

Multiple constraints from leaf to globe on land surface impacts on radiative forcing

Vanessa Haverd, Ben Smith, Cathy Trudinger, Peter Briggs, Pep Canadell 5 September 2017

OCEANS AND ATMOSPHERE www.csiro.au

Land Carbon Sink: Important for radiative forcing, but land model predictions are highly variable.

Land models under-estimate recent trends in seasonal amplitude of land carbon uptake

Rate-limiting process in photosynthesis depends on the ratio of maximum rate of electron transport (J_{max}) to maximum rate of carboxylation (V_{cmax})

Walker et al. 2014 Ecology and Evolution 4: 3218-3235

Fixed observed mean value of $b_{JV}=J_{max}/V_{cmax}$ gives unconstrained predictions of Rubisco- vs electron transport-limited photosynthesis.

Additional constraint: optimal plant investment in Rubisco- vs electron transport-limited photosynthesis.

*Wenzel et al. 2016 Nature 548, 499-501

*Campbell et al. 2017 Nature 544, 84-87

Optimal b_{jV} mimimises cost of photosynthesis and yields equal limiting-rate contributions

Increase in Gross Primary Production since 1900 dominated by biochemical CO₂ fertilisation effect, particularly in the tropics

Fraction increase in GPP from biochemical (direct) CO₂ fertilisation (1900 baseline)

Land models under-estimate trend in seasonal amplitude of land carbon uptake: optimisation of plant investment in electron transport vs Rubisco-limited photosynthesis may resolve this.

