Детерминированные вычислительные процессы с управлением по аргументу. Численное интегрирование с использованием функции пользователя.

Цель: научиться реализовывать алгоритмы на детерминированные вычислительные процессы с управлением по аргументу средствами компилятора Free Pascal на примерах численного интегрирования с использованием функции пользователя

Оборудование: ПК, Pascal ABC

Задание 1.

Вычислить определенный интеграл разными методами

$$\int_{0.4}^{1.2} \frac{\cos(x^2+0.8) dx}{1.5+\sin(0.6x+0.5)}.$$

Метод трапеций

Имя	Смысл	Тип
n	переменная	integer
a,b,h	постоянные	real
X	параметр цикла	real
sum,fa,fb,fc	промежуточные	real
I	результирующая	real

```
program lr41;
var a,b,h,sum,x,I,fa,fb,fc:real;
  n:integer;
function f(x:real):real;
begin
f:=\cos(x^*x+0.8)/(1.5+\sin(0.6^*x+0.5));
end;
begin
read(n);
a = 0.4;
b := 1.2;
h:=(b-a)/n;
fa := f(a);
fb:=f(b);
fc := (fa+fb)/2;
sum:=0;
x := a+h;
while x<=b-h do
  begin
  sum:=sum+f(x);
  x := x + h;
  end;
I:=h*(fc+sum);
write(I);
end.
```

Метод парабол

Имя	Смысл	Тип
n	переменная	integer
a,b,h	постоянные	real
X	параметр цикла	real
sum1,sum2,fa,fb,p	промежуточные	real
Ι	результирующая	real

program lr42; var a,b,h,sum1,sum2,x,p,I,fa,fb:real; n:integer;

```
function f(x:real):real;
begin
f := \cos(x \cdot x + 0.8) / (1.5 + \sin(0.6 \cdot x + 0.5));
end;
function s(x,p:real):real;
var sum:real;
begin
sum:=0;
while x<=p do
  begin
  sum:=sum+f(x);
  x := x + 2 * h;
  end;
s:=sum;
end;
begin
read(n);
a = 0.4;
b:=1.2;
h:=(b-a)/n;
fa := f(a);
fb := f(b);
x := a+h;
p:=b-h;
sum1:=s(x,p);
x := a + 2 * h;
p := b-2*h;
sum2:=s(x,p);
I:=h/3*(fa+fb+4*sum1+2*sum2);
write(I);
end.
```

Результаты вычислений:

N	I	I
Количество разбиений	Метод трапеций	Метод парабол
10	0.0296307950489465	0.0298438687274363
100	0.0318263475573783	0.0337824800069678
1000	0.0298419543190694	0.0302476387534899
10000	0.0298623176130168	0.0298826570558386

Задание 2.

Вычислить:

$$y = \frac{\sum_{i=1}^{n} \left(\frac{1}{(i+1)!} \cdot \frac{x^{2i+1}}{2i+1} \right)}{5.5 + x^{2} + (3n)!}$$

где
$$x = 1$$
, $n = 5$

Имя	Смысл	Тип
n,x	переменные	integer
i	параметр цикла	integer
sum,c	промежуточные	real
r	промежуточная	integer
у	результирующая	real

program lr43; var x,n,i,r:integer; c,y,sum:real;

function fact(n:integer):integer;

```
var f,i:integer;
begin
f:=1;
for i:=1 to n do
  f:=f*i;
fact:=f;
end;
begin
n:=5;
x=1;
sum:=0;
for i:=1 to n do
  begin
  r := 2*i+1;
  c := (1/fact(i+1))*(exp(r*ln(x))/r);
  sum:=sum+c;
  end;
y:=sum/(5.5+x*x+fact(3*n));
write(y);
end.
Результат:
```

Вывод.

1.03279715802833E-10

Для более эффективной работы программы лучше использовать пользовательские функции, которые приводят к более естественному виду саму программу и становится проще ее эксплуатировать и применять. Также важна польза промежуточных переменных в эффективности работы программы.