Uncertainty quantification for marginal computations

Jean-Michel Marin

University of Montpellier, CNRS Alexander Grothendieck Montpellier Institute

June 2022

Joint work with

Christian Robert University Paris Dauphine and University of Warwick

Judith Rousseau University of Oxford

M Bayesian parametric models in competition

$$f_m(y|\theta_m)$$
 $\pi_m(\theta_m)$ $m = 1,..., M$

Prior probabilities in the model space $\mathbb{P}(\mathcal{M} = m)$

Target: the model's posterior probabilities

$$\mathbb{P}(\mathscr{M} = m|\mathbf{y}) \propto \mathbb{P}(\mathscr{M} = m) \int f_{m}(\mathbf{y}|\boldsymbol{\theta}_{m}) \pi_{m}(\boldsymbol{\theta}_{m}) d\boldsymbol{\theta}_{m}$$

A key quantity the marginal likelihood (the evidence)

$$\int f_m(y|\theta_m)\pi_m(\theta_m)d\theta_m$$

Bayesian inference embodies Occam's razor

A simple model, like Model 0, makes only a limited range of predictions; a more powerful model, like Model 1, is able to predict a greater variety of data sets

If the data set falls in region R, the less powerful model will be the more probable model

The marginal likelihood corresponds to a **penalized** likelihood

The BIC information criterium Schwarz (1978) comes from an asymptotic Laplace approximation of the marginal likelihood

Drton and Plummer (2017) Very nice extensions for singular model selection problems

Bayes factor for models M_1 and M_0

$$B_{10} = \frac{\int f_1(\mathbf{y}|\boldsymbol{\theta}_1)\pi_1(\boldsymbol{\theta}_1)d\boldsymbol{\theta}_1}{\int f_0(\mathbf{y}|\boldsymbol{\theta}_0)\pi_0(\boldsymbol{\theta}_0)d\boldsymbol{\theta}_0}$$

Difficulties with the Bayesian model choice paradigm

Prior difficulties

- How to choose the prior distributions on the parameters of each model in a compatible way?
- What about the prior distribution in the models's space?

We do not address these crucial questions in this talk

Computational difficulties

- How to approximate the marginal likelihoods?
- When the number of models in consideration is huge, how to explore the models's space?

We consider the case of a limited number of models and not address trans-dimensional sampling solutions, like the reversible jump algorithm

We concentrate on the crucial question: how to approximate the marginal likelihood

$$m = \int f(\mathbf{y}|\mathbf{\theta})\pi(\mathbf{\theta})d\mathbf{\theta} = \mathbb{E}_{\pi} [f(\mathbf{y}|\mathbf{\theta})]$$

We consider the case where the calculating of the likelihood is tractable

We recall the main approximation techniques

We highlight the link between the Bridge sampling method and the noise-contrastive strategy

We show how to skillfully use the Weighted Likelihood Bootstrap technique to evaluate the associated error

Standard Monte Carlo approximation

$$m = \int f(\mathbf{y}|\boldsymbol{\theta}) \pi(\boldsymbol{\theta}) d\boldsymbol{\theta} = \mathbb{E}_{\pi} \left[f(\mathbf{y}|\boldsymbol{\theta}) \right]$$

 $\boldsymbol{\theta}^{(1)}, \dots, \boldsymbol{\theta}^{(N)}$ is an N-sample from $\pi(\cdot)$

$$\hat{\mathbf{m}} = \frac{1}{N} \sum_{i=1}^{N} f(\mathbf{y} | \boldsymbol{\theta}^{(i)})$$

When the prior is far from the posterior ⇒ very high variance

Importance sampling approximation

$$g(\cdot)$$
 such that $g(\theta)>0$ when $f(y|\theta)\pi(\theta)>0$

$$m = \int f(\textbf{y}|\theta) \pi(\theta) d\theta = \mathbb{E}_g \left[f(\textbf{y}|\theta) \frac{\pi(\theta)}{g(\theta)} \right]$$

 $\theta^{(1)}, \dots, \theta^{(N)}$ is an N-sample from $g(\cdot)$

$$\hat{\mathfrak{m}} = \frac{1}{N} \sum_{i=1}^{N} f(\mathbf{y} | \boldsymbol{\theta}^{(i)}) \frac{\pi(\boldsymbol{\theta}^{(i)})}{g(\boldsymbol{\theta}^{(i)})}$$

