Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Российский химико-технологический университет имени Д.И. Менделеева»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №3

Вариант 22

Выполнил студент группы КС-36: Золотухин А.А.

Ссылка на репозиторий: https://github.com/

CorgiPuppy/

num-methods-eq-math-phys-chem-labs

Принял: Лебедев Данила Александрович

Дата сдачи: 11.04.2025

Москва 2025

Оглавление

Эписание задачи]
Выполнение задачи	
Задание 1	
Задание 2	
Задание 3	
Задание 4	
Задание 5	4
Залание 6	

Описание задачи

Вариант	Уравнение	Интервалы переменных	Начальные и граничные условия
22	$\frac{\partial u}{\partial t} - 2\frac{\partial u}{\partial x} = x$	$x \in [0, 1]$ $t \in [0, 1]$	$u(t = 0, x) = 0$ $u(t, x = 0) = t^{2}$ $u(t, x = 1) = t^{2} + t$

Для заданного уравнения:

- 1. записать неявную разностную схему;
- 2. определить порядок аппроксимации разностной схемы;
- 3. доказать абсолютную устойчивость разностной схемы (с помощью метода гармоник);
- 4. вывести рекуррентное соотношение;
- 5. выбор граничного условия зависит от того, с какой конечной разностью вы будете работать (левой или правой). Выбор конечной разности зависит от устойчивости системы. Вы должны выбрать ту конечную разность, при которой схема будет устойчива;
- 6. составить алгоритм (блок-схему) расчёта;
- 7. построить программу на любом удобном языке программирования;
- 8. провести численный расчёт с использованием различных значений $\Delta t = 0.1, h = 0.1;$
- 9. сравнить результаты расчётов с истинными значениями функции *и* в соответствующих точках разностной сетки (*истинное решение уравнения будет выдано преподавателем после выполнения расчётов по разностной схеме*);
- 10. в случае существенного расхождения результатов расчётов по разностной схеме и истинных значений функции u в соответствующих точках разностной сетки выполнить расчёт с меньшими значениями Δt и/или h (выбор осуществить самостоятельно) с целью получения более точных результатов.

Выполнение задачи

Задание 1

Записать неявную разностную схему:

$$\frac{u_j^{n+1} - u_j^n}{\Delta t} - 2\frac{u_{j+1}^{n+1} - u_j^{n+1}}{h} = (j-1)h.$$
 (1)

В записанной разностной схеме (1) аппроксимация производной функции u(t, x) по координате рассматривается на n+1-м шаге по времени. Такая разностная схема называется **неявной**.

Задание 2

Определить порядок аппроксимации разностной схемы (1):

Задание 3

Доказать абсолютную устойчивость разностной схемы (1) (с помощью метода гармоник):

Для этого отбрасываю член $f(t^n, x_j)$, т.е. x в моём случае, наличие которого не оказывает влияния на устойчивость разностной схемы.

Представлю решение разностной схемы в виде гармоники:

$$u_j^n = \lambda^n e^{i\alpha j}. (2)$$

Подставляя (2) в разностную схему (1), получаю:

$$\frac{\lambda^{n+1}e^{i\alpha j}-\lambda^n e^{i\alpha j}}{\Delta t}-\frac{\lambda^{n+1}e^{i\alpha (j+1)}-\lambda^{n+1}e^{i\alpha j}}{h}=0.$$

Упрощаю полученное выражение, деля левую и правую его части на $\lambda^n e^{i\alpha j)}$, и выражаю величину, обратную λ :

$$\frac{\lambda - 1}{\Delta t} - 2\frac{\lambda e^{i\alpha} - \lambda}{h} = 0 \Rightarrow \frac{1}{\lambda} = 1 + 2\frac{\Delta t}{h} - 2\frac{\Delta t}{h}e^{i\alpha}.$$

Необходимое условие устойчивости разностных схем:

$$|\lambda| \le 1. \tag{3}$$

При этом необходимое условие устойчивости разностных схем (3) также преобразую к виду:

$$\left|\frac{1}{\lambda}\right| \ge 1. \tag{4}$$

Рис. 1: Графическая интерпретация условия устойчивости (3)

Неравенство (4) в применении к комплексным числам означает, что для устойчивости разностной схемы (1) требуется, чтобы величины, обратные собственным числам оператора перехода, были расположены вне или на границе круга радиусом 1, центр которого находится в начале координат комплексной плоскости (рис. 1).

Введу следующее обозначение:

$$r = 2\frac{\Delta t}{h} > 0 \Rightarrow \frac{1}{\lambda} = 1 + r - re^{i\alpha}.$$

Полученное выражение свидетельствует о том, что собственные числа оператора расположены на комплексной плоскости на окружности с центром в точке (1-r,0) и радиусом:

$$|re^{i\alpha}| = |r\cos\alpha + ir\sin\alpha| = \sqrt{r^2\cos^2\alpha + r^2\sin^2\alpha} = r.$$
 (5)

Данная окружность находится вне круга, соответствующего условию (4) при любом значение r (рис. 2). Таким образом, разностная схема (1) будет **абсолютно устойчива**.

Рис. 2: Исследование устойчивости разностной схемы (1)

Задание 4

Вывести рекуррентное соотношение:

Выражая u_j^{n+1} из разностной схемы (1), получаю **рекуррентное соотношение**

$$u_j^{n+1} = \frac{u_j^n + 2\frac{\Delta t}{h}u_{j+1}^{n+1} + \Delta t((j-1)h)}{1 + 2\frac{\Delta t}{h}},$$
(6)

Задание 5

Выбор граничного условия зависит от того, с какой конечной разностью вы будете работать (левой или правой). Выбор конечной разности зависит от устойчивости системы. Вы должны выбрать ту конечную разность, при которой схема будет устойчива:

Рекуррентное соотношение (6) позволяет последовательно рассчитать все значения функции u(t, x) на n+1-м шаге по времени $u_j^{n+1}, \ j=N-1,\dots,1,$ если известна величина $u_N^{n+1},$ которую можно определить из *правого граничного условия*:

$$u_N^{n+1} = ((n+1)\Delta t)^2 + (n+1)\Delta t.$$

Задание 6

Составить алгоритм (блок-схему) расчёта:

