Relational realisability model for QTT

Our aim is to build a concrete realisability model for QTT which allows for metareasoning with results derived from parametricity. To that end, a construction of a quantitative category with families (QCwF) is presented [Atkey2018]. We follow the relational approach to types introduced by Reynolds for typed lambda calculus [Ma1992] and later refined for dependent types theories [Atkey2014a].

Once and for all fix a usage semiring R and an R-linear combinatory algebra \mathscr{A}^1 .

Taking stocks

Definition 1 (Assembly[†]). An assembly[†] Γ is a pair $(|\Gamma|, e)$ where $|\Gamma|$ is a carrier set and e is a function $|\Gamma| \to \mathcal{P}(\mathscr{A})$.

e encodes realisability information - given some $\gamma \in |\Gamma|$, $e(\gamma)$ is interpreted as the set of witnesses for the existence of γ . To emphasize on that aspect, we write $a \vDash_{\Gamma} \gamma$ to denote $a \in e(\gamma)$.

A morphism between two assemblies[†] ($|\Gamma|, e_{\Gamma}$) and ($|\Delta|, e_{\Delta}$) is a function $f : |\Gamma| \to |\Delta|$ that is realizable when acting on elements with realizers - there exists $a_f \in \mathcal{A}$, s.t for every $\gamma \in |\Gamma|$ and $a_{\gamma} \in \mathcal{A}$, the following holds:

$$a_{\gamma} \vDash_{\Gamma} \gamma \implies a_{f}.a_{\gamma} \vDash_{\Delta} f(\gamma)$$

 a_f is said to track f. Also note that multiple realizers for the same function f do not induce multiple morphisms.

Using these notions we can construct a category $Asm^{\dagger}(\mathscr{A})$.

Definition 2 (Reflexive graph). A reflexive graph (r.g.) G is a tuple $(G_O, G_R, G_{refl}, G_{src}, G_{tgt})$, where G_O and G_R are sets, G_{src} and G_{tgt} are functions $G_R \to G_O$ and G_{refl} is a function $G_O \to G_R$, s.t $G_{src} \circ G_{refl} = id_{G_O} = G_{tgt} \circ G_{refl}$.

 G_O and G_R stand for a set of objects and a set of relations, respectively. In general, reflexive graphs are less structured than categories as relations need not compose.

A morphism between reflexive graphs G and H is a pair of functions $(f_o: G_O \to H_O, f_r: G_R \to H_R)$, s.t all of the depicted squares commute:

$$G_{O} \xrightarrow{f_{o}} H_{O}$$

$$G_{src} \left(\begin{matrix} \uparrow \\ G_{refl} \end{matrix} \right) G_{tgt} \qquad H_{src} \left(\begin{matrix} \uparrow \\ H_{refl} \end{matrix} \right) H_{tgt}$$

$$G_{R} \xrightarrow{f_{r}} H_{R}$$

Reflexive graphs equipped with r.g. morphisms form a category $\mathcal{R}Gph(\mathcal{S}et)$. We use reflexive graphs to give a dyadic interpretation of types in the spirit of [Ma1992].

¹In case some non-trivial properties of $\mathscr A$ are required, we will tacitly assume that $\mathscr A$ is a graph model(see [fill]) - also to fix

Reflexive graphs of assemblies[†]

One could easily generalize reflexive graphs by considering object and relation components from arbitrary categories instead of $\mathcal{S}et$. As our purpose is to build a realisability model, we replace the set of objects with an assembly $\dagger Asm^{\dagger}(\mathscr{A})$ identify two appropriate notions of reflexive graph of assemblies and a family of reflexive graphs of assemblies.

Definition 3 (Reflexive graph of assemblies). A reflexive graph of assemblies G is a tuple $(G_O, G_R, G_{refl}, G_{src}, G_{tgt})$, where G_O is an assembly, G_R - a set and the functions G_{refl} : $|G_O| \to G_R$, $G_{src}: |G_R| \to G_O$, $G_{tgt}: |G_R| \to G_O$) are such that the identities in Definition 2 are satisfied.

