Anatomy of a Random Variable

• A Motivating Example: Monte Carlo Integration

- A Motivating Example: Monte Carlo Integration
- Rigorous Definitions of a Random Variable

 $X:\Omega o E$

- A Motivating Example: Monte Carlo Integration
- Rigorous Definitions of a Random Variable
- Law of large numbers and the Central Limit Theorem

$$X:\Omega o E$$

$$\sqrt{n}\left(ar{X}_n-\mu
ight) \stackrel{d}{
ightarrow} \mathcal{N}\left(0,\sigma^2
ight)$$

$$I = \int_{\Omega} f(x) dx \ I = \int_{\Omega} f(x) \mu(dx)$$

$$I = \int_{\Omega} f(x) dx$$
 $I = \int_{\Omega} f(x) \mu(dx)$

$$X_i \sim U(\Omega)$$

$$I = \int_{\Omega} f(x) dx$$
 $I = \int_{\Omega} f(x) \mu(dx)$

$$X_i \sim U(\Omega)$$

$$Ipprox Q_N\equiv rac{\int_\Omega \mu(dx)}{N}\sum_{i=1}^N f(X_i)$$

$$I = \int_{\Omega} f(x) dx$$
 $I = \int_{\Omega} f(x) \mu(dx)$

$$Ipprox Q_N\equivrac{\int_\Omega\mu(dx)}{N}\sum_{i=1}^Nf(X_i)$$

 $X_i \sim U(\Omega)$

Special Case: Expectation

Special Case: Expectation

$$\mathrm{E}[X] = \int_{-\infty}^{\infty} x \, p(x) \, dx$$

Special Case: Expectation

$$egin{aligned} \mathrm{E}[X] &= \int_{-\infty}^{\infty} x \, p(x) \, dx \ &pprox rac{1}{N} \sum_{i=1}^{N} X_i \end{aligned}$$

Special Case: Expectation

$$egin{aligned} \mathrm{E}[X] &= \int_{-\infty}^{\infty} x \, p(x) \, dx \ &pprox rac{1}{N} \sum_{i=1}^{N} X_i \end{aligned}$$

How accurate is this?

Why are probability distributions not enough?

Why are probability distributions not enough?

Consider this definition: Two random variables are equal if their probability distributions are the same.

Why are probability distributions not enough?

Consider this definition: Two random variables are equal if their probability distributions are the same.

 $A \sim \mathrm{Bernoulli}(0.5)$

Why are probability distributions not enough?

Consider this definition: Two random variables are equal if their probability distributions are the same.

$$A \sim \mathrm{Bernoulli}(0.5)$$

Why are probability distributions not enough?

Consider this definition: Two random variables are equal if their probability distributions are the same.

$$A \sim \mathrm{Bernoulli}(0.5)$$

$$B = \neg A$$

$$B\stackrel{?}{=} A$$

Why are probability distributions not enough?

consider this definition: Two random variables are equal if their propability distributions are the same.

$$A \sim \mathrm{Bernoulli}(0.5)$$

Given a **probability space** (Ω, \mathcal{F}, P) , and a **measurable space** (E, \mathcal{E}) , an E-valued **random variable is a measurable function** $X : \Omega \to E$.

Given a probability space (Ω, \mathcal{F}, P) , and a measurable space (E, \mathcal{E}) , an E-valued random variable is a measurable function $X: \Omega \to E$.

$$\omega\in\Omega$$

Given a probability space (Ω, \mathcal{F}, P) , and a measurable space (E, \mathcal{E}) , an E-valued random variable is a measurable function $X: \Omega \to E$.

$$\omega\in\Omega$$

$$X(\omega) \in E$$

Given a **probability space** (Ω, \mathcal{F}, P) , and a **measurable** space (E, \mathcal{E}) , an E-valued random variable is a measurable function $X:\Omega\to E$.

$$\omega\in\Omega$$

$$X(\omega) \in E$$

Given a **probability space** (Ω, \mathcal{F}, P) , and a **measurable** space (E, \mathcal{E}) , an E-valued random variable is a measurable function $X:\Omega\to E$.

$$\omega\in\Omega$$

$$X(\omega) \in E$$

Given a **probability space** (Ω, \mathcal{F}, P) , and a **measurable**

Given a **probability space** (Ω, \mathcal{F}, P) , and a **measurable space** (E, \mathcal{E}) , an E-valued **random variable is a measurable function** $X : \Omega \to E$.

$$\omega\in\Omega$$

$$X(\omega) \in E$$

Given a probability space (Ω, \mathcal{F}, P) , and a measurable

Given a **probability space** (Ω, \mathcal{F}, P) , and a **measurable space** (E, \mathcal{E}) , an E-valued **random variable is a measurable function** $X : \Omega \to E$.

$$\omega\in\Omega$$

$$X(\omega) \in E$$

What is this function?

