Operativni sistemi - Alokacija CPU -

- Alokacija CPU (CPU scheduling)
 - Predstavlja centralni koncept viseprogramskih OS-a
 - ➡ Prelaskom sa izvrsavanja sa jednog procesa na drugi povecava se efikasnost iskoriscenja sistema.
 - ☑ U glavnoj memoriji se nalazi vise procesa, kada jedna proces mora da saceka sa izvrsavanjem, CPU nastavlja sa izvrsavanjem drugog procesa.
 - Efikasnost algoritma za alokaciju CPU zavisi od uocenih osobina procesa.
 - ☑ Tokom izvrsenja procesa se smenjuju ciklusi CPU obrade i I/O poziva
 - ☑ Iako vreme obrade procesa varira od programa do programa i od sistema do sistema, moguce je uociti vezu izmedju broja ciklusa i njihovog trajanja
 - Kraci CPU tj I/O ciklusi se cesce javljaju, i obrnuto, duzi ciklusi se redje javljaju
- Zadatak alokatora CPU (CPU scheduler) jeste da odabere proces koji ce se izvrsavati na CPU.

Prioritetna alokacija

(Preemptive schedulling)

- CPU alokacija se moze desiti pod sledecim okolnostima
 - Pri prelasku procesa iz stanja running u stanje waiting.
 - Pri prelasku procesa iz stanja running u stanje ready.
 - → Pri prelasku procesa iz stanja ready u stanje waiting.
 - Pri zavrsteku izvrsenja procesa.
- Nepriemtivna alokacija
 - Alokator ceka sa zavrsenjem procesa da bi ga dodelio nekom drugom procesu
 - ▶ Proces se izvrsava na CPU sve dok ne zavrsi li predje u waiting stanje.
- Priemtivna alokacija
 - Alokator moze da ("silom") preuzme CPU od procesa i preda ga nekom drugom procesu
 - Omogucava ravnopravnije izvrsenje procesa.
 - **♦** Zahteva tajmer
 - Neophodni mehanizmi za korrdinaciju pristupa procesa podacima kako ne bi vise procesa istovremeno menjali/pristupali istim podacima.

- Dipecer je modul OS-a koji ima zadatak da preda kontrolu nad CPU procesu koji je odabran od strane CPU alokatora.
- Zadaci dispečera su:
 - ♣ Promena konteksta CPU
 - Prelazak u korisnički mod
 - Skok na odgovarajucu lokaciju u korisnickom programu
- Neophodno je da dipecer izvrsi promenu konteksta za sto je krace vreme.

Kriterijumi za alokaciju

- Razliciti algoritmi za alokaciju CPU se razlikuju po svojim osobinama.
- Kriterijumi za ocenu algoritama za alokaciju CPU
 - ➡ Iskoriscenje CPU
 - ☑ Cilj je da se CPU iskoristi sto efikasnije. Iskoriscenost moze imati vrednost 0-100%. Obicno se krece u opsegu od 40% do 90%.
 - Propusnost (Throughput)
 - ☑ Predstavlja broj procesa koji se izvrse u jedinici vremena.
 - ▶ Vreme izvrsenja
 - ☑ Vreme koje protekne od trenutka kada zapocnemo sa izvrsavanjem procesa pa do njegovog zavrsetka.
 - ▶ Vreme cekanja
 - ☑ Vreme koje proces provede u ready redu cekanja
 - **♦** Vreme odziva
 - ☑ Vreme potrebno da sistem pocne sa davanjem izlaza.

- Pozeljno je da algoritam za alokaciju CPU ima sto vecu iskoriscenost CPU i propusnost, a sto krace vreme izvrsenja, cekanja i odziva.
- U odredjenim slucajevima je potrebno optimizovati minimalne/maksimalne vrednosti ovih parametara na njihove srednje vrednosti.

— Cesto je pozeljno da se minimizuje varijansa ovih parametara.

