PROBABILITY & CONTROLLING & CONTROLLING THEORY

(As per SRM INSTITUTE OF SCIENCE AND TECHNOLOGY Syllabus)

Dr. P. GODHANDARAMAN

M.Sc., M.A., M.B.A., Ph.D.
Assistant Professor (Senior Grade)
Department of Mathematics
SRM IST, Kattankulathur – 603 203

Email: godhanda@gmail.com

Mobile: 9941740168

PROBABILITY AND QUEUEING THEORY UNIT – I : RANDOM VARIABLES

Syllabus

- Review of Probability Concepts Types of Events, Axioms
- Conditional Probability, Multiplication Theorem, Applications
- Discrete Random Variable
- Continuous Random Variable
- Expectation and Variance
- Moment Generating Function
- Function of Random Variable (One Dimensional Only)
- Chebychev's Inequality

PROBABILITY

<u>Probability (or) Chance:</u> Probably, Chances, Likely, Possible - The terms convey the same meaning.

Example:

- 1. **Probably** your method is correct
- 2. The *chances* of getting ranks Ram and Gothai are equal.
- 3. It is *likely* that Ram may not come for taking his classes today.
- 4. It is *possible* to reach the college by 8.30am.

Ordinary Language: The word probability means uncertainty about happening.

<u>Mathematics or Statistics</u>: A numerical measure of uncertainty is practiced by the important branch of statistics is called the **Theory of Probability.**

Day to Day Life:

- *Certainty* Every day the sun rises in the east
- *Impossibility* It is possible to live without water
- *Uncertainty* Probably Raman gets that job.

In the theory of probability, we represent certainty by 1, impossibility by 0 and uncertainty by a positive fraction which lies between 0 and 1.

Applications: There is no area in social, physical (or) natural sciences where the probability theory is not used.

- It is the base of the fundamental laws of statistics.
- It gives solutions to betting of games.
- It is extensively used in business situations characterized by uncertainty.
- It is essential tool in statistical inference and forms the basis of the Decision Theory.

Random Experiment (or) Trial and Event (or) Cases:

An experiment in which the outcome cannot be predicted with certainty is called a random experiment, even though all possible outcomes are known in advance. Tossing a coin is a **random experiment** and getting a head or tail is an **event.**

Favourable Events:

The number of cases favourable to an event in a trial is the number of outcomes which entail the happening of the event.

Example: In tossing 2 coins the cases favourable to the event of getting a head are HT, TH, and HH.

Exhaustive Events: The total number of possible outcomes in any **trial** is known as exhaustive events.

Example: In tossing a coin the possible outcomes are getting a head or tail. Hence we have 2 exhaustive events in throwing a coin.

Mutually Exclusive Event:

Two events are said to be mutually exclusive when the occurrence of one affects the occurrence of the other. In other words, if A & B are mutually exclusive events and if A happens then B will not happen and vice versa.

Example: In tossing a coin the events head or tail are mutually exclusive, since both tail & head cannot appear in the same time.

Equally Likely Events: Two events are said to be equally likely if one of them cannot be expected in preference to the other. **Example:** In tossing a coin, head or tail are equally likely events.

<u>Independent Event</u>: Two events are said to be independent when the actual happening of one does not influence in any way the happening of the other. **Example**: In tossing a coin, the event of getting a head in the 1^{st} toss is independent of getting a head in the 2^{nd} toss, 3^{rd} toss, etc.

Mathematical Definition of Probability:

If *P* is the notation for probability of happening of the event, then $P(A) = \frac{Number\ of\ Favourable\ Cases}{Total\ Number\ of\ Exhaustive\ Cases} = \frac{m}{n}$

Statistical Definition of Probability:

If in *n* trials, an event *E* happens m times, then $P(E) = \lim_{n \to \infty} \frac{m}{n}$

Axiomatic Definition of Probability:

- 1. For any event $A, P(A) \ge 0$.
- 2. P(S) = 1
- 3. If A_1 , A_2 , A_3 , ..., A_n are finite number of disjoint events of S, then

$$P(A_1 \cup A_2 \cup A_3 \cup ...) = P(A_1) + P(A_2) + P(A_3) + \cdots = \sum P(A_i)$$

LAW OF PROBABILITY

LAW OF PROBABILITY

ADDITION LAW OF PROBABILITY

Case (i): When events are mutually exclusive

If A and B are mutually exclusive events, then $P(A \cup B) = P(A) + P(B)$.

Case (ii): When events are not mutually exclusive

If A and B are any two events, then $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

MULTIPLICATION LAW OF PROBABILITY

Case (i): When events are independent: The probability that both independent events, A and B will occur is equal to product of the probabilities of each event, then $P(A \cap B) = P(A) P(B)$.

Case (ii): When events are dependent (or) conditional probability: If the occurrence of an event A is affected by the occurrence of the another event B, then the events A and B are dependent. $P(A \cap B) = P(A) P(B/A) = P(B) P(A/B)$

RANDOM VARIABLE

The outcomes of many random experiments may be non-numerical. It is inconvenient to deal with these descriptive outcomes mathematically.

Example: When toss a coin we get two outcomes, namely head or tail. We can assign numerical values; say 1 to head and 0 to tail. This interpretation is easy and attractive from mathematical point of view and also practically meaningful.

Example: Three students sat for an examination & X denotes the number of students who passed. Describe the RV X.

Sample Space S	None	S_1	S_2	S_3	S_1S_2	S_2S_3	S_3S_1	$S_1S_2S_3$
No. of Students who passed X	0	1	1	1	2	2	2	3
$n(S) = 8, \qquad P(X = 0) = \frac{1}{2}$	$\frac{1}{3}$, $P($		O		$2)=\frac{3}{8},$	P(X =	$= 3) = \frac{1}{8}$	

<u>TYPES OF RANDOM VARIABLE</u>

Random Variable

Discrete Random Variable

Continuous Random Variable

DISCRETE RANDOM VARIABLE

A random variable X is discrete, if it assumes only finite number or countably infinite number of values.

Example: (i) The mark obtained by a student in an examination. It's possible values are 0, 85 or 100.

(ii) The number of students who are absent for a particular period.

- 1. Probability Mass Function (p.m.f.) $\sum_{i=1}^{\infty} P(x_i) = 1$ 2. Mean $E(X) = \sum_{i=1}^{\infty} x_i P(x_i)$, $E(X^2) = \sum_{i=1}^{\infty} x_i^2 P(x_i)$
- 3. Variance $V(X) = E(X^2) [E(X)]^2$ 4. Cumulative Distribution Function (c.d.f.) $F(X) = P(X \le x) = \sum_{i=1}^{x} P(x_i)$

CONTINUOUS RANDOM VARIABLE

A RV X is continuous, if it takes all possible values between certain limits or in an interval which may be finite or infinite. **E.g.**:(i)The density of milk taken for testing at a farm.(ii)The operating time between two failures of a computer.

