

LM95071 SPI/MICROWIRE 13-Bit Plus Sign Temperature Sensor

Check for Samples: LM95071

FEATURES

- Small SOT23-5 package saves space
- Shutdown mode conserves power between temperature readings
- Operates over a full -40°C to +150°C range
- SPI and MICROWIRE Bus interface

APPLICATIONS

- **System Thermal Management**
- **Portable Electronic Devices**
- **Personal Computers**
- **Disk Drives**
- Office Electronics
- **Electronic Test Equipment**

DESCRIPTION

The LM95071 is a low-power, high-resolution digital temperature sensor with an SPI and MICROWIRE compatible interface, available in the 5-pin SOT23. The host can guery the LM95071 at any time to read temperature. Its low operating current is useful in systems where low power consumption is critical.

The LM95071 has 13-bit plus sign temperature resolution (0.03125°C per LSB) while operating over a temperature range of -40°C to +150°C.

The LM95071's 2.4V to 5.5V supply voltage range, fast conversion rate, low supply current, and simple SPI interface make it ideal for a wide range of applications.

Key Specifications

■ Supply Voltage		2.4V to 5.5V
■ Supply Current	operating	280 μA (typ)
	shutdown	6 μA (typ)
■ Temperature Accuracy	0°C to 70°C	±1°C (max)
	-40°C to 150°C	±2°C (max)
■ Temperature Resolution		0.03125 °C

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

TRI-STATE is a registered trademark of National Semiconductor Corporation.

Simplified Block Diagram

Connection Diagram

Figure 1. TOP VIEW

Pin Functions

Pin Descriptions

			· ··· - · · · · · · · · · · · · · · · ·
Pin Number	Symbol	Name	Description
1	CS	Chip Select input	This pin receives an active-low signal from the controller to select the device.
2	GND	Ground	This is the power and signal ground return.
3	SI/O	Serial Input/Output	This serial, bi-directional, data bus pin transmits and receives signals to and from the controller. Schmitt trigger input in the input mode.
4	SC	Serial bus clock	This serial clock signal comes from the controller. Schmitt trigger input.
5	V_{DD}	Positive Supply Voltage	Supply a DC voltage from 2.4V to 5.5V to this pin and bypass with a 0.1 μF ceramic capacitor to ground.

Typical Application

Figure 2. COP Microcontroller Interface

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings (1)

Supply Voltage	-0.3V to 6.0V
Voltage at any Pin	-0.3V to V _{DD} + 0.3V
Input Current at any Pin (2)	5 mA
Storage Temperature	−65°C to +150°C
ESD Susceptibility ⁽³⁾ Human Body Model Machine Model	2000V 200V
Soldering process must comply with National Semiconductor's Reflow Tem	perature Profile specifications. Refer to

www.national.com/packaging. (4)

- Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its rated operating conditions.
- When the input voltage (V_1) at any pin exceeds the power supplies $(V_1 < GND \text{ or } V_1 > V_{DD})$ the current at that pin should be limited to 5
- Human body model, 100 pF discharged through a 1.5 kΩ resistor. Machine model, 200 pF discharged directly into each pin.
- Reflow temperature profiles are different for lead-free and non-lead-free packages.

Operating Ratings

Specified Temperature Range ⁽¹⁾ , T _{MIN} to T _{MAX}	-40°C to +150°C
Supply Voltage Range (V _{DD})	2.4V to +5.5V

The life expectancy of the LM95071 will be reduced when operating at elevated temperatures. LM95071 θ_{JA} (thermal resistance, junction-to-ambient) when attached to a printed circuit board with 2 oz. foil is summarized in the table below:

Temperature-to-Digital Converter Characteristics

Unless otherwise noted, these specifications apply for $V_{DD} = 3.3 \text{V}$. Boldface limits apply for $T_A = T_J = T_{MIN}$ to T_{MAX} ; all other limits $T_A = T_J = +25$ °C, unless otherwise noted.

Parameter	Conditions	Typical ⁽¹⁾	Limits ⁽²⁾	Units (Limit)
Temperature Error (3)	V _{DD} = 3.0V to 3.6V; T _A = 0°C to +70°C		±1.0	°C (max)
	$V_{DD} = 3.0V \text{ to } 3.6V; T_A = -40^{\circ}\text{C to } +150^{\circ}\text{C}$		±2.0	°C (max)
Line Regulation	$V_{DD} = 3.6V \text{ to } 5.5V; T_A = 0^{\circ}\text{C to } +70^{\circ}\text{C}$		+0.3	°C/\/ (max)
	$V_{DD} = 3.0V \text{ to } 2.4V; T_A = 0^{\circ}\text{C to } +70^{\circ}\text{C}$		-0.6	°C/V (max)
Resolution		14 0.03125		Bits °C
Temperature Conversion Time	(4)	130	228	ms (max)
Quiescent Current	Operating, Serial Bus Inactive	280	520	μA (max)
	Shutdown	6	28	μA (max)

- Typicals are at T_A = 25°C and represent most likely parametric norm. Limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
- The LM95071 will operate properly over the V_{DD} supply voltage range of 2.4V to 5.5V.

