SRM Institute of Science and Technology Delhi – Meerut Road, Sikri Kalan, Ghaziabad, Uttar Pradesh – 201204 Department of Computer Applications Circular – 2023-24 BCA DS 5th Sem

Deep Learning with Keras and Tensorflow (UDS23501J)

Lab Manual

Here's a structured lab manual based on the provided list of programs. Since I don't have the specific code for each lab, I'll provide a general structure and example code in Python using Keras and TensorFlow, which are commonly used for deep learning tasks. You can fill in the specific code for each lab exercise.

Lab 1: Learning XOR Problem

Title: Learning XOR Problem

Aim: To implement a neural network to solve the XOR problem.

Procedure:

- 1. Define the XOR input and output data.
- 2. Build a neural network model with appropriate layers (e.g., a simple network with one hidden layer).
- 3. Compile the model with a suitable optimizer and loss function (e.g., 'adam' and 'binary crossentropy').
- 4. Train the model on the XOR data.
- 5. Evaluate the model's performance.

```
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
# Define XOR data
X = [[0, 0], [0, 1], [1, 0], [1, 1]]
y = [0, 1, 1, 0]
# Build the model
model = Sequential([
   Dense(2, input dim=2, activation='relu'),
    Dense(1, activation='sigmoid')
])
# Compile the model
model.compile(loss='binary_crossentropy', optimizer='adam',
metrics=['accuracy'])
# Train the model
model.fit(X, y, epochs=1000, verbose=0)
```

```
# Evaluate the model
loss, accuracy = model.evaluate(X, y)
print(f"Loss: {loss}, Accuracy: {accuracy}")

# Make predictions
predictions = model.predict(X)
for i in range(len(X)):
    print(f"Input: {X[i]}, Predicted: {predictions[i][0]:.4f}, Actual: {y[i]}")
```

Expected Output:

The model should learn the XOR function, and the predictions should be close to the actual XOR outputs: [0, 1, 1, 0]. The accuracy should be high (close to 1).

Lab 2: Image Classification using CNN

Title: Image Classification using CNN

Aim: To build and train a Convolutional Neural Network (CNN) for image classification.

Procedure:

- 1. Load and preprocess an image dataset (e.g., MNIST, CIFAR-10).
- 2. Define the CNN architecture (e.g., convolutional layers, pooling layers, fully connected layers).
- 3. Compile the model.
- 4. Train the model on the training data.
- 5. Evaluate the model on the test data.

Source Code:

```
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
# Load the MNIST dataset
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
x_train = x_train.astype("float32") / 255
x \text{ test} = x \text{ test.astype}("float32") / 255
x_{train} = x_{train.reshape}(-1, 28, 28, 1) # Add channel dimension
# Define the CNN model
model = keras.Sequential(
        layers.Conv2D(32, kernel_size=(3, 3), activation="relu",
input shape=(28, 28, 1)),
        layers.MaxPooling2D(pool size=(2, 2)),
        layers.Conv2D(64, kernel_size=(3, 3), activation="relu"),
        layers.MaxPooling2D(pool_size=(2, 2)),
        layers.Flatten(),
        layers.Dense(10, activation="softmax"),
    ]
)
# Compile the model
model.compile(loss="sparse categorical crossentropy", optimizer="adam",
metrics=["accuracy"])
# Train the model
model.fit(x_train, y_train, batch_size=128, epochs=5, validation_split=0.1)
# Evaluate the model
loss, accuracy = model.evaluate(x test, y test)
print(f"Test Loss: {loss}, Test Accuracy: {accuracy}")
# Make predictions (example)
predictions = model.predict(x test[:10])
print(predictions)
```

Input:

Expected Output:

The model should classify the images into their correct digit categories (0-9) with reasonable accuracy.

Lab 3: Building a Deep Learning Model

Title: Building a Deep Learning Model

Aim: To design and implement a deep learning model for a specific task (e.g., regression, classification).

Procedure:

- 1. Define the problem and dataset.
- 2. Choose an appropriate model architecture (e.g., MLP, CNN, RNN).
- 3. Build the model using Keras/TensorFlow.
- 4. Compile and train the model.
- 5. Evaluate and fine-tune the model.

