for	those who handed 1st huk late (lateromers to the class (on 16/7)
1.2.10	In augmented form, the system Corresponds to [2 h 2] \[\bigcup \left\ \left\ \left\ \right\ \left\ \left\ \left\ \right\ \left\ \right\ \left\ \right\ \ri
	(a) if $h=2$, $k \neq 8 \Rightarrow$ inconsistent
	(i) $8-4k=1=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$
	and as long as $h \neq 2$, $\forall h \in \mathbb{R}$ (2) This is a solution to the system
	(c) $h=2$, $k=8$ gives $\begin{bmatrix} 1 & 2 & 2 \\ 0 & 0 & 0 \end{bmatrix}$
err (1,000 depende de glocke par per pri tra (1,000 de de de de pri general) en esta de la principa de principa La companya de la companya de	gives infinitely many rolutions.
	We just need a vow of zeros in the 2nd vow of the meeting.
	(8; (a): 3 for general solutions (b): 3 for general solutions (c): 2 for correct numbers)

1.3.22 When we have an $A \in M_{3\times3}$ without the 3 linearly independent column vectors, C(A) does not span R^3 . Hence, we can always find $b \in R^3$ s.t. $b \notin co C(A)$. (6; 2 for "vealization that A needs 3

linearly independent column vectors, I for
attempt at example, It for correct examples, I for
all of the above)

1.4.21 Only a set of 4 linearly
independent vectors ER spans R4. There are 3 linearly independent vectors in this ret — so this cannot form a basis for R4.

I for attempting the problem; (6; 2 for realization above, 2 for Correct subsequent explanations, I all of the above)

1.5.23 (a) TRUE the trivial solution is always
a robution

(b) FALSE the volution ret is given S= { ep+le : ler} Wheve Sp is particular solution and La is homogenous solution description of The equation gives an implicit solution set to Ax = b. (c) FALSE the trivial solution is always to Are = 0 (d) FALSE the line goes through p. their is parallel to v. (e) FALSE this relatione; this is only true if p is a particular robotion, ie. of Ap = b. holds. (10; 2 each, 1 for T/F, 1 for Correct explanation)

1.7.22 (a) TRUE if 2 points lie on the same line through the origin passing

then the vectors are scalar multiples of one another. (b) FALSE counterexample: \[\begin{bmatrix} \frac{1}{2}, & \begin{bmatrix} -2\\ 3\\ \end{bmatrix}, & \begin{bmatrix} \frac{1}{3}\\ \end{bmatrix}. \]
(c) TRUE by def: independent, but has fewer vectors
rectors
than there are vectors. (8; 2 each, 1 for T/Fg 1 for correct explanation)

Proof let T(x1, or2) = (2x1-3x2, x1, +4, 5x2) 1-8-33 To ree T is not a linear transformation we need just one counterexample. ie let &= (1,1). 8 y== (1,0). .. Then T(2,1a) =(1,6,5)but T(x) + T(y) = (-1, 5, 5) +(2,5,6) =(1,10,5)10 T(x+y) + T(x) + T(y) => Tis not a linear men. (8; I for attempting the problem,
2 for wealizing exactly what to do,
4 for a correct Counterexample &
subsequent justification, I for all of
the above

1.9.24 (a) FALSE For a linear transformation, we see the image of Bi= {E1,..., en} (b) TRUE. By def. (c) TRUE. Cheek matise multiplication! (d) FALSE injective function $f: X \mapsto Y$ is where f(se) = f(y) = 0 so every vector $x \in \mathbb{R}^m$ is mapped.

(e) HABE TRUE the map from $\mathbb{R}^n \mapsto \mathbb{R}^n$ Connot be onto (surjective) (10; 2 each, 1 for T/F, 1 for Correct explanation)