$\textbf{Cyrix}^{\text{\tiny{\$}}}\textbf{M} \ \textbf{II}^{\text{\tiny{\texttt{M}}}}$

Mobile CPU Preliminary Data Sheet

January 5, 1999 3:38

Addendums and other updates for this manual can be obtained from Cyrix Web site: www.cyrix.com.

M II™ MOBILE PROCESSOR

Enhanced High Performance CPU

Introduction

Enhanced Sixth-Generation Architecture

- MII-266 and higher
- 64K4-Way Unified Write-Back Cache
- 2 Level TLB(16 Entry L1, 384 Entry I2)
- Branch Prediction with a 512-entry BFB
- Enhanced Memory Management Unit
- Scratchpad RAM in Unified Cache
- Optimized for both 16- and 32-Bit Code
- High Performance 80-Bt FPU

X86 Instruction Set Includes MMX[™] Instructions

- Compatible with MMX[™] Technology
- Runs Windows[®] 95, Windows 3.x, Windows NT, DOS, UNIX[®], OS/2[®], Solaris[®], and others

Other Features

- Socket 7 Pinout Compatible
- 2.2 V Core, 3.3 V I/O
- Flexible Core/Bus Clock Ratios (2x, 2.5x, 3x, 3.5x, 4x)
- Leverages Existing Socket Infrastructure

The Cyrix M II Mobile CPU[™] is an enhanced processor with high speed performance. This processor has a 64K unified write-back cache, a two-level TLB and a 512-entry BIB. The M II CPU contains a scratchpad RAM feature, supports performance monitoring, and allows caching of both SMI code and SMI data. It delivers high 16- and 32-bit performance while running Windows 95, Windows NT, OS/2, DOS, UNIX, and other operating systems.

The M II Mobile CPU achieves top performance through the use of two optimized superpipelined integer units, an on-chip floating point unit, and a 64KByte unified write-back cache. The superpipelined architecture reduces timing constraints and increase frequency scalability. Advanced architectural techniques include register renaming, out-of-order completion, data dependency removal, branch prediction and speculative execution.

M II™ MOBILE PROCESSOR

Enhanced High Performance CPU

1.0 ELECTRICAL SPECIFICATIONS

1.1 Electrical Connections

This section provides information on electrical connections, absolute maximum ratings, recommended operating conditions, DC characteristics, and AC characteristics. All voltage values in Electrical Specifications are measured with respect to $V_{\rm SS}$ unless otherwise noted.

The M II Mobile CPU operates using two power supply voltages—one for the I/O (3.3 V) and one for the core (2.2 V).

1.1.1 Power and Ground Connections and Decoupling

Testing and operating the M II Mobile CPU requires the use of standard high frequency techniques to reduce parasitic effects. The high clock frequencies used in the M II Mobile CPU and its output buffer circuits can cause transient power surges when several output buffers switch output levels simultaneously. These effects can be minimized by filtering the DC power leads with low-inductance decoupling capacitors, using low impedance wiring, and by utilizing all of the $V_{\rm CC}$ and GND pins. The M II Mobile CPU contains 296 pins with 25 pins connected to $V_{\rm CC2}$ (2.2 volts), 28 pins connected to $V_{\rm CC3}$ (3.3 volts), and 53 pins connected to $V_{\rm SS}$ (ground).

1.1.2 Pull-Up/ Pull-Down Resistors

Table 1-1 lists the input pins that are internally connected to pull-up and pull-down resistors. The pull-up resistors are connected to $V_{\rm CC}$ and the pull-down resistors are connected to $V_{\rm SS}$. When unused, these inputs do not require connection to external pull-up or pull-down resistors. The SUSP# pin is unique in that it is connected to a pull-up resistor only when SUSP# is not asserted.

Table 1-1. Pins Connected to Internal Pull-Up and Pull-Down Resistors

PIN NO.	RESISTO R
Y3	20-kΩ pull-up
Y33	20-kΩ pull-down (see text)
X34	20-kΩ pull-up (see text)
AN35	20-kΩ pull-down
W35	20-kΩ pull-up
AB34	20-kΩ pull-up
Y34	20-kΩ pull-up (see text)
M34	20-kΩ pull-up
N35	20-kΩ pull-up
P34	20-kΩ pull-up
Q33	20-kΩ pull-up
	Y3 Y33 X34 AN35 W35 AB34 Y34 M34 N35 P34

1.1.3 Unused Input Pins

All inputs not used by the system designer and not listed in Table 1-1 should be connected either to ground or to $V_{\rm CC}$. Connect active-high ratings for the M II Mobile CPU processors. inputs to ground through a $10~{\rm k}\Omega~(\pm~10\%)$ Stresses beyond those listed under Table 1-2 pull-down resistor and active-low inputs to $V_{\rm CC}$ limits may cause permanent damage to the through a $10~{\rm k}\Omega~(\pm~10\%)$ pull-up resistor to prevent possible spurious operation.

