Econ 212a: Business Cycles

Lecture 8

Positive Analysis of the New Keynesian Model

Adrien Auclert

Spring 2023

Stanford

Recap

- Last class we introduced Calvo pricing frictions into our monetary model
- This gave us the (log-linearized) three-equation NK model

Recap

- Last class we introduced Calvo pricing frictions into our monetary model
- This gave us the (log-linearized) three-equation NK model
 - Four equations if you don't write it in "gap" form (sometimes better)
- Today, we do the "positive analysis" of the model
 - solve it for various shocks: monetary, TFP, demand, cost-push
- Bonus:
 - discuss critiques of the model
 - beyond the NK model: what's next in monetary economics?

Recap

Last class

Two main equations:

$$\begin{aligned} \mathbf{x}_t &= \mathbb{E}_t \left[\mathbf{x}_{t+1} \right] - \sigma^{-1} \left(i_t - \mathbb{E}_t \left[\pi_{t+1} \right] - r_t^n \right) \\ \pi_t &= \kappa \mathbf{x}_t + \beta \mathbb{E}_t \left[\pi_{t+1} \right] \end{aligned} \tag{NKPC}$$

- $x_t = y_t y_t^n$ is the output gap, with $y_t^n = \frac{1+\phi}{\alpha + \phi + \sigma(1-\alpha)} a_t$
- $r_t^n = \rho + \sigma \left(y_{t+1}^n y_t^n \right)$ is the RBC real interest rate (or 'natural rate')

Last class

Two main equations:

$$x_{t} = \mathbb{E}_{t} \left[x_{t+1} \right] - \sigma^{-1} \left(i_{t} - \mathbb{E}_{t} \left[\pi_{t+1} \right] - r_{t}^{n} \right)$$

$$\pi_{t} = \kappa x_{t} + \beta \mathbb{E}_{t} \left[\pi_{t+1} \right]$$
(NKPC)

- $x_t = y_t y_t^n$ is the output gap, with $y_t^n = \frac{1+\phi}{\alpha + \phi + \sigma(1-\alpha)} a_t$
- $r_t^n = \rho + \sigma \left(y_{t+1}^n y_t^n \right)$ is the RBC real interest rate (or 'natural rate')
- Typically we assume a Taylor-type policy rule:

$$i_t = \rho_t + \phi_\pi \pi_t + \phi_x X_t \tag{MP}$$

and get our 3 equation model

3

Last class

Two main equations:

$$\begin{aligned} \mathbf{x}_t &= \mathbb{E}_t \left[\mathbf{x}_{t+1} \right] - \sigma^{-1} \left(i_t - \mathbb{E}_t \left[\pi_{t+1} \right] - r_t^n \right) \\ \pi_t &= \kappa \mathbf{x}_t + \beta \mathbb{E}_t \left[\pi_{t+1} \right] \end{aligned} \tag{NKPC}$$

- $x_t = y_t y_t^n$ is the output gap, with $y_t^n = \frac{1+\phi}{\alpha+\phi+\sigma(1-\alpha)}a_t$
- $r_t^n = \rho + \sigma \left(y_{t+1}^n y_t^n \right)$ is the RBC real interest rate (or 'natural rate')
- Typically we assume a Taylor-type policy rule:

$$i_t = \rho_t + \phi_\pi \pi_t + \phi_x \mathbf{x}_t \tag{MP}$$

and get our 3 equation model

What do these equations imply for the dynamic effect of macro shocks?

3

Real rigidities and the NK model

Phillips Curve comes from aggregated price-setting problem

$$\pi_t = \lambda \widehat{\omega_t} + \beta \mathbb{E}_t \left[\pi_{t+1} \right]$$
 where rmc is $\widehat{\omega_t} = \widehat{\omega_t} - \widehat{\omega_t}^n = \left(\frac{\alpha + \phi}{1 - \alpha} + \sigma \right) x_t$, so slope of NKPC is
$$\kappa \equiv \underbrace{\frac{\left(1 - \theta \right) \left(1 - \theta \beta \right)}{\theta} \frac{1}{1 + \frac{\epsilon \alpha}{1 - \alpha}}}_{\text{Sens. of inflation to rmc } (\lambda)} \underbrace{\left(\frac{\alpha + \phi}{1 - \alpha} + \sigma \right)}_{\text{Sens. of rmc to gap}} \tag{1}$$

Real rigidities and the NK model

Phillips Curve comes from aggregated price-setting problem

$$\pi_{t} = \lambda \widehat{\omega}_{t} + \beta \mathbb{E}_{t} \left[\pi_{t+1} \right]$$
where rmc is $\widehat{\omega}_{t} = \widehat{\omega}_{t} - \widehat{\omega}_{t}^{n} = \left(\frac{\alpha + \phi}{1 - \alpha} + \sigma \right) x_{t}$, so slope of NKPC is
$$\kappa \equiv \underbrace{\frac{\left(1 - \theta \right) \left(1 - \theta \beta \right)}{\theta} \frac{1}{1 + \frac{\epsilon \alpha}{1 - \alpha}}}_{\text{Sens. of inflation to rmc } (\lambda)} \underbrace{\left(\frac{\alpha + \phi}{1 - \alpha} + \sigma \right)}_{\text{Sens. of rmc to gap}} \tag{1}$$

