Europäisches Patentamt European Patent Office Office européen des brevets

(11) **EP 1 457 558 A1**

EUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC

(43) Date of publication: 15.09.2004 Bulletin 2004/38

(21) Application number: 02770234.9

(22) Date of filing: 17.10.2002

(51) Int CI.7: **C12N 15/12**, C07K 14/705, C07K 16/28, C12N 5/10, A61K 38/17, A61K 39/395, G01N 33/50, G01N 33/15, C12P 21/02, C12P 21/08, A01H 5/00
// C12N15:12, C12R1:19, C12N5:10, C12R1:91, C12P21:02, C12R1:91, C12P21:08, C12R1:91

(86) International application number: PCT/JP2002/010789

(87) International publication number: WO 2003/040370 (15.05.2003 Gazette 2003/20)

(84) Designated Contracting States:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
IE IT LI LU MC NL PT SE SK TR
Designated Extension States:

AL LT LV MK RO SI

(30) Priority: 19.10.2001 JP 2001321307 07.06.2002 JP 2002167239

(71) Applicant: Sumitomo Chemical Company, Limited Chuo-ku Osaka 541-8550 (JP) (72) Inventors:

NAKAJIMA, Hiroki
 Nishinomiya-shi, Hyogo 669-1133 (JP)

MUKUMOTO, Fujio
 Toyonaka-shi, Osaka 561-0802 (JP)

TAKAISHI, Masanao
 Toyonaka-shi, Osaka 560-0021 (JP)

(74) Representative: VOSSIUS & PARTNER Siebertstrasse 4 81675 München (DE)

(54) WEED CONTROLLER METABOLISM PROTEINS, GENES THEREOF AND USE OF THE SAME

(57) The present invention provides, for example, DNA encoding a herbicide metabolizing protein selected from the protein group below. Such DNA may, for example, be employed to produce herbicidally resistant plants.

cprotein group>

a protein comprising the amino acid sequence shown in SEQ ID NO: 1, 2, 3, 108, 159, 160, 136, 137, 138, 215, 216, 217, 218, 219, 220, 221, 222, 223 or 224,

a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II):

EP 1 457 558 A1

to a compound of formula (III):

$$CI \longrightarrow N \longrightarrow CF_3$$
 $CI \longrightarrow N \longrightarrow CF_3$
 $CI \longrightarrow N \longrightarrow CF_$

and comprising an amino acid sequence having at least 80% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 1, 2, 3, 108, 159, 136, 137, 138, 215, 216, 217, 218, 219, 220, 221, 222, 223 or 224 or an amino acid sequence having at least 90% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 160, 215, 216, 218, 222 or 224.

Description

TECHNICAL FIELD

5 [0001] The present invention relates to a protein having the ability to metabolize a herbicidal compound (Herbicide metabolizing protein), a gene thereof and use thereof.

BACKGROUND ART

[0002] Herbicides are utilized in a necessary amount of diluted solution when applied. There are situations in which extra amounts are left over. There are also situations in which the applied herbicide, after its application for awhile, remains in the soil or plant residue. Originally, given that the safety of such herbicides has been checked, such small amounts of left-over solutions or residues presented small effects to the environment or to the crops cultivated thereafter. However, if there is a method in which the contained herbicidal compound is converted to one of lower herbicidal activity, then for example there can be conducted treatments to inactivate the left-over solutions or residues described above as needed.

[0003] Further, in the case of using the herbicide, there were situations in which it was difficult to distinguish cultivated plants from weeds of allied species to selectively control only weeds. Then, there is a desire to develop a new method for conferring herbicidal resistance to a target plant.

DISCLOSURE OF THE INVENTION

[0004] Under such the circumstances, the present inventors intensively studied and, as a result, have found that a protoporphyrinogen oxidase (hereinafter, sometimes referred to as "PPO") inhibitory-type herbicidal compound may be converted by being reacted with a particular protein to a compound of lower herbicidal activity, which resulted in completion of the present invention.

[0005] That is, the present invention provides:

- 1. A DNA encoding a herbicide metabolizing protein, wherein said protein is selected from the group consisting of:
 - (A1) a protein comprising the amino acid sequence shown in SEQ ID NO: 1;
 - (A2) a protein comprising the amino acid sequence shown in SEQ ID NO: 2;
 - (A3) a protein comprising the amino acid sequence shown in SEQ ID NO: 3;
 - (A4) a protein comprising the amino acid sequence shown in SEQ ID NO: 108;
 - (A5) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II):

to a compound of formula (III):

55

20

25

30

35

40

45

$$CI \longrightarrow N \longrightarrow CF_3$$
 (III)

and comprising an amino acid sequence having at least 80% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108;

(A6) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a nucleotide sequence having at least 80% sequence identity with a nucleotide sequence encoding an amino acid sequence shown in any one of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108;

(A11) a protein comprising the amino acid sequence shown in SEQ ID NO: 159;

5

10

15

20

25

30

35

40

45

50

55

(A12) a protein comprising the amino acid sequence shown in SEQ ID NO: 160;

(A13) a protein comprising the amino acid sequence shown in SEQ ID NO: 136;

(A14) a protein comprising the amino acid sequence shown in SEQ ID NO: 137;

(A 15) a protein comprising the amino acid sequence shown in SEQ ID NO: 138;

(A16) a protein comprising the amino acid sequence shown in SEQ ID NO: 215;

(A17) a protein comprising the amino acid sequence shown in SEQ ID NO: 216;

(A18) a protein comprising the amino acid sequence shown in SEQ ID NO: 217;

(A 19) a protein comprising the amino acid sequence shown in SEQ ID NO: 218;

(A20) a protein comprising the amino acid sequence shown in SEQ ID NO: 219;

(A21) a protein comprising the amino acid sequence shown in SEQ ID NO: 220;

(A22) a protein comprising the amino acid sequence shown in SEQ ID NO: 221;

(A23) a protein comprising the amino acid sequence shown in SEQ ID NO: 222;

(A24) a protein comprising the amino acid sequence shown in SEQ ID NO: 223;

(A25) a protein comprising the amino acid sequence shown in SEQ ID NO: 224;

(A26) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence having at least 80% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 159, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 217, SEQ ID NO: 219, SEQ ID NO: 220, SEQ ID NO: 221 or SEQ ID NO: 223 or an amino acid sequence having at least 90% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 160, SEQ ID NO: 215, SEQ ID NO: 216, SEQ ID NO: 218, SEQ ID NO: 222 or SEQ ID NO: 224;

(A27) a protein having the ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a nucleotide sequence having at least 90% sequence identity with a nucleotide sequence encoding an amino acid sequence shown in any one of SEQ ID NO: 159, SEQ ID NO: 160, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 215, SEQ ID NO: 216, SEQ ID NO: 217, SEQ ID NO: 218, SEQ ID NO: 219, SEQ ID NO: 220, SEQ ID NO: 221, SEQ ID NO: 222, SEQ ID NO: 223 or SEQ ID NO: 224; and

(A28) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a DNA amplifiable by a polymerase chain reaction with a primer comprising the nucleotide sequence shown in any one of SEQ ID NOs: 124 to 128, a primer comprising the nucleotide sequence shown in SEQ ID NO: 129 and as a template a chromosomal DNA of Streptomyces phaeochromogenes, Streptomyces testaceus, Streptomyces achromogenes, Streptomyces griseofuscus, Streptomyces thermocoerulescens, Streptomyces nogalater, Streptomyces tsusimaensis, Streptomyces glomerochromogenes, Streptomyces olivochromogenes, Streptomyces omatus, Streptomyces griseus, Streptomyces lanatus, Streptomyces misawanensis, Streptomyces pallidus, Streptomyces roseorubens, Streptomyces rutgersensis, Streptomyces steffisburgensis.or Saccharopolyspora taberi;

2. A DNA comprising a nucleotide sequence selected from the group consisting of:

5

10

15

20

25

30

35

40

45

50

55

```
(a1) the nucleotide sequence shown in SEQ ID NO: 6;
(a2) the nucleotide sequence shown in SEQ ID NO: 7;
(a3) the nucleotide sequence shown in SEQ ID NO: 8;
(a4) the nucleotide sequence shown in SEQ ID NO: 109;
(a5) the nucleotide sequence shown in SEQ ID NO: 139;
(a6) the nucleotide sequence shown in SEQ ID NO: 140:
(a7) the nucleotide sequence shown in SEQ ID NO: 141;
(a8) the nucleotide sequence shown in SEQ ID NO: 142;
(a9) the nucleotide sequence shown in SEQ ID NO: 143;
(a10) the nucleotide sequence shown in SEQ ID NO: 225;
(a11) the nucleotide sequence shown in SEQ ID NO: 226;
(a12) the nucleotide sequence shown in SEQ ID NO: 227;
(a13) the nucleotide sequence shown in SEQ ID NO: 228;
(a14) the nucleotide sequence shown in SEQ ID NO: 229;
(a15) the nucleotide sequence shown in SEQ ID NO: 230;
(a16) the nucleotide sequence shown in SEQ ID NO: 231;
(a17) the nucleotide sequence shown in SEQ ID NO: 232;
(a18) the nucleotide sequence shown in SEQ ID NO: 233;
(a19) the nucleotide sequence shown in SEQ ID NO: 234;
(a20) a nucleotide sequence encoding an amino acid sequence of a protein having an ability to convert in the
presence of an electron transport system containing an electron donor, a compound of formula (II) to a com-
pound of formula (III), said nucleotide sequence having at least 80% sequence identity with a nucleotide se-
quence shown in any one of SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8 or SEQ ID NO: 109; and
(a21) a nucleotide sequence encoding an amino acid sequence of a protein having an ability to convert in the
presence of an electron transport system containing an electron donor, a compound of formula (II) to a com-
```

3. The DNA according to the above 1, comprising a nucleotide sequence encoding an amino acid sequence of said protein, wherein the codon usage in said nucleotide sequence is within the range of plus or minus 4% of the codon usage in genes from the species of a host cell to which the DNA is introduced and the GC content of said nucleotide sequence is at least 40% and at most 60%;

pound of formula (III), said nucleotide sequence having at least 90% sequence identity with a nucleotide sequence shown in any one of SEQ ID NO: 139, SEQ ID NO: 140, SEQ ID NO: 141, SEQ ID NO: 142, SEQ ID

NO: 143, SEQ ID NO: 225, SEQ ID NO: 226, SEQ ID NO: 227, SEQ ID NO: 228, SEQ ID NO: 229, SEQ ID

- 4. A DNA comprising the nucleotide sequence shown in SEQ ID NO: 214;
- 5. A DNA comprising the nucleotide sequence shown in SEQ ID NO: 368;
- 6. A DNA comprising the nucleotide sequence shown in SEQ ID NO: 393;
- 7. A DNA in which a DNA having a nucleotide sequence encoding an intracellular organelle transit signal sequence is linked upstream of the DNA according to the above 1 in frame;
 - 8. A DNA in which the DNA according to the above 1 and a promoter functional in a host cell are operably linked.;
 - 9. A vector comprising the DNA according to the above 1;
 - 10. A method of producing a vector comprising a step of inserting the DNA according to the above 1 into a vector replicable in a host cell;
 - 11. A transformant in which the DNA according to the above 1 is introduced into a host cell;

NO: 230, SEQ ID NO: 231, SEQ ID NO: 232, SEQ ID NO: 233 or SEQ ID NO: 234;

- 12. The transformant according to the above 11, wherein the host cell is a microorganism cell or a plant cell;
- 13. A method of producing a transformant comprising a step of introducing into a host cell, the DNA according to the above 1;
- 14. A method of producing a protein having the ability to convert a compound of formula (II) to a compound of formula (III), said method comprising a steps of culturing the transformant according to the above 11 and recovering the produced said protein;
- 15. Use of the DNA according to the above 1 for producing a protein having the ability to convert a compound of formula (II) to a compound of formula (III);
- 16. A method of giving a plant resistance to a herbicide, said method comprising a step of introducing into and expressing in a plant cell, the DNA according to the above 1;
 - 17. A polynucleotide having a partial nucleotide sequence of a DNA according to the above 1 or a nucleotide sequence complimentary to said partial nucleotide sequence;

- 18. A method of detecting a DNA encoding a protein having the ability to convert a compound of formula (II) to a compound of formula (III), said method comprising a step of detecting a DNA to which a probe is hybridized in a hybridization using as the probe the DNA according to the above 1 or the polynucleotide according to the above 17;

 19. A method of detecting a DNA encoding a protein having the ability to convert a compound of formula (III) to a compound of formula (III), said method comprising a step of detecting a DNA amplified in a polymerase chain reaction with the polynucleotide according to the above 17 as a primer;
- 20. The method according to the above 19, wherein at least one of the primers is selected from the group consisting of a polynucleotide comprising the nucleotide sequence shown in any one of SEQ ID NOs:124 to 128 and a polynucleotide comprising the nucleotide sequence shown in SEQ ID NO: 129;
- 21. A method of obtaining a DNA encoding a protein having the ability to convert a compound of formula (II) to a compound of formula (III), said method comprising a step of recovering the DNA detected by the method according to the above 18 or 19.
- 22. A method of screening a cell having a DNA encoding a protein having the ability to convert a compound of formula (II) to a compound of formula (III), said method comprising a step of detecting said DNA from a test cell by the method according to the above 18 or 19;
- 23. A herbicide metabolizing protein selected from the group consisting of:

5

10

15

20

25

30

35

40

45

50

- (A1) a protein comprising the amino acid sequence shown in SEQ ID NO: 1;
- (A2) a protein comprising the amino acid sequence shown in SEQ ID NO: 2;
- (A3) a protein comprising the amino acid sequence shown in SEQ ID NO: 3;
- (A4) a protein comprising the amino acid sequence shown in SEQ ID NO: 108;
- (A5) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III) and comprising an amino acid sequence having at least 80% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108;
- (A6) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a nucleotide sequence having at least 80% sequence identity with a nucleotide sequence encoding an amino acid sequence shown in any one of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108;
- (A11) a protein comprising the amino acid sequence shown in SEQ ID NO: 159;
- (A12) a protein comprising the amino acid sequence shown in SEQ ID NO: 160;
- (A13) a protein comprising the amino acid sequence shown in SEQ ID NO: 136;
- (A14) a protein comprising the amino acid sequence shown in SEQ ID NO: 137;
- (A15) a protein comprising the amino acid sequence shown in SEQ ID NO: 138;
- (A16) a protein comprising the amino acid sequence shown in SEQ ID NO: 215;
- (A17) a protein comprising the amino acid sequence shown in SEQ ID NO: 216;
- (A18) a protein comprising the amino acid sequence shown in SEQ ID NO: 217;
- (A19) a protein comprising the amino acid sequence shown in SEQ ID NO: 218;
- (A20) a protein comprising the amino acid sequence shown in SEQ ID NO: 219;
- (A21) a protein comprising the amino acid sequence shown in SEQ ID NO: 220;
- (A22) a protein comprising the amino acid sequence shown in SEQ ID NO: 221;
- (A23) a protein comprising the amino acid sequence shown in SEQ ID NO: 222;
- (A24) a protein comprising the amino acid sequence shown in SEQ ID NO: 223;
- (A25) a protein comprising the amino acid sequence shown in SEQ ID NO: 224;
- (A26) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence having at least 80% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 159, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 217, SEQ ID NO: 219, SEQ ID NO: 220, SEQ ID NO: 221 or SEQ ID NO: 223 or an amino acid sequence having at least 90% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 160, SEQ ID NO: 215, SEQ ID NO: 216, SEQ ID NO: 222 or SEQ ID NO: 224;
- (A27) a protein having the ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a nucleotide sequence having at least 90% sequence identity with a nucleotide sequence encoding an amino acid sequence shown in any one of SEQ ID NO: 159, SEQ ID NO: 160, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 215, SEQ ID NO: 216, SEQ ID NO: 217, SEQ ID NO: 218, SEQ ID NO: 219, SEQ ID NO: 220, SEQ ID NO: 221, SEQ ID NO: 222, SEQ ID NO: 223 or SEQ ID NO: 224; and

(A28) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a DNA amplifiable by a polymerase chain reaction with a primer comprising the nucleotide sequence shown in any one of SEQ ID NOs: 124 to 128, a primer comprising the nucleotide sequence shown in SEQ ID NO: 129 and as a template a chromosomal DNA of Streptomyces phaeochromogenes, Streptomyces testaceus, Streptomyces achromogenes, Streptomyces griseofuscus, Streptomyces thermocoerulescens, Streptomyces nogalater, Streptomyces tsusimaensis, Streptomyces glomerochromogenes, Streptomyces olivochromogenes, Streptomyces omatus, Streptomyces griseus, Streptomyces lanatus, Streptomyces misawanensis, Streptomyces pallidus, Streptomyces roseorubens, Streptomyces rutgersensis, Streptomyces steffisburgensis or Saccharopolyspora taberi;

24. An antibody recognizing a herbicide metabolizing protein selected from the group consisting of:

```
(A1) a protein comprising the amino acid sequence shown in SEQ ID NO: 1:
```

5

10

15

20

25

30

35

40

45

50

55

(A2) a protein comprising the amino acid sequence shown in SEQ ID NO: 2;

(A3) a protein comprising the amino acid sequence shown in SEQ ID NO: 3;

(A4) a protein comprising the amino acid sequence shown in SEQ ID NO: 108;

(A5) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III) and comprising an amino acid sequence having at least 80% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108;

(A6) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a nucleotide sequence having at least 80% sequence identity with a nucleotide sequence encoding an amino acid sequence shown in any one of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108;

(A11) a protein comprising the amino acid sequence shown in SEQ ID NO: 159;

(A12) a protein comprising the amino acid sequence shown in SEQ ID NO: 160;

(A13) a protein comprising the amino acid sequence shown in SEQ ID NO: 136;

(A14) a protein comprising the amino acid sequence shown in SEQ ID NO: 137;

(A15) a protein comprising the amino acid sequence shown in SEQ ID NO: 138;

(A16) a protein comprising the amino acid sequence shown in SEQ ID NO: 215;

(A17) a protein comprising the amino acid sequence shown in SEQ ID NO: 216;

(A18) a protein comprising the amino acid sequence shown in SEQ ID NO: 217;

(A19) a protein comprising the amino acid sequence shown in SEQ ID NO: 218;

(A20) a protein comprising the amino acid sequence shown in SEQ ID NO: 219;

(A21) a protein comprising the amino acid sequence shown in SEQ ID NO: 220;

(A22) a protein comprising the amino acid sequence shown in SEQ ID NO: 221; (A23) a protein comprising the amino acid sequence shown in SEQ ID NO: 222;

(A24) a protein comprising the amino acid sequence shown in SEQ ID NO: 223; (A25) a protein comprising the amino acid sequence shown in SEQ ID NO: 224;

(A26) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence having at least 80% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 159, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 217, SEQ ID NO: 219, SEQ ID NO: 220, SEQ ID NO: 221 or SEQ ID NO: 223 or an amino acid sequence having at least 90% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 160, SEQ ID NO: 215, SEQ ID NO: 216, SEQ ID NO: 218, SEQ ID NO: 222 or SEQ ID NO: 224;

(A27) a protein having the ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a nucleotide sequence having at least 90% sequence identity with a nucleotide sequence encoding an amino acid sequence shown in any one of SEQ ID NO: 159, SEQ ID NO: 160, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 215, SEQ ID NO: 216, SEQ ID NO: 217, SEQ ID NO:218, SEQ ID NO: 219, SEQ ID NO: 220, SEQ ID NO: 221, SEQ ID NO: 222, SEQ ID NO: 223 or SEQ ID NO: 224; and

(A28) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a DNA amplifiable by a polymerase chain reaction with a primer comprising the nucleotide sequence shown in any one of SEQ ID NOs: 124 to 128, a primer comprising the nucleotide sequence

shown in SEQ ID NO: 129 and as a template a chromosomal DNA of Streptomyces phaeochromogenes, Streptomyces testaceus, Streptomyces achromogenes, Streptomyces griseofuscus, Streptomyces thermocoerulescens, Streptomyces nogalater, Streptomyces tsusimaensis, Streptomyces glomerochromogenes, Streptomyces olivochromogenes, Streptomyces ornatus, Streptomyces griseus, Streptomyces lanatus, Streptomyces misawanensis, Streptomyces pallidus, Streptomyces roseorubens, Streptomyces rutgersensis, Streptomyces steffisburgensis or Saccharopolyspora taberi;

25. A method of detecting a herbicide metabolizing protein, said method comprising:

- (1) a step of contacting a test substance with an antibody recognizing said protein and
- (2) a step of detecting a complex of said protein and said antibody, arising from said contact,

wherein said protein is selected from the group consisting of:

5

10

15

20

25

30

35

40

45

50

55

- (A1) a protein comprising the amino acid sequence shown in SEQ ID NO: 1;
- (A2) a protein comprising the amino acid sequence shown in SEQ ID NO: 2;
- (A3) a protein comprising the amino acid sequence shown in SEQ ID NO: 3;
- (A4) a protein comprising the amino acid sequence shown in SEQ ID NO: 108;

(A5) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III) and comprising an amino acid sequence having at least 80% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108;

(A6) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a nucleotide sequence having at least 80% sequence identity with a nucleotide sequence encoding an amino acid sequence shown in any one of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108;

(A11) a protein comprising the amino acid sequence shown in SEQ ID NO: 159;

- (A12) a protein comprising the amino acid sequence shown in SEQ ID NO: 160;
- (A13) a protein comprising the amino acid sequence shown in SEQ ID NO: 136;
- (A14) a protein comprising the amino acid sequence shown in SEQ ID NO: 137;
- (A15) a protein comprising the amino acid sequence shown in SEQ ID NO: 138;
- (A16) a protein comprising the amino acid sequence shown in SEQ ID NO: 215;
- (A17) a protein comprising the amino acid sequence shown in SEQ ID NO: 216;
- (A18) a protein comprising the amino acid sequence shown in SEQ ID NO: 217;
- (A19) a protein comprising the amino acid sequence shown in SEQ ID NO: 218;
- (A20) a protein comprising the amino acid sequence shown in SEQ ID NO: 219;
- (A21) a protein comprising the amino acid sequence shown in SEQ ID NO: 220;
- (A22) a protein comprising the amino acid sequence shown in SEQ ID NO: 221;
- (A23) a protein comprising the amino acid sequence shown in SEQ ID NO: 222;
- (A24) a protein comprising the amino acid sequence shown in SEQ ID NO: 223;
- (A25) a protein comprising the amino acid sequence shown in SEQ ID NO: 224;

(A26) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence having at least 80% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 159, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 217, SEQ ID NO: 219, SEQ ID NO: 220, SEQ ID NO: 221 or SEQ ID NO: 223 or an amino acid sequence having at least 90% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 160, SEQ ID NO: 215, SEQ ID NO: 216, SEQ ID NO: 228 or SEQ ID NO: 224;

(A27) a protein having the ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a nucleotide sequence having at least 90% sequence identity with a nucleotide sequence encoding an amino acid sequence shown in any one of SEQ ID NO: 159, SEQ ID NO: 160, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 215, SEQ ID NO: 216, SEQ ID NO: 217, SEQ ID NO:218, SEQ ID NO: 219, SEQ ID NO: 220, SEQ ID NO: 221, SEQ ID NO: 222, SEQ ID NO: 223 or SEQ ID NO: 224; and

(A28) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a DNA amplifiable by a polymerase chain reaction with a primer comprising the nucle-

otide sequence shown in any one of SEQ ID NOs: 124 to 128, a primer comprising the nucleotide sequence shown in SEQ ID NO: 129 and as a template a chromosomal DNA of Streptomyces phaeochromogenes, Streptomyces testaceus, Streptomyces achromogenes, Streptomyces griseofuscus, Streptomyces thermocoerulescens, Streptomyces nogalater, Streptomyces tsusimaensis, Streptomyces glomerochromogenes, Streptomyces olivochromogenes, Streptomyces omatus, Streptomyces griseus, Streptomyces lanatus, Streptomyces misawanensis, Streptomyces pallidus, Streptomyces roseorubens, Streptomyces rutgersensis, Streptomyces steffisburgensis or Saccharopolyspora taberi;

- 26. An analysis or detection kit comprising the antibody according to the above 24;
- 27. A DNA encoding a ferredoxin selected from the group consisting of:

5

10

15

20

25

30

35

40

45

50

```
(B1) a protein comprising an amino acid sequence shown in SEQ ID NO: 12;
```

- (B2) a protein comprising an amino acid sequence shown in SEQ ID NO: 13;
- (P2) a protein comprising on amine gold coguence shown in SEC ID NO: 14
- (B3) a protein comprising an amino acid sequence shown in SEQ ID NO: 14;
- (B4) a protein comprising an amino acid sequence shown in SEQ ID NO: 111;
- (B5) a ferredoxin comprising an amino acid sequence having at least 80% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO 14 or SEQ ID NO: 111;
- (B6) a ferredoxin comprising an amino acid sequence encoded by a nucleotide sequence having at least 90% sequence identity with a nucleotide sequence encoding an amino acid sequence shown in any one of SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO 14 or SEQ ID NO: 111;
- (B7) a protein comprising an amino acid sequence shown in SEQ ID NO: 149;
- (B8) a protein comprising an amino acid sequence shown in SEQ ID NO: 150;
- (B9) a protein comprising an amino acid sequence shown in SEQ ID NO: 151;
- (B10) a protein comprising an amino acid sequence shown in SEQ ID NO: 152;
- (B11) a protein comprising an amino acid sequence shown in SEQ ID NO: 153;
- (B12) a ferredoxin comprising an amino acid sequence having at least 80% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 149, SEQ ID NO: 151, SEQ ID NO: 152, SEQ ID NO: 153, SEQ ID NO: 245, SEQ ID NO: 247, SEQ ID NO: 248, SEQ ID NO: 249, SEQ ID NO: 250, SEQ ID NO: 251, or SEQ ID NO: 253 or an amino acid sequence having at least 90% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 150, SEQ ID NO: 252 or SEQ ID NO: 254;
- (B13) a ferredoxin comprising an amino acid sequence encoded by a nucleotide sequence having at least 90% sequence identity with a nucleotide sequence encoding an amino acid sequence shown in any one of SEQ ID NO: 149, SEQ ID NO: 150, SEQ ID NO: 151, SEQ ID NO: 152, SEQ ID NO: 153, SEQ ID NO: 245, SEQ ID NO: 247, SEQ ID NO: 248, SEQ ID NO: 249, SEQ ID NO: 250, SEQ ID NO: 251, SEQ ID NO: 252, SEQ ID NO: 253 or SEQ ID NO: 254;
- (B14) a protein comprising the amino acid sequence shown in SEQ ID NO: 245;
- (B15) a protein comprising the amino acid sequence shown in SEQ ID NO: 247;
- (B16) a protein comprising the amino acid sequence shown in SEQ ID NO: 248;
- (B17) a protein comprising the amino acid sequence shown in SEQ ID NO: 249;
- (B18) a protein comprising the amino acid sequence shown in SEQ ID NO: 250;
- (B19) a protein comprising the amino acid sequence shown in SEQ ID NO: 251;
- (B20) a protein comprising the amino acid sequence shown in SEQ ID NO: 252;
- (B21) a protein comprising the amino acid sequence shown in SEQ ID NO: 253; and
- (B22) a protein comprising the amino acid sequence shown in SEQ ID NO: 254;
- 28. A DNA comprising a nucleotide sequence selected from the group consisting of:
 - (b1) a nucleotide sequence shown in SEQ ID NO: 15;
 - (b2) a nucleotide sequence shown in SEQ ID NO: 16;
 - (b3) a nucleotide sequence shown in SEQ ID NO: 17;
 - (b4) a nucleotide sequence shown in SEQ ID NO: 112;
 - (b5) a nucleotide sequence shown in SEQ ID NO: 154;
 - (b6) a nucleotide sequence shown in SEQ ID NO: 155;
 - (b7) a nucleotide sequence shown in SEQ ID NO: 156;
 - (b8) a nucleotide sequence shown in SEQ ID NO: 157;
 - (b9) a nucleotide sequence shown in SEQ ID NO: 158;
 - (b10) a nucleotide sequence shown in SEQ ID NO: 255;
 - (b11) a nucleotide sequence shown in SEQ ID NO: 257;

```
(b12) a nucleotide sequence shown in SEQ ID NO: 258;
               (b13) a nucleotide sequence shown in SEQ ID NO: 259;
               (b14) a nucleotide sequence shown in SEQ ID NO: 260;
               (b15) a nucleotide seguence shown in SEQ ID NO: 261:
 5
               (b16) a nucleotide sequence shown in SEQ ID NO: 262;
               (b17) a nucleotide sequence shown in SEQ ID NO: 263;
               (b18) a nucleotide sequence shown in SEQ ID NO: 264; and
               (b19) a nucleotide sequence having at least 90% sequence identity with a nucleotide sequence shown in any
               one of SEQ ID NO: 15, SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 112, SEQ ID NO: 154, SEQ ID NO: 155,
 10
               SEQ ID NO: 156, SEQ ID NO: 157, SEQ ID NO: 158, SEQ ID NO: 255, SEQ ID NO: 257, SEQ ID NO: 258,
               SEQ ID NO: 259, SEQ ID NO: 260, SEQ ID NO: 261, SEQ ID NO: 262, SEQ ID NO: 263 or SEQ ID NO: 264;
           29. A vector comprising a DNA according to the above 28;
           30. A transformant in which the DNA according to the above 28 is introduced into a host cell;
 15
           31. A ferredoxin selected from the group consisting of:
               (B1) a protein comprising an amino acid sequence shown in SEQ ID NO: 12;
               (B2) a protein comprising an amino acid sequence shown in SEQ ID NO: 13;
               (B3) a protein comprising an amino acid sequence shown in SEQ ID NO: 14;
 20
               (B4) a protein comprising an amino acid sequence shown in SEQ ID NO: 111;
               (B5) a ferredoxin comprising an amino acid sequence having at least 80% sequence identity with an amino
               acid sequence shown in any one of SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO 14 or SEQ ID NO: 111;
               (B6) a ferredoxin comprising an amino acid sequence encoded by a nucleotide sequence having at least 90%
               sequence identity with a nucleotide sequence encoding an amino acid sequence shown in any one of SEQ
 25
               ID NO: 12, SEQ ID NO: 13, SEQ ID NO 14 or SEQ ID NO: 111;
               (B7) a protein comprising an amino acid sequence shown in SEQ ID NO: 149;
               (B8) a protein comprising an amino acid sequence shown in SEQ ID NO: 150;
               (B9) a protein comprising an amino acid sequence shown in SEQ ID NO: 151;
               (B10) a protein comprising an amino acid sequence shown in SEQ ID NO: 152;
 30
               (B11) a protein comprising an amino acid sequence shown in SEQ ID NO: 153;
               (B12) a ferredoxin comprising an amino acid sequence having at least 80% sequence identity with an amino
               acid sequence shown in any one of SEQ ID NO: 149, SEQ ID NO: 151, SEQ ID NO: 152, SEQ ID NO: 153,
               SEQ ID NO: 245, SEQ ID NO: 247, SEQ ID NO: 248, SEQ ID NO: 249, SEQ ID NO: 250, SEQ ID NO: 251,
               or SEQ ID NO: 253 or an amino acid sequence having at least 90% sequence identity with an amino acid
 35
               sequence shown in any one of SEQ ID NO: 150, SEQ ID NO: 252 or SEQ ID NO: 254;
               (B13) a ferredoxin comprising an amino acid sequence encoded by a nucleotide sequence having at least
               90% sequence identity with a nucleotide sequence encoding an amino acid sequence shown in any one of
               SEQ ID NO: 149, SEQ ID NO: 150, SEQ ID NO: 151, SEQ ID NO: 152, SEQ ID NO: 153, SEQ ID NO: 245,
               SEQ ID NO: 247, SEQ ID NO: 248, SEQ ID NO: 249, SEQ ID NO: 250, SEQ ID NO: 251, SEQ ID NO: 252,
 40
               SEQ ID NO: 253 or SEQ ID NO: 254;
               (B14) a protein comprising the amino acid sequence shown in SEQ ID NO: 245;
               (B15) a protein comprising the amino acid sequence shown in SEQ ID NO: 247;
               (B16) a protein comprising the amino acid sequence shown in SEQ ID NO: 248;
               (B17) a protein comprising the amino acid sequence shown in SEQ ID NO: 249;
 45
               (B18) a protein comprising the amino acid sequence shown in SEQ ID NO: 250;
               (B19) a protein comprising the amino acid sequence shown in SEQ ID NO: 251;
               (B20) a protein comprising the amino acid sequence shown in SEQ ID NO: 252;
               (B21) a protein comprising the amino acid sequence shown in SEQ ID NO: 253; and
               (B22) a protein comprising the amino acid sequence shown in SEQ ID NO: 254;
. 50
           32. A DNA comprising a nucleotide sequence selected from the group consisting of:
               (ab1) a nucleotide sequence shown in SEQ ID NO: 9;
               (ab2) a nucleotide sequence shown in SEQ ID NO: 10;
 55
               (ab3) a nucleotide sequence shown in SEQ ID NO: 11;
               (ab4) a nucleotide sequence shown in SEQ ID NO: 110:
               (ab5) a nucleotide sequence shown in SEQ ID NO: 144;
```

(ab6) a nucleotide sequence shown in SEQ ID NO: 145;

```
(ab7) a nucleotide sequence shown in SEQ ID NO: 146; (ab8) a nucleotide sequence shown in SEQ ID NO: 147; (ab9) a nucleotide sequence shown in SEQ ID NO: 148; (ab10) a nucleotide sequence shown in SEQ ID NO: 235; (ab11) a nucleotide sequence shown in SEQ ID NO: 236; (ab12) a nucleotide sequence shown in SEQ ID NO: 237; (ab13) a nucleotide sequence shown in SEQ ID NO: 238; (ab14) a nucleotide sequence shown in SEQ ID NO: 239; (ab15) a nucleotide sequence shown in SEQ ID NO: 240; (ab16) a nucleotide sequence shown in SEQ ID NO: 241; (ab17) a nucleotide sequence shown in SEQ ID NO: 242; (ab18) a nucleotide sequence shown in SEQ ID NO: 243; and (ab19) a nucleotide sequence shown in SEQ ID NO: 244;
```

5

10

15

20

25

30

35

40

45

50

- A vector comprising the DNA according to the above 32;
 - 34. A transformant in which the DNA according to the above 32 is introduced into a host cell;
 - 35. The transformant according to the above 34, wherein the host cell is a microorganism cell or a plant cell;
 - **36.** A method of producing a transformant comprising a step of introducing into a host cell the DNA according to the above 32;
 - **37.** A method of producing a protein having the ability to convert a compound of formula (II) to a compound of formula (III), said method comprising a step of culturing the transformant according to the above 34 and recovering the produced said protein;
 - **38.** A method of controlling weeds comprising a step of applying a compound to a cultivation area of a plant expressing at least one herbicide metabolizing protein selected from the group consisting of:
 - (A1) a protein comprising the amino acid sequence shown in SEQ ID NO: 1;
 - (A2) a protein comprising the amino acid sequence shown in SEQ ID NO: 2;
 - (A3) a protein comprising the amino acid sequence shown in SEQ ID NO: 3;
 - (A4) a protein comprising the amino acid sequence shown in SEQ ID NO: 108;
 - (A5) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence having at least 80% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108;
 - (A6) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a nucleotide sequence having at least 80% sequence identity with a nucleotide sequence encoding an amino acid sequence shown in any one of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108; (A7) a protein having the ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a DNA that hybridizes, under stringent conditions, to a DNA comprising a nucleotide sequence encoding an amino acid sequence shown in any one of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108;
 - (A8) a protein having the ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a DNA amplifiable by a polymerase chain reaction with a primer comprising a nucleotide sequence shown in SEQ ID NO: 129, a primer comprising a nucleotide sequence shown in any one of SEQ ID NOs: 124 to 128, and as a template a chromosome of a microorganism belonging to Streptomyces or Saccharopolyspora;
 - (A9) a protein comprising an amino acid sequence shown in SEQ ID NO: 4;
 - (A11) a protein comprising the amino acid sequence shown in SEQ ID NO: 159;
 - (A12) a protein comprising the amino acid sequence shown in SEQ ID NO: 160;
 - (A13) a protein comprising the amino acid sequence shown in SEQ ID NO: 136;
 - (A14) a protein comprising the amino acid sequence shown in SEQ ID NO: 137;
 - (A15) a protein comprising the amino acid sequence shown in SEQ ID NO: 138;
 - (A16) a protein comprising the amino acid sequence shown in SEQ ID NO: 215;
 - (A17) a protein comprising the amino acid sequence shown in SEQ ID NO: 216;
 - (A18) a protein comprising the amino acid sequence shown in SEQ ID NO: 217;
 - (A19) a protein comprising the amino acid sequence shown in SEQ ID NO: 218;

(A20) a protein comprising the amino acid sequence shown in SEQ ID NO: 219;

(A21) a protein comprising the amino acid sequence shown in SEQ ID NO: 220;

(A22) a protein comprising the amino acid sequence shown in SEQ ID NO: 221;

(A23) a protein comprising the amino acid sequence shown in SEQ ID NO: 222;

(A24) a protein comprising the amino acid sequence shown in SEQ ID NO: 223;

(A25) a protein comprising the amino acid sequence shown in SEQ ID NO: 224;

(A26) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence having at least 80% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 159, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 217, SEQ ID NO: 219, SEQ ID NO: 220, SEQ ID NO: 221 or SEQ ID NO: 223 or an amino acid sequence having at least 90% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 160, SEQ ID NO: 215, SEQ ID NO: 216, SEQ ID NO: 218, SEQ ID NO: 222 or SEQ ID NO: 224; and

(A27) a protein having the ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a nucleotide sequence having at least 90% sequence identity with a nucleotide sequence encoding an amino acid sequence shown in any one of SEQ ID NO: 159, SEQ ID NO: 160, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 215, SEQ ID NO: 216, SEQ ID NO: 217, SEQ ID NO:218, SEQ ID NO: 219, SEQ ID NO: 220, SEQ ID NO: 221, SEQ ID NO: 222, SEQ ID NO: 223 or SEQ ID NO: 224,

wherein said compound is a compound of formula (I):

5

10

15

20

25

30

35

50

55

$$G-N$$
 CH_3
 CF_3
 CF_3
 CF_3

wherein in formula (I) G represents a group shown in any one of the following G-1 to G-9:

$$R^{1}$$
 R^{1}
 R^{2}
 R^{3}
 R^{3}
 R^{4}
 R^{3}
 R^{3}
 R^{4}
 R^{2}
 R^{3}
 R^{4}
 R^{7}
 R^{7}
 R^{7}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{7}
 R^{7}

wherein in G-1 to G-9,

20

25

30

35

40

45

50

55

X represents an oxygen atom or sulfur atom;

Y represents an oxygen atom or sulfur atom;

R1 represents a hydrogen atom or halogen atom;

 R^2 represents a hydrogen atom, C_1 - C_8 alkyl group, C_1 - C_8 haloalkyl group, halogen atom, hydroxyl group, $-CR^9$ group, -SH group, -S(O)pR 9 group, -COR 9 group, -CO $_2$ R 9 group, -C(O)SR 9 group, -C(O)NR 11 R 12 group, -CONH $_2$ group, -CHO group, -CR 9 =NOR 18 group, -CH=CR 19 CO $_2$ R 9 group, -CH $_2$ CHR 19 CO $_2$ R 9 group, -CO $_2$ N=CR 13 R 14 group, nitro group, cyano group, -NHSO $_2$ R 15 group, -NHSO $_2$ NHR 15 group, -NR 9 R 20 group, -NH $_2$ group or phenyl group that may be substituted with one or more C $_1$ -C $_4$ alkyl groups which may be the same or different;

p represents 0, 1 or 2;

 R^3 represents C_1 - C_2 alkyl group, C_1 - C_2 haloalkyl group, -OCH $_3$ group, -SCH $_3$ group, -OCHF $_2$ group, halogen atom, cyano group, nitro group or C_1 - C_3 alkoxy group substituted with a phenyl group which may be substituted on the ring with at least one substituent selected from a halogen atom, C_1 - C_3 alkyl group, C_1 - C_3 haloalkyl group, C_1 - C_3 group, C_1 - C_2 group, C_2 - C_3 group, C_1 - C_3 group, C_1 - C_3 group, C_1 - C_3 group, C_2 - C_3

R⁴ represents a hydrogen atom, C₁-C₃ alkyl group or C₁-C₃ haloalkyl group;

 R^5 represents a hydrogen atom, C_1 - C_3 alkyl group, C_1 - C_3 haloalkyl group, cyclopropyl group, vinyl group, C_2 alkynyl group, cyano group, -C(O) R^{20} group, -CO $_2$ R^{20} group, -C(O) R^{20} group, -CHR 16 R17CN group, -CR 16 R17C(O) R^{20} group, -C16R 17 CO $_2$ R20 group, -CR 16 R17C(O) R^{20} group, -CHR 16 OC(O) R^{20} group or -OCHR 16 OC(O) R^{20} group, or, when G represents G-2 or G-6, R^4 and R^5 may represent C=O group together with the carbon atom to which they are attached;

 R^6 represents C_1 - C_6 alkyl group, C_1 - C_6 haloalkyl group, C_2 - C_6 alkoxyalkyl group, C_3 - C_6 alkenyl group;

 R^7 represents a hydrogen atom, C_1 - C_6 alkyl group, C_1 - C_6 haloalkyl group, halogen atom, $-S(O)_2(C_1$ - C_6 alkyl) group or $-C(=O)R^{22}$ group;

R8 represents a hydrogen atom, C₁-C₈ alkyl group, C₃-C₈ cycloalkyl group, C₃-C₈ alkenyl group, C₃-C₈

5

10

15

20

25

30

35

40

45

50

55

alkynyl group, C_1 - C_8 haloalkyl group, C_2 - C_8 alkoxyalkyl group, C_3 - C_8 alkoxyalkyl group, C_3 - C_8 haloalkenyl group, C_1 - C_8 alkylsulfonyl group, C_1 - C_8 haloalkylsulfonyl group, C_3 - C_8 alkoxycarbonylalkyl group, -S(O)₂NH(C_1 - C_8 alkyl) group, -C(O)R²³ group or benzyl group which may be substituted with R²⁴ on the phenyl ring;

R⁹ represents C₁-C₈ alkyl group, C₃-C₈ cycloalkyl group, C₃-C₈ alkenyl group, C₃-C₈ alkynyl group, C₁-C₈ haloalkyl group, C_2 - C_8 alkoxyalkyl group, C_2 - C_8 alkylthioalkyl group, C_2 - C_8 alkylsulfinylalkyl group, C_2 - C_8 alkylthioalkyl group, C_2 - C_8 alkylsulfinylalkyl group, C_2 - C_8 alkylthioalkyl group, C_2 - C_8 sulfonylalkyl group, C₄-C₈ alkoxyalkoxyalkyl group, C₄-C₈ cycloalkylalkyl group, C₄-C₈ cycloalkoxyalkyl group, $C_4-C_8 \text{ alkenyloxyalkyl group, } C_4-C_8 \text{ alkynyloxyalkyl group, } C_3-C_8 \text{ haloalkoxyalkyl group, } C_4-C_8 \text{ haloalkenyloxyalkyl group, } C_8-C_8 \text{ haloa$ group, C_4 - C_8 haloalkynyloxyalkyl group, C_4 - C_8 cycloalkylthioalkyl group, C_4 - C_8 alkenylthioalkyl group, C_4 - C_8 alkynylthioalkyl group, C₁-C₄ alkyl group substituted with a phenoxy group which may be substituted on the ring with at least one substituent selected from a halogen atom, C₁-C₃ alkyl group and C₁-C₃ haloalkyl group, C₁-C₄ alkyl group substituted with a benzyloxy group which may be substituted on the ring with at least one substituent selected from a halogen atom, C_1 - C_3 alkyl group and C_1 - C_3 haloalkyl group, C_4 - C_8 trialkylsyrylalkyl group, C_2 - C_8 cyanoalkyl $group, C_3-C_8 \ halocycloalkyl \ group, \ C_3-C_8 \ haloalkenyl \ group, \ C_5-C_8 \ alkoxyalkenyl \ group, \ C_5-C_8 \ haloalkoxyalkenyl \ group, \ C_8-C_8 \ haloalkoxyalkenyl \ group, \ C_8-C_8 \ haloalkoxyalkenyl \ group, \ haloalkenyl \ g$ group, C_5 - C_8 alkylthioalkenyl group, C_3 - C_8 haloalkynyl group, C_5 - C_8 alkoxyalkynyl group, C_5 - C_8 haloalkoxyalkynyl group, C_5 - C_8 alkylthioalkynyl group, C_2 - C_8 alkylcarbonyl group, benzyl group which may be substituted on the ring with at least one substituent selected from a halogen atom, C₁-C₃ alkyl group, C₁-C₃ haloalkyl group, -OR²⁸ group, -NR¹¹R²⁸ group, -SR²⁸ group, cyano group, -CO₂R²⁸ group and nitro group, -CR¹⁶R¹⁷COR¹⁰ group, $-CR^{16}R^{17}CO_{2}R^{20} \quad \text{group, } -CR^{16}R^{17}P(O)(OR^{10})_{2} \quad \text{group, } -CR^{16}R^{17}P(S)(OR^{10})_{2} \quad \text{group, } -CR^{16}R^{17}C(O)NR^{11}R^{12}$ group, $-CR^{16}R^{17}C(0)NH_2$ group, $-C(=CR^{26}R^{27})COR^{10}$ group, $-C(=CR^{26}R^{27})CO_2R^{20}$ group, $-C(=CR^{26}R^{27})P(0)$ $(OR^{10})_2$ group, $-C(=CR^{26}R^{27})P(S)(OR^{10})_2$ group, $-C(=CR^{26}R^{27})C(O)NR^{11}R^{12}$ group, $-C(=CR^{26}R^{27})C(O)NH_2$ group, or any one of rings shown in Q-1 to Q-7:

which may be substituted on the ring with at least one substituent selected from a halogen atom, C_1 - C_6 alkyl group, C_1 - C_6 haloalkyl group, C_2 - C_6 haloalkyl group, C_2 - C_6 haloalkyl group, C_2 - C_6 alkoxyalkyl group, C_3 - C_6 haloalkynyl group, C_2 - C_8 alkoxyalkyl group, C_3 - C_8 group, C_3 - C_8 alkoxyalkyl group, C_3 - C_8 group, C_3 - C_8 alkoxyalkyl group, C_3 - C_8 alkoxyalkyl group, C_3 - C_8 group, C_3 - C_8

 R^{10} represents a C_1 - C_6 alkyl group, C_2 - C_6 alkenyl group, C_3 - C_6 alkynyl group or tetrahydrofuranyl group; R^{11} and R^{13} independently represent a hydrogen atom or C_1 - C_4 alkyl group;

 R^{12} represents C_1 - C_6 alkyl group, C_3 - C_6 cycloalkyl group, C_3 - C_6 alkenyl group, C_3 - C_6 alkynyl group, C_2 - C_6 alkoxyalkyl group, C_1 - C_6 haloalkyl group, C_3 - C_6 haloalkenyl group, C_3 - C_6 haloalkynyl group, phenyl group which may be substituted on the ring with at least one substituent selected from a halogen atom, C_1 - C_4 alkyl group and C_1 - C_4 alkoxy group or - C_1 - C_2 - C_3 - C_4 - C_4 - C_5 - C_6 -

 R^{11} and R^{12} together may represent -(CH_2)₅-, -(CH_2)₄- or - $CH_2CH_2CH_2CH_2$ -, or in that case the resulting ring may be substituted with a substituent selected from a C_1 - C_3 alkyl group, a phenyl group and benzyl group;

 R^{14} represents a C_1 - C_4 alkyl group or phenyl group which may be substituted on the ring with a substituent selected from a halogen atom, C_1 - C_3 alkyl group and C_1 - C_3 haloalkyl group; or,

 R^{13} and R^{14} may represent C_3 - C_8 cycloalkyl group together with the carbon atom to which they are attached; R^{15} represents C_1 - C_4 alkyl group, C_1 - C_4 haloalkyl group or C_3 - C_6 alkenyl group;

 R^{16} and R^{17} independently represent a hydrogen atom or C_1 - C_4 alkyl group, C_1 - C_4 haloalkyl group, C_2 - C_4 alkenyl group, C_2 - C_4 haloalkenyl group, C_3 - C_4 haloalkynyl group; or,

 R^{16} and R^{17} may represent C_3 - C_6 cycloalkyl group with the carbon atom to which they are attached, or the ring thus formed may be substituted with at least one substituent selected from a halogen atom, a C_1 - C_3 alkyl group and C_1 - C_3 haloalkyl group;

 R^{18} represents a hydrogen atom, C_1 - C_6 alkyl group, C_3 - C_6 alkenyl group or C_3 - C_6 alkynyl group;

R¹⁹ represents a hydrogen atom, C₁-C₄ alkyl group or halogen atom,

 R^{20} represents a hydrogen atom, C_1 - C_6 alkyl group, C_3 - C_6 cycloalkyl group, C_3 - C_6 alkenyl group, C_3 - C_6 alkynyl group, C_2 - C_6 alkoxyalkyl group, C_1 - C_6 haloalkyl group, C_3 - C_6 haloalkynyl group, phenyl group which may be substituted on the ring with at least one substituent selected from a halogen atom, C_1 - C_4 alkyl group and -OR²⁸ group, or -CR¹⁶R¹⁷CO₂R²⁵ group;

R²¹ represents a hydrogen atom, C₁-C₂ alkyl group or -CO₂(C₁-C₄ alkyl) group; R²² represents a hydrogen atom, C₁-C₆ alkyl group, C₁-C₆ alkoxy group or NH(C₁-C₆ alkyl) group; R²³ represents C₁-C₆ alkyl group, C₁-C₆ haloalkyl group, C₁-C₆ alkoxy group, NH(C₁-C₆ alkyl) group, benzyl group, C₂-C₈ dialkylamino group or phenyl group which may be substituted with R²⁴; 5 R²⁴ represents C₁-C₆ alkyl group, 1 to 2 halogen atoms, C₁-C₆ alkoxy group or CF₃ group; R²⁵ represents C₁-C₆ alkyl group, C₁-C₆ haloalkyl group, C₃-C₆ alkenyl group, C₃-C₆ haloalkenyl group, C₃-C₆ alkynyl group or C₃-C₆ haloalkynyl group; R^{26} and R^{27} each represent independently a hydrogen atom, C_1 - C_4 alkyl group, C_1 - C_4 haloalkyl group, C_2 - C_4 alkenyl group, C_2 - C_4 haloalkenyl group, C_2 - C_4 alkynyl group, C_3 - C_4 haloalkynyl group, -OR²⁸ group, -NHR²⁸ group, 10 or -SR²⁸ group; or. R²⁶ and R²⁷ may represent C₃-C₈ cycloalkyl group with the carbon atom to which they are attached, or each of the ring thus formed may be substituted with at least one substituent selected from a halogen atom, C₁-C₃ alkyl group and C₁-C₃ haloalkyl group; and, R²⁸ represents a hydrogen atom, C₁-C₆ alkyl group, C₁-C₆ haloalkyl group, C₃-C₆ alkenyl group, C₃-C₆ 15 haloalkenyl group, C₃-C₆ alkynyl group, C₃-C₆ haloalkynyl group, C₂-C₄ carboxyalkyl group, C₃-C₈ alkoxycarbonylalkyl group, C_3 - C_8 haloalkoxycarbonylalkyl group, C_5 - C_9 alkenyloxycabonylalkyl group, C_5 - C_9 haloalkenyloxycabonylalkyl group, C_5 - C_9 alkynyloxycabonylalkyl group, C_5 - C_9 haloalkynyloxycabonylalkyl group, C_5 - C_9 cycloalkoxycabonylalkyl group or C₅-C₉ halocycloalkoxycabonylalkyl group; 39. A method of controlling weeds comprising a step of applying a compound to a cultivation area of a plant 20 expressing at least one protein selected from the group consisting of: (A1) a protein comprising the amino acid sequence shown in SEQ ID NO: 1; (A2) a protein comprising the amino acid sequence shown in SEQ ID NO: 2; (A3) a protein comprising the amino acid sequence shown in SEQ ID NO: 3; 25 (A4) a protein comprising the amino acid sequence shown in SEQ ID NO: 108; (A5) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III) and comprising an amino acid sequence having at least 80% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108; 30 (A6) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a nucleotide sequence having at least 80% sequence identity with a nucleotide sequence encoding an amino acid sequence shown in any one of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108; (A11) a protein comprising the amino acid sequence shown in SEQ ID NO: 159; 35 (A12) a protein comprising the amino acid sequence shown in SEQ ID NO: 160; (A13) a protein comprising the amino acid sequence shown in SEQ ID NO: 136; (A14) a protein comprising the amino acid sequence shown in SEQ ID NO: 137; (A15) a protein comprising the amino acid sequence shown in SEQ ID NO: 138; (A16) a protein comprising the amino acid sequence shown in SEQ ID NO: 215; 40 (A17) a protein comprising the amino acid sequence shown in SEQ ID NO: 216; (A18) a protein comprising the amino acid sequence shown in SEQ ID NO: 217; (A19) a protein comprising the amino acid sequence shown in SEQ ID NO: 218; (A20) a protein comprising the amino acid sequence shown in SEQ ID NO: 219; (A21) a protein comprising the amino acid sequence shown in SEQ ID NO: 220; 45 (A22) a protein comprising the amino acid sequence shown in SEQ ID NO: 221; (A23) a protein comprising the amino acid sequence shown in SEQ ID NO: 222; (A24) a protein comprising the amino acid sequence shown in SEQ ID NO: 223; (A25) a protein comprising the amino acid sequence shown in SEQ ID NO: 224; (A26) a protein having an ability to convert in the presence of an electron transport system containing an 50 electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence having at least 80% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 159. SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 217, SEQ ID NO: 219, SEQ ID NO: 220, SEQ ID NO: 221 or SEQ ID NO: 223 or an amino acid sequence having at least 90% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 160, SEQ ID NO: 215, SEQ ID NO: 55 216, SEQ ID NO: 218, SEQ ID NO: 222 or SEQ ID NO: 224;

(A27) a protein having the ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a nucleotide sequence having at least 90% sequence identity with a nucleotide se-

quence encoding an amino acid sequence shown in any one of SEQ ID NO: 159, SEQ ID NO: 160, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 215, SEQ ID NO: 216, SEQ ID NO: 217, SEQ ID NO: 218, SEQ ID NO: 219, SEQ ID NO: 220, SEQ ID NO: 221, SEQ ID NO: 222, SEQ ID NO: 223 or SEQ ID NO: 224; and

(A28) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a DNA amplifiable by a polymerase chain reaction with a primer comprising the nucleotide sequence shown in any one of SEQ ID NOs: 124 to 128, a primer comprising the nucleotide sequence shown in SEQ ID NO: 129 and as a template a chromosomal DNA of Streptomyces phaeochromogenes, Streptomyces testaceus, Streptomyces achromogenes, Streptomyces griseofuscus, Streptomyces thermocoerulescens, Streptomyces nogalater, Streptomyces tsusimaensis, Streptomyces glomerochromogenes, Streptomyces olivochromogenes, Streptomyces ornatus, Streptomyces griseus, Streptomyces lanatus, Streptomyces misawanensis, Streptomyces pallidus, Streptomyces roseorubens, Streptomyces rutgersensis, Streptomyces steffisburgensis or Saccharopolyspora taberi;

40. A method of evaluating the resistance of a cell to a compound of formula (I), said method comprising:

(1) a step of contacting said compound with a cell expressing at least one herbicide metabolizing protein selected from the group consisting of:

(A1) a protein comprising the amino acid sequence shown in SEQ ID NO: 1;

(A2) a protein comprising the amino acid sequence shown in SEQ ID NO: 2;

(A3) a protein comprising the amino acid sequence shown in SEQ ID NO: 3;

(A4) a protein comprising the amino acid sequence shown in SEQ ID NO: 108;

(A5) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III) and comprising an amino acid sequence having at least 80% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108;

(A6) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a nucleotide sequence having at least 80% sequence identity with a nucleotide sequence encoding an amino acid sequence shown in any one of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108;

(A7) a protein having the ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a DNA that hybridizes, under stringent conditions, to a DNA comprising a nucleotide sequence encoding an amino acid sequence shown in any one of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108;

(A8) a protein having the ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a DNA amplifiable by a polymerase chain reaction with a primer comprising a nucleotide sequence shown in SEQ ID NO: 129, a primer comprising a nucleotide sequence shown in any one of SEQ ID NOs: 124 to 128, and as a template a chromosome of a microorganism belonging to Streptomyces or Saccharopolyspora;

(A9) a protein comprising an amino acid sequence shown in SEQ ID NO: 4;

(A11) a protein comprising the amino acid sequence shown in SEQ ID NO: 159;

(A12) a protein comprising the amino acid sequence shown in SEQ ID NO: 160;

(A13) a protein comprising the amino acid sequence shown in SEQ ID NO: 136;

(A14) a protein comprising the amino acid sequence shown in SEQ ID NO: 137;

(A15) a protein comprising the amino acid sequence shown in SEQ ID NO: 138;

(A16) a protein comprising the amino acid sequence shown in SEQ ID NO: 215;

(A17) a protein comprising the amino acid sequence shown in SEQ ID NO: 216;

(A18) a protein comprising the amino acid sequence shown in SEQ ID NO: 217;

(A19) a protein comprising the amino acid sequence shown in SEQ ID NO: 218;

(A20) a protein comprising the amino acid sequence shown in SEQ ID NO: 219; (A21) a protein comprising the amino acid sequence shown in SEQ ID NO: 220;

(A22) a protein comprising the amino acid sequence shown in SEQ ID NO: 221;

(A23) a protein comprising the amino acid sequence shown in SEQ ID NO: 222;

16

15

10

5

20

25

30

35

40

45

50

- (A24) a protein comprising the amino acid sequence shown in SEQ ID NO: 223;
- (A25) a protein comprising the amino acid sequence shown in SEQ ID NO: 224;
- (A26) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence having at least 80% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 159, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 217, SEQ ID NO: 219, SEQ ID NO: 220, SEQ ID NO: 221 or SEQ ID NO: 223 or an amino acid sequence having at least 90% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 160, SEQ ID NO: 215, SEQ ID NO: 216, SEQ ID NO: 218, SEQ ID NO: 222 or SEQ ID NO: 224; and
- (A27) a protein having the ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a nucleotide sequence having at least 90% sequence identity with a nucleotide sequence encoding an amino acid sequence shown in any one of SEQ ID NO: 159, SEQ ID NO: 160, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 215, SEQ ID NO: 216, SEQ ID NO: 217, SEQ ID NO: 219, SEQ ID NO: 220, SEQ ID NO: 221, SEQ ID NO: 222, SEQ ID NO: 223 or SEQ ID NO: 224; and
- (2) a step of evaluating the degree of damage to the cell which contacted the compound in the above step (1);
- 41. The method according to the above 40, wherein the cell is a microorganism cell or plaint cell;
- **42.** A method of selecting a cell resistant to a compound of formula (I), said method comprising a step of selecting a cell based on the resistance evaluated in the method according to the above 40;
- 43. The cell resistant to herbicide selected by the method according to the above 42, or the culture thereof;
- 44. A method of evaluating the resistance of a plant to a compound of formula (I), said method comprising:
 - (1) a step of contacting said compound with a plant expressing at least one herbicide metabolizing protein selected from the group consisting of:
 - (A1) a protein comprising the amino acid sequence shown in SEQ ID NO: 1;
 - (A2) a protein comprising the amino acid sequence shown in SEQ ID NO: 2;
 - (A3) a protein comprising the amino acid sequence shown in SEQ ID NO: 3;
 - (A4) a protein comprising the amino acid sequence shown in SEQ ID NO: 108;
 - (A5) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III) and comprising an amino acid sequence having at least 80% sequence identity with an amino acid sequences shown in any one of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108;
 - (A6) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a nucleotide sequence having at least 80% sequence identity with a nucleotide sequence encoding an amino acid sequence shown in any one of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108;
 - (A7) a protein having the ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a DNA that hybridizes, under stringent conditions, to a DNA comprising a nucleotide sequence encoding an amino acid sequence shown in SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108:
 - (A8) a protein having the ability to convert in the presence of an electron transport system containing an electron donor a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a DNA amplifiable by a polymerase chain reaction with a primer comprising a nucleotide sequence shown in SEQ ID NO: 129, a primer comprising a nucleotide sequence shown in any one of SEQ ID NOs: 124 to 128, and as a template a chromosome of a microorganism belonging to Streptomyces or Saccharopolyspora;
 - (A9) a protein comprising an amino acid sequence shown in SEQ ID NO: 4;
 - (A11) a protein comprising the amino acid sequence shown in SEQ ID NO: 159;
 - (A12) a protein comprising the amino acid sequence shown in SEQ ID NO: 160;
 - (A13) a protein comprising the amino acid sequence shown in SEQ ID NO: 136;
 - (A14) a protein comprising the amino acid sequence shown in SEQ ID NO: 137;

55

5

10

15

20

25

30

35

40

45

(A15) a protein comprising the amino acid sequence shown in SEQ ID NO: 138; (A16) a protein comprising the amino acid sequence shown in SEQ ID NO: 215; (A17) a protein comprising the amino acid sequence shown in SEQ ID NO: 216; (A18) a protein comprising the amino acid sequence shown in SEQ ID NO: 217; (A19) a protein comprising the amino acid sequence shown in SEQ ID NO: 218; (A20) a protein comprising the amino acid sequence shown in SEQ ID NO: 219; (A21) a protein comprising the amino acid sequence shown in SEQ ID NO: 220; (A22) a protein comprising the amino acid sequence shown in SEQ ID NO: 221; (A23) a protein comprising the amino acid sequence shown in SEQ ID NO: 222; (A24) a protein comprising the amino acid sequence shown in SEQ ID NO: 223; (A25) a protein comprising the amino acid sequence shown in SEQ ID NO: 224;

5

10

15

20

25

30

35

40

45

50

55

(A26) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence having at least 80% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 159, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 217, SEQ ID NO: 219, SEQ ID NO: 220, SEQ ID NO: 221 or SEQ ID NO: 223 or an amino acid sequence having at least 90% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 160, SEQ ID NO: 215, SEQ ID NO: 216, SEQ ID NO: 218, SEQ ID NO: 222 or SEQ ID NO: 224; and

(A27) a protein having the ability to convert in the presence of an electron transport system containing an electron donor a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a nucleotide sequence having at least 90% sequence identity with a nucleotide sequence encoding an amino acid sequence shown in any one of SEQ ID NO: 159, SEQ ID NO: 160, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 215, SEQ ID NO: 216, SEQ ID NO: 217, SEQ ID NO: 219, SEQ ID NO: 220, SEQ ID NO: 221, SEQ ID NO: 222, SEQ ID NO: 223 or SEQ ID NO: 224; and

- (2) a step of evaluating the degree of damage to the plant which contacted the compound described in step (1);
- **45.** A method of selecting a plant resistant to a compound of formula (I), said method comprising a step of selecting a plant based on the resistance evaluated in the method according to the above 44;
- 46. A herbicidally resistant plant selected from the method according to the above 45, or the progeny thereof;
- 47. A method of treating a compound of formula (I), said method comprising reacting said compound in the presence of an electron transport system containing an electron donor, with at least one herbicide metabolizing protein selected from the group consisting of:
 - (A1) a protein comprising the amino acid sequence shown in SEQ ID NO: 1;
 - (A2) a protein comprising the amino acid sequence shown in SEQ ID NO: 2;
 - (A3) a protein comprising the amino acid sequence shown in SEQ ID NO: 3;
 - (A4) a protein comprising the amino acid sequence shown in SEQ ID NO: 108;
 - (A5) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III) and comprising an amino acid sequence having at least 80% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108;
 - (A6) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a nucleotide sequence having at least 80% sequence identity with a nucleotide sequence encoding an amino acid sequence shown in any one of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108; (A7) a protein having the ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a DNA that hybridizes, under stringent conditions, to a DNA comprising a nucleotide sequence encoding an amino acid sequence shown in any one of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108;
 - (A8) a protein having the ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a DNA amplifiable by a polymerase chain reaction with a primer comprising a nucleotide sequence shown in SEQ ID NO: 129, a primer comprising a nucleotide sequence shown in any one of SEQ ID NOs: 124 to 128, and as a template a chromosome of a microorganism belonging to Streptomyces or

Saccharopolyspora;

5

10

15

20

25

30

35

40

45

50

- (A9) a protein comprising an amino acid sequence shown in SEQ ID NO: 4;
- (A11) a protein comprising the amino acid sequence shown in SEQ ID NO: 159;
- (A12) a protein comprising the amino acid sequence shown in SEQ ID NO: 160;
- (A13) a protein comprising the amino acid sequence shown in SEQ ID NO: 136;
- (A14) a protein comprising the amino acid sequence shown in SEQ ID NO: 137;
- (A15) a protein comprising the amino acid sequence shown in SEQ ID NO: 138;
- (A16) a protein comprising the amino acid sequence shown in SEQ ID NO: 215;
- (A17) a protein comprising the amino acid sequence shown in SEQ ID NO: 216;
- (A18) a protein comprising the amino acid sequence shown in SEQ ID NO: 217;
- (A19) a protein comprising the amino acid sequence shown in SEQ ID NO: 218;
- (A20) a protein comprising the amino acid sequence shown in SEQ ID NO: 219;
- (A21) a protein comprising the amino acid sequence shown in SEQ ID NO: 220:
- (A22) a protein comprising the amino acid sequence shown in SEQ ID NO: 221;
- (A23) a protein comprising the amino acid sequence shown in SEQ ID NO: 222;
- (A24) a protein comprising the amino acid sequence shown in SEQ ID NO: 223;
- (A25) a protein comprising the amino acid sequence shown in SEQ ID NO: 224;
- (A26) a protein having an ability to convert in the presence of an electron transport system containing an electron donor a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence having at least 80% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 159, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 217, SEQ ID NO: 219, SEQ ID NO: 220, SEQ ID NO: 221 or SEQ ID NO: 223 or an amino acid sequence having at least 90% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 160, SEQ ID NO: 215, SEQ ID NO: 216, SEQ ID NO: 218, SEQ ID NO: 222 or SEQ ID NO: 224; and
- (A27) a protein having the ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a nucleotide sequence having at least 90% sequence identity with a nucleotide sequence encoding an amino acid sequence shown in any one of SEQ ID NO: 159, SEQ ID NO: 160, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 215, SEQ ID NO: 216, SEQ ID NO: 217, SEQ ID NO: 218, SEQ ID NO: 219, SEQ ID NO: 220, SEQ ID NO: 221, SEQ ID NO: 222, SEQ ID NO: 223 or SEQ ID NO: 224;
- **48.** the method according to the above **47**, wherein reacting the compound with the herbicide metabolizing protein by contacting the compound with a transformant in which a DNA encoding the herbicide metabolizing protein is introduced into a host cell in a position enabling its expression in said cell;
- 49. Use for treating the compound of formula (I) of a herbicide metabolizing protein selected from the group consisting of:
 - (A1) a protein comprising the amino acid sequence shown in SEQ ID NO: 1;
 - (A2) a protein comprising the amino acid sequence shown in SEQ ID NO: 2;
 - (A3) a protein comprising the amino acid sequence shown in SEQ ID NO: 3;
 - (A4) a protein comprising the amino acid sequence shown in SEQ ID NO: 108;
 - (A5) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III) and comprising an amino acid sequence having at least 80% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108;
 - (A6) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a nucleotide sequence having at least 80% sequence identity with a nucleotide sequence encoding any one of the amino acid sequences shown in any one of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108:
 - (A7) a protein having the ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a DNA that hybridizes, under stringent conditions, to a DNA comprising a nucleotide sequence encoding an amino acid sequence shown in SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108;
 - (A8) a protein having the ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid

sequence encoded by a DNA amplifiable by a polymerase chain reaction with a primer comprising a nucleotide sequence shown in SEQ ID NO: 129, a primer comprising a nucleotide sequence shown in any one of SEQ ID NOs: 124 to 128, and as a template chromosome of a microorganism belonging to Streptomyces or Saccharopolyspora;

(A9) a protein comprising an amino acid sequence shown in SEQ ID NO: 4; (A11) a protein comprising the amino acid sequence shown in SEQ ID NO: 159; (A12) a protein comprising the amino acid sequence shown in SEQ ID NO: 160; (A13) a protein comprising the amino acid sequence shown in SEQ ID NO: 136; (A14) a protein comprising the amino acid sequence shown in SEQ ID NO: 137; (A15) a protein comprising the amino acid sequence shown in SEQ ID NO: 138; (A16) a protein comprising the amino acid sequence shown in SEQ ID NO: 215; (A17) a protein comprising the amino acid sequence shown in SEQ ID NO: 216; (A18) a protein comprising the amino acid sequence shown in SEQ ID NO: 217;

5

10

15

20

25

30

35

40

45

50

55

(A19) a protein comprising the amino acid sequence shown in SEQ ID NO: 218;

(A20) a protein comprising the amino acid sequence shown in SEQ ID NO: 219;

(A21) a protein comprising the amino acid sequence shown in SEQ ID NO: 220;

(A22) a protein comprising the amino acid sequence shown in SEQ ID NO: 221; (A23) a protein comprising the amino acid sequence shown in SEQ ID NO: 222;

(A24) a protein comprising the amino acid sequence shown in SEQ ID NO: 223;

(A25) a protein comprising the amino acid sequence shown in SEQ ID NO: 224;

(A26) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence having at least 80% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 159, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 217, SEQ ID NO: 219, SEQ ID NO: 220, SEQ ID NO: 221 or SEQ ID NO: 223 or an amino acid sequence having at least 90% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 160, SEQ ID NO: 215, SEQ ID NO: 216, SEQ ID NO: 228 or SEQ ID NO: 224; and

(A27) a protein having the ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a nucleotide sequence having at least 90% sequence identity with a nucleotide sequence encoding the amino acid sequence shown in any one of SEQ ID NO: 159, SEQ ID NO: 160, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 215, SEQ ID NO: 216, SEQ ID NO: 217, SEQ ID NO: 218, SEQ ID NO: 219, SEQ ID NO: 220, SEQ ID NO: 221, SEQ ID NO: 222, SEQ ID NO: 223 or SEQ ID NO: 224; and

50. Use for treating a compound of formula (I) of a polynucleotide encoding a herbicide metabolizing protein selected from the group consisting of

(A1) a protein comprising the amino acid sequence shown in SEQ ID NO: 1;

(A2) a protein comprising the amino acid sequence shown in SEQ ID NO: 2;

(A3) a protein comprising the amino acid sequence shown in SEQ ID NO: 3;

(A4) a protein comprising the amino acid sequence shown in SEQ ID NO: 108;

(A5) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III) and comprising an amino acid sequence having at least 80% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108;

(A6) a protein having an ability to convert in the presence of an electron transport system containing an electron donor a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a nucleotide sequence having at least 80% sequence identity with a nucleotide sequence encoding an amino acid sequence shown in any one of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108; (A7) a protein having the ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a DNA that hybridizes, under stringent conditions, to a DNA comprising a nucleotide sequence encoding an amino acid sequence shown in SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108;

(A8) a protein having the ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a DNA amplifiable by a polymerase chain reaction with a primer comprising a nucleotide

sequence shown in SEQ ID NO: 129, a primer comprising a nucleotide sequence shown in any one of SEQ ID NOs: 124 to 128, and as a template a chromosome of a microorganism belonging to Streptomyces or Saccharopolyspora;

(A9) a protein comprising an amino acid sequence shown in SEQ ID NO: 4; (A11) a protein comprising the amino acid sequence shown in SEQ ID NO: 159; (A12) a protein comprising the amino acid sequence shown in SEQ ID NO: 160; (A13) a protein comprising the amino acid sequence shown in SEQ ID NO: 136; (A14) a protein comprising the amino acid sequence shown in SEQ ID NO: 137; (A15) a protein comprising the amino acid sequence shown in SEQ ID NO: 138; (A16) a protein comprising the amino acid sequence shown in SEQ ID NO: 215; (A17) a protein comprising the amino acid sequence shown in SEQ ID NO: 216; (A18) a protein comprising the amino acid sequence shown in SEQ ID NO: 217; (A19) a protein comprising the amino acid sequence shown in SEQ ID NO: 218; (A20) a protein comprising the amino acid sequence shown in SEQ ID NO: 219; (A21) a protein comprising the amino acid sequence shown in SEQ ID NO: 220; (A22) a protein comprising the amino acid sequence shown in SEQ ID NO: 221;

(A23) a protein comprising the amino acid sequence shown in SEQ ID NO: 222; (A24) a protein comprising the amino acid sequence shown in SEQ ID NO: 223;

(A25) a protein comprising the amino acid sequence shown in SEQ ID NO: 224; (A26) a protein comprising an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence having at least 80% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 159, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 217, SEQ ID NO: 219, SEQ ID NO: 220, SEQ ID NO: 221 or SEQ ID NO: 223 or an amino acid sequence having at least 90% sequence

identity with an amino acid sequence shown in any one of SEQ ID NO: 160, SEQ ID NO: 215, SEQ ID NO: 216, SEQ ID NO: 218, SEQ ID NO: 222 or SEQ ID NO: 224; and

(A27) a protein having the ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a nucleotide sequence having at least 90% sequence identity with a nucleotide sequence encoding an amino acid sequence shown in any one of SEQ ID NO: 159, SEQ ID NO: 160, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 215, SEQ ID NO: 216, SEQ ID NO: 217, SEQ ID NO: 218, SEQ ID NO: 219, SEQ ID NO: 220, SEQ ID NO: 221, SEQ ID NO: 222, SEQ ID NO: 223 or SEQ ID NO: 224.

BRIEF DESCRIPTION OF DRAWINGS

[0006]

5

10

15

20

25

30

35

40

45

50

55

Fig. 1 shows the annealing site of the PCR primers utilized to obtain the present invention DNA (A1) and the present invention DNA (B1). Each of the numbers refers to the SEQ ID number showing the nucleotide sequence of the primers. The arrows show the annealing sites of the oligonucleotide primers having the nucleotide sequence shown with the SEQ ID number thereof and the extention direction of the DNA polymerase reaction from the primers. The dotted lines represent the DNA amplified by the PCR utilizing the primers. The thick line represents the region adjacent to the DNA insertion site of the vector utilized to produce the chromosomal DNA library. Fig. 2 shows the annealing site of the PCR primers utilized to obtain the present invention DNA (A2) and the

present invention DNA (B2). Each of the PCR primers utilized to obtain the present invention DNA (A2) and the present invention DNA (B2). Each of the numbers refers to the SEQ ID number showing the nucleotide sequence of the primers. The arrows show the annealing sites of the oligonucleotide primers having the nucleotide sequence shown with the SEQ ID number thereof and the extention direction of the DNA polymerase reaction from the primers. The dotted lines represent the DNA amplified by the PCR utilizing the primers. The thick line represents the region adjacent to the DNA insertion site of the vector utilized to produce the chromosomal DNA library.

Fig. 3 shows the annealing site of the PCR primers utilized to obtain the present invention DNA (A4) and the present invention DNA (B4). Each of the numbers refers to the SEQ ID number showing the nucleotide sequence of the primers. The arrows show the annealing sites of the oligonucleotide primers having the nucleotide sequence shown with the SEQ ID number thereof and the extention direction of the DNA polymerase reaction from the primers. The dotted lines represent the DNA amplified by the PCR utilizing the primers. The thick line represents the region adjacent to the DNA insertion site of the vector utilized to produce the chromosomal DNA library. However, the oligonucleotide primer represented by 57, is a primer which anneals to the region adjacent to the DNA insertion site of the vector utilized to produce the chromosomal DNA library, and fails to anneal with the present

invention DNA (A4).

- Fig. 4 shows the restriction map of the plasmid pKSN2.
- Fig. 5 shows the restriction map of the plasmid pCRrSt12.
- Fig. 6 shows the restriction map of the plasmid pCR657ET.
- Fig. 7 shows the restriction map of the plasmid pCR657FET.
 - Fig. 8 shows the restriction map of the plasmid pCR657Bs.
 - Fig. 9 shows the restriction map of the plasmid pCR657FBs.
 - Fig. 10 shows the restriction map of the plasmid pUCrSt12.
 - Fig. 11 shows the restriction map of the plasmid pUCrSt657.
- 10 Fig. 12 shows the restriction map of the plasmid pUCrSt657F.
 - Fig. 13 shows the restriction map of the plasmid pUCCR16G6-p/t.
 - Fig. 14 shows the structure of the linker Notl-EcoRI produced by annealing the oligonucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 89 and the oligonucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 90.
- Fig. 15 shows the restriction map of the plasmid pUCCR16G6-p/t Δ.
 - Fig. 16 shows the structure of the linker HindIII-NotI produced by annealing the oligonucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 91 and the oligonucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 92.
 - Fig. 17 shows the restriction map of the plasmid pNdG6- Δ T.
- Fig. 18 shows the restriction map of the plasmid pSUM-NdG6-rSt657.
 - Fig. 19 shows the restriction map of the plasmid pSUM-NdG6-rSt657F.
 - Fig. 20 shows the restriction map of the plasmid pKFrSt12.
 - Fig. 21 shows the restriction map of the plasmid pKFrSt12-657.
 - Fig. 22 shows the restriction map of the plasmid pKFrSt12-657F.
- Fig. 23 shows the restriction map of the plasmid pSUM-NdG6-rSt12-657.
 - Fig. 24 shows the restriction map of the plasmid pSUM-NdG6-rSt12-657F.
 - Fig. 25 shows the structure of the linker HindIII-NotI-EcoRI produced by annealing the oligonucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 98 and the oligonucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 99.
- Fig. 26 shows the restriction map of the plasmid pBI121S.
 - Fig. 27 shows the restriction map of the plasmid pBI-NdG6-rSt-657.
 - Fig. 28 shows the restriction map of the plasmid pBI-NdG6-rSt-657F.
 - Fig. 29 shows the restriction map of the plasmid pBI-NdG6-rSt12-657.
 - Fig. 30 shows the restriction map of the plasmid pBI-NdG6-rSt12-657F.
- Fig. 31 shows the restriction map of the plasmid pCR923Sp.
 - Fig. 32 shows the restriction map of the plasmid pNdG6-rSt12.
 - Fig. 33 shows the restriction map of the plasmid pSUM-NdG6-rSt-923.
 - Fig. 34 shows the restriction map of the plasmid pKFrSt12-923.
 - Fig. 35 shows the restriction map of the plasmid pSUM-NdG6-rSt12-923.
- 40 Fig. 36 shows the restriction map of the plasmid pBI-NdG6-rSt-923.
 - Fig. 37 shows the restriction map of the plasmid pBI-NdG6-rSt12-923.
 - Fig. 38 shows the restriction map of the plasmid pCR671ET.
 - Fig. 39 shows the restriction map of the plasmid pCR671Bs.
 - Fig. 40 shows the restriction map of the plasmid pUCrSt671.
- Fig. 41 shows the restriction map of the plasmid pSUM-NdG6-rSt-671.
 - Fig. 42 shows the restriction map of the plasmid pKFrSt12-671.
 - Fig. 43 shows the restriction map of the plasmid pSUM-NdG6-rSt12-671.
 - Fig. 44 shows the restriction map of the plasmid pBI-NdG6-rSt-671.
 - Fig. 45 shows the restriction map of the plasmid pBI-NdG6-rSt12-671.
- Fig. 46 shows the results obtained by detecting with agarose gel electrophoresis the DNA amplified by the PCR using as a primer the oligonucleotide having a partial nucleotide sequence of the present invention DNA(A). Lanes 1, 7, 8, 12, 19, 26, 27, 32, 37, 42 and 47 represent the electrophoresis of a DNA marker (φ 174/HaeIII digest). The other lanes represent the electrophoresis of the samples shown in Tables 20 and 21.
- Fig. 47 shows the structure of the linker produced by annealing the oligonucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 134 and the oligonucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 135.
 - Fig. 48 shows the restriction map of the plasmid pUCrSt657soy.
 - Fig. 49 shows the restriction map of the plasmid pSUM-NdG6-rSt-657soy.

	Fig. 50 shows the restriction map of the pla	asmid pKFrSt12-657sov.
	Fig. 51 shows the restriction map of the pla	
	Fig. 52 shows the restriction map of the pla	
	Fig. 53 shows the restriction map of the pla	
5	Fig. 54 shows the restriction map of the pla	
Ū	Fig. 55 shows the restriction map of the plants.	
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	Fig. 56 shows the restriction map of the plants.	· · · · · · · · · · · · · · · · · · ·
	Fig. 57 shows the restriction map of the plants.	· · · · · · · · · · · · · · · · · · ·
40	Fig. 58 shows the restriction map of the plants.	
10	Fig. 59 shows the restriction map of the plants.	
	Fig. 60 shows the restriction map of the plant	
	Fig. 61 shows the restriction map of the plant	· · · · · · · · · · · · · · · · · · ·
	<u>-</u>	coT22I-12aa-EcoT22I produced by annealing the oligonucleotide con-
	sisting of the nucleotide sequence shown in SEQ ID NO: 402 and the oligonucleotide consisting of the nucleotide	
15	sequence shown in SEQ ID NO: 403.	
	Fig. 63 shows the restriction map of the plasmid pUCrSt12-1609soy.	
	Fig. 64 shows the restriction map of the plasmid pSUM-NdG6-rSt12-1609soy.	
	Fig. 65 shows the restriction map of the plant	asmid pBI-NdG6-rSt-1609soy.
	Fig. 66 shows the restriction map of the plant	asmid pBI-NdG6-rSt12-1609soy.
20	-	
[0007] The abbreviations described in the above figures are explained below.		
	DNA A1:	the present invention DNA (A1)
	DNA A2:	the present invention DNA (A2)
25	DNA A3:	the present invention DNA (A3)
	DNA A4:	the present invention DNA (A4)
	DNA B1:	the present invention DNA (B1)
	DNA B2:	the present invention DNA (B2)
	DNA B4:	the present invention DNA (B4)
30	DNA A1S:	the present invention DNA (A1)S
	DNA A23S:	the present invention DNA (A23)S
	DNA A25S:	the present invention DNA (A25)S
	tac p:	tac promoter
	rrnB t:	rrnB terminator
35	ColE1 ori:	the replication origin of plasmid CoIE1
00	Amp ^r :	the ampicillin resistance gene
	RuBPCssCTP:	· -
	Rubr CssCTF.	the nucleotide sequence encoding the chloroplast transit peptide of
		the small subunit of ribulose-1,5-bisphosphate carboxylase of soy-
40	12-0	bean (cv. Jack).
40	12aa:	the nucleotide sequence encoding the 12 amino acids of a mature pro-
		tein, following the chloroplast transit peptide of the small subunit of
		ribulose-1,5-bisphosphate carboxylase of soybean (cv. Jack).
	Km ^r :	kanamycin resistance gene
	F1 ori:	replication origin of plasmid F1
45	CR16G6p:	CR16G6 promoter
	CR16t:	CR16 terminator
	CR16t Δ:	DNA in which the nucleotide sequence downstream of restriction site
		of the restriction enzyme Scal is removed from the CR16 terminator
	CR16G6p Δ:	DNA in which the nucleotide sequence upstream of restriction site of
50		the restriction enzyme Ndel is removed from the CR16G6 terminator
	NOSp:	promoter of the nopaline synthase gene
	NPTII:	kanamycin resistance gene
	NOSt:	terminator of nopaline synthase gene
	GUS:	β-glucuronidase gene
55	RB:	the right border sequence of T-DNA
	LB:	the left border sequence of T-DNA
	Ndel, HindIII, BspHI, EcoRI, BamHI,	
	EcoT221, Sphl, Kpnl, Sacl, Bglll, Notl, Scal:	the restriction sites of the respective restriction enzyme
		•

BEST MODE FOR CARRYING OUT THE INVENTION

[0008] The present invention is explained in detail below.

[0009] The herbicide metabolizing protein selected from the following protein group (hereinafter, sometimes referred to as "the present invention protein (A)") has the ability to convert the compound of formula (II) (hereinafter, sometimes referred to as "compound (II)") to the compound of formula (III) (hereinafter, sometimes referred to as "compound (II)").

cprotein group>

10 [0010]

5

15

20

30

35

40

45

50

- (A1) a protein comprising the amino acid sequence shown in SEQ ID NO: 1;
- (A2) a protein comprising the amino acid sequence shown in SEQ ID NO: 2:
- (A3) a protein comprising the amino acid sequence shown in SEQ ID NO: 3;
- (A4) a protein comprising the amino acid sequence shown in SEQ ID NO: 108;
- (A5) a protein having an ability to convert in the presence of an electron transport system containing an electron donor a compound of formula (II) to a compound of formula (III) and comprising an amino acid sequence having at least 80% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108;
- (A6) a protein having an ability to convert in the presence of an electron transport system containing an electron donor a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a nucleotide sequence having at least 80% sequence identity with a nucleotide sequence encoding an amino acid sequence shown in any one of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108;
- (A11) a protein comprising the amino acid sequence shown in SEQ ID NO: 159;
- 25 (A12) a protein comprising the amino acid sequence shown in SEQ ID NO: 160;
 - (A13) a protein comprising the amino acid sequence shown in SEQ ID NO: 136;
 - (A14) a protein comprising the amino acid sequence shown in SEQ ID NO: 137;
 - (A15) a protein comprising the amino acid sequence shown in SEQ ID NO: 138;
 - (A16) a protein comprising the amino acid sequence shown in SEQ ID NO: 215;
 - (A17) a protein comprising the amino acid sequence shown in SEQ ID NO: 216;
 - (A18) a protein comprising the amino acid sequence shown in SEQ ID NO: 217;
 - (A19) a protein comprising the amino acid sequence shown in SEQ ID NO: 218;
 - (A20) a protein comprising the amino acid sequence shown in SEQ ID NO: 219;
 - (A21) a protein comprising the amino acid sequence shown in SEQ ID NO: 220;
 - (A22) a protein comprising the amino acid sequence shown in SEQ ID NO: 221;
 - (A23) a protein comprising the amino acid sequence shown in SEQ ID NO: 222;
 - (A24) a protein comprising the amino acid sequence shown in SEQ ID NO: 223;
 - (A25) a protein comprising the amino acid sequence shown in SEQ ID NO: 224;
 - (A26) a protein having an ability to convert in the presence of an electron transport system containing an electron donor a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence having at least 80% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 159, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 217, SEQ ID NO: 219, SEQ ID NO: 220, SEQ ID NO: 221 or SEQ ID NO: 223 or an amino acid sequence having at least 90% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 160, SEQ ID NO: 215, SEQ ID NO: 216, SEQ ID NO: 218, SEQ ID NO: 222 or SEQ ID NO: 224;
 - (A27) a protein having the ability to convert in the presence of an electron transport system containing an electron donor a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a nucleotide sequence having at least 90% sequence identity with a nucleotide sequence encoding an amino acid sequence shown in any one of SEQ ID NO: 159, SEQ ID NO: 160, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 215, SEQ ID NO: 216, SEQ ID NO: 217, SEQ ID NO: 218, SEQ ID NO: 219, SEQ ID NO: 220, SEQ ID NO: 221, SEQ ID NO: 222, SEQ ID NO: 223 or SEQ ID NO: 224; and
 - (A28) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a DNA amplifiable by a polymerase chain reaction with a primer comprising the nucleotide sequence shown in any one of SEQ ID NOs: 124 to 128, a primer comprising the nucleotide sequence shown in SEQ ID NO: 129 and as a template a chromosomal DNA of Streptomyces phaeochromogenes, Streptomyces testaceus, Streptomyces achromogenes, Streptomyces griseofuscus, Streptomyces thermocoerulescens, Streptomyces nogalater, Streptomyces tsusimaensis, Streptomyces glomerochromogenes, Streptomyces olivochromogenes, Streptomyces

omatus, Streptomyces griseus, Streptomyces lanatus, Streptomyces misawanensis, Streptomyces pallidus, Streptomyces roseorubens, Streptomyces rutgersensis, Streptomyces steffisburgensis or Saccharopolyspora taberi.

[0011] As specific examples of the present invention protein (A), there is mentioned:

- a protein comprising the amino acid sequence shown in SEQ ID NO: 1 (hereinafter, sometimes referred to as "present invention protein (A1)");
- a protein comprising the amino acid sequence shown in SEQ ID NO: 2 (hereinafter, sometimes referred to as "present invention protein (A2)");
- a protein comprising the amino acid sequence shown in SEQ ID NO: 3 (hereinafter, sometimes referred to as "present invention protein (A3)");
- a protein comprising the amino acid sequence shown in SEQ ID NO: 108 (hereinafter, sometimes referred to as "present invention protein (A4)");
- a protein comprising the amino acid sequence shown in SEQ ID NO: 159 (hereinafter, sometimes referred to as "present invention protein (A11)");
- a protein comprising the amino acid sequence shown in SEQ ID NO: 160 (hereinafter, sometimes referred to as "present invention protein (A 12)");
- a protein comprising the amino acid sequence shown in SEQ ID NO: 136 (hereinafter, sometimes referred to as "present invention protein (A13)");
- a protein comprising the amino acid sequence shown in SEQ ID NO: 137 (hereinafter, sometimes referred to as "present invention protein (A14)");
- a protein comprising the amino acid sequence shown in SEQ ID NO: 138 (hereinafter, sometimes referred to as "present invention protein (A 15)");
- a protein comprising the amino acid sequence shown in SEQ ID NO: 215 (hereinafter, sometimes referred to as "present invention protein (A16)");
- a protein comprising the amino acid sequence shown in SEQ ID NO: 216 (hereinafter, sometimes referred to as "present invention protein (A17)");
- a protein comprising the amino acid sequence shown in SEQ ID NO: 217 (hereinafter, sometimes referred to as "present invention protein (A18)");
- a protein comprising the amino acid sequence shown in SEQ ID NO: 218 (hereinafter, sometimes referred to as "present invention protein (A19)");
- a protein comprising the amino acid sequence shown in SEQ ID NO: 219 (hereinafter, sometimes referred to as "present invention protein (A20)");
- a protein comprising the amino acid sequence shown in SEQ ID NO: 220 (hereinafter, sometimes referred to as "present invention protein (A21)");
- a protein comprising the amino acid sequence shown in SEQ ID NO: 221 (hereinafter, sometimes referred to as "present invention protein (A22)");
- a protein comprising the amino acid sequence shown in SEQ ID NO: 222 (hereinafter, sometimes referred to as "present invention protein (A23)");
- a protein comprising the amino acid sequence shown in SEQ ID NO: 223 (hereinafter, sometimes referred to as "present invention protein (A24)"); and
- a protein comprising the amino acid sequence shown in SEQ ID NO: 224 (hereinafter, sometimes referred to as "present invention protein (A25)").
- [0012] For example, by reacting the PPO inhibitory-type herbicidal compound of formula (I) (hereinafter, sometimes referred to as "compound (I)") with the present invention protein (A), it is capable to convert the compound to a compound with lower herbicidal activity.
 - [0013] Further, in treatment to convert compound (I) to a compound of a lower herbicidal activity, there can also be utilized a herbicide metabolizing protein selected from the following group (hereinafter, sometimes referred to as "present protein (A)"):

cprotein group>

[0014]

55

50

5

10

15

20

25

30

35

- (A1) a protein comprising the amino acid sequence shown in SEQ ID NO: 1;
- (A2) a protein comprising the amino acid sequence shown in SEQ ID NO: 2;
- (A3) a protein comprising the amino acid sequence shown in SEQ ID NO: 3;

(A4) a protein comprising the amino acid sequence shown in SEQ ID NO: 108;

5

10

15

20

25

30

35

40

45

50

55

(A5) a protein having an ability to convert in the presence of an electron transport system containing an electron donor a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence having at least 80% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108;

(A6) a protein having an ability to convert in the presence of an electron transport system containing an electron donor a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a nucleotide sequence having at least 80% sequence identity with a nucleotide sequence encoding an amino acid sequence shown in any one of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108;

(A7) a protein having the ability to convert in the presence of an electron transport system containing an electron donor a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a DNA that hybridizes, under stringent conditions, to a DNA comprising a nucleotide seguence encoding an amino acid sequence shown in any one of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108;

(A8) a protein having the ability to convert in the presence of an electron transport system containing an electron donor a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a DNA amplifiable by a polymerase chain reaction with a primer comprising a nucleotide sequence shown in SEQ ID NO: 129, a primer comprising a nucleotide sequence shown in any one of SEQ ID NOs: 124 to 128, and as a template a chromosome of a microorganism belonging to Streptomyces or Saccharopolyspora;

(A9) a protein comprising an amino acid sequence shown in SEQ ID NO: 4;

(A11) a protein comprising the amino acid sequence shown in SEQ ID NO: 159;

(A12) a protein comprising the amino acid sequence shown in SEQ ID NO: 160;

(A13) a protein comprising the amino acid sequence shown in SEQ ID NO: 136;

(A14) a protein comprising the amino acid sequence shown in SEQ ID NO: 137;

(A15) a protein comprising the amino acid sequence shown in SEQ ID NO: 138;

(A16) a protein comprising the amino acid sequence shown in SEQ ID NO: 215;

(A17) a protein comprising the amino acid sequence shown in SEQ ID NO: 216;

(A18) a protein comprising the amino acid sequence shown in SEQ ID NO: 217;

(A19) a protein comprising the amino acid sequence shown in SEQ ID NO: 218;

(A20) a protein comprising the amino acid sequence shown in SEQ ID NO: 219;

(A21) a protein comprising the amino acid sequence shown in SEQ ID NO: 220; (A22) a protein comprising the amino acid sequence shown in SEQ ID NO: 221;

(A23) a protein comprising the amino acid sequence shown in SEQ ID NO: 222;

(A24) a protein comprising the amino acid sequence shown in SEQ ID NO: 223;

(A25) a protein comprising the amino acid sequence shown in SEQ ID NO: 224;

(A26) a protein having an ability to convert in the presence of an electron transport system containing an electron donor a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence having at least 80% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 159, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 217, SEQ ID NO: 219, SEQ ID NO: 220, SEQ ID NO: 221 or SEQ ID NO: 223 or an amino acid sequence having at least 90% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 160, SEQ ID NO: 215, SEQ ID NO: 216, SEQ ID NO: 218, SEQ ID NO: 222 or SEQ ID NO: 224; and

(A27) a protein having the ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a nucleotide sequence having at least 90% sequence identity with a nucleotide sequence encoding an amino acid sequence shown in any one of SEQ ID NO: 159, SEQ ID NO: 160, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 215, SEQ ID NO: 216, SEQ ID NO: 217, SEQ ID NO:218, SEQ ID NO: 219, SEQ ID NO: 220, SEQ ID NO: 221, SEQ ID NO: 222, SEQ ID NO: 223 or SEQ ID NO: 224.

[0015] As examples of the present protein (A), there can be mentioned the present invention protein A, described above. Further, as other examples, there can be mentioned

a protein comprising the amino acid sequence shown in SEQ ID NO: 4 (hereinafter, sometimes referred to as "present protein (A9)") and

a protein comprising the amino acid sequence shown in SEQ ID NO: 5 (hereinafter, sometimes referred to as "present protein (A10)").

[0016] In the amino acid sequence of the protein shown in (A5), (A6), (A7), (A8), (A26), (A27) or (A28) in the above protein groups, the differences which may be observed from the amino acid sequences shown in SEQ ID NO: 1, 2, 3, 108, 159, 160, 136, 137, 138, 215, 216, 217, 218, 219, 220, 221, 222, 223 or 224, are such as deletion, substitution, and addition of certain amino acids. Such differences include, for example, the deletion from the processing which the

above protein comprising the amino acid sequence shown in SEQ ID NO: 1, 2, 3, 108, 159, 160, 136, 137, 138, 215, 216, 217, 218, 219, 220, 221, 222, 223 or 224 receives within the cell. Further, there are included a polymorphic variation which occurs naturally resulting from the difference by such as the species, individual or the like of the organism from which the protein is derived; amino acid deletions, substitutions, and additions arising from genetic mutations artificially introduced by such as a site-directed mutagenesis method, a random mutagenesis method, a mutagenic treatment and the like.

5

10

15

20

25

30

35

40

45

50

55

[0017] The number of amino acids undergoing such deletions, substitutions and additions may be within the range in which the present protein (A) can develop the ability to convert compound (II) to compound (III). Further, as a substitution of the amino acid, there can be mentioned, for example, substitutions to an amino acid which is similar in hydrophobicity, charge, pK, stereo-structural feature, or the like. As such substitutions, specifically for example, there are mentioned substitutions within the groups of: (1.) glycine and alanine; (2.) valine, isoleucine and leucine; (3.) aspartic acid, glutamic acid, asparagine and glutamine; (4.) serine and threonine; (5.) lysine and arginine; (6.) phenylalanine and tyrosine; and the like.

[0018] Further, in the present protein (A), it is preferable that the cysteine present at the position aligning to the cysteine of amino acid number 357 in the amino acid sequence shown in SEQ ID NO: 1 is conserved (not undergo a deletion or substitution): examples of such cysteine include the cysteine shown at amino acid number 350 in the amino acid sequence shown in SEQ ID NO: 2, the cysteine shown at amino acid number 344 in the amino acid sequence shown in SEQ ID NO: 3, the cysteine shown at amino acid number 360 in the amino acid sequence shown in SEQ ID NO: 108; the cysteine shown at amino acid number 359 in the amino acid sequence shown in SEQ ID NO: 4, the cysteine shown at amino acid number 355 in the amino acid sequence shown in SEQ ID NO: 5, the cysteine shown at amino acid number 358 in the amino acid sequence shown in SEQ ID NO: 159, the cysteine shown at amino acid number 374 in the amino acid sequence shown in SEQ ID NO: 160, the cysteine shown at amino acid number 351 in the amino acid sequence shown in SEQ ID NO: 136, the cysteine shown at amino acid number 358 in the amino acid sequence shown in SEQ ID NO: 137, the cysteine shown at amino acid number 358 in the amino acid sequence shown in SEQ ID NO: 138, the cysteine shown at amino acid number 347 in the amino acid sequence shown in SEQ ID NO: 222, the cysteine shown at amino acid number 347 in the amino acid sequence shown in SEQ ID NO: 224 and the like. [0019] As methods of artificially causing such amino acid deletions, additions or substitutions (hereinafter, sometimes, collectively referred to as "amino acid modification"), for example, there is mentioned a method comprising the steps of carrying out site-directed mutagenesis on the DNA encoding an amino acid sequence shown in any one of SEQ ID NO: 1, 2, 3, 108, 159, 160, 136, 137, 138, 215, 216, 217, 218, 219, 220, 221, 222, 223 or 224, and then allowing the expression of such DNA by a conventional method. As the site-directed mutagenesis method, for example, there is mentioned a method which utilizes amber mutations (Gapped Duplex method, Nucleic Acids Res., 12, 9441-9456 (1984)), a method by PCR utilizing primers for introducing a mutation and the like. Further, as methods of artificially modifying amino acids, for example, there is mentioned a method comprising the steps of carrying out random mutagenesis on the DNA encoding any one of the amino acid sequences shown in SEQ ID NO: 1, 2, 3, 108, 159, 160, 136, 137, 138, 215, 216, 217, 218, 219, 220, 221, 222, 223 or 224 and then allowing the expression of such DNA by a conventional method. As the random mutagenesis method, for example, there is mentioned method of conducting PCR by utilizing the DNA encoding any one of the above amino acid sequences as a template an by utilizing a primer pair which can amplify the full length of each of the DNA, under the condition in which the concentration of each of dATP, dTTP, dGTP and dCTP, utilized as a substrate, are different than usual or under the condition in which the concentration of Mg2+ that promotes the polymerase reaction is increased to more than usual. As such methods of PCR, for example, there is mentioned the method described in Method in Molecular Biology, (31), 1994, 97-112. Further, there may be mentioned the method described in PCT patent publication WO 00/09682.

[0020] In the present invention, "sequence identity" refers to the homology and identity between two nucleotide sequences or two amino acid sequences. Such "sequence identity" may be determined by comparing the two sequences, each aligned in an optimal state, over the whole region of the test sequences. As such, additions or deletions (for example, gaps) can be utilized in the optimal alignment of the test nucleic acid sequences or amino acid sequences. Such sequence identity can be calculated through the step of producing the alignment conducted by a homology analysis using a program such as FASTA (Pearson & Lipman, Proc. Natl. Acad. Sci. USA, 4, 2444-2448 (1988)), BLAST (Altschul et al., Journal of Molecular Biology, 215, 403-410 (1990)), CLUSTAL W (Thompson, Higgins & Gibson, Nucleic Acid Research, 22, 4673-4680 (1994a)) and the like. Such programs, for example, can be typically utilized on the webpage (http://www.ddbj.nig.ac.jp) of the DNA Data Bank of Japan (the international databank operated within the Center for Information Biology and DNA Data Bank of Japan). Further, the sequence identity may be determined by utilizing a commercially available sequence analysis software. Specifically for example, it can be calculated by producing an alignment conducted by a homology analysis by the Lipman-Pearson method (Lipman, D.J. and Pearson, W.R., Science, 227, 1435-1441, (1985)) utilizing GENETYX-WIN Ver.5 (Software Development Company, Ltd.).

trisodium citrate be $10\times SSC$) and then the hybrid is washed at $50^{\circ}C$ with 2xSSC (Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6) in a hybridization conducted according to the conventional method described in such as Sambrook, J., Frisch, E.F., and Maniatis, T.; Molecular Cloning 2nd edition, Cold Spring Harbor Press. The salt concentration in the washing step can be selected, for example, from the conditions of $2\times SSC$ (low stringency condition) to the conditions of $0.2\times SSC$ (high stringency conditions). A temperature in the washing step can be selected, for example, from room temperature (low stringency condition) to $65^{\circ}C$ (high stringency condition). Alternatively, both of the salt concentration and temperature may be changed.

5

15

20

25

30

35

40

45

50

55

[0022] As a DNA which "hybridizes, under stringent conditions, to a DNA comprising a nucleotide sequence encoding an amino acid sequence shown in any one of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108", specifically for example, there can be mentioned a DNA comprising a nucleotide sequence encoding an amino acid sequence shown in any one of SEQ ID NO: 1, 2, 3, 4, 5, 108, 159, 160, 136, 137, 138, 215, 216, 217, 218, 219, 220, 221, 222, 223 or 224, a DNA comprising a nucleotide sequence shown in any one of SEQ ID NO: 6, 7, 8, 78, 84, 109, 139, 140, 141, 142, 143, 225, 226, 227, 228, 229, 230, 231, 232, 233 or 234, and the like. There can also be mentioned DNA comprising a nucleotide sequence having at least about 60% identity to a nucleotide sequence shown in any one of SEQ ID NO: 6, 7, 8, 78, 84, 109, 139, 140, 141, 142, 143, 225, 226, 227, 228, 229, 230, 231, 232, 233 or 234.

[0023] The molecular weight of the present protein (A) is about 30,000 to 60,000 and is typically about 40,000 to 50,000 (comparable to, for example, a protein consisting of the amino acid sequence shown in any one of SEQ ID NO: 1, 2, 3, 108, 159, 160, 136, 137, 138, 215, 216, 217, 218, 219, 220, 221, 222, 223 or 224), as the molecular weight identified by a sodium dodecyl sulfate-polyacrylamide gel electrophoresis (hereinafter, referred to as "SDS-PAGE"). Further, the present protein (A), as long as the ability to convert compound (II) to compound (II) is not eliminated, can be utilized as a protein to which amino acid sequence is added upstream to its amino terminus or downstream to its carboxy terminus.

[0024] As the marker of the abilityof the present protein (A) to metabolize the PPO inhibitory-type herbicidal compound of formula (I), there can be mentioned the ability to convert compound (II) to compound (III). Such ability, for example, can be confirmed by reacting compound (II) with the present protein (A) in the presence of an electron transport system containing an electron donor such as coenzyme NADPH and by detecting the produced compound (III).

[0025] The "electron transport system containing an electron donor" refers to a system in which a redox chain reaction occurs and an electron is transferred from the electron donor to the present protein (A). As the electron donor, for example, there is mentioned coenzymes NADPH, NADH and the like. For example, as proteins which may constitute the electron transport system from NADPH to the present protein (A), there is mentioned ferredoxin and ferredoxin-NADP+ reductase, NADPH-cytochrome P-450 reductase, and the like.

[0026] To confirm the ability of converting compound (II) to compound (III), for example, a reaction solution of about pH 7, comprising the present protein (A), β-NADPH, ferredoxin, ferredoxin-NADP+ reductase and compound (II) labeled with a radioisotope, is incubated at about 30°C for about 10 minutes to 1 hour. Subsequently, after making the reaction solution acidic by adding hydrochloric acid, it is extracted with ethyl acetate. After subjecting the recovered ethyl acetate layer to thin layered chromatography (hereinafter referred to as "TLC"), autoradiography is conducted and the ability to convert compound (III) to compound (III) can be confirmed by detecting the labeled compound (III).

[0027] To prepare the present protein (A), for example, first, the DNA encoding the present protein (A) (hereinafter, sometimes collectively referred to as "present DNA (A)") is obtained according to the conventional genetic engineering methods (for example, the methods described in Sambrook, J., Frisch, E.F., Maniatis, T.; Molecular Cloning 2nd Edition, Cold Spring Harbor Laboratory press).

[0028] As examples of the present DNA (A), there can be mentioned a DNA encoding the present invention protein (A) (hereinafter, sometimes referred to as "present invention DNA (A)"). As specific examples of the present invention DNA (A), there can be mentioned:

- a DNA encoding a protein comprising the amino acid sequence shown in SEQ ID NO: 1 (hereinafter, sometimes referred to as "present invention DNA (A1)");
- a DNA encoding a protein comprising the amino acid sequence shown in SEQ ID NO: 2 (hereinafter, sometimes referred to as "present invention DNA (A2)");
- a DNA encoding a protein comprising the amino acid sequence shown in SEQ ID NO: 3 (hereinafter, sometimes referred to as "present invention DNA (A3)");
- a DNA encoding a protein comprising the amino acid sequence shown in SEQ ID NO: 108 (hereinafter, sometimes referred to as "present invention DNA (A4)");
- a DNA encoding a protein comprising the amino acid sequence shown in SEQ ID NO: 159 (hereinafter, sometimes referred to as "present invention DNA (A11)");
- a DNA encoding a protein comprising the amino acid sequence shown in SEQ ID NO: 160 (hereinafter, sometimes referred to as "present invention DNA (A12)");
- a DNA encoding a protein comprising the amino acid sequence shown in SEQ ID NO: 136 (hereinafter, sometimes

referred to as "present invention DNA (A13)");

5

15

20

25

30

35

40

45

50

55

- a DNA encoding a protein comprising the amino acid sequence shown in SEQ ID NO: 137 (hereinafter, sometimes referred to as "present invention DNA (A14)");
- a DNA encoding a protein comprising the amino acid sequence shown in SEQ ID NO: 138 (hereinafter, sometimes referred to as "present invention DNA (A15)");
- a DNA encoding a protein comprising the amino acid sequence shown in SEQ ID NO: 215 (hereinafter, sometimes referred to as "present invention DNA (A16)");
- a DNA encoding a protein comprising the amino acid sequence shown in SEQ ID NO: 216 (hereinafter, sometimes referred to as "present invention DNA (A17)");
- a DNA encoding a protein comprising the amino acid sequence shown in SEQ ID NO: 217 (hereinafter, sometimes referred to as "present invention DNA (A18)");
 - a DNA encoding a protein comprising the amino acid sequence shown in SEQ ID NO: 218 (hereinafter, sometimes referred to as "present invention DNA (A19)");
 - a DNA encoding a protein comprising the amino acid sequence shown in SEQ ID NO: 219 (hereinafter, sometimes referred to as "present invention DNA (A20)");
 - a DNA encoding a protein comprising the amino acid sequence shown in SEQ ID NO: 220 (hereinafter, sometimes referred to as "present invention DNA (A21)");
 - a DNA encoding a protein comprising the amino acid sequence shown in SEQ ID NO: 221 (hereinafter, sometimes referred to as "present invention DNA (A22)");
 - a DNA encoding a protein comprising the amino acid sequence shown in SEQ ID NO: 222 (hereinafter, sometimes referred to as "present invention DNA (A23)");
 - a DNA encoding a protein comprising the amino acid sequence shown in SEQ ID NO: 223 (hereinafter, sometimes referred to as "present invention DNA (A24)");
 - a DNA encoding a protein comprising the amino acid sequence shown in SEQ ID NO: 224 (hereinafter, sometimes referred to as "present invention DNA (A25)"); and the like.

[0029] Further as more specific examples of the present invention DNA (A), there can be mentioned:

- a DNA comprising the nucleotide sequence shown in SEQ ID NO: 6;
 - a DNA comprising the nucleotide sequence shown in SEQ ID NO: 9;
 - a DNA comprising the nucleotide sequence shown in SEQ ID NO: 7;
 - a DNA comprising the nucleotide sequence shown in SEQ ID NO: 10;
 - a DNA comprising the nucleotide sequence shown in SEQ ID NO: 8;
 - a DNA comprising the nucleotide sequence shown in SEQ ID NO: 11;
 - a DNA comprising the nucleotide sequence shown in SEQ ID NO: 109;
 - a DNA comprising the nucleotide sequence shown in SEQ ID NO: 110;
 - a DNA comprising the nucleotide sequence shown in SEQ ID NO: 139;
 - a DNA comprising the nucleotide sequence shown in SEQ ID NO: 144;
 - a DNA comprising the nucleotide sequence shown in SEQ ID NO: 140;
 - a DNA comprising the nucleotide sequence shown in SEQ ID NO: 145;
 - a DNA comprising the nucleotide sequence shown in SEQ ID NO: 141;
 - a DNA comprising the nucleotide sequence shown in SEQ ID NO: 146;
 - a DNA comprising the nucleotide sequence shown in SEQ ID NO: 142;
 - a DNA comprising the nucleotide sequence shown in SEQ ID NO: 147;
 - a DNA comprising the nucleotide sequence shown in SEQ ID NO: 143;
 - a DNA comprising the nucleotide sequence shown in SEQ ID NO: 148;
 - a DNA comprising the nucleotide sequence shown in SEQ ID NO: 225;
 - a DNA comprising the nucleotide sequence shown in SEQ ID NO: 235;
 - a DNA comprising the nucleotide sequence shown in SEQ ID NO: 226;
 - a DNA comprising the nucleotide sequence shown in SEQ ID NO: 236;
 - a DNA comprising the nucleotide sequence shown in SEQ ID NO: 227;
 - a DNA comprising the nucleotide sequence shown in SEQ ID NO: 237;
 - a DNA comprising the nucleotide sequence shown in SEQ ID NO: 228;
 - a DNA comprising the nucleotide sequence shown in SEQ ID NO: 238;
 - a DNA comprising the nucleotide sequence shown in SEQ ID NO: 229; a DNA comprising the nucleotide sequence shown in SEQ ID NO: 239;
 - a DNA comprising the nucleotide sequence shown in SEQ ID NO: 230;
 - a DNA comprising the nucleotide sequence shown in SEQ ID NO: 240;

a DNA comprising the nucleotide sequence shown in SEQ ID NO: 231; a DNA comprising the nucleotide sequence shown in SEQ ID NO: 241; a DNA comprising the nucleotide sequence shown in SEQ ID NO: 232; a DNA comprising the nucleotide sequence shown in SEQ ID NO: 242; a DNA comprising the nucleotide sequence shown in SEQ ID NO: 233; a DNA comprising the nucleotide sequence shown in SEQ ID NO: 243; a DNA comprising the nucleotide sequence shown in SEQ ID NO: 234; a DNA comprising the nucleotide sequence shown in SEQ ID NO: 244; a DNA comprising the nucleotide sequence shown in SEQ ID NO: 214; a DNA comprising the nucleotide sequence shown in SEQ ID NO: 368; a DNA comprising the nucleotide sequence shown in SEQ ID NO: 393;

5

10

15

20

25

30

35

40

45

50

55

- a DNA encoding a protein having an ability to convert in the presence of an electron transport system containing an electron donor a compound of formula (II) to a compound of formula (III), and having at least 80% sequence identity with a nucleotide sequence shown in any one of SEQ ID NO: 6, 7, 8 or 109;
- a DNA encoding a protein having an ability to convert in the presence of an electron transport system containing an electron donor a compound of formula (II) to a compound of formula (III), and having at least 90% sequence identity with a nucleotide sequences shown in any one of SEQ ID NO: 139, 140, 141, 142, 143, 225, 226, 227, 228, 229, 230, 231, 232, 233 or 234; and the like.
- [0030] Further, as examples of the present DNA (A), other than the present invention DNA (A) above, there is mentioned:
 - a DNA comprising the nucleotide sequence encoding a protein comprising the amino acid sequence shown in SEQ ID NO: 4 (hereinafter, sometimes referred to as "present DNA (A9)");
 - a DNA comprising the nucleotide sequence shown in SEQ ID NO: 78;
 - a DNA comprising the nucleotide sequence encoding a protein comprising the amino acid sequence shown in SEQ ID NO: 5 (hereinafter, sometimes referred to as "present DNA (A10)");
 - a DNA comprising the nucleotide sequence shown in SEQ ID NO: 84;
 - a DNA comprising the nucleotide sequence shown in SEQ ID NO: 85; and the like.

[0031] The present DNA(A), for example, may be a DNA cloned from nature and may be a DNA in which a deletion, substitution or addition of nucteotide(s) has been introduced to the DNA cloned from nature by such as a site-directed mutagenesis method, a random mutagenesis method, and may be an artificially synthesized DNA. Subsequently, the present protein (A) can be produced or obtained by expressing the obtained present DNA (A) according to the conventional genetic engineering methods. In such ways, the present protein (A) can be prepared.

[0032] The present DNA (A) can be prepared, for example, by the following methods. First, chromosomal DNA is prepared by conventional genetic engineering methods, such as those described in Molecular Cloning: A Laboratory Manual 2nd edition (1989), Cold Spring Harbor Laboratory Press; and Current Protocols in Molecular Biology (1987), John Wiley & Sons, Incorporated, from microorganisms belonging to Streptomyces, such as Streptomyces phaeochromogenes, Streptomyces testaceus, Streptomyces achromogenes, Streptomyces griseolus, Streptomyces carbophilus, Streptomyces griseofuscus, Streptomyces thermocoerulescens, Streptomyces nogalater, Streptomyces tsusimaensis, Streptomyces glomerochromogenes, Streptomyces olivochromogenes, Streptomyces ornatus, Streptomyces griseus, Streptomyces lanatus, Streptomyces misawanensis, Streptomyces pallidus, Streptomyces roseorubens, Streptomyces rutgersensis and Streptomyces steffisburgensis, and more specifically, Streptomyces phaeochromogenes IFO 12898, Streptomyces testaceus ATCC21469, Streptomyces achromogenes IFO 12735, Streptomyces griseolus ATCC11796, Streptomyces carbophilus SANK62585, Streptomyces griseofuscus IFO 12870t, Streptomyces thermocoerulescens IFO 14273t, Streptomyces nogalater IFO 13445, Streptomyces tsusimaensis IFO 13782, Streptomyces glomerochromogenes IFO 13673t, Streptomyces olivochromogenes IFO 12444, Streptomyces ornatus IFO 13069t, Streptomyces griseus ATCC 10137, Streptomyces griseus IFO 13849T, Streptomyces lanatus IFO 12787T, Streptomyces misawanensis IFO 13855T, Streptomyces pallidus IFO 13434T, Streptomyces roseorubens IFO 13682T, Streptomyces rutgersensis IFO 15875T and Streptomyces steffisburgensis IFO 13446T, and the like; or microorganisms belonging to Saccharopolyspora, such as Saccharopolyspora taberi, more specifically, Saccharopolyspora taberi JCM 9383t and the like. Next, after partial digestion of the chromosomal DNA with a restriction enzyme such as Sau3AI, a DNA of about 2kb is recovered. The recovered DNA is cloned into a vector according to the conventional genetic engineering methods described in "Molecular Cloning: A Laboratory Manual 2nd edition" (1989), Cold Spring Harbor Laboratory Press; and "Current Protocols in Molecular Biology" (1987), John Wiley & Sons, Incorporated. As the vector, specifically for example, there can be utilized pUC 119 (TaKaRa Shuzo Company), pTVA 118N (Takara Shuzo Company), pBluescript II (Toyobo Company), pCR2.1-TOPO (Invitrogen), pTrc99A (Amersham Pharmacia Biotech Com-

pany), pKK331-1A (Amersham Pharmacia Biotech Company), and the like. A chromosomal DNA library can be obtained by extracting the plasmid from the obtained clone.

[0033] The present DNA (A) can be obtained by hybridizing a probe with the obtained chromosomal DNA library under the conditions described below, and by detecting and recovering the DNA which bound specifically with the probe. The probe can be a DNA consisting of about at least 20 nucleotides comprising the nucleotides sequence encoding an amino acid sequence shown in any one of SEQ ID NO: 1, 2, 3 or 108. As specific examples of the DNA which can be utilized as probes, there is mentioned a DNA comprising a nucleic acid shown in any one of SEQ ID NO: 6, 7, 8 or 109; a DNA comprising a partial nucleotide sequence of the nucleic acid sequence shown in any one of SEQ ID NO: 6, 7, 8 or 109; a DNA comprising a nucleotide sequence complimentary to said partial nucleotide sequence; and the like.

5

10

20

25

35

45

50

[0034] The DNA utilized as the probe is labeled with a radioisotope, fluorescent coloring or the like. To label the DNA with a radioisotope, for example, there can be utilized the Random Labeling Kit of Boehringer or Takara Shuzo Company. Further, a DNA labeled with ^{32}P can be prepared by conducting PCR. The DNA to be utilized for the probe is utilized as the template. The dCTP typically utilized in the PCR reaction solution is exchanged with $(\alpha^{-32}P)dCTP$. Further, when labeling the DNA with fluorescent coloring, for example, there can be utilized DIG-High Prime DNA labeling and Detection Starter Kit II (Roche Company).

[0035] A specific example of preparing the probe is explained next. For example, a DNA labeled with digoxigenin, comprising the full length of the nucleotide sequence shown in SEQ ID NO: 6 can be obtained by utilizing the chromosomal DNA prepared from Streptomyces phaeochromogenes IFO12898 as described above or a chromosomal DNA library as a template, by utilizing as primers an oligonucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 93 and an oligonucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 94, and by conducting PCR as described in the examples described below with, for example, PCR DIG Probe Synthesis Kit (Roche Diagnostics GmbH) according to the attached manual. Similarly, a DNA labeled with digoxigenin, comprising the nucleotide sequence of from nucleotide 57 to nucleotide 730 shown in SEQ ID NO: 6 can be obtained by utilizing the chromosomal DNA prepared from Streptomyces phaeochromogenes IFO12898 as described above or a chromosomal DNA library as the template. As primers, the PCR is conducted with an oligonucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 130 and an oligonucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 131. Further, a DNA labeled with digoxigenin, comprising the full length of the nucleotide sequence shown in SEQ ID NO: 7 can be obtained by utilizing the chromosomal DNA prepared from Saccharopolyspora taberi JCM 9383t as described above or a chromosomal DNA library as the template. As primers, the PCR is conducted with an oligonucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 61 and an oligonucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 62. Further, a DNA labeled with digoxigenin, comprising the full length of the nucleotide sequence shown in SEQ ID NO: 8 can be obtained by utilizing the chromosomal DNA prepared from Streptomyces testaceus ATCC21469 as described above or a chromosomal DNA library as the template. As primers, the PCR is conducted with an oligonucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 70 and an oligonucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 71. Further, a DNA labeled with digoxigenin, comprising the nucleotide sequence of from nucleotide 21 to nucleotide 691 shown in SEQ ID NO: 8 can be obtained by utilizing the chromosomal DNA prepared from Streptomyces testaceus ATCC21469 as described above or a chromosomal DNA library as the template. As primers, the PCR is conducted with an oligonucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 132 and an oligonucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 133. [0036] The methods by which a probe is allowed to hybridize with the chromosomal DNA library may include colony hybridization and plaque hybridization, and an appropriate method may be selected, which is compatible with the type of vector used in the library preparation. When the utilized library is constructed with the use of plasmid vectors, colony hybridization is conducted. Specifically first, transformants are obtained by introducing the DNA of the library into microorganism in which the plasmid vector utilized to construct the library is replicable. The obtained transformants are diluted and spread onto an agar plate and cultured until colonies appear. When a phage vector is utilized to construct the library, plaque hybridization is conducted. Specifically, first, the microorganism in which the phage vector utilized to produce the library is replicable is mixed with the phage of the library, under the conditions in which infection is possible. The mixture is then further mixed with soft agar. This mixture is then spread onto an agar plate. Subsequently, the mixture is cultured until plaques appear.

[0037] Next, in the case of any one of the above hybridizations, a membrane is placed on the surface of the agar plate in which the above culturing was conducted and the colonies of the transformants or the phage particles in the plaques are transferred to the membrane. After alkali treatment of the membrane, there is a neutralization treatment. The DNA eluted from the transformants or the phage particles is then fixed onto the membrane. More specifically for example, in the event of plaque hybridization, the phage particles are absorbed onto the membrane by placing a nitrocellulose membrane or a nylon membrane, specifically for example, Hybond-N⁺ (Amersham Pharmacia Biotech Company) on the agar plate and waiting for 1 minute. The membrane is soaked in an alkali solution (1.5M NaCl and 0.5N NaOH) for about 3 minutes to dissolve the phage particles and elute the phage DNA onto the membrane. The

membrane is then soaked in neutralization solution (1.5M NaCl and 0.5M tris-HCl buffer pH7.5) for about 5 minutes. After washing the membrane in washing solution (0.3M NaCl, 30mM sodium citrate, 0.2M tris-HCl buffer pH7.5) for about 5 minutes, for example, the phage DNA is fixed onto the membrane by incubating about 80°C for about 90 minutes in vacuo.

[0038] By utilizing the membrane prepared as such, hybridization is conducted with the above DNA as a probe. Hybridization can be conducted, for example, according to the description in "Molecular Cloning: A Laboratory Manual 2nd edition (1989)" Cold Spring Harbor Laboratory Press, and the like.

5

10

15

20

25

30

35

45

50

55

[0039] While various temperature conditions and reagents are available for conducting hybridization, the membrane prepared as described above is soaked with and maintained for 1 hour to 4 hours at 42°C to 65°C in a prehybridization solution, which is prepared at a ratio of from 50µl to 200µl per 1cm² of the membrane. The prehybridization solution, for example, may contain 450mM to 900mM NaCl and 45mM to 90mM sodium citrate, contain sodium dodecyl sulfate (hereinafter, referred to as "SDS") at a concentration of 0.1% to 1.0%, and contain denatured unspecific DNA at a concentration of from 0µg/ml to 200µg/ml, and may sometimes contain albumin, phycol, and polyvinyl pyrrolidone, each at a concentration of 0% to 0.2%. Subsequently, for example, the membrane is soaked with and maintained for 12 hours to 20 hours at 42°C to 65°C in a hybridization solution, which is prepared at a ratio of from 50µl to 200µl per 1cm² of the membrane. The hybridization solution is, for example, a mixture of the prehybridization solution, which may contain 450mM to 900mM NaCl and 45mM to 90mM sodium citrate, contain SDS at a concentration of 0.1% to 1.0%, and contain denatured unspecific DNA at a concentration of from 0μg/ml to 200μg/ml, and may sometimes contain albumin, phycol, and polyvinyl pyrrolidone, each at a concentration of 0% to 0.2%, with the probe obtained with the preparation method described above (in a relative amount of 1.0x10⁴ cpm to 2.0x10⁶ cpm per 1cm² of the membrane). Subsequently, the membrane is removed and a wash of 5 minutes to 15 minutes is conducted about 2 to 4 times, utilizing a washing solution of 42°C to 65°C that contains 15mM to 300mM of NaCl, 1.5mM to 30mM of sodium citrate and 0.1% to 1.0% of SDS. Further, after lightly rinsing with 2xSSC solution (300mM NaCl and 30mM sodium citrate), the membrane is dried. By detecting the position of the probe on the membrane by subjecting the membrane to autoradiography, the position of the DNA hybridizing to the utilized probe on the membrane is identified. Alternatively, prehybridization and hybridization can be conducted with the use of a commercially available hybridization kit, such as with the use of hybridization solution contained in the DIG-High Prime DNA Labeling and Detection Starter Kit II (Roche). After hybridization, for example, the membrane is washed twice for 5 minutes at room temperature in 2xSSC containing 0.1% SDS, followed by washing twice for 15 minutes at 65°C in 0.5xSSC containing 0.1% SDS. The positions of DNAs on the membrane hybridizing with the utilized probe are detected, by treating in turn the washed membrane with the detection solution contained in the kit and by detecting the position of the probe on the membrane.

[0040] The clones corresponding to the positions of the detected DNAs on the membrane are identified on the original agar medium, and can be picked up to isolate clones carrying those DNAs.

[0041] The present DNA (A) obtained according to the above can be cloned into a vector according to conventional genetic engineering methods described in "Molecular Cloning: A Laboratory Manual 2nd edition" (1989), Cold Spring Harbor Laboratory Press, "Current Protocols in Molecular Biology" (1987), John Wiley & Sons Incorporated, and the like. As the vector, specifically for example, there can be utilized pUCA 119 (Takara Shuzo Company), pTVA118N (Takara Shuzo Company), pBluescriptII (Toyobo Company), pCR2.1-TOPO (Invitrogen Company), pTrc99A (Pharmacia Company), pKK331-1A (Pharmacia Company) and the like.

[0042] Further, the nucleotide sequence of the present DNA (A) obtained according to the above description can be analyzed by the dideoxy terminator method described in F. Sanger, S. Nicklen, A.R. Coulson, Proceeding of National Academy of Science U.S.A. (1977) 74:5463-5467. In the sample preparation for the nucleotide sequence analysis, a commercially available reagent may be utilized, such as the ABI PRISM Dye Terminator Cycle Sequencing Ready Reaction Kit of Perkin Elmer Company.

[0043] The present DNA (A) can also be prepared as follows. The present DNA (A) can be amplified by conducting PCR. The PCR may utilize as a template the chromosomal DNA or chromosomal DNA library prepared as described above from microorganisms belonging to Streptomyces, such as Streptomyces phaeochromogenes, Streptomyces testaceus, Streptomyces achromogenes, Streptomyces griseolus, Streptomyces carbophilus, Streptomyces griseofuscus, Streptomyces thermocoerulescens, Streptomyces nogalater, Streptomyces tsusimaensis, Streptomyces glomerochromogenes, Streptomyces olivochromogenes, Streptomyces ornatus, Streptomyces griseus, Streptomyces lanatus, Streptomyces misawanensis, Streptomyces pallidus, Streptomyces roseorubens, Streptomyces rutgersensis and Streptomyces steffisburgensis, and more specifically, Streptomyces phaeochromogenes IFO12898, Streptomyces testaceus ATCC21469, Streptomyces achromogenes IFO 12735, Streptomyces griseolus ATCC 11796, Streptomyces carbophilus SANK62585, Streptomyces griseofuscus IFO 12870t, Streptomyces thermocoerulescens IFO 14273t, Streptomyces nogalater IFO 13445, Streptomyces tsusimaensis IFO 13782, Streptomyces glomerochromogenes IFO 13673t, Streptomyces olivochromogenes IFO 12444, Streptomyces omatus IFO 13069t, Streptomyces griseus ATCC 10137, Streptomyces griseus IFO 13849T, Streptomyces lanatus IFO 12787T, Streptomyces misawanensis IFO 13855T, Streptomyces pallidus IFO 13434T, Streptomyces roseorubens IFO 13682T, Streptomyces rutgersensis IFO

15875T and Streptomyces steffisburgensis IFO 13446T, and the like; or microorganisms belonging to Saccharopolyspora, such as Saccharopolyspora taberi, more specifically, Saccharopolyspora taberi JCM 9383t and the like. The PCR may also utilize an oligonucleotide comprising at least about 20 nucleotides of the 5' terminus of the nucleotide sequence encoding an amino acid sequence shown in any one of SEQ ID NO: 1, 2, 3, 4, 5, 108, 159, 160, 136, 137, 138, 215, 216, 217, 218, 219, 220, 221, 222, 223 or 224, with an oligonucleotide comprising a nucleotide sequence complimentary to at least about 20 nucleotides adjacent to 3' terminus or downstream of the 3' terminus of the nucleotide sequence encoding any one of the amino acid sequences above. The PCR may be conducted under the conditions described below. On the 5' terminus side of the primer utilized for the PCR as described above, a restriction enzyme recognition sequence may be added.

5

10

15

20

25

30

35

40

45

50

55

[0044] More specifically for example, a DNA comprising a nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO: 1, a DNA comprising the nucleotide sequence shown in SEQ ID NO: 6, or the like can be prepared by conducting PCR by utilizing as the template the chromosomal DNA or chromosomal DNA library prepared from Streptomyces phaeochromogenes IFO12898 and by utilizing as primers an oligonucleotide comprising the nucleotide sequence shown in SEQ ID NO: 51 and an oligonucleotide comprising the nucleotide sequence shown in SEQ ID NO: 9 (containing a nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO: 1) can be amplified by conducting PCR by utilizing as primers the oligonucleotide comprising the nucleotide sequence shown in SEQ ID NO: 51 and an oligonucleotide comprising the nucleotide sequence shown in SEQ ID NO: 53.

[0045] For example, a DNA comprising a nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO: 2, a DNA comprising the nucleotide sequence shown in SEQ ID NO: 7, or the like can be prepared by conducting PCR by utilizing as the template the chromosomal DNA or chromosomal DNA library prepared from Saccharopolyspora taberi JCM 9383t and by utilizing as primers an oligonucleotide comprising the nucleotide sequence shown in SEQ ID NO: 61 and an oligonucleotide comprising the nucleotide sequence shown in SEQ ID NO: 10 (containing a nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO: 2) can be amplified by conducting PCR by utilizing as primers the oligonucleotide comprising the nucleotide sequence shown in SEQ ID NO: 61 and an oligonucleotide comprising the nucleotide sequence shown in SEQ ID NO: 63.

[0046] For example, a DNA comprising a nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO: 108, a DNA comprising the nucleotide sequence shown in SEQ ID NO: 109, or the like can be prepared by conducting PCR by utilizing as the template the chromosomal DNA or chromosomal DNA library prepared from Streptomyces achromogenes IFO 12735 and by utilizing as primers an oligonucleotide comprising the nucleotide sequence shown in SEQ ID NO: 119 and an oligonucleotide comprising the nucleotide sequence shown in SEQ ID NO: 110 (containing a nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO: 108) can be amplified by conducting PCR by utilizing as primers the oligonucleotide comprising the nucleotide sequence shown in SEQ ID NO: 119 and an oligonucleotide comprising the nucleotide sequence shown in SEQ ID NO: 121.

[0047] For example, a DNA comprising the nucleotide sequence shown in SEQ ID NO: 144 (containing a nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO: 159) can be prepared by conducting PCR by utilizing as the template the chromosomal DNA or chromosomal DNA library prepared from Streptomyces nogalater IFO 13445 and by utilizing as primers an oligonucleotide comprising the nucleotide sequence shown in SEQ ID NO: 165 and an oligonucleotide comprising the nucleotide sequence shown in SEQ ID NO: 166.

[0048] For example, a DNA comprising the nucleotide sequence shown in SEQ ID NO: 145 (containing a nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO: 160) can be prepared by conducting PCR by utilizing as the template the chromosomal DNA or chromosomal DNA library prepared from Streptomyces tsusimaensis IFO 13782 and by utilizing as primers an oligonucleotide comprising the nucleotide sequence shown in SEQ ID NO: 171 and an oligonucleotide comprising the nucleotide sequence shown in SEQ ID NO: 172.

[0049] For example, a DNA comprising the nucleotide sequence shown in SEQ ID NO: 146 (containing a nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO: 136) can be prepared by conducting PCR by utilizing as the template the chromosomal DNA or chromosomal DNA library prepared from Streptomyces thermocoerulescens IFO 14273t and by utilizing as primers an oligonucleotide comprising the nucleotide sequence shown in SEQ ID NO: 177 and an oligonucleotide comprising the nucleotide sequence shown in SEQ ID NO: 178.

[0050] For example, a DNA comprising the nucleotide sequence shown in SEQ ID NO: 147 (containing a nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO: 137) can be prepared by conducting PCR by utilizing as the template the chromosomal DNA or chromosomal DNA library prepared from Streptomyces glomero-chromogenes IFO13673t and by utilizing as primers an oligonucleotide comprising the nucleotide sequence shown in SEQ ID NO: 183 and an oligonucleotide comprising the nucleotide sequence shown in SEQ ID NO: 184.

[0051] For example, a DNA comprising the nucleotide sequence shown in SEQ ID NO: 148 (containing a nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO: 138) can be prepared by conducting PCR by

utilizing as the template the chromosomal DNA or chromosomal DNA library prepared from Streptomyces olivochromogenes IFO 12444 and by utilizing as primers an oligonucleotide comprising the nucleotide sequence shown in SEQ ID NO: 184 and an oligonucleotide comprising the nucleotide sequence shown in SEQ ID NO: 185.

5

10

15

20

25

30

35

40

45

50

55

[0052] When utilizing as the template the DNA library in which the chromosomal DNA is introduced into the vector, for example, the present DNA (A) can also be amplified by conducting PCR by utilizing as primers an oligonucleotide comprising a nucleotide sequence selected from a nucleotide sequence encoding any one of the amino acid sequences shown in SEQ ID NO: 1, 2, 3, 4, 5, 108, 159, 160, 136, 137 or 138 (for example, an oligonucleotide comprising a nucleotide sequence of at least about 20 nucleotides of the 5' terminus side of the nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO: 1) and an oligonucleotide of at least about 20 nucleotides comprising a nucleotide sequence complimentary to the nucleotide sequence adjacent to the DNA insertion site of the vector utilized to construct the library. On side of the 5' terminus of the primer utilized for the PCR as described above, a restriction enzyme recognition sequence may be added.

[0053] As the conditions for the such PCR described above, specifically for example, there can be mentioned the condition of maintaining 97°C for 2 minutes, then repeating for 10 cycles a cycle that includes maintaining 97°C for 15 seconds, followed by 65°C for 30 seconds, and then 72°C for 2 minutes; then conducting for 15 cycles a cycle that includes maintaining 97°C for 15 seconds, followed by 68°C for 30 seconds, and followed by 72°C for 2 minutes (adding 20 seconds to every cycle in turn); and then maintaining 72°C for 7 minutes. The PCR can utilize a reaction solution of 50µl, containing 50ng of chromosomal DNA, containing 300nM of each of the 2 primers in such pairings described above, containing 5.0µl of dNTP mixture (a mixture of 2.0mM each of the 4 types of dNTPs), containing 5.0µl of 10x Expand HF buffer (containing MgCl₂, Roche Molecular Biochemicals Company) and containing 0.75µl of Expand HiFi enzyme mix (Roche Molecular Biochemicals Company).

[0054] Alternatively, there can be mentioned the condition of maintaining 97°C for 2 minutes, then repeating for 30 cycles a cycle that includes 97°C for 15 seconds, followed by 60°C for 30 seconds, and followed by 72°C for 90 seconds, and then maintaining the reaction solution at 72°C for 4 minutes. The PCR can utilize a reaction solution of 50µl containing 250ng of chromosomal DNA, containing 200nM of each of the 2 primers in such pairings described above, containing 5.0µl of dNTP mixture (a mixture of 2.5mM each of the 4 types of dNTPs), 5.0 µl of 10x ExTaq buffer (containing MgCl₂, Takara Shuzo Company) and containing 0.5µl of ExTaq Polymerase (Takara Shuzo Company).

[0055] Alternatively, for example, oligonucleotides can be designed and prepared for use as primers, based on the nucleotide sequence of a region to which the sequence identity is particularly high in the nucleotide sequence shown in SEQ ID NO: 6, 7, 8 or 109. The present DNA (A) can also be obtained by conducting PCR by utilizing the obtained oligonucleotides as primers and a chromosomal DNA or chromosomal DNA library. The chromosomal DNA or chromosomal DNA library can be prepared as described above from microorganisms belonging to Streptomyces, such as Streptomyces phaeochromogenes, Streptomyces testaceus, Streptomyces achromogenes, Streptomyces griseolus, Streptomyces carbophilus, Streptomyces griseofuscus, Streptomyces thermocoerulescens, Streptomyces nogalater, Streptomyces tsusimaensis, Streptomyces glomerochromogenes, Streptomyces olivochromogenes, Streptomyces ornatus, Streptomyces griseus, Streptomyces lanatus, Streptomyces misawanensis, Streptomyces pallidus, Streptomyces roseorubens, Streptomyces rutgersensis and Streptomyces steffisburgensis, and more specifically, Streptomyces phaeochromogenes IFO 12898, Streptomyces testaceus ATCC21469, Streptomyces achromogenes IFO 12735, Streptomyces griseolus ATCC 11796, Streptomyces carbophilus SANK62585, Streptomyces griseofuscus IFO 12870t, Streptomyces thermocoerulescens IFO 14273t, Streptomyces nogalater IFO 13445, Streptomyces tsusimaensis IFO 13782, Streptomyces glomerochromogenes IFO 13673t, Streptomyces griseus IFO 12444, Streptomyces ornatus IFO 13069t, Streptomyces griseus ATCC 10137, Streptomyces griseus IFO 12840t, Streptomyces lanatus

ornatus IFO 13069t, Streptomyces griseus ATCC 10137, Streptomyces griseus IFO 13849T, Streptomyces lanatus IFO 12787T, Streptomyces misawanensis IFO 13855T, Streptomyces pallidus IFO 13434T, Streptomyces roseorubens IFO 13682T, Streptomyces rutgersensis IFO 15875T and Streptomyces steffisburgensis IFO 13446T, and the like; or microorganisms belonging to Saccharopolyspora, such as Saccharopolyspora taberi, more specifically, Saccharopolyspora taberi JCM 9383t and the like. As the "region to which the sequence identity is particularly high in the nucleotide sequence shown in SEQ ID NO: 6, 7, 8 or 109," for example, there is mentioned the region corresponding to the region shown with each of nucleotides 290 to 315, 458 to 485, 496 to 525 or 1046 to 1073 in the nucleotide sequence shown in SEQ ID NO: 6. As the primers designed on the basis of such regions of the nucleotide sequence, for example, there can be mentioned a primer comprising the nucleotide sequence shown in any one of SEQ ID NO: 124 to 129.

SEQ ID NO: 124; based on the nucleotide sequence of the region corresponding to the region shown with the above nucleotides 290 to 315;

SEQ ID NO: 125; based on the nucleotide sequence of the region corresponding to the region shown with the above nucleotides 458 to 485;

SEQ ID NO: 126; based on the nucleotide sequence of the region corresponding to the region shown with the above nucleotides 458 to 485;

SEQ ID NO: 127; based on the nucleotide sequence of the region corresponding to the region shown with the

above nucleotides 496 to 525;

5

10

15

20

25

30

35

40

SEQ ID NO: 128; based on the nucleotide sequence of the region corresponding to the region shown with the above nucleotides 496 to 525; and

SEQ ID NO: 129; based on the nucleotide sequence of the region corresponding to the region shown with the above nucleotides 1046 to 1073.

[0056] For example, a DNA of approximately 800bp is amplified by utilizing as primers the pairing of the oligonucleotide comprising the nucleotide sequence shown in SEQ ID NO: 124 and the oligonucleotide comprising the nucleotide sequence shown in SEQ ID NO: 129. A DNA of approximately 600bp is amplified by utilizing, as primers the pairing of the oligonucleotide comprising the nucleotide sequence shown in SEQ ID NO: 125 and the oligonucleotide comprising the nucleotide sequence shown in SEQ ID NO: 129. A DNA of approximately 600bp is amplified by utilizing as primers the pairing of the oligonucleotide comprising the nucleotide sequence shown in SEQ ID NO: 126 and the oligonucleotide comprising the nucleotide sequence shown in SEQ ID NO: 129. A DNA of approximately 580bp is amplified by utilizing as primers the pairing of the oligonucleotide comprising the nucleotide sequence shown in SEQ ID NO: 127 and the oligonucleotide comprising the nucleotide sequence shown in SEQ ID NO: 129. Further, a DNA of approximately 580bp is amplified by utilizing as primers the pairing of the oligonucleotide comprising the nucleotide sequence shown in SEQ ID NO: 128 and the oligonucleotide comprising the nucleotide sequence shown in SEQ ID NO: 128 and the oligonucleotide comprising the nucleotide sequence shown in SEQ ID NO: 129.

[0057] As the conditions for PCR, specifically for example, there is mentioned the condition of maintaining 95°C for 1 minute; repeating for 30 cycles a cycle that includes maintaining 94°C for 15 seconds, followed by 60°C for 30 seconds, and followed by 72°C for 1 minute; and then maintaining 72°C for 5 minutes. There can be utilized the reaction solution of 25μl containing 10ng of chromosomal DNA, containing 200nM of each of the 2 primers, containing 0.5μl of dNTP mix (a mixture of 10mM each of the 4 types of dNTPs), containing 5μl of 5xGC genomic PCR reaction buffer, containing 5µl of 5M GC-Melt and containing 0.5µl of Advantage-GC genomic polymerase mix (Clontech Company). [0058] By recovering the DNA amplified as described above, a DNA comprising a partial nucleotide sequence of the present DNA (A) can be obtained. Next, based on the nucleotide sequence possessed by the obtained "DNA comprising a partial nucleotide sequence of the present DNA (A)", there is designed and prepared an oligonucleotide comprising a partial nucleotide sequence of at least about 20 nucleotides of said nucleotide sequence or an oligonucleotide comprising a nucleotide sequence complimentary to the partial nucleotide sequence of at least about 20 nucleotides of said nucleotide sequence. A DNA comprising a partial nucleotide sequence of the present DNA (A) extended downstream of the 3' terminus or upstream of the 5' terminus of the "DNA comprising a partial nucleotide sequence of the present DNA (A)" obtained as described above can be obtained by conducting PCR. The PCR may utilize as primers a pairing of an oligonucleotide prepared as described above based on the nucleotide sequence of the "DNA comprising a partial nucleotide sequence of the present DNA (A)" and an oligonucleotide of at least about 20 nucleotides comprising a nucleotide sequence of the region adjacent to the DNA insertion site of the vector utilized to construct the above library or an oligonucleotide of at least about 20bp comprising a nucleotide sequence complimentary to such nucleotide sequence thereof. The PCR may, for example, utilize as the template the chromosomal DNA library prepared from the microorganisms which have the ability to convert compound (II) to compound (III), as described above. By connecting such DNA comprising the partial nucleotide sequence of the present DNA (A), there can be obtained the present DNA (A). In such a production method, there can be utilized a commercially available kit, such as the Universal Genome Walker (Clontech Company). Alternatively, the present DNA (A) can be obtained by conducting PCR by preparing primers based on the full length nucleotide sequence of the present DNA (A) obtained by connecting the partial nucleotide sequences of the present DNA (A) as described above, by utilizing such primers and by utilizing as the template the chromosomal DNA library as described above.

