Convex and Non-Convex Optimisation

Aayush Bajaj

Version 0.1

2025-05-08

Table of Contents

1.	Math	Mathematical Background		
2.	Conv	exity	4	
	2.1.	Sets	4	
	2.2.	Functions	4	
3.	Unco	nstrained Optimisation	5	
	3.1. Standard Form			
4.	Equality Constraints			
	4.1.	Standard Form	5	
5.	Inequality Constraints6			
	•	Search Descent		
		on's Method & Conjugate Gradient Methods		
		Penalty Methods6		
9. Optimal Control Theory				
	-	Notation		
		Topic 1 – Model Formulation		
		9.2.1. Standard form		
		9.2.1.1. Typical conversions		
	9.3.	Topic 2 – Mathematical Background		
		9.3.1. Gradients and Hessians		
		9.3.2. Definiteness of real matrices		
		Topic 3 – Convexity of Sets and Functions		
		9.4.1. Sets		
		9.4.1. Sets		
		Topic 4 – Unconstrained Optimisation		
		9.5.1. First- and second-order tests		
	9.6.	Topic 5 – Equality-Constrained Optimisation		
		9.6.1. Problem		
		9.6.1.1. Lagrangian		
		9.6.1.2. Regularity		
		9.6.1.3. First-order (KKT) conditions		
		9.6.1.4. Second-order sufficiency		
	9.7.	Topic 6 – Problems with Inequality Constraints		
		9.7.0.1. KKT conditions		
		9.7.0.2. Second-order test		
		9.7.1. Convex programmes		
		9.7.2. Wolfe dual		
		Topic 7 – Numerical Methods (Unconstrained)		
		9.8.1. General line-search framework		
		9.8.1.1. Convergence rates		
		9.8.2. Steepest Descent		
		9.8.3. Newton's method		
		9.8.4. Conjugate Gradient (non-linear CG)	0	
	9.9.	Topic 8 – Penalty Function Methods	0	
	9.10.	Topic 9 – Optimal Control (Pontryagin Maximum Principle)	0	

1. Mathematical Background

Definition 1.1 Mathspeak

1. Axiom: A foundational statement accepted without proof. All other results are built ontop.

- 2. Proposition: A proved statement that is less central than a theorem, but still of interest.
- 3. Lemma: A helper' proposition proved to assist in establishing a more important result.
- 4. Corollary: A statement following from a theorem or proposition, requiring little to no extra proof.
- 5. Definition: A precise specification of an object, concept or notation.
- 6. Theorem: A non-trivial mathematical statement proved on the basis of axioms, definitions and earlier results.
- 7. Remark: An explanatory or clarifying note that is not part of the formal logical chain but gives insight / context.
- 8. Claim / Conjecture: A statement asserted that requires a proof.

Definition 1.2 Vector Norm

A vector norm on \mathbb{R}^n is a function $\|\cdot\|$ from \mathbb{R}^n to \mathbb{R} such that:

- a) $\|\mathbf{x}\| \ge 0, \forall \mathbf{x} \in \mathbb{R}^n$ and $\|\mathbf{x}\| = 0 \Longleftrightarrow \mathbf{x} = \mathbf{0}$
- b) $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\| \ \forall \ \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ (Triangle Inequality)
- c) $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\| \ \forall \alpha \in \mathbb{R}, \mathbf{x} \in \mathbb{R}^n$

Theorem 1.3

Cauchy Shwarz-Inequality

$$|\mathbf{x}^T \mathbf{y}| \le ||\mathbf{x}||_2 ||\mathbf{y}||_2 \tag{1}$$

Definition 1.4

Closed and Bounded Sets

Definition 1.5

Functions

- a) Linear:
- b) Affine:
- c) Quadratic:

Definition 1.6	Symmetric			
Definition, plus trace and determinant properties				
Definition 1.7	Principal Minors			
2. Convexity				
2.1. Sets				
Definition 2.1	Convex Set			
Proposition 2.2	Intersection of Convex Sets			
Definition 2.3	Extreme Points			
Definition 2.4	Convex Combination			
Definition 2.5	Convex Hull			
Theorem 2.6	Separating Hyperplane			
Definition 2.7	Convex Hull			
2.2. Functions				
Definition 2.8	Convex / Concave Functions			

