Reti Neurali multi-strato basate su Perceptron per espressioni booleane

Federico Zanardo

30 Ottobre 2020

1 Reti Neurali implementate

1.1 Espressioni booleane

Si considerino le seguenti espressioni booleane:

- 1. **NOT**: $\neg A$
- 2. **NAND**: $\neg(A \land B)$
- 3. **Y**: $(A \land (B \lor \neg C)) \lor (B \lor (\neg A \land C))$

Per ognuna di esse, si implementi la rispettiva rete neurale.

1.2 Reti neurali

1.2.1 Rete neurale per la formula NOT

La tabella di verità dell'espressione booleana presa in esame è:

A	$\neg A$
0	1
1	0

Siano $x_0 = 1$, $w_0 = 0.5$ e $w_1 = -1$. Si calcoli la **step function** per i possibili valori che x_1 può assumere:

$$sign(\vec{w} \cdot \vec{x}) = sign(w_0 \cdot x_0 + w_1 \cdot x_1) = \begin{cases} sign(0.5 \cdot 1 + -1 \cdot 0) = 1 & \text{se } x_1 = 0\\ sign(0.5 \cdot 1 + -1 \cdot 1) = 0 & \text{se } x_1 = 1 \end{cases}$$

Figure 1: Rete neurale per la funzione booleana NOT

1.2.2 Rete neurale per la formula NAND

La tabella di verità dell'espressione booleana presa in esame è:

A	B	$\neg (A \land B)$
0	0	1
0	1	1
1	0	1
1	1	0

Si consideri prima la formula boolean $A \wedge B$. Siano $x_0 = 1, \ w_0 = -n + 0.5, \ w_1, \dots, w_n = 1$:

- 1. Se uno dei valori di x_i , con $i = \{1, ..., n\}$, è 0, la step function ritornerà 0;
- 2. Se tutti i valori di x_i , con $i = \{1, ..., n\}$, sono uguali a 1, allora la step function ritornerà 1;

Figure 2: Rete neurale per la funzione booleana AND

La rete neurale multi-strato per la formula booleana NAND può essere costruita per composizione delle reti neurali NOT e AND.

Figure 3: Rete neurale per la funzione booleana NAND

1.2.3 Rete neurale per la formula Y

La tabella di verità dell'espressione booleana $\mathbf{Y} = (A \wedge (B \vee \neg C)) \vee (B \vee (\neg A \wedge C))$ è:

A	B	C	$\neg A$	$\neg C$	$B \vee \neg C$	$A \wedge (B \vee \neg C)$	$\neg A \wedge C$	$B \lor (\neg A \land C)$	Y
0	0	0	1	1	1	0	0	0	0
0	0	1	1	0	0	0	1	1	1
0	1	0	1	1	1	0	0	1	1
0	1	1	1	0	1	0	1	1	1
1	0	0	0	1	1	1	0	0	1
1	0	1	0	0	0	0	0	0	0
1	1	0	0	1	1	1	0	1	1
1	1	1	0	0	1	1	0	1	1

La rete neurale multi-strato per la formula boolean Y può essere costruita per composizione delle reti neurali NOT, AND e OR.

Figure 4: Rete neurale per la funzione booleana Y