

VERIFICATION OF TRANSLATION

Patent Application No. 2002-70996

I, Hidejiro TANIGAWA of 4-13-802, Fujimi 2-chome, Chiyoda-ku, Tokyo 102-0071, Japan, am the translator of the documents attached and I state that the following is a true translation to the best of my knowledge and belief of Japanese Patent Application No. 2002-70996.

DATED this 16th day of October, 2006

Signature of translator

Signature of translator

Signature of translator

Hidejiro TANIGAWA

[TITLE OF DOCUMENT] REQUEST FOR PATENT

[DOCKET NUMBER] 01742

[TO] Director General of Patent Office

[INTERNATIONAL PATENT CLASSIFICATION] C12N 15/00

[INVENTOR]

[ADDRESS OR DOMICILE] c/o National Institute of Advanced Industrial Science and Technology, Tsukuba Center, 1-1-1, Higashi, Tsukuba-shi, Ibaraki

[NAME] Hisashi NARIMATSU

[INVENTOR]

[ADDRESS OR DOMICILE] c/o National Institute of Advanced Industrial Science and Technology, Tsukuba Center, 1-1-1, Higashi, Tsukuba-shi, Ibaraki

[NAME] Niro INABA

[INVENTOR]

[ADDRESS OR DOMICILE] c/o National Institute of Advanced Industrial Science and Technology, Tsukuba Center, 1-1-1, Higashi, Tsukuba-shi, Ibaraki

[NAME] Akira TOGAYACHI

[APPLICANT FOR PATENT]

[IDENTIFICATION NUMBER] 301021533

[NAME] NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY

[APPLICANT FOR PATENT]

[IDENTIFICATION NUMBER] 501029744

[NAME] JAPAN GENOME SOLUTIONS, INC.

[ATTORNEY]

[IDENTIFICATION NUMBER] 100088546

[PATENT ATTORNEY]

[NAME] Hidejiro TANIGAWA

[PHONE] 03(3238)9182

[INDICATION OF FEE]

[ADVANCED PAYMENT BOOK NUMBER]

053235

[AMOUNT] 21000

[OTHERS] Share of total of those who are not the country or the like 50/100 (2003, New Energy and Industrial Technology Development Organization, Construction of sugar-chain synthesis-related gene library, Entrusted research, Patent application concerning the results of research entrusted by the country (an application subjected to Article 30 of Special Measures Law for Regeneration of Industrial Activity)

[LIST OF DOCUMENTS SUBMITTED]

[TITLE OF DOCUMENT] Specification 1

[TITLE OF DOCUMENT] Abstract 1

[PROOF REQUIRED OR NOT] Required

[Title of Document]

DESCRIPTION

[Title of the Invention]

Novel N-Acetylglucosaminyltransferase and Nucleic

Acid Coding for the Same

(Claims)

[Claim 1] A protein having the amino acid sequence shown in SEQ ID NO: 1 in SEQUENCE LISTING, or a protein having the same amino acid sequence as shown in SEQ ID NO:1 except that one or more amino acids are substituted or deleted, or that one or more amino acids are inserted or added, which has an activity to transfer *N*-acetylglucosamine to a non-reducing terminal of Galβ1-4Glc or Galβ1-4GlcNAc group through β1,3-linkage.

[Claim 2] The protein according to claim 1, which has the amino acid sequence shown in SEQ ID NO: 2 in SEQUENCE LISTING, or a protein having the same amino acid sequence as shown in SEQ ID NO:1 except that one or more amino acids are substituted or deleted, or that one or more amino acids are inserted or added.

[Claim 3] The protein according to claim 1 or 2, wherein said protein has an amino acid sequence having a homology of not less than 70% to said amino acid sequence shown in SEQ ID NO:1 or 2.

[Claim 4] The protein according to claim 3, wherein said protein has an amino acid sequence having a homology of not less than 90% to said amino acid sequence shown in SEQ ID NO:1 or 2.

[Claim 5] The protein according to claim 4, wherein said protein has an amino acid sequence having the same amino acid sequence as shown in SEQ ID NO: 2 except that one or several amino acids are substituted or deleted, or that one or several amino acids are inserted or added.

[Claim 6] The protein according to claim 5, which has the amino acid sequence shown in SEQ ID NO:2.

[Claim 7] A protein comprising a region having the amino acid sequence recited in any one of claims 1 to 6, which has an activity to transfer *N*-acetylglucosamine to a non-reducing terminal of Gal\(\beta\)1-4Glc or Gal\(\beta\)1-4GlcNAc group through

β1,3-linkage.

[Claim 8] A nucleic acid coding for said protein according to any one of claims 1 to 7.

[Claim 9] The nucleic acid according to claim 8, which hybridizes with the nucleic acid having the nucleotide sequence shown in SEQ ID NO:2 or 4 under stringent conditions.

[Claim 10] The nucleic acid according to claim 9, which has the nucleotide sequence shown in SEQ ID NO:2 or 4.

[Claim 11] A recombinant vector containing the nucleic acid according to any one of claims 8 to 10, which can express said nucleic acid in a host cell.

[Claim 12] A cell into which said nucleic acid according to any one of claims 8 to 10 is introduced, which expresses said nucleic acid.

[Claim 13] A nucleic acid for measurement of said nucleic acid according to any one of claims 8 to 10, which specifically hybridizes with said nucleic acid according to any one of claims 8 to 10.

[Claim 14] The nucleic acid for measurement of nucleic acid, according to claim 13, which has a sequence complementary to a part of said nucleic acid of claim 10.

[Claim 15] The nucleic acid for measurement of nucleic acid, according to claim 13 or 14, which is a probe or a primer.

[Claim 16] The nucleic acid for measurement of nucleic acid, according to claim 15, which has not less than 15 bases.

[Detailed description of the invention]

[0001]

[Technical Field to Which the Invention Pertains]

The present invention relates to a novel enzyme having an activity to transfer N-acetylglucosamine to a non-reducing terminal of Gal β 1-4Glc or Gal β 1-4GlcNAc group through β 1,3-linkage, and to a nucleic acid coding for the same, as well as to nucleic acids for measuring the nucleic acid.

[0002]

[Prior Art]

Five types of enzymes are known, having an activity to transfer *N*-acetylglucosamine to a non-reducing terminal of Galβ1-4Glc or Galβ1-4GlcNAc group through β1,3-linkage, which activity is involved in the synthesis of polylactosamine sugar chains (Togayachi, A. et al., J Biol Chem, 2001, 276, 22032-40; Shiraishi, N. et al., J Biol Chem, 2001, 276, 3498-507; Sasaki, K et al., Proc Natl Acad Sci U S A, 1997, 94, 14294-9). However, although the amount of polylactosamine on cell surfaces is increased by making the cells express the gene of the enzyme, some of the enzymes expressed have very low activities. Thus, although it is thought that the enzymes which produce polylactosamine have different characteristics, the characterization of the enzymes has not been sufficient. Therefore, to prepare or produce the polylactosamine sugar chain structure which requires the enzyme activity, it is necessary to chemically synthesize the structure, isolating the structure from a biological component or to synthesize the structure enzymatically using a tissue homogenate.

[0003]

It is known that sugar chain structures such as Lewis antigen exist on the sugar chain structures based on polylactosamine sugar chains (Kannagi R. Glycoconj J. 1997 Aug;14(5):577-84. Review; Nishihara S et al., J Biol Chem. 1994 Nov 18;269(46):29271-8). Similarly, it is said that the structures such as the lengths of polylactosamine sugar chains are involved in cellular immunity by NK cells or the like (Ohyama C et a., EMBO J. 1999 Mar 15;18(6):1516-25). Similarly, it is known that human stomach tissue is infected with *Helicobacter pylori* through a related sugar chain such as Lewis antigen (Wang G et al., Mol Microbiol. 2000 Jun;36(6):1187-96. Review; Falk PG et al., Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1515-9). Thus, if the gene of an enzyme having an activity to transfer *N*-acetylglucosamine to a non-reducing terminal of Galβ1-4Glc or Galβ1-4GlcNAc group through β1,3-linkage can be cloned, and if the enzyme can be produced by a genetic engineering process using the gene, an antibody to the enzyme may also be produced. Therefore, these are useful for the diagnoses, therapies and prophylactics of cancers. immune diseases and infectious

diseases by *pylori*. However, the enzyme has not yet been purified or isolated, and there is no clue to the isolation of the enzyme and identification of the gene. As a result, an antibody to the enzyme has not been prepared.

[0004]

[Problems Which the Invention Tries to Solve]

Accordingly, an object of the present invention is to provide an enzyme having an activity to transfer N-acetylglucosamine to a non-reducing terminal of Gal β 1-4Glc or Gal β 1-4GlcNAc group through β 1,3-linkage, and a nucleic acid coding for the same. Another object of the present invention is to provide a recombinant vector which expresses the above-mentioned the nucleic acid in a host cell, to provide a cell in which the nucleic acid is introduced and which expresses the nucleic acid and the enzyme protein, and to provide the enzyme protein. Still another object of the present invention is to provide a nucleic acid for measurement of the above-mentioned nucleic acid according to the present invention, and to provide a method for producing the enzyme having the activity.

[0005]

[Means to Solve the Problems]

As mentioned above, since the enzyme of interest has not been isolated, it is impossible to know its partial amino acid sequence. In general, it is not easy to isolate and purify a protein contained in cells in a trace amount, and so isolation of the enzyme from cells, which has not been isolated so far, is expected not easy. The present inventors thought that if there is a homologous region among the nucleotide sequences of the various enzyme genes, which enzymes have relatively similar actions to that of the enzyme of interest, the gene of the enzyme of interest may also have the homologous sequence. After searching the nucleotide sequences of the known β1,3-*N*-acetylglucosaminyltransferase genes, β1,3-galactoslytransferase genes and β1,3-*N*-acetylgalactosaminyltransferase genes, a homologous region was discovered. Thus, based on the cloning by PCR using cDNA library, in which a primer was set in the homologous region, and after various considerations, the present inventors succeeded in

the cloning of the gene of the enzyme, and its nucleotide sequence and the deduced amino acid sequence were determined, thereby accomplishing the present invention.

[0006]

That is, the present invention provides a protein having the amino acid sequence shown in SEQ ID NO: 1 in SEQUENCE LISTING, or a protein having the same amino acid sequence as shown in SEQ ID NO:1 except that one or more amino acids are substituted or deleted, or that one or more amino acids are inserted or added, which has an activity to transfer *N*-acetylglucosamine to a non-reducing terminal of Galβ1-4Glc or Galβ1-4GlcNAc group through β1,3-linkage. The present invention also provides a nucleic acid coding for the protein. The present invention further provides a recombinant vector containing the nucleic acid, which can express the nucleic acid in a host cell. The present invention still further provides a cell which is transformed by the recombinant vector, which expresses the nucleic acid. The present invention still further provides a nucleic acid for measurement of the nucleic acid, which specifically hybridizes with the nucleic acid.

[0007]

[Modes of the Invention]

The nucleic acid resulting from the removal of the initiation codon (ATG) from the nucleic acid encoding the protein of the present invention, which was cloned from a human antrum cDNA library by the method that will be described in detail in the Examples below, has the nucleotide sequence shown in SEQ ID NO: 4 in the SEQUENCE LISTING, and the deduced amino acid sequence encoded thereby is described below the nucleotide sequence. In SEQ ID NO:3, the amino acid sequence alone is shown. In the Examples below, the nucleic acid having the nucleotide sequence shown in SEQ ID NO:4 was incorporated into an expression vector, expressed in insect cells and it was confirmed that a protein having the above-mentioned enzyme activity was produced. By comparing the amino acid sequence shown in SEQ ID NO:3 and the amino acid sequence of a similar enzyme (concrete enzyme name: β3GnT2: AB049584 which is the gene of β-1,3-N-acetylglucosaminyltransferase), it is thought that the region

with a relatively high homology, that is, the region from the 45th amino acid to the C-terminal of the amino acid sequence shown in SEQ ID NO:3 is the active domain of the enzyme, and that the above-mentioned enzyme activity is exhibited if this region consisting of 283 amino acids is contained. This 283 amino acids is shown in SEQ ID NO:1 and the nucleic acid encoding this, taken out from SEQ ID NO:4, is shown in SEQ ID NO:2.