- 1. Probability Density Function (p.d.f.) $\int_{-\infty}^{\infty} f(x)dx = 1$ 2. Mean $E(X) = \int_{-\infty}^{\infty} x f(x)dx$, $E(X^2) = \int_{-\infty}^{\infty} x^2 f(x)dx$
- 3. Variance $V(X) = E(X^2) [E(X)]^2$ 4. Cumulative Distribution Function (c.d.f.) $F(X) = P(X \le x) = \int_{-\infty}^{x} f(x) dx$

PROPERTIES OF EXPECTATION

If X and Y are random variables and a, b are constants, then

- - 2. E(aX) = aE(X) 3. E(aX + b) = aE(X) + b 4. $E(X \overline{X}) = 0$
- $5. |E(X)| \le E(|X|)$

6. $E(X) \ge 0$, if $X \ge 0$ 7. E(X + Y) = E(X) + E(Y)

(Additive Theorem)

- 8. E(XY) = E(X)E(Y)
- 9. E(a g(X)) = aE(g(X)) 10. E(g(X) + a) = E(g(X)) + a
- 11. (E[g(X)]) = g[E(X)]

[g(X) is linear in X]

(: A and B are independent)

12. $P(X \ge a) \le \frac{E(X)}{a}, a > 0$

(Markov Inequality)

13. $P\{|X - E(X)| \ge k\} \ge \frac{\sigma_X^2}{c^2}$

(Chebyshev's Inequality)

PROPERTIES OF VARIANCE

- $Var(X) \ge 0$ 2. $E(X^2) \ge [E(X)]^2$ 3. Var(b) = 0, b constant 1.
- If X is a random variables, a is constants then $Var(aX) = a^2 Var(X)$ 4.
- If a and b are constants, $Var(aX \pm b) = a^2Var(X)$ 5.
- If X and Y are two independent RV, a and b are constants then $Var(aX + bY) = a^2Var(X) + b^2Var(Y)$

PROPERTIES OF CUMULATIVE DISTRIBUTION FUNCTION

If F is the distribution function of the RV X and if a < b, then

$$P(a < X \le b) = P(a \le X \le b) = P(a < X < b) = P(a \le X < b) = F(b) - F(a)$$

- If F is the distribution function of one dimensional RV X, then (i) $0 \le F(X) \le 1$ (ii) $F(X) \le F(Y)$, if x < yIn other words, all distribution functions are monotonically non-decreasing and lie between 0 and 1.
- If F is the distribution function of one dimensional random variable X, then

$$F(-\infty) = \lim_{x \to -\infty} F(X) = 0 \text{ and } F(\infty) = \lim_{x \to \infty} F(X) = 1 \quad 4. \ f(x) = \frac{d}{dx} (F(x))$$

MOMENTS

Definition: The n^{th} moment about origin of a RV X is defined as the expected value of the n^{th} power of X. Moments about Origin (Raw Moments)

Discrete:
$$\mu'_n = E(X^n) = \sum_i x_i^n p_i$$
, $n \ge 1$

Discrete:
$$\mu'_n = E(X^n) = \sum_i x_i^n p_i$$
, $n \ge 1$. Continuous: $\mu'_n = E(X^n) = \int_{-\infty}^{\infty} x^n f(x) dx$, $n \ge 1$

Moment about Mean (Central Moments)

Discrete:
$$\mu_n = E[(X - \bar{X})^n] = \sum_i (x_i - \bar{X})^n p_i$$
, Continuous: $\mu_n = E[(X - \bar{X})^n] = \int_{-\infty}^{\infty} (x - \bar{X})^n f(x) dx$, $n \ge 1$

Relationship between moments about origin and moment about mean

$$\mu_r = \mu'_r - rC_1 \mu \mu_{r-1}^1 + rC_2 \mu^2 \mu'_{r-2} - \cdots$$

Hence,
$$\mu_1 = 0$$
, $\mu_2 = \mu_2' - (\mu_1')^2$, $\mu_3 = \mu_3' - 3\mu_2' \mu_1' + 2(\mu_1')^3$, $\mu_4 = \mu_4' - 4\mu_3' \mu_1' + 6\mu_2' (\mu_1')^2 - 3(\mu_1')^4$

MOMENT GENERATING FUNCTION

Definition: Moment generating function of a random variable about the origin is defined as

Discrete :
$$M_X(t) = E(e^{tX}) = \sum_x e^{tx} p(x)$$
, Continuous : $M_X(t) = E(e^{tX}) = \int_{-\infty}^{\infty} e^{tx} f(x) dx$

Where the integration or summation is taken over the entire range of X, t being a real parameter, assuming that integration or summation is absolutely convergent.

$$M_X(t) = 1 + t \mu_1' + \frac{t^2}{2!} \mu_2' + \dots + \frac{t^r}{r!} \mu_r'$$
, Where $\mu_r' = \text{coefficient of } \frac{t^r}{r!} \text{ in } M_X(t)$

Note: 1.
$$\mu'_r = \frac{d^r}{dt^r} [M_X(t)]_{t=0}$$
 2. $M_{CX}(t) = M_X(Ct)$, C being a constant. 3. $M_{X=a}(t) = e^{-at} M_X(t)$

1. If $X_1, X_2, ... X_n$ are *n* independent RVs, then $M_{X_1+X_2+...+X_n}(t) = M_{X_1}(t) ... M_{X_2}(t) ... M_{X_n}(t)$

PROBLEMS IN DISCRETE RANDOM VARIABLE

A discrete RV X has the following probability distribution

x	0	1	2	3	4	5	6	7	8
p(x)	а	3 <i>a</i>	5 <i>a</i>	7 <i>a</i>	9 <i>a</i>	11 <i>a</i>	13 <i>a</i>	15 <i>a</i>	17a

(i) Find the value of a (ii) P(X < 3) (iii) $P(X \ge 3)$ (iv) P(0 < X < 3) (v) Find the distribution function of X. Solution

(i)
$$\sum_{x=0}^{8} P(x) = 1 \Rightarrow P(0) + P(1) + P(2) + P(3) + P(4) + P(5) + P(6) + P(7) + P(8) = 1$$

 $a + 3a + 5a + 7a + 9a + 11a + 13a + 15a + 17a = 1 \Rightarrow 81a = 1 \Rightarrow \mathbf{a} = \frac{1}{81}$

(ii)
$$P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2) = a + 3a + 5a = 9a = 9 \times \frac{1}{81} = \frac{1}{9}$$

(iii)
$$P(X \ge 3) = 1 - P(X < 3) = 1 - \frac{1}{9} = \frac{8}{9}$$

(iv)
$$P(0 < X < 3) = P(X = 1) + P(X = 2) = 3a + 5a = 8a = \frac{8}{81}$$

(v)

	x	0	1	2	3	4	5	6	7	8
	22 (24)	1	3	5	7	9	11	13	15	17
	p(x)	81	81	81	81	81	81	81	81	81
Γ	F(x)	1	4	9	16	25	36	49	64	1
		81	81	81	81	81	81	81	81	1

A discrete random variable X has the probability function given below:

x	0	1	2	3	4	5	6	7
p(x)	0	K	2 <i>K</i>	2 <i>K</i>	3 <i>K</i>	K^2	$2K^2$	$7K^2+K$

Find (i) The value of K (ii) P(1.5 < X < 4.5/X > 2) (iii) The smallest value of λ for which $P(X \le \lambda) > 1/2$.

(i)
$$\sum_{x=0}^{7} P(x) = 1 \Rightarrow P(0) + P(1) + P(2) + P(3) + P(4) + P(5) + P(6) + P(7) = 1$$

 $0 + K + 2K + 2K + 3K + K^2 + 2K^2 + 7K^2 + K = 1 \Rightarrow 10K^2 + 9K = 1$

$$(10K - 1)(K + 1) = 0 \Rightarrow K = \frac{1}{10}, -1 \Rightarrow K = \frac{1}{10} \quad (\because K = -1, \text{ which is meaningless})$$

$$(ii) P(1.5 < X < 4.5/X > 2) = \frac{P[(1.5 < X < 4.5) \cap (X > 2)]}{P(X > 2)} \qquad \qquad \because P(A/B) = \frac{P(A \cap B)}{P(B)}$$

(ii)
$$P(1.5 < X < 4.5/X > 2) = \frac{P[(1.5 < X < 4.5) \cap (X > 2)]}{P(X > 2)}$$

$$P(A/B) = \frac{P(A \cap B)}{P(B)}$$

$$P(1.5 < X < 4.5/X > 2) = \frac{P(3) + P(4)}{P(3) + P(4) + P(5) + P(6) + P(7)} = \frac{\binom{5}{10}}{\binom{7}{10}} = \frac{5}{7}$$

(iii)
$$P(X \le \lambda) > \frac{1}{2}, \ \lambda = 0, \ P(X \le 0) = 0 \Rightarrow \frac{1}{2}; \ \lambda = 1, \ P(X \le 1) = \frac{1}{10} \Rightarrow \frac{1}{2};$$

 $\lambda = 2, \ P(X \le 2) = \frac{3}{10} \Rightarrow \frac{1}{2}; \ \lambda = 3, \ P(X \le 3) = \frac{5}{10} \Rightarrow \frac{1}{2}; \ \lambda = 4, \ P(X \le 4) = \frac{8}{10} > \frac{1}{2}$

The smallest value of λ for which $P(X \le \lambda) > 1/2$ is 4.

