MARR	14%					
N	(F/P, i, N)	(P/F, i, N)	(F/A, i, N)	(A/F, i, N)	(P/A, i, N)	(A/P, i, N)
1	1.1400	0.8772	1.0000	1.0000	0.8772	1.1400
2	1.2996	0.7695	2.1400	0.4673	1.6467	0.6073
3	1.4815	0.6750	3.4396	0.2907	2.3216	0.4307
4	1.6890	0.5921	4.9211	0.2032	2.9137	0.3432
5	1.9254	0.5194	6.6101	0.1513	3.4331	0.2913
6	2.1950	0.4556	8.5355	0.1172	3.8887	0.2572
7	2.5023	0.3996	10.7305	0.0932	4.2883	0.2332
8	2.8526	0.3506	13.2328	0.0756	4.6389	0.2156
9	3.2519	0.3075	16.0853	0.0622	4.9464	0.2022
10	3.7072	0.2697	19.3373	0.0517	5.2161	0.1917
11	4.2262	0.2366	23.0445	0.0434	5.4527	0.1834
12	4.8179	0.2076	27.2707	0.0367	5.6603	0.1767
13	5.4924	0.1821	32.0887	0.0312	5.8424	0.1712
14	6.2613	0.1597	37.5811	0.0266	6.0021	0.1666
15	7.1379	0.1401	43.8424	0.0228	6.1422	0.1628
16	8.1372	0.1229	50.9804	0.0196	6.2651	0.1596
17	9.2765	0.1078	59.1176	0.0169	6.3729	0.1569
18	10.5752	0.0946	68.3941	0.0146	6.4674	0.1546
19	12.0557	0.0829	78.9692	0.0127	6.5504	0.1527
20	13.7435	0.0728	91.0249	0.0110	6.6231	0.1510
21	15.6676	0.0638	104.7684	0.0095	6.6870	0.1495
22	17.8610	0.0560	120.4360	0.0083	6.7429	0.1483
N	1	2	3	4	5	6
(F/P, i, N)	1.1400	1.2996	1.4815	1.6890	1.9254	2.1950
(P/F, i, N)	0.8772	0.7695	0.6750	0.5921	0.5194	0.4556
(F/A, i, N)	1.0000	2.1400	3.4396	4.9211	6.6101	8.5355
(A/F, i, N)	1.0000	0.4673	0.2907	0.2032	0.1513	0.1172
(P/A, i, N)		1.6467	2.3216	2.9137	3.4331	3.8887
(A/P, i, N)	1.1400	0.6073	0.4307	0.3432	0.2913	0.2572

Table_Values Page 1 of 15

7	8	9	10	11	12	13
2.5023	2.8526	3.2519	3.7072	4.2262	4.8179	5.4924
0.3996	0.3506	0.3075	0.2697	0.2366	0.2076	0.1821
10.7305	13.2328	16.0853	19.3373	23.0445	27.2707	32.0887
0.0932	0.0756	0.0622	0.0517	0.0434	0.0367	0.0312
4.2883	4.6389	4.9464	5.2161	5.4527	5.6603	5.8424
0.2332	0.2156	0.2022	0.1917	0.1834	0.1767	0.1712

Table_Values Page 2 of 15

14	15	16	17	18	19	20
6.2613	7.1379	8.1372	9.2765	10.5752	12.0557	13.7435
0.1597	0.1401	0.1229	0.1078	0.0946	0.0829	0.0728
37.5811	43.8424	50.9804	59.1176	68.3941	78.9692	91.0249
0.0266	0.0228	0.0196	0.0169	0.0146	0.0127	0.0110
6.0021	6.1422	6.2651	6.3729	6.4674	6.5504	6.6231
0.1666	0.1628	0.1596	0.1569	0.1546	0.1527	0.1510

Table_Values Page 3 of 15

LECTURE 4 CHAPTER 7

Consider the following financial data for 2 mutually exclusive projects:

N	Project X	Project Y
0	(\$10,000)	(\$14,000)
1	\$7,000	\$10,000
2	\$8,000	\$11,000
3	\$9,000	\$12,000

