Lab 5: Protein Structure Prediction

Zackery Field

March 17, 2014

Part 0¹: Examine sequence record for PBP1A MYCTU

The header of the sequence file reveals that the record is in the manually curated SwissProt section: "P71707 (PBP1A MYCTU) Reviewed, UniProtKB/Swiss-Prot".

0.1 TMHMM comparison

TMHMM and Uniprot both predict a helical TM region at residues 139-159.²

UniProt: Transmembrane - Helical 139-159 TMHMM: Transmembrane - Helical 137-159

0.2 Pfam comparison

The Pfam-A matches discovered using the Sequence Search tool shows that their is agreement between the Pfam and Uniprot records. Both records place a transglycosylase at region 180-360 (aa). Both records also show a transpeptidease at region 453-734 (aa).

Part 1: Phyre-results

Part 2: Run BLAST vs PDB at NCBI

Top Hit: 3DWK A

The Pfam analysis of both the top hit and the target are in agreement. Both Pfam analyses describe approximately the same MDA. That is to say both a transglycosylase and a transpeptidease are identified, but 3DWK_A does not have an N terminal region extending from the transglycosylase, whereas p71707 does.

The transglycosylase region of p71707 is from residues 180-360. The transglycosylase region of 3DWK A is from residues 15-191.

¹Nice use of zero-indexing.

²It is possible that the results from TMHMM/Pfam and Uniprot are related, because the Uniprot record could have been populated with data from both Pfam and TMHMM.

Figure 1: A screenshot of the alignment overlap display from a blast query of p71707 run against the pdb database.

The BLAST pairwise alignment for those regions:

Query	182	EIAKIVPPEGNRVDVNLSQVPMHVRQAVIAAEDRNFYSNPGFSFTGFARAVKNNLFGG-D	240
		E+ K + VNL VP ++ AV+A ED FY + + A+ NL GG	
Sbjct	16	ELVKTLDNGQRHEHVNLKDVPKSMKDAVLATEDNRFYEHGALDYKRLFGAIGKNLTGGFG	75
Query	241	LQGGSTITQQYVKNALVGSAQHGWSGLMRKAKELVIATKMSGEWSKDDVLQAYLNIIYFG	300
		+G ST+TQQ VK+A + +QH G RKA+E ++ ++ E+SKDD+ Q YLN IY+	
Sbjct	76	SEGASTLTQQVVKDAFLSQHKSIGRKAQEAYLSYRLEQEYSKDDIFQVYLNKIYYS	131
Query	301	RGAYGISAASKAYFDKPVEQLTVAEGALLAALIRRPSTLDPAVDPEGAHARWNWVLDGMV	360
		G GI AA+K YF+K ++ L +AE A LA L + P+ + P+ A R N VL M	
Sbjct	132	DGVTGIKAAAKYYFNKDLKDLNLAEEAYLAGLPQVPNNYNIYDHPKAAEDRKNTVLYLMH	191

A BLAST alignment was done on these two regions in particular and the results were: Max Score 93.6 Total Score: 93.6 Query cover: 97% E-value: 1e-28 Ident: 33%.

Since the sequence identity is on the upper edge of the twilight zone of protein sequence

alignments (20-35%PID) ³, with high sequence coverage it is possible that these two regions do not represent the same transglycosylase domain. However, as the twilight paper states, more than 95% of sequences above 30% PID were homologus. Therefore, I would agree with the Pfam classification that both of these regions contain a domain from the transglycosylase family.

The transpeptidease region of p71707 is from residues 453-743. The transpeptidease region of 3DWK A is from residues 294-562.

The BLAST pairwise alignment for those regions:

Query	453	VVSIDPHNGAVRAYYG 469 +D G + A G	
Sbjct	294	ATILDSKTGGLVAISG 310	
Query	470	G-DNANGFDFAQAGLQTGSSFKVFALVAALEQGIGLGYQVDSSPLTVDGIKITN G D + + QA TGSS K F + +++ Q D S VDG N	522
Sbjct	311	GRDFKDVVNRNQATDPHPTGSSLKPFLAYGPAIENMKWATNHAIQ-DESSYQVDGSTFRN	369
Query	523	VEGEGCGTCNIAEALKMSLNTSYYRLMLKLNGGPQAVADAAHQAGIASSFPGVAHTLS + + GT +I +AL+ S N + +K N G A A + G L+	580
Sbjct	370	YDTKSHGTVSIYDALRQSFNIPALKAWQSVKQNAGNDAPKKFAAKLGLN	418
Query	581	EDGKGGPPNNGIVLGQYQTRVIDMASAYATLAASGIYHPPHFVQKVVSANGQVLFDAS +G GP VLG + +ASA+A +A G Y+ H +QKVV+ +G+ +	638
Sbjct	419	YEGDIGPSEVLGGSASEFSPTQLASAFAAIANGGTYNNAHSIQKVVTRDGETIEYDH	475
Query	639	TADNTGDQRIPKAVADNVTAAMEPIAGYSRGHNLAGGRDSAAKTGTTQFGDTT T+ +A+ + +P G + GH ++ G + AKTGT +G T	691
Sbjct	476	TSHKAMSDYTAYMLAEMLKGTFKPY-GSAYGHGVS-GVNMGAKTGTGTYGAETYSQYNLP	533
Query	692	ANKDAWMVGYTPSLSTAVWVGTVKGDEPLVTASGAAIYGSGLPSDIWKATMDGA A KD W+ G+TP + +VW+G K G+ V S P ++++ M	745
Sbjct	534	DNAAKDVWINGFTPQYTMSVWMGFSKVKQYGENSFVGHSQQEYPQFLYENVM-SK	587

A BLAST alignment was done on these two regions in particular and the results were: Max Score 69.3 Total Score: 69.3 Query cover: 79% E-value: 3e-18 Ident: 29%.

Since the sequence identity is well within the twilight zone of protein sequence alignments (20-35%PID) it is possible that these two regions do not represent the same transpeptidease domain. Since this 29% identity is only over 80% of the sequence, the PID is actually lower. As the twilight paper states, more than 90% of sequences below 25% PID were not homologus. I would not agree with the Pfam classification that both of these regions contain

³Twilight zone of protein sequence alignments

a transpeptidease domain. The E-value for the transpeptidease prediction for p71707 (9.1e-50) is 18 orders of magnitude lower than the E-value for the transpeptidease prediction for 3DWK_A (1.5e-32). Therefore, the transpeptidease classification for p71707 should remain, and the transpeptidease classification for 3DWK A is more likely to be incorrect.

Figure 2: An image of the 3d structure of 3DWK_A with the Pfam identified domains highlighted. Blue: transglycosylase; Yellow:transpeptidease

Part 3: Homolog selection, MSA Construction

- 0.3 Run Uniprot BLAST. Pull all sequences identified
- 0.4 Construct MSA with MAFFT

0.5