Estimating Summary Quality with Pairwise Preferences

Markus Zopf | Research Training Group AIPHES, TU Darmstadt

Problems:

- 1. creating reference summaries is time-consuming and \rightarrow expensive
- 2. computing text similarities is a complex, unsolved problem → not reliable 🗲

Summary

- traditional evaluation methods use <u>references summaries</u> to estimate the quality of automatically generated summaries
- creating references summaries is <u>complex and expensive</u>
- we propose to use <u>simple pairwise preference labels</u> of individual sentences for evaluation
- our evaluation is <u>cheaper and more accurate</u> than the SOTA

Donald Trump won the election and became president.

The U.S. Congress certified the results on January 6.

Estimating Summary Quality with Pairwise Preferences

generated preferences are interpreted as games in which better sentences are more likely to win a game

$$S_4 > S_6$$
 compute Bradley-
 $S_2 > S_4$ Terry scores
 $S_8 > S_5$

$$p(s_x > s_y) = \frac{u(s_x)}{u(s_x) + u(s_y)}$$

$$v(\mathbf{S}) = \sum_{i}^{|\mathbf{S}|} w_i \cdot u(s_i)$$

S=summary to evaluate s_i =i-th sentences in S

Automatically Generating Preferences

reference summaries are already available for standard datasets -> reuse reference summaries to automatically create preference annotations for free

Evaluating Evaluation Methods

Prior work: Pearson correlation

Our work: Pairwise accuracy interpretation difficult clear interpretation requires linear correlation only necessary requirement normal distr., interval scaling assumed no additional assumptions

sensible to outliers

robust

