СПЕКТРАЛЬНЫЙ АНАЛИЗ ЭЛЕКТРИЧЕСКИХ СИГНАЛОВ (3.6.1)

Фаттахов Марат Шерхалов Денис

16 декабря 2023 г.

1 Аннотация

Цель работы: изучить спектры сигналов различной формы и влияние параметров сигнала на вид соответствующих спектров; проверить справедливость соотношений неопределённостей; познакомиться с работой спектральных фильтров на примере RC-цепочки

В работе используются: генератор сигналов произвольной формы, цифровой осциллограф с функцией быстрого преобразования Фурье или цифровой USB-осциллограф, подключённый к персональному компьютеру.

2 Теоретическое введение

Разложение сложных сигналов на периодические колебания

Представление периодического сигнала в виде суммы гармонических сигналов называется разложением в ряд Фурье.

Пусть заданная функция f(t) периодически повторяется с частотой $\Omega_1 = \frac{2\pi}{T}$, где T - период повторения. Ее разложение в ряд Фурье имеет вид

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cos(n\Omega_1 t) + b_n \sin(n\Omega_1 t)]$$

Здесь $\frac{a_0}{2}$ - среднее значение функции f(t),

$$a_n = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) \cos(n\Omega_1 t) dt,$$

$$b_n = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) \sin(n\Omega_1 t) dt.$$

Рассмотрим периодические функции, которые исследуются в нашей работе.

1. Периодическая последовательность прямоугольных импульсов (рис. 1) с амплитудой V_0 , длительностью τ , частотой повторения $\Omega_1 = \frac{2\pi}{T}$, где T - период повторения импульсов. Найдем коэффициенты разложения ряда Фурье:

$$\frac{a_0}{2} = V_0 \frac{\tau}{T},$$

$$a_n = \frac{2}{T} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} V_0 \cos(n\Omega_1 t) dt = 2V_0 \frac{\tau}{T} \frac{\sin(n\Omega_1 \frac{\tau}{2})}{n\Omega_1 \frac{\tau}{2}} \sim \frac{\sin x}{x}.$$

Поскольку наша функция четная, все коэффициенты синусоидальных гармоник $b_n = 0$. Спектр a_n последовательности прямоугольных импульсов представлен на рис. 2 (изображен случай, когда T кратно τ).

Рис. 1: Прямоугольные импульсы

Рис. 2: Спектр последовательности прямоугольных импульсов

Назовем шириной спектра $\Delta \omega$ расстояние от главного максимума ($\omega=0$) до первого нуля огибающей, возникающего при $n=\frac{2\pi}{\tau\Omega_1}$. При этом

$$\Delta\omega\tau \simeq 2\pi$$

или

$$\Delta \nu \Delta t \simeq 1$$

Полученное соотношение взаимной связи интервалов $\Delta \nu$ и Δt является частным случаем соотношения неопределенности в квантовой механике.

2. Периодическая последовательность цугов гармонического колебания $V_0 \cos(\omega_0 t)$ с длительностью цуга τ и периодом повторения T (рис. 3).

Функция f(t) снова является четной относительно t=0. Коэффициент при n-й гармонике равен

$$a_n = \frac{2}{T} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} V_0 \cos(\omega_0 t) \cos(n\Omega_1 t) dt = V_0 \frac{\tau}{T} \left(\frac{\sin[(\omega_0 - n\Omega_1)\frac{\tau}{2}]}{(\omega_0 - n\Omega_1)\frac{\tau}{2}} + \frac{\sin[(\omega_0 + n\Omega_1)\frac{\tau}{2}]}{(\omega_0 + n\Omega_1)\frac{\tau}{2}} \right)$$

Зависимость для случая, когда $\frac{T}{\tau}$ равно целому числу, представлена на рис. 4. Сравнивая спектр последовательности прямоугольных импульсов и цугов мы видим, что они аналогичны, но их максимумы сдвинуты по частоте на величину ω_0 .

Рис. 3: Последовательность цугов

Рис. 4: Спектр последовательности цугов

3. **Амплитудно-модулированные колебания.** Рассмотрим гармонические колебания высокой частоты ω_0 , амплитуда которых медленно меняется по гармоническому закону с частотой Ω ($\Omega \ll \omega_0$)) (рис. 5):

$$f(t) = A_0[1 + m\cos\Omega t]\cos\omega_0 t$$

Коэффициент m называют **глубиной модуляции**. При m<1 амплитуда колебаний меняется от минимальной $A_{min}=A_0(1-m)$ до максимальной $A_{max}=A_0(1+m)$. Глубина модуляции может быть представлена в виде

$$m = \frac{A_{max} - A_{min}}{A_{max} + A_{min}}$$

Простым тригонометрическим преобразованием можно найти спектр амплитудно - модулированных колебаний:

$$f(t) = A_0 \cos(\omega_0 t) + \frac{A_0 m}{2} \cos(\omega_0 + \Omega)t + \frac{A_0 m}{2} \cos(\omega_0 - \Omega)t.$$

