Specification and Verification of Multi-Paxos

Saksham Chand, Stony Brook University 11/15/2019

- Distributed system = Processes + Communication Channel
- Processes communicate by message-passing

- **Distributed system** = Processes + Communication Channel
- Processes communicate by message-passing
- Processes may crash

- Distributed system = Processes + Communication Channel
- Processes communicate by message-passing
- Processes may crash and later recover

- **Distributed system** = Processes + Communication Channel
- Processes communicate by message-passing
- Processes may crash and later recover
- Messages may get lost

- Distributed system = Processes + Communication Channel
- Processes communicate by message-passing
- Processes may crash and later recover
- Messages may get lost, duplicated

- Distributed system = Processes + Communication Channel
- Processes communicate by message-passing
- Processes may crash and later recover
- Messages may get lost, duplicated, received out-of-order

- Distributed system = Processes + Communication Channel
- Processes communicate by message-passing
- Processes may crash and later recover
- Messages may get lost, duplicated, received out-of-order, or delayed indefinitely

The Problem of Consensus

• Single-value Consensus: Processes need to agree on a single value

The Problem of Consensus

Multi-value Consensus: Processes need to agree on a sequence of values

Properties for consensus algorithms[†]

Safety: At most a single value is chosen

$$\forall v_1, v_2 \in Values: Chosen(v_1) \land Chosen(v_2) \Rightarrow v_1 = v_2$$

- Liveness: Under some stable conditions, a value is eventually chosen.
 - [FLP]* result states that in general consensus cannot be solved in an asynchronous system where even one process can fail. Thus, liveness is subject to some stable conditions.

Presented for single-value consensus

^{*[}FLP]Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. 1985. Impossibility of distributed consensus with one faulty process. J. ACM 32, 2 (April 1985), 374-382. DOI=http://dx.doi.org/10.1145/3149.214121

Famous consensus algorithms

		Name	Description	Language used			
	1	VS-ISIS	Reliable group communication, Birman-Joseph 1987	English (items)			
	2	VS-ISIS2	Virtual synchrony, Birman-Joseph 1987	English			
Group	3	EVS	Extended Virtual Synchrony for network partition, Amir	pseudocode			
Membership			et al 1995	p. 1.0			
	4	Paxos-VS	Virtually synchronous Paxos, Birman-Malkhi-van Reness	pseudocode			
			2012				
	5	VR	Viewstamped replication, Oki-Liskov 1988	pseudocode (coarse)			
Primary-Backup	6	VR-Revisit	VR revisited, Liskov 2012	English (items)			
	7	Paxos-Synod	Paxos in part-time parliament, Lamport 1998	TLA (single-value)			
DAYOS	8	Paxos-Basic	Single-value Paxos, Lamport 2001	English (items)			
	9	Paxos-Fast	Single-value Paxos with replicas proposing, Lamport 2006	English (items),			
PAXOS				TLA+			
	10	Paxos-	Single-value Paxos with external starting of leader elec-	PlusCal			
		Vertical	tion, Lamport-Malkhi-Zhou 2009				
Fallons	11	ACT	Single-value consenus with failure detection, Aguilera-	pseudocode			
Failure			Chen-Toueg 2000				
Detectors /	12	ACT-Store	ACT with stable storage, same reference as above	pseudocode			

Paxos at a high-level

- Assigns 2 roles to processes:
 - Proposer, P. Propose values that can be chosen
 - Acceptor, A: Vote on proposed values
- Assumes a Quorum set, $\mathscr{Q} \subseteq \mathbf{P}(\mathscr{A})$ such that $\forall Q_p, Q_2 \subseteq \mathscr{Q}: Q_1 \cap Q_2 \neq \varnothing$
- 2 phase voting based algorithm:

Lamport's English description of Paxos[†]

Putting the actions of the proposer and acceptor together, we see that the algorithm operates in the following two phases.

- **Phase 1.** (a) A proposer selects a proposal number n and sends a *prepare* request with number n to a majority of acceptors.
- (b) If an acceptor receives a *prepare* request with number n greater than that of any prepare request to which it has already responded, then it responds to the request with a promise not to accept any more proposals numbered less than n and with the highest-numbered proposal (if any) that it has accepted.
- **Phase 2.** (a) If the proposer receives a response to its *prepare* requests (numbered n) from a majority of acceptors, then it sends an accept request to each of those acceptors for a proposal numbered n with a value v, where v is the value of the highest-numbered proposal among the responses, or is any value if the responses reported no proposals.
- (b) If an acceptor receives an accept request for a proposal numbered n, it accepts the proposal unless it has already responded to a prepare request having a number greater than n.

