Language and Grammar

Language: Set of strings over an alphabet

Grammar: Alphabet and rules for creating strings

Terminal symbols: elements of alphabet

Intermediate (nonterminal) symbols: variables enforce language syntactic restrictions

Sentence: Initial variable

Grammar: Alphabet and rules for creating strings

```
For alphabet \Sigma = \{a, the, John, Jill, hamburger, car drives, eats, slowly, frequently, big, juicy, brown\}
```

Valid strings:

```
John eats a hamburger
Jill drives frequently
```

Invalid string:

Jill the car John slowly

Possible rules for initial variable (sentence)

nonterminal symbols (*variables*)

recursive definition

recursive definition

1. (sentence)

→ <noun phrase > <verb phrase >

2. (sentence)

→ <noun phrase> <verb > <direct object phrase >

3. <noun-phrase>

→ oper-noun>

4.

→ <determiner> <adjective-list> <common-noun>

proper-noun>

 \rightarrow John | Jill

<determiner>

- $\rightarrow a \mid the$
- 7. <common-noun>
- *→ car | hamburger*

8. <adjective-list>

 $\rightarrow \lambda \mid \langle adjective \rangle \langle adjective-list \rangle$

9. <adjective>

- \rightarrow big | juicy | brown
- 10. <direct-object-phrase> → <noun-phrase>
- 11. <verb-phrase>

→ <verb> | <verb> <adverb>

12. <verh>

→ drives | *eats*

13. <adverb>

 \rightarrow slowly | frequently

<u>Derivation</u>		<u>Rule</u>
(sentence)	<i>⇒ <noun-phrase> <verb-phrase></verb-phrase></noun-phrase></i>	1
	<i>⇒ <proper-noun> <verb-phrase></verb-phrase></proper-noun></i>	3
	<i>⇒ Jill <verb-phrase></verb-phrase></i>	5
	<i>⇒ Jill <verb> <adverb></adverb></verb></i>	11
	<i>⇒ Jill drives</i> <adverb></adverb>	12
	⇒ Jill drives frequently	13

Derivation	Rule(s)
(sentence) ⇒ <noun-phrase> <verb> <direct-object-phrase></direct-object-phrase></verb></noun-phrase>	2
⇒ <pre><pre>> <verb> <direct-object-phrase></direct-object-phrase></verb></pre></pre>	3
<i>⇒ John <verb> <direct-object-phrase></direct-object-phrase></verb></i>	5
⇒ John eats <direct-object-phrase></direct-object-phrase>	12
⇒ John eats <determiner> <adjective-list> <common-noun></common-noun></adjective-list></determiner>	10, 4
⇒ John eats a <adjective-list><common-noun></common-noun></adjective-list>	6
⇒ John eats a <adjective><adjective-list><common-noun></common-noun></adjective-list></adjective>	8
⇒ John eats a big <adjective-list><common-noun></common-noun></adjective-list>	9
⇒ John eats a big <adjective><adjective-list><common-noun< td=""><td>> 8</td></common-noun<></adjective-list></adjective>	> 8
⇒ John eats a big juicy <adjective-list><common-noun></common-noun></adjective-list>	9
⇒ John eats a big juicy < common-noun>	8
⇒ John eats a big juicy hamburger	7

Quadruple (V, Σ, P, S) are:

V – Finite set of variables(*nonterminal* symbols)

 \sum - Finite set of *terminal* symbols (alphabet)

 $S \in V$, the start symbol

P - Finite set of rules

 $A \in V$ (Variables capitalized)

$$\sum = \{a, b, c, \dots\}$$

Problems:

 $LHS \rightarrow RHS$

 $A \rightarrow w$ is the A rule

 $A \rightarrow \lambda$ is the null rule

$$w, \lambda \in (V \cup \Sigma)^*$$

$$p, q, \ldots z \in (V \cup \Sigma)^*$$

RHS - string of terminal and nonterminal symbols - permutation of V and Σ

Context Free Grammar:

Rule A applied wherever A occurs...

