Table des matières

Ι

Fonctions

1 Ensembles de nombres

: Réels \mathbb{R} , Rationnels $\mathbb{Q} = \frac{a}{b}$ avec a et b entiers naturels \mathbb{N} , entiers $\mathbb{Z} = \{-3, -2, ..., 1\}$, nombres complexes \mathbb{C} .

2 Intervalle

: [a, b] avec a, b réels compris dans l'intervale, dit fermé, a < b,]a, b[avec a, b non compris dans l'intervale dit ouvert \to Intervalle bornés $\mathbb{R} =]-\infty; +\infty[\mathbb{R}^* =]-\infty; 0[\cup]0; +\infty[\mathbb{R}^+ = [0; +\infty[\mathbb{R}^- =]-\infty; 0]$

3 Fonctions

Exemple: sinus: sin: \mathbb{R} (domaine de definitions, sources, ensemble de depart) $\to \mathbb{R}$ ou[-1,1] (domaine de valeurs, image, but, ensemble d'arrivee)

Définitions Soit E, F 2 ensemble de R. Une fonction f est procédé pour associer à tout élément de R un unique élément de F Le graph de F "vit" dans $\mathbb{R}^2 = \mathbb{R} * \mathbb{R}$

Définitions: Soit E et F 2 ensembles, on définit leur <u>produit cartesien</u>: comme l'ensemble dont les éléments sont les couples (x, y) avec x "vit" dans E et y dans F. $\text{ExF} = \{(x, y), x \in E, y \in F\}$

Définitions : Le graphe de f :
$$E \to F$$
 est un sous ensemble de $E*F$ donné par
$$= \{(x,y), x \in E, y = (x)\}$$
$$= \{x : \to f(x) = y\}$$

Exemples cosinus : $\cos : \mathbb{R} \to [-1, 1]$

tangeante tan : $\mathbb{R} \setminus \{\pi/2 + k * \pi, k \text{ appartient a Z}\} \rightarrow]-\infty, +\infty[$

$$\tan(x) = \frac{\sin(x)}{\cos(x)}$$

$$\mathbb{R} \to \mathbb{R}x \to x^n, n \in \mathbb{N}$$

$$n = 0 : x \to 1$$

$$n = 1 : x \to x$$

$$n = 2 : x \to x^2$$

 $n = 3: x \to x^3$

 $x \mapsto x^4$ $x \mapsto x^2$

n ¿0 et n pair.

Remarque : les fonctions sont plus étroites. Schéma typique pour

Définitions Soit $f: E \to R$ une fonction, avec E symétrique par rapport à 0.

— f est dite paire si : $\forall x \in E, f(-x) = f(x)$

4. MONOTONIE I. FONCTIONS

— f est impaire si : $\forall x \in E, f(x) = -f(-x)$ Remarque : si f est impaire $\rightarrow f(0) = 0$. En effet,

$$f(-0) = f(0) (I.1)$$

$$f(0) = -f(0) (I.2)$$

$$f(0) = -f(0)$$
(I.2)
2 * f(0) = 0 (I.3)

Exemple : fonctions paire : cosinus, x^{2p} avec p appartient à N impaires sinus, tangeante, x^{2p+1} avec p appartient à N

monotonie 4

Soit $f: E \to \mathbb{R}$

1 1

- f est croissante si a < b, alors f(a) < f(b) avec $a, b \in \mathbb{R}$
- f est strictement croissante si a < b, alors f(a) < f(b) avec $a, b \in \mathbb{R}$
- f est decroissant si $\forall \{a,b\} \in \mathbb{R}$ avec a < b, alors $f(a) \ge f(b)$
- f est decroissant si $\forall \{a,b\} \in \mathbb{R}$ avec a < b, alors f(a) > f(b)

décroissante sur $]-\infty,0[et]0,+\infty[$ mais pas sur $]-\infty,0[\cup]0,+\infty[$ par exemple, $-1\leq 1$ et $\frac{1}{-1}\leq 1$

Définition Soit $f: E \to F$ et A un sous ensemble de E. On appelle restriction de f a A, note $f_{|A}$. La fonction $f_{|A}:A\to F$ definie par $f_A(x)=f(x)\forall x\in A$ Soit $\overline{f:E\to F}$ et E', F' des sous ensembles de R, avec $E \subset E', F \subset F'$. La fonction $g: E' \to F'$ est un prolongement de f si $g_{|E} = F(x)$ c'est à dire $\forall x \in E, g(x) = f(x)$

Exemple logarithme népérien $ln:]0, +\infty[\to \mathbb{R}$ $x \to ln(x)$ ln(a) + ln(b) = ln(a*b) avec $\forall (a,b) \in (R^{*+})^2$

5 Opérations sur les fonctions

Soit $f, g: E \to \mathbb{R}$. On peut définir :

- La fonction somme f + g par $f + g : E \to \mathbb{R}$ $x \to (f + g)(x) = f(x) + g(x)$
- La fonction produit f * g par $f * g : E \to \mathbb{R}$ $x \to (f * g)(x) = f(x)\dot{g}(x)$

6 Image (direct) d'une fonction composé (composition)

Définitions : $f: E \to F$. L'image de f notée im(f) c'est l'ensemble $\{y \in F \text{ tel que il existe } x \in E \text{ tel que } f(x) = y\}$ aussi noté f(E)

Définition $f: E \to F$ et $g: E' \to F'$ Si l'image de $g \subset E$, on peut définir la fonction composé $fog: E' \to F$ $x \mapsto fog(x) = f(g(x))$

7 Image réciproque

Définition Soit $f: E \to F$, et $B \subset F$ L'image réciproque de B par f est l'ensemble $f^{-1}(B) = \{x \in E \text{ tel que } f(x) \in B\}$ $f^{-1}([-1,1]) = [a,b]$

Exemple (de composition)

$$f:E \longrightarrow \mathbb{R}$$

$$x \mapsto \sqrt{x^2 - 4x + 3}$$

composé de fonction f = gou

$$u : \mathbb{R}$$
 $\rightarrow \mathbb{R}$ $x : \mapsto x^2 - 4x + 3$

$$g: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

$$x \longmapsto \sqrt{x}$$

 $\Delta = 16 - 12 = 4$ racine de u : 1 et 3

 $u(x)>0 \text{ si et seulement si } x\in]-\infty;1]\cup[3;+\infty[\ E=x\in]-\infty;1]\cup[3;+\infty[$

$$h: \mathbb{R}^* \longrightarrow \mathbb{R}$$

$$x \mapsto ln(x^2)$$

Pour composer $v: \mathbb{R} \to \mathbb{R}^+$ $v: x \mapsto x^2$ ou doit enlever les points où v s'annule, c'est à dire $v^{-1}(\{0\}) = \{0\}$

$$g: \mathbb{R}^{+*} \longrightarrow \mathbb{R}$$

$$x \mapsto 2ln(x)$$

 $ln(x^2) = ln(x*x) = ln(x) + ln(x) = 2ln(x)$ mais ln(a*b) = ln(a) + ln(b) n'est valable que si a et b>0

