

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
09/545,888	04/07/2000	Akira Koyama	F-10110	2164
21254	7590	11/02/2004	EXAMINER	
MCGINN & GIBB, PLLC 8321 OLD COURTHOUSE ROAD SUITE 200 VIENNA, VA 22182-3817				RYMAN, DANIEL J
		ART UNIT		PAPER NUMBER
		2665		

DATE MAILED: 11/02/2004

Please find below and/or attached an Office communication concerning this application or proceeding.

Office Action Summary	Application No.	Applicant(s)
	09/545,888 <i>OK</i>	KOYAMA, AKIRA
Examiner	Art Unit	
Daniel J. Ryman	2665	

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If the period for reply specified above is less than thirty (30) days, a reply within the statutory minimum of thirty (30) days will be considered timely.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on 07 September 2004.
- 2a) This action is FINAL. 2b) This action is non-final.
- 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 1-20 is/are pending in the application.
- 4a) Of the above claim(s) 12-14, 16 and 17 is/are withdrawn from consideration.
- 5) Claim(s) _____ is/are allowed.
- 6) Claim(s) 1-11, 15, and 18-20 is/are rejected.
- 7) Claim(s) 10 and 18-20 is/are objected to.
- 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
- 10) The drawing(s) filed on _____ is/are: a) accepted or b) objected to by the Examiner.
Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
- 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

1) <input checked="" type="checkbox"/> Notice of References Cited (PTO-892)	4) <input type="checkbox"/> Interview Summary (PTO-413)
2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948)	Paper No(s)/Mail Date. _____
3) <input type="checkbox"/> Information Disclosure Statement(s) (PTO-1449 or PTO/SB/08) Paper No(s)/Mail Date _____	5) <input type="checkbox"/> Notice of Informal Patent Application (PTO-152)
	6) <input type="checkbox"/> Other: _____

DETAILED ACTION

Response to Arguments

1. Applicant's arguments filed 7/16/2004 have been fully considered but they are not persuasive. On page 8 of the Response, Applicant argues that claims 12-14 should not be restricted since these are “dependent claims [which] inherently narrow the scope of coverage of the parent claims”. Since “Examiner has already done a search for the independent claims ... these dependent claims can be no additional burden on the Examiner”. Examiner, respectfully, disagrees. Examiner is required to search every claim in order to determine the patentability of the claim. Therefore, claims 12-14 add an additional burden on the Examiner.
2. Further on page 8, Applicant argues that claims 16 and 17 should not be restricted since “Applicant has removed the ‘plug and play’ terminology”. Nonetheless, Examiner maintains that the claims should be restricted because Applicant has not removed the “plug and play” functional limitations of the claims. Therefore, the amended claims encompass an invention distinct from the invention previously submitted, even though the claims do not specifically recite the words “plug and play”.
3. For these reasons, Examiner maintains the restriction of claims 12-14, 16, and 17.
4. On pages 9-11 of the Response, Applicant argues that the amended claims overcome the previous rejection since Shima does not teach identifying each extension node with a unique telephone number. In the Rejection below, Examiner has rejected the amended claims using a combination of teachings in Shima which suggest the limitations added by amendment. For the reasons seen in the Rejection below, Examiner maintains the rejection of the amended claims.

5. On page 12 of the Response, Applicant argues that Shima and Ho are not properly combinable since Ho discloses a distributed system and Shima discloses a central system. Examiner, respectfully, disagrees. Ho discloses that a network can be central or distributed where a central network requires an expensive central processor (col. 1, line 62-col. 2, line 15). Thus, by performing some tasks in a distributed manner rather than in the central processor, the central processor can be less expensive. In addition, Shima discloses sending a call status of a station of which a call status is changed to all of the active nodes connected with a serial bus (col. 7, lines 37-49). Thus, the combination of Shima and Ho is possible, as is evidenced by Shima performing a similar process.

6. On page 12 of the Response, Applicant also argues that Glowny and Shima are not properly combinable since “Shima fails to have unique telephone numbers for the extensions.” Examiner, respectfully, disagrees. For the reasons given below, Examiner asserts that Shima suggests having unique telephone numbers for the extensions. Therefore, Glowny and Shima are combinable.

7. For the reasons given above, Examiner has rejected claims 1-11, 15, and 18-20 and restricted claims 12-14, 16, and 17. Examiner urges Applicant to add further limitations to the claims in order to distinguish the claims from the prior art.

