Aula 3

Professores:

Anselmo Montenegro Esteban Clua

Conteúdo:

 Objetos gráficos (parte I - objetos gráficos planares)

Objetos gráficos: conceitos

- O conceito de objeto gráfico é fundamental para a Computação Gráfica e áreas afins.
- Um objeto gráfico representa a geometria (forma)
 e atributos (propriedades) de um objeto do mundo real.

Objetos gráficos: conceitos

Objeto gráfico 2D

Objeto gráfico 3D

Objetos gráficos: conceitos

- A área que lida com a modelagem de objetos gráficos é denominada Modelagem Geométrica.
- Sistemas gráficos são sistemas de software que processam, manipulam e visualizam objetos gráficos.

Objetos gráficos: exemplos

Curva no plano

Objetos gráficos: exemplos

Região do plano com atributo de cor

Objetos gráficos: exemplos

Imagem em tons de cinza (monocromática)

- Um objeto gráfico é definido por um **subconjunto** $S \subset R^m$ e uma **funç**ã $f: S \subset R^m \to R^n$.
- O conjunto S é denominado suporte geométrico de um objeto gráfico.
- A função f é denominada função de atributos do objeto gráfico.

Geometria - S⊂R3

Geometria - S⊂R3

Geometria - S⊂R3

Geometria - S⊂R3

Geometria - S⊂R3

Geometria - S⊂R3

Geometria - S⊂R3

Geometria - S⊂R3

Objeto gráfico – geometria + atributos

- A dimensão do objeto gráfico é dada pela dimensão do suporte geométrico.
 - Curvas unidimensionais; somente possuem comprimento.
 - Regiões e superfícies bidimensionais; possuem área.
 - Sólidos tridimensionais; possuem volume.

 Um objeto gráfico é denominado planar se a dimensão do espaço ambiente é 2 e espacial se a dimensão é≥ 3.

 Um objeto gráfico é denominado planar se a dimensão do espaço ambiente é 2 e espacial se a dimensão é≥ 3.

Curva planar

 Um objeto gráfico é denominado planar se a dimensão do espaço ambiente é 2 e espacial se a dimensão é≥ 3.

Curva espacial

	unidimensionais	bidimensionais	tridimensionais
Planares			
Espaciais			

Objetos gráficos planares: curvas

- São objetos gráficos unidimensionais.
- Base para a descrição de formas em Computação Gráfica:
 - Simples: círculos, elipses, diagramas.
 - Complexas: aeronaves, navios, dutos.

Objetos gráficos planares: curvas

- Aplicações:
 - Descrição de **objetos sintéticos**.
 - **Modelagem e visualização** de dados e fenômenos científicos.
 - Representação de trajetórias e animação.

Objetos gráficos planares: curvas

- Um caso particular das curvas são as curvas simples.
- Curvas simples não possuem auto-interseção.
- Curvas simples são importantes na caracterização de regiões.

Objetos gráficos planares: representação de curvas

 Curvas podem ser aproximadas através de segmentos de retas.

 Curvas mais complexas requerem formas mais eficientes de representação.

Objetos gráficos planares: representação de curvas

- Uma alternativa consiste em representar curvas analiticamente através de **equações**.
- Temos duas formas clássicas de representação:
 - Paramétrica.
 - Implícita.

Objetos gráficos planares: curvas planares paramétricas

• A descrição paramétrica de uma curva planar é uma função $\gamma: I \subset R \rightarrow R^2$ tal q $\gamma(t) = (x(t), y(t))$

Objetos gráficos planares: curvas planares paramétricas

- Uma curva paramétrica pode ser vista como a trajetória de um ponto se inter- pretarmos o parâmetro t como o tempo.
- O conjunto de pontos de uma equação paramétrica $\gamma(t)$ é denominado **traço**.
- Existem várias parametrizações possíveis para uma curva.

Objetos gráficos planares: curvas planares paramétricas - exemplos

 Círculo unitário: (cos(t), sen(t)), onde t é o ângulo formado pelos pelo segmento Op e o eixo das abscissas.

Objetos gráficos planares: curvas planares paramétricas - exemplos

- Gráfico de uma função
 - Seja uma função $f: R \rightarrow R$. O **gráfico de f** é o conjunto $G(f)=\{(x,f(x)) ; x \in I\}$ que define uma curva simples.
 - A parametrização do gráfico de uma função é dada pela equação $\gamma(t) = (t, f(t))$.