[0008]

The protein (named "β3GnT-7") according to the present invention obtained in the Examples below is an enzyme having the following characteristics. Each of the characteristics as well as the methods for measuring them are described in detail in the Examples below.

Action: Transfer N-acetylglucosamine to a non-reducing terminal of Gal β 1-4Glc group or Gal β 1-4GlcNAc group through β 1,3-linkage. The reaction catalyzed by the enzyme, expressed in terms of reaction equation, is as follows: UDP-N-acetyl-D-glucosamine + β -D-galactosyl-1,4-D-glucosyl-R \rightarrow UDP +

N-acetyl-β-D-glucosaminyl-1,3-β-D-galactosyl-1,4-D-glucosyl-R, or

UDP-N-acetyl-D-glucosamine + β-D-galactosyl-1,4-N-acetyl-D-glucosaminyl-R →

UDP + N-acetyl-β-D-glucosaminyl-1,3-β-D-galactosyl-1,4-N-acetyl-D-glucosaminyl-R

Substrate Specificity: Galβ1-4Glc group or Galβ1-4GlcNAc group.

In biological substances, these groups occurs abundantly as, for example,

polylactosamine structures in glycoproteins (O-glycans and N-glycans) and glycolipids (lacto·neolacto series sugar chains and the like). Further, the Gal β 1-4Glc groups or Gal β 1-4GlcNAc groups contained in the basal structures of proteoglycans (keratan sulfate) and the like.

[0009]

In general, it is well-known in the art that there are cases wherein the physiological activity of a physiologically active protein such as an enzyme is retained even if the amino acid sequence of the protein is modified such that one or more amino acids in the amino acid sequence is substituted or deleted, or one or more amino acids are inserted or

added to the amino acid sequence. Therefore, a protein having the same amino acid sequence as shown in SEQ ID NO:1 or 3 except that one or more amino acids are substituted or deleted, or one or more amino acids are inserted or added, which protein has an activity to transfer N-acetylglucosamine to a non-reducing group of Gal\(\beta\)1-4Glc or Galβ1-4GlcNAc group through β1,3-linkage (the protein is hereinafter referred to as "modified protein" for convenience) is also within the scope of the present invention. The amino acid sequence of such a modified protein preferably has a homology of not less than 70%, preferably not less than 90%, still more preferably not less than 95% to the amino acid sequence shown in SEQ ID NO: 1 or 3. The homology of the nucleotide sequence may easily be calculated by using a well-known software such as FASTA, and such a software is available on the internet. Further, as the modified protein, one having the same amino acid sequence as shown in SEQ ID NO:1 or 3 except that one or several amino acids are substituted or deleted, or that one or several amino acids are inserted or added is especially preferred. Further, a protein containing the protein having the amino acid sequence shown in SEQ ID NO:1 or 3, or a modified protein thereof, which has an activity to transfer N-acetylglucosamine to a non-reducing terminal of Gal\beta1-4Glc or Galβ1-4GlcNAc group through β1,3-linkage is also within the scope of the present invention. For example, in the Examples below, a nucleic acid encoding a membrane-bound type enzyme, in which a transmembrane region is ligated to the upstream of the amino acid sequence shown in SEQ ID NO:3 was also cloned, and such a membrane-bound type enzyme is also within the scope of the present invention.

[0010]

The present invention also provides nucleic acids coding for the amino acid sequence shown in SEQ ID NO:1 or 3 and nucleic acids coding for the amino acid sequences of the above-mentioned modified proteins. As the nucleic acid, DNA is preferred. As is well-known, due to degeneracy, there may be a plurality of codons each of which codes for the same single amino acid. However, as long as a nucleic acid codes for the above-described amino acid sequence, any nucleic acid having any nucleotide sequence is within the scope of the present invention. The nucleotide sequences of the cDNA

actually cloned in the Examples below are shown in SEQ ID NOs:2 and 4. Those nucleic acids which hybridize with the nucleic acid having the nucleotide sequence shown in SEQ ID NO:2 or 4 under stringent conditions (i.e., hybridization is performed at 50 to 65°C using a common hybridization solution such as 5 x Denhardt's reagent, 6 x SSC, 0.5% SDS or 0.1% SDS), and which code for the above-described modified proteins are within the scope of the present invention.

[0011]

The above-described nucleic acid according to the present invention can be prepared by the method described in detail in Example below. Alternatively, since the nucleotide sequence was clarified by the present invention, it can easily be prepared by using human antrum as the material and performing the well-known RT-PCR method. The above-described protein according to the present invention can also be easily prepared by, for example, incorporating the above-described nucleic acid according to the present invention into an expression vector, expressing the nucleic acid in a host cell, and purifying the produced protein.

[0012]

By inserting the above-described nucleic acid according to the present invention into a cloning site of an expression vector, a recombinant vector which can express the above-described nucleic acid in a host cell may be obtained. As the expression vector, various plasmid vectors and virus vectors for various host cells are well-known and commercially available. In the present invention, such a commercially available expression vector may preferably be employed. The methods for transforming or transducing host cells with such a recombinant vector are also well-known. The present invention also provides a cell into which the nucleic acid according to the present invention is introduced by transformation, transduction or transfection, which expresses the nucleic acid. The methods *per se* for introducing a foreign gene into a host cell are well-known, and the introduction of the foreign gene may easily be attained by, for example, using the above-mentioned recombinant vector. An example of the construction of a recombinant vector and a method for introducing the nucleic acid

according to the present invention into host cells using the recombinant vector are described in detail in the Examples below.

[0013]

Sugar chains may be bound to the protein according to the present invention, as long as the protein has the amino acid sequence described above and has the above-described enzyme activity. In other words, the term "protein" used herein also includes "glycoprotein".

[0014]

Since the nucleotide sequence of the cDNA of the novel enzyme according to the present invention was clarified by the present invention, nucleic acids for measurement according to the present invention (hereinafter referred to as simply "nucleic acid for measurement"), which specifically hybridize with the mRNA or the cDNA of the enzyme, were provided by the present invention. The term "specifically" herein means that the nucleic acid does not hybridize with other nucleic acids existing in the cells subjected to the test and hybridizes only with the above-described nucleic acid according to the present invention. Although it is preferred, in general, that the nucleic acid for measurement has a sequence homologous with a part of the nucleic acid having the nucleotide sequence shown in SEQ ID NO:2 or 4, mismatch of about 1 or 2 bases does not matter in many cases. The nucleic acid for measurement may be used as a probe or a primer in a nucleic acid-amplification method. To assure specificity, the number of bases in the nucleic acid for measurement is preferably not less than 15, more preferably not less than 18. In cases where the nucleic acid is used as a probe, the size is preferably not less than 15 bases, more preferably not less than 20 bases, and not more than the full length of the coding region. In cases where the nucleic acid is used as a primer, the size is preferably not less than 15 bases, more preferably not less than 18 bases, and less than 50 bases. The methods for measuring a test nucleic acid using a nucleic acid having a sequence complementary to a part of the test nucleic acid as a primer of a gene-amplification method such as PCR or as a probe are well-known, and the methods by which the mRNA of the enzyme according to the present invention was

measured by Northern blot or *in situ* hybridization are concretely described in detail in the Examples below. In the present specification, "measurement" includes detection, quantification and semi-quantification.

[0015]

The nucleic acid-amplification methods such as PCR are well-known in the art, and reagent kits and apparatuses therefor are commercially available, so that they may easily be carried out. By carrying out the nucleic acid-amplification method using a pair of the above-described nucleic acids for measurement according to the present invention as primers and using the test nucleic acid as a template, the test nucleic acid is amplified. In contrast, in cases where the test nucleic acid is not contained in the sample, the amplification does not occur. Therefore, by detecting the amplification product, whether the test nucleic acid exists in the sample or not may be determined. Detection of the amplification product may be carried out by a method in which the reaction solution after the amplification is subjected to electrophoresis, and the bands are stained with ethidium bromide or the like, or by a method in which the amplification product after electrophoresis is immobilized on a solid phase such as a nylon membrane, a labeled probe which specifically hybridizes with the test nucleic acid is hybridized with the test nucleic acid, and the label after washing is detected. Alternatively, the test nucleic acid in the sample may be quantified by the so called realtime detection PCR using a quencher fluorescent pigment and a reporter fluorescent pigment. Since the kits for realtime detection PCR are also commercially available, realtime detection PCR may also be carried out easily. The test nucleic acid may also be semi-quantified based on the intensity of the band resulted in electrophoresis. The test nucleic acid may be a mRNA or a cDNA reverse-transcribed from a mRNA. In cases where a mRNA is amplified as the test nucleic acid, NASBA method (3SR method, TMA method) using the above-described pair of primers may also be employed. NASBA method per se is well-known, and kits therefor are commercially available, so that NASBA method may easily be carried out using the above-described pair of primers.

[0016]

As the probe, labeled probe obtained by labeling the above-described nucleic acid for measurement with a fluorescent label, radioactive label, biotin label or the like may be used. Whether the test nucleic acid exists in the sample or not may be determined by immobilizing the test nucleic acid or amplification product thereof, hybridizing the labeled probe therewith, and measuring the label bound to the solid phase after washing. Alternatively, the nucleic acid for measurement is immobilized, the test nucleic acid is hybridized therewith, and the test nucleic acid bound to the solid phase is detected by a labeled probe or the like. In such a case, the nucleic acid for measurement immobilized on the solid phase is also called a probe.

[0017]

By making the enzyme according to the present invention act on a glycoprotein, oligosaccharide or polysaccharide having (a) Galβ1-4Glc or Galβ1-4GlcNAc group(s), *N*-acetylglucosamine is bound to the non-reducing terminal(s) of the Galβ1-4Glc or Galβ1-4GlcNAc group(s) through β1,3-linkage. Thus, the enzyme according to the present invention may be used for modification of sugar chains of glycoproteins and for synthesis of saccharides. Further, by administering this enzyme as an immunogen to an animal, an antibody to this enzyme may be prepared, so that the enzyme may be measured by an immunoassay using the antibody. Therefore, the enzyme according to the present invention and the nucleic acid coding for the enzyme are useful for the preparation of such an immunogen. Such an antibody and the above-described nucleic acid for measurement are useful for the measurement of the enzyme in the body, and the measurement is useful for the diagnoses, therapies and preventions of cancers, immune diseases and infectious diseases by *pylori*.

[0018]

[Examples]

The present invention will now be described by way of Examples. However, the present invention is not restricted to the Examples. In the following description, the nucleic acid having the nucleotide sequence shown in SEQ ID NO:5, for example, may also be referred to as "SEQ ID NO:5" for convenience.

[0019]

1. Search of Gene Database and Determination of Nucleotide Sequence of β3GnT-7 Using analogous genes which are known β1,3-*N*-acetylglucosaminyltransferase genes, β1,3-galactosyltransferase genes and β1,3-*N*-acetylgalactosaminyltransferase gene, search of analogous genes was carried out on a gene database. The used sequences were β1,3-*N*-acetylglucosaminyltransferase genes with accession Nos.: AB049584, AB049585, AB049586 and AB045278; β1,3-galactosyltransferase genes of accession Nos. AF117222, Y15060, Y15014, AB026730, AF145784 and AF145784; and β1,3-*N*-acetylgalactosaminyltransferase gene with accession No. Y15062 (all of the accession Nos. are of GenBank). The search was carried out using a program tBlastn of BLAST, and all of the amino acid sequences corresponding to ORFs (Open Reading Frames) were included in the search.

[0020]

As a result, EST sequences with GenBank Accession Nos. AK000770 and a human genomic sequence AC017104 were discovered. Thus, using AC017104, a library was screened.

