Partition en chemins et théorème de Dilworth dans les graphes temporels

Dibyayan Chakraborty¹, Antoine Dailly², Florent Foucaud², Ralf Klasing³

School of Computing, University of Leeds ² LIMOS. Clermont-Ferrand ³ LaBRI, Bordeaux

ANR GRALMECO et TEMPOGRAL

Théorème [Dilworth, 1950]

La taille minimale d'une partition en chaines d'un poset fini est égal à la taille maximale d'une antichaine de ce poset.

Théorème [Dilworth, 1950]

La taille minimale d'une partition en chemins d'un DAG transitif est égal à la taille maximale d'une antichaine de ce DAG.

Reformulation en graphe...

Théorème [Dilworth, 1950]

La taille minimale d'une couverture par chemins d'un DAG est égal à la taille maximale d'une antichaine de ce DAG.

Reformulation en graphe... ... et en couverture.

Théorème [Dilworth, 1950]

La taille minimale d'une couverture par chemins d'un DAG est égal à la taille maximale d'une antichaine de ce DAG.

Reformulation en graphe...
... et en couverture.

Algorithmes:

► Preuve algorithmique (temps polynomial) [Fulkerson, 1956]

Théorème [Dilworth, 1950]

La taille minimale d'une couverture par chemins d'un DAG est égal à la taille maximale d'une antichaine de ce DAG.

Reformulation en graphe...
... et en couverture.

- ► Preuve algorithmique (temps polynomial) [Fulkerson, 1956]
- ► Constamment amélioré depuis, jusqu'à quasi-linéaire [Caceres, ICALP 2023]

Théorème [Dilworth, 1950]

La taille minimale d'une couverture par chemins d'un DAG est égal à la taille maximale d'une antichaine de ce DAG.

Reformulation en graphe...
... et en couverture.

- Preuve algorithmique (temps polynomial) [Fulkerson, 1956]
- Constamment amélioré depuis, jusqu'à quasi-linéaire [Caceres, ICALP 2023]
- ► NP-complet sur les graphes généraux

Introduction : (di)graphes temporels

$$\mathcal{D} = (V, A_1, A_2, \dots, A_k) \text{ [Ferreira & Viennot, 2002]}$$

Introduction: (di)graphes temporels

 $\mathcal{D} = (V, A_1, A_2, \dots, A_k)$ [Ferreira & Viennot, 2002]

 $\mathcal{D} = (V, A, \lambda)$ [Kempe, Kleinberg & Kumar, 2000]

Introduction: (di)graphes temporels

 $\mathcal{D} = (V, A, \lambda)$ [Kempe, Kleinberg & Kumar, 2000]

Beaucoup de travaux en algorithmes distribués, réseaux dynamiques (de transport, sociaux, biologiques...), etc. Plus récemment, intérêt de la communauté d'algorithmes de graphes.

► Le (di)graphe sous-jacent est appelé l'empreinte. Un DAG (resp. arbre...) temporel est un (di)graphe temporel dont l'empreinte est un DAG (resp. arbre...).

- ► Le (di)graphe sous-jacent est appelé l'empreinte. Un DAG (resp. arbre...) temporel est un (di)graphe temporel dont l'empreinte est un DAG (resp. arbre...).
- ► Chemin (dirigé) temporel : labels strictement croissants.

- ► Le (di)graphe sous-jacent est appelé l'empreinte. Un DAG (resp. arbre...) temporel est un (di)graphe temporel dont l'empreinte est un DAG (resp. arbre...).
- ► Chemin (dirigé) temporel : labels strictement croissants.
- ▶ Un chemin temporel occupe un sommet dans l'intervalle $[t_1, t_2]$ s'il y arrive en t_1 et en repart en t_2 .

- ► Le (di)graphe sous-jacent est appelé l'empreinte. Un DAG (resp. arbre...) temporel est un (di)graphe temporel dont l'empreinte est un DAG (resp. arbre...).
- ► Chemin (dirigé) temporel : labels strictement croissants.
- ▶ Un chemin temporel occupe un sommet dans l'intervalle $[t_1, t_2]$ s'il y arrive en t_1 et en repart en t_2 .
- ▶ Deux chemins temporels s'intersectent s'ils occupent un même sommet à des intervalles non-disjoints.

