دورة: 2021

الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية

الديوان الوطني للامتحانات والمسابقات امتحان بكالوريا التعليم الثانوي

الشعبة: رياضيات، تقنى رياضي

اختبار في مادة: العلوم الفيزيائية المدة: 04 سا و30 د

على المترشح أن يختار أحد الموضوعين الآتيين:

الموضوع الأول

يحتوي الموضوع الأول على (04) صفحات (من الصفحة 1 من 9 إلى الصفحة 4 من 9)

الجزء الأول: (14 نقطة)

التمرين الأول: (04 نقاط)

توجد بمنطقة " ناجر " بالطاسيلي أقصى الجنوب الشرقي الجزائري كهوف بها رسوم ونقوش غريبة وعجيبة.

استقطبت هذه المنطقة علماء آثار من جميع أنحاء العالم وقد تم تحديد عمر تلك النقوش باعتماد التأريخ بالكربون14 بما يقارب 35000 ans

يهدف هذا التمرين إلى تحديد عمر رسومات وبقايا كهوف منطقة" ناجر".

معطيات:

- $t_{1/2} = 5.7 \times 10^3 ans$:14 نصف عمر الكربون
- $m(^1_1p) = 1,00728u$ ' $m(^1_0n) = 1,00866u$ ' $m(^{14}_6C) = 14,00324u$ ' $m(^{12}_6C) = 12,00u$ ' $m(^{12}_6C) = 12,00u$ ' $m(^{12}_6C) = 12,00u$
 - $.1u = 931,5 MeV/C^2$
 - $^{14}_{6}$ C و $^{12}_{6}$ و $^{12}_{6}$ و $^{12}_{6}$
 - 2. الكربون14 هو نظير مشع طبيعيا لعنصر الكربون، اذكر تعريف النظائر.
 - 3. تتفكك عينة من الكربون 14، فتنبعث إشعاعات تؤدي الى تناقص كمية الكربون بمرور الزمن.
 - 1.3. اكتب معادلة تفكك نواة الكربون14 إلى نواة الأزوت $\binom{14}{7}$ وحدّد طبيعة الإشعاع المنبعث.
 - .2.3 احسب طاقة الربط E_ℓ لكل من النواتين ${}^{14}_{6}$ و ${}^{12}_{6}$ ثمَّ حدّد النواة الأكثر استقرارا.
 - 4. اكتب قانون التناقص الاشعاعي لعدد الأنوية غير المتفككة N(t) لعينة تحتوي في البداية N_0 نواة مشعة.
 - 5. باستغلال بقايا الفحم المستعملة في الرسوم والنقوش لكهوف منطقة " ناجر "، تم قياس النسبة: $\frac{N(t)}{N_0} = 1,42 \times 10^{-2}$ ، حدّد عمر العينة ثمَّ تأكد من المعلومة الواردة في السند أعلاه.

التمرين الثاني: (04 نقاط)

الإنتقال الطاقوي والطاقات المتجددة واحدة من الحلول لتزويد مناطق الظل بالطاقة الكهربائية التي تعتمد على الخلايا الشمسية التي تنتج تيارا كهربائيا مستمرا شدته ثابتة، يستعمل لشحن مكثفات ذات سعات عالية.

يهدف هذا التمرين إلى شحن مكثفة باستغلال الطاقة الشمسية.

- مولد مثالي للتيار (الخلايا الشمسية) شدته I = 10 مزود بمنظم للتيار.
 - مكثفة فائقة السعة فارغة تحمل الدلالات التالية: 1F; 2,7V
 - قاطعة *-*
- 1. نغلق القاطعة K في اللحظة t=0 لشحن المكثفة بخلية شمسية تنتج تيارا كهريائيا شدته I=10A

 $u_{c}(t)$ تمكنا بتجهيز مناسب من متابعة تطور التوتر الكهربائي (الشكل2). بين طرفي المكثفة فتحصلنا على المنحنى البياني (الشكل2).

- 1.1. ذكر بتعريف المكثفة.
- عبارة $u_{C}(t)$ بدلالة C سعة المكثفة، I شدة التيار $q(t)=I\cdot t$ علما أن عبارة شحنة المكثفة هي: $0 \le t \le t$ حيث $0 \le t \le t$
 - 3.1. باستغلال المنحنى البياني الشكل2:
 - t_1 أعط المدلول الفيزبائي للحظة t_1
 - 2.3.1. تأكد من قيمة سعة المكثفة C
 - .t. احسب الطاقة المخزنة عند اللحظة .1.
- 2. المكثفة مشحونة تحت توتر 2,7V. نحقق دارة كهربائية لأجل تفريغ المكثفة في مصباح مقاومته R.

في اللحظة t=0 نغلق القاطعة. باستعمال تجهيز مناسب نشاهد المنحنى البياني لتطور التوتر الكهربائي بين طرفي المكثفة بدلالة الزمن (الشكل3).

- 1.2. ارسم مخطط دارة التفريغ.
- 2.2. باستعمال التحليل البعدي بيّن أن المقدار RC متجانس مع الزمن.
- R الشكل (الشكل المنحنى البيانى (الشكل 3)، جِد قيمة ثابت الزمن τ ثمَّ استنتج قيمة T

التمرين الثالث: (06 نقاط)

لعبة الكرة الحديدية تعتمد على رمي اللاعب للكرة الحديدية باتجاه كرة الهدف وهي كربة خشبية صغيرة ذات لون مميز.

في البداية يقوم اللاعب برسم دائرة صغيرة يرمي من داخلها كرة الهدف على مسافة محصورة بين 6m و 6m.

يهدف هذا التمرين إلى دراسة حركة الكرة الحديدية لأجل وضعها أقرب ما يمكن من كرة الهدف.

معطيات:

- $g = 9.8 \, \text{m} \cdot \text{s}^{-2}$ شدة حقل الجاذبية الأرضية:
 - m = 710 g ؛ مثلة الكرة الحديدية: m = 710 g
 - OD = 8.9 m المسافة الأفقية:
- 1. يقف اللاعب "ياسين" داخل الدائرة ويرمي كرة حديدية كتلتها m بيده باتجاه كرة الهدف من موضع A يقع على ارتفاع h=1,4m عن سطح الأرض وبسرعة ابتدائية

مع مع يصنع حامل شعاعها زاوية α مع $v_A = v_0 = 8 \, m \cdot s^{-1}$ الأفق وعند مرورها بأقصى ارتفاع (الذّروة) تبلغ سرعتها $6 \, m \cdot s^{-1}$ لتسقط الكرة على الأرض في الموضع α (الشكل4).

حركة الكرة بين الموضعين Aو B نعتبرها سقوطا حرًا.

