

Airbnb: New York City

IDS - 570

Statistics for Management

Group 2

Anurag Sinhal - 660855717

Dikshant Gupta - 675267860

Nikita Maloo - 672689394

Priya Panchaksharappa - 667028888

Lavanya Santhanakrishnan - 662238731

Twinkle Singh - 678538961

Introduction - Airbnb Company Overview

- Founded in 2008
- Privately owned and operated
- Peer-to-peer online marketplace and homestay network
- People list or rent short-term lodging in residential properties
- Cost of accommodation is set by the property owner
- Receives percentage service fees from both guests and hosts in conjunction with every booking
- Over 2,000,000 listings in 34,000 cities and 191 countries

Methodology Followed

Airbnb New York City - Dataset Parameters

The variables that were provided with the dataset

- ID
- Name
- Host ID
- Host Name
- Neighborhood_group
- Neighborhood
- Latitude
- Longitude

- Room_type
- Price
- Minimum_nights
- Reviews_per_month
- Calculated_host_listings_count
- Availability
- Number_of_reviews
- Last review

Note: The highlighted variables are the ones on which our analysis is based primarily upon.

Assumptions

- Number of Reviews is assumed as the Number of Bookings for Airbnb
- The month value in Last Review Date variable is assumed as the month in which the booking was done

Challenges

- New York data has large number of rows, so intense data cleaning was required to draw some meaningful insights
- Booking data was not explicitly available
- Tourist spot data was not inherently available (the tourist locations were mapped using internet)
- The sentiment of the review (positive / negative) could not be measured

Research Question

 What are the factors that affect the number of reviews of an airbnb listing in New York City and in what capacity do the factors influence the number of reviews?

1. Number of Reviews Vs. Price

```
Pearson's product-moment correlation

data: list$price and list$number_of_reviews
t = -3.7623, df = 21819, p-value = 0.0001688
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.03871715 -0.01219776
sample estimates:
cor
-0.02546193
```

Result: 2% Inverse Correlation

2. Number of Reviews Vs. Availability 365

```
Pearson's product-moment correlation

data: list$availability_365 and list$number_of_reviews
t = 19.578, df = 21819, p-value < 0.000000000000000022
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
    0.1183311    0.1444096
sample estimates:
    cor
0.1313931
```

Relationship of availability 365 to the number of reviews

Result: 13% Positive Correlation

3. Number of Reviews Vs. Minimun_nights

```
Pearson's product-moment correlation

data: list$minimum_nights and list$number_of_reviews
t = -14.059, df = 21819, p-value < 0.00000000000000022
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
    -0.10787969 -0.08158127
sample estimates:
        cor
    -0.09474701
```

Result: 9% Inverse Correlation

Relationship of minimum nights to the number of reviews

4. Number of Reviews Vs. Neighborhood_Groups

Number of Reviews in Different Neighbourhood groups

```
> summary(tab.aov)

Df Sum Sq Mean Sq F value Pr(>F)
neighbourhood_group 4 48479 12120 8.332 0.00000103 ***
Residuals 21816 31731984 1455
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' '1
```

Result: Number of Reviews are dependent on Neighborhood Groups

5. Number of Reviews Vs. Room Type

```
> summary(list.aov1)

Df Sum Sq Mean Sq F value Pr(>F)

room_type 2 40640 20320 13.97 0.000000866 ***

Residuals 21818 31739823 1455

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Result: Number of Reviews are dependent on Room Types

Hypotheses

- The number of reviews of an Airbnb listing in New York City is higher for a listing at lower price
- The number of reviews is higher for the listings hosted in Fall or Summer season

 The number of reviews for a listing is higher for a neighborhood situated in the vicinity of a tourist destination

Hypothesis-1 Analysis

<u>Hypothesis 1</u> - The number of reviews of an Airbnb listing in New York City is higher for a listing at lower price

- Initially, price and number of reviews did not display a strong correlation.
- For deeper analysis, price was further sub
 categorised

