CSCI 2270-305 Recitation 04/16: Priority Queues and Heaps

Varad Deshmukh

Logistics

- We are done with Assignments!
 - If you forgot to click on Submit All and Finish in your past homeworks, email me.
 - Score will default to 0 otherwise.
- Mandatory midterms are done!
 - Good job on the second midterm! Grades will be available soon.
 - Optional midterm: Attempt only if you are confident of scoring higher than your least score, or aren't currently meeting the requirements.
- We are done with Recitations after today! Submit the Recitation 13 work by Sunday.
- Interview Grading next week.
 - Can make up for one assignment from any of the 9 assignments.
 - Schedule: Wednesday 3-5 pm, Thursday 330-5 pm.
- Final project is live, due April 29th

Priority Queues (ADT)

Priority Queue is a queue that maintains elements based on their priority, and always dequeues the highest priority element.

Queues v/s Priority Queues

	Queues	Priority Queues		
	First in First Out	Highest priority out		
Enqueue	Enqueue at the tail	Enqueue at tail and reorder		
Dequeue	Dequeue the oldest item at the front	Dequeue the highest priority at the front		
Requires re-ordering	No	Yes		

Operations: Queues v/s Priority Queues

Queues	Priority Queues		
Enqueue (Tail)	Insert		
Dequeue (Front)	DeleteMin/DeleteMax (Highest Priority)		

1. Sorted Circular Array

1. Sorted Circular Array

Insertion (9):

Deletion/Dequeueing:

1. Sorted Circular Array

Insertion (9): Modulo shift the end of the queue and insert to keep the array sorted.

Deletion/Dequeueing:

1. Sorted Circular Array

Insertion (9): Modulo shift the end of the queue & insert (keep the array sorted.) Deletion/Dequeueing:

1. Sorted Circular Array

Insertion (9): Modulo shift the end of the queue & insert (keep the array sorted.) Deletion/Dequeueing:

1. Sorted Circular Array

Insertion (9): Modulo shift the end of the queue & insert (keep the array sorted.) **Deletion/Dequeueing:**

1. Sorted Circular Array

Insertion (9): Modulo shift the end of the queue & insert (keep the array sorted.) **Deletion/Dequeueing:** Modulo increment the front.

1. Sorted Circular Array

Insertion (9): Modulo shift the end of the queue & insert (keep the array sorted.) **Deletion/Dequeueing:** Modulo increment the front.

1. Sorted Circular Array

Insertion (9): Modulo shift the end of the queue & insert (keep the array sorted.)
Complexity =

Deletion/Dequeueing: Modulo increment the front. Complexity =

15

1. Sorted Circular Array

Insertion (9): Modulo shift the end of the queue & insert (keep the array sorted.) Complexity = O(n).

Deletion/Dequeueing: Modulo increment the front. Complexity = O(1).

Max-Heap as a Priority Queue

2. Heap

Insertion: Insert at the end of the heap, and reorder.

Deletion/Dequeueing: Delete the root, and reorder.

Heaps

- A heap is a tree-like data-structure, which:
 - Is an almost complete tree.
 - Satisfies a certain property of node ordering:
 - Root of a heap is the highest priority element in the heap.

We will restrict ourselves to studying binary heaps.

Min and Max-Heaps

Each parent is smaller than either children.

Each parent is greater than either children.

An Almost complete tree

The last level may not be complete (contains 3 out of 4 nodes.)

Max-Heap as a Priority Queue

2. Heap

Insertion: Insert at the end of the heap, and reorder. Complexity = O(lg n).

Deletion/Dequeueing: Delete the root, and reorder. Complexity = O(lg n).

We could use the traditional BST structure we have studied in the class,

Max Heap


```
struct BSTNode {
    int key;
    BSTNode * left;
    BSTNode * right;
}
```

or use a more efficient array implementation.

... by exploiting the almost-complete tree structure.

or use a more efficient array implementation.

... by exploiting the almost-complete tree structure.

or use a more efficient array implementation.

Intermediate values are always valid

... by exploiting the almost-complete tree structure.

