

Visual Analysis of Textual and non-Textual Documents

Prof. Dr. Tobias Schreck
Institute for Computer Graphics and
Knowledge Visualization

UX Day Graz 2015, 14.11.2015

Large, Complex Data

Technological progress

- Acquisition, production, storage
- Data integration, data mining
- → Large and increasing amounts of data

Data-intensive application domains

- Business, Research
- Biomedical Engineering
- Social Media

User Tasks

- Search for data items
- Explore for patterns of interest
- Communicate

Spatiotemporal Data

Biomedical Engineering

Social media data

(*) Wikimedia Commons

Why Interactive Visualization?

- Automated techniques not sufficient
 - Data ambiguous and incomplete
 - Complex relationship
 - Semantic gaps
 - Limited Accuracy
- Visual-interactive access central for
 - Exploration of Data
 - Generation of Hypotheses
 - Interpretation of Results
 - Steering of the Analysis

Visual Analytics Process

Tight Integration of Visual and Automatic Data Analysis Methods for Information Exploration and Scalable Decision Support

Visual Data Exploration Visualization Models Automated Data Analysis Feedback loop

Keim, D., Kohlhammer, J., Ellis, G., Mansmann, F. (eds.): Mastering the information age: solving problems with visual analytics. Eurographics Association (2011)

- Introduction
- Visual Analysis of Textual Data
- Social Media Data
- Visual Data Retrieval
- Conclusions

Sentiment Analysis

- Opinion score derived from adjectives, nouns, and verbs
- Identifies positive and negative sections
- → Overview over large document corpora
- → Find articles which suit the mood of the reader

Attribute-based: Visual Review Analysis

- Basic method
 - Identify product attributes
 - Identify positive/negative opinions
 - Calculate weighted attribute vector
- Visual comparison of sets of reviews
 - Glyph matrix approach
 - Cluster analysis
- Applied to printer product reviews

cartridg e	paper tray	price	printer	scanner	softwar e
0	-1	0	+1	0	+1

CGV

D. Oelke, M. C. Hao, C. Rohrdantz, D. A. Keim, U. Dayal, L.-E. Haug and H. Janetzko. **Visual Opinion Analysis of Customer Feedback Data**. Proceedings of the 2009 IEEE Symposium on Visual Analytics Science and Technology (VAST '09), pages 187-194, 2009.

Visual Content Overviewing

- Visual abstract for scientific articles
 - Extraction of important figures and keyword
 - Layout of elements in generalized word cloud
- Overviewing
- Navigation
- Comparison

- Introduction
- Visual Analysis of Textual Data
- Social Media Data
- Visual Data Retrieval
- Conclusions

TU

Visual Analysis of Social Media Data

- Social media important data
 - Content (text, visual, geospatial, ...)
 - Metadata (location, time, user, ...)
- Cases for analysis
 - Marketing
 - Sentiment mining
 - Disaster response, security

- Introduction
- Visual Analysis of Textual Data
- Social Media Data
- Visual Data Retrieval
- Conclusions

Visual Search and Analysis in Research Data

- Data generation in scientific process
- Data libraries
 - Serve and preserve
 - Transparency and reproducibility
 - 4th Paradigm [Gray]
- User access
 - Mostly, meta-data based
 - Meta data expensive to curate
 - Lack of content-based search

Sloan Digital Sky Survey Repository

Oakridge DAAC data archive

AWI PANGAEA web data repository

30

Support for Query-as-you-Sketch

- Introduction
- Visual Analysis of Textual Data
- Social Media Data
- Visual Data Retrieval
- Conclusions

Conclusions

Summary

- Large and complex data arising
 - Social media, web
 - Open data
 - Etc. etc.
- Explore, retrieve, make sense, communicate
- Visual data analysis
 - Data mining/analysis
 - Visualization
 - Interaction

Challenges

- · Widening the user base
 - Expert systems vs. visualization for the masses
- Visual literacy
- (Visual/online) journalism
- User experience and data visualization

Acknowledgments

+ all collaborators and students

38

