Azzolini Riccardo 2020-05-21

Soddisfacibilità, validità e conseguenza logica

1 Dipendenza dagli assegnamenti: termini

Proposizione: Sia t un termine con $FV(t) = \{x_1, \dots, x_n\}, ^1$ e sia \mathcal{M} un modello. Se e_1 ed e_2 sono due assegnamenti su \mathcal{M} tali che

$$e_1(x_i) = e_2(x_i)$$
 per ogni $x_i \in FV(t)$

allora $[t]_{\mathcal{M}}^{e_1} = [t]_{\mathcal{M}}^{e_2}$.

Dimostrazione: Procede per induzione sulla struttura di t:

- Casi base: Il caso t = c, con c simbolo di costante, è immediato perché il valore non dipende dall'assegnamento (ma solo dal modello, che in questa proposizione rimane fissato), mentre il caso $t = x \in \{x_1, \ldots, x_n\}$ segue dalle ipotesi.
- Caso induttivo: $t = f(t_1, ..., t_n)$. Per ipotesi induttiva,

$$[\![t_1]\!]_{\mathcal{M}}^{e_1} = [\![t_1]\!]_{\mathcal{M}}^{e_2}, \ldots, [\![t_n]\!]_{\mathcal{M}}^{e_1} = [\![t_n]\!]_{\mathcal{M}}^{e_2}$$

e, applicando una funzione ad argomenti uguali, si ottiene lo stesso valore:

$$I(f)([t_1]_{\mathcal{M}}^{e_1}, \dots, [t_n]_{\mathcal{M}}^{e_1}) = I(f)([t_1]_{\mathcal{M}}^{e_2}, \dots, [t_n]_{\mathcal{M}}^{e_2})$$

2 Dipendenza dagli assegnamenti: formule

Proposizione: Sia φ una formula con $FV(\varphi) = \{x_1, \dots, x_n\}$, e sia \mathcal{M} un modello. Se e_1 ed e_2 sono due assegnamenti su \mathcal{M} tali che

$$e_1(x_i) = e_2(x_i)$$
 per ogni $x_i \in FV(\varphi)$

allora

$$(\mathcal{M}, e_1) \models \varphi \iff (\mathcal{M}, e_2) \models \varphi$$

Dimostrazione: Procede per induzione sulla struttura di φ :

 $^{^{1}}$ Si ricorda che tutte le variabili che occorrono in un termine sono libere, quindi FV(t) è semplicemente l'insieme di variabili che occorrono nel termine.

• Caso base: $\varphi = P(t_1, \dots, t_n)$. Per la proposizione precedente,

$$[\![t_1]\!]_{\mathcal{M}}^{e_1} = [\![t_1]\!]_{\mathcal{M}}^{e_2}, \ldots, [\![t_n]\!]_{\mathcal{M}}^{e_1} = [\![t_n]\!]_{\mathcal{M}}^{e_2}$$

da cui:

$$([[t_1]]_{\mathcal{M}}^{e_1}, \dots, [[t_n]]_{\mathcal{M}}^{e_1}) \in I(P) \iff ([[t_1]]_{\mathcal{M}}^{e_2}, \dots, [[t_n]]_{\mathcal{M}}^{e_2}) \in I(P)$$

 $(\mathcal{M}, e_1) \models P(t_1, \dots, t_n) \iff (\mathcal{M}, e_2) \models P(t_1, \dots, t_n)$

• Casi induttivi: I casi dei connettivi seguono immediatamente dall'ipotesi induttiva.

Il caso significativo è invece quello di $\varphi = \forall x \psi$ (e quello di $\varphi = \exists x \psi$, che è analogo), perché la valutazione avviene sostanzialmente "togliendo" il quantificatore e trattando la variabile quantificata come una libera. A causa di questo passaggio, l'assegnamento considerato non è più quello di partenza.

