Synchronization of Cellular Systems

Lecturer: Dr. Rui Wang

Reference signal

Downlink PHY in LTE

- Physical channels: a set of Resource Elements carrying information originating from higher layers
 - Physical Downlink Shared Channel, PDSCH
 - Physical Broadcast Channel, PBCH
 - Physical Multicast Channel, PMCH
 - Physical Control Format Indicator Channel, PCFICH
 - Physical Downlink Control Channel, PDCCH
 - Physical Hybrid ARQ Indicator Channel, PHICH
- Physical signals: a set of Resource Elements NOT carrying information originating from higher layers
 - Reference signal: channel estimation

Initial Access

- When one mobile device is turned on, it knows the potential frequencies where there might be cellular service.
- But it does not know the bandwidth of the service, sampling frequency, the timing of frames ...

Channel bandwidth [MHz]	1.4	3	5	10	15	20
Number of resource blocks (N_{RB})	6	15	25	50	75	100
Number of occupied subcarriers	72	180	300	600	900	1200
IDFT(Tx)/DFT(Rx) size	128	256	512	1024	1536	2048
Sample rate [MHz]	1.92	3.84	7.68	15.36	23.04	30.72
Samples per slot	960	1920	3840	7680	11520	15360

Initial Access

- When one mobile device is turned on, it knows the potential frequencies where there might be cellular service.
- But it does not know the bandwidth of the service, sampling frequency, the timing of frames ...
- In WiFi, bandwidth, sampling frequency and FFT size are all fixed; so we just need to detection the arrival timing of PPDU, everything follows.

Initial Access

- Initial access procedure for LTE
 - Synchronization: find the frames via PSS (Primary synchronization signal)
 - Cell search: tell the BSs via PSS+SSS (Secondary synchronization signal)
 - System information (e.g., sampling frequency and FFT size) receiving via PBCH and etc.
 - Random access

PSS & SSS Location

- Using non-coherent detection, estimate 5msec timing and physical-layer identity
- Channel estimation information for SSS
- SSS
 - Physical-layer identity (Cell ID) is obtained
 - Mapped to one of 168 cell ID groups (168 ID groups for 504 Cell IDs)

Cell Identity (TS36.211 6.11)

"There are 504 unique physical-layer cell identities. The physical-layer cell identities are grouped into 168 unique physical-layer cell-identity groups, each group containing three unique identities."

"A physical-layer cell identity $N_{\text{ID}}^{\text{cell}} = 3N_{\text{ID}}^{(1)} + N_{\text{ID}}^{(2)}$ is thus uniquely defined by a number $N_{\text{ID}}^{(1)}$ in the range of 0 to 167, representing the physical-layer cell-identity group, and a number $N_{\text{ID}}^{(2)}$ in the range of 0 to 2, representing the physical-layer identity within the physical-layer cell-identity group."

PSS (TS36.211 6.11.1)

- PSS is selected according to $N_{\rm ID}^{(2)}$
- PSS with length 62 is a Zadoff Chu sequence, which is generated as follows

$$d_{u}(n) = \begin{cases} e^{-j\frac{\pi u n(n+1)}{63}} & n = 0,1,...,30\\ e^{-j\frac{\pi u(n+1)(n+2)}{63}} & n = 31,32,...,61 \end{cases}$$

•	$N_{ m ID}^{(2)}$ $arphi$	Root index u -
•	0.₽	25₽
•	1₽	29₽
•	2₽	34₽

- PSS sequences are orthogonal with respect to different u.
- PSS has small cross correlation with shifting

Assume PSS with u=34 is transmitted

- When power on, search PSS on all possible carrier frequency with sampling frequency 1.92MHz.
- Structure of CP can be used to find the timing of frames

Channel bandwidth [MHz]	1.4	3	5	10	15	20
Number of resource blocks (N_{RB})	6	15	25	50	75	100
Number of occupied subcarriers	72	180	300	600	900	1200
IDFT(Tx)/DFT(Rx) size	128	256	512	1024	1536	2048
Sample rate [MHz]	1.92	3.84	7.68	15.36	23.04	30.72
Samples per slot	960	1920	3840	7680	11520	15360

