Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР)

Кафедра компьютерных систем в управлении и проектировании (КСУП)

РАЗРАБОТКА ПЛАГИНА «ОТВЁРТКА» ДЛЯ «КОМПАС-3D»ПРОЕКТ СИСТЕМЫ

по дисциплине

«Основы разработки САПР» (ОРСАПР)

	Выполн	нил:		
	студент	гр. 581		
		Мир	ошник	ов А.В.
« <u></u>	_»	· · · · · · · · · · · · · · · · · · ·		2024 г.
	Провер	ил:		
	к.т.н.,	доцент	каф.	КСУП
		Кал	ентье	3 A.A.
~	>>			2024

1 Описание САПР

1.1 Описание программы

КОМПАС-3D — это российская импортонезависимая система трёхмерного проектирования, ставшая стандартом для тысяч предприятий и сотен тысяч профессиональных пользователей.

КОМПАС-3D широко используется для проектирования изделий вспомогательного производств отраслях основного таких промышленности, как машиностроение (транспортное, сельскохозяйственное, энергетическое, нефтегазовое, химическое И т.д.), приборостроение, авиастроение, судостроение, станкостроение, вагоностроение, металлургия, промышленное и гражданское строительство, товары народного потребления и т. д.[1]

Данная САПР позволяет проектировать модели и сборки разного уровня сложности, благодаря разнообразному функционалу, включающего в себя работу как с 2-мерными эскизами, так и с 3D-моделями. В САПР есть возможность работать со всеми основными примитивами необходимыми для создания эскизов и моделей, а также существует достаточное количество инструментов для работы с 3D-моделями (вытягивание, вращение, вырезание и др.).

Компас 3D имеет множество прямых аналогов на рынке, среди них встречаются Autodesk Inventor, SOLIDWORKS и др.

В рамках дисциплины выбор данной САПР объясняется наличием описания АРІ на русском языке, доступность учебной версии САПР без необходимости получать одобрения от компании, а также большим количеством информации на сторонних ресурсах на русском языке, позволяющим детальнее узнать о возможностях работы с САПР.

1.2 Описание АРІ

API (Application Programming Interface) — набор правил и протоколов, с помощью которых различные программные приложения могут взаимодействовать друг с другом и обмениваться данными, повышая тем самым функциональность и эффективность работы.[2]

Для подключения и работы с API на C# потребуется выполнить ряд следующих действий:

- 1. Включить в свойствах проекта функцию Register for COM Interop;
- 2. Создать DLL-обёртку для TLB Компас API с помощью Tlblmp.exe;
- 3. Подключить созданный DLL к проекту;
- 4. Зарегистрировать библиотеку в системе КОМПАС (а именно реализовать статический метод типа .htmSample с рядом настроек)
- 5. Зарегистрировать библиотеку на компьютере пользователя, воспользовавшись утилитой RegAsm.exe

Таблица 1.1 – Используемые свойства класса (интерфейса) Application

Название	Тип данных	Описание
ActiveDocument	ICompasDocument	Свойство, содержащее
		текущий активный
		документ
Documents	IDocuments	Коллекция всех
		открытых документов
		в приложении
Math2D	IMath2D	Интерфейс 2D
		математики

Таблица 1.2 – Используемые методы класса (интерфейса) Application

Название	Входные	Тип	Описание
	параметры	возвращаемы	
		х данных	
ExecuteCompasCommand	commandId,	bool	Выполнение
	post		команды
			системы
			КОМПАС
MessageBoxEx	Text, caption,	long	Выдача
	flags		всплывающег
			о сообщения

Таблица 1.3 – Используемые свойства класса (интерфейса) IDocuments

Название	Тип данных	Описание
Item	IKompasDocument	Документ, заданный
		по имени, ссылке или
		индексу

Таблица 1.4 – Используемые методы класса (интерфейса) IDocuments

Название	Входные параметры	Тип возвращаемых	Описание
		данных	
Add	Type, Visible	IKompaDocument	Создаёт новый
			документ
Open	PathName, Visible,	IKompaDocument,	Открывает
	ReadOnly,	null	документ
	LoadCOmbinationIndex		(существующий)

Таблица 1.5 – Используемые свойства класса (интерфейса) IProcess2D

Название	Тип данных	Описание
Angle	double	Угол отклонения в
		градусах
X	double	Координата Х
Y	double	Координата Ү

Таблица 1.6 – Используемые свойства класса (интерфейса) IProcess3D

Название	Тип данных	Описание
MateConstraintsObjects	Variant	Выбранные объекты
		для сопряжения
Placement	IPlacement3D	Положение объекта
TakeProcessObject	IModelObject	Объект, создаваемый в
		подпроцессе

