Relative Auslander Correspondence via Exact Categories

Haruhisa Enomoto

Advisor: Prof. Osamu Iyama

January 31, 2018

About My Thesis

My Thesis contains some new results, and is based on my papers:

- [E1] H. Enomoto, Classifying exact categories via Wakamatsu tilting, J. Algebra **485** (2017), 1–44.
- [E2] H. Enomoto, Classifications of exact structures and Cohen-Macaulay-finite algebras, arXiv:1705.02163.

Our Goal is to give

an analogue of Auslander Correspondence
for CM Representation Theory
by using Exact Categories

About My Thesis

My Thesis contains some new results, and is based on my papers:

- [E1] H. Enomoto, Classifying exact categories via Wakamatsu tilting, J. Algebra **485** (2017), 1–44.
- [E2] H. Enomoto, Classifications of exact structures and Cohen-Macaulay-finite algebras, arXiv:1705.02163.

Our Goal is to give

an analogue of Auslander Correspondence
for CM Representation Theory
by using Exact Categories.

Outline

- Introduction
 - Representation Theory of Algebras
- Auslander Correspondence and CM Rep. Theory
 - Auslander Correspondence
 - CM Representation Theory
- Exact Category and Main Results
 - Exact Category and Motivating Problems
 - Main Results

Outline

- Introduction
 - Representation Theory of Algebras
- Auslander Correspondence and CM Rep. Theory
 - Auslander Correspondence
 - CM Representation Theory
- Exact Category and Main Results
 - Exact Category and Motivating Problems
 - Main Results

What is Rep. Theory of Algebras?

k: a field.

 Λ : a finite-dimensional k-algebra.

 $\operatorname{\mathsf{mod}} \Lambda$: the category of f.d. Λ -modules.

General Motivation

Want to study the structure of $\text{mod } \Lambda$!

Krull-Schmidt Theorem

Every object in mod ∧ is a finite direct sum of indecomposable objects (in a unique way)

→ suffices to study indec. Λ-modules

What is Rep. Theory of Algebras?

k: a field.

 Λ : a finite-dimensional k-algebra.

 $\operatorname{\mathsf{mod}} \Lambda$: the category of f.d. Λ -modules.

General Motivation

Want to study the structure of mod Λ !

Krull-Schmidt Theorem

Every object in $mod \land$ is a finite direct sum of indecomposable objects (in a unique way).

Representation-Finite Algebras

Definition

Λ is representation-finite

 $:\Leftrightarrow \mod \Lambda$ has only finitely many indec. objects (up to isom).

Example

- *k* is rep-fin. (indec is only *k*).
- $k[X]/(X^n)$. (Jordan canonical form of nilpotent matrix)
- Path alg. of Dynkin quivers (related to Lie theory)

Auslander Correspondence:

an important result about rep-fin. algebra

Representation-Finite Algebras

Definition

Λ is representation-finite

 $:\Leftrightarrow \text{mod } \Lambda \text{ has only finitely many indec. objects (up to isom).}$

Example

- *k* is rep-fin. (indec is only *k*).
- $k[X]/(X^n)$. (Jordan canonical form of nilpotent matrix)
- Path alg. of Dynkin quivers (related to Lie theory)

Auslander Correspondence

an important result about rep-fin. algebra.

Outline

- Introduction
 - Representation Theory of Algebras
- Auslander Correspondence and CM Rep. Theory
 - Auslander Correspondence
 - CM Representation Theory
- 3 Exact Category and Main Results
 - Exact Category and Motivating Problems
 - Main Results

Statement of Auslander Correspondence

Theorem (Auslander 1971)

There exists a bijection between:

- (1) Representation-finite algebras ∧.
- (2) Abelian categories \mathcal{E} with finitely many indec. objects.
- (3) Algebras Γ satisfying a certain homological condition (gl.dim $\Gamma \le 2 \le \text{dom.dim } \Gamma$).

This relates rep-fin alg Λ to another class of alg. Γ !

Bijections Between (1) and (2): Morita Theory

This bijection is related to:

Morita theory

Characterize the module category of algebra by the categorical property.

(2) and (3): Cat. of Finite Type "=" Algebras

Proposition

There exists a bijection between:

- (2') Additive categories ℰ of finite type (:⇔ categories with finitely many indec. objects).
- (3') Algebra Γ (an Auslander alg. of \mathcal{E}).

 Γ : Aus. alg. of arepsilon

(2) and (3): Cat. of Finite Type "=" Algebras

Proposition

There exists a bijection between:

- (2') Additive categories ℰ of finite type (:⇔ categories with finitely many indec. objects).
- (3') Algebra Γ (an Auslander alg. of \mathcal{E}).

