IN THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the present patent application.

1. (Currently Amended) A method of improving modulation transfer function through seanning a sean object with a stagger sensor, wherein the stagger sensor includes a plurality of sensing modules, the method comprising:

scanning an object using a stagger sensor;

retrieving reference digital data; and

calculating a computed pixel value using at least in part the retrieved reference digital
data and data captured by the scanning operation.

processing captured digital data of computed pixel after a scanning of the scan object.

- 2. (Currently Amended) The method of claim 1, wherein scanning an object using a stagger sensor comprises scanning the object using a stagger sensor including a plurality of scanning modules, the plurality of scanning modules including each sensing module includes a plurality of light-sensing cells and each light-sensing cell is capable of scanning a plurality of computed pixels.
- 3. (Currently Amended) The method of claim 2, wherein processing the captured digital data calculating a computed pixel value further includes: if a first light-sensing cell of a first sensing module contains includes a reference digital data and a second light-sensing cell of a second sensing module and the first light-sensing cell has having some overlapping in a forward scanning direction, digital data of the computed a pixel in the region in the second light-sensing cell having substantially no overlapping with the first light-sensing cell is obtained

substantially in accordance with the following relationship using a formula:

 $A(X)=F(X)*N-A(X-1)-A(X-2)-\ldots-A(0)*(N-X);$ and if a first light-sensing cell of a second sensing module contains no reference digital data and a second light-sensing cell of a second sensing module and the first light-sensing cell has some overlapping in the forward seanning direction, the digital data of the computed pixel seanned by the second light-sensing cell having no overlapping with the first light-sensing cell is obtained using a formula: $A(X)=F(X)*N-A(X-1)-A(X-2)-\ldots-A(X-N+1);$ where X is comprises a desired computed pixel, N is comprises a number of computed pixels included in a light-sensing cell, A(X) is comprises digital data corresponding to an X^{th} computed pixel, A(1) is comprises digital data of the first computed pixel, and F(X) is comprises digital data obtained after a captured during the scanning operation including computed pixels captured by the light-sensing cell.

- 4. (Currently Amended) The method of claim 3, wherein the digital data in the overlapping region between the second light-sensing cell and the first light-sensing cell contains includes substantially identical digital data.
- 5. (Currently Amended) The method of claim 1, wherein the reference digital data includes digital data obtained from unused light-sensing cells in the sensing module.
- 6. (<u>Currently Amended</u>) The method of claim 1, wherein the <u>a</u> sensing module inside the stagger sensor has a slight shift in position relative to <u>another sensing module each other</u>.
- 7. (Currently Amended) The method of claim 1, wherein the stagger sensor corresponding to a sense primary color has includes sensing modules positioned substantially in parallel to a long an axis, wherein each a first sensing module has includes a first light-sensing

cell of a first sensing module and a second sensing module includes a second light-sensing cell of a second sensing module, both, the first and second light-sensing cells having a first end on a vertical line in an identical at a first position along the long axis but each has a second end on a vertical line in and the first sensing module having second end at a different position along the long axis than a second end of the second sensing module.

8. (Currently Amended) A method of improving modulation transfer function through scanning a scan object with a stagger sensor, wherein the stagger sensor includes a plurality of sensing modules, a first light-sensing cell of a first sensing module and a second light-sensing cell of a second sensing module have having a first end on a vertical line in substantially the same position along the long axis but wherein each the first light-sensing cell has a second end on a vertical line in a different position along the long axis than a second end of the second light-sensing cell, the method comprising:

obtaining digital data of a first emputed pixel using a difference in scanning region between the first light-sensing cell and the second light-sensing cell; and

processing the digital data of a plurality of subsequently computed pixels after a scanning of the scan object according to the digital data of the first computed pixel.

- 9. (Currently Amended) The method of claim 8, wherein each the first and second light-sensing cells are is capable of scanning a plurality of emputed pixels.
- 10. (Currently Amended) The method of claim 9, wherein processing the digital data of subsequently computed pixels further includes: when if the second light-sensing cell and the first light-sensing cell have an overlapping region in a forward scanning direction, digital data of the computed pixel scanned by the second light-sensing cell having substantially no

overlapping with the first light-sensing cell are obtained substantially in accordance with the following relationship through a formula: A(X) F(X)*N-A(X-1)-A(X-2)-...-A(X-N+1), where X is a desired computed pixel, N is comprises a number of computed pixels included in a light-sensing cell, A(X) is comprises digital data corresponding to an Xth computed pixel, A(1) is comprises digital data of the first computed pixel, and F(X) is digital data obtained by scanning using light-sensing cells included in capturing the computed pixels.

- 11. (Currently Amended) The method of claim 10, wherein the digital data in the overlapping region between the second light-sensing cell and the first light-sensing cell contains includes substantially identical digital data.
- 12. (Currently Amended) A stagger sensor for improving modulation transfer function, wherein the stagger sensor corresponding to a sense primary color has, comprising sensing modules positioned substantially in parallel to a long an axis, wherein a first light-sensing cell of a first sensing module and a second light-sensing cell of a second sensing module both have include a first end on a vertical line in substantially the same position along the long axis but each and wherein the first light-sensing cell has a second end on a vertical line in a different position along the long axis than a second end of the second light-sensing cell.
- 13. (Currently Amended) The stagger sensor of claim 12, wherein the first light-sensing cell has <u>includes</u> a vertical width along the long axis greater than any other light-sensing cell in the first sensing module.
- 14. (Currently Amended) The stagger sensor of claim 12, wherein the first lightsensing cell has includes a vertical width along the long axis smaller than any other light-

11 06 01:13p

sensing cell.