Objetos gráficos planares: curvas planares paramétricas - exemplos

• Reta no plano (equação vetorial) $\gamma(t)=p+\nu t$, onde p é um ponto do R^{2} , ν v um vetor di R^{2} :2 $t\in R$ t?.

Objetos gráficos planares: curvas planares paramétricas

 O traço de uma equação paramétrica nem sempre corresponde a uma curva simples.

Objetos gráficos planares: representação implícita de curvas

 A descrição implícita define uma curva como o conjunto de raízes de uma equação F(x,y) = 0.

Objetos gráficos planares: representação implícita de curvas

 A descrição implícita define uma curva como o conjunto de raízes de uma equação F(x,y) = 0.

- Seja F:U⊂R²→R uma função implícita que descreve uma curva.
- O suporte geométrico da curva é dada pelos conjunto de soluções da equaçãF(x,y) = 0.0.

• O conjunto de raízes de F(x,y)=0 é a imagem inversa do 0 e é indicada por

$$F^{-1}(0) = \{(x,y) \in R^2 \mid F(x,y)=0\}.$$

- Exemplos:
 - (Equação implícita da reta)

$$ax+by+c=0$$
, $ab\neq 0$

- (Equação implícita do círculo)

$$x^2+y^2-r^2=0$$

Objetos gráficos planares: regiões

 Correspondem a subconjuntos bidimensionais do plano.

Objetos gráficos planares: objetos implícitos ou paramétricos - quando utilizar

- Depende do problema.
- Consideraremos dois problemas fundamentais:
 - Amostragem pontual
 - Classificação Ponto-Conjunto

 O traço de uma equação paramétrica nem sempre corresponde a uma curva simples.

 O traço de uma equação paramétrica nem sempre corresponde a uma curva simples.

$$V(t): I \to R^2 = (x(t), y(t)) = (\cos(2 \pi t), sen(2 \pi t))$$

 O traço de uma equação paramétrica nem sempre corresponde a uma curva simples.

$$V(t): I \to R^2 = (x(t), y(t)) = (\cos(2 \pi t), sen(2 \pi t))$$

• O traço de uma equação paramétrica nem sempre corresponde a uma curva simples.

$$V(t): I \to R^2 = (x(t), y(t)) = (\cos(2 \pi t), sen(2 \pi t))$$

 O traço de uma equação paramétrica nem sempre corresponde a uma curva simples.

$$V(t): I \to R^2 = (x(t), y(t)) = (\cos(2 \pi t), sen(2 \pi t))$$

 O traço de uma equação paramétrica nem sempre corresponde a uma curva simples.

$$V(t): I \to R^2 = (x(t), y(t)) = (\cos(2 \pi t), sen(2 \pi t))$$

 O traço de uma equação paramétrica nem sempre corresponde a uma curva simples.

$$V(t): I \to R^2 = (x(t), y(t)) = (\cos(2 \pi t), sen(2 \pi t))$$

 O traço de uma equação paramétrica nem sempre corresponde a uma curva simples.

$$V(t): I \to R^2 = (x(t), y(t)) = (\cos(2 \pi t), sen(2 \pi t))$$

 O traço de uma equação paramétrica nem sempre corresponde a uma curva simples.

$$V(t): I \to R^2 = (x(t), y(t)) = (\cos(2 \pi t), sen(2 \pi t))$$

 O traço de uma equação paramétrica nem sempre corresponde a uma curva simples.

$$V(t): I \to R^2 = (x(t), y(t)) = (\cos(2 \pi t), sen(2 \pi t))$$

 O traço de uma equação paramétrica nem sempre corresponde a uma curva simples.

$$V(t): I \to R^2 = (x(t), y(t)) = (\cos(2 \pi t), sen(2 \pi t))$$

 $p_{3} = \gamma (t_{3})$ $p_{2} = \gamma (t_{2})$ $p_{I} = \gamma (t_{I}) = \gamma (t_{9})$

Objetos gráficos planares: objetos implícitos ou paramétricos - amostragem pontual

- Objetos implícitos mais difícil
 - Necessário encontrar as raízes de f(x,y)=0.
 - As raízes podem consistir de um conjunto infinito sendo necessário tomar um subconjunto finito.

Objetos gráficos planares: objetos implícitos ou paramétricos - classificação ponto-conjunto

 Classificação Ponto-Conjunto: Dado um ponto p∈ R² e um objeto gráfico com suporte S, determinar se p∈S.

