MaX-DeepLab: End-to-End Panoptic Segmentation with Mask Transformers

CVPR 2021

Huiyu Wang, Yukun Zhu, Hartwig Adam, Alan Yuille, Liang-Chieh Chen Johns Hopkins University, Google Research

Panoptic Segmentation

(b) semantic segmentation

(c) instance segmentation

(d) panoptic segmentation

Panoptic Segmentation Segmentation Segmentation Segmentation Segmentation Previous Methods (Panoptic-FPN) Anchor Classification Anchor Regression Regression

Fails!

MaX-DeepLab

MaX-DeepLab

Solves the Case!

End-to-End N Masks: N Classes: Dog Chair · · · **Mask Transformer**

Mask Transformer

Mask Transformer

Training N Masks: N Classes: **GT Masks** Matching Optimizing **GT Classes** Dog Chair · · · **Mask Transformer**

Training N Classes: N Masks: **GT Masks** Matching **Optimizing GT Classes** Dog Chair Mask Transformer

Panoptic Quality = Recognition Quality x Segmentation Quality

Training N Masks: **N** Classes: **GT Masks** Matching **Optimizing** Dog Chair · · · **GT Classes** Mask Transformer

- Panoptic Quality = Recognition Quality x Segmentation Quality
- PQ-style Similarity = Class Similarity x Mask Dice Score

Results on COCO (test-dev)

Method	Backbone	TTA	PQ	PQ Th	PQ St			
Box-based panoptic segmentation methods								
Panoptic-FPN	RN-101		40.9	48.3	29.7			
DETR	RN-101		46.0	-	-			
UPSNet	DCN-101	1	46.6	53.2	36.7			
DetectoRS	RX-101	1	49.6	57.8	37.1			
Box-free panoptic segmentation methods								
Box-free pa	noptic segm	entatio	on met	hods				
Box-free pa Panoptic-DeepLab	noptic segm X-71	entatio	on met 41.4	hods 45.1	35.9			
		l <i>a</i>			35.9 35.6			
Panoptic-DeepLab	X-71	l <i>a</i>	41.4	45.1				
Panoptic-DeepLab Axial-DeepLab-L	X-71 AX-L	1	41.4 43.6	45.1 48.9	35.6			

Lin, T.Y., et al. Microsoft coco: Common objects in context. ECCV 2014.

Xiong, Y. et al. UPSNet: A Unified Panoptic Segmentation Network. CVPR 2019.

Qiao, S. et al. DetectoRS: Detecting Objects with Recursive Feature Pyramid and Switchable Atrous Convolution. CVPR 2021.

Results on COCO (test-dev)

Method	Backbone	TTA	PQ	PQ Th	PQ St			
Box-based panoptic segmentation methods								
Panoptic-FPN	RN-101		40.9	48.3	29.7			
DETR	RN-101		46.0	-	-			
UPSNet	DCN-101	1	46.6	53.2	36.7			
DetectoRS	RX-101	1	49.6	57.8	37.1			
Box-free panoptic segmentation methods								
Panoptic-DeepLab	X-71	1	41.4	45.1	35.9			
Axial-DeepLab-L	AX-L		43.6	48.9	35.6			
Axial-DeepLab-L	AX-L	1	44.2	49.2	36.8			
MaX-DeepLab-S	MaX-S		49.0	54.0	41.6			
MaX-DeepLab-L	MaX-L		51.3	57.2	42.4			

Carion, N. et al. End-to-End Object Detection with Transformers. ECCV 2020. Cheng, B. et al. Panoptic-DeepLab: A Simple, Strong, and Fast Baseline for Bottom-Up Panoptic Segmentation. CVPR 2020. Wang, H. et al. Axial-DeepLab: Stand-Alone Axial-Attention for Panoptic Segmentation. ECCV 2020.

Visualizations

Attention Maps

Two people (woman, man) cutting a cake on a table.

Conclusion

- End-to-end panoptic segmentation
- Mask transformer
- PQ-style objective
- Code: https://github.com/google-research/deeplab2