Ejercicio 1. Ver si las siguientes funciones son distancias.

• $d_1(x,y) = (x-y)^2$ No es distancia.

Proof.
$$d_1(-1,1) = 4 > 1 + 1 = d_1(-1,0) + d_1(0,1)$$

- $d_2(x,y) = \sqrt{|x-y|}$ es una distancia
 - 1. $d_2(x,y) = 0 \iff \sqrt{|x-y|} = 0 \iff |x-y| = 0 \iff x = y$
 - 2. $d_2(x,y) = d_2(y,x)$ es trivial
 - 3. $d_2(x,y)^2 = |x-y| < |x-z| + |z-y| \le |x-z| + |z-y| + 2\sqrt{|x-z||z-y|} = (\sqrt{|x-z|} + \sqrt{|z-y|})^2 = (d_2(x,z) + d_2(z,y))^2$ Luego $d_2(x,y)^2 \le (d_2(x,z) + d_2(z,y))^2$

Y es tirivial ver que entonces $d_2(x,y) \le d_2(x,z) + d_2(z,y)$

- $d_3(x,y) = |x^2 y^2|$ Es facil ver que no es distancia $d_3(-2,2) = 0$
- $d_4(x,y) = |x-2y|$ Es trivial devuelta $d_4(2,1) = 0$
- $d_5(x,y) = \frac{|x-y|}{1+|x-y|}$. Tomemos la función $f: \mathbb{R} \to \mathbb{R}$ dada por $f(t) = \frac{t}{1+xt}$. Viendo que su derivada es siempre mayor que 0 podemos notar que esta función es estrictamente creciente

Además
$$f(a)+f(b)-f(a+b) = \frac{a}{1+a} + \frac{b}{1+b} - \frac{a+b}{1+a+b} = \frac{a((1+b)(1+a+b))+b((1+a)(1+a+b))-(a+b)((1+a)(1+b))}{(1+a)(1+b)(1+a+b)}$$

$$\begin{array}{l} \operatorname{Adem\'{a}s} f(a) + f(b) - f(a+b) = \frac{a}{1+a} + \frac{b}{1+b} - \frac{a+b}{1+a+b} = \frac{a((1+b)(1+a+b)) + b((1+a)(1+a+b)) - (a+b)((1+a)(1+b))}{(1+a)(1+b)(1+a+b)} \\ = \frac{(a+ab)(1+a+b) + (b+ab)(1+b+a) - (a+b)(1+a+b+ab)}{(1+a)(1+b)(1+a+b)} = \frac{a+2ab+a^2+a^2b+ab^2+b+2ab+b^2+ab^2+ba^2-(a+b+a^2+ba+ab+b^2+a^2b+ab^2)}{(1+a)(1+b)(1+a+b)} \\ \frac{a+4ab+a^2+2a^2b+2ab^2+b+b^2-(a+b+a^2+ba+ab+b^2+a^2b+ab^2)}{(1+a)(1+b)(1+a+b)} = \frac{2ab+ab^2+a^2b}{(1+a)(1+b)(1+a+b)} \geq 0 \end{array}$$

Por lo tanto f(a+b) < f(a) + f(b)

Entonces
$$d(x,y) = f(|x-y|) \le f(|x-z| + |z-y|) \le f(|x-z|) + f(|z-y|) = d(x,z) + d(z,y)$$

La primera desigualdad vale por que f es creciente y usando la desigualdad de módulos de siempre, la segunda vale por lo probado arriba

Ejercicio 2. Es una clásica demostración de taller de cálculo.

Ejercicio 3. Sean X un conjunto y $\delta: X \times X \to \mathbb{R}$ definida por

$$\delta(x,y) = \begin{cases} 1 & \text{si } x \neq y \\ 0 & \text{si } x = y \end{cases}$$

Verificar que δ es una métrica y hallar los abiertos de (X, δ) Nota: δ se llama metrica discreta y (X, δ) espacio métrico discreto

Proof. 1.
$$\delta(x,y) = 0 \iff x = y$$

2. Supongamos $x \neq y \Rightarrow \delta(x,y) = 1 = \delta(y,x)$

3. Supongamos devuelta $x \neq y$ si no es obvio que vale , $\delta(x,y) = 1 \leq \delta(x,z) + \delta(z,y)$ esto vale seguro , por que no puede suceder $\delta(x,z) = \delta(z,y) = 0$ por que esto implicaría x = z = y absurdo

Ejercicio 4. Sea $N: \mathbb{Z} \to \mathbb{R}$ la funcion definida por

$$N(x) = \begin{cases} 2^{-n} & \text{si } a \neq 0, \quad p^n | a \quad \text{y} \quad p^{n+1} \nmid a \\ 0 & \text{si } a = 0 \end{cases}$$

donde p es un primo fijo, y sea $d: \mathbb{Z} \times \mathbb{Z} \to \mathbb{R}$ dada por d(a,b) = N(a-b). Probar que (\mathbb{Z},d) es un espacio métrico

Proof. Primero definamos para cada entero no nulo $\phi_p(a)$ que es el mayor $n \in \mathbb{N}$ tal que $p^n|a$ Es simple ver $\phi_p(a) = \phi_p(-a)$ tambien $\phi_p(a+b) \ge \min \{\phi_p(a), \phi_p(b)\}$ Ahora podemos reescribir

$$d(a,b) = \begin{cases} 2^{-\phi_p(a-b)} & \text{si } a \neq b \\ 0 & \text{si } a = b \end{cases}$$

- 1. Sea d(a,b) = 0 entonces a = b por definición, por que $2^n \neq 0 \quad \forall n \in \mathbb{Z}$
- 2. Asumiendo $a \neq b$ tenemos $d(a,b) = 2^{-\phi_p(a-b)} = 2^{-\phi_p(-(a-b))} = 2^{-\phi_p(-a+b)} = d(b,a)$
- 3. Ahora consideremos que $\phi_p(a-b) = \phi_p((a-c)+(c-b)) \ge \min \{\phi_p(a-c), \phi_p(c-b)\}$ Tambien supongo por comodidad $a \ne b \ne c$ por comodidad, si alguno fuera igual la demostración es trivial

$$d(a,b) = 2^{-\phi_p(a-b)} \le 2^{-\min\{\phi_p(a-c),\phi_p(c-b)\}} = \min\{2^{\phi_p(a-c)}, 2^{\phi_p(c-b)}\} \le 2^{\phi_p(a-c)} + 2^{\phi_p(c-b)}$$

Finalmente $d(a,b) \le d(a,c) + d(c,b)$

Entonces d es una métrica y por lo tanto (\mathbb{Z},d) es un pár conjunto, métrica o lo que es lo mismo , un espacio métrico

Ejercicio 5. Sea $\ell_{\infty} = \{(a_n)_{n \in \mathbb{N}} \subseteq \mathbb{R} : (a_n)_{n \in \mathbb{N}} \text{ es acotada}\}$. Se considera $d : \ell_{\infty} \times \ell_{\infty} \to \mathbb{R}$ definida por $d(a_n, b_n) = \sup_{n \in \mathbb{N}} |a_n - b_n|$. Probar que (ℓ_{∞}, d) es un espacio métrico.

Proof. 1. $d(a_n, b_n) = 0 \iff \sup_{n \in \mathbb{N}} |a_n - b_n| = 0 \iff 0 \le |a_n - b_n| \le 0 \quad \forall n \in \mathbb{N}$ $\iff |a_n - b_n| = 0 \quad \forall n \in \mathbb{N} \iff a_n = b_n \quad \forall n \in \mathbb{N}$

- 2. $d(a_n, b_n) = \sup_{n \in \mathbb{N}} |a_n b_n| = \sup_{n \in \mathbb{N}} |b_n a_n| = d(b_n, a_n)$
- 3. Sabemos que $|a_n b_n| \le |a_n + c_n| + |c_n b_n|$ $\sup_{n \in \mathbb{N}} |a_n - b_n| \le \sup_{n \in \mathbb{N}} (|a_n + c_n| + |c_n - b_n|) = \sup_{n \in \mathbb{N}} |a_n + c_n| + \sup_{n \in \mathbb{N}} |c_n - b_n|$ $d(a_n, b_n) \le d(a_n, c_n) + d(c_n, b_n)$

Ejercicio 6. Dados $a, b \in \mathbb{R}, a < b$, se define $\mathcal{C}[a, b] = \{f : [a, b] \to \mathbb{R} : f \text{ es continua}\}$. Probar que son espacios métricos.

- i. $(C[a,b],d_1)$ con $d_1(f,g) = \int_a^b |f(x) g(x)| dx$
- ii. $(C[a, b], d_{\infty})$, con $d_{\infty}(f, g) = \sup_{x \in [a, b]} |f(x) g(x)|$

Proof. Son demostraciones de taller. De todas maneras las desigualdades salen usando $|f(x) - f(y)| \le |f(x) - h(x)| + |h(x) - f(y)|$

Ejercicio 7. Sea (X,d) un espacio métrico. Se define $d'(x,y) = \frac{d(x,y)}{1+d(x,y)}$

i) d' es una métrica en X, que satisface $0 \le d'(x,y) \le 1 \quad \forall x,y \in X$

Proof. Veamos que es métrica , las dos primeras propiedades son triviales, veamos la desigualdad, usando la misma funcione que habíamos usado antes $f(t) = \frac{t}{1+t}$ tenemos que $d'(x,y) = f(d(x,y)) \le f(d(x,z) + d(z,y)) \le f(d(x,z)) + f(d(z,y)) = d'(x,z) + d'(z,y)$

Esto vale por que f es creciente y por que d es métrica

Por otro lado es trivial que $0 \le d'(x, y)$

Supongamos que $d'(x,y) > 1 \Rightarrow d(x,y) > 1 + d(x,y)$ lo que es absurdo , entonces $d'(x,y) \leq 1$

ii) $A\subseteq X$ es abierto para la métrica dsi y sólo si lo es para la métrica d'

Proof. Tomemos cualquier bola abierta en d , $B_d(x,r)$

Ahora dado $y \in B_d(x,r)$ sabemos que $d(x,y) < r \Rightarrow d'(x,y) = \frac{d(x,y)}{1+d(x,y)} < d(x,y) < r$

Por lo tanto $y \in B_{d'}(x,r)$ entonces $B_d(x,r) \subseteq B_{d'}(x,r)$

- \Leftarrow) Entonces si tenemos un abierto con d' en $A \subseteq X$ tenemos que dado $x \in X$ existe $B_{d'}(x,r) \subseteq A$ luego $B_d(x,r) \subseteq B_{d'}(x,r) \subseteq A$ por lo tanto tambien es abierto en d
- \Rightarrow) Ahora tomemos nuevamente un abierto en A con respecto a d. Dado $x \in A$ tenemos $B_d(x,r) \subseteq A$.