String or sentence *uAv*

Notation:

Definition of a rule (\rightarrow) $A \rightarrow W$ Derivation of a string(\Rightarrow) $uAv \Rightarrow uwv$ uwv derived from uAv uvv derived from uAv

$$\Sigma = \{0,1,2,3,4,5,6,7,8,9, -, (,)\}$$

$$P: S \to (DDD)DDD-DDDD$$

$$D \to 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9$$
allows 0 in first position

D replaced by 0 or 1 or

P:
$$S \to (XDD) \ XDD-DDDD$$

 $D \to 0 \ | \ 1 \ | \ 2 \ | \ 3 \ | \ 4 \ | \ 5 \ | \ 6 \ | \ 7 \ | \ 8 \ | \ 9$
 $X \to 1 \ | \ 2 \ | \ 3 \ | \ 4 \ | \ 5 \ | \ 6 \ | \ 7 \ | \ 8 \ | \ 9$
disallows 0 in first position

$$G = (V, \Sigma, P, S), \Sigma = \{a, b\}, V = \{S\}, \qquad V = \{S, T\}$$

 $P \colon S \to aa \mid ab \qquad S \to aT$

$$V = \{S, T\}$$

$$V = \{S, A, T\}$$

$$S \rightarrow aT$$

$$S \rightarrow AT$$

$$T \rightarrow a \mid b$$

$$A \rightarrow a$$

$$T \rightarrow a \mid b$$

 $L = \{aa, ab\}$

different grammars produce same language

Definition 3.1.2:
$$G = (V, \Sigma, P, S), v \in (V \cup \Sigma)^*$$

Set of strings derivable from v

Basis: v derivable from v

Recursive Step:

if u = xAy is derivable from v and $rule A \rightarrow w \in P$ then xwy is derivable from v

Closure:

A string is derivable from ${\bf v}$ only if it can be generated from ${\bf v}$ with a finite number of recursive steps

$$v$$
 derives w in n steps: $v \Rightarrow w_n = w$, $v \stackrel{n}{\Rightarrow} w$

$$v \Rightarrow w_1 \Rightarrow w_2 \Rightarrow \dots w_n = w$$

Definition 3.1.3: $G = (V, \Sigma, P, S)$ is a context free grammar i. A string $w \in (V \cup \Sigma)^*$ is a **sentential form** of G if $S \stackrel{\hat{}}{\Rightarrow} w$ in GSentential form includes variables and therefore not a sentence! ii. A string $w \in \Sigma^*$ is a **sentence** of G if $S \Rightarrow w$ in G**sentence** derived Example from *S* (sentence) *⇒ <noun-phrase> <verb-phrase> ⇒* <*proper-noun>* <*verb-phrase> ⇒ [ill <verb-phrase>* Sentential form iii. The *language* of *G*, L(G) is $\{w \in \sum^* | S \stackrel{\sim}{\Rightarrow} w\}$ Language of **Problems:**

Grammar G

$$G = (V, \Sigma, P, S), V = \{S\}, \Sigma = \{a\}$$

$$P: S \rightarrow aS$$

$$S \rightarrow \lambda$$

$$L = \{a\}^* = \{\lambda, a, aa, aaa, ...\}$$

$$\lambda \in L(G)$$
 ? Yes, $S \Rightarrow \lambda$

derivable from ${\cal S}$

$$a \in L(G)$$
? Yes, $S \Rightarrow aS \Rightarrow a\lambda \Rightarrow a$

$$L(G) = \{a\}^* = \{a^n \mid n \ge 0\}$$

Recursive Grammars

Direct Recursive Rules:

 $A \rightarrow aAb$ – recursive

 $A \rightarrow aA$ - right recursive

 $A \rightarrow Ab$ -left recursive

 $A \rightarrow AA$ - recursive

right recursive

Indirect Recursion:

 $A \rightarrow B$, $B \rightarrow C$, $C \rightarrow A$

A → aAb	A → aA	A →Ab	$A \rightarrow AA$
A⇒aAb	A⇒aA	$A \Rightarrow Ab$	$A \Rightarrow AA$
A <i>⇒aaAbb</i>	A <i>⇒aaA</i>	A⇒Abb	A ⇒AAA
A <i>⇒aaaAbbb</i>	A <i>⇒aaaA</i>	A⇒Abbb	A ⇒AAAA
A <i>⇒aaaaAbbbb</i>	A <i>⇒aaaaA</i>	A⇒Abbbb	<i>A⇒AAAAA</i>

