E\to\mathbb{R}$ ihrerseits in einem Punkt $x_0\in E$ differenzierbar ist, so heißt

$$f''(x_0) := (f')'(x_0)$$

die zweite Ableitung von f in x_0 . Andere Bezeichnung: $\frac{d^2 f}{dx^2}(x_0)$. Analog definiert man höhere Ableitungen $f^{(k)}(x_0)$.

Beispiel 4.18. Sei $n \in \mathbb{N}$. Durch Induktion zeigt man, dass die Funktion $\mathbb{R} \to \mathbb{R}, x \mapsto x^n$ in jedem Punkt beliebig oft differenzierbar ist mit

$$\frac{\mathrm{d}^k}{\mathrm{d}x^k}x^n = \begin{cases} \frac{n!}{(n-k)!}x^{n-k} & \text{für } k \le n\\ 0 & \text{für } k > n \end{cases}$$

Definition 4.19. Sei $f: D \to \mathbb{R}$ eine Funktion. Man sagt, f habe in $x_0 \in D$ ein strenges (oder striktes) lokales Maximum (bzw. Minimum), wenn es ein $\epsilon > 0$ gibt, so dass für alle $x_0 \in D \cap (x_0 - \epsilon, x_0 + \epsilon)$ gilt $f(x) < f(x_0)$ (bzw. >).

Proposition 4.20. Sei $I \subset \mathbb{R}$ ein offenes Intervall und $x_0 \in I$. Sei $f: I \to \mathbb{R}$ in x_0 zweimal differenzierbar mit $f'(x_0)$ und $f''(x_0) < 0$ (bzw. >). Dann besitzt f in x_0 ein strenges lokales Maximum (bzw. Minimum).

Bemerkung: Die Bedingungen in der Proposition sind hinreichend, aber nicht notwendig für ein strenges lokales Extremum. Z.B. hat $f(x) = x^4$ in x = 0 ein strenges lokales Minimum, aber es ist f''(0) = 0.

Beweis. Sei $f''(x_0) > 0$ (sonst betrachte -f). Wegen $\lim_{x \to x_0} \frac{f'(x) - f'(x_0)}{x - x_0} = f'' > 0$ gibt es ein $\epsilon > 0$ mit $\frac{f'(x) - f'(x_0)}{x - x_0}$ für alle $0 < |x - x_0| < \epsilon$.

Wegen $f'(x_0) = 0$ folgt daraus

$$f'(x) > 0$$
 für $x \in (x_0, x_0 + \epsilon)$ und $f'(x) < 0$ für $x \in (x_0 - \epsilon, x_0)$.

Nach Korollar 4.13 ist daher f in $[x_0, x_0 + \epsilon]$ streng monoton wachsend und in $[x_0 - \epsilon, x_0]$ streng monoton fallend. Also hat f in x_0 ein strenges lokales Minimum.

Konvexität

Definition 4.21. Sei $I \subset \mathbb{R}$ ein Intervall. Eine Funktion $f: I \to \mathbb{R}$ heißt konvex (bzw. konkav), wenn für alle $x_0, x_1 \in I$ und $\lambda \in [0, 1]$ gilt

$$f((1-\lambda)x_0 + \lambda x_1) \le (1-\lambda)f(x_0) + \lambda f(x_1) \qquad \text{(bzw. } \ge \text{)}.$$

Ist die Ungleichung strikt für $x_0 \neq x_1$ und $\lambda \in (0,1)$, so heißt f streng konvex (bzw. konkav).

Geometrisch wird auch deutlich, dass konvex $\hat{=}$ linksgekrümmt, konkav $\hat{=}$ rechtsgekrümmt. Außerdem gilt f konvex $\Leftrightarrow -f$ konkav.

Satz 4.22. Ist $I \subset \mathbb{R}$ ein offenes Intervall und $f: I \to \mathbb{R}$ konvex. Dann existieren für alle $x_0 \in I$ die beiden Grenzwerte $(D^{\pm}f)(x) = \lim_{\epsilon \searrow 0} \frac{f(x_0 \pm \epsilon) - f(x_0)}{\pm \epsilon}$ und es gilt für alle $x, y \in I$ mit x < y

$$\left(D^{-}f\right)(x) \le \left(D^{+}f\right)(x) \le \left(D^{-}f\right)(y) \le \left(D^{+}f\right)(y).$$

Korollar 4.23. Sei $I \subset \mathbb{R}$ ein offenes Intervall und $f: I \to \mathbb{R}$ konvex. Dann ist f stetig und $\{x_0 \in I: f \text{ ist nicht differenzierbar in } x_0\}$ ist abzählbar.

Beweis. Aus der Existenz von $D^{\pm}f(x_0)$ folgt $\lim_{\epsilon \searrow 0} f(x_0 \pm \epsilon) = f(x_0)$, also ist f stetig in x_0 .

• Sei $-\infty < a < b < \infty$ mit $[a,b] \subset I$ und für $\epsilon > 0$ sei

$$E_{\epsilon} := \{ x \in [a, b] : D^+ f(x) - D^- f(x) \ge \epsilon \}.$$

Für jede endliche Teilmenge $\{x_1, \ldots, x_n\} \subset E_{\epsilon}$ mit $x_1 < x_2 < \ldots < x_n$ gilt

$$D^{+}f(b) \geq D^{+}f(x_{m}) \geq D^{-}f(x_{m}) + \epsilon \geq D^{+}f(x_{m-1}) + \epsilon \geq D^{-}f(x_{m-1}) + 2\epsilon \geq \dots$$

$$\geq D^{-}f(x_{1}) + m\epsilon \geq D^{-}f(a) + m\epsilon$$

$$\Rightarrow m \leq \frac{1}{\epsilon} \left(D^{+}f(b) - D^{-}f(a) \right), \text{ d.h. } E_{\epsilon} \text{ ist endlich.}$$

$$\Rightarrow \left\{ x \in [a,b] : D^{+}f(x) - D^{-}f(x) > 0 \right\} = \bigcup_{n \in \mathbb{N}} \underbrace{E_{\frac{1}{n}}}_{\text{endlich}} \text{ ist abz\"{a}hlbar.}$$

Indem wir I als abzählbare Vereinigung von Menge $[a_n, b_n]$ schreibt, erhält man die Behauptung.

Lemma 4.24. Sei $I \subset \mathbb{R}$ ein Intervall und $f: I \to \mathbb{R}$ konvex. Dann gilt für alle $x, y \in I$ mit x < y < z

$$\frac{f(y) - f(x)}{y - x} \le \frac{f(z) - f(x)}{z - x} \le \frac{f(z) - f(y)}{z - y}.$$

Beweis. Die Definition von konvex mit $\lambda = \frac{y-x}{z-x} \in (0,1)$ gibt

$$f\left(y\right) = f\left(\frac{z-y}{z-x}x + \frac{y-x}{z-x}z\right) = f\left(\left(1 - \frac{y-x}{z-x}\right)x + \frac{y-x}{z-x}z\right) \le \left(1 - \frac{y-x}{z-x}\right)f\left(x\right) + \frac{y-x}{z-x}f\left(z\right)$$

$$\Leftrightarrow f\left(y\right) - f\left(x\right) \le \frac{y-x}{z-x}\left(f\left(z\right) - f\left(x\right)\right); \text{ das ist die linke Ungleichung.}$$

Die rechte wird ebenso bewiesen.

Beweis. (Satz) Sei $x_0 \in I$. Für alle $\epsilon > 0$ mit $x_0 - \epsilon, x_0 + \epsilon \in I$ sei

$$(D_{\epsilon}^{\pm}f)(x_0) := \frac{f(x_0 \pm \epsilon) - f(x_0)}{\pm \epsilon}.$$

Nach Lemma 4.24 ist:

- 1. $\pm \left(D_{\epsilon_1}^{\pm}f\right)(x_0) \leq \pm \left(D_{\epsilon_2}^{\pm}f\right)(x_0)$ für alle $0 < \epsilon_1 < \epsilon_2$
- 2. $(D_{\epsilon}^{-}f)(x_{0}) \leq (D_{\tilde{\epsilon}}^{+}f)(x_{0})$ für alle $0 < \epsilon, \tilde{\epsilon}$
- 3. $(D_{\epsilon}^+ f)(x_0) \le (D_{\epsilon}^- f)(y_0)$ für $x_0 < y_0$ und $\epsilon \le y_0 x_0$

Wegen 1. ist $\epsilon \mapsto (D_{\epsilon}^{\pm}f)(x_0)$ monoton und wegen 2. ist es beschränkt. Also existieren $(D^{\pm}f)(x_0) := \lim_{\epsilon \searrow 0} (D_{\epsilon}^{\pm}f)(x_0)$.

Aus 2. folgt
$$(D^-f)(x_0) \le (D^+f)(x_0)$$
, und aus 3. folgt $(D^+f)(x_0) \le (D^-f)(y_0)$.

Satz 4.25. Sei $I \subset \mathbb{R}$ ein Intervall und $f: I \to \mathbb{R}$ differenzierbar. Dann ist f konvex genau dann, wenn f' monoton wachsend ist und f ist streng konvex genau dann, wenn f' streng monoton wachsend ist.

Beweis. " \Rightarrow " Nach Satz 4.22 sind $D^{\pm}f$ monoton wachsend und nach Voraussetzung ist $D^{+}f = D^{-}f = f'$. Aussage für streng konvex als Übung.

" \Leftarrow " Ist f' monoton wachsend und sind $x_0, x_1 \in I$ mit $x_0 < x_1$ und $\lambda \in (0,1)$, so gibt es für $x_{\lambda} := (1 - \lambda) x_0 + \lambda x_1$ nach dem Mittelwertsatz $\xi_0 \in (x_0, x_{\lambda}), \xi_1 \in (x_{\lambda}, x_0)$ mit

$$\frac{f(x_{\lambda}) - f(x_{0})}{x_{\lambda} - x_{0}} = f'(\xi_{0}), \quad \frac{f(x_{1}) - f(x_{\lambda})}{x_{1} - x_{\lambda}} = f'(\xi_{1})$$

$$\Rightarrow \underbrace{\frac{f(x_{\lambda}) - f(x_{0})}{x_{\lambda} - x_{0}}}_{\frac{f(x_{\lambda}) - f(x_{0})}{\lambda(x_{1} - x_{0})}} = f'(\xi_{0}) \leq f'(\xi_{1}) = \underbrace{\frac{f(x_{1}) - f(x_{\lambda})}{x_{1} - x_{\lambda}}}_{\frac{f(x_{1}) - f(x_{\lambda})}{\lambda(x_{1} - x_{0})}}$$

$$\Rightarrow \frac{1}{\lambda} (f(x_{\lambda}) - f(x_{0})) \leq \frac{1}{1 - \lambda} (f(x_{1}) - f(x_{\lambda}))$$

$$\Leftrightarrow f(x_{\lambda}) \leq (1 - \lambda) f(x_{0}) + \lambda f(x_{1}).$$

Korollar 4.26. Sei $I \subset \mathbb{R}$ ein offenes Intervall und $f: I \to \mathbb{R}$ zweimal differenzierbar. Dann gilt:

- 1. f ist konvex genau dann, wenn $f'' \ge 0$, d.h. $f''(x) \ge 0$ für alle $x \in I$.
- 2. Ist f'' > 0, so ist f streng konvex.

Beweis. Kombiniere Satz 4.25 mit Satz 4.25 und der darauffolgenden Bemerkung.

Bemerkung: Für eine streng konvexe Funktion f kann $f''(x_0) = 0$ gelten (Z.B. $f : \mathbb{R} \to \mathbb{R}, x \mapsto x^4, f''(0) = 0$.)

Beispiel 4.27. exp ist konvex, ln ist konkav und $(0, \infty) \ni x \mapsto x^{\alpha}$ ist konvex $\Leftrightarrow \alpha \leq 0$ oder $\alpha \geq 1$ und konkav $\Leftrightarrow 0 \leq \alpha \leq 1$.