If the RV X takes the values 1, 2, 3 & 4 such that 2P(X = 1) = 3P(X = 2) = P(X = 3) = 5P(X = 4), find the probability distribution and cumulative distribution function of X.

Solution: Let
$$2P(X = 1) = 3P(X = 2) = P(X = 3) = 5P(X = 4) = 30K$$

x	1	2	3	4
p(x)	15 <i>K</i>	10 <i>K</i>	30 <i>K</i>	6 <i>K</i>

$$\sum_{x=1}^{4} P(x) = 1 \Rightarrow P(1) + P(2) + P(3) + P(4) = 1 \Rightarrow 15K + 10K + 30K + 6K = 1 \Rightarrow 61K = 1 \Rightarrow K = \frac{1}{61}$$

Cumulative distribution function of X

	x	1	2	3	4
	m(m)	15	10	30	6
	p(x)	$\frac{15}{61}$	61	61	61
	F(x)	15	25	55	1
		61	61	61	1

A discrete RV X has the following probability distribution

•		-						
	x	-2	-1	0	1	2	3	
	p(x)	0.1	K	0.2	2 <i>K</i>	0.3	3 <i>K</i>	

Find (i) K (ii) P(X < 2) (iii) P(-2 < X < 2) (iv) the cdf of X (v) the mean of X.

Solution

(i)
$$\sum_{x=-2}^{3} P(x) = 1 \Rightarrow P(-2) + P(-1) + P(0) + P(1) + P(2) + P(3) = 1 \Rightarrow 6K + 0.6 = 1 \Rightarrow K = \frac{1}{15}$$

	-2	-1	0	1	2	3
p(x)	1	1	2	2	3	3
	10	15	$\overline{10}$	15	$\overline{10}$	15

(ii)
$$P(X < 2) = P(-2) + P(-1) + P(0) + P(1) = \frac{1}{10} + \frac{1}{15} + \frac{2}{10} + \frac{2}{15} = \frac{1}{2}$$

(iii)
$$P(-2 < X < 2) = P(-1) + P(0) + P(1) = \frac{1}{15} + \frac{2}{10} + \frac{2}{15} = \frac{2}{5}$$

(iv)

x	-2	-1	0	1	2	3
n(x)	1	1	2	2	3	3
p(x)	10	15	10	15	10	15
C(V)	1	1	11	1	4	1
F(X)	$\overline{10}$	6	30	$\frac{\overline{2}}{2}$	- 5	1

(v) Mean of X

$$E(X) = \sum_{x=-2}^{3} x P(x) = (-2)P(-2) + (-1)P(-1) + 0 P(0) + 1 P(1) + 2 P(2) + 3 P(3)$$

$$= \left(-2 \times \frac{1}{10}\right) + \left(-1 \times \frac{1}{15}\right) + \left(0 \times \frac{2}{10}\right) + \left(1 \times \frac{2}{15}\right) + \left(2 \times \frac{3}{10}\right) + \left(3 \times \frac{3}{15}\right) = \frac{16}{15}$$

If X is RV having the density function $(x) = \begin{cases} \frac{x}{6} & \text{for } x = 1, 2, 3 \\ 0, & \text{otherwise} \end{cases}$. Find $E(X^3 + 2X + 7)$ and Var(4X + 5).

Solution

$$E(X) = \sum_{x=1}^{3} x P(x) = \left(1 \times \frac{1}{6}\right) + \left(2 \times \frac{2}{6}\right) + \left(3 \times \frac{3}{6}\right) = \frac{7}{3}$$

$$E(X^{2}) = \sum_{x=1}^{3} x^{2} P(x) = \left(1 \times \frac{1}{6}\right) + \left(4 \times \frac{2}{6}\right) + \left(9 \times \frac{3}{6}\right) = 6$$

$$E(X^3) = \sum_{x=1}^3 x^3 P(x) = \left(1 \times \frac{1}{6}\right) + \left(8 \times \frac{2}{6}\right) + \left(27 \times \frac{3}{6}\right) = \frac{49}{3}$$

$$E(X^3 + 2X + 7) = E(X^3) + 2E(X) + 7 = \frac{84}{3}$$

$$Var(X) = E(X^2) - [E(X)]^2 = \frac{5}{9}, \quad Var(4X+5) = 4^2 Var(X) = 16 \times \frac{5}{9} = \frac{80}{9}$$

If X has the distribution function
$$F(x) = \begin{cases} 0, & x < 1 \\ \frac{1}{3}, & 1 \le x < 4 \\ \frac{1}{2}, & 4 \le x < 6 \\ \frac{5}{6}, & 6 \le x < 10 \end{cases}$$

$$\frac{1}{6}$$
, $0 \le x < 10$

$$1, x \ge 10$$

Find (i) The probability distribution of X (ii) P(2 < X < 6) (iii) Mean of X (iv) Variance of X.

Solution: (i) For the given c.d.f., the probability distribution of X is

$$P(X = 1) = F(1) - F(0) = \frac{1}{3} - 0 = \frac{1}{3},$$
 $P(X = 4) = F(4) - F(1) = \frac{1}{2} - \frac{1}{3} = \frac{1}{6},$ $P(X = 6) = F(6) - F(4) = \frac{5}{6} - \frac{1}{2} = \frac{1}{3},$ $P(X = 10) = F(10) - F(6) = 1 - \frac{5}{6} = \frac{1}{6}$

x	1	4	6	10
20(24)	1	1	1	1
p(x)	3	6	3	6

(i)
$$P(2 < X < 6) = P(X = 4) = \frac{1}{6}$$

(ii)
$$E(X) = \sum_{i} x_{i} P(x_{i}) = \left(1 \times \frac{1}{3}\right) + \left(4 \times \frac{1}{6}\right) + \left(6 \times \frac{2}{6}\right) + \left(10 \times \frac{1}{6}\right) = \frac{14}{3}$$

 $E(X^{2}) = \sum_{i} x_{i}^{2} P(x_{i}) = \left(1 \times \frac{1}{3}\right) + \left(16 \times \frac{1}{6}\right) + \left(36 \times \frac{2}{6}\right) + \left(100 \times \frac{1}{6}\right) = \frac{95}{3}$
 $Var(X) = E(X^{2}) - [E(X)]^{2} = \frac{89}{3}$

When a die is thrown, X denotes the number that turns up. Find E(X), $E(X^2)$, Var(X) and standard deviation. $p = \frac{1}{6}$, X = 1, 2, 3, 4, 5, 6 Here X is a discrete RV

$$E(X) = \sum_{i} x_{i} P(x_{i}) = \left(1 \times \frac{1}{6}\right) + \left(2 \times \frac{1}{6}\right) + \left(3 \times \frac{1}{6}\right) + \left(4 \times \frac{1}{6}\right) + \left(5 \times \frac{1}{6}\right) + \left(6 \times \frac{1}{6}\right) = 3.5$$

$$E(X^{2}) = \sum_{i} x_{i}^{2} P(x_{i}) = \left(1 \times \frac{1}{6}\right) + \left(4 \times \frac{1}{6}\right) + \left(9 \times \frac{1}{6}\right) + \left(16 \times \frac{1}{6}\right) + \left(25 \times \frac{1}{6}\right) + \left(36 \times \frac{1}{6}\right) = \frac{91}{6} = 15.167$$

$$Var(X) = E(X^{2}) - [E(X)]^{2} = 2.9166, \qquad S.D. = \sigma_{X} = \sqrt{Var(X)} = 1.7078$$

A coin is tossed until a head appears. What is the expectation of the number of tosses required? **Solution:** Let X - No. of tosses required to get the 1st head. The 1st head may appear in the 1st or 2nd ... and so on.

