PATENT ABSTRACTS OF JAPAN

(11)Publication number:

05-198379

(43)Date of publication of application: 06.08.1993

(51)Int.Cl.

H05B 33/22

(21)Application number: 04-006957

(71)Applicant: SHARP CORP

(22)Date of filing:

18.01.1992

(72)Inventor: OKIBAYASHI KATSUJI

OGURA TAKASHI YOSHIDA MASARU

(54) COLOR THIN FILM EL PANEL

(57)Abstract:

PURPOSE: To prevent the convergence error and reduction in visual field angle by the clearance between an EL element and a color filter, and reduce the damage, dielectric breakdown, picture element lack, and line lack by the contact between the EL element and the color filter.

CONSTITUTION: On an EL element 10, a color filter 8 is laminated through a resin layer 7. The resin layer 7 mainly contains a soft silicon resin. The layer thickness is 2-100µm. The surface of the resin layer 7 is made lipophilic so that the raw material of the color filter 8 is easy to apply.

(19)日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出顧公開番号

特開平5-198379

(43)公開日 平成5年(1993)8月6日

(51)Int.Cl.⁵

識別記号 庁内整理番号 FΙ

技術表示箇所

H 0 5 B 33/22

審査請求 未請求 請求項の数5(全 4 頁)

(21)出願番号	特顯平4-6957	(71)出願人 000005049 シャープ株式会社	
(22)出顧日	平成4年(1992)1月18日	大阪府大阪市阿倍野区長池町22番22号 (72)発明者 沖林 勝司 大阪府大阪市阿倍野区長池町22番22号 ャープ株式会社内	シ
		ャーク株式会社内 (72)発明者 小倉 ▲隆▼ 大阪府大阪市阿倍野区長池町22番22号 ャープ株式会社内	シ
		(72)発明者 吉田 勝 大阪府大阪市阿倍野区長池町22番22号 ャープ株式会社内	シ
		(74)代理人 弁理士 青山 葆 (外1名)	

(54)【発明の名称】 カラー薄膜ELパネル

(57)【要約】

【目的】 基板1上に形成されたEL素子が発した光 を、有機材料からなるカラーフィルタを通して出射する カラー薄膜ELパネルにおいて、EL素子とカラーフィ ルタとの隙間による色ずれや視野角低下を防止する。ま た、EL素子とカラーフィルタとの接触による損傷や絶 縁破壊、絵素欠け、線欠陥を低減する。

【構成】 EL素子10の上に、樹脂層7を介してカラ ーフィルタ8を積層する。樹脂層7は、柔軟性を有する シリコーン樹脂を主成分とし、層厚は2~100μmと する。樹脂層7の表面状態を親油性にして、カラーフィ ルタ8の原料を塗布し易くするのが望ましい。

【特許請求の範囲】

【請求項1】 基板上に形成されたEL素子が発した光 を、有機材料からなるカラーフィルタを通して出射する カラー薄膜ELパネルにおいて、

上記EL素子上に樹脂層が設けられ、

上記カラーフィルタは、上記樹脂層を介して上記EL素 子上に積層されていることを特徴とするカラー薄膜EL パネル。

【請求項2】 上記樹脂層は、シリコーン樹脂を主成分 とすることを特徴とする請求項1に記載のカラー薄膜E 10 しパネル。

【請求項3】 上記樹脂層は、シリコーン樹脂上にシリ コーン変成エポキシ樹脂を設けた積層膜からなることを 特徴とする請求項1または請求項2に記載のカラー薄膜 ELパネル。

上記樹脂層の表面は、親油性に改質され 【請求項4】 ていることを特徴とする請求項1または請求項2に記載 のカラー薄膜E Lパネル。

【請求項5】 上記樹脂層の層厚は、2 μm乃至100 μmであることを特徴とする請求項1乃至請求項4のい ずれかに記載のカラー薄膜ELパネル。

【発明の詳細な説明】

[0001]

【産業上の利用分野】との発明は、カラー薄膜ELバネ ルに関し、より詳しくは、有機材料からなるカラーフィ ルタを通して多色光を出射するカラー薄膜ELパネルに 関する。

[0002]