5 Integration

5.1 Das Riemannsche Integral

Seien $-\infty < a < b < +\infty$. Erinnerung: Treppenfunktion $\varphi: [a,b] \to \mathbb{R}$

$$N \in \mathbb{N}, \quad a = x_0 < x_1 < \ldots < x_N < b, \quad c_1, \ldots, c_N \in \mathbb{R},$$

so dass $\varphi(x) = c_n$ für $x \in (c_{n-1}, c_n), n = 1, \dots, N$.

Klar ist ein skalares Vielfaches einer Treppenfunktion ist eine Treppenfunktion und außerdem ist die Summe von Treppenfunktionen eine Treppenfunktion (\sim gemeinsame Verfeinerung).

Das Integral einer Treppenfunktion wie oben ist

$$\int_a^b \varphi(x) \, \mathrm{d}x := \sum_{n=1}^N c_n \left(x_n - x_{n-1} \right).$$

Geometrische Interpretation:

Falls alle $c_n \geq 0$: Summe der Flächeninhalte der Rechtecke.

Im Falle von $c_n < 0$ für einige n, werden die entsprechenden Flächeninhalte negativ eingebracht.

Bemerkung:

- Man sieht einfach, dass die Definition des Integrals nur von φ und nicht von den Stützpunkten x_n abhängt. (\rightsquigarrow gemeinsame Verfeinerung)
- Sind $\varphi, \psi : [a, b] \to \mathbb{R}$ Treppenfunktionen und $\lambda \in \mathbb{R}$, so ist

$$\int_{a}^{b} (\lambda \varphi)(x) dx = \lambda \int_{a}^{b} \varphi(x) dx$$

$$\int_{a}^{b} (\varphi + \psi)(x) dx = \int_{a}^{b} \varphi(x) dx + \int_{a}^{b} \psi(x) dx$$
Linearität

Ist außerdem $\varphi \leq \psi$, so ist

$$\int_{a}^{b} \varphi(x) \, \mathrm{d}x \le \int_{a}^{b} \psi(x) \, \mathrm{d}x. \quad \right\}$$
Monotonie

Definition 5.1. Sei $f:[a,b]\to\mathbb{R}$ eine beschränkte Funktion. Dann setzt man

$$\begin{split} & \overline{\int_a^b} f(x) \, \mathrm{d} x := \inf \left\{ \int_a^b \varphi(x) \, \mathrm{d} x : \varphi \text{ Treppenfunktion}, \varphi \geq f \right\}, \\ & \underline{\int_a^b} f(x) \, \mathrm{d} x := \sup \left\{ \int_a^b \varphi(x) \, \mathrm{d} x : \varphi \text{ Treppenfunktion}, \varphi \leq f \right\}. \end{split}$$

Gilt $\overline{\int_a^b} f(x) \, \mathrm{d}x = \underline{\int_a^b} f(x) \, \mathrm{d}x$, so heißt f Riemann-integrierbar und man setzt

$$\int_a^b f(x) dx := \overline{\int_a^b} f(x) dx = \int_a^b f(x) dx.$$

Bemerkung:

1. Das ist wohldefiniert, denn für jede Treppenfunktion ist

$$\int_{a}^{b} \varphi(x) dx = \underbrace{\int_{a}^{b} \varphi(x) dx}_{\text{wie oben def.}} = \underbrace{\int_{a}^{b} \varphi(x) dx}_{\text{other def.}}$$

- 2. Es gilt stets $\overline{\int_a^b} f(x) dx \ge \underline{\int_a^b} f(x) dx$.
- 3. Sei $f:[0,1]\to\mathbb{R}$ definiert durch $f(x)=\begin{cases} 1 & \text{für }x\in\mathbb{Q}\\ 0 & \text{für }x\in\mathbb{R}\setminus\mathbb{Q} \end{cases}$. Dann gilt $\overline{\int_0^1}f(x)\,\mathrm{d}x=1$ und $\int_0^1f(x)\,\mathrm{d}x=0$, also ist f nicht Riemann-integrierbar.
- 4. Eine Funktion $f:[a,b]\to\mathbb{R}$ ist Riemann-integrierbar genau dann, wenn es für jedes $\epsilon>0$ Treppenfunktionen $\varphi,\psi:[a,b]\to\mathbb{R}$ gibt mit $\varphi\leq f\leq \psi$ und $\int_a^b\psi(x)\,\mathrm{d}x-\int_a^b\varphi(x)\,\mathrm{d}x<\epsilon$.

Satz 5.2. 1. Jede stetige Funktion ist Riemann-integrierbar.

2. Jede monotone Funktion ist Riemann-integrierbar.

Beweis. 1. Früher haben wir aus der gleichmäßigen Stetigkeit für jedes $\epsilon > 0$ die Existenz von Treppenfunktionen $\varphi, \psi : [a, b] \to \mathbb{R}$ hergeleitet mit $\varphi \leq f \leq \psi$ und $\psi - \varphi \leq \frac{\epsilon}{b-a}$. Daraus folgt wegen Linearität und Monotonie des Integrals für Treppenfunktionen, dass

$$\int_{a}^{b} \psi(x) dx - \int_{a}^{b} \varphi(x) dx = \int_{a}^{b} (\psi - \varphi)(x) dx \le \int_{a}^{b} \frac{\epsilon}{b - a} dx = \epsilon.$$

Also nach Bemerkung 4. oben ist f Riemann-integrierbar.

2. Sei z.B. f monoton wachsend und $N \in \mathbb{N}$. Setze $x_n = a + \frac{b-a}{N}n, \ n = 0, \dots, N$.

$$\varphi(x) := f(x_{n-1}) \\ \psi(x) := f(x_n)$$
 für $x \in [x_{n-1}, x_n)$ und $\varphi(b) := \psi(b) := f(b).$

Wegen Monotonie von f ist dann $\varphi \leq f \leq \psi$ und

$$\int_{a}^{b} \psi(x) dx - \int_{a}^{b} \varphi(x) dx = \sum_{n=1}^{N} f(x_{n}) \frac{b-a}{N} - \sum_{n=1}^{N} f(x_{n-1}) \frac{b-a}{N}$$

$$= \frac{b-a}{N} \underbrace{\left(\sum_{n=1}^{N} f(x_{n}) - \sum_{n=1}^{N} f(x_{n-1})\right)}_{=f(x_{N}) - f(x_{0}) = f(b) - f(a)}$$

$$= \frac{b-a}{N} \left(f(b) - f(a)\right)$$

Für $N > \frac{1}{\epsilon} (b-a) (f(b) - f(a))$ ist das $< \epsilon$.

Proposition 5.3. Seien $f, g : [a, b] \to \mathbb{R}$ Riemann-integrierbar und sei $\lambda \in \mathbb{R}$. Dann sind auch f + g und λf Riemann-integrierbar und es gilt

$$\int_{a}^{b} (f+g)(x) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$
$$\int_{a}^{b} (\lambda f)(x) dx = \lambda \int_{a}^{b} f(x) dx$$
Linearität

Ist $f \leq g$, so ist

$$\int_{a}^{b} f(x) \, \mathrm{d}x \le \int_{a}^{b} g(x) \, \mathrm{d}x. \quad \right\} Monotonie$$

Beweis. Der ersten Aussage: Für jedes $\epsilon>0$ gibt es Treppenfunktionen $\varphi_1,\varphi_2,\psi_1,\psi_2$, so dass $\varphi_1\leq f\leq \psi_1,\varphi_2\leq g\leq \psi_2$ und $\int_a^b\psi_j(x)\,\mathrm{d}x-\int_a^b\varphi_j(x)\,\mathrm{d}x<\frac{\epsilon}{2},\ j=1,2.$ Damit ist $\varphi_1+\varphi_2\leq f+g\leq \psi_1+\psi_2$ und

$$\int_{a}^{b} (\psi_{1} + \psi_{2})(x) dx - \int_{a}^{b} (\varphi_{1} + \varphi_{2})(x) dx$$

$$= \underbrace{\left(\int_{a}^{b} \psi_{1}(x) dx - \int_{a}^{b} \varphi_{1}(x) dx\right)}_{\leq \frac{\epsilon}{2}} + \underbrace{\left(\int_{a}^{b} \psi_{2}(x) dx - \int_{a}^{b} \varphi_{2}(x) dx\right)}_{\leq \frac{\epsilon}{2}}$$

 $<\epsilon$.

Also ist f + g Riemann-integrierbar. Außerdem folgt

$$\int_{a}^{b} (f+g)(x) dx - \int_{a}^{b} f(x) dx - \int_{a}^{b} g(x) dx \le \int_{a}^{b} (\psi_{1} + \psi_{2})(x) dx - \int_{a}^{b} \varphi_{1}(x) dx - \int_{a}^{b} \varphi_{2}(x) dx < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Und entsprechend $> -\epsilon$. Daraus folgt die erste Behauptung.

Definition 5.4. Für eine Funktion $f: D \to \mathbb{R}$ definieren wir zwei Funktionen $f_{\pm}: D \to \mathbb{R}$,

$$f_{+}(x) = \begin{cases} f(x), & \text{falls } f(x) > 0 \\ 0, & \text{sonst} \end{cases}$$
 $f_{-}(x) = \begin{cases} 0, & \text{falls } f(x) \ge 0 \\ -f(x), & \text{sonst} \end{cases}$

Dann gilt $f = f_+ - f_-$ und $|f| = f_+ + f_-$.

Proposition 5.5. Seien $f:[a,b] \to \mathbb{R}$ Riemann-integrierbar. Dann gilt:

1. Die Funktionen $f_+, f_-, |f|$ sind Riemann-integrierbar und es gilt

$$\left| \int_{a}^{b} f(x) \, \mathrm{d}x \right| \le \int_{a}^{b} |f(x)| \, \mathrm{d}x.$$

- 2. Für jedes $p \in [1, \infty)$ ist die Funktion $|f|^p$ Riemann-integrierbar.
- 3. Die Funktion fg ist Riemann-integrierbar.
- Beweis. 1. Sei $\epsilon > 0$. Dann gibt es Treppenfunktionen φ, ψ mit $\varphi \leq f \leq \psi$ und $\int_a^b (\psi \varphi)(x) \, \mathrm{d}x \leq \epsilon$. Dann sind ψ_+ und φ_+ Treppenfunktionen und es gilt $\varphi_+ \leq f_+ \leq \psi_+$. Außerdem ist $\psi_+ \varphi_+ \leq \psi \varphi$ ($\Leftrightarrow 0 \leq -\psi_- + \varphi_- \Leftrightarrow \psi_- \leq \varphi_-$), also $\int_a^b (\psi_+ \varphi_+)(x) \, \mathrm{d}x \leq \int_a^b (\psi \varphi)(x) \, \mathrm{d}x \leq \epsilon$. Damit ist f_+ Riemann-integrierbar. f_- ebenso (betrachte -f: $(-f)_+ = f_-$), also auch $|f| = f_+ + f_-$. Wegen $-|f| \leq f \leq |f|$ folgt aus der Monotonie des Integrals die behauptete Ungleichung.
 - 2. Wegen 1. genügt es den Fall $f \geq 0$ zu betrachten. o.B.d.A. $f \neq 0$. Sei $\epsilon > 0$. Dann gibt es Treppenfunktionen φ, ψ mit $0 \leq \varphi \leq f \leq \psi \leq M$ und $\int_a^b (\psi \varphi)(x) \, \mathrm{d}x \leq \frac{\epsilon}{pM^{p-1}}$ mit $M := \sup f$. (Ersetze φ und ψ durch φ_+ und min $\{\psi, M\}$.) Dann sind φ^p und ψ^p Treppenfunktionen und $\varphi^p \leq f^p \leq \psi^p$. Wegen $\frac{\mathrm{d}}{\mathrm{d}x} x^p = p x^{p-1}$ folgt aus dem Mittelwertsatz

$$\psi^p - \varphi^p \le pM^{p-1} \left(\psi - \varphi \right)$$

und damit

$$\int_{a}^{b} (\psi^{p} - \varphi^{p})(x) dx \le pM^{p-1} \int_{a}^{b} (\psi - \varphi)(x) dx \le \epsilon.$$

3. $fg = \frac{1}{4} \left(\left(f + g \right)^2 - \left(f - g \right)^2 \right)$. Nach 2. sind $\left(f + g \right)^2$ und $\left(f - g \right)^2$ Riemann-integrierbar.

