

DESIGN AND TEST OF A LOW COST, SURVIVABLE COMPOSITE FUSELAGE

T.E. Hess, R.J. Richey, Jr., and S.L. Huang Air Vehicle Technology Department NAVAL AIR DEVELOPMENT CENTER Warminster, Pennsylvania 18974

1 AUGUST 1977

FINAL REPORT IED TASK NO. ZF61412001 Work Unit No. GC-313

chechal no Acc.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

19960223 054

Prepared for NAVAL AIR SYSTEMS COMMAND Department of the Navy Washington, D.C. 20361 STEC 3943

NOTICES

REPORT NUMBERING SYSTEM - The numbering of technical project reports issued by the Naval Air Development Center is arranged for specific identification purposes. Each number consists of the Center acronym, the calendar year in which the number was assigned, the sequence number of the report within the specific calendar year, and the official 2-digit correspondence code of the Command Office or the Functional Department responsible for the report. For example: Report No. NADC-76015-40 indicates the fifteenth Center report for the year 1976, and prepared by the Crew Systems Department. The numerical codes are as follows:

CODE	OFFICE OR DEPARTMENT
OG	Commander, Naval Air Development Center
01	Technical Director, Naval Air Development Center
02	Program and Financial Management Department
07	V/STOL Program Office
09	Technology Management Office
10	Naval Air Facility, Warminster
20	Aero Electronic Technology Department
30	Air Vehicle Technology Department
40	Crew Systems Department
50	Systems Department
60	Naval Navigation Laboratory
81	Technical Support Department
85	Computer Department

PRODUCT ENDORSEMENT - The discussion or instructions concerning commercial products herein do not constitute an endorsement by the Government nor do they convey or imply the license or right to use such products.

APPROVED BY:

P. M. STURM

Commander, USN
Deputy Director, AVTD

DATE:

1 August 1977

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION	READ INSTRUCTIONS BEFORE COMPLETING FORM				
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER			
NADC-77149-30					
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED			
DESIGN AND TEST OF A LOW COST,	SURVIVABLE	FINAL REPORT			
COMPOSITE FUSELAGE		6. PERFORMING ORG. REPORT NUMBER			
7. AUTHOR(s)		8. CONTRACT OR GRANT NUMBER(s)			
T. E. HESS, R. J. RICHEY, JR.,	S. L. HUANG				
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS			
AIR VEHICLE TECHNOLOGY DEPARTME		IED TASK NUMBER ZF61412001			
NAVAL AIR DEVELOPMENT CENTER WARMINSTER, PA: 18974	3.	WORK UNIT GC-313			
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE			
DIRECTOR, NAVAL RESEARCH LABORAT	rory	1 AUGUST 1977			
Department of the Navy		13. NUMBER OF PAGES			
WASHINGTON, D.C. 20375 14. MONITORING AGENCY NAME & ADDRESS(If different	from Controlling Office)	15. SECURITY CLASS. (of this report)			
THE WILLIAM STATES OF THE STAT		UNCLASSIFIED			
		15a. DECLASSIFICATION/DOWNGRADING			
		SCHEDULE			
16. DISTRIBUTION STATEMENT (of this Report)					
APPROVED FOR PUBLIC RELEASE; DIS	STRIBUTION UNLIM	ITED			
17. DISTRIBUTION STATEMENT (of the abstract entered in	n Block 20 II different from	n Panost)			
17. DISTRIBUTION STATEMENT (of the abstract entered in	n Block 20, If different from	in Reports			
18. SUPPLEMENTARY NOTES					
Appendices A,B					
19. KEY WORDS (Continue on reverse side if necessary and	identify by block number)				
hybrid composite Guphite AS					
Hybrid composite					
primary structure Fiben, 665					
crack arresters huminate 74					
damage tolerance 77 20. ABSTRACT (Continue on reverse side if necessary and	identify by block number)				
A damage tolerant hybrid compos		ction has been designed,			
fabricated and tested. One of the l					

A damage tolerant hybrid composite fuselage section has been designed, fabricated and tested. One of the key features of this structure is the integral crack arresters which have been incorporated into the design to increase its tolerance to damage, either inherent flaws or battle induced damage. The ability of the design to withstand critical flight loads has been demonstrated by both analysis and test. The effectiveness of the crack arresters, which are designed to stop a propagating crack (damage) and still allow the structure to carry limit load, was proven in a series of tests where the

DD 1 FORM 1473

EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-LF-014-6601

UNCLASSIFIED

UNCLASSIFIED

 initial damage was of two types, a preformed crack cut with a saw blade and that resulting from projectiles fired into the shell. The design has been
completely analyzed using finite element techniques and shown to save both weight and cost over its metal counterpart. Analysis and testing of composite
panels has also been done to investigate failure modes and establish design criteria for crack arrester designs.

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

SUMMARY

A damage tolerant hybrid composite fuselage section has been designed, fabricated and tested. One of the key features of this structure is the integral crack arresters which have been incorporated into the design to increase its tolerance to damage, either inherent flaws or battle induced damage. The ability of the design to withstand critical flight loads has been demonstrated by both analysis and test. The effectiveness of the crack arresters, which are designed to stop a propagating crack (damage) and still allow the structure to carry limit load, was proven in a series of tests where the initial damage was of two types, a preformed crack cut with a saw blade and that resulting from projectiles fired into the shell. The design has been completely analyzed using finite element techniques and shown to save both weight and cost over its metal counterpart. Analysis and testing of composite panels has also been done to investigate failure modes and establish design criteria for crack arrester designs.

TABLE OF CONTENTS

		Page No.
	SUMMARY	1
1.0	INTRODUCTION	8
2.0	DESIGN CONDITIONS	11
3.0	STRUCTURE/MATERIAL SELECTION	11
4.0	MATERIAL CHARACTERIZATION	14
	4.1 INTRODUCTION	14
	4.2 SPECIMEN CONFIGURATION	14
	4.3 RESULTS	14
5.0	FUSELAGE DESIGN AND ANALYSIS	2 6
	5.1 INTRODUCTION	26
	5.2 DESIGN DESCRIPTION	26
	5.3 MATERIAL PROPERTIES	32
	5.4 NASTRAN MODEL	32
	5.5 BUCKLING DESIGN	49
	5.6 STRENGTH AND MARGINS OF SAFETY	5 9
6.0	ELEMENT TESTS	63
7.0	SUBCOMPONENT DESIGN AND TESTING	63
	7.1 DESIGN	63
	7.2 TEST CONDITIONS AND FIXTURES	63
	7.3 INSTRUMENTATION	71
	7.4 HYBRID COMPOSITE TESTING	71
8.0	FUSELAGE TESTING	78
	8.1 INSTRUMENTATION	78
	8.2 TEST METHODS AND EQUIPMENT	78
	8.3 TEST LOAD CONDITIONS AND LOADING SEQUENCE	89

TABLE OF CONTENTS (Cont'd)

																				Page No.
	8.4	FUSELAG	E TEST	ING	RECO	VERY	Z LC)AD	3		•	•	•	•	•	•	•	•	•	89
	8.5	FUSELAG	E FAII	URE	ANAL	YSIS	Al	ND I	REP	AIR	ន	•	•	•	•	•	•	•	•	100
	8.6	RECOVER	Y LOAI	S TE	ST I	I,	(AF	ľER	RE	PAI	R)	•	•	•	•	•	•	•	•	107
	8.7	5G MANE	UVER I	OADS	TES	г.		•	•		•	٠	•	•	•	•	•	•	•	107
	8.8	DAMAGE	PROOF	TEST	•			•			•	•	•	•	•	•	•	•	•	107
9.0	CONCI	LUSIONS						•	•	• •	•	•	•	•	•	•	•	•	•	112
	REFE	RENCES	• • •	• •	• •			•	•		•	•	•	•	•	•	•	•	•	113
APPENDIX	. A -	NASTRAN	BULK	DATA	• •			•	•		•	•	•	•	•	•	•	•	•	A-1
APPENDIX	В -	NASTRAN	ELEME	NT S'	TRESS	SES		•									•			B-1

LIST OF TABLES

Table No.	<u>Title</u>	Page No.
4-1	Hybrid Panel A (Inner Face, 50% Glass), Longitudinal Tension Tests	16
4-2	Hybrid Panel A (Inner Face, 50% Glass), Transverse Tension Tests	17
4-3	Hybrid Panel A (Inner Face, 50% Glass), Compression Tests	18
4-4	Hybrid Panel A (Inner Face, 50% Glass), Shear Tests	19
4-5	Hybrid Panel A (Inner Face, 50% Glass), Poisson's Ratio	20
4-6	Hybrid Panel B (Outer Face, 2/3 Glass), Longitudinal Tension Tests	21
4 - 7	Hybrid Panel B (Outer Face, 2/3 Glass), Transverse Tension Tests	22
4-8	Hybrid Panel B (Outer Face, 2/3 Glass), Compression Tests	23
4 - 9	Hybrid Panel B (Outer Face, 2/3 Glass), Interlaminar Shear Tests	24
4-10	Hybrid Panel B (Outer Face, 2/3 Glass), Poisson's Ratio	25
5-1	Hybrid Composite Sandwich Materials	30
5 - 2	Material Properties Used for Design	38
5-3	Hybrid Composite Plate Element Properties	46, 47
5-4	Summary of Maximum Stresses - Recovery	53
5 - 5	Summary of Sandwich Panel Buckling Capability	60
6-1	Results of Close-out Section Tests	66
7-1	Strain Gage Locations	73
8-1	Applied Loads - Recovery Condition	92
8-2	Applied Loads - 5g Maneuver Condition	93

LIST OF FIGURES

Figure No.	<u>Title</u>	Page No.
1-1	BQM-34E Point Design	9
1-2	Center Fuselage - Metal Design	9
1-3	Low Cost, Survivable Composite Fuselage • • • • • • • •	10
2-1	Ultimate Recovery Loads on Fuselage Section	12
2-2	Ultimate 5g Maneuver Loads on Fuselage Half Section	12
2-3	Fuselage Cross Section Forward of Station 233.5	13
4-1	Test Specimen Configurations	15
5-1	Fuselage Honeycomb Sandwich Design	27
5-2	Closeout Section Design	28
5-3	Hybrid Sandwich Layup	29
5 - 4	Comparison of Metal and Composite Center Fuselage Designs	31
5 - 5	Right Side Fuselage Panel Design Drawing	33
5 - 6	Left Side Fuselage Panel Design Drawing	34
5 - 7	Fuel Access Door Design Drawing	35
5 - 8	Left Side Access Door Design Drawing	3 6
5 - 8a	Substructure Attachment Drawing	37
5- 9	Fuselage Center Section Skin Model	39
5-10	Bulkhead 233.5 Model	40
5-11	Bulkhead 241.8 Model	41
5-12	Bulkhead 274.1 Model	42
5-13	Roof Structure Model	43
5-14	Strongback Model	44
5-15	Overwing Fairing Formers Model	45

LIST OF FIGURES (Cont'd)

Figure No.	<u>Title</u>	Page No.
5-1 6	Wing Model	48
5-17	Outer Face Stresses - Recovery Condition	50
5-18	Inner Face Stresses - Recovery Condition	51
5-19	Access Door Stresses - Recovery Condition	52
5-20	Strength of Composite Fuselage Panels - Basic Section .	61
5-21	Strength of Composite Fuselage Panels - Reinforced Section	on 62
6-1	Closeout Specimen Configuration	64
6-2	Closeout Specimen Test Setup	65
6-3	Failed Closeout Specimens	67
7-1	Cylinder Subcomponent	68
7-2	Subcomponent Design (Drawing)	69
7-3	Cylinder Test Fixtures	70
7-4	Cylinder Strain Gage Locations	72
7 - 5	Deflection Gage Locations	74
7- 6	Cylinder Subcomponent Compression Test Setup	75
7-7	Cylinder Subcomponent Tension Test Setup	7 6
7 - 8	Propagated 2.54 cm Sawcut Crack	77
7 - 9	Crack Propagation from .95 cm Projectile Damage	79
7-10	Crack Propagation from 2.54 cm Projectile Damage	80
7-11	Propagated 1.59 cm Sawcut Crack	81
7-12	Cylinder After Testing	82
7-13	Summary of Crack Arrestment Tests	83
7-14	Hybrid Cylinder Crack Propagation Comparison to Theory	84

LIST OF FIGURES (Cont'd)

Figure No.	<u>Title</u>	Page No.
8-1	Right Fuselage Panel Strain Gage Locations	85
8-2	Left Fuselage Panel Strain Gage Locations	86
8-3	Access Door Strain Gage Locations	87
8 - 4a	Aluminum Band Loading Station	88
8 - 4b	Aluminum Strap Loading Station	88
8-5	Recovery Load Test Setup	90
8-6	5g Maneuver Load Test Setup	91
8-7	Frame Loading Stations	94
8-8	Fuselage Shear Diagram - Simulated Recovery Loads	95
8-9	Fuselage Shear Diagram - Simulated 5g Maneuver Loads .	96
8-10	Fuselage Moment Diagram - Simulated Recovery Loads	97
8-11	Fuselage Moment Diagram - Simulated 5g Maneuver Loads .	98
8-12	Simulated Recovery Loads	99
8-13	Simulated 5g Maneuver Loads	99
8-14	Gage 4 Strains on 1st Run to DLL	101
8-15	Gage 10 Strains on 1st Run to DLL	102
8-16	Crack in Left Fuselage Panel	103
8-17	Crack in Right Fuselage Panel	103
8-18	Photograph of Crack in Left Fuselage Panel	104
8-19	Photograph of Crack in Right Fuselage Panel	105
8-20	Fuselage Repair Configuration	106
8-21	Installed Patch on Left Fuselage Panel	108
8-22	Installed Patch on Right Fuselage Panel	109
8-23	Location of Repair on Right Fuselage Panel	110
8-24	Location of Repair on Left Fuselage Panel	110
8-25	Induced Damage in Right Fuselage Panel	111

INTRODUCTION

1.0

Existing composite technology, based upon conservative metal-replacement philosophy and applied to individual secondary and small primary structures, has demonstrated significant structural advantages and has matured sufficiently to support a broader/total system application. Maximum composite payoff is recognized to be attainable through reconfiguration in the initial conceptual design. In-depth investigations to fully explore the potential cost and performance advantages of composites must exploit the tailorability and improved formability of composites. Cost reduction, weight reduction, and high tolerance to damage require design of the structural material system concurrently with the internal structural arrangement. An RPV provides a low risk/moderate cost opportunity to seek maximum utilization of composites at each level of design and manufacture.

The objectives of this program, therefore, are to develop a composite fuselage design which is low in cost compared to conventional metal design, affords increased survivability with respect to inherent flaws and hostile action and the resulting damage, and at the same time has reduced weight. The center fuselage section of the BQM-34E Remote Piloted Vehicle, Figure 1-1, was selected as the demonstration vehicle for this design/development. Although the technology presented here is directly applicable to manned aircraft, the RPV affords a basis for comparison between an inproduction, operational, metal counterpart and the redesigned composite version, and it provides an opportunity for near-term flight demonstration in both the subsonic and supersonic regimes. This same vehicle has been used as a test bed for an all graphite epoxy wing which was designed and fabricated at the Naval Air Development Center and which is currently flying on operational vehicles as part of the Navy's service evaluation program. This center fuselage section provides a practical design model since it contains access doors, wing attachment points, external fuel tank attachment and the recovery parachute line attachment.

The center fuselage section of the BQM-34E is 1.04m (41 inches) long, from station 233.5 to 274.1 and .63m (25 inches) in diameter. The metal design is aluminum sheet with reinforcing frames, a shear web which distributes parachute loads, a keel which reacts bending and external fuel tank loads, and a strongback which reacts parachute loads, Figure 1-2.

The through-wing is attached to this section in the upper portion of the cross section and an overwing structure covers the wing and closes out the circular shape. A large access door is at the bottom and runs the entire length of the section.

The overall procedure and work flow followed in this program is shown in Figure 1-3. The loads and criteria used were those of the BQM-34E. Studies were made from which material and type of construction were selected. Preliminary design and subcomponent testing were based on material properties determined analytically from micromechanics analysis of the selected material. At the same time fabrication processes were established and material coupons were fabricated and tested to characterize the material. Detailed design of the fuselage and a cylindrical test specimen were based on material properties from this characterization.

Figure 1-1. BQM-34E Point Design

Figure 1-2. Center Fuselage - Metal Design

Figure 1-3. Low Cost, Survivable Composite Fuselage

DESIGN CONDITIONS

2.0

In designing the composite fuselage section, two design conditions were considered, based on a review of the metal design. These conditions are identified in references (1) and (2) as conditions 4PXO2, recovery, and 2SDO2, 5g maneuver. The first, and most important, condition is a recovery condition in which 7.4g is developed by a 66720 N (15,000 lb.) load on the parachute line which is attached at the top of the fuselage near the forward end of the center section. The inertia loading of that part of the fuselage forward of the center section produces a large bending moment, which is applied to the center fuselage section. It is this condition that sizes the center fuselage shell, Figure 2-1. The 5g maneuver in free flight produces maximum wing bending combined with concentrated loads on the keel from an external fuel tank, Figure 2-2. This condition induces local load in the fuselage in the circumferential direction, and the shell must be checked for its ability to react these loads.

It should be pointed out that the loading applied at the forward end of the center fuselage section, station 233.5, is not applied around the complete periphery of the fuselage. This is due to the geometric shape of the fuselage structure in the equipment compartment which is forward of this center section. Just forward of station 233.5, this structure extends just slightly over the upper semi-circle of the center fuselage shape, with longerons at the lower extremeties, Figure 2-3. This results in some buildup of load opposite these longerons, but leaves the lower portion of the center fuselage at station 233.5 unloaded. This is important since it is at this point that maximum compressive stresses in the center fuselage occur.

3.0 STRUCTURE / MATERIAL SELECTION

At the outset it had to be recognized that three basic goals were influencing the selection of a material and type of construction for the fuselage. These, in order of importance, were low cost, improved survivability, and decreased weight.

The achievement of low cost depends on many factors such as design costs, raw material costs, manufacturing costs and if a cost comparison is to address total life cycle costs, considerations such as maintenance, replacement, repair and the like must be included. This study considers only the first, cost of designing and building the fuselage component.

One of the principle approaches used to reduce costs in designing with composite materials is to reduce total parts count. The existing metal fuse-lage is a semi-monocoque design, with frames and longerons. The skin is critical in buckling. In order to make a reduction in parts count and at the same time maintain a high resistance to buckling, honeycomb sandwich construction was chosen for this study. Reduction in parts count would be achieved by elimination of the intermediate frames and longerons.

Figure 2-1. Ultimate Recovery Loads on Fuselage Section

Figure 2-2. Ultimate 5g Maneuver Loads on Fuselage Half Section

Figure 2-3. Fuselage Cross-Section Forward of Station 233.5

Candidate materials for this design were graphite-epoxy and glass-epoxy. Fuselage designs with each material in a 0° , $\pm 45^{\circ}$ configuration were analyzed for the critical conditions and small sandwich specimens of both were tested. As a result of this analysis and testing the use of glass-epoxy faces for the honeycomb sandwich was ruled out for the following reasons. First, the glass design is heavier than the graphite. It also appeared that it would be marginal with respect to weak direction (circumferential) strength. Its lower stiffness makes it less effective in buckling, and also forces more load into metal components which will not be replaced with composite material.

On the other hand, glass-epoxy is a tough and compliant material for fracture, and it is a good material for softening strips used for crack arrestment. In addition, successful experiments had been performed at this time using glass crack arrester strips to stop cracks in graphite-epoxy panels. Therefore, the decision was made to use a hybrid composite for the honeycomb face sheets, combining the strength and stiffness characteristics of the graphite with the toughness of the glass. The basic design is a two ply inner face with 0° graphite, $\pm 45^{\circ}$ glass fabric, and a 3-ply outer face also with 0° graphite but with two $\pm 45^{\circ}$ plies of glass fabric, the second glass ply being for added protection of the outer face against damage.

4.0 MATERIAL CHARACTERIZATION

4.1 INTRODUCTION

Material property characterization was performed on two basic hybrid material systems, one with 50% glass, representing the inner face, and one with 2/3 glass, representing the outer face. Both configurations consisted of unidirectional graphite in the 0°, or longitudinal direction, and woven glass fabric oriented in the $\pm 45^{\circ}$ direction. Information was desired for tension and compression in the longitudinal and transverse directions, interlaminar shear and in-plane shear.

The test specimens were fabricated using NARMCO 5209 unidirectional graphite prepreg and prepreged Hexcel F161 woven glass fabric. The materials were cured at 125°C (255°F) and 350 kPa (50 psi). For the outer face configuration, 12 plies were used, 8 glass and 4 graphite, and for the inner face configuration 8 plies were used, 4 glass and 4 graphite.

4.2 SPECIMEN CONFIGURATION

The four test specimen configurations are shown in Figure 4-1. All are basically flat laminates except for the tensile specimens which have end tabs bonded on for gripping.

4.3 RESULTS

The results of the material characterization tests are given in Tables 4-1 to 4-10. Tension and compression results in both the longitudinal and transverse directions are given, as well as in-plane and interlaminar shear, and Poisson's ratio.

Figure 4-1. Test Specimen Configurations

TABLE 4-1

HYBRID PANEL A (INNER FACE, 50% GLASS)

LONGITUDINAL TENSION TESTS

SPEC IMEN	ULTIMATE	STRENGTH	MODU	DULUS	
	MPa	<u>KSI</u>	<u>GPa</u>	MSI	
1	705	102.3	72.4	10.5	
2	659	95.6	69.6	10.1	
3	642	93.1	-	-	
4	683	99.1	69.6	10.1	
5	694	100.7	-	-	
6	638	92.6			
Average	670	97.2	70.5	10.2	
Standard Deviation	27.9	4.06	1.6	.22	
Variance	779.7	16.48	2.6	.05	

HYBRID PANEL A (INNER FACE, 50% GLASS)

TRANSVERSE TENSION TESTS

SPEC IMEN	ULTIMATE S	TRENGTH	PRIMARY	PRIMARY MODULUS		MODULUS
	<u>MPa</u>	<u>KSI</u>	<u>GPa</u>	<u>MSI</u>	<u>GPa</u>	MSI
. 1	148	21.4	-	-		-
2	149	21.6	14.4	2.09	8.8	1.27
3	145	21.0	14.0	2.03	9.7	1.40
4	141	20.4	12.9	1.87	9.9	1.44
5	154	22.3	-	-	-	-
6	156	22.6				-
Average	149	21.5	13.8	2.00	9.5	1.37
Standard Deviation	on 5.6	.81	.78	.114	.58	.089
Variance	31.0	.66	.60	.013	.34	.008

TABLE 4-3

HYBRID PANEL A (INNER FACE, 50% GLASS)

COMPRESSION TESTS

SPEC IMEN	LONGITU ULTIMATE S		TRANSVERSE ULTIMATE STRENGTH			
	MPa	KSI	MPa	<u>KSI</u>		
1	524	76.0	221	32.1		
2	-	-	206	29.9		
3	530	76.9	207	30.0		
4	-	-	234	34.0		
5	543	78.7	216	31.4		
6	548	79.5	 22 6	32.8		
Average	53 6	77.8	218	31.7		
Standard Deviation	11.1	1.62	10.9	1.61		
Variance	124.2	2.62	119.4	2.58		

TABLE 4-4

HYBRID PANEL A (INNER FACE, 50% GLASS)

SHEAR TESTS

						IN	-PLANE		
	CDECTVEN	INTERL		cmpa	NGTH		IMARY		CANT
	SPECIMEN	STRE					DULUS		JLUS
		MPa	<u>KSI</u>	<u>MPa</u>	<u>KSI</u>	<u>GPa</u>	MSI	<u>GPa</u>	<u>KSI</u>
	1	52	7.5	168	24.3	7. 7	~1.11	6.2	0.90
	2	57	8.3	161	23.4	8.5	1.23	7.1	1.03
	3	47	6.8	157	22.7	8.2	1.19	5.0	0.73
	4	47	6.8	142	20.7	9.2	1.34	5.2	0.75
	5	43	6.2	143	20.7	6.6	•96	5.6	0.81
	6	52	7.6	157	22.7	8.3	1.20	5.9	0.85
	7	54	7.9						
	8	55	8.0						
	9	55	8.0						
	10	52	7.6						
	11	57	8.2						
•	Average	52	7.5	155	22.4	8.1	1.17	8.1	0.84
	Standard Devia	tion 4.5	.67	10.3	1.45	.88	.13	•76	.11
	Variance	20.3	.45	105.1	2.09	•77	.02	.58	.01

TABLE 4-5

HYBRID PANEL A (INNER FACE, 50% GLASS)

POISSON'S RATIO

SPE	CIMEN		
	1	•615	-
	2	• 543	-
	3	-	• 09
	4	.616	•09
Average		.591	.09
Standard Deviation		•042	0.0
Variance		.0018	0.0

TABLE 4-6

HYBRID PANEL B (OUTER FACE, 2/3 GLASS)

LONGITUDINAL TENSION TESTS

SPECIMEN	ULTIMATE ST	TRENGTH	MODULUS	
	MPa	KSI	GPa	MSI
1	540	78.3	46.1	6.69
2	424	61.5	-	-
3	452	6 5. 6	48.5	7.03
4	592	85.8	51.3	7.44
5	510	74.0	48.0	6.96
6	442	71.3	47.0	6.81
Average	502	72.8	48.2	6.99
Standard Deviation	60.5	8.75	1.97	.29
Variance	.3658	76.5	3.90	.08

TABLE 4-7

HYBRID PANEL B (OUTER FACE, 2/3 GLASS)

TRANSVERSE TENSION TESTS

ULTIMATE PRIMARY SECANT SPECIMEN STRENGTH MODULUS MODULUS MPa KSI GPa MSI GPa MSI 1 2 182 26.4 3 182 26.4 16.1 2.34 9.7 1.41 4 173 25.1 15.4 2.23 9.5 1.38 5 172 25.0 15.0 2.18 9.5 1.38 6 25.0 172 14.6 2.11 9.9 1.43 Average 176 25.6 15.3 2.22 9.7 1.40 Standard Deviation 5.3 .75 .64 .097 .19 .025 28.2 Variance • 56 .41 .009 .04 .0006

HYBRID PANEL B (OUTER FACE, 2/3 GLASS)

COMPRESSION TESTS

TABLE 4-8

Caro Ti (Ti)	LONGITU			TRANSVERSE		
SPECIMEN	ULTIMATE S	SIRENGIA	OPITAMIE	ULTIMATE STRENGTH		
	<u>MPa</u>	<u>KSI</u>	<u>MPa</u>	<u>KSI</u>		
1	370.2	53.7	248	36.0		
2	496	71.9	267	38.7		
3	-	-	236	34.3		
4	481	69.8	199	28.9		
5	494	71.7	243	35.2		
6	418	60.6	•••	-		
Average	472	65.5	239	34.6		
Standard Deviation	36.8	8.08	24.9	3.36		
Variance	1352	65.30	622.3	12.93		

TABLE 4-9

HYBRID PANEL B (OUTER FACE, 2/3 GLASS)

INTERLAMINAR SHEAR TESTS

SPECIMEN	ULTIMATE ST	RENGTH
	<u>MPa</u>	<u>KSI</u>
1	59	8.6
2	56	8.1
3	57	8.3
4	57	8.3
5	56	8.1
6	55	8.0
7	56	8.1
8	54	7.9
9	54	7.9
10	57	8.3
11	-	-
12	57	8.2
13	_58_	8.4
Average	56	8.2
Standrad Deviation	1.5	.22
Variance	2.2	•05

TABLE 4-10

HYBRID PANEL B (OUTER FACE, 2/3 GLASS)

POISSON'S RATIO

SPECIMEN	<u> 12</u>	\mathcal{V}_{21}
1	.625	-
2	-	-
3	.625	•134
4	-	-
5	***	.134
Average	.625	.134

5.0 FUSELAGE DESIGN AND ANALYSIS

5.1 INTRODUCTION

Previous sections of this report have described the point design vehicle, its critical flight conditions and the design concept and materials being used. Complete specification of the design details, and substantiation of the design was accomplished by the stress and stability analysis of the section, the testing of small subcomponents representing the edge closeout design, the fabrication and testing of a full-scale cylindrical shell of the same basic design as the fuselage section, and finally the fabrication and testing of the actual fuselage center section installed on the BQM-34E RPV and subjected to the critical flight conditions. These subjects will be covered in this and the remaining sections of this report, starting with the stress and stability analysis in this section.

5.2 DESIGN DESCRIPTION

The basic design for the composite fuselage is a honeycomb sandwich structure, Figure 5-1, consisting of a 6.4mm (1/4 in.) thick aluminum honeycomb core and two hybrid composite faces. The inner face is made up of one ply of glass fabric next to the core, with the fibers oriented at $\pm 45^{\circ}$ to the longitudinal direction, and one ply of unidirectional graphite oriented at 0°. The outer face is similar with a second layer of $\pm 45^{\circ}$ glass fabric on the outer surface for additional impact and damage resistance. All areas near bulkheads, doors and other attachments have additional plies for reinforcement and introduction of load into the sandwich. The general approach to this reinforcement was to make each face in the reinforced areas four plies thick, two plies of unidirectional graphite and two plies of glass fabric. The closeout area contained additional plies for load introduction and for riveting, with a total of 16 plies, 8 unidirectional graphite and 8 glass fabric, at the areas where the two faces come together, Figure 5-2.

Both faces contain integral crack arrester strips which run in the 0°, or fore/aft, direction of the fuselage. They are formed by replacing the 0° graphite epoxy with 0° glass epoxy, so that the arrester strip is all glass epoxy while the primary material is a hybrid of both graphite and glass epoxy. The entire layup is shown in Figure 5-3. Table 5-1 lists the materials used.

This composite design for the center fuselage is a replacement primarily for the metal skins of the existing production design. However, due to the stiffness of the sandwich construction, the intermediate frames and the two longerons on either side of the fuselage can also be eliminated. In order to make sure that no concentrated loading is applied to the section in the circumferential direction from the wing attachment bolts, the middle six bolts and attachment fittings are eliminated and the composite design is based on a four bolt wing attachment, rather than a ten bolt as exists on the metal design. Figure 5-4 shows a comparison of the metal and composite designs.

Figure 5-1. Fuselage Honeycomb Sandwich Design

Figure 5-2. Closeout Section Design

Figure 5-3. Hybrid Sandwich Layup

TABLE 5-1

HYBRID COMPOSITE SANDWICH MATERIALS

FACES

Hercules AS/3501 Unidirectional Graphite Epoxy

CORE

Hexcel 1/8 - 5056 - .0007 - 3.1 Aluminum

ADHESIVE

Fuselage - Narmco Metlbond 329-7

CORE FILLER

Furane Epocast 1310

ARRESTER STRIPS

3M Scotchply Glass SP-250-SF1

EXISTING METAL DESIGN

COMPOSITE DESIGN

Figure 5-4. Comparison of Metal and Composite Center Fuselage Designs

Complete details of the fuselage design are shown in Figures 5-5 to 5-8 which are the fabrication drawings for the left and right side panels, the left side access door and the bottom fuel tank access door. These four parts comprise the center section composite design. Aside from the parts which have been eliminated, as previously discussed, the rest of the center section remains metal. Figure 5-8a shows composite panel attachment to metal substructure.

5.3 MATERIAL PROPERTIES

Two sets of composite material properties were required for designing this structure; one set, called outer face properties, used for the 3 ply outer face of the sandwich, and the other set, called inner face properties, used for the 2 ply inner face, the 4 ply inner and outer faces in those areas where additional material was added for reinforcement and the 16 ply solid laminate sections. The properties are given in Table 5-2. The basis of these properties is as follows. Allowable strengths were determined by reducing the average valves from the characterization tests by 30%. This allows for scatter in the data and provides a measure of conservatism. The modulus data from the tests were analytically modified to account for the fact that the material characterization specimens were made from .190 mm (.0075 in.) graphite fibers while the actual fuselage was to be made from .152 mm (.006 in.) fiber. This caused the longitudinal modulus to be reduced about 10% from the test values and the transverse and shear modulii to increase slightly.

5.4 NASTRAN MODEL

Figure 5-9 shows the modeling of the skin portion of this center section. In addition, the bulkheads at stations 233.5 and 274.1, the shear fitting between stations 233.5 and 241.8, the partial bulkhead at station 241.8, the strongback, the overwing fairing formers, and the roof structure were also modelled. These are shown in Figures 5-10 to 5-15. In all this modeling, advantage is taken of the left/right symmetry of the fuselage.

For the plate elements which make up the composite fuselage skin elements, general triangular plate elements (CTRIA1) were used for the sandwich elements, and CTRIR2 for the solid laminates. The first is useful for sandwich construction since it allows the specification of separate properties for membrane, bending and shear behavior. As previously mentioned, two sandwich configurations were used, the basic sandwich consisting of a 3 ply outer face and 2 ply inner face, and a reinforced section where both faces are 4 plies. Table 5-3 shows the properties for each configuration.

All the existing metal parts were modelled by taking dimensions from manufacturer's drawings for the BQM-34E vehicle. A complete set of the NASTRAN bulk data for the model is given in Appendix 1.

