天线编程作业

陈传升

2018年5月1日

目录

1	Finite length dipole					
	1.1	要求	3			
	1.2	原理及推导	3			
	1.3	结果与分析	3			
		1.3.1 方向图与 HPBW	3			
		1.3.2 不同尺寸电偶极子等效电长度	5			
	1.4	程序	5			

1 Finite length dipole

1.1 要求

画出不同长度的电偶极子方向图 $l=\frac{\lambda}{10},\frac{\lambda}{4},\frac{\lambda}{2},\lambda,\frac{3\lambda}{2}$ 选做:

- 1. 计算正弦电流分布的情况下, 不同物理长度偶极子的等效长度.
- 2. 画出任意长度偶极子沿线电流为均匀分布的时候的方向图, 并与教材比对.

1.2 原理及推导

有限长度电偶极子的远场解

$$E_{\theta} \simeq j\eta \frac{I_0 e^{-jkr}}{2\pi r} \left[\frac{\cos\left(\frac{kl}{2}\cos\theta\right) - \cos\left(\frac{kl}{2}\right)}{\sin\theta} \right]. \tag{1}$$

$$H_{\phi} \simeq \frac{E_{\theta}}{\eta} \simeq j \frac{I_0 e^{-jkr}}{2\pi r} \left[\frac{\cos\left(\frac{kl}{2}\cos\theta\right) - \cos\left(\frac{kl}{2}\right)}{\sin\theta} \right].$$
 (2)

由于, 最终需要得到归一化的功率方向图. 所以常数项可以直接忽略. 远场可以视为 TEM 波, 故

$$P = \frac{E^2}{\eta} \simeq \left[\frac{\cos\left(\frac{kl}{2}\cos\theta\right) - \cos\left(\frac{kl}{2}\right)}{\sin\theta} \right]^2.$$
 (3)

编程时亦只关注这一部分.

1.3 结果与分析

1.3.1 方向图与 HPBW

根据图 1分析, 随着电偶极子尺寸的增大, 方向图越来越瘦, 半功率波束宽度也逐渐减小, 其定向性越来越好. 半功率波束宽度具体见图 2.

图 1: DipolePattern

图 2: HalfPowerBeamWidth

1.3.2 不同尺寸电偶极子等效电长度

结果如表 1, 图 3.

实际电长度	0.1	0.2	0.5	1	1.5
等效电长度	0.0078	0.0304	0.1592	0.3183	0.4775

表 1: 等效电长度

图 3: 等效电长度

1.3.3 电流为均匀分布时的方向图

1.4 程序

绘制方向图主程序

```
clear
close all
L=[.1,.25,.5,1,1.25,1.5];
```

```
BeamWidth=[];
temp='';
for i=1:length(L)
    BeamWidth(i)=Fun_DipolePattern(L(i));
    temp=num2str(L(i));
    legend(temp)
    hold on
end
legend('0.1','0.25','0.5','1','1.25','1.5')
view(90,-90)
figure
%当L=1.5时候,编写的BeamWidth计算没有参考意义
BeamWidth(1,5)
plot(L,BeamWidth,'or')
```

子程序

```
function BeamWidth_3dB=Fun_DipolePattern(L,StepNum)
%归一化非dB的结果
%L是偶极子的电长度 略去lambda
%StepNum绘图精度,缺省时候为400
%返回值为BeamWidth 3dB
%lambda对方向图没有影响
if nargin <2
   StepNum=400;
end
theta=linspace(0,2*pi,StepNum);
fenzi=cos(pi*L*cos(theta))-cos(pi*L);
U=(fenzi./sin(theta)).^2;
U1=U/\max(U);
polar (theta, U1)
%solve 3dB BandWidth
dB3=find (U1(1:StepNum/2)>=0.5);
```

```
\label{eq:beamwidth_3dB=(max(dB3)-min(dB3))/StepNum*360;} end
```

选做: 计算等效电长度

```
%计算电长度
clear
close all
for j=1:150
    L=1/10*j;
syms z
% I=I0*sin(k*L/2-k*z),
%k 1/2=pi*L
% k z= 2*pi/lamad * lamada*L;
I=abs(sin(pi*L-2*pi*z));
vpa(int(I,z,0,L/2),6);
plot(L,vpa(int(I,z,0,L/2),6), 'b.');
hold on
end
```