[0059] For example, a DNA comprising the nucleotide sequence shown in nucleotides 316 to 1048 of SEQ ID NO: 139 (a partial nucleotide sequence of nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO: 159), can be prepared by conducting PCR by utilizing as the template the chromosomal DNA or chromosomal DNA library prepared from Streptomyces nogalater IFO 13445 and by utilizing as primers an oligonucleotide comprising the nucleotide sequence shown in SEQ ID NO: 124 and an oligonucleotide comprising the nucleotide sequence shown in SEQ ID NO: 129. A DNA comprising a nucleotide sequence extended downstream of the 3' terminus or upstream of the 5' terminus thereof is obtained according to the above description based on the nucleotide sequence of the obtained DNA. A DNA comprising the nucleotide sequence shown in SEQ ID NO: 144 (containing a nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO: 159 and the nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO: 149) can be obtained by connecting the resulting DNA.

[0060] For example, a DNA comprising the nucleotide sequence shown in nucleotides 364 to 1096 of SEQ ID NO: 140 (a partial nucleotide sequence of nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO: 160), can be prepared by conducting PCR by utilizing as the template the chromosomal DNA or chromosomal DNA library prepared from Streptomyces tsusimaensis IFO 13782 and by utilizing as primers an oligonucleotide comprising

the nucleotide sequence shown in SEQ ID NO: 124 and an oligonucleotide comprising the nucleotide sequence shown in SEQ ID NO: 129. A DNA comprising a nucleotide sequence extended downstream of the 3' terminus or upstream of the 5' terminus thereof is obtained according to the above description based on the nucleotide sequence of the obtained DNA. A DNA comprising the nucleotide sequence shown in SEQ ID NO: 145 (containing a nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO: 150 and the nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO: 160) can be obtained by connecting the resulting DNA.

5

10

15

20

25

30

35

40

45

50

55

[0061] For example, a DNA comprising the nucleotide sequence shown in nucleotides 295 to 1027 of SEQ ID NO: 141 (a partial nucleotide sequence of nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO: 136), can be prepared by conducting PCR by utilizing as the template the chromosomal DNA or chromosomal DNA library prepared from Streptomyces thermocoerulescens IFO 14273t and by utilizing as primers an oligonucleotide comprising the nucleotide sequence shown in SEQ ID NO: 124 and an oligonucleotide comprising the nucleotide sequence extended downstream of the 3' terminus or upstream of the 5' terminus thereof is obtained according to the above description based on the nucleotide sequence of the obtained DNA. A DNA comprising the nucleotide sequence shown in SEQ ID NO: 146 (containing a nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO: 136 and the nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO: 151) can be obtained by connecting the resulting DNA.

[0062] For example, a DNA comprising the nucleotide sequence shown in nucleotides 316 to 1048 of SEQ ID NO: 142 (a partial nucleotide sequence of nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO: 137), can be prepared by conducting PCR by utilizing as the template the chromosomal DNA or chromosomal DNA library prepared from Streptomyces glomerochromogenes IFO 13673t and by utilizing as primers an oligonucleotide comprising the nucleotide sequence shown in SEQ ID NO: 124 and an oligonucleotide comprising the nucleotide sequence extended downstream of the 3' terminus or upstream of the 5' terminus thereof is obtained according to the above description based on the nucleotide sequence of the obtained DNA. A DNA comprising the nucleotide sequence shown in SEQ ID NO: 147 (containing a nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO: 137 and the nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO: 152) can be obtained by connecting the resulting DNA.

[0063] For example, a DNA comprising the nucleotide sequence shown in nucleotides 316 to 1048 of SEQ ID NO: 143 (a partial nucleotide sequence of nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO: 138), can be prepared by conducting PCR by utilizing as the template the chromosomal DNA or chromosomal DNA library prepared from Streptomyces olivochromogenes IFO 12444 and by utilizing as primers an oligonucleotide comprising the nucleotide sequence shown in SEQ ID NO: 124 and an oligonucleotide comprising the nucleotide sequence shown in SEQ ID NO: 129. A DNA comprising a nucleotide sequence extended downstream of the 3' terminus or upstream of the 5' terminus thereof is obtained according to the above description based on the nucleotide sequence of the obtained DNA. A DNA comprising the nucleotide sequence shown in SEQ ID NO: 148 (containing a nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO: 138 and the nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO: 153) can be obtained by connecting the resulting DNA.

[0064] For example, a DNA comprising the nucleotide sequence shown in nucleotides 289 to 1015 of SEQ ID NO: 232 (a partial nucleotide sequence of nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO: 222), can be prepared by conducting PCR by utilizing as the template the chromosomal DNA or chromosomal DNA library prepared from Streptomyces roseorubens IFO 13682T and by utilizing as primers an oligonucleotide comprising the nucleotide sequence shown in SEQ ID NO: 124 and an oligonucleotide comprising the nucleotide sequence shown in SEQ ID NO: 129. A DNA comprising a nucleotide sequence extended downstream of the 3' terminus or upstream of the 5' terminus thereof is obtained according to the above description based on the nucleotide sequence of the obtained DNA. A DNA comprising the nucleotide sequence shown in SEQ ID NO: 242 (containing a nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO: 232 and the nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO: 252) can be obtained by connecting the resulting DNA.

[0065] For example, a DNA comprising the nucleotide sequence shown in nucleotides 289 to 1015 of SEQ ID NO: 234 (a partial nucleotide sequence of nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO: 224), can be prepared by conducting PCR by utilizing as the template the chromosomal DNA or chromosomal DNA library prepared from Streptomyces steffisburgensis IFO 13446T and by utilizing as primers an oligonucleotide comprising the nucleotide sequence shown in SEQ ID NO: 124 and an oligonucleotide comprising the nucleotide sequence shown in SEQ ID NO: 129. A DNA comprising a nucleotide sequence extended downstream of the 3' terminus or upstream of the 5' terminus thereof is obtained according to the above description based on the nucleotide sequence of the obtained DNA. A DNA comprising the nucleotide sequence shown in SEQ ID NO: 244 (containing a nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO: 234 and the nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO: 254) can be obtained by connecting the resulting DNA.

[0066] The present DNA (A) obtained by utilizing the PCR described above can be cloned into a vector by a method according to conventional genetic engineering methods described in "Molecular Cloning: A Laboratory Manual 2nd

edition" (1989), Cold Spring Harbor Laboratory Press, "Current Protocols in Molecular Biology" (1987), John Wiley & Sons, Incorporated and the like. Specifically for example, cloning can be conducted by utilizing plasmid vectors such as pBluescriptII of Strategene Company or a plasmid vector contained in the TA Cloning Kit of Invitrogen Company. [0067] Further, the present DNA (A) can be prepared, for example, as described below. First, a nucleotide sequence is designed. The nucleotide sequence encodes an amino acid sequence of a protein encoded by the present DNA (A). The nucleotide sequence has a GC content of at most 60% and at least 40%, preferably at most 55% and at least 45%. The codon usage in the nucleotide sequence encoding the amino acid sequence of the above protein is within the range of plus or minus 4% of the codon usage in genes from the species of a host cell to which the present DNA (A) is introduced. By preparing a DNA having the designed nucleotide sequence according to conventional genetic

10

15

20

25

30

35

40

45

50

55

engineering methods, the present DNA (A) can be obtained. [0068] For example, there can be designed in the way described below, a nucleotide sequence encoding an amino acid sequence (SEQ ID NO: 1) of the present invention protein (A1) and having a GC content of at most 55% and at least 45%, where the codon usage in the nucleotide sequence encoding the amino acid sequence of the above protein is within the range of plus or minus 4% of the codon usage in genes from soybean. First, for example, the codon usage (Table 22 and Table 23) in the nucleotide sequence (SEQ ID NO: 6) encoding the amino acid sequence of the present invention protein (A1) which can be obtained from Streptomyces phaeochromogenes IFO 12898 and soybean codon usage (Table 24 and Table 25) are compared. Based on the result of the comparison, nucleotide substitutions are added to the nucleotide sequence shown in SEQ ID NO: 6, so that the GC content is at most 55% and at least 45% and the codon usage is within the range of plus or minus 4% of the soybean codon usage. As such a nucleotide substitution, there is selected a nucleotide substitution which does not result in an amino acid substitution. For example, the usage of the CTG codon encoding leucine is 1.22% in soybean genes and 7.09% in the nucleotide sequence shown in SEQ ID NO: 6. As such, for example, each of the CTG codons starting from nucleotides 106, 163, 181, 226, 289, 292, 544, 1111, and 1210 of the nucleotide sequence shown in SEQ ID NO: 6 is substituted to CTT codons; each of the CTG codons starting from nucleotides 211, 547 and 1084 is substituted to CTA codons; the CTG codon starting from nucleotide 334 is substituted to a TTA codon; each of the CTG codons starting from nucleotides 664, 718, 733, 772, 835, 1120 and 1141 is substituted to a TTG codon; and the CTG codon starting from nucleotide 787 is substituted to a TTA codon. One sequence of a nucleotide sequence designed in such a way is shown in SEQ ID NO: 214, the codon usage in which is shown in Table 26 and Table 27. In the nucleotide sequence shown in SEQ ID NO: 214, for example, the usage of the CTG codon encoding leucine is 1.71% and is within the range of plus or minus 4% of the codon usage (1.22%) for soybean. The DNA comprising the nucleotide sequence shown in SEQ ID NO: 214 can be prepared by introducing nucleotide substitutions to the DNA having the nucleotide sequence shown in SEQ ID NO: 6, according to site-directed mutagenesis methods described in such as Sambrook, J., Frisch, E.F., and Maniatis, T.; Molecular Cloning 2nd Edition, Cold Spring Harbor Press. Alternatively, the DNA having the nucleotide sequence shown in SEQ ID NO: 214 can be prepared by a DNA synthesis method employing the PCR described in Example 46 below.

[0069] Similarly, the nucleotide sequence shown in SEQ ID NO: 368 is an example of designing a nucleotide sequence encoding the amino acid sequence (SEQ ID NO: 222) of the present invention protein (A23) and having a GC content of at most 55% and at least 45%, where the codon usage in the nucleotide sequence encoding the amino acid sequence of the above protein is within the rage of plus or minus 4% with the codon usage for genes from soybean. Further, the nucleotide sequence shown in SEQ ID NO: 393 is an example of designing a nucleotide sequence encoding the amino acid sequence (SEQ ID NO: 224) of the present invention protein (A25) and having a GC content of at most 55% and at least 45%, where the codon usage in the nucleotide sequence encoding the amino acid sequence of the above protein is within the rage of plus or minus 4% with the codon usage for genes from soybean.

[0070] The present DNA (A) obtained in such a way can be cloned into a vector according to conventional genetic engineering methods described in such as Sambrook, J., Frisch, E.F., and Maniatis, T.; "Molecular Cloning 2nd Edition" (1989), Cold Spring Harbor Press; "Current Protocols in Molecular Biology" (1987), John Wiley & Sons, Incorporated, and the like. As the vector, specifically for example, there can be utilized pUC 119 (TaKaRa Shuzo Company), pTVA 118N (Takara Shuzo Company), pBluescript II (Toyobo Company), pCR2.1-TOPO (Invitrogen), pTrc99A (Pharmacia Company), pKK331-1A (Pharmacia Company), and the like.

[0071] Further, the nucleotide sequence of the present DNA (A) obtained in such a way can be analyzed by the dideoxy terminator method described in F. Sanger, S. Nicklen, A.R. Coulson, Proceeding of National Academy of Science U.S.A. (1977) 74:5463-5467.

[0072] The ability to metabolize the PPO inhibitory-type herbicidal compound of formula (I) of the present protein (A), which is encoded by the present DNA (A) obtained in such a way described above, can be confirmed with the ability of converting compound (II) to compound (III) as a marker in the way described below. First, as described below, said DNA is inserted into a vector so that it is connected downstream of a promoter which can function in the host cell and that is introduced into a host cell to obtain a transformant. Next, the culture of the transformant or the extract obtained from disrupting the culture is reacted with compound (II) in the presence of an electron transport system

containing an electron donor, such as coenzyme NADPH. The reaction products resulting therefrom are analyzed to detect compound (III). In such a way, there can be detected a transformant having the ability of metabolizing compound (III) and producing compound (III), and be determined that such a transformant bears the present DNA (A) encoding the protein having such ability. More specifically for example, there is prepared 30μ I of a reaction solution consisting of a 0.1M potassium phosphate buffer (pH 7.0) comprising the culture or extract of the above transformant, an electron donor such as β -NADPH at a final concentration of about 2mM, ferredoxin derived from spinach at a final concentration of about 2mg/ml, ferredoxin reductase at a final concentration of about 0.1U/ml and 3ppm of compound (II) labeled with a radioisotope. The reaction solution is incubated at about 30°C to 40°C for 10 minutes to 1 hour. After such incubation, 3μ I of 2N HCI and 90μ I of ethyl acetate are added, stirred and centrifuged at 8,000g to recover the supernatant. After drying the supernatant in vacuo, the residue is dissolved in ethyl acetate and the obtained solution is developed on a silica gel TLC plate. The TLC plate is analyzed by radio autography. By identifying the spots corresponding to compound (III) labeled with a radioisotope, there can be confirmed the ability to convert compound (III) to compound (III).

[0073] A DNA encoding a protein having the ability to convert compound (II) to compound (III) or a microorganism having such a DNA may be further searched by conducting the hybridizations or PCR as described above, utilizing the present invention DNA (A) or the polynucleotide comprising a partial nucleotide sequence of said DNA or a nucleotide sequence complimentary to the partial nucleotide sequence.

[0074] Specifically for example, hybridization as described above is conducted and the DNA to which a probe is hybridized is identified. The hybridization is conducted with the use of the present invention DNA (A) or a polynucleotide comprising a partial nucleotide sequence of the present invention DNA (A) of a nucleotide sequence complimentary to the partial nucleotide sequence as a probe, and genomic DNA derived from a natural microorganism, for example, microorganisms belonging to streptomyces such as Streptomyces phaeochromogenes, Streptomyces testaceus, Streptomyces achromogenes, Streptomyces griseolus, Streptomyces carbophilus, Streptomyces griseofuscus, Streptomyces thermocoerulescens, Streptomyces nogalater, Streptomyces tsusimaensis, Streptomyces glomerochromogenes, Streptomyces olivochromogenes, Streptomyces ornatus, Streptomyces griseus, Streptomyces lanatus, Streptomyces misawanensis, Streptomyces pallidus, Streptomyces roseorubens, Streptomyces rutgersensis and Streptomyces steffisburgensis; microorganisms belonging to Saccharopolyspora such as Saccharopolyspora taberi; and the like. As specific examples of DNA which can be utilized as the probe, there can be mentioned a DNA comprising the full length of the nucleotide sequence shown in any one of SEQ ID NO: 6, 7, 8, 109, 139, 140, 141, 142, 143, 225, 226, 227, 228, 229, 230, 231, 232, 233 or 234; a DNA comprising a nucleotide sequence shown in nucleotides 21 to 691 of the nucleotide sequence shown in SEQ ID NO: 8; and the like.

[0075] Alternatively, PCR can be conducted as described above and the amplified DNA can be detected. The PCR utilizes a polynucleotide comprising a partial nucleotide sequence of the present invention DNA (A) or a nucleotide sequence complimentary to the partial nucleotide sequence. The PCR utilizes as the template genomic DNA derived from a natural microorganism, for example, microorganisms belonging to streptomyces such as Streptomyces phae-ochromogenes, Streptomyces testaceus, Streptomyces achromogenes, Streptomyces griseolus, Streptomyces carbophilus, Streptomyces giseofuscus, Streptomyces thermocoerulescens, Streptomyces nogalater, Streptomyces tsusimaensis, Streptomyces glomerochromogenes, Streptomyces olivochromogenes, Streptomyces ornatus, Streptomyces griseus, Streptomyces lanatus, Streptomyces misawanensis, Streptomyces pallidus, Streptomyces roseorubens, Streptomyces rutgersensis and Streptomyces steffisburgensis; microorganisms belonging to Saccharopolyspora such as Saccharopolyspora taberi; and the like. As the primers, there can be mentioned primers which were designed, based on the nucleotide sequence of the "region to which the sequence identity is particularly high in the nucleotide sequence shown in SEQ ID NO: 6, 7, 8 or 109" as described above. As more specific examples of the primers, there is mentioned pairings of a primer comprising a nucleotide sequence shown in any one of SEQ ID NO: 124 to 128 and a primer comprising a nucleotide sequence shown in SEQ ID NO: 129.

[0076] The DNA detected in such a way is recovered. When the recovered DNA does not contain the full length nucleotide sequence of the present DNA (A), such DNA is utilized and made into a DNA corresponding to the full length nucleotide sequence in a way described above. The obtained DNA is introduced into a host cell to produce a transformant. The ability to convert compound (II) to compound (III) of the protein encoded by the DNA introduced into the transformant can be evaluated by utilizing the cultureof the obtained transformant and measuring the ability to convert compound (III) in a way described above.

[0077] To express the present DNA (A) in a host cell, the present DNA (A) is introduced into the host cell in a position enabling its expression in said cell. By introducing the present DNA (A) into a "position enabling its expression", it means that the present DNA (A) is introduced into a host cell so that it is placed in a position adjacent to a nucleotide sequence directed to transcription and translation from the nucleotide sequence thereof (that is, for example, a nucleotide sequence promoting the production of the present protein (A) and an RNA encoding the present protein (A)).

[0078] To introduce the present DNA (A) into the host cell so that it is placed in a position enabling its expression,

for example, a DNA in which the present DNA (A) and a promoter functional in the host cell are operably linked is introduced into the host cell. The term "operably linked" here means that a condition in which the present DNA (A) is linked to a promoter so that it is expressed under the control of the promoter, when the DNA is introduced into a host cell. [0079] When the host cell is a microorganism cell, as a functional promoter, for example, there can be mentioned the lactose operon promoter of E. coli, tryptophan operon promoter of E. coli, T7 phage promoter or artificial promoters functional in E. coli such as tac promoter or trc promoter and the like. Further, there may be utilized the promoter originally present upstream of the present DNA (A) in the chromosome of the microorganism belonging to Streptomyces or Saccharopolyspora.

5

10

15

20

25

30

35

40

45

50

55

[0080] When the host cell is a plant cell, as a functional promoter, for example, there is mentioned T-DNA derived constitutive promoters such as nopaline synthase gene promoter and octopine synthase gene promoter; plant virus-derived promoters such as cauliflower mosaic virus derived 19S and 35S promoters; inducible promoters such as phenylalanine ammonia-lyase gene promoter, chalcone synthase gene promoter and pathogenesis-related protein gene promoter; the plant promoter described in Japanese Unexamined Patent Publication No. 2000-166577. Further, a terminator functional in a plant cell may be connected to the DNA in which the promoter functional in a plant cell and the present DNA (A) are operably linked. In this case, it is generally preferred that the terminator is connected downstream from the present DNA (A). As the funtional terminator, for example, there is mentioned T-DNA derived constitutive terminators such as nopaline synthase gene (NOS) terminator; plant virus derived terminators such as terminators of allium virus GV1 or GV2; the plant terminator described in Japanese Unexamined Patent Publication No. 2000-166577; and the like.

[0081] When introducing the present DNA (A) so that the DNA is placed in a position enabling its expression, for example, there can be utilized a DNA having a nucleotide sequence encoding a transit signal to an intracellular organelle, linked upstream of the present DNA (A), so that the reading frames are in frame. By being linked "so that the reading frames are in frame" it means that reading frame of the sequence of the transit signal to an intracellular organelle and the reading frame of the present DNA (A) are connected to form one continuous reading frame. As a transit signal sequence providing the transition and localization of a protein in an intracellular organelle in a plant cell, for example, there can be mentioned a transit signal derived from a cytoplasmic precursor of a protein localizing in the chloroplast of a plant as described in U. S. Pat. No. 5,717,084, the chimeric sequences formed from the variety of the transit signal sequences described in U. S. Pat. No. RE36449. More specifically, there is mentioned the chloroplast transit peptide derived from the small subunit of ribulose-1,5-bisphosphate carboxylase of soybean, which is obtainable according to the method described in Example 15 below.

[0082] Typically, the present DNA (A), the present DNA (A) to which a DNA having a nucleotide sequence encoding a transit signal to an intracellular organelle is connected as described above, or a DNA in which such DNA is operably linked to a promoter functional in the host cell, can each be inserted into a vector usable in a host cell and this is introduced into the host cell. When utilizing a vector already possessing a promoter functional in the host cell, the present DNA (A) may be inserted downstream of a promoter present in the vector so that said promoter and the present DNA (A) can be operably linked.

[0083] As the vector, specifically when utilizing E. coli as the host cell, for example, there can be mentioned pUC 119 (TaKaRa Shuzo Company), pTVA 118N (Takara Shuzo Company), pBluescript II (Strategene Company), pCR2.1-TOPO (Invitrogen), pTrc99A (Amersham Pharmacia Biotech Company), pKK331-1A (Amercham Pharmacia Biotech Company), pET11d (Novagen) and the like. By utilizing a vector containing a selective marker (for example, genes conferring resistance to an antibiotic such as a kanamycin resistance gene, neomycin resistance gene, and the like), it is convenient in that the transformant to which the present DNA is introduced can be selected with the phenotype of the selective marker as an indicator.

[0084] As the method of introducing the present DNA (A) or a vector containing the present DNA (A) into a host cell, there can be mentioned the method described in Shin Seikagaku Zikken Kouza (Nippon-Seikagaku-Kai eds., Tokyo Kagaku Dozin), Vol. 17, Biseibutu-Zikken-Hou when the host cell is a microorganism, for example, E. coli, Bacillus subtilis, Bacillus brevis, Pseudomonas sp., Zymomonas sp., lactic acid bacteria, acetic acid bacteria, Staphylococcus sp., Streptomyces sp., Saccharopolyspora sp., or yeast such as Saccharomyces cerevisiae, Schizosaccaromyces ponmbe, fungus such as Aspergillus, and the like. Alternatively, for example, there may be utilized the calcium chloride method described in Sambrook, J., Frisch, E.F., and Maniatis, T.; "Molecular Cloning 2nd edition", Cold Spring Harbor Press (Molecular Biology, John Wiley & Sons, N.Y. (1989) or in "Current Protocols in Molecular Biology" (1987), John Wiley & Sons, Incorporated or the electroporation method described in "Methods in Electroporation: Gene Pulser / E. coli Pulser System", Bio-Rad Laboratories (1993).

[0085] The transformant to which the present DNA (A) or the vector containing the present DNA (A) has been introduced, for example, can be selected by selecting for the phenotype of the selective marker contained in the vector to which the present DNA (A) has been inserted as described above as an indicator. Further, whether the transformant contains the present DNA (A) or a vector containing the present DNA (A) can be confirmed by preparing the DNA from the transformant and then conducting with the prepared DNA genetic engineering analysis methods described in, for

example, "Molecular Cloning 2nd edition", Cold Spring Harbor Press (Molecular Biology, John Wiley & Sons, N.Y. (1989) (such as confirming restriction enzyme sites, DNA sequencing, southern hybridizations, PCR and the like).

[0086] When the host cell is a plant cell, plant types can be mentioned, for example, dicotyledones such as tobacco, cotton, rapeseed, sugar beet, Arabidopsis, canola, flax, sunflower, potato, alfalfa, lettuce, banana, soybean, pea, legume, pine, poplar, apple, grape, orange, lemon, other citrus fruits, almond, walnut other nuts; monocotyledones such as corn, rice, wheat, barley, rye, oat, sorghum, sugar cane and lawn; and the like. As the cell to which the present DNA (A) is introduced there can be utilized plant tissue, plant body, cultured cells, seeds and the like.

5

10

15

20

25

30

35

40

45

50

55

[0087] As methods of introducing the present DNA (A) or the vector containing the present DNA (A) into a host cell, there is mentioned methods such as infection with Agrobacterium (Japanese Examined Patent Publication No.2-58917 and Japanese Unexamined Patent Publication No. 60-70080), electroporation into protoplasts (Japanese Unexamined Patent Publication No. 5-68575) or particle gun method (Japanese Unexamined Patent Publication No. 5-508316 and Japanese Unexamined Patent Publication No. 63-258525).

[0088] In such cases, for example, the transformant to which the present DNA has been introduced can be selected with the phenotype of a selective marker as an indicator, by introducing into the plant cell at the same time with the vector containing the present DNA (A), a selective maker selected from the hygromycin phosphotransferase gene, neomycin phosphotransferase gene and chloramphenicol acetyltransferase gene. The selective marker gene and the present DNA (A) may be inserted into the same vector and introduced. A vector comprising the selective marker gene and a vector comprising the present DNA (A) may also be introduced at the same time. A transformant to which the present DNA (A) has been introduced may also be selected by culturing with a medium containing the PPO inhibitory-type herbicidal compound of formula (I) and by isolating a clone multipliable therein. Whether the transformant contains the present DNA (A) can be confirmed by preparing the DNA from the transformant and then conducting with the prepared DNA genetic engineering analysis methods described in, for example, "Molecular Cloning 2nd edition", Cold Spring Harbor Press (Molecular Biology, John Wiley & Sons, N.Y. (1989) (such as confirming restriction enzyme sites, DNA sequencing, southern hybridizations, PCR and the like). The present DNA (A) introduced in the plant cell may be maintained at locations in the cell other than the DNA contained in the nucleus, by being inserted into the DNA contained in intracellular organelles such as the chloroplast.

[0089] From the transformed plant cell obtained in such a way, a transgenic plant to which the present DNA (A) has been introduced can be obtained, by regenerating a plant body by the plant cell culturing method described in Shokubutu-Idenshi-Sosa-Manual: Transgenic-Shokubutu-No-Tukurikata (Uchimiya, Kodansha-Scientific, 1990), pp. 27-55. Further, a targeted plant type to which the present DNA (A) has been introduced can be produced by mating the targeted type of plant with the transgenic plant to which the present DNA (A) has been introduced, so that the present DNA (A) is introduced into a chromosome of the targeted type of plant.

[0090] Specifically, for example, rice or Arabidopsis having introduced therein the present DNA (A) and expressing the present protein (A) can be obtained by the method described in Model-Shokubutu-No-Jikken-Protocol: Ine, Shiroinunazuna-Hen (Supervisors: Koh SHIMAMOTO and Kiyotaka OKADA, Shujun-sha, 1996), Fourth chapter. Further, there can be obtained a soybean having introduced therein the present DNA (A) and expressing the present protein (A) by an introduction into a soybean somatic embryo with a particle gun according to the method described in Japanese Unexamined Patent Publication No. 3-291501. Likewise, a maize having introduced therein the present DNA (A) and expressing the present protein (A) can be obtained by an introduction into maize somatic embryo with a particle gun according to the method described by Fromm, M.E., et al., Bio/Technology, 8; p 838 (1990). Wheat having introduced therein the present DNA (A) and expressing the present protein (A) can be obtained by introducing the gene into sterile-cultured wheat immature scutellum with a particle gun according to a conventional method described by TAKUMI et al., Journal of Breeding Society (1995), 44: Extra Vol. 1, p 57. Likewise, barley having introduced therein the present DNA (A) and expressing the present protein (A) can be obtained by an introduction into sterile-cultured barley immature scutellum with a particle gun according to a conventional method described by HAGIO, et al., Journal of Breeding Society (1995), 44; Extra Vol. 1, p 67.

[0091] The transformant having introduced therein the present DNA (A) and expressing the present protein (A) can reduce the plant damage by compound (I), by converting said herbicidal compound into a compound of lower herbicidal activity within its cells. Specifically, for example, by spreading the microorganism expressing the present protein (A) to the cultivation area of the desired cultivated plant before sowing seeds of the desired plant, the herbicidal compound remaining in the soil can be metabolized and the damage to the desired plant can be reduced. Further, by getting the desired variety of plant to express the present protein (A), the ability to metabolize the PPO inhibitory-type herbicidal compound of formula (I) to a compound of lower activity is conferred to said plant. As a result, the plant damage from the herbicidal compound in the plant is reduced and resistance to said compound is conferred.

[0092] The present protein (A) can be prepared, for example, by culturing a cell comprising the present DNA (A). As such a cell, there is mentioned a microorganism expressing the present DNA (A) and having the ability to produce the present protein (A), such as a microorganism strain isolated from nature comprising the present DNA (A), mutant

strains derived from the natural strain by treatment with agents or ultraviolet rays or the like. More specifically for example, there is mentioned microorganisms belonging to Streptomyces, such as Streptomyces phaeochromogenes IFO 12898, Streptomyces testaceus ATCC21469, Streptomyces achromogenes IFO 12735, Streptomyces griseolus ATCC11796, Streptomyces carbophilus SANK62585, Streptomyces griseofuscus IFO 12870t, Streptomyces thermocoerulescens IFO 14273t, Streptomyces nogalater IFO 13445, Streptomyces tsusimaensis IFO 13782, Streptomyces glomerochromogenes IFO 13673t, Streptomyces olivochromogenes IFO 12444, Streptomyces omatus IFO 13069t, Streptomyces griseus ATCC 10137, Streptomyces griseus IFO 13849T, Streptomyces lanatus IFO 12787T, Streptomyces misawanensis IFO 13855T, Streptomyces pallidus IFO 13434T, Streptomyces roseorubens IFO 13682T, Streptomyces rutgersensis IFO 15875T and Streptomyces steffisburgensis IFO 13446T, and the like; or microorganisms belonging to Saccharopolyspora, such as Saccharopolyspora taberi JCM 9383t and the like. Further, there can be mentioned a transformant in which the present DNA (A) or a vector containing the present DNA (A) has been introduced. Specifically for example, there is mentioned a transformant in which the present DNA (A) operably linked to a tac promoter, trc promoter, lac promoter or t7 phage promoter is introduced into E. coli. As more specific examples, there is mentioned E.coli JM109/pKSN657, E.coli JM109/pKSN657F, E.coli JM109/pKSN923, E.coli JM109/pKSN923F, E. coli JM109/pKSN11796, E.coli JM109/pKSN1 1796F, E.coli JM109/pKSN671, E.coli JM109/pKSN671F, E.coli JM109/pKSNSCA, E.coli JM109/pKSN646, E.coli JM109/pKSN646F, E.coli JM109/pKSN849AF, JM109/pKSN1618F, E.coli JM109/pKSN474F, E.coli JM109/pKSN1491AF, E.coli JM109/pKSN1555AF, E.coli JM109/pKSN1584F, E.coli JM109/pKSN1609F and the like, described in the examples described below.

5

10

15

20

25

30

35

40

45

50

55

[0093] As a medium for culturing the above microorganisms comprising the present DNA (A), there can be utilized any of those employed usually for culturing a microorganism which contains carbon sources and nitrogen sources, organic and inorganic salts as appropriate. A compound which is a precursor to heme, such as aminolevulinic acid, may be added.

[0094] As the carbon source, for example, there is mentioned saccharides such as glucose, fructose, sucrose and dextrin; sugar alcohols such as glycerol and sorbitol; and organic acids such as fumaric acid, citric acid and pyruvic acid; and the like. The amount of carbon sources listed above to be added to a medium is usually about 0.1% (w/v) to about 10% (w/v) based on a total amount of the medium.

[0095] As the nitrogen source, for example, there is mentioned ammonium salts of inorganic acids such as ammonium chloride, ammonium sulfate and ammonium phosphate; ammonium salts of organic acids such as ammonium fumarate and ammonium citrate; organic nitrogen sources, such as meat extract, yeast extract, malt extract, soybean powder, corn steep liquor, cotton seed powder, dried yeast, casein hydrolysate; as well as amino acids. Among those listed above, ammonium salts of organic acids, organic nitrogen sources and amino acids may mostly be employed also as carbon sources. The amount of nitrogen sources to be added is usually about 0.1% (w/v) to about 10% (w/v) based on the total amount of the medium.

[0096] As the inorganic salt, for example, there is mentioned phosphates such as potassium phosphate, dipotassium phosphate, sodium phosphate, disodium phosphate; chlorides such as potassium chloride, sodium chloride, cobalt chloride hexahydrate; sulfates such as magnesium sulfate, ferrous sulfate heptahydrate, zinc sulfate heptahydrate, manganese sulfate trihydrate; and the like. The amount to be added is usually about 0.0001% (w/v) to about 1% (w/v) based on a total amount of the medium.

[0097] In case of culturing a transformant retaining the present DNA (A) connected downstream of a T7 phage promoter and a DNA in which the nucleotide sequence encoding T7 RNA polymerase (λDE3 lysogen) is connected downstream of a lac UV5 promoter, typically, a small amount of, for example, isopropyl-β-D-thiogalactoside (hereinafter referred to as "IPTG") may be added as an inducer for inducing the production of the present protein (A). IPTG can also be added to the medium in case of culturing a transformant having introduced therein a DNA in which the present DNA (A) is operably linked to a type of promoter which is induced by lactose, such as tac promoter, trc promoter and lac promoter.

[0098] A microorganism comprising the present DNA (A) can be cultivated in accordance with a method employed usually to culture a microorganism, including a liquid phase cultivation such as a rotatory shaking cultivation, a reciprocal shaking cultivation, ajar fermentation (Jar Fermenter cultivation) and a tank cultivation; or a solid phase cultivation. When ajar fermenter is employed, aseptic air should be introduced into the Jar Fermenter usually at an aeration rate of about 0.1 to about 2 times culture fluid volume per minute. The temperature at which the cultivation is performed may vary within a range allowing a microorganism to be grown, and usually ranges from about 15°C to about 40°C, and the pH of the medium ranges from about 6 to about 8. The cultivation time may vary depending on the cultivation conditions, and is usually about 1 day to about 10 days.

[0099] The present protein (A) produced by a microorganism comprising the present DNA (A), for example, can be utilized in various forms in the treatment of the PPO inhibitory-type herbicidal compound of formula (I), such as a culture of a microorganism producing the present protein (A), a cell of a microorganism producing the present protein (A), a material obtained by treating such a cell, a cell-free extract of a microorganism, a crudely purified protein, a purified protein and the like. A material obtained by treating a cell described above includes for example a lyophilized cell, an

acetone-dried cell, a ground cell, an autolysate of a cell, an ultrasonically treated cell, an alkali-treated cell, an organic solvent-treated cell and the like. Alternatively, the present protein (A) in any of the various forms described above may be immobilized in accordance with known methods such as a support binding method employing an adsorption onto an inorganic carrier such as a silica gel or a ceramic material, a polysaccharide derivative such as a DEAE-cellulose, a synthesized polymer such as Amberite IRA-935 (Trade Name, manufactured by Rohm and Haas) and the like, and an inclusion method employing an inclusion into a network matrix of a polymer such as a polyacrylamide, a sulfurcontaining polysaccharide gel (e.g. carrageenan gel), an alginic acid gel, an agar gel and the like, and then used in the treatment of the herbicidal compound described above.

[0100] As methods of purifying the present protein (A) from a culture of a microorganism comprising the present DNA (A), there can be employed conventional methods utilized in a purification of protein. For example, there can be mentioned the following method.

[0101] First, cells are harvested from a culture of a microorganism by centrifugation or the like, and then disrupted physically by an ultrasonic treatment, a DYNOMILL treatment, a FRENCH PRESS treatment and the like, or disrupted chemically by utilizing a surfactant or a cell-lyzing enzyme such as lysozyme. From the resultant lysate thus obtained, insoluble materials are removed by centrifugation, membrane filtration or the like to prepare a cell-free extract, which is then fractionated by any appropriate means for separation and purification, such as a cation exchange chromatography, an anion exchange chromatography, a hydrophobic chromatography, a gel filtration chromatography and the like, whereby purifying the present protein (A). Supporting materials employed in such chromatography include for example a resin support such as cellulose, dextran and agarose connected with a carboxymethyl (CM) group, a diethylaminoethyl (DEAE) group, a phenyl group or a butyl group. A commercially available column already packed with any support such as Q-Sepharose FF, Phenyl-Sepharose HP, PD-10 and HiLoad 26/10 Q Sepharose HP (Trade Name, from Amersham Pharmacia Biotech), TSK-gel G3000SW (Trade Name, TOSOH CORPORATION) may also be employed.

[0102] One example of purifying the present protein (A) is given.

10

15

20

25

30

35

40

45

50

55

[0103] Cells of a microorganism producing the present protein (A) are harvested by centrifugation, and then suspended in a buffer such as 0.1M potassium phosphate (pH7.0). The suspension is treated ultrasonically to disrupt the cells, and the resultant lysate thus obtained is centrifuged at about 40,000g for about 30 minutes to obtain a supernatant, which is then centrifuged at 150,000g for about 1 hour to recover the supernatant (the cell-free extract). The obtained cell-free extract is subjected to ammonium sulfate fractionation to obtain the fraction that is soluble in the presence of 45%-saturated ammonium sulfate and precipitates at 55%-saturated ammonium sulfate. After the solvent of the fraction is exchanged with a buffer containing no ammonium sulfate, such as 1M potassium phosphate, utilizing a PD10 column (Amersham Pharmacia Biotech Company), the resulting fraction is loaded, for example, onto a HiLoad 26/10 Q Sepharose HP column (Amersham Pharmacia Biotech Company). The column is eluted with 20mM bistrispropane with a linear gradient of NaCl to obtain a series of fractions of eluate. The fractions showing activity in converting compound (II) to compound (III) in the presence of an electron transport system containing an electron donor, such as coenzyme NADPH, are recovered. Next, after exchanging the buffer in the fractions by utilizing for example the PD10 column (Amersham Pharmacia Biotech Company), the recovered fractions are loaded onto a Bio-Scale Ceramic, for example, Hydroxyapatite, Type I column CHT10-I (BioRad Company). After washing the column with Buffer A (2mM potassium phosphate buffer containing 1.5mM of CaCl₂; pH7.0), the column is eluted with Buffer A with a linear gradient of Buffer B (100mM potassium phosphate buffer containing 0.03mM CaCl₂) to obtain a series of fractions of eluate. The fractions showing activity in converting compound (II) to compound (III) in the presence of an electron transport system containing an electron donor, such as coenzyme NADPH, are recovered. After exchanging the buffer in the fractions by utilizing for example the PD10 column (Amersham Pharmacia Biotech Company), the recovered fractions are concentrated by for example ultrafiltration (microcon filter unit microcon-30; Millipore Company). The resulting fraction is injected for example into a HiLoad 16/60 Superdex column 75pg column (Amersham Pharmacia Biotech Company) and eluted with a 0.05M potassium phosphate buffer containing 0.15M NaCl (pH7.0) to obtain a series of fractions of eluate. The fractions showing activity in converting compound (II) to compound (III) in the presence of an electron transport system containing an electron donor, such as coenzyme NADPH, are recovered. The present protein (A) can be purified by a separation with an SDS-PAGE as needed.

[0104] By purifying the present invention protein (A) in the way described above, followed by utilizing the obtained present invention protein (A) as an immune antigen, there can be produced an antibody recognizing the present invention protein (A) (hereinafter sometimes referred to as the "present invention antibody (A)").

[0105] Specifically, for example, an animal is immunized with the present protein (A) purified in the way described above, as an antigen. For example, to immunize an animal such as a mouse, hamster, guinea pig, chicken, rat, rabbit, dog and the like, the antigen is administered at least once, utilizing a conventional method of immunization described in, for example, W.H. Newsome, J. Assoc. Off. Anal. Chem. 70(6) 1025-1027 (1987). As the schedule of administration, for example, there is mentioned an administration of 2 or 3 times at 7- to 30-day intervals, preferably, 12- to 16-day intervals. The dose thereof is, for example, from about 0.05mg to 2mg of the antigen for each administration. The

administration route may be selected from subcutaneous administration, intracutaneous administration, intraperitoneal administration, intravenous administration, and intramuscular administration and an injection given intravenously, intraabdominally or subcutaneously is a typical administration form. The antigen is typically used after being dissolved in a suitable buffer, for example, sodium phosphate buffer or physiological saline containing at least one type of ordinarily used adjuvant such as complete Freund's adjuvant (a mixture of Aracel A, Bayol F and dead tubercule bacillus), RAS [MPL (monophosphoryl lipid A) + TDM (synthetic trehalose dicorynomycolate) + CWS (cell wall skeleton) adjuvant system] or aluminum hydroxide. However, depending on the administration route or conditions, the adjuvants described above may not be used. The "adjuvant" is a substance which upon administration with the antigen, enhances a immune reaction unspecifically against the antigen. After nurturing the animal administered with the antigen for 0.5 to 4 months, a small amount of blood is sampled from e.g. an ear vein of the animal and measured for antibody titer. When the antibody titer is increasing, then the antigen is further administered for an appropriate number of times, depending on cases. For example, the antigen may be administered for one more time at a dose of about 100µg to 1000µg. One or two months after the last administration, blood is collected in a usual manner from the immunized animal. By having the blood fractionated by conventional techniques such as precipitation by centrifugation or with ammonium sulfate or with polyethylene glycol, chromatography such as gel filtration chromatography, ion-exchange chromatography and affinity chromatography, and the like, the present invention antibody (A) may be obtained as a polyclonal antiserum. Further, the antiserum may be incubated e.g. at 56 °C for 30 minutes to inactivate the complement system.

5

10

15

20

25

30

35

40

45

50

55

[0106] Alternatively, a polypeptide comprising a partial amino acid sequence of the present invention protein (A) is synthesized chemically and administered as an immune antigen to an animal, whereby producing the present invention antibody (A). As the amino acid sequence of a polypeptide employed as an immune antigen, an amino acid sequence which has as a low homology as possible with the amino acid sequences of other proteins is selected from amino acid sequences of the present invention protein (A). A polypeptide having a length of 10 amino acids to 15 amino acids consisting of the selected amino acid sequence is synthesized chemically by a conventional method and crosslinked for example with a carrier protein such as Limulus plyhemus hemocyanin using MBS and the like and then used to immunize an animal such as a rabbit as described above.

[0107] The resultant present invention antibody (A) is then brought into contact with a test sample, and then a complex of the protein in the test sample with the antibody described above is detected by a conventional immunological method, whereby detecting the present invention protein (A) or a polypeptide comprising a partial amino acid thereof in the test sample. Specifically, for example, it is possible to evaluate the presence of the present invention protein (A) or to quantify the present invention protein (A) in the examined test sample by a western blot analysis utilizing the present invention antibody (A) as shown in Examples 45 or 73 described below.

[0108] Further, for example, a cell expressing the present protein (A) can be detected, by contacting the present invention antibody (A) with a test cell or a test sample prepared from the test cell followed by detecting a complex of the above antibody and the protein in the test cell or a test sample prepared from the test cell, according to conventional immunology methods. By detecting the cell expressing the present invention protein (A) in such a way, it is also possible to select from a variety of cells, a cell expressing the present invention protein (A). It is also possible to clone or select a clone containing the present invention protein (A) with the use of the present invention antibody (A). For example, a genomic library can be produced by extracting genomic DNA from a cell that expresses the present invention protein (A) followed by inserting the genomic DNA into an expression vector. The genomic library is introduced into a cell. From the obtained cell group, a cell expressing the present invention protein (A) is selected with the use of the present invention antibody (A) in the way described above.

[0109] A kit comprising the present invention antibody (A) can be utilized to detect the present invention protein (A) as described above or to analyze, detect or search for a cell expressing the present invention protein (A). The kit of the present invention may contain the reagents necessary for the above analysis methods, other than the present invention antibody (A), and may have such a reagent used together with the present invention antibody (A).

[0110] By reacting a PPO inhibitory-type herbicidal compound of formula (I) in the presence of an electron transport system containing an electron donor, such as coenzyme NADPH, with the present protein (A), the above compound is metabolized and is converted into a compound of lower herbicidal activity. Specifically for example, by reacting compound (II) in the presence of an electron transport system containing an electron donor, such as coenzyme NADPH, with the present protein (A), compound (II) is converted to compound (III), which shows substantially no herbicidal activity. An example of protein (A) in such cases is the present invention protein (A). One variation of the present protein (A) may be utilized and multiple variations may be utilized together.

[0111] The compound of formula (I) is a compound having a uracil structure. As specific examples, there can be mentioned compound (II) or a compound of any one of formulas (IV) to (IX) (hereinafter, referred respectively to as compound (IV) to compound (IX)). It is possible to synthesize compound (II) and compound (IX) according to the method described in Japanese Unexamined Patent Publication No. 2000-319264, compound (IV) and compound (V) according to the method described in U. S. Pat. No. 5183492, compound (VI) according to the method described in Japanese Unexamined Patent Publication

No. 3-204865, and compound (VIII) according to the method described in Japanese Unexamined Patent Publication No. 6-321941.

$$CH_3$$

$$CF_3$$

$$CH_3$$

[0112] Further, as specific examples of the compound of formula (I), there can be mentioned a compound of any one of formulas (X) to (XVII) (hereinafter, respectively referred to as compound (X) to compound (XVII)).

25

30

35

50

55

40 [0113] Compounds which can be a substrate of the metabolizing reaction by the present protein (A) can be selected by having the compound present in a reaction in which compound (II) labeled with a radioisotope is reacted with the present protein (A), in the presence of an electron transport system containing an electron donor, such as coenzyme NADPH, and detecting as a marker the competitive inhibition of the conversion reaction by the present protein (A) of the labeled compound (II) to the labeled compound (III). When assaying for the presence of the competitive inhibition from a test compound, the test compound is typically added to amount to a molar concentration of from 1 to 100 times of the labeled compound (II).

[0114] The reaction in which compound (I) is reacted with the present protein (A) can be conducted, for example, in an aqueous buffer containing salts of inorganic acids such as an alkaline metal phosphate such as sodium phosphate and potassium phosphate; or salts of organic acids such as an alkaline metal acetate such as sodium acetate and potassium acetate; or the like. The concentration of the compound of formula (I) in a metabolizing reaction solution is typically at most about 30% (w/v) and preferably about 0.001% (w/v) to 20%(w/v). The amount of the electron transport system containing the electron donor, such as NADPH, or of the present protein (A) may vary, for example, depending on reaction time period. The reaction temperature is chosen from the range of typically from about 10°C to 70°C, and is preferably about 20°C to 50°C. The pH of the reaction solution is chosen from the range of typically from about 4 to 12 and is preferably about 5 to 10. The reaction time period may vary as desired, and is typically from about 1 hour to 10 days.

[0115] Further, the reaction in which compound (I) is reacted with the present protein (A) can be conducted in a cell comprising the present DNA (A). As the cells comprising the present DNA (A), for example, there is mentioned a

microorganism having the ability to express the present DNA (A) and produce the present protein (A), such as, a strain of those microorganisms isolated from nature comprising the present DNA (A), a mutant strain derived from the microorganism strain by treatment with chemicals or ultraviolet rays, a transformed microorganism cell in which the present DNA (A) or a vector containing the present DNA (A) is introduced into a host cell. Further, there is mentioned a transformed plant cell to which the present DNA (A) is introduced or a cell of a transformed plant to which the present DNA (A) is introduced. In such cases, the compound of formula (I) may be directly applied to a cell comprising the present DNA (A) or may be added to the culturing medium of the cell or the soil coming into contact with the cell, so as to enter the cell. The electron transport system containing the electron donor, such as NADPH, can be the system originally present in the cell and can be added from outside of the cell.

5

10

15

20

25

30

35

40

45

50

55

[0116] The metabolism of compound (I) by the present protein (A) can be confirmed, for example, by detecting the compound produced by the metabolism of compound (I). Specifically for example, compound (III) produced from metabolizing compound (II) can be detected with the HPLC analysis or TLC analysis, described above.

[0117] Further, the metabolism of compound (I) by the present protein (A) can be confirmed on the basis that the herbicidal activity in the reaction solution after compound (I) is reacted with the present protein (A) is comparatively lower than the case in which compound (I) is not reacted with the present protein (A). As a method of testing the herbicidal activity, for example, there is mentioned a method in which the above reaction solutions are applied onto weeds such as barnyardgrass (Echinochloa crus-galli), Blackgrass (Alopercurus myosuroides), Ivyleaf morningglory (Ipomoea hederacea) and Velvetleaf (Abutilon theophrasti), and the herbicidal effects are examined; or a method in which the weeds are cultivated on soil samples to which the above reaction solutions are applied and the herbicidal effects are examined; and the like. Further, there is mentioned a method in which the above reaction solutions may be spotted onto a leaf disk taken from a plant and the presence of plant damage (whitening) caused by the reaction solution is examined.

[0118] Further, the metabolism of compound (I) by the present protein (A) can be confirmed by detecting as a marker, the PPO inhibitory activity in the reaction solution after compound (I) is reacted with the present protein (A), which is comparatively lower than the activity in the reaction solution in which compound (I) is not reacted with the present protein (A). PPO is an enzyme catalyzing the conversion of protoporphyrinogen IX to protoporphyrin IX (hereinafter referred to as "PPIX"). For example, after adding the above reaction solutions to a reaction, system of PPO, protoporphyrinogen IX, which is a substrate of PPO, is added and incubated for about 1 to 2 hours at 30°C in the dark. Subsequently, the amount of PPIX in each of the incubated solutions is measured, utilizing an HPLC or the like. When the amount of PPIX in system to which the reaction solution in which compound (I) is not reacted with the present protein (A) is added is more than the amount of PPIX in system to which the reaction solution in which compound (I) is not reacted with the present protein (A) is added, it is determined that compound (I) had been metabolized by the present protein (A). As PPO, there may be utilized a protein purified from plants and the like or chloroplast fraction extracted from a plant. When utilizing the chloroplast fractions, aminolevulinic acid may be utilized in the reaction system of PPO, instead of protoporphyrinogen IX. Aminolevulinic acid is the precursor of protoporphyrinogen IX in the chlorophyll-heme biosynthesis pathway. A more specific example is given in Example 42 below.

[0119] By reacting with the present protein (A) in such a way, there can be conducted a treatment of the PPO inhibitory-type herbicidal compound of formula (I), which results in metabolization and conversion of the compound to a compound of lower herbicidal activity. The plant damage from said compound can be reduced by the treatment in which said compound which was sprayed onto the cultivation area of a plant, specifically for example, the compound which was sprayed onto the cultivation area of a plant and remains in plant residue or the soil or the like, is reacted with the present protein (A).

[0120] As the "electron transport system containing the electron donor" which can be utilized to react compound (I) with the present protein (A), for example, there can be mentioned a system containing NADPH, ferredoxin and ferredoxin-NADP+ reductase.

[0121] As a method of presenting the "electron transport system containing an electron donor" in a system for reacting compound (I) with the present protein (A), for example, there is mentioned a method of adding to the above reaction system, NADPH, ferredoxin derived from a plant such as spinach and ferredoxin-NADP+ reductase derived from a plant such as spinach. Further, there may be added to said reaction system, a fraction containing a component functional for the electron transport system in the reaction system of the present protein (A), which may be prepared from a microorganism such as E. coli. In order to prepare such a fraction, for example, after cells are harvested from a culture of a microorganism by centrifugation or the like, the cells are disrupted physically by an ultrasonic treatment, a DYNOMILL treatment, a FRENCH PRESS treatment and the like, or disrupted chemically by utilizing a surfactant or a cell-lyzing enzyme such as lysozyme. From the resultant lysate thus obtained, insoluble materials are removed by centrifugation, membrane filtration or the like to prepare a cell-free extract The cell-free extract as is can be utilized in exchange of the above ferredoxin as the fraction containing a component functional for the electron transport system in the reaction system of the present protein (A). Further, when a system which can transport an electron from an electron donor to the present protein (A) is present in such a cell, as with the case in which the reaction of the present

protein (A) with compound (I) is conducted in a cell such as a microorganism or a plant cell, no electron transport system may be newly added.

[0122] As the ferredoxin, for example, there can be utilized a ferredoxin derived from microorganisms belonging to Streptomyces, such as Streptomyces phaeochromogenes, Streptomyces testaceus, Streptomyces achromogenes, Streptomyces griseolus, Streptomyces thermocoerulescens, Streptomyces nogalater, Streptomyces tsusimaensis, Streptomyces glomerochromogenes, Streptomyces olivochromogenes, Streptomyces ornatus, Streptomyces griseus, Streptomyces lanatus, Streptomyces misawanensis, Streptomyces pallidus, Streptomyces roseorubens, Streptomyces rutgersensis and Streptomyces steffisburgensis, and more specifically, Streptomyces phaeochromogenes IFO12898, Streptomyces testaceus ATCC21469, Streptomyces achromogenes IFO 12735, Streptomyces griseolus ATCC11796, Streptomyces thermocoerulescens IFO 14273t, Streptomyces nogalater IFO 13445, Streptomyces tsusimaensis IFO 13782, Streptomyces glomerochromogenes IFO 13673t, Streptomyces olivochromogenes IFO 12444, Streptomyces ornatus IFO 13069t, Streptomyces griseus ATCC 10137, Streptomyces griseus IFO 13849T, Streptomyces lanatus IFO 12787T, Streptomyces misawanensis IFO 13855T, Streptomyces pallidus IFO 13434T, Streptomyces roseorubens IFO 13682T, Streptomyces rutgersensis IFO 15875T and Streptomyces steffisburgensis IFO 13446T, and the like; or microorganisms belonging to Saccharopolyspora, such as Saccharopolyspora taberi, more specifically, Saccharopolyspora taberi JCM 9383t and the like (hereinafter, sometimes collectively referred to as the "present protein (B)"). Specifically for example, there can be mentioned a ferredoxin selected from the protein group below (hereinafter, sometimes referred to as the "present invention protein (B)").

oup>

[0123]

5

10

20

25

30

35

40

45

50

55

- (B1) a protein comprising an amino acid sequence shown in SEQ ID NO: 12 (hereinafter, sometimes referred to as the "present invention protein (B1)");
- (B2) a protein comprising an amino acid sequence shown in SEQ ID NO: 13 (hereinafter, sometimes referred to as the "present invention protein (B2)");
- (B3) a protein comprising an amino acid sequence shown in SEQ ID NO: 14 (hereinafter, sometimes referred to as the "present invention protein (B3)");
- (B4) a protein comprising an amino acid sequence shown in SEQ ID NO: 111 (hereinafter, sometimes referred to as the "present invention protein (B4)");
- (B5) a ferredoxin comprising an amino acid sequence having at least 80% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO 14 or SEQ ID NO: 111;
- (B6) a ferredoxin comprising an amino acid sequence encoded by a nucleotide sequence having at least 90% sequence identity with a nucleotide sequence encoding an amino acid sequence shown in any one of SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO 14 or SEQ ID NO: 111;
- (B7) a protein comprising an amino acid sequence shown in SEQ ID NO: 149 (hereinafter, sometimes referred to as the "present invention protein (B7)");
- (B8) a protein comprising an amino acid sequence shown in SEQ ID NO: 150 (hereinafter, sometimes referred to as the "present invention protein (B8)");
- (B9) a protein comprising an amino acid sequence shown in SEQ ID NO: 151 (hereinafter, sometimes referred to as the "present invention protein (B9)");
- (B10) a protein comprising an amino acid sequence shown in SEQ ID NO: 152 (hereinafter, sometimes referred to as the "present invention protein (B 10)");
- (B11) a protein comprising an amino acid sequence shown in SEQ ID NO: 153 (hereinafter, sometimes referred to as the "present invention protein (B 11)");
 - (B12) a ferredoxin comprising an amino acid sequence having at least 80% sequence identity with any one of the amino acid sequence shown in SEQ ID NO: 149, SEQ ID NO: 151, SEQ ID NO: 152, SEQ ID NO: 153, SEQ ID NO: 245, SEQ ID NO: 247, SEQ ID NO: 248, SEQ ID NO: 249, SEQ ID NO: 250, SEQ ID NO: 251, or SEQ ID NO: 253 or an amino acid sequence having at least 90% sequence identity with any one of the amino acid sequence shown in SEQ ID NO: 150, SEQ ID NO: 252 or SEQ ID NO: 254;
 - (B13) a ferredoxin comprising an amino acid sequence encoded by a nucleotide sequence having at least 90% sequence identity with any of the nucleotide sequence encoding an amino acid sequence shown in SEQ ID NO: 149, SEQ ID NO: 150, SEQ ID NO: 151, SEQ ID NO: 152, SEQ ID NO: 153, SEQ ID NO: 245, SEQ ID NO: 247, SEQ ID NO: 248, SEQ ID NO: 249, SEQ ID NO: 250, SEQ ID NO: 251, SEQ ID NO: 252, SEQ ID NO: 253 or SEQ ID NO: 254;
 - (B14) a protein comprising the amino acid sequence shown in SEQ ID NO: 245;
 - (B15) a protein comprising the amino acid sequence shown in SEQ ID NO: 247;

```
(B16) a protein comprising the amino acid sequence shown in SEQ ID NO: 248; (B17) a protein comprising the amino acid sequence shown in SEQ ID NO: 249; (B18) a protein comprising the amino acid sequence shown in SEQ ID NO: 250; (B19) a protein comprising the amino acid sequence shown in SEQ ID NO: 251; (B20) a protein comprising the amino acid sequence shown in SEQ ID NO: 252; (B21) a protein comprising the amino acid sequence shown in SEQ ID NO: 253; and (B22) a protein comprising the amino acid sequence shown in SEQ ID NO: 254.
```

5

10

15

20

25

30

35

40

45

50

55

[0124] A DNA encoding the present protein (B) (hereinafter, sometimes referred to as the "present DNA (B)") can be obtained according to conventional genetic engineering methods described in Molecular Cloning: A Laboratory Manual 2nd edition (1989), Cold Spring Harbor Laboratory Press; Current Protocols in Molecular Biology (1987), John Wiley & Sons, Incorporated and the like, based on the nucleotide sequences encoding the amino acid sequences of the present invention protein (B) shown in SEQ ID NO: 12, 13, 14, 111, 149, 150, 151, 152, 153, 245, 247, 248, 249, 250, 251, 252, 253 or 254.

[0125] As the DNA encoding the present invention protein (B) (hereinafter, sometimes collectively referred to as the "present invention DNA (B)"), there is mentioned

a DNA encoding a protein comprising an amino acid sequence shown in SEQ ID NO: 12 (hereinafter, sometimes referred to as the "present invention DNA (B1)");

a DNA encoding a protein comprising an amino acid sequence shown in SEQ ID NO: 13 (hereinafter, sometimes referred to as the "present invention DNA (B2)");

a DNA encoding a protein comprising an amino acid sequence shown in SEQ ID NO: 14 (hereinafter, sometimes referred to as the "present invention DNA (B3)");

a DNA encoding a protein comprising an amino acid sequence shown in SEQ ID NO: 111 (hereinafter, sometimes referred to as the "present invention DNA (B4)");

a DNA encoding a ferredoxin comprising an amino acid sequence having at least 80% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO 14 or SEQ ID NO: 111;

a DNA encoding a ferredoxin comprising an amino acid sequence encoded by a nucleotide sequence having at least 90% sequence identity with a nucleotide sequence encoding an amino acid sequence shown in any one of SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO 14 or SEQ ID NO: 111;

a DNA encoding a protein comprising an amino acid sequence shown in SEQ ID NO: 149 (hereinafter, sometimes referred to as the "present invention DNA (B7)");

a DNA encoding a protein comprising an amino acid sequence shown in SEQ ID NO: 150 (hereinafter, sometimes referred to as the "present invention DNA (B8)");

a DNA encoding a protein comprising an amino acid sequence shown in SEQ ID NO: 151 (hereinafter, sometimes referred to as the "present invention DNA (B9)");

a DNA encoding a protein comprising an amino acid sequence shown in SEQ ID NO: 152 (hereinafter, sometimes referred to as the "present invention DNA (B10)");

a DNA encoding a protein comprising an amino acid sequence shown in SEQ ID NO: 153 (hereinafter, sometimes referred to as the "present invention DNA (B11)");

a DNA encoding a ferredoxin comprising an amino acid sequence having at least 80% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 149, SEQ ID NO: 151, SEQ ID NO: 152, SEQ ID NO: 153, SEQ ID NO: 245, SEQ ID NO: 247, SEQ ID NO: 248, SEQ ID NO: 249, SEQ ID NO: 250, SEQ ID NO: 251, or SEQ ID NO: 253 or an amino acid sequence having at least 90% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 150, SEQ ID NO: 252 or SEQ ID NO: 254;

a DNA encoding a ferredoxin comprising an amino acid sequence encoded by a nucleotide sequence having at least 90% sequence identity with a nucleotide sequence encoding an amino acid sequence shown in any one of SEQ ID NO: 149, SEQ ID NO: 150, SEQ ID NO: 151, SEQ ID NO: 152, SEQ ID NO: 153, SEQ ID NO: 245, SEQ ID NO: 247, SEQ ID NO: 248, SEQ ID NO: 249, SEQ ID NO: 250, SEQ ID NO: 251, SEQ ID NO: 252, SEQ ID NO: 253 or SEQ ID NO: 254;

```
a DNA encoding a protein comprising the amino acid sequence shown in SEQ ID NO: 245;
```

- a DNA encoding a protein comprising the amino acid sequence shown in SEQ ID NO: 247;
- a DNA encoding a protein comprising the amino acid sequence shown in SEQ ID NO: 248;
- a DNA encoding a protein comprising the amino acid sequence shown in SEQ ID NO: 249;
- a DNA encoding a protein comprising the amino acid sequence shown in SEQ ID NO: 250;
- a DNA encoding a protein comprising the amino acid sequence shown in SEQ ID NO: 251;
- a DNA encoding a protein comprising the amino acid sequence shown in SEQ ID NO: 252;
- a DNA encoding a protein comprising the amino acid sequence shown in SEQ ID NO: 253; and
- a DNA encoding a protein comprising the amino acid sequence shown in SEQ ID NO: 254.

[0126] As more specific examples of the present invention DNA (B), there can be mentioned a DNA comprising a nucleotide sequence shown in any one of SEQ ID NO: 15, 16, 17, 112, 154, 155, 156, 157, 158, 255, 257, 258, 259, 260, 261, 262, 263 or 264, or a DNA comprising a nucleotide sequence having at least 90% sequence identity with a nucleotide sequence shown in any one of SEQ ID NO: 15, 16, 17, 112, 154, 155, 156, 157, 158, 255, 257, 258, 259, 260, 261, 262, 263 or 264.

5

10

15

20

25

30

35

40

45

50

55

[0127] Such DNA can be prepared by conducting methods in which PCR is conducted with DNA comprising a partial nucleotide sequence of the nucleotide sequences thereof as primers or hybridization methods in which such DNA is used as probes, according to the conditions described above in the methods of preparing the present DNA (A).

[0128] Specifically for example, a DNA comprising a nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO: 12 or a DNA comprising the nucleotide sequence shown in SEQ ID NO: 15, can be prepared by conducting PCR by utilizing as the template the chromosomal DNA or chromosomal DNA library prepared from Streptomyces phaeochromogenes IFO12898 and by utilizing as primers an oligonucleotide comprising the nucleotide sequence shown in SEQ ID NO: 105 and an oligonucleotide comprising the nucleotide sequence shown in SEQ ID NO: 53.

[0129] Further, a DNA comprising a nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO: 13 or a DNA comprising the nucleotide sequence shown in SEQ ID NO: 16, can be prepared by conducting PCR by utilizing as the template the chromosomal DNA or chromosomal DNA library prepared from Saccharopolyspora taberi JCM 9383t and by utilizing as primers an oligonucleotide comprising the nucleotide sequence shown in SEQ ID NO: 106 and an oligonucleotide comprising the nucleotide sequence shown in SEQ ID NO: 107 and an oligonucleotide comprising the nucleotide sequence shown in SEQ ID NO: 108 and an oligonucleotide comprising the nucleotide sequence shown in SEQ ID NO: 109 and an oligonucleotide comprising the nucleotide sequence shown in SEQ ID NO: 109 and an oligonucleotide comprising the nucleotide sequence shown in SEQ ID NO: 109 and 109 and

[0130] Further, a DNA comprising a nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO: 14 or a DNA comprising the nucleotide sequence shown in SEQ ID NO: 17, can be prepared by conducting PCR by utilizing as the template the chromosomal DNA or chromosomal DNA library prepared from Streptomyces testaceus ATCC21469 and by utilizing as primers an oligonucleotide comprising the nucleotide sequence shown in SEQ ID NO: 107 and an oligonucleotide comprising the nucleotide sequence shown in SEQ ID NO: 72.

[0131] Further, for example, the present invention DNA (B) can be obtained by hybridizing with a chromosomal DNA library, a DNA consisting of about at least 20 nucleotides comprising the nucleotides sequence encoding an amino acid sequences shown in any one of SEQ ID NO: 12, 13, 14, 111, 149, 150, 151, 152 or 153, as a probe under the conditions described above, followed by detecting and recovering the DNA which bound specifically with said probe. The chromosomal DNA library can be prepared as described above from microorganisms belonging to Streptomyces, such as Streptomyces phaeochromogenes, Streptomyces testaceus, Streptomyces achromogenes, Streptomyces thermocoerulescens, Streptomyces nogalater, Streptomyces tsusimaensis, Streptomyces glomerochromogenes, Streptomyces olivochromogenes, Streptomyces ornatus, Streptomyces griseus, Streptomyces lanatus, Streptomyces misawanensis, Streptomyces pallidus, Streptomyces roseorubens, Streptomyces rutgersensis and Streptomyces steffisburgensis, and more specifically, Streptomyces phaeochromogenes IFO12898, Streptomyces testaceus ATCC21469, Streptomyces achromogenes IFO 12735, Streptomyces thermocoerulescens IFO 14273t, Streptomyces nogalater IFO 13445, Streptomyces tsusimaensis IFO 13782, Streptomyces glomerochromogenes IFO 13673t, Streptomyces olivochromogenes IFO 12444, Streptomyces omatus IFO 13069t, Streptomyces griseus ATCC 10137, Streptomyces griseus IFO 13849T, Streptomyces Ianatus IFO 12787T, Streptomyces misawanensis IFO 13855T, Streptomyces pallidus IFO 13434T, Streptomyces roseorubens IFO 13682T, Streptomyces rutgersensis IFO 15875T and Streptomyces steffisburgensis IFO 13446T, and the like; or microorganisms belonging to Saccharopolyspora, such as Saccharopolyspora taberi, more specifically, Saccharopolyspora taberi JCM 9383t and the like. As specific examples of the DNA which can be utilized as such probes, there is mentioned a DNA comprising a nucleotide sequence shown in any one of SEQ ID NO: 15, 16, 17, 112, 154, 155, 156, 157, 158, 255, 257, 258, 259, 260, 261, 262, 263 or 264; DNA comprising a partial nucleotide sequence of such nucleotide sequences; or a DNA comprising a nucleotide sequence complimentary to said partial nucleotides sequences.

[0132] To express the present DNA (B) with a host cell, for example, a DNA in which the present DNA (B) and a promoter functional in a host cell are operably linked is prepared according to conventional genetic engineering methods described in "Molecular Cloning: A Laboratory Manual 2nd edition (1989)", Cold Spring Harbor Laboratory Press; "Current Protocols in Molecular Biology (1987)", John Wiley & Sons, Incorporated and the like, and is introduced into a host cell. Whether the obtained transformant contains the present DNA (B) can be confirmed by preparing the DNA from the transformant and then conducting with the prepared DNA genetic engineering analysis methods described in, for example, "Molecular Cloning 2nd edition", Cold Spring Harbor Press (Molecular Biology, John Wiley & Sons, N. Y. (1989) (such as confirming restriction enzyme sites, DNA sequencing, southern hybridizations, PCR and the like). [0133] The present DNA (B) and the present DNA (A) can be expressed in the same cell, by introducing into a cell comprising the present DNA (A), the DNA in which the present DNA (B) and a promoter functional in a host cell are operably linked.

[0134] The present protein (B) can be prepared, for example, by culturing a cell comprising the present DNA (B). As such a cell, there is mentioned a microorganism expressing the present DNA (B) and having the ability to produce the present protein (B), such as microorganism strain isolated from nature comprising the present DNA (B), mutant strains

derived from said natural strain by treatment with agents or ultraviolet rays or the like. For example, there is mentioned microorganisms belonging to Streptomyces, such as Streptomyces phaeochromogenes, Streptomyces testaceus, Streptomyces achromogenes, Streptomyces griseolus, Streptomyces thermocoerulescens, Streptomyces nogalater, Streptomyces tsusimaensis, Streptomyces glomerochromogenes, Streptomyces olivochromogenes, Streptomyces ornatus, Streptomyces griseus, Streptomyces lanatus, Streptomyces misawanensis, Streptomyces pallidus, Streptomyces roseorubens, Streptomyces rutgersensis and Streptomyces steffisburgensis, and more specifically, Streptomyces phaeochromogenes IFO 12898, Streptomyces testaceus ATCC21469, Streptomyces achromogenes IFO 12735, Streptomyces griseolus ATCC11796, Streptomyces thermocoerulescens IFO 14273t, Streptomyces nogalater IFO 13445, Streptomyces tsusimaensis IFO 13782, Streptomyces glomerochromogenes IFO 13673t, Streptomyces olivochromogenes IFO 12444, Streptomyces omatus IFO 13069t, Streptomyces griseus ATCC 10137, Streptomyces griseus IFO 13849T, Streptomyces lanatus IFO 12787T, Streptomyces misawanensis IFO 13855T, Streptomyces pallidus IFO 13434T, Streptomyces roseorubens IFO 13682T, Streptomyces rutgersensis IFO 15875T and Streptomyces steffisburgensis IFO 13446T, and the like; or microorganisms belonging to Saccharopolyspora, such as Saccharopolyspora taberi, more specifically, Saccharopolyspora taberi JCM 9383t and the like. Further, there can be mentioned a transformant in which the present DNA (B) has been introduced. Specifically for example, there is mentioned a transformant in which the present DNA (B) operably linked to a tac promoter, trc promoter, lac promoter or T7 phage promoter has been introduced into E. coli. As more specific examples, there is mentioned E.coli JM109/pKSN657FD, E.coli JM109/pKSN923FD, E.coli JM109/pKSN671FD and the like described in the examples described below.

5

10

15

20

25

30

35

40

45

50

55

[0135] The microorganism comprising the present DNA (B) can be cultivated in accordance with a method employed usually to culture a microorganism, and more specifically, conducted according to the conditions described above in the methods of culturing the microorganism comprising the present DNA (A).

[0136] The present protein (B) produced by the microorganism comprising the present DNA (B), for example, can be utilized in various forms in reaction system of the present protein (A), such as a culture of a microorganism producing the present protein (B), a cell of a microorganism producing the present protein (B), a material obtained by treating such a cell, a cell-free extract of a microorganism, a crudely purified protein, a purified protein and the like. A material obtained by treating a cell described above includes for example a lyophilized cell, an acetone-dried cell, a ground cell, an autolysate of a cell, an ultrasonically treated cell, an alkali-treated cell, an organic solvent-treated cell and the like. Alternatively, the present protein (B) in any of the various forms described above may be immobilized in accordance with known methods such as a support binding method employing an adsorption onto a synthesized polymer and the like, and an inclusion method employing an inclusion into a network matrix of a polymer, and then used in the reaction system of the present protein (A).

[0137] As methods of purifying the present protein (B) from a culture of a microorganism comprising the present DNA (B), there can be employed conventional methods utilized in a purification of protein. For example, there can be mentioned the following method.

[0138] First, cells are harvested from a culture of a microorganism by centrifugation or the like, and then disrupted physically by an ultrasonic treatment and the like, or disrupted chemically by utilizing a surfactant or a cell-lyzing enzyme such as lysozyme. From the resultant lysate thus obtained, insoluble materials are removed by centrifugation, membrane filtration or the like to prepare a cell-free extract, which is then fractionated by any appropriate means for separation and purification, such as a cation exchange chromatography, an anion exchange chromatography, a hydrophobic chromatography, a gel filtration chromatography and the like, whereby purifying the present protein (B). By separation of the fraction thus obtained with an SDS-PAGE, the present protein (B) can be further purified.

[0139] The function of the present protein (B) as ferredoxin can be confirmed as a function of electron transporter from ferredoxin-NADP+ reductase to the present protein (A) in the reaction system in which compound (I) is reacted with the present protein (A). Specifically for example, there can be a confirmation by adding the present protein (B) with NADPH, ferredoxin-NADP+ reductase and the present protein (A) to the reaction system in which compound (I) is reacted with the present protein (A), followed by detecting the conversion of compound (II) to compound (III).

[0140] In the method of controlling weeds of the present invention, compound (I) is applied to the cultivation area of a plant expressing the present protein (A). Such a plant may express one variation of the present protein (A) or may express multiple variations of the present protein (A). As the present protein (A), for example, there may be mentioned the present invention protein (A). Plants expressing the present protein (A) can be obtained as a transgenic plant to which the present DNA (A) has been introduced. Such introduction involves introducing the present DNA (A) into a plant cell in the way described above so that the DNA is placed in a position enabling its expression, followed by regenerating a plant from the obtained transformed cell. The present DNA (A) introduced into the plant cell may have linked upstream therefrom, a nucleotide sequence encoding a transit signal to an intracellular organelle, so that the reading frames are in frame.

[0141] The plant having introduced therein the present DNA (A) and expressing the present protein (A) metabolizes compound (I), within its cells, into a compound of lower herbicidal activity. As a result, the plant damage from the herbicidal compound in the plant is reduced and resistance to said compound is conferred. As such, the plant having

introduced therein the present DNA (A) and expressing the present protein (A) can grow well even in a case in which compound (I) is applied to a cultivation area thereof. Weeds other than the plant having introduced therein the present DNA (A) and expressing the present protein (A) can be removed effectively by cultivating said plant and applying the above herbicidal composition to the cultivation area. It is possible to improve the yield of the above plant, improve the quality, reduce the amount of utilized herbicide and save labor.

[0142] The evaluation of resistance of the cell expressing the present protein (A) to the compound of formula (I) or a herbicidal composition comprising said compound can be carried out by contacting the cell expressing the gene encoding the present protein (A) with said compound or said herbicidal composition and evaluating the degree of damage to the cell.

[0143] Specifically, to evaluate the resistance of a microorganism cell expressing the present protein (A) to compound (I) or the herbicidal composition comprising compound (I), a transformed E. coli expressing plant PPO and the present protein (A) may be prepared. Such preparation involves additionally introducing the present DNA (A) into, for example, a transformed E. coli which can be utilized to evaluate PPO activity inhibition and has been described in Japanese patent application No. 11-102534, more specifically, a transformed E. coli in which a plant PPO gene described in U. S. Pat. No. 5939602 or the like is operably introduced into the E. coli BT3 strain and expressing the PPO gene. The E. coli BT3 strain has a defect in PPO gene and has no proliferation ability, as described in F. Yamamoto, H. Inokuti, H. Ozaki, (1988) Japanese Journal of Genetics, Vol. 63, pg. 237-249. The resistance to the compound or the herbicidal composition can be evaluated by cultivating the resulting transformed E. coli with shaking for about 18 to 24 hours at 37°C in a liquid culture medium containing compound (I) or the herbicidal composition comprising said compound in an amount of from 0 to 1.0 ppm and measuring the proliferation of said transformed E. coli with an optical density at 600nm. As the present protein (A), for example, there can be mentioned the present invention protein (A).

[0144] As a method of evaluating the degree of resistance of a plant expressing the present protein (A) to the compound of formula (I) or a herbicidal composition comprising said compound, there is mentioned a method of applying the herbicidal composition to the plant and measuring the degree of growth of the plant. For more quantitative confirmation, for example, first, pieces of leaves of the plant are dipped in aqueous solutions containing compound (I) at various concentrations, or the aqueous solutions of compound (I) are sprayed on pieces of leaves of the plant, followed by allowing to stand on an agar medium in the light at room temperature. After several days, chlorophyll is extracted from the plant leaves according to the method described by Mackenney, G., J. Biol. Chem., 140; p 315 (1941) to determine the content of chlorophyll. Specifically for example, leaves of the plant are taken and are split equally into 2 pieces along the main vein. The herbicidal composition is spread onto the full surface of one of the leaf pieces. The other leaf piece is left untreated. These leaf pieces are placed on MS medium containing 0.8% agar and allowed to stand in the light at room temperature for 7 days. Then, each leaf piece is ground with pestle and mortar in 5 ml of 80% aqueous acetone solution to extract chlorophyll. The extract liquid is diluted 10 fold with 80% aqueous acetone solution and the absorbance is measured at 750 nm, 663nm and 645 nm to calculate total chlorophyll content according to the method described by Mackenney G., J. Biol. Chem. (1941) 140, p 315. The degree of resistance to compound (I) can be comparatively evaluated by showing in percentiles the total chlorophyll content of the treated leaf piece with the total chlorophyll content of the untreated leaf piece. As the present protein (A), for example, the present invention protein (A) can be mentioned.

[0145] Based on the above method of evaluating the degree of resistance to compound (I) or a herbicidal composition comprising compound (I), there can be selected a plant or a plant cell showing a resistance to compound (I) or a herbicidal composition comprising compound (I). For example, there is selected a plant where no damage can be seen from spraying compound (I) or a herbicidal composition comprising the compound to the cultivation area of the plant, or plant cell that continuously grows through culturing in the presence of compound (I). Specifically, for example, soil is packed into a plastic pot having, for example, a diameter of 10cm and a depth of 10cm. Seeds of the plant are sowed and cultivated in a greenhouse. An emulsion is prepared by mixing 5 parts of a herbicidal composition comprising compound (I), 6 parts of sorpol3005X (Toho chemicals) and 89 parts of xylene. A certain amount thereof was diluted with water containing 0.1% (v/v) of a sticking agent at a proportion of 1000L for 1 hectare and is spread uniformly with a spray-gun onto the all sides of the foliage from above the plant cultivated in the above pot. After cultivating the plants for 16 days in a greenhouse, the damage to the plants is investigated. The plants in which the damage is not observed or the plants in which the damage is reduced may be selected. Further, progeny plants can be obtained by mating such selected plants.

EXAMPLES

5

10

15

20

25

30

35

40

45

50

55

[0146] The present invention is explained in more detail with the Examples below, but the present invention is not limited to such examples.

[0147] The HPLC for content analysis in Examples 1, 41 and 42 and fraction purification of the compound was conducted under the conditions shown below.

(HPLC analysis condition 1)

[0148]

20

25

30

5	column	SUMIPAX ODS211 (Sumika Chemical Analysis Service)
	column temperature	35°C
	flow rate	1ml/minute
	detection wave length	UV254nm
10	eluent A	0.01% TFA aqueous solution
,0	eluent B	acetonitrile
	elution conditions	The sample is injected to the column equilibrated with a solvent mixture of 90% of eluent
		A and 10% eluent B. The solvent mixture of 90% of eluent A and 10% eluent B is then
		flowed for 5 minutes. This is followed by flowing a solvent mixture of eluent A and eluent
15		B for 20 minutes, while increasing the proportion of eluent B from 10% to 90%. A solvent
		mixture of 10% of eluent A and 90% of eluent B is then flowed for 8 minutes.

Example 1 The Metabolism of Compound (II) by a Microorganism

(1) Metabolism of compound (II)

[0149] The various microorganisms shown in Tables 1 and 2 were grown in ISP2 agar medium (1.0%(w/v) malt extract, 0.4%(w/v) yeast extract, 0.4% (w/v) glucose, 2.0%(w/v) agar, pH 7.3). A "loopful" of the each microorganism was added to TGY medium (0.5%(w/v) tryptone, 0.5%(w/v) yeast extract, 0.1%(w/v) glucose, 0.01%(w/v) KH₂PO₄, pH 7.0) and incubated with shaking at 30°C for 2 to 4 days. One-tenth milliliter (0.1ml) of the obtained culture was incubated with shaking in 3 ml of sporulation medium (0.1 %(w/v) of meat extract, 0.2%(w/v) tryptose, 1% glucose, pH 7.1) containing compound (II) at 100ppm for 7 to 8 days at 30°C. Fifty microliters (50µl) of 2N HCl was added to the resulting culture and this was extracted with 3ml of ethyl acetate. The obtained ethyl acetate layer was analyzed on the HPLC. The concentration of compound (II) was reduced (column retention time of 23.9 minutes) and new peaks were detected for compounds at retention times of 21.6 minutes and 22.2 minutes (each referred to as metabolite (I) and metabolite (II)). The results are shown in Tables 1 and 2.

Table 1

35	strain of the microorganism	concentration of compound (II) (ppm)	peak area of metabolite (I) (x10 ⁴)	peak area of metabolite (II) (x10 ⁴)			
	Streptomyces cacaoiasoensis IFO13813	77.8	3.43	3.57			
40	Streptomyces griseofuscus IFO12870t	49.5	7.96	9.86			
	Streptomyces ornatus IFO13069t	65.3	4.30	5.00			
45	Streptomyces thermocoerulescens IFO14273t	51.7	7.47	9.16			
50	Streptomyces roseochromogenes ATCC 13400	81.9	0.71	0.82			
	Streptomyces lavendulae ATCC 11924	89.6	1.02	1.50			
55	Streptomyces griseus ATCC 10137	65.6	6.19	1.30			

Table 1 (continued)

	strain of the microorganism	concentration of compound (II) (ppm)	peak area of metabolite (I) (x10 ⁴)	peak area of metabolite (II) (x10 ⁴)
5	Streptomyces griseus ATCC11429	30.3	12.8	15 6
	Streptomyces griseus ATCC 12475	51.1	0.52	2.27
10	Streptomyces griseus ATCC15395	75.2	1.91	2.26
	Streptomyces erythreus ATCC11635	54.6	4.94	6.05
15	Streptomyces scabies IFO3111	88.3	3.28	4.40
	Streptomyces griseus IFO3102	22.6	14.4	18.5
20	Streptomyces catenulae IFO12848	85.3	3.81	1.59
	Streptomyces kasugaensis ATCC15714	92.4	1.08	0.91
25	Streptomyces rimosus ATCC 10970	70.9	2.30	2.87
30	Streptomyces achromogenes IFO 12735	0.0	15.9	. 21.8
	Streptomyces lydicus IFO13058	62.0	5.48	6.69

35

Table 2

	strain of the microorganism	concentration of compound (II) (ppm)	peak area of metabolite (I) (x10 ⁴)	peak area of metabolite (II) (x10 ⁴)
40	Streptomyces phaeochromogenes IFO12898	46.4	8.28	10.5
•	Streptomyces afghaniensis IFO12831	80.6	2.54	3.59
45	Streptomyces hachijoensis IFO12782	83.9	4.99	2.91
50	Streptomyces argenteolus var. toyonakensis ATCC21468	13.0	14.9	19.2
	Streptomyces testaceus ATCC21469	18.4	11.6	14.4
55	Streptomyces purpurascens ATCC25489	70.9	5.37	6.11

Table 2 (continued)

	strain of the microorganism	concentration of compound (II) (ppm)	peak area of metabolite (I) (x10 ⁴)	peak area of metabolite (II) (x10 ⁴)
5	Streptomyces griseochromogenes ATCC14511	53.9	3.00	3.97
10	Streptomyces kasugaensis IFO13851	66.3	12.1	12.6
70	Streptomyces argenteolus var.toyon ATCC21468t	90.1	2.75	3.01
15	Streptomyces roseochromogenes ATCC13400t	71.8	4.66	4.00
	Streptomyces nogalater IFO13445	12.8	21.9	24.9
20	Streptomyces roseochromogenus ATCC21895	74.2	4.14	5.87
25	Streptomyces fimicarius ATCC21900	46.5	8.33	11.3
	Streptomyces chartreusis ATCC21901	61.1	3.70	3.94
30	Streptomyces globisporus subsp. globisporus ATCC21903	79.9	2.86	2.52
•	Streptomyces griseolus ATCC 11796	0	14.4	19.9
35	Saccharopolyspora taberi JCM9383T	82.9	5.83	7.71
	Streptomyces sp. SANK62585	54.6	2.30	3.44

(2) Structure Determination of the metabolite (I) and metabolite (II)

40

45

50

55

[0150] A frozen stock of Streptomyces griseus ATCC11429 was added to 3ml of a microorganism culture medium (0.7%(w/v) polypeptone, 0.5%(w/v) yeast extract, 1.0%(w/v) of glucose, 0.5%(w/v) of K₂HPO₄, pH7.2) and incubated with shaking in a test tube overnight to obtain a pre-culture. Such pre-culture was added to 300ml of the microorganism medium containing compound (II) at a concentration of 100ppm. This was divided into 100 small test tubes at 3ml each and incubated with shaking at 30°C for 6 days. After 250ml of such culture was adjusted to a pH2 by adding HCl, this was extracted with 250ml of ethyl acetate. The solvents were removed from the ethyl acetate layer. The residue was dissolved in 3ml of acetone and spotted to a silica gel TLC plate (TLC plate silica gel 60F₂₅₄, 20cm x 20xm, 0.25mm thickness, Merck Company). The TLC plate was developed with 5:7:1 (v/v/v) mixture of toluene, formic acid and ethyl formate. The Rf value around 0.58 of the silica gel was taken. Such contents of the TLC plate were extracted with acetone. The acetone was removed from the extraction layer. The residue was dissolved in 10ml of acetonitrile and fractionated with a HPLC. The fractions containing only metabolite (I) and metabolite (II) were recovered to obtain 3.7mg of metabolites (hereinafter referred to as "metabolite A").

[0151] Mass spectrometry analysis of metabolite A was conducted. Metabolite A had a mass that was 14 smaller than compound (II). Further, from H-NMR analysis, it was determined that metabolite (A) was a compound having the structure shown in formula (III).

(3) Herbicidal activity test of compound (III)

5

10

15

20

25

30

35

40

45

50

55

[0152] Soil was packed into a round plastic pot having a diameter of 10cm and depth of 10cm. Barnyardgrass, Blackgrass, Ivyleaf momingglory were seeded and cultivated in a greenhouse for 10 days. Five (5) parts of the test compound, 6 parts of sorpo13005X (Toho Chemical Company) and 89 parts of xylene were well mixed to produce an emulsion. A certain amount thereof was diluted with water containing 0.1% (v/v) of a sticking agent at a proportion of 1000L for 1 hectare and was spread uniformly with a spray-gun onto the all sides of the foliage from above the plant cultivated in the above pot. After cultivating the plants for 16 days in a greenhouse, the herbicidal activity of the test compound was investigated. The results are shown in Table 3.

test compounds	concentration (g/ha)		Herbicidal Activity		
		Barnyardgrass	Blackgrass	Ivyleaf Morningglory	
compound (II)	500	10	10	10	
	125	10	10	10	
compound (III)	500	0	0	0	
	125	0	0	0	

[0153] Soil was packed into a round plastic pot having a diameter of 10cm and depth of 10cm. Barnyardgrass, Blackgrass, Ivyleaf morningglory were seeded. Five (5) parts of the test compound, 6 parts of sorpo13005X (Toho Chemical Company) and 89 parts of xylene were well mixed to produce an emulsion. A certain amount thereof was diluted with water containing 0.1% (v/v) of a sticking agent at a proportion of 1000L for 1 hectare and was spread uniformly with a spray-gun onto the surface of the soil. After cultivating the plants for 19 days in a greenhouse, the herbicidal activity was investigated. The results are shown in Table 4.

Table 4

test compounds	concentration (g/ha)	Herbicidal Activity		
		Barnyardgrass	Blackgrass	Ivyleaf Morningglory
compound (II)	500	10	10	10
compound (III)	500	0	0	0

[0154] In the above Tables 3 and 4, the strength of the herbicidal activity is shown stepwise as 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10. The number "0" represents situations in which the condition of sprouting or vegetation at the time of examination of the plant utilized for the test was compared with and showed totally or substantially no difference with that of the untreated application. The number "10" represents situations in which the plant completely withered or the sprouting or vegetation was completely suppressed.

Example 2 Preparation of the Present Invention Protein (A1)

(1) Preparation of the crude cell extract

[0155] A frozen stock of Streptomyces phaeochromogenes IFO12898 was added to 100ml of A medium (0.1%(w/v) glucose, 0.5%(w/v) tryptone, 0.5%(w/v) yeast extract, 0. 1%(w/v) of dipotassium hydrogenphosphate, pH7.0) in a 500ml triangular flask and incubated with rotary shaking at 30°C for 1 day to obrtain a pre-culture. Eight milliliters (8ml) of the pre-culture was added to 200ml of A medium and was incubated with rotary shaking in 500ml a baffled flask at 30°C for 2 days. Cell pellets were recovered by centrifuging (3,000g, 5 min.) the resulting culture. These cell pellets were suspended in 100ml of B medium (1%(w/v) glucose, 0.1% beef extract, 0.2%(w/v) tryptose) containing compound (II) at 100ppm and were incubated with reciprocal shaking in a 500ml Sakaguchi flask for 16 hours at 30°C. Cell pellets were recovered by centrifuging (3,000g, 5 min.) 10L of the resulting culture. The resulting cell pellets were washed twice with 1L of 0.1M potassium phosphate buffer (pH7.0) to provide 162g of the cell pellets.

[0156] These cell pellets were suspended in 0.1M potassium phosphate buffer (pH7.0) at 2ml for 1g of the cell pellets, and 1mM PMSF, 5mM benzamidine HCI, 1mM EDTA and 1mM of dithiotritol were added thereto. A cell lysate solution was obtained by disrupting twice repetitively the suspension with a French press (1000kg/cm²) (Ohtake Seisakusho).

After centrifuging the cell lysate solution (40,000xg, 30 minutes), the supernatant was recovered and centrifuged for 1 hour at 150,000xg to recover the supernatant (hereinafter referred to as the "crude cell extract").

(2) Determination of the ability of converting compound (II) to compound (III)

[0157] There was prepared 30μ I of a reaction solution of 0.1M potassium phosphate buffer (pH7.0) containing 3ppm of compound (II) labeled with 14 C, 2.4mM of β-NADPH (hereinafter, referred to as "component A") (Oriental Yeast Company), 0.5mg/ml of a ferredoxin derived from spinach (hereinafter referred to as "component B") (Sigma Company), 1U/ml of ferredoxin reductase (hereinafter, referred to as "component C") (Sigma Company) and 18μI of the crude cell extract recovered in Example 2(1). The reaction solution was maintained at 30°C for a hour. Further, there was prepared and maintained similarly a reaction solution having no addition of at least one component utilized in the composition of the above reaction solution, selected from component A, component B and component C. Three microliters (3μI) of 2N HCl and 90 μI of ethyl acetate were added and mixed into each of the reaction solutions after the maintenance. The resulting reaction solutions were centrifuged at 8,000xg to recover 75μI of the ethyl acetate layer. After drying the ethyl acetate layers under reduced pressure, the residue was dissolved in 6.0μI of ethyl acetate. Five microliters (5.0μI) thereof was spotted to a TLC plate (TLC plate silica gel $60F_{254}$ 20cm x 20cm, 0.25 thick, Merck Company). The TLC plate was developed with a 6: 1: 2 mixture of chloroform, acetic acid and ethyl acetate for about 1 hour. The solvents were then allowed to evaporate. The TLC plate was exposed overnight to an imaging plate (Fuji Film Company). Next, the imaging plate was analyzed on Image Analyzer BAS2000 (Fuji Film Company). The presence of a spot corresponding to compound (III) labeled with 14 C were examined (Rfvalue 0.24 and 0.29). The results are shown in Table 5.

			lable 5					
	Reaction components							
component A	component B	component C	crude cell extract	compound (II) labeled with ¹⁴ C				
+	+	+	-	+	-			
+	+ .	+	+	+	+			
-	+	+	+	+	-			
+	-	-	+	+	-			

Table 5

(3) Fractionation of the crude cell extract

5

10

15

20

25

30

35

40

45

50

55

[0158] Ammonium sulfate was added to the crude cell extract obtained in Example 2(1) to amount to 45% saturation. After stirring in ice-cooled conditions, the supernatant was recovered by centrifugation for 10 minutes at 12,000xg. After adding ammonium sulfate to the obtained supernatant to amount to 55% saturation and stirring in ice-cooled conditions, a pellet was recovered by centrifuging for 10 minutes at 12,000xg. The pellet was dissolved with 27.5ml of 20mM bistrispropane buffer (pH7.0). This solution was subjected to a PD10 column (Amersham Pharmacia Company) and eluted with 20mM of bistrispropane buffer (pH7.0) to recover 38.5ml of fractions containing proteins (hereinafter referred to as the "45-55% ammonium sulfate fraction").

(4) Isolation of the present invention protein (A1)

[0159] The 45-55% ammonium sulfate fraction prepared in Example 2(3) was injected into a HiLoad26/10 Q Sepharose HP column (Amersham Pharmacia Company). Next, after flowing 106ml of 20mM bistrispropane buffer (pH7.0) into the column, 20mM bistrispropane buffer was flown with a linear gradient of NaCl (gradient of NaCl was 0.001415M/minute, range of NaCl concentration was from 0M to 0.375M, flow rate was 3ml/minute) to fraction recover 25ml of fractions eluting at the NaCl concentration of from 0.21M to 0.22M. Further, the recovered fractions were subjected to a PD10 column (Amersham Pharmacia Biotech Company) and eluted with 20mM bistrispropane buffer (pH7.0) to recover the fractions containing protein.

[0160] The recovered fractions were subjected to a PD10 column (Amersham Pharmacia Biotech Company) with the elution with Buffer A (2mM potassium phosphate buffer containing 1.5mM of NaCl, pH 7.0), in order to recover the fractions containing protein. Next, the fractions were injected into a Bio-Scale Ceramic Hydroxyapatite Type I column CHT10-I (BioRad Company). Thirty milliliters (30ml) of Buffer A was flown into the column. Subsequently, Buffer A was flown with a linear gradient of Buffer B (100mM potassium phosphate buffer containing 0.03mM of NaCl; the linear

gradient started at 100% Buffer A to increase to 50% Buffer B over a 100 minute period, flow rate was 2ml/minute) to fraction recover the fractions eluting at a Buffer B concentration of from 17% to 20%. Further, the recovered fractions were subjected to a PD10 column (Amersham Pharmacia Biotech Company) and eluted with 0.05M potassium phosphate buffer (pH7.0) to recover the fractions containing protein.

[0161] The recovered fractions were concentrated 20 fold using an ultrafilter membrane (Microcon YM-30, Millipore Company) and injected into a HiLoad 16/60 Superdex 75pg column (Amersham Pharmacia Biotech Company). Fifty millimolar (50mM) potassium phosphate buffer containing 0.15M of NaCl (pH7.0) was flown (flow rate 1ml/minute) into the column. The elution was fractioned at 2ml each. The fractions eluting at the elution volumes of from 56ml to 66ml were each fraction recovered. The protein contained in each of the fractions was analyzed with a 10%-20% SDS-PAGE. [0162] Instead of the crude cell extract in the reaction solution described in Example 2(2), the recovered fractions were added and maintained in the presence of component A, component B, component C and compound (II) labeled with ¹⁴C, similarly to Example 2(2). The reaction solutions after the maintenance were TLC analyzed to examine the intensity of the spots corresponding to compound (III) labeled with 14C. The protein moving to the position to 47kDa in the above SDS-PAGE was observed to have its fluctuations in the concentrations of the bands of the fractions added in turn to be parallel with the fluctuations of the intensity of the spots corresponding to compound (III). Said protein was recovered from the SDS-PAGE gel and was subjected to an amino acid sequence analysis with a protein sequencer (Applied Biosystems Company, Procise 494HT, pulsed liquid method). As a result, the amino acid sequence shown in SEQ ID NO: 18 was provided. Further, after digesting the above protein with trypsin, the obtained digestion material was analyzed on a mass spectrometer (ThermoQuest Company, Ion Trap Mass Spectrometer LCQ, column: LC Packings Company PepMap C18 75μm x 150mm, solvent A: 0.1%HOAc-H₂O, solvent B: 0.1% HOAc-methanol, gradient: a linear gradient starting at an elution with a mixture of 95% of solvent A and 5% of solvent B and increasing to a concentration of 100% of solvent B over 30 minutes, flow rate: 0.2µl/minute). As a result, the sequence shown in SEQ ID NO: 19 was provided.

Example 3 Obtaining the Present Invention DNA (A1)

5

10

15

20

25

30

35

40

45

50

(1) Preparation of the chromosomal DNA of Streptomyces phaeochromogenes IFO12898

[0163] Streptomyces phaeochromogenes IFO12898 was incubated with shaking at 30°C for 1 day to 3 days in 50ml of YEME medium (0.3%(w/v) yeast extract, 0.5%(w/v) bacto-peptone, 0.3%(w/v) malt extract, 1.0%(w/v) glucose, 34% (w/v) sucrose and 0.2%(v/v) 2.5M MgCl₂·6H₂O). The cells were recovered. The obtained cells were suspended in YEME medium containing 1.4%(w/v) glycine and 60mM EDTA and further incubated with shakking for a day. The cells were recovered from the culture medium. After washing once with distilled water, it was resuspended in buffer (100mM Tris-HCl (pH8.0), 100mM EDTA, 10mM NaCl) at 1ml per 200mg of the cells. Two hundred micrograms per milliliter (200μg/ml) of egg-white lysozyme were added. The cell suspension was incubated with shaking at 30°C for a hour. Further, 0.5% of SDS and 1mg/ml of Proteinase K was added. The cell suspension was incubated at 55°C for 3 hours. The cell suspension was extracted twice with mixture of phenol, chloroform and isoamyl alcohol to recover each of the aqueous layers. Next, there was one extraction with mixture of chloroform and isoamyl alcohol to recover the aqueous layer. The chromosomal DNA was obtained by ethanol precipitation from the aqueous layer.

(2) Preparation of the chromosomal DNA library of Streptomyces phaeochromogenes IFO12898

[0164] Nine hundred forty-three nanograms (943ng) of the chromosomal DNA prepared in Example 3(1) were digested with 1unit of restriction enzyme Sau3Al at 37°C for 60 minutes. The obtained digestion solution was separated with 0.7% agarose gel electrophoresis. The DNA of about 2.0kbp was recovered from the gel. The DNA was purified with a Prep-A-Gene^R DNA purification kit (Bio-Rad company) according to the instructions attached to said kit to obtain $10\mu l$ of the solution containing the target DNA. A microliter ($1\mu l$) of the DNA solution, 98ng of plasmid vector pUC118 digested with restriction enzyme BamHl and treated with dephosphorylation and $11\mu l$ of the I solution from Ligation Kit Ver. 2 (Takara Shuzo Company) were mixed and incubated overnight at 16° C. E coli DH5 α was transformed utilizing $5\mu l$ of the ligation solution. The E. coli was cultured with shaking overnight at 30° C. From the obtained culture medium, the E. coli was recovered. The plasmid was extracted to provide the chromosomal DNA library.

(3) Isolation of the present invention DNA (A1)

[0165] PCR was conducted by utilizing as the template the chromosomal DNA prepared in Example 3(1) (Fig. 1). As the primers, there was utilized the pairing of an oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 35 and an oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 36 (hereinafter referred to as "primer paring 1"). The nucleotide sequence shown in SEQ ID NO: 35 was designed based on a nucleotide sequence

5

10

15

20

25

30

35

40

45

encoding the amino acid sequence shown in SEQ ID NO: 18. Further, the nucleotide sequence shown in SEQ ID NO: 36 was designed based on a nucleotide sequence complimentary to the nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO: 19. The PCR reaction solution amounted to 25µl by adding the 2 primers each amounting to 200nM, 250ng of the above chromosomal DNA, 0.5μl of dNTP mix (a mixture of 10mM of each of the 4 types of dNTP; Clontech Company), 5µl of 5xGC genomic PCR reaction buffer (Clontech Company), 1.1µl of 25mM Mg(OAc)₂, 5μl of 5M GC-Melt (Clontech Company) and 0.5μl of Advantage-GC genomic polymerase mix (Clontech Company) and distilled water. The reaction conditions of the PCR were after maintaining 95°C for 1 minute, repeating 30 cycles of a cycle that included maintaining 94°C for 15 seconds, followed by 60°C for 30 seconds, followed by 72°C for 1 minute, and then maintaining 72°C for 5 minutes. After the maintenance, the reaction solution was subjected to 4% agarose gel electrophoresis. The gel area containing the DNA of about 150bp was recovered. The DNA was purified from the recovered gel by utilizing QIAquick gel extraction kit (Qiagen Company) according to the attached instructions. The obtained DNA was ligated to the TA cloning vector pCR2.1 (Invitrogen Company) according to the instructions attached to said vector and was introduced into E. Coli TOP10F'. The plasmid DNA was prepared from the obtained E. coli transformant, utilizing QIAprep Spin Miniprep Kit (Qiagen Company). A sequencing reaction was conducted with Dye terminator cycle sequencing FS ready reaction kit (Applied Biosystems Japan Company) according to the instructions attached to said kit, utilizing as primers the -21M13 primer (Applied Biosystems Japan Company) and M13Rev primer (Applied Biosystems Japan Company). The sequencing reaction utilized the obtained plasmid DNA as the template. The reaction products were analyzed with a DNA sequencer 373A (Applied Biosystems Japan Company). As a result, the nucleotide sequence shown in nucleotides 36 to 132 of the nucleotide sequence shown in SEQ ID NO: 9 was provided. Said nucleotide sequence encoded the amino acid sequence shown in amino acids 12 to 23 of the amino acid sequence shown in SEQ ID NO: 18. In this regard, it was expected that said DNA encoded a part of the present invention protein (A1).

[0166] Next, PCR was conducted similar to the above with Advantage-GC genomic polymerase mix (Clontech Company) and by utilizing the chromosomal DNA prepared in Example 3(2) as the template. There was utilized as primers, a pairing of an oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 37 with an oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 38 (hereinafter referred to as the "primer pairing 2") or a pairing of an oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 39 with an oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 40 (hereinafter referred to as the "primer pairing 3").

[0167] Next, there was amplified by PCR a DNA having a nucleotide sequence in which the 3' terminus extends past the nucleotide shown as nucleotide 132 of the nucleotide sequence shown in SEQ ID NO: 9. The PCR was conducted by utilizing as the template solution the reaction solution obtained with the use of primer pairing 2 and by utilizing as primers a pairing of the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 41 and the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 38 (hereinafter referred to as "primer pairing 4"). Similarly, there was amplified by PCR a DNA having a nucleotide sequence in which the 5' terminus extends past the nucleotide shown as nucleotide 36 of the nucleotide sequence shown in SEQ ID NO: 9. The PCR was conducted by utilizing as the template solution the reaction solution obtained with the use of primer pairing 3 and by utilizing as primers a pairing of the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 42 and the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 40 (hereinafter referred to as "primer pairing 5"). The 2kbp DNA amplified with the use of primer pairing 4 and the 150bp DNA amplified with the use of primer pairing 5 are cloned into TA cloning vector pCR2.1, similar to the above. Plasmid DNA was prepared from the obtained E. coli transformant, utilizing QIAprep Spin Miniprep Kit (Qiagen Company). A sequencing reaction was conducted with Dye terminator cycle sequencing FS ready reaction kit (Applied Biosystems Japan Company) according to the instructions attached to said kit, utilizing as primers the -21M13 primer (Applied Biosystems Japan Company), M13Rev primer (Applied Biosystems Japan Company) and the oligonucleotides shown in SEQ ID NO: 43-50. The sequencing reaction utilized the obtained plasmid DNA as the template. The reaction products were analyzed with a DNA sequencer 373A (Applied Biosystems Japan Company). As a result of sequencing the nucleotide sequence of the 2kbp DNA amplified by utilizing primer pairing 4, the nucleotide sequence shown in nucleotides 133 to 1439 of the nucleotide sequence shown in SEQ ID NO: 9 was provided. Further, as a result of sequencing the nucleotide sequence of the 150bp DNA amplified by utilizing primer pairing 5, the nucleotide sequence shown in nucleotides 1 to 35 of the nucleotide sequence shown in SEQ ID NO: 9 was provided. As a result of connecting the obtained nucleotide sequences, the nucleotide sequence shown in SEQ ID NO: 9 was obtained. Two open reading frames (ORF) were present in said nucleotide sequence. As such, there was contained a nucleotide sequence (SEQ ID NO: 6) consisting of 1227 nucleotides (inclusive of the stop codon) and encoding a 408 amino acid residue as well as a nucleotide sequence (SEQ ID NO: 15) consisting of 201 nucleotides (inclusive of the stop codon) and encoding a 66 amino acid residue. The molecular weight of the protein consisting of the amino acid sequence (SEQ ID NO: 1) encoded by the nucleotide sequence shown in SEQ ID NO: 6 was calculated to be 45213Da. Further, the amino acid sequence encoded by said nucleotide sequence contained the amino acid sequence (SEQ ID NO: 18) determined from the amino acid sequencing of from the N terminus of the present invention protein (A1) and the amino acid sequence (SEQ ID NO: 19) determined from the amino acid sequencing of the trypsin

digestion fragments with the mass spectrometer analysis. The molecular weight of the protein consisting of the amino acid sequence (SEQ ID NO: 12) encoded by the nucleotide sequence shown in SEQ ID NO: 15 was calculated to be 6818Da.

5 Example 4 Expression of the Present Invention Protein (A1) in E. coli

10

15

20

25

30

35

40

45

50

55

(1) Production of a transformed E. coli having the present invention protein (A1)

[0168] PCR was conducted by utilizing as a template the chromosomal DNA prepared from Streptomyces phaeochromogenes IFO12898 in Example 3(1) and by utilizing Expand High Fidelity PCR System (Roche Molecular Biochemicals Company). As the primers, there was utilized the pairing of an oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 51 and an oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 52 (hereinafter referred to as "primer pairing 19") or a pairing of an oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 51 and an oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 53 (hereinafter referred to as "primer pairing 20"). The PCR reaction solution amounted to 50µl by adding the 2 primers each amounting to 300nM, 50ng of the above chromosomal DNA, 5.0µl of dNTP mix (a mixture of 2.0mM of each of the 4 types of dNTP), 5.0µl of 10x Expand HF buffer (containing MgCl₂) and 0.75µl of Expand HiFi enzyme mix and distilled water. The reaction conditions of the PCR were after maintaining 97°C for 2 minutes; repeating 10 cycles of a cycle that included maintaining 97°C for 15 seconds, followed by 65°C for 30 seconds and followed by 72°C for 2 minutes; then conducting 15 cycles of a cycle that included maintaining 97°C for 15 seconds, followed by 68°C for 30 seconds and followed by 72°C for 2 minutes (wherein 20 seconds was added to the maintenance at 72°C for each cycle); and then maintaining 72°C for 7 minutes. After the maintenance, the reaction solution was subjected to 1% agarose gel electrophoresis. The gel area containing the DNA of about 1.2kbp was recovered from the gel which was subjected the reaction solution utilizing primer pairing 19. The gel area containing the DNA of about 1.5kbp was recovered from the gel which was subjected the reaction solution utilizing primer pairing 20. The DNA were purified from each of the recovered gels by utilizing QIAquick gel extraction kit (Qiagen Company) according to the attached instructions. The obtained DNA were ligated to the TA cloning vector pCR2.1 (Invitrogen Company) according to the instructions attached to said vector and were introduced into E. Coli TOP10F'. The plasmid DNA were prepared from the obtained E. coli transformants, utilizing QIAprep Spin Miniprep Kit (Qiagen Company). Sequencing reactions were conducted with Dye terminator cycle sequencing FS ready reaction kit (Applied Biosystems Japan Company) according to the instructions attached to said kit, utilizing as primers the -21M13 primer (Applied Biosystems Japan Company), M13Rev primer (Applied Biosystems Japan Company), the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 43 and the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 46. The sequencing reactions utilized the obtained plasmid DNA as the template. The reaction products were analyzed with a DNA sequencer 373A (Applied Biosystems Japan Company). Based on the results, the plasmid having the nucleotide sequence shown in SEQ ID NO: 6 was designated as pCR657 and the plasmid having the nucleotide sequence shown in SEQ ID NO: 9 was designated as pCR657F. [0169] Furthermore, the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 134 and the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 135 were annealed together to provide a linker (Fig. 47). Plasmid pKSN24R2 (Akiyoshi-ShibaTa M. et al., Eur. J. Biochem. 224: P335(1994)) was digested with HindIII and Xmnl. The linker was inserted into the obtained DNA of about 3kb. The obtained plasmid was designated as pKSN2

[0170] Next, each of plasmids pCR657 and pCR657F was digested with restriction enzymes Ndel and HindIII. The digestion products were subjected to agarose gel electrophoresis. The gel area containing a DNA of about 1.2kbp was cut from the gel subjected to the digestion products of pCR657. The gel area containing a DNA of about 1.5kbp was cut from the gel subjected to the digestion products of pCR657F. The DNA were purified from each of the recovered gels by utilizing QlAquick gel extraction kit (Qiagen Company) according to the attached instructions. Each of the obtained DNA and the plasmid pKSN2 digested with Ndel and HindIII were ligated with ligation kit Ver.1 (Takara Shuzo Company) according to the instructions attached to said kit and introduced into E. Coli JM109. The plasmid DNA were prepared from the obtained E. coli transformants. The structures thereof were analyzed. The plasmid containing the nucleotide sequence shown in SEQ ID NO: 6, in which the DNA of about 1.2kbp encoding the present invention protein (A1) is inserted between the Ndel site and the HindIII site of pKSN2 was designated as pKSN657. Further, the plasmid containing the nucleotide sequence shown in SEQ ID NO: 9, in which the DNA of about 1.5kbp encoding the present invention protein (A1) is inserted between the Ndel site and the HindIII site of pKSN2 was designated as pKSN657F. Each of the above plasmids of pKSN657 and pKSN657F were introduced into E. coli JM109. The obtained E. coli transformants were designated, respectively, JM109/pKSN657 and JM109/pKSN657F. Further, plasmid pKSN2 was introduced into E. coli JM109. The obtained E. coli transformant was designated as JM109/pKSN2.

(2) Expression of the present invention protein (A1) in E. coli and recovery of said protein

[0171] E. coli JM109/pKSN657, JM109/pKSN657F and JM109/pKSN2 were each cultured overnight at 37°C in 10ml of TB medium (1.2%(w/v) tryptone, 2.4%(w/v) of yeast extract, 0.4%(w/v) of glycerol, 17mM potassium dihydrogen-phosphate, 72mM dipotassium hydrogenphosphate) containing 50μg/ml of ampicillin. A milliliter (1ml) of the obtained culture medium was transferred to 100ml ofTB medium containing 50μg/ml of ampicillin and cultured at 26°C. When OD660 reached about 0.5, 5- aminolevulinic acid was added to the final concentration of 500μM, and the culturing was continued. Thrity (30) minutes thereafter, IPTG was added to a final concentration of 1mM, and there was further culturing for 17 hours.

[0172] The cells were recovered from each of the culture mediums, washed with 0.1M tris-HCl buffer (pH7.5) and suspended in 10ml of the above buffer containing 1mM PMSF. The obtained cell suspensions were subjected 6 times to a sonicator (Sonifier (Branson Sonic Power Company)) at 3 minutes each under the conditions of output 3, duty cycle 30%, in order to obtain cell lysate solutions. After centrifuging the cell lysate solutions (1,200xg, 5 minutes) the supernatants were recovered and centrifuged (150,000xg, 70 minutes) to recover supernatant fractions (hereinafter, the supernatant fraction obtained from E. coli JM109/pKSN657 is referred to as "E. coli pKSN657 extract", and the supernatant fraction obtained from E. coli JM109/pKSN657F is referred to as "E. coli pKSN657F extract", and the supernatant fraction obtained from E. coli JM109/pKSN2 is referred to as "E. coli pKSN2 extract "). A microliter (1µl) of the above supernatant fractions was analyzed on a 15% to 25% SDS-PAGE and stained with Coomasie Blue (hereinafter referred to as "CBB"). As a result, notably more intense bands were detected in both E. coli pKSN657 extract and E. coli pKSN657F extract than the E. coli pKSN2 extract, at the electrophoresis locations corresponding to the molecular weight of 47kDa. A more intense band was detected in E. coli pKSN657F extract than E. coli pKSN657 extract. It was shown that E. coli JM109/pKSN657F expressed the present invention protein (A1) to a higher degree than E. coli JM109/pKSN657.

(3) Detection of the ability to convert compound (II) to compound (III)

5

10

15

20

25

30

35

40

45

50

55

[0173] Reaction solutions of 30 µl were prepared and maintained for 1 hour at 30°C. The reaction solutions consisted of a 0.1M potassium phosphate buffer (pH7.0) containing 3ppm of compound (II) labeled with ¹⁴C, 2mM of β-NADPH (hereinafter, referred to as "component A") (Oriental Yeast Company), 0.2mg/ml of a ferredoxin derived from spinach (hereinafter referred to as "component B") (Sigma Company), 1U/ml of ferredoxin reductase (hereinafter, referred to as "component C") (Sigma Company) and 18µl of the supernatant fraction recovered in Example 4(2). Further, there were prepared and maintained similarly reaction solutions having no addition of at least one component utilized in the composition of the above reaction solution, selected from component A, component B and component C. Three microliters (3µl) of 2N HCl and 90 µl of ethyl acetate were added and stirred into each of the reaction solutions after the maintenance. The resulting reaction solutions were centrifuged at 8,000xg to recover 75µl of the ethyl acetate layer. After drying the ethyl acetate layers under reduced pressure, the residue was dissolved in 6.0µl of ethyl acetate. Five microliters (5.0μl) thereof was spotted to a TLC plate (TLC plate silica gel 60F₂₅₄ 20cm x 20cm, 0.25 thick, Merck Company). The TLC plate was developed with a 6: 1:2 mixture of chloroform, acetic acid and ethyl acetate for about 1 hour. The solvents were then allowed to evaporate. The TLC plate was exposed overnight to an imaging plate (Fuji Film Company). Next, the imaging plate was analyzed on Image Analyzer BAS2000 (Fuji Film Company). The presence of a spot corresponding to compound (III) labeled with ¹⁴C were examined (Rf value 0.24 and 0.29). The results are shown in Table 6.

Table 6

	Reaction components						
component A	component B	component C	E. coli extract	compound (II) labeled with ¹⁴ C			
+	+	+	-	+	-		
+	+	+	pKSN2	+	-		
+	+	+	pKSN657	+	+		
-	+	+	pKSN657	+	-		
+	-	+	pKSN657	+	-		
+	+	-	pKSN657	+	+		

Table 6 (continued)

	spot of compound (III)				
component A	component B	component C	E. coli extract	compound (II) labeled with ¹⁴ C	
+	+	+	pKSN657F	+	+
•	+	+	pKSN657F	+	-
+	•	+	pKSN657F	+	
+	+	-	pKSN657F	+	+

Example 5 Preparation of the Present Invention Protein (A2)

(1) Preparation of the crude cell extract

5

10

15

20

25

30

35

40

45

50

55

[0174] A frozen stock of Saccharopolyspora taberi JCM 9383t was added to 10ml of A medium (0.1%(w/v) glucose, 0.5%(w/v) tryptone, 0.5%(w/v) yeast extract, 0.1%(w/v) of dipotassium hydrogenphosphate, pH7.0) in a 10ml test tube and incubated with shaking at 30°C for 1 day to obtain a pre-culture. Eight milliliters (8ml) of the pre-culture was added to 200ml of A medium and was revolve cultured in 500ml a baffled flask at 30°C for 2 days. Cell pellets were recovered by centrifuging (3,000xg, 10 min.) 10L of the resulting culture. These cell pellets were suspended in 100ml of B medium (1%(w/v) glucose, 0.1% beef extract, 0.2%(w/v) tryptose) containing compound (II) at 100ppm and were incubated with reciprocal shaking in a 500ml Sakaguchi flask for 20 hours at 30°C. Cell pellets were recovered by centrifuging (3,000xg, 10 min.) 10L of the resulting culture. The resulting cell pellets were washed twice with 1L of 0.1 M potassium phosphate buffer (pH7.0) to provide 119g of the cell pellets.

[0175] These cell pellets were suspended in 0.1M potassium phosphate buffer (pH7.0) at 2ml for 1g of the cell pellets. A millimolar of (1mM) PMSF, 5mM of benzamidine HCl, 1mM of EDTA, 3μg/ml of leupeptin, 3μg/ml of pepstatin and 1mM of dithiotritol were added. A cell lysate solution was obtained by disrupting twice repetitively the suspension with a French press (1000kg/cm²) (Ohtake Seisakusho). After centrifuging the cell lysate solution (40,000xg, 30 minutes), the supernatant was recovered and centrifuged for 1 hour at 150,000xg to recover the supernatant (hereinafter referred to as the "crude cell extract").

(2) Determination of the ability of converting compound (II) to compound (III)

[0176] There was prepared 30μl of a reaction solution of 0.1M potassium phosphate buffer (pH7.0) containing 3ppm of compound (II) labeled with 14 C, 2.4mM of β -NADPH (hereinafter, referred to as "component A") (Oriental Yeast Company), 0.5mg/ml of a ferredoxin derived from spinach (hereinafter referred to as "component B") (Sigma Company), 1U/ml of ferredoxin reductase (hereinafter, referred to as "component C") (Sigma Company) and 18μl of the crude cell extract recovered in Example 5(1). The reaction solution was maintained at 30°C for a hour. Further, there was prepared and maintained similarly a reaction solution having no addition of at least one component utilized in the composition of the above reaction solution, selected from component A, component B and component C. Three microliters (3μl) of 2N HCl and 90 μl of ethyl acetate were added and mixed into each of the reaction solutions after the maintenance. The resulting reaction solutions were centrifuged at 8,000xg to recover 75μl of the ethyl acetate layer. After drying the ethyl acetate layers under reduced pressure, the residue was dissolved in 6.0μl of ethyl acetate. Five microliters (5.0μl) thereof was spotted to a TLC plate (TLC plate silica gel 60F₂₅₄ 20cm x 20cm, 0.25 thick, Merck Company). The TLC plate was developed with a 6: 1: 2 mixture of chloroform, acetic acid and ethyl acetate for about 1 hour. The solvents were then allowed to evaporate. The TLC plate was exposed overnight to an imaging plate (Fuji Film Company). Next, the imaging plate was analyzed on Image Analyzer BAS2000 (Fuji Film Company). The presence of a spot corresponding to compound (III) labeled with 14 C were examined (Rf value 0.24 and 0.29). The results are shown in Table 7.

Table 7

	Reaction components					
component A	component B	component C	crude cell extract	compound (II) labeled with ¹⁴ C		
+	+	+	-	+	-	

Table 7 (continued)

	Reaction components						
component A	component B	component C	crude cell extract	compound (II) labeled with ¹⁴ C			
+	+	+	+	+	+		
	+	+	+	+	-		
+		-	+	+	-		

(3) Fractionation of the crude cell extract

5

10

15

20

25

30

35

40

45

50

55

[0177] Ammonium sulfate was added to the crude cell extract obtained in Example 5(1) to amount to 45% saturation. After stirring in ice-cooled conditions, the supernatant was recovered by centrifuging for 10 minutes at 12,000xg. After adding ammonium sulfate to the obtained supernatant to amount to 55% saturation and stirring in ice-cooled conditions, a pellet was recovered by centrifuging for 10 minutes at 12,000xg. The pellet was dissolved with 32.5ml of 20mM bistrispropane buffer (pH7.0). This solution was subjected to a PD10 column (Amersham Pharmacia Company) and eluted with 20mM of bistrispropane buffer (pH7.0) to recover 45.5ml of fractions containing proteins (hereinafter referred to as the "45-55% ammonium sulfate fraction").

(4) Isolation of the present invention protein (A2)

[0178] The 45-55% ammonium sulfate fraction prepared in Example 5(3) was injected into a HiLoad26/10 Q Sepharose HP column (Amersham Pharmacia Company). Next, after flowing 100ml of 20mM bistrispropane buffer (pH7.0) into the column, 20mM bistrispropane buffer was flown with a linear gradient of NaCl (gradient of NaCl was 0.004M/minute, range of NaCl concentration was from 0M to 0.5M, flow rate was 8ml/minute) to fraction recover 30ml of fractions eluting at the NaCl concentration of from 0.25M to 0.26M. Further, the recovered fractions were subjected to a PD10 column (Amersham Pharmacia Biotech Company) and eluted with 20mM bistrispropane buffer (pH7.0) to recover the fractions containing protein.

[0179] The recovered fractions were subjected to a PD10 column (Amersham Pharmacia Biotech Company) with the elution with Buffer A (2mM potassium phosphate buffer containing 1.5mM of NaCl, pH 7.0), in order to recover the fractions containing protein. Next, the fractions were injected into a Bio-Scale Ceramic Hydroxyapatite Type I column CHT10-I (BioRad Company). Twenty milliliters (20ml) of Buffer A was flown into the column. Subsequently, Buffer A was flown with a linear gradient of Buffer B (100mM potassium phosphate buffer containing 0.03mM of NaCl; the linear gradient started at 100% Buffer A to increase to 50% Buffer B over a 100 minute period, flow rate was 2ml/minute) to fraction recover 10ml of fractions eluting at a Buffer B concentration of from 23% to 25%. Further, the recovered fractions were subjected to a PD10 column (Amersham Pharmacia Biotech Company) and eluted with 0.05M potassium phosphate buffer (pH7.0) to recover the fractions containing protein.

[0180] The recovered fractions were concentrated to about 770µl using an ultrafilter membrane (Microcon YM-30, Millipore Company) and injected into a HiLoad 16/60 Superdex 75pg column (Amersham Pharmacia Biotech Company). Fifty millimolar (50mM) potassium phosphate buffer containing 0.15M of NaCl (pH7.0) was flown (flow rate 1ml/minute) into the column. The elution was fractioned at 2ml each. The fractions eluting at the elution volumes of more or less 61ml were each fraction recovered. The protein contained in each of the fractions was analyzed with a 10%-20% SDS-PAGE.

[0181] Instead of the crude cell extract in the reaction solution described in Example 5(2), the recovered fractions were added and maintained in the presence of component A, component B, component C and compound (II) labeled with ¹⁴C, similarly to Example 5(2). The reaction solutions after the maintenance were TLC analyzed to examine the intensity of the spots corresponding to compound (III) labeled with ¹⁴C. The protein moving to the position to 47kDa in the above SDS-PAGE was observed to have its fluctuations in the concentrations of the bands of the fractions added in turn to be parallel with the fluctuations of the intensity of the spots corresponding to compound (III). Said protein was recovered from the SDS-PAGE gel and was subjected to an amino acid sequence analysis with a protein sequencer (Applied Biosystems Company, Procise 494HT, pulsed liquid method) to sequence the N terminus amino acid sequence. As a result, the amino acid sequence shown in SEQ ID NO: 20 was provided. Further, after digesting the above protein with trypsin, the obtained digestion material was analyzed on a mass spectrometer (ThermoQuest Company, Ion Trap Mass Spectrometer LCQ, column: LC Packings Company PepMap C18 75μm x 150mm, solvent A: 0.1% HOAc-H₂O, solvent B: 0.1% HOAc-methanol, gradient: a linear gradient starting at an elution with a mixture of

95% of solvent A and 5% of solvent B and increasing to a concentration of 100% of solvent B over 30 minutes, flow rate: 0.2μl/minute). As a result, the sequence shown in SEQ ID NO: 21 was provided.

Example 6 Obtaining the present invention DNA (A2)

5

10

15

20

25

30

35

40

45

50

55

(1) Preparation of the chromosomal DNA of Saccharopolyspora taberi JCM 9383t

[0182] Saccharopolyspora taberi JCM 9383t was shake cultured at 30°C for 1 day to 3 days in 50ml of YEME medium (0.3%(w/v) yeast extract, 0.5%(w/v) bacto-peptone, 0.3%(w/v) malt extract, 1.0%(w/v) glucose, 34%(w/v) sucrose and 0.2%(v/v) 2.5M MgCl₂·6H₂O). The cells were recovered. The obtained cells were suspended in YEME medium containing 1.4%(w/v) glycine and 60mM EDTA and further incubated with shaking for a day. The cells were recovered from the culture medium. After washing once with distilled water, it was resuspended in buffer (100mM Tris-HCl (pH8.0), 100mM EDTA, 10mM NaCl) at 1ml per 200mg of the cell pellets. Two hundred micrograms per milliliter (200µg/ml) of egg-white lysozyme were added. The cell suspension was shaken at 30°C for a hour. Further, 0.5% of SDS and 1mg/ml of Proteinase K was added. The cell suspension was incubated at 55°C for 3 hours. The cell suspension was extracted twice with phenol-chloroform-isoamyl alcohol to recover each of the aqueous layers. Next, there was one extraction with chloroform-isoamyl alcohol to recover the aqueous layer. The chromosomal DNA was obtained by ethanol precipitating the aqueous layer.

(2) Preparation of the chromosomal DNA library of Saccharopolyspora taberi JCM 9383t

[0183] Nineteen micrograms (19μg) of the chromosomal DNA prepared in Example 5(1) were digested with 0.78U of restriction enzyme Sau3AI at 37°C for 60 minutes. The obtained digestion solution was separated with 1% agarose gel electrophoresis. The DNA of about 2.0kbp was recovered from the gel. The DNA was purified with QlAquick Gel Extraction Kit (Qiagen Company) according to the instructions attached to said kit and was concentrated with an ethanol precipitation to obtain 10μl of the solution containing the target DNA. Eight microliters (8μl) of the DNA solution, 100ng of plasmid vector pUC 118 digested with restriction enzyme BamHI and treated with dephosphorylation and 12μl of the I solution from Ligation Kit Ver. 2 (Takara Shuzo Company) were mixed and maintained for 3 hours at 16°C. E coli DH5 α was transformed with the ligation solution. The E. coli transformants were cultured overnight at 37°C in LB agar medium containing 50mg/l of ampicillin. The obtained colonies were recovered from an agar medium. The plasmids were extracted and were designated as the chromosomal DNA library.

(3) Isolation of the present invention DNA (A2)

[0184] PCR was conducted by utilizing the chromosomal DNA prepared in Example 6(1) as the template with Expand HiFi PCR System (Boehringer Manheim Company) (Fig. 2). As the primers, there was utilized the pairing of an oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 54 and an oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 55 (hereinafter referred to as "primer paring 6"). The nucleotide sequence shown in SEQ ID NO: 54 was designed based on a nucleotide sequence encoding the N terminus amino acid sequence shown in SEQ ID NO: 20. Further, the nucleotide sequence shown in SEQ ID NO: 55 was designed based on a nucleotide sequence complimentary to the nucleotide sequence encoding the inner amino acid sequence shown in SEQ ID NO: 21. The PCR reaction solution amounted to 25µl by adding 300ng of the above chromosomal DNA, the 2 primers each amounting to 7.5pmol, 0.2µl of dNTP mix (a mixture of 2mM of each of the 4 types ofdNTP), 2.5µl of 10x buffer (containing MgCl₂), 0.19µl of Expand HiFi enzyme mix and distilled water. The reaction conditions of the PCR were after maintaining 97°C for 2 minutes, repeating 10 cycles of a cycle that included maintaining 97°C for 15 seconds, followed by 65°C for 30 seconds and followed by 72°C for 1 minute; then conducting 15 cycles of a cycle that included maintaining 97°C for 15 seconds, followed by 65°C for 30 seconds and followed by 72°C for 1 minute (wherein 20 seconds was added to the maintenance at 72°C for each cycle); and then maintaining 72°C for 7 minutes. After the maintenance, the reaction solution was subjected to 2% agarose gel electrophoresis. The gel area containing the DNA of about 800bp was recovered. The DNA was purified from the recovered gel by utilizing Qiagen quick gel extraction kit (Qiagen Company) according to the attached instructions. The obtained DNA was ligated to the TA cloning vector pCRII-TOPO (Invitrogen Company) according to the instructions attached to said vector and was introduced into E. Coli TOP10F'. The plasmid DNA was prepared from the obtained E. coli transformant, utilizing Qiagen Tip20 (Qiagen Company). A sequencing reaction was conducted with Dye terminator cycle sequencing FS ready reaction kit (Applied Biosystems Japan Company) according to the instructions attached to said kit, utilizing as primers the -21M13 primer (Applied Biosystems Japan Company) and M13Rev primer (Applied Biosystems Japan Company). The reaction products were analyzed with a DNA sequencer 373A (Applied Biosystems Japan Company). As a result, the nucleotide sequence shown in nucleotides 36 to 819 of the nucleotide sequence shown in SEQ ID NO: 10 was provided. Nucleotides 37-60

of the nucleotide sequence shown in SEQ ID NO: 10 encoded a part of the amino acid sequence shown in SEQ ID NO: 20. In this regard, it was expected that that said DNA encoded a part of the present invention protein (A2). [0185] Next, PCR was conducted by utilizing the chromosomal DNA prepared in Example 6(2) as the template and similar to the above with Expand HiFi PCR system. There was utilized as primers, a pairing of an oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 56 with an oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 57 (hereinafter referred to as the "primer pairing 7"). By conducting the PCR with such primers, there was amplified a DNA having a nucleotide sequence in which the 5' terminus elongates past the nucleotide shown as nucleotide 36 of the nucleotide sequence shown in SEQ ID NO: 10. Further, there was utilized as primers, a pairing of an oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 58 with an oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 59 (hereinafter referred to as the "primer pairing 8"). By conducting the PCR with such primers, there was amplified a DNA having a nucleotide sequence in which the 3' terminus elongates past the nucleotide shown as nucleotide 819 of the nucleotide sequence shown in SEQ ID NO: 10. Each of the 1.3kb DNA amplified with the use of primer pairing 7 and the 0.4kb DNA amplified with the use of primer pairing 8 was cloned into TA cloning vector pCRII-TOPO. Plasmid DNA was prepared from the obtained E. coli transformant, utilizing Qiagen Tip 20 (Qiagen Company). A sequencing reaction was conducted with Dye terminator cycle sequencing FS ready reaction kit (Applied Biosystems Japan Company) according to the instructions attached to said kit, utilizing as primers the -21M13 primer (Applied Biosystems Japan Company), M13Rev primer (Applied Biosystems Japan Company) and the oligonucleotide shown in SEQ ID NO: 60. The reaction products were analyzed with a DNA sequencer 373A (Applied Biosystems Japan Company). As a result of sequencing the nucleotide sequence of the 1.3kb DNA amplified by utilizing primer pairing 7, the nucleotide sequence shown in nucleotides 1 to 35 of the nucleotide sequence shown in SEQ ID NO: 10 was provided. Further, as a result of sequencing the nucleotide sequence of the 0.4kb DNA amplified by utilizing primer pairing 8, the nucleotide sequence shown in nucleotides 819 to 1415 of the nucleotide sequence shown in SEQ ID NO: 10 was provided. As a result of connecting the obtained nucleotide sequences, the nucleotide sequence shown in SEQ ID NO: 10 was obtained. Two open reading frames (ORF) were present in said nucleotide sequence. As such, there was contained a nucleotide sequence (SEQ ID NO: 7) consisting of 1206 nucleotides (inclusive of the stop codon) and encoding a 401 amino acid residue as well as a nucleotide sequence (SEQ ID NO: 16) consisting of 198 nucleotides (inclusive of the stop codon) and encoding a 65 amino acid residue. The molecular weight of the protein consisting of the amino acid sequence (SEQ ID NO: 2) encoded by the nucleotide sequence shown in SEQ ID NO: 7 was calculated to be 43983Da. Further, the amino acid sequence encoded by said nucleotide sequence contained the amino acid sequence (SEQ ID NO: 20) determined from the amino acid sequencing of from the N terminus of the present invention protein (A2) and the amino acid sequence (SEQ ID NO: 21) determined from the amino acid sequencing of the mass spectrometer analysis with the trypsin digestion fragments. The molecular weight of the protein consisting of the amino acid sequence (SEQ ID NO: 13) encoded by the nucleotide sequence shown in SEQ ID NO: 16 was calculated be 6707Da.

Example 7 Expression of the Present Invention Protein (A2) in E. coli

5

10

15

20

25

30

35

40

45

50

55

(1) Production of a transformed E. coli having the present invention protein (A2)

[0186] PCR was conducted by utilizing as a template the chromosomal DNA prepared from Saccharopolyspora taberi JCM 9383t in Example 6(1) and by utilizing Expand HiFi PCR System (Boehringer Manheim Company). As the primers, there was utilized the pairing of an oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 61 and an oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 62 (hereinafter referred to as "primer pairing 21") or a pairing of an oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 61 and an oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 63 (hereinafter referred to as "primer pairing 22"). The PCR reaction solution amounted to 50µl by adding the 2 primers each amounting to 300nM, 50ng of the above chromosomal DNA, 5.0µl of dNTP mix (a mixture of 2.0mM of each of the 4 types of dNTP), 5.0µl of 10x Expand HF buffer (containing MgCl₂) and 0.75µl of Expand HiFi enzyme mix and distilled water. The reaction conditions of the PCR were after maintaining 97°C for 2 minutes; repeating 10 cycles of a cycle that included maintaining 97°C for 15 seconds, followed by 60°C for 30 seconds and followed by 72°C for 1 minute; then conducting 15 cycles of a cycle that included maintaining 97°C for 15 seconds, followed by 60°C for 30 seconds and followed by 72°C for 1 minute (wherein 20 seconds was added to the maintenance at 72°C for each cycle); and then maintaining 72°C for 7 minutes. After the maintenance, the reaction solution was subjected to 1% agarose gel electrophoresis. The gel area containing the DNA of about 1.2kbp was recovered from the gel which was subjected the reaction solution utilizing primer pairing 21. The gel area containing the DNA of about 1.4kbp was recovered from the gel which was subjected the reaction solution utilizing primer pairing 22. The DNA were purified from each of the recovered gels by utilizing Qiagen quick gel extraction kit (Qiagen Company) according to the attached instructions. The obtained DNA were ligated to the cloning vector pCRII-TOPO (Invitrogen Company) according to the instructions attached to said vector and were introduced into E.

Coli TOP10F'. The plasmid DNA were prepared from the obtained E. coli transformants, utilizing Qiagen Tip20 (Qiagen Company). Next, sequencing reactions were conducted with Dye terminator cycle sequencing FS ready reaction kit (Applied Biosystems Japan Company) according to the instructions attached to said kit, utilizing as primers the -21M13 primer (Applied Biosystems Japan Company), M13Rev primer (Applied Biosystems Japan Company), the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 56 and the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 64. The reaction products were analyzed with a DNA sequencer 373A (Applied Biosystems Japan Company). Based on the results, the plasmid having the nucleotide sequence shown in SEQ ID NO: 7 was designated as pCR923 and the plasmid having the nucleotide sequence shown in SEQ ID NO: 10 was designated as pCR923F.

5

10

15

20

25

30

35

40

45

50

55

[0187] Next, each of plasmids pCR923 and pCR923F was digested with restriction enzymes Ndel and HindIII. The digestion products were subjected to agarose gel electrophoresis. The gel area containing a DNA of about 1.2kbp was cut from the gel subjected to the digestion products of pCR923F. The DNA were purified from each of the recovered gels by utilizing Qiagen quick gel extraction kit (Qiagen Company) according to the attached instructions. Each of the obtained DNA and the plasmid pKSN2 digested with Ndel and HindIII were ligated with ligation kit Ver.1 (Takara Shuzo Company) according to the instructions attached to said kit and introduced into E. Coli JM109. The plasmid DNA were prepared from the obtained E. coli transformants. The structures thereof were analyzed. The plasmid containing the nucleotide sequence shown in SEQ ID NO: 7, in which the DNA of about 1.2kbp encoding the present invention protein (A2) is inserted between the Ndel site and the HindIII site of pKSN2 was designated as pKSN923. Further, the plasmid containing the nucleotide sequence shown in SEQ ID NO: 10, in which the DNA of about 1.4kbp encoding the present invention protein (A2) is inserted between the Ndel site and the HindIII site of pKSN2 was designated as pKSN923F. Each of the above plasmids of pKSN923 and pKSN923F was introduced into E. coli JM109. The obtained E. coli transformants were designated, respectively, JM109/pKSN923 and JM109/pKSN923F. Further, plasmid pKSN2 was introduced into E. coli JM109. The obtained E. coli transformant was designated as JM109/pKSN2.

(2) Expression of the present invention protein (A2) in E. coli and recovery of said protein

[0188] E. coli JM109/pKSN657, JM109/pKSN657F and JM109/pKSN2 were each cultured overnight at 37°C in 10ml of TB medium (1.2%(w/v) tryptone, 2.4%(w/v) yeast extract, 0.4%(w/v) glycerol, 17mM potassium dihydrogenphosphate, 72mM dipotassium hydrogenphosphate) containing 50μg/ml of ampicillin. A milliliter (1ml) of the obtained culture medium was transferred to 100ml ofTB medium containing 50μg/ml of ampicillin and cultured at 26°C. When OD660 reached about 0.5, 5-aminolevulinic acid was added to the final concentration of 500μM, and the culturing was continued. Thrity (30) minutes thereafter, IPTG was added to a final concentration of 1mM, and there was further culturing for 17 hours.

[0189] The cells were recovered from each of the culture mediums, washed with 0.1M tris-HCl buffer (pH7.5) and suspended in 10 ml of said buffer containing 1mM PMSF. The obtained cell suspensions were subjected 6 times to a sonicator (Sonifier (Branson Sonic Power Company)) at 3 minutes each under the conditions of output 3, duty cycle 30%, in order to obtain cell lysate solutions. After centrifuging the cell lysate solutions (1,200xg, 5 minutes) the supernatants were recovered and centrifuged (150,000xg, 70 minutes) to recover supernatant fractions (hereinafter, the supernatant fraction obtained from E. coli JM109/pKSN923 is referred to as "E. coli pKSN923 extract", and the supernatant fraction obtained from E. coli JM109/pKSN923F is referred to as "E. coli pKSN923F extract", and the supernatant fraction obtained from E. coli JM109/pKSN2 is referred to as "E. coli pKSN2 extract "). A microliter (1µl) of the above supernatant fractions was analyzed on a 15% to 25% SDS-PAGE and stained with CBB. As a result, notably more intense bands were detected in both E. coli pKSN923 extract and E. coli pKSN923F extract than the E. coli pKSN2 extract, at the electrophoresis locations corresponding to the molecular weight of 47kDa. It was confirmed that E. coli JM109/pKSN923 and E. coli JM109/pKSN923F.expressed the present invention protein (A2).

(3) Detection of the ability to convert compound (II) to compound (III)

[0190] Reaction solutions of 30μl were prepared and maintained for 10 minutes at 30°C. The reaction solutions consisted of a 0.1M potassium phosphate buffer (pH7.0) containing 3ppm of compound (II) labeled with ¹⁴C, 2mM of β-NADPH (hereinafter, referred to as "component A") (Oriental Yeast Company), 0.2mg/ml of a ferredoxin derived from spinach (hereinafter referred to as "component B") (Sigma Company), 1U/ml of ferredoxin reductase (hereinafter, referred to as "component C") (Sigma Company) and 18μl of the supernatant fraction recovered in Example 7(2). Further, there were prepared and maintained similarly reaction solutions having no addition of at least one component utilized in the composition of the above reaction solution, selected from component A, component B and component C. Three microliters (3μl) of 2N HCl and 90 μl of ethyl acetate were added and mixed into each of the reaction solutions after the maintenance. The resulting reaction solutions were centrifuged at 8,000xg to recover 75μl of the ethyl acetate layer.

After drying the ethyl acetate layers under reduced pressure, the residue was dissolved in 6.0μl of ethyl acetate. Five microliters (5.0μl) thereof was spotted to a silica gel TLC plate (TLC plate silica gel 60F₂₅₄, 20cm x 20cm, 0.25mm thick, Merck Company). The TLC plate was developed with a 6: 1: 2 mixture of chloroform, acetic acid and ethyl acetate for about 1 hour. The solvents were then allowed to evaporate. The TLC plate was exposed overnight to an imaging plate (Fuji Film Company). Next, the imaging plate was analyzed on Image Analyzer BAS2000 (Fuji Film Company). The presence of a spot corresponding to compound (III) labeled with ¹⁴C were examined (Rf value 0.24 and 0.29). The results are shown in Table 8.

Table 8

10		spot of compound (III)				
	component A	component B	component C	E. coli extract	compound (II) labeled with ¹⁴ C	
	+	+	+	-	+	-
15	+	+	+	pKSN2	+	-
	. +	+	+	pKSN923	+	+
	-	+	+	pKSN923	+	-
20	+	-	+	pKSN923	+	-
	+	+	-	pKSN923	+	+
	+	+	+	pKSN923F	+	+
25	-	+	+	pKSN923 F	+	-
23	+	-	+	pKSN923F	+	-
	+	+	-	pKSN923F	+	+

Example 8 Preparation of the Present Protein (A10)

(1) Preparation of the crude cell extract

5

30

35

40

45

50

55

[0191] A frozen stock of Streptomyces griseolus ATCC 11796 was added to 250ml ofB medium (1%(w/v) glucose, 0.1%(w/v) meat extract, 0.2%(w/v) tryptose) in a 500ml baffled flask and incubated with rotary shaking at 30°C for 3 days to obtain a pre-culture. Forty milliliters (40ml) of the pre-culture was added to 400ml of B medium and was incubated with rotary shaking in a 1L triangular flask at 30°C for 24 hours. After stopping the culturing, the culture was allowed to settle. Two hundred and twenty milliliters (220ml) of only the supernatant was removed. Two hundred and twenty milliliters (220ml) of fresh medium similarly prepared was added to the remaining 220ml of the culture medium to amount to 440ml. Compound (II) was added thereto to amount to 100ppm. The cells were incubated with rotary shaking in the 1L triangular flask at 30°C for 40 hours. Cell pellets were recovered by centrifuging (3,000g, 5 min.) 2.6L of the resulting culture. The resulting cell pellets were washed with 1 L of 0.1M PIPES-NaOH buffer (pH6.8) to provide 26g of the cell pellets.

[0192] These cell pellets were suspended of 0.1M PIPES-NaOH buffer (pH6.8) at 3ml for 1g of the cell pellets, and I mM of PMSF, 5mM of benzamidine HCl, 1mM of EDTA, 3μg/ml of leupeptin, 3μg/ml of pepstatin A and 1mM of dithiotritol were added. A cell lysate solution was obtained by disrupting twice repetitively the suspension with a French press (1000kg/cm²) (Ohtake Seisakusho). After centrifuging the cell lysate solution (40,000xg, 30 minutes), the supernatant was recovered and centrifuged for 1 hour at 150,000xg to recover the supernatant (hereinafter referred to as the "crude cell extract").

