Assignment 1: Data Analytics Laboratory EE4708

Linear Regression

Madhur Jindal | ME18B059

Reading the data into pandas dataframes

```
# Importing the required Libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
plt.style.use('seaborn-whitegrid')
import seaborn as sns
#reading the dataset
dataset = pd.read excel('merged data.xlsx',index col=0)
# Visualizing the data
dataset.head()
  State
                                    AreaName
                                              All Poverty
                                                            M Poverty \
0
             Aleutians East Borough, Alaska
                                                       553
                                                                   334
1
     AK
                                                       499
                                                                   273
         Aleutians West Census Area, Alaska
2
             Anchorage Municipality, Alaska
     AK
                                                     23914
                                                                 10698
3
     AK
                 Bethel Census Area, Alaska
                                                      4364
                                                                  2199
4
     ΑK
                Bristol Bay Borough, Alaska
                                                        69
                                                                    33
                                                    Med Income Black \
   F Poverty
              FIPS
                    Med Income
                                 Med Income White
0
         219
              2013
                        61518.0
                                           72639.0
                                                             31250.0
1
         226
              2016
                        84306.0
                                          97321.0
                                                             93750.0
2
              2020
       13216
                        78326.0
                                          87235.0
                                                             50535.0
3
        2165
              2050
                        51012.0
                                          92647.0
                                                             73661.0
                        79750.0
          36 2060
                                          88000.0
                                                                  NaN
   Med Income Nat Am
                            F Without All With All Without
                                                               fips x \
0
             54750.0
                                  540
                                            1442
                                                         1857
                                                                  2013
1
             48750.0
                                  564
                                            4177
                                                         1333
                                                                  2016
2
             53935.0
                                21393
                                         243173
                                                        44638
                                                                  2020
                       . . .
3
             41594.0
                                 1774
                                          13023
                                                         4482
                                                                  2050
             63333.0
                                             768
                                                          191
                                   67
                                                                 2060
   Incidence_Rate Avg_Ann_Incidence
                                       recent trend fips y
```

```
Mortality Rate
                             3 or fewer
                                                            2013
*
1
                             3 or fewer
                                                            2016
2
              61.5
                                    131
                                                 stable
                                                            2020
47.3
3
              62.7
                                       6
                                                 stable
                                                            2050
58.3
4
                            3 or fewer
                                                            2060
  Avg Ann Deaths
0
                *
1
2
               96
3
                5
4
[5 rows x 25 columns]
```

Preprocessing and Data Cleaning

```
dataset.columns
Index(['State', 'AreaName', 'All Poverty', 'M Poverty', 'F Poverty',
'FIPS',
        Med Income', 'Med_Income_White', 'Med_Income_Black',
       'Med Income_Nat_Am', 'Med_Income_Asian', 'Hispanic', 'M_With',
        'M_Without', 'F_With', 'F_Without', 'All_With', 'All_Without',
'fips_x',
        'Incidence Rate', 'Avg Ann Incidence', 'recent trend',
'fips y',
        'Mortality Rate', 'Avg Ann Deaths'],
      dtype='object')
# Dropping unwanted columns
dataset.drop(['fips_x', 'fips_y'], axis = 1, inplace=True)
dataset.columns
Index(['State', 'AreaName', 'All_Poverty', 'M_Poverty', 'F_Poverty',
'FIPS',
        'Med Income', 'Med_Income_White', 'Med_Income_Black',
       'Med_Income_Nat_Am', 'Med_Income_Asian', 'Hispanic', 'M_With', 'M_Without', 'F_With', 'F_Without', 'All_With', 'All_Without',
       'Incidence_Rate', 'Avg_Ann_Incidence', 'recent_trend',
'Mortality_Rate',
        'Avg Ann Deaths'],
      dtype='object')
```

```
dataset.shape
(3134, 23)
#checking the number of null values in each of the features
dataset.isnull().sum()
State
                         0
                         0
AreaName
All Poverty
                         0
M Poverty
                         0
F Poverty
                         0
FIPS
                         0
Med Income
                         1
Med Income White
                         2
Med Income Black
                      1210
Med Income Nat Am
                      1660
Med Income Asian
                      1757
Hispanic
                       681
M With
                         0
M Without
                         0
F With
                         0
F Without
                         0
All With
                         0
All Without
                         0
Incidence Rate
                         0
Avg Ann Incidence
                         0
recent trend
                         0
Mortality Rate
                         0
Avg Ann Deaths
                         0
dtype: int64
```

We see the columns with Med Income Black, Native american, Asian have too many missing values hence we tend to remove these columns.

```
fin df = dataset.copy()
# Total Mean of the Median income for different communities
fin_df[['Med_Income', 'Med_Income_White', 'Med_Income_Black',
       'Med_Income_Nat_Am', 'Med_Income_Asian', 'Hispanic']].mean()
Med Income
                     46819.837855
Med Income White
                     49490.181992
                     34750.214137
Med Income Black
Med Income Nat Am
                     43309.998643
Med Income Asian
                     65412.969499
Hispanic
                     41118.231553
dtype: float64
```


We can see that the different social group have different mean incomes for different states, hence if we can prove that the median income is a valid factor determining the Avg Ann Incidence or Deaths, then we can also assume that social status would also be a valid factor!

```
State
                    False
AreaName
                    False
All Poverty
                     True
M Poverty
                     True
F Poverty
                    True
FĪPS
                    True
Med Income
                    False
M With
                     True
M Without
                     True
F With
                     True
F_Without
                     True
All With
                    True
All Without
                     True
Incidence Rate
                    False
Avg_Ann_Incidence
                    False
recent trend
                    False
Mortality_Rate
                    False
Avg Ann Deaths
                    False
dtype: bool
```

#this will give us info about the columns that only contain numeric of null values

fin_df.describe()

count mean std min 25% 50% 75% max	All_Poverty 3.134000e+03 1.522966e+04 5.457122e+04 1.000000e+01 1.731250e+03 4.294000e+03 1.034550e+04 1.800265e+06	M_Poverty 3134.000000 6828.800893 24719.078097 5.000000 758.750000 1925.000000 4697.500000 823612.000000	F_Poverty 3134.000000 8400.855775 29865.855831 5.000000 957.000000 2372.000000 5812.500000 976653.000000	FIPS 3134.000000 30426.019145 15124.491165 1001.000000 19001.500000 29180.000000 45080.500000 56045.000000	\
count mean std min 25% 50% 75% max	Med_Income 3133.000000 46819.837855 12246.380184 19328.000000 38826.000000 45075.000000 52224.000000 123453.000000	M_With 3.134000e+03 4.158963e+04 1.293894e+05 3.200000e+01 4.506750e+03 1.040450e+04 2.788775e+04 3.904322e+06	M_Without 3134.000000 6930.955329 28686.089548 4.000000 750.000000 1763.000000 4407.250000 997326.000000	F_With 3.134000e+03 4.487357e+04 1.406455e+05 3.300000e+01 4.657500e+03 1.110800e+04 2.976475e+04 4.230137e+06	\
count mean std min 25%	F_Without 3134.000000 5968.701021 24657.276997 4.000000 633.000000	All_With 3.134000e+03 8.646320e+04 2.699985e+05 6.700000e+01 9.173500e+03	All_Without 3.134000e+03 1.289966e+04 5.331494e+04 8.000000e+00 1.388250e+03		

```
50% 1529.000000 2.144800e+04 3.323500e+03
75% 3834.000000 5.756150e+04 8.240000e+03
max 837175.000000 8.134459e+06 1.834501e+06
```

Thus we can see we have to treat the columns [Incidence_Rate, Avg_Ann_Incidence, recent_trend, Mortality_Rate, Avg_Ann_Deaths] for values that are not numeric.

Here as we can see, all the independent columns are not normalized by population and we also do not have population data, it is better to delete the Mortality rate and Incidence rate columns as these are just the average values normalized by population and hence can be dropped!!

```
fin_df.drop(['Mortality_Rate', 'Incidence_Rate'], axis = 1, inplace =
True)

# checking for other data than numeric.
[i for i in fin_df['Avg_Ann_Incidence'].unique() if type(i)==str]
['3 or fewer', '_', '__']
```

On examining, we can see values with '3 or fewer', _ and '__'

```
[i for i in fin df['recent trend'].unique() if type(i)==str]
['*', 'stable', 'falling', 'rising', ' ', ' ']
[i for i in fin df['Avg Ann Deaths'].unique() if type(i)==str]
['*']
# Checks for the number of datapoints without numeric data
def f_(x):
    strs = []
    for _, i in enumerate(x):
        try:
            pd.to numeric(i)
        except:
            strs.append(i)
    print(pd.Series(strs).value counts())
f (fin df['Avg Ann Deaths'])
     325
dtype: int64
```

We can see 325 datapoints with an asterisk. We can see from the explanation csv that it represents data that has been suppressed due to confidentiality when fewer than 16 cases were reported. So we have two options here, either to delete these row or impute them with the means of each of states they correspond to! But as this data is not a large fraction of the data we can just delete it!!

```
# which states are associated with the "*"
fin_df.loc[fin_df.Avg_Ann_Deaths=='*', 'State'].value_counts()
TX
      56
NE
      37
KS
      36
SD
      31
ND
      30
C0
      24
MT
      21
ID
      15
UT
      12
AK
      11
GA
       8
NM
       7
       5
MN
       5
0K
       5
NV
       3
VA
       3
0R
       3
CA
       2
IA
       2
WA
       2
WY
       1
KY
MO
       1
PA
       1
ΗI
       1
MI
       1
MS
       1
WI
Name: State, dtype: int64
f (fin df['Avg Ann Incidence'])
3 or fewer
               211
               192
                17
dtype: int64
```

Here we convert the '3 or fewer' to 3 and the others to Nan values

```
f_(fin_df['Med_Income'])
Series([], dtype: int64)
C:\Users\hp\Anaconda3\lib\site-packages\ipykernel_launcher.py:9:
DeprecationWarning: The default dtype for empty Series will be
'object' instead of 'float64' in a future version. Specify a dtype
```

```
explicitly to silence this warning.
  if name == ' main ':
# we create a filter to convert the non-numeric data to either numeric
or to replace by NULL
def filter (x):
    try:
        return float(str(x).split(' ')[0])
    except ValueError:
        return float('NaN')
# Using the filter on different columns
fin df['Avg Ann Incidence'] = fin df['Avg Ann Incidence'].map(filter )
fin df['Avg Ann Deaths'] = fin df['Avg Ann Deaths'].map(filter )
fin df['Med Income'] = fin df['Med Income'].map(filter )
print([i for i in fin df['Avg Ann Incidence'].unique() if
type(i)==str])
print([i for i in fin df['Avg_Ann_Deaths'].unique() if type(i)==str])
#print([i for i in fin df['recent trend'].unique() if type(i)==str])
[]
[]
# creating columns with Rising and falling !!
def boo(col, chck):
    if col == chck:
        return 1
    return 0
fin df['Rising'] = fin df['recent trend'].apply(lambda x: boo(x,
'rising'))
fin df['Falling'] = fin_df['recent_trend'].apply(lambda x: boo(x,
'falling'))
fin df.select dtypes(include=np.number)
      All Poverty M Poverty F Poverty
                                          FIPS Med Income M With
M Without \
              553
                         334
                                    219
                                          2013
                                                   61518.0
                                                               876
1317
              499
                         273
                                    226
                                          2016
                                                   84306.0
                                                              2470
769
            23914
                       10698
                                  13216
                                          2020
                                                   78326.0 120747
23245
                                                   51012.0
             4364
                        2199
                                   2165
                                          2050
3
                                                              6396
2708
                                                   79750.0
               69
                          33
                                     36
                                          2060
                                                               419
124
```

3129		5058	2177	2881	56037	69022.0	19891	
3318 3130		1638	1026	612	56039	75325.0	8948	
2558 3131		2845	1453	1392	56041	56569.0	9132	
1413 3132		1137	489	648	56043	47652.0	3349	
691								
3133 454		958	354	604	56045	57738.0	2927	
0 1 2 3 4 3129 3130 3131 3132 3133	F_With 566 1707 122426 6627 349 18600 9555 8711 3490 3087	F_Without 540 564 21393 1774 67 2683 1192 1503 703 314	All_With 1442 4177 243173 13023 768 38491 18503 17843 6839 6014	All_W	ithout 1857 1333 44638 4482 191 6001 3750 2916 1394 768	Avg_Ann_Inc	3.0 3.0 131.0 6.0 3.0 14.0 5.0 6.0 4.0	\
0 1 2 3 4 3129 3130 3131 3132 3133			ising Fall 0 0 0 0 0 0 0 0 0 0 0 0 0	ing 0 0 0 0 0 0 0				
<pre>[3134 rows x 15 columns] #checking for null values post the pre-processing</pre>								
		(). <mark>sum(</mark>)						
State AreaN All_P M_Pov F_Pov FIPS	ame overty erty		9 9 9 9 9					

Med_Income M_With M_Without F_With F_Without All_With All_Without Avg_Ann_Incidence recent_trend Avg_Ann_Deaths Rising Falling dtype: int64	1 0 0 0 0 0 0 209 0 325 0				
<pre>fin_df.head()</pre>					
1 AK Aleutians W2 AK Anchora3 AK Bet	est Census ge Municipa hel Census	AreaName ough, Alaska Area, Alaska lity, Alaska Area, Alaska ough, Alaska	_	553 499 23914 4364 69	M_Poverty \
F_Without \	Med_Income			_	
0 219 2013	61518.0	876	1317	566	540
1 226 2016	84306.0	2470	769	1707	564
2 13216 2020	78326.0	120747	23245	122426	21393
3 2165 2050	51012.0	6396	2708	6627	1774
4 36 2060	79750.0	419	124	349	67
NaN 1 4177 NaN 2 243173 4 96.0 3 13023 5.0 4 768 NaN	hout Avg_A 1857 1333 4638 4482 191	nn_Incidence 3.0 3.0 131.0 6.0 3.0		<pre>stable stable *</pre>	
Rising Falling					

0	0	0
1 2 3 4	0	0
2	0	0
3	0	0
4	0	0

#Checking for mean values for different features, grouped by state
fin_df.groupby(['State']).mean()

Med I	All_Poverty	M_Poverty	F_Poverty	FIPS
State	(
	2978.782609 .565217	1425.260870	1553.521739	2138.217391
AL	13242.686567 .134328	5740.791045	7501.895522	1067.000000
AR	7381.920000 .480000	3303.280000	4078.640000	5075.000000
AZ	78712.666667 .200000	36501.133333	42211.533333	4013.866667
CA	105778.310345 .155172	48712.758621	57065.551724	6058.000000
CO	10218.265625 .187500	4729.312500	5488.953125	8062.234375
CT	45793.875000 .125000	20125.000000	25668.875000	9008.000000
DC	110365.000000	48069.000000	62296.000000	11001.000000
DE	.000000 36105.000000 .666667	15373.000000	20732.000000	10003.000000
FL	47464.313433 .477612	21485.835821	25978.477612	12067.910448
GA	11251.238994 .911950	4968.270440	6282.968553	13161.490566
HI		14142.200000	16646.600000	15005.000000
IA	3776.595960 .121212	1693.616162	2082.979798	19099.000000
ID	5572.204545	2591.636364	2980.568182	16044.000000
IL	.750000 17658.019608 .441176	7873.049020	9784.970588	17102.000000
IN	10630.902174 .402174	4719.782609	5911.119565	18092.000000
KS	3631.933333	1651.476190	1980.457143	20105.000000
KY	.209524 6715.341667	3007.733333	3707.608333	21120.000000
39137 LA	.300000 13879.375000	5932.671875	7946.703125	22064.000000

41411.781250	22007 057142	20405 257142	25014 000000
MA 53493.214286 65974.428571	23007.857143	30485.357143	25014.000000
MD 24033.541667	10270.708333	13762.833333	24044.958333
69200.375000	10270.700555	13/02.03333	24044.930333
ME 11267.375000	5047.500000	6219.875000	23016.000000
46141.750000	5017150000	02231073000	23020100000
MI 19480.361446	8863.554217	10616.807229	26083.000000
44464.987952			
MN 6858.183908	3145.494253	3712.689655	27087.000000
53926.988506			
M0 7964.973913	3553.165217	4411.808696	29117.713043
41755.400000	2420 256000	4515 414624	20002 000000
MS 7945.670732 34938.926829	3430.256098	4515.414634	28082.000000
MT 2689.035714	1246.785714	1442.250000	30056.000000
44497.017857	1240.703714	1442.250000	30030.000000
NC 16674.650000	7399.320000	9275.330000	37100.000000
41784.200000			
ND 1504.867925	669.962264	834.905660	38053.000000
55574.867925			
NE 2485.107527	1088.548387	1396.559140	31093.000000
48646.129032	F107 00000	6277 00000	22010 00000
NH 11384.000000	5107.000000	6277.000000	33010.000000
60648.900000 NJ 44992.714286	19710.857143	25281.857143	34021.000000
73014.095238	19/10.03/143	23201.03/143	34021.000000
NM 13010.939394	6034.939394	6976.000000	35030.151515
40183.666667			
NV 25078.647059	11705.352941	13373.294118	32045.529412
53689.705882			
NY 48482.951613	21388.532258	27094.419355	36062.000000
55275.693548	0004 001010	11105 000707	20000 00000
OH 20179.954545 48446.409091	8994.931818	11185.022727	39088.000000
0K 8104.454545	3612.857143	4491.597403	40077,000000
44097.376623	3012.03/143	4491.597405	40077.000000
OR 17692.972222	8237.222222	9455.750000	41036.000000
45171.222222			
PA 24874.164179	11000.119403	13874.044776	42067.000000
50316.253731			
RI 28844.600000	12603.400000	16241.200000	44005.000000
65783.400000	7040 501700	10000 540470	45046 00000
SC 18063.065217	7840.521739	10222.543478	45046.000000
39756.695652 SD 1652.692308	756.615385	896.076923	46067.430769
47679.738462	120.012302	090.070923	40007.430709
TN 11764.147368	5240.600000	6523.547368	47095.000000
40168.031579	52.0100000	00201011000	000100000

	17608.074803	7883.543307	9724.531496	48254.000000	
46/45. UT	.778656 12124.172414	5646.620690	6477.551724	49029.000000	
_	.034483	3040:020030	04771331724	43023.000000	
VA	6927.651515	3028.363636	3899.287879	51265.848485	
	212121	2212 642057	2721	E0014 000000	
VT 52653	4945.214286 .500000	2213.642857	2731.571429	50014.000000	
WA	23295.179487	10715.025641	12580.153846	53039.000000	
	.076923				
WI FOG 40	10060.388889	4519.638889	5540.750000	55071.097222	
50649. WV	.000000 5879.709091	2635.436364	3244.272727	54055.000000	
	818182	20331430304	32441272727	540551000000	
WY	2825.869565	1255.739130	1570.130435	56023.000000	
57042.	. 304348				
	M With	M Without	F With	F Without	\
State					,
AK	12366.565217	2917.739130	12147.608696	2411.217391	
AL	29389.671642	4678.328358	32530.134328	4294.194030	
AR	16012.226667	2881.893333	17237.906667	2603.880000	
AZ	178389.533333	35436.066667	191685.466667	30056.200000	
CA	269831.241379	52388.275862	287728.534483	43712.500000	
CO	34745.546875	5534.781250	36322.625000	4447.265625	
CT	194827.125000	19867.500000	212544.125000	15086.125000	
DC	276285.000000	22198.000000	323314.000000	14813.000000	
DE	132112.666667	13828.000000	146781.000000	11207.666667	
FL	112310.552239	27464.761194	124417.328358	24393.179104	
GA	24288.446541	5449.440252	26859.364780	5116.691824	
HI	123945.400000	8997.200000	130480.400000	7047.000000	
IA	14020.090909	1243.060606	14529.464646	1006.444444	
ID	15305.886364	2773.363636	15626.613636	2562.863636	
IL	53124.647059	7664.294118	57616.421569	6047.813725	
IN	29740.010870	4733.456522	31571.097826	4270.260870	
KS	11722.238095	1594.009524	12237.314286	1435.695238	
KY	15362.841667	2174.991667	16486.958333	1910.525000	
LA	28475.515625	5594.515625	31249.015625	5339.109375	
MA	218643.642857	10231.071429	237913.857143	6623.428571	
MD	104805.500000	12109.708333	116597.083333	9684.958333	
ME	35496.687500	4614.687500	38427.937500	3637.187500	
MI	51325.879518	6328.108434	55251.277108	5036.240964	
MN	28082.068966	2476.908046	29202.885057	1857.229885	
MO	21828.939130	3295.878261	23439.895652	3021.800000	
MS	14163.085366	2915.890244	15824.743902	2720.536585	
MT	7459.232143	1468.642857	7611.232143	1303.982143	
NC	39094.400000	7360.030000	43500.040000	6541.590000	
ND	6080.886792	679.924528	6035.056604	530.679245	
NE	8726.322581	1086.344086	9035.322581	947.000000	

NH NJ NM NV OH OK OR PA RI SC SD TN TX UT VA VT WA WI WV WY	57839.500000 176838.857143 25007.909091 65350.588235 134038.258065 56197.590909 19749.077922 46073.055556 82057.477612 89317.200000 41092.608696 5532.461538 27868.221053 39586.787402 42691.068966 25542.757576 20227.000000 76236.564103 35358.930556 14296.309091 10802.956522	6636.700000 26562.190476 5452.000000 15792.000000 17297.806452 6936.954545 4244.116883 7253.416667 9146.940299 10941.000000 7752.934783 709.692308 4724.884211 10816.748031 6939.689655 3658.446970 1575.571429 11122.410256 3563.430556 1975.145455 1764.608696	193311.333333 221 26911.939394 47 67480.411765 139 149030.435484 129 60783.000000 56 21039.896104 39 48939.194444 66 89112.880597 73 99037.000000 82 45848.934783 76 5630.861538 66 30850.915789 38 41903.157480 103 43393.172414 61 27926.901515 32 21508.642857 16 79952.794872 96 37140.777778 26 15042.254545 18	68.500000 73.523810 40.333333 47.588235 77.209677 60.829545 07.480519 89.083333 70.582090 90.800000 03.695652 09.646154 97.357895 01.303150 77.206897 127.848485 07.142857 169.102564 164.125000 120.836364 152.869565
	411 Wi+b	All Without	Ava Ann Incidence	Ava Ann Dootha
\ State	All_With	All_Without	Avg_Ann_Incidence	Avg_Ann_Deaths
AK	24514.173913	5328.956522	15.130435	19.833333
AL	61919.805970	8972.522388	59.597015	47.552239
AR	33250.133333	5485.773333	35.733333	28.546667
AZ	370075.000000	65492.266667	252.600000	182.666667
CA	557559.775862	96100.775862	294.396552	231.818182
C0	71068.171875	9982.046875	35.281250	39.075000
CT	407371.250000	34953.625000	332.875000	216.875000
DC	599599.000000	37011.000000	351.000000	240.000000
DE	278893.666667	25035.666667	257.666667	188.333333
FL	236727.880597	51857.940299	245.462687	178.029851
GA	51147.811321	10566.132075	39.823899	29.841060
HI	254425.800000	16044.200000	155.800000	134.250000
IA	28549.555556	2249.505051	24.131313	18.051546

ID	30932.500000	5336.227273	19.500000	20.586207
IL	110741.068627	13712.107843	91.254902	64.990196
IN	61311.108696	9003.717391	57.771739	43.586957
KS	23959.552381	3029.704762	NaN	20.826087
KY	31849.800000	4085.516667	40.083333	29.008403
LA	59724.531250	10933.625000	54.453125	42.500000
MA	456557.500000	16854.500000	358.785714	247.500000
MD	221402.583333	21794.666667	152.458333	114.083333
ME	73924.625000	8251.875000	82.750000	59.750000
MI	106577.156627	11364.349398	95.012048	71.731707
MN	57284.954023	4334.137931	NaN	28.719512
МО	45268.834783	6317.678261	46.243478	34.333333
MS	29987.829268	5636.426829	30.487805	23.975309
MT	15070.464286	2772.625000	13.321429	13.485714
NC	82594.440000	13901.620000	75.580000	54.840000
ND	12115.943396	1210.603774	9.094340	12.000000
NE	17761.645161	2033.344086	13.473118	15.035714
NH	118700.500000	12205.200000	105.600000	73.600000
NJ	370150.190476	48735.714286	280.904762	195.095238
NM	51919.848485	10192.333333	29.424242	27.653846
NV	132831.000000	29739.588235	NaN	108.500000
NY	283068.693548	30275.016129	219.532258	146.677419
ОН	116980.590909	12597.784091	109.670455	84.204545
0K	40788.974026	8151.597403	39.272727	33.791667
0R	95012.250000	13342.500000	74.694444	62.363636
PA	171170.358209	16517.522388	159.074627	116.621212

RI	188354.200000	19231.800000	172.800000	124.600000
SC	86941.543478	14786.630435	81.413043	60.826087
SD	11163.323077	1319.338462	8.969231	10.882353
TN	58719.136842	8622.242105	59.515789	45.873684
TX	81489.944882	21118.051181	51.480315	48.020202
UT	86084.241379	13116.896552	22.241379	24.764706
VA	53469.659091	6886.295455	39.659091	30.387597
VT	41735.642857	2582.714286	37.357143	26.500000
WA	156189.358974	20191.512821	110.282051	84.837838
WI	72499.708333	6227.555556	55.888889	41.732394
WV	29338.563636	3795.981818	36.436364	27.436364
WY	21473.739130	3317.478261	12.739130	10.857143

	Rising	Falling
State	J	3
AK	0.000000	0.000000
AL	0.000000	0.074627
AR	0.000000	0.040000
AZ	0.066667	0.133333
CA	0.000000	0.258621
CO	0.015625	0.062500
CT	0.000000	0.375000
DC	0.000000	0.000000
DE	0.000000	0.000000
FL	0.000000	0.134328
GA	0.000000	0.050314
ΗI	0.000000	0.000000
IA	0.060606	0.030303
ID	0.000000	0.000000
IL	0.009804	0.127451
IN	0.032609	0.032609
KS	0.000000	0.000000
KY	0.016667	0.041667
LA	0.000000	0.031250
MA	0.000000	0.142857
MD	0.041667	0.125000
ME	0.000000	0.000000
MI	0.000000	0.072289

```
MN
       0.000000
                  0.000000
MO
       0.052174
                  0.034783
MS
       0.012195
                  0.048780
MT
       0.035714
                  0.017857
NC
       0.010000
                  0.040000
ND
       0.056604
                  0.037736
NE
       0.010753
                  0.000000
NH
       0.000000
                  0.100000
NJ
       0.000000
                  0.666667
MM
       0.000000
                  0.121212
NV
       0.00000
                  0.000000
NY
       0.032258
                  0.096774
0H
       0.000000
                  0.113636
0K
       0.00000
                  0.038961
0R
       0.000000
                  0.055556
PA
       0.029851
                  0.029851
RI
       0.000000
                  0.000000
SC
       0.043478
                  0.086957
SD
       0.000000
                  0.030769
TN
       0.010526
                  0.063158
TX
       0.007874
                  0.031496
UT
       0.000000
                  0.068966
VA
       0.015152
                  0.106061
VT
       0.000000
                  0.142857
WA
       0.000000
                  0.282051
WI
       0.027778
                  0.055556
WV
       0.018182
                  0.018182
WY
       0.000000
                  0.043478
```

Creating a correlation matrix to check for the correlation between different columns fin df.corr()

	All Poverty	M Poverty	F Poverty	FIPS
Med Income \		_	_	
All_Poverty	1.000000	0.999696	0.999792	-0.059265
$0.1\overline{2}1617$				
M_Poverty	0.999696	1.000000	0.998986	-0.060504
0.120250				
F_Poverty	0.999792	0.998986	1.000000	-0.058212
0.122692				
FIPS	-0.059265	-0.060504	-0.058212	1.000000
0.069289				
Med_Income	0.121617	0.120250	0.122692	0.069289
1.000000				
M_With	0.957627	0.957438	0.957343	-0.057703
0.261679				
M_Without	0.970175	0.971202	0.968879	-0.051458
0.141092				
F_With	0.961131	0.960465	0.961240	-0.057880
_				

0.255890 F_Without	0.95967	71 0.9606	657 0.958 ₄	413 -0.0486	07
0.135189 All_With	0.95958	31 0.9591	.44 0.959	502 -0.0578	03
0.258699 All_Without	0.96583	34 0.9668	343 0.9645	556 -0.0501	67
0.138437 Avg_Ann_Incidence	0.90126	60 0.898G	0.9034	467 -0.0713	99
0.241756 Avg_Ann_Deaths	0.91191	11 0.9094	197 0.9134	188 -0.0608	81
0.235420 Rising	-0.01962	29 -0.0193	341 -0.0198	358 0.0105	95 -
0.010574 Falling 0.145025	0.26997	78 0.2694	147 0.2702	294 -0.0063	30
	M_With	M_Without	F_With	F_Without	All_With
\ All_Poverty	0.957627	0.970175	0.961131	0.959671	0.959581
M_Poverty	0.957438	0.971202	0.960465	0.960657	0.959144
F_Poverty	0.957343	0.968879	0.961240	0.958413	0.959502
FIPS	-0.057703	-0.051458	-0.057880	-0.048607	-0.057803
Med_Income	0.261679	0.141092	0.255890	0.135189	0.258699
M_With	1.000000	0.942191	0.999459	0.928710	0.999853
M_Without	0.942191	1.000000	0.941427	0.997856	0.941920
F_With	0.999459	0.941427	1.000000	0.927356	0.999876
F_Without	0.928710	0.997856	0.927356	1.000000	0.928130
All_With	0.999853	0.941920	0.999876	0.928130	1.000000
All_Without	0.936459	0.999542	0.935421	0.999380	0.936045
Avg_Ann_Incidence	0.949095	0.858194	0.953351	0.842368	0.951440
Avg_Ann_Deaths	0.953423	0.871616	0.957293	0.856068	0.955570
Rising	-0.021823	-0.018979	-0.022058	-0.019055	-0.021948
Falling	0.307680	0.261397	0.307576	0.259156	0.307668
Rising \	All_Withou	ut Avg_Anr	_Incidence	Avg_Ann_D	eaths

All_Poverty 0.019629	0.965834	0.901260	0.911911 -
M_Poverty 0.019341	0.966843	0.898099	0.909497 -
F_Poverty 0.019858	0.964556	0.903467	0.913488 -
FIPS	-0.050167	-0.071399	-0.060881
0.010595 Med_Income 0.010574	0.138437	0.241756	0.235420 -
M_With 0.021823	0.936459	0.949095	0.953423 -
M_Without 0.018979	0.999542	0.858194	0.871616 -
F_With 0.022058	0.935421	0.953351	0.957293 -
F_Without 0.019055	0.999380	0.842368	0.856068 -
All_With 0.021948	0.936045	0.951440	0.955570 -
All_Without 0.019024	1.000000	0.851338	0.864893 -
Avg_Ann_Incidence 0.027694	0.851338	1.000000	0.997726 -
Avg_Ann_Deaths 0.028952	0.864893	0.997726	1.000000 -
Rising 1.000000	-0.019024	-0.027694	-0.028952
Falling 0.030629	0.260500	0.314654	0.306145 -
	Falling		
All_Poverty M_Poverty F Poverty	0.269978 0.269447 0.270294		
FIPS Med Income	-0.006330 0.145025		
M_With M Without	0.307680 0.261397		
F_With F Without	0.307576 0.259156		
All_With	0.307668		
All_Without Avg_Ann_Incidence Avg_Ann_Deaths	0.260500 0.314654 0.306145		
Rising Falling	-0.030629 1.000000		
# Using the descri	ihe method for t	he dataframo	

Using the describe method for the dataframe
fin_df.describe()

```
All Poverty
                          M Poverty
                                          F Poverty
                                                               FIPS
       3.134000e+03
                        3134.000000
                                        3134.000000
                                                       3134.000000
count
       1.522966e+04
                        6828.800893
                                        8400.855775
                                                      30426.019145
mean
       5.457122e+04
                       24719.078097
                                       29865.855831
                                                      15124.491165
std
min
       1.000000e+01
                           5.000000
                                           5.000000
                                                       1001.000000
25%
                                         957.000000
                                                      19001.500000
       1.731250e+03
                         758.750000
50%
       4.294000e+03
                        1925.000000
                                        2372.000000
                                                      29180.000000
75%
                        4697.500000
                                        5812.500000
                                                      45080.500000
       1.034550e+04
       1.800265e+06
                                                      56045.000000
max
                      823612.000000
                                      976653.000000
          Med Income
                              M With
                                          M Without
                                                             F With
                       3.134000e+03
         3133.000000
                                        3134.000000
                                                      3.134000e+03
count
mean
        46819.837855
                       4.158963e+04
                                        6930.955329
                                                      4.487357e+04
        12246.380184
                                       28686.089548
                                                      1.406455e+05
std
                       1.293894e+05
min
        19328.000000
                       3.200000e+01
                                           4.000000
                                                      3.300000e+01
25%
        38826.000000
                                         750.000000
                       4.506750e+03
                                                      4.657500e+03
50%
        45075.000000
                       1.040450e+04
                                        1763.000000
                                                      1.110800e+04
75%
        52224.000000
                       2.788775e+04
                                        4407.250000
                                                      2.976475e+04
       123453.000000
                       3.904322e+06
                                      997326.000000
                                                      4.230137e+06
max
           F Without
                           All With
                                       All Without
                                                     Avg Ann Incidence
         3134.000000
                       3.134000e+03
                                      3.134000e+03
                                                           2925.000000
count
         5968.701021
                       8.646320e+04
                                      1.289966e+04
                                                              71.079316
mean
        24657.276997
                                      5.331494e+04
std
                       2.699985e+05
                                                            172.803924
min
            4.000000
                       6.700000e+01
                                      8.000000e+00
                                                               3.000000
25%
          633.000000
                       9.173500e+03
                                      1.388250e+03
                                                              11.000000
50%
         1529.000000
                       2.144800e+04
                                      3.323500e+03
                                                              25.000000
75%
         3834.000000
                       5.756150e+04
                                      8.240000e+03
                                                              60.000000
       837175.000000
                       8.134459e+06
                                      1.834501e+06
                                                           3701.000000
max
       Avg Ann Deaths
                              Rising
                                          Falling
                                      3134.000000
          2809.000000
                        3134.000000
count
            55.822357
                           0.013720
                                         0.063178
mean
std
           127.709719
                           0.116347
                                         0.243322
              3.000000
                           0.00000
                                         0.000000
min
25%
            10.000000
                           0.00000
                                         0.000000
50%
            21.000000
                           0.000000
                                         0.000000
75%
            48.000000
                           0.000000
                                         0.000000
          2876.000000
                           1.000000
                                         1.000000
max
#Converting the Median Income column to numeric type
fin df['Med Income'] = pd.to numeric(fin df.Med Income)
# Checks what all columns in the dataframe contain only numeric values
fin df.apply(lambda s: pd.to numeric(s,
errors='coerce').notnull().all())
State
                      False
AreaName
                      False
                       True
All Poverty
```

```
M Poverty
                      True
F Poverty
                      True
FIPS
                      True
Med Income
                     False
M With
                      True
M Without
                      True
                      True
F With
F Without
                      True
All With
                      True
                      True
All Without
Avg Ann Incidence
                     False
recent_trend
                     False
Avg_Ann Deaths
                     False
Rising
                      True
Falling
                      True
dtype: bool
```

We wont be doing anything with the null values we have created as out library Statsmodels can handle missing data!

Visualization

```
# Scatter plot Avg_Ann_Incidence vs Avg_Ann_Deaths
fin_df.plot(x = 'Avg_Ann_Incidence', y = 'Avg_Ann_Deaths', kind=
'scatter', s=0.1, xlim=[0, 600], ylim=[0, 600], title = 'Scatter
Plot')

*c* argument looks like a single numeric RGB or RGBA sequence, which
should be avoided as value-mapping will have precedence in case its
length matches with *x* & *y*. Please use the *color* keyword-
argument or provide a 2D array with a single row if you intend to
specify the same RGB or RGBA value for all points.

<AxesSubplot:title={'center':'Scatter Plot'},
xlabel='Avg_Ann_Incidence', ylabel='Avg_Ann_Deaths'>
```



```
# Pairplot
sns.set(style='whitegrid', context='notebook')
sns.pairplot(fin_df[['All_Poverty', 'M_Poverty', 'F_Poverty',
'Med_Income']], height=2)
<seaborn.axisgrid.PairGrid at 0x1b2f47ab688>
```


We see that the columns All_Poverty, M and F poverty are very correlated and hence we need to drop two from these !!


```
# Scatter Plot
def visualize scatter pov(col):
    fig1 = plt.figure(figsize = (14, 10))
    ax3 = fig1.add subplot(223)
    fin df.plot(x = 'Avg Ann Deaths', y = col, kind= 'scatter', s=0.1,
x\lim = [0, 200], y\lim = [0, 40000], ax = ax3)
    ax4 = fig1.add subplot(224)
    fin df.plot(x = 'Avg Ann Incidence', y = col, kind= 'scatter',
s=0.1, xlim = [0, 200], ylim = [0, 40000], ax = ax4)
visualize scatter pov('All Poverty')
*c* argument looks like a single numeric RGB or RGBA sequence, which
should be avoided as value-mapping will have precedence in case its
length matches with *x* & *y*. Please use the *color* keyword-
argument or provide a 2D array with a single row if you intend to
specify the same RGB or RGBA value for all points.
*c* argument looks like a single numeric RGB or RGBA sequence, which
should be avoided as value-mapping will have precedence in case its
length matches with *x* & *y*. Please use the *color* keyword-
```

argument or provide a 2D array with a single row if you intend to specify the same RGB or RGBA value for all points.


```
def visualize scatter inc(col):
    fig1 = plt.figure(figsize = (14, 10))
    ax3 = fig1.add subplot(223)
    fin_df.plot(x = 'Avg_Ann_Deaths', y = col, kind= 'scatter',xlim =
[0, 200], ylim = [0, 100000], s=0.1, ax = ax3)
    ax4 = fig1.add subplot(224)
    fin df.plot(x = 'Avg Ann Incidence', y = col, kind= 'scatter',
s=0.1,x\lim = [0, 200], y\lim = [0, 100000], ax = ax4)
visualize scatter inc('Med Income')
*c* argument looks like a single numeric RGB or RGBA sequence, which
should be avoided as value-mapping will have precedence in case its
length matches with *x* & *y*. Please use the *color* keyword-
argument or provide a 2D array with a single row if you intend to
specify the same RGB or RGBA value for all points.
*c* argument looks like a single numeric RGB or RGBA sequence, which
should be avoided as value-mapping will have precedence in case its
length matches with *x* & *y*. Please use the *color* keyword-
argument or provide a 2D array with a single row if you intend to
specify the same RGB or RGBA value for all points.
```



```
def visualize scatter with(col):
    fig1 = plt.figure(figsize = (14, 10))
    ax3 = fig1.add subplot(223)
    fin_df.plot(x = 'Avg_Ann_Deaths', y = col, kind= 'scatter',xlim =
[0, 100], ylim = [0, 100000], s=0.1, ax = ax3)
    ax4 = fig1.add subplot(224)
    fin df.plot(x = 'Avg Ann Incidence', y = col, kind= 'scatter',
s=0.1,x\lim = [0, 100], y\lim = [0, 100000], ax = ax4)
visualize scatter with('All With')
*c* argument looks like a single numeric RGB or RGBA seguence, which
should be avoided as value-mapping will have precedence in case its
length matches with *x* & *y*. Please use the *color* keyword-
argument or provide a 2D array with a single row if you intend to
specify the same RGB or RGBA value for all points.
*c* argument looks like a single numeric RGB or RGBA sequence, which
should be avoided as value-mapping will have precedence in case its
length matches with *x* & *y*. Please use the *color* keyword-
argument or provide a 2D array with a single row if you intend to
specify the same RGB or RGBA value for all points.
```



```
def visualize scatter without(col):
    fig1 = plt.figure(figsize = (14, 10))
    ax3 = fig1.add subplot(223)
    fin df.plot(x = 'Avg Ann Deaths', y = col, kind= 'scatter',xlim = 'scatter',xlim')
[0, 100], ylim = [0, 20000], s=0.1, ax = ax3)
    ax4 = fig1.add subplot(224)
    fin df.plot(x = 'Avg Ann Incidence', y = col, kind= 'scatter',
s=0.1, xlim = [0, 100], ylim = [0, 20000], ax = ax4)
visualize scatter without('All Without')
*c* argument looks like a single numeric RGB or RGBA sequence, which
should be avoided as value-mapping will have precedence in case its
length matches with *x* & *y*. Please use the *color* keyword-
argument or provide a 2D array with a single row if you intend to
specify the same RGB or RGBA value for all points.
*c* argument looks like a single numeric RGB or RGBA sequence, which
should be avoided as value-mapping will have precedence in case its
length matches with *x* & *y*. Please use the *color* keyword-
argument or provide a 2D array with a single row if you intend to
specify the same RGB or RGBA value for all points.
```


Statistical Linear Regression Modelling using Statsmodel Library

Unlike SKLearn, statsmodels doesn't automatically fit a constant, so you need to use the method sm.add_constant(X) in order to add a constant. Adding a constant, while not necessary, makes your line fit much better. For example, if you have a line with an intercept of -2000 and you try to fit the same line through the origin, you're going to get an inferior line. Once we add a constant (or an intercept if you're thinking in line terms), you'll see that the coefficients are the same in SKLearn and statsmodels.

```
Index(['State', 'AreaName', 'All_Poverty', 'FIPS', 'Med_Income',
'All With',
       'All Without', 'Avg Ann Incidence', 'recent trend',
dtype='object')
res = ''
for i in fin df.columns:
    res += str(i) + ' + '
print(res)
State + AreaName + All Poverty + FIPS + Med Income + All With +
All Without + Avg Ann Incidence + recent trend + Avg Ann Deaths +
Rising + Falling +
import statsmodels.formula.api as smf
# Using statmodels library for Linear Regression Modelling
model1 = smf.ols(formula='Avg Ann Incidence ~ All Poverty + Med Income
+ All_With + All_Without + Rising + Falling', data=fin_df).fit()
print(model1.summary())
                           OLS Regression Results
Dep. Variable:
                   Avg Ann Incidence R-squared:
0.922
Model:
                                 OLS Adj. R-squared:
0.921
Method:
                       Least Squares F-statistic:
5707.
                    Mon, 06 Dec 2021 Prob (F-statistic):
Date:
0.00
Time:
                            23:09:39 Log-Likelihood:
-15493.
No. Observations:
                                2924
                                      AIC:
3.100e+04
Df Residuals:
                                2917
                                      BIC:
3.104e+04
Df Model:
                                   6
Covariance Type:
                           nonrobust
=======
                 coef std err t P>|t| [0.025]
0.9751
```

Intercept	36.8125	3.931	9.365	0.000	29.105
44.520					
All_Poverty	0.0005	8.38e-05	6.497	0.000	0.000
0.001					
Med_Income	-0.0005	8.48e-05	-5.914	0.000	-0.001
-0.000					
All_With	0.0008	1.36e-05	55.181	0.000	0.001
0.001					
All_Without	-0.0014	6.39e-05	-22.047	0.000	-0.002
$-0.\overline{001}$					
Rising	-6.5225	7.452	-0.875	0.381	-21.134
8.089					
Falling	11.5051	3.775	3.047	0.002	4.102
18.908					
=======					
Omnibus:		1643.83	37 Durbin-	Watson:	
1.614					
<pre>Prob(Omnibus)</pre>	•	0.00	00 Jarque-	Bera (JB):	
599626.270				, ,	
Skew:		1.40	96 Prob(JB):	
0.00				,	
Kurtosis:		73.09	98 Cond. N	0.	
2.50e+06					
=============	========	:========	========	========	
=======					
Notes:					
[1] Standard I	Errors assu	me that the	covariance	matrix of t	he errors is
correctly specified.					
[2] The condition number is large, 2.5e+06. This might indicate that					

[2] The condition number is large, 2.5e+06. This might indicate that there are

strong multicollinearity or other numerical problems.

