

=====

Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Anne Corrigan

Timestamp: [year=2008; month=7; day=21; hr=13; min=54; sec=56; ms=694;]

=====

Application No: 10573478 Version No: 3.0

Input Set:

Output Set:

Started: 2008-06-24 14:32:31.560
Finished: 2008-06-24 14:32:32.099
Elapsed: 0 hr(s) 0 min(s) 0 sec(s) 539 ms
Total Warnings: 6
Total Errors: 0
No. of SeqIDs Defined: 22
Actual SeqID Count: 22

Error code	Error Description
W 213	Artificial or Unknown found in <213> in SEQ ID (5)
W 213	Artificial or Unknown found in <213> in SEQ ID (18)
W 213	Artificial or Unknown found in <213> in SEQ ID (19)
W 213	Artificial or Unknown found in <213> in SEQ ID (20)
W 213	Artificial or Unknown found in <213> in SEQ ID (21)
W 213	Artificial or Unknown found in <213> in SEQ ID (22)

SEQUENCE LISTING

<110> KISELEV, VSEVOLOD I
Petr, SVESHNIKOV G

<120> METHODS, KITS, AND COMPOSITIONS FOR THE DEVELOPMENT AND
USE OF MONOCLONAL ANTIBODIES SPECIFIC TO ANTIGENS
TRADITIONALLY OF LOW IMMUNOGENICITY

<130> 16631.0001

<140> 10573478
<141> 2008-06-24

<150> PCT/RU2004/000373
<151> 2004-09-24

<150> RU 2003128660
<151> 2003-09-25

<160> 22

<170> PatentIn Ver. 3.3

<210> 1
<211> 309
<212> DNA
<213> Human papillomavirus type 16

<220>
<221> CDS
<222> (7)..(303)

<400> 1
gaattc atc atg cat gga gat aca cct aca ttg cat gaa tat atg tta 48
Ile Met His Gly Asp Thr Pro Thr Leu His Glu Tyr Met Leu
1 5 10

gat ttg caa cca gag aca act gat ctc tac tgt tat gag caa tta aat 96
Asp Leu Gln Pro Glu Thr Thr Asp Leu Tyr Cys Tyr Glu Gln Leu Asn
15 20 25 30

gac agc tca gag gag gat gaa ata gat ggt cca gct gga caa gca 144
Asp Ser Ser Glu Glu Asp Glu Ile Asp Gly Pro Ala Gly Gln Ala
35 40 45

gaa ccg gac aga gcc cat tac aat att gta acc ttt tgt tgc aag tgt 192
Glu Pro Asp Arg Ala His Tyr Asn Ile Val Thr Phe Cys Cys Lys Cys
50 55 60

gac tct acg ctt cgg ttg tgc gta caa agc aca cac gta gac att cgt 240
Asp Ser Thr Leu Arg Leu Cys Val Gln Ser Thr His Val Asp Ile Arg
65 70 75

act ttg gaa gac ctg tta atg ggc aca cta gga att gtg tgc ccc atc 288
Thr Leu Glu Asp Leu Leu Met Gly Thr Leu Gly Ile Val Cys Pro Ile

