Programming Abstractions

Lecture 11: Y Combinator; or: how to write a recursive, anonymous function

How do we write a recursive function?

How do we write a recursive function?

(without using define)

Recall, this binds len to our function (λ (lst) ...) in the body of the letrec

This expression returns the procedure bound to len which computes the length of its argument

Why does this not work to create a length procedure? (Note let rather than letrec.)

- A. It would work but letrec more clearly conveys the programmer's intent to write a recursive procedure
- B. len is not defined inside the λ

- C. len is not defined in the last line
- D. 1en isn't being called in the last line, it's being returned and this is an error
- E. None of the above

How do we write a recursive function?

(just using anonymous functions created via λs)

Less easy, but let's give it a go!

```
(λ (lst)
  (cond [(empty? lst) 0]
      [else (add1 (??? (rest lst)))]))
```

We need to put something in the recursive case in place of the ??? but what?

```
If we replace the \ref{thm:list:equation} with (\lambda (lst) (error "List too long!")) we'll get a function that correctly computes the length of empty lists, but fails with nonempty lists
```

Put the function itself there?

Not a terrible attempt, we still have ???, but now we can compute lengths of the empty list and a single element list (if we replace the ??? with the error message again)

Maybe we can abstract out the function

This isn't a function that operates on lists!

It's a function that takes a function len as a parameter and returns a closure that takes a list lst as a parameter and computes a sort of length function using the passed in len function

make-length

This is the same function as before but bound to the identifier make-length

- The orange text (together with purple text) is the body of make-length
- ► The purple text is the body of the closure returned by (make-length len)

```
(define L0 (make-length (\lambda (lst) (error "too long"))))
```

► L0 correctly computes the length of the empty list but fails on longer lists

make-length

- Ln correctly computes the length of lists of size at most n
- ► We need an L_∞ in order to work for all lists
- (make-length length) would work correctly, but that's cheating!

Enter the Y combinator

Y is a "fixed-point combinator"

A combinator is a function that operates on functions (more or less)

```
If f is a function of one argument, then (Y f) = (f (Y f))
```

This is precisely the length function: (define length (Y make-length))