1.1.4 NC and Reserved Pins

Pins designated NC have no internal connections. Pins designated RESV or RESERVED should be left disconnected. Connecting a reserved pin to a pull-up resistor, pull-down resistor, or an active signal could cause unexpected results and possible circuit malfunctions.

1.2 Absolute Maximum Ratings

The following table lists absolute maximum ratings for the M II Mobile CPU processors. Stresses beyond those listed under Table 1-2 limits may cause permanent damage to the device. These are stress ratings only and do not imply that operation under any conditions other than those listed under "Recommended Operating Conditions" Table 1-3 (Page 5) is possible. Exposure to conditions beyond Table 1-2 may (1) reduce device reliability and (2) result in premature failure even when there is no immediately apparent sign of failure. Prolonged exposure to conditions at or near the absolute maximum ratings may also result in reduced useful life and reliability.

Table 1-2. Absolute Maximum Ratings

PARAM ETER	MIN	MAX	UNITS	NOTES
Operating Case Temperature	-65	110	$^{\circ}\mathrm{C}$	Power Applied
Storage Temperature	-65	150	$^{\circ}\mathrm{C}$	
Supply Voltage, V _{CC3}	-0.5	4.0	V	
Supply Voltage, $V_{\rm CC2}$	-0.5	3.3	V	
Voltage On Any Pin	-0.5	$V_{\rm CC3}$ + 0.5	V	Not to exceed Vcc3 max
Input Clamp Current, I _{IK}		10	mA	Power Applied
Output Clamp Current, I _{OK}		25	mA	Power Applied

1.3 Recommended Operating Conditions

Table 1-3 presents the recommended operating conditions for the M II Mobile CPU device.

Table 1-3. Recommended Operating Conditions

PARAM ETER	MIN	MAX	UNITS	NOTES
T _C Operating Case Temperature	0	85	$^{\circ}\mathrm{C}$	Power Applied
V _{CC3} Supply Voltage (3.3 V)	3.135	3.465	V	
V _{CC2} Supply Voltage (2.2 V)	2.1	2.3	V	
V _{IH} High-Level Input Voltage (except CLK)	2.00	3.55	V	
V _{IH} CLKHigh-Level Input Voltage	2.0	5.5	V	
$ m V_{IL}$ Low-Level Input Voltage	-0.3	0.8	V	
I _{OH} High-Level Output Current		-1.0	mA	V _O =V _{OH(MIN)}
I _{OL} Iow-Level Output Current		5.0	mA	V _O =V _{OL(MAX)}

1.4 DC Characteristics

Table 1-4. DC Characteristics (at Recommended Operating Conditions) 1 of 2

PARAM ETER	MIN	TYP	МАХ	UNITS	NOTES
V _{OL} Low-Level Output Voltage			0.4	V	$I_{\rm OL}$ = 5 mA
V _{OH} High-Level Output Voltage	2.4			V	$I_{OH} = -1 \text{ mA}$
I _I Input Leakage Current For all pins (except those listed in Table 4-1).			±15	μΑ	$\begin{array}{l} 0 < V_{IN} < V_{CC3} \\ Note \ 1 \end{array}$
I _{IH} Input Leakage Current For all pins with internal pull-downs.			200	μΑ	V _{IH} = 2.4 V Note 1
I _{IL} Input Leakage Current For all pins with internal pull-ups.			-400	μΑ	V _{IL} = 0.45 V Note 1
C _{IN} Input Capacitance			15	pF	f = 1 MHz*
C _{OUT} Output Capacitance			20	pF	f = 1 MHz*
C _{IO} I/O Capacitance			25	pF	f = 1 MHz*
C _{CLK} CLK Capacitance			15	pF	f = 1 MHz*

^{*}Note: Not 100% tested.

Table 1-5. DC Characteristics (at Recommended Operating Conditions) 2 of 2

PARAM ETER	ICC2 MAX	ICC3 MAX	UNITS	NOTES
I _{CC} Active I _{CC}			mA	
200 MHz (M II-266)	4560	100		Notes 1, 2
233 MHz (M II-300)	5040	100		Notes 1, 2
266 MHz (M II-333)	5650	100		Notes 1, 2
270 MHz (M II-350)	5760	100		Notes 1, 2, 5
I _{CCSM} Suspend Mode Power Dissipation				
200 MHz (M II-266)	54	100	mA	Notes 1, 2, 3
233 MHz (M II-300)	54	100		Notes 1, 2, 3
266 MHz (M II-333)	54	100		Notes 1, 2, 3
270 MHz (M II-350)	54	100		Notes 1, 2, 3, 5
I _{CCSS} Standby I _{CC}				
0 MHz (Suspended/CLK Stopped)	30	50.0	mA	Notes 1, 2, 4

Notes:

- 1. These values should be used for power supply design. Maximum $I_{\rm CC}$ is determined using the worst-case instruction sequences and functions at maximum Vcc.
- 2. Frequency (MHz) ratings refer to the internal clock frequency.
- 3. All inputs at 0.4 or V_{CC3} 0.4 (CMOS levels). All inputs held static except clock and all outputs unloaded (static $I_{OUT} = 0$ mA).
- 4. All inputs at 0.4 or V_{CC3} 0.4 (CMOS levels). All inputs held static and all outputs unloaded (static $I_{OUT} = 0$ mA).
- 5. Measured using 90 MHz bus.

