LC PDE Derivation

Overview

This document summarizes the derivation of the nematic liquid-crystal (LC) director equation used in the LC Soliton Simulator. The formulation accounts for elastic, dielectric, and optical torques.

1. Free-Energy Density

The elastic energy is represented by the one-constant Frank approximation: $F_el = (K/2)$ $|\nabla \theta|^2$. The dielectric and optical energy contributions add torque terms proportional to $\sin(2\theta)$.

2. Governing PDE

From torque balance, the director tilt $\theta(x, y, t)$ satisfies: $(\gamma \blacksquare / K) \partial \theta / \partial t = \nabla^2 \theta + (\epsilon \blacksquare \Delta \epsilon _RF E^2 / 2K) \sin(2\theta) + (\epsilon \blacksquare n_a^2 |E_op|^2 / 4K) \sin(2\theta)$.

3. Dimensionless Form

By defining $b = \varepsilon \blacksquare \Delta \varepsilon RF V^2 / (8K)$ and $b_i = \varepsilon \blacksquare n_a^2 d^2 \blacksquare |E_op|^2 \blacksquare / (16K)$, and scaling x, y by d/2, the PDE becomes: $\partial \theta / \partial t' = \nabla^2 \theta + b \sin(2\theta) + b_i I(x, y) \sin(2\theta)$.

4. Mobility

The mobility parameter sets the time scale: mobility = $(K/\gamma \blacksquare)$ * $(4 / d^2)$. The physical time step dt corresponds to seconds.