ELSEVIER

Contents lists available at ScienceDirect

Electrochimica Acta

journal homepage: www.elsevier.com/locate/electacta

Efficiency enhancement of TiO₂ nanodendrite array electrodes in CuInS₂ quantum dot sensitized solar cells

Zhuoyin Peng^{a,1}, Yueli Liu^{a,1}, Yinghan Zhao^a, Wei Shu^a, Keqiang Chen^a, Oiaoliang Bao^b, Wen Chen^{a,*}

- ^a State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, and School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China
- ^b Department of Materials Engineering, Monash University, Clayton, Victoria 3800, Australia

ARTICLE INFO

Article history:
Received 4 April 2013
Received in revised form 15 August 2013
Accepted 15 August 2013
Available online 23 August 2013

Keywords: TiO₂ nanodendrite arrays CuInS₂ quantum dots Electron injection Efficiency enhancement

ABSTRACT

Single crystal three-dimensional TiO_2 nanodendrite arrays were prepared by a hydrothermal process, which were successfully sensitized with $CuInS_2$ quantum dots as photo-anodes to fabricate the solar cells. The UV-vis absorption and photoluminescence spectra observe that the TiO_2 nanodendrite based photo-anode structures are more efficient to improve the optical absorption properties and electron-hole separation. Electrochemical impedance spectra and photoluminescence decay analysis indicate that the TiO_2 nanodendrite based solar cells structure have higher electron injection rate. Under full sunlight illumination, the $CuInS_2$ quantum dot sensitized TiO_2 nanodendrite arrays exhibit a photovoltaic power conversion efficiency of 1.26%, which has great improvement of J_{SC} comparing with that of $CuInS_2$ quantum dot sensitized with TiO_2 nanoparticles and nanorods.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Quantum dot-sensitized solar cells (QDSSCs) have been received much attention in fabricating the next generation photovoltaic devices [1]. The quantum dots (QDs) such as CdS, CdSe, CdTe, PbS and CuInS₂ have been recognized to provide the opportunities for light absorption in the whole solar spectrum region because of their unique physical properties of tuning the absorption edge with the size, ultrafast electron transfer, and multiple excitons generation (MEG) [2-8]. Among these semiconductor QDs, CuInS2 with direct band gap can effectively improve the photovoltaic performance of QDSSCs due to its high absorption coefficient, which is well matched with the full solar spectrum [9–11]. Recently, the photovoltaic efficiency of the CuInS₂ QDSSCs has been gradually improved, such as, the efficiency of CuInS₂ QDSSCs is over 0.7% in our previous work [12], and Kamat's group has fabricated the CuInS₂ QDSSCs with the efficiency of 1.19% [13]. Moreover, it is also employed with CdS QDs to fabricate the quantum dots co-sensitized solar cells, which can obtain the higher photovoltaic efficiency [13–15]. However, the photovoltaic performance of CuInS₂ QDSSCs is still needed to be improved.

Recently, TiO₂ nanomaterials have been widely used in solar cells due to their high stability, low cost, non-toxic and optical properties [16-19]. The TiO₂ nanoparticles (NPs) film with high surface area is always employed to be the basic photo-anodes of the QDSSCs, which have received some good results [20]. However, the electron mobility in the TiO₂ NPs film is much lower than that of the single crystal due to the electron trapping at grain boundaries. Additionally, with the increasing of QDs content, the TiO₂ NPs will gradually desquamate from the substrate, which induces the decrease of stability of the TiO₂ NPs film [21]. As a result, to further increase the photovoltaic performance of QDSSCs, it will be necessary to use single crystal nanostructured photo-anodes. One-dimensional TiO₂ nanostructures such as nanowires (NWs), nanorods (NRs) and nanotubes (NTs) have been employed to be photo-anodes due to the enhancement in electron-hole separation and electrons transport [22-25]. It can be efficient to improve the photovoltaic performance of QDSSCs. QDSSCs with these single crystal TiO₂ NRs, NWs and NTs have performed better photovoltaic efficiency in solar cells than that of TiO₂ NPs [26]. However, TiO₂ NRs, NWs and NTs photo-anodes have smaller surface areas than TiO₂ NPs photo-anodes, which will reduce the deposition content of the QDs to influence the generation of the photo-induced electrons. Instead of the TiO2 NRs/NWs, the single crystal nanodendrites (NDs) with three-dimensional tree-like structures have larger surface areas for QDs sensitization to increase the electrons generation. Additionally, although these TiO2 NDs are fabricated as photo-anodes to enhance the photovoltaic efficiency of

^{*} Corresponding author. Tel.: +86 27 8765 1107; fax: +86 27 8776 0129. E-mail address: chenw@whut.edu.cn (W. Chen).

