[GOU20]

p. 323

215 Applications différentiables définies sur un ouvert de \mathbb{R}^n . Exemples et applications.

Sauf mention contraire, nous travaillerons sur l'espace vectoriel normé \mathbb{R}^n pour $n \ge 1$. Soient F un espace vectoriel normé sur \mathbb{R} et $U \subseteq \mathbb{R}^n$ un ouvert.

I - Généralisation de la notion de dérivée

1. Différentielle

Définition 1. Soit $(E, \|.\|)$ un espace vectoriel normé sur \mathbb{R} . Soient $U \subseteq E$ ouvert et $f: U \to F$ une application de U dans F. f est dite **différentiable** en un point a de U s'il existe $\ell_a \in \mathcal{L}(E, F)$ telle que

$$f(a+h) = f(a) + \ell_a(h) + o(||h||)$$
 quand $h \longrightarrow 0$

Si ℓ_a existe, alors elle est unique et on la note d f_a : c'est la **différentielle** de f en a.

Remarque 2. — En dimension quelconque df_a dépend a priori des normes choisies sur E et F. Cependant, en dimension finie, l'équivalence des normes implique que l'existence et la valeur de df_a ne dépend pas des normes choisies.

- La définition demande à ℓ_a d'être continue. En dimension finie, le problème ne se pose donc pas.
- Une fonction réelle est différentiable en a si et seulement si elle est dérivable en a. Dans ce cas, on a $df_a : h \mapsto f'(a)h$.

Exemple 3. Si f est linéaire et continue, alors $df_a = f$ pour tout $a \in E$.

Proposition 4. Une fonction différentiable en un point et continue en ce point.

Proposition 5. Soit $V \subseteq F$ un ouvert. Soit $f: U \to F$ différentiable en un point a de U.

- (i) $\forall \lambda \in \mathbb{R}$, λf est différentiable en a, et $d(\lambda f)_a = \lambda df_a$.
- (ii) Si $g: U \to F$ est différentiable en a, alors f + g l'est aussi, et $d(f + g)_a = df_a + dg_a$.
- (iii) Soit $g: V \to G$. On suppose $f(U) \subseteq V$ et g différentiable en f(a). Alors $g \circ f$ est différentiable en a et, $d(f \circ g)_a = dg_{f(a)} \circ df_a$.

2. Dérivée selon un vecteur

Définition 6. Soit $a \in U$.

— Soit $v \in \mathbb{R}^n$. Si la fonction de la variable réelle $\varphi : t \mapsto f(a + tv)$ est dérivable en 0, on dit que f est **dérivable en** a **selon le vecteur** v. On note alors

$$f_v'(a) = \varphi'(0)$$

— Soit $(e_1, ..., e_n)$ la base canonique de \mathbb{R}^n et soit $i \in [1, n]$. On dit que f admet une i-ième dérivée partielle en a si f est dérivable en a selon le vecteur e_i . On note alors

$$\frac{\partial f}{\partial x_i}(a) = f'_{e_i}(a)$$

Remarque 7. Soient $i \in [1, n]$ et $a = (a_1, ..., a_n) \in \mathbb{R}^n$. La dérivée partielle $\frac{\partial f}{\partial x_i}(a)$ est aussi la dérivée de l'application partielle $t \mapsto f(a_1, ..., a_{i-1}, a_i + t, a_{i+1}, ..., a_n)$ en t = 0.

Proposition 8. Une fonction différentiable en un point est dérivable selon tout vecteur en ce point.

Contre-exemple 9. La fonction

$$\mathbb{R}^2 \longrightarrow \mathbb{R}
(x,y) \mapsto \begin{cases} \frac{y^2}{x} & \text{si } x \neq 0 \\ y & \text{sinon} \end{cases}$$

est dérivable selon tout vecteur au point (0,0) mais n'est pas continue en (0,0).

