Single-Image Super-Resolution for Satellite Imagery

Thomas Chabal^{1,2} & Quentin Spinat^{1,2}

 1 Ecole des Ponts Paris $^{-1}$ Ecole des Ponts Paris P

²E.N.S. Paris-Saclay Master MVA

Deep Learning Project, January 2021

Introduction

- ▶ Need for better resolution in many fields
 - Biology
 - Satellite Imagery
 - Photography
- Yet, physical improvements of cameras are more and more difficult
- ▶ Drives us towards the development of other methods

Problem Definition

- ▶ Given an image I^{LR} of low-resolution
- ▶ Obtain a higher resolution image \hat{I}^{HR} upscaled by a factor s

$$U:I^{LR} \in \mathbb{R}^w \times \mathbb{R}^h \to \widehat{I}^{HR} \in \mathbb{R}^{w \times s} \times \mathbb{R}^{h \times s}$$

Problem Definition

- ► Given an image I^{LR} of low-resolution
- ▶ Obtain a higher resolution image \hat{I}^{HR} upscaled by a factor s

$$U: I^{LR} \in \mathbb{R}^w \times \mathbb{R}^h \to \widehat{I}^{HR} \in \mathbb{R}^{w \times s} \times \mathbb{R}^{h \times s}$$

 \triangleright Fine reconstruction goal : for a function U,

$$\forall I^{LR}, \left\| \widehat{I}^{HR} - I^{HR} \right\| \to 0$$

Methodology

Classical Computer Vision: spline interpolations

Yet, poor quality (due to Fourier domain)

With the rise of neural networks, new solutions :

- ► Autoencoder : compress the input image into a latent representation and then decode it
- ► (Robust) U-Net : use prior information on the input image to refine the resulting upscaled image
- ► Generative Adversarial Networks : generate plausible details in images and make them seem real
- Yet, unexact methods that may hallucinate

Training and evaluation framework: dataset and transformations

- Dataset used : Massachussetts Road Dataset
 - Satellite images
 - ightharpoonup pprox 800 training images, 13 test images
- ► Transforms :
 - Dataset originally used for road detection
 - Apply downscales and then upscales
 - ► For RUNet: additional random gaussian blur between downscaling and upscaling

Training and evaluation framework: metrics

Metrics:

- ► L2 loss
- ► Peak Signal-to-Noise Ratio (PSNR)
 - Metric for noise reduction, assesses quality of images
- Structural Similarity Index Metric (SSIM)
 - More global overview of image quality than PSNR
- Perceptual loss
 - VGG-16 features extracted
 - L2 distance in this feature representation space
 - Better metric empirically compared to visual impression

Classical Computer Vision

Spline interpolations:

Exact methods

$$\forall (i,j) \in [|0;w|] \times [|0;h|], \qquad U(I^{LR})_{s \times i, s \times j} = I_{s \times i, s \times j}^{HR}$$

- Yet, slow to compute
- Don't affect Fourier domain size, so no details (=high frequencies) added

$$\varphi_{\textit{n-spline}} = \bigstar_{i=1}^{\textit{n}} 1_{\left[-\frac{1}{2}; \frac{1}{2}\right[^{2}]}$$

where \bigstar is the convolution product.

Coupled Deep Autoencoder

- Two Autoencoders trained together
- ▶ Idea: get low dimensional representation of high and low resolution images, then map them together
- We reimplemented it from scratch

Robust UNet

- U-Net architecture
- Architectural differences : Residual blocks in encoding part
- Training specification : Blur input images before upscaling them
- ▶ We reimplemented it from scratch

ESRGAN

- Generate details in images
- Output = mix between GAN output and PSNR-oriented network output

Evaluation: metrics

	MSE (10^{-3})	SSIM (10 ⁻¹)	PSNR	Perceptual
Bilinear	3.025	8.621	22.56	6.388
Spline-5	2.925	9.126	24.46	5.547
CDA	2.522	9.281	25.17	5.152
RUNET	3.486	8.903	22.52	5.931
GAN	2.033	9.125	25.03	4.858

Table 1: Quantitative results over the test set

Evaluation: visual results

Evaluation: visual results

Evaluation: visual results

Conclusion

- Classical interpolations of poor quality, yet exact
- ► Great visual results with RUNet, ESRGAN could be finetuned on our dataset to give better outputs
- Metrics not always related to image quality → Find a better metric
- ► Further exploration for higher upscaling factors
- Depending on the application of satellite imagery, need to have exact images and no hallucination, so prefer classical vision