Let \vec{u} , \vec{v} and \vec{w} be three li vectors Since $\vec{u} \times \vec{v}$ are li, then the distance

of the vector \vec{w} to the plane determined by $\vec{u} * \vec{v}$ equals the length of the projection of \vec{w} along $\vec{u} \times \vec{v}$ since $\vec{u} \times \vec{v}$ is arthog. to the plane

Distance = | w.(uxv) || v × v ||

Volume of the parallelopiped

= Base Area * height

= ||v_xv|| * ||v_v(vxv)||
||vxv||

Vol = ||v_v(vxv)|| 4

If \vec{u} , $\vec{v} \neq \vec{w}$ are linearly def, the parallelopiped is contained in the plane and hence the vol = 0.

 $\Rightarrow | \vec{W} \cdot (\vec{u} \times \vec{v}) = 0$ $\Rightarrow Scalar triple product$

dines in 3D space

Lecall the parametric equation of a line 2D $L(t) = \vec{p} + t\vec{v} \qquad \vec{p} : point$ t : scalar $\vec{v} : vector along where direction the line is.$

In 2)

let
$$l(t) = \vec{p} + t\vec{v}$$
 $l(s) = \vec{q} + s\vec{w}$

The point of intersection is found by taking a scalars $\vec{t} * \vec{s} * \vec{s} * \vec{t} *$

$$\frac{1}{2} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} - \hat{\mathcal{B}}(w_1) = \begin{pmatrix} q_1 - p_1 \\ q_2 - p_2 \end{pmatrix}$$

$$\frac{1}{2} \text{ eqns in } \hat{\mathcal{A}} \text{ unknowns namely } \hat{\mathcal{T}} \text{ r.} \hat{\mathcal{A}}$$

$$\frac{1}{2} \text{ for some } \text{ Scalar } \hat{\mathcal{T}} \text{ r.} \hat{\mathcal{A}}$$

$$\frac{1}{2} \text{ for } \text{ some } \text{ Scalar } \hat{\mathcal{T}} \text{ r.} \hat{\mathcal{A}}$$

$$\frac{1}{2} \text{ for } \text{ for$$

$$\Rightarrow \frac{1}{z} \begin{pmatrix} V_1 \\ V_2 \\ V_3 \end{pmatrix} - \frac{8}{z} \begin{pmatrix} W_1 \\ W_2 \\ W_3 \end{pmatrix} = \begin{pmatrix} q_1 - p_1 \\ q_2 - p_2 \\ q_3 - p_3 \end{pmatrix}$$

> Overdetermined system

⇒ 3 equations in 2 Unknowns

Plane in 3D:

Let Pr be the plane passing thro' the origin & perpendicular to ii.

The egn of the plane is given by

y·il = 0 where y is any vector on Px.

Intersection of line and a Given a plane P and a line by what is their point of intersection?

Let of be a point on the plane (91)

2 let of to a vector arthogonal to the plane.

Let of be the point of intersection of the line of the plane.

The section of the line of the plane of the plane.

Since \vec{q} is on the plane \vec{x} \vec{z} is also on the plane, it must Satisfy $(\vec{z}-\vec{q},)\cdot\vec{n}=0 \longrightarrow 1$

By defn, \vec{z} is also on the line given by a point $\vec{\beta}$ on the line and a vector \vec{v} $\vec{z} = \vec{\beta} + t \vec{v}$ \rightarrow (2) 2 in 1 we get

 $(\vec{p}+t\vec{v}-\vec{q})\cdot\vec{n}=0$

 $= (\vec{p} - \vec{q}) \cdot \vec{n} + t \vec{v} \cdot \vec{n} = 0$

 $\Rightarrow t = (\vec{q} - \vec{p}) \cdot \vec{n}$ $\vec{\nabla} \cdot \vec{n}$

Once t is known, we can find the point of intersection

 $\vec{\chi} = \vec{p} + (\vec{q} - \vec{p}) \cdot \vec{n}$

To Summarize:	* Area of a 119min 3D
	→ * Cross product
* Vector in 3D	Properties of cross prod.
* Projection of Vector onto another	Linearly dep/indep of
* Equation of plane passing throonigin	& rectors in 3D.
and Orthogonal bo a given vector	* Vol of parallelopiped
* Distance from a point to the plane	* Skewed lines
passing thro' the origins orthogonal	* Intersection of a plane
to a given vector	& a line-
* Distance from a point to a nouzero	_ _
Vector	