With a MARR of 12% calculate the following:

a. Calculate the NPV for each project. [2 + 2 points]

DO NOT CALCULATE USING THE PV FINANCIAL FUNCTION IN EXCEL.

b. Calculate the IRR for each project.

i. Use linear interpolation [3 points]

iii. Use the graphical method shown in class [3 points]

iiii. Use the Excel IRR function [3 points]

c. Using incremental IRR analysis, which project should be selected? Why? [5 + 1 points]

\$12,239

MARR

PART a [2 + 2 points]
a. Calculate the NPV for each project. [2 + 2 points]

|--|

PROJECT Y

PW	=	-P	+	Σ F_n	х	(P/F,i,n)								
PW	=	-\$10,000	+	\$7,000	x	(P/F,12%,1)	+	\$8,000	x	(P/F,12%,2)	+	\$9,000	x	(P/F,12%,3)
PW	=	-\$10,000	+	\$7,000	x	0.8929	+	\$8,000	x	0.7972	+	\$9,000	x	0.7118
PW	-	\$9,034												
PW	=	-P	+	Σ F_n	x	(P/F,i,n)								
PW PW	=	-P -\$14,000		-		(P/F,i,n) (P/F,12%,1)	+	\$11,000	×	(P/F,12%,2)	+	\$12,000	x	(P/F,12%,3)

Question1 Page 4 of 15

PART b [10 points]
b. Calculate the IRR for each project.

i. Use linear interpolation [3 + 3 points]

PROJECT X	1		
Guess 1	IRR	50%	52%
	PW	\$889	\$631
Guess 2	IRR	59%	56%
	PW	-\$194	\$145
Interpolate	•		
x1	PW guess 1	\$889	\$631
y1	IRR guess 1	50%	52%
x2	PW guess 2	-\$194	\$145
y2	IRR guess 2	59%	56%
x	target PW	\$0	\$0
Y	IRR	57.39%	57.20%

NOTE - Choosing a narrow range and guessing between 10% and 12% instead of 8% and 12% yields a more accurate IRR value

PROJECT Y

IRR 50% 55% Guess 1 PW \$1,111 \$253 IRR 60% 57% PW -\$67 -\$523 Interpolate x1 F y1 I x2 F y2 I X t PW guess 1 IRR guess 1 PW guess 2 IRR guess 2 target PW \$1,111 50% -\$523 60% \$0 \$253 55% -\$67 57% \$0

NOTE - Choosing a narrow range and guessing between 11% and 13% instead of 10% and 15% yields a more accurate IRR value

ii. Use the Excel IRR function [2 + 2 points]

N 0 Project X (\$10,000) \$7,000 \$8,000 \$9,000 **57.26%** =IRR(B56:B59) IRR Project Y (\$14,000) \$10,000 \$11,000 \$12,000 \$6.57% =IRR(B56:B59) IRR

PART c [6 points] c. Using incremental IRR analysis, which project should be selected? Why? [5+ 1 points]

N	Project X	Project Y	Project Y-2
0	(\$10,000)	(\$14,000)	(\$4,000)
1	\$7,000	\$10,000	\$3,000
2	\$8,000	\$11,000	\$3,000
3	\$9,000	\$12,000	\$3,000
		IRR Y-X	55%
		MARR	10%

IRR Y-X yields an incremental IRR of 55%. This is greater than the MARR of 10%. Therefore, Project Y should be selected over project X.

Question1 Page 5 of 15

LECTURE 5 CHAPTER 16

You are being comissioned by your company to implement a new data managem for this insurance company. You are given the following cost data for two potential program options:

Program 1:

A plan calculates that the program will cost \$1.1 million and that it will cost \$250,000 per year to maintain. The analysis of operating revenue determines that the program will provide the company with a savings of \$600,000 per year starting in the second year.

Program 2:

An engineering plan calculates that the program will cost \$2.2 million and that it will cost \$320,000 per year to maintain. The analysis of operating revenue determines that the program will provide the company with savings of \$700,000 per year starting in the second year.

