Лекция 4: Байесовский классификатор

Евгений Борисов

четверг, 11 октября 2018 г.

Классификатор: с чего все начинается?

хорошие и плохие коты

извлекаем признаки

один кот — одна точка

→ [0.14, 12, ..., 345]

→ [78.0, 20, ..., 177]

ML: классификация

разделения объектов на классы

Детектор котов:

→ вектор-признак → есть/нет

Классификатор: о задаче

разделение данных на части (классы) обучение «с учителем»

Учебный набор: [объект, ответ]

Задача: классификатор *объект* → *вектор-признак* → *результат*

Обучение: минимизация ошибки ошибка = результат - правильный ответ

Критерий остановки:

достигнут порог значения ошибки, и/или порог количества циклов

Классификатор: данные

$$\begin{bmatrix} x_1^{(1)} & x_2^{(1)} & \dots & x_n^{(1)} & y^{(1)} \\ x_1^{(2)} & x_2^{(2)} & \dots & x_n^{(2)} & y^{(2)} \\ \vdots & \vdots & & \vdots & \vdots \\ x_1^{(m)} & x_2^{(m)} & \dots & x_n^{(m)} & y^{(m)} \end{bmatrix}$$

- х вектор-признак
- у метка класса
- n размер пространства признаков
- т количество примеров

формула Байеса

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Х - объекты Ү - ответы

 $X \times Y$ - вероятностное пространство с плотностью p(x,y) (x_i,y_i) - выборка

Задача: найти ф-цию (классификатор) а: Х → У с минимальной ошибкой

Совместная плотность: p(x,y) = p(x)P(y|x) = P(y)p(x|y)

Р(у) - априорная вероятность класса у р(х|у) - ф-ция правдоподобия класса у Р(у|х) - апостериорная вероятность класса у

принцип максимума апостериорной вероятности

$$a(x) = \underset{y \in Y}{argmax} P(y|x) = \underset{y \in Y}{argmax} P(y) p(x|y)$$

Классификатор: функционал среднего риска

а: Х → Ү - классификатор

 $A_{V} = \{ x \in X \mid a(x) = y \}, y \in Y - разбиение X на части$

Ошибка: объект x класса y попал в класс $s: A_s$, s≠y

Вероятность ошибки: $P(A_s, y) = \int_{A_s} p(x, y) dx$

Потеря от ошибки: зададим $\lambda_{ys} \ge 0$ для всех пар (y,s) \in YxY

Средний риск: мат.ожидание потери классификатора

$$R(a) = \sum_{y \in Y} \sum_{s \in Y} \lambda_{ys} P(A_s, y)$$

Классификатор: теорема

Теорема про оптимальный байесовский классификатор

пусть заданы:

- априорные вероятности классов P(y),
- плотности их распределений р(х|у)
- λ_{ys}≥0 потери от ошибки

тогда минимум среднего риска R(a) достигается классификатором

$$a(x) = \underset{s \in Y}{\operatorname{argmin}} \sum_{y \in Y} \lambda_{ys} P(y) p(x|y)$$

Дополнение:

если
$$\lambda_{yy}$$
=0 и λ_{ys} = λ_y для всех y,s∈Y то

$$a(x) = \underset{y \in Y}{\operatorname{argmax}} \lambda_{y} P(y) p(x|y)$$

$$a(x) = \underset{y \in Y}{\operatorname{argmax}} \lambda_{y} P(y) p(x|y)$$

 λ_y - потеря для объектов у

P(y) - априорная вероятность класса у (доля примеров класса у, пропорция классов должна соответствовать)

p(x|y) - ф-ция правдоподобия класса у (плотность)

подходы к оценке плотности распределения:

- непараметрический
- параметрический
- смеси распределений

параметрический подход к оцениванию плотности

$$\hat{p}(x) = \varphi(x, \theta)$$

смеси распределений

$$\hat{p}(x) = \sum_{j=1}^{k} w_j \varphi_j(x, \theta_j)$$

НЕпараметрический подход к оцениванию плотности

$$\hat{p}(x) = \sum_{j=1}^{m} \frac{1}{mV(h)} K\left(\frac{\rho(x, x_j)}{h}\right)$$

