Literature Review on Adaptive Control for Power Electronics

Aeishwarya Baviskar

Fraunhofer Institute of Solar Energy Systems
Technical University of Munich

November 24, 2022

Contents of the Presentation

Introduction to the problem

Gain Scheduling

3 Self Tuning Regulator (STR)

Model Reference Adaptive Control (MRAC)

Introduction to the problem

- System under consideration: grid connected inverters with LCL filter.
- Problems:
 - LCL filter resonance $\left[\omega_{\rm res}=\sqrt{rac{L_1+L_2+L_g}{L_1\,C_f(L_2+L_a)}}
 ight]$
 - Low-order harmonics due to grid distortion
- Conventional control is designed for stiff grid condition.
- In the case of a changing grid impedance, conventional control fails to aive desired result
- A possible solution can be robust control
 - Robust control ensures acceptable performance in a predefined range of disturbance.
- Proposed solution

Adaptive Control

Adaptive Control

Figure: Control Design Principle (Landau et al., 2011)

Figure: Adaptive Control Principle (Landau et al., 2011)

- In a conventional control, control parameters are fed to the system only once.
- Adaptive control takes into account the plant input and output and then adapts the parameters of the adjustable controller.

Adaptive Control

GS: Gain Scheduling STR: Self Tuning Regulator

MRAC: Model Reference Adaptive Control

Gain Scheduling

- Nonlinear control technique.
- Deploys a linear controller.
- Parameters of the linear controller are changed w.r.t. changes in the environment.

For a Grid connected inverter with LCL filter.

Plant: LCL Filter

Environment: Grid / Grid impedance

Environment Measurement: Measure of change in grid impedance

r(t): reference input

y(t): output (grid current or voltage at point of common coupling)

u(t): pulsed output voltage of inverter

Example from reference (Cespedes and Sun, 2014)

Figure: Grid connected inverter with L filter (Cespedes and Sun, 2014)

- Stability of the system depends on the parameters of PLL and the current controller (PI).
- Grid impedance is estimated by measuring the grid impulse response.
- A look-up-table for control parameters is precalculated using Routh-Hurwitz criteria.

Results

Figure: Phase currents and grid impedance

- Grid impedance is changed from 0.11 pu (3.1mH) to 0.33 pu (7.9mH) at 0.46 secs
- The change in impedance is not detected until the next identification pulse 200ms later.
- During the time grid impedance is not estimated phase currents suffer from resonance.

 $i_{\rm D}$ = positive sequence current

 i_n = negative sequence current

The positive sequence at fundamental frequency is removed from figure 2 to focus on the harmonics.

Self Tuning Regulator

- Most intuitive type of adaptive control
- Can be direct or indirect
- Direct STR: redesign of control parameters w.r.t. change in the output.
- Indirect STR: Plant parameters are estimated and then the controller is redesigned.

Figure: Control block diagram for self tuning regulators

For the system under consideration, plant can be considered linear around the operating point and direct self tuning regulators can be applied.

9/17

Example from reference (Andresen et al., 2015)

Figure: STR for grid connected inverter with LCL filter (Andresen et al., 2015)

EKF: extended Kalman filter for arid impedance estimation. (Hoffmann and Fuchs. 2014)

Fraunhofer

- Current Controller: Pl controller
- Overall characteristic polynomial is a function of system parameters and the controller feedback vector
- Desired system performance is specified in terms of pole locations.
- By solving the Diophantine equation control parameters are expressed in terms of the plant parameters and the grid impedance.

Result

Figure: Without controller adaptation

- Experiment in (Andresen et al., 2015) is carried out on a 30kVA laboratory setup.
- Grid impedance: $0.025pu \rightarrow 0.112pu$
- Without the adaptation of controller parameters harmonics are still
- Fraunhossiple in the spectrum after more than 10 cycles.

Introduction to the problem Gain Schedulina Self Tuning Regulator (STR) Model Reference Adaptive Control (MRAC)

Result

Figure: With controller adaptation

- EKF correctly estimates grid impedance after half a fundamental cycle.
- Visible harmonics in the output spectrum are rejected after 5 fundamental periods.

Model Reference Adaptive Control (MRAC)

- Desired system performance is specified through the reference model.
- Adaptation of the control parameters is influenced by : $\delta e(t)/\delta \theta(t)$.
- The goal of MRAC is to drive the error e(t) to zero.
- Does not ensure that the overall system parameters meet the reference model.
- MRAC can be direct or indirect

Figure: General block biagram for model reference adaptive Control (Landau et al., 2011)

- r(t): reference input y(t): plant output θ_c : feedforward control parameters
- θ_c : feedback control parameters
- $y_m(t)$: reference model output
- $e(t) = y_m(t) y(t)$

Example from reference (Massing et al., 2012)

Figure: MRAC control scheme (Massing et al., 2012)

- $W_m(z)$ is the reference model transfer function.
- State space control is used in (Massing et al., 2012)
- Adaptation law can be gradient descent (Massing et al., 2009) or recursive least square (Massing et al., 2012). Fraunhofer

Result

Figure: Effect of change in grid impedance with MRAC (Massing et al., 2012)

- Within the interval of t=25 and t=33.33 seconds, the gird impedance is changed 4 times.
- Additional grid impedance: 1mH
- Grid current is found stable and well damped even under large parametric variations.

References

- (0) Andresen, M., Liserre, M., Fuchs, F. W., and Hoffmann, N. (2015). Design of a grid adaptive controller for pwm converters with Icl filters. In Industrial Electronics Society, IECON 2015-41st Annual Conference of the IEEE, pages 003664--003671. IEEE.
- (0) Cespedes, M. and Sun, J. (2014). Adaptive control of grid-connected inverters based on online grid impedance measurements. IEEE Transactions on sustainable energy, 5(2):516-523.
- (0) Hoffmann, N. and Fuchs, F. W. (2014). Minimal invasive equivalent arid impedance estimation in inductive-resistive power networks using extended kalman filter. IEEE Transactions on Power Electronics, 29(2):631--641.
- (0) Landay, I. D., Lozano, R., M'Saad, M., and Karimi, A. (2011). Adaptive control: algorithms, analysis and applications.
 - Springer Science & Business Media.
- (0) Massing, J. R., Stefanello, M., Gründling, H. A., and Pinheiro, H. (2009). Adaptive current control for arid-connected converters with Icl-filter. In Industrial Electronics, 2009, IECON'09, 35th Annual Conference of IEEE, pages 166–172, IEEE,
- (0) Massing, J. R., Stefanello, M., Gründling, H. A., and Pinheiro, H. (2012). Adaptive current control for arid-connected converters with Icl-filter.
- Fraunth in Electronics, 2009. IECON'09, 35th Annual Conference of IEEE, pages 166--172. IEEE

Thank You

Questions?

