Diseration

Зміст

1	Напруженний стан прямокутної області		3
	1.1	Постановка задачі	3
	1.2	Зведеня задачі до одновимірної у просторі трансформант	4
	1.3	Зведення задачі у просторі трансформант до матрично-	
		векторної форми	4
	1.4	Фінальний розв'язок задачі	7
	1.5	Чисельні розрахунки	8
2	Нап	руженний стан прямокутної області динаміка	8
	2.1	Постановка задачі	8
3	Дод	аток А	9
4	Дод	аток В	11

Перелік умовних позначень

G - коєфіцієєнт Ламе

E - молуль Юнга

 μ - коефіцієнт Пуасона $\mu_0 = \frac{1}{1-2\mu}$

$$\mu_0 = \frac{1}{1-2\mu}$$

 $U_x(x,y) = u(x,y)$ - переміщення по осі x

 $U_{\nu}(x,y) = \nu(x,y)$ - переміщення по осі у

Напруженний стан прямокутної області 1

Постановка задачі 1.1

Розглядається пружна прямокутна область, яка займає облась, що описується у декартовій системі координат співвідношенням $0 \le x \le$ $a, 0 \le y \le b$.

До прямокутної області на грані y = b додане нормальне навантаження

$$\sigma_{y}(x,y)|_{y=b} = -p(x), \quad \tau_{xy}(x,y)|_{y=b} = 0$$
 (1.1)

де p(x) відома функція. На бічних гранях виконується умова ідеального контакту

$$u(x,y)|_{x=0}, \quad \tau_{xy}(x,y)|_{x=0} = 0$$
 (1.2)

$$u(x,y)|_{x=a}, \quad \tau_{xy}(x,y)|_{x=a} = 0$$
 (1.3)

На нижній грані виконуються наступні умови

$$v(x,y)|_{y=0}, \quad \tau_{xy}(x,y)|_{y=0} = 0$$
 (1.4)

Розглядаються наступні рівняння рівноваги Ламе:

$$\begin{cases}
\frac{\partial^2 u(x,y)}{\partial x^2} + \frac{\partial^2 u(x,y)}{\partial y^2} + \mu_0 \left(\frac{\partial^2 u(x,y)}{\partial x^2} + \frac{\partial^2 v(x,y)}{\partial x \partial y} \right) = 0 \\
\frac{\partial^2 v(x,y)}{\partial x^2} + \frac{\partial^2 v(x,y)}{\partial y^2} + \mu_0 \left(\frac{\partial^2 u(x,y)}{\partial x \partial y} + \frac{\partial^2 v(x,y)}{\partial y^2} \right) = 0
\end{cases}$$
(1.5)

1.2 Зведеня задачі до одновимірної у просторі трансформант

Для того, щоб звести задачу до одновимірної задачі, використаєм інтегральне перетворення Φ ур'є по змінній x у до рівнянь (1.5) наступному вигляді:

$$\begin{pmatrix} u_n(y) \\ v_n(y) \end{pmatrix} = \int_0^a \begin{pmatrix} u(x,y)\sin(\alpha_n x) \\ v(x,y)\cos(\alpha_n x) \end{pmatrix} dx, \quad \alpha_n = \frac{\pi n}{a}, n = \overline{1,\infty}$$
 (1.6)

Для цього помножим перше та друге рівняння (1.5) на $sin(\alpha_n x)$ та $cos(\alpha_n x)$ відповідно та проінтегруєм по змінній x на інтервалі $0 \le x \le a$. Покрокове інтегрування рівняння (1.5) наведено у (Додаток А). Отримана система рівнянь задачі у просторі трансформант:

$$\begin{cases} u_n''(y) - \alpha_n \mu_0 v_n'(y) - \alpha_n^2 (1 + \mu_0) u_n(y) = 0\\ (1 + \mu_0) v_n''(y) + \alpha_n \mu_0 u_n'(y) - \alpha_n^2 v_n(y) = 0 \end{cases}$$
(1.7)