(2) Determination of the ability of converting compound (II) to compound (III)

[0193] There was prepared 30μl of a reaction solution of 0.1M potassium phosphate buffer (pH7.0) containing 3ppm of compound (II) labeled with ¹⁴C, 2.4mM of β-NADPH (hereinafter, referred to as "component A") (Oriental Yeast Company), 0.5mg/ml of a ferredoxin derived from spinach (hereinafter referred to as "component B") (Sigma Company), 1U/ml of ferredoxin reductase (hereinafter, referred to as "component C") (Sigma Company) and 18μl of the crude cell extract recovered in Example 8(1). The reaction solution was maintained at 30°C for a hour. Further, there was prepared and maintained similarly a reaction solution having no addition of at least one component utilized in the composition

of the above reaction solution, selected from component A, component B and component C. Three microliters (3 μ l) of 2N HCl and 90 μ l of ethyl acetate were added and stirred into each of the reaction solutions after the maintenance. The resulting reaction solutions were centrifuged at 8,000xg to recover 75 μ l of the ethyl acetate layer. After drying the ethyl acetate layers under reduced pressure, the residue was dissolved in 6.0 μ l of ethyl acetate. Five microliters (5.0 μ l) thereof was spotted to a silica gel TLC plate (TLC plate silica gel 60F₂₅₄, 20cm x 20cm, 0.25 thick, Merck Company). The TLC plate was developed with a 6: 1: 2 mixture of chloroform, acetic acid and ethyl acetate for about 1 hour. The solvents were then allowed to evaporate. The TLC plate was exposed overnight to an imaging plate (Fuji Film Company). Next, the imaging plate was analyzed on Image Analyzer BAS2000 (Fuji Film Company). The presence of a spot corresponding to compound (III) labeled with ¹⁴C were examined (Rf value 0.24 and 0.29). The results are shown in Table 9.

Table 9

	spot of compound (III)				
component A	component B	component C	crude cell extract	compound (II) labeled with ¹⁴ C	
+	+ .	+	-	+	-
+	+	+	+	+	+
-	+	+	+	+	-
+	-	-	+	+	-

(3) Fractionation of the crude cell extract

5

10

15

20

25

30

35

45

50

55

[0194] Ammonium sulfate was added to the crude cell extract obtained in Example 8(1) to amount to 45% saturation. After stirring in ice-cooled conditions, the supernatant was recovered by centrifuging for 10 minutes at 12,000xg. After adding ammonium sulfate to the obtained supernatant to amount to 55% saturation and stirring in ice-cooled conditions, a pellet was recovered by centrifuging for 10 minutes at 12,000xg. The pellet was dissolved with 20mM bistrispropane buffer (pH7.0) to amount to 10ml. This solution was subjected to a PD10 column (Amersham Pharmacia Company) and eluted with 20mM of bistrispropane buffer (pH7.0) to recover 14ml of fractions containing proteins (hereinafter referred to as the "45-55% ammonium sulfate fraction").

(4) Isolation of the present protein (A10)

[0195] The 45-55% ammonium sulfate fraction prepared in Example 8(3) was injected into a MonoQ HR 10/10 column (Amersham Pharmacia Company). Next, after flowing 16ml of 20mM bistrispropane buffer (pH7.0) into the column, 20mM bistrispropane buffer was flown with a linear gradient of NaCl (gradient of NaCl was 0.00625M/minute, range of NaCl concentration was from 0M to 0.5M, flow rate was 4ml/minute) to fraction recover 15ml of fractions eluting at the NaCl concentration of from 0.28M to 0.31M. Further, the recovered fractions were subjected to a PD10 column (Amersham Pharmacia Biotech Company) and eluted with 20mM bistrispropane buffer (pH7.0) to recover the fractions containing protein.

[0196] The recovered fractions were subjected to a PD10 column (Amersham Pharmacia Biotech Company) with the elution with Buffer A (2mM potassium phosphate buffer containing 1.5mM of NaCl, pH 7.0), in order to recover the fractions containing protein. Next, the fractions were injected into a Bio-Scale Ceramic Hydroxyapatite Type I column CHT10-I (BioRad Company). Fifty milliliters (50ml) of Buffer A was flown into the column. Subsequently, Buffer A was flown with a linear gradient of Buffer B (100mM potassium phosphate buffer containing 0.03mM of NaCl; the linear gradient started at 100% Buffer A to increase to 50% Buffer B over a 40 minute period, flow rate was 5ml/minute) to fraction recover the fractions eluting at a Buffer B concentration of from 16% to 31%. Further, the recovered fractions were subjected to a PD10 column (Amersham Pharmacia Biotech Company) and eluted with 0.05M potassium phosphate buffer (pH7.0) to recover the fractions containing protein. The protein contained in each of the fractions were analyzed on a 10%-20% SDS-PAGE.

[0197] Instead of the crude cell extract in the reaction solution described in Example 8(2), the recovered fractions were added and maintained in the presence of component A, component B, component C and compound (II) labeled with ¹⁴C, similarly to Example 8(2). The reaction solutions after the maintenance were TLC analyzed to examine the intensity of the spots corresponding to compound (III) labeled with ¹⁴C. The protein moving to the position to 47kDa in the above SDS-PAGE was observed to have its fluctuations in the concentrations of the bands of the fractions added

in turn to be parallel with the fluctuations of the intensity of the spots corresponding to compound (III). Said protein was recovered from the SDS-PAGE gel and digested with trypsin. The obtained digestion material was analyzed on a mass spectrometer (ThermoQuest Company, Ion Trap Mass Spectrometer LCQ, column: LC Packings Company Pep-Map C18 75 μ m x 150mm, solvent A: 0.1%HOAc-H₂O, solvent B: 0.1% HOAc-methanol, gradient: a linear gradient starting at an elution with a mixture of 95% of solvent A and 5% of solvent B and increasing to a concentration of 100% of solvent B over 30 minutes, flow rate: 0.2 μ l/minute). As a result, the amino acid sequences shown in each and any one of SEQ ID NO: 22-34 were provided.

Example 9 Preparation of the Chromosomal DNA of Streptomyces Griseolus ATCC 11796

[0198] Streptomyces griseolus ATCC 11796 was incubated with shaking at 30°C for 1 day to 3 days in 50ml of YEME medium (0.3%(w/v) yeast extract, 0.5%(w/v) bacto-peptone, 0.3%(w/v) malt extract, 1.0%(w/v) glucose, 34%(w/v) sucrose and 0.2%(v/v) 2.5M MgCl₂·6H₂O). The cells were recovered. The obtained cells were suspended in YEME medium containing 1.4%(w/v) glycine and 60mM EDTA and further incubated with shaking for a day. The cells were recovered from the culture medium. After washing once with distilled water, it was resuspended in buffer (100mM Tris-HCl (pH8.0), 100mM EDTA, 10mM NaCl) at 1ml per 200mg of the cells. Two hundred micrograms per milliliter (200μg/ml) of egg-white lysozyme were added. The cell suspension was shaken at 30°C for a hour. Further, 0.5% of SDS and 1mg/ml of Proteinase K was added. The cell suspension was incubated at 55°C for 3 hours. The cell suspension was extracted twice with phenol·chloroform·isoamyl alcohol to recover each of the aqueous layers. Next, there was one extraction with chloroform·isoamyl alcohol to recover the aqueous layer. The chromosomal DNA was obtained by ethanol precipitating the aqueous layer.

Example 10 Obtaining a DNA Encoding the Present DNA (A10) and Expression in E. coli

(1) Production of a transformed E. coli having the present DNA

5

10

15

20

25

30

35

40

45

50

55

[0199] PCR was conducted by utilizing as a template the chromosomal DNA prepared from Streptomyces griseolus ATCC 11796 in Example 9 and by utilizing Expand High Fidelity PCR System (Roche Molecular Biochemicals Company). As the primers, there was utilized the pairing of an oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 79 and an oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 80 (hereinafter referred to as "primer pairing 23") or a pairing of an oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 79 and an oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 81 (hereinafter referred to as "primer pairing 24"). The PCR reaction solutions amounted to 50µl by adding the 2 primers each amounting to 300nM, 50ng of the above chromosomal DNA, 5.0µl of dNTP mix (a mixture of 2.0mM of each of the 4 types of dNTP), 5.0µl of 10x Expand HF buffer (containing MgCl₂) and 0.75µl of Expand HiFi enzyme mix and distilled water. The reaction conditions of the PCR were after maintaining 97°C for 2 minutes; repeating 10 cycles of a cycle that included maintaining 97°C for 15 seconds, followed by 65°C for 30 seconds and followed by 72°C for 2 minutes; then conducting 15 cycles of a cycle that included maintaining 97°C for 15 seconds, followed by 68°C for 30 seconds and followed by 72°C for 2 minutes (wherein 20 seconds was added to the maintenance at 72°C for each cycle); and then maintaining 72°C for 7 minutes. After the maintenance, each of the reaction solutions was subjected to 1% agarose gel electrophoresis. The gel area containing the DNA of about 1.2kbp was recovered from the gel which was subjected the reaction solution utilizing primer pairing 23. The gel area containing the DNA of about 1.5kbp was recovered from the gel which was subjected the reaction solution utilizing primer pairing 24. The DNA were purified from each of the recovered gels by utilizing Qiagen quick gel extraction kit (Qiagen Company) according to the attached instructions. The obtained DNA were ligated to the cloning vector pCR2.1-TOPO (Invitrogen Company) according to the instructions attached to said vector and were introduced into E. Coli TOP10F'. The plasmid DNA were prepared from the obtained E. coli transformants, utilizing Qiaprep Spin Miniprep Kit (Qiagen Company). Next, sequencing reactions were conducted with Dye terminator cycle sequencing FS ready reaction kit (Applied Biosystems Japan Company) according to the instructions attached to said kit, utilizing as primers the -21M13 primer (Applied Biosystems Japan Company), M13Rev primer (Applied Biosystems Japan Company), the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 82 and the oligonucleotide having the nucleotide sequence shown in SEQ LD NO: 83. The sequencing reactions utilized the obtained plasmid DNA as the template. The reaction products were analyzed with a DNA sequencer 373A (Applied Biosystems Japan Company). Based on the results, the plasmid having the nucleotide sequence shown in SEQ ID NO: 84 was designated as pCR11796 and the plasmid having the nucleotide sequence shown in SEQ ID NO: 85 was designated as pCR11796F. Two open reading frames (ORF) were present in said nucleotide sequence shown in SEQ ID NO: 85. As such, there was contained a nucleotide sequence (SEQ ID NO: 84) consisting of 1221 nucleotides (inclusive of the stop codon) and encoding a 406 amino acid residue (the amino acid sequence shown in SEQ ID NO: 5) and a nucleotide sequence consisting of 210 nucleotides (inclusive of the stop codon) and encoding a 69 amino acid residue.

5

10

15

30

35

40

45

50

55

[0200] Next, each of pCR11796 and pCR11796F was digested with restriction enzymes Ndel and HindIII. The digestion products were subjected to agarose gel electrophoresis. The gel area containing a DNA of about 1.2kbp was cut from the gel subjected to the digestion products of pCR11796. The gel area containing a DNA of about 1.5kbp was cut from the gel subjected to the digestion products of pCR11796F. The DNA were purified from each of the recovered gels by utilizing Qiagen quick gel extraction kit (Qiagen Company) according to the attached instructions. Each of the obtained DNA and the plasmid pKSN2 digested with Ndel and HindIII were ligated with ligation kit Ver.1 (Takara Shuzo Company) according to the instructions attached to said kit and introduced into E. Coli JM109. The plasmid DNA were prepared from the obtained E. coli transformants. The structures thereof were analyzed. The plasmid containing the nucleotide sequence shown in SEQ ID NO: 84, in which the DNA of about 1.2kbp encoding the present protein (A 10) is inserted between the Ndel site and the HindIII site of pKSN2 was designated as pKSN11796. Further, the plasmid containing the nucleotide sequence shown in SEQ ID NO: 85, in which the DNA of about 1.5kbp encoding the present protein (A 10) is inserted between the Ndel site and the HindIII site of pKSN2 was designated as pKSN11796F. Each of the above plasmids of pKSN11796 and pKSN11796F was introduced into E. coli JM109. The obtained E. coli transformants were designated, respectively, JM109/pKSN11796 and JM109/pKSN11796F. Further, plasmid pKSN2 was introduced into E. coli JM109. The obtained E. coli transformant was designated as JM109/pKSN2.

(2) Expression of the present protein (A10) in E. coli and recovery of said protein

[0201] E. coli JM109/pKSN11796, JM109/pKSN11796F and JM109/pKSN2were each cultured overnight at 37°C in 10ml of TB medium (1.2%(w/v) tryptone, 2.4%(w/v) yeast extract, 0.4%(w/v) glycerol, 17mM potassium dihydrogen-phosphate, 72mM dipotassium hydrogenphosphate) containing 50µg/ml of ampicillin. A milliliter (1ml) of the obtained culture medium was transferred to 100ml of TB medium containing 50µg/ml of ampicillin and cultured at 26°C. When OD660 reached about 0.5, 5-aminolevulinic acid was added to the final concentration of 500µM, and the culturing was continued. Thirty (30) minutes thereafter, IPTG was added to a final concentration of 1mM, and there was further culturing for 17 hours.

[0202] The cells were recovered from each of the culture mediums, washed with 0.1M tris-HCI buffer (pH7.5) and suspended in 10ml of the above buffer containing 1mM PMSF. The obtained cell suspensions were subjected 6 times to a sonicator (Sonifier (Branson Sonic Power Company)) at 3 minutes each under the conditions of output 3, duty cycle 30%, in order to obtain cell lysate solutions. After centrifuging the cell lysate solutions (1,200xg, 5 minutes) the supernatants were recovered and centrifuged (150,000xg, 70 minutes) to recover supernatant fractions (hereinafter, the supernatant fraction obtained from E. coli JM109/pKSN11796 is referred to as "E. coli pKSN11796 extract", the supernatant fraction obtained from E. coli JM109/pKSN11796F is referred to as "E. coli pKSN11796F extract", and the supernatant fraction obtained from E. coli JM109/pKSN2 is referred to as "E. coli pKSN2 extract "). A microliter (1µl) of the above supernatant fractions was analyzed on a 15% to 25% SDS-PAGE and stained with Coomasie Blue (hereinafter referred to as "CBB"). As a result, notably more intense bands were identified in both E. coli pKSN11796 extract and E. coli pKSN11796F extract than the E. coli pKSN2 extract, at the electrophoresis locations corresponding to the molecular weight of 45kDa. A more intense band was identified in E. coli pKSN11796F extract than E. coli pKSN11796 extract. It was shown that E. coli JM109/pKSN11796F expressed the present protein (A10) to a higher degree than E. coli JM109/pKSN11796.

(3) Detection of the ability to convert compound (II) to compound (III)

[0203] Reaction solutions of 30μl were prepared and maintained for 1 hour at 30°C. The reaction solutions consisted of a 0.1M potassium phosphate buffer (pH7.0) containing 3ppm of compound (II) labeled with ¹⁴C, 2mM of β-NADPH (hereinafter, referred to as "component A") (Oriental Yeast Company), 2mg/ml of a ferredoxin derived from spinach (hereinafter referred to as "component B") (Sigma Company), 0.1U/ml of ferredoxin reductase (hereinafter, referred to as "component C") (Sigma Company) and 18μl of the supernatant fraction recovered in Example 10(2). Further, there were prepared and maintained similarly reaction solutions having no addition of at least one component utilized in the composition of the above reaction solution, selected from component A, component B and component C. Three microliters (3μl) of 2N HCl and 90μl of ethyl acetate were added and mixed into each of the reaction solutions after the maintenance. The resulting reaction solutions were centrifuged at 8,000xg to recover 75μl of the ethyl acetate layer. After drying the ethyl acetate layers under reduced pressure, the residue was dissolved in 6.0μl of ethyl acetate. Five microliters (5.0μl) thereof was spotted to a silica gel TLC plate (TLC plate silica gel 60F₂₅₄ 20cm x 20cm, 0.25mm thick, Merck Company). The TLC plate was developed with a 6: 1: 2 mixture of chloroform, acetic acid and ethyl acetate for about 1 hour. The solvents were then allowed to evaporate. The TLC plate was exposed overnight to an imaging plate (Fuji Film Company). Next, the imaging plate was analyzed on Image Analyzer BAS2000 (Fuji Film Company). The presence of a spot corresponding to compound (III) labeled with ¹⁴C were examined (Rf value 0.24 and 0.29).

The results are shown in Table 10.

25

30

35

40

45

50

55

Table 10

5		spot of compound (III)				
	component A	component B	component C	E. coli extract	compound (II) labeled with ¹⁴ C	
10	+	+	+	-	+	-
	+	+	+	pKSN2	+	-
	+	+	+	pKSN11796	+	+
	-	+	+	pKSN11796	+	-
	+	-	+	pKSN11796	+	-
15	+	+	-	pKSN11796	+	+
	+	+	+	pKSN11796F	+	+
20	-	+	+	pKSN11796F	+	-
	+	-	+	pKSN11796F	+	-
	+	+	-	pKSN11796F	+	+

Example 11 Obtaining the Present Invention DNA (A3)

(1) Preparation of the Chromosomal DNA of Streptomyces testaceus ATCC21469

[0204] Streptomyces testaceus ATCC21469 was incubated with shaking at 30°C for 1 day to 3 days in 50ml of YEME medium (0.3%(w/v) yeast extract, 0.5%(w/v) bacto-peptone, 0.3%(w/v) malt extract, 1.0%(w/v) glucose, 34%(w/v) sucrose and 0.2%(v/v) 2.5M MgCl₂·6H₂O). The cells were recovered. The obtained cells were suspended in YEME medium containing 1.4%(w/v) glycine and 60mM EDTA and further incubated with shaking for a day. The cells were recovered from the culture medium. After washing once with distilled water, it was resuspended in buffer (100mM Tris-HCI (pH8.0), 100mM EDTA, 10mM NaCl) at 1ml per 200mg of the cells. Two hundred micrograms per milliliter (200μg/ml) of egg-white lysozyme were added. The cell suspension was shaken at 30°C for a hour. Further, 0.5% of SDS and 1mg/ml of Proteinase K was added. The cell suspension was incubated at 55°C for 3 hours. The cell suspension was extracted twice with phenol · chloroform · isoamyl alcohol to recover each of the aqueous layers. Next, there was one extraction with chloroform · isoamyl alcohol to recover the aqueous layer. The chromosomal DNA was obtained by ethanol precipitating the aqueous layer.

(2) Isolation of the present invention DNA (A3)

[0205] PCR was conducted by utilizing the chromosomal DNA prepared in Example 11(1) as the template. As the primers, there was utilized the pairing of an oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 65 and an oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 66 (hereinafter referred to as "primer pairing 9"). The PCR reaction solution amounted to 50μl by adding 250ng of the above chromosomal DNA, the 2 primers each amounting to 200nM, 4µl of dNTP mix (a mixture of 2.5mM of each of the 4 types of dNTP), 5µl of 10x ExTaq buffer, 0.5µl of ExTaq polymerase (Takara Shuzo Company) and distilled water. The reaction conditions of the PCR were maintaining 97°C for 2 minutes; repeating 30 cycles of a cycle that included maintaining 97°C for 15 seconds, followed by 60°C for 30 seconds and followed by 72°C for 90 seconds; and then maintaining 72°C for 4 minutes. After the maintenance, the reaction solution was subjected to 0.8% agarose gel electrophoresis. The gel area containing the DNA of about 1.4kbp was recovered. The DNA was purified from the recovered gel by utilizing QIAquick gel extraction kit (Qiagen Company) according to the attached instructions. The obtained DNA was ligated to the TA cloning vector pCR2.1 (Invitrogen Company) according to the instructions attached to said vector and was introduced into E. Coli TOP10F'. The plasmid DNA was prepared from the obtained E. coli transformant, utilizing QIAprep Spin Miniprep Kit (Qiagen Company). A sequencing reaction was conducted with Dye terminator cycle sequencing FS ready reaction kit (Applied Biosystems Japan Company) according to the instructions attached to said kit, utilizing as primers the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 67 and the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 68. The sequencing reactions utilized the obtained plasmid as the template. The

reaction products were analyzed with a DNA sequencer 373A (Applied Biosystems Japan Company). As a result, the nucleotide sequence shown in SEQ ID NO: 69 was provided. Two open reading frames (ORF) were present in said nucleotide sequence. As such, there was contained a nucleotide sequence consisting of 1188 nucleotides (inclusive of the stop codon) and encoding a 395 amino acid residue and a nucleotide sequence (SEQ ID NO: 17) consisting of 195 nucleotides (inclusive of the stop codon) and encoding a 64 amino acid residue. The molecular weight of the amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 17 was calculated to be 6666Da.

Example 12 Expression of the Present Invention Protein (A3) in E. Coli

5

10

15

20

25

30

35

40

45

50

55

(1) Production of a transformed E. coli having the present invention DNA (A3)

[0206] PCR was conducted by utilizing as a template the chromosomal DNA prepared in Example 11(1) and by utilizing ExTaq polymerase (Takara Shuzo Company) under similar conditions as above. As the primers, there was utilized the pairing of an oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 70 and an oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 71 (hereinafter referred to as "primer pairing 10") or a pairing of an oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 70 and an oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 72 (hereinafter referred to as "primer pairing 11"). The DNA of 1.2kb amplified by utilizing the primer pairing 10 and the DNA of 1.5kbp amplified by utilizing the primer pairing 11 were cloned into TA cloning vector pCR2.1 according to the above methods. The plasmid DNA were prepared from the obtained E. coli transformants, utilizing QIAprep Spin Miniprep Kit (Qiagen Company). Sequencing reactions were conducted with Dye terminator cycle sequencing FS ready reaction kit (Applied Biosystems Japan Company) according to the instructions attached to said kit, utilizing as primers the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 67 and the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 68. The sequencing reactions utilized the obtained plasmid DNA as the template. The reaction products were analyzed with a DNA sequencer 373A (Applied Biosystems Japan Company). As a result, the plasmid cloned with the DNA amplified by the primer pairing 10 was confirmed to have the nucleotide sequence shown in SEQ ID NO: 8. The plasmid cloned with the DNA amplified by primer pairing 11 was confirmed to have the nucleotide sequence shown in SEQ ID NO: 11. Two open reading frames (ORF) were present in said nucleotide sequence shown in SEQ ID NO: 11. As such, there was contained a nucleotide sequence (SEQ ID NO: 8) consisting of 1188 nucleotides (inclusive of the stop codon) and encoding a 395 amino acid residue and a nucleotide sequence consisting of 195 nucleotides (inclusive of the stop codon) and encoding a 64 amino acid residue. The molecular weight of the protein consisting of the amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 8 was calculated to be 43752Da. With the obtained plasmids, the plasmid having the nucleotide sequence shown in SEQ ID NO: 8 was designated as pCR671 and the plasmid having the nucleotide sequence shown in SEQ ID NO: 11 was designated as pCR671F.

[0207] Next, each of pCR671 and pCR671 F was digested with restriction enzymes Ndel and HindIII. The digestion products were subjected to agarose gel electrophoresis. The gel area containing a DNA of about 1.2kbp was cut from the gel subjected to the digestion products of pCR671. The gel area containing a DNA of about 1.5kbp was cut from the gel subjected to the digestion products of pCR671F. The DNA were purified from each of the recovered gels by utilizing Qiagen quick gel extraction kit (Qiagen Company) according to the attached instructions. Each of the obtained DNA and the plasmid pKSN2 digested with Ndel and HindIII were ligated with ligation kit Ver.1 (Takara Shuzo Company) according to the instructions attached to said kit and introduced into E. Coli JM109. The plasmid DNA were prepared from the obtained E. coli transformants. The structures thereof were analyzed. The plasmid containing the nucleotide sequence shown in SEQ ID NO: 8, in which the DNA of about 1200bp encoding the present invention protein (A3) is inserted between the Ndel site and the HindIII site of pKSN2 was designated as pKSN671. Further, the plasmid containing the nucleotide sequence shown in SEQ ID NO: 11, in which the DNA of about 1400bp encoding the present invention protein (A3) is inserted between the Ndel site and the HindIII site of pKSN2 was designated as pKSN671F. Each of the above plasmids of pKSN671 and pKSN671F was introduced into E. coli JM109. The obtained E. coli transformants were designated, respectively, JM109/pKSN671 and JM109/pKSN671F. Further, plasmid pKSN2 was introduced into E. coli JM109. The obtained E. coli transformant was designated as JM109/pKSN2.

(2) Expression of the present invention protein (A3) in E. coli and recovery of said protein

[0208] E. coli JM109/pKSN671, JM109/pKSN671F and JM109/pKSN2 were each cultured overnight at 37°C in 10ml of TB medium (1.2%(w/v) tryptone, 2.4%(w/v) yeast extract, 0.4%(w/v) glycerol, 17mM potassium dihydrogenphosphate, 72mM dipotassium hydrogenphosphate) containing 50μg/ml of ampicillin. A milliliter (1ml) of the obtained culture medium was transferred to 100ml of TB medium containing 50μg/ml of ampicillin and cultured at 26°C. When OD660 reached about 0.5, 5-aminolevulinic acid was added to the final concentration of 500μM, and the culturing was continued. Thirty (30) minutes thereafter, IPTG was added to a final concentration of 1mM, and there was further culturing

for 17 hours.

5

15

20

25

30

35

40

45

50

55

[0209] The cells were recovered from each of the culture mediums, washed with 0.1M tris-HCl buffer (pH7.5) and suspended in 10ml of said buffer containing 1mM PMSF. The obtained cell suspensions were subjected 6 times to a sonicator (Sonifier (Branson Sonic Power Company)) at 3 minutes each under the conditions of output 3, duty cycle 30%, in order to obtain cell lysate solutions. After centrifuging the cell lysate solutions (1,200xg, 5 minutes) the supernatants were recovered and centrifuged (150,000xg, 70 minutes) to recover supernatant fractions (hereinafter, the supernatant fraction obtained from E. coli JM109/pKSN671 is referred to as "E. coli pKSN671 extract", and the supernatant fraction obtained from E. coli JM109/pKSN671F is referred to as "E. coli pKSN671F extract", and the supernatant fraction obtained from E. coli JM109/pKSN2 is referred to as "E. coli pKSN2 extract").

(3) Detection of the ability to convert compound (II) to compound (III)

[0210] Reaction solutions of 30µl were prepared and maintained for 1 hour at 30°C. The reaction solutions consisted of a 0.1M potassium phosphate buffer (pH7.0) containing 3ppm of compound (II) labeled with ¹⁴C, 2mM of β-NADPH (hereinafter, referred to as "component A") (Oriental Yeast Company), 2mg/ml of a ferredoxin derived from spinach (hereinafter referred to as "component B") (Sigma Company), 0.1U/ml of ferredoxin reductase (hereinafter, referred to as "component C") (Sigma Company) and 18µl of the supernatant fraction recovered in Example 12(2). Further, there were prepared and maintained similarly reaction solutions having no addition of at least one component utilized in the composition of the above reaction solution, selected from component A, component B and component C. Three microliters (3µl) of 2N HCl and 90µl of ethyl acetate were added and stirred into each of the reaction solutions after the maintenance. The resulting reaction solutions were centrifuged at 8,000xg to recover 75µl of the ethyl acetate layer. After drying the ethyl acetate layers under reduced pressure, the residue was dissolved in 6.0µl of ethyl acetate. Five microliters (5.0µl) thereof was spotted to a silica gel TLC plate (TLC plate silica gel 60F₂₅₄, 20cm x 20cm, 0.25mm thick, Merck Company). The TLC plate was developed with a 6: 1: 2 mixture of chloroform, acetic acid and ethyl acetate for about 1 hour. The solvents were then allowed to evaporate. The TLC plate was exposed overnight to an imaging plate (Fuji Film Company). Next, the imaging plate was analyzed on Image Analyzer BAS2000 (Fuji Film Company). The presence of a spot corresponding to compound (III) labeled with ¹⁴C were examined (Rf value 0.24 and 0.29). The results are shown in Table 11.

Table 11

	spot of compound (III)				
component A	component B	component C	E. coli extract	compound (II) labeled with ¹⁴ C	
+	+	+		+	-
+	+	+	pKSN2	+	-
+	+	+	pKSN671	+	+
-	+	+	pKSN671	+	-
+	-	+	pKSN671	+	-
+	+	-	pKSN671	+	+
+	+	+	pKSN671F	+	+
-	+	+	pKSN671F	+	-
+	-	+	pKSN671F	+	-
+	+	-	pKSN671F	+	+

Example 13 Obtaining the Present DNA (A9)

(1) Preparation of the chromosomal DNA of Streptomyces carbophilus SANK62585

[0211] Streptomyces carbophilus SANK62585 (FERM BP-1145) was incubated with shaking at 30°C for 1 day in 50ml of YEME medium (0.3%(w/v) yeast extract, 0.5%(w/v) bacto-peptone, 0.3%(w/v) malt extract, 1.0%(w/v) glucose, 34%(w/v) sucrose and 0.2%(v/v) 2.5M $MgCl_2\cdot 6H_2O$). The cells were then recovered. The obtained cells were suspended in YEME medium containing 1.4%(w/v) glycine and 60mM EDTA and further incubated with shaking for a day. The

cells were recovered from the culture medium. After washing once with distilled water, it was resuspended in buffer (100mM Tris-HCI (pH8.0), 100mM EDTA, 10mM NaCl) at 1ml per 200mg of the cells. Two hundred micrograms per milliliter (200µg/ml) of egg-white lysozyme were added. The cell suspension was shaken at 30°C for a hour. Further, 0.5% of SDS and 1mg/ml of Proteinase K was added. The cell suspension was incubated at 55°C for 3 hours. The cell suspension was extracted twice with phenol-chloroform-isoamyl alcohol to recover each of the aqueous layers. Next, there was one extraction with chloroform-isoamyl alcohol to recover the aqueous layer. The chromosomal DNA was obtained by ethanol precipitating the aqueous layer.

(2) Isolation of the present DNA (A9)

5

10

15

20

25

30

35

45

50

55

[0212] PCR was conducted by utilizing as the template the chromosomal DNA prepared in Example 13(1). As the primers, there was utilized the pairing of an oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 74 and an oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 75 (hereinafter referred to as "primer paring 12") or the pairing of an oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 76 and an oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 77 (hereinafter referred to as "primer paring 13"). The PCR reaction solution amounted to 50µl by adding the 2 primers each amounting to 200nM, 250ng of the above chromosomal DNA, 4µl of dNTP mix (a mixture of 2.5mM of each of the 4 types of dNTP), 5µl of 10x ExTag buffer, 0.5µl of ExTaq polymerase (Takara Shuzo Company) and distilled water. The reaction conditions of the PCR were maintaining 95°C for 2 minutes; repeating 30 cycles of a cycle that included maintaining 97°C for 15 seconds, followed by 60°C for 30 seconds, followed by 72°C for 90 seconds, and then maintaining 72°C for 4 minutes. After the maintenance, the reaction solution was subjected to 0.8% agarose gel electrophoresis. The gel area containing the DNA of about 500bp was recovered from the gel subjected to the PCR reaction solution utilizing primer pairing 12. The gel area containing the DNA of about 800bp was recovered from the gel subjected to the PCR reaction solution utilizing primer pairing 13. The DNA were purified from each of the recovered gels by utilizing QIAquick gel extraction kit (Qiagen Company) according to the attached instructions. The obtained DNA were ligated to the TA cloning vector pCR2.1 (Invitrogen Company) according to the instructions attached to said vector and was introduced into E. Coli TOP10F'. The plasmid DNA were prepared from the obtained E. coli transformants, utilizing QIAprep Spin Miniprep Kit (Qiagen Company). A sequencing reaction was conducted with Dye terminator cycle sequencing FS ready reaction kit (Applied Biosystems Japan Company) according to the instructions attached to said kit, utilizing as primers the oligonucleotide having the nucleotide sequence shown in SEQ ID NO:67 and the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 68. The sequencing reaction utilized the obtained plasmid DNA as the templates. The reaction products were analyzed with a DNA sequencer 373A (Applied Biosystems Japan Company). As a result, the nucleotide sequence shown in nucleotides 1 to 498 of the nucleotide sequence shown in SEQ ID NO: 78 was provided by the DNA obtained by the PCR utilizing primer pairing 12. The nucleotide sequence shown in nucleotides 469 to 1233 of the nucleotide sequence shown in SEQ ID NO: 78 was provided by the DNA obtained by the PCR utilizing primer pairing 13. The plasmid having the nucleotide sequence of nucleotides 1 to 498 shown in SEQ ID NO: 78 was designated as pCRSCA1. The plasmid having the nucleotide sequence of nucleotides 469 to 1233 shown in SEQ ID NO: 78 was designated as pCRSCA2.

40 Example 14 Expression of the Present Protein (A9) in E. Coli

(1) Production of a transformed E. coli having the present DNA (A9)

[0213] With the plasmids obtained in Example 13(2), the above plasmid pCRSCA1 was digested with Ndel and Ncol and pCRSCA2 was digested with Ndel and Ncol. The digestion products were subjected to agarose gel electrophoresis. The gel area containing a DNA of about 500bp was cut from the gel subjected to the digestion products of pCRSCA2. The gel area containing a DNA of about 800bp was cut from the gel subjected to the digestion products of pCRSCA2. The DNA were purified from each of the recovered gels by utilizing QIAquick gel extraction kit (Qiagen Company) according to the attached instructions. The 2 types of the obtained DNA were ligated together with the plasmid pKSN2 digested with Ndel and HindIII, utilizing ligation kit Ver.1 (Takara Shuzo Company) in accordance with the instructions attached to said kit and introduced into E. Coli JM109. The plasmid DNA was prepared from the obtained E. coli transformants. The structure thereof was analyzed. The plasmid containing the nucleotide sequence shown in SEQ ID NO: 78, in which the DNA encoding the present protein (A9) is inserted between the Ndel site and the HindIII site of pKSN2 was designated as pKSNSCA.

(2) Expression of the present protein (A9) in E. coli and recovery of said protein

[0214] E. coli JM109/pKSNSCA was cultured overnight at 37°C in 10ml of TB medium (1.2%(w/v) tryptone, 2.4%(w/

v) yeast extract, 0.4% (w/v) glycerol, 17mM potassium dihydrogenphosphate, 72mM dipotassium hydrogenphosphate) containing 50μ g/ml of ampicillin. The obtained culture medium was transferred to 100ml of TB medium containing 50μ g/ml of ampicillin and cultured at 26° C, so that the OD660 was 0.2. When OD660 reached about 2.0, 5-aminole-vulinic acid was added to the final concentration of 500μ M, and the culturing was continued. Thirty (30) minutes thereafter, IPTG was added to a final concentration of 200μ M, and there was further culturing for 5 hours.

[0215] The cells were recovered from each of the culture mediums, washed with 0.1M tris-HCl buffer (pH7.5) and suspended in 10ml of said buffer containing 1mM PMSF. The obtained cell suspensions were subjected 6 times to a sonicator (Sonifier (Branson Sonic Power Company)) at 3 minutes each under the conditions of output 3, duty cycle 30%, in order to obtain cell lysate solutions. After centrifuging the cell lysate solutions (1,200xg, 5 minutes) the supernatants were recovered and centrifuged (150,000xg, 70 minutes) to recover supernatant fractions (hereinafter, the supernatant fraction obtained from E. coli JM109/pKSNSCA is referred to as "E. coli pKSNSCA extract").

(3) Detection of the ability to convert compound (II) to compound (III)

5

10

15

20

25

30

35

40

45

50

55

[0216] Reaction solutions of 30µl were prepared and maintained for 10 minutes at 30°C. The reaction solutions consisted of a 0.1M potassium phosphate buffer (pH7.0) containing 3ppm of compound (II) labeled with ¹⁴C, 2mM of β-NADPH (hereinafter, referred to as "component A") (Oriental Yeast Company), 2mg/ml of a ferredoxin derived from spinach (hereinafter referred to as "component B") (Sigma Company), 0.1U/ml of ferredoxin reductase (hereinafter, referred to as "component C") (Sigma Company) and 18µl of the supernatant fraction recovered in Example 14(2). Further, there were prepared and maintained similarly reaction solutions having no addition of at least one component utilized in the composition of the above reaction solution, selected from component A, component B and component C. Three microliters (3µl) of 2N HCl and 90µl of ethyl acetate were added and stirred into each of the reaction solutions after the maintenance. The resulting reaction solutions were centrifuged at 8,000xg to recover 75µl of the ethyl acetate layer. After drying the ethyl acetate layers under reduced pressure, the residue was dissolved in 6.0µl of ethyl acetate. Five microliters (5.0µl) thereof was spotted to a silica gel TLC plate (TLC plate silica gel 60F₂₅₄, 20cm x 20cm, 0.25mm thick, Merck Company). The TLC plate was developed with 6: 1: 2 mixture of chloroform, acetic acid and ethyl acetate for about 1 hour. The solvents were then allowed to evaporate. The TLC plate was exposed overnight to an imaging plate (Fuji Film Company). Next, the imaging plate was analyzed on Image Analyzer BAS2000 (Fuji Film Company). The presence of a spot corresponding to compound (III) labeled with ¹⁴C were examined (Rf value 0.24 and 0.29). The results are shown in Table 12.

Reaction components

component A | component B | component C | E. coli extract | compound (II) labeled with 14 C |

+ + + + + pKSNSCA + + +

Table 12

Example 15 Isolation of Soybean RuBPC Gene

[0217] After seeding soybean (cv. Jack), the soybean was cultivated at 27°C for 30 days and the leaves were gathered. Two-tenths grams (0.2g) to 0.3g of the gathered leaves were frozen with liquid nitrogen and were milled with a mortar and pestle. Subsequently, the total RNA was extracted from the milled product according to the manual attached with RNA extraction solvent ISOGEN (Nippon Gene Company). Further, cDNA was synthesized with the use of Superscript First-strand Synthesis System for RT-PCR (Invitrogen Company), by conducting the procedures in accordance with the attached manual. Specifically, a I st strand cDNA was synthesized by utilizing the Oligo(dT)₁₂₋₁₈ primer provided by the kit as a primer and the total soybean RNA as the template and by adding thereto the reverse transcriptase provided by the kit. Next, there is amplified by PCR a DNA encoding the chloroplast transit peptide of the small subunit of ribulose-1,5-bisphosphate carboxylase (hereinafter, the ribulose-1,5-bisphosphate carboxylase is referred to as "RuBPC") of soybean (cv. Jack) followed by the 12 amino acids of a mature protein (hereinafter, the chloroplast transit peptide of the small subunit of RuBPC of soybean (cv. Jack) is sometimes referred to as "rSt"; and the DNA encoding the chloroplast transit peptide of the small subunit of RuBPC of soybean (cv. Jack) followed by the 12 amino acids of a mature protein is referred to as "the present rSt12 DNA"). The PCR utilized the obtained cDNA as a template and as primers the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 86 and the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 87. The PCR utilized LA Tag polymerase (Takara Shuzo Company). The PCR was conducted by maintaining once 94°C for 3 minutes; conducting 30 cycles of a cycle

that included maintaining 98°C for 25 seconds and then 68°C for 1 minute; and maintaining once 72°C for 10 minutes. Plasmid pCRrSt12 (Fig. 5) was obtained by inserting the amplified DNA into the PCR-product cloning site of plasmid pCR2.1 (Invitrogen Company). Next, plasmid was introduced into the competent cells of E. coli JM109 strain and the ampicillin resistant strains were selected. Further, the nucleotide sequence of the plasmid contained in the selected ampicillin resistant strains was determined by utilizing the Dye Terminator Cycle Sequencing FS Ready Reaction kit (PE Applied Biosystems Company) and the DNA sequencer 373S (PE Applied Biosystems Company). As a result, the nucleotide sequence shown in SEQ ID NO: 88 was provided. It was confirmed that plasmid pCRrSt12 contained the present rSt12 DNA.

Example 16 Construction of a Chloroplast Expression Plasmid Containing the Present Invention DNA (A1) for Direct Introduction

(1) Isolation of the present invention DNA (A1)

5

15

20

25

35

40

45

50

55

[0218] A DNA comprising the nucleotide sequence shown in SEQ ID NO: 6 was amplified by PCR. The PCR was conducted by utilizing as the template the genomic DNA of Actinomyces Streptomyces phaeochromogenes IFO12898 and by utilizing as primers the oligonucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 93 and the oligonucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 94. Further, a DNA comprising the nucleotide sequence shown in SEQ ID NO: 9 was amplified by PCR. The PCR was conducted by utilizing as primers the oligonucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 93 and the oligonucleotide sequence shown in SEQ ID NO: 95. Said PCR utilized the Expand High Fidelity PCR System (Boehringer Company). There was conducted after maintaining once 97°C for 2 minutes; conducting 10 cycles of a cycle that included maintaining 97°C for 15 seconds, followed by 60°C for 30 seconds and followed by 72°C for 1 minute; then conducting 15 cycles of a cycle that included maintaining 97°C for 15 seconds, followed by 60°C for 30 seconds and followed by 72°C for 1 minute (wherein 20 seconds were added to the maintenance at 72°C for each cycle); and then maintaining 72°C for 7 minutes. Plasmids pCR657ET (Fig. 6) and pCR657FET (Fig. 7) were produced by inserting the amplified DNA into the PCR product cloning region of pCR2.1 (Invitrogen Company). Furthermore, other than utilizing the oligonucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 96 and the oligonucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 94, plasmid pCR657Bs (Fig. 8) was obtained with procedures similar to the method described above. Even further, other than utilizing the oligonucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 96 and the oligonucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 97, plasmid pCR657FBs (Fig. 9) was obtained with procedures similar to the method described above. Next, the plasmids were introduced into E. Coli DH5 α competent cells (Takara Shuzo Company) and the ampicillin resistant cells were selected. Further, the nucleotide sequences of the plasmids contained in the ampicillin resistant strains were determined by utilizing BigDye Terminator Cycle Sequencing Ready Reaction kit v2.0 (PE Applied Biosystems Company) and DNA sequencer 3100 (PE Applied Biosystems Company). As a result, it was confirmed that plasmids pCR657ET and pCR657Bs have the nucleotide sequence shown in SEQ ID NO: 6. It was confirmed that plasmids pCR657FET and pCR657FBs have the nucleotide sequence shown in SEQ ID NO: 9.

(2) Construction of a chloroplast expression plasmid having the present invention DNA (A1) for direct introduction - part (1)

[0219] A plasmid containing a chimeric DNA in which the present invention DNA (A1) was connected immediately after the nucleotide sequence encoding the chloroplast transit peptide of soybean (cv. Jack) RuBPC small subunit (hereinafter sometimes referred to as the "sequence encoding the chloroplast transit peptide") without a change of frames in the codons was constructed as a plasmid for introducing the present invention DNA (A1) into a plant with the particle gun method.

[0220] First, pCRrSt12 was digested with restriction enzyme HindIII and KpnI. The DNA comprising the present rSt12DNA was isolated. Further, a DNA of about 2640bp was obtained by removing about a 40bp DNA from plasmid vector pUC19 (Takara Shuzo Company) with a digestion with restriction enzymes HindIII and KpnI. Next, the 5' terminus of the DNA was dephosphorylated with calf intestine alkaline phosphatase (Takara Shuzo Company). The DNA containing the present rSt12DNA, obtained from pCRrSt12, was inserted thereto to obtain pUCrSt12 (Fig. 10). Next, DNA comprising the present invention DNA (A1) were isolated by digesting each of plasmids pCR657ET and pCR657FET with restriction enzymes EcoT22I and SacI. Each of the obtained DNA was inserted between the EcoT22I restriction site and the SacI restriction site of pUCrSt12 to obtain plasmids pUCrSt657 (Fig. 11) and pUCrSt657F (Fig. 12) containing a chimeric DNA in which the present invention DNA (A1) was connected immediately after the nucleotide sequence encoding the chloroplast transit peptide of soybean (cv. Jack) RuBPC small subunit without a change of frames in the codons.

[0221] pBICR16G6PT (described in Japanese unexamined patent 2000-166577) was digested with restriction enzyme EcoRI to isolate a DNA of about 3kb. (Hereinafter, the promoter contained in the DNA described in the above Japanese unexamined patent is referred to as the "CR16G6 promoter". Further, the terminator contained in the DNA described in the above Japanese unexamined patent is referred to as the "CR16 terminator".) After digesting the plasmid vector pUC19 (Takara Shuzo Company) with restriction enzyme EcoRI, the 5' terminus of said DNA was dephosphorylated with calf intestine alkaline phosphatase (Takara Shuzo Company). The 3kb DNA derived from pBICR16G6PT was inserted thereto to obtain plasmid pUCCR16G6-p/t (Fig. 13), pUCCR16G6-p/t was digested with restriction enzymes HindIII and Scal to isolate a DNA comprising the CR16G6 promoter. Further, by digesting plasmid vector pUC19 (Takara Shuzo Company) with restriction enzymes HindIII and EcoRI, a DNA of 51bp was removed and the remaining DNA consisting of 2635bp was obtained. Next, the 5' terminus of said DNA was dephosphorylated with calf intestine alkaline phosphatase (Takara Shuzo Company). The above DNA comprising the CR16G6 promoter obtained from pUCCR16G6-p/t and a Notl-EcoRl linker (Fig. 14) obtained from annealing the oligonucleotide consisting of the nucleotide sequence shown in SEQ ID No: 89 with the oligonucleotide consisting of the nucleotide sequence shown in SEQ ID No: 90 were inserted thereto to obtain pUCCR12G6-p/t Δ (Fig. 15). pUCCR12G6-p/t Δ was digested with restriction enzymes Ndel and EcoRI to isolate a DNA having a partial nucleotide sequence of the CR16t terminator. Further, plasmid vector pUC 19 (Takara Shuzo Company) was digested with restriction enzymes HindIII and EcoRI to obtain a DNA of 2635bp. The 5' terminus of said DNA was dephosphorylated with calf intestine alkaline phosphatase (Takara Shuzo Company). The above DNA having a partial nucleotide sequence of the CR16t terminator obtained from pUCCR12G6-p/t ∆ and a HindIII-NotI linker (Fig. 16) obtained by annealing the oligonucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 91 with the oligonucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 92 were inserted thereto to obtain pNdG6- ΔT (Fig. 17).

10

15

20

25

30

35

40

45

50

55

[0222] Next, by digesting each of plasmids pUCrSt657 and pUCr657F with restriction enzymes BamHI and Sacl, there was isolated the DNA comprising a chimeric DNA in which the present invention DNA (A1) was connected immediately after the nucleotide sequence encoding the chloroplast transit peptide of soybean (cv. Jack) RuBPC small subunit without a change of frames in the codons. The DNA were inserted between the restriction enzyme site of BgIII and the restriction enzyme site of SacI of plasmid pNdG6- Δ T to obtain each of plasmid pSUM-NdG6-rSt-657 (Fig. 18) and plasmid pSUM-NdG6-rSt-657F (Fig. 19).

(3) Construction of a chloroplast expression plasmid having the present invention DNA (A1) for direct introduction - part (2)

[0223] A plasmid containing a chimeric DNA in which the present invention DNA (A1) was connected immediately after the nucleotide sequence encoding the chloroplast transit peptide of soybean (cv. Jack) RuBPC small subunit and encoding thereafter 12 amino acids of the mature protein, without a change of frames in the codons was constructed as a plasmid for introducing the present invention DNA (A1) into a plant with the particle gun method. First, after digesting plasmid vector pKF19 (Takara Shuzo Company) with restriction enzyme BspHI, the DNA termini were blunt ended by adding nucleotides to the double stranded gap, utilizing KOD DNA polymerase (Toyobo Corporation). Plasmid pKF 19 Δ Bs was obtained by a self-cyclizing the resulting DNA with T4 DNA ligase. The pCRrSt12 obtained in Example 1 was digested with restriction enzyme HindIII and Kpnl. The DNA comprising the present rSt12DNA was isolated. Plasmid pKF19 Δ Bs was digested with restriction enzymes HindIII and KpnI to obtain a DNA of about 2160bp. The 5' termini of said DNA were dephosphorylated with calf intestine alkaline phosphatase (Takara Shuzo Company). The DNA comprising the present rSt12DNA obtained from pCRrSt12 was inserted thereto to obtain pKFrSt12 (Fig. 20). Next, the plasmids pCR657Bs and pCR657FBs obtained in Example 16(1) were each digested with restriction enzymes BspHI and SacI to isolate DNA comprising the present invention DNA (A1). Each of these DNA were inserted between the restriction site of BspHI and restriction site of SacI of plasmid pKFrSt12 to obtain plasmid pKFrSt12-657 (Fig. 21) and plasmid pKFrSt12-657F (Fig. 22), which contained a chimeric DNA in which the present invention DNA (A1) was connected immediately after the nucleotide sequence encoding the chloroplast transit peptide of soybean (cv. Jack) RuBPC small subunit and encoding thereafter 12 amino acids of the mature protein, without a change of frames in the

[0224] Next, each of plasmids pKFrSt12-657 and pKFrSt12-657F was digested with BamHI and SacI to obtain DNA comprising the present invention DNA (A1). Each of these DNA were inserted between the BgIII restriction site and SacI restriction site of plasmid pNdG6-Δ T obtained in Example 16(2) to obtain plasmids pSUM-NdG6-rSt12-657 (Fig. 23) and pSUM-NdG6-rSt12-657F (Fig. 24) wherein the chimeric DNA, in which the present invention DNA (A1) was connected immediately after the nucleotide sequence encoding the chloroplast transit peptide of soybean (cv. Jack) RuBPC small subunit and encoding thereafter 12 amino acids of the mature protein, without a change of frames in the codons, was connected downstream of promoter CR16G6.

Example 17 Introduction of the Present Invention DNA (A1) into Soybean

(1) Preparation of proliferative somatic embryos

5

10

15

20

25

30

35

45

50

55

[0225] After dipping pods of soybeans (cultivar: Fayette and Jack) in 1% sodium hypochlorite solution to sterilize, the immature seeds were taken out. The seed coat was exfoliated from the seed to remove the immature embryo having a diameter of 2 to 5 mm. The embryonic axis of the obtained immature embryo was excised with a scalpel to prepare the immature cotyledon. The immature cotyledon was divided into 2 cotyledon parts. Each cotyledon part was placed in the somatic embryo development medium, respectively. The somatic embryo development medium was a solidified medium where 0.2%(w/v) Gelrite was added to Murashige-Skoog medium (described in Murashige T.and Skoog F., Physiol. Plant (1962) 15, p473; hereinafter referred to as "MS medium") that was set to a pH of 7.0 and that had 180μM of 2,4-D and 30g/L of sucrose added thereto. About 1 month after the placement, the formed globular embryo was transplanted to the somatic embryo growth medium. The somatic embryo growth medium was a solidified medium where 0.2%(w/v) Gelrite was added to MS medium that was set to pH5.8 and that had 90μM of 2,4-D and 30g/L of sucrose added thereto. The globular embryo was thereafter transplanted to fresh somatic embryo growth medium 5 to 8 times at intervals of 2 to 3 weeks. Each of the culturing conditions utilizing the above somatic embryo development medium and somatic embryo growth medium was 23 hours of light with 1 hour of darkness and 23 to 25°C for the whole day.

(2) Introduction of the gene to proliferative somatic embryos

[0226] After the globular embryo obtained in Example 17(1) is transplanted to fresh somatic embryo growth medium and cultured for 2 to 3 days, the globular embryo was utilized to introduce the gene. Plasmids pSUM-NdG6-rSt657, pSUM-NdG6-rSt12657 and pSUM-NdG6-rSt12657F were coated onto gold particles of a diameter of 1.0μm to conduct the gene introduction employing the particle gun method. The amount of the plasmids was 1.66μg for 1mg of the gold particles. After introducing the gene, the embryo was cultured further for 2 to 3 days. Each of the culturing conditions was 23 hours of light with 1 hour of darkness and 23 to 25°C for the whole day.

(3) Selection of an somatic embryo with hygromycin

[0227] The globular embryo after introducing the gene obtained in Example 17(2) was transplanted to an somatic embryo selection medium. The somatic embryo selection medium was a solidified medium where 0.2%(w/v) Gelrite and 15mg/L of hygromycin were added to MS medium that was set to pH5.8 and that had 90 μ M of 2,4-D and 30g/L of sucrose added thereto. The surviving globular embryo was thereafter transplanted to fresh somatic embryo selection medium 5 to 8 times at intervals of 2 to 3 weeks. In that time, the somatic embryo selection medium was a solidified medium where 0.2%(w/v) Gelrite and 30mg/L of hygromycin were added to MS medium that was set to pH5.8 and that had 90 μ M of 2,4-D and 30g/L of sucrose added thereto. Each of the culturing conditions utilizing the above somatic embryo selection medium was 23 hours of light with 1 hour of darkness and 23 to 25°C for the whole day.

40 (4) Selection of somatic embryo with compound (II)

[0228] The globular embryo after introducing the gene obtained in Example 17(2) was transplanted to an somatic embryo selection medium. The somatic embryo selection medium was a solidified medium where 0.2%(w/v) Gelrite and 0.1mg/L of compound (II) were added to MS medium that was set to pH5.8 and that had $90\mu\text{M}$ of 2,4-D and 30g/L of sucrose added thereto. The surviving globular embryo was thereafter transplanted to fresh somatic embryo selection medium 5 to 8 times at intervals of 2 to 3 weeks. In that time, the somatic embryo selection medium was a solidified medium where 0.2%(w/v) Gelrite and 0.3 to 1mg/L of compound (II) were added to MS medium that was set to pH5.8 and that had $90\mu\text{M}$ of 2,4-D and 30g/L of sucrose added thereto. Each of the culturing conditions utilizing the above somatic embryo selection medium was 23 hours of light with 1 hour of darkness and 23 to 25°C for the whole day.

(5) Plant regeneration from the somatic embryo

[0229] The globular embryos selected in Example 17(3) or 17(4) are transplanted to development medium and are cultured for 4 weeks in 23 hours of light with 1 hour of darkness and at 23 to 25°C for the whole day. The development medium is a solidified medium where 0.8% (w/v) of agar (Wako Pure Chemical Industries, Ltd., use for plant tissue cultures) is added to MS medium that is set to pH5.8 and that has 60g/L of maltose added thereto. White to yellow colored cotyledon-type embryos are obtained 6 to 8 weeks thereafter. These cotyledon-type embryos are transplanted to germination medium and cultured for 2 weeks. The germination medium is a solidified medium where 0.2% (w/v) of

Gelrite was added to MS medium that is set to pH5.8 and has 30g/L of sucrose added thereto. As a result, there can be obtained a soybean that has developed leaves and has roots.

(6) Acclimation and cultivation of the regenerated plant

5

10

15

20

25

30

35

40

45

50

55

[0230] The soybean obtained in Example 17(5) is transplanted to gardening soil and acclimated in an incubation chamber of 23 hours of light with 1 hour of darkness and 23 to 25°C for the whole day. Two (2) weeks thereafter, the rooted plant is transferred to a pot having a diameter of 9cm and cultivated at room temperature. The cultivation conditions at room temperature are natural light conditions at 23°C to 25°C for the whole day. Two to four (2 to 4) months thereafter, the soybean seeds are gathered.

(7) Evaluation of the resistance to herbicidal compound (II)

[0231] Leaves of the regenerated plant are gathered and are split equally into 2 pieces along the main vein. Compound (II) is spread onto the full surface of one of the leaf pieces. The other leaf piece is left untreated. These leaf pieces are placed on MS medium containing 0.8% agar and allowed to stand at room temperature for 7 days in light place. Then, each leaf piece is grounded with pestle and mortar in 5 ml of 80% aqueous acetone solution to extract chlorophyll. The extract liquid is diluted 10 fold with 80% aqueous acetone solution and the absorbance is measured at 750 nm, 663nm and 645nm to calculate total chlorophyll content according to the method described by Mackenney G., J. Biol. Chem. (1941) 140, p 315. The degree of resistance to compound (II) can be comparatively evaluated by showing in percentiles the total chlorophyll content of the treated leaf piece with the total chlorophyll content of the untreated leaf piece.

[0232] Further, soil is packed into a plastic pot having a diameter of 10cm and a depth of 10cm. Seeds of the above-described plant are seeded and cultivated in a greenhouse. An emulsion is prepared by mixing 5 parts of compound (II), 6 parts of sorpo13005X (Toho chemicals) and 89 parts of xylene. A certain amount thereof was diluted with water containing 0.1% (v/v) of a sticking agent at a proportion of 1000L for 1 hectare and is spread uniformly with a spraygun onto the all sides of the foliage from above the plant cultivated in the above pot. After cultivating the plants for 16 days in a greenhouse, the damage to the plants is investigated, and the resistance to compound (II) is evaluated.

Example 18 Construction of a Chloroplast Expression Plasmid Having the Present Invention DNA (A1) for Agrobacterium Introduction

[0233] A plasmid for introducing the present invention DNA (A1) into a plant with the agrobacterium method was constructed. First, after binary plasmid vector pBI121 (Clontech Company) was digested with restriction enzyme Notl, the DNA termini were blunt ended by adding nucleotides to the double stranded gap, utilizing DNA polymerase I (Takara Shuzo Corporation). T4 DNA ligase was utilized for self-cyclization. After the obtained plasmid was digested with restriction enzyme EcoRI, the DNA termini were blunt ended by adding nucleotides to the double stranded gap, utilizing DNA polymerase I (Takara Shuzo Corporation). T4 DNA ligase was utilized for self-cyclization to obtain plasmid pBI121 Δ NotIEcoRI. After digesting the plasmid with HindIII, the 5' DNA terminus of the obtained DNA was dephosphorylated with calf intestine alkaline phosphatase (Takara Shuzo Company). A HindIII-NotI-EcoRI linker (Fig. 25) obtained by annealing the oligonucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 98 with the oligonucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 99 was inserted thereto. Binary plasmid vector pBI121S (Fig. 26) was obtained by self-cyclization. Said plasmid has a structure in which the HindIII-NotI-EcoRI linker was inserted in a direction in which the HindIII restriction site, the NotI restriction site, and the EcoRI restriction site line up in turn from a location close to the β-glucuronidase gene.

[0234] Next, each of plasmids pSUM-NdG6-rSt-657 and pSUM-NdG6-rSt-657F was digested with restriction enzymes HindIII and EcoRI, to obtain from each thereof a chimeric DNA in which the present invention DNA (A1) was connected immediately after the nucleotide sequence encoding the chloroplast transit peptide of soybean (cv. Jack) RuBPC small subunit without a change of frames in the codons. These DNA were inserted between the HindIII restriction site and EcoRI restriction site of the above binary plasmid vector pBI121S to obtain plasmids pBI-NdG6-rSt-657 (Fig. 27) and pBI-NdG6-rSt-657F (Fig. 28). Further, each of the above plasmids pSUM-NdG6-rSt12-657 and pSUM-NdG6-rSt12-657F was digested with restriction enzymes HindIII and EcoRI, to obtain from each a chimeric DNA in which the present invention DNA (A1) was connected immediately after the nucleotide sequence encoding the chloroplast transit peptide of soybean (cv. Jack) RuBPC small subunit and encoding thereafter 12 amino acids of the mature protein, without a change of frames in the codons. These DNA were inserted between the HindIII restriction site and EcoRI restriction site of the above binary plasmid vector pBI121S to obtain plasmids pBI-NdG6-rSt12-657 (Fig. 29) and pBI-NdG6-rSt12-657F (Fig. 30).

Example 19 Introduction of the Present Invention DNA (A1) to Tobacco

5

10

15

20

25

30

35

40

45

50

55

[0235] The present invention DNA (A1) was introduced into tobacco with the agrobacterium method, utilizing plasmid pBI-NdG6-rSt-657, plasmid pBI-NdG6-rSt-657, plasmid pBI-NdG6-rSt-657F, obtained in Example 18.

[0236] First, the plasmids pBI-NdG6-rSt-657, pBI-NdG6-rSt-657F, pBI-NdG6rSt12-657 and pBI-NdG6-rSt12-657F were introduced into Agrobacterium tumefaciens LBA4404 (Clontech Company), respectively. Transformed agrobacterium strains bearing pBI-NdG6-rSt-657, pBI-NdG6-rSt-657F, pBI-NdG6-rSt12-657 or pBI-NdG6-rSt12-657F were isolated by culturing the resultant transformants in LB agar medium (0.5% yeast extract, 1.0% Bacto tryptone, 0.5% NaCl) containing 300 mg/L streptomycin, 100 mg/L rifampicin and 25 mg/L kanamycin and by selecting the resistant colonies. Then, according to the method described in Manual for Gene Manipulation of Plant (by Hirofumi UCHIMIYA, Kodan-sha Scientific, 1992), the gene was introduced into tobacco. Agrobacterium strains bearing the above plasmids were each cultured at 28°C overnight in LB medium containing 300 mg/L streptomycin, 100 mg/L rifampicin and 25 mg/L kanamycin, and then leaf pieces of tobacco (Nicotiana tabacum strain SR1) cultured sterilely were dipped in the liquid culture medium. The leaf pieces were planted and cultured at room temperature for 2 days in the light in MS agar medium (MS inorganic salts, MS vitamins, 3% sucrose and 0.8% agar; described in Murashige T. and Skoog F., Physiol. Plant. (1962) 15, p 473) containing 0.1 mg/L of naphthalene acetic acid and 1.0 mg/L of benzyl aminopurine. Then, the leaf pieces were washed with sterilized water and cultured for 7 days on MS agar medium containing 0.1 mg/L of naphthalene acetic acid, 1.0 mg/L of benzyl aminopurine and 500mg/L of cefotaxime. Next, the leaf pieces were transplanted and cultured in MS agar medium containing 0.1 mg/L of naphthalene acetic acid, 1.0mg/L of benzyl aminopurine, 500mg/L of cefotaxime and 100mg/L of kanamycin. The culture was conducted continuously for 4 months while transplanting the leaf pieces to fresh medium of the same composition at intervals of 4 weeks. At that time, the unfixed buds developing from the leave pieces were transplanted and rooted in MS agar medium containing 300mg/L of cefotaxime and 50mg/L of kanamycin to obtain regenerated bodies. The regenerated bodies were transplanted to and cultured in MS agar medium containing 50mg/L of kanamycin to obtain, respectively, a transgenic tobacco to which the T-DNA region ofpBI-NdG6-rSt-657, pBI-NdG6-rSt-657F, pBI-NdG6-rSt12-657 or pBI-NdG6-rSt12-657F has been introduced.

[0238] Further, the plasmid pBI121S obtained in Example 18 was introduced into tobacco with the agrobacterium method. A transformed agrobacterium strain bearing pBI121S was isolated similarly to the above, other than utilizing plasmid pBI121S instead of pBI-NdG6-rSt-657, pBI-NdG6-rSt-657F, pBI-NdG6-rSt12-657 and pBI-NdG6-rSt12-657F. Next, a transgenic tobacco to which the T-DNA region of plasmid pBI121S has been introduced was obtained similarly to the above, utilizing said transformed agrobacterium.

[0239] Three (3) leaves were taken from the transgenic tobacco. Each leaf was divided into 4 pieces in which each piece was 5 to 7mm wide. Each of the leaf pieces were planted onto MS agar medium containing 0.1mg/L of compound (II) and cultured in the light at room temperature. On the 7th day of culturing, the herbicidal damage of each of the leaf pieces was observed. The leaf pieces derived from the tobacco to which the control DNA (T-DNA region of plasmid pBI121S) was introduced turned white and withered. In contrast, the leaf pieces derived from the tobacco to which the present invention DNA (A1) (the T-DNA region of plasmid p pBI-NdG6-rSt-657, plasmid pBI-NdG6-rSt12-657, pBI-NdG6-rSt-657F or pBI-NdG6-rSt12-657F) was introduced grew continuously.

Example 20 Introduction of the Present Invention DNA into a Plant

[0240] Plasmids were constructed for introducing the present invention DNA (A2) with the particle gun method and the agrobacterium method. First, the present invention DNA (A2) having the nucleotide sequence shown in SEQ ID NO: 7 was amplified by PCR. The PCR was conducted by utilizing as the template the genomic DNA of Actinomyces Saccharopolyspora taberi JCM9383t and by utilizing as primers the oligonucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 100 and the oligonucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 101. Said PCR utilized the Expand High Fidelity PCR System (Boehringer Company). There were conducted after maintaining once 97°C for 2 minutes; repeating 10 cycles of a cycle that included maintaining 97°C for 15 seconds, followed by 60°C for 30 seconds and followed by 72°C for 60 seconds; then conducting 15 cycles of a cycle that included maintaining 97°C for 15 seconds, followed by 60°C for 30 seconds and followed by 72°C for 1 minute (wherein 20 seconds were added to the maintenance at 72°C for each cycle); and then maintaining 72°C for 7 minutes. Plasmids pCR923Sp (Fig. 31) was produced by inserting the amplified DNA into the PCR product cloning region ofpCR2.1-TOPO (Invitrogen Company). Next, the plasmid was introduced into E. Coli JM109 competent cells (Takara Shuzo Company) and the ampicillin resistant cells were selected. Further, the nucleotide sequences of the plasmids contained in the ampicillin resistant strains were determined by utilizing BigDye Terminator Cycle Sequencing Ready Reaction kit v2.0 (PE Applied Biosystems Company) and DNA sequencer 373S (PE Applied Biosystems Company). As a result, it was confirmed that plasmid pCR923Sp has the nucleotide sequence shown in SEQ ID NO: 7.

[0241] Plasmid pKFrSt12, designed in Example 16(3), was digested with restriction enzymes BamHI and SacI to isolate a DNA comprising the present rSt12DNA. Said DNA was inserted between the BgIII restriction site and SacI restriction site of pNdG6-Δ T obtained in Example 16(2) to obtain plasmid pNdG6-rSt12 (Fig. 32). Plasmid pCR923Sp was digested with restriction enzymes SphI and KpnI to obtain the DNA comprising the present invention DNA (A2). Plasmid pNdG6-rSt12 was digested with restriction enzymes SphI and KpnI to remove the DNA encoding the 12 amino acids of the mature protein of soybean (cv. Jack) RuBPC small subunit. In its place, the above DNA containing the present invention DNA (A2) obtained from plasmid pCR923Sp was inserted to obtain pSUM-NdG6-rSt-923 (Fig. 33) wherein the CR16G6 promoter has connected downstream therefrom the chimeric DNA in which said DNA was connected immediately after the sequence encoding the chloroplast transit peptide of soybean (cv. Jack) RuBPC small subunit, without a change of frame in the codons.

10

15

20

25

30

35

40

45

50

55

[0242] Next, plasmid pCR923Sp was digested with restriction enzyme Sphl. After blunting the ends of the obtained DNA with KOD DNA polymerase, said DNA is further digested with restriction enzyme KpnI to isolate a DNA containing the present invention DNA (A2). Plasmid pKFrSt12 produced in Example 16(3) was digested with restriction enzyme BspHl. After blunting the ends of the obtained DNA with KOD DNA polymerase, said DNA is further digested with restriction enzyme KpnI to remove DNA of about 20bp. In its place, the above DNA containing the present invention DNA (A2) obtained from plasmid pCR923Sp was inserted to obtain plasmid pKFrSt12-923 (Fig. 34) comprising the chimeric DNA in which the present invention DNA (A2) was connected immediately after the nucleotide sequence encoding the chloroplast transit peptide of soybean (cv. Jack) RuBPC small subunit and encoding thereafter 12 amino acids of the mature protein, without a change of frames in the codons. pKFrSt12-923 was digested with restriction enzymes Sphl and Kpnl to obtain the chimeric DNA in which the present invention DNA (A2) and the DNA encoding the first 12 amino acids of the mature protein of soybean (cv. Jack) RuBPC small subunit are connected. Plasmid pNdG6-rSt12 was digested with restriction enzymes SphI and KpnI to remove the DNA encoding the 12 amino acids of the mature protein of soybean (cv. Jack) RuBPC small subunit. In its place, the above chimeric DNA obtained from plasmid pKFrSt12-923 was inserted to obtain plasmid pSUM-NdG6-rSt12-923 (Fig. 35) in which the CR16G6 promoter has connected downstream therefrom the chimeric DNA in which said DNA containing the present invention DNA (A2) was connected immediately after the sequence encoding the chloroplast transit peptide of soybean (cv. Jack) RuBPC small subunit and encoding thereafter 12 amino acids of the mature protein, without a change of frame in the codons. [0243] The present invention DNA (A2) was introduced into soybean with the particle gun method with the identical procedures of the method described in Example 17, utilizing the obtained plasmids pSUM-NdG6-rSt-923 and pSUM-NdG6-rSt12-923.

[0244] The above plasmid pSUM-NdG6-rSt-923 was digested with restriction enzymes HindIII and EcoRI to isolate the DNA comprising the chimeric DNA in which said DNA containing the present invention DNA (A2) was connected immediately after the sequence encoding the chloroplast transit peptide of soybean (cv. Jack) RuBPC small subunit, without a change of frame in the codons. As in producing pBI-NdG6-rSt657 in Example 18, the above DNA containing the chimeric DNA obtained from plasmid pSUM-NdG6-rSt-923 was inserted between the HindIII restriction site and the EcoRI restriction site of binary vector pBI121S to obtain pBI-NdG6-rSt-923 (Fig. 36). Further, the above plasmid pSUM-NdG6-rSt12-923 was digested with HindIII and EcoRI, to isolate the DNA containing chimeric DNA in which said DNA containing the present invention DNA (A2) was connected immediately after the sequence encoding the chloroplast transit peptide of soybean (cv. Jack) RuBPC small subunit and encoding thereafter 12 amino acids of the mature protein, without a change of frame in the codons. The chimeric DNA obtained from pSUM-NdG6-rSt12-923 was inserted between the HindIII restriction site and EcoRI restriction sites of binary vector pBI121S to obtain pBI-NdG6-rSt12-923 (Fig. 37).

[0245] Each of the plasmids pBI-NdG6-rSt-923 and pBI-NdG6-rSt12-923 was introduced into Agrobacterium tume-faciens LBA4404. The resultant transformants were cultured in LB medium containing 300μg/ml of streptomycin, 100μg/ml of rifampicin and 25μg/ml of kanamycin. The transformants were selected to isolate agrobacterium strains bearing pBI-NdG6-rSt-923 or pBI-NdG6-rSt12-923.

[0246] Leaf pieces of sterily cultured tobacco were infected with each of the agrobacterium strain bearing pBI-NdG6-rSt-923 and the agrobacterium strain bearing pBI-NdG6-rSt12-923. Tobaccos in which the present invention DNA (A2) has been introduced were obtained under the procedures similar to the methods described in Example 19. [0247] Three (3) leaves were taken from the obtained transgenic tobacco. Each leaf was divided into 4 pieces in which each piece was 5 to 7mm wide. Each of the leaf pieces were planted onto MS agar medium containing 0.1mg/L of compound (II) and cultured in the light at room temperature. On the 7th day of culturing, the herbicidal damage of each of the leaf pieces was observed. The leaf pieces derived from the tobacco to which the control DNA (T-DNA region of plasmid pBI121S) was introduced turned white and withered. In contrast, the leaf pieces derived from the tobacco to which the present invention DNA (A2) (the T-DNA region of plasmid pBI-NdG6-rSt923 or plasmid pBI-NdG6-rSt12-923) was introduced grew continuously.

Example 21 Introduction of the Present Invention DNA (A3) into Tobacco

5

10

15

20

25

30

35

40

45

50

55

[0248] Plasmids were constructed for introducing the present invention DNA (A3) into a plant with the particle gun method and with the agrobacterium method.

[0249] First, the present invention DNA (A3) having the nucleotide sequence shown in SEQ ID NO: 8 was amplified by PCR. The PCR was conducted by utilizing as the template the genomic DNA of Actinomyces Streptomyces testaceus ATCC21469 and by utilizing as primers the oligonucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 102 and the oligonucleotide consisting of the nucleotide seguence shown in SEQ ID NO: 103, Said PCR utilized the Expand High Fidelity PCR System (Boehringer Company). There were conducted after maintaining once 97°C for 2 minutes; repeating 10 cycles of a cycle that included maintaining 97°C for 15 seconds, followed by 60°C for 30 seconds and followed by 72°C for 1 minute; then conducting 15 cycles of a cycle that included maintaining 97°C for 15 seconds, followed by 60°C for 30 seconds and followed by 72°C for 1 minute (wherein 20 seconds were added to the maintenance at 72°C for each cycle); and then maintaining once 72°C for 7 minutes. Plasmid pCR671ET (Fig. 38) was produced by inserting the amplified DNA into the PCR product cloning region of pCR2.1 (Invitrogen Company). Further, plasmid pCR671Bs (Fig. 39) was obtained with the procedures similar to the method described above, other than utilizing as the PCR primers, the oligonucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 104 and the oligonucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 103, Next, the plasmids were introduced into E. Coli JM109 competent cells (Takara Shuzo Company) and the ampicillin resistant cells were selected. Further, the nucleotide sequences of the plasmids contained in the ampicillin resistant strains were determined by utilizing BigDye Terminator Cycle Sequencing Ready Reaction kit v2.0 (PE Applied Biosystems Company) and DNA sequencer 3100 (PE Applied Biosytems Company). As a result, it was confirmed that plasmids pCR671ET and pCR671Bs have the nucleotide sequence shown in SEQ ID NO: 8.

[0250] Plasmid pCR671ET was digested with restriction enzymes EcoT221 and Kpnl to isolate DNA comprising the present invention DNA (A3). Said DNA was inserted between the EcoT22I restriction site and the Kpnl restriction site to obtain plasmid pUCrSt671 (Fig. 40) comprising the chimeric DNA in which the present invention DNA (A3) was connected immediately after the sequence encoding the chloroplast transit peptide of soybean (cv. Jack) RuBPC small subunit, without a change of frame in the codons. Plasmid pUCrSt671 was digested with restriction enzymes Nhel and Kpnl to isolate DNA comprising the present invention DNA (A3). Plasmid pNdG6-rSt12, obtained in Example 16(2), was digested with restriction enzymes Nhel and Kpnl to remove DNA of about 80bp. In its place, the above DNA containing the present invention DNA (A3) obtained from plasmid pUCrSt671 was inserted to obtain pSUM-NdG6-rSt-671 (Fig. 41) wherein the CR16G6 promoter has connected downstream therefrom the chimeric DNA in which the present invention DNA (A3) was connected immediately after the sequence encoding the chloroplast transit peptide of soybean (cv. Jack) RuBPC small subunit, without a change of frame in the codons.

[0251] Plasmid pCR671 Bs was digested with restriction enzymes BspHI and KpnI to isolate a DNA comprising the present invention DNA (A3). Said DNA was inserted between the BspHI restriction site and KpnI restriction site of pKFrSt12 obtained in Example 16(3) to obtain plasmid pKFrSt12-671 (Fig. 42) containing the chimeric DNA in which the present invention DNA (A3) was connected immediately after the sequence encoding the chloroplast transit peptide of soybean (cv. Jack) RuBPC small subunit and encoding thereafter 12 amino acids of the mature protein, without a change of frame in the codons. Plasmid pNdG6-rSt12 obtained in Example 20 was digested with restriction enzymes Nhel and KpnI to remove DNA of about 80bp. In its place, the above DNA containing the present invention DNA (A3) obtained from plasmid pKFrSt12-671 was inserted to obtain pSUM-NdG6-rSt12-671 (Fig. 43) wherein the CR16G6 promoter has connected downstream therefrom the chimeric DNA in which the present invention DNA (A3) was connected immediately after the sequence encoding the chloroplast transit peptide of soybean (cv. Jack) RuBPC small subunit and encoding thereafter 12 amino acids of the mature protein, without a change of frame in the codons.

[0252] The present invention DNA (A3) was introduced into soybean with the particle gun method with procedures similar to the method described in Example 17, utilizing the obtained plasmids pSUM-NdG6-rSt-671 and pSUM-NdG6-rSt12-671.

[0253] The above plasmid pSUM-NdG6-rSt-671 was digested with restriction enzymes HindIII and EcoRI to isolate the chimeric DNA in which the present invention DNA (A3) was connected immediately after the sequence encoding the chloroplast transit peptide of soybean (cv. Jack) RuBPC small subunit, without a change of frame in the codons. The above DNA containing the chimeric DNA obtained from plasmid pSUM-NdG6-rSt-671 was inserted between the HindIII restriction site and the EcoRI restriction site of binary vector plasmid pBI121S obtained in Example 18, to obtain pBI-NdG6-rSt-671 (Fig. 44). Further, the above plasmid pSUM-NdG6-rSt12-671 was digested with restriction enzymes HindIII and EcoRI, to isolate the DNA containing chimeric DNA in which said DNA containing the present invention DNA (A3) was connected immediately after the sequence encoding the chloroplast transit peptide of soybean (cv. Jack) RuBPC small subunit and encoding thereafter 12 amino acids of the mature protein, without a change of frame in the codons. The chimeric DNA obtained from pSUM-NdG6-rSt12-671 was inserted between the HindIII restriction site and EcoRI restriction sites of binary plasmid vector pBI121S to obtain pBI-NdG6-rSt12-671 (Fig. 45).

[0254] Each of the plasmids pBI-NdG6-rSt-671 and pBI-NdG6-rSt12-671 were introduced into Agrobacterium tume-faciens LBA4404. The resultant transformants were cultured in LB medium containing 300µg/ml of streptomycin, 100µg/ml of rifampicin and 25µg/ml of kanamycin. The transformants were selected to isolate agrobacterium strains bearing pBI-NdG6-rSt-671 or pBI-NdG6-rSt12-671.

[0255] Leaf pieces of sterily cultured tobacco were infected with each of the agrobacterium strain bearing pBI-NdG6-rSt-671 and the agrobacterium strain bearing pBI-NdG6-rSt12-671. Tobaccos in which the present invention DNA (A3) has been introduced were obtained under the procedures similar to the methods described in Example 19. [0256] Three (3) leaves are taken from the transgenic tobaccos. Each leaf is divided into 4 pieces in which each piece was 5 to 7mm wide. Each of the leaf pieces are planted onto MS agar medium containing 0.1mg/L of compound (II) and cultured in the light at room temperature. On the 7th day of culturing, the herbicidal damage of each of the leaf pieces is observed.

Example 22 Expression of the Present Invention Protein (B1) in E. Coli

10

15

20

25

45

50

55

(1) Production of a transformed E. coli of the present invention DNA (B1)

[0257] PCR was conducted by utilizing as a template the chromosomal DNA prepared from Streptomyces phaeochromogenes IFO12898 in Example 3(1). The PCR reaction solution amounted to 50µl by adding 300ng of the above chromosomal DNA, 4µl of dNTP mix (a mixture of 2.5mM of each of the 4 types of dNTP), 5µl of 10x ExTaq buffer, 0.5μl of ExTaq polymerase (Takara Shuzo Company), distilled water and 200nM of each of the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 105 and the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 53. The reaction conditions of the PCR were after maintaining 97°C for 2 minutes; repeating 25 cycles of a cycle that included maintaining 97°C for 15 seconds, followed by 60°C for 30 seconds and followed by 72°C for 90seconds; and then maintaining 72°C for 4 minutes. The reaction solution after the maintenance and the vector pCR2.1-TOPO (Invitrogen Company) were ligated according to the instructions attached to said vector and were introduced into E. Coli TOP10F'. The plasmid DNA were prepared from the obtained E. coli transformants, utilizing QIAprep Spin Miniprep Kit (Qiagen Company). Sequencing reactions were conducted with Dye terminator cycle sequencing FS ready reaction kit (Applied Biosystems Japan Company) according to the instructions attached to said kit, utilizing as primers the oligonucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 67 and the oligonucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 68. The sequencing reactions utilized the obtained plasmid DNA as the template. The reaction products were analyzed with a DNA sequencer 373A (Applied Biosystems Japan Company). Based on the results, the plasmid having the nucleotide sequence shown in SEQ ID NO: 15 was designated as pCR657FD.

[0258] Next, pCR657FD was digested with restriction enzymes Ndel and HindIII. The digestion products were subjected to agarose gel electrophoresis. The gel area containing a DNA of about 200bp was cut from the gel. The DNA was purified from the recovered gels by utilizing QIA quick gel extraction kit (Qiagen Company) according to the attached instructions. The obtained DNA and the plasmid pKSN2 digested with Ndel and HindIII were ligated with ligation kit Ver.1 (Takara Shuzo Company) according to the instructions attached to said kit and introduced into E. Coli JM109. The plasmid DNA were prepared from the obtained E. coli transformants. The structures thereof were analyzed. The plasmid containing the nucleotide sequence shown in SEQ ID NO: 15, in which the DNA of about 200bp encoding the present invention protein (B1) is inserted between the Ndel site and the HindIII site of pKSN2 was designated as pKSN657FD. The plasmid pKSN657FD was introduced into E. coli JM109. The obtained E. coli transformant was designated JM109/pKSN657FD. Further, plasmid pKSN2 was introduced into E. coli JM109. The obtained E. coli transformant was designated as JM109/pKSN2.

(2) Expression of the present invention protein (B1) in E. coli and recovery of said protein

[0259] E. coli JM109/pKSN657FD and E. Coli JM109/pKSN2 were each cultured overnight at 37°C in 10ml of TB medium (1.2%(w/v) tryptone, 2.4%(w/v) yeast extract, 0.4%(w/v) glycerol, 17mM potassium dihydrogenphosphate, 72mM dipotassium hydrogenphosphate) containing 50μg/ml of ampicillin. A milliliter (1ml) of the obtained culture medium was transferred to 100ml of TB medium containing 50μg/ml of ampicillin and cultured at 26°C. Thirty (30) minutes after the OD660 reached about 0.5, IPTG was added to a final concentration of 1 mM, and there was further culturing for 20 hours.

[0260] The cells were recovered from each of the culture mediums, washed with 0.1M tris-HCl buffer (pH7.5) and suspended in 10ml of said buffer containing 1mM PMSF. The obtained cell suspensions were subjected 6 times to a sonicator (Sonifier (Branson Sonic Power Company)) at 3 minutes each under the conditions of output 3, duty cycle 30%, in order to obtain cell lysate solutions. After centrifuging the cell lysate solutions (1,200xg, 5 minutes) the supernatants were recovered and centrifuged (150,000xg, 70 minutes) to recover supernatant fractions (hereinafter, the

supernatant fraction obtained from E. coli JM109/pKSN657FD is referred to as "E. coli pKSN657FD extract" and the supernatant fraction obtained from E. coli JM109/pKSN2 is referred to as "E. coli pKSN2 extract"). A microliter (1µI) of the above supernatant fractions was analyzed on a 15% to 25% SDS-PAGE and stained with CBB. As a result, notably more intense bands were identified in the E. coli pKSN657FD extract than the E. coli pKSN2 extract, at the electrophoresis locations corresponding to the molecular weight of 7kDa. It was shown that E. coli JM109/pKSN657FD expressed the present invention protein (B1).

(3) Use of the present invention protein (B1) for a reaction system of converting compound (II) to compound (III)

[0261] Reaction solutions of 30µl were prepared and maintained for 10 minutes at 30°C. The reaction solutions consisted of a 0.1M potassium phosphate buffer (pH7.0) containing 3ppm of compound (II) labeled with ¹⁴C, 2mM of β-NADPH (hereinafter, referred to as "component A") (Oriental Yeast Company), 9μl of the E. coli pKSN657FD extract recovered in Example 22(2), 0.1U/ml of ferredoxin reductase (hereinafter, referred to as "component C") (Sigma Company) and 15µl of the E. coli pKSN657F extract recovered in Example 4(2) (hereinafter referred to as "component D"). Further, there were prepared reaction solutions in which 2mg/ml of ferredoxin derived from spinach (hereinafter referred to as "component B") (Sigma Company) was added in the place of the E. coli pKSN657FD extract and a reaction solution in which nothing was added in the place of the E. coli pKSN657FD extract. Such reaction solutions were maintained similarly. Three microliters (3µl) of 2N HCl and 90 µl of ethyl acetate were added and mixed into each of the reaction solutions after the maintenance. The resulting reaction solutions were centrifuged at 8,000xg to recover 75µl of the ethyl acetate layer. After drying the ethyl acetate layers under reduced pressure, the residue was dissolved in 6.0μl of ethyl acetate. Five microliters (5.0μl) thereof was spotted to a silica gel TLC plate (TLC plate silica gel 60F₂₅₄, 20cm x 20cm, 0.25mm thick, Merck Company). The TLC plate was developed with a 6: 1: 2 mixture of chloroform, acetic acid and ethyl acetate for about 1 hour. The solvents were then allowed to evaporate. The TLC plate was exposed overnight to an imaging plate (Fuji Film Company). Next, the imaging plate was analyzed on Image Analyzer BAS2000 (Fuji Film Company). The presence of a spot corresponding to compound (III) labeled with ¹⁴C were examined (Rf value 0.24 and 0.29). The results are shown in Table 13.

Table 13

Reaction components				spot of compound (III)		
component A	E. coli extract	component B	component C	component D	compound (II) labeled with ¹⁴ C	
+	pKSN657FD	<u>-</u>	+	+	+	+
+	-	-	+	+	+	-
+	-	+	+	+	+	+

Example 23 Expression of the Present Invention Protein (B2) in E. Coli

5

10

15

20

25

30

35

40

45

50

55

(1) Production of a transformed E. coli having the present invention DNA (B2)

[0262] PCR is conducted by utilizing as a template the chromosomal DNA prepared from Saccharopolyspora taberi JCM9383t in Example 6(1). The PCR reaction solution amounts to 50μl by adding 300ng of the above chromosomal DNA, 4μl of dNTP mix (a mixture of 2.5mM of each of the 4 types of dNTP), 5μl of 10x ExTaq buffer, 0.5μl of ExTaq polymerase (Takara Shuzo Company), distilled water and 200nM of each of the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 106 and the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 63. The reaction conditions of the PCR are after maintaining 97°C for 2 minutes; repeating 25 cycles of a cycle that included maintaining 97°C for 15 seconds, followed by 60°C for 30 seconds and followed by 72°C for 90seconds; and then maintaining 72°C for 4 minutes. The reaction solution after the maintenance and the vector pCR2.1-TOPO (Invitrogen Company) are ligated according to the instructions attached to said vector and introduced into E. Coli TOP10F'. The plasmid DNA are prepared from the obtained E. coli transformants, utilizing QIAprep Spin Miniprep Kit (Qiagen Company). Sequencing reactions are conducted with Dye terminator cycle sequencing FS ready reaction kit (Applied Biosystems Japan Company) according to the instructions attached to said kit, utilizing as primers the oligonucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 67 and the oligonucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 68. The sequencing reactions utilize the obtained plasmid DNA as the template. The

reaction products are analyzed with a DNA sequencer 373A (Applied Biosystems Japan Company). Based on the results, the plasmid having the nucleotide sequence shown in SEQ ID NO: 16 is designated as pCR923FD.

[0263] Next, plasmid pCR923FD is digested with restriction enzymes Ndel and HindIII. The digestion products are subjected to agarose gel electrophoresis. The gel area containing a DNA of about 200bp is cut from the gel. The DNA is purified from the recovered gels by utilizing QIA quick gel extraction kit (Qiagen Company) according to the attached instructions. The obtained DNA and the plasmid pKSN2 digested with Ndel and HindIII are ligated with ligation kit Ver. 1 (Takara Shuzo Company) according to the instructions attached to said kit and introduced into E. Coli JM109. The plasmid DNA are prepared from the obtained E. coli transformants. The structures thereof are analyzed. The plasmid containing the nucleotide sequence shown in SEQ ID NO: 16, in which the DNA of about 200bp encoding the present invention protein (B2) is inserted between the Ndel site and the HindIII site of pKSN2 is designated as pKSN923FD. The plasmid pKSN923FD is introduced into E. coli JM109. The obtained E. coli transformant is designated as JM109/pKSN923FD. Further, plasmid pKSN2 is introduced into E. coli JM109. The obtained E. coli transformant is designated as JM109/pKSN2.

(2) Expression of the present invention protein (B2) in E. coli and recovery of said protein

5

10

15

20

25

30

35

40

45

50

55

[0264] E. coli JM109/pKSN923FD and E. Coli JM109/pKSN2 are each cultured overnight at 37°C in 10ml of TB medium (1.2%(w/v) tryptone, 2.4%(w/v) yeast extract, 0.4%(w/v) glycerol, 17mM potassium dihydrogenphosphate, 72mM of dipotassium hydrogenphosphate) containing 50μg/ml of ampicillin. A milliliter (1ml) of the obtained culture medium is transferred to 100ml of TB medium containing 50μg/ml of ampicillin and cultured at 26°C. Thirty (30) minutes after the OD660 reached about 0.5, IPTG is added to a final concentration of 1mM, and there is further culturing for 20 hours.

[0265] The cells are recovered from each of the culture mediums, washed with 0.1M tris-HCl buffer (pH7.5) and suspended in 10ml of said buffer containing 1mM PMSF. The obtained cell suspensions are subjected 6 times to a sonicator (Sonifier (Branson Sonic Power Company)) at 3 minutes each under the conditions of output 3, duty cycle 30%, in order to obtain cell lysate solutions. After centrifuging the cell lysate solutions (1,200xg, 5 minutes) the supernatants are recovered and centrifuged (150,000xg, 70 minutes) to recover supernatant fractions (hereinafter, the supernatant fraction obtained from E. coli JM109/pKSN923FD is referred to as "E. coli pKSN923FD extract" and the supernatant fraction obtained from E. coli JM109/pKSN2 is referred to as "E. coli pKSN2 extract"). A microliter (1µl) of the above supernatant fractions is analyzed on a 15% to 25% SDS-PAGE and stained with CBB. By detecting notably more intense bands in the E. coli pKSN923FD extract than the E. coli pKSN2 extract, at the electrophoresis locations corresponding to the molecular weight of 7kDa, it is possible to confirm to E. coli expression of the present invention protein (B2).

(3) Use of the present invention protein (B2) for a reaction system of converting compound (II) to compound (III)

[0266] Reaction solutions of 30µl are prepared and maintained for 10 minutes at 30°C. The reaction solutions consist of a 0.1M potassium phosphate buffer (pH7.0) containing 3ppm of compound (II) labeled with ¹⁴C, 2mM of β-NADPH (hereinafter, referred to as "component A") (Oriental Yeast Company), 9μI of the E. coli pKSN923FD extract recovered in Example 23(3), 0.1U/ml of ferredoxin reductase (hereinafter, referred to as "component C") (Sigma Company) and 15µl of the E. coli pKSN657F extract recovered in Example 4(2) (hereinafter referred to as "component D"). Further, there are prepared reaction solutions in which 2mg/ml of ferredoxin derived from spinach (hereinafter referred to as "component B") (Sigma Company) is added in the place of the E. coli pKSN923FD extract and a reaction solution in which nothing is added in the place of the E. coli pKSN923FD extract. Such reaction solutions are maintained similarly. Three microliters (3µl) of 2N HCl and 90 µl of ethyl acetate are added and mixed into each of the reaction solutions after the maintenance. The resulting reaction solutions are centrifuged at 8,000xg to recover 75µl of the ethyl acetate layer. After drying the ethyl acetate layers under reduced pressure, the residue is dissolved in 6.0µl of ethyl acetate. Five microliters (5.0µl) thereof is spotted to a silica gel TLC plate (TLC plate silica gel 60F₂₅₄, 20cm x 20cm, 0.25mm thick, Merck Company). The TLC plate is developed with a 6: 1: 2 mixture of chloroform, acetic acid and ethyl acetate for about 1 hour. The solvents are then allowed to evaporate. The TLC plate is exposed overnight to an imaging plate (Fuji Film Company). Next, the imaging plate is analyzed on Image Analyzer BAS2000 (Fuji Film Company). The presence of a spot corresponding to compound (III) labeled with ¹⁴C are examined (Rf value 0.24 and 0.29). By confirming that compound (III) is produced in the reaction including component A, E. coli pKSN923FD extract, component C and component D, it can be confirmed that the present invention protein (B2) can be used instead of the ferredoxin derived from spinach in a reaction system of converting compound (II) to compound (III).

Example 24 Expression of the Present Invention Protein (B3) in E. Coli

(1) Production of a transformed E. coli having the present invention DNA (B3)

- [0267] PCR is conducted similarly to the methods described in Example 23(1), other than utilizing as a template the chromosomal DNA prepared from Streptomyces testaceus ATCC 21469 in Example 11(1) and utilizing as the primers the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 107 and the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 72. Plasmid pCR671FD having the nucleotide sequence shown in SEQ ID NO: 17 is obtained similarly to the method described in Example 23(1) utilizing the obtained reaction solution.
- [0268] Next, utilizing said plasmid, plasmid pKSN671FD in which the present invention DNA (B3) is inserted between the Ndel site and HindIII site of pKSN2 is obtained similarly to the method described in Example 23(1). By introducing the plasmid into E. coli JM109, E. coli JM109/pKSN671FD having the present invention DNA (B3) can be obtained.

(2) Expression of the present invention protein (B3) in E. coli and recovery of said protein

[0269] Utilizing E. coli JM109/pKSN671FD, supernatant fractions (hereinafter referred to as "E. coli pKSN671FD extract") are recovered similarly to the method described in Example 23(2). A microliter (1µl) of the above supernatant fractions is analyzed on a 15% to 25% SDS-PAGE and stained with CBB. As a result, by detecting notably more intense bands in the E. coli pKSN671FD extract than the E. coli pKSN2 extract, at the electrophoresis location corresponding to the molecular weight of 7kDa, it is possible to confirm the expression of the present invention protein (B3) in E. coli.

(3) Use of the present invention protein (B3) for a reaction system of converting compound (II) to compound (III),

[0270] Other than utilizing E. coli pKSN671FD extract recovered in Example 24(2), the spot corresponding to compound (III) labeled with ¹⁴C (Rf values 0.24 and 0.29) is confirmed similarly to the method described in Example 23 (3). By confirming that compound (III) is produced in the reaction including component A, E. coli pKSN671FD extract, component C and component D, it can be confirmed that the present invention protein (B3) can be used instead of the ferredoxin derived from spinach in a reaction system of converting compound (III).

Example 25 Preparation of the present invention protein (A4)

(1) Preparation of the crude cell extract

15

20

30

45

50

55

- [0271] A frozen stock of Streptomyces achromogenes IFO12735 was added to 10ml of A medium (0.1%(w/v) of glucose, 0.5%(w/v) tryptone, 0.5%(w/v) yeast extract, 0.1%(w/v) of dipotassium hydrogenphosphate, pH7.0) in a large test tube and incubated with shaking at 30°C for 1 day to obtain a pre-culture. Eight milliliters (8ml) of the pre-culture was added to 200ml of A medium and was incubated with rotary shaking in a 500ml baffled flask at 30°C for 2 days. Cell pellets were recovered by centrifuging (3,000xg, 10 min.) the resulting culture. These cell pellets were suspended in 100ml of B medium (1%(w/v) glucose, 0.1% beef extract, 0.2%(w/v) tryptose) containing compound (II) at 100ppm and were incubated with reciprocal shaking in a 500ml Sakaguchi flask for 20 hours at 30°C. Cell pellets were recovered by centrifuging (3,000xg, 10 min.) 2L of the resulting culture. The resulting cell pellets were washed twice with 1L of 0.1M potassium phosphate buffer (pH7.0) to provide 136g of the cell pellets.
 - [0272] These cell pellets were suspended in 0.1M potassium phosphate buffer (pH7.0) at 1ml to 2ml for 1g of the cell pellets. A millimolar of (1mM) PMSF, 5mM of benzamidine HCl, 1mM of EDTA, 3μg/ml of leupeptin, 3μg/ml of pepstatin and 1mM of dithiotritol were added to the cell suspension. A cell lysate solution was obtained by disrupting twice repetitively the suspension with a French press (1000kg/cm²) (Ohtake Seisakusho). After centrifuging the cell lysate solution (40,000xg, 30 minutes), the supernatant was recovered and centrifuged for 1 hour at 150,000xg to recover the supernatant (hereinafter referred to as the "crude cell extract")

(2) Determination of the ability of converting compound (II) to compound (III)

[0273] There was prepared 30μl of a reaction solution consisting of 0.1M potassium phosphate buffer (pH7.0) containing 3ppm of compound (II) labeled with ¹⁴C, 2.4mM of β-NADPH (hereinafter, referred to as "component A") (Oriental Yeast Company), 0.5mg/ml of a ferredoxin derived from spinach (hereinafter referred to as "component B") (Sigma Company), 1U/ml of ferredoxin reductase (hereinafter, referred to as "component C") (Sigma Company) and 15μl of the crude cell extract recovered in Example 25(1). The reaction solution was maintained at 30°C for a hour. Further, there was prepared and maintained similarly a reaction solution having no addition of at least one component utilized

in the composition of the above reaction solution, selected from component A, component B and component C. Three microliters (3μ I) of 2N HCI and 90 μ I of ethyl acetate were added and mixed into each of the reaction solutions after the maintenance. The resulting reaction solutions were centrifuged at 8,000xg to recover 75 μ I of the ethyl acetate layer. After drying the ethyl acetate layers under reduced pressure, the residue was dissolved in 6.0 μ I of ethyl acetate. Five microliters (5.0 μ I) thereof was spotted to a silica gel TLC plate (TLC plate silica gel 60F₂₅₄, 20cm x 20cm, 0.25mm thick, Merck Company). The TLC plate was developed with a 6: 1: 2 mixture of chloroform, acetic acid and ethyl acetate for about 1 hour. The solvents were then allowed to evaporate. The TLC plate was exposed overnight to an imaging plate (Fuji Film Company). Next, the imaging plate was analyzed on Image Analyzer BAS2000 (Fuji Film Company). The presence of a spot corresponding to compound (III) labeled with ¹⁴C were examined (Rf value 0.24 and 0.29). The results are shown in Table 14.

Table 14

Reaction components					spot of compound (III)
component A	component B	component C	crude cell extract	compound (II) labeled with ¹⁴ C	
+	+	+	-	+	-
+	+	+	+	+	+
-	+	+	+	+	-
+	-	-	+	+	-

(3) Fractionation of the crude cell extract

5

10

15

20

25

30

35

40

45

50

55

[0274] Ammonium sulfate was added to the crude cell extract obtained in Example 25(1) to amount to 45% saturation. After stirring in ice-cooled conditions, the supernatant was recovered by centrifuging for 30 minutes at 12,000xg. After adding ammonium sulfate to the obtained supernatant to amount to 55% saturation and stirring in ice-cooled conditions, a pellet was recovered by centrifuging for 10 minutes at 12,000xg. The pellet was dissolved with 12.5ml of 20mM bistrispropane buffer (pH7.0). This solution was subjected to a PD10 column (Amersham Pharmacia Company) and eluted with 20mM of bistrispropane buffer (pH7.0) to recover 17.5ml of fractions containing proteins (hereinafter referred to as the "45-55% ammonium sulfate fraction").

(4) Isolation of the present invention protein (A4)

[0275] The 45-55% ammonium sulfate fraction prepared in Example 25(3) was injected into a HiLoad26/10 Q Sepharose HP column (Amersham Pharmacia Company). Next, after flowing 100ml of 20mM bistrispropane buffer (pH7.0) into the column, 20mM bistrispropane buffer was flown with a linear gradient of NaCl (gradient of NaCl was 0.004M/minute, range of NaCl concentration was from 0M to 1M, flow rate was 4ml/minute) to fraction recover 30ml of fractions eluting at the NaCl concentration of from 0.12M to 0.165M. Further, the recovered fractions were subjected to a PD10 column (Amersham Pharmacia Biotech Company) and eluted with 20mM bistrispropane buffer (pH7.0) to recover the fractions containing protein.

[0276] The recovered fractions were subjected to a PD10 column (Amersham Pharmacia Biotech Company) with the elution with Buffer A (2mM potassium phosphate buffer containing 1.5mM of NaCl, pH 7.0), in order to recover the fractions containing protein. Next, the fractions were injected into a Bio-Scale Ceramic Hydroxyapatite Type I column CHT10-I (BioRad Company). Twenty milliliters (20ml) of Buffer A was flown into the column. Subsequently, Buffer A was flown with a linear gradient of Buffer B (100mM potassium phosphate buffer containing 0.03mM of NaCl; the linear gradient started at 100% Buffer A to increase to 50% Buffer B over a 100 minute period, flow rate was 2ml/minute) to fraction recover the fractions eluting at a Buffer B concentration of from 4% to 6%. Further, the recovered fractions were subjected to a PD10 column (Amersham Pharmacia Biotech Company) and eluted with 0.05M potassium phosphate buffer (pH7.0) to recover the fractions containing protein.

[0277] A similar amount of 0.05M potassium phosphate buffer (pH7.0) containing 2.0M ammonium sulfate was added and mixed into the recovered fractions. The recovered fractions were then injected into a 1ml RESOURSE PHE column (Amersham Pharmacia Biotech Company). After flowing 5ml of 0.05M potassium phosphate buffer (pH7.0) containing 1M ammonium sulfate, the 0.05M potassium phosphate buffer (pH7.0) was flown with a linear gradient of ammonium sulfate (gradient of the ammonium sulfate concentration was 0.1M/minute, range of NaCl concentration was 1M to 0M, flow rate was 2ml/minute) to fraction recover the fractions eluting at an ammonium sulfate concentration of from about

0.4M to 0.5M. The protein contained in each of the fractions were analyzed on a 10%-20% SDS-PAGE.

[0278] Instead of the crude cell extract in the reaction solutions described in Example 25(2), the recovered fractions were added and maintained in the presence of component A, component B, component C and compound (II) labeled with ¹⁴C, similarly to Example 25(2). The reaction solutions after the maintenance were TLC analyzed to examine the intensity of the spots corresponding to compound (III) labeled with ¹⁴C. Said protein moving to a location of about 45kDa in the above SDS-PAGE was recovered from the gel and was subjected to an amino acid sequence analysis with a protein sequencer (Applied Biosystems Company, Procise 494HT, pulsed liquid method) to sequence the N terminus amino acid sequence. As a result, the amino acid sequence shown in SEQ ID NO: 113 was provided.

Example 26 Obtaining the Present Invention DNA (A4)

5

10

15

20

25

30

35

40

45

(1) Preparation of the chromosomal DNA of Streptomyces achromogenes IFO 12735

[0279] Streptomyces achromogenes IFO 12735 cultured with shaking at 30°C for 1 day to 3 days in 50ml of YEME medium (0.3%(w/v) yeast extract, 0.5%(w/v) bacto-peptone, 0.3%(w/v) malt extract, 1.0%(w/v) glucose, 34%(w/v) sucrose and 0.2%(v/v) 2.5M MgCl₂·6H₂O). The cells were recovered. The obtained cells were suspended in YEME medium containing 1.4%(w/v) glycine and 60mM EDTA and further incubated with shaking for a day. The cells were recovered from the culture medium. After washing once with distilled water, it was resuspended in buffer (100mM Tris-HCl (pH8.0), 100mM EDTA, 10mM NaCl) at 1ml per 200mg of the cells. Two hundred micrograms per milliliter (200μg/ml) of egg-white lysozyme were added. The cell suspension was shaken at 30°C for a hour. Further, 0.5% of SDS and 1mg/ml of Proteinase K was added. The cell suspension was incubated at 55°C for 3 hours. The cell suspension was extracted twice with phenol-chloroform-isoamyl alcohol to recover each of the aqueous layers. Next, there was one extraction with chloroform-isoamyl alcohol to recover the aqueous layer. The chromosomal DNA was obtained by ethanol precipitating the aqueous layer.

(2) Preparation of the chromosomal DNA library of Streptomyces achromogenes IFO 12735

[0280] Thirty-eight micrograms (38 μ g) of the chromosomal DNA prepared in Example 26(1) were digested with 3.2U of restriction enzyme Sau3A1 at 37°C for 60 minutes. The obtained digestion solution was separated with 1% agarose gel electrophoresis. The DNA of about 2.0kbp was recovered from the gel. The DNA was purified with QIAquick Gel Extraction Kit (Qiagen Company) according to the instructions attached to said kit and was concentrated with an ethanol precipitation to obtain 20 μ l of the solution containing the target DNA. Eight microliters (8 μ l) of the DNA solution, 100ng of plasmid vector pUC118 digested with restriction enzyme BamHl and treated with dephosphorylation and 16 μ l of the I solution from Ligation Kit Ver. 2 (Takara Shuzo Company) were mixed and maintained for 3 hours at 16°C. E coli DH5 μ 0 were transformed utilizing the ligation solution and were spread onto LB agar medium containing 50mg/l of ampicillin to culture overnight at 37°C. The obtained colonies were recovered from an agar medium. The plasmid was extracted. The obtained plasmids were designated as the chromosomal DNA library.

(3) Isolation of the present invention DNA (A4)

[0281] PCR was conducted by utilizing the chromosomal DNA prepared in Example 26(2) as the template. As the primers, there was utilized the pairing of an oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 114 and an oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 57. The nucleotide sequence shown in SEQ ID NO: 114 was designed based on the amino acid sequence shown in SEQ ID NO: 113. The Expand HiFi PCR System (Boehringer Manheim Company) was utilized to prepare the reaction solution. The PCR reaction solution amounted to 25µl by adding 2.5µl of the above chromosomal DNA library, the 2 primers each amounting to 7.5pmol, 0.2µl of dNTP mix (a mixture of 2mM of each of the 4 types of dNTP), 0.2µl of 10x buffer (containing MgCl₂), 0.38µl of Expand HiFi enzyme mix and distilled water. The reaction conditions of the PCR were after maintaining 97°C for 2 minute, repeating 10 cycles of a cycle that included maintaining 97°C for 15 seconds, followed by 65°C for 30 seconds and followed by 72°C for 1 minute; then conducting 15 cycles of a cycle that included maintaining 97°C for 15 seconds, followed by 65°C for 30 seconds and followed by 72°C for 1 minute (wherein 20 seconds was added to the maintenance at 72°C for each cycle); and then maintaining 72°C for 7 minutes. After the maintenance, 2.5µl of the reaction solution was utilized as a template solution for conducting PCR for a second time. As the primers, there was utilized the pairing of an oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 115 and an oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 57. The nucleotide sequence shown in SEQ ID NO: 115 was designed based on the amino acid sequence shown in SEQ ID NO: 113. Similar to the above method, the Expand HiFi PCR System (Boehringer Manheim Company) was utilized to conduct PCR. The reaction solution after the maintenance was subjected to 2% agarose gel electrophoresis. The gel area containing the DNA of about 800bp was recovered.

The DNA was purified from the recovered gel by utilizing QIA quick gel extraction kit (Qiagen Company) according to the attached instructions. The obtained DNA was ligated to the TA cloning vector pCRII-TOPO (Invitrogen Company) according to the instructions attached to said vector and was introduced into E. Coli TOP10F'. The plasmid DNA was prepared from the obtained E. coli transformant, utilizing Qiagen Tip20 (Qiagen Company). A sequencing reaction was conducted with Big Dye terminator cycle sequencing FS ready reaction kit (Applied Biosystems Japan Company) according to the instructions attached to said kit, utilizing a primers having the nucleotide sequence shown in SEQ ID NO: 67 and a primer having the nucleotide sequence shown in SEQ ID NO: 68. The obtained plasmid was utilized as a template in the sequencing reaction. The reaction products were analyzed with a DNA sequencer 3100 (Applied Biosystems Japan Company). As a result, the nucleotide sequence shown in nucleotides 57 to 832 of the nucleotide sequence shown in SEQ ID NO: 110 was provided. In the provided nucleotide sequence, nucleotides 58-60 of the nucleotide sequence shown in SEQ ID NO: 110 encoded amino acid 20 in the amino acid sequence shown in SEQ ID NO: 113.

5

10

15

20

25

30

35

40

45

50

55

[0282] Next, PCR was conducted with the Expand HiFi PCR System (Boehringer Manheim Company) under the above-described conditions, utilizing as a template the chromosomal DNA library prepared in Example 26(2). As the primers, there was utilized a primer pairing of the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 116 and the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 59. The amplified DNA of about 1.4kbp was cloned into the cloning vector pCRII-TOPO. The plasmid DNA was prepared from the obtained E. coli transformants, utilizing Qiagen Tip20 (Qiagen Company). A sequencing reaction was conducted with Big Dye terminator cycle sequencing FS ready reaction kit (Applied Biosystems Japan Company) according to the instructions attached to said kit, utilizing a primer having the nucleotide sequence shown in SEQ ID NO: 67 and a primer having the nucleotide sequence shown in SEQ ID NO: 68. The obtained plasmid was utilized as a template in the sequencing reaction. The reaction products were analyzed with a DNA sequencer 3100 (Applied Biosystems Japan Company). As a result, the nucleotide sequence shown in nucleotides 1 to 58 in the nucleotide sequence shown in SEQ ID NO: 110 was provided.

[0283] The cloning of the DNA elongating downstream from the 3' terminus of the nucleotide shown as nucleotide 832 of the nucleotide sequence shown in SEQ ID NO: 110 was conducted. Specifically, 13µg of the chromosomal DNA of Streptomyces achromogenes IFO 12735 prepared in Example 26(1) was digested overnight with 200U of restriction enzyme HincII at 37°C. After a phenol extraction, the DNA was purified by an ethanol precipitation. The obtained DNA was used to produce 20μl of an aqueous solution. Four microliters (4μl) thereof, 1.9μl of 15μM Genome Walker Adaptor, 1.6µl of 10x ligation buffer and 0.5µl of 6U/µl T4 ligase were mixed and maintained overnight at 16°C. After that, there was a maintenance at 70°C for 5 minutes and an addition of 72μl of distilled water to provide a Genome Walker library. PCR was conducted by utilizing said library as a template. A PCR reaction solution amounting to 50µl was provided by adding 1 μ l of Genome Walker library and primer AP1 (provided with Universal Genome Walker Kit) and the oligonucleotide having the nucleotide sequence shown in SEQ LD NO: 117 to each amount to 200nM, adding 1µl of dNTP mix (a mixture of 10mM each of the 4 types of dNTPs), 10µl of 5xGC genomic PCR buffer, 2.2µl of 25mM Mg(OAc)₂, 10μl of 5M GC-Melt and 1μl of Advantage-GC genomic polymerase mix and adding distilled water. The reaction conditions of the PCR were after maintaining 95°C for 1 minute; conducting 7 cycles of a cycle that included maintaining 94°C for 10 seconds and then 72°C for 3 minutes; 36 cycles of a cycle that included maintaining 94°C for 10 seconds and then 68°C for 3 minutes; and maintaining 68°C for 7 minutes. The reaction solution after the maintenance was diluted 50 fold with distilled water. The PCR products were designated as the first PCR products and were utilized as a template to conduct another PCR. The PCR amounting 50μl was provided by adding 1μl of the first PCR products and primer AP2 (provided with Universal Genome Walker Kit) and the oligonucleotide shown in SEQ ID NO: 118 to each amount to 200nM, adding 1µl of dNTP mix (a mixture of 10mM each of the 4 types of dNTPs), 10µl of 5xGC genomic PCR buffer, 2.2μl of 25mM Mg(OAc)₂, 10μl of 5M GC-Melt and 1μl of Advantage-GC genomic polymerase mix and adding distilled water. The reaction conditions of the PCR were after maintaining 95°C for 1 minute; conducting 5 cycles of a cycle that included maintaining 94°C for 10 seconds and then 72°C for 3 minutes; 20 cycles of a cycle that included maintaining 94°C for 10 seconds and then 68°C for 3 minutes; and maintaining 68°C for 7 minutes. The reaction solution after the maintenance was subjected to 1% agarose gel electrophoresis. The gel area containing the DNA of about 1300bp was recovered. The DNA was purified from the recovered gel by utilizing QIA quick gel extraction kit (Qiagen Company) according to the attached instructions. The obtained DNA was ligated to cloning vector pCRII-TOPO (Invitrogen Company) according to the instructions attached to said vector and was introduced into E. Coli TOP10F'. The plasmid DNA was prepared from the E. coli transformant by utilizing Qiagen Tip20 (Qiagen Company). A sequencing reaction was conducted with Big Dye terminator cycle sequencing FS ready reaction kit (Applied Biosystems Japan Company) according to the instructions attached to said kit, utilizing as primers the oligonucleotide shown in SEQ ID NO: 67 and the oligonucleotide shown in SEQ ID NO: 68. The obtained plasmid was utilized as a template in the sequencing reaction. The reaction products were analyzed with a DNA sequencer 3100 (Applied Biosystems Japan Company). As a result, the nucleotide sequence shown in nucleotides 644 to 1454 in the nucleotide sequence shown in SEQ ID NO: 110 was provided. As a result of connecting all of the analyzed nucleotide sequences,

the nucleotide sequence shown in SEQ ID No: 110 was provided. Two open reading frames (ORF) were present in said nucleotide sequence. As such, there was contained a nucleotide sequence (SEQ ID NO: 109) consisting of 1236 nucleotides (inclusive of the stop codon) and encoding a 411 amino acid residue (SEQ ID NO: 108) and a nucleotide sequence (SEQ ID NO: 112) consisting of 192 nucleotides (inclusive of the stop codon) and encoding a 63 amino acid residue (SEQ ID NO: 111). The molecular weight of the protein consisting of the amino acid sequence (SEQ ID NO: 108) encoded by the nucleotide sequence shown in SEQ ID NO: 109 was calculated to be 45465Da. Further, the amino acid sequence encoded by said nucleotide sequence contained the amino acid sequence (SEQ ID NO: 113) determined from the amino acid sequencing of from the N terminus of the present invention protein (A4). The molecular weight of the protein consisting of the amino acid sequence (SEQ ID NO: 111) encoded by the nucleotide sequence shown in SEQ ID NO: 112 was calculated to be 6871Da.

Example 27 The Expression of the Present Invention Protein (A4) in E. Coli

5

10

15

20

25

30

35

40

45

50

55

(1) Production of a transformed E. coli having the present invention DNA(A4)

[0284] PCR was conducted by utilizing as a template the chromosomal DNA prepared from Streptomyces achromogenes IFO 12735 in Example 26(1) and by utilizing Expand HiFi PCR System (Boehringer Manheim Company). As the primers, there was utilized the pairing of an oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 119 and an oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 120 (hereinafter referred to as "primer pairing 25") or a pairing of an oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 119 and an oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 121 (hereinafter referred to as "primer pairing 26"). The PCR reaction solution amounted to 50µl by adding the 2 primers each amounting to 300nM, 50ng of the above chromosomal DNA, 5.0µl of dNTP mix (a mixture of 2.0mM of each of the 4 types of dNTP), 5.0µl of 10x Expand HF buffer (containing MgCl₂) and 0.75µl of Expand HiFi enzyme mix and distilled water. The reaction conditions of the PCR were after maintaining 97°C for 2 minutes; repeating 10 cycles of a cycle that included maintaining 97°C for 15 seconds, followed by 60°C for 30 seconds and followed by 72°C for 1 minute; then conducting 15 cycles of a cycle that included maintaining 97°C for 15 seconds, followed by 60°C for 30 seconds and followed by 72°C for 1 minute (wherein 20 seconds was added to the maintenance at 72°C for each cycle); and then maintaining 72°C for 7 minutes. After the maintenance, the reaction solution was subjected to 1% agarose gel electrophoresis. The gel area containing the DNA of about 1.3kbp was recovered from the gel which was subjected the reaction solution utilizing primer pairing 25. The gel area containing the DNA of about 1.6kbp was recovered from the gel which was subjected the reaction solution utilizing primer pairing 26. The DNA were purified from each of the recovered gels by utilizing QIA quick gel extraction kit (Qiagen Company) according to the attached instructions. The obtained DNA were ligated to the cloning vector pCRII-TOPO (Invitrogen Company) according to the instructions attached to said vector and were introduced into E. Coli TOP10F'. The plasmid DNA were prepared from the obtained E. coli transformants, utilizing Qiagen Tip20 (Qiagen Company). Next, sequencing reactions were conducted with Big Dye terminator cycle sequencing FS ready reaction kit (Applied Biosystems Japan Company) according to the instructions attached to said kit, utilizing as primers the oligonucleotides shown in SEQ ID NO: 67, SEQ ID NO: 68, SEQ ID NO: 122 and SEQ ID NO: 123. The sequencing reactions utilized the obtained plasmid DNA as the template. The reaction products were analyzed with a DNA sequencer 3100 (Applied Biosystems Japan Company). Based on the results, the plasmid having the nucleotide sequence shown in SEQ ID NO: 109 was designated as pCR646 and the plasmid having the nucleotide sequence shown in SEQ ID NO: 110 was designated as pCR646F.

[0285] Next, each of plasmids pCR646 and pCR646F was digested with restriction enzymes Ndel and HindIII. The digestion products were subjected to agarose gel electrophoresis. The gel area containing a DNA of about 1.3kbp was cut from the gel subjected to the digestion products of pCR646. The gel area containing a DNA of about 1.6kbp was cut from the gel subjected to the digestion products of pCR646F. The DNA were purified from each of the recovered gels by utilizing QIA quick gel extraction kit (Qiagen Company) according to the attached instructions. Each of the obtained DNA and the plasmid pKSN2 digested with Ndel and HindIII were ligated with ligation kit Ver.1 (Takara Shuzo Company) according to the instructions attached to said kit and introduced into E. Coli JM109. The plasmid DNA were prepared from the obtained E. coli transformants. The structures thereof were analyzed. The plasmid containing the nucleotide sequence shown in SEQ ID NO: 109, in which the DNA of about 1.3kbp encoding the present invention protein (A4) is inserted between the Ndel site and the HindIII site of pKSN2 was designated as pKSN646. Further, the plasmid containing the nucleotide sequence shown in SEQ ID NO: 110, in which the DNA of about 1.6kbp encoding the present invention protein (A4) is inserted between the Ndel site and the HindIII site of pKSN2 was designated as pKSN646F. Each of the above plasmids of pKSN646 and pKSN646F was introduced into E. coli JM109. The obtained E. coli transformants were designated, respectively, JM109/pKSN646 and JM109/pKSN646F. Further, plasmid pKSN2 was introduced into E. coli JM109. The obtained E. coli transformant was designated as JM109/pKSN2.

(2) Expression of the present invention protein (A4) in E. coli and recovery of said protein

[0286] E. coli JM109/pKSN646, JM109/pKSN646F and JM109/pKSN2 are each cultured overnight at 37°C in 10ml of TB medium (1.2%(w/v) tryptone, 2.4%(w/v) yeast extract, 0.4%(w/v) glycerol, 17mM potassium dihydrogenphosphate, 72mM dipotassium hydrogenphosphate) containing 50µg/ml of ampicillin. A milliliter (1ml) of the obtained culture medium is transferred to 100ml of TB medium containing 50μg/ml of ampicillin and cultured at 26°C. When OD660 reaches about 0.5, 5-aminolevulinic acid is added to the final concentration of 500µM, and the culturing is continued. Thirty (30) minutes thereafter, IPTG is added to a final concentration of 1mM, and there is further culturing for 17 hours. [0287] The cells are recovered from each of the culture mediums, washed with 0.1 M tris-HCl buffer (pH7.5) and suspended in 10 ml of the above buffer containing 1mM PMSF. The obtained cell suspensions are subjected 6 times to a sonicator (Sonifier (Branson Sonic Power Company)) at 3 minutes each under the conditions of output 3, duty cycle 30%, in order to obtain cell lysate solutions. After centrifuging the cell lysate solutions (1,200xg, 5 minutes) the supernatants are recovered and centrifuged (150,000xg, 70 minutes) to recover supernatant fractions (hereinafter, the supernatant fraction obtained from E. coli JM109/pKSN646 is referred to as "E. coli pKSN646 extract ", the supernatant fraction obtained from E. coli JM109/pKSN646F is referred to as "E. coli pKSN646F extract", and the supernatant fraction obtained from E. coli JM109/pKSN2 is referred to as "E. coli pKSN2 extract"). A microliter (1µl) of the above supernatant fractions is analyzed on a 15% to 25% SDS-PAGE and stained with CBB. As a result, by detecting notably more intense bands in both E. coli pKSN646 extract and E. coli pKSN646F extract than the E. coli pKSN2 extract, at the electrophoresis locations corresponding to the molecular weight of 45kDa, it can be confirmed that the present invention protein (A4) is expressed in E. coli.

(3) Detection of the ability to convert compound (II) to compound (III)

[0288] Reaction solutions of 30µl are prepared and maintained for 10 minutes at 30°C. The reaction solutions consist of a 0.1M potassium phosphate buffer (pH7.0) containing 3ppm of compound (II) labeled with ¹⁴C, 2mM of β-NADPH (hereinafter, referred to as "component A") (Oriental Yeast Company), 2mg/ml of a ferredoxin derived from spinach (hereinafter referred to as "component B") (Sigma Company), 0.1U/ml of ferredoxin reductase (hereinafter, referred to as "component C") (Sigma Company) and 18µl of the supernatant fraction recovered in Example 27(2). Further, there are prepared and maintained similarly reaction solutions having no addition of at least one component utilized in the composition of the above reaction solution, selected from component A, component B and component C. Three microliters (3µI) of 2N HCI and 90 µI of ethyl acetate are added and mixed into each of the reaction solutions after the maintenance. The resulting reaction solutions are centrifuged at 8,000xg to recover 75µl of the ethyl acetate layer. After drying the ethyl acetate layers under reduced pressure, the residue is dissolved in 6.0µl of ethyl acetate. Five microliters (5.0µl) thereof is spotted to a silica gel TLC plate (TLC plate silica gel 60F₂₅₄, 20cm x 20cm, 0.25mm thick, Merck Company). The TLC plate is developed with a 6: 1: 2 mixture of chloroform, acetic acid and ethyl acetate for about 1 hour. The solvents are then allowed to evaporate. The TLC plate is exposed overnight to an imaging plate (Fuji Film Company). Next, the imaging plate was analyzed on Image Analyzer BAS2000 (Fuji Film Company). The presence of a spot corresponding to compound (III) labeled with ¹⁴C is examined (Rf value 0.24 and 0.29). The production of compound (III) in reaction solutions containing component A, component B, component C and E. coli pKSN646 extract, or in reaction solutions containing component A, component B, component C and E. coli pKSN646F extract can be confirmed.

Example 28 Sequence Identity Relating to the Present Invention Protein

[0289] The sequence identity relating to the proteins of the present invention and the DNA of the present invention was analyzed by utilizing GENETYX-WIN Ver. 5 (Software Development Company). The alignments were produced by conducting the homology analysis with the Lipman-Pearson method (Lipman, D.J. and Pearson, W.R., Science, 227, 1435-1441, (1985)).

[0290] In regards to amino acid sequences of the present invention proteins (A1) to (A4), there were determined the sequence identities to each other and to known proteins of the highest homology. The results are shown in Table 15.

50

5

10

15

20

25

30

35

40

Table 15

	present invention protein (A1)	present invention protein (A2)	present invention protein (A3)	presentinvention protein (A4)	known proteins of the highest homology*
present invention protein (A1)	100%	47%	64%	48%	73% AAC25766
present invention protein (A2)	47%	100%	48%	51%	52% CAB46536
present invention protein (A3)	64%	48%	100%	46%	67% AAC25766
present invention protein (A4)	48%	51%	46%	100%	50% CAB46536

^{*}the sequence identity is shown on top and the accession number of the provided protein in the Entrez database (provided by Center for Biotechnology Information, http://www3.ncbi.nlm.nih.gov/Entrez/) is shown on the bottom.

[0291] In regards to the nucleotide sequences of the present invention DNA (A1) having the nucleotide sequence shown in SEQ ID NO: 6, the present invention DNA (A2) having the nucleotide sequence shown in SEQ ID NO: 7, the present invention DNA (A3) having the nucleotide sequence shown in SEQ ID NO: 8 and the present invention DNA (A4) having the nucleotide sequence shown in SEQ ID NO: 109, there were determined the sequence identities to each other and to known genes of the highest homology. The results are shown in Table 16.

Table 16

		Tab	ie 16		
	SEQ ID NO: 6 [present invention DNA (A1)]	SEQ ID NO: 7 [present invention DNA (A2)]	SEQ ID NO: 8 [present invention DNA (A3)]	SEQ ID NO: 109 [present invention DNA (A4)]	known genes of the highest homology*
SEQ ID NO: 6 [present invention DNA (A1)]	100%	61%	74%	62%	77% AF072709
SEQ ID NO: 7 [present invention DNA (A2)]	61%	100%	64%	65%	66% Y18574
SEQ ID NO: 8 [present invention DNA (A3)]	74%	64%	100%	63%	75% AF072709
SEQ ID NO: 109 [present invention DNA (A4)]	62%	65%	63%	100%	64% Y18574

*the sequence identity is shown on top and the accession number of the provided gene in the Entrez database (provided by Center for Biotechnology Information, http://www3.ncbi.nlm.nih.gov/Entrez/) is shown on the bottom.

⁵⁵ [0292] In regards to the amino acid sequences of the present invention proteins (B1) to (B4), there were determined the sequence identities to each other and to known proteins of the highest homology. The results are shown in Table 17.

Table 17

	present invention protein (B1)	present invention protein (B2)	present invention protein (B3)	presentinvention protein (B4)	known proteins of the highest homology*
present invention protein (B1)	100%	45%	78%	41%	76% AAC25765
present invention protein (B2)	45%	100%	40%	41 %	60% AAF71770
present invention protein (B3)	78%	40%	100%	40%	73% AAC25765
present invention protein (B4)	41%	41%	40%	100%	55% AAA26824

^{*}the sequence identity is shown on top and the accession number of the provided protein in the Entrez database (provided by Center for Biotechnology Information, http://www3.ncbi.ntm.nih.gov/Entrez/) is shown on the bottom.

[0293] In regards to the nucleotide sequences of the present invention DNA (B1) having the nucleotide sequence shown in SEQ ID NO: 15, the present invention DNA (B2) having the nucleotide sequence shown in SEQ ID NO: 16, the present invention DNA (B3) having the nucleotide sequence shown in SEQ ID NO: 17 and the present invention DNA (B4) having the nucleotide sequence shown in SEQ ID NO: 112, there were determined the sequence identities to each other and to known genes of the highest homology. The results are shown in Table 18.

Table 18

		iab	ie io		
	SEQ ID NO: 15 [present invention DNA (B1)]	SEQ ID NO: 16 [present invention DNA (B2)]	SEQ ID NO: 17 [present invention DNA (B3)]	SEQ ID NO: 112 [present invention DNA (B4)]	known genes of the highest homology*
SEQ ID NO: 15 [present invention DNA (B1)]	100%	60%	80%	59%	84% AF072709
SEQ ID NO: 16 [present invention DNA (B2)]	60%	100%	60%	59%	66% M32238
SEQ ID NO: 17 [present invention DNA (B3)]	80%	60%	100%	65%	79% AF072709
SEQ ID NO: 112 [present invention DNA (B4)]	59%	59%	65%	100%	66% M32239

^{*}the sequence identity is shown on top and the accession number of the provided gene in the Entrez database (provided by Center for Biotechnology Information, http://www3.ncbi.nlm.nih.gov/Entrez/) is shown on the bottom.

Example 29 PCR Utilizing an Oligonucleotide Having a Partial Nucleotide Sequence of the Present Invention DNA (A) as a Primer

[0294] PCR was conducted by utilizing as a template each of: the chromosomal DNA of Streptomyces phaeochromogenes IFO 12898 prepared in Example 2; the chromosomal DNA of Saccharopolyspora taberi JCM 9383t prepared in Example 5; the chromosomal DNA of Streptomyces griseolus ATCC 11796 prepared in Example 9; the chromosomal DNA of Streptomyces testaceus ATCC 21469 prepared in Example 11; the chromosomal DNA of Streptomyces achromogenes IFO 12735 prepared in Example 26; and each of the chromosomal DNA of Streptomyces griseofuscus IFO 12870t, Streptomyces thermocoerulescens IFO 14273t and Streptomyces nogalater IFO 13445 prepared similarly to the method described in Example 2. As the primers, the 5 pairings of primers shown in Table 19 were utilized. The predicted size of the DNA amplified by the PCR utilizing each of the primer pairings based on the nucleotide sequence shown in SEQ ID NO: 6 is shown in Table 19.

Table 19

primer pairing	primer	primer	amplified DNA
14	SEQ ID NO: 124	SEQ ID NO: 129	about 800bp
15	SEQ ID NO: 125	SEQ ID NO: 129	about 600bp
16	SEQ ID NO: 126	SEQ ID NO: 129	about 600bp
17	SEQ ID NO: 127	SEQ ID NO: 129	about 580bp
18	SEQ ID NO: 128	SEQ ID NO: 129	about 580bp

[0295] The PCR reaction solution amounted to 25µl by adding 200nM of each of the 2 primers of the pairing shown in Table 19, adding 10ng of the chromosomal DNA, 0.5µl of dNTP mix (a mixture of 10mM of each of the 4 types of dNTP), 5µl of 5xGC genomic PCR buffer, 1.1µl of 25mM Mg(OAc)₂, 5µl of 5M GC-Melt and 0.5µl of Advantage-GC genomic polymerase mix and adding water. The reaction conditions were maintaining 95°C for 1 minute; repeating 30 cycles of a cycle that included maintaining 94°C for 15 seconds, followed by 60°C for 30 seconds, and followed by 72°C for 1 minute; and maintaining 72°C for 5 minutes. Each of the reaction solutions after the maintenance was analyzed with 3% agarose gel electrophoresis. The results are shown in Fig. 46 and in Table 20 and Table 21. The amplification of the predicted size of the DNA was observed in each or all of the cases with primer pairings 14, 15, 16, 17 and 18 as well as in the cases of utilizing the chromosomal DNA prepared from any of the strains as a template.

Table 20

	Reagents		
Lane	origin of the template chromosomal DNA	primer pairing	amplification of DNA*
2	Streptomyces phaeochromogenes IFO 12898	14	+
3	Streptomyces phaeochromogenes IFO 12898	15	+
4	Streptomyces phaeochromogenes IFO 12898	16	+
5	Streptomyces phaeochromogenes IFO 12898	1,7	+
6	Streptomyces phaeochromogenes IFO 12898	18	+
9	Streptomyces testaceus ATCC 21469	14	+
10	Saccharopolyspora taberi JCM 9393t	14	+
11	Streptomyces griseolus ATCC 11796	14	+
13	Streptomyces testaceus ATCC 21469	15	+
14	Saccharopolyspora taberi JCM 9393t	15	+
15	Streptomyces griseolus ATCC 11796	15	+
16	Streptomyces testaceus ATCC 21469	16	+
17	Saccharopolyspora taberi JCM 9393t	16	+

^{* &}quot;+" represents that the predicted size of the DNA was detected and "-" represents that there was no detection.

Table 20 (continued)

	Reagents		
Lane	origin of the template chromosomal DNA	primer pairing	amplification of DNA*
18	Streptomyces griseolus ATCC 11796	16	+
20	Streptomyces testaceus ATCC 21469	17	+
21	Saccharopolyspora taberi JCM 9393t	17	+
22	Streptomyces griseolus ATCC 11796	17	+
23	Streptomyces testaceus ATCC 21469	18	+
24	Saccharopolyspora taberi JCM 9393t	18	+
25	Streptomyces griseolus ATCC 11796	18	+

^{* &}quot;+" represents that the predicted size of the DNA was detected and "-" represents that there was no detection.

Table 21

	Table 21		
	Reagents		
Lane	Origin of template chromosomal DNA	primer pairing	amplification of DNA*
28	Streptomyces griseofuscus IFO 12870t	14	+
29	Streptomyces thermocoerulescens IFO 14273t	14	+
30	Streptomyces achromogenes IFO 12735	14	-
31	Streptomyces nogalater IFO 13445	14	+
33	Streptomyces griseofuscus IFO 12870t	15	+
34	Streptomyces thermocoerulescens IFO 14273t	15	+
35	Streptomyces achromogenes IFO 12735	15	-
36	Streptomyces nogalater IFO 13445	15	+
38	Streptomyces griseofuscus IFO 12870t	16	+
39	Streptomyces thermocoerulescens IFO 14273t	16	+
40	Streptomyces achromogenes IFO 12735	16	+
41	Streptomyces nogalater IFO 13445	16	+
43	Streptomyces griseofuscus IFO 12870t	17	+
44	Streptomyces thermocoerulescens IFO 14273t	17	+
45	Streptomyces achromogenes IFO 12735	17	+
46	Streptomyces nogalater IFO 13445	17	+
48	Streptomyces griseofuscus IFO 12870t	18	-
49	Streptomyces thermocoerulescens IFO 14273t	18	+
50	Streptomyces achromogenes IFO 12735	18	-
51	Streptomyces nogalater IFO 13445	18	+

^{* &}quot;+" represents that the predicted size of the DNA was detection and "-" represents that there was no detection.

Example 30 Hybridization Utilizing as a Probe a DNA Consisting of a Partial Nucleotide Sequence of the Present DNA (A) and the Present Invention DNA (A)

(1) Preparation of a Probe

5

10

15

20

25

30

35

40

45

50

55

[0296] DNA consisting of a partial nucleotide sequence of the present invention DNA (A1) or a partial nucleotide sequence of the present invention DNA (A1) was produced as a probe labeled with digoxigenin (DIG labeled probe). PCR was conducted with PCR DIG Probe synthesis kit (Roche Diagnostics GmbH Company) according to the attached manual by utilizing as a template the chromosomal DNA of Streptomyces phaeochromogenes IFO 12898 prepared in Example 3 and by utilizing as primers the oligonucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 93 and the oligonucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 94. The PCR reaction solution amounted to 50µl by adding the 2 primers each amounting to 200nM, adding 50ng of the chromosomal DNA, 2.5µl of dNTP mix (a mixture of 2.0mM of each of the 4 types of dNTP), 2.5μl of PCR DIG mix (a mixture of 2.0mM of each of the 4 types of dNTP labeled with DIG), 5μ l of 10x PCR buffer and 0.75μ l of Expand HiFi enzyme mix and adding distilled water. The reaction conditions were after maintaining 95°C for 2 minutes; repeating 10 cycles of a cycle that included maintaining 95°C for 10 seconds, followed by 60°C for 30 seconds and followed by 72°C for 2 minutes; then conducting 15 cycles of a cycle that included maintaining 95°C for 10 seconds, followed by 60°C for 30 seconds and followed by 72°C for 2 minutes (wherein 20 seconds was added to the maintenance at 72°C for each cycle); and then maintaining 72°C for 7 minutes. The reaction solution after the maintenance was subjected to 1% agarose gel electrophoresis. As a result, amplification of a DNA of about 1.3kb was confirmed. The amplified DNA was recovered to obtain a DNA labeled with digoxigenin and having the nucleotide sequence shown in SEQ ID NO: 6. Under a similar method, PCR was conducted by utilizing as a template the chromosomal DNA of Streptomyces phaeochromogenes IFO 12898 and by utilizing as the primers the oligonucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 130 and the oligonucleotide consisting of the nucleotide sequence show in SEQ ID NO: 131. The DNA amplified by said PCR was recovered to obtain a DNA labeled with digoxigenin and having the nucleotide sequence shown in nucleotides 57 to 730 of the nucleotide sequence shown in SEQ ID NO: 6.

[0297] Under a similar method, PCR was conducted by utilizing as a template the chromosomal DNA of Saccharopolyspora taberi JCM 9393t prepared in Example 6 and by utilizing as primers the oligonucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 61 and the oligonucleotide sequence consisting of the nucleotide sequence shown in SEQ ID NO: 62. The DNA amplified by said PCR was recovered to obtain a DNA labeled with digoxigenin and having the nucleotide sequence shown in SEQ ID NO: 7.

[0298] Further, under a similar method, PCR was conducted by utilizing as the template the chromosomal DNA of Streptomyces testaceus ATCC 21469 prepared in Example 11 and by utilizing as primers the oligonucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 70 and the oligonucleotide sequence consisting of the nucleotide sequence shown in SEQ ID NO: 71. The DNA amplified by said PCR was recovered to obtain a DNA labeled with digoxigenin and having the nucleotide sequence shown in SEQ ID NO: 8. Further, PCR was conducted by utilizing the above-mentioned chromosomal DNA as the template and by utilizing as the primers the oligonucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 132 and the oligonucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 133. The DNA amplified by said PCR was recovered to obtain a DNA labeled with digoxigenin and having the nucleotide sequence shown in nucleotides 21 to 691 of the nucleotide sequence shown in SEQ ID NO: 8.

(2) Dot-blot Hybridization

[0299] Each of the DNA of pKSN657 prepared in Example 4 (the DNA comprising the present invention DNA (A1)), the DNA of pKSN923 prepared in Example 7 (the DNA comprising the present invention DNA (A2)), the DNA of pKSN671 prepared in Example 12 (the DNA comprising the present invention DNA (A3)), the DNA of pKSNSCA prepared in Example 14 (the DNA comprising the present DNA (A9)) and the DNA of pKSN11796 prepared in Example 10 (the DNA comprising the present DNA (A10)) was blotted onto a nylon membrane Hybond N+ (Amersham Pharmacia Company) to amount to 100ng and 10ng. Ultraviolet light was directed at the obtained membranes with a transilluminator for 5 minutes.

[0300] DIG-High Prime DNA Labeling and Detection Starter Kit II (Roche Diagnostics GmbH Company) was utilized for the hybridization and detection according to the attached manual. As the probes, each of the DNA labeled with digoxigenin and produced in Example 30(1) which were maintained at 100°C for 5 minutes and then quickly cooled in ice (hereinafter, referred to as "DIG labeled probe") was utilized. The dotted above membrane was shaken at 42°C for 30 minutes in 2.0ml of DIGEasyHyb that was provided with said kit. Next, 2.0ml of Dig Easy Hyb, 5.0µl of the DIG labeled probes and the membrane were enclosed in a plastic bag for hybridization and maintained at 42°C for 18 hours. The membrane was recovered, was shaken twice in 2x SSC containing 0.1% SDS for 5 minutes at room temperature and was then shaken twice in 0.5xSSC containing 0.1%SDS at 65°C for 15 minutes. Subsequently, the membrane

was shaken in 50ml of washing buffer for 2 minutes, then shaken in 50ml of blocking solution at room temperature for 30 minutes, then shaken in 2.0ml of antibody solution for 30 minutes, and then shaken twice in 50ml of washing buffer for 15 minutes. Further, after shaking in 50ml of detection buffer for 5 minutes, the membrane was enclosed in a hybridization bag with 2.0ml of Color Substrate solution and maintained at room temperature for 18 hours. A signal was detected in each of the cases of conducting hybridization with each of the reagents of 10ng and 100ng of each of pKSN657, pKSN923, pKSN671, pKSNSCA and pKSN11796.

Example 31 Obtaining the Present Invention DNA (A11)

5

10

15

20

25

30

45

50

55

(1) Preparation of the chromosomal DNA of Streptomyces nogalator IFO13445

[0301] Streptomyces nogalator IFO 13445 was cultivated with shaking at 30°C for 3 days in 50ml of YGY medium (0.5%(w/v) yeast extract, 0.5%(w/v) tryptone, 0.1%(w/v) glucose and 0.1%(w/v) K₂HPO₄, pH7.0). The cells were recovered. The obtained cells were suspended in YGY medium containing 1.4%(w/v) glycine and 60mM EDTA and further incubated with shaking for a day. The cells were recovered from the culture medium. After washing once with distilled water, it was suspended in 3.5ml of Buffer B 1 (50mM Tris-HCI (pH8.0), 50mM EDTA, 0.5% of Tween-20 and 0.5% Triton X-100). Eighty microliters (80μl) of a 100μg/ml lysozyme solution and 100μl of Qiagen Protease (600mAU/ml, Qiagen Company) were added to the suspension and maintained at 37°C for a hour. Next, 1.2ml of Buffer B2 (3M guanidine HCl and 20% tween-20) was added, mixed and maintained at 50°C for 30 minutes. The obtained cell lysate solution added to a Qiagen genomic chip 100G (Qiagen Company) equalized in Buffer QBT (750mM NaCl, 50mM MOPS (pH7.0), 15% isopropanol and 0.15% Triton X-100). Next, after the chip was washed twice with 7.5ml of Buffer QC (50mM MOPS (pH7.0) and 15% isopropanol), the DNA was eluted by flowing 5ml of Buffer QF (1.25M NaCl, 50mM Tris HCl (pH8.5), 15% isopropanol). Three and five-tenths milliliters (3.5ml) of isopropanol was mixed into the obtained DNA solution to precipitate and recover the chromosomal DNA. After washing with 70% ethanol, the recovered chromosomal DNA was dissolved in 1ml of TB buffer.

(2) Isolation of DNA having a partial nucleotide sequence of the present invention DNA (A11)

[0302] PCR was conducted by utilizing as the template the chromosomal DNA prepared in Example 31(1) and by utilizing primer pairing 14, in accordance with the method described in Example 29. The amplified DNA was ligated to cloning vector pCRII-TOPO (Invitrogen Company) according to the instructions attached to said vector and was then introduced into E. Coli TOP10F'. The plasmid DNA was prepared from the obtained E. coli transformant, utilizing Qiagen Tip20 (Qiagen Company). A sequencing reaction was conducted with Dye terminator cycle sequencing FS ready reaction kit (Applied Biosystems Japan Company) according to the instructions attached to said kit, utilizing a primer having the nucleotide sequence shown in SEQ ID NO: 57 and a primer having the nucleotide sequence shown in SEQ ID NO: 59. The sequence reaction utilized the obtained plasmid as a template. The reaction products were analyzed with a DNA sequencer 3100 (Applied Biosystems Japan Company). As a result, the nucleotide sequence shown in nucleotides 316 to 1048 of the nucleotide sequence shown in SEQ ID NO: 139 was provided.

[0303] Further, the chromosomal DNA prepared in Example 31(1) was digested with restriction enzyme PvuII. A genome walker library was produced by utilizing the obtained DNA, according to the method described in Example 26 (3). PCR was conducted under the conditions described in Example 26(3) to obtain the first PCR products, by utilizing the obtained library as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 161 and primer AP1 (Universal Genome Walker Kit (Clontech Company)). Next, PCR was conducted under the conditions decribed in Example 26(3), by utilizing the first PCR products as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 162 and primer AP2 (Universal Genome Walker Kit (Clontech Company)). The nucleotide sequence of the obtained DNA was analyzed. The nucleotide sequence shown in nucleotides 1 to 330 of the nucleotide sequence shown in SEQ ID NO: 144 was provided.

