

Travaux dirigés d'optique géométrique Série N°2 : Miroir Sphérique

Exercice 1: Construction géométrique

1- Miroir concave:

Soit AB un objet réel étendu (non-ponctuel). Faire la construction géométrique de l'image A'B' de l'objet AB et discuter leurs natures dans les deux cas suivant :

- a- AB se situe entre avant F
- b- AB se situe F et S

Soit maintenant AB un objet virtuel:

c- Trouver son image par rapport au miroir sphérique concave. Quelle est la nature de l'image.

2- Miroir convexe:

Soit (SI) un rayon quelconque arrivant sur la face réfléchissante d'un miroir sphérique convexe.

En utilisant le foyer principal F et le centre C, construire l'image du rayon incident (SI)

Exercice 2: Relation de Newton ou relation de conjugaison avec origine au foyer.

En utilisant la relation de conjugaison avec origine au sommet d'un miroir sphérique, trouver la relation de conjugaison du miroir sphérique avec origine au foyer (appelée également relation de Newton)

Filière SMIA (S2)

Année universitaire **2019-2020** Faculté poly disciplinaire de Khouribga

Exercice 3 : Miroir sphérique concave.

Un miroir sphérique concave de sommet S et de rayon R=SC=1.5~m où C est le centre du miroir, projette l'image d'une bougie sur un écran à une distance d=2m de celle-ci. Le miroir à un faible rayon d'ouverture (conditions de Gauss).

- 1- Donner la relation de conjugaison du miroir sphérique avec origine au centre et origine au sommet.
- 2- Calculer la distance D entre le miroir et l'écran.
- 3- Déterminer le grandissement transversal et le grandissement angulaire du miroir sphérique.
- 4- Faire un schéma montrant la formation de l'image.

Exercice 4 : Système à deux miroirs sphériques coaxiaux.

Un système optique est constitué de deux miroirs sphériques, à faces réfléchissantes en regard : l'un M_1 concave, de rayon R_1 et d'une petite ouverture centrée sur son sommet S_1 ; l'autre miroir M_2 est convexe, de rayon R_2 de sommet S_2 et de même axe optique que M_1 avec $S_1S_2=a=4m$. On placera dans le cadre de l'approximation de Gauss.

On dirige l'axe commun du système vers le centre d'un astre de façon que la lumière se réfléchisse d'abord sur M_1 , puis sur M_2 . On désire que l'image finale se forme dans le plan de front de S_1 et soit $\underline{5 \ fois}$ plus grande que celle que donnera le miroir M_1 seul.

- 1- Déterminer le rayon de courbure de R_1 de M_1 et celui R_2 de M_2 .
- 2- Déterminer la position du foyer objet F de ce système, on exprimera S_1F en fonction de a, R_1 , et R_2 .