MATH 302 2023W1

Name: Sherwin Adrien Tiu Student Number: 35443258

Section: MATH 302 102

HW 2

1. Let ω be a sample space and $\mathbb P$ be a probability measure. Prove that there cannot exist events E. F that satisfy

$$\mathbb{P}(E/F) = \frac{2}{5}, \mathbb{P}(E \bigcup F) = \frac{1}{2}, and \ \mathbb{P}((E \cap F)^c) = \frac{3}{4}$$

$$\mathbb{P}((E \cap F)^c) = \frac{3}{4}$$

$$1 - \mathbb{P}(E \cap F) = \frac{3}{4}$$

$$\mathbb{P}(E \cap F) = \frac{1}{4}$$

$$\mathbb{P}(E \setminus F) = \mathbb{P}(E) - \mathbb{P}(E \cap F) = \frac{2}{5}$$

$$\mathbb{P}(E) = \frac{2}{5} + \frac{1}{4} = \frac{13}{20}$$

For $E \subseteq (E \cup F)$ to be true, $\mathbb{P}(E) \leq \mathbb{P}(E \cup F)$

But $\frac{13}{20} \leq \frac{1}{2}$ is not true, so the events E and F will not be able to satisfy the conditions.

- 2. Given a sample space ω and a probability measure \mathbb{P} , two events $A \subseteq \omega$ and $B \subseteq \omega$ are said to be independent if $\mathbb{P} = \mathbb{P}(A)\mathbb{P}(B)$. Assume that the events E_1 and E_2 are independent.
- (a) Prove that the events E_1^c and E_2^c are also independent.
- (b) If, in addition, $\mathbb{P}(E_1) = \frac{1}{2}$ and $\mathbb{P}(E_2) = \frac{1}{3}$, prove that $\mathbb{P}(E_1 \bigcup E_2) = \frac{2}{3}$
- (c) Let E_3 be a third event such that $\mathbb{P}(E_3) = \frac{1}{4}$, satisfying in addition that E_1 and E_3 are independent and also that E_2 and E_3 are independent. Prove that $\frac{17}{24} \leq \mathbb{P}(E_1 \bigcup E_2 \bigcup E_3) \leq \frac{19}{24}$

(a)
$$\mathbb{P}(E_1^c \cap E_2^c) = \mathbb{P}((E_1 \bigcup E_2)^c)$$

 $= 1 - \mathbb{P}(E_1 \bigcup E_2)$
 $= 1 - (\mathbb{P}(E_1) + \mathbb{P}(E_2) - \mathbb{P}(E_1 \cap E_2))$
 $= 1 - (\mathbb{P}(E_1) + \mathbb{P}(E_2) - \mathbb{P}(E_1)\mathbb{P}(E_2))$
 $= (1 - \mathbb{P}(E_1))(1 - \mathbb{P}(E_2))$
 $= \mathbb{P}(E_1^c)\mathbb{P}(E_2^c))$

(b)
$$\mathbb{P}(E_1 \bigcup E_2) = \mathbb{P}(E_1) + \mathbb{P}(E_2) - \mathbb{P}(E_1 \cap E_2)$$

 $= \mathbb{P}(E_1) + \mathbb{P}(E_2) - \mathbb{P}(E_1)\mathbb{P}(E_2)$
 $= \frac{1}{2} + \frac{1}{3} - \frac{1}{6}$
 $= \frac{4}{6} = \frac{2}{3}$

(c)
$$\mathbb{P}(E_1 \bigcup E_2 \bigcup E_3) = \mathbb{P}(E_1) + \mathbb{P}(E_2) + \mathbb{P}(E_3) - \mathbb{P}(E_1 \cap E_2) - \mathbb{P}(E_1 \cap E_3) - \mathbb{P}(E_2 \cap E_3) + \mathbb{P}(E_1 \cap E_2 \cap E_3)$$

 $\mathbb{P}(E_1) + \mathbb{P}(E_2) + \mathbb{P}(E_3) - \mathbb{P}(E_1) \times \mathbb{P}(E_2) - \mathbb{P}(E_1) \times \mathbb{P}(E_3) - \mathbb{P}(E_2) \times \mathbb{P}(E_3) + \mathbb{P}(E_1 \cap E_2 \cap E_3) = \frac{1}{2} + \frac{1}{3} + \frac{1}{4} - \frac{1}{6} - \frac{1}{12} - \frac{1}{8} + \mathbb{P}(E_1 \cap E_2 \cap E_3)$
 $= \frac{17}{24} + \mathbb{P}(E_1 \cap E_2 \cap E_3)$
Here we get $\frac{17}{24} \leq \mathbb{P}(E_1 \bigcup E_2 \bigcup E_3)$

