Started on Friday, 1 April 2022, 7:00 PM

State Finished

Completed on Friday, 1 April 2022, 7:50 PM

Time taken 49 mins 55 secs

Marks 14.00/15.00

Grade 3.73 out of 4.00 (93%)

Question 1

Correct

Mark 1.00 out of 1.00

Let
$$g(t)=x(t)+\alpha x(-t)$$
 where $x(t)=\beta e^{-t}u(t)$ and the Laplace transform of $g(t)$ is $G(s)=rac{s}{s^2-1}, \qquad -1< Re\{s\}<1$

The values of the constants α and β are

Select one:

$$\bigcirc$$
 a. $\alpha=1$, $eta=rac{1}{2}$

$$\bigcirc$$
 b. $lpha=-1$, $eta=-rac{1}{2}$

c.
$$lpha=-1$$
, $eta=rac{1}{2}$

4

$$\bigcirc$$
 d. $lpha=1$, $eta=-rac{1}{2}$

e. Incomplete question or none of the options is correct.

Your answer is correct.

The correct answer is: lpha=-1, $eta=rac{1}{2}$

Question 2

Correct

Mark 1.00 out of 1.00

Consider the signal

$$x[n] = egin{cases} (rac{1}{3})^n cos(rac{\pi}{4}n) & n \leq 0 \ 0 & n > 0 \end{cases}$$

The poles and ROC for X(z) are given by

Select one:

$$\bigcirc$$
 a. poles at $z=rac{1}{3}e^{\pm jrac{\pi}{2}}$, ROC : $|z|<rac{1}{3}$

$$\bigcirc$$
 b. poles at $z=rac{1}{3}e^{\pm jrac{\pi}{4}}$, ROC : $|z|>rac{1}{3}$

$$\quad \ \ \, \bigcirc$$
 c. poles at $z=\frac{1}{3}e^{\pm j\frac{\pi}{2}}$, ROC : $|z|>\frac{1}{3}$

$$\bigcirc$$
 d. poles at $z=rac{1}{3}e^{\pm jrac{\pi}{4}}$, ROC : $|z|\leqrac{1}{3}$

e. Incomplete question or none of the options is correct

Your answer is correct.

The correct answer is: Incomplete question or none of the options is correct

Correct

Mark 1.00 out of 1.00

Let x[n] be a signal whose rational Z-transform X(z) contains a pole at $z=\frac{1}{2}$. Given that $x_1[n]=(\frac{1}{4})^nx[n]$ is absolutely summable and $x_2[n]=(\frac{1}{8})^nx[n]$ is not absolutely summable. Then, x[n] is

Select one:

- a. Left sided
- b. Right sided
- c. Two sided or both sided
- d. Incomplete question or none of the options is correct

Your answer is correct.

The correct answer is: Two sided or both sided

Question 4

Correct

Mark 1.00 out of 1.00

Consider a discrete time signal given by x[n] = -0.25nu[n] + 0.5nu[-n-1]. The region of convergence of its Z-transform would be:

Select one:

- a. Incomplete question or none of the options is correct
- b. the annular region between the two circles, both centered at origin and having radii 0.25 and 0.5. √
- o. the region inside the circle of radius 0.5 and centered at origin.
- d. the entire Z plane.
- e. the region outside the circle of radius 0.25 and centered at origin.

Your answer is correct.

The correct answers are: the annular region between the two circles, both centered at origin and having radii 0.25 and 0.5., Incomplete question or none of the options is correct

Question 5

Correct

Mark 1.00 out of 1.00

The Laplace transform of $f(t)=2\sqrt{t/\pi}$ is $\,s^{-3/2}.$ The Laplace transform of $g(t)=\sqrt{1/\pi t}$ is

Select one:

- igcap a. $rac{3}{2}s^{-5/2}$
- $igcup b. \ s^{3/2}$
- $igcap c. \ s^{1/2}$
- d. Incomplete question or none of the options is correct
- lacksquare e. $s^{-1/2}$

1

Your answer is correct.

The correct answer is: $s^{-1/2}$

Correct

Mark 1.00 out of 1.00

An input $x(t) = exp(-2t)u(t) + \delta(t-6)$ is applied to an LTI system with impulse response h(t) = u(t). The output is:

Select one:

- $igcap a. \ 0.5[1-exp(-2t)]u(t)+u(t+6)$
- o b. [1 exp(-2t)]u(t) + u(t+6)
- o c. 0.5[1 exp(-2t)]u(t) + u(t-6)

√

- $igcup d. \ [1-exp(-2t)]u(t)+u(t-6)$
- e. Incomplete question or none of the options is correct

Your answer is correct.