[0021]

The used sample was human antrum cDNA library prepared by a conventional method (Yuzuru Ikehara, Hisashi Narimatsu et al, Glycobiology vol. 9 no. 11 pp. 1213-1224, 1999). The screening was carried out by a usual nucleic acid probe method using a radio isotope. The concrete procedures were as follows:

[0022]

First, using the λ phage prepared from a human antrum cDNA library by a conventional method as templates, PCR was performed using as primers CB-635(5'-cagca gctgc tggcc tacga agac- 3') (nt6814-6837 in AC017104) and CB-638 (5'-gcaca tgccc agaaa gacgt cgtc-3') (nt7221-7245). The amplified DNA fragment having a size of about 430 bp was labeled with ³²P-dCTP using Multiple DNA labeling system produced by AMERSHAM.

[0023]

Using this probe, single plaques which hybridized with this probe were picked up from the plaques of λ phage formed on *E. coli*. Existence of the target DNA region was confirmed by PCR using the above-mentioned primers CB635 and CB638. Since the phage obtained from the plaques, in which the insertion of the DNA fragment was confirmed was constructed by λ ZAP II vector (STRATAGENE) (Yuzuru Ikehara, Hisashi Narimatsu et al, Glycobiology vol. 9 no. 11 pp. 1213-1224, 1999), a cDNA clone inserted into pBluescript SK vector can be prepared (excision) by the method according to the manufacturer's instruction. The recombinant vector was prepared by this method, and a DNA was obtained from the obtained colony. The cDNA clone was then sequenced (SEQ ID NO:6).

[0024]

The SEQ ID NO:6 obtained by the above-described method corresponded to nt4828-7052 of AC017104 and lacked the 3' region of ORF. Therefore, the 3' region was cloned after amplification thereof by PCR using the cDNA, and was ligated. That is, a primer CB-625 (5'-cgttc ctggg cctca gtttc ctag-3') (nt7638-7661) corresponding to a region downstream of the termination codon was designed based on the sequence expected from AC017104 resulted from the search by computer, and using this primer in combination with the above-described CB635, a DNA fragment was obtained from the above-described human antrum cDNA library. The obtained DNA fragment was sequenced by a conventional method to obtain SEQ ID NO:7 (nt6814-7661 in AC017104) (hereinafter referred to as "SEQ ID NO:3"). By combining this with SEQ ID NO:2, a theoretical ORF of 978 bp (nt6466-7452 in AC017104) was obtained, and a sequence of 328 amino acids was deduced from this ORF, which was named \(\beta \)GnT-7 (SEQ ID NO:8). It is known that glycosyltransferases are, in general, type 2 enzymes having one transmembrane segment. However, no hydrophobic region was found in the N-terminal region of this ORF sequence. Since it has been reported that β1,3-N-acetylglucosaminyltransferase activity is detected in human serum (Human Serum Contains N-Acetyllactosamine: \(\beta 1.3-N\)-Acetylglucosaminyltransferase Activity. Hosomi, O., Takeya, A., and Kogure, T. J. Biochem. 95, 1655-1659(1984)), the enzyme

encoded by this ORF was a secretory type enzyme having no transmembrane region.

[0025]

To show that the ORF having the sequence shown in SEQ ID NO:8 and the amino acid sequence encoded thereby actually exist and function (i.e., expressed), existence of the mRNA was checked by RT-PCR and confirmation of the PCR product by a restriction enzyme, and by direct sequencing (usual method) of the PCR product was carried out. As a result, it was confirmed that the above-described theoretical ORF surely existed and actually functioned.

[0026]

As mentioned above, although it is known that glycosyltransferases are, in general, type 2 enzymes having one transmembrane segment, there is no hydrophobic region in the N-terminal region of the amino acid sequence shown in SEQ ID NO:8, so that the enzyme was thought to be different from the usual glycosyltransferases. Thus, whether a splicing variant having a hydrophobic region (transmembrane segment) in the N-terminal region exists or not was checked by analyzing the nucleotide sequence in the 5' region (i.e., the N-terminal region of the amino acid sequence).

[0027]

First, using Human stomach Marathon-Ready cDNA (CLONETECH), 5'-RACE (Rapid amplification of cDNA ends) was performed. More particularly, using the AP1 primer included in Marathon cDNA (an adaptor AP1 was attached to the both ends of the DNA fragment, and an adaptor AP2 was attached to the both inner ends thereof) and a primer β3GnT-7RACE-5 (5'-GACCG ACTTG ACAAC CACCA GCA-3') corresponding to the found sequence region, PCR was performed (94°C for 60 seconds, 5 cycles of 94°C for 30 seconds-72°C for 3 minutes, 5 cycles of 94°C for 30 seconds-70°C for 3 minutes, and 25 cycles of 94°C-68°C for 3 minutes) was performed. The obtained DNA product was subjected to nested PCR (94°C for 60 seconds, 5 cycles of 94°C for 30 seconds-72°C for 3 minutes, 5 cycles of 94°C for 30 seconds-72°C for 3 minutes, 5 cycles of 94°C for 30 seconds-70°C for 3 minutes, and 15 cycles of 94°C-68°C for 3 minutes) using the AP2 primer included in Marathon cDNA and a primer β3GnT-7RACE-4 (5'- GTAGA CATCG CCCCT GCACT TCT-3'). The

obtained product was cloned into pGEMeasy (CLONETECH) and sequenced. As a result, the sequence upstream of the initiation codon of the earlier discovered SEQ ID NO:6 was obtained, and a transmembrane region was observed when deduced into amino acid sequence. However, although the 5' region of the nucleotide sequence in the vicinity of the transmembrane region was analyzed, the initiation codon of the ORF was not found.

[0028]

Thus, using GeneScan, HMMgene and the like which were softwares for analyzing gene regions, the translation region of the human genomic sequence AC017104 containing β3GnT-7 was analyzed. As a result, a first exon of 11 bases (about 3 amino acid) (nt4331-4341 of AC017104) containing the initiation codon was expected. Thus, using a primer corresponding to an upstream region of the initiation codon, PCR was performed in order to determine whether the expected region existed as a transcript.

[0029]

More particularly, PCR (30 cycles of 95°C for 30 seconds, 60°C for 30 seconds, 72°C for 60 seconds) was performed using as primers β3GnT-7RACE-8 (5'- GCCCA GAGCT GCGAG CCGCT-3') (nt4278-4300 in AC017104) and CB-638 (5'- GCACA TGCCC AGAAA GACGT CG-3')((nt7224-7245 in AC017104), as a template Human leukocyte Marathon-Ready cDNA, and LA-Taq (TaKaRa). As a result, an amplification product having a size of 1046 bases was obtained. This PCR product was purified and sequenced. It was proved, as expected from the above-described analysis of the translation region, the 3'-side (nt4341) in the first exon was ligated to nt6258 in a downstream region. By combining SEQ ID NOs: 6 and 7 and this result, the nucleotide sequence having 1206 bases shown in SEQ ID NO:5 and the amino acid sequence having 401 amino acids shown in SEQ ID NO:9 were obtained. The SEQ ID NO:5 was one in which the upstream regions of 219 bases (73 amino acids) (nt4331-4341 and nt6258-6465 in AC017104) were ligated to SEQ ID NO:8 (combination of SEQ ID NO:6 and 7), and it was thought that nt4342-6257 was spliced. Since SEQ ID NO:5 contains a transmembrane segment (nt6265-6322 in AC017104), SEQ ID NO:5 and SEQ

ID NO:8 were thought to be the transmembrane type and secretory type having the same activity, respectively.

[0030]

2. Insertion of β3GnT-7 into Expression Vector

To examine the activity of $\beta 3GnT-7$, $\beta 3GnT-7$ was expressed in insect cells. Although it is thought that the activity may be confirmed enough by expressing the active region from the 119th amino acid to the C-terminal of SEQ ID NO:9, which region is relatively well conserved in the other genes of the same family, the active region from the 75th amino acid to the C-terminal of $\beta 3GnT-7$ (SEQ ID NO:9) was expressed.

[0031]

The gene was incorporated into pFastBac of Gateway system from INVITROGEN, and then a Bacmid by Bac-to-Bac system from INVITROGEN was prepared.

[0032]

① Preparation of Entry Clone

PCR was performed using β3GnT-7S primer (5'-GGGGA CAAGT TTGTA CAAAA AAGCA GGCTT Cgcct ctcag gggcc ccagg cct-3') and β3GnT-7A primer (5'-GGGGA CCACT TTGTA CAAGA AAGCT GGGTC catgg gggct cagga gcaag tgcc-3') (the nucleotides shown in capital letters were the added sequence attL for GATEWAY hereinbelow described), and as a template the DNA of β3GnT-7 clone (the clone containing the theoretical ORF sequence) generated from the cDNA clone obtained by the screening and the DNA fragment obtained by PCR, to obtain an amplification product.

[0033]

This product was incorporated into pDONR201 by BP clonase reaction to prepare an "entry clone". The reaction was carried by incubating a mixture of 5 µl of the desired DNA fragment, 1 µl (150 ng) of pDONR201, 2 µl of reaction buffer and 2 µl of BP clonase mix at 25°C for 1 hour. After adding 1 µl of Proteinase K, the reaction mixture was left to stand at 37°C for 10 minutes, thereby terminating the reaction.

[0034]

Then the whole mixture (11 μl) was mixed with 100 μl of competent cells (*E. coli* DH5α), and after heat shock, the mixture was plated on an LB plate containing kanamycin. On the next day, colonies were collected, and existence of the desired DNA was directly confirmed by PCR. For double check, the nucleotide sequence of the DNA was confirmed, and vector (pDONR-β3Gn-T7) was extracted and purified.

[0035]

② Preparation of Expression Clone

The above-described entry clone has attL at the both ends of the inserted region, the attL being a recombination site used when λ phage is cut out from *E. coli*. By mixing the entry clone with LR clonase (a mixture of recombination enzymes Int, IHF and Xis of λ phage) and a destination vector, the inserted region is transferred to the destination vector so that an expression clone is prepared. These operations will now be described in detail.

[0036]

Firstly, a mixture of 1 μl of the entry clone, 0.5 μl (75 ng) of pFBIF, 2 μl of LR reaction buffer, 4.5 μl of TE and 2 μl of LR clonase mix were allowed to react at 25°C for 1 hour, and then 1 μl of Proteinase K was added, followed by incubation at 37°C for 10 minutes, thereby terminating the reaction (by this recombination reaction, pFBIF-β3Gn-T7 is generated). The pFBIF was one obtained by inserting Igκ signal sequence (MHFQVQIFSFLLISASVIMSRG) and FLAG peptide (DYKDDDDK) for purification. The Igκ signal sequence was inserted in order to change the expressed protein to a secretory protein, and the FLAG peptide was inserted for purification. The DNA fragment obtained by PCR using as a template OT3 (5'-gatca tgcat tttca agtgc agatt ttcag cttcc tgcta atcag tgcct cagtc ataat gtcac gtgga gatta caagg acgac gatga caag-3'), and using primers OT20 (5'- cgggatccat gcattttcaa gtgcag-3') and OT21 (5'-ggaat tcttgt catcg tcgtc cttg-3') was inserted using Bam HI and Eco RI. Further, to insert the Gateway sequence, Conversion cassette was inserted using Gateway Vector Conversion System (INVITROGEN).

[0037]

Then the whole mixture (11 μl) was mixed with 100 μl of competent cells (*E. coli* DH5α), and after heat shock, the mixture was plated on an LB plate containing ampicillin. On the next day, colonies were collected, and existence of the desired DNA was directly confirmed by PCR, followed by extraction and purification of the vector (pFBIF-β3Gn-T7).