Example: Coin World

$$egin{aligned} \Omega &= \{H,T\} \ E &= [0,1] \ X(\omega) &= \mathbf{1}_{\{H\}}(\omega) \end{aligned}$$

Example: Coin World

$$egin{aligned} \Omega &= \{H,T\} \ E &= [0,1] \ X(\omega) &= \mathbf{1}_{\{H\}}(\omega) \end{aligned}$$

Example: Many coins

Example: Coin World

$$egin{aligned} \Omega &= \{H,T\} \ E &= [0,1] \ X(\omega) &= \mathbf{1}_{\{H\}}(\omega) \end{aligned}$$

Example: Many coins

$$egin{aligned} \Omega &= \{H,T\}^n \ E &= [0,1] \ X_i(\omega) &= \mathbf{1}_{\{H\}}(\omega_i) \end{aligned}$$

Example: Coin World

$$egin{aligned} \Omega &= \{H,T\} \ E &= [0,1] \ X(\omega) &= \mathbf{1}_{\{H\}}(\omega) \end{aligned}$$

Example: Many coins

$$egin{aligned} \Omega &= \left\{ H, T
ight\}^\infty \ E &= \left[0, 1
ight] \ X_i(\omega) &= \mathbf{1}_{\left\{ H
ight\}}(\omega_i) \end{aligned}$$

stochastic process {x+3} X(+)

• " σ -algebra" or " σ -field"

- " σ -algebra" or " σ -field"
- Subset of subsets of Ω (that is, $\mathcal{F} \subseteq 2^{\Omega}$)

- " σ -algebra" or " σ -field"
- Subset of subsets of Ω (that is, $\mathcal{F}\subseteq 2^\Omega$) $Z^{\Omega}=\{\{0\},\{2\}\},\{3\}\},\emptyset$

• " σ -algebra" or " σ -field"

D: {1,2,3}

Za= 8813,927.837,00,

[1,2], {1,5}, {2,3}

{1.2,3}}

- Subset of subsets of Ω (that is, $\mathcal{F} \subseteq 2^{\Omega}$)
- Three requirements to be a σ -field
 - lacksquare $\Omega \in \mathcal{F}$
 - $lacksquare ext{If } A \in \mathcal{F} ext{ then } A^c \in \mathcal{F} ext{ (where } A^c = \Omega ackslash \mathcal{F})$
 - $lacksquare ext{If } A_i \in \mathcal{F} ext{ for } i \in \mathbb{N} ext{ then } \cup_{i=1}^\infty A_i \in \mathcal{F}$

• " σ -algebra" or " σ -field"

D: {1,2,33

Za= 8813,923.833,00,

[1,2], {1,5}, {2,3}

{1.2,3}}

- Subset of subsets of Ω (that is, $\mathcal{F} \subseteq 2^{\Omega}$)
- Three requirements to be a σ -field
 - lacksquare $\Omega \in \mathcal{F}$
 - lacksquare If $A \in \mathcal{F}$ then $A^c \in \mathcal{F}$ (where $A^c = \Omega \backslash \mathcal{F}$)
 - $lacksquare ext{If } A_i \in \mathcal{F} ext{ for } i \in \mathbb{N} ext{ then } \cup_{i=1}^\infty A_i \in \mathcal{F}$
- $\sigma(\cdot)$ creates a σ -field from a set of generators

• " σ -algebra" or " σ -field"

- D: {1,2,33
- Subset of subsets of Ω (that is, $\mathcal{F} \subseteq 2^{\Omega}$)
- Three requirements to be a σ -field
 - lacksquare $\Omega \in \mathcal{F}$

- lacksquare If $A\in\mathcal{F}$ then $A^c\in\mathcal{F}$ (where $A^c=\Omegaackslack\mathcal{F}$)
- $lacksquare ext{If } A_i \in \mathcal{F} ext{ for } i \in \mathbb{N} ext{ then } \cup_{i=1}^\infty A_i \in \mathcal{F}$
- $\sigma(\cdot)$ creates a σ -field from a set of generators