Recursive Grammars

CFGderivations produce same terminal string from different sentential forms

<i>S</i> ⇒ <u>A</u> A	<i>S</i> ⇒ <u>A</u> A	<i>S ⇒ A<u>A</u></i>	<i>S</i> ⇒ <u>A</u> A
<i>⇒ <u>a</u>A</i>	⇒ <u>A</u> AAA	⇒ <u>A</u> a	<i>⇒ <u>a</u>A</i>
<i>⇒a<u>A</u>AA</i>	⇒ <u>aA</u> AA	<i>⇒ AA<u>A</u>a</i>	⇒ aAA <u>A</u>
<i>⇒a<mark>b</mark>A</i> AA	<i>⇒ a<mark>b</mark>AAA</i>	⇒ AA <mark>bA</mark> a	⇒ a <u>A</u> Aa
<i>⇒ab<mark>a</mark>A</i> A	<i>⇒ ab<mark>a</mark>A</i> A	⇒ A <u>A</u> baa	<i>⇒ a<mark>bA</mark>A</i> a
<i>⇒aba<mark>b</mark>A</i> A	<i>⇒ aba<mark>b</mark>A</i> A	⇒ A <mark>bA</mark> baa	⇒ ab <u>A</u> bAa
<i>⇒abab<mark>a</mark>A</i>	<i>⇒ abab<mark>a</mark>A</i>	⇒ <u>A</u> babaa	<i>⇒ ab<mark>a</mark>b<u>A</u>a</i>
<i>⇒ababa<mark>a</mark></i>	<i>⇒ ababa<mark>a</mark></i>	⇒ <mark>a</mark> babaa	<i>⇒ abab<mark>a</mark>a</i>

Derivation Trees

Derivation Trees

Definition 3.1.4: For $G = (V, \sum, P, S)$ a context free grammar and $S \stackrel{\hat{}}{\Rightarrow} w$, the **derivation tree**, DT, is built iteratively as follows:

- i. Initialize DT with root S.
- ii. If $A \to X_1 X_2 \dots X_n$ with $X_i \in (V \cup \Sigma)^*$ is the rule in the derivation applied to the string uAv then $X_1, X_2, \dots X_n$ are children of A
- iii. If $A \to \lambda$ is the rule in the derivation applied to the string uAv then add λ as the only child of A

$$S \rightarrow AAA$$

Example 3.2.1

$$G = (V, \Sigma, P, S), V = \{S, B\}, \Sigma = \{a, b\}$$
 $P: S \rightarrow aSa \mid aBa$
 $B \rightarrow bB \mid b$

Rule $S \rightarrow aSa$ n-1 times
Rule $S \rightarrow aBa$ 1 time
Rule $B \rightarrow bB$ m-1 times
Rule $B \rightarrow b$ 1 time

S ⇒ aSa
<i>⇒ aaSaa</i>
<i>⇒ aaaSaaa</i>
<i>⇒ aaaaBaaaa</i>
<i>⇒ aaaabBaaaa</i>
<i>⇒ aaaabbBaaaa</i>
<i>⇒ aaaabbbbaaaa</i>

$$L(G) = \{ a^n b^m a^n \mid n > 0, m > 0 \}$$

Example 3.2.2

$$G = (V, \Sigma, P, S), V = \{S, A\}, \Sigma = \{a, b, c, d\}$$
 $P: S \rightarrow aSdd \mid A$

$$A \rightarrow bAc \mid bc$$

$$Rule S \rightarrow aSdd \qquad n times$$

$$Rule S \rightarrow A \qquad 1 time$$

$$Rule A \rightarrow bAc \qquad m-1 times$$

$$Rule A \rightarrow bc \qquad 1 time$$

S ⇒ aSdd
<i>⇒ aaSdddd</i>
<i>⇒ aaaSdddddd</i>
<i>⇒ aaaAdddddd</i>
<i>⇒ aaabAcdddddd</i>
<i>⇒ aaabbccdddddd</i>

