Sistemi complessi

Edoardo Gabrielli

2 gennaio 2021

Indice

T	Pro	cessi s	Cocastici	4
	1	Lezion		4
		1.1	Moto Browniano	4
		1.2	Dinamica mesoscopica: Langevin	4
		1.3	Nascita-Morte: Master equation	5
	2	Lezion	e 2	6
		2.1	Esempi di Master equation	6
		2.2	Metodo della funzione generatrice	6
		2.3	Correlazione e densità spettrale	7
		2.4	Probabilità	7
		2.5	Funzione caratteristica	8
	3	Lezion	e 3	9
		3.1	Limiti con variabili stocastiche	9
		3.2		10
		3.3		10
		3.4		11
		3.5		11
		3.6		12
	4	Lezion		13
	-1	4.1	Continuità dei processi stocastici	
		4.2	Forma differenziale di Chapman - Kolmogorov	
		4.3	- *	14
	5	Lezion		
	9	5.1		$\frac{15}{15}$
		5.A		$\frac{15}{17}$
	6	J.A Lezion		11 19
	U		Modelli semplici di Random Walk	
		6.1	•	
		6.2	Random Walk di Weierstrass	
		6.3	Random Telegraph	
		6.4	Integrali stocastici	
		6.5	Integrale di Îto e di Stratonovich	
		6.6	Relazione tra l'incremento stocastico e l'incremento temporale	
	_	6.7	Formula di Îto	
	7	Lezion		
		7.1	Integrale di una SDE	
		7.2	Algoritmo di Heun	
	8		e 8	
		8.1		26
		8.2	1	28
	9	Lezion		29
		9.1	Oltre il teorema del limite centrale	29
		9.2	Distribuzioni stabili	29
		9.3	V	30
		9.4	Bacino di attrazione di una distribuzione	31
		9.5	Cambio di scala	31
		9.6	SDE con variabili stocastiche con distrib. di Levy	32
	10	Lezion	· ·	33
		10.1		33
		10.2	· · · · · · · · · · · · · · · · · · ·	33

Indice Indice

	11	Lezion	e 11	35
		11.1	Equazione di Fokker-Plank: soluzione analitica	35
		11.2	Condizioni al bordo per la soluzione della FK	35
		11.3	Distribuzione di equilibrio del processo	35
		11.4	Bilancio dettagliato	37
		11.5	Relazione di Onsager e Teorema di Fluttuazione Dissipazione	39
		11.6	Fokker-Plank dipendente dal tempo	40
		11.7	Tempo di primo passaggio o MFPT	42
		11.8	MFTP in 1D	42
		11.9	MFPT per fuga da buca di potenziale	43
		11.10	MFPT in più dimensioni	44
		11.11	Calcolo numerico del MFTP	
	12	Lezion	e 12	46
		12.1	Simulazione del processo di Wiener in una doppia buca	46
		12.2	Hamiltoniana per il MFPT	47
2	Siste	emi ca	otici	49

MindMap del corso

Capitolo 1

Processi stocastici

1 Lezione 1

1.1 Moto Browniano

Il conte Brown nel 1827 pensò di aver scoperto la vita osservando particelle di polline in acqua che si muovevano in modo casuale, ne concluse che le particelle fossero vive. Successivamente fu Einstein a dare una descrizione collisionale con i seguenti punti chiave:

- Impatti frequenti.
- Descrizione probabilistica.
- Dinamica discreta (tempo discretizzato).

Mettiamoci in un sistema unidimensionale e ipotizziamo che il tempo caratteristico di impatto tra due palline sia τ e che n(t) sia il numero delle palline. Sempre per ipotesi per ogni pallina si ha la proprietà:

$$x(t=0) = x \implies x(t=\tau) = x + \Delta.$$

Dove Δ varia da pallina a pallina, possiamo definire una distribuzione pari di questi Δ : $f(\Delta)$

$$\int f(\Delta)d\Delta = 1;$$
 $f(\Delta) = f(-\Delta).$

Primo esempio di equazione di Fokker-Plank Possiamo trovare il numero dn di palline che si muovono di una quantità ξ : $\Delta < \xi < \Delta + d\Delta$.

Figura 1.1: Particelle che si muovono di ξ , dove Δ è la variabile stocastica per le palline.

$$dn = nf(\Delta)d\Delta.$$

La probabilità che una pallina si trovi nel punto x al tempo $t+\tau$ per dx è:

Equazione di Chapman-Kolmogorov

$$P(x,t+\tau)dx = dx \int P(x-\Delta,t)f(\Delta)d\Delta$$
(1.1)

L'equazione rappresenta il fatto che il processo in question è markoviano. Se così non fosse avremmo dovuto mettere a destra più di un tempo (anticipazione di argomento del corso).

Espandendo in serie (di Kramers-Moyal) le probabilità:

$$\begin{split} P(x,t+\tau) &= P(x,t) + \frac{\partial P}{\partial t}\tau \\ P(x-\Delta,t) &= P(x,t) - \frac{\partial P}{\partial x}\Delta + \frac{1}{2}\frac{\partial^2 P}{\partial x^2}\Delta^2. \end{split}$$

Si ottiene reinserendo nella 1.1:

Equazione del tipo di Fokker-Plank

$$\frac{\partial P}{\partial t} = D \frac{\partial^2 P}{\partial x^2} \tag{1.2}$$

Nella quale D vale:

$$D = \frac{1}{2\tau} \left\langle \Delta^2 \right\rangle.$$

Integrando la 1.2 si ottiene, con le condizioni iniziali: $P(x, t = 0) = \delta(x)$

$$P(x,t) = \frac{n}{\sqrt{4\pi Dt}} \exp\left(-\frac{x^2}{4Dt}\right).$$

1.2 Dinamica mesoscopica: Langevin

Possiamo scrivere una equazione del moto per le palline tenendo di conto di:

- Attrito: $-6\pi\eta d\dot{x}$ (Approccio alla Stokes)
- Impatti random tra le altre particelle: ξ .

$$m\ddot{x} = -6\pi\eta d\dot{x} + \xi \tag{1.3}$$

Che è un primo esempio di equazione differenziale stocastica

Se moltiplichiamo a destra e sinistra per x possiamo riscriverla nel seguente modo:

$$\frac{1}{2}m\frac{\mathrm{d}^2}{\mathrm{d}t^2}\left(x^2\right) - m\dot{x}^2 = -3\pi\eta d\frac{\mathrm{d}}{\mathrm{d}t}\left(x^2\right) + \xi x.$$

Possiamo mediare su tutte le possibili realizzazioni della ξ :

$$\frac{m}{2} \frac{\mathrm{d}^2}{\mathrm{d}t^2} \left\langle x^2 \right\rangle - kT = -3\pi \eta d \frac{\mathrm{d}}{\mathrm{d}t} \left\langle x^2 \right\rangle.$$

Si risolve con metodi noti:

$$\frac{\mathrm{d}}{\mathrm{d}t}\left\langle x^{2}\right\rangle =\frac{kT}{3\pi\eta d}+C\exp\left(\frac{-6\pi\eta dt}{m}\right).$$

Possiamo buttare il secondo termine ottenendo:

Equazione di diffusione

$$\left\langle x^{2}\right\rangle _{t}-\left\langle x^{2}\right\rangle _{0}=\frac{kT}{3\pi\eta d}\cdot t \tag{1.4}$$

Andando a vedere l'equazione di Fokker-Plank vista sopra si scopre che c'è una relazione tra D ed i coefficienti di questa equazione:

Coefficiente di Einstein

$$D = \frac{kT}{6\pi\eta d}.$$

Detto anche coefficiente di diffusione.

1.3 Nascita-Morte: Master equation

Ipotizziamo di avere due specie di animali:

- \bullet Conigli: x
- Volpi: y

Tali animali possono essere modellizzati con il seguente modello di nascite/morti:

Sistema di Lotka-Volterra

$$\begin{cases} x + \text{food} \to 2x \\ x + y \to 2y \\ y \to \text{death} \end{cases}$$

Possiamo tradurre questo sistema con due equazioni differenziali (ad intuito):

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = k_1xc - k_2xy\\ \frac{\mathrm{d}y}{\mathrm{d}t} = k_2xy - k_3y \end{cases}.$$

Figura 1.2: Andamento delle soluzioni (Link al codice)

Come possiamo tener di conto delle fluttuazioni presenti in natura? (domanda aperta)

In realtà dovremmo utilizzare un modello discreto essendo il numero di volpi/conigli appartenente ai naturali. Prendiamo la probabilità di avere (x,y) (lepri, volpi) al tempo t: P(x,y,t) (dove adesso x,y sono discreti). Valgono le seguenti uguaglianze per un certo tempo Δt :

$$P_r(x \to x + 1, y)\Delta t = k_1 c x \Delta t$$

$$P_r(x \to x - 1, y \to y + 1)\Delta t = k_2 x y \Delta t$$

$$P_r(x \to x, y \to y - 1)\Delta t = k_3 y \Delta t$$

$$P(x \to x, y \to y)\Delta t = \Delta t \left[1 - (k_1 c x + k_2 x y + k_3 y)\right].$$

Dove P_r è la probabilità di fare la transizione (indipendente da t per ipotesi). Possiamo trovare l'evoluzione temporale come:

Esempio di Master Equation

$$\frac{P(x, y, t + \Delta t) - P(x, y, t)}{\Delta t} = \frac{P_r(x - 1 \to x, y) \cdot P(x - 1, y, t) + P_r(x + 1 \to x, y - 1 \to y) \cdot P(x + 1, y, t) + P(x \to x, y + 1 \to y) P(x, y + 1, t) + [P_r(x \to x, y \to y) - 1] \cdot P(x, y, t)}$$
(1.5)

2.1 Esempi di Master equation

- Rumore shot.
- Rumore Jonshon

Rumore shot La corrente è composta da elettroni che si spostano, le fluttuazioni del numero di elettroni generano rumore.

Chiamiamo t_k il tempo di arrivo di un elettrone su una certa sezione ortogonale alla direzione del flusso, si sceglie il seguente modello per la corrente:

$$I(t) = \sum_{t_k} F(t - t_k).$$

 $F(t-t_k)$ ha la forma di una scarica di condensatore:

$$F(t) = \begin{cases} 0 & t < 0 \\ q \exp(-\alpha t) & t \ge 0 \end{cases}$$

Cerchiamo la Master equation per questo sistema:

$$P(n \to n + 1, \text{in } \Delta t) = \lambda \Delta t P_n(t).$$

Visto che possiamo riscrivere la probabilità di avere n elettroni al tempo $t + \Delta t$ come:

$$P_n(t + \Delta t) = (1 - \lambda \Delta t) P_n(t) + \lambda \Delta t \implies$$

$$\frac{P(n,t+\Delta t) - P(n,t)}{\Delta t} = \lambda \left[P(n-1,t) - P(n,t) \right].$$

2.2 Metodo della funzione generatrice

Per risolvere il problema introduciamo la funzione generatrice G(s,t):

$$G(s,t) = \sum_{n} s^n P(n,t).$$

Sostituendo nella master si ha:

$$\frac{\partial G(s,t)}{\partial t} = \lambda(s-1)G(s,t).$$

$$\implies G(s,t) = \exp(\lambda(s-1)t) G(s,0).$$

Gli elettroni arrivano per $t \ge 0$, infatti si deve avere che:

$$\begin{cases} P(0,0) = 1 \\ P(n,0) = 0 \end{cases} \forall n \implies G(s,0) = 1.$$

$$G(s,t) = e^{\lambda(s-1)t} = \sum s^n P(n,t) \implies$$

$$\sum e^{-\lambda t} \frac{(\lambda t s)^n}{n!} = \sum s^n P(n, t).$$

In cui si è sfruttato la serie dell'esponenziale $e^{\lambda st}$.

Distribuzione di Poisson

$$P(n,t) = e^{-\lambda t} \frac{(\lambda t)^n}{n!}.$$

Dove P(n,t) è la probabilità che al tempo t ci siano N(t) = n elettroni nel sistema.

Tornando alla corrente dobbiamo trovare un modo per contare gli elettroni:

$$\mu(t) \equiv \frac{\mathrm{d}N}{\mathrm{d}t} = \delta(t - t_k)$$

Dove t_k è il tempo (random) in cui arriva un elettrone. Passiamo al continuo nei tempi di arrivo degli elettroni e riscriviamo la corrente come:

$$I(t) = \int dx F(t-x)\mu(x) =$$

$$= \int_{-\infty}^{t} q \exp(-\alpha(t-x)) \frac{dN}{dx} dx.$$

La difficoltà dell'espressione sta nel fatto che N(t) è una funzione a salti irregolari.

Differenziando rispetto al tempo I(t):

$$\begin{aligned} \frac{\mathrm{d}I}{\mathrm{d}t} &= q \exp\left(-\alpha(t-x)\right) \left.\dot{N}\right|_{x=t} + \\ &+ \int_{-\infty}^{t} \left(-\alpha q\right) \exp\left(-\alpha(t-x)\right) \dot{N} dx = \\ &= q \mu(t) - \alpha I(t). \end{aligned}$$

Equazione stocastica differenziale

$$\frac{\mathrm{d}I}{\mathrm{d}t} = -\alpha I(t) + q\mu(t).$$

Il termine in μ dipende dalla sequenza casuale di δ , ognuna di queste può dare soluzioni differenti.

L'idea per risolvere il problema è di interpolare l'andamento di N con un moto browniano, prendendo la media e le fluttuazioni del termine stocastico. Essendo il termine in μ la derivata di un processo poissoniano abbiamo le seguenti proprietà:

$$\langle \mu dt \rangle = \langle dN \rangle = \lambda dt$$

 $\langle (\lambda dt - \mu dt)^2 \rangle = \lambda dt.$

Si ha un termine di fluttuazioni $d\eta$ tale che:

$$dN = \lambda dt + d\eta$$
.

Il differenziale della corrente si scrive come:

$$dI(t) = (\lambda q - \alpha I) dt + q d\eta(t).$$

Prendendo la media di questa equazione abbiamo che il termine di fluttuazione $(Id\eta)$ media a zero per ipotesi:

$$\frac{\mathrm{d}}{\mathrm{d}t} \langle I \rangle = \lambda q - \alpha \langle I \rangle.$$

Il risultato stazionario per l'equazione è:

$$\langle I \rangle_{\infty} = \frac{\lambda q}{\alpha}.$$

Procediamo con una ipotesi sbagliata: trascurare le fluttuazioni nel seguente termine

$$(I+dI)^2 \approx I^2 + 2IdI \tag{2.1}$$

Quindi con il risultato che dovrebbe esser noto sui differenziali: $d\left(I^2\right)=2IdI$, se assumiamo questo e moltiplichiamo a destra e sinistra per $\langle I\rangle$ nella equazione per la corrente otteniamo:

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\left\langle I^{2}\right\rangle =\lambda q\left\langle I\right\rangle -\alpha\left\langle I^{2}\right\rangle .$$

Che ci porta a concludere che:

$$\langle I^2 \rangle_{\infty} = \frac{\lambda q}{\alpha} \langle I \rangle_{\infty} = (\langle I \rangle_{\infty})^2.$$

Otteniamo quindi un paradosso, la corrente ha varianza nulla:

$$\langle I^2 \rangle - \langle I \rangle^2 = 0.$$

Questo significherebbe che la "larghezza" del moto Browniano è nulla, quindi la corrente sarebbe costante e continua.

L'errore è dovuto al differenziale 2.1, infatti il termine trascurato vale:

$$\langle dI^2 \rangle = \langle q^2 d\eta^2 \rangle = q^2 \lambda dt.$$

Che è anch'esso di prim'ordine nel tempo! L'equazione corretta sarebbe allora:

$$\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \left\langle I^2 \right\rangle = \lambda q \left\langle I \right\rangle - \alpha \left\langle I^2 \right\rangle + q^2 \lambda + O(dt).$$

2.3 Correlazione e densità spettrale

Si rimembrano definizioni utili ai fini del corso.

Correlazione

$$G\left(t\right)=\lim_{T\rightarrow\infty}\frac{1}{T}\int_{0}^{T}x\left(t+s\right)x\left(s\right)ds.$$

Se il sistema è ergodico questa definizione è equivalente a quella mediata sull'Ensemble:

$$G(t) = \langle x(t+s) \cdot x(s) \rangle$$
.

Densità spettrale

$$S\left(\omega\right) = \lim_{T \to \infty} \frac{1}{2\pi T} \left| \int_{0}^{T} x\left(t\right) e^{-i\omega t} dt \right|.$$

Le due definizioni sono legate da una trasformata di Fourier:

$$S\left(\omega\right) = \frac{1}{2\pi} \int G\left(\omega\right) e^{-i\omega t} dt.$$

2.4 Probabilità

Possiamo ripensare una definizione assiomatica della probabilità.

Nella quale x è un evento, A è un set di eventi possibili appartenente ad Ω : l'insieme di tutti gli eventi possibili $(A \in \Omega)$.

Proprietà di P

- P(A) > 0.
- $P(\Omega) = 1$.
- $P(\bigcup_i A_i) = \sum_i P(A_i)$ con A_i collezione di insiemi disgiunti numerabile.
- $P(\overline{A}) = 1 P(A)$.
- Se $\omega \in A \cup B$ con $A \cup B = 0 \implies \omega \in A \cap \omega \in B$.

Probabilità condizionata La probabilità che avvenga l'evento A sapendo che è già avvenuto un evento B è data da:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

Ovviamente si ha anche che:

$$P(A|B) P(B) = P(A)P(B|A)$$
.

Prendiamo adesso un insieme B_i di set di eventi:

$$B_i \cap B_j = \emptyset \quad \forall i, j$$

$$\bigcup_i B_i = \Omega.$$

Da queste ne deriva che, per il set A:

$$\bigcup_{i} (A \cap B_{i}) = A \cap (\bigcup_{i} B_{i}) = A \cap \Omega = A.$$

$$\sum_{i} P(A \cap B_{i}) = P(\bigcup_{i} (A \cap B_{i})) = P(A)$$
Utile per

Per la probabilità congiunta si ha in generale che:

$$\sum_{i} P(A|B_i) P(B_i) = \sum_{i} P(A \cap B_i) = P(A).$$

Eventi indipendenti Due eventi x_A, x_B si dicono indipendenti se i set a cui appartengono (A, B) rispettano la seguente:

$$P(B)P(A|B) = P(A \cap B) = P(A)P(B).$$

Questa fattorizzazione è valida in generale per eventi indipendenti:

$$P\left(\bigcap_{i} A_{i}\right) = \prod_{i} P(A_{i}).$$

Valor medio e distribuzione di probabilità Sia R una variabile random funzione di un evento ω , il valor medio di R sarà:

$$\langle R \rangle = \sum_{\omega} P(\omega) R(\omega).$$

Possiamo facilmente estendere la definizione al caso continuo, definiamo il set $A(\omega_0, d\omega_0)$ come l'insieme degli eventi ω tali che:

$$\omega \in [\omega_0, \omega_0 + d\omega_0]$$
.

La densità di probabilità di trovare un evento nel set $A(\omega_0, d\omega_0)$ è data da:

$$P(\omega_0)d\omega_0 \equiv P[A(\omega_0, d\omega_0)] = P(\omega_0, d\omega_0).$$

Quindi il valor medio di R nel continuo:

Valor medio nel continuo

$$\langle R \rangle = \int_{\omega \in \Omega} R(\omega) P(\omega).$$

2.5 Funzione caratteristica

Sia x una variabile random con distribuzione di probabilità P(x), la funzione caratteristica della distribuzione è:

$$\phi(\boldsymbol{s}) = \int d\boldsymbol{x} P(\boldsymbol{x}) e^{i\boldsymbol{x}\cdot\boldsymbol{s}}.$$

Esempio 2.5.1 (Distribuzione Gaussiana).

$$P(x) = \frac{e^{-x^2/2\sigma^2}}{\sqrt{2\pi\sigma^2}} \implies \phi(s) = e^{-\sigma^2 s^2/2}.$$

Esempio 2.5.2 (Distribuzione uniforme).

$$P(x) = \begin{cases} 1 & x \in \left[-\frac{1}{2}, \frac{1}{2} \right] \\ 0 & \text{Altrimenti} \end{cases}$$

$$\phi(s) = \int_{-1/2}^{1/2} e^{ixs} dx = \frac{2}{s} \sin\left(\frac{s}{2}\right).$$

Proprietà della funzione caratteristica

- 1. $|\phi(s)| = 1$.
- 2. $\phi(s)$ è continua.
- 3. Se $\exists \langle x^n \rangle$ allora:

$$\langle x^n \rangle = (-i)^n \left. \frac{\partial^n}{\partial s^n} \phi(s) \right|_{s=0}.$$

- 4. Una sequenza di distribuzioni converge ad una distribuzione limite

 ⇔ converge la sequenza di funzioni caratteristiche.
- 5. Dato $\boldsymbol{x}=(x_1,\ldots,x_n)$ con x_i indipendenti $\forall i$ allora:

$$\phi(s_1, s_2, \ldots) = \prod_{i=1}^n \phi(s_i)$$

6. Se $y = \sum_{i} x_i$ con x_i indipendenti, allora:

$$\phi(s) = \langle e^{isy} \rangle = \prod_i \phi_i(s).$$

Esemplo 2.5.3. Se $y = x_1 + x_2$ ho che:

$$P(y) = \int P(x_1)P(y - x_1)dx_1.$$

Allora per le proprietà della trasformata di una convoluzione:

$$\phi(s) = \phi_1(s)\phi_2(s).$$

3.1 Limiti con variabili stocastiche

Un problema al limite con una variabile stocastica x è un problema del seguente tipo:

$$x = \lim_{n \to \infty} x_n \qquad x_n \in \Omega.$$

Dove x_n è una serie di funzioni di variabile stocastica ω , indicizzata da n intero.

La variabile stocastica ω appartiene all'insieme degli eventi possibili Ω

Definizione 3.1.1 (Almost Certain Limit).

$$\lim_{n \to \infty}^{\text{ac}} x_n = x \qquad \text{se } \forall \omega \in \Omega : \lim_{n \to \infty} x_n(\omega) = x.$$

Tale limite rispetta la proprietà:

$$P(\lim_{n\to\infty} x_n(\omega) = x) = 1.$$

Esempio 3.1.1 (Farfalle). Alcune specie di farfalle vivono mediamente un giorno, prendiamo tutte le farfalle viventi che appartengono a questa specie (ed escludiamo quelle che devono ancora nascere).

