```
In [1]: import pandas as pd
    pd.plotting.register_matplotlib_converters()
    import matplotlib.pyplot as plt
    %matplotlib inline
    import seaborn as sns
    import numpy as np
    print("Setup Complete")
```

Setup Complete

In [2]: #running my data

dt = pd.read_csv('insurance.csv')
dt

Out[2]:

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520
1333	50	male	30.970	3	no	northwest	10600.54830
1334	18	female	31.920	0	no	northeast	2205.98080
1335	18	female	36.850	0	no	southeast	1629.83350
1336	21	female	25.800	0	no	southwest	2007.94500
1337	61	female	29.070	0	yes	northwest	29141.36030

1338 rows × 7 columns

In [3]: #checking out my dataset

dt.head(5)

Out[3]:

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520

```
In [4]: dt.tail(5)
```

Out[4]:

```
bmi children smoker
                                               region
                                                          charges
      age
              sex
1333
       50
             male
                   30.97
                                3
                                        no
                                            northwest 10600.5483
1334
       18 female
                   31.92
                                0
                                             northeast
                                                        2205.9808
                                        no
1335
       18
           female
                   36.85
                                0
                                            southeast
                                                        1629.8335
                                        no
1336
           female
                   25.80
                                0
                                            southwest
                                                        2007.9450
                                        no
1337
       61 female 29.07
                                0
                                            northwest 29141.3603
                                       yes
```

In [5]: #getting a random sample of my data set dt.sample(n = 5)

Out[5]:

	age	sex	bmi	children	smoker	region	charges
971	34	female	23.56	0	no	northeast	4992.3764
297	47	male	25.41	1	yes	southeast	21978.6769
870	50	male	36.20	0	no	southwest	8457.8180
189	29	female	32.11	2	no	northwest	4922.9159
13	56	female	39.82	0	no	southeast	11090.7178

```
In [6]: dt.charges.unique()
```

Out[6]: array([16884.924 , 1725.5523, 4449.462 , ..., 1629.8335, 2007.945 , 29141.3603])

In [7]: # checking for missing values in my data set

dt.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1338 entries, 0 to 1337
Data columns (total 7 columns):

```
#
     Column
               Non-Null Count Dtype
 0
     age
               1338 non-null
                               int64
               1338 non-null
                               object
 1
     sex
               1338 non-null
                               float64
 2
     bmi
 3
     children 1338 non-null
                               int64
 4
                               object
     smoker
               1338 non-null
 5
     region
               1338 non-null
                               object
               1338 non-null
                               float64
 6
     charges
dtypes: float64(2), int64(2), object(3)
```

memory usage: 73.3+ KB

```
In [8]: dt.isna().sum()
Out[8]: age
                     0
         sex
         bmi
                     0
         children
                     0
         smoker
         region
                     0
         charges
         dtype: int64
 In [9]: #setting my data set columns to_list
         dt.columns.to_list()
Out[9]: ['age', 'sex', 'bmi', 'children', 'smoker', 'region', 'charges']
In [10]: dt.charges.mean()
Out[10]: 13270.422265141257
In [11]: dt.charges.median()
Out[11]: 9382.033
In [12]: dt.charges.mode()
Out[12]: 0
              1639.5631
         Name: charges, dtype: float64
In [15]: dt.charges.max()
Out[15]: 63770.42801
In [13]: dt.bmi.max()
Out[13]: 53.13
In [16]: dt.charges.min()
Out[16]: 1121.8739
In [14]: |dt.bmi.min()
Out[14]: 15.96
```

In [17]: #describing my data set
 dt.describe()

Out[17]:

	age	bmi	children	charges
count	1338.000000	1338.000000	1338.000000	1338.000000
mean	39.207025	30.663397	1.094918	13270.422265
std	14.049960	6.098187	1.205493	12110.011237
min	18.000000	15.960000	0.000000	1121.873900
25%	27.000000	26.296250	0.000000	4740.287150
50%	39.000000	30.400000	1.000000	9382.033000
75%	51.000000	34.693750	2.000000	16639.912515
max	64.000000	53.130000	5.000000	63770.428010

Question

- · check the correlation between bmi and age. i.e
 - does the increase in age cause the increase in bmi('body mass index')
- · check the relationship between charges and bmi. i.e
 - does the increase in bmi('body mass index') cause the increase in charges?
- check the relationship between region and bmi. i.e -does the region affect the charges to be paid

In [18]: #using the scatter plot to check the correlation between individual age and their ans = sns.regplot(x = 'age', y = 'bmi', data = dt)

• the above graph shows a non-correlation relationship between age and bmi as increase in bmi is not dependent on age.

Type *Markdown* and LaTeX: α^2

```
In [19]: cols = ['charges', 'bmi', 'sex']
    new_dt = dt[cols]
    new_dt
```

Out[19]:

	charges	bmi	sex
0	16884.92400	27.900	female
1	1725.55230	33.770	male
2	4449.46200	33.000	male
3	21984.47061	22.705	male
4	3866.85520	28.880	male
1333	10600.54830	30.970	male
1334	2205.98080	31.920	female
1335	1629.83350	36.850	female
1336	2007.94500	25.800	female
1337	29141.36030	29.070	female

1338 rows × 3 columns

In [20]: #using the scatter plot to check the correlation between individual bmi and their
ans = sns.regplot(x = 'charges', y = 'bmi', data = dt)

• the above graph shows a non-linear relationship between charges and bmi as increase in bmi causes a slight increase in charges.

In [21]: #using the histogram plot to check for correlation between
sns.distplot(dt.charges.dropna(axis=0))

C:\Users\user\anaconda3\lib\site-packages\seaborn\distributions.py:2619: Future Warning: `distplot` is a deprecated function and will be removed in a future ve rsion. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histogram s).

warnings.warn(msg, FutureWarning)

Out[21]: <AxesSubplot:xlabel='charges', ylabel='Density'>

- chart shows skewness to the right side

Text(2, 0, 'northwest'),
Text(3, 0, 'northeast')]

- the above chart shows that the location of an insurer affects the charges giving as
- · 'Northwest' has a smaller percent of insurer with lower charges with respect to their bmi. while
- 'Southeast' has a higher percentage of insurer with the highest charges with respect to their bmi.

Out[23]:

	age	sex	bmi	children	smoker	region	charges
1	18	male	33.77	1	no	southeast	1725.55230
2	28	male	33.00	3	no	southeast	4449.46200
6	46	female	33.44	1	no	southeast	8240.58960
12	23	male	34.40	0	no	southwest	1826.84300
13	56	female	39.82	0	no	southeast	11090.71780
1331	23	female	33.40	0	no	southwest	10795.93733
1332	52	female	44.70	3	no	southwest	11411.68500
1333	50	male	30.97	3	no	northwest	10600.54830
1334	18	female	31.92	0	no	northeast	2205.98080
1335	18	female	36.85	0	no	southeast	1629.83350

705 rows × 7 columns

In [24]: sns.displot(large_bmi.charges)

Out[24]: <seaborn.axisgrid.FacetGrid at 0x1f5c3cabbb0>

