Отчет

Вариант 1: Технологические тренды

Анализ технологического пространства на основе патентных заявок по процедуре РСТ по запросу: ALL:(("UAV" OR "DRONE" OR "unmanned aerial vehicles")) AND AD:([01.01.2007 TO 31.12.2008]) Процент автоматического распознавания патентных документов - 93.5%

Карта технологического пространства в последнем рассматриваемом году

Карта технологического пространства в последнем рассматриваемом году (с выделением растущих (квадратами) и концентрирующихся или стабильных (синей и красной областями соответственно))

Красными ребрами на графике отображаются связи технологических областей и групп рыночных тенденций Зелеными ребрами на графике отображаются связи между наиболее близкими технологическими областями Желтыми ребрами на графике отображаются связи между относительно близкими объектами

Итоговый рейтинг

Position		
(Index)	Status	Content
1(3.21)	GrowingToNewTheme	(Тема № 1) AERODYNAMIC INTEGRATION OF A
	1 - 13	PAYLOAD CONTAINER WITH A VERTICAL
		TAKEOFF AND LANDING AIRCRAFTWO ,
		SYSTEM FOR POSITION AND VELOCITY SENSE
		AND CONTROL OF AN AIRCRAFTWO, determining
		the position andor velocity, determining the position
		andor velocity of an autonomous aircraft in a lowcost low
		weight, inclusion on small mass aircraft, implement their
		combined, visual sensing technology etc coupled with
		SOLID OXIDE FUEL CELL ELECTRODE SYSTEMS
		AND METHODSWO , (Tema № 13) MODULAR
		DRONE WITH DETACHABLE
		SUBASSEMBLIESWO, the flying structure by links
		that are detachable when the loadings, an airborne image
		acquisition system consisting of such a modular drone
		RECONFIGURABLE DATA PROCESSING
		SYSTEMWO, the programmable processing modules At
		least one interface circuit arranged on the circuit, the
		programmable processing modules and the conductive
		traces are arranged on the circuit board, accommodate
		use of the programmable integrated circuits of varying
		processing
2(3.08)	GrowingToNewTheme	(Тема № 1) AERODYNAMIC INTEGRATION OF A
	1 - 6	PAYLOAD CONTAINER WITH A VERTICAL
		TAKEOFF AND LANDING AIRCRAFTWO ,
		SYSTEM FOR POSITION AND VELOCITY SENSE
		AND CONTROL OF AN AIRCRAFTWO, determining
		the position andor velocity, determining the position
		andor velocity of an autonomous aircraft in a lowcost low

		Weight, inclusion on small mass aircraft, implement their combined, visual sensing technology etc coupled with SOLID OXIDE FUEL CELL ELECTRODE SYSTEMS AND METHODSWO, (Tema № 6) FABRICATION OF NANOVOIDIMBEDDED BISMUTH TELLURIDE WITH LOW DIMENSIONAL SYSTEMWO, solidstate TE cooling devices because it possesses the highest TE figure, solidstate TE cooling devices because REDUCTION OF FALSE POSITIVE REPUTATIONS THROUGH COLLECTION OF OVERRIDES FROM
		CUSTOMER DEPLOYMENTSWO , reducing occurrence andor , a reputation of an adversary are reported to a reputation service from security devices
		such as unified, allow the security device to accept traffic
		from or send, adjust the fidelity ie confidence level of
		that objects reputation and then, all the security devices that use the reputation service, a reputation service from
		security devices
3(2.81)	GrowingToNewTheme	(Тема № 13) MODULAR DRONE WITH
	13 - 6	DETACHABLE SUBASSEMBLIESWO , the flying
		structure by links that are detachable when the loadings,
		an airborne image acquisition system consisting of such a
		modular drone RECONFIGURABLE DATA
		PROCESSING SYSTEMWO , the programmable
		processing modules At least one interface circuit arranged
		on the circuit, the programmable processing modules and
		the conductive traces are arranged on the circuit board,
		accommodate use of the programmable integrated circuits of varying processing (Тема № 6)
		FABRICATION OF NANOVOIDIMBEDDED
		BISMUTH TELLURIDE WITH LOW DIMENSIONAL
		SYSTEMWO, solidstate TE cooling devices because it