【従来の技術】従来、との種のカラー薄膜ELパネル は、図2に示すように、ガラス基板11上に形成された 30 00μmであるのが望ましい。 EL素子20とシールガラス19の内面に形成されたカ ラーフィルタとを直接対向させ、ガラス基板11とシー ルガラス19の端部を接着剤で張り合わせて構成されて いる。上記EL素子20は、背面電極12と、SiOz膜 13a.Si, N. 膜13bからなる第一絶縁層13と、Zn S:Mnからなる発光層14と、Si, N. 膜15a, Al, O, 膜15bからなる第二絶縁層15と、透光性電極16と からなっている。一方、カラーフィルタ18は、有機材 料からなる緑色フィルタ18aと赤色フィルタ18bとを 0とカラーフィルタ19との隙間は、隣接絵素からの光 漏れによって色ずれや視野角低下が生じないように、極 力狭く設定されている。

[0003]

【発明が解決しようとする課題】しかしながら、上記ガ ラス基板11およびシールガラス19の対向面には、反 りやうねりが存在する。また、ガラス基板11とシール ガラス19とを張り合わせる接着剤の厚みにもばらつき がある。このため、上記従来のカラー薄膜ELパネルで は、EL素子20とカラーフィルタ18との間の隙間が 50 る絶縁破壊等がさらに減少する。

大きくなり、との結果、隣接絵素からの光漏れによっ て、色ずれが生じたり、視野角が低下したりするという 問題がある。また、張り合わせ工程で、EL素子20と

カラーフィルタ18とが機械的に接触して、損傷を生ず る場合がある。さらに、パネル完成後(動作時)に、EL 素子20とカラーフィルタ18とが接触して、絶縁破壊 が多発し、絵素欠けや線欠陥が生じるという問題があ

【0004】そこで、この発明の目的は、EL素子とカ ラーフィルタとの隙間による色ずれや視野角低下を防止 でき、EL素子とカラーフィルタとの接触による損傷や 絶縁破壊、絵素欠け、線欠陥を低減できるカラー薄膜E しパネルを提供することにある。

[0005]

【課題を解決するための手段】上記目的を達成するた め、この発明は、基板上に形成されたEL素子が発した 光を、有機材料からなるカラーフィルタを通して出射す るカラー薄膜ELパネルにおいて、上記EL素子上に樹 脂層が設けられ、上記カラーフィルタは、上記樹脂層を 20 介して上記EL素子上に積層されていることを特徴とし ている。

【0006】また、上記樹脂層は、シリコーン樹脂を主 成分とするのが望ましい。

【0007】また、上記樹脂層は、シリコーン樹脂上に シリコーン変成エポキシ樹脂を設けた積層膜からなるの が望ましい。

【0008】また、上記樹脂層の表面は、親油性に改質 されているのが望ましい。

【0009】また、上記樹脂層の層厚は、2 μm乃至1

[0010]

【作用】カラーフィルタが樹脂層を介してEL素子上に 積層されているので、上記樹脂層の層厚を制御すること によって、EL素子とカラーフィルタとの間の隙間が略 一定となる。したがって、上記隙間が大きくなることに よる色ずれや視野角低下が防止される。また、パネル作 製段階で、上記カラーフィルタは上記樹脂層を介してE L素子上に積層されるので、EL素子とカラーフィルタ とが機械的接触によって損傷することがなくなる。さら モザイク状に組み合わせたものである。上記EL素子2 40 に、パネル完成後は、上記樹脂層がEL素子とカラーフ ィルタとの間で緩衝層として働く。したがって、EL素 子とカラーフィルタとの接触で生じる絶縁破壊による絵 素欠け、線欠陥(以下「絶縁破壊等」という。)が減少す る。

> 【0011】また、上記樹脂層がシリコーン樹脂を主成 分とする場合、この樹脂層は極めて良好な柔軟性を示す ことができる。例えば、JIS(日本工業規格)A規格に いう硬度0の値をとることができる。この場合、緩衝効 果が高まって、EL素子とカラーフィルタとの接触によ

10

【0012】また、上記樹脂層がシリコーン樹脂上にシ リコーン変成エポキシ樹脂を設けた積層膜からなる場 合、この上にカラーフィルタの原料(例えば、プロビレ ン・グリコール・メチル・エーテル・アセテート83 %,シクロヘキサン17%の溶剤に、顔料と感光性樹脂 を分散させたもの)を塗布するときに、上記樹脂層に対 する濡れ性が良くなる。したがって、カラーフィルタ が、上記樹脂層上に何等支障なく積層される。なお、上 記樹脂層表面が親水性(例えば、シリコーン樹脂の表面 には-OH基が出ているため、親水性である。)のとき は、上記カラーフィルタの原料は表面張力によってはじ かれるため、上記樹脂屬上にカラーフィルタをうまく積 層することができない。

