

Home Gameboard Chemistry Physical Electrochemistry Electrochemistry introduction

Electrochemistry introduction

In electrochemistry, a potential difference between two half-cells is set up by having different redox couples and/or different concentrations of a given redox couple present.

Part A Introduction

The potential of the	side half-cell is measured relative to the	side one,
so the cell potential is given b	y subtracting the reduction potential of the	side from
the reduction potential of the	side. Standard reduction potent	tials can be tabulated,
which correspond to values re	ecorded under standard conditions against	the standard
electrode. The co	nventional cell reaction consists of the right	-hand side
and the left-hand side	(which can be thought of as subtractin	g the left-hand side
), making sure that	\overline{t} the number of electrons (n) transferred is	the same for both
sides.		
Items:		
right-hand left-hand pla	tinum silver hydrogen oxygen oxid	dation reduction

Part B Linking equations

Working out cell potentials can be useful in itself, but as a result of connections to other thermodynamic quantities, tabulated standard reduction potentials allow us to calculate, for example, equilibrium constants even of non-redox reactions or processes such as a salt dissolving.

Given that $\Delta_r G^{\circ} = -nFE^{\circ} = -RT \ln K$, rearrange the equation for K (the equilibrium constant) as a function of n (the number of electrons transferred), F (the Faraday constant), E° (the standard cell potential, for which you should use E^o in your expression), R (the universal gas constant) and T (the temperature).

The following symbols may be useful: E^o, F, K, R, T, e, ln(), log(), n

Created for isaacphysics.org by Andrea Chlebikova

<u>Home</u> <u>Gameboard</u> Chemistry

Physical

Electrochemistry Essential Pre-Uni Chemistry L1.1

Essential Pre-Uni Chemistry L1.1

Name the element whose reduction is used as a standard by which all electrode potentials are measured.		
	Helium	
	Hydrogen	
	Silver	
	Lithium	
	Iron	
	Fluorine	
	Platinum	
	Oxygen	

Home Gameboard Chemistry Physical Electrochemistry Essential Pre-Uni Chemistry L1.3

Essential Pre-Uni Chemistry L1.3

The standard electrode potential, E° , for the reduction, $\mathrm{Br_2}(\mathrm{aq}) + 2\,\mathrm{e^-} \longrightarrow 2\,\mathrm{Br^-}(\mathrm{aq})$ is $1.09\,\mathrm{V}$. Give the E° value for the reduction, $\frac{1}{2}\mathrm{Br_2}(\mathrm{aq}) + \mathrm{e^-} \longrightarrow \mathrm{Br^-}(\mathrm{aq})$.

Home Gameboard Chemistry Physical Electrochemistry

Physical Electrochemistry Essential Pre-Uni Chemistry L1.4

Essential Pre-Uni Chemistry L1.4

 E° for the reaction, $\operatorname{Ce}^{4+}(\operatorname{aq}) + \operatorname{e}^{-} \longrightarrow \operatorname{Ce}^{3+}(\operatorname{aq})$ is $1.70\,\mathrm{V}$. Give the E° value for the oxidation half-reaction, $\operatorname{Ce}^{3+}(\operatorname{aq}) \longrightarrow \operatorname{Ce}^{4+}(\operatorname{aq}) + \operatorname{e}^{-}$.

