

COMP36212 Week 8 – Implicit vs Explicit

Dr Oliver Rhodes
oliver.rhodes@manchester.ac.uk

Overview

- Recap asynchronous content:
 - Implicit methods for stiff ODEs
 - Implicit solution of PDEs

- Solving tridiagonal systems
 - Thomas algorithm

Example: solving the hyperbolic wave equation

Explicit methods for ODEs

- The methods explored previously are all classified as explicit techniques.
 - Euler's method
 - Midpoint method
 - Heun's method
- They all use information at the beginning of an interval to predict the value at the end of the interval
 - Efficient, and easy to implement
 - Well-suited to initial value problems
 - Accuracy has been controlled by step size
- Do all ODEs respond the same to numerical solution?

Example: Explicit Euler

Consider the ODE:

$$\frac{dy}{dt} = -1000y + 4000 - 2000e^{-t}$$

 Using Euler's method the solution across interval Δt is given by:

$$y_{i+1} = y_i + (-1000y_i + 4000 - 2000e^{-t_i})\Delta t$$

• Solving with $\Delta t = 0.0001$, over the interval $0 < t \le 4.0$, with initial condition: $y(t_0 = 0.0) = 0.0$

Example: Explicit Euler

Consider the ODE:

$$\frac{dy}{dt} = -1000y + 4000 - 2000e^{-t}$$

 Using Euler's method the solution across interval Δt is given by:

$$y_{i+1} = y_i + (-1000y_i + 4000 - 2000e^{-t_i})\Delta t$$

- Solving with $\Delta t = 0.01$, over the interval $0 < t \le 4.0$, with initial condition: $y(t_0 = 0.0) = 0.0$
- Increasing the step size hasn't just made the solution inaccurate, it has made it unstable

Stability

- The condition h < 0.002, enables a bound to be put on the step size to ensure stability
- In this case the solution is stable, although oscillates about the true solution
- Explicit methods require strict conditions for the step size to be bounded, but often require even smaller step sizes for accuracy
 - An accurate solution was found with $\Delta t = 0.0001$ as seen at the beginning of the example
- If we are not interested in the accuracy of the initial transient, a step size of $\Delta t = 0.001$ could be used

Implicit Methods

- Implicit methods offer a solution to the stability and accuracy problems.
- Compute updates based on information at end of solution step:

$$y_{i+1} = y_i + \frac{dy_{i+1}}{dx} \Delta x$$

This is known as the *implicit Euler*method. Implicit, as the unknown appears
on both sides of the update equation

Example: Implicit Euler

• Solve over the interval $0 < t \le 4.0$, with initial condition:

$$y(t_0 = 0.0) = 0.0$$

$$\frac{dy}{dt} = -1000y + 3000 - 2000e^{-t}$$

 An update equation based on the implicit Euler's method can be formulated as:

$$y_{i+1} = y_i + \frac{dy_{i+1}}{dt} \Delta t$$
$$y_{i+1} = y_i + (-1000y_{i+1} + 3000 - 2000e^{-t_{i+1}}) \Delta t$$

• As the ODE is linear in y, the update equation can be rearranged to give:

$$y_{i+1} = \frac{y_i + 3000\Delta t - 2000\Delta t e^{-t_{i+1}}}{1 + 1000\Delta t}$$

• Solving for $\Delta t = 0.002$

Example: Implicit Euler

• Solve over the interval $0 < t \le 4.0$, with initial condition: $y(t_0 = 0.0) = 0.0$

$$\frac{dy}{dt} = -1000y + 3000 - 2000e^{-t}$$

 An update equation based on the implicit Euler's method can be formulated as:

$$y_{i+1} = y_i + \frac{dy_{i+1}}{dt} \Delta t$$

$$y_{i+1} = y_i + (-1000y_{i+1} + 3000 - 2000e^{-t_{i+1}}) \Delta t$$

• As the ODE is linear in y, the update equation can be rearranged to give:

$$y_{i+1} = \frac{y_i + 3000\Delta t - 2000\Delta t e^{-t_{i+1}}}{1 + 1000\Delta t}$$

• Solving for $\Delta t = 0.2$. With a large step size the fast transient cannot be resolved, but the solution is stable!

Summary: Implicit methods

- Use implicit information, information that is unknown at the current solution step
- Can be unconditionally stable for certain problems very useful with stiff ODEs, containing solutions with fast and slow components
- Allow greater accuracy, with larger timesteps
- Have simple update equations when the ODE is linear in the dependent variable (as seen in example)
- Are more complicated when ODE is nonlinear require alternative soltion approaches:

$$\frac{dy}{dx} = ky^2$$

$$y_{i+1} = y_i + ky_{i+1}^2 \Delta x, \qquad y_{i+1} = \frac{y_i}{1 - ky_{i+1} \Delta x}$$

Partial Differential Equations

 Differential equations involving two or more independent variables are known as partial differential equations (PDEs)

$$\frac{\partial^2(x,t)}{\partial x^2} = \frac{1}{\kappa^2} \frac{\partial^2 \phi(x,t)}{\partial t^2} \qquad \qquad \frac{\partial^2 \phi(x,y)}{\partial x^2} + \frac{\partial^2 \phi(x,y)}{\partial y^2} = 0$$

- The order of a PDE is defined by its highest order derivative; it is described as linear if the unknown functions and derivatives are linear (with coefficients depending only on the independent variables)
- Analytical solution is difficult typically hard to write down a formula describing PDE solution, especially for meaningful engineering problems (i.e. anything beyond a trivial example).
- Here we'll focus on linear second order PDEs, solving for real-valued functions over a rectangular grid. This grid can be bounded in space and time, enabling description of wide range of problems from science and engineering

Partial Differential Equations

A general form for a PDE involving a function of two real variables:

$$a(x,y)\frac{\partial^2 f}{\partial x^2} + b(x,y)\frac{\partial^2 f}{\partial x \partial y} + c(x,y)\frac{\partial^2 f}{\partial y^2} + d(x,y)\frac{\partial f}{\partial x} + e(x,y)\frac{\partial f}{\partial y} + g(x,y) = 0$$