Objetos gráficos planares: objetos implícitos ou paramétricos - classificação ponto-conjunto

- Objetos implícitos simples.
 - Basta avaliar o sinal da função f(x,y) no ponto p=(x0,y0)

Objetos gráficos planares: objetos implícitos ou paramétricos - classificação ponto-conjunto

- Objetos paramétricos mais complicado.
 - Requer a verificação da existência de soluções para o sistema dado pelas equaçõe $x(t) = x_0 e y(t) = y_0$

- A forma mais simples consiste em descrever a curva que delimita sua fronteira.
- Teorema de Jordan: Uma curva simples fechada Y divide o plano em duas regiões abertas, uma limitada e a outra ilimitada. A fronteira entre as duas regiões é dada por Y.

- A forma mais simples consiste em descrever a curva que delimita sua fronteira.
- Teorema de Jordan: Uma curva simples fechada Y divide o plano em duas regiões abertas, uma limitada e a outra ilimitada. A fronteira entre as duas regiões é dada por Y.

- A forma mais simples consiste em descrever a curva que delimita sua fronteira.
- Teorema de Jordan: Uma curva simples fechada Y divide o plano em duas regiões abertas, uma limitada e a outra ilimitada. A fronteira entre as duas regiões é dada por Y.

- A forma mais simples consiste em descrever a curva que delimita sua fronteira.
- Teorema de Jordan: Uma curva simples fechada Y divide o plano em duas regiões abertas, uma limitada e a outra ilimitada. A fronteira entre as duas regiões é dada por Y.

- A forma mais simples consiste em descrever a curva que delimita sua fronteira.
- Teorema de Jordan: Uma curva simples fechada Y divide o plano em duas regiões abertas, uma limitada e a outra ilimitada. A fronteira entre as duas regiões é dada por Y.

- A forma mais simples consiste em descrever a curva que delimita sua fronteira.
- Teorema de Jordan: Uma curva simples fechada Y divide o plano em duas regiões abertas, uma limitada e a outra ilimitada. A fronteira entre as duas regiões é dada por Y.

- Precisamos então:
 - 1- Especificar a fronteira da curva.
 - 2- Especificar um método para determinar quais pontos pertencem a região interna ou externa da curva.
- A segunda parte é fácil de ser resolvida se a fronteira é uma curva implícita.

Objetos gráficos planares: representação de curvas e regiões

- Os objetos gráficos definidos no universo matemático precisam ser representados discretamente.
- A representação, em geral, apresenta uma versão aproximada dos objetos gráficos definidos matematicamente.

Objetos gráficos planares: representação de curvas e regiões

- A estratégia utilizada se baseia em :
 - O dividir o suporte geométrico do objeto gráfico ou o espaço onde ele está inserido.
 - Obter uma representação simples em cada elemento da subdivisão.

Objetos gráficos planares: representação de curvas e regiões

Assim obtemos duas formas de representação:

- Decomposição intrínseca
 (o suporte geométrico é subdividido)
- Decomposição espacial

 (o espaço onde o suporte está mergulhado é subdividido).

Objetos gráficos planares: representação de curvas e regiões

Assim obtemos duas formas de representação:

- Decomposição intrínseca
 (o suporte geométrico é subdividido)
- Decomposição espacial

 (o espaço onde o suporte está mergulhado é subdividido).

Objetos gráficos planares: representação de curvas e regiões

Assim obtemos duas formas de representação:

- Decomposição intrínseca
 (o suporte geométrico é subdividido)
- Decomposição espacial

 (o espaço onde o suporte está mergulhado é subdividido).

Objetos gráficos planares: representação por decomposição intrínseca

- Neste caso o suporte geométrico é subdividido.
- Cada parte da subdivisão é representada por um elemento mais simples.
- A representação por elementos lineares é uma das mais utilizadas.

Objetos gráficos planares: representação por decomposição espacial

- O modo mais comum : baseado na representação matricial.
- Objetivo: representar a geometria do objeto através de um conjunto de retângulos.

Curva

Objetos gráficos planares: representação por decomposição espacial

Podemos especificar cada célula de dois modos:

- Pelas coordenadas de um dos seus vértices.
- Pelo **centróide**.
- Os centróides das células definem um outro reticulado: o reticulado dual.

Objetos gráficos planares: representação linear por partes

- Neste tipo de representação decompomos o objeto em elementos lineares.
- Exemplos:
 - Curva representada por uma curva poligonal.
 - Região do plano representada por uma região poligonal ou especificada por uma triangulação.