Ahora si consideramos $r' = \frac{r}{r+1}$ podemos afirmar que $B_{d'}(x,r') \subseteq B_d(x,r) \subseteq A$

Probémoslo, sea $y \in B_{d'}(x, r')$ entonces $d'(x, y) < r' = \frac{r}{r+1}$, luego $\frac{d(x, y)}{1 + d(x, y)} < \frac{r}{r+1}$

Entonces $d(x,y) < \frac{r}{r+1}(1+d(x,y)) \le \frac{r}{r+1}(1+r) = r$

Finalmente d(x, y) < r entonces $y \in B_d(x, r)$

Entonces A es abierto con respecto a d'

iii) Deducir que $(x_n)_n$ converge a x con respecto en la métrica d si y sólo si converge a x con respecto a la métrica d'

Proof. \Rightarrow) Converge en d entonces $\forall \epsilon > 0 \ \exists n_0 \in \mathbb{N}$ tal que $d(x, x_n) \leq \epsilon \quad \forall n \geq n_0$

Como $d'(x, x_n) < d(x, x_n) \quad \forall n \in \mathbb{N}$. Tenemos que:

$$\forall \epsilon > 0 \ \exists n_0 \ d'(x, x_n) < d(x, x_n) \le \epsilon \quad \forall n \ge n_0$$

Por lo tanto $x_n \to x$ con la métrica d'

 \Leftarrow) Supongamos que x_n converge a x con d'. Ahora dado un $\epsilon > 0$ sabemos que $\exists r > 0$ tal que $B_{d'}(x,r) \subseteq B_d(x,\epsilon)$ y por convergencia de x_n tenemos que $\exists n_0$ tal que $x_n \in B_{d'}(x,r) \subseteq B_d(x,\epsilon) \quad \forall n \geq n_0$ entonces dado un ϵ conseguimos un $n_0 \in \mathbb{N}$ tal que $x_n \in B_d(x,\epsilon) \quad \forall n \geq n_0$ y esto lo podemos hacer para cualquier $\epsilon > 0$

Entonces x_n converge a x con la métrica d

Ejercicio 8. Sean (X_1, d_1) y $(X_2.d_2)$ espacios métricos. Consideremos el conjunto $X_1 \times X_2$ y la aplicación $d: (X_1 \times X_2) \times (X_1 \times X_2) \to \mathbb{R}$ dada por

$$d((x_1, x_2), (y_1, y_2)) = d_1(x_1, y_1) + d_2(x_2, y_2)$$

(a) Probar que d define una métrica en $X_1 \times X_2$

Proof. i. Por comodida tomemos $x = (x_1, x_2)$ e $y = (y_1, y_2)$ $d(x, y) = d_1(x_1, y_1) + d_2(x_2, y_2)$ como ambas d_1, d_2 son distancias entonces son mayores a 0 entonces $d((x_1, x_2), (y_1, y_2)) \ge 0$

ii.
$$d(x,y) = d_1(x_1, y_1) + d_2(x_2, y_2) = d_1(y_1, x_1) + d_2(y_2, x_2) = d(y, x)$$

iii. $d(x,y) = d_1(x_1,y_1) + d_2(x_2,y_2) \le d_1(x_1,z_1) + d_1(z_1,y_1) + d_2(x_2,z_2) + d_2(z_2,y_2) = d(x,z) + d(z,y)$

(b) \Rightarrow) Sea $(a_n, b_n)_n$ convergente a (a, b) entonces $d_1(a_n, a) + d_2(b_n, b) = d((a_n, b_n), (a, b)) \to 0$ entonces $d_1(a_n, a) + d_2(b_n, b) \to 0$ dado que son distancias son ambas mayores o iguales que 0, por lo tanto ambas convergen a 0, si no el sumando no convergería.

$$\Leftarrow$$
) $a_b \to a \text{ y } b_n \to b \text{ entonces } d_2((a_n, b_n), (a, b)) = d_1(a_n, a) + d_2(b_n, b) \to 0$

Ejercicio 9. Sea $(X_n, d_n)_{n \in \mathbb{N}}$ una sucesión de espacios métricos, y consideramos el producto cartesiano $X = \prod_{n=1}^{\infty} X_n$. El objetivo del ejercicios es construír una métrica para X en la cual la convergencia de una sucesión equivalga a la convergencia en cada coordenada, como en el ejercicios anteriór.

1. Supongamos primero que todos los X_n tienen diámetro menor o igual que 1, es decir $d_n(x,y) \leq 1 \quad \forall n \in \mathbb{N} \quad \forall x,y \in X_n$. Dados dos elementos $x = (x_n)_n$ e $y = (y_n)_n$ en X, definimos

$$d(x,y) = \sum_{n=1}^{\infty} \frac{d_n(x_n, y_n)}{2^n}$$

Probar que d es una métrica

Proof. Las primeras dos propiedades son triviales considerando que cada d_n es métrica Ahora veamos la desigualdad

$$d(x,y) = \sum_{i=1}^{\infty} \frac{d_n(x_n, y_n)}{2^n} = d_1(x_1, y_1) + d_2(x_2, y_2) + \dots \le d_1(x_1, z_1) + d_1(z_1, y_1) + \dots$$

$$= \sum d_n(x_n, z_n) + d_n(z_n, y_n) = d(x, z) + d(z, y)$$

Entonces es una métrica

2. Sea $x^1, x^2, x^3, ...$ una sucesión de puntos de X, es decir, cada x^k es una sucesión (x_1^k, x_2^k, \cdots) , en la cual $x_n^k \in X_n$ para cada $n \in \mathbb{N}$. Sea $x = (x_n)_n$ un elemento de X. Probar que, con la métrica d definida en el ítem anteriór, $x^k \to x$ en X si y sólo para todo $n \in \mathbb{N}$ se cumple que $x_n^k \to x_n$ en X_n

Proof. Tenemos que $d(x^k, x) \to 0$ o lo que es equivalente dado $\epsilon > 0$ existe $k \in \mathbb{N}$ tal que $d(x^k, x) \le \epsilon \quad \forall k \ge k_0$.

Entonces
$$\sum_{n=0}^{\infty} \frac{d_n(x_n^k, x_n)}{2^n} \le \epsilon$$

Luego
$$\sum_{n=0}^{\infty} \frac{d_n(x_n^k, x_n)}{2^n} \le 2^n \epsilon$$

Ahora dado cualquier $n \in \mathbb{N}$ tenemos que $d_n(x_n^k, x_n) \leq C\epsilon \quad \forall k \geq k_0$ (Donde $C = 2^n$ es una constante)

O lo que es lo mismo $x_n^k \to x_n$. Y esto vale para cualquier $n \in \mathbb{N}$ que tomemos \square

Ejercicio 10. Sea (X, d) un espacio métrico y sean $A, B \subseteq X$

1. Probar las siguientes propiedades del interiór de un conjunto:

(a)
$$A^{o} = \bigcup_{G \text{ abierto, } G \subseteq A} G$$

Proof. \subseteq) Sea $x \in A^{\circ}$ entonces existe r > 0 tal que $B(x,r) \subseteq A$ y este es un abierto contenido en A entonces $x \in B(x,r) \subseteq \bigcup G$

 \supseteq) Sea $x \in \bigcup G$ entonces $x \in G$ para algún G de la unión

Como G es abierto existe $B(x,r)\subseteq G$ y por otro lado $G\subseteq A$

Entonces existe $B(x,r) \subseteq A$ entonces $x \in A^{\circ}$

(b)
$$\emptyset^{o} = \emptyset$$

Proof. Supongamos $\emptyset^{\circ} \neq \emptyset$ entonces $\exists x \in X$ tal que $x \in \emptyset^{\circ}$ Luego tiene que existir $B(x,r) \subseteq \emptyset$ que es absurdo

(c)
$$X^{o} = X$$

 $Proof. \subseteq)$ Vale siempre

⊇) Sea $x \in X$ supongamos que $x \notin X^{o}$ entonces $\forall r > 0$ $B(x,r) \not\subseteq X$ entonces $\exists y \in B(x,r)$ tal que $y \notin X$

Absurdo por que X es todo no pueden existir cosas que no esten en X

(d)
$$A \subseteq B \Rightarrow A^{\circ} \subseteq B^{\circ}$$

Proof. Sea
$$x \in A^{\circ}$$
 entonces existe $B(x,r) \subseteq A \subseteq B$ luego $x \in B^{\circ}$

(e) $(A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$. ¿Se puede generalizar a una intersección infinita?

Proof. \subseteq) Sea $x \in (A \cap B)^{\circ}$ entonces existe $B(x,r) \subseteq A \cap B$

Pero entonces $B(x,r) \subseteq A$ por lo que $x \in A^{o}$

Tambien $B(x,r) \subseteq B$ por lo que $x \in B^{\circ}$

Luego $x \in A^{o} \cap B^{o}$

Esta se puede generalizar a infinito

 \supseteq) Sea $x \in A^{\circ} \cap B^{\circ}$ entonces $x \in A^{\circ}$ y $x \in B^{\circ}$

Entonces existe $B(x, r_1) \subseteq A$ y también $B(x, r_2) \subseteq B$

Si tomamos $r = \min\{r_1, r_2\}$ tenemos que $B(x, r) \subseteq A$ y tambien $B(x, r) \subseteq B$

Entonces $B(x,r) \subseteq A \cap B$ finalmente $x \in (A \cap B)^{\circ}$

Esta no se puede generalizar , por que ahora no necesariamente tenemos mínimo , y tenemos un conjunto de radios que si bien está acotado inferiormente por 0, nada nos asegura que el infimo no sea el mismo 0 que no nos serviría como radio.