Table 1-6. Power Dissipation

PARAM ETER	PO	W ER	UNITS	NOTES	
PARAMEIER	TYP	MAX	UNITS	NOTES	
Active Power Dissipation					
200 MHz (M II-266)		10.3	W	Note 1	
233 MHz (M II-300)		11.4		Note 1	
266 MHz (M II-333)		12.7		Note 1	
270 MHz (M II-350)		13.0		Note 1	
Suspend Mode Power Dissipation					
200 MHz (M II-266)		0.152	W	Notes 1, 2	
233 MHz (M II-300)		0.154		Notes 1, 2	
266 MHz (M II-333)		0.156		Notes 1, 2	
270 MHz (M II-350)		0.159		Notes 1, 2	
Standby Mode Power Dissipation					
0 MHz (Suspended/CLK Stopped)		0.070	W	Notes 1, 3	

Notes:

- 1. Systems must be designed to thermally dissipate the maximum active power dissipation. Maximum power is determined using the worst-case instruction sequences and functions with Vcc2 = 2.2 V and Vcc3 = 3.3 V. 2. All inputs at $0.4 \text{ or } V_{CC3} - 0.4 \text{ (CMOS levels)}$. All inputs held static except clock and all outputs unloaded (static $I_{OUT} = 0 \text{ mA}$).
- 3. All inputs at 0.4 or V_{CC3} 0.4 (CMOS levels). All inputs held static and all outputs unloaded (static I_{OUT} =0 mA).

1.5 **AC Characteristics**

Tables 1-7 through 1-12 (Pages 9 through 13) list the AC characteristics including output delays, input setup requirements, input hold requirements and output float delays. These measurements are based on the measurement points identified in Figure 1-5 (Page 8) and Figure The JTAG AC timing is shown in Table 1-13 1-5 (Page 9). The rising clock edge reference level $V_{R\!E\!F}$ and other reference levels are shown though 1-8 (Page 16). in Table 1-7. Input or output signals must cross these levels during testing.

Figure 1-5 shows output delay (A and B) and input setup and hold times (C and D). Input setup and hold times (C and D) are specified minimums, defining the smallest acceptable sampling window a synchronous input signal must be stable for correct operation.

(Page 15) supported by Figures 1-6 (Page 15)

Figure 1-5. Drive Level and Measurement Points for Switching Characteristics

Table 1-7. Drive Level and Measurement Points for Switching Characteristics

SYM BOL	VOLTAGE (Volts)
$ m V_{REF}$	1.5
$ m V_{IHD}$	2.3
$ m V_{ILD}$	0

Note: Refer to Figure 4-1.

Table 1-8. Clock Specifications $T_{CASE} = 0^{\circ}C$ to $85^{\circ}C,$ See Figure 4-2

	PARAM ETER	60-MH	Hz BUS 66-MH		Iz BUS 75-MHz BU		tz BUS	z BUS 83-MHz BUS		UNITS
	PARAMETER	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS
f	CLKFrequency		60		66.6		75		83	MHz
T1	CLKPeriod	16.67		15.0		13.33		12.0		ns
T2	CLK Period Stability		±250		±250		±250		±250	ps
Т3	CLKHigh Time	4.0		4.0		4.0		4.0		ns
T4	CLK Low Time	4.0		4.0		4.0		4.0		ns
T5	CLKFall Time	0.15	1.5	0.15	1.5	0.15	1.5	0.15	1.5	ns
Т6	CLKRise Time	0.15	1.5	0.15	1.5	0.15	1.5	0.15	1.5	ns

Figure 1-5 CLK Timing and Measurement Points

Table 1-9 . Output Valid Delays C_L = 50~pF T_{case} = $0^{\circ}C$ to $85^{\circ}C,$ See Figure 4-3

