Eine Woche, ein Beispiel 10.2 equivariant K-theory of Steinberg variety

Ref:

[Ginz] Ginzburg's book "Representation Theory and Complex Geometry"
[LCBE] Langlands correspondence and Bezrukavnikov's equivalence
[LW-BWB] The notes by Liao Wang: The Borel-Weil-Bott theorem in examples (can not be found on the internet)
https://people.math.harvard.edu/~gross/preprints/sat.pdf

Task. Complete the following tables:

K-(-)	pt	\mathcal{B} $T^{\dagger}\mathcal{B}$	$\mathfrak{B} imes \mathfrak{B}$	T*(BXB)	Sŧ
G	Z[x*(T)]"	$\mathbb{Z}[x^*(\tau)]$	Z[x*(t)]⊗ ₂	_{(x*(T)]} w Z [X*(T)]	$Z[W_{ext}]$
В	Z[x*(τ)]	$\mathbb{Z}[X^*(T)] \otimes_{\mathbb{Z}[X^*(T)]}^{\mathbf{w}} \mathbb{Z}[X^*(T)]$		~Z[x*(1)] 8z[x*(1)]~Z[x*(1)]	
Id	7/				Z[x*\t)]/ _{I_} ~Z[W]
$G \times \mathbb{C}^*$	Z[x*(τ)]"[t	±']			\mathcal{H}_{ext}
B×C*	Z[x*(t)][t [±]	1]			
C*	Z [t [±]]				

We use the shorthand.

K-(-)	l pt	B 7*B	3×B T*(8×B)	St
G	R(T)*	R(T)	R(T) OR(G) R(T)	Z[Wext]
В	R(T)	R(T) OR(G) R(T)	$R(T) \otimes_{R(G)} R(T) \otimes_{R(G)} R(T)$	
Id	72			RU/1 ~ Z[W]
C×C*	R(G)[t ^{±1}]			Hext
B× C *	R(T)[t ^{±1}]			
C*	Z[t±]			

$$R(B) = \mathbb{Z}[X^*(T)] = \mathcal{H}(\widehat{T}(F), \widehat{T}(\mathcal{O}_F))$$

$$R(G) = \mathbb{Z}[X^*(T)]^{\mathbf{w}} \neq \mathcal{H}(\widehat{G}(F), \widehat{G}(\mathcal{O}_F))$$

$$R(G)[q^{\frac{1}{2}}] = \mathbb{Z}[X^*(T)]^{\mathbf{w}}[q^{\frac{1}{2}}] = \mathcal{H}_{sph}[q^{\frac{1}{2}}]$$

$$R(G \times \mathcal{O}^*) = \mathbb{Z}[X^*(T)]^{\mathbf{w}}[t^{\frac{1}{2}}]$$

$$R^{G \times \mathcal{O}^*}(S_F) = \mathcal{H}_{ext} \qquad \stackrel{?}{\neq} \mathcal{H}(\widehat{G}(F), I)$$

Here is an initial example.

K-(-)	pt	B T*B	3×B T*(8×B)	St
SL.	Z(r)	Z (₹ ^{±'}]	Z[zt], zt] /(zz.)(zzt))	$Z[W_{ext}] = \bigoplus_{w \in W} Z[z_w^{\pm 1}]$
B	Z[y ^{±1}]	Z[yt',z]/(z-y)(z-y')	Z(y ^{±),} z,, z,]/((z,-y)(z,-y ⁻¹), (z,-y)(z,-y ⁻¹))	
Id	72	7/[2]/(2-1)2	Z[2,, 2,]/((2,-1)2,(2,-1)2)	$R(T)/_{I_{T}} \times Z[W_{f}] = \bigoplus_{\omega \in W} Z[z_{\omega}^{\pm 1}]/_{(z_{\omega}-1)^{*}}$
St xCx	Z∕[×,t [±]]			Hext = D Z[zw, ti]
B× ¢ *	Z/[yt',tt]			
C*	Z'[t [±]]			

This is our final task. Most of the notations are still not fixed.

