Proposition 16.9. Any section $s \colon \mathbf{SO}(3) \to \mathbf{SU}(2)$ of ρ is neither a homomorphism nor continuous.

Intuitively, this means that there is no "nice and simple" way to pick the sign of the quaternion representing a rotation.

The following proof is due to Marcel Berger.

Proof. Let Γ be the subgroup of $\mathbf{SU}(2)$ consisting of all quaternions of the form q = [a, (b, 0, 0)]. Then, using the formula for the rotation matrix R_q corresponding to q (and the fact that $a^2 + b^2 = 1$), we get

$$R_q = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2a^2 - 1 & -2ab \\ 0 & 2ab & 2a^2 - 1 \end{pmatrix}.$$

Since $a^2 + b^2 = 1$, we may write $a = \cos \theta, b = \sin \theta$, and we see that

$$R_q = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos 2\theta & -\sin 2\theta \\ 0 & \sin 2\theta & \cos 2\theta \end{pmatrix},$$

a rotation of angle 2θ around the x-axis. Thus, both Γ and its image are isomorphic to SO(2), which is also isomorphic to $U(1) = \{w \in \mathbb{C} \mid |w| = 1\}$. By identifying \mathbf{i} and i, and identifying Γ and its image to U(1), if we write $w = \cos \theta + i \sin \theta \in \Gamma$, the restriction of the map ρ to Γ is given by $\rho(w) = w^2$.

We claim that any section s of ρ is not a homomorphism. Consider the restriction of s to U(1). Then since $\rho \circ s = \operatorname{id}$ and $\rho(w) = w^2$, for $-1 \in \rho(\Gamma) \approx U(1)$, we have

$$-1 = \rho(s(-1)) = (s(-1))^{2}.$$

On the other hand, if s is a homomorphism, then

$$(s(-1))^2 = s((-1)^2) = s(1) = 1,$$

contradicting $(s(-1))^2 = -1$.

We also claim that s is not continuous. Assume that s(1) = 1, the case where s(1) = -1 being analogous. Then s is a bijection inverting ρ on Γ whose restriction to $\mathbf{U}(1)$ must be given by

$$s(\cos \theta + i \sin \theta) = \cos(\theta/2) + \mathbf{i} \sin(\theta/2), \quad -\pi \le \theta < \pi.$$

If θ tends to π , that is $z = \cos \theta + i \sin \theta$ tends to -1 in the upper-half plane, then s(z) tends to \mathbf{i} , but if θ tends to $-\pi$, that is z tends to -1 in the lower-half plane, then s(z) tends to $-\mathbf{i}$, which shows that s is not continuous.