	1	
		possesses the highest TE figure, solidstate TE cooling
		devices because REDUCTION OF FALSE POSITIVE
		REPUTATIONS THROUGH COLLECTION OF
		OVERRIDES FROM CUSTOMER
		DEPLOYMENTSWO, reducing occurrence andor, a
		reputation of an adversary are reported to a reputation
		service from security devices such as unified, allow the
		security device to accept traffic from or send, adjust the
		fidelity ie confidence level of that objects reputation and
		then, all the security devices that use the reputation
		service, a reputation service from security devices
4(2.68)	GrowingToNewTheme	(Тема № 1) AERODYNAMIC INTEGRATION OF A
	1 - 5	PAYLOAD CONTAINER WITH A VERTICAL
		TAKEOFF AND LANDING AIRCRAFTWO ,
		SYSTEM FOR POSITION AND VELOCITY SENSE
		AND CONTROL OF AN AIRCRAFTWO, determining
		the position andor velocity, determining the position
		andor velocity of an autonomous aircraft in a lowcost low
		weight, inclusion on small mass aircraft, implement their
		combined, visual sensing technology etc coupled with
		SOLID OXIDE FUEL CELL ELECTRODE SYSTEMS
		AND METHODSWO , (Tema № 5) SAFE
		SELFDESTRUCTION OF DATAWO, securing data
		includes, deciphering the encrypted data in a volatile
		AUTOADAPTIVE NETWORKWO, each feature value
		establishing a current time slice, each forecast specifying
		a future time slice, the estimation set based on
		information stored in estimation set updating each, be
		computed having at least one dependent data cell for each
		dependent, the estimation set based on the learned
		parameters and forecasting a feature value in the future,
		computed having at least one dependent data cell
		1 &

5(2.54)	GrowingToNewTheme	(Тема № 1) AERODYNAMIC INTEGRATION OF A
	1 - 14	PAYLOAD CONTAINER WITH A VERTICAL
		TAKEOFF AND LANDING AIRCRAFTWO ,
		SYSTEM FOR POSITION AND VELOCITY SENSE
		AND CONTROL OF AN AIRCRAFTWO, determining
		the position andor velocity, determining the position
		andor velocity of an autonomous aircraft in a lowcost low
		weight, inclusion on small mass aircraft, implement their
		combined, visual sensing technology etc coupled with
		SOLID OXIDE FUEL CELL ELECTRODE SYSTEMS
		AND METHODSWO, (Teмa № 14) METHOD AND
		APPARATUS FOR HURRICANE SURVEILLANCE
		FROM THE EYEWO, a remote location In one
		embodiment the aerial vehicle is an unmanned aerial
		vehicle UAV launched , having an eyewall sensor to
		enable CHECKLIST ADMINISTRATION SYSTEM
		FOR AN UNMANNED VEHICLEWO, a vehicle by
		receiving a measured value obtained from at least one
		sensor configured, one embodiment code embodied in a
		computer readable storage medium, generate a checklist
		for a vehicle by receiving a measured value, setting a
		parameter value that
6(2.41)	GrowingToNewTheme	(Тема № 5) SAFE SELFDESTRUCTION OF
	5 - 13	DATAWO, securing data includes, deciphering the
		encrypted data in a volatile AUTOADAPTIVE
		NETWORKWO, each feature value establishing a
		current time slice, each forecast specifying a future time
		slice, the estimation set based on information stored in
		estimation set updating each, be computed having at least
		one dependent data cell for each dependent , the
		estimation set based on the learned parameters and
		forecasting a feature value in the future, computed having

	1	
		at least one dependent data cell (Tema № 13)
		MODULAR DRONE WITH DETACHABLE
		SUBASSEMBLIESWO, the flying structure by links
		that are detachable when the loadings, an airborne image
		acquisition system consisting of such a modular drone
		RECONFIGURABLE DATA PROCESSING
		SYSTEMWO, the programmable processing modules At
		least one interface circuit arranged on the circuit , the
		programmable processing modules and the conductive
		traces are arranged on the circuit board, accommodate
		use of the programmable integrated circuits of varying
		processing
7(2.28)	GrowingToNewTheme	(Тема № 5) SAFE SELFDESTRUCTION OF
	5 - 6	DATAWO, securing data includes, deciphering the
		encrypted data in a volatile AUTOADAPTIVE
		NETWORKWO, each feature value establishing a
		current time slice, each forecast specifying a future time
		slice, the estimation set based on information stored in
		estimation set updating each, be computed having at least
		one dependent data cell for each dependent, the
		estimation set based on the learned parameters and
		forecasting a feature value in the future, computed having
		at least one dependent data cell (Тема № 6)
		FABRICATION OF NANOVOIDIMBEDDED
		BISMUTH TELLURIDE WITH LOW DIMENSIONAL
		SYSTEMWO, solidstate TE cooling devices because it
		possesses the highest TE figure, solidstate TE cooling
		devices because REDUCTION OF FALSE POSITIVE
		REPUTATIONS THROUGH COLLECTION OF
		OVERRIDES FROM CUSTOMER
		DEPLOYMENTSWO, reducing occurrence andor, a
		reputation of an adversary are reported to a reputation

		service from security devices such as unified, allow the
		security device to accept traffic from or send, adjust the
		fidelity ie confidence level of that objects reputation and
		then, all the security devices that use the reputation
		service, a reputation service from security devices
8(2.28)	GrowingToNewTheme	(Тема № 14) METHOD AND APPARATUS FOR
	14 - 13	HURRICANE SURVEILLANCE FROM THE EYEWO
		, a remote location In one embodiment the aerial vehicle
		is an unmanned aerial vehicle UAV launched, having an
		eyewall sensor to enable CHECKLIST
		ADMINISTRATION SYSTEM FOR AN UNMANNED
		VEHICLEWO, a vehicle by receiving a measured value
		obtained from at least one sensor configured, one
		embodiment code embodied in a computer readable
		storage medium, generate a checklist for a vehicle by
		receiving a measured value, setting a parameter value
		that (Тема № 13) MODULAR DRONE WITH
		DETACHABLE SUBASSEMBLIESWO , the flying
		structure by links that are detachable when the loadings,
		an airborne image acquisition system consisting of such a
		modular drone RECONFIGURABLE DATA
		PROCESSING SYSTEMWO , the programmable
		processing modules At least one interface circuit arranged
		on the circuit, the programmable processing modules and
		the conductive traces are arranged on the circuit board,
		accommodate use of the programmable integrated
		circuits of varying processing
9(2.14)	GrowingToNewTheme	(Тема № 14) METHOD AND APPARATUS FOR
	14 - 6	HURRICANE SURVEILLANCE FROM THE EYEWO
		, a remote location In one embodiment the aerial vehicle
		is an unmanned aerial vehicle UAV launched, having an
		eyewall sensor to enable CHECKLIST

ADMINISTRATION SYSTEM FOR AN UNMANNED VEHICLEWO, a vehicle by receiving a measured value obtained from at least one sensor configured, one embodiment code embodied in a computer readable storage medium, generate a checklist for a vehicle by receiving a measured value, setting a parameter value that $N_{\underline{0}}$ 6) **FABRICATION** (Тема NANOVOIDIMBEDDED BISMUTH TELLURIDE WITH LOW DIMENSIONAL SYSTEMWO, solidstate TE cooling devices because it possesses the highest TE figure, solidstate TE cooling devices because REDUCTION OF FALSE POSITIVE REPUTATIONS THROUGH COLLECTION OF OVERRIDES FROM CUSTOMER **DEPLOYMENTSWO** reducing occurrence andor, a reputation of an adversary are reported to a reputation service from security devices such as unified, allow the security device to accept traffic from or send, adjust the fidelity ie confidence level of that objects reputation and then, all the security devices that use the reputation service, a reputation service from security devices 10(1.74) GrowingToNewTheme (Тема № 5) SAFE SELFDESTRUCTION OF 5 - 14 DATAWO, securing data includes, deciphering the encrypted data in a volatile AUTOADAPTIVE NETWORKWO, each feature value establishing a current time slice, each forecast specifying a future time slice, the estimation set based on information stored in estimation set updating each, be computed having at least one dependent data cell for each dependent, the estimation set based on the learned parameters and forecasting a feature value in the future, computed having at least one dependent data cell (Тема № 14) METHOD

		AND APPARATUS FOR HURRICANE
		SURVEILLANCE FROM THE EYEWO, a remote
		location In one embodiment the aerial vehicle is an
		unmanned aerial vehicle UAV launched, having an
		eyewall sensor to enable CHECKLIST
		ADMINISTRATION SYSTEM FOR AN UNMANNED
		VEHICLEWO, a vehicle by receiving a measured value
		obtained from at least one sensor configured , one
		embodiment code embodied in a computer readable
		storage medium, generate a checklist for a vehicle by
		receiving a measured value, setting a parameter value
		that
11(1.67)	concentrating	(Тема № 17) APPARATUS AND METHODS FOR
		TESTING PERFORMANCE OF A MATERIAL FOR
		USE IN A JET ENGINEWO, testing failure of a material
		used in a jet engine, predicting and analysing failure by
		a number , including creep fatigue OPTICAL HARNESS
		ASSEMBLY AND METHODWO, retrofitting an optical
		harness assembly , the active connector conversion unit
		In another embodiment the method includes , includes
		removing a legacy wiring harness, includes identifying
		electrical signals , may further include providing a
		personality adaptor coupled between the electrical,
		adjusting an interface based on the identified
12(1.1)	concentrating	(Тема № 7) SYSTEM AND METHOD FOR
		HAPTICSENABLED TELEOPERATION OF
		VEHICLESWO, providing control signals, haptics
		enabled teleoperation of unmanned aerial vehicles,
		provide position and orientation control with, function in
		a closed loop feedback manner , UAV comprising a
		control component configured to provide position

