Markov Decision Processes Part 1: Basic Definitions

CSE 4309 – Machine Learning
Vassilis Athitsos
Computer Science and Engineering Department
University of Texas at Arlington

A Sequential Decision Problem

This example is taken from:

S. Russell and P. Norvig,
"Artificial Intelligence: A Modern Approach",
third edition (2009), Prentice Hall.

- We have an environment that is a 3×4 grid.
- We have an agent, that starts at position (1,1).
- There are (at most) four possible actions: go left, right, up, or down.
- Position (2,2) cannot be reached.
- Positions are denoted as (row, col).

A Sequential Decision Problem

- Positions (2,4) and (3,4) are terminal.
- A mission is a sequence of actions, that starts with the agent at the START position, and ends with the agent at a terminal position.
 - If the agent reaches position (3,4), the reward is +1.
 - If the agent reaches position (2,4), the reward is -1 (so it is actually a penalty).
- The agent wants to maximize the total rewards gained during its mission.

- Suppose that each action always succeeds:
 - The "go left" action takes you one position to the left.
 - The "go right" action takes you one position to the right.
 - The "go up" action takes you one position upwards.
 - The "go down" action takes you one position downwards.
- This situation is called **deterministic**.
 - A <u>deterministic environment</u> is an environment where the result of any action is known in advance.
 - A <u>non-deterministic environment</u> is an environment where the result of any action is not known in advance.

- Suppose that each action always succeeds:
 - The "go left" action takes you one position to the left.
 - The "go right" action takes you one position to the right.
 - The "go up" action takes you one position upwards.
 - The "go down" action takes you one position downwards.
- Suppose that any non-terminal state yields a reward of -0.04.
- Then, what is the optimal sequence of actions?

- Suppose that each action always succeeds:
 - The "go left" action takes you one position to the left.
 - The "go right" action takes you one position to the right.
 - The "go up" action takes you one position upwards.
 - The "go down" action takes you one position downwards.
- Suppose that any non-terminal state yields a reward of -0.04.
- Then, what is the optimal sequence of actions?
 - Up, up, right, right gets the agent from START to position (3,4).
 - Total rewards: 1 5 * .04 = 0.8 (five non-terminal states, including START).

- Suppose that each action always succeeds:
 - The "go left" action takes you one position to the left.
 - The "go right" action takes you one position to the right.
 - The "go up" action takes you one position upwards.
 - The "go down" action takes you one position downwards.
- Suppose that any non-terminal state yields a reward of -0.04.
- The optimal sequence is not unique.
 - Right, right, up, up, right is also optimal.
 - Total rewards: 1 5 * .04 = 0.8 (five non-terminal states, including START).

- Suppose that each action always succeeds:
 - The "go left" action takes you one position to the left.
 - The "go right" action takes you one position to the right.
 - The "go up" action takes you one position upwards.
 - The "go down" action takes you one position downwards.
- Suppose that any non-terminal state yields a reward of -0.04.
- The optimal sequence can be found using well-known algorithms such as breadth-first search.

A Non-Deterministic Case

3 +1
2 -1
1 3 3 4

- Under some conditions, life gets more complicated.
- Suppose that each action:
 - Succeeds with probability 0.8.
 - Has a 0.2 probability of moving to a direction that differs by 90 degrees from the intended direction.
- For example: the "go up" action:
 - Has a probability of 0.8 to take the agent one position upwards.
 - Has a probability of 0.1 to take the agent one position to the left.
 - Has a probability of 0.1 to take the agent one position to the right.

A Non-Deterministic Case

3 +1
2 -1
1 3 2 3 4

- Under some conditions, life gets more complicated.
- Suppose that each action:
 - Succeeds with probability 0.8.
 - Has a 0.2 probability of moving to a direction that differs by 90 degrees from the intended direction.
- Suppose that bumping into the wall leads to not moving.
- For example:
 - The agent is at position (1,1).
 - The agent executes the "go up" action.
 - Due to bad luck, the action moves the agent to the left.
 - The agent hits the wall, and remains at position (1,1).

