

Regression Diagnostics for Binary Outcome Models

- As in the case of ordinary least squares regression, post-model diagnostics can be used to
 - check model assumptions
 - check (indirectly) for omitted predictors, functional form of predictors
 - identify unusual data observations that do not fit the model well
 - other aspects
- For binary regression models, one useful quantity is the *residual* difference between observed and predicted. This quantity is most relevant for predicted proportions (recall all individual cases have a 0/1 outcome), but can be computed for each individual case

Regression Diagnostics for Binary Outcome Models Before specific diagnostics, one overarching issue in binary outcome data is sparseness or sparse tables

- if for a given level of a discrete covariate, all responses are zero, then the odds ratio against a reference category is 0. If baseline category has zero events, then $OR = \infty$
- sparse tables can occur when many covariates are considered together, leading to a high-dimensional layout of the covariate combinations cross-classified with outcome.
- In multiway tables, main effects of each covariate may be estimated, but interaction effects will become not estimable. This may not be a problem in many analyses, since high-level interactions are difficult to interpret or verify

Zeros in Tables

The Donner Party data - females under 25

. cc dstat sexcode if AGE < 25

1	sexcode			Proportion	1	
	Exposed	Unexposed	Total	exposed		
	+			1 0000		
Cases	4	0	4	1.0000		
Controls	3	6 l	9	0.3333		
		+				
Total	7	6 I	13	0.5385		
		<u> </u>		_		
	Point e	estimate	[95% conf.	interval		
		+				
Odds ratio		. 1	1.416577	•	(Cornfield)	
Attr. frac. ex.		.	.2940729	•	(Cornfield)	
Attr. frac. pop		. 1				
4	+		4 OF Dry - 1-2	0 - 0 0001		
		chi2(1) =	4.95 Pr>chi	Z = 0.0261		

Note: Exact confidence levels not possible with zero count cells.

. logit dstat sexcode if AGE < 25

note: sexcode != 1 predicts failure perfectly; sexcode omitted and 6 obs not used.

Iteration 0: Log likelihood = -4.7803567
Iteration 1: Log likelihood = -4.7803567

dstat | Coefficient Std. err. z P>|z| [95% conf. interval]

sexcode | 0 (omitted)

_cons | .2876821 .7637626 0.38 0.706 -1.209265 1.784629

Zeros in Tables

Note: main effects model in all subjects is estimable:

. logit dstat sexcode age25plus

. . .

	-	Coefficient		z		[95% conf.	_
			.6992295		0.067		2.650841
age25plus	1	1.348034	.7356685	1.83	0.067	0938496	2.789918
_cons	1	-1.581687	.7804491	-2.03	0.043	-3.111339	0520348

	female	male
under 25	1.00	3.60
25+	3.85	13.85

Zeros in Tables

Note: main with interactions effects model not estimable:

. logit dstat sexcode age25plus agebysex

. . .

dstat	Coefficient		z	P> z	[95% conf.	interval]
sexcode	17.63652	2388.794	0.01	0.994	-4664.313	4699.586
age25plus	34.60506	4777.587	0.01	0.994	-9329.294	9398.504
agebysex	-17.03307	2388.794	-0.01	0.994	-4698.983	4664.917
_cons	-17.34885	2388.794	-0.01	0.994	-4699.298	4664.601

Sub-tables do not all have OR estimates

Zeros in Tables

Reclassifying age into 25 or under and 26+:

. logit dstat sexcode age26plus

	 Coefficient +			P> z		interval]
sexcode	1.355987	.6763103 .6381147	2.00	0.045 0.398	.0304436 7111282	2.681531 1.790235
_cons	9569176	.6412532	-1.49	0.136	-2.213751	.2999156

	female	male
under 25	1.00	3.88
25+	1.72	6.66

Zeros in Tables $\mbox{Reclassifying age into} \leq \mbox{25 and 26+, interaction added:}$