Lamport, L. (2001). Paxos made simple. ACM Sigact News, 32(4), 18-25.

Paxos in TLA+ by Lamport et al.[†]

```
/\ \sim E m \sin sgs : (m.type = "2a") / (m.bal = b)
                                                                       /\ \E v \in Values :
Phase1a(b) == / ~ \E m \in msgs : (m.type = "1a") / (m.bal = b)
                                                                            /\ \E Q \in Quorums :
              /\ Send([type |-> "1a", bal |-> b])
                                                                                \E S \in SUBSET {m \in msgs : (m.type = "1b") /\ (m.bal = b)} :
              /\ UNCHANGED <<maxVBal, maxBal, maxVal>>
                                                                                   /\ \ A = \sin Q : E m \sin S : m.acc = a
                                                                                   \/ \E c \in 0..(b-1):
Phase1b(a) ==
                                                                                           /\ \A m \in S : m.maxVBal =< c
 \E m \in msgs :
                                                                                           /\ E m \sin S : /\ m.maxVBal = c
    /\ m.type = "1a"
                                                                                                          /\ m.maxVal = v
    /\ m.bal > maxBal[a]
                                                                            /\ Send([type |-> "2a", bal |-> b, val |-> v])
    /\ Send([type |-> "1b", bal |-> m.bal, maxVBal |-> maxVBal[a]
                                                                       /\ UNCHANGED <<maxBal, maxVBal, maxVal>>
               maxVal |-> maxVal[a], acc |-> a])
    /\ maxBal' = [maxBal EXCEPT ![a] = m.bal]
                                                                     Phase2b(a) ==
     /\ UNCHANGED <<maxVBal, maxVal>>
                                                                       \E m \in msgs :
                                                                         /\ m.type = "2a"
                                                                         /\ m.bal >= maxBal[a]
                                                                         /\ Send([type |-> "2b", bal |-> m.bal, val |-> m.val, acc |-> a])
```

Phase2a(b) ==

/\ maxVBal' = [maxVBal EXCEPT ![a] = m.bal]
/\ maxBal' = [maxBal EXCEPT ![a] = m.bal]
/\ maxVal' = [maxVal EXCEPT ![a] = m.val]

[†]Lamport, L., Merz, S., Doligez, D.: A TLA+ specification of the Paxos Consensus algorithm

https://github.com/tlaplus/v1-tlapm/blob/master/examples/paxos/Paxos.tla (Last modified Fri Nov 28 10:39:17 PST 2014 by Lamport. Accessed Feb 6, 2018)

Moving forward

• What's done:

Formal specification with proof of safety of the exact phases of *single*-value Paxos in a general, high-level direct language like TLA+

What's lacking:

Formal specification with proof of safety of the exact phases of *multi*-value Paxos (also called Multi-Paxos) in a general, high-level direct language like TLA+

Formal Verification **Multi-Paxos** for Distributed Consensus⁺

Contributions

- Complete formal specification of Multi-Paxos in TLA+, minimally extending Lamport at al.'s specification for single-value Paxos.
- Machine-checked proof of safety, using TLA Proof System (TLAPS), with complete invariants, and a systematic proof method.
- Extending the specification and proof with Preemption, showing method for extending existing specification and proof.

Specification

- Minimally extends Lamport et al.'s specification for single-value consensus
- Adds slots to become multi. For example,
 - \circ Before: Propose value v
 - After: Propose $\langle \text{value, slot} \rangle$ pairs: $\langle v_1, \mathbf{3} \rangle, \langle v_2, \mathbf{5} \rangle, \langle v_3, \mathbf{10} \rangle, \dots$
- Changes
 - Scalars → Vectors
 - apples = $5 \Rightarrow$ apples = $\langle 1, 2, 2 \rangle$
 - Sets of scalars → Sets of vectors
 - apples = {fuji, gala, honeycrisp} → apples = {\langle fuji, 1\rangle, \langle gala, 2\rangle, \langle honeycrisp, 2\rangle}
 - Records of scalars → Records of sets of vectors
 - [apples \mapsto 5] \Rightarrow [apples \mapsto { \langle fuji, 1 \rangle , \langle gala, 2 \rangle , \langle honeycrisp, 2 \rangle }]

