

CS 422: Data Mining Vijay K. Gurbani, Ph.D., Illinois Institute of Technology

Distance measures
Data transformation:
Standardization and scaling
Binarization and Discretization

CS 422 vgurbani@iit.edu

Distance measures

- Given points in a n-dimension space, how do we compute the distance between two points?
 - Why? We may want to know whether two points are clustered close together for some purpose.
- Distance measures:
 - Euclidean
 - Manhattan
 - Minkowski (general)
 - Mahalanobis distance

Distance measures: Manhattan

- Also known as
 - "taxi cab" distance.
 - The L₁ norm.

Image source: https://qph.fs.quoracdn.net/main-qimg-8d64c8344fc8364e46b9712e2c51dca4

Distance measures: Euclidean

- Also known as
 - The L₂ norm.

- Defined as:

$$d(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{k=1}^{n} (x_k - y_k)^2}$$

where n is the number of dimensions (attributes) and x_k and y_k are, respectively, the k^{th} attributes (components) or data objects \mathbf{x} and \mathbf{v} .

Distance measures: Euclidean

Distance measures: Minkowski

Minkowski distance is a generalization.

$$d(\mathbf{x}, \mathbf{y}) = \left(\sum_{k=1}^{n} |x_k - y_k|^r\right)^{1/r}$$

Where r is a parameter, n is the number of dimensions (attributes) and x_k and y_k are, respectively, the kth attributes (components) or data objects x and y.

- If r = 1, degenerates to Manhattan distance.
- If r = 2, degenerates to Euclidean distance.
- If $r = \infty$, degenerates to Supremum distance (L_{max}).
- Do not confuse r with n!

Distance measures: Minkowski

L1	p1	p2	р3	p4
p1	0	4	4	6
p2	4	0	2	4
р3	4	2	0	2
p4	6	4	2	0

L2	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

L∞	p1	p2	р3	p4
p1	0	2	3	5
p2	2	0	1	3
р3	3	1	0	2
p4	5	3	2	0

Distance Matrix

Code: dist.r

Distance measures: Mahalanobis

Image Source: https://blogs.sas.com/content/iml/files/2012/02/mahal.png

- Which of the red stars is closer to the origin?
- Pedagogically, it is the distance between a point and a distribution.

Data Transformation

- Example: Binarization (Tan, Ch. 2)
 - Also called "one-hot encoding"

Table 2.5. Conversion of a categorical attribute to three binary attributes.

Categorical Value	Integer Value	x_1	x_2	x_3	
awful	0	0	0	0	
poor	1	0	0	1	
OK	2	0	1	0	
good	3	0	1	1	
great	4	1	0	0	

Table 2.6. Conversion of a categorical attribute to five asymmetric binary attributes.

Categorical Value	Integer Value	x_1	x_2	x_3	x_4	x_5
awful	0	1	0	0	0	0
poor	ifacts, Ivhich,	0	1	0	0	0
OK	2	0	0	1	0	0
good	m lo ma 3 mm II	0	0	0	1	0
great	about 4 odd v	0	0	0	0	1

Data Transformation

- Example: Binarization (Tan, Ch. 2)
 - Also called "one-hot encoding"

Table 2.5. Conversion of a categorical attribute to three binary attributes.

Categorical Value	Integer Value	x_1	x_2	x_3
awful	0	(0)	0	(0)
poor	1		0	
OK	2	(0)	1	(0)
good	3	0	1	T
great	4	1	0	0

Table 2.6. Conversion of a categorical attribute to five asymmetric binary attributes.

Categorical Value	Integer Value	x_1	x_2	x_3	x_4	x_5
awful	0	1	0	0	0	0
poor	ifacts, Ivhich,	0	1	0	0	0
OK	2	0	0	1	0	0
good	m lo m3 mm II	0	0	0	18	0
great	alout 4 off v	0	0	0	0	1

Data Transformation

Example: Discretization

• Step 1: Sort:

```
{1, 2, 10, 15, 18, 20, 22, 25, 30}
```

• Step 2: Create split points

```
{1, 2, 10, 15, 18, 20, 22, 25, 30}
```

 Step 3: Map split values to discrete categorical variables; e.g.: {1, 2, 10} → "Small", ...