. logit dstat sexcode age26plus age26bysex

dstat	Coefficient		z	P> z		interval]
sexcode		1.226364	2.25	0.025	.3532114	5.160469
age26plus	2.233592	1.313846	1.70	0.089	341498	4.808682
age26bysex	-2.438387	1.531299	-1.59	0.111	-5.439678	.5629047
_cons	-1.94591	1.069045	-1.82	0.069	-4.0412	.1493795

 female
 male

 under 25
 1.00
 15.75

 25+
 9.33
 12.83

Age effect within sex different here - present in women only

Zeros in Tables and Sparse Tables Generally

- How predictor variables are grouped or partitioned may need to be considered for estimable effects.
- Zero is a valid value for an odds ratio.
- Methods for sparse contingency tables is a large area in statistical methodology and application. These methods are needed when there are a lot of covariates (and combinations) relative to number of failures - for examle, genomic variant data

Logistic Regression - Back to Residuals

Two types of residuals:

 Pearson residuals are defined to be the standardized difference between the observed frequency (proportion) and the predicted frequency. These measure the relative deviations between the observed and fitted values.

$$r_{i} = \frac{y_{i} - \hat{u}_{i}}{\sqrt{\hat{u}_{i}(n_{i} - \hat{u}_{i})/n_{i}}} \tag{1}$$

– Equals square root of the i^{th} component of the Pearson Chi-square statistic.

Logistic Regression Residuals

Two types of residuals (cont.):

 Deviance residuals are components of the deviance statistic, which measure the disagreement between the maxima of the observed and the fitted log likelihood functions.

$$d_{i} = \sqrt{2\{y_{i}\log(\frac{y_{i}}{\hat{\mu}_{i}}) + (n_{i} - y_{i})\log(\frac{n_{i} - y_{i}}{n_{i} - \hat{\mu}_{i}})\}}$$
 (2)

- Equals square root of i^{th} component of the deviance statistic (with sign re-attached).
- Analogous to the raw residual in OLS regression, where the goal is to minimize the sum of squared residuals. Logistic regression estimation minimizes the sum of the deviance residuals (using maximum likelihood to solve)

Logistic Regression Residuals

- These quantities can be listed, plotted to identify unusual values
- In grouped data, can approximately normally distributed,
 zero-centered random variable (i.e., Z-statistic
- Thus, values greater than +/-2 may be of interest ('extreme' values on the Z scale)

Ex/ Logistic Regression Residuals

 Outcome (survival) of root cuttings may be related to cutting time and length

Table 1: Survival rate of plum root-stock cuttings

Length	Planting	Surviving	Proportion
Short	Immediate	107	0.45
	In spring	31	0.13
Long	Immediate	156	0.65
	In spring	84	0.35

Ex/ Logistic Regression Residuals

. glm number length time, family(binomial total) Generalized linear models No. of obs = Optimization : ML Residual df = Scale parameter = Deviance = 2.293839315 (1/df) Deviance = 2.293839 (1/df) Pearson = 2.270479 Pearson = 2.270478953Variance function: V(u) = u*(1-u/total)[Binomial] Link function : $g(u) = \ln(u/(total-u))$ [Logit] = 7.758987 AIC Log likelihood = -12.51797425BIC .907545 MIO number | Coef. Std. Err. z P>|z| [95% Conf. Interval] length | 1.017691 .14548 7.00 0.000 .7325559 1.302827 time | -1.427542 .1464624 -9.75 0.000 -1.714603 -1.140481 _cons | -.3039203 .1171647 -2.59 0.009 -.533559 -.0742816

Ex/ Logistic Regression Residuals

Model output and and residuals

- . predict yhat
 (option mu assumed; predicted mean number)
- . predict dres, d
- . predict pres, p
- . list

1	length	time	number	total	yhat	pres	dres
1.	l 0	0	107	240	101.9039	.6655197	.6641749
2.	0	1	31	240	36.09614	9202459	9392965
3.	1	0	156	240	161.0961	7002535	6965749
4.	1	1	84	240	78.90386	.7002535	.6965749

Ex/ Logistic Regression Residuals plot the residuals:

, twoway (scatter yhat dres), xlabel(-2.5(.5)2.5) xline(0)

Not very exciting - but these indicate reasonable fit. Residuals are more interesting for larger models and/or continuous predictors

