#### Intro to Data Analytics and Visualizations

Lecture 5 Fall 2014, September3

# Outline

- 1. The tasks in a Data Science Project
- 2. Most common data science modeling tasks
- 3. A first modeling example
- 4. In-class coding exercise

# Data Scientist's Tasks in a Data Science Project

- Define goal
- Collect and manage data
- Build model (including visualization of data)
- Evaluate model
- Present results
- Implement (deliver/deploy) model

# Most Common Modeling Tasks in Data Science

- Classification
- Scoring
- Ranking
- Clustering
- Finding Relations
- Characterizations

#### Data Science Problem

- Progressive, the insurance company, would like to have a quick way to quote the premium for an insurance policy on a car.
- The insurance agent only has 5 minutes to spend on the phone with a potential new customer.
- The only information the agent gets is the caller's age and the caller's vehicle age.
- How can a data scientist help with this problem?

#### Data Science Problem

 Suppose the company has data from the insurance policies written in the past. If saved in a data frame, we would have three variables: Premium, Driver Age and Vehicle Age. How can we fit a model so that we can predict the Premium for a future, only knowing the Driver Age and Vehicle Age?

#### **Data Science Problem**

Historical Data



## **Decision Trees (Predictive task)**

- We can build a decision tree. Decision trees are a class of techniques used to characterize the relationship between a response and a collection of covariates. In R, you can fit a decision tree, and then plot it to have a visualization of the tree.
- In R:
- library(tree)
- insurance\_tree <- tree(Premium ~ Driver\_age + Vehicle\_age, data = cars)
- plot(insurance\_tree)

| Decision Trees (Predictive task) |    |       |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |
|----------------------------------|----|-------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|---|
| V 1:1 A                          |    | er Ag | _  | 24 | 22 | 22 | 24 | 25 | 26 | 27 | 20 | 20 | 20 | 24 | 22 | 22 | 24 | 25 | 26 | 27 | 20 | 20 | 40 |   |
| Vehicle Age                      | 18 |       | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |   |
| 0                                | 10 | 10    | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 3  | 3  | 3  | 3  | 3  | 3  | 3  |   |
| 1                                | 10 | 10    | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 3  | 3  | 3  | 3  | 3  | 3  | 3  |   |
| <u>2</u>                         | 10 | 10    | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 3  | 3  | 3  | 3  | 3  | 3  | 3  |   |
| <u>3</u>                         | 10 | 10    | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 3  | 3  | 3  | 3  | 3  | 3  | 3  |   |
| <u>4</u>                         | 10 | 10    | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 3  | 3  | 3  | 3  | 3  | 3  | 3  |   |
| <u>5</u>                         | 8  | 8     | 8  | 8  | 8  | 8  | 8  | 8  | 8  | 8  | 8  | 8  | 8  | 8  | 8  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  |   |
| <u>6</u>                         | 8  | 8     | 8  | 8  | 8  | 8  | 8  | 8  | 8  | 8  | 8  | 8  | 8  | 8  | 8  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  |   |
| 7                                | 8  | 8     | 8  | 8  | 8  | 8  | 8  | 8  | 8  | 8  | 8  | 8  | 8  | 8  | 8  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  |   |
| 8                                | 8  | 8     | 8  | 8  | 8  | 8  | 8  | 8  | 8  | 8  | 8  | 8  | 8  | 8  | 8  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | Г |
| 9                                | 8  | 8     | 8  | 8  | 8  | 8  | 8  | 8  | 8  | 8  | 8  | 8  | 8  | 8  | 8  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  |   |
| 10                               | 8  | 8     | 8  | 8  | 8  | 8  | 8  | 8  | 8  | 8  | 8  | 8  | 8  | 8  | 8  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  |   |
|                                  |    |       |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |



### The Data Science Solution

- Insurance Agent: My caller wants to get a quote. He is 20 and has a 3 year old car. What should I say?
- What the Data Scientist wanted to say: After getting data, coding, crunching, summarizing, visualizing, and building this model...and considering... and accounting for ... a good guess might be ..10 plus or minus...
- What the Agent wanted to hear: 10.

# IN-CLASS Coding Exercise Complete and submit to Dropbox as R script "Name\_inclass1.r"

# For In-class Exercise: R Coding Conventions and Esthetics

#### Structuring your code:

- -make it understandable for your future self and others;
- -good names for objects and functions;
- -keep lines short;
- -have good comments to explain code;
- -make it concise and efficient.

#### Exercise

- Create new R script "Inclass1" in your folder CMDA that is a Git repository.
- 2. Set working directory to your folder.
- 3. Import "cars1" dataset. Download it first from Scholar into your CMDA folder.
- 3. What is the dimension of your R data frame, i.e., how many rows and columns? Use a command to get the answer.
- 4. Assign the value of the cell [2,3] to a new variable var1.
- 5. What are the variable names in this data frame?
- 6. Output the content of the first and second columns separately.
- 7. Assign the values of variable "speed" from the data frame to a new variable "SPEED". Print the new variable.
- 8. Output the value of row 15 from the data frame.
- 9. Save and close the R file. Commit changes locally to your CMDA folder. "Sync" to see the updates on your GitHub web account.