C4W1L02 Computer vision

Fully-connected layer, Convolution layer

1000x1000x3 크기의 input, 1000 개의 hidden node 를 가지는 fc-layer 를 생각해보면 3billion(30 억)개의 parameter 가 생긴다.

이는 과적합을 유도하기 쉽다.

이를 해결할 수 있는 것이 Convolution network이다.

convolution network는 인풋에 동일한 가중치(filter)를 슬라이딩하면서 적용한다. 이는 parameter 의 숫자를 훨씬 줄여줄 수 있다.

C4W1L02 Edge Detection Examples

vertical edge detection

convolution network 에서 vertical edge 를 추출하려면 어떻게 해야 할까? 아래와 같이 1, 0, -1 로 이루어진 filter 를 사용하면 된다. 이 필터가 어떻게 vertical edge 를 잘 잡아낼 수 있는 것일까?

직접 계산해보면 아래와 같다.

아래의 예시의 input 은 한쪽은 밝고, 다른 한쪽은 어둡다.

이를 1, 0, -1 로 이루어진 필터와 합성곱하면 input 에서 가운데 경계선 부근이 추출되는 것을 볼 수 있다.

경계선에 비해 꽤 넓은 범위로 추출된 것 같지만 이는 매우 작은 인풋이라 그런 것이고 더 큰이미지에 적용한다면 정밀하게 추출될 수 있다.

C4W1L03 More Edge Detection

Vertical and Horizontal Edge Detection

밝은 부분 -> 어두운 부분의 edge 는 양수로, 어두운 부분 -> 밝은 부분의 edge 는 음수로 나오게 된다.

방향성을 고려하지 않는다면 결과에 절댓값을 취할 수도 있다.

horizontal edge 를 추출하려면 위의 vertical filter 와 같은 원리로 아래와 같이 구성하면 된다. 초록색 박스부분에선 input 에서 10 에서 0 으로 바뀌는 경계선 부분에 해당하기 때문에 feature map 에서 30 이 나오고,

보라색 박스부분에선 input 에서 0 에서 10 으로 바뀌는 경계선 부분에 해당하기 때문에 feature map 에서 -30 이 나온다.

노란색 박스부분에선 input 에서 대체적으로 10 에서 0 으로 바뀌지만 다른 한쪽에 10 포함되어 있기 때문에 30 보다 작은 10 이라는 숫자가 나오게 된다.

Learning to detect edges

앞선 예시에서의 vertical filter, horizontal filter 모두 하나의 예시이다.

아래의 sobel filter, schor filter 처럼 중간에 큰 값을 줘서 중간 픽셀을 더 집중할 수도 있다.

하지만 이런 수작업으로 만든 특정 filter 보다,

filter 를 파라미터로 하여 역전파를 통해 학습하는 것은 아주 다양한 edge 를 검출해낼 수 있게 한다.

여기서 질문, 정사각형 input 이 아니라 직사각형 input 을 넣는 경우도 있는가? 이 질문에 대한 답은 "있다"이다. 정사각형 input 을 사용하는 것은 계산의 편리함을 위해서이다. 만약 input 이 224x320 라면 pooling layer를 적용함에 따라 224x320, 112x160, 56x80, 28x40, 14x20, 7x10 와 같이 변화할 것이다.

C4W1L04 Padding

padding

convolution layer 에서 패딩이 필요한 이유는 두가지이다.

- 1. convolution 연산을 할 수록 feature map 의 크기는 작아진다. 여러 layer 를 거치고 난 후에는 아주 작은 map 만 남게된다.
- 2. 가장자리의 input 은 결과에 사용되는 횟수가 적다.
 아래 그림에서 초록색 픽셀은 한번만 연산되는 반면 빨간색 픽셀은 여러번 **연산되는**것을 볼 수 있다.

Valid and Same convolutions

valid

no padding. input : n x n

filter : f x f

output: n-f+1 x n-f+1

same

input shape == output shape

input : $n \times n$ filter : $f \times f$

output: $n+2p-f+1 \times n+2p-f+1$

위의 식에 따라서 input shape 과 output shape 이 같으려면 p = (f-1)/2 가 된다.