Se misuriamo la media del cibo consumato da questo campione ogni ora otteniamo una sequenza di numeri casuali. Tuttavia possiamo essere quasi sicuri che tale sequenza dopo 30 ore sarà 0 e rimarrà 0 per sempre. In questo esempio si hanno:

- x_n la sequenza di medie del cibo.
- ω Il cibo che una farfalla della specie mangia in un'ora.
- $\bullet \ \ x=0.$

Esempio 3.1.2 (Equazione stocastica). Prendiamo una equazione stocastica differenziale così costruita:

$$dx = -\alpha x dt + bx d\omega.$$

In cui il termine $d\omega$ è un termine stocastico. I passi degli x_n saranno definiti dalla equazione sopra:

$$x_{n+1} = x_n - \alpha x_n \Delta t + b x_n \Delta \omega_n.$$

Se ipotizziamo che la x_n (variabile composta da termine stocastico e termine temporale) nell'evoluzione si avvicini all'origine $(x_n=0)$ allora il termine stocastico in ω non può più contribuire alla equazione, in tal caso la convergenza avviene.

Definizione 3.1.2 (Mean Square Limit). Se si ha:

$$\lim_{n \to \infty} \left\langle (x_n(\omega) - x(\omega))^2 \right\rangle =$$

$$= \lim_{n \to \infty} \int d\omega P(\omega) \left[x_n(\omega) - x(\omega) \right]^2 = 0.$$

Allora:

$$\lim_{n \to \infty}^{\text{ms}} x_n = x.$$

Definizione 3.1.3 (Limite in probabilità).

$$\lim_{n \to \infty}^{P} x_n = x.$$

se vale che, $\forall \epsilon > 0$:

$$\lim_{n \to \infty} P(|x_n - x| > \epsilon) = 0.$$

Per capire cosa rappresenta il termine $P(|x_n - x| > \epsilon)$ introduciamo la funzione caratteristica:

$$\chi_{\epsilon}(t) = \begin{cases} 0 & |t| < \epsilon \\ 1 & |t| > \epsilon \end{cases}.$$

Il termine di probabilità in questione è valutato proprio nel supporto di questa funzione:

$$P(|x_n - x| > \epsilon) = \int d\omega P(\omega) \chi_{\epsilon}(|x_n - x|).$$

Definizione 3.1.4 (Limite in distribuzione). Data una funzione di x_n : $f(x_n)$ si ha che questa converge a f(x) in distribuzione se:

$$\lim_{n \to \infty} \lim_{n \to \infty} \left\langle f(x_n) \right\rangle = \left\langle f(x) \right\rangle.$$

Esempio 3.1.3 (Moto Browniano e moto a step). Prendiamo due moti con regole stocastiche differenti: un moto Browniano (passo del moto random) ed un moto casuale di passo unitario. Ipotizziamo che il corpo che effettua il moto (nei due casi) parta dall'origine.

Le distribuzioni di probabilità dei fenomeni sono diverse, il valor medio del moto è invece nullo in entrambi i casi. Per questo motivo entrambi i moti tendono a 0 in distribuzione.

Quest'ultimo limite è usato spesso "simulativamente", ovvero per la soluzione di equazioni differenziali stocastiche.

I limiti elencati in questa sezione non sono tutti indipendenti, infatti (\implies = "implica"):

$$\lim_{n \to \infty} \stackrel{\text{ac}}{\Longrightarrow} \lim_{n \to \infty} \\
\lim_{n \to \infty} \stackrel{\text{P}}{\Longrightarrow} \lim_{n \to \infty} \\
\lim_{n \to \infty} \stackrel{\text{dist}}{\Longrightarrow} \lim_{n \to \infty}.$$

3.2 Cumulanti della funzione caratteristica.

Funzione generatrice dei cumulanti

$$\Phi(s) = \ln(\phi(s)).$$

Si potrebbe dimostrare che la funzione generatrice si esprime in modo generale in funzione di quantità definite come cumulanti:

$$\Phi = \sum_{r=1}^{\infty} i^r \sum_{\{m\}} \left\langle \left\langle x_1^{m_1} x_2^{m_2} \ldots \right\rangle \right\rangle \prod_{i=1}^{\infty} \frac{s_i^{m_i}}{m_i!} \delta(r - \sum_{i=1}^r m_r).$$

Dove i termini tra le parentesi $\langle\langle x_i^{m_i}\rangle\rangle$ sono i cumulanti. Prendiamo ad esempio lo sviluppo dei primi due:

$$\begin{split} &\langle\langle x_1\rangle\rangle = \langle x_1\rangle \sim \text{Media} \\ &\langle\langle x_1x_2\rangle\rangle = \langle x_1x_2\rangle - \langle x_1\rangle\,\langle x_2\rangle \sim \text{Covarianza.} \end{split}$$

Consideriamo adesso i cumulanti per una stessa variabile stocastica $(x_i = x_j \ \forall i, j)$, che chiameremo in questo contesto anche Momenti.

Cumulanti di processo Gaussiano.

I cumulanti per un processo Gaussiano sono tutti nulli per $n \geq 3$.

$$\langle \langle x^n \rangle \rangle = 0 \quad \forall n \ge 3.$$

Esempio 3.2.1 (Cumulante quarto per Gaussiana).

$$\langle \langle x^4 \rangle \rangle = \langle x^4 \rangle - 4 \langle x^3 \rangle \langle x \rangle +$$

$$-3 \langle x^2 \rangle^2 + 12 \langle x^2 \rangle \langle x \rangle^2 - 6 \langle x \rangle^4.$$

Possiamo dimostrare che questo è nullo valutando la derivata del cumulante terzo:

$$\int_{-\infty}^{\infty} \frac{\mathrm{d}}{\mathrm{d}x} \left\{ x^3 \exp\left(\frac{-x^2}{2\sigma^2}\right) \right\} dx = 0.$$

Questa si azzera perché la Gaussiana si annulla per $x=\pm\infty,$ rendendo esplicita la derivata:

$$\int \left(3x^2 \exp\left(-\frac{x^2}{2\sigma^2}\right) - \frac{x^4}{\sigma^2} \exp\left(-\frac{x^2}{2\sigma^2}\right)\right) dx = 0.$$

$$\left\langle x^{4}\right\rangle =3\sigma^{2}\left\langle x^{2}\right\rangle =3\left(\sigma^{2}\right) ^{2}.$$

Inserendo nella equazione per il cumulante quarto si annullano tutti i termini (per semplicità abbiamo preso una gaussiana a media nulla $\langle x \rangle = 0$).

In generale questa cosa non funziona, non è possibile esprimere i cumulanti in funzione di altri cumulanti di ordine inferiore per ogni distribuzione.

3.3 Teorema del limite centrale

Teorema del limite centrale

La somma di variabili stocastiche aventi media e varianza definita tende ad una Gaussiana.

Sia $\{x_i\}$ una variabile random con distribuzione di probabilità $P_i(x_i)$ tale che:

$$\langle x_i \rangle = 0; \quad \text{var} \left\{ x_i^2 \right\} = b_i^2.$$

Il teorema richiede che i primi due momenti siano definiti:

$$s_n = \sum_{i=1}^n x_i; \qquad \sigma_n^2 = \sum_{i=1}^n b_i^2.$$

Inoltre le code della s_n si devono annullare in modo rapido:

$$\lim_{n \to \infty} \left[\frac{1}{\sigma_n^2} \sum_{i=1}^n \int_{|x| > t\sigma_n} dx x_i^2 P_i(x) \right] = 0 \qquad \forall t > 0.$$

Se ne conclude che

$$\tilde{s}_n = s_n/\sigma_n \to G.$$

Con G Gaussiana di media 0 e varianza 1.

Teorema di Chebyshev

Si cerca di quantificare quanto velocemente una distribuzione tenda alla Gaussiana.

Definiamo la funzione:

$$F_n(t) \equiv \int_{-\infty}^t \tilde{P}(\tilde{s}_n) d\tilde{s}_n; \qquad \phi(t) = \lim_{n \to \infty} F_n(t).$$

Dove \tilde{P} è la distribuzione dei \tilde{s}_n , che tiene di conto che ad ogni step n cambia la normalizzazione necessaria per essere una probabilità.

Teorema di Chebyshev

$$F_n - \phi(t) \sim \frac{e^{-t^2/2}}{\sqrt{2\pi}} \left[\frac{Q_1(t)}{n^{1/2}} + \frac{Q_2(t)}{n} + \dots \right].$$

In cui i Q_i sono i polinomi di Chebyshev-Hermite, legati ai momenti di $\{x_i\}$.

Prendiamo ad esempio $Q_1(t)$:

$$Q_1(t) \propto \frac{\left\langle \left(x - \left\langle x \right\rangle\right)^3 \right\rangle}{\sigma^3}.$$

la quantità a destra è legata al momento terzo di $\{x_i\}$, di conseguenza è nulla nel caso gaussiano (e lo sono anche tutte le restanti Q_i).

In conclusione le distribuzioni tendono ad una Gaussiana nelle ipotesi del teorema del limite centrale come $1/\sqrt{n}$.

3.4 Momenti fattoriali

Momenti fattoriali della distribuzione d Poisson

$$P(x) = e^{-\lambda} \frac{\lambda^x}{x!}.$$

Momenti fattoriali

$$\langle x^r \rangle_f = \langle x \cdot (x-1) \cdot \ldots \cdot (x-r+1) \rangle.$$

Esempio 3.4.1 (Poisson con r = 2.).

$$\langle x(x-1)\rangle = \left\langle x(x-1)e^{-\lambda}\frac{\lambda^x}{x!}\right\rangle =$$

$$= \lambda^2 \left\langle e^{-\lambda}\frac{\lambda^{x-2}}{(x-2)!}\right\rangle = \lambda^2.$$

Iterando questa procedura si ottiene:

Momenti fattoriali per distribuzione di Poisson

$$\langle x^r \rangle_f = \lambda^r$$
.

Funzione generatrice generalizzata.

Funzione generatrice

$$G(s) = \sum_{n=0}^{\infty} s^n P(n) = \langle s^n \rangle.$$

Possiamo ottenere la G(s) a partire dalla funzione caratteristica:

$$G(s) = \phi(-i \ln s).$$

Grazie a questa possiamo esprimere i cumulanti fattoriali nel seguente modo:

$$\langle x^n \rangle_f = \left[\frac{\partial^n}{\partial s^n} G(s) \right].$$

Funzione generatrice dei cumulanti fattoriali

$$g(s) \equiv \ln(G(s)) = \sum_{r=1}^{\infty} \langle \langle x^r \rangle \rangle_f \, \frac{(s-1)^r}{r!,}.$$

Esempio 3.4.2 (Funzione generatrice per Poissoniana).

$$G(s) = \sum_{n=1}^{\infty} s^n e^{-\lambda} \frac{\lambda^n}{n!} =$$

$$= e^{-\lambda} \sum_{n=1}^{\infty} \frac{(s\lambda)^n}{n!} = e^{\lambda(s-1)}.$$

Per Poisson si ha quindi che:

$$\langle\langle x^r\rangle\rangle_f=0\quad \forall r\geq 2.$$

3.5 Processi stazionari e processi di Markov

Probabilità di un processo

Prendiamo un oggetto vittima di un processo stocastico dipendente dal tempo e mettiamoci in un sistema di coordinate spaziali x.

Possiamo descrivere completamente il processo con:

$$P_n(x_1, t_1; x_2, t_2; \dots; x_n, t_n).$$

Ovvero la densità di probabilità che l'oggetto si trovi in x_1 al tempo t_1 , x_2 al tempo t_2 etc... Scegliamo una base spazio temporale $(\overline{x} = (x, t))$, le proprietà di cui gode questa quantità sono:

- $P_n \geq 0$.
- Simmetria: $P_n(\overline{x}_1; \overline{x}_2; \ldots) = P_n(\overline{x}_2; \overline{x}_1)$.
- Completezza:

$$\int P_n(\overline{x}_1; \dots; \overline{x}_n) dx_n = P_{n-1}(\overline{x}_1; \dots; \overline{x}_{n-1}).$$

• Norma: $\int P_1(\overline{x}_1)dx_1 = 1$

Possiamo calcolare il valor medio di una quantità nel seguente modo:

$$\langle x(t_1) \cdot \ldots \cdot x(t_n) \rangle =$$

$$= \int_{\mathbb{R}^n} dx_1 \dots dx_n P_n(\overline{x}_1; \dots; \overline{x}_n) x_1 \dots x_n.$$

Processi stazionari

Un processo si dice stazionario se $\forall n$:

$$P_n(x_1, t_1; \dots; x_n, t_n) =$$

$$= P_n(x_1, t_1 + \Delta t; \dots; x_n, t_n + \Delta t).$$

Probabilità condizionata

Ipotizziamo che all'istante t_i l'oggetto si trovi in $x \in [x_i, x_i + \Delta x]$ (con $i \in [1, k]$).

Allora la probabilità che l'oggetto si trovi in un istante successivo t_{k+l} in un intervallo $[x_{k+l}, x_{k+l} + \Delta x]$ è:

$$P_{k+l}(\overline{x}_1; ...; \overline{x}_{k+l}) =$$

$$= P_k(\overline{x}_1; ...; \overline{x}_k) \cdot P_{l|k}(\overline{x}_{k+1}; ...; \overline{x}_{k+l} | \overline{x}_1; ...; \overline{x}_k).$$

Con $P_{l|k}$ probabilità di trovarsi in un intorno di x_{k+l} condizionata dai primi k step.

Esempio 3.5.1 (Prob. condizionata dal primo step).

$$P_2(\overline{x}_1; \overline{x}_2) = P_{1|1}(\overline{x}_2|\overline{x}_1) \cdot P_1(\overline{x}_1).$$

Processi di Markov

Un processo si dice Markoviano se:

$$P_{1|n-1}(\overline{x}_n|\overline{x}_1;\ldots;\overline{x}_{n-1}) = P_{1|1}(\overline{x}_n|\overline{x}_{n-1}).$$

Nel caso dei processi di Markov basta conoscere P_1 e $P_{1|1}$ per conoscere l'intero processo.

3.6 Equazione di Chapman - Kolmogorov

L'idea per l'equazione è data dall'identità:

$$\sum_{B}^{\Omega} P(A \cap B \cap C) = P(A \cap C).$$

Prendiamo un processo Markoviano, l'equazione per la P_3 è:

$$P_3(\overline{x}_1; \overline{x_2}; \overline{x}_3) = P_{1|1}(\overline{x}_3|\overline{x}_2)P_{1|1}(\overline{x}_2|\overline{x}_1)P_1(\overline{x}_1).$$

Integrando rispetto alla coord. x_2 otteniamo a sinistra la $P_2(\overline{x}_1; \overline{x}_3)$ (per la completezza delle P_n), che può essere riscritta come:

$$P_2(\overline{x}_1; \overline{x}_3) = P_{1|1}(\overline{x}_3|\overline{x}_1)P_1(\overline{x}_1).$$

Il risultato è l'equazione di Chapman-Kolmogorov.

$$P_{1|1}(x_3|x_1) = \int P_{1|1}(x_3|x_2) P_{1|1}(x_2|x_1) dx_2.$$

4.1 Continuità dei processi stocastici

Definizione 4.1.1 (Processo continuo). Un processo stocastico si dice continuo se $\forall \epsilon > 0$:

$$\lim_{\Delta t \to 0} \frac{1}{\Delta t} \int_{\Sigma_{\epsilon}} dx_1 P_{1|1}(x_1, t + \Delta t | x_2, t) = 0.$$

$$\Sigma_{\epsilon}:\{|x_1-x_2|>\epsilon\}.$$

In pratica serve che il cammino descritto dal processo sia continuo, la distanza tra due punti del processo deve andare a 0 più rapidamente di Δt .

I processi Markoviani non sono necessariamente continui:

Esempio 4.1.1 (Pollaio). Il numero di uova prodotte in un pollaio in un giorno può essere schematizzato come processo markoviano: dipende soltanto dal numero di galline presenti nel pollaio il giorno prima. Questo processo non può essere continuo: è possibile

Questo processo non può essere continuo: è possibile mandare il Δt a 0 ma non possiamo fare altrettanto con x, ovvero il numero di uova. Infatti in questo caso il numero di uova è discreto.

In generale i processi a salti discreti non possono essere continui.

Esempio 4.1.2 (Moto Browniano). Calcoliamo l'equivalente della $P_{1|1}$ nel moto Browniano, nella lezione 1 abbiamo visto che:

$$P(x, t + \Delta t) = \int P(x - \Delta, t) f(\Delta) d\Delta.$$

Con $f(\Delta)$: probabilità di fare un salto lungo Δ nell'intervallo di tempo Δt .

Definendo la quantità $y=x-\Delta$ intuitivamente la $f(\Delta)$ corrisponde alla probabilità condizionata:

$$f(\Delta) = P_{1|1}(x, t + \Delta t | y, t).$$

Essendo un oggetto Gaussiano la $f(\Delta)$ avrà la seguente struttura:

$$f(\Delta) = \frac{1}{\sqrt{4\pi D\Delta t}} \exp\left(-\frac{1}{4D\Delta t} (x - y)^2\right).$$

In altre parole $f(\Delta)$ è proprio un propagatore. Inserendo questo oggetto nella definizione di processo continuo si vede che l'uguaglianza al limite è soddisfatta, quindi il moto Browniano è un processo continuo.

Esempio 4.1.3 (Moto di Cauchy). Il moto di Cauchy presenta una struttura per la probabilità di salto (condizionata) del seguente tipo:

$$P_{1|1}(x, t + \Delta t | z, t) = \frac{\Delta t}{\pi} \frac{1}{(x - z)^2 + (\Delta t)^2}.$$

E si può dimostrare che:

$$\lim_{\Delta t \to 0} \frac{1}{\Delta t} \int_{\Sigma_{\epsilon}} \frac{\Delta t dx}{\pi \left[\left(x - z \right)^2 + \left(\Delta t \right)^2 \right]} = \infty.$$

Di conseguenza il moto di Cauchy non è continuo.

Figura 1.3: Processo di Brown e Processo di Cauchy a confronto (Ottenuto in Julia).

4.2 Forma differenziale di Chapman - Kolmogorov

Prendiamo un processo stocastico scomponibile $^{\rm 1}$ in una parte continua ed una non continua.

Si può dimostrare che un processo di questo tipo è descritto dalla seguente forma differenziale:

Forma di Chapman-Kolmogorov

$$\partial_t P(\boldsymbol{z}, t | \boldsymbol{y}, t') = -\Gamma + \Phi$$
 (4.1)

In cui Γ è la parte contenente il processo continuo:

$$\Gamma = \sum_{i} \partial_{z_{i}} \left[A_{i}(\boldsymbol{z}, t) P(\boldsymbol{z}, t | \boldsymbol{y}, t') \right] +$$

$$+ \sum_{i,J} \frac{1}{2} \partial_{z_{i}Z_{J}}^{2} \left[B_{iJ}(z, t) P(\boldsymbol{z}, t | \boldsymbol{y}, t') \right].$$

Qui abbiamo un primo termine "deterministico" (con la A) che determina soltanto uno spostamento dell'oggetto ed un termine di diffusione (quello in B). Nella Φ abbiamo invece il processo discontinuo:

$$\begin{split} \Phi = \int d\boldsymbol{x} \left[\omega(\boldsymbol{z}|\boldsymbol{x},t) P(\boldsymbol{x},t|\boldsymbol{y},t') \right. + \\ \left. - \omega(\boldsymbol{x}|\boldsymbol{z},t) P(\boldsymbol{z},t|\boldsymbol{y},t') \right]. \end{split}$$

Il termine Φ somiglia molto al termine della equazione di Volterra che abbiamo visto nella prima lezione (prob. di trovarsi in z è data dalla probabilità di finire in z da una posizione x diminuito la prob. di scappare in x dalla posizione z).

La potenza della equazione è la sua generalità: se sappiamo che un processo è Markoviano (magari per la fisica che ci sta dietro) allora l'equazione di evoluzione delle prob. nel tempo sarà necessariamente quella sopra.

Esempio 4.2.1
$$(A = B = 0, \text{ quindi } \Gamma = 0)$$
. $\partial_t P = \Phi$.

Considerando il rapporto incrementale con passo Δt :

$$P(z, t + \Delta t | y, t) = P(z, t | y, t) + \Delta t \cdot \Phi.$$

¹Ipotesi per cui si può scomporre sul Gardiner

Sfruttiamo la proprietà ovvia:

$$P(\boldsymbol{z}, t | \boldsymbol{t}, t) = \delta(\boldsymbol{y} - \boldsymbol{z}).$$

Allora possiamo sviluppare l'espressione con Δt che tende a 0 (mettiamoci in una dimensione per semplicità):

Soluzione della forma diff. con termini continui

$$\begin{split} P(z,t+\Delta t|y,t) &= \\ &= \delta(z-y) \left[1 - \Delta t \int dx \omega(x|z) \right] + \Delta t \cdot \omega(z|y). \end{split}$$

4.3 Processo di Wiener

Un processo di Wiener è modellato dalla seguente equazione:

Equazione per processo di Wiener

L'equazione che regola il processo di Wiener è una Fokker-Planck:

$$\frac{\partial}{\partial t}P(\omega,t|\omega_0,t_0) = \frac{1}{2}\frac{\partial^2}{\partial \omega^2}P(\omega,t|\omega_0,t_0).$$

Inoltre deve esser rispettata la condizione iniziale:

$$P(\omega, t_0 | \omega_0, t_0) = \delta(\omega - \omega_0).$$

Il processo si può risolvere utilizzando la funzione caratteristica:

$$\phi(s,t) = \int d\omega P(\omega,t|\omega_0,t_0)e^{is\omega}.$$

Sfruttando le regole della trasformata possiamo riscrivere l'equazione del processo come:

$$\frac{\partial \phi}{\partial t} = -\frac{1}{2}s^2\phi.$$

$$\phi(s, t_0) = \exp(is\omega_0).$$

La soluzione è nota:

$$\phi(s) = \exp\left(-\frac{1}{2}s^{2}(t - t_{0})\right)\phi(s, t_{0}) =$$

$$= \exp\left(-\frac{1}{2}s^{2}(t - t_{0}) + is\omega_{0}\right).$$

Visto che l'antitrasformata di una Gaussiana è una Gaussiana abbiamo la soluzione nello spazio reale:

Soluzione del processo di Wiener

$$P(\omega, t | \omega_0, t_0) = \frac{1}{\sqrt{2\pi (t - t_0)}} \exp \left(-\frac{(\omega - \omega_0)^2}{2 (t - t_0)}\right)$$

Il processo che abbiamo ottenuto è Gaussiano:

$$\langle \omega \rangle = \omega_0.$$

$$\left\langle (\omega - \omega_0)^2 \right\rangle = t - t_0.$$

Proprietà dei processi di Wiener

- É continuo.
- Non è differenziabile, $\forall k$:

$$\operatorname{Prob}\left(\frac{|\omega(t+h) - \omega(t)|}{h} > k\right) = \\ = 2\int_{kh}^{\infty} d\omega \frac{1}{\sqrt{2\pi h}} e^{-\omega^2/2h} \xrightarrow{h \to 0} 1.$$

• Gli incrementi sono indipendenti:

$$P(\omega_2, t_2; w_1, t_1; \omega_0, t_0) =$$

$$= P(\omega_2, t_2 | \omega_1, t_1) P(\omega_1, t_1 | \omega_0, t_0) P(\omega_0, t_0).$$

Il primo termine dopo l'uguale non dipende da (ω_0, t_0) perché il processo è Markoviano.

