i≡

Теоретические сведения. Численные методы второго порядка ("высокая" траектория)

Теоретические сведения. Численные методы второго порядка ("высокая" траектория) Метод Ньютона-Рафсона МЕТОД НЬЮТОНА— РАФСОНА

Пусть дана функция f(x), ограниченная снизу на множестве \mathbb{R}^n

СТРАТЕГИЯ ПОИСКА

 $k=0,\,1,\,\dots$ Точки последовательности вычисляются по правилу

ПОСТАНОВКА ЗАДАЧИ

и имеющая непрерывные частные производные во всех его точках. Требуется найти локальный минимум функции f(x) на множестве допусти-

мых решений $X=R^n$, т. е. найти такую точку $x^* \in R^n$, что $f(x^*)=\min f(x)$, $f(x) \in \mathbb{C}^2$.

Стратегия метода Ньютона — Рафсона [Newton — Raphson] состоит в по-

строении последовательности точек $\{x^k\}$, k = 0, 1, ..., таких, что $f(x^{k+1}) < f(x^k)$,

 $x^{k+1} = x^k - t_k H^{-1}(x^k) \nabla f(x^k), k = 0, 1, ...,$ (7.4)

где x^0 задается пользователем, а величина шага t_k определяется из условия

$$\varphi(t_k) = f(x^k - t_k H^{-1}(x^k) \nabla f(x^k)) \to \min_{t_k}.$$
 (7.5)

Задача (7.5) может решаться либо аналитически с использованием необхо-
$$d \varphi$$

димого условия минимума $\frac{d \varphi}{d t_k} = 0$ с последующей проверкой достаточного условия $\frac{d^2\varphi}{dt_*^2} > 0$, либо численно как задача (7.6)

Если функция
$$\varphi(t_k)$$
 достаточно сложна, то возможна ее замена полиномом $P(t_k)$ второй или третьей степени и тогда шаг t_k может быть определен из усло-

где интервал [a, b] задается пользователем.

вия $\frac{dP}{dt_b}$ = 0 при выполнении условия $\frac{d^2P}{dt_b^2}$ > 0. При численном решении задачи определения величины шага степень близости найденного значения t_k к оптимальному значению t_k^st , удовлетворяюще-

му условиям $\frac{d\varphi}{dt_{L}}=0, \ \frac{d^{2}\varphi}{dt_{L}^{2}}>0,$

зависит от задания интервала [a,b] и точности методов одномерной минимиза-

Построение последовательности $\{x^k\}$ заканчивается в точке x^k , для которой

 $\|\nabla f(x^k)\| < \varepsilon_1$, где ε_1 — заданное число, или при $k \ge M$ (M — предельное число итераций), или при двукратном одновременном выполнении двух неравенств $||x^{k+1}-x^k|| < \varepsilon_2, |f(x^{k+1})-f(x^k)| < \varepsilon_2,$ где ε_2 — малое положительное число. Вопрос о том, может ли точка x^k рассматриваться как найденное приближение искомой точки минимума, решается путем проведения дополнительного исследования, которое описано ниже. АЛГОРИТМ IIIar 1. Задать x^0 , $\varepsilon_1 > 0$, $\varepsilon_2 > 0$, M - предельное число итераций. Найтиградиент $\nabla f(x)$ и матрицу Γ ecce H(x).

Шаг 3. Вычислить $\nabla f(x^k)$. *Шаг 4.* Проверить выполнение условия $\|\nabla f(x^k)\| < \varepsilon_1$: а) если неравенство выполнено, то расчет закончен, $x^* = x^k$;

 $\mathit{III}\mathit{ar}\,5$. Проверить выполнение условия $k \geq M$:

б) если нет, перейти к шагу 5.

 $\mathit{Шаг}\ 2.\ \Pi$ оложить k=0.

ции [28].

Липшица

а) если неравенство выполнено, расчет окончен, $x^* = x^k$; б) если нет, перейти к шагу 6.

