III-4 SHALLOW FOUNDATIONS ON SAND : BEARING CAPACITY

	Page Na
1. Introduction	2
1.1 Definitions	
1.2 Design Criteria	
2. Ultimate Bearing Capacity of Soil: Theory	
2.1 Physical Model (Ship forting)	2 .
2,2 Shear Zones	2
2,3 Resultant Solution: Ship Footing (Incompressible soil)	3
2.4 Values of B.C. Factors (Table III 4-1)	. 4
2.5 Ulus hatim of Results : Ship Footing on Dry Sand	6.
2.6 Effect of Soil Compressibility	7
2.7 Shape Factors (Effect of B/L)	9
2.8 Inclined and Eccentric Loadings (Ship)	9
3. Estimation of guit in Practice (Footings on Sand)	10
3.1 Unit Weights	16
3.2 Standard Penetration Test (SPT)	1/
3.3 Estimation of Dr from SPT N Data	14
3.4 Estimation of of hom Lab Testing	17
3.5 Estimation of o' from Dr & Sand Type	17
3.6 Estimation of & from SPT N Data	.17
3.7 Estemation of of from Plate Load Tests (PLT)	18
3.8 Correlations for Cone Penetration Tests (CPT)	18 19
Sheets A-D: Information on SPT procedures, N60, N, & Dr	* 1
Sheet $E \phi' = f(O_r)$	
Shut $F = f(Nf(N_i)_{60})$	
Short Car I have him a COT constation for D of de	

22-141 50 SHEETS 22-142 100 SHEETS 22-144 200 SHEETS

(1) Theory of plasticity for rigid perfectly plastic soil >

Solved for

For smooth base where No = 1+ sind = tun2 (45+ d)

$$N_g = N_\phi \alpha$$
 Than ϕ $N_c = \cot \phi (N_g - 1)$
$$\begin{cases} Note: \\ N_\phi = (\sigma_1/\sigma_3)_f \\ for c = 0 \end{cases}$$

(2) Value of Ny controversial since rigorous theoretical. solution not available; and comparison of predicted vs. model footing test results inconclusive due to effects of : a) of level & of on value of b' of sands

b) soil compressibility (DV +0)

Vasic (1973) recommends Caquot ; Kérisel (1953) ->

Ny = 2 tand (Ng+1)

(3) See Table 114-1 (ps) for tabulated results (these differ from Fig. 14.13 of LTW)