¹ These authors contributed equally to this study and share first authorship.

dye-sensitized solar cells, there is little report on the photo-anode of QDSSCs [27]. Therefore, the investigation for developing the TiO₂ NDs based QDSSCs has become increasingly important.

In this paper, single crystal three-dimensional TiO₂ NDs arrays were synthesized by a hydrothermal process. And that were sensitized with CuInS₂ QDs to fabricate the QDSSCs. Moreover, the TiO₂ NPs and NRs were also used to compare the photovoltaic performance with the TiO₂ NDs. In addition, the ZnSe coating layer and the annealing post-treatment will also help to improve the electron injection [28,29]. The results indicate that the use of TiO₂ NDs array structure has higher current density than that of NPs and NRs. The QDSSCs based on the CuInS₂ QDs sensitized TiO₂ NDs solar cells effectively improved its photovoltaic performance.

2. Experimental

2.1. Materials

Copper (I) iodide (CuI- $2H_2O$, 99.9%), indium (III) acetate (InAc $_3$ - $4H_2O$, 99%), 3-mercaptopropionic acid (MPA, 98%), titanium (IV) isopropoxide ($C_{12}H_{28}O_4$ Ti, 98%) were purchased from Alfa-Aesar (Ward Hill, USA). Thiourea (CS(NH $_2$) $_2$, 98%), sulfur powder (S, 99%), sodium sulfur (Na $_2$ S, 98%), hydrochloric acid (HCl, 36.5–38% by weight) and sodium hydroxide (NaOH, 96%) were purchased from Sinopharm Group Chemical Reagent Co., Ltd. (China). Methanol (HPLC grade), sulfur acid (ACS grade) and ethanol (99.5%) were purchased by Sinopharm Group Chemical Reagent Co., Ltd. (China). All the materials were directly used without further purification.

2.2. Preparation of TiO2 electrodes

The TiO₂ nanodendrite arrays were prepared by hydrothermal method on the FTO conducting glass [27]. In a typical synthesis, 30 ml of concentrated hydrochloric acid was mixed with 30 ml of deionized water. 1 ml titanium isopropoxide was added dropwise in the mixture under vigorous stirring. The stirring was continued for 30 min at room temperature. After transferring the mixture into the Teflon-lined stainless steel autoclave (125 ml volume), some pieces of FTO substrates, which are ultrasonically cleaned for 60 min in a mixture solution of deionized water, acetone and ethanol with volume ratios of 1:1:1, were placed at an angle against the wall of the Teflon liner with the conductive side facing down. The hydrothermal synthesis was conducted at 150°C for 20 h in an electric oven. After synthesis, the FTO substrate was taken out, rinsed extensively with deionized water, and allowed to be dried in ambient air. In order to increase the length of TiO2 NRs, the asprepared TiO₂ nanorod arrays were introduced with the similar solution except for the addition of 5 ml saturated NaCl solution at the same hydrothermal temperature for another 20 h. This process repeated two times to obtain the desired length of TiO₂ nanorod. After that, the TiO₂ nanorod arrays were conducted in the solution of 0.5 M 40 ml HCl and 2 ml titanium isopropoxide at 95 °C for 4 h. Another 2h hydrothermal process with the same precursor solution was carried out for the branch growth on the TiO₂ nanorods. Finally the as-prepared TiO₂ nanodendrite arrays were washed with deionized water and then calcined at 450 °C for 30 min. For comparison, the anatase and rutile TiO₂ nanoparticles (NPs) photoanodes with the thickness of 6 µm were prepared as our previous report [12].

2.3. Preparation of TiO₂/CuInS₂ photo-anodes

The MPA-capped CuInS₂ QDs of 3.5 nm were prepared according to previously reported method [12]. CuInS₂ quantum dots were linked to nanorods and nanodendrites using MPA as a linking agent,

and the TiO₂ nanoparticle photo-anodes were also introduced to a contrast. Typically, after introduced to a pH 2 hydrochloric acid solution for 5 min, the TiO₂ nanodendrite array films were immersed in a MPA (1 M) and sulfur acid (0.1 M) acetonitrile solution for 12 h [30]. The films were then immersed in the MPA-capped CuInS₂ QDs methanol solution for 24 h after rinsing with acetonitrile and methanol. Such immerse process was repeated for several times to obtain the best photovoltaic properties (as shown in Figs. S1-S2 and Table S1). All the electrodes were coated by the ZnSe passivation coating, which is prepared by the SILAR method consisting of three dipping cycles in the 0.1 M Zn(acac)₂ and 0.1 M Se precursor solution prepared by selenium oxide and sodium borohydride for 1 min each dip to enhance the photovoltaic performance (as shown in Figs. S2-S4 and Table S1). Finally, the sensitized electrodes were annealing in Ar atmosphere at 300 °C for 5 min.

