CISC 468: CRYPTOGRAPHY

LESSON 5: BLOCK CIPHERS

Furkan Alaca

TODAY, WE WILL LEARN ABOUT...

- 1. How block ciphers and stream ciphers differ
- 2. Bit operations required

READINGS

- Section 3.1: Introduction to DES, Paar & Pelzl
- Section 3.2: Overview of the DES Algorithm, Paar & Pelzl
- Section 3.3: Internal Structure of DES, Paar & Pelzl

SYMMETRIC CIPHERS

STREAM CIPHERS VS. BLOCK CIPHERS

BLOCK CIPHERS

- A block cipher is a *bijective function* from \mathcal{P} (set of all possible plaintext blocks) to \mathcal{C} (set of all possible ciphertext blocks)
- Its two inputs are a key and a fixed-size block of plaintext
- Its output is a fixed-size block of ciphertext
- The plaintext and ciphertext block size are equal (e.g., 128 bits), but key size and block size need not be equal
- In a later chapter we will deal with plaintext messages that exceed the block size

BLOCK CIPHER DESIGN PROPERTIES (1)

1. Confusion: Each bit of ciphertext depends on several parts of the key, thereby obscuring the relationship between the key and ciphertext. Commonly achieved via *substitution* operations.

BLOCK CIPHER DESIGN PROPERTIES (2)

- 2. Diffusion: Changing a single bit of plaintext should impact half of the ciphertext bits on average, thereby obscuring the relationship between plaintext and ciphertext. Commonly achieved via bit permutation operations.
 - Single flipped bit in the plaintext block x_1 results in a ciphertext block y_2 that appears statistically independent from the original ciphertext block y_1 , e.g.,

$$x_1 = 0010 \ 1011$$

Block Cipher

 $y_1 = 1011 \ 1001$
 $y_2 = 0110 \ 1100$

THE DATA ENCRYPTION STANDARD (DES): HISTORY

- Published as Federal Information Processing Standard (FIPS)
 PUB 46 in 1977
- FIPS PUB 46 was revised in 1999 to recommend Triple DES
- Superceded in 2001 by the Advanced Encryption Standard (AES) published in FIPS PUB 186

DES: BLOCK AND KEY SIZE, RELATED STRUCTURES

- DES is a block cipher with a block size of 64 bits and an effective key size of 56 bits
 - 64-bit key with every eighth bit used solely for parity-checking
- Design is related to two general structures: product ciphers and Feistel ciphers
 - Both structures involve repetition of a series of operations

PRODUCT CIPHERS

- A product cipher concatenates two or more operations such that the concatenation of operations is more secure than the individual operations
- In the following example, a confusion and diffusion operation are performed sequentially N times

FEISTEL CIPHERS

- A Feistel cipher is an iterative structure consisting of r
 repetitions of a round function
- Each round function performs an encryption operation using a subkey derived from the secret key using a key schedule
- Encryption and decryption are almost the same operation, with decryption requiring only a reversed key schedule
 - So the last round is reverted simply by repeating it

STRUCTURE OF A FEISTEL CIPHER

- Input is an even-length block of plaintext, which divided into left and right equal-sized halves (L_0, R_0)
- Output is a block of ciphertext (L_r, R_r) produced by an r-round process
- Round *i* maps $(L_{i-1}, R_{i-1}) \xrightarrow{k_i} (L_i, R_i)$, where
 - k_i is a subkey derived from the secret key k
 - $L_i = R_{i-1}$ (copied from right half of previous round)
 - $\blacksquare R_i = L_{i-1} \oplus f(R_{i-1}, k_i)$
 - f function provides the confusion and diffusion

DES: ITERATIVE STRUCTURE

- DES is a 16-round Feistel cipher
- Before inputing into the encryption rounds, the input plaintext x undergoes an Initial Permutation (IP)
- After the final encryption round, the output undergoes a Final Transformation (IP^{-1})
- Each encryption round uses a 48-bit round key $k_1, k_2, ..., k_{16}$ derived from the 56-bit key

DES: INITIAL PERMUTATION

- *IP* and *IP*⁻¹ do not add any security
 - Thought to make data fetches easier in 1970s hardware
 - Very efficient in hardware, but not in software
- Represented as table, but read as 1D-array from left to right and top to bottom

IP											
58	50	42	34	26	18	10	2				
60	52	44	36	28	20	12	4				
62	54	46	38	30	22	14	6				
64	56	48	40	32	24	16	8				
57	49	41	33	25	17	9	1				
59	51	43	35	27	19	11	3				
61	53	45	37	29	21	13	5				
63	55	47	39	31	23	15	7				

IP^{-1}											
40	8	48	16	56	24	64	32				
39	7	47	15	55	23	63	31				
38	6	46	14	54	22	62	30				
37	5	45	13	53	21	61	29				
36	4	44	12	52	20	60	28				
35	3	43	11	51	19	59	27				
34	2	42	10	50	18	58	26				
33	1	41	9	49	17	57	25				

INITIAL AND FINAL PERMUTATIONS: ILLUSTRATION

DES: THE f-FUNCTION

- Input of f function in round i is R_{i-1} and k_i
- Output can be thought of as a pseudorandom bit stream, and is XORd with L_{i-1}

