Projektni zadatak: FM RADIO

Mikroprocesorski sistemi u telekomunikacijama

Omar Jahić, Mustafa Spahić, Dino Bošnjić, Elvedina Mušić, Mirza Halilčević

Tuzla, Februar 2020.

Šta smo obećali?

Figure: Blok šema projekta

<u>Šta smo dostavili?</u>

Figure: Slika projekta

Live demo

Si4703

Figure: Blok šema Si4703

- FM opseg (76-108 MHz)
- 16x16 bitnih registara
- VC Volume control
- AGC Automatic gain control
- AFC Automatic frequency control

i2c komunikacija - WRITE

Figure: Write operacija

• Počinje od registra 0x02, inkrementira se sve dok ne dođe do 0x0F. Generalno, pišemo samo u 6 registara počinjući od 0x02 do 0x07.

i2c komunikacija - READ

Figure: Read operacija

 Nakon slanja read adrese Si4703 počinje slati podatke krećući od registra 0xAh sve dok ne dođe do 0x0F. Onda ponovo počinje od nule sve dok ne dođe do 0x09.

Si4703 - REGISTRI

Reg ¹	Name	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
00h	DEVICEID	PN[3:0]					MFGID[11:0]										
01h	CHIPID	REV[5:0]					DEV[3:0]					FIRMWARE[5:0]					
02h	POWERCEG	DSMUTE	DMUTE	MONO	0	RDSM ²	SKMODE	SEEKUP	SEEK	0	DISABLE	0	0	0	0	0	ENABLE
03h	CHANNEL	TUNE	0	0	0	0	0	CHAN[9:0]									
04h	SYSCONFIG1	RDSIEN ²	STCIEN	0	RDS ²	DE	AGCD	0	0	BLNDADJ[1:0] GPIO3[1:0]			GPI02[1:0] GPI		01[1:0]		
05h	SYSCONFIG2	SEEKTH[7:0]								BA	ND[1:0]	SPACE[1:0]		VOLUME[3:0]			
06h	SYSCONFIG3	SMUT	TER[1:0]	SMUTEA[1:0]				0	VOLEXT	.EXT SKSNI		R[3:0]		SKCNT[3:0]			
07h	TEST1	XOSCEN	AHIZEN														
08h	TEST2																
09h	BOOTCONFIG																
0Ah	STATUSRSSI	RDSR ² STC SF/BL AFCRL RDSS ^{2,3} BLERA[1:0] ^{2,3} ST RSSI[7:0]															
OBh	READCHAN	BLERB[1:0] ^{2,3} BLERC[1:0] ^{2,3} BLERD[1:0] ^{2,3} READCHAN[9:0]															
0Ch	RDSA							RD9	5A[15:0] ²								
0Dh	RDSB		RDSB[15:0] ²														
0Eh	RDSC		RDSC[13:0] ²														
0Fh	RDSD		RDSD(15:0) ²														

Figure: Tabela registara Si4703

Si4703 Metodi

- void init_si4703()
- void set_volume(uint8_t new_volume)
- void set_mono(uint8_t switch_on)
- void set_mute(uint8_t switch_on)
- uint16_t get_frequency()
- void set_frequency(uint16_t freq)
- void seek_up()
- void seek_down()
- void check_RDS()

RDS - Radio Data System

- Postoji od 80ih godina u Evropi a od 90ih u SAD-u pod nazivom RBDS(Radio Broadcast Data System).
- 1998. godine, ova dva standarda (RDS, RBDS) su ujedinjena i stvoren je zajednički standard koji nazivamo samo RDS.
- RDS se koristi kako bi radio stanice prenijele informacije do svojih slušatelja (ime radio stanice, tačno vrijeme i datum, alternativne fekvencije, dodatni tekst i razne druge informacije).
- RDS signal je veoma slab te je zbog toga težak za dekodirati, tako da se može dobiti samo na jakim FM prijenosima.

RDS - Struktura

Figure: RDS struktura kodiranja

- Četiri bloka po 26 bita.
- Jedan blok se sastoji od 16 bita korisnih informacija i 10 bita kontrolnih informacija za ispravljanje greške.
- Si4703 automatski ispravlja greške i vraća samo 16 bita korisnih informacija iz bloka.

RDS - Format poruke

Figure: Format poruke

• Blok 1 sadrži 16-bitni PI kod (Program Identification) koji govori oznaku države, regionalni kod i broj licence za emitiranje.

RDS - Format poruke

- Blok 2 sadrži RDS Group type code, Version code, Trafic program code (TP), Program type code (PTY) i 5 nedodjeljenih bita.
- Group type code (4bit) Indicira kojoj RDS grpupi data blokovi 3 i 4 pripadaju. Postoje 32 moguća tipa grupa koji se mogu slati kroz blokove 3 i 4, od običnih informacija o FM stanici do sigurnosnih upozorenja u slčaju katastrofe. RDS group type daje nam brojeve od 0 do 15.
- Version code(1bit) govori da li je RDS grupa tipa A ili tipa B.
- 5 nedodjeljenih bita Modifikatori od RDS group type-a i nose ili sam sadržaj ili dodatnu informaciju o group type-u. U našem slučaju oni nose index po redu poslane grupe karaktera.

