OPL1000

ULTRA-LOW POWER 2.4GHz WI-FI + BLUETOOTH SMART SOC

Sensor Reference via Coolkit Cloud **Application Guide**

http://www.opulinks.com/

Copyright © 2019, Opulinks. All Rights Reserved.

OPL1000

REVISION HISTORY

Date	Version	Contents Updated	
2019-11-08	0.1	Initial Release	
2019-11-13	0.2	Add update Device ID and MAC address section.	

TABLE OF CONTENTS

TABLE OF CONTENTS

1.	介绍_			1
			用范围	
			狀	
2.	项目构成和工作原理			
	2.1.	项目构成	戊	2
			里	
3.	运行	皓宅 门磁参	参考设计	4
	3.1.	生成 OP	PL1000 设备固件	4
	3.2.	2. 更新设备 ID 和 MAC 地址		
		3.2.1.	接线方式	5
		3.2.2.	确认 AT 能正常运行	5
		3.2.3.	写入 Device ID 和 MAC 到 flash	6
	3.3.	易微联 🛭	APP 完成蓝牙配网	
	3.4.	APP 功育	能界面	11
4.	酷宅ì	つ磁 应用]设计	12
	4.1.	项目工程	呈构成	12
	4.2.	参数配置	置 blewifi_configuration.h 使用说明	13
	4.3.	执行流程	呈和模块说明	13
		4.3.1.	执行流程	13
		4.3.2.	主要 Task Handler	14

TABLE OF CONTENTS

LIST OF FIGURES

Figure 1:项目文件	2
Figure 2:工作原理图	3
Figure 3: CoolKit 與 AT UART 串口接线图	5
Figure 4: 确认 AT 指令正常运行	5
Figure 5: 写入 Device ID	6
Figure 6: 切換 AT UART 到 DBG UART	6
Figure 7:写入 BLE MAC	7
Figure 8: 写入 Wi-Fi MAC	7
Figure 9: 切换 DBG UART 到 AT UART	7
Figure 10: 复位酷宅开发板	7
Figure 11: 易微联 APP OPL1000 设备列表	8
Figure 12:网络连接界面	9
Figure 13: 易微联 APP 连云成功	10
Figure 14:云端查看设备状态	10
Figure 15:Ali APP 智能照明功能界面	11
Figure 16:工程文件构成	12
Figure 17:固件执行流程图	14

1. 介绍

1.1. 文档应用范围

本文档介绍基于 OPL1000 A2 芯片的智能门磁控制参考设计。本设计中连接到酷宅云,使用 https 完成门磁的控制和状态更新。 内容包括固件设计,云端设备配置以及操作过程。

1.2. 缩略语

Abbr.	Explanation	
AP	Wireless Access Point 无线访问接入点	
APP	APPlication 应用程序	
APS	Application Sub-system 应用子系统,在本文中亦指 M3 MCU	
Blewifi	BLE config WIFI 蓝牙配网应用	
DevKit	Development Kit 开发工具板	
ОТА	Over-the-Air Technology 空间下载技术	
TCP	Transmission Control Protocol 传输控制协议	

1.3. 参考文献

[1] OPL1000 数据手册 OPL1000-DS-NonNDA.pdf

[2] Download 工具使用指南 OPL1000-patch-download-tool-user-guide.pdf

访问链接: https://github.com/Opulinks-Tech/OPL1000A2-

SDK/tree/master/Doc/OPL1000A2-patch-download-tool-user-guide.pdf

[4] SDK 开发使用指南 OPL1000-SDK-Development-guide.pdf

访问连接: https://github.com/Opulinks-Tech/OPL1000A2-SDK/blob/master/Doc/OPL1000-

SDK-Development-guide.pdf

访问连接: https://github.com/Opulinks-Tech/

2. 项目构成和工作原理

2.1. 项目构成

酷宅门磁项目需要下载易微联 APP·用于 OPL1000 蓝牙配网以及设备的状态显示及操作(APP 软件可以在手机应用市场直接搜索'易微联');

Figure 1:项目文件

- doc
- FW_Binary
- prj_src
- magnetic_door_contact_device_fram...
- Readme.md
- ** Release_Notes.md

酷宅门磁项目主要由五类内容构成,说明如下

目录和文件	说明
doc	存放 应用指南文档 . 即本文档
FW_Binary	存放做好的 bin 文件和 Pack 脚本文件,可以直接下载使用
prg_src	包含酷宅门磁项目的库文件以及全部工程文件
Readme.md	说明本参考设计功能和内容
Release_Notes.md	描述本版本发布更新内容和注意事项