0	1	1	2	2	2	2	
14	12	9	6	11	7	3	
0	1	2	3	4	5	6	

For each node at index i,

Index of left child =
Index of right child =
Index of parent =

For each node at index i,

Index of left child =
$$2i + 1$$

Index of right child = $2i + 2$

Index of parent =
$$(\frac{i-1}{2})$$

Max-Heapifying your data

Convert the below Random Tree/Array into a Max-Heap

Max-Heapifying your data

Let's consider a simpler example:
An almost Max-Heap

Let's consider a simpler example: **An almost Max-Heap** Max-heap property violated Is a Max-heap Is a Max-heap 12 9 6 11 3

Max-Heapifying an almost Max-heap

Swap violating node with the largest of its children until max-heap property satisfied.

```
void max heapify (int Arr[ ], int i, int N)
   int left = 2*i + 1; //left child
   int right = 2*i + 2; //right child
   if(left< N && arr[left] > Arr[i] )
         largest = left;
   else
        largest = i;
   if(right < N && arr[right] > arr[largest] )
       largest = right;
   if(largest != i)
       swap (&Ar[i], &Arr[largest]);
       max_heapify (Arr, largest,N);
```


max_heapify(Arr, 8, 9);

 Starting with the highest indexed node and moving backwards, max-heapify the node into the subtree.

 Starting with the highest indexed node and moving backwards, max-heapify the node into the subtree.

max_heapify(Arr, 7, 9);

 Starting with the highest indexed node and moving backwards, max-heapify the node into the subtree.

max_heapify(Arr, 6, 9);

- Starting with the highest indexed node and moving backwards, max-heapify the node into the subtree.
- Since the last few nodes are leaves, they represent a heap of 1 node, and are already maxheapified.

- Starting with the highest indexed node and moving backwards, max-heapify the node into the subtree.
- Since the last few nodes are leaves, they represent a heap of 1 node, and are already maxheapified.
- We can skip these nodes and start with the highest index non-leaf node.
- What is the index of this node?

- Starting with the highest indexed node and moving backwards, max-heapify the node into the subtree.
- Since the last few nodes are leaves, they represent a heap of 1 node, and are already maxheapified.
- We can skip these nodes and start with the highest index non-leaf node.
- What is the index of this node?

- Starting with the highest indexed node and moving backwards, max-heapify the node into the subtree.
- Since the last few nodes are leaves, they represent a heap of 1 node, and are already maxheapified.
- We can skip these nodes and start with the highest index non-leaf node.
- What is the index of this node?

- Starting with the highest indexed node and moving backwards, max-heapify the node into the subtree.
- Since the last few nodes are leaves, they represent a heap of 1 node, and are already maxheapified.
- We can skip these nodes and start with the highest index non-leaf node.
- What is the index of this node?

$$\frac{N}{2}-1$$

 Starting with the highest indexed node and moving backwards, max-heapify the node into the subtree.

max_heapify(Arr, 3, 9);

 Starting with the highest indexed node and moving backwards, max-heapify the node into the subtree.

 Starting with the highest indexed node and moving backwards, max-heapify the node into the subtree.

max_heapify(Arr, 2, 9);

 Starting with the highest indexed node and moving backwards, max-heapify the node into the subtree.

 Starting with the highest indexed node and moving backwards, max-heapify the node into the subtree.

max_heapify(Arr, 1, 9);

 Starting with the highest indexed node and moving backwards, max-heapify the node into the subtree.

 Starting with the highest indexed node and moving backwards, max-heapify the node into the subtree.

 Starting with the highest indexed node and moving backwards, max-heapify the node into the subtree.

max_heapify(Arr, 0, 9);

 Starting with the highest indexed node and moving backwards, max-heapify the node into the subtree.

 Starting with the highest indexed node and moving backwards, max-heapify the node into the subtree.

```
for (int i = N/2 - 1; i >= 0; i--)
{
    max_heapify(arr, i, N);
}
```


• Insert the new node at the last position in the heap (index N+1).

