Memristor based Implementation of Kernelized Ridge Regression

Indian Institute Of Information Technology Guwahati

Supervisor: Dr. Parashjyoti Borah

ANANT SHARMA 2101036

Abstract

Resistive memory systems are a promising solution for low-power machine learning. Their ability to perform calculations directly within memory eliminates energy-intensive data movemennt. Memristors, a type of resistive memory, are particularly attractive due to their small size. We've developed a new training algorithm that uses simple components to achieve accurate neural network weights without complex calculations. This methos allows for faster training and higher speed compared to traditional approaches.

Contents

1 Literature Summary	4
1.1 Memristors	4
1.2 Memristors crossbar for neuromorphic computing	4
1.3 Ridge Regression	4
1.4 Kernels	
2 Proposed Work	5
2.1 Architecture	5
2.2 Algorithm	5
2.3 Implementation Details	
3 Results	6
3.1 Area	6
3.2 Latency	6
3.3 Energy	6
4 Conclusions	7

- 1 Literature Summary
- 1.1 Memristors
- 1.2 Memristors crossbar for neuromorphic computing
- 1.3 Ridge Regression
- 1.4 Kernels

- 2 Proposed Work
- 2.1 Architecture
- 2.2 Algorithm
- 2.3 Implementation Details

- 3 Results
- 3.1 Area
- 3.2 Latency
- 3.3 Energy

4 Conclusions