

Equilibrium constants for hydrolysis and associated equilibria in critical compilations

Europium

Equilibrium reactions	$\lg K$ at infinite dilution and $T = 298 \text{ K}$			
	Baes and Mesmer, 1976	NIST46	Hummel et al., 2002	Brown and Ekberg, 2016
$Eu^{3+} + H_2O \rightleftharpoons Eu(OH)^{2+} + H^+$	-7.8		-7.64 ± 0.04	-7.66 ± 0.05
$Eu^{3+} + 2 H_2O \rightleftharpoons Eu(OH)_2^+ + 2 H^+$			-15.1 ± 0.2	
$Eu^{3+} + 3 H_2O \rightleftharpoons Eu(OH)_3 + 3 H^+$			-23.7 ± 0.1	
$Eu^{3+} + 4 H_2O \rightleftharpoons Eu(OH)_4^- + 4 H^+$			-36.2 ± 0.5	
$2 \text{ Eu}^{3+} + 2 \text{ H}_2\text{O} \rightleftharpoons \text{Eu}_2(\text{OH})_2^{4+} + 2 \text{ H}^+$			-	-14.1 ± 0.2
$3 \text{ Eu}^{3+} + 5 \text{ H}_2\text{O} \rightleftharpoons \text{Eu}_3(\text{OH})_5^{4+} + 5 \text{ H}^+$			-	-32.0 ± 0.3
$Eu(OH)_3(s) + 3 H^+ \rightleftharpoons Eu^{3+} + 3 H_2O$	17.5		17.6 ± 0.8 (am) 14.9 ± 0.3 (cr)	16.48 ± 0.30
			(
$Eu(OH)_3(s) \rightleftharpoons Eu^{3+} + 3 OH^-$		-24.5 ± 0.7 (am) -26.5 (cr)		

- C.F. Baes and R.E. Mesmer, The Hydrolysis of Cations. Wiley, New York, 1976, p. 137.
- P.L. Brown and C. Ekberg, Hydrolysis of Metal Ions. Wiley, 2016, pp. 135–145.
- W. Hummel, U. Berner, E. Curti, F.J. Pearson, T. Thoenen, TECHNICAL REPORT 02-16, Nagra/ PSI Chemical Thermodynamic Data Base 01/01, 2002.

Distribution diagrams

These diagrams have been computed at two Eu concentrations (1 mM = $1x10^{-3}$ mol L⁻¹ and 1 μ M = $1x10^{-6}$ mol L⁻¹) with the 'best' equilibrium constants above (in green). Calculations assume T = 298 K for the limiting case of zero ionic strength (*i.e.*, even neglecting plotted ions).

