

TEST REPORT

Test report no.: 1-1238/16-02-11-B

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 – 10
66117 Saarbruecken / Germany
Phone: + 49 681 5 98 - 0
Fax: + 49 681 5 98 - 9075
Internet: http://www.ctcadvanced.com
e-mail: mail@ctcadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with

the registration number: D-PL-12076-01-01

Applicant

Mitel Deutschland GmbH

Zeughofstr. 1

10997 Berlin / Deutschland Phone: +49 30 6104-0

Fax: -/-

Contact: Andreas Papke

e-mail: andreas.papke@mitel.com Phone: +49 43 11 69 65 20

Manufacturer

Mitel Deutschland GmbH

Zeughofstr. 1

10997 Berlin / Deutschland

Test standard/s

47 CFR Part 15 Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency

devices

RSS - 247 Issue 1 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and

Licence - Exempt Local Area Network (LE-LAN) Devices

RSS - Gen Issue 4 Spectrum Management and Telecommunications Radio Standards Specifications -

General Requirements and Information for the Certification of Radio Apparatus

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Mitel 600 DECT Phone (3rd Gen)

 Model name:
 Mitel 622d v2

 FCC ID:
 UOU6X2DV2

 IC:
 1884E-6x2DV2

Frequency: DTS band 2400 MHz to 2483.5 MHz

Technology tested: Bluetooth® (basic rate)

Antenna: Integrated PCB antenna

Power supply: 3.7 V DC by Li-ion battery

Temperature range: 0°C to +40°C

Radio Communications & EMC

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:						
p.o.						
Andreas Luckenbill Lab Manager						

Test performed:

p.o.

Marco Bertolino Lab Manager Radio Communications & EMC

Table of contents

1	Table of contents2						
2	Gene	ral information					
	2.1	Notes and disclaimer	•				
	2.2	Application details					
	2.3	Test laboratories sub-contracted					
3	Test s	standard/s and references					
4	Test e	environment					
5		tem					
	5.1	General description					
	5.2	Additional information					
6	Desci	iption of the test setup	6				
	6.1	Shielded semi anechoic chamber					
	6.2	Shielded fully anechoic chamber					
	6.3	Radiated measurements > 18 GHz					
	6.4	AC conducted					
7	Seque	ence of testing	11				
	7.1	Sequence of testing radiated spurious 9 kHz to 30 MHz	11				
	7.2	Sequence of testing radiated spurious 30 MHz to 1 GHz	12				
	7.3	Sequence of testing radiated spurious 1 GHz to 18 GHz					
	7.4	Sequence of testing radiated spurious above 18 GHz	14				
8	Meas	urement uncertainty	15				
9	Sumn	nary of measurement results	16				
10	Add	litional comments	17				
11	Mea	asurement results	18				
	11.1	Antenna gain	18				
	11.2	Maximum output power					
	11.3	Band edge compliance radiated					
	11.4	Spurious emissions radiated below 30 MHz					
	11.5	Spurious emissions radiated 30 MHz to 1 GHz					
	11.6	Spurious emissions radiated above 1 GHz					
4.5	11.7	Conducted limits					
12		servations					
Anr	nex A	Document history	45				
Anr	nex B	Further information	45				
A no	20V C	Agarditation Cartificate	40				

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report 1-1238/16-02-11-A and dated 2017-01-04.

2.2 Application details

Date of receipt of order: 2016-10-17
Date of receipt of test item: 2016-10-17
Start of test: 2016-10-18
End of test: 2016-10-19

Person(s) present during the test: -/-

2.3 Test laboratories sub-contracted

None

3 Test standard/s and references

Test standard	Date	Description
47 CFR Part 15	-/-	Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 247 Issue 1	May 2015	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE- LAN) Devices
RSS - Gen Issue 4	November 2014	Spectrum Management and Telecommunications Radio Standards Specifications - General Requirements and Information for the Certification of Radio Apparatus

Guidance	Version	Description
ANSI C63.4-2014 ANSI C63.10-2013	-/-	American national standard for methods of measurement of radio- noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz American national standard of procedures for compliance testing of unlicensed wireless device

4 Test environment

		T_{nom}	+22 °C during room temperature tests
Temperature	:	T_{max}	No tests under extreme conditions required.
		T_{min}	No tests under extreme conditions required.
Relative humidity content			55 %
Barometric pressure	:		1021 hpa
		V_{nom}	3.7 V DC by Li-ion battery
Power supply	:	V_{max}	No tests under extreme conditions required.
		V_{min}	No tests under extreme conditions required.

