Algorithmic Coding Theory Report

Soumyadeep Paul (BMC202178) Madhav CS (BMC202132)

December 2023

This report is based on the paper Locally decodable codes with 2 queries and polynomial identity testing for depth 3 circuits by Zeev Dvir and Amir Shpilka.

Summary

1	Locally decodable codes	2
2	$\Sigma\Pi\Sigma$ circuits	2
3	$\Sigma\Pi\Sigma$ circuits and LDCs	3
4	Structural theorem for zero depth-3 circuits	4
5	PIT Algorithms	4

1 Locally decodable codes

Definition 1. Let $\delta, \epsilon \in [0, 1]$, and let q be an integer. We say that $E : \mathbb{F}^n \to \mathbb{F}^m$ is a (q, δ, ϵ) -locally decodable code if there exists a probabilistic oracle machine A such that

- in every invocation, A makes at most q queries (nonadaptively)
- for every $x \in \mathbb{F}^n$, for every $y \in \mathbb{F}^m$ with $\Delta(y, E(x)) < \delta m$, and for every $i \in [n]$, we have

$$|\mathbb{F}| < \infty : Pr(A^y(i) = x_i) \ge \frac{1}{|\mathbb{F}|} + \epsilon$$

 $|\mathbb{F}| = \infty : Pr(A^y(i) = x_i) > \epsilon$

Theorem 1. Let $\delta, \epsilon \in [0,1]$, \mathbb{F} be a field, and let $E \colon \mathbb{F}^n \to \mathbb{F}^m$ be a linear $(2, \delta, \epsilon)$ -LDC. Then,

$$m > 2^{\frac{\epsilon \delta n}{4} - 1}$$

2 $\Sigma\Pi\Sigma$ circuits

Definition 2. Let \mathbb{F} be a field. A $\Sigma\Pi\Sigma$ circuit, C, over \mathbb{F} , with n inputs and k multiplication gates (i.e., top fan-in is k), is the formal expression

$$C(x) = \sum_{i=1}^{k} c_i \prod_{j=1}^{d_i} L_{ij}(x)$$

where for each $i \in [k], j \in [d_i], L_{ij}$ is a nonconstant linear function,

$$L_{ij}(x) = L_{ij}^0 + L_{ij}^1 x_1 + \dots + L_{ij}^n x_n$$

Definition 3 $(\Sigma\Pi\Sigma(k,d))$. Let k,d>0 be integers. A $\Sigma\Pi\Sigma$ circuit C is called a $\Sigma\Pi\Sigma(k,d)$ circuit if the following three conditions hold

- the top fan-in of C is k
- $\bullet \ d_1 = d_2 = \dots = d_k = d$
- for every $i \in [k]$ and $j \in [d]$, L_{ij} is a homogeneous linear form, that is, $L_{ij}(x) = L^1_{ij}x_1 + \cdots + L^n_{ij}x_n$ (The free coefficient in each linear function zero.)

Lemma 1. There exists a polynomial time algorithm such that, given as input a $\Sigma\Pi\Sigma$ circuit C, with top fan-in k and total degree d > 0, it outputs a $\Sigma\Pi\Sigma(k, d)$ circuit C' such that $C \equiv 0$ iff $C' \equiv 0$. The circuit C' is called the corresponding $\Sigma\Pi\Sigma(k, d)$ circuit of C.

Let N_1, \dots, N_k be the multiplication gates of \mathcal{C} . We define

$$gcd(\mathcal{C}) = gcd(N_1, \cdots, N_k)$$

Definition 4 (simple circuits). A $\Sigma\Pi\Sigma$ circuit C is called simple if gcd(C) = 1.

For $\emptyset \neq T \subseteq [k]$ we define \mathcal{C}_T as follows

$$C_T(x) = \sum_{i \in T} c_i \prod_{j=1}^{d_i} L_{ij}(x) = \sum_{i \in T} c_i N_i(x)$$

Definition 5 (minimal circuits). Let $C \equiv 0$ be a $\Sigma \Pi \Sigma$ circuit. We say that C is minimal if for every nonempty subset $T \subset [k]$, apart from [k] itself, we have $C_T \not\equiv 0$.

Lemma 2. Let C be a $\Sigma\Pi\Sigma$ circuit, and let C' be the corresponding $\Sigma\Pi\Sigma(k, d)$ circuit. Then we have the following:

- $rank(C) \leq rank(C') \leq rank(C) + 1$.
- C is simple iff C' is simple.
- C is minimal iff C' is minimal.

By the above lemma we can, WLOG, work with $\Sigma\Pi\Sigma(k,d)$ circuits. Let $\pi\colon \mathbb{F}^n\to \mathbb{F}^n$ be an linear transformation. Let

$$\pi(C)(x) = \sum_{i=1}^{k} c_i \prod_{j=1}^{d} \pi(L_{ij})(x)$$

We then have the following lemma.