• La correlazione:

$$\langle \omega(t)\omega(s)| [\omega_0, t_0] \rangle = \min(t - t_0, s - s_0) + \omega_0^2.$$

Che nel caso particolare in cui $\omega_0 = t_0 = 0$ si ha $\langle \omega(t)\omega(s) \rangle = s$ se t > s.

5.1 Processo di Ornstein - Uhlenback

Prendiamo in considerazione altri esempi di processi di Markov.

Equazione di Ornstein - Uhlenback

$$\frac{\partial P}{\partial t} = \frac{\partial}{\partial x}(kxP) + \frac{1}{2}D\frac{\partial^2}{\partial x^2}P.$$

Soluzione stazionaria

Cerchiamo intanto la soluzione con $(\partial_t P = 0)$:

$$\frac{\partial}{\partial x} \left(kxP + \frac{1}{2} D \frac{\partial}{\partial x} P \right) = 0 \implies$$

$$\implies \left[kxP + \frac{1}{2}D\frac{\partial}{\partial x}P \right]_{-\infty}^{x} = J.$$

Se ipotizziamo che:

1.
$$\lim_{|x| \to \infty} P(x, t|x_0, t_0) = 0$$

2.
$$\lim_{|x| \to \infty} xP(x, t|x_0, t_0) = 0.$$

Allora possiamo affermare che la corrente J=0 per $x\to\infty$. Si risolve allora l'equazione differenziale:

Soluzione stazionaria

$$P_s(x) = \frac{1}{\sqrt{\pi}D/k}e^{-kx^2/D}.$$

Soluzione dipendente dal tempo.

Per la dipendenza temporale sfruttiamo la funzione caratteristica $\phi(s)$.

$$\phi(s) = \int e^{isx} P(x, t|x_0, t_0) dx.$$

L'equazione del processo diventa:

$$\partial_t \phi = -ks \partial_s \phi - \frac{1}{2} Ds^2 \phi.$$

Questa equazione alle derivate parziali può essere risolta tramite il metodo delle caratteristiche (5.A). L'unico ostacolo all'utilizzo del metodo è il secondo termine dopo l'uguale (contiene la soluzione), vorremmo ricondurci all'equazione in forma standard.

Facciamo allora il cambio di variabile:

$$g = \ln \phi$$
.

Visto che:

$$\partial_t g = \frac{\partial_t \phi}{\phi} \qquad \partial_s g = \frac{\partial_s \phi}{\phi}.$$

Si ha una equazione in g più maneggevole:

$$\partial_t g + ks \partial_s g = -\frac{1}{2} Ds^2.$$

Questa è risolubile con il metodo delle caratteristiche:

$$(a, b, c) \to (1, ks, -\frac{1}{2}Ds^2).$$

Parametrizzando con η abbiamo le equazioni caratteristiche:

$$\frac{\mathrm{d}t}{\mathrm{d}\eta} = 1$$
 $\frac{\mathrm{d}s}{\mathrm{d}\eta} = ks$ $\frac{\mathrm{d}g}{\mathrm{d}\eta} = -\frac{1}{2}Ds^2$.

Possiamo risolvere per rimuovere η :

$$\begin{cases} 1. & dt = \frac{ds}{ks} \\ 2. & \frac{ds}{ks} = -\frac{dg}{1/2Ds^2} \end{cases}$$

Integrando queste equazioni escono fuori delle costanti, ridefinendo tali costanti come funzioni (u_1, u_2) saremo in grado di risalire alla ϕ .

Risolviamo la 1:

$$c_1 = t - \frac{1}{k} \ln(s) \implies c'_1 = \exp\left(t - \frac{1}{k} \ln(s)\right) = se^{-kt}.$$

Quindi definiamo la prima soluzione come u_1 :

$$u_1(t,s) = se^{-kt} \tag{5.1}$$

Passiamo alla equazione 2 del sistema, integrando si ottiene:

$$c_2 = \frac{s^2 D}{4k} + g.$$

Ricordando che $g = \ln \phi$ possiamo definire anche un'altra funzione a partire dalla costante c_2 (si fa l'esponenziale della 2):

$$u_2(t,s) = \phi \exp\left(\frac{Ds^2}{4k}\right) \tag{5.2}$$

Riscrivendo la 5.2 isolando ϕ si ha:

$$\phi = u_2 \exp\left(-\frac{Ds^2}{4k}\right).$$

Visto che u_1 e u_2 sono entrambe costanti collegate dalle equazioni caratteristiche sarà vero che:

$$u_2 = f(u_1).$$

Soluzione dipendente dal tempo per ϕ

$$\phi = f\left(se^{-kt}\right) \exp\left(-\frac{Ds^2}{4k}\right) \tag{5.3}$$

Condizioni al contorno

$$P(x,0|x_0,0) = \delta(x-x_0) \implies \phi(s,0) = e^{ix_0s}$$
.

Prendiamo l'equazione 5.3 ed invertiamola per trovare la f(s) (t=0) inserendo anche la condizione iniziale:

$$f(s) = e^{ix_0s} \exp\left(\frac{Ds^2}{4k}\right).$$

Per reinserire il tempo e trovare la soluzione con queste condizioni iniziali basta fare la sostituzione:

$$s \to se^{-kt}$$
.

Soluzione con condizione iniziale δ

$$\phi(s,t) = \exp\left[-\frac{Ds^2}{4k} \left(1 - e^{-2kt}\right) + isx_0e^{-kt}\right]$$
(5.4)

A questo punto possiamo tornare indietro con una antitrasformata, altrimenti possiamo ricavare i momenti sfruttando le proprietà di ϕ :

$$\langle x(t)\rangle = i \frac{\partial \phi}{\partial s} \Big|_{s=0} = x_0 e^{-kt}.$$

$$\operatorname{var}(\mathbf{x}(\mathbf{t})) = \langle x^{2}(t) \rangle - \langle x(t) \rangle^{2} =$$

$$= -1 \frac{\partial^{2} \phi}{\partial s^{2}} \Big|_{s=0} - \langle x \rangle^{2} =$$

$$= \frac{D}{2k} \left(1 - e^{-2kt} \right).$$

Figura 1.4: Andamento della media e della varianza per il processo di Ornstein-Uhlenback.

I risultati ottenuti sono conformi con le condizioni iniziali inserite.

Media all'istante iniziale tutti i camminatori sono in x_0 (grazie alla δ).

Quando il processo fa evolvere le posizioni dei camminatori allora i camminatori si allontanano da x_0 andando verso l'origine, questo è conforme con quanto visto per la soluzione stazionaria: una Gaussiana centrata nello 0.

Varianza Nell'istante iniziale, quando tutti i camminatori sono nel punto x_0 , la varianza è nulla, questa si stabilizza nel tempo al valore dato dalla Gaussiana nelle condizioni stazionarie.

Calcolo delle correlazioni

$$\langle x(t_1)x(t_2) | [x_0, t_0] \rangle =$$

$$= \int dx_1 dx_2 P(x_1, t_1; x_2, t_2; x_0, t_0) x_1 x_2 =$$

$$= \int dx_1 dx_2 x_1 x_2 P(\overline{x}_1, \overline{x}_2) P(\overline{x}_2, \overline{x}_0).$$

In cui si è assunto il processo Markoviano e la gerarchia temporale: $t_1 > t_2 > t_0$.

Se il processo ha raggiunto la stazionarietà $(t_0 \to \infty)$ allora conosciamo la forma del propagatore:

$$P(x_2|x_0) \sim \exp\left(-k\frac{x_2^2}{D}\right).$$

Risolvendo con questa si ottiene:

Correlazione temporale a due

$$\langle x(t)x(s)\rangle \sim \frac{D}{2k} \exp(-k|t-s|).$$

La correlazione temporale delle posizioni decade esponenzialmente.

Ornstein-Uhlenback come modello per rumore realistico.

Facendo la trasformata di Fourier della funzione di Correlazione si ottiene una Lorenziana:

$$S_{OU}(\omega) = \mathcal{F}(\langle x(t)x(s)\rangle) =$$

$$= \frac{1}{\omega^2/k^2 + 1}.$$

 $Figura \ 1.5: \ Andamento \ della \ trasformata \ della \ correlazione \ per \ il \ processo \ di \ Ornstein-Uhlenback.$

Questo è esattamente quello che ci aspettiamo da un rumore realistico: il rumore ha una frequenza di cutoff dettata da una Lorenziana.

Il cut-off è dovuto al fatto che le cose non possono muoversi infinitamente veloci, l'inerzia dei corpi che partecipano al moto stocastico fissa la frequenza di cut-off.

C'è quindi un tempo caratteristico di osservazione del fenomeno

$$\tau = \frac{1}{k}.$$

Se osserviamo il moto su scale temporali di quest'ordine allora lo spettro degli urti tra i corpi va a zero, questo comporta che il moto oltre queste scale temporali non è più ben descritto dal processo di Wiener.

Esercizio 5.1.1. Modifica all'equazione di OU Risolvere l'equazione di Ornstein-Uhlenback con l'aggiunta di un termine nella ∂_x :

$$\frac{\partial P}{\partial t} = \frac{\partial}{\partial x}((kx + \alpha) P) + \frac{1}{2}D\frac{\partial^2}{\partial x^2}P.$$

Soluzione: Il moto dovrebbe andare a stazionarietà nel punto $-\alpha/k$.

Appendice

5.A Metodo delle Caratteristiche.

Supponiamo di avere una PDE della forma:

PDE per metodo delle caratteristiche

$$a(x,y)\partial_x u + b(x,y)\partial_y u - c(x,y) = 0.$$

Scrivibile anche come:

$$(a, b, c) \cdot (\partial_x u, \partial_y u, -1) = 0 \tag{5.5}$$

Ed una superficie parametrizzata con la soluzione della PDE (u(x,y)):

$$S \equiv (x, y, u(x, y)).$$

Vettore tangente a S

Il vettore (a, b, c) appartiene al piano tangente di S in ogni punto (x, y, z).

La normale N alla superficie S la si trova facendo il gradiente di:

$$\overline{S} = u(x, y) - z.$$

Si ottiene quindi:

$$\mathbf{N} = (\partial_x u, \ \partial_y u, \ -1).$$

Visto che N è il secondo termine nella 5.5 si vede che la soluzione è il luogo dei vettori (a, b, c) ortogonali a N, quindi tangenti al piano S.

Quindi la soluzione della PDE è tale per cui il vettore (a,b,c) sta sul piano tangente.

Curva caratteristica

Per mappare la soluzione si introduce una curva C detta curva caratteristica che descrive la superficie.

$$C: C \equiv (x(\eta), y(\eta), z(\eta)).$$

C è una curva parametrica in η localmente tangente a (a,b,c).

La condizione di parallelismo implica il seguente sistema:

Equazioni Caratteristiche

Sono curve integrali per il campo vettoriale (a,b,c)

$$\begin{cases} a(x(\eta), y(\eta)) = \frac{\mathrm{d}x}{\mathrm{d}\eta} \\ b(x(\eta), y(\eta)) = \frac{\mathrm{d}y}{\mathrm{d}\eta} \\ c(x(\eta), y(\eta)) = \frac{\mathrm{d}z}{\mathrm{d}\eta} \end{cases}$$

Queste equazioni risolvono la PDE.

Esempio 5.A.1 (Equazione del trasporto.).

$$u_t + a \cdot u_x = 0.$$

In questo caso si ha $(a, b, c) \rightarrow (a, 1, 0)$, quindi:

$$\frac{\mathrm{d}x}{\mathrm{d}\eta} = a$$
 $\frac{\mathrm{d}t}{\mathrm{d}\eta} = 1$ $\frac{\mathrm{d}z}{\mathrm{d}\eta} = 0$

Passiamo alla risoluzione:

$$\begin{cases} x(\eta) = a\eta + c_1 \\ t(\eta) = c_2 + \eta \\ z(\eta) = c_3 \end{cases} \implies \begin{cases} x - at = x_0 \\ z = k \end{cases}$$

In cui si è effettuata dell'algebra per eliminare η nel primo sistema.

- La funzione che risolve il sistema di destra è la soluzione dell'equazione del trasporto.
- Graficamente le funzioni che risolvono sono delle rette con z costante, l'unione di queste rette rappresenta S.
- Abbiamo ottenuto un fascio di soluzioni poiché non abbiamo imposto alcuna soluzione al contorno.

In conclusione z dovrà essere funzione di x-at, quindi la soluzione generale sarà una funzione del tipo:

$$z(x,t) = f(x - at) \equiv u(x,t).$$

Supponiamo che all'istante iniziale la soluzione fosse una gaussiana:

$$f(x, t = 0) = e^{-x^2}.$$

Quindi si ha che anche la soluzione a t=0 è una gaussiana:

$$u(x, t = 0) = e^{-x^2}$$
.

Ed introducendo il tempo la soluzione diventa semplicemente:

$$u(x,t) = e^{-(x-at)^2}.$$

6.1 Modelli semplici di Random Walk

Mettiamoci in una situazione unidimensionale, con un oggetto che può fare salti di ampiezza unitaria.

Possiamo analizzare due modelli di RW:

- 1. Salto di ± 1 ad un tempo casuale.
- 2. Salto di ± 1 ad un tempo τ fissato.

Entrambi i casi descrivono processi Markoviani.

1. Salto ad un tempo random.

L'equazione di Chapman-Kolmogorov in forma differenziale per il processo si scrive come:

$$\partial_t P(n, t | n', t') = \left[\omega(n | n+1, t) P(n+1, t | n', t') + \omega(n | n-1, t) P(n-1, t | n', t') + 2P(n, t | n', t') \right].$$

Facciamo chiarezza sui termini in equazione, prendiamo il primo nella parentesi quadra dopo l'uguale:

$$\omega(n|n+1,t)P(n+1,t|n',t').$$

Questo indica la probabilità di essere in n+1 (descritta dal termine P) e di fare un salto all'indietro (descritta dalla probabilità corrispondente ω).

L'ultimo termine in parentesi indica la probabilità di essere in n al tempo t, se ci troviamo in tal punto allora allo step successivo usciamo sicuramente fuori per costruzione del moto.

Imponendo che il rate di salto in avanti sia uguale a quello di salto all'indietro:

$$\omega(n+1|n,t) = \omega(n-1|n,t) \equiv d \tag{6.1}$$

Possiamo semplificare l'equazione del processo:

Chapman-Kolmogorov per RW 1.

$$\partial_{t}P(n,t|n',t') = d[P(n+1,t|n',t') + P(n-1,t|n',t') + -2P(n,t|n',t')].$$
(6.2)

Si risolve in trasformata:

$$G(s,t) = \left\langle e^{isn} \right\rangle = \sum_{n}^{\infty} P\left(n,t|n',t'\right) e^{isn}.$$

Quando abbiamo un termine del tipo $P\left(n\pm 1|n',t'\right)$ basta scrivere:

$$e^{isn}P(n\pm 1,t|n',t') = e^{\mp is}e^{is(n\pm 1)}P(n\pm 1,t|n',t')$$
.

Quindi inserendo nella equazione di CK:

$$\partial_t G(s,t) = d\left(e^{-is} + e^{is} - 2\right)G(s,t).$$

Si risolve per G(s,t):

$$G(s,t) = \exp\left[\left(e^{is} + e^{-is} - 2\right)td\right]G(s,0).$$

Andando a cercare la soluzione stazionaria si ha che:

$$t \to \infty \implies s \to 0.$$

Questo per le relazioni tra spazio reale e trasformata: in sostanza stiamo assumendo i camminatori come oggetti reali, quindi se $\omega \to 0$ dev'essere necessariamente che $s \to 0$:

$$\omega \sim sc$$

Tornando alla G sviluppando si ottiene una Gaussiana:

$$G(s,t) = \exp(-s^2td).$$

2. Salto ad un tempo τ fissato

In questo caso il tempo è una variabile discreta di passo $\tau.$

Equazione per il propagatore nel RW 2

$$\begin{split} P\left(n,(N+1)\tau|\ n',N'\tau\right) = \\ \frac{1}{2}\left[P\left(n+1,N\tau|n',N'\tau\right) + \\ + P\left(n-1,N\tau|n',N'\tau\right)\right]. \end{split}$$
 (6.3)

RW1 e RW2 equivalenti per scale piccole.

Se τ è piccolo rispetto a $N\tau$ il caso (2) diventa equivalente al caso (1).

Definiamo il tempo $t' = N'\tau$:

$$P(n, (N+1)\tau|n', N'\tau) \simeq P(n, N\tau|n', t') + + \tau \partial_t P(n, N\tau|n', t').$$
(6.4)

Si procede definendo:

$$d \equiv 1/2\tau$$
.

Possiamo ottenere l'equazione 6.2 sostituendo al primo termine della 6.3 il secondo della 6.4 .

Risolviamo adesso la 6.3 con il metodo della funzione caratteristica $(G(s,t) = \langle e^{ins} \rangle)$:

$$G(s, (N+1)\tau) = \frac{1}{2} (e^{is} + e^{-is}) G(s, N\tau).$$

Come condizione iniziale si impone che G(s,0) = 1. In questo modo l'equazione in G è una ricorsiva in N che ha soluzione:

$$G(s, N\tau) = \left(\frac{1}{2} \left(e^{is} + e^{-is}\right)\right)^{N}.$$

A questo punto possiamo vedere che se $N \to \infty$ si ottiene una soluzione Gaussiana come nell'RW1 (mandare $N \to \infty$ significa limite stazionario).

$$\begin{cases} \tau N = t \\ d = \frac{1}{2\tau} \end{cases} \implies \frac{td}{N} = \frac{1}{2}.$$

$$G(s, N\tau) = \left[1 + \frac{td}{N} \left(e^{is} + e^{-is} - 2\right)\right]^{N}.$$

Sfruttando il limite notevole:

$$\lim_{x \to \infty} \left(1 + \frac{\alpha}{x} \right)^x = e^{\alpha}.$$

Si ottiene:

$$G(s, N\tau) \xrightarrow{N \to \infty} G(s, t) = \exp\left[td\left(e^{is} + e^{-is} - 2\right)\right].$$

In conclusione è come se, aspettando abbastanza a lungo, la caoticità sul salto di ± 1 contagiasse il clock di salto τ rendendo anch'esso caotico come nel caso RW1.

Nel proseguo distingueremo i due casi solo dove necessario vista la loro equivalenza a stazionarietà.

Limite al continuo nei salti

Definiamo lo spazio percorso dal camminatore dopo n step in un reticolo di passo l:

Quello che faremo sarà far il limite per $l\to 0$. La trasformata si modifica per questo caso nel seguente modo:

$$\phi(s,t) = \langle e^{isx} \rangle = G(ls,t) =$$

$$= \exp\left[\left(e^{ils} + e^{-ils} - 2 \right) td \right]. \tag{6.5}$$

Dove ricordiamo che d è il rate del processo definito dalla 6.1.

Si studia adesso anche il caso stazionario, quindi dobbiamo effettuare entrambi i limiti:

$$l \to 0$$

 $\tau \to 0$.

Sviluppando nell'esponenziale della 6.5 ci si rende conto che sopravvive solo il termine:

$$\sim \exp\left(-s^2l^2td\right)$$
.

Per questo è necessario che:

$$D = \lim_{\substack{l \to 0 \\ d \to \infty}} l^2 d = \text{Finito.}$$

Fare il limite per il Rate $d \to \infty$ è lo stesso che fare il limite per $\tau \to 0$ poiché per definizione $d = 1/2\tau$.

In conclusione otteniamo un andamento per ϕ Gaussiano:

Funzione caratteristica per RW nel limite continuo

$$\phi(s,t) = \exp\left(-s^2 t D\right).$$

Quindi abbiamo anche che:

$$\langle x^2 \rangle \sim 2tD$$
 (6.6)

Random Walk e processi di Wiener

Si può dimostrare che per $l \to 0$ l'equazione che regola il propagatore P è una Fokker-Plank (che regola anche i processi di Wiener).

Partiamo dalla Master Equation già scritta sopra:

$$\partial_t P(n) = d (P(n+1) + P(n-1) - 2P(n)).$$

Sviluppando in l=0 si ha:

$$P(n+1) = P(n) + \partial_x P(n)l + \frac{1}{2}\partial_{x^2}^2 l^2 P(n)$$

$$P(n+1) = P(n) - \partial_x P(n)l + \frac{1}{2}\partial_{x^2}^2 l^2 P(n).$$

E reinserendo nella equazione per P si ha:

$$\partial_t P(n) = dl^2 \partial_{r^2}^2 P(n).$$

Che è appunto una Fokker-Plank.

6.2 Random Walk di Weierstrass

Questo RW è più complesso dei primi due, si basa su alcuni parametri che ne determinano il passo ed il rate: (N, b).

Adesso anziché fare salti fissi di l si fanno salti J_n con rate R_n che variano al variare dell'intero n. J_n e R_n sono così definiti:

$$J_n = (N^n + 1) l$$
 $R_n = \frac{\gamma}{b^n}$ $b, N > 1.$ $n \in [0...\infty].$

Possiamo considerare γ come il parametro corrispondente a d della sezione precedente. Quindi ad esempio si può avere:

- Salto di l con rate γ .
- Salto di (N+1)l con rate γ/b .
- Salto di (N^2+1) l con rate γ/b^2 .