		REMOTE ENGINEELECTRIC HELICOPTER
		INDUSTRIAL PLATFORMWO, the center of gravity
		by use of a conveyer belt type of mechanism in order to
		navigate in any direction The helicopter aircraft platform
		tilts, provide propulsion The helicopter rotor blades,
		provide greater protection from things, navigate in any
		direction The helicopter aircraft platform tilts in the
		direction the weight is moved, navigate in any direction
		The helicopter aircraft platform tilts, flown and operated
		using a hand held control unit either, is an unmanned
		flying helicopter aircraft platform that uses counter
12(1.1)	aan aantratis a	(Taxa Ma 0) HETEDOADVI GUDGTITUTED GEDDUE
13(1.1)	concentrating	(Тема № 8) HETEROARYLSUBSTITUTED SERINE
		AMIDESWO, controlling undesired plants, the
		production of said serine amides and to the use of said
		compounds, methods and intermediate products for the
		production of said serine amides and to the use of said
		compounds IMAGING SYSTEM AND METHODWO ,
		providing images in a direction along said, selectively
		pointing said optical, shielding said image, shielding
		said image acquisition unit from , a pointing mechanism
		configured for selectively pointing said
14(1.1)	concentrating	(Тема № 10) CONTROLLED DISPENSE SYSTEM
		FOR DEPLOYMENT OF COMPONENTS INTO
		DESIRED PATTERN AND ORIENTATIONWO ,
		holding respective components, the ejection events is
		programmed into the ejection system, automatically
		deploy systems using a controlled dispense approach,
		which includes incorporating the components into an
		elongated , including axially displaced ejector AN
		UNMANNED AERIAL VEHICLE LAUNCHING AND
	1	

		LANDING SYSTEMWO, landing UAVs comprising,
		connect with a landing UAV At the landing phase the
		controlled pulling and braking means of the system
		essentially , essentially brakes the motion of the central
		arm of the structure that is propelled to revolve around the
		systems axis means
15(1.1)	concentrating	(Тема № 23) HEALTH MANAGEMENT OF SINGLE
		OR MULTIPLATFORM SYSTEMSWO , health data
		management are disclosed In one embodiment a method
		of monitoring health , includes providing a prognostic
		characteristic of the one or more , may further include
		translating at least some of the health information for each
		of the one or more subsystems, includes receiving health
		information, of a plurality of platforms and analyzing the
		health information using one or more reasoner algorithms
		configured, Upon prediction of a potential failure the
		method includes, In alternate embodiments the method
		may further include translating at least

Вариант 2: Технологические тренды

Дополнительно: анализ изменения рыночных трендов, влияющих на технологическое развития заданной отрасли

Анализ технологического пространства на основе патентных заявок по процедуре РСТ по запросу ALL:(("UAV" OR "DRONE" OR "unmanned aerial vehicles")) AND AD:([01.01.2007 TO 31.12.2008])

Процент автоматического распознавания патентных документов - 93.5%

Роль выделенных рыночных тенденций в последнем году около , в предпоследнем году около 10.6%, в предпоследнем году около 4.3%

Карта технологического пространства в последнем рассматриваемом году

Карта технологического пространства в последнем рассматриваемом году (с выделением растущих (квадратами) и концентрирующихся или стабильных (синей и красной областями соответственно))

Красными ребрами на графике отображаются связи технологических областей и групп рыночных тенденций Зелеными ребрами на графике отображаются связи между наиболее близкими технологическими областями Желтыми ребрами на графике отображаются связи между относительно близкими объектами

Карта развития влияния рыночных тенденций и их взаимосвязи в последнем рассматриваемом году (с выделением растущих (квадратными вершинами) и сближающихся (синей областью))

code

Диаграммы соотношения влияния различных групп выделенных рыночных тенденций в последнем рассматриваемом году

Соотношение влияния макротрендов

Диаграммы соотношения влияния различных групп выделенных рыночных тенденций в предпоследнем рассматриваемом году

Соотношение влияния макротрендов

Итоговый рейтинг

Position		
(Index)	Status	Content
1(452.25)	GrowingT	(Тема № 1) AERODYNAMIC INTEGRATION OF A
	oNewThe	PAYLOAD CONTAINER WITH A VERTICAL TAKEOFF AND
	me 1 - 13	LANDING AIRCRAFTWO , SYSTEM FOR POSITION AND
		VELOCITY SENSE AND CONTROL OF AN AIRCRAFTWO ,
		determining the position andor velocity, determining the position
		andor velocity of an autonomous aircraft in a lowcost low weight,
		inclusion on small mass aircraft, implement their combined, visual
		sensing technology etc coupled with SOLID OXIDE FUEL CELL
		ELECTRODE SYSTEMS AND METHODSWO , (Тема № 13)

