```
In [1]:
            #importing necessary libraries
          2 import pandas as pd
            import numpy as np
            import matplotlib.pyplot as plt
          5
            import seaborn as sns
          7
            #importing libraries for machine learning
          8 from sklearn.linear model import LinearRegression
          9 from sklearn.model_selection import train_test_split
         10 from sklearn import metrics
         11 from sklearn.metrics import r2_score
In [2]:
         1 #importing the dataset
          2 df = pd.read_csv('C:/Users/DELL/OneDrive/Desktop/DATA SCIENCE COURSE (Datase
```

In [23]: 1 df.head()

Out[23]:

	crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	black	Istat	medv
0	0.15876	0.0	10.81	0	0.413	5.961	17.5	5.2873	4	305	19.2	376.94	9.88	21.7
1	0.10328	25.0	5.13	0	0.453	5.927	47.2	6.9320	8	284	19.7	396.90	9.22	19.6
2	0.34940	0.0	9.90	0	0.544	5.972	76.7	3.1025	4	304	18.4	396.24	9.97	20.3
3	2.73397	0.0	19.58	0	0.871	5.597	94.9	1.5257	5	403	14.7	351.85	21.45	15.4
4	0.04337	21.0	5.64	0	0.439	6.115	63.0	6.8147	4	243	16.8	393.97	9.43	20.5

In [4]: 1 df.shape

Out[4]: (404, 14)

RangeIndex: 404 entries, 0 to 403 Data columns (total 14 columns): Column Non-Null Count Dtype 0 crim 404 non-null float64 float64 1 404 non-null zn 2 indus 404 non-null float64 3 chas 404 non-null int64 4 nox 404 non-null float64 5 404 non-null float64 rm 6 404 non-null float64 age 7 float64 dis 404 non-null

8 rad 404 non-null int64 9 tax 404 non-null int64

10 ptratio 404 non-null float64
11 black 404 non-null float64

12 lstat 404 non-null float64 13 medv 404 non-null float64

dtypes: float64(11), int64(3)
memory usage: 44.3 KB

```
In [24]: 1 df.isna().sum()
```

```
Out[24]: crim
                       0
           zn
                       0
           indus
                       0
                       0
           chas
                       0
           nox
                       0
           rm
                       0
           age
           dis
                       0
                       0
           rad
           tax
                       0
           ptratio
                       0
           black
                       0
```

lstat

dtype: int64

medv

0

0

In [6]: 1 df.describe()

Out[6]:

	crim	zn	indus	chas	nox	rm	age	
count	404.000000	404.000000	404.000000	404.000000	404.000000	404.00000	404.000000	404.000
mean	3.730912	10.509901	11.189901	0.069307	0.556710	6.30145	68.601733	3.799
std	8.943922	22.053733	6.814909	0.254290	0.117321	0.67583	28.066143	2.109
min	0.006320	0.000000	0.460000	0.000000	0.392000	3.56100	2.900000	1.169
25%	0.082382	0.000000	5.190000	0.000000	0.453000	5.90275	45.800000	2.087
50%	0.253715	0.000000	9.795000	0.000000	0.538000	6.23050	76.600000	3.207
75%	4.053158	12.500000	18.100000	0.000000	0.631000	6.62925	94.150000	5.222
max	88.976200	95.000000	27.740000	1.000000	0.871000	8.78000	100.000000	12.126

Out[22]: <AxesSubplot:>

In []: 1

Splitting the dataframe into training and testing data

Building a Linear Regression Model

```
In [12]:
             lm = LinearRegression()
             reg = lm.fit(x_train,y_train)
In [13]:
             predictions = lm.predict(x_test)
In [14]:
             predictions
Out[14]: array([20.91378468, 21.86576533, 23.72286085, 15.43379467, 22.50179969,
                18.12823755, 17.10769135, 25.62052683, 19.75938076, 26.24959121,
                16.51174583, 14.99090162, 28.47088781, 16.04536552, 7.58942277,
                18.75984464, 18.03090961, 23.55248909, 27.96337224, 32.47073528,
                36.93411706, 23.80771545, 21.06115435, 21.59470343, 28.46430294,
                21.331082 , 16.50699046, 12.2394018 , 26.01740713, 16.49366542,
                33.7509393 , 23.4741521 , 25.40520818, 14.36407566, 25.03689012,
                23.22570717, 6.88700416, 31.9978947, 26.96038018, 13.62767967,
                27.73024658, 17.70414795, 20.82012421, 9.64675216, 32.48215302,
                26.5497374 , 15.61803454, 17.72587664, 29.41580429, 27.0848801 ,
                13.26602854, 19.24382327, 8.86144774, 31.17546825, 23.96354024,
                10.07192289, 19.73880545, 25.32485777, 28.04267791, 18.43856465,
                17.62281739, 34.22031643, 22.63785753, 20.88214578, 24.6371908,
                32.2884916 , 19.10075826 , 15.62376286 , 25.71608493 , 18.63863745 ,
                24.53422976, 13.73775297, 30.38159601, 30.529498 , 10.73025935,
                36.07486065, 37.74803058, 17.10737644, 27.7335233, 28.65636976,
                31.29159947, 29.39221347, 23.80481197, 36.93536117, 8.08409603,
                24.91456329, 31.78254417, 18.94538985, 25.21229133, 13.46174133,
                30.2795401 , 14.90137942 , 22.86848684 , 18.17696309 , 27.65227873 ,
                28.14800401, 17.08945754, 14.97114672, 34.0545077, 15.95524151,
                24.01345436, 17.86410648, 12.93790828, 17.45462697, 33.18000907,
                35.67417978, 15.96896026, 25.58363583, 21.010364 , 24.21655606,
                22.00359187, 26.37398592, 17.35003145, 17.99822953, 22.53445835,
                16.17855705, 12.83894521, 21.67662422, 15.23288805, 24.3069439,
                19.15136612, 22.08567355])
```

```
In [15]:
              y_test
Out[15]: 297
                 21.7
         110
                 19.0
         2
                 20.3
         312
                 14.1
         263
                 25.0
         240
                 21.2
                 15.4
         3
         211
                 23.4
         236
                 15.0
         150
                 24.4
         Name: medv, Length: 122, dtype: float64
In [26]:
              plt.scatter(y_test,predictions)
           2 plt.xlabel('Actual Vlaues')
           3 plt.ylabel('Predicted Values')
```

Out[26]: Text(0, 0.5, 'Predicted Values')

The scatter plot shows a high correlation between predicted and actual values

```
In [17]:
             print('MAE:', metrics.mean_absolute_error(y_test, predictions))
             print('MSE:', metrics.mean_squared_error(y_test, predictions))
           2
             print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, predictions)))
```

MAE: 2.9398539889900737 MSE: 16.803042496936982 RMSE: 4.099151436204447

```
In [19]: 1 coefficients = pd.DataFrame(lm.coef_,x.columns)
2 coefficients.columns = ['coefficients']
3 coefficients
```

Out[19]:

	coefficients
crim	-0.087497
zn	0.042785
indus	-0.079213
chas	1.144681
nox	- 15.059968
rm	3.559057
age	-0.004544
dis	-1.496255
rad	0.250453
tax	-0.011919
ptratio	-0.913969
black	0.007732
Istat	-0.491359

From the above table it can be inferred that chas, nox, rm, dis, ptratio, Istat highly affects the house price

R-Squared = 0.7483983231686366

 R^{2} value is 0.74 which means the model explains about 74% of the variation in our dependent variables