- Different systems are produced depending on the values of the constants a, b, c, d, and e.
- The second order system can be can be characterised by its auxiliary quadratic equation, the roots of which enable a useful classification of the underlying system.

$$b^{2} - 4ac$$

Types of PDE

Form	b^2-4ac		Examples
Elliptic	$b^2 - 4ac < 0$ $(a = 1, b = 0, c = 1)$	Arise from steady state problems, such as potential theory or flow theory	Poisson's equation $\frac{\partial^2 \phi(x,y)}{\partial x^2} + \frac{\partial^2 \phi(x,y)}{\partial y^2} = g(x,y)$ Laplace's equation $\frac{\partial^2 \phi(x,y)}{\partial x^2} + \frac{\partial^2 \phi(x,y)}{\partial y^2} = 0$
Hyperbolic	$b^{2} - 4ac > 0$ $(a = 1, b = 0, c = -\frac{1}{\kappa^{2}})$	Arise from vibrational and radiative problems, as described by wave mechanics	The wave equation: $\frac{\partial^2(x,t)}{\partial x^2} = \frac{1}{\kappa^2} \frac{\partial^2 \phi(x,t)}{\partial t^2}$
Parabolic	$b^{2} - 4ac = 0$ $(a = 1, b = 0, c = 0)$	Arise from transient flow problems, e.g. describing conduction	Heat conduction equation: $\frac{\partial^2 \phi(x,t)}{\partial x^2} = \frac{1}{\kappa} \frac{\partial \phi(x,t)}{\partial t}$

Solution of Elliptic PDEs

Solution steps when using finite difference method:

- Create graphical representation of solution domain and draw computational molecule
- 2. Substitute finite difference approximations of derivatives into PDE
- 3. Rearrange to give known terms on right-hand side, and unknown values to be solved on left-hand side
- 4. Write characteristic equation for every point (or node) in the solution domain, incorporating boundary conditions where appropriate
- 5. Formulate the problem in matrix form Ax = b, and solve for x

- Problem: calculate the steady state temperature distribution over a square plate, with sides held at temperatures: 100 °C, 50 °C, 0 °C & 75 °C
- The plate had edge length 10 cm, with temperature distribution satisfying the elliptic Laplace equation:

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0$$

• Use the finite difference approach with step sizes of $\Delta x = \Delta y = 2$ cm, to evaluate the temperature distribution T(x, y)

- Graphical representation of solution domain and finite difference grid
- Construct computational molecule:

 Solid nodes indicate solution variable, hollow nodes indicate node with boundary condition

 Step 1: substitute finite difference approximations for second order partial derivatives:

$$\frac{\partial^2 T}{\partial x^2} = \frac{T_{i-1,j} - 2T_{i,j} + T_{i+1,j}}{\Delta x^2}, \qquad \frac{\partial^2 T}{\partial y^2} = \frac{T_{i,j-1} - 2T_{i,j} + T_{i,j+1}}{\Delta y^2}$$

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = \frac{T_{i-1,j} - 2T_{i,j} + T_{i+1,j}}{\Delta x^2} + \frac{T_{i,j-1} - 2T_{i,j} + T_{i,j+1}}{\Delta y^2} = 0$$

Which provides the computational molecule description:

$$-T_{i-1,j} - T_{i+1,j} - T_{i,j-1} - T_{i,j+1} + 4T_{i,j} = 0$$

This can now be written for all interior nodes

- For node $T_{1,1}$ (note: $T_{1,0} = 0$ °C, $T_{0,1} = 75$) $-T_{0,1} T_{2,1} T_{1,0} T_{1,2} + 4T_{1,1} = 0$ $-T_{2,1} T_{1,2} + 4T_{1,1} = 75$
- For node $T_{2,1}$ (note: $T_{2,0} = 0$ °C) $-T_{1,1} - T_{3,1} - T_{2,0} - T_{2,2} + 4T_{2,1} = 0$ $-T_{1,1} - T_{3,1} - T_{2,2} + 4T_{2,1} = 0$
- For node $T_{3,1}$ (note: $T_{3,0} = 0$ °C) $-T_{2,1} - T_{4,1} - T_{3,0} - T_{3,2} + 4T_{3,1} = 0$ $-T_{2,1} - T_{4,1} - T_{3,2} + 4T_{3,1} = 0$
- For node $T_{4,1}$ (note: $T_{4,0} = 0$ °C, $T_{5,1} = 50$ °C) $-T_{3,1} - T_{5,1} - T_{i4 0} - T_{4,2} + 4T_{4,1} = 0$ $-T_{3,1} - T_{4,2} + 4T_{4,1} = 50$

- For node $T_{1,2}$ (note: $T_{0,2} = 75$ °C) $-T_{0,2} - T_{2,2} - T_{1,1} - T_{1,3} + 4T_{1,2} = 0$ $-T_{2,2} - T_{1,1} - T_{1,3} + 4T_{1,2} = 75$
- For node $T_{2,2}$ $-T_{1,2} - T_{3,2} - T_{2,1} - T_{2,3} + 4T_{2,2} = 0$
- For node $T_{3,2}$ $-T_{2,2} - T_{4,2} - T_{3,1} - T_{3,3} + 4T_{3,2} = 0$
- For node $T_{4,2}$ (note: $T_{5,2} = 50$ °C) $-T_{3,2} - T_{5,2} - T_{4,1} - T_{4,3} + 4T_{4,2} = 0$ $-T_{3,2} - T_{4,1} - T_{4,3} + 4T_{4,2} = 50$

