Computer Networks (Retele de Calculatoare)

Lecturer: Bogdan Iancu, PhD Bogdan.Iancu@cs.utcluj.ro

Grading Type: normal, Credits:5

No prerequisite modules required

Basic knowledge in Physics, Mathematics, Computer Architecture – feel free to ask questions anytime

3rd Year students (Seria B)

https://moodle.cs.utcluj.ro

Rețele de calculatoare / Computer Networks, Sem. 2, 2019/2020

Self-Enrolment key: L@b_key2020

ASSESSMENT

- Lab test (last week) laboratory
- Written Exam (theory, problems)
- Grading constraints: minimum of 5 (out of 10) for each: mid-term, final, lab
- Grade policy

3rd Year students:

30% Lab + 40% Mid-term exam + 30% Final Exam

• Module Credits: 5

Partial 2020: **TBD**Cursurile 1-8

Lecture 1 Module Description

Notions of: communications, telecommunications; Communications architecture and protocols; Introduction to computer networks; OSI Model; TCP model; analog and digital transmissions; encoding techniques; transmission media (special focus on fiber optic); synchronous and asynchronous transmissions; digital carriers; multiplexing; circuit and packet switching; Local Area Networks systems (wired & wireless) & technologies (focus on medium access control techniques); case study: Ethernet LANs; Bridges & Switches; introduction to internetworking & routing; classic IP & IPv6; Transport level protocols; application level services.

Aim of the module

Introductory module on data & computer communications, case study: LANs

data comms: signal transmission, transmission media, interfacing, data link control networking: technologies and architectures of comms networks (LANs, WANs) computer communications –basic introduction, basic protocols simple communications networks (LANs) & their protocols internetworking

This is the first from a sequence of (at least) 2 modules in Computer Networks!

Why this structure?

- -no more much difference between data processing (computers) and data communications (transmission & switching equipment)
 - -no fundamental difference in transmitting data, voice or video
- -today's the metanetwork (let's say Internet), makes no difference (reference) to single or multi processor computers, or to PAN, LAN, MAN or WAN (access to any resource is done easily & uniformly)

Fields of Study

- -data transmissions: data, signals, transmission systems, techniques (coding, multiplexing, switching)
- -general aspects of networks: definition, evolution, generations, further developments; history of Internet; case study: LANs
- -topologies: star, ring, bus
- -introduction to internetworking
- -protocols:
 - -Architectures & reference models
 - -Lower & higher levels
 - -Study for levels 1 to 3: Physical, Data Link, Network
 - -Internetworking
 - -Transport & Application level services

Bibliography

Main text book for this module:

- W. Stallings *Data and Computer Communications*, Prentice Hall, editions 2004 2014
- The 'most available' text book is: Vasile Teodor Dadarlat, Emil Cebuc: Retele Locale de Calculatoare - de la cablare la interconectare, Editura Albastra (MicroInformatica), 2005

Also you'll get good knowledge and experience reading:

- L. Peterson, B. Davie *Computer Networks, Fifth Edition: A Systems Approach*, The Morgan Kaufmann Series in Networking, 2013
- A. Tanenbaum Computer Networks, Prentice Hall, 2002,2005,2010
- D. Comer Computer Networks and Internets, Prentice Hall, 2008, 2014

LAB Activity (compulsory) TABLE OF CONTENTS

1	Cooper based transmission media and UTP cabling		
2	Optical fibers and components		
3	Structured Cabling		
4	Medium Access Methods		
5	Connectivity to Network: IPv4 subnets and basic router configuration		
6	Connectivity to Network: DHCP and IPv4 static routing		
7	Connectivity to Network: IPv6 introduction and static routing		
8	Transport layer: TCP/UDP and Network Programming using Socket		
9	Wireshark – network analysis		
10	VLAN and inter-VLAN routing		
11	Wireless LAN		
12	Spanning-tree		
13	Port link aggregation: Etherchannel		
14	Laboratory test		

Standardization bodies

Why standards?

- -for unique specifications
- -for global uniformity and interoperability

What's now?

- -still are proprietary networks (big companies): IBM/SNA, Digital/DECNET,
- Novell/Netware, Cisco
- -'de facto' standards: adopted by the market, not yet official standards: TCP/IP protocol suite
- -'de jure' standards: official standard, small market acceptance
- -consortiums, forums: mix of companies (product promotion), specification & standardization bodies (standardization in progress):

IEEE 802.x- formal standardization group

Frame Relay Forum, ATM Forum, Internet Engineering Task Force (IETF) – application development, IResearchTF – further development (see structure on next page)

Standardization bodies (continued)

For proprietary standards, closed systems:

ECMA (European Computers Manufacturers Association)

EIA (European Industrials Association)

For interface standards, multi-vendor systems:

ITU-T (International Telecommunications Union, Telecommunications sector),

former CCITT (Comite Consultatif International pour telephone et telegraphe)

ANSI (American National Standards Institute)

IEEE (Institute for Electrical and Electronic Engineers)

ETSI (European Telecom Standards Institute)

For international standards, open systems:

ISO (International Organization for Standardization) – Technical Committee for Information Processing TC 97

The Intersection of Media Development Principles and Internet Governance

INTERNET GOVERNANCE BODY	PRINCIPLE AT STAKE	TECHNICAL DEBATE
ICANN	Freedom of Expression	Domain Names (gTLDs) Management of new, generic Top-Level Domains (gTLDs)
GF Internet Governance Forum	Media Pluralism	Social Media as News Platforms Algorithms and Media Plurality
	Access to Information	Wireless Internet 5G Cellular Networks and Unlicensed Spectrum Standards
I E T F	Privacy	Web Browsing Privacy Encryption
IEEE	Secure Access and Trust	Wi-Fi Security Local Area Networks (LAN) Protocols in Diverse Settings

http://www.cima.ned.org/publication/media-development-digital-age-five-ways-engage-internet-governance/