With sample frequency = 1.92MHz

$$x_n^{128} = \sum_{k=-63}^{64} a_k e^{\frac{j2\pi kn}{128}} = \sum_{k\neq 0, k=-31}^{31} a_k e^{\frac{j2\pi kn}{128}} + \sum_{\text{other } k} a_k e^{\frac{j2\pi kn}{128}}$$

Subcarriers for PSS

• With sample frequency = 3.84MHz

$$x_n^{256} = \sum_{k=-127}^{128} a_k e^{\frac{j2\pi kn}{256}} = \sum_{k\neq 0, k=-31}^{31} a_k e^{\frac{j2\pi kn}{256}} + \sum_{\text{other } k} a_k e^{\frac{j2\pi kn}{256}}$$

Eliminate by LPF

• 1.92MHz

$$x_n^{128} = \sum_{k=-63}^{64} a_k e^{\frac{j2\pi kn}{128}} = \sum_{k \neq 0, k=-31}^{31} a_k e^{\frac{j2\pi kn}{128}}$$

 x_0^{128} x_1^{128} ... x_{127}^{128}

• 3.84MHz

$$x_0^{256}$$
 x_1^{256} x_2^{256} x_3^{256} ... x_{254}^{256} x_{255}^{256}

$$x_n^{256} = \sum_{k=-127}^{128} a_k e^{\frac{j2\pi kn}{256}} = \sum_{k\neq 0, k=-31}^{31} a_k e^{\frac{j2\pi kn}{256}}$$

• 1.92MHz

• 3.84MHz

• 1.92MHz

If we sample both with 1.92MHz, we have the same resulting sequences, which is the 128FFT of PSS

• 3.84MHz

- No matter what sampling frequency is used
- If we get the OFDM symbol with PSS
- After LPF, if we sample with 1.92MHz, we always get the 128FFT of PSS

- When power on, search PSS on all possible carrier frequency.
- Three possible PSSs should be searched simultaneously using cross-correlation.
- For FDD, PSS locates in the last OFDM symbols of slot #0, 10.
- When a PSS is found, the user knows $N_{ID}^{(2)}$ and timing of slot #0 or 10.

Reading & Homework (14 April)

3GPP TS 36.211

• Related part in Section 4, 5.1, 5.2, 6.1, 6.2, 6.6, 6.11

3GPP TS 38.211

• Section 4

Homework: Please show the PSS detection error probability versus SNR via Mento Carlo simulations

Recap: What we can do with PSS?

- OFDM-Symbol-level synchronization
- User detects the timing of the 0th or 5th subframe
- $N_{\text{ID}}^{(2)}$ can be detected
- Remark:
 - Although the user does not know the actual bandwidth, it can detect the symbols of the lowest 128 subcarriers with 1.92MHz sampling frequency

Recap: PSS & SSS Location

- Using non-coherent detection, estimate 5msec timing and physical-layer identity
- Channel estimation information for SSS
- SSS
 - Physical-layer identity (Cell ID) is obtained
 - Mapped to one of 168 cell ID groups (168 ID groups for 504 Cell IDs)

PSS Helps SSS Detection

• Use PSS, we can estimate the CSI of subcarriers from -31 to 31

Since SSS symbol is next to PSS symbol, SSS can be estimated

SSS (TS36.211 6.11.2)

- SSS is generated according to subframe index and cell ID.
- Thus, by the detection of SSS, the above information can be obtained.

- When a PSS is found, the user continues to detect the SSS in one OFDM symbol before.
- Given $N_{ID}^{(2)}$, there are 168 \times 2 different possibilities of SSS in slot #0 and #10.
- The user could find which one is used, then $N_{ID}^{\left(1\right)}$ and frame timing
- Physical Cell Identities (PCI) = $3 \times N_{ID}^{(1)} + N_{ID}^{(2)}$
- Conclusion: After PSS and SSS detection, user knows the Cell ID and timing of frame

Discussion

- What does the user obtain after PSS and SSS?
- How many BSs around, what their Cell IDs are, what their signal strengths are
- Synchronize with the strongest cell
- What's the next step of receiving?