 $L(G) = \{ a^n b^m c^m d^{2n} \mid n \ge 0, m > 0 \}$

Example 3.2.4

$$G = (V, \Sigma, P, S), V = \{S\}, \Sigma = \{a, b\}$$

P: $S \rightarrow aSb \mid aSbb \mid \lambda$

m = number a's m = number b'sRule $S \rightarrow aSb$ produces m = nRule $S \rightarrow aSbb$ produces m = 2ncombination of rules $0 \le n \le m \le 2n$

$$L(G) = \{a^n b^m \mid 0 \le n \le m \le 2n \}$$

$S \Rightarrow aSb$	(n, m)
<i>⇒ aaSbb</i>	(2 <i>, 2</i>)
<i>⇒ aaaSbbb</i>	(3, 3)
<i>⇒ aaaaSbbbbb</i>	(4, 5)
<i>⇒ aaaaaSbbbbbbb</i>	(5 <i>, 7</i>)
<i>⇒ aaaaaaSbbbbbbbbb</i>	(6, 9)
<i>⇒ aaaaaaaSbbbbbbbbbbb</i>	(7, 11)
<i>⇒ aaaaaaaλbbbbbbbbbb</i>	
<i>⇒ aaaaaaabbbbbbbbbbb</i>	

Example 3.2.5

$$G = (V, \Sigma, P, S), V = \{S, B\}, \Sigma = \{a, b, c\}$$
 $P: S \rightarrow abScB \mid \lambda$
Rule $S \rightarrow abScB$ n times
 $B \rightarrow bB \mid b$
 $S \rightarrow \lambda$

$$L(G) = \{(ab)^n (cb^{m_n})^n | n \ge 0, m_n \ge 0\}$$
 ????

$$L(G) = \{ \lambda \cup \{ (ab)^n (cb^{m_1}) \dots (cb^{m_i}) \dots (cb^{m_n}) | \\ n \ge 1, m_i \ge 1, i = 1, 2, \dots n \} \}$$

$$L(G) = \{(ab)^n (cb^{m_i})^n | n \ge 0, m_i \ge 1, i = 0, 1, 2, \dots n\}\}$$

$S \Rightarrow abScB$ \Rightarrow ababScBcB \Rightarrow abab λ cBcB \Rightarrow $(ab)^2(cBcB)$ $\Rightarrow (ab)^2 (cbB)(cB)$ $\Rightarrow (ab)^2 (cbbB)(cB)$ $\Rightarrow (ab)^2 (cbbbB)(cB)$ $\Rightarrow (ab)^2 (cbbbb) (cB)$ \Rightarrow $(ab)^2$ (cbbbb) (cbB) $\Rightarrow (ab)^2 (cbbbb) (cbb)$

 $\Rightarrow (ab)^2(cb^4)(cb^2)$

Example of Equivalent Grammars

Example 3.2.6

$$G_1 = (V, \Sigma, P, S), V = \{S, A, B\}, \Sigma = \{a, b\}$$
 $P: S \rightarrow AB$

$$A \rightarrow aA \mid a$$

$$B \rightarrow bB \mid \lambda$$

$$P: S$$
Rule $S \rightarrow AB$ 1 time
$$Rule A \rightarrow aA \mid a > 0 \text{ times}$$

