Basic Definitions, Existence and Uniqueness Results for First-Order IVP

Department of Mathematics IIT Guwahati

Texts/References:

- S. L. Ross, Differential Equations, John Wiley & Son Inc, 2004.
- W. E. Boyce and R. C. Diprima, Elementary Differential Equations and Boundary Value Problems, John Wiley & Son, 2001.
- E. A. Coddington, An Introduction to Ordinary Differential Equations, Prentice Hall India, 1995.
- E. L. Ince, Ordinary Differential Equations, Dover Publications, 1958.
- Dennis G. Zill and Michael R. Cullen, Differential equations with boundary value problems

Example: Let $\mathscr{R}: |x| \leq 5, |y| \leq 3$ be the rectangle.

Consider the IVP

$$y' = 1 + y^2, \quad y(0) = 0$$

over \mathcal{R} .

Here, a = 5, b = 3. Then

$$\max_{(x,y)\in\mathcal{R}} |f(x,y)| = \max_{(x,y)\in\mathcal{R}} |1+y^2| = 10(=K),$$

$$\max_{(x,y)\in\mathcal{R}} \left| \frac{\partial f}{\partial y} \right| = \max_{(x,y)\in\mathcal{R}} 2|y| = 6(=L).$$

$$h = \min\{a, \frac{b}{K}\} = \min\{5, \frac{3}{10}\} = 0.3 < 5.$$

Note that the solution of the IVP is $y = \tan x$. This solution is valid in the interval $|x| \le 0.3$ instead of the entire interval |x| < 5.

Example(Non-uniqueness): Consider the IVP:

$$y' = 3 y^{\frac{2}{3}}$$
 for $x \in \mathbb{R}$, $y(0) = 0$.

For each real number $c \geq 0$, let

$$y_c(x) = \begin{cases} 0 & \text{if } 0 \le x < c, \\ (x - c)^3 & \text{if } c \le x < \infty, \end{cases}$$

It is easy to verify that $y_c(x)$ is a solution to the IVP. Therefore, this IVP has infinitely many solutions.

The Method of Successive Approximations

Consider the IVP

$$y'(x) = f(x, y), \quad y(x_0) = y_0.$$
 (1)

Key Idea: Replacing the IVP (1) by an the equivalent integral equation

$$y(x) = y_0 + \int_{x_0}^x f(t, y(t)) dt.$$
 (2)

Note that (1) and (2) are equivalent.

A first (rough) approximation to a solution is given by $y_0(x) = y_0$. A second approximation $y_1(x)$ is obtained as follows:

$$y_1(x) = y_0 + \int_{x_0}^x f(t, y_0(t)) dt.$$

The next step is to use $y_1(x)$ to generate another approximation $y_2(x)$ in the same way:

$$y_2(x) = y_0 + \int_{x_0}^x f(t, y_1(t)) dt.$$

At the nth step, we have

$$y_n(x) = y_0 + \int_{x_0}^x f(t, y_{n-1}(t)) dt.$$

This procedure is called Picard's method of successive approximations.

Example: Consider IVP: y' = y, y(0) = 1.

$$y_n(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!}.$$

Note that $y_n(x) \to e^x$ as $n \to \infty$.

Theorem: Let $\mathscr{R}: |x-x_0| \leq a, \ |y-y_0| \leq b$ be a rectangle where a,b>0. Let $f\in C(\mathscr{R})$ and let $|f(x,y)| \leq M$ for all $(x,y)\in \mathscr{R}$. Further suppose that f satisfies Lipschitz condition w.r.t y with constant K in \mathscr{R} . Then the successive approximations

$$y_0(x) \equiv y_0$$
$$y_{k+1}(x) = y_0 + \int_{x_0}^x f(t, y_k(t)) dt, \ k = 0, 1, 2, 3, \dots$$

converge uniformly on the interval $I: |x-x_0| \leq h$ where $h = min\{a, \frac{b}{M}\}$ to a solution y(x) of the IVP $y' = f(x, y), y(x_0) = y_0$.

Theorem (Continuous dependence on initial data):

Let f, $\frac{\partial f}{\partial y} \in C(\mathscr{R})$ and $(x_0,y_0),(x_0,y_{0m}) \in \mathscr{R}$. Let $\phi(x)$ be the solution of

$$y' = f(x, y), y(x_0) = y_0,$$

and let $\phi_m(x)$ be the solution of

$$y' = f(x, y), y(x_0) = y_{0m},$$

in \mathscr{R} for $|x-x_0| \leq h$. Then, for $|x-x_0| \leq h$, we have

$$|\phi(x) - \phi_m(x)| \le |y_0 - y_{0m}|e^{Lh},$$

where $\left|\frac{\partial f}{\partial y}(x,y)\right| \leq L$ for all $(x,y) \in \mathcal{R}$.

