Status meeting Oct-Dec

Mohammad Afzal

January 11, 2022

Introduction

- I am working on two problems:
 - 1 Quantitative learning of LTL-formulae.
 - Rejected from TACAS'22.
 - No progress after that.
 - 2 Formal verification of neural network.
 - Abstract refinement with progress guarantee.
 - Implementation is in progress.
- Attended SAT-SMT and iVerif workshops.

Formal Verification of Neural Network

Formal Verification of Neural Network

Figure: Neural network architecture

Example

Figure: Hypothetical Example of Neural network

Pre-condition: $-1 \le x_1 \le 1 \land -1 \le x_2 \le 1 \land 5 \le x_3 \le 7$ Post-condition: $x_7 \le x_8 \land x_7 \le x_9$.

Challanges

Encoding of a neuron H_1 have ReLU activation:

$$(z = w_1 * i_1 + w_2 * i_2 + ... + w_n * i_n) \land (y_{h_1} = max(0, z))$$

$$F \land ((y_{h_1} = z \land z > 0) \lor (y_{h_1} = 0 \land z \le 0))$$

$$(F \land y_{h_1} = z \land z > 0) \lor (F \land y_{h_1} = 0 \land z \le 0)$$

- Simplex call for each subfomula.
- Exponential simplex calls in terms of number of neuron.
- Researchers use abstraction based approach.

An abstraction based technique

DeepPoly: which uses interval + polyhedral domain.

Relu Approximation

DeepPoly: Over-approximation of relu $x_i = max(0, x_i)$

Figure: (a) exact relu activation, (b) tightest approaximation, (c)DeepPoly's approaximation

Abstraction based technique

DeepPoly: which uses interval + polyhedral domain.

Couses of imprecision:

- Triangle approximation.
- Analysing each neuron separately.

Our abstraction refinement process

Our abstraction refinement process has two part:

- 1 Find the causing point of spuriousness.
 - Backpropagation approach.
 - Optimization based approach.
- 2 How to utilize the above information(refinement).
 - MILP-based refinement.
 - Path-splitting based refinement.

Find the causing point of spuriousness

Steps:

• $And(C, \neg prop)$, find the satisfying assignment.

Backpropagation approach

Steps:

- $And(C, \neg prop)$, find the satisfying assignment.
- Find the corresponding point in the previous layer.

Backpropagation approach

Steps:

- $And(C, \neg prop)$, find the satisfying assignment.
- Find the corresponding point in the previous layer.
- If stuck in some layer, find the causing neurons.

Example: Backpropagation approach

Optimization based approach

Steps:

• $And(C, \neg prop)$, find the satisfying assignment.

Optimization based approach

Steps:

- $And(C, \neg prop)$, find the satisfying assignment.
- Execute the neural network on \bar{x}

Optimization based approach

Steps:

- $And(C, \neg prop)$, find the satisfying assignment.
- Execute the neural network on \bar{x}
- Maximize the equality of neurons of black and green points.

• Mark neurons which have different values.

Iter-1:

- $x_9 = 2, x_{10} = 2$
- $x_1 + x_2 = 2, -2 \le x_1 + x_2 \le 0$

Iter-1:

Iter-2:

$$x_9 = 2, x_{10} = 2$$

•
$$x_9 = 1, x_{10} = 3$$

•
$$x_1 + x_2 = 2, -2 \le x_1 + x_2 \le 0$$
 • $x_1 + x_2 = 2, x_1 + x_2 = 1$

$$x_1 + x_2 = 2, x_1 + x_2 = 1$$

Iter-1:

Iter-2:

$$x_9 = 2, x_{10} = 2$$

$$x_9 = 1, x_{10} = 3$$

•
$$x_1+x_2=2, -2 \le x_1+x_2 \le 0$$
 • $x_1+x_2=2, x_1+x_2=1$

$$x_1 + x_2 = 2, x_1 + x_2 = 1$$

Could not progress

Path splitting based refinement

• Suppose marked neuron is x_4 .

Path splitting based refinement

- Suppose marked neuron is x_4 .
- We split at x_4 , i.e. $x_4 > 0$ and $x_4 \le 0$, run DeepPoly on each copy.

Path splitting based refinement

- Suppose marked neuron is x_4 .
- We split at x_4 , i.e. $x_4 > 0$ and $x_4 \le 0$, run DeepPoly on each copy.
- if $x_4 > 0$, add constraint $x_1 + x_2 > 0$ on each node of the same layer.
- Run DeepPoly (Not exactly).

Implementation design

Figure: Tool overview

Plan for Jan-Mar

- Complete the implementation.
- Testing.
- Resume the LTL work.

Plan for Jan-Mar

- Complete the implementation.
- Testing.
- Resume the LTL work.

Questions/Suggestions?