

Vision Transformer – A Deep Learning model for Image Analysis and Understanding

CML: Control, Machine Learning and Numerics

Group Members

Apurwa Agrawal

Masters in Data Science FAU Erlangen-Nuremberg

Kshitij Dua

Masters in Data Science FAU Erlangen-Nuremberg

Sneha Kumari

Masters in Data Science FAU Erlangen-Nuremberg

Amit Jadhav

Masters in Data Science FAU Erlangen-Nuremberg

Rajesh Madhipati

Masters in Data Science FAU Erlangen-Nuremberg

Table of Content

01	Introduction	06	Performance Measures
02	Motivation of Vision Transformers	07	Limitations
03	Evolution of Transformers	08	Conclusion
04	Vision Transformer Architecture	09	Future Directions
05	Training Vision Transformers	10	References

Introduction

Introduction

- Ability to extract meaningful insights from images is crucial for driving advancements across various industries and disciplines.
- CNNs faces problem in **capturing long-range dependencies** and modelling global context within images.
- ViT extends the success of the Transformer architecture.
- ViT understand complex relationships within images and make informed predictions.

Motivation

- Capturing Long-Range Dependencies.
- Flexibility with Variable-Sized Inputs.
- Transferability and Generalization.
- Learning Abstract Representations.

Evolution of Transformers

Evolution of Transformers

2017.6 | Transformer

Solely based on attention mechanism, the Transformer is proposed and shows great performance on NLP tasks.

2020.5 | GPT-3

A huge transformer with 170B parameters, takes a big step towards general NLP model.

2020.7 | iGPT

The transformer model for NLP can also be used for image pretraining.

End of 2020 | IPT/SETR/CLIP

Applications of transformer model on low-level vision, segmentation and multimodality tasks, respectively.

2018.10 | BERT

Pre-training transformer models begin to be dominated in the field of NLP.

2020.5 | **DETR**

A simple yet effective framework for high-level vision by viewing object detection as a direct set prediction problem.

2020.10 | ViT

Pure transformer architectures work well for visual recognition.

2021 | ViT Variants

Variants of ViT models, e.g., DeiT, PVT, TNT, and Swin.

Vision Transformer Architecture

3 Parts of Architecture

Batch of images **b**

b = batch

h = height

w = width

c = channel

n patches of the image

The image is split into n square patches of shape (p,p,c),

Every patch has a feature vector of dimesion $(1, p^2*c)$

Embeddings ((p^2 * c), d)

The flattened patches are multiplied with a **trainable** embedding tensor, which learns to linearly project each flat patch

Embeddings

2.1 Layer Normalization

2.1 Layer Normalization

2. Transformer Encoding

Layer Normalization:

$$\mu_i = \frac{1}{n} \sum_{i=1}^n z_{ij}$$

 $\sigma_i^2 = \frac{1}{n} \sum_{i=1}^n (zij_- \mu_i)^2$

 $\hat{X}_{ij} = \frac{z_{ij} \mu_i}{\sqrt{\sigma^2 + \varepsilon}}$

$$LN(Z_o) = \hat{X}$$

$$LN(Z_o) = \hat{X}$$

$$Z'_{e} = MSA(LN(Z_{o})) + Z_{I}$$
, where $e = 1 ... L$ (2)

2.2 Multi-head Attention

2.2 Multi-head Attention

2.2 Multi-head Attention

3. Classification Head

3. Classification Head

- [cls] token is used in the classification head.
- Pre-training 2 layer of MLP used, hence 2
 weight matrices
 - $W_h [d, d_{mlp}]$
 - W_o [d_{mlp}, d]
- Fine-tuning single layer used, hence only 1 tensor [d, n_cls]
- Output: Probability associated with each of n_{cls}
 classes

Training Vision Transformer

Training Vision Transformers

Model	Layers	Hidden size D	MLP size	Heads	Params
ViT-Base	12	768	3072	12	86M
ViT-Large	24	1024	4096	16	307M
ViT-Huge	32	1280	5120	16	632M

Taking an example of ViT-Base architecture and calculate the no of parameters in the architecture

Applications of ViT

- Image Classification
- Image captioning
- Object Detection
- Semantics Segmentation
- Video Understanding
- Image Generation

Performance, Limitations and Future Improvements

VIT vs CNN

Stage 3: 256 x 14 x 14

Stage 2: 128 x 28 x 28

Stage 1: 64 x 56 x 56

Input: 3 x 224 x 224

In most CNNs (including ResNets), decrease resolution and increase channels as you go deeper in the network (Hierarchical architecture)

Useful since objects in images can occur at various scales

In a ViT, all blocks have same resolution and number of channels (Isotropic architecture)

Limitations of ViT

- Limited spatial information
- Computational Complexity
- Generalization to Diverse Data
- Memory and Computational Efficiency
- Continual Learning and Adaptability

Discussion and Conclusion

Superior Performance:

Demonstrated exceptional performance, surpassing traditional CNNs in various image analysis tasks...

Global Context Modelling:

 capture global contextual information, enabling modeling of long-range dependencies and interactions between image elements.

Scalability and Adaptability:

 Scalability and Adaptability: ViTs are highly scalable and adaptable, making them suitable for diverse applications and datasets.

Future Improvements

- Enhanced attention mechanism for better long-range dependency modeling.
- Improved model efficiency with reduced computational complexity.
- Advancements in interpretability for better understanding of attention maps.
- Integration of multimodal information for enhanced performance.

References

- Han, Kai & Wang, Yunhe & Chen, Hanting & Chen, Xinghao & Guo, Jianyuan & Liu, Zhenhua & Tang, Yehui & Xiao, An & Xu, Chunjing & Xu, Yixing & Yang, Zhaohui & Zhang, Yiman & Tao, Dacheng. (2022). A Survey on Vision Transformer. IEEE Transactions on Pattern Analysis and Machine Intelligence. PP. 1-1. 10.1109/TPAMI.2022.3152247.
- C. Subakan, M. Ravanelli, S. Cornell, M. Bronzi and J. Zhong, "<u>Attention Is All You Need In Speech Separation</u>," ICASSP 2021 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 2021, pp. 21-25, doi: 10.1109/ICASSP39728.2021.9413901.
- Dosovitskiy, Alexey & Beyer, Lucas & Kolesnikov, Alexander & Weissenborn, Dirk & Zhai, Xiaohua & Unterthiner,
 Thomas & Dehghani, Mostafa & Minderer, Matthias & Heigold, Georg & Gelly, Sylvain & Uszkoreit, Jakob & Houlsby,
 Neil. (2020). An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale.

Thankyou