Rappels de mécanique quantique

1. Description de l'état quantique d'une particule de masse *m*

Postulat 1:

- tout système quantique est complètement défini à l'instant t par une fonction complexe $\Psi(\vec{r},t)$ appelée fonction d'onde.
- toute superposit° linéaire $\Psi(\vec{r},t) = \sum_{n} \Psi_n(\vec{r},t)$ de fonct° d'ondes est une fonct° d'onde.

Postulat 2:

• $\Psi^*(\vec{r},t) \times \Psi(\vec{r},t)$ est la **densité de probabilité de présence** de la particule au point \vec{r} , telle que : $\int |\Psi(\vec{r},t)|^2 d^3r = \int \Psi^*(\vec{r},t)\Psi(\vec{r},t)d^3r$

2. La mesure

Si on effectue une mesure de position sur un grand nombre N de particules, toutes préparées dans le même état $\Psi(\overrightarrow{r},t)$, les résultats seront distribués selon la loi :

•
$$|\Psi(\vec{r},t)|^2$$
 = densité de probabilité de présence

•
$$\langle x \rangle = \int x |\Psi(\vec{r},t)|^2 d^3r$$
 = valeur moyenne

•
$$\Delta x^2 = \langle x^2 \rangle - \langle x \rangle^2 = \text{variance}$$

Postulat 3:

- à toute grandeur physique A (position, énergie,...) correspond un opérateur \widehat{A} .
- Seuls résultats de mesure possibles : les **valeurs propres** de \widehat{A} tq $\widehat{A} \Psi_n(\overrightarrow{r},t) = a_n \Psi_n(\overrightarrow{r},t)$, les $\Psi_n(\overrightarrow{r},t)$ étant les **états propres** de \widehat{A} .
- La valeur moyenne de A vaut : $\langle a \rangle = \int \Psi^*(\vec{r},t) \Psi(\vec{r},t) d^3r$
- Le résultat est certain $(\Delta a = 0)$ si le système est dans un état propre de \widehat{A} : $\Psi = \Psi_n$ $\Rightarrow \begin{cases} \langle a \rangle = a_n \\ \Delta a = 0 \end{cases}$

Grandeur physique	Opération sur la fonction d'onde
Position $x, y, z, \overrightarrow{r}$	Multiplication par $x, y, z, \overrightarrow{r}$
Impulsion $p_X, p_Y, p_Z, \overrightarrow{p}$	$\widehat{P}_{x, y, z} = \frac{\hbar}{i} \frac{\partial}{\partial x, y, z} \overrightarrow{P} = \frac{\hbar}{i} \overrightarrow{V}$
Energie cinétique $E_c = \frac{p^2}{2m}$	$\widehat{E}_{\mathcal{C}} = -\frac{\hbar^2}{2m} \nabla^2$
Energie potentielle $V(\vec{r})$	Multiplication par $V(\overrightarrow{r})$
Energie totale $E = E_c + V(\overrightarrow{r})$	HAMILTONIEN $\hat{H} = -\frac{\hbar^2}{2m} \nabla^2 + V(\vec{r})$