8 Application, surjectives, injectives, bijectives

Définition $w: E \to F$ $(E, F \in \mathbb{R})$ On dit que w est surjective si w(E) = F De manière équivalente : $(y \in F \text{ tel que il existe } x \in E \text{ avec } w(x) = y) = F$ c'est à dire tout les éléments de F admette un antécédent. c'est à dire $\forall y \in F$, il existe un $x \in E$ tel que w(x) = y

Définition $w: E \to F$ $(E, F \subset R)$ On dit que w est injective si tout élément de F admet au plus un antécédent. c'est à dire que si x et x' des éléments de E qui sont différents, w(x) différent w(x')

Exemple $w(x) = x^2$ n'est pas injectifs car -2 et 2 ont la meme image (4). Exemple :

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \mapsto x^3$$

Cette fonction est surjective car pour tout y de \mathbb{R} , il existe un $x \in \mathbb{R}$ tel que f(x) = y. On a aussi $\forall y \in \mathbb{R}$, cet antécédent est unique.

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \mapsto x^2$$

Cette fonction n'est pas surjective (-1 par exemple n'a pas d'antécédent) et pas injective car y=4 par exemple possède 2 antécédents.

Remarque : Si on considère

$$g: \mathbb{R} \longrightarrow \mathbb{R}^+$$

$$r \longrightarrow r^2$$

g est surjective (il y a toujours au minimum un antécédent) mais toujours pas injective Plus généralement, si on considère $f: E \to f(E)$ est toujours surjective.

 $sin: R \to [-1; 1]$ elle est subjective mais pas injective : 0 est compris entre [-1;1] mais possède plusieurs antécédent $(k * \pi \text{ avec } k \in \mathbb{R})$

$$g: \mathbb{R} \longrightarrow \mathbb{R}^+$$

$$x \mapsto e^{2x}$$

Cette fonction n'est pas surjective (antécédent de 0 n'existe pas) mais est injective.

Definition $w: E \to F(E, R \subset \mathbb{R})$ w est dîtes bijective si elle est injective <u>et</u> surjective, c'est à dire tout élément de F admet exactement un antécédent.

9 Fonction réciproque

Si $f: E \to F$ est bijective, pour tout y de F , il existe un unique x dans E tel que f(x) = y On peut donc définir $g: F \to E$ par g(y) = x (tel que f(x) = y) g est la réciproque de f, notée f^{-1}

Exemple

$$f: \mathbb{R} \longrightarrow \mathbb{R}^{*+}$$

$$x \longmapsto exp(x)$$

et g

$$g: \mathbb{R}*+ \longrightarrow \mathbb{R}$$

$$x \mapsto ln(x)$$

Remarque si $g = f^{-1}$ avec $f : E \to F$ et $g : F \to E$ alors

$$\begin{array}{ccc} fog: F & & \rightarrow F \\ x & & \mapsto x \end{array}$$

et $f \circ g = g \circ f$

Démonstration Soit $y \in F$, quelconque, on veut calculer fog(y) Par définition de g comme fonction réciproque de f, g(y) = x tel que f(x) = y donc f(g(y)) = f(x) = y

Proposition $f: E \to F$ une fonction impaire, supposons que $f_{|E \cap \mathbb{R}^+}$ est croissante, Alors $f_{|E \cap \mathbb{R}^-}$ est croissante

Démonstration

$$f_{|E \cap \mathbb{R}^{-}} : E \cap \mathbb{R}^{-} \longrightarrow \mathbb{R}$$

$$x \longmapsto f(x)$$

Soit x et x' dans $E \cap \mathbb{R}^-$ tels que $x \leq x'$.

$$f(x) = f(-x)$$
 car f impaire
 $f(x') = -f(-x)$

Comme $x, x' \in E \cap \mathbb{R}^-$, $-x, -x' \in E \cap \mathbb{R}^-$ Comme $x \leq x'$, $-x \geq -x'$ et donc $f(-x) \geq f(-x')$ car f est coissante sur $E \cap \mathbb{R}^+$ Conclusion, $-f(-x) \leq -f(-x')$ et donc $f(x) \leq f(x')$ et donc $f(x) \leq f(x')$. On a prouvé que $f_{|E \cap \mathbb{R}^-|}$ est croissante.

Remarque f^{-1} pourrait être la fonction $\frac{1}{f}$ (la fonction f est différent de 0), la fonction réciproque de f (avec f bijective). Pour

$$f: E \to \mathbb{R}, B \subset \mathbb{R}$$

 $f^{-1}(B) = \{x \in E, f(x) \in \mathbb{R}\}$

Toujours définie.

Proposition $f: E \to F$ et $g: F \to G$ si f et g sont bijective, alors gof l'est aussi et $(gof)^{-1} = f^{-1}og^{-1} \ (gof: E \to G)$

Exemple Trouver la fonction réciproque de $f: \mathbb{R} \to]-7, +\infty[, f(x) = e^{3x+2} - 7$ On écrit $y = e^{3x+2} - 7$ et on détermine x en fonction des y.

d'où
$$f^{-1} = \frac{1}{3}(ln(x+7) - 2)$$

Etablie $f: E \to \mathbb{R}$ et $A \subset E$ $f(A) = \{g \in \mathbb{R} \text{tel que} x \in A, f(x) = y\}$ $f(A) = im(f_{|A})$

\mathbf{II}

Limites

1 Voisinage et adhérence

Definition si $x \in E$, on dit que E est un voisinage de x si E contient un intervalle ouvert qui contient x. Ceci est équivalent à E voisinage de x si il existe $\delta > 0$ tel que $|x - \delta; x + \delta| \subset E$.

