# Deep Neural Networks And Where to Find Them

Lecture 3

Artem Korenev, Nikita Gryaznov

# Recap

### Recap – Dense Layer



- $x_1$  Layer input
- Neuron Output  $(W_{i1}x_1 + \cdots + W_{i2}x_2 + b_i)$
- Activation function (Non-linearity) (Neuron activation)
- Layer weight (trainable parameter)
- Layer bias (trainable parameter)

# Recap – Multi Layer Neural Network



# Recap – NN Optimization



# Recap – NN Optimization



# Recap – NN Optimization



### Recap – NN Optimization – Backpropagation

### **Forwardpass**



### **Backwardpass**



### Recap – NN Optimization - Minibatch

Batch Batch Batch Batch Batch Batch Batch

Evaluate, Update Evaluate, Upda

When you optimize in mini-batch setting this is called stochastic gradient descent

# Activation Functions

### **Activation Functions**

- A non-linearity function between layers of Neural Networks
- The main reason why NNs are so powerful

### Popular Activation Functions:

- Sigmoid
- Tanh
- ReLU (and many variations)

# Sigmoid



$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

- Maps real values to [0,1] range
- Historically popular

#### Cons:

- Saturated neurons kill gradient
- Sigmoid outputs are not zero-centered
- exp() is computationally expensive

# Sigmoid (saturated neurons)



If x is small or large derivative  $\frac{d\sigma}{dx}$  is almost zero

Hence

$$\frac{dL}{dx} = \frac{d\sigma}{dx} \frac{dL}{d\sigma}$$
 is almost zero too

And all subsequent gradients are zero too

So backpropagation gets killed

# Sigmoid (non-zero centered)



$$x_i = \sigma(\dots)$$
 then all  $x_i > 0$ 

Consider next layer

$$f = \sum_{i=1}^{n} x_i w_i + b$$

Then

$$\frac{dL}{dw_i} = \frac{dL}{df}x_i$$

is always positive or negative

### Tanh



$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

• Maps real values to [-1,1] range

#### Pros:

Zero-centered

#### Cons:

- Saturated neurons kill gradient
- exp() is computationally expensive

### ReLU



$$f(x) = \max(0, x)$$

#### Pros:

- Does not saturate on x > 0
- Computationally efficient
- Converges about 6x times faster than sigmoid/tanh

#### Cons:

- Not zero centered
- Dies: gradient is 0 for x < 0, so weights can become unapdatable

### Leaky ReLU



$$f(x) = \max(0.01x, x)$$

#### Pros:

- Does not saturate
   Computationally
   efficient
- Converges about 6x times faster than sigmoid/tanh
- Doesn't die

# Loss Functions

### Recap of NN Outputs and Labels

- Binary classification label is presented as  $y \in \{0, 1\}$
- Multiclass classification label is presented as a vector y, s.t.  $y^T = (0, ..., 0, 1, 0, ..., 0)$ , where  $y_i = 1$  says that the object belongs to class i
- Sometimes an object can belong to multiple classes and also belong to classes softly, i.e.  $y_i = 0.2$
- NN output in binary classification is presented as a value f(x)
- NN output in multiple classification is presented as a vector f(x)

### Loss Functions

- It should describe your objective
- In order to use Backpropagation they must be differentiable
- Though Loss function must be differentiable there are a couple of exceptions

$$\max(0, 1 - y * f(x))$$

• Gradient is undefined at 1-y\*f(x)=0 but to handle this we can just say that it equals to 0

### Popular losses

- Mean Squared Error (or MSE) (or L2 loss)
- Mean Absolute Error (or MAE) (or L1 loss)
- Huber Loss
- Hinge Loss
- Cross Entropy

### Mean Square Error Loss

$$L(y, f(x)) = (y - f(x))^{2}$$

- Often used for regression tasks
- Rarely used for classification tasks
- Not really robust to outliers

### Mean Absolute Error Loss

$$L(y, f(x)) = |y - f(x)|$$

- Often used for regression tasks
- Rarely used for classification tasks
- More robust to outliers

