Optimization Techniques

Optimization Techniques

- Need for Optimization
- Setting up Optimization Problem
 - Formulation
- Different Optimization Techniques:
 - Linear Programming
 - Transportation Problem
 - Assignment Problem
 - Queuing Systems

Need for Optimization

- Controlling the excess usage of resources
- Maximising the profit
- Minimising the cost

Setting up Optimization Problem

- ► Formulation
- Construction of a mathematical model
- Acquiring the data

Different Optimization Techniques – Linear Programming

► LPP is a mathematical technique for allotting the limited resources of a firm in an optimum manner.

Linear Programming (LP) Problem

- The <u>maximization</u> or <u>minimization</u> of some quantity is the <u>objective</u> in all linear programming problems.
- All LP problems have <u>constraints</u> that limit the degree to which the objective can be pursued.
- ► A <u>feasible solution</u> satisfies all the problem's constraints.
- An <u>optimal solution</u> is a feasible solution that results in the largest possible objective function value when maximizing (or smallest when minimizing).

Linear Programming (LP) Problem

- ▶ If both the objective function and the constraints are linear, the problem is referred to as a <u>linear programming</u> <u>problem</u>.
- Linear functions are functions in which each variable appears in a separate term raised to the first power and is multiplied by a constant (which could be 0).
- Linear constraints are linear functions that are restricted to be "less than or equal to", "equal to", or "greater than or equal to" a constant.

Problem Formulation

Problem formulation or modeling is the process of translating a verbal statement of a problem into a mathematical statement.

Guidelines for Model Formulation

- Understand the problem thoroughly.
- Describe the objective.
- Describe each constraint.
- Define the decision variables.
- Write the objective in terms of the decision variables.
- Write the constraints in terms of the decision variables.

Example 1: A Maximization Problem

▶ LP Formulation

Max
$$5x_1 + 7x_2$$

s.t. $x_1 \le 6$
 $2x_1 + 3x_2 \le 19$
 $x_1 + x_2 \le 8$
 $x_1, x_2 \ge 0$

► Constraint #1 Graphed

Constraint #2 Graphed

Constraint #3 Graphed

Combined-Constraint Graph

► Objective²Function Line

Feasible Region

- ► The feasible region for a two-variable linear programming problem can be nonexistent, a single point, a line, a polygon, or an unbounded area.
- Any linear program falls in one of three categories:
 - is infeasible
 - has a unique optimal solution or alternate optimal solutions
 - has an objective function that can be increased without bound
- A feasible region may be unbounded and yet there may be optimal solutions. This is common in minimization problems and is possible in maximization problems.

Linear Programming

EXAMPLES

14-12-2022

Opine Group

A company that operates 10 hours a day manufactures two products on three sequential processes. The following table summarizes the data of the problem

	Minutes per unit				
Product	Process 1	Process 2	Process 3	Unit Profit	
111111111111111111111111111111111111111	10	6	8	Rs. 2/-	
2	5	20	10	Rs. 3/-	

Determine the optimal mix of the two products.

Problem 2:

Solve this linear programming problem.

Maximize

$$Z = 20x_1 + 10x_2 + 15x_3$$

Subject to:

$$3x_1+2x_2 +5x_3 \le 55$$

 $2x_1+x_2 +x_3 \le 26$
 $x_1+x_2+3x_3 \le 30$
 $5x_1+2x_2 +4x_3 \le 57$
 $x_1,x_2,x_3 \ge 0$

Problem 3:

A company makes three models of desks, an executive model, an office model and a student model. Each desk spends time in the cabinet shop, the finishing shop and the crating shop as shown in the table:

Type of desk	Cabinet shop (in hrs.)	Finishing shop (in hrs.)	Crating shop (in hrs.)	Profit (in Rs.)
Executive	2	1	1	150
Office	1	2	1	125
Student	1	1	.5	50
Available hours	16	16	10	

How many of each type of model should be made to maximize profits?