Nathania Yuliani Udacity Data Analyst Nanodegree Project 1 – Submission 2 February 13th 2019

Explore Weather Trends

Overview:

In this project, I have analyzed local temperature data in San Francisco, USA and the global temperature data and observed any similarities and differences. I was provided with a database through Udacity portal from where I extracted, manipulated, and visualized the data.

Part 1 – Accessing Data With SQL

Extract San Francisco temperature data with SQL select avg_temp, year from city_data where city = 'San Francisco' order by year

Extract Global temperature data with SQL select avg temp, year from global data order by year

Part 2 – Moving Averages with Excel

I calculated the 10 Years moving averages from both San Francisco and Global temperature data extracted in Part 1. I chose to do 10 Years because the duration is not too long so still can observe the trend and smooth out the fluctuation.

	-				
C11 *		\times \checkmark	$f_{\mathbf{x}}\mid$ =AVE	=AVERAGE(A2:A11)	
	Α	В	С	D	
1	avg_temp	year	10 Years MA		
2	8.72	1750			
3	7.98	1751			
4	5.78	1752			
5	8.39	1753			
6	8.47	1754			
7	8.36	1755			
8	8.85	1756			
9	9.02	1757			
10	6.74	1758			
11	7.99	<u> </u>	8.03		
12	7.19	1/60	7.877		
13	8.77	1761	7.956		
14	8.61	1762	8.239		
15	7.5	1763	8.15		
16	8.4	1764	8.143		
17	8.25	1765	8.132		
		4700	0.000		

I calculated the first moving average by using the built-in Average formula in Excel on the first 10 years' average temperature and then dragged the formula down until the last data.

Part 3 – Line Charts with Excel

Part 4 – Observations

- 1. The city (San Francisco)'s temperature data ranges from 13-15C, where the global temperature data ranges from 7-9C, which means that San Francisco has temperature greater than the global average.
- 2. San Francisco's data is much more fluctuating than the global data.
- 3. The global temperature has been on the rise since 1820, possibly due to global warming and industrialization.
- 4. Based on the 2 line charts, it can be concluded that the temperatures, both in city-level and global-level are rising constantly.