# Dérivation de fonction

La **dérivation** de <u>fonction</u> est un ensemble de techniques de calcul qui s'appliquent aux fonctions et qui permettent de connaître leurs <u>variations</u>, minimums et maximums.

## Exemple de problème

On souhaite construire une boîte sans couvercle de volume maximal à partir d'un carton rectangulaire de dimensions 20×10 cm.



En effet, le volume d'une telle boîte se calcule en multipliant l'aire de sa base par sa hauteur.



L'aire de la base est égale à la longueur du rectangle central (20-2x) multipliée par sa largeur (10-2x).

La hauteur de la boîte pliée est égale à x.

Donc, en fonction de x, le volume de la boîte est f(x)=x(20-2x)(10-2x) cm<sup>3</sup>.

La dérivation de fonction permet de calculer cette valeur.

## Nombre dérivé et dérivation

Comme nous l'avons vu précédemment, le <u>nombre dérivé</u> d'une fonction en un certain x est une mesure de la pente de sa courbe à l'abscisse x.

Si le nombre dérivé est positif, le coefficient directeur de la tangente est positif, donc la courbe monte à cet endroit, et réciproquement.

S'il est négatif, la courbe descend et réciproquement.

Étudier les variations d'une fonction revient donc à étudier le signe de ses nombres dérivés en fonction de x.

Nous allons introduire la **fonction dérivée** qui à tout nombre x associe le nombre f'(x), et nous allons voir comment on l'obtient à partir de f.

Nous pourrons ensuite étudier le signe de f' pour connaître les variations de f.



Lorsque f'(a)<0 la courbe descend Lorsque f'(a)>0 la courbe monte

## Fonction dérivée

La fonction  $f: x \mapsto f'(x)$  est appelée **fonction dérivée** de f, ou plus simplement **dérivée de f**.

## Question

Si on prend une fonction au hasard, par exemple la fonction  $f: x \mapsto x^2$ , comment peut-on connaître l'expression de f'(x)?

## Réponse

On peut <u>calculer le nombre dérivé</u> de f pour différentes valeurs de x puis chercher un lien entre les résultats obtenus. Calculons par exemple f'(-2), f'(1) et f'(3).

$$\frac{(-2+h)^2 - (-2)^2}{h} = \frac{4 - 4h + h^2 - 4}{h} = \frac{-4h + h^2}{h} = \frac{h(-4+h)}{h} = -4 + h \text{ si } h \neq 0$$

$$\frac{(1+h)^2 - 1^2}{h} = \frac{1 + 2h + h^2 - 1}{h} = \frac{2h + h^2}{h} = \frac{h(2+h)}{h} = 2 + h \text{ si } h \neq 0$$

$$\frac{(3+h)^2 - 3^2}{h} = \frac{9 + 6h + h^2 - 9}{h} = \frac{6h + h^2}{h} = \frac{h(6+h)}{h} = 6 + h \text{ si } h \neq 0$$

Donc f'(-2)=-4, f'(1)=2 et f'(3)=6. On devine que f'(x)=2x. C'est bien cela.

### **Démonstration**

Pour tout nombre x, avec cette fonction, on a :

$$\frac{f(x+h) - f(x)}{h} = \frac{(x+h)^2 - x^2}{h} = \frac{x^2 + 2xh + h^2 - x^2}{h} = \frac{2xh + h^2}{h} = 2x + h \text{ si } h \neq 0$$

En faisant tendre h vers zéro on obtient que pour tout x, f'(x)=2x.

#### Bonne nouvelle

Heureusement, les mathématiciens ont déjà effectué ces lourds calculs pour les autres types de

fonctions du genre 
$$f: x \mapsto x^3$$
,  $f: x \mapsto x^7$ ,  $f: x \mapsto \frac{1}{x}$ ,  $f: x \mapsto \sqrt{x}$ .

Ils ont trouvé des formules pour calculer les dérivées de ces fonctions.

Nous n'allons pas faire ces difficiles calculs.

### Mauvaise nouvelle

Il va falloir apprendre les formules!

