АЛКЕНЫ И ЦИКЛОАЛКЕНЫ АЛКЕНЫ. СТРОЕНИЕ

ОБЩАЯ ФОРМУЛА - C_nH_{2n}

Гибридизация атомов С:				
Ключевая связь:				
Форма молекул:				
Валентный угол:				
Длина связи:				

НОМЕНКЛАТУРА

- H_3 C——CH—— CH_2 —— CH_3
- $\begin{array}{c} \operatorname{CH_3} \\ \operatorname{CH_2} \\ \operatorname{H_3C} \longrightarrow \operatorname{C} \longrightarrow \operatorname{CH_2} \longrightarrow \operatorname{CH_3} \\ \operatorname{CH_3} \end{array}$
 - H_2C CH_2 CH_3 CH_3

- 1) Выбираем самую длинную цепь (в ней обязательно должна быть двонйая связь!)
- 2) Нумеруем атомы углерода, начиная с того конца, где ближе двойная связь
- 3) Составляем название вещества по схеме: "местоположение заместителя + название заместителя + число атомов углерода в главной цепи + EH + местоположение двойной связи (после какого атома С она находится)". Пример:

ГОМОЛОГИЧЕСКИЙ РЯД ЭТИЛЕНА

ИЗОМЕРИЯ

углеродного скелета	
положения двойной связи	
межклассовая (с циклоалканами)	
геометрическая (цис-транс)	

ФИЗИЧЕСКИЕ СВОЙСТВА

По физическим свойствам алкены - повторюшки алканов. При обычных условиях алкены $\mathbf{C_2}$ - $\mathbf{C_4}$ - газы, $\mathbf{C_5}$ - $\mathbf{H_{15}}$ - жидкости, начиная с $\mathbf{C_{16}}$ - твёрдые вещества. Это нерастворимые в воде вещества, их пары в смеси с воздухом зачастую взрывопасны.

химические свойства

РЕАКЦИИ ПРИСОЕДИНЕНИЯ

-> галогенирование [+ Hal,, катализатора и условий HET]

Если над стрелочкой стоит hv или t, то это значит, что нам намекают на то, что мы должны рвать сильные СИГМА-связи!

- -> гидрирование [+ H₂, условия Ni/Pt/Pd + t]
- -> гидратация [+ H,O, катализатор H,SO,/H,PO,]

ПРАВИЛО МОРКОВНИКОВА: при присоединении молекул типа H-X к несимметричным алкенам или алкинам водород преимущественно присоединяется к наиболее гидрированному атому углерода (ИСКЛ: вещества с электроноакцепторными заместителями (-COOH, -NO,, -CF,).

-> гидрогалогенирование [+ HHal, катализатора и особых условий HET]

РЕАКЦИИ ОТЩЕПЛЕНИЯ (ЭЛИМИНИРОВАНИЯ)

-> дегидрирование [- H₂, условия/катализаторы: Ni/Pt/Cr₂O₃ + t]

$$A \xrightarrow{-H_2} A \xrightarrow{-H_2} A \xrightarrow{-H_2} A \xrightarrow{\text{алкин}} A$$

РЕАКЦИИ ПОЛИМЕРИЗАЦИИ

-> полимеризация [+ n молекул, kat, t, p]

РЕАКЦИИ ОКИСЛЕНИЯ

ОКИСЛЕНИЕ

МЯГКОЕ

в нейтральной среде рвём только пи-связи

<u>ЖЁСТКОЕ</u>

в кислой/щелочной среде рвём вообще всё (и сигма-, и пи-связи)

$$C-OH \longrightarrow C=O \longrightarrow -C \bigcirc O \longrightarrow CO_2$$

ПОЛУЧЕНИЕ

В подавляющем большинстве случаев алкены получают путём реакций элиминирования (отщепления) (см. схему). В качестве отщепляемого вещества могут выступать: водород, галогены, галогеноводороды, вода.

дегидрирование алканов	+
дегалогенирование ди- галогенпроизводных	
дегидратация спиртов	
дегидрогалогенирова- ние моногалогенпроиз- водных	
гидрирование алкинов	

ПРИМЕНЕНИЕ

Получение полимеров, фенола, ацетона, уксусного альдегида, для улучшения качества топлива, этилен - для ускорения созревания плодов.

для заметок