• " σ -algebra" or " σ -field"

D: {1,2,33

Za= 8813,927.837,00,

- Subset of subsets of Ω (that is, $\mathcal{F} \subseteq 2^{\Omega}$)
- Three requirements to be a σ -field
 - lacksquare $\Omega \in \mathcal{F}$

- [1,2], {1,5}, {2,3} {1.2,3}}
- lacksquare If $A\in\mathcal{F}$ then $A^c\in\mathcal{F}$ (where $A^c=\Omegaackslack\mathcal{F}$)
- $lacksquare ext{If } A_i \in \mathcal{F} ext{ for } i \in \mathbb{N} ext{ then } \cup_{i=1}^\infty A_i \in \mathcal{F}$
- $\sigma(\cdot)$ creates a σ -field from a set of generators

• " σ -algebra" or " σ -field"

- D: {1,2,33
- Subset of subsets of Ω (that is, $\mathcal{F}\subseteq 2^\Omega$) $Z^\Omega=\{\{0\},\{2\}\}\},\{0\}$
- Three requirements to be a σ -field
 - lacksquare $\Omega \in \mathcal{F}$

- [1,2], {1,5}, {2,3} {1.2,3}}
- $lacksquare ext{If } A \in \mathcal{F} ext{ then } A^c \in \mathcal{F} ext{ (where } A^c = \Omega ackslash \mathcal{F})$
- $lacksquare ext{If } A_i \in \mathcal{F} ext{ for } i \in \mathbb{N} ext{ then } \cup_{i=1}^\infty A_i \in \mathcal{F}$
- $\sigma(\cdot)$ creates a σ -field from a set of generators

The Borel σ -algebra for a topological space Ω is the σ field generated by all open sets in Ω .

The Borel σ -algebra for a topological space Ω is the σ field generated by all open sets in Ω .

- ullet $\Omega \in \mathcal{F}$
- If $A \in \mathcal{F}$ then $A^c \in \mathcal{F}$ (where $A^c = \Omega \backslash \mathcal{F}$)
- ullet If $A_i \in \mathcal{F}$ for $i \in \mathbb{N}$ then $\cup_{i=1}^\infty A_i \in \mathcal{F}$

The Borel σ -algebra for a topological space Ω is the σ field generated by all open sets in Ω .

$$\underbrace{(-\infty,1)}_{\bullet} \underbrace{(z,\infty)}_{\text{Is } [1,2] \text{ in } \mathcal{B}? \text{ Yes}}_{\bullet} \quad \Omega \in \mathcal{F}$$

- If $A \in \mathcal{F}$ then $A^c \in \mathcal{F}$ (where $A^c = \Omega \backslash \mathcal{F}$)
- If $A_i \in \mathcal{F}$ for $i \in \mathbb{N}$ then $\cup_{i=1}^\infty A_i \in \mathcal{F}$

The Borel σ -algebra for a topological space Ω is the σ field generated by all open sets in Ω .

- Is [1,2] in \mathcal{B} ?
- Is{1}in *B*?

- ullet $\Omega \in \mathcal{F}$
- If $A \in \mathcal{F}$ then $A^c \in \mathcal{F}$ (where $A^c = \Omega \backslash \mathcal{F}$)
- ullet If $A_i \in \mathcal{F}$ for $i \in \mathbb{N}$ then $\cup_{i=1}^\infty A_i \in \mathcal{F}$

The Borel σ -algebra for a topological space Ω is the σ field generated by all open sets in Ω .

- Is [1,2] in \mathcal{B} ?
- Is 1 in *B*?
- Is π in \mathcal{B} ?

- ullet $\Omega \in \mathcal{F}$
- If $A \in \mathcal{F}$ then $A^c \in \mathcal{F}$ (where $A^c = \Omega \backslash \mathcal{F}$)
- ullet If $A_i \in \mathcal{F}$ for $i \in \mathbb{N}$ then $\cup_{i=1}^\infty A_i \in \mathcal{F}$

The Borel σ -algebra for a topological space Ω is the σ -field generated by all open sets in Ω .

- Is [1, 2] in \mathcal{B} ?
- Is 1 in *B*?
- Is π in \mathcal{B} ?