Phase1a

Basic Paxos	Multi-Paxos
$Phase1a(b \in \mathcal{B}) \triangleq$	$Phase1a(p \in \mathcal{P}) \triangleq \exists b \in \mathcal{B} :$
$\wedge \nexists m \in msgs : \wedge m.type = "1a"$	$\land \nexists m \in msgs : \land m.type = "1a"$
$\wedge m.bal = b$	$\wedge m.bal = b$
$\land Send([type \mapsto "1a",$	$\land Send([type \mapsto "1a", from \mapsto p,$
$bal \mapsto b])$	$bal \mapsto b])$
	$\wedge pBal' = [pBal \text{ EXCEPT } ! [p] = b]$
\land UNCHANGED $\langle maxVBal, maxBal, maxVal \rangle$	\land UNCHANGED $\langle aBal, aVoted \rangle$

Phase1b

Basic Paxos	Multi-Paxos
$Phase1b(a \in \mathcal{A}) \triangleq$	$Phase1b(a \in \mathcal{A}) \triangleq$
$\exists m \in msgs$:	$\exists m \in msgs$:
$\wedge m.type = $ "1a"	$\wedge m.type = "1a"$
$\land m.bal > maxBal[a]$	$\land m.bal > aBal[a]$
$\land Send([type \mapsto "1b",$	$\land Send([type \mapsto "1b",$
$acc \mapsto a$,	$from \mapsto a,$
$bal \mapsto m.bal,$	$bal \mapsto m.bal,$
$maxVBal \mapsto maxVBal[a],$	$voted \mapsto aVoted[a]])$
$maxVal \mapsto maxVal[a]])$	
$\land maxBal' = [maxBal \ \texttt{EXCEPT} \ ![a] = m.bal]$	$\wedge aBal' = [aBal \ \textbf{except} \ ![a] = m.bal]$
\land Unchanged $\langle maxVBal, maxVal \rangle$	\land Unchanged $\langle pBal, aVoted \rangle$

```
Basic Paxos
Phase2a(b \in \mathcal{B}) \triangleq
\wedge \nexists m \in msqs : \wedge m.type = "2a"
                      \wedge m.bal = b
\land \exists v \in V :
   \land \exists \ Q \in Q, S \subseteq \dagger \{m \in msgs : m.type = \text{``1b''} \land \}
       m.bal = b:
       \land \forall \ a \in Q : \exists \ m \in S : m.acc = a
      \land \lor \forall m \in S : m.maxVBal = -1
          \forall \exists c \in 0..(b-1):
              \land \forall m \in S : m.maxVBal < c
              \land \exists m \in S : (m.maxVBal = c)
                     \wedge m.maxVal = v
   \land Send([type \mapsto "2a", bal \mapsto b, val \mapsto v])
\land UNCHANGED \langle maxBal, maxVBal, maxVal \rangle
```

```
Multi-Paxos
Phase2a(p \in \mathcal{P}) \triangleq
\wedge \nexists m \in msqs : \wedge m.type = "2a"
                     \wedge m.bal = pBal[p]
\land \exists Q \in Q, S \subseteq \{m \in msgs: m.type = \text{``1b''}\land
   m.bal = pBal[p]:
   \land \forall \ a \in Q : \exists \ m \in S : m.from = a
   \land Send([type \mapsto "2a",
      from \mapsto p,
      bal \mapsto pBal[p],
      propSV \mapsto PropSV(UNION
          \{m.voted : m \in S\}\}
```

