Software Engineering

WS 2022/23, Sheet 06

Prof. Dr. Sven Apel Yannick Lehmen, Maurice Vincon

Handout: 05.12.2022

Task 1

- a) Explain the concept of parametric polymorphism.
- b) **Discussion:** Prepare arguments for and against implementing variability by using parametric polymorphism. You can present your arguments during the discussion in the tutorial sessions.

Solution

a) Parametric Polymorphism is the concept of writing functions or data types of a program generically. This means that the type of the values of data structures or functions can be changed at compile time.

Task 2

Prove the cases 5, 7, 10, and 12 from the *Coarsening and Refinement* slide in the lecture slides. Use the notation that is used to prove the cases 1-4 in the lecture.

Solution

Proof. We have to proof that for any $e, e' \in VExpr$ it holds that $e \equiv e'$ if and only if, for any given configuration $\psi \in \mathbb{B}_F$ with e and e' closed under ψ , $[\![e]\!]_{\psi} = [\![e']\!]_{\psi}$ holds. The proof is by structural induction over the terms $e, e' \in VExpr$.

Induction hypothesis: If e and e' both contain no choice expressions, then $e \equiv e'$ if and only if e = e' and therefore also $\forall \psi \in \mathbb{B}_F$. $[\![e]\!]_{\psi} = [\![e']\!]_{\psi}$, as none of the transformation rules are applicable.

Induction step: $e_1, e_2, e_3, e_4 \in VExpr$, $\operatorname{closed}(e_1, \psi)$, $\operatorname{closed}(e_2, \psi)$, $\operatorname{closed}(e_3, \psi)$, $\operatorname{closed}(e_4, \psi)$

$$\begin{aligned} \textbf{Case 5:} \ e &= \mathsf{choice} \ \langle \phi, e_1, e_2 \rangle < e_3 \quad \ e' = \mathsf{choice} \ \langle \phi, e_1 < e_3, e_2 < e_3 \rangle \\ & \| [e] \|_{\psi} = [\![\mathsf{choice} \ \langle \phi, e_1, e_2 \rangle < e_3]\!]_{\psi} = [\![\mathsf{choice} \ \langle \phi, e_1, e_2 \rangle]\!]_{\psi} < [\![e_3]\!]_{\psi} \\ & \| [e'] \|_{\psi} = [\![\mathsf{choice} \ \langle \phi, e_1 < e_3, e_2 < e_3 \rangle]\!]_{\psi} \end{aligned}$$

if $\psi \Rightarrow \Phi$:

$$[\![\mathsf{choice}\ \langle \phi, e_1, e_2 \rangle]\!]_{\psi} < [\![e_3]\!]_{\psi} = [\![e_1]\!]_{\psi} < [\![e_3]\!]_{\psi} = [\![e_1 < e_3]\!]_{\psi} = [\![\mathsf{choice}\ \langle \phi, e_1 < e_3, e_2 < e_3 \rangle]\!]_{\psi}$$

if $\psi \Rightarrow \neg \Phi$:

$$\begin{split} & \llbracket \mathsf{choice} \ \langle \phi, e_1, e_2 \rangle \rrbracket_{\psi} < \llbracket e_3 \rrbracket_{\psi} = \llbracket e_2 \rrbracket_{\psi} < \llbracket e_3 \rrbracket_{\psi} = \llbracket e_2 < e_3 \rrbracket_{\psi} = \llbracket \mathsf{choice} \ \langle \phi, e_1 < e_3, e_2 < e_3 \rangle \rrbracket_{\psi} \\ \Rightarrow & \llbracket e \rrbracket_{\psi} = \llbracket e' \rrbracket_{\psi} \overset{\mathrm{(I.H.)}}{\Longrightarrow} e \equiv e' \end{split}$$

Case 7:
$$e = \text{if choice } \langle \phi, e_1, e_2 \rangle$$
 then e_3 else e_4 $e' = \text{choice } \langle \phi, \text{ if } e_1 \text{ then } e_3 \text{ else } e_4, \text{ if } e_2 \text{ then } e_3 \text{ else } e_4 \rangle$

$$\|e\|_{\psi} = \|\text{if choice } \langle \phi, e_1, e_2 \rangle \text{ then } e_3 \text{ else } e_4\|_{\psi} = \text{if } \|\text{choice } \langle \phi, e_1, e_2 \rangle\|_{\psi} \text{ then } \|e_3\|_{\psi} \text{ else } \|e_4\|_{\psi}$$

 $\llbracket e' \rrbracket_{\psi} = \llbracket \text{choice } \langle \phi, \text{if } e_1 \text{ then } e_3 \text{ else } e_4, \text{if } e_2 \text{ then } e_3 \text{ else } e_4 \rangle \rrbracket_{\psi}$

$$\begin{split} \text{if } & \llbracket \text{choice } \langle \phi, e_1, e_2 \rangle \rrbracket_{\psi} \text{ then } \llbracket e_3 \rrbracket_{\psi} \text{ else } \llbracket e_4 \rrbracket_{\psi} = \text{if } \llbracket e_1 \rrbracket_{\psi} \text{ then } \llbracket e_3 \rrbracket_{\psi} \text{ else } \llbracket e_4 \rrbracket_{\psi} \\ &= \llbracket \text{if } e_1 \text{ then } e_3 \text{ else } e_4 \rrbracket_{\psi} \\ &= \llbracket \text{choice } \langle \phi, \text{if } e_1 \text{ then } e_3 \text{ else } e_4, \text{if } e_2 \text{ then } e_3 \text{ else } e_4 \rangle \rrbracket_{\psi} \end{split}$$

