Why treat water and

wastewater?

Reasons for treating:

Protect public health

Protect surface-water quality

Meet legal requirements

Specific concern: Pathogenic organisms

Pathogen = specific agent causing disease

Pathogenic = capable of causing disease

Biological pathogens

Pathogen	Size, µm	
Bacteria	10 ⁻¹ – 10	
Viruses	10 ⁻² – 10 ⁻¹	
Protozoa	10 - 102	
Nematode helminth worms	1 - 10 ⁵	
Trematode helminth worms	1 - 10 ⁵	
Tapeworms	~40 (egg) up 6 m (worm)	

Note: filter sand is 100 to $10^3\,\mu m$, can strain particles to ${\sim}30\,\mu m$

Chemical contaminants in drinking water

Organic chemicals

Disinfection byproducts

Inorganic chemicals

Radionuclides

Physical and aesthetic characteristics

"Emerging pollutants"

Organic chemicals

Chemical classes:

Pesticides and

herbicides

Organic solvents

Fuel components

Polynuclear aromatic

hydrocarbons

Organic chemical

Health effect of organic chemicals:

Carcinogenicity – cause or suspected to cause cancer

Teratogenicity (terra-tau-genicity) – cause birth

Nervous system impairment

Reproductive impairment

Disinfection byproducts

Disinfection with chlorine causes reaction

byproducts with organic matter in water

Main classes of chemicals: TTHMs –

Total trihalomethanes HAA5 – Five

haloacetic acids

All are suspected human carcinogens

Trihalomethanes

Chloroform

Chlorodibromomethane

Bromodichloromethane

Bromoform

Five haloacetic acids

Monochloroacetic acid Dichloroacetic acid Trichloroacetic acid

Bromoacetic acid Dibromoacetic acid

Inorganic chemicals

Chemical	Adverse effect		
Antimony	Blood disorders		
Arsenic	Skin damage, cancer		
Barium	Increased blood pressure		
Beryllium	Intestinal lesions		
Cadmium	Kidney damage		
Chromium	Dermatitis		
Copper	Gastrointestinal, liver or kidney damage		

Inorganic chemicals

Chemical	Adverse effect		
Cyanide	Nervous system impairment		
Fluoride	Dental fluorosis (staining), bone disease		
Lead	Impaired mental development		
Mercury	Kidney damage, birth defects		
Nitrate	Methemoglobinemia (blue-baby syndrome)		
Selenium	Hair loss, circulatory problems		
Sodium	High blood pressure		
Thallium	Blood, kidney, liver, intestinal effects		

Radionuclides

Radioactive decay releases ionizing radiation

Alpha particles – two protons and two neutrons

Beta particles – electrons

Radium-226, Radium-228 – can cause cancer

Uranium – kidney damage, can cause cancer

Alpha radiation, radium and uranium all occur

Physical and aesthetic characteristics

Property	Adverse effect		
Turbidity	Harbors bacteria, interferes with treatment		
Color, odor	Aesthetic		
Silver	Cause argyria (turns skin blue)		
Sulfate	Laxative effect		
Chloride	Salty taste		
TDS	Salty taste, scaling of pipes		
Hardness	Cause deposits on bathroom fixtures		

Physical and aesthetic characteristics

Property	Adverse effect		
Iron	Stains laundry and fixtures		
Manganese	Stains laundry and fixtures		
Copper	Stains laundry and fixtures		
Detergents	Causes water to foam		
pH	Pipe corrosion, impaired taste		
Phenols	Taste and odor		

Emerging pollutants

MTBE Methyl tertiary butyl ether

Perchlorate CIO₄⁻

List of National Secondary Drinking Water Regulations

Contaminant Secondary Standard

Aluminum 0.05 to 0.2 mg/L

Chloride 250 mg/L

Color 15 (color units)

Copper 1.0 mg/L

Corrosivity noncorrosive

Fluoride 2.0 mg/L

Foaming Agents 0.5 mg/L

Iron 0.3 mg/L

Manganese 0.05 mg/L

Odor 3 threshold odor number

pH 6.5-8.5

Silver 0.10 mg/L

Sulfate 250 mg/L

Total Dissolved Solids 500 mg/L

Zinc 5 mg/L

Comparison of standards

Water-quality constituent	Units	U.S. EPA	European Union	World Health Organization
E. coll	number/100 ml	Detected in <5% of samples	0	0
Arsenic	μg/I	10	10	10
Copper	mg/l	1.3	2	2
Lead	Ngu	15	10	10
Nitrate	mg/Las N	10.0	11.3	11.3
TTHM	Ngu	100	100	200/100/100/60*
Chloride	mg/l	250	250	250
iron	Ngu	300	200	No guideline
Benzene	µg/l	5	1	10
Carbon tetrachloride	Pgη	5	4	4
Tetrachiomethylene	µg/l	5	400	40
Trichloroethylene	Ngu	5	10	70

a Chioroform/bromoform/dibromodichioromethane/bromodichiorodimethane

b Sum of trichloroethylene and tetrachloroethylene

General layout for wastewater treatment plant.

Screening

Removes large material to:

- 1. Protect process equipment.
- 2. Prevent interference with treatment.
- 3. Prevent discharge to waterways

Types of Screens

Coarse Screens May be hand raked for small systems.

Most are mechanically cleaned. Often subject to mechanical problems.

- ❖Design requires minimum velocity-0.4m/s to keep grit suspended –maintained by
- * Downstream weir or flume.
- ❖Screenings are disposed by landfilling or incinerations some times passed through grinder
- ❖ And into waste stream (grinder also called comminutor)

- *Coarse screens usually have nearly 5cm openings.
- *Coarse screens are sometimes followed by fine screens(usually 6mm opening)

Fine screens are expensive, high in maintenance not used commonly for muncipal

wastewater.

Fine screens can remove 10-80% TSS

Average removal = 55%

Grit chambers

Design to remove sand, gravel, cinders, coffee grounds, egg shells, other high density organics and inorganics.

Purposes 1. Protect moving equipment from abrasion.

- 2. Reduce deposition in pipelines, channels.
- 3. Reduce frequency of digestor cleaning.

Grit characteristics.

0.004-0.04 m³grit/m³ wastewater(higher with combined sewers).

Solids content = 35-80%

Volatile content = 1-55%

Typical density = 1.6 gm/cm^3

Grit chamber design

Design goal- Provide sufficient detention time for grit to settle.

Maintain constant velocity to scour organics.

Velocity needed to scour organics given by Camp Shields equation (Camp,1942, Grit Chamber

Design, Sewage Works Journal, Vol-14,pp 368-381)

$$V_c = 8Kgd (\rho_p - \rho_w)/f(\rho_w)$$

```
\label{eq:Vc = Scour velocity [L/T]} Vc = Scour velocity [L/T] \\ g = gravitational acceleration [L/T^2] \\ d = partical diameter [L] \\ f = Darey - Weisbach friction factor \\ 0.002 for domestic sewage \\ \rho_p = particle density [M/L^3] \\ \rho_w = water density [M/L^3] \\ K = empirical constant related to stickness of organic particles = 0.04-0.06 \\ \end{tabular}
```

Typical $V_c = 15$ to 30 cm^3 for organic particles.

Challenge in grit chamber is to maintain Vc through fluctuations in flow rate.

One alternative – design outflow weir to maintain velocity in rectangular channel