Définition Soit $E \subset \mathbb{R}$. Un réel x est <u>adherent</u> à E, si tout voisinage V de x intersecte E, c'est à dire $(V \cap E \neq \emptyset)$

Exemple

- si $x \in E$, x est adhérent à E, car pour tout voisinage V de x, $x \in V \cap E$
- E =]0; 1], 0 est adhérent à E.
- $E = \{1 + \frac{1}{n}; n \in \mathbb{N}^*\} = \{2, \frac{3}{2}, \frac{4}{3}\}$ 1 est adhérent à E car

$$\lim_{n\to +\infty}=1$$

2 Limite finie en un point de \mathbb{R}

Definition $f: E \to \mathbb{R}; x_0$ un point adhérent de E. On dit que f(x) tend vers l en x_0 ou que f(x) admet l limite l en x_0 si : $\forall \epsilon > 0$, il existe $\delta > 0$, $|x - x_0| < \delta \to |f(x) - l| < \epsilon$

Ceci est équivalent à dire que $\forall \epsilon > 0$, il existe $\delta > 0$ tel que $\forall x \in [x - \delta, x + \delta], f(x) \in [l - \epsilon, l + \epsilon]$ Pour tout voisinage V de l il existe un voisinage de x_0 U tel que si x est dans U, alors f(x) est dans V.

Notation

$$\lim_{x \to x_0} f(x) = l$$

ou

$$f(x) \to_{x \to x_0} l$$

Exemple $f: \mathbb{R}^+ \to \mathbb{R}$ dont le graph est :

$$\lim_{x \to 0} f(x) = 1$$

Soit $\epsilon > 0$, tout $\delta > 0$ convient.

$$f(x) = \begin{cases} 0 \text{ si } x \le 0\\ 1 \text{ si } x > 0 \end{cases}$$

f n'admet pas de limite en 0.

3 Restriction à un sous ensemble

 $f: E \to \mathbb{R}, E \subset \mathbb{R}, x_0$ adhérent à A. On dit que f(x) tend vers $l \in \mathbb{R}$ quand x tends vers x_0 dans A.

 $\forall \epsilon > 0$, il existe $\delta > 0, \forall x \in A$, tel que $|x - x_0| < \delta, |f(x) - l| < \epsilon$

Exemple limite à gauche de f en x_0 est $\lim_{\substack{x \to x_0 \\ x < x_0}} f(x)$ c'est à dire la limite de f(x) quand x tends vers x_0 dans $]-\infty, x_0[$

Exemple limite à droite de f en x_0 est $\lim_{\substack{x \to x_0 \\ x > x_0}} f(x)$ c'est à dire la limite de f(x) quand x tends vers x_0 dans $]x_0, +\infty[$

Exemple La fonction f de l'exemple [x] admet une limite à droite en 0: $\lim_{\substack{x \to 0 \\ x > 0}} f(x)$, pour f(x) = 1 La fonction f de l'exemple [x] admet une limite à gauche en 0: $\lim_{\substack{x \to 0 \\ x < 0}} f(x)$, pour f(x) = 0

Remarque On écrit aussi $\lim_{x\to x_0} f(x)$ par $\lim_{\substack{x\to x_0\\x>x_0}} f(x)$ et $\lim_{x\to 0} f(x)$ par $\lim_{\substack{x\to 0\\x>0}} f(x)$

4. PROPRIÉTÉ II. LIMITES

4 Propriété

Unicité Si la limite existe, elle est unique.

démontration par l'absurde : $f: E \to \mathbb{R}$, x_0 adhérent à E. On suppose que la limite en x_0 existe mais qu'elle n'est pas unique. Supposons que $\lim_{x\to x_0} f(x) = l_1$ et $\lim_{x\to x_0} f(x) = l_2$ avec $l_1 \neq l_2$

Comme

$$\lim_{x \to x_0} f(x) = l_1$$

, $\forall \epsilon_1 > 0$, il existe $\delta_1, \forall x \in E|x - x_0| < \delta_1, \text{alors}|f(x) - l_1| < \epsilon_1$ (*) De plus

$$\lim_{x \to x_0} f(x) = l_2$$

, $\forall \epsilon_2 > 0$, il existe $\delta_2, \forall x \in E|x - x_0| < \delta_2$, alors $|f(x) - l_2| < \epsilon_2$ (**)

Choisissons $\epsilon < \frac{l_1 + l_2}{2}$, on remarque $]l_1 - \epsilon, l_1 + \epsilon[\cap]l_2 - \epsilon, l_2 + \epsilon[= \emptyset]$

On trouve δ_1 et δ_2 tel que (*) et (**) soient vraies.

On appelle $\delta = min\{\delta_1, \delta_2\}, [x_0 - \delta; x_0 + \delta[\subset]x_0 - \delta_1; x_0 + \delta_1[\cap]x_0 - \delta_2; x_0 + \delta_2[$

Soit
$$x \in]x_0 - \delta; x_0 + \delta[$$
 Par $(*), f(x) \in]l_1 - \epsilon; l_1 + \epsilon[$ et par $(**), f(x) \in]l_2 - \epsilon; l_2 + \epsilon[$ donc $f(x) \in]l_1 - \epsilon, l_1 + \epsilon[\cap]l_2 - \epsilon, l_2 + \epsilon[= \emptyset]$ Ceci est absurde $(f(x) \neq \emptyset)$

5 Théorème des gendarmes

f, g, h 3 fonctions $E \to \mathbb{R}$, $x \in \mathbb{R}$ adhérent à E.

(i) Si f, g, h admettent pour limites respective l, m, n en x_0 et si f(x) $\leq g(x) \leq h(x)$ pour tout x de t, alors $l \leq m \leq n$

(ii) Si $f(x) \le g(x) \le h(x)$ sur E et si f et h admettent une limite (identique) l en x_0 , alors g admet une limite en x_0 et

$$\lim_{x \to x_0} g(x) = l$$

Remarque On remplace les inégalité de (i) par $\forall x \in E, f(x) < g(x) < h(x)$, on obtient aussi $l \le m \le n$

Exemple f(x) = |x| et g(x) = 2|x| Sur $E \subset \mathbb{R}^+$, f < g mais

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} g(x)$$

Exemple

$$\lim_{x \to 0} x \cdot \sin(\frac{1}{x})$$
 existe?

