PAGE NO.

DATE: \ \

Unit 11 - Quartum Mech

What are matter waves? Mention any 3 properties

of matter waves. Describe the experiment Davisson &
Germer to demonstrate the wave character of e-.

As Matter waves consists of group of wave or a

wave packet each having the wavelength \(\lambda\), is

associated with the particle. This group travels

Nith the particle velocity v.

Properties of matter waves
Z Each wave of the group travels with phase

velocity of wave, \(\nabla_{\text{plane}} = \mathcal{C}^2\)

I highter the particule, greater the wavelength.

The group travel with particle velocity v.

Davission & Germer Experiment
A beam of e- emitted by an e-gun is made to

July on Nickel Crystal cut along rubical axis

at a particular angle.

The scattered beam is of e- is received by the detector which can be restated at any angle.

• The energy of the incident beam of e-can be varied by Changing the applied voltage to the e-gun

Intensity of scattered beam of the found to be maximum when angle of scattering is 50° & the accilerating potential is 54V.

De Broglie wavelength of moving e- at V=54ν us 1.67 A° which is in close agreement with experimentally obtained λ=1.65 A°.

CYARVIT SHAH F-24

PAGE NO.

	On Single Disease
Q.2	Discuss the jailure of Classical rysics &
	Discuss the jailure of Classical Physics & How does Quantum Mechanics overcome these
4.2	Inadequaries of Classical Michanias
0	It doesn't hold good for word
	(non-relativistic spellas)
•	Could not explain the observed spectrum of
	black body radiation
	Could not explain Stability of atoms.
-	Quantum Mechanics overcome these problems
	by introducing following outcomes -
•	Qual nature of light & matter
•	Pranck's Raduation Law
53	Quantization of energy was a great leap in understanding atomic level physics.
	14 and the thingsics.
	It gave the Keisenberg's Uncertainty principle wave mechanics, wave functions & probability were developed to size obtaining
	with developed to six builting
	veri developed to give détails about particle lehaviour & properties.
	oscorio y propierres.
2.3	Enplain Heisen bernie 10
	Explain Heisenberg's Uncertainty Principle.
	(1) Meninum energy
	Vill of acutation of culator
A-3 -	Reisenberg's Planerite in Der Storial von.
	It is impossible to there states,
	NOW POSITION
	particle accurately of a moving
	of uncertainty is those same time. The product
	particle accurately at same time. The product of uncertainty in these quantities is always greater than or equal to hym."
	1417 "·
- 11	

CHARVIT SHAH F-24

PAGE NO. DATE: \ \

Ik Dx & DP are the uncertainties in the measurement of position & momentum of a particle, then,

a particle , then,

Similarly the other uncertainty relations for other physical variable pair are, $\Delta E \cdot \Delta t \gg h$

DL. DO > h

i) Minimum energy of planinomic Oscillator:

Let a particle of mars m' enecute SHM

along X-axis Uncertainty en position = 12

2. From uncertainty principle Dx. Dp 7, n

Sp min = h

Total energy of the oscillator - $E = (\Delta \rho)^2 + \pm k (\Delta x)^2$ 2m

 $E = \frac{h^2}{32\pi^2 m(\Delta x)^2} + L k(\Delta x)^2$

PAGE NO.

DATE:

Minimising E wrt Dx -> <u>SE</u> =0.

 $\frac{-2h^2}{32\pi^2m(\Delta x)^3} + k(\Delta x) = 0$

 $\frac{1}{2} = \frac{h^2}{32\pi^2} \left(\frac{k}{m} \right)^{\frac{1}{2}} \qquad \sqrt{\frac{k}{m}} = w$ $\frac{32\pi^2}{y^2} \left(\frac{k}{m} \right)^{\frac{1}{2}} \qquad \sqrt{\frac{k}{m}} = w$ $\frac{32\pi^2}{y^2} \left(\frac{k}{m} \right)^{\frac{1}{2}} \qquad \sqrt{\frac{k}{m}} = w$

 $\frac{1}{32\pi^2} = \frac{h^2 \omega}{2} = \frac{1}{\pi^2} \frac{h^2 \omega}{2}$

Energy of particle in one dimension:

Consider a particle of mass 'm' in one dimension bon of length 'l'. The man. uncertainty in the position of the particle

will be -

 $(\Delta x)_{max} = \ell$

:. From uncertainty principle -

:. sp = tn

As uncertainty in momentum must be less than momentum itself, therefore min. momentum of particle = to

 $KE particle = T = p^2 = \frac{t^2}{2m}$ $2m \cdot dml^2$

PAGE NO.

DATE: \ \

Give physical significance of wave for Derive time independent Schrödinger eg? Significance of wave for CW)

V is the wave for of e- and it is also called Amplitude for of e- in the coordinates If we use 4 to determine the perobability of e then the value care be the or-re but the probability can never be negative so we use ψ^2 to get the probability. ψ^2 represents the probability of finding ar e- in a somall set space. It is also represents the probability density of at a particular pt. Time independent sehrördinger egr: Let a wave egn fr & describing the de-broglie wave travelling in the X-dirent Y = A e (Kx-wt) where_ 4 is total wave fr. A - constant. w - angular freq. of wave Differentiate 4 twice wrt x $\frac{d\psi}{dx} = ikAe^{i(kx-\omega t)}; \quad \frac{d^2\psi}{dx^2} = -k^2Ae^{i(kx-\omega t)}$

CHARVIT SHAH F-24

PAGE NO.

DATE: \ \

 $\frac{\partial^2 \psi}{\partial x^2} = -\kappa^2 \psi = 0$ $\frac{\partial^2 \psi}{\partial x^2} + \kappa^2 \psi = 0$ we already know, $K = 2\pi \qquad \xi \qquad \lambda = h$ $\chi \qquad mv$ i. K = 2tmv Total energy of the particle is the sum of KE of T & PE V T = Lmv2 & : mv2 = 2(E-V) => \[\d^2\psi + \beta tt^2 m (E-V) \psi = 0 \]
\[\d^2 \quad \text{N}^2 \]
\[\text{Vine Independent Schrödinger Eqn} \]