K. Wiegand, T. Stalljohann, T. Witt Sommersemester 2025 Heidelberg, 6. Mai 2025

Grundlagen der Geometrie und Topologie

ÜBUNGSBLATT 4

Stichworte: Vektorfelder, Integralkurven und Distributionen

Aufgabe 1 φ-verknüpfte Vektorfelder (1.5+1+1.5 Punkte)

Sei $\phi: M \longrightarrow N$ eine glatte Abbildung zwischen glatten Mannigfaltigkeiten. Vektorfelder X auf M und Y auf N heißen ϕ -verknüpft, sofern $D\phi_p(X_p) = Y_{\phi(p)}$ für alle $p \in M$ gilt. In diesem Fall verwenden wir (im Rahmen dieser Aufgabe) die Notation $X \rhd_{\phi} Y$. Zeigen Sie:

a)
$$X \rhd_{\phi} Y \iff X [f \circ \phi] = Y[f] \circ \phi \quad \forall f \in C^{\infty}(N)$$

- b) $X_i \rhd_{\phi} Y_i$ für $i = 1, 2 \Longrightarrow [X_1, X_2] \rhd_{\phi} [Y_1, Y_2]$
- c) $X \rhd_{\phi} Y \iff \phi$ bildet Integralkurven von X auf Integralkurven von Y ab

Aufgabe 2 Escape Lemma (3+1 Punkte)

Wir betrachten ein beliebiges (glattes) Vektorfeld X auf einer beliebigen (glatten) Mannigfaltigkeit M.

- a) Sei $\gamma: I=(a,b) \longrightarrow M$ eine maximale (=nicht weiter fortsetzbare) Integralkurve von X mit $a \ge -\infty$ und **endlichem** $b < \infty$. Zeigen Sie: Zu jeder kompakten Teilmenge $K \subset M$ gibt es ein $\epsilon > 0$, so dass $\gamma \left((b \epsilon, b) \right) \subset M \setminus K$.
 - Schlussfolgern Sie: Falls die Mannigfaltigkeit M kompakt ist, so sind alle maximalen Integralkurven von X auf ganz \mathbb{R} definiert. (In diesem Fall sagen wir: "X ist vollständig")
- b) Sei $f \in C^{\infty}(M)$ eine eigentliche Funktion ("Urbilder kompakter Mengen sind kompakt"). Zeigen Sie: Falls $X[f] \in C^{\infty}(M)$ uniform beschränkt ist, so ist X vollständig.

Aufgabe 3 Beispiele zur (Un-)Vollständigkeit von Vektorfeldern (1+1+1+1 Punkte)

Wir nennen ein Vektorfeld X zukunfts-/vergangenheitsvollständig, falls $[0, \infty)$ bzw. $(-\infty, 0]$ im Definitionsbereich einer jeden (maximalen) Integralkurve enthalten ist.

Entscheiden Sie (mit Beweis), ob die folgenden Vektorfelder auf $\mathbb{R}^2 \setminus \{0\}$ zukunfts- bzw. vergangenheitsvollständig sind:

i)
$$X = x \partial_x + y \partial_y$$

ii)
$$X = \frac{x \partial_x + y \partial_y}{\sqrt{x^2 + y^2}}$$

iii)
$$X = \partial_x + (x^3y + x^4 + y^8)\partial_y$$

iv)
$$X = \partial_x + \frac{yx}{x^2 + y^2} \partial_y$$

Aufgabe 4 Involutive Distributionen und kommutierende Vektorfelder (4 Punkte)

Sei M eine d-dimensionale Mannigfaltigkeit und k < d. Eine k-dimensionale Distribution auf M ist eine Kollektion $\mathcal{D} = \bigsqcup_{p \in M} \mathcal{D}_p$ von k-dimensionalen Unterräumen $\mathcal{D}_p \subset T_p M$, so dass es zu jedem Punkt $p \in M$ eine Umgebung $\mathcal{U} \subset M$ von p und glatte Vektorfelder $X_1, ..., X_k$ auf \mathcal{U} gibt mit $\mathcal{D}|_{\mathcal{U}} = span(X_1, ..., X_k)$. Die Distribution \mathcal{D} heißt involutiv, falls für Vektorfelder $Y_i, i = 1, 2$ mit $Y_i \in \mathcal{D}$ (punktweise zu verstehen als " $Y_i(q) \in \mathcal{D}_q \ \forall \ q$ ") stets $[Y_1, Y_2] \in \mathcal{D}$ gilt. Zeigen Sie:

 $\mathcal{D} \text{ involutiv } \Longrightarrow \begin{array}{l} \text{Jeder Punkt besitzt eine Umgebung } \mathcal{U} \subset M \text{ mit kommutierenden Vektor-} \\ \text{feldern } (V_i)_{i=1,\dots,k} \,, \, [V_i,V_j] = 0 \; \forall \, i,j \text{ auf } \mathcal{U}, \text{ so dass } \mathcal{D}|_U = span(V_1,\dots,V_k). \end{array}$

<u>Tipp:</u> Wählen Sie lokale Koordinaten $\mathbb{R}^d = \mathbb{R}^k \oplus \mathbb{R}^{d-k}$, so dass $\mathcal{D}_{p=0} \cap (0 \oplus \mathbb{R}^{d-k}) = 0$, betrachten Sie die kanonische Projektion $\pi : \mathbb{R}^d \longrightarrow \mathbb{R}^k \oplus 0$ und liften Sie die Koordinatenvektorfelder $\frac{\partial}{\partial x^1}, \dots, \frac{\partial}{\partial x^k}$ zu einer (glatten) Basis von \mathcal{D} . Erinnern Sie sich an Aufgabe 1.

Kontext: Diese Aufgabe wird im Beweis des berühmten 'Satz von Frobenius' benutzt.

Abgabe bis Dienstag, 13. Mai 2025, 13:00 Uhr im MaMpf in Zweiergruppen. Abgabe zu dritt ist erlaubt.