80	85	90	
tgt tct cag aaa cca ggatcc			309
Cys Ser Gln Lys Pro			
95			
<210> 2			
<211> 99			
<212> PRT			
<213> Human papillomavirus type 16			
<400> 2			
Ile Met His Gly Asp Thr Pro Thr Leu His Glu Tyr Met Leu Asp Leu			
1	5	10	15
Gln Pro Glu Thr Thr Asp Leu Tyr Cys Tyr Glu Gln Leu Asn Asp Ser			
20	25	30	
Ser Glu Glu Glu Asp Glu Ile Asp Gly Pro Ala Gly Gln Ala Glu Pro			
35	40	45	
Asp Arg Ala His Tyr Asn Ile Val Thr Phe Cys Cys Lys Cys Asp Ser			
50	55	60	
Thr Leu Arg Leu Cys Val Gln Ser Thr His Val Asp Ile Arg Thr Leu			
65	70	75	80
Glu Asp Leu Leu Met Gly Thr Leu Gly Ile Val Cys Pro Ile Cys Ser			
85	90	95	
Gln Lys Pro			
<210> 3			
<211> 330			
<212> DNA			
<213> Human papillomavirus type 18			
<220>			
<221> CDS			
<222> (7)..(324)			
<400> 3			
gaattc agt atg cat gga cct aag gca aca ttg caa gac att gta ttg 48			
Ser Met His Gly Pro Lys Ala Thr Leu Gln Asp Ile Val Leu			
1	5	10	
cat tta gag ccc caa aat gaa att ccg gtt gac ctt cta tgt cac gag			
His Leu Glu Pro Gln Asn Glu Ile Pro Val Asp Leu Leu Cys His Glu 96			
15	20	25	30
caa tta agc gac tca gag gaa gaa aac gat gaa ata gat gga gtt aat 144			
Gln Leu Ser Asp Ser Glu Glu Asn Asp Glu Ile Asp Gly Val Asn			
35	40	45	

cat caa cat tta cca gcc cga cga gct gaa cca caa cgt cac aca atg		192
His Gln His Leu Pro Ala Arg Arg Ala Glu Pro Gln Arg His Thr Met		
50	55	60
ttg tgt atg tgt tgt aag tgt gaa gcc aga att gag cta gta gta gaa		240
Leu Cys Met Cys Cys Lys Cys Glu Ala Arg Ile Glu Leu Val Val Glu		
65	70	75
agc tca gca gac gac ctt cga gca ttc cag cag ctg ttt ctg aac acc		288
Ser Ser Ala Asp Asp Leu Arg Ala Phe Gln Gln Leu Phe Leu Asn Thr		
80	85	90
ctg tcc ttt gtg tgt ccg tgg tgt gca tcc cag cag ggatcc		330
Leu Ser Phe Val Cys Pro Trp Cys Ala Ser Gln Gln		
95	100	105

<210> 4
<211> 106
<212> PRT
<213> Human papillomavirus type 18

400> 4		
Ser Met His Gly Pro Lys Ala Thr Leu Gln Asp Ile Val Leu His Leu		
1	5	10
15		

Glu Pro Gln Asn Glu Ile Pro Val Asp Leu Leu Cys His Glu Gln Leu		
20	25	30
35	40	45

Ser Asp Ser Glu Glu Asn Asp Glu Ile Asp Gly Val Asn His Gln		
50	55	60
65	70	75

Met Cys Cys Lys Cys Glu Ala Arg Ile Glu Leu Val Val Glu Ser Ser		
85	90	95
Phe Val Cys Pro Trp Cys Ala Ser Gln Gln		
100	105	

<210> 5
<211> 5321
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic nucleotide sequence of recombinant vector pQE30-dnaK

<400> 5
ctcgagaaaat cataaaaaat ttatttgctt tgtgagcgaa taacaattat aatagattca 60
attgtgagcg gataacaatt tcacacagaa ttcattaaag aggagaaaatt aactatgaga 120

