Magnetic Monopoles

Roman Schmitz

Seminar on Theoretical Particle Physics University of Bonn

May 4th 2006

Introduction

Dirac Monopoles

Maxwell's Equations and Duality
The magnetic monopole field
Dirac's Quantization of Magnetic Charge
Summary

't Hooft-Polyakov Monopoles

What are Solitons?
Solitons in the SO(3) model
't Hooft Polyakov Soliton
The 't Hooft-Polyakov-Monopole

Motivation: Why magnetic monopoles?

- ► First idea from Dirac in 1931 (symmetric form of Maxwell-Equations)
- Appear in non-abelian gauge theories with symmetry breakdown
- possibly particles not yet observed, no experimental evidence up to now!

The Maxwell Equations in terms of the Dual Tensor

Take Maxwell Equations:

$$\partial_{\nu}F^{\mu\nu} = -j^{\mu}$$
 $dF = 0$

In terms of the **Dual Tensor** defined as

$$\tilde{F}^{\mu\nu} = \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} F_{\rho\sigma}$$

with components:

$$\begin{split} \tilde{F^{0i}} &= \frac{1}{2} \epsilon^{0ijk} F_{jk} = -\frac{1}{2} \epsilon^{0ijk} \epsilon_{jkl} B^l = B^i \\ \tilde{F^{ik}} &= \frac{1}{2} \epsilon^{ij\mu\nu} F_{\mu\nu} = \frac{1}{2} (\epsilon^{ijk0} F_{k0} + \epsilon^{ij0l} F_{0l} = e^{ijk} E^k) \end{split}$$

Maxwell's equations read:

$$\partial_{\nu}F^{\mu\nu} = -j^{\mu}$$
 $\partial_{\nu}\tilde{F}^{\mu\nu} = 0$

Extension of Maxwell's Equations

To describe Monopoles construct a magnetic 4-current in analogy to the electrical:

$$k^{\mu} = (\sigma, \vec{k})$$

Now Maxwell's Equations read

$$\partial_{\nu}F^{\mu\nu} = -j^{\mu}$$
 $\partial_{\nu}\tilde{F}^{\mu\nu} = -k^{\mu}$

in a nice symmetric form and are invariant under the so-called **Duality Transformation**:

$$F^{\mu\nu}\mapsto \tilde{F}^{\mu\nu} \qquad \tilde{F}^{\mu\nu}\mapsto -F^{\mu\nu} \qquad j^{\mu}\mapsto k^{\mu} \qquad k^{\mu}\mapsto -j^{\mu}$$

Magnetic monopole field

Magnetic field for a point-source with magnetic charge g:

$$\vec{B}(\vec{r},t) = \frac{g}{4\pi r^2} \cdot \frac{\vec{r}}{r}$$

Problem:

$$div\vec{B} = \vec{\nabla} \cdot \frac{g}{4\pi} \cdot \underbrace{\frac{\vec{r}}{r^3}}_{=\vec{\nabla}(-\frac{1}{r})} = -\frac{g}{4\pi} \Delta \frac{1}{r} = -\frac{g}{4\pi} \delta(r) \neq 0$$

$$\Rightarrow \nexists \vec{A}$$
 s.t. $\vec{B} = rot \vec{A}$

Is this the end of magnetic monopoles?

Solution: The Dirac string

Add an infinetely small, infinitely extended solenoid field (e.g. along the negative z-axis):

$$\vec{B}_{sol} = \frac{g}{4\pi r^2}\hat{r} + g \cdot \Theta(-z)\delta(x)\delta(y)\hat{z}$$

Verify that the flux is zero by integrating and using Gauss' theorem. Now:

$$\vec{B}_{Monopole} = rot \vec{A}_{sol} - g \cdot \Theta(-z)\delta(x)\delta(y)\hat{z}$$