[0304] Further, the chromosomal DNA prepared in Example 31(1) was digested with restriction enzyme Hincil. A genome walker library was produced by utilizing the obtained DNA, according to the method described in Example 26 (3). PCR was conducted under the conditions described in Example 26(3) to obtain the first PCR products, by utilizing the obtained library as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 163 and primer AP1 (Universal Genome Walker Kit (Clontech Company)). Next, PCR was conducted under the conditions described in Example 26(3), by utilizing the first PCR products as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 164 and primer AP2 (Universal Genome Walker Kit (Clontech Company)). The nucleotide sequence of the obtained DNA was analyzed. The nucleotide sequence shown in nucleotides 983 to 1449 of the nucleotide sequence shown in SEQ ID NO: 144 was provided.

(3) Sequence analysis of the present invention DNA (A11)

5

10

15

20

25

30

35

40

45

50

[0305] The nucleotide sequence shown in SEQ ID NO: 144 was obtained by connecting the nucleotide sequences provided by the DNA obtained in Example 31(2). Two open reading frames (ORF) were present. As such, there was contained a nucleotide sequence (SEQ ID NO: 139) consisting of 1230 nucleotides (inclusive of the stop codon) and encoding a 409 amino acid residue (SEQ ID NO: 159) and a nucleotide sequence (SEQ ID NO: 154) consisting of 207 nucleotides (inclusive of the stop codon) and encoding a 68 amino acid residue (SEQ ID NO: 149). The molecular weight of the protein consisting of the amino acid sequence (SEQ ID NO: 159) encoded by the nucleotide sequence shown in SEQ ID NO: 139 was calculated to be 45177Da. Further, the molecular weight of the protein consisting of the amino acid sequence (SEQ ID NO: 149) encoded by the nucleotide sequence shown in SEQ ID NO: 154 was calculated to be 7147Da.

Example 32 Expression of the Present Invention Protein (A11) in E. Coli

(1) Production of a transformed E. coli having the present invention DNA(A11)

[0306] PCR was conducted by utilizing as a template the chromosomal DNA prepared from Streptomyces nogalator IFO13445 in Example 31(1) and by utilizing Expand HiFi PCR System (Boehringer Manheim Company). As the primers, there was utilized the pairing of an oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 165 and an oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 166. The reaction solution composition and the maintenance were similar to the conditions described in Example 27(1). The reaction solution after the maintenance was subjected to 1% agarose gel electrophoresis. The gel area containing the DNA of about 1.5kbp was recovered. The DNA was purified from the recovered gel by utilizing QIA quick gel extraction kit (Qiagen Company) according to the attached instructions. The obtained DNA was ligated to the cloning vector pCRII-TOPO (Invitrogen Company) according to the instructions attached to said vector and was introduced into E. Coli TOP 10F'. The plasmid DNA was prepared from the obtained E. coli transformants, utilizing Qiagen Tip20 (Qiagen Company). Sequencing reactions were conducted with Dye terminator cycle sequencing FS ready reaction kit (Applied Biosystems Japan Company) according to the instructions attached to said kit, utilizing as primers the oligonucleotides having the nucleotide sequences shown in, respectively, SEQ ID NOs: 57, 59, and 186. The sequencing reactions utilized the obtained plasmid DNA as the template. The reaction products were analyzed with a DNA sequencer 3100 (Applied Biosystems Japan Company). Based on the results, the plasmid having the nucleotide sequence shown in SEQ ID NO: 144 was designated as pCR849AF.

[0307] Next, pCR849AF was digested with restriction enzymes Ndel and HindIII. The digestion products were subjected to agarose gel electrophoresis. The gel area containing a DNA of about 1.5kbp was cut from the gel. The DNA was purified from the recovered gels by utilizing QIA quick gel extraction kit (Qiagen Company) according to the attached instructions. The obtained DNA and the plasmid pKSN2 digested with Ndel and HindIII were ligated with ligation kit Ver.2 (Takara Shuzo Company) according to the instructions attached to said kit and introduced into E. Coli JM109. The plasmid DNA were prepared from the obtained E. coli transformants. The structures thereof were analyzed. The plasmid containing the nucleotide sequence shown in SEQ ID NO: 144, in which the DNA of about 1.5kbp encoding the present invention protein (A11) is inserted between the Ndel site and the HindIII site of pKSN2 was designated as pKSN849AF. Plasmid pKSN849AF was introduced into E. coli JM109. The obtained E. coli transformant was designated as JM109/pKSN849AF. Further, plasmid pKSN2 was introduced into E. coli JM109. The obtained E. coli transformant was designated as JM109/pKSN819

(2) Expression of the present invention protein (A11) in E. coli and recovery of said protein

[0308] Similarly to Example 4(2), each of E. coli JM109/pKSN849AF and JM109/pKSN2 was cultured. The cells were recovered. Cell lysate solutions were prepared. Under the method described in Example 4(2), supernatant fractions were prepared from the cell lysate solutions (hereinafter, the supernatant fraction obtained from E. coli JM109/pKSN849AF is referred to as "E. coli pKSN849AF extract" and the supernatant fraction obtained from JM109/pKSN2 is referred to as "E. coli pKSN2 extract").

(3) Detection of the ability to convert compound (II) to compound (III)

[0309] Reaction solutions of 30µI were prepared and maintained for 10 minutes at 30°C. The reaction solutions consisted of a 0.1M potassium phosphate buffer (pH7.0) containing 3ppm of compound (II) labeled with ¹⁴C, 2mM of β-NADPH (hereinafter, referred to as "component A") (Oriental Yeast Company), 2mg/ml of a ferredoxin derived from spinach (hereinafter referred to as "component B") (Sigma Company), 0.1U/ml of ferredoxin reductase (hereinafter,

referred to as "component C") (Sigma Company) and 23µl of the supernatant fraction recovered in Example 32(2). Similarly to Example 4(3), the reaction solutions after the maintenance were extracted with ethyl acetate and the extracted layers were TLC analyzed. After developing the TLC plate, the presence of a spot thereon corresponding to compound (III) labeled with ¹⁴C were examined (Rf value 0.24 and 0.29). A spot corresponding to compound (III) was detected from the reaction solution containing E. coli pKSN849AF extract. In contrast, such a spot was not detected from the reaction solution containing E. coli pKSN2 extract.

Example 33 Obtaining the Present Invention DNA (A12)

5

10

15

20

25

30

35

40

45

50

55

(1) Preparation of the chromosomal DNA of Streptomyces tsusimaensis IFO 13782

[0310] Under the method described in Example 31(1), the chromosomal DNA of Streptomyces tsusimaensis IFO 13782 was prepared.

(2) Isolation of DNA having a partial nucleotide sequence of the present invention DNA (A12)

[0311] PCR was conducted by utilizing as the template the chromosomal DNA of Streptomyces tsusimaensis IFO 13782 prepared in Example 33(1) and by utilizing primer pairing 14, in accordance with the method described in Example 29. Similarly to Example 31(2), the amplified DNA was cloned to cloning vector pCRII-TOPO (Invitrogen Company). The nucleotide sequence thereof was analyzed. As a result, the nucleotide sequence shown in nucleotides 364 to 1096 of the nucleotide sequence shown in SEQ ID NO: 140 was provided.

[0312] Further, the chromosomal DNA prepared in Example 33(1) was digested with restriction enzyme Smal. A genome walker library was produced by utilizing the obtained DNA, according to the method described in Example 26 (3). PCR was conducted under the conditions described in Example 26(3) to obtain the first PCR products, by utilizing the obtained library as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 167 and primer AP1. Next, PCR was conducted under the conditions described in Example 26(3), by utilizing the first PCR products as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 168 and primer AP2. The nucleotide sequence of the obtained DNA was analyzed. The nucleotide sequence shown in nucleotides 1 to 392 of the nucleotide sequence shown in SEQ ID NO: 145 was provided.

[0313] Further, the chromosomal DNA prepared in Example 33(1) was digested with restriction enzyme PvuII. A genome walker library was produced by utilizing the obtained DNA, according to the method described in Example 26 (3). PCR was conducted under the conditions described in Example 26(3) to obtain the first PCR products, by utilizing the obtained library as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 169 and primer AP1. Next, PCR was conducted under the conditions described in Example 26(3), by utilizing the first PCR products as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 170 and primer AP2. The nucleotide sequence of the obtained DNA was analyzed. The nucleotide sequence shown in nucleotides 1048 to 1480 of the nucleotide sequence shown in SEQ ID NO: 145 was provided.

(3) Sequence analysis of the present invention DNA (A12)

[0314] The nucleotide sequence shown in SEQ ID NO: 145 was obtained by connecting the nucleotide sequences provided by the DNA obtained in Example 33(2). Two open reading frames (ORF) were present in said nucleotide sequence. As such, there was contained a nucleotide sequence (SEQ ID NO: 140) consisting of 1278 nucleotides (inclusive of the stop codon) and encoding a 425 amino acid residue (SEQ ID NO: 160) and a nucleotide sequence (SEQ ID NO: 155) consisting of 198 nucleotides (inclusive of the stop codon) and encoding a 65 amino acid residue (SEQ ID NO: 150). The molecular weight of the protein consisting of the amino acid sequence (SEQ ID NO: 160) encoded by the nucleotide sequence shown in SEQ ID NO: 140 was calculated to be 46549Da. Further, the molecular weight of the protein consisting of the amino acid sequence (SEQ ID NO: 150) encoded by the nucleotide sequence shown in SEQ ID NO: 155 was calculated to be 6510Da.

Example 34 Expression of the Present Invention DNA (A12) in E. Coli

(1) Production of a transformed E. coli having the present invention DNA (A12)

[0315] PCR was conducted similarly to Example 32(1), other than utilizing as a template the chromosomal DNA prepared from Streptomyces tsusimaensis IFO 13782 in Example 33(1) and utilizing as the primers the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 171 and an oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 172. Similarly to Example 32(1), the DNA was purified from the reaction solution of PCR and

cloned into the cloning vector pCRII-TOPO (Invitrogen Company). The nucleotide sequence of the obtained plasmid DNA was analyzed with oligonucleotides having the nucleotide sequences shown, respectively, in SEQ ID NOs: 57, 59, 171, 172 and 187. Based on the obtained results, the plasmid having the nucleotide sequence shown in SEQ ID NO: 145 was designated as pCR1618F. Similarly to Example 32(1), pCR1618F was digested with restriction enzymes Ndel and HindIII. A DNA of about 1.5kbp was purified from the digestion products. The obtained DNA and the plasmid pKSN2 digested with Ndel and HindIII were ligated to obtain a plasmid containing the nucleotide sequence shown in SEQ ID NO: 145, in which the DNA encoding the present invention protein (A12) is inserted between the Ndel site and the HindIII site of pKSN2 (hereinafter referred to as "pKSN1618F"). Said plasmid was introduced into E. Coli JM109. The obtained E. coli transformant was designated JM109/pKSN1618F.

(2) Expression of the present invention protein (A12) in E. coli and recovery of said protein

[0316] Similarly to Example 4(2), each ofE. coli JM109/pKSN1618F and JM109/pKSN2 was cultured. The cells were recovered. Cell lysate solutions were prepared. Under the method described in Example 4(2), supernatant fractions were prepared from the cell lysate solutions (hereinafter, the supernatant fraction obtained from E. coli JM109/pKSN1618F is referred to as "E. coli pKSN1618F extract " and the supernatant fraction obtained from E. coli JM109/pKSN2 is referred to as "E. coli pKSN2 extract ").

(3) Detection of the ability to convert compound (II) to compound (III)

[0317] Reaction solutions of 30µl were prepared and maintained for 10 minutes at 30°C. Other than utilizing the supernatant fractions recovered in Example 34(2) (E. coli pKSN1618F extract or E. coli pKSN2 extract), the reaction solutions were prepared similarly to Example 32(3). The reaction solutions after the maintenance were extracted with ethyl acetate and the extracted layers were TLC analyzed. After developing the TLC plate, the presence of a spot thereon corresponding to compound (III) labeled with ¹⁴C were examined (Rf value 0.24 and 0.29). A spot corresponding to compound (III) was detected from the reaction solution containing E. coli pKSN1618F extract. In contrast, such a spot was not detected from the reaction solution containing E. coli pKSN2 extract.

Example 35 Obtaining the Present Invention DNA (A13)

5

10

15

20

25

30

35

40

45

(1) Preparation of the chromosomal DNA of Streptomyces thermocoerulesces IFO 14273t

[0318] Under the method described in Example 31(1), the chromosomal DNA of Streptomyces thermocoerulesces IFO 14273t was prepared.

(2) Isolation of DNA having a partial nucleotide sequence of the present invention DNA (A13)

[0319] PCR was conducted by utilizing as the template the chromosomal DNA of Streptomyces thermocoerulesces IFO 14273t prepared in Example 35(1) and by utilizing primer pairing 14, in accordance with the method described in Example 29. Similarly to Example 31(2), the amplified DNA was cloned to cloning vector pCRII-TOPO (Invitrogen Company). The nucleotide sequence thereof was analyzed. As a result, the nucleotide sequence shown in nucleotides 295 to 1027 of the nucleotide sequence shown in SEQ ID NO: 141 was provided.

[0320] Further, the chromosomal DNA prepared in Example 35(1) was digested with restriction enzyme Hincll. A genome walker library was produced by utilizing the obtained DNA, according to the method described in Example 26 (3). PCR was conducted under the conditions described in Example 26(3) to obtain the first PCR products, by utilizing the obtained library as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 173 and primer AP1. Next, PCR was conducted under the conditions described in Example 26(3), by utilizing the first PCR products as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 174 and primer AP2. The nucleotide sequence of the obtained DNA was analyzed. The nucleotide sequence shown in nucleotides 1 to 370 of the nucleotide sequence shown in SEQ ID NO: 146 was provided.

[0321] Further, the chromosomal DNA prepared in Example 35(1) was digested with restriction enzyme Smal. A genome walker library was produced by utilizing the obtained DNA, according to the method described in Example 26 (3). PCR was conducted under the conditions described in Example 26(3) to obtain the first PCR products, by utilizing the obtained library as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 175 and primer AP I. Next, PCR was conducted under the conditions described in Example 26(3), by utilizing the first PCR products as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 176 and primer AP2. The nucleotide sequence of the obtained DNA was analyzed. The nucleotide sequence shown in nucleotides 960 to 1473 of the nucleotide sequence shown in SEQ ID NO: 146 was provided.

(3) Sequence analysis of the present invention DNA (A13)

5

10

15

20

25

30

35

40

45

50

55

[0322] The nucleotide sequence shown in SEQ ID NO: 146 was obtained by connecting the nucleotide sequences provided by the DNA obtained in Example 35(2). Two open reading frames (ORF) were present in said nucleotide sequence. As such, there was contained a nucleotide sequence (SEQ ID NO: 141) consisting of 1209 nucleotides (inclusive of the stop codon) and encoding a 402 amino acid residue (SEQ ID NO: 136) and a nucleotide sequence (SEQ ID NO: 156) consisting of 252 nucleotides (inclusive of the stop codon) and encoding a 83 amino acid residue (SEQ ID NO: 151). The molecular weight of the protein consisting of the amino acid sequence (SEQ ID NO: 136) encoded by the nucleotide sequence shown in SEQ ID NO: 141 was calculated to be 44629Da. Further, the molecular weight of the protein consisting of the amino acid sequence (SEQ ID NO: 151) encoded by the nucleotide sequence shown in SEQ ID NO: 156 was calculated to be 8635Da.

Example 36 Expression of the Present Invention DNA (A13) in E. Coli

(1) Production of a transformed E. coli having the present invention DNA (A13)

[0323] PCR was conducted similarly to Example 32(1), other than utilizing as a template the chromosomal DNA prepared from Streptomyces thermocoerulesces IFO 14273t in Example 35(1) and utilizing as the primers the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 177 and an oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 178. Similarly to Example 32(1), the DNA was purified from the reaction solution of PCR and cloned into the cloning vector pCRII-TOPO (Invitrogen Company). The nucleotide sequence of the obtained plasmid DNA was analyzed with oligonucleotides having nucleotide sequences shown, respectively, in SEQ ID NO: 57, 59, 173, 175 and 188. Based on the obtained results, the plasmid having the nucleotide sequence shown in SEQ ID NO: 146 was designated as pCR474F. Similarly to Example 32(1), pCR474F was digested with restriction enzymes Ndel and HindIII. A DNA of about 1.5kbp was purified from the digestion products. The obtained DNA and the plasmid pKSN2 digested with Ndel and HindIII were ligated to obtain a plasmid containing the nucleotide sequence shown in SEQ ID NO: 146, in which the DNA encoding the present invention protein (A13) is inserted between the Ndel site and the HindIII site of pKSN2 (hereinafter referred to as "pKSN474F"). Said plasmid was introduced into E. Coli JM109. The obtained E. coli transformant was designated JM109/pKSN474F.

(2) Expression of the present invention protein (A13) in E. coli and recovery of said protein

[0324] Similarly to Example 4(2), each of E. coli JM109/pKSN474F and JM109/pKSN2 was cultured. The cells were recovered. Cell lysate solutions were prepared. Under the method described in Example 4(2), supernatant fractions were prepared from the cell lysate solutions (hereinafter, the supernatant fraction obtained from E. coli JM109/pKSN474F is referred to as "E. coli pKSN474F extract" and the supernatant fraction obtained from JM109/pKSN2 is referred to as "E. coli pKSN2 extract").

(3) Detection of the ability to convert compound (II) to compound (III)

[0325] Reaction solutions of 30µl were prepared and maintained for 10 minutes at 30°C. Other than utilizing the supernatant fractions recovered in Example 36(2) (E. coli pKSN474F extract or E. coli pKSN2 extract), the reaction solutions were prepared similarly to Example 32(3). The reaction solutions after the maintenance were extracted with ethyl acetate and the extracted layers were TLC analyzed. After developing the TLC plate, the presence of a spot thereon corresponding to compound (III) labeled with ¹⁴C were examined (Rf value 0.24 and 0.29). A spot corresponding to compound (III) was detected from the reaction solution containing E. coli pKSN474F extract. In contrast, such a spot was not detected from the reaction solution containing E. coli pKSN2 extract.

Example 37 Obtaining the Present Invention DNA (A14)

(1) Preparation of the chromosomal DNA of Streptomyces thermocoerulesces IFO 14273t

[0326] Under the method described in Example 31(1), the chromosomal DNA of Streptomyces glomerochromogenes IFO 13673t was prepared.

(2) Isolation of DNA having a partial nucleotide sequence of the present invention DNA (A13)

[0327] PCR was conducted by utilizing as the template the chromosomal DNA of Streptomyces glomerochromoge-

nes IFO 13673t prepared in Example 37(1) and by utilizing primer pairing 14, in accordance with the method described in Example 29. Similarly to Example 31(2), the amplified DNA was cloned to cloning vector pCRII-TOPO (Invitrogen Company). The nucleotide sequence thereof was analyzed. As a result, the nucleotide sequence shown in nucleotides 316 to 1048 of the nucleotide sequence shown in SEQ ID NO: 142 was provided.

[0328] Further, the chromosomal DNA prepared in Example 37(1) was digested with restriction enzyme Smal. A genome walker library was produced by utilizing the obtained DNA, according to the method described in Example 26 (3). PCR was conducted under the conditions described in Example 26(3) to obtain the first PCR products, by utilizing the obtained library as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 179 and primer AP1. Next, PCR was conducted under the conditions described in Example 26(3), by utilizing the first PCR products as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 180 and primer AP2. The nucleotide sequence of the obtained DNA was analyzed. The nucleotide sequence shown in nucleotides I to 330 of the nucleotide sequence shown in SEQ ID NO: 147 was provided.

[0329] Further, the chromosomal DNA prepared in Example 37(1) was digested with restriction enzyme Hincll. A genome walker library was produced by utilizing the obtained DNA, according to the method described in Example 26 (3). PCR was conducted under the conditions described in Example 26(3) to obtain the first PCR products, by utilizing the obtained library as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 181 and primer AP 1. Next, PCR was conducted under the conditions described in Example 26(3), by utilizing the first PCR products as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 182 and primer AP2. The nucleotide sequence of the obtained DNA was analyzed. The nucleotide sequence shown in nucleotides 982 to 1449 of the nucleotide sequence shown in SEQ ID NO: 147 was provided.

(3) Sequence analysis of the present invention DNA (A14)

5

10

15

20

25

30

35

40

45

50

55

[0330] The nucleotide sequence shown in SEQ ID NO: 147 was obtained by connecting the nucleotide sequences provided by the DNA obtained in Example 37(2). Two open reading frames (ORF) were present in said nucleotide sequence. As such, there was contained a nucleotide sequence (SEQ ID NO: 142) consisting of 1230 nucleotides (inclusive of the stop codon) and encoding a 409 amino acid residue (SEQ ID NO: 137) and a nucleotide sequence (SEQ ID NO: 157) consisting of 207 nucleotides (inclusive of the stop codon) and encoding a 68 amino acid residue (SEQ ID NO: 152). The molecular weight of the protein consisting of the amino acid sequence (SEQ ID NO: 137) encoded by the nucleotide sequence shown in SEQ ID NO: 142 was calculated to be 45089Da. Further, the molecular weight of the protein consisting of the amino acid sequence (SEQ ID NO: 152) encoded by the nucleotide sequence shown in SEQ ID NO: 157 was calculated to be 7174Da.

Example 38 Expression of the Present Invention DNA (A14) in E. Coli

(1) Production of a transformed E. coli having the present invention DNA (A14)

[0331] PCR was conducted similarly to Example 32(1), other than utilizing as a template the chromosomal DNA of Streptomyces glomerochromogenes IFO 13673t prepared in Example 37(1) and utilizing as the primers the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 183 and an oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 184. Similarly to Example 32(1), the DNA was purified from the PCR reaction solution and cloned into cloning vector pCRII-TOPO (Invitrogen Company). The nucleotide sequence of the obtained plasmid DNA was analyzed with oligonucleotides having nucleotide sequences shown, respectively, in SEQ ID NOs: 57, 59 and 189. Based on the obtained results, the plasmid having the nucleotide sequence shown in SEQ LD NO: 147 was designated as pCR1491AF. Similarly to Example 32(1), pCR1491AF was digested with restriction enzymes Ndel and HindIII. A DNA of about 1.5kbp was purified from the digestion products. The obtained DNA and the plasmid pKSN2 digested with Ndel and HindIII were ligated to obtain a plasmid containing the nucleotide sequence shown in SEQ ID NO: 147, in which the DNA encoding the present invention protein (A14) is inserted between the Ndel site and the HindIII site of pKSN2 (hereinafter referred to as "pKSN1491AF"). Said plasmid was introduced into E. Coli JM109. The obtained E. coli transformant was designated JM109/pKSN1491AF.

(2) Expression of the present invention protein (A14) in E. coli and recovery of said protein

[0332] Similarly to Example 4(2), each of E. coli JM109/pKSN1491AF and JM109/pKSN2 was cultured. The cells were recovered. Cell lysate solutions were prepared. Under the method described in Example 4(2), supernatant fractions were prepared from the cell lysate solutions (hereinafter, the supernatant fraction obtained from E. coli IM109/pKSN1491AF is referred to as "E. coli pKSN1491AF extract" and the supernatant fraction obtained from JM109/pKSN2 is referred to as "E. coli pKSN2 extract").

(3) Detection of the ability to convert compound (II) to compound (III)

[0333] Reaction solutions of 30µI were prepared and maintained for 10 minutes at 30°C. Other than utilizing the supernatant fractions recovered in Example 38(2) (E. coli pKSN1491AF extract or E. coli pKSN2 extract), the reaction solutions were prepared similarly to Example 32(3). The reaction solutions after the maintenance were extracted with ethyl acetate and the extracted layers were TLC analyzed. After developing the TLC plate, the presence of a spot thereon corresponding to compound (III) labeled with ¹⁴C were examined (Rf value 0.24 and 0.29). A spot corresponding to compound (III) was detected from the reaction solution containing E. coli pKSN1491AF extract. In contrast, such a spot was not detected from the reaction solution containing E. coli pKSN2 extract.

Example 39 Obtaining the Present Invention DNA (A15)

5

10

15

20

25

30

35

40

45

50

55

(1) Preparation of the chromosomal DNA of Streptomyces olivochromogenes IFO 12444

[0334] Under the method described in Example 31(1), the chromosomal DNA of Streptomyces olivochromogenes IFO 12444 was prepared.

(2) Isolation of DNA having a partial nucleotide sequence of the present invention DNA (A15)

[0335] PCR was conducted by utilizing as the template the chromosomal DNA of Streptomyces olivochromogenes IFO 12444 prepared in Example 39(1) and by utilizing primer pairing 14, in accordance with the method described in Example 29. Similarly to Example 31(2), the amplified DNA was cloned to cloning vector pCRII-TOPO (Invitrogen Company). The nucleotide sequence thereof was analyzed. As a result, the nucleotide sequence shown in nucleotides 316 to 1048 of the nucleotide sequence shown in SEQ ID NO: 143 was provided.

[0336] Further, the chromosomal DNA prepared in Example 37(1) was digested with restriction enzyme Smal. A genome walker library was produced by utilizing the obtained DNA, according to the method described in Example 26 (3). PCR was conducted under the conditions described in Example 26(3) to obtain the first PCR products, by utilizing the obtained DNA as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 179 and primer AP1. Next, PCR was conducted under the conditions described in Example 26(3), by utilizing the first PCR products as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 180 and primer AP2. The nucleotide sequence of the obtained DNA was analyzed. The nucleotide sequence shown in nucleotides 1 to 330 of the nucleotide sequence shown in SEQ ID NO: 148 was provided.

[0337] Further, the chromosomal DNA prepared in Example 39(1) was digested with restriction enzyme Smal. A genome walker library was produced by utilizing the obtained DNA, according to the method described in Example 26 (3). PCR was conducted under the conditions described in Example 26(3) to obtain the first PCR products, by utilizing the obtained library as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 181 and primer AP1. Next, PCR was conducted under the conditions described in Example 26(3), by utilizing the first PCR products as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 182 and primer AP2. The nucleotide sequence of the obtained DNA was analyzed. The nucleotide sequence shown in nucleotides 982 to 1449 of the nucleotide sequence shown in SEQ ID NO: 148 was provided.

(3) Sequence analysis of the present invention DNA (A15)

[0338] The nucleotide sequence shown in SEQ ID NO: 148 was obtained by connecting the nucleotide sequences provided by the DNA obtained in Example 39(2). Two open reading frames (ORF) were present in said nucleotide sequence. As such, there was contained a nucleotide sequence (SEQ ID NO: 143) consisting of 1230 nucleotides (inclusive of the stop codon) and encoding a 409 amino acid residue (SEQ ID NO: 138) and a nucleotide sequence (SEQ ID NO: 158) consisting of 207 nucleotides (inclusive of the stop codon) and encoding a 68 amino acid residue (SEQ ID NO: 153). The molecular weight of the protein consisting of the amino acid sequence (SEQ ID NO: 138) encoded by the nucleotide sequence shown in SEQ ID NO: 143 was calculated to be 45116Da. Further, the molecular weight of the protein consisting of the amino acid sequence (SEQ ID NO: 153) encoded by the nucleotide sequence shown in SEQ ID NO: 158 was calculated to be 7179Da.

Example 40 Expression of the Present Invention DNA (A15) in E. Coli

(1) Production of a transformed E. coli having the present invention DNA (A15)

[0339] PCR was conducted similarly to Example 32(1), other than utilizing as a template the chromosomal DNA of

Streptomyces olivochromogenes IFO 12444 prepared in Example 39(1) and utilizing as the primers the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 184 and an oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 185. Similarly to Example 32(1), the DNA was purified from the PCR reaction solution and cloned into cloning vector pCRII-TOPO (Invitrogen Company). The nucleotide sequence of the obtained plasmid DNA was analyzed with oligonucleotides having nucleotide sequences shown, respectively, in SEQ ID NO: 57, 59 and 189. Based on the obtained results, the plasmid having the nucleotide sequence shown in SEQ ID NO: 148 was designated as pCR1555AF. Similarly to Example 32(1), pCR1555AF was digested with restriction enzymes Ndel and HindIII. A DNA of about 1.5kbp was purified from the digestion products. The obtained DNA and the plasmid pKSN2 digested with Ndel and HindIII were ligated to obtain a plasmid containing the nucleotide sequence shown in SEQ ID NO: 148, in which the DNA encoding the present invention protein (A15) is inserted between the Ndel site and the HindIII site of pKSN2 (hereinafter referred to as "pKSN1555AF"). Said plasmid was introduced into E. Coli JM109. The obtained E. coli transformant was designated JM109/pKSN1555AF.

(2) Expression of the present invention protein (A15) in E. coli and recovery of said protein

[0340] Similarly to Example 4(2), each of E. coli JM109/pKSN1555AF and JM109/pKSN2 was cultured. The cells were recovered. Cell lysate solutions were prepared. Under the method described in Example 4(2), supernatant fractions were prepared from the cell lysate solutions (hereinafter, the supernatant fraction obtained from E. coli JM109/pKSN1555AF is referred to as "E. coli pKSN1555AF extract" and the supernatant fraction obtained from JM109/pKSN2 is referred to as "E. coli pKSN2 extract").

(3) Detection of the ability to convert compound (II) to compound (III)

[0341] Reaction solutions of 30µl were prepared and maintained for 10 minutes at 30°C. Other than utilizing the supernatant fractions recovered in Example 40(2) (E. coli pKSN1555AF extract or E. coli pKSN2 extract), the reaction solutions were prepared similarly to Example 32(3). The reaction solutions after the maintenance were extracted with ethyl acetate and the extracted layers were TLC analyzed. After developing the TLC plate, the presence of a spot thereon corresponding to compound (III) labeled with ¹⁴C were examined (Rf value 0.24 and 0.29). A spot corresponding to compound (III) was detected from the reaction solution containing E. coli pKSN1555AF extract. In contrast, such a spot was not detected from the reaction solution containing E. coli pKSN2 extract.

Example 41 Metabolism of Compounds by the Present Invention Protein (A1)

(1) Preparation of plastid fractions

5

10

15

20

25

30

35

40

45

50

55

[0342] A hundred grams (100g) of Radish greens seeds (Takii Seed) were sawed into a dampened paper laboratory wipe in a tray, cultivated at 25°C for 6 days in the dark and then cultivated for 4 hours under a fluorescent lamp. Thirty grams (30g) of the newly greened cotyledons were ground with a Nissei AM-8 homoginizer (Nihonseiki Seisakusho; 18,000 to 20,000rpm, 4°C, 5 seconds) in disruption buffer (1mM magnesium chloride, 20mM N-tris (hydroxymethyl) methyl-2-aminoethanesulfonate, 10mM N-2-hydroxyethylpiperidine-N'-2-ethanesulfonate, 0.5mM EDTA, 5mM cysteine, 0.5M sucrose; pH7.7). The obtained cell lysate solution was passed through 4 layers of nylon gause. The obtained solution was centrifuged (13,170xg, 4°C, 1 minute). The obtained residue fractions were suspended with 60ml of disruption buffer and centrifuged (2,640xg, 4°C, 2 minutes). The residue fractions were resuspended in 10ml of disruption buffer, were layered with the high density buffer (1mM magnesium chloride, 20mM N-tris (hydroxymethyl) methyl-2-aminoethanesulfonate, 30mM N-2-hydroxyethylpiperidine-N'-2-ethanesulfonate, 0.5mM EDTA, 5mM cysteine, 0.6M sucrose; pH7.7) in a centrifuge tube, and were centrifuged (675xg, 4°C, 15 minutes). The residues were suspended in 3ml of suspension buffer (1mM magnesium chloride, 20mM N-tris (hydroxymethyl)methyl-2-aminoethanesulfonate, 30mM N-2-hydroxyethylpiperidine-N'-2-ethanesulfonate, 0.5mM EDTA; pH7.7) and were designated as a plastid fraction.

(2) Metabolism of compound (XII) by the present invention protein (A1)

[0343] There was prepared 100μl of a reaction solution of 50mM potassium phosphate buffer (pH7.0) containing 5ppm of compound (XII), 3mM of β-NADPH (hereinafter, referred to as "component A") (Oriental Yeast Company), 1mg/ml of a ferredoxin derived from spinach (hereinafter referred to as "component B") (Sigma Company), 0.15U/ml of ferredoxin reductase (hereinafter, referred to as "component C") (Sigma Company) and 20μl of the supernatant fraction recovered in Example 4(2). The reaction solution was maintained at 30°C for 10 minutes. Further, there was prepared and maintained similarly 100μl of a reaction solution of a 50mM potassium phosphate buffer (pH 7.0) having

no addition of at least one component utilized in the composition of the above reaction solution, selected from component A, component B, component C and the supernatant fraction prepared in Example 4(2). Ten microliters (10µI) of 2N HCI and 500µI of ethyl acetate were added and mixed into each of the reaction solutions after the maintenance. The resulting reaction solutions were centrifuged at 8,000xg to recover 490µI of the ethyl acetate layer. After drying the ethyl acetate layers under reduced pressure, the residue was dissolved in 100µI of 50mM of potassium phosphate buffer (pH7.0). Forty microliters (40µI) of the fraction solutions (hereinafter, the fraction solution derived from the reaction solution containing component A, component B, component C and 20µI of supernatant fraction recovered in Example 4(2) is referred to as "(XII) metabolism solution (A1)"; further, the fraction solution derived from the reaction solution containing no component A, no component B, no component C and no supernatant fraction recovered in Example 4 (2) is referred to as "(XII) control solution (A1)") were analyzed on a HPLC. Compared to the concentration of compound (XII) detected from (XII) control solution (A1), the concentration of compound (XII) detected from (XII) metabolism solution (A1), was detected from the (XII) control solution (A1), was detected from the (XII) metabolism solution (A1). Mass spectrometry was conducted for the compound contained in such a peak. The mass of the compound contained in such a peak was 14 smaller than the mass of compound (XII).

[0344] Twenty microliters (20μl) of a 32-fold dilution of the above (XII) metabolism solution (A1) and 60μl of the plastid fraction prepared in Example 41(1) were mixed. In darkened conditions, 20 μl of substrate solution (10mM adenosine triphosphate, 5mM aminolevulinic acid, 4mM glutathion reductase and 0.6mM NAD+; pH6.5; hereinafter, such a substrate solution is referred to as "PPO substrate solution") were added and maintained at 30°C for 1.5 hours. Further, instead of said 20μl of the 32-fold dilution of (XII) metabolism solution (A1), a reaction solution to which 20μl of the 32-fold dilution of (XII) control solution (A1) was added was prepared, and the PPO substrate solution was added and maintained similarly. Three hundred (300μl) of a dimethylsulfoxide-methanol mixture (dimethylsulfoxide: methanol = 7:3) was added to each of the reaction solutions after the maintenance and centrifuged (8000xg, 4°C, 10 minutes). The supernatants were recovered and were subjected to reverse phase HPC analysis under the analysis conditions below to measure the amount of PPIX. The PPIX amount in the reaction solution to which (XII) metabolism solution (A1) was added.

(HPLC analysis condition 2)

[0345]

[034

5

10

15

20

25

30

35

40

45

50

55

column	SUMIPAX ODS212 (Sumika Chemical Analysis Service)
flow rate	2ml/minute
detection wave length	fluorescent Ex:410nm Em:630nm
eluent	95:5 mixture of methanol and 1M ammonium acetate (pH5.7)

(3) Metabolism of compound (XIII) by the present invention protein (A1)

[0346] Other than utilizing 5ppm of compound (XIII) instead of 5ppm of compound (XII), reaction solutions were prepared and maintained similarly to the method described in Example 41(2). Similarly to Example 41(2), each of the reaction solutions after the maintenance was extracted with ethyl acetate and the obtained residues were dissolved in 100µl of dimethylsulfoxide. The obtained solutions (hereinafter, the solution derived from the reaction solution containing component A, component B, component C and 20μl of supernatant fraction recovered in Example 4(2) is referred to as "(XIII) metabolism solution (A1)"; further, the solution derived from the reaction solution containing no component A, no component B, no component C and no supernatant fraction recovered in Example 4(2) is referred to as "(XIII) control solution (A1)") were analyzed on a HPLC under the above analysis condition 1. Compared to the concentration of compound (XIII) detected from (XIII) control solution (A1), the concentration of compound (XIII) detected from (XIII) metabolism solution (A1) was lower. Further a peak, which was not detected from the (XIII) control solution (A1), was detected from the (XIII) metabolism solution (A1). Mass spectrometry was conducted for the compound contained in such a peak. The mass of the compound contained in such a peak was 14 smaller than the mass of compound (XIII). [0347] Twenty microliters (20µl) of a 128-fold dilution of the above (XIII) metabolism solution (A1) and 60µl of the plastid fraction were mixed. In darkened conditions, 20 µl of PPO substrate solution were added and maintained at 30°C for 1.5 hours. Further, instead of said 20µl of the 128-fold dilution of (XIII) metabolism solution (A1), a reaction solution to which 20µl of the 128-fold dilution of (XIII) control solution (A1) was added was prepared, and the PPO substrate solution was added and maintained similarly. Similar to Example 41(2), each of the reaction solutions after the maintenance were prepared and subjected to reverse phase HPLC analysis under the above analysis condition 2 to measure the amount of PPIX. The PPIX amount in the reaction solution to which (XIII) metabolism solution (A1) was added was more than the PPIX amount in the reaction solution to which (XIII) control solution (A1) was added.

(4) Metabolism of compound (XVI) by the present invention protein (A1)

5

10

15

20

40

45

50

[0348] Other than utilizing 12.5ppm of compound (XVI) instead of 5ppm of compound (XII), reaction solutions were prepared and maintained similarly to the method described in Example 41(2). Similarly to Example 41(2), each of the reaction solutions after the maintenance was extracted with ethyl acetate and the obtained residues were dissolved in 200µI of 50mM potassium phosphate buffer (pH7.0). The obtained solutions (hereinafter, the solution derived from the reaction solution containing component A, component B, component C and 20µI of supernatant fraction recovered in Example 4(2) is referred to as "(XVI) metabolism solution (A1)"; further, the solution derived from the reaction solution containing no component A, no component B, no component C and no supernatant fraction recovered in Example 4 (2) is referred to as "(XVI) control solution (A1)") were analyzed on a HPLC under the above analysis condition 1. Compared to the concentration of compound (XVI) detected from (XVI) control solution (A1), the concentration of compound (XVI) detected from (XVI) metabolism solution (A1) was lower. Further a peak, which was not detected from the (XVI) control solution (A1), was detected from the (XVI) metabolism solution (A1).

[0349] Twenty microliters (20µl) of a 8-fold dilution of the above (XVI) metabolism solution (A1) and 60µl of the plastid fraction were mixed. In darkened conditions, 20 µl of PPO substrate solution were added and maintained at 30°C for 1.5 hours. Further, instead of said 20µl of the 8-fold dilution of (XVI) metabolism solution (A1), a reaction solution to which 20µl of the 8-fold dilution of (XVI) control solution (A1) was added was prepared, and the PPO substrate solution was added and maintained similarly. Similar to Example 41(2), each of the reaction solutions after the maintenance were prepared and subjected to reverse phase HPLC analysis under the above analysis condition 2 to measure the amount of PPIX. The PPIX amount in the reaction solution to which (XVI) metabolism solution (A1) was added was more than the PPIX amount in the reaction solution to which (XVI) control solution (A1) was added.

(5) Metabolism of compound (XVII) by the present invention protein (A1)

[0350] Other than utilizing 12.5ppm of compound (XVII) instead of 5ppm of compound (XII), reaction solutions were prepared and maintained similarly to the method described in Example 41(2). Similarly to Example 41(2), each of the reaction solutions after the maintenance was extracted with ethyl acetate and the obtained residues were dissolved in 200µl of 50mM potassium phosphate buffer (pH7.0). The obtained solutions (hereinafter, the solution derived from the reaction solution containing component A, component B, component C and 20µl of supernatant fraction recovered in Example 4(2) is referred to as "(XVII) metabolism solution (A1)"; further, the solution derived from the reaction solution containing no component A, no component B, no component C and no supernatant fraction recovered in Example 4 (2) is referred to as "(XVII) control solution (A1)") were analyzed on a HPLC under the above analysis condition 1. Compared to the concentration of compound (XVII) detected from (XVII) control solution (A1), the concentration of compound (XVII) detected from (XVII) metabolism solution (A1) was lower. Further a peak, which was not detected from the (XVII) control solution (A1), was detected from the (XVII) metabolism solution (A1).

[0351] Twenty microliters (20µl) of a 32-fold dilution of the above (XVII) metabolism solution (A1) and 60µl of the plastid fraction were mixed. In darkened conditions, 20µl of PPO substrate solution were added and maintained at 30°C for 1.5 hours. Further, instead of said 20µl of the 32-fold dilution of (XVII) metabolism solution (A1), a reaction solution to which 20µl of the 32-fold dilution of (XVII) control solution (A1) was added was prepared, and the PPO substrate solution was added and maintained similarly. Similar to Example 41(2), each of the reaction solutions after the maintenance were prepared and subjected to reverse phase HPLC analysis under the above analysis condition 2 to measure the amount of PPIX. The PPIX amount in the reaction solution to which (XVII) metabolism solution (A1) was added was more than the PPIX amount in the reaction solution to which (XVII) control solution (A1) was added.

(6) Metabolism of compound (VI) by the present invention protein (A1)

[0352] E. coli JM109/pKSN657F was cultured overnight at 37° C in 3ml ofTB medium containing 50μ g/ml of ampicillin. A milliliter (1ml) of the obtained culture medium was transferred to 100ml ofTB medium containing 50μ g/ml of ampicillin and cultured at 26° C. When OD660 reached about 0.5, 5-aminolevulinic acid was added to the final concentration of 500μ M, and the culturing was continued. Thirty (30) minutes thereafter, IPTG was added to a final concentration of 1mM, and there was further culturing for 20 hours.

[0353] The cells were recovered from the culture medium, washed with 0.1M tris-HCl buffer (pH7.5) and suspended in 10ml of 0.1M Tris-HCl buffer containing 1% glucose. Compound (VI) was added to the obtained cell suspension to a final concentration of 100ppm and that was incubated with shaking at 30°C. At each of 0 hours after and 1 day after the start of shaking, 2ml of the cell suspension were fractioned. Fifty microliters (50µl) of 2N HCl were added to each and those were extracted with 2ml of ethyl acetate. The obtained ethyl acetate layers were analyzed on a HPLC under reaction condition 1. Compared to the concentration of compound (VI) detected from the ethyl acetate layer prepared from the cell suspension at 0 hours after the start of shaking, the concentration of compound (VI) detected from the

ethyl acetate later prepared from the cell suspension at 1 day after the start of shaking was lower. Further a peak, which was not detected from the ethyl acetate layer prepared from the cell suspension at 0 hours after the start of shaking, was detected from the ethyl acetate layer prepared from the cell suspension at 1 day after the start of shaking. Mass spectrometry of the compound contained in said peak was conducted. The mass of the compound contained in said peak was 14 less than the mass of compound (VI).

(7) Metabolism of compound (VIII) by the present protein (A1)

5

10

15

20

25

30

35

40

45

50

[0354] Other than utilizing compound (VIII) instead of compound (VI), there was conducted in accordance with the method described in Example 41(6), a culturing of E. coli JM109/pKSN657F, preparation of the cell suspension solution, incubation with shaking of the cell suspension solution to which compound (VIII) was added, reagent preparation from the cell suspension solution and HPLC analysis of the reagents. Compared to the concentration of compound (VIII) detected from the ethyl acetate layer prepared from the cell suspension at 0 hours after the start of shaking, the concentration of compound (VIII) detected from the ethyl acetate layer prepared from the start of shaking was lower. Further two peaks, which were not detected from the ethyl acetate layer prepared from the cell suspension at 0 hours after the start of shaking, were detected from the ethyl acetate layer prepared from the cell suspension at 1 day after the start of shaking. Mass spectrometry of the compounds contained in said peaks were conducted. The mass of the compound contained in one of said peaks was 14 less and the mass of the compound contained in the other peak was 28 less than the mass of compound (VIII).

(8) Metabolism of compound (X) by the present invention protein (A1)

[0355] Other than utilizing compound (X) instead of compound (VI), there was conducted in accordance with the method described in Example 41(6), a culturing of E. coli JM109/pKSN657F, preparation of the cell suspension solution, shake culturing of the cell suspension solution to which compound (X) was added, reagent preparation from the cell suspension solution and HPLC analysis of the reagents. Compared to the concentration of compound (X) detected from the ethyl acetate layer prepared from the cell suspension at 0 hours after the start of shaking, the concentration of compound (X) detected from the ethyl acetate later prepared from the cell suspension at 1 day after the start of shaking was lower. Further two peaks, which were not detected from the ethyl acetate layer prepared from the cell suspension at 0 hours after the start of shaking, were detected from the ethyl acetate layer prepared from the cell suspension at 1 day after the start of shaking. Mass spectrometry of the compounds contained in said peaks was conducted. The mass of the compound contained in one of said peaks was 40 less and the mass of the compound contained in the other peak was 54 less than the mass of compound (X).

(9) Metabolism of compound (XI) by the present invention protein (A1)

[0356] Other than utilizing compound (XI) instead of compound (VI), there was conducted in accordance with the method described in Example 41(6), a culturing of E. coli JM109/pKSN657F, preparation of the cell suspension solution, shake culturing of the cell suspension solution to which compound (XI) was added, reagent preparation from the cell suspension solution and HPLC analysis of the reagents. Compared to the concentration of compound (XI) detected from the ethyl acetate layer prepared from the cell suspension at 0 hours after the start of shaking, the concentration of compound (XI) detected from the ethyl acetate layer prepared from the cell suspension at 1 day after the start of shaking was lower. Further two peaks, which were not detected from the ethyl acetate layer prepared from the cell suspension at 0 hours after the start of shaking, were detected from the ethyl acetate layer prepared from the cell suspension at 1 day after the start of shaking. Mass spectrometry of the compounds contained in said peaks was conducted. The mass of the compound contained in one of said peaks was 14 less and the mass of the compound contained in the other peak was 16 less than the mass of compound (XI).

Example 42 Metabolism of Compounds by the Present Invention Protein (A11)

(1) Metabolism of compound (X) by the present invention compound (A11)

[0357] Each of E. coli JM109/pKSN849AF and E. coli JM109/pKSN2 was cultured overnight at 37°C in 3ml ofTB culture containing 50µg/ml of ampicillin. A milliliter (1ml) of the obtained culture mediums was transferred to 100ml of TB medium containing 50µg/ml of ampicillin and cultured at 26°C. When OD660 reached about 0.5, 5-aminolevulinic acid was added to the final concentration of 500µM, and the culturing was continued. Thirty (30) minutes thereafter, IPTG was added to a final concentration of 1mM, and there was further culturing for 18 hours.

[0358] The cells were recovered from the culture medium, washed with 0.1M tris-HCl buffer (pH7.5) and suspended

in 10ml of 0.1M Tris-HCl buffer containing 1% glucose. Compound (X) was added to the obtained cell suspension to a final concentration of 25ppm and that was incubated with shaking at 30°C. At each of 0 hours after and 4 days after the start of shaking, 2ml of the cell suspension were fractioned. Fifty microliters (50μl) of 2N HCl were added to each and those were extracted with 2ml of ethyl acetate. The obtained ethyl acetate layers were analyzed on a HPLC under reaction condition 1. Compared to the concentration of compound (X) detected from the ethyl acetate layer prepared from the JM109/pKSN2 cell suspension, the concentration of compound (X) detected from the ethyl acetate layer prepared from the JM109/pKSN849AF cell suspension was lower. Further 3 peaks, which were not detected from the ethyl acetate layer prepared from the JM109/pKSN849AF cell suspension, were detected from the ethyl acetate layer prepared from the JM109/pKSN849AF cell suspension. Of the 3 peaks, the elution time in the HPLC of 1 of the peaks matched with the elution time of a peak of a compound that has a mass of 40 less than compound (X) detected in Example 41(8). Further, the elution time in the HPLC of another peak matched with the elution time of a peak of a compound that has a mass of 54 less than compound (X) detected in Example 41(8).

[0359] After drying, respectively, 1ml of the ethyl acetate layer prepared from the above JM109/pKSN2 cell suspension and 1ml of the ethyl acetate layer prepared from the above JM109/pKSN849AF cell suspension, the residues were dissolved in 1ml of dimethylsulfoxide (hereinafter, the solution derived from the ethyl acetate layer prepared from JM109/pKSN849AF is referred to as "(X) metabolism solution (A11)"; further, the solution derived from the ethyl acetate layer prepared from JM109/pKSN2 cell suspension is referred to as "(X) control solution (A11)").

[0360] Twenty microliters (20µl) of a 128-fold dilution of the above (X) metabolism solution (A11) and 60µl of the plastid fraction were mixed. In darkened conditions, 20µl of PPO substrate solution were added and maintained at 30°C for 1.5 hours. Further, instead of said 20µl of the 128-fold dilution of (X) metabolism solution (A11), a reaction solution to which 20µl of the 128-fold dilution of (X) control solution (A11) was added was prepared, and the PPO substrate solution was added and maintained similarly. Similar to Example 41(2), each of the reaction solutions after the maintenance were prepared and subjected to reverse phase HPLC analysis under the above analysis condition 2 to measure the amount of PPIX. The PPIX amount in the reaction solution to which (X) metabolism solution (A11) was added was more than the PPIX amount in the reaction solution to which (X) control solution (A11) was added.

(2) Metabolism of compound (XII) by the present invention protein (A11)

5

10

15

20

25

30

35

40

45

50

55

[0361] Other than utilizing 20µl of the supernatant fraction recovered in Example 32(2) instead of 20µl of the supernatant fraction recovered in Example 4(2), the reaction solutions were prepared and maintained in accordance with the method described in Example 41(2). Similar to Example 41(2), each of the reaction solutions after the maintenance was extracted with ethyl acetate and the obtained residue was dissolved in 100µl of 50mM potassium phosphate buffer (pH7.0). The obtained solutions (hereinafter, the solution derived from the reaction solution containing component A, component B, component C and 20µl of supernatant fraction recovered in Example 32(2) is referred to as "(XII) metabolism solution (A11)"; further, the solution derived from the reaction solution containing no component A, no component B, no component C and no supernatant fraction recovered in Example 32(2) is referred to as "(XII) control solution (A11)") were analyzed on a HPLC under the above analysis condition 1. Compared to the concentration of compound (XII) detected from (XII) control solution (A11), the concentration of compound (XII) detected from (XII) metabolism solution (A11) was lower. Further a peak, which was not detected from the (XII) control solution (A11), was detected from the (XII) metabolism solution (A11). The elution time of said peak on the HPLC matched an elution time of a peak of a compound in which the mass is 14 less than said compound (XII) detected from (XII) metabolism solution (A1) in Example 41(2).

(3) Metabolism of compound (XIII) by the present invention protein (A11)

[0362] Other than utilizing 20µl of the supernatant fraction recovered in Example 32(2) instead of 20µl of the supernatant fraction recovered in Example 4(2), the reaction solutions were prepared and maintained in accordance with the method described in Example 41(3). Similar to Example 41(2), each of the reaction solutions after the maintenance was extracted with ethyl acetate and the obtained residue was dissolved in 100µl ofdimethylsulfoxide. The obtained solutions (hereinafter, the solution derived from the reaction solution containing component A, component B, component C and 20µl of supernatant fraction recovered in Example 32(2) is referred to as "(XIII) metabolism solution (A11)"; further, the solution derived from the reaction solution containing no component A, no component B, no component C and no supernatant fraction recovered in Example 32(2) is referred to as "(XIII) control solution (A11)") were analyzed on a HPLC under the above analysis condition 1. Compared to the concentration of compound (XIII) detected from (XIII) metabolism solution (A11), the concentration of compound (XIII) detected from (XIII) metabolism solution (A11). The elution time of said peak on the HPLC matched an elution time of a peak of a compound in which the mass is 14 less than said compound (XIII) detected from (XIII) metabolism solution (A11) in Example 41(3).

(4) Metabolism of compound (XVI) by the present invention protein (A11)

5

10

15

20

25

30

55

[0363] Other than utilizing 20µl of the supernatant fraction recovered in Example 32(2) instead of 20µl of the supernatant fraction recovered in Example 4(2), the reaction solutions were prepared and maintained in accordance with the method described in Example 41(4). Similar to Example 41(2), each of the reaction solutions after the maintenance was extracted with ethyl acetate and the obtained residue was dissolved in 200µl of 50mM potassium phosphate buffer (pH7.0). The obtained solutions (hereinafter, the solution derived from the reaction solution containing component A, component B, component C and 20µl of supernatant fraction recovered in Example 32(2) is referred to as "(XVI) metabolism solution (A11)"; further, the solution derived from the reaction solution containing no component A, no component B, no component C and no supernatant fraction recovered in Example 32(2) is referred to as "(XVI) control solution (A11)") were analyzed on a HPLC under the above analysis condition 1. Compared to the concentration of compound (XVI) detected from (XVI) control solution (A11), the concentration of compound (XVI) detected from (XVI) metabolism solution (A11) was lower. Further a peak, which was not detected from the (XVI) control solution (A11), was detected from the (XVI) metabolism solution (A11). The elution time of said peak on the HPLC matched an elution time of a peak in Example 41(4) which was detected from (XVI) metabolism solution (A11).

(5) Metabolism of compound (XVII) by the present invention protein (A11)

[0364] Other than utilizing 20µl of the supernatant fraction recovered in Example 32(2) instead of 20µl of the supernatant fraction recovered in Example 4(2), the reaction solutions were prepared and maintained in accordance with the method described in Example 41(5). Similar to Example 41(2), each of the reaction solutions after the maintenance was extracted with ethyl acetate and the obtained residue was dissolved in 200µl of 50mM potassium phosphate buffer (pH7.0). The obtained solutions (hereinafter, the solution derived from the reaction solution containing component A, component B, component C and 20µl of supernatant fraction recovered in Example 32(2) is referred to as "(XVII) metabolism solution (A11)"; further, the solution derived from the reaction solution containing no component A, no component B, no component C and no supernatant fraction recovered in Example 32(2) is referred to as "(XVII) control solution (A11)") were analyzed on a HPLC under the above analysis condition 1. Compared to the concentration of compound (XVII) detected from (XVII) control solution (A11), the concentration of compound (XVII) detected from (XVII) metabolism solution (A11) was lower. Further a peak, which was not detected from the (XVII) control solution (A11), was detected from the (XVII) metabolism solution (A11). The elution time of said peak on the HPLC matched an elution time of a peak in Example 41(5) which was detected from (XVII) metabolism solution (A1).

Example 43 Metabolism of compounds by the present invention protein (A2), (A3), (A12), (A13), (A14) or (A15) or the present protein (A10)

(1) Metabolism of compound (XII) by the present invention protein (A2)

[0365] Other than utilizing 20μl of the supernatant fraction recovered in Example 7(2) instead of 20μl of the supernatant fraction recovered in Example 4(2), the reaction solutions were prepared and maintained in accordance with the method described in Example 41(2). Similar to Example 41(2), each of the reaction solutions after the maintenance was extracted with ethyl acetate and the obtained residue was dissolved in 100μl of 50mM potassium phosphate buffer (pH7.0). The obtained solutions (hereinafter, the solution derived from the reaction solution containing component A, component B, component C and 20μl of supernatant fraction recovered in Example 7(2) is referred to as "(XII) metabolism solution (A2)"; further, the solution derived from the reaction solution containing no component A, no component B, no component C and no supernatant fraction recovered in Example 7(2) is referred to as "(XII) control solution (A2)") were analyzed on a HPLC under the above analysis condition 1. Compared to the concentration of compound (XII) detected from (XII) control solution (A2), the concentration of compound (XII) detected from (XII) metabolism solution (A2). The elution time of said peak on the HPLC matched an elution time of a peak of a compound in which the mass is 14 less than said compound (XII) detected from (XII) metabolism solution (A1) in Example 41(2).

(2) Metabolism of compound (XII) by the present invention protein (A3)

[0366] Other than utilizing 20µl of the supernatant fraction recovered in Example 12(2) instead of 20µl of the supernatant fraction recovered in Example 4(2), the reaction solutions were prepared and maintained in accordance with the method described in Example 41(2). Similar to Example 41(2), each of the reaction solutions after the maintenance

was extracted with ethyl acetate and the obtained residue was dissolved in 100µl of 50mM potassium phosphate buffer (pH7.0). The obtained solutions (hereinafter, the solution derived from the reaction solution containing component A, component B, component C and 20µl of supernatant fraction recovered in Example 12(2) is referred to as "(XII) metabolism solution (A3)"; further, the solution derived from the reaction solution containing no component A, no component B, no component C and no supernatant fraction recovered in Example 7(2) is referred to as "(XII) control solution (A3)") were analyzed on a HPLC under the above analysis condition 1. Compared to the concentration of compound (XII) detected from (XII) control solution (A3), the concentration of compound (XII) detected from (XII) metabolism solution (A3) was lower. Further a peak, which was not detected from the (XII) control solution (A3), was detected from the (XII) metabolism solution (A3). The elution time of said peak on the HPLC matched an elution time of a peak of a compound in which the mass is 14 less than said compound (XII) detected from (XII) metabolism solution (A1) in Example 41(2).

(3) Metabolism of compound (XII) by the present protein (A10)

5

10

15

20

25

30

35

40

45

50

55

[0367] Other than utilizing 20µl of the supernatant fraction recovered in Example 10(2) instead of 20µl of the supernatant fraction recovered in Example 4(2), the reaction solutions were prepared and maintained in accordance with the method described in Example 41(2). Similar to Example 41(2), each of the reaction solutions after the maintenance was extracted with ethyl acetate and the obtained residue was dissolved in 100µl of 50mM potassium phosphate buffer (pH7.0). The obtained solutions (hereinafter, the solution derived from the reaction solution containing component A, component B, component C and 20µl of supernatant fraction recovered in Example 10(2) is referred to as "(XII) metabolism solution (A10)"; further, the solution derived from the reaction solution containing no component A, no component B, no component C and no supernatant fraction recovered in Example 12(3) is referred to as "(XII) control solution (A10)") were analyzed on a HPLC under the above analysis condition 1. Compared to the concentration of compound (XII) detected from (XII) control solution (A10), the concentration of compound (XII) detected from (XII) metabolism solution (A10), was detected from the (XII) metabolism solution (A10). The elution time of said peak on the HPLC matched an elution time of a peak of a compound in which the mass is 14 less than said compound (XII) detected from (XII) metabolism solution (A1) in Example 41(2).

(4) Metabolism of compound (XII) by the present invention protein (A12)

[0368] Other than utilizing 20μl of the supernatant fraction recovered in Example 34(2) instead of 20μl of the supernatant fraction recovered in Example 4(2), the reaction solutions were prepared and maintained in accordance with the method described in Example 41(2). Similar to Example 41(2), each of the reaction solutions after the maintenance was extracted with ethyl acetate and the obtained residue was dissolved in 100μl of 50mM potassium phosphate buffer (pH7.0). The obtained solutions (hereinafter, the solution derived from the reaction solution containing component A, component B, component C and 20μl of supernatant fraction recovered in Example 34(2) is referred to as "(XII) metabolism solution (A12)"; further, the solution derived from the reaction solution containing no component A, no component B, no component C and no supernatant fraction recovered in Example 34(2) is referred to as "(XII) control solution (A12)") were analyzed on a HPLC under the above analysis condition 1. Compared to the concentration of compound (XII) detected from (XII) control solution (A12), the concentration of compound (XII) detected from (XII) metabolism solution (A12) was lower. Further a peak, which was not detected from the (XII) control solution (A 12), was detected from the (XII) metabolism solution (A12). The elution time of said peak on the HPLC matched an elution time of a peak of a compound in which the mass is 14 less than said compound (XII) detected from (XII) metabolism solution (A1) in Example 41(2).

(5) Metabolism of compound (XII) by the present invention protein (A13)

[0369] Other than utilizing 20µl of the supernatant fraction recovered in Example 36(2) instead of 20µl of the supernatant fraction recovered in Example 4(2), the reaction solutions were prepared and maintained in accordance with the method described in Example 41(2). Similar to Example 41(2), each of the reaction solutions after the maintenance was extracted with ethyl acetate and the obtained residue was dissolved in 100µl of 50mM potassium phosphate buffer (pH7.0). The obtained solutions (hereinafter, the solution derived from the reaction solution containing component A, component B, component C and 20µl of supernatant fraction recovered in Example 36(2) is referred to as "(XII) metabolism solution (A13)"; further, the solution derived from the reaction solution containing no component A, no component B, no component C and no supernatant fraction recovered in Example 36(2) is referred to as "(XII) control solution (A13)") were analyzed on a HPLC under the above analysis condition 1. Compared to the concentration of compound (XII) detected from (XII) control solution (A13), the concentration of compound (XII) detected from (XII)

metabolism solution (A13) was lower. Further a peak, which was not detected from the (XII) control solution (A13), was detected from the (XII) metabolism solution (A13). The elution time of the said peak on the HPLC matched an elution time of a peak of a compound in which the mass is 14 less than said compound (XII) detected from (XII) metabolism solution (A1) in Example 41(2).

(6) Metabolism of compound (XII) by the present invention protein (A14)

5

15

20

25

30

35

40

45

55

[0370] Other than utilizing 20µl of the supernatant fraction recovered in Example 38(2) instead of 20µl of the supernatant fraction recovered in Example 4(2), the reaction solutions were prepared and maintained in accordance with the method described in Example 41(2). Similar to Example 41(2), each of the reaction solutions after the maintenance was extracted with ethyl acetate and the obtained residue was dissolved in 100µl of 50mM potassium phosphate buffer (pH7.0). The obtained solutions (hereinafter, the solution derived from the reaction solution containing component A, component B, component C and 20µl of supernatant fraction recovered in Example 38(2) is referred to as "(XII) metabolism solution (A14)"; further, the solution derived from the reaction solution containing no component A, no component B, no component C and no supernatant fraction recovered in Example 38(2) is referred to as "(XII) control solution (A14)") were analyzed on a HPLC under the above analysis condition 1. Compared to the concentration of compound (XII) detected from (XII) control solution (A14), the concentration of compound (XII) detected from (XII) metabolism solution (A14) was lower. Further a peak, which was not detected from the (XII) control solution (A14), was detected from the (XII) metabolism solution (A14). The elution time of said peak on the HPLC matched an elution time of a peak of a compound in which the mass is 14 less than said compound (XII) detected from (XII) metabolism solution (A1) in Example 41(2).

(7) Metabolism of compound (XII) by the present invention protein (A15)

[0371] Other than utilizing 20µl of the supernatant fraction recovered in Example 40(2) instead of 20µl of the supernatant fraction recovered in Example 4(2), the reaction solutions were prepared and maintained in accordance with the method described in Example 41(2). Similar to Example 41(2), each of the reaction solutions after the maintenance was extracted with ethyl acetate and the obtained residue was dissolved in 100µl of 50mM potassium phosphate buffer (pH7.0). The obtained solutions (hereinafter, the solution derived from the reaction solution containing component A, component B, component C and 20µl of supernatant fraction recovered in Example 40(2) is referred to as "(XII) metabolism solution (A15)"; further, the solution derived from the reaction solution containing no component A, no component B, no component C and no supernatant fraction recovered in Example 40(2) is referred to as "(XII) control solution (A15)") were analyzed on a HPLC under the above analysis condition 1. Compared to the concentration of compound (XII) detected from (XII) control solution (A15), the concentration of compound (XII) detected from (XII) metabolism solution (A15) was lower. Further a peak, which was not detected from the (XII) control solution (A15), was detected from the (XII) metabolism solution (A15). The elution time of said peak on the HPLC matched an elution time of a peak of a compound in which the mass is 14 less than said compound (XII) detected from (XII) metabolism solution (A1) in Example 41(2).

(8) Metabolism of compound (XIII) by the present invention protein (A2)

[0372] Other than utilizing 20µl of the supernatant fraction recovered in Example 7(2) instead of 20µl of the supernatant fraction recovered in Example 4(2), the reaction solutions were prepared and maintained in accordance with the method described in Example 41(3). Similar to Example 41(2), each of the reaction solutions after the maintenance was extracted with ethyl acetate and the obtained residue was dissolved in 100µl of dimethylsulfoxide. The obtained solutions (hereinafter, the solution derived from the reaction solution containing component A, component B, component C and 20µl of supernatant fraction recovered in Example 7(2) is referred to as "(XIII) metabolism solution (A2)"; further, the solution derived from the reaction solution containing no component A, no component B, no component C and no supernatant fraction recovered in Example 7(2) is referred to as "(XIII) control solution (A2)") were analyzed on a HPLC under the above analysis condition 1. Compared to the concentration of compound (XIII) detected from (XIII) metabolism solution (A2), the concentration of compound (XIII) detected from (XIII) metabolism solution (A2). The elution time of said peak on the HPLC matched an elution time of a peak of a compound in which the mass is 14 less than said compound (XIII) detected from (XIII) metabolism solution (A1) in Example 41(3).

(9) Metabolism of compound (XIII) by the present invention protein (A3)

[0373] Other than utilizing 20μl of the supernatant fraction recovered in Example 12(2) instead of 20μl of the super-

natant fraction recovered in Example 4(2), the reaction solutions were prepared and maintained in accordance with the method described in Example 41(3). Similar to Example 41(2), each of the reaction solutions after the maintenance was extracted with ethyl acetate and the obtained residue was dissolved in 100µl of dimethylsulfoxide. The obtained solutions (hereinafter, the solution derived from the reaction solution containing component A, component B, component C and 20µl of supernatant fraction recovered in Example 12(2) is referred to as "(XIII) metabolism solution (A3)"; further, the solution derived from the reaction solution containing no component A, no component B, no component C and no supernatant fraction recovered in Example 12(2) is referred to as "(XIII) control solution (A3)") were analyzed on a HPLC under the above analysis condition 1. Compared to the concentration of compound (XIII) detected from (XIII) metabolism solution (A3), the concentration of compound (XIII) detected from (XIII) metabolism solution (A3). The elution time of said peak on the HPLC matched an elution time of a peak of a compound in which the mass is 14 less than said compound (XIII) detected from (XIII) metabolism solution (A1) in Example 41(3).

(10) Metabolism of compound (XIII) by the present protein (A10)

10

15

20

25

30

35

40

45

50

[0374] Other than utilizing 20µl of the supernatant fraction recovered in Example 10(2) instead of 20µl of the supernatant fraction recovered in Example 4(2), the reaction solutions were prepared and maintained in accordance with the method described in Example 41(3). Similar to Example 41(2), each of the reaction solutions after the maintenance was extracted with ethyl acetate and the obtained residue was dissolved in 100µl of dimethylsulfoxide. The obtained solutions (hereinafter, the solution derived from the reaction solution containing component A, component B, component C and 20µl of supernatant fraction recovered in Example 10(2) is referred to as "(XIII) metabolism solution (A10)"; further, the solution derived from the reaction solution containing no component A, no component B, no component C and no supernatant fraction recovered in Example 10(2) is referred to as "(XIII) control solution (A10)") were analyzed on a HPLC under the above analysis condition 1. Compared to the concentration of compound (XIII) detected from (XIII) metabolism solution (A10), the concentration of compound (XIII) detected from (XIII) metabolism solution (A10). The elution time of the said peak on the HPLC matched an elution time of a peak of a compound in which the mass is 14 less than said compound (XIII) detected from (XIII) metabolism solution (A1) in Example 41(3).

(11) Metabolism of compound (XIII) by the present invention protein (A12)

[0375] Other than utilizing 20µl of the supernatant fraction recovered in Example 34(2) instead of 20µl of the supernatant fraction recovered in Example 4(2), the reaction solutions were prepared and maintained in accordance with the method described in Example 41(3). Similar to Example 41(2), each of the reaction solutions after the maintenance was extracted with ethyl acetate and the obtained residue was dissolved in 100µl of dimethylsulfoxide. The obtained solutions (hereinafter, the solution derived from the reaction solution containing component A, component B, component C and 20µl of supernatant fraction recovered in Example 34(2) is referred to as "(XIII) metabolism solution (A 12)"; further, the solution derived from the reaction solution containing no component A, no component B, no component C and no supernatant fraction recovered in Example 34(2) is referred to as "(XIII) control solution (A12)") were analyzed on a HPLC under the above analysis condition 1. Compared to the concentration of compound (XIII) detected from (XIII) metabolism solution (A12), the concentration of compound (XIII) detected from (XIII) metabolism solution (A12). The elution time of said peak on the HPLC matched an elution time of a peak of a compound in which the mass is 14 less than said compound (XIII) detected from (XIII) metabolism solution (A1) in Example 41(3).

(12) Metabolism of compound (XIII) by the present invention protein (A13)

[0376] Other than utilizing 20µl of the supernatant fraction recovered in Example 36(2) instead of 20µl of the supernatant fraction recovered in Example 4(2), the reaction solutions were prepared and maintained in accordance with the method described in Example 41(3). Similar to Example 41(2), each of the reaction solutions after the maintenance was extracted with ethyl acetate and the obtained residue was dissolved in 100µl of dimethylsulfoxide. The obtained solutions (hereinafter, the solution derived from the reaction solution containing component A, component B, component C and 20µl of supernatant fraction recovered in Example 36(2) is referred to as "(XIII) metabolism solution (A13)"; further, the solution derived from the reaction solution containing no component A, no component B, no component C and no supernatant fraction recovered in Example 36(2) is referred to as "(XIII) control solution (A13)") were analyzed on a HPLC under the above analysis condition 1. Compared to the concentration of compound (XIII) detected from (XIII) metabolism solution (A13) was lower. Further a peak, which was not detected from the (XIII) control solution (A13), was detected from the (XIII) metabolism solution (XIII) metabolism s

tabolism solution (A13). The elution time of said peak on the HPLC matched an elution time of a peak of a compound in which the mass is 14 less than said compound (XIII) detected from (XIII) metabolism solution (A1) in Example 41(3).

(13) Metabolism of compound (XIII) by the present invention protein (A14)

5

10

15

20

25

30

35

40

45

50

55

[0377] Other than utilizing 20μl of the supernatant fraction recovered in Example 38(2) instead of 20μl of the supernatant fraction recovered in Example 4(2), the reaction solution were prepared and maintained in accordance with the method described in Example 41(3). Similar to Example 41(2), each of the reaction solutions after the maintenance was extracted with ethyl acetate and the obtained residue was dissolved in 100μl of dimethylsulfoxide. The obtained solutions (hereinafter, the solution derived from the reaction solution containing component A, component B, component C and 20μl of supernatant fraction recovered in Example 38(2) is referred to as "(XIII) metabolism solution (A14)"; further, the solution derived from the reaction solution containing no component A, no component B, no component C and no supernatant fraction recovered in Example 38(2) is referred to as "(XIII) control solution (A14)") were analyzed on a HPLC under the above analysis condition 1. Compared to the concentration of compound (XIII) detected from (XIII) metabolism solution (A14), the concentration of compound (XIII) detected from (XIII) metabolism solution (A14). The elution time of said peak on the HPLC matched an elution time of a peak of a compound in which the mass is 14 less than said compound (XIII) detected from (XIII) metabolism solution (A1) in Example 41(3).

(14) Metabolism of compound (XIII) by the present invention protein (A15)

[0378] Other than utilizing 20μl of the supernatant fraction recovered in Example 40(2) instead of 20μl of the supernatant fraction recovered in Example 4(2), the reaction solutions were prepared and maintained in accordance with the method described in Example 41(3). Similar to Example 41(2), each of the reaction solutions after the maintenance was extracted with ethyl acetate and the obtained residue was dissolved in 100μl of dimethylsulfoxide. The obtained solutions (hereinafter, the solution derived from the reaction solution containing component A, component B, component C and 20μl of supernatant fraction recovered in Example 40(2) is referred to as "(XIII) metabolism solution (A15)"; further, the solution derived from the reaction solution containing no component A, no component B, no component C and no supernatant fraction recovered in Example 40(2) is referred to as "(XIII) control solution (A15)") were analyzed on a HPLC under the above analysis condition I. Compared to the concentration of compound (XIII) detected from (XIII) metabolism solution (A15), the concentration of compound (XIII) detected from (XIII) metabolism solution (A15). The elution time of said peak on the HPLC matched an elution time of a peak of a compound in which the mass is 14 less than said compound (XIII) detected from (XIII) metabolism solution (A1) in Example 41(3).

Example 44 Preparation of the Present Invention Antibody (A) Recognizing the Present Invention Protein (A1) (hereinafter referred to as "present invention antibody (A1)")

(1) Preparation of the extract of an E. coli expressing the present invention protein (A1)

[0379] In accordance with the method described in Example 4(2), E. coli JM109/pKSN657F, which expresses the present invention protein (A1), was pre-cultured overnight and then cultured in IL ofTB medium containing 50µg/ml of ampicillin. After recovering and disrupting the cells, supernatant fractions (E. coli pKSN657F extract) were prepared from the obtained cell lysate solution.

(2) Purification of the present invention protein (A1)

[0380] The present invention protein (A1) was purified according to the method described in Example 2(4) by subjecting the supernatant fraction obtained in Example 44(1) (E. coli pKSN657F extract) in turn to a Hiload HiLoad26/10 Q Sepharose HP column and then a Bio-Scale Ceramic Hydroxyapatite, Type I column CHT10-1 column. The purified fractions were analyzed on a 10% to 20% SDS-PAGE, to confirm that those were fractions of only the present invention protein (A1).

(3) Preparation of the present invention antibody (A1)

[0381] The present invention protein (A1) prepared in Example 44(2) was dissolved in 0.05M potassium phosphate buffer (pH7.0) so that the concentration was 1mg/ml. Forty microliters (40µl) of RAS (MPL (Monophosphoryl lipid A) + TDM (Synthetic Trehalose Dicorynomycolate) + CWS (Cell Wall Skeleton) Adjuvant System (Sigma Company)) al-

ready incubated at 42°C to 43°C was added and well mixed into 2ml of the obtained solution. The obtained mixture was administered, respectively, to New Zealand White rabbits (female, 14 weeks old, average of 2.4kg) at 1ml per rabbit. As such, 100µl was injected subcutaneously at 10 locations on the back. About 1/2 of the amount of the first administration was administered after each of 3 weeks and 5 weeks. During such time, the antibody titer was measured by sampling the blood from a ear vein of the rabbit. Since the antibody titer increased after the third administration, the immunized rabbit at 2 weeks after the third administration was exsanguinated from the neck. The obtained blood was added into a Separapit Tube (Sekisui Chemical Company), incubated at 37°C for 2 hours and was then centrifuged (3000rpm, 20 minutes, room temperature). The antiserum (containing the present invention antibody (A1)) was obtained by recovering the supernatant.

Example 45 Detection of the Present Protein by the Present Invention Antibody (A1) and Detection of a Cell Expressing the Present Protein

[0382] An immunoblot was conducted by utilizing the present invention antibody (A1) obtained in Example 44 with each of the E. coli extracts. There was a SDS polyacrylamide electrophoresis (40mA, 1 hour) of: the E. coli pKSN657F extract obtained in Example 4(2) (containing about 0.5pmol of the present invention protein (A1), containing about 0.78mg of protein); the E. coli pKSN2 extract obtained in Example 4(2) (containing about 0.78mg of protein) the E. coli pKSN923F extract obtained in Example 7(2) (containing about 2pmol of the present invention protein (A2)); the E. coli pKSN671F extract obtained in Example 12(2) (containing about 2pmol of the present invention protein (A3)); the E. coli pKSN646F extract obtained in Example 27(2) (containing about 2pmol of the present invention protein (A4)); the E. coli pKSN 11796F extract obtained in Example 10(2) (containing about 2pmol of the present protein (A10)); the E. coli pKSNSCA extract obtained in Example 14(2) (containing about 2pmol of the present protein (A9)); the E. coli pKSN849AF extract obtained in Example 32(2) (containing about 2pmol of the present invention protein (A11)); the E. coli pKSN1618F extract obtained in Example 34(2) (containing about 2pmol of the present invention protein (A12)); the E. coli pKSN474F extract obtained in Example 36(2) (containing about 2pmol of the present invention protein (A13)); the E. coli pKSN1491AF extract obtained in Example 38(2) (containing about 2pmol of the present invention protein (A14)); and the E. coli pKSN1555AF extract obtained in Example 40(2) (containing about 2pmol of the present invention protein (A15)). A PVDF membrane was placed on the gel. The proteins in the gel were transferred onto the PVDF membrane by a treatment with a BioRad blotting device at 4°C, 30V for 2 hours, while in the condition of being soaked in transfer buffer (25mM Tris, 192mM glycine, 10% methanol). After washing with TBS + Tween 20 solution (50mM Tris-HCI (pH7.5), 200mM NaCI, 0.05% Tween 20), the obtained PVDF membrane was incubated for 30 minutes in TBS + Tween 20 solution containing 3% BSA and was then utilized for a reaction with the above antiserum diluted 30,000 fold for 30 minutes in TBS + Tween 20 solution containing 3% BSA. After the reaction, the PVDF membrane was washed twice with TBS + Tween 20 solution. The PVDF membrane was then utilized for a reaction in TBS + Tween 20 solution containing 3% BSA for 30 minutes with a 3000 fold dilution of anti-rabbit IgG goat anti-serum labeled with alkaline phosphatase (Santa Cruz Biotechnology Company). After the reaction, the PVDF membrane was washed twice with TBS + Tween 20 solution and was soaked in NBT-BCIP solution (Sigma Company). There was detected a stain for a band corresponding to each of the present invention proteins (A1), (A2), (A3), (A4), (A11), (A12), (A 13), (A 14) and (A 15) as well as the present proteins (A9) and (A10). No stained band was detected with the reagent of E. coli pKSN2 extract (containing about 0.78mg of protein) obtained in Example 4(2).

Example 46 Preparation and Expression of the Present Invention DNA (A1) in which the Codon usage has been Adjusted for Expression in Soybean (hereinafter referred to as the "present invention DNA (A1)S")

(1) Preparation of the present invention DNA (A1)S

5

10

15

20

25

30

35

40

45

50

[0383] PCR was conducted with Pyrobest DNA polymerase (Takara Shuzo Company) according to the attached manual, by utilizing a primer having a nucleotide sequence shown in SEQ ID NO: 192 and a primer having a nucleotide sequence shown in SEQ ID NO: 213. An aliquot of the obtained PCR product was utilized as a template for a PCR conducted similarly utilizing a primer having the nucleotide sequence shown in SEQ ID NO: 191 and a primer having the nucleotide sequence shown in SEQ ID NO: 212. Further, an aliquot of that PCR product was utilized as a template for a PCR conducted similarly utilizing a primer having the nucleotide sequence shown in SEQ ID NO: 190 and a primer having the nucleotide sequence shown in SEQ ID NO: 211. The obtained reaction solution was designated as reaction solution 1.

[0384] PCR was conducted with Pyrobest DNA polymerase (Takara Shuzo Company) according to the attached manual, by utilizing a primer having a nucleotide sequence shown in SEQ ID NO: 195 and a primer having a nucleotide sequence shown in SEQ ID NO:210. An aliquot of the obtained PCR product was utilized as a template for a PCR conducted similarly utilizing a primer having the nucleotide sequence shown in SEQ ID NO: 194 and a primer having

the nucleotide sequence shown in SEQ ID NO: 209. Further, an aliquot of that PCR product was utilized as a template for a PCR conducted similarly utilizing a primer having the nucleotide sequence shown in SEQ ID NO: 193 and a primer having the nucleotide sequence shown in SEQ ID NO: 208. The obtained reaction solution was designated as reaction solution 2.

[0385] PCR was conducted with Pyrobest DNA polymerase (Takara Shuzo Company) according to the attached manual by utilizing a primer having a nucleotide sequence shown in SEQ ID NO: 198 and a primer having a nucleotide sequence shown in SEQ ID NO: 207. An aliquot of the obtained PCR product was utilized as a template for a PCR conducted similarly utilizing a primer having the nucleotide sequence shown in SEQ ID NO: 197 and a primer having the nucleotide sequence shown in SEQ ID NO: 206. Further, an aliquot of that PCR product was utilized as a template for a PCR conducted similarly utilizing a primer having the nucleotide sequence shown in SEQ ID NO: 196 and a primer having the nucleotide sequence shown in SEQ ID NO: 205. The obtained reaction solution was designated as reaction solution 3.

[0386] PCR was conducted with Pyrobest DNA polymerase (Takara Shuzo Company) according to the attached manual, by utilizing a primer having a nucleotide sequence shown in SEQ ID NO: 201 and a primer having a nucleotide sequence shown in SEQ ID NO: 204. An aliquot of the obtained PCR product was utilized as a template for a PCR conducted similarly utilizing a primer having the nucleotide sequence shown in SEQ ID NO: 203. Further, an aliquot of that PCR product was utilized as a template for a PCR conducted similarly utilizing a primer having the nucleotide sequence shown in SEQ ID NO: 199 and a primer having the nucleotide sequence shown in SEQ ID NO: 202. The obtained reaction solution was designated as reaction solution 4.

[0387] The reaction solutions 1 to 4 obtained in such a way were mixed. PCR was conducted with Pyrobest DNA polymerase (Takara Shuzo Company) according to the attached manual, by utilizing as a template an aliquot of the mixture thereof and by utilizing a primer having a nucleotide sequence shown in SEQ ID NO: 190 and a primer having a nucleotide sequence of the amplified DNA was confirmed. There was obtained a DNA having a sequence in which the nucleotide sequence 5'-cat-3' is connected upstream of the 5' terminus and the nucleotide sequence 5'-aagctt-3' is connected downstream of the 3' terminus of the nucleotide sequence shown in SEQ ID NO: 214.

[0388] The codon usage of the present invention DNA (A1) having the nucleotide sequence shown in SEQ ID NO: 6 (GC content of 70.58%) is shown in Table 22 and Table 23. The codon usage of soybean (GC content of 46.12%, Codon Usage Database publised by Kazusa DNA Research Institute (http://:www.kazusa.or.jp/codon)) is shown in Table 24 and Table 25. The codon usage of the present invention DNA (A1) having the nucleotide sequence shown in SEQ ID NO: 214 (GC content of 51.59%) is shown in Table 26 and Table 27.

Table 22

codon	%	codon	%
TTT	0.00	TCT	0.00
TTC	3.18	TCC	1.71
TTA	0.00	TCA	0.00
TTG	1.22	TCG	2.20
CTT	0.00	ССТ	0.00
СТС	3.67	ccc	4.16
CTA	0.00	CCA	0.00
CTG	7.09	CCG	2.69
ATT	0.24	ACT	0.24
ATC	4.16	ACC	2.69
ATA	0.00	ACA	0.24
ATG	2.69	ACG	1.96
GTT	0.24	GCT	0.00
GTC	3.67	GCC	7.58
GTA	0.00	GCA	0.49

Table 22 (continued)

codon	%	codon	%
GTG	3.18	GCG	3.42

Table 23

codon	%	codon	%
TAT	0.00	TGT	0.24
TAC	1.47	TGC	0.98
TAA	0.00	TGA	0.00
TAG	0.24	TGG	0.98
CAT	0.24	CGT	1.22
CAC	2.20	CGC	4.40
CAA	0.24	CGA	0.24
CAG	2.93	CGG	4.16
AAT	0.00	AGT	0.00
AAC	1.22	AGC	0.49
AAA	0.24	AGA	0.00
AAG	0.98	AGG	0.00
GAT	0.98	GGT	0.98
GAC	7.82	GGC	3.42
GAA	0.73	GGA	0.24
GAG	5.38	GGG	1.22

Table 24

codon	%	codon	%
TTT	2.03	TCT	1.71
TTC	2.09	TCC	1.21
TTA	0.82	TCA	1.45
TTG	2.21	TCG	0.44
СТТ	2.36	ССТ	2.00
СТС	1.66	ccc	1.01
CTA	0.82	CCA	2.05
CTG	1.22	CCG	0.40
ATT	2.61	ACT	1.78
ATC	1.64	ACC	1.49
ATA	1.27	ACA	1.51
ATG	2.27	ACG	0.41
GTT	2.67	GCT	2.81
GTC	1.24	GCC	1.69
GTA	0.73	GCA	2.27

Table 24 (continued)

codon	%	codon	%
GTG	2.20	GCG	0.59

· 30

Table 25

	Table 25				
codon	%	codon	%		
TAT	1.61	TGT	0.72		
TAC	1.53	TGC	0.75		
TAA	0.11	TGA	0.09		
TAG	0.06	TGG	1.21		
CAT	1.33	CGT	0.72		
CAC	1.09	CGC	0.63		
CAA	2.04	CGA	0.38		
CAG	1.71	CGG	0.27		
AAT	2.10	AGT	1.21		
AAC	2.27	AGC	1.08		
AAA	2.63	AGA	1.42		
AAG	3.83	AGG	1.35		
GAT	3.29	GGT	2.17		
GAC	2.06	GGC	1.38		
GAA	3.35	GGA	2.23		
GAG	3.46	GGG	1.29		

Table 26

codon	%	codon	%
TTT	1.71	TCT	0.98
TTC	1.47	TCC	0.73
TTA	0.98	TCA	0.98
TTG	2.93	TCG	0.24
СТТ	3.18	ССТ	2.44
CTC	2.20	ccc	1.22
CTA	0.98	CCA	2.69
CTG	1.71	CCG	0.49
ATT	2.20	ACT	1.71
ATC	1.22	ACC	1.47
ATA	0.98	ACA	1.47
ATG	2.69	ACG	0.49
GTT	2.93	GCT	4.16
GTC	1.22	GCC	2.69
GTA	0.73	GCA	3.67

Table 26 (continued)

codon	%	codon	%
GTG	2.20	GCG	0.98

5

10

15

20

25

30

35

40

45

50

55

Table 27

Table 27				
codon	%	codon	%	
TAT	0.73	TGT	0.73	
TAC	0.73	TGC	0.49	
TAA	0.00	TGA	0.00	
TAG	0.24	TGG	0.98	
CAT	1.47	CGT	1.47	
CAC	0.98	CGC	1.47	
CAA	1.71	CGA	0.73	
CAG	1.47	CGG	0.49	
AAT	0.73	AGT	0.73	
AAC	0.49	AGC	0.73	
AAA	0.49	AGA	2.93	
AAG	0.73	AGG	2.93	
GAT	5.38	GGT	1.71	
GAC	3.42	GGC	1.22	
GAA	2.69	GGA	1.96	
GAG	3.42	GGG	0.98	

(2) Production of a transformed E. coli having the present invention protein (A1)S

[0389] The DNA having the nucleotide sequence shown in SEQ ID NO: 214 obtained in Example 46(1) was digested with restriction enzymes Ndel and HindIII. The obtained DNA and the plasmid pKSN2 digested with Ndel and HindIII were ligated to obtain a plasmid in which the DNA having the nucleotide sequence shown in SEQ ID NO: 214 is inserted between the Ndel site and the HindIII site of pKSN2 (hereinafter referred to as "pKSN657 soy"). Said plasmid was introduced into E. coli JM109. The obtained E. coli transformant was designated JM109/pKSN657soy.

(3) Expression of the present invention protein (A1) in E. coli and recovery of said protein

[0390] Similarly to Example 4(2), each of E. coli JM109/pKSN657soy obtained in Example 46(2) and E. coli JM109/pKSN657 obtained in Example 4(1) was cultured. The cells were recovered. Cell lysate solutions were prepared. Under the method described in Example 4(2), supernatant fractions were prepared from the cell lysate solutions (hereinafter, the supernatant fraction obtained from E. coli JM109/pKSN657soy is referred to as "E. coli pKSN849soy extract " and the supernatant fraction obtained from E. coli JM109/pKSN657 is referred to as "E. coli pKSN657 extract "). The amount of P450 per the protein amount contained in E. coli pKSN657soy extract was compared to and was higher than the amount of P450 per the protein amount contained in E. coli pKSN657 extract.

Example 47 Introduction of the Present Invention DNA (A1)S into a Plant

(1) Construction of a Chloroplast Expression Plasmid Containing the Present Invention DNA (A1)S for Direct Introduction - part 1

[0391] A plasmid containing a chimeric DNA in which the present invention DNA (A1)S was connected immediately after the nucleotide sequence encoding the chloroplast transit peptide of soybean (cv. Jack) RuBPC small subunit

without a change of frames in the codons was constructed as a plasmid for introducing the present invention DNA (A1) S into a plant with the particle gun method.

[0392] First, DNA comprising the nucleotide sequence shown in SEQ ID NO: 214 was amplified by PCR. The PCR was conducted by utilizing as a template pKSN657soy obtained in Example 46(2) and by utilizing as primers an oligonucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 394 and an oligonucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 395. The PCR utilized KOD-plus (Toyobo Company). The PCR carried out after conducting a maintenance at 94°C for 2 minutes; 30 cycles of a cycle that included maintaining 94°C for 30 seconds, followed by 50°C for 30 seconds, and followed by 68°C for 60 seconds; and a final maintenance at 68°C for 30 seconds. The amplified DNA was recovered and purified with MagExtractor-PCR & Gel-Clean up (Toyobo Company) by conducting the procedures according to the attached manual. After digesting the purified DNA with restriction enzymes EcoT22I and SacI, the DNA comprising the nucleotide sequence shown in SEQ ID NO: 214 was recovered. After digesting plasmid pUCrSt657 obtained in Example 16(2) with restriction enzymes EcoT22I and SacI, there was isolated a DNA of about 2.9kbp having a nucleotide sequence derived from pUC19 and a sequence encoding a chloroplast transit peptide of soybean (cv. Jack) RuBPC small subunit. The obtained DNA and the above DNA comprising the nucleotide sequence shown in SEQ ID NO: 214 were ligated to obtain pUCrSt657soy (Fig. 48) containing a chimeric DNA in which the present invention DNA (A1)S was connected immediately after the nucleotide sequence encoding the chloroplast transit peptide of soybean (cv. Jack) RuBPC small subunit without a change of frames in the codons. [0393] The obtained plasmid pUCrSt657soy was digested with restriction enzymes BamHI and SacI to isolate a DNA comprising a nucleotide sequence shown in SEQ ID NO: 214. Said DNA was inserted between the restriction enzyme site of BgIII and the restriction enzyme site of SacI of plasmid pNdG6- Δ T obtained in Example 16(2) to obtain plasmid pSUM-NdG6-rSt-657soy (Fig. 49) wherein the CR16G6 promoter has connected downstream the chimeric DNA in which the present invention DNA (A1)S was connected immediately after the nucleotide sequence encoding the chloroplast transit peptide of soybean (cv. Jack) RuBPC small subunit without a change of frames in the codons.

10

15

20

25

30

35

40

45

50

55

[0394] Next, the plasmid was introduced into E. coli DH5 α competent cells (Takara Shuzo Company) and the ampicillin resistant cells were selected. Further, the nucleotide sequences of the plasmids contained in the selected ampicillin resistant strains were determined by utilizing BigDye Terminator Cycle Sequencing Ready Reaction kit v3.0 (PE Applied Biosystems Company) and DNA sequencer 3100 (PE Applied Biosystems Company). As a result, it was confirmed that plasmid pSUM-NdG6-rSt-657soy had the nucleotide sequence shown in SEQ ID NO: 214.

(2) Construction of a chloroplast expression plasmid having the present invention DNA (A1)S for direct introduction - part (2)

[0395] A plasmid was constructed for introducing the present invention DNA (A1)S into a plant with the particle gun method. The plasmid contained a chimeric DNA in which the present invention DNA (A1)S was connected immediately after the nucleotide sequences encoding the chloroplast transit peptide of soybean (cv. Jack) RuBPC small subunit and encoding thereafter 12 amino acids of the mature protein, without a change of frames in the codons. First, DNA comprising the nucleotide sequence shown in SEQ ID NO: 214 was amplified by PCR. The PCR was conducted by utilizing as a template pKSN657soy obtained in Example 46(2) and by utilizing as primers an oligonucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 395 and an oligonucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 396. The PCR utilized KOD-plus (Toyobo Company). The PCR carried out after conducting a maintenance at 94°C for 2 minutes; 25 cycles of a cycle that included maintaining 94°C for 30 seconds, followed by 46°C for 30 seconds, and followed by 68°C for 60 seconds; and a final maintenance at 68°C for 3 minutes. The amplified DNA was recovered and purified with MagExtractor-PCR & Gel-Clean up (Toyobo Company) by conducting the procedures according to the attached manual. After digesting the purified DNA with restriction enzyme SacI, the DNA comprising the nucleotide sequence shown in SEQ ID NO: 214 was recovered.

[0396] Plasmid pKFrSt12-657 obtained in Example 16(3) was digested with restriction enzyme BspHI. The DNA was then blunt ended and the 5' terminus was dephosphorylated by utilizing TaKaRa BKLKit (Takara Shuzo Company) in accordance with the attached manual. Next, after the DNA was digested with restriction enzyme Sacl, the DNA derived from plasmid pKFrSt12 was isolated. Said DNA was ligated with the DNA which was digested with Sacl and which comprises the nucleotide sequence shown in SEQ ID NO: 214, in order to obtain plasmid pKFrSt12-657soy (Fig. 50) containing the chimeric DNA in which the present invention DNA (A1)S was connected immediately after the nucleotide sequences encoding the chloroplast transit peptide of soybean (cv. Jack) RuBPC small subunit and encoding thereafter 12 amino acids of the mature protein, without a change of frames in the codons.

[0397] The obtained plasmid pKFrSt12-657soy was digested with restriction enzymes BamHI and SacI to isolate DNA comprising the nucleotide sequence shown in SEQ ID NO: 214. Said DNA was inserted between the restriction enzyme site of BgIII and the restriction enzyme site of SacI of plasmid pNdG6- Δ T to obtain plasmid pSUM-NdG6-rSt12-657soy (Fig. 51) wherein the CR16G6 promoter has connected downstream the chimeric DNA in which said DNA was connected immediately after the nucleotide sequence encoding the chloroplast transit peptide of

soybean (cv. Jack) RuBPC small subunit without a change of frames in the codons.

[0398] Next, the plasmid was introduced into E. coli DH5 α competent cells (Takara Shuzo Company) and the ampicillin resistant cells were selected. Further, the nucleotide sequences of the plasmids contained in the ampicillin resistant strains were determined by utilizing BigDye Terminator Cycle Sequencing Ready Reaction kit v3.0 (PE Applied Biosystems Company) and DNA sequencer 3100 (PE Applied Biosystems Company). As a result, it was confirmed that plasmid pSUM-NdG6-rSt12-657soy had the nucleotide sequence shown in SEQ ID NO: 214.

(3) Introduction of the present invention DNA (A1)S into soybean

10 [0399] The globular embryos of soybeans (cultivar: Fayette and Jack) were prepared according to the method described in Example 17(1), other than substituting the vitamin source of MS medium with the vitamin source of B5 medium (O. L. Gamborg et al., Exp. Cell Res. (1986) 50 p151).

[0400] The obtained globular embryo was transplanted into fresh somatic embryo growth medium and cultured for 2 to 3 days. In accordance with the method described in Example 17(2), plasmid pSUM-NdG6-rSt-657soy constructed in Example 47(1) or plasmid pSUM-NdG6-rSt12-657soy constructed in Example 47(2) was introduced to said globular embryos.

(4) Selection of somatic embryo with hygromycin

5

15

20

25

30

35

40

45

50

55

[0401] Selection by hygromycin of a globular embryo after the gene introduction obtained in Example 47(3) was conducted according to the method described in Example 17(3), other than substituting the vitamin source of MS medium with the vitamin source of B5 medium. However, after the second transplant, a medium to which 0.2(w/v)% of Gelrite was added or a liquid medium to which no Gelrite was added was utilized as the somatic embryo selection medium. In the case of the liquid medium, the culturing had 90gentle revolutions per minute.

(5) Selection of somatic embryo with compound (II)

[0402] Selection by compound (II) of a globular embryo after the gene introduction obtained in Example 47(3) is conducted according to the method described in Example 17(4), other than substituting the vitamin source of MS medium with the vitamin source of B5 medium.

(6) Plant regeneration from the somatic embryo, acclimation and cultivation

[0403] In accordance with the method described in Example 17(5), the plant regeneration is conducted from the globular embryos selected in Example 47(4) or 47(5). However, the agar concentration in the development medium is adjusted to 0.8(w/v)% or 1.0(w/v)%. Further, the vitamin source of the MS medium of the germination medium is substituted with the vitamin source of B5 medium.

[0404] The plant with roots and developed leaves undergo the acclimation and cultivation accordingly with the method described in Example 17(6) and are harvested.

(7) Evaluation of the resistance to herbicidal compound (II)

[0405] The degree of resistance against compound (II) of the regenerated plant obtained in Example 47(6) is evaluated in accordance with the method described in Example 17(4).

(8) Construction of a chloroplast expression plasmid having the present invention DNA (A1)S for agrobacterium introduction

[0406] A plasmid for introducing the present invention DNA (A1)S into a plant with the agrobacterium method is constructed. Plasmid pSUM-NdG6-rSt-657soy was digested with restriction enzyme Notl, to obtain a chimeric DNA in which the present invention DNA (A1)S was connected immediately after the nucleotide sequence encoding the chloroplast transit peptide of soybean (cv. Jack) RuBPC small subunit without a change of frames in the codons. Said DNA was inserted into the Notl restriction site of the above binary plasmid vector pBI121S obtained in Example 18 to obtain plasmid pBI-NdG6-rSt-657soy (Fig. 52). Further, plasmid pSUM-NdG6-rSt12-657soy was digested with restriction enzyme Notl, to isolate a chimeric DNA in which the present invention DNA (A1)S was connected immediately after the nucleotide sequences encoding the chloroplast transit peptide of soybean (cv. Jack) RuBPC small subunit and encoding thereafter 12 amino acids of the mature protein, without a change of frames in the codons. Such a DNA was inserted into the Notl restriction site of the above binary plasmid vector pBI121S to obtain plasmid pBI-NdG6-rSt12-657soy

(Fig. 53).

10

15

20

25

35

40

45

50

55

(9) Introduction of the present invention DNA (A1)S to tobacco

5 [0407] The present invention DNA (A1)S was introduced into tobacco with the agrobacterium method, utilizing plasmid pBI-NdG6-rSt-657soy and pBI-NdG6-rSt12-657soy obtained in Example 47(8).

[0408] First, in accordance with the method described in Example 19, each of the plasmids pBl-NdG6-rSt-657soy and pBl-NdG6-rSt12-657soy was introduced into Agrobacterium tumefaciens LBA4404 (Clontech Company). The transgenic agrobacterium bearing pBl-NdG6-rSt-657soy or pBl-NdG6-rSt12-657soy were isolated.

[0409] Next, other than culturing overnight the transgenic agrobacterium bearing the above plasmid at 30°C in LB liquid medium containing 25mg/L kanamycin, said agrobacterium were utilized to introduce genes into tobacco according to the method described in Example 19. There were obtained, respectively, transgenic tobaccos which have incorporated the T-DNA region of pBI-NdG6-rSt-657soy or pBI-NdG6-rSt12-657soy.

(10) Evaluation of the resistance utilizing a leaf piece of the present invention DNA (A1)S transgenic tobacco

[0410] Leaves were taken from 35 transgenic tobaccos obtained in Example 47(9). Each leaf was divided into pieces in which each piece was 5 to 7mm wide. Leaf pieces were planted onto MS agar medium containing 0, 0.05, 0.1 or 0.2mg/L of compound (II) and cultured in the light at room temperature. On the 11th day of culturing, the herbicidal damage of each of the leaf pieces was observed. Further, leaf pieces were planted onto MS agar mediums containing 0, 0.01, 0.02, 0.05 or 0.1mg/L of compound (XII) and cultured in the light at room temperature. On the 7th day of culturing, the herbicidal damage of each of the leaf pieces was observed. As a control, 20 leaf pieces of tobacco to which no genetic introduction has been conducted (hereinafter, referred to as "wild type tobacco") were utilized on each concentration. An average score for each group was determined by scoring I point to a leaf piece that continuously grew, 0.5 points to a halfly withered leaf piece in which chemical damage was observed, and 0 points to a leaf piece which turned white and had withered. The leaf pieces of the tobacco to which the present invention DNA (A1)S (the T-DNA region of plasmid pBI-NdG6-rSt-657soy or pBI-NdG6-rSt12-657soy) has been introduced provided a higher score than the wild type tobacco with each of compound (II) and compound (XII).

30 Example 48 Obtaining the Present Invention DNA (A16)

(1) Preparation of the chromosomal DNA of Streptomyces ornatus IFO 13069t

[0411] Under the method described in Example 31(1), the chromosomal DNA of Streptomyces ornatus IFO 13069t was prepared.

(2) Isolation of DNA having a partial nucleotide sequence of the present invention DNA (A11)

[0412] PCR was conducted by utilizing as the template the chromosomal DNA prepared from Streptomyces ornatus IFO 13069t in Example 48(1) and by utilizing primer pairing 14, in accordance with the method described in Example 29. Similarly to Example 31(2), the amplified DNA was cloned into cloning vector pCRII-TOPO (Invitrogen Company). The sequence thereof was analyzed. As a result, the nucleotide sequence shown in nucleotides 343 to 1069 of the nucleotide sequence shown in SEQ ID NO: 225 was provided.

[0413] Further, the chromosomal DNA prepared in Example 48(1) was digested with restriction enzyme Pvull. A genome walker library was produced by utilizing the obtained DNA, according to the method described in Example 26 (3). PCR was conducted under the conditions described in Example 26(3) to obtain the first PCR products, by utilizing the obtained library as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 265 and primer AP1. Next, PCR was conducted under the conditions described in Example 26(3), by utilizing the first PCR products as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 266 and primer AP2. The nucleotide sequence of the obtained DNA was analyzed. The nucleotide sequence shown in nucleotides 1 to 501 of the nucleotide sequence shown in SEQ ID NO: 235 was provided.

[0414] Further, the chromosomal DNA prepared in Example 48(1) was digested with restriction enzyme Pvull. A genome walker library was produced by utilizing the obtained DNA, according to the method described in Example 26 (3). PCR was conducted under the conditions described in Example 26(3) to obtain the first PCR products, by utilizing the obtained library as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 267 and primer AP1. Next, PCR was conducted under the conditions described in Example 26(3), by utilizing the first PCR products as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 268 and primer AP2. The nucleotide sequence of the obtained DNA was analyzed. The nucleotide se-

quence shown in nucleotides 1044 to 1454 of the nucleotide sequence shown in SEQ ID NO: 235 was provided.

(3) Sequence analysis of the present invention DNA (A16)

5

10

15

20

25

30

35

40

45

50

[0415] The nucleotide sequence shown in SEQ ID NO: 235 was obtained by connecting the nucleotide sequences provided by the DNA obtained in Example 48(2). Two open reading frames (ORF) were present in said nucleotide sequence. As such, there was contained a nucleotide sequence (SEQ ID NO: 225) consisting of 1251 nucleotides (inclusive of the stop codon) and encoding a 416 amino acid residue (SEQ ID NO: 215) and a nucleotide sequence (SEQ ID NO: 255) consisting of 198 nucleotides (inclusive of the stop codon) and encoding a 65 amino acid residue (SEQ ID NO: 245). The molecular weight of the protein consisting of the amino acid sequence (SEQ ID NO: 215) encoded by the nucleotide sequence shown in SEQ ID NO: 225 was calculated to be 46013Da. Further, the molecular weight of the protein consisting of the amino acid sequence (SEQ ID NO: 245) encoded by the nucleotide sequence shown in SEQ ID NO: 255 was calculated to be 6768Da.

Example 49 Expression of the Present Invention DNA (A16) in E. Coli

(1) Production of a transformed E. coli having the present invention DNA (A16)

[0416] PCR was conducted by utilizing the GeneAmp High Fidelity PCR System (Applied Biosystems Japan Company) and by utilizing as the template the chromosomal DNA prepared from Streptomyces omatus IFO 13069t in Example 48(1). As the primers, there was utilized a pairing of the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 269 and the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 286. The PCR reaction solution amounted to 50µl by adding the 2 primers each amounting to 200nM, 50ng of the above chromosomal DNA, 5.0µl of dNTP mix (a mixture of 2.0mM of each of the 4 types of dNTP; Clontech Company), 5.0µl of 10X buffer (containing MgCl₂) and 0.5μl of GeneAmp HF enzyme mix and by adding distilled water. The reaction conditions of the PCR were after maintaining 97°C for 1 minute; repeating 10 cycles of a cycle that included maintaining 97°C for 15 seconds, followed by 60°C for 30 seconds, and followed by 72°C for 90 seconds; then conducting 15 cycles of a cycle that included maintaining 97°C for 15 seconds, followed by 60°C for 30 seconds and followed by 72°C for 90seconds (wherein 20 seconds was added to the maintenance at 72°C for each cycle); and then maintaining 72°C for 7 minutes. Similarly to Example 32(1), the DNA was purified from the reaction solution of PCR and cloned into the cloning vector pCRII-TOPO (Invitrogen Company). The nucleotide sequence of the obtained plasmid DNA was analyzed by utilizing as primers the oligonucleotides having the nucleotide sequences shown, respectively, in SEQ ID NOs: 57, 59, 267, 286 and 288. Based on the obtained results, the plasmid having the nucleotide sequence shown in SEQ ID NO: 235 was designated as pCR452F. Similarly to Example 32(1), pCR452F was digested with restriction enzymes Ndel and HindIII. A DNA of about 1.5kbp was purified from the digestion products. The obtained DNA and the plasmid pKSN2 digested with Ndel and HindIII were ligated to obtain a plasmid containing the nucleotide sequence shown in SEQ ID NO: 235, in which the DNA encoding the present invention protein (A 16) is inserted between the Ndel site and the HindIII site of pKSN2 (hereinafter referred to as "pKSN452F"). Said plasmid was introduced into E. Coli JM109. The obtained E. coli transformant was designated JM109/pKSN452F.

(2) Expression of the present invention protein (A16) in E. coli and recovery of said protein

[0417] Similarly to Example 4(2), each ofE. coli JM109/pKSN452F and JM109/pKSN2 was cultured. The cells were recovered. Cell lysate solutions were prepared. Under the method described in Example 4(2), supernatant fractions were prepared from the cell lysate solutions (hereinafter, the supernatant fraction obtained from E. coli JM109/pKSN452F is referred to as "E. coli pKSN452F extract" and the supernatant fraction obtained from E. coli JM109/pKSN2 is referred to as "E. coli pKSN2 extract").

(3) Detection of the ability to convert compound (II) to compound (III)

[0418] Similarly to Example 32(3), reaction solutions of 30µl were prepared and maintained for 10 minutes at 30°C. However, as the supernatant fraction, the supernatant fraction prepared in Example 49(2) (E. coli pKSN452F extract or E. coli pKSN2 extract) was utilized. The reaction solutions after the maintenance were extracted with ethyl acetate and the extracted layers were TLC analyzed. After developing the TLC plate, the presence of a spot thereon corresponding to compound (III) labeled with ¹⁴C were examined (Rf value 0.24 and 0.29). A spot corresponding to compound (III) was detected from the reaction solution containing E. coli pKSN452F extract. In contrast, such a spot was not detected from the reaction solution containing E. coli pKSN2 extract.

Example 50 Obtaining the Present Invention DNA (A17)

15

20

25

30

35

40

45

50

55

(1) Preparation of the chromosomal DNA of Streptomyces griseus ATCC 10137

5 [0419] Under the method described in Example 31(1), the chromosomal DNA of Streptomyces griseus ATCC 10137 was prepared.

(2) Isolation of DNA having a partial nucleotide sequence of the present invention DNA (A17)

[0420] PCR was conducted by utilizing as the template the chromosomal DNA of Streptomyces griseus ATCC 10137 prepared in Example 50(1) and by utilizing primer pairing 14, in accordance with the method described in Example 29. Similarly to Example 31(2), the amplified DNA was cloned to cloning vector pCRII-TOPO (Invitrogen Company). The nucleotide sequence thereof was analyzed. As a result, the nucleotide sequence shown in nucleotides 343 to 1069 of the nucleotide sequence shown in SEQ ID NO: 226 was provided.

[0421] Further, the chromosomal DNA prepared in Example 50(1) was digested with restriction enzyme Smal. A genome walker library was produced by utilizing the obtained DNA, according to the method described in Example 26 (3). PCR was conducted under the conditions described in Example 26(3) to obtain the first PCR products, by utilizing the obtained library as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 270 and primer AP1. Next, PCR was conducted under the conditions described in Example 26(3), by utilizing the first PCR products as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 271 and primer AP2. The nucleotide sequence of the obtained DNA was analyzed. The nucleotide sequence shown in nucleotides 1 to 361 of the nucleotide sequence shown in SEQ ID NO: 236 was provided.

[0422] Further, the chromosomal DNA prepared in Example 50(1) was digested with restriction enzyme Pvull. A genome walker library was produced by utilizing the obtained DNA, according to the method described in Example 26 (3). PCR was conducted under the conditions described in Example 26(3) to obtain the first PCR products, by utilizing the obtained library as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 272 and primer AP 1. Next, PCR was conducted under the conditions described in Example 26(3), by utilizing the first PCR products as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 273 and primer AP2. The nucleotide sequence of the obtained DNA was analyzed. The nucleotide sequence shown in nucleotides 1035 to 1454 of the nucleotide sequence shown in SEQ ID NO: 236 was provided.

(3) Sequence analysis of the present invention DNA (A17)

[0423] The nucleotide sequence shown in SEQ ID NO: 236 was obtained by connecting the nucleotide sequences provided by the DNA obtained in Example 50(2). Two open reading frames (ORF) were present in said nucleotide sequence. As such, there was contained a nucleotide sequence (SEQ ID NO: 226) consisting of 1251 nucleotides (inclusive of the stop codon) and encoding a 416 amino acid residue (SEQ ID NO: 216) and a nucleotide sequence (SEQ ID NO: 256) consisting of 198 nucleotides (inclusive of the stop codon) and encoding a 65 amino acid residue (SEQ ID NO: 246). The molecular weight of the protein consisting of the amino acid sequence (SEQ ID NO: 216) encoded by the nucleotide sequence shown in SEQ ID NO: 226 was calculated to be 46082Da. The molecular weight of the protein consisting of the amino acid sequence (SEQ ID NO: 246) encoded by the nucleotide sequence shown in SEQ ID NO: 256 was calculated to be 6768Da. The nucleotide sequence shown in SEQ ID NO: 256 is 100% identical to the nucleotide sequence shown in SEQ ID NO: 246 is 100% identical to the amino acid sequence shown in SEQ ID NO: 245.

Example 51 Expression of the Present Invention DNA (A17) in E. Coli

(1) Production of a transformed E. coli having the present invention DNA (A17)

[0424] PCR was conducted similarly to Example 32(1), other than utilizing as a template the chromosomal DNA prepared from Streptomyces griseus ATCC 10137 in Example 50(1) and utilizing as the primers the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 274 and an oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 275. Similarly to Example 32(1), the DNA was purified from the reaction solution of PCR and cloned into the cloning vector pCRII-TOPO (Invitrogen Company). The nucleotide sequence of the obtained plasmid DNA was sequenced by utilizing as primers the oligonucleotides having the nucleotide sequences shown, respectively, in SEQ ID NOs: 57, 59, 274, 276 and 277. Based on the obtained results, the plasmid having the nucleotide sequence shown in SEQ ID NO: 236 was designated as pCR608F. Similarly to Example 32(1), pCR608F was digested with restriction enzymes Ndel and HindIII. A DNA of about 1.5kbp was purified from the digestion products. The obtained

DNA and the plasmid pKSN2 digested with Ndel and HindIII were ligated to obtain a plasmid containing the nucleotide sequence shown in SEQ ID NO: 236, in which the DNA encoding the present invention protein (A17) is inserted between the Ndel site and the HindIII site of pKSN2 (hereinafter referred to as "pKSN608F"). Said plasmid was introduced into E. Coli JM109. The obtained E. coli transformant was designated JM109/pKSN608F.

(2) Expression of the present invention protein (A17) in E. coli and recovery of said protein

[0425] Similarly to Example 4(2), each of E. coli JM109/pKSN608F and JM109/pKSN2 was cultured. The cells were recovered. Cell lysate solutions were prepared. Under the method described in Example 4(2), supernatant fractions were prepared from the cell lysate solutions (hereinafter, the supernatant fraction obtained from E. coli JM109/pKSN608F is referred to as "E. coli pKSN608F extract" and the supernatant fraction obtained from E. coli JM109/pKSN2 is referred to as "E. coli pKSN2 extract").

(3) Detection of the ability to convert compound (II) to compound (III)

[0426] Similarly to Example 32(3), reaction solutions of 30μl were prepared and maintained for 10 minutes at 30°C. However, as the supernatant fraction, the supernatant fraction prepared in Example 51(2) (E. coli pKSN608F extract or E. coli pKSN2 extract) was utilized. The reaction solutions after the maintenance were extracted with ethyl acetate and the extracted layers were TLC analyzed. After developing the TLC plate, the presence of a spot thereon corresponding to compound (III) labeled with ¹⁴C were examined (Rf value 0.24 and 0.29). A spot corresponding to compound (III) was detected from the reaction solution containing E. coli pKSN608F extract. In contrast, such a spot was not detected from the reaction solution containing E. coli pKSN2 extract.

Example 52 Obtaining the Present Invention DNA (A18)

5

10

15

20

25

30

35

40

45

50

55

(1) Preparation of the chromosomal DNA of Streptomyces achromogenes IFO 12735

[0427] Under the method described in Example 31(1), the chromosomal DNA of Streptomyces achromogenes IFO 12735 was prepared.

(2) Isolation of DNA having a partial nucleotide sequence of the present invention DNA (A18)

[0428] PCR was conducted by utilizing as the template the chromosomal DNA of Streptomyces achromogenes IFO 12735 prepared in Example 52(1) and by utilizing primer pairing 17, in accordance with the method described in Example 29. Similarly to Example 31(2), the amplified DNA was cloned to cloning vector pCRII-TOPO (Invitrogen Company). The nucleotide sequence thereof was analyzed. As a result, the nucleotide sequence shown in nucleotides 526 to 1048 of the nucleotide sequence shown in SEQ ID NO: 227 was provided.

[0429] Further, the chromosomal DNA prepared in Example 52(1) was digested with restriction enzyme Hincil. A genome walker library was produced by utilizing the obtained DNA, according to the method described in Example 26 (3). PCR was conducted under the conditions described in Example 26(3) to obtain the first PCR products, by utilizing the obtained library as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 278 and primer AP1. Next, PCR was conducted under the conditions described in Example 26(3), by utilizing the first PCR products as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 279 and primer AP2. The nucleotide sequence of the obtained DNA was analyzed. The nucleotide sequence shown in nucleotides 1 to 600 of the nucleotide sequence shown in SEQ ID NO: 237 was provided.

[0430] Further, the chromosomal DNA prepared in Example 52(1) was digested with restriction enzyme Ball. A genome walker library was produced by utilizing the obtained DNA, according to the method described in Example 26 (3). PCR was conducted under the conditions described in Example 26(3) to obtain the first PCR products, by utilizing the obtained library as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 163 and primer AP1. Next, PCR was conducted under the conditions described in Example 26(3), by utilizing the first PCR products as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 164 and primer AP2. The nucleotide sequence of the obtained DNA was analyzed. The nucleotide sequence shown in nucleotides 983 to 1449 of the nucleotide sequence shown in SEQ ID NO: 237 was provided.

(3) Sequence analysis of the present invention DNA (A18)

[0431] The nucleotide sequence shown in SEQ ID NO: 237 was obtained by connecting the nucleotide sequences provided by the DNA obtained in Example 52(2). Two open reading frames (ORF) were present in said nucleotide

123

sequence. As such, there was contained a nucleotide sequence (SEQ ID NO: 227) consisting of 1230 nucleotides (inclusive of the stop codon) and encoding a 409 amino acid residue (SEQ ID NO: 217) and a nucleotide sequence (SEQ ID NO: 257) consisting of 207 nucleotides (inclusive of the stop codon) and encoding a 68 amino acid residue (SEQ ID NO: 247). The molecular weight of the protein consisting of the amino acid sequence (SEQ ID NO: 217) encoded by the nucleotide sequence shown in SEQ ID NO: 227 was calculated to be 45099Da. The molecular weight of the protein consisting of the amino acid sequence (SEQ ID NO: 247) encoded by the nucleotide sequence shown in SEQ ID NO: 257 was calculated to be 7193Da.

Example 53 Expression of the Present Invention DNA (A18) in E. Coli

5

10

15

20

25

30

35

40

45

50

55

(1) Production of a transformed E. coli having the present invention DNA (A18)

[0432] PCR was conducted similarly to Example 49(1), other than utilizing as a template the chromosomal DNA prepared from Streptomyces achromogenes IFO 12735 in Example 52(1) and utilizing as the primers the oligonucle-otide having the nucleotide sequence shown in SEQ ID NO: 183 and an oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 280. Similarly to Example 32(1), the DNA was purified from the reaction solution of PCR and cloned into the cloning vector pCRII-TOPO (Invitrogen Company). The nucleotide sequence of the obtained plasmid DNA was analyzed by utilizing as primers the oligonucleotides having the nucleotide sequences shown, respectively, in SEQ ID NOs: 67, 68, 163, 279 and 281. Based on the obtained results, the plasmid having the nucleotide sequence shown in SEQ ID NO: 237 was designated as pCR646BF. Similarly to Example 32(1), pCR646BF was digested with restriction enzymes Ndel and HindIII. A DNA of about 1.5kbp was purified from the digestion products. The obtained DNA and the plasmid pKSN2 digested with Ndel and HindIII were ligated to obtain a plasmid containing the nucleotide sequence shown in SEQ ID NO: 237, in which the DNA encoding the present invention protein (A18) is inserted between the Ndel site and the HindIII site of pKSN2 (hereinafter referred to as "pKSN646BF"). Said plasmid was introduced into E. Coli JM109. The obtained E. coli transformant was designated JM109/pKSN646BF.

(2) Expression of the present invention protein (A18) in E. coli and recovery of said protein

[0433] Similarly to Example 4(2), each of E. coli JM109/pKSN464BF and JM109/pKSN2 was cultured. The cells were recovered. Cell lysate solutions were prepared. Under the method described in Example 4(2), supernatant fractions were prepared from the cell lysate solutions (hereinafter, the supernatant fraction obtained from E. coli JM 109/pKSN646BF is referred to as "E. coli pKSN646BF extract" and the supernatant fraction obtained from E. coli JM109/pKSN2 is referred to as "E. coli pKSN2 extract").

(3) Detection of the ability to convert compound (II) to compound (III)

[0434] Similarly to Example 32(3), reaction solutions of 30µl were prepared and maintained for 10 minutes at 30°C. However, as the supernatant fraction, the supernatant fraction prepared in Example 53(2) (E. coli pKSN646BF extract or E. coli pKSN2 extract) was utilized. The reaction solutions after the maintenance were extracted with ethyl acetate and the extracted layers were TLC analyzed. After developing the TLC plate, the presence of a spot thereon corresponding to compound (III) labeled with ¹⁴C were examined (Rf value 0.24 and 0.29). A spot corresponding to compound (III) was detected from the reaction solution containing E. coli pKSN646BF extract. In contrast, such a spot was not detected from the reaction solution containing E. coli pKSN2 extract.

Example 54 Obtaining the Present Invention DNA (A19)

(1) Preparation of the chromosomal DNA of Streptomyces griseus IFO 13849T

[0435] Under the method described in Example 31(1), the chromosomal DNA of Streptomyces griseus IFO 13849T was prepared.

(2) Isolation of DNA having a partial nucleotide sequence of the present invention DNA (A19)

[0436] PCR was conducted by utilizing as the template the chromosomal DNA of Streptomyces griseus IFO 13849T prepared in Example 54(1) and by utilizing primer pairing 14, in accordance with the method described in Example 29. Similarly to Example 31(2), the amplified DNA was cloned to cloning vector pCRII-TOPO (Invitrogen Company). The nucleotide sequence thereof was analyzed. As a result, the nucleotide sequence shown in nucleotides 343 to 1069 of the nucleotide sequence shown in SEQ ID NO: 228 was provided.

[0437] Further, the chromosomal DNA prepared in Example 54(1) was digested with restriction enzyme Smal. A genome walker library was produced by utilizing the obtained DNA, according to the method described in Example 26 (3). PCR was conducted under the conditions described in Example 26(3) to obtain the first PCR products, by utilizing the obtained library as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 282 and primer AP1. Next, PCR was conducted under the conditions described in Example 26(3), by utilizing the first PCR products as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 283 and primer AP2. The nucleotide sequence of the obtained DNA was analyzed. The nucleotide sequence shown in nucleotides 1 to 358 of the nucleotide sequence shown in SEQ ID NO: 238 was provided.

[0438] Further, the chromosomal DNA prepared in Example 54(1) was digested with restriction enzyme Hincll. A genome walker library was produced by utilizing the obtained DNA, according to the method described in Example 26 (3). PCR was conducted under the conditions described in Example 26(3) to obtain the first PCR products, by utilizing the obtained library as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 284 and primer AP1. Next, PCR was conducted under the conditions described in Example 26(3), by utilizing the first PCR products as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 285 and primer AP2. The nucleotide sequence of the obtained DNA was analyzed. The nucleotide sequence shown in nucleotides 1005 to 1454 of the nucleotide sequence shown in SEQ ID NO: 238 was provided.

(3) Sequence analysis of the present invention DNA (A19)

5

10

15

20

25

30

35

40

45

50

55

[0439] The nucleotide sequence shown in SEQ ID NO: 238 was obtained by connecting the nucleotide sequences provided by the DNA obtained in Example 54(2). Two open reading frames (ORF) were present in said nucleotide sequence. As such, there was contained a nucleotide sequence (SEQ ID NO: 228) consisting of 1251 nucleotides (inclusive of the stop codon) and encoding a 416 amino acid residue (SEQ ID NO: 218) and a nucleotide sequence (SEQ ID NO: 258) consisting of 156 nucleotides (inclusive of the stop codon) and encoding a 51 amino acid residue (SEQ ID NO: 248). The molecular weight of the protein consisting of the amino acid sequence (SEQ ID NO: 218) encoded by the nucleotide sequence shown in SEQ ID NO: 228 was calculated to be 45903Da. The molecular weight of the protein consisting of the amino acid sequence (SEQ ID NO: 248) encoded by the nucleotide sequence shown in SEQ ID NO: 258 was calculated to be 5175Da.

Example 55 Expression of the Present Invention DNA (A19) in E. Coli

(1) Production of a transformed E. coli having the present invention DNA (A19)

[0440] PCR was conducted similarly to Example 49(1), other than utilizing as a template the chromosomal DNA prepared from Streptomyces griseus IFO 13849T in Example 54(1) and utilizing as the primers the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 286 and an oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 287. Similarly to Example 32(1), the DNA was purified from the reaction solution of PCR and cloned into the cloning vector pCRII-TOPO (Invitrogen Company). The nucleotide sequence of the obtained plasmid DNA was analyzed by utilizing as primers the oligonucleotides having the nucleotide sequences shown, respectively, in SEQ ID NOs: 57, 59, 284, 286 and 288. Based on the obtained results, the plasmid having the nucleotide sequence shown in SEQ ID NO: 238 was designated as pCR1502F. Similarly to Example 32(1), pCR1502F was digested with restriction enzymes Ndel and HindIII. A DNA of about 1.5kbp was purified from the digestion products. The obtained DNA and the plasmid pKSN2 digested with Ndel and HindIII were ligated to obtain a plasmid containing the nucleotide sequence shown in SEQ ID NO: 238, in which the DNA encoding the present invention protein (A19) is inserted between the Ndel site and the HindIII site of pKSN2 (hereinafter referred to as "pKSN1502F"). Said plasmid was introduced into E. Coli JM109. The obtained E. coli transformant was designated JM109/pKSN1502F.

(2) Expression of the present invention protein (A18) in E. coli and recovery of said protein

[0441] Similarly to Example 4(2), each of E. coli JM109/pKSN1502F and JM109/pKSN2 was cultured. The cells were recovered. Cell lysate solutions were prepared. Under the method described in Example 4(2), supernatant fractions were prepared from the cell lysate solutions (hereinafter, the supernatant fraction obtained from E. coli JM109/pKSN1502F is referred to as "E. coli pKSN1502F extract" and the supernatant fraction obtained from E. coli JM109/pKSN2 is referred to as "E. coli pKSN2 extract").

(3) Detection of the ability to convert compound (II) to compound (III)

[0442] Similarly to Example 32(3), reaction solutions of 30µl were prepared and maintained for 10 minutes at 30°C.

However, as the supernatant fraction, the supernatant fraction prepared in Example 55(2) (E. coli pKSN1502F extract or E. coli pKSN2 extract) was utilized. The reaction solutions after the maintenance were extracted with ethyl acetate and the extracted layers were TLC analyzed. After developing the TLC plate, the presence of a spot thereon corresponding to compound (III) labeled with ¹⁴C were examined (Rf value 0.24 and 0.29). A spot corresponding to compound (III) was detected from the reaction solution containing E. coli pKSN1502F extract. In contrast, such a spot was not detected from the reaction solution containing E. coli pKSN2 extract.

Example 56 Obtaining the Present Invention DNA (A20)

5

10

15

20

25

30

35

40

45

50

55

(1) Preparation of the chromosomal DNA of Streptomyces lanatus IFO 12787T

[0443] Under the method described in Example 31(1), the chromosomal DNA of Streptomyces lanatus IFO 12787T was prepared.

(2) Isolation of DNA having a partial nucleotide sequence of the present invention DNA (A20)

[0444] PCR was conducted by utilizing as the template the chromosomal DNA of Streptomyces lanatus IFO 12787T prepared in Example 56(1) and by utilizing primer pairing 14, in accordance with the method described in Example 29. Similarly to Example 31(2), the amplified DNA was cloned to cloning vector pCRII-TOPO (Invitrogen Company). The nucleotide sequence thereof was analyzed. As a result, the nucleotide sequence shown in nucleotides 304 to 1036 of the nucleotide sequence shown in SEQ ID NO: 229 was provided.

[0445] Further, the chromosomal DNA prepared in Example 56(1) was digested with restriction enzyme Pmacl. A genome walker library was produced by utilizing the obtained DNA, according to the method described in Example 26 (3). PCR was conducted under the conditions described in Example 26(3) to obtain the first PCR products, by utilizing the obtained library as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 278 and primer AP1. Next, PCR was conducted under the conditions described in Example 26(3), by utilizing the first PCR products as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 289 and primer AP2. The nucleotide sequence of the obtained DNA was analyzed. The nucleotide sequence shown in nucleotides 1 to 318 of the nucleotide sequence shown in SEQ ID NO: 239 was provided.

[0446] Further, the chromosomal DNA prepared in Example 56(1) was digested with restriction enzyme Stul. A genome walker library was produced by utilizing the obtained DNA, according to the method described in Example 26 (3). PCR was conducted under the conditions described in Example 26(3) to obtain the first PCR products, by utilizing the obtained library as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 290 and primer AP1. Next, PCR was conducted under the conditions described in Example 26(3), by utilizing the first PCR products as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 291 and primer AP2. The nucleotide sequence of the obtained DNA was analyzed. The nucleotide sequence shown in nucleotides 969 to 1461 of the nucleotide sequence shown in SEQ ID NO: 239 was provided.

(3) Sequence analysis of the present invention DNA (A20)

[0447] The nucleotide sequence shown in SEQ ID NO: 239 was obtained by connecting the nucleotide sequences provided by the DNA obtained in Example 56(2). Two open reading frames (ORF) were present in said nucleotide sequence. As such, there was contained a nucleotide sequence (SEQ ID NO: 229) consisting of 1218 nucleotides (inclusive of the stop codon) and encoding a 405 amino acid residue (SEQ ID NO: 219) and a nucleotide sequence (SEQ ID NO: 259) consisting of 231 nucleotides (inclusive of the stop codon) and encoding a 76 amino acid residue (SEQ ID NO: 249). The molecular weight of the protein consisting of the amino acid sequence (SEQ ID NO: 219) encoded by the nucleotide sequence shown in SEQ ID NO: 229 was calculated to be 45071Da. The molecular weight of the protein consisting of the amino acid sequence (SEQ ID NO: 249) encoded by the nucleotide sequence shown in SEQ ID NO: 259 was calculated to be 7816Da.

Example 57 Expression of the Present Invention DNA (A20) in E. Coli

(1) Production of a transformed E. coli having the present invention DNA (A20)

[0448] PCR was conducted similarly to Example 49(1), other than utilizing as a template the chromosomal DNA prepared from Streptomyces lanatus IFO 12787T in Example 56(1) and utilizing as the primers the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 292 and an oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 293. Similarly to Example 32(1), the DNA was purified from the reaction solution of PCR and

cloned into the cloning vector pCRII-TOPO (Invitrogen Company). The nucleotide sequence of the obtained plasmid DNA was analyzed by utilizing as primers the oligonucleotides having the nucleotide sequences shown, respectively, in SEQ ID NOs: 67, 68, 188, 278 and 290. Based on the obtained results, the plasmid having the nucleotide sequence shown in SEQ ID NO: 239 was designated as pCR1525F. Similarly to Example 32(1), pCR1525F was digested with restriction enzymes Ndel and HindIII. A DNA of about 1.5kbp was purified from the digestion products. The obtained DNA and the plasmid pKSN2 digested with Ndel and HindIII were ligated to obtain a plasmid containing the nucleotide sequence shown in SEQ ID NO: 239, in which the DNA encoding the present invention protein (A20) is inserted between the Ndel site and the HindIII site of pKSN2 (hereinafter referred to as "pKSN1525F"). Said plasmid was introduced into E. Coli JM109. The obtained E. coli transformant was designated JM109/pKSN1525F.

(2) Expression of the present invention protein (A20) in E. coli and recovery of said protein

[0449] Similarly to Example 4(2), each of E. coli JM109/pKSN1525F and JM109/pKSN2 was cultured. The cells were recovered. Cell lysate solutions were prepared. Under the method described in Example 4(2), supernatant fractions were prepared from the cell lysate solutions (hereinafter, the supernatant fraction obtained from E. coli JM109/pKSN1525F is referred to as "E. coli pKSN1525F extract" and the supernatant fraction obtained from E. coli JM109/pKSN2 is referred to as "E. coli pKSN2 extract").

(3) Detection of the ability to convert compound (II) to compound (III)

[0450] Similarly to Example 32(3), reaction solutions of 30μl were prepared and maintained for 10 minutes at 30°C. However, as the supernatant fraction, the supernatant fraction prepared in Example 57(2) (E. coli pKSN1525F extract or E. coli pKSN2 extract) was utilized. The reaction solutions after the maintenance were extracted with ethyl acetate and the extracted layers were TLC analyzed. After developing the TLC plate, the presence of a spot thereon corresponding to compound (III) labeled with ¹⁴C were examined (Rf value 0.24 and 0.29). A spot corresponding to compound (III) was detected from the reaction solution containing E. coli pKSN1525F extract. In contrast, such a spot was not detected from the reaction solution containing E. coli pKSN2 extract.

Example 58 Obtaining the Present Invention DNA (A21)

5

10

15

20

25

30

35

40

45

50

55

(1) Preparation of the chromosomal DNA of Streptomyces misawanensis IFO 13855T

[0451] Under the method described in Example 31(1), the chromosomal DNA of Streptomyces misawanensis IFO 13855T was prepared.

(2) Isolation of DNA having a partial nucleotide sequence of the present invention DNA (A21)

[0452] PCR was conducted by utilizing as the template the chromosomal DNA of Streptomyces misawanensis IFO 13855T prepared in Example 58(1) and by utilizing primer pairing 14, in accordance with the method described in Example 29. Similarly to Example 31(2), the amplified DNA was cloned to cloning vector pCRII-TOPO (Invitrogen Company). The nucleotide sequence thereof was analyzed. As a result, the nucleotide sequence shown in nucleotides 328 to 1063 of the nucleotide sequence shown in SEQ ID NO: 230 was provided.

[0453] Further, the chromosomal DNA prepared in Example 58(1) was digested with restriction enzyme Smal. A genome walker library was produced by utilizing the obtained DNA, according to the method described in Example 26 (3). PCR was conducted under the conditions described in Example 26(3) to obtain the first PCR products, by utilizing the obtained library as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 294 and primer AP1. Next, PCR was conducted under the conditions described in Example 26(3), by utilizing the first PCR products as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 295 and primer AP2. The nucleotide sequence of the obtained DNA was analyzed. The nucleotide sequence shown in nucleotides 1 to 341 of the nucleotide sequence shown in SEQ ID NO: 240 was provided.

[0454] Further, the chromosomal DNA prepared in Example 58(1) was digested with restriction enzyme Hincil. A genome walker library was produced by utilizing the obtained DNA, according to the method described in Example 26 (3). PCR was conducted under the conditions described in Example 26(3) to obtain the first PCR products, by utilizing the obtained library as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 296 and primer AP1. Next, PCR was conducted under the conditions described in Example 26(3), by utilizing the first PCR products as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 297 and primer AP2. The nucleotide sequence of the obtained DNA was analyzed. The nucleotide sequence shown in nucleotides 1017 to 1458 of the nucleotide sequence shown in SEQ ID NO: 240 was provided.

(3) Sequence analysis of the present invention DNA (A21)

10

15

20

25

30

35

40

45

50

55

[0455] The nucleotide sequence shown in SEQ ID NO: 240 was obtained by connecting the nucleotide sequences provided by the DNA obtained in Example 58(2). Two open reading frames (ORF) were present in said nucleotide sequence. As such, there was contained a nucleotide sequence (SEQ ID NO: 230) consisting of 1245 nucleotides (inclusive of the stop codon) and encoding a 414 amino acid residue (SEQ ID NO: 220) and a nucleotide sequence (SEQ ID NO: 260) consisting of 201 nucleotides (inclusive of the stop codon) and encoding a 66 amino acid residue (SEQ ID NO: 250). The molecular weight of the protein consisting of the amino acid sequence (SEQ ID NO: 220) encoded by the nucleotide sequence shown in SEQ ID NO: 250) encoded by the nucleotide sequence shown in SEQ ID NO: 250 was calculated to be 45806Da. The molecular weight of the protein consisting of the amino acid sequence (SEQ ID NO: 250) encoded by the nucleotide sequence shown in SEQ ID NO: 260 was calculated to be 6712Da.

Example 59 Expression of the Present Invention DNA (A21) in E. Coli

(1) Production of a transformed E. coli having the present invention DNA (A21)

[0456] PCR was conducted similarly to Example 32(1), other than utilizing as a template the chromosomal DNA prepared from Streptomyces misawanensis IFO 13855T in Example 58(1) and utilizing as the primers the oligonucle-otide having the nucleotide sequence shown in SEQ ID NO: 298 and an oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 299. Similarly to Example 32(1), the DNA was purified from the reaction solution of PCR and cloned into the cloning vector pCRII-TOPO (Invitrogen Company). The nucleotide sequence of the obtained plasmid DNA was analyzed by utilizing as primers the oligonucleotides having the nucleotide sequences shown, respectively, in SEQ ID NOs: 57, 59, 296, 298 and 300. Based on the obtained results, the plasmid having the nucleotide sequence shown in SEQ ID NO: 240 was designated as pCR1543BF. Similarly to Example 32(1), pCR1543BF was digested with restriction enzymes Ndel and HindIII. A DNA of about 1.5kbp was purified from the digestion products. The obtained DNA and the plasmid pKSN2 digested with Ndel and HindIII were ligated to obtain a plasmid containing the nucleotide sequence shown in SEQ ID NO: 240, in which the DNA encoding the present invention protein (A21) is inserted between the Ndel site and the HindIII site of pKSN2 (hereinafter referred to as "pKSN1543BF"). Said plasmid was introduced into E. Coli JM109. The obtained E. coli transformant was designated JM109/pKSN1543BF.

(2) Expression of the present invention protein (A21) in E. coli and recovery of said protein

[0457] Similarly to Example 4(2), each of E. coli JM109/pKSN1543BF and JM109/pKSN2 was cultured. The cells were recovered. Cell lysate solutions were prepared. Under the method described in Example 4(2), supernatant fractions were prepared from the cell lysate solutions (hereinafter, the supernatant fraction obtained from E. coli JM109/pKSN1543BF is referred to as "E. coli pKSN1543BF extract" and the supernatant fraction obtained from E. coli JM109/pKSN2 is referred to as "E. coli pKSN2 extract").

(3) Detection of the ability to convert compound (II) to compound (III)

[0458] Similarly to Example 32(3), reaction solutions of 30µl were prepared and maintained for 10 minutes at 30°C. However, as the supernatant fraction, the supernatant fraction prepared in Example 59(2) (E. coli pKSN1543BF extract or E. coli pKSN2 extract) was utilized. The reaction solutions after the maintenance were extracted with ethyl acetate and the extracted layers were TLC analyzed. After developing the TLC plate, the presence of a spot thereon corresponding to compound (III) labeled with ¹⁴C were examined (Rf value 0.24 and 0.29). A spot corresponding to compound (III) was detected from the reaction solution containing E. coli pKSN1543BF extract. In contrast, such a spot was not detected from the reaction solution containing E. coli pKSN2 extract.

Example 60 Obtaining the Present Invention DNA (A22)

(1) Preparation of the chromosomal DNA of Streptomyces pallidus IFO 13434T

[0459] Under the method described in Example 31(1), the chromosomal DNA of Streptomyces pallidus IFO 13434T was prepared.

(2) Isolation of DNA having a partial nucleotide sequence of the present invention DNA (A22)

[0460] PCR was conducted by utilizing as the template the chromosomal DNA of Streptomyces pallidus IFO 13434T

prepared in Example 60(1) and by utilizing primer pairing 15, in accordance with the method described in Example 29. Similarly to Example 31(2), the amplified DNA was cloned to cloning vector pCRII-TOPO (Invitrogen Company). The nucleotide sequence thereof was analyzed. As a result, the nucleotide sequence shown in nucleotides 483 to 1048 of the nucleotide sequence shown in SEQ ID NO: 231 was provided.

[0461] Further, the chromosomal DNA prepared in Example 60(1) was digested with restriction enzyme Smal. A genome walker library was produced by utilizing the obtained DNA, according to the method described in Example 26 (3). PCR was conducted under the conditions described in Example 26(3) to obtain the first PCR products, by utilizing the obtained library as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 301 and primer AP1. Next, PCR was conducted under the conditions described in Example 26(3), by utilizing the first PCR products as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 302 and primer AP2. The nucleotide sequence of the obtained DNA was analyzed. The nucleotide sequence shown in nucleotides 68 to 516 of the nucleotide sequence shown in SEQ ID NO: 241 was provided.

[0462] Further, the chromosomal DNA prepared in Example 60(1) was digested with restriction enzyme HinclI. A genome walker library was produced by utilizing the obtained DNA, according to the method described in Example 26 (3). PCR was conducted under the conditions described in Example 26(3) to obtain the first PCR products, by utilizing the obtained library as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 302 and primer AP1. Next, PCR was conducted under the conditions described in Example 26(3), by utilizing the first PCR products as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 303 and primer AP2. The nucleotide sequence of the obtained DNA was analyzed. The nucleotide sequence shown in nucleotides 1 to 270 of the nucleotide sequence shown in SEQ ID NO: 241 was provided.

[0463] Further, the chromosomal DNA prepared in Example 60(1) was digested with restriction enzyme HincII. A genome walker library was produced by utilizing the obtained DNA, according to the method described in Example 26 (3). PCR was conducted under the conditions described in Example 26(3) to obtain the first PCR products, by utilizing the obtained library as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 304 and primer AP1. Next, PCR was conducted under the conditions described in Example 26(3), by utilizing the first PCR products as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 305 and primer AP2. The nucleotide sequence of the obtained DNA was analyzed. The nucleotide sequence shown in nucleotides 982 to 1448 of the nucleotide sequence shown in SEQ ID NO: 241 was provided.

(3) Sequence analysis of the present invention DNA (A22)

5

10

15

20

25

30

35

40

45

50

55

[0464] The nucleotide sequence shown in SEQ ID NO: 241 was obtained by connecting the nucleotide sequences provided by the DNA obtained in Example 60(2). Two open reading frames (ORF) were present in said nucleotide sequence. As such, there was contained a nucleotide sequence (SEQ ID NO: 231) consisting of 1230 nucleotides (inclusive of the stop codon) and encoding a 409 amino acid residue (SEQ ID NO: 221) and a nucleotide sequence (SEQ ID NO: 261) consisting of 195 nucleotides (inclusive of the stop codon) and encoding a 64 amino acid residue (SEQ ID NO: 251). The molecular weight of the protein consisting of the amino acid sequence (SEQ ID NO: 221) encoded by the nucleotide sequence shown in SEQ ID NO: 251) encoded by the nucleotide sequence shown in SEQ ID NO: 261 was calculated to be 6914Da.

Example 61 Expression of the Present Invention DNA (A22) in E. Coli

(1) Production of a transformed E. coli having the present invention DNA (A22)

[0465] PCR was conducted similarly to Example 32(1), other than utilizing as a template the chromosomal DNA prepared from Streptomyces pallidus IFO 13434T in Example 60(1) and utilizing as the primers the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 306 and an oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 307. Similarly to Example 32(1), the DNA was purified from the reaction solution of PCR and cloned into the cloning vector pCRII-TOPO (Invitrogen Company). The nucleotide sequence of the obtained plasmid DNA was analyzed by utilizing as primers the oligonucleotides having the nucleotide sequences shown, respectively, in SEQ ID NOs: 67, 68 and 308. Based on the obtained results, the plasmid having the nucleotide sequence shown in SEQ ID NO: 241 was designated as pCR1558BF. Similarly to Example 32(1), pCR.1558BF was digested with restriction enzymes Ndel and HindIII. A DNA of about 1.5kbp was purified from the digestion products. The obtained DNA and the plasmid pKSN2 digested with Ndel and HindIII were ligated to obtain a plasmid containing the nucleotide sequence shown in SEQ ID NO: 241, in which the DNA encoding the present invention protein (A22) is inserted between the Ndel site and the HindIII site of pKSN2 (hereinafter referred to as "pKSN1558BF"). Said plasmid was introduced into E. Coli JM109. The obtained E. coli transformant was designated JM109/pKSN1558BF.

(2) Expression of the present invention protein (A22) in E. coli and recovery of said protein

[0466] Similarly to Example 4(2), each of E. coli JM109/pKSN1558BF and JM109/pKSN2 was cultured. The cells were recovered. Cell lysate solutions were prepared. Under the method described in Example 4(2), supernatant fractions were prepared from the cell lysate solutions (hereinafter, the supernatant fraction obtained from E. coli JM109/pKSN1558BF is referred to as "E. coli pKSN1558BF extract" and the supernatant fraction obtained from E. coli JM109/pKSN2 is referred to as "E. coli pKSN2 extract").