Fitting to Average Deaths

model2 = smf.ols(formula='Avg_Ann_Deaths ~ All_Poverty + Med_Income +
All_With + All_Without + Rising + Falling', data=fin_df).fit()
print(model2.summary())

OLS Regression Results

======

Dep. Variable: Avg_Ann_Deaths R-squared:

0.925

Model: OLS Adj. R-squared:

0.924

Method: Least Squares F-statistic:

5728.

Date: Mon, 06 Dec 2021 Prob (F-statistic):

0.00					
0.00 Time:		23:09:39) log-lik	elihood:	
-13977.		25.09.53	LOG-LIN	ecinoda.	
No. Observation	ons:	2809	AIC:		
2.797e+04					
Df Residuals:		2802	BIC:		
2.801e+04					
Df Model:		6	5		
Covariance Typ	oe:	nonrobust			
=======	_			5 1.1	
0 0751	coef	std err	t	P> t	[0.025
0.975]					
Intercept	32.1884	2.948	10.919	0.000	26.408
37.969					
All_Poverty	0.0004	6.07e-05	7.192	0.000	0.000
0.001	0.0004	6 25 25	6 070	0.000	0.001
Med_Income -0.000	-0.0004	6.35e-05	-6.973	0.000	-0.001
All With	0.0005	9.89e-06	51.334	0.000	0.000
0.001	0.0005	3.030 00	311331	0.000	0.000
All_Without	-0.0009	4.58e-05	-18.761	0.000	-0.001
$-0.\overline{0}01$					
Rising	-6.4509	5.664	-1.139	0.255	-17.557
4.655	0 1574	2.736	2.982	0 002	2 702
Falling 13.522	8.1574	2.730	2.982	0.003	2.793
===========	========	.========	.=======	=========	========
======					
Omnibus:		1667.512	2 Durbin-	Watson:	
1.612			_		
Prob(Omnibus)	:	0.000) Jarque-	Bera (JB):	
293161.245 Skew:		1.752	Prob(JB	١.	
0.00		1.732	. FIOD(JD) •	
Kurtosis:		52.925	Cond. N	0.	
2.65e+06					
=========					
======					
Natas					
Notes: [1] Standard Errors assume that the covariance matrix of the errors is					
correctly spec		and that the t	.ovar Tarice	macrix or cr	IC C11013 13
[2] The condition		is large, 2.	65e+06. Th	is might ind	dicate that
there are		_		_	
strong multico	ollinearity	or other num	nerical pro	blems.	

Multicollinearity

```
# Importing VIF to check for multicollinearity
from statsmodels.stats.outliers influence import
variance inflation factor
X = fin_df[[ 'All_Poverty', 'Med_Income', 'All With', 'All Without',
'Rising', 'Falling', 'Avg Ann Incidence']]
X.columns
Index(['All Poverty', 'Med Income', 'All With', 'All Without',
'Rising',
        Falling', 'Avg Ann Incidence'],
      dtype='object')
X.dropna(inplace=True)
C:\Users\hp\Anaconda3\lib\site-packages\pandas\util\
decorators.py:311: SettingWithCopyWarning:
\overline{\mathsf{A}} value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation:
https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#
returning-a-view-versus-a-copy
  return func(*args, **kwargs)
X1 = X[['All Poverty', 'Med Income', 'All With', 'All Without',
'Rising',
       'Falling']]
# Getting the VIFs corresponding to each of the features and then
treating the one with the highest value
pd.DataFrame([[var, variance inflation factor(X1.values,
X1.columns.get loc(var))] for var in X1.columns],
                   index=range(X1.shape[1]), columns=['Variable',
'VIF'1)
      Variable
                      VIF
0
   All Poverty 25.654166
1
    Med Income 1.271954
2
      All_With 15.627624
3 All Without 16.031002
                1.015347
4
        Rising
5
       Falling 1.201154
```

We can see that the model suffers from high multicollinearity as the VIF is high for the variable and thus might lead to coefficients that are statistically insignificant!!

```
X.drop('All_Poverty', axis = 1, inplace=True)
X1.drop('All_Poverty', axis = 1, inplace=True)
```

```
C:\Users\hp\Anaconda3\lib\site-packages\pandas\core\frame.py:4913:
SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation:
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#
returning-a-view-versus-a-copy
  errors=errors,
pd.DataFrame([[var, variance inflation factor(X1.values,
X1.columns.get loc(var))] for var in X1.columns],
                   index=range(X1.shape[1]), columns=['Variable',
'VIF'])
     Variable
                     VIF
    Med Income 1.265045
0
1
     All With 9.776656
2 All Without 8.926300
3
        Rising 1.015175
       Falling 1.199055
X.drop('All_Without', axis = 1, inplace=True)
X1.drop('All Without', axis = 1, inplace=True)
C:\Users\hp\Anaconda3\lib\site-packages\pandas\core\frame.py:4913:
SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation:
https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#
returning-a-view-versus-a-copy
  errors=errors,
pd.DataFrame([[var, variance inflation factor(X1.values,
X1.columns.get loc(var))] for var in X1.columns],
                   index=range(X1.shape[1]), columns=['Variable',
'VIF'])
     Variable
                    VIF
0
  Med Income 1.207631
1
     All With 1.257105
2
       Rising 1.015051
      Falling 1.193283
# Final model after treating for multicollinearity
model1 = smf.ols(formula='Avg Ann Incidence ~Med Income + All With +
Rising + Falling', data=fin df).fit()
print(model1.summary())
                            OLS Regression Results
```

	=======					
 Dep. Variable 0.906	e: Avg	_Ann_Inciden	ce	R-squ	ared:	
Model:		0	LS	Adj.	R-squared:	
0.906						
Method:		Least Squar	es	F-sta	tistic:	
7020.					,_	
Date:	Mo	n, 06 Dec 20	21	Prob	(F-statistic)	:
0.00 Timo:		22.00.	20	log l	ikalihaad.	
Time: -15759.		23:09:	39	LOG-L	ikelihood:	
No. Observati	ons:	29	24	AIC:		
3.153e+04				7.20.		
Df Residuals:		29	19	BIC:		
3.156e+04						
Df Model:			4			
Covariance Ty	(DO I	nonrobu	c+			
covarizance ry	PCI	110111 000	<i>-</i> -			
====== 0.975]	coef	std err		t	P> t	[0.025
0.9/J] 						
Intercept	24.4731	3.875	6.	. 315	0.000	16.874
32.072						
Med_Income	-0.0002	8.23e-05	-1.	. 898	0.058	-0.000
5.17e-06	0.0006	3.84e-06	15/	222	0.000	0 001
All_With 0.001	0.0000	3.84e-00	154.	. 332	0.000	0.001
Rising	-6.8821	8.159	-0.	.844	0.399	-22.879
9.115	0.0021	0.133			0.555	221075
Falling	16.1143	4.122	3.	. 909	0.000	8.032
24.196 ========		.=======	=====		=========	
======						
Omnibus:		1260.3	65	Durbi	n-Watson:	
1.646 Prob(Omnibus)		0.0	00	largu	e-Bera (JB):	
1570186.457	•	0.0	00	Jarqu	e-bela (Jb).	
Skew:		0.3	70	Prob(JB):	
0.00				(,	
Kurtosis:		116.5	23	Cond.	No.	
2.42e+06						
Notes:						
NO CES.						

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.42e+06. This might indicate that there are strong multicollinearity or other numerical problems.

Detecting Outliers

```
fin df.columns
Index(['State', 'AreaName', 'All_Poverty', 'FIPS', 'Med_Income',
'All With',
       'All Without', 'Avg Ann Incidence', 'recent trend',
dtype='object')
fin df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 3134 entries, 0 to 3133
Data columns (total 12 columns):
 #
                       Non-Null Count
     Column
                                       Dtype
- - -
 0
     State
                       3134 non-null
                                       object
 1
                       3134 non-null
     AreaName
                                       object
 2
    All Poverty
                       3134 non-null
                                       int64
 3
    FIPS
                       3134 non-null
                                       int64
 4
    Med Income
                       3133 non-null
                                      float64
                       3134 non-null
 5
    All With
                                       int64
 6
    All Without
                       3134 non-null
                                       int64
 7
    Avg_Ann_Incidence 2925 non-null
                                       float64
 8
    recent trend
                       3134 non-null
                                       object
 9
                       2809 non-null
    Avg Ann Deaths
                                       float64
 10 Rising
                       3134 non-null
                                       int64
    Falling
                       3134 non-null
                                       int64
dtypes: float64(3), int64(6), object(3)
memory usage: 382.8+ KB
data mod1 = fin df.copy()
#using IOR method
dat = data mod1['Med Income']
Q1 = dat.quantile(0.25)
Q3 = dat.quantile(0.75)
IOR = 03 - 01
              #IQR is interquartile range.
filter = (dat >= Q1 - 3 * IQR) & (dat <= Q3 + 3 * IQR)
data mod1 = data mod1.loc[filter]
print(data mod1.shape)
```

```
(3112, 12)
# Boxplot for the initial data
ax = sns.boxplot(data=fin_df, orient="h", palette="Set2")
```



```
# Fitting to Average Deaths
model2 = smf.ols(formula='Avg Ann Deaths ~ All Poverty + Med Income +
All With + All Without + Rising + Falling', data=data mod1).fit()
print(model2.summary())
                            OLS Regression Results
Dep. Variable:
                       Avg_Ann_Deaths
                                        R-squared:
0.928
                                        Adj. R-squared:
Model:
                                  0LS
0.927
Method:
                        Least Squares F-statistic:
5933.
Date:
                     Mon, 06 Dec 2021 Prob (F-statistic):
0.00
Time:
                             23:09:40
                                      Log-Likelihood:
-13809.
No. Observations:
                                 2788
                                        AIC:
2.763e+04
Df Residuals:
                                        BIC:
                                 2781
2.767e+04
Df Model:
                                    6
```

Covariance Ty	pe:	nonrobust					
0.975]	coef	std err	t	P> t	[0.025		
Intercept	30.6782	3.056	10.040	0.000	24.687		
36.670 All_Poverty 0.000	0.0003	6.18e-05	4.587	0.000	0.000		
Med_Income -0.000	-0.0004	6.63e-05	-6.240	0.000	-0.001		
All_With	0.0005	1.03e-05	52.225	0.000	0.001		
All_Without	-0.0008	4.49e-05	-18.758	0.000	-0.001		
Rising 4.360	-6.4949	5.536	-1.173	0.241	-17.349		
Falling 12.623	7.2932	2.718	2.683	0.007	1.964		
Omnibus: 1.606	1.606 Prob(Omnibus): 0.000 Jarque-Bera (JB): 313764.257 Skew: 1.992 Prob(JB): 9.00 Kurtosis: 54.818 Cond. No.						
Notes: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. [2] The condition number is large, 2.62e+06. This might indicate that there are strong multicollinearity or other numerical problems. data_mod1 = fin_df.copy() for i in ['All_Poverty', 'Med_Income', 'All_With', 'All_Without', 'Rising', 'Falling']: #using IQR method dat = data_mod1[i] Q1 = dat.quantile(0.25) Q3 = dat.quantile(0.75)							

```
IQR = Q3 - Q1  #IQR is interquartile range.

filter = (dat >= Q1 - 3 * IQR) & (dat <= Q3 + 3 *IQR)
  data_mod1 = data_mod1.loc[filter]
  print(data_mod1.shape)

(2563, 12)
(2563, 12)
(2559, 12)
(2553, 12)
(2553, 12)
(2455, 12)

# Boxplot for the filtered data
ax = sns.boxplot(data=data_mod1[['All_Poverty', 'Med_Income', 'All_With', 'All_Without', 'Rising', 'Falling']], orient="h", palette="Set2")</pre>
```



```
fin_df = data_mod1
# Fitting to Average Deaths
model1 = smf.ols(formula='Avg_Ann_Deaths ~ All_Poverty + Med_Income +
All_With + All_Without + Rising + Falling', data=data_mod1).fit()
```

Normality of Errors

```
# histogram superimposed by normal curve
plt.figure(figsize=(10,6))
```

```
import scipy.stats as stats
mu = np.mean(model1.resid)
sigma = np.std(model1.resid)
pdf = stats.norm.pdf(sorted(model1.resid), mu, sigma)
pdf2 = stats.t.pdf(sorted(model1.resid), df = 1, loc = mu,
scale=sigma,)
plt.xlabel('x')
plt.ylabel('Probability Density')
plt.hist(model1.resid, bins=100, density= True)
plt.plot(sorted(model1.resid), pdf, color='r', linewidth=2, label =
'Gaussian')
plt.plot(sorted(model1.resid), pdf2, color='g', linewidth=2, label =
't distribution')
plt.legend()
plt.show()
```



```
import statsmodels.graphics.gofplots as sm

# QQplot
fig, [ax1, ax2] = plt.subplots(1,2, figsize=(10,3))
sm.qqplot(model1.resid, stats.norm, fit=True, line='45', ax=ax1)
ax1.set_title("normal distribution")
sm.qqplot(model1.resid, stats.t, fit=True, line='45', ax = ax2)
ax2.set_title("t distribution")
plt.show()
```


As we can see that the QQ plot for the normal distribution is not close to the straight line at the ends and it deviates to the top at the right and to the bottom at the left, we can say that the tails for the residuals are heavier than a normal distribution, hence on following that I tried using a t distribution, which gives a much better QQ plot and hence we can confirm that the residuals come from the t distribution!! Fatter tails suggest we have more number of outliers!

```
result = model1

# plot actual values versus residuals
plt.figure(figsize=(14,7))
plt.title('Scatter plot of Residuals vs Fitted Values')
plt.scatter(y=result.resid, x=result.fittedvalues, alpha=0.5, s=22)
plt.axhline(y=0, color='r', linestyle="--", alpha=0.5)
plt.xlabel("Fitted Values")
plt.ylabel("Residuals")
plt.xlim(-10, 100)
plt.ylim(-200, 200)
plt.show()
```


We can see a cone shaped residual plot which is common in cases of heteroscadasticity wherein when the fitted value increases, the variance also increases. Hence our model suffers from high heteroscadasticity.

Heteroscedasticity is a systematic change in the spread of the residuals over the range of measured values. Heteroscedasticity is a problem because ordinary least squares (OLS) regression assumes that all residuals are drawn from a population that has a constant variance (homoscedasticity). Heteroscedasticity, also spelled heteroskedasticity, occurs more often in datasets that have a large range between the largest and smallest observed values. While there are numerous reasons why heteroscedasticity can exist, a common explanation is that the error variance changes proportionally with a factor. This factor might be a variable in the model.

While heteroscedasticity does not cause bias in the coefficient estimates, it does make them less precise. Lower precision increases the likelihood that the coefficient estimates are further from the correct population value. Heteroscedasticity tends to produce p-values that are smaller than they should be. This effect occurs because heteroscedasticity increases the variance of the coefficient estimates but the OLS procedure does not detect this increase. Consequently, OLS calculates the t-values and F-values using an underestimated amount of variance. This problem can lead you to conclude that a model term is statistically significant when it is actually not significant.

```
# Importing the required Libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
plt.style.use('seaborn-whitegrid')
import seaborn as sns
# Reading the data
df = pd.read csv('train.csv')
df test = pd.read csv('test.csv')
df.head()
   PassengerId
                Survived
                          Pclass \
0
             1
             2
                               1
1
                       1
2
             3
                       1
                                3
3
             4
                       1
                                1
4
             5
                       0
                                3
                                                 Name
                                                          Sex
                                                                Age
SibSp \
                             Braund, Mr. Owen Harris
                                                         male 22.0
1
1
   Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0
1
2
                              Heikkinen, Miss. Laina female 26.0
0
3
        Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0
1
4
                            Allen, Mr. William Henry
                                                         male 35.0
0
   Parch
                    Ticket
                                Fare Cabin Embarked
0
       0
                 A/5 21171
                             7.2500
                                       NaN
                                                  S
                                                  C
1
       0
                  PC 17599
                                       C85
                           71.2833
2
       0
                                                  S
         STON/02. 3101282
                             7.9250
                                       NaN
                                                  S
3
       0
                    113803
                            53.1000
                                     C123
                                                  S
4
       0
                    373450
                             8.0500
                                       NaN
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
#
     Column
                  Non-Null Count
                                  Dtype
 0
     PassengerId 891 non-null
                                  int64
```

```
1
     Survived
                   891 non-null
                                   int64
 2
                                   int64
     Pclass
                   891 non-null
 3
     Name
                   891 non-null
                                   object
 4
     Sex
                   891 non-null
                                   object
 5
     Age
                   714 non-null
                                   float64
                   891 non-null
 6
     SibSp
                                   int64
 7
                   891 non-null
                                   int64
     Parch
 8
     Ticket
                   891 non-null
                                   object
 9
     Fare
                   891 non-null
                                   float64
10
     Cabin
                   204 non-null
                                   object
 11
     Embarked
                  889 non-null
                                   object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB
df.describe().transpose()
             count
                                         std
                                               min
                                                         25%
                                                                    50%
                           mean
75% \
PassengerId
             891.0
                    446.000000
                                 257.353842
                                              1.00 223.5000
                                                               446.0000
668.5
Survived
             891.0
                       0.383838
                                   0.486592 0.00
                                                      0.0000
                                                                 0.0000
1.0
Pclass
             891.0
                       2.308642
                                   0.836071
                                             1.00
                                                      2.0000
                                                                 3.0000
3.0
Age
             714.0
                      29.699118
                                  14.526497
                                              0.42
                                                     20.1250
                                                                28,0000
38.0
             891.0
                       0.523008
                                   1.102743
                                             0.00
                                                      0.0000
SibSp
                                                                 0.0000
1.0
Parch
             891.0
                       0.381594
                                   0.806057
                                              0.00
                                                      0.0000
                                                                 0.0000
0.0
Fare
             891.0
                      32,204208
                                  49.693429 0.00
                                                      7.9104
                                                                14.4542
31.0
                  max
PassengerId
             891.0000
Survived
               1.0000
Pclass
               3.0000
              80.0000
Age
SibSp
               8.0000
Parch
               6.0000
Fare
             512.3292
f, ax=plt. subplots(1,2,figsize=(18,8))
df['Survived'].value counts().plot.pie(ax = ax[0],
explode=[0,0.1],autopct='%1.1f%%',shadow=True)
ax[0].set title('Survived')
ax[0].set ylabel('')
sns.count\overline{plot}('Survived',data=df,ax=ax[1])
ax[1].set title('Survived')
```

C:\Users\hp\Anaconda3\lib\site-packages\seaborn_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

Text(0.5, 1.0, 'Survived')

Overall Probability of Survival ~ 38%

Pre-processing, EDA and Feature Generation

Handling Missing Values

Handling Age First

```
df['Age'].describe()
count
         714.000000
          29.699118
mean
std
          14.526497
min
           0.420000
25%
          20.125000
50%
          28.000000
75%
          38.000000
          80.000000
max
Name: Age, dtype: float64
df.corr()
```

PassengerId	Survived	Pclass	Age	SibSp	
1.000000	-0.005007	-0.035144	0.036847	-0.057527	_
		0.000=		0.00.02.	
-0.005007	1.000000	-0.338481	-0.077221	-0.035322	
-0 035144	_0_339/191	1 000000	-0 360226	0 083081	
-0.033144	-0.550461	1.000000	-0.309220	0.005001	
0.036847	-0.077221	-0.369226	1.000000	-0.308247	-
0 057527	0 025222	0.000001	0 200247	1 000000	
-0.05/52/	-0.035322	0.083081	-0.308247	1.000000	
-0.001652	0.081629	0.018443	-0.189119	0.414838	
0.012658	0.257307	-0.549500	0.096067	0.159651	
Fare					
-0.549500					
0.096067					
1.000000					
	1.000000 -0.005007 -0.035144 0.036847 -0.057527 -0.001652 0.012658 Fare 0.012658 0.257307 -0.549500 0.096067 0.159651 0.216225	1.000000 -0.005007 -0.005007 1.000000 -0.035144 -0.338481 0.036847 -0.077221 -0.057527 -0.035322 -0.001652 0.081629 0.012658 0.257307 -0.549500 0.096067 0.159651 0.216225	1.000000 -0.005007 -0.035144 -0.005007 1.000000 -0.338481 -0.035144 -0.338481 1.000000 0.036847 -0.077221 -0.369226 -0.057527 -0.035322 0.083081 -0.001652 0.081629 0.018443 0.012658 0.257307 -0.549500 Fare 0.012658 0.257307 -0.549500 0.096067 0.159651 0.216225	1.000000 -0.005007 -0.035144 0.036847 -0.005007 1.000000 -0.338481 -0.077221 -0.035144 -0.338481 1.000000 -0.369226 0.036847 -0.077221 -0.369226 1.000000 -0.057527 -0.035322 0.083081 -0.308247 -0.001652 0.081629 0.018443 -0.189119 0.012658 0.257307 -0.549500 0.096067 Fare 0.012658 0.257307 -0.549500 0.096067 0.159651 0.216225	1.000000 -0.005007 -0.035144

We see that the Pclass column has the maximum absolute correlation with our target class Survived.

```
df.corr()['Pclass'].sort_values()
Fare
              -0.549500
              -0.369226
Age
Survived
              -0.338481
PassengerId
              -0.035144
Parch
               0.018443
SibSp
               0.083081
Pclass
               1.000000
Name: Pclass, dtype: float64
age_by_pclass_sex= df.groupby(['Sex','Pclass']).median()['Age']
age by pclass sex
Sex
        Pclass
female
                  35.0
        1
        2
                  28.0
        3
                  21.5
male
        1
                  40.0
        2
                  30.0
```

```
25.0
Name: Age, dtype: float64
median all = df['Age'].median()
median all
28.0
df['Age'] = df.groupby(['Sex', 'Pclass'])['Age'].apply(lambda
x:x.fillna(x.median()))
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
#
     Column
                  Non-Null Count
                                   Dtype
- - -
     PassengerId 891 non-null
 0
                                   int64
 1
     Survived
                  891 non-null
                                   int64
 2
     Pclass
                  891 non-null
                                   int64
 3
     Name
                  891 non-null
                                   object
 4
     Sex
                  891 non-null
                                   object
 5
                  891 non-null
                                   float64
     Age
 6
     SibSp
                  891 non-null
                                   int64
 7
     Parch
                  891 non-null
                                   int64
 8
                  891 non-null
     Ticket
                                   object
 9
     Fare
                  891 non-null
                                   float64
 10
    Cabin
                  204 non-null
                                   object
11 Embarked
                  889 non-null
                                   object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB
```

Let's jump to Embarked

```
df['Embarked'].describe()

count 889
unique 3
top S
freq 644
Name: Embarked, dtype: object
```

only two values are missing!

```
Amelie
829
             830
                          1
                                  1 Stone, Mrs. George Nelson (Martha
Evelyn)
                                           Fare Cabin Embarked
        Sex
              Age
                    SibSp
                           Parch
                                  Ticket
61
     female
             38.0
                        0
                                   113572
                                           80.0
                                                   B28
                                                            NaN
                               0
829
     female
             62.0
                        0
                               0
                                  113572
                                           80.0
                                                   B28
                                                            NaN
```

Let's Handle Cabin

We have (891-204) = 687 missing Cabin values

```
df['Cabin'].unique()
array([nan, 'C85', 'C123', 'E46', 'G6', 'C103', 'D56', 'A6',
         'C23 C25 C27', 'B78', 'D33', 'B30', 'C52', 'B28', 'C83', 'F33',
         'F G73', 'E31', 'A5', 'D10 D12', 'D26', 'C110', 'B58 B60',
'E101',
         'F E69', 'D47', 'B86', 'F2', 'C2', 'E33', 'B19', 'A7', 'C49',
'F4',
        'A32', 'B4', 'B80', 'A31', 'D36', 'D15', 'C93', 'C78', 'D35', 'C87', 'B77', 'E67', 'B94', 'C125', 'C99', 'C118', 'D7', 'A19', 'B49', 'D', 'C22 C26', 'C106', 'C65', 'E36', 'C54',
         'B57 B59 B63 B66', 'C7', 'E34', 'C32', 'B18', 'C124', 'C91',
'E40',
        'T', 'C128', 'D37', 'B35', 'E50', 'C82', 'B96 B98', 'E10',
'E44',
        'A34', 'C104', 'C111', 'C92', 'E38', 'D21', 'E12', 'E63',
'A14',
                          'D20', 'B79', 'E25', 'D46', 'B73', 'C95', 'B38', 'C86', 'C70', 'A16', 'C101', 'C68', 'A10', 'E68', 'D19', 'D50', 'D9', 'A23', 'B50', 'A26', 'D48',
         'B37', 'C30',
                 'B22',
                          'C86',
                  'A20'.
         'E58', 'C126', 'B71', 'B51 B53 B55', 'D49', 'B5', 'B20', 'F
G63',
         'C62 C64', 'E24', 'C90', 'C45', 'E8', 'B101', 'D45', 'C46',
'D30',
         'E121', 'D11', 'E77', 'F38', 'B3', 'D6', 'B82 B84', 'D17',
'A36',
         'B102', 'B69', 'E49', 'C47', 'D28', 'E17', 'A24', 'C50', 'B42',
         'C148'], dtype=object)
```

We can see that there are many missing values thus we replace the missing values by a new class M (missing), plus we have cabins with different classes followed by numbers, thus we can just keep the classes.

```
df['Cabin']=df['Cabin'].fillna('M')
df['Cabin']=df['Cabin'].apply(lambda str: str[0])
```

```
df.loc[df[df['Cabin']=='T'].index,'Cabin']='A'
g = sns.countplot(x='Cabin',data=df,hue='Pclass', )
plt.legend(loc='upper right')
<matplotlib.legend.Legend at 0x1fb148e3848>
```



```
sns.countplot(x='Cabin',data=df,hue='Survived')
<AxesSubplot:xlabel='Cabin', ylabel='count'>
```


On visualizing the final Cabin column we see that most of the people in the missing class belong to the Pclass 3 and have little chance of survival. We see a higher chance of survival in most of the other cabin classes, with the least being in cabin A and the highest chance being in the cabin class B. We also observe that most of the people in the classes C, E, G, D, A, B belong ot the Pclass 1, and have high chances of survival, thus indicating that Pclass might be a factor resulting in higher chances of survival.

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
#
     Column
                   Non-Null Count
                                    Dtype
 0
     PassengerId
                   891 non-null
                                    int64
 1
     Survived
                   891 non-null
                                    int64
 2
     Pclass
                   891 non-null
                                    int64
 3
     Name
                   891 non-null
                                    object
 4
     Sex
                   891 non-null
                                    object
 5
                   891 non-null
                                    float64
     Age
 6
     SibSp
                   891 non-null
                                    int64
 7
     Parch
                   891 non-null
                                    int64
 8
                   891 non-null
                                    object
     Ticket
 9
     Fare
                   891 non-null
                                    float64
 10
     Cabin
                   891 non-null
                                    object
     Embarked
 11
                   889 non-null
                                    object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB
```

EDA and Feature Generation

```
df['Embarked'].unique()
array(['S', 'C', 'Q', nan], dtype=object)
sns.countplot(x='Embarked',data=df,hue='Survived')
<AxesSubplot:xlabel='Embarked', ylabel='count'>
```



```
f,ax=plt.subplots(2,2,figsize=(20,15))
sns.countplot('Embarked', data=df, ax=ax[0,0])
ax[0,0].set title('No. Of Passengers Boarded')
sns.countplot('Embarked', hue='Sex', data=df, ax=ax[0,1])
ax[0,1].set title('Male-Female Split for Embarked')
sns.countplot('Embarked', hue='Survived', data=df, ax=ax[1,0])
ax[1,0].set title('Embarked vs Survived')
sns.countplot('Embarked',hue='Pclass',data=df,ax=ax[1,1])
ax[1,1].set title('Embarked vs Pclass')
plt.subplots adjust(wspace=0.2,hspace=0.5)
plt.show()
C:\Users\hp\Anaconda3\lib\site-packages\seaborn\ decorators.py:43:
FutureWarning: Pass the following variable as a keyword arg: x. From
version 0.12, the only valid positional argument will be `data`, and
passing other arguments without an explicit keyword will result in an
error or misinterpretation.
  FutureWarning
C:\Users\hp\Anaconda3\lib\site-packages\seaborn\ decorators.py:43:
```

FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

C:\Users\hp\Anaconda3\lib\site-packages\seaborn_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

C:\Users\hp\Anaconda3\lib\site-packages\seaborn_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

1)Maximum passenegers boarded from S. Majority of them being from Pclass3.

2)The Passengers from C look to be lucky as a good proportion of them survived. The reason for this maybe the rescue of all the Pclass1 and Pclass2 Passengers.

3)The Embark S looks to the port from where majority of the rich people boarded. Still the chances for survival is low here, that is because many passengers from Pclass3 around 81% didn't survive.

4)Port Q had almost 95% of the passengers were from Pclass3.

```
df['Ticket_Frequency']=df.groupby('Ticket')
['Ticket'].transform('count')
sns.countplot(x='Ticket_Frequency', data=df, hue='Survived')
<AxesSubplot:xlabel='Ticket_Frequency', ylabel='count'>
```


On careful observation we see that different ticket frequency has different rates of survival with the highest being for the group of two and the chance for groups of more than 4 being very less.


```
df['IsMarried']=0
df['IsMarried'].loc[df['Title']=='Mrs']=1
C:\Users\hp\Anaconda3\lib\site-packages\pandas\core\indexing.py:1732:
SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation:
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#
returning-a-view-versus-a-copy
    self._setitem_single_block(indexer, value, name)
df['IsMarried'].unique()
array([0, 1], dtype=int64)
sns.countplot(x='IsMarried',data=df,hue='Survived')
<AxesSubplot:xlabel='IsMarried', ylabel='count'>
```


We created a new feature called IsMarried that is checked for title Mrs. We see that being married has a greater chance of survival!

```
df['Title'] = df['Title'].replace(['Miss', 'Mrs', 'Ms', 'Mlle', 'Lady',
    'Mme', 'the Countess', 'Dona'], 'Miss_Mrs_Ms')

df['Title'] = df['Title'].replace(['Dr', 'Col', 'Major', 'Jonkheer',
    'Capt', 'Sir', 'Don', 'Rev'], 'Others')

sns.countplot(x='Title', data=df, hue='Survived')

<AxesSubplot:xlabel='Title', ylabel='count'>
```


sns.boxplot(x='Title', y='Age', data=df)
<AxesSubplot:xlabel='Title', ylabel='Age'>

- 1. We converted Title into 4 groups.
- 2. We can see most of the people are from Mr. grp where the probability of surviving is low while the probability of Miss_Mrs_Ms and Master is higher for surviving.
- 3. We have very less people belonging to the other classes.

```
df['Child']=0
df['Child'].loc[df['Age']<18]=1
C:\Users\hp\Anaconda3\lib\site-packages\pandas\core\indexing.py:1732:
SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation:
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#
returning-a-view-versus-a-copy
    self._setitem_single_block(indexer, value, name)
df['Child'].unique()
array([0, 1], dtype=int64)
sns.countplot(x='Child',data=df,hue='Survived')
<AxesSubplot:xlabel='Child', ylabel='count'>
```


We created a Child feature for people below 18 years of age, now we can see that children have a higher chance of getting out!

We create a new feature Family size, which is essentialy No. of Parents + Chilren + Siblings + Spouse + 1

```
df['Fam_Size']=df['Parch']+df['SibSp']+1
sns.countplot(x='Fam_Size',data=df,hue='Survived')
```

<AxesSubplot:xlabel='Fam_Size', ylabel='count'>


```
df.loc[:,'FsizeD']='Alone'
df.loc[(df['Fam_Size']>1),'FsizeD']='Small'
df.loc[(df['Fam_Size']>4),'FsizeD']='Big'
```

Now we create three different categories of Family Size

```
sns.countplot(x='FsizeD',data=df,hue='Survived')
<AxesSubplot:xlabel='FsizeD', ylabel='count'>
```


We see that people with small family size have the highest chance of Surviving, and the ones with a big family, which the lease chance!

```
df=df.drop(['Name','Ticket','Fam_Size'],axis=1)
df=df.drop(['PassengerId'],axis=1)
```

Visualization

```
sns.countplot(x='Pclass',data=df,hue='Survived')
<AxesSubplot:xlabel='Pclass', ylabel='count'>
```


We see that the people belonging to the Pclass 1 have a higher chance of survival, which keeps on decreasing as we go down the classes!

```
sns.countplot(x='Sex',data=df,hue='Survived')
<AxesSubplot:xlabel='Sex', ylabel='count'>
```


1. Proportion of male and female: ~2/3 vs ~1/3

- 2. Male is much less likely to survive, with only 20% chance of survival. For female, >70% chance of survival.
- 3. Obviously, Sex is an important feature to predict survival.

```
plt.hist(df.Age, edgecolor="black")
plt.xlabel('Age')
plt.ylabel('count')
plt.show()
```



```
sns.boxplot(x='Survived', y='Age', data=df)
plt.show()
```


- 1. Passengers are mainly aged 20–40.
- 2. Younger passengers tends to survive.

sns.countplot(x='SibSp',data=df,hue='Survived')
<AxesSubplot:xlabel='SibSp', ylabel='count'>

- 1. Most of the passengers are travelling alone
- 2. The ones with 1 sibling/spouse are more likely to survive

```
sns.countplot(x='Parch',data=df,hue='Survived')
<AxesSubplot:xlabel='Parch', ylabel='count'>
```


sns.barplot(x='Parch', y='Survived', data=df)
plt.show()

1. ~>70% passengers travel without parents/children.

2. Passengers travelling with parents/children are more likely to survive than those not.