- ► Le (di)graphe sous-jacent est appelé l'empreinte. Un DAG (resp. arbre...) temporel est un (di)graphe temporel dont l'empreinte est un DAG (resp. arbre...).
- ► Chemin (dirigé) temporel : labels strictement croissants.
- ▶ Un chemin temporel occupe un sommet dans l'intervalle $[t_1, t_2]$ s'il y arrive en t_1 et en repart en t_2 .
- ▶ Deux chemins temporels s'intersectent s'ils occupent un même sommet à des intervalles non-disjoints. Ils sont temporellement disjoints s'ils ne s'intersectent pas.

- ► Le (di)graphe sous-jacent est appelé l'empreinte. Un DAG (resp. arbre...) temporel est un (di)graphe temporel dont l'empreinte est un DAG (resp. arbre...).
- ► Chemin (dirigé) temporel : labels strictement croissants.
- ▶ Un chemin temporel occupe un sommet dans l'intervalle $[t_1, t_2]$ s'il y arrive en t_1 et en repart en t_2 .
- ▶ Deux chemins temporels s'intersectent s'ils occupent un même sommet à des intervalles non-disjoints. Ils sont temporellement disjoints s'ils ne s'intersectent pas.
- ► Une antichaine temporelle est un ensemble de sommets qui n'ont pas de chemins temporels entre eux deux à deux.

Notre intérêt : les chemins temporellement disjoints Historique

- ▶ Divers travaux sur les chemins dans les graphes temporels
- ► Les chemins temporellement disjoints modélisent le MULTI AGENT PATH FINDING [Stern *et al.*, 2019] dynamique

Notre intérêt : les chemins temporellement disjoints

Historique

- ▶ Divers travaux sur les chemins dans les graphes temporels
- ► Les chemins temporellement disjoints modélisent le MULTI AGENT PATH FINDING [Stern *et al.*, 2019] dynamique

- ► MARCHES TEMPORELLEMENT DISJOINTES : W[1]-dur et XP (nombre de marches) [Klobas *et al.*, IJCAI 2021]
- ► CHEMINS TEMPORELLEMENT DISJOINTS: NP-complet et W[1]-dur (nombre de sommets) sur les étoiles temporelles [Kunz, Molter & Zehavi, IJCAI 2023]

Un théorème de Dilworth... temporel?

Propriété de Dilworth

La taille minimale d'une partition en chemins est égale à la taille maximale d'une antichaine.

Un théorème de Dilworth... temporel?

Propriété de Dilworth temporelle

La taille minimale d'une partition en chemins temporellement disjoints est égale à la taille maximale d'une antichaine temporelle.

Un théorème de Dilworth... temporel?

Propriété de Dilworth temporelle

La taille minimale d'une partition en chemins temporellement disjoints est égale à la taille maximale d'une antichaine temporelle.

Deux questions:

Quelles familles de digraphes temporels ont la propriété de Dilworth?

⇒ Aspect combinatoire

Quelle est la complexité de calculer une partition en chemins temporellement disjoints optimale?

⇒ Aspect algorithmique

Nos résultats

Classe temporelle	Propriété de Dilworth	Algorithme
Chemins orientés	OUI	$\mathcal{O}(\ell n)$
Arbres enracinés	OUI	$\mathcal{O}(\ell n^2)$
Arbres orientés	NON	NP-complet
DAGs*	NON	NP-complet
Digraphes	NON	FPT (tw et t_{max}) $2^{\mathcal{O}(\text{tw}^2 t_{\text{max}} \log(\text{tw} + t_{\text{max}}))} n$

^{*} planaires, subcubiques, bipartis, maille 10, $\ell=1$, $t_{\sf max}=2$

n= nombre de sommets $\ell=$ nombre de labels temporels par arc (non-triés) $t_{\max}=$ nombre total de temps

Théorème [CDFK, 2023+]

Les chemins orientés temporels vérifient la propriété de Dilworth, et on peut calculer une partition en chemins temporellement disjoints de taille minimale en temps $\mathcal{O}(\ell n)$.

Algorithme

Théorème [CDFK, 2023+]

Les chemins orientés temporels vérifient la propriété de Dilworth, et on peut calculer une partition en chemins temporellement disjoints de taille minimale en temps $\mathcal{O}(\ell n)$.

