# Exercícios selecionados:

2, 7, 9, 10, 12, 13, 15, 17, 19, 21-32, 36, 43-47, 59-68

# **Exercícios**

- No Exemplo 2 consideramos a função W = f(T, v), onde W era o índice de sensação térmica, T é a temperatura real, e v é a velocidade do vento. A representação numérica foi fornecida pela Tabela 1.
  - (a) Qual é o valor de f(-15, 40)? Qual é o seu significado?
  - (b) Descreva em palavras o significado da questão "Para quais valores de v é verdade que f(-20, v) = -30?". Em seguida, responda à questão.
  - (c) Descreva o significado da questão "Para quais valores de T é verdade que f(T, 20) = -49?". Em seguida, responda à questão.
  - (d) Qual o significado da função W = f(-5, v)? Descreva seu comportamento.
  - (e) Qual o significado da função W = f(T, 50)? Descreva seu comportamento.
- O índice I de temperatura-umidade (ou simplesmente humidex) é a temperatura aparente do ar quando a temperatura real é T e a umidade relativa é h, de modo que podemos escrever I = f(T, h). A tabela seguinte com valores de I foi extraída de uma tabela do Environment Canada.

**TABELA 3** Temperatura aparente como função da temperatura e da umidade Umidade relativa(%)

| ()                    | T $h$ | 20 | 30 | 40 | 50 | 60 | 70 |  |  |  |  |  |  |
|-----------------------|-------|----|----|----|----|----|----|--|--|--|--|--|--|
| Temperatura real (°C) | 20    | 20 | 20 | 20 | 21 | 22 | 23 |  |  |  |  |  |  |
|                       | 25    | 25 | 25 | 26 | 28 | 30 | 32 |  |  |  |  |  |  |
| peratı                | 30    | 30 | 31 | 34 | 36 | 38 | 41 |  |  |  |  |  |  |
| Tem                   | 35    | 36 | 39 | 42 | 45 | 48 | 51 |  |  |  |  |  |  |
|                       | 40    | 43 | 47 | 51 | 55 | 59 | 63 |  |  |  |  |  |  |

- (a) Qual é o valor de f(35, 60)? Qual é o seu significado?
- (b) Para que valor de h temos f(30, h) = 36?
- (c) Para que valor de T temos f(T, 40) = 42?
- (d) Quais são os significados das funções I = f(20, h) e I = f(40, h)? Compare o comportamento dessas duas funções de h.

Um fabricante modelou sua função P da produção anual (o valor monetário de toda a produção em milhões de dólares) como uma função de Cobb-Douglas

$$P(L, K) = 1,47L^{0.65}K^{0.35}$$

onde L é o número de horas trabalhadas (em milhares) e K é o capital investido (em milhões de dólares). Encontre P(120, 20) e interprete-o.

Verifique se, para a função de produção de Cobb-Douglas

$$P(L, K) = 1.01L^{0.75}K^{0.25}$$

discutida no Exemplo 3, a produção dobrará se as quantidades de trabalho e a de capital investido forem dobradas. Determine se isso também é verdade para uma função de produção genérica

$$P(L, K) = bL^{\alpha}K^{1-\alpha}$$

Um modelo para a área da superfície de um corpo humano é dado pela função

$$S = f(w, h) = 0.1091w^{0.425}h^{0.725}$$

onde w é o peso (em libras), h é a altura (em polegadas) e S é medida em pés quadrados.

- (a) Encontre f(160, 70) e interprete-a.
- (b) Qual é sua própria área de superfície?
- O indicador de sensação térmica W discutido no Exemplo 2 foi modelado pela seguinte função:

$$W(T, v) = 13,12 + 0,6215T - 11,37v^{0,16} + 0,3965Tv^{0,16}$$

Verifique quão próximo este modelo está dos valores da Tabela 1 para alguns valores de T e v.

- A altura h de ondas em mar aberto depende da velocidade do vento v e do tempo t durante o qual o vento se manteve naquela intensidade. Os valores da função h=f(v,t), dados em metros, são apresentados na Tabela 4.
  - (a) Qual é o valor de f(80, 15)? Qual é o seu significado?
  - (b) Qual o significado da função h = f(60, t)? Descreva seu comportamento.
  - (c) Qual o significado da função h = f(v, 30)? Descreva seu comportamento.