- For node $T_{1,3}$ (note: $T_{0,3} = 75$ °C) $-T_{0,3} - T_{2,3} - T_{1,2} - T_{1,4} + 4T_{1,3} = 0$ $-T_{2,3} - T_{1,2} - T_{1,4} + 4T_{1,3} = 75$
- For node $T_{2,3}$ $-T_{1,3} - T_{3,3} - T_{2,2} - T_{2,4} + 4T_{2,3} = 0$
- For node $T_{3,3}$ $-T_{2,3} - T_{4,3} - T_{3,2} - T_{3,4} + 4T_{3,3} = 0$
- For node $T_{4,3}$ (note: $T_{5,3} = 50$ °C) $-T_{3,3} - T_{5,3} - T_{4,2} - T_{4,4} + 4T_{4,3} = 0$ $-T_{3,3} - T_{4,2} - T_{4,4} + 4T_{4,3} = 50$

- For node $T_{1,4}$ (note: $T_{1,5} = 100 \,^{\circ}\text{C}$, $T_{0,4} = 75 \,^{\circ}\text{C}$) $-T_{0,4} - T_{2,4} - T_{1,3} - T_{1,5} + 4T_{1,4} = 0$ $-T_{2,4} - T_{1,3} + 4T_{1,4} = 175$
- For node $T_{2,4}$ (note: $T_{2,5} = 100$ °C) $-T_{1,4} T_{3,4} T_{2,3} T_{2,5} + 4T_{2,4} = 0$ $-T_{1,4} T_{3,4} T_{2,3} + 4T_{2,4} = 100$
- For node $T_{3,4}$ (note: $T_{3,5} = 100$ °C) $-T_{2,4} - T_{4,4} - T_{3,3} - T_{3,5} + 4T_{3,4} = 0$ $-T_{2,4} - T_{4,4} - T_{3,3} + 4T_{3,4} = 100$
- For node $T_{4,4}$ (note: $T_{5,4} = 50$ °C, $T_{4,5} = 100$ °C) $-T_{3,4} T_{4,3} + 4T_{4,4} = 150$

• Write in matrix form: Ax = b

$$\begin{bmatrix} 4 & -1 & & & -1 \\ -1 & 4 & -1 & & & -1 \\ & -1 & 4 & -1 & & & -1 \\ & & -1 & 4 & -1 & & & -1 \\ & & & & 4 & -1 & & & -1 \\ & & & & & 4 & -1 & & & -1 \\ & & & & & & -1 & & & -1 \\ & & & & & & -1 & & & -1 \\ & & & & & & -1 & & & -1 \\ & & & & & & -1 & 4 & -1 & & & -1 \\ & & & & & & & -1 & & & & -1 \\ & & & & & & & -1 & & & & -1 \\ & & & & & & & -1 & & & 4 & -1 \\ & & & & & & & -1 & & & 4 & -1 \\ & & & & & & & -1 & & & 4 & -1 \\ & & & & & & & -1 & & & 4 & -1 \\ & & & & & & & -1 & & & 4 & -1 \\ & & & & & & & -1 & & & 4 & -1 \\ & & & & & & & -1 & & & -1 & 4 & -1 \\ & & & & & & & -1 & & & -1 & 4 & -1 \\ \end{bmatrix} \begin{bmatrix} T_{1,1} \\ T_{2,1} \\ T_{3,1} \\ T_{4,1} \\ T_{1,2} \\ T_{2,2} \\ T_{3,2} \\ T_{4,2} \\ \vdots \\ T_{1,4} \\ T_{2,4} \\ T_{3,4} \\ T_{4,4} \end{bmatrix} = \begin{bmatrix} 75 \\ 0 \\ 0 \\ 50 \\ \vdots \\ T_{1,4} \\ T_{2,4} \\ T_{3,4} \\ T_{4,4} \end{bmatrix}$$

- By ordering nodes and arrangement of equations the matrix becomes banded, and sparse.
- Can be solved here by inverting, however when the number of nodes increases this method becomes expensive
- Efficient methods exist for solving sparse matrix problems explored in separate session

Time based PDEs

No boundary condition applied at future time

 Parabolic PDEs: e.g. heat conductance equation

$$\frac{\partial^2 \phi(x,t)}{\partial x^2} = \frac{1}{\kappa} \frac{\partial \phi(x,t)}{\partial t}$$

Hyperbolic PDEs: e.g. wave equation

$$\frac{\partial^2(x,t)}{\partial x^2} = \frac{1}{\kappa^2} \frac{\partial^2 \phi(x,t)}{\partial t^2}$$

- Boundary conditions specified to constrain solution in spatial dimension
- Initial conditions specified at t = 0 to constrain temporal solution

Example: Parabolic PDE

Solve the numerically the PDE to compute $\phi(x,t)$, over the intervals 0 < x < 2, and 0 < t < 10; with step sizes: $\Delta x = 0.4$, $\Delta t = 1$

$$\frac{\partial^2 \phi(x,t)}{\partial x^2} = \frac{1}{\kappa} \frac{\partial \phi(x,t)}{\partial t}$$

- The following auxiliary conditions are known:
 - $\phi(x = 0, t) = 10.0$ • $\phi(x = 2, t) = 10.0$ Boundary conditions
 - $\phi(x, t = 0) = 25.0$ Initial condition
- Step 1: Initialise computational grid, and apply boundary conditions to define solution at known points

Parabolic PDE: Explicit Method

• Step 2: Substitute finite difference approximations for partial derivatives at node *i*, *j*:

$$\frac{\partial^2 \phi(x,t)}{\partial x^2} = \frac{\phi_{i-1,j} - 2\phi_{i,j} + \phi_{i+1,j}}{\Delta x^2}$$
$$\frac{\partial \phi(x,t)}{\partial t} = \frac{\phi_{i,j+1} - \phi_{i,j}}{\Delta t}$$

$$\frac{\phi_{i-1,j} - 2\phi_{i,j} + \phi_{i+1,j}}{\Delta x^2} = \frac{1}{\kappa} \frac{\phi_{i,j+1} - \phi_{i,j}}{\Delta t}$$

• Rearranging, gives an expression for $\phi_{i,j+1}$ based on values at time j:

$$\phi_{i,j+1} = \frac{\kappa \Delta t}{\Delta x^2} \left(\phi_{i-1,j} + \phi_{i,j} \left(\frac{\Delta x^2}{\kappa \Delta t} - 2 \right) + \phi_{i+1,j} \right)$$