(3) Detection of the ability to convert compound (II) to compound (III)

[0467] Similarly to Example 32(3), reaction solutions of 30µl were prepared and maintained for 10 minutes at 30°C. However, as the supernatant fraction, the supernatant fraction prepared in Example 61(2) (E. coli pKSN1558BF extract or E. coli pKSN2 extract) was utilized. The reaction solutions after the maintenance were extracted with ethyl acetate and the extracted layers were TLC analyzed. After developing the TLC plate, the presence of a spot thereon corresponding to compound (III) labeled with ¹⁴C were examined (Rf value 0.24 and 0.29). A spot corresponding to compound (III) was detected from the reaction solution containing E. coli pKSN1558BF extract. In contrast, such a spot was not detected from the reaction solution containing E. coli pKSN2 extract.

Example 62 Obtaining the Present Invention DNA (A23)

5

10

15

20

25

30

35

40

45

50

55

(1) Preparation of the chromosomal DNA of Streptomyces roseorubens IFO 13682T

[0468] Under the method described in Example 31(1), the chromosomal DNA of Streptomyces roseorubens IFO 13682T was prepared.

(2) Isolation of DNA having a partial nucleotide sequence of the present invention DNA (A23)

[0469] PCR was conducted by utilizing as the template the chromosomal DNA of Streptomyces roseorubens IFO 13682T prepared in Example 62(1) and by utilizing primer pairing 14, in accordance with the method described in Example 29. Similarly to Example 31(2), the amplified DNA was cloned to cloning vector pCRII-TOPO (Invitrogen Company). The nucleotide sequence thereof was analyzed. As a result, the nucleotide sequence shown in nucleotides 289 to 1015 of the nucleotide sequence shown in SEQ ID NO: 232 was provided.

[0470] Further, the chromosomal DNA prepared in Example 62(1) was digested with restriction enzyme Smal. A genome walker library was produced by utilizing the obtained DNA, according to the method described in Example 26 (3). PCR was conducted under the conditions described in Example 26(3) to obtain the first PCR products, by utilizing the obtained library as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 309 and primer AP1. Next, PCR was conducted under the conditions described in Example 26(3), by utilizing the first PCR products as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 310 and primer AP2. The nucleotide sequence of the obtained DNA was analyzed. The nucleotide sequence shown in nucleotides 1 to 354 of the nucleotide sequence shown in SEQ ID NO: 242 was provided.

[0471] Further, the chromosomal DNA prepared in Example 62(1) was digested with restriction enzyme Pvull. A genome walker library was produced by utilizing the obtained DNA, according to the method described in Example 26 (3). PCR was conducted under the conditions described in Example 26(3) to obtain the first PCR products, by utilizing the obtained library as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 311 and primer AP1. Next, PCR was conducted under the conditions described in Example 26(3), by utilizing the first PCR products as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 312 and primer AP2. The nucleotide sequence of the obtained DNA was analyzed. The nucleotide sequence shown in nucleotides 966 to 1411 of the nucleotide sequence shown in SEQ ID NO: 242 was provided.

(3) Sequence analysis of the present invention DNA (A23)

[0472] The nucleotide sequence shown in SEQ ID NO: 242 was obtained by connecting the nucleotide sequences provided by the DNA obtained in Example 62(2). Two open reading frames (ORF) were present in said nucleotide sequence. As such, there was contained a nucleotide sequence (SEQ ID NO: 232) consisting of 1197 nucleotides (inclusive of the stop codon) and encoding a 398 amino acid residue (SEQ ID NO: 222) and a nucleotide sequence (SEQ ID NO: 262) consisting of 201 nucleotides (inclusive of the stop codon) and encoding a 66 amino acid residue (SEQ ID NO: 252). The molecular weight of the protein consisting of the amino acid sequence (SEQ ID NO: 222) encoded by the nucleotide sequence shown in SEQ ID NO: 232 was calculated to be 43624Da. The molecular weight

of the protein consisting of the amino acid sequence (SEQ ID NO: 252) encoded by the nucleotide sequence shown in SEQ ID NO: 262 was calculated to be 6797Da.

Example 63 Expression of the Present Invention DNA (A23) in E. Coli

5

10

15

20

25

30

35

45

50

55

(1) Production of a transformed E. coli having the present invention DNA (A23)

[0473] PCR was conducted similarly to Example 49(1), other than utilizing as a template the chromosomal DNA prepared from Streptomyces roseorubens IFO 13682T in Example 62(1) and utilizing as the primers the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 313 and an oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 314. Similarly to Example 32(1), the DNA was purified from the reaction solution of PCR and cloned into the cloning vector pCRII-TOPO (Invitrogen Company). The nucleotide sequence of the obtained plasmid DNA was analyzed by utilizing as primers the oligonucleotides having the nucleotide sequences shown, respectively, in SEQ ID NOs: 67, 68, 309, 311 and 315. Based on the obtained results, the plasmid having the nucleotide sequence shown in SEQ ID NO: 242 was designated as pCR1584F. Similarly to Example 32(1), pCR1584F was digested with restriction enzymes Ndel and HindIII. A DNA of about 1.5kbp was purified from the digestion products. The obtained DNA and the plasmid pKSN2 digested with Ndel and HindIII were ligated to obtain a plasmid containing the nucleotide sequence shown in SEQ ID NO: 242, in which the DNA encoding the present invention protein (A23) is inserted between the Ndel site and the HindIII site of pKSN2 (hereinafter referred to as "pKSN1584F"). Said plasmid was introduced into E. Coli JM109. The obtained E. coli transformant was designated JM109/pKSN1584F.

(2) Expression of the present invention protein (A23) in E. coli and recovery of said protein

[0474] Similarly to Example 4(2), each of E. coli JM109/pKSN1584F and JM109/pKSN2 was cultured. The cells were recovered. Cell lysate solutions were prepared. Under the method described in Example 4(2), supernatant fractions were prepared from the cell lysate solutions (hereinafter, the supernatant fraction obtained from E. coli JM109/pKSN1584F is referred to as "E. coli pKSN1584F extract " and the supernatant fraction obtained from E. coli JM109/pKSN2 is referred to as "E. coli pKSN2 extract ").

(3) Detection of the ability to convert compound (II) to compound (III)

[0475] Similarly to Example 32(3), reaction solutions of 30µl were prepared and maintained for 10 minutes at 30°C. However, as the supernatant fraction, the supernatant fraction prepared in Example 63(2) (E. coli pKSN1584F extract or E. coli pKSN2 extract) was utilized. The reaction solutions after the maintenance were extracted with ethyl acetate and the extracted layers were TLC analyzed. After developing the TLC plate, the presence of a spot thereon corresponding to compound (III) labeled with ¹⁴C were examined (Rf value 0.24 and 0.29). A spot corresponding to compound (III) was detected from the reaction solution containing E. coli pKSN1584F extract. In contrast, such a spot was not detected from the reaction solution containing E. coli pKSN2 extract.

40 Example 64 Obtaining the Present Invention DNA (A24)

(1) Preparation of the chromosomal DNA of Streptomyces rutgersensis IFO 15875T

[0476] Under the method described in Example 31(1), the chromosomal DNA of Streptomyces rutgersensis IFO 15875T was prepared.

(2) Isolation of DNA having a partial nucleotide sequence of the present invention DNA (A24)

[0477] PCR was conducted by utilizing as the template the chromosomal DNA of Streptomyces rutgersensis IFO 15875T prepared in Example 64(1) and by utilizing primer pairing 14, in accordance with the method described in Example 29. Similarly to Example 31(2), the amplified DNA was cloned to cloning vector pCRII-TOPO (Invitrogen Company). The nucleotide sequence thereof was analyzed. As a result, the nucleotide sequence shown in nucleotides 322 to 1057 of the nucleotide sequence shown in SEQ ID NO: 233 was provided.

[0478] Further, the chromosomal DNA prepared in Example 64(1) was digested with restriction enzyme Smal. A genome walker library was produced by utilizing the obtained DNA, according to the method described in Example 26 (3). PCR was conducted under the conditions described in Example 26(3) to obtain the first PCR products, by utilizing the obtained library as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 316 and primer AP 1. Next, PCR was conducted under the conditions described in Example 26(3), by utilizing

the first PCR products as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 317 and primer AP2. The nucleotide sequence of the obtained DNA was analyzed. The nucleotide sequence shown in nucleotides 1 to 384 of the nucleotide sequence shown in SEQ ID NO: 243 was provided.

[0479] Further, the chromosomal DNA prepared in Example 64(1) was digested with restriction enzyme Nael. A genome walker library was produced by utilizing the obtained DNA, according to the method described in Example 26 (3). PCR was conducted under the conditions described in Example 26(3) to obtain the first PCR products, by utilizing the obtained library as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 318 and primer AP1. Next, PCR was conducted under the conditions described in Example 26(3), by utilizing the first PCR products as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 319 and primer AP2. The nucleotide sequence of the obtained DNA was analyzed. The nucleotide sequence shown in nucleotides 992 to 1466 of the nucleotide sequence shown in SEQ ID NO: 243 was provided.

(3) Sequence analysis of the present invention DNA (A24)

10

15

20

30

35

40

45

50

55

[0480] The nucleotide sequence shown in SEQ ID NO: 243 was obtained by connecting the nucleotide sequences provided by the DNA obtained in Example 64(2). Two open reading frames (ORF) were present in said nucleotide sequence. As such, there was contained a nucleotide sequence (SEQ ID NO: 233) consisting of 1245 nucleotides (inclusive of the stop codon) and encoding a 414 amino acid residue (SEQ ID NO: 223) and a nucleotide sequence (SEQ ID NO: 263) consisting of 198 nucleotides (inclusive of the stop codon) and encoding a 65 amino acid residue (SEQ ID NO: 253). The molecular weight of the protein consisting of the amino acid sequence (SEQ ID NO: 233) encoded by the nucleotide sequence shown in SEQ ID NO: 253) encoded by the nucleotide sequence shown in SEQ LD NO: 263 was calculated to be 7034Da.

25 Example 65 Expression of the Present Invention DNA (A24) in E. Coli

(1) Production of a transformed E. coli having the present invention DNA (A24)

[0481] PCR was conducted similarly to Example 49(1), other than utilizing as a template the chromosomal DNA prepared from Streptomyces rutgersensis IFO 15875T in Example 64(1) and utilizing as the primers the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 320 and an oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 321. Similarly to Example 32(1), the DNA was purified from the reaction solution of PCR and cloned into the cloning vector pCRII-TOPO (Invitrogen Company). The nucleotide sequence of the obtained plasmid DNA was sequenced by utilizing as primers the oligonucleotides having the nucleotide sequences shown, respectively, in SEQ ID NOs: 67, 68 and 322. Based on the obtained results, the plasmid having the nucleotide sequence shown in SEQ ID NO: 243 was designated as pCR1589BF. Similarly to Example 32(1), pCR1589BF was digested with restriction enzymes Ndel and HindIII. A DNA of about 1.5kbp was purified from the digestion products. The obtained DNA and the plasmid pKSN2 digested with Ndel and HindIII were ligated to obtain a plasmid containing the nucleotide sequence shown in SEQ ID NO: 243, in which the DNA encoding the present invention protein (A24) is inserted between the Ndel site and the HindIII site of pKSN2 (hereinafter referred to as "pKSN1589BF"). Said plasmid was introduced into E. Coli JM109. The obtained E. coli transformant was designated JM109/pKSN1589BF.

(2) Expression of the present invention protein (A24) in E. coli and recovery of said protein

[0482] Similarly to Example 4(2), each of E. coli JM 109/pKSN1589BF and JM109/pKSN2 was cultured. The cells were recovered. Cell lysate solutions were prepared. Under the method described in Example 4(2), supernatant fractions were prepared from the cell lysate solutions (hereinafter, the supernatant fraction obtained from E. coli JM109/pKSN1589BF is referred to as "E. coli pKSN1589BF extract" and the supernatant fraction obtained from E. coli JM109/pKSN2 is referred to as "E. coli pKSN2 extract").

(3) Detection of the ability to convert compound (II) to compound (III)

[0483] Similarly to Example 32(3), reaction solutions of 30µl were prepared and maintained for 10 minutes at 30°C. However, as the supernatant fraction, the supernatant fraction prepared in Example 65(2) (E. coli pKSN1589BF extract or E. coli pKSN2 extract) was utilized. The reaction solutions after the maintenance were extracted with ethyl acetate and the extracted layers were TLC analyzed. After developing the TLC plate, the presence of a spot thereon corresponding to compound (III) labeled with ¹⁴C were examined (Rf value 0.24 and 0.29). A spot corresponding to compound (III) was detected from the reaction solution containing E. coli pKSN1589BF extract. In contrast, such a spot

was not detected from the reaction solution containing E. coli pKSN2 extract.

Example 66 Obtaining the Present Invention DNA (A25)

5

10

15

20

25

30

35

40

45

50

55

(1) Preparation of the chromosomal DNA of Streptomyces steffisburgensis IFO 13446T

[0484] Under the method described in Example 31(1), the chromosomal DNA of Streptomyces steffisburgensis IFO 13446T was prepared.

(2) Isolation of DNA having a partial nucleotide sequence of the present invention DNA (A25)

[0485] PCR was conducted by utilizing as the template the chromosomal DNA of Streptomyces steffisburgensis IFO 13446T prepared in Example 66(1) and by utilizing primer pairing 14, in accordance with the method described in Example 29. Similarly to Example 31(2), the amplified DNA was cloned to cloning vector pCRII-TOPO (Invitrogen Company). The nucleotide sequence thereof was analyzed. As a result, the nucleotide sequence shown in nucleotides 289 to 1015 of the nucleotide sequence shown in SEQ ID NO: 234 was provided.

[0486] Further, the chromosomal DNA prepared in Example 66(1) was digested with restriction enzyme Smal. A genome walker library was produced by utilizing the obtained DNA, according to the method described in Example 26 (3). PCR was conducted under the conditions described in Example 26(3) to obtain the first PCR products, by utilizing the obtained library as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 323 and primer AP1. Next, PCR was conducted under the conditions described in Example 26(3), by utilizing the first PCR products as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 324 and primer AP2. The nucleotide sequence of the obtained DNA was analyzed. The nucleotide sequence shown in nucleotides 1 to 303 of the nucleotide sequence shown in SEQ ID NO: 244 was provided.

[0487] Further, the chromosomal DNA prepared in Example 66(1) was digested with restriction enzyme Pmacl. A genome walker library was produced by utilizing the obtained DNA, according to the method described in Example 26 (3). PCR was conducted under the conditions described in Example 26(3) to obtain the first PCR products, by utilizing the obtained library as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 311 and primer AP1. Next, PCR was conducted under the conditions described in Example 26(3), by utilizing the first PCR products as the template and by utilizing the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 325 and primer AP2. The nucleotide sequence of the obtained DNA was analyzed. The nucleotide sequence shown in nucleotides 966 to 1411 of the nucleotide sequence shown in SEQ ID NO: 244 was provided.

(3) Sequence analysis of the present invention DNA (A25)

[0488] The nucleotide sequence shown in SEQ ID NO: 244 was obtained by connecting the nucleotide sequences provided by the DNA obtained in Example 66(2). Two open reading frames (ORF) were present in said nucleotide sequence. As such, there was contained a nucleotide sequence (SEQ ID NO: 234) consisting of 1197 nucleotides (inclusive of the stop codon) and encoding a 398 amino acid residue (SEQ ID NO: 224) and a nucleotide sequence (SEQ ID NO: 264) consisting of 201 nucleotides (inclusive of the stop codon) and encoding a 66 amino acid residue (SEQ ID NO: 254). The molecular weight of the protein consisting of the amino acid sequence (SEQ ID NO: 224) encoded by the nucleotide sequence shown in SEQ ID NO: 254) encoded by the nucleotide sequence shown in SEQ ID NO: 264 was calculated to be 6685Da.

Example 67 Expression of the Present Invention DNA (A25) in E. Coli

(1) Production of a transformed E. coli having the present invention DNA (A25)

[0489] PCR was conducted similarly to Example 49(1), other than utilizing as a template the chromosomal DNA prepared from Streptomyces steffisburgensis IFO 13446T in Example 66(1) and utilizing as the primers the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 326 and an oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 327. Similarly to Example 32(1), the DNA was purified from the reaction solution of PCR and cloned into the cloning vector pCRII-TOPO (Invitrogen Company). The nucleotide sequence of the obtained plasmid DNA was sequenced by utilizing as primers the oligonucleotides having the nucleotide sequences shown, respectively, in SEQ ID NOs: 67, 68, 311, 315 and 323. Based on the obtained results, the plasmid having the nucleotide sequence shown in SEQ ID NO: 244 was designated as pCR1609F. Similarly to Example 32(1), pCR1609F was digested with restriction enzymes Ndel and HindIII. A DNA of about 1.5kbp was purified from the digestion products.

The obtained DNA and the plasmid pKSN2 digested with Ndel and HindIII were ligated to obtain a plasmid containing the nucleotide sequence shown in SEQ ID NO: 244, in which the DNA encoding the present invention protein (A25) is inserted between the Ndel site and the HindIII site of pKSN2 (hereinafter referred to as "pKSN1609F"). Said plasmid was introduced into E. Coli JM109. The obtained E. coli transformant was designated JM109/pKSN1609F.

(2) Expression of the present invention protein (A25) in E. coli and recovery of said protein

[0490] Similarly to Example 4(2), each of E. coli JM109/pKSN1609F and JM109/pKSN2 was cultured. The cells were recovered. Cell lysate solutions were prepared. Under the method described in Example 4(2), supernatant fractions were prepared from the cell lysate solutions (hereinafter, the supernatant fraction obtained from E. coli JM109/pKSN1609F is referred to as "E. coli pKSN1609F extract " and the supernatant fraction obtained from E. coli JM109/pKSN2 is referred to as "E. coli pKSN2 extract ").

(3) Detection of the ability to convert compound (II) to compound (III)

5

10

15

20

25

30

35

40

45

50

55

[0491] Similarly to Example 32(3), reaction solutions of 30µl were prepared and maintained for 10 minutes at 30°C. However, as the supernatant fraction, the supernatant fraction prepared in Example 67(2) (E. coli pKSN1609F extract or E. coli pKSN2 extract) was utilized. The reaction solutions after the maintenance were extracted with ethyl acetate and the extracted layers were TLC analyzed. After developing the TLC plate, the presence of a spot thereon corresponding to compound (III) labeled with ¹⁴C were examined (Rf value 0.24 and 0.29). A spot corresponding to compound (III) was detected from the reaction solution containing E. coli pKSN1609F extract. In contrast, such a spot was not detected from the reaction solution containing E. coli pKSN2 extract.

Example 68 Metabolism of Compounds by the Present Invention Protein (A16), (A17), (A18), (A19), (A20), (A21), (A22), (A23), (A24) or (A25)

(1) Metabolism of compound (XII) by the present invention protein (A16)

[0492] There was prepared 100µl of a reaction solution of 50mM potassium phosphate buffer (pH7.0) containing 12.5ppm of compound (XII), 3mM of β-NADPH (hereinafter, referred to as "component A") (Oriental Yeast Company), 1mg/ml of a ferredoxin derived from spinach (hereinafter referred to as "component B") (Sigma Company), 0.15U/ml of ferredoxin reductase (hereinafter, referred to as "component C") (Sigma Company) and 20µl of the supernatant fraction recovered in Example 49(2). The reaction solution was maintained at 30°C for 10 minutes. Further, there was prepared and maintained similarly 100µl of a reaction solution of a 50mM potassium phosphate buffer (pH 7.0) having no addition of at least one component utilized in the composition of the above reaction solution, selected from component A, component B, component C and the supernatant fraction prepared in Example 49(2). Five microliters (5µl) of 2N HCl and 100μl of ethyl acetate were added and mixed into each of the reaction solutions after the maintenance. The supernatant centrifuged at 8,000xg was filtered with UltraFree MC 0.22µm filter unit (Millipore Company). Forty microliters (40µl) of the liquid filtrate (hereinafter, the liquid filtrate derived from the reaction solution containing component A, component B, component C and 20µl of supernatant fraction recovered in Example 49(2) is referred to as "(XII) metabolism solution (A16)"; further, the liquid filtrate derived from the reaction solution containing no component A, no component B, no component C and no supernatant fraction recovered in Example 49(2) is referred to as "(XII) control solution (A16)") were analyzed on a HPLC under the above analysis condition 1. Compared to the concentration of compound (XII) detected from (XII) control solution (A16), the concentration of compound (XII) detected from (XII) metabolism solution (A16) was lower. Further a peak, which was not detected from the (XII) control solution (A16), was detected from the (XII) metabolism solution (A16). The elution time of said peak on the HPLC matched an elution time of a peak of a compound in which the mass is 14 less than said compound (XII) detected from (XII) metabolism solution (A1) in Example 41(2).

(2) Metabolism of compound (XII) by the present invention protein (A17)

[0493] Other than utilizing 20µl of the supernatant fraction recovered in Example 51(2) instead of 20µl of the supernatant fraction recovered in Example 49(2), the reaction solution was prepared and maintained in accordance with the method described in Example 68(1). Similar to Example 68(1), the reaction solution after the maintenance was prepared. Forty microliters (40µl) of the obtained liquid filtrate (hereinafter, the liquid filtrate derived from the reaction solution containing component A, component B, component C and 20µl of supernatant fraction recovered in Example 51(2) is referred to as "(XII) metabolism solution (A17)"; further, the liquid filtrate derived from the reaction solution containing no component A, no component B, no component C and no supernatant fraction recovered in Example 51

(2) is referred to as "(XII) control solution (A17)") were analyzed on a HPLC under the above analysis condition 1. Compared to the concentration of compound (XII) detected from (XII) control solution (A17), the concentration of compound (XII) detected from (XII) metabolism solution (A17) was lower. Further a peak, which was not detected from the (XII) control solution (A17), was detected from the (XII) metabolism solution (A17). The elution time of the said peak on the HPLC matched an elution time of a peak of a compound in which the mass is 14 less than said compound (XII) detected from (XII) metabolism solution (A1) in Example 41(2).

(3) Metabolism of compound (XII) by the present invention protein (A18)

5

10

15

20

25

35

40

45

50

55

[0494] Other than utilizing 20µl of the supernatant fraction recovered in Example 53(2) instead of 20µl of the supernatant fraction recovered in Example 49(2), the reaction solution was prepared and maintained in accordance with the method described in Example 68(1). Similar to Example 68(1), each of the reaction solutions after the maintenance was prepared. Forty microliters (40µl) of the obtained liquid filtrate (hereinafter, the liquid filtrate derived from the reaction solution containing component A, component B, component C and 20µl of supernatant fraction recovered in Example 53(2) is referred to as "(XII) metabolism solution (A18)"; further, the liquid filtrate derived from the reaction solution containing no component A, no component B, no component C and no supernatant fraction recovered in Example 53(2) is referred to as "(XII) control solution (A18)") was analyzed on a HPLC under analysis condition 1. Compared to the concentration of compound (XII) detected from (XII) control solution (A18), the concentration of compound (XII) detected from (XII) metabolism solution (A18) was lower. Further a peak, which was not detected from the (XII) control solution (A18), was detected from the (XII) metabolism solution (A18). The elution time of said peak on the HPLC matched an elution time of a peak of a compound in which the mass is 14 less than said compound (XII) detected from (XII) metabolism solution (A1) in Example 41(2).

(4) Metabolism of compound (XII) by the present invention protein (A19)

[0495] Other than utilizing 20µl of the supernatant fraction recovered in Example 55(2) instead of 20µl of the supernatant fraction recovered in Example 49(2), the reaction solution was prepared and maintained in accordance with the method described in Example 68(1). Similar to Example 68(1), each of the reaction solutions after the maintenance was prepared. Forty microliters (40µl) of the obtained liquid filtrate (hereinafter, the liquid filtrate derived from the reaction solution containing component A, component B, component C and 20µl of supernatant fraction recovered in Example 55(2) is referred to as "(XII) metabolism solution (A19)"; further, the liquid filtrate derived from the reaction solution containing no component A, no component B, no component C and no supernatant fraction recovered in Example 55(2) is referred to as "(XII) control solution (A19)") was analyzed on a HPLC under analysis condition 1. Compared to the concentration of compound (XII) detected from (XII) control solution (A19), the concentration of compound (XII) detected from (XII) metabolism solution (A19). The elution time of said peak on the HPLC matched an elution time of a peak of a compound in which the mass is 14 less than said compound (XII) detected from (XII) metabolism solution (A1) in Example 41(2).

(5) Metabolism of compound (XII) by the present invention protein (A20)

[0496] Other than utilizing 20µl of the supernatant fraction recovered in Example 57(2) instead of 20µl of the supernatant fraction recovered in Example 49(2), the reaction solution was prepared and maintained in accordance with the method described in Example 68(1). Similar to Example 68(1), each of the reaction solutions after the maintenance was prepared. Forty microliters (40µl) of the obtained liquid filtrate (hereinafter, the liquid filtrate derived from the reaction solution containing component A, component B, component C and 20µl of supernatant fraction recovered in Example 57(2) is referred to as "(XII) metabolism solution (A20)"; further, the liquid filtrate derived from the reaction solution containing no component A, no component B, no component C and no supernatant fraction recovered in Example 57(2) is referred to as "(XII) control solution (A20)") was analyzed on a HPLC under analysis condition 1. Compared to the concentration of compound (XII) detected from (XII) control solution (A20), the concentration of compound (XII) detected from (XII) metabolism solution (A20) was lower. Further a peak, which was not detected from the (XII) control solution (A20), was detected from the (XII) metabolism solution (A20). The elution time of said peak on the HPLC matched an elution time of a peak of a compound in which the mass is 14 less than said compound (XII) detected from (XII) metabolism solution (A1) in Example 41(2).

(6) Metabolism of compound (XII) by the present invention protein (A21)

[0497] Other than utilizing 20µl of the supernatant fraction recovered in Example 59(2) instead of 20µl of the super-

natant fraction recovered in Example 49(2), the reaction solution was prepared and maintained in accordance with the method described in Example 68(1). Similar to Example 68(1), each of the reaction solutions after the maintenance was prepared. Forty microliters (40µl) of the obtained liquid filtrate (hereinafter, the liquid filtrate derived from the reaction solution containing component A, component B, component C and 20µl of supernatant fraction recovered in Example 59(2) is referred to as "(XII) metabolism solution (A21)"; further, the liquid filtrate derived from the reaction solution containing no component A, no component B, no component C and no supernatant fraction recovered in Example 59(2) is referred to as "(XII) control solution (A21)") was analyzed on a HPLC under analysis condition 1. Compared to the concentration of compound (XII) detected from (XII) control solution (A21), the concentration of compound (XII) detected from (XII) metabolism solution (A21) was lower. Further a peak, which was not detected from the (XII) control solution (A21), was detected from the (XII) metabolism solution (A21). The elution time of said peak on the HPLC matched an elution time of a peak of a compound in which the mass is 14 less than said compound (XII) detected from (XII) metabolism solution (A1) in Example 41(2).

(7) Metabolism of compound (XII) by the present invention protein (A22)

10

15

20

25

30

35

40

45

50

55

[0498] Other than utilizing 20µl of the supernatant fraction recovered in Example 61(2) instead of 20µl of the supernatant fraction recovered in Example 49(2), the reaction solution was prepared and maintained in accordance with the method described in Example 68(1). Similar to Example 68(1), each of the reaction solutions after the maintenance was prepared. Forty microliters (40µl) of the obtained liquid filtrate (hereinafter, the liquid filtrate derived from the reaction solution containing component A, component B, component C and 20µl of supernatant fraction recovered in Example 61(2) is referred to as "(XII) metabolism solution (A22)"; further, the liquid filtrate derived from the reaction solution containing no component A, no component B, no component C and no supernatant fraction recovered in Example 61(2) is referred to as "(XII) control solution (A22)") was analyzed on a HPLC under analysis condition 1. Compared to the concentration of compound (XII) detected from (XII) detected from (XII) metabolism solution (A22), the concentration of compound (XII) detected from (XII) metabolism solution (A22), was detected from the (XII) metabolism solution (A22). The elution time of said peak on the HPLC matched an elution time of a peak of a compound in which the mass is 14 less than said compound (XII) detected from (XII) metabolism solution (A1) in Example 41(2).

(8) Metabolism of compound (XII) by the present invention protein (A23)

[0499] Other than utilizing 20µl of the supernatant fraction recovered in Example 63(2) instead of 20µl of the supernatant fraction recovered in Example 49(2), the reaction solution was prepared and maintained in accordance with the method described in Example 68(1). Similar to Example 68(1), each of the reaction solutions after the maintenance was prepared. Forty microliters (40µl) of the obtained liquid filtrate (hereinafter, the liquid filtrate derived from the reaction solution containing component A, component B, component C and 20µl of supernatant fraction recovered in Example 63(2) is referred to as "(XII) metabolism solution (A23)"; further, the liquid filtrate derived from the reaction solution containing no component A, no component B, no component C and no supernatant fraction recovered in Example 63(2) is referred to as "(XII) control solution (A23)") was analyzed on a HPLC under analysis condition 1. Compared to the concentration of compound (XII) detected from (XII) control solution (A23), the concentration of compound (XII) detected from (XII) metabolism solution (A23) was lower. Further a peak, which was not detected from the (XII) control solution (A23), was detected from the (XII) metabolism solution (A23). The elution time of said peak on the HPLC matched an elution time of a peak of a compound in which the mass is 14 less than said compound (XII) detected from (XII) metabolism solution (A1) in Example 41(2).

(9) Metabolism of compound (XII) by the present invention protein (A24)

[0500] Other than utilizing 20µl of the supernatant fraction recovered in Example 65(2) instead of 20µl of the supernatant fraction recovered in Example 49(2), the reaction solution was prepared and maintained in accordance with the method described in Example 68(1). Similar to Example 68(1), each of the reaction solutions after the maintenance was prepared. Forty microliters (40µl) of the obtained liquid filtrate (hereinafter, the liquid filtrate derived from the reaction solution containing component A, component B, component C and 20µl of supernatant fraction recovered in Example 65(2) is referred to as "(XII) metabolism solution (A24)"; further, the liquid filtrate derived from the reaction solution containing no component A, no component B, no component C and no supernatant fraction recovered in Example 65(2) is referred to as "(XII) control solution (A24)") was analyzed on a HPLC under analysis condition 1. Compared to the concentration of compound (XII) detected from (XII) control solution (A24), the concentration of compound (XII) detected from (XII) metabolism solution (A24). The elution time of said peak on

the HPLC matched an elution time of a peak of a compound in which the mass is 14 less than said compound (XII) detected from (XII) metabolism solution (A1) in Example 41(2).

(10) Metabolism of compound (XII) by the present invention protein (A25)

5

10

15

20

25

30

35

40

45

50

55

[0501] Other than utilizing 20µl of the supernatant fraction recovered in Example 67(2) instead of 20µl of the supernatant fraction recovered in Example 49(2), the reaction solution was prepared and maintained in accordance with the method described in Example 68(1). Similar to Example 68(1), each of the reaction solutions after the maintenance was prepared. Forty microliters (40µl) of the obtained liquid filtrate (hereinafter, the liquid filtrate derived from the reaction solution containing component A, component B, component C and 20µl of supernatant fraction recovered in Example 67(2) is referred to as "(XII) metabolism solution (A25)"; further, the liquid filtrate derived from the reaction solution containing no component A, no component B, no component C and no supernatant fraction recovered in Example 67(2) is referred to as "(XII) control solution (A25)") was analyzed on a HPLC under analysis condition 1. Compared to the concentration of compound (XII) detected from (XII) control solution (A25), the concentration of compound (XII) detected from (XII) metabolism solution (A25). The elution time of said peak on the HPLC matched an elution time of a peak of a compound in which the mass is 14 less than said compound (XII) detected from (XII) metabolism solution (A1) in Example 41(2).

(11) Metabolism of compound (XIII) by the present invention protein (A17)

[0502] Other than utilizing 12.5ppm of compound (XIII) instead of 12.5ppm of compound (XII), the reaction solution was prepared and maintained in accordance with the method described in Example 68(2). Similar to Example 68(1), each of the reaction solutions after the maintenance was prepared. Forty microliters (40µI) of the obtained liquid filtrate (hereinafter, the liquid filtrate derived from the reaction solution containing component A, component B, component C and 20µI of supernatant fraction recovered in Example 51(2) is referred to as "(XIII) metabolism solution (A17)"; further, the liquid filtrate derived from the reaction solution containing no component A, no component B, no component C and no supernatant fraction recovered in Example 51(2) is referred to as "(XIII) control solution (A17)") were analyzed on a HPLC under the above analysis condition 1. Compared to the concentration of compound (XIII) detected from (XIII) control solution (A17), the concentration of compound (XIII) detected from (XIII) metabolism solution (A17) was lower. Further a peak, which was not detected from the (XIII) control solution (A17), was detected from the (XIII) metabolism solution (A17). The elution time of the said peak on the HPLC matched an elution time of a peak of a compound in which the mass is 14 less than said compound (XIII) detected from (XIII) metabolism solution (A1) in Example 41(3).

(12) Metabolism of compound (XIII) by the present invention protein (A18)

[0503] Other than utilizing 20µl of the supernatant fraction recovered in Example 53(2) instead of 20µl of the supernatant fraction recovered in Example 51(2), the reaction solution was prepared and maintained in accordance with the method described in Example 68(11). Similar to Example 68(1), each of the reaction solutions after the maintenance was prepared. Forty microliters (40µl) of the obtained liquid filtrate (hereinafter, the liquid filtrate derived from the reaction solution containing component A, component B, component C and 20µl of supernatant fraction recovered in Example 53(2) is referred to as "(XIII) metabolism solution (A18)"; further, the liquid filtrate derived from the reaction solution containing no component A, no component B, no component C and no supernatant fraction recovered in Example 53(2) is referred to as "(XIII) control solution (A18)") was analyzed on a HPLC under analysis condition 1. Compared to the concentration of compound (XIII) detected from (XIII) metabolism solution (A18) was lower. Further a peak, which was not detected from the (XIII) control solution (A18), was detected from the (XIII) metabolism solution (A18). The elution time of said peak on the HPLC matched an elution time of a peak of a compound in which the mass is 14 less than said compound (XIII) detected from (XIII) metabolism solution (A1) in Example 41(3).

(13) Metabolism of compound (XIII) by the present invention protein (A19)

[0504] Other than utilizing 20µl of the supernatant fraction recovered in Example 55(2) instead of 20µl of the supernatant fraction recovered in Example 51(2), the reaction solution was prepared and maintained in accordance with the method described in Example 68(11). Similar to Example 68(1), each of the reaction solutions after the maintenance was prepared. Forty microliters (40µl) of the obtained liquid filtrate (hereinafter, the liquid filtrate derived from the reaction solution containing component A, component B, component C and 20µl of supernatant fraction recovered in Example 55(2) is referred to as "(XIII) metabolism solution (A19)"; further, the liquid filtrate derived from the reaction

solution containing no component A, no component B, no component C and no supernatant fraction recovered in Example 55(2) is referred to as "(XIII) control solution (A19)") was analyzed on a HPLC under analysis condition 1. Compared to the concentration of compound (XIII) detected from (XIII) control solution (A19), the concentration of compound (XIII) detected from (XIII) metabolism solution (A19) was lower. Further a peak, which was not detected from the (XIII) control solution (A19), was detected from the (XIII) metabolism solution (A19). The elution time of said peak on the HPLC matched an elution time of a peak of a compound in which the mass is 14 less than said compound (XIII) detected from (XIII) metabolism solution (A1) in Example 41(3).

(14) Metabolism of compound (XIII) by the present invention protein (A20)

5

10

15

20

25

30

35

40

45

50

55

[0505] Other than utilizing 20μl of the supernatant fraction recovered in Example 57(2) instead of 20μl of the supernatant fraction recovered in Example 51(2), the reaction solution was prepared and maintained in accordance with the method described in Example 68(11). Similar to Example 68(1), each of the reaction solutions after the maintenance was prepared. Forty microliters (40μl) of the obtained liquid filtrate (hereinafter, the liquid filtrate derived from the reaction solution containing component A, component B, component C and 20μl of supernatant fraction recovered in Example 57(2) is referred to as "(XIII) metabolism solution (A20)"; further, the liquid filtrate derived from the reaction solution containing no component A, no component B, no component C and no supernatant fraction recovered in Example 57(2) is referred to as "(XIII) control solution (A20)") was analyzed on a HPLC under analysis condition 1. Compared to the concentration of compound (XIII) detected from (XIII) detected from (XIII) control solution (A20), the concentration of compound (XIII) detected from (XIII) metabolism solution (A20) was lower. Further a peak, which was not detected from the (XIII) control solution (A20), was detected from the (XIII) metabolism solution (A20). The elution time of said peak on the HPLC matched an elution time of a peak of a compound in which the mass is 14 less than said compound (XIII) detected from (XIII) metabolism solution (A1) in Example 41(3).

(15) Metabolism of compound (XIII) by the present invention protein (A21)

[0506] Other than utilizing 20µl of the supernatant fraction recovered in Example 59(2) instead of 20µl of the supernatant fraction recovered in Example 51(2), the reaction solution was prepared and maintained in accordance with the method described in Example 68(11). Similar to Example 68(1), each of the reaction solutions after the maintenance was prepared. Forty microliters (40µl) of the obtained liquid filtrate (hereinafter, the liquid filtrate derived from the reaction solution containing component A, component B, component C and 20µl of supernatant fraction recovered in Example 59(2) is referred to as "(XIII) metabolism solution (A21)"; further, the liquid filtrate derived from the reaction solution containing no component A, no component B, no component C and no supernatant fraction recovered in Example 59(2) is referred to as "(XIII) control solution (A21)") was analyzed on a HPLC under analysis condition 1. Compared to the concentration of compound (XIII) detected from (XIII) detected from (XIII) metabolism solution (A21), was lower. Further a peak, which was not detected from the (XIII) control solution (A21), was detected from the (XIII) metabolism solution (A21). The elution time of said peak on the HPLC matched an elution time of a peak of a compound in which the mass is 14 less than said compound (XIII) detected from (XIII) metabolism solution (A1) in Example 41(3).

(16) Metabolism of compound (XIII) by the present invention protein (A23)

[0507] Other than utilizing 20µl of the supernatant fraction recovered in Example 63(2) instead of 20µl of the supernatant fraction recovered in Example 51(2), the reaction solution was prepared and maintained in accordance with the method described in Example 68(11). Similar to Example 68(1), each of the reaction solutions after the maintenance was prepared. Forty microliters (40µl) of the obtained liquid filtrate (hereinafter, the liquid filtrate derived from the reaction solution containing component A, component B, component C and 20µl of supernatant fraction recovered in Example 63(2) is referred to as "(XIII) metabolism solution (A23)"; further, the liquid filtrate derived from the reaction solution containing no component A, no component B, no component C and no supernatant fraction recovered in Example 63(2) is referred to as "(XIII) control solution (A23)") was analyzed on a HPLC under analysis condition 1. Compared to the concentration of compound (XIII) detected from (XIII) detected from (XIII) metabolism solution (A23), was lower. Further a peak, which was not detected from the (XIII) control solution (A23), was detected from the (XIII) metabolism solution (A23). The elution time of said peak on the HPLC matched an elution time of a peak of a compound in which the mass is 14 less than said compound (XIII) detected from (XIII) metabolism solution (A1) in Example 41(3).

(17) Metabolism of compound (XIII) by the present invention protein (A25)

[0508] Other than utilizing 20µl of the supernatant fraction recovered in Example 67(2) instead of 20µl of the supernatant fraction recovered in Example 51(2), the reaction solution was prepared and maintained in accordance with the method described in Example 68(11). Similar to Example 68(1), each of the reaction solutions after the maintenance was prepared. Forty microliters (40µl) of the obtained liquid filtrate (hereinafter, the liquid filtrate derived from the reaction solution containing component A, component B, component C and 20µl of supernatant fraction recovered in Example 67(2) is referred to as "(XIII) metabolism solution (A25)"; further, the liquid filtrate derived from the reaction solution containing no component A, no component B, no component C and no supernatant fraction recovered in Example 67(2) is referred to as "(XIII) control solution (A25)") was analyzed on a HPLC under analysis condition 1. Compared to the concentration of compound (XIII) detected from (XIII) detected from (XIII) metabolism solution (A25), was lower. Further a peak, which was not detected from the (XIII) control solution (A25), was detected from the (XIII) metabolism solution (A25). The elution time of said peak on the HPLC matched an elution time of a peak of a compound in which the mass is 14 less than said compound (XIII) detected from (XIII) metabolism solution (A1) in Example 41(3).

Example 69 Hybridization in which the Present Invention DNA (A1), (A2), (A3) or (A4) was a Probe

(1) Preparation of a probe

5

10

15

20

25

30

35

40

45

50

55

[0509] PCR was conducted in accordance with the method described in Example 30(1). However, as the template, 10ng of the chromosomal DNA of Streptomyces achromogenes IFO 12735 prepared in Example 26(1) was utilized instead of said 50ng of the chromosomal DNA of Streptomyces phaeochromogenes IFO12898 prepared in Example 3(1). As the primers, there was utilized an oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 328 and the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 329. The DNA amplified by said PCR was recovered to produce a probe having the nucleotide sequence shown in SEQ ID NO: 109 labeled with digoxigenin (hereinafter referred to as "DIG labeled probe (A4)").

(2) Preparation of the plasmid solution

[0510] PCR was conducted by utilizing Advantage-GC genomic polymerase mix (Clontech Company) and by utilizing as the template the chromosomal DNA of Streptomyces nogalator IFO13445 prepared in Example 31(1). As the primers, there was utilized the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 330 and the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 331. The PCR reaction solution amounted to 50μl by adding the 2 primers each amounting to 200nM, 10ng of the chromosomal DNA, 4.0μl of dNTP mix (a mixture of 2.5mM of each of the 4 types of dNTP; Clontech Company), 10.0μl of 5xGC buffer, 2.2μl of 25mM Mg(OAc)₂, 10.0μl of 5M GC-Melt and 1.0μl of Advantage-GC genomic polymerase mix (Clontech Company) and distilled water. The reaction conditions of the PCR were after maintaining 94°C for 1 minute; repeating 7 cycles of a cycle that included maintaining 94°C for 10 seconds and then 72°C for 3 minutes; repeating 36 cycles of a cycle that included 94°C for 10 seconds and then 67°C for 3 minutes; and then maintaining 67°C for 7 minutes. The DNA was purified from the PCR reaction solution with QlAquick PCR Purification Kit (Qiagen Company) according to the instructions attached to said kit. The obtained DNA was ligated to TA cloning vector pCR2.1 (Invitrogen Company), according to the attached manual, and was introduced into E. Coli TOP10F' (Invitrogen Company). The plasmid DNA was prepared from the obtained E. coli transformant, utilizing QlAprep Spin Miniprep Kit (Qiagen Company) to obtain a plasmid solution containing the present invention DNA (A11).

[0511] Similarly, PCR was conducted by utilizing as the template the chromosomal DNA of Streptomyces tsusimaensis IFO 13782 prepared in Example 33(1) and by utilizing as primers the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 332 and the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 333. The DNA obtained by the PCR was ligated to the vector similar to the above. E. coli was then transformed. The plasmid was prepared from the obtained E. coli transformant to obtain a plasmid solution containing the present invention DNA (A12).

[0512] Similarly, PCR was conducted by utilizing as the template the chromosomal DNA of Streptomyces thermocoerulesces IFO 14273t prepared in Example 35(1) and by utilizing as primers the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 331 and the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 334. The DNA obtained by the PCR was ligated to the vector similar to the above. E. coli was then transformed. The plasmid was prepared from the obtained E. coli transformant to obtain a plasmid solution containing the present invention DNA (A13).

[0513] Similarly, PCR was conducted by utilizing as the template the chromosomal DNA of Streptomyces glomero-

chromogenes IFO 13673t prepared in Example 37(1) and by utilizing as primers the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 330 and the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 331. The DNA obtained by the PCR was ligated to the vector similar to the above. E. coli was then transformed. The plasmid was prepared from the obtained E. coli transformant to obtain a plasmid solution containing the present invention DNA (A14).

5

10

15

20

25

30

35

40

45

50

55

[0514] Similarly, PCR was conducted by utilizing as the template the chromosomal DNA of Streptomyces olivochromogenes IFO 12444 prepared in Example 39(1) and by utilizing as primers the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 330 and the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 331. The DNA obtained by the PCR was ligated to the vector similar to the above. E. coli was then transformed. The plasmid was prepared from the obtained E. coli transformant to obtain a plasmid solution containing the present invention DNA (A15).

[0515] Similarly, PCR was conducted by utilizing as the template the chromosomal DNA of Streptomyces omatus IFO 13069t prepared in Example 48(1) and by utilizing as primers the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 335 and the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 336. The DNA obtained by the PCR was ligated to the vector similar to the above. E. coli was then transformed. The plasmid was prepared from the obtained E. coli transformant to obtain a plasmid solution containing the present invention DNA (A16).

[0516] Similarly, PCR was conducted by utilizing as the template the chromosomal DNA of Streptomyces griseus ATCC 10137 prepared in Example 50(1) and by utilizing as primers the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 335 and the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 336. The DNA obtained by the PCR was ligated to the vector similar to the above. E. coli was then transformed. The plasmid was prepared from the obtained E. coli transformant to obtain a plasmid solution containing the present invention DNA (A17).

[0517] Similarly, PCR was conducted by utilizing as the template the chromosomal DNA of Streptomyces achromogenes IFO 12735 prepared in Example 52(1) and by utilizing as primers the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 330 and the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 331. The DNA obtained by the PCR was ligated to the vector similar to the above. E. coli was then transformed. The plasmid was prepared from the obtained E. coli transformant to obtain a plasmid solution containing the present invention DNA (A18).

[0518] Similarly, PCR was conducted by utilizing as the template the chromosomal DNA of Streptomyces griseus IFO 13849T prepared in Example 54(1) and by utilizing as primers the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 333 and the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 335. The DNA obtained by the PCR was ligated to the vector similar to the above. E. coli was then transformed. The plasmid was prepared from the obtained E. coli transformant to obtain a plasmid solution containing the present invention DNA (A19).

[0519] Similarly, PCR was conducted by utilizing as the template the chromosomal DNA of Streptomyces lanatus IFO 12787T prepared in Example 56(1) and by utilizing as primers the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 331 and the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 337. The DNA obtained by the PCR was ligated to the vector similar to the above. E. coli was then transformed. The plasmid was prepared from the obtained E. coli transformant to obtain a plasmid solution containing the present invention DNA (A20).

[0520] Similarly, PCR was conducted by utilizing as the template the chromosomal DNA of Streptomyces misawanensis IFO 13855T prepared in Example 58(1) and by utilizing as primers the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 331 and the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 338. The DNA obtained by the PCR was ligated to the vector similar to the above. E. coli was then transformed. The plasmid was prepared from the obtained E. coli transformant to obtain a plasmid solution containing the present invention DNA (A21).

[0521] Similarly, PCR was conducted by utilizing as the template the chromosomal DNA of Streptomyces roseorubens IFO 13682T prepared in Example 62(1) and by utilizing as primers the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 331 and the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 339. The DNA obtained by the PCR was ligated to the vector similar to the above. E. coli was then transformed. The plasmid was prepared from the obtained E. coli transformant to obtain a plasmid solution containing the present invention DNA (A23).

[0522] Similarly, PCR was conducted by utilizing as the template the chromosomal DNA of Streptomyces steffisburgensis IFO 13446T prepared in Example 66(1) and by utilizing as primers the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 331 and the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 339. The DNA obtained by the PCR was ligated to the vector similar to the above. E. coli was then transformed. The plasmid was prepared from the obtained E. coli transformant to obtain a plasmid solution containing the present in-

vention DNA (A25).

10

15

20

25

30

35

55

[0523] Further, similarly, PCR was conducted by utilizing as the template the chromosomal DNA of Streptomyces pallidus IFO 13434T prepared in Example 60(1) and by utilizing as primers the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 340 and the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 341. The DNA obtained by the PCR was ligated to the vector similar to the above. E. coli was then transformed. The plasmid was prepared from the obtained E. coli transformant to obtain a plasmid solution containing the present invention DNA (A22).

[0524] Similarly, PCR was conducted by utilizing as the template the chromosomal DNA of Streptomyces rutgersensis IFO 15875T prepared in Example 64(1) and by utilizing as primers the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 342 and the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 343. The DNA obtained by the PCR was ligated to the vector similar to the above. E. coli was then transformed. The plasmid was prepared from the obtained E. coli transformant to obtain a plasmid solution containing the present invention DNA (A24).

(2) Dot blot hybridization

[0525] About 100ng and 10ng of each of the plasmids prepared in Example 69(2) was blotted on a Hybond N+ Nylon Membrane (Amersham Biosciences Company). The plasmids were: the plasmid DNA containing the present invention DNA (A11), the plasmid DNA containing the present invention DNA (A12), the plasmid DNA containing the present invention DNA (A13), the plasmid DNA containing the present invention DNA (A14), the plasmid DNA containing the present invention DNA (A16), the plasmid DNA containing the present invention DNA (A16), the plasmid DNA containing the present invention DNA (A17), the plasmid DNA containing the present invention DNA (A18), the plasmid DNA containing the present invention DNA (A20), the plasmid DNA containing the present invention DNA (A20), the plasmid DNA containing the present invention DNA (A23), and the plasmid DNA containing the present invention DNA (A23), ultraviolet light was directed at the obtained membranes with a transilluminator for 5 minutes.

[0526] Hybridization and detection were conducted according to the method described in Example 30(2). The probes prepared in Example 30(1) were maintained at 100°C for 5 minutes and then cooled on ice. As the probes, there was utilized the DNA having the nucleotide sequence shown in SEQ ID NO: 6 labeled with digoxigenin (hereinafter referred to as "DIG labeled probe (A1)"), the DNA having the nucleotide sequence shown in SEQ ID NO: 7 labeled with digoxigenin (hereinafter referred to as "DIG labeled probe (A2)"), the DNA having the nucleotide sequence shown in SEQ ID NO: 8 labeled with digoxigenin (hereinafter referred to as "DIG labeled probe (A3)") or the DIG labeled probe (A4) produced in Example 69(1). In the events of utilizing any one of the DIG labeled probe (A1), (A2), (A3) or (A4) for hybridization, a signal was detected for each of the reagents of the 10ng and 100ng of each of the above plasmid DNA.

[0527] Further, similarly, about 10ng and 100ng of each of the plasmid DNA containing the present invention DNA (A22) prepared in Example 69(2) and the plasmid DNA containing the present invention DNA (A24) are blotted onto a Hybond N+ nylon membrane (Amersham Biosciences Company). Hybridization and detection are conducted accordingly to Example 30(2).

Example 70 Preparation of the Present Invention DNA (A23) in which the Codon Usage has been Adjusted for Expression in Soybean (hereinafter, referred to as the "present invention DNA (A23)S")

(1) Preparation of the present invention DNA (A23)S

[0528] PCR was conducted with Pyrobest DNA polymerase (Takara Shuzo Company) according to the attached manual, by utilizing as primers the oligonucleotide having a nucleotide sequence shown in SEQ ID NO: 346 and the oligonucleotide having a nucleotide sequence shown in SEQ ID NO: 367. An aliquot of the obtained PCR product was utilized as a template for a PCR conducted similarly utilizing as primers the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 345 and oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 366.
 Further, an aliquot of that PCR product was utilized as a template for a PCR conducted similarly utilizing as primers the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 344 and oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 365. The obtained reaction solution was designated as reaction solution 1.

[0529] Further, PCR was conducted with Pyrobest DNA polymerase (Takara Shuzo Company) according to the attached manual, by utilizing as primers the oligonucleotide having a nucleotide sequence shown in SEQ ID NO: 349 and the oligonucleotide having a nucleotide sequence shown in SEQ ID NO: 364. An aliquot of the obtained PCR product was utilized as a template for a PCR conducted similarly utilizing as primers the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 348 and oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 363. Further, an aliquot of that PCR product was utilized as a template for a PCR conducted similarly utilizing

as primers the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 347 and oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 362. The obtained reaction solution was designated as reaction solution 2.

[0530] Further, PCR was conducted with Pyrobest DNA polymerase (Takara Shuzo Company) according to the attached manual by utilizing as primers the oligonucleotide having a nucleotide sequence shown in SEQ ID NO: 352 and oligonucleotide having a nucleotide sequence shown in SEQ ID NO: 361. An aliquot of the obtained PCR product was utilized as a template for a PCR conducted similarly utilizing as primers having the nucleotide sequence shown in SEQ ID NO: 351 and oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 360. Further, an aliquot of that PCR product was utilized as a template for a PCR conducted similarly utilizing as primers the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 350 and oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 359. The obtained reaction solution was designated as reaction solution 3.

[0531] Further, PCR was conducted with Pyrobest DNA polymerase (Takara Shuzo Company) according to the attached manual, by utilizing as primers the oligonucleotide having a nucleotide sequence shown in SEQ ID NO: 355 and oligonucleotide having a nucleotide sequence shown in SEQ ID NO: 358. An aliquot of the obtained PCR product was utilized as a template for a PCR conducted similarly utilizing as primers the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 354 and oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 357. Further, an aliquot of that PCR product was utilized as a template for a PCR conducted similarly utilizing as primers the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 356. The obtained reaction solution was designated as reaction solution 4.

[0532] The reaction solutions 1 to 4 obtained in such a way were mixed. PCR was conducted with Pyrobest DNA polymerase (Takara Shuzo Company) according to the attached manual, by utilizing as a template an aliquot of the mixture thereof and by utilizing as primers the oligonucleotide having a nucleotide sequence shown in SEQ ID NO: 344 and oligonucleotide having a nucleotide sequence shown in SEQ ID NO: 356. The nucleotide sequence of the amplified DNA was confirmed. There was obtained a DNA having a sequence in which the nucleotide sequence 5'-cat-3' is connected upstream of the 5' terminus and the nucleotide sequence 5'-aagctt-3' is connected downstream of the 3' terminus of the nucleotide sequence shown in SEQ ID NO: 368.

[0533] The codon usage of the present invention DNA (A23) having the nucleotide sequence shown in SEQ ID NO: 232 (GC content of 73.10%) is shown in Table 28 and Table 29. The codon usage of soybean (GC content of 46.12%) is shown in Table 24 and Table 25. The codon usage of the present invention DNA (A23)S having the nucleotide sequence shown in SEQ ID NO: 368 (GC content of 52.38%) is shown in Table 30 and Table 31.

Table 28

codon	%	codon	%
TTT	0.00	TCT	0.00
TTC	4.01	TCC	1.50
TTA	0.00	TCA	0.00
TTG	0.00	TCG	0.50
СТТ	0.00	ССТ	0.00
СТС	4.26	CCC	5.76
СТА	0.00	CCA	0.00
CTG	7.77	CCG	2.26
ATT	0.00	ACT	0.00
ATC	4.51	ACC	3.76
ATA	0.00	ACA	0.00
ATG	2.26	ACG	2.76
GTT	0.00	GCT	0.25
GTC	3.51	GCC	9.27
GTA	0.00	GCA	0.75
GTG	2.51	GCG	1.75

Table 29

% % codon codon TAT 0.00 **TGT** 0.00 **TAC** 1.00 **TGC** 0.75 TAA 0.25 **TGA** 0.00 0.75 **TAG** 0.00 **TGG** CAT 0.00 CGT 0.50 CAC 2.26 CGC 6.02 CAA 0.50 CGA 0.25 CAG 2.51 CGG 3.01 AAT 0.00 AGT 0.00 AAC 1.00 **AGC** 1.25 AAA 0.25 **AGA** 0.00 AAG 0.50 AGG 0.50 **GAT** 0.00 **GGT** 0.98 **GAC** 7.27 GGC 6.27 GAA 1.25 GGA 0.25 GAG 5.26 GGG 1.00

Table 30

codon	%	codon	%
TTT	2.01	TCT	0.75
TTC	2.01	TCC	0.50
TTA	1.00	TCA	0.75
TTG	3.01	TCG	0.25
СТТ	3.26	ССТ	3.01
СТС	2.26	ccc	1.50
CTA	1.00	CCA	3.01
CTG	1.50	CCG	0.50
ATT	2.26	ACT	2.26
ATC	1.25	ACC	1.75
ATA	1.00	ACA	2.01
ATG	2.26	ACG	0.50
GTT	2.26	GCT	4.51
GTC	1.00	GCC	2.76
GTA	0.75	GCA	3.76
GTG	2.01	GCG	1.00

5

10

15

20

25

30

35

40

45

50

55

Table 31

codon	%	codon	%
TAT	0.50	TGT	0.25
TAG	0.50	TGC	0.50
TAA	0.25	TGA	0.00
TAG	0.00	TGG	0.75
CAT	1.25	CGT	1.50
CAC	1.00	CGC	1.25
CAA	1.75	CGA	0.75
CAG	1.25	CGG	0.50
AAT	0.50	ACT	0.50
AAC	0.50	AGC	0.50
AAA	0.25	AGA	3.26
AAG	0.50	AGG	3.01
GAT	4.51	GGT	2.26
GAC	2.76	GGC	1.50
GAA	3.26	GGA	2.26
GAG	3.26	GGG	1.50

(2) Production of a transformed E. coli having the present invention protein (A23)S

[0534] The DNA having the nucleotide sequence shown in SEQ ID NO: 368 obtained in Example 70(1) was digested with restriction enzymes Ndel and HindIII. The obtained DNA and the plasmid pKSN2 digested with Ndel and HindIII were ligated to obtain a plasmid in which the DNA having the nucleotide sequence shown in SEQ ID NO: 368 is inserted between the Ndel site and the HindIII site of pKSN2 (hereinafter referred to as "pKSN1584soy"). Said plasmid was introduced into E. coli JM109. The obtained E. coli transformant was designated JM109/pKSN1584soy.

(3) Expression of the present invention protein (A23)S in E. coli and recovery of said protein

[0535] Similarly to Example 4(2), each of E. coli JM109/pKSN1584soy obtained in Example 70(2) and E. coli JM109/pKSN1584F obtained in Example 63(1) was cultured. The cells were recovered. Cell lysate solutions were prepared. Under the method described in Example 4(2), supernatant fractions were prepared from the cell lysate solutions (hereinafter, the supernatant fraction obtained from E. coli JM109/pKSN1584soy is referred to as "E. coli pKSN1584soy extract " and the supernatant fraction obtained from E. coli JM109/pKSN1584F is referred to as "E. coli pKSN1584F extract"). The amount of P450 per the protein amount contained in E. coli pKSN1584F extract.

Example 71 Preparation and Expression of the Present Invention DNA (A25) in which the Codon Usage has been Adjusted for Expression in Soybean (hereinafter, referred to as the "present invention DNA (A25)S")

(1) Preparation of the present invention DNA (A25)S

5

10

15

20

25

30

35

40

45

50

55

[0536] PCR was conducted with Pyrobest DNA polymerase (Takara Shuzo Company) according to the attached manual, by utilizing as primers the oligonucleotide having a nucleotide sequence shown in SEQ ID NO: 371 and the oligonucleotide having a nucleotide sequence shown in SEQ ID NO: 392. An aliquot of the obtained PCR product was utilized as a template for a PCR conducted similarly utilizing as primers the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 370 and oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 391. Further, an aliquot of that PCR product was utilized as a template for a PCR conducted similarly utilizing as primers the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 369 and oligonucleotide having the nucleotide

sequence shown in SEQ ID NO: 390. The obtained reaction solution was designated as reaction solution 1.

10

15

20

25

30

35

40

45

50

55

[0537] Further, PCR was conducted with Pyrobest DNA polymerase (Takara Shuzo Company) according to the attached manual, by utilizing as primers the oligonucleotide having a nucleotide sequence shown in SEQ ID NO: 374 and the oligonucleotide having a nucleotide sequence shown in SEQ ID NO: 389. An aliquot of the obtained PCR product was utilized as a template for a PCR conducted similarly utilizing as primers the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 373 and oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 383. Further, an aliquot of that PCR product was utilized as a template for a PCR conducted similarly utilizing as primers the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 372 and oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 387. The obtained reaction solution was designated as reaction solution 2.

[0538] Further, PCR was conducted with Pyrobest DNA polymerase (Takara Shuzo Company) according to the attached manual by utilizing as primers the oligonucleotide having a nucleotide sequence shown in SEQ ID NO: 377 and oligonucleotide having a nucleotide sequence shown in SEQ ID NO: 386. An aliquot of the obtained PCR product was utilized as a template for a PCR conducted similarly utilizing as primers having the nucleotide sequence shown in SEQ ID NO: 376 and oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 385. Further, an aliquot of that PCR product was utilized as a template for a PCR conducted similarly utilizing as primers the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 375 and oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 384. The obtained reaction solution was designated as reaction solution 3.

[0539] Further, PCR was conducted with Pyrobest DNA polymerase (Takara Shuzo Company) according to the attached manual, by utilizing as primers the oligonucleotide having a nucleotide sequence shown in SEQ ID NO: 380 and oligonucleotide having a nucleotide sequence shown in SEQ ID NO: 383. An aliquot of the obtained PCR product was utilized as a template for a PCR conducted similarly utilizing as primers the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 379 and oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 382. Further, an aliquot of that PCR product was utilized as a template for a PCR conducted similarly utilizing as primers the oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 378 and oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 381. The obtained reaction solution was designated as reaction solution 4.

[0540] The reaction solutions 1 to 4 obtained in such a way were mixed. PCR was conducted with Pyrobest DNA polymerase (Takara Shuzo Company) according to the attached manual, by utilizing as a template an aliquot of the mixture thereof and by utilizing as primers the oligonucleotide having a nucleotide sequence shown in SEQ ID NO: 369 and oligonucleotide having a nucleotide sequence shown in SEQ ID NO: 381. The nucleotide sequence of the amplified DNA was confirmed. There was obtained a DNA having a sequence in which the nucleotide sequence 5'-cat-3' is connected upstream of the 5' terminus and the nucleotide sequence 5'-aagctt-3' is connected downstream of the 3' terminus of the nucleotide sequence shown in SEQ ID NO: 393.

[0541] The codon usage of the present invention DNA (A25) having the nucleotide sequence shown in SEQ ID NO: 234 (GC content of 71.93%) is shown in Table 32 and Table 33. The codon usage of soybean (GC content of 46.12%) is shown in Table 24 and Table 25. The codon usage of the present invention DNA (A25)S having the nucleotide sequence shown in SEQ ID NO: 393 (GC content of 52.05%) is shown in Table 34 and Table 35.

Table 32

codon	%	codon	%
TTT	0.00	TCT	0.00
TTC	3.76	TCC	1.25
TTA	0.00	TCA	0.25
TTG	0.00	TCG	0.75
CTT	0.00	ССТ	0.25
стс	4.01	ccc	4.01
CTA	0.00	CCA	0.25
CTG	9.52	CCG	2.76
ATT	0.00	ACT	0.25
ATC	4.26	ACC	4.01
ATA	0.25	ACA	0.00
ATG	2.26	ACG	1.75

Table 32 (continued)

codon	%	codon	%
GTT	0.00	GCT	0.00
GTC	3.01	GCC	8.52
GTA	0.00	GCA	0.50
GTG	2.51	GCG	3.01

Table 33

codon	%	codon	%
TAT	0.00	TGT	0.25
TAC	1.25	TGC	0.50
TAA	0.25	TGA	0.00
TAG	0.00	TGG	1.00
CAT	0.25	CGT	0.75
CAC	2.26	CGC	5.51
CAA	0.00	CGA	1.25
CAG	3.01	CGG	3.26
AAT	0.00	AGT	0.00
AAC	1.00	AGC	1.00
AAA	0.25	AGA	0.25
AAG	1.00	AGG	0.00
GAT	0.00	GGT	0.25
GAC	7.52	GGC	4.76
GAA	1.00	GGA	0.25
GAG	4.76	GGG	1.25

Table 34

codon	%	codon	%
TTT	1.75	тст	1.25
ттс	2.01	TCC	0.50
TTA	1.25	TCA	0.50
TTG	3.26	TCG	0.00
СТТ	3.51	ССТ	2.76
CTC	2.51	CCC	1.25
CTA	1.25	CCA	2.76
CTG	1.75	CCG	0.50
ATT	2.26	ACT	2.01
ATC	1.25	ACC	1.75
ATA	1.00	ACA	1.75
ATG	2.26	ACG	0.50

Table 34 (continued)

codon	%	codon	%
GTT	2.26	GCT	4.51
GTC	1.00	GCC	2.76
GTA	0.50	GCA	3.76
GTG	1.75	GCG	1.00

Table 35

	iabi	E 33	
codon	%	codon	%
TAT	0.50	TGT	0.25
TAC	0.75	TGC	0.50
TAA	0.25	TGA	0.00
TAG	0.00	TGG	1.00
CAT	1.25	CGT	1.75
CAC	1.25	CGC	1.50
CAA	1.50	CGA	0.75
CAG	1.50	CGG	0.75
AAT	0.50	AGT	0.50
AAC	0.50	AGC	0.50
AAA	0.50	AGA	3.26
AAG	0.75	AGG	3.01
GAT	4.76	GGT	2.01
GAC	2.76	GGC	1.25
GAA	2.76	GGA	2.01
GAG	3.01	GGG	1.25

(2) Production of a transformed E. coli having the present invention protein (A25)S

[0542] The DNA having the nucleotide sequence shown in SEQ ID NO: 393 obtained in Example 71(1) was digested with restriction enzymes Ndel and HindIII. The obtained DNA and the plasmid pKSN2 digested with Ndel and HindIII were ligated to obtain a plasmid in which the DNA having the nucleotide sequence shown in SEQ to NO: 393 is inserted between the Ndel site and the HindIII site of pKSN2 (hereinafter referred to as "pKSN1609soy"). Said plasmid was introduced into E. coli JM109. The obtained E. coli transformant was designated JM 109/pKSN 1609soy.

(3) Expression of the present invention protein (A25)S in E. coli and recovery of said protein

[0543] Similarly to Example 4(2), each of E. coli JM109/pKSN1609soy obtained in Example 71(2) and E. coli JM109/pKSN1609F obtained in Example 67(1) was cultured. The cells were recovered. Cell lysate solutions were prepared. Under the method described in Example 4(2), supernatant fractions were prepared from the cell lysate solutions (hereinafter, the supernatant fraction obtained from E. coli JM109/pKSN1609soy is referred to as "E. coli pKSN1609soy extract" and the supernatant fraction obtained from E. coli JM109/pKSN1609F is referred to as "E. coli pKSN1609F extract"). The amount of P450 per the protein amount contained in E. coli pKSN1609F extract.

Example 72 Preparation of the Present Invention Antibody (A) Recognizing the Present Invention Protein (A25) (hereinafter referred to as "present invention antibody (A25)")

(1) Preparation of the extract of an E. coli expressing the present invention protein (A25)

[0544] In accordance with the method described in Example 4(2), E. coli JM109/pKSN1609soy, produced in Example 71(2), was pre-cultured overnight. The obtained cultured medium was inoculated to 1L of TB medium containing 50μg/ml of ampicillin and cultured at 26°C. Then 5-aminolevulinic acid was added to the final concentration of 500μM, and IPTG was added to a final concentration of 1mM, and that was further cultured. The cells were recovered from the cultured medium, were washed with 0.05M Tris-HCl Buffer (pH7.5) and then suspended in 100ml of said buffer containing 1mM PMSF. The obtained cell culture medium was subjected 3 times to a sonicator (Sonifier (Branson Sonic Power Company)) at 10 minutes each under the conditions of output 5, duty cycle 30%, in order to obtain cell lysate solutions. After centrifuging the cell lysate solutions (9,000xg, 10 minutes) the supernatants were recovered and centrifuged (200,000xg, 70 minutes) to recover supernatant fractions (hereinafter, the supernatant fraction obtained from E. coli JM109/pKSN1609soy is referred to as "E. coli pKSN1609soy extract"

(2) Purification of the present invention protein (A25)

5

10

15

20

25

30

35

40

50

55

[0545] The supernatant fraction obtained in Example 72(1) (E. coli pKSN1609soy extract) was injected into a Hiload HiLoad16/10 Q Sepharose HP column (Amersham Bioscience Company). Next, after flowing 40ml of 20mM bistrispropane buffer (pH7.0) into the column, 20mM bistrispropane buffer was flown with a linear gradient of NaCl (gradient of NaCl was 0.00125M/minute, range of NaCl concentration was from 0M to 0.375M, flow rate was 3ml/minute) to fraction recover 10ml of fractions eluting at the NaCl concentration of from 0.088M to 0.100M.

[0546] The recovered fractions were subjected to a PD-10 column (Amersham Biosciences Company) and eluted with 20mM bistrispropane buffer (pH7.0) to recover the fractions containing protein. Next, said fractions were injected into a MonoQ HR 10/10 (Amersham Biosciences Company). Sixteen milliliters (16ml) of 20mM bistrispropane buffer was flown into the column. Next, 20mM bistrispropane buffer was flown with a linear gradient of NaCl (gradient of NaCl was 0.001042M/minute, range of NaCl concentration was from 0M to 0.25M, flow rate was 4ml/minute) to fraction recover 8ml of fractions eluting at the NaCl concentration of from 0.060M to 0.069M.

[0547] The recovered fractions were diluted 2.5 fold with 20mM bistrispropane buffer (pH7.0) and injected into a MonoQ HR 5/5 column (Amersham Biosciences Company). Next, after flowing 2ml of 20mM bistrispropane buffer (pH7.0) into the column, 20mM bistrispropane buffer was flown with a linear gradient of NaCl (gradient of NaCl was 0.008333M/minute, range of NaCl concentration was from 0M to 0.25M, flow rate was 1ml/minute) to fraction recover 0.5ml of fractions eluting at the NaCl concentration of from 0.073M to 0.077M.

[0548] The fractions purified in such a way were analyzed with SDS-PAGE by utillizing a "PAG mini Daiichi 10/20" (Daiichi Pure Chemicals Co., Ltd.) to confirm that those fractions were fractions which mainly contain the present invention protein (A25).

(3) Preparation of the present invention antibody (A25)

[0549] Preparation of the present invention antibody was conducted accordingly to the method described in Example 44(3). However, instead of utilizing the present invention protein (A1), the present invention protein (A25) obtained in Example 72(2) was utilized to obtain antiserum containing the present invention antibody (A25).

45 Example 73 Detection of the Present Invention Protein by the Present Invention Antibody (A25)

[0550] An immunoblot was conducted by utilizing the present invention antibody (A25) obtained in Example 72(3) with each of the E. coli extracts. There was a SDS polyacrylamide electrophoresis (40mA, 1 hour) of: the E. coli pKSN452F extract obtained in Example 49(2) (containing about 2pmol of the present invention protein (A16)); the E. coli pKSN608F extract obtained in Example 51(2) (containing about 2pmol of the present invention protein (A17)); the E. coli pKSN646BF extract obtained in Example 53(2) (containing about 2pmol of the present invention protein (A18)); the E. coli pKSN1502F extract obtained in Example 55(2) (containing about 2pmol of the present invention protein (A20)); the E. coli pKSN1525F extract obtained in Example 57(2) (containing about 2pmol of the present invention protein (A21)); the E. coli pKSN1543BF extract obtained in Example 61(2) (containing about 2pmol of the present invention protein (A22)); the E. coli pKSN1584F extract obtained in Example 63(2) (containing about 2pmol of the present invention protein (A23)); the E. coli pKSN1589BF extract obtained in Example 65(2) (containing about 2pmol of the present invention protein (A23)); the E. coli pKSN1589BF extract obtained in Example 65(2) (containing about 2pmol of the present invention protein (A24)); the E. coli pKSN1589BF extract obtained in Example 67(2) (containing about 2pmol of the present invention protein (A24)); the E. coli pKSN1589BF extract obtained in Example 67(2) (containing about 2pmol of the present invention protein (A24)); the E. coli pKSN1589BF extract obtained in Example 67(2) (containing about 2pmol of the present invention protein (A24)); the E. coli pKSN1589BF extract obtained in Example 67(2) (containing about 2pmol of the present invention protein (A24)); the E. coli pKSN1609F extract obtained in Example 67(2) (containing about 2pmol of the present invention protein (A24)); the E. coli pKSN1609F extract obtained in Example 67(2) (containing about 2pmol of the present invention protein (A24));

about 0.5pmol of the present invention protein (A25)); the E. coli pKSN1584soy extract obtained in Example 70(3) (containing about 2pmol of the present invention protein (A23)); the E. coli pKSN1609soy extract obtained in Example 71(3) (containing about 0.5pmol of the present invention protein (A25)); and the E. coli pKSN2 extract obtained in Example 67(2) (containing about 0.8mg of protein). The proteins in said gel were transferred to a PVDF membrane according to the method described in Example 45. The PDVF membrane obtained in Example 45 (hereinafter referred to as "PDVF membrane (A)") and the PDVF membrane obtained from the above method (hereinafter referred to as "PDVF membrane (B)") were reacted with the antiserum obtained in Example 72(3), according to the method described Example 45. Subsequently, there was conducted a reaction with the secondary antibody, a washing and a staining in accordance with the method described in Example 45. Stains for bands corresponding to the present invention proteins (A1), (A2), (A3), (A4), (A11), (A12), (A13), (A14) and (A15) as well as the present proteins (A9) and (A10) were detected on the PDVF membrane (A). Stains for bands corresponding to the present invention proteins (A16), (A17), (A18), (A19), (A20), (A21), (A22), (A23), (A24) and (A25) were detected on the PDVF membrane (B). No stained band was detected with the reagent of E. coli pKSN2 extract obtained in Example 4(2) (containing 0.78mg of protein) of PVDF membrane (A) and with the reagent of E. coli pKSN2 extract obtained in Example 67(2) (containing 0.8mg of protein) of PVDF membrane (B).

Example 74 Introduction of the Present Invention DNA (A23)S into a Plant

5

10

15

20

25

30

35

40

45

50

55

(1) Construction of a Chloroplast Expression Plasmid Containing the Present Invention DNA (A23)S for Direct Introduction - part 1

[0551] A plasmid containing a chimeric DNA in which the present invention DNA (A23)S was connected immediately after the nucleotide sequence encoding the chloroplast transit peptide of soybean (cv. Jack) RuBPC small subunit without a change of frames in the codons was constructed as a plasmid for introducing the present invention DNA (A23)S into a plant with the particle gun method.

[0552] First, DNA comprising the nucleotide sequence shown in SEQ ID NO: 398 was amplified by PCR. The PCR was conducted by utilizing as a template pKSN1584soy obtained in Example 70(2) and by utilizing as primers an oligonucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 397 and an oligonucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 398. The PCR utilized KOD-plus (Toyobo Company). The PCR carried out after conducting once a maintenance at 94°C for 2 minutes; 20 cycles of a cycle that included maintaining 94°C for 30 seconds, followed by 53°C for 30 seconds, and followed by 68°C for 90 seconds; and a final maintenance at 68°C for 3 minutes. The amplified DNA was recovered and purified with MagExtractor-PCR & Gel-Clean up (Toyobo Company) by conducting the procedures according to the attached manual. By treating the obtained DNA with TaKaRa BKLKit (Takara Shuzo Company) according to the attached manual, the DNA was blunt ended and had the 5' terminus phosphorylated. A DNA comprising a nucleotide sequence shown in SEQ ID NO: 368 was recovered. After digesting plasmid pUC19 (Takara Shuzo Company) with Smal, the 5' terminus was dephosphorylated with calf intestine alkaline phosphatase (Takara Shuzo Company). A plasmid was produced by ligating the resulting dephosphorylated DNA and the DNA comprising the nucleotide sequence shown in SEQ ID NO: 368. After digesting the obtained plasmid with restriction enzymes EcoT22I and SacI, the DNA comprising the nucleotide sequence shown in SEQ ID NO: 368 was recovered. After digesting plasmid pUCrSt657 obtained in Example 16(2) with restriction enzymes EcoT22I and SacI, there was isolated a DNA of about 2.9kbp having a nucleotide sequence derived from pUC19 and a sequence encoding a chloroplast transit peptide of soybean (cv. Jack) RuBPC small subunit. The obtained DNA and the above DNA comprising the nucleotide sequence shown in SEQ ID NO: 368 were ligated to obtain pUCrSt1584soy (Fig. 54) containing a chimeric DNA in which the present invention DNA (A23)S was connected immediately after the nucleotide sequence encoding the chloroplast transit peptide of soybean (cv. Jack) RuBPC small subunit without a change of frames in the codons.

[0553] The obtained plasmid pUCrSt1584soy was digested with restriction enzymes BamHI and SacI to isolate a DNA comprising a nucleotide sequence shown in SEQ ID NO: 368. Said DNA was inserted between the BgIII restriction site and the SacI restriction site of plasmid pNdG6- Δ T obtained in Example 16(2) to obtain plasmid pSUM-NdG6-rSt-1584soy (Fig. 55) wherein the CR16G6 promoter has connected downstream the chimeric DNA in which said DNA was connected immediately after the nucleotide sequence encoding the chloroplast transit peptide of soybean (cv. Jack) RuBPC small subunit without a change of frames in the codons.

[0554] Next, the plasmid was introduced into E. coli DH5 α competent cells (Takara Shuzo Company) and the ampicillin resistant cells were selected. Further, the nucleotide sequences of the plasmids contained in the ampicillin resistant strains were determined by utilizing BigDye Terminator Cycle Sequencing Ready Reaction kit v3.0 (PE Applied Biosystems Company) and DNA sequencer 3100 (PE Applied Biosystems Company). As a result, it was confirmed that plasmid pSUM-NdG6-rSt-1584soy has the nucleotide sequence shown in SEQ ID NO: 368.

(2) Construction of a chloroplast expression plasmid having the present invention DNA (A23)S for direct introduction - part (2)

[0555] A plasmid was constructed for introducing the present invention DNA (A23)S into a plant with the particle gun method. The plasmid contained a chimeric DNA in which the present invention DNA (A23)S was connected immediately after the nucleotide sequences encoding the chloroplast transit peptide of soybean (cv. Jack) RuBPC small subunit and encoding thereafter 12 amino acids of the mature protein, without a change of frames in the codons. First, DNA comprising the nucleotide sequence shown in SEQ ID NO: 368 was amplified by PCR. The PCR was conducted by utilizing as a template pKSN1584soy obtained in Example 70 and by utilizing as primers an oligonucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 399 and an oligonucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 398. The PCR utilized KOD-plus (Toyobo Company). The PCR carried out after conducting once a maintenance at 94°C for 2 minutes; 25 cycles of a cycle that included maintaining 94°C for 30 seconds, followed by 46°C for 30 seconds, and followed by 68°C for 90 seconds; and a final maintenance at 68°C for 3 minutes. The amplified DNA was recovered and purified with MagExtractor-PCR & Gel-Clean up (Toyobo Company) by conducting the procedures according to the attached manual. By treating the obtained DNA with TaKaRa BKLKit (Takara Shuzo Company) according to the attached manual, the DNA was blunt ended and had the 5' terminus phosphorylated. A DNA comprising a nucleotide sequence shown in SEQ ID NO: 368 was recovered. After digesting plasmid pKF19 Δ Bs obtained in Example 15(3) with Smal, the 5' terminus was dephosphorylated with calf intestine alkaline phosphatase (Takara Shuzo Company). A plasmid was produced by ligating the resulting dephosphorylated DNA and the DNA comprising the nucleotide sequence shown in SEQ ID NO: 368. After digesting the obtained plasmid with restriction enzymes BspHI and Sacl, the DNA comprising the nucleotide sequence shown in SEQ ID NO: 368 was recovered. Next, plasmid pKFrSt12-657 obtained in Example 16(3) was digested with restriction enzymes BspHI and SacI to isolate the DNA derived from plasmid pKFrSt12. Said DNA was ligated with the DNA which was digested with restriction enzymes Sacl and BspHI and which comprises the nucleotide sequence shown in SEQ ID NO: 368, in order to obtain plasmid pKFrSt12-1584soy (Fig. 56) containing the chimeric DNA in which the present invention DNA (A23)S was connected immediately after the nucleotide sequences encoding the chloroplast transit peptide of soybean (cv. Jack) RuBPC small subunit and encoding thereafter 12 amino acids of the mature protein, without a change of frames in the codons. [0556] The obtained plasmid pKFrSt12-1584soy was digested with restriction enzymes BamHI and Sac[to isolate the DNA comprising the nucleotide sequence shown in SEQ ID NO: 368. Said DNA was inserted between the BgIII restriction site and the SacI restriction site of plasmid pNdG6- \(\Delta \) T to obtain plasmid pSUM-NdG6-rSt 12-1584soy (Fig. 57) wherein the CR16G6 promoter has connected downstream the chimeric DNA in which said DNA was connected immediately after the nucleotide sequence encoding the chloroplast transit peptide of soybean (cv. Jack) RuBPC small subunit without a change of frames in the codons.

[0557] Next, the plasmid was introduced into E. coli DH5 α competent cells (Takara Shuzo Company) and the ampicillin resistant cells were selected. Further, the nucleotide sequences of the plasmids contained in the ampicillin resistant strains were determined by utilizing BigDye Terminator Cycle Sequencing Ready Reaction kit v3.0 (PE Applied Biosystems Company) and DNA sequencer 3100 (PE Applied Biosystems Company). As a result, it was confirmed that plasmid pSUM-NdG6-rSt12-1584soy has the nucleotide sequence shown in SEQ ID NO: 368.

(3) Introduction of the present invention DNA (A23)S into soybean

[0558] The globular embryos of soybeans (cultivar: Fayette and Jack) were prepared according to the method described in Example 47(3).

[0559] The obtained globular embryo was transplanted into fresh somatic embryo growth medium and cultured for 2 to 3 days. The plasmid pSUM-NdG6-rSt-1584soy produced in Example 74(1) or the plasmid pSUM-NdG6-rSt12-1584soy produced in Example 74(2) were introduced into those globular embryos according to the method described in Example 17(2).

(4) Selection of somatic embryo with hygromycin

5

10

15

20

25

30

35

40

45

50

55

[0560] Selection by hygromycin of a spherica-typel embryo after the introduction of the gene, obtained in Example 74(3), is conducted according to the method described in Example 47(4).

(5) Selection of somatic embryo with compound (II)

[0561] Selection by compound (II) of a globular embryo after the introduction of the gene, obtained in Example 74 (3), is conducted according to the method described in Example 47(5).

(6) Plant regeneration from the somatic embryo, acclimation and cultivation

[0562] In accordance with the method described in Example 47(6), the plant regeneration is conducted from the globular embryos selected in Examples 74(4) or 74(5).

[0563] The plant with roots and developed leaves undergo the acclimation and cultivation accordingly with the method described in Example 17(6) and are harvested.

(7) Evaluation of the resistance to herbicidal compound (II)

5

10

15

20

25

35

40

45

50

[0564] The degree of resistance against compound (II) of the regenerated plant obtained in Example 74(6) is evaluated in accordance with the method described in Example 17(4).

(8) Construction of a chloroplast expression plasmid having the present invention DNA (A23)S for agrobacterium introduction

[0565] A plasmid for introducing the present invention DNA (A23)S into a plant with the agrobacterium method is constructed. Plasmid pSUM-NdG6-rSt-1584soy was digested with restriction enzymes HindIII and EcoRI, to isolate the chimeric DNA in which the present invention DNA (A23)S was connected immediately after the nucleotide sequence encoding the chloroplast transit peptide of soybean (cv. Jack) RuBPC small subunit without a change of frames in the codons. Said DNA was inserted into between the HindIII restriction site and the EcoRI restriction site of the above binary plasmid vector pBI121S obtained in Example 18 to obtain plasmid pBI-NdG6-rSt-1584soy (Fig. 58). Further, plasmid pSUM-NdG6-rSt12-1584soy was digested with restriction enzyme NotI, to isolate a chimeric DNA in which the present invention DNA (A23)S was connected immediately after the nucleotide sequences encoding the chloroplast transit peptide of soybean (cv. Jack) RuBPC small subunit and encoding thereafter 12 amino acids of the mature protein, without a change of frames in the codons. Such a DNA was inserted between the HindIII restriction site and EcoRI restriction site of the above binary plasmid vector pBI121S to obtain plasmids pBI-NdG6-rSt12-1584soy (Fig. 59).

(9) Introduction of the present invention DNA (A23)S to tobacco

30 [0566] The present invention DNA (A23)S was introduced into tobacco with the agrobacterium method, utilizing plasmid pBI-NdG6-rSt-1584soy and pBI-NdG6-rSt12-1584soy obtained in Example 74(8).

[0567] First, in accordance with the method described in Example 19, each of the plasmids pBI-NdG6-rSt-1584soy and pBI-NdG6-rSt12-1584soy was introduced into Agrobacterium tumefaciens LBA4404 (Clontech Company). Each of the transgenic agrobacterium bearing pBI-NdG6-rSt-1584soy or pBI-NdG6-rSt12-1584soy were isolated.

[0568] Next, said agrobacterium bearing the plasmids are utilized to introduce genes into tobacco according to the method described in Example 47(9) to obtain, respectively, transgenic tobaccos which have incorporated the T-DNA region ofpBI-NdG6-rSt-1584soy or pBI-NdG6-rSt12-1584soy.

(10) Evaluation of the resistance utilizing a leaf piece of the present invention DNA (A23)S transgenic tobacco

[0569] Leaves are taken from 35 transgenic tobaccos obtained in Example 74(9). Each leaf is divided into pieces in which each piece is 5 to 7mm wide. Leaf pieces are planted onto MS agar medium containing compound (II) or compound (XII) and cultured in the light at room temperature. After several days of culturing, the herbicidal damage of each of the leaf pieces is observed. As a control, leaf pieces of wild type tobacco are utilized. The resistance of the transgenic tobacco is evaluated by scoring the leaf pieces which continuously grow, leaf pieces which have chemical damage, and leaf pieces which turned white and have withered.

Example 75 Introduction of the Present Invention DNA (A25)S into a Plant

(1) Construction of a Chloroplast Expression Plasmid Containing the Present Invention DNA (A25)S for Direct Introduction - part 1

[0570] A plasmid containing a chimeric DNA in which the present invention DNA (A25)S was connected immediately after the nucleotide sequence encoding the chloroplast transit peptide of soybean (cv. Jack) RuBPC small subunit without a change of frames in the codons was constructed as a plasmid for introducing the present invention DNA (A25)S into a plant with the particle gun method.

[0571] First, DNA comprising the nucleotide sequence shown in SEQ ID NO: 393 was amplified by PCR. The PCR was conducted by utilizing as a template pKSN1609soy obtained in Example 71(2) and by utilizing as primers an

oligonucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 400 and an oligonucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 401. The PCR utilized KOD-plus (Toyobo Company). The PCR carried out after conducting once a maintenance at 94°C for 2 minutes; 20 cycles of a cycle that included maintaining 94°C for 30 seconds, followed by 53°C for 30 seconds, and followed by 68°C for 90 seconds; and a final maintenance at 68°C for 3 minutes. The amplified DNA was recovered and purified with MagExtractor-PCR & Gel-Clean up (Toyobo Company) by conducting the procedures according to the attached manual. By treating the obtained DNA with TaKaRa BKLKit (Takara Shuzo Company) according to the attached manual, the DNA was blunt ended and had the 5' terminus phosphorylated. A DNA comprising a nucleotide sequence shown in SEQ ID NO: 393 was recovered. After digesting plasmid pUC 19 (Takara Shuzo Company) with Smal, the 5' terminus was dephosphorylated with calf intestine alkaline phosphatase (Takara Shuzo Company). A plasmid was produced by ligating the resulting dephosphorylated DNA and the DNA comprising the nucleotide sequence shown in SEQ ID NO: 393. After digesting the obtained plasmid with restriction enzymes EcoT22I and SacI, the DNA comprising the nucleotide sequence shown in SEQ ID NO: 393 was recovered. After digesting plasmid pUCrSt657 obtained in Example 16(2) with restriction enzymes EcoT22I and SacI, there was isolated a DNA of about 2.9kbp having a nucleotide sequence derived from pUC 19 and a sequence encoding a chloroplast transit peptide of soybean (cv. Jack) RuBPC small subunit. The obtained DNA and the above DNA comprising the nucleotide sequence shown in SEQ ID NO: 393 were ligated to obtain pUCrSt1609soy (Fig. 60) containing a chimeric DNA in which the present invention DNA (A25)S was connected immediately after the nucleotide sequence encoding the chloroplast transit peptide of soybean (cv. Jack) RuBPC small subunit without a change of frames in the codons.

10

15

20

25

30

35

40

45

50

55

[0572] The obtained plasmid pUCrSt1609soy was digested with restriction enzymes BamHI and SacI to isolate a DNA comprising a nucleotide sequence shown in SEQ ID NO: 393. Said DNA was inserted between the BgIII restriction site and the SacI restriction site of plasmid pNdG6-Δ T to obtain plasmid pSUM-NdG6-rSt-1609soy (Fig. 61) wherein the CR16G6 promoter has connected downstream the chimeric DNA in which said DNA was connected immediately after the nucleotide sequence encoding the chloroplast transit peptide of soybean (cv. Jack) RuBPC small subunit without a change of frames in the codons.

[0573] Next, the plasmid was introduced into E. coli DH5 α competent cells (Takara Shuzo Company) and the ampicillin resistant cells were selected. Further, the nucleotide sequences of the plasmids contained in the ampicillin resistant strains were determined by utilizing BigDye Terminator Cycle Sequencing Ready Reaction kit v3.0 (PE Applied Biosystems Company) and DNA sequencer 3100 (PE Applied Biosystems Company). As a result, it was confirmed that plasmid pSUM-NdG6-rSt-1609soy has the nucleotide sequence shown in SEQ ID NO: 393.

(2) Construction of a chloroplast expression plasmid having the present invention DNA (A25)S for direct introduction - part (2)

[0574] A plasmid was constructed for introducing the present invention DNA (A25)S into a plant with the particle gun method. The plasmid contained a chimeric DNA in which the present invention DNA (A25)S was connected immediately after the nucleotide sequences encoding the chloroplast transit peptide of soybean (cv. Jack) RuBPC small subunit and encoding thereafter 12 amino acids of the mature protein, without a change of frames in the codons. First, plasmid pUCrSt1609soy obtained in Example 75(1) has inserted into its EcoT22I restriction site, the linker EcoT22I-12aa-EcoT221 (Fig. 62) obtained by annealing the oligonucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 402 and the oligonucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 403. There was obtained plasmid pUCrSt12-1609soy (Fig. 63) containing the chimeric DNA in which the present invention DNA (A25)S was connected immediately after the nucleotide sequences encoding the chloroplast transit peptide of soybean (cv. Jack) RuBPC small subunit and encoding thereafter 12 amino acids of the mature protein, without a change of frames in the codons.

[0575] The obtained plasmid pUCrSt12-1609soy was digested with restriction enzymes BamHI and SacI to isolate the DNA comprising the nucleotide sequence shown in SEQ ID NO: 393. Said DNA was inserted between the BgIII restriction site and the SacI restriction site of plasmid pNdG6- Δ T, obtained in Example 16(2), to obtain plasmid pSUM-NdG6-rSt12-1609soy (Fig. 64) wherein the CR16G6 promoter has connected downstream the chimeric DNA in which said DNA was connected immediately after the nucleotide sequence encoding the chloroplast transit peptide of soybean (cv. Jack) RuBPC small subunit without a change of frames in the codons.

[0576] Next, the plasmid was introduced into E. coli DH5 α competent cells (Takara Shuzo Company) and the ampicillin resistant cells were selected. Further, the nucleotide sequences of the plasmids contained in the ampicillin resistant strains were determined by utilizing BigDye Terminator Cycle Sequencing Ready Reaction kit v3.0 (PE Applied Biosystems Company) and DNA sequencer 3100 (PE Applied Biosystems Company). As a result, it was confirmed that plasmid pSUM-NdG6-rSt12-1609soy has the nucleotide sequence shown in SEQ ID NO: 393.

(3) Introduction of the present invention DNA (A23)S into soybean

[0577] The globular embryos of soybeans (cultivar: Fayette and Jack) were prepared according to the method described in Example 47(3).

[0578] The obtained globular embryo was transplanted into fresh somatic embryo growth medium and cultured for 2 to 3 days. The plasmid pSUM-NdG6-rSt-1609soy produced in Example 75(1) or the plasmid pSUM-NdG6-rSt12-1609soy produced in Example 75(2) were introduced into those globular embryos according to the method described in Example 17(2).

10 (4) Selection of somatic embryo with hygromycin

[0579] Selection by hygromycin of a globular embryo after the introduction of the gene, obtained in Example 75(3), is conducted according to the method described in Example 47(4).

15 (5) Selection of somatic embryo with compound (II)

25

30

50

[0580] Selection by compound (II) of a globular embryo after the introduction of the gene, obtained in Example 75 (3), is conducted according to the method described in Example 47(5).

(6) Plant regeneration from the somatic embryo, acclimation and cultivation

[0581] In accordance with the method described in Example 47(6), the plant regeneration is conducted from the globular embryos selected in Examples 74(4) or 74(5).

[0582] The plant with roots and developed leaves undergo the acclimation and cultivation accordingly with the method described in Example 17(6) and are harvested.

(7) Evaluation of the resistance to herbicidal compound (II)

[0583] The degree of resistance against compound (II) of the regenerated plant obtained in Example 75(6) is evaluated in accordance with the method described in Example 17(4).

(8) Construction of a chloroplast expression plasmid having the present invention DNA (A25)S for agrobacterium introduction

[0584] A plasmid for introducing the present invention DNA (A25)S into a plant with the agrobacterium method is constructed. Plasmid pSUM-NdG6-rSt-1609soy was digested with restriction enzymes HindIII and EcoRI, to isolate the chimeric DNA in which the present invention DNA (A25)S was connected immediately after the nucleotide sequence encoding the chloroplast transit peptide of soybean (cv. Jack) RuBPC small subunit without a change of frames in the codons. Said DNA was inserted into between the HindIII restriction site and the EcoRI restriction site of the binary plasmid vector pBI121S obtained in Example 18 to obtain plasmid pBI-NdG6-rSt-1609soy (Fig. 65). Further, plasmid pSUM-NdG6-rSt12-1609soy was digested with restriction enzyme NotI, to isolate a chimeric DNA in which the present invention DNA (A25)S was connected immediately after the nucleotide sequences encoding the chloroplast transit peptide of soybean (cv. Jack) RuBPC small subunit and encoding thereafter 12 amino acids of the mature protein, without a change of frames in the codons. Such a DNA was inserted between the HindIII restriction site and EcoRI restriction site of the above binary plasmid vector pBI121S to obtain plasmids pBI-NdG6-rSt12-1609soy (Fig. 66).

(9) Introduction of the present invention DNA (A23)S to tobacco

[0585] The present invention DNA (A25)S was introduced into tobacco with the agrobacterium method, utilizing plasmid pBI-NdG6-rSt-1609soy and pBI-NdG6-rSt12-1609soy obtained in Example 75(8).

[0586] First, in accordance with the method described in Example 19, each of the plasmids pBI-NdG6-rSt-1609soy and pBI-NdG6-rSt12-1609soy was introduced into Agrobacterium tumefaciens LBA4404 (Clontech Company). Each of the transgenic agrobacterium bearing pBI-NdG6-rSt-1609soy or pBI-NdG6-rSt12-1609soy were isolated.

[0587] Next, said agrobacterium bearing the plasmids are utilized to introduce genes into tobacco according to the method described in Example 47(9) to obtain, respectively, transgenic tobaccos which have incorporated the T-DNA region of pBI-NdG6-rSt-1609soy or pBI-NdG6-rSt12-1609soy.

(10) Evaluation of the resistance utilizing a leaf piece of the present invention DNA (A25)S transgenic tobacco

[0588] Leaves are taken from the transgenic tobaccos obtained in Example 75(9). Such leaves are utilized to evaluate the resistance of the transgenic tobacco against compound (II) or compound (XII) according to the method of Example 74(10).

APPLICABILITY TO INDUSTRY

[0589] With the present invention, it is possible to provide a protein having the ability to metabolize a PPO inhibiting herbicidal compound and to convert such a compound to a compound of lower herbicidal activity; a DNA encoding such a protein; and a plant resistant to a herbicidal compound expressing such a protein.

SEQUENCE FREE TEXT

15 [0590]

5

SEQ ID NO: 35 Designed oligonucleotide primer for PCR SEQ ID NO: 36 20 Designed oligonucleotide primer for PCR SEQ ID NO: 37 Designed oligonucleotide primer for PCR SEQ ID NO: 38 Designed oligonucleotide primer for PCR 25 SEQ ID NO: 39 Designed oligonucleotide primer for PCR SEQ ID NO: 40 Designed oligonucleotide primer for PCR SEQ ID NO: 41 30 Designed oligonucleotide primer for PCR SEQ ID NO: 42 Designed oligonucleotide primer for PCR SEQ ID NO: 43 Designed oligonucleotide primer for PCR 35 SEQ ID NO: 44 Designed oligonucleotide primer for PCR SEQ ID NO: 45 Designed oligonucleotide primer for PCR SEQ ID NO: 46 40 Designed oligonucleotide primer for PCR SEQ ID NO: 47 Designed oligonucleotide primer for PCR SEQ ID NO: 48 Designed oligonucleotide primer for PCR 45 SEQ ID NO: 49 Designed oligonucleotide primer for PCR SEQ ID NO: 50 Designed oligonucleotide primer for PCR SEQ ID NO: 51 50 Designed oligonucleotide primer for PCR SEQ ID NO: 52 Designed oligonucleotide primer for PCR SEQ ID NO: 53 Designed oligonucleotide primer for PCR 55 SEQ ID NO: 54 Designed oligonucleotide primer for PCR SEQ ID NO: 55 Designed oligonucleotide primer for PCR

	SEQ ID NO: 56 Designed oligonucleotide primer for PCR SEQ ID NO: 57
5	Designed oligonucleotide primer for PCR SEQ ID NO: 58
	Designed oligonucleotide primer for PCR SEQ ID NO: 59
	Designed oligonucleotide primer for PCR SEQ ID NO: 60
10	Designed oligonucleotide primer for PCR SEQ ID NO: 61
	Designed oligonucleotide primer for PCR SEQ ID NO: 62
15	Designed oligonucleotide primer for PCR SEQ ID NO: 63
	Designed oligonucleotide primer for PCR SEQ ID NO: 64
	Designed oligonucleotide primer for PCR SEQ ID NO: 65
20	Designed oligonucleotide primer for PCR SEQ ID NO: 66
	Designed oligonucleotide primer for PCR SEQ ID NO: 67
25	Designed oligonucleotide primer for PCR SEQ ID NO: 68
	Designed oligonucleotide primer for PCR SEQ ID NO: 70
30	Designed oligonucleotide primer for PCR SEQ ID NO: 71 Designed oligonucleotide primer for BCR
30	Designed oligonucleotide primer for PCR SEQ ID NO: 72 Designed oligonucleotide primer for PCR
	SEQ ID NO: 73. Designed oligonucleotide primer for PCR
35	SEQ ID NO: 74 Designed oligonucleotide primer for PCR
	SEQ ID NO: 75 Designed oligonucleotide primer for PCR
40	SEQ ID NO: 76 Designed oligonucleotide primer for PCR
	SEQ ID NO: 77 Designed oligonucleotide primer for PCR
	SEQ ID NO: 79 Designed oligonucleotide primer for PCR
45	SEQ ID NO: 80 Designed oligonucleotide primer for PCR
	SEQ ID NO: 81 Designed oligonucleotide primer for PCR
50	SEQ ID NO: 82 Designed oligonucleotide primer for PCR
	SEQ ID NO: 83 Designed oligonucleotide primer for PCR
	SEQ ID NO: 86 Designed oligonucleotide primer for PCR
55	SEQ ID NO: 87 Designed oligonucleotide primer for PCR
	SEQ ID NO: 89 Designed oligonucleotide linker for construction of expression vector

	SEQ ID NO: 90
	Designed oligonucleotide linker for construction of expression vector SEQ ID NO: 91
5	Designed oligonucleotide linker for construction of expression vector SEQ ID NO: 92
	Designed oligonucleotide linker for construction of expression vector SEQ ID NO: 93
	Designed oligonucleotide primer for PCR SEQ ID NO: 94
10	Designed oligonucleotide primer for PCR SEQ ID NO: 95
	Designed oligonucleotide primer for PCR SEQ ID NO: 96
15	Designed oligonucleotide primer for PCR SEQ ID NO: 97
	Designed oligonucleotide primer for PCR SEQ ID NO: 98
	Designed oligonucleotide linker for construction of expression vector SEQ ID NO: 99
20	Designed oligonucleotide linker for construction of expression vector SEQ ID NO: 100
	Designed oligonucleotide primer for PCR SEQ ID NO: 101
25	Designed oligonucleotide primer for PCR SEQ ID NO: 102
	Designed oligonucleotide primer for PCR SEQ ID NO: 103
	Designed oligonucleotide primer for PCR SEQ ID NO: 104
30	Designed oligonucleotide primer for PCR SEQ ID NO: 105
	Designed oligonucleotide primer for PCR SEQ ID NO: 106
35	Designed oligonucleotide primer for PCR SEQ ID NO: 107
	Designed oligonucleotide primer for PCR SEQ ID NO: 114
	Designed oligonucleotide primer for PCR SEQ ID NO: 115
40	Designed oligonucleotide primer for PCR SEQ ID NO: 116
	Designed oligonucleotide primer for PCR SEQ ID NO: 117
45	Designed oligonucleotide primer for PCR SEQ ID NO: 118
	Designed oligonucleotide primer for PCR SEQ ID NO: 119
	Designed oligonucleotide primer for PCR SEQ ID NO: 120
5 0	Designed oligonucleotide primer for PCR SEQ ID NO: 121
	Designed oligonucleotide primer for PCR SEQ ID NO: 122
55	Designed oligonucleotide primer for PCR SEQ ID NO: 123
	Designed oligonucleotide primer for PCR SEQ ID NO: 124
	Designed oligopucleotide primer for PCR

	SEQ ID NO: 125
	Designed oligonucleotide primer for PCR
	SEQ ID NO: 126
5	Designed oligonucleotide primer for PCR SEQ ID NO: 127
ŭ	Designed oligonucleotide primer for PCR
	SEQ ID NO: 128
	Designed oligonucleotide primer for PCR
	SEQ ID NO: 129
10	Designed oligonucleotide primer for PCR
	SEQ ID NO: 130
	Designed oligonucleotide primer for PCR SEQ ID NO: 131
	Designed oligonucleotide primer for PCR
15	SEQ ID NO: 132
	Designed oligonucleotide primer for PCR
	SEQ ID NO: 133
	Designed oligonucleotide primer for PCR SEQ ID NO: 134
20	Designed oligonucleotide linker for construction of expression vector
	SEQ ID NO: 135
	Designed oligonucleotide linker for construction of expression vector
	SEQ ID NO: 161
25	Designed oligonucleotide primer for PCR SEQ ID NO: 162
20	Designed oligonucleotide primer for PCR
	SEQ ID NO: 163
	Designed oligonucleotide primer for PCR
	SEQ ID NO: 164
30.	Designed oligonucleotide primer for PCR SEQ ID NO: 165
	Designed oligonucleotide primer for PCR
	SEQ ID NO: 166
	Designed oligonucleotide primer for PCR
35	SEQ ID NO: 167
	Designed oligonucleotide primer for PCR SEQ ID NO: 168
	Designed oligonucleotide primer for PCR
	SEQ ID NO: 169
40	Designed oligonucleotide primer for PCR
	SEQ ID NO: 170
	Designed oligonucleotide primer for PCR SEQ ID NO: 171
	Designed oligonucleotide primer for PCR
45	SEQ ID NO: 172
	Designed oligonucleotide primer for PCR
	SEQ ID NO: 173
	Designed oligonucleotide primer for PCR SEQ ID NO: 174
50	Designed oligonucleotide primer for PCR
	SEQ ID NO: 175
	Designed oligonucleotide primer for PCR
	SEQ ID NO: 176
55	Designed oligonucleotide primer for PCR SEQ ID NO: 177
	Designed oligonucleotide primer for PCR
	SEQ ID NO: 178
	Designed oligonucleotide primer for PCR

SEQ ID NO: 184 Designed oligonucleotide primer for PCR SEQ ID NO: 185 Designed oligonucleotide primer for PCR SEQ ID NO: 186 Designed oligonucleotide primer for DNA sequencing SEQ ID NO: 187 Designed oligonucleotide primer for DNA sequencing SEQ ID NO: 188 Designed oligonucleotide primer for DNA sequencing SEQ ID NO: 189 Designed oligonucleotide primer for DNA sequencing SEQ ID NO: 190 Designed oligonucleotide primer for PCR SEQ ID NO: 191 Designed oligonucleotide primer for PCR SEQ ID NO: 192 Designed oligonucleotide primer for PCR SEQ ID NO: 193 Designed oligonucleotide primer for PCR SEQ ID NO: 194 Designed oligonucleotide primer for PCR SEQ ID NO: 195 Designed oligonucleotide primer for PCR SEQ ID NO: 196 Designed oligonucleotide primer for PCR SEQ ID NO: 198 Designed oligonucleotide primer for PCR SEQ ID NO: 198 Designed oligonucleotide primer for PCR SEQ ID NO: 199 Designed oligonucleotide primer for PCR SEQ ID NO: 199 Designed oligonucleotide primer for PCR SEQ ID NO: 200 Designed oligonucleotide primer for PCR SEQ ID NO: 201 Designed oligonucleotide primer for PCR SEQ ID NO: 202 Designed oligonucleotide primer for PCR SEQ ID NO: 203 Designed oligonucleotide primer for PCR SEQ ID NO: 203 Designed oligonucleotide primer for PCR SEQ ID NO: 204 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR		SEQ ID NO: 179
SEQ ID NO: 181 Designed oligonucleotide primer for PCR SEQ ID NO: 182 Designed oligonucleotide primer for PCR SEQ ID NO: 183 Designed oligonucleotide primer for PCR SEQ ID NO: 184 Designed oligonucleotide primer for PCR SEQ ID NO: 185 Designed oligonucleotide primer for PCR SEQ ID NO: 185 Designed oligonucleotide primer for DNA sequencing SEQ ID NO: 187 Designed oligonucleotide primer for DNA sequencing SEQ ID NO: 188 Designed oligonucleotide primer for DNA sequencing SEQ ID NO: 189 Designed oligonucleotide primer for DNA sequencing SEQ ID NO: 190 Designed oligonucleotide primer for DNA sequencing SEQ ID NO: 190 Designed oligonucleotide primer for PCR SEQ ID NO: 191 Designed oligonucleotide primer for PCR SEQ ID NO: 192 Designed oligonucleotide primer for PCR SEQ ID NO: 193 Designed oligonucleotide primer for PCR SEQ ID NO: 194 Designed oligonucleotide primer for PCR SEQ ID NO: 195 Designed oligonucleotide primer for PCR SEQ ID NO: 196 Designed oligonucleotide primer for PCR SEQ ID NO: 197 Designed oligonucleotide primer for PCR SEQ ID NO: 198 Designed oligonucleotide primer for PCR SEQ ID NO: 199 Designed oligonucleotide primer for PCR SEQ ID NO: 199 Designed oligonucleotide primer for PCR SEQ ID NO: 200 Designed oligonucleotide primer for PCR SEQ ID NO: 201 Designed oligonucleotide primer for PCR SEQ ID NO: 203 Designed oligonucleotide primer for PCR SEQ ID NO: 203 Designed oligonucleotide primer for PCR SEQ ID NO: 204 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR		
Designed oligonucleotide primer for PCR SEQ ID NO: 182 Designed oligonucleotide primer for PCR SEQ ID NO: 183 Designed oligonucleotide primer for PCR SEQ ID NO: 184 Designed oligonucleotide primer for PCR SEQ ID NO: 185 Designed oligonucleotide primer for PCR SEQ ID NO: 185 Designed oligonucleotide primer for PCR SEQ ID NO: 186 Designed oligonucleotide primer for DNA sequencing SEQ ID NO: 187 Designed oligonucleotide primer for DNA sequencing SEQ ID NO: 188 Designed oligonucleotide primer for DNA sequencing SEQ ID NO: 189 Designed oligonucleotide primer for DNA sequencing SEQ ID NO: 190 Designed oligonucleotide primer for PCR SEQ ID NO: 191 Designed oligonucleotide primer for PCR SEQ ID NO: 192 Designed oligonucleotide primer for PCR SEQ ID NO: 193 Designed oligonucleotide primer for PCR SEQ ID NO: 195 Designed oligonucleotide primer for PCR SEQ ID NO: 195 Designed oligonucleotide primer for PCR SEQ ID NO: 195 Designed oligonucleotide primer for PCR SEQ ID NO: 195 Designed oligonucleotide primer for PCR SEQ ID NO: 196 Designed oligonucleotide primer for PCR SEQ ID NO: 197 Designed oligonucleotide primer for PCR SEQ ID NO: 198 Designed oligonucleotide primer for PCR SEQ ID NO: 199 Designed oligonucleotide primer for PCR SEQ ID NO: 200 Designed oligonucleotide primer for PCR SEQ ID NO: 201 Designed oligonucleotide primer for PCR SEQ ID NO: 202 Designed oligonucleotide primer for PCR SEQ ID NO: 203 Designed oligonucleotide primer for PCR SEQ ID NO: 204 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR	5	
Designed oligonucleotide primer for PCR SEQ ID NO: 183 Designed oligonucleotide primer for PCR SEQ ID NO: 184 Designed oligonucleotide primer for PCR SEQ ID NO: 185 Designed oligonucleotide primer for PCR SEQ ID NO: 186 Designed oligonucleotide primer for DNA sequencing SEQ ID NO: 187 Designed oligonucleotide primer for DNA sequencing SEQ ID NO: 188 Designed oligonucleotide primer for DNA sequencing SEQ ID NO: 189 Designed oligonucleotide primer for DNA sequencing SEQ ID NO: 189 Designed oligonucleotide primer for PCR SEQ ID NO: 191 Designed oligonucleotide primer for PCR SEQ ID NO: 191 Designed oligonucleotide primer for PCR SEQ ID NO: 192 Designed oligonucleotide primer for PCR SEQ ID NO: 193 Designed oligonucleotide primer for PCR SEQ ID NO: 194 Designed oligonucleotide primer for PCR SEQ ID NO: 195 Designed oligonucleotide primer for PCR SEQ ID NO: 197 Designed oligonucleotide primer for PCR SEQ ID NO: 198 Designed oligonucleotide primer for PCR SEQ ID NO: 199 Designed oligonucleotide primer for PCR SEQ ID NO: 199 Designed oligonucleotide primer for PCR SEQ ID NO: 200 Designed oligonucleotide primer for PCR SEQ ID NO: 201 Designed oligonucleotide primer for PCR SEQ ID NO: 202 Designed oligonucleotide primer for PCR SEQ ID NO: 203 Designed oligonucleotide primer for PCR SEQ ID NO: 204 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 206 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 206 Designed oligonucleotide primer for PCR	Ū	Designed oligonucleotide primer for PCR
Designed oligonucleotide primer for PCR SEQ ID NO: 184 Designed oligonucleotide primer for PCR SEQ ID NO: 185 Designed oligonucleotide primer for PCR SEQ ID NO: 186 Designed oligonucleotide primer for DNA sequencing SEQ ID NO: 187 Designed oligonucleotide primer for DNA sequencing SEQ ID NO: 188 Designed oligonucleotide primer for DNA sequencing SEQ ID NO: 189 Designed oligonucleotide primer for DNA sequencing SEQ ID NO: 190 Designed oligonucleotide primer for PCR SEQ ID NO: 191 Designed oligonucleotide primer for PCR SEQ ID NO: 192 Designed oligonucleotide primer for PCR SEQ ID NO: 193 Designed oligonucleotide primer for PCR SEQ ID NO: 194 Designed oligonucleotide primer for PCR SEQ ID NO: 195 Designed oligonucleotide primer for PCR SEQ ID NO: 196 Designed oligonucleotide primer for PCR SEQ ID NO: 197 Designed oligonucleotide primer for PCR SEQ ID NO: 198 Designed oligonucleotide primer for PCR SEQ ID NO: 199 Designed oligonucleotide primer for PCR SEQ ID NO: 199 Designed oligonucleotide primer for PCR SEQ ID NO: 200 Designed oligonucleotide primer for PCR SEQ ID NO: 201 Designed oligonucleotide primer for PCR SEQ ID NO: 202 Designed oligonucleotide primer for PCR SEQ ID NO: 203 Designed oligonucleotide primer for PCR SEQ ID NO: 203 Designed oligonucleotide primer for PCR SEQ ID NO: 204 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR		Designed oligonucleotide primer for PCR
SEQ ID NO: 184 Designed oligonucleotide primer for PCR SEQ ID NO: 185 Designed oligonucleotide primer for PCR SEQ ID NO: 186 Designed oligonucleotide primer for DNA sequencing SEQ ID NO: 187 Designed oligonucleotide primer for DNA sequencing SEQ ID NO: 188 Designed oligonucleotide primer for DNA sequencing SEQ ID NO: 189 Designed oligonucleotide primer for DNA sequencing SEQ ID NO: 190 Designed oligonucleotide primer for PCR SEQ ID NO: 191 Designed oligonucleotide primer for PCR SEQ ID NO: 192 Designed oligonucleotide primer for PCR SEQ ID NO: 193 Designed oligonucleotide primer for PCR SEQ ID NO: 194 Designed oligonucleotide primer for PCR SEQ ID NO: 195 Designed oligonucleotide primer for PCR SEQ ID NO: 196 Designed oligonucleotide primer for PCR SEQ ID NO: 197 Designed oligonucleotide primer for PCR SEQ ID NO: 198 Designed oligonucleotide primer for PCR SEQ ID NO: 199 Designed oligonucleotide primer for PCR SEQ ID NO: 199 Designed oligonucleotide primer for PCR SEQ ID NO: 200 Designed oligonucleotide primer for PCR SEQ ID NO: 201 Designed oligonucleotide primer for PCR SEQ ID NO: 202 Designed oligonucleotide primer for PCR SEQ ID NO: 203 Designed oligonucleotide primer for PCR SEQ ID NO: 203 Designed oligonucleotide primer for PCR SEQ ID NO: 204 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 206 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 206 Designed oligonucleotide primer for PCR	10	
SEQ ID NO: 185 Designed oligonucleotide primer for PCR SEQ ID NO: 186 Designed oligonucleotide primer for DNA sequencing SEQ ID NO: 187 Designed oligonucleotide primer for DNA sequencing SEQ ID NO: 188 Designed oligonucleotide primer for DNA sequencing SEQ ID NO: 189 Designed oligonucleotide primer for DNA sequencing SEQ ID NO: 190 Designed oligonucleotide primer for PCR SEQ ID NO: 191 Designed oligonucleotide primer for PCR SEQ ID NO: 192 Designed oligonucleotide primer for PCR SEQ ID NO: 193 Designed oligonucleotide primer for PCR SEQ ID NO: 194 Designed oligonucleotide primer for PCR SEQ ID NO: 194 Designed oligonucleotide primer for PCR SEQ ID NO: 196 Designed oligonucleotide primer for PCR SEQ ID NO: 197 Designed oligonucleotide primer for PCR SEQ ID NO: 197 Designed oligonucleotide primer for PCR SEQ ID NO: 199 Designed oligonucleotide primer for PCR SEQ ID NO: 199 Designed oligonucleotide primer for PCR SEQ ID NO: 200 Designed oligonucleotide primer for PCR SEQ ID NO: 201 Designed oligonucleotide primer for PCR SEQ ID NO: 201 Designed oligonucleotide primer for PCR SEQ ID NO: 202 Designed oligonucleotide primer for PCR SEQ ID NO: 203 Designed oligonucleotide primer for PCR SEQ ID NO: 203 Designed oligonucleotide primer for PCR SEQ ID NO: 203 Designed oligonucleotide primer for PCR SEQ ID NO: 204 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR		SEQ ID NO: 184
SEQ ID NO: 186 Designed oligonucleotide primer for DNA sequencing SEQ ID NO: 187 Designed oligonucleotide primer for DNA sequencing SEQ ID NO: 188 Designed oligonucleotide primer for DNA sequencing SEQ ID NO: 189 Designed oligonucleotide primer for DNA sequencing SEQ ID NO: 190 Designed oligonucleotide primer for PCR SEQ ID NO: 191 Designed oligonucleotide primer for PCR SEQ ID NO: 192 Designed oligonucleotide primer for PCR SEQ ID NO: 193 Designed oligonucleotide primer for PCR SEQ ID NO: 194 Designed oligonucleotide primer for PCR SEQ ID NO: 195 Designed oligonucleotide primer for PCR SEQ ID NO: 195 Designed oligonucleotide primer for PCR SEQ ID NO: 196 Designed oligonucleotide primer for PCR SEQ ID NO: 197 Designed oligonucleotide primer for PCR SEQ ID NO: 198 Designed oligonucleotide primer for PCR SEQ ID NO: 199 Designed oligonucleotide primer for PCR SEQ ID NO: 200 Designed oligonucleotide primer for PCR SEQ ID NO: 201 Designed oligonucleotide primer for PCR SEQ ID NO: 202 Designed oligonucleotide primer for PCR SEQ ID NO: 203 Designed oligonucleotide primer for PCR SEQ ID NO: 203 Designed oligonucleotide primer for PCR SEQ ID NO: 203 Designed oligonucleotide primer for PCR SEQ ID NO: 204 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 206 Designed oligonucleotide primer for PCR		SEQ ID NO: 185
SEQ ID NO: 187 Designed oligonucleotide primer for DNA sequencing SEQ ID NO: 188 Designed oligonucleotide primer for DNA sequencing SEQ ID NO: 189 Designed oligonucleotide primer for DNA sequencing SEQ ID NO: 190 Designed oligonucleotide primer for PCR SEQ ID NO: 191 Designed oligonucleotide primer for PCR SEQ ID NO: 192 Designed oligonucleotide primer for PCR SEQ ID NO: 193 Designed oligonucleotide primer for PCR SEQ ID NO: 193 Designed oligonucleotide primer for PCR SEQ ID NO: 194 Designed oligonucleotide primer for PCR SEQ ID NO: 195 Designed oligonucleotide primer for PCR SEQ ID NO: 196 Designed oligonucleotide primer for PCR SEQ ID NO: 197 Designed oligonucleotide primer for PCR SEQ ID NO: 198 Designed oligonucleotide primer for PCR SEQ ID NO: 199 Designed oligonucleotide primer for PCR SEQ ID NO: 200 Designed oligonucleotide primer for PCR SEQ ID NO: 201 Designed oligonucleotide primer for PCR SEQ ID NO: 202 Designed oligonucleotide primer for PCR SEQ ID NO: 203 Designed oligonucleotide primer for PCR SEQ ID NO: 203 Designed oligonucleotide primer for PCR SEQ ID NO: 204 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 206 Designed oligonucleotide primer for PCR SEQ ID NO: 206 Designed oligonucleotide primer for PCR	15	
SEQ ID NO: 188 Designed oligonucleotide primer for DNA sequencing SEQ ID NO: 189 Designed oligonucleotide primer for DNA sequencing SEQ ID NO: 190 Designed oligonucleotide primer for PCR SEQ ID NO: 191 Designed oligonucleotide primer for PCR SEQ ID NO: 192 Designed oligonucleotide primer for PCR SEQ ID NO: 193 Designed oligonucleotide primer for PCR SEQ ID NO: 194 Designed oligonucleotide primer for PCR SEQ ID NO: 195 Designed oligonucleotide primer for PCR SEQ ID NO: 195 Designed oligonucleotide primer for PCR SEQ ID NO: 196 Designed oligonucleotide primer for PCR SEQ ID NO: 197 Designed oligonucleotide primer for PCR SEQ ID NO: 198 Designed oligonucleotide primer for PCR SEQ ID NO: 199 Designed oligonucleotide primer for PCR SEQ ID NO: 200 Designed oligonucleotide primer for PCR SEQ ID NO: 201 Designed oligonucleotide primer for PCR SEQ ID NO: 202 Designed oligonucleotide primer for PCR SEQ ID NO: 203 Designed oligonucleotide primer for PCR SEQ ID NO: 204 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 206 Designed oligonucleotide primer for PCR		
Designed oligonucleotide primer for DNA sequencing SEQ ID NO: 189 Designed oligonucleotide primer for DNA sequencing SEQ ID NO: 190 Designed oligonucleotide primer for PCR SEQ ID NO: 191 Designed oligonucleotide primer for PCR SEQ ID NO: 192 Designed oligonucleotide primer for PCR SEQ ID NO: 193 Designed oligonucleotide primer for PCR SEQ ID NO: 194 Designed oligonucleotide primer for PCR SEQ ID NO: 195 Designed oligonucleotide primer for PCR SEQ ID NO: 196 Designed oligonucleotide primer for PCR SEQ ID NO: 197 Designed oligonucleotide primer for PCR SEQ ID NO: 197 Designed oligonucleotide primer for PCR SEQ ID NO: 198 Designed oligonucleotide primer for PCR SEQ ID NO: 199 Designed oligonucleotide primer for PCR SEQ ID NO: 200 Designed oligonucleotide primer for PCR SEQ ID NO: 201 Designed oligonucleotide primer for PCR SEQ ID NO: 202 Designed oligonucleotide primer for PCR SEQ ID NO: 203 Designed oligonucleotide primer for PCR SEQ ID NO: 204 Designed oligonucleotide primer for PCR SEQ ID NO: 204 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 206 Designed oligonucleotide primer for PCR		
Designed oligonucleotide primer for DNA sequencing SEQ ID NO: 190 Designed oligonucleotide primer for PCR SEQ ID NO: 191 Designed oligonucleotide primer for PCR SEQ ID NO: 192 Designed oligonucleotide primer for PCR SEQ ID NO: 193 Designed oligonucleotide primer for PCR SEQ ID NO: 194 Designed oligonucleotide primer for PCR SEQ ID NO: 195 Designed oligonucleotide primer for PCR SEQ ID NO: 195 Designed oligonucleotide primer for PCR SEQ ID NO: 196 Designed oligonucleotide primer for PCR SEQ ID NO: 197 Designed oligonucleotide primer for PCR SEQ ID NO: 198 Designed oligonucleotide primer for PCR SEQ ID NO: 199 Designed oligonucleotide primer for PCR SEQ ID NO: 200 Designed oligonucleotide primer for PCR SEQ ID NO: 201 Designed oligonucleotide primer for PCR SEQ ID NO: 202 Designed oligonucleotide primer for PCR SEQ ID NO: 203 Designed oligonucleotide primer for PCR SEQ ID NO: 203 Designed oligonucleotide primer for PCR SEQ ID NO: 204 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR	20	Designed oligonucleotide primer for DNA sequencing
Designed oligonucleotide primer for PCR SEQ ID NO: 191 Designed oligonucleotide primer for PCR SEQ ID NO: 192 Designed oligonucleotide primer for PCR SEQ ID NO: 193 Designed oligonucleotide primer for PCR SEQ ID NO: 194 Designed oligonucleotide primer for PCR SEQ ID NO: 195 Designed oligonucleotide primer for PCR SEQ ID NO: 195 Designed oligonucleotide primer for PCR SEQ ID NO: 196 Designed oligonucleotide primer for PCR SEQ ID NO: 197 Designed oligonucleotide primer for PCR SEQ ID NO: 198 Designed oligonucleotide primer for PCR SEQ ID NO: 199 Designed oligonucleotide primer for PCR SEQ ID NO: 200 Designed oligonucleotide primer for PCR SEQ ID NO: 201 Designed oligonucleotide primer for PCR SEQ ID NO: 202 Designed oligonucleotide primer for PCR SEQ ID NO: 203 Designed oligonucleotide primer for PCR SEQ ID NO: 203 Designed oligonucleotide primer for PCR SEQ ID NO: 204 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 206 Designed oligonucleotide primer for PCR		Designed oligonucleotide primer for DNA sequencing
SEQ ID NO: 191 Designed oligonucleotide primer for PCR SEQ ID NO: 192 Designed oligonucleotide primer for PCR SEQ ID NO: 193 Designed oligonucleotide primer for PCR SEQ ID NO: 194 Designed oligonucleotide primer for PCR SEQ ID NO: 195 Designed oligonucleotide primer for PCR SEQ ID NO: 195 Designed oligonucleotide primer for PCR SEQ ID NO: 196 Designed oligonucleotide primer for PCR SEQ ID NO: 197 Designed oligonucleotide primer for PCR SEQ ID NO: 198 Designed oligonucleotide primer for PCR SEQ ID NO: 199 Designed oligonucleotide primer for PCR SEQ ID NO: 200 Designed oligonucleotide primer for PCR SEQ ID NO: 201 Designed oligonucleotide primer for PCR SEQ ID NO: 202 Designed oligonucleotide primer for PCR SEQ ID NO: 203 Designed oligonucleotide primer for PCR SEQ ID NO: 204 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 206 Designed oligonucleotide primer for PCR		
SEQ ID NO: 192 Designed oligonucleotide primer for PCR SEQ ID NO: 193 Designed oligonucleotide primer for PCR SEQ ID NO: 194 Designed oligonucleotide primer for PCR SEQ ID NO: 195 Designed oligonucleotide primer for PCR SEQ ID NO: 195 Designed oligonucleotide primer for PCR SEQ ID NO: 196 Designed oligonucleotide primer for PCR SEQ ID NO: 197 Designed oligonucleotide primer for PCR SEQ ID NO: 198 Designed oligonucleotide primer for PCR SEQ ID NO: 199 Designed oligonucleotide primer for PCR SEQ ID NO: 200 Designed oligonucleotide primer for PCR SEQ ID NO: 201 Designed oligonucleotide primer for PCR SEQ ID NO: 202 Designed oligonucleotide primer for PCR SEQ ID NO: 203 Designed oligonucleotide primer for PCR SEQ ID NO: 204 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 206 Designed oligonucleotide primer for PCR	25	SEQ ID NO: 191
SEQ ID NO: 193 Designed oligonucleotide primer for PCR SEQ ID NO: 194 Designed oligonucleotide primer for PCR SEQ ID NO: 195 Designed oligonucleotide primer for PCR SEQ ID NO: 196 Designed oligonucleotide primer for PCR SEQ ID NO: 197 Designed oligonucleotide primer for PCR SEQ ID NO: 198 Designed oligonucleotide primer for PCR SEQ ID NO: 199 Designed oligonucleotide primer for PCR SEQ ID NO: 200 Designed oligonucleotide primer for PCR SEQ ID NO: 201 Designed oligonucleotide primer for PCR SEQ ID NO: 202 Designed oligonucleotide primer for PCR SEQ ID NO: 203 Designed oligonucleotide primer for PCR SEQ ID NO: 204 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 206 Designed oligonucleotide primer for PCR		SEQ ID NO: 192
SEQ ID NO: 194 Designed oligonucleotide primer for PCR SEQ ID NO: 195 Designed oligonucleotide primer for PCR SEQ ID NO: 196 Designed oligonucleotide primer for PCR SEQ ID NO: 197 Designed oligonucleotide primer for PCR SEQ ID NO: 198 Designed oligonucleotide primer for PCR SEQ ID NO: 199 Designed oligonucleotide primer for PCR SEQ ID NO: 200 Designed oligonucleotide primer for PCR SEQ ID NO: 201 Designed oligonucleotide primer for PCR SEQ ID NO: 202 Designed oligonucleotide primer for PCR SEQ ID NO: 203 Designed oligonucleotide primer for PCR SEQ ID NO: 204 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 206 Designed oligonucleotide primer for PCR		
SEQ ID NO: 195 Designed oligonucleotide primer for PCR SEQ ID NO: 196 Designed oligonucleotide primer for PCR SEQ ID NO: 197 Designed oligonucleotide primer for PCR SEQ ID NO: 198 Designed oligonucleotide primer for PCR SEQ ID NO: 199 Designed oligonucleotide primer for PCR SEQ ID NO: 200 Designed oligonucleotide primer for PCR SEQ ID NO: 201 Designed oligonucleotide primer for PCR SEQ ID NO: 202 Designed oligonucleotide primer for PCR SEQ ID NO: 203 Designed oligonucleotide primer for PCR SEQ ID NO: 204 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 206 Designed oligonucleotide primer for PCR	30	
Designed oligonucleotide primer for PCR SEQ ID NO: 197 Designed oligonucleotide primer for PCR SEQ ID NO: 198 Designed oligonucleotide primer for PCR SEQ ID NO: 199 Designed oligonucleotide primer for PCR SEQ ID NO: 200 Designed oligonucleotide primer for PCR SEQ ID NO: 201 Designed oligonucleotide primer for PCR SEQ ID NO: 202 Designed oligonucleotide primer for PCR SEQ ID NO: 202 Designed oligonucleotide primer for PCR SEQ ID NO: 203 Designed oligonucleotide primer for PCR SEQ ID NO: 204 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 206 Designed oligonucleotide primer for PCR		
Designed oligonucleotide primer for PCR SEQ ID NO: 197 Designed oligonucleotide primer for PCR SEQ ID NO: 198 Designed oligonucleotide primer for PCR SEQ ID NO: 199 Designed oligonucleotide primer for PCR SEQ ID NO: 200 Designed oligonucleotide primer for PCR SEQ ID NO: 201 Designed oligonucleotide primer for PCR SEQ ID NO: 202 Designed oligonucleotide primer for PCR SEQ ID NO: 203 Designed oligonucleotide primer for PCR SEQ ID NO: 204 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 206 Designed oligonucleotide primer for PCR	35	
Designed oligonucleotide primer for PCR SEQ ID NO: 198 Designed oligonucleotide primer for PCR SEQ ID NO: 199 Designed oligonucleotide primer for PCR SEQ ID NO: 200 Designed oligonucleotide primer for PCR SEQ ID NO: 201 Designed oligonucleotide primer for PCR SEQ ID NO: 202 Designed oligonucleotide primer for PCR SEQ ID NO: 203 Designed oligonucleotide primer for PCR SEQ ID NO: 204 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 206 Designed oligonucleotide primer for PCR	00	Designed oligonucleotide primer for PCR
SEQ ID NO: 198 Designed oligonucleotide primer for PCR SEQ ID NO: 199 Designed oligonucleotide primer for PCR SEQ ID NO: 200 Designed oligonucleotide primer for PCR SEQ ID NO: 201 Designed oligonucleotide primer for PCR SEQ ID NO: 202 Designed oligonucleotide primer for PCR SEQ ID NO: 203 Designed oligonucleotide primer for PCR SEQ ID NO: 204 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 206 Designed oligonucleotide primer for PCR		
SEQ ID NO: 199 Designed oligonucleotide primer for PCR SEQ ID NO: 200 Designed oligonucleotide primer for PCR SEQ ID NO: 201 Designed oligonucleotide primer for PCR SEQ ID NO: 202 Designed oligonucleotide primer for PCR SEQ ID NO: 203 Designed oligonucleotide primer for PCR SEQ ID NO: 204 Designed oligonucleotide primer for PCR SEQ ID NO: 204 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 206 Designed oligonucleotide primer for PCR	40	SEQ ID NO: 198
SEQ ID NO: 200 Designed oligonucleotide primer for PCR SEQ ID NO: 201 Designed oligonucleotide primer for PCR SEQ ID NO: 202 Designed oligonucleotide primer for PCR SEQ ID NO: 203 Designed oligonucleotide primer for PCR SEQ ID NO: 204 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 206 Designed oligonucleotide primer for PCR		SEQ ID NO: 199
Designed oligonucleotide primer for PCR SEQ ID NO: 202 Designed oligonucleotide primer for PCR SEQ ID NO: 203 Designed oligonucleotide primer for PCR SEQ ID NO: 204 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 206 Designed oligonucleotide primer for PCR		
Designed oligonucleotide primer for PCR SEQ ID NO: 202 Designed oligonucleotide primer for PCR SEQ ID NO: 203 Designed oligonucleotide primer for PCR SEQ ID NO: 204 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 206 Designed oligonucleotide primer for PCR	45	· ·
Designed oligonucleotide primer for PCR SEQ ID NO: 203 Designed oligonucleotide primer for PCR SEQ ID NO: 204 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 206 Designed oligonucleotide primer for PCR		Designed oligonucleotide primer for PCR
Designed oligonucleotide primer for PCR SEQ ID NO: 204 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 206 Designed oligonucleotide primer for PCR		
SEQ ID NO: 204 Designed oligonucleotide primer for PCR SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 206 Designed oligonucleotide primer for PCR	50	
SEQ ID NO: 205 Designed oligonucleotide primer for PCR SEQ ID NO: 206 Designed oligonucleotide primer for PCR		SEQ ID NO: 204
SEQ ID NO: 206 Designed oligonucleotide primer for PCR		SEQ ID NO: 205
Designed oligonucleotide primer for PCR	55	- •
3EQ ID NO: 20/		Designed oligonucleotide primer for PCR
Designed oligonucleotide primer for PCR		

	SEQ ID NO: 208
	Designed oligonucleotide primer for PCR SEQ ID NO: 209
5	Designed oligonucleotide primer for PCR SEQ ID NO: 210
	Designed oligonucleotide primer for PCR SEQ ID NO: 211
	Designed oligonucleotide primer for PCR SEQ ID NO: 212
10	Designed oligonucleotide primer for PCR SEQ ID NO: 213
	Designed oligonucleotide primer for PCR SEQ ID NO: 214
15	Designed polynucleotide encoding amino acid sequence of SEQ ID No.1 SEQ ID NO: 265
	Designed oligonucleotide primer for PCR SEQ ID NO: 266
	Designed oligonucleotide primer for PCR SEQ ID NO: 267
20	Designed oligonucleotide primer for PCR SEQ ID NO: 268
	Designed oligonucleotide primer for PCR SEQ ID NO: 269
25	Designed oligonucleotide primer for PCR SEQ ID NO: 270
	Designed oligonucleotide primer for PCR SEQ ID NO: 271
	Designed oligonucleotide primer for PCR SEQ ID NO: 272
30	Designed oligonucleotide primer for PCR SEQ ID NO: 273
	Designed oligonucleotide primer for PCR SEQ ID NO: 274
35	Designed oligonucleotide primer for PCR SEQ ID NO: 275
	Designed oligonucleotide primer for PCR SEQ ID NO: 276
	Designed oligonucleotide primer for DNA sequencing SEQ ID NO: 277
40	Designed oligonucleotide primer for DNA sequencing SEQ ID NO:278
	Designed oligonucleotide primer for PCR SEQ ID NO: 279
45	Designed oligonucleotide primer for PCR SEQ ID NO: 280
	Designed oligonucleotide primer for PCR SEQ ID NO: 281
	Designed oligonucleotide primer for DNA sequencing SEQ ID NO: 282
50	Designed oligonucleotide primer for PCR SEQ ID NO: 283
	Designed oligonucleotide primer for PCR SEQ ID NO: 284
55	Designed oligonucleotide primer for PCR SEQ ID NO: 285
	Designed oligonucleotide primer for PCR SEQ ID NO: 286
	Designed oligonucleotide primer for PCR

	SEQ ID NO: 287 Designed oligonucleotide primer for PCR
	SEQ ID NO: 288
5	Designed oligonucleotide primer for DNA sequencing SEQ ID NO: 289
	Designed oligonucleotide primer for PCR SEQ ID NO: 290
	Designed oligonucleotide primer for PCR SEQ ID NO: 291
10	Designed oligonucleotide primer for PCR SEQ ID NO: 292
	Designed oligonucleotide primer for PCR
	SEQ ID NO: 293 Designed oligonucleotide primer for PCR
15	SEQ ID NO: 294
	Designed oligonucleotide primer for PCR SEQ ID NO: 295
	Designed oligonucleotide primer for PCR SEQ ID NO: 296
20	Designed oligonucleotide primer for PCR SEQ ID NO: 297
	Designed oligonucleotide primer for PCR
	SEQ ID NO: 298 Designed oligonucleotide primer for PCR
25	SEQ ID NO: 299 Designed oligonucleotide primer for PCR
	SEQ ID NO: 300
	Designed oligonucleotide primer for DNA sequencing SEQ ID NO: 301
30	Designed oligonucleotide primer for PCR SEQ ID NO: 302
	Designed oligonucleotide primer for PCR SEQ ID NO: 303
35	Designed oligonucleotide primer for PCR SEQ ID NO: 304
	Designed oligonucleotide primer for PCR SEQ ID NO: 305
	Designed oligonucleotide primer for PCR SEQ ID NO: 306
40	Designed oligonucleotide primer for PCR
	SEQ ID NO: 307 Designed oligonucleotide primer for PCR
	SEQ ID NO: 308 Designed oligonucleotide primer for DNA sequencing
45	SEQ ID NO: 309 Designed oligonucleotide primer for PCR
	SEQ ID NO: 310
	Designed oligonucleotide primer for PCR SEQ ID NO: 311
50	Designed oligonucleotide primer for PCR SEQ ID NO: 312
	Designed oligonucleotide primer for PCR
	SEQ ID NO: 313 Designed oligonucleotide primer for PCR
55	SEQ ID NO: 314
	Designed oligonucleotide primer for PCR SEQ ID NO: 315
	Designed oligonucleotide primer for DNA sequencing

	SEQ ID NO: 316
	Designed oligonucleotide primer for PCR SEQ ID NO: 317
5	Designed oligonucleotide primer for PCR SEQ ID NO: 318
	Designed oligonucleotide primer for PCR SEQ ID NO: 319
	Designed oligonucleotide primer for PCR SEQ ID NO: 320
10	Designed oligonucleotide primer for PCR SEQ ID NO: 321
	Designed oligonucleotide primer for PCR SEQ ID NO: 322
15	Designed oligonucleotide primer for DNA sequencing SEQ ID NO: 323
	Designed oligonucleotide primer for PCR SEQ ID NO: 324
	Designed oligonucleotide primer for PCR SEQ ID NO: 325
20	Designed oligonucleotide primer for PCR SEQ ID NO: 326
	Designed oligonucleotide primer for PCR SEQ ID NO: 327
25	Designed oligonucleotide primer for PCR SEQ ID NO: 328
	Designed oligonucleotide primer for PCR SEQ ID NO: 329
	Designed oligonucleotide primer for PCR SEQ ID NO: 330
30 .	Designed oligonucleotide primer for PCR SEQ ID NO: 331
	Designed oligonucleotide primer for PCR SEQ ID NO: 332
35	Designed oligonucleotide primer for PCR SEQ ID NO: 333
	Designed oligonucleotide primer for PCR SEQ ID NO: 334
40	Designed oligonucleotide primer for PCR SEQ ID NO: 335
40	Designed oligonucleotide primer for PCR SEQ ID NO: 336
	Designed oligonucleotide primer for PCR SEQ ID NO: 337
45	Designed oligonucleotide primer for PCR SEQ ID NO: 338
	Designed oligonucleotide primer for PCR SEQ ID NO: 339
50	Designed oligonucleotide primer for PCR SEQ ID NO: 340
30	Designed oligonucleotide primer for PCR SEQ ID NO: 341
	Designed oligonucleotide primer for PCR SEQ ID NO: 342 Designed oligonucleotide primer for PCR
55	Designed oligonucleotide primer for PCR SEQ ID NO: 343 Designed oligonucleotide primer for PCR
	Designed oligonucleotide primer for PCR SEQ ID NO: 344
	Designed oligonucleotide primer for PCR

	SEQ ID NO: 345
	Designed oligonucleotide primer for PCR SEQ ID NO: 346
5	Designed oligonucleotide primer for PCR S EQ ID NO: 347
	Designed oligonucleotide primer for PCR SEQ ID NO: 348
	Designed oligonucleotide primer for PCR SEQ ID NO: 349
10	Designed oligonucleotide primer for PCR SEQ ID NO: 350
	Designed oligonucleotide primer for PCR SEQ ID NO: 351
15	Designed oligonucleotide primer for PCR SEQ ID NO: 352
	Designed oligonucleotide primer for PCR SEQ ID NO: 353
	Designed oligonucleotide primer for PCR SEQ ID NO: 354
20	Designed oligonucleotide primer for PCR SEQ ID NO: 355
	Designed oligonucleotide primer for PCR SEQ ID NO: 356
25	Designed oligonucleotide primer for PCR SEQ ID NO: 357
	Designed oligonucleotide primer for PCR SEQ ID NO: 358
	Designed oligonucleotide primer for PCR SEQ ID NO: 359
30	Designed oligonucleotide primer for PCR SEQ ID NO: 360
	Designed oligonucleotide primer for PCR SEQ ID NO: 361
35	Designed oligonucleotide primer for PCR SEQ ID NO: 362
	Designed oligonucleotide primer for PCR SEQ ID NO: 363
	Designed oligonucleotide primer for PCR SEQ ID NO: 364
40	Designed oligonucleotide primer for PCR SEQ ID NO: 365
	Designed oligonucleotide primer for PCR SEQ ID NO: 366
45	Designed oligonucleotide primer for PCR SEQ ID NO: 367
	Designed oligonucleotide primer for PCR SEQ ID NO: 368
	Designed polynucleotide encoding amino acid sequence of SEQ ID No.222 SEQ ID NO: 369
50	Designed oligonucleotide primer for PCR SEQ ID NO: 370
	Designed oligonucleotide primer for PCR SEQ ID NO: 371
55	Designed oligonucleotide primer for PCR SEQ ID NO: 372
	Designed oligonucleotide primer for PCR SEQ ID NO: 373
	Designed oligonucleotide primer for PCR

