Pentium

Parallélisme et multi-coeurs

Performances, comment les améliorer encore plus?

- Texe = N * CPI * 1/F
- Texe : Temps d'exécution d'un programme donné sur un processeur donné
- N : nombre d'instructions dans ce programme
- CPI: (cycles per instruction) nombre de cycles horloge nécessaire par instruction
- F : fréquence d'horloge

Optimisations diverses

- Texe = N * CPI * 1/F
- · Objectif: exécuter plus vite, donc minimiser Texe
- Donc minimiser chaque composante du produit
- Minimiser N => optimiser les instructions (le noyau du processeur)
- Minimiser CPI => utiliser un cache
- Minimiser 1/F => augmenter F (fréquence d'horloge)

No Pentium 4 at 4 GHz

Craig Barret, (ex PDG d'Intel), s'excusant publiquement de ne pas respecter la promesse de cette compagnie de mettre sur le marché un Pentium 4 fonctionnant à promesse de cette compagnie de m 4Ghz! La course à la vitesse est arrêtée...

19 octobre 2004 - Orlando

Architectures parallèles

Classification de Flynn (années 70)

flots d'instructions et de données

. SISD Single Instruction Single Data streams . SIMD Single Instruction Multiple Data streams

. MIMD Multiple Instruction Multiple Data streams

. MISD

Intel: Plusieurs vues du parallélisme

- 2 processeurs côte à côte
 - Adapter le processeur pour une telle connexion
 - Bi processeurs, Quad processeurs
- Double cœur ou N-cœur à l'intérieur d'un même processeur
 - · Deux noyaux très liés
 - Hyperthreading

2 processeurs côte à côte

• Pentium version Itanimum (1 & 2)

Parallélisme au niveau instruction machine

- Le processeur peut
 - ré-ordonnancer les instructions
 - Pipeliner les instructions
 - Décomposer les instructions en micro-instructions
 - Faire une prédiction de branchement poussée,
- Le parallémisme au niveau instruction a propulsé les performances de processeurs sur les dernières 10 années

Core-Threading, le principe

 Une séquence unique de microinstructions peut s'exécuter en même temps

Simultaneous Multi-Threading

- Avec le SMT, 2 thread peut s'exécuter simultanément dans un cœur
- Condition :
 - Chacun sollicite une unité arithmétique différente
 - L'un Integer l'autre Floating point

Multi-coeurs

• Deux cœurs peuvent exécuter des threads en parallèle

Cache privé/partagé, plus et moins Avantages du cache privé Plus près du cœur, plus rapide d'accès Diminue la contention Avantages du cache partagé Les Threads sur des cœurs différents peuvent partager les mêmes données dans les caches Plus d'espace cache est disponible si peu de threads tournent sur le système

Inter-core bus

Hyperpipeline et threading

- Noyau Prescott
 - Profondeur pipeline = 32 niveaux
 - · Couplé à la station de réservation
 - Appellation « Threading »
 - Empruntée des systèmes d'exploitation multitâches
 - · Ou multi « thread »

Interaction avec le système d'exploitation

- Le SE perçoit chaque cœur comme un processeur séparé
- L'ordonnanceur du processeur alloue des thread ou tâches aux différents cœurs
- La majorité des SE supporte le multicoeur aujourd'hui (Windows, Linux, Mac OS X, etc.)

Programmation en multi-core

- Le SE ne fait pas de parallélisation automatique du code
- Le SE alloue simplement un thread/process à un coeur
- Programmeurs doivent utiliser les process et threads
- Répartir la charge de calcul sur les cœurs
- Écrire des algorithmes parallèles

Sécurité du thread sous multicoeurs

- Le changement de contexte pré-emptif peut arriver à n'importe quel moment
- Il s'agit d'une vraie concurrence et pas seulement du partage de temps sous monoprocesseur
- La concurrence stigmatise plus rapidement les bogues

Allocation d'un thread à un coeur

- Chaque thread/process a un masque d'affinité
- Le masque d'affinité spécifie sur quels cœurs le thread est autorisé à tourner
- Les thread différent peuvent avoir des masques différents
- Les affinités sont héritées à travers la fonction fork()

Structure des masques d'affinité • Example : 4 cœurs, sans SMT • Ce process/thread est autorisé à tourné sur les cœurs 0, 2 et 3, mais pas sur le cœur 1

Spécifications des processeurs dual-core Intel						
CPU	Pentium D 820	Pentium D 830	Pentium D 840	Pentium XE 8		
Fréquence	2800 MHz	3000 MHz	3200 MHz	3200 MHz		
Cache L1	2 x 28 Ko	2 x 28 Ko	2 x 28 Ko	2 x 28 Ko		
Cache L2	2 x 1024 Ko	2 x 1024 Ko	2 x 1024 Ko	2 x 1024 Ko		
FSB	800 MHz	800 MHz	800 MHz	800 MHz		
Socket	LGA 775	LGA 775	LGA 775	LGA 775		
Voltage	1,25 - 1,39 V	1,25 - 1,39 V	1,25 - 1,39 V	1,25 - 1,39 \		
TDP	95 W	130 W	130 W	130 W		
Nombre de transistors	230 millions	230 millions	230 millions	230 millions		
Process	.09µ strained silicon	.09µ strained silicon	.09µ strained silicon	0.09µ straine silicon		
Surface	206 mm²	206 mm²	206 mm²	206 mm²		
Support du 64 bits	Oui	Oui	Oui	Oui		
Support de l'EIST	Non : TM1 + TM2+ C0	Oui, TM1, TM2, C0	Oui, TM1, TM2, C0	Oui, TM1, TM C0		
Support de l'HyperThreading	Non	Non	Non	Oui		
Prix officiel	241 \$	316\$	530 \$	999 \$		

CPU	Athlon 64 X2 4200+	Athlon 64 X2 4400+	Athlon 64 X2 4600+	Athlon 64 X2 4800+
Fréquence	2200 MHz	2200 MHz	2400 MHz	2400 MHz
Cache L1	2 x 128 Ko			
Cache L2	2 x 512 Ko	2 x 1024 Ko	2 x 512 Ko	2 x 1024 Ko
FSB	200 MHz	200 MHz	200 MHz	200 MHz
Socket	939	939	939	939
Voltage	1,35 -1,4 V	1,35 -1,4 V	1,35 -1,4 V	1,35 -1,4 V
TDP	110 W	110 W	110 W	110 W
Nombre de transistors	233 millions	233 millions	233 millions	233 millions
Process	.09µ SOI + DSL	.09µ SOI + DSL	.09µ SOI + DSL	.09μ SOI + DS
Surface	199 mm²	199 mm²	199 mm²	199 mm²
Support du 64 bits	Oui	Oui	Oui	Oui
Support du Cool & Quiet	Oui	Oui	Oui	Oui
Support de l'HyperThreading	Non	Non	Non	Non
Prix officiel	537\$	581 \$	803 \$	1001\$

Inconvénients du multi core

- Cohérence des caches et mémoires
 - Si 2 processeurs (ou plus) ont dans leur cache la copie de la même zone mémoire
 - si un processeur modifie son cache, refléter cette modification dans les caches de tous les autres processeurs
 - Et refléter ce changement dans la mémoire extérieure

Core: 3 à 2 chip

Nommé Westmere
Fonctionalité GPU déplacée du pont nord vers CPU

