Universidad de las Américas Puebla San Andrés Cholula a 4 de mayo de 2020

PRONÓSTICO DE LOS
PRECIOS DE GAS
NATURAL EN ESTADOS
UNIDOS UTILIZANDO
ANÁLISIS DE SERIES DE
TIEMPO

Adriana Camarillo Durán: 155474 Ariel Arturo Ortega Alegría: 155804

Dra. Daniela Cortés Toto

OI Introducción

Una breve descripción del problema de investigación

O2 METODOLOGÍA

Los métodos usados para el análisis

03 RESULTADOS

Al final de todo ¿a qué llegamos?

O4 CONCLUSIONES

Reflexiones finales

OI. INTRODUCCIÓN

Uno de los grandes retos de empresas, productores, distribuidores y es utilizar dicha información a su favor.

Una de las maneras en las que pueden hacerlo es a través de pronósticos, pues estos son de gran utilidad en la toma de decisiones, sirven para anticiparse a posibles situaciones de estrés y ayudan a realizar ajustes en las actividades de una empresa.

ANTECEDENTES

2016 Hosseinipoor, Saeid

Utilizó ecuaciones diferenciales estocásticas, redes neuronales autorregresivas y series de tiempo para realizar un pronóstico sobre los precios de gas natural en E.E.U.U para pronosticar los precios de 2017.

O2 XU, FENG ET AL

Utilizaron suavizamiento exponencial, análisis relacional de Grey, RNs, SVMs y modelos ARIMA para predecir los precios de gasolina en China en 2018 y 2019, los cuales tendrían un comportamiento similar a aquellos que presenta el gas natural.

O2. METODOLOGÍA

METODOLOGÍA DE BOX-JENKINS

A continuación se describe de manera breve la metodología de Box-Jenkins para el análisis de series de tiempo

IDENTIFICACIÓN OI

De un modelo que pueda describir el comportamiento de la serie

USO DEL MODELO 04

Para realizar pronósticos, en caso de que este sea adecuado

ESTIMACIÓN 02

De los parámetros del modelo identificado en el paso 1

VERIFICACIÓN 03

De los supuestos que deben cumplir los residuales y los parámetros del modelo

GRÁFICO PARA IDENTIFICAR COMPORTAMIENTO ESTACIONAL

TRANSFORMACIONES ESTABILIZADORAS DE VARIANZA

ESTABILIZACIÓN DE NIVEL

Ahora analizaremos la FAC y FACP de la serie para identificar algún comportamiento característico de algún modelo

FAC Y FACP: SERIE ORIGINAL

FAC Y FACP: SERIE CON PRIMERA DIFERENCIA

FAC Y FACP: SERIE CON BOX-COX Y PRIMERA DIFERENCIA

FAC Y FACP: SERIE CON SEGUNDA DIFERENCIA

FAC Y FACP: SERIE CON BOX-COX Y SEGUNDA DIFERENCIA

Además de los modelos propuestos, analizamos el estudiado por Saeid Hosseinipoor en 2016, un ARIMA(5,1,9)

SUPUESTOS

de la metodología de Box-Jenkins

OI MEDIA CERO

Media no significativamente distinta de cero

O2 VARIANZA CONSTANTE

De los residuales, a través del tiempo

O3 INDEPENDENCIA

Independencia entre residuales

O4 DISTRIBUCIÓN NORMAL

Simetría en la distribución de los residuales

O5 SIN OBSERVACIONES ABERRANTES

Sin observaciones fuera del intervalo de tres desviaciones estándar

<mark>06</mark> Parsimonía

Todos los parámetros son importantes

07 **ADM**ISIBILIDAD

Los parámetros están en las regiones admisibles

O8 ESTABILIDAD

No existen correlaciones fuertes entre parámetros

LOS RESIDUALES TIENEN MEDIA CERO

Se construye el cociente para cada modelo y si este es menor a 2 en valor absoluto, la media no es significativamente distinta de 0

$$\left|\frac{\sqrt{N-d-p}m(\hat{a})}{\hat{\sigma_a}}\right| < 2$$

ARIMA(0,1,0)	ARIMA(5,1,9)	ARIMA(0,2,1)
0.3715048	0.4490245	0.5763247

LOS RESIDUALES TIENEN VARIANZA CONSTANTE

LOS RESIDUALES SON INDEPENDIENTES

Se aplicó la prueba de Ljung-Box para verificar la hipótesis nula de independencia