```
data: list$number_of_reviews and list$price
t = -3.9947, df = 21865, p-value = 0.00006498
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
   -0.04024567 -0.01375634
sample estimates:
        cor
   -0.02700574
```

Price Range	Price Category	
Price<=\$100	Economic	
\$100< Price <=\$300	Deluxe	
Price >\$300	Luxury	

Hypothesis-1 Analysis (Cont.)

Significant Results of Hypothesis testing on different price categories:

For Deluxe and Economic price categories:

- a) The correlation coefficient for the price category = **Deluxe** and Neighborhood group = **Staten Island** is -0.2493094
- b) The correlation coefficient for the price category = **Economic** and Neighborhood group = **Staten Island** is -0.1029916
 - Economic and Deluxe price category in Staten Island Neighborhood group, the number of reviews are decreasing with increased prices

For Luxury price category:

- a) The correlation coefficient for the price category = Luxury and Neighborhood group = Bronx is around 1
 - For Luxury category rooms, the customers are not price centric. Therefore, the number of reviews and price are directly proportional

Hypothesis-2 Analysis

<u>Hypothesis 2</u> - The number of reviews is higher for the listings hosted in Fall or Summer season

To analyze the hypothesis, months are divided into seasons as following:

Season	Months	
Winter	December, January, February	
Spring	March, April, May	
Summer	June, July, August	
Fall	September, October, November	

Hypothesis-2 (Cont.)

 ANOVA test between number of reviews and seasons:

The number of reviews is dependent on the change in seasons

Peak booking season in New York

Seasons	Number of Reviews	
Fall	35.02987	
Spring	11.85124	
Summer	17.29261	
Winter	10.05087	

Conclusion: Maximum bookings for Airbnb listings are observed for holiday seasons i.e.

Fall and Summer

Hypothesis-3 Analysis

<u>Hypothesis 3</u> - The number of reviews of a listing in a neighborhood is higher if the neighborhood is a tourist destination.

 ANOVA test between number of reviews and neighborhood:
 The number of reviews change with the change in neighborhood

To analyze the number of reviews of a listing near a tourist destination:

Neighborhood Group – Brooklyn (Top 3 results):

Neighborhood Name	Tourist Spot	Average Number of Reviews
DUMBO	Brooklyn Bridge	54.94
Coney Island	Coney Island	41.70
South Slope	Brooklyn Art Museum	37.39

Hypothesis-3 (Cont.)

Neighborhood Group - Manhattan:

Neighborhood Name	Tourist Spot	Average Number of Reviews
Hell's Kitchen	THE SHED	36.95
Lower East Side	Tenement Museum	35

Conclusion:

The number of reviews for a listing is higher for a neighborhood situated in the vicinity of a tourist destination.

^{*}tourist spot data searched on the internet.

Linear Regression Modelling

Model - 1: Number of Reviews Vs Numeric Independent Variables

- Adjusted R-squared value is 2.87%
- Factor columns to be added to improve model

Number of reviews vs Independent Numeric variables and Factors like Neighborhood group, Room type

- Enhanced Model 1 by introducing factors in the Linear Model
 - Factors like Neighborhood group, Room Type
- Fitness of Linear Model increased from 2.87 to 3.61%

Log transformation of number of reviews

Model 2

Model 3

- Log transformation of dependent variable i.e. number_of_reviews
- Model fitness improved to 4.45% from 3.6%

Converting last_review into factor called Seasons(based on months)

- Seasons factor column introduced with levels Fall, Winter, Spring, Summer
- Model fitness drastically improved from 4.45% to 12.48 %

Log Transformation of Price

- Factored price into 3 categories Economic, Deluxe, Luxury
 - Fitness increased marginally from 12.48% to 12.50%
- Log of price produced better results

Adding Minimum Nights Cat as a factor

- Model fitness increased from 12.5% in Model 5 to 13.8% in Model 6
- Removed outliers for model 7
 - Adjusted R-squared value decreased
 - Model 6 finalised as <u>BEST LINEAR MODEL</u>
- * Model fitness increased by 379.83% from 2.876% for model 1 to 13.88% for model 6

Effect of Linear Regression on Hypothesis-1

- Number of reviews will increase with the decrease in the price of a listing
- In the final model, coefficient of the independent variable **Price** (i.e. log(price) is -0.25149562 which decreased by 0.24 w.r.t. the first model
- Keeping all the other independent variables constant; if the log(price) increases by 1, the log(number of reviews) will decrease by 0.25149562
- Inference: Number of reviews and price of a listing are inversely proportional

Effect of Linear Regression on Hypothesis-2

- Number of reviews will change with the change in the season when the listing was hosted
- In the final model, coefficient of Season = "Fall" is 0.94785556 and Season= "Summer" is 0.31570821
- Keeping all the other independent variables constant; if the hosting in Fall increases by
 1, the log(number of reviews) will increase by 0.947
- Inference: Number of reviews of a listing is higher in Fall and Summer (Holiday seasons) in comparison to Winter and Spring

Effect of Linear Regression on Hypothesis-3

- The number of reviews across different neighborhoods is not the same
- In the final model, the coefficient of neighborhood = "Brooklyn" is 0.30664352
- Keeping all the other independent variables constant; the average difference in log(number of reviews) for a listing in Brooklyn as compared to a listing not in Brooklyn is 0.30664352
- Inference: Number of reviews for a listing is higher when it is in a neighborhood situated in the vicinity of a tourist destination

Recommendations

Airbnb should facilitate customers with discounts and offers during off seasons

 Airbnb should focus more on improving the service quality rather than decreasing the price for a Luxury hosting