 $(\sin(\frac{1}{x})$ n'a pas de limite en 0)

Soit f, g, h
$$\mathbb{R}^* \to \mathbb{R}$$
, $f(x) = -|x|$, $g(x) = x \sin(\frac{1}{x})$, $h(x) = |x|$
On a bien $\forall x \in \mathbb{R}^*$, $f(x) \le g(x) \le h(x)$ car $\forall x \in \mathbb{R}$, $-1 \le \sin(x) \le 1$

Donc par le théorème des gendarmes, Comme

$$\lim_{x \to 0} f(x) = 0$$
 et $\lim_{x \to 0} h(x) = 0$

g admet 0 comme limite quand x tends vers 0.

Fonction de référence

$$f : \mathbb{R}$$

$$x$$

$$\lim_{x \to 0} f(x) = 0$$

$$f : \mathbb{R}^{+*}$$

$$x$$

$$\Rightarrow x$$

$$\Rightarrow x$$

$$\Rightarrow x^{\alpha} \cdot x^{\ln(x)^{\beta}}$$

$$\alpha > 0, \beta > 0, \lim_{x \to 0} f(x) = 0$$

$$f : \mathbb{R}^{*}$$

$$x$$

$$\Rightarrow \frac{\sin x}{x}$$

$$\lim_{x \to 0} f(x) = 1$$

Methode

$$f: \mathbb{R}$$

$$x$$

$$\rightarrow \mathbb{R}$$

$$\frac{1}{x} - \frac{1}{x(x+1)}$$

$$f(x) = \frac{(x+1)-1}{x(x+1)} = \frac{x}{x+1} = \frac{1}{x+1} \text{ donc}$$

$$\lim_{x \to 0} f(x) = 1$$

$$f: \mathbb{R}^+$$

$$x$$

$$\rightarrow \mathbb{R}$$

$$\frac{1}{x} - \frac{1}{x(x+1)}$$

$$\lim_{x \to 0} f(x) = 1$$

$$f(x) = \frac{\sqrt{3+x} - \sqrt{3}}{2x} \cdot \frac{\sqrt{3+x} + \sqrt{3}}{\sqrt{3+x} + \sqrt{3}}$$

$$= \frac{\sqrt{3+x} - \sqrt{3}}{2x(\sqrt{3+x} + \sqrt{3})}$$

$$= \frac{1}{2(\sqrt{3+x} + \sqrt{3})}$$

Donc

$$\lim_{x \to 0} f(x) = \frac{1}{4\sqrt{3}}$$

Comportement local

Proposition Si f(x) admet une limite $l \in \mathbb{R}$ quand x tends vers x_0 , alors f est localement bornée. c'est à dire il existe un voisinnage de x, V, tel que il existe $M \in \mathbb{R}, \forall x \in V, |f(x)| < M$

Remarque Il existe un voisinnage de x_0 si et seulement si il existe un tervalle ouvert contenant x_0 si et seilement si il existe $\delta > 0$, $]x_0 - \delta, x_0 + \delta[$

Demonstration Par hypothèse,

$$f(x) \to l \\ x \to x_0$$

c'est à dire $\forall \epsilon > 0$, il existe $\delta > 0$ tel que $|x - x_0| < \delta |f(x) - l| < \epsilon$ Soit $\epsilon = 1$, On trouve δ tel que $\forall x \in]x_0 - \delta, x_0 + \delta[$ |f(x) - l| < 1, c'est à dire -1 < f(x) - l < 1 Soit |f(x)| < l + 1

Propriété Si f(x) admet $l \neq 0$ comme limite quand x tends vers x_0 , alors localement (autour de x_0), alors f est de signe constant

Démonstration bornée en x_0 (meme style que la précédente), $\epsilon = \frac{l}{3}$

Exemple

$$\lim_{x \to 1} f(x) = 6 = f(1) \text{ avec } f = x^2 + 2x + 3$$

$$|f(1+h) - f(1)| = |(1+h)^2 + (1+h) * 2 + 3 - 6|$$

$$= |1 + 2h + h^2 + 2 + 2h - 3|$$

$$= |h(h + 4)|$$

$$= |h| * (h + 4) si |h| < 1$$

$$\leq |5|h|$$

$$\lim_{h \to 0} 5|h| = 0$$

Par le théorème des gendarmes,

$$\lim_{h \to 0} |f(1+h) - f(1)| = 1$$

Remarque x = 1 + h quand h tends vers 0 et x tends vers 1.

6 Opération sur les limites

 $f, g: E \to \mathbb{R}; x_0$ adherent à E Supposons que

$$\lim_{x \to x_0} f(x) = l, \lim_{x \to 0} g(x) = m$$

Alors

$$\lim_{x \to x_0} (f+g)(x)$$
 existe et vaut $l+m$

$$\lim_{x\to x_0} (f.g)(x)$$
 existe et vaut $l.m$

si $m \neq 0$, alors

$$\lim_{x \to x_0} (f/g)(x) \text{ existe et vaut } \frac{l}{m}$$

Composition $f: E \to F, g: F \to G$ gof: $E \to G, x_0$ adhérent à E. Supposons que

$$\lim_{x \to x_0} f(x) = l \in \mathbb{R}$$

F est un voissinage de l.

$$\lim_{y \to l} g(y) = m$$

Alors

$$\lim_{x \to x_0} gof(x)$$

existe et vaut m.

Exemple

$$g:y \longrightarrow e^{i}$$

$$f:x \longrightarrow \sqrt{1+x}$$

gof est bien défini car le domaine de g est \mathbb{R} 0 est bien adhérent au domaine de f (qui est $[-1, +\infty[)$

$$\lim_{x \to 0} f(x) = l$$

$$\lim_{y \to 1} g(x) = e$$

7 Limites infinies, et limites en l'infinie

Définition $f: E \to \mathbb{R}, x_0$ adhérent à E

On dit que f(x) tend vers $+\infty$ (ou $-\infty$) quand x tend vers $x_0 \text{ si} \forall A > 0$, il existe $\delta > 0$ tel que $|x - x_0| < \delta > 0$, alors f(x) > A (ou f(x) < -A pour f(x) tend vers $-\infty$).

