# S5D9 Lab ADC MIC By Michael Li (2/5/2018)

https://www.miketechuniverse.com

E2 Studio 5.4.0.023 SSP 1.3.0

### P0 1ADC0

ADC input is connected to the on board microphone. This example will read from ADC to interpret the sound loudness level.

#### Renesas Synergy Platform S5D9 IoT Fast Prototyping Kit (product page 2)

- Synergy S5D9 MCU with ARM CM4F @120MHz, 2M Flash and 640KB SDRAM
- External 256Mbits serial Nor QSPI flash for extra data and application storage
- · Integrated acoustic, motion, pressure, temperature and humidity sensors
- 10/100Base-T Ethernet port for wireline connectivity to cloud
- USB 2.0 full speed as device and 5V power input
- Three colored LEDs (RED, GREEN, YELLOW)
- 10-pin JTAG connector for debug
- Two Grove expansion connectors (UART and I2C) for connectivity for additional sensors
- One PMOD expansion connector (SPI) for connectivity for additional peripherals



### **ADC** enabled



## Pin Configuration



## Set up ADC driver

(USBX is also set up to stream ADC data to PC)



### Main Code

```
▼ | 🌣 ▼ 🚺 ▼ 😘 ▼ | 😕 😥 🔗 ▼ | 🍠 🗉 🛐 | ½| ▼ 🖓 ▼ 🦫 ▼ 🗘 ▼ 🔿 ▼
            19
21
               #include "system_thread.h"
22
23
               #include <stdio.h>
24
               #include <string.h>
26
              // Buffer Size
               #define UART BUFFER SIZE 1024
29
               #define COUNTS PER MILLISECOND (120E6 / 1000)
30
31
               uint8_t string[132];
32
33
              /* System Thread entry function */
             ovoid system thread entry (void)
35
36
                  // Variable to hold ADC Data
37
                  uintl6 t adcCounts;
39
                  uintl6 t adcCounts2;
40
                  float adcVoltage;
                  float adcVoltage2;
41
42
                  // Open the ADC
44
                  g_adc.p_api->open (g_adc.p_ctrl, g_adc.p_cfg);
45
46
                  // Configure Scan
                  g_adc.p_api->scanCfg (g_adc.p_ctrl, g_adc.p_channel_cfg);
48
49
                   // Start ADC Scan
50
                   g_adc.p_api->scanStart (g_adc.p_ctrl);
                  while (1)
53
54
55
                      //g_adc.p_api->read (g_adc.p_ctrl, ADC_REG_CHANNEL_0, &adcCounts);
                       g adc.p api->read (g adc.p ctrl, ADC REG CHANNEL 1, &adcCounts2);
57
58
                       // Convert Counts to Voltage
59
                       //adcVoltage = ((adcCounts * 3.3f) / 4095.0f); // 12 bits resolution. range: 0 to 3.3V
                       adcVoltage2 = ((adcCounts2 * 3.3f) / 4095.0f);
62
                       sprintf((char *)string,"adcCounts2: %5d adcVoltage2: %5.2f\r\n",adcCounts2,adcVoltage2);
                        \texttt{g\_sf\_comms0.p\_api->write} \\  (\texttt{g\_sf\_comms0.p\_ctrl}, \ \texttt{string}, \ (\texttt{uint32\_t}) \\  \texttt{strlen} \\  ((\texttt{char *}) \\ \texttt{string}), \ TX\_WAIT\_FOREVER); 
63
64
65
                       tx thread sleep (1);
66
```

#### Analog Voltage from MIC as I tap on it.