Internet Assigned Numbers Authority

- global coordination of:
 - DNS Root, IP addressing, and other Internet protocol resources

http://www.caida.org/funding/nets-ipv6/nets-ipv6_proposal.xml

Notions of: Communications, Telecommunications

The 'old' need to communicate: use of symbols, writing, languages

Claude Shannon's model of communication

The Communications Model

Source

Generates data to be transmitted (the message)

Sender (transmitter)

Converts data into transmittable signals (ex. modem)

Transmission System

Simply, the **channel** - carries data, using signals; may be affected by noise; from a single transmission line to a complex network connecting the parts

Receiver

Converts received signal into data

Destination

Takes incoming data

Oral communication between two people:

Source & destination: the brain

Sender: transmitting device, the mouth

Channel: medium traversed, the air

Receiver: the receiving device, the ear

Communications

Problems (limitations) with the Shannon's model:

- -one way
- -no feedback
- -not appropriate to group communications
- -no explanation for the sending/receiving process

Questions?

- -which are the formats a message is delivered?
- -which are today's communications methods (radio, TV, papers, phone, Internet): one-way, two-way, multiple, interactive? Which will be preferred in the future?
- -what about the teaching process?
- -how to make the message secure?

Key Communications Tasks (from en engineering view)

Utilization of the Transmission System: optimal, efficient allocation of existing resources

Interfacing with the Transmission System: electromagnetic signals

Signal generation: for optimal propagation & proper interpretation at receiver

Synchronization between the communication parts

Message exchange management: rules of the conversation

Error detection and correction, flow control: part of the exchange management

Addressing and routing: more devices may share the transmission facilities

Recovery: resume of activity from the point of interruption

Message formatting: bit or character oriented

Security: data received only by intended receivers, and unaltered

Network Management: configure the system, monitor its status, detect failures & overloads, planning the future growth

Telecommunications

Etymology: communication at a distance, as the *tele* prefix states (see television, teleaction, telecommand, telephony)

Definition: the *information transfer* between *two (or more) points*, usually at a distance, using *media* other, or perhaps including audio.

Example

Communication between two computers exchanging text files, using modems:

Networking

Point to point communication not usually practical

Devices are too far apart

Large set of devices would need impractical number of connections

Solution is a **communications network** (see below an example)

Communications Networks

Definition: a mesh of switching nodes and links, enabling one or more 'network hosts' to have access to a telecommunications infrastructure which supports a range of tele-services to the network hosts or between network hosts.

Example: telecommunications connection between a computer and an e-mail server (ISP) – two network hosts – application: e-mail exchange, carrier: PSTN (Public Switch Telephone Network).

Communications Networks continued

Generally all networks are **telecommunications** (data networks, computer networks, telephony networks, mobile cellular networks, TV broadcasting networks).

In the past, a difference: computer networks carry data, telecomm networks operate with voice; no more, today's networks (let's say Internet) carry voice+data+video!

Question?

A lecture is a telecommunication activity and has the structure of a network?

Answer: a lecture has communications attributes, like: point-to-point, simplex or half duplex, symmetric in bandwidth (4KHz), unbalanced, analogue transmission, but is not telecommunication (not at distance) and there is no network (not distance transporting system).

Global Telecommunications Networks

Today we speak about Global Networks

Issues:

- -fixed or mobiles
- -application driven networks
- -integrated telecommunication networks (carry data, voice, video)
- -convergence of networks (in terms of access interfaces, packet size, service supply)
- -seamless (network of networks, metanetwork)
- -increased number of services
- -need for an ordered development, based on **reference models**

Some Milestones for Communications Networks evolution

(concerning offered services)

1850: Telegraphy

1890: Telephony

1930: Radio, Television, Facsimile, Branch Exchange

1970: Color TV, Stereo radio, low-speed data transmissions(Kbps), remote

computing

1990: ISDN, medium & high speed data transmissions (Mbps), multimedia, LANs,

WLANs, video...

2000: Very high speed transmissions (Gbps), mobile, home access, security, virtual

reality, teleworking, banking

2010: Mobile communications, cloud computing, High Performance computing ...

Reaching 50 Million users

It took about 75 years for the telephone to connect 50 million people. Today a simple iPhone app like Draw Something can reach that milestone in a matter of days. In the past 10 years the rate of adoption of new technologies has accelerated at a dizzying speed. Can we keep up with it all?

Introduction to Computer Networks

Computer Networks are an interconnection of computers.

Two computers are said to be interconnected if they are able to exchange information (data).

The main reasons why computers are networked are:

- •to share hardware resources higher reliability (files, printers, modems, fax machines)
- •to share application software (MS Office)
- •to save money downsizing process: from mainframes to a lot of small intelligent computers spread around
- •to increase productivity (make it easier to share data among various users)

Types of computer networks

Different criteria:

- -public (ex. educational WANs) or private (company owner)
- -geographical location (coverage): Personal Area Networks (PAN), Local Area Networks (LANs), Metropolitan Area Networks (MANs), Wide Area Networks (WANs)
- -type of transmission media: hard-wire (copper based wire or fiber optic), soft-wire (radio, satellite, infrared)
- topologies: mesh, star, ring, bus
- transmission type: broadcast/multicast, point-to-point, peer-to-peer
- classes of reliability
- application domains (ex. multimedia applications)
- -way in which nodes exchange information: broadcast (LANs, Wireless), switched (circuit switching, packet switching (datagrams, virtual circuits))