Come conseguenza salti più lunghi avranno rate più bassi (quindi saranno meno frequenti).

Master Equation per il RW di Weierstrass

$$\partial_t P(n, t | n', t') = \sum_{i=0}^{\infty} \frac{\gamma}{b^i} \left[P(n + (N^i + 1), t | n', t') + P(n - (N^i + 1), t | n', t') \right] +$$

$$-2 \sum_{i=0}^{\infty} \left(\frac{1}{b^i} \right) P(n, t | n', t').$$

La prima sommatoria tiene di conto di tutti i punti che possono arrivare da distanze diverse. La seconda sommatoria invece tiene conto di quelli che sono già nel punto e scappano via.

L'equazione descrive un processo a salti, di conseguenza il moto in questione è Markoviano. Come per gli altri RW risolviamo con la funzione caratteristica.

$$G(s,t) = \left\langle e^{isn} \right\rangle = \sum_{n}^{\infty} e^{isn} P(n,t|n',t').$$

La master equation si riscrive come:

$$\partial_t G(s,t) = \gamma \left[e^{is} \left(1 + \sum_{n=0}^{\infty} \frac{e^{isN^n}}{b^n} \right) + e^{-is} \left(1 + \sum_{n=0}^{\infty} \frac{e^{-isN^n}}{b^n} \right) + \frac{1}{2} \left[-2 \sum_{n=0}^{\infty} \frac{1}{b^n} \right] G(s,t).$$

Possiamo compattare la scrittura con la notazione:

$$f(s) \equiv \left[e^{is} \left(1 + \sum_{n=0}^{\infty} \frac{e^{isN^n}}{b^n} \right) + C.C - 2 \sum_{n=0}^{\infty} \frac{1}{b^n} \right].$$

Che ci permette di esprimere direttamente il risultato:

Funzione caratteristica per il RW di Weierstrass

$$G(s,t) = \exp(tf(s)) G(s,0).$$

Limite stazionario

Vediamo se anche in questo caso mandando $t \to \infty$ si ottiene una Gaussiana come nei casi RW1 e RW2. Sviluppando la G per $s \to 0$ si ottiene che molti termini polinomiali si ammazzano a vicenda, rimane soltanto la seguente:

$$G(s,t) = \exp\left(-ts^2 \sum_{k=0}^{\infty} \left(\frac{N^2}{b}\right)^k\right).$$

All'esponente notiamo che il coefficiente di diffusione D è una sommatoria:

$$D \to \sum_{k=0}^{\infty} \left(\frac{N^2}{b}\right)^k$$
.

Quello che si scopre è quindi che il parametro N^2/b decide se il processo sarà Gaussiano o no, infatti:

- Se $N^2/b < 1$ abbiamo una serie geometrica all'esponenziale che ci riconduce ad una forma Gaussiana.
- Se $N^2/b > 1$ la sommatoria diverge, il processo resta Markoviano ma non vale più il teorema del limite centrale.

Visto che il momento secondo è proporzionale a D (eq. 6.6) se ne conclude un processo con $N^2/b > 1$ ha varianza infinita.

La cosa interessante è che abbiamo scoperto un processo random che al limite non diventa una Gaussiana

6.3 Random Telegraph

Il RT è un processo random che coinvolge un sistema a due stati (o livelli):

Il processo è descritto dalle equazioni differenziali:

$$\begin{split} \partial_{t} P\left(a, t | x, t_{0}\right) &= -\lambda P\left(a, t | x, t_{0}\right) + \mu P\left(b, t | x, t_{0}\right) \\ \partial_{t} P\left(b, t | x, t_{0}\right) &= \lambda P\left(a, t | x, t_{0}\right) - \mu P\left(b, t | x, t_{0}\right). \end{split}$$

In cui x può essere a oppure b.

In questo caso c'è anche una terza equazione per la normalizzazione del processo:

$$P(a,t|x,t_0) + P(b,t|x,t_0) = 1.$$

Si scelgono le condizioni iniziali:

$$P(x, t_0 | x', t_0) = \delta_{xx'}$$
.

E quello che si ottiene risolvendo le equazioni differenziali è:

$$P(x',t|x,t_0) = \frac{\omega(x')}{R} + e^{-R(t-t_0)} \left(\frac{\lambda}{R} \delta_{ax} + \frac{\mu}{R} \delta_{bx}\right)$$
(6.7)

In cui R è la somma dei due rate:

$$R = \mu + \lambda$$
.

Mentre la funzione $\omega(x')$ differenzia i casi con x' = a e x' = b:

$$\omega(x') = \begin{cases} \lambda & \text{se } x' = a \\ \mu & \text{se } x' = b \end{cases}$$

Il primo termine nella 6.7 è il termine stazionario. Il secondo termine invece decade esponenzialmente

 $^{^{2}}$ il momento secondo deve essere definito nelle ipotesi per il teorema del limite centrale...

in t, il termine con le δ a moltiplicare deriva dalle condizioni iniziali inserite.

$$\langle x(t)| [x_0, t_0] \rangle = \sum_{x=a,b} xP(x, t|x_0, t_0) =$$
$$= \mathcal{R} + (x - \mathcal{R}) e^{-R(t - t_0)}.$$

Dove \mathcal{R} è il Rate ridotto:

$$\mathcal{R} = \frac{a\mu + b\lambda}{\lambda + \mu}; \qquad R = \mu + \lambda.$$

Si può anche calcolare la varianza di x(t)x(s), senza esplicitare i conti si ha:

$$\operatorname{var}(x(t)x(s)) = \langle x(s)x(t)\rangle - \langle x(s)\rangle \langle x(t)\rangle =$$

$$= \frac{(a-b)^2 \lambda \mu}{\mu + \lambda} e^{-R(t-t_0)}.$$

RT e OU

Le dipendenze dal tempo di media e varianza calcolate per il processo di Ornstein-Uhlenback sono le stesse che per il processo di Random Telegraph.

Per questo motivo spesso si preferisce studiare alcuni processi con il random telegraph che, analiticamente, permette di trovare la soluzione in modo più semplice.

6.4 Integrali stocastici

Sia x una variabile stocastica, il differenziale di questa variabile lo definiamo come:

$$dx = d\omega(t) \tag{6.8}$$

Ipotizziamo che il processo stocastico sia un processo di Wiener, in tal caso:

$$P(d\omega) \sim \exp\left(-\frac{(d\omega)^2}{dt}\right).$$

Con dt differenziale temporale.

Prendiamo allora una funzione G(s), vogliamo definire cosa significa calcolare l'integrale di G(s) se la misura è stocastica.

Figura 1.6: Funzione G(t) con punti stocastici ω_i , $\Delta\omega_i$ è la distanza sull'asse y tra il punto ω_{i-1} e ω_i .

Definiamo allora l'integrale come:

Integrale stocastico

$$\int_{t_0}^{t_n} G(s) d\omega(s) \equiv \lim_{n \to \infty} \sum_i G(\tau_i) \left[\omega(t_i) - \omega(t_{i-1}) \right]$$

Il valore dell'integrale dipende dalla scelta dei τ_i .

É interessante utilizzare come G(t) il processo di Wiener stesso per vedere cosa succede:

$$G(t) = \omega(t).$$

Inoltre definiamo gli step τ_i come:

$$\tau_i = t_{i-1} + \alpha(t_i - t_{i-1})$$
 $0 < \alpha < 1$.

Valutiamo la sommatoria all'interno della definizione:

$$\langle S_n \rangle = \sum_{i=0}^n \langle \omega(\tau_i) \left[\omega(t_i) - \omega(t_{i-1}) \right] \rangle =$$

$$= \sum_{i=0}^n \langle \omega(t_{i-1} + \alpha(t_i - t_{i-1})) \omega(t_i) \rangle +$$

$$- \langle \omega(t_{i-1} + \alpha(t_i - t_{i-1})) \omega(t_{i-1}) \rangle.$$

Ricordando che nei processi di Wiener vale:

$$\langle \omega(t)\omega(s)\rangle = \min(s,t).$$

Rimane soltanto:

$$\langle S_n \rangle = \sum_{i=0}^n t_{i-1} + \alpha(t_i - t_{i-1}) - \sum_{i=0}^n t_{i-1} =$$

= $\alpha(t_n - t_0)$.

Di conseguenza con la scelta 6.4 per i τ_i contano solo l'istante finale ed iniziale.

Inoltre quando $\alpha = 0$ l'integrale si annulla, mentre quando $\alpha = 1$ l'integrale è l'intervallo temporale.

La vera domanda da porsi è quale sia il giusto valore di $\alpha...$

6.5 Integrale di Îto e di Stratonovich Integrale di Îto

Îto è un matematico Giapponese, integrare con Îto implica scegliere τ_i all'inizio dell'intervallo.

Integrale di Îto

$$\alpha = 0.$$

 $\tau_i = t_{i-1}.$

Le somme parziali con questo integrale si scrivono come:

$$S_n = \sum_{i} \omega(t_{i-1}) \left[\omega(t_i) - \omega(t_{i-1}) \right].$$

L'integrazione di Îto forma una Martingala.

Martingala Dato un set di variabili stocastiche:

$$\{x_i\}: E(|x_i|) < \infty.$$

$$\{x_i\}$$
 è marting. $\iff E(x_{n+1}|x_1,\ldots,x_n)=x_n$.

Con E: valore di aspettazione.

Possiamo notare che il processo di Wiener realizza una martingala perché rispetta questa proprietà.

Il calcolo di Îto è anche non anticipante:

Funzione non anticipante

G(t) è non anticipante se è indipendente dall'incremento $\omega(t)-\omega(s)$ $\forall t,s.$

Esempio 6.5.1 (Esempi di funzioni non anticipanti). Dato un processo di Wiener $\omega(t)$ tutte le seguenti funzioni sono non anticipanti:

- $\omega(t)$.
- $\int dt f(\omega(t))$.
- $\int d\omega f(\omega(t))$.

Integrale di Stratonovich

Stratonovich era un fisico russo, integrare con Stratonovich implica scegliere il centro dell'intervallo.

Integrale di Stratonovich

$$\alpha = \frac{1}{2}.$$

$$\tau_i = \frac{1}{2} \left(\tau_{i-1} + \tau_i \right).$$

Le somme parziali in questo caso si scrivono come:

$$S_n = \sum_{i} \omega \left(\frac{t_i + t_{i-1}}{2} \right) \left[\omega(t_i) - \omega(t_{i-1}) \right].$$

L'integrale di Stratonovich ha caratteristiche analoghe a quello che si usa normalmente in fisica, infatti si applica bene con funzioni "morbide".

Esempio 6.5.2.

$$\int_0^t \omega(t)dt = \begin{cases} \frac{\omega^2(t)}{2} - \frac{\omega^2(0)}{2} = \frac{t}{2} & \text{Strato} \\ \sum \omega_{i-1} \left(\omega_i - \omega_{i-1}\right) = 0 & \text{Îto} \end{cases}$$

6.6 Relazione tra l'incremento stocastico e l'incremento temporale.

La relazione tra i due differenziali è la seguente:

$$(d\omega)^2 \sim dt$$
.

Questo significa che $d\omega$ è continuo ma non è differenziabile. Abbiamo già accennato alla non differenziabilità dei processi di Wiener, ecco un'altra riprova. Tutti gli ordini più alti dell'incremento si annullano:

$$d\omega^{N+2} \sim 0 \quad \forall N > 0.$$

Più formalmente, consideriamo il seguente integrale:

$$\int (d\omega)^{2+N} G(t) = \lim_{n \to \infty} \sum_{i=0}^{n} G_{i-1}(\Delta\omega_i)^{2+N}.$$

Quello che si può dimostrare è che:

$$\lim_{n \to \infty} \sum_{i=0}^{n} G_{i-1}(\Delta \omega_i)^{2+N} = \begin{cases} \int dt G(t) & N = 0\\ 0 & N > 0 \end{cases}$$

Quindi anche che:

$$\int (d\omega)^2 G(t) = \int dt G(t).$$

$$d\omega \sim O(dt^{1/2}) \tag{6.9}$$

Applicazione: Differenziale di una funzione

Prendiamo una funzione del tempo e del processo di Wiener: $f[\omega,t]$. Visto che si ha la 6.9 il differenziale df all'ordine più basso è:

Differenziale di una funzione

$$df\left[\omega,t\right] = \left[\frac{\partial d}{\partial t} + \frac{1}{2}\frac{\partial^2 f}{\partial \omega^2}\right]dt + \frac{\partial f}{\partial \omega}d\omega.$$

Questa struttura per il differenziale di una funzione è profondamente legata alla formula di Îto.

6.7 Formula di Îto

Supponiamo di avere una SDE della seguente forma:

$$dx = a(x,t)dt + b(x,t)d\omega$$
.

La soluzione formale è del seguente tipo:

$$x(t) = x_0 + \int_{t_0}^t a(x, s)ds + \int_{t_0}^t b(x, s)d\omega(s).$$

Supponiamo che esista una ed una sola soluzione non anticipante $^3.$

Allora se ho una f(x,t) con x soluzione della SDE scrivendone il differenziale all'ordine più basso si ha:

Formula di Îto

$$df(x,t) = \left[\frac{\partial f}{\partial t} + a \frac{\partial f}{\partial x} + \frac{1}{2} b^2 \frac{\partial^2 f}{\partial x^2} \right] dt + b \frac{\partial f}{\partial x} d\omega.$$

 $con dx = adt + bd\omega.$

L'utilità della formula è che ci permette di fare cambi di variabili con funzioni dipendenti da una variabile casuale.

³Le ipotesi per cui vale sono negli appunti

7.1 Integrale di una SDE

Prendiamo una SDE (Stochastical Differential Equation) del seguente tipo:

$$dx = f(x)dt + g(x)d\omega.$$

Con ω processo di Wiener.

Nell'equazione abbiamo una parte deterministica (f(x)dt) ed una stocastica $(g(x)d\omega)$.

Figura 1.7: La linea rappresenta l'incremento della parte deterministica, in alto abbiamo invece il processo stocastico che discosta la x dalla parte di funzione deterministica (come un rumore sovrapposto al segnale).

Abbiamo detto che formalmente possiamo integrare nel seguente modo (con h passo di integrazione):

$$x_h - x_0 = \int_0^h f(x(s))ds + \int_0^h g(x(s))d\omega.$$

La formalità dell'espressione deriva dal fatto che le funzioni f e g dipendono da x, quindi non possiamo semplicemente risolvere questo integrale.

Soluzione perturbativa

Se prendiamo un passo di integrazione h piccolo, possiamo sviluppare f e g attorno al punto x_0 :

$$f(x_s) = f_0 + f_0' \delta x_s + \frac{1}{2} f_0'' (\delta x_s)^2$$
$$g(x_s) = g_0 + g_0' \delta x_s + \frac{1}{2} g_0'' (\delta x_s)^2.$$

Con $\delta x_s = x_s - x_0$. Sostituendo nella equazione per la soluzione formale e tenendo solo l'ordine più basso si ha:

$$\delta x_h = \int_0^h f_0 ds + \int_0^h g_0 d\omega = f_0 h + g_0 \int_0^h d\omega.$$

Al secondo termine abbiamo un integrale stocastico. Questo indica che, operativamente, per effettuare una integrazione numerica e calcolare il punto successivo x_{n+1} si deve:

- Valutare la f nel punto x_n .
- Valutare la g nel punto x_n (la g di per se è solo una funzione, se la variabile è deterministica anche la g da un risultato deterministico).
- Ipotizzare una distribuzione per ω .
- Estrarre ogni volta un valore Z_n secondo tale distribuzione ⁴ facendo in modo che, alla fine del processo, i valori siano distribuiti secondo la distribuzione di ω .
- $\bullet \ x_{n+1} = f(x_n)h + g(x_n)Z_n$

Il procedimento funziona perché l'integrale:

$$\int_0^h d\omega.$$

É la somma di variabili Gaussiane, di conseguenza è anch'esso un processo con distribuzione Gaussiana:

$$Z_1(h) \equiv \int_0^h d\omega.$$

Vediamo le proprietà di Z_1 :

$$\langle Z_1(h)\rangle = \int_0^h \langle d\omega\rangle = 0.$$

Poiché il processo di Wiener ha media nulla.

$$\langle Z^{2}(h)\rangle = \left\langle \int_{0}^{h} d\omega_{s} \int_{0}^{h} d\omega_{t} \right\rangle =$$

$$= \left\langle \sum_{i} (\omega_{i} - \omega_{i-1}) \sum_{J} (\omega_{J} - \omega_{J-1}) \right\rangle =$$

$$= \sum_{i} \sum_{J} \Delta t \delta_{iJ} = h.$$

Dove per risolvere si è usato che:

$$\langle \Delta \omega^2 \rangle = \Delta t.$$

Se ne conclude che la variabile Z_1 è una Gaussiana a media nulla e con varianza \sqrt{h} :

$$Z_1 \in G(0, \sqrt{h}).$$

Operativamente possiamo generare un numero random tra 0 e 1:

$$Y_1(i) \in G(0,1).$$

Ed ottenere la variabile da moltiplicare a g_0 con:

$$Z_1(h) = \sqrt{h}Y_1(i).$$

In conclusione si ha che:

$$\delta x_h = f_0 h + g_0 Z_1(h).$$

⁴caratterizzeremo meglio tale distribuzione sotto

Guardando l'espressione notiamo che il primo termine è di ordine h mentre il secondo è di ordine \sqrt{h} poiché è un processo di Wiener.

Risulta quindi necessario capire se ci siamo persi dei termini di ordine h nella parte di sviluppo stocastico. Possiamo prendere la soluzione perturbativa al primo ordine e inserirla nuovamente all'interno dello sviluppo.

Ci limitiamo inoltre ad inserire solo il termine all'ordine più basso $(g_0Z_1(h))$ poiché il termine con f_0 darebbe sicuramente contributi di ordine superiore.

$$\delta x_s^{(1/2)} = g_0 Z_1(h) = g_0 \int_0^h d\omega.$$

$$\delta x_t = \int_0^t \left(f_0 + f_0' g_0 \int_0^s d\omega_r \right) ds +$$

$$+ \int_0^h \left(g_0 + g_0' g_0 \int_0^s d\omega_r \right) d\omega_s.$$

L'unico contributo di ordine h deriva dal secondo integrale, che ci da un termine del tipo:

$$\int_0^t \int_0^s d\omega_r d\omega_s = \int_0^t \omega_s d\omega_s.$$

Quindi adesso dobbiamo decidere quale calcolo utilizzare: Îto oppure Stratonovich.

L'evoluzione dell'equazione differenziale stocastica dipende dalla scelta del metodo di integrazione.

$$\int_0^t \omega_s d\omega_s = \begin{cases} \frac{\omega_t^2}{2} & \text{Strato} \\ \frac{1}{2} \left(\frac{\omega_t^2}{2} - t \right) & \hat{\text{Ito}} \end{cases}$$

In entrambi i casi si ottiene un termine O(h), quindi:

$$\delta x_h = g_0 Z_1(h) + f_0 h + \frac{g_0 g_0'}{2} \cdot \alpha(\hat{I}, S)$$

Con $\alpha(\hat{I}, S)$ data da:

$$\alpha(\hat{\mathbf{I}}, S) = \begin{cases} Z_1^2(h) & \text{Strato} \\ Z_1^2(h) - h & \hat{\mathbf{I}}to \end{cases}$$

Uguaglianza tra i due metodi

Effettuando il seguente cambio di variabili:

$$dx = \left(f - \frac{1}{2}gg'\right)dt + gd\omega.$$

si ha che i due δx_h (Îto e Stratonovich) si eguagliano poiché il termine aggiunto va a compensare il termine che subentra con l'integrale di Îto.

L'importanza di questo "cambio di variabili" è che ci autorizza ad utilizzare l'approccio di Stratonovich

anche per sistemi che fisicamente andrebbero trattati con Îto $^5.$

7.2 Algoritmo di Heun

Operativamente (per davvero) si usa spesso l'algoritmo di Heun per l'integrazione di SDE: si tratta di un algoritmo a 3 step:

$$\tilde{x}_1 = x_0 + Z_1 g_0 + f_0 h + \frac{1}{2} g_0 g_0' Z_1^2$$

$$x_1 = x_0 + Z_1 g(\tilde{x}_0) + f(\tilde{x}_0) + \frac{1}{2} g(\tilde{x}_0) g'(\tilde{x}_0) Z_1^2$$

$$x_h = \frac{1}{2} (x_1 + \tilde{x}_1).$$

Sostanzialmente equivale a fare un primo step di predizione ed un successivo step di correzione.

 $^{^5\}mathrm{Stratonovich}$ permette algoritmi di integrazione più potenti.

8.1 Legame tra SDE e Fokker-Plank

Prendiamo una equazione differenziale sticastica del tipo:

$$dx = adt + bd\omega$$
.

Possiamo immaginare che questa SDE dia luogo ad una distribuzione di probabilità Markoviana, quindi che soddisfi l'equazione di Chapman-Kolmogorov (4.1).

Il problema è che la forma differenziale di CK è molto generale, cerchiamo di capire quale forma assume per soddisfare la SDE sopra.

Prendiamo una generica funzione f(x(t)), il suo differenziale è dato dalla formula di \hat{I} to:

$$df = \left(a\partial_x f + \frac{1}{2}b^2\partial_{x^2}^2 f\right)dt + b\partial_x f d\omega.$$

Consideriamo la derivata di f rispetto al tempo mediata sulle realizzazioni di ω :

$$\left\langle \frac{\mathrm{d}f}{\mathrm{d}t} \right\rangle_{\omega} = \frac{\mathrm{d}}{\mathrm{d}t} \left\langle f(x(t)) \right\rangle.$$

Essendo $\langle d\omega \rangle_{\omega} = 0$ si ha che:

$$\frac{\mathrm{d}\langle f\rangle}{\mathrm{d}t} = \left\langle a\partial_x f + \frac{1}{2}b^2\partial_{x^2}^2 f \right\rangle \tag{8.1}$$

L'equazione di CK ci dava una condizione sul propagatore $P(x,t|x_0,t_0)$, tale propagatore entra in gioco nel calcolo del valor medio di f:

$$\langle f(x(t))\rangle = \frac{\mathrm{d}}{\mathrm{d}t} \int dx f(x) P(x, t|x_0, t_0).$$

In tale espressione la dipendenza temporale entra soltanto all'interno del propagatore.

