Tytuł: Oscyloskop

Autorzy: Jakub Zając (JZ),

Paweł Mozgowiec (PM)

Ostatnia modyfikacja: 31.08.2023

Spis treści

<u>1.</u>	Repozytorium git		_1
2.	Wstęp		1
<u>3.</u>	Specyfikacja		1
	3.1. Opis ogólny algorytmu	1	
	3.2. Tabela zdarzeń	2	
<u>4.</u>	Architektura		2
	4.1. Moduł: top	2	
	4.1.1. Schemat blokowy 2		
	4.1.2. Porty 3		
	a) mou – mouse_ctl, input 3		
	b) vga – vga_ctl, output 3		
	4.1.3. Interfejsy 3		
	a) m2c – mouse_ctl to core 3		
	4.2. Rozprowadzenie sygnału zegara	3	
<u>5.</u>	Implementacja		4
	5.1. Lista zignorowanych ostrzeżeń Vivado.	4	
	5.2. Wykorzystanie zasobów	4	
	5.3. Marginesy czasowe	4	
6.	Film.		4

1. Repozytorium git

Adres repozytorium GITa (jeżeli używane):

https://github.com/Zajcu14/oscilloscope.git

W przypadku repozytorium prywatnego należy zaprosić użytkownika zewnętrznego o adresie mailowym: kaczmarczyk@agh.edu.pl

2. Wstęp

Pomysł wziął się z naszego zainteresowania dziedziną elektroniki cyfrowej i przetwarzania sygnałów. Chcieliśmy również nabrać doświadczenia przy pracy z zewnętrznymi urządzeniami akwizycji sygnału jak i późniejszej ich obróbki. Celem projektu było stworzenie cyfrowego oscyloskopu z opcjami filtrowania i analizy widmowej.

3. Specyfikacja

3.1. Opis ogólny algorytmu

Uproszczony schemat blokowy działania implementowanego algorytmu. Co się dzieje po starcie, jak wygląda przebieg działania, kiedy i pod jakimi warunkami się kończy.

Ewentualnie przykładowe screen-shoty tego, co w przybliżeniu chcielibyśmy uzyskać.

3.2. Tabela zdarzeń

Opis zdarzeń występujących podczas działania programu/urządzenia, zarówno zewnętrznych (interakcje z użytkownikiem), jak i wewnętrznych (specyficzne stany w algorytmie). Zdarzenia podzielone są na kategorie dotyczący różnych stanów działania programu. Kategorie powinny odpowiadać stanom ze schematu z pkt. 2.1.

Zdarzenie	Kategoria	Reakcja systemu
podłączenie sygnały wejściowego	ADC	przetworzenie sygnału na cyfrowy - próbka
sygnał sinusoidalny	trigger	uruchomienie wyzwolenia - zapis próbek do pamięci buffora
zbocze narastające clk_65Mhz	trigger -> functions blok	wpisane próbek i późniejsza interpretacja przez moduły wewnętrzne
zbocze narastające clk_65Mhz	trigger -> Display_gener	wpisane próbek i późniejsze narysowanie wykresu
zbocze narastające clk_65Mhz	functions blok-> Display_gener	wpisane próbek i późniejsze narysowanie wykresu oraz wartości liczbowych (parametrów)
zbocze narastające clk_65Mhz	control fun.=> function_blok	konfiguracja bloku i jego parametrów
ruch myszką	mouse	zmiana koordynatów myszki
zbocze narastające clk_65Mhz	mouse => function_blok	zmiana wartości wewnętrznych uwzględniających położenie oraz wciśnięte klawisze myszki

zbocze narastające clk_65Mhz	control fun.=>trigger	zmiana szybkości próbkowania oraz wartości trigger_level
zbocze narastające clk_65Mhz	control fun.=>ADC	zmiana szybkości próbkowania
zbocze narastające clk_65Mhz	mouse fun.=>Display_gen	rysowanie myszki na ekranie
zbocze narastające clk_65Mhz	control fun.=>Display_gen	rysowanie myszki na ekranie
zbocze narastające clk_65Mhz	Vga_timing =>Display_gen	wygenerowanie sygnałów kalibrujących
kliknięcie myszki w pierwszej ćwirtce ekranu	Display_gen	kontrola próbkowania trigger, przycisk lewy odjęcie wartości, prawy dodanie wartości
kliknięcie myszki w drugiej ćwirtce ekranu	Display_gen	kontrola trigger+lvl, przytrzymanie środkowego przycisku oraz przycisk lewy odjęcie wartości, prawy dodanie wartości
kliknięcie myszki w pierwszej ćwirtce ekranu	Display_gen	kontrolapróbkowania ADC, przytrzymanie środkowego przycisku oraz przycisk lewy odjęcie wartości, prawy dodanie wartości
ruch myszką po wykresie i przytrzymanie lewego przycisku	mouse =>Display_gen	poruszanie wykresem
przyciśnięcie RST na płytce	płytka	reset całego programu przywrócenie ustawień nominalncyh

4. Architektura

Uwaga: dobrze zrobiony projekt zawiera tylko moduły strukturalne (zbudowane z innych modułów) i funkcjonalne (zawierające bloki proceduralne always @). Staramy się nie generować bloków mieszających te dwa typy, o ile to możliwe.

