Verification of Immediate Observation Petri Nets

Chana Weil-Kennedy, Technical University of Munich

joint work with Mikhail Raskin, Javier Esparza

Petri nets & reachability

Petri nets are a classic formal model for the representation of concurrent systems.

Reachability problem: Given a Petri net \mathcal{N} , and markings M_0 and M

can marking M_0 reach marking M in ${\mathcal N}$?

Petri nets & reachability

Petri nets are a classic formal model for the representation of concurrent systems.

Reachability problem: Given a Petri net \mathcal{N} , and markings M_0 and M can marking M_0 reach marking M in \mathcal{N} 2 complexity and \mathcal{N}

non-elementary complexity [Czerwinzki, Lasota, Lazic, Leroux, Mazowiecki, '19]

Petri nets & reachability

Petri nets are a classic formal model for the representation of concurrent systems.

Reachability problem: Given a Petri net \mathcal{N} , and markings M_0 and M can marking M_0 reach marking M in \mathcal{N} 2 complexity \mathcal{N}_0 reach marking \mathcal{N}_0 reach marking \mathcal{N}_0 in \mathcal{N} 2 complexity \mathcal{N}_0 complexity \mathcal{N}_0 reach marking \mathcal{N}_0 in \mathcal{N}_0 complexity \mathcal{N}_0 complexity \mathcal{N}_0 complexity \mathcal{N}_0 complexity \mathcal{N}_0 reach marking \mathcal{N}_0 complexity \mathcal{N}_0 comp

non-elementary complexity
[Czerwinzki, Lasota, Lazic, Leroux, Mazowiecki, 19]

[The computational power of population protocols, Angluin et al., '06]

[The computational power of population protocols, Angluin et al., '06]

[The computational power of population protocols, Angluin et al., '06]

[The computational power of population protocols, Angluin et al., '06]

[The computational power of population protocols, Angluin et al., '06]

[The computational power of population protocols, Angluin et al., '06]

[The computational power of population protocols, Angluin et al., '06]

[The computational power of population protocols, Angluin et al., '06]

[The computational power of population protocols, Angluin et al., '06]

[The computational power of population protocols, Angluin et al., '06]

[The computational power of population protocols, Angluin et al., '06]

[The computational power of population protocols, Angluin et al., '06]

[The computational power of population protocols, Angluin et al., '06]

[The computational power of population protocols, Angluin et al., '06]

[The computational power of population protocols, Angluin et al., '06]

[The computational power of population protocols, Angluin et al., '06]

[The computational power of population protocols, Angluin et al., '06]

In this talk

Part 1: Immediate observation nets

Parameterized reachability is easy

+ an intuition of why

Part 2: Branching immediate observation nets

Parameterized reachability is still easy and BIO nets are expressive

Part 1: Immediate observation nets

[Esparza, Raskin, W.-K., '19]

[Esparza, Raskin, W.-K., '19]

[Esparza, Raskin, W.-K., '19]

Immediate Observation nets (IO)

introduced to study immediate
 observation population protocols
 (distributed computing model).

[Angluin, Aspnes, Eisenstat, Ruppert, '07]

[Esparza, Raskin, W.-K., '19]

Immediate Observation nets (IO)

introduced to study immediate
 observation population protocols
 (distributed computing model).

[Angluin, Aspnes, Eisenstat, Ruppert, '07]

 other motivating scenarios : sensor networks, enzymatic chemical reactions networks

[Esparza, Raskin, W.-K., '19]

Immediate Observation nets (IO)

introduced to study immediate
 observation population protocols
 (distributed computing model).

[Angluin, Aspnes, Eisenstat, Ruppert, '07]

 other motivating scenarios : sensor networks, enzymatic chemical reactions networks

In these application domains we are interested in *parameterized* problems.

A **cube** is a boolean combination of constraints

number of tokens in
$$q$$

$$a \le \#q \le b$$

$$\in \mathbb{N} \cup \infty$$

cube-reachability: given cubes $\mathscr C$ and $\mathscr C'$, does there exist $M \in \mathscr C$ and $M' \in \mathscr C'$ such that M reaches M'?

