

Skaláris szorzat az Rⁿ vektortérben

Összeállította: dr. Leitold Adrien egyetemi docens

Vektorok skaláris szorzata

Két Rⁿ-beli vektor skaláris szorzata:

Legyen $\underline{a} = (a_1, a_2, \dots, a_n)$ és $\underline{b} = (b_1, b_2, \dots, b_n)$ két R^n -beli vektor. Ekkor az \underline{a} és \underline{b} vektorok skaláris szorzatán (skalárszorzatán) az alábbi számot értjük:

$$a_1 \cdot b_1 + a_2 \cdot b_2 + \ldots + a_n \cdot b_n$$

Jelölés: $\underline{a} \cdot \underline{b}$, $\langle \underline{a}, \underline{b} \rangle$

A skaláris szorzat alaptulajdonságai

A skaláris szorzat alaptulajdonságai:

Legyenek $\underline{a},\underline{b},\underline{c} \in R^n$ és $\lambda \in R$. Ekkor:

1.
$$\langle \underline{a}, \underline{b} + \underline{c} \rangle = \langle \underline{a}, \underline{b} \rangle + \langle \underline{a}, \underline{c} \rangle$$

 $\langle \underline{a}, \lambda \cdot \underline{b} \rangle = \lambda \cdot \langle \underline{a}, \underline{b} \rangle$
 $\langle \underline{a} + \underline{b}, \underline{c} \rangle = \langle \underline{a}, \underline{c} \rangle + \langle \underline{b}, \underline{c} \rangle$
 $\langle \lambda \cdot \underline{a}, \underline{b} \rangle = \lambda \cdot \langle \underline{a}, \underline{b} \rangle$

bilineáris

szimmetrikus

2. $\langle \underline{a}, \underline{b} \rangle = \langle \underline{b}, \underline{a} \rangle$

3. $\langle \underline{a}, \underline{a} \rangle \ge 0$ és $\langle \underline{a}, \underline{a} \rangle = 0 \Leftrightarrow \underline{a} = \underline{o}$

pozitív definit

Vektorok hossza

■ Egy R^n -beli vektor hossza (normája): Legyen $x \in R^n$. Ekkor az x vektor hossza (normája):

$$\sqrt{\langle \underline{x}, \underline{x} \rangle} = \sqrt{x_1^2 + \dots + x_n^2}$$

Jelölés: $|\underline{x}|$, $|\underline{x}|$

- Megjegyzések: Legyen $\underline{x} \in \mathbb{R}^n$ és $\lambda \in \mathbb{R}$.
- 1. A fenti definíció és a skaláris szorzat pozitív definitsége miatt $||\underline{x}|| \ge 0$ és $||\underline{x}|| = 0 \Leftrightarrow \underline{x} = \underline{o}$.
- 2. Igazolható, hogy $\|\lambda \cdot \underline{x}\| = \|\lambda\| \cdot \|\underline{x}\|$.
- Egy $\underline{x} \in R^n$ vektort egységre normáltnak (egységvektornak) nevezünk, ha ||x||=1.
- Igazolható, hogy bármely $\underline{x} \in R^n$, $\underline{x} \neq \underline{o}$ esetén az $\frac{1}{\|\underline{x}\|} \cdot \underline{x}$ vektor egységre normált.

Nevezetes egyenlőtlenségek

■ Cauchy-Bunyakovszkij- Schwarz egyenlőtlenség: Legyen \underline{x} és \underline{y} két tetszőleges R^n -beli vektor. Ekkor: $|\langle \underline{x}, \underline{y} \rangle| \le ||\underline{x}|| \cdot ||\underline{y}||$, azaz

$$\left|\sum_{i=1}^{n} x_i \cdot y_i\right| \le \sqrt{\sum_{i=1}^{n} x_i^2} \cdot \sqrt{\sum_{i=1}^{n} y_i^2}$$

és egyenlőség pontosan akkor áll fenn, ha $\underline{x} \parallel \underline{y}$.