Per ipotesi, per ogni $y \in FV(\varphi) = FV(\psi) \setminus \{x\}$, si ha che $e_1(y) = e_2(y)$, Poi, riassegnando a x uno specifico elemento del dominio $d \in D$, si ottengono due assegnamenti che "si comportano allo stesso modo" non solo sulle $FV(\varphi)$, ma anche su x,

$$e_1[d/x](x) = d = e_2[d/x](x)$$

ovvero, complessivamente,

$$e_1[d/x](y) = e_2[d/x](y)$$

per ogni $y \in FV(\psi)$. Segue per ipotesi induttiva che

$$(\mathcal{M}, e_1[d/x]) \models \psi \iff (\mathcal{M}, e_2[d/x]) \models \psi$$

Ciò vale per un qualunque d, ovvero per ogni $d \in D$, e quindi:

$$(\mathcal{M}, e_1) \models \forall x \psi \iff (\mathcal{M}, e_2) \models \forall x \psi$$

Osservazione: Se φ è una formula chiusa, cioè se $FV(\varphi) = \emptyset$, la valutazione di φ non dipende dall'assegnamento. In questo caso, si può dunque semplificare la notazione, scrivendo $\mathcal{M} \models \varphi$ invece di $(\mathcal{M}, e) \models \varphi$.

3 Soddisfacibilità

Definizione: Si considerino una formula φ (su un alfabeto A) e un modello \mathcal{M} (per A).

- Dato un assegnamento e (su \mathcal{M}), si dice che (\mathcal{M}, e) soddisfa φ se (\mathcal{M}, e) $\models \varphi$.
- φ è soddisfacibile in \mathcal{M} se esiste un assegnamento e (su \mathcal{M}) tale che (\mathcal{M}, e) $\models \varphi$.

- Al contrario, φ è falsa in \mathcal{M} se non esistono assegnamenti e tali che $(\mathcal{M}, e) \models \varphi$.
- \mathcal{M} è un modello di φ se, per ogni assegnamento e, $(\mathcal{M}, e) \models \varphi$. Allora, si dice anche che φ è vera in \mathcal{M} , e si scrive $\mathcal{M} \models \varphi$.

Osservazione: Se φ è una formula chiusa, allora φ è soddisfatta da \mathcal{M} se e solo se \mathcal{M} è un modello di φ , cioè le definizioni di soddisfacibilità e modello coincidono. Si "giustifica" così l'uso della stessa notazione, $\mathcal{M} \models \varphi$, per indicare

- che $\mathcal M$ soddisfa una formula chiusa φ
- che \mathcal{M} è un modello di una formula (anche non chiusa) φ

dato che il secondo caso è una generalizzazione del primo: in entrambi si ha l'indipendenza dall'assegnamento, ma nel primo questa è dovuta all'assenza di variabili libere, mentre nel secondo possono anche esserci variabili libere, purché non abbiano effetto sul valore di verità della formula.

4 Formule valide e contraddittorie

Definizione: Una formula φ

- è valida se è vera in ogni modello, cioè se per ogni \mathcal{M} si ha $\mathcal{M} \models \varphi$;
- è una contraddizione (è insoddisfacibile) se è falsa in ogni modello.

Osservazione: Considerando anche la definizione di modello di una formula, il fatto che una formula φ sia valida significa che:

$$\widetilde{\forall} \mathcal{M} \ \widetilde{\forall} e \quad (\mathcal{M}, e) \models \varphi$$

Analogamente, φ è una contraddizione se e solo se:

$$\widetilde{\forall} \mathcal{M} \, \widetilde{\forall} e \quad (\mathcal{M}, e) \not\models \varphi$$

5 Conseguenza logica

Notazione: Dato un insieme di formule Γ , si scrive $(\mathcal{M}, e) \models \Gamma$ se $(\mathcal{M}, e) \models \varphi$ per ogni $\varphi \in \Gamma$.

Definizione: Si dice che una formula φ è **conseguenza logica** di un insieme di formule Γ , e si scrive $\Gamma \models \varphi$, se, per ogni (\mathcal{M}, e) tale che $(\mathcal{M}, e) \models \Gamma$, si ha $(\mathcal{M}, e) \models \varphi$.

Osservazione: Questa definizione è analoga a quella data per la logica proposizionale, con la sola differenza che le valutazioni sono sostituite dalle coppie modello-assegnamento.

6 Alcune proprietà

Proposizione:

- φ è valida se e solo se $\neg \varphi$ è una contraddizione.
- φ è soddisfacibile se e solo se $\neg \varphi$ non è valida.
- $\Gamma \models \varphi$ se e solo se $\Gamma \cup \{\neg \varphi\}$ è una contraddizione.

Dimostrazione: La dimostrazione è del tutto analoga a quella per il caso proposizionale.

7 Osservazione sulle formule valide

Se H è una tautologia della logica proposizionale, allora, sostituendo ogni variabile proposizionale con una formula della logica dei predicati, si ottiene una formula valida della logica dei predicati.