Source Code: (This is a general example; you'll need to adapt it)

```
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.layers import Dense
# 1. Define the problem and dataset (Example: Regression)
   Assume you have loaded your data into X train, y train, X test, y test
# 2. Choose a model architecture (Example: Multi-Layer Perceptron)
model = keras.Sequential([
    Dense(64, activation='relu', input dim=X train.shape[1]), # Adjust
input dim
    Dense(64, activation='relu'),
    Dense(1) # Output layer for regression
])
# 3. Compile the model
model.compile(optimizer='adam', loss='mse') # Mean Squared Error for regression
# 4. Train the model
model.fit(X_train, y_train, epochs=100, batch_size=32, validation split=0.2)
# 5. Evaluate the model
loss = model.evaluate(X test, y test)
print(f"Test Loss: {loss}")
# Make predictions
predictions = model.predict(X test)
print(predictions)
```

Input:

Dataset specific to the chosen problem.

Expected Output:

Output will depend on the problem (e.g., predicted values for regression, class probabilities for classification).

Lab 4: Data Augmentation Lab

Title: Data Augmentation Lab

Aim: To apply data augmentation techniques to increase the size and variability of the training data.

Procedure:

- 1. Load the dataset.
- 2. Create an ImageDataGenerator object from Keras.
- 3. Specify augmentation parameters (rotation, zoom, flip, etc.)
- 4. Apply the data augmentation to the training data.
- 5. Train a model using the augmented data.

Source Code:

```
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.preprocessing.image import ImageDataGenerator
# Load dataset (example using CIFAR-10)
(x train, y train), (x test, y test) = keras.datasets.cifar10.load data()
# Create ImageDataGenerator
datagen = ImageDataGenerator(
   rotation range=20,
   width shift range=0.2,
   height shift range=0.2,
   horizontal_flip=True,
   zoom range=0.2,
)
# Apply augmentation to training data
datagen.fit(x train)
train generator = datagen.flow(x train, y train, batch size=32)
# Define a simple CNN model
model = keras.Sequential([
   layers.Conv2D(32, (3, 3), activation='relu',
input shape=x train.shape[1:]),
   layers.MaxPooling2D((2, 2)),
   layers.Flatten(),
   layers.Dense(10, activation='softmax')
])
# Compile the model
model.compile(optimizer='adam', loss='sparse categorical crossentropy',
metrics=['accuracy'])
# Train the model using the data generator
model.fit(train generator, epochs=10, validation data=(x test, y test))
# Evaluate the model
loss, accuracy = model.evaluate(x test, y test)
print(f"Test Loss: {loss}, Test Accuracy: {accuracy}")
```

Input:

6. A dataset of images (e.g., CIFAR-10)

Expected Output:

7. A trained model with improved generalization due to the augmented training data. The validation accuracy should be higher than if no data augmentation was used.

Lab 5: Implementation of RNN

Title: Implementation of RNN

Aim: To implement a Recurrent Neural Network (RNN) for sequence data.

Procedure:

- 1. Prepare sequence data (e.g., text, time series).
- 2. Preprocess the data (e.g., tokenization, padding).
- 3. Build an RNN model (e.g., SimpleRNN, LSTM, GRU).
- 4. Compile and train the model.
- 5. Evaluate the model.

```
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.layers import SimpleRNN, Embedding, Dense
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad sequences
# Sample text data
sentences = [
    "This is the first sentence.",
    "Here is another sentence.",
    "Sentences are sequences of words."
1
# Tokenize the text
tokenizer = Tokenizer(num_words=100) # Limit vocabulary size
tokenizer.fit on texts(sentences)
sequences = tokenizer.texts to sequences(sentences)
# Pad sequences to ensure equal length
padded sequences = pad sequences(sequences)
# Build the RNN model
model = keras.Sequential([
    Embedding(input dim=100, output dim=32,
input length=padded sequences.shape[1]), # input dim is vocab size
    SimpleRNN(32),
    Dense(1, activation='sigmoid') # For binary classification (example)
])
# Compile the model
model.compile(optimizer='adam', loss='binary crossentropy',
metrics=['accuracy'])
# Train the model (replace with your training data)
import numpy as np
labels = np.array([0, 1, 0]) # Example labels
model.fit(padded_sequences, labels, epochs=10)
# Evaluate the model (replace with your test data)
# loss, accuracy = model.evaluate(test_data, test_labels)
# print(f"Test Loss: {loss}, Test Accuracy: {accuracy}")
# Make predictions
# predictions = model.predict(new data)
# print(predictions)
```

Sequence data (e.g., text sentences).

Expected Output:

Output depends on the task (e.g., sentiment classification, next word prediction).

Lab 6: Restricted Boltzmann Machine

Title: Restricted Boltzmann Machine

Aim: To implement a Restricted Boltzmann Machine (RBM).