## Formules de dérivation

Si 
$$f(x) = x^2$$
 alors  $f'(x) = 2x$ 

Si 
$$f(x) = x^3$$
 alors  $f'(x) = 3x^2$   
Si  $f(x) = x^4$  alors  $f'(x) = 4x^3$ 

D'une manière générale, pour les fonctions puissance :

Si 
$$f(x) = x^n$$
 alors  $f'(x) = nx^{n-1}$ 

Pour les fonctions inverse et racine carrée :

Si 
$$f(x) = \frac{1}{x}$$
 alors  $f'(x) = -\frac{1}{x^2}$  et

## Remarque

Pour calculer f'(2) avec la fonction  $f(x)=x^2$ , il suffit désormais de calculer f'(x) qui fait 2x puis de remplacer x par 2.

Pour calculer la dérivée d'une fonction plus complexe dont l'expression contient plusieurs des fonctions ci-dessus, nous devons utiliser les règles de dérivation ci-dessous.

## Règles de dérivation

### Dérivation d'une somme de fonctions

La dérivée d'une somme de fonctions est la somme des dérivées de ces fonctions.

### **Exemple**

Si  $f(x)=x^4+x^2+1$  alors  $f(x)=4x^3+2x$  (la dérivée de 1 est 0 car c'est une fonction constante et pour une fonction constante la tangente est toujours horizontale donc de coefficient directeur nul).

### Dérivation d'une différence

La dérivée d'une <u>différence</u> de fonctions est la différence des dérivées de ces fonctions.

### **Exemple**

La dérivée de la fonction définie pour tout  $x\neq 0$  par  $f(x) = x^5 - \frac{1}{x}$  est  $f'(x) = 5x^4 + \frac{1}{x^2}$ .

## Dérivation d'un produit

Si u et v sont deux fonctions alors la dérivée de u×v est u'v+uv'.

En effet, posons  $f(x)=u(x)\times v(x)$ .

#### Pour tout nombre a

$$f'(a) = \lim_{k \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{k \to 0} \frac{u(a+h)v(a+h) - u(a)v(a)}{h}$$
 Définition du nombre dérivé. 
$$= \lim_{k \to 0} \frac{u(a+h)v(a+h) - u(a)v(a+h) - u(a)v(a)}{h}$$
 On ajoute et soustrait un même nombre. 
$$= \lim_{k \to 0} \frac{u(a+h)v(a+h) - u(a)v(a+h) - u(a)v(a)}{h} + \lim_{k \to 0} \frac{u(a)v(a+h) - u(a)v(a)}{h}$$
 On décompose en deux limites. 
$$= \lim_{k \to 0} \frac{v(a+h) - u(a)}{h} + \lim_{k \to 0} \frac{u(a+h) - v(a)}{h} + \lim_{k \to 0} \frac{v(a+h) - v(a)}{h}$$
 On factorise par  $v(a+h)$  et  $u(a)$ . 
$$= v(a)u'(a) + u(a)v'(a)$$
 On obtient la formule.

#### (uv)' = u'v + uv'

#### **Méthode**

Pour calculer la dérivée d'un produit de fonctions :

- **1.** On pose u(x)=... et v(x)=...
- **2.** On calcule u'(x) et v'(x).
- **3.** On applique la formule.

### **Exemple**

Calcul de la dérivée de la fonction définie pour tout  $x \ge 0$  par  $f(x) = x\sqrt{x}$ .

- 1. On pose u(x) = x et  $v(x) = \sqrt{x}$
- **2.** On obtient u'(x) = 1 et  $v'(x) = \frac{1}{2\sqrt{x}}$ .
- 3.

$$f'(x) = \underline{u'(x)}\underline{v(x)} + \underline{u(x)}\underline{v'(x)}$$

$$= 1 \times \sqrt{x} + x \times \frac{1}{2\sqrt{x}}$$

$$= \sqrt{x} + \frac{x}{2\sqrt{x}}$$

$$= \sqrt{x} + \frac{x}{2\sqrt{x}}$$

$$= \frac{2}{2}\sqrt{x} + \frac{1}{2}\sqrt{x}$$

$$= \frac{3}{2}\sqrt{x}$$

#### Remarque

Si f et g sont deux fonctions telles que  $f(x)=k\times g(x)$  alors en appliquant la formule ci-dessus, on obtient  $f'(x)=0\times g(x)+k\times g'(x)=k\times g'(x)$ . Donc :

$$Si$$
  $f(x) = kg(x)$  alors  $f'(x) = kg'(x)$ 

On peut donc dire, par exemple, que la dérivée de la fonction  $f(x)=4x^3$  est  $f'(x)=12x^2$ .