Algorithme

Théorème [CDFK, 2023+]

Les chemins orientés temporels vérifient la propriété de Dilworth, et on peut calculer une partition en chemins temporellement disjoints de taille minimale en temps $\mathcal{O}(\ell n)$.

Algorithme

Théorème [CDFK, 2023+]

Les chemins orientés temporels vérifient la propriété de Dilworth, et on peut calculer une partition en chemins temporellement disjoints de taille minimale en temps $\mathcal{O}(\ell n)$.

Algorithme

Théorème [CDFK, 2023+]

Les chemins orientés temporels vérifient la propriété de Dilworth, et on peut calculer une partition en chemins temporellement disjoints de taille minimale en temps $\mathcal{O}(\ell n)$.

Algorithme

Prendre un chemin temporel maximal qui contient une feuille.

) - - - -

Puis itérer. Les feuilles successives forment une antichaine!

Théorème [CDFK, 2023+]

Les arbres enracinés temporels vérifient la propriété de Dilworth, et on peut calculer une partition en chemins temporellement disjoints de taille minimale en temps $\mathcal{O}(\ell n^2)$.

Théorème [CDFK, 2023+]

Les arbres enracinés temporels vérifient la propriété de Dilworth, et on peut calculer une partition en chemins temporellement disjoints de taille minimale en temps $\mathcal{O}(\ell n^2)$.

Algorithme

▶ Même principe que pour les chemins

Théorème [CDFK, 2023+]

Les arbres enracinés temporels vérifient la propriété de Dilworth, et on peut calculer une partition en chemins temporellement disjoints de taille minimale en temps $\mathcal{O}(\ell n^2)$.

Algorithme

▶ Même principe que pour les chemins

Théorème [CDFK, 2023+]

Les arbres enracinés temporels vérifient la propriété de Dilworth, et on peut calculer une partition en chemins temporellement disjoints de taille minimale en temps $\mathcal{O}(\ell n^2)$.

Algorithme

► Même principe que pour les chemins : les feuilles forment une antichaine

Théorème [CDFK, 2023+]

Les arbres enracinés temporels vérifient la propriété de Dilworth, et on peut calculer une partition en chemins temporellement disjoints de taille minimale en temps $\mathcal{O}(\ell n^2)$.

- ► Même principe que pour les chemins : les feuilles forment une antichaine
- ► En partant de la racine, résoudre les conflits : si deux chemins s'intersectent, soit ils commencent en même temps

Théorème [CDFK, 2023+]

Les arbres enracinés temporels vérifient la propriété de Dilworth, et on peut calculer une partition en chemins temporellement disjoints de taille minimale en temps $\mathcal{O}(\ell n^2)$.

- ► Même principe que pour les chemins : les feuilles forment une antichaine
- ► En partant de la racine, résoudre les conflits : si deux chemins s'intersectent, soit ils commencent en même temps

Théorème [CDFK, 2023+]

Les arbres enracinés temporels vérifient la propriété de Dilworth, et on peut calculer une partition en chemins temporellement disjoints de taille minimale en temps $\mathcal{O}(\ell n^2)$.

- ► Même principe que pour les chemins : les feuilles forment une antichaine
- ► En partant de la racine, résoudre les conflits : si deux chemins s'intersectent, soit ils commencent en même temps, soit un commence avant l'autre

Théorème [CDFK, 2023+]

Les arbres enracinés temporels vérifient la propriété de Dilworth, et on peut calculer une partition en chemins temporellement disjoints de taille minimale en temps $\mathcal{O}(\ell n^2)$.

- ► Même principe que pour les chemins : les feuilles forment une antichaine
- ► En partant de la racine, résoudre les conflits : si deux chemins s'intersectent, soit ils commencent en même temps, soit un commence avant l'autre

Arbres orientés temporels : NP-complétude

Théorème [CDFK, 2023+]

La partition en chemins temporellement disjoints est NP-difficile dans les arbres orientés temporels.

Théorème [CDFK, 2023+]

La partition en chemins temporellement disjoints est NP-difficile dans les arbres orientés temporels.

Réduction depuis BIN PACKING UNAIRE

Objets de taille x_1, \ldots, x_n ; b boites de taille B

Théorème [CDFK, 2023+]

La partition en chemins temporellement disjoints est NP-difficile dans les arbres orientés temporels.

