Vecchia REML Estimation

June 15, 2020

Let $A \subset \mathbb{R}^d$ and let $\{Y(\mathbf{x}) : \mathbf{x} \in A\}$ be a Gaussian process with mean function $\mu_{\boldsymbol{\beta}}(\mathbf{x}) = \mathbf{m}(\mathbf{x})^T \boldsymbol{\beta}$, where $\mathbf{m} : \mathbb{R}^d \to \mathbb{R}^p$ and $\boldsymbol{\beta} \in \mathbb{R}^p$, and covariance function $K_{\boldsymbol{\theta}}$. Let $\mathbf{x}_1, \dots, \mathbf{x}_n \in A$ and suppose we observe $Y_1 = Y(\mathbf{x}_1), \dots, Y_n = Y(\mathbf{x}_n)$. Let $\mathbf{Y} = (Y_1, \dots, Y_n)^T$, $\mathbf{X} = (\mathbf{m}(\mathbf{x}_1), \dots, \mathbf{m}(\mathbf{x}_n))^T$ and let $\boldsymbol{\Sigma}(\boldsymbol{\theta})$ be an $n \times n$ matrix with i, jth entry given by $K_{\boldsymbol{\theta}}(\mathbf{x}_i, \mathbf{x}_j)$. Then we have

$$\mathbf{Y} \sim \mathcal{N}(\mathbf{X}\boldsymbol{\beta}, \boldsymbol{\Sigma}(\boldsymbol{\theta})).$$
 (1)

Suppose that the $n \times p$ matrix \mathbf{X} is full rank. To carry out REML estimation, we need to first write down the joint density of a set of contrasts \mathbf{KY} where \mathbf{K} any $n-p\times n$ full rank matrix such that $\mathbb{E}[\mathbf{KY}]=0$. Suppose that the first p rows of \mathbf{X} are linearly independent, and let $\mathbf{Y}_{[j]}$ denote $(Y_1,\ldots,Y_j)^T$. Then the BLUP of Y_{p+j} given $\mathbf{Y}_{[p+j-1]}$ exists for $j=1,\ldots,n-p$.

- 1. Let $\Sigma_{[p+j-1]}$ denote the covariance matrix for $\mathbf{Y}_{[p+j-1]}$.
- 2. Let $\mathbf{X}_{[p+j-1]}$ denote the design matrix for for $\mathbf{Y}_{[p+j-1]}$.
- 3. Let \mathbf{k}_j denote the vector of covariances between $\mathbf{Y}_{[p+j-1]}$ and Y_{p+j} .
- 4. Let \mathbf{X}_{j} denote the jth row of \mathbf{X} .

For j = 1, ..., n - p, let λ_j be the first p + j - 1 entries of the vector

$$\begin{pmatrix} \mathbf{\Sigma}_{[p+j-1]} & \mathbf{X}_{[p+j-1]} \\ \mathbf{X}_{[p+j-1]}^T & 0 \end{pmatrix}^{-1} \begin{pmatrix} \mathbf{k}_j \\ \mathbf{X}_j \end{pmatrix}$$

Let **K** be an $n - p \times n$ where the *j*th row is given by $(-\lambda_j^T, 1, 0, \dots, 0)$. Then **K** is full rank and $\mathbb{E}[\mathbf{KY}] = 0$, so **W** is a suitable set of contrasts. The *j*th entry of **W** = **KY** is just the error of the BLUP of Y_{p+j} based on $\mathbf{Y}_{[p+j-1]}$. Consequently, the entries of **W** are uncorrelated with each other. Since they are also jointly normal, they are independent. Let $\mathbf{V} = \mathbf{K} \mathbf{\Sigma} \mathbf{K}^T$. If $r(\mathbf{w}; \boldsymbol{\beta}, \boldsymbol{\theta})$ denotes the joint density of **W**, then

$$\log r(\mathbf{w}; \boldsymbol{\beta}, \boldsymbol{\theta}) = -\frac{n-p}{2} \log(2\pi) - \frac{1}{2} \log |\mathbf{V}| - \frac{1}{2} \mathbf{W}^T \mathbf{V}^{-1} \mathbf{W}$$
 (2)

$$= \sum_{j=1}^{n-p} \frac{1}{2} \left(-\log(2\pi) - \log \mathbf{V}_{jj} - \mathbf{V}_{jj}^{-1} \mathbf{W}_{j}^{2} \right)$$
 (3)

Note that \mathbf{V}_{jj} is just the variance of the error of the BLUP of Y_{p+j} based on $\mathbf{Y}_{[p+j-1]}$, or equivalently, the mse of the BLUP. Now let $\mathbf{S}_{[p+j-1]} \subset \mathbf{Y}_{[p+j-1]}$ have $\mathbf{b} = \min(p+j-1,m)$ entries for $j=1,\ldots,n-p$ where m<< n-p (b corresponds to bsize-1 in the code). Vecchia's approximation of (6) is

$$\log r(\mathbf{w}; \boldsymbol{\beta}, \boldsymbol{\theta}) \approx \sum_{j=1}^{n-p} \frac{1}{2} \left(-\log(2\pi) - \log \tilde{\mathbf{V}}_{jj} - \tilde{\mathbf{V}}_{jj}^{-1} \tilde{\mathbf{W}}_{j}^{2} \right)$$
(4)

where $\tilde{\mathbf{W}}_j$ is the error of the BLUP of Y_{p+j} based on $\mathbf{S}_{[p+j-1]}$ and $\tilde{\mathbf{V}}_{jj}$ is the variance of this error. We can obtain $\tilde{\mathbf{W}}_j$ and $\tilde{\mathbf{V}}_{jj}$ as follows:

- 1. Let $\tilde{\Sigma}_{[p+j-1]}$ denote the covariance matrix for $\mathbf{S}_{[p+j-1]}$.
- 2. Let $\mathbf{X}_{[p+j-1]}$ denote the design matrix for for $\mathbf{S}_{[p+j-1]}$.
- 3. Let $\tilde{\mathbf{k}}_j$ denote the vector of covariances between $\mathbf{S}_{[p+j-1]}$ and Y_{p+j} .

4. Let \mathbf{X}_j denote the jth row of \mathbf{X} .

For j = 1, ..., n - p, let $\tilde{\lambda}_j$ be the first b entries of the vector

$$\begin{pmatrix} \tilde{\mathbf{\Sigma}}_{[p+j-1]} & \tilde{\mathbf{X}}_{[p+j-1]} \\ \tilde{\mathbf{X}}_{[p+j-1]}^T & 0 \end{pmatrix}^{-1} \begin{pmatrix} \tilde{\mathbf{k}}_j \\ \mathbf{X}_j \end{pmatrix}$$

Then
$$\tilde{\mathbf{W}}_j = (-\tilde{\boldsymbol{\lambda}}_j^T, 1)\mathbf{S}_{[p+j]}$$
 and $\tilde{\mathbf{V}}_{jj} = (-\tilde{\boldsymbol{\lambda}}_j^T, 1)\boldsymbol{\Sigma}_{[p+j]}(-\tilde{\boldsymbol{\lambda}}_j^T, 1)^T$.

Then $\tilde{\mathbf{W}}_j = (-\tilde{\boldsymbol{\lambda}}_j^T, 1)\mathbf{S}_{[p+j]}$ and $\tilde{\mathbf{V}}_{jj} = (-\tilde{\boldsymbol{\lambda}}_j^T, 1)\mathbf{\Sigma}_{[p+j]}(-\tilde{\boldsymbol{\lambda}}_j^T, 1)^T$. We can embed $(-\tilde{\boldsymbol{\lambda}}_j^T, 1)$ in an n-row-vector of zeros \mathbf{C}_j to make $\tilde{\mathbf{W}}_j = \mathbf{C}_j\mathbf{Y}$. Let \mathbf{C} be an $n \times (n-p)$ matrix with rows \mathbf{C}_j . Then $\tilde{\mathbf{W}} := (\tilde{\mathbf{W}}_{11}, \dots, \tilde{\mathbf{W}}_{n-p,n-p})^T = \mathbf{C}\mathbf{Y} \sim \mathcal{N}(0, \mathbf{C}\boldsymbol{\Sigma}\mathbf{C}^T)$ where $\tilde{\mathbf{V}} := \mathbf{C}\boldsymbol{\Sigma}\mathbf{C}^T$ is a diagonal matrix with diagonal entries $\tilde{\mathbf{V}}_{jj}$. There are formulas for obtaining $\tilde{\mathbf{V}}$ directly. obtaining $\mathbf{\tilde{V}}_{ij}$ directly.

The formula for the gradient is contained in the Stein et al. paper :

$$\frac{\partial}{\partial \theta_k} rl(\theta, w) = -\frac{1}{2} \Big[\Big(\tilde{\mathbf{V}}_{jj}^{-1} \cdot \frac{\partial}{\partial \theta_k} \tilde{\mathbf{V}}_{jj} \Big) + \Big(2 \tilde{\mathbf{W}}_j \cdot \tilde{\mathbf{V}}_{jj}^{-1} \cdot \frac{\partial}{\partial \theta_k} \tilde{\mathbf{W}}_j \Big) - \Big(\tilde{\mathbf{W}}_j^2 \cdot \tilde{\mathbf{V}}_j^{-2} \cdot \frac{\partial}{\partial \theta_k} \tilde{\mathbf{V}}_j) \Big]$$

The Fisher Information matrix can be obtained using the fact that $\tilde{\mathbf{W}} \sim \mathcal{N}(0, \mathbf{C} \mathbf{\Sigma} \mathbf{C}^T)$:

$$\mathcal{I}_{kl} = \frac{1}{2} \sum_{i=1}^{n-p} \left[\tilde{\mathbf{V}}_{jj}^{-1} \cdot \frac{\partial}{\partial \theta_k} \tilde{\mathbf{V}}_{jj} \cdot \tilde{\mathbf{V}}_{jj}^{-1} \cdot \frac{\partial}{\partial \theta_l} \tilde{\mathbf{V}}_{jj} \right].$$

The restricted likelihood, gradient and Fisher Information can be computed in one pass through the data, if the formulas above are correct.