Home Gameboard Chemistry Physical

sical Electrochemistry

Essential Pre-Uni Chemistry L1.5

Essential Pre-Uni Chemistry L1.5

Reduction	$E^{\scriptscriptstyle \oplus}$ / $ m V$
$\mathrm{Zn}^{2+}\left(\mathrm{aq} ight)+2\mathrm{e}^{-}\longrightarrow\mathrm{Zn}\left(\mathrm{s} ight)$	-0.76
$\mathrm{Cr}^{3+}\left(\mathrm{aq} ight)+3\mathrm{e}^{-}\longrightarrow\mathrm{Cr}\left(\mathrm{s} ight)$	-0.74
$\mathrm{Fe}^{2+}\left(\mathrm{aq} ight)+2\mathrm{e}^{-}\longrightarrow\mathrm{Fe}\left(\mathrm{s} ight)$	-0.44
$\mathrm{Cu}^{2+}\left(\mathrm{aq} ight) + \mathrm{e}^{-} \longrightarrow \mathrm{Cu}^{+}\left(\mathrm{aq} ight)$	+0.16
$\mathrm{Cu}^{2+}(\mathrm{aq}) + 2\mathrm{e}^- \longrightarrow \mathrm{Cu}(\mathrm{s})$	+0.34
$\mathrm{Cu}^{+}\left(\mathrm{aq} ight)+\mathrm{e}^{-}\longrightarrow\mathrm{Cu}\left(\mathrm{s} ight)$	+0.52
$\mathrm{Fe}^{3+}\left(\mathrm{aq} ight) + \mathrm{e}^{-} \longrightarrow \mathrm{Fe}^{2+}\left(\mathrm{aq} ight)$	+0.77
$\mathrm{Ag}^{+}\left(\mathrm{aq} ight)+\mathrm{e}^{-}\longrightarrow\mathrm{Ag}\left(\mathrm{s} ight)$	+0.80
$\mathrm{Cr_2O_7}^{2-}\mathrm{(aq)} + 6\mathrm{e^-} + 14\mathrm{H^+}\mathrm{(aq)} \longrightarrow 2\mathrm{Cr}^{3+}\mathrm{(aq)} + 7\mathrm{H_2O}\mathrm{(l)}$	+1.33

Use the standard electrode potentials tabulated above to calculate the standard cell potentials due to the following reactions:

Part A (a)

$$\operatorname{Zn}\left(s\right) +\operatorname{Cu}^{2+}\left(\operatorname{aq}\right) \longrightarrow\operatorname{Zn}^{2+}\left(\operatorname{aq}\right) +\operatorname{Cu}\left(s\right)$$

$$Cu\left(s\right)+2\,Ag^{+}\left(aq\right)\longrightarrow Cu^{2+}\left(aq\right)+2\,Ag\left(s\right)$$

Part C (c)

$$6\,\mathrm{Fe}^{2+}\left(aq\right)+\mathrm{Cr}_{2}\mathrm{O_{7}}^{2-}\left(aq\right)+14\,\mathrm{H}^{+}\left(aq\right)\longrightarrow6\,\mathrm{Fe}^{3+}\left(aq\right)+2\,\mathrm{Cr}^{3+}\left(aq\right)+7\,\mathrm{H}_{2}\mathrm{O}\left(l\right)$$

Part D (d)

$$\mathrm{Fe}^{2+}\left(\mathrm{aq}\right)+\mathrm{Zn}\left(\mathrm{s}\right)\longrightarrow\mathrm{Fe}\left(\mathrm{s}\right)+\mathrm{Zn}^{2+}\left(\mathrm{aq}\right)$$