Problem specific and curse of dimensionality

Chib's solution

Chib (1995)

$$m = \frac{f(\boldsymbol{y}|\boldsymbol{\theta})\,\pi(\boldsymbol{\theta})}{\pi(\boldsymbol{\theta}|\boldsymbol{y})}$$

For an arbitrary value θ^* of $\theta \Longrightarrow$

$$\hat{\mathbf{m}} = \frac{\mathbf{f}(\mathbf{y}|\mathbf{\theta}^*) \, \pi(\mathbf{\theta}^*)}{\hat{\pi}(\mathbf{\theta}^*|\mathbf{y})}$$

 $\hat{\pi}(\theta|\mathbf{y})$ may be the Gaussian approximation based on the MLE

Chib's solution

Approximation based on a preliminary MCMC sample

Latent variables models \Longrightarrow natural approximation to $\pi_k(\theta^*|y)$

$$\hat{\pi}(\boldsymbol{\theta}^*|\mathbf{y}) = \frac{1}{T} \sum_{t=1}^{T} \pi(\boldsymbol{\theta}^*|\mathbf{y}, \mathbf{z}^{(t)})$$

 $\boldsymbol{z}^{(t)}$ the latent variables simulated by the MCMC sampler

High variance and curse of dimensionality

Meng and Wong (1996), Meng and Schilling (2002)

$$m = \frac{\int f(\boldsymbol{y}|\boldsymbol{\theta})\pi(\boldsymbol{\theta})h(\boldsymbol{\theta})g(\boldsymbol{\theta})d\boldsymbol{\theta}}{\int g(\boldsymbol{\theta})h(\boldsymbol{\theta})\pi(\boldsymbol{\theta}|\boldsymbol{y})d\boldsymbol{\theta}} = \frac{\mathbb{E}_g\left[f(\boldsymbol{y}|\boldsymbol{\theta})\pi(\boldsymbol{\theta})h(\boldsymbol{\theta})\right]}{\mathbb{E}_\pi\left[h(\boldsymbol{\theta})g(\boldsymbol{\theta})|\boldsymbol{y}\right]}$$

- $g(\theta)$ a proposal distribution $h(\theta)$ the bridge function
 - $\hat{m} = \frac{\frac{1}{\alpha N} \sum_{i=1}^{\alpha N} f(\boldsymbol{y}|\boldsymbol{\theta}_0^{(i)}) \pi(\boldsymbol{\theta}_0^{(i)}) h(\boldsymbol{\theta}_0^{(i)})}{\frac{1}{N} \sum_{i=1}^{N} h(\boldsymbol{\theta}_1^{(i)}) g(\boldsymbol{\theta}_1^{(i)})}$

$$\begin{array}{l} \theta_0^{(1)}, \dots, \theta_0^{(\alpha N)} \text{ is an } \alpha \text{N-sample from } g(\cdot) \\ \theta_1^{(1)}, \dots, \theta_1^{(N)} \text{ is an N-sample from } \pi(\cdot|\mathbf{y}) \end{array}$$

Gronau, Singmann, Wagenmakers (2020)

Nice R library bridgesampling

Overstall and Forster (2010) a convenient proposal

Gaussian distribution with its first two moments chosen to match those of the posterior distribution

Optimal bridge function

$$h(\theta) = \frac{C}{\left(\frac{1}{1+\alpha}\right) f(\mathbf{y}|\theta) \pi(\theta) + \left(\frac{\alpha}{1+\alpha}\right) g(\theta) m}$$

Optimal in the sense that it minimizes the relative squared error

The constant C cancels

The optimal bridge function depends on \mathfrak{m} \Longrightarrow iterative scheme