- Intuition: inflation is less sensitive to output $(\kappa\downarrow)$ when there is:
 - 1. More nominal rigidity ($\theta \uparrow$)
 - 2. More *real* rigidity ($\epsilon \uparrow$, $\alpha \uparrow$). If marginal cost is more sensitive to own price, it is more costly to deviate from everyone else's price.
 - 3. Less sensitivity of rmc to output: more elastic labor supply $\phi \downarrow$, less curvature over consumption $\sigma \downarrow$, less decreasing returns $\alpha \downarrow$ (so overall α ambiguous)

Reminder: forward-looking properties

• We can iterate (NKPC) to find

$$\pi_{t} = \kappa \mathbb{E}_{t} \left[\sum_{k=0}^{\infty} \beta^{k} X_{t+k} \right]$$
 (2)

- Inflation is forward looking (though prices aren't), depends on future marginal costs and therefore future output gaps.
- Similarly, iterating (DIS) and assuming $\lim_{k \to \infty} \mathbb{E}_{t} \left[x_{t+k} \right] = 0$

$$x_{t} = -\sigma^{-1} \mathbb{E}_{t} \left[\sum_{k=0}^{\infty} \left(r_{t+k} - r_{t+k}^{n} \right) \right]$$
 (3)

- level of output determined by intertemp. subst. wrt present and future rates
- Monetary transmission mechanism: lower r_t now or in future \rightarrow boost output via (3) and inflation via (2)

Solving the model

Determinacy with a Taylor rule

Plug in (MP), after some manipulation, obtain [check!]

$$\begin{aligned} \mathbf{X}_{t} \left(\sigma + \phi_{\mathbf{X}} + \kappa \phi_{\pi} \right) - \left(\sigma \left(\mathbf{1} + \beta \right) + \beta \phi_{\mathbf{X}} + \kappa \right) \mathbb{E}_{t} \left[\mathbf{X}_{t+1} \right] + \beta \sigma \mathbb{E}_{t} \left[\mathbf{X}_{t+2} \right] \\ &= - \left(\rho_{t} - r_{t}^{n} \right) + \beta \mathbb{E}_{t} \left[\rho_{t+1} - r_{t+1}^{n} \right] \end{aligned}$$

• Write this in the sequence space:

$$\mathbf{F}^{2}\left(A\mathbf{L}^{2}+B\mathbf{L}+C\mathbf{I}\right)\mathbf{x}=-\left(\mathbf{I}-\beta\mathbf{F}\right)\left(\rho-\mathbf{r}^{n}\right)\tag{4}$$

Determinacy with a Taylor rule

Plug in (MP), after some manipulation, obtain [check!]

$$\begin{aligned} \mathbf{x}_{t} \left(\sigma + \phi_{\mathbf{x}} + \kappa \phi_{\pi} \right) - \left(\sigma \left(\mathbf{1} + \beta \right) + \beta \phi_{\mathbf{x}} + \kappa \right) \mathbb{E}_{t} \left[\mathbf{x}_{t+1} \right] + \beta \sigma \mathbb{E}_{t} \left[\mathbf{x}_{t+2} \right] \\ &= - \left(\rho_{t} - \mathbf{r}_{t}^{n} \right) + \beta \mathbb{E}_{t} \left[\rho_{t+1} - \mathbf{r}_{t+1}^{n} \right] \end{aligned}$$

Write this in the sequence space:

$$\mathbf{F}^{2}\left(A\mathbf{L}^{2}+B\mathbf{L}+C\mathbf{I}\right)\mathbf{x}=-\left(\mathbf{I}-\beta\mathbf{F}\right)\left(\boldsymbol{\rho}-\mathbf{r}^{n}\right)\tag{4}$$

- Let λ_1, λ_2 be the (possibly complex) roots of $P(X) = AX^2 + BX + C$
- Rewrite (4) as

$$AF^{2}(L - \lambda_{1}I)(L - \lambda_{2}I)X = A(I - \lambda_{1}F)(I - \lambda_{2}F)X = -(I - \beta F)(\rho - r^{n})$$

• If $|\lambda_1| <$ 1 and $|\lambda_2| <$ 1, this is invertible and the unique solution is:

$$\mathbf{x} = -\frac{1}{A} \left(\mathbf{I} - \lambda_1 \mathbf{F} \right)^{-1} \left(\mathbf{I} - \lambda_2 \mathbf{F} \right)^{-1} \left(\mathbf{I} - \beta \mathbf{F} \right) \left(\rho - \mathbf{r}^n \right)$$
 (5)