Lemma 3. Let π be a linear invertible transformation. Then,

- $\mathcal{C} \equiv \theta \text{ iff } \pi(\mathcal{C}) \equiv 0$
- C is simple iff $\pi(C)$ is simple
- C is minimal iff $\pi(C)$ is minimal
- $rank(\mathcal{C}) = rank(\pi(\mathcal{C}))$

3 $\Sigma\Pi\Sigma$ circuits and LDCs

In this section we will show the relation between LDCs and depth-3 circuits. By the previous section we can, WLOG, work in $\Sigma\Pi\Sigma(k,d)$ circuits instead of general circuits.

Theorem 2. Let $k \geq 3, d \geq 2$, and let $C \equiv 0$ be a simple and minimal $\Sigma\Pi\Sigma(k,c)$ circuit on n inputs, over a field \mathbb{F} . Then, there exists a linear $(2,\frac{1}{12},\frac{1}{4})-LDC,E:\mathbb{F}^{n_1}\to\mathbb{F}^{n_2}$, with

$$\frac{rank(\mathcal{C})}{P(k)loq(d)^{k-3}} \leq n_1, \ and \ n_2 \leq kd \ where \ P(k) = 2^{O(k^2)}.$$

4 Structural theorem for zero depth-3 circuits

In this section we will use Theorem 2 to prove a structural theorem for zero depth-3 circuits.

Theorem 3. Let $C \equiv 0$, be a $\Sigma \Pi \Sigma(k, d)$ circuit. Then, there exists a partition of $[k]: T_1, T_2, \cdots, T_s \subset [k]$ with the following properties:

- $C = \sum_{i=1}^{s} C_{T_i} = \sum_{i=1}^{s} gcd(C_{T_i}) \cdot sim(C_{T_i}).$
- For all $i \in [s]$, $sim(\mathcal{C}_{T_s}) \equiv 0$ and is simple and minimal.
- For all $i \in [s]$, $rank(sim(\mathcal{C}_{T_i}) \leq 2^{O(k^2)}log(d)^{k-2}$.

In other words, the theorem says that every zero $\Sigma\Pi\Sigma$ circuit can be broken down into zero subcircuits of low rank (ignoring the g.c.d.). This fact will be used in the next section, in which we present PIT algorithms for $\Sigma\Pi\Sigma$ circuits.

Theorem 3 is a consequence of the following lemma.

Lemma 4. Let $k \geq 3, d \geq 2$, and let $C \equiv 0$ be a simple and minimal $\Sigma \Pi \Sigma(k, d)$ circuit, Then

$$rank(\mathcal{C}) \le 2^{O(k^2)} log(d)^{k-2}$$
.

5 PIT Algorithms

Lemma 5. Let C be a $\Sigma\Pi\Sigma(k,d)$ circuit with rank(C) = r. Then, there exists a polynomial time algorithm, transforming C into a $\Sigma\Pi\Sigma(k,d)$ circuit C' such that

- $\mathcal{C} \equiv 0 \Leftrightarrow \mathcal{C}' \equiv 0$,
- C' contains only r variables.

Lemma 6. Let C be a $\Sigma\Pi\Sigma(k,d)$ circuit and let r=rank(C), s=size(C). Then we can check if $C\equiv 0$

- 1. deterministically in time $poly(s)(r+d)^r$
- 2. probabilistically in time $poly(s+\frac{1}{\epsilon})$ using $r \cdot (log(d) + log(\frac{1}{\epsilon}))$ random bits, with error probability ϵ .

Theorem 4. Let C be a $\Sigma\Pi\Sigma(k,d)$ circuit, s=size(C). Then, Algoritm 1 will check if $C\equiv 0$. Further, the algorithm will run in time $poly(s)\cdot exp\left(2^{O(k^2)}log(d)^{k-1}\right)$.

Theorem 5. Let C be a $\Sigma\Pi\Sigma(k,d)$ circuit, s=size(C). Then, Algorith 2 will check if $C\equiv 0$. Further, the algorithm will run in time $poly(s+\frac{2^k}{\epsilon})$, will use $2^{O(k^2)}log(d)^{k-1}log(\frac{1}{\epsilon})$ random bits and will make an error with probability less than ϵ .

Algorithm 1: Deterministic Algorithm

```
Data: A \Sigma\Pi\Sigma circuit \mathcal{C}.

for every\ T\subset [k] do

Compute r_T=rank(sim(\mathcal{C}_T))

if r_T\leq 2^{O(k^2)}log(d)^{k-2} then

Check if sim(\mathcal{C}_T)\equiv 0 using part 1 of Lemma 6

end

end

if There\ exists\ a\ partition\ of\ [k], such that for every set T\subset [k] in the partition sim(\mathcal{C}_T)\equiv 0, then

accept

else

| reject

end
```

Algorithm 2: Probabilistic Algorithm

```
Data: A \Sigma\Pi\Sigma circuit \mathcal{C}.

for every T\subset [k] do

Compute r_T=rank(sim(\mathcal{C}_T))

if r_T\leq 2^{O(k^2)}log(d)^{k-2} then

Check if sim(\mathcal{C}_T)\equiv 0 using part 2 of Lemma 6

end

end

if There exists a partition of [k], such that for every set T\subset [k] in the partition sim(\mathcal{C}_T)\equiv 0, then

accept

else

reject

end
```