		Влияние трендов на тему №13
		environment digital sensors
		application
		system
		integration
		construction
		transport
		CiOSS
		Тренды влияния и их соотношение
2(356.22)	GrowingT	(Тема № 1) AERODYNAMIC INTEGRATION OF A
	oNewThe	PAYLOAD CONTAINER WITH A VERTICAL TAKEOFF AND
	me 1 - 5	LANDING AIRCRAFTWO, SYSTEM FOR POSITION AND
		VELOCITY SENSE AND CONTROL OF AN AIRCRAFTWO,
		determining the position andor velocity, determining the position
		andor velocity of an autonomous aircraft in a lowcost low weight,
		inclusion on small mass aircraft, implement their combined, visual
		sensing technology etc coupled with SOLID OXIDE FUEL CELL
		ELECTRODE SYSTEMS AND METHODSWO , (Тема № 5) -

		Влияние трендов на тему №5
		securing
		environment
		digital efficiency
		display
		mobile
		system
		construction
		cross
		Тренды влияния и их соотношение
3(297.86)	GrowingT	(Тема № 1) AERODYNAMIC INTEGRATION OF A
	oNewThe	PAYLOAD CONTAINER WITH A VERTICAL TAKEOFF AND
	me 1 - 6	LANDING AIRCRAFTWO , SYSTEM FOR POSITION AND
		VELOCITY SENSE AND CONTROL OF AN AIRCRAFTWO ,
		determining the position andor velocity, determining the position
		andor velocity of an autonomous aircraft in a lowcost low weight,
		inclusion on small mass aircraft, implement their combined, visual
		sensing technology etc coupled with SOLID OXIDE FUEL CELL
		ELECTRODE SYSTEMS AND METHODSWO , (Тема № 6) -

		Влияние трендов на тему №6
		securing
		sensors
		system
		construction
		cross
		Тренды влияния и их соотношение
4(238.86)	GrowingT	(Тема № 1) AERODYNAMIC INTEGRATION OF A
	oNewThe	PAYLOAD CONTAINER WITH A VERTICAL TAKEOFF AND
	me 1 - 14	LANDING AIRCRAFTWO , SYSTEM FOR POSITION AND
		VELOCITY SENSE AND CONTROL OF AN AIRCRAFTWO ,
		determining the position andor velocity, determining the position
		andor velocity of an autonomous aircraft in a lowcost low weight,
		inclusion on small mass aircraft, implement their combined, visual
		sensing technology etc coupled with SOLID OXIDE FUEL CELL
		ELECTRODE SYSTEMS AND METHODSWO , (Тема № 14) -

		Влияние трендов на тему №14
		efficiency
		emolericy
		sensors
		construction
		cross
		emergency
		emergency
		Тренды влияния и их соотношение
5(227.45)	GrowingT	(Тема № 5) SAFE SELFDESTRUCTION OF DATAWO ,
	oNewThe	securing data includes, deciphering the encrypted data in a volatile
	me 5 - 13	AUTOADAPTIVE NETWORKWO, each feature value
		establishing a current time slice, each forecast specifying a future
		time slice, the estimation set based on information stored in
		estimation set updating each, be computed having at least one
		dependent data cell for each dependent, the estimation set based on
		the learned parameters and forecasting a feature value in the future,
		computed having at least one dependent data cell (Тема № 13) -

		Влияние трендов на тему №13
		environment digital
		sensors
		application
		system
		integration
		construction
		transport
		Closs
		Тренды влияния и их соотношение
6(163.29)	GrowingT	(Тема № 13) MODULAR DRONE WITH DETACHABLE
	oNewThe	SUBASSEMBLIESWO, the flying structure by links that are
	me 13 - 6	detachable when the loadings, an airborne image acquisition
		system consisting of such a modular drone RECONFIGURABLE
		DATA PROCESSING SYSTEMWO, the programmable
		processing modules At least one interface circuit arranged on the
		circuit, the programmable processing modules and the conductive
		traces are arranged on the circuit board, accommodate use of the
		programmable integrated circuits of varying processing (Тема № 6
)-