- ullet $\Omega\in\mathcal{F}$
- If $A \in \mathcal{F}$ then $A^c \in \mathcal{F}$ (where $A^c = \Omega \backslash \mathcal{F}$)
- ullet If $A_i \in \mathcal{F}$ for $i \in \mathbb{N}$ then $\cup_{i=1}^\infty A_i \in \mathcal{F}$

A probability measure P is a function $P:\mathcal{F}\to [0,1]$ having the following properties:

A probability measure P is a function $P:\mathcal{F}\to [0,1]$ having the following properties:

1.
$$0 \le P(A) \le 1 \quad \forall A \in \mathcal{F}$$
.

A probability measure P is a function $P:\mathcal{F}\to [0,1]$ having the following properties:

1.
$$0 \le P(A) \le 1 \quad \forall A \in \mathcal{F}$$
.

2.
$$P(\Omega) = 1$$
.

A probability measure P is a function $P: \mathcal{F} \to [0,1]$ having the following properties:

- 1. $0 \le P(A) \le 1 \quad \forall A \in \mathcal{F}$.
- 2. $P(\Omega) = 1$.
- 3. (Countable additivity) $P(A)=\sum_{n=1}^{\infty}P(A_n)$ whenever $A=\cup_{n=1}^{\infty}A_n$ is a countable union of disjoint sets $A_n\in\mathcal{F}$

Given a probability space (Ω, \mathcal{F}, P) , and a measurable space (E, \mathcal{E}) , an E-valued random variable is a measurable function $X:\Omega\to E$.

Given a probability space (Ω, \mathcal{F}, P) , and a measurable space (E, \mathcal{E}) , an E-valued random variable is a measurable function $X:\Omega\to E$.

A function $f:\Omega\to E$ is measurable if for every $A\in\mathcal E$, the pre-image of A under f is in $\mathcal F.$ That is, for all $A\in\mathcal E$ $f^{-1}(A)\in\mathcal F$

Given a probability space (Ω, \mathcal{F}, P) , and a measurable space (E, \mathcal{E}) , an E-valued random variable is a measurable function $X: \Omega \to E$.

A function $f:\Omega\to E$ is measurable if for every $A\in\mathcal{E}$, the pre-image of A under f is in \mathcal{F} . That is, for all $A\in\mathcal{E}$

Given a probability space (Ω, \mathcal{F}, P) , and a measurable space (E, \mathcal{E}) , an E-valued random variable is a measurable function $X:\Omega\to E$.

A function $f:\Omega\to E$ is measurable if for every $A\in\mathcal{E}$, the pre-image of A under f is in \mathcal{F} . That is, for all $A\in\mathcal{E}$

Are there functions that are not Borel-measurable?

Advantages over pdf definition

- Rigorous treatment of deterministic outcomes
- More sophisticated convergence concepts
- Better way of thinking about related random variables (personally, I think)

Break

Exercise 1.2.5. Let $\Omega = \{1, 2, 3\}$. Find a σ -field \mathcal{F} such that (Ω, \mathcal{F}) is a measurable space, and a mapping X from Ω to \mathbb{R} , such that X is not a random variable on (Ω, \mathcal{F}) .

https://timer.onlineclock.net/

Break

Exercise 1.2.5. Let $\Omega = \{1, 2, 3\}$. Find a σ -field \mathcal{F} such that (Ω, \mathcal{F}) is a measurable space, and a mapping X from Ω to \mathbb{R} , such that X is not a random variable on (Ω, \mathcal{F}) .

A function $f:\Omega\to E$ is measurable if for every $A\in\mathcal{E}$, the pre-image of A under f is in \mathcal{F} . That is, for all $A\in\mathcal{E}$

$$\underbrace{f^{-1}(A)\in\mathcal{F}}$$

$$\sigma(\{13\}) = \{\{1,2,3\}, \phi, \{13\}, \{2,3\}\}\}$$

$$\times = \mathbf{1}_{\{1,2\}}$$

$$A = \{0\} \quad \times^{-1}(A) = \{3\}$$

X(3)=0 X(1)=(X(2)=1

https://timer.onlineclock.net/

$$\int Z = \{1, 2, 3\}$$

$$F = \sigma(\{13\}) = \{\{1, 2, 3\}, \emptyset, \{13, \{2, 3\}\}\}$$

$$X(\omega) = \mathbf{1}_{\{1, 2\}}(\omega) = \{0 \text{ o.w.} \quad X(z) = 1 \\ X(z) = 1 \\ X(z) = 0$$

$$A \in E \qquad E = \mathbb{R} \quad X(z) = 0$$

$$A = 0 \quad X^{-1}(A) = \{3\}$$

$$X^{-1}(A) \notin F \qquad No \quad X \text{ is not measurable}$$

: X is not a R.V.