 This specification is provided only to indicate how often temperature data is updated. The LM95071 can be read at any time without regard to conversion state (and will yield last conversion result). A conversion in progress will not be interrupted. The output shift register will be updated at the completion of the read and a new conversion restarted.

Submit Documentation Feedback

Logic Electrical Characteristics

DIGITAL DC CHARACTERISTICS

Unless otherwise noted, these specifications apply for $V_{DD} = 2.4$ to 5.5V ⁽¹⁾. Boldface limits apply for $T_A = T_J = T_{MIN}$ to T_{MAX} ; all other limits $T_A = T_J = +25$ °C, unless otherwise noted.

Symbol	Parameter	Conditions	Typical ⁽²⁾	Limits ⁽³⁾	Units (Limit)
V _{IN(1)}	Logical "1" Input Voltage			0.7 × V _{DD}	V (min)
				V _{DD} + 0.3	V (max)
/ _{IN(0)}	Logical "0" Input Voltage			-0.3	V (min)
				$0.3 \times V_{DD}$	V (max)
	Input Hysteresis Voltage	$V_{DD} = 3.0V \text{ to } 3.6V$	0.4	0.33	V (min)
IN(1)	Logical "1" Input Current	$V_{IN} = V_{DD}$	0.005	3.0	μA (max)
IN(0)	Logical "0" Input Current	$V_{IN} = 0V$	-0.005	-3.0	μA (min)
C _{IN}	All Digital Inputs		20		pF
VoH	High Level Output Voltage	I _{OH} = -400 μA		2.25	V (min)
V _{OL}	Low Level Output Voltage	I _{OL} = +1.6 mA		0.4	V (max)
O_TRI-STATE	TRI-STATE [®] Output Leakage Current	$V_O = GND$ $V_O = V_{DD}$		−1 +1	μΑ (min) μΑ (max)

The LM95071 will operate properly over the V_{DD} supply voltage range of 2.4V to 5.5V.
 Typicals are at T_A = 25°C and represent most likely parametric norm.
 Limits are guaranteed to National's AOQL (Average Outgoing Quality Level).

SERIAL BUS DIGITAL SWITCHING CHARACTERISTICS

Unless otherwise noted, these specifications apply for V_{DD} = 2.4V to 5.5V $^{(1)}$; C_L (load capacitance) on output lines = 100 pF unless otherwise specified. **Boldface limits apply for T_A = T_J = T_{MIN} to T_{MAX}**; all other limits T_A = T_J = +25°C, unless otherwise noted.

Symbol	Parameter	Conditions	Typical ⁽²⁾	Limits ⁽³⁾	Units (Limit)
t ₁	SC (Clock) Period			0.16 DC	μs (min) (max)
t ₂	CS Low to SC (Clock) High Set-Up Time			100	ns (min)
t ₃	CS Low to Data Out (SO) Delay			70	ns (max)
t ₄	SC (Clock) Low to Data Out (SO) Delay			70	ns (max)
t ₅	CS High to Data Out (SO) TRI-STATE			200	ns (max)
t ₆	SC (Clock) High to Data In (SI) Hold Time			50	ns (min)
t ₇	Data In (SI) Set-Up Time to SC (Clock) High			30	ns (min)
t ₈	SC (Clock) High to CS High Hold Time			50	ns (min)

- The LM95071 will operate properly over the V_{DD} supply voltage range of 2.4V to 5.5V. Typicals are at T_A = 25°C and represent most likely parametric norm.
- Limits are guaranteed to National's AOQL (Average Outgoing Quality Level).

Figure 3. Data Output Timing Diagram

Figure 4. TRI-STATE Data Output Timing Diagram

Figure 5. Data Input Timing Diagram

Submit Documentation Feedback

www.ti.com

SNIS137B - AUGUST 2004-REVISED FEBRUARY 2005

Device Number	NS Package Number	Thermal Resistance (θ _{JA})
LM95071CIMF	MF05A	250°C/W

Electrical Characteristics

TRI-STATE Test Circuit

Typical Performance Characteristics

Functional Description

The LM95071 temperature sensor incorporates a temperature sensor and 13-bit-plus-sign $\Delta\Sigma$ ADC (Delta-Sigma Analog-to-Digital Converter). Compatibility of the LM95071's three-wire serial interface with SPI and MICROWIRE allows simple communications with common microcontrollers and processors. Shutdown mode can be used to optimize current drain for different applications. A Manufacturer/Device ID register identifies the LM95071 as a National Semiconductor product.

