Predicate Logic

1

OVERVIEW AND PARSING

PL – Restrictions

2

Restrictions with PL

- Facts (that are either T/F) only can be represented
- NOT sufficient to represent the complex / (NL) natural language statements
- Having limited expressive power
- Examples:

Some humans are intelligent
All children are naughty

So, some more powerful logic required

Predicate logic / First-order logic

Predicate Logic - Introduction

Predicate Logic

- Another name: First Order Logic (FOL)
- One more way of knowledge representation in AI
- Extension to PL
- Sufficiently expressive to represent the natural language statements in a concise way
- Powerful language that
 - O Develops information about the objects in a more easy way &
 - Can also express the relationship between those objects.

Predicate Logic

Predicate Logic

- Not like PL in way that
 - O Does not only assume that the world contains facts
 - o but also assumes the following things in the world:
 - ➤ Objects: A, B, people, numbers, colors, wars, theories, squares, pits, wumpus, ...
 - **Relations:**
 - Unary relation (red, round, is adjacent,...) /
 - o n-any relation (the sister of, brother of, has color, comes between)
 - **Function:** Father of, best friend, third inning of, end of,
- FOL (as a natural language) also has two main parts:
 - Syntax
 - Semantics

Prepared by S.Hemalatha/SITE

Predicate Logic Syntax 5

- Basic syntactic elements: *Symbols*
 - Statements written in short-hand notation
- Basic elements of the FOL:

Constant	1,2, A, John, Mumbai, cat,
Variables	x, y, z, a, b, \dots
Predicates	Brother, Father, >,
Function	sqrt, LeftLegOf,
Connectives	\neg , \land , \lor , \rightarrow , \Longleftrightarrow
Equality	==
Quantifier	∀,∃

Atomic Sentences & Compound Sentences

Atomic sentences:

- The most basic sentences of FOL
 - o Formed from a predicate symbol followed by a parenthesis with a sequence of terms
 - Can be represented as

Predicate (term1, term2, ..., term n)

- Examples:
 - **Ravi and Ajay are brothers:**

brothers(Ravi, Ajay)

× Chinky is a cat:

cat (Chinky)

Complex Sentences:

- Made by combining atomic sentences
 - Using connectives

Predicate Logic Basic Idea

FOL statements divided into two parts:

- Subject:
 - Main part of the statement
- Predicate:
 - O Defined as a relation Binds two atoms together in a statement
- Example:

Predicate Logic Quantifiers

Quantifier:

- Language element which generates quantification
 - O Quantification specifies the quantity of specimen in the universe of discourse
- Basically symbols
 - O Determine / Identify the range and scope of the variable in the logical expression
- There are two types of quantifier:
 - Universal Quantifier, (for all, everyone, everything)
 - Existential quantifier, (for some, at least one).

Predicate Logic Universal Quantifier

Universal Quantifier:

- Symbol of logical representation:
 - Specifies that the statement within its range is true for everything /
 - Every instance of a particular thing
- Represented by a symbol ∀,
 - Resembles an inverted A
- If x is a variable, then $\forall x$ is read as:
 - \circ For all x
 - \circ For each x
 - \circ For every x

In universal quantifier we use implication \rightarrow

FOL - Universal Quantifier Example

All man drink coffee

 $\forall x \ man(x) \rightarrow drink(x, cofee)$

• There are all x where x is a man who drink coffee

Prepared by S.Hemalatha/SITE

Predicate Logic Existential Quantifier

Existential Quantifier:

- Type of quantifiers
 - Which express that the statement within its scope is true for at least one instance of something
- Denoted by ∃
 - Resembles as inverted E
 - When used with a predicate variable, it is called as an existential quantifier
- If x is a variable, then $\exists x/\exists (x)$ is read as:
 - \circ There exists a x
 - \circ For some x
 - For at least one x

In Existential quantifier we always use AND or Conjunction symbol \land

FOL - Existential Quantifier Example

Some boys are intelligent

 $\exists x \ boys(x) \land intelligent(x)$

There are some x where x is a boy who is intelligen

Prepared by S.Hemalatha/SITE

FOL - Quantifier Properties

• Universal quantifier:

 $\forall x \forall y$ is similar to $\forall y \forall x$

• Existential quantifier

 $\exists x \exists y$ is similar to $\exists y \exists x$

• Universal & Universal quantifier:

 $\exists x \forall y \text{ is } \text{NOT similar to } \forall y \exists x$

FOL Free & Bound Variables

Free Variable:

- A variable is a free *variable* in a formula if it *occurs outside the scope of the quantifier*
- Example:

$$\forall x \exists (y)[P(x,y,z)]$$

o z is a free variable

Bound Variable:

- A variable is a bound *variable* in a formula if it *occurs within the scope of the quantifier*
- Example:

$$\forall x \exists (y)[P(x,y,z)]$$

o x&y are bound variable

Rules of Inference Predicate Logic

15

OVERVIEW AND PARSING

FOL – Inference

16

- Inference in First-Order Logic
 - Used to deduce new facts or sentences from existing sentences

• Let's go thru' some basic terminologies used in FOL

FOL Basic Terminology

Substitution:

- Fundamental operation performed on terms and formulas
- It occurs in all inference systems in FOL
- Becomes complex in the presence of quantifiers in FOL

$F[\alpha/x]$ refers to substitute a constant α in place of variable x

• Note: FOL is capable of expressing facts about some or all objects in the universe

FOL Basic Terminology

Equality:

- Equality symbols used to specify that the two terms refer to the same object
 - Example: Brother (John) = Smith
- Object referred by the **Brother** (**John**) is similar to the object referred by **Smith**
- Equality symbol also used with negation:
 - To represent that two terms are not the same objects

Example: $\neg(x = y)$ which is equivalent to $x \neq y$

Basic Inference Rules in FOL:

- Universal Generalization
- Universal Instantiation
- Existential Instantiation
- Existential introduction

Universal Generalization

- A valid inference rule
- If premise P(c) is true for any arbitrary element c in the universe of discourse, then we can have a conclusion as $\forall x P(x)$

$$\frac{P(c)}{\forall x P(x)}$$

- O Used if we want to show that every element has a similar property
- o [x must not appear as a free variable]
- Example:

P(c): A byte contains 8 bits

 $\forall x P(x)$: All bytes contain 8 bits

Universal Instantiation (UI):

- Also called *universal elimination*
 - Can be applied multiple times to add new sentences
 - The new KB is logically equivalent to the previous KB
- we can infer any sentence obtained by substituting a ground term for the variable
- Any sentence P(c) can be inferred by substituting a ground term c (constant within domain x) from $\forall x P(x)$ for any object in the universe of discourse
 - Premise: $\forall x P(x)$ & Conclusion: P(c)

$$\frac{\forall x P(x)}{P(c)}$$

• Example:

 $\forall x P(x)$: Every person likes ice-cream

P(c): Arun likes ice-cream

- Example: 2.
- "All kings who are greedy are Evil." So let our knowledge base contains this detail as in the form of FOL:

$$\forall x \ king(x) \land greedy(x) \rightarrow Evil(x)$$

• So from this information, we can infer any of the following statements using Universal Instantiation:

```
King(John) \land Greedy(John) \rightarrow Evil(John),

King(Richard) \land Greedy(Richard) \rightarrow Evil(Richard),

King(Father(John)) \land Greedy(Father(John)) \rightarrow Evil(Father(John)),
```

Prepared by S.Hemalatha/SITE

Existential Instantiation

- Also called *existential elimination*
 - o It can be applied only once to replace the existential sentence
 - The new KB is not logically equivalent to old KB
 - × But it will be satisfiable if old KB was satisfiable
- This rule states that one can infer P(c) from the formula given in the form of $\exists x \ P(x)$ for a new constant symbol c.
- Any sentence P(c) can be inferred from $\exists x P(x)$ for a new constant symbol c
- The restriction with this rule is that c used in the rule must be a new term for which P(c) is true
 - Premise: $\exists x P(x)$ & Conclusion: P(c)

$$\frac{\exists x P(x)}{P(c)}$$

• Example:

Given: $\exists x Crown(x) \land OnHead(x, Arun)$ So, it can be inferred that $Crown(K) \land OnHead(K, Arun)$

K: Skolem constant

The Existential instantiation is a special case of Skolemization process

Existential Introduction

- Also known as an existential generalization
- If there is some element c in the universe of discourse having a property P, then we can infer that there exists something in the universe which has the property P.
 - Premise: $\exists x P(x)$ & Conclusion: P(c)

$$\frac{P(c)}{\exists x P(x)}$$

• Example:

Given: Priyanka got good marks in English
So, it can be inferred that Someone got good marks in English

Generalized Modus Ponens Rule

- Lifted version of Modus ponens
- Summarized as: P implies Q and P is asserted to be true, therefore Q must be True
- According to Modus Ponens, for atomic sentences **pi**, **pi'**, **q**. Where there is a substitution θ such that SUBST $(\theta, pi',) = SUBST(\theta, pi)$

$$\frac{p1', p2', ..., pn', (p1 \land p2 \land \cdots \land pn \rightarrow q)}{SUBST(\theta, q)}$$

- Example:
- We will use this rule for Kings are evil, so we will find some x such that x is king, and x is greedy so we can infer that x is evil.
- Example:

Given: Kings are evil & $\exists x \ king(x)$, greedy(x)

So, it can be inferred that x is evil