"Para o prazer e para ser feliz, é que é preciso a gente saber tudo, formar alma, na consciência; para penar, não se carece."

(Guimarães Rosa in Grande Sertão: Veredas, 1956)

Introd. Inteligência Artificial

Roteiro da aula:

- Sistemas de recomendação;
- Modelo de recomendação por conteúdo;
- Exemplos;
- Extensões;

Com slides adaptados de J. Leskovec (Stanford)

- Customer X
 - Buys Metallica CD
 - Buys Megadeth CD

- Customer Y
 - Clicks on Metallica album
 - Recommender system suggests Megadeth from data collected about customer X

slides/imagens J. Leskovec (Stanford)

slides/imagens J. Leskovec (Stanford)

Non-personalized recommendations:

- Editorial and hand curated
 - List of favorites
 - List of "essential" items
- Simple aggregates
 - Top 10, Most Popular, Recent Uploads

Personalized recommendations:

- Tailored to individual users
- Examples: Amazon, Netflix, Youtube,...

- X = set of Customers
- S = set of Items
- Utility function $u: X \times S \rightarrow R$
 - R = set of ratings
 - R is a totally ordered set
 - e.g., 1-5 stars, real number in [0,1]

Utility Matrix										
	Avatar	LOTR	Matrix	Pirates						
Alice	1		0.2							
Bob		0.5		0.3						
Carol	0.2		1							
David				0.4						

Example 9.1: In Fig. 9.1 we see an example utility matrix, representing users' ratings of movies on a 1–5 scale, with 5 the highest rating. Blanks represent the situation where the user has not rated the movie. The movie names are HP1, HP2, and HP3 for $Harry\ Potter\ I$, II, and III, TW for Twilight, and SW1, SW2, and SW3 for $Star\ Wars$ episodes 1, 2, and 3. The users are represented by capital letters A through D.

	HP1	HP2	HP3	TW	SW1	SW2	SW3
\overline{A}	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

Figure 9.1: A utility matrix representing ratings of movies on a 1–5 scale

Key Problems

- (1) Gathering "known" ratings for matrix
 - How to collect the data in the utility matrix
- (2) Extrapolating unknown ratings from the known ones
 - Mainly interested in high unknown ratings
 - We are not interested in knowing what you don't like but what you like
- (3) Evaluating extrapolation methods
 - How to measure success/performance of recommendation methods

(1) Gathering Ratings

Explicit

- Ask people to rate items
- Doesn't work well in practice people don't like being bothered
- Crowdsourcing: Pay people to label items

Implicit

- Learn ratings from user actions
 - E.g., purchase implies high rating
- What about low ratings?

(2) Extrapolating Utilities

- Key problem: Utility matrix U is sparse
 - Most people have not rated most items
 - Cold start:
 - New items have no ratings
 - New users have no history
- Three approaches to recommender systems:
 - 1) Content-based
 - 2) Collaborative filtering
 - 3) Latent factor based

Content-based Recommendations

- Main idea:
 - Items have profiles:
 - Video -> [genre, director, actors, plot, release year]
 - News -> [set of keywords]
 - Recommend items to customer x similar to previous items rated highly by x

Example:

- Movie recommendations
 - Recommend movies with same actor(s), director, genre, ...
- Websites, blogs, news
 - Recommend other sites with "similar" content

Plan of Action **Item profiles** likes build recommend match Red Circles **Triangles User profile**

Item Profiles

- For each item, create an item profile
- Profile is a set (vector) of features
 - Movies: author, title, actor, director,...
 - Text: Set of "important" words in document
- How to pick important features?
 - Usual heuristic from text mining is TF-IDF (Term frequency * Inverse Doc Frequency)
 - Term ... Feature
 - Document ... Item

Sidenote: TF-IDF

 f_{ii} = frequency of term (feature) i in doc (item) j

$$TF_{ij} = \frac{f_{ij}}{\max_k f_{kj}}$$

Note: we normalize TF to discount for "longer" documents

 n_i = number of docs that mention term i

N = total number of docs

$$IDF_i = \log \frac{N}{n_i}$$

TF-IDF score: $w_{ij} = TF_{ij} \times IDF_i$

Doc profile = set of words with highest **TF-IDF** scores, together with their scores

User Profiles and Prediction

- User profile possibilities:
 - Weighted average of rated item profiles
 - Variation: weight by difference from average rating for item
- Prediction heuristic: Cosine similarity of user and item profiles
 - Given user profile \mathbf{x} and item profile \mathbf{i} , estimate $u(\mathbf{x}, \mathbf{i}) = \cos(\mathbf{x}, \mathbf{i}) = \frac{x \cdot \mathbf{i}}{||\mathbf{x}|| \cdot ||\mathbf{i}||}$

Pros: Content-based Approach

- +: No need for data on other users
 - No item cold-start problem, no sparsity problem
- +: Able to recommend to users with unique tastes
- +: Able to recommend new & unpopular items
 - No first-rater problem
- +: Able to provide explanations
 - Can provide explanations of recommended items by listing content-features that caused an item to be recommended

Cons: Content-based Approach

- -: Finding the appropriate features is hard
 - E.g., images, movies, music
- -: Recommendations for new users
 - How to build a user profile?
- –: Overspecialization
 - Never recommends items outside user's content profile
 - People might have multiple interests
 - Unable to exploit quality judgments of other users

Evaluation

Evaluation

Evaluating Predictions

- Compare predictions with known ratings
 - Root-mean-square error (RMSE)
 - $\sqrt{\frac{1}{N}\sum_{xi}(r_{xi}-r_{xi}^*)^2}$ where r_{xi} is predicted, r_{xi}^* is the true rating of x on i
 - N is the number of points we are making comparisons on
 - Precision at top 10:
 - % of relevant items in top 10
- Another approach: 0/1 model
 - Coverage:
 - Number of items/users for which the system can make predictions
 - Precision:
 - Accuracy of predictions
 - Receiver operating characteristic (ROC)
 - Tradeoff curve between false positives and false negatives

Problems with Error Measures

- Narrow focus on accuracy sometimes misses the point
 - Prediction Diversity
 - Prediction Context
 - Order of predictions
- In practice, we care only to predict high ratings:
 - RMSE might penalize a method that does well for high ratings and badly for others

Collaborative Filtering: Complexity

- Expensive step is finding k most similar customers: O(|X|)
- Too expensive to do at runtime
 - Could pre-compute
- Naïve pre-computation takes time O(k · | X |)
 - X ... set of customers
- We already know how to do this!
 - Near-neighbor search in high dimensions (LSH)
 - Clustering
 - Dimensionality reduction

Tip: Add Data

- Leverage all the data
 - Don't try to reduce data size in an effort to make fancy algorithms work
 - Simple methods on large data do best
- Add more data
 - e.g., add IMDB data on genres
- More data beats better algorithms

http://anand.typepad.com/datawocky/2008/03/more-data-usual.html

Exemplo de sistema para avaliar

https://www.kaggle.com/code/rushiekarteekchalla/amazon-product-recommendation-system

Referências Bibliográficas

 Leskovec, J. Rajaraman, A. & Ullman, J. Mining of Massive Datasets, Cambridge University Press, 3rd ed., 2012.