Exercice: (Problème de gestion des Stocks)

Un magasin vend des chaussures de Ski. Par expérience, la période de vente de ces chaussures dure 6 mois, du 1er Octobre jusqu'au 31 Mars.

Les prévisions de vente sont données par le tableau suivant:

Le magasin achète ces chaussures par lots de 10, 20, 30, 40 ou 50 paires avec un coût de 4\$ par paire et des réductions sur les prix d'achat.

Mois	Demande
Octobre	40
Novembre	20
Décembre	30
Janvier	40
Février	30
Mars	20

Quantité	Solde
10	4%
20	5%
30	10%
40	20%
50	25%

Le coût de lancement d'une commande d'approvisionnement est fixe est 2\$. En plus un coût supplémentaire de transport pour chaque ordre est de 8\$

Le stock du magasin ne peut pas dépasser le nombre de 40 paires de chaussures par mois.

Une paire qui reste en stock à la fin du mois engendre un coût de 0,2\$ par paire par mois.

Après 6 mois le magasin doit vendre toutes ces chaussures est le niveau des stocks doit être nul. Sous l'hypothèse que la demande est fixe et uniforme pendant chaque mois, retrouver la stratégie qui minimise le coût total des stocks.

Solution:

Les étapes représentent le début de chaque mois et les états le nombre de paires de chaussures en stock. on a 6 étapes

- D_n : demande à la $n^{\grave{e}me}$ étape
- x_n : la commande au début de la $n^{\grave{e}me}$ étape $\phi(x_n) = 10 + C_n \times x_n$ avec C_n le coût d'achat.

Pour n = 1,...,5,

•
$$f_n^*(S) = \min_{D_n - S \le x_n} \{ \phi(x_n) + \frac{0.2(S + x_n - D_n)}{0.2(S + x_n - D_n)} + \frac{x_n + \frac{x_n - D_n}{0.2(S + x_n - D_n)} \} \text{ avec } f_7^*(S) = 0$$

Etape 6

A la dernière étape le stock restant est nulle donc les états possibles de cette étape sont 0, 10, 20.

S_6 x_6	$f_6^*(s)$	x_6^*
0	86	20
10	& 8	10
20	0	0

86=10+4*20 - solde + f7(0)solde =(4*20)*0.05

Etape 5
$$S_6 = S_5 + x_5 - 30$$

$$f_5(s, x_5) = \phi(x_5) + 0.2(S + x_5 - 30) + f_6^*(S + x_5 - 30)$$

			$f_5(s,$	(x_5)					240=10+30*4-120*0.1 +86		
x_5	0	10	20	30	40	50	$f_5^*(s)$	x_{5}^{*}	$(f_6(0))$		
S_5							3 7 7		_		
0	1	-	ı	204	188	164	164	50	_		
10	-	-	172	168	142	-	142	40	_		
20	-	134	136	122	-	-	122	30	_		
30	86	98	90	-	-	-	86	0	_		
40	50	52	-	-	-	-	50	0	_		

Etape 4
$$S_5 = S_4 + x_4 - 40$$

$$f_1(s, x_1) = \phi(x_1) + 0.2(S + x_2)$$

$$f_4(s, x_4) = \phi(x_4) + 0.2(S + x_4 - 40) + f_s^*(S + x_4 - 40)$$

\ r	0	10	20	30	40	50	$f_4^*(s)$	x_{4}^{*}
S_4 X_4							04()	
0	-	-	-	-	302	304	302	40
10	-	-	-	282	282	286	282	30,40
20	-	-	250	262	264	252	250	20
30	-	212	230	244	230	218	218	10
40	164	192	212	210	196	-	164	0

Etape 3
$$S_4 = S_3 + x_3 - 30$$

$$f_3(s, x_3) = \phi(x_3) + 0.2(S + x_3 - 30) + f_4^*(S + x_3 - 30)$$

x_3	0	10	20	30	40	50	$f_3^*(s)$	x_3^*
S								
0	-	-	-	420	422	414	414	50
10	ı	-	388	402	392	384	384	50
20	-	350	370	372	362	323	323	50
30	302	332	340	342	310	-	302	0
40	284	302	310	290	-	-	284	0

Etape 2

$$S_3 = S_2 + x_3 - 20$$

 $f_2(s, x_2) = \phi(x_3) + 0.2(S + x_2 - 30) + f_3^*(S + x_2 - 30)$

x_2	0	10	20	30	40	50	f_2^* (s)	x_2^*
S							2 ()	2
0	-	-	500	504	474	468	468	50
10	_	462	472	454	446	452	446	40
20	414	434	422	426	430	-	414	0
30	386	384	394	410	-	-	384	10
40	336	356	378	-	-	-	336	0

Etape 1

$$S_2 = S_1 + x_1 - 40$$

 $f_1(s, x_1) = \phi(x_1) + 0.2(S + x_1 - 30) + f_1^*(S + x_1 - 30)$

	$f_I(s, x_I)$							
S x_1	0	10	20	30	40	50	$f_1^*(s)$	x_1^*
0	-	-	-	-	606	608	606	40

La politique optimale est 40, 50, 0, 40, 50, 0. Le coût est 606.