Рис. 5: Модулированные гармонические колебания

Рис. 6: Спектр модулированных гармонических колебаний

Спектр таких колебаний содержит три составляющих основную компоненту и две боковых (рис. 6). Первое слагаемое в правой части представляет собой исходное немодулированное колебание с основной (несущей) частотой ω_0 и амплитудой $a=A_0$. Второе и третье слагаемые соответствуют новым гармоническим колебаниям с частотами $\omega_0+\Omega$ и $\omega_0-\Omega$. Амплитуды этих двух колебаний одинаковы и составляют $\frac{m}{2}$ от амплитуды немодулиро-

ванного колебания: $a = \frac{A_0 m}{2}$. Начальные фазы всех трех колебаний одинаковы.

3 Ход работы

А. Исследование спектра периодической последовательности прямоугольных импульсов и проверка соотношений неопределённости

- 1. Настраиваем генератор на прямоугольные импульсы с частотой повторения $\nu_{\text{повт}}=1~\text{к}\Gamma$ ц (период T=1~мc) и длительностью импульса $\tau=T/20=50~\text{мкc}$.
- 2. Получаем на экране спектр (Преобразование Фурье) сигнала.
 - **а.** Изменяем $\nu_{\text{повт}}$ при фиксированном $\tau = 50$ мкс и получаем:

Рис. 7

Как видно из графиков, при увеличении частоты повторения сигнала увеличивается расстояние между компонентами спектра.

б. Изменяем au при фиксированном $u_{\text{повт}} = 1$ к Γ ц и получаем:

$$\tau = 100 \; \mathrm{mkc}$$

 $\tau=200$ мкс

Рис. 8

Как видно из графиков, при увеличении длительности сигнала уменьшается ширина спектра.

3. Измерим амплитуды a_n и частоты ν_n спектральных гармоник при фиксированных $\nu_{\text{повт}} = 3$ к Γ ц и $\tau = 50$ мкс.

п гармоники	1	2	3	4	5	6
$\nu_n^{\text{эксп}}$, к Γ ц	3.0	6.0	9.0	12.0	15.0	18.8
ν_n^{reop} , к Γ ц	3.	6.0	9.0	12.0	15.0	18.0
$ a_n ^{\mathfrak{S}KC\Pi}$, мВ	791	699	607	414	240	174
$ a_n/a_1 _{\mathfrak{S}KC\Pi}$	1	0.884	0.767	0.523	0.303	0.220
$ a_n/a_1 _{\text{reop}}$	1	0.891	0.725	0.524	0.312	0.114

Здесь $a_1 = 143.8 \text{ мB}.$

$$\nu_n^{\text{reop}} = \frac{n}{T}$$
$$|a_n|_{\text{reop}} = \frac{|\sin \frac{\pi n \tau}{T}|}{\pi n}$$

4. Зафиксируем период повторения прямоугольного сигнала T=1мс, $\nu_{\text{повт}}=1$ к Γ ц. Изменяя длительность импульса τ в диапазоне от $\tau=T/50$ до $\tau=T/5$, измерим полную ширину спектра сигнала $\Delta\nu$ — от центра спектра ($\nu=0$) до гармоники с нулевой амплитудой $a_n\approx 0$ и установим зависимость между $\Delta\nu$ и τ , полученную из формулы ??.

Построим график $\Delta\nu\left(\frac{1}{\tau}\right)$. Используя МНК, получим $k=1.0229\pm0,0223$, откуда с хорошей точностью можем заключить, что $\Delta\nu\frac{1}{\tau}=1$, что экспериментально доказывает соотношение неопределённостей. График приведён на рис.12

τ , MKC	20	40	60	80	100	120	140
$\Delta \nu$, к Γ ц	50	25	17	12.5	10	7.5	5
$1/\tau \cdot 10^3$, c ⁻¹	50.0	25.0	16.7	12.5	10	8.3	7.1

Таблица 1: Исследование зависимости $\Delta \nu$ и τ

Рис. 9: Зависимость $\Delta \nu$ от $1/\tau$

5. Зафиксируем длительность импульса прямоугольного сигнала $\tau=100$ мкс. Изменяя период повторения T в диапазоне от 2τ до 50τ измерим расстояния $\delta\nu=\nu_{n+1}-\nu_n$ между соседними гармониками спектра.

T, MKC	200	500	1000	1500	2000	2500	3000	3500	4000	4500	5000
$\delta \nu$, к Γ ц	5	2	1	0.688	0.459	0.400	0.330	0.287	0.250	0.220	0.200

Таблица 2: Зависимость $\delta \nu$ от T

Рис. 10: Зависимость $\delta \nu$ от 1/T

Построим график $\delta \nu \left(\frac{1}{T}\right)$. Используя МНК, получим $k=1.001\pm0.003$, что экспериментально доказывает соотношение неопределённостей. График приведён на рис.13.

