

Data Science Project

Project: Healthcare - Persistency of a Drug

Week 13 Deliverables

Team Name: Team Healthy Bones

Member: Jeeyeon Shon

E-mail: shon.jeeyeon@gmail.com

College/Company: Data Glacier

Batch Code: LISUM 10

Country: United States of America

Specialization: Data Science

Submission Date: August 30, 2022

Submitted to: Data Glacier

Github Link: https://github.com/shonjeeyeon/DG Week 13

Table of Contents

Problem Description	
Data Understanding	1
Executive Summary	1
Link to the Repository & App	1
Data Intake Report	2
Data Cleaning and Preprocessing	3
Basic Cleaning	3
Handling Missing or Minor Values	3
Encoding of Categorical Features	3
Cleaning of Numeric Values	3
Addition of Extra Features	3
Deletion of Redundant Features	3
Splitting to Target/Predictors, then to Train/Test sets	4
Handling Imbalances	4
Findings from Exploratory Data Analysis (EDA)	4
Findings	4
Model Recommendations	4
Important Feature Selection	5
Model Selection	5
Model Evaluation	6
AUC and Accuracy Scores	6
Confusion Matrix	6
Learning Curves.	6
Application Development	8
Overview of the Application	8
Links to the Application	8
Conclusion	9
Reference	9
[Appendix 1] Summary of Columns and Data Types	10
[Appendix 2] Problems and Actions Taken Prior to EDA	14

Problem Description

Medication persistence refers to completing the medication treatment using the duration set by the prescriber. (Cramer et al., 2008). Therefore, persistence is important in patients' positive outcomes as well as in pharmaceutical industries' profits.

In this project, a model was established and deployed to automate identifying persistency of a certain pharmaceutical product using a dataset provided by the client.

Data Understanding

The dataset includes 3,424 records of patients on a certain medication. 69 features pertaining the demographics of the patient, attributes of the prescriber, and clinical/disease/treatment factors of the disease progression are present.

The client requested to build a model to predict a patient's drug persistency, so the column 'Persistency_flag' is the target variable. The prediction used a classification process since the values of the target column has binary values.

Executive Summary

Deployed a Logistic Regression Model and an Heroku app to classify persistent vs. non-persistent using 7 predictors recommended by Recurrent Feature Elimination (RFE). The model has AUC of 0.8049 and accuracy of 0.8189.

Link to the Repository & App

- Repository: https://github.com/shonjeeyeon/DG_Week_13
- App: https://persistency.herokuapp.com/

Data Intake Report

Name: Healthcare – Persistency of a Drug

Report date: August 9, 2022 Internship Batch: LISUM 10

Version:<1.0>

Data intake by: Jeeyeon Shon

Data intake reviewer: Data storage location:

 $https://github.com/shonjeeyeon/DG_Week_8/blob/main/Healthcare_dataset.csv$

(Original xslx file:

 $https://drive.google.com/file/d/1P_oMc6gOBlhw6dY5PxaqxV2swdHMUooK/viewarderselection for the control of the c$

w)

Tabular data details:

Healthcare_dataset.csv

Total number of observations	3,424
Total number of files	1
Total number of features	69
Base format of the file	.csv
Size of the data	892 KB

Proposed Approach:

- Ptid can be used to identify and remove duplicate observations
- The dataset has been deidentified already
- No missing values, however there are practical missing values such as 'unknown'. These values should be imputed appropriately
- Most of the features are categorical; will need encoding to enable ML

Data Cleaning and Preprocessing

Basic Cleaning

Upper cases and special characters in the names of columns were removed.

Handling Missing or Minor Values

- In 'Ntm_speciality' column, values with <1% counts were integrated to 'Others' category.
- Also in 'NTM_speciality' column, missing values were integrated to 'Unknown' category.
- Other columns with missing values <40% were imputed using modes.
- Columns with missing values >40% were deleted.

Encoding of Categorical Features

The categorical values were dummy-encoded for ML processing.

Cleaning of Numeric Values

Skews and outliers in numeric features were addressed.

Addition of Extra Features

- 'concom' was added to calculate the total number of concomitant therapies of each patient.
- 'risk' was added to calculate the total number of risk factors of each patient.
- 'comorb' was added to calculate the total number of comorbidities of each patient.

Deletion of Redundant Features

• 'dexa_during_rx' and 'count_of_risks' were deleted because 'dexa_frequency_during_rx' and 'risks' had same information with more details.

Splitting to Target/Predictors, then to Train/Test sets

- The target of the dataset was 'persistency_flag', with other features being predictors.
- 25% of the total dataset was used for testing.

Handling Imbalances

SMOTE was used to oversample the training data as the dataset was unbalanced.