With these components, we obtain a category $\mathcal{R}Gph(\mathcal{A}sm^{\dagger}(\mathscr{A}))$. By considering r.g. of assemblies of shape $(X, |X|, id_X, id_X, id_X)$, we identify isomorphic copy of $Asm^{\dagger}(\mathscr{A})$ inside $\mathcal{R}Gph(\mathcal{A}sm^{\dagger}(\mathscr{A})).$

A terminal object $\mathbf{1}_{\mathcal{R}Gph(\mathcal{A}sm^{\dagger}(\mathscr{A}))}$ in $\mathcal{R}Gph(\mathcal{A}sm^{\dagger}(\mathscr{A}))$ is a tuple $(\mathbf{1}_{\mathcal{A}sm^{\dagger}(\mathscr{A})}, \{*\}, id, id, id)$, where $\mathbf{1}_{Asm^{\dagger}(\mathscr{A})}$ is the terminal assembly $(\{\star\}, f)$, with f defined as $\star \mapsto \{I\}$.

Definition 4 (Family of reflexive graphs of assemblies). Let \mathcal{C} be a category with a terminal object. Given a reflexive graph $\Gamma \in Ob(\mathcal{C})$, a family of internal r.g. over Γ is a tuple S:= $(S_O, S_R, S_{refl}, S_{src}, S_{tgt})$, where:

- $S_O:\Gamma_O\to \mathcal{A}sm^{\dagger}(\mathscr{A})$
- $S_R: \Gamma_R \to \mathcal{S}et$
- a Γ -indexed collection of functions $S_{refl} := \{f : |S_O(\gamma)| \to S_R(\Gamma_{refl}(\gamma))\}_{\gamma \in \Gamma_O}$
- $S_{src} := \{ f : S_R(\gamma) \to |S_O(\Gamma_{src}(\gamma))| \}_{\gamma \in \Gamma_R}$
- $S_{tgt} := \{ f : S_R(\gamma) \to |S_O(\Gamma_{tgt}(\gamma))| \}_{\gamma \in \Gamma_R}$

such that

• each identity in the following collection is satisfied:

$$S_{\sigma}(\Gamma_{refl}(\gamma)) \circ S_{refl}(\gamma) = id \text{ for every } \gamma \in \Gamma_O, \sigma \in \{src, tgt\}$$

We are only interested in cases when $\mathcal{C} = \mathcal{S}et$ or $\mathcal{C} = \mathcal{A}sm^{\dagger}(\mathscr{A})$.

A morphism M between two families S and T of internal r.g. over Γ is a pair of Γ -indexed collection of functions:

- $M_O := \{f : |S_O(\gamma)| \to T_O(\gamma)\}_{\gamma \in \Gamma_O}$ $M_R := \{f : |S_R(\gamma)| \to T_R(\gamma)\}_{\gamma \in \Gamma_O}$

such that:

- $T_{refl}(M_O(\gamma)(x)) = M_R(\Gamma_{refl}(\gamma))(S_{refl}(\gamma)(x))$ for every $\gamma \in \Gamma_O$, $x \in S_O(\gamma)$
- $T_{src}(M_R(\gamma)(r)) = M_O(\Gamma_{src}(\gamma))(S_{src}(\gamma)(r))$ for every $\gamma \in \Gamma_R$, $r \in S_R(\gamma)$
- $T_{tgt}(M_R(\gamma)(r)) = M_O(\Gamma_{tgt}(\gamma))(S_{tgt}(\gamma)(r))$ for every $\gamma \in \Gamma_R$, $r \in S_R(\gamma)$

A terminal family of r.g. over Γ , 1_{Γ} , consists of two constant functions, mapping $\gamma \in \Gamma$ to a terminal assembly † 1, and three Γ -indexed collections with a sole element id_1 .

A CwF from families of reflexive graphs of assemblies

As a first step toward obtaining a relationally parametric realisability model of QTT, we construct a concrete CwF using families of internal graphs of assemblies.

Consider the category $\mathcal{R}Gph$ with terminal object $1 := (\{\star\}, \{\star\}, id, id, id)$. Let $\Gamma, \Delta \in Ob(\mathcal{R}Gph)$, define:

- the collection of semantic types $Ty(\Gamma)$ as the collection of families of reflexive graphs of assemblies Γ .
- given a type $S \in Ty(\Gamma)$, an element $M \in Tm(\Gamma, S)$ is a pair of functions $(M_O : \forall \gamma \in \Gamma_O |S_O(\gamma)|, M_R : \forall \gamma \in \Gamma_R |S_R(\gamma)|$, such that

$$\forall \gamma \in \Gamma_O.S_{refl}(M_O(\gamma)) = M_R(\Gamma_{refl}(\gamma))$$
$$\forall \gamma \in \Gamma_R.S_{src}(M_R(\gamma)) = M_O(\Gamma_{src}(\gamma))$$
$$\forall \gamma \in \Gamma_R.S_{tqt}(M_R(\gamma)) = M_O(\Gamma_{tqt}(\gamma))$$

