

Christof Monz

Applied Language Technology Tuning

Today's Class

- ► Parameter Tuning
 - Minimum Error Rate Training (MERT)

Parameter Optimization

- Statistical MT systems have a number of models
 - Translation model: p(f|e) and p(e|f)
 - Language model: p(e)
 - Linear distortion
 - ...
- ► How important is each model?
 - Weight (parameterize) each model, e.g., $p(f|e)^{\lambda_1} \dots p(e)^{\lambda_3} \dots$
 - Question: how important is, e.g., the language model wrt the other models?
- Parameter optimization (or tuning) aims to find the weights that result in the best performance wrt a objective evaluation metric, e.g. BLEU

Parameter Optimization

src: er geht ja nicht nach Hause

ref: he does not go home

 $\lambda_1=0.1$ and $\lambda_2=0.2$

translation	feature values		score	BLEU
it is not under house	-2.0	-2.0	-0.600	0.20
he is not to go home	-0.5	-3.0	-0.650	0.33
he does not home	-4.0	-1.5	-0.700	1.00
it is not packing	-3.0	-3.0	-0.900	0.00
he is not for home	-5.0	-6.0	-1.700	0.20

Parameter Optimization

src: er geht ja nicht nach Hause

ref: he does not go home $\lambda_1 = 0.05$ and $\lambda_2 = 0.3$

translation	feature values		score	BLEU
it is not under house	-2.0	-2.0	-0.700	0.20
he is not to go home	-0.5	-3.0	-0.925	0.33
he does not home	-4.0	-1.5	-0.650	1.00
it is not packing	-3.0	-3.0	-1.050	0.00
he is not for home	-5.0	-6.0	-2.050	0.20

Parameter Estimation

- Data:
 - Training data: bitext to learn the translation model (and maybe a lexicalized distortion model); 50K+ sentence pairs
 - Development data: data that is not part of the bitext but is used to optimize the parameters iteratively; 1-2K sentence pairs
 - Test data: unseen data that is used to compare different methods; 1-2K sentence pairs
- Just like for the bitext, there must be known translations for the development and test data (and preferably multiple translations)

Parameter Estimation Cycle

Optimizing for BLEU

- ► In general: always optimize towards the objective metric that is used for final evaluation
- ▶ BLEU is
 - most commonly used evaluation metric
 - fast and easy to calculate
 - correlates reasonably well with human judgments
- ▶ BLEU is not
 - very stable on the sentence level, but on the corpus level
 - differentiable

Optimizing for BLEU

- ▶ In general: always optimize towards the objective metric that is used for final evaluation
- BLEU is
 - most commonly used evaluation metric
 - fast and easy to calculate
 - · correlates reasonably well with human judgments
- ▶ BLEU is not
 - very stable on the sentence level, but on the corpus level
 - differentiable

Minimum Error Rate Training (MERT)

- Given a set of n-best lists, how to find best weights?
 - Non-convex, non-differentiable objective
 - Too many features to use grid search
- Minimum Error Rate Training (MERT)
 - MT optimization algorithm by Och (2003)
 - Line search one direction (weight) at a time
 - Keep going until no improvement possible
 - Uses random restarts

Powell Search

- Explore high-dimensional parameter space
- Select one parameter (line) at a time and find optimal value
- ▶ If the score of the objective metric at this point increases, then select parameter value and continue with remaining parameters
- Analogy: Find the location with the highest altitude in a city (e.g., San Francisco) by walking through the street grid
 - Walk down one street until the highest point has been reached
 - At this crossing, take the street along the other dimension

- ► The model score for a translation candidate e of source sentence f is defined as: $score(e|f) = \sum_{m=1}^{M} \lambda_m h_m(e,f)$
- ▶ If we focus on one parameter at a time, e.g. λ_i
- We can rewrite this as: $score(e|f) = h_i(e,f)\lambda_i + \sum_{m \neq i} \lambda_m h_m(e,f)$
- ▶ Which is of the form: $a\lambda_i + b$
 - which is a line
 - where a is the slope and b is the y-intercept
- We vary one parameter at a time, the others remain fixed
- Varying this parameter affects the overall score of every hypothesis
- ► Find the parameter that promotes the hypothesis optimizing the objective function (BLEU)