Réduction depuis BIN PACKING UNAIRE

Objets de taille x_1, \ldots, x_n ; b boites de taille B

Chaque $(s_i, t_i) \equiv$ une boite

Théorème [CDFK, 2023+]

La partition en chemins temporellement disjoints est NP-difficile dans les arbres orientés temporels.

Réduction depuis BIN PACKING UNAIRE

Objets de taille x_1, \ldots, x_n ; b boites de taille B

Chaque $(s_i, t_i) \equiv$ une boite

Chaque boite doit être remplie

Théorème [CDFK, 2023+]

La partition en chemins temporellement disjoints est NP-difficile dans les arbres orientés temporels.

Réduction depuis BIN PACKING UNAIRE

Objets de taille x_1, \ldots, x_n ; b boites de taille B

Chaque $(s_i, t_i) \equiv$ une boite Chaque boite doit être remplie $(v_i, w_i) \equiv$ boites nonutilisées par l'objet i

Théorème [CDFK, 2023+]

La partition en chemins temporellement disjoints est NP-difficile dans les arbres orientés temporels.

Réduction depuis BIN PACKING UNAIRE

Objets de taille x_1, \ldots, x_n ; b boites de taille B

Chaque $(s_i, t_i) \equiv$ une boite

Chaque boite doit être remplie

 $(v_i, w_i) \equiv \text{boites non-}$ utilisées par l'objet i

On crée des **couches temporelles** pour chaque objet *i*

Théorème [CDFK, 2023+]

La partition en chemins temporellement disjoints est NP-difficile dans les arbres orientés temporels.

Réduction depuis BIN PACKING UNAIRE

Objets de taille x_1, \ldots, x_n ; b boites de taille B

Chaque $(s_i, t_i) \equiv$ une boite

Chaque boite doit être remplie $(v_i, w_i) \equiv$ boites nonutilisées par l'objet iOn crée des **couches temporelles**pour chaque objet i

Ici, $x_1 = 3$

Théorème [CDFK, 2023+]

Théorème [CDFK, 2023+]

Théorème [CDFK, 2023+]

Théorème [CDFK, 2023+]

Théorème [CDFK, 2023+]

Théorème [CDFK, 2023+]

Théorème [CDFK, 2023+]

Théorème [CDFK, 2023+]

Conclusion, perspectives

Classe temporelle	Propriété de Dilworth	Algorithme
Chemins orientés	OUI	$\mathcal{O}(\ell n)$
Arbres enracinés	OUI	$\mathcal{O}(\ell n^2)$
Arbres orientés & DAGs	NON	NP-complet
Digraphes	NON	FPT (tw et t_{max}) $2^{\mathcal{O}(\text{tw}^2 t_{\text{max}} \log(\text{tw} + t_{\text{max}}))} n$

Conclusion, perspectives

Classe temporelle	Propriété de Dilworth	Algorithme
Chemins orientés	OUI	$\mathcal{O}(\ell n)$
Arbres enracinés	OUI	$\mathcal{O}(\ell n^2)$
Arbres orientés & DAGs	NON	NP-complet
Digraphes	NON	FPT (tw et t_{max}) $2^{\mathcal{O}(\text{tw}^2 t_{\text{max}} \log(\text{tw} + t_{\text{max}}))} n$

Perspectives

- ► Classes d'arbres orientés ou DAGs polynomiales ou vérifiant la propriété de Dilworth?
- ► Meilleur algorithme FPT?
- ► Approximation?
- ► Cas non-orienté?

Conclusion, perspectives

Classe temporelle	Propriété de Dilworth	Algorithme
Chemins orientés	OUI	$\mathcal{O}(\ell n)$
Arbres enracinés	OUI	$\mathcal{O}(\ell n^2)$
Arbres orientés & DAGs	NON	NP-complet
Digraphes	NON	FPT (tw et t_{max}) $2^{\mathcal{O}(\text{tw}^2 t_{\text{max}} \log(\text{tw} + t_{\text{max}}))} n$

Perspectives

- ► Classes d'arbres orientés ou DAGs polynomiales ou vérifiant la propriété de Dilworth?
- ▶ Meilleur algorithme FPT?
- ► Approximation?
- ► Cas non-orienté?

