- 4. 证明定理3 .2 .1 中的 (6)~(10)
- (6) (上半连续性) 若 $E_n \downarrow$, 且存在 $n_0 \in N$ 使得 μ (E_0) < $+\infty$, 则 μ ($\lim_{n \to \infty} E_n$) = $\lim_{n \to \infty} \mu$ (E_n)

证明: $E_1 \supset E_2 \supset ... \supset E_n \supset E_{n+1}$...集列 ($E_1 \setminus E_n$) 递增,由 (5) 可知 μ ($E_1 \setminus \lim_{n \to +\infty} E_n$) =

$$\mu\left(\lim_{n\to+\infty} (E_1\backslash E_n)\right) = \lim_{n\to+\infty} \mu\left(E_1\backslash E_n\right)$$
 以上还用到第一章例四中的性质

若 μ (\mathbb{E}_1) < + ∞ , 由测度的减性 μ (\mathbb{E}_1) - μ ($\lim_{n\to+\infty}\mathbb{E}_n$) = μ (\mathbb{E}_1) - $\lim_{n\to\infty}\mu$ (\mathbb{E}_n) 即得

$$\mu\left(\lim_{n\to+\infty}\mathbf{E}_{n}\right)=$$

 $\lim_{n\to\infty} \mu$ (E_n) 因 E_1 未必有 μ $(E_1)<+\infty$,故只要在前面步骤中替换 E_1 为 E_{n_0} 即可.

(7) 若
$$\mathbf{E}_{n} \in \mathcal{A}$$
 (n = 1, 2 ...), 则 $\mu\left(\frac{\lim_{n \to +\infty} \mathbf{E}_{n}}{\lim_{n \to +\infty} \mu}\right) \leq \frac{\lim_{n \to +\infty} \mu}{\lim_{n \to +\infty} \mu}$ (\mathbf{E}_{n}).

证明因为,

$$\bigcap_{j=k}^{\infty} E_{j} \subset E_{k} \ (k=1, 2, ...) , 故 \mu \left(\bigcap_{j=k}^{\infty} E_{j}\right) \leq \mu \ (E_{k}) \bigcap_{j=k}^{\infty} E_{j} 随着k的增大而增大,$$

$$k \to \infty$$
时, $\mu\left(\frac{\lim_{k \to \infty} E_k}{\lim_{k \to \infty} \mu}\right) = \lim_{k \to \infty} \mu\left(\bigcap_{j=k}^{\infty} E_j\right) \le \underline{\lim}_{k \to \infty} \mu\left(E_k\right)$

5. 设 μ^* 为 $\mathcal{P}(X)$ 上的外测度, \mathcal{A} 为X上的代数,证明:若 μ^* 在 \mathcal{A} 上满足有限可加性,则 μ^* (在 \mathcal{A} 上的限制) 为 \mathcal{A} 上的测度.

证明: μ^* 在 \mathcal{A} 上满足可列可加性,则其为 \mathcal{A} 上的测度.记(E_k)是 \mathcal{A} 中互不相交集成的集列,

$$\mu^*\left(\bigcup_{k=1}^n \mathsf{E}_k\right) = \sum_{k=1}^n \mu^*\left(\mathsf{E}_k\right) \overset{\textstyle \boxtimes h\bar{h}}{\Longrightarrow} \mu^*\left(\bigcup_{k=1}^\infty \mathsf{E}_k\right) \geq \sum_{k=1}^n \mu^*\left(\mathsf{E}_k\right)$$

由外测度的次可加性 $\mu^*\left(\bigcup_{k=1}^{\infty} \mathsf{E}_k\right) \leq \sum_{k=1}^{\infty} \mu^*\left(\mathsf{E}_k\right)$

因为,
$$\bigcup_{k=1}^{n} \mathsf{E}_{\mathsf{k}} \subset \bigcup_{k=1}^{\infty} \mathsf{E}_{\mathsf{k}}$$
, 故 $\sum_{k=1}^{n} \mu^* \left(\mathsf{E}_{\mathsf{k}} \right) = \mu^* \left(\bigcup_{k=1}^{n} \mathsf{E}_{\mathsf{k}} \right) \leq \mu^* \left(\bigcup_{k=1}^{\infty} \mathsf{E}_{\mathsf{k}} \right)$ 故 μ^* 为矛上的测度.