## Dérivation d'un quotient

Si u est une fonction et si v est une fonction qui ne s'annule pas alors la dérivée de  $\overline{v}$  est :

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

### Méthode

Pour calculer la dérivée d'un quotient de fonctions :

- **1.** On pose u(x)=... et v(x)=...
- **2.** On calcule u'(x) et v'(x).
- **3.** On applique la formule.

### **Exemple**

Calcul de la dérivée de la fonction définie pour tout x par  $f(x) = \frac{x^2 - 1}{x^2 + 1}$ .

- **1.** On pose  $u(x) = x^2 1$  et  $v(x) = x^2 + 1$
- **2.** On obtient u'(x)=2x et v'(x)=2x.
- 3.

$$f'(x) = \frac{2x \times (x^2 + 1) - (x^2 - 1) \times 2x}{(x^2 + 1)^2}$$
$$= \frac{2x^3 + 2x - 2x^3 + 2x}{(x^2 + 1)^2}$$
$$= \frac{4x}{(x^2 + 1)^2}$$

Quelle est la dérivée de la fonction  $f(x) = \frac{x^3 - x}{x^4 + 2}$ ?

# Dérivée d'une fonction composée

### **Formule**

La dérivée d'une <u>fonction composée</u> de la forme  $h = f \circ g$  est  $h' = f' \circ g \times g'$ .

## Exemple

Calcul de la dérivée de  $h(x) = \sqrt{5x^2+3}$ .

- 1. On pose  $f(x) = \sqrt{x}$  et  $g(x) = 5x^2 + 3$ . Alors  $h = f \circ g$ .
- 2.  $f'(x) = \frac{1}{2\sqrt{x}} \text{ et } g'(x) = 10x.$
- $h'(x) = \frac{1}{2\sqrt{g(x)}} \times 10x = \frac{5x}{\sqrt{5x^2 + 3}}.$

Dérivée de  $h(x)=(x^3-1)^5$ .

• 1. On pose  $f(x)=x^5$  et  $g(x)=x^3-1$ . Alors  $h = f \circ g$ .

• 2.  $f'(x)=5x^4$  et  $g'(x)=3x^2$ .

• 3.  $h'(x) = 5(g(x))^4 \times g'(x) = 5(x^3 - 1)^4 \times 3x^2 = 15x^2(x^3 - 1)^4$ 

## Conséquence : autres formules utiles

### Dérivée de √u

$$\left(\sqrt{u}\right)' = \frac{u'}{2\sqrt{u}}$$

### Dérivée de u<sup>n</sup>

$$(u^n)' = nu'u^{n-1}$$

### Dérivée de e<sup>u</sup>

$$(e^u)' = u'e^u$$

## Dérivée de ln(u)

$$(\ln u)' = \frac{u'}{u}$$

### **Exercice 1**

Quelle est la dérivée de la fonction f définie pour tout nombre x par  $f(x) = x^{7}$ ?

### Exercice 2

Quelle est la dérivée de la fonction f définie pour tout nombre x par  $f(x)=5x^4$ ?

#### Exercice 3

Quelle est la dérivée de la fonction f définie pour tout nombre x par  $f(x) = 5x^5 + 3x^3 + x$ ?

#### Exercice 4

Quelle est la dérivée de  $f(x) = 9x^7 + 7x^5 - 24x$ ?

### **Exercice 5**

Quelle est la dérivée de la fonction f définie pour tout  $x \ge 0$  par  $f(x) = x^2 - 2\sqrt{x} + 2$ ?

### Exercice 6

Quelle est la dérivée de la fonction f définie pour tout  $x\neq 0$  par  $f(x) = -\frac{1}{x}$ ?

#### Exercice 7

Quelle est la dérivée de la fonction f définie pour tout  $x \ge 0$  par  $f(x) = x^2 \sqrt{x}$ ?

### Exercice 8

Quelle est la dérivée de  $f(x) = \frac{x^2 + x - 3}{x^2 - 3}$ ?