Exemple

$$\lim_{\substack{x \to 0 \\ x > 0}} \frac{1}{x} = +\infty$$

$$\lim_{\substack{x \to 0 \\ x < 0}} \frac{1}{x} = -\infty$$

Définition $f: E \to \mathbb{R}$ tel qu'il existe A > 0 tel que $]A; +\infty[\subset E$ On dit que f(x) tend vers $l \in E$ quand x tend vers $+\infty$

c'est à dire $\forall \epsilon > 0$, il existe A > 0, x > A, alors $|f(x) - l| < \epsilon$

Définition $f: E \to \mathbb{R}$ tel qu'il existe A < 0 tel que $]-\infty, x[\subset E$ On dit que f(x) tend vers $l \in E$ quand x tend vers $-\infty$ c'est à dire $\forall \epsilon > 0$, il existe A < 0, x < A, alors $|f(x) - l| < \epsilon$

$$\lim_{x\to -\infty} f(x) = +\infty$$
 veut dire $\forall A>0$, il existe $B>0, x<-B$ tel que $f(x)>A$

Exemple

$$f: \mathbb{R}^* \longrightarrow \mathbb{R}$$

$$x \mapsto \frac{1}{x}$$

$$\lim_{\substack{x \to 0 \\ x > 0}} f(x) = +\infty$$

Démonstration Soit A > 0. On cherche δ tel que si 0 < x, $0 < \delta$ alors $f(x) = \frac{1}{x} > A$ Choisir $\delta = \frac{1}{A}$ suffit, en effet $0 < x < \frac{1}{A}$ alors $\frac{1}{x} > \frac{1}{A}$.

Exemple $g(x) = 1 + e^{-x}$ Montrons que

$$\lim_{x \to +\infty} g(x) = 1$$

et

$$\lim_{x \to -\infty} g(x) = +\infty$$

Exemple

$$f:] - \frac{\pi}{2}; \frac{\pi}{2}[$$

$$x \to tan(x)$$

$$\lim_{\substack{x \to -\frac{pi}{2} \\ x > -\frac{\pi}{2}}} tan(x) = -\infty$$

8 Opération sur les limites

Limites finies $(l \in \mathbb{R})$ en l'infini sont exactement les memes opérations. Limites infinies $(l = \pm \infty)$ Attention aux cas inderminé : $+\infty - \infty, \frac{\pm \infty}{\pm \infty}, 0 * (\pm \infty)$

Exemple $\frac{+\infty}{+\infty} = ?$

$$f: x \mapsto x$$

$$g: x \mapsto x^{2}$$

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = 0$$

$$f_{2}: x \mapsto x^{3}$$

$$g_{2}x \mapsto x^{2}$$

$$\lim_{x \to +\infty} \frac{f_{2}(x)}{g_{2}(x)} = +\infty$$

$$f_{3}: x \mapsto x$$

$$x \mapsto x$$

Plus généralement, P,Q deux polynomes, que vaut $\lim_{x\to +\infty} \frac{P(x)}{Q(x)}$? Elle est égale au rapport des thermes du plus haut degrés. Exemple :

 $\lim_{x \to +\infty} \frac{f_3(x)}{g_3(x)} = 3$

$$\lim_{x \to +\infty} \frac{3x^2 - 2x + 4x^5 + 2}{x^4 + 3} = \lim_{x \to +\infty} \frac{4x^5}{x^4} = +\infty$$

Exemple

$$\lim_{x \to 0} x * \sin(\frac{1}{x}) = 0$$

$$\operatorname{car} \forall x \neq 0, \ 1 \leq \sin(\frac{1}{x}) \leq 1$$

 $\cot \, \forall x \neq 0, \, 1 \leq \sin(\frac{1}{x}) \leq 1$ donc $0 \leq |x * \sin(\frac{1}{x})| \leq |x|$ avec —x— tend vers 0 pour x tend vers 0.

Continuité

Définition et premières propriétés 1

Définition $f: E \to \mathbb{R}$ et $x \in E$

- On dit que f est continue en x_0 (au point x_0) si $\lim_{x\to x_0} f(x)$ existe et vaut $f(x_0)$
- f est continue sur E si f est continue en tout point $x_0 \in E$

O

Exemple Fonctions continues:

- $-x \mapsto x^2 \text{ est continue sur } \mathbb{R}$ $-x \mapsto \frac{1}{x} \text{ (domaine } \mathbb{R}^*\text{) est continue sur } \mathbb{R}^*$
- $\sin \cos \cot \cot \sec x$

Fonctions discontinues : $x \mapsto [x]$ n'est pas continue en 1 par exemple. En

effet, $\lim_{\substack{x \to 1 \\ x < 1}} f(x) = 0$ et $\lim_{\substack{x \to 1 \\ x > 1}} f(x) = 1$.

Les limites à gauches et à droite étant différentes donc $\lim_{\substack{x \to 1 \ x > 0}} p$ n'existe pas g(x) = 1 pour tout x différent de 0 mais $\lim_{\substack{x \to 0 \ x > 0}} g(x) = \lim_{\substack{x \to 0; x < 0}} g(x)$

Remarque f continue en x_0 si et seulement si $\forall \epsilon > 0$, il existe $\delta > 0$ tel que $|x-x_0| < \delta$ et $|f(x)-f(x_0)| < \epsilon$

Définition

- f est continue à droite en x_0 si limite de $\mathrm{f}(\mathrm{x})$ par valeur supérieur $(\lim_{\substack{x \to x_0 \\ x > x_0}} f(x))$ en x_0 et vaut $f(x_0)$
- f est continue à gauche e en x_0 si limite de f(x) par valeur inférieur $(\lim_{\substack{x \to x_0 \ x < x_0}} f(x))$ en x_0 et vaut $f(x_0)$

Exemple

f(partie entière de l'exemple précédent) est continue à droite mais pas à gauche en 1. f est continue sur [0; 1]

— g n'est pas continue ni à gauche, ni à droite en 0.

Proposition f est continue en x_0 si et seulement si elle est continue à gauche et à droite en x_0

Propriété $f, g: E \to \mathbb{R}, x_0 \in E$

f et g continue en x_0

- f+g est continue en x_0
- f.g est continue en x_0 $\frac{f}{q}$ est continue en x_0 si $g(x_0) \neq 0$

La continuité est très local, meme si pour un $x \in E$, g(x) = 0, temps que x_0 différent de $0, \frac{f}{g}$ est continue en x_0

Composition $f: E \to F \ g: F \to G \ \text{et} \ gof: E \to G \ \text{si} \ \text{f est continue en} \ x \in E \ \text{et} \ \text{g est continue}$ en $f(x) \in F$, alors gof est continue en x_0