		Влияние трендов на тему №6
		securing
		sensors system
		construction
		cross
		Тренды влияния и их соотношение
7(125.74)	GrowingT	(Тема № 14) METHOD AND APPARATUS FOR HURRICANE
	oNewThe	SURVEILLANCE FROM THE EYEWO, a remote location In one
	me 14 -	embodiment the aerial vehicle is an unmanned aerial vehicle UAV
	13	launched, having an eyewall sensor to enable CHECKLIST
		ADMINISTRATION SYSTEM FOR AN UNMANNED
		VEHICLEWO, a vehicle by receiving a measured value obtained
		from at least one sensor configured, one embodiment code
		embodied in a computer readable storage medium, generate a
		checklist for a vehicle by receiving a measured value , setting a parameter value that (Тема № 13) -

		Влияние трендов на тему №13
		environment digital sensors
		application
		system
		integration
		construction
		transport cross
		Тренды влияния и их соотношение
8(114.63)	GrowingT	(Тема № 5) SAFE SELFDESTRUCTION OF DATAWO,
0(114.03)	oNewThe	securing data includes, deciphering the encrypted data in a volatile
	me 5 - 6	AUTOADAPTIVE NETWORKWO, each feature value
		establishing a current time slice, each forecast specifying a future
		time slice, the estimation set based on information stored in
		estimation set updating each, be computed having at least one
		dependent data cell for each dependent, the estimation set based on
		the learned parameters and forecasting a feature value in the future , computed having at least one dependent data cell (Tema N_{2} 6) -

		Влияние трендов на тему №6
		securing
		sensors
		system
		construction
		cross
		Тренды влияния и их соотношение
9(82.73)	GrowingT	(Тема № 5) SAFE SELFDESTRUCTION OF DATAWO ,
	oNewThe	securing data includes, deciphering the encrypted data in a volatile
	me 5 - 14	AUTOADAPTIVE NETWORKWO, each feature value
		establishing a current time slice, each forecast specifying a future
		time slice, the estimation set based on information stored in
		estimation set updating each, be computed having at least one
		dependent data cell for each dependent, the estimation set based on
		the learned parameters and forecasting a feature value in the future,
		computed having at least one dependent data cell (Тема № 14) -

		Влияние трендов на тему №14
		efficiency
		sensors
		construction
		cross
		emergency
		Тренды влияния и их соотношение
10(73.83)	concentrat	(Тема № 17) APPARATUS AND METHODS FOR TESTING
	ing	PERFORMANCE OF A MATERIAL FOR USE IN A JET
		ENGINEWO, testing failure of a material used in a jet engine,
		predicting and analysing failure by a number, including creep
		fatigue OPTICAL HARNESS ASSEMBLY AND METHODWO,
		retrofitting an optical harness assembly, the active connector
		conversion unit In another embodiment the method includes,
		includes removing a legacy wiring harness, includes identifying
		electrical signals, may further include providing a personality
		adaptor coupled between the electrical, adjusting an interface based
		dampior coupled octived the electrical, adjusting an interface based

		on the identified
		Влияние трендов на тему №17
		environment digital sensors
		model
		modelling
		system
		System -
		construction
		Construction
		cross
		Тренды влияния и их соотношение
11(24.05)	GrowingT	(Тема № 14) METHOD AND APPARATUS FOR HURRICANE
	oNewThe	SURVEILLANCE FROM THE EYEWO, a remote location In one
	me 14 - 6	embodiment the aerial vehicle is an unmanned aerial vehicle UAV
		launched, having an eyewall sensor to enable CHECKLIST
		ADMINISTRATION SYSTEM FOR AN UNMANNED
		VEHICLEWO, a vehicle by receiving a measured value obtained
		from at least one sensor configured, one embodiment code
		embodied in a computer readable storage medium, generate a
		checklist for a vehicle by receiving a measured value, setting a
		parameter value that (Тема № 6) -

		Влияние трендов на тему №6
		securing
		sensors
		system
		construction
		cross
		Тренды влияния и их соотношение
12((.16)		(T. M. 40.) DEDUCED FEEDDACK TRANSMIT
12(6.16)	concentrat .	(Тема № 40) REDUCED FEEDBACK TRANSMIT
	ing	BEAMFORMINGWO, reduced feedback transmit beamforming are provided Some embodiments, transmit beamforming The
		transmitting unit computes, a transmitting unit Decompression of
		the transfer function coefficient matrix is not required, the
		receiving unit and postcoded to allow the receiving unit to see an
		effective, allow the receiving unit to see an effective diagonalized
		channel, signals prior to transmission The beamformed signals are
		transmitted to the receiving unit and postcoded, transmission The