(4) Some typical values

$$\phi^{\circ} = 0$$
 $N_{c} = 5.14$
 $N_{g} = 1.00$
 $N_{g} = 0$
 $N_{g} = 0$

* For undramed shear of saturated soil, \$=0 f C= Su; Nc= 11+2

SM 1

Table 4.—Bearing Capacity Factors

8	99.	134	158	187	222	265	319.			(1973)	. (v Fou		66 79				- = to		tack	। व्याप		(1)	12 BN	•	/N/ 3	0	11.8	11/2		(B)	17.	,	(B)	,7,		1 1 2	7	
(2)	105.11	133.88	152.10	173.64	199.26	229.93	266.89		,	Vesic, A.S. (1973)		of shallow Fou		ASCE 161.99				- 1	1-510 4		NB @	•	177	45 = 6010 (Ng-1)		= 7 tan 6 (Na			= 1 + tang(=)		= / + Ng	Nc	•	Su= 1-04(B)			出によ	1 apre 11 +-1 12	
(2)	8 4	45	46	47	84	49	20			Nø.							``	1		•	<i>¥8</i> =	•	17	λ		<i>× × ×</i>		(39 =	•	S			જ					
(6)	0.00	0.02	0.03	0.05	0.07	0.03	0.11	0.12	0.14	0.16	91.0	0.19	0.21	0.23	0.25		0.23	0.32	0.34	0.36	0.38	0.40	0.42	0.45	0.47	0.49	0.51	0.55	0.58	09.0	0.62	0.65	0.67	0.70	0.73	0.75	0.70	0.84	
(5)	0.20	0.20	0.21	0.22	0.23	0.24	0.25	0.26	0.27	0.28	0.30	0.31	0.32	0.33	9.36	3 6	0.37	9.0	0.42	0.43	0.45	0.46	0.48	0.50	0.51	0.53	0.55	0.59	0.61	0.63	0.65	0.68	0.70	0.72	0.75	0.77	28.0	0.85	
र, दु	0.00	0.07	0.15	0.24	0.34	0.45	0.57	0.71	0.86	1.03	1.22	4.1	8.	1.97	2.29	9 0	5.50	4.07	4.68	5.39	6.20	7.13	8.20	9.44	10.88	12.54	14.47	19.74	22.40	25.99	30.22	35.19	41.06	48.03	56.31	56.19	40.00	109.41	,00
v (6)	1.00	1.09	1.20	1.31	1.43	1.57	1.72	1.88	2.06	2.25	2.47	2.71	2.97	3.26	3.59	t	4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4	5.26	5.80	6.40	7.07	7.82	8.66	9.60	10.66	11.85	13.20	16.72	18.40	20.63	23.18	26.09	29.44	33.30	37.75	42.92	25.04 25.04 30.44	64.20	
z ̈́ ß	5.14	5.38	5.63	2.30	6.19	6.49	6.81	7.16	7.53	7.92	8.32	8.80	9.28	9.81	10.37	9 00	23.55	13.10	13.93	14.83	15.82	16.88	18.05	19.32	20.72	22.25	23.94	25.80	30.14	32.67	35.49	38.64	42.16	46.12	50.59	55.63	67.87	75.31	
⊕ €	0			'n	4	ທ	9	7	00	o j	9	11	12	13	4 1	2 ;	<u>5</u>	<u> </u>	. <u>0</u>	50	21	22	23	24	52	56	22	89 g	8 8	3	32	33	중 :	က္က	ဗ္တ	37	9 6	3 4	

Table 4.—Continued

(2	(2)	(3)	(4)	(2)	, (9)
43	105.11	99.02	186.54	0.94	0.93
4	118.37	115.31	224.64	0.97	0.97
45	133.88	134.88	274.76	1.01	1.00
46	152.10	158.51	330.35	25.	7.04
47	173.64	187.21	403.67	1.08	1.07
. 48	199.26	222.31	496.01	1.12	1.1
49	229.93	265.51	613.16	1.15	1.15
20	266.89	319.07	762.89	1.20	1.19
	•	•	,	, , , , ,	1 1 1
/4	SIC, A.S. (1973). 14	nalysis o	t Ultima	Vasic, A.S. (1973). " Analysis of Ultimate LOGES
	1 64211			1 77 5	4 1. 10
-	OF SHAILOW FOUNCIATIONS.	v rounda		JOIL MIRCH	J. JOH MECh. ; I'dn. DIV,
	ASCE V	4.5CF 161. 99 5M2 45-73	2 45-73		

'an2 (45+4/2)

Searing Capacity Foctors

Summary & Conclusions

- 1) Solution heats soil above footing as having weight only; i.e. NO STRENGTH (Hence \$ of soil above footing is not relevant)
- 2) \$\phi', B and d\B all one VERY IMPORTANT
- 3) Should account for differing of above/below footing.
- * actually not true since increasing B > increasing of level > decreasing of

2.6 Effect of Soil Compressibility (Function of Or)

- (1) See attached Figs. 112 from Yesic (1973) on pe
 - · General Shear (high Dr) well defined suptine Surfaces and quet (Dr > 70% t)
 - * Local Shear (medium Dr) > suptime surfaces

beneath footing but not outside & get not so clear

- · Punching Shear (low Dr) → poorly defined gult with large settlements of don't mobilized shear in Zones II f III (Or < 35%±).
- (2) Empirical approaches used in practice { Use corrected of that }

 * (* T & P(1967) "Loose" sand use tan of = = tan of)
 - · PHT (1974) Attached Fig. 19.5 (pe) plots No 1 No to p!
 - Vasic (1973) Use $tan \phi_e' = R.F. tan \phi_p$ $R.F. = 0.67 + D_r - 0.75 D_r^2$ (for $D_r \le 0.67$)

