

Competitive Programming From Problem 2 Solution in O(1)

Graph Theory System of Difference Constraints

Mostafa Saad Ibrahim
PhD Student @ Simon Fraser University

System of Difference Constraint

We won't learn new algorithm

 Actually, we will show how Bellman Ford algorithm solves this system

System of Difference Constraint

- **Difference constraints**: a system of linear inequalities of the form $xj xi \le wij$
- Example
 - $x1 x2 \le 3$
 - $x2 x3 \le -2$
 - $x1 x3 \le 2$
 - Solution: x1 = 3 x2 = 0 x3 = 2
- Another helpful format: $xi + wij \ge xj$
 - Inspire a graph construction / solves the problem
- If all wij ≥ 0 , then trivial solution X = 0

Usage

- Parallel task scheduling with precedence constraints
 - If a job i needs to be finished before job j starts
 - $xj \ge xi + duration(i)$
 - The time from start to finish should be at most t
 - $xj + duration(j) xi \le t$ for all i,j
- Cartesian Points Relationships
 - Find some points (x, y) with constraints e.g. A is above B with 5 units...etc

Preparing Equations

$$\mathbf{x} \quad \mathbf{x} \quad \mathbf{1} - \mathbf{x} \quad \mathbf{2} < \mathbf{5} \qquad \Rightarrow \qquad \mathbf{x} \quad \mathbf{2} - \mathbf{x} \quad \mathbf{1} \leq \mathbf{4}$$

- $3 \le x1 x2 \le 15$
 - Break to 2 statements
 - $x1 x2 < 15 \implies x1 x2 \le 14$
 - $3 \le x1 x2 \qquad \Rightarrow \quad x2 x1 \le -3$

- $\mathbf{x}\mathbf{i} + \mathbf{w}\mathbf{i}\mathbf{j} \ge \mathbf{x}\mathbf{j}$
- Thinking in xi and xj as graph nodes
- Wij is edge cost from xi to xj
- Build graph
 - Every variable is node
 - Edge cost from xi to xj is wij

Set
$$x4 = 0$$
 $\Rightarrow x3 - x4 \le 9$ $\Rightarrow x3 - 0 \le 9$ $\Rightarrow x3 \le 9$
Let $x3 = 0$ $\Rightarrow x2 - x3 \le -2$ $\Rightarrow x2 - 0 \le -2$ $\Rightarrow x2 \le -2$
Let $x2 = -2$ $\Rightarrow x1 - x2 \le 3$ $\Rightarrow x1 + 2 \le 3$ $\Rightarrow x1 \le 1$

On set of valid solutions: x4 = 0 x3 = 0 x2 = -2 $x1 \le 1$

$$x1 - x2 \le 3 \implies x2 + 3 \ge x1$$

$$x2 - x3 \le -2$$

$$x3 - x4 \le 9$$

$$x1 \longrightarrow 3 \longrightarrow 2$$

$$x2 \longrightarrow 2 \longrightarrow 3 \longrightarrow 3$$

$$x2 \longrightarrow 2 \longrightarrow 3$$

$$x3 \longrightarrow 3 \longrightarrow 3$$

Set
$$x4 = 0$$
 $\Rightarrow x3 - x4 \le 9$ $\Rightarrow x3 - 0 \le 9$ $\Rightarrow x3 \le 9$
Let $x3 = 9$ $\Rightarrow x2 - x3 \le -2 \Rightarrow x2 - 9 \le -2 \Rightarrow x2 \le 7$
Let $x2 = 7$ $\Rightarrow x1 - x2 \le 3 \Rightarrow x1 - 7 \le 3 \Rightarrow x1 \le 10$