Taylor principle

• So let us consider the roots of:

$$P(X) = (\sigma + \phi_X + \kappa \phi_\pi) X^2 - (\sigma (1 + \beta) + \beta \phi_X + \kappa) X + \beta \sigma$$

• We see that $P(0) = \beta \sigma > 0$ and

$$P(1) = (\sigma + \phi_{X} + \kappa \phi_{\pi}) - (\sigma(1+\beta) + \beta\phi_{X} + \kappa) + \beta\sigma$$

• Assume that P(1) > 0, ie:

$$\kappa \left(\phi_{\pi} - 1\right) + \left(1 - \beta\right)\phi_{\mathsf{X}} > \mathsf{O} \tag{6}$$

then, since $\arg\min P = \frac{\sigma(1+\beta)+\beta\phi_X+\kappa}{2(\sigma+\phi_X+\kappa\phi_\pi)} <$ 1, we indeed have $|\lambda_1| <$ 1 and $|\lambda_2| <$ 1.

Taylor principle

• So let us consider the roots of:

$$P(X) = (\sigma + \phi_X + \kappa \phi_\pi) X^2 - (\sigma (1 + \beta) + \beta \phi_X + \kappa) X + \beta \sigma$$

• We see that $P(0) = \beta \sigma > 0$ and

$$P(1) = (\sigma + \phi_{X} + \kappa \phi_{\pi}) - (\sigma(1 + \beta) + \beta \phi_{X} + \kappa) + \beta \sigma$$

• Assume that P(1) > 0, ie:

$$\kappa \left(\phi_{\pi} - 1\right) + \left(1 - \beta\right)\phi_{\mathsf{X}} > \mathsf{O} \tag{6}$$

then, since $\arg\min P=rac{\sigma(1+\beta)+\beta\phi_{\rm X}+\kappa}{2(\sigma+\phi_{\rm X}+\kappa\phi_{\pi})}<$ 1, we indeed have $|\lambda_1|<$ 1 and $|\lambda_2|<$ 1.

• On other hand, if P(1) < 0 then we have $\lambda_1 < 1$, $\lambda_2 > 1$ and indeterminacy

7

Taylor principle

• So let us consider the roots of:

$$P(X) = (\sigma + \phi_X + \kappa \phi_\pi) X^2 - (\sigma (1 + \beta) + \beta \phi_X + \kappa) X + \beta \sigma$$

• We see that $P(0) = \beta \sigma > 0$ and

$$P(1) = (\sigma + \phi_{X} + \kappa \phi_{\pi}) - (\sigma(1+\beta) + \beta \phi_{X} + \kappa) + \beta \sigma$$

• Assume that P(1) > 0, ie:

$$\kappa \left(\phi_{\pi} - 1\right) + \left(1 - \beta\right)\phi_{\mathsf{X}} > \mathsf{O} \tag{6}$$

then, since $\operatorname{arg\,min} P = \frac{\sigma(1+\beta) + \beta\phi_X + \kappa}{2(\sigma + \phi_X + \kappa\phi_\pi)} < 1$, we indeed have $|\lambda_1| < 1$ and $|\lambda_2| < 1$.

- On other hand, if P(1) < 0 then we have $\lambda_1 < 1$, $\lambda_2 > 1$ and indeterminacy
- This is the **Taylor principle**: need sufficient response to either inflation and/or the output gap to rule out sunspots (eg $\phi_\pi >$ 1 is enough)
 - cf similar principle in Lecture 5 with flexible prices

Consequences

• Given Taylor principle, apply partial fraction decomposition to (5), find:

$$\mathbf{x} = -\frac{1}{\sigma + \phi_{\mathsf{X}} + \kappa \phi_{\pi}} \left(\alpha \sum_{k \geq 0} \lambda_{1}^{k} \mathbf{F}^{k} + (1 - \alpha) \sum_{k \geq 0} \lambda_{2}^{k} \mathbf{F}^{k} \right) (\rho - \mathbf{r}^{n}) \tag{7}$$

where $\alpha \in (0,1)$. So, similar to Lecture 5:

- $ho_{t+k} > r_{t+k}^n$ is 'tight' monetary policy, implying $x_t < o$
- Nominal interest rate usually 'low' in this situation
- $\rho_{t+k} < r_{t+k}^n$ is 'loose' monetary policy, implying $x_t > 0$

Consequences

• Given Taylor principle, apply partial fraction decomposition to (5), find:

$$\mathbf{x} = -\frac{1}{\sigma + \phi_{\mathsf{X}} + \kappa \phi_{\pi}} \left(\alpha \sum_{k \geq 0} \lambda_{1}^{k} \mathbf{F}^{k} + (1 - \alpha) \sum_{k \geq 0} \lambda_{2}^{k} \mathbf{F}^{k} \right) (\rho - \mathbf{r}^{n}) \tag{7}$$

where $\alpha \in (0,1)$. So, similar to Lecture 5:

- $ho_{t+k} > r_{t+k}^n$ is 'tight' monetary policy, implying $x_t < o$
- Nominal interest rate usually 'low' in this situation
- $\rho_{t+k} < r_{t+k}^n$ is 'loose' monetary policy, implying $x_t > 0$
- When setting $\rho_{t+k} = r_{t+k}^n$ at all k, obtain $x_t = 0$ at all t; then also $\pi_t = 0$
 - ullet Later: when the flex price is also first best, $\pi_t = x_t = 0$ achieves highest welfare
 - So can already anticipate the **divine coincidence** result: no conflict between achieving zero inflation and zero output gap

Propagation of shocks in the NK

model

Propagation of shocks

- Next we hit the model with several shocks to see how it responds
- Monetary, TFP, demand, government spending, cost-push shocks

Monetary policy shock: basic idea (iid case)

Suppose

$$\rho_{\mathsf{t}} = r_{\mathsf{t}}^{\mathsf{n}} + \epsilon_{\mathsf{t}}^{\mathsf{m}}$$

where ϵ_t^m is iid mean-o monetary policy shock. Since

$$\mathbb{E}_{t}\left[
ho_{t+k}-r_{t+k}^{n}
ight]=\mathbb{E}_{t}\left[\epsilon_{t+k}^{m}
ight]=0\quad k>0$$

we know the solution features $\mathbb{E}_t [x_{t+1}] = \mathbb{E}_t [\pi_{t+1}] = 0$

• Using (DIS)-(NKPC), we find

$$x_t = -\sigma^{-1}(i_t - r_t^n) \qquad \pi_t = \kappa x_t \tag{8}$$

- (can also solve for x_t and π_t as a function of ϵ_t^m)
- (8) is very intuitive:
 - Tightening shock $(\epsilon_t^m \uparrow)$ increases the *real* interest rate $(=i_t \text{ here})$
 - This lower aggregate demand via intertemporal substitution
 - This lowers marginal costs, and creates deflation

Monetary policy in persistent case

• More generally, suppose persistent shock O $<
ho_{
u} <$ 1

$$\rho_{t} = r_{t}^{n} + \nu_{t}$$

$$\nu_{t} = \rho_{\nu}\nu_{t-1} + \epsilon_{t}^{m}$$

Since now

$$\mathbb{E}_{t}\left[\rho_{t+k} - r_{t+k}^{n}\right] = \mathbb{E}_{t}\left[\nu_{t+k}\right] = \rho_{\nu}^{k}\nu_{t}$$

- The solution has the form $x_t = \Psi_x \nu_t$ and $\pi_t = \Psi_\pi \nu_t$
- Hence also $\mathbb{E}_t \left[\mathbf{x}_{t+1} \right] = \rho_{\nu} \Psi_{\mathbf{x}} \nu_t$ and $\mathbb{E}_t \left[\pi_{t+1} \right] = \rho_{\nu} \Psi_{\pi} \nu_t$
- Using (DIS)-(NKPC), check that

$$\pi_t = -\kappa \Lambda \nu_t \quad \text{ and } \quad \textbf{X}_t = -\left(1 - \beta \rho_\nu\right) \Lambda \nu_t$$
 where $\Lambda = \frac{1}{\kappa(\phi_\pi - \rho_\nu) + (1 - \beta \rho_\nu)(\phi_X + (1 - \rho_\nu)\sigma)} > 0$.

• Same intuition, nominal rate may fall instead of rise

Monetary policy shocks, varying persistence $ho_{ u}$

Solving the model: technology shocks

ullet Assume $arepsilon_t^m={
m o}$, and turn on technology shocks

$$a_t = \rho_a a_{t-1} + \varepsilon_t^a$$

These create changes in natural rate: recall

$$r_{t}^{n} = \rho + \sigma \frac{1 + \phi}{\alpha + \phi + \sigma (1 - \alpha)} \mathbb{E}_{t} [a_{t+1} - a_{t}]$$
$$= \rho - \sigma \frac{1 + \phi}{\alpha + \phi + \sigma (1 - \alpha)} (1 - \rho_{a}) a_{t}$$

• Transitory $a_t \uparrow$ raises desired savings, leads to $r_t^n \downarrow$ (no capital!)

