Reti Logiche Sequenziali

Argomento:

- Latch e flip-flop
- Sintesi

Materiale di studio:

Capitolo 11.4

Rete logica sequenziale: definizione

Una rete logica sequenziale è una rete logica nella quale i valori presenti alle uscite sono determinati dai valori presenti agli ingressi e dal valore dello stato in cui si trova il sistema.

Una rete logica sequenziale:

- contiene elementi di memoria
- è descritta da una tabella di verità in cui si tiene conto anche dello stato del sistema

Circuiti sequenziali

Latch: sensibili al livello dei segnali d'ingresso

Latch di tipo R-S

Flip-flop: sensibili ai fronti dei segnali d'ingresso

- Flip-flop di tipo R-S
- Flip-flop di tipo D
- Flip-flop di tipo J-K

Latch di tipo R-S

$$R = 1 \rightarrow Reset: Q = 0$$

 $S = 1 \rightarrow Set: Q = 1$

Si assume R/S non siano mai entrambi ad 1

$$Q = \overline{R+P}$$

$$P = \overline{S+Q}$$

diagramma di stato

Clock

- Un circuito sequenziale può essere:
 - Asincrono: l'output è determinato da come cambiano i segnali in ogni istante di tempo.
 - Esempio: Latch R-S
 - Sincrono: l'output è determinato dai valori dei segnali in certi istanti di tempo.
 - Gli istanti di tempo sono dati dal segnale di clock
 - Esempio: Flip-flop R-S
- Il clock è un segnale che oscilla tra 0 e 1 con una data frequenza.
 - E' il direttore di orchestra che coordina tutti i circuiti sequenziali.

Flip-Flop R-S con clock

- Gli ingressi R e S esercitano il loro effetto solo quando il clock C ha valore logico 1.
- L'output si congela con clock 1→0
 - Latch: sensibile al livello 0/1 dell'input
 - Flip-flop: sensibile ai **fronte** di discesa del clock

Flip-Flop di tipo D

Nel flip-flop S-R la configurazione R=S=1 non è valida.

Il latch D risolve questo problema.

Flip-Flop di tipo J-K

Se Q=1 e clock C=1, può esercitarsi solo l'azione di K=1 (**reset**)

Se Q=0 e clock C=1, può esercitarsi solo l'azione di J=1 (**set**).

diagramma di stato

Clock=1

Q	K	J	Q′
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

tabella delle transizioni

Flip-Flop di tipo J-K

tabella delle transizioni

Se J=K=Clock=1: funzione di toggle

 L'uscita Q è instabile: si inverte ripetutamente.

La durata del clock C=1 può essere calibrata per ottenere una sola commutazione di Q.

Flip-Flop di tipo J-K

tabella delle transizioni

Se J=K=Clock=1: funzione di toggle

 L'uscita Q è instabile: si inverte ripetutamente.

La durata del clock C=1 può essere calibrata per ottenere una sola commutazione di Q.

Sommario Flip-Flop

Name	Graphical Symbol	Truth Table	
S-R	$\begin{array}{ccc} & & & \\ &$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
J-K	J Q	$\begin{array}{c cccc} J & K & Q_{n+1} \\ \hline 0 & 0 & Q_n \\ 0 & 1 & 0 \\ 1 & 0 & \frac{1}{Q_n} \\ 1 & 1 & \overline{Q_n} \\ \end{array}$	
D	D Q — >Ck	$ \begin{array}{c cccc} D & Q_{n+1} \\ \hline 0 & 0 \\ 1 & 1 \end{array} $	

Registri

- Un registro è un dispositivo in grado di memorizzare (cioè conservare nel tempo) un valore logico. Tale capacità distingue i registri dalle porte logiche.
- Un registro da 1 bit può essere implementati con flip-flop di tipo D

Registri a più bit

I registri possono essere:

- Registri paralleli: un insieme di più memorie da 1 bit che possono essere lette/scritte in parallelo
- Registri a scorrimento (shift): un insieme di più memorie da 1 bit che possono essere lette/scritte serialmente

Registro parallelo a 8 bit

Shift register

- Per il trasferimento seriale si utilizza un dispositivo chiamato registro a scorrimento (shift register)
- A ciascun impulso (¬) del clock, i bit contenuti nel registro scorrono di una posizione verso destra:
 - R4 → Y
 - R3 → R4
 - $R2 \rightarrow R3$
 - $R1 \rightarrow R2$
 - $X \rightarrow R1$

Esempio: se inizialmente è X=0 e lo shift register contiene 0111, dopo un impulso del clock lo shift register contiene 0011 → Divisione per 2

Shift register a 5 bit

- Il clock deve essere tale da permettere il passaggio di un dato da un flip-flop al successivo
- Se il periodo di clock è troppo lungo si può usare un flip-flop di tipo D master-slave

Flip-flop di tipo D (Master-Slave)

Ingresso e uscita: disaccoppiati

Il flip-flop slave memorizza il valore in ingresso sul fronte di discesa, con un ritardo di mezzo ciclo di clock

Shift register con flip-flop D Master-Slave

Esempio: contatore binario

Richiede edgetriggered flip-flop con clock 1→0

All'istante t_x si ha: $Q_3Q_2Q_1Q_0 = 1101_2 = 13$

Flip-flop JK sensibile ai fronti di discesa

- Configurazione di tipo Master-Slave
- Il funzionamento si distingue dal flip-flop J-K per:
 - La commutazione sui fronti di discesa anziché sul livello (edge-triggered)
 - Il disaccoppiamento uscita/ingresso tipico della configurazione Master-Slave

Sintesi delle reti sequenziali (1 di 2)

- Lo **stato del sistema** è contenuto in elementi di memoria: per Z stati servono P=[log₂Z] bit di memoria.
- Ad ogni istante, una rete combinatoria fornisce le uscite e il nuovo valore dello stato in funzione degli ingressi.