Застосовуючи інтегральне перетворення до граничних умов, отримаємо наступні умови задачі у просторі трансформант

$$\begin{cases}
\left((2G + \lambda) v'_{n}(y) + \alpha_{n} \lambda u_{n}(y) \right) |_{y=b} = -p_{n} \\
\left(u'_{n}(y) - \alpha_{n} v_{n}(y) \right) |_{y=b} = 0 \\
v_{n}(y) |_{y=0} = 0 \\
\left(u'_{n}(y) - \alpha_{n} v_{n}(y) \right) |_{y=0} = 0
\end{cases}$$
(1.8)

Де $p_n = \int_0^a p(x)cos(\alpha_n x)dx$

1.3 Зведення задачі у просторі трансформант до матричновекторної форми

Для того щоб розв'язати задачу у простосторі трансформант, перепишмо її у матрично-векторній формі. Рівняння рівноваги (1.7)

запишемо у наступному вигляді:

$$L_{2}[Z_{n}(y)] = A * Z''_{n}(y) + B * Z'_{n}(y) + C * Z_{n}(y)$$

$$L_{2}[Z_{n}(y)] = 0$$
(1.9)

Де

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 + \mu_0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & -\alpha_n \mu_0 \\ \alpha_n \mu_0 & 0 \end{pmatrix}, \quad C = \begin{pmatrix} -\alpha_n^2 (1 + \mu_0) & 0 \\ 0 & -\alpha_n^2 \end{pmatrix}$$
$$Z_n(y) = \begin{pmatrix} u_n(y) \\ v_n(y) \end{pmatrix}$$

Граничні умови (1.8) запишемо у наступному вигляді:

$$U_{i}[Z_{n}(y)] = E_{i} * Z'_{n}(b_{i}) + F_{i} * Z_{n}(b_{i})$$

$$U_{i}[Z_{n}(y)] = D_{i}$$
(1.10)

Де $i = \overline{0,1}, b_0 = b, b_1 = 0,$

$$E_0 = \begin{pmatrix} 1 & 0 \\ 0 & 2G + \lambda \end{pmatrix}, \quad F_0 = \begin{pmatrix} 0 & -\alpha_n \\ \alpha_n \lambda & 0 \end{pmatrix},$$

$$E_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad F_1 = \begin{pmatrix} 0 & -\alpha_n \\ 0 & 1 \end{pmatrix},$$

$$D_0 = \begin{pmatrix} 0 \\ -p_n \end{pmatrix}, \quad D_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix},$$

Для знаходження розв'язку задачі у просторі трансформант, знайдем фундаментальну матрицю рівняння (1.9). Шукати її будем у наступному вигляді:

$$Y(y) = \frac{1}{2\pi i} \oint_C e^{sy} M^{-1}(s) ds$$
 (1.11)

Де M(s) - характерестична матриця рівняння (1.9), а C - замкнений контур який містить усі особливі точки. Яку будемо шукати з наступної умовни

$$L_2[e^{sy} * I] = e^{sy} * M(s), \quad I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 (1.12)

$$L_{2}[e^{sy} * I] = e^{sy} \left(s^{2}A * I + sB * I + C * I \right) =$$

$$= e^{sy} \left(\begin{pmatrix} s^{2} & 0 \\ 0 & s^{2}(1 + \mu_{0}) \end{pmatrix} + \begin{pmatrix} 0 & -\alpha_{n}\mu_{0}s \\ \alpha_{n}\mu_{0}s & 0 \end{pmatrix} + \begin{pmatrix} -\alpha_{n}^{2}(1 + \mu_{0}) & 0 \\ 0 & -\alpha_{n}^{2} \end{pmatrix} \right) =$$

$$= e^{sy} \left(s^{2} - \alpha_{n}^{2}(1 + \mu_{0}) & -\alpha_{n}\mu_{0}s \\ \alpha_{n}\mu_{0}s & s^{2}(1 + \mu_{0}) - \alpha_{n}^{2} \right) = >$$

$$M(s) = \begin{pmatrix} s^2 - \alpha_n^2 (1 + \mu_0) & -\alpha_n \mu_0 s \\ \alpha_n \mu_0 s & s^2 (1 + \mu_0) - \alpha_n^2 \end{pmatrix}$$
(1.13)

