1. Suppose f(x,y) is continuous on \mathbb{R}^2 and bounded by M and there exists a constant $L\in(0,1)$ such that for all x,y_1,y_2 we have

$$|f(x,y_1) - f(x,y_2)| \le L|y_1 - y_2|$$

Consider the first order differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} + y = f(x,y)$$

(1)Show that $y=\phi(x)$ is a bounded solution of above equation iff $\phi(x)$ is a continuous and bounded solution of

$$\phi(x) = \int_{-\infty}^x e^{t-x} f(t,\phi(t)) \mathrm{d}t$$

(2)Show that the above first-order differential equation is a unique bounded solution in $(-\infty, +\infty)$

2. Show that the homogeneous equation $P(x,y)\mathrm{d}x+Q(x,y)\mathrm{d}y=0$ has integrating factor

$$\rho = \frac{1}{xP(x,y) + yQ(x,y)}$$

And solve the following differential equation using two different methods.

$$xy\mathrm{d}x - (x^2 + y^2)\mathrm{d}y = 0$$

3. Consider the following inequality

$$F'(t) \ge t^2 F^3(t)$$
 $F(t) \ge t$, $\forall t \ge 1$

Does there exist a function F(t) satisfying the above inequality such that F(t) is continuously differentiable on $[1, +\infty)$? If your answer is yes, please give the solution. If your answer is no, prove it.

4. Suppose f(x,y) is continuously differentiable on $(-\infty,+\infty)$ solve the differential equation

$$y(1+y^2f(xy))dx + x(y^2f(xy) - 1)dy = 0 (y > 0)$$

Show that any solution curve of the differential equation has at most one intersection point with xy=2.

5. Consider the initial value problem

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 2 + y^2 + \sin x \quad y(x_0) = y_0$$

where $(x_0,y_0)\in\mathbb{R}^2$. Denote $J^+=[x_0,b)$ is the maximum interval of definition on the right side of x_0 . Show that b is finite.

6. Solve at least four of the following differential equations:

(1)
$$(x^3y - 3x^2y + y^3)dx + 2x^3dy = 0$$

(2)
$$e^x \sin^3 y dx + (1 + e^{2x}) \cos y dy = 0$$

(3)
$$(x + y^3)dx + 3(y^3 - x)y^2dy = 0$$

(4) (bonus)
$$y'=\frac{1}{2}\sqrt{x}+\sqrt[3]{y}$$

(5)
$$(e^y - y')x = 2$$

(6)
$$2xy \ln y dx + (x^2 + y^2 \sqrt{y^2 + 1}) dy = 0$$

(7)
$$p^3 - x^3(1-p) = 0$$