

8 Mbit (512K×16/1Mx8) Asynchronous XRAM

January 2019

Features

- → Asynchronous XRAM Memory
- + High speed access time
 - \Leftrightarrow $t_{AA} = 15 \text{ ns}$
- ★ Low active power
 - \Rightarrow I_{CC} = 55 mA at 80 MHz
- → Low CMOS standby current
 - \Rightarrow I_{SB2} = 20 mA (Typ)
- ♦ Operating voltage range: 2.2 V to 3.6 V
- → Automatic power-down when deselected
- → TTL-compatible inputs and outputs
- ◆ Available in 44-pin TSOP II, 48-pin TSOP I package and 48-ball FBGA package

Selection Guide

Description	Spec	Unit
Maximum access time	15	ns
Maximum operating current	75	mA
Maximum CMOS standby current	35	mΑ

Functional Description

The XRAM is a new memory architecture designed to provide high-density and high-performance RAM at competitive price. The XRAM uses advanced DRAM technology and self-refresh architecture to significantly improve the memory density, performance and also simplify the user interface.

The XM8A51216V33A/XM8A01M08V33A XRAM, which is functionally equivalent to asynchronous SRAM, is a high-performance, 8Mbits CMOS memory organized as 512K words by 16 bits and 1024K words by 8bits that supports an asynchronous SRAM memory interface.

To write to the device, take Chip Enables (CE) and Write Enable (WE) input LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (DQ₀ through DQ₇), is written into the location specified on the address pins (A0 through A18). If Byte High Enable (BHE) is LOW, then data from I/O pins (DQ₈ through DQ₁₅) is written into the location specified on the address pins (A0 through A18). To read from the device, take Chip Enables (CE) and Output Enable (OE) LOW while forcing the Write Enable (WE) HIGH. If Byte Low Enable (BLE) is LOW, then data from the memory location specified by the address pins appears on DQ₀ to DQ₇. If Byte High Enable (BHE) is LOW, then data from memory appears on DQ₈ to DQ₁₅. See the Truth Table on page 8 for a complete description of Read and Write modes.

The input or output pins (DQ₀ through DQ₁₅) are placed in a high impedance state when the device is deselected (CE), the outputs are disabled (OE HIGH), the BHE and BLE are disabled (BHE, BLE HIGH), or during a write operation (CE and WE LOW). A burst mode pin (MODE) defines the order of the burst sequence. When tied HIGH, the interleaved burst sequence is selected. When tied LOW, the linear burst sequence is selected.

Note: Descriptions about BLE and BHE do not apply to XM8A01M08V33A XRAM.

*Products and specifications discussed herein are subject to change by XingMem without notice.

Logic Block Diagram

Figure 1 Logic Block Diagram - XM8A51216V33A

Figure 2 Logic Block Diagram - XM8A01M08V33A

XM8A01M08V33A XM8A51216V33A

Contents

Features	1
Selection Guide	1
Functional Description	1
Logic Block Diagram	2
Pin Configurations	4
Pin Definitions	8
Truth Table	8
Maximum Ratings	9
Operating Range	9
Electrical Characteristics	10
Capacitance	11

AC Test Loads and Waveforms	12
Switching Characteristics	13
Switching Waveforms	14
Switching Waveforms (Continued)	15
Ordering Information	17
Ordering Code Definitions	18
Package Diagrams	19
Acronyms	22
Document Conventions	23
Document Revision History	24

Pin Configurations

Figure 3 XM8A01M08V33A (1M × 8) 44-pin TSOP II pinout

Figure 4 XM8A51216V33A (512K × 16) 44-pin TSOP II pinout

A0 🔲 1	48 🗏 A17
A1 🗆 2	47 🗖 A16
A2 🗆 3	46 🗆 A15
A3 🗆 4	45 🗆 NC
A4 🗆 5	44 🗆 OEn
NC 🗆 6	43 🗆 BHEn
CEn 🗆 7	42 🗆 BLEn
DQ0 🗆 8	41 DQ15
DQ1 🗆 9	40 🗆 DQ14
DQ2 🗆 10	39 🗆 DQ13
DQ3 🗆 11	38 DQ12
VDD 🗆 12	37 □ VSS
VSS 🗆 13	36 UDD
DQ4 🗆 14	35 🗆 DQ11
DQ5 🗆 15	34 DQ10
DQ6 🗆 16	33 DQ9
DQ7 🗆 17	32 □ DQ8
WEn 🗆 18	31 🗆 NC
NC 🗆 19	30 🗆 A18
A5 🗆 20	29 🗆 A14
A6 🗆 21	28 🗆 A13
A7 🗆 22	27 A12
A8 🗆 23	26 A11
A9 = 24	25 A10
	20 7 710

