1 Codage de source

Aucune connaissance de la source, son rôle est de minimiser la redondance

Dilemme : Si on supprime des bits dans la source, on doit en rajouter dans le canal pour augmenter la robustesse.

1.1 Entropie

Symboles $\{a_0,a_1,a_2,\cdots,a_{n-1}\}$ Probabilités : $\{P(a_0),P(a_1),P(a_2),\cdots,P(a_{n-1})\}$ Information contenue dans un message :

$$I(a_k) = -\log_2(P(a_k))$$
 [bits]

Entropie de la source (moyenne du contenu d'information):

$$H = \sum_{i=0}^{n-1} P(a_i) I(a_i)$$

De la source \rightarrow ne pas prendre en compte si on envoie x symboles. On parle uniquement de la source

1.1.1 Combinaison de sources

Si une source S_3 fait un choix entre S_1 et S_2 (avec α la chance de S_1). L'entropie sera

$$H_3 = \alpha \left(H_1 - \log_2 \left(\alpha \right) \right) + (1 - \alpha) \left(H_2 - \log_2 \left(1 - \alpha \right) \right)$$

Pour construire l'arbre, on multiplie les probabilités des symboles de S_1 par α et les probabilités des symboles de S_2 par $(1-\alpha)$

1.2 Méthodes de codage

- 1. Longueur fixe (comptage binaire "standard")
- 2. Optimal (100% efficace) pour puis sances de 2 $(\frac{1}{2},\,\frac{1}{4},\,...,\,2\times\frac{1}{2^{n-1}})$

Symbole	prob	Code A	Code B
s_0	1/2	1	0
s_1	1/4	01	10
s_2	1/8	001	110
:	÷	÷	:
s_{n-2}	$\frac{1/2^{n-1}}{1/2^{n-1}}$	0001	1110
s_{n-1}	$1/2^{n-1}$	0000	1111

Les deux codes (A et B) sont valides

1.3 Efficacité du code

Entropie divisée par la longueur moyenne (déterminée à partir de la méthode de codage)

$$\frac{H}{\bar{l}}$$

Si n symboles sont combinés, on divise par n la longueur moyenne (pour connaître la longueur moyenne correspondant à un symbole).

1.4 Décodage

Décodage instantané : Aucun mot-code n'est prefix d'un autre

Inégalité de Kraft-McMillan

$$\sum_{i=0}^{n-1} 2^{-\mathrm{longueur}(s_i)} \neq 1 \longrightarrow \mathrm{Pas}$$
instantané

Si = 1 cela ne veut pas forcément dire que le code est instantané

1.5 Huffman

Attention au 1 en haut ou en bas (les exemples sont données avec le 1 en haut) (les deux sont utilisés dans le cours). Ensuite on construit l'arbre avec le nouvel élément "en haut" ou "en bas" (précisé dans l'exo en principe).

1.5.1 Longueur moyenne

$$\bar{l} = \sum P(a_k) \cdot \text{longueur du code}(a_k)$$

1.5.2 Variance de la longueur

$$\operatorname{var} = \sigma^2 = \sum P(a_k) \cdot \left(\operatorname{longueur du code}(a_k) - \overline{l} \right)^2$$

Si on doit départager deux codes, une variance plus faible est meilleure

1.5.3 Huffman avec nouvel élément en haut

1.5.4 Huffman avec nouvel élément en bas

1.6 Lempel Ziv

Sortie 00010 00100 00101 01001 00111 00011 01010 10011 00010

Taux de compression :

$$\frac{L_{\rm initiale} - L_{\rm finale}}{L_{\rm initiale}}~[\%]$$