1 Introduction to the Langlands Program

1.1 Introduction

1.2 Galois Representations

Definition 1.2.1. For a field K we define the absolute Galois group $G_K = \operatorname{Gal}(\overline{K}/K)$. Let E be a topological field and $n \in \mathbb{Z}^+$ a positive integer. Then an E-valued n-dimensional Galois representation is a continuous homomorphism,

$$\rho: G_K \to \mathrm{GL}_n(E)$$

1.2.1 Complex Representations

Lemma 1.2.2. There exists a neighborhood V of I in $GL_n(\mathbb{C})$ that contains no nontrivial subgroup.

Proof. Recall that $M_n(\mathbb{C})$ is a metric space under the absolute value $|A| = \max |A_{ij}|$. Let $U_r = \{A \in M_n(\mathbb{C}) : |A - I| < r \text{ and tr}(A) = 0\}$ and take $V_r = \exp(U_r)$ an open neighborhood of $I \in GL_n(\mathbb{C})$ since det $\exp A = \exp \operatorname{tr}(A) = 1$. Suppose that $H \subset V_r$ is a subgroup. For $B \in H$ we have $B = \exp A$ and thus $B^k = (\exp A)^k = \exp(kA)$ so $kA \in U_r$. However, $|kA| = |k| \cdot |A|$ which, by the archimedean property, can be taken arbitrarily large if |A| > 0. Since all $A \in U_r$ have |A| < r this contradicts the fact that $kA \in U_r$ unless $|A| = 0 \implies A = 0 \implies B = I$. Thus, $H = \{I\}$.

Remark. The above proof depends crucially on the archimedean property.

Proposition 1.2.3. Any continuous homomorphism $\rho: G_K \to GL_n(\mathbb{C})$ factors through Gal(F/K) for some finite Galois extension F/K. Hence its image is finite.

Proof. By Lemma 1.2.2, let V be an neighborhood of I in $GL_n(\mathbb{C})$ which contains no non-trivial subgroups. Then $U = \rho^{-1}(V)$ is an open neighborhood of id $\in G_K$ and thus contains a normal subgroup of the form $Gal(\bar{K}/F)$ for some galois extension F/K. Since ρ is a homomorphism, the image of $Gal(\bar{K}/F)$ is subgroup contained in V. But V does not have any nontrivial subgroup so $Gal(\bar{K}/F) \subset \ker \rho$ is actually in the kernel of ρ . Thus, ρ factors through the quotient,

$$\operatorname{Gal}\left(\bar{K}/K\right)/\operatorname{Gal}\left(\bar{K}/F\right)\cong\operatorname{Gal}\left(F/K\right)$$

which is finite. Hence ρ has finite image.

1.2.2 ℓ -adic Galois Representations

Remark. The archimedean nature of \mathbb{C} leading to Lemma 1.2.2 made the theory of complex Galois representations fairly uninteresting. However, if we consider a non-archimedean field such as \mathbb{Q}_{ℓ} , this restriction is lifted.

Proposition 1.2.4. Every neighborhood of $1 \in \mathbb{Q}_{\ell}^{\times}$ contains a nontrivial subgroup.

Proof. Let U be an open neighborhood of $1 \in \mathbb{Q}_{\ell}^{\times}$, then there exists $n \in \mathbb{Z}^{+}$ such that

$$V(n) = 1 + \ell^n \mathbb{Z}_{\ell} \subset U$$

However, V(n) is a nontrivial subgroup of $\mathbb{Q}_{\ell}^{\times}$ because

$$(1 + \ell^n z)^{-1} - 1 = \frac{\ell^n z}{1 + \ell^n z} = \ell^n \frac{z}{1 + \ell^n z} \in \ell^n \mathbb{Z}_{\ell}$$

since $1 + \ell^n z \in \mathbb{Z}_{\ell}^{\times}$.