$$Rule B \rightarrow bB \mid \lambda \geq 0 \text{ times}$$

L(G) is a left to right grammar

$$G_2 = (V, \Sigma, P, S), V = \{S, A\}, \Sigma = \{a, b\}$$

 $P: S \rightarrow aS \mid aA$
 $A \rightarrow bA \mid \lambda$

$$L(G) = \{a^+b^*\}$$

$$L(G) = \{a^+b^*\}$$

Example of Equivalent Grammars

Example 3.2.7 – Exactly 2 b's

$$G_1 = (V, \Sigma, P, S), V = \{S, A\}, \Sigma = \{a, b\}$$

 $P: S \rightarrow AbAbA$
 $A \rightarrow aA \mid \lambda$

$$L(G) = \{a^*ba^*ba^*\}$$

$$G_2 = (V, \sum, P, S), V = \{S, A, C\}, \sum = \{a, b\}$$

$$P: S \rightarrow aS \mid bA$$

$$A \rightarrow aA \mid bC$$

$$C \rightarrow aC \mid \lambda$$

$$produces 2^{nd} a^*$$

$$L(G) = \{a^*ba^*ba^*\}$$

Example 3.2.8 – at least 2 *b's*

$$G_1 = (V, \Sigma, P, S), V = \{S, A\}, \Sigma = \{a, b\}$$

$$P: S \rightarrow AbAbA$$

$$A \rightarrow aA \mid bA \mid \lambda$$

$$L(G) = \{(a \cup b) * b(a \cup b) * b(a \cup b) * \}$$
produces $(a \cup b) *$

$$G_2 = (V, \Sigma, P, S), V = \{S, A, C\}, \Sigma = \{a, b\}$$
 $P: S \rightarrow aS \mid bA$
 $A \rightarrow aA \mid bC$
 $C \rightarrow aC \mid bC \mid \lambda$
 $L(G) = \{a*ba*b(a \cup b)*\}$
 $A \rightarrow aA \mid bC$
 $A \rightarrow aB \mid bC \mid \lambda$
 A

Example 3.2.9

$$G = (V, \Sigma, P, S), V = \{S, O\}, \Sigma = \{a, b\}$$

 $P: S \rightarrow aO \mid bO \mid \lambda$
 $O \rightarrow aS \mid bS$

S(O) in the sentential string indicates

even (odd) number of terminal symbols

$L\{G\} = \{ w \in \sum^* $	w is an even length string}

S⇒aO	
<i>⇒ aaS</i>	
<i>⇒ aab0</i>	
<i>⇒ aabbS</i>	
<i>⇒ aabb</i> λ	
<i>⇒ aabb</i>	

S⇒aO
<i>⇒ aaS</i>
⇒ аааО
<i>⇒ aaaaS</i>
⇒ ааааλ
<i>⇒ aaaa</i>

Example 3.2.10

$$G = (V, \Sigma, P, S), V = \{S, B, C\}, \Sigma = \{a, b\}$$

$$P: S \to aS \mid bB \mid \lambda$$

$$B \to aB \mid bS \mid bC$$

$$C \to aC \mid \lambda$$

Produces terminal strings with *even number* of *b* 's and *even or odd number* of *a*'s

paths to λ :

$$S \rightarrow bB$$
 (odd number of $b's$) $S \rightarrow bB$ (odd number of $b's$) $B \rightarrow bS$ (even number of $b's$) $B \rightarrow bC$ (even number of $b's$)

$$S \Rightarrow aS$$

$$\Rightarrow abB$$

Example 3.2.11

$$G = (V, \Sigma, P, S), V = \{S, A, B, C\}, \Sigma = \{a, b\}$$

only 1 variable In string

P:
$$S \rightarrow aB \mid bA \mid \lambda$$

 $A \rightarrow aC \mid bS$

$$B \rightarrow aS \mid bC$$

$$C \rightarrow aA \mid bB$$

Variable in String	Interpretation
S	Even number a's and b's
Α	Even number a's and odd number b's
В	Odd number a's and even number b's
С	Odd number a's and b's

Indirect recursion

$$S \to B \mid A$$

$$A \rightarrow C \mid S$$

$$B \rightarrow S \mid C$$

$$C \rightarrow A \mid B$$

 $L\{G\} = \{ w \in \sum^* | w \text{ is an even number } a \text{'s and } b \text{'s} \}$ (string terminates from S)

Example 3.2.12

$$G = (V, \Sigma, P, S), V = \{S, B, C\}, \Sigma = \{a, b, c\}$$

$$P: \quad S \to bS \mid cS \mid aB \mid \lambda$$

$$B \to aB \mid cS \mid bC \mid \lambda$$

$$C \to aB \mid bS \mid \lambda$$

$$S \Rightarrow aB$$

$$\Rightarrow abC$$

- 1. cannot produce string abc
- 2. B occurs when previous terminal is $a S \rightarrow aB, B \rightarrow aB, C \rightarrow aB$)
- 3. C present only when preceded by $ab \ S \rightarrow aB \ | B \rightarrow aB \ then \ B \rightarrow bC$
- *4.* C rules cannot produce terminal $c \in C \rightarrow aB \mid bS \mid \lambda$

