МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «ГОМЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ П. О. СУХОГО»

Механико-технологический факультет

Кафедра «Информатика»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 3 по дисциплине «Информатика и компьютерная графика»

на тему: «Пользовательские функции»

Выполнил: студент гр.К-11 Гулюта Е. Ю.

Принял: преподаватель Прокопенко Д. В.

Цель работы:

«Получить навыки создания и применения пользовательских функций в Mathcad, научиться решать прикладные задачи с пользовательскими функциями»

1. Создать пользовательскую функцию у(x) и найти ее значения в двух точках – x1 и x2.

Вариант 3

№ вар	Функция	X 1	X 2	№ вар •	Функция	X 1	X 2
1.	$y = \frac{arctg(x)}{1 + \sin^2 x}$	2	5	2.	$y = \frac{1 + \sqrt{0.5x}}{0.5 + \sin^2 x}$	2	4
3.	$y = \ln\left(x^2 + 2x + 2\right)$	-3	0	4.	$y = e^x \sin x \cos^3 x$	-1	1

Решение:

Задание 1

$$y(x) := \ln(x^{2} + 2 \cdot x + 2)$$

$$x_{1} := -3 \qquad x_{2} := 0$$

$$y(x_{1}) = 1.609$$

$$y(x_{2}) = 0.693$$

2. Создать функцию Z(x,y) и вычислить ее значения в двух заданных точках (x1,y1), (x2,y2)

2	$\frac{2}{3}tg^2\frac{x}{v^3} - \frac{4x+y}{y-\sin x}$	1,3	2,8	0,8	2,1
3	$0,17xy + \sqrt{ xy }$	1,12	1,87	1,38	2,03
4	$\frac{x+2y}{ x-y } + \sin^2(y-3x)$	0,1	-0,4	0,6	1,8

Решение:

Задание 2

$$Z(x,y) := 0.17 \cdot x \cdot y + \sqrt{|x \cdot y|}$$
 $x_1 := 1.12$
 $x_2 := 1.87$
 $y_1 := 1.38$
 $y_2 := 2.03$
 $Z(x_1,y_1) = 1.506$
 $Z(x_2,y_2) = 2.594$

3. Создание функции дискретных переменных

2.	$y = \frac{\sqrt{4 - x^2}}{x^2}$	1	$\sqrt{2}$
3.	$y = \frac{\sqrt{x^2 - 9}}{x^4}$	3	6
4.	$y = \sqrt{4 - x^2}$	0	1

Решение

$$f(x) := \frac{\sqrt{x^2 - 9}}{x^4}$$

$$x_u := 0$$

$$x_H := 3$$
 $x_K := 6$

$$h := 0.15$$

$$\mathbf{x} := \mathbf{x}_{\mathtt{H}}, \mathbf{x}_{\mathtt{H}} + \mathbf{h} ... \mathbf{x}_{\mathtt{K}}$$

y(x) =		x =	
2.833	1	3	
2.903		3.15	
		3.3	
2.97		3.45	
3.035		3.6	
3.098			
3.16		3.75	
3.219		3.9	
3.277		4.05	
5.277			
	'		'

4. Векторизация функций

ORIGIN := 1
$$i := 1...12$$
 $X_i := \frac{3}{3.15}$
 3.3
 3.45
 3.6
 3.75
 3.9
 4.05
 4.2
 4.35
 4.65
 $i := 1...12$
 $i := 1...12$

5. Вычисление производных в точках

№	Функция	x1	x2
1	$3x^2 + 16.2 - x$	-2.16	3.62
	1 sin x	3.21	7.63
2	$\frac{1}{x} + \frac{1}{x^2}$		
3	$x^2 - 6x + 1$	5.1	8.31
	$\overline{x-3}$		
4	$x^2 - 16.5x + 6$	-10.02	3.2

$$Z(x) := \frac{x^2 - 6 \cdot x + 1}{x - 3}$$

$$x1 = 5.1$$
 $x2 = 8.31$

$$Z(x1) = -1.71$$
 $Z(x2) = 3.803$

$$Zz(x) := \frac{d}{dx}Z(x)$$

$$Zz(x1) = 2.814$$

$$Zz(x2) = 1.284$$

6. Вычисление производной в диапазоне изменения аргумента

№	Функция	Интер-	№	Функция	Интер-
		вал			вал
1	$x^2 + 25x - 5$	[-25;0]	2	$x^2 + 5x \sin x - 7$	[-15;-5]
3	$0.625x^2 + 0.75\sin x - 3$	[-15;15]	4	$4x^2 + 10\sin x - 3 + 0.1x^3$	[-10;10]