Procedure:

- 1. Prepare the input data.
- 2. Define the RBM architecture (number of visible and hidden units).
- 3. Initialize weights and biases.
- 4. Implement the Contrastive Divergence algorithm for training.
- 5. Train the RBM.
- 6. Use the trained RBM for tasks like feature extraction or generation.

Source Code: (Note: RBM implementations in TensorFlow/Keras are less common now; this is a conceptual outline. Use a library like torch if needed.)

```
import numpy as np
#import tensorflow as tf # Removed tensorflow
# No direct replacement. Conceptual outline.
def sigmoid(x):
    return 1 / (1 + np.exp(-x))
class RBM:
    def init (self, n visible, n hidden):
       self.n visible = n visible
       self.n hidden = n hidden
        # Initialize weights and biases
       self.W = np.random.randn(n visible, n hidden) * 0.01
       self.v bias = np.zeros(n visible)
       self.h bias = np.zeros(n hidden)
    def forward(self, v):
        """Propagate visible to hidden."""
       return sigmoid(np.dot(v, self.W) + self.h_bias)
    def backward(self, h):
        """Propagate hidden to visible."""
        return sigmoid(np.dot(h, self.W.T) + self.v bias)
    def sample hidden(self, v):
        """Sample hidden units given visible units."""
       h prob = self.forward(v)
       return np.random.binomial(n=1, p=h prob) # Changed to numpy
    def sample visible(self, h):
       """Sample visible units given hidden units."""
       v prob = self.backward(h)
       return np.random.binomial(n=1, p=v prob) # Changed to numpy
    def train(self, data, epochs=10, batch size=10, learning rate=0.1):
       """Train the RBM using Contrastive Divergence."""
       n samples = data.shape[0]
        for epoch in range (epochs):
            for start in range(0, n samples, batch size):
                end = min(start + batch size, n samples)
               batch = data[start:end]
```

```
# 1. Positive phase
                v0 = batch
                h0 = self.sample hidden(v0)
                # 2. Negative phase
                v1 = self.sample_visible(h0)
                h1 = self.sample_hidden(v1)
                # 3. Update weights and biases
                positive grad = np.dot(v0.T, h0)
                negative_grad = np.dot(v1.T, h1)
                self.W += learning_rate * (positive_grad - negative_grad) /
batch_size
                self.v_bias += learning_rate * np.mean(v0 - v1, axis=0)
                self.h_bias += learning_rate * np.mean(h0 - h1, axis=0)
# Example usage (replace with your data)
# Assuming you have binary data
data = np.random.randint(0, 2, size=(100, 10)) # 100 samples, 10 visible units
rbm = RBM(n visible=10, n hidden=5)
rbm.train(data, epochs=100, batch size=10, learning rate=0.1)
# To use the trained RBM (e.g., for feature extraction):
# hidden representation = rbm.forward(data)
# print(hidden representation)
```

Binary or real-valued data.

Expected Output:

The RBM learns a probabilistic model of the input data. Output can be reconstructed data, hidden unit activations (features), or generated samples.

Lab 7: Generative Adversarial Networks

Title: Generative Adversarial Networks

Aim: To implement a Generative Adversarial Network (GAN) for generating new data.

Procedure:

- 1. Define the generator and discriminator networks.
- 2. Define the loss functions for the generator and discriminator.
- 3. Implement the training loop:
 - Train the discriminator to distinguish between real and generated data.
 - Train the generator to fool the discriminator.
- 4. Generate new data using the trained generator.

```
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import numpy as np
# Define the generator
def build generator(latent dim):
    model = keras.Sequential([
        layers.Dense(7 * 7 * 256, use bias=False, input shape=(latent dim,)),
        layers.BatchNormalization(),
        layers.Reshape((7, 7, 256)),
        layers.Conv2DTranspose(128, (5, 5), strides=(1, 1), padding='same',
use bias=False, activation='relu'),
        layers.BatchNormalization(),
        layers.Conv2DTranspose(64, (5, 5), strides=(2, 2), padding='same',
use bias=False, activation='relu'),
        layers.BatchNormalization(),
        layers.Conv2DTranspose(1, (5, 5), strides=(2, 2), padding='same',
use bias=False, activation='tanh'), # Output
    ])
    return model
# Define the discriminator
def build discriminator(img shape):
    model = keras.Sequential([
        layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same',
input shape=img shape, activation='relu'),
        layers.Dropout(0.3),
        layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same',
activation='relu'),
        layers.Dropout(0.3),
        layers.Flatten(),
        layers.Dense(1, activation='sigmoid') # Output: probability of being
real
    ])
    return model
# Define the GAN model
def build gan (generator, discriminator):
    discriminator.trainable = False # Only train generator in the combined
model
   model = keras.Sequential([generator, discriminator])
    return model
```

```
# Hyperparameters
latent dim = 100
img shape = (28, 28, 1) # Example: MNIST image shape
# Build the networks
generator = build generator(latent dim)
discriminator = build discriminator(img shape)
gan model = build gan(generator, discriminator)
# Optimizers
generator optimizer = keras.optimizers.Adam(learning rate=0.0002, beta 1=0.5)
discriminator_optimizer = keras.optimizers.Adam(learning_rate=0.0002,
beta 1=0.5)
# Loss functions
cross entropy = keras.losses.BinaryCrossentropy(from logits=False)
def discriminator loss(real output, fake output):
    real loss = cross entropy(tf.ones like(real output), real output)
    fake loss = cross entropy(tf.zeros like(fake output), fake output)
    total loss = real loss + fake loss
    return total loss
def generator loss (fake output):
    return cross entropy(tf.ones like(fake output), fake output)
# Training function
@tf.function
def train step(images, batch size):
    noise = tf.random.normal([batch size, latent dim])
    with tf.GradientTape() as gen tape, tf.GradientTape() as disc tape:
        generated images = generator(noise, training=True)
        real output = discriminator(images, training=True)
        fake output = discriminator(generated images, training=True)
        gen loss = generator loss(fake output)
        disc loss = discriminator loss(real output, fake output)
    gradients of generator = gen tape.gradient(gen loss,
generator.trainable variables)
    gradients_of_discriminator = disc_tape.gradient(disc_loss,
discriminator.trainable variables)
    generator_optimizer.apply_gradients(zip(gradients_of_generator,
generator.trainable_variables))
    discriminator optimizer.apply gradients(zip(gradients of discriminator,
discriminator.trainable variables))
    return gen loss, disc loss
def train gan(dataset, epochs, batch size):
    for epoch in range (epochs):
        for image batch in dataset:
             gen loss, disc loss = train step(image batch, batch size)
        print(f"Epoch {epoch}, Generator Loss: {gen loss:.4f}, Discriminator
Loss: {disc loss:.4f}")
# Load and preprocess data (example using MNIST)
(x_{train, _{}}), (_{, _{}}) = keras.datasets.mnist.load_data()
x_{train} = x_{train.reshape}(x_{train.shape}[0], 28, 28, 1).astype('float32')

x_{train} = (x_{train} - 127.5) / 127.5 # Normalize to [-1, 1]
buffer_size = x_train.shape[0]
batch size = 128
train dataset =
tf.data.Dataset.from_tensor_slices(x_train).shuffle(buffer_size).batch(batch_siz
e)
```

```
# Train the GAN
train_gan(train_dataset, epochs=50, batch_size=batch_size)
# Generate images after training
# noise = tf.random.normal([16, latent_dim])
# generated_images = generator(noise)
# ... (display or save generated images)
```

A dataset of real images (e.g., MNIST).

Expected Output:

The generator learns to produce new images that resemble the training data.

Lab 8: Variational Autoencoder

Title: Variational Autoencoder

Aim: To implement a Variational Autoencoder (VAE) for data generation or dimensionality reduction.

Procedure:

- 1. Define the encoder network (maps input to a latent distribution).
- 2. Define the decoder network (maps latent samples to reconstructed data).
- 3. Define the VAE model, including the reparameterization trick.
- 4. Define the loss function (reconstruction loss + KL divergence).
- 5. Train the VAE.
- 6. Generate new data by sampling from the latent space and passing it through the decoder.

```
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.losses import MeanSquaredError
# Define the encoder
def build encoder(latent dim, img shape):
    encoder inputs = keras.Input(shape=img shape)
    x = layers.Conv2D(32, 3, activation="relu", strides=2,
padding="same") (encoder inputs)
    x = layers.Conv2D(64, 3, activation="relu", strides=2, padding="same")(x)
    x = layers.Flatten()(x)
    x = layers.Dense(16, activation="relu")(x)
    z mean = layers.Dense(latent_dim, name="z_mean")(x)
    z_log_var = layers.Dense(latent_dim, name="z_log_var")(x)
    return keras. Model (encoder inputs, [z mean, z log var])
# Define the decoder
def build decoder(latent dim, img shape):
    latent inputs = keras.Input(shape=(latent dim,))
    input side = img shape[0] // 4
    x = layers.Dense(input side * input side * 64,
activation="relu") (latent_inputs)
    x = layers.Reshape((input_side, input_side, 64))(x)
    x = layers.Conv2DTranspose(64, 3, activation="relu", strides=2,
padding="same") (x)
    x = layers.Conv2DTranspose(32, 3, activation="relu", strides=2,
padding="same") (x)
    decoder outputs = layers.Conv2D(img shape[-1], 3, activation="sigmoid",
padding="same")(x) # Output
    return keras. Model (latent inputs, decoder outputs)
# Define the VAE class
class VAE(keras.Model):
    def init (self, latent dim, encoder, decoder, img shape):
        super(VAE, self). init ()
        self.latent dim = latent dim
        self.encoder = encoder
        self.decoder = decoder
        self.img shape = img shape
        self.total loss tracker = keras.metrics.Mean(name="total loss")
```

```
self.reconstruction_loss_tracker = keras.metrics.Mean(
            name="reconstruction loss"
        self.kl loss tracker = keras.metrics.Mean(name="kl loss")
    @property
    def metrics(self):
        return [
            self.total loss tracker,
            self.reconstruction loss tracker,
            self.kl loss tracker,
        1
    def sample(self, z mean, z log var):
        """Reparameterization trick."""
        batch = tf.shape(z mean)[0]
        dim = tf.shape(z mean)[1]
        epsilon = tf.keras.backend.random normal(shape=(batch, dim))
        return z mean + tf.exp(0.5 * z log var) * epsilon
    def call(self, data):
        z mean, z log var = self.encoder(data)
        z = self.sample(z mean, z log var)
        reconstruction = self.decoder(z)
        reconstruction loss = tf.reduce mean(
            tf.reduce sum(
                keras.losses.binary crossentropy(data, reconstruction), axis=(1,
2)
        kl loss = -0.5 * (1 + z log var - tf.square(z mean) - tf.exp(z log var))
        kl loss = tf.reduce mean(tf.reduce sum(kl loss, axis=1))
        total loss = reconstruction loss + kl loss
        return reconstruction, total loss, reconstruction loss, kl loss
    def train step(self, data):
        with tf.GradientTape() as tape:
            reconstruction, total loss, reconstruction loss, kl loss =
self(data)
        grads = tape.gradient(total loss, self.trainable variables)
        self.optimizer.apply gradients(zip(grads, self.trainable variables))
        self.total loss tracker.update state(total loss)
        self.reconstruction_loss_tracker.update_state(reconstruction_loss)
        self.kl loss tracker.update state(kl loss)
        return {
            "loss": self.total_loss_tracker.result(),
            "reconstruction loss": self.reconstruction loss tracker.result(),
            "kl loss": self.kl loss tracker.result(),
        }
# Example usage
img shape = (28, 28, 1) # MNIST
latent dim = 2
encoder = build encoder(latent dim, img shape)
decoder = build decoder(latent_dim, img_shape)
vae = VAE(latent_dim, encoder, decoder, img_shape)
vae.compile(optimizer=keras.optimizers.Adam())
# Load MNIST data
(x_{train, _{}}), (_{, _{}}) = keras.datasets.mnist.load_data()
x_train = x_train.astype("float32") / 255.0
x_train = np.reshape(x_train, (-1, 28, 28, 1))
# Train the VAE
vae.fit(x train, epochs=10, batch size=128)
# Generate new images
```

```
# z_sample = tf.random.normal(shape=(16, latent_dim))
# generated_images = vae.decoder(z_sample)
# ... (display or save images)
```

A dataset of images (e.g., MNIST).

Expected Output:

The VAE learns a latent representation of the data, which can be used to generate new samples or for dimensionality reduction.

Lab 9: LSTM

Title: LSTM

Aim: To implement a Long Short-Term Memory (LSTM) network for sequence data.

Procedure:

- 1. Prepare sequence data.
- 2. Preprocess the data.
- 3. Build an LSTM model.
- 4. Compile and train the model.
- 5. Evaluate the model.

```
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.layers import LSTM, Embedding, Dense
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad sequences
import numpy as np
# Sample text data (example)
sentences = [
    "The quick brown fox jumps over the lazy dog.",
    "A journey of a thousand miles begins with a single step.",
    "It is not the strongest of the species that survives, nor the most
intelligent that survives. It is the one that is most adaptable to change."
1
# Tokenize the text
tokenizer = Tokenizer(num words=200) # Limit vocabulary size
tokenizer.fit on texts(sentences)
sequences = tokenizer.texts to sequences(sentences)
# Pad sequences
max length = max(len(seq) for seq in sequences)
padded sequences = pad sequences(sequences, maxlen=max length, padding='post')
# Create labels (example: predict the next word)
X, y = padded sequences[:, :-1], padded sequences[:, -1]
y = keras.utils.to categorical(y, num classes=200) # num classes
# Build the LSTM model
model = keras.Sequential([
    Embedding(input dim=200, output dim=64, input length=max length-1), #
input dim
    Dense(200, activation='softmax') # num_classes
])
# Compile the model
model.compile(optimizer='adam', loss='categorical crossentropy',
metrics=['accuracy'])
# Train the model
model.fit(X, y, epochs=100, verbose=1)
# Evaluate the model (replace with your test data)
# loss, accuracy = model.evaluate(X test, y test)
```

```
# print(f"Test Loss: {loss}, Test Accuracy: {accuracy}")

# Make predictions (example)
# test_sentence = "The quick brown fox jumps over the"
# test_sequence = tokenizer.texts_to_sequences([test_sentence])
# test_padded = pad_sequences(test_sequence, maxlen=max_length-1, padding='post')
# prediction = model.predict(test_padded)
# predicted_word_index = np.argmax(prediction)
# predicted_word = tokenizer.index_word[predicted_word_index]
# print(f"Predicted_next_word: {predicted_word}")
```

Sequence data (e.g., text).

Expected Output:

The model learns to predict the next element in the sequence (e.g., next word in a sentence).

Lab 10: Bidirectional LSTM

Title: Bidirectional LSTM

Aim: To implement a Bidirectional LSTM network for sequence data.

Procedure:

- 1. Prepare sequence data.
- 2. Preprocess the data.
- 3. Build a Bidirectional LSTM model.
- 4. Compile and train the model.
- 5. Evaluate the model.

```
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.layers import Bidirectional, LSTM, Embedding, Dense
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad sequences
import numpy as np
# Sample text data
sentences = [
    "The quick brown fox jumps over the lazy dog.",
    "A journey of a thousand miles begins with a single step.",
    "It is not the strongest of the species that survives, nor the most
intelligent that survives. It is the one that is most adaptable to change."
1
# Tokenize the text
tokenizer = Tokenizer(num words=200) # Limit vocabulary size
tokenizer.fit on texts(sentences)
sequences = tokenizer.texts to sequences(sentences)
# Pad sequences
max length = max(len(seq) for seq in sequences)
padded sequences = pad sequences(sequences, maxlen=max length, padding='post')
# Create labels (example: predict the next word)
X, y = padded sequences[:, :-1], padded sequences[:, -1]
y = keras.utils.to categorical(y, num classes=200) # num classes
# Build the Bidirectional LSTM model
model = keras.Sequential([
    Embedding(input dim=200, output dim=64, input length=max length-1), #
input dim
    Bidirectional(LSTM(64)),
    Dense(200, activation='softmax') # num classes
])
# Compile the model
model.compile(optimizer='adam', loss='categorical crossentropy',
metrics=['accuracy'])
# Train the model
model.fit(X, y, epochs=100, verbose=1)
# Evaluate the model (replace with your test data)
# loss, accuracy = model.evaluate(X test, y test)
```

```
# print(f"Test Loss: {loss}, Test Accuracy: {accuracy}")

# Make predictions (example)
# test_sentence = "The quick brown fox jumps over the"
# test_sequence = tokenizer.texts_to_sequences([test_sentence])
# test_padded = pad_sequences(test_sequence, maxlen=max_length-1, padding='post')
# prediction = model.predict(test_padded)
# predicted_word_index = np.argmax(prediction)
# predicted_word = tokenizer.index_word[predicted_word_index]
# print(f"Predicted_next_word: {predicted_word}")
```

Sequence data (e.g., text).

Expected Output:

The model learns to predict the next element in the sequence, considering both past and future context.

Lab 11: Data Augmentation Lab I

Title: Data Augmentation Lab I

Aim: To apply a variety of data augmentation techniques.