```
sns.distplot(df.Fare)
plt.show()
```

C:\Users\hp\Anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

sns.boxplot(x='Survived', y='Fare', data=df)
plt.show()

- 1. We see that there are people paying too much for their tickets (outliers)
- 2. We see that people with higher fares are likely to survive!

sns.countplot(x='Embarked',data=df,hue='Survived')
<AxesSubplot:xlabel='Embarked', ylabel='count'>

- 1. We see most of the people were embarked from the port S
- 2. People embarked from the C port are more likely to survive!

Converting into Dummies

```
dummies = pd.get_dummies(df['Embarked'],drop_first=True)
df = pd.concat([df.drop('Embarked',axis=1),dummies],axis=1)
dummies = pd.get dummies(df['Cabin'],drop first=True)
df = pd.concat([df.drop('Cabin',axis=1),dummies],axis=1)
dummies = pd.get_dummies(df['Sex'],drop_first=True)
df = pd.concat([df.drop('Sex',axis=1),dummies],axis=1)
dummies = pd.get_dummies(df['Title'],drop_first=True)
df = pd.concat([df.drop('Title',axis=1),dummies],axis=1)
dummies = pd.get_dummies(df['FsizeD'],drop_first=True)
df = pd.concat([df.drop('FsizeD',axis=1),dummies],axis=1)
df.head()
   Survived
             Pclass
                      Age SibSp Parch
                                              Fare
                                                    Ticket Frequency
IsMarried
                      22.0
0
                                1
                                       0
                                            7.2500
                                                                    1
0
1
                      38.0
                                1
                                       0
                                           71.2833
                                                                    1
1
2
                      26.0
                                                                    1
          1
                                            7.9250
0
3
                      35.0
                                           53.1000
                                                                    2
          1
                                1
1
4
                      35.0
                                0
                                            8.0500
                                                                    1
          Age_band ...
   Child
                          Е
                               G M male Miss_Mrs_Ms
                                                          Mr
                                                              0thers
                             F
     Small
Big
       0
                             0
                                0
                                   1
                                                       0
                                                           1
                                                                    0
                    . . .
       1
0
1
       0
                 2 ...
                                0
                                          0
                                                                    0
                          0
                            0
                                   0
                                                       1
0
       1
2
       0
                                0
                                          0
                                                                    0
                  1 ...
                          0
                            0
                                   1
                                                       1
                                                           0
0
       0
3
       0
                                                                    0
                 2 ...
                          0
                             0
                                0
0
       1
4
       0
                 2 ...
                          0
                             0
                                0
                                   1
                                                       0
                                                           1
                                                                    0
0
       0
[5 rows x 26 columns]
```

df.corr()['Survived'].sort_values().drop('Survived').plot(kind='bar') <AxesSubplot:>


```
df.isnull().sum()
Survived
                      0
Pclass
                      0
Age
                      0
SibSp
                      0
Parch
                      0
Fare
                      0
Ticket_Frequency
                      0
IsMarried
                      0
Child
                      0
                      0
Age_band
                     0
Fare_Range
                     0
Š
                      0
```

```
В
                      0
C
                      0
D
                      0
Е
                      0
F
                      0
G
                      0
М
                      0
                      0
male
Miss Mrs Ms
                      0
                      0
Others
                      0
                      0
Big
Small
                      0
dtype: int64
df.drop('Age', axis = 1, inplace=True)
```

Statistical Logistic Regression Modelling using Statsmodel Library

```
from sklearn.metrics import confusion matrix, fl score
df.columns
Index(['Survived', 'Pclass', 'SibSp', 'Parch', 'Fare',
'Ticket_Frequency',
       _
'IsMarried', 'Child', 'Age_band', 'Fare_Range', 'Q', 'S', 'B',
       'E', 'F', 'G', 'M', 'male', 'Miss Mrs Ms', 'Mr', 'Others',
'Big',
       'Small'],
     dtype='object')
res = ''
for i in df.columns:
    res += str(i) + ' + '
print(res)
Survived + Pclass + SibSp + Parch + Fare + Ticket Frequency +
IsMarried + Child + Age_band + Fare_Range + Q + S + B + C + D + E + F
+ G + M + male + Miss Mrs Ms + Mr + Others + Big + Small +
df.head()
   Survived Pclass SibSp Parch Fare Ticket Frequency
IsMarried
                                    7.2500
1
                         1
                                0 71.2833
                                                           1
1
```

```
2
                  3
                          0
                                 0
                                   7.9250
                                                             1
0
3
          1
                  1
                          1
                                    53.1000
                                                             2
1
4
          0
                                 0
                                     8.0500
0
   Child Age band
                          Fare_Range ... E
                                              F G M male
Miss_Mrs_Ms Mr
       0
                 1
                      (-0.001, 7.91]
0
                                                  0
                                                           1
0
    1
1
       0
                 2 (31.0, 512.329]
                                                  0
                                                     0
                                                           0
                                              0
1
2
       0
                    (7.91, 14.454)
                                               0
                                                     1
                                                           0
                                                  0
1
    0
3
       0
                 2 (31.0, 512.329]
                                                     0
                                                           0
                                              0
                                     . . .
1
    0
4
       0
                 2 (7.91, 14.454]
                                           0
                                              0 0
                                                    1
                                                           1
                                     . . .
0
    1
           Big
   Others
                Small
0
        0
                     1
             0
1
        0
             0
                     1
2
        0
             0
                     0
3
        0
                     1
             0
4
        0
             0
[5 rows x 25 columns]
import statsmodels.formula.api as smf
m1 = smf.logit(
  formula='Survived ~ Pclass + SibSp + Parch + Ticket Frequency +
IsMarried + Child + Age band + Fare Range + Q + S + B + C + D + E + F
+ G + M + male + Mr + Others + Big + Small',
  data=df) \
.fit()
m1.summary()
Optimization terminated successfully.
         Current function value: 0.393608
         Iterations 7
<class 'statsmodels.iolib.summary.Summary'>
                            Logit Regression Results
Dep. Variable:
                              Survived
                                         No. Observations:
```

891					
Model:			Logit	Df Residuals:	
866			LUGIC	DI MESTAGATS.	
Method:			MLE	Df Model:	
			MLC	DI Modet:	
24		Mad 01 D		Daniela Danie	
Date:		wea, or D	ec 2021	Pseudo R-squ.:	
0.4089					
Time:		0	5:55:35	Log-Likelihood:	
-350.70					
converged	d:		True	LL-Null:	
-593.33					
Covariand	ce Type:	no	nrobust	LLR p-value:	
1.920e-87	7				
=======					
=======					
					coef
std err	Z	P> z	[0.02	25 0.975]	
Intercept	t				3.9991
		0 000	2 175	5.823	3.3331
				sed='right')]	0.1753
0.318		0.581			0.1755
					0.4089
	=			sed='right')]	0.4009
0.393	1.041		-0.361		0 5027
				osed='right')]	0.5037
0.542	0.929	0.353	-0.559	1.567	
Pclass					-0.7701
0.229	-3.357	0.001	-1.220	-0.320	
SibSp					-0.1094
0.227	-0.483	0.629	-0.554	0.335	
Parch					0.0651
0.228	0.285	0.775	-0.382	0.512	
Ticket Fr	requency				0.0699
0.129		0.587	-0.182	0.322	
IsMarrie					0.5934
0.378	1.569	0.117	-0.148	1.335	
Child	11303	01117	01110	11333	0.0872
0.417	0.209	0.834	-0.729	0.904	0.0072
Age band	0.203	0.054	-0.723	0.504	-0.4638
	2 671	0 000	0 004	0 124	-0.4038
0.174	-2.671	0.008	-0.804	-0.124	0.0446
Q 0 430	0.100	0.015	0.000	0.770	-0.0446
0.420	-0.106	0.915	-0.868	0.779	0. 2016
S					-0.3810
0.260	-1.467	0.142	-0.890	0.128	
В					0.3840
0.713	0.539	0.590	-1.014	1.782	
C					-0.0901
0.672	-0.134	0.893	-1.406	1.226	

```
D
                                                             0.8875
                                                2.360
0.751
           1.181
                       0.238
                                  -0.585
Ε
                                                             1.0669
0.752
           1.418
                       0.156
                                  -0.407
                                                2.541
                                                             0.2211
1.102
           0.201
                       0.841
                                  -1.939
                                                2.381
                                                            -1.3949
G
1.255
          -1.112
                       0.266
                                  -3.854
                                                1.064
М
                                                            -0.4634
0.655
          -0.707
                       0.479
                                  -1.747
                                                0.821
male
                                                             0.2801
0.548
           0.511
                       0.610
                                  -0.795
                                                1.355
                                                            -3.2986
Mr
          -5.566
                       0.000
0.593
                                  -4.460
                                               -2.137
0thers
                                                            -2.9690
          -3.829
                       0.000
                                  -4.489
                                               -1.449
0.775
Big
                                                            -3.1760
1.100
          -2.889
                       0.004
                                  -5.331
                                               -1.021
Small
                                                            -0.4798
0.397
          -1.209
                       0.226
                                  -1.257
                                                0.298
11 11 11
X = df.drop(['Survived', 'Miss Mrs Ms', 'Fare'], axis = 1)
predictions = m1.predict(X)
thresholds = np.arange(0, 100)/100
best thres = 0
best score = 0
for thresh in thresholds:
    oofs rounded = (predictions > thresh) * 1
    thresh score = f1 score(df["Survived"], oofs rounded)
    if thresh score > best score:
        best score = thresh score
        best thres = thresh
print(f'Threshold {best_thres}: {best_score}')
Threshold 0.41: 0.7885714285714286
round preds = (predictions > best thres) * 1
print(confusion matrix(df["Survived"], round preds))
[[467 82]
 [ 66 276]]
```

Thus we have 492 True Negatives, 57 False Positives, 81 False Negatives, 261 True Positives

```
X.dtypes
```

```
Pclass
                        int64
SibSp
                        int64
Parch
                        int64
Ticket Frequency
                        int64
IsMarried
                        int64
Child
                        int64
Age band
                        int64
Fare Range
                   category
                        uint8
S
                        uint8
В
                        uint8
C
                        uint8
D
                        uint8
Ε
                        uint8
F
                        uint8
G
                        uint8
М
                        uint8
male
                        uint8
Mr
                        uint8
Others
                        uint8
Big
                        uint8
Small
                        uint8
dtype: object
```

Updates

```
# Create new feature Age_band*Pclass

df['Age_Class'] = df['Pclass']*df['Age_band']
```

Upsampling & Downsampling

```
# Downsample majority class
X train d, y train d = resample(X train[y train == 0],
                                y train[y train == 0],
                                replace=True,
                                n samples=X train[y train ==
1].shape[0],
                                random state=1)
X train d = np.concatenate((X_train[y_train == 1], X_train_d))
y train d = np.concatenate((y_train[y_train == 1], y_train_d))
print("Original shape:", X_train.shape, y_train.shape)
print("Upsampled shape:", X_train_u.shape, y_train_u.shape)
#print ("SMOTE sample shape:", x_train_sm.shape, y_train_sm.shape)
print("Downsampled shape:", X_train_d.shape, y train d.shape)
Original shape: (891, 23) (891,)
Upsampled shape: (1098, 23) (1098,)
Downsampled shape: (684, 23) (684,)
# Creating the upsampled and downsampled dataframes
X train u = pd.DataFrame(X train u, columns=X.columns)
X train d = pd.DataFrame(X train d, columns=X.columns,
dtype=X.dtypes.values)
X train u['Survived'] = y train u
X train d['Survived'] = y_train_d
X_train_u['Fare_Range'] = X_train_u['Fare_Range'].astype('category')
X_train_d['Fare_Range'] = X_train_d['Fare_Range'].astype('category')
# Fitting on the upsampled data
m1 = smf.logit(
  formula='Survived ~ Pclass + SibSp + Parch + Ticket Frequency +
IsMarried + Child + Age band + Fare Range + Q + S + B + C + D + E + F
+ G + M + male + Mr + Others + Big + Small + Age Class',
  data=X train u) \
.fit()
m1.summarv()
Warning: Maximum number of iterations has been exceeded.
         Current function value: 0.381698
         Iterations: 35
C:\Users\hp\Anaconda3\lib\site-packages\statsmodels\base\model.py:606:
ConvergenceWarning: Maximum Likelihood optimization failed to
converge. Check mle retvals
  ConvergenceWarning)
<class 'statsmodels.iolib.summary.Summary'>
```

Logit Regression Results No. Observations: Dep. Variable: Survived 1098 Model: Logit Df Residuals: 1047 Method: MLE Df Model: 50 Date: Thu, 02 Dec 2021 Pseudo R-squ.: 0.4493 Time: 03:25:23 Log-Likelihood: -419.10 False LL-Null: converged: -761.08 nonrobust LLR p-value: Covariance Type: 3.453e-112 coef std err Z P>|z| [0.025 0.975Intercept 1.0938 0.466 -1.845 1.500 0.729 4.033 1.2351 Pclass[T.2] 1.469 0.841 0.400 -1.644 4.114 Pclass[T.3] -0.5783 1.267 -0.456 0.648 -3.062 1.905 SibSp[T.1] -0.0156 0.922 0.478 -0.033 0.974 -0.953 1.3456 SibSp[T.2] 0.720 1.868 0.062 -0.066 2.758 SibSp[T.3] 0.7408 0.601 0.548 -1.674 3.155 1.232 SibSp[T.4] 1.2711 0.980 0.327 -1.272 3.814 1.297 0.9788 SibSp[T.5] 7766.329 0.000 1.000 -1.52e+04 1.52e+04 -97.4643 SibSp[T.8] 1.04e+21 -9.39e-20 1.000 -2.04e+21 2.04e+21 Parch[T.1] -0.5896 -1.428 0.249 -1.379 0.168 0.428 Parch[T.2] -0.2703 0.647 -1.427 0.590 -0.458 0.887 Parch[T.3] 2.6476 0.108 -0.584 5.879 1.649 1.606 Parch[T.4] -16.8059

1.17e+04	-0.001	0.999	-2.3e+04	2.3e+04	20. 1022
Parch[T.5]	0 001	1 000	7 100.04	7 100.04	-20.1932
3.67e+04 Parch[T.6]	-0.001	1.000	-7.19e+04	7.18e+04	1.0223
	1.27e-05	1.000	-4.7e+04	4.7e+04	1.0223
Ticket Fred		1.000	4170104	4176104	-0.0660
	-0.219	0.826	-0.656	0.524	0.0000
Ticket Fred					0.2667
0.435	0.613	0.540	-0.587	1.120	
Ticket_Free	quency[T.4]				0.0999
0.590	0.169	0.866	-1.056	1.256	
Ticket_Fred					-23.8209
4.38e+04		1.000	-8.58e+04	8.57e+04	
Ticket_Fred					-18.5631
4831.678		0.997	-9488.477	9451.351	1 7267
Ticket_Fred		0.025	0 110	2 255	1.7367
	2.103	0.035	0.118	3.355	0.6001
IsMarried[]	_	0.060	0.052	1 420	0.6891
0.378	1.822	0.068	-0.052	1.430	1.8920
Child[T.1] 0.686	2 760	0.006	0.548	3.236	1.0920
Age_band[T		0.000	0.540	3.230	1.4812
nan	nan	nan	nan	nan	1.4012
Age band[T		nan	IIdii	nan	3.1079
nan	nan	nan	nan	nan	3.12073
Age_band[T					2.2155
nan	nan	nan	nan	nan	
Age_band[T	.4]				-16.7861
nan	nan	nan	nan	nan	
			4, closed='r:		0.0299
0.293	0.102	0.919	-0.545	0.605	
			0, closed='r:		0.0469
0.368	0.127	0.899	-0.675	0.769	0.0006
		·	29, closed='		-0.0806
	-0.145	0.885	-1.169	1.008	0.2060
Q[T.1] 0.390	0.529	0.597	-0.558	0.970	0.2000
S[T.1]	0.329	0.397	-0.556	0.970	-0.4811
	-1.957	0.050	-0.963	0.001	-0.4011
B[T.1]	11337	0.030	0.303	0.001	0.3569
0.686	0.520	0.603	-0.988	1.701	013303
C[T.1]		-			-0.2542
	-0.411	0.681	-1.465	0.957	
D[T.1]					0.9620
0.702	1.370	0.171	-0.414	2.338	
E[T.1]					1.0264
0.708	1.450	0.147	-0.361	2.414	
F[T.1]	0 170	0.627	0.707	1 675	-0.5310
1.126	-0.472	0.637	-2.737	1.675	

G[T.1]	0.467	2 140	3 444	-0.8528
1.172 -0.728 M[T.1]	0.467	-3.149	1.444	-0.6323
0.623 -1.016	0.310	-1.853	0.588	-0.0323
male[T.1]	0.525		0.000	1.7295
0.652 2.652	0.008	0.451	3.008	
Mr[T.1]				-4.7763
0.689 -6.931	0.000	-6.127	-3.426	
Others[T.1]				-4.5419
0.835 -5.440	0.000	-6.178	-2.906	2 6727
Big[T.1] 1.331 -2.759	0.006	6 201	1 064	-3.6727
1.331 -2.759 Small[T.1]	0.006	-6.281	-1.064	-0.2821
0.571 -0.494	0.621	-1.401	0.837	-0.2021
Age Class[T.1]	0.021	11401	0.037	1.1688
nan nan	nan	nan	nan	
Age_Class[T.2]				-0.8542
nan nan	nan	nan	nan	
Age_Class[T.3]				-0.0887
nan nan	nan	nan	nan	0.5750
Age_Class[T.4]				-2.5753
nan nan	nan	nan	nan	-2.0160
Age_Class[T.6] nan nan	nan	nan	nan	-2.0100
Age Class[T.8]	Hall	Han	Hall	-2.5628
nan nan	nan	nan	nan	213020
Age Class[T.9]				-1.6949
nan nan	nan	nan	nan	
Age_Class[T.12]				-1.3583
nan nan	nan	nan	nan	
и и и				

Fitting on the downsampled data

```
m1 = smf.logit(
   formula='Survived ~ Pclass + SibSp + Parch + Ticket_Frequency +
IsMarried + Child + Age_band + Fare_Range + Q + S + B + C + D + E + F
+ G + M + male + Mr + Others + Big + Small + Age_Class',
   data=X_train_d) \
.fit()
```

m1.summary()

Warning: Maximum number of iterations has been exceeded.

Current function value: 0.382638

Iterations: 35

C:\Users\hp\Anaconda3\lib\site-packages\statsmodels\base\model.py:606:
ConvergenceWarning: Maximum Likelihood optimization failed to

converge. Check mle_retvals ConvergenceWarning)

<pre><class 'statsmodels.iolib.summary.summary'=""> """</class></pre>					
		Logit	Regress	ion Results	
=======	_				
Dep. Varial 684	ole:	Sur		No. Observation	ns:
Model: 635			Logit	Df Residuals:	
Method: 48			MLE	Df Model:	
Date: 0.4480		Thu, 02 Dec	2021	Pseudo R-squ.:	
Time: -261.72		03:	25:25	Log-Likelihood	
converged: -474.11			False	LL-Null:	
Covariance	Type:	nonr	obust	LLR p-value:	
8.355e-62			======		
	_	D. I			coef
				5 0.975]	
Intercept					29.1405
7.77e+05 Pclass[T.2]]		-1.52e+		-25.3053
7.77e+05 Pclass[T.3]]	1.000	-1.52e+		-26.9066
7.77e+05 SibSp[T.1]		1.000	-1.52e+	06 1.52e+06	0.4606
0.624 SibSp[T.2]	0.738	0.461	-0.763	1.684	1.3198
0.950 SibSp[T.3]	1.389	0.165	-0.543	3.182	0.7750
1.727 SibSp[T.4]	0.449	0.654	-2.609	4.159	0.8682
1.870 SibSp[T.5]	0.464	0.642	-2.797	4.534	-1.8573
1.35e+04 Parch[T.1]	-0.000	1.000	-2.65e+	04 2.65e+04	-0.2422
	-0.432	0.665	-1.340	0.856	-0.4156
0.741	-0.561	0.575	-1.869	1.037	
Parch[T.3]					0.6588

1.923	0.343	0.732	-3.110	4.428	
Parch[T.4]	F 12 0F	1 000	1 71 04	1 71 04	-0.4481
	-5.13e-05	1.000	-1.71e+04	1.71e+04	0 2162
Parch[T.5]	0.000	0 022	4 002	4 524	0.2163
2.198	0.098	0.922	-4.092	4.524	0 0500
0.402	quency[T.2] 0.147	0.883	-0.730	0.847	0.0590
	quency[T.3]	0.003	-0.730	0.047	0.2407
0.514	0.468	0.640	-0.767	1.248	0.2407
	quency[T.4]	0.040	-0.707	1.240	1.4789
0.821	1.801	0.072	-0.131	3.088	1.4709
	quency[T.5]	0.072	-0.131	3.000	-26.6842
4.25e+05		1.000	-8.34e+05	8.34e+05	20:0042
	quency[T.6]	1.000	0.546.05	0.540.05	-15.0687
1930.224		0.994	-3798.238	3768.101	1310007
	quency[T.7]	0.551	37301230	37001101	1.9985
	2.031	0.042	0.070	3.927	113303
IsMarried[01012	01070	3.327	1.1873
0.537	2.212	0.027	0.135	2.239	111075
Child[T.1]		• • • • • • • • • • • • • • • • • • • •	5 · - 5 5		0.1094
1.137	0.096	0.923	-2.119	2.337	
Age band[T			-		14.0224
nan	nan	nan	nan	nan	
Age band[T					-11.4310
nan	nan	nan	nan	nan	
Age_band[T	.3]				-12.4506
Age_band[T nan	.3] nan	nan	nan	nan	-12.4506
	nan	nan	nan		-12.4506 -36.3436
nan Age_band[T nan	nan .4] nan	nan	nan	nan	
nan Age_band[T nan Fare_Range	nan .4] nan [T.Interval	nan (7.91, 14.45	nan 54, closed='r:	nan	
nan Age_band[T nan Fare_Range 0.366	nan .4] nan [T.Interval 0.409	nan (7.91, 14.45 0.683	nan 54, closed='r: -0.568	nan nan ight')] 0.867	-36.3436 0.1495
nan Age_band[T nan Fare_Range 0.366 Fare_Range	nan .4] nan [T.Interval 0.409 [T.Interval	nan (7.91, 14.45 0.683 (14.454, 31.	nan 54, closed='r: -0.568 0, closed='r:	nan nan ight')] 0.867 ight')]	-36.3436
nan Age_band[T nan Fare_Range 0.366 Fare_Range 0.463	nan .4] nan [T.Interval 0.409 [T.Interval 0.318	nan (7.91, 14.45 0.683 (14.454, 31. 0.751	nan 54, closed='r: -0.568 0, closed='r: -0.760	nan nan ight')] 0.867 ight')] 1.055	-36.3436 0.1495 0.1472
nan Age_band[T nan Fare_Range 0.366 Fare_Range 0.463 Fare_Range	nan .4] nan [T.Interval 0.409 [T.Interval 0.318 [T.Interval	nan (7.91, 14.45 0.683 (14.454, 31. 0.751 (31.0, 512.3	nan 54, closed='r: -0.568 0, closed='r: -0.760 329, closed='	nan ight')] 0.867 ight')] 1.055 right')]	-36.3436 0.1495
nan Age_band[T nan Fare_Range 0.366 Fare_Range 0.463 Fare_Range 0.699	nan .4] nan [T.Interval 0.409 [T.Interval 0.318	nan (7.91, 14.45 0.683 (14.454, 31. 0.751	nan 54, closed='r: -0.568 0, closed='r: -0.760	nan nan ight')] 0.867 ight')] 1.055	-36.3436 0.1495 0.1472 -0.0163
nan Age_band[T nan Fare_Range 0.366 Fare_Range 0.463 Fare_Range 0.699 Q[T.1]	nan .4] nan [T.Interval 0.409 [T.Interval 0.318 [T.Interval	nan (7.91, 14.45 0.683 (14.454, 31. 0.751 (31.0, 512.3	nan 54, closed='r: -0.568 0, closed='r: -0.760 329, closed='i -1.387	nan ight')] 0.867 ight')] 1.055 right')]	-36.3436 0.1495 0.1472
nan Age_band[T nan Fare_Range 0.366 Fare_Range 0.463 Fare_Range 0.699 Q[T.1] 0.503	nan .4] nan [T.Interval 0.409 [T.Interval 0.318 [T.Interval	nan (7.91, 14.45 0.683 (14.454, 31. 0.751 (31.0, 512.3	nan 54, closed='r: -0.568 0, closed='r: -0.760 329, closed='	nan ight')] 0.867 ight')] 1.055 right')]	-36.3436 0.1495 0.1472 -0.0163 -0.2188
nan Age_band[T nan Fare_Range 0.366 Fare_Range 0.463 Fare_Range 0.699 Q[T.1] 0.503 S[T.1]	nan .4] nan [T.Interval 0.409 [T.Interval 0.318 [T.Interval -0.023	nan (7.91, 14.45 0.683 (14.454, 31. 0.751 (31.0, 512.3 0.981	nan 54, closed='r: -0.568 0, closed='r: -0.760 329, closed='i -1.387	nan nan ight')] 0.867 ight')] 1.055 right')] 1.355	-36.3436 0.1495 0.1472 -0.0163
nan Age_band[T nan Fare_Range 0.366 Fare_Range 0.463 Fare_Range 0.699 Q[T.1] 0.503 S[T.1] 0.324	nan .4] nan [T.Interval 0.409 [T.Interval 0.318 [T.Interval	nan (7.91, 14.45 0.683 (14.454, 31. 0.751 (31.0, 512.3	nan 54, closed='r: -0.568 0, closed='r: -0.760 329, closed='i -1.387	nan ight')] 0.867 ight')] 1.055 right')]	-36.3436 0.1495 0.1472 -0.0163 -0.2188 -0.6832
nan Age_band[T nan Fare_Range 0.366 Fare_Range 0.463 Fare_Range 0.699 Q[T.1] 0.503 S[T.1] 0.324 B[T.1]	nan .4] nan [T.Interval 0.409 [T.Interval 0.318 [T.Interval -0.023 -0.435	nan (7.91, 14.45 0.683 (14.454, 31. 0.751 (31.0, 512.3 0.981 0.664	nan 54, closed='r: -0.568 0, closed='r: -0.760 329, closed=' -1.387 -1.205	nan nan ight')] 0.867 ight')] 1.055 right')] 1.355 0.767	-36.3436 0.1495 0.1472 -0.0163 -0.2188
nan Age_band[T nan Fare_Range 0.366 Fare_Range 0.463 Fare_Range 0.699 Q[T.1] 0.503 S[T.1] 0.324 B[T.1] 0.822	nan .4] nan [T.Interval 0.409 [T.Interval 0.318 [T.Interval -0.023	nan (7.91, 14.45 0.683 (14.454, 31. 0.751 (31.0, 512.3 0.981	nan 54, closed='r: -0.568 0, closed='r: -0.760 329, closed='i -1.387	nan nan ight')] 0.867 ight')] 1.055 right')] 1.355	-36.3436 0.1495 0.1472 -0.0163 -0.2188 -0.6832 0.5338
nan Age_band[T nan Fare_Range 0.366 Fare_Range 0.463 Fare_Range 0.699 Q[T.1] 0.503 S[T.1] 0.324 B[T.1] 0.822 C[T.1]	nan .4] nan [T.Interval 0.409 [T.Interval 0.318 [T.Interval -0.023 -0.435 -2.111 0.650	nan (7.91, 14.45 0.683 (14.454, 31. 0.751 (31.0, 512.3 0.981 0.664 0.035	nan 54, closed='r: -0.568 0, closed='r: -0.760 329, closed='i -1.387 -1.205 -1.317	nan nan ight')] 0.867 ight')] 1.055 right')] 1.355 0.767 -0.049	-36.3436 0.1495 0.1472 -0.0163 -0.2188 -0.6832
nan Age_band[T nan Fare_Range 0.366 Fare_Range 0.463 Fare_Range 0.699 Q[T.1] 0.503 S[T.1] 0.324 B[T.1] 0.822 C[T.1] 0.762	nan .4] nan [T.Interval 0.409 [T.Interval 0.318 [T.Interval -0.023 -0.435	nan (7.91, 14.45 0.683 (14.454, 31. 0.751 (31.0, 512.3 0.981 0.664	nan 54, closed='r: -0.568 0, closed='r: -0.760 329, closed=' -1.387 -1.205	nan nan ight')] 0.867 ight')] 1.055 right')] 1.355 0.767	-36.3436 0.1495 0.1472 -0.0163 -0.2188 -0.6832 0.5338 0.3623
nan Age_band[T nan Fare_Range 0.366 Fare_Range 0.463 Fare_Range 0.699 Q[T.1] 0.503 S[T.1] 0.324 B[T.1] 0.822 C[T.1] 0.762 D[T.1]	nan .4] nan [T.Interval 0.409 [T.Interval 0.318 [T.Interval -0.023 -0.435 -2.111 0.650 0.475	nan (7.91, 14.45 0.683 (14.454, 31. 0.751 (31.0, 512.3 0.981 0.664 0.035 0.516 0.635	nan 54, closed='r: -0.568 0, closed='r: -0.760 329, closed=' -1.387 -1.205 -1.317 -1.076	nan nan ight')] 0.867 ight')] 1.055 right')] 1.355 0.767 -0.049 2.144 1.857	-36.3436 0.1495 0.1472 -0.0163 -0.2188 -0.6832 0.5338
nan Age_band[T nan Fare_Range 0.366 Fare_Range 0.463 Fare_Range 0.699 Q[T.1] 0.503 S[T.1] 0.324 B[T.1] 0.822 C[T.1] 0.762 D[T.1] 0.878	nan .4] nan [T.Interval 0.409 [T.Interval 0.318 [T.Interval -0.023 -0.435 -2.111 0.650	nan (7.91, 14.45 0.683 (14.454, 31. 0.751 (31.0, 512.3 0.981 0.664 0.035	nan 54, closed='r: -0.568 0, closed='r: -0.760 329, closed='i -1.387 -1.205 -1.317	nan nan ight')] 0.867 ight')] 1.055 right')] 1.355 0.767 -0.049	-36.3436 0.1495 0.1472 -0.0163 -0.2188 -0.6832 0.5338 0.3623 1.2846
nan Age_band[T nan Fare_Range 0.366 Fare_Range 0.463 Fare_Range 0.699 Q[T.1] 0.503 S[T.1] 0.324 B[T.1] 0.822 C[T.1] 0.762 D[T.1] 0.878 E[T.1]	nan .4] nan [T.Interval 0.409 [T.Interval 0.318 [T.Interval -0.023 -0.435 -2.111 0.650 0.475 1.462	nan (7.91, 14.45 0.683 (14.454, 31. 0.751 (31.0, 512.3 0.981 0.664 0.035 0.516 0.635 0.144	nan 54, closed='r: -0.568 0, closed='r: -0.760 329, closed=': -1.387 -1.205 -1.317 -1.076 -1.132 -0.437	nan ight')] 0.867 ight')] 1.055 right')] 1.355 0.767 -0.049 2.144 1.857 3.006	-36.3436 0.1495 0.1472 -0.0163 -0.2188 -0.6832 0.5338 0.3623
nan Age_band[T nan Fare_Range 0.366 Fare_Range 0.463 Fare_Range 0.699 Q[T.1] 0.503 S[T.1] 0.324 B[T.1] 0.822 C[T.1] 0.762 D[T.1] 0.878 E[T.1] 0.880	nan .4] nan [T.Interval 0.409 [T.Interval 0.318 [T.Interval -0.023 -0.435 -2.111 0.650 0.475	nan (7.91, 14.45 0.683 (14.454, 31. 0.751 (31.0, 512.3 0.981 0.664 0.035 0.516 0.635	nan 54, closed='r: -0.568 0, closed='r: -0.760 329, closed=' -1.387 -1.205 -1.317 -1.076	nan nan ight')] 0.867 ight')] 1.055 right')] 1.355 0.767 -0.049 2.144 1.857	-36.3436 0.1495 0.1472 -0.0163 -0.2188 -0.6832 0.5338 0.3623 1.2846 1.6220
nan Age_band[T nan Fare_Range 0.366 Fare_Range 0.463 Fare_Range 0.699 Q[T.1] 0.503 S[T.1] 0.324 B[T.1] 0.822 C[T.1] 0.762 D[T.1] 0.878 E[T.1] 0.880 F[T.1]	nan .4] nan [T.Interval 0.409 [T.Interval 0.318 [T.Interval -0.023 -0.435 -2.111 0.650 0.475 1.462	nan (7.91, 14.45 0.683 (14.454, 31. 0.751 (31.0, 512.3 0.981 0.664 0.035 0.516 0.635 0.144	nan 54, closed='r: -0.568 0, closed='r: -0.760 329, closed=': -1.387 -1.205 -1.317 -1.076 -1.132 -0.437	nan ight')] 0.867 ight')] 1.055 right')] 1.355 0.767 -0.049 2.144 1.857 3.006	-36.3436 0.1495 0.1472 -0.0163 -0.2188 -0.6832 0.5338 0.3623 1.2846

G[T.1]	0.0.05	1 000	4 74 05	4 71 05	23.7863
2.4e+05 M[T.1]	9.9e-05	1.000	-4.71e+05	4.71e+05	-0.5800
	-0.724	0.469	-2.150	0.990	-0.3800
male[T.1]	01721	01105	2.150	0.330	0.8889
0.791	1.124	0.261	-0.662	2.440	
Mr[T.1]					-3.7853
	-4.570	0.000	-5.409	-2.162	
Others[T.1	-				-3.4673
	-3.481	0.001	-5.420	-1.515	4 2202
Big[T.1] 1.867	-2.320	0.020	-7.989	-0.671	-4.3302
Small[T.1]	-2.320	0.020	-7.909	-0.0/1	-0.5077
	-0.689	0.491	-1.951	0.936	-0.5077
Age Class[01131	1.331	0.330	-39.0641
nan	nan	nan	nan	nan	
Age_Class[T.2]				-15.0088
nan	nan	nan	nan	nan	
Age_Class[=				-14.2374
nan	nan T 41	nan	nan	nan	0 0245
Age_Class[nan	=	nan	nan	nan	9.8245
Age Class[nan T 61	nan	nan	nan	10.4136
nan	nan	nan	nan	nan	10.4150
Age Class[-4.3162
5.2e+08 -		1.000	-1.02e+09	1.02e+09	
Age_Class[T.9]				11.0429
nan	nan	nan	nan	nan	
Age_Class[1 000	2.6.00	2.6.00	-4.8573
1.84e+09	-2.64e-09	1.000	-3.6e+09	3.6e+09	

```
# Importing the required Libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
plt.style.use('seaborn-whitegrid')
import seaborn as sns
# Reading the data
df = pd.read csv('adult.csv')
df.head()
                Workclass fnlwgt
                                    education education-num \
   Age
0
    39
                State-gov
                           77516
                                    Bachelors
                                                           13
1
    50
                           83311
                                    Bachelors
                                                           13
         Self-emp-not-inc
2
    38
                  Private 215646
                                      HS-grad
                                                           9
3
                  Private 234721
                                         11th
                                                           7
    53
4
    28
                  Private 338409
                                    Bachelors
                                                           13
         maritalstatus
                                occupation relationship
                                                               race
sex \
0
         Never-married
                              Adm-clerical
                                             Not-in-family
                                                              White
Male
1
    Married-civ-spouse
                           Exec-managerial
                                                   Husband
                                                             White
Male
                         Handlers-cleaners
2
              Divorced
                                             Not-in-family
                                                             White
Male
3
    Married-civ-spouse Handlers-cleaners
                                                   Husband
                                                              Black
Male
4
                            Prof-specialty
                                                      Wife
                                                              Black
    Married-civ-spouse
Female
   capital-gain capital-loss
                               hourspw
                                         nativecountry
                                                        target
0
           2174
                            0
                                         United-States
                                                         <=50K
                                    40
1
              0
                            0
                                    13
                                         United-States
                                                         <=50K
2
              0
                            0
                                    40
                                         United-States
                                                         <=50K
3
              0
                            0
                                    40
                                         United-States
                                                         <=50K
              0
                            0
                                    40
                                                  Cuba
                                                         <=50K
#Checking for null values and data types
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 32561 entries, 0 to 32560
Data columns (total 15 columns):
     Column
                    Non-Null Count
                                    Dtype
- - -
     _ _ _ _ _
 0
     Age
                    32561 non-null
                                    int64
 1
     Workclass
                    32561 non-null
                                    object
```

```
2
     fnlwgt
                    32561 non-null
                                     int64
 3
     education
                    32561 non-null
                                     object
 4
     education-num
                    32561 non-null
                                     int64
 5
     maritalstatus
                    32561 non-null
                                     object
 6
     occupation
                    32561 non-null
                                     object
 7
     relationship
                    32561 non-null
                                     object
 8
                    32561 non-null
     race
                                     object
 9
                    32561 non-null
                                     object
     sex
 10
    capital-gain
                    32561 non-null
                                     int64
 11
    capital-loss
                    32561 non-null
                                     int64
                                     int64
 12
     hourspw
                    32561 non-null
13
     nativecountry
                    32561 non-null
                                     object
 14
                    32561 non-null
     target
                                     object
dtypes: int64(6), object(9)
memory usage: 3.7+ MB
```

We do not have any null values!

```
#description of numerical variales
df.describe().transpose()
                                                   std
                                                             min
                 count
                                  mean
25% \
               32561.0
                             38.581647
                                             13.640433
                                                            17.0
Age
28.0
fnlwgt
               32561.0
                         189778.366512
                                         105549.977697
                                                        12285.0
117827.0
education-num
               32561.0
                             10.080679
                                              2.572720
                                                             1.0
9.0
               32561.0
                           1077.648844
                                           7385.292085
                                                             0.0
capital-gain
0.0
                                                             0.0
capital-loss
               32561.0
                             87.303830
                                            402.960219
0.0
                                                             1.0
               32561.0
                             40.437456
                                             12.347429
hourspw
40.0
                     50%
                               75%
                                           max
                    37.0
Age
                              48.0
                                          90.0
fnlwgt
               178356.0
                          237051.0
                                    1484705.0
                    10.0
                              12.0
education-num
                                          16.0
                     0.0
                               0.0
                                       99999.0
capital-gain
                     0.0
                               0.0
capital-loss
                                        4356.0
hourspw
                    40.0
                              45.0
                                          99.0
#Plotting target distribution
f,ax=plt.subplots(1,2,figsize=(18,8))
df['target'].value_counts().plot.pie(ax = ax[0],
explode=[0,0.1],autopct='%1.1f%',shadow=True)
ax[0].set title('target')
```

```
ax[0].set_ylabel('')
sns.countplot('target',data=df,ax=ax[1])
ax[1].set_title('target')

C:\Users\hp\Anaconda3\lib\site-packages\seaborn\_decorators.py:43:
FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.
   FutureWarning

Text(0.5, 1.0, 'target')
```


Overall 24.1 % people have a higher income than 50K

EDA and Feature Generation

```
['Workclass', 'education', 'maritalstatus', 'occupation',
'relationship', 'race', 'sex', 'nativecountry', 'target']
# Find numerical variables
numerical = [var for var in df.columns if df[var].dtype !='0']
print(numerical)
['Age', 'fnlwgt', 'education-num', 'capital-gain', 'capital-loss',
'hourspw']
# We check for values with '?'
for i in categorical:
   for j in df[i].value_counts().index:
       if i == ' ?':
           print(i)
           break
Workclass
occupation
nativecountry
#Unique classes in Workclass
df['Workclass'].unique()
' Never-worked'], dtype=object)
# Number of data points per unique value
df['Workclass'].value counts()
 Private
                   22696
Self-emp-not-inc
                   2541
                    2093
Local-gov
                    1836
State-gov
                    1298
 Self-emp-inc
                    1116
Federal-gov
                    960
Without-pay
                      14
 Never-worked
Name: Workclass, dtype: int64
```

We see that there are 1836 '?' values, that are corrupt and should be treated.