(define length (Y make-length))

```
(define length (Y make-length))
```

Let's step through applying our length function to '(1 2 3)

```
(define length (Y make-length))
Let's step through applying our length function to '(1 2 3)
  (length '(1 2 3)); so lst is bound to '(1 2 3)
```

```
(define length (Y make-length))
Let's step through applying our length function to '(1 2 3)
(length '(1 2 3)); so 1st is bound to '(1 2 3)
=> (cond [(empty? lst) 0]
         [else (add1 ((Y make-length) (rest lst)))])
=> (add1 (length '(2 3))); lst is bound to '(2 3)
=> (add1 (cond [(empty? lst) 0]
                [else (add1 ((Y make-length) (rest lst)))])
=> (add1 (add1 (length '(3)))); lst is bound to '(3)
=> (add1 (add1 (cond [...][else (add1 ...)])))
```

```
(define length (Y make-length))
Let's step through applying our length function to '(1 2 3)
(length '(1 2 3)); so 1st is bound to '(1 2 3)
=> (cond [(empty? lst) 0]
         [else (add1 ((Y make-length) (rest lst)))])
=> (add1 (length '(2 3))); lst is bound to '(2 3)
=> (add1 (cond [(empty? lst) 0]
               [else (add1 ((Y make-length) (rest lst)))])
=> (add1 (add1 (length '(3)))); lst is bound to '(3)
=> (add1 (add1 (cond [...][else (add1 ...)])))
=> (add1 (add1 (length '()))); lst is bound to '()
```

```
(define length (Y make-length))
Let's step through applying our length function to '(1 2 3)
(length '(1 2 3)); so lst is bound to '(1 2 3)
=> (cond [(empty? lst) 0]
         [else (add1 ((Y make-length) (rest lst)))])
=> (add1 (length '(2 3))); lst is bound to '(2 3)
=> (add1 (cond [(empty? lst) 0]
               [else (add1 ((Y make-length) (rest lst)))]))
=> (add1 (add1 (length '(3)))); lst is bound to '(3)
=> (add1 (add1 (cond [...][else (add1 ...)])))
=> (add1 (add1 (length '()))); lst is bound to '()
=> (add1 (add1 (cond [(empty? lst) 0][...]))))
```

```
(define length (Y make-length))
Let's step through applying our length function to '(1 2 3)
(length '(1 2 3)); so lst is bound to '(1 2 3)
=> (cond [(empty? lst) 0]
         [else (add1 ((Y make-length) (rest lst)))])
=> (add1 (length '(2 3))); lst is bound to '(2 3)
=> (add1 (cond [(empty? lst) 0]
               [else (add1 ((Y make-length) (rest lst)))]))
=> (add1 (add1 (length '(3)))); lst is bound to '(3)
=> (add1 (add1 (cond [...][else (add1 ...)])))
=> (add1 (add1 (length '()))); lst is bound to '()
=> (add1 (add1 (cond [(empty? lst) 0][...]))))
=> (add1 (add1 (add1 0)))
```

```
(define length (Y make-length))
Let's step through applying our length function to '(1 2 3)
(length '(1 2 3)); so lst is bound to '(1 2 3)
=> (cond [(empty? lst) 0]
         [else (add1 ((Y make-length) (rest lst)))])
=> (add1 (length '(2 3))); lst is bound to '(2 3)
=> (add1 (cond [(empty? lst) 0]
               [else (add1 ((Y make-length) (rest lst)))]))
=> (add1 (add1 (length '(3)))); lst is bound to '(3)
=> (add1 (add1 (cond [...][else (add1 ...)])))
=> (add1 (add1 (length '()))); lst is bound to '()
=> (add1 (add1 (cond [(empty? lst) 0][...]))))
=> (add1 (add1 (add1 0)))
=> 3
```

```
(define length (Y make-length))
Let's step through applying our length function to '(1 2 3)
(length '(1 2 3)); so lst is bound to '(1 2 3)
=> (cond [(empty? lst) 0]
         [else (add1 ((Y make-length) (rest lst)))])
=> (add1 (length '(2 3))); lst is bound to '(2 3)
=> (add1 (cond [(empty? lst) 0]
               [else (add1 ((Y make-length) (rest lst)))]))
=> (add1 (add1 (length '(3)))); lst is bound to '(3)
=> (add1 (add1 (cond [...][else (add1 ...)])))
=> (add1 (add1 (length '()))); lst is bound to '()
=> (add1 (add1 (cond [(empty? lst) 0][...]))))
=> (add1 (add1 (add1 0)))
=> 3
```

Example: sum

```
(define sum
  (\lambda (lst))
    (cond [(empty? lst) 0]
           [else (+ (first lst) (sum (rest lst)))]))
(define sum-2
 (Y (λ (recsum)
       (\lambda (lst)
         (cond [(empty? lst) 0]
                [else (+ (first lst) (recsum (rest lst)))])))))
```

These are both sum functions but sum-2 uses Y

But wait, how can that work?

Two problems:

- We defined Y in terms of Y! It's recursive and the whole point was to write recursive anonymous functions
- (Y f) = (f (Y f)) but then
 (f (Y f)) = (f (Y f)) = (f (f (Y f))) = ...
 and this will never end

Y is defined such that

$$(Y f) = (f (Y f))$$

What does bad do?