5 Test item

5.1 General description

Kind of test item :	Mitel 600 DECT Phone (3rd Gen)
Type identification :	Mitel 622d v2
HMN :	-/-
PMN :	Mitel 622d v2
HVIN :	Mitel 622d v2
FVIN :	-/-
S/N serial number :	Conducted units: IPEI 11041 0081063 1 Radiated units: IPEI 11041 0080898 0
HW hardware status :	Beta 2
SW software status :	7.0.SP1
FW firmware status :	130.70.16
Frequency band :	DTS band 2400 MHz to 2483.5 MHz (lowest channel 2402 MHz; highest channel 2480 MHz)
Type of radio transmission: Use of frequency spectrum:	FHSS
Type of modulation :	GFSK
Number of channels :	79
Antenna :	Integrated PCB antenna
Power supply :	3.7 V DC by Li-ion battery
Temperature range :	0°C to +40°C

5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report: 1-1238/16-02-36_AnnexA

1-1238/16-02-36_AnnexB

1-1238/16-02-36_AnnexD

6 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration

k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	ZW	cyclical maintenance (external cyclical
			maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

6.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are confirmed with specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \mu V/m)$

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	Α	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	08.03.2016	08.03.2017
3	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
4	Α	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
5	Α	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
6	А	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	295	300003787	k	25.04.2016	25.04.2018

6.2 Shielded fully anechoic chamber

Measurement distance: tri-log antenna and horn antenna 3 meter; loop antenna 3 meter / 1 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \(\mu V/m \))$

OP = AV + D - G + CA

(OP-radiated output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain+amplifier gain; CA-loss signal path)

Example calculation:

 \overline{OP} [dBm] = -65.0 [dBm] + 50 [dB] - 20 [dBi] + 5 [dB] = -30 [dBm] (1 μ W)

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	B, D	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3088	300001032	vIKI!	20.05.2015	20.05.2017
2	A, B, C, D	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
3	A, B, C, D	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
4	С	Active Loop Antenna 10 kHz to 30 MHz	6502	EMCO/2	8905-2342	300000256	k	24.06.2015	24.06.2017
5	D	Amplifier	js42-00502650-28- 5a	Parzich GMBH	928979	300003143	ne	-/-	-/-
6	D	Band Reject filter	WRCG2400/2483- 2375/2505-50/10SS	Wainwright	11	300003351	ev	-/-	-/-
7	Α	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	371	300003854	vlKl!	29.10.2014	29.10.2017
8	A, B, D	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
9	A, B, C, D	EMI Test Receiver 9kHz-26,5GHz	ESR26	R&S	101376	300005063	vIKI!	13.09.2016	13.03.2018

6.3 Radiated measurements > 18 GHz

Measurement distance: horn antenna 50 cm

 $FS = U_R + CA + AF$

(FS-field strength; U_R-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)

Example calculation:

 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-60.1) [dB] + 36.74 [dB/m] = 16.64 [dB\mu V/m] (6.79 \mu V/m)$

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Std. Gain Horn Antenna 18.0 to 26.5 GHz	638	Narda		300000486	k	10.09.2015	10.09.2017
2	А	Signal Analyzer 40 GHz	FSV40	R&S	101042	300004517	k	21.01.2016	21.01.2017
3	А	Amplifier 2-40 GHz	JS32-02004000-57- 5P	MITEQ	1777200	300004541	ev	-/-	-/-
4	Α	RF-Cable	ST18/SMAm/SMAm/ 48	Huber & Suhner	Batch no. 600918	400001182	ev	-/-	-/-
5	Α	RF-Cable	ST18/SMAm/SMm/4 8	Huber & Suhner	Batch no. 127377	400001183	ev	-/-	-/-
6	А	DC-Blocker 0.1-40 GHz	8141A	Inmet	Batch no. 127377	400001185	ev	-/-	-/-