Attorney Docket: 112.P14066

sensing cell in the first sensing module.

- 15. (Original) The stagger sensor of claim 14, wherein the first light-sensing cell includes a plurality of scanning spaces.
- 16. (New) The method of claim 2, wherein calculating a computed pixel value further includes: if a first light-sensing cell of a first sensing module includes no reference digital data and a second light-sensing cell of a second sensing module and the first light-sensing cell has some overlapping in a forward scanning direction, the digital data of the pixel scanned by the second light-sensing cell including substantially no overlap with the first light-sensing cell is obtained substantially in accordance with the following relationship: $A(X)=F(X)*N-A(X-1)-A(X-2)-\ldots-A(X-N+1), \text{ where } X \text{ comprises a desired pixel, } N \text{ comprises a number of pixels included in a light-sensing cell, } A(X) \text{ comprises digital data}$ $A(X)=F(X)*N-A(X-1)-A(X-2)-\ldots-A(X-N+1), \text{ where } X \text{ comprises digital data}$ $A(X)=F(X)*N-A(X-1)-A(X-2)-\ldots-A(X-N+1), \text{ of pixels included in a light-sensing cell, } A(X) \text{ comprises digital data}$
- 17. (New) An article comprising: a storage medium having stored thereon instructions, that, if executed, result in performance of a method comprising:

digital data captured during the scanning operation including pixels captured by the light-

scanning an object using a stagger sensor;

retrieving reference digital data; and

calculating a computed pixel value using at least in part the retrieved reference digital data and data captured by the scanning operation.

- 18. (New) The article of claim 17, wherein scanning an object using a stagger sensor comprises scanning the object using a stagger sensor including a plurality of scanning modules, the plurality of scanning modules including a plurality of light-sensing cells.
- 19. (New) The article of claim 18, wherein calculating a computed pixel value further includes: if a first light-sensing cell of a first sensing module includes a reference digital data and a second light-sensing cell of a second sensing module and the first light-sensing cell has having some overlapping in a forward scanning direction, digital data of a pixel in the region in the second light-sensing cell having substantially no overlap with the first light-sensing cell is obtained substantially in accordance with the following relationship:

 A(X)=F(X)*N-A(X-1)-A(X-2)-...-A(0)*(N-X) where X comprises a desired pixel, N comprises a number of pixels included in a light-sensing cell, A(X) comprises digital data corresponding to an Xth pixel, A(1) comprises digital data of the first pixel, and F(X) comprises digital data captured during the scanning operation including pixels captured by the light-sensing cell.
- 20. (New) The article of claim 18, wherein calculating a computed pixel value further includes: if a first light-sensing cell of a first sensing module includes no reference digital data and a second light-sensing cell of a second sensing module and the first light-sensing cell has some overlapping in a forward scanning direction, the digital data of the pixel scanned by the second light-sensing cell including substantially no overlap with the first light-sensing cell is obtained substantially in accordance with the following relationship: $A(X)=F(X)*N-A(X-1)-A(X-2)-\ldots-A(X-N+1), \text{ where } X \text{ comprises a desired pixel, } N \text{ comprises a number of pixels included in a light-sensing cell, } A(X) \text{ comprises digital data}$

digital data captured during the scanning operation including pixels captured by the lightsensing cell.

- 21. (New) The article of claim 19, wherein digital data in the overlapping region between the second light-sensing cell and the first light-sensing cell includes substantially identical digital data.
- 22. (New) The article of claim 17, wherein reference digital data includes digital data obtained from light-sensing cells in the sensing module.
- 23. (New) The article of claim 17, wherein a sensing module inside the stagger sensor has a slight shift in position relative to another sensing module.
- 24. (New) The article of claim 17, wherein the stagger sensor includes sensing modules positioned substantially in parallel to an axis, wherein a first sensing module includes a first light-sensing cell and a second sensing module includes a second light-sensing cell, the first and second light-sensing cells having a first end at a first position along the long axis but each has a second end on a vertical line in and the first sensing module having second end at a different position along the axis than a second end of the second sensing module.
 - 25. (New) An apparatus, comprising:
 - a scanner adapted to perform the method of claim 1 during operation.
 - 26. (New) An apparatus, comprising:
 - a scanner adapted to perform the method of claim 8 during operation.

Jan 11 06 01:14p

Attorney Docket: 112.P14066

27. (New) A system, comprising:

a plurality of optical sensors, wherein one or more of the plurality of optical sensors comprises a staggered sensor, the staggered sensor including sensing modules positioned substantially in parallel to an axis, wherein a first light-sensing cell of a first sensing module and a second light-sensing cell of a second sensing module include a first end at substantially the same position along the axis and wherein the first light-sensing cell has a second end in a different position along the axis than a second end of the second light-sensing cell.

- 28. (New) The system of claim 27, wherein the first light-sensing cell includes a width along the axis greater than any other light-sensing cell in the first sensing module.
- 29. (New) The system of claim 27, wherein the first light-sensing cell includes a width along the axis smaller than any other light-sensing cell in the first sensing module.