Chaque colle comporte une question de cours ainsi qu'un ou plusieurs exercices. Les questions de cours portent sur les éléments précédés d'un astérisque (★) sur le chapitre 26 : Probabilités sur un univers fini. Les exercices portent sur le chapitre 26 : Probabilités sur un univers fini.

Probabilités sur un univers fini

Notion d'univers, d'événement. Evénement élémentaire, contraire. Intersection, union d'événements. Evénement impossible, certain. Système complet d'événements.

Probabilité sur un univers fini. (*) Une probabilité est entièrement déterminée par la donnée de ses valeurs sur les événements élémentaires. Distribution de probabilités. (\star) Soit $(p_{\omega})_{\omega\in\Omega}$ une distribution de probabilités sur l'univers Ω . Alors il existe un unique probabilité P sur Ω telle que $\forall \omega \in \Omega, P(\{\omega\}) = p_{\omega}$. Probabilité uniforme. Probabilité du complémentaire, de $B \setminus A$, de l'union de deux événements.

Pour B de probabilité non nul, probabilité conditionnelle sachant B. (**) L'application $P_B:A\mapsto P(A|B)$ est une probabilité. (*) Formule des probabilités composées. Formule des probabilités totales. Formule de Bayes.

Evénements indépendants, deux à deux, mutuellement. Indépendance des complémentaires.

Variables aléatoires sur un espace probabilisé fini

Notion de variable aléatoire. Notations $(X \in A)$, $(X \le x)$, (X = x), etc. Loi d'une variable aléatoire. (\star) L'application $P_X: A \mapsto P(X \in A)$ est une probabilité. Fonction de répartition d'une variable aléatoire réelle, croissance, limites en $+\infty$ et $-\infty$. Image d'une variable aléatoire par une fonction $f.(\star)$ La loi de f(X) est donnée par $P_{f(X)}(B) = P_X(f^{-1}(B))$. Si X et Y ont même loi, f(X) et f(Y) ont même loi. Pour A de probabilité non nulle, loi conditionnelle de X sachant

Loi uniforme $\mathcal{U}(E)$, de Bernoulli $\mathcal{B}(p)$, binomiale $\mathcal{B}(n,p)$. Espérance définie par $E[X] = \sum_{\omega \in \Omega} P(\omega)X(\{\omega\})$. (*) Théorème de transfert : $E[X] = \sum_{x \in X(\Omega)} xP(X=x)$, puis $E[f(X)] = \sum_{x \in X(\Omega)} f(x)P(X=x)$. Variable centrée. (*) Linéarité et croissance

de l'espérance. Espérance d'une loi de Bernoulli, binomiale. (★) Inégalité de Markov.

Variance. $V(X) = E[X^2] - E[X]^2$. $V(aX + b) = a^2V(X)$. Variance d'une loi de Bernoulli, binomiale. (*) Inégalité de Bienaymé-Tchebyshev. Covariance. cov(X, Y) = E[XY] - E[X]E[Y]. V(X + Y) = V(X) + 2cov(X, Y) + V(Y).

Indépendance de variables aléatoires. (\star) Soit ($X_1,...,X_n$) des variables aléatoires réelles mutuellement indépendance de variables aléatoires réelles mutuellement indépendance de variables aléatoires. dantes de même loi de Bernoulli $\mathcal{B}(p)$, alors $X_1 + \cdots + X_n$ suit la loi binomiale $\mathcal{B}(n,p)$. Si X et Y sont indépendantes, f(X) et g(Y) sont indépendantes. Lemme des coalitions. (*) Si X et Y sont indépendantes, E[XY] = E[X]E[Y], cov(X, Y) = 0, V(X + Y) = V(X) + V(Y).

Couple de variables aléatoires. Loi conjointe, lois marginales.