¹delimitada por uma curva poligonal

Objetos gráficos planares: representação de curvas - curvas poligonais

- Seja $p_1, p_2, ..., p_n$ um conjunto de pontos distintos do plano.
- Uma curva poligonal é definida pelo conjunto de segmentos p₁p₂,p₂p₃,...,p_n.
 .
- Os pontos pi são denominados vértices da curva poligona os segmentos pp_{i+j} definem as arestas da curva.

Objetos gráficos planares: representação de curvas - curvas poligonais

- Seja $p_1, p_2, ..., p_n$ um conjunto de pontos distintos do plano.
- Uma curva poligonal é definida pelo conjunto de segmentos p, p, p, p, p, ..., p, ...
- Os pontos pi são denominados vértices da curva poligonal os segmentos_{pp_{i+1}} definem as arestas da curva.

Objetos gráficos planares: representação de curvas - curvas poligonais

- Seja $p_1, p_2, ..., p_n$ um conjunto de pontos distintos do plano.
- Uma curva poligonal é definida pelo conjunto de segmentos p₁p₂,p₂p₃,...,p_n.
 .
- Os pontos pi são denominados vértices da curva poligonal os segmentos_{pp_{i+1}} definem as arestas da curva.

Objetos gráficos planares: representação por decomposição espacial

 Curvas poligonais são muito utilizadas por dois motivos:

- São fáceis de se especificar e representar.

- Aproximam uma grande variedade de curvas.

Objetos gráficos planares: representação de regiões - triangulações 2D

- Triangulação de uma região do plano: coleção
 T= {T} de triângulos tal que:
 - para dois triângulos distintos T_i e T_j em [⁻]τ
 com T_i∩T_j≠Ø temos:
 - T_i∩T_j é um vértice em comum ou,
 - T_i∩T_j é uma aresta em comum.

Objetos gráficos planares: representação de regiões - triangulações 2D

• Exemplo de triangulação:

Objetos gráficos planares: representação de regiões - triangulações 2D

• Exemplo de triangulação:

Contra-exemplos:

Objetos gráficos planares: Poligonização

 Representação da curva (região) através de sua decomposição em segmentos (polígonos).

 Os métodos de poligonização dependem da descrição do objeto gráfico: paramétrica ou implícita.

Objetos gráficos planares: Poligonização de curvas paramétricas

- O **método uniforme** é o método mais simples para poligonizar uma curva paramétrica.
- Seia uma curva $\mathcal{Y}^{(t)}$ definida em um intervalo I=[a,b] .
 - 1. Obtemos uma partição uniforme $a=t_0 < t_1 < ... < t_n = b$ do intervalo I.
 - 2. Avaliamos a curva nos pontos t_i obtendo uma sequência de pontos $p_0,p_1,...,p_n$ on $de = \gamma(t_i)$

Objetos gráficos planares: Poligonização de curvas paramétricas

Objetos gráficos planares: Poligonização de curvas paramétricas

- Observe que é importante estruturar a sequência de pontos de forma que a topologia original do objeto seja preservada.
- Esta estruturação é realizada ordenando-se os pontos da seqüência de acordo com a ordem das amostras tomadas do intervalo.
- A reconstrução então envolve um processo de amostragem e estruturação (ordenação).

- Para poligonizar uma curva γ definida implicitamente por uma função $F:U \subset \mathbb{R}^2 \to \mathbb{R}$ devemos tomar amostras do conjunta $F^{-1}(0)$
- Além disso, é necessário fornecer uma estruturação adequada às amostras tomadas.

- Solução:
 - 1. Determinar uma triangulação do domínio de F.
 - 3. Aproximar F em cada triângulo por uma função linear F'.
 - **5. Solucionar** F'(x,y)=0 em cada triângulo. A solução é em geral um segmento de reta.
 - A estruturação das amostras é induzida pela estrutura da triangulação subjacente.

Determinamos uma triangulação do domínio de F.

• Em cada triângulo calculamos os valores *F(v1)*,

F(v2), F(v3).

 Se os sinais nos vértices forem todos iguais, consideramos que a curva não intersecta o triângulo.

 Senão, estimamos por interpolação linear a interseção com cada lado em que há variação de sinal e obtemos aproximação da curva.

Resultado:

Aula 3

Professores:

Anselmo Montenegro Esteban Clua

Conteúdo:

 Objetos Gráficos (parte I - objetos gráficos planares)