Satz 5.6. (Mittelwertsatz der Integralrechnung) Sei $w:[a,b]\to\mathbb{R}$ eine nichtnegative, Riemann-integrierbare und $f:[a,b]\to\mathbb{R}$ eine stetige Funktion. Dann gibt es ein $\xi\in[a,b]$ mit

$$\int_a^b f(x)w(x) dx = f(\xi) \int_a^b w(x) dx.$$

Insbesondere $\int_a^b f(x) dx = f(\xi) (b-a)$.

Beweis. Nach dem vorherigen Satz ist fw Riemann-integrierbar. Außerdem ist $mw \leq fw \leq Mw$ mit $m := \inf f$ und $M := \sup f$, also

$$m \int_{a}^{b} w(x) dx \le \int_{a}^{b} (fw)(x) dx \le M \int_{a}^{b} w(x) dx,$$

also $\int_a^b (fw)(x) dx = \mu \int_a^b w(x) dx$ für ein $\mu \in [m, M]$. Nach dem Zwischenwertsatz für stetige Funktionen gibt es ein $\xi \in [a, b]$ mit $f(\xi) = \mu$.

Bezeichnung: Sei $f:D\to\mathbb{R}, E\subset D$. Definiere $f|_E:E\to\mathbb{R}, x\mapsto f(x)$.

Bemerkung: Seien a < c < b und $f[a,b] \to \mathbb{R}$. Dann ist f Riemann-integrierbar genau dann, wenn $f|_{[a,c]}$ und $f|_{[c,b]}$ Riemann-integrierbar sind und es ist

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx.$$

Bezeichnung:

$$\int_a^a f(x) \, \mathrm{d}x := 0, \qquad \int_b^a f(x) \, \mathrm{d}x := -\int_a^b f(x) \, \mathrm{d}x$$

Wir betrachten Tupel $Z = \left((x_n)_{n=0,\dots,N}, (\xi_n)_{n=1,\dots,N} \right)$ mit $N \in \mathbb{N}$, $a = x_0 < x_1 < \dots < x_N = b$ und $\xi_n \in [x_{n-1}, x_n]$ für $n = 1, \dots, N$. Es sei

$$\mu(z) := \max_{n=1,...,N} (x_n - x_{n-1}).$$

Für eine Funktion $f:[a,b]\to\mathbb{R}$ setzen wir

$$S_Z(f) := \sum_{n=1}^{N} f(\xi_n) (x_n - x_{n-1})$$
 Riemann-Summe.

Proposition 5.7. Sei $f:[a,b] \to \mathbb{R}$ Riemann-integrierbar. Dann gibt es für jedes $\epsilon > 0$ ein $\delta > 0$, so dass für jedes Z mit $\mu(Z) < \delta$ gilt

$$\left| S_Z(f) - \int_a^b f(x) \, \mathrm{d}x \right| < \epsilon.$$

Beweis. Es genügt, denn Satz für Treppenfunktionen zu beweisen.

Sei $a = t_0 < t_1 < \ldots < t_M = b$ die "Unterteilung" der Treppenfunktion f.

Sei Z wie oben und definiere eine Treppenfunktion $F:[a,b]\to\mathbb{R}$ durch $F(x):=f(\xi_n)$, $x\in(x_{n-1},x_n]$ und F(a):=f(a). Dann ist $S_Z(f)=\int_a^b F(x)\,\mathrm{d}x$, also

$$\left| S_Z(f) - \int_a^b f(x) \, \mathrm{d}x \right| = \left| \int_a^b \left(F(x) - f(x) \right) \, \mathrm{d}x \right| \le \int_a^b \left| F(x) - f(x) \right| \, \mathrm{d}x.$$

Wenn ein Teilintervall $[x_{n-1}, x_n]$ keinen der Punkte t_m enthält, so stimmen f und F auf (x_{n-1}, x_n) überein. Also ist F - f auf höchsten 2M Teilintervallen (x_{n-1}, x_n) von Null verschieden. Die Gesamtlänge dieser Intervalle ist $\leq 2M\mu(Z)$, und es gilt dort $|F(x) - f(x)| \leq 2\sigma$ mit $\sigma := \sup |f|$.

$$\Rightarrow \int_{a}^{b} |F(x) - f(x)| \, \mathrm{d}x \le 2M\mu(Z) \cdot 2\sigma$$

Für
$$\mu(Z) < \frac{\epsilon}{4\sigma M} =: \delta$$
 ist das $< \epsilon$.

Beispiel 5.8. $\int_0^a x \, dx = \frac{a^2}{2}$.

Betrachte $Z = \left((x_n)_{n=0,\dots,N}, (\xi_n)_{n=1,\dots,N} \right)$ mit $x_n = \frac{na}{N}, \xi_n = x_n$. Dann ist $\mu(Z) = \frac{a}{N}$ und

$$S_Z(x) = \sum_{n=1}^N \frac{na}{N} \cdot \frac{a}{N} = \frac{a^2}{N^2} \sum_{n=1}^N n = \frac{a^2}{N^2} \frac{N(N+1)}{2} = \frac{a^2}{2} \left(1 + \frac{1}{N} \right) \to \frac{a^2}{2} \text{ für } N \to \infty.$$

5.2 Integration und Differentiation

Satz 5.9. Sei $f:[a,b] \to \mathbb{R}$ Riemann-integrierbar und sei

$$F(x) := \int_{a}^{x} f(y) \, \mathrm{d}y, \qquad x \in [a, b].$$

Dann ist F stetig und, falls f in $x_0 \in [a, b]$ stetig ist, so ist F dort differenzierbar mit $F'(x_0) = f(x_0)$.

Beweis. Als Riemann-integrierbare Funktion ist f beschränkt, also $M:=\sup |f|<\infty$. Für $a\leq x_1< x_2\leq b$ ist

$$|F(x_2) - F(x_1)| = \left| \int_{x_1}^{x_2} f(y) \, dy \right| \le \int_{x_1}^{x_2} |f(y)| \, dy \le M(x_2 - x_1).$$

Für $\epsilon > 0$ und $|x_2 - x_1| < \frac{\epsilon}{M}$ ist also $|F(x_2) - F(x_1)| < \epsilon$, d.h. F ist (gleichmäßig) stetig.

Ist f in x_0 stetig, so gibt es für gegebenes $\epsilon > 0$ ein $\delta > 0$, so dass für $y \in [a, b] \cap (x_0 - \delta, x_0 + \delta)$ gilt $|f(y) - f(x_0)| < \epsilon$. Also ist für $x \in [a, b] \cap (x_0 - \delta, x_0 + \delta)$

$$\left| \frac{F(x) - F(x_0)}{x - x_0} - f(x_0) \right| = \left| \frac{1}{x - x_0} \int_{x_0}^x \left(f(y) - f(x_0) \right) dy \right|$$

$$\leq \frac{1}{|x - x_0|} \left| \int_{x_0}^x \underbrace{\left| f(y) - f(x_0) \right|}_{\epsilon} dy \right| < \epsilon,$$

d.h.
$$\frac{F(x)-F(x_0)}{x-x_0} \to f(x_0)$$
 für $x \to x_0$.

Satz 5.10. (Fundamentalsatz der Differential- und Integralrechnung) Sei $F:[a,b] \to \mathbb{R}$ eine differenzierbare Funktion und F' Riemann-integrierbar. Dann ist

$$\int_{a}^{b} F'(x) dx = F(b) - F(a).$$

Notation $F|_{a}^{b} := F(x)|_{x=a}^{b} := F(b) - F(a)$.

Beweis. Sei $\epsilon > 0$. Nach Proposition 5.7 oben gibt es ein $\delta > 0$, so dass für Z mit $\mu(Z) < \delta$ gilt $\left| S_Z(F') - \int_a^b F'(x) \, \mathrm{d}x \right| < \epsilon$. Seien $a = x_0 < x_1 < \ldots < x_N = b$ Punkte mit $\max_{n=1,\ldots,N} (x_n - x_{n-1}) < \delta$. Nach dem Mittelwertsatz gibt es ein $\xi_n \in [x_{n-1}, x_n]$ mit

$$F(x_n) - F(x_{n-1}) = F'(\xi_n)(x_n - x_{n-1}), \qquad n = 1, \dots, N.$$

Dann ist $Z := ((x_n), (\xi_n))$

$$S_Z(F') = \sum_{n=1}^{N} \underbrace{F'(\xi_n)(x_n - x_{n-1})}_{=F(x_n) - F(x_{n-1})} = F(x_n) - F(x_0) = F(b) - F(a).$$

Also ist

$$\left| (F(b) - F(a)) - \int_a^b F'(x) \, \mathrm{d}x \right| = \left| S_Z(F') - \int_a^b F'(x) \, \mathrm{d}x \right| < \epsilon.$$

Definition 5.11. Ist $I \subset \mathbb{R}$ ein Intervall und $f: I \to \mathbb{R}$ eine Funktion, so heißt $F: I \to \mathbb{R}$ eine Stammfunktion von f, falls F differenzierbar ist und F' = f.

Bemerkung:

- 1. Nach dem ersten Satz besitzt jede stetige Funktion eine Stammfunktion.
- 2. Sind F und G Stammfunktionen von f, so ist (F-G)'=F'-G'=f-f=0 und damit, wie oben gezeigt, F-G=const. Ist umgekehrt F eine Stammfunktion von f und c eine Konstante, so ist F+c auch eine Stammfunktion von f.
- 3. Die Formel im letzten Satz kann man schreiben als

$$\int_{a}^{b} f(x) dx = F(b) - F(a) \text{ mit einer Stammfunktion } F \text{ von } f.$$

Beispiel 5.12. Es gilt

$$\int_{a}^{b} x^{\alpha} dx = \begin{cases} \frac{1}{\alpha+1} \left(b^{\alpha+1} - a^{\alpha+1} \right) & \text{für } \alpha \neq -1\\ \ln \frac{b}{a} & \text{für } \alpha = -1 \end{cases}$$

und $0 < a \le b < \infty$. Für $\alpha \ge 0$ ist a = 0 zugelassen und für $\alpha \in \mathbb{N}_0$ auch $-\infty < a \le b < \infty$. (Denn $F(x) = \begin{cases} \frac{1}{\alpha+1}x^{\alpha} & \text{ist differenzierbar mit } F'(x) = x^{\alpha}. \end{cases}$

Satz 5.13. (Substitutions regel) Sei $f: D \to \mathbb{R}$ stetig und $\varphi: [a,b] \to \mathbb{R}$ differenzierbar mit φ' Riemann-integrierbar und $\varphi([a,b]) \subset D$. Dann ist

$$\int_{a}^{b} f(\varphi(t)) \varphi' dt = \int_{\varphi(a)}^{\varphi(b)} f(x) dx.$$

Schreibweise: $x = \varphi(t)$, $dx = \varphi'(t) dt$.

