Summer Programme 2021

Approximating continuous functions by smooth functions:

The Stone-Weierstrass Theorem

Satvik Saha 19MS154

Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal, 741246, India.

1 Sequences of functions

Definition 1.1. Let $\{f_n\}$ be a sequence of functions on a set E. We say that $\{f_n\}$ converges pointwise to a function f on E if the sequences $f_n(x) \to f(x)$ for every $x \in E$. We write $f_n \to f$ pointwise on E.

Definition 1.2. Let $\{f_n\}$ be a sequence of functions on a set E. We say that $\{f_n\}$ converges uniformly to a function f on E if given $\epsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that $d(f_n(x), f(x)) < \epsilon$ for all $x \in E$, $n \ge n_0$. We write $f_n \to f$ uniformly on E.

Lemma 1.1. Let \mathcal{G} be a collection of functions on a set E, and let f be a function on E with the following property: given $\epsilon > 0$, there exists $g \in \mathcal{G}$ such that $|g(x) - f(x)| < \epsilon$ for all $x \in E$. Then, f is the uniform limit of functions in \mathcal{G} .

Proof. For all $n \in \mathbb{N}$, let $g_n \in \mathcal{G}$ be the function such that $|g_n(x) - f(x)| < 1/n$ for all $x \in E$. Then, $g_n \to f$ uniformly on E. To prove this, let $\epsilon > 0$. Using the Archimedean property of the reals, pick $n_0 \in \mathbb{N}$ such that $n_0 \epsilon > 1$. Thus, for all $x \in E$ and $n \ge n_0$, we have

$$|g_n(x) - f(x)| < \frac{1}{n} \le \frac{1}{n_0} < \epsilon.$$

Theorem 1.2 (Cauchy criterion). Let $\{f_n\}$ be a sequence of real valued functions on a set E. This sequence of functions converges uniformly on E if and only if given $\epsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that

$$|f_n(x) - f_m(x)| < \epsilon$$

for all $x \in E$, $m, n \ge n_0$.

Proof. First, suppose that the sequence of real valued functions $\{f_n\}$ converges uniformly on E, with $f_n \to f$ uniformly. Given $\epsilon > 0$, we choose $n_0 \in \mathbb{N}$ such that for all $x \in E$ and $n \ge n_0$,

$$|f_n(x) - f(x)| < \frac{\epsilon}{2}.$$

Now, for all $x \in E$ and $m, n \ge n_0$, we have

$$|f_n(x) - f_m(x)| = |(f_n(x) - f(x)) - (f_m(x) - f(x))|$$

$$\leq |f_n(x) - f(x)| + |f_m(x) - f(x)|$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$= \epsilon$$

Thus, $\{f_n\}$ is a Cauchy sequence.

Next, suppose that $\{f_n\}$ is a Cauchy sequence. Given $\epsilon > 0$, choose $n_0 \in \mathbb{N}$ such that for all $x \in E$ and $m, n \geq 0$, we have

$$|f_n(x) - f_m(x)| < \frac{\epsilon}{2}.$$

Now for each point $x \in E$, the Cauchy criterion for convergence of a sequence of real numbers guarantees that $\lim_{n\to\infty} f_n(x)$ exists. Thus, we can define the function f on E such that $f(x) = \lim_{n\to\infty} f_n(x)$, hence $f_n \to f$ pointwise. Fix $x_0 \in E$, and pick $n'_0 \in \mathbb{N}$ such that for all $m \geq n'_0$, we have $|f_m(x_0) - f(x_0)| < \epsilon/2$. Choose $m = \max(n_0, n'_0)$, whence for all $n \geq n_0$, we have

$$|f_n(x_0) - f(x_0)| = |(f_n(x_0) - f_m(x_0)) + (f_m(x_0) - f(x_0))|$$

$$\leq |f_n(x_0) - f_m(x_0)| + |f_m(x_0) - f(x_0)|$$

$$\leq \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$= \epsilon$$

Note that x_0 was arbitrary, with n_0 chosen independently of x_0 . Thus, $\{f_n\}$ converges uniformly on E.

Theorem 1.3. Let $\{f_n\}$ be a sequence of real valued functions on a set E, and let f be a real valued function on X such that $f_n \to f$ pointwise. For all $n \in \mathbb{N}$, set

$$M_n = \sup_{x \in E} |f_n(x) - f(x)|$$

Then, $f_n \to f$ uniformly on E if and only if $M_n \to 0$.

Proof. First, suppose that $M_n \to 0$. This means that given $\epsilon > 0$, we can find $n_0 \in \mathbb{N}$ such that for all $n \geq n_0$, we have

$$M_n = \sup_{x \in X} |f_n(x) - f(x)| < \epsilon.$$

This directly gives

$$|f_n(x) - f(x)| \le \sup_{x \in X} |f_n(x) - f(x)| < \epsilon$$

for all $x \in E$ and $n \ge n_0$, hence $f_n \to f$ uniformly on E.

Next, suppose that $f_n \to f$ uniformly on E. Let $\epsilon > 0$ and pick $n_0 \in \mathbb{N}$ such that for all $x \in E$ and $n \ge n_0$, we have $|f_n(x) - f(x)| < \epsilon/2$. Taking supremums gives

$$M_n = \sup_{x \in E} |f_n(x) - f(x)| \le \frac{\epsilon}{2} < \epsilon,$$

hence $M_n \to 0$.