	SEQ ID NO: 374
	Designed oligonucleotide primer for PCR
	SEQ ID NO: 375
_	Designed oligonucleotide primer for PCR
5	SEQ ID NO: 376 Designed eligenuslastide primer for BCB
	Designed oligonucleotide primer for PCR SEQ ID NO: 377
	Designed oligonucleotide primer for PCR
	SEQ ID NO: 378
10	Designed oligonucleotide primer for PCR
	SEQ ID NO: 379
	Designed oligonucleotide primer for PCR
	SEQ ID NO: 380
	Designed oligonucleotide primer for PCR
15	SEQ ID NO: 381
	Designed oligonucleotide primer for PCR SEQ ID NO: 382
	Designed oligonucleotide primer for PCR
	SEQ ID NO: 383
20	Designed oligonucleotide primer for PCR
	SEQ ID NO: 384
	Designed oligonucleotide primer for PCR
	SEQ ID NO: 385
25	Designed oligonucleotide primer for PCR
25	SEQ ID NO: 386 Designed oligonucleotide primer for PCR
	SEQ ID NO: 387
	Designed oligonucleotide primer for PCR
	SEQ ID NO: 388
30	Designed oligonucleotide primer for PCR
	SEQ ID NO: 389
	Designed oligonucleotide primer for PCR SEQ ID NO: 390
	Designed oligonucleotide primer for PCR
35	SEQ ID NO: 391
	Designed oligonucleotide primer for PCR
	SEQ ID NO: 392
	Designed oligonucleotide primer for PCR
40	SEQ ID NO: 393 Designed polynucleotide encoding amino acid sequence of SEQ ID No.224
70	SEQ ID NO: 394
	Designed oligonucleotide primer for PCR
	SEQ ID NO: 395
	Designed oligonucleotide primer for PCR
45	SEQ ID NO: 396
	Designed oligonucleotide primer for PCR SEQ ID NO: 397
	Designed oligonucleotide primer for PCR
	SEQ ID NO: 398
50	Designed oligonucleotide primer for PCR
	SEQ ID NO: 399
	Designed oligonucleotide primer for PCR
	SEQ ID NO:400
55	Designed oligonucleotide primer for PCR SEQ ID NO:401
-	Designed oligonucleotide primer for PCR
	SEQ ID NO:402
	Designed oligonucleotide linker for construction of expression vector

SEQ ID NO:403

Designed oligonucleotide linker for construction of expression vector

SEQUENCE LISTING <110> Sumitomo Chemical Co., Ltd. 5 <120> A HERBICIDE METABOLIZING PR

<120> A HERBICIDE METABOLIZING PROTEIN, A GENE THEREOF AND USE THEREOF

<130> K 1664 EP

<150> JP 2001/321307 <151> 2001-10-19

<150> JP 2002/167239 <151> 2002-06-07

<160> 403

15 <210> 1

10

25

30

35

40

45

50

55

<211> 408 <212> PRT

<213> Streptmyces phaeochromogenes IFO 12898

20 <400> 1 Met Thr 1 Val Ala

Met Thr Asp Met Thr Asp Thr Ala Asp Val Lys Pro Leu Ser Ala Pro 1 5 10 15 15 15 Val Ala Phe Pro Gln Asp Arg Thr Cys Pro Phe Gln Pro Pro Thr Gly 20 25 30 30 Tyr Asp Pro Leu Arg Glu Ala Arg Pro Leu Ala Arg Val Thr Leu Tyr 35

Asp Gly Arg Ala Ile Trp Leu Val Thr Gly Arg Asp Leu Ala Arg Ser 50 55 60

Leu Leu Ala Asp Ser Arg Leu Ser Ser Asp Arg Leu Arg Pro Gly Phe 65 70 75 80

Pro Ala Thr Ser Pro Arg Ile Val Ala Phe Arg Asp Arg Arg Ala Ala

Leu Leu Asn Val Asp Asp Pro Glu His His Thr Gln Arg Arg Met Leu 100 105 110

Val Pro Ser Phe Thr Leu Lys Arg Ala Ala Ala Leu Arg Pro Ala Ile 115 120 125 Gln Arg Ile Val Asp Glu Cys Ile Asp Ala Met Leu Ala Lys Gly Pro

Pro Ala Glu Leu Val Asn Ala Phe Ala Leu Pro Val Pro Ser Met Val
145 150 155 160
Ile Cys Glu Leu Leu Gly Val Pro Tyr Ala Asp His Glu Phe Phe Glu

Glu Gln Ser Arg Arg Leu Leu Arg Gly Arg Asp Val Asp Glu Val Arg 180 185 190

Asp Ala Arg Asp Gln Leu Asp Cys Tyr Leu Gly Ala Leu Ile Asp Arg
195 200 205

Lys Ser Glu Ser Ser Val Gly Asp Gly Val Leu Asp Ala Leu Val His 210 215 220 Glu Gln Leu Arg Glu Gly Ala Val Asp Arg Gln Glu Ala Ile Ser Leu

225 230 235 240
Ala Thr Ile Leu Leu Val Ala Gly His Glu Thr Thr Ala Asn Met Ile

245 250 255

Ser Leu Gly Thr Tyr Thr Leu Leu Gln His Pro Glu Arg Leu Ala Glu
260 265 270

Leu Arg Asp Asp Pro Ser Leu Trp Pro Ala Ala Val Asp Glu Leu Met
275
280
285

Arg Met Leu Ser Ile Ala Asp Gly Leu Met Arg Gln Ala Thr Glu Asp 290 295 300 Ile Glu Val Ala Gly Thr Thr Ile Arg Ala Gly Glu Gly Val Val Phe 305 310 315 320

Ala Thr Ser Val Ile Asn Arg Asp Gly Glu Val Tyr Ala Glu Pro Asp 325 330 335

```
Ala Leu Asp Trp His Arg Pro Thr Arg His His Val Ala Phe Gly Phe
                       340
                                           345
                                                                350
           Gly Ile His Gln Cys Leu Gly Gln Asn Leu Ala Arg Ala Glu Met Glu
                   355
                                       360
5
           Ile Ala Leu Arg Ser Leu Phe Glu Arg Val Pro Gly Leu Arg Leu Asp
                                   375
                                                       380
           Ile Ala Pro Asp Ala Val Arg Phe Lys Pro Gly Asp Thr Ile Gln Gly
                              390
                                                   395
           Met Leu Asp Leu Pro Val Ala Trp
                           405
10
           <210> 2
           <211> 401
           <212> PRT
           <213> Saccharopolyspora taberi JCM 9383t
15
           <400> 2
           Met Pro Ala Ser Ser Glu Ala Leu Thr Tyr Pro Ile Pro Arg Thr Cys
           Pro Tyr Ser Pro Pro Asp Ser Tyr Ala Glu Leu Arg Arg Glu Gln Pro
                        20
                                            25
20
           Val Arg Arg Val Pro Thr Leu Ala Gly Gly Ser Val Trp Leu Val Ser
                                       40
                                                            45
           Arg His Glu Asp Val Arg Ala Val Leu Ser Asp Pro Arg Met Ser Ser
                                   55
                                                        60
           Asp Arg Arg Lys Pro Gly Phe Pro Arg Leu Val Pro Gly Gln Ser Asp
                               70
25
           Leu Ile Phe Ser Ser Lys Pro Ser Met Ile Gly Met Asp Gly Arg Glu
                            85
           His Ser Ala Ala Arg Arg Ala Val Leu Gly Glu Phe Thr Val Arg Arg
                                           105
                                                               110
           Ile Asn Ala Leu Arg Pro Arg Val Gln Glu Ile Val Asp Glu Ala Ile
                   115
                                       120
                                                           125
30
           Asp Ala Met Leu Ala Ala Gly Gly Pro Val Asp Leu Val Arg Met Leu
                                   135
           Ser Leu Pro Val Pro Ser Leu Val Ile Cys Glu Leu Leu Gly Val Pro
                               150
                                                   155
           Tyr Ala Asp His Glu Phe Phe Gln Gln Arg Ser Gly Arg Ile Ile Ser
                           165
                                               170
                                                                   175
35
           Arg Ala Thr Pro Gly Ala Glu Arg Glu Glu Ala Phe Phe Glu Leu Arg
                      180
                                           185
                                                              190
           Ala Tyr Leu Ser Asp Leu Val Ala Asp Lys Val Arg Ala Pro Gly Asp
                                       200
                                                           205
           Asp Leu Leu Gly Arg Gln Val Ala Lys Gln Arg Ala Glu Gly Glu Val
                                   215
                                                       220
40
           Asp Gln Glu Ala Leu Val Ser Leu Ala Phe Leu Leu Val Ala Gly
                              230
                                                   235
           His Glu Thr Thr Ala Asn Met Ile Ser Leu Gly Ser Leu Ala Leu Leu
                          245
                                               250
           Asp Asp Ser Ala Arg Trp Ala Glu Ile Ala Ala Asp Pro Ala Lys Thr
                      260
                                           265
                                                               270
45
           Pro Gly Ala Val Glu Glu Met Leu Arg Phe Phe Ser Ile Val Asp Asn
                  275
                                       280
                                                           285
           Ala Thr Ala Arg Thr Ala Thr Glu Asp Val Glu Ile Gly Gly Val Val
                                  295
                                                       300
           Ile Gly Glu Gly Asp Gly Val Ile Ala Met Gly Tyr Ser Ala Asn His
50
                               310
                                                   315
          Asp Pro Glu Val Phe Asp Arg Pro Gly Asp Leu Asp Phe Ser Arg Ala
                           325
                                               330
                                                                   335
          Ala Arg Gln His Val Ala Phe Gly Phe Gly Ala His Gln Cys Leu Gly
                                           345
                                                               350
          Gln Asn Leu Ala Arg Val Glu Leu Gln Ile Val Phe Asp Thr Leu Val
55
                                       360
          Arg Arg Ile Pro Asp Leu Arg Leu Ala Val Gly Phe Asp Asp Ile Arg
```

```
375
                                                       380
           Phe Lys Glu Glu Ser Ala Ile Tyr Gly Ile His Glu Leu Met Val Thr
                               390
                                                   395
           Trp
5
           <210> 3
           <211> 395
           <212> PRT
           <213> Streptmyces testaceus ATCC 21469
10
           <400> 3
           Met Thr Glu Ala Ile Ala Tyr Phe Gln Asp Arg Thr Cys Pro Tyr His
                                               10
                                                                15
           Pro Pro Ala Gly Tyr Gln Pro Leu Arg Asp Ala Gly Pro Leu Ala His
                        20
                                            25
           Val Thr Leu Tyr Asp Gly Arg Lys Val Trp Ala Val Thr Gly His Thr
15
                                        40
           Glu Ala Arg Ala Leu Leu Ser Asp Pro Arg Leu Ser Ser Asp Arg Gln
                                   55
                                                       60
           Asn Pro Ala Phe Pro Ala Pro Phe Ala Arg Phe Ala Ala Leu Arg Gln
                               70
                                                    75
20
           Val Arg Ser Pro Leu Ile Gly Val Asp Asp Pro Glu His Asn Thr Gln
                           85
                                               90
           Arg Arg Met Leu Ile Pro Ser Phe Ser Val Lys Arg Thr Ala Ala Leu
                       100
                                           105
                                                               110
           Arg Pro Gln Ile Gln Gln Ile Val Asp Gly Leu Leu Asp Arg Met Leu
                  115
                                       120
                                                           125
25
           Ala Gln Gly Pro Pro Ala Glu Leu Val Ser Ala Phe Ala Leu Pro Val
                                  135
           Pro Ser Met Val Ile Cys Ser Leu Leu Gly Val Pro Tyr Ser Asp His
                              150
                                                   155
           Glu Phe Phe Glu Glu Ala Ser Arg Arg Leu Leu Arg Ser Arg Thr Ala
                                               170
                          165
                                                                   175
30
           Glu Glu Ala Glu Glu Ala Arg Leu Arg Leu Glu Asp Tyr Phe Asp Glu
                      180
                                          185
           Leu Ile Ala His Lys Glu Lys Thr Pro Arg Glu Gly Leu Leu Asp Glu
                  195
                                       200
           Leu Val His Asp Glu Leu Arg Thr Gly Ala Leu Glu Arg Glu Asp Leu
                                  215
                                                      220
35 .
           Val Arg Leu Ala Met Ile Leu Leu Val Ala Gly His Glu Thr Thr Ala
                              230
                                                   235
           Asn Met Ile Ser Leu Gly Thr Phe Thr Leu Leu Glu His Pro Gly Gln
                         245
                                              250
                                                                   255
           Leu Ala Arg Leu Lys Ala Glu Glu Gly Leu Leu Pro Ala Ala Val Glu
40
                      260
                                          265
                                                              270
           Glu Leu Leu Arg Phe Leu Ser Ile Ala Asp Gly Leu Leu Arg Val Ala
                                       280
           Met Ala Asp Ile Glu Ile Gly Gly Gln Val Ile Arg Ala Asp Asp Gly
                                  295
                                                       300
           Val Leu Phe Pro Thr Ser Leu Ile Asn Arg Asp Asp Gly Ala Tyr Pro
45
                               310
                                                   315
           Thr Pro Asp Glu Leu Asp Val Gly Arg Ser Ala Arg His His Val Ala
                           325
                                               330
                                                                   335
           Phe Gly Phe Gly Ile His Gln Cys Leu Gly Gln Asn Leu Ala Arg Ala
                                          345
           Glu Met Glu Ile Ala Leu Arg Ser Leu Phe Asp Arg Ile Pro Asp Leu
50
                  355
                                       360
                                                           365
           Arg Leu Ala Val Pro Ala Ala Glu Ile Pro Phe Lys Pro Gly Asp Thr
                                   375
                                                       380
           Leu Gln Gly Met Ile Glu Leu Pro Leu Ala Trp
                               390
55
           <210> 4
           <211> 410
```

<212> PRT

```
<213> Streptmyces carbophilus SANK 62585
5
          Met Thr Glu Met Thr Glu Lys Ala Thr Thr Phe Leu Thr Ser Gln Glu
                                                10
           Ala Pro Ala Phe Pro Ala Asp Arg Thr Cys Pro Tyr Gln Leu Pro Thr
                        20
                                            25
           Ala Tyr Ser Arg Leu Arg Asp Glu Pro Asp Ala Leu Arg Pro Val Thr
                   35
                                        40
                                                            45
10
           Leu Tyr Asp Gly Arg Arg Ala Trp Val Val Thr Lys His Glu Ala Ala
                                   55
                                                       60
           Arg Arg Leu Leu Ala Asp Pro Arg Leu Ser Ser Asp Arg Leu His Ala
                                70
                                                    75
           Asp Phe Pro Ala Thr Ser Pro Arg Phe Lys Ala Phe Arg Gln Gly Ser
                            85
                                                90
15
           Pro Ala Phe Ile Gly Met Asp Pro Pro Glu His Gly Thr Arg Arg Arg
                       100
                                           105
                                                               110
           Met Thr Ile Ser Glu Phe Thr Val Lys Arg Ile Lys Gly Met Arg Pro
                                       120
                                                            125
                   115
           Asp Val Glu Arg Ile Val His Gly Phe Ile Asp Asp Met Leu Ala Ala
                                   135
                                                       140
20
               130
           Gly Pro Thr Ala Asp Leu Val Ser Gln Phe Ala Leu Pro Val Pro Ser
                               150
           145
                                                   155
           Met Val Ile Cys His Met Leu Gly Val Pro Tyr Ala Asp His Glu Phe
                           165
                                               170
                                                                    175
           Phe Gln Asp Ala Ser Lys Arg Leu Val Gln Ala Val Asp Ala Asp Ser
25
                       180
                                           185
           Ala Val Ala Ala Arg Asp Asp Phe Glu Arg Tyr Leu Asp Gly Leu Ile
                   195
                                       200
                                                           205
           Thr Lys Leu Glu Ser Glu Pro Gly Thr Gly Leu Leu Gly Lys Leu Val
               210
                                  215
                                                       220
           Thr His Gln Leu Ala Asp Gly Glu Ile Asp Arg Ala Glu Leu Ile Ser
30
                               230
                                                   235
           Thr Ala Leu Leu Leu Val Ala Gly His Glu Thr Thr Ala Ser Met
                           245
                                               250
                                                                    255
           Thr Ser Leu Ser Val Ile Thr Leu Leu Glu His Pro Asp Gln His Ala
                       260
                                           265
           Ala Leu Arg Ala Asp Pro Ser Leu Val Pro Gly Ala Val Glu Glu Leu
35
                   275
                                       280
                                                           285
           Leu Arg Val Leu Ala Ile Ala Asp Ile Ala Gly Gly Arg Ile Ala Thr
                                  295
                                                       300
           Ala Asp Ile Glu Ile Asp Gly Gln Leu Ile Arg Ala Gly Glu Gly Val
           305
                               310
                                                   315
                                                                       320
           Ile Val Thr Asn Ser Ile Ala Asn Arg Asp Ser Ser Val Phe Glu Asn
40
                           325
                                               330
                                                                    335
           Pro Asp Arg Leu Asp Val His Arg Ser Ala Arg His His Leu Ser Phe
                       340
                                           345
           Gly Tyr Gly Val His Gln Cys Leu Gly Gln Asn Leu Ala Arg Leu Glu
                   355
                                       360
                                                            365
           Leu Glu Val Ile Leu Thr Val Leu Phe Asp Arg Ile Pro Thr Leu Arg
45
                                   375
                                                       380
           Leu Ala Val Pro Val Glu Gln Leu Thr Leu Arg Pro Gly Thr Thr Ile
                               390
                                                   395
                                                                       400
           Gln Gly Val Asn Glu Leu Pro Val Thr Trp
                           405
                                               410
50
           <210> 5
           <211> 406
           <212> PRT
           <213> Streptmyces griseolus ATCC 11796
55
          Met Thr Asp Thr Ala Thr Thr Pro Gln Thr Thr Asp Ala Pro Ala Phe
```

```
Pro Ser Asn Arg Ser Cys Pro Tyr Gln Leu Pro Asp Gly Tyr Ala Gln
                       20
                                           25
                                                                30
          Leu Arg Asp Thr Pro Gly Pro Leu His Arg Val Thr Leu Tyr Asp Gly
                   35
                                       40
5
          Arg Gln Ala Trp Val Val Thr Lys His Glu Ala Ala Arg Lys Leu Leu
                                   55
          Gly Asp Pro Arg Leu Ser Ser Asn Arg Thr Asp Asp Asn Phe Pro Ala
                               70
                                                    75
          Thr Ser Pro Arg Phe Glu Ala Val Arg Glu Ser Pro Gln Ala Phe Ile
10
          Gly Leu Asp Pro Pro Glu His Gly Thr Arg Arg Arg Met Thr Ile Ser
                      100
                                           105
                                                               110
          Glu Phe Thr Val Lys Arg Ile Lys Gly Met Arg Pro Glu Val Glu Glu
                  115
                                       120
                                                           125
          Val Val His Gly Phe Leu Asp Glu Met Leu Ala Ala Gly Pro Thr Ala
15 .
                                  135
                                                      140
          Asp Leu Val Ser Gln Phe Ala Leu Pro Val Pro Ser Met Val Ile Cys
                              150
                                                   155
          Arg Leu Leu Gly Val Pro Tyr Ala Asp His Glu Phe Phe Gln Asp Ala
                          165
                                               170
                                                                   175
          Ser Lys Arg Leu Val Gln Ser Thr Asp Ala Gln Ser Ala Leu Thr Ala
20
                      180
                                           185
                                                               190
          Arg Asn Asp Leu Ala Gly Tyr Leu Asp Gly Leu Ile Thr Gln Phe Gln
                  195
                                       200
                                                           205
          Thr Glu Pro Gly Ala Gly Leu Val Gly Ala Leu Val Ala Asp Gln Leu
              210
                                  215
                                                       220
          Ala Asn Gly Glu Ile Asp Arg Glu Glu Leu Ile Ser Thr Ala Met Leu
25
                              230
                                                   235
                                                                       240
          Leu Leu Ile Ala Gly His Glu Thr Thr Ala Ser Met Thr Ser Leu Ser
                          245
                                               250
          Val Ile Thr Leu Leu Asp His Pro Glu Gln Tyr Ala Ala Leu Arg Ala
                      260
                                           265
                                                               270
30
          Asp Arg Ser Leu Val Pro Gly Ala Val Glu Glu Leu Leu Arg Tyr Leu
                  275
                                       280
                                                           285
          Ala Ile Ala Asp Ile Ala Gly Gly Arg Val Ala Thr Ala Asp Ile Glu
              290
                                  295
                                                       300
          Val Glu Gly Gln Leu Ile Arg Ala Gly Glu Gly Val Ile Val Val Asn
                              310
                                                   315
35
          Ser Ile Ala Asn Arg Asp Gly Thr Val Tyr Glu Asp Pro Asp Ala Leu
                          325
                                               330
                                                                   335
          Asp Ile His Arg Ser Ala Arg His His Leu Ala Phe Gly Phe Gly Val
                      340
                                          345
                                                               350
          His Gln Cys Leu Gly Gln Asn Leu Ala Arg Leu Glu Leu Glu Val Ile
                  355
                                      360
                                                           365
40
          Leu Asn Ala Leu Met Asp Arg Val Pro Thr Leu Arg Leu Ala Val Pro
              370
                                  375
                                                       380
          Val Glu Gln Leu Val Leu Arg Pro Gly Thr Thr Ile Gln Gly Val Asn
                              390
                                                   395
          Glu Leu Pro Val Thr Trp
                          405
45
          <210> 6
          <211> 1227
          <212> DNA
          <213> Streptmyces phaeochromogenes IFO 12898
50
          <220>
          <221> CDS
          <222> (1)..(1227)
          <400> 6
55
          atg aca gac atg acg gat acg gca gac gtg aag ccg ctc tcg gca ccc
          Met Thr Asp Met Thr Asp Thr Ala Asp Val Lys Pro Leu Ser Ala Pro
```

	1				5					10					15		
5	gtc Val	gcc Ala	ttc Phe	ccc Pro 20	cag Gln	gac Asp	cgc Arg	acc Thr	tgc Cys 25	ccc Pro	ttc Phe	cag Gln	ccc Pro	ccc Pro 30	acg Thr	ggc	96
						gag Glu											144
10						tgg Trp											192
15	ctg Leu 65	ctc Leu	gcc Ala	gat Asp	tcc Ser	ege Arg 70	ctg Leu	tcg Ser	tcc Ser	gac Asp	cgc Arg 75	ctg Leu	cgc Arg	ccc Pro	ggc Gly	ttc Phe 80	240
	ccg Pro	gcc Ala	acc Thr	tcg Ser	ccg Pro 85	cgc Arg	atc Ile	gtg Val	gcg Ala	ttc Phe 90	cgc Arg	gac Asp	cgc Arg	cgg Arg	gcc Ala 95	gcc Ala	288
20	ctg Leu	ctg Leu	aac Asn	gtc Val 100	gac Asp	gac Asp	ccc Pro	gag Glu	cac His 105	cac His	acc Thr	cag Gln	cgg Arg	cgg Arg 110	atg Met	ctg Leu	336
25	gtc Val	ccg Pro	agc Ser 115	ttc Phe	acc Thr	ctc Leu	aag Lys	cgc Arg 120	gcc Ala	gcc Ala	gcg Ala	ttg Leu	cgg Arg 125	ccg Pro	gcc Ala	atc Ile	384
						gaa Glu											432
30	ccc Pro 145	gcc Ala	gag Glu	ttg Leu	gtg Val	aac Asn 150	gcc Ala	ttc Phe	gcg Ala	ctc Leu	ccc Pro 155	gtt Val	ccc Pro	tcg Ser	atg Met	gtg Val 160	480
35	atc Ile	tgc Cys	gaa Glu	ctg Leu	ctc Leu 165	ggt Gly	gtc Val	ccg Pro	tac Tyr	gcc Ala 170	gat Asp	cac His	gag Glu	ttc Phe	ttc Phe 175	gag Glu	528
40	gag Glu	cag Gln	tcc Ser	cgt Arg 180	cgg Arg	ctg Leu	ctg Leu	cgc Arg	ggc Gly 185	cgg Arg	gac Asp	gtg Val	gac Asp	gag Glu 190	gtg Val	cgg Arg	57 6
						ctc Leu											624
45	aag Lys	tcc Ser 210	gag Glu	tcg Ser	tcc Ser	gtc Val	ggt Gly 215	gac Asp	ggt Gly	gtc Val	ctc Leu	gac Asp 220	gcc Ala	ctg Leu	gtc Val	cac His	672
50	gag Glu 225	cag Gln	ttg Leu	cgc Arg	gag Glu	ggc Gly 230	gcg Ala	gtg Val	gac Asp	cgg Arg	cag Gln 235	gag Glu	gcc Ala	atc Ile	tcg Ser	ctg Leu 240	720
	gcc Ala	acg Thr	atc Ile	ctg Leu	ctg Leu 245	gtc Val	gcc Ala	ggc Gly	cac His	gag Glu 250	acc Thr	acc Thr	gcc Ala	aac Asn	atg Met 255	atc Ile	768
55	tcg Ser	ctg Leu	ggc Gly	act Thr	tac Tyr	acc Thr	ctg Leu	ctc Leu	caa Gln	cac His	ccc Pro	gag Glu	cga Arg	ctg Leu	gcg Ala	gag Glu	816

		260		265		270	
5		gac ccg tcg Asp Pro Ser					864
		tcc atc gcg Ser Ile Ala					912
10		gcc ggg acg Ala Gly Thr 310		Arg Ala G			960
15		gtc atc aac Val Ile Asn 325					1008
20		tgg cac cgg Trp His Arg 340			is Val Ala I		1056
		cag tgt ctc Gln Cys Leu					1104
25		cgt tcc ctg Arg Ser Leu					1152
30		gac gcg gtc Asp Ala Val 390		Lys Pro G			1200
		ctg ccc gtg Leu Pro Val 405		tag			1227
35	<210> 7 <211> 1206 <212> DNA <213> Sacch	aropolyspora	taberi J	JCM 9383t			
40	<220> <221> CDS <222> (1)	(1206)					
45		tct tct gaa Ser Ser Glu 5					48
		ccg ccc gac Pro Pro Asp 20					96
50		gtg ccg acg Val Pro Thr					144
55		gac gtg cgc Asp Val Arg					192

						ggg Gly 70											240
5	ctg Leu	atc Ile	ttc Phe	agc Ser	tcc Ser 85	aag Lys	ccg Pro	tcg Ser	atg Met	atc Ile 90	ggc Gly	atg Met	gac Asp	G] À ààà	cgc Arg 95	gag Glu	288
10						cgg Arg											336
						ccg Pro											384
15						gcg Ala											432
20						tcg Ser 150											480
						ttc Phe											528
25						gcc Ala											576
30						ctg Leu											624
35						cag Gln											672
						gtc Val 230											.720
40	cac His	gag Glu	acc Thr	acc Thr	gcg Ala 245	aac Asn	atg Met	atc Ile	tcg Ser	ctt Leu 250	ggt Gly	agc Ser	ctg Leu	gcg Ala	ctg Leu 255	ctg Leu	768
45						tgg Trp											816
-						gag Glu											864
50						gcg Ala											912
55						ggg Gly 310											960

	gac ccc Asp Pro	gag (Glu	gtc ttc Val Phe 325	Asp	cgc Arg	ccc	ggg Gly	gac Asp 330	ctc Leu	gac Asp	ttc Phe	tcc Ser	cgg Arg 335	gcc Ala	1008
5	gcc cgc Ala Arg	Gln	cac gto His Val 340	gcc Ala	ttc Phe	ggc Gly	ttc Phe 345	ggc Gly	gcg Ala	cac His	cag Gln	tgc Cys 350	ctg Leu	ggc Gly	1056
10	cag aac Gln Asn	ctc (Leu / 355	geg egg Ala Arg	gtg Val	gag Glu	ttg Leu 360	cag Gln	atc Ile	gtc Val	ttc Phe	gac Asp 365	acg Thr	ctg Leu	gtg Val	1104
	cgg cgg Arg Arg 370	atc (ccg gac Pro Asp	ctg Leu	cgg Arg 375	ctg Leu	gcg Ala	gtc Val	ggc Gly	ttc Phe 380	gac Asp	gac Asp	atc Ile	cgg Arg	1152
15	ttc aag Phe Lys 385														1200
20	tgg tga Trp														1206
25	<210> 8 <211> 11 <212> Di <213> Si	AV	myces t	estad	ceus	ATC	214	169							
25	<213> Streptmyces testaceus ATCC 21469 <220> <221> CDS <222> (1)(1188)														
30	<400> 8 atg acc Met Thr 1	gaa (Glu /	gcc atc Ala Ile 5	Ala	tat Tyr	ttc Phe	cag Gln	gac Asp 10	cgc Arg	acc Thr	tgc Cys	ccc Pro	tac Tyr 15	cac His	48
35	ccg ccg Pro Pro														96
	gtc acc Val Thr	ctc t Leu 1 35	tac gac Tyr Asp	ggc Gly	cgc Arg	aag Lys 40	gtg Val	tgg Trp	gcg Ala	gtg Val	acc Thr 45	ggc Gly	cac His	acc Thr	144
40	gag gcg Glu Ala 50	cgg q Arg A	gcg ctg Ala Leu	ctg Leu	agc Ser 55	gac Asp	ccg Pro	cgg Arg	ctg Leu	tcc Ser 60	tcc Ser	gac Asp	cgg Arg	cag Gln	192
45	aac ccg Asn Pro 65	gcc t Ala I	ttc ccg Phe Pro	gcg Ala 70	ccg Pro	ttc Phe	gcc Ala	cgc Arg	ttc Phe 75	gcg Ala	gcg Ala	ctg Leu	cgc Arg	cag Gln 80	240
50	gtc agg Val Arg	tcg o	ccg ctg Pro Leu 85	atc Ile	ggc Gly	gtg Val	gac Asp	gac Asp 90	ccc Pro	gag Glu	cac His	aac Asn	acc Thr 95	cag Gln	288
	cgc cgg Arg Arg	Met I	ctg atc Leu Ile 100	ccc Pro	agc Ser	ttc Phe	agc Ser 105	gtc Val	aag Lys	cgg Arg	acc Thr	gcg Ala 110	gcg Ala	ctg Leu	336
55	cgg ccg Arg Pro	cag a Gln 1 115	atc cag Ile Gln	cag Gln	atc Ile	gtc Val 120	gac Asp	ggg Gly	ctg Leu	ctg Leu	gac Asp 125	cgg Arg	atg Met	ctg Leu	384

_														ctg Leu			432
5														tcc Ser			480
10														cgg Arg			528
15														ttc Phe 190			576
														ctc Leu			624
20														gag Glu			672
25	gtc Val 225	cgg Arg	ctc Leu	gcg Ala	atg Met	atc Ile 230	ctg Leu	ctg Leu	gtg Val	gcc Ala	ggc Gly 235	cac His	gag Glu	acc Thr	acc Thr	gcc Ala 240	720
														ccc Pro			768
30														gcc Ala 270			816
35														cgg Arg			864
														gac Asp			912
40	gtg Val 305	ctg Leu	ttc Phe	ccc Pro	acc Thr	tcg Ser 310	ctg Leu	atc Ile	aac Asn	cgg Arg	gac Asp 315	gac Asp	ggc Gly	gcc Ala	tat Tyr	ccg Pro 320	960
45														cac His			1008
50														gcc Ala 350			1056
														ccg Pro			1104
55														ggg Gly			1152

	ctg caa gga atg atc gaa ctg ccg ctg gcc tgg tag Leu Gln Gly Met Ile Glu Leu Pro Leu Ala Trp 385 390 395	1188
5	<210> 9 <211> 1439 <212> DNA <213> Streptmyces phaeochromogenes IFO 12898	
10	<220> <221> CDS <222> (1)(1227)	
15	<220> <221> CDS <222> (1239)(1439)	
20	<pre><400> 9 atg aca gac atg acg gat acg gca gac gtg aag ccg ctc tcg gca ccc Met Thr Asp Met Thr Asp Thr Ala Asp Val Lys Pro Leu Ser Ala Pro</pre>	48
	gte gee tte eee eag gae ege ace tge eee tte eag eee eee acg gge Val Ala Phe Pro Gln Asp Arg Thr Cys Pro Phe Gln Pro Pro Thr Gly 20 25 30	96
25	tac gac ccc ctg cgt gag gcc cgg ccg ctc gcc cgc gtg acc ctc tac Tyr Asp Pro Leu Arg Glu Ala Arg Pro Leu Ala Arg Val Thr Leu Tyr 35 40 45	144
30	gac ggc cgg gcc atc tgg ctg gtc acc ggc cgt gac ctg gcc cgc agc Asp Gly Arg Ala Ile Trp Leu Val Thr Gly Arg Asp Leu Ala Arg Ser 50 55 60	192
	ctg ctc gcc gat tcc cgc ctg tcg tcc gac cgc ctg cgc ccc ggc ttc Leu Leu Ala Asp Ser Arg Leu Ser Ser Asp Arg Leu Arg Pro Gly Phe 65 70 75 80	240
35	ccg gcc acc tcg ccg cgc atc gtg gcg ttc cgc gac cgc cgg gcc gcc Pro Ala Thr Ser Pro Arg Ile Val Ala Phe Arg Asp Arg Arg Ala Ala 85 90 95	288
40	ctg ctg aac gtc gac gcc ccc gag cac cac acc cag cgg cg	336
	gtc ccg agc ttc acc ctc aag cgc gcc gcc gcg ttg cgg ccg gcc atc Val Pro Ser Phe Thr Leu Lys Arg Ala Ala Ala Leu Arg Pro Ala Ile 115 120 125	384
45	cag cgg atc gtc gac gaa tgc atc gac gcg atg ctc gcg aag ggc ccg Gln Arg Ile Val Asp Glu Cys Ile Asp Ala Met Leu Ala Lys Gly Pro 130 135 140	432
50	ccc gcc gag ttg gtg aac gcc ttc gcg ctc ccc gtt ccc tcg atg gtg Pro Ala Glu Leu Val Asn Ala Phe Ala Leu Pro Val Pro Ser Met Val 145 150 155 160 .	480
55	atc tgc gaa ctg ctc ggt gtc ccg tac gcc gat cac gag ttc ttc gag Ile Cys Glu Leu Leu Gly Val Pro Tyr Ala Asp His Glu Phe Phe Glu 165 170 175	528
	gag cag tcc cgt cgg ctg ctg cgc cgg gac gtg gac gag gtg cgg	576

	Glu	Gln	Ser	Arg 180	Arg	Leu	Leu	Arg	Gly 185	Arg	Asp	Val	Asp	Glu 190	Val	Arg	
5				gac Asp										Ile			624
10				tcg Ser													672
				cgc Arg													720
15				ctg Leu													768
20				act Thr 260													816
				gac Asp													864
25				tcc Ser													912
30				gcc Ala													960
				gtc Val													1008
35				tgg Trp 340													1056
40				cag Gln													1104
45				cgt Arg													1152
45	att Ile 385	gcg Ala	ccg Pro	gac Asp	gcg Ala	gtc Val 390	cgc Arg	ttc Phe	aaa Lys	ccg Pro	ggc Gly 395	gac Asp	acg Thr	atc Ile	cag Gln	gga Gly 400	1200
50				ctg Leu					tag	ggg	gteca	act o		: His		gac Asp	1250
55				gac Asp													1298
	ccg	gcc	gtc	ttc	acg	cag	gac	gac	gac	ggc	ttc	agc	acc	ctc	ctg	ccc	1346

	Pro	Ala	Val	Phe	Thr 25	Gln	Asp	Asp	Asp	Gly 30	Phe	Ser	Thr	Leu	Leu 35	Pro	
5	gga Gly	cag Gln	gag Glu	gac Asp 40	agc Ser	ggc Gly	gac Asp	ccg Pro	atg Met 45	gtc Val	cgg Arg	gag Glu	gcg Ala	gcc Ala 50	cga Arg	gcc Ala	1394
10						atc Ile									tga		1439
	<212 <212	0> 10 1> 10 2> D1 3> Sa	115 NA	aropo	olysp	oora	tabe	eri .	JCM S	9383t	:						
15	<220 <221	0> 1> CI	os	(120)													
20		1> CI)(1	L415))											
25	atg		gca			gaa Glu											48
						gac Asp											96
30						acg Thr											144
35						cgc Arg											192
	gac Asp 65	cgc Arg	cgc Arg	aag Lys	ccc Pro	ggg Gly 70	ttc Phe	ccg Pro	cgg Arg	ctc Leu	gtg Val 75	ccg Pro	ggg Gly	cag Gln	agc Ser	gac Asp 80	240
40	ctg Leu	atc Ile	ttc Phe	agc Ser	tcc Ser 85	aag Lys	ccg Pro	tcg Ser	atg Met	atc Ile 90	ggc Gly	atg Met	gac Asp	ggg Gly	cgc Arg 95	gag Glu	288
45	cac His	tcg Ser	gcg Ala	gcc Ala 100	cgg Arg	cgg Arg	gcg Ala	gtt Val	ctc Leu 105	ggt Gly	gag Glu	ttc Phe	acc Thr	gtc Val 110	cgg Arg	cgg Arg	336
50						ccg Pro											384
	gac Asp	gcg Ala 130	atg Met	ctg Leu	gcc Ala	gcg Ala	ggc Gly 135	ggg Gly	ccg Pro	gtc Val	gac Asp	ctg Leu 140	gtg Val	cgg Arg	atg Met	ctc Leu	432
55						tcg Ser 150											480

	tac Tyr	gcc Ala	gac Asp	cac His	gag Glu 165	ttc Phe	ttc Phe	cag Gln	cag Gln	cgc Arg 170	agc Ser	ggc Gly	cgc Arg	atc Ile	atc Ile 175	agc Ser	528
5			acg Thr														576
10	gcc Ala	tac Tyr	ctg Leu 195	tcg Ser	gat Asp	ctg Leu	gtc Val	gcg Ala 200	gac Asp	aaġ Lys	gtc Val	cgc Arg	gca Ala 205	ccg Pro	ggc Gly	gac Asp	624
15	gac Asp	ctg Leu 210	ctc Leu	ggc Gly	agg Arg	cag Gln	gtg Val 215	gcc Ala	aag Lys	cag Gln	cgg Arg	gcc Ala 220	gag Glu	ggc Gly	gag Glu	gtc Val	672
			gag Glu														720
20	cac His	gag Glu	acc Thr	acc Thr	gcg Ala 245	aac Asn	atg Met	atc Ile	tcg Ser	ctt Leu 250	ggt Gly	agc Ser	ctg Leu	gcg Ala	ctg Leu 255	ctg Leu	768
25	gac Asp	gat Asp	tcc Ser	gcc Ala 260	cgg Arg	tgg Trp	gcg Ala	gag Glu	atc Ile 265	gcc Ala	gcg Ala	gat Asp	ccg Pro	gcg Ala 270	aag Lys	acg Thr	816
			gcg Ala 275														864
30	gcg Ala	acc Thr 290	gcg Ala	cgc Arg	acc Thr	gcg Ala	acc Thr 295	gag Glu	gac Asp	gtg Val	gag Glu	atc Ile 300	ggc	ggc Gly	gtg Val	gtc Val	912
35	atc Ile 305	ggg ggg	gag Glu	ggc Gly	gac Asp	ggg Gly 310	gtg Val	atc Ile	gcg Ala	atg Met	ggc Gly 315	tat Tyr	tcg Ser	gcc Ala	aac Asn	cac His 320	960
	gac Asp	ccc Pro	gag Glu	gtc Val	ttc Phe 325	gac Asp	cgc Arg	ccc Pro	ggg Gly	gac Asp 330	ctc Leu	gac Asp	ttc Phe	tcc Ser	cgg Arg 335	gcc Ala	1008
40	gcc Ala	cgc Arg	cag Gln	cac His 340	gtc Val	gcc Ala	ttc Phe	ggc Gly	ttc Phe 345	ggc Gly	gcg Ala	cac His	cag Gln	tgc Cys 350	ctg Leu	ggc Gly	1056
45	cag Gln	aac Asn	ctc Leu 355	gcg Ala	cgg Arg	gtg Val	gag Glu	ttg Leu 360	cag Gln	atc Ile	gtc Val	ttc Phe	gac Asp 365	acg Thr	ctg Leu	gtg Val	1104
50	cgg Arg	cgg Arg 370	atc Ile	ccg Pro	gac Asp	ctg Leu	cgg Arg 375	ctg Leu	gcg Ala	gtc Val	ggc Gly	ttc Phe 380	gac Asp	gac Asp	atc Ile	cgg Arg	1152
	ttc Phe 385	aag Lys	gag Glu	gag Glu	tcg Ser	gcg Ala 390	atc Ile	tac Tyr	gga Gly	atc Ile	cac His 395	gaa Glu	ctg Leu	atg Met	gtc Val	act Thr 400	1200
55	tgg Trp	tga	ggag	agto	g g g	atg Met 1	Arg	g ato	cag Glr	geg Ala 5	Asp	gtg Val	gag Glu	cgc Arg	tgc Cys	gtc Val	1250

										gac Asp							1298
5										gcg Ala							1346
10										acg Thr							1394
			ctc Leu			gac Asp 65	tga										1415
15	<21:	0> 1: 1> 1- 2> DI 3> St	418 NA	=myce	es te	estad	ceus	ATC	214	169							
20	<220> <221> CDS <222> (1)(1188)																
25	<22	<220> <221> CDS <222> (1224)(1418)															
30	atg		gaa							gac Asp 10							48
										gac Asp							96
35										tgg Trp							144
40										cgg Arg							192
										cgc Arg							240
45										gac Asp 90							288
50										gtc Val							336
55										ggg Gly							384
	gcg	cag	9 99	ccg	ccc	gcc	gag	ctg	gtc	tcc	gcg	ttc	gcg	ctg	ccg	gtg	432

	Ala	Gln 130	G1 y	Pro	Pro	Ala	Glu 135	Leu	Val	Ser	Ala	Phe 140	Ala	Leu	Pro	Val	
5								ctg Leu									480
10								cgc Arg									528
								ctc Leu									576
15								acc Thr 200									624
20								acc Thr									672
								ctg Leu									720
25								ttc Phe									768
30								gag Glu									816
								atc Ile 280									864
35								ggg Gly									912
40		Leu		Pro	Thr	Ser	Leu	atc Ile	Asn	Arg	Asp	Asp	Ğĺy	Ăla	Tyr	Pro	960
45								ggc Gly									1008
45								tgc Cys									1056
50								tcg Ser 360									1104
55								gag Glu									1152
	ctg	caa	gga	atg	atc	gaa	ctg	ccg	ctg	gcc	tgg	tag	ccg	ggt	jca d	ccggc	1204

	Leu Gl 385	n Gly	Met	Ile	Glu 390	Leu	Pro	Leu	Ala	Trp 395						
5	cgaacg	aagg (ggttt	tgga		Arg									s Ile	1256
10	ggc gc Gly Al															1304
70	gac ga Asp As															1352
15	gac co Asp Pr															1400
20	acc gt Thr Va 60				tga											1418
	<210> <211> <212>	66 PRT				·			reo i	1200						
25	<213>	strep	cmyce	es pr	iaeoc	enro	noger	ies .	LFU .	12090	3					
20	<400>	12													•	•
	Met Hi	s Ile	Asp	Ile	Asp	Thr	Asp	Val	Cys	Ile	Gly	Ala	Gly	Gln	Cys	
	l Ala Le	eu Ser	Ala	5 Pro	Ala	Val	Phe	Thr	10 Gln	Asp	Asp	Asp	Glv	15 Phe	Ser	
30			20					25		-	•	•	30			
30	Thr Le	и <u>ьеи</u> 35	Pro	GIĀ	Gin	GIU	Asp 40	Ser	GIĀ	Asp	Pro	Met 45	vaı	Arg	Glu	
	Ala Al	a Arg	Ala	Cys	Pro	Val 55	Gly	Ala	Ile	Lys	Val 60	Ser	Glu	Thr	Ala	
	Arg Pr															
35	65															
	<210> <211> <212> <213>	65 PRT	aropo	olysp	ora	tabe	eri d	JCM S)383t	Ξ.						
40	4400 >															
	<400> Met Ar		Gln	Ala	Asp	Val	Glu	Arg		Val	Gly	Ala	Gly	Gln	Cys	
	l Val Le	u Ala		c Asp	Ala	Leu	Phe		10 Gln	Arg	Asp	Asp		Gly	Thr	
45 ·	Val Va		20 Leu	Ala	Thr	Glu		25 Gly	Asp	Gly	Asp		30 Asp	Ala	Val	
	Arg As		Val	Thr	Leu		40 Pro	Ser	Gly	Ala		45 Ser	Leu	Val	Glu	
50	Asp 65	0				55					60					
	<210> <211> <212> <213>	64 PRT	:myce	es te	estac	eus	ATC	214	169							
55	<400> Met Ar		Thr	Ile	Asp	Thr	Asp	Val	Cys	Ile	Gly	Ala	Gly	Gln	Cys	

	1				5					10					15		
	Ala	Leu	Thr	Ala 20	Pro	Gly	Val	Phe	Thr 25	Gln	Asp	Asp	Asp	Gly 30	Phe	Ser	
5			35				Glu	40					45			_	
	Glu	Ala 50	Val	Arg	Ala	Cys	Pro 55	Val	Gln	Ala	Ile	Thr 60	Val	Ala	Asp	Asp	
10	<21:	0> 1! 1> 20 2> DI 3> Si	01 NA	emyc.	es pl	naeo	chron	nogei	nes 1	IFO :	12898	3					
15		0> 1> CI 2> (1		(201))												
	atg	0> 15 cac His	atc	gac Asp	atc Ile 5	gac Asp	acg Thr	gac Asp	gtg Val	tgc Cys 10	atc Ile	ggc Gly	gcc Ala	ggc Gly	cag Gln 15	tgc Cys	48
20							gtc Val										96
25	acc Thr	ctc Leu	ctg Leu 35	ccc Pro	gga Gly	cag Gln	gag Glu	gac Asp 40	agc Ser	ggc Gly	gac Asp	ccg Pro	atg Met 45	gtc Val	cgg Arg	gag Glu	144
30							gtc Val 55										192
		ccg Pro	tga														201
35	<212 <212	0> 16 1> 19 2> Di 3> Sa	98 NA	ropo	olysį	oora	tabe	eri d	JCM S	93831	:						
40		0> l> CI 2> (1		(198)	,												
45	atg	0> 10 agg Arg	atc	cag Gln	gcg Ala 5	gac Asp	gtg Val	gag Glu	cgc Arg	tgc Cys 10	gtc Val	gga Gly	gcg Ala	ggt Gly	cag Gln 15	tgc Cys	48
							ctg Leu										96
50							gag Glu										144
55							tgc Cys 55										192

```
gac tga
                                                                                   198
           Asp
            65
5
           <210> 17
           <211> 195
           <212> DNA
           <213> Streptmyces testaceus ATCC 21469
10
           <220>
           <221> CDS
           <222> (1)..(195)
           <400> 17
           atg egg atc acc atc gac acc gac gtc tgc atc ggc gcc ggc cag tgc
                                                                                    48
15
           Met Arg Ile Thr Ile Asp Thr Asp Val Cys Ile Gly Ala Gly Gln Cys
           gcg ctg acc gcg ccc ggg gtg ttc acc cag gac gac gac ggc ttc agc
                                                                                    96
           Ala Leu Thr Ala Pro Gly Val Phe Thr Gln Asp Asp Asp Gly Phe Ser
                        20
20
           gag ctg ctg ccc ggc cgc gag gac ggc gcg ggc gac ccg atg ctg cgg
                                                                                   144
           Glu Leu Leu Pro Gly Arg Glu Asp Gly Ala Gly Asp Pro Met Leu Arg
                    35
           gag goo gtg ogt goo tgo coo gtg cag goo atc acc gtc gog gac gac
                                                                                   192
25
           Glu Ala Val Arg Ala Cys Pro Val Gln Ala Ile Thr Val Ala Asp Asp
           tga
                                                                                   195
           <210> 18
30
           <211> 23
           <212> PRT
           <213> Streptmyces phaeochromogenes IFO 12898
           <400> 18
           Thr Asp Met Thr Asp Thr Ala Asp Val Lys Pro Leu Ser Ala Pro Val
35
            1
           Ala Phe Pro Gln Asp Arg Thr
           <210> 19
40
           <211> 7
           <212> PRT
           <213> Streptmyces phaeochromogenes IFO 12898
           <400> 19
           Val Thr Leu Tyr Asp Gly Arg
45
          <210> 20
          <211> 19
          <212> PRT
          <213> Saccharopolyspora taberi JCM 9383T
50
          <400> 20
          Pro Ala Ser Ser Glu Ala Leu Thr Tyr Pro Ile Pro Arg Thr Cys Pro
          Tyr Ser Pro
55
          <210> 21
          <211> 8
```

```
<212> PRT
       <213> Saccharopolyspora taberi JCM 9383T
       <400> 21
       Gly Ala Val Glu Glu Met Leu Arg
5
       <210> 22
       <211> 19
       <212> PRT
       <213> Streptomyces griseolus ATCC11796
10
       Thr Asp Thr Ala Thr Thr Pro Gln Thr Thr Asp Ala Pro Ala Phe Pro
                                              10
       Ser Asn Arg
15
       <210> 23
       <211> 15
       <212> PRT
       <213> Streptomyces griseolus ATCC11796
20
       Arg Ser Cys Pro Tyr Gln Leu Pro Asp Gly Tyr Ala Gln Leu Arg
                                             10
       <210> 24
       <211> 15
25
       <212> PRT
       <213> Streptomyces griseolus ATCC11796
       <400> 24
       Asp Thr Pro Gly Pro Leu His Arg Val Thr Leu Tyr Asp Gly Arg
30
                                              10
       <210> 25
       <211> 7
       <212> PRT
       <213> Streptomyces griseolus ATCC11796
35
       <400> 25
       Gln Ala Trp Val Val Thr Lys
       <210> 26
40
       <211> 11
       <212> PRT
       <213> Streptomyces griseolus ATCC11796
       <400> 26
       Thr Asp Asp Asn Phe Pro Ala Thr Ser Pro Arg
45
       <210> 27
       <211> 17
       <212> PRT
50
       <213> Streptomyces griseolus ATCC11796
       <400> 27
       Glu Ser Pro Gln Ala Phe Ile Gly Leu Asp Pro Pro Glu His Gly Thr
                                              10
       Arg
55
       <210> 28
```

```
<211> 9
       <212> PRT
       <213> Streptomyces griseolus ATCC11796
       <400> 28
5
       Met Thr Ile Ser Glu Phe Thr Val Lys
                          5
        1
       <210> 29
       <211> 14
       <212> PRT
10
       <213> Streptomyces griseolus ATCC11796
       <400> 29
       Leu Val Gln Ser Thr Asp Ala Gln Ser Ala Leu Thr Ala Arg
15
       <210> 30
       <211> 12
<212> PRT
       <213> Streptomyces griseolus ATCC11796
20
       <400> 30
       Ser Leu Val Pro Gly Ala Val Glu Glu Leu Leu Arg
       <210> 31
       <211> 11
25
       <212> PRT
       <213> Streptomyces griseolus ATCC11796
       <400> 31
       Tyr Leu Ala Ile Ala Asp Ile Ala Gly Gly Arg
30
                          5
       <210> 32
       <211> 14
       <212> PRT
       <213> Streptomyces griseolus ATCC11796
35
       <400> 32
       Ala Gly Glu Gly Val Ile Val Val Asn Ser Ile Ala Asn Arg
                                              10
       <210> 33
40
       <211> 15
       <212> PRT
       <213> Streptomyces griseolus ATCC11796
       <400> 33
       Asp Gly Thr Val Tyr Glu Asp Pro Asp Ala Leu Asp Ile His Arg
45
                                              10
       <210> 34
       <211> 13
       <212> PRT
       <213> Streptomyces griseolus ATCC11796
50
       <400> 34
       Leu Glu Leu Glu Val Ile Leu Asn Ala Leu Met Asp Arg
55
       <210> 35
       <211> 32
```

```
<212> DNA
       <213> Artificial Sequence
       <223> Designed oligonucleotide primer for PCR
5
       <400> 35
       acsgayatga csgayacsgc sgaygtnaag cc
                                                       32
       <210> 36
       <211> 21
10
       <212> DNA
       <213> Artificial Sequence
       <220>
       <223> Designed oligonucleotide primer for PCR
15
       <400> 36
                                          21
       vcgsccgtcg tagagcgtca c
       <210> 37
       <211> 33
20
       <212> DNA
       <213> Artificial Sequence
       <223> Designed oligonucleotide primer for PCR
25
       <400> 37
       atatgaccga taccgcggat gtgaagccgc tct
                                                        33
       <210> 38
       <211> 30
30
       <212> DNA
       <213> Artificial Sequence
       <220>
       <223> Designed oligonucleotide primer for PCR
35
       <400> 38
       aacaatttca cacaggaaac agctatgacc
                                                   30
       <210> 39
       <211> 30
       <212> DNA
40
       <213> Artificial Sequence
       <220>
       <223> Designed oligonucleotide primer for PCR
       <400> 39
45
       ctggaaggg caggtgcggt cctgggggaa
                                                   30
       <210> 40
       <211> 30
       <212> DNA
50
       <213> Artificial Sequence
       <220>
       <223> Designed oligonucleotide primer for PCR
       <400> 40
55
       cagtcacgac gttgtaaaac gacggccagt
                                                   30
```

```
<210> 41
      <211> 30
      <212> DNA
      <213> Artificial Sequence
5
      <223> Designed oligonucleotide primer for PCR
      <400> 41
      cttccccag gaccgcacct gccccttcca
                                                   30
10
      <210> 42
      <211> 33
      <212> DNA
      <213> Artificial Sequence
15
      <223> Designed oligonucleotide primer for PCR
      <400> 42
      tgcggtcctg ggggaaggcg acgggtgccg aga
                                                       33
20
      <210> 43
      <211> 22
      <212> DNA
      <213> Artificial Sequence
25
      <223> Designed oligonucleotide primer for PCR
      <400> 43
      acgaatgcat cgacgcgatg ct
                                          22
      <210> 44
30
      <211> 22
       <212> DNA
      <213> Artificial Sequence
35
      <223> Designed oligonucleotide primer for PCR
      <400> 44
      agttggtgaa cgccttcgcg ct
                                          22
      <210> 45
40
      <211> 22
      <212> DNA
      <213> Artificial Sequence
      <223> Designed oligonucleotide primer for PCR
45
      <400> 45
      cctcgatggt gatctgcgaa ct
                                          22
      <210> 46
      <211> 20
50
      <212> DNA
      <213> Artificial Sequence
      <223> Designed oligonucleotide primer for PCR
55
      <400> 46
```

	acttac	caccc	tgctc	caaca		20		
5	<210> <211> <212> <213>	25 DNA	icial	Seque	ence			
	<220> <223>	Desig	ned o	ligon	ucleotide	primer	for	PCR
10	<400> acgagt		gcgga	tgctg	tccat	:	25	
15	<210> <211> <212> <213>	22 DNA	icial	Seque	ence			
	<220> <223>	Desig	gned o	ligon	ucleotide	primer	for	PCR
20	<400> tctccg	-	cgaat	accgt	ga	22		
25	<210> <211> <212> <213>	23 DNA	icial	Seque	ence			
	<220> <223>	Desig	gned o	ligon	ucleotide	primer	for	PCR
30	<400> ttcgac		acgcg	ctcgt	cat	23		
35	<210> <211> <212> <213>	24 DNA	icial	Seque	ence			
	<220> <223>	Desig	ned o	ligonu	ucleotide	primer	for	PCR
40	<400> tttccg		cttga	tggca	ccga	2	4	
	<210> <211> <212> <213>	29 DNA	icial	Seque	ence			
45	<220> <223>	Desig	med o	ligonı	ncleotide	primer	for	PCR
50	<400> ctcata		agaca	tgacg	gatacggc	:a	2	29
	<210> <211> <212> <213>	30 Dna	icial	Seque	ence			
55	<220> <223>	Desig	ned o	ligony	cleotide	primer	for	PCR

	<400> 52 gaagetteta eeaggeeaeg ggeagateea 30	
5	<210> 53 <211> 28 <212> DNA <213> Artificial Sequence	
10	<220> <223> Designed oligonucleotide primer for PCR	
	<400> 53 aaagctttca cggtcgcgcg gtttccga 28	
15	<210> 54 <211> 20 <212> DNA <213> Artificial Sequence	
20	<220> <223> Designed oligonucleotide primer for PCR	
	<400> 54 gaggcsctsa cstatccgat	20
25	<210> 55 <211> 18 <212> DNA <213> Artificial Sequence	
30	<220> <223> Designed oligonucleotide primer for PCR <400> 55	
	catctcctcc accgcgcc <210> 56	18
35 1	<211> 22 <211> DNA <213> Artificial Sequence	
	<220> <223> Designed oligonucleotide primer for PCR	
40	<400> 56 gtgccgcgac accagccaca cg	22
45	<210> 57 <211> 17 <212> DNA <213> Artificial Sequence	
	<220> <223> Designed oligonucleotide primer for PCR	
50	<400> 57 caggaaacag ctatgac	17
55	<210> 58 <211> 23 <212> DNA <213> Artificial Sequence	

	<220> <223> Designed oligonucleotide primer for PCR	
5	<400> 58 tcgacctggt gcggatgctc tcg	23
	togacotyge goggatyete tog	23
	<210> 59	
	<211> 17	
	<212> DNA	
10	<213> Artificial Sequence	
	<220>	
	<223> Designed oligonucleotide primer for PCR	
	<400> 59	
15	gttttcccag tcacgac	17
	<210> 60	
	<211> 23	
	<212> DNA	
20	<213> Artificial Sequence	
20	<220>	
	<223> Designed oligonucleotide primer for PCR	
	<400> 60	
	catgateteg ettggtagee tgg	23
25	original ori	25
	<210> 61	
	<211> 29	
	<212> DNA	
	<213> Artificial Sequence	
30	4000	
	<220> <223> Designed oligonucleotide primer for PCR	
	(223) besigned origonacteotide primer for FCK	
	<400> 61	
	cccatatgcc ggcatettet gaagetetg	29
35		
	<210> 62	
	<211> 32	
	<212> DNA	
	<213> Artificial Sequence	
40	<220>	
40	<223> Designed oligonucleotide primer for PCR	
	<400> 62	
	gaagetttea eeaagtgaee ateagttegt gg	32
45	<210> 63	
45	<211> 31	
	<212> DNA	
	<213> Artificial Sequence	
	•••	
	<220>	
50	<223> Designed oligonucleotide primer for PCR	
	<400> 63	
	ctaagettte agteeteeae gagegacaae a	31
		3.
	<210> 64	
55	<211> 20 <212> DND	
	5/1/3 LINIA	

	<213> Artificial Sequence	
5	<220> <223> Designed oligonucleotide primer for PCR	
	<400> 64 agtgcctggg ccagaacctc	20
10	<210> 65 <211> 30	
	<212> DNA <213> Artificial Sequence	
15	<220> <223> Designed oligonucleotide primer for PCR	
15	<400> 65 cgggaggaac tcgtgaccga agccatcgcg	30
	<210> 66 <211> 33	
20	<212> DNA <213> Artificial Sequence	
	<220> <223> Designed oligonucleotide primer for PCR	
25	<400> 66 gagggcgccg gctcagtcgt ccgcgacggt gat	33
	<210> 67 <211> 30	
30	<212> DNA <213> Artificial Sequence	
	<220> <223> Designed oligonucleotide primer for PCR	
35	<400> 67 caggaaacag ctatgaccat gattacgcca	30
	<210> 68 <211> 30	
40	<212> DNA <213> Artificial Sequence	
	<220> <223> Designed oligonucleotide primer for PCR	
45	<400> 68 tgtaaaacga cggccagtga attgtaatac	30
	<210> 69 <211> 1418	
	<212> DNA <213> Streptmyces testaceus ATCC 21469	
50	<220> <221> CDS	
	<222> (1)(1188)	
55	<220> <221> CDS	
	<222> (1224) . (1418)	

		0> 6																
5					atc Ile 5												4	48
					tat Tyr												9	96
10	gtc Val	acc Thr	ctc Leu 35	tac Tyr	gac Asp	ggc Gly	cgc Arg	aag Lys 40	gtg Val	tgg Trp	gcg Ala	gtg Val	acc Thr 45	ggc Gly	cac His	acc Thr	14	14
15	gag Glu	ğcg Ala 50	cgg Arg	gcg Ala	ctg Leu	ctg Leu	agc Ser 55	gac Asp	ccg Pro	cgg Arg	ctg Leu	tcc Ser 60	tcc Ser	gac Asp	cgg Arg	cag Gln	. 19	€2
					ccg Pro												24	10
20					ctg Leu 85												28	18
25	cgc Arg	cgg Arg	atg Met	ctg Leu 100	atc Ile	ccc Pro	agc Ser	ttc Phe	agc Ser 105	gtc Val	aag Lys	cgg Arg	acc Thr	gcg Ala 110	gcg Ala	ctg Leu	33	36
30	cgg Arg	ccg Pro	cag Gln 115	atc Ile	cag Gln	cag Gln	atc Ile	gtc Val 120	gac Asp	ggg Gly	ctg Leu	ctg Leu	gac Asp 125	cgg Arg	atg Met	ctg Leu	38	4
					ccc Pro												43	12
<i>35</i>	ccc Pro 145	tcg Ser	atg Met	gtg Val	atc Ile	tgc Cys 150	tcg Ser	ctg Leu	ctc Leu	ggc Gly	gtc Val 155	ccc Pro	tac Tyr	tcc Ser	gac Asp	cac His 160	48	0
40					gag Glu 165												52	:8
					gag Glu												57	6
45	ctg Leu	atc Ile	gcc Ala 195	cac His	aag Lys	gag Glu	aag Lys	acc Thr 200	ccg Pro	cgc Arg	gag Glu	ggc Gly	ctg Leu 205	ctc Leu	gac Asp	gag Glu	62	4
50	ctg Leu	gtc Val 210	cac His	gac Asp	gag Glu	ctg Leu	cgc Arg 215	acc Thr	ggc Gly	gcc Ala	ctg Leu	gag Glu 220	cgc Arg	gag Glu	gat Asp	ctg Leu	67	2
	gtc Val 225	cgg Arg	ctc Leu	gcg Ala	atg Met	atc Ile 230	ctg Leu	ctg Leu	gtg Val	gcc Ala	ggc Gly 235	cac His	gag Glu	acc Thr	acc Thr	gcc Ala 240	72	0
55	aac Asn	atg Met	atc Ile	tcg Ser	ctc Leu	ggc Gly	acc Thr	ttc Phe	acc Thr	ctg Leu	ctg Leu	gag Glu	cac His	ccc Pro	gga Gly	cag Gln	76	8

				245					250					255		
5	ctg gcc Leu Ala															816
	gag ctg Glu Leu															864
10	atg gcg Met Ala 290	Asp														912
15	gtg ctg Val Leu 305															960
20	aca ccg Thr Pro															1008
20	ttc ggg Phe Gly															1056
25	gag atg Glu Met															1104
30	cga ctc Arg Leu 370	Ala	gtg Val	ccg Pro	gct Ala	gcc Ala 375	gag Glu	atc Ile	ccc Pro	ttc Phe	aag Lys 380	ccg Pro	Gly ggg	gac Asp	act Thr	1152
	ctg caa Leu Gln 385										tag	ccg	eggt	gca (cccggc	1204
35	cgaacga	agg g	ıgttt	tgga	-	Arc	_		c Ile	_		_	_	_	Ile	1256
40	ggc gcc Gly Ala															1304
	gac gac Asp Asp	ggc Gly 30	ttc Phe	agc Ser	gag Glu	ctg Leu	ctg Leu 35	ccc Pro	ggc Gly	cgc Arg	gag Glu	gac Asp 40	ggc Gly	gcg Ala	ggc Gly	1352
45	gac ccg Asp Pro 45	Met														1400
50	acc gtc Thr Val 60				tga										·	1418
	<210> 7 <211> 3 <212> D <213> A	0 NA	cial	. Sec	quenc	e										
55	<220>									•						

	<223> Designed oligonucleotide primer for PCR	
5	<400> 70 cgggaggaac atatgaccga agccatcgcg	30
3	<210> 71	30
	<211> 33	
	<211> 33 <212> DNA	
	<213> Artificial Sequence	
10	40205	
	<220> <223> Designed oligonucleotide primer for PCR	
	V2237 Besigned Offgondofeocide primer for FCK	
	<400> 71	
	gcaaagcttc taccaggcca gcggcagttc gat	33
15	<210> 72	
	<211> 33	
	<212> DNA	
!	<213> Artificial Sequence	
20	<220>	
20	<pre><220> <223> Designed oligonucleotide primer for PCR</pre>	
	\$ DODING OLIGORIUS PLIMEL TOLLOW	
	<400> 72	
	gaggaagett geteagtegt eegegaeggt gat	33
25	<210> 73	
	<211> 30	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
30	<223> Designed oligonucleotide primer for PCR	
	<400> 73	
	gtgccctcga tggtgatctg ctcgctgctc	30
	2210× 74	
35	<210> 74 <211> 30	
	<211> 30 <212> DNA	
ſ	<213> Artificial Sequence	
	<220>	
	<pre><223> Designed oligonucleotide primer for PCR</pre>	
40	•	
	<400> 74	
	tcgagggttc atatgaccga gatgacagag	30
	<210> 75	
45	<211> 30	
45	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Designed oligonucleotide primer for PCR	
50	<400> 75	
	gatgtggcag atcaccatgg acgggacggg	20
	- · · · · · · · · · · · · · · · · · · ·	30
	<210> 76	
	<211> 30	
55	<212> DNA <213> Artificial Sequence	

		<220> <223> Designed oligonucleotide primer for PCR													
5		<400> 76 cccgtcccgt ccatggtgat ctgccacatg	30												
10		<210> 77 <211> 33 <212> DNA <213> Artificial Sequence													
		<220> <223> Designed oligonucleotide primer for PCR													
15		<400> 77 ggcaagettt caccaggtga ccgggagttc gtt													
20	,	<210> 78 <211> 1233 <212> DNA <213> Streptmyces carbophilus SANK 62585													
		<220> <221> CDS <222> (1)(1233)													
25		<pre><400> 78 atg acc gag atg aca gag aaa gcc acc aca ttc ctc acg tcg cag gag Met Thr Glu Met Thr Glu Lys Ala Thr Thr Phe Leu Thr Ser Gln Glu 1</pre>	48												
30		gca ccg gcc ttc ccg gcg gac cgc aca tgt ccc tac caa cta ccc acg Ala Pro Ala Phe Pro Ala Asp Arg Thr Cys Pro Tyr Gln Leu Pro Thr 20 25 30	96												
		gcc tac agt cgg ttg agg gac gag ccg gat gcg ctg cgc ccg gtg acg Ala Tyr Ser Arg Leu Arg Asp Glu Pro Asp Ala Leu Arg Pro Val Thr 35 40 45	144												
35	ţ	ctc tac gac ggc cgc cgc gcc tgg gtg gtg acc aag cac gag gcg gcg Leu Tyr Asp Gly Arg Arg Ala Trp Val Val Thr Lys His Glu Ala Ala 50 55 60	192												
40		cgg cgg tta ctc gcg gac ccc cgg ctg tcc tcc gac cgc ctg cac gcc Arg Arg Leu Leu Ala Asp Pro Arg Leu Ser Ser Asp Arg Leu His Ala 65 70 75 80	240												
		gac ttc ccc gcc acc tcg cca cgc ttc aag gcg ttc cgg cag ggc agc Asp Phe Pro Ala Thr Ser Pro Arg Phe Lys Ala Phe Arg Gln Gly Ser 85 90 95	288												
45		ccc gcg ttc atc ggg atg gat ccc ccc gag cac ggg acg cgt cgc cgc Pro Ala Phe Ile Gly Met Asp Pro Pro Glu His Gly Thr Arg Arg Arg 100 105 110	336												
50		atg acg atc agc gag ttc acc gtg aag cgc atc aag ggc atg cgc ccg Met Thr Ile Ser Glu Phe Thr Val Lys Arg Ile Lys Gly Met Arg Pro 115 120 125	384												
55		gac gtc gaa cgc atc gtg cac ggc ttc atc gac gac atg ctc gcc gcg Asp Val Glu Arg Ile Val His Gly Phe Ile Asp Asp Met Leu Ala Ala 130 135 140	432												

		ccc Pro															480
5		gtg Val															528
10		cag Gln															576
		gtc Val															624
15		aag Lys 210															672
20		cac His															720
		gcc Ala															768
25	acc Thr	tcg Ser	ctc Leu	agc Ser 260	gtc Val	atc Ile	acc Thr	ctg Leu	ctc Leu 265	gaa Glu	cac His	ccc Pro	gac Asp	cag Gln 270	cac His	gcc Ala	816
30		ctg Leu															864
		cgc Arg 290															912
35	gcc Ala 305	gac Asp	atc Ile	gag Glu	atc Ile	gac Asp 310	gga Gly	cag Gln	ctc Leu	atc Ile	cgg Arg 315	gcc Ala	ggt Gly	gaa Glu	gga Gly	gtg Val 320	960
40	atc Ile	gtc Val	acc Thr	aac Asn	tcc Ser 325	atc Ile	gcc Ala	aac Asn	cgc Arg	gac Asp 330	agt Ser	tcg Ser	gtg Val	ttc Phe	gag Glu 335	aac Asn	1008
		gac Asp															1056
45	Gly Ggg	tac Tyr	ggg Gly 355	gtg Val	cac His	cag Gln	tgc Cys	ctg Leu 360	ggc Gly	cag Gln	aac Asn	ctg Leu	gcc Ala 365	cgc Arg	ctc Leu	gaa Glu	1104
50	ctc Leu	gaa Glu 370	gtc Val	atc Ile	ctc Leu	acc Thr	gtg Val 375	ttg Leu	ttc Phe	gac Asp	cgc Arg	att Ile 380	ccg Pro	acc Thr	ctg Leu	cgc Arg	1152
	ctg Leu 385	gcc Ala	gtc Val	ccc Pro	gtg Val	gag Glu 390	cag Gln	ctg Leu	acg Thr	ctg Leu	cgt Arg 395	ccg Pro	ggc Gly	acg Thr	acg Thr	atc Ile 400	1200
55																	

		cag ggc gtc aac gaa ctc ccg gtc acc tgg tga Gln Gly Val Asn Glu Leu Pro Val Thr Trp 405 410	1233
5		<210> 79 <211> 28 <212> DNA <213> Artificial Sequence	
10		<220> <223> Designed oligonucleotide primer for PCR	
		<400> 79 gccatatgac cgataccgcc acgacgcc	28
15)	<210> 80 <211> 29 <212> DNA <213> Artificial Sequence	
20	•	<220> <223> Designed oligonucleotide primer for PCR	
		<400> 80 gcaagctttc accaggtgac cgggagttc	29
25		<210> 81 <211> 28 <212> DNA <213> Artificial Sequence	
		<220> <223> Designed oligonucleotide primer for PCR	
30		<400> 81 gcaagettet atteegtgte etegaega	28
35	}	<210> 82 <211> 20 <212> DNA <213> Artificial Sequence	
		<220> <223> Designed oligonucleotide primer for PCR	
40		<400> 82 cacggcttcc tcgacgagat	20
45		<210> 83 <211> 20 <212> DNA <213> Artificial Sequence	
		<220> <223> Designed oligonucleotide primer for PCR	
50		<400> 83 gtggaggaac tgctccgcta	20
		<210> 84 <211> 1221 <212> DNA	
55		<213> Streptmyces griseolus ATCC 11796	

	<220> <221> <222>		(122	1)												
5	<400> atg a Met T	84 cc gat hr Asj	acc Thr	gcc Ala 5	acg Thr	acg Thr	ccc Pro	cag Gln	acc Thr 10	acg Thr	gac Asp	gca Ala	ccc Pro	gcc Ala 15	ttc Phe	48
10	ccg a	gc aad er Asi														96
15		gg gad rg Asp 3	Thr													144
	Arg G	ag gco ln Ala 50														192
20		ac cco														240
25		ca cco														288
		tg gad eu As														336
30		tc according to the Thi	. Val													384
35	Val V	tg cad al His 30	ggc Gly	ttc Phe	ctc Leu	gac Asp 135	gag Glu	atg Met	ctg Leu	gcc Ala	gcc Ala 140	ggc Gly	ccg Pro	acc Thr	gcc Ala	432
	gac c Asp Le 145	tg gto eu Val														480
40		tc cto eu Lei														528
45		ag cgg ys Arg														576
	cgg a	ac gad sn Asp 195	Leu	gcg Ala	ggt Gly	tac Tyr	ctg Leu 200	gac Asp	ggc Gly	ctc Leu	atc Ile	acc Thr 205	cag Gln	ttc Phe	cag Gln	624
50		aa cco lu Pro 10	ggc Gly	gcg Ala	ggc Gly	ctg Leu 215	gtg Val	ggc Gly	gct Ala	ctg Leu	gtc Val 220	gcc Ala	gac Asp	cag Gln	ctg Leu	672
55	gcc aa Ala As 225	ac ggo sn Gly	gag Glu	atc Ile	gac Asp 230	cgt Arg	gag Glu	gaa Glu	ctg Leu	atc Ile 235	tcc Ser	acc Thr	gcg Ala	atg Met	ctg Leu 240	720

	ctc ctc Leu Leu															768
5	gtg atc Val Ile															816
10	gac cgc Asp Arg	agc Ser 275	ctc Leu	gtg Val	ccc Pro	ggc Gly	gcg Ala 280	gtg Val	gag Glu	gaa Glu	ctg Leu	ctc Leu 285	cgc Arg	tac Tyr	ctc Leu	864
45	gcc atc Ala Ile 290	Ala														912
15	gtc gag Val Glu 305															960
20	tcg ata Ser Ile															1008
25	gac atc Asp Ile															1056
	cac cag His Gln															1104
30	ctc aac Leu Asn 370	Āla		-	_	_	-	-	_	_	_	_	_	_		1152
35	gtc gag Val Glu 385															1200
i	gaa ctc Glu Leu					tga										1221
40	<210> 8 <211> 1 <212> D <213> S	451 NA	tmyc	es gi	cised	olus	ATC	C 11 ⁻	796							
45	<220> <221> C <222> ((122)	l)												
	<220> <221> C <222> () (:	1451))											
50	<400> 8 atg acc Met Thr	gat														48
55	ccg ago	aac	cgg	agc	tgt	ccc	tac	cag	tta	ccg	gac	ggc	tac	gcc	cag	96

	Pro	Ser	Asn	Arg 20	Ser	Cys	Pro	Tyr	Gln 25	Leu	Pro	Asp	Gly	Tyr 30	Ala	Gln	
5								ctg Leu 40									144
10								aag Lys									192
70								aac Asn									240
15								gtc Val									288
20								ggc Gly									336
								aag Lys 120									384
25								gag Glu									432
30								ctg Leu									480
								gcc Ala									528
35								acg Thr									576
40								ctg Leu 200									624
								gtg Val									672
45								gag Glu									720
50								acc Thr									768
								ccc Pro									816
55	gac	cgc	agc	ctc	gtg	ccc	ggc	gcg	gtg	gag	gaa	ctg	ctc	cgc	tac	ctc	864

	Asp	Arg	Ser 275	Leu	Val	Pro	Gly	Ala 280	Val	Glu	Glu	Leu	Leu 285	Arg	Tyr	Leu	
5		atc Ile 290															912
10		gag Glu															960
70		ata Ile															1008
15		atc Ile															1056
20	cac His	cag Gln	tgc Cys 355	ctg Leu	ggc Gly	cag Gln	aac Asn	ctc Leu 360	gcc Ala	cgg Arg	ctg Leu	gag Glu	ctg Leu 365	gag Glu	gtc Val	atc Ile	1104
		aac Asn 370															1152
25		gag Glu															1200
30		ctc Leu					tga	cgg	ggaq	gag (gggca	aagga		_		tg cgg et Arg	1253
		agt Ser															1301
35		gcg Ala															1349
40		acg Thr															1397
	gcc Ala	ggc	cat His 55	ctc Leu	tgt Cys	ccg Pro	tcc Ser	ggt Gly 60	gcg Ala	gtc Val	cgc Arg	gtc Val	gtc Val 65	gag Glu	gac Asp	acg Thr	1445
45	gaa Glu 69	tag										•					1451
50	<213 <213	0> 86 1> 37 2> DN 3> An	7 NA	cial	Sec	quenc	:e										
	<220 <220	0> 3> De	esigr	ned o	oligo	onucl	leoti	ide p	orime	er fo	or PC	CR					
55	<400	D> 86	5														

	gaaagcttag aggatccaaa tggcttcctc aatgatc 37	
5	<210> 87 <211> 38 <212> DNA <213> Artificial Sequence	
	<220> <223> Designed oligonucleotide primer for PCR	
10	<400> 87 cgaggtaccg caagtaggaa agagtcatga acttcttc 38	
15	<210> 88 <211> 248 <212> DNA <213> Glycine max (L.) Merrill	
	<220> <221> CDS <222> (20)(220)	
20	<400> 88 gaaagcttag aggatccaa atg gct tcc tca atg atc tcc tcc cca gct gtt Met Ala Ser Ser Met Ile Ser Ser Pro Ala Val 1 5 10	52
25	acc acc gtc aac cgt gcc ggt gcc ggc atg gtt gct cca ttc acc ggc Thr Thr Val Asn Arg Ala Gly Ala Gly Met Val Ala Pro Phe Thr Gly 15 20 25	100
30	ctc aaa tcc atg gct ggc ttc ccc acg agg aag acc aac aat gac att Leu Lys Ser Met Ala Gly Phe Pro Thr Arg Lys Thr Asn Asn Asp Ile 30 35 40	148
	acc tcc att gct agc aac ggt gga aga gta caa tgc atg cag gtg tgg Thr Ser Ile Ala Ser Asn Gly Gly Arg Val Gln Cys Met Gln Val Trp 45 50 55	196
35	cca cca att ggc aag aag ttc atgactcttt cctacttgcg gtacctcg Pro Pro Ile Gly Lys Lys Phe 60 65	248
40	<210> 89 <211> 9 <212> DNA <213> Artificial Sequence	
	<220> - <223> Designed oligonucleotide linker for construction of expression	vector
45	<400> 89 gcggccgcg 9	
50	<210> 90 <211> 13 <212> DNA <213> Artificial Sequence	
	<220> <223> Designed oligonucleotide linker for construction of expression	vector
55	<400> 90 aattcgcggc cgc 13	

```
<210> 91
       <211> 13
       <212> DNA
       <213> Artificial Sequence
5
       <223> Designed oligonucleotide linker for construction of expression vector
       <400> 91
       agcttgcggc cgc
                                 13
10
       <210> 92
       <211> 11
       <212> DNA
       <213> Artificial Sequence
15
       <220>
       <223> Designed oligonucleotide linker for construction of expression vector
       <400> 92
       tagcggccgc a
                                        11
20
       <210> 93
       <211> 30
       <212> DNA
       <213> Artificial Sequence
25
       <223> Designed oligonucleotide primer for PCR
       <400> 93
       tcatgcatga cagacatgac ggatacggca
                                                                              30
       <210> 94
30
       <211> 30
       <212> DNA
       <213> Artificial Sequence
      <223> Designed oligonucleotide primer for PCR
35
      <400> 94
      ggagctccta ccaggccacg ggcagatcca
                                                                              30
      <210> 95
      <211> 30
40
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Designed oligonucleotide primer for PCR
45
      <400> 95
      ggagetetea eggtegegeg gttteegag a
                                                                              30
      <210> 96
      <211> 30
50
      <212> DNA
      <213> Artificial Sequence
      <223> Designed oligonucleotide primer for PCR
```

55

```
<400> 96
     tctttcatga cagacatgac ggatacggca
                                                                               30
     <210> 97
     <211> 30
5
     <212> DNA
     <213> Artificial Sequence
     <220>
     <223> Designed oligonucleotide primer for PCR
10
     <400> 97
     ggagetetea eggtegegeg gttteegag a
                                                                              30
     <210> 98
     <211> 19
<212> DNA
15
     <213> Artificial Sequence
     <220>
     <223> Designed oligonucleotide linker for construction of expression vector
20
     <400> 98
     agcttgcggc cgcgaattc
                                                19
     <210> 99
     <211> 19
     <212> DNA
25
     <213> Artificial Sequence
     <223> Designed oligonucleotide linker for construction of expression vector
     <400> 99
30
     agctgaattc gcggccgca
                                                  19
     <210> 100
     <211> 35
     <212> DNA
     <213> Artificial Sequence
35
     <220>
     <223> Designed oligonucleotide primer for PCR
     <400> 100
     ccaagettge atgeeggeat ettetgaage tetga
                                                                                35
40
     <210> 101
     <211> 35
     <212> DNA
     <213> Artificial Sequence
45
     <223> Designed oligonucleotide primer for PCR
     gaagettggt acctcaccaa gtgaccatca gttcg
                                                                                35
50
     <210> 102
     <211> 29
<212> DNA
     <213> Artificial Sequence
     <220>
55
```

```
<223> Designed oligonucleotide primer for PCR
       <400> 102
                                                      29
       aatgcatgac cgaagccatc gcgtatttc
5
       <210> 103
       <211> 24
       <212> DNA
       <213> Artificial Sequence
10
       <223> Designed oligonucleotide primer for PCR
       <400> 103
       ggggtaccgc ggctaccagg ccag
                                                       24
15
       <210> 104
       <211> 29
       <212> DNA
      <213> Artificial Sequence
20
       <223> Designed oligonucleotide primer for PCR
     <400> 104
       aactcatgac cgaagccatc gcgtatttc
                                                      29
       <210> 105
25
       <211> 30
<212> DNA
       <213> Artificial Sequence
       <220>
       <223> Designed oligonucleotide primer for PCR
30
       <400> 105
       ggtccacata tgcacatcga catcgacacg
                                                                                30
       <210> 106
       <211> 30
35
       <212> DNA
       <213> Artificial Sequence
       <223> Designed oligonucleotide primer for PCR
40
       <400> 106
       agagtccata tgaggatcca ggcggacgtg
                                                                              30
       <210> 107
       <211> 30
       <212> DNA
45
       <213> Artificial Sequence
       <220>
       <223> Designed oligonucleotide primer for PCR
       <400> 107
50
       ggttttcata tgcggatcac catcgacacc
                                                                               30
       <210> 108
       <211> 411
       <212> PRT
       <213> Streptomyces achromogenes IFO 12735
55
```

```
<400> 108
     Met Thr Gln Ser Ala Asp Ala Val Pro Glu Ala Glu Ala Pro Pro Val
                                         10
     Gln Phe Pro Leu Arg Arg Thr Cys Pro Phe Ala Glu Pro Pro Glu Tyr
                                    25
     Ala Gly Leu Arg Ala Asp Thr Pro Val Ala Arg Ala Ala Leu Lys Val
            35
                                                    45
                                40
     Asn Gly Lys Pro Ala Trp Leu Val Thr Arg His Glu His Val Arg Gln
                            55
                                                60
     Val Leu Gly Asp Ser Arg Val Ser Ser Asn Leu Lys Leu Pro Gly Tyr
10
                        70
     Pro His Gln Phe His Ile Pro Glu Glu Leu Leu Ala Gln Val Arg Leu
                    85
                                        90
     Met Met Leu Asn Met Asp Pro Pro Glu His Thr Ala His Arg Arg Met
               100
                                  105
                                                     110
     Leu Ile Pro Glu Phe Thr Ala Arg Arg Val Arg Glu Leu Arg Pro Arg
15
            115
                               120
                                                   125
     Ile Gln Gln Ile Val Asp Glu His Val Asp Ala Met Leu Ala Ala Gly
        130
                            135
                                               140
     Gly Pro Val Asp Leu Val Thr Ala Leu Ala Leu Pro Val Pro Ser Leu
                     150
                                          155
     Val Ile Cys Glu Leu Gly Val Pro Tyr Glu Asp His Ala Arg Phe
20
                   165
                                       170
                                                         175
     Glu Glu Trp Ser Ala Ala Leu Met Asn His Asp Leu Ser Pro Gln Glu
                180
                                    185
                                                      190
     Tyr Gly Ala Ala Val Gln Ala Leu Asp Thr Tyr Leu Asp Gln Leu Val
                              200
                                                 205
25
     Thr Leu Lys Glu Asn Glu Pro Gly Asp Asp Leu Ile Ser Arg Phe Leu
      210
                           215
                                              220
     Glu Lys Asn Arg Thr Glu Arg Val Ala Asp His Thr Asp Val Val Thr
                     230
                                          235
     Met Ala Arg Leu Met Leu Val Gly Gly His Glu Thr Thr Ala Asn Met
                   245
                                       250
                                                           255
30
     Ile Ala Leu Gly Val Leu Ala Leu Leu Arg His Pro Glu Gln Met Ala
                260
                                   265
     Glu Leu Arg Ala Asp Pro Ala Leu Leu Pro Asn Ala Val Glu Glu Leu
            275
                               280
                                                   285
     Leu Arg Val Phe Ser Ile Ser Asp Ser Gly Thr Ala Arg Val Ala Val
        290
                            295
                                               300
35
     Ala Asp Ile Glu Val Gly Asp Val Thr Ile Arg Ala Gly Glu Gly Ile
                      310
                                          315
     Leu Ala Leu Asn Asn Ala Ala Asp His Asp Glu Ser Val Phe Pro Asp
                    325
                                        330
     Pro Asp Thr Leu Asp Ile His Arg Lys Glu Ala Arg Ser His Leu Ala
               340
                                   345
40
     Phe Gly Tyr Gly Val His Gln Cys Ile Gly Ala Asn Leu Ala Arg Ala
            355
                                360
                                                   365
     Glu Leu Glu Ala Val Tyr Gly Thr Leu Leu Arg Arg Val Pro Gly Leu
                           375
                                               380
     Arg Leu Ala Ala Glu Pro Glu Asp Leu Arg Phe Lys Asp Asp Ala Met
                        390
                                           395
45
     Val Tyr Gly Val Tyr Glu Leu Pro Val Thr Trp
                    405
    <210> 109
    <211> 1236
     <212> DNA
50
     <213> Streptomyces achromogenes IFO 12735
     <220>
    <221> CDS
    <222> (1)..(1236)
55
```

5	atg		cag							gag Glu 10							48
	cag Gln	ttc Phe	ccc Pro	ctg Leu 20	cgg Arg	cgc Arg	acc Thr	tgt Cys	ccg Pro 25	ttc Phe	gcc Ala	gag Glu	ccg Pro	ccc Pro 30	gag Glu	tac Tyr	96
10										gcc Ala							144
15										cgg Arg							192
										aac Asn							240
20										ctg Leu 90							288
25										cac His							336
										gtg Val							384
30										gac Asp							432
35										gcg Ala							480
										tac Tyr 170							528
40					Ala	Ala	Leu	Met	Asn	cac His	Asp	Leu	Ser	Pro	Gln		576
45										acg Thr							624
										gac Asp							672
50										gac Asp						acg Thr 240	· 720
55										cac His 250							768

5	atc Ile	gcc Ala	ctc Leu	ggg Gly 260	gtg Val	ctg Leu	gcc Ala	ctg Leu	ctg Leu 265	cgg Arg	cac His	ccg Pro	gag Glu	cag Gln 270	atg Met	gcc Ala	816
J	gag Glu	ttg Leu	cgg Arg 275	gcc Ala	gat Asp	ccg Pro	gcc Ala	ctg Leu 280	ctg Leu	ccg Pro	aac Asn	gcc Ala	gtg Val 285	gag Glu	gag Glu	ttg Leu	864
10		cgc Arg 290															912
15	gcg Ala 305	gac Asp	atc Ile	gag Glu	gtc Val	ggt Gly 310	gac Asp	gtc Val	acc Thr	atc Ile	cgc Arg 315	gcg Ala	ggt Gly	gag Glu	ggc Gly	atc Ile 320	960
		gcc Ala															1008
20		gac Asp															1056
25	ttc Phe	ggc Gly	tac Tyr 355	ggc Gly	gtc Val	cac His	cag Gln	tgc Cys 360	atc Ile	ggc Gly	gcc Ala	aac Asn	ctc Leu 365	gcc Ala	cgg Arg	gcg Ala	1104
	gag Glu	ctg Leu 370	gag Glu	gcg Ala	gtc Val	tac Tyr	ggc Gly 375	acg Thr	ctg Leu	ctg Leu	cgc Arg	cgc Arg 380	gtc Val	ccc Pro	ggc Gly	ctg Leu	1152
30	cgg Arg 385	ctg Leu	gcc Ala	gcc Ala	gag Glu	ccg Pro 3 90	gag Glu	gac Asp	ctg Leu	cgg Arg	ttc Phe 395	aag Lys	gac Asp	gac Asp	gcc Ala	atg Met 400	1200
35		tac Tyr										tga					1236
	<212 <212	0> 11 l> 14 2> DN 3> St	154 IA	omyo	ces a	chro	omoge	enes	IFO	1273	35						
40	<220 <221		s				,										
45)> L> CE 2> (1		(1	.454)												
50	atg)> 1] acc Thr	cag	tcc Ser	gcc Ala 5	gac Asp	gcc Ala	gta Val	ccc Pro	gag Glu 10	gcg Ala	gaa Glu	gca Ala	ccg Pro	ccg Pro 15	gtg Val	48
	cag Gln	ttc Phe	ccc Pro	ctg Leu 20	cgg Arg	cgc Arg	acc Thr	tgt Cys	ccg Pro 25	ttc Phe	gcc Ala	gag Glu	ccg Pro	ccc Pro 30	gag Glu	tac Tyr	96
55	gcc	ggg	ctg	cgc	gcc	gac	aca	ccc	gtc	gcc	cgc	gcc	gcc	ctg	aaa	gtg	144

	Ala	Gly	Leu 35	Arg	Ala	Asp	Thr	Pro 40	Val	Ala	Arg	Ala	Ala 45	Leu	Lys	Val	
5						tgg Trp											192
10						cgg Arg 70											240
	ccc Pro	cac His	cag Gln	ttc Phe	cac His 85	atc Ile	ccc Pro	gag Glu	gaa Glu	ctg Leu 90	ctg Leu	gcg Ala	cag Gln	gtc Val	cgg Arg 95	ctg Leu	288
15						gac Asp											336
20	ctg Leu	ata Ile	ccg Pro 115	gag Glu	ttc Phe	acg Thr	gcc Ala	cgc Arg 120	cgg Arg	gtg Val	cgg Arg	gag Glu	ttg Leu 125	cgc Arg	ccg Pro	cgg Arg	384
	atc Ile	cag Gln 130	cag Gln	atc Ile	gtg Val	gac Asp	gag Glu 135	cac His	gtg Val	gac Asp	gcg Ala	atg Met 140	ctg Leu	gcc Ala	gcg Ala	ggc Gly	432
25	ggc Gly 145	ccg Pro	gtg Val	gac Asp	ctg Leu	gtc Val 150	acc Thr	gcc Ala	ctc Leu	gcg Ala	ctg Leu 155	ccg Pro	gtg Val	ccc Pro	tcg Ser	ctg Leu 160	480
30						ctc Leu											528
						gcg Ala											576
35						cag Gln											624
40						gag Glu											672
						gag Glu 230											720
45						ctg Leu											768
50						ctg Leu											816
						ccg Pro											864
55	ctg	cgc	gtc	ttc	tcc	atc	tcc	gac	tcc	ggc	acc	gcc	cgg	gtc	gcg	gtg	912

	Leu	Arg 290	Val	Phe	Ser	Ile	Ser 295	Asp	Ser	Gly	Thr	Ala 300	Arg	Val	Ala	Val	
5							gac Asp										960
10							gcc Ala										1008
							cac His										1056
15	ttc Phe	ggc Gly	tac Tyr 355	ggc Gly	gtc Val	cac His	cag Gln	tgc Cys 360	atc Ile	ggc Gly	gcc Ala	aac Asn	ctc Leu 365	gcc Ala	cgg Arg	gcg Ala	1104
20							ggc Gly 375										1152
0.5							gag Glu										1200
25							ctc Leu					tga	cgg	ccgad	ege (gaacgg	1252
30	acto	gece	ctg a	atg d Met A	egt o	gtc t /al s	cc o	gcc (Ala (5	gaa d Glu <i>l</i>	ege q Arg <i>H</i>	gac d Asp A	egg t Arg (gc (Cys \ 10	gtg (/al (ggc t Sly S	cc Ser	1301
35	ggc Gly	cag Gln 15	tgc Cys	gcg Ala	ctg Leu	ctg Leu	agc Ser 20	ccc Pro	gag Glu	gtg Val	ttc Phe	gac Asp 25	cag Gln	gac Asp	gcc Ala	gac Asp	1349
30		Leu					agc Ser										1397
40							gac Asp										1445
•		gac Asp	tga														1454
45	<212 <212	0> 11 1> 63 2> PF 3> St	3 RT	omyc	ces a	chro	omoge	enes	IFO	1273	35						
50	Met	0> 11 Arg		Ser	Ala	Glu	Arg	Asp	Arg		Val	Gly	Ser	Gly	Gln	Cys	
	1 Ala	Leu	Leu	Ser 20	5 Pro	Glu	Val	Phe		10 Gln	Asp	Ala	Asp	_ = =	15 Leu	Val	
	Thr	Leu	Leu 35	_	Glu	Glu	Pro	Ala 40	25 Glu	Glu	Leu	Arg	Glu 45	30 Gln	Val	Ala	
55	01-	n 7 .		Asn	Len	Cvs	Pro		Ara	Ser	Tle	Ara		His	Asn		

```
<210> 112
5
        <211> 192
        <212> DNA
        <213> Streptomyces achromogenes IFO 12735
        <220>
        <221> CDS
10
        <222> (1)..(192)
        <400> 112
       atg cgt gtc tcc gcc gaa cgc gac cgg tgc gtg ggc tcc ggc cag tgc
Met Arg Val Ser Ala Glu Arg Asp Arg Cys Val Gly Ser Gly Gln Cys
                                                                                               48
15
       gcg ctg ctg agc ccc gag gtg ttc gac cag gac gcc gac ggc ctg gtc Ala Leu Leu Ser Pro Glu Val Phe Asp Gln Asp Ala Asp Gly Leu Val
                                                                                               96
        acc ctg ctg agc gag gag ccg gcc gag gag ctg cgc gag cag gtc gct
                                                                                              144
20
       Thr Leu Leu Ser Glu Glu Pro Ala Glu Glu Leu Arg Glu Gln Val Ala
       cag gcc gcg gac ctg tgc ccg tcc cgc tcg atc cgc gtg cac gac tga
Gln Ala Ala Asp Leu Cys Pro Ser Arg Ser Ile Arg Val His Asp
                                                                                              192
                                      55
25
        <210> 113
        <211> 20
        <212> PRT
        <213> Streptomyces achromogenes IFO 12735
30
       Met Thr Gln Ser Ala Asp Ala Val Pro Glu Ala Glu Ala Pro Pro Val
       Gln Phe Pro Leu
       <210> 114
35
        <211> 23
        <212> DNA
        <213> Artificial Sequence
       <223> Designed oligonucleotide primer for PCR
40
       <400> 114
       gacgcsgtsc csgaggcsga agc
                                                                                             23
       <210> 115
       <211> 23
45
        <212> DNA
       <213> Artificial Sequence
       <223> Designed oligonucleotide primer for PCR
50
       <400> 115
       gaggcsccsc csgtscagtt ccc
                                                                                             23
       <210> 116
       <211> 25
       <212> DNA
55
       <213> Artificial Sequence
```

5	<220> <223> Designed oligonucleotide primer for PCR	
	<400> 116	25
	teggegaacg gaeaggtgeg eegea	25
	<210> 117	
10	<211> 27	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Designed oligonucleotide primer for PCR	
15		
	<400> 117	~~
	ccctcgctgg tgatctgcga actgctc	27
	<210> 118	
	<211> 27	
20	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Designed oligonucleotide primer for PCR	
	<4005 110	
25	<400> 118 agctcgtcac cctgaaggag aacgagc	27
	agotogtodo congadygay dacyago	21
	<210> 119	
	<211> 28	
20	<212> DNA <213> Artificial Sequence	
30	V213/ ATCITICIAL Sequence	
	<220>	
	<223> Designed oligonucleotide primer for PCR	
	<400> 119	
35	accatatgac ccagtccgcc gacgccgt	28
	· · · · · · · · · · · · · · · · · · ·	
	<210> 120 <211> 28	
	<212> DNA	
	<213> Artificial Sequence	
40	4320	
	<pre><220> <223> Designed oligonucleotide primer for PCR</pre>	
	verso besigned dilgonderectide primer for rea	
	<400> 120	
	gtaagettte accaggtgae ggggagtt	28
45	<210> 121	
	<211> 28	
	<212> DNA	
	<213> Artificial Sequence	
50	<220>	
JU	<pre><223> Designed oligonucleotide primer for PCR</pre>	
	<400> 121	
	cgaagctttc agtcgtgcac gcggatcg	28
55	<210> 122	
	<211> 27	

_	<212> DNA <213> Artificial Sequence	
5	<220> <223> Designed oligonucleotide primer for PCR	
10	<400> 122 ttcctggaga agaaccgcac cgagcgg	27
	<210> 123 <211> 26 <212> DNA <213> Artificial Sequence	
15	<220> <223> Designed oligonucleotide primer for PCR	
	<400> 123 cacccggagc agatggccga gttgcg	26
20	<210> 124 <211> 26 <212> DNA <213> Artificial Sequence	
25	<220> <223> Designed oligonucleotide primer for PCR	
	<400> 124 tgmtcggcvt sgacgacccc gagcac	26
30	<210> 125 <211> 28 <212> DNA <213> Artificial Sequence	
35	<220> <223> Designed oligonucleotide primer for PCR	
	<400> 125 cgctgccsgt gccstcsatg gtgatctg	28
40	<210> 126 <211> 28 <212> DNA <213> Artificial Sequence	
	<220> <223> Designed oligonucleotide primer for PCR	
45	<400> 126 cgctgccggt gccgtcsctg gtgatctg	28
	<210> 127 <211> 30	
50	<212> DNA <213> Artificial Sequence	
	<220> <223> Designed oligonucleotide primer for PCR	
55	<400> 127 ggcgtsccct acgccgacca cgagttcttc	30

	<210> 128	
	<211> 30	
_	<212> DNA	
5	<213> Artificial Sequence	
	<u>-</u>	
	<220>	
	<223> Designed oligonucleotide primer for PCR	
	The state of the s	
	<400> 128	
10	ggcgtsccct acgaggacca cgssttcttc	30
	ggageacea cogaggacea ogcottacea	50
	<210> 129	
	<211> 28	
	<212> DNA	
	<213> Artificial Sequence	
15	V2132 ATTITUTAL SEQUENCE	
	<220>	
	<223> Designed oligonucleotide primer for PCR	
	ZAON 129	
	<400> 129	~~
20	aggcactggt gsacsccgaa sccgaagg	28
	(210) 120	
	<210> 130	
	<211> 30	
	<212> DNA	
	<213> Artificial Sequence	
25	1000	
	<220>	
	<223> Designed oligonucleotide primer for PCR	
	1100 120	
	<400> 130	
	cttccccag gaccgcacct gccccttcca	30
30	2010. 101	
	<210> 131	
	<211> 30	
	<212> DNA	
	<213> Artificial Sequence	
35	<220>	
	<223> Designed oligonucleotide primer for PCR	
	400.	
	<400> 131	
	ggatcgtggc cagcgagatg gcctcctgcc	30
	1010: 100	
40	<210> 132	
	<211> 30	
	<212> DNA	
	<213> Artificial Sequence	
	1000	
	<220>	
45	<223> Designed oligonucleotide primer for PCR	
	1400: -000	
	<400> 132	
	tttccaggac cgcacctgcc cctaccaccc	30
	2210, 122	
	<210> 133	
50	<211> 30	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Designed oligonucleotide primer for PCR	
55	(100, 100	
	<400> 133	

	ggatcatcgc gagccggacc agatcctcgc														30	
5	<210> 13 <211> 73	2														
	<212> Di <213> Ai		cial	Sequ	ience	е										
10	<220> <223> De	esign	ed o	ligo	nucle	eoti	de l	inke	r fo	r co	nstr	ucti	on.o	f ex	pression	vector
	•															60 72
15	<210> 135 <211> 68 <212> DNA <213> Artificial Sequence															
20	<220> <223> Designed oligonucleotide linker for construction of expression vector															
	<400> 135 tettetetea teegeeaaaa eageeaaget tgeteatatg tttttteete etgatttat 60 taaaaaat 68															
25	<210> 13 <211> 40 <212> PF <213> St)2 RT	nyces	s the	ermod	coer	ules	cens	IFO	142	73t					
20	<400> 13						_									
30	Met Thi	Asp	Met	Thr 5	Glu	Thr	Pro	Thr	Val 10	Ala	Phe	Pro	Gln	Ser 15	Arg	
	Thr Cys	Pro	Tyr 20	His	Pro	Pro	Ala	Ala 25	Tyr	Ala	Pro	Leu	Arg 30	Asp	Thr	
	Arg Pro	Leu 35	Ala	Arg	Ala	Arg	Leu 40	Tyr	Asp	Gly	Arg	Leu 45	Val	Trp	Thr	
35	Val Thi		His	Gly	Leu	Ala 55	Arg	Thr	Leu	Leu	Ala 60	Asp	Pro	Arg	Leu	
	Ser Thr	Asp	Pro	Thr	Arg 70	Pro	Glu	Phe	Pro	Ala 75	Thr	Thr	Glu	Arg	Ile 80	
	Ala Arg	Ile	Arg	Arg 85	Arg	Arg	Thr	Ala	Leu 90	Leu	Gly	Val	Asp	Asp 95		
40	Glu His	Arg	Val 100	Gln	Arg	Arg	Met	Met 105		Pro	Ser	Phe	Thr 110	Leu	Gln	
	Arg Ala	Thr 115	-	Leu	Arg	Pro	Arg 120		Gln	Arg	Val	Val 125		Glu	Arg	
	Leu Asp 130	Ala	Met	Ile	Ala	Gly 135		Pro	Pro	Ala	Asp		Val	Thr	Ala	
45	Phe Ala		Pro	Val	Pro 150		Met	Val	Ile	Cys 155	_	Leu	Leu	Gly	Val 160	
	Pro Ty	Glu	Asp	His 165		Phe	Phe	Glu	Glu 170		Ser	Arg	Arg	Leu 175		
	Arg Gly	Pro	Thr 180		Glu	Asp	Ser			Ala	Arg	Ala			Glu	
50	Ala Tyr	Phe		Glu	Leu	Ile		185 Arg	Lys	Gln	Arg		190 Asp	Ala	Pro	
	Gly Asp 210	Gly	Val	Leu	Asp	Glu 215	200 Leu	Val	His	Gln	Arg 220	205 Leu	Ala	Ala	Gly	
	Glu Leu 225	Asp	Arg	Glu	Gly 230	Leu	Ile	Ala	Met	Ala 235	Ile	Ile	Leu	Leu	Val 240	
55	Ala Gly	His	Glu	Thr 245		Ala	Asn	Met	Ile 250		Leu	Gly	Thr	Phe 255		

```
Leu Leu Gly His Pro Glu Arg Leu Ala Glu Leu Arg Ala Asp Pro Asp
                  260
                                     265
      Leu Val Pro Ala Ala Val Glu Glu Leu Leu Arg Met Leu Ser Ile Ala
5
              275
                                 280
                                                     285
      Asp Gly Leu Leu Arg Val Ala Val Glu Asp Ile Glu Val Ala Gly Glu
         290
                            295
                                                 300
      Thr Ile Arg Ala Gly Asp Gly Val Ile Phe Ser Thr Ser Val Ile Asn
      305
                         310
                                             315
      Arg Asp Glu Ala Val Tyr Pro Glu Pro Asp Thr Leu Asp Leu His Arg
10
                     325
                                        330
      Pro Ala Arg His His Val Ala Phe Gly Phe Gly Ile His Gln Cys Leu
                                                         350
                  340
                                     345
      Gly Gln Asn Leu Ala Arg Ala Glu Met Glu Ile Ala Leu Arg Thr Leu
                               360
                                                   365
      Phe Gly Arg Leu Pro Gly Leu Arg Leu Ala Val Pro Pro Glu Glu Ile
15
                             375
        370
                                                380
      Pro Phe Lys Pro Gly Asp Thr Ile Gln Gly Met Leu Glu Leu Pro Val
                         390
      385
                                             395
                                                                 400
      Thr Trp
     <210> 137
20
     <211> 409
     <212> PRT
     <213> Streptmyces glomerochromogenes IFO 13673T
     <400> 137
      Met Thr Glu Leu Thr Asp Ile Thr Gly Pro Ala Gly Gln Ala Gln Pro
25
                                          10
      Val Ala Phe Pro Gln Asp Arg Thr Cys Pro Tyr His Pro Pro Thr Gly
                                      25
                  20
      Tyr Asp Pro Leu Arg Asp Gly Arg Pro Leu Ser Arg Val Thr Leu Tyr
              35
                                  40
      Asp Gly Arg Glu Val Trp Leu Val Thr Ala Gln Ala Thr Ala Arg Ala
30
                              55
      Leu Leu Ala Asp Pro Arg Leu Ser Thr Asp Arg Arg Asp Gly Phe
                         70
                                             75
      Pro Val Pro Ser Pro Arg Phe Glu Ala Gly Arg Asp Arg Lys Leu Ala
                      85
                                          90
      Leu Leu Gly Leu Asp Asp Pro Glu His His Gln Gln Arg Arg Met Leu
35
                 100
                                     105
      Ile Pro Ser Phe Thr Val Lys Arg Ala Thr Ala Leu Arg Pro Trp Ile
              115
                                 120
                                                     125
      Gln Arg Ile Val Asp Glu Leu Leu Asp Asp Met Ile Ala Arg Gly Pro
                            135
                                                 140
      Val Ala Asp Leu Val Ser Ala Phe Ala Leu Pro Val Pro Ser Met Val
40
                         150
                                             155
      Ile Cys Glu Leu Leu Gly Val Pro Tyr Ala Asp His Glu Phe Phe Glu
                     165
                                         170
      Glu Gln Ser Arg Arg Leu Leu Arg Gly Pro Gly Gly Ala Asp Thr Leu
                 180
                                     185
                                                         190
      Asp Ala Arg Asp Arg Leu Glu Ala Tyr Leu Gly Glu Leu Ile Asp Ala
45
             195
                                200
                                                    205
      Lys Ala Lys Glu Ala Glu Pro Gly Asp Gly Val Leu Asp Asp Leu Val
                             215
                                               220
      His Asn Arg Leu Arg Ala Gly Glu Leu Asp Arg Thr Asp Leu Val Ser
                         230
                                            235
50
      Leu Ala Leu Ile Leu Leu Val Ala Gly His Glu Thr Thr Ala Asn Met
                     245
                                         250
                                                             255
      Ile Ser Leu Gly Thr Tyr Thr Leu Leu Gln His Pro Glu Arg Leu Ala
                260
                                     265
                                                        270
      Glu Leu Arg Ala Asp Pro Thr Val Leu Pro Ala Val Val Glu Glu Leu
            275
                                                  285
                                 280
55
      Leu Arg Met Leu Ser Ile Ala Glu Gly Leu Gln Arg Leu Ala Leu Glu
                             295
                                                 300
```

```
Asp Ile Glu Ile Asp Gly Thr Thr Ile Arg Ala Gly Asp Gly Val Leu
                           310
                                               315
5
       Phe Ser Thr Ser Val Ile Asn Arg Asp Thr Ala Val Tyr Asp Asp Pro.
                       325
                                           330
                                                                335
       Asp Asp Leu Asp Phe His Arg Ala Asp Arg His His Val Ala Phe Gly
                  340
                                      345
                                                           350
       Phe Gly Ile His Gln Cys Leu Gly Gln Asn Leu Ala Arg Ala Glu Leu 355 360 365
       Glu Ile Ala Leu Gly Ser Leu Phe Thr Arg Leu Pro Gly Leu Arg Leu
                              375
           370
                                                 380
       Ala Ala Pro Ala Glu Glu Ile Pro Phe Lys Pro Gly Asp Thr Ile Gln
                           390
                                               395
       Gly Met Leu Glu Leu Pro Val Thr Trp
                      405
15
      <210> 138
      <211> 409
      <212> PRT
      <213> Streptmyces olivochromogenes IFO 12444
20
      <400> 138
       Met Thr Glu Leu Thr Asp Ile Thr Gly Pro Ala Gly Gln Ala Glu Pro
                                            10
       Val Ala Phe Pro Gln Asp Arg Thr Cys Pro Tyr His Pro Pro Thr Gly
                                        25
       Tyr Asp Pro Leu Arg Asp Gly Arg Pro Leu Ser Arg Val Thr Leu Tyr
25
       Asp Gly Arg Glu Val Trp Leu Val Thr Ala Gln Ala Thr Ala Arg Ala
                               55
                                                    60
       Leu Leu Ala Asp Pro Arg Leu Ser Thr Asp Arg Arg Arg Asp Gly Phe
                           70
       Pro Val Pro Ser Pro Arg Phe Glu Ala Gly Arg Asp Arg Lys Leu Ala 85 90 95
30
                       85
       Leu Leu Gly Leu Asp Asp Pro Glu His His Gln Gln Arg Arg Met Leu
                   100
                                       105
                                                           110
       Ile Pro Ser Phe Thr Val Lys Arg Ala Thr Ala Leu Arg Pro Trp Ile
115 120 125
       Gln Arg Ile Val Asp Glu Leu Leu Asp Asp Met Ile Ala Arg Gly Pro
35
         130
                              135
                                                  140
       Val Ala Asp Leu Val Ser Ala Phe Ala Leu Pro Val Pro Ser Met Val
                         150
                                             155
       Ile Cys Glu Leu Leu Gly Val Pro Tyr Ala Asp His Glu Phe Phe Glu
                      165
                                          170
                                                               175
       Glu Gln Ser Arg Arg Leu Leu Arg Gly Pro Gly Gly Ala Asp Thr Leu
180 185 190
40
       Asp Ala Arg Asp Arg Leu Glu Ala Tyr Leu Gly Glu Leu Ile Asp Ala
              195
                                   200
       Lys Ala Lys Glu Ala Glu Pro Gly Asp Gly Ile Leu Asp Asp Leu Val
                              215
       His Asn Arg Leu Arg Ala Gly Glu Leu Asp Arg Thr Asp Leu Val Ser
45
                          230
                                               235
       Leu Ala Leu Ile Leu Leu Val Ala Gly His Glu Thr Thr Ala Asn Met
                      245
                                          250
       Ile Ser Leu Gly Thr Tyr Thr Leu Leu Gln His Pro Glu Arg Leu Ala
                   260
                                       265
                                                           270
       Glu Leu Arg Ala Asp Pro Thr Val Leu Pro Ala Val Val Glu Glu Leu
50
              275
                                   280
                                                      285
       Leu Arg Met Leu Ser Ile Ala Glu Gly Leu Gln Arg Val Ala Leu Glu
           290
                               295
                                                   300
       Asp Ile Glu Ile Asp Gly Thr Thr Ile Arg Ala Gly Asp Gly Val Leu
       305
                          310
                                               315
       Phe Ser Thr Ser Val Ile Asn Arg Asp Thr Ala Val Tyr Asp Asp Pro
55
                       325
                                           330
       Asp Gly Leu Asp Phe His Arg Ala Asp Arg His His Val Ala Phe Gly
```

	Phe G	lv Ile	340 e Hi:		n Cvs	s Lei	ı Glv	345 v Gl:		n Lei	u Ala	a Arc	350 3 Ala		ı Leu	
5	Glu I	35	5				360	5				369	5			
		70				375	5				380)				
	385 Gly M			ı Le	390 Pro)			_	39					400	
10				40	5											
	<210><211><211><212><213>	1230 DNA	tmyc	es no	ogala	ater	IFO	134	15							
15	<220> <221> <222>		(1230	0)												
20	<400> atg ac		ctg	acg	gac	acc	acc	ggc	ccg	gcc	gac	gcg	qcc	qaa	ccc	48
	Met Th															
25	gtc gc Val Al															96
	tac ga Tyr As	c ccg Pro 35	ctg Leu	cgc Arg	gac Asp	ggg ggg	cgg Arg 40	ccc Pro	ctg Leu	tcc Ser	cgg Arg	gtc Val 45	acc Thr	ctc Leu	tac Tyr	144
30	gac gg Asp Gl	y Arg														192
35	ctg cte Leu Le 65															240
	ccc gte Pro Va	g ccc l Pro	acc Thr	ccc Pro 85	cgc Arg	ttc Phe	gag Glu	ggc Gly	gga Gly 90	cgc Arg	gac Asp	cgc Arg	aag Lys	ctg Leu 95	gcc Ala	288
40	ctg cte	gga Gly	ctg Leu 100	gac Asp	gac Asp	ccc Pro	gag Glu	cac His 105	cag Gln	cag Gln	cag Gln	cgc Arg	cgg Arg 110	atg Met	ctg Leu	336
45	atc cc	tcg Ser 115	ttc Phe	acc Thr	gtg Val	aaa Lys	cgc Arg 120	gcc Ala	acc Thr	gcg Ala	cta Leu	cgc Arg 125	ccc Pro	tgg Trp	atc Ile	384
	cag cgc Gln Arc 130	Ile	gtc Val	gac Asp	gga Gly	ctg Leu 135	ctg Leu	gac Asp	gcc Ala	atg Met	atc Ile 140	acc Thr	cgg Arg	ggg Gly	ccg Pro	432
50	gtc gcc Val Ala 145															480
55	atc tge Ile Cys															528

5														gac Asp 190			576
														atc Ile			624
10														gag Glu			672
15														ctg Leu			720
	ctc Leu	gcc Ala	gtc Val	atc Ile	ctg Leu 245	ctg Leu	gtc Val	gcc Ala	ggg Gly	cac His 250	gag Glu	acg Thr	acc Thr	gcc Ala	aac Asn 255	atg Met	768
20														cgc Arg 270			816
25														gag Glu			864
,														gcg Ala			912
30														ggc Gly			960
35														gac Asp			1008
														gcg Ala 350			1056
40														gcg Ala			1104
45														ctc Leu			1152
														acg Thr			1200
50					ctc Leu 405					taa 410							1230
55	<211 <212	0> 14 l> 12 2> DN 3> St	78 IA	myce	s ts	susin	naens	sis]	FO 1	.3782	!T						

5		1> C		(127)	3)												
	atg		gaa											ctc Leu			48
10	acc									gcc				acc Thr 30	ctc		96
15														ccc Pro			144
20														gcc Ala			192
														gcc Ala			240
25														ccg Pro			288
30														cgc Arg 110			336
														aga Arg			384
35	atc Ile	ccg Pro 130	gcc Ala	ttc Phe	tcc Ser	gtg Val	aag Lys 135	cgg Arg	atc Ile	aac Asn	gct Ala	ctc Leu 140	cgc Arg	ccc Pro	cgc Arg	atc Ile	432
40	cag Gln 145	gag Glu	acc Thr	gtg Val	gac Asp	cgg Arg 150	ttg Leu	ctc Leu	gac Asp	gcg Ala	atg Met 155	gag Glu	cgc Arg	cag Gln	G1y ggg	cca Pro 160	480
	ccg Pro	gcc Ala	gag Glu	ctg Leu	gtg Val 165	agc Ser	gcg Ala	ttc Phe	gcc Ala	ctg Leu 170	ccg Pro	gtg Val	ccg Pro	tcg Ser	atg Met 175	gtg Val	528
45														ttc Phe 190			576
50														gac Asp			624
	agg Arg	gcc Ala 210	ctc Leu	gac Asp	gaa Glu	ctc Leu	gag Glu 215	gag Glu	tac Tyr	ctc Leu	ggc Gly	gcg Ala 220	ctg Leu	atc Ile	gac Asp	cgc Arg	672
55														atc Ile			720

	225					230					235					240	
5	gac Asp	cac His	ccc Pro	ggc Gly	gga Gly 245	ccg Pro	gtc Val	gac Asp	cgc Arg	gag Glu 250	gag Glu	ctg Leu	gtc Val	tcg Ser	ttc Phe 255	gcc Ala	768
10		atc Ile															816
	ctc Leu	ggc Gly	acc Thr 275	ttc Phe	acc Thr	ctg Leu	ctg Leu	cgc Arg 280	cac His	ccc Pro	gaa Glu	cag Gln	ctc Leu 285	gcg Ala	gcg Ala	ctg Leu	864
15 .		gcc Ala 290															912
20		ctc Leu															960
		gtg Val															1008
25		tcg Ser															1056
30		acg Thr															1104
	ttc Phe	ggc Gly 370	gta Val	cac His	cag Gln	tgc Cys	ctg Leu 375	GJ À GG À	cag Gln	aac Asn	ctg Leu	gcc Ala 380	cgc Arg	gcg Ala	gaa Glu	ctc Leu	1152
35		atc Ile															1200
40		gta Val															1248
		atg Met								tga							1278
45	<211 <212)> 14 .> 12 !> DN !> St	109 IA	myce	es th	ermo	coer	rules	cens	; IFC	142	?73t					
50)> .> CE !> (1		1209))												
55	atg	> 14 acg Thr	gac														48

5							cgc Arg 30		96
							gtc Val		144
10							ccc Pro		192
15							gaa Glu		240
							gac Asp		288
20							acc Thr 110		336
25							gac Asp		384
							gtc Val		432
30							ctc Leu		480
35							cgg Arg		528
							cga Arg 190		576
40 .							gac Asp		624
45							gcc Ala		672
							ctg Leu		720
50							acc Thr		768
55							gac Asp 270		816

5	ctg c Leu V																864
	gac g Asp G	ggc 31 y 290	ctg Leu	ctg Leu	cgc Arg	gtc Val	gcc Ala 295	gtc Val	gag Glu	gac Asp	atc Ile	gag Glu 300	gtg Val	gcc Ala	ggg Gly	gag Glu	912
10	acg a Thr 1 305																960
15	cgg g Arg A																1008
	ecg g Pro A																1056
20	ggg c	eag Sln	aac Asn 355	ctg Leu	gcc Ala	cgc Arg	gcc Ala	gag Glu 360	atg Met	gag Glu	atc Ile	gcc Ala	ctg Leu 365	cgc Arg	acc Thr	ctg Leu	1104
25	ttc g Phe G																1152
	ccg t Pro F 385	tc ?he	aaa Lys	ccc Pro	ggc Gly	gac Asp 390	acg Thr	atc Ile	cag Gln	ggg Gly	atg Met 395	ctg Leu	gaa Glu	ctc Leu	ccc Pro	gtg Val 400	1200
30	acc t Thr T		taa														120 9
35	<210><211><211><212><213>	> 12 > DN	30 A	myce	es gl	.omer	ochr	comoç	jenes	; IFO) 136	573T					
40	<220> <221> <222>	CD		1230))												
	<400> atg a Met T	ıcg	gaa			Asp			Gly		Āla						48
45	gtc g Val A																96
50	tac g Tyr A	ac sp	ccg Pro 35	ctg Leu	cgc Arg	gac Asp	ggg Gly	cga Arg 40	ccc Pro	ctg Leu	tcc Ser	cgc Arg	gtc Val 45	acc Thr	ctc Leu	tac Tyr	144
	gac g Asp G																192
55	ctg c Leu L	tc eu .	gcc Ala	gac Asp	ccc Pro	cgg Arg	ctg Leu	tcc Ser	acc Thr	gac Asp	cgc Arg	cgc Arg	cgc Arg	gac Asp	ggc Gly	ttt Phe	240

	65					70					75					80	
5	ccc Pro	gtg Val	ccc Pro	agc Ser	ccc Pro 85	cgc Arg	ttc Phe	gag Glu	gcc Ala	ggc Gly 90	cgc Arg	gac Asp	cgc Arg	aaa Lys	ctg Leu 95	gcc Ala	288
10										cac His							336
										acc Thr							384
15										gac Asp							432
20										ctg Leu							480
										gcc Ala 170							528
25										ccg Pro							576
30										ctc Leu							624
										ggc Gly							672
35										gac Asp							720
40	ctc Leu	gcc Ala	ctc Leu	atc Ile	ctg Leu 245	ctg Leu	gtc Val	gcc Ala	G1y ggg	cac His 250	gag Glu	acg Thr	acc Thr	gcc Ala	aac Asn 255	atg Met	768
										cag Gln							816
45	gag Glu	ctg Leu	cgt Arg 275	gcc Ala	gac Asp	ccc Pro	acg Thr	gtg Val 280	ctg Leu	ccc Pro	gcc Ala	gtc Val	gtc Val 285	gag Glu	gaa Glu	ctg Leu	864
50	ctg Leu	cgg Arg 290	atg Met	ctg Leu	tcc Ser	atc Ile	gcc Ala 295	gag Glu	ggg Gly	ctg Leu	caa Gln	cgg Arg 300	ctg Leu	gcg Ala	ctg Leu	gag Glu	912
										cgg Arg							960
55	ttc Phe	tcc Ser	acc Thr	tcg Ser	gtc Val	atc Ile	aac Asn	cgg Arg	gac Asp	acg Thr	gcc Ala	gtc Val	tac Tyr	gac Asp	gac Asp	ccc Pro	1008

				325					330					335			
5	gac gac Asp Asp															105	56
10	ttc ggc Phe Gly															110)4
	gag atc Glu Ile 370	Ala	ctc Leu	ggc Gly	agc Ser	ctc Leu 375	ttc Phe	acc Thr	cgg Arg	ctg Leu	ccc Pro 380	ggg Gly	ctg Leu	cgt Arg	ctt Leu	115	52
15	gcc gcc Ala Ala 385															120	00
20	ggg atg Gly Met	ctg Leu	gaa Glu	ctc Leu 405	ccc Pro	gtg Val	acc Thr	tgg Trp	taa 410							123	30
25	<210> 1<211> 1<212> D<213> S	230 NA	myce	es ol	livo	chron	nogei	nes]	IFO I	12444	1						
	<220> <221> C <222> (1230))													
30	<400> 1 atg acg Met Thr 1	gaa	ctg Leu	acg Thr 5	gac Asp	atc Ile	acc Thr	ggc Gly	ccg Pro 10	gct Ala	ggc Gly	cag Gln	gcc Ala	gaa Glu 15	ccc Pro	. 4	8
35	gtc gca Val Ala															9	6
	tac gac Tyr Asp															14	4
40	gac ggc Asp Gly 50	cgc Arg	gag Glu	gtc Val	tgg Trp	ctg Leu 55	gtc Val	acc Thr	gcc Ala	cag Gln	gcc Ala 60	acc Thr	gcc Ala	cgc Arg	gcc Ala	19	2
45	ctg ctc Leu Leu 65	gcc Ala	gac Asp	ccc Pro	cgg Arg 70	ctg Leu	tcc Ser	acc Thr	gac Asp	cgc Arg 75	cgc Arg	cgc Arg	gac Asp	ggt Gly	ttt Phe 80	24	0
	ccc gtg Pro Val															28	8
50	ctg ctc Leu Leu	Gly														33	6
55	atc ccg Ile Pro															38	4

5	cag Gln	cgg Arg 130	atc Ile	gtc Val	gac Asp	gaa Glu	ctg Leu 135	ctg Leu	gac Asp	gac Asp	atg Met	atc Ile 140	gcc Ala	cgg Arg	Gly ggg	ccg Pro	432
															atg Met		480
10															ttc Phe 175		528
15															aca Thr		576
															gac Asp		624
20															ctg Leu		672
25															gtg Val		720
															aac Asn 255		768
30															ctg Leu		816
35															gaa Glu		864
	ctg Leu	cgg Arg 290	atg Met	ctg Leu	tcc Ser	atc Ile	gcc Ala 295	gag Glu	ggg Gly	ctg Leu	caa Gln	cgg Arg 300	gtg Val	gcg Ala	ctg Leu	gag Glu	912
40															gtc Val		960
45	ttc Phe	tcc Ser	acc Thr	tcg Ser	gtc Val 325	atc Ile	aac Asn	cgg Arg	gac Asp	acg Thr 330	gcc Ala	gtc Val	tac Tyr	gac Asp	gac Asp 335	ccc Pro	1008
	gac Asp	ggc Gly	ctg Leu	gac Asp 340	ttc Phe	cac His	cgc Arg	gcc Ala	gac Asp 345	cgg Arg	cac His	cac His	gtg Val	gcg Ala 350	ttc Phe	ggc Gly	1056
50	ttc Phe	ggc Gly	atc Ile 355	cac His	cag Gln	tgc Cys	ctg Leu	ggc Gly 360	cag Gln	aac Asn	ctg Leu	gcc Ala	cgc Arg 365	gcg Ala	gaa Glu	ctg Leu	1104
55															cgt Arg		1152

5	gcc gcc ccc Ala Ala Pro 385	g gcc gag o Ala Glu	gag atc Glu Ile 390	ccc to	tc aaa he Lys	ccg ggc Pro Gly 395	gac acg Asp Thr	atc ca Ile Gl 40	n.
	ggg atg cto Gly Met Le								1230
10	<210> 144 <211> 1449 <212> DNA <213> Stre	otmyces n	ogalater	IFO 1:	3445	·			
15	<220> <221> CDS <222> (1).	. (1230)							
20	<220> <221> CDS <222> (124)	3)(1449)						
	<400> 144 atg acg gas Met Thr Glu								
25	gtc gca ttc Val Ala Phe			Thr C					
30	tac gac ccc Tyr Asp Pro	Leu Arg							
	gac ggc cgt Asp Gly Arg 50								
35	ctg ctc gcc Leu Leu Ala 65	gac ccc Asp Pro	cgg ctg Arg Leu 70	tcc ac Ser Th	cc gac hr Asp	cgc cgc Arg Arg 75	cgc gac Arg Asp	Gly Ph	c 240 e 0
40	ccc gtg ccc Pro Val Pro	acc ccc Thr Pro 85	cgc ttc Arg Phe	gag gg Glu Gl	gc gga ly Gly 90	cgc gac Arg Asp	cgc aag Arg Lys	ctg go Leu Al 95	c 288 a
	ctg ctc gga Leu Leu Gly			Glu Hi					
45	atc ccg tcg Ile Pro Sen 115	Phe Thr	gtg aaa Val Lys	cgc gc Arg Al 120	cc acc la Thr	gcg cta Ala Leu	cgc ccc Arg Pro 125	tgg at Trp Il	c 384 e
50	cag cgg ato Gln Arg Ile 130	gtc gac Val Asp	gga ctg Gly Leu 135	ctg ga Leu As	ac gcc sp Ala	atg atc Met Ile 140	acc cgg Thr Arg	ggg cc Gly Pr	g 432 o
	gtc gcc gad Val Ala Asp 145								1
55	atc tgc gas Ile Cys Glu								

					165					170					175		
5						ctg Leu											576
10						ctg Leu											624
						gag Glu											672
15						aag Lys 230											720
20						ctg Leu											768
						tac Tyr											816
25						ccc Pro											864
30						atc Ile											912
						ggc Gly 310											960
35						atc Ile											1008
40						cac His											1056
	Phe	Gly	11e 355	His	Gln	tgc Cys	Leu	Gly 360	Gln	Asn	Leu	Ala	Arg 365	Ala	Ğlu	Leu	1104
45						agc Ser											1152
50						gac Asp 390											1200
	ggg Gly	atg Met	ctg Leu	gaa Glu	ctc Leu 405	ccc Pro	gtg Val	acc Thr	tgg Trp	taa 410	gagg	jetto	egt t			c atc s Ile	1251
55	gac Asp	atc Ile	gat Asp	atc Ile	gac Asp	cag Gln	gac Asp	gtc Val	tgc Cys	atc Ile	ggc Gly	gcc Ala	ggg Gly	cag Gln	tgc Cys	gcg Ala	1299

	415				420					425					
5	ctg gcg Leu Ala 430														1347
10	ctg ctg Leu Leu			Glu											1395
	gcc gcc Ala Ala	Arg A													1443
15	gcc tga Ala														1449
20	<210> 14 <211> 14 <212> Di <213> St	180 NA	myces t	susin	naens	sis 1	FO 1	13782	2T.						
25	<220> <221> CI <222> (3		1278)										•		
	<220> <221> Ct <222> (3		(1480)											
30	<400> 14 atg acg Met Thr 1	gaa t													48
35	acc acc Thr Thr	ccc g Pro A	gcc gct Ala Ala 20	gcc Ala	acc Thr	gcg Ala	acc Thr 25	gcc Ala	atc Ile	gac Asp	ccg Pro	acc Thr 30	ctc Leu	gcg Ala	96
	aca ccc Thr Pro														144
40	tac gcg Tyr Ala 50														192
45	gac ggg Asp Gly 65														240
	ttg ctg Leu Leu														288
50	ccc gcc Pro Ala	Pro A	gee eeg Ala Pro 100	cgc Arg	ttc Phe	gcc Ala	aac Asn 105	gcg Ala	aac Asn	cgg Arg	cgc Arg	cgc Arg 110	gtg Val	gcc Ala	336
· 55	ctg ctc Leu Leu	ggc g Gly V 115	gtc gac /al Asp	gac Asp	ccc Pro	gag Glu 120	cac His	aac Asn	acc Thr	cag Gln	cgc Arg 125	aga Arg	atg Met	ctc Leu	384

5	atc Ile	ccg Pro 130	gcc Ala	ttc Phe	tcc Ser	gtg Val	aag Lys 135	cgg Arg	atc Ile	aac Asn	gct Ala	ctc Leu 140	cgc Arg	ccc	cgc Arg	atc Ile	432
						cgg Arg 150											480
10						agc Ser											528
15						gga Gly											576
	gag Glu	cgc Arg	tcg Ser 195	cgg Arg	cgg Arg	ctc Leu	ctg Leu	cgc Arg 200	ggc Gly	ccc Pro	ggc Gly	gcg	gcc Ala 205	gac Asp	gtg Val	gac Asp	624
20						ctc Leu											672
25						ggc Gly 230											720
	gac Asp	cac His	ccc Pro	ggc Gly	gga Gly 245	ccg. Pro	gtc Val	gac Asp	cgc Arg	gag Glu 250	gag Glu	ctg Leu	gtc Val	tcg Ser	ttc Phe 255	gcc Ala	768
30	gtg Val	atc Ile	ctg Leu	ctc Leu 260	atc Ile	gcg Ala	ggg Gly	cac His	gag Glu 265	acg Thr	acg Thr	gcg Ala	aac Asn	atg Met 270	atc Ile	tcg Ser	816
35	ctc Leu	ggc Gly	acc Thr 275	ttc Phe	acc Thr	ctg Leu	ctg Leu	cgc Arg 280	cac His	ccc Pro	gaa Glu	cag Gln	ctc Leu 285	gcg Ala	gcg Ala	ctg Leu	864
	cgg Arg	gcc Ala 290	ggc Gly	ggg Gly	acg Thr	acc Thr	acg Thr 295	gcc Ala	gtg Val	gcg Ala	gtc Val	gag Glu 300	gaa Glu	ctg Leu	ttg Leu	cgg Arg	912
40	ttc Phe 305	ctc Leu	tcc Ser	atc Ile	gcc Ala	gac Asp 310	ggc Gly	ctg Leu	cag Gln	cgg Arg	ctg Leu 315	gcg Ala	acc Thr	gag Glu	gac Asp	atc Ile 320	960
45	gag Glu	gtg Val	ccg Pro	gac Asp	gcc Ala 325	ggg Gly	gtg Val	acg Thr	atc Ile	cgc Arg 330	aag Lys	Gly ggc	gaa Glu	ggt Gly	gtg Val 335	gtc Val	1008
						atc Ile											1056
50	gaa Glu	acg Thr	ctc Leu 355	gac Asp	tgg Trp	gac Asp	cgc Arg	ccg Pro 360	gcc Ala	cgt Arg	cac His	cat His	ctc Leu 365	gcc Ala	ttc Phe	ggc Gly	1104
55	ttc Phe	ggc Gly 370	gta Val	cac His	cag Gln	tgc Cys	ctg Leu 375	ggg Gly	cag Gln	aac Asn	ctg Leu	gcc Ala 380	cgc Arg	gcg Ala	gaa Glu	ctc Leu	1152

5	gac atc Asp Ile 385															1200
	gcc gta Ala Val															1248
10	ggc atg Gly Met									gcg				al G	ag gtc ln Val 30	1298
15	gac agg Asp Arg															1346
	gac gtg Asp Val															1394
20	cgc gcg Arg Ala 465															1442
25	gcc tgc Ala Cys 480											tg				1480
	<210> 1 <211> 1 <212> D	473 NA			- h- o		rule	26001	T	50. 1.	1272	_				
30	<213> S	crept	omy	ces t	ner	iiOCOE	LUIC	.3CE	15 11	.0 14	12/3	-				
30	<2213> Si <220> <221> C <222> (DS			ner	10006	st u t	33061	15 11	.0 1	12/3	-				
30 35	<220> <221> C	DS 1)((1209))				3061	15 11	.0 1.	12/3	-				
	<220> <221> C <222> (<220> <221> C	DS 1)(DS 1222) 46 gac	(1209	9) 1473) acg	gaa	acc	ccc	acc	gtc	gcc	ttt	ccc				48
35	<220> <221> C <222> (<220> <221> C <222> (<400> 1 atg acg Met Thr	DS 1)(DS 1222) 46 gac Asp	(1 atg Met	acg Thr 5	gaa Glu ccg	acc Thr	ccc Pro	acc Thr	gtc Val 10 tac	gcc Ala	ttt Phe	ccc Pro	Gln	Ser 15	Arg	48 96
35	<220> <221> C <222> (<220> <221> C <222> (<400> 1 atg acg Met Thr	DS 1)(DS 1222) 46 gac Asp ccg Pro	atg Met tac Tyr 20	acg Thr 5 cac	gaa Glu ccg Pro	acc Thr ccc Pro	ccc Pro gcc Ala	acc Thr gcc Ala 25	gtc Val 10 tac Tyr	gcc Ala gcc Ala	ttt Phe ccg Pro	ccc Pro ctg Leu	Gln cgc Arg 30	Ser 15 gac Asp	acc Thr	
35 40	<220> <221> C <222> (<220> <221> C <222> (<400> 1 atg acg Met Thr	DS 1)(DS 1222) 46 gac Asp ccg Pro ctg Leu 35	atg Met tac Tyr 20 gcc Ala	acg Thr 5 cac His cgc	gaa Glu ccg Pro gcc Ala	acc Thr ccc Pro cgt Arg	ccc Pro gcc Ala ctc Leu 40	acc Thr gcc Ala 25 tac Tyr	gtc Val 10 tac Tyr gac Asp	gcc Ala gcc Ala ggc Gly	ttt Phe ccg Pro cgc Arg	ccc Pro ctg Leu ctc Leu 45	cgc Arg 30 gtc Val	Ser 15 gac Asp tgg Trp	acc Thr acg Thr	96
35 40 45	<220> <221> C <222> (<220> <221> C <222> (<400> 1 atg acg Met Thr	DS 1)(DS 1222) 46 gac Asp ccg Pro ctg Leu 35 ggt Gly	atg Met tac Tyr 20 gcc Ala cac His	acg Thr 5 cac His cgc Arg	gaa Glu ccg Pro gcc Ala ctc Leu	acc Thr ccc Pro cgt Arg gcc Ala 55	ccc Pro gcc Ala ctc Leu 40 cgc Arg	acc Thr gcc Ala 25 tac Tyr acc Thr	gtc Val 10 tac Tyr gac Asp ctg Leu	gcc Ala gcc Ala ggc Gly ctc Leu	ttt Phe ccg Pro cgc Arg gcc Ala 60	ccc Pro ctg Leu 45 gac Asp	cgc Arg 30 gtc Val ccc Pro	Ser 15 gac Asp tgg Trp cgc Arg	acc Thr acg Thr ctg Leu	96

					85					90					95		
5								atg Met									336
10								cgg Arg 120									384
								ggc Gly									432
15								atg Met									480
20	ccc Pro	tac Tyr	gag Glu	gac Asp	cac His 165	gac Asp	ttc Phe	ttc Phe	gag Glu	gag Glu 170	cag Gln	tca Ser	cgc Arg	cgg Arg	ctg Leu 175	ctg Leu	528
								tcc Ser									576
25	gcc Ala	tac Tyr	ttc Phe 195	gac Asp	gag Glu	ctg Leu	atc Ile	gac Asp 200	cgc Arg	aag Lys	cag Gln	cgg Arg	cag Gln 205	gac Asp	gcg Ala	ccc Pro	624
30								ctc Leu									672
								atc Ile									720
35	gcc Ala	ggt Gly	cac His	gag Glu	acg Thr 245	acc Thr	gcc Ala	aac Asn	atg Met	atc Ile 250	tcg Ser	ctc Leu	ggc Gly	acc Thr	ttc Phe 255	acg Thr	768
40	ctg Leu	ctc Leu	G1À âàà	cac His 260	ccc Pro	gag Glu	cgg Arg	ctg Leu	gcc Ala 265	gag Glu	ctg Leu	cgc Arg	gcc Ala	gac Asp 270	ccg Pro	gac Asp	816
	Leu	Val	Pro 275	Ala	Ala	Val	Ğlü	gag Glu 280	Leu	Leu	Arg	Met	Leu 285	Ser	Įle	Ala	864
45	Asp	Gly 290	Leu	Leu	Arg	Val	Ala 295	gtc Val	Glu	Asp	Ile	Glu 300	Val	Ala	Gly	Glu	912
50	acg Thr 305	atc Ile	cgc Arg	gcg Ala	ggc Gly	gac Asp 310	ggc Gly	gtc Val	atc Ile	ttc Phe	tcg Ser 315	acg Thr	tcg Ser	gtc Val	atc Ile	aac Asn 320	960
	cgg Arg	gac Asp	gag Glu	gcc Ala	gtc Val 325	tac Tyr	Pro	gaa Glu	ccc Pro	gac Asp 330	acc Thr	ctg Leu	gac Asp	ctg Leu	cac His 335	cgc Arg	1008
55	ccg Pro	gcc Ala	cgg Arg	cac His	cac His	gtc Val	gcc Ala	ttc Phe	G] À Ggà	ttc Phe	ggc Gly	atc Ile	cac His	cag Gln	tgc Cys	ctc Leu	1056

		340	345	350
5		Leu Ala Arg Ala Gl	ng atg gag atc gcc cto nu Met Glu Ile Ala Leo 36	Arg Thr Leu
10			gt ctg gcg gtc ccc cc gg Leu Ala Val Pro Pro 380	
			c cag ggg atg ctg gad e Gln Gly Met Leu Glo 395	
15	acc tgg taa Thr Trp		cac aac gaa acg cat o His Asn Glu Thr His 0 405	
20			c cgt atc gac atc gac or Arg Ile Asp Ile Asp 425	
			c ctg gtc gcc ccg tcc a Leu Val Ala Pro Sec 440	
25			ng ctg atc ccc ggc cgc nu Leu Ile Pro Gly Arc 455	
30			ng gee gte ege gee tge .u Ala Val Arg Ala Cys 470	
	- .	gtg acg gag gcc go Val Thr Glu Ala Al 48	a Val	1473
35	<210> 147 <211> 1449 <212> DNA <213> Strep	tmyces glomerochrom	nogenes IFO 13673T	
40	<220> <221> CDS <222> (1)	(1230)		
45	<220> <221> CDS <222> (1243)(1449)		
	<400> 147 atg acg gaa Met Thr Glu 1	ctg acg gac atc ac Leu Thr Asp Ile Th	c ggc ccg gct ggc cac or Gly Pro Ala Gly Glo 10	g gcc caa ccc 48 1 Ala Gln Pro 15
50			c tgt ece tae eae ee or Cys Pro Tyr His Pro 25	
55		Leu Arg Asp Gly Ar	a ccc ctg tcc cgc gtc g Pro Leu Ser Arg Val 0 45	Thr Leu Tyr

5										gcc Ala							192
										gac Asp							240
10	ccc Pro	gtg Val	ccc Pro	agc Ser	CCC Pro 85	cgc Arg	ttc Phe	gag Glu	gcc Ala	ggc Gly 90	cgc Arg	gac Asp	cgc Arg	aaa Lys	ctg Leu 95	gcc Ala	288
15										cac His							336
										acc Thr							384
20										gac Asp							432
25										ctg Leu							480
										gcc Ala 170							528
30										ccg Pro							576
35										ctc Leu							624
										ggc Gly							672
40										gac Asp							720
45 .										cac His 250						Met	768
										cag Gln							816
50										ccc Pro							864
55	ctg Leu	cgg Arg 290	atg Met	ctg Leu	tcc Ser	atc Ile	gcc Ala 295	gag Glu	G1y ggg	ctg Leu	caa Gln	cgg Arg 300	ctg Leu	gcg Ala	ctg Leu	gag Glu	912

5									atc Ile								960
	ttc Phe	tcc Ser	acc Thr	tcg Ser	gtc Val 325	atc Ile	aac Asn	cgg Arg	gac Asp	acg Thr 330	gcc Ala	gtc Val	tac Tyr	gac Asp	gac Asp 335	ccc Pro	1008
10									gac Asp 345								1056
15									cag Gln								1104
									acc Thr								1152
20									ttc Phe								1200
25						ccc Pro				taa 410	gagg	gctto	egc t		_	ac atg is Met	1251
									tgt Cys								1299
30									cag Gln								1347
35	ctg Leu	ctg Leu	ccc Pro	ggc Gly	cag Gln 450	gag Glu	aac Asn	ggc Gly	gtc Val	acc Thr 455	gac Asp	ccg Pro	atg Met	gtc Val	cgg Arg 460	gag Glu	1395
									gcc Ala 470								1443
40	gcc Ala	tga															1449
45	<211 <212)> 14 .> 14 !> DN !> St	149 IA	myce	s ol	.ivoc	:hrom	oger	nes I	FO 1	.2444						
50	<220 <221 <222	> CI)s .)(1230))												
	<220 <221 <222	> CE		(1	.449)												
5 5	atg	> 14 acg Thr	gaa	ctg Leu	acg Thr	gac Asp	atc Ile	acc Thr	ggc Gly	ccg Pro	gct Ala	ggc Gly	cag Gln	gcc Ala	gaa Glu	ccc Pro	48

	1		5			10			15	
5				cgc Arg						96
10				ggg Gly						144
				ctg Leu 55						192
15				ctg Leu						240
20				ttc Phe						288
				ccc Pro						336
25				aaa Lys						384
30				ctg Leu 135						432
				gcg Ala						480
35				gtg Val						528
40				ctg Leu						576
				gag Glu						624
45				ccc Pro 215						672
50				ggc Gly						720
				gtc Val						768
55				acc Thr						816

