

Digital Integrated Circuits A Design Perspective

Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

The Inverter

July 30, 2002

The CMOS Inverter: A First Glance

CMOS Inverter

Two Inverters

Share power and ground

Abut cells

CMOS Inverter First-Order DC Analysis

$$V_{OL} = 0$$

$$V_{OH} = V_{DD}$$

$$V_{M} = f(R_{n}, R_{p})$$

CMOS Inverter: Transient Response

(a) Low-to-high

Voltage Transfer Characteristic

PMOS Load Lines

CMOS Inverter Load Characteristics

CMOS Inverter VTC

Switching Threshold as a function of Transistor Ratio

Determining V_{IH} and V_{IL}

1.1

A simplified approach

Inverter Gain

$$g = -\frac{1}{I_D(V_M)} \frac{k_n V_{DSATn} + k_p V_{DSATp}}{\lambda_n - \lambda_p}$$

$$\approx \frac{1 + r}{(V_M - V_{Tn} - V_{DSATn}/2)(\lambda_n - \lambda_p)}$$

Gain as a function of VDD

Simulated VTC

Impact of Process Variations

Propagation Delay

CMOS Inverter Propagation Delay Approach 1

CMOS Inverter Propagation Delay Approach 2

CMOS Inverters

Transient Response

Design for Performance

- Keep capacitances small
- □ Increase transistor sizes
 - watch out for self-loading!
- \square Increase V_{DD} (????)

Delay as a function of V_{DD}

Device Sizing

NMOS/PMOS ratio

$$\beta = W_p/W_n$$

Impact of Rise Time on Delay

$$t_{pHL} = \sqrt{t_{pHL(step)}^2 + (t_r/2)^2}$$

Inverter Sizing

Inverter Chain

If C_L is given:

- How many stages are needed to minimize the delay?
- How to size the inverters?

May need some additional constraints.

Inverter Delay

- Minimum length devices, L=0.25μm
- Assume that for $W_P = 2W_N = 2W$
 - same pull-up and pull-down currents
 - approx. equal resistances $R_N = R_P$
 - approx. equal rise t_{pLH} and fall t_{pHL} delays
- Analyze as an RC network

Delay (*D*):
$$t_{pHL} = (\ln 2) R_N C_L$$

$$t_{pLH} = (\ln 2) R_P C_L$$

Load for the next stage:

Inverter with Load

k is a constant, equal to 0.69

Assumptions: no load -> zero delay

$$W_{unit} = 1$$

Inverter with Load

Delay = $kR_W(C_{int} + C_L) = kR_WC_{int} + kR_WC_L = kR_WC_{int}(1 + C_L/C_{int})$ = Delay (Internal) + Delay (Load)

Delay Formula

$$C_{int} = \gamma C_{gin}$$
 with γ_{za} 1
 $f = C_L/C_{gin}$ - effective fanout
 $R = R_{unit}/W$; $C_{int} = WC_{unit}$
 $t_{p0} = 0.69R_{unit}C_{unit}$

Apply to Inverter Chain

In
$$\begin{array}{c|c} & & & & & & \\ & 1 & 2 & & & \\ & t_p = t_{p1} + t_{p2} + \ldots + t_{pN} \end{array}$$

Optimal Tapering for Given N

Delay equation has N - 1 unknowns, $C_{\mathrm{gin,2}} - C_{\mathrm{gin,N}}$

Minimize the delay, find N - 1 partial derivatives

Result:
$$C_{gin,j+1}/C_{gin,j} = C_{gin,j}/C_{gin,j-1}$$

Size of each stage is the geometric mean of two neighbors

- each stage has the same effective fanout (C_{out}/C_{in})
- each stage has the same delay

Optimum Delay and Number of Stages

When each stage is sized by *f* and has same eff. fanout *f*:

Effective fanout of each stage:

Minimum path delay

Example

 C_1/C_1 has to be evenly distributed across N=3 stages:

Optimum Number of Stages

For a given load, C_L and given input capacitance C_{in} Find optimal sizing f

For
$$\gamma$$
= 0, f = e, N = In F

Optimum Effective Fanout f

Optimum f for given process defined by γ

$$f_{opt} = 3.6$$
 for $\gamma = 1$

Impact of Self-Loading on tp

No Self-Loading, γ =0

With Self-Loading γ =1

Normalized delay function of F

F	Unbuffered	Two Stage	Inverter Chain
10	11	8.3	8.3
100	101	22	16.5
1000	1001	65	24.8
10,000	10,001	202	33.1

Buffer Design

Power Dissipation

Where Does Power Go in CMOS?

Dynamic Power Consumption

Charging and Discharging Capacitors

Short Circuit Currents

Short Circuit Path between Supply Rails during Switching

Leakage

Leaking diodes and transistors

Dynamic Power Dissipation

Energy/transition = $C_L * V_{dd}^2$

Power = Energy/transition * $f = C_L * V_{dd}^2 * f$

- Not a function of transistor sizes!
- Need to reduce C_L , V_{dd} , and f to reduce power.