المعادلتين الزمنيتين لحركة مركز عطالتها في المعلم المتعامد $(\overrightarrow{Ox}, \overrightarrow{Oy})$ هما: $\begin{cases} x = v_0(\cos\alpha)t \\ y = -\frac{1}{2}gt^2 + v_0(\sin\alpha)t + y_0 \end{cases}$

- 1.1. اذكر المرجع المناسب لدراسة حركة الكرة.
- 2.1. اشرح الجملة " حركة الكرة بين الموضعين A_{e} B نعتبرها سقوطا حرا ".
 - $v_{v}(t)$ و $v_{x}(t)$ و المحورين $v_{x}(t)$ و 3.1.
 - lpha . lpha احسب زاوية القذف
 - .0B جِد زمن وصول الكرة إلى الموضع B ثم استنتج المسافة الأفقية OB.
- 2. تسقط الكرة الحديدية في الموضع B الذي يبعد عن كرة الهدف مسافة BD وتواصل مسارها بحركة مستقيمة أفقية باتجاه كرة الهدف لتتوقف في الموضع C. تخضع الكرة إلى احتكاك مع أرضية الملعب يكافئ قوة وحيدة $v_{Bx} = v_{0x} = 6m \cdot s^{-1}$ وأن سرعتها في الموضع D هي: D وأن سرعتها في الموضع D هي:
 - 1.2. بتطبيق القانون الثاني لنيوتن، جد عبارة تسارع مركز عطالة الكرة الحديدية ثم استنتج طبيعة حركتها.
 - 2.2. احسب المسافة BC التي تقطعها الكرة على المحور الافقى.
- مل حقق .5 $cm \le d \le 15$ سيدة والكرة الحديدية $d \le 5$. هل حقق .3.2 اللاعب هدفه؟

الجزء الثانى: (06 نقاط)

التمرين التجريبي: (06 نقاط)

توصىي منظمة الصحة العالمية بتناول جرعات كافية من يود البوتاسيوم غير المشع (KI)عن طريق الفم حتى تتشبع الغدة الدرقية باليود المستقر مما يوفر وقاية الأشخاص عند تعرضهم لليود 131 المشع.

يباع يود البوتاسيوم المستقر (KI) في الصيدليات على شكل أقراص.

يهدف هذا التمرين إلى التأكد من الدّلالة المسجلة على علية الدواء m=130mg والدراسة الحركية.

يعظى:

 $M(KI) = 166g \cdot mol^{-1}$ الكتلة المولية الجزيئية ليود البوتاسيوم:

نقوم بسحق قرص واحد من العلبة ونذيبه في حجم $V_1 = 100 mL$ من الماء المقطر فنحصل على محلول ليود البوتاسيوم تركيزه المولى c_1 .

 $H_2O_2(aq)$ وعند درجة حرارة $C_2\circ C_3\circ C_3\circ C_3\circ C_3\circ C_3\circ C_3$ من محلول الماء الأكسيجيني t=0 في بيشر في اللحظة t=0 وعند درجة حرارة t=0 مع المحلول المحضر سابقا ليود البوتاسيوم t=0 مع المحلول المحضر سابقا ليود البوتاسيوم t=0 مع المحلول التقاعلى التّام الحاصل في الوسط التقاعلي بالمعادلة:

$$H_2O_2(aq) + 2I^-(aq) + 2H_3O^+(aq) = I_2(aq) + 4H_2O(\ell)$$
(1)

- 1. اكتب المعادلتين النصفيتين للأكسدة والإرجاع.
- 2. أنشئ جدولا لتقدم التفاعل ثم عبّر عن كمية مادة ثنائي اليود المتشكل بدلالة تقدم التفاعل x.
 - 3. مكّنت المتابعة الزمنية للتحول الكيميائي عن طريق معايرة كمية مادة ثنائي اليود المتشكل من رسم المنحنى البياني (الشكل4).
 - x_{max} استخرج بيانيا قيمة التقدم الأعظمي أم x_{max} ثم استنتج المتفاعل المُحِد.
 - c_1 احسب التركيز المولى.
- 3.3. احسب كتلة يود البوتاسيوم في المحلول المحضر ثم تأكد من الدّلالة المسجلة على العلبة.
- $t_1 = 9 \, min$ و $t_0 = 0$ و الكيميائي I^- ثم احسب قيمتها في اللحظتين $t_0 = 0$ و $t_0 = 0$
 - 6. اذكر العامل الحركى المسؤول عن تطور السرعة.

 $n_{\rm I_2} \left(\times 10^{-2} mmol \right)$

انتهى الموضوع الأول

الموضوع الثاني

يحتوي الموضوع الثاني على (05) صفحات (من الصفحة 5 من 9 إلى الصفحة 9 من 9)

الجزء الأول: (14 نقطة)

التمرين الأول: (04 نقاط)

السَّبَانِخْ معروفة في الجزائر بنبات "السلق"، أحد أهم المأكولات الصحية، قد تتلوث ببعض العناصر المشعة كاليود مثلا وتعتبر السبانخ غير مُلوَثة باليود131 المشع إذا كان نشاطه A لا يتعدى 2000Bq في الكيلوغرام الواحد كحد أقصى مسموح به. أراد فريق من العلماء اليابانيين دراسة التناقص الإشعاعي لليود131 المشع في عينة من السبانخ المُلوَّثة به وتحديد المدة التي يجب انتظارها لتناولها، بعد أن وَرَدَ إليهم عن طريق وسائل الاعلام التي غطت الكارثة النووية لمحطة فوكوشيما اليابانية يوم عارس 2011 " إنَّ معدلات التلوث بالإشعاع النووي الذي أصاب المزارع قد تجاوز في بعض الأحيان 10 مرات المعدلات المسموح بها ".

معلومة: يتراوح نشاط اليود 131 المشع في السبانخ بين 6100Bq و 15020Bq في الكيلوغرام الواحد.

ومُثِّل بيان تطور $\ln\left(\frac{N}{N_0}\right)$ بدلالة الزمن t لليود 131 المشع (الشكل 1) حيث: N عدد الأنوية الابتدائية في العينة المشعة و N عدد الأنوية المتبقية في هذه العينة في اللحظة t .

- اشرح الجملة الواردة عن وسائل الإعلام:
 إنَّ معدلات التلوث بالإشعاع النووي الذي أصاب المزارع قد تجاوز في بعض الأحيان 10 مرات المعدلات المسموح بها".
- eta^- ينتج عن تفكك نواة اليود $^{131}_{53}$ نواة الكزينون $^{A}_{Z}$ بنمط اشعاعي .2 ينتج عن تفكك نواة اليود $^{131}_{53}$ وعيّن قيمة كل من $^{A}_{Z}$ و .1.2
- النشاط $t_{\frac{1}{2}}$ زمن نصف العمر و λ ثابت النشاط 2.2. اعتمادا على قانون التناقص الإشعاعي، جِد العلاقة بين $t_{\frac{1}{2}}$ زمن نصف العمر و λ ثابت النشاط الاشعاعي.
 - 3.2. باستغلال المنحنى البياني (الشكل 1)، جِدْ قيمة زمن نصف العمر t_{\times} لليود 131 المشع.
- 3. أعطى قياس نشاط لعينة من السبانخ كتلتها g المأخوذة من مكان الحادث القيمة g في لحظة نعتبرها مبدأ لقياس الأزمنة.
 - .131. احسب عدد الأنوية N_0 لليود 131 المشع المتواجدة في عينة كتلتها 1kg من السبانخ المُلوَثة باليود 131.
 - 2.3. جِدْ أَصغر مُدَّة زمنية يجب انتظارها لتناول السبانخ.
 - 3.3. حدِّد تاريخ بداية استهلاك هذه السبانخ علما أنَّ نتائج فريق البحث كانت في تاريخ 11 مارس 2011.

التمرين الثاني: (04 نقاط)

الهدف: إيجاد قيم مميزات كل من مولد كهربائي مثالي ومكثفة.