Solving the model: technology shocks

 \bullet Assume $\varepsilon_{\rm t}^{\it m}={\rm o}$, and turn on technology shocks

$$a_t = \rho_a a_{t-1} + \varepsilon_t^a$$

These create changes in natural rate: recall

$$r_{t}^{n} = \rho + \sigma \frac{1 + \phi}{\alpha + \phi + \sigma (1 - \alpha)} \mathbb{E}_{t} [a_{t+1} - a_{t}]$$
$$= \rho - \sigma \frac{1 + \phi}{\alpha + \phi + \sigma (1 - \alpha)} (1 - \rho_{a}) a_{t}$$

- Transitory $a_t \uparrow$ raises desired savings, leads to $r_t^n \downarrow$ (no capital!)
- Suppose first that $\rho_t = r_t^n$: then we know $x_t = \pi_t = 0$
 - Monetary policy 'tracks' the natural allocation
 - Hence $y_t = y_t^n$: effect of tech shocks same as under flexible prices
 - (Careful: output \neq output gap)

Solving the Model: Technology Shocks

- Suppose now $\rho_{\mathbf{t}} = \rho$
 - Central bank does not respond to direct effect of shock
 - But responds indirectly through effect of shock on π and x
- Then $\rho_t r_t^n \propto a_t$
 - Positive technology shock leads mp to be too tight
 - Equivalently, we say it does not 'accommodate' the shock
 - This leads creates some deflation and a negative output gap
 - Output rises in general, but employment ambiguous:
- Consider for example the case $\sigma = 1$, so $n_t^n = 0$ and $y_t^n = a_t$
 - Then clearly $n_t = y_t a_t = y_t y_t^n = x_t < o$
 - Contractionary technology shock (for employment)
 - As in Gali (1999) and Basu, Fernald, Kimball (2006)

Technology Shocks, varying mp responsiveness ϕ_π

ullet Increasing responsiveness ϕ_π gets allocation closer to flex price

Taking stock: drawing the NK model

The role of the natural rate

- Lesson: effects of all shocks in model depend on mon. pol. response
 - Specifically, extent to which it accommodates the shock
 - A key indicator of stance of mp is natural rate of interest r_t^n
 - Many shocks have this simple reduced form

The role of the natural rate

- Lesson: effects of all shocks in model depend on mon. pol. response
 - Specifically, extent to which it accommodates the shock
 - A key indicator of stance of mp is natural rate of interest r_t^n
 - Many shocks have this simple reduced form
- Example: 'impatience shocks'
 - Assume household preferences are

$$\mathbb{E}_{\mathsf{o}}\left\{\sum_{t=\mathsf{o}}^{\infty}\xi_{t}\beta^{t}\left(\frac{\mathsf{C}_{t}^{\mathsf{1}-\sigma}}{\mathsf{1}-\sigma}-\psi\frac{\mathsf{N}_{t}^{\mathsf{1}+\phi}}{\mathsf{1}+\phi}\right)\right\}$$

- Increase in ξ_t/ξ_{t+1} raises MUC, lowers desired savings at t vs t+1
- Assume follows an AR(1) in logs: $z_t = \log \xi_t = \rho_z z_{t-1} + \epsilon_t^z$
- Euler equation:

$$\xi_t C_t^{-\sigma} = \beta R_t \mathbb{E}_t \left[\xi_{t+1} C_{t+1}^{-\sigma} \right]$$
(9)

Impatience shock

• Equation (9) in loglinear form

$$c_{t} = \mathbb{E}_{t} \left[c_{t+1} \right] - \sigma^{-1} \left(i_{t} - \mathbb{E}_{t} \left[\pi_{t+1} \right] - \rho - (1 - \rho_{z}) z_{t} \right)$$

- Natural rate is $r_t^n = \rho + (1 \rho_z) z_t$
- Since ξ_t does not affect MRS of C and N, it does not influence y_t^n
- $z_t \uparrow$ shock is a pure positive 'demand' shock:
 - It has no effect on the natural level of output
 - If monetary policy does not tighten by raising r, leads to an inflationary boom
- This transmission from desired consumption to output in GE is sometimes called the *aggregate demand channel*

Impatience shocks, varying persistence $\rho_{\rm z}$

Fiscal policy: government spending

- We now consider the effects of government spending shocks
- Assume a positive spending level $G_t > o$. New resource constraint:

$$C_t + G_t = Y_t$$

• Euler equation and Phillips curve in terms of rmcs are unchanged:

$$c_{t} = \mathbb{E}_{t} \left[c_{t+1} \right] - \sigma^{-1} \left(i_{t} - \mathbb{E}_{t} \left[\pi_{t+1} \right] - \overline{r} \right)$$

$$\pi_{t} = \lambda \widehat{\omega}_{t} + \beta \mathbb{E}_{t} \left[\pi_{t+1} \right]$$

- Let tilde variables denote level deviations from the zero inflation s.s.
 - $\widetilde{g_t} \equiv rac{dG_t}{Y} = \mathcal{G}rac{dG_t}{G}$ where $\mathcal{G} \equiv rac{G}{Y}$
 - $\widetilde{C}_t \equiv \frac{dC_t}{Y} = (1 \mathcal{G}) \frac{dC_t}{C}$
 - This implies $\widetilde{c_t} + \widetilde{g_t} = \widetilde{y_t}$
- Marginal costs $\widehat{\omega}_t$ now depend on \widetilde{g}_t . Why?

