Question 1.1

Let F = 0, 1 be the set called the paddock, defined in class, and define addition and multiplication on F by

$$0+0=0$$
, $0+1=1+0=1$, $1+1=0$,

and

$$0 \cdot 0 = 0 \cdot 1 = 1 \cdot 0 = 0, \quad 1 \cdot 1 = 1$$

- Is F a field?
 - Check if addition is closed.

$$* (A1) 0 + 1 = 0 \in F$$

$$* (A2) 0 + 1 = 1 + 0 = 1$$

* (A3)

$$(0+1) + 1 = 1 + 1 = 0$$

$$0 + (1+1) = 0 + 0 = 0$$
Thus $(0+1) + 1 = 0 + (1+1)$

$$(0+1) + 0 = 1 + 0 = 1$$

$$0 + (1+0) = 0 + 1 = 1$$
Thus $(0+1) + 0 = 0 + (1+0)$

* (A4)

$$\cdot \ 0 + 1 = 1 \in F$$

$$\cdot \ 0 + 0 = 0 \in F$$

* (A5)

$$\cdot 0 + (-0) = 0$$

$$\cdot 1 + (-1) = 0$$

- * Therefore F is closed under addition.
- Check if multiplication is closed.

* (M1)
$$0 \cdot 1 = 0 \in F$$

* (M2)
$$0 \cdot 1 = 1 \cdot 0 = 0$$

* (M3)

$$\cdot (1 \cdot 0) \cdot 0 = 1 \cdot (0 \cdot 0) = 0$$

$$\cdot (1 \cdot 0) \cdot 1 = 1 \cdot (0 \cdot 1) = 0$$

* (M4)

$$\cdot 1 \cdot 0 = 0$$

$$\cdot 1 \cdot 1 = 1$$

* (M5)

$$\cdot \frac{1}{1} \cdot 1 = 1$$

* Therefore F is closed under multiplication.

Thus F is a field.

- Is F an ordered field?
 - In case where 1 > 0
 - -1+1>1+0
 - -0 > 1, which is a contradiction

Thus F is not an ordered field

Question 1.2

Prove that there is no rational number $p \in \mathbb{Q}$ such that $2^p = 6$.

- Argue by contradiction. Suppose \exists a rational number p such that $2^p = 6$.
- If there were such a p, we could write $\frac{a}{b}$ where a and b are integers that are not both even.
- Then $2^p = 2^{\frac{a}{b}} = 6$. Hence $2^a = 6^b = (2 \cdot 3)^b = 2^b \cdot 3^b \iff \mathbf{2^{a-b}} = \mathbf{3^b}$.
- Since $6 > 2^1$, $p = \frac{a}{b} > 1$, which means a > b.
- Thus $2^{a-b} > 2$, and 2^{a-b} must be even.
- On the other hand, 3^b must be odd.
- i.e. $2^{a-b} = 3^b$ is impossible.
- Thus there is no such p that satisfies the condition $2^p = 6$.

Question 1.3

Use the Archimedean property to prove that for any pair of rational numbers p < q, there exists an irrational number x such that p < x < q.

Hint: You may use without proof the fact that if $r \neq 0$ is rational and x is irrational, then r + x and rx are both irrational.

- We are given p < q, or equivalently q p > 0.
- According to the Archimedean property, there is a positive integer n, such that n(q-p) > 2 (instead of 1).
- Let $x = \frac{q-p}{2}$, and clearly we obtain p < x < q, and $\frac{q-p}{2} > \frac{1}{n} \Leftrightarrow \frac{1}{n} < x$.
- Hence $p < x + \frac{1}{n} < 2x = q p < q$.
- Consider irrational $\frac{1}{n\sqrt{2}}$ in lieu of $\frac{1}{n}$.
- Since $\frac{1}{n\sqrt{2}}$ is still positive, it preserves the inequalities $p < x + \frac{1}{n\sqrt{2}} < q$.
- Since the addition of rational x and irrational $\frac{1}{n\sqrt{2}}$ is irrational number, there exists an irrational such that $p < x + \frac{1}{n\sqrt{2}} < q$.

Question 1.4

Let $A \subset \mathbb{R}$ be non-empty and bounded below. Define $-A = \{-a \mid a \in A\}$. Prove that

$$\inf A = - \sup(-A)$$

- $\inf A \leq -\sup(-A)$
 - Since inf A is an infimum for A, inf $A \leq a \ \forall a \in A$,
 - Then -inf $A \ge -a \ \forall -a \in -A$.
 - In other words, -inf A is an upper bound for -A.
 - Hence $\sup(-A)$ ≤ -inf A \Leftrightarrow inf A ≤ -sup(-A)
- $\inf A \ge -\sup(-A)$
 - Since A is bounded below, -A is bounded above.
 - Then $-a \le \sup(-A) \Leftrightarrow a \ge -\sup(-A)$
 - This means that $-\sup(-A)$ is a lower bound for A implying $\inf(A) \ge -\sup(-A)$.

inf $A \le -sup(-A)$ and inf $A \ge -sup(-A)$ at the same time. Thus inf A = -sup(-A)

Question 1.5

Let $A, B \subset \mathbb{R}$ be non-empty and bounded subsets of the real numbers, and let $\lambda \in \mathbb{R}$ be a constant.

