Thanks to Dr. Tarek Sayed Ahmed whose recent work was a motivation of the subject of this paper.

Let L denote a non-empty countable relational language (this entails no loss of generality): $L = (R_i)_{i \in I}$ where I is a non-empty countable index set and R_i is an n_i -ary relation symbol. Denote by X_L the space

$$X_L = \prod_{i \in I} 2^{(\mathbb{N}^{n_i})}.$$

We view the space X_L as the space of countably infinite *L*-structures.

A fragment F of $L_{\omega_1\omega}$ is a set of formulas in $L_{\omega_1\omega}$ containing all atomic formulas, closed under subformulas, negation, quantifiers and finite conjunctions and disjunctions.

Definition 0.1. For $\varphi(=\varphi(\bar{v}))$ a formula of $L_{\omega_1\omega}$ and \bar{s} a finite sequence from \mathbb{N} of appropriate length (i.e, $\bar{s} \in |\Delta\varphi|\omega$), let

$$Mod(\varphi, \bar{s}) = \{ x \in X_L : \mathcal{U}_x \models \varphi[\bar{s}] \},$$

where $\varphi[\bar{s}]$ denotes the sentence obtained from the formula $\varphi(\bar{v})$ by substituting \bar{s} for the free variables. (If φ is a sentence, we write $Mod(\varphi)$ for $Mod(\varphi, ())$.).

Let t_F be the topology on X_L generated by $\mathcal{B}_F = \{Mod(\varphi, \bar{s}) : \varphi \in F, \bar{s} \in |\Delta \varphi| \omega\}$. By a result of Sami (See [4]), t_F is a Polish topology on X_L .

Let F be a fragment of $L_{\omega_1\omega}$. We say that $x,y \in X_L$ (or their corresponding structures) are separable in F, if there is $\varphi \in F$ such that $|\varphi^x| \neq |\varphi^y|$, where $\varphi^x = \{\bar{s} \in |^{\Delta\varphi}|_{\omega} : \mathcal{U}_x \models \varphi[\bar{s}]\}$. (It is clear that if two structures are separable in some fragment, then they are non-isomorphic). Notice that, if φ is a sentence, then for all x, either φ^x is empty or else contains only the empty sequence.

For F a fragment

$$E_F = \{(x, y) \in X_L \times X_L : \text{ For all } \varphi \in F, |\varphi^x| = |\varphi^y|\}.$$

Theorem 0.2. For F a countable fragment of $L_{\omega_1\omega}$, E_F is Borel in the product topology $(X_L, t_F) \times (X_L, t_F)$.

For every $\varphi \in F$ which is not a sentence, select a bijection $\mu_{\varphi}: \mathbb{N} \longrightarrow {}^{|\Delta \varphi|}\omega$. If φ is a sentence, let μ_{φ} be the constant map from \mathbb{N} to \mathbb{N} that sends everything to 1 (a value that cannot be the empty sequence). It is clear that, for a set $X \subseteq {}^{|\Delta \varphi|}\omega$,

X is infinite iff
$$(\forall n)(\exists m > n)\mu_{\varphi}(m) \in X$$
.

$$|X| = |Y| \in \omega \iff (\exists n)(\exists f, g \in Inj(n, |^{\Delta\varphi}|_{\omega}))(f^*(n) = X \land g^*(n) = Y)$$

$$\implies (\exists n)(\exists f, g \in Inj(n, |^{\Delta\varphi}|_{\omega}))(f^*(g^{-1}(Y)) = X \land$$

$$g^*(f^{-1}(X)) = Y)$$

$$\implies (\exists n)(\exists f, g \in Inj(n, |^{\Delta\varphi}|_{\omega}))(X \subseteq f^*(n) \land Y \subseteq g^*(n))$$

$$\land g^{-1}(Y) = f^{-1}(X))$$

$$\implies (\exists n)(\exists f, g \in Inj(n, |^{\Delta\varphi}|_{\omega}))(|X| = |f^{-1}(X)| \land |Y| =$$

$$|g^{-1}(Y)| \land |g^{-1}(Y)| = |f^{-1}(X)|)$$

$$\implies |X| = |Y| \in \omega.$$

$$f^*(g^{-1}(Y)) = X \iff (\forall t)[t \in X \Leftrightarrow g(f^{-1}(t)) \in Y].$$

Now we are ready to prove our main theorem.

Corollary 0.3. Let T be a first order theory in a countable language. If T has an uncountable set of pairwise separable (in any countable fragment of $L_{\omega_1\omega}$) countable models, then it has such a set of size 2^{\aleph_0} (and so has 2^{\aleph_0} non-isomorphic countable models).

The above corallary can have other versions. We can talk about any set of models of T whose corresponding set of codes is G_{δ} in X_L . For example, suppose we are given a certain countable family, $\{\Gamma_i : i < \omega\}$, of non-isolated n-types $(n \in \omega)$ of T (see [3]).

References

- [1] L.A. Harrington, A. S. Kechris and A. Louvau, *A Glimm-Effros Dichotomy for Borel Equivalence Relations*, Journal of the American Mathematical Society, Volume 3, Number 4, October 1990, Pages 903-928.
- [2] A.S. Kechris, *Classical Descriptive Set Theory*, Springer Verlag, New York, 1995.
- [3] D. Marker, *Model Theory : An Introduction*, Springer-Verlag, New York, 2002.
- [4] R.L. Sami, Polish Group Actions and the Vaught Conjecture, Trans. Amer. Math. Soc., 341(1994), 335-353.