

SEQUENCE LISTING

<110> PURDUE RESEARCH FOUNDATION

<120> METHODS AND COMPOSITIONS TO INCREASE PLANT RESISTANCE
TO STRESS

<130> 3220-74797

<140> PCT/US04/10599

<141> 2004-04-07

<150> 60/461,345

<151> 2003-04-09

<160> 10

<170> PatentIn Ver. 3.2

<210> 1

<211> 211

<212> PRT

<213> Arabidopsis thaliana

<400> 1

Met	Gly	Arg	Ser	Pro	Cys	Cys	Glu	Lys	Ala	His	Met	Asn	Lys	Gly	Ala
1					5				10					15	

Trp	Thr	Lys	Glu	Glu	Asp	Gln	Arg	Leu	Ile	Asp	Tyr	Ile	Arg	Asn	His
					20				25				30		

Gly	Glu	Gly	Ser	Trp	Arg	Ser	Leu	Pro	Lys	Ser	Val	Gly	Leu	Leu	Arg
					35				40			45			

Cys	Gly	Lys	Ser	Cys	Arg	Leu	Arg	Trp	Ile	Asn	Tyr	Leu	Arg	Pro	Asp
					50				55			60			

Leu	Lys	Arg	Gly	Asn	Phe	Thr	Asp	Gly	Glu	Gln	Ile	Ile	Val	Lys	
					65				70			75		80	

Leu	His	Ser	Leu	Phe	Gly	Asn	Lys	Trp	Ser	Leu	Ile	Ala	Gly	Lys	Leu
					85				90				95		

Pro	Gly	Arg	Thr	Asp	Asn	Glu	Ile	Lys	Asn	Tyr	Trp	Asn	Thr	His	Ile
					100				105			110			

Lys	Arg	Lys	Leu	Leu	Asn	Arg	Gly	Ile	Asp	Pro	Lys	Thr	His	Gly	Ser
					115				120			125			

Ile	Ile	Glu	Pro	Lys	Thr	Thr	Ser	Phe	His	Pro	Arg	Asn	Glu	Asp	Leu
					130				135			140			

Lys	Ser	Thr	Phe	Pro	Gly	Ser	Val	Lys	Leu	Lys	Met	Glu	Thr	Ser	Cys
					145				150			155		160	

Asn	Cys	Ala	Ser	Thr	Ser	Gly	Thr	Thr	Asp	Glu	Asp	Leu	Arg	Leu	
					165				170			175			

Ser	Val	Asp	Cys	Asp	Tyr	Arg	Tyr	Asp	His	Leu	Asp	Lys	Glu	Leu	Asn
					180				185			190			

Leu Asp Leu Thr Leu Gly Tyr Ser Pro Thr Arg Phe Val Gly Val Gly
 195 200 205

Ser Cys Tyr
 210

<210> 2
 <211> 639
 <212> DNA
 <213> Arabidopsis thaliana

<400> 2
 atgggaagat caccatgttg tgaaaaggct cacatgaaca aaggagcatg gactaaagaa 60
 gaagatcaac gtcttattga ttatacgt aatcatggtg aaggctttg gcgttctt 120
 cctaaatccg ttgggttgtt gcgttgtgaa aaaagttgtt gattaagatg gattaattac 180
 cttcgtctcg atcttaaacg tggaaatttc actgatggtg aagagcaaat cattgtcaaa 240
 cttcatagtt tatttggcaa caaatggctt ttgattgctg ggaaattacc gggagaacc 300
 gataatgaga ttaaaaaattt ttggaacact catataaaaa ggaagcttct taaccgttgt 360
 attgacccaa aaactcacgg ttgcgtatc gagcctaaaa cgacatcggt tcatccccga 420
 aatgaagatt tgaagtccac gtttcccgtt tctgttaaac taaagatgga gacttcttgt 480
 gaaaactgtg cttctacgag cggtagact acggacgagg atttacggtt aagtgttgat 540
 tgtgattaca gatatgatca tctggacaag gagctaaact tggacctaactcactcgggtac 600
 agtccgactc gatttgcgg ggtcgatct tgttactag 639

<210> 3
 <211> 236
 <212> PRT
 <213> Arabidopsis thaliana

<400> 3
 Met Gly Arg Ser Pro Cys Cys Glu Lys Ala His Thr Asn Lys Gly Ala
 1 5 10 15