Sostituendo la 8.1 si ha:

$$\int dx \left[a \partial_x f + \frac{1}{2} b^2 \partial_{x^2}^2 f \right] P = \int dx f(x) \partial_t P.$$

Integrando per parti a destra dell'uguale e supponendo che la $P(x,t|x_0,t_0)$ non diverga al bordo:

$$\int dx f(x)\partial_t P = \int dx f(x) \left[-\partial_x (aP) + \partial_{x^2}^2 \left(\frac{1}{2} b^2 P \right) \right].$$

Visto che si è isolata la f a destra e sinistra l'equazione per P che si ottiene ha la forma di una CK come anticipato:

Chapman-Kolmogorov per SDE

$$\partial_t P(x,t) = \left(-\partial_x a + \frac{1}{2}\partial_{x^2}^2 b^2\right) P(x,t) \quad (8.2)$$

Esempio 8.1.1. Prendiamo i seguenti valori per i parametri della SDE:

- \bullet a(x,t) = a(t)
- b(x,t) = b(t)

$$dx = a(t)dt + b(t)d\omega.$$

Integrando si ha:

$$x(t) = x_0 + \int_0^t a(s)ds + \int_0^t b(s)d\omega_s.$$

Mediando sulle realizzazioni di ω l'ultimo termine va via:

$$\langle x(t)\rangle_{\omega} = \langle x_0\rangle + \int_0^t a(s)ds.$$

Calcoliamo anche la varianza:

$$\langle x(t)x(s)\rangle = \langle (x(t) - \langle x(t)\rangle (x(s) - \langle x(s)\rangle))\rangle =$$

$$= \left\langle \int_0^t b(t')d\omega(t') \int_0^s b(s')d\omega(s') \right\rangle.$$

Sfruttando le proprietà della varianza per un processo di Wiener:

$$\langle x(t)x(s)\rangle = \int^{\min(t,s)} b^2(t')dt'.$$

Nel caso più semplice in cui a, b costanti:

- $\langle x(t) \rangle = x_0 + at$
- $\langle x(t)x(s)\rangle = b^2\min(t,s)$

Esempio 8.1.2.

$$dx = cxd\omega(t).$$

Potremmo procedere con l'approccio di Stratonovich:

$$\frac{dx}{x} = dy = cd\omega(t).$$

Il problema è che non è detto che l'oggetto a sinistra sia mordibo, quindi questo approccio è in generare sbagliato (non è rispettata la seconda uguaglianza). Dobbiamo utilizzare la formula di Îto per effettuare il cambio di variabili. Prendiamo il seguente:

$$f = y = \ln x$$
.

La formula ci dice che:

$$df = \left(af' + \frac{1}{2}b^2f''\right)dt + bf'd\omega.$$

Nel nostro caso:

- a = 0
- \bullet b = cx
- f = 1/x
- $f'' = -1/x^2$

Quindi in conclusione si ha una equazione differenziale per y che non è quella che ci saremmo aspettati:

$$dy = -\frac{c^2}{2}dt + cd\omega.$$

Abbiamo in più il primo termine. Integrando:

$$y(t) = y_0 + cd\omega(t) - \frac{c^2}{2}t.$$

A questo punto il problema è risolto per x:

$$x(t) = \exp(y) = x_0 \exp\left(c\omega(t) - \frac{c^2}{2}t\right).$$

Possiamo calcolare $\langle x \rangle$ sfruttando il fatto che il valor medio di un processo gaussiano è nullo.

$$z \in G(0,1) \implies \langle z \rangle = 0.$$

Nella nostra equazione abbiamo una espressione del tipo $\langle \exp(z) \rangle$, sfruttando le proprietà dei momenti di un processo Gaussiano si ha che:

$$\langle \exp(z) \rangle = \exp\left(\frac{\langle z^2 \rangle}{2}\right)$$
 (8.3)

Per dimostrarlo è necessario utilizzare lo sviluppo dell'esponenziale, i momenti maggiori del secondo si annullano e rimane soltanto quello.

Otteniamo in conclusione che:

$$\langle x(t) \rangle = \langle x_0 \rangle \exp\left(-\frac{c^2}{2}t\right) \langle \exp\left(c\omega(t)\right) \rangle =$$

= $\langle x_0 \rangle \exp\left(-\frac{c^2}{2}t\right) \exp\left(\frac{c^2}{2}t\right) = \langle x_0 \rangle$.

Analogamente si può fare con la correlazione:

$$\begin{split} \langle x(t)x(s)\rangle &= \left\langle x_0^2\right\rangle e^{-\frac{c^2}{2}(t+s)} \left\langle e^{c(\omega(t)+\omega(s))}\right\rangle = \\ &= \left\langle x_0^2\right\rangle e^{-\frac{c^2}{2}(t+s)} e^{\frac{c^2}{2}(\omega^2(t)+\omega^2(s))} = \\ &= \left\langle x_0^2\right\rangle e^{c^2\mathrm{min}(t,s)}. \end{split}$$

Se avessimo fatto il conto con Stratonovich avremmo ottenuto delle quantità divergenti:

$$\langle x(t) \rangle = \langle x_0 \rangle \exp\left(\frac{1}{2}c^2t\right)$$

 $\langle x_t x_s \rangle = \langle x_0^2 \rangle \exp\left(\frac{1}{2}c^2\left(t + s + 2\min(t, s)\right)\right).$

Quindi i due metodi di integrazione portano a dinamiche completamente differenti, è necessario stare attenti ad usare di volta in volta il metodo più opportuno.

Esempio 8.1.3 (Oscillatore Kubo). Si studia la precessione di uno spin attorno ad un campo magnetico ω :

$$dz = i\left(\omega dt + \sqrt{2\gamma}d\omega_t\right)z.$$

Il secondo termine indica che il campo magnetico non è costante, contiene fluttuazioni $d\omega$. Come conseguenza vedremo che il pacchetto di spin inizierà a sparpagliarsi.

Visto che le fluttuazioni del campo devono avere un Cut-Off ad alte frequenze è opportuno usare l'integrazione "fisica" di Stratonovich.

Possiamo valutare il valor medio di z integrando nel modo a noi noto:

$$\frac{dz}{z} = i\omega t + i\sqrt{2\gamma}d\omega_t.$$

La soluzione per z è ovviamente l'esponenziale del termine di destra, facendo il valor medio e sfruttando la 8.3 si ottiene:

$$\frac{\mathrm{d}}{\mathrm{d}t} \langle z \rangle = (i\omega - \gamma) \langle z \rangle.$$

Come accennato il primo termine fa girare lo spin, il secondo lo sparpaglia.

$$\langle z_t \rangle = \langle z_0 \rangle \exp((i\omega - \gamma) t)$$
.

Essendo in questo caso z una quantità complessa possiamo calcolare una correlazione del tipo:

$$\langle z_t z_s^* \rangle = \ldots = \langle z_0^2 \rangle e^{i\omega(t-s)-\gamma|t-s|}$$

La funzione di correlazione decade esponenzialmente con un tempo $1/\gamma$, legato alla fluttuazione del campo magnetico.

Esempio 8.1.4.

$$dx = -kxdt + \sqrt{D}d\omega_t.$$

Questa è "parente" del processo di Ornstein-Uhlenback:

$$dx = f(x)dt + \sqrt{D}d\omega_t.$$

Per risolverla si parte dalla omogenea:

$$dx = fdt = -kxdt.$$

Visto che il termine di rumore è costante:

$$g = \sqrt{D} \implies \begin{cases} g = \cos t \\ g' = 0 \end{cases}$$

Allora in questo caso Îto e Stratonovich conducono allo stesso risultato.

Utilizziamo il calcolo di Îto, la prima cosa da fare è cercare il giusto cambio di variabile. Scegliamo:

$$y = xe^{kt}$$
.

La formula di Îto per funzioni dipendenti dal tempo si scrive come:

$$df = \left[a\partial_x f + \frac{b^2}{2}\partial_{x^2}^2 f + \partial_t f \right] dt + b\partial_x f d\omega.$$

Sviluppando le derivate si ottiene che:

$$dy = \sqrt{D}e^{kt}d\omega$$
.

E quindi tornando indietro abbiamo anche la x:

$$x(t) = x_0 e^{-kt} + \sqrt{D} \int_0^t e^{-k(t-t')} d\omega_{t'}.$$

Mediando nel tempo nuovamente i termini con $d\omega$ si cancellano:

$$\langle x(t) \rangle = \langle x_0 \rangle e^{-kt}.$$

Per la varianza il calcolo è più elaborato, riportiamo la conclusione:

$$\operatorname{var} \{x(t)\} =$$

$$= \left\langle \left[(x_0 - \langle x_0 \rangle) e^{-kt} + \sqrt{D} \int^t e^{-k(t-t')} d\omega_{t'} \right]^2 \right\rangle =$$

$$= e^{-2kt} \left[\operatorname{var} \{x_0\} - \frac{D}{2k} \right] + \frac{D}{2k}.$$

Quindi la varianza ha un valore stazionario ed un termine che decade esponenzialmente.

8.2 Ornstein-Uhlenback dipendente dal tempo

Prendiamo la seguente SDE:

$$dx = -a(t)xdt + b(t)d\omega.$$

L'algebra da seguire è simile a quella dell'esempio precedente, risolviamo l'omogenea (senza ω):

$$x(t) = \exp\left(-\int_0^t a(s)ds\right)x_0.$$

Si inserisce adesso la parte disomogenea:

$$x(t) = x_0 \exp\left(-\int_0^t a_s ds\right) + \int_0^t \exp\left(-\int_{t'}^t a(s)ds\right) b(t')d\omega_{t'}.$$

Al solito si può mediare in ω per mandare via il secondo integrale:

$$\langle x(t)\rangle = \langle x_0\rangle \exp\left(-\int_0^t a(s)ds\right).$$

Mentre per la covarianza si ha che:

$$\langle x(t), x(t) \rangle = \exp\left(-2 \int_0^t a(s) ds\right) \langle x_0, x_0 \rangle + \int_0^t dt' \exp\left(-2 \int_{t'}^t a(s) ds\right) b^2(t').$$

9.1 Oltre il teorema del limite centrale

Abbiamo visto che, per variabili stocastiche con media e deviazione standard definite, vale:

$$S_n = \sum_i x_i \to G.$$

Ci chiediamo se esista solo questa possibilità, ovvero se non esistano altre distribuzioni che possono far da limite per le variabili stocastiche.

Vediamo che succede se prendiamo una somma di variabili stocastiche estratte da una qualunque distribuzione:

$$S_2 = x_1 + x_2 \implies P_2(S_2) = \sum_{x_1} P_1(x_1) P_1(x_2).$$

Si somma solo su x_1 poiché $x_2 = S_2 - x_1$:

$$P_2(S_2) = \int P_1(x_1)P_1(S_2 - x_1)dx_1.$$

Quindi si ha che:

$$P_2(S_2) = P_1(x_1) * P_1(x_2).$$

L'idea è che una distribuzione per essere stabile non deve cambiare sotto questa trasformazione (convoluzione).

Esempio 9.1.1 (Distribuzione di Lorentz - Bright - Wigner).

$$P_L(x) = \frac{1}{\pi (1 + x^2)}.$$

Le proprietà di questa distribuzione sono:

$$\int P_L dx = 1$$
$$\int x P_L dx = 0$$
$$\int x^2 P_L dx \to \infty.$$

Per via della terza equazione non sono soddisfatte le condizioni del teorema del limite centrale. Sviluppando la convoluzione si ha:

$$P_2(S_2) = \int P_1(x_1)P_1(S_2 - x_1)dx_1 = \frac{1}{2\pi \left[1 + \left(\frac{S_2}{2}\right)^2\right]}.$$

La forma della distribuzione è rimasta invariata, l'unica differenza rispetto alla distribuzione di singola variabile è il fattore di scala 1/2.

Esempio 9.1.2 (Gaussiana).

$$P_1(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right).$$

Valutando l'integrale per la P_2 si ha:

$$P_2(S_2) = \frac{1}{\sqrt{4\pi}} \exp\left(-\frac{(S_2)^2}{4}\right).$$

Abbiamo una struttura nuovamente Gaussiana con la σ^2 raddoppiata.

Esempio 9.1.3 (Distribuzione uniforme).

$$P_1(x) = \begin{cases} 1 & x \in \left[-\frac{1}{2}, \frac{1}{2} \right] \\ 0 & \text{Fuori} \end{cases}$$

In questo caso la forma della distribuzione cambia:

$$P_2(S_2) = \ldots = 1 - |S_2|$$
.

Prendiamo adesso la somma di n variabili sotto una certa distribuzione:

$$S_n = \sum_{i=1}^{n} x_i \implies P(S_n) = P_1(x_1) * \dots * P_n(x_n).$$

Nel caso di Lorentz e Gauss la procedura è generalizzabile:

Gauss:
$$S_n = \frac{1}{\sqrt{n}} \sum_{i=1}^n x_i \implies P_n(S_n) \in G$$

Lorentz:
$$S_n = \frac{1}{n} \sum_{i=1}^{n} x_i \implies P_n(S_n) \in L.$$

9.2 Distribuzioni stabili

Definizione di Distrib. Stabile

Una distribuzione si dice stabile se è invariante sotto convoluzione.

$$P(a_1z + b_1) * P(a_2z + b_2) =$$

$$= \int_{-\infty}^{\infty} dy P(a_1(z - y) + b_1) P(a_2y + b_2) =$$

$$= P(az + b).$$

 $con a_i > 0, b_i \in R.$

Andiamo in trasformata, chiamiamo la funzione caratteristica P(k):

$$P(k) = \mathcal{F}[P(x)] = \int_{-\infty}^{\infty} e^{ikx} P(x) dx.$$

É noto che per convoluzione si ha:

$$\mathcal{F}\left[P_1 * P_2\right] = \mathcal{F}\left[P_1\right] \cdot \mathcal{F}\left[P_2\right].$$

Quindi nel caso visto sopra:

$$S_n = \sum_{i=1}^{n} x_i \implies P_n(k) = [P_1(k)]^n.$$

Nei due casi interessanti discussi nella sezione precedente la trasformata diventa:

$$P_G(k) \sim e^{-\frac{k^2}{2}}$$

$$P_L(k) \sim e^{-|k|}.$$

In particolare nel caso della lorenziana:

$$P_2(k) = e^{-2|k|} \xrightarrow{\mathcal{F}^{-1}} \frac{1}{2\pi} \frac{1}{1 + (\frac{x}{2})^2}.$$

9.3 Teorema di Levy-Kintchine

Teorema limite \iff stabile

Una distribuzione di probabilità L(x) può essere la distribuzione limite di $S_n = \sum_i x_i$ se e solo se L(x) è stabile.

Abbiamo dimostrato l'esistenza di due distribuzioni limite: Gauss e Lorentz.

Il teorema di Levy-Kintchine (o della rappresentazione canonica) serve a generalizzare la forma di una distribuzione limite.

Il teorema LK

Data una distribuzione di probabilità $L_{\alpha,\beta}(x)$ con α,β parametri. Tale distribuzione è stabile se e solo se il logaritmo della sua funzione caratteristica

$$L_{\alpha,\beta}(k) = \langle e^{ikx} \rangle = \int_{-\infty}^{\infty} dx e^{ikx} L_{\alpha,\beta}(x).$$

ha la forma generale:

$$\ln(L_{\alpha,\beta}(k)) =$$

$$= \begin{cases} i\mu k - \gamma |k|^{\alpha} \left[1 - i\beta \frac{k}{|k|} \tan\left(\frac{\pi\alpha}{2}\right) \right]; & \alpha \neq 1 \\ i\mu k - \gamma |k| \left[1 + i\beta \frac{k}{|k|} \frac{2}{\pi} \ln|k| \right]; & \alpha = 1 \end{cases}$$

Con $\alpha, \mu, \beta, \gamma \in R$ e

- $0 \le \alpha \le 2$
- $-1 \le \beta \le 1$
- $\gamma \geq 0$

Il motivo dei vincoli per α e β e che, antitrasformando per la distribuzione nello spazio reale, devono essere rispettate le proprietà delle distribuzioni.

Esempio 9.3.1 (Gaussiana). Ritroviamo la Gaussiana se

- $\alpha = 2$
- β qualunque
- μ qualunque

 \bullet $\gamma = 1$

Esempio 9.3.2 (Lorentz). Ritroviamo la distribuzione di Lorentz se

- \bullet $\alpha = 1$
- \bullet $\beta = 0$
- $\mu = 0$
- $\gamma = 1$

Gli indici α e β definiscono la forma e le proprietà della distribuzione mentre μ e γ sono fattori di scala.

Caratteristiche del funzionale di LK

Il ruolo di α Il parametro α controlla la forma della $L_{\alpha,\beta}$ per valori $|x| \to \infty$. Ipotizziamo infatti di avere solo il termine:

$$\ln(L_{\alpha,\beta}(k)) \sim -|k|^{\alpha} \implies L_{\alpha,\beta}(k) \sim e^{-|k|^{\alpha}}.$$

Antitrasformando si ottiene che:

$$\int dk e^{-|k|^{\alpha}} e^{-kx} \xrightarrow{|x| \to \infty} \sim \frac{1}{|x|^{\alpha+1}}.$$

Quindi si ha che:

Andamento asintotico di $L_{\alpha,\beta}(x)$

$$L_{\alpha,\beta}(x) \sim \frac{1}{|x|^{\alpha+1}} \quad |x| \to \infty.$$

Con $0 \le \alpha \le 2$

Sfruttando questo andamento asintotico possiamo vedere per quali α convergono i momenti di ordine δ con $0 < \delta < \alpha$:

$$\left\langle |x|^{\delta} \right\rangle = \int dx \, |x|^{\delta} \, L_{\alpha,\beta}(x) =$$

$$= \int dx \frac{|x|^{\delta}}{|x|^{\alpha+1}}.$$

Per avere un momento di ordien δ finito l'integrale deve convergere. Se ne conclude che

- $\bullet\,$ per $\alpha<2$ la varianza non è definita
- per $\alpha < 1$ non è definita nemmeno la media.

Studiando un fenomeno fisico quello che abbiamo sempre fatto è stato cercare una scala del problema, quindi il momento secondo.

Per tutte le distribuzioni di Levy (tranne la Gaussiana) il momento secondo non è definito, questo le rende distribuzioni controintuitive. Il ruolo di β Il parametro β controlla la simmetria della distribuzione:

- $\beta = 0 \implies L_{\alpha,\beta}(x)$ simmetrica
- $\beta = \pm 1 \implies L_{\alpha,\beta}$ molto asimmetrica al variare del parametro α .

Se $0 < \alpha < 1$ e $\beta = 1$ allora il supporto della distribuzione è $[\mu, \infty)$.

Esempio 9.3.3 (Lorentziana). $\beta = 0, \alpha = 1$

Figura 1.8: Distribuzione di Lorentz-Bright-Wigner.

Esempio 9.3.4 (Levy-Smirnov). $\beta = 1, \alpha = 1/2, \text{ si}$ ha in tal caso:

$$L_{\alpha,\beta}(x) \sim \left(\frac{\gamma^{1/\alpha}}{2\pi}\right) \frac{1}{\left(x-\mu\right)^{3/2}} e^{-\frac{\gamma^{1/\alpha}}{2(x-\mu)}} \Theta(\mu).$$

Con $\Theta(\mu)$ funzione di Heayside.

Figura 1.9: Distribuzione di Levy-Smirnov

9.4 Bacino di attrazione di una distribuzione

Data una P(x) possiamo vedere a quale $L_{\alpha,\beta}(x)$ converge con il seguente teorema:

Teorema del bacino di attrazione

P(x) appartiene al bacino di attrazione di una distribuzione stabile $L_{\alpha,\beta}(x)$ con $0 < \alpha < 2$ se e solo se:

$$P(x) \sim \frac{\alpha a^{\alpha} c_{\pm}}{\left|x\right|^{1+\alpha}} \qquad x \to \pm \infty.$$

Le costanti $c_{\pm} \geq 0$, a > 0 sono legate ai coefficienti di $L_{\alpha,\beta}(x)$ da relazioni semplici (che non si riescono a leggere negli appunti).

Notiamo che anche i momenti di P(x) sono definiti per $\delta < \alpha$ esattamente come quelli di $L_{\alpha,\beta}(x)$.

9.5 Cambio di scala

Le distribuzioni di Levy sono Self-similari.

Consideriamo una distribuzione di Levy e prendiamo nuovamente:

$$S_n = \sum_{i=1}^{n} x_i.$$

Un cambio di scala che lascia invariata la forma della distribuzione mandando $n \to \infty$ è:

$$\tilde{S}_N = \frac{1}{B_N} \sum_{i=1}^{N} x_i - A_N.$$

Con

$$B_N = aN^{1/\alpha} \qquad A_N = \begin{cases} 0 & 0 < \alpha < 1 \\ \frac{N\langle x \rangle}{B_N} & 1 \le \alpha \le 2 \end{cases}$$

Questo cambio di scala può essere utilizzato come riprova una volta individuata una espressione per la distribuzione di Levy: se aumentando i termini della sommatoria si ha che \tilde{S}_N va in se stessa allora abbiamo indovinato i coefficienti.

Esempio 9.5.1 (Gaussiana).

$$B_N = N^{1/2}\sigma$$
 $A_N = \frac{N\langle x \rangle}{B_N}$.

"Perché troviamo sempre Gaussiane?"

Possiamo chiederci perché le Gaussiane spiccano in fama e diffusione nei processi fisici, la risposta arriva dal fatto che:

$$P(x) \sim \frac{1}{x^{3+\epsilon}} \implies P(x) \to G \quad \forall \epsilon > 0.$$

Quindi tutte le distribuzioni aventi questa proprietà tendono a delle gaussiane. Quando questa condizione non è rispettata si ottiene una distribuzione di Levy.

Probabilità di tornare nell'origine

Possiamo estrarre informazioni sulla distribuzione di Levy di un processo andando a cercare la probabilità di tornare nell'origine. Prendiamo ad esempio:

$$L_{\alpha,0}(x) \implies L_{\alpha,0}(k) \sim e^{-\gamma |k|^{\alpha}}.$$

Considerando l'ennesima iterata abbiamo visto che:

$$S_n \sim e^{-n\gamma|k|^{\alpha}}$$
.