Ad esempio, $X \vee \neg X$ è una tautologia, quindi sostituendo X con A(x,f(g(c,x))) si ottiene

$$A(x, f(g(c, x))) \vee \neg A(x, f(g(c, x)))$$

che è una formula valida: qualunque coppia (\mathcal{M}, e) considerata potrà

- o verificare A(x, f(g(c, x))),
- oppure non verificarla, e allora verificherà la sua negazione $\neg A(x, f(g(c, x)))$,

dunque la disgiunzione è sempre vera.

8 Esempi

8.1 Soddisfacibilità

Si considerino la formula

$$\varphi = \forall x (P(x) \to M(x, y))$$

e il modello $\mathcal{M} = (\mathbb{N}, I)$ tale che

$$I(P) = \{n \in \mathbb{N} \mid n \text{ è pari}\}$$
 $I(M) = \{(n, m) \mid n \text{ è multiplo di } m\}$

L'unica variabile libera di φ è y (FV(φ) = {y}), quindi per specificare l'assegnamento considerato è sufficiente indicare il valore assunto da y.

• Come primo esempio, si fissa l'assegnamento e(y) = 3. Applicando le varie definizioni, si ottiene

$$(\mathcal{M}, e) \models \forall x (P(x) \to M(x, y))$$

$$\iff \widetilde{\forall} n \in \mathbb{N} \quad (\mathcal{M}, e[n/x]) \models (P(x) \to M(x, y))$$

$$\iff \widetilde{\forall} n \in \mathbb{N} \quad \left((\mathcal{M}, e[n/x]) \not\models P(x) \text{ oppure } (\mathcal{M}, e[n/x]) \models M(x, y) \right)$$

$$\iff \widetilde{\forall} n \in \mathbb{N} \quad n \text{ non è pari oppure } n \text{ è un multiplo di } 3$$

perciò la formula φ non è soddisfatta dalla coppia (\mathcal{M}, e) scelta.

• Adesso, si pone invece $e(y) = d \in \mathbb{N}$. Ripetendo il ragionamento precedente, si ottiene:

$$(\mathcal{M},e)\models \forall x(P(x)\to M(x,y))$$

$$\iff \widetilde{\forall}n\in\mathbb{N}\quad n\text{ non è pari oppure }n\text{ è un multiplo di }d$$

Questa formula, in \mathcal{M} , non è soddisfatta per ogni assegnamento (un controesempio è il precedente, e(y)=3), cioè non è vero che \mathcal{M} è un modello di φ . D'altra parte, φ è soddisfacibile in \mathcal{M} : esiste almeno un assegnamento, e(y)=1, che rende vera questa formula.

8.2 Insiemi

Siccome i predicati unari sono interpretati come sottoinsiemi del dominio, si possono esprimere alcune proprietà degli insiemi con le formule della logica del primo ordine:

- La formula $\forall x(A(x) \to B(x))$ è soddisfatta in un modello (D,I) se e solo se $I(A) \subseteq I(B)$.
- La formula $\neg \exists x (A(x) \land B(x))$ è soddisfatta in un modello se e solo se I(A) e I(B) sono insiemi disgiunti.
- La formula $\exists x ((A(x) \lor B(x)) \land \neg C(x))$ è soddisfatta in un modello se e solo se l'insieme $(I(A) \cup I(B)) \setminus I(C)$ non è vuoto.

8.3 Relazioni

I predicati binari sono interpretati come relazioni (binarie, appunto) sul dominio.

Considerando, ad esempio, l'insieme $D = \{1, 2, 3, 4, 5\}$ e la relazione I(R) su D espressa dalla seguente tabella,

x y	1	2	3	4	5
1	✓	\checkmark		\checkmark	
2	✓		\checkmark	\checkmark	
3		\checkmark	\checkmark		
4	✓	\checkmark	\checkmark	\checkmark	\checkmark
5			\checkmark		

• la formula $\forall x \exists y R(x,y)$ è vera nel modello $\mathcal{M} = (D,I)$:

$$\mathcal{M} \models \forall x \exists y R(x, y)$$

per ogni elemento $x \in D$, esiste un $y \in D$ tale che $(x, y) \in I(R)$, o, in altre parole, su ogni riga della tabella c'è almeno una cella spuntata;

• $\forall x \forall y R(x, y)$ è falsa,

$$\mathcal{M} \not\models \forall x \forall y R(x,y)$$

perché non è vero che ogni elemento del dominio è in relazione con tutti gli elementi (non sono spuntate tutte le celle della tabella);

• $\exists x \forall y R(x,y)$ è vera,

$$\mathcal{M} \models \exists x \forall y R(x,y)$$

perché x=4 è in relazione con ogni $y\in D$ (nella riga del 4 sono spuntate tutte le celle).

