Searching: Balanced Search Trees

Neerja Mhaskar

Dept. of Computing and Software, McMaster University, Canada

Acknowledgments: Material mainly based on the textbook Algorithms by Robert Sedgewick and Kevin Wayne (Chapters 3.3, 6), Prof. Janicki's course slides

McMaster University Comp Sci 2C03 2-3 Search Trees - 1 / 45

Smybol Table Review

implementation	guarantee			average case			ordered	key
	search	insert	delete	search hit	insert	delete	ops?	interface
sequential search (unordered list)	N	N	N	½ N	N	½ N		equals()
binary search (ordered array)	lg N	N	N	lg N	½ N	½ N	•	compareTo()
BST	N	N	N	1.39 lg <i>N</i>	1.39 lg <i>N</i>	\sqrt{N}	~	compareTo()
goal	log N	log N	log N	$\log N$	$\log N$	$\log N$	~	compareTo()

Challenge: Guarantee performance.

Answer: 2-3 trees, left-leaning red-black BSTs, B-trees.

McMaster University Comp Sci 2C03 2-3 Search Trees - 1 / 45

2-3 Search Trees

Allow 1 or 2 keys per node.

- 2-node: one key, two children.
- 3-node: two keys, three children.

Symmetric order. Inorder traversal yields keys in ascending order.

Perfect balance. Every path from root to null link has same length - how to maintain?

2-3 Search Tree: Search - I

Search

- Compare search key against keys in node.
- Find interval containing search key.
- Follow associated link (recursively).

See Demo - https://algs4.cs.princeton.edu/lectures/

McMaster University Comp Sci 2C03 2-3 Search Trees - 3 / 45

2-3 Search Tree: Search - II

successful search for H

unsuccessful search for B

B is between A and C so look in the middle link is null so B is not in the tree (search miss)

2-3 Search Tree: Insert I

Insertion into a 2-node at bottom

• Add new key to 2-node to create a 3-node.

2-3 Search Tree: Insert II

Insertion into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node (3 keys and 4 links) into parent.
- Repeat up the tree, as necessary.
- If you reach the root and it's a 4-node, split it into three 2-nodes.

2-3 Search Tree: Insert II

Insertion into a 3-node at bottom into a single 3-node root.

2-3 Search Tree: Insert a single 3-node whose parent is 2-node

2-3 Search Tree: Insert a single 3-node whose parent is 3-node

McMaster University Comp Sci 2C03 2-3 Search Trees - 9 / 45

2-3 tree construction demo

See Demo - https://algs4.cs.princeton.edu/lectures/

2-3 tree Analysis: Local transformations in a 2-3 Tree

Splitting a 4-node is a local transformation: constant number of operations as it involves one of six transformations:

The 4-node may be the root; it may be the left or right child of a 2-node; or it may be the left, middle, or right child of a 3-node.

2-3 tree Analysis: Global properties in a 2-3 tree

Invariants. Maintains symmetric order and perfect balance.

Proof. Each transformation maintains symmetric order and perfect balance.

2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.

- Worst case: $\log_2 N$ all two nodes in the tree
- Best case: $\log_3 N \approx .631 \log_2 N$ all three nodes in the tree

Bottom line. Guaranteed logarithmic performance for search and insert.

ST implementation

Direct implementation is complicated, because:

- Maintaining multiple node types is cumbersome.
- Need multiple compares to move down tree.
- Need to move back up the tree to split 4-nodes.
- Large number of cases for splitting.

ST implementations: summary

implementation	guarantee			average case			ordered	key	
	search	insert	delete	search hit	insert	delete	ops?	interface	
sequential search (unordered list)	N	N	N	½ N	N	½ N		equals()	
binary search (ordered array)	lg N	N	N	lg N	½ N	½ N	~	compareTo()	
BST	N	N	N	1.39 lg <i>N</i>	1.39 lg <i>N</i>	\sqrt{N}	~	compareTo()	
2-3 tree	c lg N	c lg N	c lg N	c lg N	c lg N	c lg N	~	compareTo()	
constant c depend upon implementation									

Red-Black Trees

Left-leaning red-black BSTs

- Represent 2-3 tree as a BST.
- Use "internal" left-leaning links as "glue" for 3-nodes.

An equivalent definition of Red-Black Trees

A BST such that:

- No node has two red links connected to it.
- Every path from root to null link has the same number of black links. –
 "Perfect Black Balance"
- Red links lean left.

