## Wärme- und Stoffübertragung I

# Dimensionslose Kennzahlen und Heisler Diagramme

Prof. Dr.-Ing. Reinhold Kneer Dr.-Ing. Dr. rer. pol. Wilko Rohlfs





#### Lernziele

- Dimensionslose Kennzahlen
  - Bedeutung dimensionsloser Kennzahlen, insbesondere der Fourier- und Biot-Zahl für den instationären Wärmetransport.

$$\Theta^* = \Theta^*(x^*, y^*, z^*, t^*, Fo, Bi)$$

- Heisler Diagramme
  - Verständnis der Heisler Diagramme zur Bestimmung der Körperkerntemperatur, des örtlichen Temperaturverlaufs und des Wärmestroms.



- Beispiel: Abschrecken einer Stahlplatte
  - Anwendung der Heisler Diagramme.







#### Wie lässt sich das Problem vereinfachen?







### **Dimensionslose Form**

Kann die Temperaturverteilung in zwei unterschiedlichen abgekühlten bzw. aufgeheizten Systemen ähnlich aussehen?









#### **Dimensionslose Form**

## Instationäre Wärmeleitung

3-D Erhaltungsgleichung ohne Advektion und Quelle

$$\rho c_p \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left( \lambda \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left( \lambda \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left( \lambda \frac{\partial T}{\partial z} \right)$$

## **Dimensionslose Gleichung**

$$\frac{\partial \Theta^*}{\partial t^*} = \mathbf{Fo} \left( \frac{\partial^2 \Theta^*}{\partial x^{*2}} + \frac{\partial^2 \Theta^*}{\partial y^{*2}} + \frac{\partial^2 \Theta^*}{\partial z^{*2}} \right)$$

## Lösung

$$T = T(x, y, z, t, \rho, c_p, \lambda, \text{Anfangs} - \text{und Randbedingungen})$$

$$T_0 \qquad \alpha, T_u$$

## **Dimensionslose Lösung**

$$\Theta^* = \Theta^*(x^*, y^*, z^*, t^*, Fo, \mathbf{Bi})$$

### **Dimensionslose** Variablen

$$x^* = \frac{x}{\delta_x}$$
  $y^* = \frac{y}{\delta_y}$   $z^* = \frac{z}{\delta_z}$   $t^* = \frac{t}{\tau}$   $\Theta^* = \frac{T - T_u}{T_0 - T_u}$ 

$$Bi = \frac{\alpha \delta}{\lambda} \quad Fo = \frac{\alpha \tau}{\delta^2} = \frac{\lambda}{\rho c_p} \frac{\tau}{\delta^2}$$



## Zeitlicher Verlauf der Körperkerntemperatur



Platte (unendlicher Ausdehnung)

Relevante Abhängigkeiten:  $Bi = \frac{\alpha\delta}{\lambda}$   $Fo = \frac{a\tau}{\delta^2} = \frac{\lambda}{\rho c_p} \frac{\tau}{\delta^2}$ 



l



## Zeitlicher Verlauf der Körperkerntemperatur



Relevante Abhängigkeiten: 
$$Bi = \frac{\alpha\delta}{\lambda}$$
  $Fo = \frac{a\tau}{\delta^2} = \frac{\lambda}{\rho c_p} \frac{\tau}{\delta^2}$ 



**Platte** (unendlicher Ausdehnung)

$$Fo = \frac{at}{D/2}$$





## Zeitlicher Verlauf der Körperkerntemperatur (doppeltlogarithmische Auftragung)



Relevante Abhängigkeiten: 
$$Bi = \frac{\alpha\delta}{\lambda}$$
  $Fo = \frac{a\tau}{\delta^2} = \frac{\lambda}{\rho c_p} \frac{\tau}{\delta^2}$ 

 $\frac{T_m - T_U}{T_0 - T_U} \quad 1$ Gültig für eine bestimmtes Verhältnis aus (logarithmisch) Innen- und Außenwiderstand (Biot-Zahl)

**Platte** (unendlicher Ausdehnung)



$$\frac{1}{Bi} \approx \mathbf{0} \rightarrow \text{aufgeprägte Wandtemperatur}$$

$$Fo = \frac{at}{D/2}$$
 (logarithmisch)





## Heisler Diagramm: Zeitlicher Verlauf der Körperkerntemperatur







## Örtlicher Verlauf der Körpertemperatur



**Platte** (unendlicher Ausdehnung)







## Örtlicher Verlauf der Körpertemperatur







## Örtlicher Verlauf der Körpertemperatur







## Heisler Diagramm: Örtlicher Temperaturverlauf



Körpermitte:  $\rightarrow \frac{x}{x_1} = 0$ 

$$\frac{1}{Bi} = \frac{\lambda}{\alpha x_1}$$
 (logarithmisch)





## Zeitlicher Verlauf der abgegebenen Wärme



Platte (unendlicher Ausdehnung)

