AE 8133: Space Mechanics

Problem Set1

Due Date: March 31, 2021 (Wednesday, 3 p.m.)

1. A three-body space system is orbiting around a spherical Earth (Fig. 1). It is comprised of three spacecraft m_1 , m_2 and m_3 connected through rigid massless cables of length L_1 and L_2 . The kinetic and potential energies of the system are obtained as

$$T = \frac{1}{2}M\left(\dot{R}^2 + \dot{\theta}^2 R^2\right) + \frac{1}{2}M_{t1}\omega_1^2 L_1^2 + \frac{1}{2}M_{t2}\omega_2^2 L_2^2 + M_{t3}\omega_1\omega_2 L_1 L_2 cos(\beta_1 - \beta_2)$$

$$(1)$$

$$U = -\frac{\mu M}{R} + \frac{\mu}{2R^3} \left\{ M_{t1}L_1^2 + M_{t2}L_2^2 + 2M_{t3}L_1 L_2 cos(\beta_1 - \beta_2) \right\}$$

$$-\frac{3\mu}{2R^3} \left\{ M_{t1}L_1^2 cos^2 \beta_1 + M_{t2}L_2^2 cos^2 \beta_2 + 2M_{t3}L_1 L_2 cos\beta_1 cos\beta_2 \right\}$$

$$(2)$$

where
$$M = m_1 + m_2 + m_3$$
, $\omega_1 = \dot{\theta} + \dot{\beta}_1$, $\omega_2 = \dot{\theta} + \dot{\beta}_2$, and
$$M_{t1} = m_1 \gamma_1^2 + m_2 (1 - \gamma_1)^2 + m_3 (1 - \gamma_1)^2$$

$$M_{t2} = m_1 \gamma_2^2 + m_2 \gamma_2^2 + m_3 (1 - \gamma_2)^2$$

$$M_{t3} = m_1 \gamma_1 \gamma_2 - m_2 (1 - \gamma_1) \gamma_2 + m_3 (1 - \gamma_1) (1 - \gamma_2)$$

with $\gamma_1 = (m_2 + m_3)/M$ and $\gamma_2 = m_3/M$. Note that the system center of mass does not coincide with the center of mass of the spacecraft m_1 . For this given system,

- (i) derive the equations of motion of the system corresponding to R, θ , β_1 and β_2 degrees of freedom.
- (ii) perform numerical simulation of the given system for a time period of two orbits with the following initial state conditions and system parameters:

$$R(0) = 6878 \text{km}, \dot{R}(0) = \theta(0) = 0, \dot{\theta}(0) = \frac{\mu}{R(0)^3}, \beta_1 = 10 \text{deg},$$

 $\dot{\beta}_1 = 0.01 \dot{\theta}(0) \text{ rad/s}, \beta_2 = -15 \text{ deg}, \dot{\beta}_2 = 0.01 \dot{\theta}(0) \text{ rad/s}$
 $m_1 = 10 \text{ kg}, m_2 = m_3 = 1 \text{ kg}, L_1 = 1 \text{ km}, L_2 = 1 \text{ km}$

Figure 1: System undergoing in-plane libration.

Show the numerical simulation results for R, θ , β_1 and β_2 . It is recommended to use Matlab Symbolic Toolbox to answer the above questions. Submit your Matlab code with the results.

2. The Euler equations of attitude motion of a spacecraft are given by

$$I_x \dot{\omega}_x - (I_y - I_z)\omega_y \omega_z = -C\omega_x$$

$$I_y \dot{\omega}_y - (I_z - I_x)\omega_z \omega_x = -C\omega_y$$

$$I_z \dot{\omega}_x - (I_x - I_y)\omega_x \omega_y = -C\omega_z$$

where I_j and ω_j are the principal moment of inertia and angular of the spacecraft about the j-axis, j=x,y,z; C is a positive damping constant; and ω_j is the angular velocity of the spacecraft about the j-axis, j=x,y,z. Determine the stability of the given system (whether it is asymptotic stable or unstable) using Lyapunov stability theory.