```
#Replacing '?' with NaN values
df['Workclass'].replace(' ?', np.NaN, inplace= True)
df['Workclass'].value_counts()
```

```
Private
                     22696
 Self-emp-not-inc
                       2541
 Local-gov
                      2093
 State-gov
                       1298
 Self-emp-inc
                      1116
 Federal-gov
                        960
                        14
Without-pay
Never-worked
                          7
Name: Workclass, dtype: int64
```

Checking Occupation Variable

```
# Repeating the same process with Occupation
df['occupation'].unique()
' Priv-house-serv'], dtype=object)
df['occupation'].value counts()
 Prof-specialty
                   4140
 Craft-repair
                   4099
                   4066
 Exec-managerial
 Adm-clerical
                   3770
 Sales
                   3650
 Other-service
                   3295
                   2002
 Machine-op-inspct
                   1843
 Transport-moving
                   1597
 Handlers-cleaners
                   1370
 Farming-fishing
                    994
 Tech-support
                    928
 Protective-serv
                    649
 Priv-house-serv
                    149
 Armed-Forces
Name: occupation, dtype: int64
```

Again we see that there are 1843 '?' counts

```
Sales
                      3650
 Other-service
                      3295
Machine-op-inspct
                      2002
Transport-moving
                      1597
Handlers-cleaners
                      1370
Farming-fishing
                       994
Tech-support
                       928
 Protective-serv
                       649
 Priv-house-serv
                        149
Armed-Forces
Name: occupation, dtype: int64
```

Checking native country

```
# Repeating the same process with Native Country
df['nativecountry'].unique()
array([' United-States', ' Cuba', ' Jamaica', ' India', ' ?', '
Mexico',
        'South', 'Puerto-Rico', 'Honduras', 'England', 'Canada', 'Germany', 'Iran', 'Philippines', 'Italy', 'Poland', 'Columbia', 'Cambodia', 'Thailand', 'Ecuador', 'Laos', 'Taiwan', 'Haiti', 'Portugal', 'Dominican-Republic',
         ' El-Salvador', ' France', ' Guatemala', ' China', ' Japan',
         ' Yugoslavia', ' Peru', ' Outlying-US(Guam-USVI-etc)', '
Scotland',
         'Trinadad&Tobago', 'Greece', 'Nicaragua', 'Vietnam', '
Hong',
         ' Ireland', ' Hungary', ' Holand-Netherlands'], dtype=object)
df['nativecountry'].value counts()
 United-States
                                       29170
                                         643
 Mexico
                                         583
 Philippines
                                         198
 Germany
                                         137
 Canada
                                         121
 Puerto-Rico
                                         114
 El-Salvador
                                         106
 India
                                         100
 Cuba
                                           95
 England
                                          90
 Jamaica
                                           81
 South
                                           80
 China
                                           75
                                           73
 Italy
 Dominican-Republic
                                           70
 Vietnam
                                           67
 Guatemala
                                           64
```

```
Japan
                                    62
 Poland
                                    60
 Columbia
                                    59
                                    51
 Taiwan
 Haiti
                                    44
                                    43
 Iran
                                    37
 Portugal
 Nicaragua
                                    34
 Peru
                                    31
 France
                                    29
                                    29
 Greece
                                    28
 Ecuador
 Ireland
                                    24
                                    20
 Hong
 Cambodia
                                    19
 Trinadad&Tobago
                                    19
 Laos
                                    18
 Thailand
                                    18
 Yugoslavia
                                    16
 Outlying-US(Guam-USVI-etc)
                                    14
 Honduras
                                    13
                                    13
 Hungary
 Scotland
                                    12
 Holand-Netherlands
                                     1
Name: nativecountry, dtype: int64
df['nativecountry'].replace(' ?', np.NaN, inplace=True)
for i in categorical:
    for j in df[i].value_counts().index:
        if j == ' ?':
             print(i)
            break
```

After careful observation, we do not observe any '?' in any other features

```
df[categorical].isnull().sum()
Workclass
                  1836
education
                     0
maritalstatus
                     0
occupation
                  1843
relationship
                     0
race
                     0
                     0
sex
nativecountry
                   583
target
                     0
dtype: int64
```

EDA

```
# Creating countplot for categorical variables with hue as target
f,ax=plt.subplots(1,1,figsize=(15,8))
sns.countplot(x='Workclass',data=df,hue='target', ax = ax)

<AxesSubplot:xlabel='Workclass', ylabel='count'>
```



```
f,ax=plt.subplots(1,1,figsize=(17,8))
sns.countplot(x='education',data=df,hue='target', ax = ax)
<AxesSubplot:xlabel='education', ylabel='count'>
```



```
f,ax=plt.subplots(1,1,figsize=(15,8))
sns.countplot(x='maritalstatus',data=df,hue='target', ax = ax)
<AxesSubplot:xlabel='maritalstatus', ylabel='count'>
```



```
f,ax=plt.subplots(1,1,figsize=(24,8))
sns.countplot(x='occupation',data=df,hue='target', ax = ax)
<AxesSubplot:xlabel='occupation', ylabel='count'>
```



```
f,ax=plt.subplots(1,1,figsize=(15,8))
sns.countplot(x='relationship',data=df,hue='target', ax = ax)
<AxesSubplot:xlabel='relationship', ylabel='count'>
```



```
f,ax=plt.subplots(1,1,figsize=(15,8))
sns.countplot(x='race',data=df,hue='target', ax = ax)
<AxesSubplot:xlabel='race', ylabel='count'>
```



```
f,ax=plt.subplots(1,1,figsize=(15,8))
sns.countplot(x='sex',data=df,hue='target', ax = ax)
<AxesSubplot:xlabel='sex', ylabel='count'>
```



```
# Creating histograms and boxplot for numerical variables
f,ax=plt.subplots(1,2,figsize=(16,5.5))
print(ax.shape)
ax[0].hist(df.Age, edgecolor="black")
```

```
ax[0].set_xlabel('Age')
ax[0].set_ylabel('count')
sns.boxplot(x='target', y='Age', data=df, ax=ax[1])
plt.show()
(2,)
```


50%

40.000000

<pre>df.describe()</pre>			
Ag	e fnlwgt	education-num	capital-gain
capital-loss \ count 32561.00000	0 3.256100e+04	32561.000000	32561.000000
32561.000000			
mean 38.58164 87.303830	7 1.897784e+05	10.080679	1077.648844
std 13.64043	3 1.055500e+05	2.572720	7385.292085
402.960219	0 1 220500 - : 0.4	1 000000	0.000000
min 17.00000 0.000000	0 1.228500e+04	1.000000	0.000000
25% 28.00000	0 1.178270e+05	9.000000	0.000000
0.000000			
50% 37.00000	0 1.783560e+05	10.000000	0.000000
0.000000 75% 48.00000	0 2.370510e+05	12.000000	0.000000
0.000000	2.3703100+03	12.000000	0.00000
max 90.00000	0 1.484705e+06	16.000000	99999.000000
4356.000000			
hoursp	W		
count 32561.00000	9		
mean 40.43745			
std 12.34742			
min 1.00000 25% 40.00000			
25.0			

```
75%
          45.000000
          99.000000
max
# Creating a new variable isChild for age less than 24
df['ischild'] = 0
df['ischild'][df['Age'] < 24] = 1
C:\Users\hp\Anaconda3\lib\site-packages\ipykernel launcher.py:3:
SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation:
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#
returning-a-view-versus-a-copy
  This is separate from the ipykernel package so we can avoid doing
imports until
f,ax=plt.subplots(1,1,figsize=(15,8))
sns.countplot(x='ischild',data=df,hue='target', ax = ax)
<AxesSubplot:xlabel='ischild', ylabel='count'>
```



```
# Creating a new variable seniorcitizen for age more than 50
df['seniorcitizen'] = 0
df['seniorcitizen'][df['Age'] > 50] = 1

C:\Users\hp\Anaconda3\lib\site-packages\ipykernel_launcher.py:3:
SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
```

```
See the caveats in the documentation:
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#
returning-a-view-versus-a-copy
  This is separate from the ipykernel package so we can avoid doing
imports until

f,ax=plt.subplots(1,1,figsize=(15,8))
sns.countplot(x='seniorcitizen',data=df,hue='target', ax = ax)

<AxesSubplot:xlabel='seniorcitizen', ylabel='count'>
```



```
f,ax=plt.subplots(1,2,figsize=(16,5.5))
print(ax.shape)
ax[0].hist(df.fnlwgt, edgecolor="black")
ax[0].set_xlabel('fnlwgt')
ax[0].set_ylabel('count')
sns.boxplot(x='target', y='fnlwgt', data=df, ax=ax[1])
plt.show()
(2,)
```



```
df['fnlwgt'].describe()
         3.256100e+04
count
         1.897784e+05
mean
         1.055500e+05
std
         1.228500e+04
min
         1.178270e+05
25%
50%
         1.783560e+05
         2.370510e+05
75%
         1.484705e+06
max
Name: fnlwgt, dtype: float64
f,ax=plt.subplots(1,2,figsize=(16,5.5))
print(ax.shape)
ax[0].hist(df['education-num'], edgecolor="black")
ax[0].set_xlabel('education-num')
ax[0].set ylabel('count')
sns.boxplot(x='target', y='education-num', data=df, ax=ax[1])
plt.show()
(2,)
```



```
df['highly_edu'] = 0
df['highly_edu'][df['education-num'] > 10] = 1

C:\Users\hp\Anaconda3\lib\site-packages\ipykernel_launcher.py:2:
SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation:
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#
returning-a-view-versus-a-copy

f,ax=plt.subplots(1,1,figsize=(15,8))
sns.countplot(x='highly_edu',data=df,hue='target', ax = ax)

<AxesSubplot:xlabel='highly_edu', ylabel='count'>
```



```
f,ax=plt.subplots(1,2,figsize=(16,5.5))
print(ax.shape)
ax[0].hist(df['capital-gain'], edgecolor="black")
ax[0].set_xlabel('capital-gain')
ax[0].set_ylabel('count')
sns.boxplot(x='target', y='capital-gain', data=df, ax=ax[1])
plt.show()

(2,)
```



```
f,ax=plt.subplots(1,2,figsize=(16,5.5))
print(ax.shape)
ax[0].hist(df['capital-loss'], edgecolor="black")
ax[0].set_xlabel('capital-loss')
ax[0].set_ylabel('count')
sns.boxplot(x='target', y='capital-loss', data=df, ax=ax[1])
plt.show()

(2,)
```



```
f,ax=plt.subplots(1,2,figsize=(16,5.5))
print(ax.shape)
ax[0].hist(df['hourspw'], edgecolor="black")
ax[0].set_xlabel('hourspw')
ax[0].set_ylabel('count')
sns.boxplot(x='target', y='hourspw', data=df, ax=ax[1])
plt.show()
(2,)
```



```
df['work_more'] = 0
df['work_more'][df['hourspw'] >= 40] = 1
```

C:\Users\hp\Anaconda3\lib\site-packages\ipykernel_launcher.py:2:
SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation:

https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#
returning-a-view-versus-a-copy

```
f,ax=plt.subplots(1,1,figsize=(15,8))
sns.countplot(x='work_more',data=df,hue='target', ax = ax)
```

<AxesSubplot:xlabel='work_more', ylabel='count'>

Handling Missing values

```
# print percentage of missing values in the categorical variables in
training set
df[categorical].isnull().mean()
Workclass
                 0.056386
education
                 0.000000
maritalstatus
                 0.000000
occupation
                 0.056601
relationship
                 0.000000
                 0.000000
race
                 0.000000
sex
nativecountry
                 0.017905
target
                 0.000000
dtype: float64
# imputing the missing values with the modes of each feature
df['Workclass'].fillna(df['Workclass'].mode()[0], inplace = True)
df['occupation'].fillna(df['occupation'].mode()[0], inplace = True)
df['nativecountry'].fillna(df['nativecountry'].mode()[0], inplace =
# print percentage of missing values in the categorical variables in
training set
df[categorical].isnull().mean()
Workclass
                 0.0
education
                 0.0
maritalstatus
                 0.0
occupation
                 0.0
                 0.0
relationship
                 0.0
race
                 0.0
sex
                 0.0
nativecountry
target
                 0.0
dtype: float64
```

Updates

```
df.head()
   Age
                Workclass fnlwgt
                                    education education-num \
    39
                            77516
                                    Bachelors
0
                State-gov
                                                           13
1
    50
         Self-emp-not-inc
                           83311
                                    Bachelors
                                                           13
2
                                                            9
    38
                  Private 215646
                                      HS-grad
                                                            7
3
    53
                  Private 234721
                                          11th
```

```
4
    28
                  Private 338409
                                    Bachelors
                                                           13
         maritalstatus
                                occupation relationship
                                                               race
sex \
                              Adm-clerical
                                             Not-in-family
         Never-married
                                                              White
0
Male
    Married-civ-spouse
                           Exec-managerial
                                                    Husband
                                                              White
1
Male
2
              Divorced
                         Handlers-cleaners
                                              Not-in-family
                                                              White
Male
    Married-civ-spouse
                         Handlers-cleaners
                                                    Husband
                                                              Black
Male
    Married-civ-spouse
                            Prof-specialty
                                                       Wife
                                                              Black
Female
   capital-gain capital-loss
                               hourspw
                                         nativecountry target
ischild \
                                         United-States
           2174
                                    40
                                                          <=50K
0
1
              0
                            0
                                    13
                                         United-States
                                                          <=50K
0
2
              0
                                    40
                                         United-States
                                                          <=50K
0
3
              0
                                    40
                                         United-States
                                                          <=50K
0
4
                                    40
                                                   Cuba
                                                          <=50K
0
   seniorcitizen
                 highly edu work more
0
                                      0
1
               0
                           1
2
               0
                           0
                                       1
3
               1
                           0
                                       1
                                       1
#data can be train or test
#var name is variable name: should be passed as strings within ('')
# bins is list of numeric values like [0,6,10,11]
# group names is list of groups you want to create in list form
def bin var(data, var, bins, group names):
    bin value = bins
    group = group names
    data[var+'Cat'] = pd.cut(df[var], bin value, labels=group)
bin var(df, 'education-num', [0,6,11,16], ['Low', 'Medium', 'High'])
```

Created a new variable grouping according to education numbers ar high, med or low

```
bin_var(df, 'hourspw', [0,35,40,60,100], ['Low', 'Medium',
'High','VeryHigh'])
```

Classifying the occupation into Highly Skilled and low Skilled

```
occu=pd.crosstab(df['occupation'],df['target'],
margins=True).reset index()
occu
                              <=50K
                                      >50K
                                               All
target
                occupation
              Adm-clerical
                               3263
                                       507
                                              3770
1
              Armed-Forces
                                  8
                                          1
                                                 9
2
              Craft-repair
                               3170
                                       929
                                              4099
3
           Exec-managerial
                               2098
                                      1968
                                              4066
4
           Farming-fishing
                                879
                                        115
                                               994
5
         Handlers-cleaners
                                              1370
                               1284
                                        86
6
         Machine-op-inspct
                               1752
                                       250
                                              2002
7
             Other-service
                               3158
                                        137
                                              3295
8
           Priv-house-serv
                                148
                                               149
                                         1
9
            Prof-specialty
                               3933
                                      2050
                                              5983
10
           Protective-serv
                                438
                                       211
                                               649
11
                      Sales
                               2667
                                       983
                                              3650
                                               928
12
              Tech-support
                                645
                                       283
13
          Transport-moving
                               1277
                                       320
                                              1597
                              24720
14
                        All
                                      7841 32561
#creating a function to categorize skill
import re
def occup(x):
    if re.search('managerial', x):
        return 'Highskill'
    elif re.search('specialty',x):
        return 'Highskill'
    else:
        return 'Lowskill'
# Creating the occupation category feature
df['Occupa cat']=df.occupation.apply(lambda x: x.strip()).apply(lambda
x: occup(x)
df['Occupa_cat'].value_counts()
Lowskill
             22512
Highskill
             10049
Name: Occupa cat, dtype: int64
```

Race has been binned into White and others

```
pd.crosstab(df['race'],df['target'], margins=True)
```

```
<=50K >50K All
target
race
 Amer-Indian-Eskimo
                        275
                                36
                                   311
 Asian-Pac-Islander
                        763
                               276
                                     1039
 Black
                       2737
                               387
                                    3124
 0ther
                        246
                                25
                                     271
 White
                      20699
                              7117 27816
All
                      24720
                              7841 32561
# Creating race category feature
df['Race cat']=df['race'].apply(lambda x: x.strip())
df['Race_cat']=df['Race_cat'].apply(lambda x: 'White' if x=='White'
else 'Other')
```

Encoding the categorical variables

```
# find categorical variables
categorical = [var for var in df.columns if df[var].dtype=='0']
print(categorical)
['Workclass', 'education', 'maritalstatus', 'occupation',
'relationship', 'race', 'sex', 'nativecountry', 'target',
'Occupa_cat', 'Race_cat']
# Find numerical variables
numerical = [var for var in df.columns if df[var].dtype !='0']
print(numerical)
['Age', 'fnlwgt', 'education-num', 'capital-gain', 'capital-loss',
'hourspw', 'ischild', 'seniorcitizen', 'highly edu', 'work more',
'education-numCat', 'hourspwCat']
categorical
['Workclass',
 'education',
 'maritalstatus'.
 'occupation',
 'relationship',
 'race',
 'sex',
 'nativecountry',
 'target',
 'Occupa cat',
 'Race cat']
df.head()
```

```
Workclass
                           fnlwgt
                                     education education-num \
   Age
0
                            77516
                                     Bachelors
    39
                State-gov
                                                            13
1
    50
         Self-emp-not-inc
                            83311
                                     Bachelors
                                                            13
2
    38
                  Private
                            215646
                                       HS-grad
                                                             9
3
                                                             7
    53
                  Private
                           234721
                                          11th
4
    28
                  Private
                           338409
                                     Bachelors
                                                            13
         maritalstatus
                                                relationship
                                 occupation
                                                                race
sex
                               Adm-clerical
                                              Not-in-family
0
         Never-married
                                                               White
Male
                            Exec-managerial
                                                     Husband
1
    Married-civ-spouse
                                                               White
Male
2
              Divorced
                         Handlers-cleaners
                                              Not-in-family
                                                               White
Male
    Married-civ-spouse
                         Handlers-cleaners
                                                     Husband
                                                               Black
Male
    Married-civ-spouse
                             Prof-specialty
                                                        Wife
                                                               Black
Female
         nativecountry
                        target ischild seniorcitizen highly edu
work more
   . . .
         United-States
                          <=50K
                                                      0
                                                                 1
1
1
         United-States
                         <=50K
                                                                 1
0
2
         United-States
                                                                 0
                         <=50K
1
3
         United-States
                         <=50K
                                                                 0
1
4
                  Cuba
                         <=50K
                                       0
                                                      0
                                                                 1
1
   education-numCat
                     hourspwCat
                                  Occupa cat Race cat
0
               High
                         Medium
                                    Lowskill
                                                 White
1
               High
                                   Highskill
                                                 White
                             Low
2
             Medium
                         Medium
                                    Lowskill
                                                 White
3
                                    Lowskill
                                                 0ther
             Medium
                         Medium
               High
                         Medium
                                   Highskill
                                                 0ther
[5 rows x 23 columns]
# import category encoders
import category encoders as ce
# encode remaining variables with one-hot encoding
encoder = ce.OneHotEncoder(cols=['Workclass',
 'education'.
 'maritalstatus',
```

```
'occupation',
'relationship',
'race',
'sex',
'nativecountry',
'Occupa_cat',
'Race_cat', 'education-numCat', "hourspwCat"])

df = encoder.fit_transform(df)
```

Feature Selection Using Variance Threshold

Variance Threshold is a univariate approach to feature selection. It removes all features whose variance doesn't meet some threshold. By default, it removes all zero-variance features, i.e. features that have the same value in all samples. As an example, suppose that we have a dataset with boolean features, and we want to remove all features that are either one or zero (on or off) in more than 80% of the samples. Boolean features are Bernoulli random variables, and the variance of such variables is given by The below approach removes variable which have more than 80% values are either 0 or 1

```
df.columns
Index(['Age', 'Workclass_1', 'Workclass_2', 'Workclass_3',
'Workclass_4',
       'Workclass_5', 'Workclass_6', 'Workclass_7', 'Workclass_8',
'fnlwgt',
       'education-numCat 2', 'education-numCat 3', 'hourspwCat 1',
       'hourspwCat_2', 'hourspwCat_3', 'hourspwCat_4', 'Occupa_cat_1',
       'Occupa_cat_2', 'Race_cat_1', 'Race_cat_2'],
      dtype='object', length=121)
# Using Variance Threshold for feature selection
from sklearn.feature selection import VarianceThreshold
def variance_threshold_select(df, thresh=0.0, na_replacement=-999):
    df1 = df.copy(deep=True) # Make a deep copy of the dataframe
    selector = VarianceThreshold(thresh) # passing Threshold
    selector.fit(df1) # Fill NA values as VarianceThreshold cannot
deal with those
    df2 = df.loc[:,selector.get support(indices=False)] # Get new
dataframe with columns deleted that have NA values
    return df2
# Setting a 80 percent threshold
df2=variance threshold select(df.drop('target', axis=1), thresh=.8* (1
- .8))
print(df2.columns)
```

Modelling the Naive Bayes Classifier

```
df.head()
   Age Workclass 1 Workclass 2 Workclass 3 Workclass 4
Workclass_5
    39
                                0
                                             0
                                                          0
0
1
    50
                  0
                                                          0
0
2
    38
                                                          0
0
3
    53
                                                          0
0
4
    28
                                0
                                                          0
   Workclass 6 Workclass 7 Workclass 8
                                           fnlwgt ... education-
numCat 2 \
                                            77516 ...
0
1
                           0
                                            83311 ...
0
2
                                           215646 ...
1
3
                                        0 234721 ...
             0
                           0
1
             0
                           0
4
                                           338409 ...
0
   education-numCat 3 hourspwCat 1 hourspwCat 2 hourspwCat 3
hourspwCat 4 \
                                   0
0
0
```

```
1
                    1
                                                 0
                                                                0
0
2
                                                                0
0
3
                                                                0
0
4
                                                                0
                    1
                                   0
                                                  1
0
   Occupa_cat_1
                 Occupa_cat_2
                                Race_cat_1 Race_cat_2
0
              1
                             0
                                         1
1
              0
                             1
                                         1
                                                      0
2
              1
                             0
                                         1
                                                      0
3
              1
                             0
                                         0
                                                      1
4
              0
                                         0
                                                      1
[5 rows x 121 columns]
# importing Gaussian Naive Bayes, Accuracy score and train test split
from sklearn
from sklearn.naive bayes import GaussianNB
from sklearn.metrics import accuracy score
from sklearn.model selection import train test split
model = GaussianNB()
# Splitting data into test train, using a 0.3 split
X = df2
y = df['target']
X train, X test, y train, y test = train test split(X, y,
test size=0.3, random state=42)
# check the shape of X train and X test
X_train.shape, X_test.shape
((22792, 24), (9769, 24))
# Scaling the training and test feature values
from sklearn.preprocessing import RobustScaler
scaler = RobustScaler()
X train = scaler.fit transform(X train)
X test = scaler.transform(X test)
# Using Random Search method to find the best hyperparameters
from sklearn.model selection import RandomizedSearchCV
gnb = GaussianNB()
param_grid = {
    'var smoothing': np.logspace(0, -9, num=100)
}
```

```
CV rfc = RandomizedSearchCV(estimator=qnb,
param_distributions=param grid, cv= 5, random state=1)
CV rfc.fit(X train, y train)
print(CV rfc.best params )
{'var smoothing': 3.5111917342151273e-09}
#Defining the model with tuned hyperparameters
model = GaussianNB(var smoothing=CV rfc.best params ['var smoothing'])
# Fitting the model on to the train set
model.fit(X train,y train)
GaussianNB(var smoothing=3.5111917342151273e-09)
predict train = model.predict(X train)
# Accuracy Score on train dataset
accuracy_train = accuracy_score(y_train,predict_train)
print('accuracy score on train dataset : ', accuracy train)
predict test = model.predict(X test)
# Accuracy Score on test dataset
accuracy_test = accuracy_score(y_test,predict_test)
print('accuracy score on test dataset : ', accuracy test)
accuracy score on train dataset : 0.8292383292383292
accuracy score on test dataset : 0.8334527587265841
```

We see that the accuracy values for test and train are close, and thus no overfitting!

Confusion Matrix

```
# Print the Confusion Matrix and slice it into four pieces
from sklearn.metrics import confusion_matrix
from sklearn.metrics import plot_confusion_matrix

cm = confusion_matrix(y_test, predict_test)
print(cm)

plot_confusion_matrix(model, X_test, y_test)

[[6865 590]
    [1037 1277]]

C:\Users\hp\Anaconda3\lib\site-packages\sklearn\utils\
deprecation.py:87: FutureWarning: Function plot_confusion_matrix is
deprecated; Function `plot_confusion_matrix` is deprecated in 1.0 and
will be removed in 1.2. Use one of the class methods:
ConfusionMatrixDisplay.from_predictions or
```

```
ConfusionMatrixDisplay.from_estimator.
  warnings.warn(msg, category=FutureWarning)
<sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at
0x1e59e344948>
```



```
print('\nTrue Positives(TP) = ', cm[0,0])
print('\nTrue Negatives(TN) = ', cm[1,1])
print('\nFalse Positives(FP) = ', cm[0,1])
print('\nFalse Negatives(FN) = ', cm[1,0])

True Positives(TP) = 6865
True Negatives(TN) = 1277
False Positives(FP) = 590
False Negatives(FN) = 1037
```

Classification Report

```
#Prinitng the classification report using the sklearn metrics library
from sklearn.metrics import classification_report
print(classification_report(y_test, predict_test))
```

	precision	recall	f1-score	support
<=50K >50K	0.87 0.68	0.92 0.55	0.89 0.61	7455 2314
accuracy macro avg	0.78	0.74	0.83 0.75	9769 9769
weighted avg	0.82	0.83	0.83	9769

ROC - AUC

```
#Getting predicted probabilities
pred_proba = model.predict_proba(X_test)[:, 1]
# plot ROC Curve

from sklearn.metrics import roc_curve

fpr, tpr, thresholds = roc_curve(y_test, pred_proba, pos_label = '
>50K')

plt.figure(figsize=(6,4))

plt.plot(fpr, tpr, linewidth=2)

plt.plot([0,1], [0,1], 'k--')

plt.title('ROC curve for Gaussian Naive Bayes Classifier for Predicting Salaries')

plt.xlabel('False Positive Rate')

plt.ylabel('True Positive Rate')

plt.show()
```

ROC curve for Gaussian Naive Bayes Classifier for Predicting Salaries


```
# compute ROC AUC
from sklearn.metrics import roc_auc_score
ROC_AUC = roc_auc_score(y_test, pred_proba)
print('ROC AUC : {:.4f}'.format(ROC_AUC))
ROC AUC : 0.8733
```

As our ROC AUC value is close to 1, we can say that our classifer model is working well!

k-Fold Cross Validation

```
# Applying 10-Fold Cross Validation
from sklearn.model_selection import cross_val_score
scores = cross_val_score(model, X_train, y_train, cv = 10,
scoring='accuracy')
print('Cross-validation scores:{}'.format(scores))
print('Cross-validation mean accuracy:{}'.format(scores.mean()))
Cross-validation scores:[0.82807018 0.82675439 0.83369899 0.8174638 0.82974989 0.8372093 0.82448442 0.825362 0.82229048 0.84422993]
Cross-validation mean accuracy:0.8289313372285475
```

We see that the mean accuracy is close to the original one, and also there is not much deviation from the average for all the folds, thus we can say our model is not much reliant on the data on which it is being trained.

Using different threshold values

```
#Transforming the test set in 0 and 1
y_testing = np.zeros(y_test.shape)
y testing[y test == ' >50K'] = 1
#Computing accuracy for different thresholds and finding the best one.
from sklearn.metrics import accuracy_score, f1_score
thresholds = np.arange(0, 100)/100
best thres = 0
best score = 0
for thresh in thresholds:
    oofs rounded = (pred proba > thresh) * 1
    thresh_score = accuracy_score(y_testing, oofs_rounded)
    if thresh score > best score:
        best \overline{\text{score}} = \text{thresh score}
        best thres = thresh
print(f'Threshold {best thres}: {best score}')
Threshold 0.74: 0.8361142389190296
```

Thus using 0.8 as thershold and predicting salary to be >50K for probability greater than 0.8 gives us the best accuracy score of 0.835

As you can see below the number of columns have been reduced to 24 because of the the variance threshold. The removed columns have the same value in 80% of the observations

```
# Importing the required Libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
plt.style.use('seaborn-whitegrid')
import seaborn as sns
# Reading the data
df = pd.read csv('car evaluation.csv', names=['buying', 'maint',
'doors', 'persons', 'lug boot', 'safety', 'target'])
# Visualizing the dataframe
df.head()
         maint doors persons lug boot safety target
  buying
0 vhigh vhigh
                    2
                            2
                                 small
                                          low unacc
1 vhigh vhigh
                    2
                            2
                                 small
                                          med unacc
                            2
2 vhigh vhigh
                    2
                                 small
                                         high unacc
                    2
                            2
3 vhigh vhigh
                                   med
                                          low unacc
                    2
                            2
4 vhigh vhigh
                                   med
                                          med unacc
# Checking the shape of the data
df.shape
(1728, 7)
#Checking for null values and data types
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1728 entries, 0 to 1727
Data columns (total 7 columns):
              Non-Null Count Dtype
     Column
_ _ _
 0
     buying
              1728 non-null
                               object
1
              1728 non-null
     maint
                               object
 2
     doors
              1728 non-null
                               object
 3
     persons
              1728 non-null
                               object
4
    lug boot 1728 non-null
                               object
 5
     safety
               1728 non-null
                               object
6
     target
               1728 non-null
                               object
dtypes: object(7)
memory usage: 94.6+ KB
# Null alues
df.isnull().sum()
buying
            0
maint
            0
```

```
doors 0
persons 0
lug_boot 0
safety 0
target 0
dtype: int64
```

We do not have any null values!

```
#description
df.describe().transpose()
         count unique
                         top freq
          1728
                    4 vhigh
                              432
buying
          1728
                    4 vhigh
                               432
maint
doors
          1728
                    4
                           2
                               432
                    3
                           2
persons
         1728
                               576
                    3 small
lug boot 1728
                               576
          1728
                    3
                         low
                               576
safety
                   4 unacc 1210
target
         1728
#Plotting target distribution
f,ax=plt.subplots(1,2,figsize=(18,8))
df['target'].value counts().plot.pie(ax = ax[0], explode=[0,0.1, 0.2,
0.3], autopct='%1.1f%%', shadow=False, textprops={'fontsize': 14})
ax[0].set title('target')
ax[0].set ylabel('')
sns.countplot('target',data=df,ax=ax[1])
ax[1].set title('target')
C:\Users\hp\Anaconda3\lib\site-packages\seaborn\ decorators.py:43:
FutureWarning: Pass the following variable as a keyword arg: x. From
version 0.12, the only valid positional argument will be `data`, and
passing other arguments without an explicit keyword will result in an
error or misinterpretation.
  FutureWarning
Text(0.5, 1.0, 'target')
```


Pre-processing

```
#Checking the Columns or features
df.columns
Index(['buying', 'maint', 'doors', 'persons', 'lug_boot', 'safety',
'target'], dtype='object')
# find categorical variables
categorical = [var for var in df.columns if df[var].dtype=='0']
print(categorical)
['buying', 'maint', 'doors', 'persons', 'lug boot', 'safety',
'target']
# Find numerical variables
numerical = [var for var in df.columns if df[var].dtype !='0']
print(numerical)
[]
# Printing all the unique classes in the features.
for col in categorical:
    print(df[col].value_counts())
vhigh
         432
high
         432
med
         432
low
         432
```

```
Name: buying, dtype: int64
vhigh
         432
high
         432
med
         432
low
         432
Name: maint, dtype: int64
         432
3
         432
4
         432
5more
         432
Name: doors, dtype: int64
        576
        576
4
        576
more
Name: persons, dtype: int64
small
         576
med
         576
big
         576
Name: lug boot, dtype: int64
        576
low
        576
med
high
        576
Name: safety, dtype: int64
unacc
         1210
          384
acc
           69
good
           65
vgood
Name: target, dtype: int64
```

EDA

```
# Creating pairwise list
cols = df.drop('target', axis = 1).columns
paircols = []
for i in range(len(cols)-1):
    for j in range(i+1, len(cols)):
        paircols.append([cols[i], cols[j]])
```

Univariate Analysis

```
# Histplots for each feature
f,ax=plt.subplots(2,3,figsize=(16,8))
for i, col in enumerate(cols):
    sns.histplot(binwidth=0.5, x=col, hue="target", data=df,
stat="count", multiple="stack", palette="ch:0.25", ax=ax[i%2, i%3])
```


Multivariate analysis

```
# Stripplot for each feature
f,ax=plt.subplots(5,3,figsize=(15,25))
j = -1
for i, col in enumerate(paircols):
    if i%5 == 0: j = j+1
    sns.stripplot(x =col[0], y =col[1], data = df,jitter = True, hue
='target', dodge = True, ax=ax[i%5, j],)
    ax[i%5, j].legend(bbox_to_anchor=(0.7, 0.95), loc=2)
```


Modelling the Decision Tree models

As the dataset has categorical features and hence they needs to be encoded in the appropriate form. There are two main method of encodig:

- 1. One hot encoding
- 2. Label encoding

As we have categorial features that are ordinal in nature i.e that can be ranked (ordered) hence label encoding will solve our purpose. Had there been nominal features we could have preferred one hot encoding.

```
# Getting X and y
X = df.drop('target', axis = 1)
v = df['target']
# importing necessary package for encoding our categorial features
import category encoders as ce
encoder = ce.OrdinalEncoder(cols=cols)
x= encoder.fit transform(X)
x.head()
                                  lug boot
   buying
           maint doors
                         persons
                                           safety
0
        1
               1
                      1
                               1
                                          1
                                                  1
                                                  2
1
        1
               1
                      1
                               1
                                          1
2
                                                  3
                      1
        1
               1
                                1
                                          1
3
                                                  1
        1
               1
                      1
                               1
                                          2
               1
                      1
                                                  2
        1
                                1
# importing necessary packages
from sklearn.metrics import
accuracy_score,confusion matrix,classification report
from sklearn.tree import DecisionTreeClassifier
import scikitplot.metrics as skplt
from sklearn import tree
from sklearn.model selection import train test split
# Splitting data into test train, using a 0.3 split
X_train, X_test, y_train, y_test = train_test_split(x, y,
test size=0.3, random state=42)
# Exploring class distribution under train ,crossvalidation dataset
print('Training Dataset',X_train.shape,y_train.shape)
print('\n Class label distribution in Training Set\
n',y train.value counts())
print('\n*********')
print("\n CrossValidation Dataset",X test.shape,y test.shape)
print('\nClass label distribution in Cross Validation Set\
```

```
n', v test.value counts())
print('\n********')
Training Dataset (1209, 6) (1209,)
 Class label distribution in Training Set
unacc
         852
acc
         266
good
          50
          41
vgood
Name: target, dtype: int64
******
CrossValidation Dataset (519, 6) (519,)
Class label distribution in Cross Validation Set
unacc
          358
acc
         118
vgood
          24
          19
aood
Name: target, dtype: int64
*******
# Using Grid search to find the best decision tree classifier with the
given set of parameters.
from sklearn.model selection import GridSearchCV
parameters={'max depth': list(range(1,10)),
            'min samples leaf' : list(range(2,10,1)),
            'min samples split': list(range(5,10,10)),
model=GridSearchCV(DecisionTreeClassifier(class weight='balanced'),par
ameters, n jobs=-1, cv=10, scoring='accuracy', )
model.fit(X train,y_train)
print('The best model is ', model.best_estimator_)
print("\n The best model parameters are ",model.best params )
print("\n The model accuracy on train set
is",model.score(X_train,y_train))
print("\n The model accuracy on test set
is",model.score(X test,y test))
y_predict=model.predict(X_test)
accuracy=accuracy_score(y_test,y_predict,normalize=True)*float(100)
print('\n\n Classification Report')
print(classification report(y test,y predict))
skplt.plot confusion matrix(y test,y predict)
The best model is DecisionTreeClassifier(class weight='balanced',
max depth=9, min_samples_leaf=2,
```

min samples split=5)

The best model parameters are {'max_depth': 9, 'min_samples_leaf': 2, 'min_samples_split': 5}

The model accuracy on train set is 0.9834574028122415

The model accuracy on test set is 0.9691714836223507

Classification Report

precision	recall	f1-score	support
0.98	0.90	0.94	118
0.65	0.89	0.76	19
1.00	0.99	1.00	358
0.86	1.00	0.92	24
		0.97	519
0.87	0.95	0.90	519
0.97	0.97	0.97	519
	0.98 0.65 1.00 0.86	0.98 0.90 0.65 0.89 1.00 0.99 0.86 1.00	0.98 0.90 0.94 0.65 0.89 0.76 1.00 0.99 1.00 0.86 1.00 0.92 0.97 0.87 0.95 0.90

<AxesSubplot:title={'center':'Confusion Matrix'}, xlabel='Predicted
label', ylabel='True label'>

Visualising Decision Tree
clf =

```
tree.DecisionTreeClassifier(class_weight='balanced',max_depth=9,min_sa
mples_leaf=2,min_samples_split=5)
clf.fit(X_train, y_train)
trgt=['acc','unacc','good','vgood']

fig, axes = plt.subplots(nrows = 1,ncols = 1,figsize = (20,20),
dpi=300)
tree.plot_tree(clf,feature_names = cols, class_names=trgt,filled =
True, fontsize=25);
```

```
# Visualize the trained Decision Tree by export_graphviz() method
from sklearn.tree import export_graphviz
from sklearn import tree
from IPython.display import SVG
```

```
from graphviz import Source
from IPython.display import display

graph = Source(tree.export_graphviz(clf ,feature_names = cols,
    class_names = trgt, max_depth = 9, filled = True, ))
display(SVG(graph.pipe(format='svg')))
```

Random Forest Classifier

```
# Importing and defining the random search feature space.
from sklearn.ensemble import RandomForestClassifier
from sklearn.model selection import RandomizedSearchCV
# Number of trees in random forest
n estimators = [int(x) for x in range(200,2000,200)]
# Number of features to consider at every split
max features = ['auto', 'sqrt']
# Maximum number of levels in tree
max depth = [int(x) for x in np.linspace(2, 30, num = 1)]
max depth.append(None)
# Minimum number of samples required to split a node
min samples split = [2,3, 4, 5, 7,10]
# Minimum number of samples required at each leaf node
min samples leaf = [1, 2, 4, 5]
# Method of selecting samples for training each tree
bootstrap = [True, False]
# Create the random grid
random grid = {'n estimators': n estimators,
                'max_features': max features,
                'max depth': max depth,
                'min_samples_split': min_samples_split,
                'min samples leaf': min samples leaf,
                'bootstrap': bootstrap}
print(random grid)
{'n estimators': [200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800],
'max_features': ['auto', 'sqrt'], 'max_depth': [2, None],
'min_samples_split': [2, 3, 4, 5, 7, 10], 'min_samples_leaf': [1, 2,
4, 5], 'bootstrap': [True, False]}
# Use the random grid to search for best hyperparameters
# First create the base model to tune
rf = RandomForestClassifier()
```

```
# Random search of parameters, using 3 fold cross validation,
# search across 100 different combinations, and use all available
cores
rf random = RandomizedSearchCV(estimator = rf, param distributions =
random grid, n iter = 100, cv = 3, verbose=2, random state=42, n jobs
# Fit the random search model
rf random.fit(X train, y train)
Fitting 3 folds for each of 100 candidates, totalling 300 fits
RandomizedSearchCV(cv=3, estimator=RandomForestClassifier(),
n iter=100,
                   n jobs=-1,
                   param_distributions={'bootstrap': [True, False],
                                         'max depth': [2, None],
                                         'max features': ['auto',
'sqrt'],
                                         'min samples leaf': [1, 2, 4,
51,
                                         'min samples split': [2, 3, 4,
5, 7,
                                                               10],
                                         'n estimators': [200, 400,
600, 800,
                                                          1000, 1200,
1400, 1600,
                                                          1800]},
                   random state=42, verbose=2)
# Printing the best hyperparameters
rf random.best params
{'n estimators': 800,
 'min samples split': 3,
 'min samples leaf': 1,
 'max features': 'auto',
 'max depth': None,
 'bootstrap': False}
# Checking accuracies on the train and test data, predicting on the
test data.
print('The best model is ', rf random.best estimator )
print("\n The best model parameters are ",rf random.best params )
print("\n The model accuracy on train set
is",rf random.score(X train,y train))
print("\n The model accuracy on test set
is",rf random.score(X test,y test))
```

```
y predict=rf random.predict(X test)
accuracy=accuracy score(y test,y predict,normalize=True)*float(100)
print('\n\n Classification Report')
print(classification_report(y_test,y_predict))
skplt.plot confusion matrix(y test,y predict)
The best model is RandomForestClassifier(bootstrap=False,
min samples split=3, n estimators=800)
The best model parameters are {'n estimators': 800,
'min samples split': 3, 'min samples leaf': 1, 'max features': 'auto',
'max_depth': None, 'bootstrap': False}
The model accuracy on train set is 1.0
The model accuracy on test set is 0.9653179190751445
Classification Report
              precision
                           recall f1-score
                                              support
                   0.95
                             0.91
                                       0.93
                                                  118
         acc
                   0.74
                             0.89
                                       0.81
                                                   19
        good
       unacc
                   0.99
                             0.99
                                       0.99
                                                  358
       vgood
                   0.88
                             0.88
                                       0.88
                                                   24
                                       0.97
    accuracy
                                                  519
                   0.89
                             0.92
                                       0.90
                                                  519
   macro avq
weighted avg
                   0.97
                             0.97
                                       0.97
                                                  519
```

<AxesSubplot:title={'center':'Confusion Matrix'}, xlabel='Predicted</pre>

label', ylabel='True label'>