Beweis. Wie früher gezeigt ist $J := \varphi([a, b])$ ein abgeschlossenes, beschränktes Intervall. Sei $A := \inf J$ und $F(x) := \int_A^x f(y) \, dy$. Dann ist, wie oben gezeigt, F differenzierbar mit F' = f. Also ist nach der Kettenregel $F \circ \varphi$ differenzierbar mit $(F \circ \varphi)' = (f \circ \varphi) \varphi'$, also nach dem Fundamentalsatz

$$\int_{a}^{b} f(\varphi(t)) \varphi'(t) dt = \int_{a}^{b} (F \cdot \varphi)'(t) dt = F(\varphi(b)) - F(\varphi(a)) = \int_{\varphi(a)}^{\varphi(b)} f(y) dy.$$

Beispiel 5.14. 1. $\int_a^b f(x+c) dx = \int_{a+c}^{b+c} f(y) dy$.

- 2. $\int_{a}^{b} f(cx) dx = \frac{1}{c} \int_{ca}^{cb} f(y) dy$.
- 3. Ist φ differenzierbar mit φ' Riemann-integrierbar und $\varphi(x) \neq 0$ für alle $x \in [a, b]$. Dann ist

$$\int_a^b \frac{\varphi'(t)}{\varphi(t)} \, \mathrm{d}t = \ln \left| \frac{\varphi(b)}{\varphi(a)} \right| \qquad \text{(wende Satz an auf } f(x) = \frac{1}{x}.\text{)}$$

z.B.
$$\int_a^b \tan t \, dt = \int_a^b \frac{\sin t}{\cos t} \, dt = -\ln \left| \frac{\cos(b)}{\cos(a)} \right|$$

4. $\int_a^b \frac{Dx+E}{x^2+2Bx+C} \, \mathrm{d}x$ mit konstanten $B,C,D,E\in\mathbb{R}$ und a < b. Wir erhalten für das Integral:

$$\frac{D}{2} \int_{a}^{b} \frac{2x + 2B}{x^{2} + 2Bx + C} dx + \int_{a}^{b} \frac{E - BD}{x^{2} + 2Bx + C} dx = \frac{D}{2} \ln \left| x^{2} + 2Bx + C \right| \Big|_{a}^{b} + \int_{a}^{b} \frac{E - BD}{(x + B)^{2} + (C - B^{2})} dx$$

Fall $C > B^2$:

$$\int_{a}^{b} \frac{\mathrm{d}x}{(x+B)^{2} + (C-B^{2})} = \frac{1}{C-B^{2}} \int_{a}^{b} \frac{\mathrm{d}x}{\left(\frac{x+B}{\sqrt{C-B^{2}}}\right)^{2} + 1} \stackrel{1...2}{=} \frac{1}{\sqrt{C-B^{2}}} \arctan \frac{x+B}{\sqrt{C-B^{2}}} \Big|_{a}^{b}$$

Fall $C = B^2$:

$$\int_a^b \frac{\mathrm{d}x}{(x+B)^2} = -\frac{1}{x+B} \bigg|_a^b \qquad \text{falls } [a,b] \text{ nicht } -B \text{ enthält}$$

Fall $C < B^2$:

$$\int_{a}^{b} \frac{\mathrm{d}x}{(x+B)^{2} + (C-B^{2})} \underset{\text{2valial bruch-zerlegung}}{=} \frac{1}{2\sqrt{B^{2} - C}} \int_{a}^{b} \left(\frac{1}{x+B - \sqrt{B^{2} - C}} - \frac{1}{x+B + \sqrt{B^{2} - C}} \right) \mathrm{d}x$$

$$\underset{\text{2valial bruch-zerlegung}}{=} \frac{1}{2\sqrt{B^{2} - C}} \ln \left| \frac{x+b - \sqrt{B^{2} - C}}{x+B + \sqrt{B^{2} - C}} \right| \right|_{a}^{b}$$

$$\underset{\text{weder } -B \pm \sqrt{B^{2} - C}}{= \text{enthält}}$$

Satz 5.15. (Partielle Integration) Seien $F,G:[a,b\to\mathbb{R}]$ differenzierbar mit F',G' Riemann-integrierbar. Dann ist

$$\int_{a}^{b} F(x)G'(x) dx = FG|_{a}^{b} - \int_{a}^{b} F'(x)G(x) dx.$$

Beweis. H := FG ist differenzierbar mit H' = F'G + G'F, was Riemann-integrierbar ist. Die Behauptung folgt dann aus dem Fundamentalsatz.

Beispiel 5.16. 1.
$$\int_{a}^{b} x^{\alpha} \ln x \, dx = \begin{cases} \frac{1}{(\alpha+1)^{2}} x^{\alpha+1} \left((\alpha+1) \ln x - 1 \right) \Big|_{a}^{b} & \text{falls } \alpha \neq -1 \\ \frac{1}{2} \left(\ln x \right)^{2} \Big|_{a}^{b} & \text{falls } \alpha = -1 \end{cases}$$

(Denn für $\alpha \neq -1$ ist

$$\int_{a}^{b} \underbrace{x^{\alpha}}_{=\frac{1}{\alpha+1} \frac{d}{dx} x^{\alpha+1}} \ln x \, dx = \frac{1}{\alpha+1} x^{\alpha} \ln x \Big|_{a}^{b} - \frac{1}{\alpha+1} \int_{a}^{b} x^{\alpha+1} \frac{1}{x} \, dx.$$

2. $I_n := \int_a^b x^n e^x dx, \ n \in \mathbb{N}.$

$$I_n := \int_a^b x^n \frac{\mathrm{d}}{\mathrm{d}x} e^x \, \mathrm{d}x = x^n e^x \Big|_a^b - n \underbrace{\int_a^b x^{n-1} e^x \, \mathrm{d}x}_{=I_{n-1}}$$

Damit kann I_n rekursiv auf $I_0=\int_a^b \mathbf{e}^x\,\mathrm{d}x=\left.\mathbf{e}^x\right|_a^b$ zurückgeführt werden.

3. Sei -1 < a < b < 1.

$$\begin{split} \int_a^b \sqrt{1-x^2} \, \mathrm{d}x &= \int_a^b \sqrt{1-x^2} \frac{\mathrm{d}}{\mathrm{d}x} x \, \mathrm{d}x = \left. x \sqrt{1-x^2} \right|_a^b + \int_a^b \underbrace{\frac{x^2}{\sqrt{1-x^2}}}_{=-\sqrt{1-x^2}+\frac{1}{\sqrt{1-x^2}}} \, \mathrm{d}x \\ &= x \sqrt{1-x^2} + \arcsin x \Big|_a^b - \int_a^b \sqrt{1-x^2} \, \mathrm{d}x \\ &\Rightarrow \int_a^b \sqrt{1-x^2} \, \mathrm{d}x = \frac{1}{2} \left(x \sqrt{1-x^2} + \arcsin x \right) \Big|_a^b \text{ bleibt gültig für } -1 = a \text{ und/oder } b = 1 \end{split}$$

Naiv interpretieren wir $\int_{-1}^{1} \sqrt{1-x^2} \, \mathrm{d}x = \frac{1}{2} \left(x \sqrt{1-x^2} + \arcsin x \right) \Big|_{-1}^{1} = \frac{\pi}{2}$ als den Flächeninhalt des Halbkreises mit Mittelpunkt 0 und Radius 1.

4. $I_m := \int_a^b \sin^m x \, dx$. Für $m \ge 2$

$$I_{m} = -\int_{a}^{b} \sin^{m-1} x \frac{\mathrm{d}}{\mathrm{d}x} \cos x \, \mathrm{d}x = -\sin^{m-1} x \cos x \Big|_{a}^{b} + (m-1) \int_{a}^{b} \sin^{m-2} x \underbrace{\cos^{2} x}_{=1-\sin^{2} x} \, \mathrm{d}x$$

$$= -\sin^{m-1} x \cos x \Big|_{a}^{b} + (m-1) \left(I_{m-2} - I_{m} \right)$$

$$\Rightarrow I_{m} = -\frac{1}{m} \cos x \sin^{m-1} x \Big|_{a}^{b} + \frac{m-1}{m} I_{m-2}$$

Wegen $I_0=1|_a^b, I_1=-\cos x|_a^b$ erhalten wir Formeln für I_m . Spezialfall $a=0, b=\frac{\pi}{2}$. Dann ist $I_0=\frac{\pi}{2}, I_1=1$ und $I_m=\frac{m-1}{m}I_{m-2}$.

$$I_{2n} = \frac{(2n-1)(2n-3)\cdots 3\cdot 1}{2n(2n-2)\cdots 4\cdot 2}\cdot \frac{\pi}{2}, \qquad I_{2n+1} = \frac{2n(2n-2)\cdots 4\cdot 2}{(2n+1)(2n-1)\cdots 5\cdot 3}$$

Wallis'sche Formel:

$$\frac{\pi}{2} = \prod_{k=1}^{\infty} \frac{4k^2}{4k^2 - 1}$$

Beweis. Aus obiger Formel folgt $\frac{I_{2n+2}}{I_{2n}} = \frac{2n+1}{2n+2} \to 1$ für $n \to \infty$. Wegen $\sin^{2n+2} x \le \sin^{2n+1} x \le \sin^{2n} x$ für $x \in \left[0, \frac{\pi}{2}\right]$ ist $I_{2n+2} \le I_{2n+1} \le I_{2n}$ und es folgt auch $\frac{I_{2n+1}}{I_{2n}} \to 1$ für $n \to \infty$. Nach obiger Formel ist

$$\frac{I_{2n+1}}{I_{2n}} = \frac{2n}{2n+1} \frac{2n}{2n-1} \cdots \frac{4}{3} \cdot \frac{2}{3} \cdot \frac{2}{1} \cdot \frac{2}{\pi} = \prod_{k=1}^{n} \frac{4k^2}{4k^2 - 1} \cdot \frac{2}{\pi}$$

Uneigentliche Integrale 5.3

Definition 5.17. Sei $I \subset \mathbb{R}$ ein Intervall mit Randpunkten a,b mit $-\infty \leq a < b \leq +\infty$ und sei $f: I \to \mathbb{R}$ eine Funktion, so dass für alle $-\infty < \alpha < \beta < \infty$ mit $[\alpha, \beta] \subset I$ die Funktion $f|_{[\alpha, \beta]}$ Riemann-integrierbar ist.

1. Ist $a \in \mathbb{R}, I = [a, b)$ und existiert

$$\lim_{\beta \nearrow b} \int_{a}^{\beta} f(x) \, \mathrm{d}x =: \int_{a}^{b} f(x) \, \mathrm{d}x \in \mathbb{R},$$

so heißt das Integral $\int_a^b f(x) dx$ konvergent.

- 2. Analog im Fall $b \in \mathbb{R}, I = (a, b]$.
- 3. Ist I=(a,b) und sind für ein $c\in(a,b)$ (und damit jedes $c\in(a,b)$) beide Integrale $\int_a^c f(x)\,\mathrm{d}x$ und $\int_{c}^{b} f(x) dx$ konvergent, so heißt das Integral

$$\int_a^b f(x) \, \mathrm{d}x := \int_a^c f(x) \, \mathrm{d}x + \int_c^b f(x) \, \mathrm{d}x$$

konvergent.

 $\begin{aligned} & \text{piel 5.18.} & \quad 1. \text{ F\"{u}r } s > 0 \text{ und } 0 < \alpha < \beta < \infty \text{ ist } \int_{\alpha}^{\beta} \frac{\mathrm{d}x}{x^2} = \begin{cases} \frac{1}{1-s} \frac{1}{x^{s-1}} \Big|_{\alpha}^{\beta} & \text{f\"{u}r } s \neq 1 \\ \ln x \Big|_{\alpha}^{\beta} & \text{f\"{u}r } s = 1 \end{cases} \\ & \text{F\"{u}r } a > 0 \text{ konvergiert } \int_{a}^{\infty} \frac{\mathrm{d}x}{x^s} \text{ genau dann, wenn } s > 1, \text{ und es ist } \int_{a}^{\infty} \frac{\mathrm{d}x}{x^s} = \frac{1}{s-1} \frac{1}{a^{s-1}}. \\ & \text{F\"{u}r } b < \infty \text{ konvergiert } \int_{a}^{b} \frac{\mathrm{d}x}{x^s} \text{ genau dann, wenn } s < 1 \text{ und es ist } \int_{0}^{b} \frac{\mathrm{d}x}{x^s} = \frac{1}{1-s} b^{1-s}. \end{aligned}$ Beispiel 5.18.