■ Minkowsky (vagy háromszög) egyenlőtlenség: Legyen \underline{x} és \underline{y} két tetszőleges R^n -beli vektor. Ekkor: $||\underline{x}+\underline{y}|| \le ||\underline{x}|| + ||\underline{y}||$.

Két vektor szöge

Két Rⁿ-beli vektor szöge

Legyen \underline{a} és \underline{b} két, nullvektortól különböző R^n -beli vektor. Ekkor azt a $\varphi \in [0,\pi]$ szöget, melyre

$$\cos \varphi = \frac{\langle \underline{a}, \underline{b} \rangle}{\|\underline{a}\| \cdot \|\underline{b}\|}$$

teljesül, az <u>a</u> és <u>b</u> vektorok szögének nevezzük.

- Speciális esetek: Legyenek $\underline{a}, \underline{b} \in R^n$, $\underline{a}, \underline{b} \neq \underline{o}$.
 - Ha $\langle \underline{a}, \underline{b} \rangle = 0$, akkor $\varphi = \pi/2$.
 - Ha $\underline{a} = \lambda \cdot \underline{b}$, akkor
 - $\lambda > 0$ esetén $\varphi = 0$, ilyenkor \underline{a} és \underline{b} egyirányú,
 - λ <0 esetén $\varphi = \pi$, ilyenkor <u>a</u> és <u>b</u> ellentétes.

További állítások

- 1. Legyenek $\underline{x}, \underline{y} \in R^n$, $\underline{x}, \underline{y} \neq \underline{o}$, jelölje φ az \underline{x} és \underline{y} vektorok szögét. Ekkor:
 - $\|\underline{x}-\underline{y}\|^2 = \|\underline{x}\|^2 + \|\underline{y}\|^2 2 \cdot \|\underline{x}\| \cdot \|\underline{y}\| \cdot \cos \varphi$ "cosinus-tétel"
- 2. Legyenek $\underline{x}, \underline{y} \in R^n$, $\underline{x}, \underline{y} \neq \underline{o}$, jelölje φ az \underline{x} és \underline{y} vektorok szögét és legyen $\varphi = \pi/2$. Ekkor:

$$\| \underline{x} - \underline{y} \|^2 = \| \underline{x} \|^2 + \| \underline{y} \|^2$$

"Pitagorasz-tétel"

3. Legyenek $\underline{x}, \underline{y} \in R^n$, $\underline{x}, \underline{y} \neq \underline{o}$. Ekkor:

$$\| \underline{x} - \underline{y} \|^2 + \| \underline{x} + \underline{y} \|^2 = 2 \cdot \| \underline{x} \|^2 + 2 \cdot \| \underline{y} \|^2$$

"paralelogramma-szabály"

Ortogonalitás

- 1. Legyen <u>a</u> és <u>b</u> két Rⁿ-beli vektor. Az <u>a</u> és <u>b</u> vektorokat ortogonálisaknak nevezzük, ha skaláris szorzatuk nulla.
- 2. Egy $H \subseteq R^n$ vektorhalmaz ortogonális, ha páronként ortogonális, nullvektortól különböző vektorok alkotják.
- 3. Egy $H \subseteq R^n$ vektorhalmaz ortonormált, ha ortogonális és vektorai egységre normáltak.

Megjegyzések:

- 1. \underline{a} és \underline{b} ortogonális $\Leftrightarrow \varphi = \pi/2$ vagy $\underline{a} = \underline{o}$ vagy $\underline{b} = \underline{o}$.
- 2. Rⁿ-ben a kanonikus bázis ortonormált.
- 3. Igazolható, hogy ha a $H \subseteq R^n$ vektorhalmaz ortogonális, akkor H lineárisan független.
- 4. Legyen $B = \{\underline{b}_1, ..., \underline{b}_n\}$ ortonormált bázis R^n -ben. Ekkor egy $\underline{x} \in R^n$ vektor B bázisra vonatkozó i-edik koordinátája: $\langle \underline{x}, \underline{b}_i \rangle$

Fourier-együttható

Legyen $\underline{v} \in R^n$, $\underline{v} \neq \underline{o}$ rögzített vektor. Ekkor igazolható, hogy bármely $\underline{x} \in R^n$ vektor esetén egyértelműen létezik egy olyan $\alpha \in R$ szám, amelyre az $\underline{x} - \alpha \cdot \underline{v}$ vektor és a \underline{v} vektor ortogonális. Mégpedig:

$$\alpha = \frac{\langle \underline{x}, \underline{v} \rangle}{\langle \underline{v}, \underline{v} \rangle}$$

Ezt az α számot az \underline{x} vektor \underline{v} vektorra vonatkozó Fourier-együtthatójának nevezzük.