A **cube** is a boolean combination of constraints

number of tokens in
$$q$$

$$a \le \#q \le b$$

$$\in \mathbb{N} \cup \infty$$

cube-reachability: given cubes $\mathscr C$ and $\mathscr C'$, does there exist $M\in\mathscr C$ and $M'\in\mathscr C'$ such that M reaches M'?

non-elementary for conservative Petri nets

A **cube** is a boolean combination of constraints

number of tokens in
$$q$$

$$a \le \#q \le b$$

$$\in \mathbb{N} \cup \infty$$

cube-reachability: given cubes $\mathscr C$ and $\mathscr C'$, does there exist $M\in\mathscr C$ and $M'\in\mathscr C'$ such that M reaches M'?

non-elementary for conservative Petri nets

PSPACE-complete for IO nets

A **cube** is a boolean combination of constraints

number of tokens in
$$q$$

$$a \le \#q \le b$$

$$\in \mathbb{N} \cup \infty$$

cube-reachability: given cubes $\mathscr C$ and $\mathscr C'$, does there exist $M \in \mathscr C$ and $M' \in \mathscr C'$ such that M reaches M'?

non-elementary for conservative Petri nets

PSPACE-complete for IO nets

correctness of IO population protocols is in PSPACE [Esparza, Raskin, W.-K., '19]

Main idea

Main idea

Main idea

Pruning

- support of initial and final markings
- validity of firing sequence

Boosting

- support of initial and final markings
- validity of firing sequence

Boosting

- support of initial and final markings
- validity of firing sequence

Boosting

- support of initial and final markings
- validity of firing sequence

A **cube** is a boolean combination of constraints $a \le \#q \le b$ $\in \mathbb{N} \cup \infty$

cube-reachability: given cubes $\mathscr C$ and $\mathscr C'$, does there exist $M \in \mathscr C$ and $M' \in \mathscr C'$ such that M reaches M'?

 $a \le \#q \le b$ A **cube** is a boolean combination of constraints

 $\in \mathbb{N}$ $\in \mathbb{N} \cup \infty$

cube-reachability: given cubes $\mathscr C$ and $\mathscr C'$, does there exist $M\in\mathscr C$ and $M'\in\mathscr C'$ such that M reaches M'?

A **cube** is a boolean combination of constraints

$$a \le \#q \le b$$

$$\in \mathbb{N} \cup \infty$$

cube-reachability: given cubes $\mathscr C$ and $\mathscr C'$, does there exist $M \in \mathscr C$ and $M' \in \mathscr C'$ such that M reaches M'?

- NPSPACE = PSPACE
- non-deterministically pick small markings M_0 and M_0^\prime
- ullet check if M_0 reaches M_0^\prime

A **cube** is a boolean combination of constraints a = a

$$a \le \#q \le b$$

$$\in \mathbb{N} \cup \infty$$

cube-reachability: given cubes $\mathscr C$ and $\mathscr C'$, does there exist $M \in \mathscr C$ and $M' \in \mathscr C'$ such that M reaches M'?

- NPSPACE = PSPACE
- non-deterministically pick small markings M_0 and M_0^\prime
- check if M_0 reaches M_0^\prime

A **cube** is a boolean combination of constraints $a \le \#q \le b$

cube-reachability: given cubes $\mathscr C$ and $\mathscr C'$, does there exist $M \in \mathscr C$ and $M' \in \mathscr C'$ such that M reaches M'?

PSPACE

parameterized problems: verifying predicates using boolean operators and reachability operators pre^* and $post^*$ over cubes

PSPACE

A **cube** is a boolean combination of constraints

$$a \le \#q \le b$$

$$\in \mathbb{N} \cup \infty$$

cube-reachability: given cubes $\mathscr C$ and $\mathscr C'$, does there exist $M \in \mathscr C$ and $M' \in \mathscr C'$ such that M reaches M'?

PSPACE

parameterized problems: verifying predicates using boolean operators and reachability operators pre^* and $post^*$ over cubes

PSPACE

 $pre^*(\mathscr{C})$ is the set of markings that can reach \mathscr{C}

 $post^*(\mathscr{C})$ is the set of markings that \mathscr{C} can reach

A **cube** is a boolean combination of constraints

$$a \le \#q \le b$$

$$\in \mathbb{N} \cup \infty$$

cube-reachability: given cubes $\mathscr C$ and $\mathscr C'$, does there exist $M \in \mathscr C$ and $M' \in \mathscr C'$ such that M reaches M'?