Exemple

- Polynôme, $\sin + \cos, \tan + exp$ sont continues sur \mathbb{R} $\sin(\ln(\frac{e^x}{1+x^2}))$ est continue sur \mathbb{R} car $exp, 1+x^2$ sont continue, de plus $1+x^2\neq 0$ pour $x \in \mathbb{R}$ donc $\frac{e^x}{1+x^2}$ est continue sur \mathbb{R} . Finallement, e^x n'est jamais null donc $im(x \mapsto$ $\frac{e^x}{1+r^2}$) = $\varphi \subset \mathbb{R}^{+*}$, d'où $ln(\varphi)$ est continue sur \mathbb{R}
- $\frac{x \mapsto \frac{\sin(x)}{x}}{\text{est continue sur } \mathbb{R}^*, \text{ de plus, } \lim_{x \to 0} \frac{\sin(x)}{x} = 1$

Définition Soit $f: E \to \mathbb{R}$, x_0 adhérent à E. Si $\lim_{x \to x_0} f(x) = l$, alors la fonction $g: E \cup \{x_0\} \to I$ \mathbb{R} par la fonction

$$g(x) = \begin{cases} f(x) & \text{si } x \in E \\ l & \text{si } x = x_0 \end{cases}$$
 Est continue sur \mathbb{R}

Exemple

$$g(x) = \begin{cases} \frac{\sin(x)}{x} & \text{si } x \neq 0 \\ l & \text{si } x = 0 \end{cases}$$
 Est continue sur \mathbb{R}

$$h(x) = \begin{cases} xln(x) & \text{si } x > 0 \\ & \text{est le prolongement par continuit\'e en 0 de } x \mapsto xln(x) \\ 0 & \text{si } x = 0 \end{cases}$$

$$x \mapsto \frac{1}{x}$$
, $\lim_{x \to 0^{-}} \frac{1}{x} = -\infty$ et $\lim_{x \to 0^{+}} \frac{1}{x} = +\infty$

Exercice Par quelles valeurs de c, la fonction définie par

$$f(x) = \begin{cases} \frac{\sin(2x)}{x} & \text{si } x < 0\\ x + c & \text{si } x \ge 0 \end{cases}$$

est continue? f est continue si et seulement si x=2 En effet,

$$\lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} \frac{\sin(2x)}{x}$$
$$= \frac{\sin(2x)}{2x} * 2 = 2$$

 $(2^{eme} \text{ méthode} : sin(2x) = 2sin(x) * cos(x), \frac{sin(2x)}{x} = 2 * \frac{sin(x)}{x}. \cos(x) \text{ ce qui tend vers } 2$ pour x tend vers 0, et $\lim_{\substack{x \to 0 \\ x > 0}} f(x) = c$ donc $\lim_{\substack{x \to 0 \\ x > 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x)$ si et seulement si c = 2)

$$\lim_{\substack{x \to 0 \\ x > 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) \text{ si et seulement si } c = 2)$$

Donc f est continue en 0 si c = 0. De plus, pour tout $x_0 > 0$, f(x) = x + c qui est continue sur \mathbb{R}^{+*} et pour tout $x_0 < 0$, $f(x) = \frac{\sin(2x)}{x}$ qui est continue sur \mathbb{R}^{-*} Le seule problème possible était en 0.

Comportement local

Proposition Si f est continue en x_0 , alors f est localement bornée autour de x_0 (c'est à dire il existe un voisinnage de x_0 sur lequel f est bornée, c'est à dire il existe $\delta > 0$ et M > 0 tel que $|x-x_0|<\delta$ et |f(x)|< M). Si f est continue en x_0 et $f(x)\neq 0$, alors f est de signe constant (celui de $f(x_0)$ localement autour de x_0

2 Théorème des valeurs intermédiaires

Théorème $f:[a,b]\mathbb{R}(a < b)$ et continue (sur [a,b]) Pour tout y compris entre f(a) et f(b) il existe au moins $x \in [a,b]$ tel que f(x) = y.

Exemple

$$x \mapsto x^2$$
$$[-1,3] \to \mathbb{R}$$

(Contre) exemple : la continuité est essentielle. Voici une fonction monotone et non continue pour laquel il existe des y dans [f(a), f(b)] qui n'a pas d'ancédent entre a et b.

Corollaire 1 $f:[a,b] \to \mathbb{R}$, continue. si f(a) et f(b) sont non nul et de signes différents, il existe $x \in]a,b[$ tel que f(x)=0

Corollaire Si $f(x) \neq 0$ et $f(b) \neq 0$ avec a, b de signes différents dans \mathbb{R} , alors il existe un $c \in]a, b[$ tel que f(x) = 0

Corollaire

fonction continue
$$f: \mathbb{R} \to \mathbb{R}$$

tel que $\lim_{x\to +\infty} f(x) = +\infty$ et $\lim_{x\to -\infty} f(x) = -\infty$ alors f est surjective.

Idée de démonstration Ramener à un intervalle "bornée", de type $[a,b] \in \mathbb{R}^2$, a < b. Soit $y \in \mathbb{R}$, et $x_1, x_2 \in \mathbb{R}$ tel que $x_1 < x_2$ et $f(x_1) = y - 1$ et $f(x_2) = y + 1$. On cherche à prouver qu'il existe au moins un antécédent.

 $\lim_{x \to +\infty} f(x) = +\infty \text{ donc } f(x) \ge y + 1 \text{ pour x assez grand.}$

 $\lim_{x\to-\infty} f(x) = -\infty$ donc $f(x) \le y-1$ pour x assez petit. On applique le théorème des valeurs intermédiaire à $f_{|[x_1,x_2]}: [x_1,x_2] \to \mathbb{R}$ et $f_{|[x_1,x_2]}$ est bien continue.

Comme $f(x_1) \le y - 1 < y < y + 1 \le f(x_2)$ D'où il existe $x \in [x_1, x_2]$ tel que f(x) = y.

Corollaire $f: I \to \mathbb{R}$, continue sur $I \in \mathbb{R}$, alors f(I) est un intervall.

3 Continuité et extremum

Définition Soit $E \subset \mathbb{R}$.

- On dit que x est le minimum de E, si pour tout élément de $x' \in E, x' \geq x$
- On dit que x est le <u>maximum</u> de E, si pour tout élément de $x' \in E$, $x' \le x$
- Un extremum est un minimum ou un maximum.

Remarque Le maximum et le minimum sont unique.

