Name:	W UPES
Enrolment No:	UNIVERSITY OF TOMORROW

UPES Assignment I

Programme Name: B.Tech. (SoCS)

Semester: IV

Course Name : Linear Algebra

Course Code : MATH 2059 Max. Marks: 10

Nos. of page(s) : 03

S. No.		Marks	CO		
Q 1	The <i>google page rank</i> vector is the solution of $Av = v$ where $A = \begin{bmatrix} a_{ij} \end{bmatrix}_{n \times n}$ is the transition matrix defined as $a_{ij} = p$, where p is the probability of landing on j^{th} website from i^{th} website and $v = (x_1, x_2, x_3,, x_n)^T$ consisting of the x_i 's (called as the importance value of the i^{th} website). In any google search, the i^{th} website is listed above the j^{th} website iff $x_i > x_j$. Consider the above directed graph depicting a situation with 4 nodes, one for each website, where if website i references j , we add a directed edge between node i and node j in the graph. The weight on each edge is the value of p . Construct the <i>transition matrix</i> A of order 4×4 .	1	CO1		
Q 2	Ms. Rosy bought 2 pencils, 4 pens, and 2 notebooks that cost Rs. 44 and 1 pencil, 3 pens, and 1 notebook that cost Rs. 27. Describe this problem using a system of linear equations. Hence, a) What price did Rosy pay for each pen?	1	CO1		

	b) Is she correct in anticipating the price of each notebook to be Rs. 15?		
	c) In addition to this, if she wishes to spend Rs 50 to buy 3 pencils, 7		
	pens, and 3notebooks, then will she be able to execute this		
	transaction?		
Q 3	Consider the chemical equation of photosynthesis:		
	$\alpha \ H_2O + \beta \ CO_2 \longrightarrow \gamma \ C_6H_{12}O_6 + \delta \ O_2$ where $\alpha, \beta, \gamma, \delta \in \mathbb{R}$. Formulate a homogeneous system of linear equations		
			CO1
	to balance the above equation. Hence, obtain the values of α , β , γ and δ .		
Q 4	Digitizing the alphabets A-Z by numbers 0-25 and digits 0-9 by numbers 26-		
	35. If the number 36 is reserved for blanks between two consecutive words,		
	then the set $S = \{0,1,2,,36\}$ completely describes the character set of		
	English language when only numerals are used as a privilege. Consider a text		
	message "EMPTY SET" which Bob wants to send to Alice.		
	a) Express this linguistic message using a 3×3 matrix M with entries	1	CO1
	from set S.		
	b) Obtain the <i>Encrypted matrix</i> N for the above text matrix M by adding		
	to it the key matrix corresponding to the secret key "LET ME IN"		
	where the addition operation on S is defined as:		
	a + b = c where c is the remainder obtained on dividing $a + b$ by 37.		
Q 5	A real number λ is an eigenvalue of matrix $X = [x_{ij}]_{n \times n}$ if		
	$\sum_{i=1}^{n} x_i = 1$		
	$\sum_{i=1} x_{ij} = \lambda, \ \forall j = 1, 2, \dots, n$		
		2	CO3
	Using the above fact, determine whether $\lambda = 1$ is an eigenvalue of A obtained		
	in problem 1? Also, compute the PageRank vector for the transition matrix		
	A and hence, rank the four websites.		
Q 6	$\begin{bmatrix} 0 & -2 & -3 \end{bmatrix}$		
	Let $P = \begin{bmatrix} 0 & -2 & -3 \\ -1 & 1 & -1 \\ a & 2 & b \end{bmatrix}$ for some $a, b \in \mathbb{R}$. Suppose that 1 and 2 are		
		1	CO3
	eigenvalues of P and $P\begin{bmatrix} 1\\0\\1 \end{bmatrix} = \begin{bmatrix} 3\\0\\2 \end{bmatrix}$. Find $P^4\begin{bmatrix} 1\\-1\\0 \end{bmatrix}$.		
	r—11 r—21 r n 1		

Q 7	 Suppose A = [a₁₁ a₁₂ a₂₂] is a real matrix with a₁₂ ≠ 0, a₂₁ ≠ 0. Prove that a) If A has repeated eigenvalues, then det (A) is non-negative. b) If a₁₂ and a₂₁ have same sign, then A has real and distinct eigenvalues. Is the converse also true? Give a suitable reason or a counterexample to support your answer. 	2	CO3
Q 8	Suppose S and T are subsets of \mathbb{R} such that $b \in S$, $c \in T$ and $A = \begin{bmatrix} a & b \\ c & a \end{bmatrix}$ for some $a \in \mathbb{R}$ has eigenvalues not in \mathbb{R} . Determine the subsets S and T completely and prove that $S \cap T = \emptyset$.	1	CO3