

Entwicklung der globalen energiebedingten CO₂-Emissionen

Energiewirtschaft

Ausstoß des CO₂ fossiler Brennstoffe

Abb.: CO2-Bildung bei der Verbrennung fossiler Energieträger

Anteile der Bereiche an den energiebedingten CO₂-Emissionen

Entwicklung des Weltenergieverbrauchs bis 2000

Stufen des Energiebedarfs

Struktur des Primärenergieverbrauch in Deutschland 2005

Nutzung, Verbrauch, Reserven, Ressourcen

Energieverbrauch in Deutschland

Kenngrößen und Kennwerte der Energietechnik

Jährlicher Heizenergieverbrauch von Gebäuden
(Endenergie einschl. Warmwasserbereitung)

Alte Gebäude	300-400 kWh/m²•a
Neubauten seit WSVO 1984	200-300 kWh/m²•a
Neubauten seit WSVO 1995	150-200 kWh/m²•a
Neubauten seit EnEV 2002	100-150 kWh/m²•a

Energiekennwerte versch. wärmetechn. Standards

Wärmeverluste in typischen Dimensionen beim Altbau

Energieeinsparpotentiale im Neu- und Altbau

Folgende Wärmedämm-Maßnahmen sind für eine Hüllsanierung sinnvoll:

- Wärmedämmverbundsysteme (WDVS) an der Außenfassade
- Unter-, Zwischen- oder Aufsparrendämmung am geneigten Dach
- Dämmung der Kellerdecke
- Wärmeschutzverglasung

Energieeinsparpotentiale im Neu- und Altbau

Energieeinsparpotentiale im Neu- und Altbau

Luftdichtheit der Gebäudehülle

Ein luftdichtes Haus hat folgende Vorteile für die Bewohner:

- Steigerung des Wohnkomfort
- Zunahme der Behaglichkeitsempfindung durch Vermeidung durch Zugluft
- Verminderung des Heizenergieverbrauchs
- Vermeidung von Bauschäden
- Erhöhung der Effektivität von Abluftanlagen mit und ohne Wärmerückgewinnung

Beim Bau von Niedrigenergiehäusern ist Luftdichtheit eine zwingende Voraussetzung für ein geeignetes Lüftungskonzept.

Beispiel energetische Sanierung DHH Fürstenschlag 1

Verluste / Gewinne Ist-Zustand

Aufteilung der Transmissionsverluste

Ist-Zustand des Bestands

Vergleich Ist-Zustand und Zustand nach Sanierung

Vergleich Ist-Zustand und Zustand nach Sanierung

Vergleich Ist-Zustand und Zustand nach optimierter Sanierung

Vergleich Ist-Zustand und Zustand nach optimierter Sanierung

Beispiel energetische Sanierung DHH Fürstenschlag 2

Verluste / Gewinne Ist-Zustand

Anlagenverluste 9575 kWh/a

Lüftungsverluste 6651 kWh/a

Transmissionsverluste 38277 kWh/a

Aufteilung der Transmissionsverluste

Ist-Zustand des Bestands

Vergleich Ist-Zustand und Zustand nach Sanierung

Vergleich Ist-Zustand und Zustand nach Sanierung

Vergleich Ist-Zustand und Zustand nach optimierter Sanierung

Vergleich Ist-Zustand und Zustand nach optimierter Sanierung

Vielen Dank für Ihre Aufmerksamkeit