قام أستاذ العلوم الفيزيائية رفقة فوج من متعلميه، بتركيب الدارة الكهربائية الموضحة بالشكل 2 والمتضمنة مولد كهربائي للتوتر الثابت، مكثفة فارغة وناقل أومي مقاومته $R = 100 \Omega$.

تَمَّ غلق القاطعة K في اللحظة t=0 وبواسطة راسم اهتزاز ذو ذاكرة، تم الحصول على المنحنى البياني لتطور التوتر الكهربائي بين طرفي المكثفة بدلالة الزمن $u_{c}=f\left(t\right)$ (الشكل E).

- 1. اذكر مميزات المولد الكهربائي للتوتر الثابت والمكثفة.
- 2. وضح على الدارة كيفية ربط راسم الاهتزاز لمشاهدة المنحنى البياني (الشكل3).
- محدٌ عبارة شدة التيار الكهربائي بين طرفي الدارة بدلالة سعة المكثفة C والتوتر الكهربائي بين طرفي المكثفة $u_{C}(t)$
 - .4 بتطبیق قانون جمع التوترات وقانون أوم، وُجِدَ أن المعادلة التفاضلیة للتوتر u_c من الشکل: $\beta = \alpha \cdot \frac{du_c}{dt} + \alpha \cdot u_c \ (t) = \beta$
 - 5. جِدْ قيم مميزات المولد والمكثفة.
 - في حالة استبدال الناقل الأومي السابق بناقل أومي $u_{c}=f\left(t\right)$ في حالة استبدال الناقل الأومي السابق بناقل أومي . $R'=200\Omega$

التمرين الثالث: (06 نقاط)

إحدى فرضيات الميكانيك " لجميع الأجسام نفس حركة السقوط الشاقولي في الفراغ مهما كانت كتلتها ". للتحقق من هذه الفرضية أُنجزت عدة تجارب وكانت نتائجها أنَّ: القوى الناتجة عن الموائع هي سبب اختلاف سرعات

للتحقق من هذه الفرصية الجرب عده تجارب وكانت تناتجها أن: ال**فوى النائجة عن المواتع هي سبب اختلاف سرعا**د سقوط الأجسام نحو الأرض.

أراد فوجان من المتعلمين أن يُنجزا تجربتين للتحقق من هذه النتيجة، ولهذا الغرض استعملا أنبوبين زجاجيين لهما الطول نفسه وكريتين (A) و (B) متماثلتين في الحجم (B) والكتلة (B).

معطيات:

- $V_S = 2,57 \times 10^{-6} \, m^3$ حجم کل کرة: 4
 - $m = 6.0 \times 10^{-3} kg$ کتلة کل کرة: <
- $\rho_{air} = 1.3 \ g \cdot L^{-1}$ الكتلة الحجمية للهواء: $Q_{air} = 1.3 \ g \cdot L^{-1}$
- $g = 9.8 \, \text{m} \cdot \text{s}^{-2}$ شدة حقل الجاذبية الأرضية:

الفوج الأول: تَرك أحد المتعلمين الكُرية (A) تسقط شاقوليا من ارتفاع h في الأنبوب الزجاجي بعد تفريغه من الهواء في لحظة نعتبرها مبدأ لقياس الأزمنة

 $t_{\scriptscriptstyle A}=0,40\,s$ وقيست بميقاتية مدة السقوط وقيست بميقاتية مدة ا

- 1. مَثِّلُ القوى الخارجية المطبقة على G مركز عطالة الكرية (A) أثناء سقوطها الشاقولي.
- 2. بتطبيق القانون الثاني لنيوتن، جِدْ المعادلة التفاضلية للسرعة $v_z(t)$ واستنتج طبيعة الحركة.
 - 3. احسب الارتفاع h.
- 4. ناقش صحة الفرضية " لجميع الأجسام نفس حركة السقوط الشاقولي في الفراغ مهما كانت كتلتها ".

الفوج الثاني: تَرك أحد المتعلمين الكرية (B) تسقط شاقوليا من الارتفاع A في الأنبوب الزجاجي المملوء بالهواء فكانت $v_z = f(t)$ بتجهيز مناسب تم تسجيل تطور سرعة الكرية خلال الزمن فتحصل على البيان ($t_B = 1.1s$). (الشكل 5).

- $t_0 = 0.16 \, s \, i_0 = 0$. مَثِّلُ القوى الخارجية المطبقة على G مركز عطالة الكرية في اللحظات: $t_0 = 0.16 \, s \, i_0 = 0.16 \, s$
- $\overrightarrow{f} = -k\overrightarrow{v_z}$: يجِدُ المعادلة التفاضلية التي تحققها سرعة الكرية $v_z(t)$ باعتبار قوة الاحتكاك مع الهواء من الشكل . حيث k معامل الاحتكاك .

- 4. اعتمادا على المعادلة التفاضلية والبيان، جِدْ قيمة معامل k. الاحتكاك k.
 - 5. فسِّر الفارق الزمني بَيْنَ لحظتي وصول الكريتين t_A و t_B الكريتين t_A الح

الجزء الثاني: (06 نقاط)

التمرين التجريبي: (06 نقاط)

يُستعمل حمض الأسكوربيك $(C_6H_8O_6)$ لمنع وعلاج بعض الأمراض ويعرف بفيتامين C يتواجد في البرتقال، الطماطم والفراولة ... ويُباع في الصيدليات كَمُكَمِّل غذائي على شكل أقراص.

الهدف: دراسة محلول فيتامين C الاصطناعي وفيتامين C المستخلص من البرتقال.

يعظى:

. $M\left(\mathrm{C_6H_8O_6}\right) = 176~g\cdot mol^{-1}$: الكتلة المولية الجزيئية لحمض الأسكوربيك

الإصطناعى: C الإصطناعى:

m فَحَضِّر حجما V=200m من محلول مائي لحمض الأسكوربيك في درجة حرارة V=200m انطلاقا من كتلة $c=1,42\times 10^{-2}~mol\cdot L^{-1}$ و $c=1,42\times 10^{-2}~mol\cdot L^{-1}$

1.1. إليك قائمة الأدوات المخبرية والمواد الكيميائية الآتية:

المواد	الأدوات
– ماء مقطر	حوجلات عيارية:
$\left(\mathrm{Na}^{\scriptscriptstyle +}(aq)+\mathrm{HO}^{\scriptscriptstyle -}(aq) ight)$ محلول هيدروكسيد الصوديوم $-$	500 mL \$ 200 mL \$ 100 mL
 عصير حبة البرتقال 	0.1g ميزان رقمي بتقريب $-$
$ m H_2SO_4$ حمض الكبريت $-$	سحاحة مدرجة
$\mathrm{CH_{3}COOH}(aq)$ محلول حمض الإيثانويك $-$	 مخلاط مغناطیسي
$-$ محلول ثيوكبريتات الصوديوم تركيزه $-1 imes 10^{-3} mol \cdot L^{-1}$	۔ - أنابيب اختبار
$5,3{ imes}10^{-3}mol\cdot L^{-1}$ تركيزه $I_2ig(aqig)$ محلول ثنائي اليود $-$	- مخبار مدرج
$(C$ فيتامين $\mathrm{C}_6\mathrm{H_8O_6}(s)$ مسحوق حمض الأسكوربيك $-$	- قمع؛ حامل؛ زجاج الساعة (جفنة)
 – كاشف ملون 	- بياشر بسعات مختلفة

اقترح بروتوكولا تجريبيا (الأدوات والمواد، خطوات العمل) لتحضير المحلول السابق.

