AMS314: Partie 1

Thibault Mougin

Mars 2024

Vous trouverez le code sur https://github.com/thibaultmougin/AMS314

1 Lecture des maillages

On commence par implémenter les fonctions de qualité des triangles données par

$$Q_1(K) = \alpha_1 \frac{\sum_i \ell_i^2}{|K|} \quad \text{ et } \quad Q_2(K) = \alpha_2 \frac{h_{\text{max}}}{\rho(K)}$$

Ces histogrammes présentent les distributions (Q_1 à gauche et Q_2 à droite) des qualités des triangles des maillages carre_05h.mesh, carre_h.mesh, carre_2h.mesh et carre_4h.mesh :

Figure 1: Qualités pour carre_05h.mesh

Figure 2: Qualités pour carre_h.mesh

Figure 3: Qualités pour carre_2h.mesh

Figure 4: Qualités pour carre_4h.mesh

On remarque que Q_2 est plus discriminante et que les maillages les plus fins ont généralement des triangles de qualités moindres.

2 Algorithme quadratique et table de hachage

On calcule le tableau des voisins par l'algorithme quadratique naïf puis à l'aide d'une table de hachage:

	carre_05h	carre_h	carre_2h	carre_4h
Sommets	178746	43758	10663	2625
Triangles	355946	86742	20938	5084
Algo. quadratique (s)	1746	80.42	4.784	0.2803
Table de hachage (s)	0.05685	0.009661	0.002825	0.0004119

Figure 5: Temps CPU vs nombre N de triangles pour la construction du tableau des voisins

On observe bien les complexités quadratique et en $\mathcal{O}(N\log(N))$ attendues.

La table de hachage fournit aussi le nombre d'arêtes (c'est le nombre NbrObj d'éléments listés dans la table) et le nombre d'arêtes frontières (celles qui ont 0 comme deuxième triangle):

	naca0012	1s89	hlcrm
Sommets	7379	2239	2651
Triangles	14266	4098	4616
Nb. arêtes	21646	6338	7270
Nb. arêtes frontières	494	382	692

On s'intéresse au nombre de collisions pour différentes fonctions de hachage (toujours avec SizeObj=2*msh->NbrVer et NbrMaxObj=3*msh->NbrTri) :

	carre_05h	carre_h	carre_2h	carre_4h
ip1+ip2	0.570	0.571	0.578	0.537
abs(ip1-ip2)	0.731	0.728	0.724	0.741
min(ip1,ip2)	0.707	0.707	0.706	0.705
ip1*ip2	0.364	0.577	0.521	0.593

Table 1: Ratios collisions/nombre total d'arêtes pour différents maillages et clés de hachage

On utilisera ip1+ip2, qui provoque en général le moins de collisions (ip1*ip2 aurait aussi été un choix acceptable.. et d'autant plus si on prenait SizeObj plus grand).