Adesso possiamo trovare la probabilità di rientrare in x=0 all'ennesima iterata semplicemente antitrasformando:

$$L_{\alpha,0}^{n}(0) = \frac{1}{\pi} \int_{0}^{\infty} \cos(0) e^{-n\gamma |k|^{\alpha}} dk = \frac{\Gamma(1/\alpha)}{\pi \alpha \left(\gamma n\right)^{1/\alpha}}.$$

Quindi la probabilità di tornare nell'origine in funzione di n scala come una potenza di α . Questo ci permette di determinare il valore di α .

$$L_{\alpha,0}^n(0) = \frac{P(S_n)}{n^{1/\alpha}}.$$

9.6 SDE con variabili stocastiche con distrib. di Levy

Prendiamo una SDE del tipo:

$$dx(s) = dL_{\alpha,\beta}(s).$$

Integrale un processo di Levy

Definiamo l'integrale di una funzione f(s) secondo un processo di Levy come:

$$\int_{t_0}^{t} f(s)dL_{\alpha,\beta}(s) =$$

$$= \lim_{N \to \infty} \sum_{i=1}^{N} f(\Delta s(i-1)) M_{\alpha,\beta} \left([\Delta s(i-1), \Delta s(i)] \right).$$

In cui si è usata l'abbreviazione:

$$M_{\alpha,\beta}(x,y) = L_{\alpha,\beta}(x) - L_{\alpha,\beta}(y).$$

Sostanzialmente è l'integrale di Ito.

Algoritmo di Weron

Per risolvere è necessario inventare una tecnologia per valutare le variabili stocastiche secondo una distribuzione di Levy generale.

L'algoritmo di Weron si occupa proprio di come generare questi numeri casuali ξ (Vedi appendice), secondo tale algoritmo l'integrale di una funzione si può scrivere come:

$$\int_{t_0}^t f(s)dL_{\alpha,\beta}(s) = \sum_i^N f(\Delta s(i-1)) (\Delta s)^{1/\alpha} \xi_i.$$

Con $\Delta s = (t - t_0)/N$, ovvero l'ampiezza di ogni intervallo temporale, facendo una integrazione elementare si prende ad esempio N = 1.

Come anticipato il numero ξ_i è generato tramite una distribuzione di Levy con alcuni parametri:

$$\xi_i \in L_{\alpha,\beta}\left(Z, \gamma = \frac{1}{(2)^{1/2\alpha}}, \mu = 0\right).$$

Quindi operativamente si ha:

$$x_{n+1} = x_n + h^{1/\alpha} \xi_n.$$

Che devo fare per generare la ξ ?

Mentre per generare numeri gaussiani possiamo utilizzare una infinità di librerie per generare un numero secondo una distribuzione di Levy non è detto che vi sia un qualche pacchetto.

Quindi se non conosci Python devi riscrivere una funzione di 2 pagine per generare un set di numeri random, se conosci python invece esiste una libreria di Scipy che si occupa di generare numeri secondo una qualunque distribuzione di Levy.

10.1 Random Walk di Weierstrass nel dettaglio

Abbiamo visto che per un camminatore di Weierstrass la forma della distribuzione poteva non essere Gaussiana al variare del parametro N^2/b (Vedi sezione 6.2). Rispetto alla lezione 6 adesso si cambia la notazione (Lez6 \rightarrow Lez10):

$$b \to M$$
 $N \to b$.

Quindi adesso b è il parametro dell'ampiezza di salto mentre M è il fattore che smorza il rate. La condizione di rottura del teorema del limite centrale diventa:

$$\frac{b^2}{M} > 1.$$

Cerchiamo la distribuzione invariante per il camminatore di Weierstrass proprio in questo caso.

La probabilità di fare un salto l può essere scritta come:

$$P(l) = \frac{M-1}{2M} \sum_{J=0}^{\infty} \frac{1}{M^J} \left[\delta(l-b^J a) + \delta(l+b^J a) \right].$$

Per capire se è invariante è necessario considerare n salti, farlo nello spazio reale può essere complicato. Ricordiamo le proprietà generali di questo moto random:

- Occorrono $\sim M$ salti di $\pm a$ prima di saltare ba.
- Occorrono $\sim M$ salti di $\pm ba$ (M^2 salti lunghi a) prima di saltare b^2a .
- etc ...

Queste caratteristiche fanno si che il sistema esibisca dei cluster di camminatori attorno alle posizioni dei salti più lunghi (sulla scala temporale di osservazione).

Figura 1.10: Random Walk di Weierstrass (b = 3, M = 4): formazione dei Cluster (Paul and Baschangel: Stochastic Process, Springer).

Proprio per la formazione di questi cluster su scale spaziali diverse il sistema può presentare un comportamento auto-similare.

Possiamo notare anche come cambiano i risultati al variare dei parametri M e b:

Figura 1.11: Rapporto $b^2/M = 4/3$ (Link al codice).

Figura 1.12: Rapporto $b^2/M=4/30$, notiamo come i cluster che si formano siano diversi nei due casi: in questo caso il moto diventa quasi irriconoscibile rispetto ad un RW "normale". (Link al codice) .

Mettiamoci nel caso in cui la distribuzione non può essere una Gaussiana e risolviamo per $\langle l^2 \rangle \to \infty$:

$$\left\langle l^2 \right\rangle = \frac{\left(M-1\right)a^2}{M} \sum \left(\frac{b^2}{M}\right)^J \to \infty \quad \text{se } \frac{b^2}{M} > 1.$$

Per capire se P(l) può essere stabile andiamo in trasformata:

10.2 Serie di Weierstrass e distribuzione stabile per il RW

Ricordando che:

$$P(k) = \left\langle e^{ikl} \right\rangle.$$

Si ottiene:

$$P(k) = \int dl P(l) e^{ikl} = \frac{M-1}{M} \sum_{J} \frac{\cos(kb^{J}a)}{M^{J}}.$$

Questa serie è continua ovunque ma non differenziabile rispetto a k se b > M. Per dimostrare che P(l) è stabile dobbiamo dimostrare che P(k) è invariante sotto convoluzione. Partiamo osservando come scala P(k) se mandiamo $k \to bk$, questo cambio di scala è interessante perché b è l'unica grandezza fisica che descrive la scala sulla quale avviene il moto del camminatore.

$$P(bk) = \frac{M-1}{M} \sum_{J=0}^{\infty} \frac{1}{M^J} \cos(kb^{J+1}a) = \dots =$$

$$= MP(k) - \frac{M-1}{M} \cos(ka).$$

Per arrivare a questa conclusione si è esplicitata la sommatoria di P(bk), moltiplicato e diviso per M e isolato il primo termine della sommatoria.

Equazione per la P(k)

$$P(k) = \frac{1}{M}P(bk) + \frac{M-1}{M}\cos(ka).$$

Per soddisfare l'invarianza di scala la P(k) deve soddisfare questa equazione. Dividiamo la soluzione in una parte omogenea ed una particolare.

$$P(k) = \frac{1}{M}P_0(k) + P_p(k).$$

Possiamo sviluppare in serie il coseno per trovare la forma della soluzione particolare:

$$P_p(k) = \frac{M-1}{M} \sum_{J=1} \frac{(-1)^J}{(2J)!} \frac{(ka)^{2J}}{1 - b^{2J}/M} + 1.$$

Notiamo subito che la soluzione particolare non è responsabile della divergenza di $\langle l^2 \rangle$, infatti possiamo calcolare il momento secondo come:

$$\left\langle l^2 \right\rangle = - \left. \frac{\mathrm{d}^2}{\mathrm{d}k^2} P_0(k) \right|_0 - \left. \frac{\mathrm{d}^2}{\mathrm{d}k^2} P_p(k) \right|_0.$$

La derivata seconda di P_p non diverge:

$$\left\langle l^2\right\rangle_p = \frac{M-1}{M}\frac{a^2}{b^2/M-1} < \infty \qquad \text{con } b^2/M > 1.$$

Quindi è il termine omogeneo di pura scala ad essere responsabile della divergenza.

Scaling discreto della soluzione omogenea

$$P_0(k) = \frac{1}{M} P_0(bk).$$

Possiamo esprimere la soluzione di questa equazione in funzione di una qualunque Q(k) tale che:

- $\bullet Q(k) = Q(kb)$
- Q(k) periodica in $\ln(k)$ con periodo $T = \ln(b)$.

Senza riportare i passaggi la soluzione della omogenea è:

$$P_0(k) = |ka|^{\alpha} Q(k).$$

con:

$$\alpha = \frac{\ln(M)}{\ln(b)} \qquad 0 < \alpha < 2.$$

Che deve essere rispettata per imporre la self-similarità.

Valutando i termini della soluzione, P_p e P_0 , quando $k \to 0$ si nota che sopravvivono solo:

- Il termine unitario nella P_p (il termine più rilevante nella sommatoria va a zero come k^2).
- L'intera soluzione omogenea ($\alpha < 2$)

Per $k \to 0$ si ha quindi che:

$$P(k) \sim 1 - c(\alpha) |ka|^{\alpha}$$
.

Per ricondurci ad una forma del tipo Levy dobbiamo trovare il modo di esprimere il $\log P(k)$, approssimiamo allora la P(k) ottenuta per $k \to 0$ come esponenziale (visto che corrisponde ai primi due termini dello sviluppo di quest'ultimo).

$$P(k) \sim \exp\left(-c(\alpha) |ka|^{\alpha}\right)$$
.

Quindi:

$$\ln(P(k)) = -c(\alpha) |ka|^{\alpha}.$$

Che è effettivamente una distribuzione di Levy con $\alpha = \ln M / \ln b$. Quindi la distribuzione P(l) è stabile per tutti i valori di b^2/M .

Parte 1

11.1 Equazione di Fokker-Plank: soluzione analitica.

Questa lezione è una lunga nota storica su come facevano i nostri antenati a risolvere l'equazione di FK negli anni 80-90 con le mani. L'utilità sta nel fatto che ci da gli strumenti per affrontare la prossima lezione che è invece concettualmente molto interessante.

Abbiamo visto nella Lezione 4 la forma differenziale di Chapman-Kolmogorov (equazione 4.1). La parte di tale equazione che conteneva termini di derivate prime e seconde (quindi quella riguardante la parte continua del processo) è nota come

Equazione di Fokker-Plank.

$$\begin{split} \partial_t P(\boldsymbol{x},t) &= -\partial_{x_i} A_i(\boldsymbol{x},t) P(\boldsymbol{x},t) + \\ &+ \frac{1}{2} \partial_{x_i} \partial_{x_J} B_{iJ}(\boldsymbol{x},t) P(\boldsymbol{x},t). \end{split}$$

In qui il termine B_{iJ} ricordiamo essere il termine di diffusione

Modernamente questa equazione viene risolta numericamente per quasi tutti i casi "interessanti". Tuttavia ci sono alcune situazioni in cui si riesce a risolvere analiticamente, concentriamo questa lezione su quelle. Definiamo una corrente J:

$$J_i = \left(A_i - \frac{1}{2}\partial_{x_J}B_{iJ}\right)P(\boldsymbol{x},t).$$

Quindi l'equazione di FK si scrive come:

$$\partial_t P + \nabla \boldsymbol{J} = 0.$$

Quindi possiamo integrare P su un volume V e sfruttare il teorema di Gauss:

$$\partial_t \int_V P dV = -\int_V \nabla \boldsymbol{J} dV = -\int_{\partial V} d\boldsymbol{s} \cdot \boldsymbol{J}.$$

Dove ∂V è il bordo del volume V (e l'ultima espressione dopo l'uguale è il flusso di J sul bordo di V).

La variazione della probabilità in un volume V è legata al flusso della corrente di probabilità.

Quindi la soluzione di questa equazione alle derivate parziali dipende fortemente dall'andamento della corrente lungo la superficie di V.

11.2 Condizioni al bordo per la soluzione della FK.

Condizioni al bordo riflettenti. Questo è il caso in cui la corrente di probabilità rispetta la seguente:

$$\hat{S}\boldsymbol{J}(\boldsymbol{z},t) = 0.$$

Con \hat{S} versore del bordo di V. Questa condizione implica che la J è parallela alla superficie.

Condizioni al bordo assorbenti.

Se
$$z \in \partial S \implies J(z,t) = 0$$
.

Condizioni al bordo discontinue La corrente può essere discontinua sul bordo, in queste condizioni il moto resta possibile, la corrente deve soddisfare l'equazione:

$$\hat{S}\left(\boldsymbol{J}(\boldsymbol{z}^{+}) - \boldsymbol{J}(\boldsymbol{z}^{-})\right) = 0.$$

Condizioni al bordo periodiche. Mettiamoci in una dimensione ad esempio, nel segmento [a, b], allora le condizioni al contorno periodiche implicano che:

$$P(a^+) = P(b^-)$$
$$J(a^+) = J(b^-).$$

Condizioni al bordo all'infinito. Tipicamente si lavora con oggetti che possono trovarsi a distanze finite, in tal caso le condizioni all'infinito vengono prese come:

$$P(x,t) \to 0$$
 $|x| \to \infty$
 $J(x,t) \to 0$ $|x| \to \infty$.

Se così non fosse allora una delle due quantità dovrebbe divergere.

Diffusione nulla al bordo. Se $B_{iJ} = 0$ sul bordo del volume abbiamo una situazione totalmente deterministica. In tal caso tale zona potrebbe essere:

- Un ingresso dei camminatori
- Una uscita dei camminatori

In questo caso possono esistere delle situazioni ancor più esoteriche in cui oltre che ad avere $B_{iJ} = 0$ sul bordo si ha anche A(z) = 0. In questo caso speciale i camminatori che raggiungono il bordo si fermano.

Esempio 11.2.1.

$$dx = -\alpha x dt + x d\omega.$$

In questo caso il camminatore che arriva nell'origine si ferma. L'equazione di FK in questo caso può esser scritta riprendendo la formula 8.2:

$$\partial_t P = \left[\partial_x \alpha x + \frac{1}{2} \partial_{x^2}^2 x^2\right] P.$$

11.3 Distribuzione di equilibrio del processo

Riscriviamo la corrente esplicitando la derivata ∂_{x_J} :

$$J_i = \left[A_i - \frac{1}{2} \left(\partial_{x_J} B_{iJ} \right) \right] P - \frac{1}{2} B_{iJ} \partial_{x_J} P \qquad (11.1)$$

Cerchiamo una distribuzione di equilibrio con le seguenti ipotesi:

- \boldsymbol{J} si conserva e all'equilibrio J=0 .
- All'infinito la distribuzione di probabilità si annulla.
- B_{iJ} invertibile.

Vogliamo allora capire con queste supposizioni quanto vale $\partial_{x_I} P$. Si procede invertendo l'espressione ??:

$$\partial_{x_J} P = 2B_{iJ}^{-1} \left[A_i - \frac{1}{2} \partial_{x_k} B_{ik} \right] P.$$

Quindi portando a sinistra la P si ha anche:

$$\frac{\partial}{\partial x_I} \ln(P) = 2B_{iJ}^{-1} \left[A_i - \partial_{x_k} B_{ik} \right].$$

Quindi abbiamo a sinistra un gradiente, come conseguenza anche la quantità a destra deve essere un gradiente. Per le proprietà del gradiente deve essere vero che:

$$rot(\nabla f) = 0.$$

Quindi:

$$Z_J[A, B, \mathbf{x}] \equiv 2B_{iJ}^{-1}[A_i - \partial_{x_k} B_{ik}].$$
$$rot(Z_J) = 0.$$

Di fatto questa condizione si traduce in:

$$\frac{\partial}{\partial x_i} Z_J = \frac{\partial}{\partial x_J} Z_i.$$

Se vale questa condizione possiamo allora integrare lungo una curva generica, si ottiene che:

$$P_{st}(oldsymbol{x}) = \exp\left(\int^x doldsymbol{s} oldsymbol{z}\left[A,B,oldsymbol{s}
ight]
ight)$$

In cui si definisce

Forma potenziale

$$P(\boldsymbol{x}) = \exp(-\phi(\boldsymbol{x})) \tag{11.2}$$

con

$$\phi(oldsymbol{x}) = -\int^x doldsymbol{s} oldsymbol{Z}.$$

Tutto questo metodo funziona se si verifica il fatto che $rot(\mathbf{Z}) = 0$. Nei casi in cui questa condizione non si avvera non è possibile integrare l'equazione ed ottenere il risultato stazionario 11.2.

Esempio 11.3.1 (Processo di Wiener).

$$dx = f(x)dt + Bd\omega$$
.

La FK si scrive come:

$$\partial_t P = \left(-\partial_x f + \frac{1}{2}B^2 \partial_{x^2}^2\right) P; \qquad Z = \frac{2f}{B^2}.$$

Con Z valutato come sopra (tramite la corrente stazionaria). Quindi si ha che:

$$P_{st} \sim \exp\left(\int_{-\infty}^{x} \frac{2f}{B^2} dx\right).$$

I processi di Wiener hanno una distribuzione di equilibrio.

Ovviamente è necessario avere una f che si comporti bene asintoticamente (se ho f = x rompo il metodo).

Esempio 11.3.2 (Processo di OU). Prendiamo la stessa equazione dell'esempio precedente

$$dx = f(x)dt + Bd\omega.$$

tuttavia adesso il termine $Bd\omega$ anziché essere un processo di Wiener (come si sottointende di solito) lo ipotizziamo di Ornstein-Ulhenback:

$$\begin{cases} Bd\omega = Bydt \\ dy = -\frac{1}{\tau}ydt + d\omega \end{cases}$$

Dove il $d\omega$ nel sistema è adesso un processo di Wiener.

Ricordiamo che questo processo è caratterizzato da avere un taglio in frequenza di $\frac{1}{\pi}$.

Per semplificare ancora i conti inseriamo all'interno della SDE un secondo processo di Wiener $d\omega_2$ (si capirà meglio sotto), si ottiene allora il sistema:

$$\begin{cases} dx = (f(x) + By) dt + d\omega_2 \\ dy = -\frac{1}{\tau} y dt + d\omega_1 \end{cases}$$

In questo caso è evidente che i termini della FK in due dimensioni ⁶ corrispondono alle quantità:

$$A_x = f + By$$
 $B_{xx} = 1$
 $A_y = -\frac{1}{-y}$ $B_{yy} = 1$.

Possiamo scrivere la matrice del rumore B considerando i coefficienti a moltiplicare i due processi di Wiener $d\omega_1, d\omega_2$ nelle equazioni. Visto che i due processi sono indipendenti e compaiono uno per l'equazione di x e l'altro per l'equazione di y si ha:

$$B = \begin{pmatrix} B_{xx} & B_{xy} \\ B_{yx} & B_{yy} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

In conclusione possiamo scrivere l'equazione di FK:

$$\partial_t P(x,y) = \left[-\partial_x A_x - \partial_y A_y + \frac{1}{2} (\partial_{x^2}^2 + \partial_{y^2}^2) \right] P(x,y).$$

Possiamo allora calcolare Z_x e Z_y (B è l'identità quindi $B^{-1} = B$):

$$Z_x = 2(f + By) \qquad Z_y = -\frac{2y}{\tau}.$$

 $^{^6\}mathrm{Si}$ tratta di due dimensioni perché abbiamo una coppia di variabili stocastiche: x e y.

Per essere una divergenza \boldsymbol{Z} deve rispettare la condizione del rotore:

$$rot(\boldsymbol{Z}) = 0.$$

Tuttavia questa condizione non è soddisfatta:

$$\partial_y Z_x = 2B \neq \partial_x Z_y = 0.$$

Quindi questo processo non soddisfa la condizione di potenziale.

I processi di Ornstein-Ulhenback non hanno una distribuzione di equilibrio.

Questo non significa che integrando questa equazione numericamente non si possa ottenere niente, questo tipo di processi presenta una distribuzione di quasi equilibrio (approfondiremo più avanti).

Esempio 11.3.3 (OU modificato). Prendiamo lo stesso moto analizzato nell'esempio precedente ed aggiungiamo il termine Bxdt all'equazione per y:

$$\begin{cases} dx = (f(x) + By) dt + d\omega_2 \\ dy = -\frac{1}{\tau} y dt + Bx dt + d\omega_1 \end{cases}.$$

In questo caso abbiamo che:

$$A_x = f + By$$
 $B_{xx} = 1$
 $A_y = -\frac{1}{\tau}y + Bx$ $B_{yy} = 1$.

Mentre la matrice B non cambia:

$$B = \begin{pmatrix} B_{xx} & B_{xy} \\ B_{yx} & B_{yy} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Ed anche l'equazione di FP resta della stessa forma:

$$\partial_t P(x,y) = \left[-\partial_x A_x - \partial_y A_y + \frac{1}{2} (\partial_{x^2}^2 + \partial_{y^2}^2) \right] P(x,y).$$

Quello che cambia è la forma di A_y , che contiene il termine Bx in più rispetto a prima. Questo comporta anche dei valori delle componenti di \mathbf{Z} diversi:

$$Z_x = 2(f + By) \qquad Z_y = -\frac{2y}{\tau} + 2Bx.$$

Il rotore di \boldsymbol{Z} è nullo grazie al termine aggiuntivo. Il termine aggiunto è quindi un termine ad-hoc per rendere il metodo visto sopra applicabile, infatti in questo modo è possibile avere una soluzione potenziale.

$$P_{st} \sim \exp(\phi)$$
.

con

$$\phi = -\int_{-\infty}^{x} ds \mathbf{Z} =$$

$$= -\int_{-\infty}^{x} (f + By) dx + \left(-\frac{y}{\tau} + Bx\right) dy =$$

$$= \left(-\int_{-\infty}^{x} f dx\right) - Bxy + \frac{y^{2}}{2\tau}.$$

Ricordiamo che gli integrali con pedice x sono integrali di linea, sul percorso x ad intervalli ds.

Questa cosa ha anche un senso fisico, infatti le equazioni differenziali per x e y possono essere riscritte come:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -\partial_x \left(-\int_x^x f dx - Bxy + \frac{y^2}{2\tau} \right) + \xi_x$$

$$\frac{\mathrm{d}y}{\mathrm{d}t} = -\partial_y \left(-\int_x^x f dx - Bxy + \frac{y^2}{2\tau} \right) + \xi_y.$$

Poiché svolgendo le derivate alcuni termini si annullano e tornano le due equazioni sopra $(xi = d\omega/dt)$. Quindi le due equazioni si presentano in termini di equazioni del moto classiche, nella quale il termine che viene derivato rispetto alla coordinata in ciascuna equazione funge da potenziale.

11.4 Bilancio dettagliato

Il principio del bilancio dettagliato detta la struttura della equazione di FP e permetterà di risolverla in certe condizioni.