```
# Defining the model with the best parameters
clf = RandomForestClassifier(bootstrap=True, max depth=None,
max features='auto', min samples leaf=1, min samples split=3,
n = 1000
clf.fit(X train, y train)
RandomForestClassifier(min samples split=3, n estimators=1000)
print("\n The model accuracy on train set
is",clf.score(X train,y train))
print("\n The model accuracy on test set is",clf.score(X test,y test))
y predict=clf.predict(X test)
accuracy=accuracy score(y test,y predict,normalize=True)*float(100)
print('\n\n Classification Report')
print(classification_report(y_test,y_predict))
skplt.plot confusion matrix(y test,y predict)
The model accuracy on train set is 1.0
The model accuracy on test set is 0.9653179190751445
 Classification Report
              precision
                           recall f1-score
                                              support
                   0.94
                             0.92
                                       0.93
                                                  118
         acc
                   0.74
                             0.89
                                       0.81
                                                   19
        good
```

unacc vgood	0.99 0.91	0.99 0.88	0.99 0.89	358 24
accuracy macro avg weighted avg	0.90 0.97	0.92 0.97	0.97 0.91 0.97	519 519 519

<AxesSubplot:title={'center':'Confusion Matrix'}, xlabel='Predicted
label', ylabel='True label'>

view the feature scores

feature_scores = pd.Series(clf.feature_importances_,
index=X_train.columns).sort_values(ascending=False)

feature_scores

safety 0.303113 persons 0.244645 maint 0.155830 buying 0.150934 lug_boot 0.086554 doors 0.058924

dtype: float64

Creating a seaborn bar plot

```
sns.barplot(x=feature_scores, y=feature_scores.index)
# Add labels to the graph
plt.xlabel('Feature Importance Score')
plt.ylabel('Features')
# Add title to the graph
plt.title("Visualizing Important Features")
# Visualize the graph
plt.show()
```


Building a model on selected features without the least important feature

```
# declare feature vector and target variable, without the least
important feature

X1 = df.drop(['target', 'doors'], axis=1)

y1 = df['target']

# split data into training and testing sets

from sklearn.model_selection import train_test_split

X_train1, X_test1, y_train1, y_test1 = train_test_split(X1, y1, test_size = 0.33, random_state = 42)
```

```
# encode categorical variables with ordinal encoding
encoder = ce.OrdinalEncoder(cols=['buying', 'maint', 'persons',
'lug boot', 'safety'])
X train1 = encoder.fit transform(X train1)
X test1 = encoder.transform(X test1)
# modelling without the least important feature
clf = RandomForestClassifier(bootstrap=True, max depth=None,
max_features='auto', min_samples_leaf=1, min_samples_split=3,
n = 1000
clf.fit(X train1, y train1)
RandomForestClassifier(min samples split=3, n estimators=1000)
print("\n The model accuracy on train set
is",clf.score(X train1,y train1))
print("\n The model accuracy on test set
is",clf.score(X test1,y test1))
v predict1=clf.predict(X test1)
accuracy=accuracy score(y test1,y predict1,normalize=True)*float(100)
print('\n\n Classification Report')
print(classification report(y test1,y predict1))
skplt.plot confusion matrix(y test1,y predict1)
The model accuracy on train set is 0.9688850475367329
The model accuracy on test set is 0.9334500875656743
 Classification Report
              precision
                           recall f1-score
                                              support
                   0.89
                             0.84
                                       0.86
                                                   129
         acc
                   0.56
                             0.90
                                       0.69
                                                   20
        good
                             0.97
       unacc
                   0.98
                                       0.98
                                                  397
                   0.80
                             0.80
                                       0.80
                                                   25
       vgood
                                       0.93
                                                   571
    accuracy
                   0.81
                             0.88
                                       0.83
                                                   571
   macro avg
                             0.93
                                       0.94
                                                  571
weighted avg
                   0.94
<AxesSubplot:title={'center':'Confusion Matrix'}, xlabel='Predicted</pre>
label', ylabel='True label'>
```


Xgboost

```
# import machine learning libraries
import xgboost as xgb
# import packages for hyperparameters tuning
from hyperopt import STATUS OK, Trials, fmin, hp, tpe
# Defining the feature space for search
space={'max depth': hp.quniform("max depth", 3, 18, 1),
        'gamma': hp.uniform ('gamma', <mark>1</mark>,<mark>9</mark>),
        'reg_alpha' : hp.quniform('reg_alpha', 40,180,1),
        'reg_lambda' : hp.uniform('reg_lambda', 0,1),
        'colsample bytree': hp.uniform('colsample bytree', 0.5,1),
        'min child weight' : hp.quniform('min child weight', 0, 10,
1),
        'n estimators': 180,
        'seed': 42
    }
# Deifning the objective function to minimize as this is required by
hyperopt library
def objective(space):
    clf=xqb.XGBClassifier(
                     n_estimators =space['n_estimators'], max_depth =
int(space['max depth']), gamma = space['gamma'],
                     reg alpha =
int(space['reg alpha']),min child weight=int(space['min child weight']
```

```
),
                    colsample bytree=int(space['colsample bytree']))
    evaluation = [( X train, y train), ( X test, y test)]
    clf.fit(X train, y train,
            eval set=evaluation, eval metric = 'merror',
            early stopping rounds=10, verbose=2)
    pred = clf.predict(X test)
    accuracy = accuracy score(y test, pred)
    print ("SCORE:", accuracy)
    return {'loss': -accuracy, 'status': STATUS OK }
# Getting the optimum
trials = Trials()
best hyperparams = fmin(fn = objective,
                        space = space,
                        algo = tpe.suggest,
                        \max \text{ evals} = 100,
                        trials = trials)
   0%|
| 0/100 [00:00<?, ?trial/s, best loss=?]
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use label encoder=False when
constructing XGBClassifier object; and \overline{2}) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label encoder deprecation msg, UserWarning)
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[9]
     validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
```

```
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[10] validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
  2%|
                                                    | 2/100
[00:00<00:35, 2.76trial/s, best loss: -0.6897880539499036]
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use label encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
 warnings.warn(label encoder deprecation msg, UserWarning)
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use label encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
 warnings.warn(label encoder deprecation msg, UserWarning)
```

validation 0-merror:0.29529validation 1-merror:0.31021

[9]

SCORE:

0.6897880539499036

- [0] validation_0-merror:0.29529validation_1-merror:0.31021
- [2] validation_0-merror:0.29529validation_1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [10] validation_0-merror:0.29529validation_1-merror:0.31021

SCORE:

0.6897880539499036

- [0] validation 0-merror:0.29529validation 1-merror:0.31021
- [2] validation 0-merror:0.29529validation 1-merror:0.31021
- 4%|**■** | 4/100 | 4/100 | 4/100 | 60:01<00:19, 4.86trial/s, best loss: -0.6897880539499036]

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].

warnings.warn(label encoder deprecation msg, UserWarning)

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label encoder deprecation msg, UserWarning)

- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [10] validation 0-merror:0.29529validation 1-merror:0.31021

SCORE:

0.6897880539499036

- [0] validation_0-merror:0.29529validation_1-merror:0.31021
- [2] validation_0-merror:0.29529validation_1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [10] validation 0-merror:0.29529validation 1-merror:0.31021

SCORE:

0.6897880539499036

- [0] validation_0-merror:0.29529validation_1-merror:0.31021
- [2] validation_0-merror:0.29529validation_1-merror:0.31021

6%| | 6/100 |

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label_encoder_deprecation_msg, UserWarning)

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label encoder deprecation msg, UserWarning)

- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [9] validation 0-merror:0.29529validation 1-merror:0.31021

0.6897880539499036

- [0] validation_0-merror:0.29529validation_1-merror:0.31021
- [2] validation_0-merror:0.29529validation_1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation_0-merror:0.29529validation_1-merror:0.31021
- [9] validation_0-merror:0.29529validation_1-merror:0.31021

SCORE:

0.6897880539499036

- [0] validation 0-merror:0.29529validation 1-merror:0.31021
- [2] validation 0-merror:0.29529validation 1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation_0-merror:0.29529validation_1-merror:0.31021

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label encoder deprecation msg, UserWarning)

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label encoder deprecation msg, UserWarning)

- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [10] validation 0-merror:0.29529validation 1-merror:0.31021

0.6897880539499036

- [0] validation_0-merror:0.29529validation_1-merror:0.31021
- [2] validation 0-merror:0.29529validation 1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [9] validation 0-merror:0.29529validation 1-merror:0.31021

SCORE:

0.6897880539499036

- [0] validation 0-merror:0.29529validation 1-merror:0.31021
- [2] validation 0-merror:0.29529 validation 1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [10] validation 0-merror:0.29529validation 1-merror:0.31021

SCORE:

0.6897880539499036

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label_encoder_deprecation_msg, UserWarning)

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do

```
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and \overline{2}) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
  warnings.warn(label encoder deprecation msg, UserWarning)
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation_0-merror:0.29529validation_1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[9]
     validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
     validation_0-merror:0.29529validation_1-merror:0.31021
[0]
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[10] validation 0-merror:0.29529validation 1-merror:0.31021
12%||
                                                    1 12/100
[00:02<00:10, 8.61trial/s, best loss: -0.6897880539499036]
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use label encoder=False when
constructing XGBClassifier object; and \overline{2}) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
  warnings.warn(label encoder deprecation msg, UserWarning)
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use label encoder=False when
```

constructing XGBClassifier object; and $\overline{2}$) Encode your labels (y) as

integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].

```
warnings.warn(label encoder deprecation msg, UserWarning)
```

0.6897880539499036

- [0] validation_0-merror:0.29529validation_1-merror:0.31021
- [2] validation 0-merror:0.29529validation 1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [9] validation 0-merror:0.29529validation 1-merror:0.31021

SCORE:

0.6897880539499036

- [0] validation 0-merror:0.29529validation 1-merror:0.31021
- [2] validation 0-merror:0.29529validation 1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label_encoder_deprecation_msg, UserWarning)

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label_encoder_deprecation_msg, UserWarning)

```
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[9]
     validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
     validation 0-merror:0.29529validation 1-merror:0.31021
[0]
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
15%|
                                                    | 15/100
[00:03<00:28, 3.01trial/s, best loss: -0.6897880539499036]
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use label encoder=False when
constructing XGBClassifier object; and \overline{2}) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
 warnings.warn(label encoder deprecation msg, UserWarning)
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
     validation 0-merror:0.29529validation_1-merror:0.31021
[8]
[10] validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[9]
     validation 0-merror:0.29529validation 1-merror:0.31021
16%|
                                                    | 16/100
[00:03<00:29, 2.84trial/s, best loss: -0.6897880539499036]
```

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label encoder deprecation msg, UserWarning)

SCORE:

0.6897880539499036

- [0] validation 0-merror:0.29529validation 1-merror:0.31021
- [2] validation_0-merror:0.29529validation_1-merror:0.31021
- [4] validation_0-merror:0.29529validation_1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation_0-merror:0.29529validation_1-merror:0.31021
- [10] validation 0-merror:0.29529validation 1-merror:0.31021

SCORE:

0.6897880539499036

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label_encoder_deprecation_msg, UserWarning)

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label encoder deprecation msg, UserWarning)

[0] validation_0-merror:0.29529validation_1-merror:0.31021

- [2] validation 0-merror:0.29529validation 1-merror:0.31021
- [4] validation_0-merror:0.29529validation_1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [10] validation 0-merror:0.29529validation 1-merror:0.31021

0.6897880539499036

- [0] validation_0-merror:0.29529validation_1-merror:0.31021
- [2] validation 0-merror:0.29529validation 1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [10] validation 0-merror:0.29529validation 1-merror:0.31021

SCORE:

0.6897880539499036

20%| 20%| 20%| 20/100 | 20/100

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label encoder deprecation msg, UserWarning)

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label encoder deprecation msg, UserWarning)

```
[0] validation 0-merror:0.29529validation 1-merror:0.31021
```

- [2] validation 0-merror:0.29529validation 1-merror:0.31021
- [4] validation_0-merror:0.29529validation_1-merror:0.31021
- [6] validation_0-merror:0.29529validation_1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [10] validation 0-merror:0.29529validation 1-merror:0.31021

0.6897880539499036

- [0] validation 0-merror:0.29529validation 1-merror:0.31021
- [2] validation 0-merror:0.29529validation 1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [10] validation_0-merror:0.29529validation_1-merror:0.31021

SCORE:

0.6897880539499036

```
22%| 22%| 22%| 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100 | 22/100
```

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label encoder deprecation msg, UserWarning)

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label encoder deprecation msg, UserWarning)

- [0] validation 0-merror:0.29529validation 1-merror:0.31021
- [2] validation_0-merror:0.29529validation_1-merror:0.31021
- [4] validation_0-merror:0.29529validation_1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [9] validation 0-merror:0.29529validation 1-merror:0.31021

0.6897880539499036

- [0] validation_0-merror:0.29529validation_1-merror:0.31021
- [2] validation 0-merror:0.29529validation 1-merror:0.31021

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label_encoder_deprecation_msg, UserWarning)

- [4] validation_0-merror:0.29529validation_1-merror:0.31021
- [6] validation_0-merror:0.29529validation_1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [10] validation 0-merror:0.29529validation 1-merror:0.31021

SCORE:

0.6897880539499036

- [0] validation 0-merror:0.29529validation 1-merror:0.31021
- [2] validation 0-merror:0.29529validation 1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021

[10] validation_0-merror:0.29529validation_1-merror:0.31021
SCORE:

0.6897880539499036

24%| 24%| 24/100 | 24

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label encoder deprecation msg, UserWarning)

- [0] validation 0-merror:0.29529validation 1-merror:0.31021
- [2] validation_0-merror:0.29529validation_1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation_0-merror:0.29529validation_1-merror:0.31021
- [8] validation_0-merror:0.29529validation_1-merror:0.31021
- [9] validation_0-merror:0.29529validation_1-merror:0.31021

SCORE:

0.6897880539499036

26%| | 26/100 | 26/10

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label encoder deprecation msg, UserWarning)

- [0] validation 0-merror:0.29529validation 1-merror:0.31021
- [2] validation_0-merror:0.29529validation_1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021

- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation_0-merror:0.29529validation_1-merror:0.31021
- [9] validation 0-merror:0.29529validation 1-merror:0.31021

0.6897880539499036

27%| 27%| 27/100 | 27

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label_encoder_deprecation_msg, UserWarning)

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label encoder deprecation msg, UserWarning)

- [0] validation 0-merror:0.29529validation 1-merror:0.31021
- [2] validation 0-merror:0.29529validation 1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation_0-merror:0.29529validation_1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [10] validation 0-merror:0.29529validation 1-merror:0.31021

SCORE:

- [0] validation 0-merror:0.29529validation 1-merror:0.31021
- [2] validation 0-merror:0.29529validation 1-merror:0.31021
- [4] validation_0-merror:0.29529validation_1-merror:0.31021

- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation_0-merror:0.29529validation_1-merror:0.31021
- [9] validation 0-merror:0.29529validation 1-merror:0.31021

0.6897880539499036

29%| 29%| 29%| 29/100 | 29/100

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label encoder deprecation msg, UserWarning)

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label encoder deprecation msg, UserWarning)

- [0] validation_0-merror:0.29529validation_1-merror:0.31021
- [2] validation 0-merror:0.29529validation 1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [9] validation 0-merror:0.29529validation 1-merror:0.31021

SCORE:

- [0] validation 0-merror:0.29529validation 1-merror:0.31021
- [2] validation 0-merror:0.29529validation 1-merror:0.31021

```
[4]
     validation 0-merror:0.29529validation_1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
 30%|
                                                    30/100
[00:06<00:13, 5.28trial/s, best loss: -0.6897880539499036]
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
  warnings.warn(label encoder deprecation msg, UserWarning)
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[10] validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
 31%|
                                                    | 31/100
[00:07<00:24, 2.83trial/s, best loss: -0.6897880539499036]
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use label encoder=False when
constructing XGBClassifier object; and \overline{2}) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
  warnings.warn(label encoder deprecation msg, UserWarning)
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
```

validation 0-merror:0.29529validation 1-merror:0.31021

0.6897880539499036

[9]

SCORE:

```
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
32%|
                                                   32/100
[00:07<00:26, 2.60trial/s, best loss: -0.6897880539499036]
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use label encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
  warnings.warn(label encoder deprecation msg, UserWarning)
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
[9]
     validation_0-merror:0.29529validation_1-merror:0.31021
SCORE:
0.6897880539499036
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[9]
     validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
34%1
                                                   34/100
[00:08<00:22, 2.96trial/s, best loss: -0.6897880539499036]
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use label encoder=False when
```

```
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
 warnings.warn(label encoder deprecation msg, UserWarning)
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6] validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[10] validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
                                                   | 35/100
35%||
[00:08<00:18, 3.45trial/s, best loss: -0.6897880539499036]
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use label encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label encoder deprecation msg, UserWarning)
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use label encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
 warnings.warn(label encoder deprecation msg, UserWarning)
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
```

```
[10] validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation_0-merror:0.29529validation_1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[10] validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
 warnings.warn(label encoder deprecation msg, UserWarning)
```

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label_encoder_deprecation_msg, UserWarning)

- [2] validation 0-merror:0.29529validation 1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [10] validation 0-merror:0.29529validation 1-merror:0.31021

0.6897880539499036

- [0] validation 0-merror:0.29529validation 1-merror:0.31021
- [2] validation 0-merror:0.29529validation 1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [10] validation 0-merror:0.29529validation 1-merror:0.31021

SCORE:

0.6897880539499036

[0] validation_0-merror:0.29529validation_1-merror:0.31021

39%| | 39/100 | 39/10

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label_encoder_deprecation_msg, UserWarning)

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label encoder deprecation msg, UserWarning)

- [2] validation 0-merror:0.29529validation 1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021

```
[10] validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation_0-merror:0.29529validation_1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[10] validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
                                                    | 41/100
[00:09<00:11, 5.32trial/s, best loss: -0.6897880539499036]
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use label encoder=False when
constructing XGBClassifier object; and \overline{2}) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
 warnings.warn(label encoder deprecation msg, UserWarning)
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use label encoder=False when
constructing XGBClassifier object; and \overline{2}) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
 warnings.warn(label encoder deprecation msg, UserWarning)
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
```

```
[10] validation_0-merror:0.29529validation_1-merror:0.31021
SCORE:
```

0.6897880539499036

- [0] validation 0-merror:0.29529validation 1-merror:0.31021
- [2] validation 0-merror:0.29529validation 1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [9] validation 0-merror:0.29529validation 1-merror:0.31021

SCORE:

0.6897880539499036

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label encoder deprecation msg, UserWarning)

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label_encoder_deprecation_msg, UserWarning)

- [0] validation 0-merror:0.29529validation 1-merror:0.31021
- [2] validation 0-merror:0.29529validation 1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021

```
[10] validation_0-merror:0.29529validation_1-merror:0.31021
SCORE:
```

0.6897880539499036

- [0] validation 0-merror:0.29529validation 1-merror:0.31021
- [2] validation 0-merror:0.29529validation 1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation_0-merror:0.29529validation_1-merror:0.31021
- [8] validation_0-merror:0.29529validation_1-merror:0.31021
- [10] validation 0-merror:0.29529validation 1-merror:0.31021

SCORE:

0.6897880539499036

```
45%| 45%| 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45/100 | 45
```

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].

warnings.warn(label encoder deprecation msg, UserWarning)

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label encoder deprecation msg, UserWarning)

- [0] validation_0-merror:0.29529validation_1-merror:0.31021
- [2] validation 0-merror:0.29529validation 1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021

```
[9]
     validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
46%|
                                                    | 46/100
[00:10<00:10, 5.18trial/s, best loss: -0.6897880539499036]
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and \overline{2}) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
  warnings.warn(label encoder deprecation msg, UserWarning)
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4] validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[10] validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[10] validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
```

```
48%|
                                                   | 48/100
[00:11<00:20, 2.51trial/s, best loss: -0.6897880539499036]
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
 warnings.warn(label_encoder_deprecation_msg, UserWarning)
[0]
     validation_0-merror:0.29529validation_1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
```

[8] validation 0-merror:0.29529validation 1-merror:0.31021

[10] validation_0-merror:0.29529validation_1-merror:0.31021

SCORE:

```
48%| 48%| 48/100 | 48/100 | 48/100 | 48/100 | 60:11<00:20, 2.51trial/s, best loss: -0.6897880539499036]
```

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label_encoder_deprecation_msg, UserWarning)

- [0] validation 0-merror:0.29529validation 1-merror:0.31021
- [2] validation 0-merror:0.29529validation 1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation_0-merror:0.29529validation_1-merror:0.31021
- [10] validation 0-merror:0.29529validation 1-merror:0.31021

0.6897880539499036

```
50%| | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/100 | 50/10
```

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label encoder deprecation msg, UserWarning)

- [0] validation 0-merror:0.29529validation 1-merror:0.31021
- [2] validation_0-merror:0.29529validation_1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [9] validation_0-merror:0.29529validation_1-merror:0.31021

SCORE:

0.6897880539499036

```
51%| | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/100 | 51/10
```

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label encoder deprecation msg, UserWarning)

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].

warnings.warn(label encoder deprecation msg, UserWarning)

```
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[10] validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4] validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[10] validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
                                                    | 53/100
53%1
[00:12<00:10, 4.43trial/s, best loss: -0.6897880539499036]
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and \overline{2}) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
  warnings.warn(label encoder deprecation msg, UserWarning)
```

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label_encoder_deprecation_msg, UserWarning)

```
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[10] validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
```

0.6897880539499036

validation 0-merror:0.29529validation 1-merror:0.31021

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label encoder deprecation msg, UserWarning)

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label encoder deprecation msg, UserWarning)

```
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[10] validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[9]
     validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
57%|
                                                    | 57/100
[00:13<00:07, 5.66trial/s, best loss: -0.6897880539499036]
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and \overline{2}) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
  warnings.warn(label encoder deprecation msq, UserWarning)
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
```

UserWarning: The use of label encoder in XGBClassifier is deprecated

```
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use label encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
 warnings.warn(label_encoder_deprecation msg, UserWarning)
[6] validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[10] validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4] validation 0-merror:0.29529validation 1-merror:0.31021
[6] validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[10] validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
     validation 0-merror:0.29529validation 1-merror:0.31021
59%|
                                                   | 59/100
[00:13<00:06, 6.06trial/s, best loss: -0.6897880539499036]
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use label encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
 warnings.warn(label encoder deprecation msg, UserWarning)
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
```

UserWarning: The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do

constructing XGBClassifier object; and 2) Encode your labels (y) as

the following: 1) Pass option use label encoder=False when

```
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
 warnings.warn(label encoder deprecation msg, UserWarning)
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
[10] validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[10] validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
61%
                                                    | 61/100
[00:14<00:06, 6.16trial/s, best loss: -0.6897880539499036]
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use label encoder=False when
constructing XGBClassifier object; and \overline{2}) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
 warnings.warn(label encoder deprecation_msg, UserWarning)
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
```

and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1]. warnings.warn(label_encoder_deprecation_msg, UserWarning)

- [4] validation_0-merror:0.29529validation_1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation_0-merror:0.29529validation_1-merror:0.31021
- [10] validation_0-merror:0.29529validation_1-merror:0.31021

SCORE:

0.6897880539499036

[0] validation 0-merror:0.29529validation 1-merror:0.31021

62%| 62%| 62/100 | 62/100 | 62/100 | 62/100 | 62/100 | 62/100 | 63

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label_encoder_deprecation_msg, UserWarning)

- [2] validation 0-merror:0.29529validation 1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [10] validation 0-merror:0.29529validation 1-merror:0.31021

SCORE:

- [0] validation 0-merror:0.29529validation 1-merror:0.31021
- [2] validation 0-merror:0.29529validation 1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021

- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation_0-merror:0.29529validation_1-merror:0.31021

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label encoder deprecation msg, UserWarning)

[9] validation_0-merror:0.29529validation_1-merror:0.31021 SCORE:

0.6897880539499036

- [0] validation 0-merror:0.29529validation 1-merror:0.31021
- [2] validation_0-merror:0.29529validation_1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation_0-merror:0.29529validation_1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [10] validation_0-merror:0.29529validation_1-merror:0.31021

64%| 64%| 64/100 | 64

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label encoder deprecation msg, UserWarning)

SCORE:

- [0] validation_0-merror:0.29529validation_1-merror:0.31021
- [2] validation 0-merror:0.29529validation 1-merror:0.31021

- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation_0-merror:0.29529validation_1-merror:0.31021
- [8] validation_0-merror:0.29529validation_1-merror:0.31021
- [10] validation_0-merror:0.29529validation_1-merror:0.31021

0.6897880539499036

- [0] validation_0-merror:0.29529validation_1-merror:0.31021
- [2] validation 0-merror:0.29529validation 1-merror:0.31021

66%| 66%| 66/100 | 66

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label_encoder_deprecation_msg, UserWarning)

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label_encoder_deprecation_msg, UserWarning)

- [4] validation_0-merror:0.29529validation_1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [9] validation 0-merror:0.29529validation 1-merror:0.31021

SCORE:

0.6897880539499036

[0] validation 0-merror:0.29529validation 1-merror:0.31021

- [2] validation_0-merror:0.29529validation_1-merror:0.31021
- [4] validation_0-merror:0.29529validation_1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [9] validation 0-merror:0.29529validation 1-merror:0.31021

0.6897880539499036

68%| | 68/100 | 68/10

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label_encoder_deprecation_msg, UserWarning)

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label encoder deprecation msg, UserWarning)

- [0] validation_0-merror:0.29529validation_1-merror:0.31021
- [2] validation_0-merror:0.29529validation_1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [9] validation 0-merror:0.29529validation 1-merror:0.31021

SCORE:

0.6897880539499036

[0] validation 0-merror:0.29529validation 1-merror:0.31021

- [2] validation 0-merror:0.29529validation 1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation_0-merror:0.29529validation_1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [9] validation 0-merror:0.29529validation 1-merror:0.31021

0.6897880539499036

- [0] validation 0-merror:0.29529validation 1-merror:0.31021
- [2] validation 0-merror:0.29529validation 1-merror:0.31021

70%| 70%| 70/100 | 70

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label_encoder_deprecation_msg, UserWarning)

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label_encoder_deprecation_msg, UserWarning)

- [4] validation_0-merror:0.29529validation_1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [10] validation 0-merror:0.29529validation 1-merror:0.31021

SCORE:

- [0] validation 0-merror:0.29529validation 1-merror:0.31021
- [2] validation_0-merror:0.29529validation_1-merror:0.31021
- [4] validation_0-merror:0.29529validation_1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [10] validation 0-merror:0.29529validation 1-merror:0.31021

0.6897880539499036

- [0] validation_0-merror:0.29529validation_1-merror:0.31021
- [2] validation 0-merror:0.29529validation 1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
 UserWarning: The use of label encoder in XGBClassifier is deprecated
 and will be removed in a future release. To remove this warning, do
 the following: 1) Pass option use_label_encoder=False when
 constructing XGBClassifier object; and 2) Encode your labels (y) as
 integers starting with 0, i.e. 0, 1, 2, ..., [num_class 1].
 warnings.warn(label_encoder_deprecation_msg, UserWarning)
- C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
 UserWarning: The use of label encoder in XGBClassifier is deprecated
 and will be removed in a future release. To remove this warning, do
 the following: 1) Pass option use_label_encoder=False when
 constructing XGBClassifier object; and 2) Encode your labels (y) as
 integers starting with 0, i.e. 0, 1, 2, ..., [num_class 1].
 warnings.warn(label encoder deprecation msg, UserWarning)
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [10] validation 0-merror:0.29529validation 1-merror:0.31021

SCORE:

0.6897880539499036

[0] validation 0-merror:0.29529validation 1-merror:0.31021

- [2] validation 0-merror:0.29529validation 1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation_0-merror:0.29529validation_1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [10] validation 0-merror:0.29529validation 1-merror:0.31021

0.6897880539499036

- [0] validation 0-merror:0.29529validation 1-merror:0.31021
- [2] validation 0-merror:0.29529validation 1-merror:0.31021

74%| | 74/100 | 74/10

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label_encoder_deprecation_msg, UserWarning)

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label_encoder_deprecation_msg, UserWarning)

- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [9] validation 0-merror:0.29529validation 1-merror:0.31021

SCORE:

```
[0] validation_0-merror:0.29529validation_1-merror:0.31021
```

- [2] validation_0-merror:0.29529validation_1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021

```
75%| | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/100 | 75/10
```

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label encoder deprecation msg, UserWarning)

- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [9] validation 0-merror:0.29529validation 1-merror:0.31021

SCORE:

0.6897880539499036

```
76%| | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/100 | 76/10
```

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label encoder deprecation msg, UserWarning)

- [0] validation 0-merror:0.29529validation 1-merror:0.31021
- [2] validation 0-merror:0.29529validation 1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation_0-merror:0.29529validation_1-merror:0.31021
- [10] validation 0-merror:0.29529validation 1-merror:0.31021

```
SCORE:
0.6897880539499036
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation_0-merror:0.29529validation_1-merror:0.31021
[9]
     validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
78%|
                                                    | 78/100
[00:19<00:11, 1.93trial/s, best loss: -0.6897880539499036]
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use label encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label encoder deprecation msg, UserWarning)
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[10] validation 0-merror: 0.29529 validation 1-merror: 0.31021
SCORE:
0.6897880539499036
79%1
                                                    1 79/100
[00:20<00:08, 2.36trial/s, best loss: -0.6897880539499036]
```

```
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
 warnings.warn(label encoder deprecation msg, UserWarning)
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use label encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label encoder deprecation msg, UserWarning)
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4] validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[10] validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
```

- [0] validation 0-merror:0.29529validation 1-merror:0.31021
- [2] validation 0-merror:0.29529validation 1-merror:0.31021

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label encoder deprecation msg, UserWarning)

[4] validation 0-merror:0.29529validation 1-merror:0.31021

```
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[10] validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation_0-merror:0.29529validation_1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[9]
     validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
[0] validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
82%|
                                                    1 82/100
[00:20<00:04, 4.08trial/s, best loss: -0.6897880539499036]
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and \overline{2}) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
  warnings.warn(label encoder deprecation msg, UserWarning)
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
  warnings.warn(label encoder_deprecation_msg, UserWarning)
```

```
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[10] validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation_0-merror:0.29529validation_1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[10] validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation_0-merror:0.29529validation_1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[10] validation 0-merror:0.29529validation 1-merror:0.31021
84%|
                                                    84/100
[00:21<00:03, 5.27trial/s, best loss: -0.6897880539499036]
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and \overline{2}) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
  warnings.warn(label encoder deprecation msg, UserWarning)
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
```

and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1]. warnings.warn(label encoder deprecation msg, UserWarning)

SCORE:

0.6897880539499036

- [0] validation_0-merror:0.29529validation_1-merror:0.31021
- [2] validation_0-merror:0.29529validation_1-merror:0.31021
- [4] validation_0-merror:0.29529validation_1-merror:0.31021
- [6] validation_0-merror:0.29529validation_1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [9] validation 0-merror:0.29529validation 1-merror:0.31021

SCORE:

0.6897880539499036

- [0] validation 0-merror:0.29529validation 1-merror:0.31021
- [2] validation 0-merror:0.29529validation 1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].

warnings.warn(label encoder deprecation msg, UserWarning)

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224: UserWarning: The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when

```
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
 warnings.warn(label encoder deprecation msg, UserWarning)
[10] validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
    validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[9]
     validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
[0] validation 0-merror:0.29529validation 1-merror:0.31021
[2] validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
88%|
                                                    88/100
[00:21<00:01, 6.58trial/s, best loss: -0.6897880539499036]
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and \overline{2}) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
 warnings.warn(label_encoder_deprecation_msg, UserWarning)
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (v) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label encoder deprecation msg, UserWarning)
```

- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation_0-merror:0.29529validation_1-merror:0.31021
- [9] validation 0-merror:0.29529validation 1-merror:0.31021

0.6897880539499036

- [0] validation 0-merror:0.29529validation 1-merror:0.31021
- [2] validation_0-merror:0.29529validation_1-merror:0.31021
- [4] validation_0-merror:0.29529validation_1-merror:0.31021
- [6] validation_0-merror:0.29529validation_1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [9] validation 0-merror:0.29529validation 1-merror:0.31021

SCORE:

0.6897880539499036

- [0] validation 0-merror:0.29529validation 1-merror:0.31021
- [2] validation 0-merror:0.29529validation 1-merror:0.31021
- [4] validation_0-merror:0.29529validation_1-merror:0.31021

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label encoder deprecation msg, UserWarning)

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label_encoder_deprecation_msg, UserWarning)

- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [9] validation 0-merror:0.29529validation 1-merror:0.31021

0.6897880539499036

- [0] validation_0-merror:0.29529validation_1-merror:0.31021
- [2] validation 0-merror:0.29529validation 1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation_0-merror:0.29529validation_1-merror:0.31021
- [10] validation_0-merror:0.29529validation_1-merror:0.31021

SCORE:

0.6897880539499036

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].

warnings.warn(label encoder deprecation msg, UserWarning)

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label encoder deprecation msg, UserWarning)

- [0] validation 0-merror:0.29529validation 1-merror:0.31021
- [2] validation 0-merror:0.29529validation 1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021

- [6] validation_0-merror:0.29529validation_1-merror:0.31021
- [8] validation_0-merror:0.29529validation_1-merror:0.31021
- [9] validation_0-merror:0.29529validation_1-merror:0.31021

0.6897880539499036

- [0] validation 0-merror:0.29529validation 1-merror:0.31021
- [2] validation_0-merror:0.29529validation_1-merror:0.31021
- [4] validation_0-merror:0.29529validation_1-merror:0.31021
- [6] validation_0-merror:0.29529validation_1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [10] validation 0-merror:0.29529validation 1-merror:0.31021

SCORE:

0.6897880539499036

```
94%| | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/100 | 94/10
```

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label_encoder_deprecation_msg, UserWarning)

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label_encoder_deprecation_msg, UserWarning)

- [0] validation 0-merror:0.29529validation 1-merror:0.31021
- [2] validation 0-merror:0.29529validation 1-merror:0.31021
- [4] validation_0-merror:0.29529validation_1-merror:0.31021

- [6] validation_0-merror:0.29529validation_1-merror:0.31021
- [8] validation_0-merror:0.29529validation_1-merror:0.31021
- [10] validation_0-merror:0.29529validation_1-merror:0.31021

0.6897880539499036

- [0] validation_0-merror:0.29529validation_1-merror:0.31021
- [2] validation_0-merror:0.29529validation_1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [9] validation_0-merror:0.29529validation_1-merror:0.31021

SCORE:

0.6897880539499036

[0] validation_0-merror:0.29529validation_1-merror:0.31021

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label encoder deprecation msg, UserWarning)

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label_encoder_deprecation_msg, UserWarning)

[2] validation 0-merror:0.29529validation 1-merror:0.31021

```
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
     validation 0-merror:0.29529validation 1-merror:0.31021
[9]
SCORE:
0.6897880539499036
     validation_0-merror:0.29529validation_1-merror:0.31021
[0]
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8] validation 0-merror:0.29529validation 1-merror:0.31021
[10] validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
     validation 0-merror:0.29529validation 1-merror:0.31021
[0]
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
98%1
                                                  | 98/100
[00:23<00:00, 5.14trial/s, best loss: -0.6897880539499036]
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and \overline{2}) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
  warnings.warn(label encoder deprecation msg, UserWarning)
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use label encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
  warnings.warn(label encoder_deprecation_msg, UserWarning)
```

```
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8] validation 0-merror:0.29529validation 1-merror:0.31021
[10] validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
     validation_0-merror:0.29529validation_1-merror:0.31021
[0]
[2] validation 0-merror:0.29529validation 1-merror:0.31021
[4] validation 0-merror:0.29529validation 1-merror:0.31021
[6] validation 0-merror:0.29529validation 1-merror:0.31021
[8] validation 0-merror:0.29529validation 1-merror:0.31021
[10] validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
100%|
                                                  | 100/100
[00:24<00:00, 4.14trial/s, best loss: -0.6897880539499036]
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use label encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
 warnings.warn(label encoder deprecation msg, UserWarning)
# Getting the best model
print("The best hyperparameters are : ","\n")
print(best hyperparams)
The best hyperparameters are :
{'colsample bytree': 0.8735300604984144, 'gamma': 4.042605283938188,
'max depth': 15.0, 'min child weight': 3.0, 'reg alpha': 95.0,
'reg lambda': 0.4425426723169459}
# Best model
clf=xgb.XGBClassifier(best hyperparams)
```

```
evaluation = [( X train, y train), ( X test, y test)]
clf.fit(X train, y train,
            eval set=evaluation,
            early stopping rounds=10, verbose=2)
[05:21:31] WARNING: C:/Users/Administrator/workspace/xgboost-
win64 release 1.5.0/src/learner.cc:1115: Starting in XGBoost 1.3.0,
the default evaluation metric used with the objective 'multi:softprob'
was changed from 'merror' to 'mlogloss'. Explicitly set eval_metric if
you'd like to restore the old behavior.
[0]
     validation 0-mlogloss:0.94153
                                       validation 1-mlogloss:0.94379
[2]
     validation_0-mlogloss:0.53773
                                       validation_1-mlogloss:0.55620
[4]
                                       validation 1-mlogloss:0.37244
     validation 0-mlogloss:0.34786
     validation 0-mlogloss:0.23741
                                      validation 1-mlogloss:0.26699
[6]
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\core.py:502:
FutureWarning: Pass `objective` as keyword args. Passing these as
positional arguments will be considered as error in future releases.
  format(", ".join(args_msg)), FutureWarning
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
 warnings.warn(label encoder deprecation msg, UserWarning)
[8]
     validation 0-mlogloss:0.17458
                                       validation 1-mlogloss:0.21000
[10]
     validation 0-mlogloss:0.13339
                                       validation 1-mlogloss:0.17272
[12]
     validation 0-mlogloss:0.10732
                                       validation 1-mlogloss:0.14942
                                       validation 1-mlogloss:0.12898
[14]
     validation_0-mlogloss:0.08744
[16]
     validation 0-mlogloss:0.07224
                                       validation 1-mlogloss:0.11262
     validation 0-mlogloss:0.06176
                                       validation 1-mlogloss:0.10467
[18]
[20]
     validation 0-mlogloss:0.05197
                                       validation 1-mlogloss:0.09462
[22]
     validation 0-mlogloss:0.04259
                                       validation 1-mlogloss:0.08466
[24]
     validation 0-mlogloss:0.03656
                                       validation 1-mlogloss:0.08024
[26]
     validation 0-mlogloss:0.03204
                                       validation 1-mlogloss:0.07596
     validation 0-mlogloss:0.02850
                                       validation 1-mlogloss:0.07431
[28]
                                       validation 1-mlogloss:0.07131
[30]
     validation 0-mlogloss:0.02557
[32]
    validation 0-mlogloss:0.02324
                                       validation 1-mlogloss:0.07019
[34]
     validation 0-mlogloss:0.02097
                                       validation 1-mlogloss:0.06757
[36]
     validation 0-mlogloss:0.01961
                                       validation 1-mlogloss:0.06629
                                       validation 1-mlogloss:0.06548
[38]
     validation 0-mlogloss:0.01840
[40]
     validation 0-mlogloss:0.01672
                                       validation 1-mlogloss:0.06358
     validation 0-mlogloss:0.01589
                                       validation 1-mlogloss:0.06396
[42]
[44]
     validation 0-mlogloss:0.01541
                                       validation 1-mlogloss:0.06414
     validation 0-mlogloss:0.01478
                                       validation 1-mlogloss:0.06455
[46]
                                       validation_1-mlogloss:0.06383
[48]
     validation 0-mlogloss:0.01420
[50]
     validation 0-mlogloss:0.01369
                                       validation 1-mlogloss:0.06387
```

