```
/* A SAS program to perform a regression
   analysis of the effects of the
   composition of Portland cement on the
   amount of heat given off as the cement
   hardens.
             */
data set1:
  input run x1 x2 x3 x4 y;
/* label y = evolved heat (calories)
       x1 = tricalcium aluminate
       x2 = tricalcium silicate
       x3 = tetracalcium aluminate ferrate
       x4 = dicalcium silicate: */
  cards;
  1 7 26 6 60 78.5
 2 1 29 15 52 74.3
 3 11 56 8 20 104.3
 4 11 31 8 47 87.6
 5 7 52 6 33 95.9
 6 11 55 9 22 109.2
 7
    3 71 17 6 102.7
   1 31 22 44 72.5
 9 2 54 18 22 93.1
10 21 47 4 26 115.9
 11 1 40 23 34 83.8
12 11 66 9 12 113.2
13 10 68 8 12 109.4
```

run;

```
proc print data=set1 uniform split='*';
  var y x1 x2 x3 x4;
  label y = 'Evolved*heat*(calories)'
        x1 = 'Percent*tricalcium*aluminate'
        x2 = 'Percent*tricalcium*silicate'
        x3 = 'Percent*tetracalcium*aluminate*ferrate'
        x4 = 'Percent*dicalcium*silicate';
  run;
/* Regress y on all four explanatory
    variables and check residual plots
    and collinearity diagnostics */
proc reg data=set1 corr;
 model y = x1 x2 x3 x4 / p r ss1 ss2
                          covb collin:
  output out=set2 residual=r
                      predicted=yhat;
  run;
/* Examine smaller regression models
    corresponding to subsets of the
    explanatory variables
proc reg data=set1;
 model y = x1 x2 x3 x4 /
              selection=rsquare cp aic
              sbc mse stop=4 best=6;
  run;
```

				Percent	
	Evolved	Percent	Percent	tetracalcium	Percent
	heat	tricalcium	tricalcium	aluminate	dicalcium
OBS	(calories)	aluminate	silicate	ferrate	silicate
1	78.5	7	26	6	60
2	74.3	1	29	15	52
3	104.3	11	56	8	20
4	87.6	11	31	8	47
5	95.9	7	52	6	33
6	109.2	11	55	9	22
7	102.7	3	71	17	6
8	72.5	1	31	22	44
9	93.1	2	54	18	22
10	115.9	21	47	4	26
11	83.8	1	40	23	34
12	113.2	11	66	9	12
13	109.4	10	68	8	12

Correlation

Variable	x1	x2	х3	x4	У
x1	1.0000	0.2286	-0.8241	-0.2454	0.7309
x2	0.2286	1.0000	-0.1392	-0.9730	0.8162
x3	-0.8241	-0.1392	1.0000	0.0295	-0.5348
x4	-0.2454	-0.9730	0.0295	1.0000	-0.8212
у	0.7309	0.8162	-0.5348	-0.8212	1.0000

The REG Procedure Model: MODEL1 Dependent Variable: y

Number of Observations Read 13 Number of Observations Used 13

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	4	2664.52051	666.13013	111.78	<.0001
Error	8	47.67641	5.95955	111.70	1.0001
Corrected Total	12	2712.19692			

Root MSE 2.44122 R-Square 0.9824

Dependent Mean 95.41538 Adj R-Sq 0.9736

Coeff Var 2.55852

Parameter Estimates

		Parameter	Standard				
Variable	DF	Estimate	Error	t Value	Pr > t	Type I SS	Type II SS
Intercept	1	63.16602	69.93378	0.90	0.3928	118353	4.86191
x1	1	1.54305	0.74331	2.08	0.0716	1448.75413	25.68225
x2	1	0.50200	0.72237	0.69	0.5068	1205.70283	2.87801
x3	1	0.09419	0.75323	0.13	0.9036	9.79033	0.09319
x4	1	-0.15152	0.70766	-0.21	0.8358	0.27323	0.27323