Dirac's Quantization of Magnetic Charge

Motion of charged particle in Monopole field:

$$\frac{d}{dt}L = m[\vec{r} \times \ddot{\vec{r}}] = \frac{gq}{4\pi r^3} [\vec{r} \times [\dot{\vec{r}} \times \vec{r}]] = \frac{gq}{4\pi} \underbrace{(\dot{\vec{r}} - \dot{\vec{r}}(\dot{\vec{r}} \cdot \vec{r}))}_{=\frac{d}{dt}\frac{\vec{r}}{r}} = \frac{d}{dt}\frac{gq\vec{r}}{4\pi r}$$

Angular momentum of Electromagnetic field:

$$L_{EM} = \int d^3x [\vec{r} \times [\vec{E} \times \vec{B}]] = \int d^3x \frac{\vec{E}}{r} - \frac{\vec{r}}{r^3} (\vec{r} \cdot \vec{E}) = \int d^3x E^i(\nabla^i \hat{r}) = -\frac{gq\vec{r}}{4\pi r}$$

In QM quantized angular momenta in units of $\frac{n}{2}$:

$$\frac{eg}{4\pi} = \frac{n}{2}$$

Remark: Dirac string unobservable

Aharonov-Bohm-Effect changes phase factors of wavefunctions if A given, but B=0. Consider 2 paths around Dirac string. Condition to observe no Dirac string:

$$|\psi_1 + \psi_2|^2 = \left| \exp\left(iq \int_1 \vec{A} \vec{dl}\right) \cdot \psi_1 + \exp\left(iq \int_2 \vec{A} \vec{dl}\right) \cdot \psi_2 \right|^2$$

interference terms with exponents can differ by $n2\pi$:

$$2\pi n = (iq \int_1 \vec{A} \vec{dl}) - (iq \int_2 \vec{A} \vec{dl}) = q \oint \vec{A} \vec{dl} = qg$$

That means the Dirac string is unobservable because of the quantization condition.

Magnetic coupling strength

From the quantization condition

$$\frac{qg}{4\pi} = \frac{n}{2}$$

one can estimate the magnetic coupling constant. Coupling of 2 monopoles will be $\sim g^2$, so:

$$\sim g^2 \sim rac{n^2}{4} \cdot rac{(4\pi)^2}{q^2} \sim rac{n^2}{4} q^2 \underbrace{\left(rac{4\pi}{q^2}
ight)^2}_{1/lpha^2}$$

The means the magnetic coupling between two monopoles is about 10^4 times stronger than the electrical coupling.

Electromagnetic Duality

In vacuum $(j^{\mu}=0)$ the "old" Maxwell-Equations are symmetric under the **Duality Transformation**

$$F^{\mu
u} \mapsto \tilde{F}^{\mu
u}$$
 and $\tilde{F}^{\mu
u} \mapsto -F^{\mu
u}$

which is equivalent to

$$E \mapsto B$$
 and $B \mapsto -E$

With magnetic charges we have a symmetric form that is invariant under the Duality Transformation if

$$j^{\mu}\mapsto k^{\mu}$$
 and $k^{\mu}\mapsto -j^{\mu}$

Summary

- symmtreic form of Maxwell Equations, duality transformation
- describes quantization of electric/magnetic charges by QM
- still have to deal with point-sources and singularities
- ▶ Dirac string unobservable
- no mass predictions

What are Solitons?

Solitary waves or so-called Solitons are static finite-energy solutions to the equations of motion that appear in most field theories.

Example: 1+1-dimensional scalar fields with potential

$$\mathcal{L} = rac{1}{2}(\partial_{\mu}\phi)^2 - V(\phi)$$
 with $V(\phi) = rac{\lambda}{4}(\phi^2 - a^2)^2$

· from \mathcal{L} : equivalent to motion of particle in Potential $-V(\phi)$

$$\cdot$$
 $E<\infty \Rightarrow \phi \rightarrow \pm a, \ T \rightarrow 0 \ {
m for} \ x \rightarrow \infty$

Solitons in 1+1d

Energy conservation: $\frac{1}{2}\left(\frac{d\phi}{dx}\right)^2=V(\phi)$ leads to solutions

$$\phi_{\pm}(x) = \pm a \cdot \tanh(\mu x)$$

(kink, anti-kink) with mass $\mu = \sqrt{\lambda}a$ (symmetry breaking).