Problems:

a always precedes B only B is replaced by C

$$G = (V, \Sigma, P, S), V = \{S, T\}, \Sigma = \{0, 1\}$$

 $P: S \rightarrow 1T | 0T0T0TS| \lambda$
 $T \rightarrow 1T | \lambda$
 $L(G) = \{w \in \Sigma^* \mid \text{number 0's in } w \text{ is a multiple of 3 } \}$

$$G = (V, \Sigma, P, S), V = \{S, T, Y\}, \Sigma = \{0, 1\}$$
 $P: S \to 00T \mid 1Y \mid \lambda$

$$Y \to 11Y \mid \lambda$$
Recursive and string terminates with λ

$$L(G) = \{w \in \Sigma^* \mid w \text{ consists of only } 0 \text{ s and } |w| \text{ is even } \cup$$

$$w \text{ consists of only } 1 \text{ s and } |w| \text{ is odd}$$

$$G = (V, \Sigma, P, S), V = \{S, A, B, C\}, \Sigma = \{a, b, c\}$$
 $P: S \rightarrow aA \mid bB \mid cC$

$$A \rightarrow aA \mid \lambda$$

$$B \rightarrow bB \mid \lambda$$

$$C \rightarrow cC \mid \lambda$$

$$L(G) = \{w \in \Sigma^* \mid w \text{ has } only \text{ one } \text{ terminal symbol}\}$$

$$L(G) = \{a^n \cup b^n \cup c^n \mid n \geq 1\}$$

$$G = (V, \sum, P, S), V = \{S, A, B, C\}, \sum = \{a, b, c\}$$

$$P: S \rightarrow ABC$$

$$A \rightarrow aA \mid \lambda$$

$$B \rightarrow bB \mid \lambda$$

$$C \rightarrow cC \mid \lambda$$

$$L(G) = \{a^{i}b^{j}c^{k} \mid i, j, k \geq 0\}$$

$$P: S \rightarrow ABC$$

$$A \rightarrow aA \mid a$$

$$B \rightarrow bB \mid b$$

$$C \rightarrow cC \mid c$$

$$L(G) = \{a^{i}b^{j}c^{k} \mid i, j, k \geq 1\}$$

$$G = (V, \Sigma, P, S), V = \{S, X\}, \Sigma = \{a, b, c\}$$
 $P: S \to XXXXXXS \mid \lambda$
 $X \to a \mid b \mid c$
 $E(G) = \{w \in \Sigma^* \mid length(w) \text{ is a multiple of 5 }\}$

String $abcba \in L(G)$

Recursive Langauge From Chapter 1 and 2:

$$\sum = \{a, b\}$$

Basis: $\lambda \in L$

Recursive Step: if $w \in L$ then $awb \in L$

$$L(G) = \{\lambda, a\lambda b, aabb, aaabbb, \ldots\} = \{a^n b^n \mid n \ge 0\}$$

From Chapter 3:

$$G = (V, \Sigma, P, S), V = \{S\}, \Sigma = \{a, b\}$$

P: $S \rightarrow aSb \mid \lambda$

$$L(G) = \{ w \in \Sigma^* \mid w = a^n b^n \mid n \ge 0 \}$$

Problem 3.9

```
G = (V, \Sigma, P, S), V = \{S, B, C\}, \Sigma = \{a, b, c\}
L(G) = \{a^n b^m c^i \mid 0 \le n + m \le i\}
P: \quad S \to aSc \mid B \mid \lambda
B \to bBc \mid C
C \to cC \mid \lambda
```

```
perform S \to aSc   n times then perform B \to bBc   m times then (or) perform B \to C   perform C \to cC   (i-n-m) incremental times L(G) = \{\lambda\} \cup \{c^i \mid n, m = 0, i \ge 1\} \cup \{a^n c^i \mid m = 0, n \le i\} \cup \{b^m c^i \mid n = 0, m \le i\} \cup \{a^n b^m c^i \mid n \ge 1, m \ge 1, 0 \le n + m \le i\}
```

Problem 3.10

$$G = (V, \Sigma, P, S), V = \{S\}, \Sigma = \{a, b\}$$

$$L(G) = \{a^m b^n \mid 0 \le n \le m \le 3n\}$$

 $L(G) = \{\text{number } a'\text{s at least number of } b'\text{s and } \}$

no more than 3 times number b's

$$L(G) = \{\lambda, ab, a^2b, a^3b, a^2b^2, a^3b^2, a^4b^2, a^5b^2, a^6b^2, \dots\}$$

