Test for informative cluster size with right censored survival data

Alessandra Meddis, Aurelien Latouche

1 Simulation study: impact of γ on ICS

To obtain informative cluster size, we generate K clusters with sample size $N_k \sim Pois(\lambda \exp(V_k))$ where λ , common between clusters, represents the expected number of observations in each cluster and V_k defines the cluster-specific sample size. Let U_k be the frailty term for the shared frailty model employed to generate the failure times. To create the dependence between the sample size N_k and the failure times T_{ik} , we generate (U_k, V_k) from a multivariate Gamma with unit mean and covariance matrix Σ . The variance $\sigma_U^2 = 1/\theta$ defines the variability of failure times among clusters. The variance $\sigma_V^2 = 1/\gamma$ represents the variability between clusters sample sizes. The parameter ρ is the correlation between the two random effects. The strength of ICS depends on θ, ρ, γ .

In this section we explore how ICS changes with γ . We generate (U_k, V_k) for 100 clusters with $\gamma \in \{3, 10, 40\}$. Figure 1 shows that U_k increases faster for higher γ , because the range of V_k (sample size) becomes narrower but θ is fixed, and thus the range of U_k (failure times) does not change. This translates in higher informative cluster size. In Figure 2 we provide the mean failure times \overline{T}_k for each cluster sample sizes: for small values of V_k (sample sizes) the U_k will be lower for increasing γ and so failure times will be larger when $\gamma = 40$; bigger values of V_k are associated to bigger U_k and thus to shorter failure times. Therefore, for two fixed sample sizes, the difference of the associated failure times will be larger with an increasing value of γ and informative cluster size is stronger. However, this difference is not visible anymore when the mean clusters sample size decreases ($\lambda = 5$) because, the cluster sample sizes are similar when $\gamma = 40$.

Figure 1: Representation of the two random effects U_k and V_k generated for 100 clusters with different values of γ .

Figure 2: Plot of median failure times T_k and the cluster sample sizes N_k (logarithm scale) associated to the random effects (U_k, V_k) . Data for 100 clustered are generated by a shared frailty model and a Poisson distribution as described in the simulation section. The parameter λ of the Poisson distribution represents the mean sample size of clusters if no variability is present in the sample sizes distribution $(\gamma = \infty)$.