```
XGBClassifier(base score=0.5, booster='gbtree', colsample bylevel=1,
              colsample bynode=1, colsample bytree=1,
enable categorical=False,
              gamma=0, gpu id=-1, importance type=None,
              interaction constraints='', learning rate=0.300000012,
              max delta step=0, max depth=6, min child weight=1,
missing=nan,
              monotone constraints='()', n estimators=100, n jobs=4,
              num parallel tree=1, objective='multi:softprob',
predictor='auto',
              random state=0, reg alpha=0, reg lambda=1,
scale pos weight=None,
              subsample=1, tree method='exact', validate parameters=1,
              verbosity=None)
print("\n The model accuracy on train set
is",clf.score(X train,y train))
print("\n The model accuracy on test set is",clf.score(X test,y test))
y predict=clf.predict(X test)
accuracy=accuracy score(y test,y predict,normalize=True)*float(100)
print('\n\n Classification Report')
print(classification report(y test,y predict))
skplt.plot confusion matrix(y test,y predict)
The model accuracy on train set is 1.0
The model accuracy on test set is 0.9807321772639692
 Classification Report
                           recall f1-score
              precision
                                              support
                   0.97
                             0.95
                                       0.96
                                                   118
         acc
                             0.89
                   0.77
                                       0.83
                                                    19
        good
       unacc
                   1.00
                             1.00
                                       1.00
                                                   358
                             0.96
                                       0.94
       vgood
                   0.92
                                                    24
                                       0.98
    accuracy
                                                   519
   macro avg
                   0.92
                             0.95
                                       0.93
                                                   519
weighted avg
                   0.98
                             0.98
                                       0.98
                                                   519
```

<AxesSubplot:title={'center':'Confusion Matrix'}, xlabel='Predicted</pre>

label', ylabel='True label'>

Updates

```
import category encoders as ce
encoder = ce.OrdinalEncoder(cols=['buying', 'maint', 'doors',
'persons', 'lug_boot', 'safety'])
df = encoder.fit transform(df)
from sklearn.preprocessing import PolynomialFeatures
# summarize the shape of the dataset
print(df.shape)
# summarize each variable
display(df.head(2))
# perform a polynomial features transform of the dataset
trans = PolynomialFeatures(degree=4)
data = trans.fit_transform(df.iloc[:,:-1])
# convert the array back to a dataframe
dataset = pd.DataFrame(data)
# summarize
display(dataset.head(2))
(1728, 7)
                                             safety target
                                  lug_boot
   buying
           maint
                  doors
                         persons
0
                      1
        1
               1
                                1
                                          1
                                                  1
                                                     unacc
1
        1
               1
                      1
                                1
                                          1
                                                  2
                                                     unacc
```

```
0
       1
            2
                 3
                     4
                          5
                               6 7
                                        8
                                             9
                                                       200
                                                            201
202 203 \
0 1.0 1.0
            1.0
                1.0
                     1.0
                          1.0
                               1.0
                                    1.0
                                         1.0
                                             1.0
                                                 . . .
                                                       1.0
                                                            1.0
1.0 1.0
1 1.0 1.0
            1.0
                1.0 1.0 1.0 2.0 1.0
                                        1.0
                                             1.0 ...
                                                       4.0
2.0 4.0
  204
       205
            206
                 207
                     208
                           209
  1.0
       1.0
            1.0
                 1.0
                     1.0
                           1.0
1 8.0
      1.0
            2.0
                4.0
                          16.0
                    8.0
[2 rows x 210 columns]
# Getting X and v
X = dataset
y = df['target']
X.head()
                3 4
                          5 6 7 8 9 ...
                                                       200
                                                            201
  0 1
            2
202 203 \
0 1.0 1.0
           1.0 1.0
                    1.0
                          1.0
                               1.0
                                    1.0
                                         1.0
                                             1.0
                                                       1.0
                                                            1.0
                                                 . . .
1.0 1.0
                               2.0
1 1.0 1.0
            1.0
                1.0
                    1.0
                          1.0
                                    1.0
                                         1.0
                                             1.0 ...
                                                       4.0
                                                            1.0
2.0 4.0
2 1.0 1.0
           1.0 1.0
                    1.0
                         1.0
                               3.0
                                    1.0
                                                       9.0
                                                            1.0
                                         1.0
                                             1.0
3.0 9.0
3 1.0 1.0 1.0 1.0
                    1.0 2.0
                              1.0
                                    1.0
                                        1.0
                                             1.0 ...
                                                       1.0
                                                           8.0
4.0 2.0
4 1.0 1.0 1.0 1.0 1.0 2.0 2.0 1.0 1.0
                                             1.0 ...
                                                       4.0 8.0
8.0 8.0
   204
         205
               206
                     207
                          208
                                209
0
   1.0
         1.0
               1.0
                     1.0
                          1.0
                                1.0
1
   8.0
         1.0
               2.0
                    4.0
                          8.0
                               16.0
2
  27.0
         1.0
               3.0
                     9.0
                         27.0
                               81.0
3
   1.0
        16.0
               8.0
                     4.0
                          2.0
                                1.0
        16.0
            16.0 16.0
                         16.0 16.0
   8.0
[5 rows x 210 columns]
# importing necessary packages
from sklearn.metrics import
accuracy score, confusion matrix, classification report
from sklearn.tree import DecisionTreeClassifier
import scikitplot.metrics as skplt
from sklearn import tree
from sklearn.model selection import train test split
```

```
# Splitting data into test train, using a 0.3 split
X train, X test, y train, y test = train test split(X, y,
test size=0.3, random state=42)
# Exploring class distribution under train , crossvalidation dataset
print('Training Dataset',X_train.shape,y_train.shape)
print('\n Class label distribution in Training Set\
n',y train.value counts())
print('\n********')
print("\n CrossValidation Dataset",X_test.shape,y_test.shape)
print('\nClass label distribution in Cross Validation Set\
n', v test.value counts())
print('\n*********')
Training Dataset (1209, 210) (1209,)
Class label distribution in Training Set
unacc
         852
acc
         266
          50
aood
vgood
          41
Name: target, dtype: int64
******
CrossValidation Dataset (519, 210) (519,)
Class label distribution in Cross Validation Set
         358
unacc
         118
acc
vgood
          24
          19
good
Name: target, dtype: int64
******
# Using Grid search to find the best decision tree classifier with the
given set of parameters.
from sklearn.model selection import GridSearchCV
parameters={'max depth': list(range(1,10)),
            'min samples leaf' : list(range(2,10,1)),
            'min samples split': list(range(5,10,10)),
model=GridSearchCV(DecisionTreeClassifier(class weight='balanced'),par
ameters, n jobs=-1, cv=10, scoring='accuracy', )
model.fit(X train,y train)
print('The best model is ', model.best_estimator_)
print("\n The best model parameters are ",model.best params )
print("\n The model accuracy on train set
is",model.score(X train,y train))
```

The best model parameters are {'max_depth': 9, 'min_samples_leaf': 2, 'min_samples_split': 5}

The model accuracy on train set is 0.9867659222497932

The model accuracy on test set is 0.976878612716763

Classification Report

	precision	recall	f1-score	support
acc	0.96	0.93	0.95	118
good	0.79	1.00	0.88	19
unacc	0.99	0.99	0.99	358
vgood	1.00	1.00	1.00	24
accuracy			0.98	519
macro avg	0.94	0.98	0.96	519
weighted avg	0.98	0.98	0.98	519

<AxesSubplot:title={'center':'Confusion Matrix'}, xlabel='Predicted
label', ylabel='True label'>

Using SMOTE for Upsampling

X_train 0 1 2 3 4 5 6 7 8 9 200 201 \ 1178 1.0 3.0 3.0 4.0 2.0 3.0 3.0 9.0 9.0 12.0 36.0 54.0 585 1.0 2.0 2.0 2.0 3.0 1.0 1.0 4.0 4.0 4.0 9.0 3.0 1552 1.0 4.0 3.0 3.0 4.0 1.0 3.0 3.0 9.0 9.0 12.0 9.0 16.0 1169 1.0 3.0 3.0 4.0 1.0 3.0 3.0 9.0 9.0 12.0 9.0 27.0 1033 1.0 3.0 2.0 3.0 1.0 3.0 2.0 9.0 6.0 9.0 4.0 27.0		,			· • • ·		-	,					
201 \	X_tra	in											
1178 1.0 3.0 3.0 4.0 2.0 3.0 3.0 9.0 9.0 12.0 36.0 585 1.0 2.0 2.0 2.0 1.0 1.0 4.0 4.0 4.0 9.0 3.0 1.0 4.0 2.0 2.0 2.0 16.0 12.0 8.0 16.0 16.0 1.0 3.0 3.0 4.0 1.0 3.0 3.0 9.0 9.0 12.0 9.0 27.0 1033 1.0 3.0 2.0 3.0 2.0 9.0 6.0 9.0 4.0 27.0 9.0 9.0 6.0 9.0 4.0 27.0		-	1	2	3	4	5	6	7	8	9		200
54.0 585 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 16.0 12.0 8.0 16.0 1552 1.0 4.0 3.0 2.0 2.0 2.0 16.0 12.0 8.0 16.0 16.0 1169 1.0 3.0 3.0 4.0 1.0 3.0 3.0 9.0 9.0 12.0 9.0 27.0 1033 1.0 3.0 2.0 3.0 1.0 3.0 2.0 9.0 6.0 9.0 4.0 27.0 9.0 6.0 9.0 4.0 27.0 </td <td></td> <td>-</td> <td></td>		-											
585 1.0 2.0 2.0 2.0 3.0 1.0 1.0 4.0 4.0 4.0 9.0 1552 1.0 4.0 3.0 2.0 2.0 2.0 16.0 12.0 8.0 16.0 1169 1.0 3.0 3.0 4.0 1.0 3.0 3.0 9.0 9.0 12.0 9.0 27.0 4.0 27.0 4.0 27.0 4.0 27.0 1130 1.0 3.0 3.0 2.0 3.0 9.0 9.0 9.0 6.0 81.0 24.0 1.0 3.0 4.0 4.0 3.0 2.0 3.0 4.0 8.0 8.0 81.0 <t< td=""><td></td><td>1.0</td><td>3.0</td><td>3.0</td><td>4.0</td><td>2.0</td><td>3.0</td><td>3.0</td><td>9.0</td><td>9.0</td><td>12.0</td><td></td><td>36.0</td></t<>		1.0	3.0	3.0	4.0	2.0	3.0	3.0	9.0	9.0	12.0		36.0
3.0 1552 1.0 4.0 3.0 2.0 2.0 2.0 2.0 16.0 12.0 8.0 16.0 16.0 1169 1.0 3.0 3.0 4.0 1.0 3.0 3.0 9.0 9.0 12.0 9.0 27.0 1033 1.0 3.0 2.0 3.0 1.0 3.0 2.0 9.0 6.0 9.0 4.0 27.0 .		1 0	2 0	2 0	2 0	3 0	1 0	1 0	4 0	4 0	4 0		9.0
16.0 1169 1.0 3.0 3.0 1.0 3.0 3.0 9.0 9.0 12.0 9.0 27.0 1033 1.0 3.0 2.0 3.0 1.0 3.0 2.0 9.0 6.0 9.0 4.0 27.0		1.0	210	210	210	3.0	1.0	1.0	110	110	110	•••	3.0
1169 1.0 3.0 3.0 4.0 1.0 3.0 3.0 9.0 9.0 12.0 9.0 1033 1.0 3.0 2.0 3.0 1.0 3.0 2.0 9.0 6.0 9.0 4.0 27.0 <		1.0	4.0	3.0	2.0	2.0	2.0	2.0	16.0	12.0	8.0		16.0
27.0 1033 1.0 3.0 2.0 3.0 1.0 3.0 2.0 9.0 6.0 9.0 4.0 27.0 <t< td=""><td></td><td>1 0</td><td>2.0</td><td>2.0</td><td>4 0</td><td>1.0</td><td>2.0</td><td>2.0</td><td>0 0</td><td>0 0</td><td>12.0</td><td></td><td>0 0</td></t<>		1 0	2.0	2.0	4 0	1.0	2.0	2.0	0 0	0 0	12.0		0 0
1033 1.0 3.0 2.0 3.0 2.0 9.0 6.0 9.0 4.0 27.0 <td< td=""><td></td><td>1.0</td><td>3.0</td><td>3.0</td><td>4.0</td><td>1.0</td><td>3.0</td><td>3.0</td><td>9.0</td><td>9.0</td><td>12.0</td><td></td><td>9.0</td></td<>		1.0	3.0	3.0	4.0	1.0	3.0	3.0	9.0	9.0	12.0		9.0
27.0		1.0	3.0	2.0	3.0	1.0	3.0	2.0	9.0	6.0	9.0		4.0
1130 1.0 3.0 3.0 2.0 3.0 2.0 3.0 9.0 9.0 6.0 81.0 24.0 1294 1.0 3.0 4.0 4.0 3.0 3.0 2.0 9.0 12.0 12.0 36.0 81.0 860 1.0 2.0 4.0 4.0 3.0 2.0 3.0 4.0 8.0 8.0 81.0 24.0 1459 1.0 4.0 2.0 3.0 1.0 1.0 2.0 16.0 8.0 12.0 4.0 1.0 1126 1.0 3.0 3.0 2.0 3.0 1.0 2.0 9.0 9.0 6.0 36.0													
1130													
24.0 1294 1.0 3.0 4.0 4.0 3.0 3.0 2.0 9.0 12.0 12.0 36.0 81.0 860 1.0 2.0 4.0 4.0 3.0 2.0 3.0 4.0 8.0 8.0 81.0 24.0 1459 1.0 4.0 2.0 3.0 1.0 1.0 2.0 16.0 8.0 12.0 4.0 1.0 1126 1.0 3.0 3.0 2.0 3.0 1.0 2.0 9.0 9.0 6.0 36.0		1 0	3 0	3 0	2 0	3 0	2 0	3 0	0.0	0.0	6.0		Q1 A
1294 1.0 3.0 4.0 4.0 3.0 3.0 2.0 9.0 12.0 12.0 36.0 81.0 860 1.0 2.0 4.0 4.0 3.0 2.0 3.0 4.0 8.0 8.0 81.0 24.0 1459 1.0 4.0 2.0 3.0 1.0 1.0 2.0 16.0 8.0 12.0 4.0 1.0 1126 1.0 3.0 3.0 2.0 3.0 1.0 2.0 9.0 9.0 6.0 36.0		1.0	3.0	3.0	2.0	3.0	2.0	3.0	9.0	9.0	0.0		81.0
860 1.0 2.0 4.0 4.0 3.0 2.0 3.0 4.0 8.0 8.0 81.0 24.0 1459 1.0 4.0 2.0 3.0 1.0 1.0 2.0 16.0 8.0 12.0 4.0 1.0 1126 1.0 3.0 3.0 2.0 3.0 1.0 2.0 9.0 9.0 6.0 36.0		1.0	3.0	4.0	4.0	3.0	3.0	2.0	9.0	12.0	12.0		36.0
24.0 1459 1.0 4.0 2.0 3.0 1.0 1.0 2.0 16.0 8.0 12.0 4.0 1.0 1126 1.0 3.0 3.0 2.0 3.0 1.0 2.0 9.0 9.0 6.0 36.0													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.0	2.0	4.0	4.0	3.0	2.0	3.0	4.0	8.0	8.0		81.0
1.0 1126 1.0 3.0 3.0 2.0 3.0 1.0 2.0 9.0 9.0 6.0 36.0		1 0	40	2 0	3 0	1 0	1 0	2 0	16 O	8 0	12 0		4 0
$1126 1.0 3.0 3.0 2.0 3.0 1.0 2.0 9.0 9.0 6.0 \dots 36.0$		1.0	7.0	2.0	5.0	1.0	1.0	2.0	10.0	0.0	12.0		7.0
3.0	1126	1.0	3.0	3.0	2.0	3.0	1.0	2.0	9.0	9.0	6.0		36.0
	3.0												

```
202
             203
                    204
                          205
                                 206
                                       207
                                              208
                                                    209
1178
      54.0
            54.0
                   54.0
                         81.0
                                81.0
                                      81.0
                                             81.0
                                                   81.0
585
       3.0
             3.0
                   3.0
                          1.0
                                 1.0
                                       1.0
                                              1.0
                                                    1.0
      16.0
            16.0
1552
                   16.0
                         16.0
                                16.0
                                      16.0
                                             16.0
                                                   16.0
1169
      27.0
            27.0
                   27.0
                         81.0
                                81.0
                                      81.0
                                             81.0
                                                   81.0
1033
      18.0
            12.0
                         81.0
                    8.0
                                54.0
                                      36.0
                                             24.0
                                                   16.0
                    . . .
                          . . .
. . .
       . . .
                                       . . .
                                              . . .
                                                    . . .
              . . .
                                 . . .
      36.0
            54.0
                   81.0
                         16.0
                                24.0
                                      36.0
                                             54.0
                                                   81.0
1130
                                            24.0
1294
      54.0
            36.0
                   24.0
                         81.0
                                54.0
                                      36.0
                                                   16.0
860
      36.0
            54.0
                   81.0
                         16.0
                                24.0
                                      36.0
                                            54.0
                                                   81.0
1459
            4.0
                          1.0
                                 2.0
                                       4.0
       2.0
                    8.0
                                             8.0
                                                   16.0
1126
       6.0
           12.0
                  24.0
                          1.0
                                 2.0
                                       4.0
                                              8.0
                                                   16.0
[1209 rows x 210 columns]
y train
1178
        vgood
585
        unacc
1552
          acc
1169
        unacc
1033
        unacc
1130
        vgood
1294
         good
860
          acc
1459
        unacc
1126
          acc
Name: target, Length: 1209, dtype: object
from imblearn.over sampling import SMOTE
from collections import Counter
from matplotlib import pyplot
from sklearn.preprocessing import LabelEncoder
# label encode the target variable
v = LabelEncoder().fit transform(y train)
# transform the dataset
oversample = SMOTE()
X, y = oversample.fit resample(X train, y)
# summarize distribution
counter = Counter(y)
for k,v in counter.items():
     per = v / len(y) * 100
     print('Class=%d, n=%d (%.3f%%)' % (k, v, per))
# plot the distribution
pyplot.bar(counter.keys(), counter.values())
pyplot.show()
```

```
Class=3, n=852 (25.000%)
Class=2, n=852 (25.000%)
Class=0, n=852 (25.000%)
Class=1, n=852 (25.000%)
```



```
X train = X
y train = y
y test = LabelEncoder().fit transform(y test)
# Using Grid search to find the best decision tree classifier with the
given set of parameters.
from sklearn.model selection import GridSearchCV
parameters={'max depth': list(range(1,10)),
            'min samples leaf' : list(range(2,10,1)),
            'min samples split': list(range(5,10,10)),
model=GridSearchCV(DecisionTreeClassifier(class weight='balanced'),par
ameters, n jobs=-1, cv=10, scoring='accuracy', )
model.fit(X train,y train)
print('The best model is ', model.best_estimator_)
print("\n The best model parameters are ",model.best params )
print("\n The model accuracy on train set
is",model.score(X train,y train))
print("\n The model accuracy on test set
is",model.score(X_test,y_test))
y predict=model.predict(X test)
accuracy=accuracy_score(y_test,y_predict,normalize=True)*float(100)
```

```
print('\n\n Classification Report')
print(classification_report(y_test,y_predict))
skplt.plot_confusion_matrix(y_test,y_predict)
```

The model accuracy on test set is 0.9710982658959537

Classification Report

0 10.00 00. 1 _				
	precision	recall	f1-score	support
0	0.98	0.89	0.93	118
1	0.66	1.00	0.79	19
2	0.99	0.99	0.99	358
3	1.00	1.00	1.00	24
accuracy			0.97	519
macro avg	0.91	0.97	0.93	519
weighted avg	0.98	0.97	0.97	519
_				

<AxesSubplot:title={'center':'Confusion Matrix'}, xlabel='Predicted
label', ylabel='True label'>


```
# Importing the required Libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
plt.style.use('seaborn-whitegrid')
import seaborn as sns
# Reading the data
df = pd.read csv('car evaluation.csv', names=['buying', 'maint',
'doors', 'persons', 'lug boot', 'safety', 'target'])
# Visualizing the dataframe
df.head()
         maint doors persons lug boot safety target
  buying
0 vhigh vhigh
                    2
                            2
                                 small
                                          low unacc
1 vhigh vhigh
                    2
                            2
                                 small
                                          med unacc
                            2
2 vhigh vhigh
                    2
                                 small
                                         high unacc
                    2
                            2
3 vhigh vhigh
                                   med
                                          low unacc
                    2
                            2
4 vhigh vhigh
                                   med
                                          med unacc
# Checking the shape of the data
df.shape
(1728, 7)
#Checking for null values and data types
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1728 entries, 0 to 1727
Data columns (total 7 columns):
              Non-Null Count Dtype
     Column
_ _ _
 0
     buying
              1728 non-null
                               object
1
              1728 non-null
     maint
                               object
 2
     doors
              1728 non-null
                               object
 3
     persons
              1728 non-null
                               object
4
    lug boot 1728 non-null
                               object
 5
     safety
               1728 non-null
                               object
6
     target
               1728 non-null
                               object
dtypes: object(7)
memory usage: 94.6+ KB
# Null alues
df.isnull().sum()
buying
            0
maint
            0
```

```
doors 0
persons 0
lug_boot 0
safety 0
target 0
dtype: int64
```

We do not have any null values!

```
#description
df.describe().transpose()
         count unique
                         top freq
          1728
                    4 vhigh
                              432
buying
          1728
                    4 vhigh
                               432
maint
doors
          1728
                    4
                           2
                               432
                    3
                           2
persons
         1728
                               576
                    3 small
lug boot 1728
                               576
          1728
                    3
                         low
                               576
safety
                   4 unacc 1210
target
         1728
#Plotting target distribution
f,ax=plt.subplots(1,2,figsize=(18,8))
df['target'].value counts().plot.pie(ax = ax[0], explode=[0,0.1, 0.2,
0.3], autopct='%1.1f%%', shadow=False, textprops={'fontsize': 14})
ax[0].set title('target')
ax[0].set ylabel('')
sns.countplot('target',data=df,ax=ax[1])
ax[1].set title('target')
C:\Users\hp\Anaconda3\lib\site-packages\seaborn\ decorators.py:43:
FutureWarning: Pass the following variable as a keyword arg: x. From
version 0.12, the only valid positional argument will be `data`, and
passing other arguments without an explicit keyword will result in an
error or misinterpretation.
  FutureWarning
Text(0.5, 1.0, 'target')
```


Pre-processing

```
#Checking the Columns or features
df.columns
Index(['buying', 'maint', 'doors', 'persons', 'lug_boot', 'safety',
'target'], dtype='object')
# find categorical variables
categorical = [var for var in df.columns if df[var].dtype=='0']
print(categorical)
['buying', 'maint', 'doors', 'persons', 'lug boot', 'safety',
'target']
# Find numerical variables
numerical = [var for var in df.columns if df[var].dtype !='0']
print(numerical)
[]
# Printing all the unique classes in the features.
for col in categorical:
    print(df[col].value_counts())
vhigh
         432
high
         432
med
         432
low
         432
```

```
Name: buying, dtype: int64
vhigh
         432
high
         432
med
         432
low
         432
Name: maint, dtype: int64
         432
3
         432
4
         432
5more
         432
Name: doors, dtype: int64
        576
        576
4
        576
more
Name: persons, dtype: int64
small
         576
med
         576
big
         576
Name: lug boot, dtype: int64
        576
low
        576
med
high
        576
Name: safety, dtype: int64
unacc
         1210
          384
acc
           69
good
           65
vgood
Name: target, dtype: int64
```

EDA

```
# Creating pairwise list
cols = df.drop('target', axis = 1).columns
paircols = []
for i in range(len(cols)-1):
    for j in range(i+1, len(cols)):
        paircols.append([cols[i], cols[j]])
```

Univariate Analysis

```
# Histplots for each feature
f,ax=plt.subplots(2,3,figsize=(16,8))
for i, col in enumerate(cols):
    sns.histplot(binwidth=0.5, x=col, hue="target", data=df,
stat="count", multiple="stack", palette="ch:0.25", ax=ax[i%2, i%3])
```


Multivariate analysis

```
# Stripplot for each feature
f,ax=plt.subplots(5,3,figsize=(15,25))
j = -1
for i, col in enumerate(paircols):
    if i%5 == 0: j = j+1
    sns.stripplot(x =col[0], y =col[1], data = df,jitter = True, hue
='target', dodge = True, ax=ax[i%5, j],)
    ax[i%5, j].legend(bbox_to_anchor=(0.7, 0.95), loc=2)
```


Modelling the Decision Tree models

As the dataset has categorical features and hence they needs to be encoded in the appropriate form. There are two main method of encodig:

- 1. One hot encoding
- 2. Label encoding

As we have categorial features that are ordinal in nature i.e that can be ranked (ordered) hence label encoding will solve our purpose. Had there been nominal features we could have preferred one hot encoding.

```
# Getting X and y
X = df.drop('target', axis = 1)
v = df['target']
# importing necessary package for encoding our categorial features
import category encoders as ce
encoder = ce.OrdinalEncoder(cols=cols)
x= encoder.fit transform(X)
x.head()
                                  lug boot
   buying
           maint doors
                         persons
                                           safety
0
        1
               1
                      1
                               1
                                          1
                                                  1
                                                  2
1
        1
               1
                      1
                               1
                                          1
2
                                                  3
                      1
        1
               1
                                1
                                          1
3
                                                  1
        1
               1
                      1
                               1
                                          2
               1
                      1
                                                  2
        1
                                1
# importing necessary packages
from sklearn.metrics import
accuracy_score,confusion matrix,classification report
from sklearn.tree import DecisionTreeClassifier
import scikitplot.metrics as skplt
from sklearn import tree
from sklearn.model selection import train test split
# Splitting data into test train, using a 0.3 split
X_train, X_test, y_train, y_test = train_test_split(x, y,
test size=0.3, random state=42)
# Exploring class distribution under train ,crossvalidation dataset
print('Training Dataset',X_train.shape,y_train.shape)
print('\n Class label distribution in Training Set\
n',y train.value counts())
print('\n*********')
print("\n CrossValidation Dataset",X test.shape,y test.shape)
print('\nClass label distribution in Cross Validation Set\
```

```
n', v test.value counts())
print('\n********')
Training Dataset (1209, 6) (1209,)
 Class label distribution in Training Set
unacc
         852
acc
         266
          50
good
          41
vgood
Name: target, dtype: int64
******
CrossValidation Dataset (519, 6) (519,)
Class label distribution in Cross Validation Set
unacc
          358
acc
         118
vgood
          24
          19
aood
Name: target, dtype: int64
*******
```

Random Forest Classifier

```
# Importing and defining the random search feature space.
from sklearn.ensemble import RandomForestClassifier
from sklearn.model selection import RandomizedSearchCV
# Number of trees in random forest
n estimators = [int(x) for x in range(400, 1400, 200)]
# Number of features to consider at every split
max_features = ['auto', 'sqrt']
# Maximum number of levels in tree
max depth = [int(x) for x in np.linspace(2, 15, num = 1)]
max depth.append(None)
# Minimum number of samples required to split a node
min samples split = [2,3,4,5,7,10]
# Minimum number of samples required at each leaf node
min samples leaf = [1, 2, 4, 5]
# Method of selecting samples for training each tree
bootstrap = [True, False]
# Create the random grid
random grid = {'n estimators': n estimators,
               'max features': max features,
               'max depth': max depth,
               'min samples split': min samples split,
```

```
'min samples leaf': min samples leaf,
               'bootstrap': bootstrap}
print(random grid)
{'n estimators': [400, 600, 800, 1000, 1200], 'max features': ['auto',
'sqrt'], 'max_depth': [2, None], 'min_samples_split': [2, 3, 4, 5, 7,
10], 'min_samples_leaf': [1, 2, 4, 5], 'bootstrap': [True, False]}
# Use the random grid to search for best hyperparameters
# First create the base model to tune
rf = RandomForestClassifier()
# Random search of parameters, using 3 fold cross validation,
# search across 100 different combinations, and use all available
rf random = RandomizedSearchCV(estimator = rf, param distributions =
random grid, n iter = 50, cv = 3, verbose=2, random state=42, n jobs =
# Fit the random search model
rf random.fit(X train, y train)
Fitting 3 folds for each of 50 candidates, totalling 150 fits
RandomizedSearchCV(cv=3, estimator=RandomForestClassifier(),
n iter=50,
                   n iobs=-1,
                   param distributions={'bootstrap': [True, False],
                                         'max depth': [2, None],
                                         'max features': ['auto',
'sqrt'],
                                         'min_samples_leaf': [1, 2, 4,
5],
                                         'min samples split': [2, 3, 4,
5, 7,
                                                               10],
                                         'n estimators': [400, 600,
800, 1000,
                                                          1200]},
                   random state=42, verbose=2)
# Printing the best hyperparameters
rf random.best params
{'n estimators': 400,
 'min samples split': 2,
 'min samples leaf': 1,
 'max_features': 'auto',
 'max depth': None,
 'bootstrap': False}
```

```
# Checking accuracies on the train and test data, predicting on the
test data.
print('The best model is ', rf_random.best_estimator_)
print("\n The best model parameters are ",rf random.best params )
print("\n The model accuracy on train set
is",rf random.score(X_train,y_train))
print("\n The model accuracy on test set
is",rf random.score(X test,y test))
y predict=rf random.predict(X test)
accuracy=accuracy_score(y_test,y_predict,normalize=True)*float(100)
print('\n\n Classification Report')
print(classification_report(y_test,y_predict))
skplt.plot confusion matrix(y test,y predict)
The best model is RandomForestClassifier(bootstrap=False,
n estimators=400)
The best model parameters are {'n estimators': 400,
'min_samples_split': 2, 'min_samples_leaf': 1, 'max_features': 'auto',
'max_depth': None, 'bootstrap': False}
The model accuracy on train set is 1.0
The model accuracy on test set is 0.9653179190751445
Classification Report
              precision
                           recall f1-score
                                              support
                   0.95
                             0.91
                                       0.93
         acc
                                                   118
                   0.74
                             0.89
                                       0.81
        good
                                                    19
       unacc
                   0.99
                             0.99
                                       0.99
                                                   358
                   0.88
                             0.88
       vgood
                                       0.88
                                                    24
                                       0.97
                                                   519
    accuracy
   macro avg
                   0.89
                             0.92
                                       0.90
                                                   519
                   0.97
                             0.97
                                       0.97
                                                   519
weighted avg
<AxesSubplot:title={'center':'Confusion Matrix'}, xlabel='Predicted</pre>
label', ylabel='True label'>
```



```
# Defining the model with the best parameters
clf = RandomForestClassifier(bootstrap=True, max depth=None,
max features='auto', min samples leaf=1, min samples split=3,
n = 1000
clf.fit(X train, y train)
RandomForestClassifier(min samples split=3, n estimators=1000)
print("\n The model accuracy on train set
is",clf.score(X train,y train))
print("\n The model accuracy on test set is",clf.score(X test,y test))
y predict=clf.predict(X test)
accuracy=accuracy score(y test,y predict,normalize=True)*float(100)
print('\n\n Classification Report')
print(classification_report(y_test,y_predict))
skplt.plot confusion matrix(y test,y predict)
The model accuracy on train set is 1.0
The model accuracy on test set is 0.9633911368015414
 Classification Report
              precision
                           recall f1-score
                                              support
                   0.94
                             0.91
                                       0.92
                                                  118
         acc
                   0.77
                             0.89
                                       0.83
                                                   19
        good
```

unacc vgood	0.99 0.84	0.99 0.88	0.99 0.86	358 24
accuracy macro avg weighted avg	0.89 0.96	0.92 0.96	0.96 0.90 0.96	519 519 519

<AxesSubplot:title={'center':'Confusion Matrix'}, xlabel='Predicted
label', ylabel='True label'>

view the feature scores

feature_scores = pd.Series(clf.feature_importances_,
index=X_train.columns).sort_values(ascending=False)

feature_scores

safety 0.308498
persons 0.240509
maint 0.156148
buying 0.150323
lug_boot 0.085616
doors 0.058907
dtype: float64

Creating a seaborn bar plot

```
sns.barplot(x=feature_scores, y=feature_scores.index)
# Add labels to the graph
plt.xlabel('Feature Importance Score')
plt.ylabel('Features')
# Add title to the graph
plt.title("Visualizing Important Features")
# Visualize the graph
plt.show()
```


Building a model on selected features without the least important feature

```
# declare feature vector and target variable, without the least
important feature

X1 = df.drop(['target', 'doors'], axis=1)

y1 = df['target']

# split data into training and testing sets

from sklearn.model_selection import train_test_split

X_train1, X_test1, y_train1, y_test1 = train_test_split(X1, y1, test_size = 0.33, random_state = 42)
```

```
# encode categorical variables with ordinal encoding
encoder = ce.OrdinalEncoder(cols=['buying', 'maint', 'persons',
'lug boot', 'safety'])
X train1 = encoder.fit transform(X train1)
X test1 = encoder.transform(X test1)
# modelling without the least important feature
clf = RandomForestClassifier(bootstrap=True, max depth=None,
max_features='auto', min_samples_leaf=1, min_samples_split=3,
n = 1000
clf.fit(X train1, y train1)
RandomForestClassifier(min samples split=3, n estimators=1000)
print("\n The model accuracy on train set
is",clf.score(X train1,y train1))
print("\n The model accuracy on test set
is",clf.score(X test1,y test1))
v predict1=clf.predict(X test1)
accuracy=accuracy score(y test1,y predict1,normalize=True)*float(100)
print('\n\n Classification Report')
print(classification report(y test1,y predict1))
skplt.plot confusion matrix(y test1,y predict1)
The model accuracy on train set is 0.9688850475367329
The model accuracy on test set is 0.9334500875656743
 Classification Report
              precision
                           recall f1-score
                                              support
                   0.89
                             0.84
                                       0.86
                                                   129
         acc
                   0.56
                             0.90
                                       0.69
                                                   20
        good
                             0.97
       unacc
                   0.98
                                       0.98
                                                  397
                   0.80
                             0.80
                                       0.80
                                                   25
       vgood
                                       0.93
                                                   571
    accuracy
                   0.81
                             0.88
                                       0.83
                                                   571
   macro avg
                             0.93
                                       0.94
                                                  571
weighted avg
                   0.94
<AxesSubplot:title={'center':'Confusion Matrix'}, xlabel='Predicted</pre>
label', ylabel='True label'>
```


Xgboost

```
# import machine learning libraries
import xgboost as xgb
# import packages for hyperparameters tuning
from hyperopt import STATUS OK, Trials, fmin, hp, tpe
# Defining the feature space for search
space={'max depth': hp.quniform("max depth", 3, 18, 1),
        'gamma': hp.uniform ('gamma', <mark>1</mark>,<mark>9</mark>),
        'reg_alpha' : hp.quniform('reg_alpha', 40,180,1),
        'reg_lambda' : hp.uniform('reg_lambda', 0,1),
        'colsample bytree': hp.uniform('colsample bytree', 0.5,1),
        'min child weight' : hp.quniform('min child weight', 0, 10,
1),
        'n estimators': 180,
        'seed': 42
    }
# Deifning the objective function to minimize as this is required by
hyperopt library
def objective(space):
    clf=xqb.XGBClassifier(
                     n_estimators =space['n_estimators'], max_depth =
int(space['max depth']), gamma = space['gamma'],
                     reg alpha =
int(space['reg alpha']),min child weight=int(space['min child weight']
```

```
),
                    colsample bytree=int(space['colsample bytree']))
    evaluation = [( X train, y train), ( X test, y test)]
    clf.fit(X train, y train,
            eval set=evaluation, eval metric = 'merror',
            early stopping rounds=10, verbose=2)
    pred = clf.predict(X test)
    accuracy = accuracy score(y test, pred)
    print ("SCORE:", accuracy)
    return {'loss': -accuracy, 'status': STATUS OK }
# Getting the optimum
trials = Trials()
best hyperparams = fmin(fn = objective,
                        space = space,
                        algo = tpe.suggest,
                        \max \text{ evals} = 100,
                        trials = trials)
   0%|
| 0/100 [00:00<?, ?trial/s, best loss=?]
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use label encoder=False when
constructing XGBClassifier object; and \overline{2}) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label encoder deprecation msg, UserWarning)
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[10] validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
```

```
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[10] validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[10] validation 0-merror:0.29529validation 1-merror:0.31021
  2%||
                                                    | 2/100
[00:00<00:30, 3.26trial/s, best loss: -0.6897880539499036]
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use label encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (v) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label encoder deprecation msg, UserWarning)
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
```

and will be removed in a future release. To remove this warning, do

constructing XGBClassifier object; and 2) Encode your labels (y) as

the following: 1) Pass option use label encoder=False when

integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label encoder deprecation msg, UserWarning)

SCORE:

0.6897880539499036

- [0] validation_0-merror:0.29529validation_1-merror:0.31021
- [2] validation_0-merror:0.29529validation_1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [10] validation_0-merror:0.29529validation_1-merror:0.31021

SCORE:

0.6897880539499036

- [0] validation 0-merror:0.29529validation 1-merror:0.31021
- [2] validation 0-merror:0.29529validation 1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [9] validation 0-merror:0.29529validation 1-merror:0.31021

SCORE:

0.6897880539499036

4%| | 4/100 | 4/100 | 4/100 | 60:01<00:16, 5.80trial/s, best loss: -0.6897880539499036]

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label encoder deprecation msg, UserWarning)

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].

warnings.warn(label encoder deprecation msg, UserWarning) [0] validation 0-merror:0.29529validation 1-merror:0.31021 [2] validation 0-merror:0.29529validation 1-merror:0.31021 [4] validation 0-merror:0.29529validation 1-merror:0.31021 [6] validation 0-merror:0.29529validation 1-merror:0.31021 [8] validation 0-merror:0.29529validation 1-merror:0.31021 [10] validation 0-merror:0.29529validation 1-merror:0.31021 SCORE: 0.6897880539499036 [0] validation 0-merror:0.29529validation 1-merror:0.31021 [2] validation 0-merror:0.29529validation 1-merror:0.31021 [4] validation_0-merror:0.29529validation_1-merror:0.31021 [6] validation 0-merror:0.29529validation 1-merror:0.31021 [8] validation 0-merror:0.29529validation 1-merror:0.31021 [9] validation 0-merror:0.29529validation 1-merror:0.31021 SCORE: 0.6897880539499036 6%II 6/100 [00:01<00:12, 7.62trial/s, best loss: -0.6897880539499036] C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224: UserWarning: The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use label encoder=False when constructing XGBClassifier object; and $\overline{2}$) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224: UserWarning: The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as

warnings.warn(label encoder deprecation msg, UserWarning)

```
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
 warnings.warn(label encoder deprecation msg, UserWarning)
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[9]
     validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
     validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
  8%1
                                                     | 8/100
[00:01<00:10, 8.57trial/s, best loss: -0.6897880539499036]
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
```

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label encoder deprecation msg, UserWarning)

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when

```
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label_encoder_deprecation_msg, UserWarning)
```

- [0] validation_0-merror:0.29529validation_1-merror:0.31021
- [2] validation_0-merror:0.29529validation_1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [9] validation_0-merror:0.29529validation_1-merror:0.31021

SCORE:

0.6897880539499036

- [0] validation_0-merror:0.29529validation_1-merror:0.31021
- [2] validation 0-merror:0.29529validation 1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation_0-merror:0.29529validation_1-merror:0.31021
- [8] validation 0-merror:0.29529validation_1-merror:0.31021
- [9] validation 0-merror:0.29529validation 1-merror:0.31021

SCORE:

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label_encoder_deprecation_msg, UserWarning)

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].

