Machine Learning 2019: Tree-Based Methods

Sonali Narang 10/28/2019

Tree-Based Methods

Decision tree is a type of supervised learning algorithm that can be used in both regression and classification problems. Tree-based methods works for both categorical and continuous input and output variables.

The Carseats Dataset

400 Observations, 11 variables Response Variable: Sales/High

```
data("Carseats")
carseats = Carseats
head(carseats)
```

```
Sales CompPrice Income Advertising Population Price ShelveLoc Age
## 1 9.50
                  138
                                                         120
                           73
                                        11
                                                  276
                                                                    Bad
                                                                         42
## 2 11.22
                           48
                                        16
                                                          83
                  111
                                                  260
                                                                   Good
                                                                         65
## 3 10.06
                  113
                           35
                                        10
                                                  269
                                                          80
                                                                Medium
                                                                         59
## 4 7.40
                  117
                          100
                                        4
                                                  466
                                                          97
                                                                Medium
                                                                         55
## 5 4.15
                  141
                                         3
                                                         128
                                                                         38
                           64
                                                  340
                                                                    Bad
## 6 10.81
                  124
                          113
                                        13
                                                  501
                                                          72
                                                                    Bad
                                                                         78
##
     Education Urban
                       US
## 1
             17
                  Yes Yes
## 2
             10
                  Yes Yes
## 3
             12
                  Yes Yes
## 4
             14
                  Yes Yes
## 5
             13
                  Yes
                      No
## 6
             16
                   No Yes
```

```
#convert quantitative variable Sales into a binary response
High = ifelse(carseats$Sales<=8, "No", "Yes")
carseats = data.frame(carseats, High)
head(carseats)</pre>
```

```
##
     Sales CompPrice Income Advertising Population Price ShelveLoc Age
## 1 9.50
                  138
                          73
                                       11
                                                  276
                                                        120
                                                                   Bad
                                                                        42
## 2 11.22
                  111
                          48
                                       16
                                                  260
                                                         83
                                                                  Good
                                                                        65
## 3 10.06
                  113
                          35
                                       10
                                                  269
                                                         80
                                                                Medium
                                                                        59
## 4 7.40
                  117
                         100
                                        4
                                                  466
                                                         97
                                                                Medium
                                                                        55
## 5 4.15
                  141
                          64
                                        3
                                                  340
                                                        128
                                                                        38
                                                                   Bad
## 6 10.81
                  124
                                                         72
                                                                        78
                         113
                                       13
                                                  501
                                                                   Bad
     Education Urban US High
## 1
            17
                 Yes Yes Yes
## 2
                 Yes Yes
            12
                 Yes Yes Yes
## 3
```

```
## 4 14 Yes Yes No No ## 5 13 Yes No No No H# 6 16 No Yes Yes
```

Classification Tree

Input variables (X) can be continuous or categorical. Response variable (Y) is categorical (usually binary): in this case Sales/High.

```
#set seed to make results reproducible
set.seed(29)
#split data into train and test subset (250 and 150 respectively)
train = sample(1:nrow(carseats), 250)
#Fit train subset of data to model
tree.carseats = tree(High~.-Sales, carseats, subset=train)
summary(tree.carseats)
##
## Classification tree:
## tree(formula = High ~ . - Sales, data = carseats, subset = train)
## Variables actually used in tree construction:
                                                 "CompPrice"
                                                                "Population"
## [1] "ShelveLoc"
                    "Price"
                                   "Age"
                                   "US"
## [6] "Advertising" "Income"
## Number of terminal nodes: 24
## Residual mean deviance: 0.3436 = 77.65 / 226
## Misclassification error rate: 0.072 = 18 / 250
#Visualize tree
plot(tree.carseats)
text(tree.carseats, pretty=0)
```



```
#each of the terminal nodes are labeled Yes or No. The variables and the value of the splitting choice
#Use model on test set, predict class labels
tree.pred = predict(tree.carseats, carseats[-train,], type="class")
#Misclassification table to evaluate error
with(carseats[-train,], table(tree.pred, High))
##
            High
## tree.pred No Yes
##
         No 71 20
##
         Yes 17
                42
#Calculate error by summing up the diagonals and dividing by number of total predictions
mc = (71 + 42) / 150
mc
```

Pruning using cross-validation

[1] 0.7533333

Pruning is a method to cut back the tree to prevent over-fitting.

```
\#cross\_validation to prune the tree using cv.tree
cv.carseats = cv.tree(tree.carseats, FUN = prune.misclass)
#Sizes of the trees as they were pruned back, the deviances as the pruning proceeded, and cost complexi
cv.carseats
## $size
## [1] 24 21 18 14 12 9 7 5 4 2 1
##
## $dev
   [1] 69 68 63 65 69 73 76 75 83 92 104
##
##
## $k
   [1] -Inf 0.0 1.0 1.5 2.5 3.0 3.5 4.0 6.0 7.5 25.0
##
## $method
## [1] "misclass"
##
## attr(,"class")
## [1] "prune"
                      "tree.sequence"
#Visualize
```


plot(cv.carseats)

```
#Prune tree to a size of 12
prune.carseats = prune.misclass(tree.carseats, best = 12)

#Visualize tree
plot(prune.carseats)
text(prune.carseats, pretty=0)
```



```
#Evaluate on test set
tree.pred = predict(prune.carseats, carseats[-train,], type="class")

#Misclassification
with(carseats[-train,], table(tree.pred, High))

## High
## tree.pred No Yes
## No 66 21
## Yes 22 41

#Error
mc_pruning = (66 + 41) / 150
mc_pruning
```

[1] 0.7133333

Pruning did not increase misclassification error by too much and resulted in a simpler tree!!

