Lucy Y. Pao Lecture 14 Page 1 ECEN 5458

Bode Design and Lead, Lag, & PID Compensators

 Discrete-time compensator design using Bode plots

- Z-plane Bode plotting rule of thumb
- Lead and lag compensators
 - Example
- PID control
 - P, D, PD, I, PI control

ECEN 5458

Discrete-Time Compensator Design using Bode Plots

What is correspondence of previous design parameters with quantities determined from Bode plots?

For a 2nd-order continuous-time system w/o finite zeros:

Revisiting Example 7.8 yet again:

$$H_{CL} = \frac{\frac{1}{s(s+1)}}{1 + \frac{1}{s(s+1)}} =$$

See Figure 7.22 of text.

Lucy Y. Pao Lecture 14 Page 4 ECEN 5458

Z-Plane Bode Plotting Rule of Thumb

- Equivalent idea of "breakpoint" in plotting discrete Bode plots:
 - Magnitude will change slope at a frequency when ωT , the angular position on the unit circle in radians, has the same value as the fractional distance of the singularity on the real axis to z=+1
 - lacktriangle Rule of thumb accurate for ωT relatively small.

For instance,

$$D(z) = K \frac{z - z_1}{z - p_1}$$

$$D(e^{j\omega T}) = K \frac{e^{j\omega T} - z_1}{e^{j\omega T} - p_1}$$

For
$$\omega T$$
 small \Longrightarrow

$$D(e^{j\omega T}) \approx$$

$$D(e^{j\omega T}) = K \frac{(1-z_1) + j\omega T}{(1-p_1) + j\omega T}$$

Breakpoints for numerator and denominator occur at ω where the real and imaginary parts are equal:

Numerator :
$$|1 - z_1| = \omega T$$

Denominato r:
$$|1 - p_1| = \omega T$$

Very accurate for $\omega T \leq 0.1$ rad

Moderately accurate for $\omega T \leq 0.8$ rad

Lead and Lag Compensators

Lead Compensation

$$D(z) = K \frac{z - z_1}{z - p_1}, \quad z_1 > p_1$$

Lag Compensation

$$D(z) = K \frac{z - z_1}{z - p_1}, \quad z_1 < p_1$$

10

Example

$$T = 2$$
 sec:

$$G(z) = 1.135 \frac{z + 0.523}{(z - 1)(z - 0.135)}$$

Uncompensated (D(z) = 1):

$$|G|^{10^0}$$
 $G(s)$
 $G(z)$
 G

Frequency (rad/s)

-200

10

Type 1 system:
$$K_v = \lim_{z \to 1} \frac{(z-1)D(z)G(z)}{Tz} =$$

$$\Longrightarrow$$
 e_{ss} to unit ramp

Design a compensator so e_s to unit ramp < 2/3.

If
$$D(z) = K = \frac{3}{2}$$
 $\Longrightarrow K_v = \lim_{z \to 1} \frac{(z-1)D(z)G(z)}{Tz} =$

Are there any problems with doing this?

Useful MATLAB command: margin

Design a lag compensator to achieve

eto unit ramp < 2/3.

$$D_{lag}(z) = K \frac{z - z_1}{z - p_1}, \quad z_1 < p_1$$

Choose pole at $1 - \omega T$ such that

Choose zero at $1 - \omega T$ such that

$$D_{lag}(z) = 0.1071 \begin{bmatrix} z - 0.9870 \\ \hline z - 0.9991 \end{bmatrix}$$

$$| \text{Im}(z) \\ | \text{Re}(z) \\ | \text{Re}(z) \\ | \text{Im}(z) \\ | \text{Re}(z) \\ | \text{Im}(z) \\ | \text{Re}(z) \\ | \text$$

Design a lead compensator to achieve $t_r < 2$ sec and $M_p < 40\%$.

$$D_{lead}(z) = K \frac{z - z_1}{z - p_1}, \quad z_1 > p_1$$

Choose pole at $1 - \omega T$ such that

Choose zero at $1 - \omega T$ such that

$$D_{lead}(z) = 10 \begin{bmatrix} z - 0.8517 \\ z + 0.4830 \end{bmatrix}$$

$$D(z) = D_{lag}(z)D_{lead}(z)$$

$$=1.071 \begin{bmatrix} z - 0.9870 \\ z - 0.9991 \end{bmatrix} \begin{bmatrix} z - 0.8517 \\ z + 0.4830 \end{bmatrix}$$

P and D Control

P: Proportional Control

Continuous:

$$u(t) = Ke(t)$$

u(t) = Ke(t) \Longrightarrow D(s) = K u(k) = Ke(k) \Longrightarrow D(z) = K

Discrete:

$$u(k) = Ke(k)$$

Increases K_p or K_v (decreases e_{ss}), but can destabilize the system.

D: Derivative Control

Continuous:

$$u(t) = KT_D \dot{e}(t) \Longrightarrow D(s) = KT_D s$$

approximate derivative using 1st-order difference Discrete:

$$u(k) = KT_D \begin{bmatrix} e_k - e_{k-1} \\ T \end{bmatrix} \implies D(z) = KT_D \begin{bmatrix} 1 - z^{-1} \\ T \end{bmatrix}$$

Re(s)

Increases damping (decreases overshoot).

PD Control

$$D(z) = K + KT_D \frac{z-1}{Tz}$$

$$D(z) = K_D \frac{z - \alpha}{z}, \quad (0 < \alpha < 1)$$

I: Integral Control

$$u(t) = \frac{K}{T_I} \int_{t_I}^{t} e(\tau) d\tau \implies D(s) = \frac{K}{T_I s}$$

Discrete: one way is to approximate integral using backward rectangular rule

$$u(k) = u(k-1) + \frac{K}{T_I} Te(k) \implies D(z) = \frac{KT}{T_I (1-z^{-1})}$$

Decreases e_{ss} .

$$K_{v} = \lim_{z \to 1} \frac{(z-1)D(z)G(z)}{Tz}, \quad e_{ss} = \frac{1}{K_{v}}$$

PI Control

$$D(z) = K \left[1 + \frac{Tz}{T_I(z-1)} \right]$$

$$D(z) = K_I \frac{z - \beta}{z - 1}, \quad (0 < \beta < 1)$$

Lucy Y. Pao Lecture 14 Page 16 ECEN 5458

PID Control

$$D(z) = K \left[1 + \frac{Tz}{T_I(z-1)} + T_D \frac{z-1}{Tz} \right]$$