	PA RAM ETER	60-M	Hz BUS	66-MI	Hz BUS	75-MI	Hz BUS	83-MI	tz BUS	UNITS
	PARAMETER	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	0141115
T7a	A31-A3	1.0	7.0	1.0	6.3	1.0	6.3	1.0	5.7	ns
T7b	BE7#-BE0#, CACHE#, D/C#, LOCK#, PCD, PWT, SCYC, SMIACT#, W/R#	1.0	7.0	1.0	7.0	1.0	7.0	1.0	6.0	ns
Т7с	ADS#	1.0	7.0	1.0	6.0	1.0	6.0	1.0	5.5	ns
T7d	M/IO#	1.0	7.0	1.0	5.9	1.0	5.9	1.0	5.5	ns
T8	ADSC#	1.0	7.0	1.0	7.0	1.0	7.0	1.0	6.5	ns
Т9	AP	1.0	8.5	1.0	8.5	1.0	8.5	1.0	7.5	ns
T10	APCHK#, PCHK#, FERR#	1.0	8.3	1.0	7.0	1.0	7.0	1.0	6.5	ns
T11	D63-D0, DP7-DP0 (Write)	1.3	7.5	1.3	7.5	1.3	7.5	1.3	7.0	ns
T12a	HIT#	1.0	8.0	1.0	6.8	1.0	6.8	1.0	6.0	ns
T12b	HITM#	1.1	6.0	1.1	6.0	1.1	6.0	1.1	5.5	ns
T13a	BREQ	1.0	8.0	1.0	8.0	1.0	8.0	1.0	7.0	ns
T13b	HLDA	1.0	8.0	1.0	6.8	1.0	6.8	1.0	6.0	ns
T14	SUSPA#	1.0	8.0	1.0	8.0	1.0	8.0	1.0	7.0	ns

Figure 1-5. Output Float Delay Timing

Table 1-10. Output Float Delays C_L = 50 pF, $T_{\rm case}$ = $0^{\circ}C$ to $85^{\circ}C,$ See Figure 4-5

	PA RAM ETER	60-M	Hz BUS	66-MI	Hz BUS 75-MH		tz BUS	83-MI	Hz BUS	UNITS
	PANAWEIEN	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS
T15	A31-A3, ADS#, BE7#-BE0#, CACHE#, D/C#, LOCK#, PCD, PWT, SCYC, SMIACT#, W/R#		10.0		10.0		10.0		10.0	ns
T16	AP		10.0		10.0		10.0		10.0	ns
T17	D63-D0, DP7-DP0 (Write)		10.0		10.0		10.0		10.0	ns

Figure 1-5. Output Float Delay Timing

Table 1-11. Input Setup Times $T_{\rm case}$ = 0°C to 85°C, See Figure 4-5

	PA RAM ETER	60-MHz BUS MIN	66-MHz BUS MIN	75-MHz BUS MIN	83-MHz BUS MIN	UNITS
T18a	A20M#	5.0	5.0	3.3	3.0	ns
T18b	FLUSH#, IGNNE#, SUSP#	5.0	5.0	3.3	3.0	ns
T19c	AHOLD, BOFF#	5.0	5.0	3.3	3.0	ns
T19	HOLD	5.0	5.0	3.3	3.0	ns
T20	BRDY#	5.0	5.0	3.3	3.0	ns
T21	BRDYC#	5.0	5.0	3.3	3.0	ns
T22a	A31-A3, AP, BE7#-BE0#,	5.0	5.0	3.3	3.0	ns
T22b	AP	5.0	5.0	3.3	3.0	ns
T22c	D63-D0 (Read), DP7-DP0 (Read)	3.0	3.0	3.0	2.7	ns
T23a	EADS#	5.0	5.0	5.0	4.5	ns
T23b	INV	5.0	5.0	5.0	4.5	ns
T24	INTR, NMI, RESET, SMI#, WM_RST	5.0	5.0	5.0	4.5	ns
T25a	EWBE#, NA#, WB/WT#	4.5	4.5	3.0	2.7	ns
T25b	KEN#	4.5	4.5	3.0	2.7	ns

Table 1-12. Input Hold Times $T_{\rm case} = 0^{\circ} C \ \ {\rm to} \ \ 85^{\circ} C, \ See \ Figure \ 4\text{--}5$

SYMBOL	PARAM ETER	60-MHz BUS	66-MHz BUS	75-MHz BUS	83-MHz BUS	UNITS
		MIN	MIN	MIN	MIN	
T27	A20M#, FLUSH#, IGNNE#, SUSP#	1.0	1.0	1.0	1.0	ns
T28a	AHOLD, BOFF#	1.0	1.0	1.0	1.0	ns
T28b	HOLD	1.0	1.0	1.0	1.0	ns
T29	BRDY#	1.0	1.0	1.0	1.0	ns
T30	BRDYC#	1.0	1.0	1.0	1.0	ns
T31a	A31-A3, AP, BE7#-BE0#,	1.0	1.0	1.0	1.0	ns
T31b	AP	1.0	1.0	1.0	1.0	ns
T31c	D63-D0 (Read), DP7-DP0 (Read)	2.0	1.5	1.5	1.5	ns
T32	EADS#, INV	1.0	1.0	1.0	1.0	ns
T33	INTR, NMI, RESET, SMI#, WM_RST	1.0	1.0	1.0	1.0	ns
T34	EWBE#, KEN#, NA#, WB/WT#	1.0	1.0	1.0	1.0	ns