At a MARR of 14% and a program life of 20 years, calculate the following:

- a. Calculate the BCR for each program option. [3 + 3 points]
 NOTE: USE PRESENT WORTH ANALYSIS
- b. Using incremental benefit cost analysis, which program should be selected?

GIVEN:	Program 1	Program 2	
i	14%	14%	
N	20	20	
Investment	\$1,100,000	\$2,200,000	
O&M	\$250,000	\$320,000	EOY 1
Revenue	\$600,000	\$700,000	EOY 2

		PROGR/	\M 1		
N	Investment	A (O&M)	A (rev)	S	Investment
0	\$1,100,000	\$0	\$0		\$2,200,000
1		\$250,000	\$0		
2		\$250,000	\$600,000		
3		\$250,000	\$600,000		
4		\$250,000	\$600,000		
5		\$250,000	\$600,000		
6		\$250,000	\$600,000		
7		\$250,000	\$600,000		
8		\$250,000	\$600,000		
9		\$250,000	\$600,000		
10		\$250,000	\$600,000		
11		\$250,000	\$600,000		
12		\$250,000	\$600,000		
13		\$250,000	\$600,000		

Question2 Page 6 of 15

14	\$250,000	\$600,000		
15	\$250,000	\$600,000		
16	\$250,000	\$600,000		
17	\$250,000	\$600,000		
18	\$250,000	\$600,000		
19	\$250,000	\$600,000		
20	\$250,000	\$600,000	\$0	

PART a	[3 + 3 points]	1	$BCR(i) = \frac{B}{B} = \frac{B}{B}$
I C'	Program 1 \$1,100,000 ########	Program 2 \$2,200,000 \$2,119,402	where,
В	#######	\$4,022,156.30	I + C'> 0
BCR (i)	1.44	0.93	B = usersbenefits
TARGET STATUS	1 accept	1 reject	I = initial cost of invest C = sponsorsdosts C' = equivalent annual (

PART b	[3 + 1 points]		
	Program 1	Program 2	
I	\$1,100,000	\$2,200,000	
C'	\$1,655,783	\$2,119,402	
I+C'	\$2,755,783	\$4,319,402	(Option 2 greater than Option 1, therefore
В	\$3,973,878	\$4,022,156	
BCR ₂₋₁	0.03	<	1

Therefore, select Program 1.

Question2 Page 7 of 15

management system

You are being comissioned by your comp

A plan calculates that the program will co

savings of

An engineering plan calculates that the p

selected? Why? [3 + 1 points]

PRO	GRAM 2	
A (O&M)	A (rev)	S
\$0	\$0	
\$320,000	\$0	
\$320,000	\$700,000	
\$320,000	\$700,000	
\$320,000	\$700,000	
\$320,000	\$700,000	
\$320,000	\$700,000	
\$320,000	\$700,000	
\$320,000	\$700,000	
\$320,000	\$700,000	
\$320,000	\$700,000	
\$320,000	\$700,000	
\$320,000	\$700,000	
\$320,000	\$700,000	

Question2 Page 8 of 15

\$320,000	\$700,000	
\$320,000	\$700,000	
\$320,000	\$700,000	
\$320,000	\$700,000	
\$320,000	\$700,000	
\$320,000	\$700,000	
\$320,000	\$700,000	\$0

Benefit A(P/A, i, 19)(P/F, i, 1)

:ment

operating

e find BCR₂₋₁)

Question2 Page 9 of 15

your company to implement a new data management systemfor this insurance company. You are given the following cos

s that the program will cost \$2.2 million and thatit will cost \$320,000 per year to maintain. The analysis of operatingreve

Question2 Page 10 of 15

Question2 Page 11 of 15

ny. You are given the following cost data for two potential program options:
sis of operatingrevenue determines that the program will provide the company with a savings of\$600,000 per year starting ain. The analysis of operatingrevenue determines that the program will provide the company with savings of\$700,000 per

Question2 Page 12 of 15

Question2 Page 13 of 15

vings of\$600,000 per year starting in the second year.

any with savings of\$700,000 per year starting in the second year.

Question2 Page 14 of 15

Question2 Page 15 of 15