57

- Insert the new node at the last position in the heap (index N+1).
- While the node is larger is greater than the parent, swap with parent. Repeat.

- Insert the new node at the last position in the heap (index N+1).
- While the node is larger is greater than the parent, swap with parent. Repeat.

- Insert the new node at the last position in the heap (index N+1).
- While the node is larger is greater than the parent, swap with parent. Repeat.

- Insert the new node at the last position in the heap (index N).
- While the node is larger is greater than the parent, swap with parent. Repeat.

- Insert the new node at the last position in the heap (index N+1).
- While the node is larger is greater than the parent, swap with parent. Repeat.

```
Arr[N] = key;
int i = N;
N = N+1;
while(i > 0 && Arr[i] > Arr[i/2-1])
{
     Swap(&Arr[i], &Arr[i/2 - 1]);
     i = i/2 - 1;
}
```


- Insert the new node at the last position in the heap (index N+1).
- While the node is larger is greater than the parent, swap with parent. Repeat.

How many operations?

- Insert the new node at the last position in the heap (index N+1).
- While the node is larger is greater than the parent, swap with parent. Repeat.

How many operations?

- For a tree with height h, takes an average of O (h) operations.

-

- Insert the new node at the last position in the heap (index N+1).
- While the node is larger is greater than the parent, swap with parent. Repeat.

How many operations?

- For a tree with height h, takes an average of O (h) operations.
- For an almost complete tree with N nodes, h = lg N.

- Insert the new node at the last position in the heap (index N+1).
- While the node is larger is greater than the parent, swap with parent. Repeat.

How many operations?

- For a tree with height h, takes an average of O (h) operations.
- For an almost complete tree with N nodes, h = lg N.
- Insertion complexity = O (lg N).

- Replace the root of the heap with the last element.
- Delete the last element.
- Max_heapify the root.

- Replace the root of the heap with the last element.
- Delete the last element.
- Max_heapify the root.

- Replace the root of the heap with the last element.
- Delete the last element.
- Max_heapify the root.

- Replace the root of the heap with the last element.
- Delete the last element.
- Max_heapify the root.

- Replace the root of the heap with the last element.
- Delete the last element.
- Max_heapify the root.

- Replace the root of the heap with the last element.
- Delete the last element.
- Max_heapify the root.

```
Arr[0] = Arr[N-1];
N = N - 1;
max_heapify(Arr, 0, N);
```


- Replace the root of the heap with the last element.
- Delete the last element.
- Max_heapify the root.

How many operations?

- Replace the root of the heap with the last element.
- Delete the last element.
- Max_heapify the root.

How many operations?

- For a tree with height h, takes an average of O (h) operations.
- For an almost complete tree with
 N nodes, h = lg N.
- DeleteMax complexity = O (lg N).

A final word on the complexity

	Circular Array	Heap
Enqueue	O(n)	O (lg N)
Dequeue	O(1)	O (lg N)
Peek the highest priority	O(1)	O(1)

Silver Problem

- Implement the functions extractMin and heapify for a Min-Heap.
- Hints:
 - Same as the Max-Heap, just reverse the comparison signs.
 - In heapify, swap with the smallest.
 - You don't have to do the leftChild, rightChild and parent calculations. Use the available functions in the starter code.

```
57 /*
58 When an element is removed/deleted. This method make sures the array
59 satisfies the heap property.
60 */
61 void MinHeap::heapify(int i)
62 {
    int l = leftChild(i);
    int r = rightChild(i);
    int smallest = i;
66
67    //TODO finsh the heapify function
68
69
70 }
71
```

```
// Method to remove minimum element (or root) from min heap
    int MinHeap::extractMin()
110 - {
111
      if (currentSize <= 0)
           return INT_MAX:
112
113
      if (currentSize == 1)
114
115 -
116
           currentSize--:
117
           return heapArr[0];
118
119
      //TODO finsh the function
120
121 }
```

Gold Problem

- Implement the function deletekey for a Min-Heap.
- Hint: Use logic similar to deleteMax, except choose the right node whose value needs to be replaced.

Questions?

Good luck for your finals!