6.4 AC conducted

FS = UR + CF + VC

(FS-field strength; UR-voltage at the receiver; CR-loss of the cable and filter; VC-correction factor of the ISN)

Example calculation:

 $FS [dB\mu V/m] = 37.62 [dB\mu V/m] + 9.90 [dB] + 0.23 [dB] = 47.75 [dB\mu V/m] (244.06 \(\mu V/m \))$

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Two-line V-Network (LISN) 9 kHz to 30 MHz	ESH3-Z5	R&S	893045/004	300000584	k	02.02.2016	02.02.2017
2	Α	RF-Filter-section	85420E	HP	3427A00162	300002214	k	27.11.2006	-/-
3	Α	AC- Spannungsquelle variabel	MV2616-V	EM-Test	0397-12	300003259	k	11.12.2015	11.12.2017
4	Α	Hochpass 150 kHz	EZ-25	R&S	100010	300003798	ev	08.04.2008	-/-
5	А	MXE EMI Receiver 20 Hz to 26,5 GHz	N9038A	Agilent Technologies	MY51210197	300004405	k	04.02.2016	04.02.2017

7 Sequence of testing

7.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1.5 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

- Identified emissions during the premeasurement are maximized by the software by rotating the turntable from 0° to 360°. In case of the 2-axis positioner is used the elevation axis is also rotated from 0° to 360°.
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

7.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

7.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

7.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

8 Measurement uncertainty

Measurement uncertainty				
Test case	Uncertainty			
Antenna gain	± 3 dB			
Carrier frequency separation	± 21.5 kHz			
Number of hopping channels	-/-			
Time of occupancy	According BT Core specification			
Spectrum bandwidth	± 21.5 kHz absolute; ± 15.0 kHz relative			
Maximum output power	± 1 dB			
Detailed conducted spurious emissions @ the band edge	± 1 dB			
Band edge compliance radiated	± 3 dB			
Spurious emissions conducted	± 3 dB			
Spurious emissions radiated below 30 MHz	± 3 dB			
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB			
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB			
Spurious emissions radiated above 12.75 GHz	± 4.5 dB			
Spurious emissions conducted below 30 MHz (AC conducted)	± 2.6 dB			

9 Summary of measurement results

No deviations from the technical specifications were ascertained
There were deviations from the technical specifications ascertained
This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark	
RF-Testing	CFR Part 15	See table!	See table! 2017-03	2017-03-22	RF pretest according
rti roomig	RSS - 247, Issue 1	Ooo tabio.	2017 00 22	customer demand!	

Test specification clause	Test case	Temperature conditions	Power source voltages	Mode	С	NC	NA	NP	Remark
§15.247(b)(4) RSS - 247 / 5.4 (2)	Antenna gain	Nominal	Nominal	GFSK	No	pass/f	ail criter	ria!	Added from reference report! (cond. value)
§15.247(a)(1) RSS - 247 / 5.1 (2)	Carrier frequency separation	Nominal	Nominal	GFSK					-/-
§15.247(a)(1) RSS - 247 / 5.1 (4)	Number of hopping channels	Nominal	Nominal	GFSK				\boxtimes	-/-
§15.247(a)(1) (iii) RSS - 247 / 5.1 (4)	Time of occupancy (dwell time)	Nominal	Nominal	GFSK				\boxtimes	-/-
§15.247(a)(1) RSS - 247 / 5.1 (1)	Spectrum bandwidth of a FHSS system bandwidth	Nominal	Nominal	GFSK				×	-/-
§15.247(b)(1) RSS - 247 / 5.4 (2)	Maximum output power	Nominal	Nominal	GFSK	\boxtimes				Added from reference report!
§15.247(d) RSS - 247 / 5.5	Detailed spurious emissions @ the band edge - conducted	Nominal	Nominal	GFSK				\boxtimes	-/-
§15.205 RSS - 247 / 5.5 RSS - Gen	Band edge compliance radiated	Nominal	Nominal	GFSK					-/-
§15.247(d) RSS - 247 / 5.5	Spurious emissions conducted	Nominal	Nominal	GFSK				\boxtimes	-/-
§15.209(a) RSS - Gen	Spurious emissions radiated below 30 MHz	Nominal	Nominal	GFSK	×				-/-
§15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated 30 MHz to 1 GHz	Nominal	Nominal	GFSK RX mode	×				-/-
§15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated above 1 GHz	Nominal	Nominal	GFSK RX mode	×				-/-
§15.107(a) §15.207	Conducted emissions below 30 MHz (AC conducted)	Nominal	Nominal	GFSK / RX mode	\boxtimes				-/-