Physical Broadcast Channel (PBCH)

- Master information block (MIB) from upper layer is transmitted in PBCH
- PBCH is transmitted on every 10ms, the 0th subframe of each frame, information in PBCH is updated every 40ms (4 frames)
- 4 OFDM symbols after PSS, 72 subcarriers (we are always able to detect the symbols on the lowest 128 subcarriers without actual bandwidth)
- 14bits MIB information, code rate = 1/3, scrambled with Cell ID, QPSK,

MIB

Master information block (MIB) of system information is transmitted on PBCH

Up to now

- PSS & SSS: Synchronize with the desired cell
- PBCH: Know the bandwidth and FFT size
- What's the next? Detect the frame head --- PDCCH
- The issue of PDCCH detection: # of OFDM symbols is variable

"The physical control format indicator channel carries information about the number of OFDM symbols used for transmission of PDCCHs in a subframe."

--- TS36.211 v13 6.7

Control Format Indicator (CFI)

- CFI is an indicator telling how many OFDM symbols are used for carrying control channel (e.g, PDCCH and PHICH) at each subframe. (TS36.212 v13 5.3.4)
- This CFI is carried by a specific physical channel called **PCFICH**. (TS36.211 v13 6.7)
- PCFICH consists of 16REs at fixed locations of the first symbol in each subframe, carrying only CFI without any other information. (TS36.211 v13 6.7.4)
- QPSK

Table 5.3.4-1: CFI codewords

CFI	CFI codeword $< b_0, b_1, , b_{31} >$
1	<0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1>
2	<1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0>
3	<1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1>
4 (Reserved)	<0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

Control Channel Element (CCE)

- "The physical downlink control channel carries scheduling assignments and other control information. A physical control channel is transmitted on an aggregation of one or several consecutive control channel elements (CCEs), where a control channel element corresponds to 9 resource element groups." TS36.211 v13 6.8.1
- The RE in the control head is organized by control channel elements.
 - 1 CCE = 9 continuous REG (Resource element Group)
 - 1 REG = 4 RE for PDCCH (Resource Element)
- Since QPSK is used for CCE, one CCE can carry 72 bits
- Larger bandwidth and larger CFI lead to more CCE

Downlink Control Indicator (TS36.212 v13 5.3.3)

- The information carried by each PDCCH is call Downlink Control Indicator (DCI)
- DCI maintains at least the following information
 - which resource blocks carry your data
 - what kind of modulation and coding scheme is used for the data transmission
- One DCI is carried by one or multiple CCE

DCI Format	Usage	Major Contents
Format 0	UL Grant. Resource Allocation for UL Data	RB Assignment,TPC,PUSCH Hopping Flag
Format 1	DL Assignment for SISO	RB Assignment,TPC, HARQ
Format 1A	DL Assignment for SISO (compact)	RB Assignment,TPC, HARQ
Format 1B	DL Assignment for MIMO with Rank 1	RB Assignment,TPC, HARQ,TPMI, PMI
Format 1C	DL Assignment for SISO (minimum size)	RB Assignment
Format 1D	DL Assignment for Multi User MIMO	RB Assignment,TPC, HARQ,TPMI,DL Power Offset
Format 2	DL Assignment for Closed Loop MIMO	RB Assignment, TPC, HARQ, Precoding Information
Format 2A	DL Assignment for Open Loop MIMO	RB Assignment,TPC, HARQ, Precoding Information
Format 2B	DL Assignment for TM8 (Dual Layer Beamforming)	RB Assignment, TPC, HARQ, Precoding Information
Format 2C	DL Assignment for TM9	RB Assignment,TPC, HARQ, Precoding Information
Format 3	TPC Commands for PUCCH and PUSCH with 2 bit power adjustment	Power Control Only
Format 3A	TPC Commands for PUCCH and PUSCH with 1 bit power adjustment	Power Control Only
Format 4	UL Assignment for UL MIMO (up to 4 layers)	RB Assignment,TPC, HARQ, Precoding Information

PDSCH Resource Allocation

Resource Allocation		Purpose	DCI Format
	Type 0	Resource Block Group (RBG) based	1
		RBG based (MIMO : Closed Loop)	2
		RBG based (MIMO : Open Loop)	2A
	Type 1	Selected RBG Subset based	1
		Selected RBG Subset based (MIMO : Closed Loop)	2
DL Scheduling		Selected RBG Subset based (MIMO Open Loop)	2A
	Type 2	VRB based Compact Scheduling + Random Access	1A
		VRB based Compact Scheduling with MIMO	1B
		VRB based ∀ery Compact Scheduling	1C
		VRB based Compact Scheduling with MIMO & Power Offset	1D
UL Scheduling		VRB based UL Scheduling	0

