

DISPOSITIVOS SEMICONDUCTORES http://materias.fi.uba.ar/6625/

Evaluación Final 13 de agosto de 2019

Nombre y apellido:	Padrón:
e-mail:	Cuatrimestre de cursada:

- Para aprobar deben contestarse bien 6 puntos del total.
- Cada pregunta otorga una cantidad de puntos especificada entre corchetes sobre el margen izquierdo.
- Si la pregunta es respondida correctamente suma el puntaje especificado.
- Si la pregunta tiene opciones y es respondida incorrectamente resta el puntaje especificado.
- Si la pregunta no es respondida no se asignan puntos.
- Responder todas las preguntas numéricas con 3 cifras significativas.
- Considerar $V_{th} = 26 \,\mathrm{mV}$.
- [½ pt.] 1) Una muestra de Silicio de largo $L=5\,\mu\mathrm{m}$ está homogeneamente dopada con átomos donores con una concentración $N_1=10^{15}\,\mathrm{at/cm^3}$. Luego, se realiza un segundo dopaje con donores sobre toda la muestra, pero ahora con una concetración no uniforme que sigue la ley $N_2(x)=10^{17}\,\mathrm{at/cm^3}\cdot\exp\left(-\left(\frac{x}{\lambda}\right)^2\right)$ con $\lambda=L/5$. Calcular la diferencia de potencial entre los extremos de un bloque de silicio $(\phi_B\,[\mathrm{mV}]=\phi(0)-\phi(L))$.
- [½ pt.] 2) Una muestra de silicio que está dopada con $N_A = 10^{17} \, \text{at/cm}^3$, tiene una longitud $L = 10 \, \mu \text{m}$ y un área $A = 100 \, \mu \text{m}^2$. Calcular la corriente ($I \, [\mu \text{A}]$) que circula cuando se conecta una fuente de $3 \, \text{V}$ entre los extremos de la muestra.
- [1 pt.] 3) En un diodo PN con dopajes $N_D = 10^{18} {\rm at/cm^3}$, $N_A = 10^{17} {\rm at/cm^3}$, polarizado, se genera un exceso de minoritarios en la QNR del lado menos dopado que sigue la función $\delta m(x) = 10^4 {\rm at/cm^3} \exp\left(-\frac{x-x_o}{1\,\mu{\rm m}}\right)$ donde $\delta m(x)$ es el exceso concentración de minoritarios en el lado menos dopado, x_o es el límite entre la SCR y la QNR del lado menos dopado, y la longitud de la QNR a partir de x_o es $L=8\,\mu{\rm m}$. Calcular la densidad de corriente de difusión de minoritarios en el lado menos dopado en el punto $x-x_o=L/4$ (J_{diff} [A/cm²]).
- [1 pt.] 4) Calcular la extensión de la zona de vaciamiento $(x_d \text{ [m]})$ de una juntura MOS fabricada con polysilicio dopado tipo N y sustrato dopado con $N_A = 10^{17} \, \text{at/cm}^3$, $C'_{ox} = 2.6 \times 10^{-7} \, \text{F/cm}^2$, $\gamma^2 = 0.49 \, \text{V}$, $V_T = 0.51 \, \text{V}$ cuando se aplica $V_{GB} = 1.7 \, \text{V}$.
- [½ pt.] 5) Dos diodos son iguales salvo que $A_1 = 10 \times A_2$. Los diodos se conectan en un circuito serie tal que el borne positivo de una fuente de tensión ($V_S = 5 \, \text{V}$) se conecta a una resistencia, la resistencia al ánodo de D_1 , el cátodo de D_1 al ánodo de D_2 y el cátodo de D_2 al borne negativo de la fuente de tensión, cerrando el circuito. ¿Cuál es la relación de tensiones en los diodos, considerando $V_D = V_{anodo} V_{catodo}$?
- [½ pt.] 6) Un JFET de canal N está conectado de la siguiente forma: el drain conectado a una fuente de alimentación de 5 V, el source conectado a una resistencia $R=470\,\Omega$ y el otro extremo de la resistencia está conectado a tierra, y el gate conectado a una fuente de tensión que controla la corriente de drain. Los parámetros del transistor son $I_{DSS}=4\,\mathrm{mA}$ y $V_P=-1\,\mathrm{V}$. ¿Cuál debe ser la tensión que se aplica al gate para obtener $I_D=2\,\mathrm{mA}$?
- [½ pt.] 7) En un proceso de fabricación CMOS de sustrato tipo P, luego de aplicarse la máscara de NWELL, ¿qué máscara debe aplicarse inmediatamente?
- [1 pt.] 8) En un proceso CMOS estándar con alimentación $V_{DD}=2.7\,\mathrm{V}$ se fabricó un inversor CMOS de forma tal que $W_n=W_p$ y $L_n=L_p$. En este proceso, se sabe que $\mu_n=3\times\mu_p$ y se puede considerar $V_{Tn}\simeq -0.5\times V_{Tp}=0.7\,\mathrm{V}$. Se midió el tiempo de propagación de alto a bajo y se obtuvo $t_{PHL}=10\,\mathrm{ns}$. ¿Cuánto será el tiempo de propagación de bajo a alto (t_{PLH}) ?