(3) Illust	lation				*				
		The	ory	TI	P (1967		Vesi	ic (1973)	PHT(1974)
Dr (%)	# p	Ny	Ng	Ø6	Ny	1/8	ø'c	NX Ng	Nx
30	31	240	20.6	21.8	6.9	7.65	28.5	18.0 15.5	18
50	33	35,2	26.1	23,4	8.7	9.0	32.5	32.6 24.6	26
			•		1 × 1/4 : very.	1 ×1/3 Low	cci	l elcommendo best es temes	te.

* Deleted bucause not in Terzaghi etal (1996)

Modes of Bearing Capacity Failure (76)

Modes of Failure of Model Footings in Chattahoochee Sand (20,76)

Adapted from Vesic (1973) JSMFD, ASCE, 99(SMI)

Curves showing the relationship between bearing-capacity factors and Φ , as determined by theory, and rough empirical relationship between bearing capacity factors or Φ and values of standard penetration resistance N.

Adapted from Peck, Hanson & Thornburn (1974)

	2-21			lika kalang bilan Kabupatèn Managaran			
	2.7-3ha	pe racto	rs (trom	Vesic, 197	3) - Empi model	rical tactor footing to	rs from
	9411	= Sc C	Nc + 5 y	12 8 NX	+ 59 Yd	Nq	
				. 	3) Sg=		
	For C=0	Pult =	(1-0.4 B)	& &BNX	+ (1+ tan ¢	B) Yd Ng	
			Dacraase -	>0.6	Increase	-> 1 + tanp	
			for B = L		for B=L	φ:35 ts -	×1.7±0.13
	Example		dlB 3	shape N	omponent No 9	fult (TSM)	
mm	φ=35°, γ'=		0.2	trip 2	/0 58 26 99	268 225 X 0.84	
	←8=5m →		0.6 5	trip 2	10 175 26 297	385 423 X.I.I	
	2.8 Incl	inad - Eco	entric L	oadıngs	(Strip)		
		1969) Eq. 14		1		. ∉ la	
	Quit (v) = C	Pv = (1 - 20 B)	$(1 - \frac{\alpha}{\phi})^2 \frac{1}{2}$	BN _Y		9.17	φ
		+ (1 - 20 B	$(1-\frac{\alpha}{90})^2 \gamma$	d Ng	Turan		d
	· Exampl	e from 2.7	for d=3m,	d= 10° ; a	1/8=0.1	- 1B	•
	Ny C	omponent : (0	64) (0,51) = 0.3	25 x 2/0 → 6	8 3 9 400	170 Y 6 Au	
	Ng		0.8) (0,79) - 0.6	3 × 175 -> //	10 1 1011(0)	10 10,78	

3 ESTIMATION OF guit. IN PRACTICE (Footings on Sand) 3.1 Unit Waights (Y) (1) Actual measurements Test pits with in situ tests (balloon, nuclear, atc) - Tube sampling - unless special procedures, disturbance -> DY (loose sand densifies of vice versa) (2) Estimate from soil type & Dr : Some examples are: · LIW Table 3.2 · NAVFAC DM-7.1 (5/82) Fig 7 p7.1-149 (see Sheet E) . But how estimate Dr? see Section 3.3 (3) How important is accorning? For typical dry sand, Yd = 105 + 10 pcf (16.5 + 1.6 KN/m3 Q=0,6±0.15 submerged ", 16 = 65 + 5 pcf. 10+ 0.8 Natural SANDS

1. Error should be < 10%

- · Need values of Y both above and below level of footing
- · Need to estimate average o'
 over 3 = 0 to B

42-332 100 SHEEG PH-5A-32 5 SOUGHAN 42-302 POT-HILLTS PFF-ARAPE 5 SOUGHAN 42-302 HAPH CYCLID WHILL 5-3-ADAM 42-399 ZOOM CYCLID WHILL 5-3-ADAM

Branch Branch

3,2 Standard Penetration Test (SPT)

1) Test Procedures (ASTM D1586-84) Also see Sheet A

- a) Advance bore hole (washing or hollowskem augus).