- First Come First Served -

- Jedan od najjednostavnijih algoritama za alokaciju CPU
- Proces koji prvi zahteva CPU, preuzima kontrolu nad CPU-om
- Lako se implementira primenom FIFO reda cekanja
- Vreme cekanja je obicno veoma dugo
- FCFS algoritam je nepriemtivan

➡ Nepogodan za primenu u multitasking sistemima

1010011 1110100 1100001

- Shortest Job First -

- CPU se dodeljuje procesima na osnovu trajanja njihovog sledeceg
 CPU ciklusa
- Najkraci procesi imaju se prvi izvrsavaju na CPU.
 - Ako dva i vise procesa imaju isto trajanje CPU ciklusa, nad njima se primenjuje FCFS opsluzivanje
- SJF algoritam je optimalan u pogledu minimalnog srednjeg vremena cekanja.
- Problem predstavlja estimacija vremena izvrsavanja procesa.
 - U batch sistemima korisnik zadaje vremenska ogranicenja
 - Ne moze se implementirati na nivou kratkorocnog alokatora jer ne postoji nacin da tacno odredimo vreme izvrsenja procesa u kratkom intervalu
 - Mozemo da procenimo vreme izvsenja narednog CPU ciklusa procesa na osnovu trajanja prethodnih CPU ciklusa.

1010011 1010110

- Shortest Job First -

— Srednje vreme CPU ciklusa se najcesce procenjuje primenom sledece jednacine:

$$\tau_{n+1} = \alpha t_n + (1 - \alpha)\tau_n$$

gde je au_n srednje vrem trajanja CPU ciklusa do trenutka $n,\ t_n$ je trajanje CPU ciklusa u *n*-tom trenutku i parametar

- SJF moze biti priemtivan ili nepriemptivan.
 - Priemtivni SJF algoritam se ponekad naziva najkrace-preostalo-vreme-prvi (shortest remaining time first)

1010011 1110100 1100001

- Prioritetna alokacija -

- Svakom procesu se dodeljuje prioritet i onda se opsluzuje proces sa najvisim prioritetom
 - ▶ Procesi sa istim prioritetm se rasporedjuju po FCFS algoritmu
- Prioritet procesa se moze definisati interno ili eksterno.
- Prioritet procesa se definise na osnovu neke velicine koja moze dase izmeri
 - ➡ Interno: vremenska ogranicenja, zahtev za memorijom, broj otvorenih fajlova, odnos procesnog trajanja I/O ciklusa prema prosecnom trajanju CPU ciklusa.
 - ▶ Eksterno: Vaznost procesa, cena upotrebe racunara, politike, korisnika...
- Problem se javlja jer neki procesi sa niskim prioritetom mogu da cekaju na izvrsenje neograniceno dugo ("izgladnjuju se").
 - Primenjuje se tehnika gde prioritet procesa postepeno raste sa vremenom tokom kojeg ceka na izvrsenje ("starenje")

- Round-Robin -

- Razvijen narocito za multitasking sisteme
- Slican FCFS algoritmu.
- Svakom procesu se ciklicno dodeljuje CPU neki tokom nekog fiksnog vremenskog intervala (vremenski kvant, 10 100 ms).
- Srednje vreme cekanja je obicno veoma dugo.
- Performanse RR algoritma zavise od velicine vremenskog kvanta.
 - → Ako je to vreme veoma dugo, RR se svodi na FCFS
 - Ako je vremenski kvant veoma kratak, stvara se iuzija istovremenog izvrsenja procesa.
 - Prilikom cestih promena konteksta CPU dolazi do izrazaja vreme potrebno za promenu konteksta.
 - ➡ Vreme izvsenja se poboljsava ako vecina procesa zavrsi izvrsavanja tokom jednog vremenskog kvanta.