Definition 1.2.5. Let L/K be finite Galois extension of number fields, $\mathfrak{p} \in \mathcal{O}_K$ be an unramified prime, and \mathfrak{P} a prime of \mathcal{O}_L lying above \mathfrak{p} . Then, there is an isomorphism $D(\mathfrak{P}) \xrightarrow{\sim} \operatorname{Gal}(\kappa(\mathfrak{P})/\kappa(\mathfrak{p}))$. Let $\operatorname{Frob}_{\mathfrak{p}} \in D(\mathfrak{P}) \subset \operatorname{Gal}(L/K)$ denote the preimage of $\operatorname{Frob} \in \operatorname{Gal}(\kappa(\mathfrak{P})/\kappa(\mathfrak{p}))$. In particular,

$$\operatorname{Frob}_{\mathfrak{P}}(x) \equiv x^{\#\kappa(\mathfrak{p})} \mod \mathfrak{P}$$

for $x \in \mathcal{O}_L$. Since for any two $\mathfrak{P}, \mathfrak{P}'$ over \mathfrak{p} there is $\sigma \in \operatorname{Gal}(L/K)$ such that $\sigma(\mathfrak{P}) = \mathfrak{P}'$ then $D(\mathfrak{P}') = \sigma D(\mathfrak{P})\sigma^{-1}$ so $\operatorname{Frob}_{\mathfrak{P}'} = \sigma \operatorname{Frob}_{\mathfrak{P}}\sigma^{-1}$ giving a well-defined conjugacy class $\operatorname{Frob}_{\mathfrak{p}}$.

Lemma 1.2.6. Let $F = \mathbb{Q}(\zeta_N)$. Let p be a prime in \mathbb{Z} such that $p \not\mid N$. Let \mathfrak{p} be a prime in F lying above p. Then $\kappa(\mathfrak{p}) = \mathcal{O}_F/\mathfrak{p} = \mathbb{F}_p[\zeta_N]$. Let $x \in \mathcal{O}_F$, then we can describe the action of Frob_p by

$$\operatorname{Frob}_{p}\left(\sum_{i=0}^{N-1} a_{i} \zeta_{N}^{i}\right) \equiv \left(\sum_{i=0}^{N-1} a_{i} \zeta_{N}^{i}\right)^{p} \equiv \sum_{i=0}^{N-1} a_{i} \zeta_{N}^{ip} \mod \mathfrak{p}$$

That is to say, the action of Frob_p takes ζ_N to ζ_N^p .

Definition 1.2.7. The ℓ -adic cyclotomic character $\chi_{\ell}: G_{\mathbb{Q}} \to \mathbb{Q}_{\ell}^{\times}$ of $G_{\mathbb{Q}}$ is defined by,

$$\sigma \mapsto (m_1, m_2, m_3, \dots)$$
 where $\sigma(\zeta_{\ell^n}) = \zeta_{\ell^n}^{m_n}$

is a 1-dimensional Galois representation since m_n is defined up to multiples of ℓ^n .

Remark. Notice that when $p \neq \ell$ we have,

$$\chi_{\ell}(\operatorname{Frob}_n) = p$$

In particular, the image of χ_{ℓ} is infinite. Therefore, ℓ -adic Galois representations allow for richer structure than those over \mathbb{C} .

1.2.3 Uniqueness of Galois Representations

Theorem 1.2.8 (Chebotarev). Let L/K be a finite Galois extension of number fields and $X \subset G = \text{Gal}(L/K)$ is a conjugation-stable subset. Then,

$$\delta(\{\mathfrak{p}\subset\mathcal{O}_K\mid\mathfrak{p}\text{ unramified and }\mathrm{Frob}_{\mathfrak{p}}\subset X\}=\frac{\#X}{\#G}$$

where $\delta(S)$ is the natural density. In particular, $\mathfrak{p} \mapsto \operatorname{Frob}_{\mathfrak{p}}$ is surjective onto $\operatorname{Gal}(L/K)$.