#### Duração (horas)

| Velocidade do vento (km/h) | v $t$ | 5   | 10   | 15   | 20   | 30   | 40   | 50   |
|----------------------------|-------|-----|------|------|------|------|------|------|
|                            | 20    | 0,6 | 0,6  | 0,6  | 0,6  | 0,6  | 0,6  | 0,6  |
|                            | 30    | 1,2 | 1,3  | 1,5  | 1,5  | 1,5  | 1,6  | 1,6  |
|                            | 40    | 1,5 | 2,2  | 2,4  | 2,5  | 2,7  | 2,8  | 2,8  |
|                            | 60    | 2,8 | 4,0  | 4,9  | 5,2  | 5,5  | 5,8  | 5,9  |
|                            | 80    | 4,3 | 6,4  | 7,7  | 8,6  | 9,5  | 10,1 | 10,2 |
|                            | 100   | 5,8 | 8,9  | 11,0 | 12,2 | 13,8 | 14,7 | 15,3 |
|                            | 120   | 7,4 | 11,3 | 14,4 | 16,6 | 19,0 | 20,5 | 21,1 |

Uma empresa fabrica caixas de papelão de três tamanhos: pequena, média e grande. O custo é de \$ 2,50 para fabricar uma caixa pequena, \$4,00 para uma caixa média e \$4,50 para uma caixa grande. Os custos fixos são de \$ 8.000.

- (a) Expresse o custo da fabricação de x caixas pequenas, y caixas médias e z caixas grandes como uma função de três variáveis: C = f(x, y, z).
- (b) Encontre *f* (3 000, 5 000, 4 000) e interprete-a.
- (c) Qual o domínio de f?
- Seja g(x, y) = cos (x + 2y).
  - (a) Calcule g(2, -1).
  - (b) Determine o domínio de g.
  - (c) Determine a imagem de g.
- **10.** Seja  $F(x, y) = 1 + \sqrt{4 y^2}$ .
  - (a) Calcule *F* (3,1).
  - (b) Determine e esboce o domínio de *F*.
  - (c) Determine a imagem de F.
- **11.** Seja  $f(x, y, z) = \sqrt{x} + \sqrt{y} + \sqrt{z} + \ln(4 x^2 y^2 z^2)$ . (a) Calcule f(1, 1, 1).

  - (b) Determine o domínio de f.
- **12.** Seja  $g(x, y, z) = x^3 y^2 z \sqrt{10 x y z}$ .
  - (a) Calcule g(1, 2, 3).
  - (b) Determine o domínio de g.
- 13–22 Determine e esboce o domínio da função.

**13.** 
$$f(x, y) = \sqrt{x + y}$$
 **14.**  $f(x, y) = \sqrt{xy}$ 

**14.** 
$$f(x, y) = \sqrt{xy}$$

**15.** 
$$f(x, y) = \ln(9 - x^2 - 9y^2)$$
 **16.**  $f(x, y) = \sqrt{x^2 - y^2}$ 

**16.** 
$$f(x, y) = \sqrt{x^2 - y}$$

**17.** 
$$f(x, y) = \sqrt{1 - x^2} - \sqrt{1 - y^2}$$

**18.** 
$$f(x, y) = \sqrt{y} + \sqrt{25 - x^2 - y^2}$$

**19.** 
$$f(x, y) = \frac{\sqrt{y - x^2}}{1 - x^2}$$

**20.** 
$$f(x, y) = \arcsin(x^2 + y^2 - 2)$$

**21.** 
$$f(x, y, z) = \sqrt{1 - x^2 - y^2 - z^2}$$

**22.** 
$$f(x, y, z) = \ln(16 - 4x^2 - 4y^2 - z^2)$$

23-31 Esboce o gráfico da função.