- 2.1. اكتب معادلة التفاعل المنمذج للتحول الكيميائي الحادث بين حمض الأسكوربيك والماء المقطر مبينا الثنائيتين حمض/أساس المشاركتين في التفاعل.
 - 3.1. أنشئ جدولا لتقدم التفاعل وبَيِّنْ أنَّ التفاعل المدروس غير تام.
 - $K_a = \frac{\tau_f}{10^{pH} \cdot (1-\tau_f)}$:-- بيِّن أَنَّ عبارة ثابت الحموضة K_a للثنائية حمض/أساس تعطى بـ- عبارة ثابت الحموضة عبارة للثقدم. حيث τ_f يمثل النسبة النهائية للتقدم.
 - الثنائية حمض/أساس. pK_a الثنائية حمض/أساس.

2. فيتامين C المستخلص من البرتقال:

 $V = 82 \, mL$ عصيرا حجمه عصيرا كتلتها المين عصيرا عصيرا عصيرا عصيرا نستخلص من حبة برتقال

لتحديد كتلة حمض الأسكوربيك في هذه البرتقالة نقوم بعملية معايرة تتم على مرجلتين:

المرحلة الأولى:

- نأخذ بِماصَّة حجما $V_1=10mL$ من العصير المتحصل عليه ونضعه في بيشر ونضيف إليه بوفرة كمية من ثنائي اليود $V_1=10mL$ حجمها $V_2=10mL$ وتركيزه المولي $V_2=10mL$ المعادلة التالية:

$$C_6H_8O_6(aq) + I_2(aq) = C_6H_6O_6(aq) + 2I^-(aq) + 2H^+(aq)$$

المرجلة الثانية:

- تركيزه المولي ((I_2) المتبقي بواسطة محلول ثيوكبريتات الصوديوم ((I_2) المتبقي بواسطة محلول ثيوكبريتات الصوديوم ((I_2) المتبقي بواسطة محلول ثيوكبريتات الصوديوم ((I_2) المتبقي بواسطة محلول على التكافؤ (I_2) فكان الحجم اللاَّزم للحصول على التكافؤ (I_2)
- 1.2. مستعينا بالأدوات والمواد المناسبة الواردة في القائمة السابقة، ارسم التركيب التجريبي الخاص بعملية المعايرة.
 - علما أنَّ علما أنَّ $\left(S_2O_3^{2^-}\left(aq\right)\right)$ علما أنَّ علما $\left(I_2\left(aq\right)\right)$ وشوارد ثيوكبريتات $\left(S_2O_3^{2^-}\left(aq\right)\right)$ علما أنَّ الثنائيتين المشاركتين في التفاعل هما: $\left(S_2O_3^{2^-}\left(aq\right)\right)$ و $\left(S_2O_3^{2^-}\left(aq\right)\right)$ علما أنَّ الثنائيتين المشاركتين في التفاعل هما: $\left(S_2O_3^{2^-}\left(aq\right)\right)$
 - n_1 في اليود المتفاعلة مع حمض الأسكوربيك واستنتج كمية مادة حمض الأسكوربيك واستنتج كمية مادة ثنائي اليود المتفاعلة مع حمض الأسكوربيك واستنتج كمية مادة عصير البرتقال.
 - 4.2. حِدْ كتلة حمض الأسكوربيك في البرتقالة المدروسة.
 - 5.2. وَصَفَ طبيب لمريض تناول قرص من فيتامين C1000 يوميا (قرص فيتامين C1000 يحتوي على 1000 من حمض الأسكوربيك)، جِدْ كتلة البرتقال التي تعادل قرص فيتامين C1000.

رمة (العلا	/ 1 m E p
مجموعة	مجزأة	عناصر الإجابة (الموضوع الأوّل)
		التّمرين الأول: (04 نقاط)
0.5	0,25	$N=6$ عدد النواتين C_6^{12} و C_6^{12} : النواة C_6^{12} : عدد البروتونات C_6^{12} عدد النوترونات C_6^{12}
	0,25	$N\!\!=\!\!8$ النواة $C\!\!=\!\!1$: عدد البروتونات $Z\!\!=\!\!6$ عدد النوترونات
0.25	0,25	2. تعريف النظائر:
0.23	0,23	(الاختلاف في A (الاختلاف في Z A (الاختلاف في A
	0,25	.3
	0,25	$^{14}_{6}\mathrm{C} ightarrow ^{14}_{7}\mathrm{N} + ^{0}_{-1}\mathrm{e}$:1.3 نواة الكربون 14:
		. eta^- طبيعة الاشعاع المنبعث هو الاشعاع
		$^{12}_{6}$ C و $^{14}_{6}$ و $^{14}_{6}$ و $^{12}_{6}$ و $^{12}_{6}$
	0,25	$E_{\ell}\left({}_{Z}^{A}X\right) = \Delta m \cdot C^{2} = \left[Zm_{p} + (A - Z)m_{n} - m\left({}_{Z}^{A}X\right)\right]C^{2}$
	$2 \times 0,25$	$E_{\ell} {14 \choose 6} = 0,10972 \times 931,5 = 102,2 MeV: {14 \choose 6}C:$ من أجل النواة
2.5	$2\times0,25$	$E_{\ell}inom{12}{6}C = 0.09564 \times 931,5 = 89,1 MeV: {}^{12}{}^{0}{}^{0}$: من أجل النواة
	,	تحديد النواة الأكثر استقرارا:
	0,25	$\frac{E_{\ell}\binom{14}{6}C}{4} = 7.3 \text{MeV} / nuc$
	0,25	$\frac{A}{\frac{E_{\ell}(^{12}C)}{A}} = 7,42 MeV / nuc$
		A
		$\frac{E_{\ell}\binom{^{14}C}{^{6}C}}{A} < \frac{E_{\ell}\binom{^{12}C}{^{6}C}}{A}$
	0,25	ومنه النواة $rac{12}{6}C$ هي الأكثر استقرارا.
0.25	وية الابتدائية و λ ثابت $0,25$	لاشعبير عن علاقة قانون التّناقص الاشعاعي بدلالة N_0 عدد الأنوية الابتدائية و λ ثابت λ
0.25	0,23	$N(t) = N_0 e^{-\lambda t}$:التّفكك الاشعاعي
	0,25	$N\left(t ight)=N_{0}e^{-\lambda t}\Rightarrow t=-rac{t_{1/2}}{\ln2}\cdot lnrac{N(t)}{N_{0}}$:تحدّید عمر العینة: 5.5
0.5	0,25	ت ع: t = 34986 ans ≈ 35000 ans
		وهي نفسها المعلومة المعطاة في السند.

