МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ «ЛЬВІВСЬКА ПОЛІТЕХНІКА»

Інститут комп'ютерних технологій, автоматики та метрології кафедра "Електронних обчислювальних машин"

Звіт

3 лабораторної роботи №2

3 дисципліни: «Моделювання комп'ютерних систем»

На тему: «Структурний опис цифрового автомата Перевірка роботи автомата за допомогою стенда Elbert V2 – Spartan3A FPGA»

Варіант 15

Виконав: ст. гр. КІ-202

Сороківський Р.Т

Прийняв:

Козак Н.Б

ЛАБОРАТОРНА РОБОТА №2

Структурний опис цифрового автомата Перевірка роботи автомата за допомогою стенда Elbert V2 – Spartan3A FPGA

Мета роботи: На базі стенда реалізувати цифровий автомат світлових ефектів

Вхідні параметри

Стан#	LED_0	LED_1	LED_2	LED_3	LED_4	LED_5	LED_6	LED_7
0	1	1	0	0	0	0	0	0
1	0	1	1	0	0	0	0	0
2	0	0	1	1	0	0	0	0
3	0	0	0	1	1	0	0	0
4	0	0	0	0	1	1	0	0
5	0	0	0	0	0	1	1	0
6	0	0	0	0	0	0	1	1
7	0	0	0	0	0	0	0	1

- Пристрій повинен використовувати 12MHz тактовий сигнал від мікроконтролера IC1 і знижувати частоту за допомогою внутрішнього подільника. Мікроконтролер IC1 є частиною стенда Elbert V2 Spartan 3A FPGA. Тактовий сигнал заведено нв вхід LOC = P129 FPGA (див. Додаток 1).
- Інтерфейс пристрою повинен мати вхід синхронного скидання (RESET).
- Інтерфейс пристрою повинен мати вхід керування режимом роботи (MODE):
 - \circ Якщо *MODE=0* то стан пристрою інкрементується по зростаючому фронту тактового сигналу пам'яті станів (0->1->2->3->4->5->6->7->0...).
 - \circ Якщо *MODE=1* то стан пристрою декрементується по зростаючому фронту тактового сигналу пам'яті станів (0->7->6->5->4->3->2->1->0...).
- Інтерфейс пристрою повинен мати однорозрядний вхід керування швидкістю роботи(SPEED):
 - Якщо SPEED=0 то автомат працює зі швидкістю, визначеною за замовчуванням.
 - \circ Якщо *SPEED=1* то автомат працює зі швидкістю, <u>В 4 РАЗИ ВИЩОЮ</u> ніж в режимі (*SPEED= 0*).
- Для керування сигналом MODE використати будь який з 8 DIP перемикачів (див. Додаток – 1).
- Для керування сигналами RESET/SPEED використати будь якІ з PUSH BUTTON кнопок (див. Додаток – 1).

Порядок виконання лабораторної роботи.

- 1. Інтерфейс пристрою та функціонал реалізувати згідно отриманого варіанту завдання.
- 2. Логіку переходів реалізувати з використанням мови опису апаратних засобів.
- 3. Логіку формування вихідних сигналів реалізувати з використанням мови опису апаратних засобів.
- 4. Згенерувати символи для описів логіки переходів та логіки формування вихідних сигналів.
- 5. Зінтегрувати всі компоненти логіку переходів логіку формування вихідних сигналів та пам'ять станів в єдину систему. Пам'ять станів реалізувати за допомогою графічних компонентів з бібліотеки.
- 6. Промоделювати роботу окремих частин автомата та автомата вцілому за допомогою симулятора ISim.
- 7. Інтегрувати створений автомат зі стендом додати подільник частоти для вхідного тактовового сигналу призначити фізичні виводи на FPGA.
- 8. Згенерувати файал та перевірити роботу за допомогою стенда Elbert V2 Spartan3A FPGA.
- 9. Підготувати і захистити звіт.

Виконання лабораторної роботи:

MODE	CURR_STATE(2)	CURR_STATE(1)	CURR_STATE(0)	NEXT_STATE(2)	NEXT_STATE(1)	NEXT_STATE(0)
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	0	0	1	0
0	0	1	1	0	1	1
0	1	0	0	1	0	0
0	1	0	1	1	0	1
0	1	1	0	1	1	0
0	1	1	1	1	1	1
1	0	0	0	0	0	0

1	0	0	1	0	0	0
1	0	1	0	0	0	1
1	0	1	1	0	1	0
1	1	0	0	0	1	1
1	1	0	1	1	0	0
1	1	1	0	1	0	1
1	1	1	1	1	1	0

Рис.1.1 (Логіка переходів для всіх станів автомата)

Логіка переходів на мові VHDL

NEXT STATE(0) = not(CURR STATE(0));

NEXT_STATE(1) = ((not(MODE) and not(CURR_STATE(1)) and CURR_STATE(0)) or (not(MODE) and CURR_STATE(1) and not(CURR_STATE(0))) or (MODE and not(CURR_STATE(1)) and not(CURR_STATE(0))) or (MODE and CURR_STATE(1)) and CURR_STATE(1));

