Hamiltonian N₂-Locally Connected Claw-Free Graphs

Hong-Jian Lai, Yehong Shao, and Mingquan Zhan²

¹DEPARTMENT OF MATHEMATICS WEST VIRGINIA UNIVERSITY MORGANTOWN, WEST VIRGINIA 26506 E-mail: yshao@math.wvu.edu

> ²DEPARTMENT OF MATHEMATICS MILLERSVILLE UNIVERSITY MILLERSVILLE, PA 17551

Received February 17, 2003; Revised May 3, 2004

Published online in Wiley InterScience(www.interscience.wiley.com). DOI 10.1002/jgt.20046

Abstract: A graph G is N_2 -locally connected if for every vertex v in G, the edges not incident with v but having at least one end adjacent to v in G induce a connected graph. In 1990, Ryjáček conjectured that every 3-connected N_2 -locally connected claw-free graph is Hamiltonian. This conjecture is proved in this note. © 2004 Wiley Periodicals, Inc. J Graph Theory 48: 142–146, 2005

Keywords: N₂-locally connected; claw-free graphs; line graphs; closure

1. INTRODUCTION

We use [1] for terminology and notations not defined here, and consider finite simple graphs only. Let G be a graph. Denote by $d_G(v)$ the degree of a vertex

© 2004 Wiley Periodicals, Inc.

 $v \in V(G)$. For a vertex v of G, the neighborhood of v, that is, the induced subgraph on the set of all vertices that are adjacent to v, will be called the neighborhood of the *first type* of v in G and denoted by $N_1(v, G)$, or briefly, $N_1(v)$ or $N_G(v)$. For notational convenience, we shall use $N_G(v)$ to denote both the induced subgraph and the set of vertices adjacent to v in G. We define the neighborhood of the second type of v in G (denoted by $N_2(v, G)$, or briefly, $N_2(v)$) as the subgraph of G induced by the edge subset $\{e = xy \in E(G) : v \notin \{x, y\}$ and $\{x,y\} \cap N(v) \neq \emptyset\}$. We say that a vertex v is locally connected if N(v) is connected; and G is *locally connected* if every vertex of G is locally connected. Analogously, a vertex v is N_2 -locally connected if its second type neighborhood $N_2(v)$ is connected; and G is called N_2 -locally connected if every vertex of G is N_2 -locally connected. It follows from the definitions that every locally connected graph is N_2 -locally connected. A graph G is *claw-free* if it does not contain $K_{1,3}$ as an induced subgraph. The following theorems give the hamiltonicity of a locally and N_2 -locally connected graph.

Theorem 1.1 (Oberly and Sumner, [6]). Every connected locally connected claw-free graph on at least three vertices is hamiltonian.

Theorem 1.2 (Ryjáček, [8]). Let G be a connected, N_2 -locally connected clawfree graph without vertices of degree 1, which does not contain an induced subgraph H isomorphic to either G_1 or G_2 (Fig. 1) such that $N_1(x,G)$ of every vertex x of degree 4 in H is disconnected. Then G is Hamiltonian.

We say that G is vertex pancyclic if it contains cycles of every length through every vertex.

Theorem 1.3 (Li, [4]). Let G be a connected, N_2 -locally connected claw-free graph with $\delta(G) \geq 3$, which does not contain an induced subgraph H isomorphic to either G_1 or G_2 (Fig. 1). Then G is vertex pancyclic.

In another recent paper [5], Li suggested a new relaxation of the locally connectedness condition for Hamiltonian claw-free graphs. The main purpose of this note is to prove the following theorem, conjectured by Ryjáček in [8].

Theorem 1.4. Every 3-connected N_2 -locally connected claw-free graph is Hamiltonian.

FIGURE 1.

2. PROOF OF THE MAIN THEOREM

Our approach is to firstly apply the line graph closure (invented by Ryjáček in [8]) to convert the problem into a line graph problem. Then apply techniques in supereulerian graphs to solve the corresponding line graph problem.