- 2. $\int_0^\infty e^{-cx} dx = \frac{1}{c} \text{ für } c > 0.$
- 3. $\int_{-\infty}^{\infty} \frac{\mathrm{d}x}{1+x^2} = \pi$.

Proposition 5.19. Sei $I \subset \mathbb{R}$ ein Intervall mit Randpunkten $-\infty \leq a < b \leq +\infty$ und seien f,g: $I \to \mathbb{R}$ Funktionen, so dass $f|_{[\alpha,\beta]}$, $g|_{[\alpha,\beta]}$ Riemann-integrierbar sind für alle $-\infty < a < b < +\infty$

- 1. Ist $\int_a^b |f(x)| dx$ konvergent, so auch $\int_a^b f(x) dx$.
- 2. Ist $|f| \leq g$ und ist $\int_a^b g(x) dx$ konvergent, so auch $\int_a^b |f(x)| dx$.

Lemma 5.20. Sei $f: D \to \mathbb{R}$ eine Funktion und $x_0 \in D$ ein Häufungspunkt von D. Der Grenzwert $\lim_{x\to x_0} f(x) \text{ existient genau dann, wenn es für jedes } \epsilon>0 \text{ ein } \delta>0 \text{ gibt, so dass für alle } x,x'\in$

$$(D \cap (x_0 - \delta, x_0 + \delta)) \setminus \{x_0\} \ gilt \ |f(x) - f(x')| < \epsilon.$$

Beweis. (Lemma) " \Rightarrow " ist einfach (!)

" \Leftarrow " Sei $\epsilon > 0$. Nach Vorraussetzung gibt es ein $\delta > 0$, wie im Lemma, aber mit $\frac{\epsilon}{2}$ statt ϵ . Sei $(x_n) \subset D \setminus \{x_0\}$ eine Folge mit $x_n \to x_0$. Dann gibt es ein $N \in \mathbb{N}$, so dass für $n \geq N$ gilt $|x_n - x_0| < \delta$. Für $n, m \geq N$ gilt dann $|f(x_m) - f(x_n)| < \frac{\epsilon}{2}$. Damit ist $(f(x_n))$ eine Cauchy-Folge und daher konvergent. Sei $a := \lim_{n \to \infty} f(x_n)$. Für ein beliebiges $x \in D$ mit $0 < |x - x_0| < \delta$ gilt

$$|f(x) - a| \le \underbrace{|f(x) - f(x_N)|}_{\le \frac{\epsilon}{2}} + \underbrace{|f(x_N) - a|}_{\le \frac{\epsilon}{2}} \le \epsilon.$$

Das zeigt, dass
$$a = \lim_{\substack{x \to x_0 \\ x \in D \setminus \{x_0\}}} f(x)$$
.

Beweis. (Proposition). Wir zeigen 2. (1. geht analog). Wir nehmen an, dass $f|_{[\alpha,\beta]}$ für alle $\beta < b$ Riemannintegrierbar ist (übrige Fälle analog).

Sei $F(x) := \int_a^x |f(y)| \, \mathrm{d}y$ für $x \in [a,b)$ und $G(x) := \int_a^x g(y) \, \mathrm{d}y$. Dann ist für $a \le u \le v < b$

$$F(v) - F(u) = \int_{u}^{v} |f(y)| \, dy \le \int_{u}^{v} g(y) \, dy = G(v) - G(u). \tag{*}$$

Nach Voraussetzung existiert $\lim_{x\nearrow b} G(x)$, erfüllt also die Cauchy-Bedingungen in Lemma 5.20. Also wegen (*) erfüllt auch F die Cauchy-Bedingung, also existiert nach Lemma 5.20 $\lim_{x\nearrow b} F(x)$.

Beispiel 5.21. Das Integral $\int_0^\infty \frac{\sin x}{x} dx$ konvergiert. (Analogie: $\sum_{n=1}^\infty \frac{(-1)^{n-1}}{n}$ konvergiert.)

Die Funktion $\frac{\sin x}{x}$ lässt sich stetig durch 1 nach x=0 fortsetzen, das Integral $\int_0^\beta \frac{\sin x}{x} \, \mathrm{d}x$ existiert also als "Standard" Riemann-Integral.

$$\int_{\pi/2}^{\beta} \frac{\sin x}{x} \, dx = \int_{\pi/2}^{\beta} \frac{1}{x} \left(-\frac{d}{dx} \cos x \right) dx = -\frac{\cos x}{x} \Big|_{\pi/2}^{\beta} - \int_{\pi/2}^{\beta} \frac{\cos x}{x^2} \, dx$$

Das rechte Integral konvergiert nach Proposition 5.19 für $\beta \to \infty$, denn $\int_{\pi/2}^{\infty} \frac{|\cos x|}{x^2} dx \le \int_{\pi/2}^{\infty} \frac{dx}{x^2}$ konvergiert.

Der erste Summand ist $-\frac{\cos \beta}{\beta} \to 0$ für $\beta \to \infty$.

Daraus folgt Konvergenz.

Zusatz: $\int_0^\infty \frac{\sin x}{x} \, \mathrm{d}x = \frac{\pi}{2}.$

Wir zeigen die Konvergenz von $\int_0^{(2n+1)\frac{\pi}{2}} \frac{\sin x}{x} dx = \int_0^{\pi/2} \frac{\sin(2n+1)t}{t} dt$ gegen $\frac{\pi}{2}$ für $n \to \infty$.

Es ist

$$1 + 2\sum_{k=1}^{n} \cos 2kt = \sum_{k=-n}^{n} e^{2ikt} = e^{-2int} \sum_{l=0}^{2n} e^{2ilt} = e^{-2int} \frac{1 - e^{2i(2n+1)t}}{1 - e^{2it}}$$
$$= \frac{e^{i(2n+1)t} - e^{-i(2n+1)t}}{e^{it} - e^{-it}} = \frac{\sin(2n+1)t}{\sin t}$$

Damit folgt:

$$\int_0^{\pi/2} \frac{\sin(2n+1)t}{t} dt = \underbrace{\int_0^{\pi/2} dt}_{=\frac{\pi}{2}} + 2 \sum_{k=1}^n \underbrace{\int_0^{\pi/2} \cos 2kt dt}_{=0} = \frac{\pi}{2}.$$

Es genügt also zu zeigen, dass

$$\int_{0}^{\pi/2}g\left(t\right)\sin\lambda t\,\mathrm{d}t\rightarrow0\text{ für }\lambda\rightarrow\infty,\quad g(t)=\frac{1}{t}-\frac{1}{\sin t}.$$

Klar ist g stetig differenzierbar in $(0, \frac{\pi}{2}]$. Mit Hilfe von L'Hospital haben wir früher gezeigt, dass sich g und g' stetig durch 0 nach 0 fortsetzen lassen.

Also ist nach partieller Integration

$$\int_0^{\pi/2} g(t) \underbrace{\sin \lambda t}_{=-\frac{1}{\lambda} \frac{\mathrm{d}}{\mathrm{d}t} \cos \lambda t} \, \mathrm{d}t = \underbrace{-\frac{g(t) \cos \lambda t}{t} \Big|_0^{\pi/2}}_{=-\frac{g\left(\frac{\pi}{2}\right) \cos \lambda \frac{\pi}{2}}{2}} + \frac{1}{\lambda} \underbrace{\int_0^{\pi/2} g'(t) \cos \lambda t \, \mathrm{d}t}_{|| \le \int_0^{\pi/2} |g'(t)| \, \mathrm{d}t \le (\sup|g'|) \frac{\pi}{2}}_{|| \le \int_0^{\pi/2} |g'(t)| \, \mathrm{d}t \le (\sup|g'|) \frac{\pi}{2}}$$

Daher ist $\left| \int_0^{\pi/2} g(t) \sin \lambda t \, \mathrm{d}t \right| \leq \frac{\mathrm{const.}}{\lambda} \to 0$ für $\lambda \to \infty$.

Satz 5.22. (Integral vergleichskriterium) Sei $f:[1,\infty]\to\mathbb{R}$ monton fallend und nicht-negativ. Die Reihe $\sum_{m=1}^{\infty}f\left(m\right)$ konvergiert genau dann, wenn das Integral $\int_{1}^{\infty}f(x)\,\mathrm{d}x$ konvergiert.

Z.B. folgt, dass $\sum_{m=1}^{\infty} \frac{1}{m^s}$ genau dann konvergiert, wenn $\int_1^{\infty} \frac{\mathrm{d}x}{x^s}$ konvergiert. Wir haben früher schon gesehen, dass beides genau dann gilt, wenn s > 1.

Beweis. Wir definieren Treppenfunktionen $\varphi, \psi : [1, \infty) \to \mathbb{R}$ durch

$$\begin{array}{ll} \psi(x) := f(n) \\ \varphi(x) := f(n+1) \end{array} \ \text{für} \ x \in [n,n+1) \end{array}$$

Wegen f monton fallend, ist $\varphi \leq f \leq \psi$, also

$$\sum_{n=2}^{N} f(n) = \int_{1}^{N} \varphi(x) \, \mathrm{d}x \le \int_{1}^{N} f(x) \, \mathrm{d}x \le \int_{1}^{N} \psi(x) \, \mathrm{d}x = \sum_{n=1}^{N-1} f(n)$$

Falls $\int_1^\infty f(x) \, \mathrm{d}x$ konvergiert, so ist $\sum_{n=2}^N f(n)$ beschränkt, also konvergent.

Falls $\sum_{n=1}^{N-1} f(n)$ konvergent, so ist $\int_{1}^{N} f(x) dx$ beschränkt, also konvergent.

Lemma 5.23.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} = \ln 2$$
.

Beweis. Wir wissen schon, dass die Reihe konvergiert.

$$\sum_{n=1}^{2N} \frac{(-1)^{n-1}}{n} = \sum_{n=1}^{2N} \frac{1}{n} - 2\sum_{m=1}^{N} \frac{1}{2m} = \sum_{n=N+1}^{2N} \frac{1}{n}.$$

Wegen $\int_{n}^{n+1} \frac{\mathrm{d}x}{x} \leq \frac{1}{n} \leq \int_{n-1}^{n} \frac{\mathrm{d}x}{x}$ ist

$$\underbrace{\int_{N+1}^{2N+1} \frac{\mathrm{d}x}{x}}_{=\ln \frac{2N+1}{N+1} = \ln \frac{2+\frac{1}{N}}{1+\frac{1}{N}} \xrightarrow{N \to \infty} \ln 2} \leq \sum_{n=N+1}^{2N} \frac{1}{n} \leq \int_{N}^{2N} \frac{\mathrm{d}x}{x} = \ln x|_{N}^{2N} = \ln \frac{2N}{N} = \ln 2$$

5.4 Die Gammafunktion

Definition 5.24. Für x>0 setzt man $\Gamma(x):=\int_0^\infty \mathrm{e}^{-t}\,t^{x-1}\,\mathrm{d}t$. Gammafunktion. Das uneigentliche Integral konvergiert bei t=0, denn es ist $0\le \mathrm{e}^{-t}\,t^{x-1}\le t^{x-1}$, und bei $t=\infty$, denn es ist $\lim_{t\to\infty}t^{x+1}\,\mathrm{e}^{-t}=0$, also $0\le \mathrm{e}^{-t}\,t^{x-1}\le t^{-2}$ für $t\ge t_0$.

Proposition 5.25. Für alle x > 0 ist $x\Gamma(x) = \Gamma(x+1)$.