K-(-)	pt	Fa Repa(Q)	$F_{\underline{d}} \times F_{\underline{d}}$	Za = Ha. Zd.d.
Gd	R(Td)Wa	R(T ₄)	R(T)(ORICGO) R(T)	
		$\bigoplus_{\omega \in W_d} R(G_d) [\overline{\Omega}_{\omega}]^{G_d}$	$\omega_{\omega'\in W_d}^{\omega} R(G_d) \left[\overline{\Omega}_{\omega,\omega'} \right]^{G_d}$	
Bu	R(Td)	$R(T_d) \otimes_{R(C_d)} R(T_d)$	$R(T_i)\otimes_{R(C_{ij})}R(T_j)\otimes_{R(C_{ij})}R(T_i)$	
	E RGJ	₩ _{EWA} R(T _d)[Ωw] ^{Ta}	Dung R(Td) [Inn,w] Td	
Id	72		_	
		"Qu, Z[āw]	Out I [] W.W.]	
C ₄ ×€ [*]	$R(G_d)[t^{\pm 1}]$	C.×ć		
		Temy B(C9xC2)[Um]	Bure Wa R(Caxe) [Jum] Gaxex	
B _a × c *	R(T ₄)[t ^{±1}]	ፒ _* ፍ	T. 1944	
	Dwewy R(Cd×C)	Dwewd K(TdxCx)[V]	$\bigoplus_{w,w'\in w_{ol}} R(T_{ol} \times c^{t}) \left[\bar{\Omega}_{w,w} \right]^{T_{ol} \times c^{x}}$	
C*	Z(t±]			
		$\bigoplus_{w \in M^1} K(\mathbb{C}_*) [\underline{\mathcal{I}}^m]_{\mathfrak{C}_x}$	Gewa R(Cx)[Im,]Cx	

Orange: only know the R(G)-module structure, and the alg structure is yet not known light yellow: $R(G_d)$ -module + W_d -equiv iso

$$d = (1,2) \qquad \begin{array}{c} a \longrightarrow b \\ \langle v_1 \rangle \longrightarrow \langle v_2 \rangle \end{array}$$

$$\stackrel{\wedge}{\text{V}} \text{ The action on } \text{Flag is not the same as in} \qquad \begin{array}{c} \text{http://www.math.uni-bonn.de/ag/stroppel/Master%27s\%20Thesis_Tom2} \\ \text{sz\%20Przezdziecki.pdf} \end{array}$$

	ŧ	# = WU			w	<u>d</u> = u	order of basis	(_w)	ιω	But Bu	- H.B.H.
Id	Id	(123)	111				ξυ., υ ₂ , υ ₃ }			[* * *] [* *	
ŧ	(23)	(133)	IX	[',']	Ι <u>Χ</u>	abb III	[v,,v3,v.]	ı	,	[***] [* **] [*	<u></u> [* ;]
2	(12)	(213)	XT	[',']	ΙЦ	bab XI	{01,0,,43}	1	0	[* * *] [* *	* * * * * * * * * * * * * * * * * * * *
ts	(132)	(123)	×	[, ',]	IΧ	bab XI	[N3, N1, N2]	2	ı	[* *] [* * *	* [** * * * * * * * * * * * * * * * * *
st	(123)	$\binom{123}{231}$	X	[',']	ΙЦ	bba 💥	[4,13,11]	2	0	[* * *] [* *	* [* *]
sts	(13)	(123)	*	['']	Iχ	bba 💥	{N3, N2, N;}	3	-	[* [***] [* *	<u>*</u>] [* * *] [

Conclusions on the summer vacation.

I guess that most part of my tasks coincide with this paper: http://www.math.uni-bonn.de/ag/stroppel/Master%27s%20Thesis_Tomasz%20Przezdziecki.pdf Sadly, I only found it in the last week of the vacation.

Some possible tasks to work on. 1. Work out what Kod (B)

In [3264], the author computes the Chow group of G(2,4). https://pbelmans.ncag.info/blog/2018/08/22/rank-flag-varieties/

The module structure is easy, see

[https://math.stackexchange.com/questions/1012699/when-does-a-smooth-projective-variety-x-have-a-free-grothendieck-group]

- 2. Work out what $\mathcal{H}(G(F), I)$ is, ie
 - Bernstein presentation
 - try to understand the center of H(G(F). I)
 - How does H(G(F), I) reflect informations on the rep theory
 - How can the Hecke algebra be realized as a Hecke algebra?

ref. [Hecke, Sec 10-17], [Williamson 114-122]

3. Try to understand what the Hall algebra / Quantum group is. ref: [Lec 1-4, Appendix 4, https://arxiv.org/pdf/math/0611617.pdf]

- understand
$$\mathcal{H}_{\mathsf{Rep}_{\mathsf{K}}}^{\mathsf{nil}}(\omega)$$
 where $Q = \cdot \cdot \rightarrow \cdot \cdot .5$
- understand $\mathcal{H}_{\mathsf{P}'} \cong \mathcal{U}_{\mathsf{V}}(\widehat{\mathsf{sl}}_2)$

