Sri Chaitanya IIT Academy

03-01-16_Sr.IPLCO_JEE-ADV_(2013_P1)_RPTA-17_Q'Paper

JEE-ADVANCED-2013-P1-Model

Time:09:00 A.M to 12:00 Noon

IMPORTANT INSTRUCTIONS

PHYSICS:

Section	Question Type	+Ve Marks	- Ve Marks	No.of Qs	Total marks
Sec – I(Q.N : 1 – 10)	Questions with Single Correct Choice	2	0	10	20
Sec - II(Q.N : 11 - 15)	Questions with Multiple Correct Choice	4	-1	5	20
Sec – III(Q.N : 16 – 20)	Questions with Integer Answer Type	4	-1	5	20
Total			20	60	

CHEMISTRY:

Section	Question Type	+Ve Marks	- Ve Marks	No.of Qs	Total marks
Sec - I(Q.N : 21 - 30)	Questions with Single Correct Choice	2	0	10	20
Sec - II(Q.N : 31 - 35)	Questions with Multiple Correct Choice	4	1-l	5	20
Sec - III(Q.N : 36 - 40)	Questions with Integer Answer Type	4	-1	5	20
Total			20	60	

MATHEMATICS:

Section	Question Type	+Ve Marks	- Ve Marks	No.of Qs	Total marks
Sec - I(Q.N : 41 - 50)	Questions with Single Correct Choice	2	0	10	20
Sec – II(Q.N : 51 – 55)	Questions with Multiple Correct Choice	4	-1	5	20
Sec - III(Q.N : 56 - 60)	Questions with Integer Answer Type	4	-1	5	20
Total				20	60

Sr. IPLCO_P1_Advanced

space for rough work

Page 2

Max Marks: 180

MATHEMATICS: Max.Marks : 60

SECTION I

Single Correct Answer Type

This section contains 10 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which ONLY ONE is correct.

- 41. The numbers $a_1, a_2, a_3, ...a_n$ form an A.P such that $a_t = s; a_s = t$ and b_n represents the sum of first n terms of another A.P. such that $b_t = s; b_s = t$ for a fixed pair of distinct natural numbers t and s. Then for a given natural number k, $a_p + b_q + k = 0$ is
 - A) true for p = k, q = m + n for any natural numbers m and n
 - B) true for p = m, q = k + n for any natural numbers m and n
 - C) true for p = n, q = m + k for any natural numbers m and n
 - D) possible for only one specific (p, q)
- 42. If $a_1, a_2, a_3, \dots, a_n$ are in H.P and s_k represents the sum of all 'n' terms except the 'k'th term, then $\frac{a_1}{s_1}, \frac{a_2}{s_2}, \frac{a_3}{s_3}, \dots, \frac{a_n}{s_n}$ are in
 - A) A.P
- B) G.P
- C) H.P
- D) A.G.P

Sr. IPLCO_P1_Advanced

space for rough work

Sri Chaitanya IIT Academy 03-01-16_Sr.IPLCO_JEE-ADV_(2013_P1)_RPTA-17_Q'Paper

- 43. The number $\sum_{m=1}^{20} \left(\sum_{k=1}^{m} \left(\sum_{p=k}^{m} {}^{20}C_m \cdot {}^mC_p \cdot {}^pC_k \right) \right)$ has
 - A) 3 in units place, 6 in tens place
 - B) 7 in tens place, 5 in units place
 - C) 4 in tens place, 7 in units place
 - D) 9 in units place, 3 in tens place
- 44. A sequence using distinct positive integers is to be formed so that first n terms of it should include the number 35. The average of these n numbers should be 53. The (n-1) terms other than 35 should have their average equal to 54. The largest possible number that needs to be used is
 - A) 235
- B) 1327
- C) 819
- D) 979
- 45. For each integer n > 1, let a_n be the number of solutions to the equation

 $\sin x = \sin(nx)$ on the interval $[0, \pi]$. Then the value of $\sum_{n=2}^{9} a_n =$

- A) 50
- B) 62
- C) 40
- D) 56

 $Sr.\ IPLCO_P1_Advanced$

space for rough work

Let $R_n = (5\sqrt{5} + 11)^{2n+1} f_n = R_n - [R_n]$, then value of $\left[\frac{1}{2^{12}}(R_3f_3)\right] = \dots$ where [.]

denotes G.I.F

- A) 1
- B) 3
- C) 2
- D) 4
- Remainder obtained when $55^{95} 17^{98}$ is divided by 138 is 47.
 - A) 10
- B) 0
- C) 76
- D) 4
- If $I(m,n) = \lim_{x \to \infty} \int_{-\infty}^{x} \frac{dt}{(t^2 + m^2)(t^2 + n^2)}$ where m and n are natural numbers and 48.