 Dia \$ 2½-4½" · Must keep higher water line in borehole (< 115mm)
- b) Energy applied via 140/b hammer falling 30"
 (w.h = 350 ft.16), but actual energy is wariable
 See Sheet A, Fig. A-4 ? Fig. 4
 - c) Rod dia. = 2 ± 3/3" (50 ± 10 mm) with wet = 7 ± 3 kg/m
 - d) Split sporm = 2.0"00 x \$1/8"-12" ID x l = 2 ± ½ ft
 See Sheet A & important note with lines / no lines
 - e) Record blow Counts

 0-6" 6

 6-12" 8

 12-12" 11

 12-12" 11
- f) Penethather resistance due to end bearing and exterior/interior fruction For granular solo, $EB \propto \sigma_{vo}^{\prime}$ Exterior $F \propto \sigma_{ho}^{\prime}$. .: N' micreases with depth for homogeneous granular deposit
- 2) Factors Affecting N (Other than depth & soil characteristics) See Sheet B
 - a) actual energy (Er) applied to top of rod = Energy Ratio (ER) x 350 ft. 16
 [Mainly weight of anvil
 - · ER = Velocity Efficiency × Dynamic Efficiency

 (Method used automated

 release hammer & rope on cathers.

See Sheet 8 Table 6, Fig. 2-17 Table 5, p12

- · ER varies from = 458 for typical US practice with donut hammen \$ 2 repetius to = 808 for Tapanese practice with Tempi treggie release
- Recommended standard reference uses ER = 60%: $N_{60} \approx N \cdot \frac{ER}{M_{\odot}}$

10 SO SHETTS FYL-EASI²⁸ SSDUMUL 10 DESCRIPTENTY LATE SSDUMUL 11 DESCRIPTENTY LATE SSDUMUL 12 DESCRIPTENTY STORY STO

- b) Other factors include rodlength, oversize ID of split spom and oversize boring deameter à la Sheet B
- 3) Recommended standardized Noo See Sheet B, Tallo b 17 & Table 5

Table 5 of Skempton (1986) Geof. 36(3), 425-447 ER= VE. DE

	Re	lease		Ham		-	
	Туре	Cathead	VE (%)	Hammer	Anvil weight: kg	DE	ER (%)
Waterways Experiment Station	Trip	_	100	Vicksburg	0	0.83	83
Japan Japan USA UK	Tombi Slip-rope (2 turns) Slip-rope (2 turns) Slip-rope (1 turn)	Small Large Small	100 83 70 85	Donut Donut Safety Old standard	2 2 2·5 3	0·78 0·78 0·79 0·71	78 65 55 60
USA UK	Slip-rope (2 turns) Trip	Large	70 100	Donut Pilcon	≈12 19	0·64 0·60	45 60

VE= Valocity Efficiency DE = Dynamic Efficiency ER = Energy Ratio

Some examples of reported N for N60 = 20 (1 > 10m, chia & 4.5")

- (1) USA, donut with 12kg annil, 2 rope tune on large cathead
 - Old data w/ old 3 amples (ID=35 mm) $N = 20/(\frac{45}{40}) = 26.7 \approx 27$
 - · New sampler without lines

 $N = 20/(\frac{45}{60} \times 1.2) = 22.2 = 22$

- (2) Japan, donnt with 2kg anvil
 - · Tompi release N= 20/(78/60) = 15.4 = 15
 - · 2 repetures, small cathed N = 20/(65) = 18.5

4) Effect of Depth and OCR (At constant Dr)

- a) general
 - · hiceasing 3 + increasing 0' + increasing EB &F
 - · · · OCR · · Tho · · F
 - . at constant OCR $\frac{N}{D_r^2} = a + b \sigma'_{vo}$