Ejemplo $\bigcap B(x,\frac{1}{n}) = \bigcap (B(x,\frac{1}{n}))^\circ$ esto es porque las bolas son abiertas por ende iguales a su interiór

$$x \in \bigcap (B(x, \frac{1}{n}))^{\circ}$$
 sin embargo $x \notin (\bigcap B(x, \frac{1}{n}))^{\circ} = \{x\}^{\circ} = \emptyset$

(f) $(A \cup B)^{\circ} \supseteq A^{\circ} \cup B^{\circ}$ ¿Vale la igualdad?

Proof. $x \in A^{o} \cup B^{o}$ entonces x esta en alguno de los dos o los dos interiores

Supongamos $x \in A^{o}$ entonces existe $B(x,r) \subseteq A \subseteq A \cup B$

Entonces $x \in (A \cup B)^{o}$

Si esta en ambos , en particular esta en una , asi que usamos lo de arriba nuevamente $\,$

No vale la igualdad por ejemplo A = [1, 2] y B = [2, 3]

$$A^{o} \cup B^{o} = (1,2) \cup (2,3) \neq (1,3) = ([1,3])^{o} = (A \cup B)^{o}$$

2. Probar las siguiente propiedades de la clausura de un conjunto

(a)
$$\overline{A} = \bigcap_{F \text{ cerrado, } A \subseteq F} F$$

Proof. ⊆) Sea $x\in\overline{A}$ entonces $\forall r>0, B(x,r)\cap A\neq\emptyset$ ahora supongamos $x\notin F$ para algún F

Como $F=\overline{F}$ por ser cerrado, entonces $x\notin\overline{F}$ para algún F en la intersección

Entonces $\exists r' > 0$ tal que $B(x, r') \cap F = \emptyset$

Pero esto es absurdo dado que $A \subseteq F$ tenemos $\emptyset \neq B(x,r') \cap A \subseteq B(x,r') \cap F = \emptyset$

Provino de suponer que $x \notin F$ por lo tanto $x \in F$

Y esto vale para cualquier F cerrado tal que $A \subseteq F$

Entonces x esta en todos estos F y por ende en la intersección

 \supseteq) Supongamos que $x \in \bigcap F$ pero $x \notin \overline{A}$ entonces tiene que existir un r > 0 tal que $B(x,r) \cap A = \emptyset$ luego tenemos que $A \subseteq X \setminus B(x,r)$ que ademas es cerrado por que es el complemento de B(x,r) que es abierto

Pero entonces $X \setminus B(x,r)$ es un cerrado que contiene a A por ende es uno de los F en la intersección

Entonces $x \in X \setminus B(x,r)$ lo cual es absurdo

Provino de suponer que existia un r > 0 tal que $B(x,r) \cap A = \emptyset$

Entonces
$$\forall r > 0$$
 $B(x,r) \cap A \neq \emptyset$ por lo tanto $x \in \overline{A}$

(b) $\overline{\emptyset} = \emptyset$

Proof. Supongamos que son diferentes entonces $\exists x \in X$ tal que $x \in \overline{\emptyset}$ entonces $\forall r > 0$ $B(x,r) \cap \emptyset \neq \emptyset$ lo cual es absurdo

(c) $\overline{X} = X$

Proof. ⊇) Sea $x \in X$ entonces $\forall r>0$ tenemos que $B(x,r)\cap X\neq\emptyset$ por que $x\in B(x,r)$ y $x\in X$ $\forall r>0$

Entonces $x \in \overline{X}$

 \subseteq) Sea $x \in \overline{X}$ entonces $B(x,r) \cap X \neq \emptyset \quad \forall r > 0$

Tomemos radios $\frac{1}{n}$, entonces $B(x, \frac{1}{n}) \cap X \neq \emptyset \quad \forall n \in \mathbb{N}$

Ahora $\emptyset \neq \bigcap_{n \in \mathbb{N}} B(x, \frac{1}{n}) \cap X = (\bigcap_{n \in \mathbb{N}} B(x, \frac{1}{n})) \cap X = \{x\} \cap X$

Entonces $\{x\} \cap X \neq \emptyset$ por lo tanto $x \in X$

(d) $A \subseteq B \Rightarrow \overline{A} \subseteq \overline{B}$

Proof. Sea $x \in \overline{A}$ entonces $\forall r > 0$ $B(x,r) \cap A \neq \emptyset$

Tambien sabemos que $A \subseteq B$ entonces $B(x,r) \cap A \subseteq B(x,r) \cap B$

Entonces $\forall r > 0$ $B(x,r) \cap B \neq \emptyset$ luego $x \in \overline{B}$

(e) $\overline{A \cup B} = \overline{A} \cup \overline{B}$; Se puede generalizar a unión infinita?

Proof.
$$\subseteq$$
) Sea $x \in \overline{A \cup B}$ luego $\forall r > 0$ $B(x,r) \cap (A \cup B) \neq \emptyset$

Supongamos $x \notin \overline{A} \cup \overline{B}$ entonces $x \notin \overline{A}$ y $x \notin \overline{B}$

Entonces $B(x, r_1) \cap A = \emptyset$ y por otro lado $B(x, r_2) \cap B = \emptyset$

Luego sea $r = \min\{r_1, r_2\}$ tenemos que

$$B(x,r)\cap (A\cup B)=(B(x,r)\cap A)\cup (B(x,r)\cap B)\subseteq (B(x,r_1)\cap A)\cup (B(x,r_2)\cap B)=\emptyset$$

Absurdo entonces no puede ser que $x \notin \overline{A}$ y $x \notin \overline{B}$

Por lo tanto $x \in \overline{A}$ o $x \in \overline{B}$ luego $x \in \overline{A} \cup \overline{B}$

Creo que no vale la generalización

Por ejemplo consideremos los conjuntos $A_n = (\frac{1}{n}, 2]$. Luego $0 \in \overline{\bigcup_n A_n}$

Vale por que podemos construír una sucesión $x_j \subseteq \bigcup_{n \in \mathbb{N}} A_n$ tal que $x_j \to 0$

La podemos armar por ejemplo dando $x_1 = 2$ y despues $x_j \in A_j \setminus A_{j-1} \neq \emptyset$

Pero por otro lado $\forall n \in \mathbb{N} \quad 0 \notin \overline{A}_n$ por lo tanto $0 \notin \bigcup_{n \in \mathbb{N}} \overline{A}_n$

 \supseteq) Sea $x \in \overline{A} \cup \overline{B}$ supongamos $x \in \overline{A}$ luego $\forall r > 0$ $B(x, r) \cap A \neq \emptyset$

Entonces dado que $B(x,r) \cap A \subseteq B(x,r) \cap (A \cup B)$

Tenemos $B(x,r) \cap (A \cup B) \neq \emptyset$ por lo que $x \in \overline{A \cup B}$

Esta se puede generalizar facilmente a infinitos

(f) $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$

Proof. Sea $x \in \overline{A \cap B}$ entonces $\forall r > 0$ $B(x,r) \cap (A \cap B) \neq \emptyset$

Entonces por asociatividad $(B(x,r)\cap A)\cap B\neq\emptyset$

Entonces tenemos $\forall r > 0$ $B(x,r) \cap A \neq \emptyset$ por lo que $x \in \overline{A}$

Lo mismo podemos hacer con B. Entonces $x \in \overline{A} \cap \overline{B}$

No vale la vuelta:

Sea
$$A = \mathbb{Q} \ y \ B = \mathbb{R} \setminus \mathbb{Q} \quad \overline{A \cap B} = \overline{\emptyset} = \emptyset \neq \mathbb{R} = \mathbb{R} \cap \mathbb{R} = \overline{\mathbb{Q}} \cap \overline{\mathbb{R} \setminus \mathbb{Q}} = \overline{A} \cap \overline{B} \quad \Box$$

(g) $x \in \overline{A} \iff \text{existe una sucesión } (x_n)_{n \in \mathbb{N}} \subseteq A \text{ tal que } x_n \longrightarrow x$

Proof. \Rightarrow) Sea $x \in \overline{A}$ entonces $\forall n \in \mathbb{N}$ $B(x, \frac{1}{n}) \cap A \neq \emptyset$

Entonces $\forall n \in \mathbb{N}$ existe $a_n \in A \cap B(x, \frac{1}{n})$ entonces $a_n \in A$ y $a_n \in B(x, \frac{1}{n})$

Que es lo mismo que decir $\forall n \in \mathbb{N} \quad \exists a_n \in A \text{ tal que } d(x, a_n) \leq \frac{1}{n}$

Ademas podemos ver que $d(x, a_n) \leq d(x, a_{n_0})$ si $n \geq n_0$.

Esto vale por que $B(x, \frac{1}{n}) \subseteq B(x, \frac{1}{n_0})$

Ahora dado cualquier ϵ sabemos que $\exists n_0 \in \mathbb{N}$ tal que $\frac{1}{n_0} \leq \epsilon$

Por lo tanto $\forall \epsilon > 0$ $\exists n_0$ tal que $\forall n \geq n_0$ $d(x, a_n) \leq d(x, a_{n_0}) \leq \frac{1}{n_0} \leq \epsilon$

Juntando todo $\forall \epsilon > 0 \quad \exists n_0 \in \mathbb{N} \text{ tal que } d(x, a_n) \leq \epsilon \quad \forall n \geq n_0$

Entonces $a_n \to x$

 \Leftarrow) Sea $a_n \in A \quad \forall n \in \mathbb{N} \text{ tal que } a_n \to x$

Entonces $\forall \epsilon > 0 \quad \exists a_n \in A \text{ tal que } d(x, a_n) \leq \epsilon$

Luego
$$\forall \epsilon > 0$$
 tenemos $a_n \in B(x, \epsilon)$ con $a_n \in A$
Por lo que $B(x, \epsilon) \cap A \neq \emptyset$
Entonces $x \in \overline{A}$

- 3. Probar las siguientes propiedades que relacionan interiór y clausura:
 - (a) $(X \setminus A)^{\circ} = X \setminus \overline{A}$

Proof. \subseteq) Sea $x \in (X \setminus A)^{\circ}$ entonces existe r > 0 tal que $B(x, r) \subseteq (X \setminus A)$

Entonces $B(x,r) \cap A = \emptyset$ luego $x \notin \overline{A}$ y sabemos que $x \in X$

Entonces $x \in X \setminus \overline{A}$

 \supseteq) Sea $x \in X \setminus \overline{A}$ entonces $x \notin \overline{A}$

Entonces $\exists r > 0 \quad B(x,r) \cap A = \emptyset$

Por lo tanto $B(x,r) \subseteq X \setminus A$ luego $x \in (X \setminus A)^{\circ}$

(b) $\overline{X \setminus A} = X \setminus A^{\circ}$

Proof. Sea
$$x \in X \setminus A^{\circ} \iff x \notin A^{\circ} \iff \forall r > 0 \quad B(x,r) \not\subseteq A$$

 $\iff \forall r > 0 \quad B(x,r) \cap (X \setminus A) \neq \emptyset \iff x \in \overline{X \setminus A}$

(c) ¿Es cierto que vale $\overline{A} = \overline{A^{\circ}}$?