**23.** 
$$f(x, y) = 1 + y$$

**23.** 
$$f(x, y) = 1 + y$$
 **24.**  $f(x, y) = 2 - x$ 

**25.** 
$$f(x, y) = 10 - 4x - 5y$$
 **26.**  $f(x, y) = e^{-y}$ 

**26.** 
$$f(x, y) = e^{-y}$$

**27.** 
$$f(x, y) = y^2 + 1$$

**28.** 
$$f(x, y) = 1 + 2x^2 + 2y^2$$

**29.** 
$$f(x, y) = 9 - x^2 - 9y^2$$

**30.** 
$$f(x, y) = \sqrt{4x^2 + y^2}$$

**31.** 
$$f(x, y) = \sqrt{4 - 4x^2 - y^2}$$

32. Faça uma correspondente entre a função e seu gráfico (identificado por I-VI). Justifique sua escolha.

(a) 
$$f(x, y) = |x| + |y|$$

$$\mathbf{(b)} f(x, y) = |xy|$$

(c) 
$$f(x, y) = \frac{1}{1 + x^2 + y^2}$$
 (d)  $f(x, y) = (x^2 - y^2)^2$ 

(d) 
$$f(x, y) = (x^2 - y^2)^2$$

(e) 
$$f(x, y) = (x - y)^2$$

(f) 
$$f(x, y) = \text{sen}(|x| + |y|)$$



**33.** Um mapa de contorno de uma função f é apresentado. Use-o para estimar os valores de f(-3, 3) e f(3, -2). O que você pode dizer sobre a forma do gráfico?



- **34.** Um mapa de contorno da pressão atmosférica na América do Norte é mostrado em 12 de agosto de 2008. Nas curvas de nível (chamadas isobáricas) a pressão é indicada em milibares (mb).
  - (a) Estime a pressão em C (Chicago), N (Nashville), S (São Francisco) e V (Vancouver).
  - (b) Em quais desses lugares os ventos eram mais fortes?



**35.** As curvas de nível (isotérmicas) são mostradas para a temperatura da água (em °C) em Long Lake (Minnesota) em 1998 como

uma função de profundidade e da época do ano. Estime a temperatura do lago em 9 de junho (dia 160) em uma profundidade de 10 m e em 29 de junho (dia 180) em uma profundidade de 5 m.



**36.** Dois mapas de contorno são mostrados na figura. Um é de uma função *f* cujo gráfico é um cone. O outro é de uma função *g* cujo gráfico é um paraboloide. Qual é qual? Por quê?



- **37.** Localize os pontos *A* e *B* no mapa da Montanha Solitária (Figura 12). Como você descreveria o terreno perto de *A*? É perto de *B*?
- **38.** Faça um esboço de um mapa de contorno da função cujo gráfico está mostrado.



**39–42** Um mapa de contorno de uma função é mostrado. Use-o para fazer um esboço do gráfico da f.



41.





43-50 Faça o mapa de contorno da função mostrando várias curvas de nível.

**43.** 
$$f(x, y) = (y - 2x)^2$$

**44.** 
$$f(x, y) = x^3 - y$$

**45.** 
$$f(x, y) = \sqrt{x} + y$$

**46.** 
$$f(x, y) = \ln(x^2 + 4y^2)$$

**47.** 
$$f(x, y) = ye^x$$

**48.** 
$$f(x, y) = y \sec x$$

**49.** 
$$f(x, y) = \sqrt{y^2 - x^2}$$

**50.** 
$$f(x, y) = y/(x^2 + y^2)$$

51-52 Faça o esboço do mapa de contorno e do gráfico da função e compare-os.

**51.** 
$$f(x, y) = x^2 + 9y^2$$

**52.** 
$$f(x, y) = \sqrt{36 - 9x^2 - 4y^2}$$

**53.** Uma placa fina de metal, localizada no plano xy, tem temperatura T(x, y) no ponto (x, y). As curvas de nível de T são chamadas isotérmicas porque todos os pontos em uma dessas curvas têm a mesma temperatura. Faça o esboço de algumas isotérmicas se a função temperatura for dada por

$$T(x, y) = \frac{100}{1 + x^2 + 2y^2}$$

Se V(x, y) é o potencial elétrico em um ponto (x, y) no plano xy, então as curvas de nível de V são chamadas curvas equipotenciais, porque em todos os pontos dessa curva o potencial elétrico é o mesmo. Esboce algumas curvas equipotenciais de  $V(x, y) = c/\sqrt{r^2 - x^2 - y^2}$ , onde c é uma constante positiva.

55–58 Utilize um computador para traçar o gráfico da função usando vários domínios e pontos de vista. Imprima a que, em sua opinião, oferece a melhor visão. Se seu programa também produz curvas de nível, trace o mapa de contorno da mesma função e compare.

**55.** 
$$f(x, y) = xy^2 - x^3$$
 (sela do macaco)

**56.** 
$$f(x, y) = xy^3 - yx^3$$
 (sela do cachorro)

**57.** 
$$f(x, y) = e^{-(x^2+y^2)/3}(\text{sen}(x^2) + \cos(y^2))$$

$$\mathbf{58.} \ \ f(x,y) = \cos x \cos y$$

59-64 Faça uma correspondência entre a função (a) e seu gráfico (indicado por A-F a seguir), (b) e seus mapas de contorno (indicado por I-VI). Justifique sua escolha.