Collinearity Diagnostics

	Condition
Eigenvalue	Index
4.11970	1.00000
0.55389	2.72721
0.28870	3.77753
0.03764	10.46207
0.00006614	249.57825
	4.11970 0.55389 0.28870 0.03764

Collinearity Diagnostics

	Proportion of Variation						
Number	Intercept	x1	x2	x3	x4		
1	0.00000551	0.00036889	0.00001833	0.00021022	0.00003641		
2	8.812348E-8	0.01004	0.00001265	0.00266	0.00010070		
3	3.060952E-7	0.00057551	0.00031981	0.00159	0.00168		
4	0.00012679	0.05745	0.00278	0.04569	0.00088373		
5	0.99987	0.93157	0.99687	0.94985	0.99730		

Output Statistics

	Dependent	Predicted	Std Error		Std Error	Student			Cook's
0bs	Variable	Value	Mean Predict	Residual	Residual	Residual	-2-1	0 1 2	D
1	78.5000	78.4929	1.8109	0.007071	1.637	0.00432			0.000
2	74.3000	72.8005	1.4092	1.4995	1.993	0.752		*	0.057
3	104.3000	105.9744	1.8543	-1.6744	1.588	-1.054	**		0.303
4	87.6000	89.3333	1.3265	-1.7333	2.049	-0.846	*		0.060
5	95.9000	95.6360	1.4598	0.2640	1.957	0.135			0.002
6	109.2000	105.2635	0.8602	3.9365	2.285	1.723		***	0.084
7	102.7000	104.1289	1.4791	-1.4289	1.942	-0.736	*		0.063
8	72.5000	75.6760	1.5604	-3.1760	1.877	-1.692	***		0.395
9	93.1000	91.7218	1.3244	1.3782	2.051	0.672		*	0.038
10	115.9000	115.6010	2.0431	0.2990	1.336	0.224			0.023
11	83.8000	81.8034	1.5924	1.9966	1.850	1.079		**	0.172
12	113.2000	112.3007	1.2519	0.8993	2.096	0.429			0.013
13	109.4000	111.6675	1.3454	-2.2675	2.037	-1.113	**		0.108

The REG Procedure

Model: MODEL1

Dependent Variable: y

R-Square Selection Method

Number of Observations Read 13 Number of Observations Used 13

Number in						
Mode1	R-Square	C(p)	AIC	MSE	SBC	Variables in Model
1	0.6744	139.1583	58.8383	80.26883	59.96815	x4
1	0.6661	142.9553	59.1672	82.32597	60.29712	x2
1	0.5342	203.0030	63.4964	114.85844	64.62630	x1
1	0.2860	315.9455	69.0481	176.04815	70.17804	x3
2	0.9787	2.6886	25.3830	5.77400	27.07785	x1 x2
2	0.9726	5.4882	28.6828	7.44242	30.37766	x1 x4
2	0.9353	22.4391	39.8308	17.54438	41.52565	x3 x4
2	0.8470	62.6435	51.0247	41.50442	52.71951	x2 x3
2	0.6799	138.6599	60.6172	86.80675	62.31201	x2 x4
2	0.5484	198.5303	65.0933	122.48683	66.78816	x1 x3
3	0.9824	3.0156	24.9187	5.30773	27.17852	x1 x2 x4
3	0.9823	3.0458	24.9676	5.32774	27.22742	x1 x2 x3
3	0.9814	3.4829	25.6553	5.61716	27.91511	x1 x3 x4
3	0.9730	7.3094	30.4953	8.15096	32.75514	x2 x3 x4
4	0.9824	5.0000	26.8933	5.95955	29.71808	x1 x2 x3 x4

This output was produced by the e option in the model statement of the GLM procedure. It indicates that all five regression parameters are estimable.

The GLM Procedure

General Form of Estimable Functions

Effect	Coefficients
Intercept	L1
x1	L2
x2	L3
x3	L4
x4	L5

This output was produced by the $\ e1$ option in the model statement of the GLM procedure. It describes the null hypotheses that are tested with the equential Type I sums of squares.