Only the center portion of the wing, from the bolt line to the centerline, was included in this model since only that part affected the fuselage structural behavior. That model is shown in Figure 5-16. The production BQM-34E utilizes 10 bolts, 5 per side, to attach the wing to the fuselage. In this

DWG. NO. 667A107 "RIGHT SKIN PANEL" WILL BE FOUND IN THE BACK OF THIS REPORT

DWG. NO. 667A107 "LEFT SKIN PANEL" WILL BE FOUND IN THE BACK OF THIS REPORT

DWG. NO. 667A107 "FUEL TANK ACCESS DOOR" WILL BE FOUND IN THE BACK OF THIS REPORT

DWG. NO. 667A107 "ACCESS DOOR - BQM 34E CENTER FUSELAGE SECTION - HYBRID COMPOSITE DESIGN" WILL BE FOUND IN THE BACK OF THIS REPORT

DWG. NO. 667A109 "ATTACHMENTS" WILL BE FOUND IN THE BACK OF THIS REPORT

TABLE 5-2

MATERIAL PROPERTIES USED FOR DESIGN

	Inner Face		Outer Face		
	SI	English	SI	English	
$\mathtt{E}_{\mathbf{L}}$	63.4 GPa	9.2×10^6 psi	43.4 GPa	6.3×10^6 psi	
$E_{\mathbf{T}}$	15.2 GPa	2.2×10^6 psi	15.2 GPa	2.2×10^6 psi	
G	9.0 GPa	1.3×10^6 psi	8.3 GPa	1.2×10^6 psi	
V12	• 59	•59	.62	.62	
V_{21}	•09	•09	.13	.13	
$_{\mathtt{FL}}^{t}$	469 M P a	68.0 KSI	352 MPa	51.0 KSI	
$\mathbf{F_T}^t$	104 MPa	15.1 KSI	123 MPa	17.0 KSI	
$_{\mathrm{F_L}}^{\mathbf{c}}$	376 MPa	54.5 KSI	316 MPa	45.8 KSI	
$\mathbf{F_T}^{\mathbf{c}}$	153 MPa	22.2 KSI	167 MPa	24.2 KSI	
F_S	108 MPa	15.7 KSI	108 MPa	15.7 KSI	
_{FS} 11	36 MPa	5.2 KSI	39 MPa	5.7 KSI	

Indicates Element Edge

Indicates Element Edge + Bar Element

8 39 94,22 82,70 83,7 100

Figure 5-9. Fuselage Center Section Skin Model

Indicates Element Edge

Indicates Element Edge + Bar Element

Indicates Bar Element

Figure 5-10. Bulkhead 233.5 Model

_____ Indicates Element Edge

----- Indicates Element Edge + Bar Element

.____ Indicates Bar Element

* NO ELEMENT

Figure 5-11. Bulkhead 241.8 Model

Indicates Element Edge

---- Indicates Bar Elepant

Figure 5-12. Bulkhead 274.1 Model

Figure 5-13. Roof Structure Model

Indicates Element Edge

Indicates Element Edge + Bar Element

<u>69</u>

Figure 5-14. Strongback Model

Figure 5-15. Overwing Fairing Formers Model

TABLE 5~3

HYBRID COMPOSITE PLATE ELEMENT PROPERTIES

PROPERTY	BASIC	SECTION	REINFOR	CED SECTION	SOLID LAMINATE	
		MEMBRANE	PROPERTIES			
Thickness	1.10	(.042)	1.63	(.064)	3.25 (.125)	
G ₁₁	51.0	(7.4)	63.4	(9.2)	68.2 (9.9)	
G ₁₂	6.2	(.90)	5.7	(.83)	6.1 (.89)	
G ₂₂	14.5	(2.1)	15.2	(2.2)	15.8 (2.3)	
G ₃₃	7.6	(1.1)	7.6	(1.1)	7.6 (1.1)	
	BENDING PROPERTIES					
Moment of Inertia	303.8	(.00073)	520.3	(.00125)		
G_{11}	59.3	(8.6)	68.2	(9.9)		
G_{12}	6.2	(.90)	6.1	(.89)	Only one set	
G ₂₂	15.2	(2.2)	15.8	(2.3)	of properties	
G33	7.6	(1.1)	7.6	(1.1)	required for	
z_1	2.64	(.104)	3.58	(.141)	homogeneous	
z_2	-4.24	(167)	-3.5 8	(141)	plate elements	
TRANSVERSE SHEAR PROPERTIES						
Thickness	6.35	(.25)	6.35	(.25)		
E	.67	(.097)	.67	(.097)		
G	.22	(.0325)	.22	(.0325)		

Dimensions are given in mm. and (in.). Moduli are given in GPa and (10^6 psi). Moment of inertia is given in mm⁴ and (in.⁴).

TABLE 5-3 (Cont'd)

G_{ij} is defined by:

$$\begin{cases}
\sigma_1 \\
\sigma_2 \\
\sigma_{12}
\end{cases} = \begin{bmatrix}
G_{11} & G_{12} & G_{13} \\
G_{12} & G_{22} & G_{23} \\
G_{13} & G_{23} & G_{33}
\end{bmatrix} \quad
\begin{cases}
E_1 \\
E_2 \\
E_3
\end{cases}$$

$$G_{13} = G_{23} = 0$$

Figure 5-16. Wing Model

design of the composite fuselage the middle three on each side were removed and the design was based on a 4 point wing attachment. These bolts were modelled as scalar elements.

NASTRAN runs were made for the two critical loading conditions previously discussed. The main concern in these runs was the stresses developed in the composite material structure. The stresses in the metal parts were examined and no area of concern was found. Figures 5-17 to 5-19 give the stresses in the composite structure for the recovery condition. Table 5-4 gives a summary of the maximum stresses. In both cases the maximum stresses are compression in the forward part of the fuselage section at the point of discontinuity of the forward fuselage.

5.5 BUCKLING DESIGN

5.5.1 Methodology

The buckling analysis of this design was complicated by the fact that it is a sandwich structure, the faces are of unequal thickness, they are both orthotropic, the elastic properties of the two faces are different, and the sandwich section is not constant, that is, some areas have the additional plies in the faces for reinforcement. No one analytical method was found which pertained directly to this case, and so several techniques were investigated. These techniques are those given in references 4 to 9.

A comparison of all these methods was made for both a complete cylindrical shell and for cylindrical panels. The method of reference 4 was applied in two different ways, one with a sandwich whose faces were the thicker outer face and one where the sandwich faces were the inner face thickness and properties. The former method and the methods of references 5 and 6 all gave close to the same results, while the latter and the methods of references 7 to 9 all gave close to the same results. The first set of results, however, was approximately 70% higher, and so, in order to minimize risk, it was decided not to use these methods. The second set of methods were examined in more detail and the following were selected for analyzing the buckling of the fuselage panels, and the cylindrical shell test component which will be discussed in a later section of this report.

Cylinder:

Axial Buckling Load,
$$N_{x}$$
 -
$$N_{x} = N_{o} \left(\frac{N_{x}}{N_{o}} \right) \emptyset$$
(1)

where

$$\frac{N_x}{N_o} = f\left(\frac{N_x}{N_q}\right)$$
 from Figure 10 of reference 8.

Figure 5-17. Outer Face Stresses - Recovery Condition

Figure 5-18. Inner Face Stresses - Recovery Condition

Figure 5-19. Access Door Stresses - Recovery Condition

TABLE 5-4

SUMMARY OF MAXIMUM STRESSES

RECOVERY

	•	Face	Inner (2 I		
	MPa	PSI	MPa	PSI	
	111.0	-52			
AXIAL:					
Tension	*	*	87.1	12635	
Compression	162.8	23621	217.7	31589	
CIRCUMFERENTIAL:					
Tension	2.1	301	65.4	9486	
Compression	29.0	4205	31.0	4493	
SHEAR	24.8	3594	51.3	7439	

^{*} NOTE - All axial stresses in outer face 3 ply elements were in compression

$$N_{o} = \frac{2\sqrt[3]{E}}{\sqrt{1 - \sqrt{1} \sqrt{2}}} \quad \frac{h}{r} \quad \sqrt{t_{1}t_{2}}$$

$$\emptyset = \left\{ G_{LT} \left[1 + (\sqrt{LT} + \sqrt{TL})^{1/2} \right] / (E_{L}E_{T})^{1/2} \right\}^{1/2} \quad \text{(reference 4)}$$

$$D_{q} = G_{XZ} \quad \frac{h^{2}}{h^{-\frac{1}{2}}(t_{1} + t_{2})}$$

 \emptyset is a face shear correction factor taken from reference 4, and γ is a correlation factor defined by Figure 11 of reference 8. D is a transverse shear stiffness parameter for the sandwich. The other quantities are defined as follows:

 $G_{\mathbf{X}\mathbf{Z}}$ - shear modulus of core longitudinal-transverse plane

h - sandwich depth measured center to center of faces

t1, t2 - sandwich face thicknesses

r - radius of cylinder

G_{LT} - in-plane shear modulus of sandwich face

E_{I.} - longitudinal modulus of sandwich face

 E_{T} - circumferential modulus of sandwich face

 $\mathcal{V}_{\mathrm{LT}}$, $\mathcal{V}_{\mathrm{TL}}$ - Poisson's ratio of sandwich face

 $\overline{\mathtt{E}}$ in the equation for N $_{\mathrm{O}}$ was determined as follows:

$$\overline{E} = \frac{\left(\sqrt{E_L E_T}\right) \text{ outer face} + \left(\sqrt{E_L E_T}\right) \text{ inner face}}{2}$$

The determination of an equivalent isotropic modulus by the square root technique used here was recommended in reference 10 and is also reflected in the equation for \emptyset from reference 4.

Shear Buckling Load,
$$N_{xy}$$
 -
$$N_{xy} = \frac{.34 (\chi Z)^{3/4} \gamma^2 D_1}{L^2}$$
(2)

where

$$z = \frac{2L^2}{rh} \qquad \sqrt{1 - \mathcal{V}_{LT} \mathcal{V}_{TL}}$$

$$D_{1} = \frac{\left(\sqrt{E_{L}E_{T}}\right)_{o} t_{o} \left(\sqrt{E_{L}E_{T}}\right)_{i} t_{i} h^{2}}{\left(1 - \mathcal{V}_{LT} \mathcal{V}_{TL}\right) \left[\left(\sqrt{E_{L}E_{T}}\right)_{o} t_{o} + \left(\sqrt{E_{L}E_{T}}\right)_{i} t_{i}\right]}$$

L = length of cylinder

 $\gamma = .586$ (reference 8)

Subscript "o" refers to outer face

Subscript "i" refers to inner face

Equation (2) above may be used for rigid core where ${\rm 77D_1/L^2D_q}\approx 0$ and ${\rm 8Z>170}$. Otherwise, Figure 14 of reference 8 should be used to determine $k_{\rm xy}$, and

$$N_{xy} = \frac{k_{xy} \eta^2 D_1}{\tau^2}$$
 (3)

Cylindrical Panel:

Axial Buckling Load, N -

$$N_{x} = KN_{o} \left(\frac{N_{x}}{N_{o}}\right) \emptyset$$
 (4)

Except for the K factor this is identical to equation (1) for a cylinder. Comparative calculations of cylinders and panels using the methods of reference 6 indicate that for a panel with simply-supported edges the buckling load is the same as for a cylinder and, therefore, for this case $\emptyset = 1$.

For the case of clamped edges, section 5 of reference 9 was used to determine the ratio of clamped buckling load to simply-supported buckling load. The procedure for this is as follows:

- a. Determine K from Figure 5-22 (reference 9)
- b. Calculate K

$$K_{F} = \frac{\left[\left(\sqrt{E_{L} E_{T}}\right)_{o} t_{o}^{3} + \left(\sqrt{E_{L} E_{T}}\right)_{i} t_{i}^{3}\right] \left[\left(\sqrt{E_{L} E_{T}}\right)_{o} t_{o} + \left(\sqrt{E_{L} E_{T}}\right)_{i} t_{i}\right]_{K_{MO}}}{12 h^{2} t_{o} t_{i} \left(\sqrt{E_{L} E_{T}}\right)_{o} \left(\sqrt{E_{L} E_{T}}\right)_{i}} (5)$$

- Determine K_{rn} from Figures 5-8 to 5-21 (reference 9),
- Calculate K

$$K = K_M + K_F$$

This procedure is used to obtain a K for clamped edges and a K for simply supported edges. There the factor Ø to be used in equation (4) for clamped edges is

$$\emptyset = \frac{K_{\text{clamped}}}{K_{\text{simply supported}}}$$

Shear Buckling Load, N -

$$N_{xy} = \overline{N}_{xy} + (N_{xy})_{cyl}$$
 (6)

The shearing buckling load of the cylindrical panel is the sum of the cylinder shear buckling load and the shear buckling load of a flat panel, reference 10. Therefore, (N_x) is calculaged from equation (2). Nxy is calculaged from section 6 of reference 9, as follows:

- a. Determine K_m and K_{mo} from Figures 6-7 to 6-14 (reference 9).
- b. Calculate K_{μ} from equation (5)

c.
$$K = K_F + K_m$$

c.
$$K = K_F + K_m$$

d. $\overline{N}_{xy} = K \frac{T^2}{b^2}$ D_1

where b is the length of the short edge. Linear interaction was assumed between shear and axial load buckling.

In addition to the general instability modes discussed above, the sandwich design must be able to resist local buckling in the form of intercell buckling and face wrinkling,

Intercell Buckling -

$$\overline{O}_{f} = .764 \sqrt{E_L E_T} \left(\frac{t_f}{d}\right)^{3/2}$$
 (7)

This is based on reference (11), and

Of = face buckling stress

= cell diameter

Face Wrinkling -

For thin cores the following equations, taken from reference 12, account for initial waviness of the sandwich faces:

$$C_{cr} = \chi \left[.590 \left(E_L E_C t_c \right)^{1/2} + .386 G_{xz} t_c/t_f \right]$$
 (8)

 \mathcal{J} is the waviness correction factor and is defined as

$$\delta = \frac{1}{1 + cB}$$

where

$$C = \frac{\mathcal{T} Gxz}{\lambda cr}$$

$$\lambda_{cr} = 1.670 t_{f} (E_{L} t_{c}/E_{L} t_{f})^{1/4}$$

$$\beta = 6.3 \times 10^{-6}$$

and

t = core thickness

t_f = face thickness

E = core modulus in thickness direction

 O_{cr} = face wrinkling stress

Analysis

The configuration and design of the composite fuselage has been described previously. This design was analyzed for buckling using the methodology just presented. The key geometric parameters for this analysis are as follows:

Outer face thickness - .66 mm (.026")

Inner face thickness - .41 mm (.016")

Core thickness - 64 mm (1/4")

h = 6.88 mm (.27'')

r = 31.75 cm (12.5")

Material properties are given in Table 5-2. The core properties are as follows:

$$G_{v_7} = 310 \text{ GPa } (45000 \text{ psi})$$

$$G_{V7} = 152 \text{ GPa (22000 psi)}$$

$$E_{C} = 531 \text{ GPa } (77000 \text{ psi})$$

From these values

$$(\sqrt{E_{L}E_{T}})_{C} = 25.7 \text{ GPa } (3.7 \text{ x } 10^6 \text{ psi})$$

$$(\sqrt{E_{L}E_{T}})_{i} = 31.0 \text{ GPa } (4.5 \times 10^{6} \text{ psi})$$

$$(\sqrt{E_L E_T})_0 t_0 = 16.96 \text{ MN/m} (96200 \#/in.)$$

$$(\sqrt{E_L^E_T})_i t_i = 12.61 \text{ MN/m} (72000 \text{ #/in.})$$

$$D_1 = 362.8 \text{ Nm} (3211 \text{ in. 1b.})$$

$$D_{G} = 2.31 \text{ MN/m} (13185 \%/\text{in.})$$

and the critical buckling loads are

$$N_{\rm m} = 350 \, \rm kN/m \, (2000 \, \#/in.)$$

simply-supported edges

$$N_{xy} = 271 \text{ kN/m (1550 } \#/\text{in.})$$

$$N_{\rm m} = 665 \, \rm kN/m \, (3800 \, \#/in_{\rm s})$$

clamped edges

$$N_{XY} = 394 \text{ kN/m } (2250 \text{ #/in}_{\circ})$$

For conservatism, the simply supported results were used. The local buckling mode stresses are $% \left(1\right) =\left(1\right) +\left(1\right) +\left($

$$O_f$$
 = 1085 MPa (157.4 KSI) inner face intercell buckling

and

The corresponding load on the sandwich to cause these wrinkling stresses in the faces are

$$N_{x} = 406 \text{ kN/m } (2320 \text{ #/in.})$$
 inner face
 $N_{x} = 441 \text{ kN/m } (2520 \text{ #/in.})$ outer face

These results are shown in summary form in Table 5-5.

5.6 STRENGTH AND MARGINS OF SAFETY

The overall strength of the composite fuselage panels is based on the results of the NASTRAN finite element analysis, the buckling analysis and the material properties. NASTRAN stresses and material allowable stresses were converted into equivalent axial and shear loads per unit length, $N_{\rm X}$ and $N_{\rm XZ}$, by apportioning the load to the two faces according to the ratio of their stiffnesses. The outer face takes 53% of the in-plane compression and 60% of the in-plane shear, while the inner face takes the remainder. The stress to load conversions, therefore, are as follows:

<u>SI</u>	English
$Nx_{of} = 1.25 Ox_{of}$	$Nx_{of} = .049 Ox_{of}$
$Nx_{if} = .87 Ox_{if}$	$Nx_{if} = .034 \text{ Ox}_{if}$
$Nxy_{of} = 1.10 \text{ Oxy}_{of}$	$Nxy_{of} = .043 Oxy_{of}$
$Nxy_{if} = 1.03 \text{ Oxy}_{if}$	Nxy _{if} = .040 Oxy _{if}
N - kN/m	N - #/in.
O - MPa	O - psi

Stresses at critical points from the NASTRAN analysis were converted into loads and plotted as on applied load envelope, Figure 5-2Q. The buckling capability is shown as a straight line interaction between axial load and shear. In addition, the loads which would produce face wrinkling and compression and shear failure in the faces are shown. The resulting strength envelope is one which is dominated by buckling and facing shear strength capabilities, although the minimum margin region is in the area of the intersection of the buckling and inner face compression strengths. The margin of safety in this region is .4.

Figure 5-21, which shows a similar comparison of loads and strength for the reinforced sections where both faces are 4 plies thick, is included for reference without the detail calculations. The margins of safety for this are greater than for those represented by Figure 5-20, and so the thinner sandwich sections are more critical.

TABLE 5-5

SUMMARY OF SANDWICH PANEL BUCKLING CAPABILITY

	$N_{\mathbf{X}}$		N_{xy}	
	KN/M	#/in.	KN/M	#/in.
Simple Supports	350	2000	271	1550
Clamped	665	3800	394	2250
Face Wrinkling	406	2320		
Intercell Buckling	H i	gh		

Figure 5-20. Strength of Composite Fuselage Panels, Basic Section

Figure 5-21. Strength of Composite Fuselage Panels - Reinforced Section

6.0

ELEMENT TESTS

One of the areas of concern early in the design phase was the strength of the closeout section of the fuselage panels. The closeout is formed by tapering the core and bringing the two faces together, with added plies for reinforcement. In order to evaluate this design, a set of specimens was tested under compressive loading. The configuration of these specimens is shown in Figure 6-1. The goal was to show that the closeout was at least as strong as the main panel area.

Four specimens were tested in the setup shown in Figure 6-3. A lateral support was used to simulate the support conditions in the cylindrical shell configuration. Results of these tests are given in Table 6-1. The failure loads are greater than the design loads, but more important than load magnitudes is the fact that none of the specimens failed in the closeout area. This gave assurance that the closeout design was adequate and would not cause premature failures in that area. A photograph of the failed specimens is given in Figure 6-3.

7.0 SUBCOMPONENT DESIGN AND TEST

7.1 DESIGN

In order to substantiate the basic fuselage panel design and its method of attachment to the existing metal bulkheads, a cylinder was designed and fabricated for testing. This shell had the same honeycomb sandwich design as the fuselage panels, and was the same radius and length. It was, however, a complete cylinder rather than a cylindrical panel, Figure 7-1. The complete cylinder is easier to test and, in many respects, easier to make than the panel, hence, its selection as a subcomponent test article. Figure 7-2 gives the design details of this cylinder.

The cylinder is 63.5 cm (25 in.) OD and 104.1 (41 in.) long. It was made in two halves and joined by two longitudinal splices. The splices are honeycomb sandwich plates bonded between the two faces of the main shell sandwich.

7.2 TEST CONDITIONS AND FIXTURES

Two sets of tests were performed on the cylinder to demonstrate the overall structural adequacy of the design to withstand critical flight loads. The first was a compression test to limit load, since the fuselage design is critical in compression. The second set of tests was a series of tension tests performed to demonstrate the ability of the crack arrester strips to stop a crack, and therefore, render the composite design fail-safe.

The test fixture configuration for testing the cylinder in compression and tension is schematically illustrated in Figure 7-3. Compressive and tensile loading was introduced into the cylinder through a pair of concentric aluminum end rings, the inner ring being both bonded (EA 9309) and bolted to

Figure 6-1. Closeout Specimen Configuration

Figure 6-2. Closeout Specimen Test Setup

TABLE 6-1

RESULTS OF CLOSE-OUT SECTION TESTS

SPECIMEN	FAILURE LOAD	FAILURE MODE
1	13678 N(3075#)	Inner Face Crimping-Near Tab
2	13388 N(3010#)	Excessive Lateral Deflection
3	12343 N(2775#)	Gross Section Shear
4	11609 N(2610#)	Gross Section Shear

Figure 7-1. Cylinder Subcomponent

DWG. "BQM-34E CYLINDER TEST SPECIMEN" WILL BE FOUND IN THE BACK OF THIS REPORT

Figure 7-3. Cylinder Test Fixtures

70

the reinforced solid laminate areas at both ends of the cylinder. The inner and outer end rings were bolted together and in turn bolted to three 2.54 cm (1 in.) thick circular aluminum plates which fit inside the concentric rings. The three circular aluminum plates and an additional 5.08 cm (2 in.) thick steel circular plate were bolted together to form a single unit in order to react the substantial bending moment induced by the centrally applied load. In compression, the load was applied directly through the top steel plate. In tension, load was introduced into the cylinder through a 7.62 cm (3 in.) diameter fitting which is threaded into the center hole in the steel circular plate. The steel plate is repositioned internal to the three aluminum plates for tensile loading.

7.3 INSTRUMENTATION

Instrumentation for the tests consisted of strain gages and deflection gages. Figure 7-4 and Table 7-1 show the locations of the strain gages. There were 6 biaxial gages and 32 uniaxial gages giving a total of 34 strain readings. Eight of the gages were on the inner face and the remainder on the outside face.

Four deflection gages spaced 90° apart were used to measure axial deflection in both the compression and tension tests. For the compression test four more gages were used, also spaced 90° apart, to measure lateral deformation of the cylinder at its mid-length. These are shown in Figure 7-5.

Strains were recorded on the portable B & W recorder. Deflections were measured using LVDT's.

7.4 HYBRID COMPOSITE TESTING

The cylinder tests were performed in the 1334 KN (300,000 pound) capacity test machine. Figure 7-6 shows the composite sandwich cylinder in the testing machine. The first two tests performed were compression tests to 50% and 100% of limit load, 186.8 Kn (42000 lb.) and 373.6 Kn (84000 lb.) respectively. The cylinder withstood these loads successfully, and no unusual behavior was observed. This was the basic demonstration of the ability of the design to take critical flight loads.

A second, and more comprehensive, series of tests was then performed to evaluate the crack arrestment design. First, proof tests were run at 50%, 75%, and 100% of design ultimate load as a demonstration of basic tensile strength. Then five additional tests were run with induced damage, as depicted in the tensile test setup as shown in Figure 7-7. For test 2, a 2.54 cm (1 in.) sawcut crack was formed midway between two adjacent crack arrester strips. Load was applied until the crack propagated. (See Figure 7-8.) This occurred at 120% of design limit load (DLL). Propagation in this hybrid material was not at all sudden. The crack started to propagate at a particular load and continued to propagate gradually as the load was increased, until it reached the arrester strip. The propagation loads given here represent the load when the crack reached the arrester strip. Test 3 was a repeat of test 2 with identical results.

Figure 7-4. Cylinder Strain Gage Locations

TABLE 7-1
STRAIN GAGE LOCATIONS

GAGE NO.	<u>FACE</u>	AXIAL LOCATION	CIRC LOCATION
1	Outer	Upper End	315°
2	Inner	11	315°
3	Inner	11	135°
4	Outer	11	135°
5,6	Outer	11	45°
7,8	11	11	225°
9	11	Mid-Length	315°
10	Inner	11	315°
11	11	n	135°
12	Outer	n	135°
13,14	11	п	45°
15,16	11	II	225°
17	Inner	II	45°
18	11	n	225°
19	Outer	II	0°
20	11	11	15°
21	11	11	30°
22,23	11	Lower End	315°
24,25	tt	II	135°
2 6	11	11	45°
27	Inner	11	45°
28	ti	II .	225°
29	Outer	11	225°
30	Ħ	Upper End	135°
31	11	II .	135°
32	11	11	135°
33	11	8" from Upper End	135°
34	tt	11	135°

Figure 7-5. Deflection Gage Locations

Figure 7-6. Cylinder Subcomponent Compression Test Setup

Figure 7-7. Cylinder Subcomponent Tension Test Setup

Tests 4 and 5 were different in two respects. First, the damage was induced ballistically, and secondly, the structure was under a preload when the damage was induced. In test 4, a .95 cm (3/8 in.) projectile was fired into the cylinder. The damage which was produced had a maximum overall dimension of 2.2 cm (7/8 in.). The preload was 50% DLL. At the time of impact the damage did not propagate, but, upon subsequent application of load, propagation occurred at 114% DLL, Figure 7-9. In test 5, a 2.54 cm (1 in.) projectile was fired with 75% DLL preload. Again, the damage did not propagate at time of impact and in this case no subsequent load was applied, Figure 7-10.

The last test was with a 1.59 cm (5/8 in.) sawcut crack. Propagation in this case was at 129% DLL, Figure 7-11. It should be pointed out that at this time, with 129% DLL on the cylinder, six of the twenty-two sections between crack arrester strips were cracked over their 7.62 cm (3 in.) width, so that even with considerable damage the structure still withstood a high level of loading.

Figure 7-12 shows the cylinder after the testing had been completed. The complete set of crack arrestment tests is summarized in Figure 7-13.

In Figure 7-14, both the stress corresponding to the beginning of propagation and the stress, when the crack reached the arrester strips, are shown and compared to a curve drawn from the equations using the hybrid composite fracture data discussed in reference 13. The data agrees reasonably well with the analysis, although it covers only a narrow range of crack sizes.

8.0

FUSELAGE TESTING

8.1 INSTRUMENTATION

The three hybrid fuselage components were instrumented with a total of eleven axial strain gages and seven strain rosettes according to the layout diagram shown in Figures 8-1, 8-2 and 8-3. Gages internal and external to the fuselage center section are specified. Gage locations were selected to monitor regions of predicted high stress and areas which are buckling critical. Gage placements also checked load transfer in the closeout sections and load symmetry between the left and right fuselage center section panels.

8.2 TEST METHODS AND EQUIPMENT

The entire BQM-34E fuselage was tested in a self-contained test fixture erected from 30 cm (12 in.) wide - flange beams. Loading was accomplished at fuselage frame stations by means of continuous aluminum bonds supported on 2 cm (3/4 in.) thick elastomer compression pads, Figure 8-4a. Where obstacles such as the vertical stabilizer prevented use of continuous bands, aluminum straps were bonded to the fuselage with RTV-88 silicone rubber, Figure 8-4b. Separate wiffle tree arrangements, used to test each of the two load conditions, were attached to the fuselage frame loading points. Additional wiffles were used to load the wing in the 5g maneuver test. In both tests, loads were introduced into the structure through a single load point by means

Figure 7-9. Crack Propagation from .95 cm Projectile Damage

Figure 7-10. Crack Propagation from 2.54 cm Projectile Damage

Figure 7-12. Cylinder After Testing

Figure 7-13. Summary of Crack Arrestment Tests

Figure 7-14. Hybrid Cylinder Crack Propagation Comparison to Theory

Gage 29 - External

Figure 8-3. Access Door Strain Gage Locations

Figure 8-4a. Aluminum Band Loading Station

Figure 8-4b. Aluminum Strap Loading Station

of a manually operated hydraulic jack. Figures 8-5 and 8-6 are photographs of the test setup.

8.3 TEST LOAD CONDITIONS AND LOADING SEQUENCE

Two critical flight load conditions were ground tested to demonstrate the overall structural adequacy of the hybrid fuselage design. The two ground tests included a main recovery chute deployment load test and a simulated 5g maneuver loads test, discussed in "Design Conditions".

The loading sequence for both ground tests were identical and the procedure is listed below.

- a. Apply 30% Limit Load
 - o Checkout Instrumentation and Test Set-Up
- b. Apply 50% Limit Load 10 Times
 - o Extrapolate Strain Data to Limit Load and Compare for First and Last Cycle Data with Analytical Data.
- c. Apply Limit Load
 - o Record Strain Data
 - o Evaluate Strain
- d. Apply Limit Load 5 Times
 - o Record Data

Actual fuselage station applied loads are listed in Tables 8-1 and 8-2, for the recovery loads test and the 5g maneuver loads test, respectively. Loading stations are illustrated in Figure 8-7. Fuselage station shear diagrams for both load conditions are shown in Figures 8-8 and 8-9. Moment diagrams are also included in Figures 8-10 and 8-11. Limit loads developed on the fuselage center section for both conditions are shown in Figures 8-12 and 8-13.

8.4 FUSELAGE TESTING, RECOVERY LOADS

The hybrid fuselage was initially set up for the main recovery chute deployment load test. The loading sequence followed during this test was previously described.

Testing of the recovery load condition ran smoothly through steps (a) and (b) of the test procedure, the gages behaving linearly to the applied loads. Step (c) in the test procedure to limit load was next applied to the fuselage. At 80% DLL the onset of nonlinear strain behavior was observed in most of the forward gages, the most significant nonlinear strain response being observed by gages 4, 5, 6, 7, 10 (refer to Figures 8-1 and 8-2). A second cycle to

TABLE 8-1

APPLIED LOADS - RECOVERY CONDITION

FUSELAGE STATION APPLIED I		LIED LOAD
	\overline{N}	LBS
118.50	-255 8	~ 575
134.30	-2224	-500
166.30	-6672	-1500
182.50	-3 670	<u>~825</u>
209.00	-5462	-1228
224.80	-2175	~ 489
245.00	51155	11500
274.10	-6615	-1487
285.20	-4875	-1096
301.90	~62 28	-1400
315.20	-6672	-1500
325.00	~2 669	∽ 600
350.00	-1334	-300

NADC-77149-30

TABLE 8-2

APPLIED LOADS - 5G MANEUVER CONDITION

FUSELAGE STATION	APPL]	APPLIED LOAD	
	<u>N</u>	LBS	
166.30	-2891	- 650	
182.50	-2891	- 650	
209.00	-2211	-497	
224.80	- 903	-203	
258.34	-13122	-2 950	
Wing Loading	39189	8810	
301.90	-3550	- 798	
315.20	-1610	-362	
325.00	-2 669	-600	
350.00	-9341	-2100	

Figure 8-7. Frame Loading Stations

Figure 8-8. Fuselage Shear Diagram - Simulated Recovery Loads

Figure 8-9. Fuselage Shear Diagram - Simulated 5g Maneuver Loads

Figure 8-10. Fuselage Moment Diagram - Simulated Recovery Loads

Fuselage Station, cm.

Figure 8-11. Fuselage Moment Diagram - Simulated 5g Maneuver Loads

Figure 8-12. Simulated Recovery Loads

Figure 8-13. Simulated 5g Maneuver Loads

limit load was applied with the same nonlinear strain behavior initiating at 80% DLL. Typical strain data showing the nonlinear behavior is shown in Figures 8-14 and 8-15.

After applying 50% DLL of the third DLL cycle, it was decided to terminate the testing and examine the fuselage for possible damage. Inspection revealed that cracks of approximately 7.62 cm (3 in.) in length had propagated on both left and right fuselage panels, from the 90° corner where the solid laminate area extends above the forward wing attachment bolt hole, see Figures 8-16 and 8-17. The cracks which run parallel to the Gr/Ep longitudinal fibers are shown in detailed photographs by Figures 8-18 and 8-19.

8.5 FUSELAGE FAILURE ANALYSIS AND REPAIRS

After an examination of the crack and a review of the substructure drawings, the cause of the failure was readily determined. The parachute load which goes into the partial bulkhead at station 241 must be transferred into the fuselage skin, or outer shell. In the metal design, this is done by frame at station 241. However, in the composite version, this frame was removed along with the other intermediate frames, and this forced the load to take a path through the composite material in the circumferential direction for a short distance. Since no fibers run in this direction in the composite fuselage design, the induced stresses were excessive and cracking resulted.

The course of action to prevent this would most likely have been to leave part of the frame at station 241 in the fuselage. Alternately, 90° fibers could have been added at that point to increase the load carrying capability. The failure which did occur, however, is a local problem and in no way detracts from the basic composite design. A repair was designed which would provide an adequate load path for the parachute loads to be transferred into the composite honeycomb shell.

The damaged areas on the left and right fuselage panels were repaired with fiberglass patches which were both bonded and bolted to the hybrid laminate.

The fiberglass patches were fabricated from SP 250 prepreg and consisted of 16 plys with $(0, 45, 0)_{2S}$ orientations, the 0° fibers running in the circumferential direction. The patches were laid up on the small center fuselage section access door which substituted as a curing tool. Using the access door as a tool insured the patch would have the exact fitting inside diameter. After cure, the patches were cut to fit the damaged area; the patch configurations are illustrated in Figure 8-20. Existing rivet holes in the damaged area of the fuselage were located and the patches were drilled with 4.76 cm (3/16 in.) diameter bolt holes.