Theorem 1.4. Let $\{f_n\}$ be a sequence of real valued bounded, functions on a set E, and let f be a function on E such that $f_n \to f$ uniformly. Then, f is bounded on E.

Proof. Using the uniform convergence of $\{f_n\}$, choose $n_0 \in \mathbb{N}$ such that

$$|f_n(x) - f(x)| < 1$$

for all $x \in E$ and $n \ge n_0$. Specifically, this holds for $n = n_0$ so for all $x \in E$, we have

$$f_n(x) - 1 < f(x) < f_n(x) + 1.$$

However, f_n is bounded so there exists M > 0 such that $|f_n(x)| < M$ for all $x \in E$, hence

$$-M - 1 < f(x) < M + 1$$

or |f(x)| < M+1 for all $x \in E$.

Theorem 1.5 (Uniform limit theorem). Let $\{f_n\}$ be a sequence of continuous functions on a metric space X, and let f be a function on X such that $f_n \to f$ uniformly. Then, f is continuous on X.

Proof. Fix $x_0 \in X$, and let $\epsilon > 0$. Use the uniform convergence of $\{f_n\}$ to pick $n_0 \in \mathbb{N}$ such that for all $x \in X$ and $n \ge n_0$,

$$|f_n(x) - f(x)| < \frac{\epsilon}{3}.$$

Note that the above also holds specifically at $x = x_0$. Use the continuity of each f_n to choose $\delta > 0$ such that for all $x \in X$ satisfying $|x - x_0| < \delta$, we have

$$|f_n(x_0) - f_n(x)| < \frac{\epsilon}{3}.$$

Set $n = n_0$, whence for all $x \in X$ satisfying $|x - x_0| < \delta$, we have

$$|f(x_0) - f(x)| = |(f(x_0) - f_n(x_0)) + (f_n(x_0) - f_n(x)) + (f_n(x) - f(x))|$$

$$\leq |f(x_0) - f_n(x_0)| + |f_n(x_0) - f_n(x)| + |f_n(x) - f(x)|$$

$$\leq \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3}$$

$$= \epsilon.$$

Thus, f is continuous at x_0 . Since x_0 was chosen arbitrarily, f is continuous on X.

Theorem 1.6 (Dini's theorem). Let $\{f_n\}$ be a sequence of continuous real valued functions on a compact metric space K such that $f_n \geq f_{n+1}$ for all $n \in \mathbb{N}$, and let f be a continuous function on K such that $f_n \to f$ pointwise. Then, $f_n \to f$ uniformly on K.

Proof. Let $\epsilon > 0$. For each $n \in \mathbb{N}$, set $g_n = f_n - f$ and note that the each g_n is continuous, with $g_n \geq g_{n+1}$ and $g_n \to 0$ pointwise on K. Since $\{g_n\}$ is a decreasing sequence, we must have $g_n \geq 0$ for all $n \in \mathbb{N}$. It is sufficient to show that $g_n \to 0$ uniformly on K, i.e. there exists $n_0 \in \mathbb{N}$ such that for all $x \in K$ and $n \geq n_0$, we have $g_n(x) < \epsilon$.

Define the sets

$$G_n = g_n^{-1}[\epsilon, \infty) = \{x \in K \colon g_n(x) \ge \epsilon\}.$$

Since each g_n is continuous, the sets G_n which are the pre-images of closed sets in \mathbb{R} are closed. Furthermore, G_n is the intersection of the closed set G_n and the compact set K, hence each G_n is compact. Note that if $x \in G_{n+1}$ for some $n \in \mathbb{N}$, then $g_{n+1}(x) \ge \epsilon \Longrightarrow g_n(x) \ge g_{n+1}(x) \ge \epsilon$ so $x \in G_n$; this means that $G_n \supseteq G_{n+1}$ for all $n \in \mathbb{N}$. Thus, if any G_{n_0} happened to be empty, then all subsequent $G_{n \ge n_0} = \emptyset$ as well.

Suppose that all G_n are non-empty. Then the countable intersection of nested compact sets $G = \bigcap_{n \in \mathbb{N}} G_n$ must also be non-empty. Pick $x_0 \in G$, and note that $x_0 \in G_n$ for all $n \in \mathbb{N}$, which means $g_n(x_0) \geq \epsilon$ for all $n \in \mathbb{N}$. This contradicts the fact that $g_n(x_0) \to 0$ pointwise. Thus, there must be some $G_{n_0} = \emptyset$, hence $G_{n \geq n_0} = \emptyset$. In other words, for all $n \geq n_0$, there is no $x \in K$ such that $g_n(x) \geq \epsilon$. This completes the proof.

Remark. Note that the continuity of f, the compactness of K, and the monotonicity of $\{f_n\}$ are all essential.

(a) Consider $f_n: [0,1] \to \mathbb{R}$, $x \mapsto x^n$, and note that $x^n \geq x^{n+1}$ on [0,1]. We have $f_n \to f$ pointwise on the compact interval [0,1], where

$$f \colon [0,1] \to \mathbb{R}, \qquad x \mapsto \begin{cases} 0, & \text{if } 0 \le x < 1, \\ 1, & \text{if } x = 1. \end{cases}$$

However, f is not continuous, and indeed $f_n \not\to f$ uniformly on [0,1] by the contrapositive of Theorem 1.5.