Théorème 10. Si toutes les dérivées partielles de f existent et si elles sont continues en un point a de U, alors f est différentiable en a et on a

$$\mathrm{d}f_a = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(a)e_i^*$$

où $(e_i^*)_{i\in \llbracket 1,n\rrbracket}$ est la base duale de la base canonique $(e_i)_{i\in \llbracket 1,n\rrbracket}$ de \mathbb{R}^n .

p. 324

p. 329

p. 325

Contre-exemple 11. La fonction

$$f: \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ f: (x,y) & \mapsto & \begin{cases} x^2 \sin(\frac{1}{x}) & \sin x \neq 0 \\ 0 & \sin n \end{cases}$$

est différentiable en 0, mais f' n'est pas continue en 0.

Corollaire 12. Soit $f: U \to \mathbb{R}^m$ différentiable en un point $a \in \mathbb{R}^n$. On note par f_i la i-ième coordonnée de $f \ \forall i \in [1, m]$. Alors la matrice de l'application linéaire d f_a dans les bases canoniques de \mathbb{R}^n et \mathbb{R}^m est

$$\operatorname{Jac}(f)_{a} = \left(\frac{\partial f_{i}}{\partial x_{j}}\right)_{\substack{i \in [1, m] \\ j \in [1, n]}}$$

Définition 13. Soit $f: U \to \mathbb{R}^m$ différentiable en un point $a \in \mathbb{R}^n$. La matrice $Jac(f)_a$ est la **jacobienne** de f en a. Son déterminant est le **jacobien** de f en a.

Exemple 14. Soit $f:(r,\theta)\mapsto (r\cos(\theta),r\sin(\theta))$, alors $\det(\operatorname{Jac}(f)_{(r,\theta)})=r$.

Théorème 15 (Inégalité des accroissements finis). Soit $f: U \to F$ continue sur un segment $[a,b] \subseteq U$ et différentiable sur]a,b[. On suppose qu'il existe M>0 tel que $|||ff_c||| \le M$ pour tout $c \in]a,b[$. Alors,

$$||f(b)-f(a)|| \le M ||b-a||$$
 (*)

Corollaire 16. En reprenant les notations du théorème précédent :

- (i) Si U est convexe, si f est différentiable sur U et si $|||df_c||| \le M$ pour tout $c \in U$, alors l'inégalité (*) précédente est vraie pour tout $a, b \in U$.
- (ii) Si U est un ouvert connexe et $\mathrm{d}f_c=0$ pour tout $c\in U$, alors f est constante.

3. Différentielle itérée

Définition 17. Soit $f: U \to F$. Sous réserve d'existence, on peut définir par récurrence sur p une dérivée partielle d'ordre p par la relation

$$\frac{\partial^p}{\partial x_{i_p} \dots \partial x_{i_1}} f = \frac{\partial}{\partial x_{i_p}} \left(\frac{\partial^{p-1}}{\partial x_{i_{p-1}} \dots \partial x_{i_1}} f \right)$$

f est alors dite de classe \mathscr{C}^p si toutes ses dérivées partielles jusqu'à l'ordre p existent et sont

p. 327

p. 354

p. 327

4

continues sur *U*.

Exemple 18. La fonction

$$x \mapsto \begin{cases} e^{-\frac{1}{x}} & \text{si } x > 0\\ 0 & \text{sinon} \end{cases}$$

 $\operatorname{est}\mathscr{C}^{\infty}$.

Théorème 19 (Schwarz). On se place dans la cas n = 2. Soit $f : U \to \mathbb{R}$ qui admet des dérivées partielles sur U, continues en $a \in U$. Alors :

$$\frac{\partial^2 f}{\partial x \partial y}(a) = \frac{\partial^2 f}{\partial y \partial x}(a)$$

Corollaire 20. Soit $f: U \to \mathbb{R}^m$ de classe \mathscr{C}^p . Alors les dérivées partielles jusqu'à l'ordre p ne dépendant pas de l'ordre de dérivation.