- Multilevel queue scheduling -

- 1010011 1110100 1100001 1010110
- Hijerarhijski red cekanja se koristi kada je moguce grupisati procese.
- Procesi iz razlicitih grupa se dodeljuju razlicitim ready redovima cekanja na osnovu nekog kriterijuma (velicine memorije, prioriteta, tipa procesa).
- U svakom redu cekanja se primenjuje posebni algoritam za alokaciju.
- Potrebno je takodje definistai i prioritet redova cekanja i algoritam za alokaciju CPU izmedju redova.
 - Primer organizacije redova cekanja:
 - ☑ Sistemski procesi
 - ☑ Interaktivni procesi
 - ☑ Interaktivni editorski procesi
 - ☑ Batch procesi

- Multilevel feedback - queue scheduling -

- Kada se koristi hijerarhijska alokacija, procesi su za stalno svrstani u odredjene redove cekanja.
 - Ovakav pristup je prilicno nefleksibilan.
- Hijerarhijska alokacija sa povratnom informacijom
 - 🦫 Procesi se mogu prebacivati iz jednog u drugi red cekanja.
 - Procesi se grupisu prema karakteristikama njihovih CPU ciklusa.
 - ☑ Ako proces koristi isuvise vremena na izvrsavanju na CPU, prebacuje se u red cekanja sa nizim prioritetom.
 - ☑ Proces koji je duze vremena proveo u redu cekanja sa niskim prioritetom se moze prebaciti u red cekanja sa visim prioritetom.

- Multilevel feedback - queue scheduling -

- Primer: Hijerarhijska alokacija sa 3 reda cekanja
 - Redovi cekanja su klasifikovani prema trajanju CPU ciklusa.
 - ➡ Oznaceni su rednim brojevima 0-2 i njima odgovara trajanje CPU ciklusa od 8, 16 i 24 ms.
 - ▶ Procesi u redu 1 se izvrsavaju tek kada je red 0 prazan, a u redu 2 tek kada su redovi 1 i 0 prazni.
 - ➡ Ukoliko se prilikom izvrsavanja procesa u redu 1 (2) javi proces u redu 0 (0 ili 1
) proces prekida sa izvrsavanjem i izvrsava es proces sa visim prioritetom.
 - ➡ Unutar odredjenog reda cekanja procesi se obradjuju po algoritmu FCFS

- Multilevel feedback - queue scheduling -

- Hijerarhijski protokol sa povratnom informacijom je određen:
 - Brojem redova cekanja
 - Algoritmom za alokaciju u okviru posebnih redova
 - ➡ Kriterijumom za prebacivanje procesa u red sa visim prioritetom
 - ₩ Kriterijumom za prebacivanje procesa u red sa nizim prioritetom
 - ➡ Kriterijumom za odredjivanje reda cekanja u koji treba smestiti proces koji zahteva opsluzivanje

— Ovo je najfleksibilniji ali i najslozeniji alogritam za alokaciju CPU.

Vezbe

—FCFS

Proces	Vreme pristizanja	Vreme obrade
P1	0	3
P2	2	6
Р3	4	4
P4	6	5
P5	8	2

—FCFS

Proces	Vreme pristizanja	Vreme obrade
P1	0	3
P2	2	6
Р3	4	4
P4	6	5
P5	8	2

—FCFS

Proces	Vreme obrade
P1	30
P2	20
Р3	10

М	
P2	
РЗ	

— Shortest Job First (SJF)

Proces	Vreme pristizanja	Vreme obrade
P1	0	3
P2	2	6
Р3	4	4
P4	6	5
P5	8	2
P1 P2 P3 P4 P5	5 10	15 2

Vezbe

— Shortest Job First (SJF)

Proces	Vreme obrade
P1	30
P2	20
Р3	10

PI	
P2	
P3	

Vezbe

— Shortest Remaingin Time First (SRTF)

Proces	Vreme pristizanja	Vreme obrade
P1	0	3
P2	2	6
Р3	4	4
P4	6	5
P5	8	2

Vezbe

— Shortest Remaingin Time First (SRTF)

Proces	Vreme obrade
P1	30
P2	20
Р3	10

— Round Robin (RR)

Proces	Vreme pristizanja	Vreme obrade
P1	0	3
P2	2	6
Р3	4	4
P4	6	5
P5	8	2

— Round Robin (RR)

Proces	Vreme obrade
P1	30
P2	20
P3	10

— Zadatak

Dat je sledeći skup procesa čija su vremena izvršavanja na procesoru i prioriteti dati u tabeli: Procesi su u sistem naišli u poretku P1, P2, P3, P4, P5, svi približno u trenutku t=0.