Break

Exercise 1.2.5. Let $\Omega = \{1, 2, 3\}$. Find a σ -field \mathcal{F} such that (Ω, \mathcal{F}) is a measurable space, and a mapping X from Ω to \mathbb{R} , such that X is not a random variable on (Ω, \mathcal{F}) .

A function $f:\Omega\to E$ is measurable if for every $A\in\mathcal{E}$, the pre-image of A under f is in \mathcal{F} . That is, for all $A\in\mathcal{E}$

$$f^{-1}(A)\in \mathcal{F}$$

$$\mathcal{F} = \{\Omega,\emptyset,\{1\},\{2,3\}\}$$
 $X = \mathbf{1}_{\{1,2\}}$

https://timer.onlineclock.net/

Review: For a (deterministic) sequence

$$\{x_n\}$$
, we say

$$\lim_{n\to\infty}x_n=x$$

or

$$x_n o x$$

if, for every $\epsilon>0$, there exists an N such that $|x_n-x|<\epsilon$ for all n>N.

In what senses can we talk about random variables converging?

- Sure ("pointwise")
- Almost Sure
- In Probability
- Weak ("in distribution"/"in law")

$$X$$
 = Y if $X(\omega) = Y(\omega) \quad orall \omega \in \Omega$

$$\begin{array}{ll}
\mathcal{P} & \text{0.5,0.5,0} \\
& \mathcal{N} = \{1,2,3\} \\
& X = Y \text{ if } X(\omega) = Y(\omega) \quad \forall \omega \in \Omega \\
& X = \{1,2,3\} \\
& X = Y \text{ if } X(\omega) = Y(\omega) \quad \forall \omega \in \Omega \\
& X = \{1,2,3\} \\
& Y(\omega) = \{1,2,3\} \\
& Y$$

$$X$$
 = Y if $X(\omega) = Y(\omega) \quad orall \omega \in \Omega$

In practice, there are often unimportant ω where this is not true.

We say that X is *almost surely* the same as Y if $P(\{\omega: X(\omega) \neq Y(\omega)\}) = 0$.

$$X$$
 = Y if $X(\omega) = Y(\omega) \quad orall \omega \in \Omega$

In practice, there are often unimportant ω where this is not true.

We say that X is *almost surely* the same as Y if $P(\{\omega: X(\omega) \neq Y(\omega)\}) = 0$.

This is denoted $X \stackrel{a.s.}{=} Y$ and the terms almost everywhere (a.e.) and with probability 1 (w.p.1) mean the same thing.

Sure Convergence

$$X_n(\omega) o X(\omega) \quad orall\,\omega\in\Omega$$

Almost Sure Convergence

Almost Sure Convergence

 $X_n \overset{a.s.}{\to} X$ if there exists $A \in \mathcal{F}$ with P(A) = 1 such that $X_n(\omega) \to X(\omega)$ for each fixed $\omega \in A$.

Almost Sure Convergence

 $X_n \overset{a.s.}{ o} X$ if there exists $A \in \mathcal{F}$ with P(A) = 1 such that $X_n(\omega) o X(\omega)$ for each fixed $\omega \in A$.

Does sure convergence imply almost sure convergence?

$$X_n \to_p X ext{ if } P(\{\omega: |X_n(\omega) - X(\omega)| > \epsilon\}) o 0 ext{ for any fixed } \epsilon > 0.$$

$$X_n \to_p X ext{ if } P(\{\omega: |X_n(\omega) - X(\omega)| > \epsilon\}) o 0 ext{ for any fixed } \epsilon > 0.$$

Does
$$X_n \stackrel{a.s}{\to} X$$
 imply $X_n \to_p X$?

$$X_n \to_p X ext{ if } P(\{\omega: |X_n(\omega) - X(\omega)| > \epsilon\}) o 0 ext{ for any fixed } \epsilon > 0.$$

Does
$$X_n \overset{a.s}{ o} X$$
 imply $X_n o_p X$? Yes.

Does $X_n \to_p X$ imply $X_n \stackrel{a.s}{\to} X$?

