

Modern WIFI Mayhem with Wifite

Agenda

01

What's this WIFI
Thing and How
Does it Work?

02

Fite-ing with the Man in the Middle

03

Pixies, Lattes, and O Day Unicorns

04

Lord Farquaad-ing

"No one really understands how a network ACTUALLY works..." - Ken Pyle

Devices convert data into a type that can be transferred over radio waves in a client-server relationship.

WIFI is a Layer 1 & 2 Protocol at its Core

- Layer 1: Communication among Physical Devices (does NOT have to be wired)
 - Device → Router → Modem → ISP
- Layer 2: Construction of Data <u>Frames</u>
 - Theses frames carry payloads (ie Network Packets)

Networked WIFI Devices communicate via Network Packets

Ethernet (802.3) Frame Format											
7 bytes 1 b	yte 6 byte	s 6 bytes	2 bytes	42 to 1500 bytes	4 bytes	12 bytes					
Preamble Fra Delir	MACAAA		IVA	Data (payload)	CRC	Inter-frame gap					

For TCP/IP communications, the payload for a frame is a packet

WiFi (802.11) Frame Format											
2 bytes	2 bytes	6 bytes	6 bytes	6 bytes	2 bytes	6 bytes	0 to 2312 bytes	4 bytes			
Frame Control	Duration	MAC Address 1 (Destination)	MAC Address 2 (Source)	MAC Address 3 (Router)	Sea Control	MAC Address 4 (AP)	Data (payload)	CRC			

4-Way Handshake

After association, Server & Client Begin 4-Way Authentication

- Asymmetric-style encryption method
 - Both sides (router & device) generate one-time keys to authenticate messages (PTK + MIC)
 - Once authenticated, Server (router) shares public key (GTK)
 - Temporary keys are generated from Master keys stored on server (PMK & GMK)
 - Client (device) then verifies both PTK and GTK are installed and encrypted traffic sharing begins with "signed" packets.
- Keys can be stored on clients even if they're not connected to the network at the time (Caffe Latte attack)

Fite-ing with the Man in the Middle

"I can feel it coming in the air tonight, Oh Lord..." -Phil Collins

Inherent Vulnerabilities

Router 0 Days Man in the Middle Pixie Dust Attack

Network Packets

Packet Capture Packet Injection

Client-Side

Deauthorization Attack Evil Twin Attack

Key Confidentiality

PMK attack Half-Handshake Attack

What You Need

Kali Linux

Kali comes with Wifite and many requirements built in

Wifi Adapter

No Wifi Card on VMs Monitor Mode/Packet Injection

Tools

Hcxtools hcxdumptools

WIFITE Progression

- 1. Identify/Choose Target (ranked by signal strength)
- 2. PMKID Attack (Server-Side Key Integrity)
- 3. Handshake Monitoring/Deauth Attack (Client-Side)
- 4. After Deauth, attempt to capture "signed" reauth packet
- 5. Evaluate packet capture for password hash
- 6. If hash found, brute force using dictionary/wordlist
 - a. If full 4-way handshake, save cracked hash/exit
 - b. Else, attempt half-handshake attack to verify hash

"There are very few personal problems that cannot be solved through the application of high explosives" - Scott Adams

Evil Twin Network

Have your internet...but it's gonna cost you!

Social Engineering paired with **WIFI attack**

- Spoof SSID trusted by victim
- Serve Internet in exchange for some action

Often paired with deauthorization attack of true SSID to "force" clients over to Evil Twin

"Some Action" could be:

- Provide attacker credentials
- Approve "Terms of Service" → Install Logic Bomb
- Download some package/file → DLL Injection, Ransomware, C2

!~WIFI ATTACKS CAN LEAD TO ENTERPRISE-LEVEL ATTACKS~!

WPS Introduced in 2006

WIFI Protected Setup (WPS) allowed home users to setup home networks without remembering complex passwords

- 8 digit <u>standardized</u> PIN assigned to router
- Pixie Dusting attempts to brute force the <u>router PIN</u> rather than the WIFI password

Wifite has the ability to utilize two built-in programs to execute Pixie Dust attacks on vulnerable routers: *Bully* & *Reaver*

2-Step Process

- Brute Force PIN
- Use PIN to brute force WIFI Password

WPS bully pixie dust attack Use known router encryption keys to "sign" brute force packets Brute Force Pin Hashes until match is found PIN cracked: 73348450 Password was not cracked: Maybe because bad/low signal, or PBC activated on AP

Devices are like Elephants...they don't forget!

Devices **LOVE** to associate with Networks they know! (SSID spoofing with Evil Twin Network)

Cafe Latte takes advantage of ARP packets sent between client/server after authentication (MAC/IP association) to crack WEP keys quickly

- Flip bits in captured ARP packet to send thousands of requests to client.
- Use statistical analysis to crack key from many examples of "signed" ARP packets (tens of thousands)
 - No way to determine validity of capture/replay

!~You can even do this with Wireshark~!

Lord Farquaad-ing

Protection & Remediation

Here are some strategies to protect yourself and your WIFI devices:

- 1. STRONG PASSWORDS
- 2. Utilize segmented networks at home
- 3. Utilize latest encryption levels on routers
- 4. Utilize strong firewalls with MAC Address filtering
- 5. Do **NOT** connect to networks you do not trust!
- 6. Update Routers when appropriate