 \land UNCHANGED $\langle pBal, aBal, aVoted \rangle$

Basic Pax $Phase2a($ $\wedge \nexists m \in n$
∧Send ∧UNCHAN

Basic Paxos	Multi-Paxos
$Phase2a(b \in \mathcal{B}) \triangleq$	$Phase2a(p \in \mathcal{P}) \triangleq$
$\wedge \nexists m \in msgs : \wedge m.type = "2a"$	$\wedge \nexists m \in msgs : \wedge m.type = "2a"$
$\wedge m.bal = b$	$\wedge m.bal = pBal[p]$
$\land \exists v \in \mathcal{V}$:	
$\land \exists \ Q \in \mathbf{Q}, S \subseteq^{\dagger} \{ m \in msgs : m.type = \text{``1b''} \land$	$\land \exists \ Q \in \mathbf{Q}, S \subseteq \{m \in msgs : m.type = \text{``1b"} \land$
m.bal = b:	m.bal = pBal[p]:
$\land \forall \ a \in Q \ : \ \exists \ m \in S \ : \ m.acc = a$	$\land \forall \ a \in Q : \exists \ m \in S : m.from = a$
$\land \lor \forall m \in S : m.maxVBal = -1$	$\land Send([type \mapsto "2a",$
$\forall \exists c \in 0(b-1) :$	$from \mapsto p,$
$\land \forall \ m \in S : m.maxVBal \le c$	$bal \mapsto pBal[p],$
$ \land \exists \ m \in S : (m.maxVBal = c) $	$propSV \mapsto PropSV(union$
$\wedge m.maxVal = v$	$\{m.voted : m \in S\})])$
$\land Send([type \mapsto "2a", bal \mapsto b, val \mapsto v])$	
\land UNCHANGED $\langle maxBal, maxVBal, maxVal \rangle$	\land UNCHANGED $\langle pBal, aBal, aVoted \rangle$
	where,
	$PropSV(T) \triangleq MaxSV(T) \cup NewSV(T)$

Davis Davis	M-14: D
Basic Paxos	Multi-Paxos
$Phase2a(b \in \mathcal{B}) \triangleq$	$Phase2a(p \in \mathcal{P}) \triangleq$
$\wedge \nexists m \in msgs : \wedge m.type = "2a"$	$\wedge \nexists m \in msgs : \wedge m.type = "2a"$
$\wedge m.bal = b$	$\wedge m.bal = pBal[p]$
$\wedge \exists v \in \mathcal{V} :$	
$\land \exists \ Q \in \mathbf{Q}, S \subseteq^{\dagger} \{ m \in msgs : m.type = \text{``1b''} \land$	$\land \exists \ Q \in \mathbf{Q}, S \subseteq \{m \in msgs : m.type = \text{``1b"} \land$
m.bal = b:	m.bal = pBal[p]:
$\land \forall \ a \in Q \ : \ \exists \ m \in S \ : \ m.acc = a$	$\land \forall \ a \in Q : \exists \ m \in S : m.from = a$
$\land \lor \forall m \in S : m.maxVBal = -1$	$\land Send([type \mapsto "2a",$
$\forall \exists c \in 0(b-1) :$	$from \mapsto p,$
$\land \forall \ m \in S : \ m.maxVBal \le c$	$bal \mapsto pBal[p],$
$ \land \exists \ m \in S : (m.maxVBal = c) $	$propSV \mapsto PropSV$ (union
$\wedge m.maxVal = v$	$\{m.voted : m \in S\})])$
$\land Send([type \mapsto "2a", bal \mapsto b, val \mapsto v])$	The state of the s
$\land unchanged \ \langle maxBal, maxVBal, maxVal \rangle$	\land Unchanged $\langle pBal, aBal, aVoted \rangle$
	where,
	$MaxBSV(T) \triangleq \{t \in T : \forall t2 \in T :$
	$t2.slot = t.slot \Rightarrow t2.bal \le t.bal$
	$MaxSV(T) \triangleq \{[slot \mapsto t.slot,$
	$val \mapsto t.val$: $t \in MaxBSV(T)$ }
	$\mathbf{p} = a\mathbf{u}(\mathbf{m}) \wedge \mathbf{M} = a\mathbf{u}(\mathbf{m}) + \mathbf{M} = a\mathbf{u}(\mathbf{m})$
	$PropSV(T) \triangleq MaxSV(T) \cup NewSV(T)$

```
ic Paxos
                                                             Multi-Paxos
ase2a(b \in \mathcal{B}) \triangleq
                                                             Phase2a(p \in \mathcal{P}) \triangleq
m \in msqs : \land m.type = "2a"
                                                             \wedge \nexists m \in msqs : \wedge m.type = "2a"
               \wedge m.bal = b
                                                                                   \wedge m.bal = pBal[p]
v \in V:
A\exists Q \in Q, S \subseteq^{\dagger} \{m \in msgs : m.type = \text{``1b''} \land \text{``}\}
                                                             \land \exists Q \in Q, S \subseteq \{m \in msqs : m.type = "1b" \land \}
 m.bal = b:
                                                                m.bal = pBal[p]:
                                                                \land \forall \ a \in Q : \exists \ m \in S : m.from = a
 \land \forall \ a \in Q : \exists \ m \in S : m.acc = a
 \land \lor \forall m \in S : m.maxVBal = -1
                                                                \land Send([type \mapsto "2a",
    \forall \exists c \in 0..(b-1):
                                                                    from \mapsto p,
       \land \forall m \in S : m.maxVBal < c
                                                                    bal \mapsto pBal[p],
       \land \exists m \in S : (m.maxVBal = c)
                                                                    propSV \mapsto PropSV(union
              \wedge m.maxVal = v
                                                                       \{m.voted : m \in S\}\}
Send([type \mapsto "2a", bal \mapsto b, val \mapsto v])
NCHANGED \langle maxBal, maxVBal, maxVal \rangle
                                                             \land UNCHANGED \langle pBal, aBal, aVoted \rangle
                                                             where.
                                                             MaxBSV(T) \triangleq \{t \in T : \forall t2 \in T :
                                                                t2.slot = t.slot \Rightarrow t2.bal \leq t.bal
                                                             MaxSV(T) \triangleq \{[slot \mapsto t.slot,
                                                                val \mapsto t.val: t \in MaxBSV(T)
                                                              UnusedS(T) \triangleq \{s \in S : \nexists t \in T : t.slot = s\}
                                                             NewSV(T) \triangleq CHOOSE D \subseteq [slot:
                                                                 UnusedS(T), val: \mathcal{V} : \forall d1, d2 \in D:
                                                                    d1.slot = d2.slot \Rightarrow d1 = d2
                                                             PropSV(T) \triangleq MaxSV(T) \cup NewSV(T)
```

