DRAM outputs (with further caveats!)

DRAM outputs

- First, let's go through the files you generated from the "annotate" and "distill" DRAM commands
- What are they, how can they be used? What will be most useful to you?

Annotation summaries

 One example of visualization (made with DRAM in the "Distill" command) - we won't do a whole lot with manipulating this data, but will show you how to access what goes into a dataset like this!

Misannotations

- Rampant in databases, particularly as larger and larger sequence datasets are deposited using automated annotation programs
- How would misannotations become "the norm" for some genes?

 Do you know of any common misannotations in data from organisms you work with/might work with in the future?

Notice anything suspicious? How would you go about verifying?

Check databases (KEGG)

KEGG

ORTHOLOGY: K01895

Help

Entry	K01895 KO						
Symbol	ACSS1_2, acs						
Name	acetyl-CoA synthetase [EC:6.2.1.1]						
Pathway	map00010	Glycolysis / Gluconeogenesis					
	map00620	Pyruvate metabolism					
	map00630	Glyoxylate and dicarboxylate metabolism					
	map00640	Propanoate metabolism					
	map00680	Methane metabolism					
	map00720	Carbon fixation pathways in prokaryotes					
	map01100	Metabolic pathways					
	map01110	Biosynthesis of secondary metabolites					
	map01120	Microbial metabolism in diverse environments					
	map01200	Carbon metabolism					
Module	M00357 Methanogenesis, acetate => methane						

Other Misannotations?

- Gene involved in nitrogen assimilation flagged as dissimilatory nitrate to ammonium
- Carbon fixation TCA cycle, ATP citrate lyase involved in carbon fixation (appear to be TCA cycle, unless you blast with another ATP citrate lyase). Challenge: how would you do this?
- Arsenic reduction misannotation one of the genes that is a regulation factor (actually in multiple pathways, need to verify that other genes are present in the arsenic reduction pathway!)

Other ways to check for potential misannotations? Or divergence?

Do you have any commonly misannotated genes that you know of?

- Active sites for enzymes (do they possess key motifs)?
 - Example: cytochromes
 - Example: hydrogenases

- Databases of your choice
 - Examples: hydrogenases/HydDB, cytochrome P450 database

Hogendoorn et al., 2020

• Example: Cysteine residues key for binding site of hydrogenases (for [NiFe]-hydrogenases, need paired CxxC motifs)

Other ways to check for potential misannotations? Or divergence?

Lindsay et al., in prep

	Α	В	С	D	G	Н	1	J	K	L	M	
1	gene_id	gene_description	module	header	294-B02_co	294-C15_co	294-C19_co	294-C23_co	94-D03_cd	94-D11_c	:0294-D14_c	:02
174	K00320	coenzyme F420-dependent N5,N10-methenyltetrahydromethau	Methanogenesis, CO2 => methane	C1-methane	0	0	0	0	0	(0 (0
175	K00399	methyl-coenzyme M reductase [EC:2.8.4.1] [RN:R04541]	Methanogenesis, CO2 => methane	C1-methane	0	0	0	0	0	(0 (0
176	K00401	methyl-coenzyme M reductase [EC:2.8.4.1] [RN:R04541]	Methanogenesis, CO2 => methane	C1-methane	1	0	0	0	1	:	1 (0
177	K00402	methyl-coenzyme M reductase [EC:2.8.4.1] [RN:R04541]	Methanogenesis, CO2 => methane	C1-methane	0	0	0	0	0	(0 (0
178	K00577	tetrahydromethanopterin S-methyltransferase [EC:2.1.1.86] [RN	Methanogenesis, CO2 => methane	C1-methane	0	0	0	0	0	(0 (0

KAAS - KEGG Automatic Annotation Server

for ortholog assignment and pathway mapping