Proof. Si
$$A \subseteq \mathbb{R}$$
 con $A = \{1\}$ entonces $\overline{A} = \{1\} \neq \emptyset = \overline{\emptyset} = \overline{A^{\circ}}$

- (d) ¿Es cierto que vale $A^{o} = (\overline{A})^{o}$? $\mathbb{Q}^{o} = \emptyset \neq \mathbb{R} = \mathbb{R}^{o} = (\overline{\mathbb{Q}})^{o}$
- 4. Probar las siguientes propiedades de la frontera de un conjunto
 - (a) $\partial A = \overline{A} \cap \overline{X \setminus A}$

Proof.
$$\subseteq$$
) $x \in \partial A \iff \forall r > 0$ $B(x,r) \cap A \neq \emptyset \ y \ B(x,r) \cap A^c \neq \emptyset$ $\iff x \in \overline{A} \ y \ x \in \overline{A^c} = \overline{X \setminus A} \iff x \in \overline{A} \cap \overline{X \setminus A}$

(b) ∂A es cerrado

Proof. Esto es equivalente a ver que $\partial A = \overline{\partial A}$ una de las inclusiones es trivial

Veamos que $\overline{\partial A} \subseteq \partial A$. Sea $x \in \overline{\partial A}$ entonces $\forall r > 0$ $B(x,r) \cap \partial A \neq \emptyset$

Luego $\forall r > 0$ B(x,r) tenemos un $y \in \partial A$ tal que $y \in B(x,r)$

Como $y \in B(x,r)$ que es abierto $\exists r'$ tal que $B(y,r') \subseteq B(x,r)$

Como $y\in\partial A$ entonces $\forall r$ tenemos $B(y,r)\cap A\neq\emptyset$ y $B(y,r)\cap A^c\neq\emptyset$

En particular vale para r', entonces $B(y,r') \cap A \neq \emptyset$ y $B(y,r') \cap A^c \neq \emptyset$

Entonces $\emptyset \neq B(y,r') \cap A \subseteq B(x,r) \cap A$ y tambien sucede con A^c

Entones $x \in \partial A$

Otra opción es usar el ejercicio de arriba, como $\partial A = \overline{A} \cap \overline{X \setminus A}$ que es una intersección de dos cerrados entonces es cerrado

(c)
$$\partial A = \partial (X \setminus A)$$

Proof. Esto sale por definición usando que $A^c = X \setminus A$ y que $A = (X \setminus A)^c$

Ejercicio 11. Sea (X,d) un espacio métrico y sea $A \subseteq X$ un conjunto numerable. Probar que $\#\overline{A} < \mathfrak{c}$

Proof. Sea $B = \{(a_n)_n \subseteq A : a_n \text{ converge}\}$. Tenemos una sobreyección $f : B \to \overline{A}$ donde $f(a_n) = a \text{ (con } a_n \to a)$

Es evidentemente sobrevectiva, por que para cualquier $x \in \overline{A}$ tenemos un sucesión contenida en A que converge a x

Esta sucesión está en B por ser una sucesión convergente contenida en A

Luego x tiene preimagen

Luego
$$\#\overline{A} \le \#B \le \#A^{\mathbb{N}} \le \#\mathbb{N}^{\mathbb{N}} = \mathfrak{c}$$

Ejercicio 12. Sea (X, d) un espacio métrico y sean $G \subseteq X$ abierto y $F \subseteq X$ cerrado. Probar que $F \setminus G$ es cerrado y $G \setminus F$ es abierto

Proof. Primero voy a probar que complemento de un abierto es cerrado. Sea A abierto, supongamos que A^c es abierto.

Supongo A^c no es cerrado, entonces existe algún punto de acumulación x de A^c tal que $x \notin A^c$ luego $x \in A$

Pero como $x \in A$ que es abierto entonces existe r > 0 tal que $B(x,r) \subseteq A$, contradiciendo que x era punto de acumulación de A^c

Por lo tanto, A^c contiene todos sus puntos de acumulación entonces $A^c = \overline{A}$ por lo que es cerrado.

Que complemento de un cerrado A es abierto, sale de forma similar, suponiendo que el A^c no es abierto, entonces tenemos algún punto $x \in A^c$ que no es interiór

Por lo tanto para todo radio la bola de centro x no está contenida enteramente en el complemento, luego podemos armar una sucesion de A que converga a x y como A es cerrado el límite de la sucesión tiene que estar en A lo que es absurdo

Sabemos que $G \setminus F = G \cap F^c$ como F cerrado entonces F^c es abierto, por lo tanto tenemos una intersección de dos abiertos que sabemos que es abierta

Sabemos que $F \setminus A = F \cap G^c$ como G es abierto entonces G^c es cerrado, por lo tanto tenemos una intersección de dos cerrados que sabemos que es cerrada

Ejercicio 13. Sea (X,d) un espacio métrico. Dados $a \in X$ y $r \in \mathbb{R}_{>0}$, llamamos bola cerrada de centro a y radio r al conjunto $\overline{B}(a,r) = \{x \in X : d(x,a) < r\}$

1. Probar que $\overline{B}(a,r)$ es un conjunto cerrado y que $\overline{B(a,r)} \subseteq \overline{B}(a,r)$

Proof. Sea $y \in X \setminus \overline{B}(x,r)$, entonces d(x,y) > r por lo tanto $\epsilon = d(x,y) - r > 0$ Ahora sea $z \in B(y, \epsilon)$ entonces d(z, x) + d(z, y) > d(x, y)Luego $d(z, x) \ge d(x, y) - d(z, y) > d(x, y) - \epsilon = r$

Luego
$$d(z, x) \ge d(x, y) - d(z, y) > d(x, y) - \epsilon = r$$

Entonces $z \in X \setminus \overline{B}(x,r) \quad \forall z \in B(y,\epsilon)$

Por lo que $\forall y \in X \setminus \overline{B}(x,r) \quad \exists B(y,\epsilon) \text{ tal que } B(y,\epsilon) \subseteq X \setminus \overline{B}(x,r)$

Finalmente $X \setminus \overline{B}(x,r)$ es abierto entonces $\overline{B}(x,r)$ es cerrado

Como sabemos que $B(x,r) \subseteq \overline{B}(x,r)$ y ahora sabiendo que $\overline{B}(x,r)$ cerrado

Entonces
$$\overline{B(x,r)} \subseteq \overline{B}(x,r)$$

2. Dar un ejemplo de un espacio métrico y una bola abierta B(a,r) cuya clausura no sea $\overline{B}(a,r)$

Esto es dar un ejemeplo donde $\overline{B(x,r)} \not\supseteq \overline{B}(x,r)$

Consideremos el espacio métrico (\mathbb{Z}, δ) donde δ es la distancia discreta

Para cualquier $x \in \mathbb{Z}$ tenemos $\overline{B(x,1)} = \overline{\{x\}} = \{x\} \not\supseteq \mathbb{Z} = \overline{B}(x,1)$

Ejercicio 14. Sean (X, d) un espacio métrico, p un punto de X y a, b números reales tales que 0 < a < b. Probar que:

i. $\{x \in X/a < d(x,p) < b\}$ es abierto

Proof. Primero sea $A_1 = \{x \in X : d(x,p) < b\}$ entonces $A_1 = B(x,b)$ que ya demostramos que es abierta

Y luego consideremos $A_2 = \{x \in X : a < d(x, p)\}$

Ahora si miramos $A_2^c=\{x\in X:d(x,p)\leq a)\}=\overline{B}(x,a)$ la bola cerrada que ya demostramos que es cerrada

Entonces A_2 tiene que ser abierto

Pero $A = A_1 \cap A_2$ entonces por ser intersección de abiertos es abierto

ii. $\{x \in X/a \le d(x,p) \le b\}$ es cerrado. Sale igual que el i.

Ejercicio 15. Sean (X, d_1) e (Y, d_2) espacios métricos. Se considera el espacio métrico $(X \times Y, d)$, donde la d es la métrica definida en el Ejercicio 12. Probar que para $A \subseteq X$ y $B \subseteq Y$ valen:

1. $(A \times B)^{\circ} = A^{\circ} \times B^{\circ}$

Proof.

Lema 1. Sean U y V abiertos de X e Y respectivamente entonces $U \times V$ es abierto de $X \times Y$.

Proof. Sea $(x,y) \in U \times V$. como $x \in U$ que es abierto existe $B(x,r_1) \subseteq U$

Y lo mismo con y existe $B(y, r_2) \subseteq V$

Ahora si tomamos $r = \min\{r_1, r_2\}$.

Tenemos B((x,y),r), veamos que está contenida en $U \times V$ por que entonces habiendo tomado cualquier $(x,y) \in U \times V$ estaríamos encontrando $B((x,y),r) \subseteq U \times V$. Probando que $U \times V$ es abierto

Sea $(x',y') \in B((x,y),r)$ luego $r > d((x,y),(x',y')) = d_1(x,x') + d_2(y,y')$. Ambos sumandos son positivos por ser distancias. Luego ambos sumandos tienen que ser menores que r

Entonces $d_1(x, x') < r \le r_1$ entonces $x' \in B(x, r_1) \subseteq U$

Y también $d_2(y, y') < r \le r_2$ entonces $y' \in B(y, r_2) \subseteq V$

Entonces $(x', y') \in U \times V$ luego $B_r(x, y) \subseteq U \times V$

Entonces para cualquier $(x,y) \in U \times V$ encontramos $B_r(x,y) \subseteq U \times V$

Luego $U \times V$ es abierto.

