Blatt 7

Übungsaufgaben zur Bearbeitung zu Hause vor der Übungsstunde

Aufgabe 1

Gegeben sei das folgende aus den Farbwerten 1, 2, 3, 4 und 5 bestehende Bild. Die Pixel liegen zeilenweise im Speicher.

- a) Bestimmen Sie die Auftrittswahrscheinlichkeiten der verschiedenen im Bild vorkommenden Farbwerte.
- b) Geben Sie für die Farbwerte einen Binärcode mit minimaler konstanter Wortlänge an und berechnen Sie die Größe (in Bit) des so kodierten Bildes.
- c) Konstruieren Sie unter Verwendung des Huffman-Verfahrens einen optimalen Code mit variabler Wortlänge.
 - Wie viele Bit umfasst das Bild, wenn man es mit diesem Huffman-Code kodiert?
- d) Konstruieren Sie einen möglichst effizienten Lauflängen-(Block-)Code. Wie viele Bit umfasst das Bild, wenn man es zunächst mit dem Blockcode aus (b) und dann mit diesem Lauflängen-Code kodiert? Wie viele Bit umfasst das Bild, wenn man es zunächst mit dem Huffman-Code aus (c) und dann mit diesem Lauflängen-Code kodiert?

Aufgabe 2

Kodieren Sie das Wort PAPAYA mit arithmetischer Kompression. Dekodieren Sie das entstandene Codewort anschließend zur Kontrolle. Die Zeichen sollen in der hierfür nötigen Tabelle in alphabetischer Reihenfolge stehen.

Aufgaben zur Bearbeitung während der Übungsstunde

Aufgabe 3

Kodieren Sie das Wort PAPAYA mit der LZW-Kompression. Dekomprimieren Sie zur Probe das Kompressionsergebnis. Initialisieren Sie die Code-Tabelle mit den Einzelzeichen in der Reihenfolge, wie sie im Wort auftreten.