Reply to the Office Action dated September 4, 2003

Amendments to the Claims

This listing of claims will replace all prior versions, and lisitngs, of claims in the application.

Listing of Claims:

Claims 1-20. (Canceled)

Claim 21. (New) A 1-aryl-3-cyano-5-heteroarylalkylaminopyrazole derivative represented by formula (1):

$$S(O) \cap \mathbb{R}^1$$

$$\mathbb{R}^3$$

$$\mathbb{R}^2 \quad \mathbb{H}$$

$$(1)$$

wherein group A is (A-1):

X represents N or C-halogen; R¹ represents alkyl, alkenyl, alkynyl or haloalkyl; R² represents hydrogen, alkyl or linear or branched alkylcarbonyl; R³ represents hydrogen or alkyl; R⁴ represents hydrogen, alkyl or halogen; and n represents 0, 1 or 2, with the proviso that R¹ is not perhaloalkyl when n is 0.

Claim 22. (New) The 1-aryl-3-cyano-5-heteroarylalkylaminopyrazole derivative

Appln. No. 10/028,786 Reply to the Office Action dated September 4, 2003 according to Claim 21, wherein R⁴ is hydrogen or alkyl.

Claim 23. (New) The 1-aryl-3-cyano-5-heteroarylalkylaminopyrazole derivative according to Claim 21, wherein R^1 is $C_{1,4}$ -alkyl or $C_{1,4}$ -haloalkyl.

Claim 24. (New) The 1-aryl-3-cyano-5-heteroarylalkylaminopyrazole derivative according to Claim 23, wherein R^1 is C_{1-2} -haloalkyl.

Claim 25. (New) 1-(2,6-Dichloro-4-trifluoromethylphenyl)-4-fluoromethylthio-5-(pyrazin-2-ylmethylamino)pyrazole-3-carbonitrile and 1-(2,6-dichloro-4-trifluoromethylphenyl)-4-trifluoromethylsulfinyl-5-(pyrazin-2-ylmethylamino)pyrazole-3-carbonitrile.

Claim 26. (New) A pest control composition, comprising:

the 1-aryl-3-cyano-5-heteroarylalkylaminopyrazole derivative according to Claim 21 with a carrier and optionally at least one auxiliary.

Claim 27. (New) A pyrazole derivative represented by formula (2):

$$P^{5}$$
 P^{5}
 P^{5

Reply to the Office Action dated September 4, 2003

wherein group A is (A-1):

wherein bridging group Y is

and wherein X represents N or C-halogen; R² represents hydrogen, alkyl or linear or branched alkylcarbonyl; R³ represents hydrogen or alkyl and R⁴ represents hydrogen, alkyl or halogen; and R⁵ represents hydrogen, thiocyanato, dithio which links two pyrazole rings or mercapto and Z represents halogen.

Claim 28. (New) A process for producing a pyrazole derivative of formula (1)

$$S(O)nR^1$$
 R^3
 CI
 R^2
 R^3
 R^3
 R^3
 R^3
 R^3
 R^3

wherein group A is (A-1):

X represents N or C-halogen; R¹ represents alkyl, alkenyl, alkynyl or haloalkyl; R² represents hydrogen, alkyl or linear or branched alkylcarbonyl; R³ represents hydrogen or alkyl; R⁴

Appln. No. 10/028,786 Reply to the Office Action dated September 4, 2003

represents hydrogen, alkyl or halogen; and n represents 0, 1 or 2, with the proviso that R¹ is not perhaloalkyl when n is 0, which comprises:

treating a pyrazole derivative of formula (2):

$$P^5$$
 P^5
 P^5

wherein A is as defined above, R⁵ is hydrogen and Y is Y-3:

N
C
R
B
R
A
H

with $R^1S(O)_nX^1$, wherein R^1 has the same meaning as defined above, n is 0 or 1 and X is chlorine or bromine.

Claim 29. (New) A process for producing a pyrazole derivative of formula (1)

$$S(O)nR^{1}$$
 R^{3}
 R^{2}
 R^{2}
 R^{3}
 R^{3}
 R^{2}
 R^{3}
 R^{3}

wherein group A is (A-1):

Reply to the Office Action dated September 4, 2003

X represents N or C-halogen; R¹ represents alkyl, alkenyl, alkynyl or haloalkyl; R² represents hydrogen, alkyl or linear or branched alkylcarbonyl; R³ represents hydrogen or alkyl; R⁴ represents hydrogen, alkyl or halogen; and n represents 1 or 2, which comprises:

oxidizing the exocyclic sulfur atom on the pyrazole ring of the compound of formula (1) when n is 0.

Claim 30. (New) A process for producing a pyrazole derivative of formula (1)

wherein group A is (A-1):

X represents N or C-halogen; R¹ represents alkyl, alkenyl, alkynyl or haloalkyl; R² represents hydrogen, alkyl or linear or branched alkylcarbonyl; R³ represents hydrogen or alkyl; R⁴ represents hydrogen, alkyl or halogen; and n represents 0, with the proviso that R¹ is not perhaloalkyl, which comprises:

treating a pyrazole derivative of formula (2):

Reply to the Office Action dated September 4, 2003

$$CI$$
 CF_3

wherein A is as defined above, R⁵ is thiocyanato and Y is Y-3:

N-C-| R³
| R³

with R^1 - X^2 , wherein R^1 has the same meaning as defined above and X^2 represents halogen or trimethylsilyl.