Modification for Circuits with Reduced Swing

$$E_{0 \to 1} = C_L \cdot V_{dd} \cdot (V_{dd} - V_t)$$

• Can exploit reduced swing to lower power (e.g., reduced bit-line swing in memory)

Adiabatic Charging

Adiabatic Charging

$$V_{I} = RI + V_{c} = RC \frac{dv}{dt}^{c} + V_{c}$$

 $V_I = cst -> Exponential current$ $I = I_{av} -> Linear ramp on <math>V_I$

$$E_R = CV_c^2/2$$

wins if T > 2RC

mimimal energy

$$E_R = RC/T CV_c^2$$

Node Transition Activity and Power

• Consider switching a CMOS gate for N clock cycles

$$E_N = C_L \cdot V_{dd}^2 \cdot n(N)$$

 E_N : the energy consumed for N clock cycles

n(N): the number of 0->1 transition in N clock cycles

$$P_{avg} = \lim_{N \to \infty} \frac{E_N}{N} \cdot f_{clk} = \left(\lim_{N \to \infty} \frac{n(N)}{N}\right) \cdot C_L \cdot V_{dd}^2 \cdot f_{clk}$$

$$\alpha_{0 \to 1} = \lim_{N \to \infty} \frac{n(N)}{N}$$

$$P_{avg} = \alpha_{0 \to 1} \cdot C_{L} \cdot V_{dd}^{2} \cdot f_{clk}$$

Transistor Sizing for Minimum

Energy

- ☐ Goal: Minimize Energy of whole circuit
 - Design parameters: f and V_{DD}

Transistor Sizing (2)

 \square Performance Constraint (γ =1)

Energy for single Transition

Transistor Sizing (3)

Short Circuit Currents

How to keep Short-Circuit Currents Low?

Short circuit current goes to zero if $t_{fall} >> t_{rise}$, but can't do this for cascade logic, so ...

Minimizing Short-Circuit Power

- Keep the input and output rise/fall times the same (< 10% of Total Consumption) from [Veendrick84]
 (IEEE Journal of Solid-State Circuits, August 1984)
- If $V_{dd} < V_{tn} + |V_{tp}|$ then short-circuit power can be *eliminated*!

Leakage

Sub-Threshold Current Dominant Factor

Sub-threshold current one of most compelling issues in low-energy circuit design!

Reverse-Biased Diode Leakage

- $J_S = 1-5 \text{pA/}\mu\text{m}^2$ for a 1.2 μ m CMOS technology
- J_c double with every 9°C increase in temperature

 $JS = 10-100 \text{ pA/}\mu\text{m2}$ at 25 deg C for 0.25 μ m CMOS JS doubles for every 9 deg C!

Subthreshold Leakage Component

Leakage control is critical for low-voltage operation

Static Power Consumption

$$P_{\text{stat}} = P_{(\text{In}=1)} \cdot V_{\text{dd}} \cdot I_{\text{stat}}$$

- Dominates over dynamic consumption
- Not a function of switching frequency

Wasted energy ...
Should be avoided in almost all cases,
but could help reducing energy in others (e.g. sense amps)

Principles for Power Reduction

- Prime choice: Reduce voltage!
 - Recent years have seen an acceleration in supply voltage reduction
 - Design at very low voltages still open question (0.6 ... 0.9 V by 2010!)
- Reduce switching activity
- □ Reduce physical capacitance
 - Device Sizing: for F=20
 - $-f_{opt}$ (energy)=3.53, f_{opt} (performance)=4.47

Impact of Technology Scaling

Goals of Technology Scaling

- □ Make things cheaper:
 - Want to sell more functions (transistors) per chip for the same money
 - Build same products cheaper, sell the same part for less money
 - Price of a transistor has to be reduced
- But also want to be faster, smaller, lower power

Technology Scaling

- ☐ Goals of scaling the dimensions by 30%:
 - Reduce gate delay by 30% (increase operating frequency by 43%)
 - Double transistor density
 - Reduce energy per transition by 65% (50% power savings @ 43% increase in frequency
- Die size used to increase by 14% per generation
- □ Technology generation spans 2-3 years

Technology Generations

95	96	97	98	99	00	01	02	03	04	05	06	07	06	09	10	901	12
350 nm	1	2	3	4	co			-01					e (n				in other
-2	-1	250 nm	1	2	3	4	5										
-4	-3	'n	1	180 rim	1	2	3	4	5		1000		Tests Tests			OF THE	e con
ф	5	h	-3	-2	-1	150 nm	1	2	co.	4	6		Table 1	de tel al ous	Hard Hard		
В	-7	-E	-5	-4	-3	-2	7	130 nm	1	2	3	4	5		THE STATE OF	N. S. S.	
-11	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	100 nm	1	2	3	4	5	100
			-71	-10	-9	8	K	-5	-5	-4	-3	-2	-1	70 000		2	3
	100	100				21	10	-g		.7	-6	45	-4	-3	-2	-1	50 nn