**59.** 
$$z = \text{sen}(xy)$$

**60.** 
$$z = e^x \cos y$$

**61.** 
$$z = \text{sen}(x - y)$$

**62.** 
$$z = \sin x - \sin y$$

**63.** 
$$z = (1 - x^2)(1 - y^2)$$

**63.** 
$$z = (1 - x^2)(1 - y^2)$$
 **64.**  $z = \frac{x - y}{1 + x^2 + y^2}$ 

























- 65-68 Descreva as superfícies de nível da função.
- **65.** f(x, y, z) = x + 3y + 5z
- **66.**  $f(x, y, z) = x^2 + 3y^2 + 5z^2$
- **67.**  $f(x, y, z) = y^2 + z^2$
- **68.**  $f(x, y, z) = x^2 y^2 z^2$
- **69–70** Descreva como o gráfico de g é obtido a partir do gráfico de f. Faça o gráfico da função
- (a) g(x, y) = f(x, y) + 2
- (b) g(x, y) = 2 f(x, y)
- (c) g(x, y) = -f(x, y)
- (d) g(x, y) = 2 f(x, y)
- **70.** (a) g(x, y) = f(x 2, y)(c) g(x, y) = f(x + 3, y 4)
- (b) g(x, y) = f(x, y + 2)
- 71–72 Utilize um computador para traçar o gráfico da função usando vários domínios e pontos de vista. Imprima aquela que apresente melhor os "picos e vales". Você acha que essa função tem um valor máximo? Você poderia identificar os pontos do gráfico correspondentes aos "máximos locais"? E aos "mínimos locais"?
  - **71.**  $f(x, y) = 3x x^4 4y^2 10xy$
  - **72.**  $f(x, y) = xye^{-x^2-y^2}$
- 73-74 Utilize um computador para traçar o gráfico da função usando vários domínios e pontos de vista. Comente o comportamento da função no limite. O que acontece quando x e y se tornam muito grandes? O que acontece quando (x, y) se aproxima da ori-
  - **73.**  $f(x,y) = \frac{x+y}{x^2+y^2}$  **74.**  $f(x,y) = \frac{xy}{x^2+y^2}$
- 75. Use um computador para investigar a família de funções  $f(x, y) = e^{cx^2+y^2}$ . De que maneira a forma do gráfico depende de c?

**76.** Use um computador para investigar a família de superfícies

$$z = (ax^2 + by^2)e^{-x^2 - y^2}$$

Como a forma do gráfico depende dos números a e b?

- 77. Use um computador para investigar a família de superfícies  $z = x^2 + y^2 + cxy$ . Em particular, você deve determinar os valores de transição de c para os quais a superfície muda de um tipo de superfície quádrica para outro.

$$f(x, y) = \sqrt{x^2 + y^2}$$

$$f(x, y) = e^{\sqrt{x^2 + y^2}}$$

$$f(x, y) = \ln \sqrt{x^2 + y^2}$$

$$f(x, y) = \sin(\sqrt{x^2 + y^2})$$

$$f(x,y) = \frac{1}{\sqrt{x^2 + y^2}}$$

Em geral, se g(t) é uma função de uma variável, como obter o gráfico de

$$f(x, y) = g(\sqrt{x^2 + y^2})$$

a partir do gráfico de g?

(a) Mostre que, tomando logaritmos, a função geral de Cobb--Douglas  $P = bL^{\alpha}K^{1-\alpha}$  pode ser expressa como

$$\ln \frac{P}{K} = \ln b + \alpha \ln \frac{L}{K}$$

- (b) Se deixarmos  $x = \ln(L/K)$  e  $y = \ln(P/K)$ , a equação no item (a) torna-se a equação linear  $y = \alpha x + \ln b$ . Use a Tabela 2 (no Exemplo 3) para fazer a tabela dos valores de ln(L/K) e ln(P/K) para os anos 1899–1922. Em seguida, use uma calculadora gráfica ou o computador para encontrar a linha de regressão dos quadrado mínimos pelos pontos (ln(L/K),
- (c) Deduza que a função de produção de Cobb-Douglas é P =  $1,01L^{0,75}K^{0,25}$ .

