1. Problem

From a very large population, a small sample of measurements was taken.

Please calculate the average absolute deviation using the following formula:

$$\mathsf{AAD} = \frac{\sum |x - \bar{x}|}{n}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$ x-ar{x} $
114	-0.5	0.5
120	5.5	5.5
112	-2.5	2.5
114	-0.5	0.5
119	4.5	4.5
108	-6.5	6.5
======	=======	=======
$\sum x = 687$		$\sum x - \bar{x} = 20$
$\bar{x} = 114.5$		

We are ready for the formula.

$$s = \frac{\sum |x - \bar{x}|}{n}$$

$$=\frac{20}{6}$$

2. Problem

From a very large population, a small sample of measurements was taken.

Please calculate the (Bessel corrected) sample standard deviation using the following formula:

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$(x-\bar{x})^2$
52	3	9
47	-2	4
48	-1	1
50	1	1
48	-1	1
51	2	4
47	-2	4
======	=======	======
$\sum x = 343$ $\bar{x} = 49$		$\sum (x - \bar{x})^2 = 24$

We are ready for the formula.

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$
$$= \sqrt{\frac{24}{7 - 1}}$$
$$= \sqrt{4}$$
$$= \boxed{2}$$