RAPPORT D'AVANCEMENT

PSPID

Projet exemplaire à plus d'un titre

rédigé par :

Jojo Lafritte Zaza Lasalade Gudule Lembrouille Gaston Letelefon

sous la direction de :

Olivier Reynet

Sommaire

4 SOMMAIRE

Remerciements

La gratitude est non seulement la plus grande des vertus, mais c'est également la mère de tous les autres.

Emil Cioran

Je tiens à remercier tous les contributeurs de LATEXqui nous permettent aujourd'hui de produire des documents de qualité professionnelle sans avoir à se préoccuper de son apparence : des livres, des articles, des mémentos dans presque toutes les langues, mais aussi de la musique et des dessins. Ce logiciel ne connaît pas de limites.

Préambule

Le chemin est long du projet à la chose.

Molière

0.1 Comment compiler ce document?

Un document La Texpeut se compiler au travers d'un IDE (TexSutdio, TexMaker par exemple). Le répertoire de ce document contient également un Makefile qui permet de compiler simplement en ligne de commande. La fabrication du glossaire et de l'index est prise en charge par ce Makefile. Pour l'utiliser, il suffit d'ouvrir un terminal, de se placer dans le répertoire du document puis d'invoquer la commande make.

Voici les différentes cibles disponibles pour ce Makefile :

```
make
                     - contruit le document
make all
                    - contruit le document
make index
                    - contruit l'index
make glossaire
                    - contruit le glossaire
                    - contruit la bibliographie
make bib
                    - contruit le document PDF
make pdf
                    - supprime les fichiers LaTeX intermédiaires
make clean
make clean-all
                    - supprime tous les fichiers générés par la compilation
make help
                    - cette information
```

0.2 Références internes

Les références internes sont des renvois vers des figures, des tableaux ou des sections du rapport. La Texintroduit un mécanisme simple pour établir ce genre de référence, via les commandes \label et \ref. La première sert à définir une ancre dans le document, la seconde à la citer. Voici par exemple une référence interne vers la section intitulée Approche Top-Down (cf. section ??). Ce renvoi est le résultat de la commande \ref{sec:top-down}. Si vous vous rendez dans le corps de cette section, vous y trouverez le label en question \label{sec:top-down}.

iv PRÉAMBULE

0.2.1 Tableaux et figures

Les figures et les tableaux sont référencés de la même la manière (cf. figure ?? et tableau ??).

Algorithmes	Performance (s)	Gain (dB)
Algorithme 1	0.0003262	0.562
Algorithme 2	0.0015681	0.910
Algorithme 3	0.0009271	0.296

Table 1 – Performances et gains des algorithmes envisagés.

FIGURE 1 – Gömböc : un objet homogène tridimensionnel mono-monostatique. (source : Wikipedia)

0.2.2 Codes

Si vous souhaitez insérer du code dans votre rapport, invoquez les commandes : \lstset{language=python}

\lstinputlisting[caption={Titre du listing}, label={lst:code}]{./code/code.py}

La première commande sélectionne le langage, pour que les mots clés de celui-ci soient correctement détectés et mis en valeur. La seconde commande permet d'insérer le code contenu dans le fichier code.py qui se trouve dans le sous-répertoire code. Pour faire référence au code, il suffit de sélectionner le label du listing ??, comme pour les figures et les tableaux.

```
for p in iter_primes():
    if p > 1000:
        break
    print p
```

16

Listing 1 – Titre du listing

0.2.3 Index et glossaire

Pour insérer des entrées dans l'index, il suffit de déclarer des mots via la commande \index{Fabrication d'un index} comme suit 1.

Pour utiliser le glossaire, il faut définir les termes dans le fichier glossaire.tex en utilisant la commande \newacronym{label}{abbréviation}{Signification}. Puis, \gls{label} permet de les utiliser dans le document.

Par exemple, les UVs 3.4 et 4.4 sont une initiation à l'Ingénierie Système (IS). Un concept de gestion de projet souvent mal connu est le Work Breakdown Structure (WBS).