Explicit update scheme, as new value is calculated from known information

Parabolic PDE: Explicit Method

• Explicit update for $\phi_{i,j+1}$ based on values at time j:

$$\phi_{i,j+1} = \frac{\kappa \Delta t}{\Delta x^2} \left(\phi_{i-1,j} + \phi_{i,j} \left(\frac{\Delta x^2}{\kappa \Delta t} - 2 \right) + \phi_{i+1,j} \right)$$

 Step 3: apply update molecule iteratively over grid nodes

Parabolic PDE: Explicit Method

• Explicit update for $\phi_{i,j+1}$ based on values at time j:

$$\phi_{i,j+1} = \frac{\kappa \Delta t}{\Delta x^2} \left(\phi_{i-1,j} + \phi_{i,j} \left(\frac{\Delta x^2}{\kappa \Delta t} - 2 \right) + \phi_{i+1,j} \right)$$

 Step 3: apply update molecule iteratively over grid nodes

Implicit FD Approximations

- An implicit solution based on finite difference approximations can be developed by using approximations based at point (i, j + 1)
- Repeating Step 2 from before, the spatial derivative becomes:

$$\frac{\partial^2 \phi(x,t)}{\partial x^2} = \frac{\phi_{i-1,j+1} - 2\phi_{i,j+1} + \phi_{i+1,j+1}}{\Delta x^2}$$
$$\frac{\partial \phi(x,t)}{\partial t} = \frac{\phi_{i,j+1} - \phi_{i,j}}{\Delta t}$$

$$\frac{\phi_{i-1,j+1} - 2\phi_{i,j+1} + \phi_{i+1,j+1}}{\Delta x^2} = \frac{1}{\kappa} \frac{\phi_{i,j+1} - \phi_{i,j}}{\Delta t}$$

 Rearranging provides an update scheme with known values on the right hand side, and unknowns on the left:

$$\frac{\kappa \Delta t}{\Delta x^2} \left(-\phi_{i-1,j+1} + \phi_{i,j+1} \left(2 + \frac{\Delta x^2}{\kappa \Delta t} \right) - \phi_{i+1,j+1} \right) = \phi_{i,j}$$

Implicit update scheme – assemble update equation for all nodes at time j, and solve simultaneously for time j+1

Implicit FD Solution

The University of Manchester

Apply computational molecule to all nodes at time j = 0:

Node 1:

$$\frac{\kappa \Delta t}{\Delta x^2} \left(-\phi_{0,j+1} + \phi_{1,j+1} \left(2 + \frac{\Delta x^2}{\kappa \Delta t} \right) - \phi_{2,j+1} \right) = \phi_{1,j}$$

$$\frac{\kappa \Delta t}{\Delta x^2} \left(-10 + \phi_{1,j+1} \left(2 + \frac{\Delta x^2}{\kappa \Delta t} \right) - \phi_{2,j+1} \right) = 25$$

Collect known terms on RHS:

$$\left(2\frac{\kappa\Delta t}{\Delta x^2} + 1\right)\phi_{1,j+1} - \frac{\kappa\Delta t}{\Delta x^2}\phi_{2,j+1} = 25 + \frac{10\kappa\Delta t}{\Delta x^2}$$

Implicit FD Solution

• Collect nodal equations and formulate as matrix problem: $A\phi = b$. (Letting $\gamma = \frac{\kappa \Delta t}{\Delta x^2}$)

$$\begin{bmatrix} (2\gamma + 1) & -\lambda & & & \\ -\lambda & (2\gamma + 1) & -\lambda & & \\ & -\lambda & (2\gamma + 1) & -\lambda & \\ & & -\lambda & (2\gamma + 1) \end{bmatrix} \begin{bmatrix} \phi_{1,j+1} \\ \phi_{2,j+1} \\ \phi_{3,j+1} \\ \phi_{4,j+1} \end{bmatrix} = \begin{bmatrix} 25 + \frac{10\kappa\Delta t}{\Delta x^2} \\ 25 \\ 25 \\ 25 + \frac{10\kappa\Delta t}{\Delta x^2} \end{bmatrix}$$

- This is a tri-diagonal system, which means it can be solved for ϕ efficiently using the Thomas algorithm
- Once solution at time j + 1 has been found, the process can be repeated marching forward in time until the end of the solution domain is reached
- Implicit method enables larger timesteps to be taken for a given accuracy, and is unconditionally stable

COMP36212 Solving tridiagonal matrix problems

Dr Oliver Rhodes

oliver.rhodes@manchester.ac.uk

Overview

- A frequent problem in finite difference methods is the solution of systems described by a diagonal matrix A, where Ax = b:
 - Solving boundary value ODEs
 - Solving elliptic PDEs
 - Solving implicitly parabolic/hyperbolic PDEs
- A number of methods exist for solving such systems, including matrix inversion,
 Gaussian elimination, and LU decomposition, with choice of algorithm governed by:
 - Structure of matrix
 - Computational efficiency (time)
 - Memory
 - Solution accuracy
- Finite difference equations often result in tridiagonal systems:

Tridiagonal Systems

Solve the following system for x:

$$\begin{bmatrix} 2 & -1 & & & \\ -1 & 2 & -1 & & \\ & -1 & 2 & -1 \\ & & -1 & 2 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 4 \\ 2 \\ 2 \\ 10 \end{pmatrix}$$

 System is tri-diagonal: banded with terms only on the diagonal, with maximum band width of 3. A more general form is described for a problem of size n:

$$\begin{bmatrix} \beta_1 & \gamma_1 & & \\ \alpha_2 & \beta_2 & \gamma_2 & \\ & \alpha_{\dots} & \beta_{\dots} & \gamma_{\dots} \\ & & \alpha_n & \beta_n \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_{\dots} \\ x_n \end{pmatrix} = \begin{pmatrix} s_1 \\ s_2 \\ s_{\dots} \\ s_n \end{pmatrix}$$

 Tridiagonal systems are common in engineering and physical systems, and enable efficient storage by omitting zero terms (not on the diagonal)