Stability and topological conservation law

Soliton mass scale \sim symmetry breaking scale \rightarrow heavy, unstable ?

$$\phi(\infty) - \phi(-\infty) = n \cdot 2a$$
 with $n = 0, \pm 1$

define current by $j_{\mu}(x) = \epsilon_{\mu\nu} \partial^{\nu} \phi$

$$\rightarrow Q = \int_{-\infty}^{\infty} j_0(x) dx = \int_{-\infty}^{\infty} (\partial_x \phi(x)) dx = n(2a)$$

is the topologically conserved charge. Hence, n is conserved and there should be no transitions between the states and no decay of the soliton to the vacuum.

Generalization to 3+1 dimensions

- ightharpoonup "sphere" of minima: $\mathcal{M}_0 = \{\phi_i = \eta_i | V(\eta_i) = 0\}$
- ▶ finite energy: $\phi_i^{\infty} = \lim_{R \to \infty} \phi_i(R\hat{r}) \epsilon \mathcal{M}_0$
- \rightarrow $H = \int d^3x \left[\frac{1}{2} (\partial_0 \phi_i)^2 + \frac{1}{2} (\nabla \phi_i)^2 + V(\phi_i) \right]$ should converge!
- $(\nabla \phi)^2 = (\frac{\partial \phi}{\partial r} \hat{r} + \frac{1}{r} \frac{\partial \phi}{\partial r} \hat{\varphi} + \frac{1}{r \cdot \sin \varphi} \frac{\partial \phi}{\partial \theta} \hat{\theta})^2 \quad transverse \sim r^2$
- ▶ add gauge fileds s.t. $D_i \phi \sim r^{-2}$ and $A_i^a \sim \phi_i \sim r^{-1}$ makes integral convergent (Derrick 1964)

The Georgi-Glashow-SO(3) model

Consider SO(3)-model with Higgs-Triplet in adj. representation:

$${\cal L} = rac{1}{2} (D^{\mu} \phi)^a (D_{\mu} \phi)^a - rac{1}{4} F^{\mu
u}_a F^a_{\mu
u} - V(\phi)$$

with the potential, fields and cov. derivatives given by:

$$F_{\mu\nu}^{a} = \partial_{\mu}A_{\nu}^{a} - \partial_{\nu}A_{\mu}^{a} - e\epsilon^{abc}A_{\mu}^{b}A_{\nu}^{c}$$
$$(D_{\mu}\phi)^{a} = \partial_{\mu}\phi^{a} - e\epsilon^{abc}A_{\mu}^{b}\phi^{c}$$
$$V(\phi) = \frac{\lambda}{4}(\phi^{2} - a^{2})^{2}$$

Breakdown $SO(3) \sim SU(2) \rightarrow SO(2) \sim U(1)$ via ground state:

$$\phi = (0, 0, a)$$

gives 2 massive gauge bosons and a massles (photon). Now identify:

$$F_3^{0i} = E^i$$
 $F_3^{ij} = -\epsilon^{ijk}B^k$

Minima of potential form a sphere:

$$\mathcal{M}_0 = \{ \phi = \eta | \eta^2 = a^2 \}$$

t'Hooft-Polyakov Ansatz

We need $D_i \phi \sim r^{-2}$ and $A_i^a \sim \phi_a \sim r^{-1}$ for H to converge. In addition we want $\phi_i^{\infty} = \lim_{R \to \infty} \phi_i = \eta_i = a \cdot \hat{r}$

Ansatz by 't Hooft and Polyakov (1974):

$$\phi_b = rac{r^b}{er^2} H(aer)$$
 $A_b^i = -\epsilon_{bij} rac{r^j}{er^2} (1 - K(aer))$ $A_b^0 = 0$