Figure 1: The Bernstein polynomials of degree 7. The peaks at x = k/7 have been marked.

- (b) Consider $f_n: (0,1) \to \mathbb{R}$, $x \mapsto x^n$, with $x^n \ge x^{n+1}$. We have $f_n \to 0$ pointwise on the open interval (0,1). However, (0,1) is not compact, and indeed $f_n \not\to 0$ uniformly on (0,1). Note that $0 < 2^{-1/n} < 1$ for all $n \in \mathbb{N}$, and $f_n(2^{-1/n}) = 1/2$. Thus, there is no $n_0 \in \mathbb{N}$ such that $|f_n(x)| < 1/4$ for all $n \ge n_0$.
- (c) Consider the triangular spike functions

$$f_n \colon [0,1] \to \mathbb{R}, \qquad x \mapsto \begin{cases} nx, & \text{if } 0 \le x \le 1/2n, \\ 1 - nx, & \text{if } 1/2n < x \le 1/n, \\ 0, & \text{if } 1/n < x \le 1. \end{cases}$$

Note that $f_n \to 0$ pointwise on the compact interval [0,1], because given any $x_0 \in (0,1]$, we can choose sufficiently large $n_0 \in \mathbb{N}$ such that $n_o x_0 > 1$, hence $f_n(x_0) = 0$ for all $n \geq n_0$; if $x_0 = 0$, then $f_n(0) = 0$ for all $n \in \mathbb{N}$ anyway. However, the sequence $\{f_n\}$ is not monotonic, and indeed this convergence is not uniform on [0,1]. Note that $f_n(1/2n) = 1/2$ for all $n \in \mathbb{N}$, hence $\sup |f_n(x)| \geq 1/2 \not\to 0$.

2 The Weierstrass Approximation Theorem

Definition 2.1 (Bernstein polynomials). The Bernstein polynomial $B_n^k(x)$ for integers $0 \le k \le n$ is defined as

$$B_n^k(x) = \binom{n}{k} x^k (1-x)^{n-k}.$$

Remark. Each polynomial B_n^k on the interval [0,1] peaks at x=k/n. See Figure 1.

Figure 2: The Bernstein polynomial expansion of order 20 (orange) of the curve $f(x) = e^x \cos(2\pi x)$ (red) on [0,1]. Each term of the sum has been shown in blue. Note that only the marked points at x = k/20 have been sampled from f.

Definition 2.2 (Bernstein expansions). Let f be a real valued function on [0,1]. The Bernstein polynomial expansion of f is defined as

$$B_n(f,x) = \sum_{k=0}^{n} {n \choose k} x^k (1-x)^{n-k} f\left(\frac{k}{n}\right).$$

Lemma 2.1. The following identities hold.

$$B_n(1,x) = 1,$$
 $B_n(x,x) = x,$ $B_n(x^2,x) = \frac{x}{n} + \frac{n-1}{n}x^2.$

Proof. The Binomial Theorem gives the expansion

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}.$$

Taking a partial derivative with respect to x and multiplying by x/n, we have

$$n(x+y)^{n-1} = \sum_{k=0}^{n} \binom{n}{k} k x^{k-1} y^{n-k},$$

$$x(x+y)^{n-1} = \sum_{k=0}^{n} \binom{n}{k} x^k y^{n-k} \left(\frac{k}{n}\right).$$

Repeating the same procedure, we have

$$(x+y)^{n-1} + (n-1)x(x+y)^{n-2} = \sum_{k=0}^{n} \binom{n}{k} k x^{k-1} y^{n-k} \left(\frac{k}{n}\right),$$
$$\frac{x}{n} (x+y)^{n-1} + \frac{n-1}{n} x^2 (x+y)^{n-2} = \sum_{k=0}^{n} \binom{n}{k} x^k y^{n-k} \left(\frac{k}{n}\right)^2.$$

Finally, set y = 1 - x upon which all x + y terms become 1 and the right hand sides become the Bernstein expansions of 1, x, and x^2 . This establishes the desired identities.

Theorem 2.2. Let f be a real valued continuous function on the closed interval [0,1], and let $\epsilon > 0$. There exists a polynomial p such that |p(x) - f(x)| < 0 on $x \in [0,1]$.

