## Prova di Comunicazioni Numeriche

## 14 novembre 2012

Es. 1 - Facendo riferimento alla Fig.1, siano  $x(t) = A \operatorname{rect}\left(\frac{t}{2T}\right) \cos\left(2\pi f_0 t - \varphi\right), \ w(t) = \sin\left(2\pi f_0 t\right), \ p(t) = \operatorname{rect}\left(\frac{t}{T}\right)$  and  $h(t) = \operatorname{rect}\left(\frac{t}{2T}\right)$ . Calcolare: 1) L'espressione analitica di z(t), 2) L'energia e la potenza di z(t).



Fig. 1

Es. 2 - In un sistema di comunicazione numerico il segnale trasmesso è  $s(t) = \sum_k x \left[k\right] p(t-kT)$ , dove i simboli  $x \left[k\right]$  appartengono all'alfabeto  $A = \{0, +1\}$  e sono equiprobabili ed indipendenti e  $p(t) = \begin{cases} \sqrt{\frac{1}{T}} & \frac{T}{8} < t < \frac{T}{8} + T \\ 0 & altrove \end{cases}$ . La risposta impulsiva del canale è  $c(t) = \delta(t)$ . Il canale introduce anche rumore Gaussiano additivo bianco la cui densità spettrale di potenza è  $S_N(f) = \frac{N_0}{2}$ . Il segnale ricevuto r(t) è in ingresso al ricevitore in Figura 2. Il segnale in uscita al filtro in ricezione è campionato con passo di campionamento  $t = t_k$  e i campioni costituiscono l'ingresso del decisore che ha soglia di decisione pari a  $\lambda = \frac{1}{4}$ . Determinare:

- 1) L'energia media per intervallo di segnalazione del segnale trasmesso
- 2) Sia r(t) il filtro adattato al segnale s(t), cioè,  $r(t) = A p(t_0 t)$ , determinare  $t_0$  in modo che r(t) sia causale.
- 3) Calcolare la potenza di rumore in uscita al filtro in ricezione  $P_{nu}.$
- 4) Determinare l'istante di campionamento ottimo  $t_k$ .
- 5) Determinare l'ampiezza del filtro adattato A, in modo che la probabilità di errore sul bit,  $P_E(b)$ , sia minima.



Fig. 2