

Essentiel du cours 2

Définitions

■ Moyenne :

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

■ Variance :

$$var(x) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$$

E Écart-type : $\sigma_{x} = \sqrt{\text{var}(x)}$

Propositions

■ Transformation linéaire $y_i = a + bx_i \ (1 \le i \le n)$:

$$\overline{y} = a + b\overline{x}$$
 $\operatorname{var}(y) = b^2 \operatorname{var}(x)$.

■ Formule alternative :

$$\mathsf{var}(\mathsf{x}) = \left(\frac{1}{n} \sum_{i=1}^{n} (x_i)^2\right) - (\overline{x})^2$$

Définitions

■ $x_{(i)}$ est la statistique d'ordre i après avoir ré-ordonné les x_i :

$$x_{(1)} \le x_{(2)} \le \cdots \le x_{(i)} \le \cdots \le x_{(n)}$$

■ Médiane :

$$m = x_{(k+1)}$$
 si $n = 2k + 1$

$$m = \frac{x_{(k)} + x_{(k+1)}}{2}$$
 si $n = 2k$

■ Déviation absolue (par rapport à la médiane) :

$$mad(x) = \frac{1}{n} \sum_{i=1}^{n} |x_i - m|$$

Cours 3 : Corrélation, régression linéaire Plan du cours

- 1 Lien entre deux variables
 - Covariance
 - Coefficient de corrélation (linéaire)
- 2 Régression linéaire simple
 - Critère des moindres carrés
 - Minimisation du critère
 - Mesure de l'ajustement
- 3 Extensions
 - Analyse en composante(s) principale(s)
 - Écriture vectorielle de la régression simple
 - Régression linéaire multiple

Taille et poids d'une population d'étudiants (AgroParisTech, 1993)

- n = 731 étudiant(e)s
- $x_i = \text{taille (cm) du } i$ -ème étudiant
- $y_i = \text{poids (kg) du } i\text{-ème étudiant}$
- Données :

i	Taille	Poids
1	168	60
2	178	57
3	165	46
4	160	50
5	162	56
6	160	58
÷	:	:

Faille et poids d'une population d'étudiants (AgroParisTech, 1993)

	moyenne	médiane	variance	écart-type
taille	171.96	172	80.11	8.95
poids	62.36	61	100.71	10.04

Taille et poids d'une population d'étudiants (AgroParisTech, 1993)

Lien entre les deux variables (x = taille, y = poids)

Cours 3 : Corrélation, régression linéaire Plan du cours

- 1 Lien entre deux variables
 - Covariance
 - Coefficient de corrélation (linéaire)
- 2 Régression linéaire simple
 - Critère des moindres carrés
 - Minimisation du critère
 - Mesure de l'ajustement
- 3 Extensions
 - Analyse en composante(s) principale(s)
 - Écriture vectorielle de la régression simple
 - Régression linéaire multiple

Covariance

Données:

- Ensemble des observations $\{(x_i, y_i)\}_{1 \le i \le n}$
- Vecteurs des observations $\mathbf{x} = [x_1 \ldots x_i \ldots x_n], \mathbf{y} = [y_1 \ldots y_i \ldots y_n]$

Définition 1 (Covariance)

$$\operatorname{cov}(\mathbf{x},\mathbf{y}) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}).$$

Remarques:

- la covariance peut être négative, positive ou nulle;
- elle s'exprime dans l'unité produit des deux variables x et y;
- ightharpoonup var($m {f x}$) = cov($m {f x}$, $m {f x}$).

Transformation de la covariance

Proposition 1 (Transformation linéaire de la covariance)

Si on applique les transformations linéaires $u_i = a + bx_i$ et $v_i = c + dy_i$ pour $1 \le i \le n$, la covariance des données tranformées vaut

$$cov(\mathbf{u}, \mathbf{v}) = bd cov(\mathbf{x}, \mathbf{y}).$$

Proposition 2 (Écriture vectorielle de la covariance)

$$cov(\mathbf{x}, \mathbf{y}) = \frac{1}{n} \langle \mathbf{x} - \overline{x} \mathbf{1}, \mathbf{y} - \overline{y} \mathbf{1} \rangle$$
.

Encadrement de la covariance

Proposition 3 (Encadrement de la covariance)

Pour tous \mathbf{x} et \mathbf{y} , on a

$$(cov(\mathbf{x}, \mathbf{y}))^2 \le var(\mathbf{x}) var(\mathbf{y})$$

c'est-à-dire

$$-\sqrt{\mathsf{var}(\mathbf{x})\,\mathsf{var}(\mathbf{y})} \leq \mathsf{cov}(\mathbf{x},\mathbf{y}) \leq \sqrt{\mathsf{var}(\mathbf{x})\,\mathsf{var}(\mathbf{y})}.$$

Proposition 4 (Inégalité de Cauchy-Schwartz)

Pour tous vecteurs u et v, on a

$$\langle \mathbf{u}, \mathbf{v} \rangle^2 \le \|\mathbf{u}\|^2 \|\mathbf{v}\|^2$$
.