따라서 filter 가 홀수라면 위의 식에 따른 padding 을 적용시 conv 연산을 하더라도 동일한 크기를 유지할 수 있다.

이는 filter 의 크기를 짝수로 쓰지 않는 이유와도 관련이 있다.

- 1. filter 가 짝수라면 padding 이 왼쪽과 오른쪽이 비대칭적으로 적용이 되어야 한다.
- 2. filter 가 짝수라면 중앙을 나타내는 픽셀이 없어서 계산을 할 때 애매하다.

짝수 filter 가 성능에 큰 영향을 주진 않지만 적용할 때 깔끔해지지 않기 때문에 관습적으로 사용하지 않는다고 한다.

Valid and Same convolutions

"Valid": $n \times n \times f \times f \longrightarrow \frac{n - f + 1}{4} \times u - f + 1$ $6 \times 6 \times 3 \times 3 \longrightarrow 4 \times 4$

"Same": Pad so that output size is the <u>same</u> as the input size.

 $N+5b-t+1=N \Rightarrow b=\frac{5}{t-1}$

Andrew Ng

C4W1L05 Strided Convolutions

Strided convolution

convolution 에서 stride 가 2 라면 아래 그림처럼 2 칸씩 옮기며 연산을 진행한다. 따라서 앞서 output shape 이 (n+2p-f) + 1 이었다면 stride 가 적용된다면

(n+2p-f)/s + 1 가 된다.

그런데 만약 이 값이 정수가 아니라면 내림을 해준다. 내림을 한다는 의미는 아래 그림에서 파란 박스처럼 input 영역을 벗어나게 되는 경우는 연산을 하지 않는다는 것이다.

여기서 질문, stride 를 크게 줄수록 정보의 손실이 일어나지 않는가? 이에 대한 대답은 "맞다"이다. 정보의 손실이 일어난다. 하지만 손실이 허용될 때가 있다. 예를 들어 대부분이 까맣고 일부분만 하얀 밤하늘의 별과 같은 이미지가 있다고 하면 stride 를 작게주어 세밀하게 학습하는 것보다 stride 를 크게 줘서 학습을 해도 feature 는 잘 추출될 수 있을 것이다.

Technical note on cross-correlation vs convolution

딥러닝을 공부하다보면 우리가 흔히 말하는 convolution 이라는 것이 사실 convolution 이 아니라고 하는 것을 볼 수 있다.

사실 수학, 신호처리에서 말하는 convolution은 곱하는 연산과 더하는 연산을 해준다음, 그것을 가로, 세로로 뒤집는 미러링 과정을 진행한다. 미러링 과정을 통해 결합법칙이 성립하게 해주기에 이 과정이 중요하다고 한다.

딥러닝에서는 미러링 과정을 생략하여도 학습에 아무런 문제가 없기 때문에 미러링을 생략한 형태의 convolution을 관습적으로 convolution 이라고 부른다.

C4W1L06 Convolutions Over Volumes

Convolution on RGB images

covolution을 텐서에 적용하는 방법은 아래 그림과 같다. input channel 수와 동일한 수의 channel을 가지는 filter로 합성곱을 하면 된다. 결과로는 1 차원의 map 이 나오게 된다.

이때 filter 를 아래 그림의 첫번째처럼 구성하게되면 R 채널의 수직 성분을 추출할 것이고, 두번째처럼 구성하게되면 색깔에 상관없이 수직 성분을 추출할 것이다.

Multiple filters

필터를 여러개 적용한다면 필터의 개수만큼 다양한 종류의 특징이 추출될 것이다.

Classification 모델을 보면 channel 을 많이 뽑고 보는 모델들이 있는데 이러한 이유로 다양한 feature 들이 뽑힐 수 있어 성능의 향상이 있지 않았나 싶다.

여러개 필터를 적용한다면 output 의 channel 은 필터의 개수와 동일해질 것이다.

C4W1L07 One Layer of a Convolutional Net

이 장에서는 하나의 레이어에서 다음 레이어로 넘어갈 때 연산이 어떻게 진행되는지 설명한다.

필터를 적용한 결과에 activation func, bias 를 추가하면 ouput 의 한 채널이 완성된다. 이 과정을 filter 의 개수만큼 진행하면 된다.