Technology Evolution (2000 data)

nternational Technology Roadmap for Semiconducto

Year of Introduction	1999	2000	2001	2004	2008	2011	2014
Technology node [nm]	180		130	90	60	40	30
Supply [V]	1.5-1.8	1.5-1.8	1.2-1.5	0.9-1.2	0.6-0.9	0.5-0.6	0.3-0.6
Wiring levels	6-7	6-7	7	8	9	9-10	10
Max frequency [GHz],Local-Global	1.2	1.6-1.4	2.1-1.6	3.5-2	7.1-2.5	11-3	14.9 -3.6
Max μP power [W]	90	106	130	160	171	177	186
Bat. power [W]	1.4	1.7	2.0	2.4	2.1	2.3	2.5

Node years: 2007/65nm, 2010/45nm, 2013/33nm, 2016/23nm

Technology Evolution (1999)

Year of Introduction	1994	1997	2000	2003	2006	2009
Channel length (µm)	0.4	0.3	0.25	0.18	0.13	0.1
Gate oxide (nm)	12	7	б	4.5	4	4
V_{DD} (V)	3.3	2.2	2.2	1.5	1.5	1.5
$V_{T}\left(\mathbf{V}\right)$	0.7	0.7	0.7	0.6	0.6	0.6
NMOS I_{Dsat} (mA/ μ m) (@ $V_{GS} = V_{DD}$)	0.35	0.27	0.31	0.21	0.29	0.33
PMOS I_{Dsat} (mA/ μ m) (@ $V_{GS} = V_{DD}$)	0.16	0.11	0.14	0.09	0.13	0.16

ITRS Technology Roadmap Acceleration Continues

(Including MPU/ASIC "Physical Gate Length" Proposal)

Technology Scaling (1)

Minimum Feature Size

Technology Scaling (2)

Number of components per chip

Technology Scaling (3)

Propagation Delay

Technology Scaling (4)

(a) Power dissipation vs. year.

From Kuroda

Technology Scaling Models

Full Scaling (Constant Electrical Field)

ideal model — dimensions and voltage scale together by the same factor S

Fixed Voltage Scaling

most common model until recently — only dimensions scale, voltages remain constant

General Scaling

most realistic for todays situation — voltages and dimensions scale with different factors

Scaling Relationships for Long Channel Devices

Parameter	Relation	Full Scaling	General Scaling	Fixed Voltage Scaling
W, L, t _{ox}		1/S	1/S	1/S
V_{DD}, V_{T}		1/S	1/U	1
N _{SUB}	V/W _{depl} ²	S	S ² /U	S^2
Area/Device	WL	1/S ²	1/S ²	1/S ²
Cox	1/t _{ox}	S	S	S
$C_{\mathbf{L}}$	CoxWL	1/S	1/S	1/S
k _n , k _p	C _{ox} W/L	S	S	S
I _{av}	$k_{n,p} V^2$	1/S	S/U ²	S
t _p (intrinsic)	C _L V / I _{av}	1/S	U/S ²	1/S ²
Pav	$C_L V^2 / t_p$	1/S ²	S/U ³	S
PDP	C_LV^2	1/S ³	1/SU ²	1/S

Transistor Scaling (velocity-saturated devices)

Parameter	Relation	Full Scaling	General Scaling	Fixed-Voltage Scaling	
W , L , t_{ox}		1/S	1/S	1/S	
V_{DD} V_{T}		1/S	1/U	1	
$N_{\scriptscriptstyle SUB}$	V/W_{depl}^{2}	S	S^2/U	S^2	
Area/Device	WL	$1/S^2$	$1/S^2$	$1/S^2$	
C_{ox}	$1/t_{\rm ox}$	S	S	S	
$C_{\it gate}$	$C_{ox}WL$	1/S	1/S	1/S	
k_{n} k_{p}	$C_{ m ox}W/L$	S	S	S	
I_{sat}	$C_{\mathrm{ox}}WV$	1/S	1/U	1	
Current Density	I _{sat} /Area	S	S^2/U	S^2	
Ron	V/I _{sat}	1	1	1	
Intrinsic Delay	$R_{on}C_{gate}$	1/S	1/S	1/S	
P	$I_{sat}V$	$1/S^2$	$1/U^2$	1	
Power Density	P/Area	1	S^2/U^2	S^2	

μProcessor Scaling

μProcessor Power

μProcessor Performance

2010 Outlook

- □ Performance 2X/16 months
 - 1 TIP (terra instructions/s)
 - 30 GHz clock
- □ Size
 - No of transistors: 2 Billion
 - Die: 40*40 mm
- □ Power
 - 10kW!!
 - Leakage: 1/3 active Power

Some interesting questions

- □ What will cause this model to break?
- □ When will it break?
- Will the model gradually slow down?
 - Power and power density
 - Leakage
 - Process Variation