01:XXX:XXX - Homework n

Pranav Tikkawar

December 10, 2024

1 Chapter 11: Confidence Intervals

Given a α such that $0 < \alpha < 1$, an <u>Interval Estimation</u> stratgey provides two statistics (r.v) L and R s.t $P(L < \theta < R) = 1 - \alpha$. The interval [L, R] is called a $(1 - \alpha)\%$ confidence interval for θ .

We can say that if you repeat the expirment N times and gte N intervals, then $(1 - \alpha)\%$ of the intervals will contain the true value of θ .

Definition (Confidence Interval). A confidence interval with $(1-\alpha)$ confidence level are two statistics L and R such that $P(L < \theta < R) = 1 - \alpha$.

Remark. If someone says after an expirment that $2 < \lambda < 2.1$ with 90% confidence, it means that on average that 90% of the intervals will contain the true value of λ .

We want CI to be symetric about \bar{X}

CI so far: $N(\mu, \sigma^2)$ population

1. σ^2 known: $\bar{X} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$

2. σ^2 unknown: $\bar{X} \pm t_{\alpha/2,n-1} \frac{S}{\sqrt{n}}$

We can think of $z_{\alpha/2}$ in the normal curve as the shaded area in the tails.

New Context: Two pops $N(\mu_1, \sigma_1^2)$ and $N(\mu_2, \sigma_2^2)$ and sample from both n_1 and n_2 from each

$$X_{11} \dots X_{1n_1} \sim N(\mu_1, \sigma_1^2)$$

$$X_{21} \dots X_{2n_2} \sim N(\mu_2, \sigma_2^2)$$

These are independent but not necessarily identically distributed.

Let \bar{X}_1 and \bar{X}_2 be the sample means and S_1^2 and S_2^2 be the sample variances.

Want CI for $\mu_1 - \mu_2$

Case 1: σ_1^2 and σ_2^2 are known.

We can use point estimators:

$$\bar{X}_1 - \bar{X}_2 \sim N(\mu_1 - \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2})$$

$$\bar{X}_1 - \bar{X}_2 \pm z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

Case 2: σ_1^2 and σ_2^2 are unknown. but $\sigma_1^2 = \sigma_2^2$ we can define a pooled sample variance:

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$

Also

$$\frac{(n_1 + n_2 - 2)S_p^2}{\sigma^2} = \frac{(n_1 - 1)S_1^2}{\sigma^2} + \frac{(n_2 - 1)S_2^2}{\sigma^2} \sim \chi_{n_1 + n_2 - 2}^2$$

Remark. This is a weighted average of the sample variances. with weights $n_1 - 1$ and $n_2 - 1$

Remark.

$$S_p^2 := \frac{\sum_{i=1}^{n_1} (X_{1i} - \bar{X}_1)^2 + \sum_{i=1}^{n_2} (X_{2i} + \bar{X}_2)^2}{n_1 + n_2 - 2}$$
$$\sim \chi_{n_1 + n_2 - 2}^2$$

Remark. Then the r.v T is

$$T = \frac{\bar{X}_1 - \bar{X}_2 - (\mu_1 - \mu_2)}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t_{n_1 + n_2 - 2}$$

Consider making a CI for σ^2

Remark. We know that S^2 is a point estimator for σ^2

$$K = \frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$$

Consider the graph of the χ^2 distribution. It is definied from $0, \infty$ and we can trap an α area in the tails.

We can call this $(\chi_{n-1}^2)_{\alpha/2}$ and $(\chi_{n-1}^2)_{1-(\alpha/2)}$ Notice the non symmetry of the χ^2 distribution.

We can say that $P\left(\left(\chi_{n-1}^2\right)_{\alpha/2} < K < \left(\chi_{n-1}^2\right)_{1-(\alpha/2)}\right) = 1 - \alpha$ In a more insightful form we have

$$P\left(\frac{(n-1)S^2}{\chi_{n-1,\alpha/2}^2} < \sigma^2 < \frac{(n-1)S^2}{\chi_{n-1,1-\alpha/2}^2}\right) = 1 - \alpha$$

Definition (F distribution). F distribution with $\nu_1 > 0$ and $\nu_2 > 0$ degrees of freedom is defined by

$$F = \frac{\frac{U}{\nu_1}}{\frac{V}{\nu_2}}$$

where $U \sim \chi^2_{\nu_1}$ and $V \sim \chi^2_{\nu_2}$ ie $F = \frac{U\nu_2}{V\nu_1}$

Remark. Order is important

Example. $\{X_i\}_{i \in range(5)}$ independent standard normal r.v.