- given $f: \Gamma \to \Delta$, substitutions in types and terms is a precomposition with f on the object and relation components of types and terms respectively. Clearly, these operations are compatible with identity and composition in $\mathcal{R}Gph$.
- context extension : Suppose $S \in Ty(\Gamma)$, construct a r.g. $\Gamma.S$ as :

$$(\Gamma.S)_O = \{(\gamma, x) : \gamma \in \Gamma_O, x \in |S_O(\gamma)|\}$$

$$(\Gamma.S)_R = \{(\gamma, r) : \gamma \in \Gamma_R, r \in S_R(\gamma)\}$$

$$(\Gamma.S)_{refl}(\gamma, x) = (\Gamma_{refl}(\gamma), S_{refl}(\gamma)(x))$$

$$(\Gamma.S)_{\sigma}(\gamma, r) = (\Gamma\sigma(\gamma), S\sigma(\gamma)(r)), \quad \sigma \in \{src, tgt\}$$

Claim. $Hom_{\mathcal{R}Gph}(\Delta, \Gamma.S) \cong \{(f, M) : f : \Delta \to \Gamma, M \in Tm(\Delta, S\{f\})\}, natural in \Delta.$

Upgrading to a QCwF

Recall the definition of a QCwF from [Atkey2018]. Given a usage semiring R, a R-QCwF consists of:

- 1. A CwF $(C, 1, Ty, Tm, -.-, \langle -.- \rangle)$
- 2. A category \mathcal{L} with a faithful functor $U: \mathcal{L} \to \mathcal{C}$
- 3. A functor $(+): \mathcal{L} \times_{\mathcal{C}} \mathcal{L} \to \mathcal{L}$, s.t $U(\Gamma_1 + \Gamma_2) = U(\Gamma_1) = U(\Gamma_2)^2$. $\mathcal{L} \times_{\mathcal{C}} \mathcal{L}$ denotes the pullback $\mathcal{L} \xrightarrow{U} \mathcal{C} \xleftarrow{U} \mathcal{L}$.

Additionally, there exists an object $\Diamond \in \mathcal{L}$, s.t. $U\Diamond = 1$.

4. A functor $\rho(-): \mathcal{L} \to \mathcal{L}$ for each $\rho \in R$, s.t $U(\rho(-)) = U(-)$.

²the second equality being trivially satisfied

5. A collection $RTm(\Gamma, S)$ for each $\Gamma \in \mathcal{L}$ and $S \in Ty(U\Gamma)$, equipped with an injective function $U_{\Gamma,S}: RTm(\Gamma, S) \to Tm(U\Gamma, S)$.

For an \mathcal{L} morphisms $f: \Gamma \to \Delta$ and types $S \in Ty(U\Gamma)$, a function $-\{f\}: RTm(\Delta, S) \to RTm(\Gamma, S\{f\})$, s. t. $U(-\{f\}) = (U(-))\{Uf\}$.

6. Given $\Gamma \in \mathcal{L}$, $\rho \in R$ and $S \in Ty(U\Gamma)$, an object $\Gamma \cdot \rho S$, s.t $U(\Gamma \cdot \rho S) = U\Gamma \cdot S$.

Additionally, there exist the following natural transformations:

```
emp_{\pi}: \Diamond \to \pi \Diamond, s.t. U(emp_{\pi}) = id_1

emp_{+}: \Diamond \to \Diamond + \Diamond, s.t. U(emp_{+}) = id_1

ext_{\pi}: \pi \Gamma.(\pi \rho S) \to \pi(\Gamma.\rho S), s.t. U(ext_{\pi}) = id

ext_{+}: (\Gamma_1 + \Gamma_2).(\rho_1 + \rho_2)S \to \Gamma_1.\rho_1S + \Gamma_2.\rho_2S, s.t. U(ext_{+}) = id

iven \Gamma \in \mathcal{L} of \Gamma_2(U\Gamma), there exists
```