Proof. We claim that a Bernstein polynomial expansion $B_n(f,x)$ of sufficiently high order satisfies the given conditions. Let $\epsilon > 0$. Now, the continuity of f on the compact interval [0,1] implies that it is uniformly continuous and bounded. Thus, there exists $\delta > 0$ such that whenever $|x - x_0| < \delta$ for $x, x_0 \in [0,1]$, we have

$$|f(x) - f(x_0)| < \frac{\epsilon}{2}.$$

Fix $x_0 \in [0,1]$. Observe that $M = \sup_{x \in [0,1]} |f(x)|$ is finite. Thus, in those cases where $|x - x_0| \ge \delta$, use $|x - x_0|/\delta \ge 1$ and the triangle inequality to write

$$|f(x) - f(x_0)| \le 2M \le 2M \left(\frac{x - x_0}{\delta}\right)^2.$$

Thus, for all $x \in [0,1]$ we have

$$|f(x) - f(x_0)| \le 2M \left(\frac{x - x_0}{\delta}\right)^2 + \frac{\epsilon}{2}$$

Write

$$B_n(f,x) - f(x_0) = B_n(f,x) - B_n(1,x) f(x_0)$$

$$= \sum_{k=0}^n \binom{n}{k} x^k (1-x)^{n-k} f\left(\frac{k}{n}\right) - \sum_{k=0}^n \binom{n}{k} x^k (1-x)^{n-k} f(x_0)$$

$$= \sum_{k=0}^n \binom{n}{k} x^k (1-x)^{n-k} \left[f\left(\frac{k}{n}\right) - f(x_0) \right].$$

The triangle inequality, followed by our estimate of $|f(x) - f(x_0)|$, gives

$$|B_{n}(f,x) - f(x_{0})| \leq \sum_{k=0}^{n} \binom{n}{k} x^{k} (1-x)^{n-k} \left| f\left(\frac{k}{n}\right) - f(x_{0}) \right|$$

$$\leq \sum_{k=0}^{n} \binom{n}{k} x^{k} (1-x)^{n-k} \left[2M \left(\frac{k/n - x_{0}}{\delta}\right)^{2} + \frac{\epsilon}{2} \right]$$

$$= \frac{2M}{\delta^{2}} B_{n} ((x-x_{0})^{2}, x) + \frac{\epsilon}{2}$$

$$= \frac{2M}{\delta^{2}} \left[B_{n}(x^{2}, x) - 2x_{0} B_{n}(x, x) + x_{0}^{2} \right] + \frac{\epsilon}{2}$$

$$= \frac{2M}{\delta^{2}} \left[\frac{x}{n} + x^{2} - \frac{x^{2}}{n} - 2xx_{0} + x_{0}^{2} \right] + \frac{\epsilon}{2}.$$

The term in square brackets can be rearranged as

$$(x-x_0)^2 + \frac{1}{n}(x-x^2).$$

Use $(x-1/2)^2 \ge 0$ to conclude that $x-x^2 \le 1/4$, and evaluate the expression at $x=x_0$ to write

$$|B_n(f,x_0) - f(x_0)| \le \frac{M}{2n\delta^2} + \frac{\epsilon}{2}.$$

Therefore, setting $n_0 > M/2\epsilon \delta^2$, we see that

$$|B_{n_0}(f,x_0) - f(x_0)| < \epsilon.$$

Since $x_0 \in [0, 1]$ was arbitrary, this concludes the proof.

Figure 3: The first 250 Bernstein expansions of $e^x \cos(2\pi x)$ on [0, 1]. Note that convergence is fairly slow.

Corollary 2.2.1. Given any real valued continuous function f on [0,1], there exists a sequence of polynomials $\{p_n\}$ such that $p_n \to f$ uniformly on [0,1].

Corollary 2.2.2. The same holds for any real valued continuous function on some closed interval [a, b].

Proof. Consider the continuous bijection

$$\varphi \colon [0,1] \to [a,b], \qquad x \mapsto (b-a)x + a.$$

For an arbitrary real valued continuous function $f:[a,b]\to\mathbb{R}$, note that the composition $g=f\circ\varphi$ is also continuous with domain [0,1]. Given $\epsilon>0$, we find a polynomial p such that

$$|p(x) - f(\varphi(x))| = |p(x) - g(x)| < \epsilon$$

on [0,1], which means that

$$|p(\varphi^{-1}(x)) - f(x)| < \epsilon$$

on [a,b]. Now, $\varphi^{-1}(x)=(x-a)/(b-a)$, hence $p\circ\varphi^{-1}$ is also a polynomial, as desired.

3 Metric spaces of continuous functions

Theorem 3.1. Let X be a metric space and let $\mathscr{C}(X)$ denote the set of all real valued, continuous, bounded functions on X. Define the distance function

$$d(f,g) = \sup_{x \in X} |f(x) - g(x)|$$

for all $f, g \in \mathcal{C}(X)$. Then, $\mathcal{C}(X)$ is a metric space.

Proof. Let $f,g,h \in \mathscr{C}(X)$ be arbitrary. The non-negativity of d(f,g) is evident since it is the supremum of non-negative quantities. Furthermore, f and g are bounded so $d(f,g) = \sup |f-g| \le \sup |f| + \sup |g|$ is finite. We clearly have d(f,f) = 0; conversely, if d(f,g) = 0, then $0 \le \sup |f-g| = 0$ forcing |f(x)-g(x)| = 0 on X, hence f=g. Symmetry of d is evident from the fact that |f(x)-g(x)| = |g(x)-f(x)| everywhere, hence d(f,g) = d(g,f). Finally, the triangle inequality gives

$$|f(x) - h(x)| \le |f(x) - g(x)| + |g(x) - h(x)|,$$

whence taking supremums immediately gives $d(f,h) \leq d(f,g) + d(g,h)$.

Theorem 3.2. The metric space $\mathscr{C}(X)$ is complete.