Шаг 7. Вычислить матрицу $H^{-1}(x^k)$. *Шаг 8*. Проверить выполнение условия $H^{-1}(x^k) > 0$:

а) если условие выполняется, то найти $d^k = -H^{-1}(x^k)\nabla f(x^k)$;

б) если нет, то положить $d^k = -\nabla f(x^k)$. $extit{Шаг 9. Определить } x^{k+1} = x^k + t_k d^k.$

 $\mathit{Шаг}\, 6$. Вычислить матрицу $H(x^k)$.

Шаг 11. Вычислить $x^{k+1} = x^k + t_k^* d^k$. III aг 12. Проверить выполнение неравенств

 $extit{Шаг 10.}$ Найти шаг t_k^* из условия $\varphi(t_k) = f(x^k + t_k d^k)
ightarrow \min_{t_k}$.

а) если оба условия выполнены при текущем значении k и k=k-1, то рас-

денным приближением искомой точки x^* . ПРОЦЕДУРА РЕШЕНИЯ ЗАДАЧИ

 3^{0} . Вычислим $\nabla f(x^{0})$: $\nabla f(x^{0}) = (3; 2, 5)^{T}$.

чет окончен, $x^* = x^{k+1}$; б) в противном случае положить k = k + 1 и перейти к шагу 3.

СХОДИМОСТЬ Утверждение 7.2. Пусть функция <math>f(x) дважды непрерывно дифференцируема и сильно выпукла на R^n , а ее матрица Γ ecce H(x) удовлетворяет условию

 $||H(x)-H(y)|| \le L||x-y|| \quad \forall \ x, y \in \mathbb{R}^n.$

 ${f T}$ огда последовательность $\{x^k\}$ сходится независимо от выбора начальной

 $||x^{k+1}-x^k|| < \varepsilon_2, |f(x^{k+1})-f(x^k)| < \varepsilon_2$:

точки x^0 к точке минимума x^* с квадратичной скоростью

 $||x^{k+1}-x^k|| \leq \frac{L}{m}||x^k-x^*||^2$, где m — оценка наименьшего собственного значения матрицы [29].

гарантируется независимо от выбора начального приближения лишь для силь-

Замечание 7.2. Сходимость к точке минимума метода Ньютона — Рафсона

но выпуклых функций. Поэтому при практическом использовании метода Ньютона — Рафсона следует: а) анализировать матрицу Гессе $H(x^k)$ на выполнение условия $H(x^k) > 0$, $k=0,\,1,\,...,\,$ и заменять формулу $x^{k+1}=x^k-t_kH^{-1}(x^k)\nabla f(x^k)$ на формулу метода градиентного спуска $x^{k+1} = x^k - t_k \nabla f(x^k)$ в случае его невыполнения;

б) производить анализ точки x^k с целью выяснения, является ли она най-

1. Используя алгоритм Ньютона — Рафсона, построить точку x^k , в которой

выполняется по крайней мере один критерий окончания расчетов. 2. Так как $f(x) \in C^2$, то осуществить проверку выполнения достаточных условий минимума $H(x^k) > 0$. Если условие выполнено, то точка x^k может рассмат-

риваться как найденное приближение точки минимума x^* . Проверку выполне-

ния достаточных условий минимума можно заменить проверкой функции f(x)

на выпуклость. $\Pi pumep~7.2.$ Найти локальный минимум функции $f(x)=2x_1^2+x_1x_2+x_2^2$. \square I. Определение точки x^k , в которой выполняется по крайней мере один критерий окончания расчетов. 1. Зададим x^0 , ε_1 , ε_2 , M: $x^0 = (0,5;1)^T$, $\varepsilon_1 = 0,1$, $\varepsilon_2 = 0,15$, M = 10. Найдем градиент функции $\nabla f(x) = (4x_1 + x_2; x_1 + 2x_2)^T$ и матрицу Γ ессе

 $H(x) = \begin{pmatrix} 4 & 1 \\ 1 & 2 \end{pmatrix}$.

 5^{0} . Проверим выполнение условия $k \geq M$: k = 0 < 10. Переходим к шагу 6.

 $H(x^0) = \begin{pmatrix} 4 & 1 \\ 1 & 2 \end{pmatrix}$.