Figure 5 XM8A51216V33A (512K × 16) 48-pin TSOP I pinout

Figure 6 XM8A01M08V33A (1M \times 8) 48-Ball FBGA Single Chip Enable Package Code: BG

Figure 7 XM8A51216V33A (512 x 16) 48-Ball FBGA Single Chip Enable Package Code: BG

Figure 8 XM8A01M08V33A (1M × 8) 48-Ball FBGA Dual Chip Enable Package Code: B2

Figure 9 XM8A51216V33A (512 × 16) 48-Ball FBGA Dual Chip Enable Package Code: B2

Pin Definitions

Name	I/O	Description
V_{DD}	Supply	Power.
Vss	Supply	Ground.
BLEn, BHEn	Input	Byte write enable signal, active LOW.
A0-A19	Input	Address inputs.
CEn, CE1n, CE2	Input	Chip enable signal, active LOW.
OEn	Input	Output enable signal, active LOW.
WEn	Input	Write enable signal, active LOW.
DQ0-DQ15	I/O	Data inputs/outputs.

Note:

For all dual chip enable device, CEn represents the logical combination of CE1n and CE2. When CEn is LOW, CE1n is LOW, CE2 is HIGH. When CEn is HIGH, CE1n is LOW or CE2 is HIGH.

Truth Table

The Truth Table for parts XM8A01M08V33A/XM8A51216V33A is as follows.

Mode	WEn	BLEn	BHEn	CEn	OEn	DQ0-DQ7	DQ8-DQ15
Not Selected	Х	Х	Х	Н	Х	High-Z	High-Z
Output Disabled	Н	Х	Х	L	Н	High-Z	High-Z
Read	Н	L	L	L	L	Data Out	Data Out
Read	Н	L	Н	L	L	High-Z	Data Out
Read	Н	Н	L	L	L	Data Out	High-Z
Write	L	L	L	L	Н	Data In	Data In
Write	L	L	Н	L	Н	Data In	High-Z
Write	L	Н	L	L	Н	High-Z	Data In

Note:

Descriptions about BLEn and BHEn do not apply to XM8A01M08V33A XRAM.

Maximum Ratings

Item	Description
Storage temperature	−65 °C to + 150 °C
Ambient temperature with power applied	−55 °C to + 125 °C
Supply voltage on V _{DD} relative to GND	-0.5 V to + 4.6 V
DC to outputs in tri-state	-0.5 V to V _{DD} + 0.5 V
DC input voltage	-0.5 V to V _{DD} + 0.5 V
Current into outputs (LOW)	20 mA
Static discharge voltage (per MIL-STD-883, method 3015)	>4000 V
Latch-up current	>200 mA

Operating Range

Range	Ambient Temperature	V _{DD} (3.3 V - 2.5 V)
Commercial	0 °C to + 70 °C	V 50/ / 1 100/
Industrial	–40 °C to + 85 °C	V _{DD} – 5% / + 10%

Electrical Characteristics

Over the Operating Range

Davamatav	Description	Test Conditions			1111114		
Parameter	Description	rest C	Min	Тур	Max	Unit	
V _{OH}	Output HIGH Voltage	for 3.3 V I/O I _{OH} = -4.0 mA		2.4	-	-	V
	for 2.5 V I/O	I _{OH} = -1.0 mA	2	-	-	V	
V	Outrot I OW Valtage	for 3.3 V I/O	I _{OL} = 8.0 mA	-	-	0.4	V
VoL	Output LOW Voltage	for 2.5 V I/O	$I_{OL} = 1.0 \text{ mA}$	-	-	0.4	V
Vih	Input HIGH Voltage	for 3.3 V I/O		2	-	$V_{DD} + 0.3$	V
VIH	input riiGri voitage	for 2.5 V I/O		1.7	-	$V_{DD} + 0.3$	V
V _{IL}	Input LOW Voltage	for 3.3 V I/O		-0.3	-	0.8	V
VIL	Input LOVV Voltage	for 2.5 V I/O		-0.3	-	0.7	V
	Input Leakage GND ≤ VI ≤ V _{DD}		V _{DD}	-5	-	5	μΑ
Pull-up Pin Pull-down Pin	Pull-up Pin	Input = Vss		-30	-	-	μA
		Input = V _{DD}		-	-	5	μA
	Input = Vss		-5	-	-	μΑ	
	Pull-down Pin		Input = V _{DD}		-	30	μA
loz	Output Leakage Current	GND ≤ V _I ≤ V _{DD} , output disabled		-5	-	5	μΑ
	Operating Supply	$V_{DD} = Max$, $IOUT = 0$	f = 100MHz	-	60	75	mA
Operating Supply Current	mA, CMOS levels	f = 83.3MHz	-	55	70	mA	
I _{SB1}	Automatic CEn Power-down Current – TTL Inputs	$\begin{aligned} &\text{Max V}_{\text{DD}}, \text{CEn} > \text{V}_{\text{IH}} \\ &\text{V}_{\text{IN}} > \text{V}_{\text{IH}} \text{or} \text{V}_{\text{IN}} < \text{V}_{\text{IL}}, f = \\ &\text{fMAX} \end{aligned}$		-	-	45	mA
I _{SB2}	Automatic CEn Power-down Current – CMOS Inputs	Max V_{DD} , $CEn > V_{DD} - 0.2 V$ $V_{IN} > V_{DD} - 0.2 V$ or $V_{IN} < 0.2$ V, f = 0		-	20	35	mA

