Subjectul 1

Se dă un graf neorientat conex cu n>3 vârfuri, m muchii, m>n și un vârf s.

Să se afișeze muchiile a doi arbori parțiali ai grafului, T1 și T2, dintre care unul, T1, este arbore de distante față de s ($d_{T1}(s, u) = d_G(s, u)$ pentru orice vârf u din G), iar celălalt, T2, nu este arbore de distanțe față de s. Se va afișa în plus un vârf u pentru care $d_{T2}(s, u) \neq d_G(s, u)$.

Complexitate O(m)

Informațiile despre graf se citesc din fișierul *graf.in* cu structura:

- pe prima linie sunt n și m
- pe următoarele m linii sunt câte 2 numere naturale reprezentând extremitățile unei muchii
- pe ultima linie este vârful s

 $(d_G(x,y) = distanța de la x la y în G)$

graf.in	Iesire pe ecran (solutia nu este unica)
45	T1:
12	12
13	13
23	2 4
2 4	T2:
3 4	12
1	2 3
	2 4
	u = 3

Subjectul 2

Se citesc informații despre un graf **orientat** ponderat G din fișierul graf.in. Fișierul are următoarea structură:

- pe prima linie sunt două numere reprezentând numărul de vârfuri n (n>4) și numărul de arce m ale grafului, **m>n**
- pe următoarele m linii sunt câte 3 numere întregi **pozitive** reprezentând extremitatea inițială, extremitatea finală și costul unui arc din graf
- pe următoarea linie (a (m+2)-a linie) din fișier este un număr natural k (0<k<n) reprezentând numărul de vârfuri sursă; vârfurile sursă din G vor fi 1, 2, ..., k
- pe ultima linie a fișierului sunt două vârfuri t₁ și t₂, reprezentând vârfurile destinație ale grafului.

Notăm cu $S = \{1,...,k\}$ mulțimea vârfurilor sursă din G și cu $T = \{t_1,t_2\}$ mulțimea vârfurilor destinație din G. Spunem că un vârf y este accesibil din G acă există un drum de la G y. Presupunem că există cel puțin un vârf destinație care este accesibil dintr-un vârf sursă.

Să se determine distanța între cele două mulțimi:

$$d(S, T) = min \{d(x, y) | x \in S, y \in T\}$$

Să se determine în plus și o pereche de vârfuri (s,t) cu $s \in S$ și $t \in T$ cu

$$d(s,t) = d(S,T) = \min \{d(x, y) \mid x \in S, y \in T\}$$

și să se afișeze (pe ecran) un drum minim de la s la t. Complexitate O(mlog(n))

Exemplu

graf.in	Iesire pe ecran
6 8	distanta intre multimi = 2
1 2 3	s=2 t=3
1 6 10	drum minim 2 4 3
6 2 2	
2 4 1	
4 3 1	
5 3 4	
1 5 5	
3 2 7	
2	
3 6	

Explicații

$$k=2 \Rightarrow S = \{1, 2\}$$

 $T = \{3, 6\}$
 $d(1,3)=5, d(2,3)=2$
 $d(1,6)=10, d(2,6)=\infty$
Cea mai mică este $d(2,3)$
Un drum minim de la 2 la 3 este 2 4 3

Subjectul 3

- a) Se dau un număr natural n și două șiruri de n numere naturale s_in și s_out. Folosind algoritmul de determinare a unui flux maxim într-o rețea de transport, să se determine, dacă există, un graf orientat G cu secvența gradelor de intrare s_in și cu secvența gradelor de ieșire s out. Se vor afișa arcele grafului dacă acesta există, și un mesaj corespunzător altfel.
- b) În cazul în care graful cerut la G nu există, să determine dacă există doua numere i, j cuprinse între 1 și n (nu neparat distincte) astfel încât se poate construi un graf G' cu secvența gradelor de intrare egală cu șirul obținut din s_in scăzând 1 din elementul i, și cu secvența gradelor de ieșire obținută din s_out scăzând 1 din elementul j. Se vor afișa arcele grafului G' dacă acesta există, și un mesaj corespunzător altfel.
- c) În cazul în care graful cerut la G nu există, determinați dacă există un multigraf orientat G cu secvența gradelor de intrare s_in și cu secvența gradelor de ieșire s_out fără bucle (arce cu extremitățile egale).

Secvențele s_in și s_out se vor citi din fișierul secvente.in cu următoarea structură: pe prima linie este n, pe a doua linie elementele lui s_in separate prin spațiu, iar pe a treia linie elementele lui s_out separate prin spațiu.

Complexitate $O(mn^2)$, unde m este suma numerelor din s_in

secvente.in	lesire pe ecran (solutia nu este unica)
3	a)
103	nu exista
220	b)
	13
	21
	2 3
	(i=3,j=1)
	c)
	13
	13
	21
	23