Contents

1	Introduction	1
	1.1 Conventions	1
2	Basic environments	1
	2.1 Eigenstate and Euklidean path integral in general ✓	1

1 Introduction

[1]

1.1 Conventions

2 Basic environments

2.1 Eigenstate and Euklidean path integral in general \checkmark

We now introduce the Euclidean path integral because we want to find the eigenstates of the left and right Rindler wedges.

First of all we have a ground state $\langle \Omega |$ of H and a vacuum state $\langle 0 |$, so we can write for a very long time T

$$\begin{split} e^{-iHT}\langle 0| &= \sum_n e^{-iE_nT} \langle n| \, \langle n|0 \rangle \\ &= e^{-iE_0T} \langle \Omega| \, \langle \Omega|0 \rangle + \sum_{n \neq 0} e^{-iE_nT} \langle n| \, \langle n|0 \rangle \end{split}$$

Now we enclose and get the ground state

$$\langle \Omega | = \lim_{T \to \infty} \frac{e^{iE_0T}}{\langle \Omega | 0 \rangle} e^{-iHT} \langle 0 |$$

We can define E_0 with $H_0\langle 0| = \langle 0|$ so

$$\langle \Omega | = \frac{1}{\langle \Omega | 0 \rangle} \lim_{T \to \infty} e^{-iHT} \langle 0 |$$

(see p.86 in [2]) But this equation does still tell us nothing about the entanglement. So let's continue:

Let a time-independent field ϕ act on this ground state:

$$\langle \phi | \Omega \rangle = \frac{1}{\langle \Omega | 0 \rangle} \lim_{T \to \infty} \langle \phi | e^{-iHT} | 0 \rangle$$

Now use the Euclidean path integral formalism, rotate t about 90° into the complex plane: $t \to -it_E$ and choose the early boundary condition $\phi = 0$, so that

$$\langle \phi | \Omega \rangle \propto \int_{\hat{\phi}(t_E = -\infty) = 0}^{\hat{\phi}(t_E = 0) = \phi} D\hat{\phi} e^{-I_E}$$
 (2.1)

with the Euclidean action for a free massive scalar field

$$I_E[\hat{\phi}] = \frac{1}{2} \int d^3x dt_E \left[(\partial_{t_E} \hat{\phi})^2 + (\vec{\nabla} \hat{\phi})^2 + m^2 \hat{\phi}^2 \right]$$
 (2.2)

Note that $\hat{\phi}$ compared to ϕ is time-dependent.

References

- [1] D. Harlow. Jerusalem Lectures on Black Holes and Quantum Information. URL: https://arxiv.org/abs/1409.1231.
- [2] M.E. Peskin and D.V. Schroeder. An Introduction to Quantum Field Theory. 1995.