2.2. 工作原理

酷宅门磁参考设计主要部件:物联网模块 OPL1000·移动设备(APP)·云端(Coolkit cloud)和门磁固件。

Figure 2:工作原理图

3. 运行酷宅门磁参考设计

运行 OPL1000 酷宅门磁应用需要以下步骤:

- a) 更新工程配置文件,修改头文件中的宏定义参数(参考 3.1 章节)。
- b) 使用编译工具完成项目工程编译·生成 M3 bin 文件(二进制固件文件)。
- c) 通过 download tool 打包 M3 bin 文件,生成完整固件 opl1000.bin,并下载到 opl1000 模块。
- d) 打开易微联 app·进行蓝牙扫描动作·扫描 opl1000 蓝牙设备·配置连接能够访问 Internet 的 AP。
- e) OPL1000 的固件连接云端。通过易微联 app 显示门磁的状态。

3.1. 生成 OPL1000 设备固件

编译酷宅门磁项目工程文件可以生成 OPL1000 M3 固件。在编译之前用户可以根据需要自行修改参数及头文件。

使用 Keil C 手动更新参数配置需要分三步完成:

1. 第一步使用 Keil C 开发工具打开头文件 (blewifi_configuration.h) · 是否进入省电模式 · 设备名称等参数; 酷宅云四元组由下面的四个宏定义确定(注意: 因为目前酷宅没有提供申请设备 ID 的正式渠道 · 所以在编译时请保持下面的值不变。本文将在 3.4 节介绍如何更新设备 ID 的过程):

```
#define APIKEY "0000000-0000-0000-00000000000"

#define DEVICE_ID "000000000"

#define CHIP_ID "000-000-00"

#define MODEL_ID "000-000-00"
```

- 2. 第二步编译工程,生成 M3 Bin 文件。
- 3. 第三步使用 download 工具完成固件 Pack · 下载操作 · 请参考 "Download 工具使用指南 OPL1000-patch-download-tool-user-guide.pdf" 了解操作方法。

3.2. 更新设备 ID 和 MAC 地址

为了使门磁设备能够连上酷宅云并正常使用,用户需要在下载 3.1 节中生成的 bin 后,完成更新设备 ID 和 MAC 地址的过程如下:

3.2.1. 接线方式

CoolKit 板開放 AT UART 串口,即用來与 miniUSB 连接。

AT UART 串口接线如下:

Figure 3: CoolKit 與 AT UART 串口接线图

3.2.2. 确认 AT 能正常运行

在下载 3.1 节中生成的 bin 到 CoolKit 板后,打开 AT UART 串口后输入 'ATE1',打开串口回显功能,然后输入'AT'命令,如果返回'OK'则说明 AT 能正常运行。

Figure 4: 确认 AT 指令正常运行

3.2.3. 写入 Device ID 和 MAC 到 flash

写入 Device ID、Wi-Fi MAC 和 BLE MAC 到 FLASH 都以 AT 命令的方式实现。(注意:目前还没有官方的申请酷宅 Device ID、Wi-Fi MAC 和 BLE MAC 的渠道,需要找酷宅相应的 PM 或opulinks Sales 申请)。

1. 使用 AT 指令,寫入 Device ID。(以下指令为范例,请参考实际所需指令)。

注意,要在5秒內連續輸入兩行資料。

AT 指令:

at+writefim=0x01020001,0,156

Figure 5: 写入 Device ID

```
>at+writefim=0x01020001,0,156
OK
OK
>
```

第二行指令不会显示在终端上。出現兩個"OK"代表成功。

2. 切換 AT UART 到 DBG UART。 AT 指令: at+switchdbg

Figure 6: 切換 AT UART 到 DBG UART

```
>at+switchdbg
C
Switch: Dbg UART
>
```


CHAPTER THREE

3. 输入指令写入 BLE MAC. AT 指令: lecfg bd_addr 0xd027013cc94d

Figure 7: 写入 BLE MAC

```
>lecfg bd_addr 0xd027013cc94d
>
```

4. 输入指令写入 WiFi MAC. AT 指令: wpa_mac d0:27:01:3c:c9:4c 和 wpa_dbg ib 0 1

Figure 8: 写入 Wi-Fi MAC

5. 切换 DBG UART 到. AT UART. AT 指令:at+switchdbg

Figure 9: 切换 DBG UART 到 AT UART

```
>switchat
ð
Switch: AT UART
>
```

6. 输入指令复位酷宅开发板。指令:at+rst

Figure 10: 复位酷宅开发板

```
>at+rst

OK
<CHECK>
SPI load patch, last index 0 result 2
BootMode 10
>
```