The events are H, TH, TTH, TTTH, ... χ 1 1 1 1 p(x)

22

$E(X) = \sum_{i} x_{i} P(x_{i}) = \frac{1}{2} \left[1 + 2 \left(\frac{1}{2} \right) + 3 \left(\frac{1}{2} \right)^{2} + \cdots \right] = \frac{1}{2} \left(1 - \frac{1}{2} \right)^{-2} = 2$	$[\because (1-x)^{-2} = 1 + 2x + 3x^2 + \cdots]$

 $\overline{2^4}$

25

By throwing a fair dice, a player gains Rs. 20 if 2 turns up, gains Rs. 40 if 4 turns up and loses Rs. 30 if 6 turns up. He never loses or gains if any other number turns up. Find the expected value of money he gains. **Solution:** Let X – money won on an trial. x_i = Amount of money won, if the faces show i = 1, 2, 3, 4, 5, 6.

	1	2	3	4	5	6
x	0	20	0	40	0	-30
p(x)	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

$$E(X) = \sum_{i} x_{i} P(x_{i}) = \left(0 \times \frac{1}{6}\right) + \left(20 \times \frac{1}{6}\right) + \left(0 \times \frac{1}{6}\right) + \left(40 \times \frac{1}{6}\right) + \left(0 \times \frac{1}{6}\right) + \left(-30 \times \frac{1}{6}\right) = 5$$

10. A RVX has the probability function $f(x) = \frac{1}{2^x}$, x = 1, 2, 3... Find the (i) moment generating function (ii) Mean Solution:

(i)
$$M_X(t) = \sum_x e^{tx} p(x) = \sum_{x=1}^{\infty} e^{tx} \frac{1}{2^x} = \frac{e^t}{2} \left[1 + \left(\frac{e^t}{2} \right) + \left(\frac{e^t}{2} \right)^2 + \cdots \right] = \frac{e^t}{2} \left(1 - \frac{e^t}{2} \right)^{-1} = \frac{e^t}{2 - e^t}$$

(ii)
$$E(X) = \left[\frac{d}{dt} \ M_X(t) \right]_{t=0} = \left[\frac{d}{dt} \left(\frac{e^t}{2-e^t} \right) \right]_{t=0} = \left[\frac{(2-e^t)e^t - e^t(-e^t)}{(2-e^t)^2} \right]_{t=0} = \frac{(2-e^0)e^0 - e^0(-e^0)}{(2-e^0)^2} = 2$$

11. If a RV X has moment generating function $M_X(t) = \frac{3}{3-t}$, obtain the standard deviation of X.

Solution:
$$M_X(t) = \frac{3}{3-t} = \frac{3}{3\left(1-\frac{t}{3}\right)} = \left(1-\frac{t}{3}\right)^{-1} = 1 + \left(\frac{t}{3}\right) + \left(\frac{t}{3}\right)^2 + \left(\frac{t}{3}\right)^3 + \dots = 1 + \frac{t}{1!}\left(\frac{1}{3}\right) + \frac{t^2}{2!}\left(\frac{2}{9}\right) + \frac{t^3}{3!}\left(\frac{6}{27}\right) + \dots$$

$$\mu'_r = coefficient\ of\ \frac{t^r}{r!}, \qquad \mu'_1 = coefficient\ of\ \frac{t^1}{1!} = \frac{1}{3}, \qquad \mu'_2 = coefficient\ of\ \frac{t^2}{2!} = \frac{2}{9}$$

Variance =
$$\mu'_2 - (\mu'_1)^2 = \frac{2}{9} - \frac{1}{9} = \frac{1}{9}$$
, Standard deviation = $\sqrt{\text{Variance}} = \sqrt{\frac{1}{9}} = \frac{1}{3}$

PROBLEMS IN CONT<u>INUOUS RANDOM VARIABLE</u>

- 1. If $p(x) = \begin{cases} x e^{-\frac{x^2}{2}}, & x \ge 0 \\ 0, & x < 0 \end{cases}$ (i) Show that p(x) is a p.d.f. (ii) Find its distribution function P(x). Solution
 - (i) $\int_{-\infty}^{\infty} p(x)dx = \int_{-\infty}^{0} p(x)dx + \int_{0}^{\infty} p(x)dx = \int_{-\infty}^{0} 0 dx + \int_{0}^{\infty} x e^{-\frac{x^{2}}{2}} dx = \int_{0}^{\infty} x e^{-\frac{x^{2}}{2}} dx$ Put $x^2 = t$, $2x dx = dt \Rightarrow x dx = \frac{dt}{2}$, x = 0, t = 0 and $x = \infty$, $t = \infty$ $\int_{-\infty}^{\infty} p(x)dx = \int_{0}^{\infty} e^{-\frac{t}{2}} \frac{dt}{2} = \frac{1}{2} \int_{0}^{\infty} e^{-\frac{t}{2}} dt = \frac{1}{2} \left[\frac{e^{-\frac{t}{2}}}{\frac{1}{2}} \right]_{-\frac{t}{2}}^{\infty} = -e^{-\infty} + e^{0} = 1$ $\left(::e^{-\infty}=0,\ e^0=1\right)$ p(x) is a p.d.f. of a RV X.

(ii)
$$F(X) = P(X \le x) = \int_0^x p(x) dx = \int_0^x x e^{-\frac{x^2}{2}} dx = 1 - e^{-\frac{x^2}{2}}, \ x \ge 0$$

2. If the density function of a continuous RVX is given by
$$(x) = \begin{cases} ax, & 0 \le x \le 1 \\ a, & 1 \le x \le 2 \\ 3a - ax, & 2 \le x \le 3 \\ 0, & otherwise \end{cases}$$
. Find (i) a (ii) c.d.f.