Then $\frac{\alpha(Z_1^2+Z_2^2)}{Z_3^2+Z_4^2+Z_5^2} \sim F_{2,3}$ where $\alpha=3/2$ This is due to the fact that $Z_i^2 \sim \chi_1^2$ and $\sum_i^n Z_i^2 \sim \chi_n^2$

Theorem 1. PDF of f_{ν_1,ν_2} is

$$g(x) = \frac{\Gamma\left(\frac{\nu_1 + \nu_2}{2}\right)}{\Gamma\left(\frac{\nu_1}{2}\right)\Gamma\left(\frac{\nu_2}{2}\right)} \left(\frac{\nu_1}{\nu_2}\right)^{\nu_1/2} x^{\frac{\nu_1}{2} - 1} \left(1 + \frac{\nu_1}{\nu_2}x\right)^{-\frac{\nu_1 + \nu_2}{2}}$$

If we consider two normal pops $N(\mu_1, \sigma_1^2)$ and $N(\mu_2, \sigma_2^2)$ if

$$\frac{(n_1-1)S_1^2}{\sigma_1^2} \sim \chi_{n_1-1}^2 and \frac{(n_2-1)S_2^2}{\sigma_2^2} \sim \chi_{n_2-1}^2$$

then

$$\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F_{n_1-1,n_2-1}$$

This is useful for a CI for ratio of variances.

Hypothesis Testing

Definition (Hypothesis Testing). It is an assertion about the theoretical distribution. for example about parameters.

Example. In a coin toss expiriment C Ber(p) "coin is unfair": $p \neq 0.5$

It is simple if it completely determines the distribution It is not simple it is composite

Example. Coin is fair (ie p = 0.5) is a simple hypothesis

Definition (Statistical Test). it is a criterion used to ecide whether to reject (or acept) one hypothesis called the null hypothesis H_0 in favor of an alternative hypothesis H_1 .

Chapter 12

Example. $N(\mu, \sigma^2 = 4)$ sample to get $\{X_i\}$ want a test to find $\bar{X} < C$ $H_0: \mu = 4$ $H_1: \mu = 1$ $\alpha = P(\text{reject } H_0 | H_0 \text{ is true})$ $\beta = P(\text{accept } H_0 | H_1 \text{ is true})$ We found that if α is small, then β is not if n is fixed. Increasing n will decrease β

```
Example. Consdier Exp(\lambda) H_0: \lambda = 4 H_1: \lambda = 1 Suppose we get \{X_i\} \bar{X} < C Find \alpha and \beta for a fixed C > 0 Assume sample size is 1 PDF is f(x) = e^{-x/\lambda}/\lambda Thus \alpha = P(\bar{X} < C|\lambda = 4) \beta = P(\bar{X} > C|\lambda = 1)
```

We can use the CDF of the exponential distribution to find these values.

Context:

Given pdf type, parameters unnown:

Two statements: H_0 and H_1

Base on sample decide among these two.

Test spifies criterion on sample under which H_0 is rejected.

Where if Outcomes falls H_0 is rejected

This reigon is called the critical region.

With error $\alpha = P(\text{reject } H_0 | H_0 \text{ is true})$

 α is the area of the critical region or level of significance.

Now define $1 - \beta$ as the power of the test.

Definition (Power of a Test). The power of a test is the probability of rejecting H_0 when H_1 is true.

ie $1 - \beta = P(\text{reject } H_0 | H_1 \text{ is true})$

If we have multiple x_i we use jpdf.

Definition (Neyman-Pearson Lemma). Suppose $H_0: \theta = \theta_0$ and $H_1: \theta = \theta_1$

These are both simple

Let $L_0(x_1...x_n) = f(x_1...x_n|\theta_0)$ ie the jpf of $\theta = \theta_0$

Similarly $L_1(x_1...x_n) = f(x_1...x_n|\theta_1)$ ie the jpf of $\theta = \theta_1$

Suppose C is a reigon in the coutocme space where $L_0/L_1 \leq k$

But outside $C L_0/L_1 > k$

Then the test that rejects H_0 if $L_0/L_1 \leq k$ is the most powerful test of size α

Example. $N(\mu, \sigma^2)$

 $H_0: \mu = 1$

 $H_1: \mu = 3$

Find max power crit region

 $L_0 = f(x_1...x_n|\mu=1)$

 $L_1 = f(x_1...x_n | \mu = 3)$ $L_0/L_1 = \frac{e^{-\frac{1}{2\sigma^2} \sum_i^n (x_i - 1)^2}}{e^{-\frac{1}{2\sigma^2} \sum_i^n (x_i - 3)^2}} = e^{-\frac{1}{2} \sum_i^n ((x_i - 1)^2 - (x_i - 3)^2)}$

$$e^{-\sum_{i}^{n}(2x_{i}-4)} \le k$$

Definition (Likelihood Ratio Test). Last class considered the NPL for simple hypothesis.