العلامة		(1 at least a late valie		
مجموعة	مجزأة	عناصر الإجابة (الموضوع الأوّل)		
	0,25	التّمرين الثاني: (04 نقاط)		
	0,23	1.1. تعريف المكثفة: عنصر كهربائي يتكون من لبوسين بينهما عازل.		
	0,25	$u_{C}=rac{q\left(t ight)}{C}$ ، $q\left(t ight)=I\cdot t$: بدلالة I شدة التّيار $q\left(t ight)$ بدلالة $q\left(t ight)$		
	0,25	$u_c(t)=rac{I}{C}\cdot t$: التّعبير عن $u_c(t)$ بدلالة C سعة المكثفة و I شدة التّيار $u_c(t)$		
		3.1. باستغلال المنحنى البياني الشكل 2:		
	0,25	1.3.1. المدلول الفيزيائي لـ t_1 : اللحظة الموافقة لبلوغ التّوتر الأعظمي الذي تتحمله المكثفة أي		
		شحن كلي للمكثفة.		
		:c التّأكد من قيمة سعة المكثفة. $:c$		
	0, 25 0, 25	$u_{\scriptscriptstyle C} = at 0 \leq t \leq t_{\scriptscriptstyle 1}$ معادلة البيان: $a = 10\mathrm{V}/s$		
2.5	0,25	$u_c(t) = \frac{I}{C} \cdot t$ وبالمطابقة مع		
	0,25	$\frac{I}{C}$ = 10 \rightarrow C = 1F : نجد		
		$t_{_{1}}$ عند اللحظة: $t_{_{1}}$:		
	$0,25\times2$	$E_c(t_1) = \frac{1}{2}cu_c^2(t_1) = \frac{1}{2} \times 1 \times (2,7)^2 = 3,64 \text{ J}$		
	0,25	2. رسم مخطط دارة التّقريغ: 1.2. رسم مخطط دارة التّقريغ:		
1.5	0,25	$[RC] = \frac{[U]}{[I]} \frac{[I]}{[U]} [T] = [T]$.2.2. التّحليل البعدي: $[T] = [T] \frac{[U]}{[U]} [T]$ فالمقدار $[T] = [T]$ متجانس مع الزمن		
	$0,25\times2$	$\tau = 20 s$: بالاسقاط نجد $u_c(\tau) = 0.37 \times 2.7 = 1V$ بالاسقاط نجد . 3.2		
	$0,25\times2$ $0,25\times2$	$R=rac{ au}{C}=20\Omega$: R استنتاج قیمهٔ		
		التّمرين الثالث: (06 نقاط)		
	0,25			
3.5		1.1. المرجع المناسب لدراسة حركة الكرة: السطحي الأرضي.		
	0,5	2.1. حركة الكرة بين A و B سقوط حر: الكرة تخضع الى ثقلها فقط (اهمال دافعة ارخميدس والاحتكاك مع الهواء أمام الثقل أي اهمال تأثير الهواء).		

رمة	العلا	عنام الأمامة (المحضوء الأمّار)
مجموعة	مجزأة	عناصر الإجابة (الموضوع الأوّل)
		$v_y(t)$ و $v_x(t)$ و الزمنيتين الزمنيتين للسرعة.3.1
		$\begin{cases} v_x = \frac{dx}{dt} = v_0(\cos\alpha) \\ v_y = \frac{dy}{dt} = -gt + v_0(\sin\alpha) \end{cases}$
	$0,5\times2$	$v_{y} = \frac{dy}{dt} = -gt + v_{0} (\sin \alpha)$
	$0,25\times2$	$\cos lpha = rac{v_{0x}}{v_0} = 0.75 \Rightarrow lpha = 41.41^\circ$. $lpha = 41.41^\circ$. $lpha = 4.1$
		ترمن وصول الكرة الى الموضع B :
	0,25	$0 = -4.9t^2 + 8(\sin 41.41^\circ)t + 1,4$
	$0,25\times2$	$-4.9t^2 + 5,29t + 1,4 = 0$
	$0,25\times2$	$t_B = 1.3 s$
		$OB = x_{\scriptscriptstyle B} = v_{\scriptscriptstyle 0} \left(\coslpha ight) t_{\scriptscriptstyle B} = 7,8 m$ استنتاج المسافة الأفقية
		.2
		1.2. عبارة تسارع مركز عطالة الكرة:
	$0,25\times5$	$\sum \overrightarrow{F}_{ext} = m\overrightarrow{a_G} \implies \overrightarrow{P} + \overrightarrow{R} + \overrightarrow{f} = m\overrightarrow{a_G}$: بتطبيق القانون الثاني لنيوتن على الكرة
		(xx') بالإسقاط على المحور الموجه في نفس جهة الحركة (xx')
		$-f = ma_G \Rightarrow a_G = \frac{-f}{m}$
2.5	0,25	$\overrightarrow{P}^{lag{\dagger}}$ حركة الكرة مستقيمة متغيرة (متباطئة) بانتظام.
		2.2. حساب المسافة BC التّي تقطعها الكرة على المحور الافقي:
	$0,25\times2$	$v_C^2 - v_B^2 = 2a_G \cdot BC \Rightarrow BC = \frac{-v_B^2 \cdot m}{2f} = 1m$
		عن كرة الهدف CD بعد الكرة عن كرة الهدف CD بعد الكرة عن كرة الهدف
	0,25	$OD = OB + BC + CD \Rightarrow CD = OD - (OB + BC) = 10 cm$
		$5cm \le d \le 15cm$
	0,25	والهدف محقق.
		التّمرين التّجريبي: (06 نقاط)
		1. كتابة المعادلتين النصفيتين لتفاعل الأكسدة والإرجاع:
0.5	0,25	$H_2O_2(aq) + 2H_3O^+(aq) + 2\acute{e} = 4H_2O(l)$
	0,25	$2I^{-}(aq) = I_{2}(aq) + 2\acute{e}$

