

INTER-IoT-EWS

Interoperable Situation-Aware Early Warning System

João Moreira, Luís Ferreira Pires, Marten van Sinderen, Roel Wieringa Services, Cyber-security and Safety group (SCS), University of Twente, Netherlands. {j.luizrebelomoreira, l.ferreirapires, m.j.vansinderen, r.j.wieringa}@utwente.nl

Design problem

How to improve the semantic interoperability of emergency services for IoT Early Warning Systems (EWSs)?

Challenges

- (C1) Semantic integration of a variety of data sources: Avoid loss of semantics when multiple ontologies, standards and data models from different and overlapping domains are involved, considering their syntactic and semantic alignments
- (C2) Processing in time- and safety-critical applications: Provide the required performance for upstream data acquisition, emergency risk detection and message brokering, in terms of scalability and total transaction time
- (C3) Data analysis for effective responses: Enable high quality situation awareness (perception, comprehension and projection) to avoid false positives, and improve decision support based on emergency procedures

Collaboration (open call)

- > Scenario of detecting accidents at the port of Valencia (id.9), interoperating wearable medical devices with IoT platforms to react quickly, reducing time responses during accidents [6]
- > Semantic translations between ETSI SAREF and W3C SSN [5]

Functional requirements

(FR1) IoT platforms should be able to coordinate with emergency systems

(FR2) The haulier IoT platform and the port IoT platform should be able to share health information about the driver

Non-functional requirements

(NFR1) Semantic and syntactic interoperability among IoT platforms

(NFR2) E-Health and logistics integration

(NFR₃) Energy consumption (battery level) of the devices should be monitored

Use cases

UCo1: Vehicle collision detection

UCo2: Hazardous health changes

UCo3: Temporal relations (UCo1 ~ UCo2)

UCo4: Wrong-way driving

UCo5: Accidents with dangerous goods

Solution

Development of INTER-IoT-EWS based on our framework [1-4]

Table 1. Data sources.

External	Health	Logistics	
Data	Driver's ECG, HR, accelerometer	Position, speed, accelerometer, goods	
Device	Shimmer ECG 3 (Capture), Mobile	Mobile (MyDriving Android or iOS)	
IoT platform	latform UniversAAL MS Azure IoT		
Ontologies	ETSI SAREF, HL7/aECG, FHIR	ETSI SAREF, LogiCO	

Table 2. Validation activities.

#	Activity	Description	Addresses
A1	Functional	Test cases with different levels of severity and	C1, C2, C3,
	evaluation	urgency, checking emergency procedures	FR1, FR2
A2	Semantic interop.:	Transformations: $T(T(x)_{A>B})_{B>A}$, $T(x)_{A>B}$ represents the	C1, NFR1,
	semantic loss	semantic translation function from A to B	NFR2
A3	Performance eval.:	JSON x JSON-LD as payload (total transaction time),	C2, NFR3
	data transfer	following the structure of the involved ontologies	
A4	Performance eval.:	Total time to translate; annotate and insert into	C2, NFR3
	data process	database; risk identification; and messaging (EDXL)	
A5	Performance eval.:	Scalability and resilience measured for single cluster	C2, C3,
	data brokering	and multi-broker, throughputs of up to 700 msg/sec.	NFR3

^[1] Moreira, J.L.R., Ferreira Pires, L., Sinderen, M. van, and Dockhorn Costa, P. (2015) Towards ontology-driven situation-aware disaster management. Journal of applied ontology.

^[2] Moreira, J.L.R., Ferreira Pires, L., Sinderen, M. van, and Dockhorn Costa, P. (2015) Developing situation-aware applications for disaster management with a distributed rule-based platform. RuleML conference.

^[3] Moreira, J.L.R., Ferreira Pires, L., Sinderen, M. van, and Dockhorn Costa, P. (2016) Improving semantic interoperability of big data for epidemiological surveillance. BDI4E workshop (I-ESA conference).

^[4] Moreira, J.L.R., Ferreira Pires, L., Sinderen, M. van, and Dockhorn Costa, P. (2017) Ontology-driven Conceptual Modeling for Early Warning Systems: Redesigning the SML. MODELSWARD conference.

^[5] Moreira, J.L.R., Daniele, L.M., Ferreira Pires, L., et al. (2017) Towards IoT platforms' integration: Semantic Translations between W3C SSN and ETSI SAREF. SIS-IoT workshop (SEMANTICS conference). [6] Moreira, J.L.R., Ferreira Pires, L., Sinderen, M. van, Wieringa, R., et al. (2018) Improving the semantic interoperability of IoT Early Warning Systems: the Port of Valencia use case. I-ESA conference.