- (a) Nacrtati *Gannt*-ove karte dodele procesora ukoliko se raspoređivanje vrši na osnovu sledećih algoritama: FCFS, SJF bez istiskivanja, PS bez istiskivanja i RR sa kvantumom Q=1.
- (b) Odrediti vreme potrebno za kompletiranje procesa za svaki proces (za sve gore pomenute algoritme).
- (c) Odrediti vreme čekanja za svaki proces i srednje vreme čekanja (za sve gore pomenute algoritme). Za koji algoritam je srednje vreme čekanja najmanje?

Proces	Vreme izvršavanja	Prioritet
P1	10	3
P2	1	1
Р3	2	3
P4	1	4
P5	5	2

(a) *Gannt*-ove karte dodele procesora:

FCFS:

Vezbe

— Vreme potrebno za zavrsetak procesa

	FCFS	RR	SJF	PS
P1	10	19	19	16
P2	11	2	1	1
P3	13	7	4	18
P4	14	4	2	19
P5	19	14	9	6

Vezbe

— Vreme cekanja

	FCFS	RR	SJF	PS
P1	0	9	9	6
P2	10	1	0	0
P3	11	5	2	16
P4	13	3	1	18
P5	14	9	4	1
Srednje vreme	9,6	5,4	3,2	8,2

— Zadatak

Dat je sledeći skup procesa čija su vremena nailaska u sistem i izvršavanja na procesoru dati u tabeli (izraženi u ms):

Nacrtati *Gannt*-ovu kartu i odrediti srednje vreme za kompletiranje procesa i srednje vreme čekanja ukoliko se raspoređivanje procesa vrši po:

- (a) FCFS algoritmu,
- (b) SJF algoritmu bez istiskivanja,
- (c) SJF algoritmu sa vremenom čekanja na procese $t_{idle}=1$,
- (d) SRTF algoritmu sa istiskivanjem.

Proces	Vreme izvršavanja	Vreme nailaska
P1	8	0
P2	4	0,4
Р3	1	1

— FCFS

	1	2	3	
0		8	12	13

	Vreme kompletiranja	Vreme čekanja
P1	8	0
P2	12-0,4=11,6	8-0,4=7,6
P3	13-1=12	12-1=11
Srednje vreme	10,53	6,2

— SJF

	1	3	2	
0		8	9	13

	Vreme kompletiranja	Vreme čekanja
P1	8	0
P2	13-0,4=12,6	9-0,4=7,6
P3	9-1=8	8-1=7
Srednje vreme	9,53	5,2

— SJF, T_idle = 1

	3	2	1
0	1	2	6 14

	Vreme kompletiranja	Vreme čekanja
P1	14	6
P2	6-0,4=5,6	2-0,4=1,6
P3	2-1=1	0
Srednje vreme	6,86	2,53

— SRTF

1	2	3	2			1	
0 (0,4	1	2	5,4	6		13

	Vreme kompletiranja	Vreme čekanja
P1	13	5,4-0,4=5
P2	5,4-0,4=5	2-1=1
P3	2-1=1	0
Srednje vreme	6,33	2

— Zadatak

Četiri procesa su u trenutku t=0 ušli u red čekanja na procesor u sledećem redosledu: P1, P2, P3, P4. Vremena izvršavanja na procesoru za ova četiri procesa su 6, 3, 1 i 7 vremenskih jedinica, respektivno. Ukoliko se raspoređivanje vrši RR algoritmom sa kvantumom Q=2:

nacrtati Gannt-ovu kartu i odrediti srednje vreme izvršavanja na procesoru i srednje vreme čekanja,

odrediti koliko puta je obavljena zamena konteksta i koliko je ukupno vremena potrebno da sva četiri procesa završe aktivnosti (kašnjenje dispečera je dl=0,01 vremenskih jedinica.

t=17+9*0.01=17.09

1	2	3	4	1	2	4	1	4	4
0	2	4	5	7	9	10	12	14	16

	Vreme kompletiranja	Vreme čekanja
P1	14	5+3=8
P2	10	2+5=7
P3	5	4
P4	17	5+3+2=10
Srednje vreme	11,5	7,25

Domaci zadatak