DISPOSITIVOS SEMICONDUCTORES http://materias.fi.uba.ar/6625/

Evaluación Final 13 de agosto de 2019

- [1 pt.] 9) Se implementa un amplificador emisor común sin realimentación con un transistor NPN con parámetros $\beta=200,\ V_A=20\,\mathrm{V}$ y $V_{BE(ON)}=0.7\,\mathrm{V}$. La tensión de alimentación es $V_{CC}=3.3\,\mathrm{V}$, y el transistor está polarizado con una resistencia de base $R_B=24\,\mathrm{k}\Omega$ y una resistencia de colector, $R_C=100\,\Omega$. A la entrada del amplificador, se conecta una señal (v_s) con resistencia serie $R_s=1\,\mathrm{k}\Omega$ a través de un capacitor de desacople de valor adecuado. Calcular $A_{vo},\ R_{IN}$ y R_{OUT} .
- [½ pt.] 10) Se implementa un amplificador emisor común sin realimentación y sin carga, polarizado con una única R_B y una única R_C . A la entrada, la fuente de señal presenta una tensión v_s pico y una resistencia serie R_s no nula. Al medir la señal de salida, se observa una deformación de la señal tal que el semiciclo negativo es más pronunciado y el semiciclo positivo es mas suave, siendo en ningún caso un recorte abrupto de la señal. ¿Qué se debe cambiar en el diseño para evitar este tipo de distorsión?
- [1 pt.] 11) Un amplificador source común alimentado con $V_{DD}=3\,\mathrm{V}$ está polarizado con dos resistencias de gate de valor elevado (orden de magnitud: $10\,\mathrm{k}\Omega$), y resistencia de drain $R_D=330\,\Omega$. Los parámetros del transistor son μ $C'_{OX}=150\,\mu\mathrm{A/V^2},\,W=40\,\mu\mathrm{m},\,L=4\,\mu\mathrm{m},\,V_T=0.7\,\mathrm{V}$ y se puede considerar $\lambda=0$. A la entrada, se conecta una fuente de señal senoidal con tensión pico $v_s=500\,\mathrm{mV}$ y resistencia serie $R_s=50\,\Omega$. ¿Cuál es la mínima corriente de polarización I_{DQ} con la que se puede polarizar el transistor para evitar la distorsión por alimealidad?
- [1 pt.] 12) Se implementa un circuito serie compuesto por una fuente de tensión con señal cuadrada (valor alto $V^+ = +100\,\mathrm{V}$ y valor bajo $V^- = -100\,\mathrm{V}$, simétrica y con frecuencia $f = 50\,\mathrm{Hz}$) conectada al ánodo de un tiristor (SCR), el propio tiristor, y una resistencia de $10\,\Omega$ conectada al cátodo del tiristor. La señal de disparo $(v_g(t))$ está sincronizada con la tensión de la red de forma que se genera un evento de disparo luego de un tiempo $\alpha = 3\,\mathrm{ms}$ luego de cada cruce por cero de la misma. El tiristor tiene una tensión de encendido que se puede considerar constante $V_{AK,ON} = 2\,\mathrm{V}$. Calcular la potencia disipada en el tiristor.
- [1 pt.] 13) Realizar el corte lateral de un MOSFET de potencia indicando sus características constructivas mas importantes.