2.4. Fabrication of QDSSCs

After preparing the CuInS $_2$ QDs sensitized TiO $_2$ photo-anodes by above process, the solar cells were fabricated with the Cu $_2$ S counter electrode by using a Surlyn thermoplastic frame. A standard redox polysulfide electrolyte was prepared by dissolving 0.5 M Na $_2$ S, 2 M S, and 0.2 M KCl in water/methanol (7:3 by volume) solution, which was introduced into the sealed solar cells through a hole pre-drilled in the counter electrode. The active area of the solar cells was 0.16 cm 2 .

2.5. Characterization and measurements

The crystal structures and morphologies of the TiO₂ and QDs were characterized by using X-ray diffraction (XRD, Pert-Pro, PANalytical, Netherlands), scanning electron microscope (FESEM, JSEM-5610LV, Japan) equipped with an energy dispersive spectrometer (EDS), and the high-resolution transmission electron microscope (TEM, JEM-2100F, JEOL, Japan). UV-vis absorption spectra (UV-2550, Shimadzu, Japan) and photoluminescence spectra (FS-2400, Shimadzu, Japan) were used to characterize the absorption edge and excited peak of QDs sensitized TiO₂ nanorod/nanodendrite array films. Full sun conversion efficiency was characterized by the Keithley 4200 semiconductor characterization system (Keithley Instruments, USA) under AM 1.5 condition (Newport 91160, 300 W xenon lamp, USA). The light intensity was determined using a reference monocrystalline silicon cell system (Oriel, USA). The incident photon to current conversion efficiency (IPCE) was measured using Newport's IPCE Measurement Kit (Crowntech, Q Test Station Series, USA), where a monochromator was used to obtain the monochromatic light from a 300 W Xe lamp (Newport). The photoluminescence decay was measured using time-resolved fluorescence spectroscopy (HORIBA Fluoromax-4, France).

3. Results and discussion

3.1. Structures and morphologies

The structures of TiO₂ NDs array films used as photo-anodes before and after CuInS₂ QDs sensitization are also illustrated by X-ray diffraction spectrometer (Fig. 1a). The XRD pattern of pure TiO₂ NDs is matched well with the standard pattern of rutile TiO₂ phase (JCPDS NO: 76-1941). After sensitized with CuInS₂ QDs, two extra peaks with (1 1 2) and (0 2 0) crystal planes appear at 2θ values of 32.52° and 37.82° from the tetragonal CuInS₂ phase (JCPDS NO: 85-1575), respectively, which clearly suggests the CuInS₂ QDs adsorption process.

Fig. 1b and c shows the field-emission scanning electron microscopy (FESEM) images of TiO₂ NRs arrays, the top view of

Fig. 1. Structures and morphologies of as-prepared materials: (a) XRD patterns; FESEM images of TiO₂ nanorod arrays at (b) top view and (c) cross-sectional view; FESEM images of TiO₂ nanodendrite arrays at (d) pure and (e) as-sensitized by CulnS₂ QDs; (f) HRTEM image of CulnS₂/TiO₂ NDs photo-anode.

FESEM image of the typical TiO_2 NRs is square and contains many step edges, which shows that the expected growth is from the substrate to form a tetragonal crystal. It also can be seen that the length of TiO_2 NRs is about 6 μ m, and the average diameter is about 200 nm from the cross-sectional view of FESEM image of the TiO_2 NRs.

The NDs arrays are successfully prepared by the second step of the hydrothermal process as shown in Fig. 1d. To compare with TiO₂ NRs from FESEM images, the branches with the diameter of 20–30 nm and length of 120–150 nm are successfully prepared on the TiO₂ NRs, which can effectively increase the surface area ratio of TiO₂ films. This kind of branches with the same single crystal as the TiO₂ NRs will not consumedly reduce the possibility of electron trapping in TiO₂ photo-anodes. And the corresponding SAED pattern obviously indicates a single crystal structure of the TiO₂ NDs. Moreover, an increased amount of CuInS₂ QDs can be adsorbed on TiO₂ NDs due to the enlarged surface area ratio from the branches in the TiO₂ NDs. The surface feature of the TiO₂ NDs becomes roughness after CuInS₂ QDs sensitization, as shown in

Fig. 1e. This actually indicates that the more content of CuInS_2 QDs can be adsorbed on the TiO_2 NDs than on the TiO_2 NRs. The typical HRTEM image of as-prepared CuInS_2 QDs sensitized TiO_2 NDs films is shown in Fig. 1f. It can be seen that CuInS_2 QDs with the diameter of about 3.5 nm are adsorbed on the TiO_2 NDs surface. And the observed lattice fringes of 0.325 nm and 0.276 nm are corresponding to the (110) crystal plane of rutile TiO_2 and the (214) crystal plane of CuInS_2 QDs, respectively.

