ENGINEERING HYDROLOGY

ANSWERS FOR THE PROBLEMS TO BE SOLVED

(For the ones included in CE 378 course content)

Chapter 1

1.3. E= 198.8 mm

 $E_{pan}= 284 \text{ mm}$

- 1.4. $\Delta S = -17.513*10^6 \text{ m}^3$
- **1.5.** Surface runoff depth = 68 mm

Surface runoff volume = $4.964*10^6 \text{ m}^3$

Ave. rate = 1915 lt/s

- 1.6. Surface runoff volume = $315*10^3$ m³
- 1.7. E = 950 mm

 $E = 674745 \text{ m}^3$

Chapter 3

3.6.

Volume = $8.04 * 10^6 \text{ m}^3$

3.7. Mass curve

Hyetograph

$$V = 1.596*10^6 \text{ m}^3$$

3.9. Plot Thiessen polygons and isohyetal map and find areas as %, then average values will be as follows:

Thiesen polygons method $P_{ave} = 28.85 \text{ mm}$

Isohyetal map method $P_{ave} = 26.62 \text{ mm}$

3.10. Intensities in mm/hr for the durations are given below.

Duration (hr)	0-2	2-3	3-4	4-6	6-8
Arithmetic mean	7.0	12.5	14.0	13.75	14.5
Thiessen polygons	7.35	11.52	12.72	13.68	13.99

- **3.14.** $Q_p = 18.57 \text{ m}^3/\text{s}$
- **3.15.** $Q_p = 2.16 \text{ m}^3/\text{s}$

Chapter 4

4.3. a)
$$b = 1.29$$

b)
$$Q = 1400 \text{ m}^3/\text{s}$$

4.4.
$$\sum Q = 13.74 \text{ m}^3/\text{s}$$

4.5.
$$\overline{Q} = 3.29 \text{ m}^3/\text{s}, \text{ v}_{\text{ave}} = 1.08 \text{ m/s}$$

4.6. a)
$$63.1 \text{ m}^3/\text{s}$$

d)
$$100.94*10^6 \text{ m}^3$$

b) 24.5
$$m^3/s$$

c)
$$30.74 \text{ m}^3/\text{s}$$

f)
$$0.00142 \text{ m}^3/\text{s/km}^2$$

4.7. a)
$$202.6 \text{ m}^3/\text{s}$$

d)
$$675.57*10^6 \text{ m}^3$$

b)
$$40.8 \text{ m}^3/\text{s}$$

c)
$$101.5 \text{ m}^3/\text{s}$$

4.8. a)
$$47.23 \text{ m}^3/\text{s}$$

b)
$$32.87 \text{ m}^3/\text{s}$$

d)
$$100.3 \text{ m}^3/\text{s}$$

4.9. e)
$$43.25 \text{ m}^3/\text{s}$$

Chapter 6

b)
$$d = 26 \text{ mm}$$

c)
$$\Phi$$
-index = 6.92 mm/hr

b)
$$f_0 = 93 \text{ mm/hr}$$
, $f_f = 7.5 \text{ mm/hr}$, $k = 0.036 \text{ 1/min}$

6.6. a)
$$d = 71.17 \text{ mm}$$

b)
$$\Phi$$
-index = 19.58 mm/hr

$$\Phi$$
-index = 5.5 mm/hr

$$t_r = 4 hr$$

$$F = 28 \text{ mm}$$

Chapter 7

7.11. Hydrograph in histogram form:

7.12 Hydrograph in histogram form:

- 7.13. c) $V = 68.14 * 10^6 \text{ m}^3$,
- **d)** d = 17.8 mm
- **7.14.** Plot the hydrograph, and see that recession part is between 20 and 30 days. $\alpha = 0.05822\ 1/day,\ K_r = 0.9434$

7.15.

t (hr)	0	3	6	9	12	15	18	21	24
$UH_3 (m^3/s)$	0	24	46	40	34	22	14	4	0

7.16.

t (hr)	0	1	2	3	4	5	6	7	8
a) UH ₃ (m ³ /s)	0	6.7	16.7	39.3	36.7	38	34.7	28	22.7
b) UH ₁ (m ³ /s)	0	20	30	38	42	34	28	22	18

9	10	11	12	13	14	15	16
17.3	12.7	8	4.7	2.7	1.3	.7	0
12	8	4	2	2	0		

d) $A = 93.6 \text{ km}^2$

7.17. a) A = 726 sq-mi

1) 11 120 50	1 1111							
t (hr)	0	1	2	3	4	5	6	7
SH (m ³ /s)	0	135	1040	3310	5935	5605	3560	2320