Findings from Exploratory Data Analysis (EDA)

Findings

- Certain regions and prescriber specialties were associated with higher persistency. (ANOVA, p values <0.05)
- Persistent group has higher mean number of comorbidities and concomitances compared to the non-persistent counterpart. (ANOVA, p values <0.05)
- All of the comorbidities and concomitant therapies in the dataset, as well as select risk factors, were associated with difference in persistency (Chisquare, p values<0.05).
- Persistent group has higher mean number of DEXA scans compared to the non-persistent group. Persistent group also has higher proportion of patient who has had at least one DEXA scan compared to non-persistent group. (ANOVA, p values <0.05)

Model Recommendations

- This is a classification project, so using classifiers such as Logistic Regression Classifier, Naive Bayes, K-Neighbors, Random Forest Classifier, Support Vector Machines, or XGBoost is recommended.
- Starting from Logistic Regression, Decision Tree, or Naïve Bayes is recommended to save computational effort and time.

• The dataset has a substantial number of features, so using PCA or RFE to choose most important features is recommended.

Important Feature Selection

The dataset had more than 60 features, so in order to develop an application, choosing the most important features was necessary. Recurrent Feature Elimination (RFE) with Random Forest model was used to select 7 most important features, and below is the result:

- 'dexa_freq_during_rx'
- 'comorb encounter for screening for malignant neoplasms'
- 'comorb encounter for immunization'
- 'comorb long term current drug therapy'
- 'comorb'
- 'concom'
- 'risk'

These features all have p values <0.05.

Model Selection

Four models were tested for AUC, accuracy, and recall. GridSearchCV was used for optimizing each model's parameters.

Model	AUC	Accuracy	Recall
Logistic	0.8049	0.8189	0.7484
Regression			
Random Forest	0.7667	0.7850	0.6925
XGBoost	0.7877	0.7944	0.7609
Multi-Layer	0.7959	0.8061	0.7547
Perceptron			

Based on AUC and accuracy scores, Logistic Regression was selected for model and app development.

Model Evaluation

AUC and Accuracy Scores

The Logistic Regression model had AUC of 0.8049 and accuracy of 0.8189 on the test set.

Confusion Matrix

The model has True Positive Rate = 0.7484 and True Positive Rate = 0.8337 on the Test Set.

Learning Curves

The differences in accuracy scores decrease as size of the training set increases, then minimizes when the training set size exceeds 2,250. The training set used for the model development had 2,568 records (75% of the original dataset).

Application Development

Overview of the Application

The app displays index.html in the /templates folder when users access.

Via the form on the index.html, the page receives inputs from the users.

(Memudualimatou (2020)'s GitHub was consulted to establish categorical forms; full hyperlink available in References section)

The inputs are processed with app.py so it can be interpreted and further processed with the picked model.

- The categorical values are converted to 0 and 1.
- Frequency of DEXA and number of comorbidities will be square rooted as those in the training set had been.

The result will be displayed on the index.html page.

Links to the Application

- The application can be accessed by clicking the link: https://persistency.herokuapp.com/
- The application is also accessible on 'Environment' menu on the right side of the GitHub repo:

https://github.com/shonjeeyeon/DG_Week_13

Conclusion

Logistic Regression model was able to predict persistence of a drug with approximate AUC of 80% and approximate accuracy of 82%. Seven select features were used for prediction.

References

Cramer, J.A., Roy, A., Burrell, A., Fairchild, C. J., Fuldeore, M.J., Ollendorf, D.A., Wong, P.K. (2008). Medication compliance and persistence: terminology and definitions. Value Health. 11(1), 44-47

Memudualimatou (2020), index.html. GitHub. Retrieved from https://github.com/memudualimatou/INSURANCE-CHARGES-WEB-APPLICATION/blob/main/templates/index.html on Aug 20, 2022.

[Appendix 1] Summary of Columns and Data Types

Bucket	Variable	index #	Dtype	Notes
Target	Persistency	1	Object	Non-Persistent: 62.35%
				Persistent: 37.65%
				(→ Imbalanced data)
Unique Row	Patient ID	0		
ID				
Demographics	Gender	2		
	Race	3		NaN='Other/Unknown'
				(2.85%)
				Mode='Caucasian'
				(91.94%)
	Ethnicity	4		NaN='Unknown' (2.66%)
				Mode='Non-Hispanic'
				(94.48%)
	Region	5		NaN='Other/Unknown'
				(1.75%)
				Mode='Midwest' (40.39%)
	Age_Bucket	6		
Prescriber	Ntm_Speciality	7		NaN='Unknown' (9.05%)
Attributes				Mode='General
				Practitioner' (44.83%)
	Ntm_Specialist_Flag	8		