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

10 Additional comments

The Bluetooth® word mark and logos are owned by the Bluetooth SIG Inc. and any use of such marks by CTC advanced GmbH is under license.

Reference documents: CTC advanced test report 1-1238/16-02-10 (conducted measurements) Note: RF conducted output power added from the reference report! Special test descriptions: RF pretests according customer demand! Configuration descriptions: TX tests: were performed with x-DH5 packets and static PRBS pattern RX/Standby tests: BT test mode enabled, scan enabled, TX Idle \boxtimes Test mode: Bluetooth Test mode loop back enabled (EUT is controlled over CBT/CMU) Special software is used. EUT is transmitting pseudo random data by itself XAntennas and transmit Operating mode 1 (single antenna) operating modes: Equipment with 1 antenna, Equipment with 2 diversity antennas operating in switched diversity mode by which at any moment in time only 1 antenna is used, Smart antenna system with 2 or more transmit/receive chains, but

operating in a mode where only 1 transmit/receive chain is used)

11 Measurement results

11.1 Antenna gain

Measurement:

The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module. For normal Bluetooth® devices, the GFSK modulation is used.

Measurement parameters			
Detector	Peak		
Sweep time	Auto		
Resolution bandwidth	3 MHz		
Video bandwidth	3 MHz		
Span	5 MHz		
Trace mode	Max hold		
Test setup	See sub clause 6.2 A (radiated) Conducted added from reference report.		
Measurement uncertainty	See sub clause 8		

Limits:

FCC	IC
6 dBi / > 6 dBi output power and	power density reduction required

Results:

T _{nom}	V _{nom}	lowest channel 2402 MHz	middle channel 2441 MHz	highest channel 2480 MHz
Conducted power [dBm] Measured with GFSK modulation		-3.35	-0.75	0.00
Radiated power [dBm] Measured with GFSK modulation		-6.65	-4.91	-4.21
Gain [dBi] Calculated		-3.30	-4.16	-4.21

11.2 Maximum output power

Description:

Measurement of the maximum output power conducted and radiated. EUT in single channel mode. The measurement is performed according to the ANSI C63.10.

Measurement parameters			
Detector	Peak		
Sweep time	Auto		
Resolution bandwidth	3 MHz		
Video bandwidth	10 MHz		
Span	6 MHz		
Trace mode	Max hold		
Test setup	Added from reference report.		
Measurement uncertainty	See sub clause 8		

Limits:

FCC	IC		
Maximum output power			
Systems using more that	antenna gain max. 6 dBi] an 75 hopping channels: ntenna gain max. 6 dBi		

Results:

Modulation	Maximum output power conducted [dBm]			
Frequency	2402 MHz	2441 MHz	2480 MHz	
GFSK	-3.35	-0.75	0.00	

Plots:

Plot 1: lowest channel - 2402 MHz, GFSK modulation

Plot 2: middle channel – 2441 MHz, GFSK modulation

Plot 3: highest channel – 2480 MHz, GFSK modulation

11.3 Band edge compliance radiated

Description:

Measurement of the radiated band edge compliance. The EUT is turned in the position that results in the maximum level at the band edge. Then a sweep over the corresponding restricted band is performed. The EUT is set to single channel mode and the transmit channel is channel 00 for the lower restricted band and channel 78 for the upper restricted band. The measurement is repeated for all modulations. Measurement distance is 3m.