Further, as $y_{0m} \to y_0$, $\phi_m \to \phi$ uniformly on $[x_0 - h, x_0 + h]$.

Theorem (Continuous dependence on f):

Let f, f_m , $\frac{\partial f}{\partial y}$, $\frac{\partial f_m}{\partial y} \in C(\mathscr{R})$, and $(x_0,y_0) \in \mathscr{R}$. Let $\phi(x)$ be the solution of

$$y' = f(x, y), \ y(x_0) = y_0,$$

and $\phi_m(x)$ be the solution of

$$y' = f_m(x, y), \ y(x_0) = y_0.$$

Assume that both $\phi(x)$, $\phi_m(x)$ exist on $[x_0 - h, x_0 + h]$. Then, for $|x - x_0| \le h$, we have

$$|\phi(x) - \phi_m(x)| \le he^{\hat{L}h} \max_{(x,y) \in \mathcal{R}} \left\{ |f(x,y) - f_m(x,y)| \right\},\,$$

$$\begin{split} \hat{L} &= \min\{L, L_m\}, |\frac{\partial f}{\partial y}(x,y)| \leq L, |\frac{\partial f_m}{\partial y}(x,y)| \leq L_m \forall (x,y) \in \\ \mathscr{R}. \text{ Further, as } f_m \to f, \ \phi_m \to \phi \text{ uniformly on}[x_0 - h, x_0 + h]. \end{split}$$

Separable Equations

Definition: A first-order equation y'(x) = f(x, y) is separable if it can be written in the form

$$\frac{dy}{dx} = g(x)p(y)$$

Method for solving separable equations: To solve the equation

$$\frac{dy}{dx} = g(x)p(y),$$

we write it as h(y)dy=g(x)dx, where $h(y):=\frac{1}{p(y)}$. Integrating both sides

$$\int h(y)dy = \int g(x)dx \implies H(y) = G(x) + C,$$

which gives an implicit solution to the differential equation.

Formal justification of method: Writing the equation in the form

$$h(y)\frac{dy}{dx}=g(x),\ h(y):=\frac{1}{p(y)}.$$

Let H(y) and G(x) be such that

$$H'(y) = h(y), \quad G'(x) = g(x).$$

Then

$$H'(y)\frac{dy}{dx} = G'(x).$$

Since $\frac{d}{dx}H(y(x))=H'(y(x))\frac{dy}{dx}$ (by chain rule), we obtain

$$\frac{d}{dx}H(y(x)) = \frac{d}{dx}G(x) \Rightarrow H(y(x)) = G(x) + C.$$

Remark: In finding a one-parameter family of solutions in the separation process, we assume that $p(y) \neq 0$. Then we must find the solutions $y=y_0$ of the equation p(y)=0 and determine whether any of these are solutions of the original equation which were lost in the formal separation process.

Example: Consider $(x-4)y^4dx - x^3(y^2-3)dy = 0$. Separating the variable by dividing x^3y^4 , we obtain

$$\frac{(x-4)dx}{x^3} - \frac{(y^2-3)dy}{y^4} = 0$$

The general solution is $-\frac{1}{x} + \frac{2}{x^2} + \frac{1}{y} - \frac{1}{y^3} = C$, $y \neq 0$

Note: y=0 is a solution of the original equation which was lost in the separation process.

First-Order Linear Equations

A linear first-order equation can be expressed in the form

$$a_1(x)\frac{dy}{dx} + a_0(x)y = b(x), \tag{3}$$

where $a_1(x), a_0(x)$ and b(x) depend only on the independent variable x, not on y.

Examples:

$$(1+2x)\frac{dy}{dx}+6y=e^x \text{ (linear)}$$

$$\sin x \frac{dy}{dx}+(\cos x)y=x^2 \text{ (linear)}$$

$$\frac{dy}{dx}+xy^3=x^2 \text{ (not linear)}$$

Theorem (Existence and Uniqueness):

Suppose $a_1(x), a_0(x), b(x) \in C((a,b)), a_1(x) \neq 0$ and $x_0 \in (a,b)$. Then for any $y_0 \in \mathbb{R}$, there exists a unique solution $y(x) \in C^1((a,b))$ to the IVP

$$a_1(x)\frac{dy}{dx} + a_0(x)y = b(x), \quad y(x_0) = y_0.$$