Знайдемо тепер $M^{-1}(s) = \frac{\widetilde{M(s)}}{\det[M(s)]}$.

$$\widetilde{M(s)} = \begin{pmatrix} s^2(1+\mu_0) - \alpha_n^2 & \alpha_n \mu_0 s \\ -\alpha_n \mu_0 s & s^2 - \alpha_n^2 (1+\mu_0) \end{pmatrix}$$
(1.14)

$$det[M(s)] = (s^2 - \alpha_n^2 (1 + \mu_0))(s^2 (1 + \mu_0) - \alpha_n^2) + (\alpha_n \mu_0 s)^2 =$$

$$= (1 + \mu_0)(s - \alpha_n)^2 (s + \alpha_n)^2$$
(1.15)

В раховучи це, тепер знайдемо значення фундаментальної матрицю за допомогою теореми про лишки:

$$\frac{1}{2\pi i} \oint_C e^{sy} M^{-1}(s) ds = \frac{2\pi i}{2\pi i (1 + \mu_0)} \sum_{i=1}^2 Res \left[e^{sy} \frac{M(s)}{det[M(s)]} \right] = \frac{1}{(1 + \mu_0)} (Y_0(y) + Y_1(y))$$

Знайдем $Y_0(y)$

$$Y_{0}(y) = \frac{\partial}{\partial s} \left(\frac{e^{sy}}{(s + \alpha_{n})^{2}} \widetilde{M(s)} \right) \Big|_{s = \alpha_{n}} =$$

$$= \frac{e^{\alpha_{n}y}}{4\alpha_{n}} \left(\frac{\alpha_{n}\mu_{0}y + 2 + \mu_{0}}{-\alpha_{n}\mu_{0}y} \frac{\alpha_{n}\mu_{0}y}{-\alpha_{n}\mu_{0}y + 2 + \mu_{0}} \right)$$
(1.16)

Знайдем $Y_1(y)$

$$Y_{1}(y) = \frac{\partial}{\partial s} \left(\frac{e^{sy}}{(s - \alpha_{n})^{2}} \widetilde{M(s)} \right) \Big|_{s = -\alpha_{n}} =$$

$$= \frac{e^{-\alpha_{n}y}}{4\alpha_{n}} \left(\frac{\alpha_{n}\mu_{0}y - 2 - \mu_{0}}{\alpha_{n}\mu_{0}y} - \alpha_{n}\mu_{0}y - 2 - \mu_{0} \right)$$

$$(1.17)$$

Таким чином ми можемо записати розв'язок задачі у просторі трансформант:

$$Z_n(y) = \frac{1}{1 + \mu_0} \left(Y_0(y) * \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} + Y_0(y) * \begin{pmatrix} c_3 \\ c_4 \end{pmatrix} \right)$$
(1.18)

Залишилось знайти невідомі коєфіцієнти c_1 , c_2 , c_3 , c_4 , використовуючи граничні умови (1.10). Покрокове знаходження коєфіцієнтів наведено у (Додаток В). Таким чином ми можемо записати розв'зок у просторі трансформант:

$$u_{n}(y) = \frac{e^{\alpha_{n}y}}{4\alpha_{n}(1+\mu_{0})} \left[c_{1}(\alpha_{n}\mu_{0}y+2+\mu_{0}) + c_{2}(\alpha_{n}\mu_{0}y) \right] + \frac{e^{-\alpha_{n}y}}{4\alpha_{n}(1+\mu_{0})} \left[c_{3}(\alpha_{n}\mu_{0}y-2-\mu_{0}) + c_{4}(-\alpha_{n}\mu_{0}y) \right]$$
(1.19)