Measurement parameters			
Detector	Peak / RMS		
Sweep time	Auto		
Resolution bandwidth	1 MHz		
Video bandwidth	3 MHz		
Span	Lower Band: 2370 – 2400 MHz Upper Band: 2480 – 2500 MHz		
Trace mode	Max hold		
Test setup	See sub clause 6.2 B		
Measurement uncertainty	See sub clause 8		

Limits:

FCC	IC			
Band edge compliance radiated				
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 5.205(c)).				
54 dBμV/m AVG 74 dBμV/m Peak				

Results:

Scenario	Band edge compliance radiated [dBμV/m]
Modulation	GFSK
Lower restricted band	< 54 AVG / < 74 PP
Upper restricted band	< 54 AVG / < 74 PP

Plots:

Plot 1: Lower band edge, GFSK modulation, vertical & horizontal polarization

Plot 2: Upper band edge, GFSK modulation, vertical & horizontal polarization

11.4 Spurious emissions radiated below 30 MHz

Description:

Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The EUT is set to single channel mode and the transmit channels are 00; 39 and 78. The measurement is performed in the mode with the highest output power. The limits are recalculated to a measurement distance of 3 m according the ANSI C63.10.

Measurement parameters								
Detector	Peak / Quasi peak							
Sweep time	Auto							
Resolution bandwidth	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz							
Video bandwidth	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz							
Span	9 kHz to 30 MHz							
Trace mode	Max hold							
Test setup	See sub clause 6.2 C							
Measurement uncertainty	See sub clause 8							

Limits:

FCC			IC			
TX spurious emissions radiated below 30 MHz						
Frequency (MHz)	Field strength (dBµV/m)		Measurement distance			
0.009 – 0.490	2400/F(kHz)		300			
0.490 – 1.705	24000/F(kHz)		30			
1.705 – 30.0	3	0	30			

Results:

TX spurious emissions radiated below 30 MHz [dBμV/m]								
F [MHz] Detector Level [dBµV/m]								
All detect	All detected emissions are more than 20 dB below the limit.							

Plots:

Plot 1: 9 kHz to 30 MHz, channel 00, transmit mode

Plot 2: 9 kHz to 30 MHz, channel 39, transmit mode

Plot 3: 9 kHz to 30 MHz, channel 78, transmit mode

11.5 Spurious emissions radiated 30 MHz to 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit channel is channel 00, channel 39 and channel 78. The measurement is performed in the mode with the highest output power.

Measurement parameters							
Detector	Peak / Quasi Peak						
Sweep time	Auto						
Resolution bandwidth	120 kHz						
Video bandwidth	3 x RBW						
Span	30 MHz to 1 GHz						
Trace mode	Max hold						
Measured modulation	☐ GFSK ☐ Pi/4 DQPSK ☐ 8DPSK						
Test setup	See sub clause 6.1 A						
Measurement uncertainty	See sub clause 8						

The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

Limits:

FCC		IC						
TX spurious emissions radiated								
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).								
	§15.	209						
Frequency (MHz)	Field streng	th (dBµV/m)	Measurement distance					
30 - 88	30	0.0	10					
88 – 216	33	5.5	10					
216 – 960	36.0 10							
Above 960	54	.0	3					

Plots: Transmit mode

Plot 1: 30 MHz to 1 GHz, TX mode, channel 00, vertical & horizontal polarization

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
39.934200	10.26	30.00	19.74	1000.0	120.000	101.0	Н	114.0	13.2
44.192700	10.09	30.00	19.91	1000.0	120.000	101.0	Н	99.0	12.8
47.440200	10.32	30.00	19.68	1000.0	120.000	101.0	٧	352.0	13.2
95.098650	7.77	33.50	25.73	1000.0	120.000	101.0	٧	352.0	11.3
731.679450	19.88	36.00	16.12	1000.0	120.000	177.0	٧	305.0	22.3
942.343200	21.71	36.00	14.29	1000.0	120.000	185.0	٧	329.0	24.2