Does
$$X_n o_p X$$
 imply $X_n \overset{a.s}{ o} X$?

Does $X_n \to_p X$ imply $X_n \stackrel{a.s}{\to} X$?

No.

PROOF. Consider the probability space $\Omega = (0,1)$, with Borel σ -field and the Uniform probability measure U of Example 1.1.11 Suffices to construct an example of $X_n \to_p 0$ such that fixing each $\omega \in (0,1)$, we have that $X_n(\omega) = 1$ for infinitely many values of n. For example, this is the case when $X_n(\omega) = \mathbf{1}_{[t_n,t_n+s_n]}(\omega)$ with $s_n \downarrow 0$ as $n \to \infty$ slowly enough and $t_n \in [0,1-s_n]$ are such that any $\omega \in [0,1]$ is in infinitely many intervals $[t_n,t_n+s_n]$. The latter property applies if $t_n = (i-1)/k$ and $s_n = 1/k$ when n = k(k-1)/2 + i, $i = 1,2,\ldots,k$ and $k = 1,2,\ldots$ (plot the intervals $[t_n,t_n+s_n]$ to convince yourself).

Does $X_n \to_p X$ imply $X_n \stackrel{a.s}{\to} X$?

No.

PROOF. Consider the probability space $\Omega = (0,1)$, with Borel σ -field and the Uniform probability measure U of Example 1.1.11 Suffices to construct an example of $X_n \to_p 0$ such that fixing each $\omega \in (0,1)$, we have that $X_n(\omega) = 1$ for infinitely many values of n. For example, this is the case when $X_n(\omega) = \mathbf{1}_{[t_n,t_n+s_n]}(\omega)$ with $s_n \downarrow 0$ as $n \to \infty$ slowly enough and $t_n \in [0,1-s_n]$ are such that any $\omega \in [0,1]$ is in infinitely many intervals $[t_n,t_n+s_n]$. The latter property applies if $t_n = (i-1)/k$ and $s_n = 1/k$ when n = k(k-1)/2 + i, $i = 1,2,\ldots,k$ and $k = 1,2,\ldots$ (plot the intervals $[t_n,t_n+s_n]$ to convince yourself).

But there exists a subsequence n_k such that $X_{n_k} \stackrel{a.s.}{\to} X$.

Let $F_X : \mathbb{R} \to [0,1]$ be the cumulative distribution function of real-valued random variable X.

Let $F_X: \mathbb{R} \to [0,1]$ be the cumulative distribution function of real-valued random variable X.

Let $F_X: \mathbb{R} \to [0,1]$ be the cumulative distribution function of real-valued random variable X.

 $X_n \stackrel{D}{\to} X$ if $F_{X_n}(\alpha) \to F_X(\alpha)$ for each fixed α that is a continuity point of F_X .

Let $F_X: \mathbb{R} \to [0,1]$ be the cumulative distribution function of real-valued random variable X.

 $X_n \stackrel{D}{ o} X$ if $F_{X_n}(\alpha) o F_X(\alpha)$ for each fixed α that is a continuity point of F_X .

"Weak convergence", "convergence in distribution", and "convergence in law" all mean the same thing.

In what senses can we talk about random variables converging?

- Sure ("pointwise")
- Almost Sure
- In Probability
- Weak ("in distribution"/"in law")

In what senses can we talk about random variables converging?

- Weak ("in distribution"/"in law")

In what senses can we talk about random variables converging?

- Weak ("in distribution"/"in law")

Let X_i be independent, identically distributed random variables with mean μ , and $Q_N \equiv \frac{1}{N} \sum_{i=1}^N X_i$.

Let X_i be independent, identically distributed random variables with mean μ , and $Q_N \equiv \frac{1}{N} \sum_{i=1}^N X_i$.

$$Q_N\stackrel{?}{ o} \mu?$$

$$Q_N o \mu ext{ (sure)}?$$

$$Q_N\stackrel{a.s.}{ o} \mu?$$

$$Q_N o_p \mu$$
?

$$Q_N \stackrel{D}{
ightarrow} \mu?$$

$$Q_N o \mu ext{ (sure)}$$
?

$$Q_N\stackrel{a.s.}{
ightarrow}\mu?$$

$$Q_N o_p \mu ?$$

$$Q_N \stackrel{D}{
ightarrow} \mu?$$

 $\exists \omega \in \Omega$ where you always sample the same point.

$$Q_N \to \mu \text{ (sure)}?$$

$$Q_N \stackrel{a.s.}{
ightarrow} \mu?$$

$$Q_N o_p \mu?$$

$$Q_N \stackrel{D}{
ightarrow} \mu?$$

 $\exists \omega \in \Omega$ where you always sample the same point.