EA9309 room temperature curing adhesive was applied to the finished patches and, in turn, the patches were bolted to the fuselage panels. Care was taken to hold the bond line thickness constant, by positioning .1 mm (.005 in.) diameter fiberglass thread between the patch and the fuselage panels. The $4.76~\mathrm{mm}$ (3/16 in.) diameter bolts were finger-tightened to

Figure 8-14. Gage 4 Strains on 1st Run to DLL

Figure 8-15. Gage 10 Strains on 1st Run to DLL

Figure 8-18. Photograph of Crack in Left Fuselage Panel

Figure 8-19. Photograph of Crack in Right Fuselage Panel

16 PLY SP250 FIBER GLASS (0,±45,0)₂₈

Figure 8-20. Fuselage Repair Configuration

prevent squeezing out the adhesive from between the patch and the fuselage. After the adhesive cured, the bolts were wrench-tightened. The repaired areas are shown in photographs in Figures 8-21 and 8-22.

Figures 8-23 and 8-24 show the patch locations on the damaged areas of the right and left hybrid fuselage panels, respectively. Each patch was instrumented with an axial gage aligned circumferentially.

8.6 RECOVERY LOADS TEST II (AFTER REPAIR)

The hybrid composite fuselage was successfully tested under the recovery loads condition after the damaged areas had been repaired with the fiberglass patches. Test procedures already outlined in the Test Load Conditions and Loading Sequence section were again repeated for this test.

The only umusual occurrence in this test was a sharp noise which was heard at 90% DLL during the first cycle to 100% DLL. A discontinuity was observed in the strain data recorded from the single axial gage located on the right panel fiberglass patch. Inspection revealed no visible damage around the repair area, a partial bond failure between the patch and the fuselage may explain the strain discontinuity. Cycles 2 through 6 resulted in linear strain data, without any other noises being heard.

8.7 5G MANEUVER LOADS TEST

After the hybrid composite fuselage was successfully tested under the recovery load conditions, the test assembly was rearranged for the second test condition, the 5g maneuver loads test. The hybrid composite fuselage successfully withstood the 5g maneuver test to 100% DLL. Strains were relatively low for this loading condition as compared with the more critical recovery loads test. Maximum strains did not exceed 1000 M m/m at 100% DLL. No unusual noises or nonlinear strain recordings were noted during this test.

8.8 DAMAGE PROOF TEST

At the completion of the original test program, it was decided to induce damage into the right fuselage panel in the areas of highest recorded stress and re-test to 100% DLL. Two holes, approximately 2.5 cm (1 in.) in diameter were punched through the right panel with a sharp 2.5 cm (1 in.) diameter steel bar to simulate ballistic damage. Photos of the holes and their location are shown in Figure 8-25.

It was decided to test the fuselage under the 5g maneuver loads condition for convenience since the fuselage was currently assembled for that test. The fuselage was loaded to 100% DLL with no cracks initiating from the damaged areas. Some noises were heard during the test, although their origin could not be visibly detected.

After the initial test, additional testing was done with more damage being inflicted into the panel after each test. Cutouts of approximately

Figure 8-21. Installed Patch on Left Fuselage Panel

Figure 8-22. Installed Patch on Right Fuselage Panel

Figure 8-25. Induced Damage in Right Fuselage Panel

7.62 cm (3 in.) maximum diameter cut with a saber saw were contained at 100% DLL. Again, note that strains in the hybrid composite laminate were low, (under 1000 \(\mu\) m/m) for the 5g maneuver load condition. Crack propagation may have occurred under the more critical recovery loads condition. It was decided not to switch the test assembly back to the recovery condition at this point, but to conclude the testing.

Previous testing of composite structures incorporating crack arrestment fiberglass softening strips, namely the cylinder subcomponent described in this report, demonstrated the ability of these crack arrestment features, to stop propagating cracks.

CONCLUSIONS

The design which was developed and demonstrated in this program resulted in a 26% reduction of the weight of the metal parts which were replaced. The cost of the design was estimated to be 20% less, in a production situation, than the metal design. The crack arrester strips which were incorporated into the fuselage section represent the first application of this concept to a primary structure design. These strips met and exceeded expectations with regard to their ability to arrest and locally contain propagating damage, both statically and ballistically induced damage. Thus, the program demonstrated and verified their feasibility, capability and practical usability as a concept for damage tolerant design. In addition, the crack arrestment testing which was performed in this program demonstrated the superior fracture tolerance characteristics of the hybrid composite material and indicated that its slow crack propagation behavior might be useful as a failure warning device for a structure.

The objectives of this program have been met and the results have been disseminated in references 13 to 16. The success experienced here with crack arrester designs has provided some impetus for work which is now being pursued in industry in conjunction with composite structures studies.

REFERENCES

- 1. "Fuselage Structural Analysis for BQM-34E Supersonic Aerial Target", Ryan Report No. TRA K642-13B, 20 Feb 1973 (Volumes 1 and 2).
- 2. "Structural Loads Report for BQM-34E Supersonic Aerial Target", Final Report, Volume 1, Basic Report, 15 July 1970.
- 3. "NAVAIRDEVCEN Graphite-Epoxy Composite Wing for BQM-34E; Stress and Vibration Analysis", Thomas F. Neu, Shih L. Huang, Report No. NADC 73235-30, 15 November 1973.
- 4. "Structural Efficiency of Orthotropic Cylindrical Shells Subjected to Axial Compression", Norris F. Dow, B. Walter Rosen, AIAA Journal, March 1966.
- 5. "Pastbuckling Behavior of Orthotropic Cylinders Under Axial Compression", B. O. Almroth, AIAA Journal, October, 1964.
- 6. "Compressive Buckling of Simply Supported Curved Plates and Cylinders of Sandwich Construction", Manuel Stein, J. Mayers, NACA TN 2601, January 1952.
- 7. "Stability of Orthotropic Cylindrical Shells Under Combined Loading", T. E. Hess, American Rocket Society Journal, 1961.
- 8. "Buckling of Thin-Walled Circular Cylinders", NASA SP-8007, August 1968.
- 9. "Structural Sandwich Composites", MIL-HDBK-23A.
- 10. "Fabrication and Full-Scale Structural Evaluation of Glass-Fabric Reinforced Plastic Shells", Charles W. Bert, W. C. Crisman, Gene M. Nordby, Journal of Aircraft, Jan-Feb 1968.
- 11. "Buckling Design Handbook", T. E. Hess.
- 12. "Buckling of Cylindrical and Conical Sandwich Shells with Orthotropic Facings", Charles W. Best, W. C. Crisman, Gene M. Nordby, AIAA Journal, February 1969.
- 13. "A Hybrid Composite Fuselage Design with Integral Crack Arresters", S. L. Huang, T. E. Hess, 3rd Conference on Fibrous Composites in Flight Vehicle Design, Williamsburg, VA, November 1975.
- 14. "Fracture Control in Composite Materials Using Integral Crack Arresters", T. E. Hess, S. L. Huang, H. Rubin, AIAA/ASME/SAE 17th Structures, Structural Dynamics and Materials Conference, Valley Forge, May 1976.
- 15. "Fracture Control in Composite Materials Using Integral Crack Arresters", T. E. Hess, S. L. Huang, H. Rubin, Journal of Aircraft (To Be Published).
- 16. "Fatigue and Fracture Control of Graphite/Epoxy Composite Laminates with Stress Raiser", S. L. Huang, T. E. Hess, M. S. Rosenfeld, International Conference on Fracture Mechanics and Technology, Hong Kong, March, 1977.

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX A

NASTRAN BULK DATA

BQM-34E COMPOSITE FUSELAGE FINE GRID HODEL FREE FLIGHT-5G

NADC-77149-30

COUNT		•		-		-	_	_					
1~	- 1 CBAR	1071	• •	3	4	5	6	7	• •	8	• •	9	1
2-	CBAR	1002	31	14	16	15					. 5	**	
3-			31	13	14	15					2		
3- 4-	CBAR	1003	37	16	15	13					2		
5~	CBAR	1004	32	7	13	6					2		
-	CBAR	1005	31	13	15	11					2		
6-	CBAR	1006	35	6	7	13					2		
7-	CBAR	1007	31	12	13	11			*** * *		2		
8 -	CBAR	1008	31	10	15	9					2		
9-	CBAR	1009	34	15	9	10					2		
10-	CBAR	1010	32	11	12	13					2		
11-	CBAR	1011	33	10	11	15					2		
12-	CBAR	1812	31	9	10	15					2		
13-	CBAR	1013	34	2	. 9	15					2		
14-	CBAR	1014	38	1	2	16					2		
15-	CBAR	1015	31	10	4	11					5		
16-	CBAR	1016	36	5	24	11					2		
17-	CBAR	1917	36	4	5	11							
18-	CBAR	1018	36	3	4	10					2		
19-	CBAR	1019	36	2	3	9							
20-	CBAR	1020	35	7	8	14					2		
21-	CBAR	1021	31	6	12	11					2		
22-	CBAR	1022	16	51							2		
23-	◆76	1022	10	21	52	41					2		176
24-	CBAR	1023	16	71	F.4						_		
25-	477	Iuco	10	7.1	51	50					2		177
26-	CBAR	1024	16	161	74								
27-	+78	1024	7.0	101	71	96					2		178
28-	CBAR	1025	16	474	4.0.4								
29-	+79	1652	10	131	181	126					2		179
30-	CBAR	1026	4.6	4 77	4.74					•			
31-	+88	1026	16	133	131	132					2		180
32-		4007											•
33-	CBAR	1027	15	134	133	170					2		151
	981												
34-	CBAR	1028	17	18	8	19					2		
35-	CBAR	1029	17	39	18	21					2		
36-	CBAR	1030	18	19	17	14					2		
37-	CBAR	1031	3 9	38	39	42					2		
36-	CBAR	1032	40	42	41	38					2		
39-	CBA R	1033	41	38	41	37					2		
40-	CEAR	1034	42	37	38	41					2		
41-	C87 S	1035	43	41	37	38					S		
42-	CBAR	1036	44	41	4-0	37					2		
43-	CBAR	1037	41	37	40	36	• •	-			z		
4 4 -	CBAR	1038	45	36	56	40					2		
45-	CBAR	1039	46	40	36	37					2		
46-	CBAR	1041	45	56	37	40					2		
47-	CBAR	1042	10	69	68	73					2		122
48-	C84R	1043	10	58	57	73					2		123
					٠.			•			4		138
49-	CBAR	1845	10	99	98	164					2		148

.

CARD					5 0				L		_				CH			_	
TNUCO		. 1	2	••	3 .	-	4	•• 5	• •		5 4	• •	7	•	•	8	• •	9	•• 1
51-		CBAR	1048	10		129		128		. 38							2		166
52-		CBAR	1049	10		128		127		.38							2		167
53+		CBAR	1050	18		21		19		0							2		
54-		CBAR	1051	51		159		170		68							2		1512
55-		+512				0.1	22	8.05		0.0	i	- (1.25	•	1	6.9		0.0	
56-		CBAR	1052	57		1 58		159		.70							2		
57-		CBAR	1053	50		170		167		.68							2		
58-		CBAR	1054	57		157		158		.68							2		
59-		CBAR	1055	52		168		167		.57							. 2		
60-	* * * * * * * * * * * * * * * * * * * *	CBAR	1056	62		167		164		. 66							2		
61-		CBAR	1057	51		167		166		,57							2		
62-	•	CBAR	1058	58		156		140		67							2		
63-		CBAR	1059	51		156		165	J	65							2		
64-		CBAR	1060	53		166		165	1	56							2		
65-		CBAR	1061	54		164		165	1	66							2		
66-	•	CBAR	1062	54		165		155	1	56							. 2		
67-		CBAR	1063	59		155		156	1	65							2		
68-		CBAR	1864	63		164		163	1	55							2		
69-		CBAR	1865	59	-	154		155	1	63			****				2		
78-		CBAR	1066	54		163		154		55							2 2		
71-		CBAR	1067	63		163		162	1	53							2		
72-		CBAR	1068	60		153		154		63		-					2		
73-		CBAR	1069	54		162		153		54							2 2		
74-		CBAR	1070	63		162		161		52							2		
75-		CBAR	1071	60		152		153		62				*** * *			2		
76-		CEAR	1072	55		161		152		53							2		
77-		CBAR	1073	64		161		168		52							2		
78-		CBAR	1074	61		151		1 52		61							2		
79-		CBAR	1075	56		168		151		53							2		
89-	;	CBAR	1076	52		67		157		68,							Ž		
81-		CBAR	1077	70		L		31		6							2		17
82-		+7		. •			.42		-	•			. 42	2			_		
83-		CBAR	1078	70		31	• • •	61	1	6				_			2		18
84-		+8					. 42			-			. 42	2					
85-		CBAR	1079	70		51	•	91	1	6				_			2		19
86-		+9	2017	• •			.42		_	_			. 42	2					
87-		CBAR	1080	73		91		121		6			-				2		110
88-		+10	2000		•		.42		_	-			. 42	2			_		
89-		CBAR	1881	78	. 1	121		151	1	6			• • •	_			2		111
90-		+11	1001				.42		. -	•			• 42	2			_		
91-		CBAR	1882	5	•	70	U 7 L	22	1	б			- 1-	-			2		115
92-		CBA R	1083	ś		100		70		6							2		117
93-		CEAR	1084	<u> </u>		130		100 -		6							. 5		118
94-		CBAR	1085	5.		23		130	_	6							2		119
95-		CBAR	1086	19		20		14	_								2		** >
								20									2		
96-		CB4R	1087	19		2			1								2		
97-		CBAR	1688	19		3		17	_	70							2		
98-		CBAR	1898	20		39		21		70							2		
99-	–	CBAR	1891	19		7		14		70									
188-		CBAR	1093	20	- 4	21		42	1	70							2		

CARD	THE RESIDENCE OF THE PARTY OF T			SCRI	E D B	ULK	D A T A	E C H O	to the second sections and the	7-100 dates her me - manager
COUNT		1 2	• •	3	1 3	5	6	7 8		
101-	CBAR		94	22	39	16		7 8		3 19
102-	CBAR	1095	94	159	23	16			2	196
183-	CBAR	1095	205	43	29	0.8	1.	0.0	2	197
104-	CBAR	1997	215	29	59	0.8	· 1.	0.0	1	
105-	CBAR	1899	214	59	89	0.0	1.	8.0	1	
106-	CBAR	1101	213	8 9	119	0.8	1.	0.0	1 1	
107-	CBAR	1103	212	119	137	0.0	1.	0.0	1	
103-	CBAR	1104	202	149	148	0.0	1.	0.0	1	
189-	CBAR	1105	185	74	21	22	4.5	0.0	2	
110-	CBAR	1105	135	105	74	70			2	
111-	CSAR	1107	1.07	139	105	100			2	
112-	CBAR	1103	178	169	139	23			2	
113-	CBAR	1189	36	24	6	15			2	
114-	CBAR	1110	204	30	43	0.0	1.	0.0	1	
115-	CBAR	1114	201	148	150	0.0	î.	0.0	1	
115-	- CBAR	1115	115	73	68	69			2	
117-	CBAR	1116	115	74	73	69			2	
118-	CBAR	1117	115	104	98	99			2	
119-	CBAR	1118	115	105	104	99			2	
120-	CEAR	1119	115	138	128	129	*		2	
121-	CBAR	1128	115	139	138	129			2	
122-	CBAR	1121	121	67	56	0.0	1.0	0.0	i	
123-	CBAR	1122	121	67	97	0.0	1.0	0.0	1	
124-	CBAR	1123	121	97	127	0.0	1.0	0.0	ī	
125-	CBAR	1124	122	127	140	0.0	1.0	0.0	1	
126-	CBAR	1125	58	140	157	167			2	
127-	CBA R	1126	126	2	32	1.0	• D	• 0	1	
128-	CBAR	1127	126	32	62	1.0	. 0	. 0	1	
129-	CBAR	1128	126	62	92	1.0	• C	• O	1	
130-	CBAR	1129	126	92	122	1.0	• O	σ.	1	
131-	CBAR	1130	126	122	152	1.5	• 0	• 0	1	
132-	CBAR	1138	211	137	149	0.0	1.	0.0	1	
133-	CBAR	1139	139	75	4,	• 8	-1.0	• 0	1	
134-	CBAR	1140	149	75	76	80			2	
135- 136-	CBAR	1141	140	76	77	8.0			2	
137-	CBAR	1142	142	77	78	80			2	
137-	CBAR	1143	148	78	79	80			2	
139-	CBAR CBAR	1144	140 70	79	80	1.0	. 0	. 2	1	
146-	+C145	1145	<i>7</i> U	151	141	16			2	C145
141-	CBAR	1145	146	+422	446	_	•422			
142-	CBAR	1147	147	154	144	• 0	-1.0	• 0	1	_
143-	*G147			58 0.0	81	80			2	C147
144-	CBAR	1148	148	57	~ •85 58	0.0 80	0.0	5	0.0	
145-	+C148		740	0.8	•75	0.0	0 0	- 05	2	C148
146	CBAR	1149	148-	75 ·	57 ·	8ŋ	0.0	85	0.0	
147-	+C149		A 70	0.0	•65	. 0 . 0	0 0	7-	2	C149
148-	CBAR	1152	152	144	145	179	0.0	.75	0.0	
149-	CBAR	1153	152		146	179	or manages and the		2	
150-	CBAR	1154	152	146	147	179			2	• *
		***	1 JC	140	14/	713			2	

CARD		_				_		_		_				
THUCS	• 1	2	•• 3	•• 4		5	• •	6	• •	7	• •	8	9 .	. 10
151-	CBAR	1155	1 52	147	178		179					2		
152-	CBAR	1156	152	178	179		1.0		• 0		• 0	1		
153-	CEL AS 1	2015	2001	29	1		40		1					
154-	CELAS1	2913	2002	29	2		40		2			•		
155-	CELAS1	2020	2091	29	3		40		3 .					
156-	CELASI		2003	29	4		40		4					
157-	CELAS1	2322	2884	29	5		40		5					
158-	CELASI	2023	2003	.29	6		40		6					
159-	CELAS 1		20 61	149	1		166		1					
160-	CELAS 1	2025	2002	149	2		166		. 5			are gade as may the server.		
161-	CELASI	2026	2001	149	3		166		3					
162-	CELAS 1	2027	2003	149	4		165		4					
163-	CEL AS 1	2028	2014	149	-5		166		5					
164-	CEL AS1	2029	2003	149	6		166		6					
165-	CONMS	143	119	2	.01		-22	•	. 0		. 0			
165-	CONHS	144	149	2	. 84		-22	•	. 0		.0			
167-	CONM2	147	155	2	.015	5								
168-	CONH2	148	156	2	.031									
169-	CONHZ	149	157	. 2	.037	8							• • • •	
170-	CDRDZC	1	B	0.3	0.0		0.0		0.0		0.0	1.0	:	11
171-	+1	2.8	1.0	0.0										
172-	CURUZR	2	· a	• B	6.0		0.0		0.0		6.0	1.0		185
173-	* 85	1.8	6.0	0.0										
174-	CQUADI	200	200	60	30		43		55		-0			
175-	CQUAD1	201	201	55	43		29		59		. 0			
176-	CQUAD1	202	202	90	60		55		87		. 0			
177-	EQUAD1	203	203	87	55		59		89		. 0			•
178-	CQUAD1	294	204	128	90		87		117		. 0	•		
179-	CQUAD 1	205	205	117	87		89		119	•	. 0			
180-	CQUAD1	206	286	135	129		117		136		. D			
181-	CQUAD1	207	207	136	117		119	***	137		. 0			
182-	CQUAD 1	208	208	150	135		136		148		. 8			
183-	CQUAD 1	289	209	148	136		137		149		. 0			
184-	CROD	893	119	18	19		920		119		19	20		
185-	CSHEAR	143	115	18	8		17		19					
186-	CSHEA F	144	118	39	18		19		21					
187-	CSHEAR	145	118	19	17		14		20					
188-	CSHEAR	146	118	21	19		20		42					
189-	CTRIA1	15	47	1	31		2		-					
196-	CTRIAS	16	47	32	2		31						• • •	
191-	CTRIA1	17	47	2	32		3							
192-	CTRIAI	18	47	33	3		32							
193-	CTRIA 1	19	47	3	33		. 44 .		*					
194-	CTRIA1	20	47	34	4		44							
195-	CTRIAS	21	47	4	34		45							
196-	CTRIA1	22	47	35	5		45							
197-	CTRIA1	23	47	5	35		25							
198-	CTRIAL	44	47	31	61		32							
199-	CTRIA 1	45	47	62	32		61							
200-	CTRIA1	46	47	32	62		33							
C 0 0 -	DIKIMI	70	7.	J C.	UŁ									

				SOKI	E D B	O L K	"D'A"T A	E -C	: HO				-
CARD													
COUNT	. 1		2	3	4	5	6	7	•		0		_
		• •					0 • •		. 5	• •	9	. 1	U
261-	CTRIAI	47	47	63	33	62							
292-	CTRIA 1	48	3	33	63	49							
203-	CTRIAI	49	3	64	34	49							
20%-	CTRIA 1	5 9	3	34									
					64	53							
205-	CTRIAL	51	3	65	35	5 3							
205-	CTRIA1	52	47	35	65	54							
207-	CTRIA1	53	47	66	36	54							
253-	CTRIA1	6.5	47	61	91	62							
209-	CIRIAI	67	47	92	62	91							
212-	CTRIA 1	68	47	62	92	63							
211.	CTRIA1	63	47	93	63	92							
	CTRIAI	70	3	63									
212-					93	64							
213-	CTRIA1	71	3	94	64	93							
214-	CTRIA1	72	3	64	94	65							
215-	CTRIAI	73	3	95	65	94							
			47			-		_					
215-	CTRIAS	74		65	95	€6							
217-	CTRIA1	75	47	96	66	95							
218-	CTRIA 1	85	47	91	121	92							
219-	CTRIAI	87	47	122	92	121							
228-	CTRIAI		47	92									
_		83			122	93							
221-	CTRIA1	83	47	123	93	122							
222-	CTRIA1	90	3	93	123	94		-					
223-	CTRIA 1	91	3	.124	94	123							
224-	CTRIAI	92	3	94	124	95							
225-	CTRIAL	93	3	125	95	124	•						
225-	CIRIAI	94	47	95	1 25	96							
227-	STRIA1	95	47	126	96	125							
223-	CTRIA 1	106	47	121	151	122							
229-	CYRIA 1	107	47	151	152	122							
230-	CTRIA1	108	47	123	122	152	90.						
231-	CTRIAI	199	47	152	153	123	90.						
232-	CTRIA1	119	47	124	123	153	90.						
233-	CTRIA1	111	47	153	154	124	90.						
234-	CTRIA1	112	47	125	124	154	90.						
235 -	CTRIAL	113	47	154	15 5	125	90.						
236-	CTRIA1	114	47	126	125	155	90.						
237-	CIRIAI	115	47	156	126	155	*						
238-			47				0.0						
	CTRIA1	152		35	36	25	90.						
239-	CTRIA1	178	47	4	3	44	90.						
246-	CTRIA1	171	47	33	34	44	90.						
241-	CTRIAL	172	47	5	4	45	90.						
242-	CTRIA1	173	47	34	35	45	90.						
243-	CIKIMI	179	3	34	33	49	90.						
244-	CTRIA1	130	3	63	64	49	90.						
245-	CTRIA1	181	3	35	34	53	90.						
246-	CTRIAI	182	3	64									
					65	53	90.						
247-	CTRIA1	183	47	36	35	54	90.						
2 + 8 -	CTRIA1	184	47	65	66	54	90.						
249=	CTRIA2	1	1	14	13	. 8							
250-	CTRIAZ	è		13									
E 7 4	CICIME	C	1	1.2	7	8							

	±	SORT	E D B U	L K	DATAECHO
CARD		_			
TRUCO		2 •• 3 ••	4 5		6 7 8 9 10
251-	CTRIAZ 3	1 13	6	7	
252-	GTRIAZ 4	1 16	15	14	
253-	CYRIA2 5	1 13	14	15	
254-	CTRIA.: 6	1 15	11	13	
255 -	CTRIAZ 7	1 6	13	11	
256-	CTRIA 2 8	1 11	5	6	
257 -	CTRIA: 9	1 10	4	11	
258 -	CTRIAZ 10	1 .5	11	4	
259 -	CTRIA2 11	1 11	15	9	
260-	CTRIAZ 12	1 4	10	3	
261-	CTRIAZ 13	1 10	9	3	
262-	CIRIA.: 14	i 3	9	2	
253~	CTRIAZ 24	67 36	6	25	AND THE RESIDENCE AND A CONTRACT OF THE PARTY OF THE PART
264-	CTRIA2 25	67 56	37	6	90.
265-	CTRIA 2 26	67 37	46	6	
265-	CTRIA2 27	67 38	7	47	· · · · · · · · · · · · · · · · · · ·
267-	CTRIA: 28	67 7	38	48	
268-	CIRIAZ 29	67 39	e	48	
269-	CTRIAZ 30	14 14	13	42	and the second s
270-	CTRIA 2 31	14 41	42	13	
271-	CTRIA2 32	14 13	12	41	
272-	CTRIA2 33	14 40	41	12	
273-	CTRIAZ 34	14 .36	40	12	
274-	CTRIA2 35	14 12	6	36	
275-	CTRIA: 36	14 51	52	42	The second secon
275-	CTRIA2 37	14 42	41	51	
277-	CTRIA 2 38	14 50	51	41	
278-	CTRIA2 39	14 41	40	50	
279-	CTRIA2 40	2 39	42	38	·
280-	CTRIAZ 41	2 42	41	38	
281-	CTRIA: 42	22 41	40	37	The same of the sa
282-	CTRIA2 43	22 40	3 6	56	
283-	CTRIA2 54	4 67	68	36	
284-	CTRIA2 55	4 37	56	68	
285-	CTRIA2 56	4 68	69	37	
286-	CTRIA2 57	4 69	38	37	
287-	CYRIAZ 58	4 38	69	70	
288-	CTRIA2 59	5 70	39	38	•
289-	CTRIAZ 69	14 40	36	72	
295~	CTRIAZ 61	14 4Ð	72	61	
291-	CTRIA 2 62	14 51	5 C	71	
292-	CTRIA: 63	14 72	71	50	: :
293-	CTRIAZ 64	14 71	72	101	
294-	CTRIA 2 65	14 102	1 D 1	72	
2 95-	CTRIA2 76	4 67	97	98	
296-	CTRIA: 77	4 98	68	67	
297-	CTRIA2 76	4 68	98	99	
298-	CTRIAZ 79	4 99	69	68	
299-	CTRIAZ 80	4 69	33	100	2011 · 11
309-	CTRIA2 81	4 100	70	69	

				SORTE	D B U	F K D	AT	A	E.C.	H ~0				
CARD														
COUNT	. 1	2	••	3 4	•• 5	• • 6		7	• •	3		9		10
301-	CTRIA2	82	14	101	102	131				•	••	,	••	10
392-	CTRIA2	83	14	103	131	102								
303-	CTRIA2	84	14											
				132	133	131								
304-	CTRIAZ		14	131	103	132								
305-	CTRIA2		4	97	127	128								
306-	CTRIA2	97	4	128	98	97								
327-	CTRIAZ	98	4	98	128	129								
300-	CTRIA 2	99	4,	129	99	98								
309-	CTRIAZ	100	4	99	129	130								
310-	CTRIAZ		4	130	162	99								
311-	CTRIAZ		14	134	133									
312-	CTRIA :		14			170								
				167	170	133								
313-	CTRIAZ	105	14	133	132	167								
315-	CTRIAZ	105	14	165	167	132								
315-	CTRIAZ		11	159	169	158								
316-	CTRIAZ	117	11	169	168	158								
317-	CTRIAS	118	11	168	157	158								
318-	CTRIA 2	119	11	168	169	170								
319-	CTRIA 2	120	11	170	167	168								
320 -	CTRIA 2	121	11	157	168	167								
321-	CTRIA 2	122	11	166	156	140								
322-	CTRIAZ	123	11	1 66	167	164								
323-	CTRIA 2	124	11	164	165	166								
324-	CTRIAZ	125	11	156	166	165								
325-	CTRIAZ	126	11	165	155	156								
325-	CIRIAZ	127	11	1 55	164	163								
327-	CYRIA;	128	11	163	154	155								
328-	CTRIA2	129	11	154	163	162								
329-	CTRIAZ	130	11	162	153	154								
338-	CTRIAZ	131	21	153	162	161								
331-	CTRIA :	132	21	161	152	153								
332-	CTRIA 2	133	21	152	161									
333-	CTRIA2	134	21	160		160								
334-					151	152								
335-	CTRIAZ	135	4	156	1 57	127								
335÷	CTRIAZ	136	5	123	127	157								
	CTRIA 2	137	4	157	158	128								
337+	CTRIA:	138	4 .	129	128	158								
338-	CTRIA2	139	4	158	159	129								
339-	CTRIAZ	140	4	159	1 30	129								
344-	CTRIAZ	141	14	1 26	1 66	103								
341-	CTRTA2	142	14	156	166	126								
342-	CTRIAE	143	220	158	1.78	179								
343-	CTRIAL	144	220	179	159	158								
3 66 4-	CTRIA 2	147	14	103	166	132								
345-	CTRIA2	148	14	126	103	96								
346-	CTRIAZ	149	14	102	95	103								
347-	CTRIAZ	150	67	25	24	5								
348-	CTRIA2	151	67	24	25	6								
349-	CTRIAZ	153	14	96	102	66								
358-	CTRIA2	154	14	7 2	66									
3,0	OIKTAC	* >~	A 🔻	16	66	102								

	A STATE OF THE STA		s (ORT	E D 8	U	L K	D	A T	A	Ε	C	H 1	0	·			
CARO																		
TAUCE	. 1	2	3	• •	4	5	• •	6			7	• •		8	• •	9	• •	10
351-	CTRIAZ	155	14	3 6	66		72		-							•		
352-	CTRIA2	156	22	40	37		56											
353-	CTRIA	157	67	6	36		56											
354-	CTRIA2	158	7	16	81		15					• •		-				
355-	CTRIAZ	159	7	58	15		81											
356-	CTRIAZ	169	7	15	58		10											
357-	CTRIAZ	161	7	57	10		58											
358-	CTRIAZ	162	7	10	57		4											
359-	CTRIAZ	163	7	75	4		57											
360-	CTRIAZ	164	11	140	157		167					-						
361~	CTRIAZ	165	11	167	166		140											
362-	CTRIA2	174	67	46	37		47											
363-	CTRIAZ	175	67	7	46		47		. 9	0.								
364-	CTRIAZ	176	67	37	38		47			0.								
365-	CTRIAZ	_	. 67	8	7		48			0.								
366-	CTRIAZ	17B	67	38	39		48			G.								
367-	CTRIA	185	185	39	21		22		_	-								
368-	CTRIAZ	186	186	21	74		22											
369-	CTRIA2	167	187	74	70		22		**				-					
370-	CTRIA. E		187	70	74		105											
371-	CTRIA2	189	187	105	100		70											
372-	CTRIAZ	190	187	100	105		139											
373-	CTRIAZ	191	187	139	130		100											
374-	CTRIA	192	187	130	139		169											
375-	CTRIA2	193	193	169	159		130											
376-	CTRIA2	194	5	75	4		76											
377-	CTRIAZ	195	ś	5	76		4											
378-	CTRIAZ	196	5	76	5		24											
379-	CTRIAZ	197	ś	77	76		24											
360-	CTRIAZ	198	5	6	77		24											
381-	CTRIA 2	199	ś	77	6		46											
	CTRIAZ	200	5	46	78		77											
382- 383-	CTRIA	281	5	78	46		7											
	CTRIA		5	7	79		78		· . · · ·									
384- 385-	CTRIAZ	203	5	, 79	7		8											
386-	CTRIA	254	5	8	8.0		79											
387-	CTRIAZ	205	6	151	141		152											
	CTRIAZ	286	6	142	152		141											
388- 389-	CTRIA	207	6	152	142		153											
-		208	6	143	153		142											
398-	CTRIA2	289	6	153	154		143											
391-	CTRIAZ	219	6	193	154		143											
392-	CTRIAZ		220	154	144		155	• • •										
393~	CTRIAZ	211	220	145	155		144											1
394-	CTRIAZ	212	220	155	145		156											
395-	CTRIA2	213			156		145											
396-	CTRIA	214	220	146	156		145											
397-	CTRIA2	215	220	140	155		140											
398-	CTRIA2	216	220	146														
399-	CTRIAZ	217	220	147	157		140											
488-	CTRIA 2	218	220	157	147		178											