7. Given $\Gamma \in \mathcal{L}$, $S \in Ty(U\Gamma)$, there exists:

```
a morphism p_{\Gamma.S}: \Gamma.0S \to \Gamma, s.t. U(p_{\Gamma.S}) = p_{U\Gamma.S}
an element v_{\Gamma.S} \in RTm(0\Gamma.1S, S\{p_{U\Gamma.S}\}), s.t. U(v_{\Gamma.S}) = v_{U\Gamma.S}
a morphism wk(f, \rho S'): \Gamma.\rho S'\{Uf\} \to \Delta.\rho S' for each f: \Gamma \to \Delta, S' \in Ty(U\Gamma, \Delta)
s.t. U(wk(f, \rho S')) = wk(Uf, S')
let \Gamma_1, \Gamma_2 \in \mathcal{L}, s.t U\Gamma_1 = U\Gamma_2 and M \in RTm(\Gamma_2, S). There is a morphism \overline{\rho M}: \Gamma_1 + \rho \Gamma_2 \to \Gamma_1.\rho S, s.t U(\overline{\rho M}) = \overline{UM}
a morphism \overline{M}: \Gamma \to \Gamma.0S for M \in Tm(U\Gamma, S), s.t. U(\overline{M}) = \overline{M}.
```

Now to construct the concrete QCwF, consider the CwF from previous section as the underlying category.

Take $\mathcal{L} := \mathcal{R}Gph(\mathscr{A})$ and let U be the functor $\mathcal{R}Gph(\mathscr{A}) \to \mathcal{R}Gph$, sending an assembly to its underlying set, forgetting the realisability function.

For the addition structure, let Γ' , Γ'' be r.g. of assemblies, s.t $|\Gamma'_O| = |\Gamma''_O|$ and $|\Gamma'_R| = |\Gamma''_R|$. Construct the r.g. of assemblies $\Gamma := \Gamma' + \Gamma''$, where:

- $\Gamma_O := (|\Gamma'_O|, \vDash_{\Gamma})$ with $a \vDash_{\Gamma} \gamma$ iff there exist $x, y \in \mathscr{A}$, s.t. a = [x, y] and $x \vDash_{\Gamma'} \gamma$ and $y \vDash_{\Gamma''} \gamma$.
- define Γ_R similarly as Γ_Q .
- Γ_{refl} , Γ_{src} , Γ_{tgt} are the same as their Γ' counterparts (or Γ'').

Define \Diamond as the terminal object $\mathbf{1}_{\mathcal{R}Gph(\mathcal{A}sm^{\dagger}(\mathscr{A}))}$ Consider the scaling structure and let $\Gamma := \rho(\Gamma')$:

- $\Gamma_{\sigma} = (|\Gamma'_{\sigma}|, \vDash_{\Gamma_{\sigma}})$ with $a \vDash_{\Gamma_{\sigma}} \gamma$ iff there is $x \in \mathscr{A}$, s.t $a = !_{\rho}x$ and $x \vDash_{\Gamma'_{\sigma}} \gamma$ for $\sigma \in \{O, R\}$
- again, scaling leaves unmodified Γ_{σ} for $\sigma \in \{src, tgt, rfl\}$.

Let $RTm(\Gamma, S)$ be the collection of assembly[†] morphisms from the terminal object to S (note any set-theoretic function from the terminal object is realizable). Spelling this out, $RTm(\Gamma, S)$ consists of tuples (M_O, M_R) , s.t. the conditions from Definition 4 are satisfied. $U_{\Gamma,S}$ just forgets the realisability information and is trivially injective. Substitution in terms

is given by precomposition with $f: \Gamma \to \Delta - \{f_O\} := \lambda M_O. \forall \gamma \in \Gamma. M_O(f(\gamma))$ and similarly, $-\{f_R\} := \lambda M_R. \forall \gamma \in \Gamma. M_R(f(\gamma))$. The functor U interacts nicely with the so-defined $-\{f\}$ as essentially the substitution in terms in the underlying CwF is defined in the same way.

Let $\Gamma . \rho S := (\Gamma'_O, \Gamma'_B, \Gamma'_\sigma)$, where

- $|\Gamma'_O| := \{(\gamma, x) : \gamma \in \Gamma_O, x \in S_O(\gamma)\}$ and $a \models_{\Gamma, \rho S} (\gamma, x)$ iff there exists $b, c \in \mathscr{A}$, s.t $a = [b, !_{\rho}c], b \models_{\Gamma} \gamma$ and $c \models_{S(\gamma)} \pi_1((\gamma, x))$, where $(-) : \Gamma.S \to U(\Gamma.S), (-) := id$ as the set-theoretic part of the extensions in the CwF and \mathcal{L} is the same by definition.
- $|\Gamma'_R|$ is defined analogously.
- Γ'_{σ} is defined pointwise.