0.3 Références bibliographiques

Les références bibliographiques sont des documents numériques, des livres, des articles, des images ou des vidéos qui ne sont pas présents dans le rapport. LATEX propose un mécanisme simple de citation. Pour plus de détails, vous pouvez consulter les références suivantes [?, ?, ?] qui sont présentent à la médiathèque de l'ENSTA Bretagne, ou celle-ci directement sur le web [?].

Pour citer des documents, il suffit d'appeler la commande \cite{key} en choisissant la clé qui identifie le document, comme suit : [?]. Cette clé de citation est celle qui référence l'ouvrage dans le fichier de bibliographie intitulé bibliographie.bib. Ce fichier d'exemple contient tous les types de documents dont vous aurez besoin : livre, article de journal, références web, rapport...Une fois insérée et compilée, la citation devient un lien dans le fichier pdf, redirigeant ainsi directement vers le détail de l'ouvrage cité dans la bibliographie située à la fin du document.

^{1.} Allez donc voir l'index ?? à la fin du document!

vi PRÉAMBULE

Première partie Introduction au projet

Formulation initiale du projet

1.1 Contexte

BeeHive Monitoring System (BMONS) est un projet qui a pour but d'aider les apiculteurs. Il s'agit de leur proposer un système de surveillance et de détection peu onéreux afin de prodiguer les meilleurs soins au meilleur moment aux ruches qui en ont besoin et d'éviter les vols.

En effet, les abeilles sont vitales à l'équilibre écologique. Einstein avait même dit : " Si l'abeille disparaît, l'humanité en a pour quatre ans à vivre ". Sans elles 84

Pour aider à la résolution de ce problème, nous voulons donc créer un système capable d'aider l'apiculteur dans son travail et de ce fait combattre la disparition des abeilles.

1.2 Expression initiale du besoin

Après avoir discuté avec plusieurs apiculteurs, nous avons pu identifier leurs besoins et déterminer de quelle manière nous pouvons les aider. Ainsi l'objectif de ce système est tout d'abord de donner accès à l'apiculteur à des informations clés sur la ruche sans que celui-ci n'ai à se déplacer, ni à ouvrir les ruches. En effet l'ouverture de la ruche perturbe les abeilles et elle n'est pas possible en hiver à cause des températures trop basses. De plus les ruches sont souvent disposées dans des ruchers éloignés les uns des autres, ce qui complique le travail de l'apiculteur. Les informations nécessaires seraient : la température dans et en dehors de la ruche, le poids, l'humidité et les sons de la ruches. Mais le système devra aussi alerter l'apiculteur quand la sécurité de la ruche est compromise, pour permettre une action rapide destinée à sauver la colonie.

Le système BMONS est donc composé de deux parties distinctes. La première consiste en un élément embarqué dans la ruche qui consomme un minimum d'énergie et qui mesure les paramètres clés. Les données de cet élément embarqué sont transmises à un serveur via un transmetteur sans fils à un serveur qui constitue la deuxième partie du système. Il donne accès à l'apiculteur aux différentes mesures effectuées dans et autour des ruches. Il envoie également des alertes de sécurités à l'apiculteur si besoin.

État de l'art

En effectuant nos recherches sur le sujet nous avons trouvé beaucoup d'informations sur les abeilles et le travail des apiculteurs en général, ainsi que des systèmes "maison" développés par des particuliers pour surveiller un peu mieux leurs ruches. Cependant nous avons également découvert l'existence de quatre projets similaires au notre : trois projets en cours ayant une approche OpenSource et un projet commercial déjà développé. Ce dernier appartient à la société anglaise Arnia. Ce système est décrit [CF SITE] comme permettant à l'utilisateur d'avoir des informations sur une ou plusieurs ruches telles que la température, l'humidité et l'intensité acoustique dans la ruche ainsi que la température du couvain. Les apiculteurs peuvent ensuite visualiser ces informations sur une partie sécurisée du site internet d'arnia. Ils peuvent également comparer les informations et évolution d'une ou plusieurs ruches, comme on peut le voir sur la figure XXX.

IMAGE

L'un des projets OpenSource est développé par Ken Meyer sur le site hackaday [CF SITE] et consiste à mesurer la température, l'humidité et le poids d'une ruche. Ce projet est encore en développement et plusieurs prototypes ont déjà été testés.