Continua el ejercicio:

Luego como A° y B° abierto entonces $A^{\circ} \times B^{\circ}$ abierto por lema

Luego dado que $A^{\circ} \times B^{\circ} \subseteq A \times B$ y $A^{\circ} \times B^{\circ}$ es abierto. Entonces $A^{\circ} \times B^{\circ} \subseteq (A \times B)^{\circ}$

Veamos $A^{o} \times B^{o} \supseteq (A \times B)^{o}$

Sea $(x,y) \in (A \times B)^{\circ}$ entonces existe r > 0 $B_r(x,y) \subseteq (A \times B)$

Entonces si $x' \in B(x, \frac{r}{2})$ e $y' \in B(y, \frac{r}{2})$

Luego $d((x',y')(x,y)) = d_1(x',x) + d_2(y',y) < \frac{r}{2} + \frac{r}{2} = r$

entonces $(x', y') \in B_r(x, y) \subseteq A \times B$

Luego $x' \in A$ y tambien $y' \in B$

Por lo tanto $B(x, \frac{r}{2}) \subseteq A$ y por otro lado $B(y, \frac{r}{2}) \subseteq B$

Entonces $x \in A^{o}$ e $y \in B^{o}$ luego $(x, y) \in A^{o} \times B^{o}$

2. $\overline{A \times B} = \overline{A} \times \overline{B}$

Proof. Siguiendo las ideas anteriores probemos que F y G cerrados entonces $F \times G$ es cerrado

Sea Fe Gcerrados entoncse $X \setminus F$ y $Y \setminus G$ son abiertos

Ahora como sabemos que X e Y son abiertos (y cerrados, pero no nos importa)

Luego $X \setminus F \times Y$ es abierto por ser producto de dos abiertos $X \setminus F$ e Y.

Pero $X \setminus F \times Y = X \times Y \setminus (F \times Y)$ y esto es el complemento de $F \times Y$

Entonces el complemento de $F\times Y$ es abierto , por lo que $F\times Y$ es cerrado

De la misma manera $X \times Y \setminus G = X \times Y \setminus X \times G$ abierto entonces $X \times G$ es cerrado

Luego $(X\times G)\cap (F\times Y)=F\times G$ es intersección de cerrado

Entonces $F \times G$ es cerrado

Luego usando esto tenemos que \overline{A} y \overline{B} son cerrados por lo que $\overline{A} \times \overline{B}$ es cerrado

Luego $A \times B \subseteq \overline{A} \times \overline{B}$ entonces $\overline{A \times B} \subseteq \overline{\overline{A} \times \overline{B}} = \overline{A} \times \overline{B}$

Veamos la otra inclusión. Tenemos $(x,y) \in \overline{A} \times \overline{B}$ queremos ver $(x,y) \in \overline{A \times B}$

Dado cualquier r > 0 queremos que $B(r, (x, y)) \cap A \times B \neq \emptyset$

Pero sabemos que $\forall r'>0$ en particular para $\frac{r}{2}$ se da $B(x,\frac{r}{2})\cap A\neq\emptyset$ y también $B(y,\frac{r}{2})\cap B\neq\emptyset$

Recordemos $((A \times B) \cap (C \times D) = A \cap C \times B \cap D)$

Entonces $\emptyset \neq B(x, \frac{r}{2}) \cap A \times B(y, \frac{r}{2} \cap B) = (B(x, \frac{r}{2}) \times B(y, \frac{r}{2})) \cap (A \times B)$

Veamos que $B(x, \frac{r}{2}) \times B(y, \frac{r}{2}) \subseteq B((x, y), r)$

Sea $(x', y') \in B(x, \frac{r}{2}) \times B(y, \frac{r}{2})$ entonces $x' \in B(x, \frac{r}{2})$ e $y' \in B(y, \frac{r}{2})$

 $d(x', x) < \frac{r}{2}$ y también d(y, y') < r

Entonces $d((x',y')(x,y)) = d(x',x) + d(y',y) < \frac{r}{2} + \frac{r}{2} = r$

Por lo tanto $(x', y') \in B((x, r), r)$ luego $B(x, \frac{r}{2}) \times B(y, \frac{r}{2}) \subseteq B((x, y), r)$

Finalmente juntando todo lo que teníamos llegamos a

$$\emptyset \neq B(x, \frac{r}{2}) \times B(y, \frac{r}{2}) \cap (A \times B) \subseteq B((x, y), r) \cap A \times B$$

Esto lo podemos hace para cualquie radio, por lo tanto $(x,y) \in \overline{A \times B}$

Ejercicio 16. Sea (X, d) un espacio métrico y sean A, B subconjunto de X.

- 1. Probar las siguientes propiedades del derivado de un conjunt:
 - (a) A' es cerrado.

Proof. Sea $(a_n)_{n\in\mathbb{N}}\subseteq A'$ convergente tal que $a_n\to a$, queremos ver que $a\in A'$ esto nos diría que $A'=\overline{A'}$

Como $a_n \to a$ dado un $\epsilon > 0$ existe n_0 tal que $\forall n > n_0 \quad d(a, a_n) \le \epsilon$

Equivalentemente para cualquier $\epsilon > 0$ existe n_0 tal que $\forall n \geq n_0$ $a_n \in B(a, \epsilon)$.

Pero tomemos solo un a_n llamemos o a_j tal que $a_j \in B(a, \epsilon)$

Como $a_j \in B(a, \epsilon)$ es abierto entonces existe r' tal que $B(a_j, r') \subseteq B(a, r)$

Tambien sabemos que $a_j \in A'$ entonces existe $(x_n)_{n \in \mathbb{N}} \subseteq A$ tal que $x_n \to a_j$

Sea $\epsilon = r'$ tenemos que exsite n_1 tal que $\forall n \geq n_1 \ d(x_n, a_j) \leq r'$

Entonces $\forall n \geq n_1 \ x_n \in B(a_j, r')$

Por lo tanto hay numerables $x_n \in A$ tal que $x_n \in B(a_j, r') \subseteq B(a, r)$

Entonces hay numerables $x_n \in A$ tal que $x_n \in B(a, r)$

Por lo tanto $B(a,r) \cap A$ es numerable.

Entonces a es un punto de acumulación, $a \in A'$

Luego $A' = \overline{A'}$ entonces A' es cerrado

Otra forma:

Sabemos que $A' \subseteq \overline{A'}$ veamos que $\overline{A'} \subseteq A'$

Tomemos $p \in \overline{A'}$ queremos ver que es punto de acumulación de A entonces $p \in A'$

Como $p \in \overline{A'}$ entonces $B(p,r) \cap A' \neq \emptyset \quad \forall r > 0$

Una opción es que $p \in A'$ y ya estaríamos. La otra opción es que $p \notin A'$

Entonces existe un $p_1 \in A'$ tal que $d(p_1, p) < \frac{r}{2}$ con $p_1 \neq p$

Además $p_1 \in A'$ luego $(B(p_1, \frac{r}{2}) \setminus \{p_1\}) \cap A \neq \emptyset$

Entonces $\exists a \in A \text{ tal que } d(a, p_1) < \frac{r}{2}$

Ahora $d(a, p) \le d(a, p_1) + d(p_1, p) = \frac{r}{2} + \frac{r}{2} = r$

Entonces $a \in B(p,r)$ además $a \in A$ y $a \neq p$ por lo tanto $(B(p,r) \setminus \{p\}) \cap A \neq \emptyset$

Y esto lo podemos hacer para cualquier r.

Finalmente p es punto de acumulación de A o lo que es lo mismo $p \in A'$

(b) $A \subseteq B \Longrightarrow A' \subseteq B'$

Proof. Sea $x \in A'$ entonces existe $(x_n)_{n \in \mathbb{N}} \subseteq A$ tal que $x_n \to x$

Como $A \subseteq B$ la misma sucesión $(x_n)_n \subseteq B$ entonces $x \in B'$

Esto se aprovecha de algo que se prueba en este mismo ejercicio asi que voy a dar otra solución sin usarlo.

Sea
$$a \in A'$$
 entonces $\emptyset \neq (B(a,r) \setminus \{a\}) \cap A \subseteq (B(a,r) \setminus \{a\}) \cap B \quad \forall r > 0$
Entonces $a \in B'$

(c) $(A \cup B)' = A' \cup B'$

Proof. \subseteq) Sea $x \in (A \cup B)'$ entonces existe $(x_n)_n \subseteq A \cup B$ tal que $x_n \to x$

Entonces $x_n \in A$ o $x_n \in B$ para infinitos términos, si no tendría infinitos términos fuera de A y fuera de B lo que es absurdo. Quizas para los dos, pero no importa. Spd $x_n \in A$ para infinitos términos entonces me quedo con todos los términos de

Spd $x_n \in A$ para infinitos terminos entonces me quedo con todos los terminos de x_n tal que $x_n \in A$ esto es una subsucesión de x_n entonces converge a x por lo tanto tengo una sucesión contenida en A que converge a x luego $x \in A'$

Entonces $x \in A' \cup B'$

- \supseteq) Sea $x \in A' \cup B'$ spd $x \in A'$ luego existe $(a_n)_{n \in \mathbb{N}} \subseteq A$ tal que $a_n \to a$ Sin usar sucesiones:
- \subseteq) Sea $x \in (A \cup B)'$. Entonces:

$$\emptyset \neq (B(x,r) \setminus \{x\}) \cap (A \cup B) = ((B(x,r) \setminus \{x\}) \cap A) \cup ((B(x,r) \setminus \{x\}) \cap B)$$

Entonces $B(x,r) \setminus \{x\} \cap A \neq \emptyset$ o $B(x,r) \setminus \{x\} \cap B \neq \emptyset$ $\forall r > 0$

Supongamos que $x \notin A' \cup B'$ entonces $x \notin A'$ y $x \notin B'$

Luego $\exists r_1 > 0$ tal que $(B(x, r_1) \setminus \{x\}) \cap A = \emptyset$

También $\exists r_2 > 0$ tal que $(B(x, r_2) \setminus \{x\}) \cap B = \emptyset$