$$v_n(y) = \frac{e^{\alpha_n y}}{4\alpha_n (1 + \mu_0)} \left[c_1(-\alpha_n \mu_0 y) + c_2(-\alpha_n \mu_0 y + 2 + \mu_0) \right] + \frac{e^{-\alpha_n y}}{4\alpha_n (1 + \mu_0)} \left[c_3(\alpha_n \mu_0 y) + c_4(-\alpha_n \mu_0 y - 2 - \mu_0) \right]$$
(1.20)

1.4 Фінальний розв'язок задачі

Викорустовуючи обернене інтегральне перетворення Фур'є до розв'язку задачі у просторі трансформант (1.19), (1.20), отримаємо фінальний розв'язок задачі

$$u(x,y) = \frac{2}{a} \sum_{n=1}^{\infty} u_n(y) \sin(\alpha_n x), \quad \alpha_n = \frac{\pi n}{a}$$
 (1.21)

$$v(x,y) = \frac{v_0(y)}{a} + \frac{2}{a} \sum_{n=1}^{\infty} v_n(y) \cos(\alpha_n x), \quad \alpha_n = \frac{\pi n}{a}$$
 (1.22)

Останній крок це знаходження $v_0(y)$ у випадку коли n=0, $\alpha_n=0$. Для цього повернемся до другого рівняння (1.7), та запишем його для цього випадку:

$$(1 + \mu_0)v_n''(y) = 0 (1.23)$$

Та граничні умови:

$$\begin{cases} (2G+\lambda)v_0'(y)|_{y=b} = -p_0\\ v_0(y)|_{y=0} = 0 \end{cases}$$
 (1.24)

Де $p_0 = \int_0^a p(x) dx$

Розв'язок рівняння (1.23):

$$v_0(y) = c_1 + c_2 y \tag{1.25}$$

Застовоючи граничні умови (1.24) для знаходження коєфіцієнтів c_1 , c_2 , отримаємо розв'язок задачі задачі:

$$v_0(y) = \frac{-p_0}{(2G+\lambda)}y\tag{1.26}$$

Тепер остаточний розв'зок задачі можна записати у вигляді:

$$\begin{cases} u(x,y) = \frac{2}{a} \sum_{n=1}^{\infty} u_n(y) \sin(\alpha_n x), & \alpha_n = \frac{\pi n}{a} \\ v(x,y) = \frac{-p_0}{(2G+\lambda)a} y + \frac{2}{a} \sum_{n=1}^{\infty} v_n(y) \cos(\alpha_n x), & \alpha_n = \frac{\pi n}{a} \end{cases}$$

$$(1.27)$$

- 1.5 Чисельні розрахунки
- 2 Напруженний стан прямокутної області динаміка
- 2.1 Постановка задачі

Розглядається пружна така сама прямокутна область як і в попередній задачі

3 Додаток А

Помножим перше та друге рівняння (1.5) на $sin(\alpha_n x)$ та $cos(\alpha_n x)$ відповідно та проінтегруєм по змінній x на інтервалі $0 \le x \le a$.