POWER UP AND POWER DOWN

The LM95071 always powers up in a known state and in the continuous conversion mode. Immediately after power up, the LM95071 will output an erroneous code until the first temperature conversion has completed.

When the supply voltage is less than about 1.6V (typical), the LM95071 is considered powered down. As the supply voltage rises above the nominal 1.6V power up threshold, the internal registers are reset to the power up default state described above.

SERIAL BUS INTERFACE

The LM95071 operates as a slave and is compatible with SPI or MICROWIRE bus specifications. Data is clocked out on the falling edge of the serial clock (SC), while data is clocked in on the rising edge of SC. A complete communication is framed by falling and rising chip select (CS) signal. The CS signal should be held high for at least one clock cycle (160 ns minimum) between communications. The transmit-only communication (register read) consists of 16 clock cycles. A complete transmit/receive communication will consist of 32 serial clocks (see Figure 7). The first 16 clocks comprise the transmit phase of communication, while the second 16 clocks are the receive phase.

When \overline{CS} is high SI/O will be in TRI-STATE. Communication should be initiated by taking chip select (\overline{CS}) low. This should not be done when SC is changing from a low to high state. Once \overline{CS} is low the serial I/O pin (SI/O) will transmit the first bit of data. The master can then read this bit with the rising edge of SC. The remainder of the data will be clocked out by the falling edge of SC. \overline{CS} can be taken high at any time during the transmit phase. If \overline{CS} is brought low in the middle of a conversion the LM95071 will complete the conversion and the output shift register will be updated after \overline{CS} is brought back high.

The receive phase of a communication starts after 16 SC periods. $\overline{\text{CS}}$ can remain low for 32 SC cycles. The LM95071 will read the data available on the SI/O line on the rising edge of the serial clock. Input data is to an 8-bit shift register. The part will detect the last eight bits shifted into the register. The receive phase can last up to 16 SC periods. All ones must be shifted in order to place the part into shutdown. All zeros must be shifted in order to place the LM95071 into continuous conversion mode. Only the following codes should be transmitted to the LM95071:

- 00 hex for continuous conversion
- · FF hex for shutdown

Another code may place the part into a test mode. Test modes are used by National Semiconductor to thoroughly test the function of the LM95071 during production testing. Only eight bits have been defined above since only the last eight transmitted are detected by the LM95071, before CS is taken HIGH.

The following communication can be used to determine the Manufacturer's/Device ID and then immediately place the part into continuous conversion mode. With $\overline{\text{CS}}$ continuously low:

- Read 16 bits of temperature data
- Write 16 bits of data commanding shutdown
- · Read 16 bits of Manufacture's/Device ID data
- Write 8 to 16 bits of data commanding Conversion Mode
- Take CS HIGH.

Note that 228 ms (max) will have to pass for a conversion to complete before the LM95071 actually transmits temperature data.

TEMPERATURE DATA FORMAT

Temperature data is represented by a 14-bit, two's complement word with an LSB (Least Significant Bit) equal to 0.03125°C:

www.ti.com

Tamparatura	Digital Output						
Temperature	Binary	Hex					
+150°C	0100 1011 0000 0011	4B03					
+125°C	0011 1110 1000 0011	3E83					
+25°C	0000 1100 1000 0011	0C83					
+0.03125°C	0000 0000 0000 0111	0007					
0°C	0000 0000 0000 0011	0003					
−0.03125°C	1111 1111 1111	FFFF					
−25°C	1111 0011 1000 0011	F383					
-40°C	1110 1100 0000 0011	EC03					

The first data byte is the most significant byte with most significant bit first, permitting only as much data as necessary to be read to determine temperature condition. For instance, if the first four bits of the temperature data indicate an overtemperature condition, the host processor could immediately take action to remedy the excessive temperatures.

SHUTDOWN MODE/MANUFACTURER ID

The master controller may enable the shutdown mode for the purpose of reducing power consumption or for reading the Manufacturer/Device ID information. The shutdown mode is enabled by writing XX FF hex to the LM95071 as shown in Figure 10c. The serial bus is still active when the LM95071 is in shutdown. When in shutdown mode the LM95071 always will output 1000 0000 0000 1111. This is the Manufacturer/Device ID information. The first 5-bits of the field (1000 0XXX) are reserved for the manufacturer ID.

INTERNAL REGISTER STRUCTURE

The LM95071 has three registers: the temperature register, the configuration register and the Manufacturer/Device identification register. The temperature and Manufacturer/Device identification registers are read only. The configuration register is write only.

Configuration Register

(Selects shutdown or continuous conversion modes):

Table 1. (Write Only):

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
X	Х	X	X	Х	Х	X	X				Shut	down			

D0-D15 set to XX FF hex enables shutdown mode.