Figure 1-5. Input Setup and Hold Timing

Table 1-13. JTAG AC Specifications

SYMBOL	PARAM ETER	ALL BUS F	UNITS	FIGURE	
STIMBOL	PARAM EIER	MIN	MAX	UNIIS	FIGURE
	TCK Frequency		20	MHz	
T36	TCKPeriod	50		ns	4-6
T37	TCK High Time	25		ns	4-6
T38	TCKLow Time	25		ns	4-6
T39	TCK Rise Time		5	ns	4-6
T40	TCKFall Time		5	ns	4-6
T41	TDO Valid Delay	3	20	ns	4-7
T42	Non-test Outputs Valid Delay	3	20	ns	4-7
T43	TDO Float Delay		25	ns	4-7
T44	Non-test Outputs Float Delay		25	ns	4-7
T45	TRSI# Pulse Width	40		ns	4-8
T46	TDI, TMS Setup Time	20		ns	4-7
T47	Non-test Inputs Setup Time	20		ns	4-7
T48	TDI, TMS Hold Time	13		ns	4-7
T49	Non-test Inputs Hold Time	13		ns	4-7

Figure 1-5. TCK Timing and Measurement Points

Figure 1-5. JTAG Test Timings

Figure 1-5. Test Reset Timing

Enhanced High Performance CPU

Mechanical Specifications

2.0 MECHANICAL SPECIFICATIONS

2.1 296-Pin SPGA Package

The pin assignments for the M II Mobile CPU in a 296-pin SPGA package are shown in Figure 2-1. The pins are listed by signal name in Table 2-1(Page 17) and by pin number in Table 2-2 (Page 18). Dimensions are shown in Figure 2-2 (Page 20) and Table 2-3 (Page 21).

Figure 2-1. 296-Pin SPGA Package Pin Assignments

Figure 2-2. 296-Pin SPGA Package Pin Assignments (Bottom View)