		260	2	265	270	
5		g Ala Asp Pro		ctg ccc gcc gtc gt Leu Pro Ala Val Va 28	l Glu Glu Leu	864
10	ctg cgg at Leu Arg Me 290	g ctg tcc atc t Leu Ser Ile	gcc gag g Ala Glu G 295	ggg ctg caa cgg gt Sly Leu Gln Arg Va 300	g gcg ctg gag l Ala Leu Glu	912
				atc cgg gcc ggt ga (le Arg Ala Gly As 315		960
15				gac acg gcc gtc ta Asp Thr Ala Val Ty 330		1008
20			Arg Ala A	gac cgg cac cac gt Asp Arg His His Va 845		1056
		e His Gln Cys		eag aac ctg gcc cg Sln Asn Leu Ala Ar 36	g Ala Glu Leu	1104
25				acc cgg ctg ccc gg Thr Arg Leu Pro Gl 380		1152
30				ttc aaa ccg ggc ga Phe Lys Pro Gly As 395		1200
		g gaa ctc ccc u Glu Leu Pro 405		gg taa gaggettege Trp 410	tc atg cac atg Met His Met	1251
35				gt atc ggc gcc gg Cys Ile Gly Ala Gl 425		1299
40	ctg gcg gc Leu Ala Al 430	a ccg ggc gtc a Pro Gly Val 435	ttc acc c Phe Thr G	cag gac gac gac gg Gln Asp Asp Asp Gl 440	c tac agc acc y Tyr Ser Thr 445	1347
				ytc acc gac ccg at Val Thr Asp Pro Me 455		1395
45	gcc gcc cg Ala Ala Ar	c gcc tgc ccg g Ala Cys Pro 465	Val Ser A	gcc atc acc gta cg wla Ile Thr Val Ar 170	g gag cgc acc g Glu Arg Thr 475	1443
50	gcc tga Ala	·				1449
	<210> 149 <211> 68 <212> PRT <213> Stre	ptmyces nogala	iter IFO 1	.3445		
55	<400> 149					

```
Met His Ile Asp Ile Asp Ile Asp Gln Asp Val Cys Ile Gly Ala Gly
                                            10
      Gln Cys Ala Leu Ala Ala Pro Gly Val Phe Thr Gln Asp Asp Asp Gly
5
                                        25
      Tyr Ser Thr Leu Leu Pro Gly Gln Glu Asn Gly Val Thr Asp Pro Met
               35
                                   40
                                                        45
      Val Arg Glu Ala Ala Arg Ala Cys Pro Val Ser Ala Ile Thr Val Arg
          50
                               55
      Glu Arg Thr Ala
10
     <210> 150
     <211> 65
     <212> PRT
     <213> Streptmyces tsusimaensis IFO 13782T
15
     <400> 150
      Met Gly Val Gln Val Asp Arg Glu Arg Cys Val Gly Ala Gly Met Cys
                                            10
      Ala Leu Thr Ala Pro Asp Val Phe Thr Gln Asp Asp Asp Gly Leu Ser
                   20
                                        25
                                                            30
20
      Glu Val Leu Pro Gly Arg Ala Glu Thr Ala Gly Gly His Pro Leu Val
                                   40
      Gly Glu Ala Val Arg Ala Cys Pro Val Gly Ala Val Ala Leu Ser Ala
      Asp
       65
25
     <210> 151
     <211> 83
     <212> PRT
     <213> Streptmyces thermocoerulescens IFO 14273t
30
     <400> 151
      Met His Asn Glu Thr His Glu Thr His Glu Thr Thr Ala Ala Ala Ser
                                            10
      Gly Thr Arg Ile Asp Ile Asp His Asp Leu Cys Val Gly Ala Gly Gln
                   20
                                        25
                                                            30
      Cys Ala Leu Val Ala Pro Ser Val Phe Thr Gln Asp Asp Gly Phe
35
               35
                                   40
      Ser Glu Leu Ile Pro Gly Arg Glu Asp Gly Ala Gly Asp Pro Met Val
                                55
      Arg Glu Ala Val Arg Ala Cys Pro Val Ser Ala Ile Thr Val Thr Glu
      Ala Ala Val
40
     <210> 152
     <211> 68
     <212> PRT
     <213> Streptmyces glomerochromogenes IFO 13673T
45
     <400> 152
      Met His Met Asp Ile Asp Ile Asp Gln Asp Val Cys Ile Gly Ala Gly
                                            10
      Gln Cys Ala Leu Ala Ala Pro Gly Val Phe Thr Gln Asp Asp Asp Gly
                   20
                                        25
      Tyr Ser Thr Leu Leu Pro Gly Gln Glu Asn Gly Val Thr Asp Pro Met
50
                                   40
                                                        45
      Val Arg Glu Ala Ala Arg Ala Cys Pro Val Ser Ala Ile Thr Val Arg
          50
                               55
      Glu Arg Thr Ala
       65
```

55

238

```
<210> 153
      <211> 68
      <212> PRT
      <213> Streptmyces olivochromogenes IFO 12444
      <400> 153
       Met His Met Asp Ile Asp Ile Asp Gln Asp Ile Cys Ile Gly Ala Gly
                                               10
10
       Gln Cys Ala Leu Ala Ala Pro Gly Val Phe Thr Gln Asp Asp Asp Gly
                     20
                                           25
                                                                 30
       Tyr Ser Thr Leu Leu Pro Gly Gln Glu Asn Gly Val Thr Asp Pro Met
                35
                                      40
                                                            45
       Val Arg Glu Ala Ala Arg Ala Cys Pro Val Ser Ala Ile Thr Val Arg
            50
                                  55
15
       Glu Arg Thr Ala
      <210> 154
      <211> 207
      <212> DNA
20
      <213> Streptmyces nogalater IFO 13445
      <220>
      <221> CDS
      <222> (1)..(207)
25
      <400> 154 '
      atg cac atc gac atc gat atc gac cag gac gtc tgc atc ggc gcc ggg
                                                                                  48
      Met His Ile Asp Ile Asp Ile Asp Gln Asp Val Cys Ile Gly Ala Gly
                                              10
      cag tgc gcg ctg gcg gca ccg ggc gtc ttc acc cag gac gac gac ggc
                                                                                  96
30
      Gln Cys Ala Leu Ala Ala Pro Gly Val Phe Thr Gln Asp Asp Asp Gly
      tac age ace etg etg ece gge eag gag aac gge gtg ace gae eeg atg
Tyr Ser Thr Leu Leu Pro Gly Gln Glu Asn Gly Val Thr Asp Pro Met
                                                                                 144
               35
35
      gtc egg gag gee gee ege gee tge eeg gte age geg ate ace gtg egg
                                                                                 192
      Val Arg Glu Ala Ala Arg Ala Cys Pro Val Ser Ala Ile Thr Val Arg
      gag cgc acc gcc tga
                                                                                 207
40
      Glu Arg Thr Ala
      <210> 155
      <211> 198
      <212> DNA
45
      <213> Streptmyces tsusimaensis IFO 13782T
      <220>
      <221> CDS
      <222> (1)..(198)
50
      <400> 155
      atg ggc gtc cag gtc gac agg gaa cgc tgc gtg ggg gcg ggc atg tgc
                                                                                  48
      Met Gly Val Gln Val Asp Arg Glu Arg Cys Val Gly Ala Gly Met Cys
                                              10
      gcg ctg acc gcg ccg gac gtg ttc acg cag gac gac gac ggc ctc agc
                                                                                  96
      Ala Leu Thr Ala Pro Asp Val Phe Thr Gln Asp Asp Asp Gly Leu Ser
                    20
                                          25
                                                               30
```

5														ccc Pro			144	2
														ctg Leu			192	5
10	gac Asp 65	tga															198	3
15	<210 <211 <212 <213	> 25 !> Di	52 NA	:myce	es, tl	nermo	ocoei	rules	scens	s IFO) 142	273t						
20	<220 <221 <222	.> CI		(252))											•		
05	atg		aac											gcg Ala			48	3
25														gcc Ala 30			96	5
30														gac Asp			144	į.
35														ccg Pro			192	!
														gtg Val			240	į
40	gcc Ala			tga													252	:
45	<210 <211 <212 <213	> 20 > DN)7 NA	myce	es gl	Lomer	ochi	como	genes	i IFO	136	573T						
	<220 <221 <222	> CE		(207)								-						
50	<400 atg Met 1	cac	atg	gac Asp	atc Ile 5	gac Asp	atc Ile	gac Asp	cag Gln	gac Asp 10	gtc Val	tgt Cys	atc Ile	ggc Gly	gcc Ala 15	ggg Gly	48	!
55	cag Gln	tgc Cys	gcg Ala	ctg Leu 20	gcg Ala	gca Ala	ccg Pro	ggc Gly	gtc Val 25	ttc Phe	acc Thr	cag Gln	gac Asp	gac Asp 30	gac Asp	ggc Gly	96	i

5	tac Tyr	agc Ser	acc Thr 35	ctg Leu	ctg Leu	ccc Pro	ggc Gly	cag Gln 40	gag Glu	aac Asn	ggc Gly	gtc Val	acc Thr 45	gac Asp	ccg Pro	atg Met	1	44
10	gtc Val	cgg Arg 50	gag Glu	gcc Ala	gcc Ala	cgc Arg	gcc Ala 55	tgc Cys	ccg Pro	gtc Val	agc Ser	gcc Ala 60	atc Ile	acc Thr	gta Val	cgg Arg	1	92
		cgc Arg		gcc Ala	tga												2	207
15	<21 <21	0> 1: 1> 2: 2> DI 3> S:	07 NA	tmyce	es ol	Livo	chron	nogei	nes I	IFO :	1244	1						
20		1> C		(207))													
		0> 19		gac	atc	aac	atc	gac	can	asc	atc	tat	atc	aac	acc	aaa		48
25	Met 1	His	Met	Asp	Ile 5	Asp	Ile	Asp	Gln	Asp 10	Ile	Cys	Ile	Gly	Ala 15	Gly		40
					gcg Ala													96
30					ctg Leu												1	44
35					gcc Ala												1	92
		Arg		gcc Ala	tga												2	07
40	<212 <212)> 15 l> 4(2> PF)9 RT	mvce	es no	ogal =	ter	TFO	1344	15								
)> 15	_	myce	.5 110	/gaic	icei	110	131									
45				Leu	Thr	Asp	Thr	Thr	Gly	Pro 10	Ala	Asp	Ala	Ala		Pro		
	_	Ala	Phe	Pro 20	Gln	Asp	Arg	Thr	Cys 25		Tyr	His	Pro	Pro 30	15 Thr	Gly		
	Tyr	Asp	Pro 35		Arg	Asp	Gly	Arg 40		Leu	Ser	Arg	Val 45		Leu	Tyr		
50	Asp	Gly 50		Glu	Val	Trp	Leu 55		Thr	Ala	Gln	Ala 60		Ala	Arg	Thr		
	65				Pro	70		•			75			_	_	80		
					Pro 85					90				-	95		•	
55				100	Asp				105				-	110				
	Ile	Pro	Ser	Phe	Thr	Val	Lys	Arg	Ala	Thr	Ala	Leu	Arg	Pro	Trp	Ile		

```
115
                                120
      Gln Arg Ile Val Asp Gly Leu Leu Asp Ala Met Ile Thr Arg Gly Pro
                                      140
         130
                            135.
5
      Val Ala Asp Leu Val Ser Ala Phe Ala Leu Pro Val Pro Ser Met Val
                      150
                                            155
      Ile Cys Glu Leu Leu Gly Val Pro Tyr Ala Asp His Glu Phe Phe Glu
                    165
                                        170
      Glu Gln Ser Arg Arg Leu Leu Ser Ala Ser Thr Ser Ala Asp Thr Leu
                 180
                                    185
                                                        190
10
      Asp Ala Arg Asp Arg Leu Glu Thr Tyr Leu Gly Asp Leu Ile Asp Ala
             195
                                200
                                                   205
      Lys Ala Lys Glu Ala Glu Pro Gly Asp Gly Ile Leu Asp Glu Leu Val
                            215
                                              220
      His Asn Arg Leu Arg Lys Gly Glu Leu Asp Arg Thr Asp Leu Val Ser
                      230
                                           235
15
                                                                240
     Leu Ala Val Ile Leu Leu Val Ala Gly His Glu Thr Thr Ala Asn Met
                     245
                                        250
                                                            255
      Ile Ser Leu Gly Thr Tyr Thr Leu Leu Gln His Pro Glu Arg Leu Ala
                260
                                  265
      Glu Leu Arg Ala Asp Pro Ala Leu Leu Pro Ala Val Val Glu Glu Leu
            275
                                280
20
                                                   285
      Leu Arg Met Leu Ser Ile Ala Glu Gly Leu Gln Arg Val Ala Leu Glu
        290
                           295
                                                300
     Asp Ile Glu Ile Asp Gly Thr Thr Ile Arg Ala Gly Asp Gly Val Leu
     305
                        310
                                            315
     Phe Ser Thr Ser Val Ile Asn Arg Asp Thr Ala Val Tyr Asp Asp Pro
                  325
25
                                        330
                                                            335
     Asp Asp Leu Asp Phe His Arg Ala Asp Arg His His Val Ala Phe Gly
                 340
                                    345
     Phe Gly Ile His Gln Cys Leu Gly Gln Asn Leu Ala Arg Ala Glu Leu
             355
                                360
                                                    365
     Glu Ile Ala Leu Gly Ser Leu Phe Thr Arg Leu Pro Gly Leu Arg Leu
30
       370
                            375
                                               380
     Ala Val Pro Ala Lys Asp Ile Pro Phe Lys Pro Gly Asp Thr Ile Gln
                        390
                                            395
     Gly Met Leu Glu Leu Pro Val Thr Trp
                     405
     <210> 160
35
     <211> 425
     <212> PRT
     <213> Streptmyces tsusimaensis IFO 13782T
     <400> 160
      Met Thr Glu Ser Thr Thr Asp Pro Thr Thr Arg Gln Ala Leu Gly Ser
40
       1
                                          10
                                                             15
      Thr Thr Pro Ala Ala Ala Thr Ala Thr Ala Ile Asp Pro Thr Leu Ala
                  20
                                      25
      Thr Pro Phe Pro Gln Asp Arg Gly Cys Pro Tyr His Pro Pro Ala Gly
              35
                                  40
                                                     4.5
45
      Tyr Ala Pro Leu Arg Glu Gly Arg Pro Leu Ser Arg Val Ala Leu Phe
         50
                             55
                                               60
      Asp Gly Arg Pro Val Trp Ala Val Thr Gly His Ala Leu Ala Arg Arg
                          70
                                             75
      Leu Leu Ala Asp Pro Arg Leu Ser Thr Asp Arg Thr His Pro Asp Phe
                      85
                                         90
50
      Pro Ala Pro Ala Pro Arg Phe Ala Asn Ala Asn Arg Arg Arg Val Ala
                 100
                                     105
                                                         110
      Leu Leu Gly Val Asp Asp Pro Glu His Asn Thr Gln Arg Arg Met Leu
             115
                              120
                                                    125
      Ile Pro Ala Phe Ser Val Lys Arg Ile Asn Ala Leu Arg Pro Arg Ile
                           135
                                                140
55
      Gln Glu Thr Val Asp Arg Leu Leu Asp Ala Met Glu Arg Gln Gly Pro
                         150
                                             155
```

```
Pro Ala Glu Leu Val Ser Ala Phe Ala Leu Pro Val Pro Ser Met Val
                       165
                                            170
                                                                175
5
       Ile Cys Ser Leu Leu Gly Val Pro Tyr Ala Asp His Glu Phe Phe Glu
                                        185
                   180
                                                            190
       Glu Arg Ser Arg Arg Leu Leu Arg Gly Pro Gly Ala Ala Asp Val Asp
               195
                                   200
                                                        205
       Arg Ala Leu Asp Glu Leu Glu Glu Tyr Leu Gly Ala Leu Ile Asp Arg
           210
                               215
                                                    220
10
       Lys Arg Thr Glu Pro Gly Asp Gly Leu Leu Asp Glu Leu Ile His Arg
                           230
                                                235
                                                                     240
       Asp His Pro Gly Gly Pro Val Asp Arg Glu Glu Leu Val Ser Phe Ala
                       245
                                            250
                                                                255
       Val Ile Leu Leu Ile Ala Gly His Glu Thr Thr Ala Asn Met Ile Ser
                   260
                                        265
                                                            270
15
       Leu Gly Thr Phe Thr Leu Leu Arg His Pro Glu Gln Leu Ala Ala Leu
               275
                                   280
                                                       285
       Arg Ala Gly Gly Thr Thr Ala Val Ala Val Glu Glu Leu Leu Arg
                               295
       Phe Leu Ser Ile Ala Asp Gly Leu Gln Arg Leu Ala Thr Glu Asp Ile
                           310
                                                315
                                                                     320
20
       Glu Val Pro Asp Ala Gly Val Thr Ile Arg Lys Gly Glu Gly Val Val
                       325
                                            330
                                                                 335
       Phe Ser Thr Ser Leu Ile Asn Arg Asp Asp Gly Val Phe Pro Gln Pro
                   340
                                        345
                                                            350
       Glu Thr Leu Asp Trp Asp Arg Pro Ala Arg His His Leu Ala Phe Gly
               355
                                    360
                                                        365
25
       Phe Gly Val His Gln Cys Leu Gly Gln Asn Leu Ala Arg Ala Glu Leu
           370
                               375
                                                    380
       Asp Ile Ala Met Arg Thr Leu Phe Glu Arg Leu Pro Gly Leu Arg Leu
       385
                           390
                                                395
       Ala Val Pro Ala Gln Glu Ile Pro His Lys Pro Gly Asp Thr Ile Gln
                       405
                                           410
30
       Gly Met Leu Glu Leu Pro Val Ala Trp
                   420
                                        425
      <210> 161
      <211> 28
      <212> DNA
35
      <213> Artificial Sequence
      <220>
      <223> Designed oligonucleotide primer for PCR
      <400> 161
40
      agcagttcgc agatgaccat ggacggca
                                                                              28
      <210> 162
      <211> 27
      <212> DNA
      <213> Artificial Sequence
45
      <223> Designed oligonucleotide primer for PCR
      <400> 162
      tttcacggtg aacgacggga tcaqcat
                                                                              27
50
      <210> 163
      <211> 28
      <212> DNA
      <213> Artificial Sequence
55
      <220>
      <223> Designed oligonucleotide primer for PCR
```

	<400> 163	
5	acgagacgac cgccaacatg atctccct	28
J		
	<210> 164	
	<211> 27	
	<212> DNA	
	<213> Artificial Sequence	
10		
	<220>	
	<223> Designed oligonucleotide primer for PCR	
	<400> 16 4	
	tectettete caceteggte ateaace	27
15		
	<210> 165	
	<211> 27	
	<212> DNA	
	<213> Artificial Sequence	
20	<220>	
	<223> Designed oligonucleotide primer for PCR	
	<400> 165	
	ttcatatgac ggaactgacg gacacca	27
25	<210> 166	•
	<211> 28	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
30	<223> Designed oligonucleotide primer for PCR	
	1100, 166	
	<400> 166	
	cgaagettte aggeggtgeg etecegea	28
	<210> 167	
	<211> 27	
35	<212> DNA	
	<213> Artificial Sequence	
	1213 Metitotal bequence	
	<220>	
	<pre><223> Designed oligonucleotide primer for PCR</pre>	
40	bollyner original primor for for	
40	<400> 167	
	agcaaccggt ccacggtctc ctggatg	27
	J 350 350-0	_ '
	<210> 168	
	<211> 28	
45	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Designed oligonucleotide primer for PCR	
50	<400> 168	
	gagagcgttg atccgcttca cggagaag	28
	<210> 169	
	<211> 27	
	<212> DNA	
55	<213> Artificial Sequence	

	<220>	
	<223> Designed oligonucleotide primer for PCR	
5		
	<400> 169	
	caagggcgaa ggtgtggtct tctcgac	27
	<210> 170	
	<211> 27	
10	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Designed oligonucleotide primer for PCR	
15	<400> 170	
	ctcatcaacc gcgacgacgg cgtgttc	27
	<210> 171	
	<211> 27	
	<212> DNA	
20	<213> Artificial Sequence	
	12137 Artificial Sequence	
	<220>	
	<223> Designed oligonucleotide primer for PCR	
	<400> 171	
25	accatatgac ggaatccacg acagatc	27
	<210×172	
	<210> 172	
	<211> 29 <212> DNA	
30	<213> Artificial Sequence	
	<220>	
	<223> Designed oligonucleotide primer for PCR	
	1200 Popia origonacicociae primer for fen	
	<400> 172	
	cgaagcttte agteggegga cagggeeae	29
35		
	<210> 173	
	<211> 27	
	<212> DNA	
	<213> Artificial Sequence	
40	<220>	
	<223> Designed oligonucleotide primer for PCR	
	<400> 173	
	ctcctcgaag aagtcgtggt cctcgta	27
45	<210> 174	
	<211> 28	
	<212> DNA	
	<213> Artificial Sequence	
50	<220>	
50	<223> Designed oligonucleotide primer for PCR	
	<400> 174	
	atcatcgcgt cgaggcgttc gtcgacga	28
	<210> 175	
55	<211> 27	
-	<212> DNA	

	<213> Artificial Sequence	
	<220>	
5	<223> Designed oligonucleotide primer for PCR	
	<400> 175 ccaacatgat ctcgctcggc accttca	27
	coascatgat ocogotoggo doortou	۷,
10	<210> 176	
70	<211> 27	
	<212> DNA <213> Artificial Sequence	
	· · · · · · · · · · · · · · · · · · ·	
	<220>	
15	<223> Designed oligonucleotide primer for PCR	•
	<400> 176	
	cgtcatcttc tcgacgtcgg tcatcaa	27
	· · · · · · · · · · · · · · · · · · ·	
	<210> 177 <211> 30	
20	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<pre><223> Designed oligonucleotide primer for PCR</pre>	
25		
	<400> 177	20
	ctcatatgac ggacatgacg gaaaccccca	30
	<210> 178	
	<211> 28	
30	<212> DNA <213> Artificial Sequence	
	Table Medical Doque	
	<220>	
	<223> Designed oligonucleotide primer for PCR	
35	<400> 178	
00	cgaagctttc agacggcggc ctccgtca	28
	<210> 179	
	<211> 27	
	<212> DNA	
40	<213> Artificial Sequence	
	<220>	
	<223> Designed oligonucleotide primer for PCR	
	<400> 179	
45	cagttcgtcg acgatccgct ggatcca	27
45		
	<210> 180 <211> 27	
	<211> 27 <212> DNA	
	<213> Artificial Sequence	
50	-	
	<220>	
	<pre><223> Designed oligonucleotide primer for PCR</pre>	
	<400> 180	
	tttgacggtg aacgacggga tcagcat	27
55	<2105 181	

	<211> 27	
_	<212> DNA	
5	<213> Artificial Sequence	
	<220>	
	<223> Designed oligonucleotide primer for PCR	
	<400> 181	
10		27
	gacategaga tegaeggeae caceate	27
	<210> 182	
	<211> 27	
	<212> DNA	
	<213> Artificial Sequence	
15	tro, metroper podection	
	4000	
	<220>	
	<223> Designed oligonucleotide primer for PCR	
	<400> 182	
	gtcctcttct ccacctcggt catcaac	27
20	greere coucouggs caccaac	21
	-010, 103	
	<210> 183	
	<211> 33	
	<212> DNA	
	<213> Artificial Sequence	
25	<220>	
	<223> Designed oligonucleotide primer for PCR	
	<400> 183	
	cgaggtcttc atatgacgga actgacggac atc	33
	-5-55555	33
30	<210> 184	
	<211> 33	
	<212> DNA	
	<213> Artificial Sequence	
	-	
	<220>	
35	<223> Designed oligonucleotide primer for PCR	
	12237 Designed Oligonacieotide primer for PCR	
	<400> 184	
	ccgccgaagc tttcaggcgg tgcgctcccg tac	33
	<210> 185	
40	<211> 30	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Designed oligonucleotide primer for PCR	
45	ere receipted congenitation primar to: 10%	
	<400> 185	
	cgaggtcata tgacggaact gacggacatc	30
	<210> 186	
	<211> 27	
50	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Designed oligonucleotide primer for DNA sequencing	
55	<400> 186	
	atgctgatcc cqtcqttcac cqtqaaa	27

	<210> 187	
5	<211> 28	
3	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Designed oligonucleotide primer for DNA sequencing	
	(223) besigned originational for bin sequencing	
10	4005 107	
	<400> 187	
	cttctccgtg aagcggatca acgctctc	28
	<210> 188	
	<211> 28	
15	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Designed oligonucleotide primer for DNA sequencing	
	the state of the s	
20	<400> 188	
20		28
	tcgtcgacga acgcctcgac gcgatgat	20
	. (0.10) 100	
	<210> 189	
	<211> 27	
	<212> DNA	
25	<213> Artificial Sequence	
	<220>	
	<223> Designed oligonucleotide primer for DNA sequencing	
	<400> 189	
30	atggtcatct gcgaactgct cggcgtg	27
	<210> 190	
	<211> 78	
	<212> DNA	
	<213> Artificial Sequence	
35	Allo Michigan Bequence	
33	<220>	
	- - -	
	<223> Designed oligonucleotide primer for PCR	
	1400 100	
	<400> 190	
	cgggatccca tatgacagat atgacagata ctgcagacgt taaaccacta tctgcaccag	60
40	ttgcatttcc tcaagata	78
	<210> 191	
	<211> 70	
	<212> DNA	
	<213> Artificial Sequence	
45		
	<220>	
	<223> Designed oligonucleotide primer for PCR	
	<400> 191	
	agttgcattt cctcaagata gaacctgtcc attccagcct cctactgggt atgatccact	60
50	togtgaaget	70
	cogegaagee	70
	<210> 192	
	<211> 70	
	<212> DNA	
E E	<213> Artificial Sequence	
55		
	<220>	

	<223> Designed oligonucleotide primer for PCR	
5	<400> 192	
	atgatecact tegtgaaget aggestettg stagagttas actitacgat ggaagggsta	60
	tctggcttgt	70
	<210> 193	
10	<211> 70	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Designed oligonucleotide primer for PCR	
15	<400> 193	
	qttqatqacc ctgaacatca cactcaaagg cggatgttag ttcctagctt tacactcaag	60
	cgcgctgctg	70
	<210> 194	
20	<211> 70	
20	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Designed oligonucleotide primer for PCR	
25		
25	<400> 194	
	tacactcaag cgcgctgctg cgttgaggcc agccattcag aggattgtcg atgagtgcat	60
	agatgctatg	70
	<210> 195	
30	<211> 70	
	<212> DNA	
	<213> Artificial Sequence	•
	<220>	
	<223> Designed oligonucleotide primer for PCR	
35	-	
	<400> 195	
	atgagtgcat agatgctatg ttagctaagg gaccacctgc agagttggtt aacgccttcg	60
	cacttcccgt	70
40	<210> 196	
	<211> 70	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
45	<223> Designed oligonucleotide primer for PCR	
	<400> 196	
	tgctacttag gagcactgat tgaccgcaag tccgaatcat ccgttggtga tggtgtcctc	60
	gacgccttgg	70
50	<210> 197	
	<211> 70	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
55	<223> Designed oligonucleotide primer for PCR	
	• · · · · · · · · · · · · · · · · · · ·	

	<400> 197	
	tqqtqtcctc gacgccttgg ttcacgagca attgagagaa ggagctgtgg ataggcagga	60
_	qqctatcagc	70
5		
	<210> 198	
	<211> 70	
	<212> DNA	
10	<213> Artificial Sequence	
	<220>	
	<223> Designed oligonucleotide primer for PCR	
	(223) Designed Offgondereoffde primer for rek	
	<400> 198	
15	ataggcagga ggctatcagc ttggccacga ttctgttggt cgctggtcat gaaaccactg	60
	ctaatatgat	70
	<210> 199	
	<211> 70	
	<212> DNA	
20	<213> Artificial Sequence	
	<220>	
	<223> Designed oligonucleotide primer for PCR	
	Version original original for the first total	
	4400 100	
	<400> 199	
25	caagccacag aggacatcga ggtggcaggt actactatta gagccggtga aggcgtggtc	60
	tttgcgacct	70
	<210> 200	
	<211> 70	
	<212> DNA	
20	-	
30	<213> Artificial Sequence	
	<220>	
•	<223> Designed oligonucleotide primer for PCR	
	<400> 200	
35	aggcqtggtc tttgcgacct ctgtaatcaa cagagatggg gaggtttacg cagaacccga	60
		70
	cgccctcgat	70
	2010) 001	
	<210> 201	
	<211> 70	
	<212> DNA	
40	<213> Artificial Sequence	
	<220>	
	<223> Designed oligonucleotide primer for PCR	
	4400	
	<400> 201	
45	cagaacccga cgccctcgat tggcataggc ccaccagaca tcacgtggca ttcggctttg	. 60
	gcattcatca	70
	•	
	<210> 202	
	<211> 79	
50	<212> DNA	
50	<213> Artificial Sequence	
	<220>	
	<223> Designed oligonucleotide primer for PCR	
	J	
	<400> 202	
55		
J J	accagatgct gtccgcttta aaccaggtga cacgattcag ggaatgctgg atcttcccgt	60
	qqcctqqtaq aagcttggg	79

5	<210> 203 <211> 80 <212> DNA <213> Artificial Sequence	
10	<220> <223> Designed oligonucleotide primer for PCR	
	<400> 203 gatggagata gcacttogta gtttgttoga gagagtgoot gggttgagao togacattgo accagatgot gtoogottta	60 80
15	<210> 204 <211> 70 <212> DNA <213> Artificial Sequence	
20	<220> <223> Designed oligonucleotide primer for PCR	
	<400> 204 ttcggctttg gcattcatca atgtctcgga cagaatctag cacgtgccga gatggagata gcacttcgta	60 70
25	<210> 205 <211> 70 <212> DNA <213> Artificial Sequence	
30	<220> <223> Designed oligonucleotide primer for PCR	
	<400> 205 ctgttgatga gttgatgagg atgctttcta tagcggacgg gctgatgaga caagccacag aggacatcga	60 70
35	<210> 206 <211> 70 <212> DNA <213> Artificial Sequence	
40	<220> <223> Designed oligonucleotide primer for PCR	
	<400> 206 ccccgagcga ctggcggaat tgagggatga cccgagtttg tggcctgctg ctgttgatga gttgatgagg	60 70
45	<210> 207 <211> 70 <212> DNA <213> Artificial Sequence	
50	<220> <223> Designed oligonucleotide primer for PCR	
	<400> 207 gaaaccactg ctaatatgat ctcattgggc acttatacat tactccaaca ccccgagcga ctggcggaat	60 70
55	<210> 208 <211> 70 <212> DNA	

	<213> Artificial Sequence	
	<220>	
5	<223> Designed oligonucleotide primer for PCR	
	<400> 208	
	tacgcggacg ggatgtggac gaggtgcgtg atgcaaggga ccagctcgat tgctacttag gagcactgat	60 70
10	<210> 209	
	<211> 70	
	<212> DNA	
	<213> Artificial Sequence	
15	<220> <223> Designed oligonucleotide primer for PCR	
	•	
	<400> 209	60
	tgtaccgtat gccgatcatg aattetttga ggaacaaagt cgtaggette tacgeggaeg ggatgtggae	60 70
20	<210> 210	
	<211> 70	
	<212> DNA	
	<213> Artificial Sequence	
25	<220>	
20	<223> Designed oligonucleotide primer for PCR	
	<400> 210	
	aacgccttcg cacttcccgt tccatcaatg gtgatatgtg aactgctcgg tgtaccgtat	60
	gccgatcatg	70
30	<210> 211	
	<211> 70	
	<212> DNA	
	<213> Artificial Sequence	
35	<220>	
	<223> Designed oligonucleotide primer for PCR	
	<400> 211	
	cctctccacg cattgtagca ttcagagacc gcagggctgc ccttcttaat gttgatgacc	60
	ctgaacatca	70
40	<210> 212	
	<211> 70	
	<212> DNA	
	<213> Artificial Sequence	
45	<220>	
40	<223> Designed oligonucleotide primer for PCR	
	<400> 212	
	cgcagattca cgactatcgt ccgatagact tcgacctggc tttccagcta cctctccacg cattgtagca	60 70
50	Cattytayta	70
~ ~	<210> 213	
	<211> 70	
	<212> DNA	
	<213> Artificial Sequence	
55	<220>	
	<223> Designed oligonucleotide primer for PCR	

5	gga	0> 2: aggge ctate	cta	tctg	gctt	gt ta	accg	gacg [.]	t ga	cctt	gcta	gaa	gcct	gct (cgca	gattca	60 70
10	<21 <21	0> 2: 1> 1: 2> Di 3> A:	227 NA	icia:	l Sed	quen	ce								-		
15	<22	1> Cl 2> (:	1)	(122 [.] ned]		nucle	eotio	de e	ncod	ing a	amino	o ac:	id s	eque	nce :	of SEQ	ID No.1
	atg		gat					gca Ala									48
20								acc Thr								ggg Gly	96
25								agg Arg 40									144
	gat Asp	gga Gly 50	agg Arg	gct Ala	atc Ile	tgg Trp	ctt Leu 55	gtt Val	acc Thr	gga Gly	cgt Arg	gac Asp 60	ctt Leu	gct Ala	aga Arg	agc Ser	192
30								tcg Ser									240
35	cca Pro	gct Ala	acc Thr	tct Ser	cca Pro 85	cgc Arg	att Ile	gta Val	gca Ala	ttc Phe 90	aga Arg	gac Asp	cgc Arg	agg Arg	gct Ala 95	gcc Ala	288
	ctt Leu	ctt Leu	aat Asn	gtt Val 100	gat Asp	gac Asp	cct Pro	gaa Glu	cat His 105	cac His	act Thr	caa Gln	agg Arg	cgg Arg 110	atg Met	tta Leu	336
40								cgc Arg 120									384
45				-	_		_	ata Ile	-	-	_		_	_			432
	cct Pro 145	gca Ala	gag Glu	ttg Leu	gtt Val	aac Asn 150	gcc Ala	ttc Phe	gca Ala	ctt Leu	ccc Pro 155	gtt Val	cca Pro	tca Ser	atg Met	gtg Val 160	480
50	ata Ile	tgt Cys	gaa Glu	ctg Leu	ctc Leu 165	ggt Gly	gta Val	ccg Pro	tat Tyr	gcc Ala 170	gat Asp	cat His	gaa Glu	ttc Phe	ttt Phe 175	gag Glu	528
55	gaa Glu	caa Gln	agt Ser	cgt Arg 180	agg Arg	ctt Leu	cta Leu	cgc Arg	gga Gly 185	cgg Arg	gat Asp	gtg Val	gac Asp	gag Glu 190	gtg Val	cgt Arg	576

5					cag Gln												624
					tcc Ser												672
10	gag Glu 225	caa Gln	ttg Leu	aga Arg	gaa Glu	gga Gly 230	gct Ala	gtg Val	gat Asp	agg Arg	cag Gln 235	gag Glu	gct Ala	atc Ile	agc Ser	ttg Leu 240	720
15	gcc Ala	acg Thr	att Ile	ctg Leu	ttg Leu 245	gtc Val	gct Ala	ggt Gly	cat His	gaa Glu 250	acc Thr	act Thr	gct Ala	aat Asn	atg Met 255	atc Ile	768
					tat Tyr												816
20					ccg Pro												864
25					ata Ile												912
					ggt Gly												960
30	gcg Ala	acc Thr	tct Ser	gta Val	atc Ile 325	aac Asn	aga Arg	gat Asp	Gly ggg	gag Glu 330	Val	tac Tyr	gca Ala	gaa Glu	ccc Pro 335	gac Asp	1008
35	gcc Ala	ctc Leu	gat Asp	tgg Trp 340	cat His	agg Arg	ccc Pro	acc Thr	aga Arg 345	cat His	cac His	gtg Val	gca Ala	ttc Phe 350	ggc Gly	ttt Phe	1056
					tgt Cys												1104
40	ata Ile	gca Ala 370	ctt Leu	cgt Arg	agt Ser	ttg Leu	ttc Phe 375	gag Glu	aga Arg	gtg Val	cct Pro	ggg Gly 380	ttg Leu	aga Arg	ctc Leu	gac Asp	1152
45	att Ile 385	gca Ala	cca Pro	gat Asp	gct Ala	gtc Val 390	cgc Arg	ttt Phe	aaa Lys	cca Pro	ggt Gly 395	gac Asp	acg Thr	att Ile	cag Gln	gga Gly 400	1200
					ccc Pro 405				tag								1227
50	<211 <212	0> 21 L> 41 2> PF 3> St	. 6 RT	omyc	es c	ornat	us I	FO 1	3069	9t		-					
55)> 21 Thr		Ser	Thr 5	Thr	Glu	Pro	Ala	Arg 10	Gln	Asp	Pro	Ala	Pro 15	Thr	

Ala Pro Pro Thr Gln Pro Thr Ser Thr Thr Pro Phe Pro Gln Asn Arg

```
Asp Cys Pro Tyr His Pro Pro Thr Gly Tyr Gln Pro Leu Arg Ala Asp
               35
                                   40
      Arg Pro Leu Ser Arg Val Thr Leu Phe Asp Gly Arg Pro Val Trp Ala
                              55
                                                  60
      Val Thr Gly His Ala Leu Ala Arg Arg Leu Leu Ala Asp Pro Arg Leu
       65 ·
                           70
                                              75
                                                                   80
10
      Ser Thr Asp Arg Thr His Pro Asp Phe Pro Val Pro Ala Glu Arg Phe
                      85
                                          90
      Ala Asn Val Glu Arg Arg Val Ala Leu Leu Gly Val Asp Asp Pro
                 100
                                      105
                                                          110
      Glu His Asn Ala Gln Arg Arg Met Leu Ile Pro Ser Phe Ser Val Lys
            115
                                 120
                                                      125
15
      Arg Ile Ala Ala Leu Arg Pro Arg Ile Gln Glu Thr Val Asp Gly Leu
          130
                             135
                                                  140
      Leu Asp Ala Met Glu Arg Gln Gly Pro Pro Ser Glu Leu Val Ala Asp
      145
                         150
                                              155
                                                                  160
      Phe Ala Leu Pro Val Pro Ser Met Val Ile Cys Ala Leu Leu Gly Val
                     165
                                          170
                                                              175
20
      Pro Tyr Ala Asp His Glu Phe Phe Glu Gly Cys Ser Arg Arg Leu Leu
                 180
                                      185
                                                          190
      Gln Gly Pro Gly Ala Ala Asp Val Asn Glu Ala Arg Ile Glu Leu Glu
             195
                                 200
                                                      205
      Gly Tyr Leu Gly Ala Leu Ile Asp Arg Lys Arg Val Glu Pro Gly Glu
          210
                             215
                                                 220
25
      Gly Leu Leu Asp Glu Leu Ile His Arg Asp His Pro Gly Gly Pro Val
      225
                        230
                                              235
      Asp Arg Glu Asp Leu Val Ser Phe Ala Val Ile Leu Leu Val Ala Gly
                     245
                                        250
      His Glu Thr Thr Ala Asn Met Ile Ser Leu Gly Thr Phe Thr Leu Leu
                                      265
                  260
                                                         270
30
      Asn His Pro Glu Gln Leu Glu Ala Leu Arg Ser Gly Ser Thr Thr Thr
             275
                                 280
                                                      285
      Ala Ala Val Val Glu Glu Leu Leu Arg Phe Leu Ser Ile Ala Glu Gly
         290
                             295
                                                  300
      Leu Gln Arg Leu Ala Thr Glu Asp Ile Glu Val Ala Gly Thr Thr Ile
                         310
                                            315
                                                                  320
      Arg Glu Gly Glu Gly Val Phe Phe Ser Thr Ser Leu Ile Asn Arg Asp
325 330 335
35
      Thr Glu Val Tyr Glu Asn Pro Glu Thr Leu Asp Trp Asp Arg Pro Ser
                 340
                                     345
                                                          350
      Arg His His Leu Ala Phe Gly Phe Gly Val His Gln Cys Leu Gly Gln
             355
                                  360
40
      Asn Leu Ala Arg Thr Glu Leu Asp Ile Ala Leu Arg Thr Leu Phe Glu
          370
                             375
                                                 380
      Arg Leu Pro Gly Leu Arg Leu Ala Val Pro Ala His Glu Ile Arg His
                          390
                                              395
      Lys Pro Gly Asp Thr Ile Gln Gly Leu Leu His Leu Pro Val Ala Trp
                      405
                                          410
45
      <210> 216
      <211> 416
      <212> PRT
      <213> Streptomyces griseus ATCC 10137
50
      <400> 216
      Met Thr Glu Ser Thr Thr Glu Pro Ala Arg Gln Asp Pro Ala Pro Thr
                                          10
      Ala Pro Pro Thr Gln Pro Thr Ser Thr Thr Pro Phe Pro Gln Asn Arg
                  20
                                      25
      Asp Cys Pro Tyr His Pro Pro Thr Gly Tyr Gln Pro Leu Arg Ala Asp
55
                                  40
                                                      45
      Arg Pro Leu Ser Arg Val Thr Leu Phe Asp Gly Arg Pro Val Trp Ala
```

```
55
     Val Thr Gly His Ala Leu Ala Arg Arg Leu Leu Ala Asp Pro Arg Leu
                          70
                                          75
     Ser Thr Asp Arg Thr His Pro Asp Phe Pro Val Pro Ala Glu Arg Phe
                     85
                                         90
     Ala Asn Val Glu Arg Arg Val Ala Leu Leu Gly Val Asp Asp Pro
                100
                                    105
                                                        110
     Glu His Asn Ala Gln Arg Arg Met Leu Ile Pro Ser Phe Ser Val Lys
             115
                                120
                                                    125
10
     Arg Ile Ala Ala Leu Arg Pro Arg Ile Gln Glu Thr Val Asp Gly Leu
                            135
                                               140
     Leu Asp Ala Met Glu Arg Gln Gly Pro Pro Ser Glu Leu Val Ala Asp
                         150
                                            155
     Phe Ala Leu Pro Val Pro Ser Met Val Ile Cys Ala Leu Leu Gly Val
                    165
                                        170
                                                            175
15
     Pro Tyr Ala Asp His Glu Phe Phe Glu Gly Cys Ser Arg Arg Leu Leu
                 180
                                     185
                                                        190
     Gln Gly Pro Gly Ala Ala Asp Val Asn Glu Ala Arg Ile Glu Leu Glu
            195
                                200
                                                    205
     Gly Tyr Leu Gly Ala Leu Ile Asp Arg Lys Arg Val Glu Pro Gly Glu
         210
                           215
                                                220
20
     Gly Leu Leu Asp Glu Leu Ile His Arg Asp His Pro Gly Gly Pro Val
                      230
                                            235
     Asp Arg Glu Asp Leu Val Ser Phe Ala Val Ile Leu Leu Val Ala Gly
                    245
                                        250
                                                            255
     His Glu Thr Thr Ala Asn Met Ile Ser Leu Gly Thr Phe Thr Leu Leu
               260
                                    265
                                                      270
25
     Asn His Pro Glu Gln Leu Glu Ala Leu Arg Ser Gly Arg Thr Thr Thr
             275
                                280
                                                    285
     Ala Ala Val Val Glu Glu Leu Leu Arg Phe Leu Ser Ile Ala Glu Gly
         290
                            295
                                                300
     Leu Gln Arg Leu Ala Thr Glu Asp Ile Glu Val Ala Gly Thr Thr Ile
                         310
                                            315
30
     Arg Glu Gly Glu Gly Val Phe Phe Ser Thr Ser Leu Ile Asn Arg Asp
                    325
                                        330
                                                            335
     Thr Glu Val Tyr Glu Asn Pro Glu Thr Leu Asp Trp Asp Arg Pro Ser
                340
                                     345
                                                        350
     Arg His His Leu Ala Phe Gly Phe Gly Val His Gln Cys Leu Gly Gln
             355
35
                                360
                                                    365
     Asn Leu Ala Arg Thr Glu Leu Asp Ile Ala Leu Arg Thr Leu Phe Glu
       370
                            375
                                                380
     Arg Leu Pro Gly Leu Arg Leu Ala Val Pro Ala His Glu Ile Arg His
                       390
                                          395
     Lys Pro Gly Asp Thr Ile Gln Gly Leu Leu His Leu Pro Val Ala Trp
                     405
                                        410
40
     <210> 217
     <211> 409
     <212> PRT
     <213> Streptomyces achromogenes IFO 12735
45
     <400> 217
     Met Thr Glu Leu Thr Asp Ile Thr Gly Pro Ala Ala Glu Ala Glu Pro
                                         10
     Val Ala Phe Pro Gln Asp Arg Thr Cys Pro Tyr His Pro Pro Thr Gly
                                     25
50
     Tyr Asp Pro Leu Arg Asp Gly Arg Pro Leu Ser Arg Val Thr Leu Tyr
             35
                                 40
                                                     45
     Asp Gly Arg Glu Ala Trp Leu Val Thr Gly Gln Ala Thr Ala Arg Ala
                            55
     Leu Leu Ala Asp Pro Arg Leu Ser Thr Asp Arg Arg Arg Asp Gly Phe
                                            75
                         70
     Pro Val Pro Thr Pro Arg Phe Glu Ala Gly Arg Asp Arg Lys Val Ala
55
                     85
                                         90
```

Leu Leu Gly Val Asp Asp Pro Glu His His Gln Gln Arg Arg Met Leu

```
100
                                              105
                                                                   110
5
              Ile Pro Ser Phe Thr Leu Lys Arg Ala Thr Ala Leu Arg Pro Trp Ile
                                          120
                      115
                                                               125
              Gln Arg Ile Val Asp Glu Leu Leu Asp Ala Met Ile Glu Arg Gly Pro
                                      135
                                                          140
              Gly Ala Glu Leu Val Ser Ala Phe Ala Leu Pro Val Pro Ser Met Val
                                  150
                                                      155
10
              Ile Cys Gly Leu Leu Gly Val Pro Tyr Ala Asp His Glu Phe Phe Glu
                              165
                                                  170
                                                                       175
              Glu Gln Ser Arg Arg Leu Leu Arg Gly Pro Thr Ser Ala Asp Thr Leu
                          180
                                              185
                                                                  190
              Asp Ala Arg Asp Arg Leu Glu Arg Phe Leu Gly Asp Leu Ile Asp Ala
                    195
                                         200
                                                              205
15
              Lys Ala Lys Glu Ala Glu Pro Gly Asp Gly Ile Leu Asp Asp Leu Val
                                      215
                  210
                                                          220
              His His Arg Leu Arg Glu Gly Glu Leu Asp Arg Gly Asp Leu Val Ser
                                  230
                                                      235
              Leu Ala Val Ile Leu Leu Val Ala Gly His Glu Thr Thr Ala Asn Met
                              245
                                                  250
20
              Ile Ser Leu Gly Thr Tyr Thr Leu Leu Gln His Pro Asp Arg Leu Ala
                          260
                                              265
                                                                   270
              Glu Leu Arg Ala Asp Pro Ala Leu Leu Pro Ala Val Val Glu Glu Leu
                      275
                                          280
                                                              285
              Met Arg Met Leu Ser Ile Ala Glu Gly Leu Gln Arg Val Ala Leu Glu
                  290
                                      295
                                                          300
25
              Asp Val Glu Ile Ala Gly Thr Thr Ile Arg Ala Gly Asp Gly Val Leu
                                  310
                                                      315
              Phe Ser Thr Ser Val Ile Asn Arg Asp Thr Ala Val Tyr Asp Asp Pro
                              325
                                                  330
                                                                       335
              Asp Ala Leu Asp Phe His Arg Ala Asp Arg His His Val Ala Phe Gly
                          340
                                              345
              Phe Gly Ile His Gln Cys Leu Gly Gln Asn Leu Ala Arg Ala Glu Leu
                      355
                                          360
                                                              365
              Glu Ile Ala Leu Gly Ser Leu Phe Thr Arg Leu Pro Gly Leu Arg Leu
                 370
                                      375
                                                          380
              Ala Ala Pro Ala Glu Glu Ile Pro Phe Lys Pro Gly Asp Thr Ile Gln
                                  390
                                                      395
35
              Gly Met Leu Glu Leu Pro Val Thr Trp
                              405
              <210> 218
              <211> 416
              <212> PRT
40
              <213> Streptomyces griseus IFO 13849T
              <400> 218
              Met Thr Glu Ser Thr Thr Glu Pro Ala Arg Gln Asp Ala Ala Leu Thr
              Gly Ala Thr Thr Glu Pro Thr Ser Ala Pro Pro Phe Pro Gln Asp Arg
45
                                               25
              Glu Cys Pro Tyr His Pro Pro Thr Gly Tyr Glu Pro Leu Arg Ala Asp
                                           40
              Arg Pro Leu Ser Arg Val Thr Leu Tyr Asp Gly Arg Pro Val Trp Ala
                                       55
                                                           60
              Val Thr Gly His Ala Leu Ala Arg Arg Leu Leu Ala Asp Pro Arg Leu
50
              Ser Thr Asp Arg Thr His Pro Ala Phe Pro Val Pro Ala Glu Arg Phe
              Ala Gln Thr Arg Gln Arg Arg Val Ala Leu Leu Gly Val Asp Asp Pro
                          100
                                              105
                                                                  110
              Glu His Asn Thr Gln Arg Arg Met Leu Ile Pro Ser Phe Ser Val Lys
55
                                          120
                                                              125
              Arg Ile Ala Ala Leu Arg Pro Arg Ile Gln Glu Thr Val Asp Arg Leu
```

```
130
                                    135
             Leu Asp Ala Met Glu Arg Gln Gly Pro Pro Ser Glu Leu Val Ala Asp
                               150
                                                    155
5
             Phe Ala Leu Pro Val Pro Ser Met Val Ile Cys Ala Leu Leu Gly Val
                                                170
                           165
                                                                   175
             Pro Tyr Ala Asp His Ala Leu Phe Glu Gly Cys Ser Arg Arg Leu Leu
                                           185
                                                                190
                        180
             Arg Gly Pro Gly Ala Asp Asp Val Asp Ala Ala Arg Val Glu Leu Glu
                                        200
                                                           205
10
             Glu Tyr Leu Gly Ala Leu Ile Asp Arg Lys Arg Ala Asp Pro Gly Glu
                210
                                    215
                                                        220
             Gly Leu Leu Asp Glu Leu Ile His Arg Asp Arg Pro Asp Gly Pro Val
                              230
                                                   235
             Ser Arg Glu Asp Leu Val Ser Phe Ala Leu Ile Leu Leu Val Ala Gly
                            245
                                                250
                                                                    255
15
             His Glu Thr Thr Ala Asn Met Ile Ser Leu Gly Thr Phe Thr Leu Leu
                                            265
                        260
                                                                270
             Arg His Pro Gly Gln Leu Ala Ala Leu Arg Ser Gly Glu Thr Thr
                                        280
                                                            285
             Ala Val Val Glu Glu Leu Leu Arg Phe Leu Ser Ile Ala Glu Gly
                                    295
                                                        300
20
             Leu Gln Arg Leu Ala Ile Glu Asp Ile Glu Val Asp Gly Thr Thr Ile
                               310
                                                    315
             Arg Glu Gly Glu Gly Val Phe Phe Ser Thr Ser Leu Val Asn Arg Asp
                            325
                                                330
                                                                    335
             Ala Asp Val Phe Ala Asp Pro Glu Thr Leu Asp Trp Glu Arg Ser Ala
                       340
                                           345
                                                              350
25
             Arg His His Leu Ala Phe Gly Phe Gly Val His Gln Cys Leu Gly Gln
                    355
                                        360
                                                            365
             Asn Leu Ala Arg Ala Glu Leu Asp Ile Ala Leu Arg Thr Leu Phe Glu
                                    375
              370 ·
                                                        380
             Arg Leu Pro Ala Leu Arg Leu Ala Val Pro Ala Asp Glu Val Arg His
                                390
                                                    395
30
             Lys Pro Gly Asp Thr Ile Gln Gly Leu Leu Glu Leu Pro Val Ala Trp
                            405
                                                410
             <210> 219
             <211> 405
35
             <212> PRT
             <213> Streptomyces lanatus IFO 12787T
             <400> 219
             Met Thr Asp Met Thr Asp Met Thr Arg Pro Pro Thr Val Ala Phe Pro
                                                 10
             Gln Asn Arg Thr Cys Pro Tyr His Pro Pro Thr Ala Tyr Asp Pro Leu
40
                         20
                                             25
             Arg Asp Thr Arg Pro Leu Ala Arg Ile Thr Leu Tyr Asp Gly Arg Pro
                                         40
                                                            45
             Val Trp Leu Val Thr Gly His Ala Leu Ala Arg Thr Leu Leu Ala Asp
                                    55
                 50
                                                         60
45
             Pro Arg Leu Ser Ser Asp Arg Gly Arg Pro Gly Phe Pro Ala Pro Asn
                                 70
                                                    75
             Glu Arg Phe Ala Ala Val Arg Asp Arg Lys Ser Ala Leu Leu Gly Val
                             85
                                                90
             Asp Asp Pro Glu His Arg Val Gln Arg Arg Met Met Val Pro Ser Phe
                        100
                                            105
                                                                110
50
             Thr Leu Arg Arg Ala Ala Glu Leu Arg Pro Gln Ile Gln Arg Ile Val
                                        120
                                                            125
             Asp Glu Arg Leu Asp Ala Met Ile Asp Gln Gly Ala Pro Ala Glu Leu
                130
                                    135
                                                        140
             Val Asn Ala Phe Ala Leu Pro Val Pro Ser Met Val Ile Cys Ala Leu
                              150
                                                  155
55
             Leu Gly Val Pro Tyr Ala Asp His Asp Phe Phe Glu Gly Glu Ser Arg
                            165
                                                170
```

```
Arg Leu Leu Arg Gly Ala Thr Ala Ala Glu Ala Met Asp Ala Arg Asp
                          180
                                             185
5
              Arg Leu Glu Asn Tyr Phe Ile Glu Leu Ile Asp Arg Lys Gln Lys Asp
                      195
                                          200
                                                              205
              Pro Glu Pro Gly Asp Gly Val Leu Asp Glu Leu Val His Arg Gln Leu
                                     215
                                                         220
                210
              Arg Asp Gly Asp Leu Asp Arg Glu Glu Val Val Ala Leu Ser Thr Ile
                               230
                                                   235
10
              Leu Leu Val Ala Gly His Glu Thr Thr Ala Asn Met Ile Ser Leu Gly
                             245
                                                 250
              Thr Phe Thr Leu Leu Gln His Pro Glu Gln Leu Ala Glu Leu Arg Ala
                          260
                                             265
              Asp Ala Gly Leu Leu Pro Ala Ala Val Glu Glu Leu Met Arg Met Leu
                      275
                                          280
15
              Ser Ile Ala Asp Gly Leu Leu Arg Val Ala Ser Glu Asp Ile Glu Ala
                                    295
              Gly Gly Glu Thr Ile Arg Ala Gly Asp Gly Val Val Phe Ser Thr Ser
                                 310
                                                      315
                                                                          320
              Val Ile Asn Arg Asp Glu Ser Val Tyr Pro Asp Pro Asp Ala Ile Asp
                              325
                                                330
                                                                     335
20
              Trp His Arg Pro Thr Arg His His Ile Ala Phe Gly Phe Gly Ile His
                          340
                                             345
                                                                  350
              Gln Cys Leu Gly Gln Asn Leu Ala Arg Ala Glu Met Glu Ile Ala Leu
                                        360
                                                            365
              Arg Thr Leu Phe Glu Arg Leu Pro Thr Leu Arg Leu Ala Val Pro Ala
                                      375
                                                          380
25
              Gly Glu Ile Pro Phe Lys Pro Gly Asp Thr Ile Gln Gly Met Leu Glu
                               390
                                                     395
              Leu Pro Val Thr Trp
              <210> 220
30
              <211> 414
              <212> PRT
              <213> Streptomyces misawanensis IFO 13855T
              <400> 220
              Met Lys Glu Leu Thr Asp Leu Thr Glu Pro Ile Ser Pro Ala Gly Gln
35
              Ala Asp Pro Val Ala Trp Pro Gln Asp Arg Thr Cys Pro Tyr His Pro
                          20
                                              25
              Pro Thr Gly Tyr Asp Pro Leu Arg Asp Gly Thr Pro Leu Ser Arg Val
                                        4 Õ
                      35
                                                             45
              Thr Leu Tyr Asp Gly Arg Thr Val Trp Ala Val Thr Gly His Gly Thr
40
                  50
                                      55
                                                          60
              Ala Arg Ala Leu Leu Ser Asp Pro Arg Leu Ser Ser Asp Arg Arg
                                 70
                                                      75
              Asp Asp Phe Pro Met Pro Asn Ala Arg Phe Ala Ala Ala Arg Glu Arg 85 90 95
              Arg Gln Leu Ala Leu Leu Gly Leu Asp Asp Pro Glu His Gln Ile Gln
45
                         100
                                            105
                                                                110
              Arg Arg Met Leu Ile Pro Asp Phe Thr Leu Lys Arg Ala Thr Val Met
                     115
                                         120
                                                             125
              Arg Pro Ala Ile Gln Arg Ile Val Asp Asp Leu Leu Asp Arg Met Ile
                                     135
                                                       140
              Ala Ala Gly Pro Pro Ala Asp Leu Val Ser Ser Phe Ala Leu Pro Val
50
                                 150
                                                     155
              Pro Ser Met Val Ile Cys Asp Leu Leu Gly Val Pro Tyr Ala Asp His
165 170 175
              Glu Phe Phe Glu Ala Gln Ser Arg Arg Leu Leu Arg Gly Pro Ala Pro
                        180
                                            185
                                                                 190
              Ala Asp Ser Leu Asp Ala Arg Asp Gln Leu Glu Ala Tyr Leu Gly Asp 195 200 205
55
                                                             205
              Leu Ala Asp Arg Lys Ser Arg Asp Ala Val Pro Gly Asp Gly Val Leu
```

```
215
                                                         220
              Asp Asp Leu Val His Gln Arg Leu Arg Asp Gly Ala Leu Asp Arg Ala
                                230
                                                    235
                                                                         240
5
              Glu Val Val Ala Leu Ala Leu Ile Leu Leu Val Ala Gly His Glu Thr
                                                250
                             245
                                                                     255
              Thr Ala Asn Met Ile Ser Leu Gly Thr Phe Thr Leu Leu Gln Gln Pro
                                            265
                         260
                                                                 270
              Glu Arg Leu Ala Glu Leu Arg Ala Asp Pro Ala Leu Val Pro Ala Ala
                     275
                                         280
                                                             285
10
              Val Glu Glu Leu Met Arg Met Leu Ser Ile Ala Asp Gly Leu Leu Arg
                                     295
                                                         300
              Val Ala Leu Glu Asp Ile Glu Thr Asp Gly Gly Thr Thr Ile Arg Lys
                                                     315
                                 310
                                                                         320
              Gly Glu Gly Val Leu Phe Ala Thr Ser Val Ile Asn Arg Asp Glu Ser
                             325
                                                 330
                                                                     335
15
              Val Tyr Asp Asp Pro Asp Ala Leu Asp Trp His Arg Pro Ala Arg His
                         340
                                             345
                                                                 350
             His Val Ala Phe Gly Phe Gly Ile His Gln Cys Leu Gly Gln Asn Leu
                      355
                                         360
                                                             365
             Ala Arg Thr Glu Leu Glu Ile Ala Leu Arg Thr Leu Trp Glu Arg Leu
                 370
                                     375
                                                         380
20
              Pro Asp Leu Arg Leu Ala Ala Pro Pro Glu Glu Ile Pro Phe Lys Pro
                                390
                                                    395
             Gly Asp Thr Ile Gln Gly Met Leu Glu Leu Pro Val Thr Trp
                             405
             <210> 221
25
             <211> 409
             <212> PRT
              <213> Streptomyces pallidus IFO 13434T
             <400> 221
30
             Met Ala Asp Thr Leu Ala Gly Ala Thr Pro Asp Ala Ala Ala Thr Val
                                                  10
             Pro Ala Tyr Pro Met Ala Arg Ala Ala Gly Cys Pro Phe Asp Pro Pro
                          20
                                             25
             Pro Asp Leu Thr Ala Arg Gln Asp Glu Gly Arg Leu Val Arg Val Arg
                                          40
             Leu Trp Asp Gly Ser Thr Pro Trp Leu Val Thr Arg Tyr Glu Asp Gln
35
                                      55
                                                          60
             Arg Ala Leu Leu Asp Pro Arg Val Ser Ala Asp Ile Thr Arg Pro
                                  70
                                                      75
             Gly Tyr Pro Leu Gln Ala Ala Gly Ala Gly Glu Asn Asn Ala Ser Phe
                              85
                                                  90
40
             Ile Leu Met Asp Asp Pro Glu His Ala Arg Leu Arg Arg Met Val Thr
                         100
                                             105
                                                                 110
             Ala Pro Phe Ala Ile Lys Arg Val Glu Ala Met Arg Pro Gly Val Gln
                     115
                                         120
                                                             125
             Gln Leu Val Asp Asp Leu Ile Asp Gly Met Leu Ala Gly Pro Lys Pro
                 130
                                     135
                                                         140
45
             Val Asp Leu Val Glu Ala Phe Ala Leu Pro Val Pro Ser Leu Val Ile
                                150
                                                    155
             Cys Arg Met Leu Gly Val Pro Tyr Glu Asp His Asp Phe Phe Gln Glu
                             165
                                                170
                                                                    175
             Asn Ser Arg Ile Leu Ile Lys Arg Asp Ala Ala Met Glu Asp Arg Met
                         180
                                             185
                                                                 190
50
             Ala Ala His Gly Arg Leu Ile Ala Tyr Leu Asp Glu Leu Met Gly Glu
                     195
                                         200
                                                            205
             Lys Thr Ala Arg Pro Ala Asp Asp Leu Leu Ser Gly Leu Val Glu Arg
                 210
                                     215
                                                         220
             Val Arg Thr Gly Glu Leu Thr Arg Arg Glu Ser Ala Arg Met Gly Val
                                230
                                                    235
55
             Leu Leu Ile Ala Gly His Glu Thr Thr Ala Asn Met Ile Ala Leu
                                                 250
```

```
Gly Thr Leu Ala Leu Leu Glu His Pro Asp Gln Leu Ala Leu Leu Arg
                                              265
                          260
              Asp Thr Asp Asp Pro Lys Leu Val Ala Gly Ala Ala Glu Glu Leu Leu
5
                                         280
                                                              285
              Arg Tyr Leu Thr Ile Val His Asn Gly Arg Arg Arg Ala Ala Leu Ala
                  290
                                     295
                                                          300
              Asp Ile Glu Ile Gly Gly Gln Val Ile Arg Ala Gly Glu Gly Met Ile
              305
                                  310
                                                      315
10
              Met Pro Asn Asp Leu Ala Asn Arg Asp Pro Gly Ala Phe Thr Asp Pro
                             325
                                                  330
              Asp Arg Leu Asp Leu Arg Arg Asp Ala Arg Arg His Ile Ala Phe Gly
                                              345
                          340
                                                                  350
              Phe Gly Val His Gln Cys Leu Gly Gln Pro Leu Ala Arg Met Glu Leu
                                        360
                                                              365
15
              Gln Val Val Tyr Gly Thr Leu Tyr Arg Arg Ile Pro Thr Leu Arg Leu
                  370
                                      375
                                                          380
              Ala Ala Pro Val Glu Ser Leu Ser Phe Lys His Asp Gly Ser Val Tyr
                                  390
                                                      395
              Gly Val Tyr Glu Leu Pro Val Thr Trp
                              405
20
              <210> 222
              <211> 398
              <212> PRT
              <213> Streptomyces roseorubens IFO 13682T
25
              <400> 222
              Met Thr Asp Thr Thr Ala Pro Val Ala Phe Pro Gln Ser Arg Thr Cys
                                                   10
              Pro Tyr His Pro Pro Ala Ala Tyr Glu Pro Leu Arg Ala Glu Arg Pro
                                              25
              Leu Thr Arg Ile Thr Leu Phe Asp Gly Arg Glu Ala Trp Leu Val Ser
30
                                          40
              Gly His Ala Thr Ala Arg Ala Leu Leu Ala Asp Pro Arg Leu Ser Ser
                                      55
              Asp Arg Asp Arg Pro Gly Phe Pro Thr Pro Thr Ala Arg Phe Ala Gly
                                  70
              Ile Arg Asn Arg Arg Thr Ala Leu Leu Gly Val Asp Asp Pro Glu His
35
                              85
              Arg Ala Gln Arg Arg Met Val Val Gly Asp Phe Thr Leu Lys Arg Ala
                                              105
                         100
                                                                  110
              Ala Ala Leu Arg Pro Arg Ile Gln Arg Ile Val Asp Glu Arg Leu Asp
                                         120
                                                              125
              Ala Met Ile Ala Gln Gly Pro Pro Ala Asp Leu Val Ser Ala Phe Ala
40
                                      135
                                                          140
              Leu Pro Val Pro Ser Met Val Ile Cys Ala Leu Leu Gly Val Pro Tyr
                                 150
                                                      155
              Ala Asp His Asp Phe Phe Glu Ala Gln Ser Arg Arg Leu Leu Arg Gly
                                                  170
                             165
                                                                      175
              Pro Gly Thr Ala Asp Val Gln Asp Ala Arg Ser Arg Leu Glu Glu Tyr
45
                                             185
              Phe Gly Glu Leu Ile Asp Arg Lys Arg Glu Asp Pro Gly Thr Gly Leu
195 200 205
              Leu Asp Asp Leu Val Gln Arg Gln Pro Gly Asp Gly Gly Pro Asp Arg
                                     215
              Glu Gly Leu Ile Ala Met Ala Leu Ile Leu Leu Val Ala Gly His Glu
50
                                  230
                                                      235
              Thr Thr Ala Asn Met Ile Ser Leu Gly Thr Phe Thr Leu Leu Gln His
                             245
                                                  250
              Pro Glu Arg Leu Ala Glu Leu Arg Ala Asp Ser Glu Val Met Pro Ala
                                              265
                                                                  270
              Ala Val Glu Glu Leu Met Arg Leu Leu Ser Ile Ala Asp Gly Leu Leu
55
                                          280
             Arg Ile Ala Val Glu Asp Val Glu Val Ala Gly Thr Thr Ile Arg Ala
```

```
295
                 290
                                                         300
             Gly Glu Gly Val Val Phe Ala Thr Ser Val Ile Asn Arg Asp Glu Thr
                                 310
                                                     315
5
             Val Phe Ala Glu Pro Asp Thr Leu Asp Trp Ser Arg Pro Ala Arg His
                             325
                                                 330
                                                                      335
             His Val Ala Phe Gly Phe Gly Ile His Gln Cys Leu Gly Gln Asn Leu
                         340
                                             345
                                                                  350
             Ala Arg Ala Glu Leu Glu Ile Ala Leu Gly Thr Leu Phe Gly Arg Leu
                                         360
                                                              365
10
             Pro Thr Leu Arg Leu Ala Ala Pro Pro Asp Glu Ile Pro Phe Lys Pro
                                     375
                                                         380
             Gly Asp Thr Ile Gln Gly Met Leu Glu Leu Pro Val Thr Trp
             385
                                 390
             <210> 223
15
             <211> 414
             <212> PRT
             <213> Streptomyces rutgersensis IFO 15875T
             <400> 223
             Met Thr Glu Thr Leu Ala Glu Thr Thr Glu Ala Glu Glu Pro Leu
20
                                                  10
             Pro Glu Phe Pro Met Pro Arg Ala Asn Gly Cys Pro Phe Ala Pro Pro
                          20
                                              25
             Pro Thr Ala Arg Ala Leu His Thr Glu Arg Pro Val Thr Arg Val Arg
                      35
                                          40
             Leu Trp Asp Gly Ser Ala Pro Trp Leu Val Thr Arg Tyr Ala Asp Gln
25
             Arg Ala Leu Leu Gly Asp Pro Arg Val Ser Ser Glu Ala Thr Arg Pro
                                  70
                                                      75
             Gly Phe Pro His Ala Ser Ala Gly Phe Arg Glu Asn Ala Arg Arg Arg
                                                  90
                              85
             Arg Ser Phe Ile Thr Met Asp Asp Pro Glu His Ala Arg Ile Arg Arg
30
                         100
                                             105
                                                                 110
             Met Val Thr Ala Pro Phe Ala Ile Lys Arg Val Glu Ala Met Arg Pro
                                        120
                    115
                                                             125
             Asp Ile Gln Lys Ile Thr Asp Asp Leu Ile Asp Ser Met Leu Ala Gly
                                     135
                 130
                                                         140
35
             Pro Thr Pro Val Asp Leu Val Arg Ala Leu Ala Leu Pro Leu Pro Ser
                                150
                                                    155
             Leu Val Ile Cys Arg Leu Leu Gly Val Pro Tyr Glu Asp His Asp Phe
                             165
                                                 170
                                                                     175
             Phe Gln Arg Asn Ser Ser Leu Leu Ile Asn Arg Asn Ser Thr Thr Glu
                                             185
                         180
                                                                 190
40
             Glu Val Val Gly Ala Asn Glu Ala Leu Thr Asp Tyr Leu Asp Glu Leu
                     195
                                         200
                                                             205
             Val Ser Ala Lys Leu Ala Asn Pro Ala Asp Asp Met Leu Ser Glu Leu
                 210
                                     215
                                                         220
             Ala Ala Arg Val Thr Ala Gly Glu Leu Thr Gln Arg Glu Ala Ala Asn
                                 230
                                                     235
45
             Met Gly Val Leu Leu Ile Ala Gly His Glu Thr Thr Ala Asn Met
                             245
                                                 250
             Ile Ala Leu Gly Thr Val Ala Leu Leu Glu Asn Pro Asp Gln Leu Ala
                        260
                                            265
                                                                 270
             Val Leu Arg Glu Thr Asp Asp Pro Lys Ala Val Ala Lys Ala Val Glu
                     275
                                         280
                                                             285
50
             Glu Leu Leu Arg Tyr Leu Thr Ile Val His Thr Gly Arg Arg Arg Val
                                     295
                                                         300
             Ala Arg Glu Asp Ile Glu Ile Gly Gly Glu Thr Ile Arg Ala Gly Asp
                                 310
                                                     315
             Gly Ile Ile Ile Tyr Thr Gly Thr Gly Asn Trp Asp Ala Glu Val Phe
                             325
                                                 330
                                                                     335
55
             Pro Glu Pro Glu Arg Leu Asp Ile Gly Arg Asp Ala Arg Arg His Met
                                             345
```

```
Ala Phe Gly Phe Gly Val His Gln Cys Leu Gly Gln Pro Leu Ala Arg
                                            360
 5
               Val Glu Leu Gln Val Val Tyr Gly Thr Leu Tyr Arg Arg Ile Pro Thr
                   370
                                       375
                                                            380
               Leu Arg Leu Ala Thr Gly Val Asp Gln Leu Pro Phe Lys Asp Asp Gly
                                   390
                                                        395
               Leu Val Tyr Gly Val Tyr Glu Leu Pro Val Thr Trp Thr Ser
                               405
                                                    410
 10
               <210> 224
               <211> 398
               <212> PRT
               <213> Streptomyces steffisburgensis IFO 13446T
 15
               <400> 224
               Met Ser Asp Thr Thr Ala Pro Val Ala Phe Pro Gln Ser Arg Thr Cys
                                                     10
               Pro Tyr His Pro Pro Ala Ala Tyr Glu Pro Leu Arg Ala Glu Arg Pro
                           20
                                                25
               Leu Thr Arg Ile Thr Leu Phe Asp Gly Arg Glu Ala Trp Leu Val Ser
 20
                                            40
               Gly His Ala Thr Ala Arg Ala Leu Leu Ala Asp Pro Arg Leu Ser Ser
               Asp Arg Asp Arg Pro Gly Phe Pro Ala Pro Thr Ala Arg Phe Ala Gly
                                    70
               Ile Arg Asn Arg Arg Thr Ala Leu Leu Gly Val Asp Asp Pro Glu His
· 25
                                                    90
               Arg Val Gln Arg Arg Met Val Ala Gly Asp Phe Thr Leu Lys Arg Ala
                           100
                                               105
                                                                   110
               Ala Gly Leu Arg Pro Arg Ile Gln Arg Ile Val Asp Arg Arg Leu Asp
                       115
                                           120
                                                                125
               Ala Met Ile Ala Gln Gly Pro Pro Ala Asp Leu Val Ser Ser Phe Ala
 30
                                       135
                                                            140
               Leu Pro Val Pro Ser Met Val Ile Cys Ala Leu Leu Gly Val Pro Tyr
                                   150
                                                       155
               Ala Asp His Asp Phe Phe Glu Thr Gln Ser Arg Arg Leu Leu Arg Gly
                               165
                                                   170
                                                                        175
               Pro Gln Thr Ala Asp Val Met Asp Ala Arg Ala Arg Leu Asp Glu Tyr
 35
                          180
                                               185
               Phe Gly Glu Leu Ile Asp Arg Lys Arg Lys Glu Pro Gly Ala Gly Leu
195 200 . 205
               Leu Asp Asp Leu Val Gln Arg Gln Leu Arg Asp Gly Ala Leu Asp Arg
                                       215
                                                           220
               Glu Gly Leu Ile Ala Leu Ala Leu Ile Leu Leu Val Ala Gly His Glu
 40
                                   230
                                                       235
               Thr Thr Ala Asn Met Ile Ser Leu Gly Thr Phe Thr Leu Leu Gln His
                               245
                                                   250
               Pro Glu Arg Leu Ala Glu Leu Arg Ala Asp Pro Arg Leu Leu Pro Ala
                           260
                                               265
                                                                    270
               Ala Val Glu Glu Leu Met Arg Met Leu Ser Ile Ala Asp Gly Leu Leu
 45
                       275
                                           280
               Arg Leu Ala Val Glu Asp Ile Glu Val Ala Gly Thr Thr Ile Arg Lys
                                       295
               Gly Asp Gly Val Val Phe Leu Thr Ser Val Ile Asn Arg Asp Glu Thr
                                   310
                                                       315
               Val Tyr Pro Glu Pro Asp Thr Leu Asp Trp His Arg Ser Ala Arg His
 50
                               325
                                                   330
                                                                        335
               His Val Ala Phe Gly Phe Gly Ile His Gln Cys Leu Gly Gln Asn Leu
                                               345
               Ala Arg Ala Glu Leu Glu Ile Ala Leu Trp Thr Leu Phe Asp Arg Leu
                       355
                                           360
                                                                365
               Pro Thr Leu Arg Leu Ala Ala Pro Ala Glu Glu Ile Ala Phe Lys Pro
 55
                                       375
                                                            380
               Gly Asp Thr Ile Gln Gly Met Leu Glu Leu Pro Val Thr Trp
```

	385		390		395	
5	<210> 225 <211> 125 <212> DNA <213> Str	1	ornatus IFO	13069t		
10	<220> <221> CDS <222> (1)					
15		aa tcc acg			cag gac ccc gc Gln Asp Pro Al	
					ccc ttc ccc ca Pro Phe Pro Gl 3	
20					caa ccg ctc cg Gln Pro Leu Ar	
25					ggg cgt ccg gt Gly Arg Pro Va 60	
	gtc acc g Val Thr G 65	gc cac gcc ly His Ala	ctg gcc cgc Leu Ala Arg 70	cgg cta Arg Leu	ctg gcg gat co Leu Ala Asp Pr 75	g cgc ctg 240 o Arg Leu 80
30					gtt ccg gcc ga Val Pro Ala Gl	
35	gcg aac g Ala Asn V	tc gag cgg al Glu Arg 100	cgg cgc gtg Arg Arg Val	gcc ctg Ala Leu 105	ctc ggc gtc ga Leu Gly Val As 11	p Asp Pro
·	Glu His A	ac gcc cag sn Ala Gln 15	cgc agg atg Arg Arg Met 120	Leu Ile	ccg agc ttc tc Pro Ser Phe Se 125	c gtg aag 384 r Val Lys
40	cgg ata g Arg Ile A 130	cc gcg ctg la Ala Leu	cgc ccc cgc Arg Pro Arg 135	atc cag	gag acg gtg ga Glu Thr Val As 140	c gga ctg 432 p Gly Leu
45				Pro Pro	tcc gaa ctg gt Ser Glu Leu Va 155	
					tgc gcg ctc ct Cys Ala Leu Le	
50					tgc tcc cgg cg Cys Ser Arg Ar 19	g Leu Leu
55	Gln Gly P	cg ggc gcg ro Gly Ala 95	gcc gat gtg Ala Asp Val 200	aac gag d Asn Glu A	gcc cgg atc ga Ala Arg Ile Gl 205	g ctg gag 624 u Leu Glu

5		tat Tyr 210															672
	ggg Gly 225	ctc Leu	ctg Leu	gac Asp	gaa Glu	ctg Leu 230	atc Ile	cac His	cgg Arg	gac Asp	cac His 235	ccc Pro	Gly Ggc	gga Gly	ccc Pro	gtc Val 240	720
10		cgc Arg															768
15		gag Glu						Ile									816
	aac Asn	cac His	ccg Pro 275	gaa Glu	cag Gln	ctg Leu	gag Glu	gcg Ala 280	ctg Leu	cgg Arg	tcc Ser	G1y ggg	agc Ser 285	acg Thr	acg Thr	acg Thr	864
20		gcg Ala 290															912
25		caa Gln															960
		gag Glu															1008
30		gag Glu															1056
35	cgg Arg	cac His	cac His 355	ctc Leu	gcc Ala	ttc Phe	ggc Gly	ttc Phe 360	GJ À adc	gtc Val	cat His	cag Gln	tgc Cys 365	ctg Leu	ggc Gly	cag Gln	1104
	aat Asn	ctg Leu 370	gcc Ala	cgc Arg	acc Thr	gag Glu	ctc Leu 375	gac Asp	atc Ile	gcc Ala	ctg. Leu	cgc Arg 380	act Thr	ctc Leu	ttc Phe	gag Glu	1152
40		ctg Leu															1200
45	aaa Lys	ccc Pro	ggg Gly	gac Asp	acg Thr 405	atc Ile	cag Gln	ggc Gly	ctt Leu	ctg Leu 410	cac His	ctg Leu	ccc Pro	gtg Val	gcc Ala 415	tgg Trp	1248
	tga																1251
50	<211 <212)> 22 l> 12 !> DN B> St	251 IA	omyc	es ç	grise	eus <i>P</i>	ATCC	1013	37							
55)> .> CC ?> (1		(1251	L)												
	<400	> 22	26														

5						acg Thr											48
						ccg Pro											96
10						ccg Pro											144
15						gtc Val											192
						ctg Leu 70											240
20						cac His											288
25						agg Arg											336
						cgc Arg											384
30						cgc Arg											432
35						cgg Arg 150											480
						ccg Pro											528
40	ccg Pro	tac Tyr	gcc Ala	gac Asp 180	cac His	gag Glu	ttc Phe	ttc Phe	gag Glu 185	ggc Gly	tgc Cys	tcc Ser	cgg Arg	cgg Arg 190	ctc Leu	ctg Leu	576
45	cag Gln	ggc Gly	ccg Pro 195	ggc Gly	gcg Ala	gcc Ala	gat Asp	gtg Val 200	aac Asn	gag Glu	gcc Ala	cgg Arg	atc Ile 205	gag Glu	ctg Leu	gag Glu	624
						ctg Leu											672
50	ggg Gly 225	ctc Leu	ctg Leu	gac Asp	gaa Glu	ctg Leu 230	atc Ile	cac His	cgg Arg	gac Asp	cac His 235	ccc Pro	ggc Gly	gga Gly	ccc Pro	gtc Val 240	720
55	gac Asp	cgc Arg	gag Glu	gac Asp	ctc Leu 245	gtc Val	tcg Ser	ttc Phe	gcg Ala	gtg Val 250	atc Ile	ctc Leu	ctc Leu	gtc Val	gcg Ala 255	Gly	768

5	cac q His C	gag (Glu	acg Thr	acg Thr 260	gcg Ala	aac Asn	atg Met	atc Ile	tcg Ser 265	ctc Leu	ggc Gly	acg Thr	ttc Phe	acg Thr 270	ctg Leu	ctg Leu	816
	aac d Asn b	His															· 864
10	gcc g Ala A	gcg (Ala ' 290	gtg Val	gtc Val	gag Glu	gaa Glu	ctg. Leu 295	ctg Leu	cgg Arg	ttc Phe	ctc Leu	tcc Ser 300	atc Ile	gcc Ala	gag Glu	gga Gly	912
15	ctg c Leu c 305	caa (Gln)	cgg Arg	ctg Leu	gcc Ala	acc Thr 310	gag Glu	gac Asp	atc Ile	gag Glu	gtg Val 315	gcc Ala	ggg Gly	acg Thr	acg Thr	atc Ile 320	960
	cgc g Arg G																1008
20	acc c																1056
25	cgg c Arg H	lis l															1104
	aat c Asn I																1152
30	cgg c Arg I 385	ctg (Leu 1	ccg Pro	gga Gly	ctc Leu	agg Arg 390	ctc Leu	gcc Ala	gtg Val	ccc Pro	gcg Ala 395	cac His	gag Glu	atc Ile	cgg Arg	cac His 400	1200
35	aaa c Lys F	ccc (Pro (Gly	gac Asp	acg Thr 405	atc Ile	cag Gln	ggc Gly	ctt Leu	ctg Leu 410	cac His	ctg Leu	ccc Pro	gtg Val	gcc Ala 415	tgg Trp	1248
	tga																1251
40	<210><211><211><212><213>	> 123 > DNA	30 A	omyc	es a	chro	moge	enes	IFO	1273	35						
45	<220> <221> <222>	> CDS		1230	1)												
	<400> atg a Met T	icg (gaa	ctg Leu	acg Thr 5	gac Asp	atc Ile	acc Thr	ggc Gly	ccg Pro 10	gct Ala	gcc Ala	gag Glu	gcc Ala	gaa Glu 15	ccc Pro	48
50 .	gtc g Val A	jcc t Na I	ttc Phe	ccc Pro 20	cag Gln	gac Asp	cgc Arg	acc Thr	tgt Cys 25	ccc Pro	tac Tyr	cac His	ccc Pro	ccc Pro 30	acc Thr	gga Gly	96
55	tac g Tyr A	ac d Sp E	ecg Pro 35	ctg Leu	cgc Arg	gac Asp	G1y ggg	cga Arg 40	ccc Pro	ctg Leu	tcc Ser	cgc Arg	gtc Val 45	acc Thr	ctc Leu	tac Tyr	144

5			cgc Arg														192
			gcc Ala														240
10			ccc Pro														288
15			G1y ggg														336
			tcg Ser 115														384
20			atc Ile														432
25			gaa Glu														480
			ggc Gly														528
30			tcc Ser														576
35			cgg Arg 195														624
			aag Lys														672
40			cgg Arg														720
45			gtg Val				Val					Thr					768
	atc Ile	tcc Ser	ctg Leu	ggc Gly 260	acc Thr	tac Tyr	acc Thr	ctg Leu	ctc Leu 265	cag Gln	cac His	ccc Pro	gac Asp	cgg Arg 270	ctg Leu	gcc Ala	816
50	gag Glu	ctg Leu	cgg Arg 275	gcc Ala	gac Asp	ccc Pro	gcg Ala	ctg Leu 280	ctg Leu	ccc Pro	gcc Ala	gtc Val	gtc Val 285	gag Glu	gaa Glu	ctg Leu	864
55			atg Met														912

5										cgg Arg							960
										acg Thr 330							1008
10										cgg Arg							1056
15										aac Asn							1104
										cgg Arg							1152
20										aaa Lys							1200
25				gaa Glu						taa							1230
	<211 <212	0> 22 l> 12 2> Di	251 NA				-11e ·	reo '	384	or.							
30	\21 3)/ 31	rept	Comy	es q	TISE			. 504.								
30	<220 <221)> l> CI	os	(125)		11.126											
35	<220 <221 <222 <400 atg)> L> CI ?> (:)> 2; acg	DS l) 28 gaa	(125) tcc	l) acg	acg	gaa	ccg	gcc	cgc Arg 10							48
	<220 <221 <222 <400 atg Met 1)> l> Cl 2> (])> 22 acg Thr	OS 1) 28 gaa Glu	tcc Ser	acg Thr 5	acg Thr	gaa Glu acc	ccg Pro	gcc Ala gcc	cgc Arg	Gln	Asp	Ala	Ala	Leu 15 gac	Thr	48 96
35	<220 <221 <222 <400 atg Met 1 ggc Gly)> l> CI 2> (:)> 2: acg Thr gcc Ala	os l) 28 gaa Glu acc Thr	tcc Ser acc Thr 20	acg Thr 5 gaa Glu	acg Thr ccg Pro	gaa Glu acc Thr	ccg Pro tcc Ser	gcc Ala gcc Ala 25	cgc Arg 10	Gln ccg Pro	Asp ttc Phe ccg	Ala ccg Pro	Ala cag Gln 30	Leu 15 gac Asp	Thr cgc Arg	
35	<220 <221 <222 <400 atg Met 1 ggc Gly gag Glu)> l> CI 2> (])> 22 acg Thr gcc Ala tgc Cys	28 gaa Glu acc Thr ccc Pro 35	tcc Ser acc Thr 20 tac Tyr	acg Thr 5 gaa Glu cac His	acg Thr ccg Pro	gaa Glu acc Thr ccc Pro	ccg Pro tcc Ser acc Thr 40	gcc Ala gcc Ala 25 ggg Gly	cgc Arg 10 cca Pro	Gln ccg Pro gaa Glu	Asp ttc Phe ccg Pro	Ala ccg Pro ctg Leu 45 ccg	Ala cag Gln 30 cgc Arg	Leu 15 gac Asp gcg Ala	Thr cgc Arg gac Asp	96
35	<220 <221 <222 <400 atg Met 1 ggc Gly gag Glu cgg Arg)> CI 2> (1) 2> (2) acg Thr gcc Ala tgc Cys ccg Pro 50 acc	os l) 28 gaa Glu acc Thr ccc Pro 35 ttg Leu	tcc Ser acc Thr 20 tac Tyr agc Ser	acg Thr 5 gaa Glu cac His cgg Arg	acg Thr ccg Pro ccg Pro gtc Val	gaa Glu acc Thr ccc Pro acg Thr 55	ccg Pro tcc Ser acc Thr 40 ctc Leu	gcc Ala gcc Ala 25 ggg Gly tac Tyr	cgc Arg 10 cca Pro tac Tyr	CCG Pro gaa Glu gga Gly	Asp ttc Phe ccg Pro cgc Arg 60	Ala ccg Pro ctg Leu 45 ccg Pro	Ala cag Gln 30 cgc Arg gtc Val	Leu 15 gac Asp gcg Ala tgg Trp	Thr cgc Arg gac Asp gcc Ala	96 144
35 40 45	<220 <221 <222 <400 atg Met 1 ggc Gly gag Glu cgg Arg gtc Val 65)> CI >> CI	28 gaa Glu acc Thr ccc Pro 35 ttg Leu gga Gly	tcc Ser acc Thr 20 tac Tyr agc Ser cac	acg Thr 5 gaa Glu cac His cgg Arg	acg Thr ccg Pro ccg Pro gtc Val ctg Leu 70	gaa Glu acc Thr ccc Pro acg Thr 55 gcc Ala	ccg Pro tcc Ser acc Thr 40 ctc Leu cgc Arg	gcc Ala gcc Ala 25 ggg Gly tac Tyr cgc Arg	cgc Arg 10 cca Pro tac Tyr gac Asp	Gln ccg Pro gaa Glu gga Gly ctg Leu 75	Asp ttc Phe ccg Pro cgc Arg 60 gcc Ala	Ala ccg Pro ctg Leu 45 ccg Pro gac Asp	Ala cag Gln 30 cgc Arg gtc Val ccc Pro	Leu 15 gac Asp gcg Ala tgg Trp cga Arg	Thr cgc Arg gac Asp gcc Ala ctc Leu 80 ttc	96 144 192

				100					105					110				
5					_	_		_			_	agc Ser					3	384
10												acg Thr 140					4	132
												gaa Glu					4	180
15												gcc Ala					5	28
20												tcg Ser					· 5	76
												cgc Arg					6	24
25												gcc Ala 220					6	72
30												ccg Pro					7	20
												ctg Leu					7	68
35												acg Thr					8	16
40												Gly					8	64
												tcc Ser 300					9	12
45	ctg Leu 305	caa Gln	cgc Arg	ctc Leu	gcg Ala	atc Ile 310	gag Glu	gac Asp	atc Ile	gag Glu	gtg Val 315	gac Asp	Gly	acg Thr	acg Thr	atc Ile 320	9	60
50												ctc Leu					10	08
												tgg Trp					10	5 6
55												cag Gln					11	04

		355					360					365				
5	aac ctg Asn Leu 370	Ala														1152
10	cgg ctg Arg Leu 385															1200
	aag ccc Lys Pro	Gly	gac Asp	acc Thr 405	atc Ile	cag Gln	ggc Gly	ctg Leu	ctc Leu 410	gaa Glu	ctg Leu	ccc Pro	gtg Val	gcc Ala 415	tgg Trp	1248
15	tga															1251
20	<210> 2 <211> 1 <212> D <213> S	218 NA	omyc	ces l	lanat	tus :	IFO :	12781	7 T							
	<220> <221> C <222> (1218	3)												
25	<400> 2 atg acg Met Thr	gac														48
30	cag aac Gln Asn	cgc Arg	acc Thr 20	tgc Cys	ccc Pro	tac Tyr	cac His	cca Pro 25	ccc Pro	acc Thr	gcc Ala	tac Tyr	gac Asp 30	ccg Pro	ctc Leu	96
	cgc gac Arg Asp	acc Thr 35	cgc Arg	ccc Pro	ctg Leu	gcg Ala	cgc Arg 40	atc Ile	acc Thr	ctc Leu	tac Tyr	gac Asp 45	ggc Gly	cgc Arg	ccg Pro	144
35	gtc tgg Val Trp 50	ctg Leu	gtc Val	acc Thr	ggg Gly	cac His 55	gcc Ala	ctc Leu	gcc Ala	cgc Arg	acc Thr 60	ctg Leu	ctc Leu	gcc Ala	gac Asp	192
40	cct cgg Pro Arg 65	ctg Leu	tcc Ser	tcc Ser	gac Asp 70	cgc Arg	ggc Gly	cgg Arg	ccc Pro	ggc Gly 75	ttc Phe	ccc Pro	gcg Ala	ccc Pro	aac Asn 80	240
	gag cgg Glu Arg	ttc Phe	gcg Ala	gcg Ala 85	gta Val	cgc Arg	gac Asp	cgc Arg	aag Lys 90	tcc Ser	gcg Ala	ctg Leu	ctc Leu	ggc Gly 95	gtc Val	288
45	gac gac Asp Asp	Pro														336
50	act ctc Thr Leu	cgc Arg 115	cga Arg	gcc Ala	gcc Ala	gaa Glu	ctg Leu 120	cgc Arg	ccg Pro	cag Gln	atc Ile	cag Gln 125	cgg Arg	atc Ile	gtg Val	384
	gac gaa Asp Glu 130	cgg Arg	ctc Leu	gac Asp	gcg Ala	atg Met 135	atc Ile	gac Asp	cag Gln	GJ À ddd	gcg Ala 140	ccc Pro	gcc Ala	gag Glu	ctg Leu	432
55	gtg aac Val Asn	gcc Ala	ttc Phe	gcg Ala	ctg Leu	ccc Pro	gtg Val	ccc Pro	tcg Ser	atg Met	gtc Val	atc Ile	tgc Cys	gcc Ala	ctg Leu	480

	145					150					ī55					160	
5							gac Asp										528
10							acg Thr										576
							atc Ile										624
15							gtc Val 215										672
20							cgc Arg										720
							gag Glu										768
25							cac His										816
30							gcc Ala										864
							ctg Leu 295										912
35							gcg Ala										960
40							tcc Ser										1008
							cac His										1056
45	cag Gln	tgc Cys	ctc Leu 355	ggc Gly	cag Gln	aac Asn	ctg Leu	gcc Ala 360	cgc Arg	gcc Ala	gag Glu	atg Met	gag Glu 365	atc Ile	gcc Ala	ctg Leu	1104
50							ctg Leu 375										1152
							ccc Pro										1200
55				acc Thr		taa											1218

5	<210> 2 <211> 1 <212> 0 <213> 5	245 NA	tomy:	ces 1	nisa	wane	nsis	1 FO	138	5 5 T						
10	<220> <221> C <222> ((124	5)												
15	<400> 2 atg aaa Met Lys 1	gaa														48
	gcc gac Ala Asp															96
20	ccc acc Pro Thr	ggc Gly 35	tac Tyr	gac Asp	ccg Pro	ctc Leu	cgc Arg 40	gac Asp	ggc Gly	acc Thr	ccg Pro	ctg Leu 45	tcc Ser	cgc Arg	gtc Val	144
25	acc ctc Thr Leu	Tyr	gac Asp	ggc Gly	cgc Arg	acc Thr 55	gtc Val	tgg Trp	gcg Ala	gtc Val	acc Thr 60	ggc Gly	cac His	ggc Gly	acg Thr	192
	gcc cgg Ala Arg 65															240
30	gac gac Asp Asp															288
35	cga cag Arg Gln	ctc Leu	gcc Ala 100	ctg Leu	ctg Leu	ggc Gly	ctc Leu	gac Asp 105	gac Asp	ccc Pro	gag Glu	cac His	cag Gln 110	atc Ile	cag Gln	336
	cgc cgg Arg Arg	atg Met 115	ctg Leu	atc Ile	ccg Pro	gac Asp	ttc Phe 120	acc Thr	ctc Leu	aag Lys	cgg Arg	gcg Ala 125	acc Thr	gtg Val	atg Met	384
40	cgg ccg Arg Pro 130	Ala	atc Ile	cag Gln	cgg Arg	atc Ile 135	gtc Val	gac Asp	gat Asp	ctg Leu	ctc Leu 140	gac Asp	agg Arg	atg Met	atc Ile	432
45	gcc gcg Ala Ala 145	ggc Gly	ccg Pro	ccc Pro	gcc Ala 150	gac Asp	ctg Leu	gtg Val	agc Ser	tcc Ser 155	ttc Phe	gcg Ala	ctg Leu	ccc Pro	gtg Val 160	480
	ccg tcc Pro Ser	atg Met	gtc Val	atc Ile 165	tgt Cys	gac Asp	ctg Leu	ctc Leu	ggc Gly 170	gtg Val	ccc Pro	tac Tyr	gcc Ala	gac Asp 175	cac His	528
50	gag ttc Glu Phe	ttc Phe	gag Glu 180	gcg Ala	cag Gln	tcc Ser	cgg Arg	cgg Arg 185	ctg Leu	ctg Leu	cgc Arg	ggt Gly	ccg Pro 190	gcg Ala	ccc Pro	576
55	gcc gac Ala Asp	tcc Ser 195	ctg Leu	gac Asp	gcg Ala	cgc Arg	gac Asp 200	cag Gln	ctg Leu	gag Glu	gcc Ala	tat Tyr 205	ctg Leu	ggc Gly	gac Asp	624

5					aag Lys												672
	gac Asp 225	gac Asp	ctc Leu	gtc Val	cac His	cag Gln 230	cgg Arg	ctg Leu	cgg Arg	gac Asp	ggc Gly 235	gcc Ala	ctg Leu	gac Asp	cgc Arg	gcc Ala 240	720
10	gag Glu	gtc Val	gtc Val	gcg Ala	ctg Leu 245	gcc Ala	ctc Leu	atc Ile	ctg Leu	ctg Leu 250	gtc Val	gcc Ala	ggc Gly	cac His	gag Glu 255	acc Thr	768
15					atc Ile												816
					gaa Glu												864
20	gtc Val	gag Glu 290	gaa Glu	ctg Leu	atg Met	cgg Arg	atg Met 295	ctg Leu	tcc Ser	atc Ile	gcc Ala	gac Asp 300	ggg Gly	ctg Leu	ctg Leu	cgc Arg	912
25	gtc Val 305	gca Ala	ctg Leu	gag Glu	gac Asp	atc Ile 310	gag Glu	acg Thr	gac Asp	ggc Gly	ggc Gly 315	acc Thr	acc Thr	atc Ile	cgc Arg	aag Lys 320	960
	ggc Gly	gag Glu	ggc Gly	gtg Val	ctc Leu 325	ttc Phe	gcg Ala	acc Thr	tcg Ser	gtc Val 330	atc Ile	aac Asn	cgt Arg	gac Asp	gag Glu 335	tcc Ser	1008
30	gtg Val	tac Tyr	gac Asp	gac Asp 340	ccc Pro	gac Asp	gcc Ala	ctc Leu	gac Asp 345	tgg Trp	cac His	cgc Arg	ccg Pro	gcc Ala 350	cgc Arg	cac His	1056
35					ggc Gly												1104
					ctg Leu												1152
40	ccg Pro 385	gac Asp	ctg Leu	cgg Arg	ctc Leu	gcc Ala 390	gca Ala	ccg Pro	ccg Pro	gag Glu	gag Glu 395	att Ile	ccc Pro	ttc Phe	aaa Lys	ccc Pro 400	1200
45	ggc Gly	gac Asp	acg Thr	atc Ile	cag Gln 405	ggg Gly	atg Met	ctg Leu	gaa Glu	ctc Leu 410	ccc Pro	gtg Val	acc Thr	tgg Trp	taa		1245
	<211 <212)> 23 .> 12 !> DN !> St	230 IA	omyc	es p	alli	dus	IFO	1343	34T							
50	<220 <221)> .> C[s	(1230				-									
55	atg)> 23 gcc Ala	gac	acc Thr	ctc Leu	gcc Ala	ggc Gly	gcc Ala	acg Thr	ccc Pro	gac Asp	gcc Ala	gcc Ala	gcg Ala	acg Thr	gtc Val	48

	1				5					10					15		
5						gcc Ala											96
10						cgg Arg											144
						acg Thr											192
15						gac Asp 70											240
20						gcc Ala											288
						ccg Pro											336
25						aag Lys											384
30						ctc Leu											432
						gcg Ala 150											480
35						gtg Val											528
40						atc Ile											576
	gcc Ala	gcg Ala	cac His 195	G] À aaa	cgg Arg	ctg Leu	atc Ile	gcc Ala 200	tac Tyr	ctc Leu	gac Asp	gag Glu	ctg Leu 205	atg Met	ggc Gly	gag Glu	624
45						gcg Ala											672
50						ctg Leu 230											720
						ggg Gly											768
55						ctc Leu											816

			260					265	•			270		
5	gac acc Asp Thr													864
10	cgc tat Arg Tyr 290	Leu												912
	gac atc Asp Ile 305													960
15	atg ccc Met Pro													1008
20	gac cgg Asp Arg													1056
	ttc ggc Phe Gly													1104
25	cag gtc Gln Val 370	Val												1152
30	gcc gcc Ala Ala 385													1200
	ggc gtc Gly Val								tga 410					1230
35	<210> 2 <211> 1 <212> D <213> S	197 NA	comyc	ces 1	cosec	orube	ens 1	FO :	13682	2 T				
40	<220> <221> C <222> ((1197	7)										
45	<400> 2 atg acg Met Thr 1	gac												48
	ccc tac Pro Tyr													96
50	ctg acc Leu Thr													144
55	ggc cac Gly His 50													192

5														ttc Phe			240
														ccc Pro			288
10														aaa Lys 110			336
15														cga Arg			384
														gcc Ala			432
20														gtc Val			480
25														ctg Leu			528
	ccg Pro	Gly ggg	acc Thr	gcc Ala 180	gac Asp	gtg Val	cag Gln	gac Asp	gcc Ala 185	cgg Arg	agc Ser	agg Arg	ctg Leu	gag Glu 190	gag Glu	tac Tyr	576
30														acc Thr			624
35	ctg Leu	gac Asp 210	gac Asp	ctg Leu	gtc Val	caa Gln	cgg Arg 215	cag Gln	ccc Pro	ggc Gly	gac Asp	ggc Gly 220	gga Gly	ccc Pro	gac Asp	cgc Arg	672
														ggc Gly			720
40														ctg Leu			768
45														atg Met 270			816
	gcg Ala	gtc Val	gag Glu 275	gaa Glu	ctg Leu	atg Met	cgg Arg	ctg Leu 280	ctg Leu	tcc Ser	atc Ile	gcg Ala	gac Asp 285	ggc Gly	ctg Leu	ctg Leu	864
50														atc Ile			912
55	ggc Gly 305	gag Glu	ggc Gly	gtg Val	gtg Val	ttc Phe 310	gcg Ala	acg Thr	tcg Ser	gtc Val	atc Ile 315	aac Asn	cgc Arg	gac Asp	gag Glu	acg Thr 320	960

5	gtc ttc gcc gag ccg gac acc ctc gac tgg agc cgc ccg gcc cgc cac Val Phe Ala Glu Pro Asp Thr Leu Asp Trp Ser Arg Pro Ala Arg His 325 330 335
	cac gtg gcg ttc ggc ttc ggc atc cac cag tgc ctc ggc caa aac ctc His Val Ala Phe Gly Phe Gly Ile His Gln Cys Leu Gly Gln Asn Leu 340 345 350
10	gca cgc gcc gaa ctg gag atc gcc ctc ggc acc ctc ttc ggc cgg ctg 1104 Ala Arg Ala Glu Leu Glu Ile Ala Leu Gly Thr Leu Phe Gly Arg Leu 355 360 365
15	ccc acg ctg cgc ctg gcc ccg ccc gac gag atc ccc ttc aag ccg Pro Thr Leu Arg Leu Ala Ala Pro Pro Asp Glu Ile Pro Phe Lys Pro 370 375 380
	ggc gac acg atc cag ggg atg ctg gaa ctc ccc gtg acc tgg taa 1197 Gly Asp Thr Ile Gln Gly Met Leu Glu Leu Pro Val Thr Trp 385 390 395
20	<210> 233 <211> 1245 <212> DNA <213> Streptomyces rutgersensis IFO 15875T
25	<220> <221> CDS <222> (1)(1245)
30	<pre><400> 233 atg acc gaa acg ctg gca gag acc acg acc gag gcg gaa gag ccg ctt Met Thr Glu Thr Leu Ala Glu Thr Thr Thr Glu Ala Glu Glu Pro Leu 1 5 10 15</pre>
	ccg gag ttc ccg atg ccg cgg gcg aac ggc tgc ccc ttc gcc ccg ccc Pro Glu Phe Pro Met Pro Arg Ala Asn Gly Cys Pro Phe Ala Pro Pro 20 25 30
35	ccg acc gca cgg gcg ctg cac acc gaa cgg ccg gtc acg cgg gta cgg Pro Thr Ala Arg Ala Leu His Thr Glu Arg Pro Val Thr Arg Val Arg 35 40 45
40	ctg tgg gac ggc agc gcc ccc tgg ctg gtg acc cgg tac gcc gac cag Leu Trp Asp Gly Ser Ala Pro Trp Leu Val Thr Arg Tyr Ala Asp Gln 50 55 60
	cgc gcc ctg ctc ggc gac ccg cgg gtc agc tcc gag gcc acc cgg ccc Arg Ala Leu Leu Gly Asp Pro Arg Val Ser Ser Glu Ala Thr Arg Pro 65 70 75 80
45	ggc ttt ccg cat gcg agc gcc ggc ttc cgc gag aat gcc agg cgg cgg 288 Gly Phe Pro His Ala Ser Ala Gly Phe Arg Glu Asn Ala Arg Arg Arg 85 90 95
50	cgc tcc ttc atc acc atg gac gac ccc gag cac gcc cgg atc cgc cgg Arg Ser Phe Ile Thr Met Asp Asp Pro Glu His Ala Arg Ile Arg Arg 100 105 110
	atg gtc acc gcg ccg ttc gcc atc aag cgg gtc gag gcg atg cgg ccc Met Val Thr Ala Pro Phe Ala Ile Lys Arg Val Glu Ala Met Arg Pro 115 120 125
55	gac atc cag aag atc acc gac gat ctg atc gac tcc atg ctg gcc ggg Asp Ile Gln Lys Ile Thr Asp Asp Leu Ile Asp Ser Met Leu Ala Gly

		130					135					140					
5						ctg Leu 150											480
10						ctg Leu											528
						tcg Ser											576
15						aac Asn											624
20						gcc Ala											672
						gcc Ala 230											720
25						ctg Leu											768
30						gtc Val											816
						gac Asp											864
35						ctg Leu											912
40						gag Glu 310											960
	ggg Gly	atc Ile	atc Ile	atc Ile	tac Tyr 325	acc Thr	ggc Gly	acc Thr	ggc Gly	aac Asn 330	tgg Trp	gac Asp	gcg Ala	gag Glu	gtc Val 335	ttc Phe	. 1008
45						ctg Leu											1056
50						gtc Val											1104
						gtc Val											1152
55	ctg Leu	cgg Arg	ctg Leu	gcg Ala	acc Thr	GJ A GGG	gtc Val	gac Asp	caa Gln	cta Leu	ccg Pro	ttc Phe	aag Lys	gac Asp	gac Asp	ggt Gly	1200

	385	390	395	400
5	ttg gtc tac ggc gtc Leu Val Tyr Gly Val 405		l Thr Trp Thr Ser	tga 1245
10	<210> 234 <211> 1197 <212> DNA <213> Streptomyces :	steffisburgensis IFC) 13446T	
	<220> <221> CDS <222> (1)(1197)			
15	<400> 234 atg tcg gac acg acc Met Ser Asp Thr Thr 1 5		Pro Gln Ser Arg	
20	ccc tac cac ccg ccc Pro Tyr His Pro Pro 20			
25	ctg acc cgt atc acc Leu Thr Arg Ile Thr 35			
	ggc cac gcc acc gcc Gly His Ala Thr Ala 50			
30	gac ege gac ege ece Asp Arg Asp Arg Pro 65			
35	atc cgc aac cgc aga Ile Arg Asn Arg Arg 85	acg gcc ctg ctg ggc Thr Ala Leu Leu Gly 90	Val Asp Asp Pro	gag cac 288 Glu His 95
	cga gtc cag cgg cgg Arg Val Gln Arg Arg 100	atg gtg gcc ggg gac Met Val Ala Gly Asp 105	ttc acc ctc aaa o Phe Thr Leu Lys i 110	cgg gcc 336 Arg Ala
40	gcc gga ctg cga ccc Ala Gly Leu Arg Pro 115			
45	gcg atg atc gcc cag Ala Met Ile Ala Gln 130			
	ctg ccc gtc ccg tcc Leu Pro Val Pro Ser 145			
50	gcc gac cac gac ttc Ala Asp His Asp Phe 165		Arg Arg Leu Leu 1	
55	ccg cag acc gcc gac Pro Gln Thr Ala Asp 180			

624

```
ttc ggc gaa ctg atc gac cgc aag cgg aag gaa ccc ggc gcc ggc ctg
              Phe Gly Glu Leu Ile Asp Arg Lys Arg Lys Glu Pro Gly Ala Gly Leu
5
                       195
                                                 200
                                                                           205
              ctg gac gac ctg gtc cag cga cag ctg cgc gac ggc gca ctc gac cgc
                                                                                                      672
              Leu Asp Asp Leu Val Gln Arg Gln Leu Arg Asp Gly Ala Leu Asp Arg
                                            215
10
             gag ggc ctg atc gcc ctg gcg ctc atc ctg ctg gtc gcg ggc cac gag Glu Gly Leu Ile Ala Leu Ala Leu Ile Leu Val Ala Gly His Glu
                                                                                                      720
             acg acc gcc aac atg atc tcg ctc ggc acc ttc acc ctg ctg cag cac Thr Thr Ala Asn Met Ile Ser Leu Gly Thr Phe Thr Leu Leu Gln His
                                                                                                      768
15
                                  245
                                                           250
                                                                                     255
             ece gaa egg ete gee gag etg ege gee gae eeg egg etg etg eet geq
                                                                                                      816
              Pro Glu Arg Leu Ala Glu Leu Arg Ala Asp Pro Arg Leu Pro Ala
                                                      265
20
             gcg gtc gag gag ctg atg cgc atg ctg tcc atc gcg gac ggt ctg ctc
                                                                                                      864
             Ala Val Glu Glu Leu Met Arg Met Leu Ser Ile Ala Asp Gly Leu Leu
                                                 280
                                                                           285
             cgc ctc gcc gtc gag gac ata gag gtg gcc ggg acc acg atc cgc aag
Arg Leu Ala Val Glu Asp Ile Glu Val Ala Gly Thr Thr Ile Arg Lys
                                                                                                      912
25
                  290
             ggg gac ggc gtg gtg ttc ctg acg tcc gtc atc aac cgc gac gag acg Gly Asp Gly Val Val Phe Leu Thr Ser Val Ile Asn Arg Asp Glu Thr
                                                                                                      960
                                       310
                                                                                          320
30
             gte tac ecc gag ecg gac acc etc gac tgg cac ege teg gec egg cat
                                                                                                    1008
             Val Tyr Pro Glu Pro Asp Thr Leu Asp Trp His Arg Ser Ala Arg His
                                                           330
             cac gtc gcg ttc ggc ttc ggc atc cac cag tgc ctc ggc cag aac ctc
                                                                                                    1056
             His Val Ala Phe Gly Phe Gly Ile His Gln Cys Leu Gly Gln Asn Leu
35
                                                      345
                                                                                350
             geg ege gee gag etg gag ate gee etg tgg ace etc tte gae egt etg
                                                                                                    1104
             Ala Arg Ala Glu Leu Glu Ile Ala Leu Trp Thr Leu Phe Asp Arg Leu
40
             ccc acc ctg cgc ctg gcc gcg ccg gcc gag gag atc gcc ttc aag ccg
Pro Thr Leu Arg Leu Ala Ala Pro Ala Glu Glu Ile Ala Phe Lys Pro
                                                                                                    1152
             ggc gac acg atc cag ggg atg ctg gaa ctc ccc gtg act tgg taa Gly Asp Thr Ile Gln Gly Met Leu Glu Leu Pro Val Thr Trp
                                                                                                    1197
45
             385
                                      390
             <210> 235
             <211> 1454
             <212> DNA
             <213> Streptomyces ornatus IFO 13069t
50
             <221> CDS
             <222> (1)..(1251)
             <220>
55
             <221> CDS
             <222> (1257)..(1454)
```

		0> 2:		tee	360	2 C C	722	cca	acc	cac	caq	cac	ccc	gct	CCC	200	48
5														Ala			30
10														cag Gln 30			96
														cgc Arg			144
15														gtc Val			192
20														ccg Pro			240
														gag Glu			288
25														gac Asp 110			336
30	gag Glu	cac His	aac Asn 115	gcc Ala	cag Gln	cgc Arg	agg Arg	atg Met 120	ctc Leu	atc Ile	ccg Pro	agc Ser	ttc Phe 125	tcc Ser	gtg Val	aag Lys	384
														gac Asp			432
35														gtc Val			480
40														ctc Leu			528
														cgg Arg 190			576
45														g ag Glu			624
50	ggc Gly	tat Tyr 210	ctg Leu	ggc Gly	gcc Ala	ctg Leu	atc Ile 215	gac Asp	cgc Arg	aag Lys	cgg Arg	gtg Val 220	gag Glu	ccg Pro	ggg Gly	gag Glu	672
														gga Gly			720
55														gtc Val			768

		245	250	255
5		r Ala Asn Met Ile	tcg ctc ggc acg ttc acg Ser Leu Gly Thr Phe Thr 265 270	
10	aac cac ccg ga Asn His Pro Gl 275	a cag ctg gag gcg ı Gln Leu Glu Ala 280	g ctg cgg tcc ggg agc acg a Leu Arg Ser Gly Ser Thr 285	acg acg 864 Thr Thr
			g cgg ttc ctc tcc atc gcc n Arg Phe Leu Ser Ile Ala 300	
15	ctg caa cgg ct Leu Gln Arg Le 305	g gcc acc gag gad Ala Thr Glu Asp 310	c atc gag gtg gcc ggg acg o Ile Glu Val Ala Gly Thr 315	acg atc 960 Thr Ile 320
20			c tcg acc tcg ctc atc aac e Ser Thr Ser Leu Ile Asn 330	
	acc gag gtc ta Thr Glu Val Ty 34	r Glu Asn Pro Gli	g acg ctc gac tgg gac cgg 1 Thr Leu Asp Trp Asp Arg 345 350	cct tcc 1056 Pro Ser
25			e ggc gtc cat cag tgc ctg e Gly Val His Gln Cys Leu) 365	
30	aat ctg gcc cg Asn Leu Ala Ard 370	e acc gag ctc gad g Thr Glu Leu Asg 375	e atc gcc ctg cgc act ctc o Ile Ala Leu Arg Thr Leu 380	ttc gag 1152 Phe Glu
			e gtg ccc gcg cac gag atc a Val Pro Ala His Glu Ile 395	
35	aaa ccc ggg ga Lys Pro Gly As	e acg atc cag ggo Thr Ile Gln Gly 405	c ctt ctg cac ctg ccc gtg y Leu Leu His Leu Pro Val 410	gcc tgg 1248 Ala Trp 415
40			gac agg gaa cgg tgc gtg g Asp Arg Glu Arg Cys Val G 425	
	Met Cys Ala Le	g acc gcg ccc gad n Thr Ala Pro Asp n	gtg ttc acg cag gac gac Val Phe Thr Gln Asp Asp 440	gac ggg 1346 Asp Gly
45			c acg gcg ggg acg ggg gac Thr Ala Gly Thr Gly Asp 460	
50	cgg gtg cgg gad Arg Val Arg Glu 465	g gcc gtt cgg gcc n Ala Val Arg Ala 470	tgc ccg gtc ggg gcg gtg Cys Pro Val Gly Ala Val 475	tcc ctg 1442 Ser Leu
	acc gac gac tga Thr Asp Asp 480	1		1454
55	<210> 236 <211> 1454			

	<212> DNA <213> Streptomyces griseus ATCC 10137
5	<220> <221> CDS <222> (1)(1251)
10	<220> <221> CDS <222> (1257)(1454)
15	<pre><400> 236 atg acg gaa tcc acg gac ccg gcc cgc cag gac ccc gct ccc acc Met Thr Glu Ser Thr Thr Glu Pro Ala Arg Gln Asp Pro Ala Pro Thr 1</pre>
	gcc cct ccg acg caa ccg acc tcc acg aca ccc ttc ccc cag aac cgc Ala Pro Pro Thr Gln Pro Thr Ser Thr Thr Pro Phe Pro Gln Asn Arg 20 25 30
20	gac tgc ccc tac cac ccg ccc acc ggg tac caa ccg ctc cgc gcg gac Asp Cys Pro Tyr His Pro Pro Thr Gly Tyr Gln Pro Leu Arg Ala Asp 35 40 45
25	cgg ccg ctc agc cgg gtc acc ctc ttc gac ggg cgt ccg gtc tgg gcc 192 Arg Pro Leu Ser Arg Val Thr Leu Phe Asp Gly Arg Pro Val Trp Ala 50 55 60
	gtc acc ggc cac gcc ctg gcc cgc cgg cta ctg gcg gat ccg cgc ctg Val Thr Gly His Ala Leu Ala Arg Arg Leu Leu Ala Asp Pro Arg Leu 65 70 75 80
30	tcc acc gat cgc acc cac ccc gac ttc ccc gtt ccg gcc gag cgg ttc Ser Thr Asp Arg Thr His Pro Asp Phe Pro Val Pro Ala Glu Arg Phe 85 90 95
35	gcg aac gtc gag cgg agg cga gtg gcc ctg ctc ggc gtc gac gac ccc 336 Ala Asn Val Glu Arg Arg Arg Val Ala Leu Leu Gly Val Asp Asp Pro 100 105 110
	gag cac aac gcc cag cgc agg atg ctc atc ccg agc ttc tcc gtg aag 384 Glu His Asn Ala Gln Arg Arg Met Leu Ile Pro Ser Phe Ser Val Lys 115 120 125
40	cgg ata gcc gcg ctg cgc ccc cgc atc cag gag acg gtg gac gga ctg Arg Ile Ala Ala Leu Arg Pro Arg Ile Gln Glu Thr Val Asp Gly Leu 130 135 140
45	ctg gac gcg atg gag cgg cag ggc ccg ccg tcc gaa ctg gtc gcc gac Leu Asp Ala Met Glu Arg Gln Gly Pro Pro Ser Glu Leu Val Ala Asp 145 150 155 160
	ttc gcg ctg ccg gtg ccg tcg atg gtg atc tgc gcg ctc ctc ggt gtg Phe Ala Leu Pro Val Pro Ser Met Val Ile Cys Ala Leu Leu Gly Val 165 170 175
50	ccg tac gcc gac cac gag ttc ttc gag ggc tgc tcc cgg cgg ctc ctg 576 Pro Tyr Ala Asp His Glu Phe Phe Glu Gly Cys Ser Arg Arg Leu Leu 180 185 190
55	cag ggc ccg ggc gcc gat gtg aac gag gcc cgg atc gag ctg gag 624 Gln Gly Pro Gly Ala Ala Asp Val Asn Glu Ala Arg Ile Glu Leu Glu 195 200 205

5	ggc Gly	tat Tyr 210	ctg Leu	ggc Gly	gcc Ala	ctg Leu	atc Ile 215	gac Asp	cgc Arg	aag Lys	cgg Arg	gtg Val 220	gag Glu	ccg Pro	G] À aaa	gag Glu	672
							atc Ile										720
10							tcg Ser										768
15							atg Met										816
							gag Glu										864
20							ctg Leu 295										912
25							gag Glu										960
							ttc Phe										1008
30							ccg Pro										1056
35							ggc Gly										1104
							ctc Leu 375										1152
40							ctc Leu										1200
45							cag Gln										1248
	tga	gcg	gc at Me	g go et GI	go gt Ly Va 42	ıl Ar	gg gt g Va	c ga	sp Ar	gg ga gg G1 42	lu Ar	g to	gc gt /s Va	g go il Gl	gg gc .y Al 43	cc ggc La Gly 30	1298
50	atg Met	tgc Cys	gcg Ala	ctg Leu 435	acc Thr	gcg Ala	ccc Pro	gac Asp	gtg Val 440	ttc Phe	acg Thr	cag Gln	gac Asp	gac Asp 445	gac Asp	GJÀ āāā	1346
55							ggg Gly										1394

5	cgg gtg cgg gag gcc gtt cgg gcc tgc ccg gtc ggg gcg gtg tcc ctg Arg Val Arg Glu Ala Val Arg Ala Cys Pro Val Gly Ala Val Ser Leu 465 470 475	2												
	acc gac tga 1450 Thr Asp Asp 480	1												
10	<210> 237 <211> 1449 <212> DNA <213> Streptomyces achromogenes IFO 12735													
15	<220> <221> CDS <222> (1)(1230)													
20	<220> <221> CDS <222> (1243)(1449)													
	<pre><400> 237 atg acg gaa ctg acg gac atc acc ggc ccg gct gcc gag gcc gaa ccc Met Thr Glu Leu Thr Asp Ile Thr Gly Pro Ala Ala Glu Ala Glu Pro 1 5 10 15</pre>	3												
25	gtc gcc ttc ccc cag gac cgc acc tgt ccc tac cac ccc ccc acc gga Val Ala Phe Pro Gln Asp Arg Thr Cys Pro Tyr His Pro Pro Thr Gly 20 25 30	;												
30	tac gac ccg ctg cgc gac ggg cga ccc ctg tcc cgc gtc acc ctc tac Tyr Asp Pro Leu Arg Asp Gly Arg Pro Leu Ser Arg Val Thr Leu Tyr 35 40 45	ļ												
	gac ggc cgc gag gcc tgg ctg gtc acc ggc cag gcc acc gcc cgc gcc Asp Gly Arg Glu Ala Trp Leu Val Thr Gly Gln Ala Thr Ala Arg Ala 50 55 60	?												
35	ctg ctc gcc gac ccg cgg ctg tcc acc gac cgc cgc cgc gac ggc ttc Leu Leu Ala Asp Pro Arg Leu Ser Thr Asp Arg Arg Arg Asp Gly Phe 65 70 75 80)												
40	ccc gtg ccc acc ccc cgc ttc gag gcc ggc cgc gac cgc aag gtg gcc 288 Pro Val Pro Thr Pro Arg Phe Glu Ala Gly Arg Asp Arg Lys Val Ala 85 90 95	}												
	ctg ctc ggg gtg gac gat ccc gag cac cac cag cag cgc cgg atg ctg Leu Leu Gly Val Asp Asp Pro Glu His His Gln Gln Arg Arg Met Leu 100 105 110	;												
	atc ccg tcg ttc acc ctc aaa cgc gcc acc gcg ctg cgc ccc tgg atc Ile Pro Ser Phe Thr Leu Lys Arg Ala Thr Ala Leu Arg Pro Trp Ile 115 120 125	ĺ												
50	cag cgg atc gtg gac gaa ctg ctg gac gcg atg atc gag cgg ggg ccg Gln Arg Ile Val Asp Glu Leu Leu Asp Ala Met Ile Glu Arg Gly Pro 130 135 140	!												
	ggg gcc gaa ctg gtc tcc gcc ttc gcg ctg ccc gtg ccg tcc atg gtc Gly Ala Glu Leu Val Ser Ala Phe Ala Leu Pro Val Pro Ser Met Val 145 150 155 160)												
55	atc tgc ggc ctg ctc ggc gtg ccc tac gcc gac cac gag ttc ttc gag Ile Cys Gly Leu Leu Gly Val Pro Tyr Ala Asp His Glu Phe Phe Glu	ţ												

					165					170					175		
5														gac Asp 190			. 576
10														atc Ile			624
														gac Asp			672
15														ctg Leu			720
20														gcc Ala			768
														cgg Arg 270			816
25														gag Glu			864
30														gcg Ala			912
												Gly		ggc Gly			960
35	ttc Phe	tcc Ser	acc Thr	tcg Ser	gtc Val 325	atc Ile	aac Asn	cgg Arg	gac Asp	acg Thr 330	gcc Ala	gtc Val	tac Tyr	gac Asp	gac Asp 335	ccc Pro	1008
40														gcg Ala 350			1056
														gcg Ala			1104
45														ctg Leu			1152
50														acg Thr			1200
				gaa Glu						taa 410	gag	getto	ege t		_	ac atg is Met	1251
55	gac Asp	atc Ile	gac Asp	atc Ile	gac Asp	cag Gln	gac Asp	gtc Val	tgt Cys	atc Ile	ggc Gly	gcc Ala	GJ Å GGG	cag Gln	tgc Cys	gcg Ala	1299

	415	420	425
5	ctg gcg gca ccg ggc gtc Leu Ala Ala Pro Gly Val 430 435	. Phe Thr Gln Asp Asp	gac ggc tac agc acc 1347 Asp Gly Tyr Ser Thr 445
10	ctg ctg ccc ggc cgg gag Leu Leu Pro Gly Arg Glu 450		
	gcc gcc cgc gcc tgc ccc Ala Ala Arg Ala Cys Pro 465	g gtc agc gcc atc acc Val Ser Ala Ile Thr 470	gta cga gag cgc acc 1443 Val Arg Glu Arg Thr 475
15	gcc tga Ala		1449
20	<210> 238 <211> 1454 <212> DNA <213> Streptomyces gris	eus IFO 13849T	
	<220> <221> CDS <222> (1)(1251)		
25	<220> <221> CDS <222> (1299)(1454)		
30	<400> 238 atg acg gaa tcc acg acg Met Thr Glu Ser Thr Thr 1 5		
35	ggc gcc acc acc gaa ccg Gly Ala Thr Thr Glu Pro 20		
-	gag tgc ccc tac cac ccg Glu Cys Pro Tyr His Pro 35		
40	cgg ccg ttg agc cgg gtc Arg Pro Leu Ser Arg Val 50	acg ctc tac gac gga Thr Leu Tyr Asp Gly 55	cgc ccg gtc tgg gcc 192 Arg Pro Val Trp Ala 60
45	gtc acc gga cac gcc ctg Val Thr Gly His Ala Leu 65 70	Ala Arg Arg Leu Leu	
	tcc acc gac cgc acc cac Ser Thr Asp Arg Thr His 85		
50	gcg cag acc cgg cag cgg Ala Gln Thr Arg Gln Arg 100	cgc gtg gcc ctg ctc Arg Val Ala Leu Leu 105	ggc gtc gac gac ccc 336 Gly Val Asp Asp Pro 110
55	gag cac aac acc cag cgc Glu His Asn Thr Gln Arg 115		
	cgg atc gcc gcg ctg cgc	ccc cgt atc cag gag	acg gtg gac cgg ctg 432

5	Arg	Ile 130	Ala	Ala	Leu	Arg	Pro 135	Arg	Ile	Gln	Glu	Thr 140	Val	Asp	Arg	Leu	
				atg Met													480
10				ccg Pro		Pro											528
15				gac Asp 180												ctg Leu	576
	_		-	ggc Gly		_	-		-		-	-	_	_	_		624
20				ggc Gly													672
25		Leu		gac Asp													720
				gac Asp													768
30				acc Thr 260													816
35				ggt Gly													864
				gtc Val													912
40				ctc Leu													960
45 .				gag Glu													1008
				ttc Phe 340													1056
50				ctc Leu													1104
55				cgc Arg													1152
	cgg	ctg	ccc	gcg	ctc	agg	ctc	gcc	gta	ccg	gcg	gac	gag	gtg	agg	cac	1200

	Arg 385	Leu	Pro	Ala	Leu	Arg 390	Leu	Ala	Val	Pro	Ala 395	Asp	Glu	Val	Arg	His 400	
5						atc Ile											1248
10	tga	gcg	gcgt	gga d	cgtc	caggt	ta aa	acag	ggaa	e get	tgcgt	ggg	agc	egge	_	tgc Cys	1304
						gag Glu 425											1352
15						ggc Gly											1400
20	cgc Arg	gat Asp	gcc Ala	gca Ala 455	cgg Arg	gcc Ala	tgc Cys	ccg Pro	gtc Val 460	ggg Gly	gcg Ala	gtg Val	acc Thr	ctg Leu 465	acc Thr	gac Asp	1448
	gac Asp	tga															1454
25	<21:	0> 23 l> 14 2> Di 3> St	161 NA	comyo	ces]	Lanat	us :	IFO I	1278	7 T							
30		> CI		(1218	3)												
		L> CI)(1	1461)	•											
35	atg)> 23 acg Thr	gac	atg Met	acc Thr 5	gat Asp	atg Met	acg Thr	cga Arg	ccc Pro 10	ccc Pro	acc Thr	gtc Val	gcc Ala	ttc Phe 15	ccc Pro	48
40						ccc Pro											96
45						ctg Leu											144
						ggg Gly											192
50						gac Asp 70											240
55						gta Val											288
	aac	gac	ccc	gaa	cac	cgg	gtc	cag	cga	cgg	atg	atg	gtc	ccc	agc	ttc	336

5	Asp Asp	Pro Glu 100	-	y Val	Gln	Arg 105	Arg	Met	Met	Val	Pro 110	Ser	Phe	
		cgc cga Arg Arg 115												384
10		cgg ctc Arg Leu												432
15		gcc ttc Ala Phe		Pro										480
	ctg ggc Leu Gly	gtg ccc Val Pro	tat gco Tyr Ala 165	gac Asp	cac His	gac Asp	ttc Phe 170	ttc Phe	gag Glu	ejà aaa	gag Glu	tcc Ser 175	cgg Arg	528
20		ctg cgc Leu Arg 180	Gly Ala											576
25		gag aac Glu Asn 195												624
		ccc ggc Pro Gly												672
30		ggc gac Gly Asp		Arg										720
35		gtc gcc Val Ala												768
		aca ctg Thr Leu 260	Leu Glr											816
40		ggg ttg Gly Leu 275												864
45		gcg gac Ala Asp												912
		gag acg Glu Thr		Ala										960
50		aac cgc Asn Arg												1008
55		cgc ccc Arg Pro 340	Thr Arg											1056
	cag tgc	ctc ggc	cag aac	ctg	gcc	cgc	gcc	gag	atg	gag	atc	gcc	ctg	1104

	Gln Cys Leu Gly Gln Asn Leu Ala Arg Ala Glu Met Glu Ile Ala Leu 355 360 365	
5	cgc acc ctc ttc gag cgc ctg ccc acc ctg cgc ctt gcc gtc ccg gcg Arg Thr Leu Phe Glu Arg Leu Pro Thr Leu Arg Leu Ala Val Pro Ala 370 375 380	52
10	ggg gaa atc ccc ttc aaa ccc ggc gac acg atc cag ggg atg ctg gaa 120 Gly Glu Ile Pro Phe Lys Pro Gly Asp Thr Ile Gln Gly Met Leu Glu 385 390 395 400	00
	ctc ccc gtg acc tgg taa gaggetccgg tc atg cac aac gaa acg cac gaa 125 Leu Pro Val Thr Trp Met His Asn Glu Thr His Glu 405 410	51
15	tca ggc cat atc cac atc gac atc gac cat gac gtc tgc gtc ggc gcc 129 Ser Gly His Ile His Ile Asp Ile Asp His Asp Val Cys Val Gly Ala 415 420 425	99
20	ggg cag tgc gcc ctc gcc gcc ccc tcc gtg ttc acc cag gac gac gac Gly Gln Cys Ala Leu Ala Ala Pro Ser Val Phe Thr Gln Asp Asp 430 435 440 445	17
25	ggc ttc agc acc ctg ctt ccc ggc cgc gag gac ggc ggc gac ccc 139 Gly Phe Ser Thr Leu Leu Pro Gly Arg Glu Asp Gly Gly Gly Asp Pro 450 455 460	₹5
20	atg gtg cgg gag gcg cgg gcg tgc ccg gtc agc gcc atc acc gtg Met Val Arg Glu Ala Ala Arg Ala Cys Pro Val Ser Ala Ile Thr Val 465 470 475	13
30	tcc gaa ggg ggg agt tga 146 Ser Glu Gly Gly Ser 480	51
35	<210> 240 <211> 1458 <212> DNA <213> Streptomyces misawanensis IFO 13855T	
	<220> <221> CDS <222> (1)(1245)	
40	<220> <221> CDS <222> (1258)(1458)	
45	<pre><400> 240 atg aaa gaa ctg acg gac ctg acg gaa ccc atc tct ccc gcc ggc cag Met Lys Glu Leu Thr Asp Leu Thr Glu Pro Ile Ser Pro Ala Gly Gln 1 5 10 15</pre>	18
50	gcc gac ccc gtg gcc tgg ccg cag gac cgc acg tgc ccc tac cac ccg Ala Asp Pro Val Ala Trp Pro Gln Asp Arg Thr Cys Pro Tyr His Pro 20 25 30	96
	ccc acc ggc tac gac ccg ctc cgc gac ggc acc ccg ctg tcc cgc gtc Pro Thr Gly Tyr Asp Pro Leu Arg Asp Gly Thr Pro Leu Ser Arg Val 35 40 45	4
55	acc ctc tac gac ggc cgc acc gtc tgg gcg gtc acc ggc cac ggc acg Thr Leu Tyr Asp Gly Arg Thr Val Trp Ala Val Thr Gly His Gly Thr 50 55 60	12

5				ctg Leu													240
10				ccg Pro												cgc Arg	288
				gcc Ala 100													336
15				ctg Leu													384
. 20				atc Ile													432
				ccg Pro													480
25				gtc Val													528
30	gag Glu	ttc Phe	ttc Phe	gag Glu 180	gcg Ala	cag Gln	tcc Ser	cgg Arg	cgg Arg 185	ctg Leu	ctg Leu	cgc Arg	ggt Gly	ccg Pro 190	gcg Ala	ccc Pro	576
				ctg Leu													624
35				cgc Arg													672
40	gac Asp 225	gac Asp	ctc Leu	gtc Val	cac His	cag Gln 230	cgg Arg	ctg Leu	cgg Arg	gac Asp	ggc Gly 235	gcc Ala	ctg Leu	gac Asp	cgc Arg	gcc Ala 240	720
				gcg Ala													768
45				atg Met 260													816
50				gcc Ala													864
				ctg Leu													912
55				gag Glu													960

5	ggc Gly	gag Glu	ggc Gly	gtg Val	ctc Leu 325	ttc Phe	gcg Ala	acc Thr	tcg Ser	gtc Val 330	atc Ile	aac Asn	cgt Arg	gac Asp	gag Glu 335	tcc Ser	1008
	gtg Val	tac Tyr	gac Asp	gac Asp 340	ccc Pro	gac Asp	gcc Ala	ctc Leu	gac Asp 345	tgg Trp	cac His	cgc Arg	ccg Pro	gcc Ala 350	cgc Arg	cac His	1056
10	cac His	gtg Val	gcc Ala 355	ttc Phe	ggc Gly	ttc Phe	ggc Gly	atc Ile 360	cac His	cag Gln	tgc Cys	ctg Leu	ggc Gly 365	cag Gln	aac Asn	ctg Leu	1104
15	gcc Ala	cgc Arg 370	acc Thr	gag Glu	ctg Leu	gag Glu	atc Ile 375	gcc Ala	ctg Leu	cgc Arg	acc Thr	ctg Leu 380	tgg Trp	gag Glu	cgg Arg	ctċ Leu	1152
20													ccc Pro				1200
20	ggc Gly	gac Asp	acg Thr	atc Ile	cag Gln 405	ggg Gly	atg Met	ctg Leu	gaa Glu	ctc Leu 410	ccc Pro	gtg Val	acc Thr	tgg Trp	taa 415	gaggc	1250
25	tcct	tgcc	atg Met	cac His	atc Ile	gag Glu	atc Ile	gac Asp 420	Ser	gac Asp	gtc Val	tgc Cys	atc Ile 425	Gly	gcg Ala	gj À aaa	1299
30	cag Gln 430	tgt Cys	gcc Ala	ctg Leu	acc Thr	gcc Ala 435	ccc Pro	aac Asn	gtc Val	ttc Phe	acc Thr 440	cag Gln	gac Asp	gac Asp	gac Asp	ggt Gly 445	1347
	ttc Phe	agc Ser	acc Thr	ctg Leu	ctc Leu 450	ccc Pro	ggg Gly	atg Met	gcg Ala	gac Asp 455	ggc Gly	ggc Gly	ggc Gly	gac Asp	ccg Pro 460	ctg Leu	1395
35													atc Ile				1443
40		ccg Pro			tag												1458
	<211 <212)> 24 l> 14 ?> DN 3> St	148 IA	omyc	es p	alli	.dus	IFO	1343	34T							
45)> !> CE !> (1		1230))												
50		.> CE		(1	448)												
55	atg		gac										gcc Ala				48
55	ccc	gcg	tac	ċсс	atg	gcc	cgg	gcc	gcg	ggc	tgc	ccc	ttc	gac	ccg	ccc	96

5	Pro	Ala	Tyr	Pro	Met 20	_	Arg	Ala	Ala	Gly 2		Pro	Phe	Asp	Pro 30	_	
														agg Arg			144
10														gag Glu			192
15														acc Thr			240
														gcc Ala			288
20														atg Met 110			336
25														ggc Gly			384
														ccc Pro			432
30														ctg Leu			480
35														ttc Phe			528
														gac Asp 190			576
40														atg Met			624
45														gtc Val			672
	gtc Val 225	agg Arg	acg Thr	ggg Gly	gag Glu	ctg Leu 230	acc Thr	cgg Arg	cgc Arg	gag Glu	tcg Ser 235	gcc Ala	cgc Arg	atg Met	ggc Gly	gtg Val 240	720
50														atc Ile			768
55														ctg Leu 270		cgt . Arg	816
	gac	acc	gac	gac	ccg	aag	ctg	gtc	gcc	gga	gcg	gcc	gag	gaa	ctg	ctg	864

	Asp	Thr	Asp 275	Asp	Pro	Lys	Leu	Val 280	Ala	Gly	Ala	Ala	Glu 285	Glu	Leu	Leu	
5				acc Thr													912
10				atc Ile													960
				gac Asp													1008
15				gac Asp 340													1056
20				cac His													1104
				tac Tyr													1152
25				gtg Val													1200
30				gaa Glu						tga 410	cgc	ggga	acc q	ggag	gaggo	ca acc	1253
35				gaa Glu													1301
33	gtg Val	atg Met	gcc Ala	gcc Ala 430	ccc Pro	gag Glu	gtc Val	ttc Phe	gac Asp 435	cag Gln	cgc Arg	gag Glu	gag Glu	gac Asp 440	ggc Gly	atc Ile	1349
40				ctg Leu													1397
45	cgc Arg	gag Glu 460	gcc Ala	gtg Val	gcg Ala	atc Ile	tgc Cys 465	ccc Pro	gcc Ala	gcc Ala	gcg Ala	atc Ile 470	cgg Arg	ctg Leu	gtg Val	gag Glu	1445
40	tga																1448
	475																
50	<211 <212)> 24 L> 14 2> DN 3> St	11 IA	omyc	es i	osec	orube	ens I	[FO]	13682	?T						
55		- C		(1197	7)												

5		C)(1411)				٠							
	<400)> 2	42														
10						gca Ala											48
	ccc Pro	tac Tyr	cac His	ccg Pro 20	ccc Pro	gcc Ala	gcc Ala	tac Tyr	gag Glu 25	ccg Pro	ctg Leu	cgc Arg	gcc Ala	gag Glu 30	cgc Arg	ccc Pro	96
15	ctg Leu	acc Thr	cgg Arg 35	atc Ile	acc Thr	ctc Leu	ttc Phe	gac Asp 40	ggc Gly	cgt Arg	gag Glu	gcc Ala	tgg Trp 45	ctg Leu	gtc Val	agc Ser	144
20						cgc Arg											192
						ggc Gly 70											240
25						acg Thr											288
30	cgc Arg	gcc Ala	cag Gln	cgg Arg 100	cgg Arg	atg Met	gtc Val	gtc Val	ggg Gly 105	gac Asp	ttc Phe	acc Thr	ctc Leu	aaa Lys 110	cgg Arg	gcc Ala	336
						cgc Arg											384
35	gcg Ala	atg Met 130	atc Ile	gcc Ala	cag Gln	ggc Gly	ccg Pro 135	ccc Pro	gcc Ala	gac Asp	ctg Leu	gtg Val 140	agc Ser	gcc Ala	ttc Phe	gcg Ala	432
40	ctg Leu 145	ccc Pro	gtg Val	ccc Pro	tcc Ser	atg Met 150	gtg Val	atc Ile	tgc Cys	gcc Ala	ctg Leu 155	ctc Leu	ggc Gly	gtc Val	ccc Pro	tac Tyr 160	480
	gcc Ala	gac Asp	cac His	gac Asp	ttc Phe 165	ttc Phe	gag Glu	gct Ala	cag Gln	tcg Ser 170	cgg Arg	cgc Arg	ctg Leu	ctg Leu	cgc Arg 175	ggc Gly	528
45	ccg Pro	G1y ggg	acc Thr	gcc Ala 180	gac Asp	gtg Val	cag Gln	gac Asp	gcc Ala 185	cgg Arg	agc Ser	agg Arg	ctg Leu	gag Glu 190	gag Glu	tac Tyr	576
50	ttc Phe	ggc Gly	gag Glu 195	ctg Leu	atc Ile	gac Asp	cgc Arg	aag Lys 200	cgc Arg	gag Glu	gac Asp	ccc Pro	ggc Gly 205	acc Thr	ggc Gly	ctc Leu	624
	ctg Leu	gac Asp 210	gac Asp	ctg Leu	gtc Val	caa Gln	cgg Arg 215	cag Gln	ccc Pro	ggc Gly	gac Asp	ggc Gly 220	gga Gly	ccc Pro	gac Asp	cgc Arg	672
55	gag Glu 225	ggc Gly	ctg Leu	atc Ile	gcc Ala	atg Met 230	gcc Ala	ctc Leu	atc Ile	ctg Leu	ctg Leu 235	gtc Val	gcc Ala	ggc Gly	cac His	gag Glu 240	720

5	acg Thr	acc Thr	gcc Ala	aac Asn	atg Met 245	atc Ile	tcc Ser	ctc Leu	ggc Gly	acc Thr 250	ttc Phe	acg Thr	ctc Leu	ctg Leu	cag Gln 255	cac His	768
										gac Asp							816
10										tcc Ser							864
15										gcc Ala							912
										gtc Val							960
20										tgg Trp 330							1008
25	cac His	gtg Val	gcg Ala	ttc Phe 340	ggc Gly	ttc Phe	ggc Gly	atc Ile	cac His 345	cag Gln	tgc Cys	ctc Leu	ggc Gly	caa Gln 350	aac Asn	ctc Leu	1056
30	gca Ala	cgc Arg	gcc Ala 355	gaa Glu	ctg Leu	gag Glu	atc Ile	gcc Ala 360	ctc Leu	ggc Gly	acc Thr	ctc Leu	ttc Phe 365	ggc Gly	cgg Arg	ctg Leu	1104
										gac Asp							1152
35	ggc Gly 385	gac Asp	acg Thr	atc Ile	cag Gln	ggg Gly 390	atg Met	ctg Leu	gaa Glu	ctc Leu	ccc Pro 395	gtg Va l	acc Thr	tgg Trp	taa	gaggc	1202
40	ttgo	gggd		Arç					Lys					Gĺ		g ggc a Gly	1252
	cag Gln	tgc Cys 415	gcc Ala	ctg Leu	acc Thr	gcc Ala	ccg Pro 420	gac Asp	gtg Val	ttc Phe	acc Thr	cag Gln 425	gac Asp	gac Asp	gac Asp	ggc Gl y	1300
45	tac Tyr 430	agc Ser	acc Thr	ctg Leu	ctg Leu	ccc Pro 435	ggc Gly	cgg Arg	gag Glu	gac Asp	ggc Gly 440	ggc Gly	ggc Gly	agc Ser	ccg Pro	ctg Leu 445	1348
50										gtg Val 455							1396
	gag Glu	acc Thr	gtc Val	ggc Gly 465	tga												1411
55	<211)> 24 .> 14 !> DN	66														

	<21	3> S	trep	tomy	ces :	rutge	ersei	nsis	IFO	158	75T						
5		1> C	DS 1)	(124	5)												
10		1> C	DS 1269) (:	1466)											
15	atg		43 gaa Glu														48
			ttc Phe														96
20			gca Ala 35														144
25			gac Asp														192
			ctg Leu														240
30			ccg Pro														288
35	cgc Arg	tcc Ser	ttc Phe	atc Ile 100	acc Thr	atg Met	gac Asp	gac Asp	ccc Pro 105	gag Glu	cac His	gcc Ala	cgg Arg	atc Ile 110	cgc Arg	cgg Arg	336
			acc Thr 115														384
40	gac Asp	atc Ile 130	cag Gln	aag Lys	atc Ile	acc Thr	gac Asp 135	gat Asp	ctg Leu	atc Ile	gac Asp	tcc Ser 140	atg Met	ctg Leu	gcc Ala	G1A G3G	432
45			ccg Pro														`480
			atc Ile														528
50			cgc Arg														576
55	gag Glu	gtg Val	gtc Val 195	ggc Gly	gcc Ala	aac Asn	gag Glu	gcg Ala 200	ctg Leu	acc Thr	gac Asp	tat Tyr	ctg Leu 205	gac Asp	gag Glu	ctg Leu	624
	gtc	agc	gcc	aaa	ctc	gcc	aac	ccc	gcc	gac	gac	atg	ctc	tcc	gag	ctg	672