Plot 2: 30 MHz to 1 GHz, TX mode, channel 39, vertical & horizontal polarization

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
40.060200	10.43	30.00	19.57	1000.0	120.000	178.0	Н	46.0	13.2
48.201900	10.73	30.00	19.27	1000.0	120.000	101.0	٧	98.0	13.4
98.249100	7.84	33.50	25.66	1000.0	120.000	101.0	Н	201.0	11.9
623.397150	18.44	36.00	17.56	1000.0	120.000	185.0	Н	224.0	20.9
731.509050	19.83	36.00	16.17	1000.0	120.000	98.0	Н	34.0	22.3
934.656150	21.55	36.00	14.45	1000.0	120.000	185.0	Н	97.0	24.2

Plot 3: 30 MHz to 1 GHz, TX mode, channel 78, vertical & horizontal polarization

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
35.026050	11.05	30.00	18.95	1000.0	120.000	101.0	٧	70.0	11.7
43.487550	9.34	30.00	20.66	1000.0	120.000	101.0	٧	70.0	12.9
50.032200	12.38	30.00	17.62	1000.0	120.000	101.0	Н	236.0	13.7
125.111700	5.90	33.50	27.60	1000.0	120.000	101.0	٧	66.0	9.8
730.859250	19.86	36.00	16.14	1000.0	120.000	185.0	٧	6.0	22.3
939.187950	21.58	36.00	14.42	1000.0	120.000	185.0	٧	36.0	24.2

Plots: Receiver mode

Plot 1: 30 MHz to 1 GHz, RX / idle – mode, vertical & horizontal polarization

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
38.682300	13.01	30.00	16.99	1000.0	120.000	179.0	Н	67.0	12.8
49.169250	11.97	30.00	18.03	1000.0	120.000	185.0	Н	0.0	13.5
79.790850	4.96	30.00	25.04	1000.0	120.000	101.0	Н	13.0	8.1
91.024200	7.38	33.50	26.12	1000.0	120.000	101.0	Н	13.0	10.6
729.264900	19.84	36.00	16.16	1000.0	120.000	185.0	٧	262.0	22.2
866.838750	21.46	36.00	14.54	1000.0	120.000	178.0	Н	231.0	23.7

11.6 Spurious emissions radiated above 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit channel is channel 00, channel 39 and channel 78. The measurement is performed in the mode with the highest output power.

Measurement parameters							
Detector	Peak / RMS						
Sweep time	Auto						
Resolution bandwidth 1 MHz							
Video bandwidth 3 x RBW							
Span	1 GHz to 26 GHz						
Trace mode	Max hold						
Measured modulation	☐ GFSK ☐ Pi/4 DQPSK ☐ 8DPSK						
Test setup	See sub clause 6.2 D (1 GHz - 18 GHz) See sub clause 6.3 A (18 GHz - 26 GHz)						
Measurement uncertainty See sub clause 8							

The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

Limits:

FCC			IC					
	TX spurious em	issions radiated						
radiator is operating, the radio frequence that in the 100 kHz bandwidth within the conducted or a radiated measurement.	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the							
	§15.209							
Frequency (MHz)	Field strength (dBµV/m) Measurement distance							
Above 960	54.0 3							

Results: Transmitter mode

TX spurious emissions radiated [dBμV/m]								
2402 MHz			2441 MHz			2480 MHz		
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]
1410.1	Peak	39.0	1410.1	Peak	39.0	1410.1	Peak	39.0
	AVG	-/-		AVG	-/-		AVG	-/-
1400.0	Peak	39.4	1492.8	Peak	39.4	1492.8	Peak	39.4
1492.8	AVG	-/-	1492.0	AVG	-/-		AVG	-/-
-/-	Peak	-/-	2598	Peak	No RB!	2584	Peak	No RB!
	AVG	-/-		AVG	INU ND: 2004	2004	AVG	INU KD!