Théorème Soit $f : [a, b] \to \mathbb{R}(a < b)$, continue. L'image de f admet un minimum et un maximum. Remarque de manière équivalente : Minimum

 $\exists y \in Im(f), \forall y' \in Im(f), y' \geq y \text{ (ou y est le minimum)}$

$$\exists x_{min} \in [a, b], \forall x' \in [a, b], f(x') \ge f(x_{min}) \text{ (avec } y = f(x_{min}) \text{ et } y' = f(x'))$$

Pour le maximum : $\exists x_{max} \in [a, b], \forall x' \in [a, b], f(x') \leq f(x_{max})$ ($f(x_{max})$ le maximum de Im(f))

Dans ces exemples, y est forcément unique (dans le cas du minimum ou du maximum) mais il peut y avoir plusieurs antécédents (plusieurs x_{min} et x_{max})

Exemple $\sin : [0, 4\pi] \to [-1, 1]$

Le minimum de
$$\sin(0, 4\pi)$$
 est -1. Il est atteint en $\frac{3\pi}{2}$ et $\frac{7\pi}{2}$.

Remarque 2 hypothèses. Pour avoir un maximum ou un minimum, [a,b] doit etre un intervalle <u>ferme</u> et <u>borne</u>. Par exemple, Le minimum n'est pas atteint sur]a,b] De meme, sur [a,b[pour le maximum.

Corollaire supposons $f : \mathbb{R} \to \mathbb{R}$ continue.

Si $\lim_{x\to -\infty} f(x) = +\infty$ et $\lim_{x\to +\infty} f(x) = +\infty$, alors f admet un minimum mais pas de maximum.

Idée de démonstration

Cette fonction admet un minimum (0) mais jamais de maximum.

Corollaire $f:[a,b] \to \mathbb{R}$ continue.

Si pour tout $x \in [a, b], f(x) > 0$ alors le minimum de Im(f) > 0, c'est à dire $\exists m > 0, \forall x \in [a, b], f(x) \ge m > 0$

4 Fonctions réciproques

Théorème $f: I \to \mathbb{R}$, continue et strictement monotone.

- 1. f(I) est un intervall
- 2. f est bijective sur J
- 3. f^{-1} est continue et strictement monotone, avec le meme sens de variations que f.
- 4. Les graphs de f et f^{-1} sont symétriques par rapport à la première bisectrice $\Delta y = x$ Exemple $\sin[-\frac{\pi}{2}, \frac{\pi}{2}] \to [-1, 1]$ est continue et strictement croissante.

Donc f est bijective, c'est à dire $f^{-1}:[-1,1] \to [-\frac{\pi}{2},\frac{\pi}{2}]$ existe et f^{-1} vaut arcsinus. $arcsin:[-1,1] \to [-\frac{\pi}{2},\frac{\pi}{2}]$ est continue et strictement croissante.

Exemple $\cos[0,\pi] \to [-1,1]$ est continue et strictement croissante.

Donc f est bijective, c'est à dire $f^{-1}:[-1,1] \to [0,\pi]$ existe et f^{-1} vaut arccosinus.

 $\arccos:[-1,1]\to[0,\pi]$ est continue et strictement croissante.

Exemple $\tan :]\frac{-\pi}{2}, \frac{\pi}{2}[\to \mathbb{R} \text{ est continue et strictement croissante, donc sa fonction reciproque$ est : $arctan : \mathbb{R} \to]\frac{-\pi}{2}, \frac{\pi}{2}[$ aussi.

Exemple

 $\begin{cases} n \in \mathbb{N}^* \\ \text{est continue sur } \mathbb{R}. \text{ Elle est strictement croissante sur } \mathbb{R}^+ \text{ si n est pair.} \\ x \mapsto x^n \end{cases}$

Elle est donc bijective : $\begin{cases} x \mapsto x^{\frac{1}{n}} \\ \mathbb{R}^+ \to \mathbb{R}^+ \end{cases}$ elle est strictement croissante sur \mathbb{R} si n est impair. Reciproque

$$\begin{cases} x \mapsto x^{\frac{1}{n}} \\ \mathbb{R} \to \mathbb{R} \end{cases}$$

IV

Dérivabilité

Définition $f: E \to \mathbb{R}, E$ est un voisinage de x_0 . f est <u>derivable</u> en x_0 si $\frac{f(x) - f(x_0)}{x - x_0}$ admet une limite l quand x tend vers x_0 ($l \in \mathbb{R}$). $\tau(x) = \frac{f(x) - f(x_0)}{x - x_0}$ est appelé le <u>taux d'accroissement</u> de f en x_0 . La limite de l (quand elle existe) est la dérivée de f en x_0 , elle est notée $f'(x_0)$

Exemple
$$f: x \mapsto x^{2} \\ \mathbb{R} \to \mathbb{R}$$

$$f'(1) = ? = \frac{x^{2} - x_{0}^{2}}{x - x_{0}} \\ = \frac{(x - x_{0})(x + x_{0})}{x - x_{0}} \\ \lim_{x \to x_{0}} x + x_{0} = 2x_{0}$$

$$f: x \mapsto x^3$$

Exemple 2

$$\mathbb{R} \to \mathbb{R}$$

$$\tau(x) = \frac{x^3 - x_0^3}{x - x_0}$$

$$\forall x \neq x_0, \qquad = \frac{(x - x_0)(x^2 + x \cdot x_0 + x_0^2)}{x - x_0}$$

$$\lim_{x \to x_0} x^2 + x \cdot x_0 + x_0^2 = 3x_0$$

$$\forall x_0 \in \mathbb{R}, f'(x) = 3x_0^2$$

Exemple 3
$$f: x \mapsto \sqrt{x}$$
 $\mathbb{R}^+ \to \mathbb{R}$

$$\tau(x) = \frac{\sqrt{x} - \sqrt{x_0}}{x - x_0}$$

$$= \frac{(\sqrt{x} - \sqrt{x_0})(\sqrt{x} + \sqrt{x_0})}{(x - x_0)(\sqrt{x} + \sqrt{x_0})}$$

$$\forall x \neq x_0, x_0 \in \mathbb{R}^{+*}$$

$$= \frac{x - x_0}{(x - x_0)(\sqrt{x} + \sqrt{x_0})}$$

$$\lim_{x \to x_0} \tau(x) = \lim_{x \to x_0} \frac{1}{\sqrt{x} + \sqrt{x_0}}$$

$$= \frac{1}{2\sqrt{x_0}}$$

1 Interprétation géométrique

 $f'(x_0)$ est le coefficient directeur de la tangente du graphe de f en $(x_0, f(x_0))$