Procedure:

- 1. Load image data.
- 2. Create an ImageDataGenerator.
- 3. Specify a range of augmentations.
- 4. Visualize the augmented images.
- 5. Train a model (optional).

```
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import matplotlib.pyplot as plt
# Load a sample dataset (e.g., a few images from CIFAR-10)
(x_{train}, _), (_, _) = keras.datasets.cifar10.load_data()
sample_images = x_train[:9] # Take the first 9 images
# Create an ImageDataGenerator with various augmentations
datagen = ImageDataGenerator(
   rotation_range=30,
   width shift range=0.2,
   height shift range=0.2,
   shear range=0.2,
   zoom range=0.2,
   horizontal flip=True,
   fill mode= 'nearest'
)
# Prepare the data for augmentation
sample images = sample images.astype('float32') / 255.0
augmented images = []
for img in sample images:
    img = img.reshape((1,) + img.shape) # reshape
    i = 0
    for batch in datagen.flow(img, batch size=1):
        augmented images.append(batch[0])
        i += 1
        if i > 0:
            break
# Visualize the original and augmented images
plt.figure(figsize=(12, 6))
for i in range(9):
   plt.subplot(3, 6, i + 1)
   plt.imshow(sample images[i])
   plt.title("Original")
   plt.axis('off')
   plt.subplot(3, 6, i + 10)
   plt.imshow(augmented_images[i])
   plt.title("Augmented")
   plt.axis('off')
plt.show()
```

A set of images.

Expected Output:

A visualization showing the original images and their augmented versions, demonstrating the effects of the chosen augmentation techniques.

Lab 12: Data Augmentation Lab II

Title: Data Augmentation Lab II

Aim: To explore advanced data augmentation techniques or libraries.

Procedure:

- 1. Import necessary libraries (e.g., albumentations).
- 2. Define an augmentation pipeline.
- 3. Apply the pipeline to images.
- 4. Visualize the augmented images.
- 5. (Optional) Train a model with augmented data.

Source Code:

```
import tensorflow as tf
from tensorflow import keras
import albumentations as A
import matplotlib.pyplot as plt
# Load sample images (e.g., from CIFAR-10)
(x_train, _), (_, _) = keras.datasets.cifar10.load_data()
sample_images = x_train[:9]
# Define an augmentation pipeline using albumentations
transform = A.Compose([
   A.RandomCrop(width=32, height=32),
   A. Horizontal Flip (p=0.5),
   A.RandomBrightnessContrast(p=0.2),
   A.Rotate(limit=30, p=0.3),
   A.Blur(blur limit=3, p=0.1),
])
# Apply the augmentation pipeline
augmented images = []
for img in sample images:
    transformed = transform(image=img)['image']
    augmented images.append(transformed)
# Visualize the original and augmented images
plt.figure(figsize=(12, 6))
for i in range(9):
   plt.subplot(3, 6, i + 1)
   plt.imshow(sample images[i])
   plt.title("Original")
   plt.axis('off')
   plt.subplot(3, 6, i + 10)
   plt.imshow(augmented images[i])
   plt.title("Augmented")
   plt.axis('off')
plt.show()
```

Input:

A set of images.

Expected Output:

A visualization of the original and augmented images, demonstrating the effects of the advanced augmentation pipeline.

Lab 13: Install, Import Tensorflow and Keras. Create a Basic Neural Network with a Few Layers.

Title: Install, Import Tensorflow and Keras. Create a Basic Neural Network with a Few Layers.

Aim: To set up the TensorFlow and Keras environment and build a simple neural network.

Procedure:

- 1. Install TensorFlow and Keras (if not already installed). (Omitted in the code, but crucial)
- 2. Import TensorFlow and Keras.
- 3. Define a simple neural network model.
- 4. Compile the model.
- 5. (Optional) Train and evaluate the model (with dummy data).

Source Code:

```
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.layers import Dense
# Verify TensorFlow installation
print("TensorFlow version:", tf. version )
# Create a basic neural network model
model = keras.Sequential([
    Dense(128, activation='relu', input dim=10), # Input layer with 10 features
    Dense(64, activation='relu'),
    Dense(1, activation='sigmoid') # Output layer for binary classification
1)
# Compile the model
model.compile(optimizer='adam', loss='binary crossentropy',
metrics=['accuracy'])
# Optional: Train and evaluate with dummy data
import numpy as np
X train = np.random.rand(100, 10) # 100 samples, 10 features
y train = np.random.randint(0, 2, size=(100, 1)) # Binary labels
model.fit(X_train, y_train, epochs=10, batch size=32, verbose=0) # Suppress
output
loss, accuracy = model.evaluate(X train, y train, verbose=0)
print(f"Loss: {loss}, Accuracy: {accuracy}")
```

Input:

(Optional) Dummy input data for training.

Expected Output:

The code should print the TensorFlow version, indicating successful installation. If the optional training is run, it will print the loss and accuracy on the dummy data.

Lab 14: Install, Import Tensorflow and Keras. Create a Basic Neural Network with a Few Layers

Title: Install, Import Tensorflow and Keras. Create a Basic Neural Network with a Few Layers

Aim: This lab has the same aim as Lab 13.