[0038]

③ Preparation of Bacmid by Bac-to-Bac Systema

Using Bac-to-Bac system (INVITROGEN), recombination was carried out between the above-described pFBIF- and pFastBac, and G10 and other sequences were inserted into a Bacmid which was able to replicate in insect cells. With this system, the desired gene is incorporated into the Bacmid by the recombinant protein produced by a helper plasmid, only by incorporating pFastBac into which the desired gene was inserted, using the recombination site of Tn7 into an *E. coli* (DH10BAC) containing the Bacmid. The Bacmid contains *lacZ* gene, so that classical selection based on the color, that is, blue (no insertion) or white (with insertion), of the colony can be attained.

[0039]

That is, the above-described purified vector (pFBIH-β3GnT-7) was mixed with 50 μl of competent cells (*E. coli* DH10BAC), and after heat shock, the mixture was plated on an LB plate containing kanamycin, gentamycin, tetracycline, Bluo-gal and IPTG. On the next day, white single colony was further cultured and Bacmid was collected.

[0040]

3. Introduction of Bacmid into Insect Cells

After confirming that the desired sequence was inserted into the Bacmid obtained from the white colony, the Bacmid was introduced into insect cells Sf21 (commercially available from INVITROGEN). That is, to a 35 mm Petri dish, Sf21 cells in an amount of 9 x 10^5 cells/2 ml (Sf-900SFM (INVITROGEN) containing an antibiotic) were added, and the cells were cultured at 27° C for 1 hour to adhere the cells. (Solution A): To 5 μ l of the purified Bacmid DNA, 100μ l of Sf-900SFM (INVITROGEN) not containing an antibiotic was added. (Solution B): To 6 μ l of CellFECTIN Reagent (INVITROGEN),

100 µl of Sf-900SFM (INVITROGEN) not containing an antibiotic was added.

Solution A and Solution B were then gently mixed and the mixture was incubated for 15 to 45 minutes at room temperature. After confirming that the cells adhered, the culture medium was aspirated and 2 ml of Sf-900SFM (INVITROGEN) not containing an antibiotic was added. To a solution (lipid-DNA complexes) prepared by mixing Solution A and Solution B, 800 µl of Sf900II not containing an antibiotic was added and the resultant was gently mixed. The culture medium was aspirated, and diluted lipid-DNA complexes solution was added to the cells, followed by incubating the cells at 27°C for 5 hours. Thereafter, transfection mixture was removed and 2 ml of culture medium Sf-900SFM (INVITROGEN) containing an antibiotic was added, followed by incubating the resultant at 27°C for 72 hours. Seventy two hours after the transfection, the cells were peeled off by pipetting, and the cells and the culture medium were collected. The cells and the culture medium were centrifuged at 3000 rpm for 10 minutes, and the obtained supernatant was stored in a separate tube (this supernatant is the primary virus solution).

[0041]

To a T75 culture flask, Sf21 cells in an amount of 1 x 10⁷ cells/20 ml of Sf-900SFM (INVITROGEN) (containing an antibiotic) were placed, and the resultant was incubated at 27°C for 1 hour. After the cells adhered, 800 µl of the primary virus was added and the resultant was cultured at 27°C for 48 hours. Forty eight hours later, the cells were peeled off by pipetting and the cells and the culture medium were collected. The cells and the culture medium were centrifuged at 3000 rpm for 10 minutes, and the obtained supernatant was stored in a separate tube (this supernatant was used as the secondary virus solution).

[0042]

Further, to a T75 culture flask, Sf21 cells in an amount of 1 x 10^7 cells/20 ml of Sf-900SFM (INVITROGEN) (containing an antibiotic) were placed, and the resultant was incubated at 27°C for 1 hour. After the cells adhered, 1000 μ l of the secondary virus solution was added and the resultant was cultured at 27°C for 72 to 96 hours.

After the culturing, the cells were peeled off by pipetting and the cells and the culture medium were collected. The cells and the culture medium were centrifuged at 3000 rpm for 10 minutes, and the obtained supernatant was stored in a separate tube (this supernatant was used as the tertiary virus solution). Further, to a 100 ml spinner flask, 100 ml of Sf21 cells at a population of 6 x 10⁵ cells/ml was placed, and 1 ml of the tertiary virus solution was added, followed by culturing the cells at 27°C for about 96 hours. After the culturing, the cells and the culture medium were collected. The cells and the culture medium were centrifuged at 3000 rpm for 10 minutes, and the obtained supernatant was stored in a separate tube (this supernatant was used as the quaternary virus solution).

[0043]

The primary to tertiary cell pellets were sonicated (sonication buffer: 20mM HEPES pH7.5, 2 % Triton X-100 (trademark)) and the crude cell extract was 20-fold diluted with H₂O. The resultant was subjected to SDS-PAGE and then to Western blotting using anti-FLAG M2-peroxidase (A-8592, SIGMA) in order to confirm the expression of β3Gn-T7 protein. As a result, a plurality of broad bands (thought to be due to differences in post-translational modifications by sugar chains or the like) centering at the position of about 38-40 kDa were detected, so that the expression was confirmed.

[0044]

4. Resin Purification of β3Gn-T7

To 10 ml of the supernatant of FLAG- β 3Gn-T7 of the quaternary infection, NaN₃ (0.05 %), NaCl (150 mM), CaCl₂ (2 mM), and anti-M1 resin (SIGMA) (50 μ l) were added and the resulting mixture was stirred overnight at 4°C. On the next day, the mixture was centrifuged (3000 rpm for 5 minutes, at 4°C) and the pellet was collected. To the pellet, 900 μ l of 2 mM CaCl₂·TBS was added and the resultant was centrifuged again (2000 rpm for 5 minutes, at 4°C), and the pellet was suspended in 200 μ l of 1 mM CaCl₂·TBS to obtain a sample (β 3GnT-7 enzyme solution) for the measurement of activity.

[0045]

5. Search of Acceptor Substrate of β3Gn-T7

As a result of molecular evolutionary analysis comparing β 3Gn-T7 with β 1,3-N-acetylglucosaminyltransferases and β 1,3-galactosyltransferases, β 3Gn-T7 was classified into β 1,3-N-acetylglucosaminyltransferases. Thus, firstly, analysis was performed using UDP-GlcNAc as the donor substrate.

[0046]

Using the following reaction systems, the acceptor substrate was searched. As the "acceptor substrate" in the reaction solution described below, each of the following was used and whether each of them functioned as the acceptor or not was investigated: $pNp-\alpha$ -Glc, $pNp-\beta$ -Glc, $pNp-\alpha$ -GlcNAc, $pNp-\beta$ -GlcNAc, $pNp-\alpha$ -Gal, $pNp-\beta$ -Gal, $pNp-\alpha$ -GalNAc, Bz- α -GalNAc, $pNp-\alpha$ -Xyl, $pNp-\beta$ -Xyl, $pNp-\alpha$ -Fuc, Bz- α -Man, Bz- α -ManNAc, LacCer, GalCer typel and Bz- β -lactoside (all of them are from SIGMA) and Gal β 1-4GlcNAc- α -pNp (TRONTO RESEARCH CHEMICAL).

[0047]

The reaction solution (the numbers in the parentheses indicate the final concentrations) contained acceptor substrate (10 nmol), sodium cacodylate buffer (pH7.2) (50mM), Triton CF-54 (trademark) (0.4%), MnCl₂ (10 mM), UDP-GlcNAC (480 μM) and UDP-[¹⁴C]GlcNAC (175 nCi) and CDP-colline (5 mM), to which 10 μl of the β3Gn-T7 enzyme solution and H₂O were added to attain a final volume of 25 μl.

[0048]

The reaction mixture was allowed to react at 37°C for 5 hours, and after completion of the reaction, 200 μl of 0.1 M KCl was added, followed by light centrifugation and collection of the supernatant. The supernatant was passed through Sep-Pak plus C18 Cartridge (WATERS) equilibrated by washing once with 10 ml of methanol and then twice with 10 ml of H₂O, so as to adsorb the substrate and the product in the supernatant on the cartridge. After washing the cartridge twice with 10 ml of H₂O, the adsorbed substrate and the product were eluted with 5 ml of methanol. The eluted solution was evaporated to dryness by blowing nitrogen gas while heating the solution with a heat block at 40°C. To the resultant, 20 μl of methanol was added, and the resulting mixture

was plotted on a TLC plate (HPTLC plate Silica gel 60: MERCK), and developed using a developing solvent having the composition of chloroform:methanol:water (containing 0.2% CaCl₂) = 65:35:8. After developing the mixture up to 5 mm from the top end of the TLC plate, the plate was dried and the intensity of the radioactivity taken in the product was measured using Bio Image Analyzer FLA3000 (FUJI PHOTO FILM).

[0049]

As a result, it was proved that β 3GnT-7 is a β 1,3-*N*-acetylglucosaminyltrasferase having an activity to transfer GlcNAc to Bz- β -lactoside and Gal β 1-4Glc(NAc)- α -pNp, that is, an enzyme which transfers GlcNAc to the galactose at the non-reducing terminal of Gal β 1-4Glc(NAc)-R.

[0050]

6. Analysis of Tissue-specific Expression of β3GnT-7

The expression of the gene in tissues and in cell lines was examined by Real Time PCR method (Gibson, U. E., Heid, C. A., and Williams, P. M. (1996) Genome Res 6, 995-1001). Human tissue cDNAs used as materials were the Marathon cDNAs. From the various cell lines, total RNAs were extracted by a conventional method and the cDNAs were synthesized. For obtaining the calibration curve of B3GnT-7, a plasmid containing \(\beta \) 3GnT-7 gene inserted in pDONR TM201 vector DNA was used. As a control for the endogenous expression, constantly expressed human glyceraldehyde-3-phosphate dehydrogenase (GAPDH)) was used. For obtaining the calibration curve of GAPDH, a plasmid containing the GAPDH gene in pCR2.1 (INVITROGEN) was used. As the primer set and probe for β3GnT-7, the following were used: RT-β3GnT-7-F2; 5'-TTCCTCAAGTGGCTGGACATC-3', RT-β3GnT-7-R2;5'-GCCGGTCAGCCAGAAATTC-3', probe;5'- Fam ACTGCCCCACGTCCCCTTCA -MGB-3'. As the primer set and probe for GAPDH, a kit (Pre-Developed TaqMan® Assay Reagents Endogenous Human GAPDH (APPLIED BIOSYSTEMS) was used. The PCR was performed using TaqMan Universal PCR Master Mix (APPLIED BIOSYSTEMS) under the conditions of 50°C for 2 minutes, then at 95°C for 10 minutes, and repeating 50 cycles of 95°C for 15 seconds-60°C for 1 minute. The quantitation of the PCR product was carried out using ABI PRIAM7700 Sequence Detection System (APPLIED BIOSYSTEMS). The expression amount of G11 was normalized by dividing the amount by the amount of the transcription product of the constantly expressed GAPDH. The results for the human tissues are summarized in Table 1, and the results for the cell lines are summarized in Table 2.

[0051]

[Table 1]

Table 1

Tissue	β3GnT-7/GAPDH
brain	0.01045
cerebral cortex	0.04522
cerebellum	0.02345
fetal brain	0.02030
bone marrow	0.01462
thyroid	0.04084
thymus	0.01274
spleen	0.10108
leukocyte	0.07876
heart	0.00956
skeletal muscle	0.00071
lung	0.12146
liver	0.02299
esophagus	0.00605
stomach	0.26922
small intestine	0.09333
colon	0.07630
pancreas	0.27317
kidney	0.01161
adrenal	0.15069
mammary gland	0.02560
uterus	0.07747
placenta	0.18763
ovary	0.11465
testis	0.05323

[0052]

The tissues in which β3GnT-7 was highly expressed were pancreas, stomach, placenta and adrenal, and the tissues in which β3GnT-7 was moderately expressed were colon, leukocyte, lung, ovary, small intestine, spleen, testis, uterus and cerebral cortex. In the

tissues other than these tissues, the expression amount was relatively low.