Claim 31. (New) A process for producing a pyrazole derivative of formula (1)

NC
$$S(O)nR^1$$

$$R^3$$

$$R^2 H$$
(1)

wherein group A is (A-1):

X represents N or C-halogen; R¹ represents alkyl, alkenyl, alkynyl or haloalkyl; R² represents hydrogen, alkyl or linear or branched alkylcarbonyl; R³ represents hydrogen or alkyl; R⁴

Reply to the Office Action dated September 4, 2003

represents hydrogen, alkyl or halogen; and n represents 0, with the proviso that R¹ is not perhaloalkyl, which comprises:

treating a pyrazole derivative of formula (2):

$$P^5$$
 P^5
 P^5

wherein A is as defined above, R⁵ is mercapto and Y is Y-3:

N-C| R³
| R | H

with R^1 - X^3 , wherein R^1 has the same meaning as defined above and X^3 represents halogen.

Claim 32. (New) A process for producing a pyrazole derivative of formula (1)

$$S(O) \cap R^1$$

$$R^3$$

$$CI$$

$$R^2$$

$$R^2$$

$$R^3$$

$$CF_3$$

$$(1)$$

wherein group A is (A-1):

Reply to the Office Action dated September 4, 2003

X represents N or C-halogen; R¹ represents alkyl, alkenyl, alkynyl or haloalkyl; R² represents hydrogen, alkyl or linear or branched alkylcarbonyl; R³ represents hydrogen; R⁴ represents hydrogen, alkyl or halogen; and n represents 0, with the proviso that R¹ is not perhaloalkyl, which comprises:

treating a pyrazole derivative of formula (2):

wherein A is as defined above, R5 is dithio which links two pyrazole rings and

with R^1 - X^4 , wherein R^1 has the same meaning as defined above and X^4 represents halogen or SO_2M , wherein M is an alkali metal.

Claim 33. (New) A process for producing a pyrazole derivative of formula (1)

Appln. No. 10/028,786 Reply to the Office Action dated September 4, 2003

$$S(O) \cap \mathbb{R}^1$$
 \mathbb{R}^3
 \mathbb{R}^3
 \mathbb{R}^2
 \mathbb{H}
 \mathbb{R}^3

wherein group A is (A-1):
$$N = \mathbb{R}^{N}$$

X represents N or C-halogen; R¹ represents alkyl, alkenyl, alkynyl or haloalkyl each of which bears at least one fluorine atom; R² represents hydrogen, alkyl or linear or branched alkylcarbonyl; R³ represents hydrogen or alkyl; R⁴ represents hydrogen, alkyl or halogen; and n represents 0, 1 or 2, with the proviso that R¹ is not perhaloalkyl when n is 0, which comprises: treating a pyrazole derivative of formula (1):

$$S(O) \cap R^1$$

$$R^3$$

$$CI$$

$$R^2$$

$$R^3$$

$$(1)$$

wherein A is as defined above, and R1 is an alkyl group having at least one chlorine atom or

Reply to the Office Action dated September 4, 2003

bromine atom, with a fluorinating agent selected from the group consisting of hydrogen fluoride, a mixture of hydrogen fluoride and an amine, and a metal fluoride.

Claim 34. (New) The process of producing the pyrazole derivative of Claim 28, wherein R¹ is haloalkyl of 1 or 2 carbon atoms.

Claim 35. (New) The process of producing the pyrazole derivative of Claim 29, wherein R¹ is haloalkyl of 1 or 2 carbon atoms.

Claim 36. (New) The process of producing the pyrazole derivative of Claim 30, wherein R¹ is haloalkyl of 1 or 2 carbon atoms.

Claim 37. (New) The process of producing the pyrazole derivative of Claim 31, wherein R^1 is haloalkyl of 1 or 2 carbon atoms.

Claim 38. (New) The process of producing the pyrazole derivative of Claim 32, wherein R^1 is haloalkyl of 1 or 2 carbon atoms.

Claim 39. (New) The process of producing the pyrazole derivative of Claim 33, wherein R^1 is haloalkyl of 1 or 2 carbon atoms.

Claim 40. (New) A process for producing a pyrazole derivative of formula (2):

Appln. No. 10/028,786 Reply to the Office Action dated September 4, 2003

$$P^{5}$$
 P^{5}
 P^{5

wherein Y is Y-3:

N-C--R³

N-C--R²
H

wherein R² is hydrogen, R³ is hydrogen or alkyl and R⁵ is hydrogen, thiocyanato, a dithio group which links two pyrazole rings or mercapto, which comprises:

treating a pyrazole derivative of formula (3):

$$NC$$
 R^5
 NH_2
 CF_3
(3)

wherein X represents N or C-halogen, with a nitrogen-containing six-membered heterocyclic compound of the formula: $A-CH(-R^3)-X^5$, X^5 of which is halogen, lower alkylsulfonyloxy or arylsulfonyloxy

12

Appln. No. 10/028,786

Reply to the Office Action dated Septem

Reply to the Office Action dated September 4, 2003

wherein A is (A-1): $\mathbb{N}^{\mathbb{N}}$, \mathbb{R}^4 of which is hydrogen, alkyl or halogen.