Results: Receiver mode

RX spurious emissions radiated [dBμV/m]						
F [MHz]	Detector	Level [dBµV/m]				
4440.4	Peak	39.0				
1410.1	AVG	-/-				
1492.8	Peak	39.4				
1492.0	AVG	-/-				

Note: The limit was recalculated with 20 dB / decade (Part 15.31) for all radiated spurious emissions 30 MHz to 1 GHz from 3 meter limit to a 10 meter distance. (40dB/decade for emissions < 30MHz)

Plots: Transmitter mode

Plot 1: 1 GHz to 7 GHz, TX mode, channel 00, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 2: 7 GHz to 18 GHz, TX mode, channel 00, vertical & horizontal polarization

Plot 3: 17.7 GHz to 18 GHz, TX mode, channel 00, vertical & horizontal polarization

Plot 4: 18 GHz to 26 GHz, TX mode, channel 00, vertical & horizontal polarization

Plot 5: 1 GHz to 7 GHz, TX mode, channel 39, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 6: 7 GHz to 18 GHz, TX mode, channel 39, vertical & horizontal polarization

Plot 7: 17.7 GHz to 18 GHz, TX mode, channel 39, vertical & horizontal polarization

Plot 8: 18 GHz to 26 GHz, TX mode, channel 39, vertical & horizontal polarization

Plot 9: 1 GHz to 7 GHz, TX mode, channel 78, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 10: 7 GHz to 18 GHz, TX mode, channel 78, vertical & horizontal polarization

Plot 11: 17.7 GHz to 18 GHz, TX mode, channel 78, vertical & horizontal polarization

Plot 12: 18 GHz to 26 GHz, TX mode, channel 78, vertical & horizontal polarization

Plots: Receiver mode

Plot 1: 1 GHz to 7 GHz, RX / idle – mode, vertical & horizontal polarization

Plot 2: 7 GHz to 18 GHz, RX / idle – mode, vertical & horizontal polarization

Plot 3: 17.7 GHz to 18 GHz, RX / idle – mode, vertical & horizontal polarization

Plot 4: 18 GHz to 26 GHz, RX / idle – mode, vertical & horizontal polarization

11.7 Conducted limits

Description:

Measurement of the conducted spurious emissions in transmit mode below 30 MHz. The EUT is set to single channel mode and the transmit channel is channel 39. This measurement is representative for all channels and modes. If critical peaks are found channel 00 and channel 78 will be measured too. The measurement is performed in the mode with the highest output power. Both power lines, phase and neutral line, are measured. Found peaks are remeasured with average and quasi peak detection to show compliance to the limits.

Measurement parameters					
Detector:	Quasi peak / average or				
Detector.	peak (worst case - pre-scan)				
Resolution bandwidth:	F < 150 kHz:	200 Hz			
Resolution bandwidth.	F > 150 kHz:	9 kHz			
Video bandwidth:	F < 150 kHz:	1 kHz			
video baridwidiri.	F > 150 kHz:	100 kHz			
Trace mode:	Max hold				
Used equipment:	See chapter 6.4 –	A			
Measurement uncertainty:	See chapter 8				

Limits:

FCC		IC			
TX spurious emissions conducted < 30 MHz					
Frequency (MHz)	Quasi-peak	κ (dBμV/m)	Average (dBμV/m)		
0.15 – 0.5	66 to	56*	56 to 46*		
0.5 – 5	5	6	46		
5 – 30.0	6	0	50		

^{*}Decreases with the logarithm of the frequency

Results:

Spurious emissions conducted < 30 MHz [dBµV/m]						
F [MHz] Detector Level [dBµV/m]						
See table below the plots.						

Plots:

Plot 1: 150 kHz to 30 MHz, phase line

29.21

1.996391

26.79

Margin Quasi peak **Average** Margin **Limit QP Limit AV Frequency** level quasi peak level average MHz dΒμV dB dΒμV dΒμV dB dΒμV 0.166232 50.50 14.65 65.147 35.46 20.08 55.536 47.69 16.45 64.134 35.59 19.33 54.920 0.187795 57.303 29.72 18.36 0.427389 38.48 18.83 48.075 24.85 23.68 22.32 0.736746 31.15 56.000 46.000 1.016760 31.20 24.80 56.000 23.40 22.60 46.000 1.320637 30.16 25.84 56.000 22.74 23.26 46.000 29.17 26.83 56.000 22.49 23.51 46.000 1.962270