Auslander Correspondence in a Big Diagram

Bijections between (1), (2) and (3) are summerized as:

$$\Lambda \longmapsto \mathcal{E} := \operatorname{\mathsf{mod}} \Lambda \longmapsto \Gamma$$

Auslander Correspondence in a Big Diagram

Bijections between (1), (2) and (3) are summerized as:

Auslander Correspondence in a Big Diagram

Bijections between (1), (2) and (3) are summerized as:

Motivation for CM Rep. Theory

More detailed and interesting results are obtained if we restrict the class of modules we consider.

That is,

Study "good" subcategory of mod Λ (instead of mod Λ itself).

Cohen-Macaulay Rep. Theory

Today: CM rep. theory, which studies cat. CM ∧ of

Cohen-Macaulay modules.

Origin: Commutative rings, and their CM rep. theory is

closely related to algebraic geometry.

Motivation for CM Rep. Theory

More detailed and interesting results are obtained if we restrict the class of modules we consider.

That is,

Study "good" subcategory of mod Λ (instead of mod Λ itself).

Cohen-Macaulay Rep. Theory

Today: CM rep. theory, which studies cat. CM ∧ of

Cohen-Macaulay modules.

Origin: Commutative rings, and their CM rep. theory is

closely related to algebraic geometry.

CM Rep. Theory for Iwanaga-Gorenstein Algebras

Definition

- Algebra Λ is Iwanaga-Gorenstein (IG)
 :⇔ id Λ_Λ and id _ΛΛ are finite.
- CM $\Lambda := \{X \in \text{mod } \Lambda \mid \text{Ext}_{\Lambda}^{>0}(X, \Lambda) = 0\},$ the category of Cohen-Macaulay Λ -modules.
- IG alg Λ is CM-finite if CM Λ is of finite type.

Example

- Self-injective algebra $\Lambda \leadsto \Lambda$ is IG, and CM $\Lambda = \text{mod } \Lambda$.

CM Rep. Theory for Iwanaga-Gorenstein Algebras

Definition

- Algebra Λ is Iwanaga-Gorenstein (IG)
 :⇔ id Λ_Λ and id _ΛΛ are finite.
- CM $\Lambda := \{X \in \text{mod } \Lambda \mid \text{Ext}_{\Lambda}^{>0}(X, \Lambda) = 0\},$ the category of Cohen-Macaulay Λ -modules.
- IG alg Λ is CM-finite if CM Λ is of finite type.

Example

- Algebra Λ with finite gl.dim.

 Λ is CM-fin. IG with CM Λ = { f.g. projective Λ-modules }.
- Self-injective algebra $\Lambda \leadsto \Lambda$ is IG, and CM $\Lambda = \text{mod } \Lambda$.

Naive Approach to CM Auslander Corresp. Fails

The map "CM" is not injective!

However

 Λ can be recovered from CM Λ

together with the structure of exact category on it.

Naive Approach to CM Auslander Corresp. Fails

The map "CM" is not injective!

However

 Λ can be recovered from CM Λ

together with the structure of exact category on it.

Outline

- Introduction
 - Representation Theory of Algebras
- Auslander Correspondence and CM Rep. Theory
 - Auslander Correspondence
 - CM Representation Theory
- Exact Category and Main Results
 - Exact Category and Motivating Problems
 - Main Results

Exact Cat. = Additive Cat. + Short Exact Seq.

Definition (Quillen 1973)

An exact category consists of a pair (\mathcal{E}, F) , where

- ullet is an additive category, and
- F is a class of short exact sequences in \mathcal{E} satisfying some conditions.

Example

CM Λ (and other good subcat of mod Λ) naturally has the structure of exact categories.

 Λ can be recovered from CM Λ + exact str. on it!

Exact Cat. = Additive Cat. + Short Exact Seq.

Definition (Quillen 1973)

An exact category consists of a pair (\mathcal{E}, F) , where

- ullet is an additive category, and
- F is a class of short exact sequences in \mathcal{E} satisfying some conditions.

Example

CM Λ (and other good subcat of mod Λ) naturally has the structure of exact categories.

 Λ can be recovered from CM Λ + exact str. on it!

Modified Approach for CM Auslander Corresp.

Modified Approach

Want to seek bijections between:

- (1) CM-finite IG algebras Λ.
- (2) Categories \mathcal{E} of finite type satisfying some conditions + exact structure on it.
- (3) Algebra Γ satisfying some conditions
 - + some information.

To this aim, we should consider:

Problem A (1) and (2): Morita theory for exact cat.