Solution: (i)
$$\int_{-\infty}^{\infty} f(x)dx = 1 \Rightarrow \int_{0}^{1} ax \, dx + \int_{1}^{2} a \, dx + \int_{2}^{3} (3a - ax)dx = 1$$

$$a\left[\frac{x^{2}}{2}\right]_{0}^{1} + a[x]_{1}^{2} + \left[3ax - \frac{ax^{2}}{2}\right]_{2}^{3} = 1 \Rightarrow \frac{a}{2} + a(2 - 1) + \left(9a - \frac{9a}{2}\right) - \left(6a - \frac{4a}{2}\right) = 1 \Rightarrow \mathbf{a} = \frac{1}{2}$$

$$f(x) = \begin{cases} \frac{x}{2}, & 0 \le x \le 1\\ \frac{1}{2}, & 1 \le x \le 2\\ \frac{3-x}{2}, & 2 \le x \le 3\\ 0 & \text{otherwise} \end{cases}$$

(ii) *c.d.f. of X:*
$$F(X) = P(X \le x) = \int_{-\infty}^{x} f(x)dx$$
; If $x < 0$, then $F(X) = 0$, since $f(x) = 0$ for $x < 0$

If
$$0 \le x \le 1$$
, then $F(X) = \int_0^x \frac{x}{2} dx = \left[\frac{x^2}{4}\right]_0^x = \frac{x^2}{4}$

If
$$1 \le x \le 2$$
, then $F(X) = \int_0^x f(x) dx = \int_0^1 \left(\frac{x}{2}\right) dx + \int_1^x \left(\frac{1}{2}\right) dx = \left[\frac{x^2}{4}\right]_0^1 + \left[\frac{x}{2}\right]_1^x = \frac{1}{4} + \frac{x}{2} - \frac{1}{2} = \frac{1}{4}(2x - 1)$

If
$$2 \le x \le 3$$
, then $F(X) = \int_0^x f(x) dx = \int_0^1 \left(\frac{x}{2}\right) dx + \int_1^2 \left(\frac{1}{2}\right) dx + \int_2^x (3a - ax) dx$
$$= \left[\frac{x^2}{4}\right]_0^1 + \left[\frac{x}{2}\right]_1^2 + \left[\frac{3x}{2} - \frac{x^2}{4}\right]_2^x = \frac{1}{4} + \frac{2}{2} - \frac{1}{2} + \left(\frac{3x}{2} - \frac{x^2}{4}\right) - \left(\frac{6}{2} - \frac{4}{4}\right) = \frac{1}{4}(6x - x^2 - 5)$$

If
$$x \ge 3$$
, then $F(X) = 1$

$$F(x) = \begin{cases} \frac{x^2}{4}, & 0 \le x \le 1\\ \frac{1}{4}(2x - 1), & 1 \le x \le 2\\ \frac{1}{4}(6x - x^2 - 5), & 2 \le x \le 3\\ 1, & x \ge 3 \end{cases}$$

- A continuous RV X has a pdf $f(x) = 3x^2$, $0 \le x \le 1$. Find a and b such that
 - (i) $P(X \le a) = P(X > a)$ (ii) P(X > b) = 0.05Solution:

(i)
$$P(X \le a) = P(X > a) \Rightarrow \int_{-\infty}^{a} f(x) dx = \int_{a}^{\infty} f(x) dx \Rightarrow \int_{0}^{a} 3 x^{2} dx = \int_{a}^{1} f(x) dx \Rightarrow 3 \left[\frac{x^{3}}{3} \right]_{0}^{a} = 3 \left[\frac{x^{3}}{3} \right]_{a}^{1}$$

 $a^{3} = 1 - a^{3} \Rightarrow 2a^{3} = 1 \Rightarrow a^{3} = \frac{1}{2} \Rightarrow a = \left(\frac{1}{2} \right)^{\frac{1}{3}} = \mathbf{0}.7937$

(ii)
$$P(X > b) = 0.05 \Rightarrow \int_b^1 3 x^2 dx = 0.05 \Rightarrow 3 \left[\frac{x^3}{3} \right]_b^1 = 0.05 \Rightarrow 1 - b^3 = 0.05 \Rightarrow \mathbf{b} = (\mathbf{0}.95)^{\frac{1}{3}} = \mathbf{0}.9830$$

A Continuous RV X that can assume any value between x = 2 and x = 5 has a density function given by f(x) = k(1+x). Find P(X < 4).

Solution:
$$\int_{-\infty}^{\infty} f(x) dx = 1 \Rightarrow \int_{2}^{5} k(1+x) dx = 1 \Rightarrow k \left[x + \frac{x^{2}}{2} \right]_{2}^{5} = 1 \Rightarrow k \left[\left(5 + \frac{25}{2} \right) - \left(2 + \frac{4}{2} \right) \right] = 1 \Rightarrow k = \frac{2}{27}$$
$$P(X < 4) = \frac{2}{27} \int_{2}^{4} (1+x) dx = \frac{2}{27} \left[x + \frac{x^{2}}{2} \right]_{2}^{4} = \frac{2}{27} \left[\left(4 + \frac{16}{2} \right) - \left(2 + \frac{4}{2} \right) \right] = \frac{16}{27}$$

5. A RV X has a pdf $f(x) = kx^2e^{-x}$, $x \ge 0$. Find k, mean, variance and $E(3X^2 - 2X)$.

Solution:
$$\int_{-\infty}^{\infty} f(x)dx = 1$$
, $\int_{0}^{\infty} kx^2 e^{-x} dx = 1$

Differentiation:
$$u = x^2$$
, $u' = 2x$, $u'' = 2$, $u''' = 0$

Integration:
$$v = e^{-x}, v_1 = \frac{e^{-x}}{(-1)^2}, v_2 = \frac{e^{-x}}{(-1)^2}, v_3 = \frac{e^{-x}}{(-1)^3}$$
 $(\because \int uv \, dx = uv_1 - u'v_2 + u''v_3 - \cdots)$

Integration:
$$v = e^{-x}$$
, $v_1 = \frac{e^{-x}}{(-1)}$, $v_2 = \frac{e^{-x}}{(-1)^2}$, $v_3 = \frac{e^{-x}}{(-1)^3}$ (: $\int uv \, dx = uv_1 - u'v_2 + u''v_3 - \cdots$) $k \left[x^2 \frac{e^{-x}}{(-1)} - 2x \frac{e^{-x}}{(-1)^2} + 2 \frac{e^{-x}}{(-1)^3} \right]_0^{\infty} = 1 \Rightarrow k [(0 - 0 + 0) - (0 - 0 + 2)] = 1 \Rightarrow k = \frac{1}{2}$ (: $e^{-\infty} = 0$, $e^0 = 1$)

Mean of X
$$E(X) = \int_{-\infty}^{\infty} x f(x) dx = \int_{0}^{\infty} x \left(\frac{1}{2}x^{2}e^{-x}\right) dx = \frac{1}{2}\int_{0}^{\infty} x^{3}e^{-x} dx$$

Differentiation:
$$u = x^3$$
, $u' = 3x^2$, $u'' = 6x$, $u''' = 6$, $u''v = 0$

Integration:
$$v = e^{-x}$$
, $v_1 = \frac{e^{-x}}{(-1)}$, $v_2 = \frac{e^{-x}}{(-1)^2}$, $v_3 = \frac{e^{-x}}{(-1)^3}$, $v_4 = \frac{e^{-x}}{(-1)^4}$ ($\because \int uv \, dx = uv_1 - u'v_2 + u''v_3 - \cdots$)
$$E(X) = \frac{1}{2} \left[x^3 \frac{e^{-x}}{(-1)} - 3x^2 \frac{e^{-x}}{(-1)^2} + 6x \frac{e^{-x}}{(-1)^3} - 6 \frac{e^{-x}}{(-1)^4} \right]_0^{\infty} = 3 \qquad \qquad (\because e^{-\infty} = \mathbf{0}, \ e^{\mathbf{0}} = \mathbf{1})$$

$$E(X^2) = \int_{-\infty}^{\infty} x^2 f(x) dx = \int_0^{\infty} x^2 \left(\frac{1}{2} x^2 e^{-x} \right) dx = \frac{1}{2} \int_0^{\infty} x^4 e^{-x} dx$$

$$Differentiation: u = x^4, \quad u' = 4x^3, \quad u'' = 12x^2, \quad u''' = 24x, \quad u'^v = 24, \quad u^v = 0$$

Integration:
$$v = e^{-x}$$
, $v_1 = \frac{e^{-x}}{(-1)}$, $v_2 = \frac{e^{-x}}{(-1)^2}$, $v_3 = \frac{e^{-x}}{(-1)^3}$, $v_4 = \frac{e^{-x}}{(-1)^4}$, $v_5 = \frac{e^{-x}}{(-1)^5}$, $v_6 = \frac{e^{-x}}{(-1)^6}$

$$E(X^{2}) = \frac{1}{2} \left[x^{4} \frac{e^{-x}}{(-1)} - 4x^{3} \frac{e^{-x}}{(-1)^{2}} + 12x^{2} \frac{e^{-x}}{(-1)^{3}} - 24x \frac{e^{-x}}{(-1)^{4}} + 24x \frac{e^{-x}}{(-1)^{5}} \right]_{0}^{\infty} = 12$$

$$V(X) = E(X^2) - [E(X)]^2 = 12 - 9 = 3$$
, $E(3X^2 - 2X) = 3E(X^2) - 2E(X) = 3(12) - 2(3) = 30$

6. The prob. distribution function of a RV X is $(x) = \begin{cases} x, & 0 < x < 1 \\ 2 - x, & 1 < x < 2 \end{cases}$. Find the mean and variance.