$$\hat{m}^{(t+1)} = \frac{\frac{1}{\alpha N} \sum_{i=1}^{\alpha N} \frac{f(\boldsymbol{y}|\boldsymbol{\theta}_{0}^{(i)}) \pi(\boldsymbol{\theta}_{0}^{(i)})}{\left(\frac{1}{1+\alpha}\right) f(\boldsymbol{y}|\boldsymbol{\theta}_{0}^{(i)}) \pi(\boldsymbol{\theta}_{0}^{(i)}) + \left(\frac{\alpha}{1+\alpha}\right) g(\boldsymbol{\theta}_{0}^{(i)}) \hat{m}^{(t)}}}{\frac{1}{N} \sum_{i=1}^{N} \frac{g(\boldsymbol{\theta}_{1}^{(i)})}{\left(\frac{1}{1+\alpha}\right) f(\boldsymbol{y}|\boldsymbol{\theta}_{1}^{(i)}) \pi(\boldsymbol{\theta}_{1}^{(i)}) + \left(\frac{\alpha}{1+\alpha}\right) g(\boldsymbol{\theta}_{1}^{(i)}) \hat{m}^{(t)}}}$$

$$\begin{split} h_{1,(\mathfrak{i})} &= \frac{f(\boldsymbol{y}|\boldsymbol{\theta}_{1}^{(\mathfrak{i})})\pi(\boldsymbol{\theta}_{1}^{(\mathfrak{i})})}{g(\boldsymbol{\theta}_{1}^{(\mathfrak{i})})} \quad h_{0,(\mathfrak{i})} = \frac{f(\boldsymbol{y}|\boldsymbol{\theta}_{0}^{(\mathfrak{i})})\pi(\boldsymbol{\theta}_{0}^{(\mathfrak{i})})}{g(\boldsymbol{\theta}_{0}^{(\mathfrak{i})})} \\ & \hat{\boldsymbol{m}}^{(\mathfrak{t}+1)} = \frac{\frac{1}{\alpha}\sum_{i=1}^{\alpha N}\frac{h_{0,(\mathfrak{i})}}{h_{0,(\mathfrak{i})}+\alpha\hat{\boldsymbol{m}}^{(\mathfrak{t})}}}{\sum_{i=1}^{N}\frac{1}{h_{1,(\mathfrak{i})}+\alpha\hat{\boldsymbol{m}}^{(\mathfrak{t})}}} \\ & \alpha\hat{\boldsymbol{m}}^{(\mathfrak{t}+1)}\sum_{i=1}^{N}\frac{1}{h_{1,(\mathfrak{i})}+\alpha\hat{\boldsymbol{m}}^{(\mathfrak{t})}} = \sum_{i=1}^{\alpha N}\frac{h_{0,(\mathfrak{i})}}{h_{0,(\mathfrak{i})}+\alpha\hat{\boldsymbol{m}}^{(\mathfrak{t})}} \end{split}$$

Some others alternatives

Large set of approximations for marginal likelihood or Bayes factors

- Annealed Importance Sampling by Neal (2001)
- Sub-product of Sequential Monte Carlo samplers Del Moral, Doucet and Jasra (2006)
- The Savage-Dickey ratio Verdinelli and Wasserman (1995),
 Marin and Robert (2010)
- **.**..

Idea: reduce an estimation problem to a classification problem Several versions:

- Logistic regression for density estimation: Hastie et al. (2003)
- Intensity estimation: Baddeley et al. (2010)
- Logistic regression for estimation in unnormalised models: Geyer (1994) and Gutmann and Hyvarinen (2012)

$$f_0(\boldsymbol{\theta}|\boldsymbol{y},z=0) = g(\boldsymbol{\theta}) \quad ; \quad f_1(\boldsymbol{\theta}|\boldsymbol{y},z=1) = \frac{f(\boldsymbol{y}|\boldsymbol{\theta})\pi(\boldsymbol{\theta})}{m} = \pi(\boldsymbol{\theta}|\boldsymbol{y})$$

$$\begin{split} \mathbb{P}(z=1|\mathbf{y},\theta) &= \frac{\mathbb{P}(z=1)\frac{\mathbf{f}(\mathbf{y}|\theta)\pi(\theta)}{\mathbf{m}}}{\mathbb{P}(z=1)\frac{\mathbf{f}(\mathbf{y}|\theta)\pi(\theta)}{\mathbf{m}} + \mathbb{P}(z=0)g(\theta)}\\ \mathbb{P}(z=0|\mathbf{y},\theta) &= \frac{\mathbb{P}(z=0)g(\theta)}{\mathbb{P}(z=1)\frac{\mathbf{f}(\mathbf{y}|\theta)\pi(\theta)}{\mathbf{m}} + \mathbb{P}(z=0)g(\theta)} \end{split}$$

$$\mathbb{P}(z=0) \propto \alpha \mathbb{N}$$
 ; $\mathbb{P}(z=1) \propto \mathbb{N}$; $\frac{\mathbb{P}(z=0)}{\mathbb{P}(z=1)} = \alpha$

$$\begin{array}{l} \theta_0^{(1)}, \dots, \theta_0^{(\alpha N)} \text{ is an } \alpha \text{N-sample from } g(\cdot) \\ \theta_1^{(1)}, \dots, \theta_1^{(N)} \text{ is an N-sample from } \pi(\cdot|\mathbf{y}) \end{array}$$