Funktionalgleichung

Wegen $\Gamma(1) = 1$ folgt aus der Proposition durch Induktion

$$\Gamma(n+1) = n!$$
 für alle $n \in \mathbb{N}_0$.

Beweis.Für $0 < \epsilon < R < \infty$ ist wegen partieller Integration

$$\underbrace{\int_{\epsilon}^{R} \underbrace{e^{-t}}_{=-\frac{d}{dt} e^{-t}} t^{x} dx}_{\epsilon \to 0} = \underbrace{-e^{-t} t^{x} \Big|_{\epsilon}^{R}}_{=-\frac{d}{dt} e^{-t}} + \underbrace{x \int_{\epsilon}^{R} e^{-t} t^{x-1} dt}_{\epsilon \to 0}$$

$$\underbrace{-e^{-t} t^{x} \Big|_{\epsilon}^{R}}_{=-\frac{d}{dt} e^{-t}} + \underbrace{x \int_{\epsilon}^{R} e^{-t} t^{x-1} dt}_{\epsilon \to 0}$$

Lemma 5.26. Für $1 < p,q < \infty$ mit $\frac{1}{p} + \frac{1}{q} = 1$ und alle $x,y \ge 0$ gilt

$$xy \le \frac{1}{p}x^p + \frac{1}{q}y^q$$
 Young'sche Ungleichung.

 $Beweis. \ \ln'' x = -\frac{1}{x^2} \leq 0, \ \text{d.h. ln konkav, d.h. ln} \left(\frac{1}{p} u + \frac{1}{q} v \right) \geq \frac{1}{p} \ln u + \frac{1}{q} \ln v \ \text{für alle } u, v > 0. \ \frac{1}{p} u + \frac{1}{q} v \geq \exp \left(\frac{1}{p} \ln u + \frac{1}{q} \ln v \right) = u^{1/p} v^{1/q}, \ \text{setze } x = u^{1/p}, y = v^{1/q}.$

Satz 5.27. Für $1 < p,q < \infty$ mit $\frac{1}{p} + \frac{1}{q} = 1$ und $f,g:[a,b] \to \mathbb{R}$ Riemann-integrierbar gilt

$$\int_a^b |f(x)g(x)| \, \mathrm{d}x \leq \left(\int_a^b |f(x)|^p \, \mathrm{d}x\right)^{1/p} \left(\int_a^b |g(x)|^q \, \mathrm{d}x\right)^{1/q}. \qquad \text{H\"older'sche Ungleichung}$$

Beweis. Ersetzen wir f durch $\frac{f}{\left(\int_a^b |f|^p \,\mathrm{d}x\right)^{1/p}}$ und entsprechend für g, so können wir o.B.d.A $\int_a^b \left|f(x)\right|^p \,\mathrm{d}x = \int_a^b \left|g(x)\right|^q \,\mathrm{d}x = 1$ annehmen. Nach Young ist $|f(x)g(x)| \leq \frac{1}{q} \left|f(x)\right|^p + \frac{1}{q} \left|g(x)\right|^q$. Integration über [a,b] liefert die Behauptung.

Satz 5.28. $\ln \Gamma$ ist konvex.

Daraus folgt, dass $\ln \Gamma$ stetig in $(0, \infty)$ ist, also ist auch $\Gamma = e^{\ln \Gamma}$ dort stetig.

Beweis. Für $0 < \epsilon < R < \infty, 1 < p, q < \infty$ mit $\frac{1}{p} + \frac{1}{q} = 1$ und x, y > 0 ist

$$\int_{\epsilon}^{R} e^{-t} t^{\frac{1}{p}x + \frac{1}{q}y - t} dt = \int_{\text{H\"{o}lder}}^{R} \left(e^{-t} t^{x-1} \right)^{\frac{1}{p}} \left(e^{-t} t^{y-1} \right)^{\frac{1}{q}} dt$$

$$\leq \int_{\text{H\"{o}lder}}^{R} \left(\int_{\epsilon}^{R} e^{-t} t^{x-1} dt \right)^{\frac{1}{p}} \left(\int_{\epsilon}^{R} e^{-t} t^{y-1} dt \right)^{\frac{1}{q}}$$

Damit folgt für $\epsilon \to 0, R \to \infty$:

$$\Gamma\left(\frac{1}{p}x+\frac{1}{q}y\right) \leq \Gamma\left(x\right)^{\frac{1}{p}}\Gamma\left(y\right)^{\frac{1}{q}} \Leftrightarrow \ln\Gamma\left(\frac{1}{p}x+\frac{1}{q}y\right) \leq \frac{1}{p}\Gamma\left(x\right)+\frac{1}{q}\Gamma\left(y\right).$$

Satz 5.29. Für x > 0 ist $\Gamma(x) = \lim_{n \to \infty} \frac{n! \cdot n^x}{x(x+1) \cdots (x+n)}$.

Beweis. Sei zunächst 0 < x < 1. Wegen der log-Konvexität folgt aus n + x = (1 - x) n + x (n + 1)

$$\Gamma(n+x) \le \Gamma(n)^{1-x} \Gamma(n+1)^x = ((n-1)!)^{1-x} (n!)^x = (n-1)!n^x$$

und aus n + 1 = x(n + x) + (1 - x)(n + 1 + x)

$$n! = \Gamma(n+1) \le \Gamma(n+x)^x \Gamma(n+1+x)^{1-x} = \Gamma(n+x) (n+x)^{1-x}$$

Zusammen:

$$n! (n+x)^{-1+x} \leq \underbrace{\Gamma(n+x)}_{\substack{\text{Funktional-}\\ \text{gleichung}}} \leq (n-1)! n^{x}$$

$$\Leftrightarrow a_{n}(x) := \frac{n! (n+x)^{-1+x}}{x(x+1)\cdots(x+n)} \leq \Gamma(x) \leq \frac{(n-1)! n^{x}}{x(x+1)\cdots(x+n-1)} =: b_{n}(x)$$

Wegen

$$\frac{a_n(x)}{\frac{n! \cdot n^x}{x(x+1) \cdots (x+n)}} = \frac{(n+x)^x}{n^x} = \left(1 + \frac{x}{n}\right)^x \to 1$$

und

$$\frac{b_n(x)}{\frac{n! \cdot n^x}{x(x+1)\cdots(x+n)}} = \frac{x+n}{n} = 1 + \frac{x}{n} \to 1$$

folgt daraus die Behauptung für 0 < x < 1. Die Behauptung für x = 1 ist trivial.

Die Formel für x > 1 folgt aus der für x - 1 (die wir nach Induktion als bewiesen ansehen dürfen.)

$$\Gamma(x) = (x-1) \Gamma(x-1) = \underset{\text{für } x-1}{\underbrace{(x-1) \lim_{n \to \infty} \frac{n! \cdot n^{x-1}}{(x-1) x \cdots (x-1+n)}}}$$

$$= \lim_{n \to \infty} \frac{n! \cdot n^x}{x (x+1) \cdots (x+n)} \cdot \underbrace{\frac{x+n}{n}}_{=1+\frac{x}{2} \to 1} = \lim_{n \to \infty} \frac{n! \cdot n^x}{x (x+1) \cdots (x+n)}$$

Korollar 5.30. $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$.

Beweis. Nach Satz 5.29 ist $\Gamma\left(\frac{1}{2}\right)^2 = \lim_{n \to \infty} \frac{(n!)^2 n}{\left(\frac{1}{2}\left(1+\frac{1}{2}\right)\cdots\left(n+\frac{1}{2}\right)\right)^2}$. Für den Nenner gilt

Damit folgt:

$$\frac{\left(n!\right)^2 n}{\left(\frac{1}{2}\left(1+\frac{1}{2}\right)\cdots\left(n+\frac{1}{2}\right)\right)^2} = \underbrace{\frac{2n}{n+\frac{1}{2}}}_{\rightarrow 2} \underbrace{\prod_{\substack{k=1\\\text{Wallis}_{\frac{\pi}{2}} \text{ für } n\to\infty}}^{n} \frac{k^2}{k^2-\frac{1}{4}}}_{\rightarrow \pi} \rightarrow \pi.$$

Korollar 5.31. $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}.$

Beweis.

$$\int_{-\infty}^{\infty} e^{-x^2} dx = 2 \int_{0}^{\infty} e^{-x^2} dx = \sum_{\substack{x^2 = t \\ dx = \frac{1}{2} \frac{1}{\sqrt{t}} dt}}^{\infty} \int_{0}^{\infty} e^{-t} t^{-\frac{1}{2}} dt = \Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}.$$

6 Funktionenfolgen

6.1 Gleichmäßige Konvergenz

Definition 6.1. Sei K eine Menge und $f_n: K \to \mathbb{C}, n \in \mathbb{N}$, und $f: K \to \mathbb{C}$ Funktionen.

1. Die Folge (f_n) konvergiert punktweise gegen f, falls für jedes $x \in K$ die Folge $f_n(x)$ gegen f(x) konvergiert, d.h.

Zu jedem $\epsilon > 0$ und $x \in K$ gibt es ein $N \in \mathbb{N}$, so dass für alle $n \geq N$ gilt $|f_n(x) - f(x)| < \epsilon$.

2. Die Folge (f_n) konvergiert gleichmäßig gegen f, falls gilt:

Zu jedem $\epsilon > 0$ gibt es ein $N \in \mathbb{N}$, so dass für alle in $x \in K$ und alle $n \geq N$ gilt $|f_n(x) - f(x)| < \epsilon$.

Offensichtlich gilt gleichmäßige Konvergenz \Rightarrow punktweise Konvergenz. Die Umkehrung gilt im Allgemeinen nicht.

Beispiel 6.2. Für $n \ge 2$ sei $f_n : [0,1] \to \mathbb{R}, x \mapsto \max \{n - n^2 | x - \frac{1}{n} | , 0\}.$

Dann konvergiert f_n punktweise gegen 0, aber die Konvergenz ist nicht gleichmäßig.

Satz 6.3. Sei $K \subset \mathbb{C}$, seien $f_n : K \to \mathbb{C}$ stetige Funktionen und sei $f : K \to \mathbb{C}$ eine Funktion, so dass $f_n \to f$ gleichmäßig. Dann ist f stetig.

Beispiel 6.4. Für $n \ge 1$ sei $f_n : [0,1] \to \mathbb{R}, x \mapsto x^n$.

Dann gilt $f_n \to f$ punktweise mit $f: [0,1] \to \mathbb{R}$, $f(x) := \begin{cases} 0 & \text{für } x < 1 \\ 1 & \text{für } x = 1 \end{cases}$. Die Konvergenz ist nicht gleichmäßig und f ist nicht stetig.

Beweis. Sei $x_0 \in K$ und $\epsilon > 0$. Wegen gleichmäßiger Konvergenz gibt es ein $N \in \mathbb{N}$, so dass für alle $n \geq N$ und $x \in K$ gilt $|f(x_n) - f(x)| < \frac{\epsilon}{3}$. Wegen f_N stetig gibt es ein $\delta > 0$, so dass für alle $x \in K$ mit $|x - x_0| < \delta$ gilt $|f_N(x) - f_N(x_0)| < \frac{\epsilon}{3}$. Daher gilt für alle $x \in K$ mit $|x - x_0| < \delta$:

$$\left|f\left(x\right)-f\left(x_{0}\right)\right|\leq\underbrace{\left|f\left(x\right)-f_{N}\left(x\right)\right|}_{<\frac{\epsilon}{3}}+\underbrace{\left|f_{N}\left(x\right)-f_{N}\left(x_{0}\right)\right|}_{<\frac{\epsilon}{3}}+\underbrace{\left|f_{N}\left(x_{0}\right)-f\left(x_{0}\right)\right|}_{<\frac{\epsilon}{3}}<\epsilon.$$

Proposition 6.5. (Cauchy-Kriterium für gleichmäßige Konvergenz) Seien $f_n: K \to \mathbb{C}$ Funktionen. Die Folge (f_n) konvergiert gleichmäßig genau dann, wenn es für jedes $\epsilon > 0$ ein $N \in \mathbb{N}$ gibt, so dass für alle $n, m \geq N$ und $x \in K$ gilt $|f_n(x) - f_m(x)| < \epsilon$.