Thomas Algorithm

Step 1: Decomposition of A

$$\begin{bmatrix} \beta_1 & \gamma_1 \\ \alpha_2 & \beta_2 & \gamma_2 \\ & \alpha_{\dots} & \beta_{\dots} & \gamma_{\dots} \\ & & & \alpha_n & \beta_n \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_{\dots} \\ x_n \end{pmatrix} = \begin{cases} S_1 \\ S_2 \\ S_{\dots} \\ S_n \end{pmatrix}$$
 For $i = 2, n$ do:
$$\alpha_i = \frac{\alpha_i}{\beta_{i-1}}$$

$$\beta_i = \beta_i - \alpha_i \gamma_{i-1}$$

Decomposition pseudocode

For
$$i=2,n$$
 do:
$$\alpha_i = \frac{\alpha_i}{\beta_{i-1}}$$

$$\beta_i = \beta_i - \alpha_i \gamma_{i-1}$$
 end

Apply to example problem:

$$\begin{bmatrix} 2 & -1 & & \\ -1 & 2 & -1 & \\ & -1 & 2 & -1 \\ & & -1 & 2 \end{bmatrix} \Rightarrow \begin{bmatrix} 2 & -1 & \\ -0.5 & 1.5 & -1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 2 & -1 & \\ -0.5 & 1.5 & -1 \end{bmatrix}$$

$$\begin{vmatrix} \beta_2 = \frac{\alpha_2}{\beta_1} = \frac{-1}{2} = -0.5 \\ \beta_2 = \beta_2 - \alpha_2 \gamma_1 \\ = 2 - (-0.5 \times -1) = 1.5 \end{vmatrix}$$

Thomas Algorithm

Step 1: Decomposition of A

$$\begin{bmatrix} \beta_1 & \gamma_1 \\ \alpha_2 & \beta_2 & \gamma_2 \\ & \alpha_{\dots} & \beta_{\dots} & \gamma_{\dots} \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

Decomposition pseudocode

For
$$i=2,n$$
 do:
$$\alpha_i=\frac{\alpha_i}{\beta_{i-1}}$$

$$\beta_i=\beta_i-\alpha_i\gamma_{i-1}$$
 end

Apply to example problem:

$$\begin{bmatrix} 2 & -1 & & \\ -1 & 2 & -1 & \\ & -1 & 2 & -1 \\ & & -1 & 2 \end{bmatrix} \Rightarrow \begin{bmatrix} 2 & -1 & \\ -0.5 & 1.5 & -1 \\ & -0.667 & 1.333 & -1 \end{bmatrix} \quad \begin{cases} \text{For } i = 3: \\ \alpha_3 = \frac{\alpha_3}{\beta_2} = \frac{-1}{1.5} = -0.667 \\ \beta_3 = \beta_3 - \alpha_3 \gamma_2 \\ = 2 - (-0.667 \times -1) = 1.333 \end{cases}$$

Step 1: Decomposition of A

$$\begin{bmatrix} \beta_1 & \gamma_1 \\ \alpha_2 & \beta_2 & \gamma_2 \\ & \alpha_{\dots} & \beta_{\dots} & \gamma_{\dots} \\ & & & \alpha_n & \beta_n \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_{\dots} \\ x_n \end{pmatrix} = \begin{pmatrix} S_1 \\ S_2 \\ S_{\dots} \\ S_n \end{pmatrix}$$
 For $i = 2, n$ do:
$$\alpha_i = \frac{\alpha_i}{\beta_{i-1}}$$

$$\beta_i = \beta_i - \alpha_i \gamma_{i-1}$$

Decomposition pseudocode

For
$$i=2,n$$
 do:
$$\alpha_i = \frac{\alpha_i}{\beta_{i-1}}$$

$$\beta_i = \beta_i - \alpha_i \gamma_{i-1}$$
 end

$$\begin{bmatrix} 2 & -1 & & \\ -1 & 2 & -1 & \\ & -1 & 2 & -1 \\ & & -1 & 2 \end{bmatrix} \Rightarrow \begin{bmatrix} 2 & -1 & & \\ -0.5 & 1.5 & -1 & \\ & -0.667 & 1.333 & -1 \\ & & & -0.75 & 1.25 \end{bmatrix} \begin{bmatrix} 701t - 4. \\ \alpha_4 = \frac{\alpha_4}{\beta_3} = \frac{-1}{1.333} = -0.750 \\ \beta_4 = \beta_4 - \alpha_4 \gamma_3 \\ = 2 - (-0.75 \times -1) = 1.25 \end{bmatrix}$$

Step 2: Forward substitution

$$\begin{bmatrix} \beta_1 & \gamma_1 & & \\ \alpha_2 & \beta_2 & \gamma_2 & \\ & \alpha_{\dots} & \beta_{\dots} & \gamma_{\dots} \\ & & & \alpha_n & \beta_n \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_{\dots} \\ x_n \end{pmatrix} = \begin{pmatrix} s_1 \\ s_2 \\ s_{\dots} \\ s_n \end{pmatrix}$$

Forward sub. pseudocode

For
$$i=2, n$$
 do:
 $s_i=s_i-\alpha_i s_{i-1}$
end

$$A = \begin{bmatrix} 2 & -1 & & \\ -0.5 & 1.5 & -1 & \\ & -0.667 & 1.333 & -1 \\ & & -0.75 & 1.25 \end{bmatrix}, \quad s = \begin{bmatrix} 4 \\ 2 \\ 2 \\ 10 \end{bmatrix} \Rightarrow \begin{bmatrix} 4 \\ 4 \end{bmatrix}$$
 For $i = 2$: $s_2 = 2 - (-0.5 \times 4) = 4$

Step 2: Forward substitution

$$\begin{bmatrix} \beta_1 & \gamma_1 & & \\ \alpha_2 & \beta_2 & \gamma_2 & \\ & \alpha_{\dots} & \beta_{\dots} & \gamma_{\dots} \\ & & & \alpha_n & \beta_n \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_{\dots} \\ x_n \end{pmatrix} = \begin{pmatrix} s_1 \\ s_2 \\ s_{\dots} \\ s_n \end{pmatrix}$$