ggatcgcac accatcacca tacacggatcc gctcgtgcgg tcgggatcga cctcgccgacc 180
accaactccg tcgtctcggt tctggaaagggt ggcgaccggg tgcgtcgca caactccgag 240
ggctccagga ccaccccgta aattgtcgca ttcgcccgcgca acggtgaggt gctggtcggc 300
cagccccgcca agaaccaggc agtgcaccaac gtcgatcgca cctgcgcgctc ggtcaagcga 360
cacatggca gcgactggtc catagagatt gacggcaaga aatacaccgc gccggagatc 420
agcgcccgca ttctgtatgaa gctgaagcgc gacgcccaggc cctacctcg tgaggacatt 480
accgacgccc ttatcacgac gcccgcctac ttcaatgacg cccagcgtca ggccaccaag 540
gacgcccccc agatcgccgg cctcaacgtg ctgcggatcg tcaacgagcc gaccgcggcc 600
gcgctggcct acggcctcgca caagggcggg aaggagcgcg gaatcctggc cttcgacttg 660
ggtggtgtggca ctttcgacgt ttccctgtg gagatcggcg agggtgtggc tgagggtccgt 720
gccacttcgg gtgacaacca cctcgccggc gacgactggg accagcggtt cgtcgattgg 780
ctgggtggaca agttcaaggg caccagcggc atcgatctga ccaaggacaa gatggcgatc 840
cagcggctgc gggaaagccgc cgagaaggca aagatcgagc tgtagttcgag tcagtccacc 900
tcgatcaacc tggccatcat caccgtcgac gcccacaaga acccggttggt cttagacgag 960
cagctgaccc gcgcggagtt ccaacggatc actcaggacc tgctggaccg cactcgcaag 1020
ccgttccagt cggtgatcgca tgacaccggc atttcgggtg cggagatcgatc acgttgcgt 1080
ctcgtgggtg gttcgaccgg gatgcccggc gtgaccgatc tggtcaagga actcaccggc 1140
ggcaagggaaac ccaacaaggg cgtcaaccccc gatgaggttgc tgcgggtggg agccgctctg 1200
caggccggcg tcctcaaggg cgaggtgaaa gacggtctgc tgcttgcgt taccggctcg 1260
agcctgggtt tcgagaccaa gggcggggtg atgaccaggc tcatcgagcga caacaccacg 1320
atccccacca agcggtcgga gactttcacc accgcggacg acaaccaacc gtcgggtcgag 1380
atccagggtct atcagggggc gctgtgatc gcccgcaca acaagttgtc cgggtcccttc 1440
gagctgaccg gcatcccgcc ggcgcggcg gggattccgcg agatcgaggt cactttcgac 1500
atcgacgcca acggcattgt gcacgtcacc gccaaggaca agggcaccgg caaggagaac 1560
acgatccgaa tccaggaagg ctcgggcctg tccaaggaaac acattgaccg catgatcaag 1620
gacgcccgaag cgacacccgcg ggaggatcgc aagcgtcgccg aggaggccga tgttcgtaat 1680
caagccgaga cattgtcta ccagacggag aagttcgatc aagaacacgca tgaggccgag 1740
ggtggttcga aggtacctga agacacgctg aacaaggttgc atgcggcggt ggccggaaacg 1800
aaggccggcac ttggccggatc ggatatttcg gccatcaagt cggcgatggc gaagctgggc 1860
caggagtcgc aggctctggg gcaagcgatc tacgaaggcgc ctcaggctgc gtcacaggcc 1920
actggcgctg cccaccccg cggcgacggc ggcgggtcccc accccggctc ggctgtatgac 1980
gttgggtggacg cggaggtggc cgtacgcggc cggggggca agtgcggac ggggtcgac 2040
gcagccaaagc ttaatttagct gagcttggac tccctgtatc agatccagta atgacctcg 2100
aactccatct ggatttttc aagacgctcg gttggccggc ggcgtttttt attgggtgaga 2160
atccaagcta gcttggcgag attttcagga gctaaggaaac ctaaaatggc gaaaaaaatc 2220
actggatata ccaccgttga tatatccca tggcatcgta aagaacattt tgaggcattt 2280
cagtcaagttt ctcaatgtac ctataaccag accgttccgc tggatattac ggcctttta 2340
aagaccgtaa agaaaaataaa gcacaagttt tatccggctt ttattcacat tcttgcggcc 2400
ctgatgaatg ctcatccgga atttcgtatg gcaatggaaac acggtgagct ggtgatatgg 2460
gatagtgttc acccttgcata caccgttttc catgagcaaa ctgaaacgtt ttcatcgctc 2520
tggagtgaat accacacgca ttccggcag tttctacaca tatattcgca agatgtggcg 2580
tggtacgggtg aaaacctggc ctattttccct aaagggttta ttgagaatat gttttcgctc 2640
tcagccaaatc cctgggtggat tttcaccgtt ttgatattaa acgtggccaa tatggacaac 2700
ttcttcgccc ccgtttcac catggcaaa tattatacgc aaggcgacaa ggtgtcgatg 2760
ccgctggcga ttcaagggtca tcatgcgtt tgcgtatggc tccatgtcg cagaatgctt 2820
aatgaattac aacagtactg cgtatgagtgg cagggcgcccc cgtaattttt ttaaggcagt 2880
tattgggtgcc cttaaacgccc tggggtaatg actctcttagc ttgaggcattc aaataaaaacg 2940
aaaggctcag tcgaaagact gggccttcg ttttatactgt tggttgcgg tgaacgctct 3000
cctgagtagg acaaattccgc cctctagacg tgcctcgccg gtttcgggtga tgacgggtgaa 3060
aacctctgac acatgcagct cccggagacg gtcacagctt gtctgtaaacg ggtgtccggg 3120
agcagacaaag cccgtcagggg cgcgtcagcg ggtgttggcg ggtgtcgcccc cgacggccatg 3180
acccagtcac gtagcgatag cggagtgtat actggcttaa ctatgcggca tcagagcaga 3240
ttgtactgag agtgcaccat atgcgggtgtg aaataccgcg cagatgcgtt agggaaaaat 3300
accgcattcag gcgcttccctc gttccctcg tcaactgactc gtcgtcgctc gtcgttccggc 3360
tgcggcgagc ggtatcagct cactcaaagg cggtaatacg gttatccaca gaatcagggg 3420
ataacgcagg aaagaacatg tgagcaaaa gcccggaaac ggtttttttt 3480
ccgcgttgcg ggcgttttc cataggctcc gccccctga cgagcatcac aaaaatcgac 3540