- b) Sources of data
 - · Calebration chambers a USBR & Gebbs & Holtz (1957) Coarse & selly fine sand (ben tests) - WES: Marcusm & Biegan suchy (1977) Coarse, medium & fine sand
 - Fuld data Peck Bazaraa (1969) Uf IPAD thesis, dense come sandi
 Shenpton (1986) added data time Japan
- C) Objective i. Pévilop a reletemship to obtain a corrected N at a reference overburden stress (Most use $\sigma'_{vo} = 1.75 F \approx 1 \text{ kg/an}^2 \approx 100 \text{ k/a}$: N, = C_N·N See Sheet C for equations (comparisons
- d) CCL recommendation to obtain HI = CHN
 - · Fr Ovo > 1 atm Leas & Whitman (1986)

(Simple to remember and plate in middle, but)
gives CN too high at T'o < 1 atm

• Fr. $\sigma'_{vo} < 1$ atm Skomptm (1986)

$$C_{N} = \frac{2}{1 + \sigma'_{V_0}(TSF)} = \frac{2}{1 + 0.01 \sigma'_{V_0}(kl_0)}$$

(Fauly semple and plots in middle)

· Values $\sigma'_{VO}(75F) = 0.25$ 0.5 1.0 1.5 2.0 3.0 $\sigma'_{VO}(75F) = 0.15$ 0.55 0.5 1.0 0.82-0.71 0.58-

SO SHEETS EYE-EASE" 5 SOUARE TOO SHEETS EYE-EASE" 5 SOUARE TOO SHEETS EYE-EASE" 5 SOUARE TOO RECYCLED WHITE 5 SOUARE 200 RECYCLED WHITE 5 SOUARE 8 AS

3.3 Estimation of Dr From SPT N Data

- 1) Historical Perspective
 - a) Proposed correlations (modified for this summary); N, = corrected Nat Oro = 1 admi
 - (1) Puh & Bazaran (1969) JSMFD 95 (SM3): Full data on duse, coarse (OC?) sandi

 Dr = \(\frac{Ni}{85} \) à La Skemphn (1986) "Old" US practice very low ER (high N)
 - (2) Holly & Gette (1979) JEED 105(3): Mean from lat tests on course & f. sely sand (1969) JSMFD 95(5M3)

· Dr =
$$\sqrt{\frac{N}{16 + 23 \, C_{VO}^{I}(TSF)}} \rightarrow \sqrt{\frac{N_{I}}{39}}$$
 Probably high ER (low Ni)

- (3) Marcusm & Bie ganoushi (1977) JGED 103 (676,11): Meanfrom lat kot on from v. Course do fine sante
 - · Or (4) 12.2 +0.75 / 222 N + 23/1-7/1(OCR) 736 0/(TSF) 50 CL
 - For OCR=1, Shempton developed : $D_r = \sqrt{\frac{N_1}{52 \rightarrow 33}}$ Very high ER (Low Ni)

b) Comparison of correlations (also see p15)

-	P.	redicted Dr (%)	
N _I	P\$B(69)	HSG (79)	M & B ('77)
10	34	51	44 -> 55 C -> F parl
30	59	88	76 - 95
£	FIELD	LAB	C + F sand

- c) Why so different (Largely from Skumpton 1986)?
 - (1) Large differences in Energy Radio (ER), e.g. (N) 60 = 0.75 N. for PSB ('69) with ER=452 VI (NI)60 = 1.1 N, for MSB ('77)
 - (2) Lab lesting on freshly deposited sands is field det on "aged" deposits, plus also may be OC (both + increased N, at same Or)
 - (3) at same Or, increasing grain size (Do) increasing N,

Fig. 47. Empirical correlations between standard penetration resistance and relative density for cohesionless soils.