Capacitance

Parameter	Description	Test Conditions	Max*	Unit
C _{ADDRESS}	Address input capacitance		6	рF
C _{DATA}	Data input capacitance	T. 05 00 4 4 MHz V	5	рF
C _{CTRL}	Control input capacitance	$T_A = 25 ^{\circ}\text{C}, f = 1 ^{\circ}\text{MHz}, V_{DD}$ = 3.3 V	8	рF
C _{CLK}	Clock input capacitance]= 3.3 V	6	рF
C _{I/O}	Input/output capacitance		5	рF

Note:

These parameters are guaranteed by design and tested by a sample basis only.

AC Test Loads and Waveforms

Parameters	3.0 V	Unit
R1	317	Ω
R2	351	Ω
V_{TH}	1.5	V
V_{HIGH}	3	٧

Figure 10 AC Test Loads and Waveforms

Switching Characteristics

Over the Operating Range

Parameter	Description	1	11	
Parameter Description		Min	Max	Unit
Read Cycle				
tpower	V _{DD} to the first access	1000	-	μs
t _{RC}	Read cycle time	15	-	ns
taa	Address to data valid	-	15	ns
4	Data hold from address	14		
toha	change	14	-	ns
tace	CEn LOW to data valid	-	12	ns
t _{DOE}	OEn LOW to data valid	-	3.4	ns
t _{LZOE}	OEn LOW to low Z	3.1	-	ns
thzoe	OEn HIGH to high Z	-	2.3	ns
tLZCE	CEn LOW to low Z	5.5	-	ns
t _{HZCE}	CEn HIGH to high Z	-	5	ns
tpu	CEn LOW to power-up	-	-	ns
t _{PD}	CEn HIGH to power-down	-	-	ns
t _{DBE}	Byte enable to data valid	-	3.6	ns
t LZBE	Byte enable to low Z	3	-	ns
tнzве	Byte disable to high Z	-	2.5	ns
Write Cycle				
twc	Write cycle time	15	-	ns
tsce	CEn LOW to write end	7	-	ns
t _{AW}	Address setup to write end	8.4	-	ns
t _{HA}	Address hold from write end	0	-	ns
t _{SA}	Address setup to write start	0	-	ns
tpwe	WEn pulse width	0.7	-	ns
t _{SD}	Data setup to write end	0	-	ns
t _{HD}	Data hold from write end	0	-	ns
t LZWE	WEn HIGH to low Z	5.6	-	ns
thzwe	WEn LOW to high Z	-	5	ns
t _{BW}	Byte enable to end of write	0.8	-	ns

Note:

These parameters are guaranteed by design and tested by a sample basis only.

Switching Waveforms

Figure 11 Read Cycle Timing

Figure 12 Address Transition Controlled Read Cycle Timing

Notes:

- 1. The waveform that involves BLEn and BHEn does not apply to XM8A01M08V33A XRAM.
- 2. During the address transition controlled read cycle, CEn is LOW, OEn is LOW, and WEn is in the state of don't care.

Switching Waveforms (Continued)

Figure 13 CEn Controlled Write Cycles

Figure 14 WEn Controlled Write Cycles

Note:

The waveform that involves BLEn and BHEn does not apply to XM8A01M08V33A XRAM.

Figure 15 BLEn/BHEn Controlled Write Cycles

Note:

The waveform that involves BLEn and BHEn does not apply to XM8A01M08V33A XRAM.

Ordering Information

The table below contains only the parts that are currently available. If you don't see what you are looking for, please contact your local sales representative.