Solution

$$\begin{split} E(X) &= \int_{-\infty}^{\infty} x \, f(x) dx = \int_{-\infty}^{0} x \, f(x) dx + \int_{0}^{1} x \, f(x) dx + \int_{1}^{2} x \, f(x) dx + \int_{2}^{\infty} x \, f(x) dx \\ &= \int_{-\infty}^{0} 0 \, dx + \int_{0}^{1} x \, (x) dx + \int_{1}^{2} x \, (2 - x) dx + \int_{2}^{\infty} 0 \, dx = \int_{0}^{1} x^{2} dx + \int_{1}^{2} (2x - x^{2}) dx \\ E(X) &= \left[\frac{x^{3}}{3} \right]_{0}^{1} + \left[\frac{2x^{2}}{2} - \frac{x^{3}}{3} \right]_{1}^{2} = \frac{1}{3} + \left(4 - \frac{8}{3} \right) - \left(1 - \frac{1}{3} \right) = 1 \\ E(X^{2}) &= \int_{-\infty}^{\infty} x^{2} \, f(x) dx = \int_{-\infty}^{0} x^{2} \, f(x) dx + \int_{0}^{1} x^{2} \, f(x) dx + \int_{1}^{2} x^{2} \, f(x) dx + \int_{2}^{\infty} x^{2} \, f(x) dx \\ &= \int_{0}^{1} x^{3} x + \int_{1}^{2} (2x^{2} - x^{3}) dx = \left[\frac{x^{4}}{4} \right]_{0}^{1} + \left[\frac{2x^{3}}{3} - \frac{x^{4}}{4} \right]_{1}^{2} = \frac{1}{4} + \left(\frac{16}{3} - \frac{16}{4} \right) - \left(\frac{2}{3} - \frac{1}{4} \right) = \frac{7}{6} \\ V(X) &= E(X^{2}) - [E(X)]^{2} = \frac{1}{6} \end{split}$$

7. The distribution function of a RV X is given by $F(x) = 1 - (1 + x)e^{-x}$, $x \ge 0$. Find the density function, mean and variance of X.

Solution

$$f(x) = \frac{d}{dx}[F(x)] = \frac{d}{dx}[1 - (1+x)e^{-x}] = [0 - (1+x)(-e^{-x}) - e^{-x}] = e^{-x} + xe^{-x} - e^{-x} = xe^{-x}, x \ge 0$$

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx = \int_{0}^{\infty} x^{2} e^{-x} dx = \left[x^{2} \frac{e^{-x}}{(-1)} - 2x \frac{e^{-x}}{(-1)^{2}} + 2 \frac{e^{-x}}{(-1)^{3}} \right]_{0}^{\infty} = 2$$

$$E(X^{2}) = \int_{-\infty}^{\infty} x^{2} f(x) dx = \int_{0}^{\infty} x^{3} e^{-x} dx = \left[x^{3} \frac{e^{-x}}{(-1)} - 3x^{2} \frac{e^{-x}}{(-1)^{2}} + 6x^{2} \frac{e^{-x}}{(-1)^{3}} - 6 \frac{e^{-x}}{(-1)^{4}} \right]_{0}^{\infty} = 6$$

$$V(X) = E(X^{2}) - [E(X)]^{2} = 6 - 4 = 2$$

8. The cdf of a continuous RVX is given by
$$F(x) = \begin{cases} 0, & x < 0 \\ x^2, & 0 \le x < \frac{1}{2} \\ 1 - \frac{3}{25}(3 - x)^2, & \frac{1}{2} \le x < 3 \\ 1, & x \ge 3 \end{cases}$$

Find the p.d.f. of X and evaluate $P(|X| \le 1)$ and $P(\frac{1}{3} \le X < 4)$ using both the pdf and cdf.

Solution:
$$f(x) = \frac{d}{dx} [F(x)]; \ f(x) = \begin{cases} 0, & x < 0 \\ 2x, & 0 \le x < \frac{1}{2} \\ \frac{6}{25} (3 - x), & \frac{1}{2} \le x < 3 \\ 0, & x \ge 3 \end{cases}$$

$$pdf: P(|X| \le 1) = P(-1 \le X \le 1) = \int_{-1}^{0} 0 \ dx + \int_{0}^{\frac{1}{2}} 2x \ dx + \int_{\frac{1}{2}}^{1} \frac{6}{25} (3-x) dx = 2 \left[\frac{x^{2}}{2} \right]_{0}^{\frac{1}{2}} + \frac{6}{25} \left[3x - \frac{x^{2}}{2} \right]_{\frac{1}{2}}^{1} = \frac{13}{25}$$

cdf:
$$P(|X| \le 1) = P(-1 \le X \le 1) = F(1) - F(-1) = \frac{13}{25}$$

$$pdf: P\left(\frac{1}{3} \le X < 4\right) = \int_{\frac{1}{3}}^{\frac{1}{2}} 2x \ dx + \int_{\frac{1}{2}}^{3} \frac{6}{25} (3 - x) dx + \int_{3}^{4} 0 \ dx = 2\left[\frac{x^{2}}{2}\right]_{\frac{1}{3}}^{\frac{1}{2}} + \frac{6}{25} \left[3x - \frac{x^{2}}{2}\right]_{\frac{1}{2}}^{3} = \frac{8}{9}$$

cdf:
$$P\left(\frac{1}{3} \le X < 4\right) = F(4) - F\left(\frac{1}{3}\right) = 1 - \frac{1}{9} = \frac{8}{9}$$

9. The first four moments of a distribution about x = 4 are 1, 4, 10, 45. Show that the mean is 5, variance is 3, $\mu_3 = 0, \mu_4 = 26$.

Solution: Let μ'_1 , μ'_2 , μ'_3 , μ'_4 be the first four moments about X=4.

Given
$$\mu'_1 = 1$$
, $\mu'_2 = 4$, $\mu'_3 = 10$, $\mu'_4 = 45$ about $X = 4$.

$$E(X-4) = 1 \Rightarrow E(X) - 4 = 1 \Rightarrow E(X) = 5,$$
 $\mu_2 = \mu_2' - (\mu_1')^2 = 4 - 1 = 3$

$$\mu_3 = \mu_3' - 3\mu_2' \ \mu_1' + 2(\mu_1')^3 = 10 - 3(4)(1) + 2(1) = 0$$

$$\mu_4 = \mu_4' - 4\mu_3' \,\mu_1' + 6\mu_2' (\,\mu_1')^2 - 3(\mu_1')^4 = 45 - 4(10)(1) + 6(4)(1) - 3(1) = 26$$

10. The first three moments about the origin are 5, 26, 78. Show that the first three moments about the value x = 3 are 2, 5, -48.