 $\tau(x_1) = \frac{f(x_1) - f(x_0)}{x_1 - x_0} \text{ est le coefficient de la droite passant } P_{x_1} \text{ et } P_{x_0} \text{ avec } P_{x_1} \text{ du graph au point } x_1, \text{ et } P_{x_0} \text{ celui de } x_0 \text{ } y = \tau(x_1)(x - x_0) + f(x_0) \text{ avec } x_1 \in \mathbb{R}$

Quand x tend vers x_0 , la droite D_{x_1} "converge" vers la tangeante au graph de f au point $(x_0, f(x_0))$, d'équation : $y = f'(x_0)(x - x_0) + f(x_0)$

Définition Si $\lim_{\substack{x \to x_0 \\ x < x_0}} \tau(x) = l^-, l^- \in \mathbb{R}$

On dit que f est dérivable à gauche en x_0 et on note $f'_g(x_0) = l^-$ Si $\lim_{\substack{x \to x_0 \\ x > x_0}} \tau(x) = l^+, l^+ \in \mathbb{R}$

f admet une dérivée à droite en x_0 , que l'on note $f'_d(x_0) = l^+$

Théorème $f: E \to \mathbb{R}$, E un voisinage de x_0 . f est dérivable en x_0 si et seulement si f est dérivable à droite et à gauche en x_0 et $f'_d(x_0) = f'_d(x_0)$

Remarque Cette fonction n'est pas dérivable en 1, pourtant $f'_d(1) = f'_g(1)$, f doit donc alors être continue en x_0 Démonstration f est dérivable en x_0 , alors $\lim_{x \to x_0} \tau(x) = l \in \mathbb{R}$, cela signifie donc que $l - 1 \le \tau(x) \le l + 1$ $l - 1 \le \frac{f(x) - f(x_0)}{x - x_0} \le l + 1$

Si $x > x_0$, on obtient :

$$(l-1)(x-x_0) \le f(x) - f(x_0) \le (l+1)(x-x_0)$$

 $\lim_{x \to x_0} (l-1)(x-x_0) \le \lim_{x \to x_0} f(x) - f(x_0) \le \lim_{x \to x_0} (l+1)(x-x_0)$
 $0 \lim_{x \to x_0} f(x) - f(x_0) \le 0$
 $\lim_{x \to x_0} f(x) - f(x_0) = 0$ par le théorème des gendarmes, et de même pour $x < x_0$

Définition $f: E \to \mathbb{R}$ f est dérivable sur l'intervalle ouvert [a, b] si f est dérivable en tout point de $x_0 \in]a, b[$ f est dérivable sur l'intervalle fermé [a, b] si f est dérivable sur l'intervalle ouvert et à droite en a et à gauche en b.

Exemple $x \to \sqrt{x}$ est dérivable sur $]0, +\infty[$, $[a, +\infty[(a > 0)$ mais pas sur $[0, +\infty[$.

2 Dérivabilité des prolongements de fonctions

Proposition $f:[a,b] \to \mathbb{R}, g[b,c] \to \mathbb{R}$ dérivable

Proposition
$$f:[a,b] \to \mathbb{R}, g[b,c] \to \mathbb{R}$$
 dérivable

On définit $\varphi:[a,c] \to \mathbb{R}$ par la formule $\varphi(x) \begin{cases} f(x) & \text{si } x \in [a,b] \\ g(x) & \text{si } x \in [b,c] \end{cases}$

$$\lim_{\substack{x\to b\\\varphi\text{ est continue sur }[a,\,c]\text{ si}}}\varphi(x)=\lim_{\substack{x\to b\\x>b}}\varphi(x)=\varphi(b)$$

$$f(b) = g(x) = f(b)$$

Si φ est continue, φ est dérivable sur [a,c] si $f'_a(b) = g'_d(b)$

Exercice Trouver α et β tels que $f: \mathbb{R} \to \mathbb{R}$ définie par

$$f(x) = \begin{cases} e^x + 2, six \le 1\\ \alpha x + \beta six > 1 \end{cases}$$

Soit dérivable sur \mathbb{R} . Comme $e^x + 2$ et $\alpha x + \beta$ sont dérivable sur \mathbb{R} , le seul problème peut survenir en 1. Pour être dérivable, f doit être continue : $e^1+2=\alpha+\beta$ et on doit avoir $f'_a(1)=e=f'_d(1)=\alpha$. $\alpha = 1$ et $\beta = 2$

3 Opération usuelles

 $f, gE \to \mathbb{R}, E$ voisinage de x_0 .

f et g sont dérivable en x_0 , alors :

- f+g est dérivable en x_0 et $(f+g)'(x_0) = f'(x) + g'(x)$
- f*g est dérivable en x_0 et $(f*g)'(x_0) = f'(x_0) * g(x_0) + f(x_0) * g'(x_0)$ si $g(x_0) \neq 0$ f/g est dérivable en x_0 et $(\frac{f}{g})'(x_0) = \frac{f'(x_0) * g(x_0) f(x_0) * g'(x_0)}{g'(x_0)}$

$$(f+g)(x) - (f+g)(x_0) = f(x) + g(x) - (f(x_0) + g(x_0))$$

Démonstration

$$= f(x) - f(x_0) + g(x) - g(x_0)$$

$$\frac{(f+g)(x) - (f+g)(x_0)}{x - x_0} = \frac{f(x) - f(x_0)}{x_0} + \frac{g(x) - g(x_0)}{x - x_0}$$

$$(f * g)(x) - (f * g)(x_0) = f(x) * g(x) - (f(x_0) * g(x_0))$$

$$= (f(x) - f(x_0))g(x) + f(x_0)g(x) - f(x_0)g(x_0)$$

Comme précédemment,

$$= (f(x) - f(x_0))g(x) + f(x_0)(g(x) - g(x_0))$$

$$\frac{(f * g)(x) - (f * g)(x_0)}{x - x_0} = \frac{f(x) - f(x_0)}{x_0} g(x) + \frac{g(x) - g(x_0)}{x - x_0} g(x_0)$$

$$\lim_{x \to x_0} g(x) = g(x_0) \text{ car } g(x_0) \text{ est continue en } x_0$$

$$\frac{f}{g} = f \cdot \frac{1}{g}$$
$$(\frac{f}{g})' = f' \cdot \frac{1}{g'} + f \cdot (\frac{1}{g})'$$

COmposition $f: E \to F, f: F \to G$

On suppose f dérivable en x_0 , g dérivable en $f(x_0)$ alors $g \circ f$ est dérivable en x et $(g \circ f)'(x_0) =$ $f'(x_0) \cdot g'(f(x_0))$