3.2. UV-vis absorption and photoluminescence analysis

The absorption and photoluminescence spectra of TiO₂ NRs/CuInS₂ QDs/ZnSe (TRs), TiO₂ NDs/CuInS₂ QDs/ZnSe (TDs), anatase TiO₂ NPs/CuInS₂ QDs/ZnSe (a-TPs) and rutile TiO₂ NPs/CuInS₂ QDs/ZnSe (r-TPs) are shown in Fig. 2. Comparing with the different TiO₂/CuInS₂/ZnSe photo-anodes in Fig. 2a, the TiO₂ NDs sensitized photo-anodes have larger ultraviolet and visible light absorption edge than the TiO₂ NPs and TiO₂ NRs. It is actually

Fig. 2. (a) UV-vis spectra of different $TiO_2/CuInS_2/ZnSe$ photo-anodes and (b) photoluminescence spectra of different $TiO_2/CuInS_2/ZnSe$ photo-anodes.

attributed to higher surface area of this TiO₂ NDs, which can adsorb more CuInS₂ QDs to improve the visible light absorption.

The photoluminescence spectra in Fig. 2b suggest that the CulnS₂ sensitizer has a photoluminescence peak at 700 nm, which is estimated that the size of these QDs to be 3.5 nm [31]. Due to the sensitization of CulnS₂ QDs, the photo-excited electrons in CulnS₂ QDs will transfer to TiO₂ to achieve an effective separation for the photo-excited electron-hole pairs, which induces that the photoluminescence peak of CulnS₂ QDs sensitized TiO₂ photo-anodes are seriously quenched comparing with that of the pure CulnS₂ QDs. Moreover, the lower photoluminescence peak intensity of TiO₂ NDs sensitized photo-anodes suggests the less photo-excited electron-hole pair recombination. It is clearly verified that this ordered three-dimensional single crystal TiO₂ NDs have the highest effective separation for the photo-excited electron-hole pairs.

3.3. Photovoltaic performance of QDSSCs

At least 20 devices have been measured to confirm the photo-voltaic performance influence of TRs, TDs, a-TPs and r-TPs solar cells, and the average values of the J–V curve and photovoltaic parameters are shown in Fig. 3a and Table 1. It can be seen that the TRs (3.59 mA/cm²) and TDs (4.70 mA/cm²) photo-anodes with their well-aligned and single crystal structure have higher J_{SC} value than both r-TPs (2.74 mA/cm²) and a-TPs (3.30 mA/cm²) based solar cells. Even the TDs based solar cells are obviously higher than those

Fig. 3. (a) EIS spectra of CuInS₂ QDs sensitized solar cells with different TiO₂ photo-anodes and (b) photoluminescence decay of each device.

of a-TPs based solar cells, which results in the photovoltaic power conversion efficiency of the former (1.26%) higher than the latter (1.00%). The enhancement of J_{SC} and η actually indicates that the branch structure of the TiO₂ NDs arrays has more surface area for CuInS₂ QDs adsorption. It is efficient for the electron injection to increase the photo-current than those of TiO₂ NPs based solar cells. The incident photon to current conversion efficiency (IPCE) spectra of the devices for these TiO₂ photo-anodes in Fig. 3b almost cover the whole ultraviolet and visible spectra within the range of 300–800 nm, which is well matched with the UV–vis spectra in Fig. 2a. The IPCE curves exhibit a maximum value of 25%, 38%, 30% and 42% for the r-TPs, a-TPs, TRs and TDs, respectively. And the average of IPCE spectra of TDs is larger than others. This result indicates that the structure of TiO₂ NDs arrays based solar cells has higher capability in inducing the photo-electrons. And it is more efficient

Table 1 Photovoltaic properties of the various CuInS₂ QDs sensitized solar cells.

Sample	J _{SC} (mA/cm ²)	V _{oc} (mV)	FF (%)	η (%)
TRs/heat	3.59	521.2	50.2	0.94
TDs/heat	4.70	528.7	50.7	1.26
a-TPs/heat	3.30	530.2	57.2	1.00
r-TPs/heat	2.74	521.3	58.1	0.83

Fig. 4. (a) EIS spectra of CulnS₂ QDs sensitized solar cells with different TiO₂ photo-anodes and (b) photoluminescence decay of each device.

to reduce the electron-hole pairs' recombination to improve the charge separation and charge collection, which lead to the better photovoltaic performance.