Розглянемо перше рівнняня

$$\int_{0}^{a} \frac{\partial^{2} u(x,y)}{\partial x^{2}} \sin(\alpha_{n}x) dx + \int_{0}^{a} \frac{\partial^{2} u(x,y)}{\partial y^{2}} \sin(\alpha_{n}x) dx + \\ + \mu_{0} \left(\int_{0}^{a} \frac{\partial^{2} u(x,y)}{\partial x^{2}} \sin(\alpha_{n}x) dx + \int_{0}^{a} \frac{\partial^{2} v(x,y)}{\partial x \partial y} \sin(\alpha_{n}x) dx \right)$$

Розглянемо

$$\int_{0}^{a} \frac{\partial^{2} u(x,y)}{\partial x^{2}} \sin(\alpha_{n}x) dx = \frac{\partial u(x,y)}{\partial x} \sin(\alpha_{n}x)|_{x=0}^{x=a} - \alpha_{n} \int_{0}^{a} \frac{\partial u(x,y)}{\partial x} \cos(\alpha_{n}x) dx =$$

$$= \frac{\partial u(x,y)}{\partial x} \sin(\alpha_{n}x)|_{x=0}^{x=a} - \alpha_{n} \left(u(x,y) \cos(\alpha_{n}x)|_{x=0}^{x=a} + \alpha_{n} \int_{0}^{a} u(x,y) \sin(\alpha_{n}x) dx \right) =$$

$$= -\alpha_{n}^{2} u_{n}(y)$$

Розглянемо

$$\int_0^a \frac{\partial^2 u(x,y)}{\partial y^2} \sin(\alpha_n x) dx = \frac{\partial^2}{\partial y^2} \int_0^a u(x,y) \sin(\alpha_n x) dx = u_n''(y)$$

Розглянемо

$$\int_{0}^{a} \frac{\partial^{2} v(x,y)}{\partial x \partial y} sin(\alpha_{n}x) dx = \frac{\partial v(x,y)}{\partial y} sin(\alpha_{n}x)|_{x=0}^{x=a} - \alpha_{n} \int_{0}^{a} \frac{\partial v(x,y)}{\partial y} cos(\alpha_{n}x) dx =$$

$$= -\alpha_{n} \frac{\partial}{\partial y} \int_{0}^{a} v(x,y) cos(\alpha_{n}x) dx = -\alpha_{n} v_{n}^{'}(y)$$

Тоді перше рівняння у просторі трансформант прийме вигляд:

$$u_n''(y) - \alpha_n \mu_0 v_n'(y) - \alpha_n^2 (1 + \mu_0) u_n(y) = 0$$

Розлянемо друге рівняння

$$\int_{0}^{a} \frac{\partial^{2} v(x,y)}{\partial x^{2}} cos(\alpha_{n}x) dx + \int_{0}^{a} \frac{\partial^{2} v(x,y)}{\partial y^{2}} cos(\alpha_{n}x) dx + \\ + \mu_{0} \left(\int_{0}^{a} \frac{\partial^{2} u(x,y)}{\partial x \partial y} cos(\alpha_{n}x) dx + \int_{0}^{a} \frac{\partial^{2} v(x,y)}{\partial y^{2}} cos(\alpha_{n}x) dx \right)$$

Розглянемо

$$\int_{0}^{a} \frac{\partial^{2} v(x,y)}{\partial x^{2}} cos(\alpha_{n}x) dx = \frac{\partial v(x,y)}{\partial x} cos(\alpha_{n}x)|_{x=0}^{x=a} + \alpha_{n} \int_{0}^{a} \frac{\partial v(x,y)}{\partial x} sin(\alpha_{n}x) dx =$$

$$= \frac{\partial v(x,y)}{\partial x} cos(\alpha_{n}x)|_{x=0}^{x=a} + \alpha_{n} \left(v(x,y) sin(\alpha_{n}x)|_{x=0}^{x=a} - \alpha_{n} \int_{0}^{a} v(x,y) cos(\alpha_{n}x) dx \right) =$$

$$= -\alpha_{n}^{2} v_{n}(y)$$

Розглянемо

$$\int_0^a \frac{\partial^2 v(x,y)}{\partial y^2} cos(\alpha_n x) dx = \frac{\partial^2}{\partial y^2} \int_0^a v(x,y) cos(\alpha_n x) dx = v_n''(y)$$