Démonstration de l'inégalité de Cauchy Schwartz en TD.

Coefficient de corrélation (linéaire)

La proposition 3 fournit un moyen de pallier les difficultés d'interprétation de la valeur de la covariance cov(x, y).

Définition 2 (Coefficient de corrélation)

On définit donc le coefficient de corrélation comme

$$cor(\mathbf{x}, \mathbf{y}) = \frac{cov(\mathbf{x}, \mathbf{y})}{\sqrt{var(\mathbf{x}) var(\mathbf{y})}}.$$

Proposition 5 (Encadrement de la corrélation)

$$-1 \le \frac{\mathsf{cov}(\mathbf{x}, \mathbf{y})}{\sqrt{\mathsf{var}(\mathbf{x})\,\mathsf{var}(\mathbf{y})}} \le +1.$$

Le coefficient de corrélation est donc une grandeur

- sans dimension et
- bornée par deux valeurs de références (-1 et +1).

Taille et poids d'une population d'étudiants (AgroParisTech, 1993)

Lien entre les deux variables (x = taille, y = poids)

$var(\mathbf{x})$	$var(\mathbf{y})$	$cov(\mathbf{x}, \mathbf{y})$	$cor(\mathbf{x}, \mathbf{y})$
80.11	100.71	70.78	0.79

Cours 3 : Corrélation, régression linéaire Plan du cours

- 1 Lien entre deux variables
 - Covariance
 - Coefficient de corrélation (linéaire)
- 2 Régression linéaire simple
 - Critère des moindres carrés
 - Minimisation du critère
 - Mesure de l'ajustement
- 3 Extensions
 - Analyse en composante(s) principale(s)
 - Écriture vectorielle de la régression simple
 - Régression linéaire multiple

Critère des moindres carrés

On souhaite maintenant:

- \blacksquare décrire la relation entre les variables x et y;
- on recherche une transformation simple de x (en l'occurrence linéaire) qui donnerait une valeur proche de y
- il s'agit donc de déterminer deux nombres a et b tels que pour chaque $1 \le i \le n$:

$$y_i \simeq a + bx_i$$

Définition 3 (Critère des moindres carrés)

$$C(a, b) = \sum_{i=1}^{n} (y_i - a - bx_i)^2$$

Critère des moindres carrés

Remarques:

- le problème est posé de façon asymétrique $(y_i \simeq a + bx_i)$ et non $x_i = a' + b'y_i$;
- le critère $\sum_{i=1}^{n} |y_i a bx_i|$ donne lieu à des calculs beaucoup moins simples.

Minimisation du critère

Proposition 6 (Minimisation du critère des moindres carrés)

Les valeurs a^* et b^* qui minimisent le critère des moindres carrés C(a, b) sont

$$b^* = \frac{\operatorname{cov}(\mathbf{x}, \mathbf{y})}{\operatorname{var}(\mathbf{x})}, \qquad a^* = \overline{y} - b^* \overline{x}.$$

Remarques:

- La droite d'équation $y = a^* + b^*x$ est appelée droite de régression de y sur x.
- Le coefficient b^* est sa pente ou coefficient directeur.
- Le coefficient a^* est son ordonnée à l'origine (en anglais intercept).

Minimisation du critère

Minimisation du critère

Taille et poids

Régression du poids sur la taille :

$$x = \text{taille}, y = poids$$

Remarques:

- 1 La droite de régression passe par la point moyen (\bar{x}, \bar{y}) .
- 2 Les formules de a^* et b^* ne sont pas symétriques en x et y.

Asymétrie de la droite de régression

Taille et poids.

	a*	b^*
poids / taille	-89.58 kg	0.88 kg/cm
taille / poids	128.13 cm	0.7 cm/kg

Mesure de l'ajustement

On souhaite souvent évaluer la qualité de l'approximation

$$y_i \simeq a + bx_i$$
.

Définition 4 (Critère du $R^2(a, b)$)

Soit $\widetilde{\mathbf{y}}$ le vecteur de coordonnées $\widetilde{y}_i = a + bx_i$ $(1 \le i \le n)$, on mesure l'ajustement de l'approximation linéaire $y_i \simeq a + bx_i$ par le carré du coefficient de corrélation entre $\widetilde{\mathbf{y}}$ et \mathbf{y} :

$$R^2(a, b) = (\operatorname{cor}(\widetilde{\mathbf{y}}, \mathbf{y}))^2$$
.

Proposition 7 ($R^2(a^*, b^*)$)

$$R^{2}(a^{*}, b^{*}) = (cor(\mathbf{x}, \mathbf{y}))^{2}$$
.

