

HA NOI UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

IT3090E - Databases

Chapter 5bis: Database design Some complements

Made by the Database Teaching Team - SoICT

LEARNING POINTS

- 1. Functional Dependency
- 2. Armstrong's Axioms and secondary rules
- 3. Closure of a FD set, closure of a set of attributes
- 4. A minimal key
- 5. Equivalence of sets of FDs
- 6. Minimal Sets of FDs

LEARNING OBJECTIVES

Upon completion of this lesson, students will be able to:

- 1. Recall the concept of functional dependency, Armstrong's axioms and secondary rules
- 2. Identify closure of a FD set, closure of a set of attributes
- 3. Find a minimal key of a relation under a set of FDs
- 4. Identify the equivalence of sets of FDs and find the minimal cover of a set of FDs

- 1.1. Introduction
- 1.2. Definition

1.1. Introduction

- We have to deal with the problem of database design: anomalies, redundancies
- The single most important concept in relational schema design theory

1.2. Definition

- Suppose that $R = \{A_1, A_2, ..., A_n\}$, X and Y are non-empty subsets of R.
- A functional dependency (FD), denoted by X → Y, specifies a constraint on the p ossible tuples that can form a relation state r of R. The constraint is that, for an y two tuples t₁ and t₂ in r that have t₁[X] = t₂[X], they must also have t₁[Y] = t₂[Y].
 - X: the left-hand side of the FD
 - Y: the right-hand side of the FD

1.2. Definition

- This means that the values of the X component of a tuple uniquely (or functionally) determine the values of the Y component.
- A FD X \rightarrow Y is trivial if X \supseteq Y
- If X is a candidate key of R, then $X \rightarrow R$

1.2. Definition

- Examples
 - $-AB \rightarrow C$

Α	В	С	D
a1	b1	c1	d1
a1	b1	c1	d2
a1	b2	c2	d1
a2	b1	сЗ	d1

- subject_id \rightarrow name,
- subject_id \rightarrow credit,
- subject_id → percentage_final_exam,
- subject_id → {name, credit}

subject

subject_id	name	credit	percentage_ final_exam
IT3090	Databases	3	0.7
IT4843	Data integration	3	0.7
IT4868	Web mining	2	0.6
IT2000	Introduction to ICT	2	0.5
IT3020	Discrete Mathematics	2	0.7
IT3030	Computer Architectures	3	0.7
	IT3090 IT4843 IT4868 IT2000 IT3020	IT3090 Databases IT4843 Data integration IT4868 Web mining IT2000 Introduction to ICT IT3020 Discrete Mathematics	IT3090 Databases 3 IT4843 Data integration 3 IT4868 Web mining 2 IT2000 Introduction to ICT 2 IT3020 Discrete Mathematics 2

- 2.1. Armstrong's axioms
- 2.2. Secondary rules
- 2.3. An example

2.1. Armstrong's axioms

- $R = \{A_1, A_2, ..., A_n\}, X, Y, Z, W \text{ are subsets of } R.$
- XY denoted for $X \cup Y$
- Reflexivity
 - If $Y \subseteq X$ then $X \rightarrow Y$
- Augmentation
 - If $X \rightarrow Y$ then $XZ \rightarrow YZ$
- Transitivity
 - If X→Y, Y→Z then X→Z

2.2. Secondary rules

- Union
 - If X \rightarrow Y, X \rightarrow Z then X \rightarrow YZ.
- Pseudo-transitivity
 - If X→Y, WY→Z then XW→Z.
- Decomposition
 - If X \rightarrow Y, Z ⊆ Y then X \rightarrow Z

2.3. An example

- Given a set of FDs: $F = \{AB \rightarrow C, C \rightarrow A\}$
- Prove: BC \rightarrow ABC
 - From $C \rightarrow A$, we have $BC \rightarrow AB$ (Augmentation)
 - From AB \rightarrow C, we have AB \rightarrow ABC (Augmentation)
 - And we can conclude $BC \rightarrow ABC$ (Transitivity)

- 3.1. Closure of a FD set
- 3.2. Closure of a set of attributes
- 3.3. A problem

3. Closure of a FD set, closure of a set of attributes3.1. Closure of a FD set

- Suppose that $F = \{A \to B, B \to C\}$ on R(A, B, C,...). We can infer many FDs such as: $A \to C$, AC \to BC,...
- Definition
 - Formally, the set of all dependencies that include F as well as all dependencies that can be inferred from F is called the closure of F, denoted by F⁺.
- $F \models X \rightarrow Y$ to denote that the FD $X \rightarrow Y$ is inferred from the set of FDs F.