 $emp_{\pi}: \Diamond \to \pi \Diamond$ is given by identity function on both the object and relational part. It is realized by $K.!_{\rho}I$. Similarly, emp_{+} is realized by K.[I,I], ext_{π} - by $\lambda^{*}q.let [x,y] = q$ in $F_{\pi}.(F_{\pi}.(!_{\pi}\lambda^{*}stu.ust).x).\delta_{\pi\rho}y$ and ext_{+} - by $\lambda^{*}q.let [[x,y],z] = q$ in $W_{\pi\rho}.(\lambda^{*}ab.[[x,a],[y,b]]).z$

The underlying function part of the above-defined natural transformations is given by identity, hence naturality follows trivially.

Finally, we construct the morphisms, listed in 7:

- $p_{\Gamma.S}: \Gamma.0S \to \Gamma$ is the first projection of $(\Gamma.0S)_{\sigma} = \{(\gamma, s): \gamma \in \Gamma_{\sigma}.s \in S(\gamma)\}$, $(\sigma \in \{O, R\})$ and is realized by $\lambda^*t.(t.K)$. The equality $U(p_{\Gamma.S}) = p_{U\Gamma.S}$ holds trivially due to the identical structure of context extension in the underlying CwF and \mathcal{L} .
- define $v_{\Gamma,S} \in RTm(0\Gamma.1S, S\{p_{U\Gamma.S}\})$ as the second projection. $v_{\Gamma,S}$ is realized by $\lambda^*t.B.t.K.D$.
- Let a_f^{σ} realizes f_{σ} , then $wk(f, \rho S') := \lambda(\gamma, s).(f(\gamma), s)$ is realized by $\lambda^*q.let[x, y] = q$ in $[a_f^{\sigma}.x, y]$
- given a $M_{\sigma} \in RTm(\Gamma, S) = M_{\sigma} : \forall \gamma \in U\Gamma_{\sigma}.S_{\sigma}(\gamma)$ with realizers a_m^{σ} , let $\overline{\rho M_{\sigma}} := \lambda \gamma.(\gamma, M_{\sigma}(\gamma))$ realized by $\lambda^*q.let[x, y] = q$ in $[x, F_{\rho}.(!_{\rho}a_m^{\sigma}).y]$
- given a $M_{\sigma} \in Tm(U\Gamma, S) = M_{\sigma} : \forall \gamma \in U\Gamma_{\sigma}.S_{\sigma}(\gamma)$, let $\overline{M}_{\sigma} := \lambda \gamma.(\gamma, M_{\sigma}(\check{\gamma}))$ realized by the K combinator.

Type formers

Definition 5 (Dependent function types a QCwF). A QCwF supports dependent function types with usage information, if

• the underlying CwF \mathcal{C} supports them, namely, if for all $\Gamma \in Ob(\mathcal{C}), S \in Ty(\Gamma), T \in Ty(\Gamma.S), \pi \in R$, there exist type $\Pi \pi ST \in Ty(\Gamma)$ and a bijection

$$\Lambda: Tm(\Gamma.S, T) \cong Tm(\Gamma, \Pi \pi ST),$$

natural in Γ .

• for $\Gamma \in Ob(\mathcal{L}), S \in Ty(U\Gamma), T \in Ty(U\Gamma.S), \pi \in R$, there exists a bijection

$$\Lambda_{\mathcal{L}}: RTm(\Gamma.\pi S, T) \cong RTm(\Gamma, \Pi\pi ST),$$

natural in Γ such that $U \circ \Lambda_{\mathcal{L}} = \Lambda \circ U$ and $U \circ \Lambda_{\mathcal{L}}^{-1} = \Lambda^{-1} \circ U$.