ARIMA(0,1,0)	ARIMA(5,1,9)	ARIMA(0,2,1)
0.4454	1	0.1452

Con estos valores p, no rechazamos el supuesto de independencia

LOS RESIDUALES SE DISTRIBUYEN NORMAL

	ARIMA(0,1,0)	ARIMA(5,1,9)	ARIMA(0,2,1)
$\hat{\sigma_a}$	0.06731234	0.06301909	0.06727079
\overline{n}	18	14	20
%	$\sim 6,\!4516\%$	$\sim 5{,}0179\%$	$\sim 7{,}1684\%$

NO OBSERVACIONES ABERRANTES

Se busca un bajo porcentaje fuera del intervalo $[-3\sigma, 3\sigma]$

	ARIMA(0,1,0)	ARIMA(5,1,9)	ARIMA(0,2,1)
σ	0.06731	0.063019	0.067270
n	2	3	1
%	~0.7168%	~1.0752%	~0.3584%

EL MODELO ES PARSIMONIOSO

Se buscan intervalos de confianza que no incluyan al 0.

ARIMA(0,2,1)		
θ_1	[-1.013,-0.9868]	

ARIMA(5,1,9)			
Parámetro	Intervalo	Parámetro	Intervalo
ϕ_1	[0.006,0.521]	θ_3	[-1.125,-0.337]
ϕ_2	[-1.106,-0.726]	θ_4	[0.293, 0.820]
ϕ_3	[0.293, 0.976]	θ_5	[-1.058,-0.391]
ϕ_4	[-0.611,-0.249]	θ_6	[-0.108,0.287]
ϕ_5	[0.296,0.849]	θ_7	[-0.364,0.038]
θ_1	[-0.525,0.015]	θ_8	[-0.255,0.061]
θ_2	[0.802,1.212]	θ_9	[-0.424,-0.049]

Φ2

Ф3

Φ4

Φ5

θ1

θ2

θ3

θ7

ARIMA (5,1,9)

0

0.8

0.6

0

0

0

0

0

0

0.4

0

0.5

0.5 0.3 0.7

Se busca una baja correlación en pares de los parámetros

EL MODELO ES ESTABLE

07 0 0.4 0 0 0 0 0.3

0

0

0

0

0.6

0.6

0

0.4

0.3 0.4

0.3

0

0

0

0

0

0

0

0.7

0

0

0.4

0

0

0

0

0

0.6

0

0

Parámetros φ1 φ2 01 Ф3 0.8 0.6 Φ1 0 0 0

0

0.4

0

0

0

0

0

0.3

0

0

0

0

0.4

8.0 0.4

0

0

0

0

0

0

0.4

0

0.6

0.3

0.4 0.4

0.4

0.4

0

0.8

0.4

0

0

0

0

0

0

0.3

0.6

0

0

0

0

0

0.8

0

0.4

0

0

0

0.6

0.3

0

0

0

0

0.8

0

0

8.0

0

0

0

0

0

0

0

0

0.6

0

0

0.6

0

0

0.4

0.8

0

0.6

0.6

O3. RESULTADOS

EVALUACIÓN DE SUPUESTOS

PRONÓSTICOS

O4. CONCLUSIONES

Al realizar este análisis, comprendimos la importancia de los pronósticos en áreas de inversión y lo necesario que es hacer una verificación para corroborar que el modelo que se propone se acerque a la realidad, debido a la utilidad que se les da en la toma de decisiones y al hecho de que pueden significar grandes ganancias o grandes pérdidas para empresas, productores, distribuidores o inversionistas, tal y como se está viendo en la

actualidad con la baja en los precios de petróleo crudo.

REFERENCIAS

U. S. ENERGY Information Administration	2020	Henry Hub Natural Gas SpotPrice. Información obtenida el 26 de abril de 2020 de la Administración de InformaciónEnergética (EIA), dehttps://www.eia.gov/dnav/ng/hist/rngwhhdM.htm.	
SAEID Hosseinipoo	2016	"Forecasting Natural Gas Prices in the United States Using ArtificialNeural Networks". Tesis doct. Mayo de 2016.doi:10.13140/RG.2.1.1284.8248.	
VÍCTOR M. Guerrero	2009	Análisis estadístico y pronóstico de series de tiempo económicas.	
FENG XU ET AL	2018	"Time-Series Forecasting Models for Gasoline Prices in China". En:Interna-tional Journal of Economics and Finance10 (nov. de 2018), pág. 43.doi:10.5539/ijef.v10n12p43.	