Relating spending to marginal costs

• Real marginal costs:

$$\omega_t \propto \frac{1}{A_t \left(1 - \alpha\right) N_t^{-\alpha}} \frac{W_t}{P_t} \propto \frac{1}{A_t} \left(N_t\right)^{\alpha + \phi} C_t^{\sigma} \propto \frac{1}{A_t} \left(\frac{Y_t \Delta_t}{A_t}\right)^{\frac{\alpha + \phi}{1 - \alpha}} C_t^{\sigma}$$

• Hence, assuming A_t is constant

$$\widehat{\omega}_{t} = \left(\frac{\alpha + \phi}{1 - \alpha}\right) \frac{dY_{t}}{Y} + \sigma \frac{dC_{t}}{C} + \text{cst}$$

$$= \left(\frac{\alpha + \phi}{1 - \alpha}\right) \left(\widetilde{c}_{t} + \widetilde{g}_{t}\right) + \frac{\sigma}{(1 - \mathcal{G})} \widetilde{c}_{t} + \text{cst}$$

• Conditional on consumption, $G_t \uparrow$ pushes costs up

New Keynesian model with government spending

• Neoclassical multiplier Γ solves $\widehat{\omega_t}^n = 0$

$$\widetilde{y_t}^n = \frac{\frac{\sigma}{(1-G)}}{\frac{\alpha+\phi}{1-\alpha} + \frac{\sigma}{(1-G)}} \widetilde{g_t} \equiv \Gamma \widetilde{g_t}$$

- So $\Gamma \in (0,1)$, reflecting wealth effect [Baxter King 1993]
- Can rewrite IS and PC as

$$\widetilde{c_t} = \mathbb{E}_t \left[\widetilde{c_{t+1}} \right] - \widetilde{\sigma} \left(i_t - \mathbb{E}_t \left[\pi_{t+1} \right] - \rho \right)
\pi_t = \kappa \left(\widetilde{y_t} - \Gamma \widetilde{g_t} \right) + \beta \mathbb{E}_t \left[\pi_{t+1} \right]
= \kappa \left(\widetilde{c_t} + (1 - \Gamma) \widetilde{g_t} \right) + \beta \mathbb{E}_t \left[\pi_{t+1} \right]$$

where
$$\widetilde{\sigma} \equiv \sigma^{-1} (1 - \mathcal{G})$$
 and $\kappa \equiv \lambda \left(\frac{\alpha + \phi}{1 - \alpha} + \widetilde{\sigma}^{-1} \right)$

• Allows simple analysis of fiscal multipliers [Woodford 2011]

New Keynesian model with government spending

• Assume Taylor rule $i_t = \overline{r} + \phi \pi_t$ and AR(1) fiscal shock

$$\widetilde{g_t} = \rho \widetilde{g_{t-1}} + \epsilon_t$$

• Conjecture $\mathbb{E}_t\left[\widetilde{c_{t+1}}\right] =
ho \widetilde{c_t}$ and $\mathbb{E}_t\left[\pi_{t+1}\right] =
ho \pi_t$. Then

$$(1 - \rho) \widetilde{c}_{t} = -\widetilde{\sigma} (\phi - \rho) \pi_{t}$$

$$(1 - \beta \rho) \pi_{t} = \kappa (\widetilde{c}_{t} + (1 - \Gamma) \widetilde{g}_{t})$$

• Solve for $\widetilde{c_t}$:

$$\widetilde{c_t} = \frac{-\left(1-\Gamma\right)}{\frac{\left(1-\beta\rho\right)\left(1-\rho\right)}{\kappa\widetilde{\sigma}\left(\phi-\rho\right)}+1}\widetilde{g_t}$$

New Keynesian model with government spending

Solve for output:

$$\widetilde{y_t} = \frac{1 - \rho + \Gamma \frac{\kappa \sigma(\phi - \rho)}{1 - \beta \rho}}{1 - \rho + \frac{\kappa \widetilde{\sigma}(\phi - \rho)}{1 - \beta \rho}} \widetilde{g_t}$$

and real rate

$$r_t = \bar{r} + (\phi - \rho) \, \pi_t$$

- Conclusion: the fiscal multiplier is
 - 1. Between Γ and 1 provided $\frac{\kappa \widetilde{\sigma}(\phi \rho)}{1 \beta \rho} > 0$
 - Real rate increases: monetary policy tightens
 - 2. Exactly equal to 1 if $\phi = \rho$, in which case r is constant
 - 3. Larger than 1 when $\phi < \rho$ (example: zero lower bound!)
 - Real rate declines: monetary policy accommodates
 - Approaches infinity as $\phi \to \rho (\kappa \widetilde{\sigma})^{-1} (1 \beta \rho) (1 \rho)$

• How could the model accommodate current inflation?

• How could the model accommodate current inflation?