I(3, n), I(6, 3), I(n, 6) form a H.P then n=

- A) 2
- B) 7
- C) 3
- D) 4
- $\{a_n\}$ and $\{b_n\}$ be two sequences given by $a_n = (x)^{\frac{1}{2^n}} + (y)^{\frac{1}{2^n}}$ and $b_n = (x)^{\frac{1}{2^n}} (y)^{\frac{1}{2^n}}$ 49. for all $n \in \mathbb{N}$, then $a_1 a_2 a_3 \dots a_n$ is equal to
 - A) x y
- B) $\frac{x+y}{b_n}$ C) $\frac{x-y}{b_n}$ D) $\frac{xy}{b_n}$

Sr. IPLCO_P1_Advanced

space for rough work

03-01-16_Sr.IPLCO_JEE-ADV_(2013_P1)_RPTA-17_Q'Paper

- 50. The value of $3(288+2\times1320+10\times121)^2-11(720+1320+121)^2$ equals
 - A) 1
- B) 3
- C) 2
- D) 0

SECTION II

Multiple Correct Answer(s) Type

This section contains 5 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which **ONE** or **MORE** are correct.

- All the terms of an A.P are natural numbers and sum of first 20 terms is greater 51. than 1072 and less than 1162. If the sixth term is 32, then
 - A) first term is 12

- B) common difference is 4
- C) common difference is 5
- D) first term is 7
- If $a_1, a_2, a_3, \dots, a_{16}$ is a sequence of positive numbers which are in AP with 52. common difference 'd' & $a_1 + a_4 + a_7 + \dots + a_{16} = 147$ then.
 - A) $a_1 + a_6 + a_{11} + a_{16} = 98$
- B) $a_1 + a_{16} = 49$
- C) $a_1 + a_4 + a_7 + ... \cdot a_{16} = 6a_1 + 45d$ D) Maximum value of $a_1 a_2 ... \cdot a_{16}$ is $\left(\frac{49}{2}\right)^{10}$

Sr. IPLCO_P1_Advanced

space for rough work

Sri Chaitanya IIT Academy 03-01-16_Sr.IPLCO_JEE-ADV_(2013_P1)_RPTA-17_Q'Paper

- 53. Let g_1, g_2, g_3, g_4 denote four consecutive terms of a G.P. with $g_1 > 0$. The sum of the extreme terms equals -49 and the sum of the middle terms is 14. Let g_2g_4 be x and $g_2 + g_4$ be y, g_1g_3 be p and $g_1 + g_3$ be q. Then
 - A) There are two values for the common ratio satisfying the hypothesis
 - B) There is only one G.P. satisfying the hypothesis

$$C)\sqrt{\frac{x}{p}} = \frac{1}{2}$$

D)
$$\left| \frac{y}{q} \right| = 2$$

- 54. If n is a positive integer and $(3\sqrt{3}+5)^{2n+1} = \alpha + \beta$ where α is an integer and $0 < \beta < 1$ then
 - A) α is an even integer
 - B) $(\alpha + \beta)^2$ is divisible by 2^{2n+1}
 - C) The integer just below $(3\sqrt{3}+5)^{2n+1}$ divisible by 3
 - D) α is divisible by 10

Sr. IPLCO_P1_Advanced

space for rough work

03-01-16_Sr.IPLCO_JEE-ADV_(2013_P1)_RPTA-17_Q'Paper

- The pth term T_p of HP is q(p + q) and q^{th} term T_q is p(p + q) when p > 1, q > 1, $(p \neq q)$ then

- A) $T_{p+q} = pq$ B) $T_{pq} = p+q$ C) $T_{p+q} > T_{pq}$ D) $T_{pq} > T_{p+q}$

SECTION III

Integer Answer Type

This section contains 5 questions. The answer to each question is single digit integer, ranging from 0 to 9 (both inclusive).

- If $(1 + x)^{20} = a_0 + a_1 x + a_2 x^2 + \dots + a_{20} x^{20}$, then the value of $\frac{\left(a_0 - a_4 + a_8 - a_{12} + a_{16} - a_{20}\right)^2 + \left(a_2 - a_6 + a_{10} + a_{14} - a_{18}\right)^2}{2^2 \cdot 11^2 \cdot 13^2 \cdot 17^2 \cdot 19^2}$ is equal to
- If n is smallest natural number such that the arithmetic, geometric and harmonic 57. means of 25 and n^2 are also natural numbers, then the value of $\left\lceil \frac{n}{7} \right\rceil$, where [.] is greatest integer function, is
- If the coefficient of x^{16} in $\left(\frac{C_1}{C_0} x\right) \left(x 2^2 \cdot \frac{C_2}{C_1}\right) \left(x 3^2 \cdot \frac{C_3}{C_2}\right) ... \left(x 17^2 \cdot \frac{C_{17}}{C_{12}}\right)$, where 58. C_r stands for ${}^{17}C_r$, is $100K^2 + 27K - 12$ then the integer value of K is

Sr. IPLCO_P1_Advanced

space for rough work

Sri Chaitanya IIT Academy 03-01-16_Sr.IPLCO_JEE-ADV_(2013_P1)_RPTA-17_Q'Paper

- 59. If a, b, c, d are positive real numbers such that a+b+c+d=4, and p and q are integers such that (p,q] is smallest interval in which K = (a+b)(c+d) can lie, then q-p=
- 60. When the terms in the binomial expansion of $\left(\frac{2}{\sqrt[4]{x}} + \sqrt{x}\right)^n$ are arranged in increasing powers of 'x', the coefficients of the first three terms are in A.P. Then the number of terms in the expansion with non integer powers of 'x' is