Speed (ns)	Ordering Code x 16	Package Type	Operating Range
	XM8A51216V33A15TICT	TSOP I 48 (12 × 18.4 × 1.2mm)	Commercial
	XM8A51216V33A15TIIT	TSOP I 48 (12 × 18.4 × 1.2mm)	Industrial
	XM8A51216V33A15TSCT	TSOP II 44 (10 × 18.4 × 1.2mm)	Commercial
45	XM8A51216V33A15TSIT	TSOP II 44 (10 × 18.4 × 1.2mm)	Industrial
15	XM8A51216V33A15BGCT	FBGA48 (6 × 8 × 1.2mm)	Commercial
	XM8A51216V33A15BGIT	FBGA48 (6 × 8 × 1.2mm)	Industrial
	XM8A51216V33A15B2CT	FBGA48 (6 × 8 × 1.2mm) Dual Chip Enable	Commercial
	XM8A51216V33A15B2IT	FBGA48 (6 × 8 × 1.2mm) Dual Chip Enable	Industrial

Speed (ns)	Ordering Code x 8	Package Type	Operating Range
	XM8A01M08V33A15TSCT	TSOP II 44 (10 × 18.4 × 1.2mm)	Commercial
	XM8A01M08V33A15TSIT	TSOP II 44 (10 × 18.4 × 1.2mm)	Industrial
4=	XM8A01M08V33A15BGCT	FBGA48 (6 × 8 × 1.2mm)	Commercial
15	XM8A01M08V33A15BGIT	FBGA48 (6 × 8 × 1.2mm)	Industrial
	XM8A01M08V33A15B2CT	FBGA48 (6 × 8 × 1.2mm) Dual Chip Enable	Commercial
	XM8A01M08V33A15B2IT	FBGA48 (6 × 8 × 1.2mm) Dual Chip Enable	Industrial

Ordering Code Definitions

Package Diagrams

VARIATIONS (ALL DIMENSIONS SHOWN IN MM)

	SYMBOLS	MIN.	NOM.	MAX		
	A	ı	ı	1.20		
	A1	0.05	_	0.15		
	A2	0.95	1.00	1.05		
	Ф	0.17	0.22	0.27		
	C	0.10	_	0.21		
⚠	D	19.80	20.00	20.20		
⚠	D1	18.30	18.40	18.50		
⚠	E	11.90	12.00	12.10		
	v	C).50 BASI	С		
	لـ	0.50	0.60	0.70		
⚠	L1	ı	0.80	-		
⚠	Υ	-	_	0.10		
⚠	8	0,	_	5 *		

NOTES:

- 1 JEDEC OUTLINE : MO-142 DD
- 2.PROFILE TOLERANCE ZONES FOR D1 AND E D0 NOT INCLUDE MOLD PROTRUSION. ALLOWABLE MOLD PROTRUSION ON E IS 0.15mm PER SIDE AND ON D1 IS 0.25mm PER SIDE.
- 3.DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08mm TOTAL IN EXCESS OF THE 6 DIMENSION AT MAXIMUM MATERIAL CONDITION DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT.

Figure 16 48-pin TSOP I (12 × 18.4 × 1.2mm) Package Outline

02	θ1	θ	~		_	П	D	е	E1	c1	C	Ь1	Ь	A2	A1	Α	JIM.	2							
		0°		0	0.40	11.51	18.21		9.96	0.12	0.12	0.30	0.30	0.95	0.05		MIN.	D							
15° REF	15° REF	3°		0.80 REF	0.50	11.76	18.41	0.80 BSC	10.16	0.127		0.35		1.00	0.10		NOM.	DIMENSION (MM)							
		6	0.075		0.60	12.01	18.61	С	10.36	0.16	0.21	0.40	0.45	1.05	0.15	1.20	MAX.	Z							
		0.		(3	15.7	453	717	(4	392	4.7	4.7	11.8	11.8	37.4	2.0		MIN.								
15° REF								15° RE	3.		31.5 REF	19.7	463	725	31.5 BSC	400	5		14.8		39.4	3.9		NOM.	DIMENSION (MIL)
		ರ್	3	'	23.6	473	733	C	408	6.3	8.3	15.7	17.7	41.3	5.9	47.2	MAX.	ž							

1.Refer to JEDEC STD. MS-024
2.Dimension D and E1 do not include mold protrusion.
Allowable protrusion is 0.25 mm per side.
D and E1 are maximum plastic body size dimension include mold mismatch.
3.Dimension b does not include dambar protrusion.
Allowable dambar protrusion shall not cause the lead width to exceed the maximum b dimension by more than 0.08 mm.
4.All dimensions are in millimeters.

Figure 17 44-pin TSOP II (10 × 18.4 × 1.2mm) Package Outline

Figure 18 48-ball FBGA (6 × 8 × 1.2mm) Package Outline

Acronyms

Acronym	Description	
CMOS	Complementary Metal Oxide Semiconductor	
CE	Chip Enable	
I/O Input/Output		
OE	Output Enable	
XRAM	X-Type Random Access Memory	
SRAM	Static Random Access Memory	
WE	Write Enable	

Document Conventions

Units of Measure

Symbol	Unit of Measure
°C	degree Celsius
MHz	megahertz
μA	microampere
mA	milliampere
mm	millimeter
ms	millisecond
ns	nanosecond
pF	picofarad
V	volt
W	watt

Document Revision History

Date	Version	Changes
June 10, 2019	Rev. A1	New datasheet.