17 PRELIMINARY

Table 2-1. 296-Pin SPGA Package Signal Names Sorted by Pin Number

Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal
A3	NC	C29	D21	JB5	D2	U35	Vss	AE35	NC	AI21	A20
A5	D41	C31	D17	J B7	Vcc3	U37	Vcc3	AE37	Vcc3	AL23	A18
A7	Vcc2	C33	D14	K2	Vss	V2	Vss	AF2	Vss	AL25	A16
A9	Vcc2	C35	D10	K4	D59	V4	AHOLD	AF4	PCHK#	AL27	A14
A11	Vcc2	C37	D9	K34	D0	V34	SUSP#	AF34	A21	AI29	A12
A13	Vcc2	D2	D50	K36	V_{SS}	V36	V_{SS}	AF36	V_{SS}	AL31	A11
A15	Vcc2	D4	D 48	L1	Vcc2	W1	Vcc2	AG1	Vcc2	AL33	A7
A17	Vcc2	D6	D 44	L3	D61	W3	EWBE#	AG3	SMIACT#	AL35	A3
A19	Vcc3	D8	D40	L5	D60	W5	KEN#	AG5	PCD	AL37	Vss
A21	Vcc3	D10	D39	L33	Vcc3	W33	SUSPA#	AG33	A27	AM2	ADSC#
A 23	Vcc3	D12	D37	L35	NC	W35	Reserved	AG35	A24	AM4	EADS#
A25	Vcc3	D14	D35	L37	Vcc3	W37	Vcc3	AG37	Vcc3	AM6	W/R#
127	Vcc3	D16	D33	M2	Vss	X2	Vss	AH2	Vss	AM8	Vss
129	Vcc3	D18	DP3	M4	D62	X4	BRDY#	AH4	LOCK#	AM10	Vss
A31	D22	D20	D30	M34	TCK	X34	CLKMUL1	AH34	A26	AM12	Vss
A33	D18	D22	D28	M36	Vss	X36	Vss	AH36	A22	AM14	Vss
A35	D15	D24	D26	N1	Vcc2	Y1	Vcc2	AJI	BREQ	AM16	Vss
\37	NC	D26	D23	N3	D63	Y3	BRDYC#	AB	HLDA	AM18	Vss
32	NC	D28	D19	N5	DP7	Y5	NA#	Alb	ADS#	AM20	Vss
34	D43	D30	DP1	N33	TDO	Y33	CLKMULO	A.B3	A31	AM22	Vss
36	Vss	D32	D12	N35	TDI	Y35	NC	AB5	A25	AM24	Vss Vss
38	Vss Vss	D34	D12 D8	N37	Vcc3	Y37	Vcc3	AB7	Vss	AM26	Vss Vss
		l .		II				1		1	
310	Vss	D36	DP0	P2	Vss	Z2	Vss	AK2	AP D/C#	AM28	Vss
312	Vss	E1	D54	P4	NC	Z4	BOFF#	AK4	D/C#	AM30	Vss
314	Vss	E3	D52	P34	TMS	Z34	NC	AK6	HIT#	AM32	A8
B16	Vss	E5	D49	P36	Vss	Z36	Vss	AK8	A20M#	AM34	A4
B18	Vss	E7	D46	Q1	Vcc2	AA1	Vcc2	AK10	BE1#	AM36	A30
320	Vss	E9	D42	Q3	PM0	AA3	NC	AK12	BE3#	AN1	NC
322	Vss	E33	D7	Q5	FDRR#	AA5	WB/WT#	AK14	BE5#	AN3	NC
324	Vss	E35	D6	Q33	TRST#	AA33	WM_RST	AK16	BE7#	AN5	NC
B26	Vss	E37	Vcc3	Q35	NC	AA35	IGNNE#	AK18	CIK	AN7	FLUSH#
328	Vss	F2	DP6	Q37	Vcc3	AA37	Vcc3	AK20	RESET	AN9	Vcc2
330	D20	F4	D51	R2	Vss	AB2	Vss	AK22	A19	AN11	Vcc2
332	D16	F6	DP5	R4	PM1	AB4	HOLD	AK24	A17	AN13	Vcc2
334	D13	F34	D5	R34	NC	AB34	SMI#	AK26	A15	AN15	Vcc2
336	D11	F36	D4	R36	V_{SS}	AB36	Vss	AK28	A13	AN17	Vcc2
C1	NC	G1	Vcc2	S1	Vcc2	AC1	Vcc2	AK30	A9	AN19	Vcc2
C3	D47	G3	D55	S3	NC	AC3	NC	AK32	A5	AN21	Vcc3
C5	D45	G5	D53	S5	NC	AC5	NC	AK34	A29	AN23	Vcc3
27	DP4	G33	D3	S33	NC	AC33	NMI	AK36	A28	AN25	Vcc3
C9	D38	G35	D1	S35	NC	AC35	NC	AL1	Vcc2DET	AN27	Vcc3
C11	D36	G37	Vcc3	S37	Vcc3	AC37	Vcc3	AL3	PWT	AN29	Vcc3
C13	D34	H2	V_{SS}	T2	Vss	AD2	Vss	AL5	HITM#	AN31	A10
C15	D32	H4	D56	T4	MI/O#	AD4	NC	AL7	NC	AN33	A6
C17	D31	H34	NC	T34	Vcc3	AD34	INTR	AL9	BE0#	AN35	Reserved
C19	D29	H36	Vss	T36	Vss	AD36	Vss	AL11	BE2#	AN37	Vss
C21	D27	Ji	Vcc2	U1	Vcc2	AE1	Vcc2	AL13	BE4#		
C23	D25	JB	D57	U3	CACHE#	AE3	NC	AL15	BE6#		
C25	DP2	.5 .5	D58	U5	INV	AE5	APCHK#	AL17	SCYC		
C27	DF2 D24	JB3	NC	U33	Vcc3	AE33	APCHIS# A23	AL19	NC		