1

MATH 302 2023W1

Taking the events E_2 and E_3 because they have the smallest probabilities:

$$\begin{split} E_1 \cap E_2 \cap E_3 &\subseteq E_2 \cap E_3 \\ \mathbb{P}(E_1 \cap E_2 \cap E_3) &\leq \mathbb{P}(E_2 \cap E_3) = \frac{1}{12} \\ \text{Substituting from before:} \\ \frac{17}{24} + \mathbb{P}(E_1 \cap E_2 \cap E_3) &= \frac{17}{24} + \frac{1}{12} = \frac{19}{24} \\ \text{Hence proving that } \frac{17}{24} &\leq \mathbb{P}(E_1 \bigcup E_2 \bigcup E_3) \leq \frac{19}{24} \end{split}$$

3. Eight rooks are placed randomly on a chess board. What is the probability that none of the rooks can capture any of the other rooks? (In non-chess terms: Randomly pick 8 unit squares from an 8×8 square grid. What is the probability that no two squares share a row or a column?)

There are 8! ways of placing 8 rooks such that none of the rooks can capture any of the other rooks. Total ways of placing eight rooks is $\binom{64}{8}$

The probability would be $\frac{8!}{\binom{64}{8}} = 9.11 \times 10^{-6}$

- 4. We roll two fair six-sided dice. Consider the events
- E: The sum of the outcomes is even.
- F: At least one outcome is 6.

Calculate the conditional probabilities $\mathbb{P}(E|F)$ and $\mathbb{P}(F|E)$.

$$\begin{split} \mathbb{P}(E|F) &= \frac{\mathbb{P}(E\cap F)}{\mathbb{P}(F)} \\ (E\cap F) &= 5 \quad \{(2,6), (4,6), (6,6), (6,2), (6,4)\} \\ (F) &= 11 \quad \{(1,6), (2,6), (3,6), (4,6), (5,6), (6,6), (6,1), (6,2), (6,3), (6,4), (6,5)\} \\ \mathbb{P}(E|F) &= \frac{5}{11} = 0.45 \\ \mathbb{P}(F|E) &= \frac{\mathbb{P}(F\cap E)}{\mathbb{P}(E)} \\ (F\cap E) &= \mathbb{P}(E\cap F) \\ (E) &= 18, \text{ where the other half has odd sums} \\ \mathbb{P}(F|E) &= \frac{5}{18} = 0.28 \end{split}$$

MATH 302 2023W1

- 5. A fair six-sided die is rolled repeatedly.
- (a) Give an expression for the probability that the first five rolls give a four at most two times.
- (b) Calculate the probability that the first two does not appear before the fifth roll.
- (c) Calculate the probability that the first six appears before the twentieth roll, but not before the fifth roll.
- (a) This will be a binomial r.v., with 5 independent trials and a probability of success of $\frac{1}{6}$. $X \sim Bin(5, \frac{1}{6}) \rightarrow P(X=0) + P(X=1) + P(X=2) = \binom{5}{0} \frac{1}{6} (1 \frac{1}{6})^{5-0} + \binom{5}{1} \frac{1}{6} (1 \frac{1}{6})^{5-1} + \binom{5}{2} \frac{1}{6} (1 \frac{1}{6})^{5-2} = 0.96$
- (b) By independence, $P(X=4) = \frac{5}{6}^4 = 0.48$. This is almost geometric, but we do not care if the fifth one is actually a success or not.
- (c) Let Event A be where no 6 is rolled before the fifth roll, and Event B where a 6 is rolled somewhere between the 5^{th} and 19^{th} roll. We want to get $P(A \cap B) = P(A) \times P(B)$. To get P(B), we get its complement as it is similar to how the probability for Event A was obtained: $P(B^c) = (\frac{5}{6})^{15}$. Hence, $P(B) = (1 (\frac{5}{6})^{15})$.

Combining both probabilities, we get:

$$P(A) \times P(B) = (\frac{5}{6})^4 \times (1 - (\frac{5}{6})^{15}) = 0.45$$

6. The statement "some days are snowy" has 16 letters (treating different appearances of the same letter as distinct). Pick one of them uniformly at random (i.e. each with equal probability 1/16). Let X be the length of the word to which the letter which was chosen belongs. Determine the possible values that X may attain, and the probability mass function of X.

X can either be 3 (are), 4 (some days) or 5 (snowy)

The probability mass function of X will depend on the number of letters the word has. So:

$$\mathbb{P}(X=3) = \frac{3}{16} = 0.1875$$

$$\mathbb{P}(X = 4) = \frac{8}{16} = 0.5$$

$$\mathbb{P}(X=5) = \frac{5}{16} = 0.3125$$

For the case where X = 4, although s was repeated, as they are considered distinct, the total number of letters that belong to 4-letter words will still be 8.