CARD	 		 2.	0 R T E 1	D B U	L K 0	A T A	E C H O		
COUNT	. i	2	3		-			_	_	
461-	CTRIAZ	219	220	178	158		7	• • 5	•• 9	10
482-	CTRIA2	220	220	73		157				
403-	CTRIAZ	221	220	73 68	68 73	67 69				
484-	CTRIA 2	222	220	73	74	69				
405-	CTRIA2	223	220	73 74	79					
486~	CTRIA 2	224	220	104	98	69 97				
407-	OTRIA 2	225	220	98	104	97		-		
₩08 -	CTRIAZ	225	220	104						
#33-	CTRIAZ	227	220	105	105	99				
418-	CTRIAZ	228	220	138	100	99				
411-	CTRIA2	229	220		128	127				
412-	CTRIA2	230	220	128	138	129				
¥13-	CTRIAZ	231	228	138	1 33	129				
414-	FORCE			139	130	129	_			
415-	FORCE	1 1	57 58	0 0	1000.	• 0	- 6	• 454		
416-	FORCE	1	75		1000.	- 0	.0	.454		
417-	FORCE	1	75 76	0	1000.	. 0	527	7.55		
418-	FORCE	ì	77	0	1800.	. 0	486	2.5		
419-	FORCE	i	78	0	1000.	• 0	728	26		
520-	FORCE	i	70 79	C	1000.	•0	684	-3.266		•
421-	FORCE	i	80	0	1000.	. 0	488	-5.226		
\$22 -	FURGE	1	81	8	1000.	- 0	050	-3.595		
423-	FERGE	1		_	1003.	•0	• 8	.454		
424-	FORCE	1	141	Đ	1383.	• 0	113	953		
425-	FORCE	1	142	0	1000.	. 0	344	488		
₩25-	FORCE		143	0	1000.	• 0	394	263		
427-	FORCE	1	144 145	Q 0	1360.	.0	- 921	26		
428-	FORCE	1		0	1000.	• 0	794	.044		
429-	FORCE	1	146 147	Δ	1000.	• 0	422	.189		
438-	FORCE	1	178	0	1008.	• 0	283	-298		
431-	FORCE	1	179	0	1003.	• 0	235	.341		
¥32-	GRAV	2	0	386.4	1009.	. 8	188	•172		
433-	GRID	1	1	12.5	180.0	-9.25	-2.32			
434-	GRID	2	i	12.5	148.5	0.0	1			
435-	GRID	3	i	12.5	119.6	0.0 0.0	1			
436-	GRID	4	i	12.5	98.0	8.0	1 1			
437-	GKID	5	i	12.5	98.3	0.0	1			
438-	GRID	6	1	12.5	61.0	6.8	1			
439-	GRID	ž	î	12.5	22.0	8.0	i			
446-	GRID	8	1	12.5	.0	0.0	1			
441-	GRIO	9	ī	10.75	122.5	0.0	i			
442-	GRID	10	ī	8.73	101.5	0.0	i			
443-	GRID	11	1	9.06	30.0	0.0	. i			
444-	GRID	12	ī	10.87	56.5	0.0	i			
445-	GRID	13	ī	7.28	34.5	0.0	i			
445-	GRID	14	1	6.0	.8	0.0	1			
647-	GRID	15	î	4.12	90.8	0.0	1			
448-	GRID	16	î	.0	.0	0.0	i			
449-	GRID	17	. 2	•0	3.25	•0	2			
450-	GRID	18	2	-0	6.5	4.25	2			

CARD					S	ORTE	D 8 U	L K D A	T		E C	H	0				or steel and
COUNT	. 1	••	2	• •	3	4	. 5	. 6	• •	7			8	• •	9	••	10
451-	GRID	19	-	2	•	.0	3.25	4.25	2				•	•	•		
452 -	GRID	28		2		• 5	.0	4.25	S								
453-	GRID	21		2		.00	3.25	8.5	2								
454-	GRID	22		ī		12.5	.0	11.5	1								
· -	GRID	23		1		12.5	0.0	39.6	1								
455 -				1		12.5	75.5	• 8	ì								
456-	GRIJ	24		_		12.5	75.5	4.25	1								
457~	GRID	25		1					-								
458-	GRIO	29		2		-9.0	-81	8.5	2								
53 −	GRID	30		2		. 8	.81	8.5	-							_	
460-	GRID	31		1		12.5	180.0	8.5	1								
461-	GRID	32		1		12.5	148.5	8 • 5	1								
462-	GRID	33		1		12.5	119.0	8 • 5	1								
463-	GRID	34		1		12.5	98.0	8.5	1								
464-	GRID	35		1		12.5	90.0	8 - 5	1								
465-	GRIO	36		2		-10.96	. 0	8.5	2								
4 66-	GRIO	37		1		12.5	40.0	8 - 5	1								
467-	GIRD	38		1		12.5	22.0	8.5	1								
468-	GRID	39		1		12.5	• 0	8.5	1								
469-	GRID	40		1		10.82	56.3	8.5	2								
470-	GRID	41		1		7.5	38.0	8.5	1								
471-	GRID	42		1		6.0	. 0	8.5	1								
472-	GRIO	43		2		-4.5	.81	8.5	2								
4/3-	GRID	4,4		1		12.5	108.5	4.25	1								
474-	GRID	45		1		12.5	94.0	4.25	1								
₩75 ~	GRID	46		1		12.5	40.0	• 0	1								
476-	GRID	47		1		12.5	31.0	4.25	1								
477-	GRID	L; S		1		12.5	11.0	4.25	1								
578-	GRID	49		i		12.5	168.5	12.5	1		•		•				
479-	GRID	58		2		-7.625	. 3	12.0	2		5						
680-	GRID	51		2		-4.625	. 0	12.0	2								
481-	GRID	52		2		• 0	. 0	12.0	2								
482-	GRID	53		1		12.5	94.0	12.5	1								
483-	GRID	54		1		12.5	75.5	12.5	1								
4 34-	GRID	55		2		-4.5	-81	16.5	2		5			•			
₩85 -	GRID	56		1		12.5	51.5	8.5	1					•			
486-	GRID	57		1		8.73	101.5	-8.5	2								
487-	GRID	58		1		4.12	90.0	-8.5	2	*-				***			
488-	GRID	59		2		-9.0	+81	16.5	2		5						
489-	GRID	60		2		•0	.81	16.5	2								
490-	GRID	61		1		12.5	180.0	16.5	1								
491-	GRID	62		1		12.5	148.5	16.5	1								
492-	GRID	63		1		12.5	119.0	16.5	1								
493-	GRID	64		1		12.5	98.0	16.5	1		:						
494-	GRID	65		1		12.5	90.0	16.5	1								
¥95 -	GRID	66		2		-10.96	• 0	16.5	2								
495-	GRID	67		1		12.5	51.5	17.5	2								
497 -	GRID	68		ī		12.5	33.7	17.5	ī								
498-	GRID	69		î		12.5	22.	17.5	ā								
+99-	GRID	7 a		i		12.5	0.0	17.5	1		-						
500-	GRID	71		2		-7.625	.0	16.5	Ž								
700-	SKID			۷		-1.023	• •	10.7	_								

				SORTE	3B U	L'KD	A T	A	E C	H-0-			
CARD								•		•			
COUNT	. 1	• •	2	3 4	5	6	• •	7	• •	8		9	 10
561-	GRID	72	2	-9. U	.0	16.5	2		5				
5 Q 2 -	GRID	73	2	-4.55	4.40	17.5	2						
5 G 3 -	GRIO	74	1	10.43	. a	17.5	1						
584-	GRID	75	1	12.5	98.3	-8.5	2						
585-	GRID	75	1	12.5	90.8	-8.5	1						
586-	GRID	77	1	12.5	61.8	-8.5	1						
507-	GRID	75	1	12.5	40.0	-8.5	1						
508-	GRID	79	1	12.5	22.0	-8.5	1						
509-	GRID	80	1	12.5	• 0	-8.5	1						
510 -	GRIO	81	1	• 0	• G	-8.5	2						
511-	GRID	87	2	-4.5	-81	24.84	2		5				
512-	GRIO	89	2	-9.0	.81	24.84	2		5				
513-	GRID	90	2	• 0	-81	24.84	2		=				
51%-	GRIO	91	1	12.5	180.0	24.84	1						
515-	GRID	92	1	12.5	148.5	24.84	ī						
516~	GRID	93	1	12.5	119.0	24.84	1						
517-	GRID	94	1	12.5	98.0	24.84	1						
518-	GRIO	95	1	12.5	90.0	24.84	1						
519-	GRID	96	2	-10.96	• G	24.84	2						
520-	GPIO	97	1	12.5	51.5	24.84	2						
521-	GRID	98	1	12.5	35.71	24.84	1						
522-	GRID	99	1	12.5	22.	24.84	8						
52 3-	GRID	160	1	12.5	0.0	24.84	1			•			•
524-	GRID	101	2	-7.625	. 0	24.54	2						
525~	GRID	192	2	-9.B	٠0	24.84	2		5			-	
526 -	GRIO	103	2	-9.0	• 0	33.1	2		5				
52 7-	GRIO	104	2	-4.55	4.15	24.84	2						
528 -	GRID	105	1	10.15	• 0	24.84	1				•		
529-	GRID	117	2	-4.5	.81	33.1	2		5				
539-	GRID	119	2	-9.3	.81	33.1	2		5				
5 31 -	GRID	120	2	. 0	.81	33.1	2						
532 -	GRID	121	1	12.5	180.0	33.1	1						
533-	GRID	122	1	12.5	146.5	33.1	1						
534-	GRID	123	1	12.5	119.0	33.1	1						
535-	GRID	124	1	12.5	98.0	33.1	1						
536-	GRID	125	1	12.5	90.0	33.1	1 .						
537-	GRIJ	126	2	-13.96	• 0	33.1	2						
538-	GRID	127	1	12.5	51.5	31.1	2						
539- 540-	GRID	128	1	12.5	37.25	31.1	1						
54 1 -	GRIO CRIO	129	1	12.5	22.	31.1	9						
542-	GRID	139 131	<u>1</u> 2	12.5	0.0	31.1	1						
543-	GRID	132		-7.625	• 0	33.1	2		_				
54 5-	GRID	133	2	-7.625 -4.5	. 0	38.1	2		5				
545-	GRID	134	2 2	• 0	• 0	38.1	2						
545-	GRID	135			• 0	38.1	2						
5 47-			2	• 0 - / · =	.81	38.1	2		_				
548 -	GRID GRID	136 137	2 2	-4.5 -0.0	•81 81	38.1	2		5 5				
549-				-5.3	.81	38.1	2		2				
	GRID	138	2	-4.55	3.35	31.1	2						
550-	GRID	139	1	9.35	• 0	31.1	1						

			z. (RTE	ח פ ח	E.K D.	A T	A	EC	НО				
CARD					_	_		_		_		_		
COUNT	. 1	•• 2	3	•• 4,	•• 5	. 6	• •	7	• •	3	• •	9	• •	10
551-	GRID	148	1	12.5	51.5	41-1	ī							
552-	GRID	141	1	12.5	180.0	51.9	1							
553 -	GRID	142	1	12.5	144.0	51.9	1							
554-	GRID	143	1	12.5	124.0	51.9	1							
555-	GRID	144	1	12.5	100.9	51.9	1							
556 -	GRID	145	1	12.5	84.0	51.9	1							
557~	GRID	146	2	-10.96	• 0	51.9	1			- '				
558 -	GRID	147	1	12.5	40.0	51.9	1							
559-	GRID	148	2	-4.5	.81	41.1	2							
568-	GRIO	149	2	-9.O	-81	41.1	2							
561-	GRID	150	2	• 0	.81	41.1	2							
562-	GRIO	151	1	12.5	180.C	42.1	1							
563-	GRID.	152	1	12.5	144.0	41.959	1							
564-	GRID	153	1	12.5	124.0	41.803	1							
565-	GRID	154	1	12.5	100.G	41.334	1							
566-	GRID	155	1	12.5	84.0	41.256	1							
567-	GRID	156	2	-10.96	• 0	41.1	1							
568-	GRID	157	ī	12.5	40.0	41.1	1							
569-	GRID	158	1	12.5	19.5	41.1	1							
570-	GRID	159	ī	12.5	• 0	41.1	1							
571-	GRID	160	ī	19.3	180.0	41.959	1							
572-	GRID	161	1	9.5	144.0	41.878	1							
573-	SRID	152	i	9.0	125.5	41.75	1							
574-	GRIO	163	1	8.0	100.0	41.3	1							
575-	GRIO	164	1	7.54	77.5	41.256	1		**					
576-	GRID	165	1	7.52	80.0	41.256	1							
577-	GRID	166	1	10.82	56.3	41-1	2							
578-	GRID	167	1	7.5	37.0	41.1	1							
579-	GRID	168	1.	10.4	23.0	41-1	1							
580-	GRID	169	1	9.58	- • C	41.1	1							
581-	GRID	170	1	6.0	. 0	41.1	1			. **				
582-	GRID	178	1	12.5	19.5	51.9	1							
583~	GRID	179	1	12.5	- Q	51.9	1							
584-	LOAD	3	1.3	1.0	1	1.0	2							
585-	MAT1	1	1.03+7	3.9+6	• 33	2.56-4							12	
586-	+2	75.+3	65.+3	42.+3										
587-	MAT 1	2	1.03+7	3.9+6	.33	2.6-4							13	
588-	+3	77.+3	64.+3	46.+3										
589-	MATI	3	1.03+7		.33	2.6-4							11	L
590-	+14	74.	+3 63.+	3 43.	+3									
591-	MAT1	4	9.7+4	3.25*4									16	
592~	+6	360.	360.	200.									_	_
593-	MAT1	5	29.+6	12.5+6	. 3	7.4-4							HT	L 5
594-	+TL5	75.+3	27.+3	50.+3										
595 -	HAT1	10	16.0+6											
596 -	MAT1	12	2.5+6	5.166+		.14245	-3							_
597-	HAT1	14	1.03+7		• 33	2.6-4							11	5
598~	+15	78.+3	69.+3	47.+3										
599-	MAT1	16	1.05+7		.33	2.58-4							18	4
5 0 8 -	+84	61.+3	38.+3	38.+3										

				s -c	R T E D	8 บ	LK	T A	E -C-H-0		
CARD			_	_		_		_			
COUNT		• 1	•• 2	•• 3	• 4	• • 5	•• 6	•• 7	• • 8	•• 9	10
601-		MAT1	117	1.01+7	3.85+6	•33	2.52-6		-		193
602-		+93	3.4+4	2.3+4	2.0+4						
683-		MAT1	200	3.0+4	7.9+4						SHEAR
604-		+HEAR									
605-		HAT2	7	8.6+6	•90 • 6		2.2+6	•	1.1+6	1.7-4	HTL7
606-		+TL7						50.+3	45.+3	15.+3	
507-		MATS	8	9.9+6	.89+6		2.3+6		1.1+6	1.7-4	HTL8
508-		+TLB						50.23	45.+3	15. * 3	
593-		MATZ	9	9.2+6	.83+6		2.2.6		1.1+6		HTL9
610-	•	+TL9						50.+3	45.+3	15.+3	
511-		MAT 2	13	7.4+6	.90+6		2.1+6		1.1+6	1.7-4	HTL13
612-		+TL13						50.+3	45.+3	15.+3	
513-		STAB	48	2.344+6	1.291+6	B.0	1.743+7	0.8	1.6+6		
614-		MPG	1	67	2	1.0	59	2	-1.0		
615-		MPC	1	97	2	1.0	89	2	-1.0		
516-		MPC	1	127	2	1.0	119	2	-1.0		
617-		PARAM	GROPHT	22							
618-		PBAR	5	3	.063	2.08-5	.00525	8.33-5			BAR5
619-		+AR5	•5	0.0	5	0.0		_		**	
528-		PBAR	10	3	.0276	3.6-6	-0011	1 - 47 - 4			3AR10
621-		+AR10	.35	0.0	35	G . D					34.(10
822-		PBAR	12	3	.08	6.35-3	-0114	4.27-5			172
623-		+72	0.0	0.0	77	26	0.8	.74			173
624-		+73	.417					• • •			1. 5
625-		PBAR	13	3	.323	. 266	-8866	4.26-4			174
626-		+74	0.0	0.0							175
627-		+75	.417								11.7
523-		PBAR	16	16	.0675	3.16-3	4.56-5	1.82-4			182
629-		+82	9.0	0.0		0010 0	40,000	1.00			183
630-		+ 83	.834								103
531-		PEAR	17	117	125	. 163-4	.042	.842			187
632-		+87	0.0	0.0	• • • • • • • • • • • • • • • • • • • •	1100 7	****				188
533-		+88	.834								100
634-		PBAR	18	117	• 25	• 33	.083	.085			189 .
635-		+89	Q.0	0.0	• • •	•00	• 003	• 005			
636-		+94	.834								198
637-		PBAR	19	117	• 25	.0156	.083	.085			404
538+		+91		0.0	• 25	• 0170	• 003	• 409			191
639-		+92	.834	.834							192
640-		PBAR	20	117	•188	-141	-001				404
641-		+94	0.0	0.0	•100	• 1 4 1	- A B T	.141			194
642-		+ 95	.833	.833							195
543-		PBAR	31	1	•16	4.33-3	1.44-2	5.38-4			
544-		+31	0.0	0.0	0.0	0.275	T • 44-7	J • 35 - 4			131
645-		+311	-416	•41		0.213					1311
546-		PBAR	32	1	•08 ···	5.67-4	3.31-2	2.67-4			4 7 2
547-		+32	0.0	3.0	0.0	0.175		C . 01 -4			132
548-		+321	.416	-411		0.T13					1321
649-		PBAR	33	1		4 62-2	L 76-7	7 77-7			
650-		+33		_		1.43-3	4.36-3	3.73-3			133
576-		+ 33	8.0	0.0	0.0	0.238					1331

				S	ORTE) B -U - t	KOA	T A	E C H O		
CARD											
COUNT	• 1	2	• •		• • 4	• • 5	•• 5	7	8	•• 9	10
651~	+331	.208		.6						•	
552 -	PBAR	34	1		- 28	6.82-2			•		134
653-	+34	9 - 0			425	+.7	425	7			1341
654-	+341	• *18		• 🖘							
855 -	PBAR		1		.468	• 256	.20	1.56-3			135
656-	+35	0 . D		8 • 8	66	1.17	66	-1.17			1351
657-	+351	.416		-416					****		
658-	PBAR		1		• 46	. 267	- 19	1.53-3			135
659-	+ 3 6	0.0		0.0	65	1.088	65	-1.088			1361
65 0-	+361	• 4 16		.415							
661-	PEAR		1		• 40	•152	5.32-2	1.33-3			137
662-	+37	0.0		0.8	745	- 995	• 515	- 495	1.255	33 5	1371
66 3-	+371	-416		-416							
664-	PBAR	38	1		1.053	1.447	.23	2.34-2			138
565-	+38	0.0		0.0	1.725	 235	-1.	-1.885	-1.	1.415	1381
666-	+381	. 216		-618							
567-	PBAR	39	2		.396	-119	-117	2.53-3			139
558 -	+39	0.0		0.0	547	1.378	1.276	272			1391
6 69-	+391	• 55,6		.278							
579-	PBAR	40	2		.427	• 0 95	.078	3-02-3			140
571-	♦ % ()	0.0		0.0	386	1.224	1.114	276			1401
672-	+401	.468		.365							
673-	PBAR	41	2		.189	6.76-3	.G18	7.00-4			141
674-	+4 <u>1</u>	0.0		0.0	0.0	-605	45	295			1411
675-	+411	. 436		.396							
676-	PBAR	42	2		-487	.133	.137	4 - 20 - 3			142
67 7-	+42	0.0		0.0	273	1.167	1.377	483	-45	295	1421
578-	+421	.311		•523							
679-	PBAR	43	2		•279	7.30-3	.029	2.80-3			143
58 3-	+ 43	6. 5		0.0	0.0	•52	. 45	38	45	38	1431
581-	+431	.296		.538							•
6 32-	PBAR	44	2		. 20 2	.073	.078	1.60-3			144
683-	+ 44	9.0		0.0	• 322	1.13	1.178	37			1441
684-	+441	• 39		. 444						•	
685 -	PBAR	45	2		.314	.088	.076	1.01-3			145
686 -	+ 45	9. 0		0.0	456	1.326	1.196	324			1451
587-	+451	.483		.350							
688-	PBAR	46	2		•540	.078	•123	8.50-3			146
589-	+ 46	0.0		8.8	191	1.017	1.389	483			1461
692 -	* 4 6 1	•256		•579							
691-	PBAR		1		.258	.0192	.0595	7.16-4			150
592 -	+50	0.0		G . 0	0.0	1.844	• 76 ·	416	-		1501
593 -	+501	.364		. 453							
594-	PBAR		1		.072	4.6-4	• 9 - 3	2.02-4			151
695-	+51	0.0		0.0	0.8	• 362	• 25	078			1511
696 -	+511	.37		• 463		•					
697-	PBAR	52	1		.081	6.45-4					152
598 -	+52	0.0		0.0	G. 0	.343	• 275	147			1521
599-	+521	•379		•463							
708-	PBAR	5 3	1		• 22	•009	.0317	8.22-4			153

CARD			S 0	-R-T-E-0	ว 8 -บา เ	. K	A-T-A1	ЕСНО		galaga katawi Palata ya Yani ki wai 18 Wi Pa
COUNT	· . 1	2	3	4	• • 5	. 6	7	8	9	10
781-	+53	8-8	G. 8	0.0	1.129		354			1531
702-	+531	• 33	•5	0.0	10163					1731
783-	PBAR	54	1	.159	.008	.0199	3.02-4			15%
784-	+54	0.0	9.8	0.0	.634	•57				1541
705-	+541	. 444		•••	•034	• >1	200			1741
706-	PBAR	55		•17	.028	.218	3.60-4			155
787-	+55	0.0	9.0	0.0	.815	.57	285			1551
703-	+551	.416			•017	• • •				1771
709-	PBAR		1	.131	2.65-3	3.54-3	3.67-4			156
710-	+56	0.0	8.0	0.0	0.72	.41				1561
				U- U	0.72	• 41	05			1501
711-	+551	.372		• 342	. 13	.057	9.58-4			157
712-	PBAR		1							
713-	+57	0.0	0.8	1.505	0.0	445	• 99	455	99	1571
714-	+571	.37	.463	77	005	0200	5.38-3			158
715-	PBAR	58	1	•33	.085	.0209		- 222	_ e	
716-	+58	0.0	8.8	.852	0.0	273	•5	273	5	1581
717-	+581	.202 59		.799	.359	.259	.013			159
718-	PBAR		1 8.0	2.221		324		324	-1.21	1591
719-	+59 +591	0.0 .202		2.221	0.0	324	1.21	34	-1.51	1991
729-	PBAR		1	.436	•265	.118	1.22-3			163
721 - 722 -	+60	8.0	20	1.91	0.5	56	1.21	56	-1.21	1601
723-	*601	.37	•462	1.91	0.0	76	1.21	56	-1.21	1001
724-	PBAR	61	1	.311	. 299	.0432	8.72-4			161
725-	+61	0.0	0.0	1.37	0.3	467		407	865	
726 -	+611	.371		1.37		•01	• 00)		~.009	1011
727-	PBAR		1	.176	.0252	.0103	4.63-4			162
728-	*62	0.5	0.0	.75	168	54	+.168	18	.562	
729-	+621	.459		• 1 2) 4	100	~ • X O	• 702	1021
730-	PBAR		1	.212	.0285	.0587	1.04-3			163
731-	+63	£.8	0.0	.776	198		198	154	.532	
732-	+631	-406			• 1 30	-6764	2 3 0	• * > 4	. 752	1031
733-	PBAR		1	. 249	.034	.0154	2.19-3			154
734-	+64	6.0	0.0	.798	226	492			.544	1641
735 -	+641	.345		* / 70	-,220				• > 4 4	1041
735-	PBAR		2	.324	.07		.0012			112
737-	+12	0.0	8.0		1.8	. 422	0.0	.422	1.75	113
738-	+13	.474			1.0	• 466	0.0	• 424	1.13	LLS
739-	PBAR	72	14	•2	1.5-4	6.67-2	6.7-2			1172
748-	+172	.95	0.	05	0.	0.0.	1.0	0.	-1.0	2212
741-	PEAR	73	14	•5	2.6-3	. 167	.169	• •	1.0	1173
742-	+173	.125	0.	125	0.	8.	1.0	٥.	-1.9	LITS
743-	PBAR	94	3	.190	5.7-4	.0158	2.29-3	~•	***	84894
745-	+4294	•5	0.B	5	0.0	.0170	C • E 3 - 3			0457 9
745-	PBAR	105	3	.072	2.39-5	.008	9.57-5			BAR105
745- 746-			0 - B	57	0.0	• 000	3. 21.22			DHAIDS
	◆AR105					045	4 40-4			040405
747-	PBAR	106	3	.089	2.95-5	.015	1.18-4			BAR10€
748-	+AR166	•71	0.0	71	0.0	04.00	4 00 :			B4046-
749-	PBAR	167	3	.098	3-22-5	.0195	1.29-4			BAR107
750-	+AR107	. 78	0.0	78	0.0					

CARD						A T A TE	0 11 0		
TAUCO	. 1 2	3	4		6	7	• • 8	•• 9	10 .
751-	PBAR 108	3	-116	3.85-5	.0332	1.54-4			BAR108
752-	+AR108 .92	0.0	92	C.6					
753-	PBAR 115	3	.0785	5.74-3	3.73-3	6.54-5			BAR115
754-	+AR115435	635	.235	.535					AR115A
755-	+R115 # .17	1.0							
756-	PBAR 121	14	.035	.00278	.0381	7.1-5			P34R121
757-	+8AR121146	.371	146	529	.42	195	•		
758-	PBAR 122	14	.085	.00278	.0381	7.1-5			PBAR122
759-	+8AR122146	371	146	•529	• 42	•195		•	
769-	PBAR 126	14	.2358	1.6-4	.6849	5.4-4	-	i ''	PBAR126
761-	+84R126 0.0	0.0	3. 0	-1-176	8.0	1.144			
762-	PBAR 139	3	•39	•125	195	.0013			PBA R139
763-	#84R13944	-1.56	44	-64	1.35	.64			BAR139
764-	+AR139 1.0	1.8							
765-	PBAR 140	3	.211	.061	.011				PBAR140
766-	+BAR148 .63	24	•63	•51	8	24	8	-51	BA 2 140
767-	+AR140 1.0	1.9							
768-	PBAR 145	3	.234	•06ŝ	.0033	6.9-4			PBAR148
769-	+BAR146 0.0	45	1.01	0.0	-1.01	0.0			BAR146
770-	+AR146 1.0	1.0							
771-	PBAR 147	3	• 27	.14	.022	3.4-4			PBAR147
772-	+BAR147 .75	65	-1.13	65	• 75	.84	-1.13	.89	BAR147
773-	#AR147 1.0	1.0							
774-	PBAR 148	3	354	.312	•029	4.2-4			P84R148
775-	+BAR148 .95	63	-1.57	63	• 90	.87	-1.57	- 09	BAR148
776-	+AR148 1.0	1.0				•			
777-	P8AR 152	5	-114	.0043	.0168	• 95-4			P34R152
778-	+BAR152 +25	•69	• 25	69	- 25	0.0			BAR 152
779-	+AR152 1.0	1.0							
730-	PBAR 201	12	.1308	1.3131		-6976-4		_	PBARZOI
781-	+BAR201 .65	8 -	68	0.	.67	Q.	67	0.	P84 R201A
782-	" +84RZ81A -4128	1.	0 •						
783-	PBAR 202	12	.1304	1.1571	1.	.6955-4		_	PBAR202
784-	+BAR202 .67	ð.	~. 67	0.	.67	8.	67	0.	PBARZJZA
785 -	+BAR202A .4110	1.	0.		_				
786-	PBAR 204	12	.1324	.9839	1.	.7061-4			PBAR204
787-	+BAR2G4 _70	0	70	G.	•69	0 -	69	. 0 .	PBAR204A
788-	+BAR234A -4199	1.	0.		_			•	
789-	PBAR 205	12	.1316		1.	.7019-4		_	P34R285
790-	*84R205 .69	0.	69	G.	.68	Đ.	68	3.	PBAR205A
791-	+BAR205A .4164	1.	0.	4 03.53		7040 7			004004
7 92 -	PBAR 211	12	· 2910	1.2357	1.	.7012-3		_	PBAR211
793-	+BAR211 .67	0.	67	0.	.67	0.	67	0.	PBAR211A
794-	+BAR211A .2302	1.	0.	20055					8240242
795 -	PBAR 212	12	-29025		1.	.6987-3		_	PBAR212
796-	+848212 .67	_ G.	67	ۥ	• 655	8.	655	O.	PBAR212A
797-	+8AR212A .2282		0.						
798-	PBAR 213	12	-28955		1.	•6962-3			PBAR213
799 -	+BAR213 .655	0.	 65 5	0.	. 655	₽.	 655	0.	PBAR213A
500-	+8AR213A .2262!	5 1.	0.						

	Project to		s o	R T'E'0	B n. r	K	T A T E	CHO		
CARD Count	4	•	3		• • 5	6	7	•	•	
801-	• 1 PBAR	214	12	22165				. 8	•• 9	10 .
302-	+8AR214		8.	•22145 ••655	.26377	1.	.3184-3		•	PB4R214
893-	+BAR214		1.	0.000	0 •	-65	G.	68	3.	PBAR214A
864-	PBAR	215			.25345		7205.7			6240246
505 -		•58	12	•22245		1.	•3235 -3		•	P34R215
505-	+84R215 +84R215	-	0.	68 D.	9.	.68	0.	68	0.	PBARZ15A
			1.	u.						
807-	PELAS	2001	7.68+4		16.2					
308-	PELAS	2002	2.75+6		18.2					
809-	PELAS	2903	1.35+4		550.					
810-	PELAS	2004	2.04+4	4	277.					
811-	PQUA01	200	40	-177	48	•122	200	1.60		PQU 200
812-	+ QU 2 C B	.81	81							
813-	PQUAD1	201	40	.206	40	-141	208	1.60		PQU 201
814-	+QU281	.81	51	4.7.5		400				
815-	PQUAD1	202	40	•175	40	-120	208	1.60		PQU202
816-	# QU28 2	.81	81							
817-	PQUAD1	203	43	-204	48	.140	200	1.62		PQU 203
818-	+QU203	.81	81	407		475				
519-	PQUAD1	284	48	•197	40	.135	208	1.62		PQU204
320-	+QU234	.81	81	250	4. 0	474	200	4 60		00:1000
821-	PQUAD1	205	40	• 250	40	-171	200	1.60		PQU205
822-	+QU205	.81	81	407	4.0	435				
823-	PQUAD1	205	40	•197	40	.135	200	1.62		PQU 286
824-	+QU206	.81	81	24.2		415	200			0011003
825 ~ 826 ~	PQUAD1	207	40	• 212	48	•145	208	1.62		PQU 287
827-	+QU287 PQUAD1	.81 208	81 10	.206	10	464	200			03.1300
528 -	+ QU 2 0 8		81	• 250	10	-141	200	1.65		PQJ 298
829-	PQU401	.51 209	18	21.2	10	165	200	7 74		00/1300
830-	+QU209	.81		.212	10	• 145	200	3.31		PQU 289
831-		119	81	.125	04.2	•5				
832 -	PROD PSHEAR	118	117 117		.042	• >				
833-	PTRIAL	3	13	.125	7	7.3-4	4	25		4.
534 -	+4	.174		•042	•	7.3-4	4	• 25	1.16-6	14
835+	PTRIA1	47	157	06.		43 5-6	4.	. 25		4 3 9 3
836-	+333	.141	8 141	.854	8	12.5-4	4	• 25	1.15-6	1333
837~	PTRIAZ	1	1	0.1		11	1	.08		
838-	PTRIA	4	14	.09	• D	**	•	• • • •		
\$39 -	PIRIAZ	5	14	.098	.0					
540-	PTRIAZ	6	3	.050	.0	7	16	. 208	.0	
841-	PIRIA	8	14	.950	0.0	•	10	• • • •	• 0	
842-	PTRIA	14	16	.072	•••					
843-	PTRIAZ	21	1	0.12		2	2	-11		
844-	PTRIA2	22	2	0.16		-	•			
845-	PTRIAZ	67	8	-128						
845-	PTRIA 2	185	3	-38		186	3	.25		
847-	PTRIA2	187	3	.053		193	3 3			
848-	PTRIA2	220	3	• 64		T 30	•	.125		
849-	SPC1	1								
549 -		-	123456	22	۰	4 1.	4.0	7.0		
0 7 4 -	SPC1	2	245	1	8	14	16	39	42	198

0100			5.0	RTE	ו ע פייים	LKD	A-T-A	E C H O		
CARD COUNT 851- 652- 853- 854- 855-	• 1 +98 +99 SPC1 +533 SPC1	151 121 3 150 77	159 100 156 135 246	150 130 52	169 70 134	170 141 30	7 31 179 60	61 80 90	91 81 120	199 1533
856-	SPCADO ENDDATA	5	1	2	3	. 77				
				•						
	-			• • • • • • • • • • • • • • • • • • •						
				•	yn yn ywddy i'r oll Alleidy Chinell	and the second s		- Asserting the selection with Video		
									<u>.</u>	
		•		•				•• • • • • • •		
				•						
										