296-Pin SPGA Package

Table 2-2. 296-Pin SPGA Package Signal Names Sorted by Signal Names

Signal	Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal	Pin
A3	AL35	CLKMUL1	X34	D48	D4	NC	S5	Vcc2	Y1	Vss	B26
A4	AM34	D/C#	AK4	D49	E5	NC	\$33	Vcc2	AA1	Vss	B28
A5	AK32	DO	K34	D50	D2	NC	S35	Vcc2	AC1	Vss	H2
A6	AN33	D1	G35	D51	F4	NC	Y35	Vcc2	AE1	Vss	H36
A7	AL33	D2	J 35	D52	E3	NC	Z 34	Vcc2	AG1	Vss	$K\!2$
A8	AM32	D3	G33	D53	G5	NC	AA3	Vcc2	AN9	Vss	K36
A9	AK30	D4	F36	D54	E1	NC	AC3	Vcc2	AN11	Vss	M2
A10	AN31	D5	F34	D55	G3	NC	AC5	Vcc2	AN13	Vss	M36
A11	AL31	D6	E35	D56	H4	NC	AC35	Vcc2	AN15	Vss	P2
A12	AL29	D7	E33	D57	B	NC	AD4	Vcc2	AN17	Vss	P36
A13	AK28	D8	D34	D58	J 5	NC	AE3	Vcc2	AN19	Vss	R2
A14	AL27	D9	C37	D59	K4	NC	AE35	Vcc3	A19	Vss	R36
A15	AK26	D10	C35	D60	L5	NC	AL7	Vcc3	A21	Vss	T2
A16	AL25	D11	B36	D61	L3	NC	AL19	Vcc3	A23	Vss	T36
A17	AK24	D12	D32	D62	M4	NC	AN1	Vcc3	A25	Vss	U35
A18	AL23	D13	B34	D63	N3	NC	AN3	Vcc3	A27	Vss	V2
A19	AK22	D13	C33	DP0	D36	NC	AN5	Vcc3	A29	Vss	V36
A20	AL21	D14 D15	A35	DP1	D30	NMI	AC33	Vcc3	E37	Vss	X2
A20M#	AK8	D16	B32	DP1 DP2	C25	PCD	AG5	Vcc3	G37	Vss	X36
A201VIIII A21	AF34	D17	C31	DP3	D18	PCHK#	AF4	Vcc3	JB7	Vss	Z2
A22	AH36	D17	A33	DP3 DP4	C7	PM0		Vcc3	L33	Vss	Z36
	AE33	D18		DP4 DP5	F6	PM1	Q3	Vcc3	L33	Vss Vss	AB2
A23			D28		F2		R4			Vss Vss	AB36
A24	AG35	D20	B30	DP6		PWT	AL3	Vcc3	N37		AD2
A25	AJB5	D21	C29	DP7	N5	Reserved	W35	Vcc3	Q37	Vss	
A26	AH34	D22	A31	EADS#	AM4	Reserved	AN35	Vcc3	S37	Vss	AD36
A27	AG33	D23	D26	EWBE#	W3	RESET	AK20	Vcc3	T34	Vss	AF2
A28	AK36	D24	C27	FERR#	Q5	SCYC	AL17	Vcc3	U33	Vss	AF36
A29	AK34	D25	C23	FLUSH#	AN7	SMI#	AB34	Vcc3	U37	Vss	AH2
A30	AM36	D26	D24	HIT#	AK6	SMIACT#	AG3	Vcc3	W37	Vss	AJB7
A31	AJB3	D27	C21	HITM#	AL5	SUSP#	V34	Vcc3	Y37	Vss	AL37
ADS#	$\mathbf{A.5}$	D28	D22	HLDA	A_B	SUSPA#	W33	Vcc3	AA37	Vss	AM8
ADSC#	AM2	D29	C19	HOLD	AB4	TCK	M34	Vcc3	AC37	Vss	AM10
AHOLD	V4	D30	D20	IGNNE#	AA35	TDI	N35	Vcc3	AE37	Vss	AM12
AP	AK2	D31	C17	INTR	AD34	TDO	N33	Vcc3	AG37	Vss	AM14
APCHK#	AE5	D32	C15	INV	U5	TMS	P34	Vcc3	AN21	Vss	AM16
BE 0#	AL9	D33	D16	KEN#	W5	TRST#	Q33	Vcc3	AN23	Vss	AM18
BE1#	AK10	D34	C13	LOCK#	AH4	Vcc2	A7	Vcc3	AN25	Vss	AM20
BE2#	AL11	D35	D14	MI/O#	T4	Vcc2	A9	Vcc3	AN27	Vss	AM22
B E3#	AK12	D36	C11	NA#	Y5	Vcc2	A11	Vcc3	AN29	Vss	AM24
B E4#	AL13	D37	D12	NC	A3	Vcc2	A13	Vcc2DET	AL1	Vss	AM26
BE5#	AK14	D38	C9	NC	A37	Vcc2	A15	Vss	B 6	Vss	AM2 8
BE6#	AL15	D39	D10	NC	B2	Vcc2	A17	Vss	B 8	Vss	AM30
BE7#	AK16	D40	D8	NC	C1	Vcc2	G1	Vss	B10	Vss	AN37
BOFF#	Z 4	D41	A5	NC	H34	Vcc2	J	Vss	B12	W/R#	AM6
BRDY#	X4	D42	E 9	NC	J B3	Vcc2	L1	Vss	B14	WB/WT#	AA5
BRDYC#	Y 3	D43	B4	NC	L35	Vcc2	N1	Vss	B16	WM_RST	AA33
BREQ	AJI	D44	D6	NC	P4	Vcc2	Q1	Vss	B18		
CACHE#	U3	D45	C5	NC	Q35	Vcc2	SI	Vss	B20		
CLK	AK18	D46	E7	NC	R34	Vcc2	U1	Vss	B22		
CLKMULO	Y33	D47	C3	NC NC	S3	Vcc2	W1	Vss	B24		

