딥러닝을 이용한 낭만파 클래식 음악 창작 방법론

LSTM & Attention

2020. 12. 18 지성태

1.Intro

• AI 음악 창작

- 음악: 음정, 박자, 화성, 셈여림 등 많은 변수가 복합된 창작물
- 이미지, 텍스트에 비해 연구, 활용 사례 많지 않음
- 단순 멜로디 창작이나 대중음악 장르 일부 진전 있음

딥러닝 기법을 이용,

클래식 곡 중 가장 복잡하고 긴 교향곡 생성 도전, 이에 필요한 기법 연구, 보다 나은 결과물 위한 방법론 제시

Difficulty

- 많은 경우의 수 / Sparse한 데이터 구조
- 예측 모델의 정확도(Accuracy)가 음악적 완성도(Quality)를 의미하지는 않음
- 결과물을 눈으로 쉽게 확인할 수 없음(Intangible)

1.Intro

Way of Music Generating

Notation (Symbolic Music)

Audio (Timbre) Synthesis

- 귀에 들리는 오디오 그대로 이용(합성), 창작
- CNN + GAN

음악은 인류의 만국 공통어

"

- Henry W. Longfellow, John Wilson

• AI 음악 생성에 자연어 처리 방식 적용 추세 [CNN(X) RNN(O)]

2. Concept

2. Concept

"내가 그의 이름을 불러주기 전에는 그는 다만 하나의 몸짓에 지나지 않았다. 내가 그의 이름을 불러주었을 때, 그는 나에게로 와서 꽃이 되었다."

3. 연구 사례

•LSTM (2016~)

- 사건 사이에 알 수 없는 크기 및 시간에 따른 정보를 분류, 처리 및 예측하는 RNN의 일종
- 시계열 데이터나 연속적인 결과물 모델링에 주로 쓰임

Google Magenta Project

- Attention 기반 Music Transformer (2018)
- 방대한 음악 데이터 셋을 결합한 음악창작 도구
- 특이한 음악 창작 도구들 개발

Open Al

- 앨런 머스크 등이 AI의 인류에 대한 위협을 제거하고 선한 미래를 위해 투자한 비영리 연구단체 (2015, 1억불 투자 => 2019 MS에서 1억불 추가 투자)
- Clara(2018), Musenet (2019. 5): Transformer 구조 GPT-2 활용

MIDI

Musical Instrument Digital Interface 음정, Duration, 셈여림, 등등을 Digital 화 한 protocol (since 1984)

MIDI 파일(.mid)은 기록된 정보대로 디지털 악기(음원)를 구동하여 Sound를 생성할 수 있다.(연주의개념)

음정: 0-127 | Duration Pulses per quarter note = max 960

MIDI

변환 예시

MIDI 변환 예시 - Time Scale 1 Bar = 192 Tick

<meter.TimeSignature 4/4>

<note, time24, G3, dur=48>

<note, time72, A3, dur=24>

Composing; What's next?

4. LSTM

Training 원리

4. LSTM

모델링 - Generating (Predict)원리

5. Work Flow

• 데이터셋 수집

- 유명 클래식 음악 작곡가 작품
- 데이터학습 가능한 MIDI 파일로 인터넷에서 수집
- https://www.classicalarchives.com/,
 https://www.kaggle.com/soumikrakshit/classical-music-midi,
 https://www.kaggle.com/soumikrakshit/classical-music-midi,
 https://www.kaggle.com/soumikrakshit/classical-music-midi,
 https://www.kaggle.com/soumikrakshit/classical-music-midi,

• 학습 및 모델 생성

- AI 자연어 창작 기법과 동일한 개념
- 교향곡에 최적화 된 툴 활용하여 MIDI 파일 학습, 창작
- 더 나은(그럴듯한) 결과 위한 변수 및 네트워크 튜닝 방법 연구

• 결과물 생성

- MIDI 화일 (음원 Wave로 변환하여 감상)

6. 맛보기

구글, Music Transformer 맛보기

https://colab.research.google.com/notebooks/magenta/piano_transformer/piano_transformer.ipynb

Open Al, Musenet 맛보기

https://openai.com/blog/musenet/

LSTM으로 쇼팽 느낌 피아노곡 만들기

낭만파 음악, 분위기 있는 피아노 곡 만들기

II-1. 구체 목표

•유명 작곡가 스타일로 음악 창작하기

- 쇼팽 (Frédéric François Chopin, 1810-1849)
- 피아노의 시인으로 불리는 폴란드 작곡가
- 감성적으로 빼어난 스타일의 피아노 곡이 특징
- 쇼팽의 작품을 학습하고 새로운 스타일 곡 만들기

쇼팽 녹턴 Op.9. No.2 중에서

•학습 및 모델링

- 음악 스타일 학습
- 음악적 특화된 구조와 변수 조절

II-2. 데이터 수집 및 전처리

- Data Set 쇼팽의 녹턴
- 1827년에서 1846년까지 작곡한 21개의 곡. 독주 피아노의 연주와 연주회에서 연주되는 비중이 매우 높고 완벽한 작품으로 꼽히고 있다.