3. Unconstrained Optimisation

3.1. Standard Form

$$\underset{\mathbf{x} \in \Omega}{\text{minimise}} f(\mathbf{x}) \tag{2}$$

Theorem 3.1

First order necessary conditions

Definition 3.2

Stationary point

Definition 3.3

Saddle point

Theorem 3.4

Second order necessary conditions

Corollary 3.5

Local maximiser

 $ar{\mathbf{x}}$ is a local maximiser $\Longrightarrow \nabla f(ar{\mathbf{x}}) = \mathbf{0}$ and $\nabla^2 f(ar{\mathbf{x}})$ negative semi-definite.

Note: As the definiteness of the Hessian changes, so does the nature of the maximiser.

Theorem 3.6

Second order sufficient conditions

4. Equality Constraints

4.1. Standard Form

Definition 4.1

Lagrangian

Definition 4.2

Regular Point

Definition 4.3

Matrix of Constraint Gradients

$$A(\mathbf{x}) = \begin{bmatrix} \nabla \, \mathbf{c}_i(\mathbf{x}) \, \dots \, \mathbf{c}_m(\mathbf{x}) \end{bmatrix} \tag{4}$$

Definition 4.4

Jacobian

$$J(\mathbf{x}) = A(\mathbf{x})^{T}$$

$$= \begin{bmatrix} \nabla \mathbf{c}_{i} (\mathbf{x})^{T} \\ \vdots \\ \mathbf{c}_{m} (\mathbf{x})^{T} \end{bmatrix}$$
(5)

Proposition 4.5

First order necessary optimality conditions

5. Inequality Constraints

Note Reduced Hessian

The reduced Hessian W_Z^{\ast} is the projection of the Lagrandian's Hessian onto the tangent space of the constraints at the point x^{\ast}

- 6. Line Search Descent
- 7. Newton's Method & Conjugate Gradient Methods
- 8. Penalty Methods
- 9. Optimal Control Theory

9.1. Notation

Unless stated otherwise, $x \in \mathbb{R}^n$, $f: \mathbb{R}^n \to \mathbb{R}$ is continuously differentiable, ∇f and $\nabla^2 f$ denote the gradient and Hessian respectively, and c_i are the constraint functions of a non-linear programme

$$\min_{x \in \mathbb{R}^n} f(x) \quad \text{s.t.} \quad c_{i(x)} = 0 (i \in E), c_{i(x)} \le 0 (i \in I). \tag{6}$$

9.2. Topic 1 - Model Formulation

9.2.1. Standard form

$$\min_{x \in \mathbb{R}^n} f(x) \quad \text{s.t.} \quad c_{i(x)} = 0 \\ (i = 1, ..., m_E), c_{i(x)} \leq 0 \\ (i = m_E + 1, ..., m). \\ (7)$$

9.2.1.1. Typical conversions

- Maximisation. $\max f(x) = -\min\{-f(x)\}.$
- Right-hand sides. $c_{i(x)} = b_i \iff c_{i(x)} b_i = 0$.
- " \geq " constraints. $c_{i(x)} \geq 0 \Longleftrightarrow -c_{i(x)} \leq 0$.
- Strict inequalities. $c_{i(x)} < 0 \Longleftrightarrow c_{i(x)} + \varepsilon \le 0$ for some $\varepsilon > 0$.

9.3. Topic 2 - Mathematical Background

9.3.1. Gradients and Hessians

For $f \in C^2(\mathbb{R}^n)$

$$\nabla f(x) = \begin{pmatrix} \partial \frac{f}{\partial} x_1 \\ \vdots \\ \partial \frac{f}{\partial} x_n \end{pmatrix}, \quad \nabla^2 f(x) = \left[\partial^2 \frac{f}{\partial} x_i \partial x_j \right]_{i,j=1}^n. \tag{8}$$