### **CAPÍTULO 14**

## **EXERCÍCIOS 14.1**

- **1.** (a) -27; uma temperatura de -15 °C com vento soprando a 40 km/h dá uma sensação equivalente a cerca de -27 °C sem vento.
- (b) Quando a temperatura é  $-20\,^{\circ}\mathrm{C},$  qual velocidade do vento dá uma sensação térmica de  $-30\,^{\circ}\mathrm{C}?~20$  km/h
- (c) Com uma velocidade do vento de 20 km/h, qual temperatura dá uma sensação térmica de  $-49\,^{\circ}\mathrm{C}? -35\,^{\circ}\mathrm{C}$
- (d) Uma função da velocidade do vento que dá os valores da sensação térmica quando a temperatura é  $-5\,^{\circ}\mathrm{C}$
- (e) Uma função da temperatura que dá os valores da sensação térmica quando a velocidade do vento é 50 km/h
- $3. \approx 94,2$ ; a produção anual do fabricante está avaliada em \$94,2 milhões quando 120 000 horas trabalhadas são gastas e \$20 milhões de capital são investidos.
- **5.** (a)  $\approx 20.5$ ; a área da superfície de uma pessoa 70 pol. mais alta que pesa 160 libras é de aproximadamente 20,5 pés quadrados.
- **7.** (a) 7,7; um vento de 80 km/h soprando em mar aberto por 15 h criará ondas de cerca de 7,7 m de altura.
- (b) f(60, t) é uma função de t que dá a altura das ondas produzidas por ventos de 60 km/h por t horas.
- (c) f(v, 30) é uma função de v que dá a altura das ondas produzidas por ventos de velocidade v soprando por 30 horas.
- **9.** (a) 1 (b)  $\mathbb{R}^2$  (c) [-1, 1]

A77





**15.** 
$$\{(x,y)|\frac{1}{9}x^2+y^2<1\}, (-\infty, \ln 9]$$



**17.**  $\{(x, y) | -1 \le x \le 1, -1 \le y \le 1\}$ 



**19.**  $\{(x, y)|y \ge x^2, x \ne \pm 1\}$ 



**21.** 
$$\{(x, y, z) | x^2 + y^2 + z^2 \le 1\}$$



**23.** z = 1 + y, plano paralelo ao eixo x



**25.** 4x + 5y + z = 10, plano



**27.**  $z = y^2 + 1$ , cilindro parabólico



**29.**  $z = 9 - x^2 - 9y^2$ , paraboloide elíptico



**31.**  $z = \sqrt{4 - 4x^2 + y^2}$ , metade superior da elipsoide



**33.** ≈56, ≈35 **35.** 11°C, 19,5°C **37.** Íngreme; quase achatado





41.



**43.**  $(y - 2x)^2 = k$ 



**45.**  $y = \sqrt{x} + k$ 



**47.**  $y = ke^{-x}$ 



**49.**  $y^2 - x^2 = k^2$ 



**51.**  $x^2 + 9y^2 = k$ 



**53**.



55.



**57**.



- **59.** (a) C **63.** (a) B
- (b) II

(b) VI

- **61.** (a) F
- (b) I
- 65. Família de planos paralelos
- **67.** Família de cilindros circulares com eixo no eixo x (k > 0)
- **69.** (a) Translada o gráfico de f duas unidades para cima
- (b) Amplia o gráfico de f verticalmente por um fator 2
- (c) Reflete o gráfico de f em relação ao plano xy
- (d) Reflete o gráfico de f em relação ao plano xy e a seguir translada-o 2 unidades para cima

71.



f parece ter um valor máximo de cerca de 15. Há dois pontos de máximo local, porém nenhum ponto de mínimo local.

73.



Os valores da função tendem a 0 quando x, y se torna grande; quando (x, y) se aproxima da origem, f tende a  $\pm \infty$  ou 0, dependendo da direção de aproximação.

**75.** Se c=0, o gráfico é uma superfície cilíndrica. Para c>0, as curvas de nível são elipses. O gráfico tem curva ascendente enquanto deixamos a origem, e a ingremidade aumenta à medida que  $\boldsymbol{c}$  aumenta. Para c < 0, as curvas de nível são hipérboles. O gráfico tem curva ascendente na direção y e descendente, tendendo ao plano xy, na direção x, causando uma aparência em forma de sela perto de (0, 0, 1).

77. 
$$c = -2, 0, 2$$

**77.** 
$$c = -2, 0, 2$$
 **79.** (b)  $y = 0.75x + 0.01$