Таблица 1.7 – Используемые методы класса (интерфейса) IProcess3D

Название	Входные параметры	Тип возвращаемых	Описание
		данных	
RunTakeCr	ProcessType,	bool	Запустить
eateObject	TakeObject,		подчинённый
Process	NeedCreateTakeObj,		режим создания
	LostTakeObj		объектов

1.3 Обзор аналогов плагина

Первым аналогом является приложении «Разъёмные соединения» [3] для Компас-3D, позволяющее формировать и размещать в сборке набор

крепёжных элементов. Данное приложение требует оплаты дополнительной лицензии в размере 46 400 руб (+20% НДС) и позволяет создавать болтовые и винтовые соединения, а также шайбы/гайки для соединения. Данный аналог является прямым для разрабатываемого плагина «Отвёртка». Интерфейс взаимодействия представлен на рисунке 1.1.

Рисунок 1.1 – Интерфейс приложения «Разъёмные соединения»

Вторым аналогом является специализированный модуль к базовому приложению Компас-3D «Валы и механические передачи 3D. Зуборезный инструмент»[4]. Модуль позволяет рассчитать и построить модели червячных фрез для нарезания:

- цилиндрических зубчатых колес с эвольвентным профилем (черновые и чистовые фрезы);
- цилиндрических передач Новикова с двумя линиями зацепления;
- звездочек к приводным роликовым и втулочным цепям;
- червячных колес цилиндрической червячной передачи (черновые и чистовые фрезы);
- шлицевых валов с эвольвентным профилем;
- шлицевых валов с прямобочным профилем.

Лицензия является платной (216 000 руб.). Данный аналог является прямым к плагину «Отвёртка». Пользовательский интерфейс представлен на рисунке 1.2.

Рисунок 1.2 – Интерфейс приложения «Валы и механические передачи 3D. Зуборезный инструмент»

2 Описание предмета проектирования

Отвёртка — ручной слесарный и столярный монтажный инструмент, предназначенный для завинчивания и отвинчивания крепёжных изделий с резьбой.[5]

Рисунок 2.1 – Модель отвёртки

Изменяемые параметры для предмета проектирования (также все обозначения показаны на рисунке 2.1):

- Длина ручки отвёртки 1 (45-150мм);
- Длина наконечника отвёртки L (45-500мм, но не меньше ручки);
- Диаметр наконечника отвёртки D (2/10 (длины ручки+наконечника) +/- 2 мм);
 - Диаметр ручки d (1/4 длины ручки +/- 5 мм);
 - Форма ручки (шестиугольная призма/цилиндрическая);
 - Форма наконечника (крестообразная/плоская).

3 Проект системы

3.1 UML диаграмма классов

UML — это стандартный язык визуального моделирования, предназначенный для следующего использования:

- моделирование бизнеса и подобных процессов;
- анализ, проектирование и внедрения программных систем.

UML — это общий язык для бизнес-аналитиков, архитекторов и разработчиков программного обеспечения, используемый для описания, спецификации, проектирования и документирования существующих или новых бизнес-процессов, структуры и поведения артефактов программных систем.[6]

UML диаграмма классов для плагина «Отвёртка» представлена на рисунке 3.1.

Рисунок 3.1 – UML диаграмма классов для плагина «Отвёртка»

В таблицах ниже представлена информация о свойствах и методах каждого из классов.

Таблица 3.1 — Свойства класса MainForm

Название	Тип данных	Описание
_builder	Builder	Хранит в себе объект построения
_parameters	Parameters	Хранит в себе параметры для объекта
		построения

Таблица 3.2 – Методы класса MainForm

Название	Описание
BuildModel	Запуск построения модели по заданным параметрам
MainForm	Конструктор MainForm
FirstValidate	Проверка введённых данных по формату
TextBoxHandleLength_Leave	Обработчик выхода из текстбокса длины ручки
TextBoxHandleWidth_Leave	Обработчик выхода из текстбокса диаметра ручки
TextBoxRodLength_Leave	Обработчик выхода из текстбокса длины
	наконечника
TextBoxRodWidth_Leave	Обработчик выхода из текстбокса ширины
	наконечника
ComboBoxShapeOfRod_Selected	Обработчик изменения значения
IndexChanged	ComboBoxShapeOfRod
ComboBoxShapeOfHandle_Selec	Обработчик изменения значения
tedIndexChanged	ComboBoxShapeOfHadle
SetColors	Устанавливает цвета для всех текст боксов по
	результатам проверки
SecondValidate	Вызов валидации параметров