Finding Intersection Points

- ► Find the line with the steepest descent (i.e. smallest slope): *l*
- For each other line l', compute the intersection by solving for λ_i in $a\lambda_i + b = a' + \lambda_i + b'$
- ► The line *l'* with the closest intersection point becomes the current line
 - · Again, find the line with the closest intersection point
 - ...
- ► For each interval of intersection points, we store the corresponding translation candidate

Computing BLEU

- BLEU can be computed based on the component scores only:
- ▶ Given a translation t^f for a foreign sentence f with reference translations R_f we can bleu_vec (t^f, R_f)
- ▶ bleu_vec $(t^f, R_f) = (c_1, n_1, c_2, n_2, c_3, n_3, c_4, n_4, l)$
 - ullet where c_i is the number of correct n-grams of length i
 - ullet where n_i is the number of total n-grams of length i
 - *l* is the length of the reference translation
- ► Corpus BLEU can now be computed as: BLEU($\sum_{f \in F} \text{bleu_vec}(t_1^f, R_f)$)
 - where t_1^f is the 1-best translation of f

Computing BLEU

- ► Let all_vec = $\sum_{f \in F} \text{bleu_vec}(t_1^f, R_f)$
- How does the overall BLEU score change if we use translations t_2^k and t_2^l instead of t_1^k and t_1^l ? all_vec (bleu_vec (t_1^k, R_k) + bleu_vec (t_1^l, R_l)) + bleu_vec (t_2^l, R_k) + bleu_vec (t_2^l, R_l)
- We can now efficiently compute BLEU scores for all intersection point intervals

Interval BLEU Scores

Interval BLEU Scores

Interval BLEU Scores

MERT Iteration

- ► The optimal parameter value for λ_i falls into the interval [m,n] with the highest BLEU scores
- If the BLEU score for interval [m,n] is higher than the BLEU score using the parameters of the previous iteration (t) we set $\lambda_i^{(t+1)} = \frac{n-m}{2}$, else $\lambda_i^{(t+1)} = \lambda_i^{(t)}$
- Next we continue optimizing one of the remaining parameters using $(\lambda_1^{(t)},\dots,\lambda_i^{(t+1)},\dots,\lambda_M^{(t)})$
- ► Continue until all parameters have been updated for iteration *t* + 1
- ▶ Decode with new parameters of iteration t+1
 - Optimize again each parameter at a time
 - Repeat until no further BLEU score improvements

MERT N-Best Lists

- ▶ During parameter optimization we consider the n-best translations of a source sentence at each iteration
- ▶ Ideally, we want to compare *all* possible translation candidates
 - Use large values of n for n-best list → limited variation with n-best list
 - Use lattices instead of n-best lists
- Accumulate n-best lists from all previous iterations
 - n-best list of sentence f in iteration t is the union of all n-best lists for f from iterations 0,...t
 - Remove entries with identical derivations
 - Or, better, remove entries with identical feature values

MERT Random Restarts

By iteratively optimizing the parameters we generate a sequence of the form

$$(\boldsymbol{\lambda}_1^{(0)},\dots,\boldsymbol{\lambda}_i^{(0)},\dots,\boldsymbol{\lambda}_M^{(0)})\\ \vdots\\ (\boldsymbol{\lambda}_1^{(t)},\dots,\boldsymbol{\lambda}_i^{(t)},\dots,\boldsymbol{\lambda}_M^{(t)})\\ \downarrow\\ (\boldsymbol{\lambda}_1^{(t+1)},\dots,\boldsymbol{\lambda}_i^{(t+1)},\dots,\boldsymbol{\lambda}_M^{(t+1)})\\ \vdots$$

- Susceptible to local optima as each iteration only depends on previous values
- ► Include random starting points
 - Optimize using the best parameters wrt previous iteration
 - Optimize using r random parameter values (r typically 19)

MERT Review

MERT is

- (still) the most widely used parameter optimization within SMT
- adaptable to a number of different MT metrics (BLEU, WER, TER, ...) \rightarrow Z-MERT (Zaidan, 2009)
- easily parallelizable: 1 thread per (random) restart
- good in achieving convergence in reasonable time
- ► MERT is not
 - good in scaling up to larger numbers of parameters (limit at around 20-30 features)
 - very robust, partly due to random restarts and initialization
 - susceptible to local optima when finding maximum BLEU scores for the intersection intervals

Recap

- Parameter Tuning
- Minimum Error Rate Training (MERT)
 - MFRT line search
 - Finding intersection points
 - Aggregating of BLEU scores for intervals
 - N-best list accumulation
 - MERT random restarts