D0-D15 set to XX 00 hex sets continuous-conversion mode.

Note: setting D0-D15 to any other values may place the LM95071 into a manufacturer's test mode, upon which the LM95071 will stop responding as described. These test modes are to be used for National Semiconductor production testing only. See Section 1.2, Serial Bus Interface, for a complete discussion.

Temperature Register

Table 2. (Read Only):

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
MSB	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit1	LSB	1	1

D0-D1: Logic 1 will be output on SI/0.

D2–D15: Temperature Data. One LSB = 0.03125°C. Two's complement format.

Manufacturer/Device ID Register

Table 3. (Read Only):

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
1	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1

D0-D1: Logic 1 will be output on SI/0.

D2-D15: Manufacturer/Device ID Data. This register is accessed whenever the LM95071 is in shutdown mode.

Product Folder Links: *LM95071*

Copyright © 2004–2005, Texas Instruments Incorporated

TEST CIRCUIT DIAGRAMS

Serial Bus Timing Diagrams

Figure 7. Reading Continuous Conversion - Single Eight-Bit Frame

Figure 8. Reading Continuous Conversion - Two Eight-Bit Frames

Figure 9. Writing Shutdown Mode

Figure 10. Timing Diagrams

Application Hints

3.1 THERMAL PATH CONSIDERATIONS

To get the expected results when measuring temperature with an integrated circuit temperature sensor like the LM95071, it is important to understand that the sensor measures its own die temperature. For the LM95071, the best thermal path between the die and the outside world is through the LM95071's pins. In the SOT23 package, all the pins on the LM95071 will have an equal effect on the die temperature. Because the pins represent a good thermal path to the LM95071 die, the LM95071 will provide an accurate measurement of the temperature of the printed circuit board on which it is mounted. There is a less efficient thermal path between the plastic package and the LM95071 die. If the ambient air temperature is significantly different from the printed circuit board temperature, it will have a small effect on the measured temperature.

OUTPUT CONSIDERATIONS: TIGHT ACCURACY, FINE RESOLUTION AND LOW NOISE

The LM95071 is well suited for applications that require tight temperature measurement accuracy. In many applications, from process control to HVAC, the low temperature error can mean better system performance and, by eliminating a system calibration step, lower production cost.

With it's fine digital resolution the LM95071 senses and reports very small changes in its temperature, making it ideal for applications where temperature sensitivity is important. For example, the LM95071 enables the system to quickly identify the direction of temperature change, allowing the processor to take compensating action before the system reaches a critical temperature.

The LM95071 has very low output noise (see the Output Noise plot in the Typical Performance section), which makes it ideal for applications where stable thermal compensation is a priority. For example, in a temperature-compensated oscillator application, the very small deviation in successive temperature readings translates to a stable frequency output from the oscillator.

Typical Applications

Figure 11. Temperature monitor using Intel 196 processor

Figure 12. LM95071 digital input control using microcontroller's general purpose I/O.

17-Nov-2012

PACKAGING INFORMATION

Orderable Device	Status	Package Type	_	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Samples
	(1)		Drawing			(2)		(3)	(Requires Login)
LM95071CIMF	ACTIVE	SOT-23	DBV	5	1000	TBD	CU SNPB	Level-1-260C-UNLIM	
LM95071CIMF/NOPB	ACTIVE	SOT-23	DBV	5	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	
LM95071CIMFX	ACTIVE	SOT-23	DBV	5	3000	TBD	CU SNPB	Level-1-260C-UNLIM	
LM95071CIMFX/NOPB	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 17-Nov-2012

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM95071CIMF	SOT-23	DBV	5	1000	178.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
LM95071CIMF/NOPB	SOT-23	DBV	5	1000	178.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
LM95071CIMFX	SOT-23	DBV	5	3000	178.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
LM95071CIMFX/NOPB	SOT-23	DBV	5	3000	178.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3

www.ti.com 17-Nov-2012

*All dimensions are nominal

7 III GITTIOTIOTOTIO GITO TTOTTIITIGI							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM95071CIMF	SOT-23	DBV	5	1000	203.0	190.0	41.0
LM95071CIMF/NOPB	SOT-23	DBV	5	1000	203.0	190.0	41.0
LM95071CIMFX	SOT-23	DBV	5	3000	206.0	191.0	90.0
LM95071CIMFX/NOPB	SOT-23	DBV	5	3000	206.0	191.0	90.0

DBV (R-PDSO-G5)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
 - D. Falls within JEDEC MO-178 Variation AA.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u>

RFID www.ti-rfid.com

OMAP Applications Processors <u>www.ti.com/omap</u> TI E2E Community <u>e2e.ti.com</u>

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>