Remark. This of course gives us more. It says that any cofinite set of primes $\mathfrak{p} \subset \mathcal{O}_K$ produce enough Frob_p to cover the Galois group.

Remark. Given a tower E/L/K of finite Galois extensions we see that under $\operatorname{Gal}(E/K) \to \operatorname{Gal}(L/K)$ that $\operatorname{Frob}_{\mathfrak{p},E/K} \to \operatorname{Frob}_{\mathfrak{p},L/K}$ for any unramified prime $\mathfrak{p} \subset \mathcal{O}_K$. Choosing primes \mathfrak{p}_E over \mathfrak{p}_L over \mathfrak{p} this follows from the commutative diagram,

$$D(\mathfrak{p}_E) \xrightarrow{\sim} \operatorname{Gal}\left(\kappa(\mathfrak{p}_E)/\kappa(\mathfrak{p})\right)$$

$$\downarrow \qquad \qquad \downarrow$$

$$D(\mathfrak{p}_L) \xrightarrow{\sim} \operatorname{Gal}\left(\kappa(\mathfrak{p}_L)/\kappa(\mathfrak{p})\right)$$

Thus, for an infinite Galois extension E/K with \mathfrak{p} unramified there is a well-defined conjugacy class,

$$\operatorname{Frob}_{\mathfrak{p}} \subset \operatorname{Gal}\left(E/K\right) = \varprojlim_{E/L/K} \operatorname{Gal}\left(L/K\right)$$

defined by $\varprojlim_{E/L/K}$ Frob_{$\mathfrak{p},L/K$} where L runs over finite Galois intermediate extensions.

Proposition 1.2.9. Let E/K be any Galois extension unramified outside of a finite set S. The map $\mathfrak{p} \mapsto \operatorname{Frob}_{\mathfrak{p}}$ from unramified primes $\mathfrak{p} \subset \mathcal{O}_K$ to conjugacy classes in $\operatorname{Gal}(E/K)$ has dense (union of its) image.

Proof. By the universal property, a set $S \subset \operatorname{Gal}(E/K)$ is dense if and only if its image under each $\operatorname{Gal}(E/K) \to \operatorname{Gal}(L/K)$ is dense (i.e. equals all of $\operatorname{Gal}(L/K)$) where L/K is finite Galois and $E \supset L$. Since the set of primes $\mathfrak{p} \subset \mathcal{O}_K$ unramified in E is cofinite, the conjugacy classes $\operatorname{Frob}_{\mathfrak{p},L/K}$ cover $\operatorname{Gal}(L/K)$ proving that the union of $\operatorname{Frob}_{\mathfrak{p}}$ is dense in $\operatorname{Gal}(E/K)$. \square

Theorem 1.2.10 (Brauer-Nesbitt). Let G be a group and E a field. Given a pair of semi-simple representations $\rho_1, \rho_2 : G \to GL_n(E)$ such that $\forall g \in G$ the characteristic polynomials of $\rho_1(g)$ and $\rho_2(g)$ are equal then $\rho_1 \cong \rho_2$.

Remark. In characteristic zero, it suffices that $\chi_{\rho_1} = \chi_{\rho_2}$ meaning that $\operatorname{tr}(\rho_1(g)) = \operatorname{tr}(\rho_2(g))$ for all $g \in G$ thus we only need to look at the leading (not the monic term) coefficient of the characteristic polynomial. To see this, notice that if λ_i are the (counted with algebraic multiplicity) eigenvalues of $\rho(g)$ then λ_i^n are the eigenvalues of $\rho(g^n) = \rho(g)^n$ so

$$\operatorname{tr}(\rho(g^n)) = \lambda_1^n + \dots + \lambda_1^n$$

which (as long as n! is invertible) determine the elementry symmetric polynomials in $\lambda_1, \ldots, \lambda_n$ (i.e. the coefficients of the minimal polynomial) via Newton sums.