[0053]

[Table 2]

Table 2

Cell (origin)	β3GnT-7/GAPDH
GOTO (neuroblastoma)	0.00012
SCCH-26 (neuroblastoma)	0.00137
T98G (glioblastoma)	0.00032
U251 (glioblastoma)	0.00023
Leukemia (premyeloblastic leukemia)	0.35660
Melanoma (skin)	0.01255
HL-60 (premyeloblastic leukemia)	0.17663
K562 (leukemia)	0.00038
U937 (monocyte)	0.01617
Daudi (B cell (Burkitt's))	0.00437
PC-1 (lung)	0.00000
EBC-1 (lung)	0.00121
PC-7 (lung)	0.00017
HepG2 (liver)	0.01199
A431 (esophagus)	0.01031
MKN45 (stomach)	0.00027
KATOIII (stomach)	0.03964
HSC43 (stomach)	0.00031
Colo205 (colon)	0.00278
HCT15 (colon)	0.00193
LSC (colon)	0.00003
LSB (colon)	0.00128
SW480 (colon)	0.00045
SW1116 (colon)	0.13076
Capan-2 (pancreas)	0.03664
PA-1 (uterus)	0.00290

[0054]

Expression of $\beta 3GnT-7$ in cell lines was lower than that in normal tissues. In HL60 cells originated from premyeloblastic leukemia and in SW1116 cells originated from colon, the expression level was high.

[0055]

It was easily thought that the expression amount of $\beta 3GnT-7$ is changed when the degree of differentiation is changed by cancerization or the like, so that there is a possibility that measurement of the expression amount of $\beta 3GnT-7$ may be used for

diagnoses of diseases. Further, as described above, there is a possibility that there are two initiation sites in β 3GnT-7, so that there is a possibility that by measuring the change of the splicing variants, the state of differentiation and pathological change of the cells may be measured.

[0056]

[Effect of the Invention]

The present invention first provides an enzyme, which has an activity to transfer N-acetylglucosamine to a non-reducing terminal of Gal β 1-4Glc or Gal β 1-4GlcNAc group through β 1,3-linkage, and also a nucleic acid coding for the enzyme. The enzyme according to the present invention can be used for modifications of the sugar chains of glycoproteins and/or glycolipids, and also for syntheses of sugars. In addition, the present invention first provides a nucleic acid for measurement of the nucleic acid coding for the enzyme.

[0057]

[Sequence Listing]

Loequ	ence	LISL	Hig 1												
	SEQUENCE LISTING NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY														
<110>	NATI	ONAL	INS	TITU	TE OI	F AD'	VANCI	ED II	NDUS	TRIA	_ SC	I ENCI	E ANI	D TECHNOL	OGY
	JAPAN GENOME SOLUTIONS INC.														
<120>	Nove	l ac	etyl	gluc	osam	ine '	tran	sfera	ase a	and i	nucle	eic a	acid	encoding	the
same															
<130>	0174	2													
<160>															
	[0058]														
<210>	1														
<211>	283														
<212>	PRT														
<213>	Homo	sap	i ens												
<400>	1														
Tyr Ph	e Pro	Met	Leu	Leu	Asn	His	Pro	Glu	Lys	Cys	Arg	Gly	Asp	Val	
1			5					10					15		
Tyr Le	u Leu	Val	Val	Val	Lys	Ser	Val	He	Thr	GIn	His	Asp	Arg	Arg	
		20					25					30			
Glu Al	a lle	Arg	Gln	Thr	Trp	Gly	Arg	Glu	Arg	GIn	Ser	Ala	Gly	Gly	
	35					40					45				
Gly Ar	g Gly	Ala	Val	Arg	Thr	Leu	Phe	Leu	Leu	Gly	Thr	Ala	Ser	Lys	
50					55					60					
Gin Gi	u Glu	Arg	Thr	His	Tyr	GIn	Gln	Leu	Leu	Ala	Tyr	Glu	Asp	Arg	
65				70					75					80	
Leu Ty	r Gly	Asp	He	Leu	Gln	Trp	Gly	Phe	Leu	Asp	Thr	Phe	Phe	Asn	
			85					90					95		
Leu Th	r Leu	Lys	Glu	He	His	Phe	Leu	Lys	Trp	Leu	Asp	He	Tyr	Cys	
												•			

Pro His Val Pro Phe IIe Phe Lys Gly Asp Asp Asp Val Phe Val Asn 125 115 120 Pro Thr Asn Leu Leu Glu Phe Leu Ala Asp Arg Gln Pro Gln Glu Asn 135 140 Leu Phe Val Gly Asp Val Leu Gln His Ala Arg Pro Ile Arg Arg Lys 150 155 Asp Asn Lys Tyr Tyr lie Pro Gly Ala Leu Tyr Gly Lys Ala Ser Tyr 165 170 Pro Pro Tyr Ala Gly Gly Gly Phe Leu Met Ala Gly Ser Leu Ala 180 185 Arg Arg Leu His His Ala Cys Asp Thr Leu Glu Leu Tyr Pro Ile Asp 200 205 Asp Val Phe Leu Gly Met Cys Leu Glu Val Leu Gly Val Gin Pro Thr 210 215 220 Ala His Glu Gly Phe Lys Thr Phe Gly Ile Ser Arg Asn Arg Asn Ser 225 235 230 240 Arg Met Asn Lys Glu Pro Cys Phe Phe Arg Ala Met Leu Val Val His 245 250 255 Lys Leu Leu Pro Pro Glu Leu Leu Ala Met Trp Gly Leu Val His Ser 260 265 270

Asn Leu Thr Cys Ser Arg Lys Leu Gln Val Leu

275 280

[0059]

<210> 2

<211> 849

<212> DNA

<213> Homo sapiens

<400> 2

TAC TTC CCC ATG CTG CTG AAC CAC CCG GAG AAG TGC AGG GGC GAT GTC

Tyr	Phe	Pro	Met	Leu	Leu	Asn	His	Pro	Glu	Lys	Cys	Arg	Gly	Asp	Val	
1				5					10					15		
TAC	CTG	CTG	GTG	GTT	GTC	AAG	TCG	GTC	ATC	ACG	CAG	CAC	GAC	CGC	CGC	96
Tyr	Leu	Leu	Val	Val	Val	Lys	Ser	Val	He	Thr	Gln	His	Asp	Arg	Arg	
			20					25					30			
GAG	GCC	ATC	CGC	CAG	ACC	TGG	GGC	CGC	GAG	CGG	CAG	TCC	GCG	GGT	GGG	144
Glu	Ala	He	Arg	Gln	Thr	Trp	Gly	Arg	Glu	Arg	Gln	Ser	Ala	Gly	Gly	
		35					40					45				
GGC	CGA	GGC	GCC	GTG	CGC	ACC	CTC	TTC	CTG	CTG	GGC	ACG	GCC	TCC	AAG	192
Gly	Arg	Gly	Ala	Val	Arg	Thr	Leu	Phe	Leu	Leu	Gly	Thr	Ala	Ser	Lys	
	50					55					60					
CAG	GAG	GAG	CGC	ACG	CAC	TAC	CAG	CAG	CTG	CTG	GCC	TAC	GAA	GAC	CGC	240
Gln	Glu	Glu	Arg	Thr	His	Tyr	Gln	GIn	Leu	Leu	Ala	Tyr	Glu	Asp	Arg	
65					70					75					80	
CTC	TAC	GGC	GAC	ATC	CTG	CAG	TGG	GGC	TTT	CTC	GAC	ACC	TTC	TTC	AAC	288
Leu	Tyr	Gly	Asp	He	Leu	Gln	Trp	Gly	Phe	Leu	Asp	Thr	Phe	Phe	Asn	
				85					90					95		
CTG	ACC	CTC	AAG	GAG	ATC	CAC	TTC	CTC	AAG	TGG	CTG	GAC	ATC	TAC	TGC	336
Leu	Thr	Leu	Lys	Glu	He	His	Phe	Leu	Lys	Trp	Leu	Asp	He	Tyr	Cys	
			100					105					110			
CCC	CAC	GTC	CCC	TTC	ATT	TTC	AAA	GGC	GAC	GAT	GAC	GTC	TTC	GTC	AAC	384
Pro	His	Val	Pro	Phe	He	Phe	Lys	Gly	Asp	Asp	Asp	Val	Phe	Val	Asn	
		115					120					125				
CCC	ACC	AAC	CTG	CTA	GAA	TTT	CTG	GCT	GAC	CGG	CAG	CCA	CAG	GAA	AAC	432
Pro	Thr	Asn	Leu	Leu	Glu	Phe	Leu	Ala	Asp	Arg	Gln	Pro	Gln	Glu	Asn	
	130					135					140					
CTG	TTC	GTG	GGC	GAT	GTC	CTG	CAG	CAC	GCT	CGG	CCC	ATT	CGC	AGG	AAA	480
Leu	Phe	Val	Gly	Asp	Val	Leu	Gln	His	Ala	Arg	Pro	He	Arg	Arg	Lys	
145					150					155					160	

GAC AAC AAA TAC TAC ATC CCG GGG GCC CTG TAC GGC AAG GCC AGC TAT Asp Asn Lys Tyr Tyr lle Pro Gly Ala Leu Tyr Gly Lys Ala Ser Tyr CCG CCG TAT GCA GGC GGC GGT GGC TTC CTC ATG GCC GGC AGC CTG GCC Pro Pro Tyr Ala Gly Gly Gly Phe Leu Met Ala Gly Ser Leu Ala CGG CGC CTG CAC CAT GCC TGC GAC ACC CTG GAG CTC TAC CCG ATC GAC Arg Arg Leu His His Ala Cys Asp Thr Leu Glu Leu Tyr Pro Ile Asp GAC GTC TIT CTG GGC ATG TGC CTG GAG GTG CTG GGC GTG CAG CCC ACG Asp Val Phe Leu Gly Met Cys Leu Glu Val Leu Gly Val Gln Pro Thr GCC CAC GAG GGC TTC AAG ACT TTC GGC ATC TCC CGG AAC CGC AAC AGC Ala His Glu Gly Phe Lys Thr Phe Gly IIe Ser Arg Asn Arg Asn Ser CGC ATG AAC AAG GAG CCG TGC TTT TTC CGC GCC ATG CTC GTG GTG CAC Arg Met Asn Lys Glu Pro Cys Phe Phe Arg Ala Met Leu Val Val His AAG CTG CTG CCC CCT GAG CTG CTC GCC ATG TGG GGG CTG GTG CAC AGC Lys Leu Leu Pro Pro Glu Leu Leu Ala Met Trp Gly Leu Val His Ser AAT CTC ACC TGC TCC CGC AAG CTC CAG GTG CTC Asn Leu Thr Cys Ser Arg Lys Leu Gln Val Leu [0060] <210> <211> <212> PRT <213> Homo sapiens

<400	<400> 3														
Ala	Ser	GIn	Gly	Pro	Gln	Ala	Trp	Asp	Val	Thr	Thr	Thr	Asn	Cys	Ser
1				5					10					15	
Ala	Asn	lle	Asn	Leu	Thr	His	Gin	Pro	Trp	Phe	Gln	Val	Leu	Glu	Pro
			20					25					30		
Gln	Phe	Arg	Gln	Phe	Leu	Phe	Tyr	Arg	His	Cys	Arg	Tyr	Phe	Pro	Met
		35					40					45			
Leu	Leu	Asn	His	Pro	Glu	Lys	Cys	Arg	Gly	Asp	Val	Tyr	Leu	Leu	Val
	50					55					60				
Val	Val	Lys	Ser	Val	He	Thr	Gln	His	Asp	Arg	Arg	Glu	Ala	He	Arg
65					70					75					80
GIn	Thr	Trp	Gly	Arg	Glu	Arg	Gln	Ser	Ala	Gly	Gly	Gly	Arg	Gly	Ala
				85					90					95	
Val	Arg	Thr	Leu	Phe	Leu	Leu	Gly	Thr	Ala	Ser	Lys	Gln	Glu	Glu	Arg
			100					105					110		
Thr	His	Tyr	Gln	Gln	Leu	Leu	Ala	Tyr	Glu	Asp	Arg	Leu	Tyr	Gly	Asp
		115					120					125			
He	Leu	Gln	Trp	Gly	Phe	Leu	Asp	Thr	Phe	Phe	Asn	Leu	Thr	Leu	Lys
	130					135					140				
Glu	He	His	Phe	Leu	Lys	Trp	Leu	Asp	He	Tyr	Cys	Pro	His	Val	Pro
145					150					155					160
Phe	He	Phe	Lys	Gly	Asp	Asp	Asp	Val	Phe	Val	Asn	Pro	Thr	Asn	Leu
				165					170					175	
Leu	Glu	Phe	Leu	Ala	Asp	Arg	GIn	Pro	Gln	Glu	Asn	Leu	Phe	Val	Gly