Examples of Languages

Problem 3.11

$$G = (V, \Sigma, P, S), V = \{S, T, Y\}, \Sigma = \{a, b\}$$

$$L(G) = \{a^m b^i a^n | i = m + n\}$$

$$L(G) = \{a^m b^{m+n} a^n \mid m + n \ge 0\}$$

$$L(G) = \{a^m b^m b^n a^n \mid m + n \ge 0\}$$

$$L(G) = \{a^m b^m \mid m \ge 0\} \{b^n a^n \mid n \ge 0\}$$

P:
$$S \rightarrow TY$$

 $T \rightarrow aTb \mid \lambda$ m times
 $Y \rightarrow bYa \mid \lambda$ n times

Concatenation of two sets

Regular Grammars

Definition 3.3.1

Regular Grammar, G, is a restrictive context-free grammar

$$G = (V, \Sigma, P, S), V = \{S, A, B\}$$
 and $\Sigma = \{a\}$ with rules in the form:

$$A \rightarrow a \mid aB \mid \lambda$$

 $A \to \lambda \mid \sum V \mid \sum$

Formal rules definition: $P \subseteq V_X \{ \lambda \cup \sum V \cup \sum \}$

Only one variable and variable is right most symbol in the string

$S \Rightarrow aS$

- $\Rightarrow aS$
- *⇒ aaS*
- *⇒ aabA*
- *⇒ aabbA*
- *⇒ aabbλ*
- *⇒ aabb*

Example

$$G = (V, \Sigma, P, S), V = \{S, A\}, \Sigma = \{a, b\}$$

 $P: S \rightarrow aS \mid aA$
 $A \rightarrow bA \mid \lambda$

Regular Grammars

Example 3.3.1

Context Free Grammar (CFG)

$$G_1 = (V, \Sigma, P, S), V = \{S, A\}, \Sigma = \{a, b\}$$

 $P: S \rightarrow abSA \mid \lambda$
 $A \rightarrow Aa \mid \lambda$
 $L(G) = \lambda \cup (ab)^+a^*$

Regular CFG

$$G_2 = (V, \Sigma, P, S), V = \{S, A, B\}, \Sigma = \{a, b\}$$

 $P: S \rightarrow aB \mid \lambda$
 $B \rightarrow bS \mid bA$
 $A \rightarrow aA \mid \lambda$
 $L(G) = \lambda U (ab)^+a^*$

S ⇒ abSA	S⇒aB
<i>⇒ abSA</i>	<i>⇒ aA</i>
<i>⇒ ababSAA</i>	<i>⇒ abA</i>
<i>⇒ ababλAA</i>	<i>⇒ abaA</i>
<i>⇒ ababλAaA</i>	<i>⇒ ababA</i>
<i>⇒ ababAaAa</i>	<i>⇒ ababaA</i>
<i>⇒ ababλaAa</i>	<i>⇒ ababaaA</i>
<i>⇒ ababaAa</i>	<i>⇒ ababaaλ</i>
<i>⇒ ababaλa</i>	<i>⇒ ababaa</i>
<i>⇒ ababaa</i>	

Languages and Grammars

Grammar: Variables, alphabet and rules for creating strings

 $P(\Sigma^*)$ is the set of all languages

A language is a subset of Σ^*

Not every language derived from a *CFG*

Not every language derived from a *Regular Grammar*

Regular Grammar \subset CFG

Regular Grammar is generated by a Regular Expression

Regular Language described by a **Regular Grammar**

Regular Language \subset CFL

Leftmost Derivations

Theorem 3.5.1

 $G = (V, \Sigma, P, S)$, string $w \in L(G)$ iff there is a leftmost derivation of w from $S S \Rightarrow w_1 \Rightarrow w_2 \Rightarrow \dots w_n = w$

Independent rule applications to build leftmost derivation of w

- i. Find first w_k such that sentential form is not a leftmost derivation (no k indicates leftmost derivation)
- ii. Reorder k + 1 rule application as leftmost derivation.
- iii. Repeat i and ii up to n k times as necessary

leftmost derivations of terminal strings are assured

NO assurance of derivations for all sentential forms

Leftmost Derivations

Theorem 3.5.1

$$G = (V, \Sigma, P, S)$$
, string $w \in L(G)$
iff there is a leftmost derivation of w from $S S \Rightarrow w_1 \Rightarrow w_2 \Rightarrow \dots w_n = w$