Home

Gameboard

Chemistry

Physical Electrochemistry Essential Pre-Uni Chemistry L1.6

Essential Pre-Uni Chemistry L1.6

Reduction	$E^{\scriptscriptstyle \oplus}$ / $ m V$
$\mathrm{Zn}^{2+}\left(\mathrm{aq} ight)+2\mathrm{e}^{-}\longrightarrow\mathrm{Zn}\left(\mathrm{s} ight)$	-0.76
$\mathrm{Cr}^{3+}\left(\mathrm{aq} ight)+3\mathrm{e}^{-}\longrightarrow\mathrm{Cr}\left(\mathrm{s} ight)$	-0.74
$\mathrm{Fe}^{2+}\left(\mathrm{aq} ight)+2\mathrm{e}^{-}\longrightarrow\mathrm{Fe}\left(\mathrm{s} ight)$	-0.44
$\mathrm{Cu}^{2+}\left(\mathrm{aq} ight) + \mathrm{e}^{-} \longrightarrow \mathrm{Cu}^{+}\left(\mathrm{aq} ight)$	+0.16
$\mathrm{Cu}^{2+}(\mathrm{aq}) + 2\mathrm{e}^- \longrightarrow \mathrm{Cu}(\mathrm{s})$	+0.34
$\mathrm{Cu}^{+}\left(\mathrm{aq} ight)+\mathrm{e}^{-}\longrightarrow\mathrm{Cu}\left(\mathrm{s} ight)$	+0.52
$\mathrm{Fe}^{3+}\left(\mathrm{aq} ight) + \mathrm{e}^{-} \longrightarrow \mathrm{Fe}^{2+}\left(\mathrm{aq} ight)$	+0.77
$\mathrm{Ag}^{+}\left(\mathrm{aq} ight)+\mathrm{e}^{-}\longrightarrow\mathrm{Ag}\left(\mathrm{s} ight)$	+0.80
$\mathrm{Cr_2O_7}^{2-}\mathrm{(aq)} + 6\mathrm{e^-} + 14\mathrm{H^+}\mathrm{(aq)} \longrightarrow 2\mathrm{Cr}^{3+}\mathrm{(aq)} + 7\mathrm{H_2O}\mathrm{(l)}$	+1.33

Using the data tabulated above, calculate the standard electrode potentials for the following reductions:

Part A (a)

$$rac{1}{2}\mathrm{Zn}^{2+}\left(\mathrm{aq}
ight)+\mathrm{e}^{-} \longrightarrow rac{1}{2}\mathrm{Zn}\left(\mathrm{s}
ight)$$

$$\mathrm{Fe}^{3+}\left(\mathrm{aq}\right)+3\,\mathrm{e}^{-}\longrightarrow\mathrm{Fe}\left(\mathrm{s}\right)$$

Part C (c)

$$\mathrm{Cu}^{2+}\left(\mathrm{aq}
ight) + \mathrm{e}^{-} \longrightarrow \mathrm{Cu}^{+}\left(\mathrm{aq}
ight)$$

Part D (d)

$${\rm Cr_2O_7}^{2-}{\rm (aq)} + 14\,{\rm H^+}{\rm (aq)} + 12\,{\rm e^-} \longrightarrow 2\,{\rm Cr}{\rm (s)} + 7\,{\rm H_2O}{\rm (l)}$$

Home

<u>Gameboard</u>

Chemistry

Physical Electrochemistry Essential Pre-Uni Chemistry L1.7

Essential Pre-Uni Chemistry L1.7

Reduction	$E^{\scriptscriptstyle \oplus}$ / $ m V$
$\mathrm{Zn}^{2+}\left(\mathrm{aq} ight)+2\mathrm{e}^{-}\longrightarrow\mathrm{Zn}\left(\mathrm{s} ight)$	-0.76
$\mathrm{Cr}^{3+}\left(\mathrm{aq} ight)+3\mathrm{e}^{-}\longrightarrow\mathrm{Cr}\left(\mathrm{s} ight)$	-0.74
$\mathrm{Fe}^{2+}\left(\mathrm{aq} ight)+2\mathrm{e}^{-}\longrightarrow\mathrm{Fe}\left(\mathrm{s} ight)$	-0.44
$\mathrm{Cu}^{2+}\left(\mathrm{aq} ight) + \mathrm{e}^{-} \longrightarrow \mathrm{Cu}^{+}\left(\mathrm{aq} ight)$	+0.16
$\mathrm{Cu}^{2+}(\mathrm{aq}) + 2\mathrm{e}^- \longrightarrow \mathrm{Cu}(\mathrm{s})$	+0.34
$\mathrm{Cu}^{+}\left(\mathrm{aq} ight)+\mathrm{e}^{-}\longrightarrow\mathrm{Cu}\left(\mathrm{s} ight)$	+0.52
$\mathrm{Fe}^{3+}\left(\mathrm{aq} ight) + \mathrm{e}^{-} \longrightarrow \mathrm{Fe}^{2+}\left(\mathrm{aq} ight)$	+0.77
$\mathrm{Ag}^{+}\left(\mathrm{aq} ight)+\mathrm{e}^{-}\longrightarrow\mathrm{Ag}\left(\mathrm{s} ight)$	+0.80
$\mathrm{Cr_2O_7}^{2-}\mathrm{(aq)} + 6\mathrm{e^-} + 14\mathrm{H^+}\mathrm{(aq)} \longrightarrow 2\mathrm{Cr}^{3+}\mathrm{(aq)} + 7\mathrm{H_2O}\mathrm{(l)}$	+1.33

