

A Beginner's Guide to Machine Learning and Deep Learning

María Navas-Loro Ontology Engineering Group Universidad Politécnica de Madrid, Spain

María NAVAS LORO

Postdoctoral researcher at Ontology Engineering Group (UPM)

- BSc Computer Engineer/Mathematician
- MSc Applied Mathematics and Scientific Calculus
- MSc Artificial Intelligence
- Doctoral Thesis: "Processing, Identification and Representation of Temporal Expressions and Events in Legal Documents"

https://short.upm.es/lw7gd

Experience

Natural Language Processing, Knowledge Representation, Machine Learning

- Brief introduction to different ways to process your data using Machine Learning and Deep Learning
- How last advancements can be applied to industry

What is Artificial Intelligence?

Understanding Machine Learning

Deep Learning with Python. François Chollet. Manning

Machine Learning

 Self-learning algorithms that derive knowledge from data to create predictions

Examples:

- Spam filters
- Chess playing programs
- Self-driving cars
- Medical prediction
- Information extraction
- Recommendation Systems

From AWS Machine Learning Foundations. https://classroom.udacity.com/nanodegrees/nd065/dashboard/overview

Classical Machine Learning

Supervised Learning

- Labeled data; we know if:
 - Someone is sick or not
 - o An email is spam or not
 - Type of a document
- Prediction of result of new data based on previous data.
- Two types:

Classification

Discrete labels
Examples (spam, emotion...)

Regression

Labels are a continuous value (We want to predict a numeric value)
Example: Price of a house based on some characteristics.

Classification

Regression

Unsupervised Learning

- Unlabeled data, search of hidden structure in the data.
- Relevant information extraction without the help of a known result variable.
- Usage:
 - Clustering: search of patterns, similarity, groups (user recommendation).
 - **Dimensionality Reduction** for data sharing.

Unsupervised Learning

Some algorithms

https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html

Why is this interesting for industry?

Safe ground, has been used for many years.

- Document classification
- Sentiment Analysis (e.g. tweets)
- Predictive Maintenance in Manufacturing (e.g. plane engines)
- Quality Control: detect defects
- Fraud Detection in Banking
- ...and much more!

Reinforcement Learning

Reinforcement Learning (RL)

Reinforcement Learning is a type of learning where:

- An agent
- Is trained to get a goal
- Based on a feedback
- Got when interacting with an environment.

Reinforcement Learning (RL)

- Actions that favour the objective are positively rewarded.
- Those that don't, are negatively rewarded or not rewarded.

Reinforcement Learning

- Learning happens trough episodes.
- The agent passes from a state to another through actions.
- · Reward is numeric.

Learn by experience

https://www.youtube.com/watch?v=VMp6pq6 Qjl

Reinforcement Learning

Aplications:

- Games: Go (AlphaGo Zero), Atari, StarCraft...
- Optimization of wind eolic stations.
- Robotics, fraud detection, self-driven cars...

Problems:

- Define rewards: as a human? (Example: AlphaGo)
- Exploration vs Exploitation.
- Real world presents new problems

Domains

Knowledge

AlphaGo becomes the first program to master Go using neural networks and tree search (Jan 2016, Nature)

AlphaGo Zero learns to play completely on its own, without human knowledge (Oct 2017, Nature)

AlphaZero masters three perfect information games using a single algorithm for all games (Dec 2018, Science)

MuZero learns the rules of the game, allowing it to also master environments with unknown dynamics. (Dec 2020, Nature)

https://deepmind.com/blog/article/muzero-mastering-go-chess-shogi-and-atari-without-rules

Why is this interesting for industry?

Have you heard about Digital Twins?

- Virtual replicas of physical objects or systems, created using data collected from sensors and other sources.
- Digital representation of the physical world, used to simulate, monitor, and analyze the behavior and performance of real-world objects and systems.

https://www.nvidia.com/en-us/omniverse/solutions/digital-twins/

Why is this interesting for industry?

Aplications: learn in a virtual environment

https://twitter.com/DeepMind/status/1651897358894919680

"Our agents were trained in simulation and transferred to real robots zero-shot"

"The soccer teacher was trained for 158 hours, equivalent to approximately 580 days of simulated matches."

To know more:

- Official: https://sites.google.com/view/op3-soccer
- Dissemination: https://youtu.be/efw8xuex4ul

https://www.youtube.com/watch?v=tZjQwZNw2po

Neural Networks and Deep Learning

Neural Networks and Deep Learning

What if we could write a program that imitates the structure of the brain?

Images from https://www.freepik.com/vectors/ and https://commons.wikimedia.org/wiki/File:Artificial_neural_network.svg

asimovinstitute.org/neural-network-zoo

Computer Vision

Convolutional Networks (CNN)

Used for Computer Vision, we can see how the image is being "cut up".

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

Image Classification

Image Segmentation

Why is this interesting for industry?

Aplications: real time object identification/linking

Medicine, security, marketing (click on part of video, see the clothes someone is wearing)...

Natural Language Processing

A lot of applications!

- Machine Translation
- Speech Recognition
- Question and Answer Systems
- Sentiment/Emotion Analysis
- Chatbots
- Summarizers
- Paraphrase/Clear Text
- Language Identification
- Text classification
- Social network profiling
- Fake news/spam detection

Generative Artificial Intelligence

Generative AI

New data is created from training data

Text Generation
ChatGPT, Bing, Lambda, Claude...

Image Generation

<u>DALL-E 2</u>, <u>Stable Diffusion</u>,

<u>Midjourney</u>...

Video/Audio/Music Generation

<u>Synthesia</u>, <u>DeepBrain</u>, <u>JukeBox</u>,

<u>VALL-E</u>...

Slide building, email drafter... any application you can dream of!

AI4LABOUR (

Conclusion

Classical Machine Learning

- Supervised Learning: we have correct labels to train with, you need to classify
- Unsupervised Learning: we have no correct labels, but hidden patterns
- Reinforcement Learning
 - We have specific environment, actions and a goal
- Deep Learning
 - Many different architectures and models available
 - o In many fields: Computer Vision, Natural Language Processing... classify, RL, generative...
- Approach depending on (1) problem and (2) resources available
- They can be combined: e.g., ChatGPT is DL+ Human Based RL
- Al will accelerate your work, so get familiar to it, incorporate it to your workflow

Thank you for your attention! Questions, comments...

A Beginner's Guide to Machine Learning and Deep Learning

María Navas-Loro Ontology Engineering Group Universidad Politécnica de Madrid, Spain

