University of Asia Pacific Department of Basic Sciences & Humanities Mid Examination, Fall-2017 Program: B. Sc. Engineering (Computer Science) 2nd Year /1st Semester

Course Title: Probability & Statistics

Course Code: MTH 203

Credit:3.00 Full Marks: 60

Time: 1.00 Hour

There are Four questions. Answer any Three. All questions are of equal values, indicated in the right margin.

- 1. (a) Define Probability. Two unbiased dices are thrown simultaneously. Find the 12 probability that the sum of the faces is divisible by 3.
 - (b) Students A and B can individually solve 75% and 50% problems respectively of a 8 book. What is the probability that either A or B can solve any randomly selected problem of that book?
- 2. State and prove Bayes' Theorem.

10

- (b) In a class of 60 students, 15 are girls. Office record indicates that 80% of the girl students and 75% of the boy students got GPA 5. One student is randomly chosen and found to have GPA 5. Find the probability that the chosen student is a girl.
- 3. (a) Suppose the current measurements in a strip of wire are assumed to follow a normal distribution with a mean of 10 milliamperes and a variance of 4 (milliamperes)². What is the probability that a measurement will exceed 13 milliamperes? What is the probability that a current measurement is between 9 and 11 milliamperes?
 - (b) Ten percent of the tools produced in a certain manufacturing process turn out to be defective. Find the probability that in a sample of 10 tools chosen at random exactly 2 will be defective by using (a) the binomial distribution and (b) the Poisson approximation to the binomial distribution.
- 4. (a) Find the marginal densities of X and Y from the following density function:

10

$$f(x,y) = \begin{cases} (6-x-y)/8, & 0 < x < 2, 2 < y < 4 \\ 0, & \text{otherwise} \end{cases}$$

Also compute P(X+Y<3).

(b) Given the following joint distributions of the discrete random variables X and Y:

X				
Y	0	1	2	
0	3/28	9/28	3/28	
1	6/28	6/28	0	
2	1/28	0	0	

Find f(X|1) and P(X=0|Y=1).

10

University of Asia Pacific Department of Computer Science & Engineering Mid-Semester Examination, Fall-2017 Program: B. Sc. Engineering (2nd Year / 1st Semester)

Course Title: Electrical & Electronic Engineering II Course Code: EEE 221 Credit: 4.00

Time: 1.00 Hour

[There are Four Questions. Answer any Three. Figures in the right margin indicate marks.]

V .	SAT OF	Briefly explain the open circuit and load characteristics of a DC Generator. A shunt generator delivers a load current of 50A at 500 V and has armature and shunt filed resistance of 0.05 Ω and 250 Ω respectively. Calculate the generated voltage and the armature current.	[10] [10]
2.	(a)	What are the losses involved in a DC machine? How can these losses be minimized?	[10]
	(b)	What is back e.m.f.? Is there any relation between back e.m.f. and armature current? Why is a starter circuit required for a DC Motor?	
3/	(a)	Define transformer. Why is laminated core used in a transformer? What are the major fields of using transformer?	[10]
	(b)	What do you mean by the transformation ratio? What is the relation between voltage ratio and transformation ratio in a transformer?	[10]
		Calculate the voltage output of the secondary winding of a transformer if the primary voltage is 35 volts, the secondary winding has 4500 turns, and the primary winding has 355 turns.	
4	(a)	Classify stepper motor. Explain different types of stepping mode in brief.	[10]
	(4)	Note down the advantages of stepper motor. Discuss in brief how a unipolar stepper motor can be controlled.	[10]

University of Asia Pacific

Department of Basic Sciences & Humanities Mid Semester Examination, Fall-2017 Program: B.Sc. Engineering (Computer Science & Engineering) 2nd Year/1st Semester

Cou	rse Ti	tle: Math III: Multivariable Calculus	Course Code: MTH 201	Course credit: 3.00	U
Time	e: 1 h	r		Full Marks: 60	0
Ansv are o	wer a	ny three of the following quest al value. Figures in the right m	tions. Your handwriting should be eargin indicate marks.	e legible. All questions	
1.	(a)	Find parametric equations of t $x = \cos t$, $y = \sin t$, $z = t$ at the	the tangent line to the circular helepoint where $t = \pi$.	ix	10
	(b)	Find the arc length of the grap	sh of $r(t) = e^{t}i + e^{-t}j + \sqrt{2}$	$t \mathbf{k}$, $0 \le t \le 1$.	10
2.	(a)	A particle moves along a cur $\mathbf{r} = (4\cos \pi t) \mathbf{i} + (4\sin \pi t) \mathbf{j} + \mathbf{j}$ of the particle during the time	rve in 3-space so that its position $t \mathbf{k}$. Find the distance traveled a interval $0 \le t \le 5$.	n vector at time <i>t</i> is and the displacement	10
	(b)	Find the curvature of the ellip endpoints of the major and mi	se $r(t) = (2cost)i + (3sint)j$, inor axes.	$0 \le t \le 2\pi$ at the	10
3.	(a)	Show that the function $z = \ln z$	$\ln(x^2 + y^2) + 2\tan^{-1}(y/x)$ satisfi	es Laplace's	12
		equation $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$.			
	(b)	Evaluate $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$	along the lines (i) $x = 0$, and (ii)	y = -x. Does the	8
		limit exist?			
4.	(a)	Find the unit tangent vector T $r(t) = (a \cos t) i + (a \sin t)$	$f(t)$ and the unit normal vector $\mathbf{j} + (ct)\mathbf{k}$ where $a > 0$.	N(t) of the helix	10
	(b)	Locate all relative extrema and	d saddle points of $f(x, y) = 4xy -$	$x^4 - y^4.$	10