Decision trees suffer from high variance, meaning if you split the training data into 2 parts at random, and fit a decision tree to both halves, the results that you get could be very different.

Bagging and boosting are technique used to reduce the variance of your predictions.

The Boston Housing Dataset

506 Observations, 14 variables Response Variable: medv (median value of owner-occupied homes for each suburb)

```
data("Boston")
boston = Boston
head(Boston)
##
                                              dis rad tax ptratio black
       crim zn indus chas
                            nox
                                   rm age
## 1 0.00632 18 2.31
                        0 0.538 6.575 65.2 4.0900
                                                    1 296
                                                             15.3 396.90
## 2 0.02731 0 7.07
                        0 0.469 6.421 78.9 4.9671
                                                    2 242
                                                             17.8 396.90
## 3 0.02729 0 7.07
                        0 0.469 7.185 61.1 4.9671
                                                    2 242
                                                             17.8 392.83
## 4 0.03237 0 2.18
                        0 0.458 6.998 45.8 6.0622
                                                    3 222
                                                             18.7 394.63
## 5 0.06905 0 2.18
                        0 0.458 7.147 54.2 6.0622
                                                    3 222
                                                             18.7 396.90
## 6 0.02985 0 2.18
                        0 0.458 6.430 58.7 6.0622
                                                    3 222
                                                             18.7 394.12
##
    1stat medv
## 1
    4.98 24.0
## 2 9.14 21.6
## 3 4.03 34.7
## 4 2.94 33.4
```

Bagging: Random Forest

5 5.33 36.2 ## 6 5.21 28.7

Bagging involves creating multiple copies of the original training dataset using the bootstrap, fitting a separate decision tree to each copy, and then combining all of the trees in order to create a single predictive model. Each tree is built on a bootstrapped dataset, independent of the other trees.

Random Forest: Each time a split in a tree is considered, a random sample of m predictors is chosen as split candidates from the full set of p predictors. The split is allowed to use only one of those m predictors.

```
#set seed for reproducibility
set.seed(29)

#split into train and test sets (300 and 206 respectively)
train = sample(1:nrow(boston), 300)

#fit training subset of data to model
rf.boston = randomForest(medv~., data = boston, subset = train)
rf.boston
```

```
##
## Call:
## randomForest(formula = medv ~ ., data = boston, subset = train)
##
                  Type of random forest: regression
                        Number of trees: 500
## No. of variables tried at each split: 4
##
             Mean of squared residuals: 12.86824
##
                       % Var explained: 83.94
#summary of rf.boston gives information about the number of trees, the mean squared residuals (MSR), an
#No. of variables tried at each split: 4
#Each time the tree comes to split a node, 4 variables would be selected at random, then the split woul
##Lets try a range of mtry (number of variables selected at random at each split)
oob.err = double(13)
test.err = double(13)
#In a loop of mtry from 1 to 13, you first fit the randomForest to the train dataset
for(mtry in 1:13){
 fit = randomForest(medv~., data = boston, subset=train, mtry=mtry, ntree = 350)
 oob.err[mtry] = fit$mse[350] ##extract Mean-squared-error
 pred = predict(fit, boston[-train,]) #predict on test dataset
  test.err[mtry] = with(boston[-train,], mean( (medv-pred)^2 )) #compute test error
#Visualize
matplot(1:mtry, cbind(test.err, oob.err), pch = 23, col = c("red", "blue"), type = "b", ylab="Mean Squa
legend("topright", legend = c("OOB", "Test"), pch = 23, col = c("red", "blue"))
```


Boosting

Boosting is another approach to improve the predictions resulting from a decision tree. Trees are grown sequentially: each tree is grown using information from previously grown trees. Each tree is fitted on a modified version of the original dataset.

```
#Gradient Boosting Model
boost.boston = gbm(medv~., data = boston[train,], distribution = "gaussian", n.trees = 10000, shrinkage
#Variable Importance Plot
summary(boost.boston)
```



```
##
               var
                      rel.inf
## lstat
             1stat 37.6982917
## rm
                rm 27.4231506
## dis
               dis 10.7870570
## crim
              crim 6.3190588
## nox
               nox
                   3.8741970
## age
                   3.8660387
               age
## black
             black
                   3.4055088
## ptratio ptratio
                    2.2861013
## tax
               tax 1.8341376
## indus
             indus 1.0918593
## chas
              chas
                    0.6945661
## rad
               rad
                    0.5888764
## zn
                zn 0.1311568
```

```
#Visualize important variables of interest
plot(boost.boston,i="lstat")
```


plot(boost.boston,i="rm")


```
#Predict on test set
n.trees = seq(from = 100, to = 10000, by = 100)
predmat = predict(boost.boston, newdata = boston[-train,], n.trees = n.trees)
dim(predmat)
```

[1] 206 100

```
#Visualize Boosting Error Plot
boost.err = with(boston[-train,], apply( (predmat - medv)^2, 2, mean) )
plot(n.trees, boost.err, pch = 23, ylab = "Mean Squared Error", xlab = "# Trees", main = "Boosting Test
abline(h = min(test.err), col = "red")
```

Boosting Test Error

Homework

- 1. Attempt a regression tree-based method (not covered in this tutorial) on a reasonable dataset of your choice. Explain the results.
- 2. Attempt both a bagging and boosting method on a reasonable dataset of your choice. Explain the results.