Tomamos $r = min\{r_1, r_2\}$

Entonces $(B(x,r) \setminus \{x\} \cap A = \emptyset)$ y también $(B(x,r) \setminus \{x\} \cap B = \emptyset)$

Lo que es absurdo, por lo tanto $x \in A' \cup B'$

 \supseteq) Sea $x \in A' \cup B'$ entonces spd $x \in A'$ por lo tanto $B(x,r) \setminus \{x\} \cap A \neq \emptyset \quad \forall r > 0$ Pero entonces $B(x,r) \setminus \{x\} \cap (A \cup B) \neq \emptyset \quad \forall r > 0$ por lo tanto $x \in (A \cup B)'$

(d)
$$\overline{A} = A \cup A'$$

Proof. Primero notemos que si $x \in A'$ entonces $\forall r > 0$ $B(x,r) \cap A$ es infinita Por lo tanto diferente del vacio entonces $x \in \overline{A}$ entonces $A' \subseteq \overline{A}$

Otra forma de verlo es $\emptyset \neq B(x,r) \setminus \{x\} \cap A \subseteq B(x,r) \cap A \quad \forall r > 0$

Luego $x \in \overline{A}$ entonces $A' \subseteq \overline{A}$

- \supseteq) $A \cup A' \subseteq \overline{A} \cup A' \subseteq \overline{A} \cup \overline{A} = \overline{A}$
- \subseteq) Sea $x \in \overline{A}$ entonces $\forall r > 0$ $B(x,r) \cap A \neq \emptyset$

Si $x \in B(x,r) \cap A \quad \forall r > 0$ entonces $x \in A$ luego $x \in A \cup A'$

Si $x \notin B(x,r) \cap A \quad \forall r > 0$ entonces $\emptyset \neq B(x,r) \cap A = (B(x,r) \setminus \{x\}) \cap A$

Por lo tanto $x \in A'$ luego $x \in A \cup A'$

(e)
$$(\overline{A})' = A'$$

Proof. \supseteq) Usando el b) tenemos que como $A \subseteq \overline{A} \Rightarrow A' \subseteq (\overline{A})'$

 \subseteq) Sea $x \in (\overline{A})'$ entonces existe $(x_n)_{n \in \mathbb{N}} \subseteq \overline{A} \setminus \{x\} = (A \cup A') \setminus \{x\}$ tal que $x_n \to x$ Luego x_n tiene infinitos términos en A o en A' o en las dos

Si tiene infinitos en A podemos armar una subsucesión $(x_{n_j})_{n\in\mathbb{N}}\subseteq A$ como es subsucesión $x_{n_j}\to x$ entonces $x\in A'$

Si tiene infinitos en A' similarmente llegamos a que $x \in (A')' \subseteq A'$

Si tiene infinitos en las dos , podemos usar cualquiera de los dos argumentos

Observación. $(A')' \subseteq A'$

Proof. A' es cerrado por lo tanto para cualquier $(x_n)_n \subseteq A'$ tal que $x_n \to x$ sucede que $x \in A'$. Si no , no sería cerrado

Luego A' contiene a todos sus puntos de acumulación por lo tanto $(A')' \subseteq A'$

Sin usar sucesiones:

Sea $x \in (\overline{A})'$ entonces $\emptyset \neq (B(x,r) \setminus \{x\}) \cap \overline{A} = (B(x,r) \setminus \{x\}) \cap (A \cup A')$

Entonces $((B(x,r)\setminus\{x\})\cap A)\cup((B(x,r)\setminus\{x\})\cap A')\neq\emptyset$

Por lo tanto $(B(x,r) \setminus \{x\}) \cap A \neq \emptyset$ o $(B(x,r) \setminus \{x\}) \cap A' \neq \emptyset$

Si pasa la segunda entonces $x \in (A')' \subseteq A'$ si no $x \in A'$ por lo tanto $x \in A'$

Observación. $(A')' \subseteq A'$. Sea $x \in (A')'$

Entonces $\emptyset \neq (B(x,r) \setminus \{x\}) \cap A' \subseteq B(x,r) \cap A' \quad \forall r > 0$

Por lo tanto $x \in \overline{A'}$ pero como sabemos que A' es cerrado entonces $\overline{A'} = A'$ Luego $x \in A'$ 2. Probar que $x \in X$ es un punto de acumulación de $A \subseteq X$ si y solo si existe una sucesión $(x_n)_{n \in \mathbb{N}} \subseteq A$ tal que $x_n \to x$ y $(x_n)_{n \in \mathbb{N}}$ no es casi constante.

Proof. ⇒) Sabemos que si $x \in A'$ entonces $\forall r > 0$ $B(x,r) \cap A$ es infinito entonces $(B(x,r) \setminus \{x\}) \cap A$ es también infinta.

Luego definamos x_n tal que $x_n \in B(x, \frac{1}{n}) \setminus \{x\} \cap A$ para cada $n \in \mathbb{N}$

Ahora afirmo $x_n \to x$ veamosló

Sea $\epsilon > 0$ sabemos por arquimedianidad que exsite n_0 tal que $\frac{1}{n_0} \leq \epsilon$

Luego por como construí x_n tengo que $x_n \in B(x, \frac{1}{n_0}) \quad \forall n \geq n_0$

Entonces dado cualquier $\epsilon > 0$ tenemos que existe $n_0 \in \mathbb{N}$ tal que $d(x_n, x) \le \epsilon \quad \forall n \ge n_0$

Por lo tanto $\forall \epsilon > 0$ tenemos que existe $n_0 \in \mathbb{N}$ tal que $d(x, x_n) \leq \epsilon \quad \forall n \geq n_0$

Entonces $x_n \to x$. Además x_n no puede ser casi constante, si lo fuera existiría un n_0 tal que $x_n = x \quad \forall n \geq n_0$ pero esto es absurdo por que sabemos que $x_n \neq x \quad \forall n \in \mathbb{N}$

Si en cambio existiera un n_0 tal que $x_n = a \neq x \quad \forall n \geq n_0$ luego a_n no convergería a x

Ejercicio 17. Hallar interiór, clausura, conjunto derivado y frontera de cada uno de los siguientes subconjuntos de \mathbb{R} . Determinar cuales son abiertos o cerrado

$$[0,1]$$
 ; $(0,1)$; \mathbb{Q} ; $\mathbb{Q} \cap [0,1]$; \mathbb{Z} ; $[0,1) \cup \{2\}$

Proof. 1. [0,1] Es facil ver que el interiór es (0,1) viendo que cada punto es interión tomando un punto y usando como radio el minimo de las distancias hacia 0 y hacia 1

La clausura es también simple por que todo punto en [0,1] cumple trivialmente que la intersección con [0,1] es diferente de vacía

Todos los puntos en [0,1] son de acumlación usando la sucesión constante

La frontera es el conunto $\{0,1\}$ es facíl ver que son de la frontera y es facil ver que cualquier otro no cumple ser de la frontera

Usando esto es facil ver que [0,1] es cerrado

Para (0,1) el análisis es similar

 \mathbb{Q} por densidad de \mathbb{I} es facil ver que dado un $x \in \mathbb{Q}$ $\forall r > 0$ $B(x,r) \cap \mathbb{I} \neq \emptyset$

Por ende ninguna bola puede estar contenida en $\mathbb Q$ y entonces su interiór es vacío

Esta claro que todos $x \in \mathbb{Q}$ es de acumulación , usando la sucesión constante, pero además todo $x \in \mathbb{I}$ es de acumulación de \mathbb{Q} por densidad de racionales es facil de probar

Sabiendo que $\overline{\mathbb{Q}} = \mathbb{Q} \cup \mathbb{Q}'$ tenemos que $\overline{\mathbb{Q}} = \mathbb{Q} \cup \mathbb{I} = \mathbb{R}$

$$\partial \mathbb{Q} = \overline{\mathbb{Q}} \setminus \mathbb{Q}^o = \mathbb{R} \setminus \emptyset = \mathbb{R}$$

Un análisis muy similar podemos hacer con $\mathbb{Q} \cap [0, 1]$

 $\mathbb Z$ devuelta su interiór es vacío, es facíl ver que todos sus puntos son aislados, entonces no pueden ser de acumulación

Luego $\mathbb{Z}' = \emptyset$ entonces tambien tenemos que $\overline{\mathbb{Z}} = \mathbb{Z} \cup \mathbb{Z}' = \mathbb{Z}$

$$\partial \mathbb{Z} = \overline{\mathbb{Z}} \setminus \mathbb{Z}^o = \overline{\mathbb{Z}} = \mathbb{Z}$$

 $A = [0,1) \cup \{2\}$ tenemos que 2 no puede ser interiór usando $\forall r > 0$ $B(2,r) \not\subseteq A$

Lo mismo con 0 para cualquier B(x,r) sabemos que existe un x<0 tal que $x\in B(0,r)$ por ende $B(0,r)\not\subseteq A$ el $1\not\in A$ por lo tanto $1\not\in A^{\mathrm{o}}$

Para el resto de los puntos y es facil encontrar un radio usando d(y, 1) o d(y, 0)

Finalmente tenemos $A^{o} = (0, 1)$

Es fácil ver que 0 son puntos de acumulación usando una sucesión por derecha

Luego usando una sucesión de numeros menores que 1 vemos que 1 es de acumulación

Entonces A' = [0, 1]

Luego
$$\overline{A} = A \cup A' = [0,1] \cup \{2\}$$

$$\partial A = \overline{A} \setminus A^{\rm o} = \{0,1,2\}$$

Ejercicio 18. Caracterizar los abiertos y los cerrados de \mathbb{Z} considerado como espacio métrico con la métrica inducida por la usual de \mathbb{R} . Generalizar a un subespacio discreto de un espacio métrico X.

Proof.

Ejercicio 19. Sea (X, d) un espacio métrico y sean $(x_n)_{n \in \mathbb{N}}$, $(y_n)_{n \in \mathbb{N}}$ sucesiones en X.