3. Closure of a FD set, closure of a set of attributes3.2. Closure of a set of attributes

- Problem
 - We have F, and $X \rightarrow Y$, we have to check if $F \models X \rightarrow Y$ or not
- Should we calculate F^+ ? \Rightarrow Closure of a set of attributes
- Definition
 - For each such set of attributes X, we determine the set X⁺ of attributes that are functionally determined by X based on F; X⁺ is called the closure of X under F.

3.2. Closure of a set of attributes

• To find the closure of an attribute set X⁺ under F

Input: A set F of FDs on a relation schema R, and a set of attributes X, which is a subset of R.

```
X^{o} := X;
repeat
for each functional dependency Y \rightarrow Z in F do
    if X^{i-1} \supseteq Y then X^{i} := X^{i-1} \cup Z;
    else X^{i} := X^{i-1}
until (X^{i} unchanged);
X^{+} := X^{i}
```


3.2. Closure of a set of attributes

- An example
 - Given R = {A, B, C, D, E, F} and F = {AB → C, BC → AD, D → E, CF → B}. Calculate $(AB)^+_F$
 - $X^0 = AB$
 - $X^1 = ABC \text{ (from AB} \rightarrow C)$
 - $X^2 = ABCD \text{ (from BC} \rightarrow AD)$
 - $X^3 = ABCDE \text{ (from } D \rightarrow E)$
 - $X^4 = ABCDE$

• $(AB)_F^+=ABCDE$

3.3. A Problem

- $X \rightarrow Y$ can be inferred from F if and only if $Y \subseteq X^+_F$
- $F \models X \rightarrow Y \Leftrightarrow Y \subseteq X^+_F$
- An example

- Let
$$R = \{A, B, C, D, E\}, F = \{A \rightarrow B, B \rightarrow CD, AB \rightarrow CE\}.$$

Consider whether or not $F \models A \rightarrow C$

•
$$(A)^+_F = ABCDE \supseteq \{C\}$$

- 4.1. Definition
- 4.2. An algorithm to find a minimal key
- 4.3. An example

4.1. Definition

- Minimal key
 - Given R = $\{A_1, A_2, ..., A_n\}$, a set of FDs F
 - K is considered as a minimal key of R if:
 - K⊆R
 - $K \rightarrow R \in F^+$
 - Với ∀K'⊂K, thì K'→R ∉ F⁺
 - K⁺= R and K\{A_i} → R \notin F⁺

4.2. An algorithm to find a minimal key

To find a minimal key

Input:
$$R = \{A_1, A_2, ..., A_n\}$$
, a set of FDs F

- Step^o $K^o = R$

- Stepⁱ If $(K^{i-1}\setminus\{A_i\}) \rightarrow R$ then $K^i = K^{i-1}\setminus\{A_i\}$

else $K^i = K^{i-1}$

- Stepⁿ⁺¹ $K = K^n$

4.3. An example

Given $R = \{A, B, C, D, E\}$, $F = \{AB \rightarrow C, AC \rightarrow B, BC \rightarrow DE\}$. Find a minimal key

- Step $^{\circ}$: K° = R = ABCDE
- Step¹: Check if or not $(K^{\circ}\setminus \{A\}) \to R$ (i.e, BCDE $\to R$). $(BCDE)^{+}=BCDE \neq R$. Vậy $K^{1}=K^{\circ}=ABCDE$
- Step²: Check if or not $(K^1 \setminus \{B\}) \to R$ (i.e, ACDE $\to R$). $(ACDE)^+ = ABCDE = R$. So, $K^2 = K^1 \setminus \{B\} = ACDE$
- Step³: $K^3 = ACDE$
- Step⁴: $K^4 = ACE$
- Step⁵: $K^5 = AC$

We infer that AC is a minimal key

4.4. An other algorithm to find a minimal key

Input: $U = \{A_1, A_2, ..., A_n\}$, F

Output: a minimal key

• Step 1:

VT = set of all attributes on the left-side of FD in F

VP = set of all attributes on the right-side of FD in F

 $X = U \setminus VP$: set of attributes that must be in K

 $Y = VP \setminus VT$: set of attributes that must NOT be in K

 $Z = VP \cap VT$: set of attrbutes that may be in K

- **Step 2**: If $(X)^+ = U$ then X is the minimal key: K = X. End!
- **Step 3:** If (X)⁺ ≠ U then

$$-K^{o} = X \cup Z$$

- Repeat: check if we can remove any attribute from Z (similar to slide 22)
- $-K = K^{i}$

5. Equivalence of Sets of FDs

- 5.1. Definition
- 5.2. An example

5. Equivalence of Sets of FDs

5.1. Definition

- Definition:
 - A set of FDs F is said to cover another set of FDs G if every FD in G is also in F⁺ (every dependency in G can be inferred from F).
- Check if F and G are equivalent:
 - Two sets of FDs F and G are equivalent if $F^+ = G^+$.
 - Therefore, equivalence means that every FD in G can be inferred from F, a nd every FD in F can be inferred from G;
 - That is, G is equivalent to F if both the conditions G covers F and F covers G hold.