```
warnings.warn(label encoder deprecation msg, UserWarning)
0.6897880539499036
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[10] validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[10] validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
13%|
                                                    | 13/100
[00:01<00:09, 9.66trial/s, best loss: -0.6897880539499036]
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use label encoder=False when
constructing XGBClassifier object; and \overline{2}) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
 warnings.warn(label encoder deprecation msg, UserWarning)
```

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do

the following: 1) Pass option use label encoder=False when

```
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
 warnings.warn(label encoder deprecation msg, UserWarning)
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[9]
     validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
[0] validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
     validation 0-merror:0.29529validation_1-merror:0.31021
[8]
[10] validation_0-merror:0.29529validation_1-merror:0.31021
SCORE:
0.6897880539499036
15%|
                                                    | 15/100
[00:01<00:08, 9.93trial/s, best loss: -0.6897880539499036]
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use label encoder=False when
constructing XGBClassifier object; and \overline{2}) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
 warnings.warn(label encoder deprecation msg, UserWarning)
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
```

UserWarning: The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do

```
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and \overline{2}) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
  warnings.warn(label_encoder_deprecation_msg, UserWarning)
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation_0-merror:0.29529validation_1-merror:0.31021
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
[10] validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
     validation 0-merror:0.29529validation 1-merror:0.31021
[0]
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
     validation_0-merror:0.29529validation_1-merror:0.31021
[4]
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[10] validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
                                                    | 17/100
[00:02<00:08, 10.12trial/s, best loss: -0.6897880539499036]
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use label encoder=False when
constructing XGBClassifier object; and \overline{2}) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
  warnings.warn(label encoder deprecation msg, UserWarning)
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
```

UserWarning: The use of label encoder in XGBClassifier is deprecated

and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1]. warnings.warn(label_encoder_deprecation_msg, UserWarning)

- [0] validation_0-merror:0.29529validation_1-merror:0.31021
- [2] validation_0-merror:0.29529validation_1-merror:0.31021
- [4] validation_0-merror:0.29529validation_1-merror:0.31021
- [6] validation_0-merror:0.29529validation_1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [9] validation_0-merror:0.29529validation_1-merror:0.31021

SCORE:

0.6897880539499036

- [0] validation_0-merror:0.29529validation_1-merror:0.31021
- [2] validation 0-merror:0.29529validation 1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [9] validation 0-merror:0.29529validation 1-merror:0.31021

SCORE:

0.6897880539499036

19%| | 19/100 | 19/10

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label encoder deprecation msg, UserWarning)

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:

```
UserWarning: The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1]. warnings.warn(label_encoder_deprecation_msg, UserWarning)
```

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label encoder deprecation msg, UserWarning)

- [0] validation 0-merror:0.29529validation 1-merror:0.31021
- [2] validation_0-merror:0.29529validation_1-merror:0.31021
- [4] validation_0-merror:0.29529validation_1-merror:0.31021
- [6] validation_0-merror:0.29529validation_1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [9] validation_0-merror:0.29529validation_1-merror:0.31021

SCORE:

0.6897880539499036

- [0] validation 0-merror:0.29529validation 1-merror:0.31021
- [2] validation 0-merror:0.29529validation 1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [9] validation 0-merror:0.29529validation 1-merror:0.31021

SCORE:

- [0] validation 0-merror:0.29529validation 1-merror:0.31021
- [2] validation 0-merror:0.29529validation 1-merror:0.31021

- [4] validation_0-merror:0.29529validation_1-merror:0.31021
- [6] validation_0-merror:0.29529validation_1-merror:0.31021
- [8] validation_0-merror:0.29529validation_1-merror:0.31021
- [10] validation 0-merror:0.29529validation 1-merror:0.31021

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label encoder deprecation msg, UserWarning)

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label_encoder_deprecation_msg, UserWarning)

SCORE:

0.6897880539499036

- [0] validation 0-merror:0.29529validation 1-merror:0.31021
- [2] validation 0-merror:0.29529validation 1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [9] validation 0-merror:0.29529validation 1-merror:0.31021

SCORE:

- [0] validation 0-merror:0.29529validation 1-merror:0.31021
- [2] validation_0-merror:0.29529validation_1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021

- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021

23%| 23%| 23%| 23/100 | 23/100

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label_encoder_deprecation_msg, UserWarning)

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label encoder deprecation msg, UserWarning)

[10] validation_0-merror:0.29529validation_1-merror:0.31021
SCORE:

0.6897880539499036

- [0] validation_0-merror:0.29529validation_1-merror:0.31021
- [2] validation 0-merror:0.29529validation 1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation_0-merror:0.29529validation_1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [9] validation 0-merror:0.29529validation 1-merror:0.31021

SCORE:

- [0] validation 0-merror:0.29529validation 1-merror:0.31021
- [2] validation 0-merror:0.29529validation 1-merror:0.31021

```
[4]
     validation 0-merror:0.29529validation_1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
 25%|
                                                    | 25/100
[00:03<00:09, 8.09trial/s, best loss: -0.6897880539499036]
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
  warnings.warn(label encoder deprecation msg, UserWarning)
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use label encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
  warnings.warn(label_encoder_deprecation_msg, UserWarning)
[8] validation 0-merror:0.29529validation 1-merror:0.31021
[10] validation 0-merror:0.29529validation_1-merror:0.31021
SCORE:
0.6897880539499036
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[9]
     validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
     validation 0-merror:0.29529validation 1-merror:0.31021
[0]
```

validation 0-merror:0.29529validation 1-merror:0.31021

[2]

- [4] validation_0-merror:0.29529validation_1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation_0-merror:0.29529validation_1-merror:0.31021
- [9] validation 0-merror:0.29529validation 1-merror:0.31021

27%| | 27/100 | 27/10

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label_encoder_deprecation_msg, UserWarning)

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label_encoder_deprecation_msg, UserWarning)

SCORE:

0.6897880539499036

- [0] validation_0-merror:0.29529validation_1-merror:0.31021
- [2] validation 0-merror:0.29529validation 1-merror:0.31021
- [4] validation_0-merror:0.29529validation_1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [9] validation 0-merror:0.29529validation 1-merror:0.31021

SCORE:

0.6897880539499036

[0] validation 0-merror:0.29529validation 1-merror:0.31021

- [2] validation 0-merror:0.29529validation 1-merror:0.31021
- [4] validation_0-merror:0.29529validation_1-merror:0.31021
- [6] validation_0-merror:0.29529validation_1-merror:0.31021
- [8] validation_0-merror:0.29529validation_1-merror:0.31021
- [10] validation 0-merror:0.29529validation 1-merror:0.31021

29%| 29%| 29/100 | 29

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label_encoder_deprecation_msg, UserWarning)

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label encoder deprecation msg, UserWarning)

SCORE:

0.6897880539499036

- [0] validation_0-merror:0.29529validation_1-merror:0.31021
- [2] validation_0-merror:0.29529validation_1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [9] validation 0-merror:0.29529validation 1-merror:0.31021

SCORE:

0.6897880539499036

[0] validation 0-merror:0.29529validation 1-merror:0.31021

```
validation 0-merror:0.29529validation 1-merror:0.31021
[2]
 31%|
                                                    | 31/100
[00:04<00:09, 7.24trial/s, best loss: -0.6897880539499036]
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use label encoder=False when
constructing XGBClassifier object; and \overline{2}) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
  warnings.warn(label encoder deprecation msg, UserWarning)
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
  warnings.warn(label_encoder_deprecation_msg, UserWarning)
[4]
     validation_0-merror:0.29529validation_1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[10] validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation_0-merror:0.29529validation_1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[9]
     validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
```

```
[0]
     validation 0-merror:0.29529validation_1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
 33%|
                                                    33/100
[00:04<00:09, 6.93trial/s, best loss: -0.6897880539499036]
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
  warnings.warn(label encoder deprecation msg, UserWarning)
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use label encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
  warnings.warn(label_encoder_deprecation_msg, UserWarning)
[4] validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[10] validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[9]
     validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
```

```
validation 0-merror:0.29529validation 1-merror:0.31021
[0]
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use label encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label_encoder_deprecation_msg, UserWarning)
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use label encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label encoder deprecation msg, UserWarning)
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[10] validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation_0-merror:0.29529validation_1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[10] validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
```

```
37%|
                                                    | 37/100
[00:04<00:10, 6.07trial/s, best loss: -0.6897880539499036]
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
 warnings.warn(label_encoder_deprecation_msg, UserWarning)
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[9]
     validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
38%|
                                                    1 38/100
[00:05<00:10, 6.19trial/s, best loss: -0.6897880539499036]
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and \overline{2}) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
 warnings.warn(label encoder deprecation msg, UserWarning)
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use label encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label encoder deprecation msg, UserWarning)
```

- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation_0-merror:0.29529validation_1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [10] validation_0-merror:0.29529validation_1-merror:0.31021

0.6897880539499036

- [0] validation_0-merror:0.29529validation_1-merror:0.31021
- [2] validation_0-merror:0.29529validation_1-merror:0.31021
- [4] validation_0-merror:0.29529validation_1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [9] validation 0-merror:0.29529validation 1-merror:0.31021

SCORE:

0.6897880539499036

[0] validation_0-merror:0.29529validation_1-merror:0.31021

40%| 40%| 40/100 | 40

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label_encoder_deprecation_msg, UserWarning)

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label encoder deprecation msg, UserWarning)

- [2] validation 0-merror:0.29529validation 1-merror:0.31021
- [4] validation_0-merror:0.29529validation_1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [10] validation 0-merror:0.29529validation 1-merror:0.31021

0.6897880539499036

- [0] validation_0-merror:0.29529validation_1-merror:0.31021
- [2] validation_0-merror:0.29529validation_1-merror:0.31021
- [4] validation_0-merror:0.29529validation_1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [9] validation_0-merror:0.29529validation_1-merror:0.31021

SCORE:

0.6897880539499036

[0] validation_0-merror:0.29529validation_1-merror:0.31021

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label encoder deprecation msg, UserWarning)

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label_encoder_deprecation_msg, UserWarning)

- [2] validation 0-merror:0.29529validation 1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [9] validation_0-merror:0.29529validation_1-merror:0.31021

0.6897880539499036

- [0] validation 0-merror:0.29529validation 1-merror:0.31021
- [2] validation 0-merror:0.29529validation 1-merror:0.31021
- [4] validation_0-merror:0.29529validation_1-merror:0.31021
- [6] validation_0-merror:0.29529validation_1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [10] validation_0-merror:0.29529validation_1-merror:0.31021

SCORE:

0.6897880539499036

44%| 44%| 44/100 | 44/100 | 44/100 | 44/100 | 6<00:09, 5.96trial/s, best loss: -0.6897880539499036]

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label_encoder_deprecation_msg, UserWarning)

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label encoder deprecation msg, UserWarning)

- [0] validation 0-merror:0.29529validation 1-merror:0.31021
- [2] validation 0-merror:0.29529validation 1-merror:0.31021

```
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[10] validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
45%|
                                                    | 45/100
[00:06<00:11, 4.95trial/s, best loss: -0.6897880539499036]
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation_0-merror:0.29529validation_1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[10] validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
46%|
[00:06<00:10, 5.34trial/s, best loss: -0.6897880539499036]
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use label encoder=False when
constructing XGBClassifier object; and \overline{2}) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
 warnings.warn(label encoder deprecation msg, UserWarning)
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
```

UserWarning: The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do

```
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and \overline{2}) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
  warnings.warn(label encoder deprecation msg, UserWarning)
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[10] validation_0-merror:0.29529validation_1-merror:0.31021
SCORE:
0.6897880539499036
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[9]
     validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
                                                    | 48/100
48%|
[00:06<00:09, 5.70trial/s, best loss: -0.6897880539499036]
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use label encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
  warnings.warn(label encoder deprecation msg, UserWarning)
```

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label encoder deprecation msg, UserWarning)

- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation_0-merror:0.29529validation_1-merror:0.31021
- [9] validation_0-merror:0.29529validation_1-merror:0.31021

SCORE:

0.6897880539499036

- [0] validation_0-merror:0.29529validation_1-merror:0.31021
- [2] validation_0-merror:0.29529validation_1-merror:0.31021
- [4] validation 0-merror:0.29529validation_1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [10] validation 0-merror:0.29529validation 1-merror:0.31021

SCORE:

0.6897880539499036

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label encoder deprecation msg, UserWarning)

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224: UserWarning: The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as

```
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
 warnings.warn(label encoder deprecation msg, UserWarning)
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[10] validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[10] validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
 52%|
                                                    | 52/100
[00:07<00:08, 5.67trial/s, best loss: -0.6897880539499036]
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use label encoder=False when
constructing XGBClassifier object; and \overline{2}) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
 warnings.warn(label encoder deprecation msg, UserWarning)
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
```

UserWarning: The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do

the following: 1) Pass option use label encoder=False when

```
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
 warnings.warn(label encoder deprecation msg, UserWarning)
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[9]
     validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[9]
     validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
 54%1
                                                    | 54/100
[00:07<00:09, 4.99trial/s, best loss: -0.6897880539499036]
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use label encoder=False when
constructing XGBClassifier object; and \overline{2}) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
 warnings.warn(label encoder deprecation msg, UserWarning)
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
```

validation 0-merror:0.29529validation 1-merror:0.31021

[2]

```
[4] validation_0-merror:0.29529validation_1-merror:0.31021
[6] validation_0-merror:0.29529validation_1-merror:0.31021
```

[8] validation_0-merror:0.29529validation_1-merror:0.31021

[10] validation_0-merror:0.29529validation_1-merror:0.31021

SCORE:

0.6897880539499036

[0] validation_0-merror:0.29529validation_1-merror:0.31021

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label encoder deprecation msg, UserWarning)

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label_encoder_deprecation_msg, UserWarning)

- [2] validation 0-merror:0.29529validation 1-merror:0.31021
- [4] validation_0-merror:0.29529validation_1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [10] validation 0-merror:0.29529validation 1-merror:0.31021

SCORE:

0.6897880539499036

[0] validation 0-merror:0.29529validation 1-merror:0.31021

```
[2] validation_0-merror:0.29529validation_1-merror:0.31021
```

- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation_0-merror:0.29529validation_1-merror:0.31021
- [8] validation_0-merror:0.29529validation_1-merror:0.31021
- [10] validation 0-merror:0.29529validation 1-merror:0.31021

0.6897880539499036

- [0] validation_0-merror:0.29529validation_1-merror:0.31021
- [2] validation_0-merror:0.29529validation_1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021

57%| 57%| 57/100 | 57

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label_encoder_deprecation_msg, UserWarning)

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label_encoder_deprecation_msg, UserWarning)

- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [10] validation 0-merror:0.29529validation 1-merror:0.31021

SCORE:

0.6897880539499036

[0] validation 0-merror:0.29529validation 1-merror:0.31021

- [2] validation 0-merror:0.29529validation 1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation_0-merror:0.29529validation_1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [9] validation 0-merror:0.29529validation 1-merror:0.31021

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label_encoder_deprecation_msg, UserWarning)

0.6897880539499036

- [0] validation 0-merror:0.29529validation 1-merror:0.31021
- [2] validation 0-merror:0.29529 validation 1-merror:0.31021

59%| | 59/100 | 59/10

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label encoder deprecation msg, UserWarning)

- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [10] validation 0-merror:0.29529validation 1-merror:0.31021

SCORE:

```
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[9]
     validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
                                                    | 61/100
[00:09<00:10, 3.67trial/s, best loss: -0.6897880539499036]
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use label encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label encoder deprecation msq, UserWarning)
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use label encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
 warnings.warn(label encoder deprecation msg, UserWarning)
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[10] validation 0-merror:0.29529validation 1-merror:0.31021
61%||
                                                    | 61/100
```

[00:09<00:10, 3.67trial/s, best loss: -0.6897880539499036]

SCORE: 0.6897880539499036 [0] validation 0-merror:0.29529validation 1-merror:0.31021 [2] validation 0-merror:0.29529validation 1-merror:0.31021 [4] validation 0-merror:0.29529validation 1-merror:0.31021 [6] validation 0-merror:0.29529validation 1-merror:0.31021 [8] validation 0-merror:0.29529validation 1-merror:0.31021 [9] validation 0-merror:0.29529validation 1-merror:0.31021 SCORE: 0.6897880539499036 63%| | 63/100 [00:10<00:10, 3.46trial/s, best loss: -0.6897880539499036] C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224: UserWarning: The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use label encoder=False when constructing XGBClassifier object; and $\overline{2}$) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1]. warnings.warn(label encoder deprecation msg, UserWarning) [0] validation 0-merror:0.29529validation 1-merror:0.31021 [2] validation 0-merror:0.29529validation 1-merror:0.31021 [4] validation 0-merror:0.29529validation 1-merror:0.31021 [6] validation 0-merror:0.29529validation 1-merror:0.31021 [8] validation 0-merror:0.29529validation 1-merror:0.31021 [9] validation 0-merror:0.29529validation 1-merror:0.31021 SCORE: 0.6897880539499036 64%1 | 64/100

[00:10<00:09, 3.69trial/s, best loss: -0.6897880539499036]

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label encoder deprecation msg, UserWarning)

- [0] validation 0-merror:0.29529validation 1-merror:0.31021
- [2] validation_0-merror:0.29529validation_1-merror:0.31021
- [4] validation_0-merror:0.29529validation_1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021

64%| 64%| 64/100 | 64

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label encoder deprecation msg, UserWarning)

- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [10] validation 0-merror:0.29529validation 1-merror:0.31021

SCORE:

0.6897880539499036

- [0] validation 0-merror:0.29529validation 1-merror:0.31021
- [2] validation_0-merror:0.29529validation_1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [10] validation 0-merror:0.29529validation 1-merror:0.31021

```
0.6897880539499036
     validation 0-merror:0.29529validation 1-merror:0.31021
66%|
                                                   | 66/100
[00:11<00:08, 3.78trial/s, best loss: -0.6897880539499036]
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
 warnings.warn(label encoder deprecation msg, UserWarning)
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use label encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label_encoder_deprecation_msg, UserWarning)
[2] validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[10] validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
     validation 0-merror:0.29529validation 1-merror:0.31021
[0]
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
     validation 0-merror:0.29529validation 1-merror:0.31021
[9]
```

0.6897880539499036

- [0] validation_0-merror:0.29529validation_1-merror:0.31021
- [2] validation_0-merror:0.29529validation_1-merror:0.31021

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label encoder deprecation msg, UserWarning)

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label_encoder_deprecation_msg, UserWarning)

- [4] validation_0-merror:0.29529validation_1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [9] validation 0-merror:0.29529validation 1-merror:0.31021

SCORE:

0.6897880539499036

- [0] validation_0-merror:0.29529validation_1-merror:0.31021
- [2] validation 0-merror:0.29529validation 1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [10] validation 0-merror:0.29529validation 1-merror:0.31021

```
0.6897880539499036
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
70%|
                                                   | 70/100
[00:11<00:05, 5.57trial/s, best loss: -0.6897880539499036]
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use label encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
  warnings.warn(label encoder deprecation msg, UserWarning)
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use label encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
 warnings.warn(label encoder deprecation msg, UserWarning)
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8] validation 0-merror:0.29529validation 1-merror:0.31021
[10] validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
     validation 0-merror:0.29529validation 1-merror:0.31021
[0]
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[10] validation 0-merror:0.29529validation 1-merror:0.31021
```

0.6897880539499036

- [0] validation_0-merror:0.29529validation_1-merror:0.31021
- [2] validation_0-merror:0.29529validation_1-merror:0.31021

72%| | 72/100 | 72/10

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label_encoder_deprecation_msg, UserWarning)

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label_encoder_deprecation_msg, UserWarning)

- [4] validation_0-merror:0.29529validation_1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [10] validation_0-merror:0.29529validation_1-merror:0.31021
 SCORE:

- [0] validation 0-merror:0.29529validation 1-merror:0.31021
- [2] validation 0-merror:0.29529validation 1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [9] validation 0-merror:0.29529validation 1-merror:0.31021

0.6897880539499036

[0] validation 0-merror:0.29529validation 1-merror:0.31021

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label encoder deprecation msg, UserWarning)

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label_encoder_deprecation_msg, UserWarning)

- [2] validation_0-merror:0.29529validation_1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [10] validation_0-merror:0.29529validation_1-merror:0.31021

SCORE:

- [0] validation 0-merror:0.29529validation 1-merror:0.31021
- [2] validation 0-merror:0.29529validation 1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [9] validation 0-merror:0.29529validation 1-merror:0.31021

0.6897880539499036

[0] validation_0-merror:0.29529validation_1-merror:0.31021

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label encoder deprecation msg, UserWarning)

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label_encoder_deprecation_msg, UserWarning)

- [2] validation 0-merror:0.29529validation 1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [10] validation_0-merror:0.29529validation_1-merror:0.31021

SCORE:

- [0] validation 0-merror:0.29529validation 1-merror:0.31021
- [2] validation 0-merror:0.29529validation 1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [10] validation 0-merror:0.29529validation 1-merror:0.31021

```
SCORE:
0.6897880539499036
     validation 0-merror:0.29529validation 1-merror:0.31021
78%|
                                                    | 78/100
[00:13<00:03, 6.02trial/s, best loss: -0.6897880539499036]
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use label encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
  warnings.warn(label encoder deprecation msg, UserWarning)
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use label encoder=False when
constructing XGBClassifier object; and \overline{2}) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
 warnings.warn(label encoder deprecation msg, UserWarning)
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[9]
     validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
79%|
                                                    | 79/100
[00:13<00:03, 5.91trial/s, best loss: -0.6897880539499036]
```

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label encoder deprecation msg, UserWarning)

- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [10] validation_0-merror:0.29529validation_1-merror:0.31021 SCORE:

0.6897880539499036

- [0] validation 0-merror:0.29529validation 1-merror:0.31021
- [2] validation 0-merror:0.29529validation 1-merror:0.31021
- [4] validation_0-merror:0.29529validation_1-merror:0.31021
- [6] validation 0-merror:0.29529validation_1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [10] validation_0-merror:0.29529validation_1-merror:0.31021

SCORE:

0.6897880539499036

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label_encoder_deprecation_msg, UserWarning)

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].

```
warnings.warn(label encoder deprecation msg, UserWarning)
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
     validation 0-merror:0.29529validation 1-merror:0.31021
[9]
SCORE:
0.6897880539499036
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation_0-merror:0.29529validation_1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[10] validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
 83%II
                                                    83/100
[00:14<00:04, 3.94trial/s, best loss: -0.6897880539499036]
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use label encoder=False when
constructing XGBClassifier object; and \overline{2}) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
  warnings.warn(label encoder deprecation msg, UserWarning)
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
```

```
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
     validation 0-merror:0.29529validation_1-merror:0.31021
[8]
[10] validation 0-merror:0.29529validation 1-merror:0.31021
83%|
                                                    83/100
[00:14<00:04, 3.94trial/s, best loss: -0.6897880539499036]
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and \overline{2}) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label encoder deprecation msg, UserWarning)
SCORE:
0.6897880539499036
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4] validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[10] validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
85%|
                                                    85/100
[00:14<00:04, 3.67trial/s, best loss: -0.6897880539499036]
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
```

integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label encoder deprecation_msg, UserWarning)

- [0] validation 0-merror:0.29529validation 1-merror:0.31021
- [2] validation_0-merror:0.29529validation_1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation_0-merror:0.29529validation_1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [10] validation 0-merror:0.29529validation 1-merror:0.31021

0.6897880539499036

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label encoder deprecation msg, UserWarning)

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label_encoder_deprecation_msg, UserWarning)

- [0] validation_0-merror:0.29529validation_1-merror:0.31021
- [2] validation 0-merror:0.29529validation 1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [9] validation 0-merror:0.29529validation 1-merror:0.31021

SCORE:

- [0] validation_0-merror:0.29529validation_1-merror:0.31021
- [2] validation_0-merror:0.29529validation_1-merror:0.31021
- [4] validation_0-merror:0.29529validation_1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [10] validation 0-merror:0.29529validation 1-merror:0.31021

SCORE:

0.6897880539499036

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label_encoder_deprecation_msg, UserWarning)

- [0] validation_0-merror:0.29529validation_1-merror:0.31021
- [2] validation 0-merror:0.29529validation 1-merror:0.31021

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label encoder deprecation msg, UserWarning)

- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [10] validation 0-merror:0.29529validation 1-merror:0.31021

SCORE:

0.6897880539499036

- [0] validation 0-merror:0.29529validation 1-merror:0.31021
- [2] validation 0-merror:0.29529validation 1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation_0-merror:0.29529validation_1-merror:0.31021
- [8] validation_0-merror:0.29529validation_1-merror:0.31021
- [9] validation 0-merror:0.29529validation 1-merror:0.31021

SCORE:

0.6897880539499036

```
90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90%| | 90
```

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label_encoder_deprecation_msg, UserWarning)

- [0] validation 0-merror:0.29529validation 1-merror:0.31021
- [2] validation 0-merror:0.29529validation 1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [9] validation 0-merror:0.29529validation 1-merror:0.31021

SCORE:

0.6897880539499036

[0] validation_0-merror:0.29529validation_1-merror:0.31021

```
91%|
                                                   | 91/100
[00:16<00:02, 3.88trial/s, best loss: -0.6897880539499036]
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
 warnings.warn(label_encoder_deprecation_msg, UserWarning)
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use label encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (v) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label encoder deprecation_msg, UserWarning)
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[9]
     validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation_0-merror:0.29529validation_1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[10] validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
     validation 0-merror:0.29529validation 1-merror:0.31021
[0]
```

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].

warnings.warn(label encoder deprecation msg, UserWarning)

C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label encoder deprecation msg, UserWarning)

- [2] validation_0-merror:0.29529validation_1-merror:0.31021
- [4] validation_0-merror:0.29529validation_1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [9] validation_0-merror:0.29529validation_1-merror:0.31021

SCORE:

0.6897880539499036

- [0] validation 0-merror:0.29529validation 1-merror:0.31021
- [2] validation_0-merror:0.29529validation_1-merror:0.31021
- [4] validation 0-merror:0.29529validation 1-merror:0.31021
- [6] validation 0-merror:0.29529validation 1-merror:0.31021
- [8] validation 0-merror:0.29529validation 1-merror:0.31021
- [10] validation 0-merror:0.29529validation 1-merror:0.31021

SCORE:

0.6897880539499036

```
95%|
                                                    | 95/100
[00:17<00:00, 5.25trial/s, best loss: -0.6897880539499036]
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
 warnings.warn(label_encoder_deprecation_msg, UserWarning)
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use label encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (v) as
integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label encoder deprecation_msg, UserWarning)
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[9]
     validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation_0-merror:0.29529validation_1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[10] validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
```

0.6897880539499036

```
[0]
     validation 0-merror:0.29529validation 1-merror:0.31021
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
 97%|
[00:17<00:00, 5.69trial/s, best loss: -0.6897880539499036]
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use label encoder=False when
constructing XGBClassifier object; and \overline{2}) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
  warnings.warn(label encoder deprecation msg, UserWarning)
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use label encoder=False when
constructing XGBClassifier object; and \overline{2}) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
  warnings.warn(label encoder deprecation msg, UserWarning)
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[10] validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
     validation_0-merror:0.29529validation_1-merror:0.31021
[0]
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
```

validation 0-merror:0.29529validation 1-merror:0.31021

validation 0-merror:0.29529validation 1-merror:0.31021

[8]

[9]

SCORE:

```
0.6897880539499036
     validation 0-merror:0.29529validation 1-merror:0.31021
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use label encoder=False when
constructing XGBClassifier object; and \overline{2}) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
 warnings.warn(label encoder deprecation msg, UserWarning)
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and 2) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
 warnings.warn(label encoder deprecation msg, UserWarning)
[2]
     validation 0-merror:0.29529validation 1-merror:0.31021
[4]
     validation 0-merror:0.29529validation 1-merror:0.31021
[6]
     validation 0-merror:0.29529validation 1-merror:0.31021
[8]
     validation 0-merror:0.29529validation 1-merror:0.31021
[9]
     validation 0-merror:0.29529validation 1-merror:0.31021
SCORE:
0.6897880539499036
100%|
[00:18<00:00, 5.55trial/s, best loss: -0.6897880539499036]
# Getting the best model
print("The best hyperparameters are : ","\n")
print(best hyperparams)
The best hyperparameters are :
{'colsample bytree': 0.5356402785750933, 'gamma': 8.930986603401166,
'max depth': 9.0, 'min child weight': 1.0, 'reg alpha': 119.0,
'reg lambda': 0.09812781449273855}
# Best model
clf=xgb.XGBClassifier(best hyperparams)
```

```
evaluation = [( X train, y train), ( X test, y test)]
clf.fit(X train, y train,
            eval set=evaluation,
            early stopping rounds=10, verbose=2)
[08:15:56] WARNING: C:/Users/Administrator/workspace/xgboost-
win64 release 1.5.0/src/learner.cc:1115: Starting in XGBoost 1.3.0,
the default evaluation metric used with the objective 'multi:softprob'
was changed from 'merror' to 'mlogloss'. Explicitly set eval_metric if
you'd like to restore the old behavior.
[0]
     validation_0-mlogloss:0.94153
                                       validation 1-mlogloss:0.94379
[2]
     validation_0-mlogloss:0.53773
                                       validation_1-mlogloss:0.55620
                                       validation 1-mlogloss:0.37244
[4]
     validation 0-mlogloss:0.34786
     validation 0-mlogloss:0.23741
                                       validation 1-mlogloss:0.26699
[6]
[8]
     validation 0-mlogloss:0.17458
                                       validation 1-mlogloss:0.21000
                                       validation 1-mlogloss:0.17272
[10] validation 0-mlogloss:0.13339
[12] validation 0-mlogloss:0.10732
                                       validation 1-mlogloss:0.14942
[14] validation 0-mlogloss:0.08744
                                       validation 1-mlogloss:0.12898
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\core.py:502:
FutureWarning: Pass `objective` as keyword args. Passing these as
positional arguments will be considered as error in future releases.
  format(", ".join(args msg)), FutureWarning
C:\Users\hp\Anaconda3\lib\site-packages\xgboost\sklearn.py:1224:
UserWarning: The use of label encoder in XGBClassifier is deprecated
and will be removed in a future release. To remove this warning, do
the following: 1) Pass option use_label_encoder=False when
constructing XGBClassifier object; and \overline{2}) Encode your labels (y) as
integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
 warnings.warn(label encoder deprecation msg, UserWarning)
[16]
     validation 0-mlogloss:0.07224
                                       validation 1-mlogloss:0.11262
     validation 0-mlogloss:0.06176
                                       validation 1-mlogloss:0.10467
[18]
     validation 0-mlogloss:0.05197
                                       validation 1-mlogloss:0.09462
[20]
[22] validation 0-mlogloss:0.04259
                                       validation 1-mlogloss:0.08466
[24]
     validation 0-mlogloss:0.03656
                                       validation 1-mlogloss:0.08024
[26] validation 0-mlogloss:0.03204
                                       validation 1-mlogloss:0.07596
    validation 0-mlogloss:0.02850
                                       validation 1-mlogloss:0.07431
[28]
                                       validation 1-mlogloss:0.07131
[30]
     validation 0-mlogloss:0.02557
[32]
     validation 0-mlogloss:0.02324
                                       validation 1-mlogloss:0.07019
[34]
     validation 0-mlogloss:0.02097
                                       validation 1-mlogloss:0.06757
[36]
     validation 0-mlogloss:0.01961
                                       validation 1-mlogloss:0.06629
                                       validation 1-mlogloss:0.06548
[38]
     validation 0-mlogloss:0.01840
[40]
     validation 0-mlogloss:0.01672
                                       validation 1-mlogloss:0.06358
     validation 0-mlogloss:0.01589
                                       validation 1-mlogloss:0.06396
[42]
[44]
     validation 0-mlogloss:0.01541
                                       validation 1-mlogloss:0.06414
     validation 0-mlogloss:0.01478
                                       validation 1-mlogloss:0.06455
[46]
                                       validation_1-mlogloss:0.06383
[48]
     validation 0-mlogloss:0.01420
[50] validation 0-mlogloss:0.01369
                                       validation 1-mlogloss:0.06387
```

```
XGBClassifier(base score=0.5, booster='gbtree', colsample bylevel=1,
              colsample bynode=1, colsample bytree=1,
enable categorical=False,
              gamma=0, gpu id=-1, importance type=None,
              interaction constraints='', learning rate=0.300000012,
              max delta step=0, max depth=6, min child weight=1,
missing=nan,
              monotone constraints='()', n estimators=100, n jobs=4,
              num parallel tree=1, objective='multi:softprob',
predictor='auto',
              random state=0, reg alpha=0, reg lambda=1,
scale pos weight=None,
              subsample=1, tree method='exact', validate parameters=1,
              verbosity=None)
print("\n The model accuracy on train set
is",clf.score(X train,y train))
print("\n The model accuracy on test set is",clf.score(X test,y test))
y predict=clf.predict(X test)
accuracy=accuracy score(y test,y predict,normalize=True)*float(100)
print('\n\n Classification Report')
print(classification report(y test,y predict))
skplt.plot confusion matrix(y test,y predict)
The model accuracy on train set is 1.0
The model accuracy on test set is 0.9807321772639692
 Classification Report
                           recall f1-score
              precision
                                              support
                   0.97
                             0.95
                                       0.96
                                                   118
         acc
                             0.89
                   0.77
                                       0.83
                                                    19
        good
       unacc
                   1.00
                             1.00
                                       1.00
                                                   358
                             0.96
                                       0.94
       vgood
                   0.92
                                                    24
                                       0.98
    accuracy
                                                   519
   macro avg
                   0.92
                             0.95
                                       0.93
                                                   519
weighted avg
                   0.98
                             0.98
                                       0.98
                                                   519
```

<AxesSubplot:title={'center':'Confusion Matrix'}, xlabel='Predicted</pre>

label', ylabel='True label'>

Updates

```
import category encoders as ce
encoder = ce.OrdinalEncoder(cols=['buying', 'maint', 'doors',
'persons', 'lug_boot', 'safety'])
df = encoder.fit transform(df)
from sklearn.preprocessing import PolynomialFeatures
# summarize the shape of the dataset
print(df.shape)
# summarize each variable
display(df.head(2))
# perform a polynomial features transform of the dataset
trans = PolynomialFeatures(degree=4)
data = trans.fit_transform(df.iloc[:,:-1])
# convert the array back to a dataframe
dataset = pd.DataFrame(data)
# summarize
display(dataset.head(2))
(1728, 7)
                                             safety target
                                  lug_boot
   buying
           maint
                  doors
                         persons
0
                      1
        1
               1
                                1
                                          1
                                                  1
                                                     unacc
1
        1
               1
                      1
                                1
                                          1
                                                  2
                                                     unacc
```

```
0
       1
            2
                 3
                     4
                          5
                               6 7
                                        8
                                             9
                                                       200
                                                            201
202 203 \
0 1.0 1.0
            1.0
                1.0
                     1.0
                          1.0
                               1.0
                                    1.0
                                         1.0
                                             1.0
                                                 . . .
                                                       1.0
                                                            1.0
1.0 1.0
1 1.0 1.0
            1.0
                1.0 1.0 1.0 2.0 1.0
                                        1.0
                                             1.0 ...
                                                       4.0
2.0 4.0
  204
       205
            206
                 207
                     208
                           209
  1.0
       1.0
            1.0
                 1.0
                     1.0
                           1.0
1 8.0
      1.0
            2.0
                4.0
                          16.0
                    8.0
[2 rows x 210 columns]
# Getting X and v
X = dataset
y = df['target']
X.head()
                3 4
                          5 6 7 8 9 ...
                                                       200
                                                            201
  0 1
            2
202 203 \
0 1.0 1.0
           1.0 1.0
                    1.0
                          1.0
                               1.0
                                    1.0
                                         1.0
                                             1.0
                                                       1.0
                                                            1.0
                                                 . . .
1.0 1.0
                               2.0
1 1.0 1.0
            1.0
                1.0
                    1.0
                          1.0
                                    1.0
                                         1.0
                                             1.0 ...
                                                       4.0
                                                            1.0
2.0 4.0
2 1.0 1.0
           1.0 1.0
                    1.0
                         1.0
                               3.0
                                    1.0
                                                       9.0
                                                            1.0
                                         1.0
                                             1.0
3.0 9.0
3 1.0 1.0 1.0 1.0
                    1.0 2.0
                              1.0
                                    1.0
                                        1.0
                                             1.0 ...
                                                       1.0
                                                           8.0
4.0 2.0
4 1.0 1.0 1.0 1.0 1.0 2.0 2.0 1.0 1.0
                                             1.0 ...
                                                       4.0 8.0
8.0 8.0
   204
         205
               206
                     207
                          208
                                209
0
   1.0
         1.0
               1.0
                     1.0
                          1.0
                                1.0
1
   8.0
         1.0
               2.0
                    4.0
                          8.0
                               16.0
2
  27.0
         1.0
               3.0
                     9.0
                         27.0
                               81.0
3
   1.0
        16.0
               8.0
                     4.0
                          2.0
                                1.0
        16.0
            16.0 16.0
                         16.0 16.0
   8.0
[5 rows x 210 columns]
# importing necessary packages
from sklearn.metrics import
accuracy score, confusion matrix, classification report
from sklearn.tree import DecisionTreeClassifier
import scikitplot.metrics as skplt
from sklearn import tree
from sklearn.model selection import train test split
```

```
# Splitting data into test train, using a 0.3 split
X train, X test, y train, y test = train test split(X, y,
test size=0.3, random state=42)
# Exploring class distribution under train , crossvalidation dataset
print('Training Dataset', X train.shape, y train.shape)
print('\n Class label distribution in Training Set\
n',y train.value counts())
print('\n********')
print("\n CrossValidation Dataset",X_test.shape,y_test.shape)
print('\nClass label distribution in Cross Validation Set\
n', v test.value counts())
print('\n*********')
Training Dataset (1209, 210) (1209,)
Class label distribution in Training Set
unacc
         852
acc
         266
          50
aood
vgood
          41
Name: target, dtype: int64
******
CrossValidation Dataset (519, 210) (519,)
Class label distribution in Cross Validation Set
         358
unacc
         118
acc
vgood
          24
          19
good
Name: target, dtype: int64
******
# Importing and defining the random search feature space.
from sklearn.ensemble import RandomForestClassifier
from sklearn.model selection import RandomizedSearchCV
# Number of trees in random forest
n estimators = [int(x) for x in range(400,1400,200)]
# Number of features to consider at every split
max_features = ['auto', 'sqrt']
# Maximum number of levels in tree
max depth = [int(x) for x in np.linspace(2, 15, num = 1)]
max depth.append(None)
# Minimum number of samples required to split a node
min samples split = [2,3, 4, 5, 7,10]
# Minimum number of samples required at each leaf node
```