To show that our model supports Π types, fix some $\pi \in R$, suppose Γ is a r.g in $Ob(\mathcal{C})$, $S \in Ty(\Gamma)$, $T \in Ty(\Gamma.S)$. Define the semantic type $\Pi \pi ST$ as the family of assemblies over Γ , consisting of:

•
$$(\Pi \pi ST)_O(\gamma) := (X, \vDash_X)$$
 for $\gamma \in \Gamma_O$, where
$$X := \{ (f_O, f_R) \mid f_O : \forall s \in S_O(\gamma).T_O(\gamma, s), \\ f_R : \forall r \in S_R(\Gamma_{refl}(\gamma)).T_R(\Gamma_{refl}(\gamma), r), \\ \forall s \in S_O(\gamma).T_{refl}(\gamma, s)(f_O(s)) = f_R(S_{refl}(\gamma)(s)), \\ \forall r \in S_R(\Gamma_{refl}(\gamma)).T_{src}(\Gamma_{refl}(\gamma), r)(f_R(r)) = f_O(S_{src}(\Gamma_{refl}(\gamma))(r)), \\ \forall r \in S_R(\Gamma_{refl}(\gamma)).T_{tgt}(\Gamma_{refl}(\gamma), r)(f_R(r)) = f_O(S_{tgt}(\Gamma_{refl}(\gamma))(r)) \}$$

$$a \vDash_X (f_O, f_R) \text{ iff}$$

$$\forall s \in |S_O(\gamma)|, b \in \mathscr{A}.b \vDash_{S_O(\gamma)} s \implies a.!_o b \vDash_{T_O(\gamma, s)} f_O(s)$$

Note that f_R does not contribute any realisability information to \vDash_X .

 $(\Pi \pi ST)_{R}(\gamma) := \{ ((f_{O}^{src}, f_{R}^{src}), (f_{O}^{tgt}, f_{R}^{tgt}), r) \mid (f_{O}^{src}, f_{R}^{src}) \in (\Pi \pi ST)_{O}(\Gamma_{src}(\gamma)), (f_{O}^{tgt}, f_{R}^{tgt}) \in (\Pi \pi ST)_{O}(\Gamma_{tgt}(\gamma)), \\ r : \forall s \in S_{R}(\gamma).T_{R}(\gamma, s), \\ \forall s \in S_{R}(\gamma).T_{src}(\gamma, s)(r(s)) = f_{O}^{src}(S_{src}(\gamma)(s)), \\ \forall s \in S_{R}(\gamma).T_{tat}(\gamma, s)(r(s)) = f_{O}^{tgt}(S_{tat}(\gamma)(s)) \}$

- $(\Pi \pi ST)_{refl}(\gamma) := \lambda(f_O, f_R).((f_O, f_R), (f_O, f_R), f_R)$ for $\gamma \in \Gamma_O$.
- $(\Pi \pi ST)_{src}(r) := \lambda(f^{src}, f^{tgt}, r).f^{src}$ for $r \in \Gamma_R$.
- $(\Pi \pi ST)_{tgt}(r) := \lambda(f^{src}, f^{tgt}, r), f^{tgt} \text{ for } r \in \Gamma_R.$

Unwinding Definition 5, we get

$$\{(M_O, M_R) : \forall (\gamma, s) \in (\Gamma \cdot \pi S) \cdot T(\gamma, s)\} \cong \{(N_O, N_R) : \forall \gamma \in \Gamma \cdot (\Pi \pi S T)(\gamma)\}$$

where the terms are of the following type structure:

$$M_{O}: \forall (\gamma, s) \in (\Gamma.\pi S)_{O}.T_{O}(\gamma, s)$$

$$M_{R}: \forall (\gamma, r) \in (\Gamma.\pi S)_{R}.T_{R}(\gamma, s)$$

$$N_{O}: \forall \gamma \in \Gamma_{O}.$$

$$\{(f_{O}, f_{R}) \mid f_{O}: \Pi S(\gamma)_{O}.T(\gamma)_{O}$$

$$f_{R}: \Pi S_{R}(\Gamma_{refl}(\gamma).T(\Gamma_{refl}(\gamma)))\}$$

$$N_{R}: \forall \gamma \in \Gamma_{R}.$$

$$\{(f^{src}, f^{tgt}, r) \mid f^{src} \in (\Pi\pi ST)_{O}(\Gamma_{src}(\gamma))$$

$$f^{tgt} \in (\Pi\pi ST)_{O}(\Gamma_{tgt}(\gamma))$$

$$r: \Pi S_{R}(\gamma).T_{R}(\gamma)\}$$

Thus, we can define Λ as:

$$N_O := \lambda \gamma_o.(\lambda s. M_O(\gamma_o, s), \lambda s_r. M_R(\Gamma_{refl}(\gamma_o), s_r))$$

$$N_R := \lambda \gamma_r.(N_O(\Gamma_{src}(\gamma)), N_O(\Gamma_{tot}(\gamma)), \lambda s_r. M_R(\gamma, s_r)))$$