		beamformed signals are transmitted
		Влияние трендов на тему №40
		efficiency
		system
		construction
		Construction
		cross
		Тренды влияния и их соотношение
12(4.47)	aanaantuut	(Тема № 10) CONTROLLED DISPENSE SYSTEM FOR
13(4.47)	ing	DEPLOYMENT OF COMPONENTS INTO DESIRED PATTERN
	ling	AND ORIENTATIONWO, holding respective components, the
		ejection events is programmed into the ejection system,
		automatically deploy systems using a controlled dispense approach
		, which includes incorporating the components into an elongated ,
		including axially displaced ejector AN UNMANNED AERIAL
		VEHICLE LAUNCHING AND LANDING SYSTEMWO ,
		landing UAVs comprising, connect with a landing UAV At the
		landing phase the controlled pulling and braking means of the
		system essentially, essentially brakes the motion of the central arm
		of the structure that is propelled to revolve around the systems axis

		transmit to adjacent nodes
		Влияние трендов на тему №24
		sensors
		construction
		cross
		Тренды влияния и их соотношение
		i pongoi animini il nicocomo della como dell
15(2.06)		(T M. 26.) THERMAL MICION AND HEATGEEVING
15(2.96)	concentrat	(Тема № 36) THERMAL VISION AND HEATSEEKING
	ing	MISSILE COUNTERMEASURE SYSTEMWO, enabling
		concealment of objects from , deception of heat seeking missiles
		The system comprises a screen formed, controlling the
		thermoelectric module at least, measuring ambient temperature,
		causing the power source to provide, enabling concealment of
		objects from identification, deception of heat seeking missiles, to
		an infrared detection countermeasure system for enabling
		concealment of objects from identification, an infrared detection
		countermeasure system for enabling concealment of objects,

Отчет об изменениях рыночных тенденций

Position	
(Index)	Status, Markets
1(3.63)	Growing market securing
2(3.23)	Growing market efficiency
3(2.42)	Growing market integration
4(2.02)	Growing market digital
5(2.02)	Growing market code
6(1.69)	Growing market sensors
7(1.37)	Growing market construction
8(1.21)	Growing market display
9(1.1)	Growing market graphics
10(1.1)	Growing market emergency

11(1.08)	NewMarket securing - transport
12(1.08)	Growing market environment
13(1)	NewMarket securing - digital
14(0.99)	NewMarket digital - integration
15(0.98)	NewMarket efficiency - code

Содержание отчета не является основанием для принятия однозначных управленческих решений. Данный материал позволяет определить основные направления технологического развития, выдвинуть и проверить гипотезы развития пространства. Для принятия однозначных решений необходимо проведение дополнительного анализа.

Интерпретация результатов исследования

По итогам анализа по варианту 1 (без рассмотрения изменения рыночных тенденций) можно сформулировать следующие выводы:

- 1. Визуальный анализ полученных рисунков позволяет утверждать об увеличении роли различных групп базовых рыночных тенденций (растет количество «красных связей»)
- 2. Развитие на стыке систем обмена информацией с БПЛА и систем управления полетом, то есть развитие средств контроля полета БПЛА в режиме реального времени и соответствующий сбор данных;
- 3. Развитие систем управления машинного зрения и трансляции изображения в режиме реального времени;
- 4. Разработка новых материалов для производства БПЛА и его компонент;
- 5. Разработка БПЛА с вертикальным взлетом и разработка систем обеспечения устойчивости полета;
- 6. Оснащение специальной аппаруторой для фото-видео съемки, в частности в целях использования БПЛА для контроля в сфере сельского хозяйства;
- 7. Системы взлета и посадки БПЛА в условиях ограниченного пространства;
- 8. Системы контроля состояния и работоспособности различных объектов.

По итогам анализа по варианту 2 (с рассмотрения изменения рыночных тенденций) можно сформулировать следующие выводы:

1. Визуальный анализ полученных рисунков позволяет утверждать об увеличении роли различных групп базовых рыночных тенденций (растет количество «красных связей»

на рисукнах технологического пространства), выделенные рыночные тенденции, которые задавались, как основные тенденции, связанные с цифровыми технологиями, активно сближаются и создают синергетическое влияние на рассматриваемую отрасль (согласно рисункам развития рыночных тенденций);

- 2. Помимо выводов, получаеммых в результате анализа по варианту 1, представляются следующие выводы о технологических тенденциях:
 - а. Развитие сенсоров и датчиков, обменивающихся информацией в автономном режиме;
 - b. Системы, связанные с использованием термодатчиков как для анализа окружающей среды, так и для обеспечения защиты БПЛА;
- 3. Анализ рыночных тенденций позволяет выявить следующие направления развития рыночных тенденций, влияющих на развитие рассматриваемого технологического пространства:
 - а. Активно развиваются рынки, связанные с созданием новых сенсоров для БПЛА, а также применения БПЛА для обеспечения безопасности и реагирования на экстренные ситуации;
 - ь. Интеграция БПЛА в общую цифровую систему экономики;
 - с. Развитие цифровых интерфейсов, использующихся для контроля и управления БПЛА, а также обмена данными;
 - d. Развиваются новые рынки применения БПЛА, связанные с обеспечением безопасной транспортировки грузов с использованием БПЛА, обеспечения безопасности с использованием БПЛА, а также слиянием БПЛА и существующей цифровой инфраструктуры.

