Quiz 1 Solution:

A distortionless cable is 4-m long and has a characteristic impedance of 60Ω . A signal is attenuated by 0.24 dB at the receiving end and delayed by $80 \mu s$. Find R, G, C, L for the cable.

soln:

Given,

L=4 m, $Z_0=60$ Ohm, $\alpha=0.24$ dB for 4 m, time delay = 80 μ sec.

$$\alpha = \frac{0.24}{4 \times 8.686} = 0.00691 \, Np/m$$

velocity of signal, $v = 4/(80\mu) = 5 \times 10^4 \text{ m/sec.}$

Condition for distortionless line, $\frac{R}{L} = \frac{G}{C}$

For distortionless line,
$$\alpha = \sqrt{RG}$$
, and $Z_0 = \sqrt{\frac{L}{C}}$

$$\therefore R = \alpha Z_0 = 0.414 \,\Omega/\mathrm{m}$$

$$L = \frac{Z_0}{12} = 1.2m \, H/m$$

$$G = \frac{R}{Z_0^2} = 115\mu \, S/m$$

Q2. The impedance of the line is

$$Z_{\circ} = \sqrt{\frac{L}{C}} = 100 \,\Omega$$

The normalized admittance of the load is

$$Y_L = \frac{Z_0}{Z_L} = 0.24 - 0.32j$$

The load admittance is shown as point D1 in the smith chart. To match the impedance, we need to locate a point =1 at the constant reflection coefficient circle (shown as blue). This occurs at two points D2 and D3. The wavel -0.024 S. The characteristic impedance of the stub is 80 ohms. To offset the previous admittance, we need to ad +0.024 S using the stub.

The Complete Smith Chart

And the wavelength is 0.4m. Using $Y_{iS}=-jY_{\circ}\cot\beta l$, We find the length of the shorted stub to be 0.17m.

Q3.

Reflection coefficient at the load;

$$\Gamma = (ZL - Z0) / (ZL + Z0) = (-1 - j2) / 5$$

Standing wave ratio;

SWR =
$$(1 + |\Gamma(z)|) / (1 - |\Gamma(z)|) = (1 + |\Gamma L|) / (1 - |\Gamma L|) = 2.618$$

According to the question, total amplitude at the load is

$$VL = V + (1 + \Gamma L)$$

 $\Rightarrow V + = VL / (1 + \Gamma L) = 25 (2 + j) V$

Magnitude of the forward – propagating voltage;

$$|V + | = 55.9 V$$

Maximum voltage =
$$|V + |(2 SWR / (SWR + 1))| = 80.9 V$$

Minimum voltage =
$$|V + |(2 / (SWR + 1))| = 30.9 V$$

Solution 4

Zin= Zo^2/ZL = 30^2/75= 12 ohm

50= Za^2/Zin but Zin = 12 ohm So Za = 24.5 ohm

Q5.

Conditions for low — loss line

$$R \ll \omega L$$
, $G \ll \omega C$

$$\omega L = 2\pi * 100 * 10^6 * 0.2 * 10^{-6} = 40\pi$$

$$R \ll 40\pi$$

Q7.

Characteristic impedance, Z

=
$$((R + jwL)/(G + jwC))^1/2$$
 and $\gamma = ((R + jwL) * (G + jwC))^1/2 = \alpha + j\beta$.

Z can be real if R/G $\,=\,$ L/C but that does not imply that α

= 0, so the line is not necessarily lossless. Such a line, where R/G

= L/C, is called distortion less transmission line.

$$\frac{P_{ref lected}}{P_{incident}} = 0.2$$

$$\Rightarrow \left(\frac{A_{ref lected}}{A_{incident}}\right)^{2} = 0.2$$

$$\Rightarrow \Gamma = \sqrt{0.2} = 0.4472$$

$$VSWR = \frac{1+\Gamma}{1-\Gamma} = \frac{1+0.4472}{1-0.4472} = 2.618$$

Q9. mpec

Characteristic Impedance $Z0=50\Omega$ $f=30 MHz \text{ and } \lambda=10 m$ $Load Impedance ZL=200\Omega$ Vin (rms)=10 V Vout (rms)=?

Since the system is matched the power carried by the wave is $(10)^2/50 = 2$ W.

In a lossless case, this power has to be delivered to the load giving

 $(VL)^2/200 = 2 W$

VL=20 V

The given device is a 6 dB attenuator. As the attenuator is terminated in open circuit hence the magnitude of output Hence the total return loss would be of 12 dB. So, the magnitude of input reflection coefficient is 10^{-12} (-12) = 0.251.