Trp Thr Lys Glu Glu Asp Gln Arg Leu Val Asp Tyr Ile Arg Asn His
 20 25 30

Gly Glu Gly Cys Trp Arg Ser Leu Pro Lys Ser Ala Gly Leu Leu Arg
 35 40 45

Cys Gly Lys Ser Cys Arg Leu Arg Trp Ile Asn Tyr Leu Arg Pro Asp
 50 55 60

Leu Lys Arg Gly Asn Phe Thr Asp Asp Glu Asp Gln Ile Ile Ile Lys
 65 70 75 80

Leu His Ser Leu Leu Gly Asn Lys Trp Ser Leu Ile Ala Gly Arg Leu
 85 90 95

Pro Gly Arg Thr Asp Asn Glu Ile Lys Asn Tyr Trp Asn Thr His Ile
 100 105 110

Lys Arg Lys Leu Leu Ser His Gly Ile Asp Pro Gln Thr His Arg Gln
 115 120 125

Ile Asn Glu Ser Lys Thr Val Ser Ser Gln Val Val Val Pro Ile Gln
 130 135 140

Asn Asp Ala Val Glu Tyr Ser Phe Ser Asn Leu Ala Val Lys Pro Lys
 145 150 155 160

Thr Glu Asn Ser Ser Asp Asn Gly Ala Ser Thr Ser Gly Thr Thr Thr
 165 170 175

Asp Glu Asp Leu Arg Gln Asn Gly Glu Cys Tyr Tyr Ser Asp Asn Ser
 180 185 190

Gly His Ile Lys Leu Asn Leu Asp Leu Thr Leu Gly Phe Gly Ser Trp
 195 200 205

Ser Gly Arg Ile Val Gly Val Gly Ser Ser Ala Asp Ser Lys Pro Trp
 210 215 220

Cys Asp Pro Val Met Glu Ala Arg Leu Ser Leu Leu
 225 230 235

<210> 4

<211> 294

<212> PRT

<213> *Gossypium hirsutum*

<400> 4

Met Gly Arg Ser Pro Cys Cys Glu Lys Ala His Thr Asn Lys Gly Ala
 1 5 10 15

Trp Thr Lys Glu Glu Asp Gln Arg Leu Ile Asn Tyr Ile Arg Val His
 20 25 30

Gly Glu Gly Cys Trp Arg Ser Leu Pro Lys Ala Ala Gly Leu Leu Arg
 35 40 45

Cys Gly Lys Ser Cys Arg Leu Arg Trp Ile Asn Tyr Leu Arg Pro Asp
 50 55 60

Leu Lys Arg Gly Asn Phe Thr Glu Glu Asp Glu Leu Ile Ile Lys
 65 70 75 80

Leu His Ser Leu Leu Gly Asn Lys Trp Ser Leu Ile Ala Gly Arg Leu
 85 90 95

Pro Gly Arg Thr Asp Asn Glu Ile Lys Asn Tyr Trp Asn Thr His Ile
 100 105 110

Lys Arg Lys Leu Ile Ser Arg Gly Ile Asp Pro Gln Thr His Arg Pro
 115 120 125

Leu Asn Gln Thr Ala Asn Thr Asn Thr Val Thr Ala Pro Thr Glu Leu
 130 135 140

Asp Phe Arg Asn Thr Pro Thr Ser Val Ser Lys Ser Ser Ser Ile Lys
 145 150 155 160

Asn Pro Ser Leu Asp Phe Asn Tyr Asn Glu Phe Gln Phe Lys Ser Asn
 165 170 175

Thr Asp Ser Leu Glu Glu Pro Asn Cys Thr Thr Ser Ser Gly Met Thr
 180 185 190

Thr Asp Glu Glu Gln Gln Glu Gln Leu His Lys Gln Gln Gln Tyr Asp
 195 200 205

Pro Ser Asn Gly Gln Asp Leu Asn Leu Glu Leu Ser Ile Gly Ile Val
 210 215 220

Ser Ala Asp Ser Ser Arg Val Ser Ser Ala Asn Ser Ala Glu Ser Lys
 225 230 235 240

Pro Lys Val Asp Asn Asn Phe Gln Phe Leu Glu Gln Ala Met Val
 245 250 255

Ala Lys Ala Val Cys Leu Cys Trp Gln Leu Gly Phe Gly Thr Ser Glu
 260 265 270

Ile Cys Arg Asn Cys Gln Asn Ser Asn Ser Asn Gly Phe Tyr Ser Tyr
 275 280 285

Cys Arg Pro Leu Asp Ser
 290

<210> 5
 <211> 239
 <212> PRT
 <213> Oryza sativa

<400> 5
 Met Gly Arg Ser Pro Cys Cys Glu Lys Ala His Thr Asn Lys Gly Ala
 1 5 10 15

