## INTRO TO MACHINE LEARNING AND LINEAR REGRESSION

March 03, 2015 - General Assembly, Santa Monica

Mohsen Chitsaz, Ph.D.

Sr. Principal Data Scientist at Symantec

#### **Machine Learning**

"Field of study that gives computers the ability to learn without being explicitly programmed"

-Arthur Samuel, 1959

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E"

- Tom M. Mitchell

#### Types of Variables

- Continuous (Quantitative)
  - Interval
  - Ratio

- Categorical (Qualitative and Discrete)
  - Nominal
  - Ordinal
  - □ Flags (Dichotomous)

#### Types of Variables

#### Continuous (Numerical)

- Interval
  - The difference between two measurements matter, <u>scale is</u> not <u>preserved</u>
    - e.g. 40°C 20°C, compared to 30°C 10°C
    - 40°C is not four times warmer than 10°C
- Ratio
  - An interval quantity that also preserves scale
    - e.g. Height, 6ft is twice as much as 3ft
    - Kelvin temperature (°K)
    - Distance

#### Types of Variables

- Categorical (Discrete and Qualitative)
  - Nominal
    - {'blue', 'black', 'yellow'}
  - Ordinal
    - {'High', 'Medium', 'Low'}
  - Flags (Dichotomous)
    - {'Male', 'Female'}
    - {'True', 'False'}
    - {'Approved', 'Denied'}

#### **Machine Learning**

- Supervised
  - Regression
  - Classification

- Unsupervised
  - Clustering
  - Density estimation
  - Dimensionality reduction

#### Machine Learning Examples

■ Text classification

Image classification

■ Machine vision

Pattern recognition

Anomaly detection

#### Example – Credit Application

| age                | 23 years |
|--------------------|----------|
| gender             | male     |
| annual salary      | \$30,000 |
| years in residence | 1 year   |
| years in job       | 1 year   |
| current debt       | \$15,000 |
| • • •              | • • •    |

#### Components of Learning

• Input: **x** (customer application) • Output: y (good/bad customer?) • Target function:  $f: \mathcal{X} \to \mathcal{Y}$  (ideal credit approval formula) ullet Data:  $(\mathbf{x}_1,y_1), (\mathbf{x}_2,y_2), \cdots, (\mathbf{x}_N,y_N)$  (historical records) ullet Hypothesis:  $g: \mathcal{X} \to \mathcal{Y}$  (formula to be used)



#### UNKNOWN TARGET FUNCTION *f*: *X*→*Y* (ideal credit approval function) TRAINING EXAMPLES $(\mathbf{x}_{1}, y_{1}), \dots, (\mathbf{x}_{N}, y_{N})$ (historical records of credit customers) **FINAL LEARNING HYPOTHESIS ALGORITHM** $g \approx f$ Я (final credit approval formula) HYPOTHESIS SET $\mathcal{H}$ (set of candidate formulas)

#### Training, and Testing Data Sets



**E**<sub>in</sub>: In sample error

**E**<sub>out</sub>: Out of sample error

#### Learning Tradeoffs (Bias, Variance)

#### Hypothesis set complexity



E<sub>in</sub> (in sample error)
 decreases

E<sub>out</sub> (out of sample error) increases

#### Hypothesis set complexity



E<sub>in</sub> (in sample error)increases

E<sub>out</sub> (out of sample error) <u>decreases</u>

#### Bias, Variance Tradeoff



#### Supervised - Coin Recognition





#### Unsupervised - Coin Recognition



# **Linear Regression**

#### Generalized Linear Models

$$\hat{y}(w,x) = w_0 + w_1x_1 + ... + w_px_p$$
Intercept weighted inputs



#### **Ordinary Least Squares**

Minimizes the error,

X: input vector, y: output value, w: weights

$$\min_{w} ||Xw - y||_2^2$$

- Example:
  - □ US Population from 1900 2013

#### Regression Example – US Population

| Year | <b>Population</b> |                                             |
|------|-------------------|---------------------------------------------|
| 1900 | 76.09             |                                             |
| 1901 | 77.58             |                                             |
| 1902 | 79.16             |                                             |
| 1903 | 80.63             |                                             |
| 1904 | 82.17             | 350                                         |
| 1905 | 83.82             | 300 -<br>250 -                              |
| 1906 | 85.45             | 200 -                                       |
| 1907 | 87.01             | 150 -                                       |
| 1908 | 88.71             | 50<br>1880 1900 1920 1940 1960 1980 2000 20 |
|      |                   |                                             |

#### **US Population Example**

```
x1 = pd.read_excel('US_Population.xlsx')
import sklearn.linear model as linear model
model = linear model.LinearRegression()
Year = xl. Year
Population = xl.Population
params = model.fit(Population.reshape(Year.size,1), Year)
print 'coef: ', params.coef
print 'intercept: ', params.intercept
coef: [ 0.46041748]
intercept: 1873.43878924
```

#### How good is our model?

We need to know how well the model fits the data

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

$$SS_{\text{tot}} = \sum_{i} (y_i - \bar{y})^2,$$

$$SS_{res} = \sum_{i} (y_i - f_i)^2$$

$$R^2 \equiv 1 - \frac{SS_{\text{res}}}{SS_{\text{tot}}}.$$



sklearn.metrics.r2\_score

### Anything missing in our Regression?

#### Training, and Testing Data Sets



**E**<sub>in</sub>: In sample error

**E**<sub>out</sub>: Out of sample error

#### **US Population Example**

```
import sklearn.cross_validation as cv
```

```
split_ratio = 0.10
split_data = cv.train_test_split(x1, test_size=split_ratio)
training_data = split_data[0]
testing_data = split_data[1]
```



#### Youtube Rating Prediction

- 1) Search for videos "maddona"
- 2) Parse the json result
- 3) Extract features of videos, e.g. number of likes, number of dislikes, number of views, number of days since its publish date
- 4) Come up with a formula that relates features to the rating

#### Class Group Work – Abalone Age

- Determining the age Abalone is very laborious
- We want to find a formula that predicts the **age** of abalone based on some of its features



#### Class Group Work – Abalone Age

| Feature           | Description                      |
|-------------------|----------------------------------|
| sex               | M, F, I, (Gender or Infant)      |
| length            | Longest shell measurement (mm)   |
| diameter          | Perpendicular to the length (mm) |
| height            | With meat in shell (mm)          |
| whole_weight (gr) | Whole weight (gr)                |
| shucked_weight    | Weight of meat (gr)              |
| viscera_weight    | Gut weight after bleeding (gr)   |
| shell_weight      | After being dried (gr)           |
| rings             | +1.5 gives the age in years      |

#### Ridge Regression

- Imposes a penalty on the size of coefficients
- Minimizes a penalized residual sum of squares:

$$\min_{w} ||Xw - y||_2^2 + \alpha ||w||_2^2$$

 Alpha is a complexity parameter, the greater the alpha is, coefficients become more robust to collinearity

```
model = linear_model.Ridge(alpha = .5)
```

#### Example

 Try Ridge regression on youtube data and abalone examples

How does the result of regression changes as we increase alpha?

Can you plot the out of sample R<sup>^</sup>2 accuracy as a function of alpha for both problems?