Discrete Mathematics MATH1064, Lecture 23

Balanced strings

Let's count balanced strings of n left-brackets and n right-brackets.

- string means a sequence of brackets where order matters
 e.g.))((and ()() are different strings
- balanced means that in each initial substring, there are no more ")" than there are "("
 - e.g.))((is not balanced, and ()() is balanced

Let b_n be the number of balanced strings on n left-brackets and n right-brackets.

Monotonic lattice paths

Let p_n be the number of such paths.

Let's count special paths on an $n \times n$ grid going from the bottom left corner to the top right corner. Namely, paths that only step right or up, and stay below the diagonal.

A bijection

Each monotonic lattice path is a sequence of n R's and n U's such that in each initial subsequence there are no more U's than R's (since otherwise the path would cross the diagonal).

We therefore have a well-defined map from monotonic lattice paths to balanced strings defined by

$$R \mapsto ($$
 and $U \mapsto)$

This map is bijective, with inverse defined by

$$(\mapsto R \quad \text{and} \quad) \mapsto U$$

4 / 12

e.g. $RURRUU \leftrightarrow ()(())$.

Hence $b_n = p_n$ for all $n \ge 0$.

Can we find a recurrence relation for this sequence? A closed form?

A recurrence relation

$$b_{n+1} = b_0 b_n + b_1 b_{n-1} + b_2 b_{n-2} + \ldots + b_n b_0 = \sum_{k=0}^n b_k b_{n-k}$$

Examples:

$$b_2 = b_0 b_1 + b_1 b_0 = 1 \cdot 1 + 1 \cdot 1 = 2$$

$$b_3 = b_0 b_2 + b_1 b_1 + b_2 b_0 = 1 \cdot 2 + 1 \cdot 1 + 2 \cdot 1 = 5$$

How do you prove this?

Hint:

- Which bracket pairs up with the first "("?
- How can you use these two to organise the structure?

Jonathan Spreer Discrete Mathematics 5 / 12

Rooted binary trees

Let's count rooted binary trees with exactly *n* vertices.

A closed formula

We have

$$b_n = p_n = t_n = \frac{1}{n+1} \binom{2n}{n} = \frac{(2n)!}{(n+1)!n!}$$

You can find six proofs on:

https://en.wikipedia.org/wiki/Catalan_number

The second and third proofs are accessible with what you have learned so far!

A proof

We show that $p_n = \frac{1}{n+1} \binom{2n}{n} = \frac{(2n)!}{(n+1)!n!}$ by André's reflection method

- **①** Count monotonic paths from (0,0) to (n,n) on the $n \times n$ grid
- 2 *n* rightward, *n* upward steps $\rightarrow \binom{2n}{n}$ monotonic paths of this type
- Good paths: paths staying below the diagonal
- Bad paths: paths not staying below the diagonal
- Idea: count the number of bad paths
- Bad paths cross the main diagonal and touch the next higher diagonal
- Good paths don't

A proof

- Idea: For every bad path: flip accross the red diagonal everything after first "violation"
- Portion before reflection goes upward one more than rightward
- Flipped portion of path goes upward one more than rightward
- ullet \to flipped path goes upward two more than rightward
- $9 \rightarrow n+1$ upward steps and n-1 rightward steps
- Why? Flipped path goes from (0,0) to (n-1, n+1)
- **②** Key observation: Monotonic paths in $(n-1) \times (n+1)$ grid are in bijection to bad paths in $n \times n$

A proof

- **1** Number of monotonic paths in $(n-1) \times (n+1)$ grid: $\binom{2n}{n-1}$
- $oldsymbol{2}
 ightarrow \operatorname{number}$ of bad paths in n imes n grid: $\binom{2n}{n-1}$

$$\binom{2n}{n} - \binom{2n}{n-1} = \frac{(2n)!}{n! \cdot n!} - \frac{(2n)!}{(n+1)! \cdot (n-1)!}$$

$$= \frac{(n+1) \cdot (2n)! - n \cdot (2n)!}{(n+1) \cdot n! \cdot n!}$$

$$= \frac{(2n!)}{(n+1) \cdot n! \cdot n!}$$

$$= \frac{1}{n+1} \binom{2n}{n}$$

One more thing the Catalan numbers count

Triangulations of the (n+2)-gon.

Summary and Exercise

We have

$$b_n = p_n = t_n = \frac{1}{n+1} \binom{2n}{n} = \frac{(2n)!}{(n+1)!n!}$$

You can find five other proofs on:

https://en.wikipedia.org/wiki/Catalan_number

Exercise: Prove that $C_n < 4^n$ for $n \ge 1$.

The Catalan numbers on OEIS: http://oeis.org/A000108