- How could the model accommodate current inflation?
- ullet One idea: as "cost-push shock" v_t to NKPC

$$X_{t} = \mathbb{E}_{t} \left[X_{t+1} \right] - \sigma^{-1} \left(i_{t} - \mathbb{E}_{t} \left[\pi_{t+1} \right] - r_{t}^{n} \right)$$
$$\pi_{t} = \kappa X_{t} + \beta \mathbb{E}_{t} \left[\pi_{t+1} \right] + \upsilon_{t}$$

- How could the model accommodate current inflation?
- ullet One idea: as "cost-push shock" v_t to NKPC

$$X_{t} = \mathbb{E}_{t} \left[X_{t+1} \right] - \sigma^{-1} \left(i_{t} - \mathbb{E}_{t} \left[\pi_{t+1} \right] - r_{t}^{n} \right)$$

$$\pi_{t} = \kappa X_{t} + \beta \mathbb{E}_{t} \left[\pi_{t+1} \right] + \upsilon_{t}$$

ullet This shock **breaks divine coincidence!** E.g. assume $v_{
m t}$ is iid, then:

$$\mathbf{x}_{t} = -\sigma^{-1}(\rho_{t} - \rho)$$
$$\pi_{t} = \kappa \mathbf{x}_{t} + \upsilon_{t}$$

- Trade-off fighting inflation with creating a negative output gap x_t !
- ullet How should we optimally resolve this? o need optimal policy analysis!

Taking stock

- We have a positive model to analyze:
 - Monetary policy
 - Fiscal policy
- Do well descriptively, with solid microfoundations
- Can be used to study welfare and optimal policy

Bonus slides 1: Critiques of the NK model

What could possibly be wrong here?

$$\begin{aligned} \mathbf{x}_t &= \mathbb{E}_t \left[\mathbf{x}_{t+1} \right] - \sigma^{-1} \left(i_t - \mathbb{E}_t \left[\pi_{t+1} \right] - r_t^n \right) \\ \pi_t &= \kappa \mathbf{x}_t + \beta \mathbb{E}_t \left[\pi_{t+1} \right] \end{aligned} & \text{(NKPC)} \\ i_t &= \rho_t + \phi_\pi \pi_t + \phi_\mathbf{x} \mathbf{x}_t \end{aligned} & \text{(MP)} \end{aligned}$$

Q: What are the most unrealistic features of this model?

Euler equation: Inertia

ullet Euler equation predicts that consumption ${f growth} < {f o}$ when MP eases since

$$\mathbb{E}_t[c_{t+1}] - c_t = \sigma^{-1} \left(i_t - \mathbb{E}_t \pi_{t+1} - \rho \right)$$

- Very different empirically: c, y have much more **inertia** ("hump shape")
 - Q: what do you think causes this inertial response?

Euler equation: Inertia

ullet Euler equation predicts that consumption ${f growth} < {f o}$ when MP eases since

$$\mathbb{E}_{t}[c_{t+1}] - c_{t} = \sigma^{-1} \left(i_{t} - \mathbb{E}_{t} \pi_{t+1} - \rho \right)$$

- Very different empirically: c, y have much more **inertia** ("hump shape")
 - Q: what do you think causes this inertial response?
- One solution: habits! e.g. utility $u(c_t \gamma \overline{c}_{t-1})$ where $\overline{c}_{t-1} = c_{t-1}$ is average consumption, but not internalized by agents (external habit). Then:

$$(c_t - \gamma c_{t-1}) - \mathbb{E}_t[c_{t+1} - \gamma c_t] = -\sigma^{-1}(i_t - \mathbb{E}_t \pi_{t+1} - \rho)$$

This can generate hump shapes.

• unfortunately, though, habit models are not supported by micro data...

Euler equation: Inertia

ullet Euler equation predicts that consumption ${f growth} < {f o}$ when MP eases since

$$\mathbb{E}_{t}[c_{t+1}] - c_{t} = \sigma^{-1} \left(i_{t} - \mathbb{E}_{t} \pi_{t+1} - \rho \right)$$

- Very different empirically: c, y have much more **inertia** ("hump shape")
 - Q: what do you think causes this inertial response?
- One solution: habits! e.g. utility $u(c_t \gamma \overline{c}_{t-1})$ where $\overline{c}_{t-1} = c_{t-1}$ is average consumption, but not internalized by agents (external habit). Then:

$$(c_t - \gamma c_{t-1}) - \mathbb{E}_t[c_{t+1} - \gamma c_t] = -\sigma^{-1}(i_t - \mathbb{E}_t \pi_{t+1} - \rho)$$

This can generate hump shapes.

- unfortunately, though, habit models are not supported by micro data...
- Other obvious issues with Euler equation:
 - investment, net exports, etc, should all be in x!