 $H_0: \theta = \theta_0$

 $H_1:\theta=\theta_1$

 L_0, L_1 are functions of $x_1...x_n$

 $C = \{x_1 ... x_n | L_0 / L_1 \le k\}$

For some k

aka it is smaller up to a scaling factor.

Then C is the Critical region with max power $(1-\beta)$ among all tests of same α

We can consider w, w' as two non-intersection subsets of the parameter space Consider that $H_0: \theta \in w$ and $H_1: \theta \in w'$

Example. $N(\mu, \sigma^2 = 1)$

 $H_0: \mu = 2$

 $H_1: \mu \neq 2$

Clealry this is simple and composite hypothesis respectively.

$$w = \{2\}$$
 and $w' = R \setminus \{2\}$

"Meaningful" tests Reject H_0 iff the Likelihood that Θ is in w is small. We can see that Likelihood is now

$$L_w(x_1...x_n) = \max_{\theta \in w} f(x_1...x_n|\theta)$$

$$L_{\Omega} = \max_{\theta \in \Omega} f(x_1 ... x_n | \theta)$$

Let $\Lambda = \frac{L_w}{L_{\Omega}}$

Remark. L_{Ω} is at least as large as L_w Thus Λ is in 0, 1

Definition (Likelihood Ratio Test). Reject H_0 if $\Lambda \leq k$ where k is fixed number between 0 and 1

Example. $N(\mu, \sigma^1 = 1) \ H_0 : \mu = 2$

 $H_1: \mu \neq 2$

Now when we have $L(x_1...x_n|\mu)$ for this to maximize we take a same method as MLE. We see that $\mu = \mu_{MLE} = \bar{X}$

So for Likelihood ratio statistic

$$\Lambda = \frac{L_w}{L_{\Omega}}$$

$$= e^{-\frac{1}{2}\sum_{i}^{n}(x_i - 2)^2} / e^{-\frac{1}{2}\sum_{i}^{n}(x_i - \bar{X})^2}$$

Now we can simplify since the function is monotone inc.

thus

$$ln(\Lambda) = \frac{1}{2} \sum_{i=1}^{n} (x_i - \bar{X})^2 - \frac{1}{2} \sum_{i=1}^{n} (x_i - 2)^2$$

Doing some math we get

$$|\bar{x} - 2| \ge \sqrt{\frac{-2ln(k)}{n}}$$

Rename constants without x_i as \tilde{k}

$$|\bar{x} - 2| \ge \tilde{k}$$

Review

Definition (F distribution). F dist with $\nu_1 > 0$ and $\nu_2 > 0$ degrees of freedom is defined by

$$F = \frac{\frac{\underline{U}}{\nu_1}}{\frac{\underline{V}}{\nu_2}}$$

where $U \sim \chi^2_{\nu_1}$ and $V \sim \chi^2_{\nu_2}$ If rv $F \sim f_{\nu_1,\nu_2}$ then the rv $\frac{1}{F} = f_{\nu_2,\nu_1}$ ie indices are swapped. Now consider $f_{\nu_1,\nu_2,\alpha}$ which is $P(F > f_{\nu_1,\nu_2,\alpha}) = \alpha$ Thus $P(F \ge f_{\nu_1,\nu_2,1-\alpha}) = \alpha \leftrightarrow P(\frac{1}{F} \le \frac{1}{f_{\nu_1,\nu_2,\alpha}}) = \alpha$

$$P(\frac{1}{F} \ge \frac{1}{f_{\nu_1,\nu_2,\alpha}}) = 1 - \alpha$$

Since $\frac{1}{F} \sim f_{\nu_2,\nu_1}$

$$f_{\nu_2,\nu_1,1-\alpha} = \frac{1}{f_{\nu_1,\nu_2,\alpha}}$$

Definition (Test of Significance). $H_0: \theta = \theta_0$

 $H_1: \theta \neq \theta_0 \text{ or } H_1: \theta > \theta_0 \text{ or } H_1: \theta < \theta_0$

Idea of test: given α , β not specified.

Outcome: Reject H_0 or Fail to reject H_0

Test: Compare the value of a test stat with a fixed value that depends on dist $\propto \alpha$