6. 设 μ^* 为 $\mathcal{P}(X)$ 上的外测度, \mathcal{A} 是由C外测度法所得的全体 μ^* 可测集,证明:对于任一E \in $\mathcal{P}(X)$,若 μ^* (E) = 0,则E \in \mathcal{A}^* .

证明E是 μ^* 可测集. \forall $T \in \mathcal{P}(X)$,若 $\mu^*(T) = \mu^*(T \cap E) + \mu^*(T \cap E^c)$, $T \cap E \subset E$, $\mu^*(T \cap E) \leq \mu^*(E) = 0$. $T \cap E^c \subset T$,故 $\mu^*(T) \geq \mu^*(T \cap E^c) = \mu^*(T \cap E^c) + \mu^*(T \cap E)$ 总成立, $T = (T \cap E) \cup (T \cap E^c)$

9. 设 \mathcal{A} 为集合X上的代数, μ 为 \mathcal{A} 上的 σ 有限测度, μ^* 是由 μ 导出的 $\mathcal{P}(X)$ 上的外测度, $E \subset X$ 且 $\mu^*(E) > 0$. 证明:对于任一 $\delta \in (0, 1)$, 存在A $\in \mathcal{A}$,使得 $\delta \cdot \mu(A) < \mu^*(A \cap E)$.

 $-\mathcal{A}$ 是集合X上的代数, μ 是 \mathcal{A} 上的有限或 σ 有限测度, $\mathcal{A}^* = \{ \mathsf{E} \in \mathcal{P}(\mathsf{X}) \mid \forall \mathsf{T} \in \mathcal{P}(\mathsf{X}) \not\in \mathcal{P}(\mathsf{X}) \not\in \mathcal{P}(\mathsf{X}) \neq \mu^*(\mathsf{T} \cap \mathsf{E}) + \mu^*(\mathsf{T} \cap \mathsf{E}^\mathsf{c}) \}$ $\forall E \in \mathcal{H}^*, \exists A, B \in S(\mathcal{H}).$

 $A \subset E \subset B$ 且 $\mu^*(E \setminus A) = \mu^*(B \setminus E) = \mu^*(B \setminus A) = 0$,即 μ^* 是完备测度."

此处:若能得 μ^* (E\A) = μ^* (E \cap A^c) = 0 ,则0 < μ^* (E) =

 $\mu^* (E \cap A) + \mu^* (E \cap A^c) = [\mu^* (A \cap E) = \mu^* (A)] = \mu (A)$

方括号中的等式成立的一个充分条件是A ⊂ E, 而这恰恰是定理 "3.3.4中的结论,而上面最后一个等号自然是因为A是 μ^* 可测集.

至此证毕: $\forall \delta \in (0,1)$, $\exists A \in \mathcal{A}$, 使得 $\delta \cdot \mu(A) < \mu^*(A \cap E)$.