PSPACE

parameterized problems: verifying predicates using boolean operators and reachability operators pre^* and $post^*$ over cubes

PSPACE

 $pre^*(\mathscr{C})$ is the set of markings that can reach \mathscr{C}

 $post^*(\mathscr{C})$ is the set of markings that \mathscr{C} can reach

e.g. reachability from cube \mathscr{C} to cube \mathscr{C}' : $post^*(\mathscr{C}) \cap \mathscr{C}' \neq \emptyset$

A **cube** is a boolean combination of constraints $a \le \#q \le b$

cube-reachability: given cubes $\mathscr C$ and $\mathscr C'$, does there exist $M\in\mathscr C$ and $M'\in\mathscr C'$ such that M reaches M'?

PSPACE

parameterized problems: verifying predicates using boolean operators and reachability operators pre^* and $post^*$ over cubes

PSPACE

e.g. almost-sure reachability from cube $\mathscr{C}_{\mathit{init}}$ to cube $\mathscr{C}_{\mathit{final}}$

A **cube** is a boolean combination of constraints $a \le \#q \le b$

 $\in \mathbb{N} \qquad \in \mathbb{N} \cup \infty$

cube-reachability: given cubes $\mathscr C$ and $\mathscr C'$, does there exist $M \in \mathscr C$ and $M' \in \mathscr C'$ such that M reaches M'?

PSPACE

parameterized problems: verifying predicates using boolean operators and reachability operators pre^* and $post^*$ over cubes

PSPACE

e.g. almost-sure reachability from cube $\mathscr{C}_{\mathit{init}}$ to cube $\mathscr{C}_{\mathit{final}}$

$$post^*(\mathscr{C}_{init}) \subseteq pre^*(\mathscr{C}_{final})$$

10 nets are flat

<u>Flat</u>

[Leroux, Sutre, '05]

$$\exists \text{ sequence } t_1^*t_2^*\dots t_\ell^* \text{ such that } \forall M_0 \forall M, \ M_0 \overset{*}{\to} M \text{ iff } M_0 \overset{t_1^{k_1}t_2^{k_2}\dots t_\ell^{k_\ell}}{\longrightarrow} M$$

10 nets are flat

<u>Flat</u>

[Leroux, Sutre, '05]

 $\exists \text{ sequence } t_1^*t_2^*\dots t_\ell^* \text{ such that } \forall M_0 \forall M, \ M_0 \overset{*}{\to} M \text{ iff } M_0 \overset{t_1^{k_1}t_2^{k_2}\dots t_\ell^{k_\ell}}{\longrightarrow} M$

IO nets are flat

check **reachability properties** with model checking **tools** that use acceleration techniques **e.g. FAST** [Bardin, Finkel, Leroux, Petrucci, '03]

Immediate Observation nets (IO)

- Conservative
- Communication

Immediate Observation nets (IO)

- Conservative
- Communication

[Christensen et al., '93] [Yen, '97] [Lasota, '09] [Mayr, Weihmann, '15]

Immediate Observation nets (IO)

- Conservative
- Communication

Branching Parallel Processes (BPP)

- Token creation and destruction
- Communication-free

[Christensen et al., '93] [Yen, '97] [Lasota, '09] [Mayr, Weihmann, '15]

Immediate Observation nets (IO)

- Conservative
- Communication

Branching Parallel Processes (BPP)

- Token creation and destruction
- Communication-free

[Christensen et al., '93] [Yen, '97] [Lasota, '09] [Mayr, Weihmann, '15]

Immediate Observation nets (IO)

- Conservative
- Communication

Branching Parallel Processes (BPP)

- Token creation and destruction
- Communication-free

Branching Immediate Observation nets (BIO)

- Token creation and destruction
- Communication

[Esparza, Raskin, W.-K., '20]

[Christensen et al., '93] [Yen, '97] [Lasota, '09] [Mayr, Weihmann, '15]

Immediate Observation nets (IO)

- Conservative
- Communication

Branching Parallel Processes (BPP)

- Token creation and destruction
- Communication-free

Branching Immediate Observation nets (BIO)

- Token creation and destruction
- Communication

[Esparza, Raskin, W.-K., '20]

Cube-reachability

A **cube** is a boolean combination of constraints

number of tokens in
$$q$$

$$a \le \#q \le b$$

$$\in \mathbb{N} \cup \infty$$

cube-reachability: given cubes $\mathscr C$ and $\mathscr C'$, does there exist $M \in \mathscr C$ and $M' \in \mathscr C'$ such that M reaches M'?

Cube-reachability

A **cube** is a boolean combination of constraints

number of tokens in
$$q$$

$$a \le \#q \le b$$

$$\in \mathbb{N} \cup \infty$$

cube-reachability: given cubes $\mathscr C$ and $\mathscr C'$, does there exist $M \in \mathscr C$ and $M' \in \mathscr C'$ such that M reaches M'?

still PSPACE-complete!