	Ntm_Speciality_Bucket	9			
Clinical	Gluco Record Prior Ntm	10			
Factors	Gluco_Record_During_Rx	11			
	Dexa_Freq_During_Rx	12	int64	OutlierThe dat (6.81)	issues a is skewed
				Count	3,424
				Mean	3.02
				Std	8.14
				Min	0.00
				25%	0.00
				50%	0.00
				75%	3.00
				Max	146.00
	Dexa_During_Rx	13	Object		
	Frag_Frac_Prior_Ntm	14			
	Frag_Frac_During_Rx	15			
	Risk_Segment_Prior_Ntm	16			
	Tscore_Bucket_Prior_Ntm	17			
	Risk_Segment_During_Rx	18		The other tw	own' (43.72%) vo categories w differences

			HR_VHR VLR LR	28.18%
	Tscore_Bucket_During_Rx	19	NaN='Unknown' (43.72%) The other two categories	
				U
			•	w differences
			in percentag	es
			<=-2.5	29.70%
			>-2.5	26.56%
	Change T Score	20	NaN='Unkno	wn' (43.72%)
			Mode='No C	hange'
			(48.48%)	
	Change Risk Segment	21	NaN='Unknown' (65.01%)	
			Mode='No C	hange'
			(30.72%)	
Disease/	Adherent_Flag	22		
Treatment	Idn_Indicator	23		
Factors	Injectable Experience During Rx	24		
	Comorbidities columns	25-38		
	(Column names start with			
	'Comorb')			
	Concomitant drugs use columns	39-48		
	(Column names start with			
	'Concom_')			
	Risk factors columns	49-67		

Count_of_Risks	68	Dtype: int64	 Outlier issues The data is skewed (0.88) 	
			Count	3,424
			Mean	1.24
			Std	1.09
			Min	0.00
			25%	0.00
			50%	1.00
			75%	2.00
			Max	7.00

[Appendix 2] Problems and Actions Taken Prior to EDA

Problem	Column	Details	Actions Taken	Rationale
Missing	Race	NaN='Other/Unkno	Impute mode	The Modes are high in
Data		wn' (2.85%)		proportion while the
		Mode='Caucasian'		NaNs are relatively
		(91.94%)		small in proportion.
	Ethnicity	NaN='Unknown'		
		(2.66%)		
		Mode='Non-		
		Hispanic' (94.48%)		
	Region	NaN='Other/Unkno		
		wn' (1.75%)		
		Mode='Midwest'		
		(40.39%)		
	Ntm_Speciality	NaN='Unknown'	Keep	The value 'Unknown'
		(9.05%)	'Unknown' as	is relatively high in
		Mode='General	a separate	proportion (9.05%),
		Practitioner'	value	while the category has
		(44.83%)		many values with
				smaller proportions (as
				small as <1%).
				Therefore, it will be

				prudent to leave the unknown as it is.
>40%	Risk_Segment_Durin	NaN='Unknown'	Delete columns	
Missing	g_Rx	(43.72%)		very high proportion
Data	Tscore_Bucket_Durin	NaN='Unknown'		of 'Unknown'.
	g_Rx	(43.72%)		Imputation may cause
	Change_T_Score	NaN='Unknown' (43.72%)		serious distortion of the data.
	Change_Risk_Segmen	NaN='Unknown'		
	t	(65.01%)		
Outliers/	Dexa_Freq_During_R	 Outlier issues 	Remove	Outliers were removed
Skews	X	• The data is	outliers, and	using quantiles and it
		skewed (6.81)	try skewness	reduced the skewness.
	Count of Risks	Outlier issues	reduction	Then, square root was
		• The data is	strategies as	used to additionally
		skewed (0.88)	needed	reduce skew.
				Skews after above
				steps are:
				1.28 for
				Dexa_Freq_During_R
				x, and
				0.38 for
				Count_of_Risks

Basic	All columns	Will need to	Use	df.replace() used to
Cleaning		remove upper	df.replace() to	remove upper cases,
		cases, special	clean the	special characters, and
		characters, or	column names	spaces
		spaces		
Typo in	Ntm_Speciality	'OBSTETRICS &	Use	Replaced with
Value		OBSTETRICS &	df.replace() to	'OBSTETRICS AND
		GYNECOLOGY &	correct the	GYNECOLOGY'
		OBSTETRICS &	value	
		GYNECOLOGY'		
Imbalance	Persistency	Non-Persistent:	Use SMOTE	SMOTE was
d Target		62.35%		implemented during
Data		Persistent: 37.65%		the process of model
				development
Encoding	Applies to every	Categorical values	Label or one	Values were dummy
	categorical column	are written in	hot encoding	encoded using EDA
		alphabet, which		
		ML cannot process		