Taille et poids.

$$cor(\mathbf{x}, \mathbf{y}) = 0.79, \qquad R^2 = 0.62$$

Exemple : données structurées

Taille et poids selon le sexe.

	n	a*	b^*
F	375	-48.08	0.63
M	356	-57.67	0.71
F+M	731	-89.58	0.88

Cours 3 : Corrélation, régression linéaire Plan du cours

- 1 Lien entre deux variables
 - Covariance
 - Coefficient de corrélation (linéaire)
- 2 Régression linéaire simple
 - Critère des moindres carrés
 - Minimisation du critère
 - Mesure de l'ajustement
- 3 Extensions
 - Analyse en composante(s) principale(s)
 - Écriture vectorielle de la régression simple
 - Régression linéaire multiple

Analyse en composante(s) principale(s)

La droite de régression est définie de façon asymétrique : $y_i \simeq a + bx_i$ ou $x_i \simeq a' + b'y_i$. L'analyse en composante principale détermine un droite optimale selon un critère symétrique.

Exemple fictif (n = 20)

Analyse en composante(s) principale(s)

Taille et poids

poids / taille
taille / poids
ACP

Remarques:

- Trouver les *a** et *b** optimaux nécessite de recourir soit à l'optimisation numérique (cours 5), soit à de l'algèbre linéaire hors programme.
- Réduction de dimension : problème général, surtout utile pour résumer $p \gg 2$ variables.

Produit d'une matrice par un vecteur

Définition 5 (Produit d'une matrice par un vecteur)

Le produit de la matrice **U** de dimension $m \times p$ par le vecteur **v** de dimension p:

$$\mathbf{U} = \begin{bmatrix} u_{11} & \dots & u_{1j} & \dots & u_{1p} \\ \vdots & & \vdots & & \vdots \\ u_{i1} & \dots & u_{ij} & \dots & u_{ip} \\ \vdots & & \vdots & & \vdots \\ u_{m1} & \dots & u_{mj} & \dots & u_{mp} \end{bmatrix}, \qquad \mathbf{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_j \\ \vdots \\ v_p \end{bmatrix}$$

est le vecteur \mathbf{w} de dimension m:

$$\mathbf{w} = \mathbf{U}\mathbf{v} = \begin{bmatrix} w_1 \\ \vdots \\ v_i \\ \vdots \\ v_m \end{bmatrix} \text{ tel que } w_i = \sum_{j=1}^p u_{ij}v_j.$$

Écriture vectorielle de la régression simple

Proposition 8 (Écriture vectorielle de la régression simple)

Soit **X** la matrice $(n \times 2)$ et **b** le vecteur (de dimension 2) définis par

$$\mathbf{X} = [\mathbf{1} \ \mathbf{x}] = \begin{bmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_i \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} a \\ b \end{bmatrix},$$

on a

$$\widetilde{\mathbf{y}} = \mathbf{X}\mathbf{b}$$
 et $C(a, b) = \|\mathbf{y} - \widetilde{\mathbf{y}}\|^2$.

Régression linéaire multiple : exemple

Fréquentation de salles de cinéma

source CNC 2003 / package R ade4

- n = 94 départements métropolitains (hors Corse)
- y = ticketRatio = nombre moyen de billets par habitants
- x_1 = theatreRatio = nombre de salles / nombre d'habitants
- $x_2 = \text{showRatio} = \text{nombre de séances} / \text{nombre de salles}$
- x_3 = theatreSize = taille moyenne des salles
- $x_4 = artesRatio = proportion de salles d'arts et d'essais$

theatreRatio	showRatio	theatreSize	artesRatio	ticketRatio
67.96	0.74	179.66	0.34	1.49
70.9	0.74	194.82	0.21	1.36
81.16	0.61	141.29	0.14	1.45
164.29	0.74	151.3	0.3	3.24
289.26	0.6	172.94	0.14	4.31
92.98	1.18	178.34	0.09	3.48
92.98	1.18	178.34	0.09	3.48

Notations

On définit les vecteurs

$$\mathbf{y} = [y_1 \dots y_i \dots y_n]^\mathsf{T},$$

$$\mathbf{x}_j = [x_{1j} \dots x_{ij} \dots x_{nj}]^\mathsf{T} \qquad \text{pour chaque } 1 \le j \le p, \mathbf{x}_0 = \mathbf{1} = [1 \dots 1 \dots 1]^\mathsf{T}.$$

