Reg. No.: 22BMF1062 Name :: Hedar Punegen



## Continuous Assessment Test - I March 2023

| Programme | : B.Tech (Mechanical Engineering)                                     | Semester   | : Winter 2022-23                                                         |
|-----------|-----------------------------------------------------------------------|------------|--------------------------------------------------------------------------|
| Course    | : Engineering Thermodynamics                                          | Code       | : BMEE203L                                                               |
| Faculty   | Dr K Karunamurthy, Dr Pritam Das, Dr Sanjeev Jakhar, Dr Saurabh Yadav | Class Nbr  | CH2022232300301<br>CH2022232300298<br>CH2022232300303<br>CH2022232300304 |
|           |                                                                       | Slot       | : A1+TA1                                                                 |
| Time      | : 1 hour 30 Minutes                                                   | Max. Marks | : 50                                                                     |

## Answer any <u>Five</u> the Questions (5 X 10 = 50) USE OF STEAM TABLES AND COMPRESSIBILITY CHARTS ARE PERMITTED

| Note: |                                                   |
|-------|---------------------------------------------------|
| (i)   | The answers should be concise, don't elaborate,   |
| (ii)  | Provide diagrams and highlights, no story please. |

(i) saturation temperature,

| Q.No. | • |                                                                                                                                                                                                                                                                                                           | Marks |
|-------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1.    | a | Appraise on different types of thermodynamic systems, with examples and sketch.                                                                                                                                                                                                                           | 3     |
| 1.    | Ь | Define the following; Fixed and Moving Boundaries, Intensive & Extensive properties, Point function & Path function, Process and Quasi-static process.                                                                                                                                                    | 7     |
| 2     |   | 0.336 m <sup>3</sup> of an ideal gas at a pressure of 10 bar and 150°C expands adiabatically, until its pressure is 4 bar. It is then compressed isothermally to its original volume. (i) Find                                                                                                            |       |
|       |   | the final temperature and pressure of the gas. Assume $c_p$ =0.996 kJ/kg K and $c_v$ =0.703 kJ/kg K. (ii) determine the total work done. (iii) Represent the processes in a p-v. (iv) If the gas has to undergo a third process to come back to its original state, then which process it has to undergo. | 10    |
| 3     | а | Determine the specific enthalpy, specific entropy and specific volume of wet steam at 45 bar and dryness fraction of 0.8.                                                                                                                                                                                 | 5     |
|       | b | Compute the following properties of steam at 4.4 MPa and 325°C.  (i) Specific Enthalpy  (ii) Specific Entropy  (iii) Specific volume  (iv) saturation temperature and  (v) degree of superheat.                                                                                                           | 5     |
| 4     |   | A vessel of volume 0.04 m <sup>3</sup> contains a mixture of saturated water and vapour at a pressure of 40 bar. The mass of the liquid present is 9 kg. Find the                                                                                                                                         | 10    |

- (ii) total mass of the mixture,
- (iii) specific volume,
- (iv) enthalpy and

6

(v) entropy of steam.

The volume of a high altitude chamber is 40 m<sup>3</sup>. It is put into operation by reducing the pressure from 1 bar to 0.4 bar and temperature from 25°C to 5°C. How many kg of air must be removed from the chamber during the process. Also express the mass removed as volume measured at 1 bar and 25°C.

A fluid in a piston cylinder arrangement executes 220 cycles/min with four processes. The net heat transfer during a cycle is -300 kJ. Complete the following table showing the method for each process and complete the network output in kW.

| Process | Q<br>(kJ/min) | W<br>(kJ/min) | ΔE<br>(kJ/min) |
|---------|---------------|---------------|----------------|
| 1 - 2   | 0             | 4350          | ?              |
| 2-3     | 42000         | 0             | ?              |
| 3-4     | -4200         | ?             | -73500         |
| 4-1     | 2             | ?             | ?              |

10

10