The correct answer is: 0.5[1 - exp(-2t)]u(t) + u(t-6)

Question 7

Correct

Mark 1.00 out of 1.00

Let the Laplace transform of a function f(t) which exists for t>0 be $F_1(s)$ and the Laplace transform of its delayed version $f(t-\tau)$ be $F_2(s)$. Let $F_1^*(s)$ be the complex conjugate of $F_1(s)$ with the Laplace variable set as $s=\sigma+j\omega$. If $G(s)=\frac{F_2(s)F_1^*(s)}{||F_1(s)||^2}$, then the inverse Laplace transform of G(s) is:

Select one:

- igcup a. An ideal impulse $\delta(t)$
- lacksquare b. An ideal delayed impulse $\delta(t- au)$

4

- o. An ideal delayed step function u(t- au)
- d. Incomplete question or none of the options is correct
- igcup e. An ideal step function u(t)

Your answer is correct.

The correct answer is: An ideal delayed impulse $\delta(t- au)$

Question 8

Correct

Mark 1.00 out of 1.00

Suppose x[n] is an absolutely summable discrete-time signal. Its z-transform is a rational function with two poles and two zeroes. The poles are at $z=\pm 2j$. Which of the following statements is TRUE for the signal x[n]?

Select one:

- a. It is a periodic signal.
- b. It is a finite duration signal.
- c. It is a causal signal.
- d. It is a non-causal signal.

 ✓
- e. Incomplete question or none of the options is correct

Your answer is correct.

The correct answer is: It is a non-causal signal.

Correct

Mark 1.00 out of 1.00

The input-output relationship of a causal stable LTI system is given as

 $y[n]=\alpha y[n-1]+\beta x[n].$ If the impulse response h[n] of this system satisfies the condition $\sum_{n=0}^\infty h[n]=2$, the relationship between lpha and eta is

Select one:

- a. Incomplete question or none of the options is correct
- \bigcirc b. lpha=2eta
- \circ c. lpha=1+eta/2
- \bigcirc d. lpha=-2eta
- \odot e. $\alpha=1-eta/2$

Your answer is correct.

The correct answer is: lpha=1-eta/2

Question 10

Correct

Mark 1.00 out of 1.00

A causal LTI system S with impulse response h(t) has its input x(t) and output y(t) related through a linear constant-coefficient differential equation of the form

$$rac{d^3y(t)}{dt^3}+(1+lpha)rac{d^2y(t)}{dt^2}+lpha(lpha+1)rac{dy(t)}{dt}+lpha^2y(t)=x(t)$$

lf

$$g(t) = rac{dh(t)}{dt} + h(t)$$

How many poles does G(s) have?

Answer: 2

The correct answer is: 2

Question 11

Correct

Mark 1.00 out of 1.00

How many signals have a Laplace transform that may be expressed as $\frac{(s-1)}{(s+2)(s+3)(s^2+s+1)}$ in its region of convergence?

Answer: 4

The correct answer is: 4

Question 12

Incorrect

Mark 0.00 out of 1.00

The transfer function of a causal LTI system is $H(s)=\frac{1}{s}$. If the input to the system is $x(t)=\frac{sin(t)}{\pi t}u(t)$, where u(t) is a unit step function, the system output y(t) at $t\to\infty$ is 0

The correct answer is: 0.5

Correct

Mark 1.00 out of
1.00

Let $H_1(z)=(1-pz^{-1})^{-1}$, $H_2(z)=(1-qz^{-1})^{-1}$, $H(z)=H_1(z)+rH_2(z)$. The quantities p,q and r are real numbers. Consider $p=\frac{1}{2},\ q=-\frac{1}{4}$, |r|<1. If the zero of H(z) lies on the unit circle, then |r|=0.50

The correct answer is: 0.5

Question 15

Correct

Mark 1.00 out of 1.00

Two causal discrete -time signals x[n] and y[n] are related as $y[n] = \sum_{m=0}^n x[m]$. If the z-transform of y[n] is $\frac{2}{z(z-1)^2}$, the value of x[2] is $\boxed{0}$.

The correct answer is: 0

◄ Quiz PwD

Jump to... ✓

Quiz PwD ▶