Solution: Let μ'_1 , μ'_2 , μ'_3 , μ'_4 be the first four moments about x = 3. Given E(X) = 5, $E(X^2) = 26$, $E(X^3) = 78$ $\mu'_1 = E(X - 3) = E(X) - 3 = 5 - 3 = 2$, $\mu'_2 = E(X - 3)^2 = E(X^2) - 6E(X) + 9 = 26 - 6(5) + 9 = 5$, $\mu'_3 = E(X - 3)^3 = E(X^3) - 9E(X^2) + 27E(X) - 27 = 78 - 9(26) + 27(5) - 27 = -48$,

11. If X has probability density function given by $f(x) = \frac{x+1}{2}$, $-1 \le x \le 1$. Find the 1^{st} four central moments.

Solution: $\mu'_n = E(X^n) = \int_{-\infty}^{\infty} x^n f(x) dx$

$$n = 1, \ \mu'_1 = E(X) = \int_{-\infty}^{\infty} x \, f(x) dx = \frac{1}{2} \int_{-1}^{1} (x^2 + x) dx = \frac{1}{2} \left[\frac{x^3}{3} - \frac{x^2}{2} \right]_{-1}^{1} = \frac{1}{3}$$

$$n = 2, \ \mu'_2 = E(X^2) = \int_{-\infty}^{\infty} x^2 \, f(x) dx = \frac{1}{2} \int_{-1}^{1} (x^3 + x^2) dx = \frac{1}{2} \left[\frac{x^4}{4} - \frac{x^3}{3} \right]_{-1}^{1} = \frac{1}{3}$$

$$n=3, \ \mu_3'=E(X^3)=\int_{-\infty}^{\infty}x^3\,f(x)dx=\frac{1}{2}\int_{-1}^{1}(x^4+x^3)dx=\frac{1}{2}\left[\frac{x^5}{5}-\frac{x^4}{4}\right]_{-1}^{1}=\frac{1}{5}$$

$$n = 4$$
, $\mu'_4 = E(X^4) = \int_{-\infty}^{\infty} x^4 f(x) dx = \frac{1}{2} \int_{-1}^{1} (x^5 + x^4) dx = \frac{1}{2} \left[\frac{x^6}{6} - \frac{x^5}{5} \right]_{-1}^{1} = \frac{1}{5}$

Moment about Mean (Central Moments)

$$\mu_{r} = \mu'_{r} - rC_{1} \mu \mu_{r-1}^{1} + rC_{2} \mu^{2} \mu'_{r-2} - rC_{3} \mu^{3} \mu'_{r-3} + rC_{4} \mu^{4} \mu'_{r-4} - \cdots$$

$$r = 1, \quad \mu_{1} = 0$$

$$r = 2, \quad \mu_{2} = \mu'_{2} - (\mu'_{1})^{2} = \frac{2}{9}$$

$$r = 3, \quad \mu_{3} = \mu'_{3} - 3\mu'_{2} \mu'_{1} + 2(\mu'_{1})^{3} = -\frac{8}{135}$$

$$r = 4, \quad \mu_{4} = \mu'_{4} - 4\mu'_{3} \mu'_{1} + 6\mu'_{2} (\mu'_{1})^{2} - 3(\mu'_{1})^{4} = \frac{48}{405}$$

12. A RVX has density function given by $f(x) = \begin{cases} 2 e^{-2x}, & x \ge 0 \\ 0, & x < 0 \end{cases}$. Obtain the (i) moment generating function (ii)

Four moments about the origin (iii) Mean (iv) Variance.

Solution:
$$M_X(t) = \int_{x=-\infty}^{\infty} e^{tx} f(x) dx = \int_{x=0}^{\infty} e^{tx} 2 e^{-2x} dx = \int_{x=0}^{\infty} 2 e^{-(2-t)x} dx = 2 \left[\frac{e^{-(2-t)x}}{-(2-t)} \right]_0^{\infty} = \frac{2}{2-t}$$

$$M_X(t) = \frac{2}{2-t} = \frac{2}{2\left(1-\frac{t}{2}\right)} = \left(1-\frac{t}{2}\right)^{-1} = 1 + \left(\frac{t}{2}\right) + \left(\frac{t}{2}\right)^2 + \left(\frac{t}{2}\right)^3 + \left(\frac{t}{2}\right)^4 + \dots = 1 + \frac{t}{1!}\left(\frac{1}{2}\right) + \frac{t^2}{2!}\left(\frac{1}{2}\right) + \frac{t^3}{3!}\left(\frac{3}{4}\right) + \frac{t^3}{4!}\left(\frac{3}{2}\right) + \dots$$

$$\mu'_r = coefficient \ of \frac{t^r}{r!}, \qquad r = 1, \ \mu'_1 = coefficient \ of \frac{t^1}{1!} = \frac{1}{2}$$

$$r = 2, \ \mu'_2 = coefficient \ of \frac{t^2}{2!} = \frac{1}{2}, \qquad r = 3, \ \mu'_3 = coefficient \ of \frac{t^3}{3!} = \frac{3}{4}$$

$$r = 4, \ \mu'_4 = coefficient \ of \frac{t^4}{4!} = \frac{3}{2}, \quad \text{Mean} = \mu'_1 = \frac{1}{2}, \quad \text{Variance} = \mu'_2 - (\mu'_1)^2 = \frac{1}{2} - \frac{1}{4} = \frac{1}{4}$$

13. Find the moment generating function of the RV whose moments are given by $\mu'_r = (r+1)! \, 2^r$. Find also mean and variance.

Solution:
$$\mu'_1 = 2! \, 2^1$$
, $\mu'_2 = 3! \, 2^2$, $\mu'_3 = 4! \, 2^3$, $M_X(t) = 1 + \frac{t}{1!} \mu'_1 + \frac{t^2}{2!} \mu'_2 + \frac{t^3}{3!} \left(\frac{3}{4}\right) + \frac{t^3}{4!} \mu'_3 + \cdots$

$$M_X(t) = 1 + \frac{t}{1!} (2! \, 2^1) + \frac{t^2}{2!} (3! \, 2^2) + \frac{t^3}{3!} (4! \, 2^3) + \cdots = 1 + 2(2t) + 3(2t)^2 + 4(2t)^3 + \cdots = (1 - 2t)^{-2}$$

$$\text{Mean} = \mu'_1 = 4 \, , \ \mu'_2 = 24, \ \text{Variance} = \mu'_2 - (\mu'_1)^2 = 24 - 16 = 8$$

FUNCTION OF ONE DIMENSITIONAL RANDOM VARIABLE

One to One Transformation of Random Variables:

Consider that a random variable X is linearly transformed into an another random variable Y. Let Y be T(x).

A monotonically increasing transformation is one where $T(x_1) < T(x_2)$ for all $x_1 < x_2$. For example, y = ax, a > 0

A monotonically decreasing transformation is one where $T(x_1) < T(x_2)$ for all $x_1 > x_2$. For example, y = ax, a < 0

If the transformation is monotonically increasing $f_Y(y) = f_X(x) \frac{dx}{dy}$

If the transformation is monotonically decreasing $f_Y(y) = f_X(x) \left(-\frac{dx}{dy} \right)$

In general, for a linear transformation $f_Y(y) = f_X(x) \left| \frac{dx}{dy} \right|$, where $x = g^{-1}(y)$

Non - One to One Transformation of Random Variables:

For a transformation which is non - one to one, the transformation will be broken up into transformations each of which one to one. $f_Y(y) = f_X(x_1) \left| \frac{dx_1}{dy} \right| + f_X(x_2) \left| \frac{dx_2}{dy} \right| + \dots + f_X(x_n) \left| \frac{dx_n}{dy} \right|$

PROBLEMS IN FUNCTION OF RANDOM VARIABLE

1. Consider a RV X with p.d.f. $f(x) = e^{-x}$, $x \ge 0$ with transformation $y = e^{-x}$. Find the transformed density function.