Asp Val Leu Gln His Ala Arg Pro IIe Arg Arg Lys Asp Asn Lys Tyr

195

Tyr IIe Pro Gly Ala Leu Tyr Gly Lys Ala Ser Tyr Pro Pro Tyr Ala
210

215

220

Gly Gly Gly Gly Phe Leu Met Ala Gly Ser Leu Ala Arg Arg Leu His His Ala Cys Asp Thr Leu Glu Leu Tyr Pro Ile Asp Asp Val Phe Leu Gly Met Cys Leu Glu Val Leu Gly Val Gln Pro Thr Ala His Glu Gly Phe Lys Thr Phe Gly Ile Ser Arg Asn Arg Asn Ser Arg Met Asn Lys Glu Pro Cys Phe Phe Arg Ala Met Leu Val Val His Lys Leu Leu Pro Pro Glu Leu Leu Ala Met Trp Gly Leu Val His Ser Asn Leu Thr Cys Ser Arg Lys Leu Gln Val Leu [0061] <210> 4 <211> 981 <212> DNA <213> Homo sapiens <400> 4 GCC TCT CAG GGG CCC CAG GCC TGG GAC GTG ACC ACC ACT AAC TGC TCA Ala Ser Gln Gly Pro Gln Ala Trp Asp Val Thr Thr Asn Cys Ser GCC AAT ATC AAC TTG ACC CAC CAG CCC TGG TTC CAG GTC CTG GAG CCG Ala Asn Ile Asn Leu Thr His Gln Pro Trp Phe Gln Val Leu Glu Pro CAG TTC CGG CAG TTT CTC TTC TAC CGC CAC TGC CGC TAC TTC CCC ATG Gln Phe Arg Gln Phe Leu Phe Tyr Arg His Cys Arg Tyr Phe Pro Met

CTG CTG AAC CAC CCG GAG AAG TGC AGG GGC GAT GTC TAC CTG CTG GTG Leu Leu Asn His Pro Glu Lys Cys Arg Gly Asp Val Tyr Leu Leu Val GTT GTC AAG TCG GTC ATC ACG CAG CAC GAC CGC CGC GAG GCC ATC CGC Val Val Lys Ser Val IIe Thr Gln His Asp Arg Arg Glu Ala IIe Arg CAG ACC TGG GGC CGC GAG CGG CAG TCC GCG GGT GGG GGC CGA GGC GCC GIn Thr Trp Gly Arg Glu Arg Gin Ser Ala Gly Gly Gly Arg Gly Ala GTG CGC ACC CTC TTC CTG CTG GGC ACG GCC TCC AAG CAG GAG GAG CGC Val Arg Thr Leu Phe Leu Leu Gly Thr Ala Ser Lys Gln Glu Glu Arg ACG CAC TAC CAG CAG CTG CTG GCC TAC GAA GAC CGC CTC TAC GGC GAC Thr His Tyr Gln Gln Leu Leu Ala Tyr Glu Asp Arg Leu Tyr Gly Asp ATC CTG CAG TGG GGC TTT CTC GAC ACC TTC TTC AAC CTG ACC CTC AAG Ile Leu Gln Trp Gly Phe Leu Asp Thr Phe Phe Asn Leu Thr Leu Lys GAG ATC CAC TTC CTC AAG TGG CTG GAC ATC TAC TGC CCC CAC GTC CCC Glu IIe His Phe Leu Lys Trp Leu Asp IIe Tyr Cys Pro His Val Pro TTC ATT TTC AAA GGC GAC GAT GAC GTC TTC GTC AAC CCC ACC AAC CTG Phe lle Phe Lys Gly Asp Asp Asp Val Phe Val Asn Pro Thr Asn Leu CTA GAA TIT CTG GCT GAC CGG CAG CCA CAG GAA AAC CTG TTC GTG GGC Leu Glu Phe Leu Ala Asp Arg Gln Pro Gln Glu Asn Leu Phe Val Gly GAT GTC CTG CAG CAC GCT CGG CCC ATT CGC AGG AAA GAC AAC AAA TAC Asp Val Leu Gln His Ala Arg Pro Ile Arg Arg Lys Asp Asn Lys Tyr

		195					200					205				
TAC	ATC	CCG	GGG	GCC	CTG	TAC	GGC	AAG	GCC	AGC	TAT	CCG	CCG	TAT	GCA	672
Tyr	He	Pro	Gly	Ala	Leu	Tyr	Gly	Lys	Ala	Ser	Tyr	Pro	Pro	Tyr	Ala	
	210					215					220					
GGC	GGC	GGT	GGC	TTC	CTC	ATG	GCC	GGC	AGC	CTG	GCC	CGG	CGC	CTG	CAC	720
Gly	Gly	Gly	Gly	Phe	Leu	Met	Ala	Gly	Ser	Leu	Ala	Arg	Arg	Leu	His	
225					230					235					240	
CAT	GCC	TGC	GAC	ACC	CTG	GAG	CTC	TAC	CCG	ATC	GAC	GAC	GTC	TTT	CTG	768
His	Ala	Cys	Asp	Thr	Leu	Glu	Leu	Tyr	Pro	He	Asp	Asp	Val	Phe	Leu	
				245					250					255		
GGC	ATG	TGC	CTG	GAG	GTG	CTG	GGC	GTG	CAG	CCC	ACG	GCC	CAC	GAG	GGC	816
Gly	Met	Cys	Leu	Glu	Val	Leu	Gly	Vai	GIn	Pro	Thr	Ala	His	Glu	Gly	
			260					265					270			
TTC	AAG	ACT	TTC	GGC	ATC	TCC	CGG	AAC	CGC	AAC	AGC	CGC	ATG	AAC	AAG	864
Phe	Lys	Thr	Phe	Gly	He	Ser	Arg	Asn	Arg	Asn	Ser	Arg	Met	Asn	Lys	
		275					280					285				
GAG	CCG	TGC	TTT	TTC	CGC	GCC	ATG	CTC	GTG	GTG	CAC	AAG	CTG	CTG	CCC	912
Glu	Pro	Cys	Phe	Phe	Arg	Ala	Met	Leu	Val	Val	His	Lys	Leu	Leu	Pro	
	290					295					300					
CCT	GAG	CTG	CTC	GCC	ATG	TGG	GGG	CTG	GTG	CAC	AGC	AAT	CTC	ACC	TGC	960
Pro	Glu	Leu	Leu	Ala	Met	Trp	Gly	Leu	Val	His	Ser	Asn	Leu	Thr	Cys	
305					310					315					320	
TCC	CGC	AAG	CTC	CAG	GTG	CTC										981
Ser	Arg	Lys	Leu	ĢIn	Val	Leu										
				325												
	ļ	(00	6 2	1												
<210)> {	5														
<211	> 1	206														

<212> DNA

<213> Homo sapiens										
<400> 5										
atg tcg ctg tgg aag aag	a acc gtc tac cgg agt ct	g tgc ctg gcc ctg 48								
Met Ser Leu Trp Lys Lys	Thr Val Tyr Arg Ser Le	ı Cys Leu Ala Leu								
1 5	10	15								
gcc ctg ctc gtg gcc gtg	g acg gtg ttc caa cgc ag	t ctc acc cct ggt 96								
Ala Leu Leu Val Ala Va	Thr Val Phe Gln Arg Se	r Leu Thr Pro Gly								
20	25	30								
cag ttt ctg cag gag cct	ccg cca ccc acc ctg ga	g cca cag aag gcc 144								
Gin Phe Leu Gin Glu Pro	Pro Pro Pro Thr Leu Gl	ı Pro Gin Lys Ala								
35	40	45								
cag aag cca aat gga cag	ctg gtg aac ccc aac aa	c ttc tgg aag aac 192								
Gin Lys Pro Asn Gly Gir	n Leu Val Asn Pro Asn As	n Phe Trp Lys Asn								
50	55 6)								
ccg aaa gat gtg gct gcg	ccc acg ccc atg gcc to	t cag ggg ccc cag 240								
Pro Lys Asp Val Ala Ala	Pro Thr Pro Met Ala Se	Gin Gly Pro Gin								
65 70	75	80								
gcc tgg gac gtg acc acc	act aac tgc tca gcc aa	t atc aac ttg acc 288								
Ala Trp Asp Val Thr Thr	Thr Asn Cys Ser Ala Asi	n Ile Asn Leu Thr								
85	90	95								
cac cag ccc tgg ttc cag	gtc ctg gag ccg cag tte	c cgg cag ttt ctc 336								
His Gln Pro Trp Phe Glr	ı Val Leu Glu Pro Gin Pho	e Arg Gln Phe Leu								
100	105	110								
ttc tac cgc cac tgc cgc	tac ttc ccc atg ctg ct	g aac cac ccg gag 384								
Phe Tyr Arg His Cys Arg	Tyr Phe Pro Met Leu Le	ı Asn His Pro Glu								
115	120	125								
aag tgc agg ggc gat gtc	tac ctg ctg gtg gtt gt	c aag tog gto atc 432								
Lys Cys Arg Gly Asp Val	Tyr Leu Leu Val Val Va	Lys Ser Val IIe								
130	135 140)								

acg cag cac gac cgc cgc gag gcc atc cgc cag acc tgg ggc cgc gag Thr Gln His Asp Arg Arg Glu Ala lle Arg Gln Thr Trp Gly Arg Glu cgg cag tcc gcg ggt ggg ggc cga ggc gcc gtg cgc acc ctc ttc ctg Arg Gln Ser Ala Gly Gly Gly Arg Gly Ala Val Arg Thr Leu Phe Leu ctg ggc acg gcc tcc aag cag gag gag cgc acg cac tac cag cag ctg Leu Gly Thr Ala Ser Lys Gln Glu Glu Arg Thr His Tyr Gln Gln Leu ctg gcc tac gaa gac cgc ctc tac ggc gac atc ctg cag tgg ggc ttt Leu Ala Tyr Glu Asp Arg Leu Tyr Gly Asp Ile Leu Gln Trp Gly Phe ctc gac acc ttc ttc aac ctg acc ctc aag gag atc cac ttc ctc aag Leu Asp Thr Phe Phe Asn Leu Thr Leu Lys Glu Ile His Phe Leu Lys tgg ctg gac atc tac tgc ccc cac gtc ccc ttc att ttc aaa ggc gac Trp Leu Asp IIe Tyr Cys Pro His Val Pro Phe IIe Phe Lys Gly Asp gat gac gtc ttc gtc aac ccc acc aac ctg cta gaa ttt ctg gct gac Asp Asp Val Phe Val Asn Pro Thr Asn Leu Leu Glu Phe Leu Ala Asp cgg cag cca cag gaa aac ctg ttc gtg ggc gat gtc ctg cag cac gct Arg Gln Pro Gln Glu Asn Leu Phe Val Gly Asp Val Leu Gln His Ala cgg ccc att cgc agg aaa gac aac aaa tac tac atc ccg ggg gcc ctg Arg Pro Ile Arg Arg Lys Asp Asn Lys Tyr Tyr Ile Pro Gly Ala Leu tac ggc aag gcc agc tat ccg ccg tat gca ggc ggc ggt ggc ttc ctc Tyr Gly Lys Ala Ser Tyr Pro Pro Tyr Ala Gly Gly Gly Phe Leu