1. Si $\lim x_n = x$ y $\lim y_n = y$, probar que $\lim_{n \to \infty} d(x_n, y_n) = d(x, y)$

Proof. Sabemos que $d(x_n, y_n) \le d(x_n, x) + d(x, y_n) \le d(x_n, x) + d(x, y) + d(y, y_n)$

Entonces tenemos que $\lim_{n\to\infty} d(x_n, y_n) \le \lim_{n\to\infty} (d(x_n, x) + d(x, y) + d(y, y_n))$

Como todos los límites del lado derecho exiten los puedo separar $\lim d(x_n, y_n) \leq d(x, y)$

Con la misma idea $d(x,y) \le d(x,x_n) + d(x_n,y) \le d(x,x_n) + d(x_n,y_n) + d(y_n,y)$

entonces $-d(x_n, y_n) \le d(x, x_n) - d(x, y) + d(y_n, y)$

 $\lim -d(x_n, y_n) \le \lim (d(x, x_n) - d(x, y) + d(y_n, y))$

Todos los límites existen entonces separando $-\lim d(x_n, y_n) \le -d(x, y)$

Finalmente $\lim d(x_n, y_n) \ge d(x, y)$

Entonces $d(x_n, y_n) = d(x, y)$

2. Si $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}$ son de sucesiones de Cauchy de X, probar que la sucesión real $(d(x_n,y_n))_{n\in\mathbb{N}}$ es convergente

Proof. Sabemos que ambas sucesiones son de cauchy entonces

Dado un $\epsilon > 0$ tenemos que existe $n_0 \in \mathbb{N}$ tal que $d(x_n, x_m) \leq \frac{\epsilon}{2} \quad \forall n, m \geq n_0$

Y con ese mismo dado $\epsilon > 0$ existe $n_1 \in \mathbb{N}$ tal que $d(y_k, y_j) \leq \frac{\epsilon}{2} \quad \forall k, j \geq n_1$

Ahora si tomamos $n_2 = \max\{n_1, n_0\}$

Tenemos ambas $d(x_n, x_m) \leq \frac{\epsilon}{2}$ y $d(y_k, y_j) \leq \frac{\epsilon}{2}$ $\forall n, m, j, k \geq n_2$

Teniendo esto $d(x_n, y_n) \le d(x_n, x_s) + d(x_s, y_n) \le d(x_n, x_s) + d(x_s, y_s) + d(y_s, y_n)$

Entonces dado $\epsilon > 0$ usando el n_2 tenemos $d(x_n, y_n) \leq \frac{\epsilon}{2} + d(x_s, y_s) + \frac{\epsilon}{2} \quad \forall n, s \geq n_2$

Entonces dado el $\epsilon > 0$ tenemos $n_2 \in \mathbb{N}$ tal que $d(x_n, y_n) \leq d(x_s, y_s) + \epsilon \quad \forall n, s \geq n_2$

Hacieno el mismo proceso con $d(x_s, y_s)$ llegamos a que $d(x_s, y_s) - \epsilon \leq d(x_n, y_n)$

Luego juntando estas dos ideas podemos notar que dado un $\epsilon > 0$ tenemos

$$\exists n_2 \in \mathbb{N} \text{ tal que } |d(x_n, y_n) - d(x_s, y_s)| \leq \epsilon \quad \forall n, s > n_2$$

Sabemos que para todo $\epsilon > 0$ podemos hacer el mismo proceso y encontrar un n_2

$$\forall \epsilon > 0 \quad \exists n_2 \in \mathbb{N} \text{ tal que } |d(x_n, y_n) - d(x_s, y_s)| \le \epsilon \quad \forall n, s \ge n_2$$

Pero esto nos dice que $d(x_n, y_n)$ es de Cauchy y como $d(x_n, y_n) \in \mathbb{R} \quad \forall n \in \mathbb{N}$ y \mathbb{R} es completo entonces $d(x_n, y_n)$ converge

Ejercicio 20. Un subconjunto de A de un espacio métrico de X se dice G_{δ} (respectivamente F_{σ}) si es intersección de una sucesión de abiertos (respectivamente unión de una sucesión de cerrados) de X

1. Probar que el complemento de un G_{δ} es un F_{σ}

Proof. Sea $G_{\delta} = \bigcap_{i \in I} G_i$ intersección de abiertos

Luego
$$x \in (\bigcap_{i \in I} G_i)^c = G_\delta^c \iff x \notin \bigcap_{i \in I} G_i \iff$$

existe algún G_i tal que $x \notin G_i \iff$ existe algún G_i tal que $x \in G_i^c$

$$\iff x \in \bigcup_{i \in I} G_i^c \iff x \in F_{\sigma}$$

Este último sí y solo sí vale por que G_i es abierto, por lo tanto G_i^c es cerrado, luego $\bigcup G_i^c$ es unión de cerrados por lo tanto un F_σ

2. Probar que el complemento de un F_{σ} es un G_{δ}

Proof. Sea $F_{\sigma} = \bigcup_{i \in I} F_i$ unión de cerrados

Luego
$$x \in F_{\sigma}^{c} = (\bigcup_{i \in I} F_{i})^{c} \iff x \notin \bigcup_{i \in I} F_{i}$$

$$\iff \forall i \in I \ x \notin F_i \iff x \in F_i^c \quad \forall i \in I \iff x \in \bigcap_{i \in I} F_i^c \iff x \in G_\delta$$

El último si y solo si vale por que F_i es cerrado luego F_i^c es abierto por lo tanto $\bigcap F_i^c$ es intersección de abiertos entonces es un G_δ

3. Probar que todo cerrado es un G_{δ} . Deducir que todo abierto es un F_{δ}

Proof. Sea F cerrado, definamos U_n

$$U_n = \bigcup_{x \in F} B(x, \frac{1}{n})$$

 U_n es unión de abiertos por lo tanto abierto

Ahora firmo que $F = \bigcap U_n$ osea intersección de abiertos. entonces F es G_δ

Veamosló. $x \in F$ entonces $x \in B(x, \frac{1}{n}) \quad \forall n \in \mathbb{N}$ entonces $x \in U_n \quad \forall n \in \mathbb{N}$

Entonces $y \in \bigcap U_n$

Sea $y \in \bigcap U_n$ entonces $y \in U_n \quad \forall n \in \mathbb{N}$ entonces para cada $n \in \mathbb{N}$ sabemos que y pertenece a alguna de esas bolas, otra forma de decirlo $y \in B(x_n, \frac{1}{n})$ para algún $x_n \in F$ pero entonces dado un $\epsilon > 0$ sabemos que existe un $n_0 \in \mathbb{N}$ tal que $\frac{1}{n_0} \le \epsilon$ pero ademas sabemos que para todo $n > n_0$ sucede $\frac{1}{n} \le \frac{1}{n_0} \le \epsilon$ por ende $d(x_n, y) \le \epsilon \quad \forall n \ge n_0$

Pero entonces x_n converge a y y además $x_n \in F \quad \forall n \in \mathbb{N}$ y como F es cerrado tenemos que $y \in F$

Forma B. Sea G abierto

$$U_n = \bigcup_{x \in X \setminus G} B(x, \frac{1}{n})$$

Luego tenemos $F_n = X \setminus U_n$ que es complemento de abierto por lo tanto cerrado.

Ahora afirmo que $G = \bigcup F_n$ que es unión de cerrados por lo tanto F_{σ}

Veamosló, sea $y \in G$ supongamos $y \notin \bigcup F_n$ entonces $y \notin F_n \quad \forall n \in \mathbb{N}$

Entonces $y \in U_n \quad \forall n \in \mathbb{N}$ por lo tanto $y \in \bigcap U_n$ por el mismo argumento que antes esto implica que $y \in X \setminus G$, lo que es absurdo. Luego $y \in \bigcup F_n$

Sea $y \in \bigcup F_n$ entonces $y \in F_n \quad \forall n \in \mathbb{N}$ entonces $y \notin U_n \quad \forall n \in \mathbb{N}$

Supongamos $y \notin G$ entonces $y \in X \setminus G$ pero entonces $y \in U_n$ para algún $n \in \mathbb{N}$ seguro Lo que es absurdo , entonces $y \in G$

- 4. (a) Exhibir una sucesión de abiertos de \mathbb{R} cuya intersección sea [0,1). Idem con [0,1]
 - (b) Exhibir una sucesión de cerrados de \mathbb{R} cuya unión sea [0,1)
 - (c) ¿Qué conclusión puede obtenerse de estos ejemplos?

Ejercicio 21. a

1. Sea (X,d) un espacio métrico. Se define $d'(x,y) = \frac{d(x,y)}{1+d(x,y)}$. Probar que d' es una métrica en X topológicamente equivalente a d (o sea, ambas dan a lugar a una misma noción de conjunto abierto). Observar que $0 \le d'(x,y) \le 1$ para todo $x,y \in X$

Proof. Consideremos $f = \frac{x}{1+x}$ entonces podemos reescribir $d'(x,y) = f \circ d$ También sabemos que f es creciente dado que su derivada es mayor a $0 \quad \forall x \in \mathbb{R}$

Y f(0) = 0. Estas dos cosas nos dicen que $f \circ d$ es distancia , por lo tanto d' es distancia Veamos que $d' = f \circ d$ y d son topológicamente equivalentes

Sea $y \in B_{d'}(x, \epsilon)$ seguro existe un r > 0 tal que $\epsilon < \frac{r}{r+1}$ entonces $d'(y, x) \le \epsilon \le \frac{r}{r+1}$

$$d'(x,y) = \tfrac{d(y,x)}{1+d(y,x)} \leq \tfrac{r}{r+1} \iff \tfrac{r+1}{r} \leq \tfrac{1+d(y,x)}{d(y,x)} \iff 1+\tfrac{1}{r} \leq \tfrac{1}{d(y,x)} + 1 \iff d(y,x) \leq r$$

Entonces $y \in B_d(x,r)$ por lo tanto $B_{d'}(x,\epsilon) \subseteq B_d(x,r)$

Ahora sea $y \in B_d(x, \epsilon)$ entonces $d(x, y) \le \epsilon$ y seguro existe un $r \ge \epsilon$

Entonces $d(x,y) \le \epsilon \le r$ usando la misma idea llegamos a que entonces $d'(x,y) \le \frac{r}{r+1}$

Luego $y \in B_{d'}(x, \frac{r}{r+1})$ luego $B_d(x, r) \subseteq B_{d'}(x, \frac{r}{r+1})$

2. Sea $(X_n, d_n)_{n \in \mathbb{N}}$ una sucesión de espacios métricos tales que para cada $n \in \mathbb{N}$ vale $0 \le d_n(x, y) \le 1$ para todo par de elementos $x, y \in X_n$.