3.3. 易微联 APP 完成蓝牙配网

在更新好 Device ID 和 MAC 地址后长按按钮五秒,看到指示灯快闪说明设备开始广播。在 APP 点击+添加设备,APP 会自动扫描附近的 OPL1000 蓝牙信息。然后点击+配置需要连接的 AP

Figure 11: 易微联 APP OPL1000 设备列表

点击需要配网的 OPL1000 设备右侧的 ">"符号。选择 AP,并输入密码。点击确定后开始连接酷宅云。

Figure 12:网络连接界面

连云成功后,根据需要修改设备名称后,点击"完成添加"

Figure 13: 易微联 APP 连云成功

设备连接成功后,可以查看设备和门磁的状态如下:

Figure 14:云端查看设备状态

3.4. APP 功能界面

下图是 APP 功能界面, APP 主要由三部分构成:电量显示,门磁状态显示和历史记录。 本参考设计通过打开或闭合控制门磁的状态。若门磁闭合,则状态为闭合状态;同时会新增加一条新的记录。

Figure 15:Ali APP 智能照明功能界面

4. 酷宅门磁 应用设计

本章介绍设备端固件工作原理,以及如何进行功能扩展。

4.1. 项目工程构成

酷宅门磁项目包含蓝牙配网、酷宅门磁、和库文件等目录。

Figure 16:工程文件构成

- inc
- lib
- Output
- src
- opl1000_app_m3.bat
- app_m3.ini
- opl1000_app_m3.sct
- opl1000_app_m3.uvoptx
- ₩ opl1000_app_m3.uvprojx

各文件夹及文件构成如表。具体内容如 Table 1 所述。

Table 1: 酷宅门磁项目文件夹和内容

文件夹和文件	内容说明	
inc	主要存放编译时所需的头文件	
lib	存放所需的库文件和 symdefs.o	
Output	主要存放编译时产生的相关文件其中包括编译成功后的 opl1000_app_m3.bin 文件	
src	存放蓝牙配网,数据收发相关.c 和.h 头文件,以及 main 文件	
opl1000_app_m3.bat		
opl1000_app_m3.ini	编译工程文件。	
opl1000_app_m3.sct		
opl1000_app_m3.uvoptx		
opl1000_app_m3.uvprojx		

4.2. 参数配置 blewifi_configuration.h 使用说明

blewifi_configuration.h 文件集中了需要配置的参数,用户可以根据实际应用更新参数配置。 blewifi_configuration.h 文件定义了可配置参数的默认值。

Table 2 主要参数配置宏定义功能详细介绍

宏定义	说明
	Group11 的 FIM 版本信息·取值范围为 0x00-
MW_FIM_VER11_PROJECT	0xFF. Notes: 当该文件中的宏定义值有更新
	时,请务必更新一下这个值(只要跟原来的值不一样就好)。
	Group12 的 FIM 版本信息·取值范围为 0x00-
MW_FIM_VER12_PROJECT	0xFF. Notes: 当该文件中的宏定义值有更新
	时,请务必更新一下这个值(只要跟原来的值不一样就好)。
BLEWIFI_COM_POWER_SAVE_EN	是否 Enable smart sleep. 1: Enable. 0: Disable
APIKEY · DEVICE_ID · CHIP_ID · MODEL_ID	用于标志设备的元组。
BLEWIFI_COM_RF_POWER_SETTINGS	用于设置RF模式。具体取值请参考该文件的注
227	释。

4.3. 执行流程和模块说明

本章节介绍 OPL1000 固件处理流程。

4.3.1. 执行流程

主程序执行流程如下图所示。在完成设备和智能门磁初始化操作后,设备将自动尝试连接酷宅云。如果连接成功,用户就可以在手机端通过易微联 APP 查看智能门磁的状态。

Figure 17:固件执行流程图

4.3.2. 主要 Task Handler

本项目内部启动了两个任务处理器

1. BLE Handler

BLE Handler 功能是等待手机端蓝牙与 OPL1000 的连接·此时 OPL1000 会持续发送 BLE 广播·直到蓝牙建立连接

2. WIFI Handler

WIFI Handler 是 OPL1000 与 AP 建立连接后,连线及断线检查,断线后重连功能

OPL1000

CONTACT

sales@Opulinks.com