допущение (наивный Байес): признаки Х - независимы друг от друга

тогда многомерную плотность можно представить как произведение одномерных плотностей

$$p(x|y) = p_1(x_1|y) \dots p_n(x_n|y)$$

Классификатор: оценка плотности

дискретный случай (гистограмма) :
$$\hat{p}(x) = \frac{1}{m} \sum_{i=1}^{m} [x = x_i]$$

непрерывный случай: эмпирическая оценка, окно ширины h (доля объектов попавших в отрезок)

$$\hat{p}(x) = \frac{1}{2hm} \sum_{i=1}^{m} [|x - x_i| < h]$$

$$\hat{p}(x) = \frac{1}{mh} \sum_{i=1}^{m} \frac{1}{2} \left[\frac{|x - x_i|}{h} < 1 \right]$$

оценка Парзона-Розенблата

$$\hat{p}(x) = \frac{1}{mh} \sum_{i=1}^m K\left(\frac{x-x_i}{h}\right)$$
 чётная ф-ция $K(r)=K(-r)$ нормированная $\int K(r) dr = 1$ невозрастающая при $r>0$, неотрицательная ф-ция

оценка Парзона-Розенблата для класса у

$$\hat{p}(x|y) = \frac{1}{l_y V(h)} \sum_{i:y=y_i} K\left(\frac{\rho(x, x_i)}{h}\right)$$

метод Парзоновского окна

$$a(x, X^{l}, h) = \underset{y \in Y}{\operatorname{argmax}} \lambda_{y} \frac{P(y)}{l_{y}} \sum_{i: y = y_{i}} K\left(\frac{\rho(x, x_{i})}{h}\right)$$

ядро Епанечникова

$$K(r) = \frac{3}{4}(1-r^2); |r| \le 1$$

выбор оптимального размера окна методом скользящего контроля (Leave One Out, LOO)

Классификатор: результат

учебный набор

Классификатор: результат

результат теста

разделяем набор данных

- учебный
- тестовый

недообучение (underfitting) большая ошибка на учебном наборе

переобучение (overfitting) малая ошибка на учебном наборе большая ошибка на тестовом наборе

метрики качества на тестовом наборе

- погрешность (accuracy)
- матрица ошибок (confusion matrix)
- точность (precision)
- полнота (recall)
- F-мера
- ROC/AUC

погрешность (accuracy)

правильные ответы / всего примеров

оценка для сбалансированного набора, т.е. количество примеров в классах +- одинаковое

матрица ошибок (confusion matrix)

два класса — четыре группы

- ТР истинно положительные
- TN истинно отрицательные
- FP ложно положительные
- FN ложно отрицательные

точность (precision)

TP/(TP + FP)

(метрики для отдельного класса)

доля объектов действительно принадлежащих данному классу относительно всех объектов, которые классификатор отнес к этому классу

полнота (recall)

TP/(TP + FN)

доля объектов, найденных классификатором, относительно всех объектов этого класса

F-мера

(precision*recall) / (precision+recall)

усреднение точности и полноты

Пример classification_report

р	recision	recall	f1-score	support
0 1		0.90 0.90	0.90 0.91	2835 2927
avg / total	0.90	0.90	0.90	5762

ROC - receiver operating characteristic, рабочая характеристика приёмника

TPR=TP/(TP+FN)

полнота(recall), доля объектов, найденных классификатором, относительно всех объектов этого класса

FPR=FP/(FP+TN)

доля объектов negative класса алгоритм предсказал неверно

ROC - показывает зависимость полноты **TPR**

от доли ложно-негативных **FPR** при изменении порога скора

AUC - area under ROC curve, площадь под ROC-кривой характеристика качества классификации

Классификатор: литература

Борисов Е.С. Байесовский классификатор. http://mechanoid.kiev.ua/ml-bayes.html

git clone https://github.com/mechanoid5/ml lectorium.git

Классификатор: почти последний слайд...

Вопросы?

Классификатор: практика

источники данных для экспериментов

sklearn.datasets

UCI Repository

kaggle