Notation 21. Soient $f: U \to \mathbb{R}^m$ de classe \mathscr{C}^k sur U et $n \in [1, k]$. Par analogie avec

$$\forall (a_1, \dots, a_m) \in \mathbb{R}^m, (a_1 + \dots + a_m)^n = \sum_{i_1 + \dots + i_m = n} \frac{n!}{i_1! \dots i_m!} a_1^{i_1} \dots a_m^{i_m}$$

on note

$$\left(\sum_{i=1}^m h_i \frac{\partial f}{\partial x_i}(a)\right)^{(n)} = \sum_{i_1 + \dots + i_m = n} \frac{n!}{i_1! \dots i_m!} h_1^{i_1} \dots h_m^{i_m} \frac{\partial^n}{\partial x_1^{i_1} \dots \partial x_m^{i_m}} f(a)$$

Théorème 22 (Formule de Taylor-Lagrange). Soient $f: U \to \mathbb{R}$ de classe \mathscr{C}^p sur $U, x \in \mathbb{R}^n$, $h = (h_1, ..., h_n) \in \mathbb{R}^n$ tels que $[x, x + h] \subseteq U$. Alors, $\exists \theta \in]0, 1[$ tel que

$$f(x+h) = \sum_{j=0}^{p-1} \frac{1}{i!} \left(\sum_{i=1}^{n} h_i \frac{\partial f}{\partial x_i}(x) \right)^{(j)} + \frac{1}{p!} \left(\sum_{i=1}^{n} h_i \frac{\partial f}{\partial x_i}(x+\theta h) \right)^{(p)}$$

Exemple 23. Pour $f : \mathbb{R}^2 \to \mathbb{R}$ de classe \mathscr{C}^2 , pour $(h, k) \in \mathbb{R}^2$, il existe $\theta \in]0, 1[$ tel que

$$f(h,k) = f(0,0) + h\frac{\partial f}{\partial x}(0,0) + k\frac{\partial f}{\partial y}(0,0)$$
$$+ \frac{1}{2} \left(h^2 \frac{\partial^2 f}{\partial^2 x} f(\theta h, \theta k) + hk \frac{\partial^2 f}{\partial x \partial y} f(\theta h, \theta k) + k^2 \frac{\partial^2 f}{\partial^2 y} f(\theta h, \theta k) \right)$$
$$+ o(\|(h,k)\|^2)$$

p. 79

p. 326

agreg.skyost.eu

Théorème 24 (Formule de Taylor avec reste intégral). Soient $f: U \to \mathbb{R}^p$ de classe \mathscr{C}^k sur U, $x \in \mathbb{R}^n$, $h = (h_1, \dots, h_n) \in \mathbb{R}^n$ tels que $[x, x + h] \subseteq U$. Alors,

$$f(x+h) = \sum_{j=0}^{k-1} \frac{1}{i!} \left(\sum_{i=1}^{n} h_i \frac{\partial f}{\partial x_i}(x) \right)^{(j)} + \int_0^1 \frac{(1-t)^{k-1}}{(k-1)!} \left(\sum_{i=1}^{n} h_i \frac{\partial f}{\partial x_i}(x+th) \right)^{(k)} dt$$

Théorème 25 (Formule de Taylor-Young). Soient $f: U \to \mathbb{R}^p$ de classe \mathscr{C}^k sur $U, x \in \mathbb{R}^n$, $h = (h_1, ..., h_n) \in \mathbb{R}^n$ tels que $[x, x + h] \subseteq U$. Alors,

$$f(x+h) = \sum_{j=0}^{k} \frac{1}{i!} \left(\sum_{i=1}^{n} h_i \frac{\partial f}{\partial x_i}(x) \right)^{(j)} + o(\|h\|^k)$$

Application 26 (Lemme d'Hadamard). Soit $f : \mathbb{R}^n \to \mathbb{R}$ de classe \mathscr{C}^{∞} . On suppose f différentiable en 0 avec $\mathrm{d} f_0 = 0$ et f(0) = 0. Alors,

$$f(x_1,...,x_n) = \sum_{i,j=1}^{n} x_i x_j h_{i,j}(x_1,...,x_n)$$

où $\forall i, j \in [1, n], h_{i,j} : \mathbb{R}^n \to \mathbb{R} \text{ est } \mathscr{C}^{\infty}.$

II - Théorèmes fondamentaux

1. Inversion locale

Définition 27. Soit $f: U \to F$. On dit que f est un **difféomorphisme** de classe \mathscr{C}^k de U sur V = f(U) si f et f^{-1} sont bijectives et de classe \mathscr{C}^k respectivement sur U et V.