DES: INTERNAL STRUCTURE OF f -FUNCTION

- E function expands the 32-bit input R_{i-1} to 48 bits
- The expanded input is XORd with the 48-bit subkey k_i
- The result is split into eight 6-bit chunks
- Each chunk is fed into an S-box that outputs 4 bits
- The *P* function permutes the 32-bit output from the S-boxes

DES: EXPANSION PERMUTATION OF f-FUNCTION

- The expansion permutation *E* partitions the 32-bit input into eight 4-bit chunks and expands each chunk to 6 bits
- Increases diffusion, since 16 of the 32 the input bits will each influence two output locations

E										
32	1	2	3	4	5					
4	5	6	7	8	9					
8	9	10	11	12	13					
12	13	14	15	16	17					
16	17	18	19	20	21					
20	21	22	23	24	25					
24	25	26	27	28	29					
28	29	30	31	32	1					

DES: SUBSTITUTION BOXES (S-BOXES)

- Each S-box is a lookup table that maps a 6-bit input to a 4-bit output
- Provide confusion
- Each of the eight S-boxes are different, and carefully designed to meet a number of criteria
 - e.g., if two inputs to an S-box differ in exactly one bit, their outputs must differ in at least two bits
- Most crucial element of DES, since they provide non-linearity:

 $S(a) \oplus S(b) \neq S(a \oplus b).$

DES: S-BOX S₁

S_1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	14	04	13	01	02	15	11	08	03	10	06	12	05	09	00	07
1	00	15	07	04	14	02	13	01	10	06	12	11	09	05	03	80
2	04	01	14	08	13	06	02	11	15	12	09	07	03	10	05	00
3	15	12	08	02	04	09	01	07	05	11	03	14	10	00	06	13

- For a given 6-bit input:
 - The most- and least-significant bits select the row
 - The middle four bits select the column
 - The resulting cell in the table is the decimal representation of the 4-bit value to be substituted

DES: S-BOX S_1 (EXAMPLE)

```
5
                                 8 9
                                             11
                                                    13
S_1
                            7
                                         10
                                                 12
                                                        14
                                                            15
                                         06
   14
           13
              01
                  02
                      15
                          11
                              08 03
                                     10
                                             12
                                                05
                                                    09
                                                        00
                                                            07
          07
              04
                  14
                      02
                          13
                              01
                                 10
                                     06
                                         12
                                             11
                                                09
                                                    05
                                                            08
           14
              08
                  13
                      06
                         02
                              11
                                 15
                                     12
                                         09
   04
                                             07
                                                03
                                                        05
                                                            00
       12 08
              02
                  04
                      09
                          01
                              07
                                 05
                                     11
                                         03
                                             14
                                                 10
                                                           13
```

Example. For a 6-bit input $b = 100101_2$:

- Select row $11_2 = 3$
- Select column $0010_2 = 2$
- 4-bit output is $08 = 1000_2$

DES: P-PERMUTATION OF f-FUNCTION

- The 32-bit output from the S-boxes is permuted so that the output bits from each S-box affects multiple S-boxes in the next round
- Introduces diffusion

P											
16	7	20	21	29	12	28	17				
1	15	23	26	5	18	31	10				
2	8	24	14	32	27	3	9				
19	13	30	6	22	11	4	25				

DES: KEY SCHEDULE

• The key schedule derives 16 subkeys k_i k_1 k_1 k_1 k_1 k_2 from the secret key

DES: KEY SCHEDULE (INITIAL KEY PERMUTATION)

- The initial key permutation
 PC 1 reduces the 64-bit key
 to 56 bits by omitting every
 eigth bit
- The result is split into two halves C_0 and D_0

PC-1										
57	49	41	33	25	17	9	1			
58	50	42	34	26	18	10	2			
59	51	43	35	27	19	11	3			
60	52	44	36	63	55	47	39			
31	23	15	7	62	54	46	38			
30	22	14	6	61	53	45	37			
29	21	13	5	28	20	12	4			

DES: KEY SCHEDULE (SUBKEYS)

- In each round i, the two halves (C_i, D_i) are each circularly shifted to the left by:
 - One position if i = 1, 2, 9, 16
 - Two positions if $i \neq 1, 2, 9, 16$
- The total number of bit positions shifted is

$$4 \times 1 + 12 \times 2 = 28$$
, so $C_0 = C_{16}$ and $D_0 = D_{16}$

DES: KEY SCHEDULE (ROUND KEY PERMUTATION)

- PC 2 permutes and reduces (C_i, D_i) to output a 48-bit k_i
- Designed so that each bit in the key is used in approximately 14 of the 16 round keys

PC-2									
14	17	11	24	1	5	3	28		
15	6	21	10	23	19	12	4		
26	8	16	7	27	20	13	2		
41	52	31	37	47	55	30	40		
51	45	33	48	44	49	39	56		
34	53	46	42	50	36	29	32		

NEXT TIME

- DES decryption
- Security of DES
- Triple DES

RECAP

- The security of block ciphers relies on operations that provide diffusion and confusion
- Non-linear operations are crucial for cryptographic strength
- Many block ciphers (including Feistel ciphers, and others) use an iterated design that repeatedly applies a round function, using a derived subkey for each round
- DES is a Feistel cipher and was the dominant symmetric encryption algorithm from the mid-1970s to mid-1990s