3.4. Electrochemical impedance and photoluminescence decay analysis

Fig. 4a shows the semicircular curves of electrochemical impedance spectra (EIS) of above devices. It can be seen that the ${\rm TiO_2}$ NPs have almost no first semicircle, which is lower than that of ${\rm TiO_2}$ NDs, suggesting that the resistance between the ${\rm TiO_2}$ and FTO substrate in ${\rm TiO_2}$ NPs electrodes is lower. This result actually induces that the FF value of the ${\rm TiO_2}$ NPs photo-anodes is higher than that of ${\rm TiO_2}$ NDs, as shown in Table 1. It is attributed to the reduction of the interface combination between FTO substrate and ${\rm TiO_2}$ nanodendrite with the length growth of the ${\rm TiO_2}$ nanorod/nanodendrite. Actually it will induce some recombination between FTO and the electrolyte. However, the content of the QDs can be improved with the length increasing of the ${\rm TiO_2}$ nanorod/nanodendrite. In order to balance these two factors, here we have prepared the 6 μ m-TiO₂ nanorod/nanodendrite for the photo-anodes to obtain the better photovoltaic performance.

However, the ${\rm TiO_2}$ NDs based solar cells have the lowest second semicircular diameter than that of the other devices. This indicates that using the ${\rm TiO_2}$ NDs array photo-anodes can obtain a lower resistance of photo-induced electron transfer among the ${\rm CuInS_2}$ QDs, ${\rm TiO_2}$ photo-anodes and electrolyte, which is attributed to the perfect mobility of charge carriers of the ${\rm TiO_2}$ NDs, implying the higher $J_{\rm SC}$ value of the ${\rm TiO_2}$ NDs photo-anodes. Therefore, this well-aligned three-dimensional ${\rm TiO_2}$ NDs arrays structure can extensively decrease the barrier of electron transfer and accelerate the electron injection from ${\rm CuInS_2}$ QDs to ${\rm TiO_2}$, which improves the photovoltaic power conversion efficiency.

In order to gain the electron injection from this device, the photoluminescence decay is shown in Fig. 4b for CuInS2, r-TPs, a-TPs and TDs, respectively. Normally, the PL decay will be influenced by the surface trapping events in the solar cells. However, in our work, the materials are not identical, as the colloidal CuInS₂ QDs are prepared by the presence of the MPA ligands, which were not prepared in situ process, and these colloidal CuInS₂ QDs are covered on the surface of TiO₂ films as the monolayer, which are connected with TiO₂ by the MPA ligands. Moreover, the CuInS₂ QDs without bonding with MPA molecules to the surface of TiO2 will be washed and dispersed again in the solution, which will not be aggregated to influence the PL lifetime. Therefore, we believe that the surface trapping events are likely to be reduced in our work. From the Triexponential function model, the normalized PL decay parameters can be calculated using Eq. (1), as shown in Table 2. The value of average PL lifetime of each photo-anodes can be estimated using

$$I = A_1 \exp\left(-\frac{t}{\tau_1}\right) + A_2 \exp\left(-\frac{t}{\tau_2}\right) + A_3 \exp\left(-\frac{t}{\tau_3}\right)$$
 (1)

$$\tau_{av} = \frac{A_1 \tau_1^2 + A_2 \tau_2^2 + A_3 \tau_3^2}{A_1 \tau_1 + A_2 \tau_2 + A_3 \tau_3} \tag{2}$$

where τ_{av} is the average lifetime, $\alpha_n \tau_n$ are the each decay parameters of component in the multiexponential function model. When adsorbed on the FTO conducting substrate, the 3.5 nm CuInS₂ QDs exhibited PL emission decay with the average lifetime of 19.7 ns. When adsorbed on rutile TiO₂ NPs, anatase TiO₂ NPs and TiO₂ NDs, the average lifetime decrease from 19.7 ns to 11.7 ns, 7.9 ns and 7.4 ns, respectively. Thus it can be estimated the charge-transfer rate constant by the Eq. (3).

$$k_{et} = \frac{1}{\tau_{\text{(CulnS}_2 + \text{TiO}_2)}} - \frac{1}{\tau_{\text{(CulnS}_2)}}$$
(3)