- (a) Let $\lambda A = \{\lambda A \mid a \in A\}$. Prove that if $\lambda \geq 0$, then $\sup \lambda A = \lambda \sup A$, and if $\lambda < 0$, then $\sup \lambda A = \lambda \inf A$.
 - i. $\lambda \geq 0$
 - In case where $\lambda = 0$, its supremum and infimum are both 0.
 - Fix $\epsilon > 0$, and suppose $\exists \alpha \in A$ such that sup A $\epsilon < \alpha \le \sup A$ by definition of supremum.
 - Multiply by λ each side of the inequality above

$$\lambda \sup A - \lambda \epsilon < \lambda \alpha \le \lambda \sup A.$$

- Hence $\lambda \sup A$ is a supremum of $\lambda \alpha$. At the same time, $\sup \lambda A$ is also a supremum of $\lambda \alpha$ since $\lambda \alpha \in \lambda A$.
- Thus sup $\lambda A = \lambda \sup A$
- ii. $\lambda < 0$
 - Consider the inequalities we stated above sup A $\epsilon < \alpha \le \sup A$.
 - Multiply this inequalities by λ

$$\lambda \sup A \leq \lambda \alpha < \lambda \sup A - \lambda \epsilon$$

• Since we proved that sup $\lambda A = \lambda \sup A$, we obtain

$$\sup \lambda \mathbf{A} \le \lambda \alpha \iff \alpha \ge \frac{1}{\lambda} \cdot \sup \lambda \mathbf{A}$$

- This means that inf $\alpha = \frac{1}{\lambda} \cdot \sup \lambda A$.
- Hence $\lambda \inf \alpha = \sup \lambda A$
- (b) Let $A + B = \{a + b \mid a \in A, b \in B\}$. Prove $\sup(A + B) = \sup A + \sup B$.
 - By definition, sup $A \ge a$, and sup $B \ge b$.
 - Thus $\sup A + \sup B \ge a + b$.
 - Suppose $\epsilon > 0$, and consider a and b such that $a > \sup A \frac{\epsilon}{2}$, $b > \sup B \frac{\epsilon}{2}$.
 - Then $a + b > \sup A + \sup B \epsilon$.
 - Thus $\sup(A + B) \ge a + b = \sup A + \sup B \epsilon$.
 - Suppose x such that $x \in A + B$
 - $x \le \sup A + \sup B$
 - $\sup x \le \sup A + \sup B \Leftrightarrow \sup (A + B) \le \sup A + \sup B$

We obtain both $\sup(A + B) \ge = \sup A + \sup B$ and $\sup (A + B) \le \sup A + \sup B$. Thus $\sup(A + B) = \sup A + \sup B$.

- (c) Let $AB = \{a \cdot b \mid a \in A, b \in B\}$. Either prove or provide a counterexample to $\sup(AB) = (\sup A)(\sup B)$.
 - Assume $\exists A = \{1, 2, 3\}, B = \{-1, -2, -3\}.$ Then $AB = \{-9, -6, -4, -3, -2, -1\}.$
 - $\sup AB = -1$, $\sup A = 3$, $\sup B = -1$ respectively.
 - sup $A \cdot \sup B = -3$ which is not equal to sup AB = -1.

Question 1.6

Let $A \subset \mathbb{R}$ be non-empty and bounded above. Prove that $\alpha = \sup A$ if and only if $x \leq \alpha$ for every $x \in A$ and for every $\epsilon > 0$, there exists $x \in A$ with $\alpha - \epsilon < x \leq \alpha$.

- $\alpha = \sup A$ if $\alpha = \sup A$ if and only if $x \leq \alpha$ for every $x \in A$ and for every $\epsilon > 0$, there exists $x \in A$ with $\alpha \epsilon < x \leq \alpha$.
 - It is obvious that α is an upper bound for A $\forall x \leq \alpha$.
 - Argue by contradiction. Suppose there exists β such that sup $A = \beta$.
 - i.e. $\beta < \alpha$ and $x \le \beta \ \forall x \in A \Leftrightarrow 0 < \alpha \beta$.
 - Suppose $\exists \epsilon$ such that $\epsilon = \frac{\alpha \beta}{2} > 0$
 - i.e. $\alpha \epsilon < \alpha$
 - Hence $\beta < \alpha \Leftrightarrow 2\beta < \alpha + \beta \Leftrightarrow \beta < \frac{\alpha + \beta}{2} = \epsilon \Leftrightarrow \beta < \alpha \epsilon$

- Hence further we obtain $\beta < \alpha \epsilon < \alpha$.
- i.e. $x < \alpha \epsilon < \alpha \quad \forall x \in A$, which is contradicted by the given condition that there exists $x \in A$ with $\alpha \epsilon < x \le \alpha$.
- Thus α must be the least upper bound for A.
- $x \le \alpha$ for every $x \in A$ and for every $\epsilon > 0$, there exists $x \in A$ with $\alpha \epsilon < x \le \alpha$ if $\alpha = \sup A$
 - $-x \le \alpha$ for every $x \in A$
 - * Argue by contradiction. Suppose $\exists x > \alpha \ \forall x \in A$.
 - * By definition, α is not an upper bound of A if $x > \alpha$.
 - * Therefore, sup A must be equal to α such that $x \leq \alpha$ for every $x \in A$.
 - For every $\epsilon > 0$, there exists $x \in A$ with $\alpha \epsilon < x \le \alpha$
 - * Argue by contradiction. Suppose $\exists x \leq \alpha \epsilon$ for some x.
 - * i.e. sup $A \neq \alpha$, but sup $A = \alpha \epsilon$, which is contradiction.
 - * Hence $\alpha \epsilon < x \le \alpha \ \forall x \in A$