- Standardization vs. normalization:
 - Standardization: Transforms data with mean = 0 and std. dev = 1. (Z-score.)
 - Normalization: Scales a variable to have values between 0 and 1.
 - These terms are often used interchangably.

- Caution: when computing distances, you want to standardize if the scales differ significantly.
- E.g.: multiple features, each varying in units:
 - Age: [0-110] years.
 - Height: [18-107] in.
 - Weight: [7.5-400] lbs.
 - Head circum.: [13.5-58.4] in.

Image source: https://cdn-images-1.medium.com/max/800/1*EyPd0sQxEXtTDSJgu72JNQ.jpeg

- What happens if we don't scale.
- Nothing drastic, but some algorithms will be slow in converging, especially if they use Euclidean distances.
 - These algorithms will only take in the magnitude of features while ignoring the units.
 - Features with high magnitudes will dominate the distance calculations.

Feature Scaling

Idea: Make sure features are on a similar scale.

E.g. x_1 = size (0-2000 feet²) \leftarrow x_2 = number of bedrooms (1-5) \leftarrow

$$\Rightarrow x_1 = \frac{\text{size (feet}^2)}{2000}$$

$$\Rightarrow x_2 = \frac{\text{number of bedrooms}}{5}$$

Graphic source: Andrew Ng

Andrew Ng

- Standardization is essentially "feature scaling".
- Feature scaling strategies:
 - Replace values by z-score.

$$x' = \frac{x - \bar{x}}{\sigma}$$
 Redistributes features with $\mu = 0$, $\sigma = 1$.

- Mean normalization.
- Min-max scaling.
- Unit vector.

- Standardization is essentially "feature scaling".
- Feature scaling strategies:
 - Replace values by z-score.

$$x' = \frac{x - \bar{x}}{\sigma}$$
 Redistributes features with $\mu = 0$, $\sigma = 1$.

Mean normalization.

$$x' = \frac{x - \text{mean}(x)}{\text{max}(x) - \text{min}(x)}$$
 Redistributes with range [-1,1], $\mu = 0$.

- Min-max scaling.
- Unit vector.

- Standardization is essentially "feature scaling".
- Feature scaling strategies:
 - Replace values by z-score.

$$x' = \frac{x - \bar{x}}{\sigma}$$
 Redistributes features with $\mu = 0$, $\sigma = 1$.

Mean normalization.

$$x' = \frac{x - \text{mean}(x)}{\text{max}(x) - \text{min}(x)}$$
 Redistributes with range [-1,1], $\mu = 0$.

Min-max scaling.

$$x' = \frac{x - \min(x)}{\max(x) - \min(x)}$$
 Redistributes with range [0,1].

- Unit vector.

- Standardization is essentially "feature scaling".
- Feature scaling strategies:
 - Replace values by z-score (standardization).

$$x' = \frac{x - \bar{x}}{\sigma}$$
 Redistributes features with $\mu = 0$, $\sigma = 1$.

Mean normalization.

$$x' = \frac{x - \operatorname{mean}(x)}{\operatorname{max}(x) - \operatorname{min}(x)}$$

Redistributes with range [-1,1], μ = 0.

Min-max scaling.

$$x' = \frac{x - \min(x)}{\max(x) - \min(x)}$$

Redistributes with range [0,1].

- Unit vector.

$$x'=rac{x}{||x||}$$

Code: scaling.r

P1(1000, 0), P3(1201, 2), P4(600, 0.5) D(P1, P3) > D(P1, P4)? 201 not > 400


```
P1(1000, 0), P3(1201, 2), P4(600, 0.5)

D(P1, P3) > D(P1, P4)?

Standardized D(P1,P3) > D(P1,P4)

0.464 > 0.246

CS 422

vgurbani@iit.edu
```

- When do we scale, and when do we not scale?
 - Scale if all attributes are numeric and using neural networks.
 - If some attributes are nominal or categorical, onehot encode them.
 - Is one-hot encoding enough or should we scale?
 - Should we scale when using decision trees?
- Scale the dataset and then split? Or split and then scale?