Estimasi HR dan SpO₂ dengan MAx30100

Kelompok 3 Eraraya Morenzo Muten (18320003) Kayyisa Zahratul Firdaus (18320011) Rahmat Yasin (18319001)

Pendahuluan

Heart rate dan SpO2, merupakan suatu indikator dari kesehatan jantung dan paru-paru. Untuk mengukur nilai heart dan SpO2 dapat dilakukan menggunakan sensor MAX30100

Studi Pustaka

Heart Rate

jumlah siklus jantung dalam satu menit

SpO2

jumlah oksigen dalam darah

MAX30100

sensor monitor heart rate dan integrated pulse oxymetry

PPG

teknik pengukuran yang berbasis optik dengan memanfaatkan 2 buah LED

Spesifikasi Alat

Data Mentah

Durasi Perekaman

$$N = \frac{F_s}{f_r} = \frac{100 \, sps}{0.01667 \, Hz} = 6000 \, sampel$$

Dibulatkan ke 2^n terdekat -> 2^{13} = 8192

3 Jenis Pengukuran:

• tj : tanpa jari

• mn : jari Moren

ky : jari Kay

Analisis Spektrum Sinyal

Analisis Spektrum Noise

Desain Filter

Sinyal biomedis
I-> Respons fasa linier
I-> Filter FIR

Harris Approximation

$$N \approx \frac{A}{22} \left(\frac{f_s}{\Delta f} \right) = \frac{10}{22} \left(\frac{100}{10} \right)$$
$$N \approx 5$$

Kemampuan komputansi Arduino UNO Rev 3 -> N=6

Lowpass Filter Hamming Window Orde 6

Harris Approximation

$$N \approx \frac{A}{22} \left(\frac{f_s}{\Delta f} \right) = \frac{10}{22} \left(\frac{100}{10} \right)$$
$$N \approx 5$$

Hasil Lowpass Filter Hamming Window Orde 6

DC Removal Filter dengan Moving Average

Hasil DC Removal Filter dengan Moving Average

Penentuan Peak

Penentuan Heart Rate

$$Heart\ Rate = \frac{60000}{\Delta t}$$

 $\Delta t = selisih$ waktu antara terjadinya 2 peak

Penentuan Pulse Oximeter

Rasio dari log root mean square (RMS)

$$R = \frac{\log(I_{AC_RMS})_{\lambda 1}}{\log(I_{AC_RMS})_{\lambda 2}}$$

$$RMS = \sqrt{\frac{1}{n} \sum_{i=1}^{n} x_i^2}$$

Nilai SpO₂ dapat diregresi secara linier dalam persamaan berikut berdasarkan Beer-Lambert Model.

$$SpO_2 = a - b \times R$$

Pengukuran dan Kalibrasi

penutup dengan isolasi listrik

Pengukuran bersamaan

Hasil Pengukuran Heart Rate

Hasil Pengukuran SpO2

Kalibrasi SpO2

Terima Kasih

PPT by Slidesgo Icon by Flaticon