- A. bad is an infinite loop that is equivalent to (define (bad x) (bad x))
- B. bad is never defined because (Y (λ (loop) ...)) causes an infinite loop
- C. bad is the identity function: (bad x) = x

Defining Y

It's tricky to see what's going on but Y is a function of f and its body is applying the anonymous function $(\lambda (g) (f (g g)))$ to the argument $(\lambda (g) (f (g g)))$ and returning the result.

```
(Y \text{ foo}) = ((\lambda \text{ (g) (foo (g g))}) ; \text{ By applying Y to foo} \\ (\lambda \text{ (g) (foo (g g))}) ; \\ = (\text{foo (}(\lambda \text{ (g) (foo (g g))})) ; \text{ By applying orange fun} \\ (\lambda \text{ (g) (foo (g g))}))) ; \text{ to purple argument} \\ = (\text{foo (Y foo)}) ; \text{ From definition of Y}
```

Never ending computation

This form of the Y-combinator doesn't work in Scheme because the computation would never end

We can fix this by using the related Z-combinator

```
(define Z  (\lambda \text{ (f)} )   (\lambda \text{ (g) (f ($\lambda$ ($v$) ((g g) $v$))))}   (\lambda \text{ (g) (f ($\lambda$ ($v$) ((g g) $v$)))))}
```

With this definition, we can create a length function (define length (Z make-length))

What is length actually defined as here?

```
(define Z
  (\lambda (f)
     ((\lambda (g) (f (\lambda (v) ((g g) v))))
      (\lambda (g) (f (\lambda (v) ((g g) v))))))
(define length (Z make-length))
(Z make-length)
=> ((\lambda (g) (make-length (\lambda (v) ((g g) v))))
     (\lambda (g) (make-length (\lambda (v) ((g g) v))))
=> (make-length (\lambda (v) ((\lambda (g) (make-length (\lambda (v) ((g g) v))))
                                (\lambda (g) (make-length (\lambda (v) ((g g) v))))
                               V)))
```

Let's apply some equivalences

```
(make-length (\lambda (v) (((\lambda (g) (make-length (\lambda (v) ((g g) v))))
                         (\lambda (g) (make-length (\lambda (v) ((g g) v))))
                        V)))
=> (make-length (\lambda (v) ((Z make-length) v)))
=> (cond [(empty? lst) 0]
          [else (add1 ((\lambda (v) (Z make-length) v))
                         (rest lst))]
=> (cond [(empty? lst) 0]
          [else (add1 ((\lambda (v) (length v))
                         (rest lst)))])
=> (cond [(empty? lst) 0]
          [else (add1 (length (rest lst)))])
```

We can use Z to make recursive functions

```
Given a recursive function of one variable
(define foo
  (λ (x) ... (foo ...) ...)
we can construct this only using anonymous functions by way of Z
(Z (\lambda (foo) (\lambda (x) ... (foo ...)))
Factorial
(Z (\lambda (fact))
      (\lambda (n))
         (if (zero? n)
              (* n (fact (sub1 n))))))
```

Step by step

- 1. Write your recursive function normally with recursive calls: $(define\ foo\ (\lambda\ (x)\ ...))$
- 2. Wrap the lambda in another, single-argument lambda whose argument has the same name as your function: (define foo (λ (foo) (λ (x) ...))
- 3. Apply Z to that (define foo (Z (λ (foo) (λ (x) ...)))
- 4. Be thankful that programming language designers give us easier ways to write recursive functions!

Imagine a version of Scheme without define or letrec, how can we write a recursive function foo and call it on a list? In other words, how do we write

```
(letrec ([foo (\lambda (lst) (... (foo ...) ...))]) (foo '(1 2 3)))
```

B. (let ([foo (Z (
$$\lambda$$
 (foo) (λ (lst) (... (foo ...) ...))))]) (foo '(1 2 3)))

C. It's not possible to write recursive functions without define or letrec in Scheme

What about multi-argument functions?

We can use apply!

```
(define Z*  (\lambda \text{ (f)} )   (\lambda \text{ (g) (f ($\lambda$ args (apply (g g) args))))}   (\lambda \text{ (g) (f ($\lambda$ args (apply (g g) args))))}
```

Example: map

We're applying z* to the orange function which returns a recursive map procedure

Then we're applying that procedure to the arguments add1 and '(1 2 3 4 5)