Adapted from Ladd et al. (1977) 9th ICFMFE

Results of Standard Penetration Tests for Very Dense Sands

Adapted from Peck & Bazarra (1969)

2) Results from Shampton (1986)

- · He evaluated above historical data plus Tergagli's Peck (1948=1967)

 plus field data from Japan in terms of (NI)60, is. accounted

 for variations in energy ratio and N conselled to Top = 1 also
- . Sheet O summaryis Skimptm's results, which led to conclusions in 10
- . Note that TIP correlation can be closely fetted by Dr = V (Nilso

3) CCL Recommended Correlations

a) Natural sand deposits
$$D_r = \sqrt{\frac{(N_1)\omega}{55 \text{ fine sand}}}$$

Note: May overestimate O_r

for high oca sands

b) New ful deposits
$$D_r = \sqrt{\frac{(N_I)_{60}}{55 + 25 \log D_{50}(m_m)}}$$

c) See Sections 3.2-3 § 4 for procedures to restinate N60 f(N)/60 Nepertury

For typical US practice using 2 rope turns on large cathead

Ponut hammer, 5tandard sampler: N60 = 0.75 N } For 1 > 10 m (30')

"", norderer (4:38 mm): N60 = 0.9 N } See Sheet B, Tallet

Safety hammer, "": N60 = 1.1 N } for 2 < 10 m

3.4 Estimation of & From Lab Testing

- 1) On " undisturbed" samples: 2 problems
 - · Change in density during sampling à la Section 3.1-1
 - · Very difficult & expensive to set up test specimins
- 2) On reconstituted samples: 2 proflems
 - . Potential error in estimating Dr (Section 3.2), plus need emay- emin
 - · Preparation technique to similate natural sand shrickne
- 3) Conclusion: On very important jobs, consider use of fire Sityi freezing and sampling - lat testing

3.5 Estimation of & From Or and Sand Type

- 1) Very inducet method, a.g., estimating Dr (usually from N data) and then estimating o'rs. Dr as function of Sand type (USCS)
- 2) Sheet E contains two \$p no Dr correlations $\frac{\text{Sands with } 0r = 75\%}{\Rightarrow \phi' = 36 \pm 10}$ · DM-7.1 probably is rather conservative · Schmutmann (1978) probably is upper limit → \$ \$ \$0±2°
- 3) CCL also would use Bolton (1986), although this approach regums an estimate of P'cs (his Table 1 - P'cs = 34° ± 2°50 for mostly Uniform fine to course sands).

3.6 Estimation of &' From SPT N Data

- 1) Fig. 1 in Sheet F presents two early correlations. Note significant difference in \$ at same N > 10. When using this chart, CCL recommends correcting the measured N to $\sigma'_{Vo} \approx 1$ atm, ce, use N, (or even (Ni)60).
 - · For SPT in fine and selfy sands, Meyerhof (1956) recommended reduced N'= N + 0.5 (N-15) for N>15 (due to partial drainage of dilatant sand, but only if below the water table)

- 2) Fig. 2 in Sheet F presents correlations between \$ and (Ni)60 hom TPM's (96) book. based on "rarious proposals ... (PHT'53, De Mello'71, Schmertmann 75 & Stroud 88)". Further comments are:
 - · Underestimates & for Calcarenes sands (due to particle crushing)
 - · Overestemates p' for OC sands (due to increased Ko+more side friction)
 - . agrees Newsonably well with CPT correlations (See Section 3.8) that Used a defferent data base

3.7 Estimation of & From Plate Load Tasts (PLT)

1) PLT procedure à la ASTM D1198

- · Dea = 6-30 m
- · Maintain each load until dp/dt = 0.001"/min for Ot = 3 min

Std. Load Test (TSP, 1967)

- 2) Jult = (0,6) & YBNH
 - :. Estimate of from measured No.
- 3) Remarks: le very expensere and must test soil at representative depths

3.8 Correlations for Cone Panetration Tests (CPT)

1) CPT procedure à la ASTM D 3441-94 (For Electric CPT)

- · Penetrak at 1-2 cm/sec
- . Internal load cell measures go

Note: Really should measure 92 2 9c + 21 (1-a)

Where $a = \frac{d^2}{D^2}$ ($a \approx 0.5 \text{ to } 0.85$; but) usually 0.7 ± 0.05