8. If Applicant does not traverse the Examiner’s assertion of official notice or Applicant’s traverse is not adequate, then the common knowledge or well-known in the art statement is taken to be admitted prior art because Applicant failed to traverse the Examiner’s assertion of official notice or that the traverse was inadequate (see MPEP §2144.03(c)).

Election/Restrictions

9. Claims 12-14, 16, and 17 are directed to an invention that is independent or distinct from the invention originally claimed for the following reasons: Claims 12-14, 16, and 17 disclose an invention pertaining to a providing a plug and play feature which is a subcombination of the originally presented invention pertaining to a network switching system.

Since applicant has received an action on the merits for the originally presented invention, this invention has been constructively elected by original presentation for prosecution on the merits. Accordingly, claims 12-14, 16, and 17 are withdrawn from consideration as being directed to a non-elected invention. See 37 CFR 1.142(b) and MPEP § 821.03.

Claim Objections

10. Claims 10 and 18-20 are objected to under 37 CFR 1.75(c), as being of improper dependent form for failing to further limit the subject matter of a previous claim. The limitations of claims 10 and 18-20 have been encompassed by the newly added amendments to the independent claims. Applicant is required to cancel the claim(s), or amend the claim(s) to place the claim(s) in proper dependent form, or rewrite the claim(s) in independent form.

Claim Rejections - 35 USC § 103

11. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

12. Claims 1-7, 10, 11, 15, and 18 are rejected under 35 U.S.C. 103(a) as being unpatentable over Shima et al (USPN 6,456,714) in view of Akatsu et al (USPN 6,496,862).

13. Regarding claims 1 and 10, Shima discloses a network switching system, comprising: a gateway (ref. 230) (col. 2, lines 8-38 and col. 3, lines 10-56); one or more extension nodes (ref. 110-150, 230), each selectively identified with a unique identifier (col. 2, lines 8-38; col. 3, line 60-col. 4, line 3; col. 4, lines 20-29; and col. 5, lines 16-20) where transmitting information to particular devices indicates that each device has a unique identifier; and a serial bus interconnecting said gateway and said one or more extension nodes, wherein stream data transferred on said serial bus are exchanged through said gateway between an outside line and an extension node, or between a first extension node and a second extension node (col. 2, lines 8-38; col. 3, line 10-col. 4, line 3; and col. 4, lines 20-29), wherein at least one said extension node (ref. 230: peripheral unit) comprises: a control/memory unit for storing physical identifiers of said gateway node and extension nodes and for controlling said network (col. 5, lines 1-20; col. 5, lines 54-67; and col. 7, lines 4-35), where the peripheral unit, as broadly defined, can be viewed as an extension node (col. 3, lines 38-42); an asynchronous interface, for selecting said extension node, connected with said control/memory unit (col. 5, lines 10-20); a rate conversion unit for converting a data rate of said stream data in said network into that in said outside line, or for converting a data rate of stream data in said outside line into that of said network switching system (col. 4, lines 30-42; col. 5, lines 1-20; and col. 6, line 37-col. 7, line 35); and an isochronous interface, for transmitting and receiving said stream data, connected with said rate conversion unit (col. 5, lines 36-40).

Shima does not expressly disclose that the one or more extension nodes is each selectively identified with a unique telephone number where the control/memory unit stores telephone numbers of said gateway node and extension nodes. However, Shima does disclose

that the system is identified using a telephone number (col. 5, lines 5-6) and that the devices in the network can comprise multiple telephonic devices (col. 3, lines 38-42 and col. 5, lines 16-20). Shima also discloses directing voice calls to particular devices (col. 5, lines 16-20) and using a telephone number to direct a call to a particular destination device (col. 5, line 54-col. 6, line 5). Thus, it would have been obvious to one of ordinary skill in the art at the time of the invention to selectively identify one or more extension nodes with a unique telephone number where the control/memory unit stores the telephone number of the nodes in order to permit external parties to direct a call to a specific extension node.