Using the data tabulated above, calculate the standard cell potential for:

(a) Part A

$$2\operatorname{Cu}^{+}\left(\operatorname{aq}\right) \longrightarrow \operatorname{Cu}\left(\operatorname{s}\right) + \operatorname{Cu}^{2+}\left(\operatorname{aq}\right)$$

$$3\operatorname{Fe}^{2+}\left(\operatorname{aq}\right)\longrightarrow2\operatorname{Fe}^{3+}\left(\operatorname{aq}\right)+\operatorname{Fe}\left(\operatorname{s}\right)$$

Part C (c)

$$Ag^{+}\left(aq\right)+Cu^{+}\left(aq\right)\longrightarrow Ag\left(s\right)+Cu^{2+}\left(aq\right)$$

<u>Home</u>

Gameboard

Chemistry

Physical

Electrochemistry Essential Pre-Uni Chemistry L2.1

Essential Pre-Uni Chemistry L2.1

Reduction	$E^{\scriptscriptstyle +}$ / $ m V$
$\mathrm{Zn}^{2+}\left(\mathrm{aq} ight)+2\mathrm{e}^{-}\longrightarrow\mathrm{Zn}\left(\mathrm{s} ight)$	-0.76
$\mathrm{Cr}^{3+}\left(\mathrm{aq} ight)+3\mathrm{e}^{-}\longrightarrow\mathrm{Cr}\left(\mathrm{s} ight)$	-0.74
$\mathrm{Fe}^{2+}(\mathrm{aq}) + 2\mathrm{e}^- \longrightarrow \mathrm{Fe}(\mathrm{s})$	-0.44
$\mathrm{Cu}^{2+}\left(\mathrm{aq} ight)+2\mathrm{e}^{-}\longrightarrow\mathrm{Cu}\left(\mathrm{s} ight)$	+0.34
$\mathrm{Cu}^{+}\left(\mathrm{aq} ight) + \mathrm{e}^{-} \longrightarrow \mathrm{Cu}\left(\mathrm{s} ight)$	+0.52
$\mathrm{Fe}^{3+}\left(\mathrm{aq} ight) + \mathrm{e}^{-} \longrightarrow \mathrm{Fe}^{2+}\left(\mathrm{aq} ight)$	+0.77
$\mathrm{Ag}^{+}\left(\mathrm{aq} ight)+\mathrm{e}^{-}\longrightarrow\mathrm{Ag}\left(\mathrm{s} ight)$	+0.80
${ m Cr_2O_7}^{2-}({ m aq}) + 6{ m e}^- + 14{ m H}^+({ m aq}) \longrightarrow 2{ m Cr}^{3+}({ m aq}) + 7{ m H_2O}({ m l})$	+1.33

Use the standard electrode potentials tabulated above to find $\Delta G^{\scriptscriptstyle \oplus}$ for the following reactions:

Part A

$$\mathrm{Ag}^{+}(\mathrm{aq}) + \mathrm{e}^{-} \longrightarrow \mathrm{Ag}(\mathrm{s})$$

$$\mathrm{Zn}^{2+}\left(\mathrm{aq}\right)+2\,\mathrm{e}^{-}\longrightarrow\mathrm{Zn}\left(\mathrm{s}\right)$$