The *line graph* of a graph G, denoted by L(G), has E(G) as its vertex set, where two vertices in L(G) are adjacent if and only if the corresponding edges in G have a vertex in common. Let G be the line graph L(H) of a graph H. If L(H) is k-connected, then H is *essentially* k-edge-connected, which means that the only edge-cut sets of H having less than k edges are the sets of edges incident with some vertex of H.

In [9], Ryjáček defined the closure cl(G) of a claw-free graph G by recursively completing the neighborhood of any locally connected vertex of G, as long as this is possible. The closure cl(G) is a well-defined claw-free graph and its connectivity is at least equal to the connectivity of G. The *circumference* of G is the length of a longest cycle in G.

Theorem 2.1 (Ryjáček, [9]). Let G be a claw-free graph and cl(G) its closure. Then

- (i) there is a triangle-free graph H such that cl(G) is the line graph of H,
- (ii) both graphs G and cl(G) have the same circumference.

Let O(G) denote the set of all vertices in G with odd degree. A graph G is eulerian if $O(G) = \emptyset$ and G is connected. A spanning closed trail of G is called a spanning Eulerian subgraph of G. A subgraph G is dominating if G - V(H) is edgeless. If a closed trail G of G satisfies G is dominating G then G is called a dominating Eulerian subgraph.

Theorem 2.2 (Harary and Nash-Williams, [2]). The line graph G = L(H) of a graph H is Hamiltonian if and only if H has a dominating Eulerian subgraph.

Theorem 2.2 reveals the relationship between a dominating Eulerian subgraph in H and a Hamiltonian cycle in L(H).

Theorem 2.3 below provides a sufficient condition for a graph to have a spanning Eulerian subgraph (therefore a dominating Eulerian subgraph), which is originally conjectured by Paulraja ([7]).

Theorem 2.3 (Lai, [3]). Let G be a 2-connected graph with $\delta(G) \geq 3$. If every edge of G is in an m-cycle of $G(m \leq 4)$, then G has a spanning Eulerian subgraph.

Lemma 2.4. Let G be an N_2 -locally connected graph and let x be a locally connected vertex of G such that $G[N_G(x)]$ is not complete. Let $N' = \{uv : u, v \in N_G(x), uv \notin E(G)\}$ and let G' be the graph with vertex set V(G') = V(G) and with edge set $E(G') = E(G) \cup N'$. Then G' is N_2 -locally connected.

Proof. Let $w \in V(G')$. If w = x, then $N_2(w, G')$ is connected since $N_{G'}(x)$ is complete. So we may assume that $w \neq x$. Since G is N_2 -locally connected, $N_2(w,G)$ is connected. If $E(N_2(w,G')) - E(N_2(w,G)) = \emptyset$, then $E(N_2(w,G')) = \emptyset$ $E(N_2(w,G))$ and $N_2(w,G')$ is connected. Thus we assume that $E(N_2(w,G'))$ $E(N_2(w,G)) \neq \emptyset$. Let $e = uv \in E(N_2(w,G')) - E(N_2(w,G))$. Since $e = uv \in$ $E(N_2(w, G'))$, we have $w \notin \{u, v\}$, and so $uv \in E(G')$. Without loss of generality, we assume that $wu \in E(G')$.

Case 1. $uv \in E(G)$.

By $e = uv \notin E(N_2(w, G))$, we have $wu, wv \notin E(G)$. Since $wu \in E(G')$ by the assumption, $w, u \in N_G(x)$. So $xu \in E(N_2(w, G))$. Therefore adding a new edge uvto $N_2(w, G)$ does not change its connectivity, and so $N_2(w, G')$ is connected.

Case 2. $uv \notin E(G)$.

Since $uv \in E(G')$, we have $u, v \in N_G(x)$. If $w \in N_G(x)$, then $xu, xv \in$ $E(N_2(w,G))$. Thus adding a new edge uv to $N_2(w,G)$ does not change its connectivity, and so $N_2(w, G')$ is connected. If $w \notin N_G(x)$, then we have $wu \in E(G)$ since $wu \in E(G')$ (otherwise, $w \in N_G(x)$, a contradiction). Thus $xu \in S(G')$ $E(N_2(w,G))$. So adding a new edge uv to $N_2(w,G)$ does not change its connectivity, and therefore $N_2(w, G')$ is connected.

