

Japanese Unexamined Patent Application Publication No. 1-282715

(Embodiment)

Fig. 1 is a thin-film head according to an embodiment Reference numeral 1 denotes a of the present invention. substrate, 11 denotes a lower magnetic pole, 12 denotes an upper magnetic pole, 13 denotes a gap, 14 denotes a connecting window portion, 21a denotes a helical coil, and 21b denotes a spiral coil. The thin-film head according to the present embodiment includes a so-called a single layer-To manufacture this head, processes similar to those for manufacturing the conventional thin-film head are performed until the gap 13 is obtained. Then, as shown in Fig. 3, the helical coil 21a and the spiral coil 21b wound around the connecting window portion 14 are formed together on an magnetic-pole end portion 10. Then, a coil insulating layer is flattened, the upper magnetic pole 12 is formed, a suitable insulating layer is adhered, and wiring of a conductor group 21c (envelope pattern of 21a) is formed, as shown in Fig. 4, so that the vertically divided, plateshaped helical coil 21a is completed and the helical coil 21a and the spiral coil 21b are subordinately connected. shown in Fig. 5, which is a sectional view of the thin-film head taken along a line that passes through a track center

THIS PAGE BLANK (USPTO)

position, the helical coil with a winding number n and the spiral coil with a winding number m are disposed between the upper and lower magnetic poles. However, only the conductor with the winding number n is provided above the magnetic poles. Therefore, the resistance can be reduced by increasing the width of 21c shown in Fig. 4. In the above-described embodiment of the present invention, compared to the conventional thin-film head shown in Fig. 2, the resistance can be reduced by 30% or more when the magnetic-path lengths of the magnetic circuits are the same.

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

01-282715

(43)Date of publication of application: 14.11.1989

(51)Int.Cl.

G11B 5/31

(21)Application number: 63-111486

(71)Applicant: NIPPON TELEGR & TELEPH CORP (NTT)

(22)Date of filing: 10.05.1988

(72)Inventor: KOSHIMOTO YASUHIRO

MIKAZUKI TETSUO KISHIGAMI JUNICHI

(54) THIN FILM HEAD

(57) Abstract:

PURPOSE: To obtain a thin film of a low resistance by forming a shape of a winding wound round to a magnetic pole to a ladder type helical coil wound round to the upper magnetic pole in a magnetic pole tip part being near a medium opposed part, and forming said shape to a spiral type spiral coil in the part being near a coupling window part by bringing it to subordinate connection to said helical coil.

CONSTITUTION: After having formed the part up to a gap part 13, a helical coil 21a and a spiral coil 21b wound round to a coupling window part 14 are formed in a lump in a magnetic pole tip part 10. Subsequently, after having flattened a coil insulating layer and having formed the upper magnetic pole 12, a suitable insulating layer is allowed to adhere, and a conductor group is brought to wiring, by which the title head is completed by coupling the plate-shaped helical coil 21a of the up-and-down division type. Simultaneously, in the track center position of the thin film head for bringing the helical coil 21a and the spiral coil 21b to subordinate connection, the helical coil 21a of (n) time turns and the spiral coils 21b of (m) time turns are placed between the upper and the lower magnetic poles, but on the other hand, only a conductor of (n) time turns exists on the magnetic pole. In such a way, by widening the width of the conductor group, the resistance can be further lowered.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

THIS PAGE BLANK (USPTO)

19日本国特許庁(JP)

⑩特許出願公開

[®] 公開特許公報(A) 平1-282715

®Int. Cl. 4

識別記号

庁内整理番号

❸公開 平成1年(1989)11月14日

G 11 B 5/31

F -7426-5D C -7426-5D

審査請求 未請求 請求項の数 1 (全4頁)

❷発明の名称 | 薄膜ヘッド

②特 願 昭63-111486

②出 願 昭63(1988)5月10日

@発明者越本泰弘

東京都千代田区内幸町1丁目1番6号 日本電信電話株式

会社内

@発明者 三日月 哲郎

東京都千代田区内幸町1丁目1番6号 日本電信電話株式

会社内

@発明者岸上 順一

東京都千代田区内幸町1丁目1番6号 日本電信電話株式

会社内

勿出 願 人 日本電信電話株式会社

邳代 理 人 弁理士 角田 仁之助

東京都千代田区内幸町1丁目1番6号

明 細 數

1. 発明の名称

薄膜ヘッド

2. 特許請求の範囲

1 媒体に対向する磁極先端部から結合窓部に向って末広がり形状の磁極を有し、該磁極を巻回する巻線の形状が媒体対向部に近い磁極先端部分では、上部磁極を巻回する梯子形のヘリカルコイルとなり、これと従属接続して結合窓部に近い部分では渦巻形のスパイラルコイルとなる巻線を有することを特徴とする薄膜ヘッド。

3. 発明の詳細な説明

(産業上の利用分野)

本発明は巻線抵抗を小さくしたインダクティブ 型薄膜ヘッドに関するものである。

(従来の技術)