Theorem 1.2.11. Let E/K is a (possibly infinite) Galois extension unramified outside of a finite set S. Then a (continuous) semi-simple Galois representation $\rho : \operatorname{Gal}(E/K) \to \operatorname{GL}_n(F)$ is determined uniquely by the characteristic polynomials,

$$char(\rho(\operatorname{Frob}_{\mathfrak{p}}))(t) = \det\left[tI - \rho(\operatorname{Frob}_{\mathfrak{p}})\right]$$

for each $\mathfrak{p} \notin S$.

Proof. The map $\operatorname{char}(\rho) : \operatorname{Gal}(E/K) \to F[x]$ taking $g \mapsto \operatorname{char}(\rho(g))$ is continuous and therefore determined by its values on $\operatorname{Frob}_{\mathfrak{p}}$ (notice that $\operatorname{char}(\rho(\operatorname{Frob}_{\mathfrak{p}}))$ is well-defined because char is invariant under conjugation) since these are mutually dense. Therefore, by Brauer-Nesbitt, there is at most one semi-simple representation up to isomorphism with the proscribed characteristic polynomials.

Remark. The situation for local fields K is even simpler. Any unramified Galois representation

$$\rho: \operatorname{Gal}(E/K) \to \operatorname{GL}_n(F)$$

(meaning equivalently $\rho(I_{E/K}) = \{I\}$ or ρ factors through some unramified L/K) is determined by $\operatorname{char}(\rho(\operatorname{Frob}_{\mathfrak{p}}))$ because $\operatorname{Gal}(K^{\operatorname{ur}}/K) = \hat{\mathbb{Z}} \cdot \operatorname{Frob}_{\mathfrak{p}}$ and thus the image of $\operatorname{Frob}_{\mathfrak{p}}$ determines any continuous map $\operatorname{Gal}(E/K) \to \operatorname{Gal}(L/K) \to \operatorname{GL}_n(F)$

1.3 The Dimension One Case

Definition 1.3.1. Given a Dirichlet character $\chi: (\mathbb{Z}/N\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ there is an associated complex 1-dimensional Galois representation,

$$\rho_{\chi}: \operatorname{Gal}\left(\overline{\mathbb{Q}}/\mathbb{Q}\right) \twoheadrightarrow \operatorname{Gal}\left(\mathbb{Q}(\zeta_N)/\mathbb{Q}\right) = (\mathbb{Z}/N\mathbb{Z})^{\times} \xrightarrow{\chi} \operatorname{GL}_1(\mathbb{C})$$

Proposition 1.3.2. For any complex 1-dimensional Galois representation $\rho : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_1(\mathbb{C})$ there is a Dirichlet character $\chi : (\mathbb{Z}/N\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ such that $\rho \cong \rho_{\chi}$.

Proof. By Proposition 1.2.3 ρ has finite image and thus ker ρ is an open subgroup which corresponds to some finite extension K/\mathbb{Q} such that passing to the quotient, $\bar{\rho}: \operatorname{Gal}(K/\mathbb{Q}) \hookrightarrow \mathbb{C}^{\times}$. Since \mathbb{C}^{\times} is abelian, K/\mathbb{Q} is abelian and thus by the Kronecker-Weber theorem there is some N such that $K \subset \mathbb{Q}(\zeta_N)$. Since $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}(\zeta_N)) \subset \ker \rho$ we see that ρ defines a character,

$$\chi: (\mathbb{Z}/N\mathbb{Z})^{\times} = \operatorname{Gal}(\mathbb{Q}(\zeta_N)/\mathbb{Q}) \to \mathbb{C}^{\times}$$

such that the diagram

commutes proving that $\rho = \rho_{\chi}$.