9.3.2. Definiteness of real matrices

A (not necessarily symmetric) $A \in \mathbb{R}^{n \times n}$ is

 $\begin{array}{l} |\ |\ |\ |-|-|\ |\ \text{positive definite}\ | \Longleftrightarrow x^\top Ax > 0 \forall x \neq 0, |\ |\ \text{positive semi-def.}\ | \Longleftrightarrow x^\top Ax \geq 0 \forall x, |\ |\ \text{negative definite}\ | \Longleftrightarrow x^\top Ax < 0 \forall x \neq 0, |\ |\ \text{negative semi-def.}\ | \Longleftrightarrow x^\top Ax \leq 0 \forall x, |\ |\ \text{indefinite}\ | \Longleftrightarrow \exists x, z: x^\top Ax < 0, z^\top Az > 0. | \end{array}$

For a **symmetric** matrix the signs of the eigenvalues $\lambda_1,...,\lambda_n$ fully determine definiteness; e.g. $A\succ 0 \Longleftrightarrow \lambda_i>0 \forall i$. A convenient test for $A\succ 0$ is that all leading principal minors are positive (Sylvester's criterion).

9.4. Topic 3 - Convexity of Sets and Functions

9.4.1. Sets

 $\Omega \subset \mathbb{R}^n$ is **convex** if $\theta x + (1 - \theta)y \in \Omega$ for every $x, y \in \Omega$ and $\theta \in [0, 1]$.

9.4.2. Functions

A function $f: \Omega \to \mathbb{R}$ (with Ω convex) is

• convex if $f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$;

- strictly convex if strict inequality holds whenever $x \neq y$;
- **concave** if -f is convex.

Useful characterisations:

$$f \text{ convex} \iff (\forall x, y \in \Omega) f(y) \ge f(x) + \nabla f(x)^{\top} (y - x);$$
 (9)

$$f$$
 convex on open $\Omega \Longleftrightarrow \nabla^2 f(x) \succeq 0 \forall x \in \Omega;$ (10)

epigraph epi
$$f = \{(x, r) : x \in \Omega, f(x) \le r\}$$
 is convex. (11)

9.5. Topic 4 – Unconstrained Optimisation

9.5.1. First- and second-order tests

For $f \in C^1$:

$$x^*$$
 local min $\Rightarrow \nabla f(x^*) = 0.$ (12)

For $f \in C^2$:

$$x^*$$
 local min $\Rightarrow \nabla f(x^*) = 0, \nabla^2 f(x^*) \succeq 0.$ (13)

Moreover, if $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*) \succ 0$ then x^* is a **strict** local minimiser; $\prec 0$ gives a maximiser; an indefinite Hessian implies a saddle.

For **convex** (resp. concave) f, **any** stationary point is a global minimum (resp. maximum).

9.6. Topic 5 – Equality-Constrained Optimisation

9.6.1. Problem

$$\min f(x) \quad \text{s.t.} \quad c_{i(x)} = 0 (i = 1, ..., m). \tag{14}$$

9.6.1.1. Lagrangian

$$L(x,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i c_{i(x)}.$$

9.6.1.2. Regularity

A feasible x is $\operatorname{\textbf{regular}}$ if $\left\{ \nabla c_{i(x)} \right\}_{i=1}^m$ are linearly independent.

9.6.1.3. First-order (KKT) conditions

If x^* is a local minimiser and regular, then

$$\nabla_x L(x^*, \lambda^*) = 0, \quad c_{i(x^*)} = 0. \tag{15}$$

Any point satisfying these with some multipliers is a **constrained stationary point**.

9.6.1.4. Second-order sufficiency

Let Z^* whose columns form a basis for $\ker A^{\top}$ with $A = \left[\nabla c_1(x^*)...\nabla c_{m(x^*)}\right]$. Define $W^* = \nabla^2 f(x^*) + \sum_{i=1}^m \lambda_i^* \nabla^2 c_{i(x^*)}$. If $(Z^*)^{\top} W^* Z^* \succ 0$ then x^* is a strict local minimum.

9.7. Topic 6 – Problems with Inequality Constraints

Given (NLP)

$$\min f(x) \quad \text{s.t.} \quad c_{i(x)} = 0 (i \in E), c_{i(x)} \leq 0 (i \in I), \tag{16} \label{eq:16}$$

let the active set $A(x) = \left\{ i \in E \cup I : c_{i(x)} = 0 \right\}$.

