Singular Value Decomposition

Yangang Cao

January 24, 2019

The singular value decomposition (SVD) is closely associated with eigenvalue-eigenvector factorization $Q\Lambda Q^T$ of a positive definite matrix. The eigenvalues are in the diagonal matrix Λ and the eigenvector matrix Q is orthohonal $(Q^TQ=I)$ because eigenvectors matrix can be chosen to be orthogonal.

However, for most matrices that is not true. Now we allow the Q on the left and the Q^T on the right to be any orthogonal matrices U and V^T . Then every matrix will be split into $A = U\Sigma V^T$.

Any m by n matrix A can be factored into

$$A = U\Sigma V^{T} = (m \times m \ orthogonal)(m \times n \ diagonal)(n \times n \ orthogonal).$$

The diagonal (but rectangular) matrix Σ has eigenvalues from AA^T . Those positive entries will be $\sigma_1, ..., \sigma_r$. They are the singluar values of A. They fill the first r places on the main diagonal of Σ — when A has rank r. The rest of Σ is zero.

• To get U, Σ and V of A, we first calculate AA^T and A^TA .

$$AA^{T} = (U\Sigma V^{T})(V\Sigma^{T}U^{T}) = U\Sigma\Sigma^{T}U^{T} \ (m \times m)$$
$$A^{T}A = (V\Sigma^{T}U^{T})(U\Sigma V^{T}) = V\Sigma^{T}\Sigma V^{T} \ (n \times n)$$

U must be the eigenvector matrix for AA^T and V for A^TA . The eigenvalue matrix in the middle is $\Sigma\Sigma^T$ — which is m by m with $\sigma_1^2,...,\sigma_r^2$ on the diagonal

• The eigenvalues λ_n of AA^T can be calcuated by

$$|AA^T - \lambda E| = 0,$$

and Σ is solved by $\sigma_n = \sqrt{\lambda_n}$.

• The eigenvectors x_m that corresponding to the eigenvalues λ_m can be obtained by

$$(AA^T - \lambda I)x = 0,$$

and U is set to Schmidt orthogonalization of $[x_1,...,x_m]$.

• The eigenvectors x_n that corresponding to the eigenvalues λ_n can be obtained by

$$(A^T A - \lambda I)x = 0,$$

and V is set to Schmidt orthogonalization of $[x_1,...,x_n]$.

For now, we complete the SVD to A.