Таблица 3.3 — Свойства класса Parameters

Название	Тип данных	Описание
_parameter	Dictionary <parametertype,< td=""><td>Хранит в себе словарь</td></parametertype,<>	Хранит в себе словарь
	Parameter>	параметра

Таблица 3.4 — Методы класса Parameters

Название	Входные	Выходные	Описание
	параметры	параметры	
ValidateParameters	Dictionary <pa< td=""><td>_</td><td>Валидирует</td></pa<>	_	Валидирует
	rameterType,		зависимые параметры
	Parameter>		
SetParameter	ParameterTyp	Dictionary <paramet< td=""><td>Устанавливает</td></paramet<>	Устанавливает
	e, Parameter	erType, Parameter>	параметр
AllParameters	_	Dictionary <paramet< td=""><td>Возвращает и задаёт</td></paramet<>	Возвращает и задаёт
		erType, Parameter>	словарь параметров
ShapeOfRod	_	RodType	Устанавливает и
			возвращает форму
			наконечника
ShapeOfHandle	_	HandleType	Устанавливает и
			возвращает форму
			ручки

Таблица 3.5 — Свойства класса Builder

Название	Тип данных	Описание
_wrapper	Wrapper	Хранит в себе объект обёртки АРІ

Таблица 3.6 – Методы класса Builder

Название	Входные	Описание
	параметры	
Build	Parameters	Построение модели по заданным
		параметрам
BuildRod	Parameters	Построение стержня отвёртки
BuildHandle	Parameters	Построение ручки отвёртки
BuildScredriwer	_	Построение наконечника отвёртки

Таблица 3.7 — Свойства класса Parameter

Название	Тип данных	Описание
MaxValue	int	Максимально допустимое значение параметра
MinValue	int	Минимально допустимое значение параметра
Value	int	Значение параметра

Таблица 3.8 — Методы класса Parameter

Название	Описание	
Validate	Сравнивает полученное значение с максимальным и	
	минимальным возможными	

Таблица 3.9 — Свойства класса Wrapper

Название	Тип данных	Описание	
_kompas	KompasObject	Поле, хранящее в себе экземпляр	
		программы Компас	
_document3D	Kompas6API5	Поле, хранящее в себе указатель на	
		интерфейс для работы с моделью	

Продолжение таблицы 3.9

Название	Тип данных	Описание
_part	Kompas6API5	Поле, хранящее в себе основную модель
_sketchEntity	Kompas6API5	Поле, хранящее в себе текущий эскиз
_sketchDef	Kompas6API5	Поле, хранящее в себе зависимости для
		эскиза
_document2D	Kompas6API5	Поле, хранящее в себе указатель на
		интерфейс для работы с чертежом

Таблица 3.10 — Методы класса Wrapper

Название	Входные	Выходные	Описание
	параметры	параметры	
CreateArc	double, double,	_	Создание дуги по трём
	double, double,		точкам (double координаты
	double, double		х и у для каждой точки)
CreateLine	double, double,	_	Создание линии по двум
	double, double		точкам
CreateSketch	int	_	Создание эскиза (по int
			выбираем базисную
			плоскость)
Spin	_	_	Вращение эскиза
Extrusion	int, double	_	Выдавливание эскиза (int -
			тип, double - глубина)
CreateFie	_	_	Создание файла
OpenCAD	_	_	Открытие Компас3D

3.2 Макеты пользовательского интерфейса

На рисунках 3.2 и 3.3 представлены макет пользовательского интерфейса, а также валидация введённых значений, при неверно введённом значении диаметра ручки (значение находится ниже допустимого предела).

Рисунок 3.2 — Макет пользовательского интерфейса

Рисунок 3.3 – Реакция системы на ошибку во введённых параметрах

4 Список источников

- 1. КОМПАС-3D [Электронный ресурс]. Режим доступа https://kompas.ru/kompas-3d/about/ (дата обращения 28.09.2024)
- 2. API [Электронный ресурс]. Режим доступа https://itglobal.com/ru-ru/company/glossary/api/ (дата обращения 28.09.2024)
- 3. Разъёмные соединения [Электронный ресурс]. Режим доступа https://kompas.ru/kompas-3d/application/machinery/threaded-connection/ (дата обращения 05.10.2024)
- 4. Валы и механические передачи 3D. [Электронный ресурс]. Режим доступа https://kompas.ru/kompas-3d/application/machinery/gear-cutting/ (дата обращения 05.10.2024)
- 5. ГОСТ 17199-88 «Отвёртки слесарно-монтажные» (дата обращения 20.09.2024)
- 6. UML [Электронный ресурс]. Режим доступа https://www.uml-diagrams.org/ (дата обращения 07.10.2024)