아래와 같은 표현이 등장하는데, [] 안에 들어가는 숫자는 몇번째 layer 인지를 나타내는 것이다.

$$z^{(1)} = U^{(1)}z^{(2)} + U^{(1)}z^{(3)}$$

C4W1L09 Pooling Layers

Max pooling

필터가 적용되는 영역에서 가장 큰 수만 뽑히는 연산이다. pooling 이 적용될때 output size 를 계산하는 방법은 convolution 할 때와 같다.

pooling layer 에서의 hyperparameter 는 f(filter), s(stride)이다. 2, 2 로 두는 경우가 많다고 한다. (n -f)/s + 1 이다. (channel 은 conv 연산에서는 filter 의 개수였다면 pooling 에서는 인풋의 채널과 같다)

pooling layer 는 단순 연산만 하기에 학습하는 parameter 가 없다.

pooling 에서는 padding 을 거의 쓰지 않는다고한다.

Average pooling

거의 사용하지 않는다고 한다.

pooling 의 목적이 특징을 극대화하려고 하는 것이기에 평균을 구해서 특징을 완화시키는 것은 도움이 안될 것 같다.

레이어 하단부에서 MAP(mean average pooling)가 사용되는 경우는 있다.

map 는 grad cam 에서도 사용된다.

C4W1L10 CNN Example

Neural Network example

LeNet-5

input: 32 x 32 x 3

• conv + pooling , FC-layer , softmax

convolution 모델의 패턴

- 층이 깊어질수록 H, W 는 작아지고 channel 은 늘어난다.
- conv pooling 이 반복된 후 FC layer, softmax 가 이어지는 형태

*층의 개수를 셀때는 conv+pooling 을 하나의 레이어로 명칭한다.(하나의 convention)

아래는 LeNet-5의 구조이다.

Neural network example

	Activation shape	Activation Size	# parameters
Input:	(32,32,3)	— 3,072 a ^{to]}	0
CONV1 (f=5, s=1)	(28,28,8)	6,272	208 <
POOL1	(14,14,8)	1,568	0 ←
CONV2 (f=5, s=1)	(10,10,16)	1,600	416 <
POOL2	(5,5,16)	400	0 ←
FC3	(120,1)	120	48,001 7
FC4	(84,1)	84	10,081
Softmax	(10,1)	10	841

Andrew Ng

여기서 알 수 있는 것은

• activation size 가 점진적으로 줄어든다. 너무 빠르게 감소하면 성능에 악영향을 줄 수 있다.

• conv layer 가 dense layer 에 비해 현저히 적은 파라미터를 가진다.

Examples time:

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Number of parameters in this layer? each filter has 5*5*3 + 1 = 76 params (+1 for bias) => 76*10 = 760

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5 - 60

April 18, 2017

C4W1L11 Why Convolutions

Why convolutions

Parameter sharing

한 이미지 내에서 동일한 필터를 공유한다.

Sparsity of connection

아래 그림에서 output 의 초록색 부분은 input 의 초록색 박스 부분과만 연결된다. 빨간색 박스도 이와 같다. 이러한 특성으로 희소한 conneciton을 가지게 된다.

위의 두가지 특성으로 적은 파라미터수, 오버피팅 방지를 할 수 있다.

Parameter sharing: A feature detector (such as a vertical edge detector) that's useful in one part of the image is probably useful in another part of the image.

→ **Sparsity of connections:** In each layer, each output value depends only on a small number of inputs.

Andrew Ng

translation invariance

동일한 filter 를 적용하기 때문에 이미지내 물체의 위치가 달라지더라도 특징을 포착해낼 수 있다. 위의 이유가 convolution 이 효과적인 이유이다.

Putting it together

model 의 예측치가 나오면 이의 오차를 합한 후에 training set 크기(m)로 나눠주면 cost 가나온다.

이 cost 를 backpropagation 하여 각 conv layer 가 가지는 w, b 를 업데이트하면된다.

Cost
$$J = \frac{1}{m} \sum_{i=1}^m \mathcal{L}(\hat{y}^{(i)}, y^{(i)})$$

Use gradient descent to optimize parameters to reduce J

Andrew Ng