Il fatto che la corrente sia nulla e che si possa costruire un potenziale equivale a dire che il sistema presenta il bilancio dettagliato.

Sistema di particelle in moto

Supponiamo di avere un sistema di oggetti caratterizzati da una posizione ed una velocità ad un certo istante (r, v, t). La probabilità di trovarsi in (r, v, t) e ad un altro istante in (r', v', t') può essere scritta come probabilità congiunta:

$$P(r', v', t + \tau; r, v, t) \qquad t' = t + \tau.$$

Per trovare questa quantità possiamo ragionare in termini di propagatore (come abbiamo fatto nelle lezioni precedenti).

$$(r, v, t) \rightarrow (r', v', t + \tau).$$

Metodo "Nolandiano"

Possiamo chiederci quale sia la probabilità del processo inverso.

$$(r', v', t + \tau) \rightarrow (r, v, t').$$

Anziché pensare ad una inversione temporale per risalire ad un istante precedente possiamo decidere di invertire puntualmente la velocità. In questo modo manteniamo l'ordine temporale mentre gli oggetti si muovono all'indietro (vedi Tenet)

$$(r', -v', t) \to (r, -v, t + \tau).$$

Conseguenza del Bilancio dettagliato

Se il sistema presenta bilancio dettagliato allora vale che:

$$P(r', v', t+\tau; r, v, t) = P(r, -v, t+\tau; r', -v', t).$$

Ovviamente in un caso stazionario avviamo anche l'invarianza per traslazione temporale, quindi possiamo considerare l'istante t=0:

$$P_s(r', v', \tau; r, v, 0) = P_s(r, -v, \tau; r', -v', 0).$$

Ipotizziamo adesso che il processo sia Markoviano. In tal caso la probabilità composta si può esprimere in termini della distribuzione stazionaria $P_s(r,v)$ e del propagatore:

$$P(r', v', \tau | r, v, 0) P_s(r, v) =$$
= $P(r, -v, \tau | r', -v', 0) P_s(r', -v').$

Possiamo manipolare questa espressione valutando quali variabili cambiano segno sotto inversione temporale, in generale è vero che:

• Le variabili di tipo "coordinate" non cambiano segno

$$t \to -t \implies x \to x$$
.

• Le variabili di tipo velocità cambiano segno

$$t \to -t \implies v_x \to -v_x$$
.

Prendendo delle coordinate generalizzate x_i abbiamo che per inversione temporale:

$$x_i \xrightarrow{t \to -t} \epsilon_i x_i \qquad \epsilon_i = \pm 1.$$

Quindi ragionando in termini vettoriali:

$$\boldsymbol{x} = (x, y, z, v_x, v_y, v_z).$$

La notazione usata allude alle coordinate di una singola particella, si può generalizzare una vettore \boldsymbol{x} a n particelle mettendo tutte le coordinate delle particelle $1, \ldots, n$ all'interno del vettore.

Possiamo riscrivere in modo generale i passaggi precedenti⁷:

$$P(\mathbf{x}, t + \tau; \mathbf{x}', t) = P(\epsilon \cdot \mathbf{x}', t + \tau; \epsilon \cdot \mathbf{x}, t).$$

Prendiamo le condizioni "iniziali" per $\tau = 0$:

$$\tau = 0 :$$

$$\implies \delta(\mathbf{x} - \mathbf{x}') P_s(\mathbf{x}') = \delta(\epsilon(\mathbf{x}' - \mathbf{x})) P_s(\epsilon \mathbf{x}).$$

Sfruttando il fatto che la δ è pari e che la δ di una quantità vettoriale può essere vista come il prodotto di δ se ne conclude che:

$$P_s(\mathbf{x}') = P_s(\boldsymbol{\epsilon} \cdot \mathbf{x})$$
 \Downarrow
 $P(\mathbf{x}, t | \mathbf{x}', 0) P_s(\mathbf{x}') = P(\boldsymbol{\epsilon} \mathbf{x}', \tau | \boldsymbol{\epsilon} \mathbf{x}, 0) P_s(\mathbf{x}').$

La prima comporta che P_s dovrà essere una potenza pari delle v poiché queste ultime cambiano di segno quando si applica ϵ .

Conseguenze del bilancio dettagliato applicato ad una Chapman-Kolmogorov

Si può dimostrare che (libro di Van Kampen) il bilancio dettagliato permette di descrivere la struttura generale dei vari termini della equazione di CK (equazione 4.1), le seguenti formule sono pura referenza ma ne faremo uso...

$$\omega(\mathbf{x}|\mathbf{x}')P_s(\mathbf{x}') = \omega(\epsilon \mathbf{x}'|\epsilon \mathbf{x})P_s(\mathbf{x})$$

$$\epsilon_i A_i(\epsilon \mathbf{x})P_s(\mathbf{x}) = \left[-A_i(\mathbf{x}) + \frac{\partial}{\partial x_J} B_{iJ}(\mathbf{x}) \right] P_s(\mathbf{x})$$

$$\epsilon_i \epsilon_J B_{iJ}(\epsilon \mathbf{x}) = B_{iJ}(\mathbf{x}).$$
(11.3)

Nota storica sul Bilancio dettagliato

Storicamente si sono introdotte due quantità per capire se il sistema presenta il bilancio dettagliato:

$$D_i^{\text{irr}} = \frac{1}{2} (A_i(x) + \epsilon_i A_i(\epsilon_i x))$$
$$D_i^{\text{rev}} = \frac{1}{2} (A_i(x) - \epsilon_i A_i(\epsilon_i x)).$$

Infatti se la $D_i^{\rm irr} \neq 0$ allora il sistema non presenta il bilancio dettagliato.

Esempio 11.4.1.

$$\begin{cases} dx = vdt \\ mdv = -V'(x)dt - \gamma vdt + \sqrt{2\gamma k_B T} d\omega \end{cases}$$

In cui si ha un termine di attrito alla Stokes:

$$\gamma = 6\pi \eta r$$
.

L'equazione di FK che ne emerge è la seguente:

$$\begin{split} \partial_t P &= \\ &= -\partial_x v + \frac{1}{m} \partial_v \left[\left(V'(x) + \gamma v \right) P \right] + + \frac{\gamma k_b T}{m^2} \partial_{v^2}^2 P. \end{split}$$

Quindi abbiamo che:

$$A = \begin{pmatrix} v \\ -\frac{\gamma v}{m} - \frac{V'}{m} \end{pmatrix} \qquad B = \begin{pmatrix} 0 & 0 \\ 0 & \frac{2\gamma k_B T}{m^2} \end{pmatrix}.$$

Visto che il termine di inversione ϵ ci da:

$$\epsilon \cdot \begin{pmatrix} x \\ v \end{pmatrix} = \begin{pmatrix} x \\ -v \end{pmatrix}.$$

Si ha anche che (si applica ϵ due volte, quindi dove opportuno c'è un doppio cambio di segno):

$$m{\epsilon}m{A}(m{\epsilon}m{x}) = egin{pmatrix} -v \\ -rac{\gamma v}{m} + rac{V'}{m} \end{pmatrix}.$$

⁷Si è invertita la notazione degli indici primati...

Applicando adesso la seconda delle 11.3:

$$\epsilon A(\epsilon x)P_s(x) = -A(x)P_f(x) + \partial_J B_{iJ}P_s(x)$$
 \Downarrow

$$\begin{pmatrix} -v \\ -\frac{\gamma v}{m} + \frac{V'}{m} \end{pmatrix} P_s = \begin{pmatrix} -v \\ \frac{\gamma v}{m} + \frac{V'}{m} \end{pmatrix} P_s + \begin{pmatrix} 0 \\ \partial_v \left(\frac{2\gamma k_B T}{m^2} \right) \end{pmatrix} P_s.$$

Notiamo che la derivata J in questo caso indica la derivata sulla seconda componente: la velocità.

La prima riga è una identità, la seconda riga invece è meno ovvia:

$$-\frac{2\gamma v}{m}P_s = \frac{2\gamma k_B T}{m^2}\partial_v P_s.$$

Se risolviamo si ha una forma per la $P_s(x, v)$:

$$P_s(x,v) = \exp\left(-\frac{v^2 m}{2k_B T}\right) f(x).$$

Notiamo come la distribuzione stazionaria $P_s(x,v)$ sia quadratica in v. Questo, a conferma di quanto accennato prima, è dovuto all'invarianza di tale distribuzione quando si applica ϵ .

Per trovare la f(x) basta reinserire la P_s nella equazione di FK, si impone che il processo sia stazionario $(\partial_t P_s = 0)$ e si ottiene:

$$v\partial_x f(x) = -\frac{v}{k_B T} V'(x) f(x)$$

$$\downarrow f(x) \propto \exp\left(-\frac{V(x)}{k_B T}\right).$$

In conclusione la distribuzione di equilibrio è la seguente:

$$P_s = N \exp\left(-\frac{1}{k_B T} \left(\frac{m v^2}{2} + V(x)\right)\right).$$

Notiamo come la forma sia esattamente quella che ci si aspetta da un caso fisico:

$$P \sim \exp(-\beta H)$$
.

Nell'esempio precedente si è legato il termine di dissipazione al termine stocastico (nelle SDE) nella formula:

$$mdv = -V'(x)dt - \gamma vdt + \sqrt{2\gamma k_B T} d\omega.$$

Notiamo infatti che γ compare sia nel termine per dt che in quello per $d\omega$.

Il motivo per il quale lo abbiamo fatto è dovuto ad un importante teorema.

11.5 Relazione di Onsager e Teorema di Fluttuazione Dissipazione.

Prendiamo un processo di OU nel quale all'interno della FK il termine A è lineare ed il termine B è costante

$$A_i(x) = A_{i,I}x_J \qquad B_{i,I}(x) = B_{i,I}.$$

Questa linearizzazione valuta le piccole oscillazioni attorno al punto di equilibrio per un processo di OU. Se un processo ha le seguenti proprietà sotto inversione temporale ⁸:

$$\epsilon_{i}\epsilon_{J}B_{iJ} = B_{iJ}$$

$$(\epsilon_{i}\epsilon_{J}A_{iJ} + A_{iJ}) x_{J} = B_{iJ}\partial_{J} \ln P_{s}$$
(11.4)

Allora è sempre vero che:

$$P_s = N \exp\left(-\frac{1}{2}x^t D^{-1}x\right).$$

Con D^{-1} simmetrica.

Se vale il principio del bilancio dettagliato allora esistono delle relazioni che legano la matrice D^{-1} (che contiene l'equivalente della temperatura del sistema) ai vettori A:

$$\epsilon A \epsilon = DA^{t}D^{-1}$$

$$\epsilon A \epsilon D = DA^{t}$$

$$\epsilon (AD) = (AD)^{t} \epsilon$$

$$B = -(AD + DA^{t}).$$
(11.5)

Per arrivare a queste conclusioni si è saltata una paccata di algebra noiosa.

Esempio 11.5.1 (Circuito RLC). Prendiamo il seguente circuito

Dove la sorgente di potenziale è una soluzione ionica (presenta delle fluttuazioni ξ).

L'equazione che determina la corrente nel circuito è:

$$\frac{\mathrm{d}i}{\mathrm{d}t} = \frac{1}{L} \left(-\frac{Q}{C} - iR + V_{\xi} \right).$$

Supponendo che anche la carica sul condensatore senta delle fluttuazioni si ha che:

$$\frac{\mathrm{d}Q}{\mathrm{d}t} = i - \gamma Q + Q_{\xi}(t).$$

Possiamo scrivere le SDE del processo stocastico come:

$$\begin{cases} di = -\frac{Q}{LC}dt - \frac{R}{L}idt + \frac{V_{\xi}}{L}dt \\ dQ = idt - \gamma Qdt + Q_{\xi}dt \end{cases}$$

 $^{^8 \}mbox{Riscrivo}$ le 11.3 in un'altra forma, esplicitando il fatto che B_{iJ} è costante.

La matrice A si esprime come:

$$A = \begin{pmatrix} -\frac{R}{L} & -\frac{1}{LC} \\ 1 & -\gamma \end{pmatrix}.$$

Mi aspetto che la distribuzione stazionaria abbia una forma del tipo:

$$P_s \sim \exp\left(-\frac{H}{k_B T}\right).$$

L'energia del sistema sappiamo che vale:

$$E = \frac{Li^2}{2} + \frac{Q^2}{2C}.$$

Guardando i termini dell'energia $\sim H$ ci aspettiamo una matrice D della seguente forma 9 :

$$D = \begin{pmatrix} \frac{k_B T}{L} & 0\\ 0 & k_B TC \end{pmatrix}.$$

Mentre per quanto riguarda la matrice di inversione basta considerare l'analogia $(x, v) \rightarrow (Q, i)$:

$$\epsilon = \operatorname{diag}(-1, 1).$$

Possiamo verificare che siano rispettate le relazioni sulle matrici $A \in D$:

$$AD = \begin{pmatrix} \frac{Rk_BT}{L^2} & \frac{k_BT}{L} \\ -\frac{k_BT}{L} & \gamma k_BTC \end{pmatrix}.$$

$$(AD)_{12} = -(DA)_{21}.$$

Inoltre troviamo la matrice B sfruttando l'ultima delle equazioni 11.5:

$$B = - \left(AD + DA^t \right) = 2k_B T \begin{pmatrix} R/L^2 & 0 \\ 0 & \gamma C \end{pmatrix}.$$

Troviamo allora che tutto il meccanismo delle equazioni esposte sopra funziona in questo esempio.

Quello che cerchiamo adesso è la relazione tra i termini stocastici nelle equazioni $(V_{\xi} \in Q_{\xi})$ e la temperatura.

Si nota intanto che i due processi stocastici potrebbero essere legati tra loro, ipotizziamo che le variabili stocastiche che descrivono V_{ξ} e Q_{ξ} siano ξ_1 e ξ_2 tali che:

$$\begin{cases} V_{\xi}/L \sim b_{11}\xi_1 + b_{12}\xi_2 \\ Q_{\xi} \sim b_{21}\xi_1 + b_{22}\xi_2 \end{cases}$$

Per avere tutte le formule di equilibrio che abbiamo ottenuto in precedenza la struttura della matrice b deve essere (non ben spiegato perché):

$$b = \begin{pmatrix} \sqrt{2k_BTR/L^2} & 0 \\ 0 & \sqrt{2k_BT\gamma C} \end{pmatrix}.$$

Se ricordiamo bene le equazioni di partenza avevano le proprietà:

$$\begin{cases} di \sim -\frac{R}{L}idt \\ dQ \sim -\gamma Qdt \end{cases}$$

I due termini a moltiplicare i e Q sono proprio i termini che ritroviamo in b_{11} e b_{22} .

Sunto del teorema Flutt. Diss.

Dato un processo con

- Un termine di dissipazione γ
- Un processo stocastico ξ .

Allora l'intensità del processo stocastico vale $\sim \sqrt{2k_BT\gamma}$ (con normalizzazioni opportune)

11.6 Fokker-Plank dipendente dal tempo

L'argomento di questa sezione è un pò fumoso, operativamente si capirà meglio il significato con degli esempi pratici...

Riprendiamo l'equazione FK e cerchiamo una soluzione non stazionaria.

$$\partial_t P = \left(-\partial_x A + \frac{1}{2}\partial_{x^2}^2 B\right) P \tag{11.6}$$

Possiamo vedere il termine nella parentesi di destra come un operatore: \mathcal{L} .

$$\partial_t P = \mathcal{L} P$$
.

Possiamo vedere questa come una equazione agli autovalori, in tal caso possiamo scrivere la P come una sovrapposizione lineare di autovalori ed autovettori:

$$P = P_{\lambda}(x)e^{-\lambda t}.$$

Per poi sostituire nella equazione 11.6 per trovare le soluzioni P_{λ} , λ :

$$-\lambda P_{\lambda} e^{-\lambda t} = \mathcal{L} P_{\lambda} e^{-\lambda t} \tag{11.7}$$

Possiamo utilizzare la notazione della meccanica quantistica pensando ai P_{λ} nella equazione 11.7 come dei "ket".

Dobbiamo notare che l'equazione che agisce sui ket è nota, mentre quella che agisce sui bra no. Questo perché, a differenza del caso quantistico, qui c'è di mezzo la distribuzione stazionaria.

Quindi quando si cerca di applicare l'operatore \mathcal{L} a sinistra si deve tener di conto che va ad agire anche sulla distribuzione stazionaria.

Dobbiamo quindi scrivere la P(x,t) come:

$$P(x,t) = P_s(x)q(x,t).$$

Possiamo reinserire questa nella FK dipendente dal tempo e isolare i termini con P_s tramite integrazione

 $^{^9\}mathrm{Dobbiamo}$ considerare che l'inversa entrerà nella espressione per P_s

par parti. Ne emerge una equazione per q(x,t), che rappresentano i bra, del tipo:

Backward FK

$$\partial_t q = A \partial_x q + \frac{1}{2} B \partial_{x^2}^2 q.$$

Che differisce dalla equazione per il ket dal solo segno del primo termine dopo l'uguale.

Abbiamo quindi il set di equazioni agli autovalori:

$$\begin{cases}
-\partial_x (AP_\lambda) + \frac{1}{2} \partial_{x^2}^2 (BP_\lambda) = -\lambda P_\lambda \\
A\partial_x Q_{\lambda'} + \frac{1}{2} B\partial_{x^2}^2 Q_{\lambda'} = -\lambda' Q_{\lambda'}
\end{cases}$$
(11.8)

A questo punto si tratta di fare fare algebra sulle espressioni, possiamo moltiplicare la prima per $Q_{\lambda'}$, integrarla su un certo intervallo (a,b) ed applicare l'integrazione per parti.

Il risultato al quale si arriva è il seguente:

$$\begin{split} (\lambda' - \lambda) \int_{a}^{b} Q_{\lambda'} P_{\lambda} dx &= \\ &= \left\{ Q_{\lambda'} \left[-AP_{\lambda} + \frac{1}{2} \partial_{x} (BP_{\lambda}) \right] - \frac{1}{2} BP_{\lambda} \partial_{x} Q_{\lambda'} \right\}_{a}^{b}. \end{split}$$

Notiamo ancora l'importanza delle condizioni al contorno su (a,b).

Esempio 11.6.1 (Condizioni al contorno assorbenti). In tal caso il lato destro della equazione si annulla in quanto:

$$Q_{\lambda'}(a) = Q_{\lambda'}(b) = 0.$$

Quindi il sistema è "bi-ortogonale":

$$\int Q_{\lambda'} P_{\lambda} dx = \delta_{\lambda \lambda'}.$$

Esempio 11.6.2 (Processo di Wiener con condizioni al bordo (0,1) assorbenti.). Per via delle condizioni assorbenti in 0 e 1 abbiamo che:

$$P(0,t) = P(1,t) = 0.$$

La FK che descrive il processo di Wiener è:

$$\partial_t P = \frac{1}{2} \partial_{x^2}^2 P.$$

Possiamo scegliere la base più semplice per lo sviluppo nell'intervallo che rispetti le condizioni al bordo:

$$P_{\lambda} = \sin(\pi nx).$$

Quindi ogni P si scrive come sovrapposizione:

$$P(x,t) = \sum_{n=1}^{\infty} b_n e^{-\lambda nt} \sin(\pi nx).$$

Inserendo nell'equazione per P si ottengono gli autovalori:

$$\lambda_n = \frac{n^2 \pi^2}{2}.$$

Per quanto riguarda i coefficienti b_n dobbiamo imporre delle condizioni iniziali:

$$P(x,0) = \delta(x - x_0).$$

Quindi

$$b_n = b_n(0) = \int_0^1 \delta(x - x_0) \sin(n\pi x) dx = \sin(n\pi x_0).$$

E con questo il problema è risolto, infatti si ha:

$$P(x, t|x_0, 0) = \sum_{n=1}^{\infty} \sin(\pi n x_0) \sin(n\pi x) \exp\left(-\frac{n^2 \pi^2}{2}t\right).$$

Esempio 11.6.3 (Processo di Wiener in (0,1) con condizioni riflettenti). Le condizioni riflettenti al bordo implicano che la corrente J si annulla al bordo, vista l'espressione di J (e ricordando che A=0 per il processo di Wiener) si ha:

$$\frac{\partial P(0,t)}{\partial x} = \frac{\partial P(1,t)}{\partial x} = 0.$$

Quindi una base opportuna per le soluzioni è quella del coseno. Otteniamo quindi gli stessi autovalori del caso precedente:

$$\lambda_n = \frac{n^2 \pi^2}{2}.$$

Ma le autofunzioni sono adesso dei coseni, la soluzione finale è:

$$P(x,t|x_0,0) = \sum_{n=-\infty}^{\infty} \cos(\pi n x_0) \cos(n\pi x) \exp\left(-\frac{n^2 \pi^2}{2}t\right).$$

Parte 2

11.7 Tempo di primo passaggio o MFPT

Ipotizziamo di avere un fenomeno stocastico e di osservarne l'andamento temporale. Possiamo ipotizzare anche che questo fenomeno presenti dei picchi randomici in maniera irregolare.

In questa lezione cerchiamo un metodo analitico per esprimere l'intervallo temporale medio tra due eventi di questo tipo, anche detto tempo di primo passaggio. Operativamente dobbiamo:

- Creare un modello del fenomeno in termini stocastici.
- Derivare una qualche quantità dal modello che ci permetta di calcolare il tempo medio tra gli eventi.

Ad esempio possiamo avere una certa distribuzione iniziale di oggetti (o camminatori):

Figura 1.13: Distribuzione iniziale di camminatori.

Ciascuno di questi camminatori si muove secondo l'equazione differenziale stocastica del modello. Possiamo chiederci quanto tempo impiegheranno questi a raggiungere il punto a.

Possiamo notare subito che il tempo di passaggio dipenderà dalle condizioni al bordo su a: per condizioni assorbenti tale tempo sarà maggiore (i camminatori spariscono in a), per condizioni riflettenti il tempo sarà minore (i camminatori rimbalzano ed hanno altri step, altre possibilità di raggiungere a).

Per procedere possiamo seguire i passaggi:

- Si calcola la probabilità che la distribuzione non esca dal dominio (nell'esempio il domino era [a,b]).
- Si scrive una equazione differenziale per la probabilità.
- Si risolve l'equazione differenziale.