Megjegyzés: Ekkor az $\alpha \underline{v}$ vektor az \underline{x} vektor \underline{v} irányába eső merőleges vetületvektora.

Ortogonális komplementer

Legyen $S \subseteq \mathbb{R}^n$, $S \neq \emptyset$.

- 1. Az $\underline{x} \in R^n$ vektort S-re ortogonálisnak hívjuk, ha \underline{x} ortogonális az S vektorhalmaz minden vektorára.
- 2. Az *S* vektorhalmaz ortogonális komplementere az *S*-re ortogonális vektorok összessége:

$$S^{\perp} = \{ \underline{x} \in \mathbb{R}^n \mid \text{bármely } \underline{s} \in S \text{ esetén } \langle \underline{x}, \underline{s} \rangle = 0 \}$$
.

Megjegyzés:

Igazolható, hogy bármely $S \subseteq R^n$, $S \neq \emptyset$ vektorhalmaz esetén S^{\perp} altér R^n —ben.

Az ortogonális felbontás tétele

Legyen H altér az Rⁿ vektortérben. Ekkor:

- 1. R^n direkt összege a H és H^{\perp} altereknek: $R^n = H \oplus H^{\perp}$.
- 2. Legyen $\underline{x} \in R^n$, $\underline{x} = \underline{h} + \underline{h}^{\perp}$, ahol $\underline{h} \in H$ és $\underline{h}^{\perp} \in H^{\perp}$. Ekkor: $||\underline{x}||^2 = ||\underline{h}||^2 + ||\underline{h}^{\perp}||^2$.
- 3. A H^{\perp} altér ortogonális komplementere H, azaz: $H^{\perp \perp} = H$.

Az ortogonális projekció

Legyen H altér az Rⁿ vektortérben.

Tekintsük a következő leképezést:

$$\pi: R^n \to R^n, \ \underline{x} \mapsto \underline{h},$$
 ahol $\underline{x} = \underline{h} + \underline{h}^{\perp}$ és $\underline{h} \in H, \ \underline{h}^{\perp} \in H^{\perp}.$

A fenti leképezést a *H* altérre való ortogonális projekciónak (merőleges vetítésnek) nevezzük.

A $\pi(\underline{x})$ vektort az \underline{x} vektor H altérre eső ortogonális vetületvektorának hívjuk.

Az ortogonális projekció tulajdonságai

Az előző definíció jelöléseit megtartva a π ortogonális projekció tulajdonságai:

- 1. π lineáris transzformáció
- 2. $\pi \circ \pi = \pi$
- 3. $\pi|_{H} = id|_{H}$, $\pi|_{H^{\perp}} = o$ (azonosan nulla leképezés)
- **4.** Bármely $\underline{x}, \underline{y} \in R^n$ esetén: $\langle \pi(\underline{x}), \underline{y} \rangle = \langle \underline{x}, \pi(\underline{y}) \rangle$
- 5. Bessel-egyenlőtlenség: $||\pi(\underline{x})|| \le ||\underline{x}||$
- 6. A legjobb approximáció tétele: bármely $\underline{x} \in R^n$ esetén a $\pi(\underline{x})$ vetületvektor az \underline{x} -hez legközelebb eső H-beli vektor, azaz: bármely $\underline{y} \in H$ -ra $||\underline{x} \pi(\underline{x})|| \le ||\underline{x} \underline{y}||$ és egyenlőség pontosan akkor teljesül, ha $\underline{y} = \pi(\underline{x})$.