

planetmath.org

Math for the people, by the people.

proof of measurability of stopped processes

 ${\bf Canonical\ name} \quad {\bf ProofOfMeasurabilityOfStoppedProcesses}$

Date of creation 2013-03-22 18:39:03 Last modified on 2013-03-22 18:39:03

Owner gel (22282) Last modified by gel (22282)

Numerical id 4

Author gel (22282) Entry type Proof

Classification msc 60G05

Let $(\mathcal{F}_t)_{t\in\mathbb{T}}$ be a http://planetmath.org/FiltrationOfSigmaAlgebrasfiltration on the measurable space (Ω, \mathcal{F}) , τ be a stopping time, and X be a stochastic process. We prove the following measurability properties of the stopped process X^{τ} .

If X is jointly measurable then so is X^{τ} .

Suppose first that X is a process of the form $X_t = 1_A 1_{\{t \geq s\}}$ for some $A \in \mathcal{F}$ and $t \in \mathbb{T}$. Then, $X_t^{\tau} = 1_{A \cap \{\tau \geq s\}} 1_{\{t \geq s\}}$ is $\mathcal{B}(\mathbb{T}) \otimes \mathcal{F}$ -measurable. By the functional monotone class theorem, it follows that X^{τ} is a bounded $\mathcal{B}(\mathbb{T}) \otimes \mathcal{F}$ -measurable process whenever X is. By taking limits of bounded processes, this generalizes to all jointly measurable processes.

If X is progressively measurable then so is X^{τ} .

For any given $t \in \mathbb{T}$, let Y be the $\mathcal{B}(\mathbb{T}) \otimes \mathcal{F}_t$ -measurable process $Y_s = X_s^t = X_{s \wedge t}$. As $\tau \wedge t$ is \mathcal{F}_t -measurable, the result proven above says that $(X^{\tau})^t = Y^{\tau \wedge t}$ will also be $\mathcal{B}(\mathbb{T}) \otimes \mathcal{F}_t$ -measurable, so X^{τ} is progressive.

If X is optional then so is X^{τ} .

As the optional processes are generated by the right-continuous and adapted processes then it is enough to prove this result when X is right-continuous and adapted. Clearly, X^{τ} will be right-continuous. Also, X will be progressive (see measurability of stochastic processes) and, by the result proven above, it follows that X^{τ} is progressive and, in particular, is adapted.

If X is predictable then so is X^{τ} .

By the definition of predictable processes, it is enough to prove the result in the cases where $X_t = 1_A 1_{\{t>s\}}$ for some $s \in \mathbb{T}$ and $A \in \mathcal{F}_s$, and $X_t = 1_A 1_{\{t=t_0\}}$ where t_0 is the minimal element of \mathbb{T} and $A \in \mathcal{F}_{t_0}$.

In the first case, $X_t^{\tau} = 1_{A \cap \{\tau > s\}} 1_{\{t > s\}}$ is predictable and, in the second case, $X_t^{\tau} = 1_A 1_{\{t = t_0\}} + 1_{A \cap \{\tau = t_0\}} 1_{\{t > t_0\}}$ is predictable.