Logistic Regression - another model

Example: Biomarkers in localized, high risk prostate cancer

- Men with localized prostate cancer deemed 'high risk' based on clinical and pathologic features may undergo radiation therapy and long-term androgen deprivation. For some, this is too aggressive an intervention, while for others, even this approach does not sufficiently decrease risk of eventual metastatic disease and death
- Using data from subset of clinical trial RTOG 9202, we investigated tumor biomarkers for relationship to distant metastasis event to identify and explain heterogeneity in distant metastasis (Pollack et al *Clin Cancer Res* 2014)

Logistic Regression -

. tab distant_met if all_markers

distant_met	Freq.	Percent	Cum.
0 1	1,056 240	81.48 18.52	81.48 100.00
Total	1,296	100.00	

. list distant_met $ki67_acis10_index_percent$ $p16_index_percent$ $mdm2_intensity$ $cox2_intensity$

	distan~t	ki67_a~t	p16_~ent	mdm2_i~y	cox2_i~y
2.	0	8.6	100	211	159
7.	0	7.6	94.7	178	149
8.	0	7.7	61.1	187	131
16.	0	6.9	87.7	178	156
21.	1	21.4	38.4	159	166
23.	1	13.8	71.3	194	158
25.	0	28	90.8	152	128
35.	0	22.5	92.1	186	149
36.	0	43.5	96.3	178	161
38.	0	1.5	89.2	144	200

•

.

Logistic Regression - Goodness of Fit

. logistic distant_met ki67_acis10_index_percent p16_index_percent mdm2_intensity cox2_intensity

Logistic regression		Num	ber of	obs	= 3	72	
		LR	chi2(4)		= 34.	05	
		Pro	b > chi	2	= 0.00	00	
Log likelihood = -174.01005	Pse	eudo R2		= 0.08	91		
distant_met					[95% Conf.	_	
ki67_acis10_index_percent		.0163019	4.07	0.000	1.032842	1.096754	
p16_index_percent	.9867829	.0056341	-2.33	0.020	.9758019	.9978876	
${\tt mdm2_intensity}$	1.004605	.0032227	1.43	0.152	.9983081	1.010941	
$cox2_intensity$	1.012377	.0069322	1.80	0.072	.9988811	1.026056	
_cons	.0296984	.028565	-3.66	0.000	.0045083	.1956366	

```
Logistic model for distant_met, goodness-of-fit test (Table collapsed on quantiles of estimated probabilities)
```

number of observations = 372
number of groups = 10
Hosmer-Lemeshow chi2(8) = 11.79
Prob > chi2 = 0.1610

[.] estat gof, group(10)

Logistic Regression - Examining Residuals

predict yhat
(option pr assumed; Pr(distant_met))
(1149 missing values generated)
. predict dres, dev

(1,149 missing values generated)

. twoway (scatter yhat dres), xlabel(-2.5(.5)2.5) xline(0)

- Residuals

. list cn distant_met yhat dres if dres > 2.0 & dres ~=., noobs clean

cn	distan~t	yhat	dres
101	1	.1182092	2.066543
673	1	.0869857	2.209983
826	1	.0602835	2.370104
881	1	.0766417	2.266545
996	1	.1068749	2.114756
1006	1	.1013688	2.139621
1098	1	.1148568	2.080418
1250	1	.1131486	2.087608
1337	1	.1060305	2.118504
1486	1	.110245	2.100024
1495	1	.1104176	2.099279

These cases had low predicted probability of distant mets yet had distant mets - may be worth further examination

- Logistic Model - add more predictors

We add some important clinical/pathologic predictors to the model

. logistic distant_met ki67_acis10_index_percent p16_index_percent mdm2_intensity cox2_intensity psahigh age gleason_d2

Logistic regression			Number o	of obs	= 3	43
			LR chi2	(7)	= 65.	42
			Prob >	chi2	= 0.00	00
Log likelihood = -136.68406				R2	= 0.19	31
distant_met				P> z	[95% Conf.	_
ki67_acis10_index_percent		.0180011	3.38	0.001	1.02442	1.09499
p16_index_percent	.98398	.0060536	-2.62	0.009	.972189	.995919
${\tt mdm2_intensity}$	1.00355	.003444	1.03	0.301	.996829	1.01033
cox2_intensity	1.022	.0081364	2.73	0.006	1.00617	1.03807
psahigh	3.31139	2.132884	1.86	0.063	.9370218	11.70236
age	.957837	.0215753	-1.91	0.056	.9164707	1.001072
gleason_d2	5.11480	1.648314	5.06	0.000	2.719684	9.619226
_cons	1.109938	.1999009	-1.21	0.225	.0031146	3.880518