Procedure:

- 1. Install TensorFlow and Keras (if not already installed).
- 2. Import TensorFlow and Keras.
- 3. Define a simple neural network model.
- 4. Compile the model.
- 5. (Optional) Train and evaluate the model.

Source Code:

```
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.layers import Dense
# Verify TensorFlow installation
print("TensorFlow version:", tf. version )
# Create a basic neural network model
model = keras.Sequential([
    Dense(64, activation='relu', input dim=20), # Input layer
    Dense(32, activation='relu'),
    Dense(10, activation='softmax') # Output layer for multi-class
classification
])
# Compile the model
model.compile(optimizer='adam', loss='categorical crossentropy',
metrics=['accuracy'])
# Optional: Train and evaluate with dummy data
import numpy as np
X train = np.random.rand(100, 20) # 100 samples, 20 features
y train = np.random.randint(0, 10, size=(100, 1)) # Multi-class labels (0-9)
y train = keras.utils.to categorical(y train, num classes=10) # one-hot encode
model.fit(X train, y train, epochs=10, batch size=32, verbose=0)
loss, accuracy = model.evaluate(X train, y train, verbose=0)
print(f"Loss: {loss}, Accuracy: {accuracy}")
```

Input:

(Optional) Dummy data

Output:

Prints the TensorFlow version. Optionally prints loss and accuracy.

Lab 15: Neural Networks using Keras

Title: Neural Networks using Keras

Aim: To implement various neural network architectures using Keras.

Procedure:

- 1. Explore different layer types (Dense, Conv2D, LSTM, etc.).
- 2. Experiment with different activation functions, optimizers, and loss functions.
- 3. Build and train several neural network models for different tasks.
- 4. Evaluate and compare the performance of the models.

Source Code: (This is a general template; you would create multiple models here)

```
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.layers import Dense, Conv2D, Flatten, LSTM, Embedding
from tensorflow.keras.datasets import mnist
import numpy as np
# Example 1: Multi-Layer Perceptron (MLP) for MNIST
(x_train_mnist, y_train_mnist), (x_test_mnist, y_test_mnist) = mnist.load_data()
x train mnist = x train mnist.reshape(-1, 28 * 28).astype('float32') / 255.0
x test mnist = x test mnist.reshape(-1, 28 * 28).astype('float32') / 255.0
y train mnist = keras.utils.to categorical(y train mnist, num classes=10)
y test mnist = keras.utils.to categorical(y test mnist, num classes=10)
mlp model = keras.Sequential([
    Dense (512, activation='relu', input dim=28 * 28),
    Dense(256, activation='relu'),
    Dense(10, activation='softmax')
])
mlp model.compile(optimizer='adam', loss='categorical crossentropy',
metrics=['accuracy'])
mlp model.fit(x train mnist, y train mnist, epochs=10, verbose=0)
loss, accuracy = mlp model.evaluate(x test mnist, y test mnist, verbose=0)
print(f"MLP - Loss: {loss}, Accuracy: {accuracy}")
# Example 2: Convolutional Neural Network (CNN) for MNIST
(x train cnn, y train cnn), (x test cnn, y test cnn) = mnist.load data()
x train cnn = x train cnn.reshape(-1, 28, 28, 1).astype('float32') / 255.0
x test cnn = x test cnn.reshape(-1, 28, 28, 1).astype('float32') / 255.0
y train cnn = keras.utils.to categorical(y train cnn, num classes=10)
y test cnn = keras.utils.to categorical(y test cnn, num classes=10)
cnn model = keras.Sequential([
    Conv2D(32, (3, 3), activation='relu', input shape=(28, 28, 1)),
    layers.MaxPooling2D((2, 2)),
    Conv2D(64, (3, 3), activation='relu'),
    layers.MaxPooling2D((2, 2)),
    Flatten(),
    Dense(10, activation='softmax')
cnn model.compile(optimizer='adam', loss='categorical crossentropy',
metrics=['accuracy'])
cnn_model.fit(x_train_cnn, y_train_cnn, epochs=10, verbose=0)
loss, accuracy = cnn model.evaluate(x test cnn, y test cnn, verbose=0)
print(f"CNN - Loss: {loss}, Accuracy: {accuracy}")
```

Example 3: LSTM for sequence data (example, you'd need real sequence data)
... (Code for LSTM example, similar to Lab 9, but with potentially different
data)

Input:

MNIST dataset, or other appropriate datasets.

Expected Output:

The code will print the loss and accuracy for each of the neural network models (MLP, CNN, and potentially others), allowing you to compare their performance.