	Val	Ser 210	Ala	Lys	Leu	Ala	Asn 215	Pro	Ala	Asp	Asp	Met 220	Leu	Ser	Glu	Leu	
5							gga Gly										720
10							atc Ile										768
							gcc Ala										816
15							gac Asp										864
20							acc Thr 295										912
25							atc Ile										960
25							ggc Gly										1008
30							gac Asp										1056
35							cac His										1104
							tac Tyr 375										1152
40							gtc Val										1200
45	ttg Leu	gtc Val	tac Tyr	ggc Gly	gtc Val 405	tat Tyr	gaa Glu	ctg Leu	ccc Pro	gtc Val 410	acc Thr	tgg Trp	acg Thr	tct Ser	tga 415	gcaac	1250
	gga	ggcaa	agg (gagto	cacc		cgt Arg										1301
50							atg Met										1349
55	gag Glu	gag Glu	gac Asp 445	ggc Gly	atc Ile	gtg Val	atc Ile	ctg Leu 450	ctg Leu	gac Asp	gag Glu	cag Gln	ccc Pro 455	gcg Ala	tcc Ser	gaa Glu	1397
	ctc	cac	gcc	gat	gtg	cgt	gag	tcc	gcg	gtg	gtc	tgc	ccg	gcg	gcg	gcg	1445

5	Leu Hi 46	_	Asp	Val	Arg	Glu 465	Ser	Ala	Val	Val	Cys 470	Pro	Ala	Ala	Ala	
Ü	ata cg Ile Ar 475					tga										1466
10	<210> <211> <212> <213>	1411 DNA	tomy	ces :	stef	fisb	urger	nsis	IFO	134	4 6 T					
15	<220> <221> <222>		(119	7)												
	<220> <221> <222>) (1411;)											
	<400> atg to Met Se	g gac														48
25	ccc ta Pro Ty															96
30	ctg ac Leu Th		Ile													144
	ggc ca Gly Hi: 5	s Ala														192
35	gac cge Asp Are 65															240
40	atc cge Ile Are															288
	cga gte Arg Va	l Gln		Arg	Met		Ala	Gly	Asp	Phe	Thr		Lys	Arg		336
45	gcc gga Ala Gl															384
50	gcg ato Ala Med 130	Ile														432
	ctg ccc Leu Pro 145															480
55	gcc gad Ala Ası	cac His	gac Asp	ttc Phe 165	ttc Phe	gag Glu	acc Thr	cag Gln	tca Ser 170	cgg Arg	cgg Arg	ctg Leu	ctg Leu	cgc Arg 175	ggc Gly	528

5		cag Gln															576
		ggc Gly															624
10		gac Asp 210															672
15		ggc Gly															720
		acc Thr															768
20		gaa Glu															816
25	gcg Ala	gtc Val	gag Glu 275	gag Glu	ctg Leu	atg Met	cgc Arg	atg Met 280	ctg Leu	tcc Ser	atc Ile	gcg Ala	gac Asp 285	ggt Gly	ctg Leu	ctc Leu	864
30		ctc Leu 290															912
		gac Asp															960
35		tac Tyr															1008
40		gtc Val															1056
		cgc Arg															1104
45		acc Thr 370															1152
50		gac Asp													taa	gaggc	1202
	ttc	cece	Met 400	His	ato Ile	gac Asp	ato Ile	gad Asp 405	Lys	g gad s Asp	gto Val	tgo L Cys	ato 116 410	G1)	gcg Ala	g ggc Gly	1252
55		tgc Cys 415															1300

```
atc agc gcc ctg ctg ccg gga cag gag gac ggc ggc ggc agc ccg ctg
                                                                               1348
          Ile Ser Ala Leu Leu Pro Gly Gln Glu Asp Gly Gly Ser Pro Leu
                              435
                                                   440
          430
          gtg cgg gag gcg gcc cgt gcc tgc ccg gtg agc gcc atc acc gtg tcg
                                                                                1396
          Val Arg Glu Ala Ala Arg Ala Cys Pro Val Ser Ala Ile Thr Val Ser
                          450
                                              455
10
          gag acg gtg agc tga
                                                                                1411
          Glu Thr Val Ser
                      465
          <210> 245
15
          <211> 65
          <212> PRT
          <213> Streptomyces ornatus IFO 13069t
          <400> 245
          Met Gly Val Arg Val Asp Arg Glu Arg Cys Val Gly Ala Gly Met Cys
20
                                               10
          Ala Leu Thr Ala Pro Asp Val Phe Thr Gln Asp Asp Gly Phe Ser
                                           25
          Glu Met Leu Pro Gly Ser Thr Ala Gly Thr Gly Asp His Pro Arg Val
                  35
                                       40
          Arg Glu Ala Val Arg Ala Cys Pro Val Gly Ala Val Ser Leu Thr Asp
25
                                   55
          Asp
           65
          <210> 246
          <211> 65
30
          <212> PRT
          <213> Streptomyces griseus ATCC 10137
          <400> 246
         Met Gly Val Arg Val Asp Arg Glu Arg Cys Val Gly Ala Gly Met Cys
                                               10
                                                                    15
35
         Ala Leu Thr Ala Pro Asp Val Phe Thr Gln Asp Asp Gly Phe Ser
                      20
                                           25
                                                                30
          Glu Met Leu Pro Gly Ser Thr Ala Gly Thr Gly Asp His Pro Arg Val
                                      40
                                                           45
         Arg Glu Ala Val Arg Ala Cys Pro Val Gly Ala Val Ser Leu Thr Asp
                                    55
40
         Asp
          65
         <210> 247
         <211> 68
          <212> PRT
45
         <213> Streptomyces achromogenes IFO 12735
         <400> 247
         Met His Met Asp Ile Asp Ile Asp Gln Asp Val Cys Ile Gly Ala Gly
                                               10
         Gln Cys Ala Leu Ala Ala Pro Gly Val Phe Thr Gln Asp Asp Asp Gly
50
                      20
                                           25
         Tyr Ser Thr Leu Leu Pro Gly Arg Glu Asn Gly Val Thr Asp Pro Met
                  35
                                       40
         Val Arg Glu Ala Ala Arg Ala Cys Pro Val Ser Ala Ile Thr Val Arg
              50
         Glu Arg Thr Ala
55
          65
```

```
<210> 248
         <211> 51
          <212> PRT
         <213> Streptomyces griseus IFO 13849T
         <400> 248
         Met Cys Ala Leu Thr Ala Pro Glu Val Phe Thr Gln Asp Asp Gly
                                               10
                                                                   15
         Phe Ser Glu Val Arg Pro Gly Gly Thr Ala Ala Thr Ala Gly His Pro
10
                                           25
                      20
                                                               30
         Leu Val Arg Asp Ala Ala Arg Ala Cys Pro Val Gly Ala Val Thr Leu
                  35
                                       40
         Thr Asp Asp
              50
15
         <210> 249
         <211> 76
         <212> PRT
         <213> Streptomyces lanatus IFO 12787T
         <400> 249
20
         Met His Asn Glu Thr His Glu Ser Gly His Ile His Ile Asp Ile Asp
                                               10
                                                                   15
         His Asp Val Cys Val Gly Ala Gly Gln Cys Ala Leu Ala Ala Pro Ser
                      20
                                           25
                                                               30
         Val Phe Thr Gln Asp Asp Asp Gly Phe Ser Thr Leu Leu Pro Gly Arg
                                       40
                                                           45
25
         Glu Asp Gly Gly Gly Asp Pro Met Val Arg Glu Ala Ala Arg Ala Cys
                                  55
             50
                                                       60
         Pro Val Ser Ala Ile Thr Val Ser Glu Gly Gly Ser
          65
                              70
30
         <210> 250
         <211> 66
         <212> PRT
         <213> Streptomyces misawanensis IFO 13855T
         <400> 250
         Met His Ile Glu Ile Asp Ser Asp Val Cys Ile Gly Ala Gly Gln Cys
35
                                               10
         Ala Leu Thr Ala Pro Asn Val Phe Thr Gln Asp Asp Gly Phe Ser
                      20
                                           25
                                                               30
         Thr Leu Leu Pro Gly Met Ala Asp Gly Gly Gly Asp Pro Leu Val Lys
                 35
                                      40
40
         Glu Ala Ala Arg Ala Cys Pro Val His Ala Ile Thr Val Glu Glu Pro
             50
                                  55
         Ser Gly
          65
         <210> 251
45
         <211> 64
         <212> PRT
         <213> Streptomyces pallidus IFO 13434T
         <400> 251
         Met Arg Val Glu Leu Asp Glu Pro Lys Cys Val Ala Ser Gly Gln Cys
50
                                               10
         Val Met Ala Ala Pro Glu Val Phe Asp Gln Arg Glu Glu Asp Gly Ile
                      20
                                           25
         Ala Phe Val Leu Asp Glu Arg Pro Ala Ala Asp Val Leu Ala Glu Val
                  35
                                      40
                                                           45
         Arg Glu Ala Val Ala Ile Cys Pro Ala Ala Ala Ile Arg Leu Val Glu
55
                                  55
```

```
<210> 252
          <211> 66
5
          <212> PRT
          <213> Streptomyces roseorubens IFO 13682T
          <400> 252
          Met Arg Ile Asp Ile Asp Lys Asp Val Cys Ile Gly Ala Gly Gln Cys
                                               10
10
          Ala Leu Thr Ala Pro Asp Val Phe Thr Gln Asp Asp Asp Gly Tyr Ser
                      20
                                           25
                                                                30
          Thr Leu Leu Pro Gly Arg Glu Asp Gly Gly Gly Ser Pro Leu Leu Arg
                   35
                                       40
                                                            45
          Glu Ala Ala Arg Ala Cys Pro Val Ser Ala Ile Thr Val Ser Glu Thr
              50
                                   55
15
          Val Gly
          65
          <210> 253
          <211> 65
          <212> PRT
20
          <213> Streptomyces rutgersensis IFO 15875T
          <400> 253
          Met Arg Val Glu Val Asp Val Pro Lys Cys Val Ala Ser Gly Gln Cys
                            5
                                               10
                                                                    15
          Val Met Ile Ala Pro Asp Val Phe Asp Gln Arg Glu Glu Asp Gly Ile
25
                      20
                                           25
                                                                30
          Val Ile Leu Leu Asp Glu Gln Pro Ala Ser Glu Leu His Ala Asp Val
                  35
                                       40
                                                           45
          Arg Glu Ser Ala Val Val Cys Pro Ala Ala Ala Ile Arg Val Val Glu
                                   55
30
          65
          <210> 254
          <211> 66
          <212> PRT
          <213> Streptomyces steffisburgensis IFO 13446T
35
          <400> 254
         Met His Ile Asp Ile Asp Lys Asp Val Cys Ile Gly Ala Gly Gln Cys
          1
                                               10
          Ala Leu Thr Ala Pro Asp Val Phe Thr Gln Asp Asp Asp Gly Ile Ser
                      20
                                           25
                                                                30
40
         Ala Leu Leu Pro Gly Gln Glu Asp Gly Gly Ser Pro Leu Val Arg
                  35
                                       40
          Glu Ala Ala Arg Ala Cys Pro Val Ser Ala Ile Thr Val Ser Glu Thr
              50
                                   55
          Val Ser
          65
45
          <210> 255
          <211> 198
          <212> DNA
          <213> Streptomyces ornatus IFO 13069t
50
         <220>
          <221> CDS
          <222> (1)..(198)
          <400> 255
          atg ggc gtg cgg gtc gac agg gaa cgg tgc gtg ggg gcc ggc atg tgc
                                                                                 48
55
         Met Gly Val Arg Val Asp Arg Glu Arg Cys Val Gly Ala Gly Met Cys
                            5
```

5	gcg cto	g acc i Thr	gcg Ala 20	ccc Pro	gac Asp	gtg Val	ttc Phe	acg Thr 25	cag Gln	gac Asp	gac Asp	gac Asp	30 GJ A aaa	ttc Phe	agc Ser	9	96
	gag ato	ctt Leu 35	ccc Pro	G1y ggg	agc Ser	acg Thr	gcg Ala 40	GJ À aaa	acg Thr	G] À ddd	gac Asp	cac His 45	cca Pro	cgg Arg	gtg Val	14	44
10	cgg gad Arg Glu 50	ı Ala														19	92
15	gac tga Asp 65	1														19	98
20	<210> 2 <211> 3 <212> 4 <213> 3	198 DNA	tomy	ces (grise	eus <i>l</i>	ATCC	1013	37								
	<220> <221> (<222>		(198))													
25	<400> 2 atg ggd Met Gly 1	gtg															48
30	gcg cto															S	96
35	gag ato Glu Met															14	4 4
	cgg gag Arg Glu 50	Ala														19	92
40	gac tga Asp 65	ì														19	98
45	<210> 2 <211> 2 <212> 5 <213> 5	207 NA	omyo	ces a	achro	omoge	enes	IFO	1273	35							
	<220> <221> 0 <222> 0		(207)											•		·	
50	<400> 2 atg cac Met His	atg														4	48
55	cag tgo Gln Cys	gcg Ala	ctg Leu 20	gcg Ala	gca Ala	ccg Pro	ggc Gly	gtc Val 25	ttc Phe	acc Thr	cag Gln	gac Asp	gac Asp 30	gac Asp	ggc Gly	9	96

5	tac agc ac Tyr Ser Th 3	r Leu I										144
10	gtc cgg ga Val Arg Gl 50											192
	gag cgc ac Glu Arg Th 65		tga									207
15	<210> 258 <211> 156 <212> DNA <213> Stre	ptomyce	es grise	eus I	FO 1	.3849	ЭT					
20	<220> <221> CDS <222> (1).	. (156)										
25	<400> 258 atg tgc gc Met Cys Al	-		-				_	-	_	_	 48
	ttc agc ga Phe Ser Gl											96
30	ctg gta cg Leu Val Ar 3											144
35	acc gac ga Thr Asp As 50	_										156
	<210> 259 <211> 231 <212> DNA <213> Stre	ptomyce	es lanat	tus I	FO 1	12787	7 T					
40	<220> <221> CDS <222> (1).	. (231)										
45	<400> 259 atg cac aa Met His As 1											48
50	cat gac gt His Asp Va											96
	gtg ttc ac Val Phe Th 3	r Gln A										144
55	gag gac gg Glu Asp Gl 50											192

5 .	ccg gtc agc gcc atc acc gtg tcc gaa ggg ggg agt tga Pro Val Ser Ala Ile Thr Val Ser Glu Gly Gly Ser 65 70 75	231
10	<210> 260 <211> 201 <212> DNA <213> Streptomyces misawanensis IFO 13855T	
	<220>	
15	<400> 260 atg cac atc gag atc gac agt gac gtc tgc atc ggc gcg ggg cag tgt Met His Ile Glu Ile Asp Ser Asp Val Cys Ile Gly Ala Gly Gln Cys 1 5 10 15	48
20	gcc ctg acc gcc ccc aac gtc ttc acc cag gac gac gac ggt ttc agc Ala Leu Thr Ala Pro Asn Val Phe Thr Gln Asp Asp Gly Phe Ser 20 25 30	96
25	acc ctg ctc ccc ggg atg gcg gac ggc ggc gac ccg ctg gtc aag Thr Leu Leu Pro Gly Met Ala Asp Gly Gly Gly Asp Pro Leu Val Lys 35 40 45	144
25	gag gcg gcc cgg gcc tgc ccg gtg cac gcc atc acg gtc gag gaa ccg Glu Ala Ala Arg Ala Cys Pro Val His Ala Ile Thr Val Glu Glu Pro 50 55 60	192
30	tcg ggt tag Ser Gly 65	201
35	<210> 261 <211> 195 <212> DNA <213> Streptomyces pallidus IFO 13434T	
	<220> <221> CDS <222> (1)(195)	
40	<400> 261 atg cga gtg gaa ctg gac gag ccg aag tgc gtc gcg tcg ggg cag tgc Met Arg Val Glu Leu Asp Glu Pro Lys Cys Val Ala Ser Gly Gln Cys 1 5 10 15	48
45	gtg atg gcc gcc ccc gag gtc ttc gac cag cgc gag gag gac ggc atc Val Met Ala Ala Pro Glu Val Phe Asp Gln Arg Glu Glu Asp Gly Ile 20 25 30	96
50	gcc ttc gtg ctg gac gag cgg ccg gcg gcg gac gtc ctg gcg gag gtg Ala Phe Val Leu Asp Glu Arg Pro Ala Ala Asp Val Leu Ala Glu Val 35 40 45	144
	cgc gag gcc gtg gcg atc tgc ccc gcc gcc gcg atc cgg ctg gtg gag Arg Glu Ala Val Ala Ile Cys Pro Ala Ala Ala Ile Arg Leu Val Glu 50 55 60	192
55	tga	195
	<210> 262	

5	<211> 201 <212> DNA <213> Streptomyces roseorube	ens IFO 13682T	·	
	<220> <221> CDS <222> (1)(201)		·	
10	<400> 262 atg cgc atc gac atc gac aag Met Arg Ile Asp Ile Asp Lys 1 5			48
15	gcc ctg acc gcc ccg gac gtg Ala Leu Thr Ala Pro Asp Val 20			96
20	acc ctg ctg ccc ggc cgg gag Thr Leu Leu Pro Gly Arg Glu 35			144
	gag gcg gcc cgg gcc tgc ccg Glu Ala Ala Arg Ala Cys Pro 50 55			192
25	gtc ggc tga Val Gly 65	· · .		201
30	<210> 263 <211> 198 <212> DNA <213> Streptomyces rutgerser	nsis IFO 15875T		
	<220> <221> CDS <222> (1)(198)			
35	<221> CDS			48
35 40	<221> CDS <222> (1)(198) <400> 263 atg cgt gtg gaa gtc gat gtt Met Arg Val Glu Val Asp Val	Pro Lys Cys Val 10 ttc gac cag cgg	Ala Ser Gly Gln Cys 15 gag gag gac ggc atc	48 96
	<221> CDS <222> (1)(198) <400> 263 atg cgt gtg gaa gtc gat gtt Met Arg Val Glu Val Asp Val 1 5 gtg atg atc gca ccc gat gtg Val Met Ile Ala Pro Asp Val	Pro Lys Cys Val 10 ttc gac cag cgg Phe Asp Gln Arg 25 ccc gcg tcc gaa	Ala Ser Gly Gln Cys 15 gag gag gac ggc atc Glu Glu Asp Gly Ile 30 ctc cac gcc gat gtg	
40	<pre><221> CDS <222> (1)(198) <400> 263 atg cgt gtg gaa gtc gat gtt Met Arg Val Glu Val Asp Val</pre>	Pro Lys Cys Val 10 ttc gac cag cgg Phe Asp Gln Arg 25 ccc gcg tcc gaa Pro Ala Ser Glu 40 ccg gcg gcg gcg	Ala Ser Gly Gln Cys 15 gag gag gac ggc atc Glu Glu Asp Gly Ile 30 ctc cac gcc gat gtg Leu His Ala Asp Val 45 ata cgg gtg gtc gag	96
40	<pre><221> CDS <222> (1)(198) <400> 263 atg cgt gtg gaa gtc gat gtt Met Arg Val Glu Val Asp Val</pre>	Pro Lys Cys Val 10 ttc gac cag cgg Phe Asp Gln Arg 25 ccc gcg tcc gaa Pro Ala Ser Glu 40 ccg gcg gcg gcg	Ala Ser Gly Gln Cys 15 gag gag gac ggc atc Glu Glu Asp Gly Ile 30 ctc cac gcc gat gtg Leu His Ala Asp Val 45 ata cgg gtg gtc gag Ile Arg Val Val Glu 60	96 144

5	<220> <221> CDS <222> (1)(201)	
-		
	<400> 264	
	atg cac atc gac atc gac aag gac gtc tgc atc ggc gcg ggc cag tgc	48
	Met His Ile Asp Ile Asp Lys Asp Val Cys Ile Gly Ala Gly Gln Cys	
	1 5 10 15	
10		
	gcc ctg acc gcc ccg gac gtg ttc acc cag gac gac gac ggc atc agc	96
	Ala Leu Thr Ala Pro Asp Val Phe Thr Gln Asp Asp Asp Gly Ile Ser	
	20 25 30	
	gcc ctg ctg ccg gga cag gac ggc ggc agc ccg ctg gtg cgg	144
15	Ala Leu Leu Pro Gly Gln Glu Asp Gly Gly Gly Ser Pro Leu Val Arg	
. •	35 40 45	
	gag gcg gcc cgt gcc tgc ccg gtg agc gcc atc acc gtg tcg gag acg	192
	Glu Ala Ala Arg Ala Cys Pro Val Ser Ala Ile Thr Val Ser Glu Thr	
	50 55 60	
20	33 00	
20	gtg agc tga	201
	Val Ser	201
	65	
	03	
	<210> 265	
25	<211> 27	
25		
	<212> DNA	
	<213> Artificial Sequence	
	4220	
	<220>	
20	<223> Designed oligonucleotide primer for PCR	
30		
	<400> 265	
	ctcgaagaac tcgtggtcgg cgtacgg	27
	<210> 266	
35	<211> 27	
30	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Designed oligonucleotide primer for PCR	
40		
	<400> 266	
	cacaccgagg agcgcgcaga tcaccat	27
	<210> 267	
	<211> 29	
45	<212> DNA	
45	<213> Artificial Sequence	
	<220>	
	<223> Designed oligonucleotide primer for PCR	
50	<400> 267	
30	cgtgttcttc tcgacctcgc tcatcaacc	29
		-
	<210> 268	
	<211> 27	
	<212> DNA	
55	<213> Artificial Sequence	
JJ	•••	
	<220>	

	<223> Designed oligonucleotide primer for PCR	
5	<400> 268 ctacgagaat ccggagacgc tcgactg	27
	<210> 269	
	<211> 29	
10	<212> DNA <213> Artificial Seguence	
	<213> Artificial Sequence	
	<220>	
	<223> Designed oligonucleotide primer for PCR	
	<400> 269	
15	ccaagctttc agtcgtcggt cagggacac	29
	<210> 270	
	<211> 27	
	<212> DNA <213> Artificial Sequence	
20	V2137 Attiticial Sequence	
	<220>	
	<223> Designed oligonucleotide primer for PCR	
	<400> 270	
25	agcagtccgt ccaccgtctc ctggatg	27
	<210> 271	
	<211> 30	
	<212> DNA <213> Artificial Sequence	
30	•	
30	<pre><220> <223> Designed oligonucleotide primer for PCR</pre>	
	<400> 271 ctatccgctt cacggagaag ctcgggatga	20
	cratecyctt caeggagaag cregggarga	30
35	<210> 272	
	<211> 27 <212> DNA	
	<213> Artificial Sequence	
	<220>	
40	<pre><223> Designed oligonucleotide primer for PCR</pre>	
	<400> 272	
	ggcgtgttct tctcgacctc gctcatc	27
45	<210> 273 <211> 27	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
50	<223> Designed oligonucleotide primer for PCR	
-	<400> 273	
	caccgaggtc tacgagaatc cggagac	27
	<210> 274	
	<211> 27	
55	<212> DNA	
	<213> Artificial Semence	

5	<220> <223> Designed oligonucleotide primer for PCR	
3	<400> 274	
	gccatatgac ggaatccacg acggaac	27
	<210> 275	
10	<211> 29 <212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Designed oligonucleotide primer for PCR	
15	<400> 275	
	ccaagettte agtegteggt cagggacae	29
	<210> 276	
	<211> 23	
20	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Designed oligonucleotide primer for DNA sequencing	
25	<400> 276	
	gagcttctcc gtgaagcgga tag	23
	<210> 277	
	<211> 30	
30	<212> DNA	
50	<213> Artificial Sequence	
	<220>	
	<223> Designed oligonucleotide primer for DNA sequencing	
	<400> 277	
35	caaagctttc accaggccac gggcaggtgc	30
	<210> 278	
	<211> 27	
	<212> DNA	
40	<213> Artificial Sequence	
	<220>	
	<223> Designed oligonucleotide primer for PCR	
	<400> 278	
45	ccagggagat catgttggcg gtcgtct	27
45	<210> 279	
	<211> 27	
	<212> DNA	
	<213> Artificial Sequence	
50	<220>	
	<223> Designed oligonucleotide primer for PCR	
	<400> 279	
	cttggcgtcg atcaggtcgc cgaggaa	27
55		
	<210> 280 <211> 27	

-	<212> DNA <213> Artificial Sequence	
5	<220> <223> Designed oligonucleotide primer for PCR	
10	<400> 280 accgccgaag ctttcaggcg gtgcgct	27
	<210> 281 <211> 27 <212> DNA <213> Artificial Sequence	
15	<220> <223> Designed oligonucleotide primer for DNA sequencing	
	<400> 281 ggacgaactg ctggacgcga tgatcga	27
20	<210> 282 <211> 28 <212> DNA <213> Artificial Sequence	
25	<220> <223> Designed oligonucleotide primer for PCR	
	<400> 282 agcagccggt ccaccgtctc ctggatac	28
30	<210> 283 <211> 28 <212> DNA <213> Artificial Sequence	
35	<220> <223> Designed oligonucleotide primer for PCR	
	<400> 283 cgtttcacgg agaagctcgg gatgagca	28
40	<210> 284 <211> 27 <212> DNA <213> Artificial Sequence	
	<220> <223> Designed oligonucleotide primer for PCR	
45	<400> 284 gatcgaggac atcgaggtgg acgggac	27
	<210> 285 <211> 28 <212> DNA	
50	<213> Artificial Sequence	
	<220> <223> Designed oligonucleotide primer for PCR	
55	<400> 285 tottottoto cacctogoto gtoaacog	28

	<210> 286	
	<211> 28	
	<212> DNA	
5	<213> Artificial Sequence	
	-	
	<220>	
	<223> Designed oligonucleotide primer for PCR	
	<400> 286	
10	atcatatgac ggaatccacg acggaacc	28
	accatacyae ggaaccaacy acggaacc	20
	<210> 287	
	<211> 29	
	<212> DNA	
15	<213> Artificial Sequence	
	1000	
	<220>	
	<223> Designed oligonucleotide primer for PCR	
	<400> 287	
20	cgaagctttc agtcgtcggt cagggtcac	29
	<210> 288	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
25	•	
	<220>	
	<223> Designed oligonucleotide primer for DNA sequencing	
	<400> 288	
	gtatccagga gacggtggac	20
30	3 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	
	<210> 289	
	<211> 27	
	<212> DNA	
	<213> Artificial Sequence	
	bodones	
35	<220>	
	<223> Designed oligonucleotide primer for PCR	
	belghed originated primer for tex	
	<400> 289	
	gcggagagtg aagctgggga ccatcat	. 27
	goggagageg aageegggga ceateat	21
40	<210> 290	
, •	<211> 27	
	<211> 27 <212> DNA	
	<213> Artificial Sequence	
	<220>	
45		
	<223> Designed oligonucleotide primer for PCR	
	4400 200	
	<400> 290	
	cgaggagctc atgcggatgc tgtcgat	27
	1010, 001	
50	<210> 291	
	<211> 27	
	<212> DNA	
	<213> Artificial Sequence	
•		
	<220>	
55	<223> Designed oligonucleotide primer for PCR	
	<400> 291	

	cgtggtcttc tcgacctcgg tcatcaa	27
5	<210> 292	
	<211> 30	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
10	<223> Designed oligonucleotide primer for PCR	
	<400> 292	
	cgaggtccat atgacggaca tgaccgatat	30
15	<210> 293	
	<211> 30 <212> DNA	
	<213> Artificial Sequence	
	<220>	
20	<223> Designed oligonucleotide primer for PCR	
	<400> 293	
	gatgccaage tttcaactee eeeettegga	30
	<210> 294	
	<211> 28	
25	<212> DNA	
•	<213> Artificial Sequence	
	<220>	
	<223> Designed oligonucleotide primer for PCR	
30	<400> 294	
	cgagcagatc gtcgacgatc cgctggat	28
		20
	<210> 295 <211> 27	
	<211> 27 <212> DNA	
35	<213> Artificial Sequence	
	.000	
	<pre><220> <223> Designed oligonucleotide primer for PCR</pre>	
	12237 Besigned Offgondereotide Primer for FCK	
40	<400> 295	
	ttgagggtga agtccgggat cagcatc	27
	<210> 296	
	<211> 27	
	<212> DNA	
45	<213> Artificial Sequence	
	<220>	
	<223> Designed oligonucleotide primer for PCR	
	<400> 296	
50	gaggaactga tgcggatgct gtccatc	27
50		
	<210> 297 <211> 27	
	<212> DNA	
	<213> Artificial Sequence	
55	<2205	
	<pre><220> <223> Designed oligopucleotide primer for BCB</pre>	

	<400> 297 catcaaccgt gacgagtccg tgtacga	27
5		-
	<210> 298	
	<211> 27	
	<212> DNA	
	<213> Artificial Sequence	
10	<220>	
	<pre><223> Designed oligonucleotide primer for PCR</pre>	
	<400> 298	
	ctcatatgaa agaactgacg gacctga	27
15	<210> 299	
	<211> 29	
	<212> DNA	
	<213> Artificial Sequence	
20	<220>	
	<223> Designed oligonucleotide primer for PCR	
	<400> 299	
	gcaagettet aaceegaegg tteetegae	29
25	<210> 300	
	<211> 22	
	<212> DNA <213> Artificial Sequence	
	(213) Altilicial Sequence	
	<220>	
30	<223> Designed oligonucleotide primer for DNA sequencing	
	4400- 200	
	<pre><400> 300 gatgetgate ceggaettea ce</pre>	٠
	gatgetgate eeggaettea ee	22
	<210> 301	
35	<211> 27	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Designed oligonucleotide primer for PCR	
40		
	<400> 301	
	cttctcgccc atcagctcgt cgaggta	27
	<210> 302	
	<211> 27	
45	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<pre><223> Designed oligonucleotide primer for PCR</pre>	
50	<400> 302	
	gaggatccgg ctgttctcct ggaagaa	27
	<210> 303	
	<211> 27	
	<212> DNA	
55	<213> Artificial Sequence	

5	<220> <223> Designed oligonucleotide primer for PCR	
v	<400> 303 catgaggatg aagctggcgt tgttctc	27
	<210> 304	
	<211> 27	
10	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Designed oligonucleotide primer for PCR	
15	<400> 304 gacatcgaga tcggcggaca ggtcatc	27
		2,
	<210> 305 <211> 27	
	<212> DNA	
20	<213> Artificial Sequence	
	<220>	
	<223> Designed oligonucleotide primer for PCR	
25	<400> 305	
	atgatcatgc ccaacgacct cgccaac	27
	<210> 306	
	<211> 33	
	<212> DNA <213> Artificial Sequence	
30	versy Attitional Sequence	
	<220>	
	<223> Designed oligonucleotide primer for PCR	
	<400> 306	
35	cgaccgagga gacatatggc cgacaccctc gcc	33
	<210> 307	
	<211> 33	
	<212> DNA	
	<213> Artificial Sequence	
40	<220>	
	<223> Designed oligonucleotide primer for PCR	
	<400> 307	
	aaatcgaagc tttcactcca ccagccggat cgc	33
45	<210> 308	
	<211> 30	
	<212> DNA	
	<213> Artificial Sequence	
50	<220>	
	<223> Designed oligonucleotide primer for DNA sequencing	
	<400> 308	
	ggagtgccgt acgaggacca cgacttcttc	30
55	<210> 309	
-	<211> 27 <212> DNA	
	NATAL DIVA	

	<213> Artificial Sequence	
5	<220> <223> Designed oligonucleotide primer for PCR	
	<400> 309 agcctcgaag aagtcgtggt cggcgta	27
10	<210> 310 <211> 27 <212> DNA <213> Artificial Sequence	
15	<220> <223> Designed oligonucleotide primer for PCR	
	<400> 310 gagtcgttcg tcgacgatcc gctggat	27
20	<210> 311 <211> 27 <212> DNA <213> Artificial Sequence	
25	<220> <223> Designed oligonucleotide primer for PCR	
20	<400> 311 ccaacatgat ctccctcggc accttca	27
30	<210> 312 <211> 27 <212> DNA <213> Artificial Sequence	
	<220> <223> Designed oligonucleotide primer for PCR	
35	<400> 312 ggtcatcaac cgcgacgaga cggtctt	27
40	<210> 313 <211> 33 <212> DNA <213> Artificial Sequence	
	<220> <223> Designed oligonucleotide primer for PCR	
45	<400> 313 gtctgcgagg tccatatgac ggacacgacc gca	33
50	<210> 314 <211> 30 <212> DNA <213> Artificial Sequence	
	<220> <223> Designed oligonucleotide primer for PCR	
55	<400> 314 tgacaagett teageegaeg gteteegaga	30
	<210> 315	

	<211> 27	
	<212> DNA	
5	<213> Artificial Sequence	
	1213 Metitoria polonico	
	<220>	
	<223> Designed oligonucleotide primer for DNA sequencing	
	<400> 315	
10	cgtcgacgaa cgactcgacg cgatgat	27
	ogcoganges ogenerated ogenerate	
	210 216	
	<210> 316	
	<211> 27	
	<212> DNA	
	<213> Artificial Sequence	
15		
	<220>	
	<223> Designed oligonucleotide primer for PCR	
	<400> 316	
	cgtggagtta cggttgatca ggagcga	27
20		
	2210 217	
	<210> 317	
	<211> 27	
	<212> DNA	
	<213> Artificial Sequence	
	•	
25	<220>	
	-	
	<223> Designed oligonucleotide primer for PCR	
	<400> 317	
	cagategteg gtgatettet ggatgte	27
30	<210> 318	
	<211> 27	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
35	<pre><223> Designed oligonucleotide primer for PCR</pre>	
	The second of the second secon	
	<400> 318	
	gaactgctgc gctatctgac catcgtg	27
	<210> 319	
40	<211> 28	
	<212> DNA	
	<213> Artificial Sequence	
•		
	<220>	
45	<223> Designed oligonucleotide primer for PCR	
45		
	<400> 319	
		28
		_0
	<210 > 220	
	<210> 320	
50	<211> 30	
30	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Designed oligonucleotide primer for PCR	
55	100	
	<400> 320	
	ccgaggagac atatgaccga aacgctggca	30
		-

	<210> 321	
	<211> 30	
5	<212> DNA	
	<213> Artificial Sequence	
	VEIDS ALCITICIAL DOGACING	
	4000	
	<220>	
	<223> Designed oligonucleotide primer for PCR	
40		
10	<400> 321	
	ccaccacaag cttcttcaat tctcgaccac	30
	constraint corrections	50
	<210> 322	
	<211> 27	
15	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Designed oligonucleotide primer for DNA sequencing	
	and accommendation for the confidence and	
	<400> 322	•
20		2.7
	atggtgatct gccggctgct cggagtg	27
	<210> 323	
	<211> 27	
	<212> DNA	
25	<213> Artificial Sequence	
	• • • • • • • • • • • • • • • • • • • •	
	<220>	
	<223> Designed oligonucleotide primer for PCR	
	1225 Designed Silyondelescide primer for ren	
	<4005 222	
	<400> 323	
30	ggtctcgaag aagtcgtggt cggcgta	27
	<210> 324	
	<211> 27	
	<212> DNA	
	<213> Artificial Sequence	
35	• • • • • • • • • • • • • • • • • • • •	
	<220>	
	<223> Designed oligonucleotide primer for PCR	
	12237 besigned diligonacieotide primer for FCK	
	7400- 204	
	<400> 324	
	tttgagggtg aagteeeegg eeaceat	27
40		
	<210> 325	
	<211> 27	
	<212> DNA	
	<213> Artificial Sequence	
45	<220>	
	<223> Designed oligonucleotide primer for PCR	
	4400- 205	
	<400> 325	•
	cgtcatcaac cgcgacgaga cggtcta	27
50		
50	<210> 326	
	<211> 27	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
55	<223> Designed oligopuslectide primer for BCB	

	<400> 326	
	gaggtecata tgteggaeae gaeegea	27
5	2 33 2 2 2	
	<210> 327	
	<211> 26	
	<212> DNA	
	<213> Artificial Sequence	
10	<220>	
	<223> Designed oligonucleotide primer for PCR	
	12237 Designed Origonacteotiae primer for for	
	<400> 327	
	tacaagettt cageteaceg teteeg	26
15	•	
15	<210> 328	•
	<211> 27	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
20		
	<223> Designed oligonucleotide primer for PCR	
	<400> 328 _.	
	atgacccagt ccgccgacgc cgtaccc	27
	<210> 329	
25	<211> 27	
	<212> DNA	
	<213> Artificial Sequence	
	1000	
	<220>	
30	<223> Designed oligonucleotide primer for PCR	
30		
	<400> 329	
	tcaccaggtg acggggagtt cgtagac	27
	<210> 330	•
	<211> 27	
35	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Designed oligonucleotide primer for PCR	
40	<400> 330	
	atgacggaac tgacggacat caccggc	27
		2.
	<210> 331	
	<211> 27	
45	<212> DNA	
70	<213> Artificial Sequence	
	<220>	
	<223> Designed oligonucleotide primer for PCR	
	<400> 331	
50		0.7
	ttaccaggtc acggggagtt ccagcat	27
	c210x 222	
	<210> 332	
	<211> 27	
	<212> DNA	
55	<213> Artificial Sequence	
55	-	
	<220>	

	<223> Designed oligonucleotide primer for PCR	
5	<400> 332 atgacggaat ccacgacaga tccgacg	27
	<210> 333	
	<211> 26	
	<212> DNA <213> Artificial Sequence	
10		
	<220> <223> Designed oligonucleotide primer for PCR	
	<400> 333	
15	tcaccaggcc acgggcagtt cgagca	26
75	<210	
	<210> 334 <211> 27	
	<212> DNA	
	<213> Artificial Sequence	
20	<220>	
	<pre><220> <223> Designed oligonucleotide primer for PCR</pre>	
	Total Property of the Control of the	
	<400> 334	
	atgacggaca tgacggaaac ccccacc	27
25	<210> 335	
	<211> 27	
	<212> DNA	
	<213> Artificial Sequence	
30	<220>	
30	<223> Designed oligonucleotide primer for PCR	
	4400- 225	
	<400> 335 atgacggaat ccacgacgga accggcc	27
	acyacygane ocacyga accygac	_ ,
35	<210> 336	
	<211> 27 <212> DNA	
	<213> Artificial Sequence	
	<220>	
40	<223> Designed oligonucleotide primer for PCR	
	<400> 336	
	tcaccaggcc acgggcaggt gcagaag	27
	<210× 227	
45	<210> 337 <211> 27	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<pre><223> Designed oligonucleotide primer for PCR</pre>	
50		
	<400> 337	
	atgacggaca tgacggaaac ccccacc	27
	<210> 338	
	<211> 27	
55	<212> DNA	
	<213> Artificial Sequence	

	<220>	
5	<223> Designed oligonucleotide primer for PCR	
_	and postaged or governor or and an area of the second or area of the second or an area of the second or area.	
	<400> 338	
	atgaaagaac tgacggacct gacggaa	27
	argaadgaac tgacggacc gacggaa	21
	<210> 339	
10	<211> 27	
. •	<212> DNA	
	\cdot	
	<213> Artificial Sequence	
	<220>	
15	<223> Designed oligonucleotide primer for PCR	
	4405, 220	
	<400> 339	
	atgtcggaca cgaccgaccc cgtggcc	27
	23105 240	
	<210> 340 <211> 27	
20	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	•	
	<223> Designed oligonucleotide primer for PCR	
25	<400> 340	
		~ =
	atggccgaca ccctcgccgg cgccacg	27
	<210> 341	
	<211> 27	
	<212> DNA	
30	<213> Artificial Sequence	
	vers Artificial Sequence	
	<220>	
	<pre><223> Designed oligonucleotide primer for PCR</pre>	
	besigned originational primer for rec	
	<400> 341	
35	tcaccacgtg acgggcagtt cgtagac	27
		2,
	<210> 342	
	<211> 27	
	<212> DNA	
	<213> Artificial Sequence	
40	•	
	<220>	
	<223> Designed oligonucleotide primer for PCR	
	<400> 342	
	atgaccgaaa cgctggcaga gaccacg	27
45		
	<210> 343	
	<211> 27	
	<212> DNA	
	<213> Artificial Sequence	
50		
50	<220>	
	<223> Designed oligonucleotide primer for PCR	
	<400> 343	
	tcaagacgtc caggtgacgg gcagttc	27
55	<210> 344	
	<211> 70	

	<212> DNA <213> Artificial Sequence	
5	<220> <223> Designed oligonucleotide primer for PCR	
	<400> 344 catatgacag atactactgc acctgttgca tttcctcaga gtaggacctg tccatatcat ccacctgctg	60 70
10	<210> 345 <211> 70 <212> DNA <213> Artificial Sequence	
15	<220> <223> Designed oligonucleotide primer for PCR	
20	<400> 345 tocatatcat ccacctgctg catacgaacc acttcgtgct gaacgtcctc tgactaggat tactctcttt	60 70
	<210> 346 <211> 70 <212> DNA <213> Artificial Sequence	
25	<220> <223> Designed oligonucleotide primer for PCR	
30	<400> 346 tgactaggat tactctcttt gatggacgtg aagcatggtt ggttagtggt catgccaccg cacgtgctct	60 70
	<210> 347 <211> 70 <212> DNA <213> Artificial Sequence	
35	<220> <223> Designed oligonucleotide primer for PCR	
40	<400> 347 aggaggatgg tegttgggga etteaetete aaaegggeag etgeattgag geecegeatt cagaggattg	60 70
	<210> 348 <211> 70 <212> DNA <213> Artificial Sequence	
45	<220> <223> Designed oligonucleotide primer for PCR	
50	<400> 348 gccccgcatt cagaggattg ttgatgaacg actcgatgcg atgattgctc aaggaccacc tgcagatttg	60 70
	<210> 349 <211> 70 <212> DNA <213> Artificial Sequence	
55	<220>	

	<223> Designed oligonucleotide primer for PCR	
5	<400> 349 aaggaccacc tgcagatttg gtgagcgcat ttgcattgcc agtgccttca atggtgatat gcgctttgct	60 70
	<210> 350	
	<211> 70	
10	<212> DNA	
	<213> Artificial Sequence	
	<220> <223> Designed oligonucleotide primer for PCR	
15	<400> 350	
	aagagagaag atcctggtac tggattactt gatgaccttg ttcaacggca gccaggagat ggtggacccg	60 70
	<210> 351	
	<211> 70	
20	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Designed oligonucleotide primer for PCR	
25	<400> 351	
	gecaggagat ggtggacccg atagagaagg actgatagcc atggccctca teetgettgt agcaggecat	60 70
	<210> 352	
30	<211> 70 <212> DNA	
30	<212> DNA <213> Artificial Sequence	
	<220>	
	<223> Designed oligonucleotide primer for PCR	
35	<400> 352	
	tootgottgt agcaggocat gagacgacog coaacatgat atcactaggo acotttacac tottgoaaca	60 70
	<210> 353	
	<211> 70	
40	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Designed oligonucleotide primer for PCR	
45	<400> 353	
	acaacaatcc gagctggaga aggcgtagtg ttcgcgacat cggtcatcaa tagagatgag acagtctttg	60 70
	<210> 354	
	<211> 70	
50	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Designed oligonucleotide primer for PCR	
55	<400> 354	
	tagagatgag acagtetttg etgageegga caetetegae tggtetagae cageeagaea	60

	tcacgtagcg	70
5	<210> 355 <211> 70 <212> DNA	
	<213> Artificial Sequence	
	<220> <223> Designed oligonucleotide primer for PCR	
10	<400> 355	
	cagccagaca tcacgtagcg ttcggctttg ggattcacca gtgcttaggt caaaacttag caagagccga	60 70
15	<210> 356 <211> 56	
	<212> DNA <213> Artificial Sequence	
20	<220> <223> Designed oligonucleotide primer for PCR	
	<pre><400> 356 aagcttttac caggtcacgg ggagttccaa catcccttgg atcgtgtcgc ctggct</pre>	56
	<210> 357	
25	<211> 70	
25	<212> DNA	
	<213> Artificial Sequence	
	<220>	
30	<223> Designed oligonucleotide primer for PCR	
	<400> 357	
	ttggatcgtg tcgcctggct tgaagggaat ctcatctgga ggagcggcca atctaagtgt gggcaaccta	60 70
	<210> 358	
35	<211> 70	
	<212> DNA	
	<213> Artificial Sequence	
	<220> <223> Designed oligonucleotide primer for PCR	
40	The second of the second secon	
	<400> 358	
	atctaagtgt gggcaaccta ccgaagaggg tgcctaaggc gatctcaagt tcggctcttg ctaagttttg	60 70
	<210> 359	
45	<211> 70	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
50	<223> Designed oligonucleotide primer for PCR	
	<400> 359	
		60
	ccatctgcaa	70
	<210> 360	
55	<211> 70	
	<212> DNA	

	<213> Artificial Sequence	
5	<220>	
·	<223> Designed oligonucleotide primer for PCR	
	<400> 360	
	gegeaacaga ceatetgeaa tggacageaa ceteataagt teeteaactg eggeeggeat gaceteggag	60 70
10	<210> 361	
	<211> 70	
	<212> DNA	
	<213> Artificial Sequence	
15	<220> <223> Designed oligonucleotide primer for PCR	
	<400> 361	
•	cggccggcat gacctcggag tcagctcgaa gttcagctag cctctcaggg tgttgcaaga	60
20	gtgtaaaggt	70
20	<210> 362	
	<211> 70	
	<212> DNA	
	<213> Artificial Sequence	
25	<220>	
	<223> Designed oligonucleotide primer for PCR	
	<400> 362	
	gtaccaggat cttctctctt gcggtcaata agctcaccga agtactcctc aagcctgctc	60
30	ctagcatcct	70
30	<210> 363	
	<211> 70	
	<212> DNA	
	<213> Artificial Sequence	
35	<220>	
	<223> Designed oligonucleotide primer for PCR	
	<400> 363	
	aagcctgctc ctagcatcct gcacatcagc agtccctggt cctctcagaa gtctccttga	60
40	ttgagcttca	70
40	<210> 364	
	<211> 70	
	<212> DNA	
	<213> Artificial Sequence	
45	<220>	
	<223> Designed oligonucleotide primer for PCR	
	<400> 364	
	gtctccttga ttgagcttca aagaagtcat ggtcagcata gggaacacct agcaaagcgc	60
50	atatcaccat	70
	<210> 365	
	<211> 70	
	<212> DNA	
	<213> Artificial Sequence	
55	<220>	
	<223> Designed oligonucleotide primer for PCR	

5	<400> 365 tccccaacga ccatcctcct ttgggcacgg tgctcaggat cgtccacacc gagaagagct gtacgtctat	60 70
10	<210> 366 <211> 70 <212> DNA <213> Artificial Sequence	
	<220> <223> Designed oligonucleotide primer for PCR	
15	3-3-3-3-3-3-1	60 70
20	<210> 367 <211> 70 <212> DNA <213> Artificial Sequence	
	<220> <223> Designed oligonucleotide primer for PCR	
25		60 70
30	<210> 368 <211> 1197 <212> DNA <213> Artificial Sequence	
	<220> <221> CDS <222> (1)(1197) <223> Designed polynucleotide encoding amino acid sequence of SEQ ID N	o.222
35	<pre><400> 368 atg aca gat act act gca cct gtt gca ttt cct cag agt agg acc tgt Met Thr Asp Thr Thr Ala Pro Val Ala Phe Pro Gln Ser Arg Thr Cys 1 5 10 15</pre>	48
40	cca tat cat cca cct gct gca tac gaa cca ctt cgt gct gaa cgt cct Pro Tyr His Pro Pro Ala Ala Tyr Glu Pro Leu Arg Ala Glu Arg Pro 20 25 30	96
45	ctg act agg att act ctc ttt gat gga cgt gaa gca tgg ttg gtt agt 1 Leu Thr Arg Ile Thr Leu Phe Asp Gly Arg Glu Ala Trp Leu Val Ser 35 40 45	44
	ggt cat gcc acc gca cgt gct ctt cta gca gat cca aga ttg tct tct 1 Gly His Ala Thr Ala Arg Ala Leu Leu Ala Asp Pro Arg Leu Ser Ser 50 55 60	92
50	gat cgc gac aga cct gga ttc cca acc cct act gcg aga ttt gct ggg Asp Arg Asp Arg Pro Gly Phe Pro Thr Pro Thr Ala Arg Phe Ala Gly 65 70 75 80	40
55	ata cgc aat aga cgt aca gct ctt ctc ggt gtg gac gat cct gag cac Ile Arg Asn Arg Arg Thr Ala Leu Leu Gly Val Asp Asp Pro Glu His 85 90 95	88

5	cgt Arg	gcc Ala	caa Gln	agg Arg 100	agg Arg	atg Met	gtc Val	gtt Val	ggg Gly 105	gac Asp	ttc Phe	act Thr	ctc Leu	aaa Lys 110	cgg Arg	gca Ala	336
				agg Arg													384
10				gct Ala													432
15				cct Pro													480
	gct Ala	gac Asp	cat His	gac Asp	ttc Phe 165	ttt Phe	gaa Glu	gct Ala	caa Gln	tca Ser 170	agg Arg	aga Arg	ctt Leu	ctg Leu	aga Arg 175	gga Gly	528
20				gct Ala 180													576
25				ctt Leu													624
				ctt Leu													672
30				ata Ile													720
35	acg Thr	acc Thr	gcc Ala	aac Asn	atg Met 245	ata Ile	tca Ser	cta Leu	ggc Gly	acc Thr 250	ttt Phe	aca Thr	ctc Leu	ttg Leu	caa Gln 255	cac His	768
				cta Leu 260													816
40				gaa Glu													864
45	cgc Arg	att Ile 290	gct Ala	gtt Val	gag Glu	gat Asp	gtt Val 295	gaa Glu	gtg Val	gcc Ala	Gly Ggg	aca Thr 300	aca Thr	atc Ile	cga Arg	gct Ala	912
				gta Val													960
50	gtc Val	ttt Phe	gct Ala	gag Glu	ccg Pro 325	gac Asp	act Thr	ctc Leu	gac Asp	tgg Trp 330	tct Ser	aga Arg	cca Pro	gcc Ala	aga Arg 335	cat His	1008
55				ttc Phe 340													1056

5	gca aga gcc gaa ctt gag atc gcc tta ggc acc ctc ttc ggt agg ttg Ala Arg Ala Glu Leu Glu Ile Ala Leu Gly Thr Leu Phe Gly Arg Leu 355 360 365	1104						
	ccc aca ctt aga ttg gcc gct cct cca gat gag att ccc ttc aag cca Pro Thr Leu Arg Leu Ala Ala Pro Pro Asp Glu Ile Pro Phe Lys Pro 370 375 380	1152						
10	ggc gac acg atc caa ggg atg ttg gaa ctc ccc gtg acc tgg taa Gly Asp Thr Ile Gln Gly Met Leu Glu Leu Pro Val Thr Trp Stop 385 390 395	1197						
15	<210> 369 <211> 70 <212> DNA <213> Artificial Sequence							
	<220> <223> Designed oligonucleotide primer for PCR							
20	<400> 369 catatgtctg atactacage acctgttgct tttccacaat ctcgtacctg cccctatcat cctcctgctg	60 70						
25	<210> 370 <211> 70 <212> DNA <213> Artificial Sequence							
	<220> <223> Designed oligonucleotide primer for PCR							
30	<400> 370 cccctatcat cctcctgctg cctatgaacc gttacgtgct gagagaccct tgactagaat cacactcttt	60 70						
35	<210> 371 <211> 70 <212> DNA <213> Artificial Sequence							
	<220> <223> Designed oligonucleotide primer for PCR							
40	<400> 371 tgactagaat cacactcttt gatggtagag aagcctggtt ggtcagtgga catgccacag ctagggcatt	60 70						
45	<210> 372 <211> 70 <212> DNA <213> Artificial Sequence							
	<220> <223> Designed oligonucleotide primer for PCR							
50	<400> 372 cgtaggatgg ttgcagggga ctttacactc aaaagagctg caggattgag gccacgcatt caacggattg	60 70						
55	<210> 373 <211> 70 <212> DNA <213> Artificial Sequence							

5	<220> <223> Designed oligonucleotide primer for PCR	
	<400> 373 gccacgcatt caacggattg tggacaggcg actcgatgcg atgatagctc agggtccacc tgcagacctt	60 70
10	<210> 374 <211> 70 <212> DNA <213> Artificial Sequence	
15	<220> <223> Designed oligonucleotide primer for PCR	
	<400> 374 agggtccacc tgcagacctt gtgagcagct tcgcgttacc agttccgtcc atggtgatct gtgccttgct	60 70
20	<210> 375 <211> 70 <212> DNA <213> Artificial Sequence	
25	<220> <223> Designed oligonucleotide primer for PCR	
	<400> 375 aaacggaagg aaccaggagc tggactgctt gatgacttgg ttcaacgaca gcttagagat ggagcattag	60 70
30	<210> 376 <211> 70 <212> DNA <213> Artificial Sequence	
35	<220> <223> Designed oligonucleotide primer for PCR	
	<400> 376 gcttagagat ggagcattag acagggaagg totgattgcc ottgcactca tottgcttgt tgctggtcac	60 70
40	<210> 377 <211> 70 <212> DNA <213> Artificial Sequence	
45	<220> <223> Designed oligonucleotide primer for PCR	
	<400> 377 tettgettgt tgetggteae gagaegaeag ceaacatgat etetettgge acetteaeee tattgeaaca	60 70
50	<210> 378 <211> 70 <212> DNA <213> Artificial Sequence	
55	<220> <223> Designed oligonucleotide primer for PCR	

	<400> 378	
	accacaattc gcaaggggga tggagtggtg tttctgacta gtgtcatcaa ccgcgatgag	60
	acagtctacc	70
5		
	<210> 379	
	<211> 70	
	<212> DNA	
	<213> Artificial Sequence	
	·	
10	<220>	
	<223> Designed oligonuclectide primer for PCR	
	<400> 379	
	ccgcgatgag acagtetacc ctgaaccaga caccetegat tggcaccgtt ctgctagaca	60
	tcacqtaqcq	70
15	,	
	<210> 380	
	<211> 70	
	<212> DNA	
	<213> Artificial Sequence	
	V2137 Attitional Dequence	
20	<220>	
	<pre><223> Designed oligonucleotide primer for PCR</pre>	
	2237 Designed Oligonacieotide primer for for	
	<400> 380	
	ctgctagaca tcacgtagcg ttcggcttcg gcattcacca gtgcctcggc cagaatcttg	60
		70
25	cacgcgctga	70
	<210> 381	
	<211> 56	
	<211> 36 <212> DNA	
	<213> Artificial Sequence	
30	<220>	
	<pre><220> <223> Designed oligonucleotide primer for PCR</pre>	
	12237 Designed Offgondereotide primer for FCK	
	<400> 381	
	aagettttae caagteacag gaagttecaa catecettga ategtgteae etgget	56
	adjeterac caagecacay gaagecocaa careeeriga acegegicae ergger	36
35	<210> 382	
	<211> 70	
	<212> DNA	
	<213> Artificial Sequence	
	12137 Attiticial Sequence	
40	<220>	
40	<pre><223> Designed oligonucleotide primer for PCR</pre>	
	12237 Designed Oligonacteotide primer for rek	
	<400> 382	
	ttgaatcgtg tcacctggct tgaaggcaat ctcctcggct ggagctgcta agcgtagagt	60
	gggcaaacga	70
45	gggcaaacga	70
	<210> 383	
	<210 383 <211> 70	
	<212> DNA	
	<213> Artificial Sequence	
	-210. WESTIONE DEGROUPS	
50	<220>	
	<pre><223> Designed oligonucleotide primer for PCR</pre>	
	above besigned officialization primer for for	
	<400> 383	
	agcgtagagt gggcaaacga tcgaagaggg tccaaagtgc aatctcaagc tcagcgcgtg	60
	caagattotg	60 70
55	augueteeg	70
	<210> 384	

5	<211> 70 <212> DNA <213> Artificial Sequence	
	<220> <223> Designed oligonucleotide primer for PCR	
10	<400> 384 tcccccttgc gaattgtggt cccagcaact tctatgtcct caacggcgag tctaagcaaa ccatccgcta	60 70
15	<210> 385 <211> 70 <212> DNA <213> Artificial Sequence	
	<220> <223> Designed oligonucleotide primer for PCR	
20	<400> 385 totaagcaaa ccatccgcta tggacagcat gcgcatcagt tcctcgactg cagcaggcaa tagacgagga	60 70
25	<210> 386 <211> 70 <212> DNA <213> Artificial Sequence	
	<220> <223> Designed oligonucleotide primer for PCR	
30	<400> 386 cagcaggcaa tagacgagga tctgctctca actcagcaag cctttcggga tgttgcaata gggtgaaggt	60 70
35	<210> 387 <211> 70 <212> DNA <213> Artificial Sequence	
	<220> <223> Designed oligonucleotide primer for PCR	
40	<400> 387 gctcctggtt ccttccgttt cctgtcaatc agttctccaa agtactcatc caaccgtgct ctagcatcca	60 70
45	<210> 388 <211> 70 <212> DNA <213> Artificial Sequence	
	<220> <223> Designed oligonucleotide primer for PCR	
50	<400> 388 caaccgtgct ctagcatcca tcacatcggc agtctgagga cctctaagta gtctccttga ctgggtctca	60 70
	<210> 389 <211> 70 <212> DNA	
55	<213> Artificial Sequence	

	<220> <223> Designed oligonucleotide primer for PCR							
5 .		50 '0						
10	<210> 390 <211> 70 <212> DNA <213> Artificial Sequence							
15	<220> <223> Designed oligonucleotide primer for PCR <400> 390							
		0						
20	<211> 70 <211> DNA <213> Artificial Sequence							
25	<220> <223> Designed oligonucleotide primer for PCR							
25		0						
30	<210> 392 <211> 70 <212> DNA <213> Artificial Sequence							
35	<220> <223> Designed oligonucleotide primer for PCR							
	<400> 392 ctgggaagcc aggtctgtca cgatcagatg aaagccttgg atcagcgagt aatgccctag ctgtggcatg 7	0 0						
40	<210> 393 <211> 1197 <212> DNA <213> Artificial Sequence							
45	<220> <221> CDS <222> (1)(1197) <223> Designed polynucleotide encoding amino acid sequence of SEQ ID No	.224						
50	<pre><400> 393 atg tct gat act aca gca cct gtt gct ttt cca caa tct cgt acc tgc Met Ser Asp Thr Thr Ala Pro Val Ala Phe Pro Gln Ser Arg Thr Cys 1</pre>	8						
	ccc tat cat cct cct gct gcc tat gaa ccg tta cgt gct gag aga ccc Pro Tyr His Pro Pro Ala Ala Tyr Glu Pro Leu Arg Ala Glu Arg Pro 20 25 30	6						
55	ttg act aga atc aca ctc ttt gat ggt aga gcc tgg ttg gtc agt 14. Leu Thr Arg Ile Thr Leu Phe Asp Gly Arg Glu Ala Trp Leu Val Ser	4						

			35					40					45				
5					gct Ala												192
10					cct Pro											ggg Gly 80	240
					aga Arg 85												288
					agg Arg												336
20					cca Pro												384
	gcg Ala	atg Met 130	ata Ile	gct Ala	cag Gln	ggt Gly	cca Pro 135	cct Pro	gca Ala	gac Asp	ctt Leu	gtg Val 140	agc Ser	agc Ser	ttc Phe	gcg Ala	432
25					tcc Ser												480
30					ttc Phe 165												528
	cct Pro	cag Gln	act Thr	gcc Ala 180	gat Asp	gtg Val	atg Met	gat Asp	gct Ala 185	aga Arg	gca Ala	cgg Arg	ttg Leu	gat Asp 190	gag Glu	tac Tyr	576
35					att Ile												624
40	ctt Leu	gat Asp 210	gac Asp	ttg Leu	gtt Val	caa Gln	cga Arg 215	cag Gln	ctt Leu	aga Arg	gat Asp	gga Gly 220	gca Ala	tta Leu	gac Asp	agg Arg	672
					gcc Ala												720
45					atg Met 245												768
50					gct Ala												816
					ctg Leu												864
55					gag Glu												912

	290	295	300
5	ggg gat gga gtg gtg ttt Gly Asp Gly Val Val Phe 305 310		
10	gtc tac cct gaa cca gac Val Tyr Pro Glu Pro Asp 325	acc ctc gat tgg cac Thr Leu Asp Trp His 330	cgt tct gct aga cat 1008 Arg Ser Ala Arg His 335
	cac gta gcg ttc ggc ttc His Val Ala Phe Gly Phe 340	ggc att cac cag tgc Gly Ile His Gln Cys 345	ctc ggc cag aat ctt 1056 Leu Gly Gln Asn Leu 350
15	gca cgc gct gag ctt gag Ala Arg Ala Glu Leu Glu 355		
20	ccc act cta cgc tta gca Pro Thr Leu Arg Leu Ala 370		
	ggt gac acg att caa ggg Gly Asp Thr Ile Gln Gly 385		
25	<210> 394 <211> 29 <212> DNA <213> Artificial Sequence	ce .	
30	<220> <223> Designed oligonuc	leotide primer for PC	CR
	ggggatgcat gacagatatg ac	cagatact	29
35	<210> 395 <211> 30 <212> DNA <213> Artificial Sequence	ce ·	
	<220> <223> Designed oligonucl	leotide primer for PC	CR .
40	<400> 395 ggggagetee taccaggeea eq	gggaagatc	30
45	<210> 396 <211> 18 <212> DNA <213> Artificial Sequence	ce	
	<220> <223> Designed oligonucl	leotide primer for PC	CR
50	<400> 396 acagatatga cagatact		18
55	<210> 397 <211> 27 <212> DNA <213> Artificial Sequence	ce	

	<220> <223> Designed oligonucleotide primer for PCR	
5	<400> 397 ggatgcatga cagatactac tgcacct	27
	<210> 398	
	<211> 27	
10	<212> DNA <213> Artificial Sequence	
	<220>	
	<pre><223> Designed oligonucleotide primer for PCR</pre>	
15	<400> 398 gagctcttac caggtcacgg ggagttc	27
	<210> 399 <211> 27	
	<212> DNA	
20	<213> Artificial Sequence	
	<220> <223> Designed oligonucleotide primer for PCR	
25	<400> 399 ggggtcatga cagatactac tgcacct	27
	<210> 400	
	<211> 27	
	<212> DNA	
30	<213> Artificial Sequence	
30	<220>	
	<223> Designed oligonucleotide primer for PCR	
	<400> 400	
	ggatgcatgt ctgatactac agcacct	27
35	2105 401	
	<210> 401 <211> 27	
	<212> DNA	
	<213> Artificial Sequence	
40	<220>	
	<pre><223> Designed oligonucleotide primer for PCR</pre>	
	<pre><<400> 401 gagctcttac caagtcacag gaagttc</pre>	27
45	<210> 402	
	<211> 36 <212> DNA	
	<213> Artificial Sequence	
	<220>	
50	<223> Designed oligonucleotide linker for construction of expression	vector
	<400> 402	
	tgcaggtgtg gccaccaatt ggcaagaaga aatgca	36
E E	<210> 403	
55	<211> 36 <212> DNA	
	SCALE LUMB	

<213> Artificial Sequence

<220>

<223> Designed oligonucleotide linker for construction of expression vector

<400> 403

tttcttcttg ccaattggtg gccacacctg catgca

36

Claims

5

10

15

20

25

30

40

45

50

55

- 1. A DNA encoding a herbicide metabolizing protein, wherein said protein is selected from the group consisting of:
 - (A1) a protein comprising the amino acid sequence shown in SEQ ID NO: 1;
 - (A2) a protein comprising the amino acid sequence shown in SEQ ID NO: 2;
 - (A3) a protein comprising the amino acid sequence shown in SEQ ID NO: 3;
 - (A4) a protein comprising the amino acid sequence shown in SEQ ID NO: 108;
 - (A5) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II):

35 to a compound of formula (III):

and comprising an amino acid sequence having at least 80% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108;

(A6) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a nucleotide sequence having at least 80% sequence identity with a nucleotide sequence encoding an amino acid sequence shown in any one of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108;

- (A11) a protein comprising the amino acid sequence shown in SEQ ID NO: 159;
- (A12) a protein comprising the amino acid sequence shown in SEQ ID NO: 160;
- (A13) a protein comprising the amino acid sequence shown in SEQ ID NO: 136;
- (A14) a protein comprising the amino acid sequence shown in SEQ ID NO: 137;

(A15) a protein comprising the amino acid sequence shown in SEQ ID NO: 138; (A16) a protein comprising the amino acid sequence shown in SEQ ID NO: 215; (A17) a protein comprising the amino acid sequence shown in SEQ ID NO: 216; (A18) a protein comprising the amino acid sequence shown in SEQ ID NO: 217; (A19) a protein comprising the amino acid sequence shown in SEQ ID NO: 218; (A20) a protein comprising the amino acid sequence shown in SEQ ID NO: 219; (A21) a protein comprising the amino acid sequence shown in SEQ ID NO: 220; (A22) a protein comprising the amino acid sequence shown in SEQ ID NO: 221; (A23) a protein comprising the amino acid sequence shown in SEQ ID NO: 222; (A24) a protein comprising the amino acid sequence shown in SEQ ID NO: 223; (A25) a protein comprising the amino acid sequence shown in SEQ ID NO: 224;

5

10

15

20

25

30

35

(A26) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence having at least 80% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 159, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 217, SEQ ID NO: 219, SEQ ID NO: 220, SEQ ID NO: 221 or SEQ ID NO: 223 or an amino acid sequence having at least 90% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 160, SEQ ID NO: 215, SEQ ID NO: 216, SEQ ID NO: 228, SEQ ID NO: 222 or SEQ ID NO: 224:

(A27) a protein having the ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a nucleotide sequence having at least 90% sequence identity with a nucleotide sequence encoding an amino acid sequence shown in any one of SEQ ID NO: 159, SEQ ID NO: 160, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 215, SEQ ID NO: 216, SEQ ID NO: 217, SEQ ID NO: 218, SEQ ID NO: 219, SEQ ID NO: 220, SEQ ID NO: 221, SEQ ID NO: 222, SEQ ID NO: 223 or SEQ ID NO: 224; and

(A28) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a DNA amplifiable by a polymerase chain reaction with a primer comprising the nucleotide sequence shown in any one of SEQ ID NOs: 124 to 128, a primer comprising the nucleotide sequence shown in SEQ ID NO: 129 and as a template a chromosomal DNA of Streptomyces phaeochromogenes, Streptomyces testaceus, Streptomyces achromogenes, Streptomyces griseofuscus, Streptomyces thermocoerulescens, Streptomyces nogalater, Streptomyces tsusimaensis, Streptomyces glomerochromogenes, Streptomyces olivochromogenes, Streptomyces omatus, Streptomyces griseus, Streptomyces lanatus, Streptomyces misawanensis, Streptomyces pallidus, Streptomyces roseorubens, Streptomyces rutgersensis, Streptomyces steffisburgensis or Saccharopolyspora taberi.

2. A DNA comprising a nucleotide sequence selected from the group consisting of:

(a1) the nucleotide sequence shown in SEQ ID NO: 6; 40 (a2) the nucleotide sequence shown in SEQ ID NO: 7; (a3) the nucleotide sequence shown in SEQ ID NO: 8; (a4) the nucleotide sequence shown in SEQ ID NO: 109; (a5) the nucleotide sequence shown in SEQ ID NO: 139; (a6) the nucleotide sequence shown in SEQ ID NO: 140; 45 (a7) the nucleotide sequence shown in SEQ ID NO: 141; (a8) the nucleotide sequence shown in SEQ ID NO: 142; (a9) the nucleotide sequence shown in SEQ ID NO: 143; (a10) the nucleotide sequence shown in SEQ ID NO: 225; (a11) the nucleotide sequence shown in SEQ ID NO: 226; 50 (a12) the nucleotide sequence shown in SEQ ID NO: 227; (a13) the nucleotide sequence shown in SEQ ID NO: 228; (a14) the nucleotide sequence shown in SEQ ID NO: 229; (a15) the nucleotide sequence shown in SEQ ID NO: 230; (a16) the nucleotide sequence shown in SEQ ID NO: 231; 55 (a17) the nucleotide sequence shown in SEQ ID NO: 232; (a18) the nucleotide sequence shown in SEQ ID NO: 233; (a19) the nucleotide sequence shown in SEQ ID NO: 234;

(a20) a nucleotide sequence encoding an amino acid sequence of a protein having an ability to convert in the

presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), said nucleotide sequence having at least 80% sequence identity with a nucleotide sequence shown in any one of SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8 or SEQ ID NO: 109; and (a21) a nucleotide sequence encoding an amino acid sequence of a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), said nucleotide sequence having at least 90% sequence identity with a nucleotide sequence shown in any one of SEQ ID NO: 139, SEQ ID NO: 140, SEQ ID NO: 141, SEQ ID NO: 142, SEQ ID NO: 143, SEQ ID NO: 225, SEQ ID NO: 226, SEQ ID NO: 227, SEQ ID NO: 228, SEQ ID NO: 229, SEQ ID NO: 230, SEQ ID NO: 231, SEQ ID NO: 232, SEQ ID NO: 233 or SEQ ID NO: 234.

10

5

3. The DNA according to claim 1, comprising a nucleotide sequence encoding an amino acid sequence of said protein, wherein the codon usage in said nucleotide sequence is within the range of plus or minus 4% of the codon usage in genes from the species of a host cell to which the DNA is introduced and the GC content of said nucleotide sequence is at least 40% and at most 60%.

15

- 4. A DNA comprising the nucleotide sequence shown in SEQ ID NO: 214.
- 5. A DNA comprising the nucleotide sequence shown in SEQ ID NO: 368.
- 20 6. A DNA comprising the nucleotide sequence shown in SEQ ID NO: 393.
 - 7. A DNA in which a DNA having a nucleotide sequence encoding an intracellular organelle transit signal sequence is linked upstream of the DNA according to claim 1 in frame.
- 25 8. A DNA in which the DNA according to claim 1 and a promoter functional in a host cell are operably linked.
 - 9. A vector comprising the DNA according to claim 1.
- 10. A method of producing a vector comprising a step of inserting the DNA according to claim 1 into a vector replicable in a host cell.
 - 11. A transformant in which the DNA according to claim 1 is introduced into a host cell.
 - 12. The transformant according to claim 11, wherein the host cell is a microorganism cell or a plant cell.
 - 13. A method of producing a transformant comprising a step of introducing into a host cell, the DNA according to claim 1.
 - 14. A method of producing a protein having the ability to convert a compound of formula (II) to a compound of formula (III), said method comprising a steps of culturing the transformant according to claim 11 and recovering the produced said protein.
 - 15. Use of the DNA according to claim 1 for producing a protein having the ability to convert a compound of formula (II) to a compound of formula (III).
- 45 16. A method of giving a plant resistance to a herbicide, said method comprising a step of introducing into and expressing in a plant cell, the DNA according to claim 1.
 - 17. A polynucleotide having a partial nucleotide sequence of a DNA according to claim 1 or a nucleotide sequence complimentary to said partial nucleotide sequence.

50

35

- 18. A method of detecting a DNA encoding a protein having the ability to convert a compound of formula (II) to a compound of formula (III), said method comprising a step of detecting a DNA to which a probe is hybridized in a hybridization using as the probe the DNA according to claim 1 or the polynucleotide according to claim 17.
- 19. A method of detecting a DNA encoding a protein having the ability to convert a compound of formula (II) to a compound of formula (III), said method comprising a step of detecting a DNA amplified in a polymerase chain reaction with the polynucleotide according to claim 17 as a primer.

- 20. The method according to claim 19, wherein at least one of the primers is selected from the group consisting of a polynucleotide comprising the nucleotide sequence shown in any one of SEQ ID NOs:124 to 128 and a polynucleotide comprising the nucleotide sequence shown in SEQ ID NO: 129.
- 21. A method of obtaining a DNA encoding a protein having the ability to convert a compound of formula (II) to a compound of formula (III), said method comprising a step of recovering the DNA detected by the method according to claim 18 or 19.
- 22. A method of screening a cell having a DNA encoding a protein having the ability to convert a compound of formula (II) to a compound of formula (III), said method comprising a step of detecting said DNA from a test cell by the method according to claim 18 or 19.
 - 23. A herbicide metabolizing protein selected from the group consisting of:

15

20

25

30

35

40

45

50

55

```
(A1) a protein comprising the amino acid sequence shown in SEQ ID NO: 1;
```

- (A2) a protein comprising the amino acid sequence shown in SEQ ID NO: 2;
- (A3) a protein comprising the amino acid sequence shown in SEQ ID NO: 3;
- (A4) a protein comprising the amino acid sequence shown in SEQ ID NO: 108;
- (A5) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III) and comprising an amino acid sequence having at least 80% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108;
- (A6) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a nucleotide sequence having at least 80% sequence identity with a nucleotide sequence encoding an amino acid sequence shown in any one of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108;

(A11) a protein comprising the amino acid sequence shown in SEQ ID NO: 159;

- (A12) a protein comprising the amino acid sequence shown in SEQ ID NO: 160;
- (A13) a protein comprising the amino acid sequence shown in SEQ ID NO: 136;
- (A14) a protein comprising the amino acid sequence shown in SEQ ID NO: 137;
- (A15) a protein comprising the amino acid sequence shown in SEQ ID NO: 138;
- (A16) a protein comprising the amino acid sequence shown in SEQ ID NO: 215;
- (A17) a protein comprising the amino acid sequence shown in SEQ ID NO: 216;
- (A18) a protein comprising the amino acid sequence shown in SEQ ID NO: 217;
- (A19) a protein comprising the amino acid sequence shown in SEQ ID NO: 218;
- (A20) a protein comprising the amino acid sequence shown in SEQ ID NO: 219;
- (A21) a protein comprising the amino acid sequence shown in SEQ ID NO: 220;
- (A22) a protein comprising the amino acid sequence shown in SEQ ID NO: 221;
- (A23) a protein comprising the amino acid sequence shown in SEQ ID NO: 222;
- (A24) a protein comprising the amino acid sequence shown in SEQ ID NO: 223;
- (A25) a protein comprising the amino acid sequence shown in SEQ ID NO: 224;
- (A26) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence having at least 80% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 159, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 217, SEQ ID NO: 219, SEQ ID NO: 220, SEQ ID NO: 221 or SEQ ID NO: 223 or an amino acid sequence having at least 90% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 160, SEQ ID NO: 215, SEQ ID NO: 216, SEQ ID NO: 228, SEQ ID NO: 229 or SEQ ID NO: 224;
- (A27) a protein having the ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a nucleotide sequence having at least 90% sequence identity with a nucleotide sequence encoding an amino acid sequence shown in any one of SEQ ID NO: 159, SEQ ID NO: 160, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 215, SEQ ID NO: 216, SEQ ID NO: 217, SEQ ID NO: 218, SEQ ID NO: 219, SEQ ID NO: 220, SEQ ID NO: 221, SEQ ID NO: 222, SEQ ID NO: 223 or SEQ ID NO: 224; and

(A28) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a DNA amplifiable by a polymerase chain reaction with a primer comprising the nucle-

otide sequence shown in any one of SEQ ID NOs: 124 to 128, a primer comprising the nucleotide sequence shown in SEQ ID NO: 129 and as a template a chromosomal DNA of Streptomyces phaeochromogenes, Streptomyces testaceus, Streptomyces achromogenes, Streptomyces griseofuscus, Streptomyces thermocoerulescens, Streptomyces nogalater, Streptomyces tsusimaensis, Streptomyces glomerochromogenes, Streptomyces olivochromogenes, Streptomyces omatus, Streptomyces griseus, Streptomyces lanatus, Streptomyces misawanensis, Streptomyces pallidus, Streptomyces roseorubens, Streptomyces rutgersensis, Streptomyces steffisburgensis or Saccharopolyspora taberi.

- 24. An antibody recognizing a herbicide metabolizing protein selected from the group consisting of:
 - (A1) a protein comprising the amino acid sequence shown in SEQ ID NO: 1;

5

10

15

20

25

30

35

40

45

50

- (A2) a protein comprising the amino acid sequence shown in SEQ ID NO: 2;
- (A3) a protein comprising the amino acid sequence shown in SEQ ID NO: 3;
- (A4) a protein comprising the amino acid sequence shown in SEQ ID NO: 108;
- (A5) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III) and comprising an amino acid sequence having at least 80% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108:
- (A6) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a nucleotide sequence having at least 80% sequence identity with a nucleotide sequence encoding an amino acid sequence shown in any one of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108;
- (A11) a protein comprising the amino acid sequence shown in SEQ ID NO: 159;
- (A12) a protein comprising the amino acid sequence shown in SEQ ID NO: 160;
- (A13) a protein comprising the amino acid sequence shown in SEQ ID NO: 136;
- (A14) a protein comprising the amino acid sequence shown in SEQ ID NO: 137;
- (A15) a protein comprising the amino acid sequence shown in SEQ ID NO: 138;
- (A16) a protein comprising the amino acid sequence shown in SEQ ID NO: 215;
- (A17) a protein comprising the amino acid sequence shown in SEQ ID NO: 216;
- (A18) a protein comprising the amino acid sequence shown in SEQ ID NO: 217;
- (A19) a protein comprising the amino acid sequence shown in SEQ ID NO: 218;
- (A20) a protein comprising the amino acid sequence shown in SEQ ID NO: 219;
- (A21) a protein comprising the amino acid sequence shown in SEQ ID NO: 220;
- (A22) a protein comprising the amino acid sequence shown in SEQ ID NO: 221;
- (A23) a protein comprising the amino acid sequence shown in SEQ ID NO: 222;
- (A24) a protein comprising the amino acid sequence shown in SEQ ID NO: 223;
- (A25) a protein comprising the amino acid sequence shown in SEQ ID NO: 224;
- (A26) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence having at least 80% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 159, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 217, SEQ ID NO: 219, SEQ ID NO: 220, SEQ ID NO: 221 or SEQ ID NO: 223 or an amino acid sequence having at least 90% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 160, SEQ ID NO: 215, SEQ ID NO: 216, SEQ ID NO: 228 or SEQ ID NO: 224;
- (A27) a protein having the ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a nucleotide sequence having at least 90% sequence identity with a nucleotide sequence encoding an amino acid sequence shown in any one of SEQ ID NO: 159, SEQ ID NO: 160, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 215, SEQ ID NO: 216, SEQ ID NO: 217, SEQ ID NO: 218, SEQ ID NO: 219, SEQ ID NO: 220, SEQ ID NO: 221, SEQ ID NO: 222, SEQ ID NO: 223 or SEQ ID NO: 224; and
- (A28) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a DNA amplifiable by a polymerase chain reaction with a primer comprising the nucleotide sequence shown in any one of SEQ ID NOs: 124 to 128, a primer comprising the nucleotide sequence shown in SEQ ID NO: 129 and as a template a chromosomal DNA of Streptomyces phaeochromogenes, Streptomyces testaceus, Streptomyces achromogenes, Streptomyces griseofuscus, Streptomyces thermocoerulescens, Streptomyces nogalater, Streptomyces tsusimaensis, Streptomyces glomerochromogenes,

Streptomyces olivochromogenes, Streptomyces ornatus, Streptomyces griseus, Streptomyces lanatus, Streptomyces misawanensis, Streptomyces pallidus, Streptomyces roseorubens, Streptomyces rutgersensis, Streptomyces steffisburgensis or Saccharopolyspora taberi.

- 5 25. A method of detecting a herbicide metabolizing protein, said method comprising:
 - (3) a step of contacting a test substance with an antibody recognizing said protein and
 - (4) a step of detecting a complex of said protein and said antibody, arising from said contact,
 - wherein said protein is selected from the group consisting of:

10

15

20

25

30

35

40

45

50

- (A1) a protein comprising the amino acid sequence shown in SEQ ID NO: 1;
- (A2) a protein comprising the amino acid sequence shown in SEQ ID NO: 2:
- (A3) a protein comprising the amino acid sequence shown in SEQ ID NO: 3;
- (A4) a protein comprising the amino acid sequence shown in SEQ ID NO: 108;
- (A5) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III) and comprising an amino acid sequence having at least 80% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108:
- (A6) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a nucleotide sequence having at least 80% sequence identity with a nucleotide sequence encoding an amino acid sequence shown in any one of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108;
- (A11) a protein comprising the amino acid sequence shown in SEQ ID NO: 159;
- (A12) a protein comprising the amino acid sequence shown in SEQ ID NO: 160;
- (A13) a protein comprising the amino acid sequence shown in SEQ ID NO: 136;
- (A14) a protein comprising the amino acid sequence shown in SEQ ID NO: 137;
- (A15) a protein comprising the amino acid sequence shown in SEQ ID NO: 138;
- (A16) a protein comprising the amino acid sequence shown in SEQ ID NO: 215;
- (A17) a protein comprising the amino acid sequence shown in SEQ ID NO: 216;
- (A18) a protein comprising the amino acid sequence shown in SEQ ID NO: 217;
- (A19) a protein comprising the amino acid sequence shown in SEQ ID NO: 218;
- (A20) a protein comprising the amino acid sequence shown in SEQ ID NO: 219;
- (A21) a protein comprising the amino acid sequence shown in SEQ ID NO: 220;
- (A22) a protein comprising the amino acid sequence shown in SEQ ID NO: 221;
- (A23) a protein comprising the amino acid sequence shown in SEQ ID NO: 222;
- (A24) a protein comprising the amino acid sequence shown in SEQ ID NO: 223;
- (A25) a protein comprising the amino acid sequence shown in SEQ ID NO: 224;
- (A26) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence having at least 80% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 159, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 217, SEQ ID NO: 219, SEQ ID NO: 220, SEQ ID NO: 221 or SEQ ID NO: 223 or an amino acid sequence having at least 90% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 160, SEQ ID NO: 215, SEQ ID NO: 216, SEQ ID NO: 228, SEQ ID NO: 228, SEQ ID NO: 228;
- (A27) a protein having the ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a nucleotide sequence having at least 90% sequence identity with a nucleotide sequence encoding an amino acid sequence shown in any one of SEQ ID NO: 159, SEQ ID NO: 160, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 215, SEQ ID NO: 216, SEQ ID NO: 217, SEQ ID NO: 218, SEQ ID NO: 219, SEQ ID NO: 220, SEQ ID NO: 221, SEQ ID NO: 222, SEQ ID NO: 223 or SEQ ID NO: 224; and
- (A28) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a DNA amplifiable by a polymerase chain reaction with a primer comprising the nucleotide sequence shown in any one of SEQ ID NOs: 124 to 128, a primer comprising the nucleotide sequence shown in SEQ ID NO: 1.29 and as a template a chromosomal DNA of Streptomyces phaeochromogenes, Streptomyces testaceus, Streptomyces achromogenes, Streptomyces griseofuscus, Streptomyces thermo-

coerulescens, Streptomyces nogalater, Streptomyces tsusimaensis, Streptomyces glomerochromogenes, Streptomyces ornatus, Streptomyces griseus, Streptomyces lanatus, Streptomyces misawanensis, Streptomyces pallidus, Streptomyces roseorubens, Streptomyces rutgersensis, Streptomyces steffisburgensis or Saccharopolyspora taberi.

26. An analysis or detection kit comprising the antibody according to claim 24.

27. A DNA encoding a ferredoxin selected from the group consisting of:

5

45

```
10
             (B1) a protein comprising an amino acid sequence shown in SEQ ID NO: 12;
             (B2) a protein comprising an amino acid sequence shown in SEQ ID NO: 13;
             (B3) a protein comprising an amino acid sequence shown in SEQ ID NO: 14;
             (B4) a protein comprising an amino acid sequence shown in SEQ ID NO: 111;
             (B5) a ferredoxin comprising an amino acid sequence having at least 80% sequence identity with an amino
15
             acid sequence shown in any one of SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO 14 or SEQ ID NO: 111;
             (B6) a ferredoxin comprising an amino acid sequence encoded by a nucleotide sequence having at least 90%
             sequence identity with a nucleotide sequence encoding an amino acid sequence shown in any one of SEQ
             ID NO: 12, SEQ ID NO: 13, SEQ ID NO 14 or SEQ ID NO: 111;
             (B7) a protein comprising an amino acid sequence shown in SEQ ID NO: 149;
20
             (B8) a protein comprising an amino acid sequence shown in SEQ ID NO: 150;
             (B9) a protein comprising an amino acid sequence shown in SEQ ID NO: 151;
             (B10) a protein comprising an amino acid sequence shown in SEQ ID NO: 152;
             (B11) a protein comprising an amino acid sequence shown in SEQ ID NO: 153;
             (B12) a ferredoxin comprising an amino acid sequence having at least 80% sequence identity with an amino
25
             acid sequence shown in any one of SEQ ID NO: 149, SEQ ID NO: 151, SEQ ID NO: 152, SEQ ID NO: 153,
             SEQ ID NO: 245, SEQ ID NO: 247, SEQ ID NO: 248, SEQ ID NO: 249, SEQ ID NO: 250, SEQ ID NO: 251,
             or SEQ ID NO: 253 or an amino acid sequence having at least 90% sequence identity with an amino acid
             sequence shown in any one of SEQ ID NO: 150, SEQ ID NO: 252 or SEQ ID NO: 254;
             (B13) a ferredoxin comprising an amino acid sequence encoded by a nucleotide sequence having at least
30
             90% sequence identity with a nucleotide sequence encoding an amino acid sequence shown in any one of
             SEQ ID NO: 149, SEQ ID NO: 150, SEQ ID NO: 151, SEQ ID NO: 152, SEQ ID NO: 153, SEQ ID NO: 245,
             SEQ ID NO: 247, SEQ ID NO: 248, SEQ ID NO: 249, SEQ ID NO: 250, SEQ ID NO: 251, SEQ ID NO: 252,
             SEQ ID NO: 253 or SEQ ID NO: 254;
             (B14) a protein comprising the amino acid sequence shown in SEQ ID NO: 245;
35
             (B15) a protein comprising the amino acid sequence shown in SEQ ID NO: 247;
             (B16) a protein comprising the amino acid sequence shown in SEQ ID NO: 248;
             (B17) a protein comprising the amino acid sequence shown in SEQ ID NO: 249;
             (B18) a protein comprising the amino acid sequence shown in SEQ ID NO: 250;
             (B19) a protein comprising the amino acid sequence shown in SEQ ID NO: 251;
40
             (B20) a protein comprising the amino acid sequence shown in SEQ ID NO: 252;
```

28. A DNA comprising a nucleotide sequence selected from the group consisting of:

(B21) a protein comprising the amino acid sequence shown in SEQ ID NO: 253; and (B22) a protein comprising the amino acid sequence shown in SEQ ID NO: 254.

```
(b1) a nucleotide sequence shown in SEQ ID NO: 15;
(b2) a nucleotide sequence shown in SEQ ID NO: 16;
(b3) a nucleotide sequence shown in SEQ ID NO: 17;
(b4) a nucleotide sequence shown in SEQ ID NO: 112;
(b5) a nucleotide sequence shown in SEQ ID NO: 154;
(b6) a nucleotide sequence shown in SEQ ID NO: 155;
(b7) a nucleotide sequence shown in SEQ ID NO: 156;
(b8) a nucleotide sequence shown in SEQ ID NO: 157;
(b9) a nucleotide sequence shown in SEQ ID NO: 255;
(b10) a nucleotide sequence shown in SEQ ID NO: 255;
(b11) a nucleotide sequence shown in SEQ ID NO: 258;
(b13) a nucleotide sequence shown in SEQ ID NO: 259;
```

```
(b14) a nucleotide sequence shown in SEQ ID NO: 260:
             (b15) a nucleotide sequence shown in SEQ ID NO: 261;
             (b16) a nucleotide sequence shown in SEQ ID NO: 262;
             (b17) a nucleotide sequence shown in SEQ ID NO: 263;
5
             (b18) a nucleotide sequence shown in SEQ ID NO: 264; and
             (b19) a nucleotide sequence having at least 90% sequence identity with a nucleotide sequence shown in any
             one of SEQ ID NO: 15, SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 112, SEQ ID NO: 154, SEQ ID NO: 155,
             SEQ ID NO: 156, SEQ ID NO: 157, SEQ ID NO: 158, SEQ ID NO: 255, SEQ ID NO: 257, SEQ ID NO: 258,
             SEQ ID NO: 259, SEQ ID NO: 260, SEQ ID NO: 261, SEQ ID NO: 262, SEQ ID NO: 263 or SEQ ID NO: 264.
10
     29. A vector comprising a DNA according to claim 28.
     30. A transformant in which the DNA according to claim 28 is introduced into a host cell.
15
     31. A ferredoxin selected from the group consisting of:
             (B1) a protein comprising an amino acid sequence shown in SEQ ID NO: 12:
             (B2) a protein comprising an amino acid sequence shown in SEQ ID NO: 13;
             (B3) a protein comprising an amino acid sequence shown in SEQ ID NO: 14;
20
             (B4) a protein comprising an amino acid sequence shown in SEQ ID NO: 111;
             (B5) a ferredoxin comprising an amino acid sequence having at least 80% sequence identity with an amino
             acid sequence shown in any one of SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO 14 or SEQ ID NO: 111;
             (B6) a ferredoxin comprising an amino acid sequence encoded by a nucleotide sequence having at least 90%
             sequence identity with a nucleotide sequence encoding an amino acid sequence shown in any one of SEQ
25
             ID NO: 12, SEQ ID NO: 13, SEQ ID NO 14 or SEQ ID NO: 111;
             (B7) a protein comprising an amino acid sequence shown in SEQ ID NO: 149;
             (B8) a protein comprising an amino acid sequence shown in SEQ ID NO: 150;
             (B9) a protein comprising an amino acid sequence shown in SEQ ID NO: 151;
             (B10) a protein comprising an amino acid sequence shown in SEQ ID NO: 152;
30
             (B11) a protein comprising an amino acid sequence shown in SEQ ID NO: 153;
             (B12) a ferredoxin comprising an amino acid sequence having at least 80% sequence identity with an amino
             acid sequence shown in any one of SEQ ID NO: 149, SEQ ID NO: 151, SEQ ID NO: 152, SEQ ID NO: 153,
             SEQ ID NO: 245, SEQ ID NO: 247, SEQ ID NO: 248, SEQ ID NO: 249, SEQ ID NO: 250, SEQ ID NO: 251,
             or SEQ ID NO: 253 or an amino acid sequence having at least 90% sequence identity with an amino acid
35
             sequence shown in any one of SEQ ID NO: 150, SEQ ID NO: 252 or SEQ ID NO: 254;
             (B13) a ferredoxin comprising an amino acid sequence encoded by a nucleotide sequence having at least
             90% sequence identity with a nucleotide sequence encoding an amino acid sequence shown in any one of
             SEQ ID NO: 149, SEQ ID NO: 150, SEQ ID NO: 151, SEQ ID NO: 152, SEQ ID NO: 153, SEQ ID NO: 245,
             SEQ ID NO: 247, SEQ ID NO: 248, SEQ ID NO: 249, SEQ ID NO: 250, SEQ ID NO: 251, SEQ ID NO: 252,
40
             SEQ ID NO: 253 or SEQ ID NO: 254;
             (B14) a protein comprising the amino acid sequence shown in SEQ ID NO: 245;
             (B15) a protein comprising the amino acid sequence shown in SEQ ID NO: 247;
             (B16) a protein comprising the amino acid sequence shown in SEQ ID NO: 248;
             (B17) a protein comprising the amino acid sequence shown in SEQ ID NO: 249;
45
             (B18) a protein comprising the amino acid sequence shown in SEQ ID NO: 250;
             (B19) a protein comprising the amino acid sequence shown in SEQ ID NO: 251;
             (B20) a protein comprising the amino acid sequence shown in SEQ ID NO: 252;
             (B21) a protein comprising the amino acid sequence shown in SEQ ID NO: 253; and
             (B22) a protein comprising the amino acid sequence shown in SEQ ID NO: 254.
50
```

32. A DNA comprising a nucleotide sequence selected from the group consisting of:

```
(ab1) a nucleotide sequence shown in SEQ ID NO: 9;
(ab2) a nucleotide sequence shown in SEQ ID NO: 10;
(ab3) a nucleotide sequence shown in SEQ ID NO: 11;
(ab4) a nucleotide sequence shown in SEQ ID NO: 110;
(ab5) a nucleotide sequence shown in SEQ ID NO: 144;
(ab6) a nucleotide sequence shown in SEQ ID NO: 145;
```

```
(ab7) a nucleotide sequence shown in SEQ ID NO: 146;
             (ab8) a nucleotide sequence shown in SEQ ID NO: 147;
             (ab9) a nucleotide sequence shown in SEQ ID NO: 148;
             (ab10) a nucleotide sequence shown in SEQ ID NO: 235;
             (ab11) a nucleotide sequence shown in SEQ ID NO: 236;
             (ab12) a nucleotide sequence shown in SEQ ID NO: 237;
             (ab13) a nucleotide sequence shown in SEQ ID NO: 238;
             (ab14) a nucleotide sequence shown in SEQ ID NO: 239;
             (ab15) a nucleotide sequence shown in SEQ ID NO: 240;
10
             (ab16) a nucleotide sequence shown in SEQ ID NO: 241;
             (ab17) a nucleotide sequence shown in SEQ ID NO: 242;
             (ab18) a nucleotide sequence shown in SEQ ID NO: 243; and
             (ab19) a nucleotide seguence shown in SEQ ID NO: 244.
```

- 15 33. A vector comprising the DNA according to claim 32.
 - 34. A transformant in which the DNA according to claim 32 is introduced into a host cell.
 - 35. The transformant according to claim 34, wherein the host cell is a microorganism cell or a plant cell.
 - 36. A method of producing a transformant comprising a step of introducing into a host cell the DNA according to claim
 - 37. A method of producing a protein having the ability to convert a compound of formula (II) to a compound of formula (III), said method comprising a step of culturing the transformant according to claim 34 and recovering the produced said protein.
 - 38. A method of controlling weeds comprising a step of applying a compound to a cultivation area of a plant expressing at least one herbicide metabolizing protein selected from the group consisting of:

```
(A1) a protein comprising the amino acid sequence shown in SEQ ID NO: 1;
```

(A2) a protein comprising the amino acid sequence shown in SEQ ID NO: 2;

(A3) a protein comprising the amino acid sequence shown in SEQ ID NO: 3;

(A4) a protein comprising the amino acid sequence shown in SEQ ID NO: 108;

(A5) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence having at least 80% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108;

(A6) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a nucleotide sequence having at least 80% sequence identity with a nucleotide sequence encoding an amino acid sequence shown in any one of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108; (A7) a protein having the ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a DNA that hybridizes, under stringent conditions, to a DNA comprising a nucleotide sequence encoding an amino acid sequence shown in any one of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108;

(A8) a protein having the ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a DNA amplifiable by a polymerase chain reaction with a primer comprising a nucleotide sequence shown in SEQ ID NO: 129, a primer comprising a nucleotide sequence shown in any one of SEQ ID NOs: 124 to 128, and as a template a chromosome of a microorganism belonging to Streptomyces or Saccharopolyspora;

(A9) a protein comprising an amino acid sequence shown in SEQ ID NO: 4;

(A11) a protein comprising the amino acid sequence shown in SEQ ID NO: 159;

(A12) a protein comprising the amino acid sequence shown in SEQ ID NO: 160;

(A13) a protein comprising the amino acid sequence shown in SEQ ID NO: 136;

(A14) a protein comprising the amino acid sequence shown in SEQ ID NO: 137;

346

50

5

20

25

30

35

40

45

(A15) a protein comprising the amino acid sequence shown in SEQ ID NO: 138; (A16) a protein comprising the amino acid sequence shown in SEQ ID NO: 215; (A17) a protein comprising the amino acid sequence shown in SEQ ID NO: 216; (A18) a protein comprising the amino acid sequence shown in SEQ ID NO: 217; (A19) a protein comprising the amino acid sequence shown in SEQ ID NO: 218; (A20) a protein comprising the amino acid sequence shown in SEQ ID NO: 219; (A21) a protein comprising the amino acid sequence shown in SEQ ID NO: 220; (A22) a protein comprising the amino acid sequence shown in SEQ ID NO: 221; (A23) a protein comprising the amino acid sequence shown in SEQ ID NO: 222; (A24) a protein comprising the amino acid sequence shown in SEQ ID NO: 223; (A25) a protein comprising the amino acid sequence shown in SEQ ID NO: 224;

(A26) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence having at least 80% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 159, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 217, SEQ ID NO: 219, SEQ ID NO: 220, SEQ ID NO: 221 or SEQ ID NO: 223 or an amino acid sequence having at least 90% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 160, SEQ ID NO: 215, SEQ ID NO: 216, SEQ ID NO: 228 or SEQ ID NO: 224; and

(A27) a protein having the ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a nucleotide sequence having at least 90% sequence identity with a nucleotide sequence encoding an amino acid sequence shown in any one of SEQ ID NO: 159, SEQ ID NO: 160, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 215, SEQ ID NO: 216, SEQ ID NO: 217, SEQ ID NO: 218, SEQ ID NO: 219, SEQ ID NO: 220, SEQ ID NO: 221, SEQ ID NO: 222, SEQ ID NO: 223 or SEQ ID NO: 224,

wherein said compound is a compound of formula (I):

5

10

15

20

25

30

35

40

$$CH_3$$
 CF_3
 C

wherein in formula (I) G represents a group shown in any one of the following G-1 to G-9:

5
$$R^{8}$$
 R^{1}
 R^{1}
 R^{1}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{5}
 R^{7}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{2}
 R^{3}
 R^{4}

wherein in G-1 to G-9,

30

35

40

45

50

55

G-7

X represents an oxygen atom or sulfur atom;

Y represents an oxygen atom or sulfur atom;

R1 represents a hydrogen atom or halogen atom;

 $\rm R^2$ represents a hydrogen atom, $\rm C_1\text{-}C_8$ alkyl group, $\rm C_1\text{-}C_8$ haloalkyl group, halogen atom, hydroxyl group, $\rm -OR^9$ group, -SH group, -S(O)pR^9 group, -COR^9 group, -CO_2R^9 group, -C(O)SR^9 group, -C(O)NR^{11}R^{12} group, -CONH2 group, -CHO group, -CR^9=NOR^{18} group, -CH=CR^{19}CO_2R^9 group, -CH_2CHR^{19}CO_2R^9 group, -CO_2N=CR^{13}R^{14} group, nitro group, cyano group, -NHSO_2R^{15} group, -NHSO_2NHR^{15} group, -NR^9R^{20} group, -NH2 group or phenyl group that may be substituted with one or more C1-C4 alkyl groups which may be the same or different;

G-8

G-9

p represents 0, 1 or 2;

 R^3 represents C_1 - C_2 alkyl group, C_1 - C_2 haloalkyl group, -OCH $_3$ group, -SCH $_3$ group, -OCHF $_2$ group, halogen atom, cyano group, nitro group or C_1 - C_3 alkoxy group substituted with a phenyl group which may be substituted on the ring with at least one substituent selected from a halogen atom, C_1 - C_3 alkyl group, C_1 - C_3 haloalkyl group, OR²⁸ group, NR¹¹R²⁸ group, SR²⁸ group, cyano group, CO $_2$ R²⁸ group and nitro group;

R⁴ represents a hydrogen atom, C₁-C₃ alkyl group or C₁-C₃ haloalkyl group;

 $\rm R^5$ represents a hydrogen atom, $\rm C_1-C_3$ alkyl group, $\rm C_1-C_3$ haloalkyl group, cyclopropyl group, vinyl group, $\rm C_2$ alkynyl group, cyano group, -C(O)R²⁰ group, -CO₂R²⁰ group, -C(O)NR²⁰R²¹ group, -CHR¹⁶R¹⁷CN group, -CR¹⁶R¹⁷C(O)R²⁰ group, -C¹⁶R¹⁷CO₂R²⁰ group, -CR¹⁶R¹⁷C(O)NR²⁰R²¹ group, -CHR¹⁶OH group, -CHR¹⁶OC(O)R²⁰ group or -OCHR¹⁶OC(O)NR²⁰R²¹ group, or, when G represents G-2 or G-6, R⁴ and R⁵ may represent C=O group together with the carbon atom to which they are attached;

 R^6 represents C_1 - C_6 alkyl group, C_1 - C_6 haloalkyl group, C_2 - C_6 alkoxyalkyl group, C_3 - C_6 alkenyl group;

 R^7 represents a hydrogen atom, C_1 - C_6 alkyl group, C_1 - C_6 haloalkyl group, halogen atom, $-S(O)_2(C_1$ - C_6 alkyl) group or $-C(=O)R^{22}$ group;

R8 represents a hydrogen atom, C₁-C₈ alkyl group, C₃-C₈ cycloalkyl group, C₃-C₈ alkenyl group, C₃-C₈

5

10

15

20

25

30

35

40

45

50

55

alkynyl group, C_1 - C_8 haloalkyl group, C_2 - C_8 alkoxyalkyl group, C_3 - C_8 alkoxyalkyl group, C_3 - C_8 haloalkynyl group, C_3 - C_8 haloalkenyl group, C_1 - C_8 alkylsulfonyl group, C_1 - C_8 haloalkylsulfonyl group, C_3 - C_8 alkoxycarbonylalkyl group, -S(O)₂NH(C_1 - C_8 alkyl) group, -C(O)R²³ group or benzyl group which may be substituted with R²⁴ on the phenyl ring;

R9 represents C₁-C₈ alkyl group, C₃-C₈ cycloalkyl group, C₃-C₈ alkenyl group, C₃-C₈ alkynyl group, C₁-C₈ haloalkyl group, C_2 - C_8 alkoxyalkyl group, C_2 - C_8 alkylthioalkyl group, C_2 - C_8 alkyl-line group, C_2 - C_8 a sulfonylalkyl group, C_4 - C_8 alkoxyalkoxyalkyl group, C_4 - C_8 cycloalkylalkyl group, C_4 - C_8 cycloalkoxyalkyl group, $C_4-C_8 \text{ alkenyloxyalkyl group, } C_4-C_8 \text{ alkynyloxyalkyl group, } C_3-C_8 \text{ haloalkoxyalkyl group, } C_4-C_8 \text{ haloalkenyloxyalkyl group, } C_4-C_8 \text{ haloa$ $group, C_4-C_8 \ haloalkynyloxyalkyl \ group, C_4-C_8 \ cycloalkyl thioalkyl \ group, C_4-C_8 \ alkenylthioalkyl \ group, C_4-C_8 \ alkenylthioalkyllhioalkyllhioalkyllhioalkyllhioalkyllhioalkyllhioalkyllhioalkyllhioalkyllhioalkyllhioalkyllhioal$ nylthioalkyl group, C1-C4 alkyl group substituted with a phenoxy group which may be substituted on the ring with at least one substituent selected from a halogen atom, C₁-C₃ alkyl group and C₁-C₃ haloalkyl group, C₁-C₄ alkyl group substituted with a benzyloxy group which may be substituted on the ring with at least one substituent selected from a halogen atom, C_1 - C_3 alkyl group and C_1 - C_3 haloalkyl group, C_4 - C_8 trialkylsyrylalkyl group, C_2 - C_8 cyanoalkyl group, C_3 - C_8 halocycloalkyl group, C_3 - C_8 haloalkenyl group, C_5 - C_8 alkoxyalkenyl group, C_5 - C_8 haloalkoxyalkenyl group, C_5 - C_8 alkylthioalkenyl group, C_3 - C_8 haloalkynyl group, C_5 - C_8 alkoxyalkynyl group, C_5 - C_8 haloalkoxyalkynyl group, C₅-C₈ alkylthioalkynyl group, C₂-C₈ alkylcarbonyl group, benzyl group which may be substituted on the ring with at least one substituent selected from a halogen atom, C₁-C₃ alkyl group, C₁-C₃ haloalkyl group, -OR²⁸ group, -NR¹¹R²⁸ group, -SR²⁸ group, cyano group, -CO₂R²⁸ group and nitro group, -CR¹⁶R¹⁷COR¹⁰ group, $-CR^{16}R^{17}CO_{2}R^{20} \quad \text{group, } -CR^{16}R^{17}P(O)(OR^{10})_{2} \quad \text{group, } -CR^{16}R^{17}P(S)(OR^{10})_{2} \quad \text{group, } -CR^{16}R^{17}C(O)NR^{11}R^{12}$ group, -CR¹⁶R¹⁷C(O)NH₂ group, -C(=CR²⁶R²⁷)COR¹⁰ group, -C(=CR²⁶R²⁷)CO₂R²⁰ group, -C(=CR²⁶R²⁷)P(O) $(OR^{10})_2$ group, $-C(=CR^{26}R^{27})P(S)(OR^{10})_2$ group, $-C(=CR^{26}R^{27})C(O)NR^{11}R^{12}$ group, $-C(=CR^{26}R^{27})C(O)NH_2$ group, or any one of rings shown in Q-1 to Q-7:

which may be substituted on the ring with at least one substituent selected from a halogen atom, C_1 - C_6 alkyl group, C_1 - C_6 haloalkyl group, C_2 - C_6 haloalkenyl group, C_2 - C_6 alkoxyl group, C_3 - C_6 haloalkynyl group, C_2 - C_8 alkoxyl group, C_3 - C_8 group, C_3 - C_8 group, C_3 - C_8 alkoxyl group, C_3 - C_8 group, $C_$

 R^{10} represents a C_1 - C_6 alkyl group, C_2 - C_6 alkenyl group, C_3 - C_6 alkynyl group or tetrahydrofuranyl group; R^{11} and R^{13} independently represent a hydrogen atom or C_1 - C_4 alkyl group;

 R^{12} represents C_1 - C_6 alkyl group, C_3 - C_6 cycloalkyl group, C_3 - C_6 alkenyl group, C_3 - C_6 alkynyl group, C_2 - C_6 alkoxyalkyl group, C_1 - C_6 haloalkyl group, C_3 - C_6 haloalkenyl group, C_3 - C_6 haloalkynyl group, phenyl group which may be substituted on the ring with at least one substituent selected from a halogen atom, C_1 - C_4 alkyl group and C_1 - C_4 alkoxy group or - C_1 - C_2 - C_3 - C_4 group; or,

 R^{11} and R^{12} together may represent -(CH_2)₅-, -(CH_2)₄- or - CH_2 CH₂OCH₂CH₂-, or in that case the resulting ring may be substituted with a substituent selected from a C_1 - C_3 alkyl group, a phenyl group and benzyl group;

 R^{14} represents a C_1 - C_4 alkyl group or phenyl group which may be substituted on the ring with a substituent selected from a halogen atom, C_1 - C_3 alkyl group and C_1 - C_3 haloalkyl group; or,

 R^{13} and R^{14} may represent C_3 - C_8 cycloalkyl group together with the carbon atom to which they are attached; R^{15} represents C_1 - C_4 alkyl group, C_1 - C_4 haloalkyl group or C_3 - C_6 alkenyl group;

 R^{16} and R^{17} independently represent a hydrogen atom or C_1 - C_4 alkyl group, C_1 - C_4 haloalkyl group, C_2 - C_4 alkenyl group, C_2 - C_4 haloalkenyl group, C_2 - C_4 haloalkynyl group; or,

 R^{16} and R^{17} may represent C_3 - C_6 cycloalkyl group with the carbon atom to which they are attached, or the ring thus formed may be substituted with at least one substituent selected from a halogen atom, a C_1 - C_3 alkyl group and C_1 - C_3 haloalkyl group;

R¹⁸ represents a hydrogen atom, C₁-C₆ alkyl group, C₃-C₆ alkenyl group or C₃-C₆ alkynyl group;

R¹⁹ represents a hydrogen atom, C₁-C₄ alkyl group or halogen atom,

 R^{20} represents a hydrogen atom, C_1 - C_6 alkyl group, C_3 - C_6 cycloalkyl group, C_3 - C_6 alkenyl group, C_3 - C_6 alkenyl group, C_3 - C_6 haloalkyl group, C_3 - C_6 haloalkynyl group, C_3 - C_6 haloalkynyl group, phenyl group which may be substituted on the ring with at least one substituent selected from a halogen atom, C_1 - C_4 alkyl group and -OR²⁸ group, or -CR¹⁶R¹⁷CO₂R²⁵ group;

R²¹ represents a hydrogen atom, C_1 - C_2 alkyl group or - $CO_2(C_1$ - C_4 alkyl) group; R²² represents a hydrogen atom, C_1 - C_6 alkyl group, C_1 - C_6 alkoxy group or NH(C_1 - C_6 alkyl) group; R²³ represents C_1 - C_6 alkyl group, C_1 - C_6 haloalkyl group, C_1 - C_6 alkoxy group, NH(C_1 - C_6 alkyl) group, benzyl group, C_2 - C_8 dialkylamino group or phenyl group which may be substituted with R²⁴; R²⁴ represents C_1 - C_6 alkyl group, 1 to 2 halogen atoms, C_1 - C_6 alkoxy group or CF₃ group;

5

10

15

20

25

30

35

40

45

50

55

 R^{25} represents C_1 - C_6 alkyl group, C_1 - C_6 haloalkyl group, C_3 - C_6 alkenyl group, C_3 - C_6 haloalkynyl group; C_3 - C_6 alkynyl group or C_3 - C_6 haloalkynyl group;

 R^{26} and R^{27} each represent independently a hydrogen atom, C_1 - C_4 alkyl group, C_1 - C_4 haloalkyl group, C_2 - C_4 alkenyl group, C_2 - C_4 haloalkenyl group, C_2 - C_4 haloalkynyl group, C_3 - C_4 haloalkynyl group, C_2 - C_4 group, or -SR²⁸ group; or,

 R^{26} and R^{27} may represent C_3 - C_8 cycloalkyl group with the carbon atom to which they are attached, or each of the ring thus formed may be substituted with at least one substituent selected from a halogen atom, C_1 - C_3 alkyl group and C_1 - C_3 haloalkyl group; and,

 R^{28} represents a hydrogen atom, C_1 - C_6 alkyl group, C_1 - C_6 haloalkyl group, C_3 - C_6 alkenyl group, C_3 - C_6 haloalkenyl group, C_3 - C_6 alkynyl group, C_3 - C_6 haloalkynyl group, C_2 - C_4 carboxyalkyl group, C_3 - C_8 alkoxycarbonylalkyl group, C_5 - C_9 haloalkoxycarbonylalkyl group, C_5 - C_9 haloalkoxycabonylalkyl group, C_5 - C_9 haloalkynyloxycabonylalkyl group, C_5 - C_9 cycloalkoxycabonylalkyl group or C_5 - C_9 halocycloalkoxycabonylalkyl group.

- 39. A method of controlling weeds comprising a step of applying a compound to a cultivation area of a plant expressing at least one protein selected from the group consisting of:
 - (A1) a protein comprising the amino acid sequence shown in SEQ ID NO: 1;
 - (A2) a protein comprising the amino acid sequence shown in SEQ ID NO: 2;
 - (A3) a protein comprising the amino acid sequence shown in SEQ ID NO: 3;
 - (A4) a protein comprising the amino acid sequence shown in SEQ ID NO: 108;

(A5) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III) and comprising an amino acid sequence having at least 80% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108;

(A6) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a nucleotide sequence having at least 80% sequence identity with a nucleotide sequence encoding an amino acid sequence shown in any one of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108;

(A11) a protein comprising the amino acid sequence shown in SEQ ID NO: 159;

(A12) a protein comprising the amino acid sequence shown in SEQ ID NO: 160;

(A13) a protein comprising the amino acid sequence shown in SEQ ID NO: 136;

(A14) a protein comprising the amino acid sequence shown in SEQ ID NO: 137;

(A15) a protein comprising the amino acid sequence shown in SEQ ID NO: 138;

(A16) a protein comprising the amino acid sequence shown in SEQ ID NO: 215;

(A17) a protein comprising the amino acid sequence shown in SEQ ID NO: 216;

(A18) a protein comprising the amino acid sequence shown in SEQ ID NO: 217;

(A19) a protein comprising the amino acid sequence shown in SEQ ID NO: 218;

(A20) a protein comprising the amino acid sequence shown in SEQ ID NO: 219;

(A21) a protein comprising the amino acid sequence shown in SEQ ID NO: 220;

(A22) a protein comprising the amino acid sequence shown in SEQ ID NO: 221; (A23) a protein comprising the amino acid sequence shown in SEQ ID NO: 222;

(A24) a protein comprising the amino acid sequence shown in SEQ ID NO: 223;

(A25) a protein comprising the amino acid sequence shown in SEQ ID NO: 224;

(A26) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence having at least 80% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 159, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 217, SEQ ID NO: 219, SEQ ID NO: 220, SEQ ID NO: 221 or SEQ ID NO: 223 or an amino acid sequence having at least 90% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 160, SEQ ID NO: 215, SEQ ID NO: 216, SEQ ID NO: 228, SEQ ID NO: 222 or SEQ ID NO: 224;

(A27) a protein having the ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid

sequence encoded by a nucleotide sequence having at least 90% sequence identity with a nucleotide sequence encoding an amino acid sequence shown in any one of SEQ ID NO: 159, SEQ ID NO: 160, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 215, SEQ ID NO: 216, SEQ ID NO: 217, SEQ ID NO: 218, SEQ ID NO: 219, SEQ ID NO: 220, SEQ ID NO: 221, SEQ ID NO: 222, SEQ ID NO: 223 or SEQ ID NO: 224; and

(A28) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a DNA amplifiable by a polymerase chain reaction with a primer comprising the nucleotide sequence shown in any one of SEQ ID NOs: 124 to 128, a primer comprising the nucleotide sequence shown in SEQ ID NO: 129 and as a template a chromosomal DNA of Streptomyces phaeochromogenes, Streptomyces testaceus, Streptomyces achromogenes, Streptomyces griseofuscus, Streptomyces thermocoerulescens, Streptomyces nogalater, Streptomyces tsusimaensis, Streptomyces glomerochromogenes, Streptomyces olivochromogenes, Streptomyces omatus, Streptomyces griseus, Streptomyces lanatus, Streptomyces misawanensis, Streptomyces pallidus, Streptomyces roseorubens, Streptomyces rutgersensis, Streptomyces steffisburgensis or Saccharopolyspora taberi.

40. A method of evaluating the resistance of a cell to a compound of formula (I), said method comprising:

5

10

15

20

25

30

35

40

45

50

- (3) a step of contacting said compound with a cell expressing at least one herbicide metabolizing protein selected from the group consisting of:
 - (A1) a protein comprising the amino acid sequence shown in SEQ ID NO: 1;
 - (A2) a protein comprising the amino acid sequence shown in SEQ ID NO: 2:
 - (A3) a protein comprising the amino acid sequence shown in SEQ ID NO: 3;
 - (A4) a protein comprising the amino acid sequence shown in SEQ ID NO: 108;
 - (A5) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III) and comprising an amino acid sequence having at least 80% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108;
 - (A6) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a nucleotide sequence having at least 80% sequence identity with a nucleotide sequence encoding an amino acid sequence shown in any one of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108;
 - (A7) a protein having the ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a DNA that hybridizes, under stringent conditions, to a DNA comprising a nucleotide sequence encoding an amino acid sequence shown in any one of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108;
 - (A8) a protein having the ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a DNA amplifiable by a polymerase chain reaction with a primer comprising a nucleotide sequence shown in SEQ ID NO: 129, a primer comprising a nucleotide sequence shown in any one of SEQ ID NOs: 124 to 128, and as a template a chromosome of a microorganism belonging to Streptomyces or Saccharopolyspora;
 - (A9) a protein comprising an amino acid sequence shown in SEQ ID NO: 4;
 - (A11) a protein comprising the amino acid sequence shown in SEQ ID NO: 159;
 - (A12) a protein comprising the amino acid sequence shown in SEQ ID NO: 160;
 - (A13) a protein comprising the amino acid sequence shown in SEQ ID NO: 136;
 - (A14) a protein comprising the amino acid sequence shown in SEQ ID NO: 137;
 - (A15) a protein comprising the amino acid sequence shown in SEQ ID NO: 138;
 - (A16) a protein comprising the amino acid sequence shown in SEQ ID NO: 215;
 - (A17) a protein comprising the amino acid sequence shown in SEQ ID NO: 216;
 - (A18) a protein comprising the amino acid sequence shown in SEQ ID NO: 217;
 - (A19) a protein comprising the amino acid sequence shown in SEQ ID NO: 218; (A20) a protein comprising the amino acid sequence shown in SEQ ID NO: 219;
 - (A21) a protein comprising the amino acid sequence shown in SEQ ID NO: 220;
 - (A22) a protein comprising the amino acid sequence shown in SEQ ID NO: 221;

- (A23) a protein comprising the amino acid sequence shown in SEQ ID NO: 222;
- (A24) a protein comprising the amino acid sequence shown in SEQ ID NO: 223;
- (A25) a protein comprising the amino acid sequence shown in SEQ ID NO: 224;

5

10

15

20

25

30

35

40

45

50

- (A26) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence having at least 80% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 159, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 217, SEQ ID NO: 219, SEQ ID NO: 220, SEQ ID NO: 221 or SEQ ID NO: 223 or an amino acid sequence having at least 90% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 160, SEQ ID NO: 215, SEQ ID NO: 216, SEQ ID NO: 218, SEQ ID NO: 222 or SEQ ID NO: 224; and
- (A27) a protein having the ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a nucleotide sequence having at least 90% sequence identity with a nucleotide sequence encoding an amino acid sequence shown in any one of SEQ ID NO: 159, SEQ ID NO: 160, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 215, SEQ ID NO: 216, SEQ ID NO: 217, SEQ ID NO: 218, SEQ ID NO: 219, SEQ ID NO: 220, SEQ ID NO: 221, SEQ ID NO: 222, SEQ ID NO: 223 or SEQ ID NO: 224; and
- (4) a step of evaluating the degree of damage to the cell which contacted the compound in the above step (1).
- 41. The method according to claim 40, wherein the cell is a microorganism cell or plaint cell.
- **42.** A method of selecting a cell resistant to a compound of formula (I), said method comprising a step of selecting a cell based on the resistance evaluated in the method according to claim 40.
- 43. The cell resisnant to herbicide selected by the method according to claim 42, or the culture thereof,
- 44. A method of evaluating the resistance of a plant to a compound of formula (I), said method comprising:
 - (3) a step of contacting said compound with a plant expressing at least one herbicide metabolizing protein selected from the group consisting of:
 - (A1) a protein comprising the amino acid sequence shown in SEQ ID NO: 1;
 - (A2) a protein comprising the amino acid sequence shown in SEQ ID NO: 2;
 - (A3) a protein comprising the amino acid sequence shown in SEQ ID NO: 3;
 - (A4) a protein comprising the amino acid sequence shown in SEQ ID NO: 108;
 - (A5) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III) and comprising an amino acid sequence having at least 80% sequence identity with an amino acid sequences shown in any one of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108;
 - (A6) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a nucleotide sequence having at least 80% sequence identity with a nucleotide sequence encoding an amino acid sequence shown in any one of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108;
 - (A7) a protein having the ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a DNA that hybridizes, under stringent conditions, to a DNA comprising a nucleotide sequence encoding an amino acid sequence shown in SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108;
 - (A8) a protein having the ability to convert in the presence of an electron transport system containing an electron donor a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a DNA amplifiable by a polymerase chain reaction with a primer comprising a nucleotide sequence shown in SEQ ID NO: 129, a primer comprising a nucleotide sequence shown in any one of SEQ ID NOs: 124 to 128, and as a template a chromosome of a microorganism belonging to Streptomyces or Saccharopolyspora;
 - (A9) a protein comprising an amino acid sequence shown in SEQ ID NO: 4;
 - (A11) a protein comprising the amino acid sequence shown in SEQ ID NO: 159;

(A12) a protein comprising the amino acid sequence shown in SEQ ID NO: 160; (A13) a protein comprising the amino acid sequence shown in SEQ ID NO: 136; (A14) a protein comprising the amino acid sequence shown in SEQ ID NO: 137; (A15) a protein comprising the amino acid sequence shown in SEQ ID NO: 138; (A16) a protein comprising the amino acid sequence shown in SEQ ID NO: 215; (A17) a protein comprising the amino acid sequence shown in SEQ ID NO: 216; (A18) a protein comprising the amino acid sequence shown in SEQ ID NO: 217; (A19) a protein comprising the amino acid sequence shown in SEQ ID NO: 218; (A20) a protein comprising the amino acid sequence shown in SEQ ID NO: 219; (A21) a protein comprising the amino acid sequence shown in SEQ ID NO: 220; (A22) a protein comprising the amino acid sequence shown in SEQ ID NO: 221; (A23) a protein comprising the amino acid sequence shown in SEQ ID NO: 222; (A24) a protein comprising the amino acid sequence shown in SEQ ID NO: 223; (A25) a protein comprising the amino acid sequence shown in SEQ ID NO: 223; (A25) a protein comprising the amino acid sequence shown in SEQ ID NO: 223; (A25) a protein comprising the amino acid sequence shown in SEQ ID NO: 224;

5

10

15

20

25

30

40

45

50

55

(A26) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence having at least 80% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 159, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 217, SEQ ID NO: 219, SEQ ID NO: 220, SEQ ID NO: 221 or SEQ ID NO: 223 or an amino acid sequence having at least 90% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 160, SEQ ID NO: 215, SEQ ID NO: 216, SEQ ID NO: 218, SEQ ID NO: 222 or SEQ ID NO: 224; and

(A27) a protein having the ability to convert in the presence of an electron transport system containing an electron donor a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a nucleotide sequence having at least 90% sequence identity with a nucleotide sequence encoding an amino acid sequence shown in any one of SEQ ID NO: 159, SEQ ID NO: 160, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 215, SEQ ID NO: 216, SEQ ID NO: 217, SEQ ID NO: 219, SEQ ID NO: 220, SEQ ID NO: 221, SEQ ID NO: 222, SEQ ID NO: 223 or SEQ ID NO: 224; and

(4) a step of evaluating the degree of damage to the plant which contacted the compound described in step (1).

- **45.** A method of selecting a plant resistant to a compound of formula (I), said method comprising a step of selecting a plant based on the resistance evaluated in the method according to claim 44.
- 35 46. A herbicidally resistant plant selected from the method according to claim 45, or the progeny thereof.
 - 47. A method of treating a compound of formula (I), said method comprising reacting said compound in the presence of an electron transport system containing an electron donor, with at least one herbicide metabolizing protein selected from the group consisting of:
 - (A1) a protein comprising the amino acid sequence shown in SEQ ID NO: 1;
 - (A2) a protein comprising the amino acid sequence shown in SEQ ID NO: 2;
 - (A3) a protein comprising the amino acid sequence shown in SEQ ID NO: 3;
 - (A4) a protein comprising the amino acid sequence shown in SEQ ID NO: 108;

(A5) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III) and comprising an amino acid sequence having at least 80% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108;

(A6) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a nucleotide sequence having at least 80% sequence identity with a nucleotide sequence encoding an amino acid sequence shown in any one of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108; (A7) a protein having the ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a DNA that hybridizes, under stringent conditions, to a DNA comprising a nucleotide sequence encoding an amino acid sequence shown in any one of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108;

(A8) a protein having the ability to convert in the presence of an electron transport system containing an

(A9) a protein comprising an amino acid sequence shown in SEQ ID NO: 4;

5

10

15

20

25

30

35

40

45

50

55

electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a DNA amplifiable by a polymerase chain reaction with a primer comprising a nucleotide sequence shown in SEQ ID NO: 129, a primer comprising a nucleotide sequence shown in any one of SEQ ID NOs: 124 to 128, and as a template a chromosome of a microorganism belonging to Streptomyces or Saccharopolyspora;

(A11) a protein comprising the amino acid sequence shown in SEQ ID NO: 159; (A12) a protein comprising the amino acid sequence shown in SEQ ID NO: 160; (A13) a protein comprising the amino acid sequence shown in SEQ ID NO: 136; (A14) a protein comprising the amino acid sequence shown in SEQ ID NO: 137; (A15) a protein comprising the amino acid sequence shown in SEQ ID NO: 138; (A16) a protein comprising the amino acid sequence shown in SEQ ID NO: 215; (A17) a protein comprising the amino acid sequence shown in SEQ ID NO: 216: (A18) a protein comprising the amino acid sequence shown in SEQ ID NO: 217; (A19) a protein comprising the amino acid sequence shown in SEQ ID NO: 218; (A20) a protein comprising the amino acid sequence shown in SEQ ID NO: 219; (A21) a protein comprising the amino acid sequence shown in SEQ ID NO: 220; (A22) a protein comprising the amino acid sequence shown in SEQ ID NO: 221; (A23) a protein comprising the amino acid sequence shown in SEQ ID NO: 222; (A24) a protein comprising the amino acid sequence shown in SEQ ID NO: 223; (A25) a protein comprising the amino acid sequence shown in SEQ ID NO: 224; (A26) a protein having an ability to convert in the presence of an electron transport system containing an electron donor a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence having at least 80% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 159, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 217, SEQ ID NO: 219, SEQ ID NO: 220, SEQ ID NO: 221 or SEQ ID NO: 223 or an amino acid sequence having at least 90% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 160, SEQ ID NO: 215, SEQ ID NO: 216, SEQ ID NO: 218, SEQ ID NO: 222 or SEQ ID NO: 224; and (A27) a protein having the ability to convert in the presence of an electron transport system containing an

(A27) a protein having the ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a nucleotide sequence having at least 90% sequence identity with a nucleotide sequence encoding an amino acid sequence shown in any one of SEQ ID NO: 159, SEQ ID NO: 160, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 215, SEQ ID NO: 216, SEQ ID NO: 217, SEQ ID NO: 218, SEQ ID NO: 219, SEQ ID NO: 220, SEQ ID NO: 221, SEQ ID NO: 222, SEQ ID NO: 223 or SEQ ID NO: 224.

- **48.** The method according to claim 47, wherein reacting the compound with the herbicide metabolizing protein by contacting the compound with a transformant in which a DNA encoding the herbicide metabolizing protein is introduced into a host cell in a position enabling its expression in said cell.
- 49. Use for treating the compound of formula (I) of a herbicide metabolizing protein selected from the group consisting of:
 - (A1) a protein comprising the amino acid sequence shown in SEQ ID NO: 1;
 - (A2) a protein comprising the amino acid sequence shown in SEQ ID NO: 2;
 - (A3) a protein comprising the amino acid sequence shown in SEQ ID NO: 3;
 - (A4) a protein comprising the amino acid sequence shown in SEQ ID NO: 108;
 - (A5) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III) and comprising an amino acid sequence having at least 80% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108;
 - (A6) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a nucleotide sequence having at least 80% sequence identity with a nucleotide sequence encoding any one of the amino acid sequences shown in any one of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108;
 - (A7) a protein having the ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid

sequence encoded by a DNA that hybridizes, under stringent conditions, to a DNA comprising a nucleotide sequence encoding an amino acid sequence shown in SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108;

(A8) a protein having the ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a DNA amplifiable by a polymerase chain reaction with a primer comprising a nucleotide sequence shown in SEQ ID NO: 129, a primer comprising a nucleotide sequence shown in any one of SEQ ID NOs: 124 to 128, and as a template chromosome of a microorganism belonging to Streptomyces or Saccharopolyspora;

(A11) a protein comprising the amino acid sequence shown in SEQ ID NO: 159; (A12) a protein comprising the amino acid sequence shown in SEQ ID NO: 160; (A13) a protein comprising the amino acid sequence shown in SEQ ID NO: 136; (A14) a protein comprising the amino acid sequence shown in SEQ ID NO: 137; (A15) a protein comprising the amino acid sequence shown in SEQ ID NO: 138; (A16) a protein comprising the amino acid sequence shown in SEQ ID NO: 215; (A17) a protein comprising the amino acid sequence shown in SEQ ID NO: 216: (A18) a protein comprising the amino acid sequence shown in SEQ ID NO: 217; (A19) a protein comprising the amino acid sequence shown in SEQ ID NO: 218; (A20) a protein comprising the amino acid sequence shown in SEQ ID NO: 219; (A21) a protein comprising the amino acid sequence shown in SEQ ID NO: 220; (A22) a protein comprising the amino acid sequence shown in SEQ ID NO: 221; (A23) a protein comprising the amino acid sequence shown in SEQ ID NO: 222; (A24) a protein comprising the amino acid sequence shown in SEQ ID NO: 223; (A25) a protein comprising the amino acid sequence shown in SEQ ID NO: 224; (A26) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence having at least 80% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 159, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 217, SEQ ID NO: 219, SEQ ID NO: 220, SEQ ID NO: 221 or SEQ ID NO: 223 or an amino acid sequence having at least 90% sequence

(A9) a protein comprising an amino acid sequence shown in SEQ ID NO: 4;

216, SEQ ID NO: 218, SEQ ID NO: 222 or SEQ ID NO: 224; and (A27) a protein having the ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a nucleotide sequence having at least 90% sequence identity with a nucleotide sequence encoding the amino acid sequence shown in any one of SEQ ID NO: 159, SEQ ID NO: 160, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 215, SEQ ID NO: 216, SEQ ID NO: 217, SEQ ID NO: 218, SEQ ID NO: 219, SEQ ID NO: 220, SEQ ID NO: 221, SEQ ID NO: 222, SEQ ID NO: 223 or SEQ ID NO: 224, SEQ ID NO: 225, SEQ ID NO: 226, SEQ ID NO: 226, SEQ ID NO: 227, SEQ ID NO: 228, SEQ ID NO: 22

identity with an amino acid sequence shown in any one of SEQ ID NO: 160, SEQ ID NO: 215, SEQ ID NO:

NO: 224.

5

10

15

20

25

30

35

40

45

50

55

50. Use for treating a compound of formula (I) of a polynucleotide encoding a herbicide metabolizing protein selected from the group consisting of

```
(A1) a protein comprising the amino acid sequence shown in SEQ ID NO: 1; (A2) a protein comprising the amino acid sequence shown in SEQ ID NO: 2; (A3) a protein comprising the amino acid sequence shown in SEQ ID NO: 3;
```

(A4) a protein comprising the amino acid sequence shown in SEQ ID NO: 108;

(A5) a protein having an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III) and comprising an amino acid sequence having at least 80% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108;

(A6) a protein having an ability to convert in the presence of an electron transport system containing an electron donor a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a nucleotide sequence having at least 80% sequence identity with a nucleotide sequence encoding an amino acid sequence shown in any one of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108; (A7) a protein having the ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a DNA that hybridizes, under stringent conditions, to a DNA comprising a nucleotide

sequence encoding an amino acid sequence shown in SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 108;

(A8) a protein having the ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a DNA amplifiable by a polymerase chain reaction with a primer comprising a nucleotide sequence shown in SEQ ID NO: 129, a primer comprising a nucleotide sequence shown in any one of SEQ ID NOs: 124 to 128, and as a template a chromosome of a microorganism belonging to Streptomyces or Saccharopolyspora;

(A9) a protein comprising an amino acid sequence shown in SEQ ID NO: 4; (A11) a protein comprising the amino acid sequence shown in SEQ ID NO: 159; (A12) a protein comprising the amino acid sequence shown in SEQ ID NO: 160; (A13) a protein comprising the amino acid sequence shown in SEQ ID NO: 136; (A14) a protein comprising the amino acid sequence shown in SEQ ID NO: 137; (A15) a protein comprising the amino acid sequence shown in SEQ ID NO: 138; (A16) a protein comprising the amino acid sequence shown in SEQ ID NO: 215; (A17) a protein comprising the amino acid sequence shown in SEQ ID NO: 216; (A18) a protein comprising the amino acid sequence shown in SEQ ID NO: 217; (A19) a protein comprising the amino acid sequence shown in SEQ ID NO: 218; (A20) a protein comprising the amino acid sequence shown in SEQ ID NO: 219; (A21) a protein comprising the amino acid sequence shown in SEQ ID NO: 220; (A22) a protein comprising the amino acid sequence shown in SEQ ID NO: 221;

(A23) a protein comprising the amino acid sequence shown in SEQ ID NO: 222; (A24) a protein comprising the amino acid sequence shown in SEQ ID NO: 223;

(A25) a protein comprising the amino acid sequence shown in SEQ ID NO: 224;

(A26) a protein comprising an ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence having at least 80% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 159, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 217, SEQ ID NO: 219, SEQ ID NO: 220, SEQ ID NO: 221 or SEQ ID NO: 223 or an amino acid sequence having at least 90% sequence identity with an amino acid sequence shown in any one of SEQ ID NO: 160, SEQ ID NO: 215, SEQ ID NO: 216, SEQ ID NO: 228 or SEQ ID NO: 224; and

(A27) a protein having the ability to convert in the presence of an electron transport system containing an electron donor, a compound of formula (II) to a compound of formula (III), and comprising an amino acid sequence encoded by a nucleotide sequence having at least 90% sequence identity with a nucleotide sequence encoding an amino acid sequence shown in any one of SEQ ID NO: 159, SEQ ID NO: 160, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 215, SEQ ID NO: 216, SEQ ID NO: 217, SEQ ID NO: 218, SEQ ID NO: 219, SEQ ID NO: 220, SEQ ID NO: 221, SEQ ID NO: 222, SEQ ID NO: 223 or SEQ ID NO: 224.

40

5

10

15

20

25

30

35

45

50

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig. 13

Fig. 14

GCGGCCGCG CGCCGGCGCTTAA

. Fig. 15

Fig. 16

AGCTTGCGGCCGC ACGCCGGCGAT

Fig. 17

٦. ۾

1 ھ

т. 80

Fig. 20

Fig. 21

Fig. 22

Fig. 23

<u>ات</u> ق

Fig. 25

AGCTTGCGGCCGCGAATTC ACGCCGGCGCTTAAGTCGA

BspHI HindIII SphI BspHI KpnI HindIII

DNA A2

pCR923Sp BamHI F1ori

ColE1 ori Amp' Km'

Fig. 31

<u>F</u>

374

HindIII BamHI EcoT22I BspHI Kpnl Sacl EcoRI

RuBPCssCTP 12aa DNA A2

pKFrSt12-923 BamHI

ColE1 ori

EcoT22I EcoT22I

Fig. 34

BspHi EcoRi EcoT22I Kpni EcoRi EcoT22I

DNA A3

pCR671ET BamHI F10ri

ColE1 0ri Amp' Km'

დ დ

F.18

Fig. 39

Fig. 40

Fig. 41

HindIII BamHI EcoT221 BspHI KpnI SacI EcoRI

RuBPCssCTP 12aa DNA A3

pKFrSt12-671 BamHI

ColE1 ori

EcoT221 EcoT221

379

<u>.</u> و

Fig

Fig. 46

BEST AVAILABLE COPY

Fig. 47

AGCTATTTTTAATAAAATCAGGAGGAAAAACATATGAGCAAGCTTGGCTGTTTTGGCGGATGAGAGAAGA TAAAAAATTATTTTAGTCCTCCTTTTTTGTATACTCGTTCGAACCGACAAAACCGCCTACTCTTCT

Fig. 48

BEST AVAILABLE COPY

F. 8

BEST AVAILABLE COPY

HindIII BamHI EcoT221 SacI EcoRI
RuBPCssCTP DNA A23S
BSpHI
ColE1 ori Amp^r
BspHI

386

F. .

<u>بة</u> 9

HindIII BamHI EcoT22I BspHI SacI EcoRI

RuBPCssCTP 12aa DNA A23S

pKFrSt12-1584soy

ColE1 ori

EcoT22I EcoT22I

<u>ت</u> ق

<u>بر</u> ھ

HindIII BamHI EcoT22I SacI EcoRI

RuBPCssCTP DNA A25S

BSpHI

ColE1 ori

BspHI

0 9

<u>ج</u> بع

TGCAGGTGTGGCCACCAATTGGCAAGAAGAATGCA ACGTACGTCCACACGGTGGTTAACCGTTCTTTT

ᄩ

Fig. 64

BEST AVAILABLE COPV

EP 1 457 558 A1

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP02/10789

Int.	SIFICATION OF SUBJECT MATTER C1	1N33/15, C12P21/02, C12 R1:19), (C12N5/10, C12R1	P21/08,		
B. FIELDS SEARCHED					
Minimum d	ocumentation searched (classification system followed	by classification symbols)			
Int.Cl ⁷ C12N1/00-15/90, C07K14/00-16/46, A61K31/00-48/00, G01N33/00-98, C12P21/08, A01H1/00-17/00					
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched					
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) SwissProt/PIR/GeneSeq, MEDLINE(STN), Genbank/EMBL/DDBJ/GeneSeq, WPI(DIALOG), BIOSIS(DIALOG)					
C. DOCU	MENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where ap		Relevant to claim No.		
P,Y	Bentley S.D. et al., "Complet		1-15,17,23,		
P,A	the model actinomycete Streptomyces coelicolor A3(2).", Nature, 09 May, 2002 (09.05.02), Vol.417, pages 141 to 147		24,26-36,50 16,18-22,25, 38-49		
Y A	Esther Schmid et al., "AUD4, a new amplifiable element from Streptomyces lividans.", Microbiology, 1999, Vol.145, pages 3331 to 3341		1-15,17,23, 24,26-36,50 16,18-22,25, 38-49		
A A	Trower M.K. et al., "Cloning, nucleotide sequence determination and expression of the genes encoding cytochrome P-450soy (soyC) and ferredoxinsoy (soyB) from Streptomyces griseus.", Mol.Microbiol., (1992), Vol.6, No.15, pages 2125 to 2134		1-3,5,7-15, 17,23,24, 26-36,50 4,6,16, 18-22,25, 38-49		
	er documents are listed in the continuation of Box C.	See patent family annex.			
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance of active document but published on or after the international filing date and not in conflict with the application but cited understand the principle or theory underlying the invention can document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published after the international filing date on priority date and not in conflict with the application but cited understand the principle or theory underlying the invention can considered novel or cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention can considered to involve an inventive step when the document of particular relevance; the claimed invention can considered to involve an inventive step when the document of particular relevance; the claimed invention can considered to involve an inventive step when the document of combined with one or more other such document of minute and document member of the same patent family "A" "A" later document published after the international filing date on the orthory underlying the invention can considered novel or cannot be considered to involve an inventive step when the document is taken alone occurrent of particular relevance; the claimed invention can considered to involve an inventive step when the document is taken alone occurrent of particular relevance; the claimed invention can considered to involve an inventive step when the document of invention can considered to involve an inventive step when the document of particular relevance; the claimed invention can considered to involve an inventive step when the document of invention can considered to involve an inventive step when the document of invention can can cons		the application but cited to erlying the invention claimed invention cannot be red to involve an inventive claimed invention cannot be to when the document is documents, such skilled in the art family			
	ebruary, 2003 (03.02.03)	11 March, 2003 (11.	03.03)		
	nese Patent Office	Authorized officer			
Facsimile No.		Telephone No.			

Form PCT/ISA/210 (second sheet) (July 1998)

EP 1 457 558 A1

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP02/10789

		101/01	702/10/09
C (Continua	tion). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
Y A	OMURA S. et al., "Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites.", Proc.Natl.Acad.Sci.USA, 09 October, 2001 (09.10.01), Vol.98, No.21, pages 12215 to 12220		1-3,7-15,17, 23,24,26-36, 50 4-6,16, 18-22,25, 38-49
Y A	WO 93/12236 A1 (E.I. Du Pont de Nemours & 24 June, 1993 (24.06.93), & JP 07-502650 A & EP 618972 A1 & US 5466590 A	Co.),	1-3,5,7-15, 17,23,24, 26-36,50 4,6,16, 18-22,25, 38-49
Y A	WO 91-03561 Al (E.I. Du Pont de Nemours & 21 March, 1991 (21.03.91), & JP 3206813 B2 & EP 554240 Al	Co.),	1-3,7-15,17, 23,24,26-36, 50 4-6,16, 18-22,25, 38-49
Y A	O'Keefe D.P. et al., "Ferredoxins from two sulfonylurea herbicide monooxygenase syste Streptomyces griseolus.", Biochemistry, (1 Vol.30, No.2, pages 447 to 455	ms in	27-31 1-26,32-50
Y A	Omer C.A. et al., "Genes for two herbicide-icytochromes P-450 from Streptomyces griseo J.Bacteriol., (1990), Vol.172, No.6, pages 3345	lus.",	27-31 1-26,32-50
P,Y P,A	Holmes S.E. et al., "A repeat expansion in encoding junctophilin-3 is associated with Huntington disease-like 2.", Nature Geneti (Dec.2001), Vol.29, No.4, pages 377 to 378	cs,	27-31 1-26, 32-50
j			

Form PCT/ISA/210 (continuation of second sheet) (July 1998)

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP02/10789

Box I Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 3 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows: The amino acid sequences represented by SEQ ID NOS:12 to 14, 111, 149 to 153, 245 and 247 to 254 as set forth in claim 27 specify Streptomyces—origin ferredoxins which had been well known per se. Since the Streptomyces—origin ferredoxins cannot be considered as "a special technical feature that defines a contribution which each of the claimed inventions, considered as a whole, makes over the prior art", it is adequate to regard ferredoxins with various Streptomyces origins as to different inventions. Such being the case, the claims of the present case have 19 inventions in total, i.e., an invention relating to (continued to extra sheet) 1. As all required additional search fees were timely paid by the applicant, this international search report covers all scarchable claims.
of any additional fee. 3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1998)

EP 1 457 558 A1

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP02/10789

Continuation of A. CLASSIFICATION OF SUBJECT MATTER (International Patent Classification (IPC))

Int.Cl7 (C12P21/02, C12R1:91), (C12P21/08, C12R1:91)

(According to International Patent Classification (IPC) or to both national classification and IPC)

Continuation of Box No.II of continuation of first sheet(1)

a Streptomyces-origin PPO inhibitory weed controller metabolism protein and 18 inventions relating respectively to ferredoxin proteins having the amino acid sequences represented by the above SE ID NOS.

Form PCT/ISA/210 (extra sheet) (July 1998)