For $\Lambda_{\mathcal{L}}$, a realizer a_m of M

 $(that \ is \ \forall (\gamma,s), \forall (a_{\gamma},a_s), [a_{\gamma},a_s] \vDash_{\varGamma.\pi S} (\gamma,s) \implies a_m.[a_{\gamma},a_s] \vDash_{\varGamma(\gamma,s)} M(\gamma,s))$ can be transformed to a realizer a_n of N by:

$$a_n := \lambda^* y.(\lambda^* s.(a_m.[y,s]))$$

The conditions $U \circ \Lambda_{\mathcal{L}} = \Lambda \circ U$ and $U \circ \Lambda_{\mathcal{L}}^{-1} = \Lambda^{-1} \circ U$ follow trivially.

Universe of small types A plausible candidate for the universe U is the general definition in [**fill**]:

 $U_O :=$ the set of small r.g.

$$U_R := \{(A, B, R, R_{src}, R_{tgt}) : R \in \mathcal{U}, R_{src} : R \to A_O, R_{tgt} : R \to A_O, A, B \text{ are small r.g.}\}$$

However, this universe turns out to be "too big' - types do not carry enough structure to model parametricity accurately. To remedy the definition, we impose restrictions laid out by the following characterization:

A family of reflexive graphs of assemblies S over Γ is

• small - if for all $\gamma_{\sigma} \in \Gamma_{\sigma}$, $S_R(\gamma_R) \in \mathcal{U}$ and $|S_O(\gamma_O)| \in \mathcal{U}$.

• discrete - if for every $\gamma \in \Gamma_O$, there exists $X \in \mathcal{A}sm^{\dagger}(\mathscr{A})$, s.t.

$$S_{O}(\gamma) \qquad X \\ \downarrow S_{src}(\Gamma_{refl}(\gamma)) \begin{pmatrix} S_{refl}(\gamma) & S_{src}(\Gamma_{refl}(\gamma)) & \cong & id \end{pmatrix} \begin{pmatrix} \downarrow \\ id \\ \downarrow \end{pmatrix} id \\ S_{R}(\Gamma_{refl}(\gamma)) & |X|$$

• proof-irrelevant - if for all $\gamma \in \Gamma_R$, the function $\langle S_{src}(\gamma), S_{tgt}(\gamma) \rangle : S_R(\gamma) \to |S_O(\Gamma_{src}(\gamma))| \times |S_O(\Gamma_{tgt}(\gamma))|$ is injective.

For any reflexive graph Γ , define the small, discrete, proof-irrelevant universe $U \in Ty(\Gamma)$ and the type decoder $T \in Ty(\Gamma, U)$ as:

• $|U_O(\gamma)|$:= the set of small, discrete r.g. of assemblies $a \vDash_{U_O(\gamma)} S$ for any $a \in \mathscr{A}, S \in |U_O(\gamma)|$.

$$U_R(\gamma_O) := \{ (S, T, R, R_{src}, R_{tgt}) \mid R \in \mathcal{U} \}$$

- S, T are small discrete r.g. of assemblies $\langle R_{src}, R_{tgt} \rangle : R \to |S_O| \times |T_O|$ is injective}
- $U_{refl}(\gamma_R)(S) := (S, |S|, S_{refl}, S_{src}, S_{tgt})$
- $U_{src}(\gamma_R)(S, T, R, R_{src}, R_{tgt}) = S$
- $U_{src}(\gamma_R)(S, T, R, R_{src}, R_{tgt}) = T$

and $T \in Ty(\Gamma.U)$ as:

- $T_O(\gamma_O, S) := S_O$
- $T_R(\gamma_R, (S, T, R, R_{src}, R_{tqt})) := R$
- $T_{refl}(\gamma_O, S) := S_{refl}$
- $T_{src}(\gamma_R, (S, T, R, R_{src}, R_{tgt})) := R_{src}$
- $T_{tgt}(\gamma_R, (S, T, R, R_{src}, R_{tgt})) := R_{tgt}.$