Розглянемо

$$\int_{0}^{a} \frac{\partial^{2} u(x,y)}{\partial y \partial x} cos(\alpha_{n}x) dx = \frac{\partial u(x,y)}{\partial y} cos(\alpha_{n}x)|_{x=0}^{x=a} + \alpha_{n} \int_{0}^{a} \frac{\partial u(x,y)}{\partial y} sin(\alpha_{n}x) dx =$$

$$= \frac{\partial u(x,y)}{\partial y} cos(\alpha_{n}x)|_{x=0}^{x=a} + \alpha_{n} \frac{\partial}{\partial y} \int_{0}^{a} u(x,y) sin(\alpha_{n}x) dx = \alpha_{n} u_{n}^{'}(y)$$

Тоді друге рівняння у просторі трансформант прийме вигляд:

$$(1 + \mu_0)v_n''(y) + \alpha_n \mu_0 u_n'(y) - \alpha_n^2 v_n(y) = 0$$

В результаті отримаємо наступну систему рівнянь у просторі трансформант:

$$\begin{cases} u_n''(y) - \alpha_n \mu_0 v_n'(y) - \alpha_n^2 (1 + \mu_0) u_n(y) = 0\\ (1 + \mu_0) v_n''(y) + \alpha_n \mu_0 u_n'(y) - \alpha_n^2 v_n(y) = 0 \end{cases}$$

4 Додаток В

Для знаходження коєфіцієтів c_1 , c_2 , c_3 , c_4 спочатку знайдем $Y_0(y) * \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$ та $Y_1(y) * \begin{pmatrix} c_3 \\ c_4 \end{pmatrix}$.

$$\begin{split} Y_{0}(y) * \begin{pmatrix} c_{1} \\ c_{2} \end{pmatrix} &= \frac{e^{\alpha_{n}y}}{4\alpha_{n}} \begin{pmatrix} \alpha_{n}\mu_{0}y + 2 + \mu_{0} & \alpha_{n}\mu_{0}y \\ -\alpha_{n}\mu_{0}y & -\alpha_{n}\mu_{0}y + 2 + \mu_{0} \end{pmatrix} * \begin{pmatrix} c_{1} \\ c_{2} \end{pmatrix} = \\ &= \frac{e^{\alpha_{n}y}}{4\alpha_{n}} \begin{pmatrix} c_{1}(\alpha_{n}\mu_{0}y + 2 + \mu_{0}) + c_{2}(\alpha_{n}\mu_{0}y) \\ c_{1}(-\alpha_{n}\mu_{0}y) + c_{2}(-\alpha_{n}\mu_{0}y + 2 + \mu_{0}) \end{pmatrix} \end{split}$$

$$\begin{split} Y_{1}(y) * \begin{pmatrix} c_{3} \\ c_{4} \end{pmatrix} &= \frac{e^{-\alpha_{n}y}}{4\alpha_{n}} \begin{pmatrix} \alpha_{n}\mu_{0}y - 2 - \mu_{0} & -\alpha_{n}\mu_{0}y \\ \alpha_{n}\mu_{0}y & -\alpha_{n}\mu_{0}y - 2 - \mu_{0} \end{pmatrix} * \begin{pmatrix} c_{3} \\ c_{4} \end{pmatrix} = \\ &= \frac{e^{-\alpha_{n}y}}{4\alpha_{n}} \begin{pmatrix} c_{3}(\alpha_{n}\mu_{0}y - 2 - \mu_{0}) + c_{4}(-\alpha_{n}\mu_{0}y) \\ c_{3}(\alpha_{n}\mu_{0}y) + c_{4}(-\alpha_{n}\mu_{0}y - 2 - \mu_{0}) \end{pmatrix} \end{split}$$