【0013】また、上記樹脂層の表面が親油性に改質さ れている場合、上記の場合と同様に、この上にカラーフ ィルタの原料を塗布するときに、上記樹脂層に対する濡 れ性が良くなる。したがって、カラーフィルタが、上記 樹脂層上に何等支障なく積層される。なお、シリコーン 樹脂の表面を親油性に改賞するためには、紫外線露光を 行うか、または、HMDS (ヘキサメチル・ジシラザン) 20 などの溶剤を塗布すれば良い。

【0014】また、上記樹脂層の層厚が2 µm~100 μmである場合、パネル完成後の絶縁破壊等を効果的に 低減できる上、色ずれや視野角低下を支障ないレベルに 抑えることができる。なお、上記樹脂層の層厚が2 μm 未満のときは、緩衝層としての働きが十分でなく、絶縁 破壊等があまり減らない。一方、上記樹脂層の層厚が1 00 μmを超えたときは、色ずれや視野角低下が無視で きなくなる。

[0015]

【実施例】以下、この発明のカラー薄膜ELバネルを実 施例により詳細に説明する。

【0016】図1は、一実施例のカラー薄膜ELパネル を示している。このカラー薄膜ELパネルは、ガラス基 板1上に形成されたEL素子10の上に、樹脂層7を介 してカラーフィルタ8を積層し、これらをシールガラス 9で覆って構成されている。上記EL素子10は、背面 電極2と、第一絶縁層3と、発光層4と、第二絶縁層5 と、透光性電極6を基板1上に順に備えている。上記発 光層4は、母体材料ZnSに発光中心として働くMnをド ープした厚さ約 $1 \mu m$ のZ n S : M n 膜からなっている。第一絶縁層3は厚さ300~800ÅのSiO,膜3aと厚 さ2000~3000AのSi, N, 膜3bとからなり、第 二絶縁層5は厚さ1000~2000AのSi, N4膜5a と厚さ300~500AのA7、O,膜5bとからなってい る。また、背面電極2,透光性電極6は、それぞれ金属 Mo膜,ITO(錫添加酸化インジウム)膜からなってい る。上記樹脂層7は、厚さが5~10μmの一定値で、 シリコーン樹脂を主成分とし、極めて良好な柔軟性(J IS(日本工業規格)A規格にいう硬度0)を示すもので

ある。また、カラーフィルタ18は、有機材料からなる 緑色膜8aと赤色膜8bとがモザイク状パターンに組み合 わされており、緑色膜8aと赤色膜8bとの重なり部分が いわゆるブラックマトリクスになっている。

【0017】とのカラー薄膜ELパネルは、次の手順で 作製する。まず、ガラス基板1上に金属Mo膜をスパッ タ蒸着する。フォトリソグラフィを行って、この金属M o膜を所定のストライブ形状に加工して、背面電極2を 形成する。次に、反応性スパッタ法により、SiOz膜3 a,Si,N,膜3bを堆積して第一の絶縁層3を形成する。 次に、化学気相成長法(CVD法)または電子ビーム蒸着 法(EB法)により、発光層4を形成する(なお、EB法 による場合は、熱処理を追加する。)。次に、反応性ス パッタ法により、Si,N4膜5a,A1,O3膜5bを堆積し て第二の絶縁層5を形成する。次に、「TO膜をスパッ タ蒸着する。フォトリソグラフィを行って、このITO 膜を上記背面電極2と直交するストライプ形状に加工し て透光性電極6を形成する。次に、シリコーン樹脂とシ リコーン変成エポキシ樹脂とを順にスピンコート法によ り塗布する。そして、紫外線露光を行って、次工程でカ ラーフィルタ8の原料を塗布するとき濡れ性が良くなる ように、上記樹脂層7の表面状態を親水性から親油性に 改質する。次に、カラーフィルタ8を構成する緑色膜8 aの原料を塗布する。カラーフィルタ8の原料は、ブロ ピレン・グリコール・メチル・エーテル・アセテート8 3%,シクロヘキサン17%の溶剤に、緑色または赤色 を呈する顔料と感光性樹脂とを分散させたものである。 との後、フォトリソグラフィを行って、緑色膜8 aをパ ターン形成する。続いて、赤色膜8bの原料を塗布し、 30 同様に、赤色膜8bをバターン形成する。前工程で、樹 脂層7の表面状態を親油性に改質しているので、上記各 膜8a.8bを所定の膜厚に塗布でき、安定して形成する ととができる。しかも、樹脂層7と各膜8a,8bとの密 着性を高めることができる。このように、パネル作製段 階でカラーフィルタ8を樹脂層7を介してEL素子10 上に積層しているので、EL素子10とカラーフィルタ 8とが機械的に接触して損傷することがない。最後に、 カラーフィルタ8上をシールガラス9で覆い、シールガ ラス9とガラス基板1の端部を接着した後、両者の隙間