Proof. We claim that every Cauchy sequences in $\mathscr{C}(X)$ converges in $\mathscr{C}(X)$

Let $\{f_n\}$ be a Cauchy sequence in $\mathscr{C}(x)$. Given any $\epsilon > 0$ we can find $n_0 \in \mathbb{N}$ such that for all $m, n \geq n_0, d(f_n, f_m) < \epsilon$. Thus,

$$|f_n(x) - f_m(x)| \le \sup_{x \in X} |f_n(x) - f_m(x)| = d(f_n, f_m) < \epsilon$$

for all $x \in X$ and $m, n \ge n_0$, hence Theorem 1.2 says that $f_n \to f$ uniformly on X. Theorem 1.3 says that $d(f_n, f) \to 0$. Since each f_n is bounded and continuous, Theorems 1.4 and 1.5 guarantee that f is also bounded and continuous. Thus, $f \in \mathscr{C}(X)$, hence the Cauchy sequence $\{f_n\}$ converges in $\mathscr{C}(X)$.

4 Algebras of functions

Definition 4.1. A family \mathcal{A} of real valued functions on a set E is called an algebra if f + g inA, $fg \in \mathcal{A}$, and $cf \in \mathcal{A}$ for all $f, g \in \mathcal{A}$ and $c \in \mathbb{R}$.

Definition 4.2. An algebra \mathcal{A} is uniformly closed if given any sequence of functions $\{f_n\}$ in \mathcal{A} such that $f_n \to f$ uniformly, we have $f \in \mathcal{A}$.

Definition 4.3. The uniform closure \mathcal{B} of an algebra \mathcal{A} is the set of all functions which are limits of uniformly convergent sequences of functions in \mathcal{A} .

Theorem 4.1. The uniform closure \mathcal{B} of an algebra \mathcal{A} of bounded functions on a set E is a uniformly closed algebra.

Proof. Let $f, g \in \mathcal{B}$. By construction, we can choose sequences $\{f_n\}$ and $\{g_n\}$ in \mathcal{A} such that $f_n \to f$ and $g_n \to g$ uniformly. Since each f_n is bounded, we see that f is also bounded by Theorem 1.4, and the same applies for g. In order to prove that \mathcal{B} is an algebra, we show that $f_n + g_n \to f + g$, $f_n g_n \to f g$, and $c f_n \to c f$ uniformly for all $c \in \mathbb{R}$.

(a) Let $\epsilon > 0$, and let $n_1, n_2 \in \mathbb{N}$ such that for all $x \in E$,

$$|f_n(x) - f(x)| < \frac{\epsilon}{2}, \quad \text{ for all } n \ge n_1,$$

$$|g_n(x) - g(x)| < \frac{\epsilon}{2}$$
, for all $n \ge n_2$.

Thus, for all $x \in E$ and $n \ge \max(n_1, n_2)$, we have

$$|(f_n(x) - g_n(x)) - (f(x) + g(x))| < |f_n(x) - f(x)| + |g_n(x) - g(x)| < \epsilon.$$

(b) Let $\epsilon > 0$. Note that

$$|f_n(x)g_n(x) - f(x)g(x)| = |f_n(x)g_n(x) - f_n(x)g(x) + f_n(x)g(x) - f(x)g(x)|$$

$$\leq |f_n(x)||g_n(x) - g(x)| + |f_n(x) - f(x)||g(x)|.$$

Thus, let $n_0 \in \mathbb{N}$ be such that for all $x \in E$ and $n \ge n_0$, we have $|f_n(x) - f(x)| < 1$, hence $|f_n(x)| < |f(x)| + 1$. Since f is bounded, this means that we can choose $M_1 > 0$ such that $|f_n(x)| < M_1$ for all $x \in E$, $n \ge n_0$. Similarly, pick $M_2 > 0$ such that |g(x)| < M for all $x \in E$. Finally, pick $n_1, n_2 \in \mathbb{N}$ such that for all $x \in E$,

$$|f_n(x) - f(x)| < \frac{\epsilon}{2M_2}, \quad \text{ for all } n \ge n_1,$$

$$|g_n(x) - g(x)| < \frac{\epsilon}{2M_1}, \quad \text{for all } n \ge n_2.$$

It immediately follows that for all $x \in E$ and $n \ge \max(n_0, n_1, n_2)$, we have

$$|f_n(x)g_n(x) - f(x)g(x)| < M_1 \frac{\epsilon}{2M_1} + \frac{\epsilon}{2M_2} M_2 = \epsilon.$$

Remark. Without the requirement of boundedness, we see that $x+1/n \to x$ uniformly on \mathbb{R} , but $(x+1/n)^2 = x^2 + 2x/n + 1/n^2 \to x^2$ only pointwise on \mathbb{R} , not uniformly.

(c) Let $\epsilon > 0$ and $c \in \mathbb{R}$. If c = 0, we trivially have $0 \to 0$ uniformly for the constant zero functions. Otherwise, pick $n_0 \in \mathbb{N}$ such that for all $x \in E$ and $n \ge n_0$,

$$|f_n(x) - f(x)| < \frac{\epsilon}{|c|}.$$

This immediately shows that for all $x \in E$ and $n \geq n_0$,

$$|cf_n(x) - cf(x)| = |c||f_n(x) - f(x)| < \epsilon.$$

To prove that \mathcal{B} is uniformly closed, we must show that it contains all its uniform limits. Let $\{h_n\}_{n\in\mathbb{N}}$ be a sequence in \mathcal{B} such that $h_n\to h$ uniformly for some function on E. Now, for each $h_n \in \mathcal{B}$, there exists a sequence $\{h_{ni}\}_{i\in\mathbb{N}}$ in \mathcal{A} such that $h_{ni} \to h_n$ uniformly.