Введемо позначення $c = \frac{1}{4\alpha_n(1+\mu_0)}$. Запишем тепер $Z_n(y)$:

$$Z_{n}(y) = c \begin{pmatrix} c_{1}e^{\alpha_{n}y}(\alpha_{n}\mu_{0}y + 2 + \mu_{0}) + c_{2}e^{\alpha_{n}y}(\alpha_{n}\mu_{0}y) + \\ +c_{3}e^{-\alpha_{n}y}(\alpha_{n}\mu_{0}y - 2 - \mu_{0}) + c_{4}e^{-\alpha_{n}y}(-\alpha_{n}\mu_{0}y) \\ c_{1}e^{\alpha_{n}y}(-\alpha_{n}\mu_{0}y) + c_{2}e^{\alpha_{n}y}(-\alpha_{n}\mu_{0}y + 2 + \mu_{0}) + \\ +c_{3}e^{-\alpha_{n}y}(\alpha_{n}\mu_{0}y) + c_{4}e^{-\alpha_{n}y}(-\alpha_{n}\mu_{0}y - 2 - \mu_{0}) \end{pmatrix}$$

Тепер $Z'_n(y)$:

$$Z_{n}^{'}(y) = c \begin{pmatrix} c_{1}e^{\alpha_{n}y}(\alpha_{n}^{2}\mu_{0}y + 2\alpha_{n} + 2\alpha_{n}\mu_{0}) + c_{2}e^{\alpha_{n}y}(\alpha_{n}^{2}\mu_{0}y + \alpha_{n}\mu_{0}) + \\ +c_{3}e^{-\alpha_{n}y}(-\alpha_{n}^{2}\mu_{0}y + 2\alpha_{n} + 2\alpha_{n}\mu_{0}) + c_{4}e^{-\alpha_{n}y}(\alpha_{n}^{2}\mu_{0}y - \alpha_{n}\mu_{0}) + \\ c_{1}e^{\alpha_{n}y}(-\alpha_{n}\mu_{0}y) + c_{2}e^{\alpha_{n}y}(-\alpha_{n}\mu_{0}y + 2 + \mu_{0}) + \\ +c_{3}e^{-\alpha_{n}y}(\alpha_{n}\mu_{0}y) + c_{4}e^{-\alpha_{n}y}(-\alpha_{n}\mu_{0}y - 2 - \mu_{0}) \end{pmatrix}$$

Тепер використаєм граничні умови (1.10) та побудуєм алгебричну систему відносно коєфіцієнтів. Використаєм $U_0[Z_n(y)]$:

$$E_{0} * Z'_{n}(b) + F_{0} * Z_{n}(b) = D_{0} \Leftrightarrow$$

$$\begin{pmatrix} 1 & 0 \\ 0 & 2G + \lambda \end{pmatrix} * Z'_{n}(b) + \begin{pmatrix} 0 & -\alpha_{n} \\ \alpha_{n}\lambda & 0 \end{pmatrix} * Z_{n}(b) = \begin{pmatrix} 0 \\ -p_{n} \end{pmatrix}$$

Отримаємо перші 2 рівняння системи:

$$\begin{cases} c_{1}e^{\alpha_{n}b}(\alpha_{n}^{2}\mu_{0}b + \alpha_{n}\mu_{0} + \alpha_{n}) + c_{2}e^{\alpha_{n}b}(\alpha_{n}^{2}\mu_{0}b - \alpha_{n}) + \\ +c_{3}e^{-\alpha_{n}b}(-\alpha_{n}^{2}\mu_{0}b + \alpha_{n} + \alpha_{n}\mu_{0}) + c_{4}e^{-\alpha_{n}b}(\alpha_{n}^{2}\mu_{0}b + \alpha_{n}) = 0 \end{cases}$$

$$\begin{cases} c_{1}e^{\alpha_{n}b}(-2G\alpha_{n}^{2}\mu_{0}b - 2G\alpha_{n}\mu_{0} + 2\lambda\alpha_{n}) + c_{2}e^{\alpha_{n}b}(-2G\alpha_{n}^{2}\mu_{0}b + 2\alpha_{n}) + c_{2}e^{\alpha_{n}b}(-2G\alpha_{n}^{2}\mu_{0}b + 2\alpha_{n}) + c_{3}e^{-\alpha_{n}b}(-2G\alpha_{n}^{2}\mu_{0}b + 2G\alpha_{n}\mu_{0} - 2\lambda\alpha_{n}) + c_{4}e^{-\alpha_{n}b}(2G\alpha_{n}^{2}\mu_{0}b + (2G + \lambda)2\alpha_{n}) = -cp_{n} \end{cases}$$