8.4 Formula valida

Si vuole verificare che è valida la formula

$$\varphi = \forall x (A(x) \land B(x)) \rightarrow (\forall x A(x) \land \forall x B(x))$$

Formalmente: Si considera un qualunque modello $\mathcal{M}=(D,I)$ per l'alfabeto su cui è costruita φ ; poiché la formula è chiusa, non è necessario considerare esplicitamente anche gli assegnamenti. Dimostrare che \mathcal{M} rende vera φ significa mostrare che, se il modello rende vero l'antecedente, allora rende vero anche il conseguente:

$$\mathcal{M} \models \forall x (A(x) \land B(x))$$

$$\implies \widetilde{\forall} d \in D \quad (\mathcal{M}, [d/x]) \models A(x) \land B(x)$$

$$\implies \widetilde{\forall} d \in D \quad ((\mathcal{M}, [d/x]) \models A(x) \text{ e } (\mathcal{M}, [d/x]) \models B(x))$$

Intuitivamente, se per ogni elemento valgono A(x) e B(x), allora per ogni elemento vale A(x) e per ogni elemento vale B(x):

$$\implies \widetilde{\forall} d \in D \ (\mathcal{M}, [d/x]) \models A(x) \quad \text{e} \quad \widetilde{\forall} d \in D \ (\mathcal{M}, [d/x]) \models B(x)$$

$$\implies \mathcal{M} \models \forall x A(x) \quad \text{e} \quad \mathcal{M} \models \forall x B(x)$$

$$\implies \mathcal{M} \models \forall x A(x) \land \forall x B(x)$$

Informalmente: In qualsiasi modello $\mathcal{M} = (D, I)$, se ogni elemento del dominio soddisfa sia A che B, allora ogni elemento soddisfa A e ogni elemento soddisfa B.

8.5 Paradosso del barbiere

Problema: In un villaggio c'è un barbiere che rade tutti quelli che non si radono da soli.

Domanda: Quest'affermazione può essere vera? In particolare, il barbiere rade se stesso?

Considerando un linguaggio con

- un predicato binario R(x, y), interpretato come "x rade y";
- una costante b, che rappresenta il barbiere;

l'affermazione è formalizzata dalla formula:

$$\varphi = \forall x (R(b, x) \leftrightarrow \neg R(x, x))$$

La domanda ha risposta positiva se esiste un modello in cui la formula è vera.

Formalmente, considerando un qualunque modello $\mathcal{M} = (D, I)$ (nel quale si suppone che D rappresenti l'insieme degli abitanti del villaggio, I(b) sia il barbiere e $I(R) = \{(x, y) \mid x \text{ rade } y\}$):

$$\mathcal{M} \models \forall x (R(b,x) \leftrightarrow \neg R(x,x))$$

$$\updownarrow$$

$$\forall d \in D \quad (\mathcal{M}, [d/x]) \models R(b,x) \leftrightarrow \neg R(x,x)$$

$$\updownarrow$$

$$\forall d \in D \quad (\mathcal{M}, [d/x]) \models R(b,x) \iff (\mathcal{M}, [d/x]) \models \neg R(x,x)$$

$$\updownarrow$$

$$\forall d \in D \quad (I(b), d) \in I(R) \iff (d, d) \notin I(R)$$

Quest'ultima affermazione dovrebbe valere per ogni elemento d del dominio, e quindi, in particolare, anche per il barbiere, ponendo $d = I(b) \in D$. In tal caso, però, l'affermazione diventa

$$(I(b), I(b)) \in I(R) \iff (I(b), I(b)) \notin I(R)$$

che è falsa (una coppia o appartiene all'interpretazione della relazione, o non vi appartiene), dunque la formula φ non può essere vera in \mathcal{M} , ma \mathcal{M} è stato scelto come un generico modello, perciò φ non può essere vera in alcun modello, ovvero è contraddittoria.