Let $\epsilon > 0$, and pick $n_0 \in \mathbb{N}$ such that for all $x \in E$ and $n \geq n_0$, we have

$$|h_n(x) - h(x)| < \frac{\epsilon}{2}.$$

Next, for each such $n \geq n_0$, pick $i_n \in \mathbb{N}$ such that for all $x \in E$ and $i \geq i_n$, we have

$$|h_{ni_n}(x) - h_n(x)| < \frac{\epsilon}{2}.$$

Now, for all $x \in E$ and $n \ge n_0$, observe that

$$|h_{ni_n}(x) - h(x)| = |(h_{ni_n}(x) - h_n(x)) + (h_n(x) - h(x))|$$

$$\leq |h_{ni_n}(x) - h_n(x)| + |h_n(x) - h(x)|$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$= \epsilon.$$

Thus, the sequence $\{h_{ni_n}\}_{n\in\mathbb{N}}$ in \mathscr{A} converges uniformly to h, so $h\in\mathscr{B}$. This proves that \mathscr{B} is uniformly closed.

Theorem 4.2. Let \mathcal{A} be an algebra of real valued, bounded functions on a set E and let \mathcal{B} be its uniform closure. If $f, g \in \mathcal{B}$, then the functions $|f| \in \mathcal{B}$, $\max(f, g) \in \mathcal{B}$, $\min(f, g) \in \mathcal{B}$.

Proof. Let $\epsilon > 0$. Since f is bounded, there exists M > 0 such that |f(x)| < M for all $x \in E$. Using Theorem 2 and its corollaries, pick a polynomial p such that for all $x \in [-M, +M]$,

$$|p(x) - |x|| < \epsilon$$
.

Now, let $g = p \circ f$, which is a polynomial of f. Since \mathcal{B} is an algebra, it contains all natural powers $f^n \in \mathcal{B}$, the scalar multiples $cf^n \in \mathcal{B}$, and the finite linear combinations $\sum c_n f^n$ hence we have $g \in \mathcal{B}$ Thus, for all $x \in E$ we have $f(x) \in [-M, +M]$, so

$$|g(x) - f(x)| = |p(f(x)) - |f(x)|| < \epsilon.$$

Since $\epsilon > 0$ was arbitrary and \mathcal{B} is uniformly closed, we have shown that $|f| \in \mathcal{B}$.

To show that $\max(f,g) \in B$ and $\min(f,g) \in \mathcal{B}$, simply observe that

$$\max(f, g) = \frac{1}{2}(f + g) + \frac{1}{2}|f - g|,$$

$$\min(f,g) = \frac{1}{2}(f+g) - \frac{1}{2}|f-g|.$$

Note that these denote the pointwise maximum and minimum.

Definition 4.4. A family \mathcal{A} of functions on a set E is said to separate points on E if given distinct points $x_1, x_2 \in E$, there exists a function $f \in \mathcal{A}$ such that $f(x_1) \neq f(x_2)$.

Definition 4.5. A family \mathcal{A} of functions on a set E is said to vanish at no point of E if given $x \in E$, there exists a function $f \in \mathcal{A}$ such that $f(x) \neq 0$.

Theorem 4.3. Let \mathcal{A} be an algebra of real valued functions on E which separates points on Eand vanishes at no point of E. Let $x_1, x_2 \in E$ be distinct, and let $c_1, c_2 \in \mathbb{R}$. Then there exists a function $f \in \mathcal{A}$ such that $f(x_1) = c_1$ and $f(x_2) = c_2$.

Proof. Since \mathcal{A} vanishes at no point of E, choose $f_1, f_2 \in \mathcal{A}$ such that $f_1(x_1) \neq 0$ and $f_2(x_2) \neq 0$. Since \mathcal{A} separates points on E, pick the function $g \in \mathcal{A}$ such that $g(x_1) \neq g(x_2)$. Now, define the functions h_1, h_2 on E as

$$h_1(x) = \frac{g(x) - g(x_2)}{g(x_1) - g(x_2)} \frac{f_1(x)}{f_1(x_1)}, \qquad h_2(x) = \frac{g(x) - g(x_1)}{g(x_2) - g(x_1)} \frac{f_2(x)}{f_2(x_2)}.$$

Observe that $h_1, h_2 \in \mathcal{A}$ (use $(g - g(x_2))f_1 = gf_1 - g(x_2)f_1 \in \mathcal{A}$ and the analogous relation), with $h_1(x_1) = h_2(x_2) = 1$ and $h_1(x_2) = h_2(x_1) = 0$ (essentially, $h_i(x_j) = \delta_{ij}$). Finally, define the function f on E as

$$f(x) = c_1 h_1(x) + c_2 h_2(x).$$

Clearly, $f \in \mathcal{A}$ with $f_1(x_1) = x_1$ and $f_2(x_2) = c_2$ as desired.