Figure 2-3. 296-Pin SPGA Package A PRELIMINARY

Table 2-3. 296-Pin SPGA Package A

SYMBOL	MILLIN	M ETERS	INC	HES
STWIBUL	MIN	MAX	MIN	MAX
A	3.43	4.34	0.135	0.171
A1	2.51	3.07	0.099	0.121
В	0.43	0.51	0.017	0.020
D	49.28	49.91	1.940	1.965
D1	45.47	45.97	1.790	1.810
D2	31.37 Sq.	32.13 Sq.	1.235	1.265
D3	33.43	34.42	1.316	1.355
D4	7.49	6.71	0.295	0.264
E1	2.41	2.67	0.095	0.105
E2	1.14	1.40	0.045	0.055
G	1.52	2.29	0.060	0.090
L	2.97	3.38	0.117	0.133
S1	1.65	2.16	0.065	0.085

Figure 2-4. 296-Pin "Flip Chip SPGA Package B

296-Pin SPGA Package

Table 2-4. 296-Pin "Flip Chip" SPGA Package B Dimensions

SYMBOL	MILLIM	I ETERS	INCHES		
STIMBOL	MIN	MAX	MIN	MAX	
Α	3.80	4.50	0.150	0.177	
A1	1.62	1.98	0.064	0.078	
В	0.43	0.51	0.017	0.020	
D	49.28	49.91	1.940	1.965	
D1	45.47	45.97	1.790	1.810	
D2	36.75 Sq.	37.25 Sq.	1.447	1.467	
E1	2.41	2.67	0.095	0.105	
E2	1.14	1.40	0.045	0.055	
G	1.52	2.29	0.060	0.090	
L	2.97	3.38	0.117	0.133	
S1	1.65	2.16	0.065	0.085	

2.2 Thermal Resistances

Three thermal resistances can be used to idealize the heat flow from the junction of the M II Mobile CPU to ambient:

 $\theta_{...}$ = thermal resistance from junction to case in °C/W

 $\theta_{\rm CS}$ = thermal resistance from case to heatsink in °C/W,

 θ_{SA} = thermal resistance from heatsink to ambient in °C/W,

 $\theta_{CA} = \theta_{CS} + \theta_{SA}$, thermal resistance from case to ambient in °C/W.

 $T_C = T_A + P * \theta_{CA}$ (where $T_A =$ ambient temperature and P = power applied to the CPU).

To maintain the case temperature under 85°C during operation θ_{CA} can be reduced by a heat-sink/fan combination. (The heatsink/fan decreases θ_{CA} by a factor of three compared to using a heatsink alone.) The required θ_{CA} to maintain 85°C is shown in Table 5-4. The designer should ensure that adequate air flow is maintained to control the ambient temperature (T_A) .

Table 2-3. Required θ_{CA} to Maintain 85°C Case Temperature

Frequency	Power*	$ heta_{ extsf{ca}}$ For Different Ambient Temperatures				
(MHz)	(W)	25°C	30°C	35°C	40°C 49 4.37 3.	45°C
200	10.3	5.83	5.34	4.85	4.37	3.88
233	11.4	5.26	4.82	4.39	3.95	3.51
266	12.7	4.72	4.33	3.94	3.54	3.51
270	13.0	4.62	4.23	3.85	3.46	3.08

^{*}Note: Power based on Max Active Power values. Refer to Cyrix Application Note 123 Mobile CPU Thermal Design Considerations for more information.

A typical $\theta_{J\!C}$ value for the M II Mobile 296-pin PGA-package value is 0.5 °C/W.

Cyrkx® A National Somigneductor Company

Thermal Resistances

©1998 Copyright Cyrix Corporation. All rights reserved. Printed in the United States of America

Trademark Acknowledgments:

Cyrix is a registered trademark of Cyrix Corporation.

6x86, 6x86MX and M II are trademarks of Cyrix Corporation. MMX is a trademark of Intel Corporation.

All other brand or product names are trademarks of their respective companies.

Cyrix Corporation 2703 North Central Expressway Richardson, Texas 75080-2010 United States of America

Cyrix Corporation (Cyrix) reserves the right to make changes in the devices or specifications described herein without notice. Before design-in or order placement, customers are advised to verify that the information is current on which orders or design activities are based. Cyrix warrants its products to conform to current specifications in accordance with Cyrix' standard warranty. Testing is performed to the extent necessary as determined by Cyrix to support this warranty. Unless explicitly specified by customer order requirements, and agreed to in writing by Cyrix, not all device characteristics are necessarily tested. Cyrix assumes no liability, unless specifically agreed to in writing, for customers' product design or infringement of patents or copyrights of third parties arising from the use of Cyrix devices. No license, either express or implied, to Cyrix patents, copyrights, or other intellectual property rights pertaining to any machine or combination of Cyrix devices is hereby granted. Cyrix products are not intended for use in any medical, life saving, or life sustaining system. Information in this document is subject to change without notice.

January 5, 1999 3:18 pm C:\!!!devices\MII\mobile\M2_mob2.fm

Rev 0.92 Typos, MII -> M II, added 266 and 270 MHz Rev 0.91 Minor corrections Rev 0.9 New