Використаєм $U_1[Z_n(y)]$:

$$E_{1} * Z'_{n}(0) + F_{1} * Z_{n}(0) = D_{1} \Leftrightarrow$$

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} * Z'_{n}(0) + \begin{pmatrix} 0 & -\alpha_{n} \\ 0 & 1 \end{pmatrix} * Z_{n}(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Отримаємо другі 2 рівняння системи:

$$\begin{cases} c_1(\alpha_n + \alpha_n \mu_0) + c_2(-\alpha_n) + c_3(\alpha_n + \alpha_n \mu_0) + c_4(\alpha_n) = 0 \\ c_2(2 + \mu_0) + c_4(-2 - \mu_0) = 0 \end{cases}$$

Звідси видно, що $c_3 = -c_1$, $c_4 = c_2$. Введемо наступні позначення:

$$a_{1} = e^{\alpha_{n}b}(\alpha_{n}^{2}\mu_{0}b + \alpha_{n}\mu_{0} + \alpha_{n}) - e^{-\alpha_{n}b}(-\alpha_{n}^{2}\mu_{0}b + \alpha_{n} + \alpha_{n}\mu_{0}),$$

$$a_{2} = e^{\alpha_{n}b}(\alpha_{n}^{2}\mu_{0}b - \alpha_{n}) + e^{-\alpha_{n}b}(\alpha_{n}^{2}\mu_{0}b + \alpha_{n}),$$

$$a_{3} = e^{\alpha_{n}b}(-2G\alpha_{n}^{2}\mu_{0}b - 2G\alpha_{n}\mu_{0} + 2\lambda\alpha_{n}) - e^{-\alpha_{n}b}(-2G\alpha_{n}^{2}\mu_{0}b + 2G\alpha_{n}\mu_{0} - 2\lambda\alpha_{n})$$

$$a_{4} = e^{\alpha_{n}b}(-2G\alpha_{n}^{2}\mu_{0}b + (2G + \lambda)2\alpha_{n}) + e^{-\alpha_{n}b}(2G\alpha_{n}^{2}\mu_{0}b + (2G + \lambda)2\alpha_{n})$$

Враховуючи останне отримаємо:

$$\begin{cases} c_{3} = -c_{1} \\ c_{4} = c_{2} \\ c_{1}a_{1} + c_{2}a_{2} = 0 \\ c_{1}a_{3} + c_{2}a_{4} = -cp_{n} \end{cases} \Leftrightarrow \begin{cases} c_{3} = -c_{1} \\ c_{4} = c_{2} \\ c_{1} = -c_{2}\frac{a_{2}}{a_{1}} \\ c_{2}(a_{4}a_{1} - a_{2}a_{3}) = -cp_{n}a_{1} \end{cases} \Leftrightarrow$$

$$\begin{cases} c_{1} = cp_{n}\frac{a_{2}}{(a_{4}a_{1} - a_{2}a_{3})} \\ c_{2} = -cp_{n}\frac{a_{1}}{(a_{4}a_{1} - a_{2}a_{3})} \\ c_{3} = -cp_{n}\frac{a_{2}}{(a_{4}a_{1} - a_{2}a_{3})} \\ c_{4} = -cp_{n}\frac{a_{1}}{(a_{4}a_{1} - a_{2}a_{3})} \end{cases}$$