(Reference : pp. 22-25 3GPP TS 36.213 V8.8.0 (2009-09))

DL Resource Allocation: Type 0

DCI Format 1

Bits	Field
1	Resource Allocation Header: <u>Resource Allocation Type 0</u> or 1
$\left[rac{N_{RB}^{DL}}{P} ight]$	Resource Assignment
5	MCS
3 or 4	HARQ Process : 3 for FDD, 4 for TDD
1	New Data Indicator
2	Redundancy Version
2	UL Power Control (PUCCH)
2	Downlink Assignment Index : TDD

38

39

DL Resource Allocation: Type 1

Homework (21 April)

Please explain DCI formats 2 and 4.

What's the next issue?

How to find the exact REs carrying one PDCCH? --- Blind detection

How to determine the receiver of one PDCCH? --- CRC checking bits

Whose PDCCH?

✓ With RNTI (Radio Network Temporary Identifier): User Identification

DCI Encoding (TS36.212 v13 5.3.3)

- Denote the bits of the PDCCH payload by $a_0,a_1,a_2,a_3,...,a_{A-1}$ and the parity bits by $p_0,p_1,p_2,p_3,...,p_{L-1}$ resulting $b_0,b_1,b_2,b_3,\ldots,b_{B-1}$
- Denote the user's RNTI as $x_{rnti,0}, x_{rnti,1}, ..., x_{rnti,15}$ form the sequence of bits

$$c_k = b_k$$
 for $k = 0, 1, 2, ..., A-1$ $c_k = (b_k + x_{rnti,k-A}) \mod 2$ for $k = A, A+1, A+2, ..., A+15$.

Tail biting convolutional coding with rate 1/3

CCE Aggregation

- DCI is transmitted by PDCCH (CCEs)
- If the DCI size is larger than 72bits, 2,4,8 CCEs can be aggregated
- For example, 50 bits after coding=>1CCE; 100 bits after coding => 2 CCEs
- CCE Aggregation levels: 1, 2, 4, 8

- How can one UE find the CCEs (DCI) for him?
- For example, if there are 100 CCEs in one subframe, UE has to try 100+99+97+93 possibilities, complexity is very high
- LTE system limits the search possibilities with certain CCE allocation pattern

- How can one UE find the CCEs (DCI) for him?
- For example, if there are 100 CCEs in one subframe, UE has to try 100+99+97+93 possibilities, complexity is very high
- LTE system limits the search possibilities with certain CCE allocation pattern

If one PDCCH occupies one CCE, there are 100 possibilities

- How can one UE find the CCEs (DCI) for him?
- For example, if there are 100 CCEs in one subframe, UE has to try 100+99+97+93 possibilities, complexity is very high
- LTE system limits the search possibilities with certain CCE allocation pattern

- How can one UE find the CCEs (DCI) for him?
- For example, if there are 100 CCEs in one subframe, UE has to try 100+99+97+93 possibilities, complexity is very high
- LTE system limits the search possibilities with certain CCE allocation pattern

Search Space

- The CCEs in control head of one subframe can be divided into: common and UE-specific search spaces
- Common search space
 - CCEs carry the DCIs that are common for all UEs, as well as single UEs.
 - Maximum number of CCEs present in common search space is 16.
 - Each UE should check the common search space
- UE-specific search space
 - CCEs for a particular UE only.
 - Different UEs have different search spaces

Common Search Space

- The position of Common search space CCE's is always fixed starting from the first CCE index.
- Aggregation levels of 4 and 8 are used in common search space
- Aggregation level = 4
 - CCE index 0 will contain consecutive CCE's from 0 to 3
 - CCE index 4 will contain consecutive CCE's from 4 to 7
 - CCE index 8 will contain consecutive CCE's from 8 11
 - CCE index 12 will contain consecutive CCE's from 12 -15
- Aggregation level = 8
 - CCE index 0 will contain consecutive CCE's from 0 to 7
 - CCE index 8 will contain consecutive CCE's from 8 to 15