Beweis. " \Rightarrow " Sei (f_n) gleichmäßig konvergent gegen f und sei $\epsilon > 0$. Dann gibt es ein $N \in \mathbb{N}$, so dass für alle $n \geq N$ und $x \in K$ gilt $|f_n(x) - f(x)| < \frac{\epsilon}{2}$. Damit ist für alle $n, m \geq N$ und $x \in K$

$$|f_n(x) - f_m(x)| \le \underbrace{|f_n(x) - f(x)|}_{<\frac{\epsilon}{2}} + \underbrace{|f_m(x) - f(x)|}_{<\frac{\epsilon}{2}} < \epsilon.$$

"⇐" Es gelte die Cauchy-Bedingung. Dann ist für jedes $x \in K$ $(f_n(x))$ eine Cauchy-Folge in \mathbb{C} , also konvergent. Sei f(x) der Grenzwert. Für $\epsilon > 0$ sei $N \in \mathbb{N}$ wie in der Cauchy-Bedingung. Lässt man dort $m \to \infty$, so erhält man für $n \geq N$ und $x \in K$, dass $|f_n(x) - f(x)| \leq \epsilon$. D.h. (f_n) konvergiert gleichmäßig gegen f.

Definition 6.6. Sei K eine Menge und $f: K \to \mathbb{C}$. Dann setzt man

$$||f||_K := \sup \{|f(x)| : x \in K\}$$
 Supremumsnorm

Bemerkung: (f_n) konvergiert gleichmäßig gegen f (in K) genau dann, wenn $||f_n - f||_K \to 0$.

Satz 6.7. (Weierstraßsches Konvergenzkriterium) Seien $f_n: K \to \mathbb{C}, n \in \mathbb{N}_0$ Funktionen mit $\sum_{n=0}^{\infty} \|f_n\|_K < \infty$. Dann konvergiert die Reihe $\sum_{n=0}^{\infty} f_n$ absolut und gleichmäßig.

Beweis. Sei $x \in K$. Wegen $|f_n(x)| \le ||f_n||_K$ konvergiert nach dem Majorantenkriterium die Reihe $F(x) := \sum_{n=0}^{\infty} f_n(x)$ absolut.

Sei $F_N := \sum_{n=0}^N f_n$. Wir zeigen $F_N \to F$ gleichmäßig. Sei $\epsilon > 0$. Wegen der Konvergenz von $\sum_{n=0}^\infty \|f_n\|_K$ gibt es ein $N \in \mathbb{N}$, so dass $\sum_{n=N+1}^\infty \|f_n\|_K < \epsilon$. Dann ist für $M \ge N$ und $x \in K$

$$|F_M(x) - F(x)| = \left| \sum_{n=M+1}^{\infty} f_n(x) \right| \le \sum_{n=M+1}^{\infty} |f_n(x)| \le \sum_{n=M+1}^{\infty} ||f_n||_K < \epsilon.$$

Vertauschung von Grenzübergängen

Erinnerung: Konvention [a, b] nur mit $-\infty < a < b < +\infty$.

Satz 6.8. Sei $f_n:[a,b]\to\mathbb{R},\ n\in\mathbb{N}$ eine Folge stetiger Funktionen, die gleichmäßig gegen eine Funktion $f:[a,b]\to\mathbb{R}$ konvergiert. Dann ist

$$\lim_{n \to \infty} \int_{a}^{b} f_{n}(x) dx = \int_{a}^{b} f(x) dx.$$

Beweis. Wie gezeigt ist f stetig, also Riemann-integrierbar. Außerdem ist

$$\left| \int_{a}^{b} f_{n}(x) dx - \int_{a}^{b} f(x) dx \right| \leq \int_{a}^{b} |f_{n}(x) - f(x)| dx \leq (b - a) \|f_{n} - f\|_{[a,b]} \to 0.$$

Bemerkung: Die Aussage gilt im Allgemeinen nicht, wenn (f_n) nur punktweise konvergiert. Z.B. im ersten Beispiel oben ist $\int_0^1 f_n(x) dx = n \cdot \frac{1}{n} = 1$, aber $\int_0^1 0 dx = 0$.

Satz 6.9. Sei $f_n:[a,b]\to\mathbb{R},\ n\in\mathbb{N}$ eine Folge differenzierbarer Funktionen, so dass für ein $c\in[a,b]$ $(f_n(c))$ konvergiert und (f'_n) gleichmäßig konvergiert. Dann konvergiert (f_n) gleichmäßig und die Grenzfunktion f ist differenzierbar in [a,b] und es gilt $f'(x)=\lim_{n\to\infty}f'_n(x)$ für $x\in[a,b]$.

Beweis. Sei $\epsilon > 0$. Dann gibt es ein $N \in \mathbb{N}$, so dass für alle $n, m \geq N$ gilt

$$|f_n(c) - f_m(c)| < \frac{\epsilon}{2}$$
 und für alle $x \in [a, b]$: $|f'_n(x) - f'_m(x)| < \frac{\epsilon}{2(b-a)}$.

Nach dem Mittelwertsatz gilt für alle $x, y \in [a, b]$ und $n, m \ge N$

$$|f_n(x) - f_m(x) - f_n(y) + f_m(y)| < \frac{\epsilon}{2(b-a)} |x-y| \le \frac{\epsilon}{2}.$$
(*)

Daraus folgt (mit y = c) für $x \in [a, b], n, m \ge N$

$$|f_n(x) - f_m(x)| \le \underbrace{|f_n(x) - f_m(x) - f_n(c) + f_m(c)|}_{\stackrel{(*)}{\leqslant \frac{\epsilon}{2}}} + \underbrace{|f_n(c) - f_m(c)|}_{\stackrel{(*)}{\leqslant \frac{\epsilon}{2}}} < \epsilon.$$

D.h. die gleichmäßige Cauchy-Bedingung ist erfüllt und nach Proposition 6.5 konvergiert (f_n) gleichmäßig. Sei $x_0 \in [a, b]$. Sei für $x \in [a, b] \setminus \{x_0\}$

$$\varphi_n(x) := \frac{f_n(x) - f_n(x_0)}{x - x_0}, \qquad \varphi(x) := \frac{f(x) - f(x_0)}{x - x_0}.$$

Die erste Ungleichung in (*) (mit $y = x_0$) liefert für alle $x \in [a, b] \setminus \{x_0\}$ und $n, m \ge N$

$$|\varphi_n(x) - \varphi_m(x)| < \frac{\epsilon}{2(b-a)}.$$
 (**)

D.h. die gleichmäßige Cauchy-Bedingung ist erfüllt für (φ_n) auf $[a,b] \setminus \{x_0\}$ und nach Proposition 6.5 konvergiert (φ_n) dort gleichmäßig.

Andererseits konvergiert (φ_n) punktweise in $[a,b] \setminus \{x_0\}$ gegen φ . Es folgt, dass $\varphi_n \to \varphi$ gleichmäßig in $[a,b] \setminus \{x_0\}$.

Sei jetzt $\epsilon'>0$. Dann gibt es ein $N'\in\mathbb{N}$, so dass für alle $x\in[a,b]\setminus\{x_0\}$ und $n\geq N'$ gilt $|\varphi_n(x)-\varphi(x)|<\frac{\epsilon'}{3}$. Wegen Konvergenz von $(f'_n(x_0))$ gibt es ein $N''\in\mathbb{N}$, so dass für alle $n\geq N''$ gilt $|f'_n(x_0)-A|<\frac{\epsilon}{3}$ mit $A:=\lim_{m\to\infty}f'_m(x_0)$. Wegen f_n differenzierbar gilt $\lim_{x\to x_0}\varphi_n(x)=f'_n(x_0)$. Also gibt es ein $\delta>0$, so dass für alle $x\in[a,b]$ mit $0<|x-x_0|<\delta$ gilt $|\varphi_M(x)-f'_M(x_0)|<\frac{\epsilon'}{3}$ mit $M:=\max\{N',N''\}$. Damit ist für $x\in[a,b]$ mit $0<|x-x_0|<\delta$

$$\left|\varphi(x)-A\right| \leq \underbrace{\left|\varphi(x)-\varphi_{M}(x)\right|}_{<\frac{\epsilon'}{2}} + \underbrace{\left|\varphi_{M}(x)-f'_{M}\left(x_{0}\right)\right|}_{<\frac{\epsilon'}{2}} + \underbrace{\left|f'_{M}\left(x_{0}\right)-A\right|}_{<\frac{\epsilon'}{2}} < \epsilon'.$$

Bemerkung: Die Aussage stimmt im Allgemeinen nicht, wenn (f'_n) nicht konvergiert. Z.B. sei $f_n : \mathbb{R} \to \mathbb{R}$, $x \mapsto \frac{1}{n} \sin{(nx)}$. Dann gilt $f_n \to 0$ gleichmäßig, aber $f'_n(x) = \cos{(nx)}$ konvergiert nicht gegen 0' = 0.

Beispiel: Es gibt eine stetige Funktion $f: \mathbb{R} \to \mathbb{R}$, die in keinem Punkt differenzierbar ist. Sei $\varphi: \mathbb{R} \to \mathbb{R}$ definiert durch

$$\varphi(x) := |x|$$
 für $-1 \le x \le 1$, $\varphi(x+2) = \varphi(x)$ für alle $x \in \mathbb{R}$

und sei

$$f(x):=\sum_{n=0}^{\infty}\left(rac{3}{4}
ight)^{n}arphi\left(4^{n}x
ight)$$
 für $x\in\mathbb{R}.$ Weierstraß-Funktion

Beweis. Wegen $0 \le \varphi \le 1$ konvergiert die Reihe gleichmäßig nach dem Weierstraß'schen Konvergenzkriterium, also ist f stetig.

Sei $x_0 \in \mathbb{R}$. Wir zeigen, dass f in x_0 nicht differenzierbar ist. Sei $N \in \mathbb{N}$. Dann enthält mindestens eines der Intervalle $\left(4^N x_0 - \frac{1}{2}, 4^N x_0\right)$ und $\left(4^N x_0, 4^N x_0 + \frac{1}{2}\right)$ keine ganze Zahl. Wir setzen

$$\delta_N := +\frac{1}{2}4^{-N}$$
 im ersten Fall und $\delta_N := -\frac{1}{2}4^{-N}$ im zweiten Fall.

Sei $y_n:=rac{arphi(4^n(x_0+\delta_N))-arphi(4^nx_0)}{4^n\delta_N}$ für $n\in\mathbb{N}_0.$

Ist n > N, so ist $4^n \delta_N = \pm \frac{1}{2} 4^{n-N} = \pm 2 \cdot 4^{n-N-1}$ eine gerade ganze Zahl, und damit $\gamma_n = 0$.

Für n = N ist $|\gamma_n| = 1$, denn zwischen $4^N (x_0 + \delta_N)$ und $4^N x_0$ liegt keine ganze Zahl, φ ist dort also affin-linear.

Für n < N verwenden wir, dass $|\varphi(x) - \varphi(y)| \le |x - y|$ für alle $x, y \in \mathbb{R}$. Das gibt $|\gamma_n| \le 1$.

$$\left| \frac{f(x_0 + \delta_N) - f(x_0)}{\delta_N} \right| = \left| \sum_{n=0}^{\infty} \gamma_n 3^n \right| = \left| \sum_{n=0}^{N} \gamma_n 3^n \right| \ge 3^N \underbrace{|\gamma_N|}_{=1} - \sum_{n=0}^{N-1} \underbrace{|\gamma_n|}_{\le 1} 3^n$$

$$\ge 3^N - \sum_{n=0}^{N-1} 3^n \underset{\text{geom.}}{=} \frac{1}{2} \left(3^N + 1 \right) \xrightarrow{N \to \infty} \infty.$$

Daher ist f in x_0 nicht differenzierbar.