Phase2b

```
Basic Paxos
                                                                Multi-Paxos
Phase2b(a \in \mathcal{A}) \triangleq
                                                                Phase2b(a \in \mathcal{A}) \triangleq
\exists m \in msqs:
                                                                \exists m \in msqs:
   \wedge m.type = "2a"
                                                                   \wedge m.type = "2a"
   \land m.bal \ge maxBal[a]
                                                                   \land m.bal \geq aBal[a]
   \land Send([type \mapsto "2b",
                                                                   \land Send([type \mapsto "2b",
                                                                      from \mapsto a.
      acc \mapsto a.
      bal \mapsto m.bal.
                                                                      bal \mapsto m.bal.
      val \mapsto m.val
                                                                      propSV \mapsto m.propSV
   \wedge maxBal' = [maxBal \text{ EXCEPT } ! [a] = m.bal]
                                                                   \wedge aBal' = [aBal \text{ EXCEPT } ! [a] = m.bal]
   \wedge maxVBal' =
                                                                   \land a Voted' = [a Voted \text{ except } ! [a] =
      [maxVBal \text{ except } ![a] = m.bal]
                                                                      \cup \{[bal \mapsto m.bal, slot \mapsto d.slot,
                                                                          val \mapsto d.val] : d \in m.propSV}
   \wedge maxVal' =
      [maxVal \ EXCEPT \ ! [a] = m.val]
                                                                      \cup \{e \in aVoted[a] :
                                                                          \nexists r \in m.propSV : e.slot = r.slot\}
                                                                   \land UNCHANGED \langle pBal \rangle
```

Verification

Similar proof strategy and skeleton to Lamport et al.'s

Hierarchical proof by induction

Overview of Results

Metric	Single-value Paxos	Multi-f	Paxos	Multi-Paxos w/ Preemption		
Wethe	Value	Value	Increase	Value	Increase	
Specification size	52	55 6%		74	35%	
Proof size	310	787	154%	831	6%	
No. of obligations	239	779	226%	825	6%	
Proof check time(s)	16	58	263%	110	90%	

- Increase in proof parameters for Multi-Paxos due to complications due to vectors
- Conflated increase in proof check time for Multi-Paxos w/Preemption due to a new library import

Can we do better?

Can the Specification be even more high-level?

Can the Invariants be made to more easily follow from the specification?

Can we do better?

Can the Specification be even more high-level?

• Can the Invariants be made to more easily follow from the specification?

Use **History Variables!!!**

Simpler Specifications and **Easier Proofs** using History Variables⁺

Contributions

- Demonstrate a Systematic Style to write specifications of distributed algorithms using message history variables - sent and received (in TLA+).
- A Method to systematically derive important invariants of the algorithm.