Shima does not disclose that the asynchronous interface controls a switching timing; however, Shima does disclose that control signals are sent over the asynchronous interface (col. 5, lines 1-20). Akatsu teaches, in an IEEE 1394 system, that controlling a switching timing is part of the IEEE 1394 protocol (col. 2, line 40-col. 3, line 13 and col. 5, line 4-col. 6, line 31). It would have been obvious to one of ordinary skill in the art at the time of the invention to control the switching timing over the asynchronous interface since controlling switching timing is part of the IEEE 1394 protocol.

14. Regarding claim 2, referring to claim 1, Shima in view of Akatsu suggests that at least one said extension node further comprises: a microphone for inputting said stream data; a speaker for outputting said stream data; and a codec, for encoding and decoding said stream data, connected with said microphone, said speaker and said rate conversion unit for encoding and decoding said stream data (Shima: col. 5, lines 1-20 and col. 5, lines 54-67 and Akatsu: col. 3, lines 1-6) where Applicant admits as prior art that codecs are very well known in the art as a means for performing analog to digital conversion on signals.

Art Unit: 2665

15. Regarding claim 3, referring to claim 1, Shima in view of Akatsu discloses that at least one said extension node further comprises: a stream data take-in unit, for storing said stream data, connected with said rate conversion unit (Shima: col. 4, lines 30-42; col. 5, lines 1-20; and col. 6, line 37-col. 7, line 35); and a stream data processing unit, for processing said stream data, connected with said stream data take-in unit (Shima: col. 5, lines 1-27) where “processing” is a broad term which includes determining if an extension node is capable of receiving the stream.

16. Regarding claim 4, referring to claim 1, Shima in view of Akatsu disclose that the asynchronous interface and said isochronous interface are connected with a bus manager which controls said asynchronous interface, said isochronous interface, said control/memory unit, and said rate conversion unit (Shima: col. 4, lines 30-42; col. 5, lines 1-20; and col. 6, line 37-col. 7, line 35 and Akatsu: col. 2, line 40-col. 3, line 13 and col. 5, line 4-col. 6, line 31, esp. col. 6, lines 16-31).

17. Regarding claim 5, Shima discloses a gateway, comprising: a first switching unit for controlling extension nodes connected with a serial bus for isochronous transfer (col. 2, lines 8-38 and col. 3, line 10-col. 4, line 56); and a second switching unit for exchanging stream data between an outside line and said extension nodes (col. 2, lines 8-38 and col. 3, line 10-col. 4, line 56), wherein: said second switching unit comprises a line manager (micro-controller) and a control/memory unit, said line manager exchanges said stream data between said outside line and at least one of said extension nodes according to a request from the first switching unit, said first switching unit manages a call-in to said extension node and a call-out from said extension node, and each of said at least one extension node is selectively identified by a unique identifier (col. 3, line 10-col. 4, line 56; col. 5, lines 1-27; and col. 5, lines 54-67).

Shima does not expressly disclose that the one or more extension nodes is each selectively identified with a unique telephone number. However, Shima does disclose that the system is identified using a telephone number (col. 5, lines 5-6) and that the devices in the network can comprise multiple telephonic devices (col. 3, lines 38-42 and col. 5, lines 16-20). Shima also discloses directing voice calls to particular devices (col. 5, lines 16-20) and using a telephone number to direct a call to a particular destination device (col. 5, line 54-col. 6, line 5). Thus, it would have been obvious to one of ordinary skill in the art at the time of the invention to selectively identify one or more extension nodes with a unique telephone number in order to permit external parties to direct a call to a specific extension node.

Shima does not expressly disclose said first switching unit comprises a bus manager connected with an asynchronous interface and an isochronous interface or that the second switching unit comprises a line manager connected with a codec. Akatsu teaches, in an IEEE 1394 system, that the IEEE 1394 protocol includes provisions for a bus manager connected with an asynchronous interface and an isochronous interface (col. 2, line 40-col. 3, line 13 and col. 5, line 4-col. 6, line 31, esp. col. 6, lines 16-31). It would have been obvious to one of ordinary skill in the art at the time of the invention to have the first switching unit comprise a bus manager connected with an asynchronous interface and an isochronous interface since bus managers are part of the IEEE 1394 protocol. Akatsu also teaches that all communications on IEEE 1394 are digital (col. 3, lines 1-6). Applicant admits as prior art that codecs are well known in the art as a way to perform analog to digital conversion. It would have been obvious to one of ordinary skill in the art at the time of the invention to have the line manager be connected with a codec in order to ensure that all signals transmitted on the IEEE 1394 bus are digital.