290 295 300 960 atg gcc ggc agc ctg gcc cgg cgc ctg cac cat gcc tgc gac acc ctg Met Ala Gly Ser Leu Ala Arg Arg Leu His His Ala Cys Asp Thr Leu 305 310 315 320 gag ctc tac ccg atc gac gtc ttt ctg ggc atg tgc ctg gag gtg 1008 Glu Leu Tyr Pro Ile Asp Asp Val Phe Leu Gly Met Cys Leu Glu Val 325 330 335 ctg ggc gtg cag ccc acg gcc cac gag ggc ttc aag act ttc ggc atc 1056 Leu Gly Val Gln Pro Thr Ala His Glu Gly Phe Lys Thr Phe Gly Ile 340 345 350 tcc cgg aac cgc aac agc cgc atg aac aag gag ccg tgc ttt ttc cgc 1104 Ser Arg Asn Arg Asn Ser Arg Met Asn Lys Glu Pro Cys Phe Phe Arg 355 360 365 gcc atg ctc gtg gtg cac aag ctg ctc ccc cct gag ctg ctc gcc atg 1152 Ala Met Leu Val Val His Lys Leu Leu Pro Pro Glu Leu Leu Ala Met 370 375 380 tgg ggg ctg gtg cac agc aat ctc acc tgc tcc cgc aag ctc cag gtg 1200 Trp Gly Leu Val His Ser Asn Leu Thr Cys Ser Arg Lys Leu Gln Val 385 390 395 400 ctc tga 1206 Leu [0063] <210> <211> 2228 <212> DNA <213> Homo sapiens <400> 6 cccagggcct cgccgccttc ccggtgcacc ccccgacctc ccccgtcccg gcctcggtgg 60 120 gcggcttccc tggaacccct agggctggca gggccggatc cggagccctc cgtttcctcc

ccggagagct ggaccttggg tcacaccccc cagcctgcac ctaaggtgcc cctgtcttcc 180 240 tccaaccaca tgccccagca acctggggac cctatgggga aaatgtcgct ctatggggct 300 cagcctgcat tcaccctggg gcctggacct gcaaccggac cagccctcag ggcaacccag gcgtctccac gggctgcctg tctctcctgg caccctgctc ctcccccttg gaggtcagcg 360 420 ccatctctct gctaggctgg ccctggaagg ccactctgct gtccccagag ctctcagccc 480 ccaggtctcc actggggagg gtggggcagg tgtcctggca gcccccggag ggtgagatga agagaggagg tccttcagga caggggctca ggccccaggg cttgggacga ccagcactcc 540 600 tggcagagag ctctaatttc tgcttccgaa atgggtgtgg accggggttg gggtggggg 660 gtctctgggc aagaagggtc cctcaagggc tggagctgca aatgtgcccc ctcccaggga 720 gtagagctgt agcctcatgt cttctaatgg ggtgttatga gctggggatg ttaaggtagg 780 ggtgagggc agtgccatgc tagaggtgct cactgcatcc ttgggcctcc atcaaccatg 840 agggctgctc tttgttgggt gagacagact ggagaagggg gaggagggcc agtcttcctc 900 aggtoccaag ctcgagccac tctccaatgt gccccacatg tgatggagct cccgggcggc 960 acagaggatc agagggtgcc ctctcaatga ctctggctct gagtcaccta atgataccga tacctactgc tgtgggtagg tacaccgcag ggaaatgaaa ggcattgggg ttccaggcgt 1020 1080 ggggaacagg gcagaggttt ccacctgagg ccctcctgtt aaggtgacag cattccccta actgtgcacc cgctgcctgg tactttatat agcactccaa tcctgtgttt tagccccatt 1140 1200 tgggggaaga agaaatcgtg gctcagagtg gttgtaaacc actcattcag cttgtaagcg 1260 tcagggcctg attccacagt gctccttgag gagagggcag ggtgggagaa agaaagggca 1320 gggtgggaga ggaagcggga ccctaccctg acagcttagg gactccggga ctgagcctgt 1380 gcccaggtcc acttgcccgt ctgggaccac ccagcctccc aagggggggg ccaggagagc cctgggctca tcttttctct ctcctctgta ctgtccgctc tcccccacag gaagaaaacc 1440 1500 gtctaccgga gtctgtgcct ggccctggcc ctgctcgtgg ccgtgacggt gttccaacgc agtotoacco ctggtcagtt totgcaggag cotcogcoac coaccotgga gccacagaag 1560 1620 gcccagaagc caaatggaca gctggtgaac cccaacaact tctggaagaa cccgaaagat 1671 gtggctgcgc ccacgccc atg gcc tct cag ggg ccc cag gcc tgg gac gtg Met Ala Ser Gln Gly Pro Gln Ala Trp Asp Val 5 1 10 1719 acc acc act aac tgc tca gcc aat atc aac ttg acc cac cag ccc tgg

Thr Thr Thr Asn Cys Ser Ala Asn lle Asn Leu Thr His Gln Pro Trp ttc cag gtc ctg gag ccg cag ttc cgg cag ttt ctc ttc tac cgc cac Phe Gln Val Leu Glu Pro Gln Phe Arg Gln Phe Leu Phe Tyr Arg His tgc cgc tac ttc ccc atg ctg ctg aac cac ccg gag aag tgc agg ggc Cys Arg Tyr Phe Pro Met Leu Leu Asn His Pro Glu Lys Cys Arg Gly gat gtc tac ctg ctg gtg gtt gtc aag tcg gtc atc acg cag cac gac Asp Val Tyr Leu Leu Val Val Val Lys Ser Val IIe Thr Gln His Asp cgc cgc gag gcc atc cgc cag acc tgg ggc cgc gag cgg cag tcc gcg Arg Arg Glu Ala Ile Arg Gln Thr Trp Gly Arg Glu Arg Gln Ser Ala ggt ggg ggc cga ggc gcc gtg cgc acc ctc ttc ctg ctg ggc acg gcc Gly Gly Gly Arg Gly Ala Val Arg Thr Leu Phe Leu Leu Gly Thr Ala tcc aag cag gag gag cgc acg cac tac cag cag ctg ctg gcc tac gaa Ser Lys Gln Glu Glu Arg Thr His Tyr Gln Gln Leu Leu Ala Tyr Glu gac cgc ctc tac ggc gac atc ctg cag tgg ggc ttt ctc gac acc ttc Asp Arg Leu Tyr Gly Asp Ile Leu Gln Trp Gly Phe Leu Asp Thr Phe ttc aac ctg acc ctc aag gag atc cac ttc ctc aag tgg ctg gac atc Phe Asn Leu Thr Leu Lys Glu IIe His Phe Leu Lys Trp Leu Asp IIe tac tgc ccc cac gtc ccc ttc att ttc aaa ggc gac gat gac gtc ttc Tyr Cys Pro His Val Pro Phe IIe Phe Lys Gly Asp Asp Val Phe

gtc aac ccc acc aac ctg cta gaa ttt ctg gct gac cgg cag cca cag 2199 Val Asn Pro Thr Asn Leu Leu Glu Phe Leu Ala Asp Arg Gln Pro Gln 175 180 185 gaa aac ctg ttc gtg ggc gat gtc ctg ca 2228 Glu Asn Leu Phe Val Gly Asp Val Leu 190 195 [0064] <210> 7 <211> 848 <212> DNA <213> Homo sapiens <400> 7 cag cag ctg ctg gcc tac gaa gac cgc ctc tac ggc gac atc ctg cag 48 Gln Gln Leu Leu Ala Tyr Glu Asp Arg Leu Tyr Gly Asp lle Leu Gln 5 1 10 15 96 tgg ggc ttt ctc gac acc ttc ttc aac ctg acc ctc aag gag atc cac Trp Gly Phe Leu Asp Thr Phe Phe Asn Leu Thr Leu Lys Glu IIe His 20 25 30 ttc ctc aag tgg ctg gac atc tac tgc ccc cac gtc ccc ttc att ttc 144 Phe Leu Lys Trp Leu Asp IIe Tyr Cys Pro His Val Pro Phe IIe Phe 35 40 45 aaa ggc gac gat gac gtc ttc gtc aac ccc acc aac ctg cta gaa ttt 192 Lys Gly Asp Asp Asp Val Phe Val Asn Pro Thr Asn Leu Leu Glu Phe 50 55 60 240 ctg gct gac cgg cag cca cag gaa aac ctg ttc gtg ggc gat gtc ctg Leu Ala Asp Arg Gln Pro Gln Glu Asn Leu Phe Val Gly Asp Val Leu 65 70 80 75 cag cac gct cgg ccc att cgc agg aaa gac aac aaa tac tac atc ccg 288

Gln His Ala Arg Pro Ile Arg Arg Lys Asp Asn Lys Tyr Tyr Ile Pro

				85					90					95		
ggg	gcc	ctg	tac	ggc	aag	gcc	agc	tat	ccg	ccg	tat	gca	ggc	ggc	ggt	336
Gly	Ala	Leu	Tyr	Gly	Lys	Ala	Ser	Tyr	Pro	Pro	Tyr	Ala	Gly	Gly	Gly	
			100					105					110			
ggc	ttc	ctc	atg	gcc	ggc	agc	ctg	gcc	cgg	cgc	ctg	cac	cat	gcc	tgc	384
Gly	Phe	Leu	Met	Ala	Gly	Ser	Leu	Ala	Arg	Arg	Leu	His	His	Ala	Cys	
		115					120					125				
gac	acc	ctg	gag	ctc	tac	ccg	atc	gac	gac	gtc	ttt	ctg	ggc	atg	tgc	432
Asp	Thr	Leu	Glu	Leu	Tyr	Pro	He	Asp	Asp	Val	Phe	Leu	Gly	Met	Cys	
	130					135					140					
ctg	gag	gtg	ctg	ggc	gtg	cag	ССС	acg	gcc	cac	gag	ggc	ttc	aag	act	480
Leu	Glu	Val	Leu	Gly	Val	Gln	Pro	Thr	Ala	His	Glu	Gly	Phe	Lys	Thr	
145					150					155					160	
ttc	ggc	atc	tcc	cgg	aac	cgc	aac	agc	cgc	atg	aac	aag	gag	ccg	tgc	528
Phe	Gly	lle	Ser	Arg	Asn	Arg	Asn	Ser	Arg	Met	Asn	Lys	Glu	Pro	Cys	
				165					170					175		
ttt	ttc	cgc	gcc	atg	ctc	gtg	gtg	cac	aag	ctg	ctg	ССС	cct	gag	ctg	576
Phe	Phe	Arg	Ala	Met	Leu	Val	Val	His	Lys	Leu	Leu	Pro	Pro	Glu	Leu	
			180					185					190			
ctc	gcc	atg	tgg	ggg	ctg	gtg	cac	agc	aat	ctc	acc	tgc	tcc	cgc	aag	624
Leu	Ala	Met	Trp	Gly	Leu	Val	His	Ser	Asn	Leu	Thr	Cys	Ser	Arg	Lys	
		195					200					205				
ctc	cag	gtg	ctc	tgad	ccca	agc c	gggc	tact	a gg	gacag	ggcca	ggg	gcact	tgc		676
Leu	GIn	Val	Leu													
	210															
tcctgagccc ccatggtatt ggggctggag ccacagtgcc caggcctagc ctttggtccc										gtccc	736					
caaggggagg tggagggttg aggcctacgt gccactgggt gtggtggggt gcaggtagcc										gtagcc	796					
agaa	aggg	gac c	tccc	tgtg	gt gg	gataa	ittct	agg	gaaac	tga	ggco	cage	gaa o	g		848

[0065]