Remark. This is essentially the process of Lagrange interpolation. In order to interpolate distinct x_1, \ldots, x_n with c_1, \ldots, c_n , use the above theorem to choose the functions h_{ij} for distinct i, j such that $h_{ij}(x_i) = 1$, $h_{ij}(x_j) = 0$ for each pair i, j. Thus, the function

$$h_i = \prod_{i \neq j} h_{ij}$$

satisfies $h_i(x_i) = 1$ and $h_i(x_{i \neq i}) = 0$. The desired interpolating function is thus

$$f = \sum_{i=1}^{n} c_i h_i.$$

5 The Stone-Weierstrass Theorem

Theorem 5.1. Let \mathcal{A} be an algebra of real continuous functions on a compact metric space K. If \mathcal{A} separates points on K and vanishes at no point of K, then the uniform closure of \mathcal{A} consists of all real valued, continuous functions on K.

Proof. Let \mathcal{B} be the uniform closure of \mathcal{A} . Since \mathcal{A} consists of real valued, continuous functions on a compact interval, they are all uniformly continuous and bounded, with their uniform limits being continuous as well. Thus, \mathcal{B} is an algebra of real valued, uniformly continuous and bounded functions. To show that \mathcal{B} is precisely $\mathcal{C}(K)$, we fix $f \in \mathcal{C}(K)$ and show that f is the uniform limit of functions from \mathcal{B} . Since \mathcal{B} is uniformly closed, this would imply $f \in \mathcal{B}$, thus completing the proof.

Let $\epsilon > 0$, and let $s, t \in K$. Using Theorem 4.3, find the functions $g_{st} \in \mathcal{B}$ such that g(s) = f(s) and g(t) = f(t). Fix s, and note that for each $t \in K$, the continuity of g_{st} means that there exists an open set $U_{st} \subseteq K$ such that

$$q_{st}(x) > f(x) - \epsilon$$

for all $x \in U_{st}$. Now, the collection of open sets $\{U_{st}\}_{t \in K}$ clearly covers the compact set K, hence we can choose a finite sub-cover $\{U_{st}\}_{t \in T}$ where $T \subset K$ is finite. Define the function g_s on K as

$$g_s = \max_{t \in T} g_{st}.$$

By finitely many applications of Theorem 4.2, we have $g_s \in \mathcal{B}$. Furthermore, given $x \in K$, we can choose $t \in T$ such that $x \in U_{st}$, hence $g_s(x) \geq g_{st}(x) > f(x) - \epsilon$. Thus, for all $x \in K$, we have

$$q_{\epsilon}(x) > f(x) - \epsilon$$
.

Figure 4: The construction of g_s . Here, we only required three points $T = \{t_1, t_2, t_3\}$.

We repeat this process again, this time to obtain an upper bound. For each $s \in K$, the continuity of g_s means that there exists an open set $U_s \subseteq K$ such that

$$g_s(x) < f(x) + \epsilon$$

for all $x \in U_s$. Now, the collection of open sets $\{U_s\}_{s \in K}$ covers the compact set K, hence we choose a finite sub-cover $\{U_s\}_{s \in S}$ where $S \subset K$ is finite. Define the function g on K as

$$g = \min_{s \in S} g_s.$$

Again, Theorem 4.2 gives $g \in \mathcal{B}$, and given $x \in K$, we can choose $s \in S$ such that $x \in U_s$, hence $g(x) \leq g_s(x) < f(x) + \epsilon$. Furthermore, every g_s obeys $g_s(x) > f(x) - \epsilon$ everywhere; since g is the minimum of finitely many functions, given $x \in K$ we find $s \in S$ such that $g(x) = g_s(x) > f(x) - \epsilon$. This shows that for all $x \in K$,

$$f(x) - \epsilon < g(x) < f(x) + \epsilon$$
,

or $|g(x) - f(x)| < \epsilon$. Thus, f is the uniform limit of functions in \mathcal{B} , proving that the uniform closure of \mathcal{A} is the set $\mathcal{C}(K)$.

Figure 5: The construction of g. Again, we only required three points $S = \{s_1, s_2, s_3\}$.

Corollary 5.1.1. Let K be a compact subset of the Euclidean metric space \mathbb{R}^n , and let \mathscr{P} be the algebra of polynomials in n variables on K. Then, given any real valued, continuous function f on K, there exists a sequence of polynomials $\{p_n\} \subset \mathscr{P}$ such that $p_n \to f$ uniformly on K.

Proof. We need only check that \mathcal{P} is an algebra of real continuous functions which separates points on K and vanishes at no point of K, after which the result follows directly from the above theorem.

Note that every polynomial function $p \in \mathcal{P}$ is of the form

$$p(x) = \sum_{i_1, i_2, \dots, i_n} c_{i_1, i_2, \dots, i_n} x_1^{i_1} x_2^{i_2} \dots x_n^{i_n}.$$

Each term in the finite sum is the product of projection maps $(x_1, \ldots, x_n) \mapsto x_i$, which are continuous. Thus, the polynomial p is indeed real valued and continuous, with the coefficients $c_{i_1...i_n} \in \mathbb{R}$. It is evident that given a scalar $c \in \mathbb{R}$, we have $cp \in \mathscr{P}$ since the result is of the same form. Given $p, q \in \mathscr{P}$, it is also evident that $p+q \in \mathscr{P}$; term by term multiplication shows that $pq \in \mathscr{P}$ as well. Thus, \mathscr{P} is an algebra.