40 を真空にしてパネル作製を完了する。 【0018】上に述べたように、このカラー薄膜ELパ ネルでは、EL素子10上に、層厚が5~10μmの一 定値をとる樹脂層7を介してカラーフィルタ8が積層さ れているので、EL素子10とカラーフィルタ8との間 の隙間を一定にできる。したがって、上記隙間が大きく なることによる色ずれや視野角低下を防止できる。さら に、動作時に、上記樹脂層7がEL素子10とカラーフ ィルタ8との間で緩衝層として働く。したがって、EL 素子10とカラーフィルタ8との接触による絶縁破壊等 50 を減少させることができる。また、上記樹脂層7はシリ

5

コーン樹脂を主成分とするので、緩衝効果を高めることができ、E L素子10とカラーフィルタ8との接触による絶縁破壊等をさらに減少させることができる。

【0019】なお、上記樹脂層7の層厚が2μπ未満のときは、緩衝層としての働きが十分でなく、絶縁破壊等があまり低減できない。一方、上記樹脂層7の層厚が100μmを超えたときは、色ずれや視野角低下が無視できなくなる。

【0020】また、上に述べた作製手順では、樹脂層7の表面状態を親油性に改質するために紫外線露光を行ったが、これに限られるものではない。例えば、HMDS(ヘキサメチル・ジシラザン)を塗布して、シリコーン樹脂7の表面に出ている-OH基を親油性に変換するようにしても良い。

[0021]

【発明の効果】以上より明らかなように、この発明のカラー薄膜ELバネルは、EL素子上に樹脂層を介してカラーフィルタが積層されているので、上記樹脂層の層厚を制御することによって、色ずれや視野角低下を防止できる。また、上記カラーフィルタは、バネル作製段階で上記樹脂層を介してEL素子上に積層されるので、EL素子とカラーフィルタとの機械的接触による損傷を無くすことができる。さらに、パネル完成後は、上記樹脂層がEL素子とカラーフィルタとの間で緩衝層として働くので、動作時の接触による絶縁破壊等を減少させることができる。

【0022】また、上記樹脂層がシリコーン樹脂を主成分とする場合、この樹脂層は極めて良好な柔軟性を示すことができ、緩衝効果を高めることができる。したがって、EL素子とカラーフィルタとの接触による絶縁破壊 30 等をさらに低減することができる。

【0023】また、上記樹脂層がシリコーン樹脂上にシ リコーン変成エポキシ樹脂を設けた積層膜からなる場 * * 合、この上にカラーフィルタの原料(例えば、プロビレン・グリコール・メチル・エーテル・アセテート83%,シクロヘキサン17%の溶剤に、顔料と感光性樹脂を分散させたもの)を塗布するときに、上記樹脂層に対する濡れ性が高めることができる。したがって、カラーフィルタを、上記樹脂層上に何等支障なく積層することができる。

【0024】また、上記樹脂層の表面が親油性に改賞されている場合、上記の場合と同様に、この上にカラーフィルタの原料を塗布するときに、上記樹脂層に対する濡れ性を高めることができる。したがって、カラーフィルタを、上記樹脂層上に何等支障なく積層することができる。

[0025] また、上記樹脂層の層厚が 2μ m ~ 100 μ mである場合、パネル完成後の絶縁破壊等を効果的に低減できる上、色ずれや視野角低下を支障ないレベルに抑えることができる。

【図面の簡単な説明】

【図1】 この発明の一実施例のカラー薄膜ELパネル 20 の構成を示す断面図である。

【図2】 従来のカラー薄膜ELバネルの構成を示す断面図である。

【符号の説明】

ラス

「何亏の就明」	
1 ガラス 基板	2 背面電極
3 第一絶縁層	3a SiOz
膜	
3b,5a Si,N₄膜	4 発光層
5 第二絶縁層	5 b A 1, O,
膜	
6 透光性電極	7 樹脂層
8 カラーフィルタ	8a 緑色膜
8 b 赤色膜	9 シールガ

[図1]

【図2】