Left-leaning red-black BSTs: 1-1 correspondence with 2-3 trees

Key property. 1-1 correspondence between 2-3 and LLRB.

Red-black BST representation

Each node is pointed to by precisely one link (from its parent) \Rightarrow can encode color of links in nodes (use Boolean variable color).

Boolean variable color - is true if the link from the parent is red, and false if it is black. By convention, null links are black.

In the book, the color of a node ⇔ color of the link pointing to it

```
private static final boolean RED = true;
private static final boolean BLACK = false;

private class Node
{
    Key key;
    Value val;
    Node left, right;
    boolean color; // color of parent link
}

private boolean isRed(Node x)
{
    if (x == null) return false;
    return x.color == RED;
}

null links are black
```

Search implementation for red-black BSTs

Observation. Search is the same as for elementary BST (ignore color).

but runs faster because of better balance

```
public Val get(Key key)
{
   Node x = root;
   while (x != null)
   {
      int cmp = key.compareTo(x.key);
      if (cmp < 0) x = x.left;
      else if (cmp > 0) x = x.right;
      else if (cmp == 0) return x.val;
   }
   return null;
}
```

Remark. Most other ops (e.g., floor, iteration, selection) are also identical.

Insertion in a LLRB tree: overview

Basic strategy. Maintain 1-1 correspondence with 2-3 trees.

During internal operations, maintain:

- Symmetric order.
- Perfect black balance.

[but not necessarily color invariants]

How? Apply elementary red-black BST operations: rotation and color flip.

Elementary red-black BST operations: Left Rotation I

Left rotation. Orient a (temporarily) right-leaning red link to lean left.

Elementary red-black BST operations: Left Rotation II

Left rotation. Orient a (temporarily) right-leaning red link to lean left.

Elementary red-black BST operations: Right Rotation I

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

Elementary red-black BST operations: Right Rotation II

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

Right rotate (left link of h)

Invariants. Maintains symmetric order and perfect black balance.

Note: Implementing a right rotation that converts a left-leaning red link to a right-leaning one amounts to the same code, with left and right interchanged.

Elementary red-black BST operations: Color Flip I

Color Flip. Recolor to split a (temporary) 4-node.

```
less than A A and E E and S greater than B
```

```
void flipColors(Node h)
{
    h.color = RED;
    h.left.color = BLACK;
    h.right.color = BLACK;
}
```

Elementary red-black BST operations: Color Flip II

Color Flip. Recolor to split a (temporary) 4-node.

Flipping colors to split a 4-node

```
void flipColors(Node h)
{
    h.color = RED;
    h.left.color = BLACK;
    h.right.color = BLACK;
}
```

Insertion in a LLRB tree: Insert into a single 2-node tree

Warmup 1. Insert into a tree with exactly one 2-node.

Figure 1: Case: 1

Figure 2: Case: 2

Insertion in a LLRB tree: Insert into a 2-node at the bottom - I

Case 1. Insert into a 2-node at the bottom.

- Insert keys into a red-black BST as usual into a BST, adding a new node at the bottom (respecting the order), but always connected to its parent with a red link.
- If the parent is a 2-node, then the same two cases just discussed are effective.
- In particular, if the new node is attached to the left link, the parent simply becomes a 3-node;
- If it is attached to a right link, we have a 3-node leaning the wrong way - fix it with a left rotation!

Figure 3: Case: 1

Insertion in a LLRB tree: Insert into a 2-node at the bottom - II

Case 1. Insert into a 2-node at the bottom.

- Insert keys into a red-black BST as usual into a BST, adding a new node at the bottom (respecting the order), but always connected to its parent with a red link.
- If the parent is a 2-node, then the same two cases just discussed are effective.
- In particular, if the new node is attached to the left link, the parent simply becomes a 3-node;
- If it is attached to a right link, we have a 3-node leaning the wrong way - fix it with a left rotation!

Insert into a 2-node at the bottom

Figure 4: Case: 2

Insert into a tree: Insert a node into a two node tree (single 3-node)

Warm up. Insert a node into a two node tree (single 3-node)

Insert into a tree: Insert a node at the bottom - I

Insert into a tree: Insert a node at the bottom - II

Keeping the root black

- A red root implies that the root is part of a 3-node, but that is not the case, so we color the root of the tree black after each insertion.
- Note that the black height of the tree increases by 1 whenever the color of the root is flipped from black to red.

