Algebraic Geometry.

Alec Zabel-Mena

June 8, 2023

Contents

1	Preliminaries	5
	1.1 Affine Varieties	5

4 CONTENTS

Chapter 1

Preliminaries

1.1 Affine Varieties

Definition. Let k be an algebraically closed field. We define **affine** n-space over k to be the set $\mathbb{A}^n(k)$ of n-tuples of elements of k. We write simply \mathbb{A}^n when k is understood. We call the elements of \mathbb{A}^n points and if $P = (a_1, \ldots, a_n)$ is a point of \mathbb{A}^n , we call each a_i the coordinates of P.

Example 1.1. Let k be any algebraically closed field, and consider the multivariate polynomial ring $k[x_1, \ldots, x_n]$. We can interperate the elements of $k[x_1, \ldots, x_n]$ as functions from affine space $\mathbb{A}^n(k)$ to k by taking $f(P) = f(a_1, \ldots, a_n)$, where $f \in k[x_1, \ldots, x_n]$ and $P \in \mathbb{A}^n(k)$. This leads us to be able to talk about the set of zeros of a polynomial over k.

Definition. Let k be an algebraically closed field, and $f \in k[x_1, ..., x_n]$ a multivariate polynomial over k. We define the **set of zeros** of f to be the set

$$Z(f)=\{P\in \mathbb{A}^n(k): f(P)=0\}$$

Let T be a subset of $k[x_1, \ldots, x_n]$. Then we define the **set of zeros** of T to be

$$Z(T) = \bigcap_{f \in T} Z(f)$$

Now, if $\mathfrak{a} = (f_1, \ldots, f_r)$ is an ideal of $k[x_1, \ldots, x_n]$ generated by T, then we write $Z(T) = Z(\mathfrak{a}) = Z(f_1, \ldots, f_r)$.

Definition. Let k be an algebraically closed field. We call a subset Y of \mathbb{A}^n an **algebraic** set if there exists some $T \subseteq k[x_1, \ldots, x_n]$ for which Y is the set of zeros of T; i.e. Y = Z(T).

Lemma 1.1.1. Let k be an algebraically closed field. Then algebraic sets of \mathbb{A}^n make \mathbb{A}^n into a topology under closed sets.

Proof. Let $\mathbb{A}^n = Z(0)$ and $\emptyset = Z(1)$. Then \mathbb{A}^n and \emptyset are both algebraic. Now, let X and Y be algebraic, then there are S, T such that X = Z(S) and Y = Z(T). Now, let $P \in X \cup Y$, then P is a zero of any polynomial $f \in ST$, conversly, suppose that $P \in Z(ST)$ where

 $P \notin Y$. There exists a polynomial $f \in S$ with $f(P) \neq 0$. Now, for any $g \in T$, we have that if fg(P) = 0, then g(P) = 0, so that $P \in S$. Therefore we have $X \cup Y = Z(ST)$, making $X \cup Y$ algebraic. So that the collection of algebraic sets is closed under finite intersection. Lastly, consider a collection $\{Y_{\alpha}\}$ of algebraic sets, where $Y_{\alpha} = Z(T_{\alpha})$ for some T_{α} . Let

$$Y = \bigcap Y_{\alpha}$$
 and $T = \bigcup T_{\alpha}$

and let $P \in Y$. Then P is in every Y_{α} making it a zero of some $f_{\alpha} \in T_{\alpha}$, thus $P \in Z(T)$. Similarly, if $P \in Z(T)$, then $P \in Y$, making Y = Z(T), and making the collection of algebraic sets closed under arbitrary intersections.

Definition. We define the **Zariski topology** on affine *n*-space \mathbb{A}^n to be the topology on \mathbb{A}^n whose closed sets are the algebraic sets of \mathbb{A}^n .

Example 1.2. Consider the Zariski topology on affine 1-space \mathbb{A}^1 . Now, since k[x] is a PID, every algebraic set of \mathbb{A}^1 is the set of zeros of preciesly one polynomial. Moreover, by the algebraic closure of k, for any nonzero polynomial f over k, we have

$$f(x) = c(x - a_1) \dots (x - a_n)$$

where $c, a_1, \ldots, a_n \in k$. Then $Z(f) = \{a_1, \ldots, a_n\}$, so that the algebraic sets of \mathbb{A}^1 are the emptyset, itself, and finite subsets. Thus the Zariski topology on \mathbb{A}^1 consists of finite sets, the emptyset, and \mathbb{A}^1 itself. Notice that this topology is not Hausdorff.

