Korygowanie harmonogramów z uwzględnieniem awarii maszyn

Kamil Niemczyk

Politechnika Wrocławska Automatyka i Robotyka, Wydział Elektroniki Technologie informacyjne w systemach automatyki

Plan prezentacji

- 1 Korygowanie harmonogramów z uwzględnieniem zakłóceń
 - Mathematical model
 - Cost function
- 2 Tabu search with neural network
 - Neighborhood
 - Tabu effect
- Parallel neuro-tabu search
 - Diversification algorithm
 - Intensification algorithm
- Computational experiments
- Conclusions

Zaproponowano algorytm Tabu Search z nawrotami, który przystosowano do rozwiązywania elastycznych problemów gniazdowych.

Elastyczny problem gniazdowy

Let us consider

- $J = \{1, 2, ..., n\}$ a set of jobs,
- $M = \{1, 2, \dots, m\}$ a set of machines,
- $O = \{1, 2, \dots, o\}$ a set of operations.

A job j consists of the sequence of o_j operations. An operation i has to be executed on the dedicated machine without interruptions in time $p_i > 0$, $i \in O$. The solution is a vector of times $S = (S_1, S_2, \ldots, S_o)$ of operations beginning such, that:

- a job begins its execution on the next machine if it is finished on the previous one,
- a job begins on the machine if the previous job executed on this machine is finished,
- beginning times are not negative.

The job shop problem

A feasible solution: a vector $S = (S_1, S_2, ..., S_o)$ such, that:

$$S_{l_{j-1}+1} \geq 0, \quad j=1,2,\ldots,n,$$

$$S_i + p_i \le S_{i+1}, \quad i = l_{j-1} + 1, \quad l_{j-1} + 2, \dots, l_j - 1, \quad j = 1, 2, \dots, n,$$
 $S_i + p_i \le S_j \quad \text{or} \quad S_j + p_j \le S_i, \quad i, j \in O, \quad v_i = v_j, \quad i \ne j.$ where $C_i = S_i + p_i$, a machine number v_i of a job i .

The job shop problem

An appropriate criterion function has to be added to the problem constraints:

minimization of the time of finishing all the jobs

$$C_{\max}(S) = \max_{1 \le j \le n} C_{l_j},$$

minimization of the sum of job finishing times

$$C(S) = \sum_{j=1}^{n} C_{l_j}.$$

Both problems described are strongly NP-hard and although they are similarly modelled, the second one is found to be harder because of the lack of some specific properties (so-called block properties).

Neighborhood

In the considered neuro-tabu search algorithm NTS each move is represented by its neuron. For the adjacent swap neighborhood a network of neurons formed of o-1 neurons. Let i-th neuron represents a move consisting in swap of two adjacent elements on the positions i and i+1 in a solution π .

Tabu effect

In a proposed neural network architecture a history of each neuron is stored as its internal state (tabu effect). Each neuron is defined by the following equations:

$$\eta_i(t+1) = lpha \Delta_i(t),$$

$$\Delta_i(t) = \frac{C_{max}(\pi_v^{(t)}) - C_{max}^*}{C_{max}^*},$$

$$\gamma_i(t+1) = \sum_{d=0}^{s-1} k^d x_i(t-d),$$

where $x_i(t)$ is an output of the neuron i in the iteration t.

Tabu effect

A neuron i is activated if it has the lowest $(\eta_i(t+1) + \gamma_i(t+1))$ value of all the neurons.

Parallel neuro-tabu search

Here we propose a solution method to the job shop problem in the distributed computing environments, such as multi-GPU clusters. Neuro-tabu search algorithm is executed in concurrent working threads.


```
Algorithm 1. NIS(\gamma, \delta, C^R)
Input: \gamma, \delta – two processing orders; C^R – reference makespan;
Output: \varphi – processing order; update reference makespan C^R;
  \pi \leftarrow \gamma; iter \leftarrow 0. Find \delta^{-1} and D(\gamma, \delta)
  repeat
         iter \leftarrow iter + 1; Find N(\pi);
         For any v \in N(\pi) calculate and store C_{max}(\pi_{(v)});
         Find N^+ = \{ v = (x, y) \in N(\pi) : \delta^{-1}(y) < \delta^{-1}(x) \}:
         if N^+ \neq \emptyset than K \leftarrow N^+ else K \leftarrow N(\pi);
         Select the move w \in K such, that
               C_{max}(\pi_{(w)}) = \min_{v \in K} C_{max}(\pi_{(v)});
         Denote \pi_{(w)} by \alpha; \pi \leftarrow \alpha; \varphi \leftarrow \pi;
         if C_{max}(\pi) < C^R than C^R \leftarrow C_{max}(\pi) and exit;
   until iter > \max V \cdot D(\gamma, \delta); \{\max V \in (0,1) - \text{parameter}\}
```

Conclusions

```
Algorithm 2. iNTS
Input: \pi^0 – processing orders provided by INSA:
Output: \pi^* – the best found processing order
                  and its makespan C^*:
   (\pi^1, C^1) \leftarrow NTS(\pi^0); C^* \leftarrow C^1;
  for i \leftarrow 2, \dots, maxE do
         \varphi \leftarrow NIS(\pi^{i-1}, \pi^0, C^*); (\pi^i, C^i) \leftarrow NTS(\varphi);
         C^* = \min\{C^*, C^i\}:
   repeat
         Find 1 < I < maxE so that
            D(\pi^k, \pi^l) = \max\{D(\pi^k, \pi^i) : 1 \le i \le \max E\};
            \varphi \leftarrow NIS(\pi^k, \pi^l, C^*); (\pi^l, C^l) \leftarrow NeuroTS(\varphi);
         if C^{l} < C^{k} than set (\pi^{*}, C^{*}) \leftarrow (\pi^{l}, C^{l}) and k \leftarrow l;
   until \max\{D(\pi^k, \pi^i): 1 \leq i \leq \max E\} \leq \max D.
```

Computational experiments

Proposed algorithms were ran on the server based on 6-cores Intel Core i7 CPU X980 (3.33GHz) processor equipped with nVidia Tesla S2050 GPU (1792 cores).

- sNTS sequential neuro-tabu Search algorithm,
- ullet pNTS parallel (for p=16) neuro-tabu Search algorithm,
- iNTS advanced NTS algorithm based on the diversification and intensification methodology.

Results of experiments

problem	$n \times m$	sNTS	pNTS(p=16)	iNTS
TA01-10	15 imes 15	0.4948	0.3141	0.0652
TA11-20	20×15	1.1691	0.9129	0.4412
TA21-30	20×20	1.2486	0.7033	0.4803
TA31-40	30×15	1.0592	0.7965	0.3764
TA41-50	30×20	1.8565	1.5634	0.8328
TA51-60	50×15	0.0915	0.0915	0.0520
TA61-70	50×20	0.1479	0.0210	0.0140
TA71-80	100×20	0.0090	0.0090	0.0090
average		0.7596	0.5515	0.2839

 $\textbf{Table:} \ \mathsf{Percentage} \ \mathsf{relative} \ \mathsf{deviations} \ \big(\mathsf{PRD}\big) \ \mathsf{to} \ \mathsf{the} \ \mathsf{best} \ \mathsf{known} \ \mathsf{solutions}.$

Conclusions

- We propose an approach designed to solve difficult problems of combinatorial optimization in distributed parallel architectures without shared memory, such as clusters of nodes equipped with GPU units (i.e. multi-GPU clusters).
- The methodology can be especially effective for large instances of hard to solve optimization problems, such as flexible scheduling problems as well as discrete routing and assignment problems.