Case studies:

- Single-value Paxos for single-value consensus by Lamport et al. [1]
- Multi-Paxos for multi-value consensus by Chand at al. [2]
- Multi-Paxos with preemption by Chand at al. [2]

[1] Lamport, L., Merz, S., Doligez, D. Paxos.tla. github.com/tlaplus/v1-tlapm/blob/master/examples/paxos/Paxos.tla [2] Chand, S., Liu, Y. A., and Stoller, S. D. Formal verification of multi-paxos for distributed consensus. In FM 2016: Formal Methods: 21st International Symposium, pages 119–136. Springer, 2016

Results

Metric	Basic Paxos			Multi-Paxos			Multi-Paxos w/ Preemption		
	Lam	Us	Decr	Cha	Us	Decr	Cha	Us	Decr
Specification size	52	39	25%	55	42	24%	74	52	30%
Proof size	310	227	27%	787	520	34%	831	538	35%
No. of invariants	15	5, 1^	60%	16	7, 1^	50%	17	7, 1^	53%
Proof check time(s)	16	12	25%	58	28	52%	110	30	73%

Lam: Lamport et al. [1], Cha: Chand et al. [2], Us: Using History Variables only, Decr: percentage of decrease.

History and Derived Variables

History and Derived Variables

History and Derived Variables

- BUT, local data is updated upon receiving some set of messages
- Thus, derived variables are functions of history variables
- So, write specifications using history variables only

Specification of Basic Paxos

Phase 1a. A proposer selects a proposal number b and sends a 1a		
request with number b to a majority of acceptors.		
Lamport et al.'s	Using sent only	
$Phase1a(b \in \mathcal{B}) \triangleq$	$Phase1a(b \in \mathcal{B}) \triangleq$	
$\land \nexists m \in sent : (m.type = "1a") \land (m.bal = b)$		
$\land Send([type \mapsto "1a", bal \mapsto b])$	$Send([type \mapsto "1a", bal \mapsto b])$	
\land UNCHANGED $\langle maxVBal, maxBal, maxVal \rangle$		

Phase 1b. If an acceptor receives a 1a request with number bal greater than that of any 1a request to which it has already responded, then it responds to the request with a promise not to accept any more proposals numbered less than bal and with the highest-numbered proposal (if any) that it has accepted. Lamport et al.'s Using sent only $Phase1b(a \in \mathcal{A}) \triangleq$ $Phase1b(a \in \mathcal{A}) \triangleq$ $\exists m \in sent:$ $\exists m \in sent, r \in max \ prop(a) :$ $\wedge m.type = "1a"$ $\wedge m.type = "1a"$ $\land m.bal > maxBal[a]$ $\land \forall m2 \in sent : m2.type \in \{\text{``1b''}, \text{``2b''}\} \land$ $m2.acc = a \Rightarrow m.bal > m2.bal$ $\land Send([type \mapsto "1b",$ $\land Send([type \mapsto "1b",$ $acc \mapsto a, bal \mapsto m.bal,$ $acc \mapsto a, bal \mapsto m.bal.$ $maxVBal \mapsto maxVBal[a],$ $maxVBal \mapsto r.bal.$ $maxVal \mapsto maxVal[a]$ $maxVal \mapsto r.val$ $2bs(a) \triangleq \{m \in sent : m.type = "2b" \land m.acc = a\}$ $\wedge maxBal' =$ $[maxBal \ EXCEPT \ ! [a] = m.bal]$ $max \ prop(a) \triangleq$ IF $2bs(a) = \emptyset$ THEN $\{[bal \mapsto -1, val \mapsto \bot]\}$ \land UNCHANGED $\langle maxVBal, maxVal \rangle$ ELSE $\{m \in 2bs(a): \forall m2 \in 2bs(a): m.bal \geq m2.bal\}$ **Phase 2a.** If the proposer receives a response to its 1a requests (numbered b) from a majority of acceptors, then it sends a 2a request to each of those acceptors for a proposal numbered b with a value v, where v is the value of the highest-numbered proposal among the 1b responses, or is any value if the responses reported no proposals.