Proof of Theorem 1.4. By Theorem 2.1(ii), the graph G is Hamiltonian if and only if its closure cl(G) is Hamiltonian. By Lemma 2.4 and as cl(G) is both 3-connected and claw free, the graph cl(G) is also a 3-connected N_2 -locally connected claw-free graph. By Theorem 2.1, we may assume that for a trianglefree graph H, G = cl(G) = L(H).

An edge e = uv is called a *pendant edge* if either $d_G(u) = 1$ or $d_G(v) = 1$.

Claim 1. Let $e = uv \in E(H)$. If e is not a pendant edge, then e is in some 4cycle of H.

Proof. Since H is triangle free, we have $N_H(u) \cap N_H(v) = \emptyset$. Let $v_e \in V(G)$ corresponds to the edge $e \in E(H)$ in terms of the line graph. Since e is not a pendant edge and G is claw free, $N_G(v_e)$ is the union of two disjoint cliques. Suppose they are L_1, L_2 . Since G is 3-connected, there exits at least one path $w_1w_2\cdots w_n$ which is edge disjoint with $G[V(L_1)\cup V(L_2)\cup \{v_e\}]$ in $G-v_e$ with $w_1 \in V(L_1), w_n \in V(L_2)$. Since G is N_2 -locally connected, we have that n = 3. Thus $v_e w_1 w_2 w_3 v_e$ is an induced 4-cycle of G, which corresponds to a 4-cycle in H containing e.

Let H be the graph obtained from H by deleting the vertices of degree 1 or 2 and replacing each path xyz in H with $d_H(y) = 2$ by an edge xy. Then it is straightforward to verify the following claim.

Claim 2. If H has a spanning Eulerian subgraph, then H has a dominating Eulerian subgraph.

Since G is 3-connected, \widetilde{H} is 3-edge-connected. Let B be an arbitrary block of \widetilde{H} . Since \widetilde{H} is 3-edge-connected, $\delta(B) \geq 3$. By Claim 1, every edge of B lies in a cycle of B of length at most 4. By Theorem 2.3 and since B is 2-connected, B has a spanning Eulerian subgraph. Since every block of \widetilde{H} has a spanning Eulerian subgraph, \widetilde{H} has a spanning Eulerian subgraph. By Claim 2, H has a dominating Eulerian subgraph. By Theorem 2.2, cl(G) is Hamiltonian.

REFERENCES

- [1] J. A. Bondy and U. S. R. Murty, Graph theory with applications, Macmillan, London and Elsevier, New York, 1976.
- [2] F. Harary and C. St. J. A. Nash-Williams, On eulerian and hamiltonian graphs and line graphs, Canad Math Bull 8 (1965), 701–709.
- [3] H.-J. Lai, Graph whose edges are in small cycles, Discrete Math 94 (1991), 11–22.
- [4] M. Li, On pancyclic claw-free graphs, Ars Combin 50 (1998), 279–291.
- [5] M. Li, Hamiltonian cycles in N^2 -locally connected claw-free graphs, Ars Combinatoria 62 (2002), 281–288.
- [6] D. J. Oberly and D. P. Sumner, Every connected, locally connected nontrivial graph with no induced claw is hamiltonian, J Graph Theory 3 (1979), 351–356.
- [7] P. Paulraja, On graphs admitting spanning eulerian subgraphs. Ars Combin 24 (1987), 57–65.
- [8] Z. Ryjáček, Hamiltonian circuits in N_2 -locally connected $K_{1,3}$ -free graphs, J Graph Theory 14 (1990), 321–331.
- [9] Z. Ryjáček, On a closure concept in claw-free graphs, J Combin Theory Ser B 70 (1997), 217–224.