where k_{et} is the electron injection rate constants, $\tau_{(\text{CulnS}_2 + \text{TiO}_2)}$ and $\tau_{(CulnS_2)}$ are the average lifetime of TiO₂/CulnS₂ photo-anodes and FTO/CulnS₂, respectively. From the PL lifetime value in Table 2, the apparent electron injection rate constants of r-TPs, a-TPs and TDs photo-anodes can be calculated through the lifetime values to be $3.39 \times 10^7 \, \text{s}^{-1}$, $7.50 \times 10^7 \, \text{s}^{-1}$ and $8.36 \times 10^7 \, \text{s}^{-1}$, respectively. The electron injection rate constant of TDs photo-anodes is higher than that of r-TPs, a-TPs photo-anodes. Therefore, comparing the EIS and PL decay of the TiO₂ NDs and NPs, the much lower electrons transfer resistance and higher electron injection rate constant can indicate the more efficient of the electrons transfer for the TiO2 NDs based solar cells. What's more, the QDs can be effectively deposited by the conventional SILAR method on the three-dimensional single crystal TiO₂ NDs due to its good interspace and surface area, while is easily limited and destroyed by the barrier as particle-to-particle of TiO₂ NPs photo-anode.

3.5. Mechanisms analysis

Fig. 5 proposes the use of a CuInS₂ QDs sensitized TiO₂ NDs arrays structure to enhance the quantity of electron transfer in

Table 2Kinetic parameters of the CulnS₂ emission decay analysis.

Sample	A ₁	τ_1 (ns)	A_2	τ ₂ (ns)	A ₃	τ ₃ (ns)	τ _{av} (ns)	$k_{\rm ET}$ (s ⁻¹)
CuInS ₂	0.72	12.06	0.51	29.30	0.05	43.40	19.7	_
r-TPs	0.77	6.25	0.49	17.72	0.12	20.94	11.7	3.39×10^{7}
a-TPs	0.68	4.43	0.37	10.75	0.11	11.17	7.9	7.50×10^{7}
TDs	0.58	2.57	0.41	9.39	0.09	14.35	7.4	8.36×10^7

Fig. 5. Schematic diagram of CuInS₂ QDs sensitized solar cells: (a) band gap; electron transfer path of (b) TiO₂ nanoparticles, (c) TiO₂ nanorods and (d) TiO₂ nanodendrites sensitized with CuInS₂ QDs.

QDSSCs. The photovoltaic power conversion efficiency of the device in our proposed photo-anode structure has been enhanced comparing with the CuInS₂/TiO₂ NPs structure, even has great improvement for the current density. A schematic diagram of the electron transfer mechanism of photo-induced electron-holes is shown in Fig. 5a and each kind of CuInS₂ QDs sensitized TiO₂ solar cells with electron transfer is shown in Fig. 5b-d. Under 1.5 AM irradiation, the photo-induced electrons from CuInS2 QDs are excited from the valence band to the conduction band of CuInS2 QDs, and then injected into the conduction band of TiO2 photo-anodes. Moreover, the photo-induced holes in CuInS2 QDs will be scavenged by the electrolytes, which can effectively separate the photo-induced electron-holes. By using the photo-anodes of TiO2 NPs in Fig. 5b, the photo-induced electrons excited from CuInS2 QDs will transfer through the adjacent TiO₂ NPs, which may suffer from electron trapping at the grain boundaries of TiO₂ NPs. It will induce high charge recombination loss since the electron mobility. However, one-dimensional single crystal TiO₂ NRs/NWs arrays can obviously improve the electrons transfer by reducing the electron trapping, which may increase the possibility of electrons collection on the electrodes in Fig. 5c [32]. Comparatively, three-dimensional TiO₂ NDs arrays have much more branches on the surface of NRs/NWs, much more CuInS₂ QDs may be deposited to increase the higher generation possibility of the photo-induced electrons to improve the current density of the solar cells in Fig. 5d. Although the photovoltaic efficiency of the CuInS₂/CdS QDs co-sensitized solar cells have been achieved over 4% in the previous reports, the efficiencies of CuInS₂ QDSSCs are lower than that of our devices [14,15], and

the CuInS₂ QDs sensitized TiO₂ NDs solar cells display the higher photovoltaic efficiency. It can be believed that further investigation of CuInS₂/CdS quantum dot co-sensitized TiO₂ nanodendrite array solar cells will obtain much higher efficiency of the solar cells.

4. Conclusions

In summary, the CuInS $_2$ QDs sensitized TiO $_2$ NDs array photo-anode have been successfully prepared for the QDSSCs. The single crystal TiO $_2$ NDs arrays have high surface area ratio, which can increase the deposition content of CuInS $_2$ QDs, inducing the improvement of the optical absorption properties and electro-hole separation of the photo-anode. The lower charge transfer resistance and shorter PL lifetime of the TiO $_2$ NDs based QDSSCs indicate the higher electron injection rate. The CuInS $_2$ QDs sensitized TiO $_2$ NDs arrays solar cells exhibits a photovoltaic power conversion efficiency of 1.26%. These devices show great improvement of J_{SC} if comparing to a QDs sensitized with TiO $_2$ NPs. We believe that the better electron transfer possibility of the TiO $_2$ NDs will facilitate improving the photovoltaic performance of QDSSCs.