To show that \mathscr{P} vanishes nowhere on K, note that the constant polynomial $p(x_1, \ldots, x_n) = 1 \neq 0$ on any $K \subseteq \mathbb{R}^n$. To show that \mathscr{P} separates points on K, pick $y, w \in K$ where $y \neq w$. Then $y_j \neq w_j$ for at least one index j, so the polynomial $p(x_1, \ldots, x_n) = x_j$ separates w and y. Applying the Stone-Weierstrass Theorem completes the proof.

Corollary 5.1.2. Let \mathcal{F} be the algebra of functions on $[0,\pi]$ of the form

$$f(x) = a_0 + \sum_{n=1}^{N} a_n \cos(nx) + b_n \sin(nx),$$

for real coefficients a_i, b_i . Then, given any real valued, continuous function f on $[0, \pi]$, there exists a sequence of functions $\{f_n\} \subset \mathcal{F}$ such that $f_n \to f$ uniformly on $[0, \pi]$.

Proof. Like before, we need only check that \mathcal{F} satisfies the requirements of the Stone-Weierstrass Theorem

It is clear that \mathcal{F} is closed under sums and scalar multiples. To show that it is closed under products, we supply the following identities.

$$\sin(nx)\sin(mn) = \frac{1}{2}\left[\cos((n-m)x) - \cos((n+m)x)\right],$$

$$\sin(nx)\cos(mn) = \frac{1}{2} \left[\sin((n+m)x) + \sin((n-m)x) \right],$$
$$\cos(nx)\cos(mn) = \frac{1}{2} \left[\cos((n+m)x) + \cos((n-m)x) \right].$$

Thus, \mathscr{F} is indeed an algebra. Now, \mathscr{F} contains the constant function $x \mapsto 1$, hence \mathscr{F} vanishes nowhere on $[0,\pi]$. Furthermore, given distinct $x_1,x_2 \in [0,\pi]$, we must have $\cos(x_1) \neq \cos(x_2)$, because the map $x \mapsto \cos(x)$ is strictly decreasing on $[0,\pi]$, and hence is injective. Thus, \mathscr{F} separates points on $[0,\pi]$.

Remark. Note that \mathcal{F} does not separate the points 0 and 2π , due to the periodicity of the cosine and sine functions. In order to extend the domain to $[0, \pi\alpha]$, we may redefine \mathcal{F} to consist of functions of the form

$$f(x) = a_0 + \sum_{n=1}^{N} a_n \cos(nx/\alpha) + b_n \sin(nx/\alpha).$$

Remark. Instead, consider the unit circle S^1 (which is compact under the usual Euclidean topology on \mathbb{R}^2) as our domain. Let $\tilde{\mathcal{F}}$ be the algebra of functions of the form

$$\tilde{f}(e^{ix}) = a_0 + \sum_{n=1}^{N} a_n \cos(nx) + b_n \sin(nx).$$

Here, we use the usual identification of S^1 with the unit circle in \mathbb{C} described by the set of points satisfying |z|=1. The closure of this algebra is the set of all real continuous functions on S^1 , each of which can be identified with a unique real continuous, α -periodic function on \mathbb{R} .

$$\mathbb{I} \colon \mathscr{F} \to \tilde{\mathscr{F}}, \qquad f \mapsto \tilde{f}, \qquad \tilde{f}(e^{ix}) = f(\alpha x/2\pi).$$

Thus, given an arbitrary real valued, continuous function f on \mathbb{R} with period α and $\epsilon > 0$, pick $\tilde{g} \in \tilde{\mathcal{F}}$ such that $|\tilde{g}(z) - \tilde{f}(z)| < \epsilon$ on S^1 . Thus, for all $x \in \mathbb{R}$, we have

$$|g(x) - f(x)| = |\tilde{g}(e^{2\pi i x/\alpha}) - \tilde{f}(e^{2\pi i x/\alpha})| < \epsilon.$$

Theorem 5.2. Let \mathcal{A} be an algebra on a compact metric space K which satisfies the requirements of the Stone-Weierstrass Theorem. Then, given $f \in \mathcal{C}(K)$, there exists a monotonically decreasing sequence of functions from \mathcal{A} which converge uniformly to f on K.

Proof. For all $n \in \mathbb{N}$, define the functions $f_n = f + 2/3^n$ and use the Stone-Weierstrass theorem to select functions $g_n \in \mathcal{A}$ such that

$$|g_n(x) - f_n(x)| < \frac{1}{3^n}$$

everywhere on K. As a result, each g_n satisfies

$$f + \frac{1}{3^n} < g_n < f + \frac{1}{3^{n-1}}$$

on K. This immediately gives $g_n > g_{n+1}$ for all $n \in \mathbb{N}$. Furthermore, for all $x \in K$, we have

$$|g_n(x) - f(x)| < \frac{1}{3^{n-1}} \to 0$$

which establishes $g_n \to f$ uniformly on K by Theorem 1.3.