```
import pandas as pd
a = pd.read\_csv("\underline{/content/drive/MyDrive/DSBDA/NHANES} \ \ Weight \ and \ \ Height.csv")
a.head
     <bound method NDFrame.head of</pre>
                                          Unnamed: 0 Weight (kg) Height (cm) BMI(kg/m**2)
                                           160.2
                                                          37.8
                    0
                              98.8
                                           182.3
                                                          29.7
     1
                    1
     2
                    2
                              74.3
                                           184.2
                                                          21.9
     3
                   3
                             103.7
                                           185.3
                                                          30.2
     4
                   4
                                           177.1
                              83.3
                                                          26.6
                  . . .
                                           178.8
     8383
                 8383
                              94.3
                                                          29.5
     8384
                 8384
                              82.8
                                           147.8
                                                          37.9
     8385
                 8385
                             108.8
                                           168.7
                                                          38.2
     8386
                 8386
                              79.5
                                           176.4
                                                          25.5
     8387
                 8387
                              59.7
                                           167.5
                                                          21.3
     [8388 rows x 4 columns]>
a.columns
☐ Index(['Unnamed: 0', 'Weight (kg)', 'Height (cm)', 'BMI(kg/m**2)'], dtype='object')
a.shape
     (8388, 4)
a=a.drop("Weight (kg)",axis=1)
a.shape
     (8388, 3)
a.isnull().sum()
     Unnamed: 0
     Height (cm)
     BMI(kg/m**2)
                     0
     dtype: int64
a['Height (cm)']=a['Height (cm)'].fillna(a['Height (cm)'].mean())
a.isnull().sum()
     Unnamed: 0
                     0
     Height (cm)
     BMI(kg/m**2)
                     0
     dtype: int64
import matplotlib.pyplot as plt
from scipy.stats import norm
plt.hist(a['Height (cm)'], bins=20, rwidth=0.8, density=True)
plt.title("Histogram of H")
plt.xlabel("Height in Inch")
plt.ylabel("Count")
```

Text(0, 0.5, 'Count')

import seaborn as sb

sb.boxplot(a['Height (cm)'])

a.describe()

	Unnamed: 0	Height (cm)	BMI(kg/m**2)
count	8388.000000	8388.000000	8388.000000
mean	4193.500000	166.641190	30.034859
std	2421.551362	10.079013	7.565376
min	0.000000	131.100000	14.200000
25%	2096.750000	159.100000	24.900000
50%	4193.500000	166.200000	28.800000
75%	6290.250000	173.900000	33.800000
max	8387.000000	199.600000	92.300000

```
######3333Z-Score############
```

#upper limit

ul=a['Height (cm)'].mean()+3*a['Height (cm)'].std()

11=a['Height (cm)'].mean()-3*a['Height (cm)'].std()

print(ul)

```
196.87823017566316
```

print(11)

136.4041494142272

 $a.loc[(a['Height (cm)']>=ul) \ | \ (a['Height (cm)']<=ll)]$

	Unnamed: 0	Height (cm)	BMI(kg/m**2)
60	60	198.7	27.1
1906	1906	135.3	29.4
2165	2165	131.1	35.1
3379	3379	197.7	24.9
4026	4026	198.4	23.8
5815	5815	198.3	27.7
7576	7576	199.6	29.5

#trimming

a1=a.loc[(a['Height (cm)']<=ul) & (a['Height (cm)']>=ll)]

a1

	Unnamed: 0	Height (cm)	BMI(kg/m**2)
0	0	160.2	37.8
1	1	182.3	29.7
2	2	184.2	21.9
3	3	185.3	30.2
4	4	177.1	26.6
8383	8383	178.8	29.5
8384	8384	147.8	37.9
8385	8385	168.7	38.2
8386	8386	176.4	25.5
8387	8387	167.5	21.3

8381 rows × 3 columns

print("Before Trim :",len(a))

Before Trim : 8388

print("After Trim:",len(a1))

After Trim: 8381

print("No of outliers :",len(a)-len(a1))

No of outliers : 7

sb.boxplot(a1['Height (cm)'])

```
#capping
a2-a.copy()

a2.loc[(a2['Height (cm)']>=ul), 'Height (cm)']=ul
|
| a2.loc[(a2['Height (cm)']<=ll), 'Height (cm)']=ll
|
| sb.boxplot(a2['Height (cm)'])

<Axes: ylabel='Height (cm)'>

(Axes: ylabel='Height (cm)'>
```

0

print("Before Trim :",len(a))
 Before Trim : 8388

print("After Trim :",len(a2))
 After Trim : 8388

150

140