Acknowledgements

This work is supported by the National Basic Research Program of China (No. 2009CB939704), Defense Industrial Technology Development Program (No. B1420110168), the National Nature Science Foundation of China (No. 51072152, the A3 Foresight Program-No. 51161140399), Educational Commission of Hubei

Province of China (No. C2010007), the Natural Science Foundation of Hubei Province (Key Program) (No. 2010CDA015), Wuhan Scientific and Technological Project (No. 201051730550), and Science-Technology Chenguang Foundation for Young Scientist of Wuhan (201150431087).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.electacta. 2013.08.054.

References

- P.V. Kamat, K. Tvrdy, D.R. Baker, J.G. Radich, Beyond photovoltaics: semiconductor nanoarchitectures for liquid-junction solar cells, Chem. Rev. 110 (2010) 6664.
- [2] Y.L. Lee, Y.S. Lo, Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe, Adv. Funct. Mater. 19 (2009) 604.
- [3] P.K. Santra, P.V. Kamat, Mn-doped quantum dot sensitized solar cells: a strategy to boost efficiency over 5%, J. Am. Chem. Soc. 134 (2012) 2508.
- [4] Y.K. Lai, Z.Q. Lin, D.J. Zheng, L.F. Chi, R.G. Du, C.J. Lin, CdSe/CdS quantum dots cosensitized TiO₂ nanotube array photoelectrode for highly efficient solar cells, Electrochim. Acta 79 (2012) 175.
- [5] Y.Y. Yang, Q.X. Zhang, T.Z. Wang, L.F. Zhu, X.M. Huang, Y.D. Zhang, X. Hu, D.M. Li, Y.H. Luo, Q.B. Meng, Novel tandem structure employing mesh-structured Cu₂S counter electrode for enhanced performance of quantum dot-sensitized solar cells, Electrochim. Acta 88 (2012) 44.
- [6] N. Balis, V. Dracopoulos, K. Bourikas, P. Lianos, Quantum dot sensitized solar cells based on an optimized combination of ZnS, CdS and CdSe with CoS and CuS counter electrodes, Electrochim. Acta 91 (2013) 246.
- [7] H.H. Yang, W.G. Fan, A. Vaneski, A.S. Susha, W.Y. Teoh, A.L. Rogach, Heterojunction engineering of CdTe and CdSe quantum dots on TiO₂ nanotube arrays: intricate effects of size-dependency and interfacial contact on photoconversion efficiencies, Adv. Funct. Mater. 22 (2012) 2821.
- [8] J. Tang, K.W. Kemp, S. Hoogland, K.S. Jeong, H. Liu, L. Levina, M. Furukawa, X.H. Wang, R. Debnath, D.K. Cha, K.W. Chou, A. Fischer, A. Amassian, J.B. Asbury, E.H. Sargent, Colloidal-quantum-dot photovoltaics using atomic-ligand passivation, Nat. Mater. 10 (2011) 765.
- [9] A.N. Tiwari, D.K. Pandya, K.L. Chopra, Electrical and optical properties of singlephase CulnS₂ films prepared using spray pyrolysis, Thin Solid Films 130 (1985) 217.
- [10] F. Hergert, R. Hork, S. Schorr, Pentanary chalcopyrite compounds without tetragonal deformation in the heptanary system Cu(Al, Ga, In)(S, Se, Te)₂, Sol. Energy Mater. Sol. Cells 91 (2007) 44.
- [11] M. Bar, A. Ennaoui, J. Klaer, R.S. Araoz, T. Kropp, L. Weinhardt, C. Heske, H.W. Schock, C.H. Fischer, M.C. Steiner, The electronic structure of the [Zn(S,O)/ZnS]/CuInS₂ heterointerface – impact of post-annealing, Chem. Phys. Lett. 433 (2006) 71.
- [12] Z.Y. Peng, Y.L. Liu, W. Shu, K.Q. Chen, W. Chen, Synthesis of various sized CuInS₂ quantum dots and their photovoltaic properties as sensitizers for TiO₂ photoanodes, Eur. J. Inorg. Chem. 32 (2012) 5239.

