Ejercicios Diferenciación numérica. Curso de Física Computacional

M. en C. Gustavo Contreras Mayén

1. Usando una aproximación por diferencias finitas de orden $O(h^2)$, calcula f'(2.36) y f''(2.36), a partir de los datos:

2. Dados los siguientes datos

X	0.84	0.92	1.00	1.08	1.16
f(x)	0.431711	0.398519	0.367879	0.339596	0.312486

Calcula f''(1) con la mayor precisión posible.

3. La palanca AB de longitud R=90 mm está girando con velocidad angular constante $d\theta/dt=5000$ rev/min.

La posición del pistón C como se muestra, varía con el ángulo θ

$$x = R\left(\cos\theta + \sqrt{2.5^2 - \sin^2\theta}\right)$$

Escribe un programa en python que calcule la aceleración angular del pistón en $\theta=0^\circ,5^\circ,10^\circ,\dots,180^\circ$ mediante diferenciación numérica.