NEXT_STATE(2) <= ((not(MODE) and CURR_STATE(2) and not(CURR_STATE(1))) or (CURR_STATE(2) and CURR_STATE(1) and not(CURR_STATE(0))) or (MODE and CURR_STATE(2) and CURR_STATE(0)) or (not(MODE) and not(CURR_STATE(2)) and CURR_STATE(1) and CURR_STATE(0)) or (MODE and not(CURR_STATE(2)) and not(CURR_STATE(1)) and not(CURR_STATE(2)));

Логіка формування вихідних сигналів

 $OUT_BUS(0) \le (not(IN_BUS(2)))$ and $not(IN_BUS(1))$ and $not(IN_BUS(0)))$ after 1 ns;

 $OUT_BUS(1) \le (not(IN_BUS(2)))$ and $not(IN_BUS(1)))$ after 1 ns;

 $OUT_BUS(2) \le ((not(IN_BUS(2)) \text{ and } not(IN_BUS(1)) \text{ and } IN_BUS(0)) \text{ or } (not(IN_BUS(2)) \text{ and } IN_BUS(1) \text{ and } not(IN_BUS(0)))) \text{ after } 1 \text{ ns};$

 $OUT_BUS(3) \le (not(IN_BUS(2)))$ and $IN_BUS(1))$ after 1 ns;

 $OUT_BUS(4) \le ((not(IN_BUS(2)) \text{ and } IN_BUS(1) \text{ and } IN_BUS(0)) \text{ or } (IN_BUS(2) \text{ and } not(IN_BUS(1)) \text{ and } not(IN_BUS(0))))$ after 1 ns;

 $OUT_BUS(5) \le (IN_BUS(2) \text{ and } not(IN_BUS(1))) \text{ after } 1 \text{ ns};$

 $OUT_BUS(6) \le ((IN_BUS(2) \text{ and } not(IN_BUS(1)) \text{ and } IN_BUS(0)) \text{ or } (IN_BUS(2) \text{ and } IN_BUS(1) \text{ and } not(IN_BUS(0))))$ after 1 ns;

 $OUT_BUS(7) \le (IN_BUS(2) \text{ and } IN_BUS(1)) \text{ after 1 ns};$

Рис.1.2 (Згенеровані схематичні схеми)

Рис.1.3 (Інтеграція всіх створених компонентів разом з пам'ятю станів автомата)

Рис.1.4 (Автомат світлових сигналів та подільник тактового сигналу)

Демонстрація симуляції схем наведених зверху

X 010 X 011 101 110 × 111 000 101 × 100 × 011 110 X

001 110 / 111 / 000 111 / 110 000

Рис.1.5 (Результати симуляції логіки переходів в ISim)

Рис.1.6 (Результати симуляції логіки вихідних сигналів в ISim)

Рис.1.7 (Результати симуляції автомата (MODE = 0, RESET = 0))

Рис.1.8 (Результати симуляції автомата (MODE = 1, RESET = 0))

Рис.1.9 (Результати симуляції автомата (MODE = 0, RESET = 1))

Рис.2.1 (Результати симуляції автомата (MODE = 1, RESET = 1))

Puc.2.1.1 (Результати симуляції фінальної схеми (MODE = 0, RESET = 0, SPEED = 0))

Рис.2.1.2 (Результати симуляції фінальної схеми (MODE = 0, RESET = 0, SPEED = 1))

Реалізація Test Brench

Рис.2.2 (Часова діаграма)

ISim>

run 28s

Рис.2.3 (Консоль під час тестування)

Рис.2.4 (Граф переходів автомата між станами)

```
4 CONFIG VCCAUX = "3.3";
5
   # Clock 12 MHz
6
   NET "CLOCK"
                        LOC = P129 | IOSTANDARD = LVCMOS33 | PERIOD = 12MHz;
10 #
                              LED
12
     NET "OUTPUT (0)"
                        LOC = P46 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
13
     NET "OUTPUT(1)"
                       LOC = P47 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12:
14
                    LOC = P47 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
LOC = P48 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
    NET "OUTPUT(2)"
15
    NET "OUTPUT(3)"
                       LOC = P49 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
    NET "OUTPUT (4)"
                       LOC = P50 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;

LOC = P51 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;

LOC = P54 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
17
     NET "OUTPUT (5) "
18
    NET "OUTPUT (6)"
19
    NET "OUTPUT (7)"
                       LOC = P55 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
20
21
DP Switches
23 #
24
   25
     NET "MODE"
                 LOC = P70 | PULLUP | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
26
27
      28
                           Switches
29
31
     NET "RESET"
                  LOC = P80 | PULLUP | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
32
     NET "SPEED"
33
                  LOC = P79 | PULLUP | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
34
```

Рис.2.2 (Призначення фізичних входів та виходів)

Висновок:

В ході виконання цієї лабораторної роботи я реалізував на базі стенда Elbert V2 – Spartan3A FPGA цифровий автомат світлових ефектів згідно заданих вимог.