Practical 3: Numerical Differentiation

Programming to obtain derivates numerically.

Problem Statement: Write and execute Scilab code for the following:

From the following table of values of x and y obtain dy/dx for x=1.2

x	1	1.2	1.4	1.6	1.8	2	2.2
у	2.7183	3.3201	4.0552	4.953	6.0496	7.3891	9.025

Scilab Code:

```
clc;
clear;
x=[1.0 \ 1.2 \ 1.4 \ 1.6 \ 1.8 \ 2.0 \ 2.2];
y=[2.7183\ 3.3201\ 4.0552\ 4.9530\ 6.0496\ 7.3891\ 9.0250];
c=1;
for i=1:6
  d1(c)=y(i+1)-y(i);
  c=c+1;
end
c=1;
for i=1:5
  d2(c)=d1(i+1)-d1(i);
  c=c+1;
end
c=1;
for i=1:4
  d3(c)=d2(i+1)-d2(i);
  c=c+1;
end
c=1:
for i=1:3
  d4(c)=d3(i+1)-d3(i);
  c=c+1;
end
c=1;
```

```
for i=1:2 d5(c)=d4(i+1)-d4(i); c=c+1; end c=1; for i=1:1 d6(c)=d5(i+1)-d5(i); c=c+1; end x0=1.2; h=0.2; f1=((d1(2)-d2(2)/2+d3(2)/3-d4(2)/4+d5(2)/5)/h); printf('The first deviation of function at 1.2 is:%f\n',f1);
```

Output:

```
The first deviation of function at 1.2 is:3.320317
```