ADL HW3 Report

R10922124 林家毅

Q1

Model

Describe the model architecture and how it works on text summarization.

```
Config:
{
   "_name_or_path": "google/mt5-small",
   "architectures": [
     "MT5ForConditionalGeneration"
   ],
   "d ff": 1024,
   "d_kv": 64,
   "d model": 512,
   "decoder_start_token_id": 0,
   "dropout rate": 0.1,
   "eos_token_id": 1,
   "feed_forward_proj": "gated-gelu",
   "initializer factor": 1.0,
   "is_encoder_decoder": true,
   "layer_norm_epsilon": 1e-06,
   "model type": "mt5",
   "num_decoder_layers": 8,
   "num heads": 6,
   "num layers": 8,
   "pad token id": 0,
   "relative attention max distance": 128,
   "relative_attention_num_buckets": 32,
   "tie word embeddings": false,
   "tokenizer class": "T5Tokenizer",
   "torch_dtype": "float32",
```

```
"transformers_version": "4.18.0",
"use_cache": true,
"vocab_size": 250100
```

mT5 是 encoder-decoder transformer 架構,同時具有 bidirectional attention encoder 以及 auto-regressive generating decoder 兩個好處,適合用在各種 sequence to sequence 的 tasks,只需要在 fine-tune 時加上 prompt prefix,例如 "summarize:"

Preprocessing

Describe your preprocessing (e.g. tokenization, data cleaning and etc.)
google/mt5-small 的 tokenizer 是 SentencePiece tokenizer,是基於 Unigram segmentation algorithm,將 sentence 切成 subword 來做 tokenize。

Q2

}

Hyperparameter

Describe your hyper-parameter you use and how you decide it.

- Learning rate: 5e-5
- Total update steps: 35000 (經過測試覺得可以穩定達到 baseline)
- Training batch size: 4 (不設太大避免 CUDA out of memory)
- Optimizing algorithm: adafactor (節省 memory)
- Max source length: 256 (節省 memory)
- Max target length: 64 (節省 memory)

Learning Curves

Plot the learning curves (ROUGE versus training steps)

每 500 steps 做一次 evaluation,整個 training process 共 35000 steps,F1-scores 如下 (因為分成三次做 training,因此每種 score 有三張圖片)

Rouge-1

• Rouge-2

• Rouge-I

Q3

Strategies

Describe the detail of the following generation strategies:

Greedy

以
$$P(w_t|w_1...w_{t-1})$$
 最大者作為 w_t

Beam Search

每次都選擇 num_beams 個 $P(w_t|w_1...w_{t-1})$ 最大的當作候選,下一個 time step 再從這個 time step 的結果選擇 num_beams 個機率最大的候選,依此類推

• Top-k Sampling

從
$$P(w_t|w_1...w_{t-1})$$
 最高的前 k 種可能 sample 出 w_t

· Top-p Sampling

從
$$P(w_t|w_1...w_{t-1})$$
 最高的前幾種可能 (機率加總為 p) sample 出 w_t

Temperature

對 softmax 的結果做 sharpen or smoothing (<1 為 sharpen, >1 為 smoothing)

Hyperparameters

Try at least 2 settings of each strategies and compare the result.

What is your final generation strategy? (you can combine any of them)

Greedy

	Greedy	Sample
rouge-1, r	0.1947	0.1481
rouge-1, p	0.2694	0.1672
rouge-1, f	0.2174	0.1520
rouge-2, r	0.0690	0.0390
rouge-2, p	0.0884	0.0420
rouge-2, f	0.0747	0.0390
rouge-I, r	0.1769	0.1316
rouge-I, p	0.2454	0.1484
rouge-I, f	0.1976	0.1349

greedy 相較於 sample 的 performance 較好,因為 sample 可能會 sample 到不太好的選擇,導致最後 decode 出來的結果不好

• Beam Search

Greedy num_beams = 3 nu	m_beams = 5
-------------------------	-------------

	Greedy	num_beams = 3	num_beams = 5
rouge-1, r	0.1947	0.2079	0.2165
rouge-1, p	0.2694	0.2622	0.2706
rouge-1, f	0.2174	0.2241	0.2322
rouge-2, r	0.0690	0.0757	0.0835
rouge-2, p	0.0884	0.0926	0.1010
rouge-2, f	0.0747	0.0801	0.0880
rouge-I, r	0.1769	0.1873	0.1956
rouge-I, p	0.2454	0.2365	0.2449
rouge-I, f	0.1976	0.2018	0.2098

beam search 的效果會比用 greedy 更好,因為會保留 num_beams 種最有可能的選擇,到最後才決定結果,而不像 greedy 總是選擇當下機率最大的;另外,num_beams 為 5 的時後會比為 3 的時候還要更好

• Top-k Sampling

	Greedy	top_k = 3	top_k = 5
rouge-1, r	0.1947	0.1914	0.1852
rouge-1, p	0.2694	0.2438	0.2300
rouge-1, f	0.2174	0.2071	0.1984
rouge-2, r	0.0690	0.0616	0.0579
rouge-2, p	0.0884	0.0730	0.0670
rouge-2, f	0.0747	0.0644	0.0599
rouge-I, r	0.1769	0.1702	0.1651
rouge-I, p	0.2454	0.2169	0.2050
rouge-I, f	0.1976	0.1841	0.1767

top_k sampling 對 performance 沒有明顯的幫助,performance 比用 greedy 差

• Top-p Sampling

	Greedy	top_p = 0.8	top_p = 0.9
rouge-1, r	0.1947	0.1673	0.1588
rouge-1, p	0.2694	0.1969	0.1838
rouge-1, f	0.2174	0.1750	0.1649

	Greedy	top_p = 0.8	top_p = 0.9
rouge-2, r	0.0690	0.0492	0.0455
rouge-2, p	0.0884	0.0549	0.0515
rouge-2, f	0.0747	0.0500	0.0466
rouge-I, r	0.1769	0.1484	0.1410
rouge-I, p	0.2454	0.1749	0.1634
rouge-I, f	0.1976	0.1552	0.1464

top_p sampling 對 performance 沒有明顯的幫助,performance 比用 greedy 差

• Temperature

	Greedy	temperature = 0.8	temperature = 1.2
rouge-1, r	0.1947	0.1671	0.1313
rouge-1, p	0.2694	0.1967	0.1412
rouge-1, f	0.2174	0.1751	0.1313
rouge-2, r	0.0690	0.0499	0.0305
rouge-2, p	0.0884	0.0563	0.0317
rouge-2, f	0.0747	0.0511	0.0300
rouge-I, r	0.1769	0.1491	0.1169
rouge-I, p	0.2454	0.1755	0.1259
rouge-I, f	0.1976	0.1561	0.1169

temperature 無論 <1 或 >1 都沒有得到比較好的結果,performance 比用 greedy 差

Final generation strategynum_beams = 5,其他參數不調整