6.2 Potenzreihen und Tayloreihen

Satz 6.10. Seien $(c_n)_{n\in\mathbb{N}}\subset\mathbb{C}$ und $a\in\mathbb{C}$. Setzte

$$R := \frac{1}{\limsup_{n \to \infty} |c_n|^{1/n}} \in [0, \infty) \cup \{+\infty\}.$$
 Konvergenzradius

Dann konvergiert die Reihe

$$\sum_{n=0}^{\infty} c_n (z-a)^n \qquad \text{Potenzreihe}$$

absolut und gleichmäßig in $\{z \in \mathbb{C} : |z-a| \le r\}$ für alle r < R, und konvergiert nicht für $z \in \mathbb{C}$ mit |z-a| < R.

Bemerkung: Der Satz macht keine Aussage über z mit |z - a| = R.

Beweis. Die absolute Konvergenz für |z-a| < R sowie die Nichtkonvergenz für |z-a| > r folgt aus dem Wurzelkriterium. Dessen Beweis zeigt auch, dass die Konvergenz gleichmäßig ist für $|z-a| \le r < R$. \square

1. $\exp(z) = \sum_{m=0}^{\infty} \frac{z^n}{n!}$. Hier: $R = +\infty$. Beispiel 6.11.

2. Nach der geometrischen Reihe ist $\frac{1}{1-z}=\sum_{n=0}^{\infty}z^n$. Hier: R=1. Beachte, dass die Reihe für $kein\ z$ mit |z|=1 konvergiert.

Wegen der gleichmäßigen Konvergenz ist

$$f(z) := \sum_{n=0}^{\infty} c_n (z - a)^n \text{ für } |z - a| < R$$

eine in $\{z : |z - a| < R\}$ stetige Funktion.

Korollar 6.12. Seien (c_n) , $(\tilde{c_n}) \subset \mathbb{C}$ mit entsprechenden Konvergenzradien R > 0 und $\tilde{R} > 0$. Sei $a \in \mathbb{C}$ und $f(z) := \sum_{n=0}^{\infty} c_n (z-a)^n$ und $\tilde{f}(z) := \sum_{n=0}^{\infty} \tilde{c_n} (z-a)^n$. Es gebe eine Folge $(z_j) \subset \mathbb{C}$ mit $0 < |z_j - a| < \min\{R, R'\}$, $z_j \to a$ und $f(z_j) = \tilde{f}(z_j)$ für alle j.

Dann gilt $c_n = \tilde{c_n}$ für alle n.

Beweis. O.B.d.A. seien alle $\tilde{c_n} = 0$. (sonst betrachte $c_n - \tilde{c_n}$ und f - f.)

Dann ist $f(z_i) = 0$ für alle j und wir müssen zeigen, dass $c_n = 0$ für alle n.

Angenommen, dies sei nicht der Fall. Dann gibt es ein $N \in \mathbb{N}_0$ mit $c_N \neq 0$ und $c_n = 0$ für alle n < N. Sei

$$g(z) := \frac{f(z)}{(z-a)^N} = \sum_{m=0}^{\infty} c_{N+m} (z-a)^m.$$

Nach dem Satz konvergiert g in $\{z: |z-a| < R\}$ und ist dort stetig. Nach Voraussetzung ist $g(z_i)$ $\frac{f(z_j)}{(z_j-a)^N}=0$ für alle j. Nach Stetigkeit von g ist also g(a)=0.

Andererseits ist $g(a) = c_N \neq 0$, Widerspruch.

Im Folgenden seine alle $c_n \in \mathbb{R}$ und $a \in \mathbb{R}$.

Satz 6.13. Sei $(c_n) \subset \mathbb{R}$ und Konvergenzradius R > 0 und sei $a \in \mathbb{R}$. Dann ist die Reihe

$$f(x) := \sum_{n=0}^{\infty} c_n (x - a)^n$$

im Intervall (a-R, a+R) beliebig oft differenzierbar und es gilt für $k \in \mathbb{N}_0$:

$$f^{(k)}(x) = \sum_{n=k}^{\infty} n(n-1)\cdots(n-k+1)(x-a)^{n-k} \text{ für } x \in (a-R,a+R).$$

Insbesondere ist $f^{(k)}(a) = k!c_k$. ("Termweises Differenzieren ist erlaubt.")

Beweis. Es genügt k=1 zu betrachten (sonst wiederholte Anwendung). Wegen $n^{1/n} \to 1$ ist der Konvergenzradius von $\sum_{n=1}^{\infty} nc_n (x-a)^n$ gleich R. Daher konvergiert nach obigem Satz die Folge der Ableitungen der Partialsummen gleichmäßig in [a-r,a+r] für jedes r < R und die Differentiation darf mit dem Grenzwert vertauscht werden.

Beispiel 6.14. $\ln(1-x) = -\sum_{n=1}^{\infty} \frac{x^n}{n}$ für $x \in (-1,1)$. (Das stimmt auch für x=-1, aber das folgt nicht aus dem Argument hier.)

Beweis. Sei $f(x):=\sum_{n=1}^{\infty}\frac{x^n}{n}$ für $x\in(-1,1)$. Nach dem Satz ist das eine differenzierbare Funktion mit $f'(x)=\sum_{n=1}^{\infty}x^{n-1}=\frac{1}{1-x}$ (geometrische Reihe), d.h. f ist eine Stammfunktion von $\frac{1}{1-x}$, d.h. $f(x)=-\ln(1-x)+C$ für $C\in\mathbb{R}$. Auswertung bei x=0 liefert C=0.

Umgekehrtes Problem: Gegeben sei eine Funktion $f: D \to \mathbb{R}$ und ein $a \in D$. Kann f als Potenzreihe dargestellt werden? Gilt $f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$? Notwendig:

- f beliebig oft differenzierbar und $c_n = \frac{1}{n!} f^{(n)}(a)$.
- Für R > 0 brauchen wir $\limsup_{n \to \infty} \left(\frac{1}{n!} f^{(n)}(a)\right)^{1/n} < \infty$.

Das ist aber nicht hinreichend.

Beispiel 6.15. (Cauchy, 1826) Die Funktion $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \exp\left(-\frac{1}{x^2}\right)$ für $x \neq 0$, f(0) = 0 ist beliebig oft differenzierbar mit $f^{(n)}(0) = 0$ für alle $n \in \mathbb{N}_0$.

Die (triviale) Konvergenzreihe $\sum_{n=0}^{\infty} 0 \cdot x^n = 0$ konvergiert in ganz \mathbb{R} , stimmt aber nur in x = 0 mit f überein.

Hier: vor allem endliche Entwicklungen.

Proposition 6.16. Sei $I \subset \mathbb{R}$ ein Intervall, sei $f: I \to \mathbb{R}$ (N-1)-mal stetig differenzierbar und in $a \in I$ existiere die N-te Ableitung. Dann ist

$$\lim_{x \to a} \frac{1}{(x-a)^N} \left[f(x) - \sum_{n=0}^N \frac{1}{n!} f^{(n)}(a) (x-a)^n \right] = 0.$$

Beweis.

$$\frac{1}{\left(x-a\right)^{N}}\left[f(x)-\sum_{n=0}^{N}\frac{1}{n!}f^{(n)}(a)\left(x-a\right)^{n}\right]=\frac{1}{\left(x-a\right)^{N}}\left[f(x)-\sum_{n=0}^{N-1}\frac{1}{n!}f^{(n)}(a)\left(x-a\right)^{n}\right]-\frac{1}{N!}f^{(N)}(a)$$

Wir erhalten weiterhin nach L'Hospital:

$$\lim_{x \to a} \frac{1}{(x-a)^N} \left[f(x) - \sum_{n=0}^{N-1} \frac{1}{n!} f^{(n)}(a) (x-a)^n \right] = \lim_{x \to a} \frac{f^{(N-1)}(x) - f^{(N-1)}(a)}{N!(x-a)} \underset{\substack{f \\ N \text{-ter Ableitung} \\ N \text{-ter Ableitung}}}{\underset{N \text{-ter Ableitung}}{\underbrace{1}} \frac{1}{N!} f^{(N)}(a).$$

Damit folgt die Behauptung.

Satz 6.17. Sei $I \subset \mathbb{R}$ ein Intervall, $a \in I$ und $f: I \to \mathbb{R}$ eine (N+1)-mal differenzierbare Funktion mit $f^{(N+1)}$ Riemann-integrierbar. Dann gilt für alle $x \in I$

$$f(x) = \sum_{n=0}^{N} \frac{1}{n!} f^{(n)}(a) (x-a)^n + \frac{1}{N!} \int_a^x (x-y)^N f^{(N+1)}(y) \, \mathrm{d}y.$$

Beweis. Wir verwenden Induktion über $N.\ N=0$: Fundamentalsatz.

Für $N \ge 1$ gilt nach Induktionsvoraussetzung

$$f(x) - \sum_{n=0}^{N-1} \frac{1}{n!} f^{(n)}(a) (x-a)^n = \frac{1}{(N-1)!} \int_a^x \underbrace{(x-y)^{N-1}}_{=-\frac{1}{N} \frac{d}{dy} (x-y)^N} f^{(N)}(y) dy$$
$$= -\frac{1}{N!} \underbrace{(x-y)^N f^{(N)}(y)\Big|_a^x}_{=-(x-a)^N f^{(N)}(a)} + \frac{1}{N!} \int_a^x (x-y)^N f^{(N+1)}(y) dy$$

Korollar 6.18. Sei $I \subset \mathbb{R}$ ein Intervall, $a, x \in I$ und $f: I \to \mathbb{R}$ eine (N+1)-mal stetig differenzierbare Funktion. Dann gibt es ein $\xi \in I$ zwischen a und x mit

$$f(x) = \sum_{n=0}^{N} \frac{1}{n!} f^{(n)}(a) (x-a)^n + \frac{1}{(N+1)!} f^{(N+1)}(\xi) (x-a)^{N+1}.$$

Bemerkung: Für N=0 ist das der Mittelwertsatz der Differential- und Integralrechnung $(f(x)-f(a)=f'(\xi)\,(x-a))$.

Beweis. Nach dem Mittelwertsatz der Integralrechnung gibt es ein $\xi \in I$ zwischen a und x mit

$$\int_{a}^{x} (x - y)^{N} f^{(N+1)}(y) dy = f^{(N+1)}(\xi) \int_{a}^{x} (x - y)^{N} dy = f^{(N+1)}(\xi) \frac{1}{N} (x - a)^{N+1}.$$

Bemerkung: Restgliedabschätzung von sin und cos. Für alle $x \in \mathbb{R}$ gilt

$$\left| \sin x - \sum_{k=0}^{K} (-1)^k \frac{x^{2k+1}}{(2k+1)!} \right| \le \frac{|x|^{2K+3}}{(2K+3)!},$$

$$\left| \cos x - \sum_{k=0}^{K} (-1)^k \frac{x^{2k}}{(2k)!} \right| \le \frac{|x|^{2K+2}}{(2K+2)!}.$$

(Denn nach dem Korollar ist die linke Seite

$$\underbrace{\left| f\left(\xi\right) \cdot \frac{1}{(2K+3)!} x^{2K+3} \right|}_{\leq \frac{1}{(2K+2)!} |x|^{2K+3}} \text{bzw.} \underbrace{\left| f\left(\xi\right) \cdot \frac{1}{(2K+2)!} x^{2K+2} \right|}_{\leq \frac{1}{(2K+2)!} |x|^{2K+2}} \right|}_{\leq \frac{1}{(2K+2)!} |x|^{2K+2}}$$

mit $f(x) = \sin x$ oder $f(x) = \cos x$.)