Solution: $f_Y(y) = f_X(x) \left| \frac{dx}{dy} \right| = \frac{f_X(x)}{\left| \frac{dy}{dx} \right|} = \frac{e^{-x}}{|-e^{-x}|} = \frac{y}{y} = 1, 0 < y \le 1$

2. Let X be a RV with p.d.f. $f(x) = \begin{cases} 2x, & 0 < x < 1 \\ 0, & otherwise \end{cases}$. Find the p.d.f. of $Y = 8X^3$.

Solution: $f_Y(y) = f_X(x) \left| \frac{dx}{dy} \right|$, Let $y = 8x^3 \Rightarrow x^3 = \frac{y}{8} \Rightarrow x = \left(\frac{y}{8} \right)^{\frac{1}{3}}$, $\frac{dx}{dy} = \frac{1}{3} \left(\frac{y}{8} \right)^{\frac{1}{3} - 1} \frac{1}{8} = \frac{1}{24} \left(\frac{y}{8} \right)^{-\frac{2}{3}}$ $f_Y(y) = 2x \frac{1}{24} \left(\frac{y}{8} \right)^{-\frac{2}{3}} = 2 \left(\frac{y}{8} \right)^{\frac{1}{3}} \frac{1}{24} \left(\frac{y}{8} \right)^{-\frac{2}{3}} = \frac{1}{12} \left(\frac{y}{8} \right)^{-\frac{1}{3}}$, **Range:** $0 < x < 1 \Rightarrow 0 < \left(\frac{y}{8} \right)^{\frac{1}{3}} < 1 \Rightarrow 0 < y < 8$

3. If X is uniformly distributed in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ find the pdf of $Y = \tan X$.

Solution: Given $f_X(x) = \frac{1}{b-a} = \frac{1}{\left(\frac{\pi}{2} + \frac{\pi}{2}\right)} = \pi$, $f_Y(y) = f_X(x) \left| \frac{dx}{dy} \right|$, Let $y = \tan x \Rightarrow x = \tan^{-1} y$, $\frac{dx}{dy} = \frac{1}{1+y^2}$

 $f_Y(y) = \pi \frac{1}{1+y^2}$ Range: $-\frac{\pi}{2} < x < \frac{\pi}{2} \Rightarrow -\infty < y < \infty$

4. If X has an exponential distribution with parameter 1, find the pdf of $Y = \sqrt{X}$.

Solution: Given = 1, $f_X(x) = \lambda e^{-\lambda x}, x > 0 = e^{-x}, x > 0$, $f_Y(y) = f_X(x) \left| \frac{dx}{dy} \right|$, Let $y = \sqrt{x} \Rightarrow x = y^2$, $\frac{dx}{dy} = \frac{1}{2} \left(\frac{dx}{dy} \right)$

 $2y , f_Y(y) = 2y e^{-y^2}$ Range: $x > 0 \Rightarrow y > 0$

TCHEBYCHEFF INEQULAITY

Statement:

If X is a RV with $E(X) = \mu$ and $V(X) = \sigma^2$, then $P\{|X - \mu| \ge c\} \le \frac{\sigma^2}{c^2}$ or $P\{|X - \mu| < c\} \ge 1 - \frac{\sigma^2}{c^2}$, c > 0.

Alternative Form: If we put $c = k\sigma$, where k > 0 then Tchebycheff inequality takes the form

$$P\left\{\left|\frac{X-\mu}{k}\right| \ge \sigma\right\} \le \frac{1}{k^2} \text{ or } P\left\{\left|\frac{X-\mu}{k}\right| \le \sigma\right\} \ge 1 - \frac{1}{k^2}$$

PROBLEMS IN TCHEBYCHEFF INEQULAITY

1. A RV X has mean $\mu = 12$ and variance $\sigma^2 = 9$ and an unknown probability distribution. Find P(6 < X < 18). Solution: Since the probability distribution of X is not known, we can not find the value of the required probability. We can find only a lower bound for the probability using Tchebycheff inequality.

$$P\{|X - \mu| \ge c\} \le \frac{\sigma^2}{c^2}, c > 0 \quad \text{(or)} \quad P\{|X - \mu| < c\} \ge 1 - \frac{\sigma^2}{c^2}, c > 0$$

$$P\{-c < (X - \mu) < c\} \ge 1 - \frac{\sigma^2}{c^2} \Rightarrow P\{\mu - c < X < \mu + c\} \ge 1 - \frac{\sigma^2}{c^2}$$

$$\mu = 12, \ \sigma^2 = 9, \ P\{12 - c < X < 12 + c\} \ge 1 - \frac{9}{c^2}$$

Put
$$c = 6$$
, $P\{12 - 6 < X < 12 + 6\} \ge 1 - \frac{9}{6^2}$

 $P\{6 < X < 18\} \ge \frac{3}{4}$

2. A fair die is tossed 720 times. Use Tchebycheff inequality to find a lower bound for the probability of getting 100 to 140 sixes.

Solution: Let X – no. of sixes obtained when a fair die is tossed 720 times. $p = \frac{1}{6}$, $q = \frac{5}{6}$, n = 720

X follows a binomial distribution with mean np = 120 and variance npq = 100, that is $\mu = 120$, $\sigma = 10$

By Tchebycheff inequality $P\{|X - \mu| \le k\sigma\} \ge 1 - \frac{1}{k^2}$

$$P\{|X - 120| \le 10k\} \ge 1 - \frac{1}{k^2}$$

$$P\{-10k < (X - 120) < 10k\} \ge 1 - \frac{1}{k^2}$$

$$P\{120 - 10k < X < 120 + 10k\} \ge 1 - \frac{1}{k^2}$$

$$Put \ k = 2, \ P\{100 < X < 140\} \ge 1 - \frac{1}{4}$$

$$P\{100 < X < 140\} \ge \frac{3}{4}$$

3. A discrete RV X takes the values -1, 0, 1 with probabilities $\frac{1}{8}$, $\frac{3}{4}$, $\frac{1}{8}$ respectively. Evaluate $P\{|X - \mu| \ge 2\sigma\}$ and compare it with the upper bound given by Tchebycheff inequality. Solution:

$$E(X) = \sum_{x=-1}^{1} x P(x) = \left(-1 \times \frac{1}{8}\right) + \left(0 \times \frac{3}{4}\right) + \left(1 \times \frac{1}{8}\right) = 0$$

$$E(X^{2}) = \sum_{x=-1}^{1} x^{2} P(x) = \left(1 \times \frac{1}{8}\right) + \left(0 \times \frac{3}{4}\right) + \left(1 \times \frac{1}{8}\right) = \frac{1}{4}$$

$$V(X) = E(X^{2}) - [E(X)]^{2} = \frac{1}{4} - 0 = \frac{1}{4}$$

$$P\{|X - \mu| \ge 2\sigma\} = P\{X \ge 1\} = P(X = -1 \text{ or } X = 1) = \frac{1}{8} + \frac{1}{8} = \frac{1}{4}$$

By Tchebycheff inequality, $P\{|X - \mu| \ge k\sigma\} \le \frac{1}{k^2}$

$$P\{|X-\mu|\geq 2\sigma\}\leq \frac{1}{4}$$

All the Best

Dr. P. Godhanda Raman, M.Sc., M.A., M.B.A., Ph.D.

Assistant Professor (Senior Grade), Department of Mathematics SRM Institute of Science and Technology, Kattankulathur – 603 203,

Email: godhanda@gmail.com, Mobile: 9941740168