 $Q_N o \mu ext{ (sure)}?$

$$Q_N\stackrel{a.s.}{ o} \mu?$$

Probability that there are enough measurements off in one direction to keep $|Q_N-\mu|>\epsilon$ decays with more samples.

$$Q_N
ightarrow_p \mu$$
?

$$Q_N \stackrel{D}{
ightarrow} \mu?$$

 $\exists \omega \in \Omega$ where you always sample the same point.

 $Q_N o \mu ext{ (sure)}?$

$$Q_N\stackrel{a.s.}{
ightarrow}\mu?$$

Probability that there are enough measurements off in one direction to keep $|Q_N-\mu|>\epsilon$ decays with more samples.

$$Q_N o_p \mu$$
?

$$Q_N \stackrel{D}{
ightarrow} \mu?$$

 $\exists \omega \in \Omega$ where you always sample the same point.

$$Q_N\stackrel{a.s.}{
ightarrow}\mu?$$

Probability that there are enough measurements off in one direction to keep
$$|Q_N-\mu|>\epsilon$$
 decays with more samples.

$$Q_N o_p \mu ?$$

Weak law of large numbers

$$Q_N \stackrel{D}{
ightarrow} \mu?$$

 $\exists \omega \in \Omega$ where you always sample the same point.

 $Q_N o \mu ext{ (sure)}$?

 $Q_N \stackrel{a.s.}{\rightarrow} \mu$?

 $Q_N \to_p \mu$?

Weak law of large numbers

measurements off in one direction to keep $|Q_N - \mu| > \epsilon$ decays with more samples.

Probability that there are enough

$$Q_N \stackrel{D}{
ightarrow} \mu?$$

 $\exists \omega \in \Omega$ where you always sample the same point.

 $Q_N o \mu ext{ (sure)}?$

 $Q_N\stackrel{a.s.}{
ightarrow}\mu?$

Strong law of large numbers

Weak law of large numbers

measurements off in one direction to keep
$$|Q_N - \mu| > \epsilon$$
 decays with more samples.

Probability that there are enough

$$Q_N \stackrel{D}{
ightarrow} \mu?$$

 $\exists \omega \in \Omega$ where you always sample the same point.

Probability that there are enough

measurements off in one direction to

keep $|Q_N - \mu| > \epsilon$ decays with more

 $Q_N o \mu ext{ (sure)}?$

 $Q_N\stackrel{a.s.}{
ightarrow}\mu?$

Strong law of large numbers

Weak law of large numbers

$$Q_N \stackrel{D}{
ightarrow} \mu?$$

samples.

Convergence *Rate* of M.C. Integration

Convergence *Rate* of M.C. Integration

How do you quantify $|Q_N - \mu|$?

Convergence *Rate* of M.C. Integration

How do you quantify $|Q_N - \mu|$?

Run M sets of N simulations and plot a histogram of Q_N^j for $j \in \{1, \dots, M\}$.

Lindeberg-Levy CLT: If
$${
m Var}[X_i]=\sigma^2<\infty$$
, then $\sqrt{N}(Q_N-\mu)\stackrel{D}{
ightarrow}\mathcal{N}(0,\sigma)$

Lindeberg-Levy CLT: If
$$\mathrm{Var}[X_i]=\sigma^2<\infty$$
, then $\sqrt{N}(Q_N-\mu)\stackrel{D}{
ightarrow}\mathcal{N}(0,\sigma)$

After many samples Q_N starts to look distributed like $\mathcal{N}(\mu, \frac{\sigma}{\sqrt{N}})$

Two somewhat astounding takeaways:

Two somewhat astounding takeaways:

Two somewhat astounding takeaways:

1. Error decays at $\frac{1}{\sqrt{N}}$ regardless of dimension.

Two somewhat astounding takeaways:

1. Error decays at $\frac{1}{\sqrt{N}}$ regardless of dimension.

2. You can estimate the "standard error" with

$$SE=rac{s}{\sqrt{N}}$$

where s is the sample standard deviation.