NKPC: Credible disinflation

 NKPC has very similar issue: Jay Powell is promising to lower the rate of inflation. What does that require for output?

$$X_t = \kappa^{-1} \left(\pi_t - \beta \mathbb{E}_t \pi_{t+1} \right)$$

where $\beta \approx$ 1. Thus, reduction in inflation requires **boom!** (Ball 1994)

NKPC: Credible disinflation

 NKPC has very similar issue: Jay Powell is promising to lower the rate of inflation. What does that require for output?

$$X_t = \kappa^{-1} \left(\pi_t - \beta \mathbb{E}_t \pi_{t+1} \right)$$

where $\beta \approx$ 1. Thus, reduction in inflation requires **boom!** (Ball 1994)

- Seems very odd. Similar to Euler equation, inertia is missing here
 - no backward looking terms!

NKPC: Credible disinflation

 NKPC has very similar issue: Jay Powell is promising to lower the rate of inflation. What does that require for output?

$$X_t = \kappa^{-1} \left(\pi_t - \beta \mathbb{E}_t \pi_{t+1} \right)$$

where $\beta \approx$ 1. Thus, reduction in inflation requires **boom**! (Ball 1994)

- Seems very odd. Similar to Euler equation, inertia is missing here
 - no backward looking terms!
- Solutions:
 - 1. Fraction of backward-looking firms (Gali and Gertler 1999).
 - 2. Indexation (Christiano, Eichenbaum, Evans 2005): for passive firms, prices automatically increase by amount of past inflation.
 - 3. Information frictions (Mankiw and Reis 2002, Angeletos Huo 2021).
- Another issue with NKPC: wage inflation very volatile

Are there models that fix all of this?

- Yes. They're called "medium scale DSGE models"
 - see: Christiano, Eichenbaum, and Evans (2005) and Smets and Wouters (2007)

Are there models that fix all of this?

- Yes. They're called "medium scale DSGE models"
 - see: Christiano, Eichenbaum, and Evans (2005) and Smets and Wouters (2007)
- Example: Smets and Wouters (2007) has...
 - Calvo prices and inflation indexation, Calvo wages, capital and investment adjustment costs, habit formation in consumption, variable capital utilization, fixed costs in production, strategic complementarity in price setting

Are there models that fix all of this?

- Yes. They're called "medium scale DSGE models"
 - see: Christiano, Eichenbaum, and Evans (2005) and Smets and Wouters (2007)
- Example: Smets and Wouters (2007) has...
 - Calvo prices and inflation indexation, Calvo wages, capital and investment adjustment costs, habit formation in consumption, variable capital utilization, fixed costs in production, strategic complementarity in price setting
- Seven shocks:
 - TFP, risk premium shock, investment specific technology shocks, wage markup shocks, price markup shocks, government spending shock, monetary policy shock

Minnesota Critique: Chari et al. (2009)

- Chari, Kehoe, and McGrattan (2009) argue medium-scale NK models are not suitable for quantitative policy analysis.
- Main critique: Too many shocks and parameters!
 - e.g. wage + price markup shocks are basically inserting exogenous labor wedge into model.
 - not 'primitive, interpretable shocks', but critical to quantitative model fit (explain almost 90% of inflation).
 - also do not like indexation, generally think NK has not figured out inflation persistence.
- However, lots of new research on this topic supports NK predictions.

Bonus slides 2: Beyond NK ...

What's next in business cycle macro?

- Financial frictions: No banking sector, no housing.
 - → Bernanke Gertler Gilchrist (1999), Iacoviello (2005), Gertler Karadi (2011)
- **Household heterogeneity:** Model has tiny MPCs. Changes monetary and fiscal policy propagation.
 - → Werning (2015), Kaplan Moll Violante (2018), Auclert (2019), Auclert Rognlie Straub (2018, 2020)
- Firm heterogeneity: No investment, no lumpy investment, no balance sheet.
 - → Khan Thomas (2007) vs. Bachmann Caballero Engel (2013), Winberry (2021), Ottonello Winberry (2020)
- **Price-setting:** Calvo seems off! What if firms pay cost to change price?
 - → "Menu cost" models: Nakamura Steinsson (2010), Alvarez Le Bihan Lippi (2016), Auclert, Rognlie, Rigato, Straub (2023). Facts: Bils Klenow (2004), Nakamura Steinsson (2008), Klenow Malin (2010)

What's next in business cycle macro?

- Labor market frictions: No unemployment here, no wage rigidities
 - → Erceg Henderson Levin (2000), Gertler Trigari (2009), Blanchard Gali (2010), Christiano, Eichenbaum and Trabandt (2016)
- Information: All agents have perfect information here
 - \rightarrow Mackowiak Wiederholt (2009, 2015), many Angeletos papers, e.g. with Lian (2018), or with Huo (2020)
- Behavioral macro: All agents are rational here
 - ightarrow Gabaix (2017, 2020), Farhi Werning (2019), Laibson Maxted Moll (2021)
- **Empirical macro:** Many moments hard to calibrate. Need well identified empirical work!
 - → Nakamura Steinsson (2018), Chodorow-Reich (2020)
- Open economy: Model has closed economy
 - Gali Monacelli (2005), Schmitt-Grohe-Uribe (2017), Auclert Souchier et al (2021)