18. Regarding claim 6, Shima discloses information terminals, comprising: a telephone for transmitting and receiving a telephone signal through a serial bus (col. 5, line 1-col. 6, line 5) and a digital monitor or other digital equipment (col. 3, line 62-col. 4, line 3) where said information terminal includes a memory to store an identifier selectively unique to said information terminal (col. 2, lines 8-38; col. 3, line 60-col. 4, line 3; col. 4, lines 20-29; and col. 5, lines 16-20).

Shima does not expressly disclose that the one or more extension nodes is each selectively identified with a unique telephone number. However, Shima does disclose that the system is identified using a telephone number (col. 5, lines 5-6) and that the devices in the network can comprise multiple telephonic devices (col. 3, lines 38-42 and col. 5, lines 16-20). Shima also discloses directing voice calls to particular devices (col. 5, lines 16-20) and using a telephone number to direct a call to a particular destination device (col. 5, line 54-col. 6, line 5). Thus, it would have been obvious to one of ordinary skill in the art at the time of the invention to selectively identify one or more extension nodes with a unique telephone number in order to permit external parties to direct a call to a specific extension node.

Shima does not expressly disclose a television (TV) set for receiving a TV signal through said serial bus or a bus manager for controlling said serial bus, wherein said bus manager comprises two pairs of an asynchronous interface and an isochronous interface for said telephone signal and said TV signal, respectively. Akatsu teaches, in an IEEE 1394 network, that a terminal may be a television (TV) set for receiving a TV signal through said serial bus (Figs 5 and 6 and col. 6, lines 33-col. 7, line 10). It would have been obvious to one of ordinary skill in the art at the time of the invention to have a terminal be a television (TV) set for receiving a TV signal through said serial bus in order to allow a user to watch television. Akatsu also teaches that

having a bus manager is a part of the IEEE 1394 protocol (col. 2, line 40-col. 3, line 13 and col. 5, line 4-col. 6, line 31, esp. col. 6, lines 16-31). Thus it would have been obvious to one of ordinary skill in the art at the time of the invention to have a bus manager for controlling said serial bus since this is part of the IEEE 1394 protocol. Shima in view of Akatsu does not expressly disclose that a single terminal houses a telephone, a television, and a bus manager; however, it is obvious to make separate elements integral, see In re Lockhart, 90 USPQ 214 (CCPA 1951) and Howard v. Detroit Stove Works, 150 U.S. 164 (1893). In this case, such a combination results in increased functionality in a single terminal. Thus it would have been obvious to one of ordinary skill in the art at the time of the invention to combine a telephone, a TV, and a bus manager in a single terminal in order to have increased functionality in a single terminal. By housing these elements in a single terminal, it would have been obvious to one of ordinary skill in the art at the time of the invention that the bus manager should comprise two pairs of an asynchronous interface and an isochronous interface for said telephone signal and said TV signal, respectively in order to allow the telephone and the television to operate simultaneously in the single terminal unit.

19. Regarding claims 7 and 18, Shima discloses a gateway comprising: a telephone gateway (col. 5, line 1-col. 6, line 5); a data gateway (col. 6, line 20-col. 7, line 49); wherein: said telephone gateway transfers a telephone signal from a public switched telephone network to a serial bus (col. 5, line 1-col. 6, line 5), and transfers a telephone signal from said serial bus to said public switched telephone network (col. 5, line 1-col. 6, line 5), said telephone gateway having a capacity to interconnect to at least one telephone terminal via said serial bus (col. 5, line 1-col. 6, line 5); said data gateway receives a data signal from a data line (col. 6, line 20-col. 7,

line 49), and transfers said data signal to said serial bus (col. 6, line 20-col. 7, line 49). Although not expressly disclosed, it is implicit that Shima comprises two pairs of an asynchronous interface and an isochronous interface for transferring said telephone signal and said data signal, respectively (col. 5, line 1-col. 6, line 5 and col. 6, line 20-col. 7, line 49) such that the gateway is able to communicate a data signal and a telephone signal simultaneously.