امة	العلا			1 "\$1	()	-1:0	
مجموعة	مجزأة		()	لموضوع الأوّل	عس الإجابة (ا		
						للتفاعل:	2. جدول التّقدم
		المعادلة	$H_2O_2(aq$	$\left(\right) + 2I^{-}(aq)$	$+2H_3O^+(aa$	$\underline{q} = \underline{I}_2(aq) +$	$4H_2O(l)$
1		الحالة الابتدائي	c_2V_2	c_1V_1	٦٠	0	٦٠
	$0,25\times3$	الحالة الانتقالية	c_2V_2-x	c_1V_1-2x	يو فر ه	х	بوفرة
		الحالة النهائية	$c_2V_2 - x_{max}$	$c_1V_1-2x_{max}$		X _{max}	w, b,
	0,25		$n_{I_2}(t) = x(t) :$	x قدم التفاعل x	د المتشكل بدلالـ	ة مادة ثنائي اليو	
					4		.3
	0,25					x_{max} الأعظمي الأعظمي	
	0,25 0,25	$c_2V_2-x_{max}$	$=0,1\times0,1-3$	$,9\times10^{-4}=9,61$	$1 \times 10^{-3} mol \neq 0$	متفاعل المحد:	_
	0,23						ومنه المتفاعل ا
1.75					1	ة التَّركيز المولي 4-01-00	
1./5	$0,25\times2$		c_1V_1 -	$2x_{max} = 0 \Longrightarrow c_1$	$=\frac{2x_{max}}{V}=\frac{2\times}{V}$	$\frac{3.9 \times 10^{-4}}{0.1} = 7.8$	$8 \times 10^{-3} mol \cdot L^{-1}$
				لول المحضر:	المذابة في المح	 ة يود البوتاسيوم	3.3. حساب كتا
			$m = a \cdot V =$		#	,	
	$0,25\times2$		$\frac{1}{M} - c_1 \cdot v_1 - c_2 \cdot v_2 = c_3 \cdot v_1 - c_4 \cdot v_2 = c_4 \cdot v_1 - c_4 \cdot v_2 = c_4 \cdot v_2 = c_4 \cdot v_1 - c_4 \cdot v_2 = c_4 \cdot v_2 = c_4 \cdot v_3 = c_4 \cdot v_4 = c_4 \cdot $	$\Rightarrow m - c_1 \cdot v_1 \cdot m$		$0.1 \times 166 = 0.12$	
					•	سجلة على العلبة	و هي القيمه الما
		$t=2t_{1/2}$. إيجاد التّركيب المولي للجملة الكيميائية: $2t_{1/2}$					
$0,25 t_{1/2} = 3 \min \Rightarrow 2$				$min \Rightarrow 2t_{1/2} = 6$	من البيان: min		
1.25	0,25				••	$x(2t_{I/2}) = 29, 2$	5×10^{-2} mmol
		$n_{(\mathrm{H_2O_2})}mmol$	$n_{(\Gamma)}mmol$	$n_{(I_2)}mmol$			
	$0,25\times3$	9,7	0,195	0,29			
		ν(I ⁻) = -	$-\frac{dn(I^{-})}{dx} = 2\frac{dx}{dx}$	تقدم التّفاعل x :	مبائہ ⁻ I بدلالة	اختفاء النوع الكد	5. عدارة سرعة
	$v(\Gamma) = -rac{dn(\Gamma)}{dt} = 2rac{dx}{dt}: x$ بدلالة تقدم التّفاعل T بدلالة تقدم التّفاعل $t_0 = 0$ و $t_0 = 0$ و $t_0 = 0$					-5. 5.	
						حساب قيمتها في	
$v_{\Gamma}(t=0) = 2\left(\frac{4\times6,5\times10^{-2}-0}{3-0}\right) = 17,3$					$0^{-2} - 0$	0-2 1	
	0,25			$V_{\Gamma}(t=0)$	0=2	$=17,3\times10$	0 mmoi·min
	0,25			v(t=9min)	$=2\left(\frac{5,2-3,6}{6}\right)$	$5.5 \times 10^{-2} = 2.3 \times 10^{-2}$	10 ⁻² mmol · min ⁻¹
				,1 (,),,,,,,	- (9-0)		20 HALLON HINTE
0.5	0,5	لات.	المولية للمتفاعا	تناقص التّر اكيز	تطور السرعة	ى المسؤول عن	6 العامل الحرك
		<u>-</u>					

العلامة					
مجموعة	مجزأة	عناصر الإجابة (الموضوع الثاني)			
		الجزء الأول: (14نقطة)			
		التّمرين الأول: (04 نقاط)			
0.25	0,25	1. شرح الجملة الواردة في وسائل الإعلام:			
		نشاط اليود 131 المشع في المزارع قد تجاوز في بعض الأحيان القيمة المسموح بها (2000Bq) في			
		بعض النباتات بعشر مرات أو أكثر.			
		.2			
	0,25	$^{131}_{53}$ معادلة الثّقكك: : .1.2			
	0,25	$\int 131 = A + 0 \rightarrow A = 131$			
	0,25	$\begin{cases} 53 = Z - 1 \rightarrow Z = 54 \end{cases}$			
		$^{131}_{53}I \rightarrow ^{131}_{54}Xe + ^{0}_{-1}e$			
		عبارة $t_{\frac{1}{2}}$ بالاعتماد على قانون التّناقص الإِشعاعي:			
		$N(t) = N_0 \cdot e^{-\lambda t}$			
	$3 \times 0,25$	$\left\{ N\left(t_{\frac{1}{2}}\right) = N_0 \cdot e^{-\lambda t_{\frac{1}{2}}} \right\}$			
2.5		$\frac{N_0}{2} = N_0 \cdot e^{-\lambda t_{1/2}}$			
		$ln2 = \lambda t_{\frac{1}{2}} \rightarrow \qquad t_{\frac{1}{2}} = \frac{ln2}{\lambda}$			
		نصف العمر $t_{1/2}$ لليود 131 المشع. 3.2. زمن نصف العمر والمشع.			
	0,25	$ln\frac{N}{N_0} = -\lambda t$ العبارة النظرية:			
	0,25	$ln\frac{N}{N_0}=at=-0,0866t$:العبارة البيانية			
	0,25	$\lambda = 0.0866~jours^{-1}$ ومنه:			
	0,25	$t_{\frac{1}{2}} = \frac{\ln 2}{0,0866} = 8 jours$			

العلامة		عناصر الإجابة (الموضوع الثّاني)		
مجموعة	مجزأة	عقاصر الإجابة (الموطوع التاتي)		
	0,25	.3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .		
	0,25	$N_0' = \frac{8000 \times 24 \times 3600}{0,0866} = 7,98 \times 10^9 \text{ Noyaux}$		
1.25		2.3. إيجاد أصغر مدة زمنية يجب انتظارها لتناول السبانخ.		
	0,25	$t = \frac{t_{1/2}}{\ln 2} \cdot \ln \left(\frac{A_0}{A} \right)$		
	0,25	$t = \frac{8}{\ln 2} \cdot \ln \left(\frac{8000}{2000} \right) = 16 jours$		
		3.3. تاريخ بداية الاستهلاك:		
	0,25	بعد انتظار مدة 16 يوم من تاريخ 11 مارس 2011 يمكن استهلاكه في اليوم الموالي والذي يوافق		
	0,23	التّاريخ: 28 مارس 2011.		
0.5	5 2×0,25	التمرين الثاني: (04 نقاط)		
0.5		C. يتميز المولد المثالي بقوته المحركة الكهربائية E وتتميز المكثفة بسعتها.		
0.25	0,25			
0.75	3×0,25	3. عبارة شدة التّيار الكهربائي $i\left(t\right)$ بدلالة سعة المكثفة C والتّوتر الكهربائي بين طرفي المكثفة . $u_{C}\left(t\right)$. $ \begin{bmatrix} i\left(t\right)=\frac{dq}{dt} \\ q\left(t\right)=C\cdot u_{C}\left(t\right) \\ i\left(t\right)=C\cdot \frac{du_{C}}{dt} \end{bmatrix} $		

الع	الأدار الإداري الأداري الأداري الأداري الأداري الأداري	
مجزأة	عناصر الإجابة (الموضوع الثاني)	
	. eta و eta .	
	بتطبيق قانون جمع التوترات وقانون أوم:	
	$\left[u_{R}\left(t\right)+u_{C}\left(t\right)=E\right]$	
	$RC \cdot \frac{du_C}{dt} + u_C(t) = E$	
$2 \times 0,25$	$\begin{cases} \frac{du_C}{dt} + \frac{1}{RC} \cdot u_C(t) = \frac{E}{RC} \end{cases}$	
	$\left \frac{du_C}{dt} + \alpha \cdot u_C \left(t \right) \right = \beta$	
$2\times0,25$	$\alpha = \frac{1}{RC}$; $\beta = \frac{E}{RC}$	
	5. إيجاد قيمة كل من القوة المحركة الكهربائية للمولد وسعة المكثفة.	
	من البيان:	
0,25	$E = u_{C \max}$	
0,25	$E = 9\mathrm{V}$ سعة المكثفة C :	
	au=0,6ms من البيان: $ au=0,6ms$	
0,25	$ au = RC ightarrow C = rac{ au}{R}$	
0,25	A	
0,25	$C = \frac{0.6 \times 10^{-3}}{100} = 6 \times 10^{-6} \text{F} = 6 \mu\text{F}$	
0,25	R'	
	O 0 6	
	التّمرين الثالث: (06 نقاط)	
	المفوج الأول:	
0.25	1. تمثيل القوى الخارجية المؤثرة على مركز عطالة الكرية G أثناء سقوطها الشاقولي.	
0,23	$m \stackrel{\downarrow}{\blacklozenge} (A)$ انگریة	
	m	
	↓ Z	
	مجزأة 2×0,25 2×0,25 0,25 0,25 0,25 0,25	