Forward sub. pseudocode

For
$$i=2,n$$
 do:
$$s_i=s_i-\alpha_i s_{i-1}$$
 end

$$A = \begin{bmatrix} 2 & -1 & & \\ -0.5 & 1.5 & -1 & \\ & -0.667 & 1.333 & -1 \\ & & -0.75 & 1.25 \end{bmatrix}, \quad s = \begin{bmatrix} 4 \\ 2 \\ 2 \\ 10 \end{bmatrix} \Rightarrow \begin{bmatrix} 4 \\ 4 \\ 4.667 \end{bmatrix}$$
 For $i = 3$:
$$s_3 = 2 - (-0.667 \times 4) = 4.667$$

For
$$i = 3$$
:
 $s_3 = 2 - (-0.667 \times 4) = 4.667$

Step 2: Forward substitution

$$\begin{bmatrix} \beta_1 & \gamma_1 & & \\ \alpha_2 & \beta_2 & \gamma_2 & \\ & \alpha_{\dots} & \beta_{\dots} & \gamma_{\dots} \\ & & & \alpha_n & \beta_n \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_{\dots} \\ x_n \end{pmatrix} = \begin{pmatrix} s_1 \\ s_2 \\ s_{\dots} \\ s_n \end{pmatrix}$$

Forward sub. pseudocode

For
$$i=2, n$$
 do:
$$s_i = s_i - \alpha_i s_{i-1}$$
 end

$$A = \begin{bmatrix} 2 & -1 \\ -0.5 & 1.5 & -1 \\ & -0.667 & 1.333 & -1 \\ & & -0.75 & 1.25 \end{bmatrix}, \quad s = \begin{bmatrix} 4 \\ 2 \\ 2 \\ 10 \end{bmatrix} \Rightarrow \begin{bmatrix} 4 \\ 4 \\ 4.667 \\ 13.5 \end{bmatrix} \quad FOI \ t = 4:$$

$$s_4 = 10.0 - (-0.75 \times 4.667) = 13.5$$

For
$$i = 4$$
:
 $s_4 = 10.0 - (-0.75 \times 4.667)$
 $= 13.5$

Step 3: Backward substitution

$$\begin{bmatrix} \beta_{1} & \gamma_{1} & & & \\ \alpha_{2} & \beta_{2} & \gamma_{2} & & \\ & \alpha_{...} & \beta_{...} & \gamma_{...} \\ & & \alpha_{n} & \beta_{n} \end{bmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{...} \\ x_{n} \end{pmatrix} = \begin{cases} s_{1} \\ s_{2} \\ s_{...} \\ s_{n} \end{cases}$$

$$\begin{bmatrix} x_{1} \\ x_{2} \\ s_{...} \\ s_{n} \end{bmatrix}$$

$$\begin{bmatrix} x_{1} \\ x_{2} \\ s_{...} \\ s_{n} \end{bmatrix}$$

$$\begin{bmatrix} x_{1} \\ x_{2} \\ s_{...} \\ s_{n} \end{bmatrix}$$

$$\begin{bmatrix} x_{1} \\ x_{2} \\ s_{...} \\ s_{n} \end{bmatrix}$$

$$\begin{bmatrix} x_{1} \\ x_{2} \\ s_{...} \\ s_{n} \end{bmatrix}$$

$$\begin{bmatrix} x_{1} \\ x_{2} \\ s_{...} \\ s_{n} \end{bmatrix}$$

$$\begin{bmatrix} x_{1} \\ x_{2} \\ s_{...} \\ s_{n} \end{bmatrix}$$

$$\begin{bmatrix} x_{1} \\ x_{2} \\ s_{...} \\ s_{n} \end{bmatrix}$$

$$\begin{bmatrix} x_{1} \\ x_{2} \\ s_{...} \\ s_{n} \end{bmatrix}$$

$$\begin{bmatrix} x_{1} \\ x_{2} \\ s_{...} \\ s_{n} \end{bmatrix}$$

$$\begin{bmatrix} x_{1} \\ x_{2} \\ s_{...} \\ s_{n} \end{bmatrix}$$

$$\begin{bmatrix} x_{1} \\ x_{2} \\ s_{...} \\ s_{n} \end{bmatrix}$$

$$\begin{bmatrix} x_{1} \\ x_{2} \\ s_{...} \\ s_{n} \end{bmatrix}$$

$$\begin{bmatrix} x_{1} \\ x_{2} \\ s_{...} \\ s_{n} \end{bmatrix}$$

$$\begin{bmatrix} x_{1} \\ x_{2} \\ s_{...} \\ s_{n} \end{bmatrix}$$

$$\begin{bmatrix} x_{1} \\ x_{2} \\ s_{...} \\ s_{n} \end{bmatrix}$$

$$\begin{bmatrix} x_{1} \\ x_{2} \\ s_{...} \\ s_{n} \end{bmatrix}$$

$$\begin{bmatrix} x_{1} \\ x_{2} \\ s_{...} \\ s_{n} \end{bmatrix}$$

$$\begin{bmatrix} x_{1} \\ x_{2} \\ s_{...} \\ s_{n} \end{bmatrix}$$

$$\begin{bmatrix} x_{1} \\ x_{2} \\ s_{...} \\ s_{n} \end{bmatrix}$$

Apply to example problem:

$$\begin{bmatrix} 2 & -1 & & & \\ -0.5 & 1.5 & -1 & & \\ & -0.667 & 1.333 & -1 \\ & & -0.75 & 1.25 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \Rightarrow \begin{bmatrix} 4 \\ 4 \\ 4.667 \\ 13.5 \end{bmatrix}$$

$$x_n = \frac{s_n}{\beta_n}$$
 For $i = (n-1), 1, (i-1)$ do:
$$x_i = (s_i - \gamma_i x_{i+1})/\beta_- i$$
 end