9.7.0.1. KKT conditions

At a regular local minimiser x^* there exist multipliers λ^* such that

$$\nabla f(x^*) + \sum_{i \in A(x^*)} \lambda_i^* \nabla c_{i(x^*)} = 0, \quad \lambda_i^* \ge 0 (i \in I \cap A(x^*)). \tag{17}$$

9.7.0.2. Second-order test

With Z^* , W^* defined as before and $t^* = |A(x^*)| < n$: if $\lambda_i^* > 0 \forall i \in I \cap A(x^*)$ and $(Z^*)^\top W^* Z^* \succ 0$ then x^* is a strict local minimum.

9.7.1. Convex programmes

If f is convex, c_i affine $(i \in E)$, and c_i convex $(i \in I)$, then **any** point satisfying the KKT conditions with $\lambda_i \geq 0 (i \in I)$ is a **global** minimiser.

9.7.2. Wolfe dual

For $m = |E \cup I|$

$$\max_{y,\lambda} f(y) + \sum_{i=1}^m \lambda_i c_{i(y)} \quad \text{s.t.} \quad \nabla f(y) + \sum_{i=1}^m \lambda_i \nabla c_{i(y)} = 0, \lambda_i \geq 0 \\ (i \in I) \\ (18)$$

Strong duality holds in the convex case.

9.8. Topic 7 – Numerical Methods (Unconstrained)

9.8.1. General line-search framework

Given descent direction s^k at x^k , choose $\alpha^k > 0$ (exact or inexact) and set $x^{k+1} = x^k + \alpha^k s^k$.

9.8.1.1. Convergence rates

If $x^k \to x^*$ and $\frac{\|x^{k+1} - x^*\|}{\|x^k - x^*\|^{\alpha}} \to \beta$ then the method is α -th-order: $\alpha = 1$ linear, $\alpha = 1, \beta = 0$ super-linear, $\alpha = 2$ quadratic.

9.8.2. Steepest Descent

$$s^k = -\nabla f(x^k). \tag{19}$$

Globally convergent, linear rate in the quadratic case; no quadratic termination.

9.8.3. Newton's method

$$\nabla^2 f(x^k) \delta^k = -\nabla f(x^k), \quad s^k = \delta^k. \tag{20}$$

Quadratic convergence near a non-singular minimiser; single-step termination for strictly convex quadratics; may fail globally if $\nabla^2 f$ is singular or indefinite.

9.8.4. Conjugate Gradient (non-linear CG)

$$s^{k} = -g^{k} + \beta^{k} s^{k-1}, \quad g^{k} = \nabla f(x^{k}).$$
 (21)

Descent directions, quadratic termination (exact line search), especially attractive for large-scale problems because only vector operations are required.

9.9. Topic 8 – Penalty Function Methods

For (P) with mixed constraints define

$$P(x) = \sum_{i \in E} c_{i(x)}^2 + \sum_{i \in I} \left[c_{i(x)} \right]_+^2, \quad [x]_+ = \max\{x, 0\}.$$
 (22)

The penalty subproblem

$$\min_{x \in \mathbb{R}^n} f(x) + \mu P(x) \quad (:= P_\mu) \tag{23}$$

is unconstrained. Under mild boundedness assumptions, every sequence of minimisers x_μ with $\mu \to \infty$ has accumulation points that solve the original constrained problem, and $\mu P(x_\mu) \to 0$.

9.10. Topic 9 – Optimal Control (Pontryagin Maximum Principle)

For an autonomous system with fixed end-points

$$\min_{u(.)} \int_{t_0}^{t_1} f_0(x(t), u(t)) \, \mathrm{d}t, \quad \dot{x} = f(x(t), u(t)), \\ x(t_0) = x_0, x(t_1) = x_1, (24)$$

define the Hamiltonian $H(x,\hat{z},u)=\hat{z}^{\top}(f_0(x,u),f(x,u))$. There exists a nontrivial adjoint $\hat{z}(t)$ with $\dot{\hat{z}}=-\partial\frac{H}{\partial}x$ such that the optimal control $u^*(t)$ maximises $H(x^*(t),\hat{z}(t),u)$ for all $u\in U$. For fixed end-time the Hamiltonian is constant along the optimal trajectory; it vanishes when the terminal time is free. If only some components of $x(t_1)$ are fixed, a transversality condition relates adjoint values to the gradients of the terminal constraints.