11.8 MFTP in 1D

Prendiamo un ensemble di camminatori stocastici (sostanzialmente immaginiamo un processo di diffusione dei camminatori) nell'intervallo unidimensionale $a \le x \le b$ con condizioni al contorno assorbenti:

$$P(a, t|x, 0) = P(b, t|x, 0) = 0.$$

La probabilità di essere ancora all'intervallo al tempo t se al tempo t=0 i camminatori si trovavano in x è G(x,t):

$$G(x,t) = \int_a^b P(x',t|x,0)dx'.$$

Si tratta sostanzialmente della probabilità condizionata di stare in un punto tra $a \in b$ al tempo t.

Sia T il tempo di uscita del camminatore dal segmento, la probabilità che $T \geq t$ con t arbitrario vale:

$$\operatorname{Prob}(T \geq t) = \int_{a}^{b} P\left(x', t | x, 0\right) dx' = G(x, t).$$

Poiché se al tempo t il camminatore sta ancora dentro l'intervallo allora sicuramente il tempo di uscita è maggiore di t.

Cerchiamo l'equazione differenziale alla quale soddisfa l'oggetto del moto.

Il problema è che l'equazione di FP che abbiamo visto per ora ci dice come evolve il propagatore, quindi in questo caso coinvolge la variabile x'. Noi vorremmo invece lasciar libera la variabile di integrazione x' e far agire la FK su x.

Ci viene in aiuto allora la Backward Fokker Plank, si riesce ad ottenere una equazione per la quantità P(x,t|y,t'). Si riporta adesso l'equazione completa (sul Gardiner si trova tutto il Ballino di conti):

Backward FK

$$\begin{split} \partial_{t'} P\left(x, t | y, t'\right) &= \\ &= -\sum A_i(y, t') \partial_{y_i} P\left(x, t | y, t'\right) + \\ &- \frac{1}{2} \sum_{i,J} B_{iJ}(y, t') \partial_{y_i} \partial_{y_J} P\left(x, t | y, t'\right) + \\ &+ \int dz \omega \left(z | y, t'\right) \left[P\left(x, t | y, t'\right) - P\left(x, t | z, t'\right)\right]. \end{split}$$

Tornando al problema MFPT in una dimensione l'equazione che ci serve è:

$$\partial_{t'} P(x', t | x, t') = -A(x) \partial_{x} P(x', t | x, t') + \frac{1}{2} B(x) \partial_{x^{2}}^{2} P(x', t | x, t').$$

Possiamo notare che per processi omogenei nel tempo deve valere la proprietà (traslazione temporale):

$$P(x', t|x, 0) = P(x', 0|x, -t)$$
.

Quindi il termine a sinistra dell'uguale nella BFK si scrive come:

$$\partial_{t'} P(x', t|x, t') = -\partial_t P(x', t - t'|x, 0) =$$

= $-\partial_{t''} P(x', t''|x, 0)$.

E l'equazione completa diventa $(t'' \to t)$:

$$\partial_t P\left(x',t|x,0\right) = A(x)\partial_x P\left(x',t|x,0\right) + \frac{1}{2}B(x)\partial_{x^2}^2 P\left(x',t|x,0\right).$$

Notiamo che la dipendenza temporale è stata spostata tutta sul termine "finale" del propagatore (x',t). Inoltre le derivate temporali sono applicate sul primo argomento del propagatore, quelle spaziali invece sul secondo argomento.

Integrando quest'ultima equazione tra a e b si ottiene una equazione per G(x,t):

$$\partial_t G(x,t) = A(x)\partial_x G(x,t) + \frac{1}{2}B(x)\partial_{x^2}^2 G(x,t)$$
 (11.9)

Inserendo le solite condizioni iniziali:

$$P(x', 0|x, 0) = \delta(x-x') \implies G(x, 0) = \begin{cases} 1 & a \le x \le b \\ 0 & \text{Altrove} \end{cases}$$

Inoltre si deve avere anche che:

$$\operatorname{Prob}(T \ge t) = 0$$
 se $x = a$ oppure $x = b$.

Quindi anche:

$$G(a,t) = G(b,t) = 0.$$

Visto che il nostro insieme di camminatori, al passare del tempo, avrà una probabilità sempre maggiore di uscire dal segmento sarà vero che:

$$G(x, t + dt) < G(x, t)$$
.

Il numero di camminatori usciti tra $t \in t + dt$ vale:

$$dG = G(x,t) - G(x,t+dt) = -\frac{\mathrm{d}}{\mathrm{d}t}(G(x,t))dt.$$

Questa quantità ci permette di calcolare tutti i valori medi di funzioni dipendenti dal tempo in questo intervallo:

$$\langle f(t) \rangle_x = \int_0^\infty f(t) \frac{\mathrm{d}}{\mathrm{d}t} [G(x,t)] dt.$$

In particolare il tempo medio di uscita, supponendo di essere in x a t=0:

$$T(x) \equiv \text{MFPT} = -\int_{0}^{\infty} t \partial_t G(x, t) dt.$$

Integrando per parti:

$$T(x) = \int_0^\infty G(x, t)dt \tag{11.10}$$

In generale il "momento" n-esimo di primo passaggio vale:

$$T^n(x) = \langle T^n(x) \rangle = \int_0^\infty t^{n-1} G(x, t) dt.$$

Sfruttando la 11.10 e la 11.9 possiamo ricavare una equazione differenziale per il tempo di primo passaggio integrando e notando che:

$$\int_0^\infty \partial_t G(x,t) = G(x,\infty) - G(x,0) = -1.$$

In conclusione:

$$-1 = AT'(x) + \frac{1}{2}BT''(x).$$

Con le condizioni al contorno banali:

$$T(a) = T(b) = 0.$$

Possiamo risolvere l'equazione per T(x) utilizzando il fattore integrante:

$$\phi(x) = \exp\left(\int_a^x \frac{2A}{B} dx'\right).$$

che ci porta ad una equazione integrabile per T(x):

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[T' \phi(x) \right] = -\frac{2}{B} \phi(x).$$

In conclusione si ha:

Forma analitica di T(x)

$$T(x) = \frac{1}{N} \left[\Omega(x, b) - \Omega(a, x) \right].$$

con

$$N = \int_{a}^{b} \frac{dy}{\phi(y)}.$$

Che funge da normalizzazione, mentre al numeratore abbiamo:

$$\begin{split} \Omega(x_1,x_2) &= \\ &= \int_a^x \frac{dy}{\phi(y)} \int_{x_1}^{x_2} dy' \left[\frac{1}{\phi(y')} \int_a^{y'} dz \frac{\phi(z)}{B(Z)} \right]. \end{split}$$

Cambiando le condizioni al contorno cambia anche il risultato, anche se i passaggi concettuali restano i medesimi.

Esempio 11.8.1 (a riflette e b assorbe). Le condizioni ci dicono che:

$$\partial_x G(x,t)|_a = 0.$$

E si può arrivare a:

$$T(x) = 2 \int_{x}^{b} \frac{dy}{\phi(y)} \int_{a}^{y} \frac{\phi(z)}{B(z)} dz$$
 (11.11)

11.9 MFPT per fuga da buca di potenziale

Prendiamo una buca di potenziale del seguente tipo:

Figura 1.14: Potenziale al quale sono soggetti i camminatori.

Ipotizziamo di preparare il sistema nell'intervallo tra minimo e massimo del potenziale [a, b], l'equazione dell'evoluzione del propagatore sarà:

$$\partial_t P = \partial_x \left(U'(x)P \right) + D\partial_{x^2}^2 P.$$

Ed abbiamo visto che questa equazione ha come soluzione stazionaria:

$$P_s \approx N \exp\left[-\frac{U(x)}{D}\right].$$

Figura 1.15: Distribuzione di probabilità stazionaria.

A questo punto dobbiamo scegliere le condizioni al contorno su a e b, prendiamo ad esempio le seguenti:

- $b \equiv x_0$ bordo assorbente: le particelle che arrivano qui fanno "Puf".
- $a \equiv \to -\infty$ come dire bordo riflettente poiché a $-\infty$ c'è un muro di potenziale che va a ∞ .

A questo punto possiamo prendere l'espressione 11.11 e specializzarla per il nostro problema. Si ottiene che il tempo di primo passaggio per andare da a a x_0 vale:

$$T(a \to x_0) = \lim_{a \to -\infty} \frac{1}{D} \int_a^{x_0} dy \exp\left(\frac{U(y)}{D}\right) \int_a^y \exp\left(-\frac{U(z)}{D}\right) dz.$$

Mettiamoci nel limite in cui la barriera di potenziale è molto maggiore del coefficiente di diffusione:

$$\Delta U = U(b) - U(a); \qquad \frac{\Delta U}{D} \gg 1.$$

Concentrandoci in un intorno di b possiamo notare che:

$$\exp\left(\frac{U}{D}\right)$$
 ha max in b.

Inoltre in questa approssimazione:

Se
$$x = b \implies \exp\left(-\frac{U}{D}\right) \to 0$$
 Con $\frac{U(b)}{D} \gg 1$.

Visto che il secondo integrale contiene questo termine e che la variabile y corre tra $-\infty$ e $x_0 = b$ possiamo approssimare l'estremo di integrazione y come:

$$\int_{-\infty}^{y} \exp\left(-\frac{U(z)}{D}\right) dz \sim \int_{-\infty}^{b} \exp\left(-\frac{U(z)}{D}\right) dz.$$

Assumendo che i termini della somma provenienti da un intorno di b contino poco. In questo modo i due integrali si disaccoppiano:

$$T \approx \frac{1}{D} \int_{-\infty}^{b} \exp\left(-\frac{U(z)}{D}\right) dz \int_{-\infty}^{x_0} dy \exp\left(\frac{U(y)}{D}\right).$$

Un'altra approssimazione che si può fare è pensare U(x) parabolico intorno ad $a \in b$:

$$U(x) \approx U(b) - \frac{1}{2} \frac{(x-b)^2}{\delta^2} \quad \text{vicino a } b$$

$$U(x) \approx U(a) + \frac{1}{2} \frac{(x-a)^2}{\alpha^2} \quad \text{vicino ad } a.$$

Risolvendo quindi gli integrali arriviamo ad una forma per il tempo di primo passaggio:

Legge di Arrhenius

$$T(a \to x_0) \approx 2\alpha \delta \pi \exp\left(\frac{U(b) - U(a)}{D}\right).$$

É una espressione simile alla legge di Arrhenius per le reazioni chimiche se poniamo $D = k_B T$.

11.10 MFPT in più dimensioni

Quando andiamo a studiare il caso multidimensionale si ha a che fare con questa equazione:

$$\sum_{i} A_i(x)\delta_i T(x) + \frac{1}{2} \sum_{i,J} B_{iJ} \partial_i \partial_J T(x) = -1 \quad (11.12)$$

Un modo elegante per risolvere è vederla come un problema agli autovalori.

Introduciamo il set di autofunzioni $Q_{\lambda}(x)$:

$$T(x) = \sum t_{\lambda} Q_{\lambda}(x).$$

Il problema si risolve reinserendo questa nella equazione 11.12 e mettendo le opportune condizioni al contorno sulle Q_{λ} .

Procedendo in questo modo ... si può dimostrare che il tempo di primo passaggio prende la forma:

$$T(x) = \sum_{\lambda} \frac{1}{\lambda} Q_{\lambda}(x) \int dx' P_{\lambda}(x').$$

Nei problemi tipici gli autovalori sono "separati esponenzialmente" l'uno dall'altro, quindi conta soltanto l'autovalore più basso (...).

Il tempo di primo passaggio diventa quindi:

$$T(x) pprox rac{1}{\lambda_1} Q_1 \int P_1 dx pprox rac{1}{\lambda_1}.$$

11.11 Calcolo numerico del MFTP

Prendiamo la SDE per un set di camminatori:

$$dx = f(x)dt + g(x)d\omega.$$

Quindi per piccoli tempi possiamo scrivere che:

$$x_{n+1} = x_n + f(x_n)\Delta t + g(x_n)\Delta\omega.$$

Quindi mettiamoci in un punto x_n e valutiamo la probabilità che x_{n+1} sia fuori dal dominio considerato (a,b). Ad esempio consideriamo la probabilità che x_{n+1} sia oltre b.

Prendiamo il potenziale a doppia buca della sezione precedente, ipotizziamo che il camminatore elementare abbia fatto abbastanza passaggi da arrivare oltre il massimo b e cadere nella seconda buca.

Possiamo chiederci quale sia la storia degli step effettuati da questo camminatore elementare, andando a vedere l'intensità del processo di Wiener in funzione della posizione si scopre che:

Per superare il massimo del potenziale il processo di Wiener che spinge il camminatore deve essere sistematicamente diverso da zero.

Ipotizziamo di avere l'andamento del processo stocastico per un camminatore $\omega(x)$, dimostriamo che tramite questo possiamo risalire al MFPT.

$$x_{n+1} = x_n + f_n \Delta t + \sqrt{D} \Delta \omega.$$

E si ha anche che:

$$x_n = x_0 + \sum f_i \Delta t + \sqrt{D} \sum \Delta \omega_i.$$

Dalla prima possiamo estrarre $\Delta\omega_n$:

$$\Delta\omega_n = \frac{1}{\sqrt{D}} \left[x_{n+1} - (x_n + f_n \Delta t) \right].$$

Sappiamo che la forma del processo di Wiener (la soluzione) è la seguente:

$$P(\Delta\omega_n)\sim \exp\left(-\frac{\left(\Delta\omega_n\right)^2}{D\Delta t}\right).$$

Per effettuare un salto da a ad oltre il massimo b abbiamo bisogno di una sequenza di salti giusti $\Delta\omega_i$, ovvero tali che:

$$x_0 = a;$$
 $x_n = b.$

Quindi la probabilità di andare da a a b sarà la probabilità che tutti i processi di Wiener adeguati si verifichino:

$$P(a \to b) \sim \prod_{i} \exp\left(-\frac{(\Delta\omega_i)^2}{D\Delta t}\right).$$

Ed inserendo la forma di $\Delta\omega_i$ ricavata in precedenza:

$$P(a \to b) \sim \prod_{i} \exp\left(-\frac{(x_{i+1} - (x_i + f_i \Delta t))^2}{D\Delta t}\right).$$

Passando al continuo nel tempo ed applicando dell'algebra se ne conclude che per trovare la probabilità massima di fare il passaggio basta risolvere:

$$\min \int_{a}^{b} (\dot{x} - f) dt.$$

Questo determina la probabilità che si verifichi una speciale fluttuazione del processo di Wiener che ci fa fare il salto, in definitiva determina anche il tempo medio di primo passaggio.

12 Lezione 12

12.1 Simulazione del processo di Wiener in una doppia buca.

Riprendiamo l'ultimo argomento della lezione 11.6, ovvero il calcolo del tempo di primo passaggio con un metodo più potente.

Prendiamo un sistema di camminatori che seguono la seguente SDE:

$$dx = f(x)dt + \sqrt{\epsilon}dW =$$

$$= (x - x^3) dt + \sqrt{\epsilon}dW.$$

In cui f(x) è la forza che sente il camminatore in un potenziale a doppia buca della forma:

Figura 1.16: Potenziale in cui vivono i camminatori (l'integrale di f con il segno invertito).

Ipotizziamo di inserire tutti i camminatori nel punto A, il sistema grazie al processo di Wiener dW inizia a muoversi e può capitare che un camminatore riesca a raggiungere il punto B cadendo poi nella buca con minimo in C.

Quello che vogliamo capire è se tutti i processi di Wiener possono permettere questo tipo di moto oppure se serve una configurazione particolare di dW_n per raggiungere la buca C. Per capirlo operativamente si eseguono i seguenti passaggi:

- Si simula il sistema ipotizzando $\sqrt{\epsilon} \ll f(x) \ \forall x$.
- ad evoluzione finita si considerano solo le traiettorie $x^{(j)}$ che hanno raggiunto C al tempo $t^{(j)}$.
- Si trasla l'origine temporale di ogni traiettoria $x^{(j)}$ nell'istante in cui tale traiettoria ha raggiunto C.
- Si graficano tutte le traiettorie in un unico plot.

Effettuando una simulazione multipla seguendo questo procedimento si ottiene:

Figura 1.17: 70 camminatori che raggiungono il punto C.

Si nota come tutte le traiettorie sembrino seguire un percorso specifico, incanalandosi in una specie di tubo di flusso per arrivare in x=1.

Questa cosa appare evidente se andiamo a vedere la densità dei punti in cui nei quali è passato il camminatore:

Figura 1.18: Densità dei camminatori che riescono a fare il salto nel tempo, si nota che si addensano attorno ad un tubo di flusso

Una cosa molto interessante da notare è la scala temporale, se mediamente un camminatore impiega un tempo di 100 digit per scappare dalla buca A restringendoci ai soli camminatori che riescono nell'impresa questo tempo risulta essere inferiore a 8 digit.

Questo significa che la sequenza di dW_n che permette il passaggio è molto improbabile, infatti deve essere tale da spingere il camminatore oltre una barriera! Si possono prendere tutte le sequenze di dW che hanno permesso ai 70 camminatori di attraversare la barriera e valutarne la densità in x. Il seguente grafico mostra un istogramma bidimensionale ('countour plot') del rumore in funzione di x:

Figura 1.19: Distribuzione del processo stocastico per i camminatori che riescono a fare il salto, notiamo che la media del processo (curva arancione) deve essere diversa da zero.

Possiamo notare il fatto che per ottenere una sequenza giusta il rumore debba essere diverso da zero (e positivo) lungo la salita del potenziale.

Superata la barriera allora il rumore può gradualmente rilassare: la fatica ormai è fatta.

12.2 Hamiltoniana per il MFPT

Riprendiamo l'equazione per il processo in forma discretizzata:

$$x_{n+1} = x_n + f(x_n)\Delta t + \sigma \Delta \omega_n = F(x_n) + \xi_n.$$

$$\langle \xi_n \xi_m \rangle = \epsilon \Delta_{nm}.$$

Consideriamo sempre l'intervallo (a,b) come sopra. Abbiamo visto che la probabilità di andare da a a b

$$P(x_b, t|x_a, 0)$$
.

è legata alla probabilità di una "corretta" fluttuazione di $\mathcal{E}.$

Supponiamo di discretizzare il tempo con un passo Δt :

$$t_{i+1} = t_i + \Delta t \quad \forall i.$$

La probabilità di arrivare in b può essere scritta come una catena di propagatori:

$$P(x_b, t|x_a, t_0) = P(x_1, t_1|x_a, t_0) \cdot P(x_2, t_2|x_1, t_1) \cdot \dots \cdot P(x_b, t_b|x_{n-1}, t_{n-1}).$$

Dove si sfrutta in questo passaggio il fatto che il sistema è markoviano (quindi è lecito scrivere la probabilità composta in questo modo).

Notiamo che la probabilità di fare il salto dalla posizione x_i a quella x_{i+1} deve essere legato alla probabilità di ottenere il "giusto" ξ_i del processo di Wiener:

$$P(x_{i+1}, t_{i+1}|x_i, t_i) \sim P(\xi_i).$$

Con
$$\xi_i$$
: $x_{i+1} = F(x_i) + \xi_i$.

Sia γ una fluttuazione ottimale che permette il passaggio da a a b.

$$\gamma \to [\zeta_1, \ldots, \zeta_n]$$
.

La probabilità che tale fluttuazione avvenga avrà la forma:

$$P(\gamma) \sim \exp\left(-\frac{S\left[x_1,\dots,x_n\right]}{\epsilon}\right).$$

$$S = \frac{1}{2}\sum_{i} \zeta_i^2.$$

Quindi il tempo di primo passaggio può essere ricavato dal fatto che:

$$P(x_n, t_n = T | x_0, t_0) \sim k \exp\left(-\frac{S_{\min}}{\epsilon}\right).$$

Quello che cerchiamo è il minimo dell'azione S: \overline{S} , ovvero la sequenza γ che massimizza la probabilità di fare il salto $a \to b$.

Per risolvere il problema di minimo possiamo utilizzare un set di moltiplicatori di Lagrange λ_i .

$$\overline{S} = \frac{1}{2} \sum_{i} \zeta_i^2 + \lambda_i \left[x_{i+1} - F(x_i) - \zeta_i \right].$$

Risolvendo il problema dei moltiplicatori si ottiene:

$$1. \quad x_{n+1} = F(x_n) + \lambda_n$$

2.
$$\lambda_{n+1} = \left[\frac{\partial F}{\partial x_i} \Big|_{i=n+1} \right]^{-1} \lambda_n$$
.

Passiamo a tempi continui, chiamiamo $\Delta t = h$, dalla prima equazione si ottiene che ¹⁰:

$$x_{n+1} = x_n + hf(x_n) + \lambda_n \implies \dot{x} = f + \lambda.$$

La seconda equazione può essere manipolata considerando la definizione di F:

$$F(x_n) = x_n + hf(x_n) \implies \frac{\partial F}{\partial x} = 1 + hf'.$$

Sostituendo questa nella (2.) e sommando e sottraendo λ_n si arriva a:

$$\dot{\lambda} = -f'\lambda.$$

Ci siamo ricondotti a due equazioni da integrare con le opportune condizioni al contorno:

Equazioni di Hamilton per il sistema

$$\begin{cases} \dot{x} = f(x) + \lambda \\ \dot{\lambda} = -f'(x)\lambda \end{cases}.$$

l'Hamiltoniana che corrisponde a queste equazioni è della forma:

$$\lambda \to p \implies H = \frac{p^2}{2} + pf.$$

Infatti vale che:

$$\begin{cases} \dot{x} = [x, H] \\ \dot{p} = [p, H] \end{cases}$$

¹⁰Non mi torna l'h, mi pare sparita...

Le condizioni al contorno che possiamo usare per risolvere sono

$$x(t = 0) = a; \quad x(t = t_n) = b.$$

Il problema può essere risolto con il calcolo della azione, sappiamo che l'azione di un sistema è legata alla lagrangiana dalla seguente:

$$\dot{S} = \mathcal{L} = \frac{\partial H}{\partial P} P - H.$$

Quindi operativamente basta integrare la lagrangiana per ottenere la S, minimizzarla per avere la P, visto che P è proporzionale al tempo di primo passaggio T.

Applicazione del metodo ad un potenziale U(x)

Prendiamo l'equazione per l'incremento di x:

$$dx = -U'dt + \sqrt{\epsilon}d\omega.$$

In cui si ha che, come già accennato -U'=f. Risolviamo le equazioni di Hamilton:

$$\begin{cases} \dot{x} = -U' + p \\ \dot{p} = U''p \end{cases}.$$

Capitolo 2

Sistemi caotici