Решение

$$f(x) := 0.625 \cdot x^{2} + 0.75 \cdot \sin(x) - 3$$

$$i := -15...15$$

$$f\left(\frac{d}{di}f(i)\right) = \frac{229.944}{186.914}$$

$$148.401$$

$$125.278$$

$$114.413$$

$$104.336$$

$$86.447$$

$$61.346$$

7. Вычисление определенного интеграла

1	$\int_{5.1}^{8.3} \frac{xdx}{x + 2.5}$	2	$\int_{0.5}^{\pi/2} \frac{\cos^2 x}{\sin x} dx$	3	$\int_{3}^{6.1} \frac{x + 6.25}{\left(x + 1.5\right)^2} dx$
4	$\int_{3}^{4.5} (5-x^2)^{0.5} dx$	5	$\int_{0.1}^{1.5} \frac{dx}{\sin x \cos x}$	6	$\int_{3.1}^{4.6} \frac{xdx}{\sqrt{x^4 - x}}$

Решение

Задание 7

$$\int_{3}^{6.1} \frac{x + 6.25}{(x + 1.5)^2} dx = 0.955$$

8. Решение прикладной задачи о вычислении числа витков катушки

$$W = \sqrt{\frac{L_0}{2h \cdot \ln(D_2 / D_1)}},$$

где D_1 =1 см, D_2 =3 см, h=1 см, L_0 =100000 нГн, L_0 кон.=110000 нГн, L_0 шаг =1000 нГн.

Вариант 4.

$$W = \sqrt{\frac{L_0}{2h \cdot \ln(D_2/D_1)}},$$

где L_0 =100000 нГн, D_1 =1 см, D_2 =3 см, hнач.=0,9 см, hкон.=1,1 см, hшаг =0,02 см.

Решение

Задание 8

$$D_1 := 1 \qquad D_2 := 3 \quad \ \, \underset{}{\underline{h}} := 1 \quad \ \, L_{0\text{hay}} := 100000 \qquad \qquad \\ L_{0\text{mar}} := 1000 \qquad \qquad \\ L_{0\text{koh}} := 110000 \qquad \qquad \\ L_0 := L_{0\text{hay}}, L_{0\text{hay}} + L_{0\text{mar}}...L_{0\text{koh}}$$

$$f(L_0) := \sqrt{\frac{L_0}{2 \cdot h \cdot ln(\frac{D_2}{D_1})}} +$$

9. Решение прикладной задачи о перемещении гидравлического демпфера

N варианта	Н (мм)	с (кН/м)	D (м)	d (мм)	Z	т (кг)	μ (Па*c)	у ₀ (мм)	t _к (c)
1	50	3	0,1	10	25	2,73	0,06	5	0,9
2	45	4,5	0,11	11	27	5,23	0,065	5	1
3	40	3	0,08	9	30	3,5	0,02	5	1,5

Решение

$$H := 0.04$$
 $c := 3$ $D := 0.08$ $d := 0.009$ $c := 3.5$ $p := 3.5$ $p := 0.02$ $p := 0.005$ $c := 1.5$

$$\begin{split} n &\coloneqq \frac{4 - \pi \cdot \mu \cdot \Pi}{m \cdot z} \cdot \left(\frac{D}{d}\right)^4 = 0.598 \\ y(t) &\coloneqq y_0 \cdot e^{-n \cdot t} \cdot \cos\left(\sqrt{p^2 - n^2} \cdot t\right) \end{split} \quad t \coloneqq 0,0.01...t_k \end{split}$$

Вывод

Я получил навыки создания и применения пользовательских функций в Mathcad, научиться решать прикладные задачи с пользовательскими функциями.