رمة	العا	عناصر الإجابة (الموضوع الثّاني)				
مجموعة	مجزأة	ىي)	اصر الإجابة (الموصوع التا			
		ىرية.	ي تحققها حركة مركز عطالة الك	2. المعادلة التّفاضلية للسرعة التّب		
	0,25	$\begin{cases} \sum \overrightarrow{F_{ext}} = m \cdot \overrightarrow{a_G} \\ \overrightarrow{P} = m \cdot \overrightarrow{a_G} \end{cases}$	الثاني لنيوتن على الكرية (A)	في المعلم الغاليلي نطبيق القانون		
1	0,25		$mg = m\frac{dv_z}{dt}$ $\frac{dv_z}{dt} = g$	وبالإسقاط على المحور (Oz) نج		
	0,25	رعة بانتظام.	الحركة مستقيمة متسا $rac{dv_z}{dt} = g$	$g = c^{te}$ استنتاج طبيعة الحركة:		
				h عساب الارتفاع h .		
0.5	0,25	Z	$(t) = \frac{1}{2}a \cdot t^2 + v_0 \cdot t + z_0$	من المعادلة الزمنية للمسافة		
			$h = \frac{1}{2} \times 9,80 \times (0,40)^2$			
	0,25		h = 0,784m			
				4. مناقشة الفرضية:		
0.25	0,25	التّسارع ثابت لا يتعلق بالكتلة وبالتّالي في الفراغ لكل الأجسام نفس حركة السقوط الشاقولي.				
		الفوج الثاني:				
		1. تمثيل أشعة القوى الخارجية المطبقة على مركز عطالة الكرية (B) في اللحظات: $t_0=0$ ؛				
				t_6 $t_1 = 0.16s$		
		$t_0 = 0$	$t_1 = 0.16s$	t ₆		
0.75	3×0,25	$igoplus_{(A)}^{igoplus_{igoplus_{(A)}}} igoplus_{(A)}^{igoplus_{(A)}}$ الكُرية $igoplus_{(A)}$	\overrightarrow{f} $\overrightarrow{\Pi}$ (B) الكُرية	\overrightarrow{f} $\overrightarrow{\Pi}$ (B) الكُرية		
		$P > \Pi$	$P > \Pi + f$	$P = \Pi + f$		

رمة	العا	
مجموعة	مجزأة	عناصر الإجابة (الموضوع الثاني)
0.75	0,25 0,25 0,25	وبالإسقاط على المحور (a) نجد: $\overrightarrow{f} = -k\overrightarrow{v_z}$ باعتبار $v_z(t)$ في المعلم الغاليلي نطبيق القانون الثاني لنيوتن على الكرية $v_z(t)$ في المعلم الغاليلي نطبيق القانون الثاني لنيوتن على الكرية $v_z(t)$ في المعلم الغاليلي نطبيق القانون الثاني لنيوتن على الكرية $v_z(t)$ الكُرية $v_z(t)$ الكُرية $v_z(t)$ الكُرية $v_z(t)$ الكُرية $v_z(t)$ الكرية $v_z(t)$ الكرية $v_z(t)$ باعتبار $v_z(t)$ الكرية $v_z(t)$ الكرية $v_z(t)$ الكرية $v_z(t)$ الكرية $v_z(t)$ باعتبار $v_z(t)$ الكرية $v_z(t)$ ا
		عند اللحظة $t=0$ والتّحقق أنَّ قيمة (B) عند اللحظة a_{th} والتّحقق أنَّ قيمة a_{th}
		$t=0$ تتوافق مع القيمة التّجريبية للتسارع $a_{ m exp}$ في اللحظة. $a_{ m th}$
		لما $v_z(0) = 0$ فإنَّ $v_z(0) = 0$ ومنه:
	0,25	$a_{th} = g \left(1 - \frac{\rho_{air} \cdot V_s}{m} \right)$
	0,25)
1.25		$a_{th} = 9,80 \left(1 - \frac{1,3 \times 2,57 \times 10^{-6}}{6,0 \times 10^{-3}} \right) = 9,79 m \cdot s^{-2}$
		$t=0$. القيمة التّجريبية للتسارع $a_{ m exp}$ في اللحظة.
	0,25	$a_{\rm exp} = \frac{\Delta v_z}{\Delta t}$
	0,25	$a_{\text{exp}} = \frac{(0.313 \times 5 - 0)}{(0.16 - 0)} = 9.78 \text{m} \cdot \text{s}^{-2}$
	0,25	f
	0,23	$a_{th}pprox a_{ ext{exp}}$.اي: $a_{ ext{exp}}$ اي $a_{ ext{exp}}$ اي a_{th} مما سبق قيمة a_{th} تتوافق مع قيمة
		4. قيمة معامل الاحتكاك k اعتمادا على المعادلة التّفاضلية والبيان.
		$\frac{dv_z}{dt} + \frac{k}{m}v_z\left(t\right) = g\left(1 - \frac{\rho_{air} \cdot V_s}{m}\right)$
1	0.25	$\left(\frac{k}{v}\right) = g\left(1 - \frac{\rho_{air} \cdot V_s}{s}\right)$
1	0,25 0,25	$\left\{egin{align*} & rac{k}{m}v_{\ell im}=g\left(1-rac{ ho_{air}\cdot V_s}{m} ight) \ & k=rac{m\cdot g}{v}\left(1-rac{ ho_{air}\cdot V_s}{m} ight) \end{array} ight.$: في النظام الدائم $v_z=v_{\ell im}$; $rac{dv_z}{dt}=0$ في النظام الدائم
	0,25	$k = \frac{m \cdot g}{v_{\ell im}} \left(1 - \frac{p_{cir} \cdot v_s}{m} \right)$
	0,25	$k = \frac{6,0 \times 10^{-3} \times 9.8}{0,313 \times 5} \left(1 - \frac{1,3 \times 2,57 \times 10^{-6}}{6,0 \times 10^{-3}} \right) = 3,75 \times 10^{-2} kg \cdot s^{-1}$