[**ROU**] p. 54

Exemple 28. $x \mapsto x^3$ est un homéomorphisme de \mathbb{R} sur \mathbb{R} , de classe \mathscr{C}^1 , mais n'est pas un difféomorphisme.

Théorème 29 (Inversion locale). Soit $f: U \to F$ de classe \mathscr{C}^1 . On suppose qu'il existe $a \in U$ tel que d f_a est inversible.

[**GOU20**] p. 341

Alors, il existe V voisinage de a et W voisinage de f(a) tels que $f_{|V|}$ soit un difféomorphisme de classe \mathscr{C}^1 de V sur W.

Remarque 30. Si $F = \mathbb{R}^n$, d f_a est inversible si et seulement si le jacobien de f en a, det Jac $(f)_a$, est non nul.

Corollaire 31. Soit $f: U \to \mathbb{R}^q$ de classe \mathscr{C}^1 . On suppose que pour tout $a \in U$, $\mathrm{d} f_a$ est inversible. Alors f est une application ouverte.

Exemple 32. L'application de \mathbb{R}^2 dans \mathbb{R}^2 définie par $(x,y) \mapsto (x^2 - y^2, xy)$ est un difféomorphisme de classe \mathscr{C}^{∞} en tout point de $\mathbb{R}^2 \setminus (0,0)$.

p. 347

Application 33. Soit $\varphi: U \to \mathbb{R}^n$ un difféomorphisme de classe \mathscr{C}^1 . Alors, $V = \varphi(U)$ est mesurable et tout fonction f appartient à L_1 si et seulement si $|\det \operatorname{Jac}(\varphi)_a| f \circ \varphi$ appartient à L_1 . Dans ce cas,

[**BMP**] p. 9

$$\int_{V} f(x) dx = \int_{U} |\det \operatorname{Jac}(\varphi)_{a}| f(\varphi(y)) dy$$

Exemple 34. En passant en coordonnées polaires,

[**GOU20**] p. 355

$$\int_{\mathbb{R}} e^{-x^2} \, \mathrm{d}x = \sqrt{\pi}$$

Application 35. Soient $A \in \mathcal{M}_n(\mathbb{R})$ et k un entier. Alors, si A est suffisamment proche de l'identité I_n , A est une racine k-ième (ie. $\exists B \in \mathcal{M}_n(\mathbb{R})$ telle que $B^k = A$).

[BMP] p. 9

Lemme 36. (i) Soit $A \in \mathcal{M}_n(\mathbb{C})$. Alors $\exp(A) \in \mathrm{GL}_n(\mathbb{C})$.

[**I-P**] p. 396

- (ii) exp est différentiable en 0 et d $\exp_0 = id_{\mathcal{M}_n(\mathbb{C})}$.
- (iii) Soit $M \in GL_n(\mathbb{C})$. Alors $M^{-1} \in \mathbb{C}[M]$.

[DEV]

Théorème 37. $\exp: \mathcal{M}_n(\mathbb{C}) \to \mathrm{GL}_n(\mathbb{C})$ est surjective.

Application 38. $\exp(\mathcal{M}_n(\mathbb{R})) = \operatorname{GL}_n(\mathbb{R})^2$, où $\operatorname{GL}_n(\mathbb{R})^2$ désigne les carrés de $\operatorname{GL}_n(\mathbb{R})$.

2. Fonctions implicites

Définition 39. Soient E_1, \ldots, E_n , F des espaces de Banach, $\Omega \subseteq E$ un ouvert où $E = E_1 \times \cdots \times E_n$ et $a = (a_1, \ldots, a_n) \in E$. Soit $f : \Omega \to F$. Alors, pour tout $i \in [1, n]$, $f_i : x \mapsto f(a_1, \ldots, a_{i-1}, x, a_{i+1}, \ldots, a_n)$ est définie sur un voisinage de a_i dans E_i . Si elle est différentiable en a_i , on dit que f admet une **différentielle partielle** d'indice i en a, et on note celle-ci $\partial_i f_a$.