The pseudo likelihood

$$\begin{split} &\prod_{i=1}^{N} \left\{ \frac{\frac{f(\boldsymbol{y}|\boldsymbol{\theta}_{1}^{(i)})\pi(\boldsymbol{\theta}_{1}^{(i)})}{m}}{\frac{f(\boldsymbol{y}|\boldsymbol{\theta}_{1}^{(i)})\pi(\boldsymbol{\theta}_{1}^{(i)})}{m} + \alpha g(\boldsymbol{\theta}_{1}^{(i)})} \right\} \times \\ &\prod_{i=1}^{\alpha N} \left\{ \frac{\alpha g(\boldsymbol{\theta}_{0}^{(i)})}{\frac{f(\boldsymbol{y}|\boldsymbol{\theta}_{0}^{(i)})\pi(\boldsymbol{\theta}_{0}^{(i)})}{m} + \alpha g(\boldsymbol{\theta}_{0}^{(i)})} \right\} \end{split}$$

The pseudo log-likelihood

$$\begin{split} q(m) &= cst - N \, log(m) - \sum_{i=1}^{N} log \left(\frac{f(y|\theta_{1}^{(i)}) \pi(\theta_{1}^{(i)})}{m} + \alpha g(\theta_{1}^{(i)}) \right) - \\ & \sum_{i=1}^{\alpha N} log \left(\frac{f(y|\theta_{0}^{(i)}) \pi(\theta_{0}^{(i)})}{m} + \alpha g(\theta_{0}^{(i)}) \right) \\ mq'(m) &= -N + \sum_{i=1}^{\alpha N} \frac{h_{0,(i)}}{h_{0,(i)} + \alpha m} + \sum_{i=1}^{N} \frac{h_{1,(i)}}{h_{1,(i)} + \alpha m} \\ mq'(m) &= \sum_{i=1}^{\alpha N} \frac{h_{0,(i)}}{h_{0,(i)} + \alpha m} - \sum_{i=1}^{N} \frac{\alpha m}{h_{1,(i)} + \alpha m} \end{split}$$

Let $\hat{\mathfrak{m}}$ be the solution of $\hat{\mathfrak{m}}q'(\hat{\mathfrak{m}})=0$

$$\Longleftrightarrow \alpha m \sum_{i=1}^N \frac{1}{h_{1,(i)} + \alpha m} = \sum_{i=1}^{\alpha N} \frac{h_{0,(i)}}{h_{0,(i)} + \alpha m}$$

 $\hat{\mathfrak{m}}$ is equivalent to the optimal bridge estimator if \mathfrak{m}

Optimal bridge estimator solution of

$$\alpha \hat{m}^{(t+1)} \sum_{i=1}^{N} \frac{1}{h_{1,(i)} + \alpha \hat{m}^{(t)}} = \sum_{i=1}^{\alpha N} \frac{h_{0,(i)}}{h_{0,(i)} + \alpha \hat{m}^{(t)}}$$

Let
$$c = -\log(m)$$

Logistic regression approximation

$$\begin{split} \log \left(\frac{\mathbb{P}(z=1|\mathbf{y},\theta)}{\mathbb{P}(z=0|\mathbf{y},\theta)} \right) &= -\log(\mathfrak{m}) + \log \left(\frac{f(\mathbf{y}|\theta)\pi(\theta)}{\alpha g(\theta)} \right) \\ \log \left(\frac{\mathbb{P}(z=1|\mathbf{y},\theta)}{\mathbb{P}(z=0|\mathbf{y},\theta)} \right) &= c + \log \left(\frac{f(\mathbf{y}|\theta)\pi(\theta)}{\alpha g(\theta)} \right) \end{split}$$

