1

Esimerkki 5.1

Tarkastellaan emojanaelementin alueessa määritellyn funktion $f(\xi) = \frac{\xi+1}{\xi^2+2}$ interpolointia. Laske kohdassa $\xi = \frac{1}{2}$ funktion tarkka arvo sekä likiarvot lineaarisella, kvadraattisella ja kuutiollisella Lagrangen interpoloinnilla.

Ratkaisu:

Tarkka arvo:
$$f(1/2) = \frac{\frac{1}{2} + 1}{\frac{1}{4} + 2} = \frac{\frac{3}{2}}{\frac{9}{4}} = 2/3 \approx 0,6666667$$

Lineaarinen interpolointi: k = 2

Funktion solmularvot:
$$f_1 = f(-1) = 0$$
 $f_2 = f(+1) = 2/3$
Interpolointifunktioiden arvot kohdassa $\xi = \frac{1}{2}$: $N_1(1/2) = 1/4$ $N_2(1/2) = 3/4$

$$\Rightarrow f(1/2) \approx \frac{1}{4} \cdot 0 + \frac{3}{4} \cdot \frac{2}{3} = \frac{1}{2} = 0,5000000$$

Kvadraattinen interpolointi: k = 3

Funktion solmularvot:
$$f_1 = f(-1) = 0$$
 $f_2 = f(0) = 1/2$ $f_3 = f(+1) = 2/3$
Interpolointifunktioiden arvot kohdassa $\xi = \frac{1}{2}$: $N_1(1/2) = -1/8$ $N_2(1/2) = 6/8$ $N_3(1/2) = 3/8$
$$\Rightarrow \qquad f(1/2) \approx -\frac{1}{8} \cdot 0 + \frac{6}{8} \cdot \frac{1}{2} + \frac{3}{8} \cdot \frac{2}{3} = \frac{5}{8} = 0,6250000$$

Kuutiollinen interpolointi: k = 4

Funktion solmuarvot:

f₁ = f(-1) = 0 f₂ = f(-1/3) = 6/19 f₃ = f(+1/3) = 12/19 f₄ = f(+1) = 2/3 Interpolointifunktioiden arvot kohdassa
$$\xi = \frac{1}{2}$$
: $N_1(1/2) = 5/128 \ N_2(1/2) = -27/128 \ N_3(1/2) = 135/128 \ N_4(1/2) = 15/128$

$$\Rightarrow f(1/2) \approx \frac{5}{128} \cdot 0 - \frac{27}{128} \cdot \frac{6}{19} + \frac{135}{128} \cdot \frac{12}{19} + \frac{15}{128} \cdot \frac{2}{3} = \frac{103}{152} \approx 0,6776316$$