Independent rule applications to build leftmost derivation of w

$$S \Rightarrow abAV \Rightarrow abbc$$
 $S \Rightarrow abAV \Rightarrow abbV \Rightarrow abbc$
 $V \rightarrow c$
 $A \rightarrow b$
 $V \rightarrow c$
 $I \rightarrow c$
 I

leftmost derivations of terminal strings are assured

NO assurance of derivations for all sentential forms

Leftmost Derivations

leftmost derivations of all sentential strings are NOT assured

$$G = (V, \Sigma, P, S), V = \{S, A\}, \Sigma = \{a, b\}$$

$$P: S \to AB$$

$$A \rightarrow aA \mid \lambda$$

$$B \rightarrow bB \mid \lambda$$

$$L(G) = a^*b^*$$

no leftmost derivation with A in sentential form

$S \Rightarrow AB$	$S \Rightarrow AB$
$\Rightarrow \lambda B$	$\Rightarrow A\lambda$
$\Rightarrow B$	$\Rightarrow A$

Definition 3.5.2 G is *ambiguous* if $w \in L(G)$ can be derived by two leftmost derivations (different sentential strings)

Ambiguity is property of grammar not the language

$$G = (V, \Sigma, P, S), V = \{S, A, B\}, \Sigma = \{a, b\}$$

$$P: S \to A \mid B$$

$$A \to aA \mid \lambda$$

$$B \to bB \mid \lambda$$

ambiguous grammars when strings have ≥2 distinct derivations

ambiguous grammars have ≥2 distinct leftmost derivations of a terminal string derived from different sentential strings

$$G = (V, \Sigma, P, S), V = \{S, A\}, \Sigma = \{a\}$$

 $P: S \rightarrow aS \mid Sa \mid a$
 $L(G) = a^+$ ambiguous

$S \Rightarrow aS$	S ⇒ Sa
<i>⇒ aaS</i>	⇒ Saa
<i>⇒ aaa</i>	<i>⇒ aaa</i>
<i>⇒aaa</i>	<i>⇒aaa</i>

$$G = (V, \Sigma, P, S), V = \{S, A\}, \Sigma = \{a\}$$

 $P: S \rightarrow aS \mid a$
 $L(G) = a^+$
unambiguous

$$S \rightarrow AA \mid \lambda$$

 $A \rightarrow AAA \mid bA \mid Ab \mid a$

Example 3.5.2

$$G = (V, \Sigma, P, S), V = \{S, A\}, \Sigma = \{a, b\}$$

 $P: S \rightarrow bS \mid Sb \mid a$
 $L(G) = b^*ab^*$

$S \Rightarrow bS$	$S \Rightarrow Sb$
$\Rightarrow bSb$	$\Rightarrow bSb$
<i>⇒ bab</i>	⇒bab

ambiguous grammar - ability to generate b* in either direction

$S \Rightarrow bS$	$S \Rightarrow Sb$
$\Rightarrow bS$	$\Rightarrow Sb$
⇒ bbS	⇒ Sbb
⇒ bbSb	<i>⇒bSbb</i>

Example 3.5.2 (continued)

eliminates ability to generate b* in either direction (unambiguous)

$$G_{1} = (V, \Sigma, P, S), \qquad G_{2} = (V, \Sigma, P, S),$$

$$V = \{S, A\}, \Sigma = \{a, b\} \qquad V = \{S, A\}, \Sigma = \{a, b\}$$

$$P: \quad S \rightarrow bS \mid aA \qquad P: \quad S \rightarrow bS \mid A$$

$$A \rightarrow bA \mid \lambda \qquad A \rightarrow Ab \mid a$$

$$S \stackrel{n}{\Rightarrow} b^{n}S \qquad S \stackrel{n}{\Rightarrow} b^{n}S$$

$$\Rightarrow b^{n}aA \qquad \Rightarrow b^{n}Ab^{m} \qquad \Rightarrow b^{n}Ab^{m} \qquad \Rightarrow b^{n}ab^{m}\lambda \qquad \Rightarrow b^{n}ab^{m}$$

$$\Rightarrow b^{n}ab^{m} \lambda \qquad \Rightarrow b^{n}ab^{m}$$

$$\Rightarrow b^{n}ab^{m}$$

$$\Rightarrow b^{n}ab^{m}$$

$$L(G) = b*ab*$$