CCE 0 CCE1 CCE2 CCE3 CCE4 CCE5 CCE6 CCE7 CCE8 CCE9 CCE10 CCE11 CCE12 CCE13 CCE14 CCE15 CCE16 ... CCE99

UE Specific Search Space

- The CCEs for one particular UE can be search at $L \{ (Y_k + m') \mod \lfloor N_{CCE,k} / L \rfloor \}$
 - L is the aggregation level
 - N_{CCE,k} is the total number of CCEs in one subframe
 - Y_k depends on UE and subframe index
 - m' = 0, ..., M'-1, and M' is given by the following table

	Number of		
Туре	Aggregation level	Size [in CCEs]	PDCCH candidates M'
	1	6	6
LIE appoifie	2	12	6
UE-specific	4	8	2
	8	16	2
Common	4	16	4
Common	8	16	2

Example

- 100 CCEs
- Yk = 53948
- L = 2
- m' = 0, 1, 2, 3, 4, 5
- CCE candidates:
 - 2 {(53948 + 0) mod (100/2)} = 96 => Check CCEs #96 & #97
 - 2 {(53948 + 1) mod (100/2)} = 98 => Check CCEs #98 & #99
 - 2 {(53948 + 1) mod (100/2)} = 0 => Check CCEs #0 & #1
 - 2 {(53948 + 1) mod (100/2)} = 2 => Check CCEs #2 & #3
 - 2 {(53948 + 1) mod (100/2)} = 4 => Check CCEs #4 & #5

CCE 0 CCE1 CCE2 CCE3 CCE4 CCE5 CCE6 CCE7 CCE8 CCE9 CCE10 CCE11 CCE12 CCE13 CCE14 CCE15 CCE16 ...

CCE99

Issues of NR

- One sector is further divided into a number of beams
- SS (Synchronization Signals) of one beam may not be received by on user in other beam
- User should determine the service beam in the synchronization procedure

SS Block (TS38.211 v16 7.4.3)

- In NR, SS Block (SSB) stands for Synchronization Signal Block, it refers to the transmission opportunities for PSS/SSS/PBCH
- In LTE, we didn't use the term 'SS Block', although it already there

SS Block (TS38.211 v16 7.4.3)

- In NR, SS Block (SSB) stands for Synchronization Signal Block, it refers to the transmission opportunities for PSS/SSS/PBCH
- In LTE, we didn't use the term 'SS Block', although it already there

SS Block (TS38.211 v16 7.4.3)

- In NR, SS Block (SSB) stands for Synchronization Signal Block, it refers to the transmission opportunities for PSS/SSS/PBCH
- In LTE, we didn't use the term 'SS Block', although it already there

• "In the time domain, an SS/PBCH block consists of 4 OFDM symbols, numbered in increasing order from 0 to 3 within the SS/PBCH block"

Table 7.4.3.1-1: Resources within an SS/PBCH block for PSS, SSS, PBCH, and DM-RS for PBCH.

Channel or signal	OFDM symbol number / relative to the start of an SS/PBCH block	Subcarrier number $\it k$ relative to the start of an SS/PBCH block
PSS	0	56, 57,, 182
SSS	2	56, 57,, 182
Set to 0	0	0, 1,, 55, 183, 184,, 239
	2	48, 49,, 55, 183, 184,, 191
РВСН	1, 3	0, 1,, 239
	2	0, 1,, 47, 192, 193,, 239
DM-RS for PBCH	1, 3	0+v,4+v,8+v,,236+v
	2	0+v,4+v,8+v,,44+v 192+v,196+v,,236+v

Beam Sweeping via SSB

- Multiple SSBs are being transmitted with a certain interval.
- Each SSB can be identified by a unique number called SSB index
- Each SSB is transmitted via a specific beam radiated in a certain direction
- Multiple UEs are located at various places around a gNB.
- UE measures the signal strength of each SSB it detected for a certain period (a period of one SSB Set).
- From the measurement result, UE can identifies the SSB index with the strongest signal strength. This SSB with the strongest signal strength is the best beam for the UE.

Beam Management

- Initial gNB Beam Acquisition
- SSB or CSI-RS

- gNB Beam Refinement
- E.g., CSI-RS

 UE Beam Refinement

Homework (28 April)

Please dig more details on the beam sweeping mechanism of NR.