Sequential Decision Problems

- Under some conditions, life gets more complicated.
- Suppose that each action:
 - Succeeds with probability 0.8.
 - Has a 0.2 probability of moving to a direction that differs by 90 degrees from the intended direction.
- Suppose that bumping into the wall leads to not moving.
- In that case, choosing the best action to take at each position is a more complicated problem.
- A <u>sequential decision problem</u> consists of choosing the best sequence of actions, so as to maximize the total rewards.

Markov Decision Processes (MDPs)

- A Markov Decision Process

 (MDP) is a sequential decision
 problem, with some additional assumptions.
- Assumption 1: Markovian Transition Model.
 - The probability $p(s' \mid s, a, H)$ is the probability of ending up in state s', given:
 - The previous state s, where the agent was taking the last action.
 - The last action *a*.
 - The **history** *H* of all prior actions and states since the start of the mission.
 - In a Markovian transition model, $p(s' \mid s, a, H) = p(s' \mid s, a)$
 - Given the last state, the history does not matter.

- Suppose that each action:
 - Succeeds with probability 0.8.
 - Has a 0.2 probability of moving to a direction that differs by 90 degrees from the intended direction.
- Suppose that bumping into the wall leads to not moving.
- p((1,1) | (1,1), "left") = ???
- p((2,1) | (1,1), "left") = ???
- p((1,2) | (1,1), "left") = ???

- Suppose that each action:
 - Succeeds with probability 0.8.
 - Has a 0.2 probability of moving to a direction that differs by 90 degrees from the intended direction.
- Suppose that bumping into the wall leads to not moving.
- p((1,1) | (1,1), "left") = 0.9
 - 0.8 chance of going left and hitting the wall.
 - 0.1 chance of going down and hitting the wall.
- p((2,1) | (1,1), "left") = 0.1
- p((1,2) | (1,1), "left") = 0
 - If you try to go left, you never end up going right.

- Suppose that each action:
 - Succeeds with probability 0.8.
 - Has a 0.2 probability of moving to a direction that differs by 90 degrees from the intended direction.
- Suppose that bumping into the wall leads to not moving.
- p((1,1) | (1,1), "right") = ???
- p((2,1) | (1,1), "right") = ???
- p((1,2) | (1,1), "right") = ???

- Suppose that each action:
 - Succeeds with probability 0.8.
 - Has a 0.2 probability of moving to a direction that differs by 90 degrees from the intended direction.
- Suppose that bumping into the wall leads to not moving.
- p((1,1) | (1,1), "right") = 0.1
 - 0.1 chance of going down and hitting the wall.
- p((2,1) | (1,1), "right") = 0.1
- p((1,2) | (1,1), "right") = 0.8

- Suppose that each action:
 - Succeeds with probability 0.8.
 - Has a 0.2 probability of moving to a direction that differs by 90 degrees from the intended direction.
- Suppose that bumping into the wall leads to not moving.
- p((1,1) | (1,1), "up") = ???
- p((2,1) | (1,1), "up") = ???
- p((1,2) | (1,1), "up") = ???

- Suppose that each action:
 - Succeeds with probability 0.8.
 - Has a 0.2 probability of moving to a direction that differs by 90 degrees from the intended direction.
- Suppose that bumping into the wall leads to not moving.
- p((1,1) | (1,1), "up") = 0.1
- p((2,1) | (1,1), "up") = 0.8
- p((1,2) | (1,1), "up") = 0.1

- Suppose that each action:
 - Succeeds with probability 0.8.
 - Has a 0.2 probability of moving to a direction that differs by 90 degrees from the intended direction.
- Suppose that bumping into the wall leads to not moving.
- $p((1,1) \mid (1,1), \text{"down"}) = ???$
- p((2,1) | (1,1), "down") = ???
- p((1,2) | (1,1), "down") = ???

- Suppose that each action:
 - Succeeds with probability 0.8.
 - Has a 0.2 probability of moving to a direction that differs by 90 degrees from the intended direction.
- Suppose that bumping into the wall leads to not moving.
- p((1,1) | (1,1), "down") = 0.9
 - 0.8 chance of going down and hitting the wall.
 - 0.1 chance of going left and hitting the wall.
- p((2,1) | (1,1), "down") = 0
 - If you try to go down, you never end up going up.
- p((1,2) | (1,1), "down") = 0.1

- Suppose that each action:
 - Succeeds with probability 0.8.
 - Has a 0.2 probability of moving to a direction that differs by 90 degrees from the intended direction.
- Suppose that bumping into the wall leads to not moving.
- In a similar way, we can define all probabilities $p(s' \mid s, a)$ for:
 - Every one of the 11 legal
 values for state s.
 - Every one of the 2 to 4 legal values for neighbor s'.
 - Every one of the 4 legal values for action a.

