TRAVAUX DIRIGES DE RESEAUX 1

SERIE Nº 1

Exercice 1

Soit trois stations A, B et C d'un même réseau local Ethernet 10base5 désirant transmettre des trames de tailles 4 *slots* chacune.

- A souhaite émettre une trame à l'instant T=0 (A1) et une seconde trame à l'instant T=10 (A2),
- B souhaite émettre une trame à l'instant T=0 (B1) et une seconde trame à T=16 (B2),
- C souhaite émettre une trame à T=0 (C).

Les tirages aléatoires de l'algorithme BEB (Binary Exponential Backoff) pour chaque station sont donnés dans le tableau ci-dessous.

	1 ^{er} tirage	2 ^{ème} tirage	3 ^{ème} tirage	4 ^{ème} tirage	5 ^{ème} tirage
Station A	0	2	1	1	2
Station B	1	2	1	2	4
Station C	0	1	4	4	2

1. Compléter le diagramme temporel ci-dessous. t=0

1		I	l	l	l	1	l	l	l	l	I	1	1
												l	1
												i	1

N.B: Un slot occupé par la transmission d'un message correctement émis par la station A est représenté par « A », un slot occupé par une collision est représenté par « X », un slot correspondant à une absence de transmission est représenté par « _ »

2. Déterminer dans quel ordre sont émises les trames sur le réseau ? Compléter le tableau B.

	1 ^{ère} trame	2 ^{ème} trame	3 ^{ème} trame	4 ^{ème} trame	5 ^{ème} trame
Ordre de transmission					
de trames					

3. Quel est le taux d'efficacité du protocole ? Reporter votre réponse dans le tableau C.

Exercice 2

On considère un réseau local où la retransmission en cas de collision est effectuée selon l'algorithme CSMA/CD. Ce réseau gère la transmission entre 4 stations A, B, C et D. Dans ce problème on utilise comme mesure de temps le « slot time » qui est le temps d'aller-retour. Les délais d'espacement inter-trames ainsi que les durées de détection de voie libre sont négligées. Le temps de détection de collision est égal à 1 slot.

A l'instant t = 0, la station A acquiert la voie et commence à transmettre un message. A l'instant t = 3 les stations B, C et D reçoivent une demande de transmission de message. A t = 0

7, A reçoit une deuxième demande de transmission de message. A t=18, A reçoit une troisième demande de transmission. Tous ces messages sont de taille fixe et la durée de leur transmission est égale à 5 slots. Dans l'exemple on considère que la fonction de tirage aléatoire rend successivement pour chaque station les valeurs données par le tableau suivant :

	A	В	С	D
1 ^{er} tirage	0	1	0	0
2 ^{ème} tirage	4	3	0	2
3 ^{ème} tirage	1	2	7	4
4 ^{ème} tirage	1	0	3	7

1. Compléter le diagramme suivant en indiquant pour chaque slot l'état de la v	oie.
--	------

t=0

	l	l	l	l	ı		l	I		I	I	I .	
							l	l		l	l		
				l			l	l		l	l		
							l	l		l	l		

2. Calculer le taux d'utilisation de la voie sur la période allant de t=0 à la fin de transmission du dernier message

Exercice 3

On veut concevoir un réseau local sur fibre optique, le cahier de charge spécifie :

- distance entre les deux stations les plus éloignées 200 km;
- nombre maximum de stations connectées 1000;
- vitesse de propagation sur le support 200 000 km/s ;
- débit binaire nominal 100 Mbit/s;
- implémentation du protocole CSMA/CD

Qu'en pensez-vous?

Exercice 4

Soit les trames suivantes capturées dans un réseau Ethernet/802.3. Les délimiteurs de début, préambules et FCS ont été supprimés par l'analyseur de réseau

Trame 1

01	80	C2	00	00	00	00	DO	95	17	F2	94	00	35	AA	AA
03	00	00	00	08	00	45	00	80	00	00	60	3E	76	5E	52
00	1E	80	00	00	DO	95	17	F2	80	80	14	03	00	14	00
02	$\cap \cap$	ΟF	$\cap \cap$												

Trame 2

01	80	C2	00	00	00	00	D0	95	17	F2	94	00	26	42	42
03	00	00	00	00	00	80	00	00	60	ЗE	76	5E	52	00	00
00	1E	80	00	00	DO	95	17	F2	80	80	14	03	00	14	00
02	00	ΟF	00	00	00	00	00	00	00	00	00	00			

Trame 3

08	00	20	OF	A4	7 D	00	00	0 C	06	09	Α6	08	00	45	00
00	28	2A	BF	00	00	3В	06	ЗА	0В	C0	2C	4 D	8A	C0	2C

```
4D 23 03 59 00 6F 0D EA 80 01 26 AE 58 01 50 10 10 00 74 6B 00 00 02 04 04 00 00 00
```

Trame 4

Pour chaque trame, répondre aux questions suivantes en justifiant vos réponses :

- 1. Analyser les différentes unités (PDU) encapsulées (se baser sur le document joint). Dire dans la mesure du possible, l'objectif de chaque trame.
- 2. Quel est le type de la trame, 802.3 ou Ethernet? Pourquoi?
- 3. Quelle est la suite de protocoles encapsulés dans cette trame ?
- 4. Existe-t-il des bits de bourrage? Combien?

Annexe:

Correspondance entre les n° de protocole (en décimal) et les noms des protocoles

icmp
 tcp
 udp

Type de trames Ethernet (en hexadécimal)

DSAP

0800 IP 0806 ARP AA SNAP

42 Spanning Tree Protocol

Correspondance entre les n° de ports (en décimal) et les noms de service

53 DNS 80 www
21 ftp 101 hostnames
25 smtp (mail) 23 telnet

Entête LLC

Entête	@DSAP	@SSAP	Contrôle	Données	Contrôle
MAC	8 bits	8 bits	8 ou 16 bits	>=0	MAC

Entête Ethernet/802.3

Adresse destinataire	Adresse émetteur	type de trame	données
----------------------	------------------	---------------	---------

Entête IP

version	IHL	service	total length						
ide	entifica	tion	flags fragmentation offset						
time to	live	protocol	neader checksum						
		32-bit so	urce ado	dress					
		32-bit destination address							
options	padding								

Entête TCP

16-bit source port number	16-bit destination port number
32-bit sequence number	
32-bit acknowledgment number	
header length and flags	16-bit windows size
16-bit TCP checksum	16-bit urgent pointer
options	

Les flags sont (dans l'ordre): URG, ACK, PSH, RST, SYN, FIN