For Francisco Francisco François	
Lamport et al.'s	Using sent only
$Phase2a(b \in \mathcal{B}) \triangleq$	$Phase2a(b \in \mathcal{B}) \triangleq$
$\land \nexists m \in sent : m.type = "2a" \land m.bal = b$	$\land \nexists m \in sent : m.type = "2a" \land m.bal = b$
$\land \exists v \in \mathcal{V}, Q \in \mathcal{Q}, S \subseteq \{m \in sent : $	$\land \exists v \in \mathcal{V}, Q \in \mathcal{Q}, S \subseteq \{m \in sent : $
$m.type = "1b" \land m.bal = b$:	$m.type = "1b" \land m.bal = b$:
$\land \forall \ a \in Q : \exists \ m \in S : m.acc = a$	$\land \forall \ a \in Q : \exists \ m \in S : m.acc = a$
$\land \lor \forall \ m \in S : m.maxVBal = -1$	$\land \lor \forall \ m \in S : m.maxVBal = -1$
$\forall \exists c \in 0(b-1):$	$\forall \exists \ c \in 0(b-1):$
$\land \forall \ m \in S : m.maxVBal \le c$	$\land \forall \ m \in S : m.maxVBal \le c$
$ \land \exists \ m \in S : \land m.maxVBal = c $	$ \land \exists \ m \in S : \land m.maxVBal = c $
$\wedge m.maxVal = v$	$\land m.maxVal = v$
$\land Send([type \mapsto "2a", bal \mapsto b, val \mapsto v])$	$\land Send([type \mapsto "2a", bal \mapsto b, val \mapsto v])$
\land UNCHANGED $\langle maxBal, maxVBal,$	
maxVal	

Phase 2b. If an acceptor receives a 2a request for a proposal numbered bal, it		
accepts the proposal unless it has already responded to a 1a request having a		
number greater than bal .		
Lamport et al.'s	Using sent only	
$Phase2b(a \in \mathcal{A}) \triangleq$	$Phase2b(a \in \mathcal{A}) \triangleq$	
$\exists m \in sent:$	$\exists m \in sent:$	
$\wedge m.type = "2a"$	$\wedge m.type = "2a"$	
$\land m.bal \ge maxBal[a]$	$\land \forall m2 \in sent : m2.type \in \{\text{``1b''}, \text{``2b''}\} \land$	
NOVE USAB	$m2.acc = a \Rightarrow m.bal \ge m2.bal$	
$\land Send([type \mapsto "2b", acc \mapsto a,$	$\land Send([type \mapsto "2b", acc \mapsto a,$	
$bal \mapsto m.bal, val \mapsto m.val$	$bal \mapsto m.bal, val \mapsto m.val])$	
$\land maxBal' = [maxBal \ \texttt{EXCEPT} \ ![a] = m.bal]$		
$\land maxVBal' = [maxVBal \ \texttt{except} \ ![a] = m.bal]$		
$\land maxVal' = [maxVal \ \texttt{EXCEPT} \ ![a] = m.val]$		

Advantages with History Variables:

- 1) No derived variables ⇒ Fewer invariants (~50% fewer in our case studies)
- 2) Systematically derive message invariants (Could derive all but 1 in our case studies)

3-Step Method for deriving Message Invariants

1. Increment

a. Look at the increment made to *sent* by an action

Reply. Upon receiving a request numbered n, a process replies with an acknowledgement with the same number n.

```
Reply(p \in \mathcal{P}) \triangleq
\exists m \in sent :
\land Receive(m, p)
\land m.type = "req"
\land Send([type \mapsto "ack", reqnum \mapsto m.reqnum, to \mapsto m.from])
```

3-Step Method for Deriving Message Invariants

- 1. Increment
 - Look at the increment made to sent by an action
- 2. Analyze
 - Analyze and connect the contents of msg and the body of the action

```
\phi(msg) = \exists m \in sent:
m.type = "req" \land
msg.reqnum = m.reqnum \land
msg.to = m.from
```

Reply. Upon receiving a request numbered n, a process replies with an acknowledgement with the same number n.

```
Reply(p \in \mathcal{P}) \triangleq \exists m \in sent : \\ \land Receive(m, p) \\ \land m.type = "req" \\ \land Send([type \mapsto "ack", reqnum \mapsto m.reqnum, to \mapsto m.from])
```

3-Step Method for Deriving Message Invariants

- 1. Increment
 - Look at the increment made to sent by an action
- 2. Analyze
 - Analyze and connect the contents of msg and the body of the action
- Assimilate
 - Use the properties found in step 2 to derive an invariant:

```
MsgInvAcc \triangleq \forall msg \in sent: msg.type = "ack" ⇒ <math>\phi(msg)
\phi(msg) = \exists m \in sent: m.type = "req" \land msg.to = m.from \land msg.reqnum = m.reqnum
```