						A PART NA	W. C. C. W			
			·							••
					·				· .	
		<i>i</i>		a	11		• •		**	

THIS PAGE LEFT INTENTIONALLY BLANK

APPENDIX B

NASTRAN ELEMENT STRESSES

NADC-77149-30

8QM-5-6 COMPOSITE FUSELAGE FINE GRID MODEL

CNL

CALC

DECEMBER 18, 1975 NASTRAN 9/16/74 PAGE

13

NADC-77149+30 1.114884E+03 1.859725E+03 8.937240E+02 1.756087E+03 3.168789E+03 3.578411E+03 1.495322E+04 1.693621E+04 9.403516E+03 1.003761E+04 1.153709E+04 1.767074E+03 2.466586E+03 5.207649E+03 1.404538E+04 1.755345E+04 1.240430E+04 1.314932E+03 1.8937+0E+03 1.029367E+03 1.389204E+03 2.645310E+03 2.347847E+03 5.563344E+03 4.062894E+03 3.719554E+03 1.001587E+04 1.029213E+04 9.588149E+03 1.116285E+04 SHEAR -1.589364E+03 -3.053617E+03 -1.604994E+03 -1.743402E+03 -1.890101E+03 -2.790244E+03 -4.491077E+03 -6.514358E+03 -1.031224E+04 -2.896885E+04 -3.064582E+04 -2.575294E+03 -2.143847E+03 -7.512136E+03 -9.830460E+03 -2.735798E+04 -3.149966E+04 -2.0529505+04 -1.799725E+04 -1.945543E+04 -2.615609E+03 -1.4 1211 7E+03 -4.089644E+03 -9.593870E+03 -2.081827E+04 -1.759349E+04 -2.250396E+C4 -1.588134E+04 CTRIAI SHEAR (ZERO 1.824540E+02 1.768771E>03 6.404043E+02 6.658341E+02 1.644046E+03 2.142928E+03 1.846502E+03 2.636761E+03 3.900941E+03 -7.262729E+02 2.5604742+03 -8.780848E+02 -2.024003E+03 4.280296E+03 2.077971E+03 3.618764E+03 5.467030E+01 1.653633E+03 3.878503E+03 6.060506E+02 1.5370185 #03 -2.950025E+03 6.136531E+02 -2.391351E+03 -7.845323E+02 2.990766E+03 -3.227665E+03 6.444658E+03 5.568758E+02 6.631785E+02 PRINCIPAL STRESSES
ANGLE
MAJOR 53.6630 63.3217 -82.2604 -61.5995 46.4618 43.4008 44.7521 73.3418 80.4406 41.5861 57.0389 -83.7762 41.5099 50.1188 43.0032 82.9828 78.6914 85.2693 -80.9991 -84.0712 73.5672 -74.1219 -80.2504 59.1232 ď ⋖ 1 0 9 1.064297E+03 1.492181E+03 1.748498E+03 5.987599E+02 8.925607E+02 1.753351E+03 1.767007E+03 2.465468E+03 -3.748532E+03 -5.073804E+03 -4.952289E+03 -2.163561E+03 -6.409108E+02 1.305656E+03 1.732180E+03 1.340261E+03 1.349284E+03 8.370278E+02 1.562481E+03 1.656709E+03 -2.29373SE+03 4.587523E+03 2.601007E+03 4.899565E+03 2.981471E+03 1.021737E+03 2.603195E+03 2.342146E+03 1.300 892E+03 1.998159E+03 SHEAR-XY FERAL TRI AN ELEMENT COORD SYSTEM NORMAL-Y SHEAR--8.693650E+02 2.794938E+03 -1.424596E+02 -8.394782E+01 -1.383210E+02 -2.494190E+02 1.325710E#03 -2.687210E+03 1.157890E+03 -1.493409E+03 1.735346E+03 2.108258E+03 -1.387542E+03 3.711796E+03 -3.432655E+03 3.568823E+03 1.703342E+03 -1.905309E+03 -3.701928E+03 6.206468E+03 -6.656857E+02 -8.529551E+01 1.842025E+93 3.600948E+03 -1.415642E+03 5.325597E+02 -1,091525E+03 1,370935E+03 -3,026209E+03 3.011940E+02-2.780580E+03 -1.711337E+03 <u>ح</u> Z STRESSES NORMAL -X G -8.064399E+62 -2.303835E+03 -7.558542E+02 1.105651E+02 -1.077333E+02 -3.978972E+02 -3. ??13G7E+03 -9.545101E+03 -1.103981E+03 -1.022773E+03 -7.199676E+03 -9.441131E+03 -2.2129705+04 -1.564284E+04 -3.970285E+03 -9.743133E+03 -2.653235E+04 -3.123517E+04 -2.645939E+14 -2.989654E+04 -1. 9&3&38E+04 -1. 9&1903E+04 -1.461148E+03 -3.605262E+02 7.630434E+82 -1.578284E+03 -9.42 4787E+03 -1.214641E+04 -1.775130E+04 -1.943761E+04 -2.073344E+04 -1.7397665404 z v w 'n Ø w 1.418080E-01 -1.418308E-91 1.410000E-01 -1.410000E-01 1.41G300E-C1 1.4136695-01 -1.413669E-01 1.4100006-01 1.410000E-01 -1.418000E-01 1.410000E-01 -1.410000E-01 1.418300E-31 -1.410000E-01 1.040000E-01 -1.670000E-01 1.040300E-01 -1.670300E-01 -1.410000E-01 -1.410300E-31 1.410000E-01-1.410000E-51-1.410000E-01 1. 410000E-C1-1. 410000E-01 1.040900E-41 -1.675000E-01 1.410000E-01 -1.410000E-61 1.4100006-01 S T'R' FIBRE DISTANCE 16 <u>1</u>8 5 5.0 23 4 ţ 46 8 9 20 ELEMENT 15 7 21 23 747 ċ

DECEMBER 18, 1975 NASTRAN 9/16/74 PAGE

CALC ONLY

	88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	70+	的的 60 + +	\$0.5	20 20 40 50 50 50 50 50 50 50 50 50 50 50 50 50	500 600 800 800	10 to 40 to	7149 88	න න ආ ධ ඉ ර	80 00 00 00 00 00 00 00 00 00 00 00 00 0	20 00 00 00 00 00 00 00 00 00 00 00 00 0	2 0 0 3 2 0 0 3	\$ 0 %	2 0 0 5 E + 0 3	: +02 : +03	# C C C C C C C C C C C C C C C C C C C
MAK SHEAR	8.388796E 9.930673E	1.313145E 1.33566E	5.214135E 5.212534E	0.082803E 5.160499E	5.438933E	2,037334E 1,181920E	5. 33957KE	6.322512E 3.665308E	6.552347E 5.623172E	5.636127E	3,2000795 5,1621455 5,1621455	6.507079E	2.498330E	5.461717E 1.616210E	9.405468E 1.284058E	1,320143E
ICTRIAI) ERO SHEAR) MINOR	-2.053267E+04 -1.341894E+04	-2.427045E+04 -2.213268E+04	-1.078164E+01 -4.154258E+03	-3.215275E+03 -4.956175E+02	-1.654813E+03 -1.517520E+03	-5.976971E+02 -3.942849E+03	-9.650217E003	-8.383845E483 -4.793436E483	-1,0226455404 -0,9377395403	**************************************	-8,726827E403 -7,557689E483	-1.251973Er0& -1.166496Er0&	-3.362254E003	-2.280185E+03	-2.028454E003 -2.531933E003	-1.224380E+03 -3.282921E+03
PAL STRESSES (Z MAJOR	-3.755082E+03 6.442407E+03	1.992464E+03 4.580646E+03	1.041749E+06 6.271009E+03	-1.598718E+03 5.364823E+02	-5.670146E+82 -8.216947E+81	3.596972E+03	1.020926E+83	2.611795E+02 2.097131E+03	-1.123752E+93 1.918686E+03	*5.991592E+02	~9.858687E482 2.726478E433	4.9%4311E402 1.839459Erg3	1.63%4052403 2.900918E403	-1,187842E+113 5,646486E+12	-1.4736432+82 3.618348E011	2.415906E+03 -1.550009E+03
R E L E PRINCI ANGLE	-80.5755	-81.4021	-31.2229	-24.7073	- 88 . 9358 - 66 . 258	63.6217 46.0774	8908762 8801996	- 68.9587 86.6952	-83.55478 -87.7928	-78.5279	-77.3483	17208738	-54.0506	-52.6805	-84.0952 -72.8555	75.9180 67.1232
R I A N G U L A D SYSTEM SHEAR-XY	-2.710199E+03 -2.644767E+03	-3.882137E+03 -4.447125E+03	-6.622718E+63	-6.138379E+82 -5.067942E+02	-2.020000E+01 -5.306725E+92	1,669628E003 1,181084E003	9,799333E*01 2,75084E492	-1.570773E+02 3.965651E+02	-1.01.8099E+03 -4.178351E+02	~2.898266E483 ~2.633654E483	-1.671172E+03 -1.893491E+03	~3.662591E + 83 ~4.015379E + 83	-2,376686E+03	-4.454136E002 -7.316881E+02	-1,924926E402 -7,233957E402	8.591015E+02 6.206830E+02
ENERAL COOR NORMAL-Y	-4.204941E+B3 6.083749E+D3	1.405495E+03 3.818566E+03	2.791366E+03 -1.571503E+03	-2.932650E+03	-5.673898E+02-3.166838E+02	2.768950E+03 ~2.716489E+03	1.028026E003 -2.129287E003	2.583245E+02 2.874232E+03	-1,239083E+03 1,894428E+03	-1.601450E903	-1.294004E+03 2.365164E+03	-6.3%21062082 5.157910E082	-8.770486E001 4.168457E002	-1.417928E+03 3.895379E+02	-1.572729E+112	2.200401E*03
SESTNG STRESSES NORMAL-X	-2.000281E+04 -1.306028E+04	-2.35 (348E+04 -2.137060E+04	7.615341E+03 3.688254E+03	-1.881147E+03 -7.586689E+01	-1.654438E +03 -1.283006E +03	2.303246E+02 -2.805370E+03	-9,649318E+03	-0,380990E+03 -4,770507E+03	-1.011111506 -8.921621E+03	-10.106912E+04 -50.215860E+03	-0.3536922903 -7.196495Er03	-1.1391085604 -2.034129E404	-1.640144E003 -9.408622E:01	-2.050099E+03	-2.108545E+83 -2.306773E+03	-1,008875E+03 -3,021030E+03
FIBRE DISTANCE	1.040000E-01 -1.670000E-01	1. 410000E-81 -1.418000E-01	1. 410000E+01 -1. 410000E-01	1.410000E~91 -1.410000E~01	1.410000E-01	1.4188885-81 -1.4188885-81	1.418968E-81	1.8595955-91 -1.6790302-91	a. 8%8888888 **. 6%38888=8%	1.0042880E-61 -1.670998E-61	3.0%88955-01 -1.679095-11	1.418880E-81	3.410000E-01 -1.410000E-01	1.411000E-81 -1.413099E-01	1.4500085~01 -1.410000E-01	1.4100005-01 -1.3100005-01
ELEMENT ID.	51	52	1	99	5	න ග	න නි	e B	e e	Ŀ K	1 00	*	io A.	. 0	28	න න

	A 51
	ä
	_
	-
	į
	1
	Ξ
	2
	=
-	97.1 E
	7
	L
	z
	Ξ
	⋧
	Œ
	7
	ä
	7
	7
	1
	i
	in
	₩.
	ö
	ú
	-
	10
	귺
	, ,
	1
	'n
	逼
	õ
	Ÿ
	ũ
	S
	屲
	ñ
	Γ

FREE FLIGHT-50

CALC ONLY

	;	:		1		Ŋ	ADC-7	7149	-30	1	1 1 1 1	1				:
MAX SHEAR	4.433875E+03 3.658383E+03	3.353255E+03 3.083113E+03	3.181827E+03 3.388582E+03	3.540984E+03 4.388378E+03	2.504351E+03 3.555479E+03	4.317656E+03 4.966142E+03	3.169838E+03	6.295175E+02 1.116316E+03	3.136029E+02 3.570471E+02	2.189045E+03 1.685803E+03	2.601336E+03 2.207897E+03	3,035313E+03 2,856869E+03	1.108923E+03 1.882937E+03	2.004243E+03 2.426278E+03	2.048304E+03 3.027721E+03	2.504431E+03 3.117340E+03
C T R I A 1) RO SHEAR) MINOR	-8.419036E+03 -8.1E9378E+03	-6.946264E+03 -4.356548E+03	-6.761155E+03 -6.129392E+03	-6.033298E+03 -4.871202E+03	-5.719037E+03 -5.579127E+03	-8.245492E+03 -8.620569E+03	-5.423038E+03 -6.171546E+03	-1.740016E+03 -2.027118E+03	-8.483060E+02 -7.935677E+02	-3.290487E+03 -3.964199E+03	-5.624920E+03 -4.845886E+03	-6.302533E+03 -4.9874465+03	-2.203072E+03 -3.962167E+03	-4.898694E+03 -2.742901E+03	-3.696196E+03 -5.801737E+03	-3.771742E+03 -4.611420E+03
MENTS PAL STRESSES (ZEI MAJOR	4.487131E+02 -8.526125E+02	-2.397550E+02 1.809677E+03	-3.975006E+02 6.477722E+02	-7.516910E+02 3.889539E+03	-7.103344E+02 1.531832E+03	3.898188E+02 1.311714E+03	9.166378E+02 1.345348E+03	-4.809805E+02	-2.211002E+02 -7.947357E+01	1.087 603E+03 -5.925926E+02	-4.222474E+02 -4.300913E+02	-2.319065E+02 7.262925E+02	1.477341E+01 -1.962922E+02	-6.902082E+02 2.109654E+03	4.004132E+02 2.537043E+02	1.237120E+03 1.623260E+03
R E L E PRINCI ANGLE	-87.2038	-80.5422	-79.0343 -83.2954	-71.1478	-73.6298 -75.8761	-58,2524	-64.2359	81.6217	1.7721 25.3485	-3.6389	2.8719	9.2977	6.7320	21.9084 16.6336	21.6615	32.1404 31.8348
R I A N G U L A SYSTEM SHEAR-XY	-4.320803E+02 2.045088E+02	-1.087046E+03 -3.346738E+02	-1.188401E+03 -7.858315E+02	-2.226667E+03 -2.199760E+03	-1.339699E+03 -1.682759E+03	-2.971821E+03 -3.373653E+03	-2.461712E+03 -3.125036E+03	1.814950E+02 -9.253403E+01	1.938656E+01 2.762859E+02	-2.610331E+02 -4.586554E+02	2.603411E+02 -2.620172E+02	9.679075E+02 1.413111E+02	2.581964E+02 5.787794E+01	1.387648E+03 1.328796E+03	1.405365E+03 1.720865E+03	2,256320E+03 2,793919E+03
IN ELEMENT COORD	4.276198E+02 -8.583332E+02	-4.208421E+02 1.791458E*03	-6.277641E+02 5.553936E+02	-1.511973E+03 3.297136E+03	-1.898798E+03 1.108406E+03	-7.956759E+02 -1.011289E+01	-2.811507E+02 -3.249804E+02	-5.077113E+02 2.055712E+02	-8.477062E+02 -6.626815E+02	-3.272372E+03 -3.900607E+03	-5.611860E+03 -4.830284E+03	-6.144072E+03 -4.983949E+03	-2.172594E+83 -3.961277E+83	-4.340627E+93 -2.346679E+03	-3.138026E+03 -5.265144E+03	-2.354139E+03 -2.876767E+03
E S T N G STRESSES NORMAL-X	-8.397933E+03 -8.163657E+03	-6.765177E+03 -4.338330E+03	-6.530891E+03 -6.037013E+03	-7.273017E+03 -4.278799E+03	-5.330574E+03	-7.059998E+03	-4.225249E+03 -4.501317E+03	-1.713285E+03 -2.023275E+03	-2,217000E+02 -2,103598E+02	1.069488E+03 -6.561851E+02	-4.353077E+02 -4.456936E+02	-3.903670E+02 7.227955E+02	-1.570402E+01 -1.971820E+02	-1.448276E+03 1.713431E+03	-1.577565E+02 -2.82888E+02	-1.804826E+02 -1.113922E+02
S T R E S S FIBRE DISTANCE	1.410000E-01 -1.410000E-01	1.048090E-31 -1.678000E-01	1.0400C0E-01 -1.670000E-01	1,040000E-01 -1.670000E-01	1.049990E-01 -1.67999E-01	1.4100005-01 -1.410000E-01	1.410000E-01	1.4100005-01 -1.410000E-01	1.418000E-01 -1.418000E-01	1.418003E-C1 -1.418000E-01	1.410000E-01 -1.410000E-01	1.410000E-01 -1.410000E-01	1.410000E-01 -1.410300E-01	1.4100005-01 -1.410000E-01	1.410000E-01 -1.410000E-01	1.418000E-01 -1.418000E-01
ELEMENT ID.	6.	06	16	95	93	46	56	904	137	80 T	£03	110	111	112	113	114

BOM-34, COMPOSITE FUSELAGE FINE GRID MODEL FREE FLIGHT-53

	>	
•	Ī	5
		J
•		>

				į	:	Ň	IADC-	77149	-30	:		
MAX SHEAR	5.454670E+03 5.272336E+03	5.030+06E+03 2.494685E+03	8.450538E+03 1.012527E+04	9.151570E+03 8.690013E+03	1.077114E+04 1.521358E+04	1.289939E+04 1.368728E+04	8.652789E+03 6.141492E+03	6.505566E+03 7.992903E+03	1.082336E+04 9.939585E+03	8.153183E+03 1.222386E+04	7.615903E+03 6.471100E+03	4.284246E+03
(C T R I A 1) FERO SHEAR!	-1.038419E+04 -9.677819E+03	-7.668011E+03 -3.590811E+03	-1.529204E+04 -2.113813E+04	-1.712444E+04 -1.663120E+04	-2.066614E+04 -3.339663E+04	-3.017429E+04 -1.847200E+04	-1.656999E+04 -1.130710E+04	-1.377100E+04 -1.441569E+04	-2.423481E+04 -9.779723E+03	-1.8 15114E+04 -1.892855E+04	-9.6 (3990E+03	-7.553679E+03 -7.298060E+03
H E N T S T PAL STRESSES (ZERE HAJOR	5.251522E+02 8.668516E+02	2.3928025+03 1.398561E+03	1.609234E+03 -8.855866E+02	1.178696E+03 7.488245E+02	8.761268E+02 -9.694726E+02	-4.375513E+03 8.902559E+03	7.355921E+02 9.758849E+02	-7.598721E+02 1.570112E+03	-2.576082E+03 1.009945E+04	+1.874772E+03 5.519160E+03	5.627815E+03 3.576851E+03	1.014614E+03 2.270404E+03
R WE'L E P PRINCIS ANGLE	-69.6346 -67.6165	2.7215	-25.6080 -14.2046	-8.2017	19.9951	3.8631	-10.9475 -9.9921	.2968	9.6911 10.1171	7.4720	26.6285	18.9951 24.5154
RI ANGULA SYSTEM SHEAR-XY	-3.559209E+03 -3.712916E+03	4.771640E+02 -2.773800E+02	-6.587375E+03 -4.817731E+03	-2.584401E+03 -1.125223E+03	6.922146E+03 7.438730E+03	1.734172E+03 1.830725E+03	-3.226687E+03 -2.098919E+03	6.740776E+01 -1.104234E+03	3.593903E+03 3.437698E+03	2.102492E+03 1.521655E+03	6.1D2838E+03 5.171333E+03	2.637068E+03 3.612387E+03
ENERAL TOORD IN ELEMENT COORD NORMAL-Y	-7.960617E+02 -6.622530E+02	-7.645328E+03 -3.575343E+03	-1.213477E+04 -1.991864E+04	-1.675195E+04 -1.655804E+04	-1.814736E+04 -3.158949E+04	-3.005719E+04 -1.834902E+04	-1.594585E+04 -1.093730E+04	-1.377065E+04 -1.433905E+04	-2.362107E+04 -9.166315E+03	-1.790539E+04 -1.883347E+04	-6.5%4110E+03 -6.784293E+03	-5.646116E+03
S E S I N G STRESSES NORMAL-X	-9.062974E+03 -8.148715E+03	2.370120E+03 1.383093E+03	-1.548033E+03 -2.105072E+03	8.061981E+02 6.756670E+02	-1.642660E+03 -2.776514E+03	-4.492615E+N3 8.779574E+03	1.11 4549E+02 6.060878E+02	-7.602213E+02	-3.189822E+D3 9.486039E+D3	-2.150524E+03 8.424080E+03	2.567935E+03 9.957950E+02	1.050504E+02 6.229751E+02
S T R E S'S Flage Distance	1.410000E-01 -1.410000E-01	1.418000E-01 -1.418000E-41	1,418300E-81 -1,418306-01	1.415000E-61 -1.416000E-01	1.410990E-01 -1.410300E-01	1.410000E-01 -1.410000E-01	1.0%0050E-01 -1.670300E-01	1.040000E-01 -1.670000E-01	1.048000E-01 -1.670000E-01	1.040000E=01 *1.67J400E=01	1.4100005-61-1.4100005-01	1.410000E-C1 -1.410000E-C1
ELEMENT 10.	115	152	170	171	172	273	62 T	109	64 80 41	63 60 61	183	†9 1

DECEMBER 18, 1975 NASTRAN 9/16/74

FREE FLIGHT-56

CALC ONLY

		ļ	İ		ļ	1	NADC-	77149	-30				: : :		i :	:	
MAX	1.158527E+03 1.623228E+03	1.221393E+03 1.336150E+03	1.100744E+03 1.032818E+03	1.570344E+03 1.189858E+03	1.9389052+03 1.648416E+03	1.298157E+03 9.881393E+02	1.767576E+03 1.100276E+03	1.658445E+03 1.210695E+03	1.937638E+03 1.986833E+03	2.664513E+03 8.127803E+02	9.723046E+02 1.685030E+03	7.707431E+02 2.047518E+03	1.393347E+03 1.529606E+03	2.348465E+03 9.619112E+02	6.274883E+02 1.085788E+03	4.148827E+03 3.901266E+03	
(CTRIAZ) RO SHEAR). HINOR	-1.889747E+03 -2.192486E+03	-1.872719E+03 -1.502299E+03	-1.416200E+03 -3.798083E+02	-4.513196E+02 -9.234113E+02	-2.9734265+03 -1.6403815+03	-3.260021E+02 -9.315429E+02	-2.133758E+03 -1.272218E+03	-2.489646E+03 -1.417801E+02	1.5 CO666E+O3 -3.975873E+O3	-4.366787E+03	1.083894E+03 -4.500438E+03	-7.929755E+02 -3.387161E+03	1.649204E+03 -4.689898E+03	6.945567E+02 -3.963465E+03	-8.768430E+02 -2.116510E+01	-7.690617E+03 -7.094819E+03	
ENTS AL STRESSES (ZE MAJOR	4.273075E+02 1.053969E+03	5.700671E+02 1.170001E+03	7.6328735+02 1.685828E+03	2.689369E+03 1.456306E+03	9.043822E+02 1.656451E+03	2.270313E+03 1.044676E+03	1.401595E+03 9.283336E+02	8.272444E+02 2.279610E+03	5.375941E+03 -2.207581E+00	9.622398E+02 3.244074E+03	3.029503E+03 -1.130378E+03	7.465107E+02 7.080746E+02	4.435897E+03 -1.629877E+03	5.391446E+03 -2.039643E+03	3.781335E+02 2.150411E+03	6.070364E+02 7.077132E+02	
R E L E M PRINCIP ANGLE	-61.4417 -65.1780	32.3405 29.3940	-51.8881 -69.2612	-39.8639	-54.6186	-66.0251	-48.6199 -54.9105	-54.7719 -29.7905	-75.8375	-55.7483	-77.8836	-65.0797	-85.4353	-21.7040 56.6915	14.6067	-20.5521 -20.6661	
RIANGULA DSYSTEM SHEAR-XY	-9.729043E+02 -1.236959E+03	1.104067E+03	-1.069079E+63 -6.540632E+02	-1.545174E+03 -5.333001E+02	-1.830641E+03 -1.151759E+03	-9.639568E+02 -9.842404E+02	-1.753584E+03 -1.035091E+03	-1.562895E+03 -1.044037E+03	-9.193558E+02 -1.382163E+03	-2.479169E+03 -2.027012E+02	-3.992642E+02 -1.352224E+03	-5,890431E+02 -1,232967E+03	-2.210762E+02 1.336962E+03	-1.613824E+03 6.990967E+02	3.062551E+02 -1.085637E+03	-2.727564E+03 -2.576484E+03	
ENERALTIONS	-1.022184E+02 4.818369E+02	-1.173665E+03 -8.585501E+02	-5.533576E+81 1.426812E+03	8.389907E+02 1.330098E+03	-3.956913E+02 1.187326E+03	1.841638E+03 -3.078771E+01	-1.433163E+02 2.011430E+02	-2.764029E+02 4.559150E+02	5.143949E+D3 -3.416321E+D3	-7.258763E+02 1.644196E+03	2.943784E*03 -3.820800E+03	4.748321E+02 -2.974331E+03	4.418247E+03 -3.902712E+03	1.336906E+03 -2.340845E+03	-7.970310E+02 1.046527E+03	-6.667996E+03 -6.122991E+03	
E S I N G STRESSES NORMAL-X	-1.360221E+03 -1.620354E+03	-1,239876E+02 5,262525E+02	-5.795767E+02 -1.207929E+02	1.399059E+03 -7.97 2042E+02	-1.673355E+03 -1.171255E+03	1. 026727E+02 1. 439204E+02	-5.888466E+02	-1.365999E+03	1,732659E+03	-2.678671E+03 3.218392E+03	1.169613E+03 -1.810015E+03	-5,192969E+02 2,952444E+02	1.666855E+83 -2.416256E+03	4.749098E+03 -3.662264E+03	2.983215E+02 1.082719E+03	-4.155854E+02 -2.641147E+B2	
S T R E S S FIBRE DISTANCE	-5.000000E-02 5.000000E-02	-5.000000E-02 5.000000E-02	-5.000000E-02 5.000000E-92	-5.000000E-62	-5.0000000E-02 5.000000E-02	-5.000000E-02 5.000000E-02	-5.000000E-02 5.000000E-02	-5.000000E-02 5.000000E-02	-5.000000E-02 5.00000E-02	-5.080000E-62 5.0.0800E-62	-5.000000E-02	-5.000000E-02 5.000000E-02	-5. JOGOOOE-02 5. OOGOOOE-02	-5.0000000E-02 5.000000E-02	-6.400000E-02 6.400000E-02	-6.400000E-02	
ELEMENT ID.	~	N	m	<i>3</i>	ın	9	~	∞ 3−7	6	•	3	N	æ t	31	5 ¢	52	

7

PAGE
9/16/74
NASTRAN
R 18, 1975
OECEMBE
BQM-34E COMPOSITE FUSELAGE FINE GRID MODEL DAGE TREE FLIGHT-56
D MODEL
E FINE GRI
TE FUSELAG
4E COMPOSI 3HT-55
BQM-34E COM FREE FLIGHT-55

	!	:			: :	Ŋ	IADC-	77149	-30					II		
MAK SHEAR	2.579728E+03 2.342791E+03	5.897987E+03 6.300502E+03	5.362514E+03 6.649082E+03	5.5773165+03 6.889376E+03	3.584467E+83 3.655109E+83	3.1146934E+03 3.1095067E+03	%. B 96543E403 %.014907E403	3,343786E+03 3,543412E+03	4.7036295643 4.70365495493	5.1610095003 4.2630376903	20 0 2 4 6 2 2 4 6	1.0366546E003 1.0461306E+03	1.324791E+03	1.264195E+03	4.561505E+03 4.619223E+03	3.602355003 3.6480315403
CCTRIA21 ROSHEAR1 HINOR	2.169977E+02 5.410190E+02	2.075992E+02 -1.267873E+03	1.702888E+03-2.653860E+03	1.511895E+03 -2.554369E+03	-5,572310E,03 -5,340035E+03	**	-5.233915E+03 -4.516875E+03	-3-486660E083 -3-86768	~~ . 38419850 ~% . 553345983	-6.263948E+03 -3.144758E+03	~ R • A 7 7 5 B B E • B • S • S • S • S • S • S • S • S • S	~3.706745E003 ~2.409872E003	-1.852163E083	-1,954984E003 -9,723179E002	~2,985362E+03 ~3,1878532+03	-4.323124E+03 -4.411857E003
M-E-N-T-S PAL STRESSES (ZE HAJOR	5.376453E+03 5.226602E+03	1,200357E+04 1,133313E+04	1.242792E+84 1.064430E+84	1.266653E084 3.122436E08	1.436624 <u>5</u> 033 1.990184 <u>E</u> 403	1,60% 503E + 03 1,881816E + n3	2,962778E993 3,512940E403	3.200912E<03 3.379820E+83	5.023422E483 4.901905E403	6.1100692083 8.361315E083	200 - 200 -	-9.7365355+02 5.137405E+02	7.974188E+02 1.318421E+03	5.7340635092 2.758748E003	6.137649E+83 6.858593E+83	2,982785E003 2,865306E003
R E L E PRINCI ANGLE	2.8631	5.9392	2.7149	3.0558 2.6843	-46.5359 -47.4049	-49.2832 -50.0352	-166.5896 -48.6627	-51,1077	-47.52.59 -47.53.59	**************************************	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	164. 1240 159. 0735	-26.5126 -51.2956	.55.0378 -66.693&	46.0534 \$3.31\$7	1500.9845 151.2845
R.T.A.N.G.U.L.A. SYSTEM SHEAR-XY	2.573909E+02 2.995419E+02	1.214011E+83 1.291569E+03	5.074413E+02 4.440765E+02	5.957305E+02 5.966962E+02	-3.499431E#03 -3.652203E*03	-3.8138022083 -3.847384E+83	~%.091075E + 03 ~3.982138E + 03	-3.266092E¢03 -3.543543E¢03	-4.681107E>83 -4.697994E+83	-5.140942E+03 -4.241909E+03	-2-591400E+03 -2-481442E+03	*1.365482E°03 °1.288932E+03	-1.058376E+03 -8.781442E+02	-1.1873955#03 -1.355745E:03	%.559015E003	-3,524626E+03 -3,560573E+03
ENERALTINELENENT COORD	2.298703E+02 5.602471E+02	3.338943E+D2 -1.134070E+D3	1.726951E+03 -2.639014E+03	1.543803E+03 -2.528500E+03	-1.830044E+83	-9.886253E+02 -6.720556E+02	-9.054271E082 9.947779E+00	5.7374825402 4.7354966+02	7.042264E+02	9,508565E,82 1,196884E+83		-2.353355E+03 -2.584704E+02	-1.324186E403 3.186963E+02	~2.568736E+02 2.174686E+03	1.425442E403 1.159781E403	2.702174E003 3.145601E001
S E S I N G.I STRESSES: NO FMAL-X	5.363581E+03 5.207374E+03	1.187728E+04	1.24 1385E+04 1.062946E+04	1.263462E+04 2.119847E+04	-2.255643E+03 -1.982241E+03	-1.896357E+J3 -1.754446E+03	-1.565717E903 -1.013883E+83	-8.594959E002 -9.407340E002	-10819757E002 -108787854E012	1.8032655+03 2.0004745+03	6,669321E+02 1,620752E+03	-2.327834503	2,694415E+D2 5,470710E+D2	-1.124704E+83 -3.882559E+82	1.726844543 1.7029585403	-1.467360E003 -1.557017E403
FIBRE DISTANCE	-6.400000E-02	-6-4000005-02 6-4000005-92	-6.409000E-02 6.409000E-02	-6.403000E-02 6.400000E-02	-3.000000E-02	-3.600000E-02	-3.538000E-02 3.688000E-02	-3,630000E-02 3,600000E-02	-3.688999E-92 3.68998E-92	-3-688990E-(Z 3-68880E-02	\$	3.6000005-62	-3,600000E-62 3,600000E-62	-3.6000000E-02 3.600000E-02	~5.50000005-02 5.500000E-(2	-2°5089988-02
ELEMENT IO.	56	22	80 2	62	6 6	इ ज्जै M)	N N	 	<u>ခံ</u>	in the	(E) (C)	m	60	(m)	8	: হুব ্টে