<210> 8

<211> 987

<212> DNA

<213> Homo sapiens

<400> 8 ATG GCC TCT CAG GGG CCC CAG GCC TGG GAC GTG ACC ACC ACT AAC TGC 48 Met Ala Ser Gln Gly Pro Gln Ala Trp Asp Val Thr Thr Thr Asn Cys 5 1 10 15 TCA GCC AAT ATC AAC TTG ACC CAC CAG CCC TGG TTC CAG GTC CTG GAG 96 Ser Ala Asn Ile Asn Leu Thr His Gln Pro Trp Phe Gln Val Leu Glu 20 25 30 CCG CAG TTC CGG CAG TTT CTC TTC TAC CGC CAC TGC CGC TAC TTC CCC 144 Pro Gln Phe Arg Gln Phe Leu Phe Tyr Arg His Cys Arg Tyr Phe Pro 35 40 45 ATG CTG CTG AAC CAC CCG GAG AAG TGC AGG GGC GAT GTC TAC CTG CTG 192 Met Leu Leu Asn His Pro Glu Lys Cys Arg Gly Asp Val Tyr Leu Leu 50 55 60 GTG GTT GTC AAG TCG GTC ATC ACG CAG CAC GAC CGC CGC GAG GCC ATC 240 Val Val Val Lys Ser Val IIe Thr Gln His Asp Arg Arg Glu Ala IIe 65 70 75 80 CGC CAG ACC TGG GGC CGC GAG CGG CAG TCC GCG GGT GGG GGC CGA GGC 288 Arg Gln Thr Trp Gly Arg Glu Arg Gln Ser Ala Gly Gly Gly Arg Gly 85 90 95 GCC GTG CGC ACC CTC TTC CTG CTG GGC ACG GCC TCC AAG CAG GAG GAG 336 Ala Val Arg Thr Leu Phe Leu Leu Gly Thr Ala Ser Lys Gln Glu Glu 100 105 110 CGC ACG CAC TAC CAG CAG CTG CTG GCC TAC GAA GAC CGC CTC TAC GGC 384

Arg Thr His Tyr Gln Gln Leu Leu Ala Tyr Glu Asp Arg Leu Tyr Gly

		115					120					125				
GAC	ATC	CTG	CAG	TGG	GGC	TTT	CTC	GAC	ACC	TTC	TTC	AAC	CTG	ACC	CTC	432
Asp	He	Leu	Gln	Trp	Gly	Phe	Leu	Asp	Thr	Phe	Phe	Asn	Leu	Thr	Leu	
	130					135					140					
AAG	GAG	ATC	CAC	TTC	CTC	AAG	TGG	CTG	GAC	ATC	TAC	TGC	CCC	CAC	GTC	480
Lys	Glu	He	His	Phe	Leu	Lys	Trp	Leu	Asp	He	Tyr	Cys	Pro	His	Val	
145					150					155					160	
CCC	TTC	ATT	TTC	AAA	GGC	GAC	GAT	GAC	GTC	TTC	GTC	AAC	CCC	ACC	AAC	528
Pro	Phe	He	Phe	Lys	Gly	Asp	Asp	Asp	Val	Phe	Val	Asn	Pro	Thr	Asn	
				165					170					175		
CTG	CTA	GAA	TTT	CTG	GCT	GAC	CGG	CAG	CCA	CAG	GAA	AAC	CTG	TTC	GTG	576
Leu	Leu	Glu	Phe	Leu	Ala	Asp	Arg	GIn	Pro	GIn	Glu	Asn	Leu	Phe	Val	
			180					185					190			
GGC	GAT	GTC	CTG	CAG	CAC	GCT	CGG	CCC	ATT	CGC	AGG	AAA	GAC	AAC	AAA	624
Gly	Asp	Val	Leu	Gln	His	Ala	Arg	Pro	He	Arg	Arg	Lys	Asp	Asn	Lys	
		195					200					205				
TAC	TAC	ATC	CCG	GGG	GCC	CTG	TAC	GGC	AAG	GCC	AGC	TAT	CCG	CCG	TAT	672
Tyr	Tyr	He	Pro	Gly	Ala	Leu	Tyr	Gly	Lys	Ala	Ser	Tyr	Pro	Pro	Tyr	
	210					215					220					
GCA	GGC	GGC	GGT	GGC	TTC	CTC	ATG	GCC	GGC	AGC	CTG	GCC	CGG	CGC	CTG	720
Ala	Gly	Gly	Gly	Gly	Phe	Leu	Met	Ala	Gly	Ser	Leu	Ala	Arg	Arg	Leu	
225					230					235					240	
CAC	CAT	GCC	TGC	GAC	ACC	CTG	GAG	CTC	TAC	CCG	ATC	GAC	GAC	GTC	TTT	768
His	His	Ala	Cys	Asp	Thr	Leu	Glu	Leu	Tyr	Pro	He	Asp	Asp	Val	Phe	
				245					250					255		
CTG	GGC	ATG	TGC	CTG	GAG	GTG	CTG	GGC	GTG	CAG	CCC	ACG	GCC	CAC	GAG	816
Leu	Gly	Met	Cys	Leu	Glu	Val	Leu	Gly	Val	Gln	Pro	Thr	Ala	His	Glu	
			260					265					270			
GGC	TTC	AAG	ACT	TTC	GGC	ATC	TCC	CGG	AAC	CGC	AAC	AGC	CGC	ATG	AAC	864

Gly Phe Lys Thr Phe Gly IIe Ser Arg Asn Arg Asn Ser Arg Met Asn AAG GAG CCG TGC TTT TTC CGC GCC ATG CTC GTG GTG CAC AAG CTG CTG Lys Glu Pro Cys Phe Phe Arg Ala Met Leu Val Val His Lys Leu Leu CCC CCT GAG CTG CTC GCC ATG TGG GGG CTG GTG CAC AGC AAT CTC ACC Pro Pro Glu Leu Leu Ala Met Trp Gly Leu Val His Ser Asn Leu Thr TGC TCC CGC AAG CTC CAG GTG CTC TGA Cys Ser Arg Lys Leu Gln Val Leu [0066] <210> 9 <211> 401 <212> PRT <213> Homo sapiens <400> 9 Met Ser Leu Trp Lys Lys Thr Val Tyr Arg Ser Leu Cys Leu Ala Leu Ala Leu Leu Val Ala Val Thr Val Phe Gln Arg Ser Leu Thr Pro Gly Gin Phe Leu Gin Glu Pro Pro Pro Pro Thr Leu Glu Pro Gin Lys Ala Gin Lys Pro Asn Gly Gin Leu Val Asn Pro Asn Asn Phe Trp Lys Asn Pro Lys Asp Val Ala Ala Pro Thr Pro Met Ala Ser Gin Gly Pro Gin Ala Trp Asp Val Thr Thr Thr Asn Cys Ser Ala Asn lie Asn Leu Thr

His Gln Pro Trp Phe Gln Val Leu Glu Pro Gln Phe Arg Gln Phe Leu Phe Tyr Arg His Cys Arg Tyr Phe Pro Met Leu Leu Asn His Pro Glu Lys Cys Arg Gly Asp Val Tyr Leu Leu Val Val Val Lys Ser Val Ile Thr Gln His Asp Arg Arg Glu Ala lle Arg Gln Thr Trp Gly Arg Glu Arg Gin Ser Ala Gly Gly Gly Arg Gly Ala Val Arg Thr Leu Phe Leu Leu Gly Thr Ala Ser Lys Gln Glu Glu Arg Thr His Tyr Gln Gln Leu Leu Ala Tyr Glu Asp Arg Leu Tyr Gly Asp Ile Leu Gln Trp Gly Phe Leu Asp Thr Phe Phe Asn Leu Thr Leu Lys Glu IIe His Phe Leu Lys Trp Leu Asp Ile Tyr Cys Pro His Val Pro Phe Ile Phe Lys Gly Asp Asp Asp Val Phe Val Asn Pro Thr Asn Leu Leu Glu Phe Leu Ala Asp Arg Gln Pro Gln Glu Asn Leu Phe Val Gly Asp Val Leu Gln His Ala Arg Pro Ile Arg Arg Lys Asp Asn Lys Tyr Tyr Ile Pro Gly Ala Leu Tyr Gly Lys Ala Ser Tyr Pro Pro Tyr Ala Gly Gly Gly Phe Leu Met Ala Gly Ser Leu Ala Arg Arg Leu His His Ala Cys Asp Thr Leu Glu Leu Tyr Pro Ile Asp Asp Val Phe Leu Gly Met Cys Leu Glu Val

· • • • •

325 330 335 Leu Gly Val Gln Pro Thr Ala His Glu Gly Phe Lys Thr Phe Gly Ile 350 340 345 Ser Arg Asn Arg Asn Ser Arg Met Asn Lys Glu Pro Cys Phe Phe Arg 360 365 Ala Met Leu Val Val His Lys Leu Leu Pro Pro Glu Leu Leu Ala Met 370 375 380 Trp Gly Leu Val His Ser Asn Leu Thr Cys Ser Arg Lys Leu Gln Val 390 395 400 385 Leu [0067] <210> 10 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Oligonucleotide primer for PCR <400> 10 24 cagcagctgc tggcctacga agac [0068] <210> 11 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Oligonucleotide primer for PCR <400> 11 24 gcacatgccc agaaagacgt cgtc [0069]

, ·

ž

<211> 20

```
<210> 12
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide primer for PCR
<400> 12
cgttcctggg cctcagtttc ctag
                                                                  24
      [0070]
<210> 13
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide primer for PCR
<400> 13
gaccgacttg acaaccacca gca
                                                                  23
      [0071]
<210> 14
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide primer for PCR
<400> 14
gtagacatcg ccctgcact tct
                                                                  23
      [0072]
<210> 15
```

Ç

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide primer for PCR
<400> 15
gcccagagct gcgagccgct
                                                                   20
      [0073]
<210> 16
<211> 53
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide primer for PCR
<400> 16
                                                                   22
gcacatgccc agaaagacgt cg
      [0074]
<210> 17
<211> 53
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide primer for PCR
<400> 17
ggggacaagt ttgtacaaaa aagcaggctt cgcctctcag gggccccagg cct
                                                                   53
      [0075]
<210> 18
<211> 54
<212> DNA
```

<213> Artificial Sequence

```
<220>
<223> Oligonucleotide primer for PCR
<400> 18
                                                                   54
ggggaccact ttgtacaaga aagctgggtc catgggggct caggagcaag tgcc
      [0076]
<210> 19
<211> 94
<212> DNA
<213> Artificial Sequence
<220>
<223> template for PCR
<400> 19
                                                                   60
gatcatgcat tttcaagtgc agattttcag cttcctgcta atcagtgcct cagtcataat
                                                                   94
gtcacgtgga gattacaagg acgacgatga caag
      [0077]
<210> 20
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide primer for PCR
<400> 20
                                                                   26
cgggatccat gcattttcaa gtgcag
      [0078]
<210> 21
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
```

.

ž 🖟 🦻

· •

```
<223> Oligonucleotide primer for PCR
<400> 21
                                                                   25
ggaattcttg tcatcgtcgt ccttg
      [0079]
<210> 22
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide primer for PCR
<400> 22
                                                                   21
ttcctcaagt ggctggacat c
      [0080]
<210> 23
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide primer for PCR
<400> 23
gccggtcagc cagaaattc
                                                                   19
      [0081]
<210> 24
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide probe
<400> 24
```

actgcccca cgtccccttc a

[Title of Document]

ABSTRACT

[Abstract]

[Object] To provide an enzyme having an activity to transfer *N*-acetylglucosamine to a non-reducing terminal of Gal β 1-4Glc or Gal β 1-4GlcNAc group through β 1,3-linkage and nucleic acid coding for the enzyme.

[Means for Solution] A protein having the amino acid sequence shown in SEQ ID NO: 1 in SEQUENCE LISTING, or a protein having the same amino acid sequence as shown in SEQ ID NO:1 except that one or more amino acids are substituted or deleted, or that one or more amino acids are inserted or added, which has an activity to transfer N-acetylglucosamine to a non-reducing terminal of Gal β 1-4Glc or Gal β 1-4GlcNAc group through β 1,3-linkage was provided.

[Selected Drawing] None