Department of Computer Science & Engineering University of Asia Pacific (UAP)

Mid Semester Examination 2nd Year 1st Semester Fall 2017 Course Code: CSE205 Course Title: Data Structure Credits: 3 Full Marks: 60 **Duration: 1 Hour** Instructions: There are Four (4) Questions. Answer any Three (3). All questions are of equal value. Part marks are shown in the margins. Non-programmable calculators are allowed. 1. a) Define 'data structure'. What are the main operations in the data structure? 10 b) Suppose you have a large sorted data set in an array. Write an efficient algorithm to find a location of a particular data items from it and explain why you think it as an efficient technique. c) What are the issues you should consider to use a particular data structure for your data? What are the advantages of linked lists over arrays? b) Describe briefly the following data structures with necessary figures: i. Circular Linked List. ii. Doubly Linked List. What is Application Memory? Describe different types of Application Memory. 2+3+5 Describe the differences of the following code segments in terms of application memory usage. struct Node* GetNewNode(int x) { struct Node* GetNewNode(int x) { struct Node* newNode = (struct Node*) struct Node* newNode; malloc (sizeof (struct Node)); newNode.data = x; newNode->data = x; newNode.prev = NULL; newNode->prev = NULL; newNode.next=NULL; return &newNode; newNode->next=NULL; return newNode; 3. Write the algorithm/Code of POP and PUSH operations of a stack using Linked List. 10 Evaluate the following Postfix expression using the Algorithm: 10 36 7 4 - / 2 1 5 + * +

4. a) What are the differences between Queue and Deque. by Consider the following circular QUEUE of size N=7 where Front = 2 and Rear = 5 10 London Berlin Rome Paris

Describe the QUEUE, including the value of Front and Rear, as the following operations take place:

- a) ATHENS is added, b) Two cities are deleted c) MADRID and NEWYORK are added
- d) Three cities are deleted.
- Briefly describe the implementation of a priority queue using two 2D arrays with example.

5

University of Asia Pacific

Department of Computer Science & Engineering

Mid-Semester Examination Fall-2017

Program: B. Sc Engineering (2nd Year/ 1st Semester)

Course Title: Object Oriented Programming 1:Java Course No. CSE 203 Credit: 3.00 Full Mark: 60

There are Four Questions. Answer any Three. All questions are of equal value/Figures in the right margin indicate marks.

ma	igin	mulcate marks.	
1.		 Define A class called circle. It contains: a) An instance variable: radius (double). b) One constructor -which takes a double type parameter and initialize the variable radius. c) One public method: getArea(), which returns the area of the object (A=πr²). II. Define A class called cylinder which extends class circle. It contains: d) An instance variable; height (double). e) One constructor -which takes two double type parameters and initialize the variables radius and height. (You can use super) f) One public method: getVolume(), which returns the volume of the object (A=πr²h). (You can use the method getArea() to get πr²) 	20
2.	2	How does a simple java program run?	5
	J/	What are the differences between method overloading and method overriding? Explain with appropriate example.	5
	c/	Show the execution steps of the following statement using operator precedence. Let, P=2, Q=3, 1=7, S=2, T=5 [Assume all integers] P = P Q+R^S&T*P-6	10
3	S.	Write down short notes on following topics: W. Finalize method W. Garbage Collector WI. Dynamic Initialization IV JVM	16
	b.	Write down the uses of 'Super' with appropriate examples.	4
4.	2	Write down the three uses of the keyword 'final' with appropriate examples.	6
	b.	What are the differences between an Abstract class and an Interface?	4

Find out the error of the following code segment. If there is any error, correct them.

Code Segment:

```
class A{
    private int j;
    final int a=100;
    byte b=40;
    short c;
    A()
        j=i+j;
        b=b+2
    class B{
        int i;
        int A[10];
        B()
         {
             i=i+j;
            c=i+4;
            a++;
```

}

d. What is narrow conversion? Give an example

4