Optimization Assignment

Sireesha Abbavaram FWC22060

October 27, 2022

Problem Statement - The normal to the curve $x^2 = 4y$ passing (1,2) is:

$$(a)x+y=3$$

$$(b)x-y=3$$

$$(c)x+y=1$$

$$(d)x-y=1$$

Solution

Figure 1: Normal to the curve $x^2 = 4y$

The given equation of parabola $x^2 = 4y$ can be written in the general quadratic form as

$$\mathbf{x}^{\top}\mathbf{V}\mathbf{x} + 2\mathbf{u}^{\top}\mathbf{x} + f = 0 \tag{1}$$

where

$$\mathbf{V} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix},\tag{2}$$

$$\mathbf{u} = \begin{pmatrix} 0 \\ -2 \end{pmatrix},\tag{3}$$

$$f = 0 (4)$$

Any conic of the form $\mathbf{x}^{\top}\mathbf{V}\mathbf{x} + 2\mathbf{u}^{\top}\mathbf{x} + f = 0$

can be written as $\mathbf{x}^{\top} \mathbf{A} \mathbf{x} = 0$

where
$$\mathbf{A} = \begin{pmatrix} \mathbf{V} & \mathbf{u} \\ \mathbf{u}^{\top} & f \end{pmatrix}, \mathbf{x} = \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

The distance from point $\mathbf{p}=\begin{pmatrix}1\\2\end{pmatrix}$ to the point 'x' on parabola is $\|\mathbf{x}-\mathbf{p}\|^2$

$$\implies \mathbf{x}^{\top}\mathbf{x} - 2\mathbf{p}^{\top}\mathbf{x} + \|\mathbf{p}\|^2$$

The above equation can be written as $\mathbf{x}^{\mathsf{T}}\mathbf{C}\mathbf{x}$

where
$$\mathbf{C} = \begin{pmatrix} \mathbf{I} & -\mathbf{p} \\ -\mathbf{p}^{\top} & \|\mathbf{p}\|^2 \end{pmatrix}, \mathbf{x} = \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

The shortest distance is given by, min $\mathbf{x}^{\top} \mathbf{C} \mathbf{x}$

such that,
$$\mathbf{x}^{\top} \mathbf{A} \mathbf{x} = 0$$

Using SDR(Semi Definite Relaxation), it can be rewritten as min $Tr(\mathbf{C}\mathbf{X})$

Suc that,
$$Tr(\mathbf{AX}) = 0$$
, $\mathbf{X} \ge 0$

Here ,
$$\mathbf{X}$$
 is a 3×3 matrix of variables where $\mathbf{X} = \mathbf{x}\mathbf{x}^{\top}$

Thus after solving we get the point on the given parabola as $\mathbf{x} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ with the shortest distance from \mathbf{p}

Thus the points
$$\mathbf{x}=\begin{pmatrix}2\\1\end{pmatrix}$$
 and $\mathbf{p}=\begin{pmatrix}1\\2\end{pmatrix}$ satisfies the equation of the normal i.e. $x+y=3$

Construction

Symbol	Value	Description
p	$\begin{pmatrix} 1 \\ 2 \end{pmatrix}$	Given point through which Normal is passing
х	$\begin{pmatrix} 2 \\ 1 \end{pmatrix}$	Foot of Normal