Stochastic Modelling and Random Processes Problem Sheet 3

Yiming MA

December 13, 2020

Contents

1 Geometric Brownian Motion

1

1 Geometric Brownian Motion

Let $(X_t:t\geq 0)$ be a Brownian motion with constant drift on \mathbb{R} with generator

$$(\mathcal{L}f)(x) = \mu f'(x) + \frac{1}{2}\sigma^2 f''(x), \ \mu \in \mathbb{R}, \ \sigma > 0,$$

and initial condition $X_0 = 0$. Geometric Brownian motion is defined as

$$(Y_t: t \ge 0)$$
 with $Y_t = e^{X_t}$.

- (a) Show that $(Y_t : t \ge 0)$ is a diffusion process on $[0, \infty)$ and compute its generator. Write down the associated SDE and Fokker-Planck equation.

 Sol.
- (b) Use the evolution equation of expectation values of test functions $f: \mathbb{R} \to \mathbb{R}$

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbb{E}[f(Y_t)] = \mathbb{E}[\mathcal{L}f(Y_t)],$$

to derive ODEs for the meane $m(t) := \mathbb{E}[Y_t]$ and the second moment $m_2(t) := \mathbb{E}[Y_t^2]$. (No need to solve the ODEs.)

Sol.

- (c) Under which conditions on μ and σ^2 is $(Y_t : t \ge 0)$ a martingale? What is the asymptotic behaviour of the variance $v(t) = m_2(t) - m(t)^2$ in that case? Sol.
- (d) Show that δ_0 is the unique stationary distribution of the process on the state space $[0, \infty)$. Under which conditions on μ and σ^2 does the process with $Y_0 = 1$ converge to the stationary distribution?

Under which conditions on μ and σ^2 is the process ergodic? Justify your answer. Sol. (e) For $\sigma^2 = 1$ choose $\mu = -1/2$ and two other values $\mu < -1/2$ and $\mu > 1/2$. Simulate and plot a sample path of the process with $Y_0 = 1$ up to time t = 10, by numerically integrating the corresponding SDE with time steps $\Delta t = 0.1$ and 0.01.