Г. Наблюдение спектра амплитудно-модулированного сигнала

- 1. Настраиваем генератор в режим модулированного по амплитуде синусоидального сигнала с несущей частотой $\nu_0=50$ к Γ ц, частотой модуляции $\nu_{\rm mod}=2$ к Γ ц и глубиной модуляции m=0.5.
- **2.** Получаем на экране спектр (Преобразование Фурье) сигнала. Из графика получим $A_{max} = 1.489 \text{мB}$ и $A_{min} = 0.489 \text{мB}$ и убедимся в справедливости соотношения

$$m = \frac{A_{\text{max}} - A_{\text{min}}}{A_{\text{max}} + A_{\text{min}}} = \frac{1}{1.978} \approx 0.5$$

Поскольку мы установили глубину модуляции на 0,5, а из теории у нас получилась 0,503, то мы видим, что формула ?? верна.

3. Изменяя на генераторе глубину модуляции m в диапазоне от 10 % до 100 % (всего 6-8 точек), измерим отношение амплитуд боковой и основной спектральных линий $a_{\rm 60k}/a_{\rm осн}$. Построим график зависимости $a_{\rm 60k}/a_{\rm осн}$ от m и проверим, совпадает ли результат с теоретическим.

m, %	10	25	40	55	70	85	100		
$a_{\text{бок}}, \text{мB}$	33.72	84.0	135.0	186.0	235.0	285.0	334.0		
$a_{ m och}=672~{ m mB}$									
$a_{\rm 6ok}/a_{\rm och}$	0.050	0.125	0.200	0.277	0.350	0.425	0.498		

Таблица 3. Исследование зависимости $a_{\text{бок}}/a_{\text{осн}}$ от m.

Рис. 11: Зависимость $a_{\text{бок}}/a_{\text{осн}}$ от m

Построим график $\frac{a_{60\mathrm{K}}}{a_{\mathrm{och}}}(m)$. Используя МНК, получим $k=0.499x\pm0,001$, что подтверждает $\frac{a_{60\mathrm{K}}}{a_{\mathrm{och}}}=\frac{m}{2}$, т.е. совпадает с теоретическим предсказанием. График приведён на рис.??.

Д. Наблюдение спектра сигнала, модулированного по фазе

- 1. Настраиваем генератор в режим модулированного по фазе синусоидального сигнала с несущей частотой $\nu_0=50$ к Γ ц, частотой модуляции $\nu_{\rm мод}=2$ к Γ ц и максимальным отклонением (глубиной модуляцией) $\varphi=10$.
- 2. Получаем на экране спектр (Преобразование Фурье) сигнала.

$$u_0=50$$
 к Γ ц, $u_{ ext{mod}}=2$ к Γ ц, $arphi=60$

$$u_0=50$$
 к Γ ц, $u_{ ext{mod}}=4$ к Γ ц, $arphi=10$

Рис. 12

$$u_0=25$$
 к Γ ц, $u_{\text{мод}}=2$ к Γ ц, $arphi=10$

Е. Изучение фильтрации сигналов

Подадим на вход RC-цепочки последовательность прямоугольных импульсов с периодом повторения T=3 мкс и длительностью $\tau=150$ нс. Получим спектр, представленный на рис. ??. При том же фиксированном периоде T проведем измерения отношения амплитуд соответствующих спектральных гармоник фильтрованного и исходного сигналов $K_n=\frac{|a_n^\phi|}{a_n^0}$. Полученные данные представлены в таблице ??. Частоту можно почитать по формуле $\nu=\nu_0 n=n/T$. При больших значениях частот K линейна. Построим её и по углу наклона определим τ_{RC}

$$K(1/\nu) = \frac{1}{2\pi\tau_{RC}} \left(\frac{1}{\nu}\right)$$

Построим график $K(1\nu)$.

$1/, \ \kappa \Gamma \mu^{-1}$	1.000	0.500	0.333	0.250	0.200	0.167
K_n	0.380	0.190	0.120	0.071	0.078	0.042

Таблица 3: Отношение амплитуд спектральных гармоник фильтрованного и исходного сигналов

Из коэффициента наклона получаем

$$\tau_{RC} = (3.3 \pm 0.2)$$

Рис. 13: Зависимость K от $\frac{1}{\nu}$

4 Обсуждение результатов и выводы

В данной работе мы изучили понятие спектра и спектрального анализа, исследовали спектральный состав периодических электрических сигналов, а также проанализировали фильтрацию сигналов при прохождении их через RC контур. Проверили частный случай выполнения соотношения неопределённости.