Energy of system given by Hamiltonian:

$$E = \frac{4\pi a}{e} \int\limits_0^\infty \frac{d\xi}{\xi^2} \left[\xi^2 \left(\frac{dK}{d\xi} \right)^2 + \frac{1}{2} \left(\xi \frac{dH}{d\xi} - H \right)^2 + \frac{1}{2} (K^2 - 1)^2 + K^2 H^2 + \frac{\lambda}{4e^2} (H^2 - \xi^2)^2 \right]$$

with $\xi = aer$.

$$E = \frac{4\pi a}{e} \int\limits_0^\infty \frac{d\xi}{\xi^2} \left[\xi^2 \left(\frac{dK}{d\xi} \right)^2 + \frac{1}{2} \left(\xi \frac{dH}{d\xi} - H \right)^2 + \frac{1}{2} (K^2 - 1)^2 + K^2 H^2 + \frac{\lambda}{4e^2} (H^2 - \xi^2)^2 \right]$$

determine EOM for H,K by variation of E w.r.t H and K:

$$\xi^2 \frac{d^2 K}{d\xi^2} = KH^2 + K(K^2 - 1)$$
 $\xi^2 \frac{d^2 H}{d\xi^2} = 2K^2 H + \frac{\lambda}{e^2} H(H^2 - \xi^2)$

Our asymptotic condition $\phi_i^{\infty} = \eta_i = a \cdot \hat{r}$ implies:

$$H \sim \xi$$
 for $\xi \to \infty$

The terms (K^2H^2) and $\frac{1}{\xi^2}(K^2-1)^2$ imply:

$$K \to 0$$
 for $\xi \to \infty$ and $H \le O(\xi)$ $K^2 - 1 \le O(\xi)$

The mass of this (static) solution is given by its Energy, the integral can be solved numerically and is ≈ 1 , so we have:

$$M pprox rac{4\pi a}{e}$$

so the mass is set by vev of the scalar field which is also a scale for symmetry breaking $SO(3) \rightarrow SO(2)$.

The magnetic field

Plugging the Ansatz into F_a^{ij} we get after several ϵ^{ijk} -Terms cancel out:

$$F_a^{ij} = \epsilon^{ijk} \frac{r^k r^a}{er^4} = \frac{1}{aer^3} \epsilon^{ijk} r^k \phi_a$$
 with $\phi_a = \frac{ar^a}{r}$

so at large distances we get:

$$\vec{B} = \frac{g}{4\pi} \frac{\vec{r}}{r^3}$$
 with $g = -\frac{4\pi}{e}$

Size of the monopole

The monopole has finite size as can be seen below. For large ξ we have $H \rightarrow \xi$ and $K \rightarrow 0$:

$$\xi^{2} \frac{d^{2}K}{d\xi^{2}} = \underbrace{KH^{2}}_{\to K\xi^{2}} + \underbrace{K(K^{2} - 1)}_{\to 0} \Rightarrow \frac{d^{2}K}{d\xi^{2}} = K$$

$$\xi^2 \frac{d^2 H}{d\xi^2} = \underbrace{2K^2 H}_{\to 0} + \frac{\lambda}{e^2} \underbrace{H(H^2 - \xi^2)}_{\to 2\xi^2 h} \Rightarrow \frac{d^2 h}{d\xi^2} = \frac{2\lambda}{e^2} h \qquad h = H - \xi$$

with solutions:

$$K \sim e^{-\xi} = e^{-(ea)r}$$
 $H - \xi \sim e^{-(2\lambda)^{\frac{1}{2}}ar}$

The prefactors are the masses $\mu = (2\lambda)^{\frac{1}{2}}a$ of the scalar and M = ea of the gauge bosons after breaking the symmetry.

Summary

- ▶ At large distances behaves like Dirac monopole
- finite size and smooth structure, no point charge
- classical mass of order of symmetry breaking
- no singularities like Dirac string