2b Message Invariant

```
Phase2b(a \in \mathcal{A}) \triangleq \\ \exists \ m \in sent : \\ \land m.type = \text{``2a''} \\ \land \forall \ m2 \in sent : m2.type \in \{\text{``1b'', ``2b''}\} \land \\ m2.acc = a \Rightarrow m.bal \geq m2.bal \\ \land Send([type \mapsto \text{``2b'', }acc \mapsto a, \\ bal \mapsto m.bal, val \mapsto m.val]) \\ \end{cases} \land msg.val = m.val
```

2a Message Invariant

```
Phase2a(b \in \mathcal{B}) \triangleq
\land \forall m \in sent : m.type = "2a" \Rightarrow m.bal \neq b
\land \exists v \in \mathcal{V}, Q \in \mathcal{Q}, S \subseteq \{m \in sent : 
   m.type = "1b" \land m.bal = b:
       \land \forall \ a \in Q : \exists \ m \in S : m.acc = a
       \land \lor \forall m \in S : m.maxVBal = -1
           \forall \exists \ c \in 0..(b-1):
              \land \forall m \in S : m.maxVBal < c.
              \land \exists m \in S : \land m.maxVBal = c
                            \wedge m.maxVal = v
   \land Send([type \mapsto "2a", bal \mapsto b, val \mapsto v])
```

1b Message Invariant

```
Phase1b(a \in \mathcal{A}) \triangleq
\exists m \in sent, r \in max \ prop(a) :
\wedge m.type = "1a"
\land \forall m2 \in sent : m2.type \in \{\text{``1b''}, \text{``2b''}\} \land
    m2.acc = a \Rightarrow m.bal > m2.bal
\land Send([type \mapsto "1b"].
    acc \mapsto a, bal \mapsto m.bal,
    maxVBal \mapsto r.bal,
    maxVal \mapsto r.val
2bs(a) \triangleq \{m \in sent : m.type = "2b" \land m.acc = a\}
max \ prop(a) \triangleq
IF 2bs(a) = \emptyset THEN \{[bal \mapsto -1, val \mapsto \bot]\}
ELSE \{m \in 2bs(a): \forall m2 \in 2bs(a): m.bal \geq m2.bal\}
```

```
\forall msg ∈ sent: msg.type = "1b" \Rightarrow

\forall msg.maxVBal = -1

\forall ∃ m ∈ sent:

\land m.type = "2b"

\land msg.acc = m.acc

\land msg.maxVBal = m.bal

\land msg.maxVal = m.val
```

1b Message Invariant using max

```
Phase1b(a \in \mathcal{A}) \triangleq
\exists m \in sent, r \in max \ prop(a) :
\wedge m.type = "1a"
 \land \forall m2 \in sent : m2.type \in \{\text{``1b''}, \text{``2b''}\} \land
    m2.acc = a \Rightarrow m.bal > m2.bal
 \land Send([type \mapsto "1b",
    acc \mapsto a, bal \mapsto m.bal,
    maxVBal \mapsto r.bal.
    maxVal \mapsto r.val
2bs(a) \triangleq \{m \in sent : m.type = "2b" \land m.acc = a\}
max \ prop(a) \triangleq
IF 2bs(a) = \emptyset THEN \{[bal \mapsto -1, val \mapsto \bot]\}
ELSE \{m \in 2bs(a): \forall m2 \in 2bs(a): m.bal \geq m2.bal\}
```

```
\forall msg ∈ sent: msg.type = "1b" \Rightarrow
\forall b2 ∈ (msg.maxVBal, msg.bal):
\nexistsm ∈ sent:
 \land \underline{m.type} = "2b"
 \land \underline{m.type} = \underline{m.acc}
 \land \underline{m.bal} = \underline{b2}
```

Summary

- Distributed systems are complex and difficult to reason about.
- Distributed consensus is a fundamental problem and Paxos is a well-known algorithm for it.
- We discussed a formal specification and safety proof of multi-value Paxos in TLA+ and TLAPS respectively.
- We discussed a systematic method that uses history variables to specify and verify distributed algorithms.

THANKS!

Q + A