See Demo - https://algs4.cs.princeton.edu/lectures/

Inserting in a LLRB Tree: Code

Same code for all cases.

- Right child red, left child black (right leaning link): rotate left
- Left child, left-left grandchild red (two red lefts in a row): rotate right.
- Both children red: flip colors.

Passing a red link up a red-black BST

RBT Analysis

Proposition. Height of tree is $\leq 2\log_2 N$ in the worst case.

Below is the typical red-black BST built from random keys (null links omitted)

Property. Height of tree is ${\sim}1.0\log_2 N$ in typical applications.

ST implementations: summary

implementation	guarantee			average case			ordered	key
	search	insert	delete	search hit	insert	delete	ops?	interface
sequential search (unordered list)	N	N	N	½ N	N	½ N		equals()
binary search (ordered array)	lg N	N	N	lg N	½ N	½ N	~	compareTo()
BST	N	N	N	1.39 lg <i>N</i>	1.39 lg <i>N</i>	\sqrt{N}	V	compareTo()
2-3 tree	c lg N	$c \lg N$	c lg N	c lg N	c lg N	c lg N	~	compareTo()
red-black BST	2 lg N	2 lg N	2 lg <i>N</i>	1.0 lg N*	1.0 lg <i>N</i> *	1.0 lg N*	~	compareTo()

 * exact value of coefficient unknown but extremely close to 1

B-Trees

File System Model

Page. Contiguous block of data (e.g., a file or 4,096-byte chunk).

Probe. First access to a page (e.g., from disk to memory).

Property. Time required for a probe is much larger than time to access data within a page.

Cost model. When studying algorithms for external searching, we count page accesses (the number of times a page is accessed, for read or write); that is, number of probes.

Goal. Access data using minimum number of probes.

McMaster University Comp Sci 2C03 B-Trees - 40 / 45

B-Trees

B-tree. data structures generalize the 2-3 trees, and are based on a multiway balanced search trees. They are particularly devised for external searching.

B-tree of order M.

- ullet Allows up to M-1 key-link pairs per node, where link is the address of a page instead of data.
- Choose M (an even number) as large as possible so that M links fit in a page, e.g., M = 1024.
- At least 2 key-link pairs at root.
- At least M/2 key-link pairs in other nodes.
- External nodes contain client keys, and have references to actual data.
- Internal nodes contain copies of keys to guide search.

Example: In a B-tree of order 4, each node has at most 3 and at least 2 key-link pairs.

McMaster University Comp Sci 2C03 B-Trees - 41 / 45

B-Tree Example - I

A special key (*) - known as a sentinel - that is defined to be less than all other keys is used in B-Trees. It helps to implement B-trees.

Anatomy of a B-tree set (M = 6)

McMaster University Comp Sci 2C03 B-Trees - 42 / 45

Search/Insert in a B-tree

Search in a B-tree

- Start at root.
- Find interval for search key and take corresponding link.
- Search terminates in external node.

Insert in a B-tree

- Search for new key.
- Insert at bottom.
- Split nodes with M key-link pairs on the way up the tree.

McMaster University Comp Sci 2C03 B-Trees - 43 / 45

Balance in B-Trees

Proposition. A search or an insertion in a B-tree of order M with N keys requires between $\log_{M-1}N$ and $\log_{M/2}N$ probes.

Pf. All internal nodes (besides root) have between M/2 and M-1 links.

In practice. Number of probes is at most 4. For instance, M=1024 and $N=62\,$ billion, $\log_{M/2}N\leq 4.$

Optimization. Always keep root page in memory.

McMaster University Comp Sci 2C03 B-Trees - 44 / 45

Balanced Trees Uses

Red-black trees are widely used as system symbol tables.

- Java: java.util.TreeMap, java.util.TreeSet.
- C++ STL: map, multimap, multiset.
- Linux kernel: completely fair scheduler, linux/rbtree.h.

B-tree variants. B+ tree, B* tree, B# tree, ...

B-trees (and variants) are widely used for file systems and databases.

- Windows: NTFS.
- Mac: HFS, HFS+.
- Linux: ReiserFS, XFS, Ext3FS, JFS.
- Databases: ORACLE, DB2, INGRES, SQL, PostgreSQL.

McMaster University Comp Sci 2C03 B-Trees - 45 / 45