Problem B (2) and (3): Exact str. via Auslander alg

Modified Approach for CM Auslander Corresp.

Modified Approach

Want to seek bijections between:

- (1) CM-finite IG algebras Λ.
- (2) Categories \mathcal{E} of finite type satisfying some conditions + exact structure on it.
- (3) Algebra Γ satisfying some conditions
 - + some information.

To this aim, we should consider:

Problem A (1) and (2): Morita theory for exact cat.

Problem B (2) and (3): Exact str. via Auslander alg.

Two Problems in a Big Diagram

Two Problems in a Big Diagram

Two Problems in a Big Diagram

Result On Problem A

Problem A

Characterize CM category of IG alg by categorical conditions!

Theorem A [E1]

For an exact category \mathcal{E} , the following are equivalent:

- \mathcal{E} is equivalent to CM Λ for some IG alg Λ .
- E is Frobenius category with progenerator and higher kernels.

Result On Problem B

 \mathcal{E} : cat. of finite type, Γ : its Auslander algebra.

Theorem B [E2]

There are bijections between the following:

- Exact structures on E.
- Sets of 2-regular simple Γ-modules.
- Sets of dotted arrows \mathbb{A} in the graph $Q(\Gamma)$.

Example of Theorem B: Classifying Exact Structures

Example of Theorem B: Classifying Exact Structures

Example

 \mathcal{E} : the module category of $k[\bullet \leftarrow \bullet \leftarrow \bullet]$.

∃ 3 dotted arrow, hence

 $\exists \ 2^3 = 8 \ \text{exact str. on } \mathcal{E}$

A: Red arrows

Example of Theorem B: Classifying Exact Structures

Example

 \mathcal{E} : the module category of $k[\bullet \leftarrow \bullet \leftarrow \bullet]$.

∃ 3 dotted arrow, hence

 $\exists \ 2^3 = 8 \ \text{exact str. on } \mathcal{E}$

A: Red arrows

Auslander Correspondence for CM-finite IG Algebras

Corollary [E1, E2]

There exists a bijection between the following.

- (1) CM-finite Iwanaga-Gorenstein algebras ∧.
- (2) Frobenius exact cats \mathcal{E} of finite type with higer kernels.
- (3) Pairs (Γ, \mathbb{A}) , where Γ is an algebra with finite gl.dim and \mathbb{A} is a sets of cycles of dotted arrows of $Q(\Gamma)$.
 - ALL CM-finite IG algebras are obtained in this way.
 - This gives systematic method to construct such algebras.

Auslander Correspondence for CM-finite IG Algebras

Corollary [E1, E2]

There exists a bijection between the following.

- (1) CM-finite Iwanaga-Gorenstein algebras ∧.
- (2) Frobenius exact cats \mathcal{E} of finite type with higer kernels.
- (3) Pairs (Γ, \mathbb{A}) , where Γ is an algebra with finite gl.dim and \mathbb{A} is a sets of cycles of dotted arrows of $Q(\Gamma)$.
 - ALL CM-finite IG algebras are obtained in this way.
 - This gives systematic method to construct such algebras.

Example

with commutativity and zero relation $\rightsquigarrow \Gamma$ has fin. gl.dim.

Thus $Q(\Gamma)$ has 2 cycles of dotted arrows. We obtain $2^2 = 4$ CM-finite IG algebras Λ

A: Orange Dotted Arrows

Example

with commutativity and zero relation $\rightsquigarrow \Gamma$ has fin. gl.dim. Thus $Q(\Gamma)$ has 2 cycles of dotted arrows.

 \rightarrow We obtain $2^2 = 4$ CM-finite IG algebras Λ

A: Orange Dotted Arrows.

Example

with commutativity and zero relation $\rightsquigarrow \Gamma$ has fin. gl.dim. Thus $Q(\Gamma)$ has 2 cycles of dotted arrows.

 \rightarrow We obtain $2^2 = 4$ CM-finite IG algebras Λ

A: Orange Dotted Arrows.

Example

with commutativity and zero relation $\leadsto \Gamma$ has fin. gl.dim.

Thus $Q(\Gamma)$ has 2 cycles of dotted arrows.

 \rightarrow We obtain $2^2 = 4$ CM-finite IG algebras Λ

A: Orange Dotted Arrows.

Example

with commutativity and zero relation $\leadsto \Gamma$ has fin. gl.dim.

Thus $Q(\Gamma)$ has 2 cycles of dotted arrows.

 \rightarrow We obtain $2^2 = 4$ CM-finite IG algebras Λ

A: Orange Dotted Arrows.