4°. Проверим выполнение условия $\|\nabla f(x^0)\| \le \varepsilon_1$: $\|\nabla f(x^0)\| = 3.9 > 0.1$.

 7^{0} . Вычислим $H^{-1}(x^{0})$:

Так как

90. Определим:

 6° . Вычислим $H(x^{\circ})$:

2. Положим k=0.

$$8^{0}$$
. Проверим выполнение условия $H^{-1}(x^{0})>0$. Так как
$$\Delta_{1}=\frac{2}{7}>0,\ \, \Delta_{2}=\frac{1}{7}>0,$$

то согласно критерию Сильвестра $H^{-1}(x^0) > 0$. Поэтому найдем $d^0 = -H^{-1}(x^0) \nabla f(x^0)$:

 $H^{-1}(x^0) = \begin{pmatrix} \frac{2}{7} & -\frac{1}{7} \\ -\frac{1}{7} & \frac{4}{7} \end{pmatrix}.$

10°. Определим t_0^* из условия $\phi(\bar{t_0}) = f(x^0 + \bar{t_0}d^{\bar{0}}) \to \min$. Получаем

 $d^0 = \left(-\frac{1}{2}, -1\right)^T$ (см. шаг 9^0 примера 7.1).

 $x^1 = x^0 + t_0 d^0 = \left(\frac{1}{2}, 1\right)^T + t_0 \left(-\frac{1}{2}, -1\right)^T = \left(\frac{1}{2} - \frac{1}{2}t_0, 1 - t_0\right)^T.$

 $f(x^0 + t_0 d^0) = f\left(\frac{1}{2} - \frac{1}{2}t_0, 1 - t_0\right)^T = 0$ $=2\cdot\left(\frac{1}{2}-\frac{1}{2}t_0\right)^2+\left(\frac{1}{2}-\frac{1}{2}t_0\right)\cdot(1-t_0)+(1-t_0)^2=2\cdot(1-t_0)^2=\varphi(t_0).$

находим $t_0^* = 1$. При этом

окончен: $x^* = x^1$.

II. Анализ точки x^1 .

Из условия

$$rac{d^2 \phi}{dt_0^2} \! = \! 4 \! > \! 0,$$
 т. е. найденная величина шага обеспечивает минимум функции $\phi(t_0)$.

 $||x^1-x^0||=1,12>0,15; |f(x^1)-f(x^0)|=2>0,15.$

 $\frac{a\varphi}{dt} = 2 \cdot 2 \cdot (1 - t_0) \cdot (-1) = 0$

11°. Вычислим $x^1 = x^0 + t_0^* d^0$: $x^1 = \left(\frac{1}{2} - \frac{1}{2} \cdot 1, 1 - 1\right)^T = (0, 0)^T$. 12°. Проверим выполнение условий $||x^1 - x^0|| < \varepsilon_2$, $|f(x^1) - f(x^0)| < \varepsilon_2$:

 Π оложим k=1 и перейдем к шагу 3. 3¹. Вычислим $\nabla f(x^1)$: $\nabla f(x^1) = (0, 0)^T$.

4¹. Проверим выполнение условия $\|\nabla f(x^1)\| < \varepsilon_1$, $\|\nabla f(x^1)\| = 0 < 0,1$. Расчет

Точка $x^* = (0, 0)^T$ — точка локального и одновременно глобального минимума f(x) (см. пример 7.1). На рисунке 7.2 траектория спуска изображена

штрихпунктирной линией. Вопросы

Перейти на...

СЛЕДУЮЩИЙ ЭЛЕМЕНТ КУРСА ВТ. Задание №13. Метод Ньютона ▶

© 2010-2023 Центр обучающих систем Сибирского федерального университета, sfu-kras.ru Разработано на платформе moodle Beta-version (3.9.1.5.w1)

ПРЕДЫДУЩИЙ ЭЛЕМЕНТ КУРСА

◀ ВТ. Сравнительный анализ эффективности численных

методов первого порядка для поиска безусловного

экстремума

Политика конфиденциальности Соглашение о Персональных данных

Политика допустимого использования

Скачать мобильное приложение

Инструкции по работе в системе