- [13] P.K. Santra, P.V. Nair, K.G. Thomas, P.V. Kamat, CulnS₂-sensitized quantum dot solar cell. Electrophoretic deposition, excited-state dynamics, and photovoltaic performance, J. Phys. Chem. Lett. 4 (2013) 722.
- [14] T.L. Li, Y.L. Lee, H.S. Teng, High-performance quantum dot-sensitized solar cells based on sensitization with CulnS₂ quantum dots/CdS heterostructure, Energy Environ. Sci. 5 (2012) 5315.
- [15] J.H. Luo, H.Y. Wei, Q.L. Huang, X. Hu, H.F. Zhao, R.C. Yu, D.M. Li, Y.H. Luo, Q.B. Meng, Highly efficient core shell CulnS₂/Mn doped CdS quantum dots sensitized solar cells, Chem. Commun. 49 (2013) 3881.
- [16] M. Grätzel, Photoelectrochemical cells, Nature 414 (2001) 338.
- [17] W.W. Tan, X. Yin, X.W. Zhou, J.B. Zhang, X.R. Xiao, Y. Lin, Electrophoretic deposition of nanocrystalline TiO₂ films on Ti substrates for use in flexible dye-sensitized solar cells, Electrochim. Acta 54 (2009) 4467.
- [18] B. Liu, E.S. Aydil, Growth of oriented single-crystalline rutile TiO₂ nanorods on transparent conducting substrates for dye-sensitized solar cells, J. Am. Chem. Soc. 131 (2009) 3985.
- [19] J.G. Yu, J.J. Fan, L. Zhao, Dye-sensitized solar cells based on double-layered TiO₂ composite films and enhanced photovoltaic performance, Electrochim. Acta 55 (2010) 597.
- [20] Q.X. Zhang, X.Z. Guo, X.M. Huang, S.Q. Huang, D.M. Li, Y.H. Luo, Q. Shen, T. Toyoda, Q.B. Meng, Highly efficient CdS/CdSe-sensitized solar cells controlled by the structural properties of compact porous TiO₂ photoelectrodes, Phys. Chem. Chem. Phys. 13 (2011) 4659.
- [21] L.Y. Lin, M.H. Yeh, C.P. Lee, Y.H. Chen, R. Vittal, K.C. Ho, Metal-based flexible TiO₂ photoanode with titanium oxide nanotubes as the underlayer for enhancement of performance of a dye-sensitized solar cell, Electrochim. Acta 57 (2011) 270.
- [22] K. Shankar, J.I. Basham, N.K. Allam, O.K. Varghese, G.K. Mor, X.J. Feng, M. Paulose, J.A. Seabold, K.S. Choi, C.A. Grimes, Recent advances in the use of TiO₂ nanotube and nanowire arrays for oxidative photoelectrochemistry, J. Phys. Chem. C 113 (2009) 6327.
- [23] F. Shao, J. Sun, L. Gao, S.W. Yang, J.Q. Luo, Forest-like TiO₂ hierarchical structures for efficient dye-sensitized solar cells, J. Mater. Chem. 22 (2012) 6824.
- [24] J.H. Bang, P.V. Kamat, Solar cells by design: photoelectrochemistry of TiO₂ nanorod arrays decorated with CdSe, Adv. Funct. Mater. 20 (2010) 1970.
- [25] K.L. Li, Z.B. Xie, S. Adams, A reliable TiO₂ nanotube membrane transfer method and its application in photovoltaic devices, Electrochim. Acta 62 (2012) 116
- [26] I.S. Cho, Z.B. Chen, A.J. Forman, D.R. Kim, P.M. Rao, T.F. Jaramillo, X.L. Zheng, Branched TiO₂ nanorods for photoelectrochemical hydrogen production, Nano Lett. 11 (2011) 4978.
- [27] W.P. Liao, J.J. Wu, Wet chemical route to hierarchical TiO₂ nanodendrite/nanoparticle composite anodes for dye-sensitized solar cells, J. Mater. Chem. 21 (2011) 9255.
- [28] J.Y. Chang, L.F. Su, C.H. Li, C.C. Chang, J.M. Lin, Efficient "green" quantum dot-sensitized solar cells based on Cu₂S-CuInS₂-ZnSe architecture, Chem. Commun. 48 (2012) 4848.
- [29] A. Hofmann, C. Pettenkofer, Surface orientation dependent band alignment for CulnSe₂-ZnSe-ZnO, App. Phys. Lett. 98 (2011) 113503.
- [30] D.R. Pernik, K. Tvrdy, J.G. Radich, P.V. Kamat, Tracking the adsorption and electron injection rates of CdSe quantum dots on TiO₂: linked versus direct attachment, J. Phys. Chem. C 115 (2011) 13511.
- [31] L. Brus, Electronic wave functions in semiconductor clusters: experiment and theory, J. Phys. Chem. 90 (1986) 2555.
- [32] Y. Liu, H. Wang, Y.C. Wang, H.M. Xu, M. Li, H. Shen, Substrate-free, large-scale, free-standing and two-side oriented single crystal TiO₂ nanorod array films with photocatalytic properties, Chem. Commun. 47 (2011) 3790.