[**GOU20**] p. 344 Remarque 40. En reprenant les notations précédentes :

- Si pour tout $i \in [1, n]$, $E_i = \mathbb{R}$ et $F = E = \mathbb{R}^n$, alors $\partial_i f_a = h \frac{\partial f}{\partial x_i}(a)$.
- Si f est différentiable en a, alors pour tout $i \in [1, n]$, $\partial_i f_a$ existe et

$$\forall h = (h_1, \dots, h_n) \in E, df_a(h) = \sum_{i=1}^n \partial_i f_a(h_i)$$

Théorème 41 (des fonctions implicites). Soient $U \times V \subseteq \mathbb{R}^n \times \mathbb{R}^m$ où U et V sont des ouvertes. Soit $f: U \times V \to F$ de classe \mathscr{C}^1 . On suppose qu'il existe $(a,b) \in U \times V$ tel que f(a,b) = 0 et $\partial_2 f_{(a,b)} : \mathbb{R}^m \to F$ est un isomorphisme. Alors, il existe :

- Un voisinage ouvert U_0 de a dans U.
- Un voisinage ouvert W de f(a, b).
- Un voisinage ouvert Ω de (a, b) dans $U \times V$.
- Une fonction $\varphi: U_0 \times W \to V$ de classe \mathscr{C}^1 .

Vérifiant:

$$\forall x \in U_0, \forall z \in W, \exists ! y \in V \text{ tel que } f(x, y) = z \text{ avec } (x, y) \in \Omega \text{ et } y = \varphi(x, z)$$

En particulier,

$$\forall (x,z) \in U_0 \times W, f(x,\varphi(x,z)) = z$$

Remarque 42. Avec les notations précédentes, si $E=F=\mathbb{R}$, on peut choisir n'importe quelle variable pour obtenir

$$y = \varphi(x)$$
 si $\frac{\partial f}{\partial y}(a, b) \neq 0$ ou $x = \varphi(y)$ si $\frac{\partial f}{\partial y}(a, b) \neq 0$

Remarque 43. La signification de ce théorème est que la surface définie implicitement par l'équation f(x, y) = 0 peut, au moins localement, être vue comme le graphe d'une fonction φ .

Proposition 44. Avec les notations précédentes, la différentielle de la fonction implicite φ est donnée par :

$$\mathrm{d}\varphi_x = -(\partial_2 f_{(x,\varphi(x))})^{-1} \circ (\partial_1 f_{(x,\varphi(x))})$$

Exemple 45. Pour l'équation $x^2 + y^2 - 1 = 0$, on a $\partial_2 f_{(x,y)} = 2y$. On exclue les points où y = 0. En prenant (0,1) et (0,-1) pour points de départ, on a deux fonctions implicites qui correspondent aux demi-cercles supérieur et inférieur :

$$- y = \varphi_1(x) = \sqrt{1 - x^2}.$$

[**BMP**] p. 11

[**ROU**] p. 193

-
$$y = \varphi_2(x) = -\sqrt{1-x^2}$$
.

De plus, en dérivant par rapport à x: 2x + 2yy' = 0 et, $y' = \varphi_1'(x) = \frac{-x}{y}$.

III - Application aux fonctions à valeurs dans $\mathbb R$

1. Gradient, hessienne

Soit $f: U \to \mathbb{R}$ une application différentiable en un point a de U.

[**GOU20**] p. 324

Définition 46. d f_a est une forme linéaire, et le théorème de représentation de Riesz donne l'existence d'un unique vecteur v de \mathbb{R}^n tel que

$$\forall h \in \mathbb{R}^n$$
, $\mathrm{d}f_a(h) = \langle v, h \rangle$

Le vecteur v s'appelle **gradient** de f, et est noté ∇f_a .

Proposition 47. $\frac{\partial f}{\partial x_i}$ existe pour tout $i \in [1, n]$ et,

$$\nabla f_a = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(a) e_i$$

où (e_1, \ldots, e_n) est la base canonique de \mathbb{R}^n .