Para cada $x = (X_n)_{n \in \mathbb{N}}, y = (y_n)_{n \in \mathbb{N}}$ definimos:

$$d(x,y) = \sum_{n=1}^{\infty} \frac{d_n(x_n, y_n)}{2^n}$$

3. Sea (X,d) un espacio métrico. Llamamos $X^{\mathbb{N}}$ al conjunto de las sucesiones de X. Mostrar que aplicando i) y ii) se le puede dar una métrica a $X^{\mathbb{N}}$.

Ejercicio 22. Sean d_{∞} y d_2 las métricas en R^n definidas en el ejercicio 7. Mostrar que d_{∞} y d_2 son topológicamente equivalentes.

Proof. Por un lado tenemos que $d_{\infty}(x,y) \leq d_1(x,y) \quad \forall x,y \in \mathbb{R}^n$

Entonces si x_k converge con d_1 entonces seguro converge con d_{∞}

Ahora por otro lado supongamos x_k converge con d_{∞}

 x_k converge con d_∞ entonces dado $\epsilon>0$ existe n_0 tal que $d_\infty(x_k,x)\leq \epsilon \quad \forall k\geq n_0$

Entonces dado $\epsilon > 0$ existe n_0 tal que

$$d_1(x_k, x) = \sum_{j=1}^n |(x_k)_j - x_j| \le n \sup_{1 \le j \le n} |(x_k)_j - x_j| = n d_{\infty}(x_k, x) \le n\epsilon \quad \forall k \ge n_0$$

Aclaración j es el indice de componente, y n es un número fijo, que sirve para cualquier ϵ y está dado por la dimensión de \mathbb{R}^n

Luego x_k converge en d_1 . Entonces ambas distancias generan las mismas sucesiones convergentes, por lo tanto son equivalentes

Ejercicio 23. Sea (X, d) un espacio métrico. Dados $A \subseteq X$ no vacío y $x \in X$, se define la distancia de x a A como $d_A(x) = \inf \{d(x, a) : a \in A\}$. Probar:

i. $|d_A(x) - d_A(y)| \le d(x, y)$ para todo par de elementos $x, y \in X$

Proof. Tenemos que $d(x, a) \leq d(x, y) + d(y, a)$

$$d(x, A) = \inf d(x, a) \le \inf (d(x, y) + d(y, a)) = \inf d(x, y) + \inf d(y, a) = d(x, y) + d(y, A)$$

Entonces $d(x, A) - d(y, A) \le d(x, y)$

haciendo lo mismo pero arrancando de $d(y, a) \le d(y, x) + d(x, a)$

llegamos a $-d(x, y) \le d(x, A) - d(y, A)$

Juntando todo

$$|d_A(x) - d_A(y)| \le d(x, y)$$

ii. $x \in A \Rightarrow d_A(x) = 0$

Proof. Sea $D = \{d(x, a) : a \in A\}$ afirmo que inf D = 0

- $0 < d \quad \forall d \in D$
 - Si no fuera cierto existiria $d' \in D$ tal que d' < 0 entonces d' = d(x, a) < 0 para algún $a \in A$ lo que es absurdo
- Sea $l \leq d \quad \forall d \in D$ entonces $l \leq 0$ Supongo que no es cierto, entonces existe $l \leq d \quad \forall d \in D$ con l > 0, pero sabemos que $d(x, x) \in D$ y d(x, x) = 0 < lLuego $0 = \inf D$ por lo tanto $d_A(x) = \inf D = 0$

iii.
$$d_A(x) = 0 \iff x \in \overline{A}$$

Proof.
$$\Rightarrow$$
) Sea $D = \{d(x, a) : A \in A\}$ luego $0 \inf D \iff$

Entonces existe un sucesión $d_n \in D \quad \forall n \in \mathbb{N}$ tal que $d_n \to 0$

 \iff para cada $n \in \mathbb{N}$ existe $a \in A$ tal que $d_n = d(x, a)$ llamemosló a_n

Luego $d(x, a_n) = d_n \to 0 \iff$ tenemos $a_n \in A \quad \forall n \in \mathbb{N}$ y además $a_n \to x \iff x \in \overline{A}$

iv.
$$B_A(r) = \{x \in X : d_A(x) < r\}$$
 es abierto para todo $r > 0$

Proof. Sea $x \in B_A(r)$, primero una pequeña afirmación,

Como $x \in B_A(r)$ entonces $r > d_A(x)$ luego existe ϵ tal que $r - \epsilon > d_A(x)$

Luego puedo tomar $r' = r - \epsilon - d(x, A)$ y seguro r > 0

Afirmo que $B(x,r') \subseteq B_A(r)$. Veamosló, sea $y \in B(x,r')$ entonces

$$d(y,A) \leq d(y,x) + d(x,A) \leq r' + d(x,A) = r - \epsilon - d(x,A) + d(x,A) < r$$

Luego $y \in B_A(r)$ entonces $B(x, r') \subseteq B_A(r)$

Finalmente $\forall x \in X \quad \exists r' > 0 \text{ tal que } B(x, r') \subseteq B_A(r)$

$$B_A(r)$$
 es abierto

v.
$$\overline{B}_A(r) = \{x \in X : d_A(x) \le r\}$$
 es cerrado para todo $r > 0$

Proof. Tomemos el complemento de la bola, $A = \{x \in X : d_A(x) > r\}$ veamos que es abierto

Ahora se
a $x\in A$ afirmo que $B(x,r')\subseteq A$ con r'=d(x,A)-r>0,ve
amosló

Sea
$$y \in B(x, r')$$
 tenemos $d(x, A) - d(y, A) \le |d(x, A) - d(y, A)| \le d(x, y) < d(x, A) - r$

Entonces $-d(y,A) < -r \Rightarrow d(y,A) > r$ por lo tanto $y \in A$ luego $B(x,r') \subseteq A$

Luego
$$\overline{B}_A(r)$$
 es complemento de un abierto , por lo tanto es cerrado

Ejercicio 24. Sea (X,d) un espacio métrico. Dados $A,B\subseteq X$ no vacíos se define la distancia entre A y B por $d(A,B)=\inf\{d(a,b):a\in A\ b\in B\}$. Determinar si las siguientes afirmaciones son verdaderas o falsas:

1. d es una distancia en $\mathcal{P}(X) \setminus \{\emptyset\}$ Es falso

Proof. To
memos un
$$A \subseteq X$$
 con $A \neq \{\emptyset\}$ $B = A \cup \{x\}$ $x \in X$

Entonces
$$d(A, B) = 0$$
 pero $A \neq B$ entonces no es una métrica

2. $d(A, B) = d(A, \overline{B})$ es verdadero

Sea $L_1 = d(A, B)$ $L_2 = d(A, \overline{B})$ supongamos que son diferentes

 $L_1 < L_2$ entonces $\exists \epsilon > 0$ tal que $L_1 + \epsilon < L_2$

Como L_1 es un ínfimo existe $a \in A, b \in B$ tal que $L_1 \le d(a,b) \le L_1 + \epsilon < L_2$

Pero entonces existen $a \in A, b \in B$ tal que $d(a,b) < L_2 = \inf \{ d(a,b) : a \in A \mid b \in \overline{B} \}$

Absurdo por que como $a \in A, b \in B$ entonces $d(a,b) \in \{d(a,b) : a \in A \mid b \in \overline{B}\}$

Ahora en cambio si $L_1 > L_2$ entonces usando el mismo argumento

existe $a \in A$ $b' \in \overline{B}$ tal que $L_2 \le d(a,b') \le L_2 + \epsilon < L_1$

Entonces $d(a,b') < L_1$ entonces existe ϵ' tal que $d(a,b') + \epsilon' < L_1$

Ahora como $b' \in \overline{B}$ existe $(b_n)_n \subseteq B$ tal que $b_n \to b$ Entonces $|d(a,b_n) - d(a,b')| \to 0$

Luego dado ϵ' existe n_0 tal que $d(a, b_n) \leq d(a, b') + \epsilon' \quad \forall n \geq n_0$

Por lo tanto $\forall n \geq n_0$ tenemos $d(a,b_n) < L_1$ pero con un $b_n \in B$ nos alcanza para decir que es absurdo dado que nuevamente $d(a,b_n) \in \{d(a,b) : a \in A \mid b \in B\}$ por ende $d(a,b_n)$ no puede ser menor que el infimo de un conjunto que lo contiene

Luego no sucede $L_1 < L_2$ y tampoco $L_2 < L_1$ entonces $L_1 = L_2$

3. $d(A, B) = 0 \iff A \cap B \neq \emptyset$ es falso

Proof. Sea (\mathbb{R}^2, d) . Con d la distancia euclídea.

Sean
$$A = \{(x,0) : x \in \mathbb{N}\}$$
 $B = \{(x,\frac{1}{x}) : x \in \mathbb{N}\}$

Sabemos que $A \cap B = \emptyset$, sin embargo es facil ver que d(A,B) = 0.

Tomamos la sucesión $x_n = d((n,0),(n+\frac{1}{n})) = \sqrt{\frac{1}{n^2}}$.

$$(x_n)_n \subseteq \{d(a,b) : a \in A \mid b \in B\}$$
 y además $x_n \to 0$

Por lo tanto 0 es ínfimo

4. $d(A,B) = 0 \iff \overline{A} \cap \overline{B} \neq \emptyset$

Proof. Sirve el mismo ejemplo que arriba, por que $A = \overline{A}$ y $B = \overline{B}$

5. $d(A, B) \le d(A, C) + d(C, B)$

Proof. $d(A, B) \le d(a, b) \le d(a, c) + d(c, b) \quad \forall (a \in A \ b \in B \ c \in C)$

$$d(A, B) \le d(a, c) + d(c, b) \quad \forall (a \in A \quad b \in B \quad c \in C)$$

Entonces $d(A, B) \le \inf\{d(a, c) + d(c, b) : a \in A \mid b \in B\}$

Que es igual a $\inf\{d(a,c): a \in A \mid c \in C\} + \inf\{d(c,b): c \in C \mid b \in B\}$

o lo mismo d(A,C)+d(C,B). Luego $d(A,B)\leq d(A,C)+d(C,B)$