Name: _	
Section:	

Math 10560, Quiz 9 April 11, 2017

- The Honor Code is in effect for this quiz. All work is to be your own.
- Please turn off all cellphones and electronic devices.
- Calculators are NOT allowed
- The quiz lasts for 10 min.

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!						
1.	(a)	(b)	(c)	(d)	(e)	
2.	(a)	(b)	(c)	(d)	(e)	
		•••••	•••••		•••••	

Multiple Choice

1.(2 pts.) One of the statements below holds for the series $\sum_{n=1}^{\infty} \frac{\sin(n) + \cos(n)}{n^2 + 1}$. Which one?

- (a) This series converges by Alternating Series Test.
- (b) This series diverges because $\lim_{n\to\infty} \frac{\sin(n) + \cos(n)}{n^2 + 1}$ is not 0.
- (c) This series is conditionally convergent.
- (d) This series is absolutely convergent by Comparison Test.
- (e) This series diverges by Ratio Test.

2.(2 pts.) Compute the radius of convergence of the power series $\sum_{n=1}^{\infty} 3^n (x-1)^n$.

- (a) $R = \frac{\sqrt{3}}{2}$
- (b) R = 0
- (c) $R = \frac{1}{3}$

- (d) R=3
- (e) $R = \infty$