T2C02 - Modélisation d'une action mécanique

E. Machefer

année scolaire 2022-2023

1 Notion de force

1.1 Action mécanique

Définition 1

Une action mécanique est un phénomène provoquant une déformation d'un objet ou une modification de son mouvement a

a. Changement de valeur de vitesse ou changement de direction

Une action mécanique peut être soit :

- de **contact** si il y a un contact entre le système étudié et le phénomène provoquant l'action
 - Exemple : action de la main pour pousser une bille
- à distance si il n'y a pas de contact entre le système et le phénomène provoquant l'action
 - Exemple : action du Soleil sur la Terre

Afin de faire un bilan des interactions sur un système, on utilise un diagramme objets-interactions, où les interactions de contact sont représentées par une double flèche en trait plein alors que les interactions à distances sont représentées par une double flèche en pointillé.

Exercice 1.

Faire le diagramme objets-interactions d'une pomme en chute libre, soumises aux interactions dues à la Terre et à l'air.

1.2 Modélisation d'une action

Définition 2.

Une **force** modélise une action mécanique. Elle est représentée par un vecteur appliquée à un point.

Les caractéristiques d'une force sont :

- son point d'application
- sa direction
- son sens
- sa valeur, qui s'exprime en **newton** (N)

Remarque 1.

En seconde, le système étudié est toujours modélisé par un point.

Exercice 2.

Même situation que dans l'exercice diagramme objets-interactions.

- 1. Quelles sont les caractéristiques de la force qu'exerce la Terre sur la pomme?
- 2. Même question pour la force qu'exerce l'air sur la pomme?
- 3. Représenter la situation par un schéma.

1.3 Quelques exemples de force

Force d'interaction gravitationnelle

L'interaction gravitationnelle entre deux objets de centres A et B et de masses respectives m_A et m_B , distants de d_{AB} est modélisée par une force

$$\vec{F}_{A/B} = -G \times \frac{m_A m_B}{d_{AB}^2} \times \vec{u}_{A \to B}$$

avec la constante de gravitation universelle $G = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2 \cdot \text{kg}^{-2}$.

La valeur de cette force est

$$F_{A/B} = G \times \frac{m_A m_B}{d_{AB}^2}$$

et s'exprime en newton (N), les masses en kg et la distance en m.

Exercice 3.

La masse de la Terre est $m_T = 5.97 \times 10^{24}$ kg, celle du Soleil est $m_S = 2.0 \times 10^{30}$ kg, la distance entre la Terre et le Soleil est $d = 1.50 \times 10^{11}$ m.

- 1. Faire le diagramme objets-interactions appliqué au système Terre.
- 2. Calculer la valeur de la force gravitationnelle exercée par le Soleil sur la Terre.
- 3. Déterminer les caractéristique de direction et de sens de la force.

Poids

Le poids \vec{P} d'un objet correspond à la force d'interaction gravitationnelle à la surface d'un astre, on a

$$\vec{P}_A = m \times \vec{q}_A$$

avec m la masse de l'objet (en kg), \vec{g}_A le champ de pesanteur de l'astre A. La valeur de g_A est

$$g_A = G \times \frac{m_A}{R_A^2}$$

avec m_A la masse de l'astre A en kg et R_A le rayon de cet astre en m.

Exercice 4.

La masse de la Terre est $m_T=5.97\times 10^{24}~kg$, son rayon est $R_T=6371~km$, la constante de gravitation universelle $G=6.67\times 10^{-11}~N\cdot m^2\cdot kg^{-2}$

— Calculer la valeur du champ de pesanteur de la Terre.

Réaction du support

Lorsqu'un objet est posé sur un support, le support génère une action de contact modélisé par une force perpendiculaire à la surface du support.

2 Principe des actions réciproques

2.1 Définition

Définition 3.

Lorsque deux systèmes A et B sont en interaction, ils exercent l'un sur l'autre une force :

- de même direction
- de même valeur
- de sens opposé

Mathématiquement, on a

$$\vec{F}_{A/B} = -\vec{F}_{B/A}$$

2.2 Exercice

Exercice 5.

Le télescope spatial Hubble est un satellite lancé le 24 avril 1990, en orbite autour de la Terre a une orbite basse située à 539 km de la surface de la Terre.

La masse du télescope est $m_H = 11 \times 10^3 \text{ kg}$.

- 1. Calculer la valeur de la force qu'exerce la Terre sur Hubble.
- 2. Que peut-on dire de la valeur de la force qu'exerce Hubble sur la Terre?
- 3. Représenter par un schéma les deux forces.

3 Bilan du chapitre

3.1 Carte mentale