MIDI

- Pre Processing

Converting MIDI Data to Vectors

Tokenize

SlidingWindow

Character-level sliding window sequence generation

seed length: 20 chracters + 1 chracter output

```
Tryna_keep_it_simple<mark>_</mark>is_a_struggle_for_me
Tryna_keep_it_simple_is_a_struggle_for_me
Tryna_keep_it_simple_is_a_struggle_for_me
Try na_keep_it_simple_is_a_struggle_for_me
Tryna_keep_it_simple_is_a_struggle_for_me
Tryna_keep_it_simple_is_a_struggle_for_me
Tryna_keep_it_simple_is_a_struggle_for_me
Tryna_k|eep_it_simple_is_a_s|t|ruggle_for_me
Tryna_keep_it_simple_is_a_struggle_for_me
Tryna_keep_it_simple_is_a_struggle_for_me
Tryna_keep_it_simple_is_a_struggle_for_me
Tryna_keep_|it_simple_is_a_strug|g|le_for_me
Tryna_keep_i|t_simple_is_a_strugg|le_for_me
Tryna_keep_it_simple_is_a_struggle_for_me
Tryna_keep_it_simple_is_a_struggle_for_me
Tryna_keep_it_s<mark>imple_is_a_struggle_|fo</mark>r_me
Tryna_keep_it_si<mark>mple_is_a_struggle_f</mark>or_me
Tryna_keep_it_sim|ple_is_a_struggle_fo|r|_me
Tryna_keep_it_simple_is_a_struggle_for_me
Tryna_keep_it_simpl<mark>e_is_a_struggle_for_</mark>mle
Tryna_keep_it_simple|_is_a_struggle_for_m|e|
```

II-3. LSTM

- Training

모델링 - Workflow

II-4. LSTM

- Predict

Predict - Creating & Converting to MIDI

II-5. LSTM

Network

LSTM Network (Using KERAS)

II-6. 실습

- Google CoLab; Creating Music using LSTM
- <u>원문 출처</u>(깃허브 참조)
- 한글로보기

Attention 활용한 교향곡 창작 예시

복잡하고 긴 클래식 음악의 최고봉, 교향곡

Ⅲ-1. 구체 목표

•유명 작곡가 스타일로 음악 창작하기

- 슈베르트, 미완성 교향곡
- Symphony No.8 'Unfinished' D.759
- 작곡가 죽기 6년 전인 1822년 작곡
- 1, 2악장만 있고 3, 4악장이 없음(원래 4악장)
- 슈베르트 작품 등등을 학습하여 3악장 완성

미완성교향곡 1악장 중에서

•학습 및 모델링

- 악기 편성과 편곡 스타일 학습
- 음악 장르, 특성(ex 소나타 형식, 낭만파)에 특화된 구조와 변수 조절

III-2. 데이터 수집 및 전처리

Data Set

장르	작곡가	곡명	곡수	비고
교향곡	슈베르트	No.1 ~ 9	8	
관현악곡		로자문데	5	
실내악곡		현악 4중주	10	
		피아노 소나타	12	
		기타 실내악곡	32	
소계			67	
	계		684	12음계 전조
교향곡	하이든	No.81 ~ 104	24	전성기
	모차르트	No.25 ~ 41	17	전성기
	베토벤	No.1 ~ 8	8	9번 제외
관현악곡	베토벤	피델리오 등	5	슈베르트에
				큰 영향 준 곡
	계		54	

III-2. 데이터 수집 및 전처리

Music Notes in a Song

III-2. 데이터 전처리

Symphonie in H moll (unvollendet)

FRANZ SCHUBERT

III-2. 데이터 수집 및 전처리

•정확한 학습과 모델링을 위해 데이터 축약

14개 악기 악보 => 피아노 용 연주곡 형태로 Merge

III-4. Self Attention

Seq2Seq에서 Context Vector 대신 Attention 기법을 쓰는 것

III-4. Self Attention

Attention Concept

Self Attention

III-5. Self Attention

-Training

Training Work Flow

III-6. Self Attention

- Predict

Generating WorkFlow

III-7. Self Attention

- Network

Network Using Tensorflow2.0

● GRU는 복잡한 LSTM의 구조를 간단히 한 것으로 LSTM과 유사한 성능을 가집니다.

BiDirectional RNN

• BRNN은 양방향으로부터 시퀀스의 **과거 정보**(t 기준 t-1, t-2, ...)와 **미래 정보**(t기준 t+1, t+2, ...) 둘 다 사용하기 때문에 기존 RNN 보다 더 좋은 성능을 기대할 수 있습니다.

Ⅲ-8. 실습

- Google CoLab;
- GRU + Self Attention Method for Creating Music

Attention사용하는 Transformer

IV. 기법별 비교

•시간흐름에 따른 알고리듬 별 생성물 비교 (by Google Magenta)

- Attention 기법의 Music Transformer가 긴 시간 동안 유효성 유지

Music

Transformer

Baseline

Transformer

LSTM

Epoch=500, Loss = 0.4 (24hours in CoLab)

IV-1.결과

- LSTM

IV-2.결과

-GRU & ATTENTION

Epoch = 300, Loss= 0.5 (24hours in CoLab)

IV-3. 결과 평가

결과물 평가

Numerical Evaluation

- Empirical Entropy 측정
- Cross Entropy 측정
- 여러 악기가 사용되는 교향곡의 경우 적합하지 않음

Listening Evaluation

- 생성된 MIDI 파일을 음원으로 변환
- 피아노 트랙을 간단한 현악기군으로 변환
- Turing Test/ Blind Test 실시 음악적 완성도 평가
- 작곡가, 평론가, 지휘자, 연주자 16명 대상

IV-3. 결과 평가

- LSTM은 많은 연산시간과 Long Term Dependency에 문제
- GRU + Self ATTN 방식이 생성 길이가 길어짐에도 음악적 구조와 문법을 자연스럽게 유지함

Motifs repeat, immediately and also at a distance

- Self ATTN 방식은 Transformer / BERT에도 차용되어 음악 창작, 문장 창작 및 번역에 기여