العلامة		عناصر الإجابة (الموضوع الثّاني)					
مجموعة	مجزأة						
			ں.	ن الى سطح الأرض	وصول الكريتير	زمني بين لحظتي	5. تفسير الفارق الز
0.25	0,25	اتجة عن تأثير	ع هو القوى الن	لمن نفس الارتفاع	ني أثناء السقوم	وجود الفارق الزم	_ السبب في
						جملة .	الموائع في ال
						(06 نقاط)	التّمرين التّجريبي:
							.1
						تّجريبي:	1.1. البروتوكول الأ
							الأدوات والمواد:
		خلاط	ج الساعة – م	يب 0,1 <i>g</i> – زجاج	ميزان رقمي بتقر	ارية 200 <i>mL</i> - م	- حوجلة عيا
	0,25					- قمع زجاجي.	مغناطيسي
	0,23			$\cdot (C$ فيتامين)	س الأسكوربيك	– مسحوق لحمظ	– ماء مقطر
							خطوات العمل:
		حساب الكتلة m لحمض الأسكوربيك الواجب استعمالها لتحضير المحلول.					
			$m = c \cdot V \cdot M$ $m = 1.42 \times 10^{-2} \times 0, 2 \times 176 = 0, 5g$				
		ا الأسكورورا <i>ي</i>	و من حمضا			_	- باستعمال الجفنة
2					-		باستعمال القمع
3	0,25						وبعد الانحلال الكاه
	•		***	•		.	
	0,25		СНО	دت: = $H_2O(l)$		_	2.1. معادلة التّفاعل
			C ₆ 11 ₈ O ₆	$_{6}\left(s\right) +\Pi_{2}O\left(t\right) -% \left(s\right) +\Pi_{2}O\left(t\right) -% \left(s\right) +\Pi_{2}O\left(t\right) +\Pi_{2}O\left(t$			_ الثنائيتان حمض ^ا
	0,25			Н О⁺	**	•	
H_3O^+/H_2O ! $C_6H_8O_6$						3.1. جدول لتقدم ال	
				1			, -
		التّفاعل	معادلة	$C_6H_8O_6$ (s	$(s) + H_2O(l) =$	$C_6H_7O_6(aq)+1$	$H_3O^+(aq)$
	0.5	حالة الجملة	التّقدم		ا بالمول	كمية المادة	
	0,5	حالة ابتدائية	0	cV	بوفرة	0	0
		حالة انتقالية	х	cV-x	بوفرة	х	х
		حالة نهائية	X_f	$cV - x_f$	بوفرة	X_f	x_f

رمة	العا	ر القرارة الأدون عن القرار المرون عن المرون عن القرار المرون عن ال
مجموعة	مجزأة	عناصر الإجابة (الموضوع الثاني)
		$\tau_f = \frac{x_f}{x_{\text{max}}} = \frac{10^{-pH}}{c}$
	0,25	$\tau_f = \frac{10^{-3}}{1.42 \times 10^{-2}} = 7,04 \times 10^{-2}$
	0,25	$t_f = \frac{1}{1,42 \times 10^{-2}} = 7,04 \times 10^{-2}$
	- 7	بما أن $ au_f < 1$ فالتّفاعل غير تام.
		$k_a = \frac{ au_f}{10^{pH} \cdot (1- au_f)}$: عبارة ثابت الحموضة K_a للثنائية حمض/أساس تعطى بـ : 4.1
	0,25	$k_a = \frac{\left[C_6 H_7 O_6^-\right]_f \times \left[H_3 O^+\right]_f}{\left[C_6 H_8 O_6\right]_f}$
	0,25	$=\frac{\left[H_{3}O^{+}\right]_{f}\times\boldsymbol{\tau}_{f}\cdot\boldsymbol{c}}{c\left(1-\boldsymbol{\tau}_{f}\right)}=\frac{\boldsymbol{\tau}_{f}}{10^{pH}\left(1-\boldsymbol{\tau}_{f}\right)}$
		الثنائية حمض/أساس: pK_a للثنائية حمض/أساس:
	0,25	$pK_a = -log(ka)$
		$pK_{a} = -log\left(\frac{\tau_{f}}{10^{pH}\left(1 - \tau_{f}\right)}\right)$
	0,25	$pK_a = -log\left(\frac{7,04 \times 10^{-2}}{10^3 \left(1 - 7,04 \times 10^{-2}\right)}\right) = 4,12$
		.2
	0,5	سحاحة مدرجة1.2 التّركيب التّجريبي الخاص بعملية المعايرة: محلول ثيركبروتات الصوديوم
		حامل
		بيشر ا
3		محلول ثنائي اليود
		$S_2 O_3^{ 2-}$ معادلة تفاعل المعايرة الحادث بين ثنائي اليود I_2 و شوارد ثيوكبريتات.
	0,5	$I_{2}(aq) + 2e^{-} = 2I^{-}(aq)$ المعادلة النصفية للإرجاع:
		$2S_2O_3^{2-}(aq) = S_4O_6^{2-}(aq) + 2e^-$ المعادلة النصفية للأكسدة:
		$I_2(aq) + 2S_2O_3^{2-}(aq) = 2I^-(aq) + S_4O_6^{2-}(aq)$:معادلة تفاعل المعايرة الحادث

العلامة		/ +1 ² t
مجموعة	مجزأة	عناصر الإجابة (الموضوع الثَّاني)
		3.2. ايجاد كمية مادة ثنائي اليود المتفاعلة مع حمض الأسكوربيك، واستنتاج كمية مادة حمض
		الأسكوربيك n_1 الموجودة في $10mL$ من عصير البرتقال.
		$n(I_2) = n_0(I_2) - n'(I_2)$ مع حمض الأسكوربيك: $n(I_2) = n_0(I_2) - n'(I_2)$ مع حمض
		$: n_0\left(\mathrm{I}_2 ight)$ عمية المادة الابتدائية - حساب كمية المادة الابتدائية - حساب
	0,25	$n_0(I_2) = c_2 \cdot V_2$
		$n_0(I_2) = 5.3 \times 10^{-3} \times 10 \times 10^{-3} = 5.3 \times 10^{-5} mol$
		حساب كمية المادة المتبقية $n'(I_2)$: عند التّكافؤ:
		$\frac{n'(I_2)}{1} = \frac{n(S_2O_3^{2-})}{2}$
		$n'(I_2) = \frac{c \cdot V_E}{2}$
	0,25	$n'(I_2) = \frac{5 \times 10^{-3} \times 8,7 \times 10^{-3}}{2} = 2,175 \times 10^{-5} mol$
	0,23	2
		$n(I_2) = 5.3 \times 10^{-5} - 2.175 \times 10^{-5} = 3.125 \times 10^{-5} mol$
		استنتاج كمية مادة حمض الأسكوربيك n_1 الموجودة في $10m$ من عصير البرتقال:
	0,25	. 1 \$11 71
		من معادلة التّفاعل الحادث في المرحلة الأولى:
		$C_6H_8O_6(aq) + I_2(aq) = C_6H_6O_6(aq) + 2I^-(aq) + 2H^+(aq)$
	$2 \times 0,25$	$n_1 = n(I_2) = 3{,}125 \times 10^{-5} mol$: نستنتج أن
		4.2. ايجاد كتلة حمض الأسكوربيك في البرتقالة المدروسة.
		- كمية مادة حمض الأوسكوربيك الموجودة في 82mL
	0,25	$n = \frac{n_1 \cdot 82}{10}$
		$\frac{m}{M} = \frac{n_1 \cdot 82}{10}$
	0,25	$m = \frac{n_1 \cdot 82}{10} \cdot M$
		$m = \frac{3,125 \times 10^{-5} \times 82}{10} \times 176 = 0,0451g = 45,1mg$
		10
		5.2. كتلة البرتقال الواجب تناولها والتّي تعادل قرص فيتامين C1000.
	0,25	$ \begin{array}{ccc} 170g & \to & 45,1mg \\ m & \to & 1000mg \end{array} \longrightarrow m \approx 3,8kg $
		$m \rightarrow 1000 mg$