

Computer Control Project Presentation

Authors

Renato Loureiro Tiago Santos Pedro Sarnadas

ARMAX Parameters

$$n_a = 5$$

$$n_{h} = 5$$

$$n_c = n_a$$

$$n_k = 1$$

Validation

PRBS B=0.008

Model Estimation

Simulation Parameters

$$Ts = 0.01 s$$

Evaluate the envelope of the output Eigenvalue confirmation - R = 50

Slope = -0.0842

Solve Riccati Equation

$$S = A^{T} \left[S - SB^{T}BS \frac{1}{R} \right] A + C^{T}C$$

$$K_{LQR} = (R - B^{T}SB)^{-1}B^{T}SA$$

Evaluate the envelope of the output

Eigenvalue confirmation - R = 50

Theoretical Pole location

$$0.6669 \pm 0.7440i$$

 0.9958
 $0.9863 \pm 0.1192i$
 0.8122

$$m \approx \frac{log(max\{|pole|\})}{T_s}$$

$$error = 4.8963 \cdot 10^{-7}\%$$

$$max(|\lambda_i|) = 0.9992$$

Open loop Bode Diagram for LQR Control

Close Loop Bode Diagram for LQR Control

The close loop bode diagram has the reference tracking gain already

Evaluate the envelope of the output

Eigenvalue confirmation - Re = 0.1

$$Slope = -0.1550$$

Observer
$$x(k+1) = Ax(k) + Bu(k) + B_1w(k)$$

$$y(k) = Cx(k) + v(k)$$

$$H(M) = E\{||x(k) - \tilde{x}(k)||^2\}$$

$$P = APA^T + Q_e - \frac{APC^TCPA^T}{R_e + CPC^T}$$

$$M = APC^T(R_e + CPC^T)^{-1}$$

Evaluate the envelope of the output

Eigenvalue confirmation - Re = 0.1

$$0.6662 \pm 0.7433i$$

0.9400

$$0.9430 \pm 0.1326i$$

0.8091

$$max(|\lambda_i|) = 0.9982$$

$$m \approx \frac{log(max\{|pole|\})}{T_s}$$

$$error = 0.1842 \%$$

R=0.1 10000 5000 6 Time [s] R=1 2.5 1.5 0.5 2 10 Time [s] R=10 6 10 12 Time [s]

LQE Implementation

Check poles of the closed loop

$$0.6662 \pm 0.7433i$$

$$0.6669 \pm 0.7440i$$

$$0.9430 \pm 0.1326i$$

$$0.9863 \pm 0.1192i$$

0.9958

0.8122

0.9400

0.8091

It is possible to notice the separation principle because the poles of the merge configuration (LQG) are the join poles of the LQR and LQE previously analyzed

Open loop Bode Diagram for LQG Control

Close Loop Bode Diagram for LQG Control

The close loop bode diagram has the reference tracking gain already

Following Reference Approach

$$\begin{bmatrix} N_x \\ N_u \end{bmatrix} = \begin{bmatrix} A - I & B \\ C & 0 \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ I \end{bmatrix}$$

$$\bar{N} = N_u + KN_x$$

Time [s] Time [s]

Test on Real System

The controller works perfectly with the given real model but it may suffer a from the performance perspective if the real model has disturbances.

Test on Perturbed System

Using the previous control and estimation in a perturbed system

Necessity to iterate - approach: be more conservative when choosing R and Re

First: Change Re and see if the problem is with the estimation optimization being too rigid

Second: Change R and see if the problem is with the control optimization being too optimistic

The system is unstable and it seems it is behaving with a high frequency - maybe smoothing the controller (make it a little bit more slower will solve the problem)

With the sine input the system has a better performance - it made us think the problem with our controller is with the high frequency response

Test on Perturbed System

Re = 0.1

R = 800

The previous Graphs correspond to the value of the parameter which we consider the plant to work correctly

It seems we were too optimistic with the value given to our Re related to the estimation process

Output Behaviour

Control Input Behaviour

The current controller is unable to track the reference when the dead zone is present

180

Results from Iterations

$$\Delta t = 7 \ s$$

$$K_{integrator} = 0.012$$

Solution 1

Performance

The previous control method only works good with square wave input

Solution 2

Invert non linear characteristic

Inversor Characteristic

$$y = \begin{cases} u + 0.1, & \text{if } u > 0 \\ u - 0.1, & \text{if } u < 0 \end{cases}$$

This approach needs the exact knowledge of the dead zone and a possible problem is the implementation of the non linear block to invert the dead zone

For a = 0.01

Solution 3

Invert non linear characteristic with differentiable function

Differentiable Pseudo Inverse Characteristic

$$y = \frac{e^{\frac{u}{a}}}{e^{\frac{u}{a}} + e^{-\frac{u}{a}}} \cdot (u + 0.1) + \frac{e^{-\frac{u}{a}}}{e^{\frac{u}{a}} + e^{-\frac{u}{a}}} \cdot (u - 0.1)$$

Q&A Session is Open