Step 3: Backward substitution

$$\begin{bmatrix} \beta_1 & \gamma_1 & & \\ \alpha_2 & \beta_2 & \gamma_2 & \\ & \alpha_{\dots} & \beta_{\dots} & \gamma_{\dots} \\ & & & \alpha_n & \beta_n \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_{\dots} \\ x_n \end{pmatrix} = \begin{pmatrix} s_1 \\ s_2 \\ s_{\dots} \\ s_n \end{pmatrix}$$

Apply to example problem:

$$\begin{bmatrix} 2 & -1 & & & \\ -0.5 & 1.5 & -1 & & \\ & -0.667 & 1.333 & -1 \\ & & -0.75 & 1.25 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ 10.8 \end{bmatrix} \Rightarrow \begin{bmatrix} 4 \\ 4 \\ 4.667 \\ 13.5 \end{bmatrix}$$

$$x_n = \frac{s_n}{\beta_n}$$
 For $i = (n-1), 1, (i-1)$ do:
$$x_i = (s_i - \gamma_i x_{i+1})/\beta_i$$
 end

$$x_4 = \frac{s_4}{\beta_4} = \frac{13.5}{1.25} = 10.8$$

Step 3: Backward substitution

$$\begin{bmatrix} \beta_1 & \gamma_1 & & \\ \alpha_2 & \beta_2 & \gamma_2 & \\ & \alpha_{\dots} & \beta_{\dots} & \gamma_{\dots} \\ & & \alpha_n & \beta_n \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_{\dots} \\ x_n \end{pmatrix} = \begin{pmatrix} s_1 \\ s_2 \\ s_{\dots} \\ s_n \end{pmatrix}$$

Apply to example problem:

$$\begin{bmatrix} 2 & -1 & & & \\ -0.5 & 1.5 & -1 & & \\ & -0.667 & 1.333 & -1 \\ & & -0.75 & 1.25 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ 11.6 \\ 10.8 \end{bmatrix} \Rightarrow \begin{bmatrix} 4 \\ 4 \\ 4.667 \\ 13.5 \end{bmatrix}$$

$$x_n = \frac{s_n}{\beta_n}$$
 For $i = (n-1), 1, (i-1)$ do:
$$x_i = (s_i - \gamma_i x_{i+1})/\beta_- i$$
 end

For
$$i = 3$$
:
 $x_3 = (4.667 - (-1 \times 10.8))/1.333$
 $= 11.6$

Step 3: Backward substitution

$$\begin{bmatrix} \beta_1 & \gamma_1 & & \\ \alpha_2 & \beta_2 & \gamma_2 & \\ & \alpha_{\dots} & \beta_{\dots} & \gamma_{\dots} \\ & & & \alpha_n & \beta_n \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_{\dots} \\ x_n \end{pmatrix} = \begin{pmatrix} s_1 \\ s_2 \\ s_{\dots} \\ s_n \end{pmatrix}$$

Apply to example problem:

$$\begin{bmatrix} 2 & -1 & & & \\ -0.5 & 1.5 & -1 & & \\ & -0.667 & 1.333 & -1 \\ & & -0.75 & 1.25 \end{bmatrix} \begin{bmatrix} x_1 \\ 10.4 \\ 11.6 \\ 10.8 \end{bmatrix} \Rightarrow \begin{bmatrix} 4 \\ 4 \\ 4.667 \\ 13.5 \end{bmatrix}$$

$$x_n = \frac{s_n}{\beta_n}$$
 For $i = (n-1), 1, (i-1)$ do:
$$x_i = (s_i - \gamma_i x_{i+1})/\beta_- i$$
 end

For
$$i = 2$$
:
 $x_2 = (4 - (-1 \times 11.6))/1.5$
 $= 10.4$

Step 3: Backward substitution

$$\begin{bmatrix} \beta_1 & \gamma_1 & & \\ \alpha_2 & \beta_2 & \gamma_2 & \\ & \alpha_{\dots} & \beta_{\dots} & \gamma_{\dots} \\ & & & \alpha_n & \beta_n \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_{\dots} \\ x_n \end{pmatrix} = \begin{pmatrix} s_1 \\ s_2 \\ s_{\dots} \\ s_n \end{pmatrix}$$

Apply to example problem:

$$\begin{bmatrix} 2 & -1 & & & \\ -0.5 & 1.5 & -1 & & \\ & -0.667 & 1.333 & -1 \\ & & -0.75 & 1.25 \end{bmatrix} \begin{bmatrix} 7.2 \\ 10.4 \\ 11.6 \\ 10.8 \end{bmatrix} \Rightarrow \begin{bmatrix} 4 \\ 4 \\ 4.667 \\ 13.5 \end{bmatrix}$$

$$x_n = \frac{s_n}{\beta_n}$$
 For $i = (n-1), 1, (i-1)$ do:
$$x_i = (s_i - \gamma_i x_{i+1})/\beta_i$$
 end

For
$$i = 1$$
:
 $x_1 = (4 - (-1 \times 10.4))/2$
= 7.2

Check

Final solution from Thomas Algorithm:

$$\begin{bmatrix} 2 & -1 & & \\ -1 & 2 & -1 & \\ & -1 & 2 & -1 \\ & & -1 & 2 \end{bmatrix} \begin{bmatrix} 7.2 \\ 10.4 \\ 11.6 \\ 10.8 \end{bmatrix} \Rightarrow \begin{Bmatrix} 4 \\ 2 \\ 2 \\ 10 \end{Bmatrix}$$

Multiply out rows to check solution:

$$2 \times 7.2 - 1 \times 10.4 = 4$$
 $-0.5 \times 7.2 + 1.5 \times 10.4 - 1 \times 11.6 = 2$
 $-1 \times 10.4 + 2 \times 11.6 - 1 \times 10.8 = 2$
 $-1 \times 11.6 + 2 \times 10.8 = 10$

Summary

- Thomas algorithm provides an efficient solution for tridiagonal systems
- Consists of three steps: decomposition, forward substitution, and backward substitution
- Decomposition phase can be applied once, and used to evaluate multiple right hand side vectors (b)
- Enables the matrix to store only three values per row, reducing memory footprint for large systems (relative to storing sparse matrix)