FREE FLIGHT-55

DECEMBER 18. 1975 NASTRAN 9/16/74 PAGE

26

CALC CYLY

	!		:	:	:	N	ADC-	77149	-30			!	:			
SHEAR	2.111979E+03 2.448145E+03	1.902743E+03 1.889526E+03	8.937222E+03 9.195637E+03	1.019014E+04 1.111858E+04	4.008643E+03 2.760252E+03	4.272890E+03 4.937270E+03	5.208453E+03 5.079476E+03	3.711774E+03 3.630528E+03	3.145113E+03 3.246468E+03	1.066513E+03 1.277637E+03	2.049355E+03 1.937435E+03	1.254927E+03 1.254552E+03	1.565122E+03 1.587481E+03	2.705062E+02 7.583426E+02	3.849221E+03 4.053241E+03	1.102028E+04
KU SHEAKE MINOR	-3.067419E+03 -3.108267E+03	-9.7422255+02 -1.025967E+02	-2.159712E+04 -2.069808E+04	-3.261068E+03 -2.656463E+03	-2.661530E+03 3.942962E+02	5.137281E+03 5.4922805+03	1.535692E+03 2.765702E+03	7.770392E+03 8.331767E+03	-3.070564E+03 -1.991839E+03	1.777887E+03 1.431929E+03	-2.736109E+03 -2.858308E+03	-2.034000E+03 -2.724653E+03	-2.516531E+03 -2.634907E+03	-3.829691E+02 -1.076519E+03	-8.703666E+03 -9.317440E+03	-5.629869E+03
FAL SIKESSES (ZEI MAJOR	1.156538E+03 1.788022E+03	2.831263E+03 3.676456E+03	-3.722682E+03 -2.305684E+03	1.711922E+04 1.958070E+04	5.355756E+03 5.914800E+03	1.368306E+04 1.536682E+04	1.195260E+04 1.292465E+04	1.519394E+04 1.559282E+04	3.219661E+03 4.501097E+03	3.911114E+03 3.987203E+03	1.362602E+03 1.016562E+03	4.758536E+02 -2.155488E+02	6.137124E+02 5.400552E+02	1.582433E+02 4.401661E+02	-1.005223E+03 -1.210958E+03	1.6410705+04
ANGLE	-48.4172	-58.5933	3445 1.6899	52.4821 54.1250	-62.3675	-25.6127	16.4518	4.1456	-48.0687	57.0126	-31-1077	31.1459 26.1679	-32,3113	8.0576	-74-4034	-42,5376
D SYSTEM SHEAR-XY	-2.096971E+03 -2.392825E+03	-1.692533E+03 -1.539246E+03	-1.074613E+02 5.421261E+02	9.844566E+03 1.055931E+04	-3.294290E+03 -2.280462E+03	-3.331212E+03 -3.665142E+03	2.829378E+03 2.774331E+03	5.352548E+02 6.116622E+02	-3.127086E+03 -3.106718E+03	9.742391E+02 1.209096E+03	-1.813076E+03 -1.799500E+03	1.111021E+03 9.931101E+02	-1.414195E+03 -1.487979E+03	7.511246E+01 1.178087E+02	-1.993615E+03 -2.030539E+03	-1.097968E+04
IN ELEMENT COURT	-7.051127E+02 -1.426253E+02	1.797866E+03 2.882845E+03	-2.159643E+04 -2.068208E+04	9.560344E+03 1.194404E+04	3.631160E+03 4.709696E+03	6.734238E+03 7.122581E+03	2.371205E+03 3.590275E+03	7.809186E+03 8.383664E+03	4.187976E+82 2.196892E+83	3.278760E+03 3.122414E+03	-1.642061E+03 -1.638824E+03	-1.362574E+03 -2.236673E+03	-1.622186E+03 -1.500612E+03	-3.723357E+02 -1.067312E+03	-1.561724E#03 -1.756255E#03	4.4443436+034 4.04040404
SIRESSES NO FMAL-X	-1.2067695+03 -1.177620E+03	5.917503E+01 5.910140E+02	-3.723328E+03 -2.322678E+03	4,297809E+03	-9.369357E+02 1.599401E+03	1.208610E+84 1.373652E+04	1.111708E+04 1.210008E+04	1.515514E+04 1.554093E+04	-2.617007E+02 3.123665E+02	2.410241E+03 2.296717E+03	2.685542E+02 -2.029221E+02	-4.955727E+U2 -7.035285E+02	-2.886334E+92 -4.942396E+82	1.476098E+02 4.309594E+02	-8-147165E+03 -8-772143E+03	6.336436E+03
PIBAE	-8.000000E-02	-6.000000E-C2 8.0w0000E-02	-4.500000E-02	+4.200000E-02	-4.5000 COE-02	-4.508080E-02	-4.500000E-02	-4.500000E-02	-3.500000E-02	-3.600000E-02	-3.60000005-02 3.6000005-02	-3.6000C0E-C2	-3.600000E- (2 3.6000A0E- (2	-3.600000E-02 3.600000E-02	-4.500000E-02	14.5000.0E-02
ELEMENT IO.	45	£ 4	\$	55	ر 5	25	∞ ₩	23	99	61	25	هر در	4 9	65	92	11

>	_
Š	5
ć	ر
-	:
٠	,

	NAX	781327E+03 971791E+03	313867E+03 741810E+03	833956E+03 546624E+03	376350E+03 895596E+03	835717E÷03 351630E÷03	623093E+03	341140E002 979279E002	\$16730E+03 \$70850E+03	812356E+03	615159E+03 531268E+03	267293E+03 030921E+03	743370E+03 503724E+03	085737272483 218339E+03	: 986865	357401E+03 346282E+03	0 8 8 1 6 0 2 4 0 3 4 2 7 3 5 0 2 8 0 3
CTRIAZI	SHEARI	3.000700E+02 2. 7.032792E+02 2.	8.648387E+81 8. 4.883938E+83 8.	1.618715E+03 %.	6.8(4495E)02 7. 5.485093E)03 6.	\$.299211E \$ 03 1. 3.075421E \$ 03 1.	4.301694E*03 1.	4.803194E+03 5. 4.355501E003 7.	%.095327E%03 2.	5.364342E403 7.5.589251E+03 7.	4.2249565033 7. 4.3&86035*93 7.	3.027018E+03 5. 2.941482E+03 5.	3.111928E+03 7.	7.023489E002 4. 1.269199E>03 3.	2.403555E+63 7. 2.281488E+03 5.	3.696964E003 2. 5.100955E003 2.	2.230383E+63 4.2.2.
5	STRESSES (ZERO MAJOR	5.2625851+83 5.248302E+83	1.671426E+04 1.339968E+04	9.8286495003 1.071196504	1.5353155+04 1.927647E*84	-6.277775E+023.720396E+02	-1.055509E+03 -	-2.814966E+032.940646E+03	1.038485E403 -	1.032037E÷04 6.345801E÷03	1,100536E004 1,071393E004	7.507568E+83	1.237 481 E+04 1.845800 E+04	7,469125E+03 7,705878E+03	1.1988615404 1.3290685404	1.817839E+83	~7.0063352>01 9.992808E+01
1. (L.	PRINCIP	-15.8713	-33.7415	-8.9502	-14.4703	9.8337	.3.9891	-29.5240 -15.8310	28,1115 26,4949	-38.9329 -38.6371	-38.706% -39.1055	-32,4699 -32,6818	-34,8989	-20.6028	-16,8434	-63.1942	84°.25% 66°.25% 75%
A TUSNATA	SYSTEM SHEAR-XY	-1.463267E+03 -1.515670E003	-7.680161E+03 -7.194453E+03	-1.487311E+03 -5.936598E+02	-3.563556E+03 -4.664679E+03	6.178304E+02 6.717558E+02	-2.252795E + 02 -1.642611E + 02	-5.095109E+02 -3.715965E+32	2.091965E+03 2.052896E+03	-7.637811E+03 -6.855770E+03	-7.432129E+03	-4.771450E+03 -4.572961E+03	-7.266992E+03 -6.764680Er03	-2,691530E + 83	-3,992142E003 -3,941943E003	~5.547871£*02 ~2.457870£*02	1.856498E+02 1.052692E+33
۵ س	N ELEMENT COOR NORMAL-Y	1.159600E+82 -2.877132E+02	5.2164942403 -3.079049E002	3.769782E+02 1.657613E+03	1.521661E+03 7.302268E+03	-4.192119E+83 -2.896680E+03	-4,285984E+83 -3,369483E+83	-3.714646E+03 -4.251133E+03	-2.885532E+03 -3.072020E*03	8.550350E+82 -1.697527E+82	1.730553E+03 1.643970E+03	9,211348E+00 ~7,748738E+00	1.957380E+83 -3.343610E+82	3.894797E+02 1.752417E+03	-1.200195E+03 3.943999E+03	9.516273E002 -%.21%609E002	-7.524255E001 -3.6320B3E0B2
6	STRESSE NO FMAL-X	4.846555E+03 4.824736E+03	1.158425E+04 9.623649E+03	9.586409E+03 1.067307E+04	1.443194E+D4 1.745930E+D4	-7.348701E+92 -5.597802E+02	-1.071219E+03 4.535397E+02	-3,103515E+03 -3,046014E+03	-8.705862E+01 2.306522E+01	%,150193E+83 2,826303E+03	5.049748E+03	4,471339E+03 4,186528E+03	7.305504E+83 6.242923E+03	6.457297E403 7.232659E403	1.0788445000 1.1628175004	-3.630752E003 -5.088865E003	+2,2252336+83 -2,2928436+83
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$) ! !	-4.500000E-02 4.500000E-02	-4.500000E-02	-4.500000E-02	-4.500000E-02 4.500000E-02	-3,600000E-02 3,600000E-02	-3 6000005-92 3•6000005-02	-3.600000E-02	-3.600000E-02	-4.5000000E-02	-4,500000E-02	-4.500000E-02	-4.500000E-02 4.500000E-02	~%.500000E~02 %.500000E~02	**.5000005*02 %.500000E-02	-3,6000005-02 3,6000005-02	-3.600000E-62
	ELEMENT ID.	7.8	62	9 0	8	2	60 60	ૐ ©	ස ත	<u> </u>	Q),	න ල	ଚ୍ଚ	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	624 63 64	202	8-0) 연한 8대
	ш				,			В	-10								

DECEMBER 18, 1975 NASTRAN 9/16/74 PAGE

BQM-3-L COMPOSITE FUSELAGE FINE GRID MODEL FREE FLIGHT-53

TRESSES	S E S		ENERAL COOR	RIT	μŞ	S S	(C T R I	¥
NORMAL-Y	NORMAL-Y	NORMAL-Y		SHEA	ш Ш	MAJOR	er On Im	SHEAR
-3.600000E-02 -1.986819E+03 3.510136E+03 3.60000E-02 -1.565843E+03 -4.474910E+03	986819E+03 3.510136E+0. 565843E+03 -4.474910E+0	3.510136E+0.4.474910E+0	20	-6.515542E+02 -1.273394E+02	-75.4323 -83.5855	5.203380E+02 -4.331750E+02	-2.156142E+03 -1.580159E+03	1.336240E+03 5.734918E+02
-3.600000E-02 -2.552747E+03 -3.212276E+03 3.600000E-02 -2.950682E+03 -4.398483E+03	552747E+03 -3.212276E+0 350682E+03 -4.398483E+0	.212276E+0 .398483E+0		-1.658655E+03 -1.404447E+03	-39.3777	-1.191393E+03 -2.094550E+03	-4.573629E+03	1.580033E+03
-4.00000E-02 -1.392400E+03 -1.924850E+0	12163E+03 -1.924850E+ 32400E+03 -1.76993E+	924850E*	M M	9.062599E+02 7.020374E+02	32.7936	-5.182630E+02 -8.542164E+02	-2.5 G875 1E+03 -2.308177E+03	9.952438E+02 7.269804E+02
-4.000000E-02 -1.994603E+03 -8.217836E+04.000000E-02 -1.181676E+03 1.947792E+0	.603E+03 -8.217836E+	.217836E+	200	-3.408 606E+02 -1.473652E+03	-74.9160 -68.3585	-7.299143E+02 2.532487E+03	-2.086473E+03 -1.766371E+03	6.782791E+02 2.149429E+03
-4.000000E-02 -1.0044.0E+03 -3.291558E+ 4.000000E-62 -2.348289E+03 1.349681E+	3 -3.291558E+ 3 1.349681E+	3.291558E+ 1.349681E+	0 3	-2.732512E+02 -1.091776E+03	-70.5079	-2.324347E+02 1.647955E+03	-1.101131E+03 -2.646563E+03	4.343480E+02 2.147259E+03
-4.000000E-12 -3.433842E+83 -2.289774E+ 4.000000E-02 3.957464E+02 3.837558E+	3.433842E+83 -2.289774E 3.967484E+02 3.837558E	-2.289774E+	200	-4.908499E*02 -1.811096E+03	-69.6839	-2.108047E+03 4.615125E+03	-3.615570E+03 -3.80818 E +02	7.537615E+02 2.497972E+03
-4.090000E-02 -1.976191E+03 4.326733E+0 4.000000E-02 -2.069119E+03 3.08984E+0	+03 +03 3	4.326733E	507	-1.434142E+03 -3.971567E+02	-65.0122 -80.7651	1.101052E+03 3.735 £23E+02	-2.644570E+03 -2.133693E+03	1.253627E+03 C
-4.090000E-02 -6.51233E+02 8.706702E+0	6.51233E+02 8 2.680405E+03 2	8.706702E	200	-9.260167E+02 -5.819728E+02	-64.7058	1.308282E+03 3.263186E+02	-1.088845E+03	1.198563E+03 1.559685E+03
-4.80600E-02 4.999542E+02 9.455878E+ 4.008000E-02 1.021022E+02 -9.892872E+	999542E+02 9.455878E 021022E+02 -9.092872E	.455878E	0.2	7.454459E+02 1.073828E+02	53.3288	1.5008052+03 1.133777E+02	-5.526298E+01 -9.205627E+02	7.780340E+02 5.169702E+02
-4.008000E-02 -9.405570E+02 1.102364E* 4.003000E-02 -1.316776E+03 9.508393E*	405578E+02 1.102364E 316776E+03 9.508393E	1.102364E* 9.508393E*	M 20	-4.957252E+01 1.475047E+01	-55.6188 89.6273	1.103566E+03 9.509352E+02	-9.417592E+02 -1.316872E+03	1.122663E+03 1.133904E+03
-4,000000E-02 -4,644303E+02 1,250760E+ 4,009000E-02 -4,82141E+02 1,074017E+	-4.644303E+02 1.25 -4.82141E+02 1.07	.25	D 33	-1.263106E+03 -1.234092E+03	-62.0874	1.919896E+D3 1.754821E+D3	-1.133565E+03 -1.163019E+03	1.526730E+03 1.458920E+03
-4.060000E-02 -4.744982E-01 -2.634582E+ 4.600000E-02 5.754558E+02 2.177131E+	5.754558E+02 2.17	2.63	02	1.400496E+03 1.040071E+03	42.3181 40.1209	1.274689E+03 1.451925E+03	-1.538522E+03 -6.587558E+02	1.406655E+03 1.055340E+03
-4.000000E-02 -1.794086E+02 1.930617E+ 4.000000E-02 -8.801890E+01 1.783242E+	-1.794086E+02 1.930 -6.801890E+01 1.783	.930 .783	0 3	5.267300E+02 4.976538E+02	76.7343	2.054798E+03 1.907359E+03	-3.035890E+02 -2.121354E+02	1.179193E+03 1.059747E+03
-4.000000E-82 -1.641051E+02 1.958631E+	-1.641051E+02 1.95	1.95	E 0	1.156143E+02 4.926713E+01	86.8917	1.964909E+03	-1.7 (3834E+02 -1.30276 6E+02	1.067646E+03 9.682372E+02
-4.000000E-02 1.195142E+02 8.177430E+	1.195142E+82 -1.503111E+02	· · · · · · · · · · · · · · · · · · ·	02	-5.825730E+01 9.203538E+01	-85.2631 83.7834	8.225704E+02 6.946069E+02	1.146869E+02 -1.603363E+02	3.539418E+02 4.274716E+02
-4.000000E-02 4.273227E+02 1.812892E+ 4.000000E-02 1.597662E+02 1.561814E+	4.273227E+02 1.597662E+02		+0 + +0 9	-6.431564E+02	-58.5637	2.065412E+03 1.826166E+03	1.748028E+02 -1.045863E+02	9.453146E+02 9.653762E+02

t	٠,
	4
ŀ	٤,

3	
	<u>ر</u> ز
7	7
ŧ	,
c	د
	j
¢	τ
c	s

	+02			00		- 200		00	୍ର ମମ୍ପ ଜଗ	00	00	80 E	90			
MAX	6549E	26008E	.675605E	• 520734E • 432799E	954678E 6105248	8.561750E+ 8.815369E+	3.122780E+ 2.551334E+	.440937	.753525E	192204	.296992	2.503061E+ 3.170729E+	. B 328 43E+	.736037E+	.404052E+	540274E+
(C'T R I A'Z') ERO SHEAR) MINOR	-8.767292E+01 -2.925350E+02	6E+0	474700E+0 843133E+0	1295+0 8976+0		-1.232808E+03 -1.174333E+03	1.010876E+03 7.896259E+02	-2.741192E+03 -2.274692E+03	0 0	-2.272392E+03 -1.840687E+03	00	-5.912578E+03 -5.141270E+03		8 E + 0 F + 0	-6.384771E+02 -8.833119E+02	. 070078E+0.
M E N T S IPAL STRESSES (Z MAJOR	1.1616575+03	1.270042E+03	6.876511E+02 9.024359E+02	3.349339E+02 4.829701E+02	6.717305E+02 1.455065E+02	1.589069E+04 1.645580E+04	7.256436E+03 5.892413E+03	1.014068E+04 9.133823E+03	7.622245E+03 5.460556E+03	6.112016E+03 5.168635E+03	4.521158E+03 6.095602E+03	-9.0645615+02 1.200189E+03	-3.725106E+02 -3.333869E+02	2.669656E+03 2.564707E+03	2.169627E+03 2.083945E+03	-1.98953DE+03 -1.027415E+03
A R E L E PRINCI ANGLE	-51.7990	-51.7623	-37.9037	-16.8928 -35.6030	-28.7631 -40.2970	57.8427	73.4302	54.5518 55.2708	53.6883	57.4527 58.8378	-26.4133	-79.3232	-28.0805	.7672 2.0965	15.8226 21.6249	83.2433
N I A N G U L D SYSTEM SHEAR-XY	-6.071550E+02 -7.563918E+02	-7.220384E+02 -1.074666E+03	-5.502368E+C2 -8.064697E+02	-1.875370E+02 -3.249964E+02	-5.023588E+02	7.715747E+03 7.920577E+03	1.707166E+03 9.737973E+02	6.086223E+03 5.341565E+03	4.536587E+03 3.721530E+03	3.802350E+03	-3.421893E+03 -3.150959E+03	-9.114242E+02 -2.470804E+02	-5.010912E+03	4.648597E+01 1.270099E+02	7.366464E+02 1.016554E+03	3.599181E+02 3.480795E+02
IN ELEMENT COOR NORMAL-Y	6.838560E+02 6.282406E+12	7.011069E+02 8.633377E+02	-1.906545E+01 -1.787677E+02	-3.151085E+02 2.915332E+01	-2.434521E+82 -3.908959E+02	1.103985E+84 1.150983E+04	6.748487E+03 5.699267E+03	5.807721E+03 5.431125E+03	4.288361E+03 3.137365E+03	3.685232E+03 3.291761E+03	-2.372196E+03 2.040714E+03	-1.078290E+03 1.190547E+03	-9.764813E+03 ~1.054060E+04	-8.817953E+D2 -9.048319E+D2	-4.297134E+02 -4.803177E+02	-2.032172E+03 -1.055372E+03
STRESSES NORMAL-X	3.9012795+02 3.235688E+02	3.537753E+02 4.481963E+02	2.592466E+02 3.008903E+02	2,808295E+02 2,502271E+02	3.959775E+82 -2.401959E+02	3.618037E+03 3.771640E+03	1.518825E+03 9.827726E+02	1,591769E+03 1,428016E+03	1.449079E+03 -5.00 9788E+02	1.543912E+02 3.618755E+01	Z.820529E+03 3.647066E+03	-5.140744E+U3 -5.131628E+03	-3.045895E+03 -3.053358E+03	Z,569034E+03 Z,56(058E+03	1.960863E+03 1.680951E+03	-5.027436E+03 -5.361228E+03
FIBRE	-4.000000E: 02 4.0000n0E-02	-6.000000E-02 5.0u00000E-02	-6.000000E-02 6.000000E-02	-6.f00000E-02 6.900000E-02	-6.000000E-02	*** 500000E + 02	-4.500000E-02	-4.500000E-02	-4.500000E-02	-4.500000E-02	+4-5000 00E-02 4-500000E-02	-3.600000E-02 3.600000E-02	-3.600000E-02 3.600000E-02	-2.0000005-92 2.000000E-02	-2.000000E-02 2.000000E-32	-3.600040E-02
ELENENT ID.	130	ः र स	132	133	¥24	135	92 30 B-1	2 137	138	139	140	# * * * * * * * * * * * * * * * * * * *	142	e de	1 44	147

9/16/76 NASTRAN 16, 1975 DECEMBER

9

PAGE

ONC CALC

ROH-3. COMPOSITE FUSELAGE FINE GRIO"HODE!

NADC-77149-30 6.291830E+03 6.418804E+03 1.067139E+04 8.860391E+03 8.897+17E+03 1.932037E+03 2.461648E+03 2.952670E+03 2.883974E+03 1.876232E+03 1.204840E+03 1.205419E+03 9.236493E+02 5.930598E+03 4.612234E+03 1.615913E+03 3.378538E+03 8.480875E+02 5.776612E+02 5.560710E+03 5.553181E+03 8.84543E+03 5.246463E+02 1.113501E+03 1.328686E+03 2.756254E+03 1.050085E+03 2.043469E+03 1.055593E+04 8.890475E+03 8.362606E+03 SHEAR MAX -5.338880E+03 -4.484685E+03 -6.314687E+03 -2.390610E+03 -4.797850E+03 -3.237234E+03 -3.953393E+03 -1.672254E+03 -3.2 L8 794E+03 -4.85730 7E+02 -4.166574E+03 -1.356006E+03 -7.088929E+03 4.452777E+03 -8.694345E+03 1.103798E+02 2.258305E+02 -1.860649E+04 -1.869888E+04 -1.236855E+04 -1.240826E+04 -1.683580E+04 -1.673967E+04 -1.819134E+04 -1.871235E+04 -1.855041E+04 -1.921492E+04 -1.916058E+04 -1.221899E+03 CTRI -6.022830E+03 -6.061271E+03 4.507987E+03 4.372181E+03 -4.539149E+02 -4.109873E+02 -9.915715E+02 -7.555715E+02 -1.725062E+02 -5.101035E+01 7.684404E+03 -1.937268E+03 1.806555E+03 1.381153E+03 -1.247133E+03 -1.301897E+03 -2.489708E+03 -2.453967E+03 -1.474806E+03 5.186922E+02 3.657315E+03 3.121899E+03 1.107490E+03 2.530714E+03 2.008082E+02 7.374256E+02 -1.108624E+03 3.601207E+03 -1.755735E+03 4.912925E+02 4.7722685+03 1.247609E+04 STRESSES N ELEME PRINCIPAL ANGLE 55.3102 55.4529 -15.9447 -63.9270 -81.0246 -55.3767 -16.8556 -41.0258 -84.0331 63.9642 63.5776 63.5226 52.9352 62.4653 69.6032 69.5523 -1.7086 65.7952 9.4917 66.3588 34.3931 -38.9883 12,1537 -6.4341 -46.4556 27.8650 84.1101 7.179975E+03 7.294512E+03 8.856292E+02 8.610594E+02 -8.294827E+02 -5.769157E+02 -1.301043E+03 -1.473440E+03 4.385177E+03 4.355853E+03 9.988184E+03 9.861012E+03 7.081008E+03 7.096033E+03 5.463592E+03 5.468749E+03 -2.771619E+02 -8.622418E+02 -1.151604E+02 -5.797788E+02 1.098017E+03 1.134565E+03 -2.331360E+03 -2.838469E+03 -5.782709E+02 -1.126663E+03 7.853692E+02 6.647313E+02 -3.291525E+03 -4.568006E+03 3.298699E+02 -7.524271E+02 SHEAR-XY RIANG SYSTEM FLEHENT COORD -4.650192E+03 -4.558469E+03 -4.521252E+03 -4.492964E+03 -3.326849E+01 1.996868E+02 -1.451663E+03 -3.745913E+02 -2.143416E+03 -7.665793E+02 -6.091672E+03 7.226167E+03 7.650374E+03 -8.609494E+03 7.818009E+028.328294E+02 -6.158817E+03 -6.232674E+03 -3.389810E+03 -3.410609E+03 -2.405521E+03 -2.417046E+03 -3.972414E+03 -3.945451E+03 -1.142714E+03 -1.869085E+03 -5.335445E+D3 -4.335355E+D3 -2.146267E+03 -2.921423E+02 -4.048239E+01 -5.734176E+03 NORMAL-Y E N STRESSES -3.657091E+03 -9.062362E+02 -3.86 2059E+03 -8.94 3464E+02 -2.855756E+03 3.490068E+03 3.775011E+03 8.501429E+03 4.466807E+03 1.135134E+03 7.741539E+02 -1.847050E+04 -1.872748E+04 -1.022588E+04 -1.029955E+04 -9.95044E+03 -1.470450E+04 -1.465747E+04 -1.504373E+04 -1.474751E+04 -1.718338E+04 -2.517914E+02 -4.599340E+02 -1.478242E+03 -4.237826E+03 2.877556E+03 -3.778894E+03 -9.813427E+01 -9.92 2287E+03 -1.712158E+04 NO RMAL-X S ш S n C. -6.480000E-02 6.400000E-02 -6.400000E-02 6.400000E-02 -3.600000E-02 3.600000E-02 -3.600000E-02 -6.400000E-02 6.400000E-02 -4.080000E-03 -4.000000E-03 -4.000000E-03 -4. 000000E-03 4.000000E-03 -3.600000E-02 -3.600000E-C2 -3.600000E-02 -8.090000E-02 8.090000E-02 -4.000000-4 4.000000E-03 -4.000000E-02 FIBRE Distance 154 163 641 151 153 155 156 158 159 160 161 152 164 148 150 121 ELEMENT

B - 13

ig -133

100 00 00

							NADC	-7714	9-30					 		
SHEAR	7.948337E+02 1.879956E+03	2.519554E+03 2.991659E+03	4.230625E+03 3.644316E+03	3.575656E+03 3.960537E+03	4.742513E+03	4.026847E+03 4.304124E+03	4.401561E+03 4.303279E+03	2.707832E+03 4.441245E+03	1.945959E+04 1.879505E+04	1.227365E+04 1.346425E+04	9.643995E+03 8.229503E+03	6.931910E+03 7.699651E+03	6.617397E+03 5.749443E+03	3,6618015+03 3,6848716+03	1.478927E+03 1.478927E+03	7.703578E+03 7.111586E+03
C C T R I A Z 1 S R S S R S S R S R S R S R S R S R S	-1.085456E+03 -1.479701E+03	1.390777E+03 -1.449948E+03	3.722202E+02 -5.005630E+01	7.477099E+02 7.836844E+02	7.036281E+02 6.971417E+02	1.432629E+03 1.555271E+03	-3.458194E+03 -3.2 C8425E+03	-1.580690E+03 1.321601E+03	-1.323925E+04 -7.304949E+03	-1.625959E+04 -1.707981E+04	-3.118627E+03	-9.746226E+03 -1.020601E+04	-1.843900E+03	-4.513275E+03 -4.461590E+03	4.993262E+02 4.993262E+02	-1.597400E+04 -1.685715E+04
M E N T S PAL STRESSES (ZE MAJOR	5.041513E+02 2.280012E+03	6.430144E+03 4.533370E+03	8.833470E+03 7.238576E+03	7.899022E+03 8.704759E+03	1.018865E+04 9.867253E+03	9.486322E+03 1.816352E+04	5.344928E+03 5.398132E+03	3.834975E+03 1.020409E+84	2.568014E+04 3.028515E+04	8.287720E+03 9.048688E+03	1.616936E+04 1.998188E+04	4.117595E+03 5.193294E+03	1.139089E004 1.462871E004	2.810327E+03 2.908152E+03	3.4571805+03 3.457180E+03	-5.668488E+02 -1.833973E+03
ANGLE ANGLE	-83.6928	14.1242 11.0525	-84.8186 -87.7085	-74.4731	-86.7807	-86.1196 -86.0195	-80.7456	74.8251	-58.5101 -54.6054	47.2255 46.9554	-71.0414 -63.5899	47.1178 45.6753	-74.5724	51.5703	-66.1933 -66.1933	-83.5014 -83.3871
R T A N G U L R O SYSTEM SHEAR-XY	-1.735766E+02 -1.151079E+03	1.192555E+ 63 1.125779E+03	-7.610016E+02 -2.911983E+02	-1.844471E+03 -1.93899DE+03	-5.449677E+02 -4.658599E+02	-5.437797E+02 -5.961153E+02	-1.397270E+03 -1.333281E+03	1.368209E+03 -5.701659E+12	-1.733561E+04 -1.774844E+04	1.223664E # 84 1.343290E + 84	-5.926446E+03 -6.555794E+03	6.912978E+03 7.697512E+03	-3.393871E+03 -4.475408E+03	3.565917E+03 3.605713E+03	-9.320757E+01 -9.320757E+01	-1.706337E+03 -1.627065E063
ENERGENE COORT	4.849561E+02 1.886385E+03	1.690852E+03 -1.230047E+03	8.764463E+03 7.225923E+03	7.386574E+03 8.197650E+03	1.015724E+04 9.843525E+03	9.449437E+03 1.012204E+04	5.117259E+03 5.186377E+03	3.463884E+03 1.016735E+04	1.506106E+04 1.767450E+04	-3.833431E+B3 -3.497233E+03	1.413351E+04 1.672563E+04	-2.302342E+03 -2.324867E+03	1.248853E+04	-1.899741E001 -1.704264E001	3.45%240E+03 3.454240E+03	-7.582016E+82 -2.022603E+83
S E S T X N T O S S S S S S S S S S S S S S S S S S	-1.055271E+03 -1.086074E+03	6.136059E+03 4.313469E+03	4.412272E002 -3.840360E+81	1.260158E+03 1.290793E+03	7.350426E+02 7.208697E+02	1.469514E+03 1.596751E+03	-3,230525E+03 -2,996671E+03	-1.209599E+03	-2.620173E#03 5.305700E+03	-4.938435E+03 -5.333893E+03	-1.082777E+03 5.779134E+03	-3.326289E+83 -2.68/847E+03	-9.073114E+02 5.269995E+03	-1.683951E+03 -1.536395E003	5.022663E+02 5.022663E+02	-1.578265E+04 -1.586852E+04
FIGAE OISTANOR	-4.000000E-02	-6.400000E-02	-6.400000E-02	-6.400000E-02 6.400000E-02	-6.400000E-82 6.400000E-02	-6.4000005-02 5.4000005-02	-1.90000E-01 1.900000E-01	-1.250000E-81 1.250000E-01	-3.150000E-02 3.150000E-02	-3.150000E-02 3.150000E-02	-3.150000E-42 3.150030E-02	-3.150000E-02 3.150000E-02	-3.150000E-02	-3.150000E-02	-6.250000E-02	-+.9000000E-02 4.90000E-02
m m m m m m m m m m m m m m m m m m m	€ 9 ₩	176	175	175	177	178	\$6 1	93 14	187	€0 €1	189	190	¥6 5	ଧ ଫ #1	15 P	464