Исследование проводилось на основе 248 патентных документов, для более точных результатов необходимо использование наборов данных от 5 000 единиц (для реализации преимуществ использования методов обработки Больших Данных и, в частности, кластеризации). Тем не менее, приведенная далее верификация результатов позволяет утверждать о достаточно высокой точности проведенного анализа.

Верификация результатов

В 2006-2008 годах эксперты утверждали о следующих трендах развития технологий, связанных с БПЛА:

- 1. Повышение уровня автономности
- 2. Алгоритмы оценки состояния для повышения уровня автономности, различные сенсоры совмещают с использованием ЕКF, с дискретными обновлениями от GPS и алтиметра. Существуют наблюдения скорости БПЛА от измерителей IMU без использования GPS.
- 3. Одновременная локализация и сопоставление. Во время исследования неизвестной местности и нанесения на карту найденных объектов, БПЛА должно делать это без использования предварительных данных рельефа и GPS. Методика статистической оценки позволяет одновременно оценивать местонахождение БПЛА и местоположение найденных объектов, которые эта хрень видит.
- 4. Технологии компьютерного зрения для направления БПЛА. Компьютерное зрение используется в качестве датчика обратной связи в цикле управления для автономной системы полета. Более поздним примером является точность таргетинга без использования вторичного привода или дополнительной системы подвеса.
- 5. Использование GPS в качестве датчика позиционирования. Потребность в системе авионики с пониженной сложностью привела к проведению исследований по использованию единого GPS для получения оценки позиции.
- 6. Интегрированное моделирование. Линейная модель получена с использованием комбинации первых основных результатов и схемы определения времени или частоты доменов.
- 7. Генерация траектории с помощью автомата маневрирования. Движение транспортного средства описано библиотекой примитивов движения. Траектория между двумя состояниями транспортного средства ищется путем ПОЗИШИЯМИ поиска образом последовательности примитивов движения, которые наилучшим удовлетворяют функционированию объекта. Одним из важных применений системы наведения является предотвращение столкновений между транспортным средством в его жесткой и структурированной среде или между транспортными средствами, работающими в строю (строй самолетов в воздухе) или мульти-агентной системе. (multiagent system)

8. Проверка безопасности. Проверка безопасности или анализ достижимости направлена на то, чтобы показать, что, начиная с некоторых начальных условий, системы не могут развертываться в некоторых небезопасных регионах в пространстве состояний. Небезопасный регион для применения БПЛА можно определить в контексте близости к препятствиям, доступности топлива (выносливости), зоны, недоступной для полетов и/или коммуникационного диапазона. Для проверки безопасности гибридных систем используется новая концепция, называемая барьерным сертификатом.

Реальное состояние отрасли БПЛА сегодня (согласно BusinessInsider, 2017):

- 1. Быстрые доставки мелких грузов в часы пик (не было в разработке, новый рынок)
- 2. Сканирование недоступных военных баз (было в разработке)
- 3. Использование для фото и видеосъемки для журналистов, киносоздателей, обычных людей (было в разработке для других целей, новый рынок)
- 4. Сбор информации и доставка необходимых вещей для управления стихийными бедствиями (не было в разработке, новый рынок)
- 5. ИК-зонды для поисково-спасательных операций (было в разработке для других целей, новый рынок)
- 6. Географическое картирование труднодоступных местностей и местоположений (было в разработке)
- 7. Инспекция безопасности зданий (не было в разработке, новый рынок)
- 8. Мониторинг урожая (не было в разработке, новый рынок)
- 9. Беспилотный грузовой транспорт (было в разработке для других целей, новый рынок)
- 10. Охрана правопорядка и пограничный контроль (было в разработке для других целей, новый рынок)
- 11. Штормовое отслеживание и прогнозирование ураганов и Торнадо (не было в разработке, новый рынок)
- 12. Военное использование сейчас в качестве мишени приманки, для боевых задач, исследований и разработок, а также для наблюдения (было в разработке, приманка новый рынок)

<u>На основе сопоставления, можно сделать вывод, что автономный алгоритм анализа</u>
<u>патентных данных позволяет выявить тенденции развития рассматриваемого</u>
технологического пространства отдельно в краткосрочном периоде (анализ технологических

<u>трендов без анализа рыночных тенденций), так и в среднесрочном периоде (при проведении анализа технологических трендов с анализом рыночных тенденций).</u>