Discrete Mathematics, 2016 Fall - Worksheet 10

October 17, 2016

Instructor: Zsolt Pajor-Gyulai, CIMS

In all of the above problems explain your answer in full English sentences.

- 1. Please state the contrapositive of each of the following statements:
 - (a) If x is odd, then x^2 is odd.
 - (b) If x is non-zero, then x^2 is positive.
- 2. Prove by the contrapositive method that if a does not divide b, then the equation $ax^2 + bx + b a = 0$ has no positive integer solution for x.
- 3. For each of the following statements, write the first sentences of a proof by contradiction (do not attempt to complete the proofs). Please use the phrase "for the sake of contradiction".
 - (a) If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.
 - (b) The sum of two negative integers is a negative integer.
 - (c) If the square of a rational number is an integer, then the rational number must also be an integer.
- 4. Prove the following statements by contradiction.
 - (a) Consecutive integers cannot be both even.
 - (b) Consecutive integers cannot be both odd.
 - (c) If the sum of two primes is prime, then one of the primes must be 2 (you may assume that every integer is either even or odd, but never both.)
 - (d) Suppose n is an integer that is divisible by 4. Then n+2 is not divisible by 4.
 - (e) Let A and B be sets. Then $(A B) \cap (B A) = \emptyset$.
- 5. Prove by the method of smallest counterexample that $1 + 2 + 3 + \cdots + n = n(n+1)/2$ for all positive integer n.
- 6. Prove by the method of smallest counterexmaple that $n < 2^n$ for all $n \in \mathbb{N}$.
- 7. Prove by the method of smallest counterexmaple that when $a \neq 0, 1$, then

$$a^{0} + a^{1} + a^{2} + \dots + a^{n} = \frac{a^{n+1} - 1}{a - 1}, \quad \forall n \in \mathbb{N}.$$

8. For all integers $n \ge 5$, we have $2^n > n^2$.