```
min samples leaf = [1, 2, 4, 5]
# Method of selecting samples for training each tree
bootstrap = [True, False]
# Create the random grid
random grid = {'n estimators': n estimators,
               'max features': max features,
               'max depth': max depth,
               'min_samples_split': min_samples_split,
               'min samples leaf': min samples leaf,
               'bootstrap': bootstrap}
print(random grid)
{'n estimators': [400, 600, 800, 1000, 1200], 'max features': ['auto',
'sqrt'], 'max_depth': [2, None], 'min_samples_split': [2, 3, 4, 5, 7,
10], 'min samples leaf': [1, 2, 4, 5], 'bootstrap': [True, False]}
# Use the random grid to search for best hyperparameters
# First create the base model to tune
rf = RandomForestClassifier()
# Random search of parameters, using 3 fold cross validation,
# search across 100 different combinations, and use all available
cores
rf random = RandomizedSearchCV(estimator = rf, param distributions =
random grid, n iter = 50, cv = 3, verbose=2, random state=42, n jobs =
-1)
# Fit the random search model
rf random.fit(X train, y train)
Fitting 3 folds for each of 50 candidates, totalling 150 fits
RandomizedSearchCV(cv=3, estimator=RandomForestClassifier(),
n iter=50,
                   n jobs=-1,
                   param distributions={'bootstrap': [True, False],
                                         'max depth': [2, None],
                                         'max features': ['auto',
'sqrt'],
                                         'min samples leaf': [1, 2, 4,
5],
                                         'min samples split': [2, 3, 4,
5, 7,
                                                               10],
                                         'n_estimators': [400, 600,
800, 1000,
                                                          1200]},
                   random state=42, verbose=2)
# Printing the best hyperparameters
rf random.best params
```

```
{'n estimators': 1000,
 'min samples split': 3,
 'min samples leaf': 2,
 'max features': 'sqrt',
 'max depth': None,
 'bootstrap': False}
# Checking accuracies on the train and test data, predicting on the
test data.
print('The best model is ', rf random.best estimator )
print("\n The best model parameters are ",rf random.best params )
print("\n The model accuracy on train set
is",rf random.score(X train,y train))
print("\n The model accuracy on test set
is",rf random.score(X test,y test))
y predict=rf random.predict(X test)
accuracy=accuracy score(y test,y predict,normalize=True)*float(100)
print('\n\n Classification Report')
print(classification_report(y_test,y_predict))
skplt.plot confusion matrix(y test,y predict)
The best model is RandomForestClassifier(bootstrap=False,
max features='sqrt', min samples leaf=2,
                       min samples split=3, n estimators=1000)
The best model parameters are {'n estimators': 1000,
'min_samples_split': 3, 'min_samples_leaf': 2, 'max_features': 'sqrt',
'max_depth': None, 'bootstrap': False}
The model accuracy on train set is 1.0
The model accuracy on test set is 0.9845857418111753
 Classification Report
              precision
                           recall f1-score
                                               support
                   0.97
                             0.97
                                        0.97
                                                   118
         acc
        good
                   0.90
                             1.00
                                        0.95
                                                    19
                             0.99
                                        1.00
                                                   358
                   1.00
       unacc
                   0.92
                             0.92
                                        0.92
                                                    24
       vgood
    accuracy
                                        0.98
                                                   519
                             0.97
                                        0.96
                   0.95
                                                   519
   macro avg
weighted avg
                   0.98
                             0.98
                                        0.98
                                                   519
<AxesSubplot:title={'center':'Confusion Matrix'}, xlabel='Predicted</pre>
label', ylabel='True label'>
```



```
# Defining the model with the best parameters
clf = RandomForestClassifier(bootstrap=True, max depth=None,
max features='auto', min samples leaf=1, min samples split=3,
n = 1000
clf.fit(X train, y train)
RandomForestClassifier(min samples split=3, n estimators=1000)
print("\n The model accuracy on train set
is",clf.score(X train,y train))
print("\n The model accuracy on test set is",clf.score(X test,y test))
y predict=clf.predict(X test)
accuracy=accuracy score(y test,y predict,normalize=True)*float(100)
print('\n\n Classification Report')
print(classification_report(y_test,y_predict))
skplt.plot confusion matrix(y test,y predict)
The model accuracy on train set is 1.0
The model accuracy on test set is 0.9845857418111753
 Classification Report
              precision
                           recall f1-score
                                              support
                   0.97
                             0.97
                                       0.97
                                                  118
         acc
                   0.90
                             1.00
                                       0.95
                                                   19
        good
```

unacc vgood	1.00 0.96	0.99 0.92	1.00 0.94	358 24
accuracy macro avg weighted avg	0.96 0.98	0.97 0.98	0.98 0.96 0.98	519 519 519

<AxesSubplot:title={'center':'Confusion Matrix'}, xlabel='Predicted
label', ylabel='True label'>

view the feature scores

feature_scores = pd.Series(clf.feature_importances_,
index=X_train.columns).sort_values(ascending=False)

feature_scores

24	0.035130
200	0.032737
119	0.027746
203	0.024956
135	0.020424
3	0.000210
175	0.000153
64	0.000112
18	0.000102

```
0    0.000000
Length: 210, dtype: float64
# Creating a seaborn bar plot
sns.barplot(x=feature_scores, y=feature_scores.index)
# Add labels to the graph
plt.xlabel('Feature Importance Score')
plt.ylabel('Features')
# Add title to the graph
plt.title("Visualizing Important Features")
# Visualize the graph
plt.show()
```


Feature Importance Score

```
list(feature_scores[feature_scores < 0.01].index)

[109,
    37,
    151,
    82,
    190,
    114,
    208,
    70,
    169,</pre>
```

```
187,
134,
108,
204,
105,
36,
92,
63,
107,
48,
115,
113,
126,
47,
103,
104,
117,
196,
174,
139,
137,
130,
202,
112,
62,
181,
192,
207,
165,
4,
189,
185,
172,
12,
128,
164,
26,
91,
153,
163,
81,
43,
161,
206,
188,
106,
195,
22,
72,
```

```
75,
129,
74,
154,
33,
127,
35,
186,
209,
53,
183,
17,
191,
194,
97,
71,
149,
162,
89,
51,
31,
27,
110,
73,
6,
166,
83,
88,
131,
58,
15,
32,
98,
111,
148,
125,
150,
180,
144,
143,
10,
59,
100,
52,
87,
96,
69,
147,
182,
```

```
168,
66,
41,
157,
68,
42,
102,
124,
57,
133,
160,
142,
61,
122,
159,
99,
23,
56,
44,
20,
11,
46,
136,
146,
77,
177,
184,
16,
86,
141,
198,
28,
171,
50,
123,
7,
152,
201,
2,
30,
40,
121,
49,
140,
1,
55,
84,
179,
158,
```

```
21,
19,
156,
67,
54,
176,
120,
9,
95,
205,
178,
65,
145.
14,
39,
80,
13,
155,
5,
25,
3,
175,
64,
18,
0]
```

Building a model on selected features without the least important feature

```
# declare feature vector and target variable, without the least
important feature
X1 = X.drop(list(feature scores[feature scores < 0.01].index), axis=1)</pre>
y1 = df['target']
# split data into training and testing sets
from sklearn.model_selection import train_test_split
X train1, X test1, y train1, y test1 = train test split(X1, y1,
test size = 0.33, random state = 42)
# Use the random grid to search for best hyperparameters
# First create the base model to tune
rf = RandomForestClassifier()
# Random search of parameters, using 3 fold cross validation,
# search across 100 different combinations, and use all available
cores
rf random = RandomizedSearchCV(estimator = rf, param distributions =
random grid, n iter = 50, cv = 3, verbose=2, random state=42, n jobs =
```

```
-1)
# Fit the random search model
rf random.fit(X train1, y train1)
Fitting 3 folds for each of 50 candidates, totalling 150 fits
RandomizedSearchCV(cv=3, estimator=RandomForestClassifier(),
n iter=50,
                   n jobs=-1,
                   param distributions={'bootstrap': [True, False],
                                         'max depth': [2, None],
                                         'max features': ['auto',
'sgrt'],
                                         'min samples leaf': [1, 2, 4,
5],
                                         'min samples split': [2, 3, 4,
5, 7,
                                                               10],
                                         'n estimators': [400, 600,
800, 1000,
                                                          1200]},
                   random state=42, verbose=2)
# Printing the best hyperparameters
rf random.best params
{'n estimators': 600,
 'min samples split': 7,
 'min samples leaf': 1,
 'max features': 'auto',
 'max depth': None,
 'bootstrap': True}
# Checking accuracies on the train and test data, predicting on the
test data.
print('The best model is ', rf_random.best_estimator_)
print("\n The best model parameters are ",rf_random.best_params_)
print("\n The model accuracy on train set
is",rf random.score(X train1,y train1))
print("\n The model accuracy on test set
is",rf random.score(X test1,y test1))
y predict=rf random.predict(X test1)
accuracy=accuracy_score(y_test1,y_predict,normalize=True)*float(100)
print('\n\n Classification Report')
print(classification report(y test1,y predict))
skplt.plot confusion_matrix(y_test1,y_predict)
```

The best model is RandomForestClassifier(min_samples_split=7, n estimators=600)

The best model parameters are {'n_estimators': 600, 'min_samples_split': 7, 'min_samples_leaf': 1, 'max_features': 'auto', 'max_depth': None, 'bootstrap': True}

The model accuracy on train set is 0.9904926534140017

The model accuracy on test set is 0.9597197898423818

Classification Report

0 10.00 - 1 - 00.1-				
	precision	recall	f1-score	support
acc	0.91	0.91	0.91	129
good	0.70	0.95	0.81	20
unacc	1.00	0.98	0.99	397
vgood	0.85	0.92	0.88	25
_				
accuracy			0.96	571
macro avg	0.87	0.94	0.90	571
weighted avg	0.96	0.96	0.96	571

<AxesSubplot:title={'center':'Confusion Matrix'}, xlabel='Predicted
label', ylabel='True label'>

Using SMOTE for Upsampling

	9 -			- - - - - - - - - -	.	pung	,				
X_tra	in										
	0	1	2	3	4	5	6	7	8	9	 200
201 \ 1178	1.0	3.0	3.0	4.0	2.0	3.0	3.0	9.0	9.0	12.0	 36.0
54.0 585	1.0	2.0	2.0	2.0	3.0	1.0	1.0	4.0	4.0	4.0	 9.0
3.0 1552	1.0	4.0	3.0	2.0	2.0	2.0	2.0	16.0	12.0	8.0	 16.0
16.0 1169 27.0	1.0	3.0	3.0	4.0	1.0	3.0	3.0	9.0	9.0	12.0	 9.0
1033 27.0	1.0	3.0	2.0	3.0	1.0	3.0	2.0	9.0	6.0	9.0	 4.0
1130	1.0	3.0	3.0	2.0	3.0	2.0	3.0	9.0	9.0	6.0	 81.0
24.0 1294 81.0	1.0	3.0	4.0	4.0	3.0	3.0	2.0	9.0	12.0	12.0	 36.0
860 24.0	1.0	2.0	4.0	4.0	3.0	2.0	3.0	4.0	8.0	8.0	 81.0
1459	1.0	4.0	2.0	3.0	1.0	1.0	2.0	16.0	8.0	12.0	 4.0
1.0 1126 3.0	1.0	3.0	3.0	2.0	3.0	1.0	2.0	9.0	9.0	6.0	 36.0
1178 585 1552 1169 1033	202 54.0 3.0 16.0 27.0 18.0	54.0 3.0 16.0 27.0 12.0	9 54 9 3 9 16 9 27 9 8	.0 .0 1 .0 8	1.0 1.0 6.0 1.0	206 81.0 1.0 16.0 81.0 54.0	207 81.0 1.0 16.0 81.0 36.0	81.0 1.0 16.0 81.0 24.0	81.0 16.0		
1130 1294 860 1459 1126	36.0 54.0 36.0 2.0 6.0	36.	9 24 9 81 9 8	.0 1 .0	1.0 6.0 1.0 1.0	24.0 54.0 24.0 2.0 2.0	36.0 36.0 36.0 4.0 4.0		81.0 16.0 81.0 16.0		
[1209	rows	x 21	0 col	umns]							
y_tra	in										
1178 585 1552 1169	una	ood acc acc acc									

```
1033
        unacc
        . . .
1130
        vgood
1294
       good
860
          acc
1459
        unacc
1126
          acc
Name: target, Length: 1209, dtype: object
from imblearn.over sampling import SMOTE
from collections import Counter
from matplotlib import pyplot
from sklearn.preprocessing import LabelEncoder
# label encode the target variable
y = LabelEncoder().fit_transform(y train)
# transform the dataset
oversample = SMOTE()
X, y = oversample.fit resample(X train, y)
# summarize distribution
counter = Counter(y)
for k,v in counter.items():
     per = v / len(y) * 100
     print('Class=%d, n=%d (%.3f%%)' % (k, v, per))
# plot the distribution
pyplot.bar(counter.keys(), counter.values())
pyplot.show()
Class=3, n=852 (25.000%)
Class=2, n=852 (25.000%)
Class=0, n=852 (25.000%)
Class=1, n=852 (25.000%)
```



```
X \text{ train} = X
y train = y
y_test = LabelEncoder().fit_transform(y_test)
# Importing and defining the random search feature space.
from sklearn.ensemble import RandomForestClassifier
from sklearn.model selection import RandomizedSearchCV
# Number of trees in random forest
n_{estimators} = [int(x) for x in range(400,1400,200)]
# Number of features to consider at every split
max features = ['auto', 'sqrt']
# Maximum number of levels in tree
max depth = [int(x) for x in np.linspace(2, 15, num = 1)]
max depth.append(None)
# Minimum number of samples required to split a node
min_samples_split = [2,3, 4, 5, 7,10]
# Minimum number of samples required at each leaf node
min samples leaf = [1, 2, 4, 5]
# Method of selecting samples for training each tree
bootstrap = [True, False]
# Create the random grid
random grid = {'n estimators': n estimators,
               'max features': max features,
               'max depth': max depth,
               'min_samples_split': min_samples_split,
               'min_samples_leaf': min_samples_leaf,
```

```
'bootstrap': bootstrap}
print(random grid)
{'n estimators': [400, 600, 800, 1000, 1200], 'max features': ['auto',
'sqrt'], 'max_depth': [2, None], 'min_samples_split': [2, 3, 4, 5, 7,
10], 'min samples leaf': [1, 2, 4, 5], 'bootstrap': [True, False]}
# Use the random grid to search for best hyperparameters
# First create the base model to tune
rf = RandomForestClassifier()
# Random search of parameters, using 3 fold cross validation,
# search across 100 different combinations, and use all available
cores
rf random = RandomizedSearchCV(estimator = rf, param distributions =
random grid, n iter = 30, cv = 3, verbose=2, random state=42, n jobs =
# Fit the random search model
rf_random.fit(X_train, y_train)
Fitting 3 folds for each of 30 candidates, totalling 90 fits
RandomizedSearchCV(cv=3, estimator=RandomForestClassifier(),
n iter=30,
                   n iobs=-1,
                   param distributions={'bootstrap': [True, False],
                                         'max depth': [2, None],
                                         'max features': ['auto',
'sqrt'],
                                         'min samples leaf': [1, 2, 4,
5],
                                         'min samples split': [2, 3, 4,
5, 7,
                                                               10],
                                         'n estimators': [400, 600,
800, 1000,
                                                          1200]},
                   random state=42, verbose=2)
# Printing the best hyperparameters
rf random.best params
{'n estimators': 600,
 'min samples split': 5,
 'min samples leaf': 1,
 'max features': 'auto',
 'max_depth': None,
 'bootstrap': False}
# Checking accuracies on the train and test data, predicting on the
test data.
```

```
print('The best model is ', rf random.best estimator )
print("\n The best model parameters are ",rf random.best params )
print("\n The model accuracy on train set
is",rf random.score(X train,y train))
print("\n The model accuracy on test set
is",rf_random.score(X_test,y_test))
y predict=rf random.predict(X test)
accuracy=accuracy score(y test,y predict,normalize=True)*float(100)
print('\n\n Classification Report')
print(classification report(y test,y predict))
skplt.plot_confusion_matrix(y_test,y_predict)
The best model is RandomForestClassifier(bootstrap=False,
min samples split=5, n estimators=600)
The best model parameters are {'n_estimators': 600,
'min samples split': 5, 'min samples leaf': 1, 'max features': 'auto',
'max_depth': None, 'bootstrap': False}
The model accuracy on train set is 1.0
The model accuracy on test set is 0.9865125240847784
Classification Report
                           recall f1-score
                                              support
              precision
           0
                   0.97
                             0.97
                                       0.97
                                                   118
           1
                   0.86
                             1.00
                                       0.93
                                                    19
           2
                             0.99
                   1.00
                                       1.00
                                                   358
           3
                   0.96
                             1.00
                                       0.98
                                                    24
                                       0.99
                                                   519
    accuracy
                   0.95
                             0.99
                                       0.97
                                                   519
   macro avg
weighted avg
                   0.99
                             0.99
                                       0.99
                                                   519
<AxesSubplot:title={'center':'Confusion Matrix'}, xlabel='Predicted</pre>
```

label', ylabel='True label'>


```
# Importing the required Libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
plt.style.use('seaborn-whitegrid')
import seaborn as sns
from sklearn.model selection import train test split
from sklearn.preprocessing import StandardScaler
# import SVC classifier
from sklearn.svm import SVC
# Hyperparameter tunning libraries
from sklearn.model selection import RandomizedSearchCV
# import metrics to compute accuracy
from sklearn.metrics import accuracy score, fl score,
classification report, confusion matrix, roc curve, roc auc score
# Reading the data
df train = pd.read csv('pulsar data train.csv')
df test = pd.read csv('pulsar data test.csv')
# Visualizing the dataframe
df train.head()
    Mean of the integrated profile \
0
                        121.156250
1
                         76.968750
2
                        130.585938
3
                        156.398438
4
                         84.804688
    Standard deviation of the integrated profile \
0
                                       48.372971
1
                                       36.175557
2
                                       53.229534
3
                                       48.865942
4
                                       36.117659
    Excess kurtosis of the integrated profile \
0
                                     0.375485
1
                                     0.712898
2
                                     0.133408
3
                                     -0.215989
4
                                     0.825013
    Skewness of the integrated profile
                                         Mean of the DM-SNR curve \
                             -0.013165
0
                                                          3.168896
```

```
1
                                3.388719
                                                            2.399666
2
                               -0.297242
                                                            2.743311
3
                               -0.171294
                                                           17.471572
4
                                3.274125
                                                            2.790134
    Standard deviation of the DM-SNR curve \
0
                                   18.399367
                                   17.570997
1
2
                                   22.362553
3
                                         NaN
4
                                   20.618009
    Excess kurtosis of the DM-SNR curve Skewness of the DM-SNR curve
0
                                 7.449874
                                                                65.159298
                                                               102.722975
1
                                 9.414652
                                 8.508364
                                                                74.031324
3
                                 2.958066
                                                                 7.197842
                                                                76.291128
                                 8.405008
   target_class
0
            0.0
1
            0.0
2
            0.0
3
            0.0
            0.0
df test.head()
    Mean of the integrated profile \
0
                         116.906250
1
                          75.585938
2
                         103.273438
3
                         101.078125
4
                         113.226562
    Standard deviation of the integrated profile \
0
                                         48.920605
1
                                         34.386254
2
                                         46.996628
3
                                         48.587487
4
                                         48.608804
    Excess kurtosis of the integrated profile \
0
                                       0.186046
1
                                       2.025498
```

```
2
                                      0.504295
3
                                      1.011427
4
                                      0.291538
                                          Mean of the DM-SNR curve \
    Skewness of the integrated profile
0
                              -0.129815
                                                           3.037625
1
                               8.652913
                                                           3.765050
2
                               0.821088
                                                           2.244983
3
                               1.151870
                                                          81.887960
4
                               0.292120
                                                           6.291806
    Standard deviation of the DM-SNR curve \
0
                                  17.737102
1
                                  21.897049
2
                                  15.622566
3
                                  81.464136
4
                                  26.585056
    Excess kurtosis of the DM-SNR curve
                                          Skewness of the DM-SNR curve
0
                                8.122621
                                                                78.813405
1
                                7.048189
                                                                55.878791
2
                                9.330498
                                                               105.134941
3
                                0.485105
                                                                -1.117904
                                4.540138
                                                                21.708268
   target class
0
            NaN
1
            NaN
2
            NaN
3
            NaN
4
            NaN
# Checking the shape of the data
df_train.shape
(12528, 9)
df_test.shape
(5370, 9)
#Checking for null values and data types
df_train.info()
```

<pre><class 'pandas.core.frame.dataframe'=""> RangeIndex: 12528 entries, 0 to 12527 Data columns (total 9 columns):</class></pre>	
# Column	Non-Null Count
Dtype	
0 Mean of the integrated profile	12528 non-null
float64	
1 Standard deviation of the integrated profile float64	12528 non-null
2 Excess kurtosis of the integrated profile	10793 non-null
float64 3 Skewness of the integrated profile	12528 non-null
float64	
4 Mean of the DM-SNR curve float64	12528 non-null
5 Standard deviation of the DM-SNR curve float64	11350 non-null
6 Excess kurtosis of the DM-SNR curve	12528 non-null
float64 7 Skewness of the DM-SNR curve	11903 non-null
float64	12520 non null
<pre>float64 8 target_class float64</pre>	12528 non-null
<pre>8 target_class float64 dtypes: float64(9)</pre>	12528 non-null
8 target_class float64 dtypes: float64(9) memory usage: 881.0 KB	12528 non-null
<pre>8 target_class float64 dtypes: float64(9) memory usage: 881.0 KB df_test.info()</pre>	12528 non-null
<pre>8 target_class float64 dtypes: float64(9) memory usage: 881.0 KB df_test.info() <class 'pandas.core.frame.dataframe'=""></class></pre>	12528 non-null
<pre>8 target_class float64 dtypes: float64(9) memory usage: 881.0 KB df_test.info() <class 'pandas.core.frame.dataframe'=""> RangeIndex: 5370 entries, 0 to 5369 Data columns (total 9 columns):</class></pre>	
<pre>8 target_class float64 dtypes: float64(9) memory usage: 881.0 KB df_test.info() <class 'pandas.core.frame.dataframe'=""> RangeIndex: 5370 entries, 0 to 5369 Data columns (total 9 columns): # Column</class></pre>	12528 non-null Non-Null Count
<pre>8 target_class float64 dtypes: float64(9) memory usage: 881.0 KB df_test.info() <class 'pandas.core.frame.dataframe'=""> RangeIndex: 5370 entries, 0 to 5369 Data columns (total 9 columns):</class></pre>	
<pre>8 target_class float64 dtypes: float64(9) memory usage: 881.0 KB df_test.info() <class 'pandas.core.frame.dataframe'=""> RangeIndex: 5370 entries, 0 to 5369 Data columns (total 9 columns): # Column Dtype</class></pre>	
<pre>8 target_class float64 dtypes: float64(9) memory usage: 881.0 KB df_test.info() <class 'pandas.core.frame.dataframe'=""> RangeIndex: 5370 entries, 0 to 5369 Data columns (total 9 columns): # Column Dtype 0 Mean of the integrated profile float64</class></pre>	Non-Null Count 5370 non-null
<pre>8 target_class float64 dtypes: float64(9) memory usage: 881.0 KB df_test.info() <class 'pandas.core.frame.dataframe'=""> RangeIndex: 5370 entries, 0 to 5369 Data columns (total 9 columns): # Column Dtype 0 Mean of the integrated profile float64 1 Standard deviation of the integrated profile float64</class></pre>	Non-Null Count5370 non-null 5370 non-null
<pre>8 target_class float64 dtypes: float64(9) memory usage: 881.0 KB df_test.info() <class 'pandas.core.frame.dataframe'=""> RangeIndex: 5370 entries, 0 to 5369 Data columns (total 9 columns): # Column Dtype 0 Mean of the integrated profile float64 1 Standard deviation of the integrated profile</class></pre>	Non-Null Count 5370 non-null
<pre>8 target_class float64 dtypes: float64(9) memory usage: 881.0 KB df_test.info() <class 'pandas.core.frame.dataframe'=""> RangeIndex: 5370 entries, 0 to 5369 Data columns (total 9 columns): # Column Dtype 0 Mean of the integrated profile float64 1 Standard deviation of the integrated profile float64 2 Excess kurtosis of the integrated profile float64 3 Skewness of the integrated profile</class></pre>	Non-Null Count5370 non-null 5370 non-null
8 target_class float64 dtypes: float64(9) memory usage: 881.0 KB df_test.info() <class 'pandas.core.frame.dataframe'=""> RangeIndex: 5370 entries, 0 to 5369 Data columns (total 9 columns): # Column Dtype 0 Mean of the integrated profile float64 1 Standard deviation of the integrated profile float64 2 Excess kurtosis of the integrated profile float64 3 Skewness of the integrated profile float64 4 Mean of the DM-SNR curve</class>	Non-Null Count 5370 non-null 5370 non-null 4603 non-null
8 target_class float64 dtypes: float64(9) memory usage: 881.0 KB df_test.info() <class 'pandas.core.frame.dataframe'=""> RangeIndex: 5370 entries, 0 to 5369 Data columns (total 9 columns): # Column Dtype 0 Mean of the integrated profile float64 1 Standard deviation of the integrated profile float64 2 Excess kurtosis of the integrated profile float64 3 Skewness of the integrated profile float64 4 Mean of the DM-SNR curve float64</class>	Non-Null Count 5370 non-null 5370 non-null 4603 non-null 5370 non-null 5370 non-null
<pre>8 target_class float64 dtypes: float64(9) memory usage: 881.0 KB df_test.info() <class 'pandas.core.frame.dataframe'=""> RangeIndex: 5370 entries, 0 to 5369 Data columns (total 9 columns): # Column Dtype 0 Mean of the integrated profile float64 1 Standard deviation of the integrated profile float64 2 Excess kurtosis of the integrated profile float64 3 Skewness of the integrated profile float64 4 Mean of the DM-SNR curve float64</class></pre>	Non-Null Count 5370 non-null 5370 non-null 4603 non-null 5370 non-null

```
float64
      Skewness of the DM-SNR curve
                                                     5126 non-null
float64
                                                     0 non-null
8
     target class
float64
dtypes: float64(9)
memory usage: 377.7 KB
# Null values
df train.isnull().sum()
                                                     0
Mean of the integrated profile
 Standard deviation of the integrated profile
                                                     0
 Excess kurtosis of the integrated profile
                                                  1735
 Skewness of the integrated profile
                                                     0
Mean of the DM-SNR curve
                                                     0
 Standard deviation of the DM-SNR curve
                                                  1178
 Excess kurtosis of the DM-SNR curve
                                                     0
                                                   625
 Skewness of the DM-SNR curve
target class
                                                     0
dtype: int64
# Null values
df test.isnull().sum()
                                                     0
Mean of the integrated profile
 Standard deviation of the integrated profile
                                                     0
 Excess kurtosis of the integrated profile
                                                   767
 Skewness of the integrated profile
                                                     0
Mean of the DM-SNR curve
                                                     0
 Standard deviation of the DM-SNR curve
                                                   524
 Excess kurtosis of the DM-SNR curve
                                                     0
                                                   244
 Skewness of the DM-SNR curve
target class
                                                  5370
dtype: int64
#description
df train.describe().transpose()
                                                  count
                                                               mean \
Mean of the integrated profile
                                                         111.041841
                                                12528.0
Standard deviation of the integrated profile
                                                12528.0
                                                          46.521437
 Excess kurtosis of the integrated profile
                                                10793.0
                                                           0.478548
 Skewness of the integrated profile
                                                12528.0
                                                           1.778431
Mean of the DM-SNR curve
                                                12528.0
                                                          12.674758
 Standard deviation of the DM-SNR curve
                                                11350.0
                                                          26.351318
 Excess kurtosis of the DM-SNR curve
                                                12528.0
                                                           8.333489
 Skewness of the DM-SNR curve
                                                11903.0
                                                         105.525779
target class
                                                12528.0
                                                           0.092034
                                                       std
```

min \ Mean of the integrated profile	25.672828	5.812500
Standard deviation of the integrated profile	6.801077	24.772042
Excess kurtosis of the integrated profile	1.064708	-1.738021
Skewness of the integrated profile	6.208450	-1.791886
Mean of the DM-SNR curve	29.613230	0.213211
Standard deviation of the DM-SNR curve	19.610842	7.370432
Excess kurtosis of the DM-SNR curve	4.535783	-3.139270
Skewness of the DM-SNR curve	107.399585	-1.976976
target_class	0.289085	0.000000
	250	F.00
	25%	50%
Mean of the integrated profile	100.871094	115.183594
Standard deviation of the integrated profile	42.362222	46.931022
Excess kurtosis of the integrated profile	0.024652	0.223678
Skewness of the integrated profile	-0.188142	0.203317
Mean of the DM-SNR curve	1.910535	2.792642
Standard deviation of the DM-SNR curve	14.404353	18.412402
Excess kurtosis of the DM-SNR curve	5.803063	8.451097
Skewness of the DM-SNR curve	35.199899	83.126301
target_class	0.000000	0.000000
	750	
	75%	max
Mean of the integrated profile	127.109375	189.734375
Standard deviation of the integrated profile	50.979103	91.808628
Excess kurtosis of the integrated profile	0.473125	8.069522
Skewness of the integrated profile	0.932374	68.101622
Mean of the DM-SNR curve	5.413253	222.421405

Standard deviation of the DM-SNR curve	28.337418	110.642211
Excess kurtosis of the DM-SNR curve	10.727927	34.539844
Skewness of the DM-SNR curve	139.997850	1191.000837
target_class	0.000000	1.000000
<pre>#description df_test.describe().transpose()</pre>		
	count	mean
<pre>std \ Mean of the integrated profile 25.608635</pre>	5370.0 11	1.168917
Standard deviation of the integrated profile 6.940638	5370.0 40	6.615074
Excess kurtosis of the integrated profile 1.076893	4603.0	0.483676
Skewness of the integrated profile	5370.0	1.751260
6.072820 Mean of the DM-SNR curve	5370.0 13	2.473587
29.145134 Standard deviation of the DM-SNR curve	4846.0 20	6.425371
19.384489 Excess kurtosis of the DM-SNR curve	5370.0	8.233724
4.435683 Skewness of the DM-SNR curve	5126.0 102	2.869088
104.748418 target class	0.0	NaN
NaN	0.0	TIGHT
2E0. \	min	
25% \ Mean of the integrated profile	6.179688	101.041016
Standard deviation of the integrated profile	24.791612	42.408020
Excess kurtosis of the integrated profile	-1.876011	0.030643
Skewness of the integrated profile	-1.764717	-0.189557
Mean of the DM-SNR curve	0.213211	1.956522
Standard deviation of the DM-SNR curve	7.370432	14.555826
Excess kurtosis of the DM-SNR curve	-2.721857	5.700461
Skewness of the DM-SNR curve	-1.964998	33.817330

target_class	NaN	NaN				
	50%	75%				
Moon of the integrated profile						
Mean of the integrated profile	114.757812	127.023438				
Standard deviation of the integrated profile	47.031304	51.133444				
Excess kurtosis of the integrated profile	0.227314	0.475056				
Skewness of the integrated profile	0.186468	0.918807				
Mean of the DM-SNR curve	2.830686	5.590301				
Standard deviation of the DM-SNR curve	18.549670	28.681787				
Excess kurtosis of the DM-SNR curve	8.383695	10.632265				
Skewness of the DM-SNR curve	81.392046	136.893502				
target_class	NaN	NaN				
Mean of the integrated profile Standard deviation of the integrated profile Excess kurtosis of the integrated profile Skewness of the integrated profile Mean of the DM-SNR curve Standard deviation of the DM-SNR curve Excess kurtosis of the DM-SNR curve Skewness of the DM-SNR curve target_class	max 192.617188 98.778911 7.608370 65.385974 223.392141 109.712649 34.539844 1191.000837 NaN					
<pre>#Plotting target distribution f,ax=plt.subplots(1,2,figsize=(18,8)) df_train['target_class'].value_counts().plot.pie(ax = ax[0], explode=[0,0.1],autopct='%1.1f%%',shadow=False, textprops={'fontsize': 14}) ax[0].set_title('target') ax[0].set_ylabel('') sns.countplot('target_class',data=df_train,ax=ax[1]) ax[1].set_title('target')</pre>						
C:\Users\hp\Anaconda3\lib\site-packages\seaborn_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an						

```
error or misinterpretation.
FutureWarning

Text(0.5, 1.0, 'target')
```


Preprocessing

EDA

```
# Creating histplots
fig, axes = plt.subplots(nrows=8, ncols=1, figsize=(4,20))
```

```
for i in range(len(features.columns)):
    col = features.columns[i]
    sns.histplot(x=df_train[col], hue=target, palette="cool",
kde=True, ax=axes[i])
plt.show()
```



```
#Plotting the Correlation Heatmap
plt.figure(figsize=(16,12))
sns.heatmap(data=df_train.corr(),annot=True,cmap="bone",linewidths=1,f
mt=".2f",linecolor="gray")
plt.title("Correlation Map",fontsize=20)
plt.tight_layout()
plt.show()
```


Handling Missing Values

```
3 Computing the median for the three features with null values
median1 = df_train[' Excess kurtosis of the integrated
profile'].median()
median2 = df_train[' Standard deviation of the DM-SNR curve'].median()
median3 = df_train[' Skewness of the DM-SNR curve'].median()

# Imputing the null values
df_train[' Excess kurtosis of the integrated profile'] = df_train['
Excess kurtosis of the integrated profile'].fillna(median1)
```

```
df test[' Excess kurtosis of the integrated profile'] = df test['
Excess kurtosis of the integrated profile'].fillna(median1)
df train[' Standard deviation of the DM-SNR curve'] = df train['
Standard deviation of the DM-SNR curve'l.fillna(median1)
df test[' Standard deviation of the DM-SNR curve'] = df test['
Standard deviation of the DM-SNR curve'].fillna(median1)
df train[' Skewness of the DM-SNR curve'] = df train[' Skewness of the
DM-SNR curve'].fillna(median1)
df test[' Skewness of the DM-SNR curve'] = df test[' Skewness of the
DM-SNR curve'].fillna(median1)
# Checking for null values again
df train.isna().sum()
Mean of the integrated profile
                                                  0
                                                  0
 Standard deviation of the integrated profile
 Excess kurtosis of the integrated profile
                                                  0
 Skewness of the integrated profile
                                                  0
Mean of the DM-SNR curve
                                                  0
 Standard deviation of the DM-SNR curve
                                                  0
 Excess kurtosis of the DM-SNR curve
                                                  0
 Skewness of the DM-SNR curve
                                                  0
target class
dtype: int64
df test.isna().sum()
Mean of the integrated profile
Standard deviation of the integrated profile
                                                     0
 Excess kurtosis of the integrated profile
                                                     0
                                                     0
 Skewness of the integrated profile
Mean of the DM-SNR curve
                                                     0
 Standard deviation of the DM-SNR curve
                                                     0
 Excess kurtosis of the DM-SNR curve
                                                     0
 Skewness of the DM-SNR curve
                                                     0
target class
                                                  5370
dtype: int64
```

Modelling

```
# Splitting into test and train data
xtrain, xtest, ytrain, ytest = train_test_split(features, target,
test_size=0.2)
print(xtrain.shape)
print(xtest.shape)
```

```
(10022, 8)
(2506, 8)

# Using standard scalar to scale
ss = StandardScaler()
ss.fit(xtrain)
xtrain_array = ss.transform(xtrain)
xtest_array = ss.transform(xtest)

xtrain = pd.DataFrame(xtrain_array, columns = xtrain.columns)
xtest = pd.DataFrame(xtest_array, columns=xtest.columns)
```

Running SVM with default hyperparameters

Default hyperparameter means C=1.0, kernel=rbf and gamma=auto among other parameters.

```
xtrain.fillna(0, inplace=True)
xtest.fillna(0, inplace=True)
# instantiate classifier with default hyperparameters
svc=SVC()

# fit classifier to training set
svc.fit(xtrain,ytrain)

# make predictions on test set
y_pred=svc.predict(xtest)

# compute and print accuracy score
print('Model accuracy score with default hyperparameters: {0:0.4f}'.
format(accuracy_score(ytest, y_pred)))
print('Model fl score with default hyperparameters: {0:0.4f}'.
format(fl_score(ytest, y_pred)))

Model accuracy score with default hyperparameters: 0.9741
Model fl score with default hyperparameters: 0.8426
```

Using Random Search to find the best hyperparameters

```
# USing grid search
svc_clf = SVC()
params = [{
    'C':np.arange(0.01,10.0,0.1),
    'kernel':['linear','poly','rbf','sigmoid'],
    'degree':range(1,20),
    "gamma" : ['scale','auto'],
    'probability':[True],
```

```
'class weight':['balanced'],
    'random state':[21],
    'max iter':[-1],
}]
random search svc clf = RandomizedSearchCV(svc clf, scoring = 'f1',
param distributions=params, n jobs = -1, return train score = True,
n iter=100, cv=2, random state=21)
random search svc clf.fit(xtrain,ytrain)
print("Best parameters scores:")
print(random search svc clf.best params )
df = pd.DataFrame(random search svc clf.cv results )
print("Mean Train Score:",
random search svc clf.cv results ['mean train score']
[df[df['mean test score']==random search svc clf.best score ].index]
print("Mean Validation score:", random search svc clf.best score )
Best parameters scores:
{'random state': 21, 'probability': True, 'max iter': -1, 'kernel':
'rbf', 'gamma': 'auto', 'degree': 9, 'class_weight': 'balanced', 'C':
2.51
Mean Train Score: 0.8691440763105074
Mean Validation score: 0.8572325581395349
```

Building the best model

```
clf = SVC(random_state=21, probability= True, max_iter= -1, kernel=
'rbf', gamma= 'auto', degree = 9, class_weight= 'balanced', C= 2.51)

# fit classifier to training set
clf.fit(xtrain,ytrain)

# make predictions on test set
y_pred=clf.predict(xtest)

cm = confusion_matrix(ytest, y_pred)

print('Confusion matrix\n\n', cm)

print('\nTrue Positives(TP) = ', cm[0,0])

print('\nTrue Negatives(TN) = ', cm[1,1])

print('\nFalse Positives(FP) = ', cm[0,1])

print('\nFalse Negatives(FN) = ', cm[1,0])
```


<pre>print(classification_report(ytest, y_pred))</pre>					
	precision	recall	f1-score	support	
0.0 1.0	0.98 0.81	0.98 0.85	0.98 0.83	2277 229	

```
0.97
                                                 2506
    accuracy
                   0.90
                             0.92
                                       0.91
                                                 2506
   macro avq
weighted avg
                   0.97
                             0.97
                                       0.97
                                                 2506
TP = cm[0,0]
TN = cm[1,1]
FP = cm[0,1]
FN = cm[1,0]
# print precision score
precision = TP / float(TP + FP)
print('Precision : {0:0.4f}'.format(precision))
recall = TP / float(TP + FN)
print('Recall or Sensitivity : {0:0.4f}'.format(recall))
true positive rate = TP / float(TP + FN)
print('True Positive Rate : {0:0.4f}'.format(true positive rate))
false positive rate = FP / float(FP + TN)
print('False Positive Rate : {0:0.4f}'.format(false positive rate))
specificity = TN / (TN + FP)
print('Specificity : {0:0.4f}'.format(specificity))
Precision: 0.9798
Recall or Sensitivity: 0.9850
True Positive Rate: 0.9850
False Positive Rate: 0.1909
Specificity: 0.8091
# plot ROC Curve
fpr, tpr, thresholds = roc curve(ytest, y pred)
plt.figure(figsize=(6,4))
plt.plot(fpr, tpr, linewidth=2)
plt.plot([0,1], [0,1], 'k--')
plt.rcParams['font.size'] = 12
plt.title('ROC curve for Predicting a Pulsar Star classifier')
plt.xlabel('False Positive Rate (1 - Specificity)')
plt.ylabel('True Positive Rate (Sensitivity)')
```

plt.show()


```
ROC_AUC = roc_auc_score(ytest, y_pred)
print('ROC AUC : {:.4f}'.format(ROC_AUC))
```

ROC AUC : 0.9157