Trp Thr Lys Glu Glu Asp Gln Arg Leu Ile Ala Tyr Ile Arg Ala His
 20 25 30

Gly Glu Gly Cys Trp Arg Ser Leu Pro Lys Ala Ala Gly Leu Leu Arg
 35 40 45

Cys Gly Lys Ser Cys Arg Leu Arg Trp Met Asn Tyr Leu Arg Pro Asp
 50 55 60

Leu Lys Arg Gly Asn Phe Thr Asp Asp Glu Asp Glu Leu Ile Ile Arg
 65 70 75 80

Leu His Ser Leu Leu Gly Asn Lys Trp Ser Leu Ile Ala Gly Gln Leu
 85 90 95

Pro Gly Arg Thr Asp Asn Glu Ile Lys Asn Tyr Trp Asn Thr His Ile
 100 105 110

Lys Arg Lys Leu Leu Ala Arg Gly Ile Asp Pro Gln Thr His Arg Pro
 115 120 125

Leu Leu Ser Gly Gly Asp Gly Ile Ala Ala Ser Asn Lys Arg His His
 130 135 140

Arg Arg Arg Ile Pro Tyr Pro Ser Arg Arg Arg Arg Arg Pro Arg Arg
 145 150 155 160

Ser Ser Pro Cys Glu Ala Ala Ala Ala Ala Pro Gly Arg Leu Leu
 165 170 175

Gly Arg Arg Leu Pro Gln Gln Arg His Asn Glu His Gly Gly Ala
 180 185 190

Ala Val Pro Arg Pro Gln Pro Arg Ala Leu Gly Arg Ala Asp Ala Glu
 195 200 205

Leu Ala Ala Gly Gly Asp Ala His Gln Arg Ala Ala Gly Leu Pro Leu
 210 215 220

Leu Pro Pro Arg Leu Pro Arg Arg Gly Gly Val Gln Leu Ser Gly
 225 230 235

<210> 6
 <211> 273
 <212> PRT
 <213> Lycopersicon esculentum

<400> 6
 Met Gly Arg Ser Pro Cys Cys Glu Lys Ala His Thr Asn Lys Gly Ala
 1 5 10 15

Trp Thr Lys Glu Glu Asp Glu Arg Leu Ile Ser Tyr Ile Arg Ala His
 20 25 30

Gly Glu Gly Cys Trp Arg Ser Leu Pro Lys Ala Ala Gly Leu Leu Arg
 35 40 45

Cys Gly Lys Ser Cys Arg Leu Arg Trp Ile Asn Tyr Leu Arg Pro Asp
 50 55 60

Leu Lys Arg Gly Asn Phe Thr Glu Glu Asp Glu Leu Ile Ile Lys
 65 70 75 80

Leu His Ser Leu Leu Gly Asn Lys Trp Ser Leu Ile Ala Gly Arg Leu
 85 90 95

Pro Gly Arg Thr Asp Asn Glu Ile Lys Asn Tyr Trp Asn Thr His Ile
 100 105 110

Arg Arg Lys Leu Leu Ser Arg Gly Ile Asp Pro Thr Thr His Arg Ser
 115 120 125

Ile Asn Asp Pro Thr Thr Ile Pro Lys Val Thr Thr Ile Thr Phe Ala
 130 135 140

Ala Ala His Glu Asn Ile Lys Asp Ile Asp Gln Gln Asp Glu Met Ile
 145 150 155 160

Asn Ile Lys Ala Glu Phe Val Glu Thr Ser Lys Glu Ser Asp Asn Asn
 165 170 175

Glu Ile Ile Gln Glu Lys Ser Ser Cys Leu Pro Asp Leu Asn Leu
 180 185 190

Glu Leu Arg Ile Ser Pro Pro His His Gln Gln Leu Asp His His Arg
 195 200 205

His His Gln Arg Ser Ser Ser Leu Cys Phe Thr Cys Ser Leu Gly Ile
 210 215 220

Gln Asn Ser Lys Asp Cys Ser Cys Gly Ser Glu Ser Asn Gly Asn Gly
 225 230 235 240

Trp Ser Asn Asn Met Val Ser Met Asn Ile Met Ala Gly Tyr Asp Phe
 245 250 255

Leu Gly Leu Lys Thr Asn Gly Leu Leu Asp Tyr Arg Thr Leu Glu Thr
 260 265 270

Lys

<210> 7
 <211> 22
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 primer

<400> 7
 acaaatacgag tcggactgtt cc

22

<210> 8
 <211> 22
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 primer

<400> 8
 tccatcggt tactctacgt cg

22

<210> 9
 <211> 32
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 primer

<400> 9
 actggagctc atggaaagat caccatgttg tg

32

<210> 10
 <211> 32
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 primer

<400> 10
 acgttctaga cacacgagct agtaacaaga tc

32