NADC-77149 -30 7.300247E+03 6.765201E+03 3.792298E+03 4.513259E+03 4.575752E+03 3.687530E+03 4.626734E+03 4.793720E+03 8.689356E+02 8.769766E+02 1.974271E+03 2.087274E+03 2.5384548E+03 2.630716E+03 4.900342E+03 3.170605E+03 1.0271416+04 1.11201E+04 8.586737E+02 4.746259E+02 2.631095E+03 2.987544E+03 5.072292E+03 6.040272E+03 6.052712E+03 7.508135E+03 7.277857E+03 2.400319E+03 2.008381E+03 4.613875E+03 29 SHEAR PAGE -1.339078E+04 -1.175561E+04 -3.254035: +03 -2.703747: +03 -1.858695E+03 -1.503893E+03 -1.583922E+03 8.347120E+02 -1.345225E+03 3.227754E+03 3.392966E+03 -7.613248E+02 2.933562E+02 -2.289422E+03 -2.234882E+03 -2.780759E+03 -2.595346E+03 -2.419743E+03 -2.967746E+03 -7.552320E+03 -7.037449E+03 -4.651875E+03 -2.412578E+03 -2.352300E+03 -1.842963E+03 -8.124894E+02 -6.851848E+02 -4.341777E+03 -4.463629E+03 -1.717694E+04 -1.710393E+04 2 97.16/74 MINOR SHEAR D. NASTRAN IJ (ZERO 3.365875E+03 5.120079E+03 1.209712E+03 1.774793E+03 5.2322965+03 5.242103E+03 3.403496E+03 4.471196E+03 7.442595E+03 7.598965E+03 8.209773E+03 8.799358E+03 1.248134E+04 1.298041E+04 -5.514291E+02 -4.809287E+02 2.249563E+03 2.202300E+03 -1.53668E+03 -1.754496E+03 1.126805E+04 1.142024E+04 2.019878E+03 1.421417E+03 -3.932363E+02 -3.090805E+02 2.349352E+03 2.293685E+03 1.689335E+03 3.973399E+03 1.445495E+04 1.484907E+04 STRESSES 1.445495 MA JOR 18, 1975 F L E N E 28.4366 35.444136.8959 -3.7316 5.3488 -47.3971 55.1877 61.8765 60.7642 40.9018 39.2223 -6.6027 -1.7808 77.3222 83.6378 -78.8156 -74.7656 -33.4149 6.8959 9.9569 DECEMBER 17.8247 -63.2857 -62.4526 ANGLE ď 9.628746E+03 1.067011E+D4 6.069727E+03 5.766535E+03 7.191075E+02 3.841777E+02 3.753560E+03 3.470732E+03 2.485074E+03 2.868800E+03 -1.031018E+03 -6.553405E+02 1 • 727656E + 03 -7 - 845578E+02 -5-376817E+02 8.588492E+D2 7.906600E+02 -4.514098E+02 -3.526602E+02 3.721358E+02 4.235670E+02 5.286944E + 02 5.127432E + 02 -1.585568E+03 -1.711774E+03 -9.074767E+02 -1.333951E+03 -4.505634E+03 -3.159512E+03 -2.921467E+03 2.149177E+03 -4.252167E+03 Þ SHEAR-XY s Z I A N SYSTEM 2 IN ELEMENT COORD -3.329351E+03 -2.889430E+03 -2.034426E+03 -2.864622E+03 8.993360E+02 9.899494E+02 -1.464580E+03 -1.505367E+03 1.525758E+03 -1.041932E+03 -7.613204E+02 -6.612555E+02 3.308164E+03 3.458620E+03 1.960929E+03 1.354862E+03 -1.191191E+03 -1.201975E+03 -4.579719E+03 -4.223762E+03 -1.216277E+03 2.068300E+03 8.905215E+01 6.497419E+02 -7.479213E+02 3.019056E+02 -6.351423E+02 -5.899997E+02 2.169925E+03 1.930399E+03 NORMAL-Y × FREE FLIGHT-56 z ш STRESSES -1.048172E+04 -9.094426E+03 -1.014665E+04 -8.528066E+03 -1.926182E+03 -1.950415E+03 980659E+03 1.633652E+03 2.317561E+03 1.444154E+04 1.484052E+04 -2.205709E+03 -2.125811E+03 -2.721810E + 0.3 -2.528791E+03 -3.543823E+03 -3.590734E+03 -7.230383E+82 -6.113865E+02 -1.746263E+03 -5.080804E+02 323254E+03 551793E+03 7.518726E+03 8.496065E+03 L.121688E+04 1.139631E+04 1.291475E+04 -2,240315E+03 -2,604468E+03 NO FMAL-X ัท ш n S w 4.900000E-02 -4.900000E-62 -4.900000E-02 -4.900000E-02 -4. - -00000E-02 4.900000E-42 -4-900006E-02 4.900000E-02 -4.933900E-02 -4. 900000E-22 500000E-02 50000CE-02 -2.5000CGE-02 2.50000GE-02 2.500000E-02 2.500000E-02 -2.500000E-02 500000E-02 500000E-02 ď DISTANCE 7 2.5 2.2 2.0 * CALC 195 202 202 210 196 198 199 200 203 582 209 201 208 208 197 ELEMENT 207

w.J
Š
Ō
_
O
•
ũ
_

						i i	NADC	-7714	9-30							
NAK SHEAR	6.305667E+03 6.182774E+03	4.833935E+03 4.591871E+03	6.975896E+03	5.245216E+03 5.330+17E+03	6.868268E+03 7.495150E+03	4.103805E+03	4.966161E+03 4.736204E+03	2.974500E+03 2.696332E+03	1.449453E+03 1.617908E+03	7.354481E+03 8.176954E+03	7.732598E+03 7.675558E+03	1.072248E+04 1.11465E+04	3.657858E+03 3.567532E+03	7.463307E+02 7.883209E+02	1.590353E+03 1.723851E+03	1.773356E+03 1.751577E+03
(CTRTA23 ROSHEAR3 NINOR	-6.946439E+03 -6.895955E+03	-4.232791E+03 -4.832410E+03	-6.5 U200 5E+03 -6.398766E+03	-3.428547E+03 -4.170849E+03	-5.597175E+03 -5.926169E+03	-2.193332E+03 -2.188926E+03	-1.255305E+03 -8.018111E+02	-1.162619E+03 -5.7885592102	4.617983E+02 2.7922525+02	-7.893592E+03 -1.066157E+04	-4.035915E+03	-8.658831E+03 -7.831783E+03	-8.598224E+03 -8.527127E+03	-3.866684E+02 -5.341146E+02	-1.574731E+03 -1.987217E+03	-1.847158E+03 -1.981562E+03
M-E-N T-S PAL STRESSES (ZE HAJOR	5.664896E+03 5.469592E+03	5.429078E PO3 4.551331E+03	7.449786E+03	7.061886E+03 6.489985E+03	8.139360E+03 9.064131E+03	6.014278E+03 6.087020E+03	8.6770175+03 8.670598E+03	4.786381E+03 4.814809E+03	3.360 704E+03 3.515041E+03	6.815371E+63 5.692338E+03	1.142928E+04 1.118056E+04	1.278613E+04 1.439752E+04	-1.282489E+03	1.105993E+03 2.043727E+03	1.605976E003	1.70075/E+03 1.521592E+03
R E L E PRINCI ANGLE	-47.7208	-46.7424	-46.1939 -45.9200	-39.9493 -38.6213	49.3799	62.5989 61.9127	-34-6426	-7.0287 -6.6058	16.1274	11.3982	-26.5596	43.6863	-49.2721 -49.6173	31.2276	-35.2247 -34.5809	45.9759
R I A N G U L A D SYSTEM SHEAR-XY	-6.277251E+03 -6.150948E+03	-4.822001E+03 -4.691320E+03	-6.959838E+03 -6.959329E+03	-5.163908E+03 -5.198830E+03	6.788151E+03 7.411050E+03	3.353498E+03 3.437574E+03	-4.645112E+03 -4.345968E+03	-7.224896E#02 -6.163538E+02	7.735514E+02 1.073111E+03	2.849547E+03 3.445664E+03	-6.185201E+D3 -6.286742E+D3	1.071121E+04 1.111380E+04	-3.617270E+03 -3.521295E+03	6.617335E+02 6.989185E+02	-1.498664E+03 -1.611032E+03	1.772927E+03 1.750741E+03
E W E R R L CORI	-4.280582E+01 -8.666585E+01	8.917941E+02 -2.123836E+02	7.645380E+02 7.877132E+02	8.966996E+02 -1.750991E+01	2.317085E+03 2.688630E+03	4.275905E+03 4.252502E+03	1.954245E+03 2.051791E+03	-1.073540E+03 -5.074783E+02	6.854731E+02 6.853239E+02	-7.319116E+03 -9.900139E+03	-9.440458E+02 -8.988022E+02	1.572137E+03 3.428689E+03	-4.396894E+03 -4.387087E+03	1.452706E+01 -1.111297E+02	-5.165699E+02 -8.765915E+02	-1.278240E+01 -1.758569E+B2
SES TINGS STRESSES NORMAL-X	-1.238737E+03 -1.339698E+03	3,04 /933E+02 -6.869466E+D1	1.032428E+02 3.405933E+02	2.736539E+03 2.336646E+03	2.250995E+02 4.493324E+02	-4.549587E+02 -3.544077E+02	5.467467E+03 5.816995E+03	4.697302E+03 4.743432E+03	3.137029E+03 3.107942E+03	6.240895E+03 4.930906E+03	8.337412E+03 7.908603E+03	2.555161E+03 3.145053E+03	-5.483819E+03 -5.532103E+03	7.047974E+02 6.207424E+02	5.478146E+02 3.498608E+12	-1.336217E+02 -2.841125E+02
STRESSE FIBRE DISTANCE	-2.0000000E-02 2.0000000E-02	-2.000000E-02 2.000000E-02	-2.0000008-42 2.0000000E-02	-2,000000E-02	-2.000000E-02 2.000000E-02	-2.000000E-02 2.000000E-02	-2.000000E-02	-2.006000E-62 2.000000E-02	-2.000000E-02 2.030000E-02	-2.0000000E-02 2.000000E-02	-2.0000005-02 2.000000E-02	-2.000000E-02 2.000000E-02	-2.0000000E-02 2.000000E-02	-2.0000005-82 2.0000000E-02	-2.0000000E-02 2.000000E-02	- 2. 00 00 00 0 E - 02 2. 00 00 00 0 E - 02
ELEMENT ID.	211	212	213	412	215	216	217	\$7. 16	612	220	221	222	223	\$22	525	226

CALC ONLY FIRE TOTAL CONLY FIRE TOTAL CONLY FIRE	1	:							
FIRSE STRESSES IN ELEMENT TAIN G UL AR ELEMENTS OFFIRSE OFFIRSE OFFIRSE STRESSES IN ELEMENT TOORD SYSTEM PRINCIPAL STRESSES (ZERO SHEAR) LONGHAL-Y SHEAR-Y ANGLE HINGE -2.0100000E-02 -2.543447E+03 -2.735032E+03	CA.	C ONLY							
-2.00000E-02 -2.543447E+03 -2.73502E+03 7.445643E+02 55.9745 -2.850153E+03 -4.45569E+03 2.00000E-02 -3.952965E+03 3.352865E+03 7.445643E+02 55.9745 -2.850153E+03 -4.45569E+03 2.00000E-02 -1.245500E+03 2.416678E+03 -7.633772E+02 -7.841762E+02 -80.7070 1.671437E+03 -1.940449E+03 2.00000E-02 -2.36023E+03 3.385172E+02 4.41763E+02 79.9531 4.167750E+02 -2.154583E+03 -2.463231E+01 -2.463307E+03 2.00000E-02 -1.789477E+03 -4.4237250E+02 -4.41763E+02 79.9531 4.167750E+02 -2.154583E+03 2.164583E+03 2.00000E-02 -1.789477E+03 -5.104830E+03 -1.138962E+03 -5.200000E-02 -1.931194E+03 -5.104830E+03 -1.138962E+03 -5.200000E-02 -2.573332E+03 -1.319374E+03 5.963102E+02 52.6422 -0.059297E+02 -2.200421E+03 2.00000E-02 -2.573332E+03 -1.868069E+03 5.963102E+02 52.949 -1.527755E+03 -2.913646E+03 -2.90000E-02 -2.913646E+03 -2.913646E+03 -2.913646E+03 -2.90000E-02 -2.90000E-03 -	MENT D.	ω α	S E S	COOR	SYSTEM G ULL SHEAR-XY	A R E L E PRINCI ANGLE	SES (ZI	SHEAR)	MAK SHEAR
-2.000000E-02 -1.846263E+03 1.577250E+03 -5.756026E+02 -80.7070 1.671437E+03 -1.94040E+03 -2.000000E-02 -2.350213E+03 -4.237250E+03 -7.633772E+02 -78.4189 2.579213E+03 -1.404032E+03 2.000000E-02 -2.350213E+03 -4.237250E+02 4.417063E+02 79.9531 4.167750E+02 -2.154950E+03 2.000000E-02 -1.789477E+03 -5.164030E+02 -1.138962E+03 -58.3247 5.643856E+01 -2.492236E+03 2.000000E-02 -1.589777E+03 -5.104030E+01 -1.138962E+03 -51.2770 7.559242E+02 -2.73816£+03 2.000000E-02 -1.589477E+03 -1.319374E+03 5.965102E+03 -51.2770 7.559242E+02 -2.73816£+03 2.000000E-02 -2.57332E+03 -1.860069E+03 5.965102E+03 -1.527755E+03 -2.20042LE+03 -2.20042LE+03 -2.5735E+03 -2.20042LE+03 -2.5735E+03 -2.20042LE+03 -2.5735E+03 -2.5735E+03 -2.20042LE+03 -2.5735E+03 -2.20042LE+03 -2.5735E+03 -2.57755E+03 -2.20042LE+03 -2.57755E+03 -2.57755E+03 -2.20042LE+03 -2.57755E+03 -2.577	227	-2.000000E-02 2.000000E-02	-2.5443E+03 -3.952985E+03	-2.735832E+D -3.352865E+0	i	5426*55 55*9745	-1.999236E+03 -2.850153E+03	-3.288039E+03 -4.455696E+03	6.404016E+02 8.027713E+02
-2.00000E-02 -2.360213E+03 -4.237256E+02 6.634743E+02 79.9531 4.167750E+02 -2.154593E+03 2.00000E-02 -2.076325E+03 3.385172E+02 4.417063E+02 79.9531 4.167750E+02 -2.154593E+03 -2.000000E-02 -1.789477E+03 -6.63204E+02 -1.138962E+03 -58.3247 5.643856E+01 -2.492236E+03 2.000000E-02 -1.931194E+03 -5.104030E+01 -1.472559E+03 -51.2770 7.559242E+02 -2.738164E+03 -2.000000E-02 -1.666976E+03 -1.319374E+03 5.965102E+02 60.2949 -1.527755E+03 -2.913646E+03 -2.913646E+03	822	-2.000000E-02	-1.846263E+0 -1.243500E+0		-5.756026E+02 -7.633772E+02	-80.7070	1.671437E+03 2.579213E+03	-1.940449E+03 -1.464035E+03	1.805943E+03 1.991624E+03
-2.000000E-G2 -1.931194E+03 -5.104830E+01 -1.472559E+03 -58.3247 5.643856E+01 -2.492236E+03 2.000000E-G2 -1.931194E+03 -5.104830E+01 -1.472559E+03 -5.500000E-G2 -1.686976E+03 -1.319374E+03 6.725835E+62 52.6422 -8.059297E+02 -2.200421E+03 2.00000E-G2 -2.573332E+03 -1.868069E+03 5.965102E+02 60.2949 -1.527755E+03 -2.913646E+03	528	-2.030300E-02 2.000000E-02	-2.360213E+03 -2.076325E+03	-4.237258E+0 3.385172E+0	8.634743E+02 4.417063E+02	69.1368	-9.463231E+01 4.167750E+02	-2.689307E+03 -2.154583E+03	1.297337E+03 1.285679E+03
-2.30000E-(2 -1.686976E+03 -1.319374E+03 6.725835E+62 52.6422 -6.059297E+02 -2.200421E+03 2.000000E-02 -2.573332E+03 -1.868069E+03 5.965102E+02 60.2949 -1.527755E+03 -2.913646E+03	230	-2.0000000E-92 2.0000000E-02	-1.789477E+03 -1.931194E+03	-6.463204E+0	-1.138962E+03 -1.472559E+03	-58.3247	5.643856E+01 7.559242E+02	-2.492236E+03 -2.738166E+03	1.274337E+03 1.7470+5E+03
	231	-2.000000E-62 2.000000E-02	-1.666976E+03 -2.573332E+03	-1.319374E+0 -1.868069E+0	6.725835E+ C2 5.965102E+02	52.6422 60.2949	-8.059297E+02 -1.527755E+03	-2.200421E+03 -2.913646E+03	6.972456E+02 6.929455E+02
					•	; ; ; ;			4
		: : :						:	:
	• • • •				-	A DESCRIPTION OF THE PROPERTY		And the second s	A CONTRACTOR OF THE CONTRACTOR

PAGE

BAM-3. COMPOSITE FUSELAGE FINE GRID MODEL --FREE FLIGHT-50

1		N W W	en Lui	0 43 04 14 15 15	T-8-1-1-0-0-0-8-0	60 - - - -) () ()		9
ELE	ELEMENT ID.	j	STRESSE NORMAL-K	IN ELEMENT COO	SYSTEM SHEAR-XY	A A S	E STRESSES MAJOR	ERO SHEAR) MINOR	A H
	200	8.100000E .C1 -8.100000E-01	-2.198122E*02 7.857500E+01	-4.853865E+01	-3.505149E+01 -6.154355E+00	-79.3217	-3,392136E+01 7,894256E+01	-2.264215E+02 -2.447283E+01	9.62500
	201	8.1880808-61 -8.1880805-61	+2,333338E+02 6,893912E+00	5.017040E+01 -1.373552E+02	-8.638206E+01	-74.3212 -9.6552	7.441685E+D1 1.119346E+D1	-2.575802E+02 -1.416547E+02	1.559935
	202	8.100000E-01 -8.100000E-01	-6.670G12E+02 4.771337E+02	4.521845E+01 -1.139263E+02	-2.821937E#01 2.070463E+01	-87.7346 2.0038	4.633480E+01 4.778581E+02	-6.681176E+02 -1.146507E+02	3.572262E
	203	8.1000000E-01 -8.100000E-01	-6.844743E+32 4.783151E+02	-9.077201E+01 6.536909E+01	-6.736825E+01 5.307687E+01	-83.6069 7.2083	-8.322361E+01 4.850280E+02	-6.920227E+02 5.865613E+01	3.043335E4 2.131860E
1	204	8.100050E+01 -8.100000E-01	-6.192461E+02 4.635538E+02	5.897531E+02 -6.619293E+02	-2.623775E+01 3.999028E+01	-88.7573 2.0324	5.903223E+02 4.649729E+02	-6.198172E+02 -5.633484E+02	6.050597E 5.641507E
	202	8,130000E-01 -8,100000E-01	-6.350261E+02 4.625585E+02	3.405915E+02 -3.627484E+02	-8.403654E+01 1.113133E+D2	-85.1093 7.5869	3.477874E+02 4.774649E+02	-6.422220E+02 -3.776548E+02	4.950047E
В-	208	8,100000E=01 -8,100000E=01	-3.204598E+02 2.219838E+02	1.440956E+03 -1.639762E+03	*1.983489E*01 6.750688E+01	-89.3549	1.441179E+03 2.244284E+02	-3.2[6831£+02 -1.642206E+03	8.809310E+0 9.333174E+0
18	202	8.190000E-01 -8.1900000E-01	-4.121389E+02 2.070080E+02	9.392796E+02 -1.105652E+03	-6.964457E+01 2.080608E+02	-87.0577	9.428592E+02 2.391970E+02	-4.157105E+02 -1.137841E+03	6.792849E+0
	208	8.100000E~41 -8.100000E-61	-1.024331E+02 1.165905E+02	2.173435E#03 -2.070976E+03	-7.644398E+01 8.833519E+01	-68-0784	2.176000E+03 1.201517E+02	-1.049979E+02 -2.074537E+03	1.140499E+
	503	8.100000E-01	-9.074993E+01 -2.801554E+02	2.659737E+03 -2.705190E+03	-5.245558E+02 7.729999E+02	-79.5609 16.2591	2.756381E+03 -5.471330E+01	-1.873942E+02 -2.930632E+03	1.471888E+03 1.437959E+03

ELEMENT ID.	SA1 SB1	STRES SA2 SB2	SSESIN SA3 SB3	BARELEP SA4 SB4	HENTS AXIAL STRESS	SA-MAX SB-MAX	SA-MIN SB-MIN	#. W. #.	
1001	0.0	1.184247E+04 -3.040016E+02	0 0	0.0	9.852386E+02	1.282771E+04 9.852386E+02	9.852386E+02 6.812369E+02	4.8E+00	
1002	0.0	6.520962E+02 -1.932698E+03	0.0	0.0	-1.552925E+03	-9.008285E+02 -1.552925E+03	-1.552925E+03 -3.485623E+03	1.8E+01	
1003	000	-2.899434E+04 -3.982065E+03	-1.315610E+04 -4.785675E+03	1.119989E+04 2.592382E+03	-5.697240E+01	1.114292E+04 2.535409E+03	-2.905131E+04 -8.959037E+03	5.7E+00 1.2E+00	
1004	00	6.839779E+02 3.114424E+03	⊕ ⊕		5.339479E+02	1.217926E+03 3.648372E+03	5.339479E+02 5.339479E+02	2.0E+01	
2002	00	1.082872E+04 -1.213195E+04	≋ 0 0	0.0	8.632524E+02	1.169197E+04 8.632524E+02	8.632524E+02 -1.126870E+04	5.4E+00 4.8E+00	
1006	0.0	-4.522533E+01 1.194581E+03	-6.910765E+02 -1.194699E+03	0.0	1.200195E+03	1.200105E+03 2.394687E+03	5.090289E+02 5.406696E+00	3.0E+01	
1001	0.0	1.932752E+01 -1.467093E+02	00	0 0	-1.022198E+03	-1.002870E+03 -1.022198E+03	-1.022198E+03 -1.170907E+03	5.55+01	NADC
7 C 8	0.0	-8-129405E+03 2-477718E+03	0.0	0.0	8.5118915+02	8.511891E+02 3.328907E+03	-7.278216E+03 8.511891E+02	2.2E+01 7.9E+00	-7714
1009	00	-2.974249E+04 -1.774169E+03	3.034308E+04 1.809270E+03	000	8.846261E+02	3.122771E+04 2.693896E+03	-2.885786E+04 -8.895429E+02	1.4E+00 1.3E+00	9-30
1010	0.0	-1.125165E+03 5.963497E+02	00	0.0	-1.443434E+02	-1.443434E+02 4.520063E+02	-1.269508E+03 -1.443%34E+02	1.6E+02 5.0E+01	
1011	90	-2.448401E+04 -1.222059E+04	0 60	000	-1.782959E+02	-1.762959E+02 -1.782959E+02	-2.456231E+04 -1.23988E+04	1.65+00	!
1012		-1.498 U87E+03 -1.209089E+04	8 8	0.0	-4.597637E+02	-4.597637E+02 -4.597637E+02	-1.957851E+03 -1.255066E+04	4.2E+00	
1013	0.0	9.243335E+03 1.245272E+01	-8.465623E+03 -1.887190E+01	0.0	-9.080194E+02	8.341316E+03 -8.955667E+02	-9.373642E+03 -9.268913E+02	8.0E+00 5.9E+00	
1014	8 0.00	2.034267E+02 1.321045E+02	-7.474015E+03 2.333199E+03	4.536029E+03 -1.601173E+03	1.234348E+02	4.659464E+03 2.456634E+03	-7.350580E+03 -1.477738E+03	1.5E+01 7.8E+00	
1015	00.00	-3.711629E+03 1.247583E+04	08	0.0	3.003910£+02	3.003910E+02 1.277622E+04	-3.411237E+03 3.003910E+02	4.9E+00 1.8E+01	
1016	o o	-1.010640E+04	1.0451235+04	. 0 .	1.337740E+03	1.178897E+84	-8-76855E+03	5.4E+00	

ELEMENT SA. 101. SB. 102. SB.		3.398535604 1.0365035604 1.0365035604 5.741797560 3.367460502 9.4057355602 -1.4926605+03 0.0	A A A A A A A A A A A A A A A A A A A	AXIAL STRESS	SA-MAX SB-MAX	SA-MIN	S	
	-3.322863E+04 -9.930362E+03 -1.099505E+02 -5.701676E+04 3.210854E+02 -7.473029E+02 1.172574E+03 -6.385935E(02 1.149254E+02	333153E+0 333153E+0 741797E+0 367440E+0 492660E+0 476908E+0				SB-HIN	· S:	
	.099505E+0 .701676E+0 .473029E+0 .734806E+0 .734806E+0 .734806E+0	.333153E+0 .741797E+0 .367440E+0 .492660E+0 .476908E+0		1.245630E402	3.410702E+04 1.048570E+04	-3.310796E+04 -9.809689E+03	1.2E+00 9.6E-01	
	3.210854E+0 7.473029E+0 1.172574E+0 1.734806E+0 6.385935E+0 1.149254E+0 0.0	.367440E+0 .405735E+0 .492660E+0 .476908E+0		-1.7898325+03	-1.789832E+03 5.562814E+04	-1.899782E+03 -5.880660E+04	3.5E-02 1.1E-01	
	1.172574E+0 1.734806E+0 6.385035E+0 1.149254E+0 0.0	.476908E+0 .476908E+0 .0		-7.940415E+02	-4.572975E+02 1.465320E+02	-7.940415E+02 -1.541344E+03	5.1E+02	
	-6.385935Et02 1.149254E+D2 0.0	• • • •	0,0	-7.936954E+02	3.788790E+02 2.683213E+03	-2.286355E+03 -2.528501E+03	2.7E+01 2.5E+01	
	0.0		8 00	6.352885E+02	6.352885E+02 7.502139E+02	-3.304977E+00 6.352885E+02	9.9E+01 2.0E+04	
			0.0	1.779500E+03	1.779500E+03	1.779500E+03	3.3E+01]
ש מ מ מ מ	8 0	0.0	0.0	-3.184089E+03	-3.184889E+03 -3.184089E+03	-3.184889E+03	1.15.01	NADC-
2 0 0 0	0.0	0 • 0 0 • 0	0.0	-1.483545E+03	-1.483545E+03 -1.483545E+03	-1.483545E+03 -1.483545E+03	2.5E+01	77149
	0.0	0.0	0.0	-3,332267E+03	-3.332267E+03	-3.332267E+03	1.0E+01	-30
	G • 0	0 • 0 0 • 0	0.0	-2.102261E+03	-2.102261E+03 -2.102261E+03	-2.102251E+03 -2.102261E+03	1.7E+01	i
1027 0.0 0.0	0.0	8 ° 0	0.0	-4.446876E+03	-4.446876E+03	-4.446876E+03	7.5E+00	TO THE WANTED AND A SALE IN THE
1028 0.0	00	G • C	0.0	8.723300E+03	8.723300E+03 8.723300E+03	8.723300E+03 8.723300E+03	2.9E+00	
1029 0.0		© ## ⊕ •	0.0	1.687033E+04	1.687033E+04 1.687033E+04	1.687033E+04 1.687033E+04	1.0E+00	
1030 0.0	0	0.0	0.0	2.815443E+03	2.815443E+03 2.815443E+03	2.815443E+03 2.815443E+03	1.15+01	
1031 0.0	-6.544667E+03 2.09603 (E+03	3.524448E+03 -7.075117E+03	0.0	3.031574E+03	6.556023E+03 5.127604E+03	-3.513093E+03 -4.043543E+03	1.1E+01 1.5E+01	
1032 0.8	-7.905314E+03 9.413502E+02	8.715120E+03 -2.258748E+03		-1.521839E+03	7.193281E+03 -5.804886E+02	-9.427153E+03 -3.780586E+03	9.7E+00 5.8E+00	

NADC-77149-30 68 4.6E+00 2.9E:00 1.6E+01 3.6E+01 3.6E+00 1.6E+01 1.1E+00 6.5E-01 6.2E+00 4.3E+00 1.3E+01 1.5E+01 9.6E+01 1.3E+02 2.0E+01 1.1E+01 5.0E+01 1.0E+01 6.0E+00 9.7E+00 1.1E+01 4.5E+01 1.2E+01 2.0E+01 4.0E+00 2.3E+01 2.8E+01 H.S.-T PAGE -1.184484E+04 -7.530526E+03 -3.710200E+03 9.500049E+02 -1.586892E+03 -2.664431E+03 3.177089E+03 -2.454091E+02 -5.818639E+03 -1. 571026E+03 -4.891615E+03 1.182051E+03 -1.393070E+03 -5.030257E+03 -2.960972E+03 -3.047410E+03 1.345662E+03 -1.735420E+03 8 + 824337E+02 3 - 113037E+02 -4.956024E+02 -3.972228E+02 -3.807199E+04 -1.804551E+04 -1.611668E+04 -8.106565E+03 9.973546E+02 6.567895E+02 -2.470351E+03 -5.135589E+03 9/16/74 SA-MIN SB-MIN NASTRAN -8.246526E+02 -1.052482E+03 4.516920E+03 3.723160E+03 3.620237E+03 1.536012E+04 -1.267578E+02 7.944263E+02 1.664731E+04 1.501013E+03 3.598198E+04 1.595550E+04 9.492812E+03 1.057035E+04 1.326872E+04 5.258604E+03 1.132696E+03 2.628553E+03 8.641900E+02 3.529428E+03 3.177089E+03 3.177089E+03 2.009578E+02 1.456901E+03 -5.036034E+02 1.034245E+04 6.028137E+03 5.125896E+03 6.564999E+03 5.618845E+03 1.690162E+03 'n 8 7 SA-MAX SB-MAX DECEMBER 18, 1975 -3.972228E+02 2.667677E+03 -3.491066E+03 -1.052482E+03 1.390599E+03 3.397820E+03 -1.045008E+03 3.952960E+03 1.132696E+03 7.511946E+02 8.03E807E+02 3.177089£+03 1.444876E+02 5.446698E+02 L. 090777E+03 -1.423981E+0 STRESS ELENENTS 2.987462E+03 -9.386814E+02 9.311530E+82 1.694625E+03 SA4 SB4 2 0.0 o. 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 • ø -4.800976E+03 -1.353416E+02 -4.759867E+02 5.647023E+01 1.312413E+03 5.074175E+03 -4.636285E+03 2.458219E+03 3.897322E+03 -1,539192E+03 1,206025E+03 -1.908489E+03 -1.292665E+02 -4.493676E+01 -3.125018E+03 -2.515387E+03 -3.086517E+03 2.704251E+02 7.166017E+62 z H SAS " BQM-3 , COMPOSITE FUSELAGE FINE GRID MODE! FREE FLIGHT-53 S 0.0 0.0 0.0 0.0 0.0 0.0 w S v -9.909220E+02 -1.829194E+02 -3.702699E+04 1.708051E+04 -5.539852E+03 6.617391E+03 -1.469276E+04 6.682585E+03 -2.206096E+01 1.495857E+03 -3.898966E+02 -5.963127E+03 -2.115696E+03 1.145492E+03 -1.485626E+03 -4.060747E+03 2.278299E+02 -1.994928E+03 3.126321Er03 2.332562E+03 2.224168E+02 1.196230E+04 -9.83796DE+01 1.191649E+03 1.555653E+04 -1.407717E+02 -1.109364E+04 6.779331E+03 1.667271E+03 -4.332509E+03 w œ ٠. SA2 SB2 0.0 5.539¢52E+03 1.109364E+24 -6.779331E+03 -1. 667271E+ C3 4.332509E+ 03 3.782699E+04 -1.700951E+04 1.469270E+C4 6.682585E+C3 SAL CALC CALY 9.0 000 0.0 000 0.0 .. 0.0 8.0 0.0 0.0 9.0 0.0 0.0 ., 1045 ELEMENT 1033 1035 1036 1037 1038 1039 1041 1042 1043 1046 1048 1049 1050 1051 1034 . 0.1

PAGE

•	
MODEL	
GRID	
FINE	
FUSELAGE	
COMPOSITE	- 25
. U. O. + K	FREE FLIGHT

S 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.0 -3.015 .0 -1.611	-1.048 -0 -5.287	.0 8.853 .0 ~4.746	.8 1.273 .0 -3.749	.0 4.420 .0 -1.903	.0 4.716 .0 -3.104	0.0 0.0 3.775	• B 3.714	0.0 4.998(.0 1.536676 .0 1.524572	•0 6-9830 •0 2-4012	.0 1.1829 -0 -8.5343	.0 7.2440	•0 1.09602 •0 1.020706	.0 -1.664749 .0 -2.66957	
A2 B2	926E+02	870E+03 154E+02	433E+02 825E+02	418E+03 742E+03	006E+02 231E+02	4.716131E+02 -3.104135E+03	.099422E+02	.714040E+01 .831230E+03	009E+02 299E+02	676E+02 571E+02	024E+01 231E+03	905E+03 337E+02	055E+01 260E+02	1E+03 5E+03	749E+03	
SAS	5.383697E+01 2.773354E+03	1.819269E+03 3.557662E+01	1.059482E+03 9.337422E+01	-5.457506E+02 2.235282E+03	4.458882E+02 7.692070E+02	-5.150583E+02 9.408037E+02	-4.331376E+03 -1.006521E+02	-2.410309E+03 2.172413E+03	-6. £23520E+02 6.17 £234E+02	-1.065726E+03 -6.326452E+02	-3.806366E+02 -4.924733E+02	-2.598982E+03 -1.018195E+03	1.903349E+02 1.135160E+03	-1.401148E+03 -2.571163E+03	6.979174E+02 5.616799E+02	1
SA4 SB4 SB4	1.265174E+02 -1.809399E+03	00	-1.588923E+03 1.904891E+02	0.0	-1.485616E+03 -1.094708E+03	o o	4.850423E+03 -1.412744E+02	0.0	0.0	0.0	0.0	2.253857E+03 1.267193E+03	-3.724938E+02 -1.148320E+03	1.107631E+03 2.273361E+03	0.0 0.0	
AXIAL	-1.055915E+03	-2.1450295+03	-3.445218E+82	1.293547E+03	5.711855E+02	-1.467445E+03	-4.887271E+02	2.951386E+02	9.082456E+02	-8.569104E+02	-7.465006E+02	1.275977E+03	1.736213E+03	7.302623E+02	-2.632820E+02	
SA-HAX SB-HAX	-9.293975E+02 1.717439E+03	-3.257599E+02 -2.109452E+03	7.149602E+02 -1.540327E+02	2.566965E+03 3.528828E+03	1.017074E+03 1.340392E+03	-9.958321E+02 -5.186415E+02	4.361696E+03 -1.112154E+02	3.321790E+02 2.467451E+03	1.525869E+03	-7.032429E+02 -7.044533E+02	-6.766703E+02 1.654731E+03	3.529834E+03 2.543170E+03	1.926548E+03 2.871373E+03	1.837893E+03 3.003623E+03	4.346355E+02 2.983979E+02	
SA-MIN SB-MIN	-1.357507E+03 -2.865314E+03	-3.193899E+03 -2.673744E+03	-1.933445E+03 -8.192042E+02	7.477959E+02 -2.456196E+03	-9.144304E+02 -5.235222E+02	-1.982503E+03 -4.571580E+03	-4.820103E+03 -6.300015E+02	-2.115270E+03 2.950386E+02	2.458936E+02 5.261577E+01	-1.922637E+03 -1.489556E+03	-1.127137E+03 -1.238974E+03	-1.323005E+03 2.577820E+02	1.363719E+03 5.878935E+02	-6.708355E+02 -1.840900E+03	-1.928031E+03 -2.932861E+03	
# X . X X	4.3E+01	1.95+01	1.0E+02 3.3E+01	2.0E+01 2.5E+01	5.5E+01 7.0E+01	1.3E + 01	1.6E+01 1.2E+01	2.9E+01 3.0E+01	4.8E+01	3.3E+01	4.4E+01 5.1E+01	2.0E+01 4.8E+01	2.5E+01	2.4E+01 3.4E+01	1.7E+02 2.1E+01	