Shima does not expressly disclose that the one or more extension nodes is each selectively identified with a unique telephone number. However, Shima does disclose that the system is identified using a telephone number (col. 5, lines 5-6) and that the devices in the network can comprise multiple telephonic devices (col. 3, lines 38-42 and col. 5, lines 16-20). Shima also discloses directing voice calls to particular devices (col. 5, lines 16-20) and using a telephone number to direct a call to a particular destination device (col. 5, line 54-col. 6, line 5). Thus, it would have been obvious to one of ordinary skill in the art at the time of the invention to selectively identify one or more extension nodes with a unique telephone number in order to permit external parties to direct a call to a specific extension node.

Shima does not expressly disclose a TV gateway; and a bus manager connected to said telephone gateway and said TV gateway, wherein: the TV gateway transfers said TV signal to said bus manager; and said bus manager comprises two pairs of an asynchronous interface and an isochronous interface for transferring said telephone signal and said TV signal, respectively. Akatsu teaches, in an IEEE 1394 network, that a terminal may be a television (TV) set for receiving a TV signal through said serial bus (Figs 5 and 6 and col. 6, lines 33-col. 7, line 10). It would have been obvious to one of ordinary skill in the art at the time of the invention to have a TV gateway in order to allow television signals to be transported across the bus. Akatsu also

teaches that having a bus manager is a part of the IEEE 1394 protocol (col. 2, line 40-col. 3, line 13 and col. 5, line 4-col. 6, line 31, esp. col. 6, lines 16-31). Thus it would have been obvious to one of ordinary skill in the art at the time of the invention to have a bus manager for controlling said serial bus since this is part of the IEEE 1394 protocol. Thus Shima in view of Akatsu suggests that the TV gateway transfers said TV signal to said bus manager; and said bus manager comprises two pairs of an asynchronous interface and an isochronous interface for transferring said telephone signal and said TV signal, respectively.

20. Regarding claim 11, referring to claim 1, Shima in view of Akatsu discloses that the serial bus comprises an IEEE 1394 data bus (Shima: col. 4, lines 20-29 and col. 4, lines 57-67 and Akatsu: col. 2, line 40-col. 3, line 13 and col. 5, line 4-col. 6, line 31).

21. Regarding claim 15, referring to claim 6, Shima in view of Akatsu does not expressly disclose that billing information for a digital television service is sent through said asynchronous interface; however, Applicant admits as prior art that it is well known in the art for a digital television service to transmit billing information. It would have been obvious to one of ordinary skill in the art at the time of the invention to send the billing information for the digital television service through the asynchronous interface in order to transmit the billing information.

22. Claims 8, 9, 19, and 20 are rejected under 35 U.S.C. 103(a) as being unpatentable over Shima et al (USPN 6,456,714) in view of Ho (USPN 4,747,130).

23. Regarding claims 8 and 19, Shima discloses a call-in signal processing method for a network switching system using asynchronous and isochronous transfer modes (col. 5, line 4-col. 6, line 31), wherein stream data transferred on a serial bus are exchanged through a gateway between an outside line and an extension node (col. 5, line 4-col. 6, line 31), or between a first

extension node and a second extension node (col. 5, line 4-col. 6, line 31), said method comprising: calling one or more extension nodes (col. 5, line 4-col. 6, line 31), each said extension node selectively having a unique identifier (col. 2, lines 8-38; col. 3, line 60-col. 4, line 3; col. 4, lines 20-29; and col. 5, lines 16-20); securing one or more isochronous channels on the basis of responses from said extension nodes (col. 5, line 4-col. 6, line 31); allowing said extension nodes to start exchanging said stream data (col. 5, line 4-col. 6, line 31).

Shima does not expressly disclose that the one or more extension nodes is each selectively identified with a unique telephone number. However, Shima does disclose that the system is identified using a telephone number (col. 5, lines 5-6) and that the devices in the network can comprise multiple telephonic devices (col. 3, lines 38-42 and col. 5, lines 16-20). Shima also discloses directing voice calls to particular devices (col. 5, lines 16-20) and using a telephone number to direct a call to a particular destination device (col. 5, line 54-col. 6, line 5). Thus, it would have been obvious to one of ordinary skill in the art at the time of the invention to selectively identify one or more extension nodes with a unique telephone number in order to permit external parties to direct a call to a specific extension node.