gctcaagtca gaggtggcga aacccgacag gactataaag ataccaggcg tttccccctg 3600
 gaagctccct cgtgcgtct cctgttccga ccctgcgcgt taccggatac ctgtccgcct 3660
 ttctcccttc gggaaagcgtg ggcgtttctc atagctcacg ctgttaggtat ctcaagttcgg 3720
 tgttaggtcgt tcgctccaag ctgggctgtg tgacgaacc ccccgttcag cccgaccgct 3780
 gcgccttatac cggttaactat cgtcttgagt ccaaccgggt aagacacgac ttatcgccac 3840
 tggcagcagc cactggtaac aggattagca gagcggaggt tgtaggcggt gctacagagt 3900
 tcttgaagtg gtggctaac tacggctaca ctagaaggac agtattttggt atctgcgctc 3960
 tgctgaagcc agttacccctc ggaaaaaagag ttggtagctc ttgatccggc aaacaaaccca 4020
 ccgctggtag cggtgggttt ttgtttgc agcagcagat tacgcgcaga aaaaaaggat 4080
 ctcaagaaga tccttgatc tttctacgg ggtctgacgc tcagtggAAC gaaaactcac 4140
 gtttaaggat ttggcatg agattatcaa aaaggatctt cacctagatc cttttaaatt 4200
 aaaaatgaag ttttaatca atctaaagta tatatgagta aacttggctc gacagttacc 4260
 aatgcttaat cagtggggca cctatctca cgtatctgtct atttcgttca tccatagtt 4320
 cctgactccc cgctgtgttag ataactacga tacggggaggg cttaccatct ggccccagtg 4380
 ctgcaatgat accgcgagac ccacgctcac cggctccaga tttatcagca ataaaccagc 4440
 cagccggaag ggccgagcgc agaagttggc ctgcaacttt atccgcctcc atccagtc 4500
 ttaattgttg cggggaaagct agagtaagta gttcgccagt taatagtttgc 4560
 ttgccattgc tacaggcatc gtgggtcac gctcgctgtt tggtatggct tcattcagct 4620
 ccggttccca acgatcaagg cgagttacat gatccccat gttgtcAAA aaagcggtt 4680
 gtccttcgg tcctccgatc gttgtcagaa gtaagttggc cgcaacgtt 4740
 ttatggcagc actgcataat tctcttactg tcatgcattc cgtaagatgc ttttctgtga 4800
 ctggtgagta ctcaaccaag tcattctgag aatagtgtat gggcgaccg agttgtctt 4860
 gccccggcgtc aatacgggat aataccgcgc cacatagcag aactttaaaa gtcgtcatca 4920
 ttggaaaacg ttcttcgggg cgaaaaactct caaggatctt accgctgtt 4980
 cgatgttaacc cactcggtca cccaaactgtat cttcagcatc ttttactttc accagcggtt 5040
 ctgggtgagc aaaaacagga aggcaaaaatg ccgcAAAAAAA gggataaagg ggcacacgga 5100
 aatgttgaat actcataactc ttcccttttc aatattatttgc aagcattttt cagggttatt 5160
 gtctcatgag cggatacata ttgtaatgtt ttttagaaaaaa taaacaaata ggggttccgc 5220
 gcacatttcc cggaaaagtg ccacctgacg tctaagaaac cattattatc atgacattaa 5280
 cctataaaaaa taggcgtatc acgaggccct ttcgtttca c 5321