[Lec 2-3]

$$\mathcal{H}_{p'} \cong \mathcal{U}_{\nu}(\widehat{\mathfrak{sl}},)$$

[Lec 4]

HTOV(IP') = Q: HTOV X

- define (Quantum) Kac-Moody/loop algs

[Appendix 4]

- Why is that

graded

 $K_{\circ}(Rep^{\overline{a}}(R)) = U_{q}(n(Q))$

R = & H. GxCY, BM (Zd)

and what is $K_{\circ}\left(\operatorname{Rep}^{\mathbb{Z}}\left(\bigoplus_{i}K_{\circ}^{\mathsf{G}\times\mathbb{C}^{\mathsf{Y}}}(\mathsf{Z}_{\mathsf{d}})\right)\right) ?$

4. Work out the big picture

5. A closer check of Satake iso

Ko combinations Hecke alg

$$R(B) = \mathbb{Z}[X^*(T)] = \mathcal{H}(\widehat{T}(F), \widehat{T}(\mathcal{O}_F))$$

$$R(G) = \mathbb{Z}[X^*(T)]^W \neq \mathcal{H}(\widehat{G}(F), \widehat{G}(\mathcal{O}_F))$$

$$R(G)[q^{\frac{1}{2}}] = \mathbb{Z}[X^*(T)]^W[q^{\frac{1}{2}}] = \mathcal{H}_{sph}[q^{\frac{1}{2}}]$$

$$R(G \times \mathfrak{C}) = \mathbb{Z}[X^*(T)]^W[t^{\frac{1}{2}}]$$

$$R(G \times \mathfrak{C}) = \mathcal{H}_{ext} \qquad \stackrel{?}{\neq} \mathcal{H}(\widehat{G}(F), I)$$
It's claimed by my school mate that
$$K_{o}(Pevv_{B}(G/B)) \cong \mathcal{H}(G, B)$$

$$Sym \text{ monoidal structure induced from the convolution}$$
then, what is
$$K_{o}^{B}(B) \cong \mathcal{T}_{K_{o}^{Id}(B)} \cong \mathcal{T}_{K_{o}^{I$$

Now, about Steinberg varieties. 6 Draw a picture, indicating the shape/generalization of the following spaces. (e.p. in the case of \cdot , \cdot 5, $\cdot \rightarrow \cdot$) G, B,T B, T*B, St g, g, gs, gs, R, N, N, h, n gh, Oh, Mw 7. Try to understand what Kazhdan-Lusztig polynomials are [KL], and - Compute the transformation matrix between [[Tw], weWf] and [[Ab], weWf]? - understand what standard /crystal basis is - understand the relationship between KL poly and crystal basis - see if it is related to two basis in Rep (G) (irr reps & multiplicative basis) 8 Try to understand the module part, i.e., - numbers of components of the Springer fiber
- how does Korp(St) act on Korp (Springer fiber) also act on Korp (Repola) - does that occupy "all rep" of Korp (St) 9 Ways of finding multiplication structure 1 By direct computation (with techniques) double coset calculus Hecke algebra 2 By formulas as alg-isos KG (98) induction formula 3 By geometrical computation cup product? de Rham calculus cohomology intersection theory Chow group 4 By deformation (indirect) H ^ω_{α×α}(St) 10. Different views on the double coset $B \setminus G/B = (*/B) \times_{*/G} (*/B)$ - as a set - as flag variety quotient B-action

- as a stack

- groupoid structure

Some excuses for not working a lot on the project.

Preparation for summer school	2	weeks
Summer school of the modular form	1	week
Tourism in Paris	1	week
Conference in Antwerp	1	week
Reading [Ginz, Chap 5]	2	weeks
Computing H(G,B), High, (Haff)		week
Applying for tutorials, extend the residence permit,	2	weeks
preparation for TOEFL exam, Klein AG Summer school on Langlands & ICM watch (part)	1	week
In total		weeks
TV COM	()	MEGV7

tough new semester.

- 3 Seminars (+ Master Thesis Seminar)
- Tutorial
- TUEFL exam on 15th Qt.
- The seminar handout and other materials are not completed.
 - · L-parameters
 - · moduli in AG
 - some following developments of the modular form (different type of gps, Hecke operators,...)
 - · reps of GLi(Q)
- applying for the PhD program.