ち先ず最終的に媒体と対向する磁極先端部分から 末広がり状の形状(ピンポンラケット状)をした 下部磁極11を形成した後、ギャップ材料・コイルを設備を設け、その上にスパイラルコイル 21b を形成し、再度絶縁層を付着した後下部磁極11 と類似の形状をした上部磁極12を形成する。上 部磁極12と下部磁極11は磁極先端部ギャップ 部13の逆位置に設けられた結合窓部14で磁気 的に導通する。

また、上下磁極間にヘリカル状即ち円柱状に巻回した状態(以下ヘリカルコイルという)の導体を設け、上部磁極 1 2 を形成後、各導体間を従属接続する導体を設けてコイルを形成する方法もあった。

(発明が解決しようとする課題)

スパイラルコイルは平面コイルであることから 作成が容易である反面、結合窓部」 / を中心とし て巻回しているため、磁極先端部方向に位置する 巻級は必然的に周回する距離が長くなり、抵抗が 大きくなる欠点があった。 そこで、コイルの幅を広げて導体の断面積を広げることによって、抵抗を下げようとするとスパイラル全体が大きくなって巻線長さが増し、コイル幅を増加したほどには抵抗が下がらないにもかかわらず、磁路長(磁極先端部から結合窓部迄の距離の 2 倍)が長くなって磁気回路の効率が低下するという欠点があった。

又、上記の磁極間に、ヘリカル状の導体を設ける方法は、スパイラルコイルとは逆に磁極先端における周回距離は、短くなるが、結合窓部での磁極が拡っていることから外部での抵抗が増加する欠があった。以上の様な欠点をなくし低抵抗の 薄膜ヘッドを得ることを目的とするものである。 (課題を解決するための手段)

媒体に対向する磁復先端部から結合窓部に向って、末広がり形状の磁極を有し、該磁極を巻回する巻線の形状が媒体対向部に近い磁極先端部分の、上部磁極を巻回する梯子形のヘリカルコイルとなり、之と従属接続して結合窓部に近い部分では渦巻形のスパイラルコイルとなる、巻線を有するも

ような磁極先端部分10亿ヘリカルコイル218 と結合窓部! 4 を巻回するスペイラルコイル 21b を一括形成し、その後、コイル絶縁層の平坦化、 上部磁極12の形成後、適当な絶録層を付着し、 第4図に示すような導体群21でを布線すること により上下分割式の平板形のヘリカルコイル 21a を結合し完成すると共に該へりカルコイル218 とスパイラルコイル21bを従属接続する該薄膜 ヘッドのトラック中心位置での断面図を第5図に 示す上下の磁極間には『回巻のへりカルコイル及 びm回巻のスパイラルコイルが配置されているの に対し、磁極の上には『回巻の導体のみしかない ことから、第4図における21cの幅を広げて更 に抵抗を低くすることができる利点がある。本発 明による一実施例の場合は第2図の従来の薄膜へ ッドの構成例に比べ、同じ磁路長の磁気回路で 30%以上の抵抗低波が可能である。

(発明の効果)

以上説明したように、本発明によれば従来ⁱのスパイラルコイルまたはヘリカルコイル単独でコイ

のである。

(作用)

本発明は上記の様に構成したので、スパイラルの巻数を増加させるとともなく、大巾にない長が長くなって、大巾にない下る欠点もなく、大巾にないたが出たが出来るのである。尚を置いているを間に形成される巻線が単層のコイルの場合も適用可能でありたの場合は更に高出力を得ることが出来る。又、下のコイル結合をのである。

(実施例)

第1図は本発明の薄膜へッドの一実施例であって、1は基板、11は下部磁像、12は上部磁像、13はギャップ部、14は結合窓部、21mはへりカルコイル、21bはスペイラルコイルを示す。本実施例はいわゆる1層コイルであってこのようなヘッドを作成するには従来の薄膜へッドと同様にギャップ部13迄を形成した後、第3図に示す

ルを形成した場合よりも大幅に抵抗を下げることが出来、かつ磁気回路部には磁東効率の高いピンポンラケット状の磁徳を採用できるので低雑音で高出力な薄膜ヘッドが得られると云り利点がある。
4. 図面の簡単な説明 ExtAMAR の

第1図は本発明の薄膜ヘッドの一実施例、第2 図は従来の薄膜ヘッドの構成例を示す斜視図、第 3図は本発明のコイルの平面パターン図、第4図 は本発明の接続導体群の平面パターン図、第5図 は本発明の薄膜ヘッドの断面図である。

1:基板、2:下部絶縁層、4:上部絶縁層、10:磁極先端部分、11:下部磁極、12:上部磁極、13:ギャップ部、14:結合窓部、21a:ヘリカルコイル、21b:スパイラルコイル、21c:導体群。

特許出願人 日本電信電話株式会社 代理 人 角 田 仁之 助

特開平1-282715(3)

第1図

本発明のコイルの平面パターン図

第 3 図

特閒平1-282715(4)

2 ic… 導体群

本発明の接続導体群の平面パターン図

第 4 図

本発明の薄膜ヘッドの断面図

第 5 図