On suppose pour la suite f de classe \mathscr{C}^2 .

p. 336

Définition 48. La matrice **hessienne** de f en a, notée $\operatorname{Hess}(f)_a$, est définie par

$$\operatorname{Hess}(f)_{a} = \left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right)_{i,j \in [1,n]}$$

Remarque 49. Pour f de classe \mathscr{C}^2 , $\operatorname{Hess}(f)_a$ est symétrique.

Théorème 50. On suppose $df_a = 0$ (a est un **point critique** de f). Alors :

- (i) Si f admet un minimum (resp. maximum) relatif en a, Hess $(f)_a$ est positive (resp. négative).
- (ii) Si $\operatorname{Hess}(f)_a$ définit une forme quadratique définie positive (resp. définie négative), f admet un minimum (resp. maximum) relatif en a.

Exemple 51. On suppose $df_a = 0$. On pose $(r, s, t) = \left(\frac{\partial^2}{\partial x_i \partial x_j} f\right)_{i+j=2}$. Alors:

- (i) Si $rt s^2 > 0$ et r > 0 (resp. r < 0), f admet une minimum (resp. maximum) relatif en a.
- (ii) Si $rt s^2 < 0$, f n'a pas d'extremum en a.
- (iii) Si $rt s^2 = 0$, on ne peut rien conclure.

Exemple 52. La fonction $(x, y) \mapsto x^4 + y^2 - 2(x - y)^2$ a trois points critiques qui sont des minimum locaux : (0,0), $(\sqrt{2}, -\sqrt{2})$ et $(-\sqrt{2}, \sqrt{2})$.

Contre-exemple 53. $x \mapsto x^3$ a sa hessienne positive en 0, mais n'a pas d'extremum en 0.

2. Homéomorphismes

Lemme 54. Soit $A_0 \in \mathscr{S}_n(\mathbb{R})$ inversible. Alors il existe un voisinage V de A_0 dans $\mathscr{S}_n(\mathbb{R})$ et une application $\psi : V \to \mathrm{GL}_n(\mathbb{R})$ de classe \mathscr{C}^1 telle que

$$\forall A \in V, A = {}^t\psi(A)A_0\psi(A)$$

[DEV]

Lemme 55 (Morse). Soit $f: U \to \mathbb{R}$ une fonction de classe \mathscr{C}^3 (où U désigne un ouvert de \mathbb{R}^n contenant l'origine). On suppose :

- $df_0 = 0$.
- La matrice symétrique $H(f)_0$ est inversible.
- La signature de $H(f)_0$ est (p, n-p).

Alors il existe un difféomorphisme $\phi = (\phi_1, ..., \phi_n)$ de classe \mathscr{C}^1 entre deux voisinage de l'origine de \mathbb{R}^n $V \subseteq U$ et W tel que $\varphi(0) = 0$ et

$$\forall x \in U, f(x) - f(0) = \sum_{k=1}^{p} \phi_k^2(x) - \sum_{k=p+1}^{n} \phi_k^2(x)$$

Exemple 56. On considère $f:(x,y)\mapsto x^2-y^2+\frac{y^4}{4}$. La courbe d'équation

$$f(x,y)=0$$

est (au changement près du nom des coordonnées) une projection de l'intersection d'un cylindre et d'une sphère tangents. On a

$$f = u^2 - v^2$$

p. 334

p. 209

p. 354

avec
$$u:(x,y)\mapsto x$$
 et $v:(x,y)\mapsto y\sqrt{1-\frac{y^2}{4}}$.