<210> 6
 <211> 12
 <212> PRT
 <213> Bos taurus

<400> 6
 Lys Lys Arg Pro Lys Pro Gly Gly Gly Trp Asn Thr
 1 5 10

<210> 7
 <211> 8
 <212> PRT
 <213> Bos taurus

<400> 7
 Gln Pro His Gly Gly Gly Trp Gly
 1 5

<210> 8
 <211> 13
 <212> PRT
 <213> Bos taurus

<400> 8
Gln Trp Asn Lys Pro Ser Lys Pro Lys Thr Asn Ile Lys
1 5 10

<210> 9
<211> 17
<212> PRT
<213> Bos taurus

<400> 9
Ile Thr Gln Tyr Gln Arg Glu Ser Gln Ala Tyr Tyr Gln Arg Gly Ala
1 5 10 15

Ser

<210> 10
<211> 19
<212> DNA
<213> Human papillomavirus type 16

<400> 10
tgacagctca gaggaggag 19

<210> 11
<211> 19
<212> DNA
<213> Human papillomavirus type 16

<400> 11
gcacaaccga agcgtagag 19

<210> 12
<211> 20
<212> DNA
<213> Human papillomavirus type 18

<400> 12
gcgactcaga ggaagaaaac 20

<210> 13
<211> 20
<212> DNA
<213> Human papillomavirus type 18

<400> 13
caaaggacag ggtgttcaga 20

<210> 14
<211> 31
<212> DNA

<213> Human papillomavirus type 18

<400> 14

tctaacgaat tcagtatgca tggacctaag g

31

<210> 15

<211> 30

<212> DNA

<213> Human papillomavirus type 18

<400> 15

attacaggat ccctgctggg atgcacaccca

30

<210> 16

<211> 31

<212> DNA

<213> Human papillomavirus type 16

<400> 16

attctcgaat tcatcatgca tggagataca c

31

<210> 17

<211> 31

<212> DNA

<213> Human papillomavirus type 16

<400> 17

cttatcgat cctggtttct gagaacagat g

31

<210> 18

<211> 130

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic pHE716 and
pHE718 terminal sequence

<220>

<221> misc_feature

<222> (107)..(108)

<223> HSP 16/HSP18 E7 gene insertion site

<400> 18

taatacgtact cactataggg agaccacaac ggttccctc tagaaataat tttgttaac 60
tttaagaagg agatatacat atgcattacc atcaccatca cgaattcggg tcctaattag 120
ctgaaagctt

130

<210> 19

<211> 28

<212> DNA

<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
primer

<400> 19
gaagatctat gcatggagat acacctac

28

<210> 20
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
primer

<400> 20
cgggatccctg gtttctgaga acagatgg

28

<210> 21
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
primer

<400> 21
gaagatctat gcatggacct aaggcaac

28

<210> 22
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
primer

<400> 22
cgggatccct gctgggatgc acaccacg

28