These factors contribute based on beta values, also can possibly drop mdm2 intensity as a predictor

Final Model

logistic distant_met ki67_acis10_index_percent p16_index_percent cox2_intensity psahigh age gleason_d2

Logistic regression			Number	of obs	= 3	392
			LR chi2	2(6)	= 75.	.42
			Prob >	chi2	= 0.00	000
Log likelihood = -149.23974				R2	= 0.20)17
distant_met				P> z	[95% Conf.	Interval]
ki67_acis10_index_percent	1.063578	.0173017	3.79	0.000	1.030202	1.098035
p16_index_percent	.9859311	.0055475	-2.52	0.012	.975118	.9968641
$ exttt{cox2_intensity}$	1.02084	.0072459	2.91	0.004	1.006737	1.035141
psahigh	3.971405	2.331307	2.35	0.019	1.256809	12.54929
age	.9510925	.0206622	-2.31	0.021	.9114453	.9924643
gleason_d2	6.013003	1.854401	5.82	0.000	3.285353	11.00527
_cons	.2621869	.4488802	-0.78	0.434	.0091475	7.514857

Logistic Regression - Variability Explained

In logistic regression, several analogues to the \mathbb{R}^2 have been suggested. One simple one is

$$R_{pseud}^2 = 1 - \frac{\log L(\hat{\beta})}{\log \hat{L}_0}$$

where $\log L(\hat{\beta})$ is the log likelihood for the current model and $\log \hat{L}_0$ is the null model.

- ullet additionally, an ${\cal R}^2$ adjusted for the number of parameters may be used
- Generally, these measures are not as reliable as fits measures as in the linear regression setting
- For the prostate model, the value was about .20, or 20% of the variation in risk of distant mets is explained by covariates.

Logistic Regression - Prediction

Several other post-model outputs relating to prediction are available. One of these uses assessment of classification performance:

- Cross-classifying to compare agreement between predicted and observed outcomes under some assignment rule such as 'any case with > .50 predicted probability of being an event (1) will be classified as an event' Use familiar measures of sensitivity, specificity, PPV, NPV to summarize rule
- The receiver operating characteristic (ROC) curve plot of sensitivity vs 1 specificity evaluation of prediction rule over all possible cut-points of probability. This can be shown to equal to probability of correctly determining among two random cases, which will be an event.

Results can look encouraging, but true test of model performance must be assessed on *independent* data - not use to build the model

Logistic Regression - Prediction

. estat classification

Logistic mod	del for distant_met				
	True D +	~D			
	19				
	l 53 +				
	, 72				
	+ if predicted Pr(D)			d as distant_met	!= 0
Sensitivity			26.39%		
Specificity		Pr(- ~[97.19%		
Positive pro	edictive value	Pr(D +	·) 67.86%		
_	edictive value				
	e for true ~D				
False - rate	e for true D	Pr(- D	73.61%		
False + rate	e for classified +	Pr(~D +	32.14%		
	e for classified -				
Correctly c			84.18%		

Logistic Regression - Prediction

Curve Based on 6-predictor model for distant mets:

```
. lroc
Logistic model for distant_met
number of observations = 392
area under ROC curve = 0.8031
```


Changing the cutpoint will change the performance:

	True						
Classified	D	~D	-				
+		36		69			
-	39 						
·	72		•				
	f if predicted Pr(D)				as	distant_met	!= 0
Sensitivity				45.83%			
Specificity		Pr(-	~D)	88.75%			
Positive pre	edictive value	Pr(D	+)	47.83%			
-	edictive value						
	e for true ~D						
	e for true D						
	e for classified +						
	e for classified -						
Correctly cl	 lassified			80.87%			

Model Assessment

- Diagnostic tools follow those of linear regression models, but may be a bit more difficult to interpret. These are nonetheless useful.
- There are many more diagnostics covered in other texts, including identifying influential observations, outliers, assumptions about the distribution (ie link function), etc.
- Post-model classification tools assess the utility of the model in prediction. Developing such models further requires independent validation.