Definition. Let X be a topological space, and Y a subspace of X. We call Y irreducible if it cannot be written as the union $Y = Y_1 \cup Y_2$ of two sets Y_1 and Y_2 closed in Y. We make the convention that the emptyset is not irreducible.

- **Example 1.3.** (1) Notice that the affine space \mathbb{A}^1 is irreducible. We have the only closed sets are finite sets, and since k is algebraically closed, and hence infinite, then \mathbb{A}^1 must be infinite.
 - (2) Subspaces of irreducible spaces are irreducible and dense.
 - (3) If Y is an irreducible space of a topological space X, then the closure $\operatorname{cl} Y$ is also irreducible in X.

Definition. We define an **algebraic affine variety** to be an irreducible closed subset of \mathbb{A}^1 under the Zariski topology. We define an open set of an affine variety to be a **quasi-affine variety**.

Definition. We define the ideal of a subset Y in \mathbb{A}^n , to be the set

$$I(Y) = \{ f \in k[x_1, \dots, x_n] : f(P) = 0 \text{ for all } P \in Y \}$$

where k is an algebraically closed field.

Theorem 1.1.2 (Hilbert's Nullstellensatz). Let k be an algebraically closed field and \mathfrak{a} an ideal of $k[x_1, \ldots, x_n]$, and let $f \in k[x_1, \ldots, x_n]$ be a polynomial vanishing at all points of $Z(\mathfrak{a})$. Then there exists an $r \in \mathbb{Z}^+$ for which $f^r \in \mathfrak{a}$.

Lemma 1.1.3. The followin are true for any algebraically closed field k.

- (1) If $T_1, T_2 \subseteq k[x_1, \ldots, x_n]$ with $T_1 \subseteq T_2$, then $Z(T_2)Z(T_2)$.
- (2) If $Y_1, Y_2 \subseteq \mathbb{A}^n$ with $Y_1 \subseteq Y_2$, then $I(Y_2) \subseteq I(Y_1)$.
- (3) For any $Y_1, Y_2 \subseteq \mathbb{A}^n$, $I(Y_1 \cup Y_2) = I(Y_1) \cap I(Y_2)$.
- (4) For any ideal \mathfrak{a} of $k[x_1,\ldots,x_n]$, $I(Z(J))=\sqrt{\mathfrak{a}}$, where

$$\sqrt{\mathfrak{a}} = \{ f \in k[x_1, \dots, x_n] : f^r \in J \text{ for some } r \in \mathbb{Z}^+ \}$$

(5) For every $Y \subseteq \mathbb{A}^n$, $Z(I(Y)) = \operatorname{cl} Y$ in the Zariski topology.

Proof. Let $T_1 \subseteq T_2$ be subsets of $k[x_1, \ldots, x_n]$, and choose a polynomial $f \in T_1$, and a point $P \in Z(T_2)$. We have by inclusion that $f \in T_2$, and that f(P) = 0. Now since $f \in T_1$, this puts $P \in Z(T_1)$ and we get the required inclusion. The proof for statement (2) is identical.

Now, let $P \in Y_1 \cup Y_2$, and choose a polynomial $f \in I(Y_1) \cap I(Y_2)$. Then we have that the point P is either contained in Y_1 or Y_2 (or both), so that f(P) = 0, which makes $I(Y_1 \cup Y_2) \subseteq I(Y_1) \cap I(Y_2)$. Conversely, if $f \in I(Y_1) \cap I(Y_2)$, then for any points $P \in Y_1 \cup Y_2$, f(P) = 0, which puts $f \in I(Y_1 \cup Y_2)$.

For part (4), notice this is a direct consequence of Hilbert's Nullstellensatz. Now, for part (5), notice that $Y \subseteq Z(I(Y))$, which is a closed set in the Zariski topology, so that $cl Y \subseteq Z(I(Y))$. Now, let W be a closed set in \mathbb{A}^n , containing Y. Then we have $W = Z(\mathfrak{a})$, for some ideal af of $k[x_1, \ldots, x_n]$, so that $Y \subseteq Z(\mathfrak{a})$. Then by part (2), observe that $I(Y) \subseteq I(Z(\mathfrak{a}))$, but $\mathfrak{a} \subseteq I(Z(\mathfrak{a}))$, so by part (1), we have $Z(I(Y)) \subseteq Z(\mathfrak{a})$. This makes Z(I(Y)) = cl Y.