Insgesamt im Objekt gespeichert Wärme:  $Q_{ges} = mc_p(T_0 - T_u)$ 







## Heisler Diagramm: Zeitlicher Verlauf der abgegebenen Wärme







## Heisler Diagramme verschiedener symmetrischer Körper

## **Dimensionslose Lösung**

$$\Theta^* = \Theta^*(x^*, t^*, Fo, \mathbf{Bi})$$

| Geometrie                           | Platten                                                                                    | Zylinder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Kugel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Temperatur<br>in der<br>Objektmitte | 1                                                                                          | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00 1 3 1 4 8 10 (33 to 16 to 17 to 16 to                                                                                                                                                                                                                             |
| Temperatur-<br>verteilung           | T-T <sub>a</sub> T <sub>a</sub> 10 0.3 0.3 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 | T-T <sub>s</sub> 1.0 0.2 0.8 0.4 0.8 0.5 0.0 0.2 0.5 1.0 2.0 5.0 10 20 50 100 0.01 0.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10 20 50 100 0.01 0.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10 20 50 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.T <sub>s</sub> -T <sub>1</sub> 10 0.9 0.9 0.0 0.2 0.5 1.0 2.0 3.0 10 2.0 5.0 100 10.0 10.0 10.0 10.0 10.0 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Wärmefluss<br>Anteil                | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                       | $\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0.5 \\ 0.5 \\ 0.4 \\ 0.5 \\ 0.4 \\ 0.5 \\ 0.4 \\ 0.5 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.5 \\ 0.6 \\ 0.5 \\ 0.6 \\ 0.5 \\ 0.7 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0$ | $\begin{array}{c} Q \\ Q_0 \\ 0.5 \\ 0.6 \\ 0.5 \\ 0.4 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.10^{-3} \\ 10^{-4} \\ 10^{-3} \\ 10^{-3} \\ 10^{-2} \\ 10^{-3} \\ 10^{-2} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\$ |







a) Nach welcher Zeit ist die Mitteltemperatur  $T_m$  auf 160 °C abgekühlt?



$$\rho = 7900 \text{ kg/m}^{3} 
c_{p} = 500 \text{ J/(kg·K)} 
\downarrow a = 3.8 \times 10^{-6} \text{ m}^{2}/\text{s}$$

$$\frac{1}{Bi} = \frac{\lambda}{\alpha x_{1}} = 4.05 
x_{1} = D/2$$

$$\frac{T_{m} - T_{\ddot{0}l}}{T_{0} - T_{\ddot{0}l}} = 0.19 \quad \Longrightarrow F_{0} = \frac{at}{x_{1}^{2}} = 7 \qquad \Longrightarrow t = 158s$$







$$\lambda = 15 \text{ W/(m·K)}$$
 $\rho = 7900 \text{ kg/m}^3$ 
 $c_p = 500 \text{ J/(kg·K)}$ 
 $\downarrow$ 
 $a = 3.8 \times 10^{-6} \text{ m²/s}$ 

$$\frac{1}{Bi} = \frac{\lambda}{\alpha x_1} = 4.05$$
$$x_1 = D/2$$

b) Welchen Wert hat die Temperatur T an der Plattenoberfläche nach t = 158s?



$$\frac{1}{Bi} = \frac{\lambda}{\alpha x_1} = 8 \implies \frac{T - T_{\ddot{O}l}}{T_m - T_{\ddot{O}l}} = 0.88 \implies T = 144^{\circ}\text{C}$$







Bi = 0.25

Fo = 7

c) Wieviel Wärme hat die Platte nach t = 158 s abgegeben?

totale Wärme *Q*<sub>0</sub>

verbleibende Wärme Qt

abgegebene Wärme  $Q = Q_0 - Q_t$ 



$$Bi^2Fo = \frac{\alpha^2t}{\rho c_p \lambda} = 0.43$$
  $\Longrightarrow \frac{Q}{Q_0} = 0.74$   $\Longrightarrow \frac{Q}{m} = 247.9 \frac{\text{kJ}}{\text{kg}}$ 

$$\operatorname{mit} \, \mathbf{Q_0} = mc_p(\mathbf{T_0} - \mathbf{T_{\ddot{0}l}})$$



 $\rho = 7900 \text{ kg/m}^3$ 

 $c_p = 500 \text{ J/(kg·K)}$ 

 $a = 3.8 \times 10^{-6} \,\mathrm{m}^2/\mathrm{s}$ 





## Verständnisfragen

Durch welche beiden Kennzahlen ist das instationäre Wärmeübertragungsproblem eines Körpers mit zusätzlichem äußerem thermischem Widerstand beschrieben?

Welches Hilfsmittel erlaubt eine Bestimmung des Temperaturverlaufs oder der übertragenen Wärmemenge für ausgedehnte Platten, lange Zylinder oder Kugeln?







d) Wie hoch ist die mittele spezifische Kühlleistung des Ölbads im Zeitraum 0 < t < 158 s?

$$\frac{\dot{Q}}{m} = \frac{Q/_{\Delta t}}{m} = \frac{247.9 \frac{\text{kJ}}{\text{kg}}}{158 \text{s}} = 1.57 \frac{\text{kW}}{\text{kg}}$$

$$\rho = 7900 \text{ kg/m}^3$$
 $c_p = 500 \text{ J/(kg·K)}$ 
 $a = 3.8 \times 10^{-6} \text{ m}^2\text{/s}$ 



#### **Situation**

Abschätzung des Temperaturverlaufs in Körpern bestimmter Geometrie, deren Umgebungstemperatur bei t=0 plötzlich geändert wird.





Quelle: https://i.gifer.com/4ej9