56.000

22.46

23.54

46.000

Plot 2: 150 kHz to 30 MHz, neutral line

Project ID: 1-1238/16-02-11

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dΒμV	dB	dΒμV	dΒμV	dB	dΒμV
0.215744	45.74	17.24	62.981	30.00	24.12	54.122
0.223402	47.04	15.65	62.691	32.63	21.27	53.903
0.405945	37.96	19.77	57.731	28.32	20.37	48.687
0.964617	32.01	23.99	56.000	24.02	21.98	46.000
2.005048	31.28	24.72	56.000	23.40	22.60	46.000
2.338603	29.73	26.27	56.000	22.20	23.80	46.000
2.856195	30.21	25.79	56.000	22.40	23.60	46.000
29.865680	29.73	30.27	60.000	22.53	27.47	50.000
29.958839	29.68	30.32	60.000	22.40	27.60	50.000

12 Observations

No observations except those reported with the single test cases have been made.

Annex A Document history

Version	Applied changes	Date of release
-	Initial release	2016-10-20
А	Editorial changes	2017-01-04
В	Editorial changes	2017-03-22

Annex B Further information

Glossary

AVG - Average

DUT - Device under test

EMC - Electromagnetic Compatibility

EN - European Standard EUT - Equipment under test

ETSI - European Telecommunications Standard Institute

FCC - Federal Communication Commission

FCC ID - Company Identifier at FCC

HW - Hardware

IC - Industry Canada
Inv. No. - Inventory number
N/A - Not applicable
PP - Positive peak
QP - Quasi peak
S/N - Serial number
SW - Software

PMN - Product marketing name HMN - Host marketing name

HVIN - Hardware version identification number FVIN - Firmware version identification number

Annex C Accreditation Certificate

(DAkkS Deutsche Akkreditierungsstelle GmbH

first page

Beliehene gemäß § 8 Absatz 1 AkkStelleG i.V.m. § 1 Absatz 1 AkkStelleGBV Unterzeichnerin der Multilateralen Abkommen von EA, ILAC und IAF zur gegenseitigen Anerkennung

Akkreditierung

Die Deutsche Akkreditierungsstelle GmbH bestätigt hiermit, dass das Prüflaborato

CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken

die Kompetenz nach DIN EN ISO/IEC 17025:2005 besitzt, Prüfungen in folgenden Bereic durchzuführen:

Funk
Mobiliumk (GSM / DCS) + OTA
Elektromagnetische Verträglichkeit (EMV)
Produktsicherheit
SAR / EMF
Umweit
Smart Card Technology
Bluetooth*
Automotive
Wi-H-Services
Kanadische Anforderungen
Us-Anforderungen
Akustik

Akustik Near Field Communication (NFC)

Die Akkreditierungsurkunde gilt nur in Verbindung mit dem Bescheid vom 25.11.2016 mit der Akkreditierungsnummer 0-Pt-12076-01 und ist gültig bis 17.01.2018. Sie besteht aus diesem Di der Rückseite des Deckblatts und der folgenden Anlage mit Insgesamt 63 Seiten.

Registrierungsnummer der Urkunde: D-PL-12076-01-01

Frankfurt, 25.11.2016

last page

Deutsche Akkreditierungsstelle GmbH

Standort Berlin Spittelmarkt 10 10117 Berlin

Standort Frankfurt am Main Europa-Allee 52 60327 Frankfurt am Main

Die Akkreditierung erfolgte gemäß des Gesetzes über die Akkreditierungsstelle (AkkStelleG) vom 31. Juli 2009 (BGBL 1 s. 2625) sowie der Verordnung (EG) Nr. 765/2006 des Europäischen Parlamer und des Rates vom 9. Juli 2008 über die Vorschriften für die Akkreditierung und Marktüberwachu im Zusammenhang mit der Vermachtung von Produkten (Abl. L 121 vom 9. Juli 2008, 5.0) Die DAkkS ist Unterzeichnerin der Multilateralen Akkommen zur gegenseitigen Anerkennung der European co-operation for Accreditation (EA), des International Accreditation forum (EGP) der International Laboratory Accreditation Cooppration (ILAC). Die Unterzeichner dieser Abkomme erkennen ihre Akkrediterungen gegenseitig an.

Der aktuelle Stand der Mitgliedschaft kann folgenden Webseiten entr EA: www.european-accreditation.org ILAC: www.llac.org IAS: www.llac.org

Note:

The current certificate including annex can be received on request.