(c'est à dire $x_{i0} = 1$, pour tout $1 \le i \le n$) On définit la matrice **X** de dimensions $n \times (1 + p)$:

$$\mathbf{X} = [\mathbf{x}_0 \ \mathbf{x}_1 \ \dots \ \mathbf{x}_j \ \dots \ \mathbf{x}_p] = \begin{bmatrix} 1 & x_{11} & \dots & x_{1j} & \dots & x_{1p} \\ \vdots & \vdots & & \vdots & & \vdots \\ 1 & x_{i1} & \dots & x_{ij} & \dots & x_{ip} \\ \vdots & \vdots & & \vdots & & \vdots \\ 1 & x_{n1} & \dots & x_{nj} & \dots & x_{np} \end{bmatrix}.$$

Régression linéaire multiple

On veut cette fois

$$y_i \simeq b_0 + b_1 x_{i1} + \dots + b_j x_{ij} + \dots + b_p x_{ip} = \sum_{j=0}^p b_j x_{ij}$$

c'est-à-dire

$$\mathbf{Xb} = \begin{bmatrix} 1 & x_{11} & \dots & x_{1j} & \dots & x_{1p} \\ \vdots & \vdots & & \vdots & & \vdots \\ 1 & x_{i1} & \dots & x_{ij} & \dots & x_{ip} \\ \vdots & \vdots & & \vdots & & \vdots \\ 1 & x_{n1} & \dots & x_{nj} & \dots & x_{np} \end{bmatrix} \begin{bmatrix} b_0 \\ b_1 \\ \vdots \\ b_j \\ \vdots \\ b_p \end{bmatrix} = \begin{bmatrix} \sum_{j=0}^{p} b_j x_{1j} \\ \vdots \\ \sum_{j=0}^{p} b_j x_{ij} \\ \vdots \\ \sum_{j=0}^{p} b_j x_{nj} \end{bmatrix} \simeq \mathbf{y},$$

en notant

$$\mathbf{b} = [b_0 \ b_1 \ \dots \ b_j \ \dots \ b_p]^{\mathsf{T}}.$$

Critère des moindres carrés

On définit le vecteur \mathbf{b}^* optimal à partir du critère des moindres carrés.

Définition 6

Critère des moindres carrés

$$C(b_0, b_1, \dots b_p) = \sum_{i=1}^n \left(y_i - \sum_{j=0}^p b_j x_{ij} \right)^2 = \|\mathbf{y} - \mathbf{X}\mathbf{b}\|^2.$$

Solution:

- La technique utilisée pour trouver (a^*, b^*) ne fonctionne plus ici pour déterminer le vecteur \mathbf{b}^* optimal.
- Comme pour l'ACP, **b*** est obtenu soit par optimisation numérique (cours #5) soit par des techniques d'algèbre linéaire hors programme.

Fréquentation de salles de cinéma

(Intercept) -5.45 theatreRatio 0.0268 showRatio 4.09 theatreSize 0.00664 artesRatio 2.02

Régression multiple / régressions simples

La régression multiple n'est pas équivalente à un ensemble de p régressions simples.

Fréquentation de salles de cinéma					
b_j^*	theatreRat	io showRatio	theatreSize	artesRatio	
régressions	simples 0.018	3.12	0.00272	-4.65	
régression n	nultiple 0.026	58 4.09	0.00664	2.02	

Essentiel du cours 3

Définitions

■ Covariance :

$$cov(\mathbf{x},\mathbf{y}) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}).$$

■ Coefficient de corrélation :

$$cor(\mathbf{x}, \mathbf{y}) = \frac{cov(\mathbf{x}, \mathbf{y})}{\sqrt{var(\mathbf{x}) var(\mathbf{y})}}.$$

■ Critère des moindres carrés :

$$C(a, b) = \sum_{i=1}^{n} (y_i - a - bx_i)^2$$

■ Critère du R^2 : $\tilde{y}_i = a + bx_i$

$$R^2(a, b) = (\operatorname{cor}(\widetilde{\mathbf{y}}, \mathbf{y}))^2$$
.

Propositions

■ Bilinéarité : $u_i = a + bx_i$ et $v_i = c + dy_i$ pour $1 \le i \le n$

$$cov(\mathbf{u}, \mathbf{v}) = bd cov(\mathbf{x}, \mathbf{y}).$$

■ Inégalité de Cauchy-Schwartz :

$$\langle \mathbf{u}, \mathbf{v} \rangle^2 \le \|\mathbf{u}\|^2 \|\mathbf{v}\|^2.$$

■ Encadrement :

$$(cov(\mathbf{x}, \mathbf{y}))^2 \le var(\mathbf{x}) var(\mathbf{y})$$

■ Minimisation de C(a, b):

$$b^* = \frac{\operatorname{cov}(\mathbf{x}, \mathbf{y})}{\operatorname{var}(\mathbf{x})}, \qquad a^* = \overline{y} - b^* \overline{x}.$$

 \blacksquare R^2 des moindres carrés :

$$R^2(a^*,b^*)=(\operatorname{cor}(\mathbf{x},\mathbf{y}))^2.$$