CALC								
ELEHENT ID.	SA1 S81	STRE SA2 SB2	S S E S I N SA3 SA3 SB3	B A R E L E P SA4 SB4	MENTS AXIAL STRESS	C B A R) SA-HAX SB-HAX	SA-MIN S8-MIN	
1068	0.0	-8.954345E+81 6.964503E+82	8.777239E+01 7.636696E+02	-3.526523E+01 -1.172059E+03	7.053620E+02	8.731344E+02 1.549032E+03	6.958185E+02 -3.866972E+02	4.75+01
1069	80.0	4.525977E+02 -6.861499E+02	1.303166E+03 -1.019799E+03	00	1.428524E+02	1.446018E+03 1.428524E+02	1.428524E+02 -8.769461E+02	5.1E+01 7.3E+01
1070	0.0	-4.323784E+02 3.979423E+02	1.219394E+02 -6.541976E+02	3.254993E+02 5.180412E+82	4.329083E+02	7.584076E+02 9.509495E+02	5.299255E-01 -2.212893E+02	7.8E+01 2.9E+02
1071	000	-5.038287E+02 1.728042E+02	-5.614628E+02 1.667354E+02	8.569016E+02 -2.681656E+02	1.339399E+02	9.908415E+02 3.067441E+02	-4.275229E+02 -1.341257E+02	7.5E+01 1.5E+02
1072	0.0	1.336373E+02	1.123068E+03 -1.198426E+03	00	3.127109E+02	1.435779E+03 7.907367E+02	3.127109E+02 -8.857147E+02	5.1E+01 7.2E+01
1073	.	-5.406718E+02 7.123509E+02	-8.064023E+02 -1.653373E+02	1.669930E+03 -4.975907E+82	-3.554767E+02	1.314451E+03 3.568723E+02	-1.161881E+03 -8.530693E +02	5.6E+01 5.5E+01
1074	60 CO	-5.225133E+02 -2.559669E+02	4.591637E+82 -1.299786E+03	-1.487070E+02 1.451871E+03	8.213312E+01	5.412969E+02 1.534004E+03	-4.403801E+02 -1.217652E+03	4.8E+01 5.2E+01
2015	C.0	-2.145605E+03 -5.656756E+03	1.505951E+02 4. €73293E+02		1.825583E+02	3.331533E+02 6.498876E+02	-1.963047E+03 -6.474198E+03	1.1E+02 9.0E+00
1076	0 C	2.357526E+02 -4.042547E+03	-1.107713E+03 2.566827E+03	00	-1.3541216+03	-1.118359E+03	-2.451834E+03 -5.396668E+03	6.1E+01 1.1E+01
1077	00.0	4.420049E+03 -3.761894E+D2	-2.397507E+03 2.040513E+02	-2.397507E+03 2.040513E+02	-5,323710E+02	3.887678E+03 -3.283197E+02	-2.929878E+03 -9.085605E+02	1.9E+01 2.1E+01
1078	8 7 € €	3.923650E+D3 -1.205514E+04	-2.128252E+03 6.544329E+03	-2.128252E+03 6.544329E+83	-3.169878E+03	7.537715E+02 3.374451E+03	-5.298130E+03 -1.523501E+04	2.2E+01 3.2E+00
1079	0.0	-1.072118E+04 2.400555E+03	5.815345E+03 -1.302100E+03	5.815345E+03 -1.302100E+03	-2.724801E+03	3.090544E+03 -3.242459E+02	-1.344598E+04 -4.026901E+03	2.4E+01 3.8E+00
1080	0.0	2.356009E+03 1.645063E+03	-1,277938E+03 -8,923892E+02	-1.277938E+03 -8.923092E+02	-1.148728E+03	1.2072815+03	-2.426666E+03 -2.041038E+03	6.3E+01 2.5E+01
1081		2.833125E+03 3.710752E+02	-1.536734E+03 -2.012773E+02	-1.536734E+03 -2.012773E+02	-1.081825E+03	1.751300E+03 -7.107494E+02	-2.618558E+03 -1.283102E+03	4.3E+01 2.3E+01
1082	-4.006527E+03 -3.758396E+03	4.006627E+03 8.758396E+03	0.0	0.0	1.592467E+04	1.993130E+04 2.468307E+04	1.191804E+04 7.166273E+03	2.0E+00
1083	-1.160162E+04	1.160162E+04	0.0	. 0.0	1.4489675404	70 1000	1	

							Ŋ	ADC -	77149	-30			!			* * * * * * * * * * * * * * * * * * *	
													i				
	M. N. H. O. I. O.	1.2E+00 4.4E+00	8.8E+00 3.0E+02	2.5E+01	6.4E+00	1.7E+01	3,95+00	1.2E+81	3.7E+00	2.1E+00 4.6E+00	4.5E+01						
	SA-HIN SB-HIN	-1.176451E+04 -7.729150E+03	3.524598E+02 -2.075875E+02	1.325099E+03	-3.103808E+03	-1.250942E+03 -1.250942E+03	-4.720228E+03	2.588185E+03 2.588185E+03	7.246874E+03 7.246874E+03	-1.130761E+04 -2.101766E+03	8.275475E+02 1.091871E+03	-1.013625E+01 -4.739738E+01	-1.583285E+02 -3.630879E+02	-5.903275E+02 -7.206932E+02	-7.226713E+02 -5.015923E+02	-5.638292E+02 -4.439655E+02	-5.617818E+02 -4.234708E+02
•	SA-HAX SB-HAX SB-HAX	3.326766E+04 2.923230E+04	6.957270E+03 7.517317E+03	1.325099E+03	-3.103808E+03	-1.250942E+03 -1.250942E+03	-4.720228E+03	2.588185E+03 2.588185E+03	7.246874E+03 7.246874E+03	2.366 6232+04 1.446038E+04	1.597111E+03 1.332888E+03	8.444768E+00 4.570590E+01	-1.570594E+02 4.769995E+01	3.495271E+02	5.171464E+02 2.960674E+02	2.53224 EE+02 1.333609E+02	6.055344E+02 4.672235E+02
	AXIAL STRESS	1.075157E+04	3.654865E+03	1.325099E+03	-3.103808E+03	-1.250942E+03	-4.720228E+03	2.588185E+83	7.246874E+03	6.179306E+03	1.212379E+03	-8.457401E-01	-1.576940E+02	-1.204002E+02	-1.027625E+02	-1.553023E+02	2.187634E+01
	3 4 K E L E SA4 S84	0.0	a a .	0.0	0.0	0.0 0.0	0.0	0.0	0.0	B • 0	0.0	9.155863E+00 -4.587698E+81	6.345449E-01 2.053939E+02	4.699273E+02 6.802930E+02	6.199089E#02 3.988298E+02	3.993808E+02 2.822005E+02	-5.836581E+62 -4.453471E+02
•	1 ,	0 0 0	e e e	0.0	0 • 0	0.0	0.0	0.0	0.0	E 6 .	0 0 0	-9.155863E+00 4.587698E+01	-6.345449E-01 -2.053939E+02	-4.699273E+02 -6.002930E+02	-6.199089E+02 -3.988298E+02	-3.993808E+02 -2.822906E+02	5.836581E+02 4.453471E+02
6	£ .	2.251689E+04 -1.348072E+04	-3.302405E+03 -3.062457E+03	0.0 0.0	0.0	0.0	D	0.0	⇔	-1.748692E+04 8.281071E+03	3.847319E+02 -1.205088E+02	9.290508E+00 -4.655164E+01	6.345449E-01 2.853935E+02	4.526506E+02 5.782234E+02	6.199389E+02 3.988298E+02	4.085269E+02 2.886632E+02	-5.836581E+02 -4.453471E#02
	SA1 S81	-2.251609E004 1.848072E+04	3.302405E+03 3.862452E+03	0.0	U.0	0.0	0.0	0 . 0	0.0	1.748692E+84 -8.281071E+03	-3.847319E+02 1.205086E+02	-9.290508E+00 4.655164E+01	-6.345449E-41 -2.053939E+02	-4.5265065+02 -5.782224E+02	-6.199089E+02 -3.988298E+02	-4.085269E+0Z -2.805632E+42	5.8365 b1E+02 4.453471E+02
:	ELEMENT ID.	408	1085	1036	1087	1088	7030	1691	1093	1034	1095	1096	1097	1099	1101	1103	1104

7.1

DECEMBER 18; 1975 NASTRAN 9/16/74 PAGE

89M-344 COMPOSITE FUSELAGE FINE GRID MODEL"

CALC CNLY

NADC	_	7	7	149	-3
				1	

0 5.9E+00 3.8E+01 8.5E+00 4.6E+00 3.2E+00 4.2E+01 1.4E+02 4.2E+01 9.6E+00 2.1E+01 7.2E+00 2.7E+00 2.0E+00 3.1E+00 2.8E+00 2.9E+02 1.3E+02 7.6E+00 1.4E+01 2.3E+01 4.8E+01 5.8E+00 5.3E+00 4.6E+00 7.6E+00 ₩. S. - T PAGE -1.274940E+03 -1.082544E+03 -1.009150E+04 -9.781263E+03 3.726205E+02 -1.776099E+03 -4.294219E+03 2.026291E+03 -5.428928E+B3 -5.924445E+D3 -1.131995E+04 -4.533727E+03 -5.177669E+03 -1.311457E+04 8.427078E+03 3.403140E+03 -4.448633E+02 4.553724E+02 -9.872839E+03 -1.005458E+04 -1.647791E+04 -5.471992E+03 -3.376363E+02 -4.921625E+02 -2.804316E+02 -2.459499E+02 -7.683949E+03 -2.971679E+03 -6.550280E+03 -1.434808E+01 NASTRAN 9/16/74 SA-HIR SB-HIR 3.058501E+03 6.937169E+02 2.183015E+03 1.843181E+04 8.852776E+03 1.122896E+04 3.500039E+02 3.155223E+02 8.6032005+03 4.534271E+03 1.734486E+03 1.018228E+03 7.891402E+01 1.726047E+03 7.758084E+03 1.702963E+02 -2.905921E+03 -6.416486E+03 5.146248E+03 8.650545E+03 1.820366E+04 7.197743E+03 2.203174E+02 2.571091E+02 1.601250E+01 4.398625E+00 1.039864E+04 1.331614E+04 3.334381E+03 -1.377889E+03 9.049227E+03 2.005839E+04 œ SA-HAX DECEMBER 18, 1975 -7.912187E+03 3.373394E+03 -1.745269E+03 -1.171417E+03 2.203174E+02 8.427078E+03 2.026291E+03 6.787093E+02 -1.777416E+02 2.284210E+03 2.1747842+03 -4-118057E+02 -7.020160E+02 8.628755E+02 8.322030E-01 3.478616E+01 AXIAL S Z F -3.105822E+02 -2.766076E+02 1.496343E+01 -3.515467E+00 LI SB4 Z Z 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 m 3.105822E+02 2.766076E+02 4.00 6251E+03 1.960323E+04 -6.948521E+02 -1.869075E+03 5.479381E#03 -5.149493E#03 -1.496343E+01 3.515467E+00 -5.579537E+02 3.679174E+01 z -SA3 583 BQM-3. COMPOSITE FUSELAGE FINE GRID HODEL FREE FLIGHT-53 S 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ш S n 5.006266E+03 1.495702E+03 2.524793E+02 7.855563E+03 -1.443644E+02 -7.124799E+02 1.055777E+03 3.395189E+02 -1.097199E+03 -2.468528E+03 1.518029E+01 -3.566416E+00 -3.152177E+02 -2.807361E+02 1.971567E+03 4.889064E+03 -6.320510E+03 2.283124EFU3 -3.720235E+03 9.50335 2E+03 1.915566E+03 -5.848264E+03 1.734078E+04-6.334868E+03 w -5.509165E+03 -7.968946E+02 9.461033E+03 -2.047019E+04 œ -SA2 SB2 3.354432E+03 -1.194316E+04 -3.000774E+03 6.576910E+03 2.597980E+03 3.236243E+03 -9.048020E+02 -3.224718E+03 -2.179312E+03 2.199038E+02 -1. 518029E+01 3.565416E+00 -9.574585E+03 -2.788458E+03 5.509165E+03 7.958946E+02 -9.461033E+03 2.047019E+04 -1,734078E+64 6,334868E+03 3.152177E+02 2.807361E+02 2.118973E+02 -5.023938E+03 -1.123573E+03 -2.233369E+02 5.848264E+83 9.352561E+03 SAL CALC ONLY 0.0 ELENENT 1115 1122 1123 1105 1114 Ś 1117 1118 1120 1108 1110 1121 1106 1107 1109 1119 200 10.

NADC	- 7	71	49	-30

PAGE

DECEMBER 18 1975 NASTRAN 9/16/74

80M-3%E CUMPOSITE FÜSELAGE FINE GRID MODEL----FREE FLIGHT-55

CALC ONLY

				; ;					. 30			•	;		:	
κ.κ. .ν. 	3.65.00	2.0E+01 1.8E+01	1.0E+01 8.4E+00	8.2E+01 4.0E+01	3.65+01	2.1E+01	1.3E+01	:	3.3E+00 1.6E-02	1.4E+00	2.7E+01 8.6E+00	8.95+00	8.3E+00	2.45+01 3.15+00	1.2E+02 2.7E+01	1.72601 8.62400
SA-HIN SB-HIN	2.259914E+03 8.085342E+03	-3.474761E+03 -1.545734E+03	-7.361969E+03 -7.643273E+02	-4.032644E+02 -1.692666E+03	-1.881779E+03 -1.406942E+03	-3.076021E+03 -3.142128E+03	-4.768324E+03 -3.631952E+03	-1.253939E+02 -1.432836E+02	-1.683647E+04 -6.201044E+04	-1.441867E+64 -2.237563E+03	-6.570553E+03 -2.139403E+03	-4.994458E+03 -6.363934E+03	-6.793679E+03 -5.969733E+03	-6.313569E+03 -1.547057E+04	-1.636961E+03 -2.291162E+03	-6.589983E+03 -5.056073E+03
SA-HAX	1.694922E+04 1.405097E+04	3.550042E+03 1.600707E+03	6.783566E+03 3.970534E+02	-3.914072E+02 9.343935E+02	-9.022354E+02 -1.390355E+03	-1.452260E+03	-2.2817325+03 -3.3803365+03	1.500417E+01 3.289695E+01	-1.083229E+04 1.725628E+04	3.028523E+04 7.930553E+03	2.621577E+03 4.534773E+02	-2.466993E+03 -2.263431E+03	-2.773644E+03 -3.110858E+03	-3.617225E+03 2.979028E+03	-5.590722E+02 6.486737E+02	4.054274£+03 2.401484£+03
HENTS AXIAL STRESS	1.074032E+04	1.410820E+02	-1.916465E+02	-3.972541E+02	-1.398763E+03	-2.252942E+03	-3.507879E+03	-5.519335E+01	-1.536675E+04	3.832040E+03	-1.051804E+03	-3.939356E+D3	-4. 442465E+03	-5.054548E+03	-1.257320E+03	-1,267855E+03
BAR ELE SA4 SB4	0.0	3.40896#E+#3 -1.686815E+#3	5 0	0.0	00		00	7.019751E+01 8.809030E+01	0 e e	9.975360E+03 -6.069603E+03	-5.518749E+03	1.472363E+03 -2.424578E+03	-2.351414E+03 2.133208E+02	-2.173297E+02 -1.041602E+04	-3.787410E+02 -1.033842E+03	0.0
S S E S I N S S S S S S S S S S S S S S S S S	-8-480411E+03	-3.615843E+03 1.459625E+03	6.975212E+03 -5.726808E+02	5.846826E+00 -1.295412E+03	-4.830164E+02 -8.178889E+00	8.006820E+02 8.649901E+02	1.226147E+03 -1.240729E+02	-7.019751E+01 -8.809030E+01	4.534462E+03 -4.664369E+04	-1.825071E+04 -2.908120E+03	-2.397477E+03 1.051403E+03	9.880292E+02 -1.341377E+03	-1.5026#8E+03 1.331608E+03	-1.259021E+03 -9.631612E+03	-3.787410E+02 -1.033842E+03	-5.322128E+03 3.669339E+03
SAZ SBZ	-3.478228E+93	3.228296E+02 3.5%5181E+02	-7.170323E+03 5.886998E+02	-6.010374E+00 1.331648E+03	4.965274E+02 3.487670E+03	-8.230787E+02 -8.891856E+02	-1.268445E+03 1.275435E+02	7.019751E+01 8.809030E+01	-1.46535DE+03 4.113786E+03	2.645319E+04 9.370297E+02	5.521086E+02 -6.337194E+02	-5.707782E+02 5.927243E+02	8.201151E+02 -1.527268E+03	1.437323E+03 7.249167E+03	6.982476E+02 1.905994E+03	5.322128E+03 -3.669339E+03
SA1 581	6.206395E+03 -2.654982E+03	0 • 0	D	D.0	0.0		0.0	-7.019751E+01 -8.809030E+01	-1.459718E+43 3.252303E+04	-1.772879E+03 4.098513E:03	3.673381E+03 -1.087598E+03	-1.055112E+03 1.675925E+03	1,658821E+03 -4,089809E+02	3.955317E+02 8.033576E+03	8 C	3.568452E+03 -3.788218E+03
ELEMENT IO.	1124	1125	1126	1127	1128	1129	B-2	1136	1139	1140	1141	1142	1143	1144	1145	1145

S S	CALC CNLY								
ELEMENT ID.	SA 1 SB 1	STRES SA2 SB2	S S E S I N SA3 S SA3	8 A R E L E M SA4 SB4	MENTS AXIAL STRESS	SA-HAX SB-MAX	SA-MIN SB-HIN	X . N	:
1147	6.548716E+02 -1.999036E+03	-1.387828E+D3	1.018588E+03 -1.995494E+03	-1.205970E+03	3.047912E+02	1.323379E+03 3.314536E+03	-1.083037E+03 -1.694245E+03	2.1E+01 3.6E+01	The second secon
1148	1.347475E+C3 1.017066E+G3	-2.144023E+03 -1.981319E+03	1.203828E+03 1.227283E+03	-2.179721E+03 -1.651859E+03	9.894505E+02	2.336926E+03 2.216733E+03	-1. 198271E+03 -9. 918684E+52	3.1E+01 5.2E+01	
1149	1.199891E+03 7.428280E+02	-1.306851E+03 -1.146963E+03	5.432753E+02 6.329348E+02	-1.598153E+03 -1.181714E+03	1.736124E+03	2.936015E+03 2.478952E+03	1.379706E+02 5.54102E+02	2.4E+01	
1152	-1.C46351E+04 2.597869E+04	9.480443E+03 2.515029E+04	4.600341E+02 -2.556449E+04	0.0	6.469083E+02	1.032735E+04 2.682560E+04	-9.553603E+03 -2.471758E+04	1.8E+00 9.2E-02	
1153	2.596034E+04 7.923792E+03	2.518904E>04 8.222859E+03	-2,552469E+84 -8.073325E+03	a.0	-1.119167E+03	2.484117E+04 7.103692E+03	-2.664386E+04 -9.192492E+03	2.0E+00 1.3E-02	
1154	7.5244J1E+03 -1.180925E+04	7.844892E+03 -1.228727E+04	-7.684646E+03	0.0	-5.101382E+03	2.743510E+03 6.946879E+03	-1.276603E+04 -1.738865E+04	9.8E+00 5.5E-01	
1155	-1.175675E+04 -5.388430E+03	-1.216113E+04 -4.564890E+03	1.195894E+84 4.976660E+63	0.0	-6.611523E+03	5.347420E+03 -1.634862E+03	-1.877266E+04 -1.199995E+04	1.3E+01 4.4E-01	NADC-
1156	5.479566E+03	4.616650E+03	-5.048108E+U3 1.419670E+04	00	-4.831776E+03	6.477893E+02 9.364926E+03	-9.879864E+03 -1.924700E+04	7.0E+00 4.0E-01	-7714
									.9 - 3

DETAIL	A	₽	С
a.	1/8	11/6	23/8
ь	21/8	21/8	25⁄8
С	2%	27/6	215/6
d .	3/8	3//8	35∕8
е	4 1/2	8	8 1/2

	 -			e			-
AIL A B C				· d		-	i
1% 1% 238	:		c			:	
2/8 2/8 25/8	-		b				
3/6 2/16 2 76	Halful Vall						λ
4 1/2 8 8 1/2				· · · · · ·			
~	DETAIL F		• •		CORE FILL	TYP. OF ALL CLO	DSECUT SECTIONS
	•	DE	TAILS A & B&C				

NOTES

I. MATERIALS
GRAPHITE - HERCJLE
GLASS - CORLOPREG
ADHESIVE - METABON
2. MB.329 SHALL BE US
3. SOFTENING STRIPS
GLASS REPLACES G
SOFTENING STRIP F
4. CURE TEMPERATURE
5. CORE FILL 6. TOLERANCES = 1/20 OF

LAYUP SEQUENCE

BOOK SCALE TOO DEAVISE

BOOK SCALE TOO DEAVISE RIGHT SKIN PAN 80206 667 A SEE ATTACHMENT (9) SEE ATTACHMEN .5R TRUE TRUE JER TRUE DETAIL SEE AT TACHN (8)

NOTES

100 (REF)

RIBBON

,45

+ 0°

I. MATERIALS
GRAPHITE - HERCULES 3501 AS
GLASS - CORLOPREG E293 GLASS -CORLOPREG E293
ADHESIVE - METABORD 329
2 MB 329 SHALL BE USEL TO BOND CORE TO FACES
3 SOFTENING STRIPS
GLASS REPLACES GRAPHITE IN THESE AREAS
SOFTENING STRIP RUNS ENTIRE LENGTH OF PLIES 2,4,14,16
4. CURE TEMPERATURE - 350°
5. CORE FILL6. TOLERANCES = x OR AS NOTED

424 - ---

18-5060 .0007 CORE 3.1 pcf

LES 3501 AS G E293 DND 329 DSEC TO BOND CORE TO FACES GRAPHITE IN THESE AREAS RUNS ENTIRE LENGTH OF PLIES 2,4,14,16 RE 350° OR AS NOTED SEE ATTACHMENT (9) SEE -ATTACHMENT (IO) .5R TRUE -2 TRUE JER TRUE 21R TRUE, CUT TO A DEPTHL OF .050" DETAIL C SEE ATTACHMENT (8) -20g TRUE-CORE 3.1 pcf - i 7 → 421 -----

15 ABOVE ARE REFERENCE DIMENSIONS

SEC FF

SEC G G

MENT HOLES TO BE LED FROM EXISTING

BUTTE OLDERINE TOSCHIED	CONTRACT BO.	NAVAL AIR DEVELOPMENT CENTER WARMINSTER, PA. 18974
DO NOT SCALE THIS DRAWING	OLUT R. RICHEY 2716977	FUEL TANK ACCESS DOOR
MATERIAL:	CHICKEN TELLOW STATE	•
	Messeria	RN COM OUT IS. MAC ON IS.
	17720010	80206 667A 107
		TOME FORL OF THE STATE OF 4

DETAIL A BLASS SOFTENING STRIPS $\frac{1}{2}$ WIDTH (TYP) -GLASS STRIPS CONTAINED WITHIN GR/EP PLIES 2,4, 14 + 16 3 2 128 ~ REF

RIBBON DIRECTION	-45° ±45°
	3
7 है	,

CONTRACT N	0
DRAWN	ź
CHECKED	2
APPROVED	
MPROVED.	
	DRAWN CHECKED

AT TACHMENT 7

ATTACHMENT 8

*0*0₹ DETAIL A

RIBBON DIRECTION

±45°

NOTES:

- I. MATERIALS GRAPHITE-HERCULES GLASS-CORDOPREG E ADHESIVE-HYSOL EA
- 2. RELEASE AGENT TO I AREA - FREECOTE OR
- 3. EA951 SHALL BE USE
- 4. SOFTENING STRIPS GLASS REPLACES G SOFTENING STRIP F
- 5, SPLICE SHALL BE BI EA-951.
- 6.CURE TEMPERATURE 7. EPOXY FILLER-AF30
- 8. TOLERANCES ± 1/32 OR

BOM-34E CYLINDER TEST SPECIMEN

8-27-74

SCALE-FULL

MA

FX C(

GRAPHITE (0°) GLASS (±45°)

2X

CYLINDER IS SYMMETRIC ABOUT BOTH AXES

NOTES:

- I. MATERIALS GRAPHITE-HERCULES 3501 AS GLASS-CORDOPREG E293 ADHESIVE-HYSOL EA951
- 2. RELEASE AGENT TO BE USED WITH STEEL INSE AREA - FREECOTE OR #1711.
- 3. EA951 SHALL BE USED TO BOND CORE TO FACE
- 4. SOFTENING STRIPS GLASS REPLACES GRAPHITE IN THESE AREAS SOFTENING STRIP RUNS ENTIRE LENGTH OF F
- 5. SPLICE SHALL BE BONDED AT 350° WITH EA-951.
- G.CURE TEMPERATURE -350°.
- 7. EPOXY FILLER-AF 3002.
- 8. TOLERANCES ± 1/32 OR AS NOTED.

BOM-34E CYLINDER TEST SPECIMEN

MATERIAL:

FACING-GRAPHITE/GLASS HYBR

☆U.S. GOVERNMENT PRINTING OFFICE: 1977-703-005/4861

SCALE-FULL

8-27-74

CORE-AL-%-5056-10007-31 (HEX

NOTES:

I. MATERIALS

GRAPHITE-HERCULES 3501 AS

GLASS-CORDOPREG E293

ADHESIVE-HYSOL EA951

2. RELEASE AGENT TO BE USED WITH STEEL INSERT IN SPLICE AREA-FREECOTE OR #1711.

3. EA951 SHALL BE USED TO BOND CORE TO FACES.

4. SOFTENING STRIPS

GLASS REPLACES GRAPHITE IN THESE AREAS. SOFTENING STRIP RUNS ENTIRE LENGTH OF PLIES 24,14,16.

5, SPLICE SHALL BE BONDED AT 350° WITH

EA-951.

6.CURE TEMPERATURE -350°.

7. EPOXY FILLER-AF 3002.

8. TOLERANCES ± 1/32 OR AS NOTED.

ECTION C-C 2X

5 PLY FACES (3 GLASS, 2 GRAPHITE)

BOM-34E CYLINDER TEST SPECIMEN

MATERIAL:

FACING-GRAPHITE/GLASS HYBRID CORE-AL-%-5056-,0007-3.1(HEXCEL)

NG OFFICE: 1977-703-005/4861

SCALE-FULL

4861

8-27-74

DISTRIBUTION LIST

Government Activities

	No. of Copies
NAVAIRSYSCOM, AIR-954 (2 for retention), 2 for AIR-530,	
1 for AIR-320B, AIR-52032D, AIR-5302, AIR-53021, AIR-530215).	9
AFFDL, WPAFB, OH 45433	,
(Attn: FB/Mr. P. A. Parmley)	2
(Attn: FBC/Mr. C. Wallace)	1
(Attn: FBC/Mr. E. E. Zink)	. 1
AFML, WPAFB, OH 45433	. •
(Attn: LAM (Technical Library))	1
(Attn: LT-1/Mr. W. R. Johnston).	i
(Attn: LTF/Mr. T. Cordell)	1
(Attn: FBSC/Mr. L. Kelly)	
(Attn: MAC/Mr. G. P. Peterson)	1
(Attn: MKA/Mr. F. J. Fechek)	
(Attn: MBC/Mr. T. G. Reinhard, Jr.).	1
AFOSR, Washington, D.C. 20333	1
(Attn: Mr. J. Pomerantz)	1
DDC	12
(Atta: Mr. 1 Doughants)	_
(Attn: Mr. J. Dougherty)	1
NASA (ADM), Washington, D.C. 20546	_
(Attn: Secretary)	1
NASA, George C. Marshall Space Flight Center, Huntsville, AL 35812	
(Attn: S&E-ASTN-ES/Mr. E. E. Engler)	1
(Attn: S&E-ASTN-M/Mr. R. Schwinghamer)	1
(Attn: S&E-ASTM-MNM/Dr. J. M. Stuckey)	1
NASA, Langley Research Center, Hampton, VA 23365	
(Attn: Mr. J. P. Peterson, Mr. R. Pride, and Dr. M. Card)	<i>i</i> 3
NASA, Lewis Research Center, Cleveland, OH 44153	
(Attn: Technical Library, and M. Hershberg)	· 2
NAVPGSCHL, Monterey, CA 95940	
(Attn: Prof. R. Ball, Prof. M. H. Bank)	2
NAVSEASYSCOM, Washington, D.C. 20362	
(Attn: Code 035, Mr. C. Pohler)	1
NAVSEC, Hyattsville, MD 20782	_
(Attn: Code 6101E03, Mr. W. Graner)	1
NAVSHIPRANDCEN, Bethesda, MD 20034	_
(Attn: Code 173.2, Mr. W. P. Cauch)	1
NAVSHIPRANDCEN, Annapolis, MD 21402	•
(Attn: Code 2870, Mr. H. Edelstein)	1 -
NOL, White Oak, MD 20910	•
(Attn: Mr. F. R. Barnet)	1
NRL, Washington, D.C. 20375	•
(Attn: Dr. I. Wolock)	1
ONR, Washington, D.C. 20362	. •
(Attn: Dr. N. Perrone)	1
	. •

NADC-77149-30

Non-Government Agencies (Cont.)

Hercules Powder Company, Inc., Cumberland, MD 21501	
(Attn: Mr. D. Hug)	1
H. I. Thompson Fiber Glass Company, Gardena, CA 90249	
(Attn: Mr. N. Myers)	1
ITT Research Institute, Chicago, IL 60616	
(Attn: Mr. K. Hofar)	1
J. P. Stevens & Co., Inc., N.Y., NY 10036	
(Attn: Mr. H. I. Shulock)	1
Kaman Aircraft Corporation, Bloomfield, CT 06002	•
(Attn: Tech. Library)	1
Tableh Mainerates Dathisham DA 19015	
Lehigh University, Bethlehem, PA 18015	•
(Attn: Dr. G. C. Sih)	4
Lockheed-California Company, Burbank, CA 91520	_
(Attn: Mr. E. K. Walker, R. L. Vaughn)	2
Lockheed-Georgia Company, Marietta, GA	
(Attn: Advanced Composites Information Center, Dept. 72-14,	
Zone 42)	1
LTV Aerospace Corporation, Dallas, TX 75222	
(Attn: Mr. O. E. Dhonau/2-53442, C. R. Foreman)	2
Martin Company, Baltimore, MD 21203	
(Attn: Mr. J. E. Pawken)	1
Materials Sciences Corp., Blue Bell, PA 19422	1
McDonnell Douglas Corporation, St. Louis, MO 63166	
(Attn: Mr. R. C. Goran, O. B. McBee, C. Stenberg)	3
McDonnell Douglas Corporation, Long Beach, CA 90801	_
(Attn: H. C. Schjulderup, G. Lehman)	2
	_
Minnesota Mining and Manufacturing Company, St. Paul, MN 55104	1
(Attn: Mr. W. Davis)	
Northrop Aircraft Corp., Norair Div., Hawthorne, CA 90250	
(Attn: Mr. R. D. Hayes, J. V. Noyes, R. C. Isemann)	٦
Rockwell International, Columbus, OH 43216	_
(Attn: Mr. O. G. Acker, K. Clayton)	2
Rockwell International, Los Angeles, CA 90053	
(Attn: Dr. L. Lackman)	1
Rockwell International, Tulsa, OK 74151	
(Attn: Mr. E. Sanders, Mr. J. H. Powell)	2
Owens Corning Fiberglass, Granville, OH 43023	
(Attn: Mr. D. Mettes)	1
Rohr Corporation, Riverside, CA 92503	
(Attn: Dr. F. Riel and Mr. R. Elkin)	2
Ryan Aeronautical Company, San Diego, CA 92112	
(Attn: Mr. R. Long)	1
Sikorsky Aircraft, Stratford, CT 06497	-
/Abba. No 7 Day)	1
(Attn: Mr. J. Ray)	_
University of Oklahoma, Norman, OK 93069	1
(Attn: Dr. G. M. Nordby)	1
Union Carbide Corporation, Cleveland, OH 44101	•
(Attn: Dr. H. F. Volk)	J

Government Activities (Cont.)

77 A 77
PLASTEC, Picatinny Arsenal, Dover, NJ 07801
(Attn: Librarian, Bldg. 176, SARPA-FR-M-D and Mr. H. Pebly).
Scientific & Technical Information Facility, College Park, MD
(Attn: NASA Representative)
USAAVMATLAB, Fort Eustis, VA 23603
(Attn: Mr. R. Beresford)
USAMATRESAG, Watertown, MA
(Attn: Dr. E. Lenoe)
USARESOFC, Durham, NC 27701
Non-Government Agencies
Avco Aero Structures Division, Nashville, TN 37202
(Attn: Mr. W. Ottenville)
Battelle Columbus Laboratories, Metals and Ceramics Information
Center, 505 King Avenue, OH 43201
Bell Aerospace Company, Buffalo, NY 14240
(Attn: Zone I-85, Mr. F. M. Anthony)
Bell Helicopter Company, Fort Worth, TX 76100
(Attn: Mr. Charles Harvey)
Bendix Products Aerospace Division, South Bend, IN 46619
(Attn: Mr. R. V. Cervelli)
Boeing Aerospace Company, P.O. Box 3999, Seattle, WA 98124
(Attn: Code 206, Mr. R. E. Horton)
Boeing Company, Renton, Washington 98055
(Attn: Dr. R. June)
Boeing Company, Vertol Division, Phila., PA 19142
(Attn: Mr. R. L. Pinckney, Mr. D. Hoffstedt)
Boeing Company, Wichita, KS 67210
(Attn: Mr. V. Reneau/MS 16-39)
Cabot Corporation, Billerica Research Center, Billerica, MA
01821
Drexel University, Phila., PA 19104
(Attn: Dr. P. C. Chou)
E.I. DuPont Company, Wilmington, DE 19898
(Attn: Dr. Carl Zweben) Bldg. 262/Room 316
Fairchild Industries, Hagerstown, MD 21740
(Attn: Mr. D. Ruck)
Georgia Institute of Technology, Atlanta, GA
(Attn: Prof. W. H. Horton)
General Dynamics/Convair, San Diego, CA 92138
(Attn: Mr. D. R. Dunbar, W. G. Scheck)
General Dynamics, Fort Worth, TX 76101
(Attn: Mr. P. D. Shockey, Dept. 23, Mail Zone P-46)
General Electric Company, Phila., PA 19101
(Attn: Mr. L. McCreight)
Great Lakes Carbon Corp., N.Y., NY 10017
(Attn: Mr. W. R. Benn, Mgr., Markey Development)
Grumman Aerospace Corporation, Bethpage, L.I., NY 11714
(Attn: Mr. R. Hadcock, Mr. S. Dastin)