Let m* be the true value of m that is

$$m^* = \int f(\mathbf{y}|\theta)\pi(\theta)d\theta$$

Pseudo likelihood paradigm ⇒

$$\sqrt{N}(\hat{c} - c^*) \longrightarrow \\
N\left(0, \left[\int \frac{\alpha g(\theta) \pi(\theta|\mathbf{y})}{\pi(\theta|\mathbf{y}) + \alpha g(\theta)} d\theta\right]^{-1} - (1 + 1/\alpha)\right) \\
c = -\log(m) : c^* = -\log(m^*)$$

Pseudo likelihood paradigm \Longrightarrow Weighted likelihood bootstrap to estimate the variance of \hat{c}

In all of the following, many regularity conditions are assumed

$$\ell(\theta) = f(\textbf{x}|\theta) = \prod_{i=1}^n f(x_i|\theta) \text{ a parametric family with } \theta \in \mathbb{R}$$

$$\pi(\theta) \text{ a prior distribution}$$

Le Cam (1956) Bernstein-von Mises theorem

$$\boxed{ \left(\boldsymbol{\theta} - \boldsymbol{\hat{\theta}}_{n} \right) | \mathbf{x} \approx \mathcal{N}(\mathbf{0}, \boldsymbol{\hat{\sigma}}_{n}) \quad (\text{for n large}) }$$

$$\hat{\theta}_n \text{ is the MLE of } \theta \text{ and } \hat{\sigma}_n = \left(-\frac{\partial^2 \left(\sum_{i=1}^n log \, f(x_i | \theta) \right)}{(\partial \theta)^2} (\hat{\theta}_n) \right)^{-1}$$

Newton and Raftery (1994)

Let $\omega=(\omega_1,\ldots,\omega_n)$ has a uniform Dirichlet distribution The associated weighted likelihood function is

$$\tilde{\ell}(\theta) = \prod_{i=1}^{n} f(x_i | \theta)^{\omega_i}$$

 $\tilde{\theta}_n$ is the maximum value of $\tilde{\ell}(\theta)$

The conditional distribution of $\tilde{\theta}_n$ is a good approximation of the posterior posterior distribution of θ

$$\left(\tilde{\theta}_{n}-\hat{\theta}_{n}\right)|\mathbf{x}\approx\mathcal{N}(\mathbf{0},\hat{\sigma}_{n})\quad (\text{for n large})$$

Finally, recall that

$$\left(\hat{\theta}_n - \theta\right) \approx \mathcal{N}(\mathbf{0}, \hat{\sigma}_n) \quad (\text{for } n \text{ large})$$

$$\Longrightarrow \mathbb{V}(\hat{\theta}_n) \approx \hat{\sigma}_n$$

The variance of the MLE can be approximate by using the empirical variance of $\tilde{\theta}_n$

Sample the ω_i independently from an exponential distribution with parameter equal to 1 and renormalize

Calculate $\tilde{\theta}_n$ (the maximum value of $\tilde{\ell}(\theta)$)

Repeat the two previous steps several times and estimate the variance of $\hat{\theta}_n$ with the empirical variance of the $\tilde{\theta}_n$

As we are in a specific pseudo likelihood context some corrections are needed

The basic Weighted Likelihood bootstrap would be based on the following weighted likelihood

$$\begin{split} -\text{N}\log(m) - \sum_{i=1}^{N} \omega_{i,1} \log \left(\frac{f(\boldsymbol{y}|\boldsymbol{\theta}_{1}^{(i)}) \pi(\boldsymbol{\theta}_{1}^{(i)})}{m} + \alpha g(\boldsymbol{\theta}_{1}^{(i)}) \right) - \\ \sum_{i=1}^{\alpha N} \omega_{i,0} \log \left(\frac{f(\boldsymbol{y}|\boldsymbol{\theta}_{0}^{(i)}) \pi(\boldsymbol{\theta}_{0}^{(i)})}{m} + \alpha g(\boldsymbol{\theta}_{0}^{(i)}) \right) \end{split}$$