if $\psi \Rightarrow \neg \Phi$:

if $\psi \Rightarrow \Phi$:

$$\begin{split} \text{if } & \texttt{[}\mathsf{choice} \ \langle \phi, e_1, e_2 \rangle \texttt{]}_{\psi} \ \text{then } & \texttt{[} e_3 \texttt{]}_{\psi} \ \text{else } & \texttt{[} e_4 \texttt{]}_{\psi} \\ & = \texttt{[}\mathsf{if} \ e_2 \ \text{then } e_3 \ \text{else } e_4 \texttt{]}_{\psi} \\ & = \texttt{[}\mathsf{choice} \ \langle \phi, \mathsf{if} \ e_1 \ \mathsf{then } e_3 \ \mathsf{else } e_4, \mathsf{if} \ e_2 \ \mathsf{then } e_3 \ \mathsf{else } e_4 \rangle \texttt{]}_{\psi} \end{split}$$

$$\Rightarrow \llbracket e \rrbracket_{\psi} = \llbracket e' \rrbracket_{\psi} \overset{\text{(I.H.)}}{\Longrightarrow} e \equiv e'$$

Case 10: $e = (\text{let } x = \text{choice } \langle \phi, e_1, e_2 \rangle \text{in } e_3)$ $e' = \text{choice } \langle \phi, \text{let } x = e_1 \text{ in } e_3, \text{let } x = e_2 \text{ in } e_3 \rangle$

$$\llbracket e \rrbracket_{\psi} = \llbracket \text{let } x = \text{choice } \langle \phi, e_1, e_2 \rangle \text{ in } e_3 \rrbracket_{\psi} = (\text{let } x = \llbracket \text{choice } \langle \phi, e_1, e_2 \rangle \rrbracket_{\psi} \text{ in } \llbracket e_3 \rrbracket_{\psi})$$

$$\llbracket e' \rrbracket_{\psi} = \llbracket \text{choice } \langle \phi, \text{let } x = e_1 \text{ in } e_3, \text{let } x = e_2 \text{ in } e_3 \rangle \rrbracket_{\psi}$$

if $\psi \Rightarrow \Phi$:

$$\begin{split} (\mathsf{let}\ x = [\![\mathsf{choice}\ \langle \phi, e_1, e_2 \rangle]\!]_{\psi} \ \mathsf{in}\ [\![e_3]\!]_{\psi}) &= (\mathsf{let}\ x = [\![e_1]\!]_{\psi} \ \mathsf{in}\ [\![e_3]\!]_{\psi}) \\ &= [\![\mathsf{let}\ x = e_1 \ \mathsf{in}\ e_3]\!]_{\psi} \\ &= [\![\mathsf{choice}\ \langle \phi, \mathsf{let}\ x = e_1 \ \mathsf{in}\ e_3, \mathsf{let}\ x = e_2 \ \mathsf{in}\ e_3 \rangle]\!]_{\psi} \end{split}$$

if $\psi \Rightarrow \neg \Phi$:

$$\begin{split} (\text{let } x = [\![\text{choice } \langle \phi, e_1, e_2 \rangle]\!]_{\psi} \text{ in } [\![e_3]\!]_{\psi}) &= (\text{let } x = [\![e_2]\!]_{\psi} \text{ in } [\![e_3]\!]_{\psi}) \\ &= [\![\text{let } x = e_2 \text{ in } e_3]\!]_{\psi} \\ &= [\![\text{choice } \langle \phi, \text{let } x = e_1 \text{ in } e_3, \text{let } x = e_2 \text{ in } e_3 \rangle]\!]_{\psi} \end{split}$$

$$\Rightarrow \llbracket e \rrbracket_{\psi} = \llbracket e' \rrbracket_{\psi} \overset{\text{(I.H.)}}{\Longrightarrow} e \equiv e'$$

 $\textbf{Case 12:} \ e = \mathsf{choice} \ \langle \phi, \mathsf{choice} \ \langle \phi, e_1, e_2 \rangle, e_2 \rangle \qquad e' = \mathsf{choice} \ \langle \phi, e_1, e_2 \rangle$ if $\psi \Rightarrow \Phi$:

$$[\![e]\!]_{\psi} = [\![\mathsf{choice}\ \langle \phi, \mathsf{choice}\ \langle \phi, e_1, e_2 \rangle, e_2 \rangle]\!]_{\psi} = [\![\mathsf{choice}\ \langle \phi, e_1, e_2 \rangle]\!]_{\psi} = [\![e']\!]_{\psi}$$

if $\psi \Rightarrow \neg \Phi$:

$$[\![e]\!]_{\psi} = [\![\mathsf{choice}\ \langle \phi, \mathsf{choice}\ \langle \phi, e_1, e_2 \rangle, e_2 \rangle]\!]_{\psi} = [\![e_2]\!]_{\psi} = [\![\mathsf{choice}\ \langle \phi, e_1, e_2 \rangle]\!]_{\psi} = [\![e']\!]_{\psi}$$

$$\Rightarrow \llbracket e \rrbracket_{\psi} = \llbracket e' \rrbracket_{\psi} \overset{\text{(I.H.)}}{\Longrightarrow} e \equiv e'$$