Part C (c)

$$\mathrm{Fe}^{3+}(\mathrm{aq}) + 3\,\mathrm{e}^{-} \longrightarrow \mathrm{Fe}(\mathrm{s})$$

Home Gameboard

Chemistry

Physical Electrochem

Electrochemistry Essential Pre-Uni Chemistry L2.2

Essential Pre-Uni Chemistry L2.2

Reduction	$E^{\scriptscriptstyle +}$ / $ m V$
$\mathrm{Zn}^{2+}\left(\mathrm{aq} ight)+2\mathrm{e}^{-}\longrightarrow\mathrm{Zn}\left(\mathrm{s} ight)$	-0.76
$\mathrm{Cr}^{3+}\left(\mathrm{aq} ight)+3\mathrm{e}^{-}\longrightarrow\mathrm{Cr}\left(\mathrm{s} ight)$	-0.74
$\mathrm{Fe}^{2+}(\mathrm{aq}) + 2\mathrm{e}^- \longrightarrow \mathrm{Fe}(\mathrm{s})$	-0.44
$\mathrm{Cu}^{2+}\left(\mathrm{aq} ight)+2\mathrm{e}^{-}\longrightarrow\mathrm{Cu}\left(\mathrm{s} ight)$	+0.34
$\mathrm{Cu}^{+}\left(\mathrm{aq} ight) + \mathrm{e}^{-} \longrightarrow \mathrm{Cu}\left(\mathrm{s} ight)$	+0.52
$\mathrm{Fe}^{3+}\left(\mathrm{aq} ight) + \mathrm{e}^{-} \longrightarrow \mathrm{Fe}^{2+}\left(\mathrm{aq} ight)$	+0.77
$\mathrm{Ag}^{+}\left(\mathrm{aq} ight)+\mathrm{e}^{-}\longrightarrow\mathrm{Ag}\left(\mathrm{s} ight)$	+0.80
${ m Cr_2O_7}^{2-}({ m aq}) + 6{ m e}^- + 14{ m H}^+({ m aq}) \longrightarrow 2{ m Cr}^{3+}({ m aq}) + 7{ m H_2O}({ m l})$	+1.33

Use the standard electrode potentials tabulated above to find $\Delta G^{\scriptscriptstyle \oplus}$ for the following reactions:

Part A (a)

$$Ag^{+}(aq) + Fe^{2+}(aq) \longrightarrow Fe^{3+}(aq) + Ag(s)$$
. Give your answer to 1 significant figure.

 $3\,Zn\left(s\right)+Cr_{2}O_{7}^{\,2-}\left(aq\right)+14\,H^{+}\left(aq\right)\longrightarrow3\,Zn^{2+}\left(aq\right)+2\,Cr^{3+}\left(aq\right)+7\,H_{2}O\left(l\right). \label{eq:equation:equ$

Part C (c)

 $2\operatorname{Cr}\left(s\right)+3\operatorname{Cu}^{2+}\left(aq\right)\longrightarrow 2\operatorname{Cr}^{3+}\left(aq\right)+3\operatorname{Cu}\left(s\right).$ Give your answer to 3 significant figures.

Home Gameboard Chemistry Physical Entropy Essential Pre-Uni Chemistry H2.9

Essential Pre-Uni Chemistry H2.9

The displacement of hydrogen from acid by iron,

$$2 \operatorname{H}^{+}(\operatorname{aq}) + \operatorname{Fe}(\operatorname{s}) \rightleftharpoons \operatorname{Fe}^{2+}(\operatorname{aq}) + \operatorname{H}_{2}(\operatorname{g})$$

has a standard cell potential of $0.44\,V$. Find the associated standard Gibbs free energy change. (Faraday constant = $96\,485\,C\,\mathrm{mol}^{-1}$)