Shima does not expressly disclose selecting, at said gateway, which of an automatic transfer by a number display, a global call-in, or a manual call-in on the basis of setup data. Examiner takes official notice that it is well known in the art to have a unicast connection (manual call-in), a multicast connection (global call-in or conference call), and caller ID (number display). It would have been obvious to one of ordinary skill in the art at the time of the invention to select at the gateway which of an automatic transfer by number display, a global call-in, or a manual call-in on the basis of setup data in order to select the correct number of

terminals for which the connection is destined and in order to determine the number of connections needed to complete the call.

Shima also does not disclose sending simultaneously a call status of a station of which call status is changed to all the extension nodes connected with said serial bus. Ho teaches, in a telecommunication system, using a common data communication facility connected to all modules (analogous to a bus) to broadcast resource availability to all modules (col. 3, lines 20-25 and col. 3, lines 63) in order to allow resource searching to occur within each module individually (col. 3, lines 58-63). It would have been obvious to one of ordinary skill in the art at the time of the invention to send simultaneously call status of a station of which call status is changed to all extension nodes connected with the serial bus in order to allow each node to be able to determine the availability of bandwidth individually.

24. Regarding claims 9 and 20, Shima discloses a call-out signal processing method for a network switching system using asynchronous and isochronous transfer modes (col. 5, line 4-col. 6, line 31), wherein stream data transferred on a serial bus is exchanged through a gateway between an outside line and an extension node (col. 5, line 4-col. 6, line 31), or between a first extension node and a second extension node (col. 5, line 4-col. 6, line 31), said method comprising: receiving at said gateway a call-out from an extension node (col. 5, line 4-col. 6, line 31); confirming, at said gateway, a call status of call object (col. 5, line 4-col. 6, line 31); securing an isochronous channel for transmission (col. 5, line 4-col. 6, line 31); securing an isochronous channel for reception (col. 5, line 4-col. 6, line 31); allowing said call object to start exchanging said stream data, when said call object has responded, while sending, to said extension node which carried out said call-out, a call status that indicates that said call object

does not respond, when said call object has not responded (col. 5, line 4-col. 6, line 31); releasing said isochronous channels for transmission and reception, when detecting an on-hook of said extension node which has made said call-out (col. 5, line 4-col. 6, line 31).

Shima does not expressly disclose that the one or more extension nodes is each selectively identified with a unique telephone number. However, Shima does disclose that the system is identified using a telephone number (col. 5, lines 5-6) and that the devices in the network can comprise multiple telephonic devices (col. 3, lines 38-42 and col. 5, lines 16-20). Shima also discloses directing voice calls to particular devices (col. 5, lines 16-20) and using a telephone number to direct a call to a particular destination device (col. 5, line 54-col. 6, line 5). Thus, it would have been obvious to one of ordinary skill in the art at the time of the invention to selectively identify one or more extension nodes with a unique telephone number in order to permit external parties to direct a call to a specific extension node.

Shima does not disclose sending said call status to all the extension nodes connected to said gateway. Ho teaches, in a telecommunication system, using a common data communication facility connected to all modules (analogous to a bus) to broadcast resource availability to all modules (col. 3, lines 20-25 and col. 3, lines 63) in order to allow resource searching to occur within each module individually (col. 3, lines 58-63). It would have been obvious to one of ordinary skill in the art at the time of the invention to send call status of a station of which call status is changed to all extension nodes connected with the gateway in order to allow each node to be able to determine the availability of bandwidth individually.

Conclusion

25. The prior art made of record and not relied upon is considered pertinent to applicant's disclosure. Humpleman (USPN 5,940,387) see entire document which relates to a bus system which allows for telephone communications. Edens et al (USPN 6,611,537) see entire document which relates to a bus system which allows for synchronous and asynchronous communication including telephone service. McAuley et al. (USPN 5,386,413) see Fig. 2 and col. 1, lines 20-43 which discloses addressing packets to a specific telephone number. Lu (USPN 6,584,102) see col. 11, lines 24-36 which discloses that devices can communicate using telephone numbers as identifiers in a network.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Daniel J. Ryman whose telephone number is (571)272-3152. The examiner can normally be reached on Mon.-Fri. 7:00-4:30 with every other Friday off.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Huy Vu can be reached on (571)272-3155. The fax phone number for the organization where this application or proceeding is assigned is 703-872-9306.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

25^o Daniel J. Ryman

Examiner
Art Unit 2665

HUY D. VU
SUPERVISORY PATENT EXAMINER
TECHNOLOGY CENTER 2600