Il existe également un autre projet OpenSource sur le sujet. Il s'agit de Bzzz[CF SITE], développé par le Fablab de Lannion. Ce système propose une supervision de la température intérieure, de la luminosité extérieure et la masse d'une seule ruche via un envoi de données périodique par SMS et par visualisation des données sur un portail en ligne. L'utilisateur pourra également configurer des alertes via le portail.

Enfin le dernier système existant que nous avons trouvé a été développé conjointement par le Fablab de Barcelone et Open Tech Collaborative, Denver, USA [CF SITE]. Ce projet OpenSource, appelé Open Source BeeHive, ne s'adapte pas aux ruches classiques mais propose une architecture simple qui permet de construire sa propre ruche entièrement, comme on peut le voir sur la figure XXX.

IMAGE

Ensuite un kit de capteurs à installer permet de mesurer la température, l'humidité, l'intensité acoustique et le nombre d'abeilles via un capteur infrarouge. Les données seront ensuite visibles de tous sur la plateforme Smart Citizen.

Nous n'avons pas détaillé ici tous les projets que nous avons trouvés du fait de leur grand nombre. Cependant nous nous sommes intéressés à ceux qui présentaient un intérêt pour le système que nous voulons développer.

Deuxième partie Dossier fonctionnel

Ingénierie des exigences

- 3.1 Approche Top-Down
- 3.2 Approche Bottom-Up
- 3.3 Fonctions principales du système

Les fonctions principale, services et contraintes du système sont regroupées dans ce diagramme pieuvre. Les buts et les contraintes imposées au système y sont également représentés.

!!! diagPieuvre!!!

Spécification fonctionnelle 3 axes

4.1 Raffinement FAST

Le diagramme FAST regroupe les fonctions techniques globales définies dans les exigences ainsi que leur raffinements en sous fonctions et les solutions technique associées a celles-ci. Il a évolué au cours du projet en fonction des autres documents d'ingénierie système et des solutions techniques retenues.

!!! image du fast!!!

4.2 Spécification des données

La spécification des données permet de mettre à jour les différentes grandeurs et unités intervenant dans notre système. Grâce à cela, nous savons exactement quel type donnée traiter et envoyer à l'apiculteur et/ou au serveur en fonction des évènements.

!!! image de spécification des données!!!

4.3 Spécification des comportements

Nous allons ici décrire le fonctionnement de notre système. Il est résumé dans la figure XXX.

Figure

Les capteurs mesurent plusieurs critères : l'humidité, la température et le poids de la ruche. Les données sont ensuite transmises au système embarqué. Dès que le système embarqué les reçoit, il traite les données, sélectionne celles qui sont valides et les envoi au serveur soit par le réseau sans fil, soit par le réseau téléphone si besoin. Une fois que le serveur reçoit les données, elles sont traitées et stockées dans une base de données sécurisée. Une représentation sous forme de graphiques permet une vision pratique et exploitable des informations par l'apiculteur.

Quand les mesures effectuées dépassent certain critères. Par exemple, si la température est plus hausse que la température maximum pour la ruche, le serveur va générer un alerte qui sera envoyée à l'utilisateur, c'est-à-dire l'apiculteur, par SMS ou par e-mail. Par ailleurs, les apiculteurs peuvent consulter l'état de la ruche

à distance afin de bien gérer la productivité de la ruche ou de limiter les situations problématiques.

Chapitre 5 Architecture fonctionnelle

Troisième partie Organisation

Méthodes de travail

Méthodes de travail Organisation temporelle, spatiale, humaine interactions des membres de l'équipe projet interactions avec les encadrants interactions avec les tiers

Outils pour les échanges

Quels sont les outils qui nous permettent de travailler ensemble?

Répartition des tâches dans le temps

WBS et diagramme de Gantt

Quatrième partie Journal du projet

Choix et justifications

détails techniques et justification du choix des architectures cheminement du projet, évolution

Chapitre 10

Résultats et analyses

analyse des tests et des performances analyse des échecs, des décalages et des retards Que reste-t-il à faire? Comment ?

Chapitre 11

Conclusion

Cinquième partie Annexes

Annexe A Première annexe

Annexe B Deuxième annexe

Annexe C

Troisième annexe