Cube-reachability

A **cube** is a boolean combination of constraints

number of tokens in
$$q$$

$$a \le \#q \le b$$

$$\in \mathbb{N} \cup \infty$$

cube-reachability: given cubes $\mathscr C$ and $\mathscr C'$, does there exist $M \in \mathscr C$ and $M' \in \mathscr C'$ such that M reaches M'?

still PSPACE-complete!

parameterized problems: verifying predicates using boolean operators and reachability operators pre^* and $post^*$ over cubes

Non-semilinear reachability

BIO nets can have non-semilinear reachability set

Non-semilinear reachability

BIO nets can have non-semilinear reachability set

Until now, unbounded Petri net classes with provably simpler reachability than the general case have semilinear reachability sets

BIO nets are locally flat

<u>Flat</u>

[Leroux, Sutre, '05]

$$\exists \text{ sequence } t_1^*t_2^*\dots t_\ell^* \text{ such that } \forall M_0 \forall M, \ M_0 \overset{*}{\to} M \text{ iff } M_0 \overset{t_1^{k_1}t_2^{k_2}\dots t_\ell^{k_\ell}}{\longrightarrow} M$$

BIO nets are not flat...

BIO nets are locally flat

<u>Flat</u>

[Leroux, Sutre, '05]

$$\exists \text{ sequence } t_1^*t_2^*\dots t_\ell^* \text{ such that } \forall M_0 \forall M, \ M_0 \overset{*}{\to} M \text{ iff } M_0 \overset{t_1^{k_1}t_2^{k_2}\dots t_\ell^{k_\ell}}{\longrightarrow} M$$

BIO nets are not flat...

Locally flat

[Leroux, Sutre, '05]

$$\forall M, \ \exists \ \text{sequence} \ t_1^*t_2^*\dots t_\ell^* \ \text{such that} \ \forall M_0, \ M_0 \overset{*}{\to} M \ \text{iff} \ M_0 \overset{t_1^{k_1}t_2^{k_2}\dots t_\ell^{k_\ell}}{\longrightarrow} M$$

BIO nets are locally flat

BIO nets are locally flat

<u>Flat</u>

[Leroux, Sutre, '05]

$$\exists \text{ sequence } t_1^*t_2^*\dots t_\ell^* \text{ such that } \forall M_0 \forall M, \ M_0 \overset{*}{\to} M \text{ iff } M_0 \overset{t_1^{k_1}t_2^{k_2}\dots t_\ell^{k_\ell}}{\longrightarrow} M$$

BIO nets are not flat...

Locally flat

[Leroux, Sutre, '05]

 $\forall M, \ \exists \ \text{sequence} \ t_1^*t_2^*\dots t_\ell^* \ \text{such that} \ \forall M_0, \ M_0 \overset{*}{\to} M \ \text{iff} \ M_0 \overset{t_1^{k_1}t_2^{k_2}\dots t_\ell^{k_\ell}}{\longrightarrow} M$

BIO nets are locally flat

check **reachability properties** with model checking **tools** that use acceleration techniques **e.g. FAST** [Bardin, Finkel, Leroux, Petrucci, '03]

Conclusion

- IO nets introduced to model population protocols: allowed to solve correctness
- cube-parameterized problems are in PSPACE
- BIO nets generalize BPP and IO nets, still have PSPACE cube-reachability
- BIO nets are first class of Petri nets with non-semilinear reachability set and elementary reachability problem
- IO nets are flat & BIO nets are locally flat, allowing efficient model checking

Conclusion

- IO nets introduced to model population protocols: allowed to solve correctness
- cube-parameterized problems are in **PSPACE**
- BIO nets generalize BPP and IO nets, still have PSPACE cube-reachability
- BIO nets are first class of Petri nets with non-semilinear reachability set and elementary reachability problem
- IO nets are flat & BIO nets are locally
- flat, allowing efficient model checking

• in future: apply proof method to parameterized reachability in other distributed systems

Conclusion

- IO nets introduced to model population protocols: allowed to solve correctness
- cube-parameterized problems are in PSPACE
- BIO nets generalize BPP and IO nets, still have PSPACE cube-reachability
- BIO nets are first class of Petri nets with non-semilinear reachability set and elementary reachability problem
- IO nets are flat & BIO nets are locally flat, allowing efficient model checking

• in future: apply proof method to parameterized reachability in other distributed systems