Type I Estimable Functions

	Coefficients					
Effect	x1	x2	x3	x4		
Intercept	0	0	0	0		
x1	L2	0	0	0		
x2	0.6047*L2	L3	0	0		
x3	-0.8974*L2	0.0213*L3	L4	0		
x4	-0.6984*L2	-1.0406*L3	-1.0281*L4	L5		

Type II Estimable Functions

		Coeffi	cients	
Effect	x1	x2	x3	x4
Intercept	0	0	0	0
x1	L2	0	0	0
x2	0	L3	0	0
x3	0	0	L4	0
x4	0	0	0	L5

```
> # This file is stored as cement.r
> # The data file is stored under the name
> # cement.dat. It has variable names on the
> # first line. We will enter the data into
> # a data frame.
> cement <- read.table("c:/stAT504/cement.txt",header=T)</pre>
> cement
  run X1 X2 X3 X4 Y
1 1 7 26 6 60 78.5
2 2 1 29 15 52 74.3
3
  3 11 56 8 20 104.3
4
  4 11 31 8 47 87.6
5
  5 7 52 6 33 95.9
  6 11 55 9 22 109.2
6
7
  7 3 71 17 6 102.7
8
  8 1 31 22 44 72.5
9 9 2 54 18 22 93.1
10 10 21 47 4 26 115.9
11 11 1 40 23 34 83.8
12 12 11 66 9 12 113.2
13 13 10 68 8 12 109.4
```

```
> # Compute correlations and round the results
> # to four significant digits
> round(cor(cement[-1]),4)
       X1
               Х2
                       Х3
                               Χ4
                                        Υ
X1 1.0000 0.2286 -0.8241 -0.2454 0.7309
X2 0.2286 1.0000 -0.1392 -0.9730 0.8162
X3 -0.8241 -0.1392 1.0000 0.0295 -0.5348
X4 -0.2454 -0.9730  0.0295  1.0000 -0.8212
Y 0.7309 0.8162 -0.5348 -0.8212 1.0000
> # Create a scatterplot matrix with smooth
> # curves. Unix users should first use motif()
> # to open a graphics wundow
> points.lines <- function(x, y)</pre>
   {
+ points(x, y)
+ lines(loess.smooth(x, y, 0.90))
+
  }
  par(pch=18, mkh=.15, cex=1.2, lwd=3)
  pairs(cement[ ,-1], panel=points.lines)
```



```
> # Fit a linear regression
>
> cement.out <- lm(Y~X1+X2+X3+X4, cement)
>
> summary(cement.out)
```

Call:

 $lm(formula = Y \sim X1 + X2 + X3 + X4, data = cement)$

Residuals:

Min 1Q Median 3Q Max -3.176 -1.674 0.264 1.378 3.936

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 63.16602 69.93378 0.903 0.3928

X1 1.54305 0.74331 2.076 0.0716 .

X2 0.50200 0.72237 0.695 0.5068

X3 0.09419 0.75323 0.125 0.9036

X4 -0.15152 0.70766 -0.214 0.8358

...

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.441 on 8 degrees of freedom