- 10. 设E \subset R, $x_0 \in$ R, 记 $x_0 +$ E := $\{x_0 + x \mid x \in E\}$, 证明: $m^*(x_0 + E) = m^*(E)$. (此结论即所谓Lebesgue外测度的平移不变性.)
- 11. 设 $x_0 \in R$,证明: $E \in \mathcal{L} \Longleftrightarrow (x_0 + E) \in \mathcal{L}$.
- 12. 证明:由 R中的全体开集生成的 σ 代数 \mathcal{B} 与S (\mathcal{F})
- 14. 证明: (1) R上的L可测集全体所成之集族 \mathcal{L} 与 \mathcal{P} (R) 等势.
- 15. 证明:R上的Borel集可测集必为L-S可测集.
- 16. 设 (R, \mathcal{L}_q, m_q) 为一可测空间, $E \subset R$,证明: $E \in \mathcal{L}_q$ 的充要条件是下述之一成立:
- (1) 对于任一 ε > 0, 存在闭集F,使得 F \subset E且 \mathbf{m}_{α}^{*} (E\F) < ε
- (2) 对于任一 ε > 0, 存在闭集F与开集G,使得 F \subset E \subset G且 $\mathsf{m}_{\mathfrak{a}}^*$ (G\F) < ε
- (3) 存在 F_δ 型集F与 G_δ 型集G ,使得 $F \subset E \subset G$ 且 $m^*_{\mathfrak{a}}$ $(G \setminus F) < \varepsilon$
- 17. 设 (X, \mathcal{A}, μ) 为测度 空间 $(\mathcal{A}$ 为代数), μ^* 为由 μ 导出的外测度.又设测度空间 $(X, \mathcal{A}_1, \mu^*)$ 为 (X, \mathcal{A}, μ) 的扩张,记 μ^{**} 为由 μ^* (作为 \mathcal{A}_1 上的测度) 导出的外测度,证明: $\mu^{**} = \mu^*$ (此处的 μ^* 视作 $\mathcal{P}(X)$ 上的外测度).
- 18. 设 (X, \mathcal{A}, μ) 为有限或 σ 有限测度空间,其中 \mathcal{A} 为 σ 代数 , (X , \mathcal{A}^* , μ^*) 为由C外测度法所得的 (X , \mathcal{A} , μ) 的扩张.又记 Ω 为所有 μ 零测集的全体子集所成之集族,令

 $\mathcal{A} \cup \Omega := \{A \cup W \mid A \in \mathcal{A}, W \in \Omega\},$

且在 $\mathcal{A} \cup \Omega$ 上定义集合函数 $v : v(A \cup W) = \mu(A)$.证明 : $(X, \mathcal{A} \cup \Omega, v) = (X, \mathcal{A}^*, \mu^*)$.

- 19. 设 \mathcal{A} 为集合X上的代数,D \subset X,令 \mathcal{A} \cap D := {A \cap D | A \in \mathcal{A} }.证明:
- (1) $\mathcal{A} \cap D \to D$ 上的代数 (若 $\mathcal{A} \to \mathcal{A}$ 大数 ,则 $\mathcal{A} \cap D$ 也为 \mathcal{A} 代数)
- $(2) S(\mathcal{A}) \cap D = S(\mathcal{A} \cap D)$
- (3) 若D $\in \mathcal{A}$, μ 为 \mathcal{A} 上的测度 , 则 μ 在 $\mathcal{A} \cap D$ 上的限制 μ_D 为 $\mathcal{A} \cap D$ 上的测度 ,
- 若记 μ^* 为由 μ 导出的 $\mathcal{P}(X)$ 上的外测度 , 则 μ_D^* 为 μ^* 在 $\mathcal{P}(D)$ 上的限制函数
- (4) 若 μ^* 为 $\mathcal{P}(X)$ 上的外测度, \mathcal{A}^* 为由C外测度法得到的 μ^* 可测集全体, $D \in \mathcal{A}^*$,记 μ_D^* 为 μ^* 在 $\mathcal{P}(D)$ 上的限制, \mathcal{A}_D^* 为由C外测度法得到的 μ_D^* 可测集全体,则 $\mathcal{A}_D^* = \mathcal{A}^* \cap D$.
- 20. 设 \mathcal{A} 是X上的代数 μ 为 \mathcal{A} 上的 σ 有限测度 \mathcal{A} 则在S \mathcal{A} 上存在且只存在一个测度 μ^* 使得 (X,S(\mathcal{A}), μ^*) 是 (X, \mathcal{A} , μ) 的扩张.