COMP36212 Solving the Hyperbolic Wave Equation

Dr Oliver Rhodes
oliver.rhodes@manchester.ac.uk

Overview

- Solution of hyperbolic PDEs wave equation
- Application of derivative boundary conditions

Example: vibration of a string

Wave Equation

 The hyperbolic PDE known as the wave equation is defined as:

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}$$

• Solve for auxiliary conditions (assume $c^2 = 1$, and remains constant):

$$u(x = 0, t) = 0$$

$$\circ \quad u(x=L,t)=0$$

$$\circ \quad u\left(x=\frac{L}{2},0\right)=\delta(x)$$

$$\circ \quad \left[\frac{\partial u}{\partial t}\right]_{t=0} = g(x)$$

Analytical Solution:

$$u(x,t) = \frac{8}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} \sin\left(\frac{n\pi x}{20}\right) \sin\left(\frac{n\pi}{2}\right) \cos\left(\frac{n\pi t}{20}\right)$$

Vibration on a string

Initial conditions

Solve via FDs

Substitute finite difference approximations for derivatives
 use central difference based approximations

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}$$

$$\frac{u_{i-1,j} - 2u_{i,j} + u_{i+1,j}}{\Delta x^2} = \frac{1}{c^2} \frac{u_{i,j-1} - 2u_{i,j} + u_{i,j+1}}{\Delta t^2}$$

$$u_{i-1,j} - 2u_{i,j} + u_{i+1,j} = \frac{\Delta x^2}{c^2 \Delta t^2} (u_{i,j-1} - 2u_{i,j} + u_{i,j+1})$$

• Collect terms and rearrange to provide explicit update (let $\lambda = \frac{c^2 \Delta t^2}{\Delta x^2}$):

$$\lambda u_{i-1,j} - u_{i,j}(2\lambda - 2) + \lambda u_{i+1,j} - u_{i,j-1} = u_{i,j+1}$$

How to deal with $u_{i,i-1}$ term?

Applying Boundary Conditions

• Given the update equation:

$$\lambda u_{i-1,j} - u_{i,j}(2\lambda - 2) + \lambda u_{i+1,j} - u_{i,j-1} = u_{i,j+1}$$

 Construct the computational grid, and substitute in known values

Applying Boundary Conditions

Given the update equation:

$$\lambda u_{i-1,j} - u_{i,j}(2\lambda - 2) + \lambda u_{i+1,j} - u_{i,j-1} = u_{i,j+1}$$

- Construct the computational grid, and substitute in known values
 - Values at green filled nodes are known from boundary conditions,

$$u(x=0,t)=0$$

$$u(x=L,t)=$$

Applying Initial Conditions

Given the update equation:

$$\lambda u_{i-1,j} - u_{i,j}(2\lambda - 2) + \lambda u_{i+1,j} - u_{i,j-1} = u_{i,j+1}$$

- Construct the computational grid, and substitute in known values
 - Values at green filled nodes are known from boundary conditions
 - Orange filled nodes from initial conditions

• Use initial condition: velocity at time t = 0 is defined as g(x) = 0

$$\left[\frac{\partial u}{\partial t}\right]_{t=0} = g(x) = 0$$

 Using central difference approximation for initial condition derivative:

$$\frac{u_{i,j+1} - u_{i,j-1}}{2\Delta t} = \frac{u_{i,j+1} - u_{i,j-1}}{2\Delta t} = g(x)$$

 Approximation supported by dummy nodes. Rearranging:

$$u_{i,j-1} = u_{i,j+1} - 2\Delta t g(x)$$

 $u_{i,j-1} = u_{i,j+1}$

Substituting in this additional information update equation becomes:

$$\begin{split} \lambda u_{i-1,j} - u_{i,j}(2\lambda - 2) + \lambda u_{i+1,j} - u_{i,j+1} &= u_{i,j+1} \\ \frac{1}{2} \left(\lambda u_{i-1,j} - u_{i,j}(2\lambda - 2) + \lambda u_{i+1,j} \right) &= u_{i,j+1} \end{split}$$

Substituting in this additional information update equation becomes:

$$\begin{split} \lambda u_{i-1,j} - u_{i,j}(2\lambda - 2) + \lambda u_{i+1,j} - u_{i,j+1} &= u_{i,j+1} \\ \frac{1}{2} \left(\lambda u_{i-1,j} - u_{i,j}(2\lambda - 2) + \lambda u_{i+1,j} \right) &= u_{i,j+1} \end{split}$$

• Enables evaluation of solution at time $t = \Delta t$

Substituting in this additional information update equation becomes:

$$\lambda u_{i-1,j} - u_{i,j}(2\lambda - 2) + \lambda u_{i+1,j} - u_{i,j+1} = u_{i,j+1}$$

$$\frac{1}{2} (\lambda u_{i-1,j} - u_{i,j}(2\lambda - 2) + \lambda u_{i+1,j}) = u_{i,j+1}$$

- Enables evaluation of solution at time $t = \Delta t$
- Update equation can be used from there forward in time

$$\lambda u_{i-1,j} - u_{i,j}(2\lambda - 2) + \lambda u_{i+1,j} - u_{i,j-1} = u_{i,j+1}$$

Explicit Solution

• Explicit method produces accurate results for $\Delta x = 0.2$, $\Delta t = 0.1$

Explicit Method Stability

- Solution is unstable for certain step sizes: e.g. $\Delta x = 0.1$, $\Delta t = 0.2$
- It can be shown that for convergence (stability):

$$\Delta t \le \frac{\Delta x}{c}$$

 Known as the Courant-Friedichs-Lewy (CFL) condition, it provides a bound for stability (but not accuracy) on the step size

Summary

- Explored solution of hyperbolic PDEs in the form of the wave equation
- Solved explicitly for the displacement of a vibrating string
- Used dummy nodes to implement derivative boundary conditions
- Explicit methods require small steps sizes to ensure accuracy and stability

Course Structure