### **Huber Loss**

A combination of Mean Squared Error and Mean Absolute Error

$$L(y, f(x)) = \begin{cases} \frac{1}{2}(y - f(x))^2 & for |y - f(x)| \le \delta \\ \delta |y - f(x)| - \frac{1}{2}\delta^2, & otherwise \end{cases}$$
Mean Squared Error

### Hinge Loss

$$L(y, f(x)) = \max(0, 1 - yf(x))$$

- Sometimes used for classification problems
- y values expected to be  $\{-1,1\}$  (instead of  $\{0,1\}$ )
- f(x) is expected to be unbounded (i.e. to return values  $(-\infty, +\infty)$ )
- Doesn't penalize "correct" examples



### Variations of Hinge Loss

Squared Hinge Loss

$$L(y, f(x)) = (\max(0, 1 - yf(x)))^{2}$$

Multiclass Variation

$$L(y, f(x)) = \max(0, 1 + \max_{t \neq argmax(y)} f(x)_t - f(x)_{argmax(y)})$$

- Sometimes used for classification problems
- Claimed to be useful in case of a lot of classes

### Cross Entropy

Binary Cross Entropy

$$L(y, f(x)) = -(y \log(f(x)) + (1 - y) \log(1 - f(x)))$$

Categorical Cross Entropy (Multiclass)

$$L(y, f(x)) = \sum_{k=1}^{\infty} y_k \log(f(x)_k)$$

In case of only one class per point

$$L(y, f(x)) = \log(f(x)_{argmax(y)})$$

A primal loss choice for classification problems

### Recap

- For classification problem Cross Entropy Loss most of the times is a safe choice
- For regression problems consider Mean Squared Error or Mean Absolute Error depending on specifics of your data/problem
- Research thoroughly about the best choice thoroughly

# Metrics

### Metrics

- A numerical way to show how good your model is (besides Loss function)
- Most of the times is not optimizable directly
- Show some extra properties of your model that are not obvious from Loss function value

### Accuracy

Easy:

Can be used for any classification task

# Errors in binary classification

#### Predicted class NTrue False Negatives Positives (FN) (TP) Actual Class False True Positives Negatives $\boldsymbol{N}$ (FP) (TN)



### Precision, Recall

#### Predicted class

Negatives

(TN)

Positives

(FP)

$$precision = \frac{TP}{TP + FP} = P(Y = 1|\hat{Y} = 1)$$

$$recall = \frac{TP}{TP + FN} = P(\hat{Y} = 1|Y = 1)$$

### Precision Recall AUC (Area Under the Curve)



Changing threshold (default is 0.5) for decision making we chanage precision and recall

PR AUC shows how our model is sensitive to changes to the threshold in terms of precision and recall

### **ROC AUC**



The idea is the same as in PR AUC – computing area under the curve obtained by changing threshold

$$TPR = \frac{TP}{TP + FN} = P(\hat{Y} = 1|Y = 1)$$

$$FPR = \frac{FP}{FP + TN} = P(\hat{Y} = 0|Y = 0)$$

# Regression Problem

### Regression Problem

- Returning a real value given data
- Distinction from classification not a finite set of possible results
- NN output can be unbounded

- Example 1: predict tumor size
- Example 2: predict age of a human
- Example 3: predict number of cats on the photo
- Example 4: predict price of the house









- We can create a linear model and train its weights
- Linear model:  $f(x) = w_1x_1 + \cdots + w_nx_n + b$
- Loss function:  $L(y, f(x)) = (y f(x))^2$

# Least Squares Linear Regression as a NN



### Deeper Regression Models

- We can create a deep Neural Network for regression models similarly as we do for classification
- Absence of non-linearity at the end is not strict (you can bound your regression if you need)

# Regression Problem via Deep NN



### Loss Functions for Regression

### The most popular ones:

- Mean Squared Error
- Mean Absolute Error
- Huber Loss

This is It For the Third Lecture