Uwaga: opisujemy architekturę tylko głównego modułu oraz rozprowadzenie sygnału zegara.

4.1. Moduł: top

Osoba odpowiedzialna: JZ oraz PM

4.1.1. Schemat blokowy

Przykładowy schemat blokowy modułu głównego

Uwaga:

- interfejsy dwukierunkowe rozbijamy na 2 interfejsy jednokierunkowe
- nazwa interfejsu stanowi prefiks nazwy sygnałów składowych
- w interfejsach nie uwzględniamy sygnałów globalnych (np. clk i rst).

4.1.2. Porty

a) ps2- MouseCtl, input

nazwa portu	opis
ps2_data	szeregowe wejście danych
ps2_clk	taktowanie komunikacji z myszką

b) vga – vga_ctl, output

nazwa portu	opis
VS	sygnał synchronizacji pionowej VGA
hs	sygnał synchronizacji poziomej VGA

4.1.3. Interfejsy

a) vga if – vga ctl to core

nazwa sygnału	opis
[10:0] vcount	wertykalna pozycja wyświetlanego piksela na ekranie
[10:0] hcount	horyzontalna pozycja wyświetlanego piksela na ekranie
[11:0] rgb	wartość koloru w kodzie rgb
vsync	sygnał synchronizacji wertykalny

hsync	sygnał synchronizacji horyzontalny
vblnk	sygnał wygaszania wertykalny
hblnk	sygnał wygaszania horyzontalny

4.2. Rozprowadzenie sygnału zegara

Osoba odpowiedzialna:

PMInformacja na temat źródła sygnału zegarowego, używanych częstotliwości zegara w całym układzie.

Moduł generatora zegara umieszczamy w module głównym projektu. W pozostałych modułach używamy tylko i wyłącznie sygnały zegara wygenerowane przez ten moduł.

Uwaga: jeżeli używamy różnych częstotliwości zegara w układzie, to należy je tak dobrać, aby były wielokrotnościami siebie (umożliwia to wygenerowanie tych sygnałów z jednego IP core generatora zegara i zapobiega problemom z synchronizacją).

5. Implementacja

5.1. Lista zignorowanych ostrzeżeń Vivado.

Identyfikat or ostrzeżeni a	Liczba wystąpie ń	Uzasadnienie
[Netlist 29-345]	4	to ostrzeżenie niekoniecznie oznacza problem, ale warto być świadomym, że wartość SIM_DEVICE może wpływać na symulację funkcyjną.
[Synth 8-7129]	3	w tym konkretnym przypadku port został niewykorzystany jednakże jest to pozostawione dla przyszłej skalowalności kodu
[Route 35-328]	1	oszacowany czas trasy nie spełniony oznacza, że układ może nie działać zgodnie z oczekiwaniami pod względem czasu, jednakże nie wpływa to negatywnie na wynik końcowy, wszystkie przypadki zostały przeanalizowane pod względem kluczowości ostrzerzenia
[DRC DPIP-x]	4	dotyczy wartości trigger_case, ostrzenie nie jest groźne, wszystko działa prawidłowo
[Synth 8-6014]	4	Dotyczy nieużywanych rejestrów w kontrolerze myszki. Ostrzeżenie pozostawione ze wzgledu na dostarczenie pliku z zewnątrz.

5.2. Wykorzystanie zasobów

Tabela z wykorzystaniem zasobów z Vivado

5.3. Marginesy czasowe

Marginesy czasowe (WNS) dla setup i hold.

Setup		Hold		Pulse Width	
Worst Negative Slack (WNS):	-90,691 ns	Worst Hold Slack (WHS):	0,051 ns	Worst Pulse Width Slack (WPWS):	3,000 ns
Total Negative Slack (TNS):	-8733,597 ns	Total Hold Slack (THS):	0,000 ns	Total Pulse Width Negative Slack (TPWS):	0,000 ns
Number of Failing Endpoints:	4081	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	9570	Total Number of Endpoints:	9570	Total Number of Endpoints:	6615
Timing constraints are not met.					

26

26

-36,744 ns

0,000 ns

26

0

6. Film.

Link do ściągnięcia filmu:

Setup

Hold

-1,549 ns

 $0,053 \, \text{ns}$

https://