RDS - Format poruke

 Blok 3/4 - sadržaj ovih blokova varira u odnosu na group type i version code.

Tip grupe	Opis						
0x0A	Osnovno informacija o vadje stanici (ime vadje stanice)						
0x0B	Osnovne informacije o radio stanici (ime radio stanice)						
0x2A	Dodatni RDS tekst poslan od strane radio stanice						

Figure: RDS Grupe koje smo mi koristili

RDS - Parsiranje

Dobavljanje imena stanice

- Ako je tip grupe 0x0A ili 0x0B onda radimo sljedeći postupak
- Dobavljamo index iz posljedna dva bita bloka 2 od 5 nedodjeljeni bita
- Blok 4 sadrži dva karaktera od 8 bita koje spremamo u niz karaktera od 8 karaktera uz prethodno dobijeni index

Dobavljanje dodatnog teksta

- Ako je tip grupe 0x2A onda radimo sljedeći postupak
- Dobavljamo index iz zadnja 4 bita bloka 2 od 5 nedodjeljeni bita i bit promjene od prvog bita bloka 2
- Blokovi 3 i 4 sadrže po dva karaktera od 8 bita koje spremamo u niz karaktera od 64 karaktera uz prethodno dobijeni index
- Ako je bit promjene razlicit od prethodno spremljenog bita promjene brišemo do sada primljeni tekst

Rotacijski enkoder

Figure: Rotacijski enkoder

Rotacijski enkoder je elektro-mehanički uređaj koji pretvara ugaoni položaj ili kretanje osovine u analogni ili digitalni. Postoje 2 vrste enkodera:

- Inkrementalni Izlaz pokazuje rotaciju u smijeru kazaljke na satu ili u suprotnom smijeru
- Apsolutni Izlaz pokazuje samo trenutni položaj

Rotacijski enkoder

Konkretni rotacijski enkoder koji smo koristili u projektu je inkrementalni rotacijski enkoder i to je najjednostavniji senzor položaja za mjerenje rotacije.

Pinovi:

- CLK
- DT
- SW
- +
- GND

Rotacijski enkoder - Princip rada

Figure: Princip rada

Enkoder ima disk s ravnomjerno raspoređenim kontaktnim zonama koje su povezane zajedničkim pinom C i dva druga odvojena kontaktna pina A i B. Kada se disk počne okretati korak po korak, pinovi A i B uspostavljaju kontakt sa zajedničkim pinom te dva pravougaona talasna izlazna signala se generišu na izlazu.

Rotacijski enkoder - Princip rada

Figure: Izlazni signali

Ako se enkoder okreće u smjeru kazaljke na satu, izlaz A će biti ispred izlaza B. Ako posmatramo signale svaki put kada se desi promjena možemo primijetiti da tada dva izlazna signala imaju suprotne vrijednosti. Suprotno tome, ako se enkoder okreće u smjeru suprotnom od kazaljke na satu, izlazni signali imaju jednake vrijednosti.

Rotacijski enkoder - Problemi

Rotacijski enkoderi su mehanički uređaji pa postoje problemi sa treperenjem (bouncing) signala. Problem se rješava prikljućenjem kondenzatora između pina A i pina B i uzemljenja. (Low pass filter)

Figure: Ispravno priključen rotacijski enkoder

- -RTC predstavlja jednostavan modul za pohranu informacija o vremenu/datumu.
- -Izvori takt imulsa za RTC modul su:
 - LSE (Low Speed External)
 - LSI (Low Speed Internal)
 - HSE (High Speed External)
- -Write protection key

- -TR (Time Register)
- -DR (Date Register)
- -Alarm A i Alarm B

Figure: RTC time register

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved								YT[3:0]		YU[3:0]			
	Neserveu					rw	rw	rw	rw	rw	rw	rw	rw		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	WDU[2:0]				MU	[3:0]		DT[1:0] Reserved			DU[3:0]				
rw	rw	rw	rw	rw	rw	rw	rw	reserved		rw	rw	rw	rw	rw	rw

Figure: RTC date register

Figure: RTC calendar fields

Figure: Alarm A fields

ST7735

- Kontroler/drajver za TFT-LCD displej
- 1.8" TFT-LCD, rezolucija 128×160 piksela
- Serijska komunikacija (SPI)
- Dva moda pisanja:
 - command (D/C low)
 - data (D/C high)

Adresiranje memorije

• CASET - Column Address Set

• RASET - Row Address Set

Pisanje u memoriju

RAMWR - RAM Write