5. Equivalence of Sets of FDs

5.2. An example

- Prove that $F = \{A \to C, AC \to D, E \to AD, E \to H\}$ and $G = \{A \to CD, E \to AH\}$ are equivalent
 - For each FD of F, prove that it is in G⁺
 - A \rightarrow C: (A) $^{+}_{G}$ = ACD \supseteq C, so A \rightarrow C \in G $^{+}$
 - AC \rightarrow D: (AC) $^{+}_{G}$ = ACD \supseteq D, so AC \rightarrow D \in G $^{+}$
 - E \rightarrow AD: (E)⁺_G = EAHCD \supseteq AD, so E \rightarrow AD \in G⁺
 - $E \to H$: $(E)^+_G = EAHCD \supseteq H$, so $E \to H \in G^+$
 - $\bullet \Rightarrow F^+ \subseteq G^+$
 - For each FD of G, prove that it is in F⁺ (the same)

•
$$\Rightarrow$$
G⁺ \subset F⁺

- 6.1. Definition
- 6.2. An algorithm to find a minimal cover of a set of FDs
- 6.3. An example

6.1. Definition

- Minimal Sets of FDs
 - A set of FDs F to be minimal if it satisfies:
 - Every dependency in F has a single attribute for its right-hand side.
 - We cannot replace any dependency X → A in F with a dependency Y → A, where Y is a proper subset of X, and still have a set of dependencies that is equivalent to F.
 - We cannot remove any dependency from F and still have a set of dependencies that t is equivalent to F.
 - A set of dependencies in a standard or canonical form and with no redundancies

6.2. An algorithm to find a minimal cover of a set of FDs

Finding a Minimal Cover F for a Set of FDs G

Input: A set of FDs G.

- 1. Set F := G.
- 2. Replace each functional dependency $X \rightarrow \{A_1, A_2, ..., A_n\}$ in F by the n FDs X

$$\rightarrow A_1, X \rightarrow A_2, ..., X \rightarrow A_n.$$

3. For each FD $X \rightarrow A$ in F

for each attribute B that is an element of X if $\{\{F - \{X \to A\}\} \cup \{(X - \{B\}) \to A\}\}\$ is equivalent to F then replace $X \to A$ with $(X - \{B\}) \to A$ in F.

4. For each remaining functional dependency $X \rightarrow A$ in F

if $\{F - \{X \rightarrow A\}\}\$ is equivalent to F, then remove $X \rightarrow A$ from F.

6.3. An example

- $G = \{B \rightarrow A, D \rightarrow A, AB \rightarrow D\}$. We have to find the minimal cover of G.
 - All above dependencies are in canonical form
 - In step 2, we need to determine if AB \rightarrow D has any redundant attribute on the left-hand side; that is, can it be replaced by B \rightarrow D or A \rightarrow D? Since B \rightarrow A then AB \rightarrow D may be replaced by B \rightarrow D.

We now have a set equivalent to original G, say G_1 : {B \rightarrow A, D \rightarrow A, B \rightarrow D}.

- In step 3, we look for a redundant FD in G_1 . Using the transitive rule on $B \to D$ and $D \to A$, we conclude $B \to A$ is redundant.

Therefore, the minimal cover of G is $\{B \to D, D \to A\}$

Remark

- Functional dependencies
- Armstrong axioms and their secondary rules
- Closure of a set of FDs
- Closure of a set of attributes under a set of FDs
- An algorithm to find a minimal key
- Equivalence of sets of FDs
- Finding a minimal set of a set of FDs

Summary

- 1. Functional Dependency
 - A FD $X \rightarrow Y$: the values of the X component of a tuple uniquely (or functionally) d etermine the values of the Y component
- 2. Armstrong 's Axioms and secondary rules
 - Reflexivity, Augmentation, Transitivity
 - Union, Pseudo-transitivity, Decomposition
- 3. Closure of a FD set, closure of a set of attributes
 - All dependencies that can be inferred from F, include F, is called the closure of F, d enoted by F⁺
 - A set of attributes are functionally determined by X based on F
- 4. A minimal key
 - A minimal set of attributes can determine R
- 5. Equivalence of sets of functional dependencies
 - F is equivalent to G if every dependency in G can be inferred from F, and every dependency in F can be inferred from G
- 6. A minimal cover of a set of FDs
 - A set of dependencies in a standard or canonical form and with no redundancies

References

- Raghu Ramakrishnan and Johannes Gehrke, Database Management Systems, 3rd edition, Mc Graw Hill, 2003.
- Elmasri and Navathe, Fundamentals of Database Systems, 6th edition, Addison-Wesley, 2 011.

VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Thank you for your attention!