Corrected version

$$\begin{split} -\text{N} \log(\textbf{m}) - & \sum_{i=1}^{N} \frac{\text{N} \omega_{i,1}}{\sum_{i=1}^{N} \omega_{i,1}} \log \left(\frac{f(\textbf{y}|\boldsymbol{\theta}_{1}^{(i)}) \pi(\boldsymbol{\theta}_{1}^{(i)})}{\textbf{m}} + \alpha g(\boldsymbol{\theta}_{1}^{(i)}) \right) - \\ & \sum_{i=1}^{\alpha N} \frac{\text{N} \omega_{i,0}}{\sum_{i=1}^{\alpha N} \omega_{i,0}} \log \left(\frac{f(\textbf{y}|\boldsymbol{\theta}_{0}^{(i)}) \pi(\boldsymbol{\theta}_{0}^{(i)})}{\textbf{m}} + \alpha g(\boldsymbol{\theta}_{0}^{(i)}) \right) \end{split}$$

$$y|\theta \sim \mathcal{N}(\theta, 1)$$
$$\theta \sim \mathcal{N}(0, 1)$$

In such a case

$$\begin{split} \mathbf{m} &= \text{exp}(-\mathbf{y}^2/4)/\sqrt{4\pi} \\ \theta &| \mathbf{y} \sim \mathcal{N}(\mathbf{y}/2,\,\sqrt{1/2}) \end{split}$$

```
# lh <- log(f(y|theta))+log(pi(theta))-g(theta)
mqprime <- function(const,Nsim,lh)
{
   -Nsim+sum(exp(lh)/(exp(lh)+exp(-const)))
}
mqprimew <- function(const,Nsim,lh,w)
{
   -sum(w[1:Nsim])+sum(w*exp(lh)/(exp(lh)+exp(-const)))
}</pre>
```

```
Nsim < -10^5 ; m < -3 ; sig < -0.8
thetapost <- rnorm(Nsim, mean=y/2, sd=sqrt(1/2))
thetag <- rnorm(Nsim,mean=m,sd=sqrt(sig))</pre>
zeta <- c(thetapost,thetag)</pre>
lh <- dnorm(zeta,mean=y,log=TRUE)+</pre>
dnorm(zeta,log=TRUE)-
dnorm(zeta,mean=m,sd=sqrt(sig),log=TRUE)
bridge <- uniroot(mqprime, Nsim=Nsim, lh=lh,</pre>
c(target-1, target+1), tol=.Machine$double.eps^0.5)$root
bridge
[1] 7.515067
```

Variability of the bridge estimate via Monte Carlo replicates

```
Nsim \leftarrow 10<sup>5</sup>; N \leftarrow 100; monte.carlo \leftarrow rep(0,N)
for (i in 1:N)
thetapost <- rnorm(Nsim,mean=y/2,sd=sqrt(1/2))
thetag <- rnorm(Nsim,mean=m,sd=sqrt(sig))</pre>
zeta <- c(thetapost,thetag)</pre>
1h <- dnorm(zeta,mean=y,log=TRUE)+</pre>
dnorm(zeta,log=TRUE)-
dnorm(zeta,mean=m,sd=sqrt(sig),log=TRUE)
monte.carlo[i] <- uniroot(mgprime,Nsim=Nsim,lh=lh,</pre>
c(target+1, target-1), tol=.Machine$double.eps^0.5)$root
sd(sqrt(Nsim)*monte.carlo)
[1] 0.4721598
```

Variability of the bridge estimate via Weighted Likelihood Bootstrap

```
Nsim < -10^{5}
thetapost <- rnorm(Nsim,mean=y/2,sd=sqrt(1/2))
thetag <- rnorm(Nsim,mean=m,sd=sqrt(sig))</pre>
zeta <- c(thetapost,thetag)</pre>
lh <- dnorm(zeta,mean=y,log=TRUE)+</pre>
dnorm(zeta,log=TRUE)-
dnorm(zeta,mean=m,sd=sqrt(sig),log=TRUE)
N \leftarrow 100; wlb \leftarrow rep(0,N); for (i in 1:N) {
w1 \leftarrow rexp(Nsim) ; w1 \leftarrow w1/sum(w1)*Nsim
w2 \leftarrow rexp(Nsim); w2 \leftarrow w2/sum(w2)*Nsim
w \leftarrow c(w1,w2)
wlb[i] <- uniroot(mqprimew, Nsim=Nsim, lh=lh, w=w,</pre>
c(target+1, target-1), tol=.Machine$double.eps^0.5)$root
sd(sqrt(Nsim)*wlb)
Γ17 0.4648654
```