8	9	10	11	12	13	14	15
1715	1285	925	587.5	315	135	30	0

c) $Q_p = 3561$ cfs at 4^{th} day

7.18. a) d = 16 mm,

b) tr = 2 hr

<u>c)</u>

Ľ	<i>)</i>									
	t (min)	0	15	30	45	60	75	90	105	120
	$UH_2(m^3/s)$	0	225	450	375	300	225	150	75	0

7.19 a)

 $\Phi_{index} = 5mm/hr$

b) SH = $3 \text{ UH}_6 + (9 \text{ hr.lag.}) 3 \text{ UH}_3$

c)												
	t (hr)	0	1	2	3	4	5	6	7	8	9	10
	SH (m ³ /s)	10	13	22	40	55	67	76	78	73	55	46

Ī	11	12	13	14	15	16	17	18	19	20
	52	79	97	100	82	64	46	28	16	10

d) $A = 54 \text{ km}^2$

7.20. Separation by simple method is not possible (all three ways), but it is possible with approximate and Barnes (given below) methods.

 $d = 0.254 \text{ mm}, \Phi = 13.492 \text{ mm/hr},$

 $F = 10.479 \text{ mm}, t_r = 30 \text{ min},$

 $\alpha = 0.02985$ 1/hr, q = 0.040 m³/s

7.21. a), b)

~), ~)									
t (hr)	0	1	2	3	4	5	6	7	8
SRH (m ³ /s)	0	330	750	990	1107	1185	954	561	333
TRH (m ³ /s)	30	360	780	1020	1137	1215	984	591	363

9	10	11
189	81	0
219	111	30

c)
$$A = 97.2 \text{ km}^2$$

7.23. a

- **c)** d = 0.375 mm
- **d)** $\Phi = 33.75 \text{ mm/hr}$

e)

t (min)	0	10	20	30	40	50
UH ₁₀ (It/s)	0	413.3	3893.3	9922.7	6296	3101.3

60	70	80	90	100	110	120
1586.7	872	429.3	178.7	5.33	2.67	0

Chapter 8

Plot the inflow and outflow values, and then plot the total storage values, which are given 8.5. below.

t (hr)	0	6	12	18	24	30	36	42
ΣS (10 ⁶ m ³)	0	0,54	4,86	16,74	27,54	34,02	31,86	27,00

48	54	60	66	72	78	84
21,60	15,66	9,18	4,86	2,16	0,54	0

d)
$$S_{max} = 34.02*10^6 \text{ m}^3$$

8.6.

t (hr)	0	2	4	6	8	10	12	14	16	18	20
Q (m ³ /s)	5	5.5	7	9.5	12	13.5	14	14.5	14.5	14	13.5

I										62
I	13	12.5	12	11.5	11	10.5	10	9.5	9	 5

- **8.7.** a) $Q_p = 185 \text{ m}^3/\text{s}$, $t_p = 48 \text{ hr}$
 - b) H = 0.38 m
- **8.8.** $Q_p = 815.6 \text{ m}^3/\text{s}, t_b = 60 \text{ hr}$

Attenuation = 434.4 m³/s, Translation = 9 hr, Lengthening = 36 hr

Chapter 10

- a) June October 10.4.
 - **b)** $7:4*10^6 \text{ m}^3$

d)

Mon.	10	11	12	1	2	3	4	5	6	7	8	9
Cont.	1.4	.2	0	.8	2.2	5	7.2	7.4	7.2	6.4	4.8	3

- 10.6.
- Res. Cap. = $21.717*10^6 \text{ m}^3$ Res. Cap. = $21.717*10^6 \text{ m}^3$ 10.7.

Chapter 12

- **12.9.** $Q_v = 5.75 \text{ lt/s/m}$
- **12.10.** S = 0.001
- **12.11.** t = 176.68 hr
- **12.12.** s = 7.456 m
- 12.13. a) impervious boundary, at t = 10.62 min
 - **b)** s = 4.62 cm
- **12.14.** s = 0.165 m
- **12.15.** s = 0.48 m
- **12.16.** a) at OW_1 , s = 0.29 m, at OW_2 , s = 0.60 m
 - **b)** at PW₁, s = 0.01 m, at OW₂, s = 0.0

12.17. a)

- **12.18.** $T = 8.36*10^{-4} \text{ m}^2/\text{min}$, $S = 5.016*10^{-6}$ **12.19.** It can be used if pumping time is more than 67 min.