3. Optimisation

Théorème 57 (Extrema liés). Soit U un ouvert de \mathbb{R}^n et soient $f, g_1, \ldots, g_r : U \to \mathbb{R}$ des fonctions de classe \mathscr{C}^1 . On note $\Gamma = \{x \in U \mid g_1(x) = \cdots = g_r(x) = 0\}$. Si $f_{\mid \Gamma}$ admet un extremum relatif en $a \in \Gamma$ et si les formes linéaires $d(g_1)_a, \ldots, d(g_r)_a$ sont linéairement indépendantes, alors il existe des uniques $\lambda_1, \ldots, \lambda_r$ tels que

[GOU20] p. 337

$$\mathrm{d}f_a = \lambda_1 \mathrm{d}(g_1)_a + \dots + \lambda_r \mathrm{d}(g_r)_a$$

Définition 58. Les $\lambda_1, \dots, \lambda_r$ du théorème précédent sont appelés appelés **multiplicateurs** de Lagrange.

Remarque 59. La relation finale du Théorème 57 équivaut à

[**BMP**] p. 21

$$\bigcap_{i=1}^{n} \operatorname{Ker}(\operatorname{d}(g_i)_a) \subseteq \operatorname{Ker}(\operatorname{d}f_a)$$

et elle exprime que d f_a est nulle sur l'espace tangent à Γ en a (ie. ∇f_a est orthogonal à l'espace tangent à Γ en a).

Contre-exemple 60. On pose $g:(x,y)\mapsto x^3-y^2$ et on considère $f:(x,y)\mapsto x+y^2$. On cherche à minimiser f sous la contrainte g(x,y)=0.

Alors, le minimum (global) de f sous cette contrainte est atteint en (0,0), la différentielle de g en (0,0) est nulle et la relation finale du Théorème 57 n'est pas vraie.

Application 61 (Théorème spectral). Tout endomorphisme symétrique d'un espace euclidien se diagonalise dans une base orthonormée.

Application 62.

p. 35

$$SO_n(\mathbb{R}) = \left\{ M \in \mathcal{M}_n(\mathbb{R}) \mid ||M||^2 = \inf_{P \in SL_n(\mathbb{R})} ||P||^2 \right\}$$

où $\|.\|: M \to \sqrt{\operatorname{trace}({}^t M M)}$ (ie. $\operatorname{SO}_n(\mathbb{R})$ est l'ensemble des matrices de $\operatorname{SL}_n(\mathbb{R})$ qui minimisent la norme euclidienne canonique de $\mathcal{M}_n(\mathbb{R})$).

[**GOU20**] p. 339

Application 63 (Inégalité arithmético-géométrique).

$$\forall (x_1, \dots, x_n) \in (\mathbb{R}^+)^n, \left(\prod_{i=1}^n x_i\right)^{\frac{1}{n}} \le \frac{1}{n} \sum_{i=1}^n x_i$$

Application 64 (Inégalité d'Hadamard).

[**ROU**] p. 409

$$\forall (x_1, ..., x_n) \in \mathbb{R}^n, \det(x_1, ..., x_n) \le ||x_1|| ... ||x_n||$$

avec égalité si et seulement si $(x_1, ..., x_n)$ est une base orthogonale de \mathbb{R}^n .

Annexes

FIGURE 1 – Inversion locale.

FIGURE 2 – Fonctions implicites.

[BMP] p. 10

Bibliographie

Objectif agrégation [BMP]

Vincent Beck, Jérôme Malick et Gabriel Peyré. *Objectif agrégation*. 2^e éd. H&K, 22 août 2005. https://objectifagregation.github.io.

Les maths en tête [GOU20]

Xavier Gourdon. Les maths en tête. Analyse. 3e éd. Ellipses, 21 avr. 2020.

https://www.editions-ellipses.fr/accueil/10446-les-maths-en-tete-analyse-3e-edition-9782340038561.html.

L'oral à l'agrégation de mathématiques

[I-P]

Lucas Isenmann et Timothée Pecatte. *L'oral à l'agrégation de mathématiques. Une sélection de développements.* 2^e éd. Ellipses, 26 mars 2024.

Petit guide de calcul différentiel

[ROU]

François Rouvière. *Petit guide de calcul différentiel. à l'usage de la licence et de l'agrégation.* 4° éd. Cassini, 27 fév. 2015.

 $\verb|https://store.cassini.fr/fr/enseignement-des-mathematiques/94-petit-guide-de-calcul-differentiel-4e-ed.html|.$