Patient Segmentation for Healthcare Improvement

Intermediate Data Analytics

Alex Marsella

2024-02-12

##		${\tt patientID}$	age	bmi	blood_pressure	chol_level	glucose
##	1	1	42	25.92133	148	293	
##	2	2	24	20.46337	120	162	
##	3	3	21	30.40683	158	108	
##	4	4	89	33.78859	106	256	
##	5	5	32	36.14481	156	196	
##	6	6	29	20.48509	125	128	

Introduction

Consulting Project Background

Our team is tasked with aiding a healthcare provider in enhancing patient care and operational efficiency.

- Goal: Segment patients into groups based on health metrics.
- Purpose: Enable personalized care plans and efficient resource allocation.

Objective

Project Objective

To perform patient segmentation using clustering analysis on health data.

- Identify distinct patient groups.
- Utilize metrics such as Age, BMI, Blood Pressure, etc.

Dataset Overview

Patient Data

The dataset patient_data includes:

- PatientID: Unique identifier
- Age, BMI, Blood Pressure, Cholesterol Level, Glucose Level

Data Preparation

Data Preparation

Steps for Data Preparation

- Remove any identifier or categorical variable(s) that we are not going to cluster by.
- Scale the data so all variables are measured in relative distance from their own means.

Why Scale Data Before Clustering?

Understanding Scaling

- Scaling changes your numbers so that different measurements are on a similar scale.
 - Converts values to a z-score such that

$$x_{scaled} = \frac{x - \bar{x}}{s}$$

- The new value is just how many standard deviations something is from its mean.
- Imagine you have two variables in a dataset of planets: Distance from the sun and Distance from the moon.
- Without scaling, distance from the sun will dominate the clustering algorithm because it's so much larger.

The Impact of Not Scaling

- Clustering algorithms like K-means use distance measures to form clusters.
- If one feature is much larger than another, it will dominate the distance calculation.
- Result: Clusters formed may be biased towards the larger-scale features.

Benefits of Scaling

- Equal Footing: Scaling puts all features on the same scale, ensuring no single feature dominates.
- ② Better Clusters: With all features equally considered, clusters are formed based on true similarities.
- Faster Convergence: Algorithms can find optimal clusters more efficiently on scaled data.

Exploratory Data Analysis

Examining the original data.

```
ggplot(patient_data, mapping = aes(age)) +
    geom_histogram() + labs(x = "Patient Age")
```


Examining the scaled data.

```
ggplot(patient_data_scaled, mapping = aes(age)) +
    geom_histogram() + labs(x = "Patient Age Z-score")
```


Clustering Analysis

K-means Clustering

Finding Optimal Number of Clusters

The elbow plot

```
ggplot(, aes(x = 1:10, y = wcss)) + geom_line() +
    geom_point() + xlab("Number of Clusters k") +
    ylab("Within-Cluster Sum of Squares (WCSS)") +
    theme_minimal() + scale_x_continuous(breaks = pretty_breaks)
```


kmeans_result <- kmeans(patient_data_scaled,</pre>

Clustering

3. nstart = 20)

```
# Examine cluster centroids
kmeans_result$centers

## age bmi blood_pressure chol_level glucose_1

## 1 -0.7220577 0.8661437 0.3886815 0.3197159 -0.110

## 2 1.0206135 0.1450682 -0.4583293 -0.1462330 -0.314

## 3 -0.4261324 -1.0293454 0.1269390 -0.1552037 0.464

# Assign cluster membership back to

# the original data

patient_data_scaled$cluster <- as.factor(kmeans_result$cluster
```

Silhouette Analysis

```
sil <- silhouette(kmeans result$cluster,</pre>
      dist(patient_data_scaled))
plot(sil, main = "Silhouette Analysis") # base R plotting is
 Silhouette Analysis
                                                                               3 clusters Ci
 n = 100
                                                                                 j: n<sub>i</sub> | ave<sub>i∈Ci</sub> s<sub>i</sub>
                                                                                 1: 32 | 0.28
                                                                                 2: 36 | 0.19
                                                                                 3: 32 | 0.24
0.0
                 02
                                   0.4
                                                     0.6
                                                                      0.8
                                                                                        1.0
                                      Silhouette width si
```

Average silhouette width: 0.23

Advanced Visualization Methods

Making our data long using gather() ()

Visualizing it

Cluster Distributions Across Features

Takeaway

Analysis and Strategic Recommendations

- Interpretation of clusters.
- Suggest healthcare interventions.

Subjectivity of it all.

- Clustering analysis is practically tea leaf reading, in my opinion.
- But many firms use it. You may very well be asked to do it as an analyst.
- Lots of subjectivity, up to you to visualize and come up with your own thoughts.