Sintesi delle reti sequenziali (2 di 2)

- Un'opportuna scelta delle variabili di stato riduce la complessità della parte combinatoria, ma non ci sono regole generali da seguire.
- Per la sintesi della rete combinatoria si applicano le tecniche già illustrate in precedenza.
- Spesso la rete viene realizzata in due parti separate, secondo uno dei due modelli seguenti:
 - modello della macchina di Mealy (1955);
 - modello della macchina di Moore (1956).
- I due modelli sono funzionalmente equivalenti.

Sintesi: macchina di Mealy

- Rete combinatoria C1: fornisce le uscite in funzione degli ingressi e dello stato.
- Rete combinatoria C2: fornisce il nuovo stato in funzione degli ingressi e del vecchio stato (= stato all'istante precedente).

Sintesi: macchina di Moore

- Rete combinatoria C2': fornisce le uscite in funzione del solo stato.
- Rete combinatoria C1': fornisce il nuovo stato in funzione degli ingressi e del vecchio stato.

Sincronizzazione di più reti

Nelle reti logiche reali i tempi di propagazione sono non nulli: questo può essere uno svantaggio, ma consente anche di operare simultaneamente i diversi passi di una catena di elaborazioni:

Le uscite all'istante t delle reti combinatorie C_i fungono da ingressi per la rete C_{i+1} all'istante t_{i+1} (pipeline).

Un **clock** sincronizza le elaborazioni, assicurando che gli elementi di memoria S_i acquisiscano valori corretti.

Limiti sul periodo del clock

Diagramma temporale del sistema precedente:

t_{cy}: periodo del clock

t_s: tempo "di set up"

t_d: tempo di memorizzaz.

t_p: tempo di propagazione

Deve essere:

$$\boldsymbol{t}_{cy} \geq \boldsymbol{t}_{s} \boldsymbol{+} \ \boldsymbol{t}_{d} \boldsymbol{+} \ \boldsymbol{t}_{p}$$

Esempio di sintesi: interruttore

Un interruttore i, due lampadine l_1 e l_2 .

Assegnazione degli stati logici all'interruttore e alle lampadine:

- **0** = interruttore aperto, **1** = interruttore chiuso (premuto);
- $\mathbf{0}$ = lampadina spenta, $\mathbf{1}$ = lampadina accesa.

Specifica di funzionamento

- Interruttore aperto (X=0): le lampadine sono entrambe spente $(Y_1=Y_2=0)$.
- Interruttore chiuso (X=1): si accende a turno una delle due lampadine.

Esempio di sintesi: diagramma di stato

Specifica di funzionamento

- Interruttore aperto (X=0): le lampadine sono entrambe spente $(Y_1=Y_2=0)$.
- Interruttore chiuso (X=1): si accende a turno una delle due lampadine.

Esempio di sintesi: modello

Sintesi con macchina di Mealy

Esempio di sintesi: parte combinatoria

$$Y_{1} = \overline{S_{1}} \cdot \overline{S_{2}} \cdot X + \overline{S_{1}} \cdot S_{2} \cdot X$$

$$= \overline{S_{1}} \cdot X$$

$$Y_{2} = S_{1} \cdot \overline{S_{2}} \cdot X + S_{1} \cdot S_{2} \cdot X$$

S_1	S_2	X	Y_1	Y_2	S_1 ,	S_2 ,
0	0	0	0	0	0	0
0	0	1	1	0	0	1
0	1	0	0	0	1	0
0	1	1	1	0	0	1
1	0	0	0	0	1	0
1	0	1	0	1	1	1
1	1	0	0	0	0	0
1	1	1	0	1	1	1

$$S_1' = \overline{S_1} \cdot S_2 \cdot \overline{X} + S_1 \cdot \overline{S_2} \cdot \overline{X} + S_1 \cdot \overline{S_2} \cdot X + S_1 \cdot S_2 \cdot X$$

= $S_1 \cdot X + (S_1 \oplus S_2) \cdot \overline{X}$

$$S_2' = \overline{S_1} \cdot \overline{S_2} \cdot X + \overline{S_1} \cdot S_2 \cdot X + S_1 \cdot \overline{S_2} \cdot X + S_1 \cdot S_2 \cdot X$$
$$= X$$

 $= S_1 \cdot X$

Esempio di sintesi: versione 1

$$Y_1 = S_1 \cdot X$$

 $Y_2 = S_1 \cdot X$

$$S'_1 = Y_2 + (S_1 \oplus \overline{S_2}) \cdot X$$

 $S'_2 = X$

Latch R-S come elementi di memoria: rete sequenziale asincrona

Esempio di sintesi: "revisione"

S2 = X: si può fare a meno di S2? Sì!

- **S=0**: la prossima lampadina ad accendersi sarà I_1
- S=1: la prossima lampadina ad accendersi sarà I_2

Lo stesso valore (X=1) che porta da S=0 a S=1, porta anche da S=1 a S=0: le transizioni vanno sincronizzate da un clock.

• E' necessaria una rete sequenziale sincrona.

Esempio di sintesi: versione 2

S	X	Y_1	Y_2	S'
0	0	0	0	0
0	1	1	0	1
1	0	0	0	1
1	1	0	1	0

$$Y_1 = \overline{S} \cdot X$$

 $Y_2 = S \cdot X$
 $S' = S \oplus X$

Serve un flip-flop, ad es. di tipo R-S. Le funzioni di clock, che sincronizza le transizioni, qui sono svolte da X.