Markov Decision Processes (MDPs)

- Assumption 2:
 - **Discounted Additive Rewards.**
 - The <u>utility</u> U_h of a state sequence $s_0, s_1, ..., s_T$ is:

$$U_h(s_0, s_1, ..., s_T) = \sum_{t=0}^{T} \gamma^t R(s_t)$$

- In the above equation:
 - -R(s) is the **reward** function, mapping each state s to a reward.
 - $-\gamma$ is called the **discount factor**, $0 \le \gamma \le 1$.

$$U_h(s_0, s_1, ..., s_T) = \sum_{t=0}^{T} \gamma^t R(s_t)$$

• Suppose that $\gamma = 1$. Then:

$$U_h(s_0, s_1, ..., s_T) = \sum_{t=0}^{T} R(s_t)$$

- Therefore, when $\gamma = 1$, the utility function is **additive**.
 - It is simply the sum of the rewards of all states in the sequence.

- When γ < 1, the above formula indicates that the agent prefers immediate rewards over future rewards.
- The agent is at state s_0 , considering what to do next.
- Sequence s_1, \dots, s_T is a possible sequence of future states.
- As t increases, γ^t decreases exponentially towards 0.
 - Thus, rewards coming far into the future (large t) are heavily discounted, with factor γ^t that quickly gets close to 0.

- This type of utility is called discounted additive rewards, since:
 - The utility is additive, it is a (weighted) summation of rewards attained at individual states.
 - The reward at each state s_t is **discounted** by factor γ^t .
- When $\gamma = 1$, then we simply have **additive rewards**.

$$U_h(s_0, s_1, ..., s_T) = \sum_{t=0}^{T} \gamma^t R(s_t)$$

- When does it make sense to use $\gamma < 1$, so that future rewards get discounted?
- Discounted rewards are (unfortunately?) good models of human behavior.
 - Slacking now is often preferable, versus acing the exam later.
 - The reward for slacking is relatively low but immediate.
 - The reward for acing the exam is higher, but more remote.

- When does it make sense to use $\gamma < 1$, so that future rewards get discounted?
- Discounted rewards are also a way to get an agent to focus on the near term.
 - We often want our intelligent agents to achieve results within a specific time window.
 - In that case, discounted rewards de-emphasize the contribution of states reached beyond that time window.

The MDP Problem

 When we have an MDP process, the problem that we typically want to solve is to find an optimal policy.

- A policy $\pi(s)$ is a function mapping states to actions.
 - When the agent is at state s, the policy tells the agent to perform action $\pi(s)$.
- An optimal policy π^* is a policy that maximizes the **expected utility**.
 - The expected utility of a policy π is the average utility attained per mission, when the agent carries out an infinite number of missions following that policy π .

Policy Examples

- A policy $\pi(s)$ is a function mapping states to actions.
- An optimal policy π^* is a policy that maximizes the **expected utility**.

- The figure shows an example policy, that happens to be optimal when:
 - -R(s) = -0.04 for non-terminal states s.
 - $-\gamma=1.$

Policy Examples

- Top figure: the optimal policy for:
 - -R(s) = -0.04 for non-terminal states s.
 - $\gamma = 1.$
- Bottom figure: the optimal policy for:
 - -R(s) = -0.02 for non-terminal states s.
 - $\gamma = 1.$
- Changing R(s) from -0.04 to -0.02 makes longer sequences less costly.

Policy Examples

- Top figure: the optimal policy for:
 - -R(s) = -0.04 for non-terminal s.
 - $\gamma = 1.$
- Bottom figure: the optimal policy for:
 - -R(s) = -0.1 for non-terminal s.
 - $-\gamma=1.$
- Changing R(s) from -0.04 to -0.1 makes longer sequences more costly.
 - It is worth taking risks to reach the+1 state as fast as possible.