Multiple R-squared: 0.9824, Adjusted R-squared: 0.9736

F-statistic: 111.8 on 4 and 8 DF, p-value: 4.707e-07

```
> anova(cement.out)
Analysis of Variance Table
Response: Y
         Df Sum Sq Mean Sq F value Pr(>F)
         1 1448.75 1448.75 243.0978 2.854e-07 ***
X1
X2
          1 1205.70 1205.70 202.3144 5.814e-07 ***
Х3
          1 9.79
                    9.79 1.6428
                                     0.2358
Χ4
        1 0.27 0.27 0.0458
                                     0.8358
Residuals 8 47.68 5.96
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
>
>
> # Create a function to evaluate an orthogonal
> # projection matrix. Then create a function
> # to compute type II sums of squares.
> # This uses the ginv() function in the MASS
> # library, so you must attach the MASS library
>
> library(MASS)
> # project( )
> #-----
> # calculate orthogonal projection matrix
```

```
> project <- function(X)</pre>
      { X%*%ginv(crossprod(X))%*%t(X) }
> # typeII.SS( )
> #-----
> # calculate Type II sum of squares
> #
> # input lmout = object made by the lm() function
> #
                   y = dependent variable
> #
> typeII.SS <- function(lmout,y)</pre>
+ {
                        # generate the model matrix
+
     model <- model.matrix(lmout)</pre>
                               # create list of parameter names
     par.name <- dimnames(model)[[2]]</pre>
+
                               # compute number of parameters
     n.par <- dim(model)[2]</pre>
                               # Compute residual mean square
    SS.res <- deviance(lmout)</pre>
+ df2 <- lmout$df.resid
+ MS.res <- SS.res/df2
```

```
+ result <- NULL # store results
                                  # Compute Type II SS
+ for (i in 1:n.par) {
      A <- project(model).project(model[,-i])
      SS.II <- t(y) %*% A %*% y
      df1 <- qr(project(model))$rank -</pre>
                           qr(project(model[ ,-i]))$rank
      MS.II <- SS.II/df1
      F.stat <- MS.II/MS.res
+
      p.val <- 1-pf(F.stat,df1,df2)</pre>
      temp <- cbind(df1,SS.II,MS.II,F.stat,p.val)</pre>
      result <- rbind(result,temp)</pre>
+
+ }
+ result <- rbind(result,c(df2,SS.res,MS.res,NA,NA))</pre>
+ dimnames(result) <- list(c(par.name, "Residual"),
+ c("Df", "Sum of Sq", "Mean Sq", "F Value", "Pr(F)"))
+ cat("Analysis of Variance (TypeII Sum of Squares)\n")
+ round(result,6)
+ }
>
```

```
> # Venables and Ripley have supplied functions
> # studres() and stdres() to compute studentized
> # and standardized residuals, respectively.
> # You must attach the MASS library before
> # using these functions.
>
> cement.res <- cbind(cement$Y,cement.out$fitted,
+ cement.out$resid,
+ studres(cement.out),
+ stdres(cement.out))
> dimnames(cement.res) <- list(cement$run,
+ c("Response", "Predicted", "Residual",
+ "Stud. Res.", "Std. Res."))</pre>
```

> typeII.SS(cement.out, cement\$Y)

Х1

Х2

ХЗ

Χ4

Residual

Analysis of Variance (TypeII Sum of Squares)

8 47.676412 5.959551

Df Sum of Sq Mean Sq F Value

1 25.682254 25.682254 4.309427 0.071568

1 2.878010 2.878010 0.482924 0.506779

1 0.093191 0.093191 0.015637 0.903570

1 0.273229 0.273229 0.045847 0.835811

NA

(Intercept) 1 4.861907 4.861907 0.815818 0.392790

Pr(F)

NA

> round(cement.res,4)

Response Predicted Residual Stud. Res. Std. Res. 1 78.4929 0.0071 0.0040 0.0043 78.5 2 74.3 72.8005 1.4995 0.7299 0.7522 3 104.3 105.9744 -1.6744 -1.0630 -1.0545 4 87.6 89.3333 -1.7333 -0.8291 -0.8458 5 95.9 95.6360 0.2640 0.1264 0.1349 6 109.2 105.2635 3.9365 2.0324 1.7230 7 102.7 104.1289 -1.4289 -0.7128 -0.7358 8 72.5 75.6760 -3.1760 -1.9745 -1.6917 9 93.1 91.7218 1.3782 0.6472 0.6721 115.9 115.6010 0.2990 10 0.2100 0.2237 11 83.8 81.8034 1.9966 1.0919 1.0790 12 113.2 112.3007 0.8993 0.4061 0.4291 13 109.4 111.6675 -2.2675 -1.1326 -1.1131

> # Produce plots for model diagnostics

>

> par(mfrow=c(2,2))

> plot(cement.out)

>