

Dossier technique du « Heisenberg »

Réalisé par :

Meher Marweni

Mohamed Aziz Tousli

Sommaire

1. Description	3
2. Partie électronique	3
a. Composants électroniques	3
b. Circuit électrique	
3. Partie mécanique	4
a. Matériau utilisé	
b. Conception mécanique	
4. Partie informatique	

1. Description:

Notre robot, nommé « Heisenberg », est un véhicule d'une taille moyenne muni de trois roues, deux principales et une secondaire, activées par deux moto-réducteurs. Il est autonome, ayant une carte électronique programmable à laquelle on peut adjoindre un module pour ajuster les moteurs et il connait son chemin grâce à trois capteurs de couleur.

Et comme tout robot suiveur, il possède une plaque principale horizontale où on va situer les différents composants électroniques.

« Heisenberg » sera capable de finir le trajet dans un temps idéal.

2. Partie électronique :

a. Composants électroniques :

Le tableau ci-dessous regroupe les divers composants électroniques qu'on a utilisé tout au long de la préparation du robot :

Nom du composant	Fonction du composant	Figure du composant
Carte Arduino Uno	Programmer le circuit électronique	
Carte de puissance	Contôler les moteurs	
1 roue libre	Garder l'équilibre du véhicule	
2 roues avec pneus	Fixer le véhicule sur le sol	
3 capteurs couleurs	Guider le véhicule	

Power Bank

Alimenter la carte Arduino et la carte de puissance

b. Circuit électrique :

On a modélisé le circuit électrique de notre robot:

3. Partie mécanique :

a. Matérieau utilisé:

Afin de garantir la stabilité de notre robot, et de faire un beau design, on a voulu utiliser une découpe laser pour faire le modèle suivant, mais on a eu des problèmes au FabLab :

b. Conception mécanique :

On a fait le modèle mécanique de notre robot grâce au logiciel SolidWorks :

*Le modèle était prévu être comme ça, mais le menuisier a suggéré un autre modèle.

4. Partie informatique:

Pour programmer la carte Arduino, on a utilisé le logiciel Arduino prévu à cet effet. Le code n'était pas difficile à écrire.

Le programme principal est présenté ci-dessous :

```
void loop()
etatCapteurGauche = digitalRead(SensorLeft);
etatCapteurCentre = digitalRead(SensorMiddle);
 etatCapteurDroit = digitalRead(SensorRight);
 if (etatCapteurCentre)
  if ((etatCapteurGauche) && (!etatCapteurDroit))
     Serial.println("Tourner à gauche");
  else if ((!etatCapteurGauche) && (etatCapteurDroit))
     Serial.println("Tourner à droite");
  else
     Serial.println("Continuer tout droit");
else
  if ((etatCapteurGauche) && (!etatCapteurDroit))
     Serial.println("Tourner à gauche");
  else if ((!etatCapteurGauche) && (etatCapteurDroit))
     Serial.println("Tourner à droite");
  else
     Serial.println("Reculer");
   }
```