- 2) Relationship between CPT qc and SPT N . See Sheet G, Fig. 11.5+ > gc (bass)/N = 4 to 8 for fine to coarse sand.
- 3) Estimation of Dr (Sheet G; mostly using data set leading to Sheet H)
 - · Fig. 4 shows that sand, compressibility affects Dr= & (gc & ou), is, higher compressibility + lower gc at same Dr & o'ro
 - Fig. 5 presents $D_r = f(g_c \circ \sigma_{vo})$ for NC sands of moderate compressibility. Authors suggest using σ_{ho} for OC sands; they also state that Fig. 5 is "approximate and should be used as a guide" clue to unknown sand compressibility at high o'levels around come tip
- 4) Estimation of Ø'
 - a) Sheet H presents evaluation of data from several series of koto in calibration (bin) chambers
 - · Fig. 6 Compares 8c/0% no tamp' from theories and experimental data-
 - Fig 7 proposed correlation between g_c vs σ'_{vo} and ϕ' , where $\phi' = \phi'$ for TC with $\sigma'_{c} = \sigma'_{se} = \sin s_{ch} \sigma'_{ho}$ for NC quartz sanda, Note linear g_c vs σ'_{vo} which is surprising to CCL
 - b) Sheet I presents correlation in TPM ('96) that presumably used same data set as for Sheet H, but now plotted as 8c, assuming 9c1(kla) = 108c/VTVo kla (ir, Same egn. used to get N; =CNN alap13)
 - · CCL added data scaled from Fig. 7 (Sheet H) at 50 = 16an = 100 kPa
 - occi also added egn. In \$'= f(gci), which may be valid only for ge data obtained at The near 1 atm

381 SO SHEETS FT-EASE" 5 SOUJARE 389 SO SHEETS FT-EASE" 5 SOUJARE 389 SO SHEETS FT-EASE" 5 SOUJARE 389 TOO RECYCLED WHITE 5 SOUJARE 389 TOO RECYCLED WHITE 5 SOUJARE 380 TOO RECYCLED WHITE 5 SOUJARE 5 NO SHEETS FT-EASE

Netional "Brand

Figure A-4. Equipment Used to Perform the SPT Source: Kovacs, et al.

Fig. 4. SPT hammers: (a) old standard; (b) donut;

* 1981 report to Nat. Bur. of Standards

From Kulhawy & Mayne (1990) Cornell

Suport to EPRI

ASTM D 1586-84 Note that ID = 1.5" (38 mm) enables use of a thin liner to end up with an ID = 13/8" (35 mm), which is the original dia. of considered an international standard. However, Univ is seldom used in the US!

Information on SPT Equipment

A. Energy Efficiency

- 1) Energy delivered to rod stem, Er = ER x (w.h=14016 x 30 ft = 350 ft.16)
- 2) Factors affecting Energy Ratio (ER) = Valocity Effic. (VE) x Dynamic Effic. (DE)
 - a) VE mainly affected by release mechanism:

(See Fig. 2-17 & Table 6)

- · Automated (heggin / trip) VE = 1.0
- · Rope around cathead VE: 0.7-0.85 for 2 turns
- b) DE affected by weight of annil: ma. wgt (2 20kg) + dear. DE (0.8+0.6)
- 3) ER=60% accepted as best refuere : Noo = N (ER/60)
- B. Other Factors (Table 7 & Fig. 5)
 - 1) Rod length < 10 m -> hepter N 2) No lonin -> Lower N 3) Large boring desi. -> lower N (granula)
- N60 = CER · CRL · Cs · CB · Measured N

Table 6. Summary of rod energy ratios (Skempton 1986)

	Hammer	Release	ER,: %	$ER_c/60 = C$
Japan	Donut Donut	Tombi 2 turns of rope	78 65	1·3 1·1
China	Pilcon type Donut	Trip Manual	60 55	1·0 0·9
USA	Safety Donut	2 turns of rope 2 turns of rope	55 45	0·9 0·75
UK	Pilcon, Dando, old standard	Trip 2 turns of rope	60 50	1·0 0·8