Corollary. There exists a 1–1, inclusion reversing, correspondence of algebraic sets of \mathbb{A}^n onto radical ideals in $k[x_1, \ldots, x_n]$; given by the maps

$$\begin{array}{ccc} Y & \to & I(Y) \\ \mathfrak{a} & \to & Z(\mathfrak{a}) \end{array}$$

Moreover, an algebraic set in \mathbb{A}^n is irreducible if, and only if its ideal in $k[x_1, \ldots, x_n]$ is prime.

Proof. Notice that parts (1), (2), and (3) of the above lemma provide the required correspondence.

Now, suppose that Y is irreducible in \mathbb{A}^n , and take $fg \in I(Y)$. Then $Y \subseteq Z(fg) = Z(f) \cup Z(g)$, so that

$$Y = (Y \cap Z(f)) \cup (Y \cap Z(g))$$

which is the union of two closed sets in \mathbb{A}^n . Now, since Y is irreducible, we get that either $Y = Y \cap Z(f)$, or $Y = Y \cap Z(g)$; in either case, $Y \subseteq Z(f)$, or $Y \subseteq Z(g)$. This puts either $f \in I(Y)$, or $g \in I(Y)$, which makes the ideal I(Y) prime.

Conversely if \mathfrak{p} is a prime ideal, let $Z(\mathfrak{p}) = Y_1 \cup Y_2$, then $\mathfrak{p} = I(Y_1) \cap I(Y_2)$, so that either $\mathfrak{p} = I(Y_1)$ or $\mathfrak{p} = I(Y_2)$, since \mathfrak{p} is prime. This makes $Z(\mathfrak{p}) = Y_1$ or $Z(\mathfrak{p}) = Y_2$, which makes $Z(\mathfrak{p})$ irreducible in \mathbb{A}^n .

Example 1.4. Consider k to be an algebraically closed field.

- (1) Notice that \mathbb{A}^n maps to the ideal (0) in $k[x_1, \ldots, x_n]$, which is a prime ideal. This makes \mathbb{A}^n irreducible by the corollary to lemma 1.1.3.
- (2) Let $f \in k[x,y]$ be an irreducible polynomial. Then f generates the prime ideal (f) in k[x,y], since k[x,y] is a UFD. Thus the zero set Y = Z(f) is irreducible, and closed in \mathbb{A}^n ; hence it is an affine variety. We call Y an **affine curve** in \mathbb{A}^n defined by the equation f(x,y) = 0 of **degree** deg f = d. Now, more generally, if f is an irreducible polynomial in $k[x_1, \ldots, x_n]$, then we call the affine variety Y = Z(f) a **surface** in n = 3 and a **hypersurface** in n > 3.
- (3) A maximal ideal \mathfrak{m} of $k[x_1,\ldots,x_n]$ correspondes to a minimal affine variety of \mathbb{A}^n , which are the point-sets $\{P\}$ of \mathbb{A}^n ; where $P=(a_1,\ldots,a_n)$. Thus every maximal ideal of $k[x_1,\ldots,x_n]$ is of the form $M=(x_1-a_1,\ldots,x_n-a_n)$ for some $a_1,\ldots,a_n\in k$.
- (4) Consider the field \mathbb{R} which is not algebraically closed, and the curve defined by $x^2 + y^2 + 1 = 0$ in $\mathbb{A}^2(\mathbb{R})$. Notice that this curve is irreducible, but has no points in \mathbb{A}^2 (i.e. no roots in \mathbb{R}). This shows that if the field k is no algebraically closed, then the above results do not hold in general. Notice that the paraboloid $f(x, y) = x^2 + y^2 + 1$ (figure 1.1) does not intersect the real xy-plane

Figure 1.1: The curve $x^2 + y^2 + 1 = 0$ does not describe an affine variety.

Definition. Let k be an algebraically closed field, and Y an affine algebraic set of \mathbb{A}^n . We define the **affine coordinate ring** of Y to be the factor ring

$$A(Y) = k[x_1, \dots, x_n]/I(Y)$$

Lemma 1.1.4. If Y is an affine variety, then A(Y) is an integral domain. Moreover, there exists a 1–1 correspondence of finitely generated k-algebras onto affine coordinate rings of affine varieties.

Bibliography

- [1] D. Dummit, Abstract algebra. Hoboken, NJ: John Wiley & Sons, Inc, 2004.
- $[2]\,$ I. N. Herstein, Topics~in~algebra. New York: Wiley, 1975.