Claim 41. (New) A process for producing a pyrazole derivative of formula (2):

wherein Y is Y-3:

wherein R² is hydrogen and R³ is hydrogen or alkyl, which comprises:

treating a pyrazole derivative of formula (4):

Reply to the Office Action dated September 4, 2003

wherein X represents N or C-halogen; R^5 represents hydrogen, thiocyanato, dithio which links two pyrazole rings or mercapto and X^6 represents halogen, lower alkylsulfonyloxy or arylsulfonyloxy with a nitrogen-containing six-membered heterocyclic compound of the formula: $A-CH(-R^3)-NH_2$, wherein R^3 is as defined above,

wherein A is (A-1): , wherein
$$R^4$$
 is hydrogen, alkyl or halogen.

Claim 42. (New) A process for producing a pyrazole derivative of formula (2):

$$P^5$$
 N
 N
 Y
 Y
 CF_3
 (2)

wherein Y is Y-1:

wherein R² is hydrogen, X is N or C-halogen, and R⁵ is hydrogen, thiocyanato, a dithio group which links two pyrazole rings or mercapto, which comprises:

treating a pyrazole derivative of formula (3):

with a nitrogen-containing six-membered heterocyclic compound of the formula: A-C(=O)- X^7 , wherein X^7 is hydroxyl, C_{1-6} -alkoxy or halogen.

wherein A is (A-1): \mathbb{R}^{4} , \mathbb{R}^{4} of which is hydrogen, alkyl or halogen.

Claim 43. (New) A process for producing a pyrazole derivative of formula (2):

$$R^5$$
 N
 N
 Y
 CF_3
 CF_3

wherein A is and Y is Y-2: Z, wherein Z is chlorine or N

Appln. No. 10/028,786 Reply to the Office Action dated September 4, 2003 which comprises:

treating an amide of formula (2):

$$P^{5}$$
 P^{5}
 P^{5

wherein Y is (Y-1):

and R² represents hydrogen, with phosphorus pentachloride, phosphorus pentabromide, phosphorus oxychloride, phosphorus oxybromide, thionyl chloride or thionyl bromide.

Claim 44. (New) A process for producing a pyrazole derivative of formula (2):

$$P^{5}$$
 P^{5}
 P^{5

wherein R⁵ is hydrogen, thiocyanato, a dithio group which links two pyrazole rings or mercapto,

Reply to the Office Action dated September 4, 2003

A is
$$N = 1$$
 and Y is Y-3: $N = 1$ $N = 1$

wherein R² is hydrogen, alkyl or linear or branched alkylcarbonyl and R³ is hydrogen, which comprises:

reducing an amide compound or a haloimidate compound represented by formula (2),

wherein R² is as defined above and Z is chlorine or bromine.

Claim 45. (New) The 1-aryl-3-cyano-5-heteroarylalkylaminopyrazole derivative according to Claim 21, wherein said linear or branched alkylcarbonyl is linear or branched C_{1-4} -alkylcarbonyl.

Claim 46. (New) The 1-aryl-3-cyano-5-heteroarylalkylaminopyrazole derivative according to Claim 27, wherein said linear or branched alkylcarbonyl is linear or branched C_{1-4} -alkylcarbonyl.

Claim 47. (New) The 1-aryl-3-cyano-5-heteroarylalkylaminopyrazole derivative according to Claim 28, wherein said linear or branched alkylcarbonyl is linear or branched $C_{1,4}$ -

Appln. No. 10/028,786 Reply to the Office Action dated September 4, 2003 alkylcarbonyl.

Claim 48. (New) The 1-aryl-3-cyano-5-heteroarylalkylaminopyrazole derivative according to Claim 29, wherein said linear or branched alkylcarbonyl is linear or branched C_{1-4} -alkylcarbonyl.

Claim 49. (New) The 1-aryl-3-cyano-5-heteroarylalkylaminopyrazole derivative according to Claim 31, wherein said linear or branched alkylcarbonyl is linear or branched C_{1-4} -alkylcarbonyl.

Claim 50. (New) The 1-aryl-3-cyano-5-heteroarylalkylaminopyrazole derivative according to Claim 32, wherein said linear or branched alkylcarbonyl is linear or branched C_{1-4} -alkylcarbonyl.

Claim 51. (New) The 1-aryl-3-cyano-5-heteroarylalkylaminopyrazole derivative according to Claim 33, wherein said linear or branched alkylcarbonyl is linear or branched C_{1-4} -alkylcarbonyl.

Claim 52. (New) The 1-aryl-3-cyano-5-heteroarylalkylaminopyrazole derivative according to Claim 32, wherein said linear or branched alkylcarbonyl is linear or branched C_{1-4} -alkylcarbonyl.