Table 7. Approximate corrections to measured N values (SVenato- 1991)

	()	סדו חסוקיים	61	
Rod length:	> 10 n 6-10	0 m	1·0 0·95	<u></u>
(F19.5)	4–6 3–4		0·85 0·75	RI
Standard sam US sampler w	1·0 1·2	Cs		
Borehole dian	neter:	65–115 mm 150 mm 200 mm	1·0 1·05 1·15	CB

Figure 2-17. Energy Ratio Variations

Fig. 5. Effect of rod length for a safety hammer with two-turn slip-rope (after Schmertmann & Palacios, 1979)

- 1) Peck, Hanson & Thombun (1974) Book: Evaluation of Peck & Bazanae (1969) full data $C_N = 0.77 \log \left(\frac{20}{\sigma'_{VO}(TSF)} \right)$
- 2) Seed (1976) ASCE Report: Evaluetion of Gubbs ? Holy (1957) Let deb.

 CN = 1 1.25/09 TVO (TSF)
- 3) Seed (1979) JGE 105(2): Evaluation of Marcuson et d. (1977) Lat data CN = 2 lines for Or = 50±10% of Or = 70±10% (no equation)
- 4) Leas { Whitman (1986) JGE 112(3) : Evaluetim of prin correlations $C_{N} = \sqrt{1/\sigma'_{VO}(TSF, kg/am^2)}$
- 5) Skempton (1986): Evaluation of Lat and full data $C_{N} = \frac{2}{1 + \sigma'_{V_0}(TSF)} \qquad C_{N} = \frac{3}{2 + \sigma'_{V_0}(TSF)}$ "Fine sands of medium D_r " "dense crosse sands when NC"

B. Comparisons

Kulhamy & Mayne (1990)

Liao | Whitman (1987) Geof. 37(3) From Skampton (1986: Geot. 36(3)) (Nilo = measured N corrected to Energy Ratio = 60% and o' = 1 atm = 175F = 1 kgf km² = 100 kla

NOTE: For same Dr, (Ni) increases with:

- 1) Increasing mean grain size, D50
- 2) aging. Therefore higher for natural deposits than for recent fells and lab testing programs
- 3) Overconsolidation ratio, OCR

22-141 50 SHEETS 22-142 100 SHEETS 22-144 200 SHEETS

Correlations Of Strength Characteristics For Granular Soils

Adapted from NAVFAC DM-7.1 (5/82) p 7.1 - 149

Chart for the approximate evaluation of the peak angle of internal friction after the relative density has been evaluated. Modified from: Burmister, Donald M., "The Importance and Practical Use of Relative Density in Soil Mechanics," ASTM Proc., Vol. 48, 1948

E

Friction Angle from SPT Blowcount Empirical Correlations

Fig.z Recent Correlation

Fig. 1 "Early" Correlations

F

Fig. 4. Comparison of different relative density relationships.

Fig. 5. Relative density relationship for uncemented and unaged quartz sands (after Baldi et al. 1982).

Robertson & Campanella (1983) CGJ 20(4)

BEARING, qc, bors

CONE

FIG. 6. Relationship between bearing capacity number and peak friction angle from large calibration chamber tests.

NOTE: \$ " = \$ for \$ " = Insitu The ; also note linear for vs \$ " relationship

Fig. 7. Proposed correlations between cone bearing and peak friction angle for uncemented, quartz sands.

Figure 19.5 Empirical correlation between friction angle ϕ' of sands and normalized push cone tip penetration resistance. (Terzaghi, Pack & Masri 1996)

Scoled from Fig. 7 (Sheet H) at To = 1 bar; therefore g= gc LINEAR regression - 4'= 30.0 (gc,, Ma) 0.130 (1729, 12 0.986) Correlation line on Fig. 19.5 > \$' = 28.8 (ge, MR) 0.145, however, Fig. 7 correlation shows go of on, not go of // Too, as assumed in Fig. 19.5