On set of valid solutions: x4 = 0 x3 = 9 x2 = 7 $x1 \le 10$

Notice: solutions were **path cost** from x4 to xi

$$x1 - x2 \le 3$$

 $x2 - x3 \le -2$
 $x3 - x1 \le 5$

Set
$$x3 = 0$$

 $\Rightarrow x2 - x3 \le -2 \Rightarrow x2 - 0 \le -2 \Rightarrow x2 \le -2 \Rightarrow \text{Let } x2 = -2$
 $\Rightarrow x3 - x1 \le 5 \Rightarrow 0 - x1 \le 5 \Rightarrow x1 \ge -5$
 $\Rightarrow x1 - x2 \le 3 \Rightarrow x1 + 2 \le 3 \Rightarrow x1 \le 1$

On set of valid solutions: x3 = 0 x2 = -2 $5 \le x1 \le 1$

$$x1 - x2 \le 3$$

 $x2 - x3 \le -2$
 $x3 - x1 \le -5$

Set
$$x3 = 0$$

 $\Rightarrow x2 - x3 \le -2 \Rightarrow x2 - 0 \le -2 \Rightarrow x2 \le -2 \Rightarrow \text{Let } x2 = -2$
 $\Rightarrow x3 - x1 \le -5 \Rightarrow 0 - x1 \le -5 \Rightarrow x1 \ge 5$
 $\Rightarrow x1 - x2 \le 3 \Rightarrow x1 + 2 \le 3 \Rightarrow x1 \le 1$

No intersection between $x1 \le 1$ and $x1 \ge 5$! No solution! Notice **negative cycle:** 3-2-5 = -4

- If the constraint graph contains a negative weight cycle, then the system of differences is unsatisfiable.
- Mathematically add all equations:

$$x1 - x2 \le 3$$

 $x2 - x3 \le -2$ $\Rightarrow x1 - x2 + x2 - x3 + x3 - x1 \le 3-2-5$
 $x3 - x1 \le -5$ $0 \le -4$ impossible

Finding solution

- Assume graph has 10 nodes
- Node X2 is reachable from 3 vertices
 - X5, X7, X9
 - X5 can reach X2 in several ways...shortest path is critical
 - Shortest path from X5 to $X2 = 3 \Rightarrow X2 \le 3$ is ok
 - Shortest path from X7 to $X2 = 6 \Rightarrow X2 \le 6$ is ok
 - Shortest path from X9 to $X2 = 1 \Rightarrow X2 \le 1$ is ok
 - To satisfy all of them: $X2 \le min(1, 3, 6) \le 1$
- What if for every node, computed the min shortest path value for it from all other nodes?

Finding solution

x4 reachable with costs
$$\{\}$$
 \Rightarrow x4 = 0
x3 reachable with costs $\{9\}$ \Rightarrow x3 = 9
x2 reachable with costs $\{-2, -2+9\}$ \Rightarrow x2 = -2
x1 reachable with costs $\{3, 3-2, 3-2+9\}$ \Rightarrow x1 = 1

Finding solution

- How to get efficiently the minimum of all shortest paths to a node?
- Add a new vertex S, connect it to all nodes with cost 0
- Find shortest path from it to other nodes
- \blacksquare Then sp(S, xi) is the min of all shortest paths
- But why overall solutions to all xi is correct?
 - Triangular inequality property

Triangular inequality

Src: https://en.wikipedia.org/wiki/Triangle_inequality

Triangular inequality

Consider any constraint $x_j - x_i \le w_{ij}$, and consider the shortest paths from s to v_i and v_i :

The triangle inequality gives us $\delta(s, v_j) \le \delta(s, v_i) + w_{ij}$. Since $x_i = \delta(s, v_i)$ and $x_j = \delta(s, v_j)$, the constraint $x_j - x_i \le w_{ij}$ is satisfied.

Algorithms

L18.42

Solution overall

- Create constraints graph of N+1 nodes
 - For every constraint \Rightarrow add edge
 - From vertex 0 add edge to N nodes with cost = 0
- Use Bellman Ford algorithm
- Check if any -ve cycle? If yes no solution
- No? Shortest path values from 0 to xi are the solution
- Note: Bellman-Ford also minimizes
 - maxi $\{xi\}$ mini $\{xi\}$

تم بحمد الله

علمكم الله ما ينفعكم

ونفعكم بما تعلمتم

وزادكم علمأ