1.3.1 The Artin L-Function

Definition 1.3.3. Let $\rho: \operatorname{Gal}(L/K) \to \operatorname{Aut}(V)$ be a representation on a finite dimension F-vectorspace V with L/K finite Galois. Then define,

$$L(\rho, s) = \prod_{\mathfrak{p} \subset \mathcal{O}_K} \frac{1}{\det\left[I - N(\mathfrak{p})^{-s} \rho(\operatorname{Frob}_{\mathfrak{p}}) \middle| V_{\mathfrak{p}, \rho}\right]}$$

where $V_{\mathfrak{p},\rho} = V_{\rho(I_{\mathfrak{p}})}$ such that $\rho : \operatorname{Gal}(L/K) \to \operatorname{Aut}(V_{\mathfrak{p},\rho})$ factors through an extension unramified at \mathfrak{p} so that Frob_p is well-defined.

Remark. Notice that the local factors,

$$\det\left[I - N(\mathfrak{p})^{-s} \rho(\operatorname{Frob}_{\mathfrak{p}}) | V_{\mathfrak{p},\rho} \right]^{-1}$$

are a slight modification of the characteristic polynomial evaluated at $t = N(\mathfrak{p})^{-1}$ and thus determine the representation ρ .

Theorem 1.3.4. Let L/K be a Galois extension of degree n. Then,

$$\zeta_L(s) = \prod_{\rho \text{ irrep Gal}(L/K)} L(\rho, s)^{\deg \rho}$$

Proof. Let e be the ramification index of \mathfrak{p} . Then notice that $G_{\mathfrak{p}} = G/I_{\mathfrak{p}}$ acts on $V_{\mathfrak{p},\rho}$ and has order n/e. For the local factor at \mathfrak{p} , notice that,

$$-\log \det \left[I - N(\mathfrak{p})^{-s} \rho(\operatorname{Frob}_{\mathfrak{p}})\right] = \sum_{m=1}^{\infty} \frac{\operatorname{tr} \left(\rho(\operatorname{Frob}_{\mathfrak{p}})^{m}\right)}{m} N(\mathfrak{p})^{-sm}$$

Furthermore, by the character orthogonality relations,

$$\sum_{\rho \text{ irrep}} \deg(\rho) \operatorname{tr}(\rho(\sigma)) = \sum_{\rho \text{ irrep}} \overline{\operatorname{tr}(\rho(\operatorname{id}))} \operatorname{tr}(\rho(\sigma)) = \begin{cases} n/e & \sigma = \operatorname{id} \\ 0 & \sigma \neq \operatorname{id} \end{cases}$$

Therefore,

$$-\sum_{\rho \text{ irrep}} \deg(\rho) \log \det\left[I - N(\mathfrak{p})^{-s} \rho(\operatorname{Frob}_{\mathfrak{p}})\right] = \frac{n}{e} \sum_{m=1}^{\infty} \frac{N(\mathfrak{p})^{-sfm}}{fm} = -g \log\left(1 - N(\mathfrak{p})^{-sf}\right)$$

where f is the order of Frob, and n = efg. However, there is an Euler product,

$$\zeta_L(s) = \sum_{I \subset \mathcal{O}_L} \frac{1}{N(I)^{-s}} = \prod_{\mathfrak{P} \subset \mathcal{O}_L} \frac{1}{1 - N(\mathfrak{P})^{-s}} = \prod_{\mathfrak{p} \subset \mathcal{O}_K} \frac{1}{(1 - N(\mathfrak{p})^{-sf})^g}$$

because there are g primes above \mathfrak{p} and each has $N(\mathbb{P}) = N(\mathfrak{p})^f$. Therefore, we see that,

$$\log \zeta_L(s) = -\sum_{\mathfrak{p} \subset \mathcal{O}_K} \log (1 - N(\mathfrak{p})^{-sf})^g = -\sum_{\rho \text{ irrep}} \deg \rho \log \det \left[I - N(\mathfrak{p})^{-s} \rho(\operatorname{Frob}_{\mathfrak{p}}) \right]$$

and thus,

$$\zeta_L(s) = \prod_{\rho \text{ irrep}} L(\rho, s)^{\deg \rho}$$

1.4 The Abelian Case

Hello

2 Introduction to Automorphic Forms