Praxisseminar SS 2020

Angriffssimulation und strukturierte Datenerfassung

Johannes Seitz Lehrstuhl für Wirtschaftsinformatik I Fakultät für Wirtschaftswissenschaften

COVID-19 Cyber Threat Assessment

Cyberangriffe folgen der Entwicklung von

COVID-19

[Schmitz2020]

Während Coronavirus-Pandemie: Cyberangriff legt tschechisches Krankenhaus lahm

Regierung und Industrie betroffen

[Holland2020]

Australien meldet massiven Cyberangriff

Stand: 19.06.2020 09:24 Uhr

Australien ist laut Premier Morrison zur Zielscheibe eines groß angelegten Cyberangriffs durch einen anderen Staat geworden. Wer hinter den Attacken steckt, sagte er nicht - doch es gebe nicht allzu viele Länder, die infrage kämen.

[Bodewein2020]

- 1 Aufbau und Ziel des Praxisseminars
- 2 Entwicklung des "Digital Twins"
- 3 Angriffssimulation
- 4 Aufarbeitung der Daten
- **5** Zusammenfassung und Fazit
- 6 Quellenverzeichnis

Ziele des Praxisseminars

- Aufbau eines Digitalen Zwillings als Abbild eines realistischen Industriesettings
- Angriffssimulation auf den Digitalen Zwilling und Aufzeichnen des angefallenen Netzwerkverkehrs
- Strukturierte Aufarbeitung der Daten des Mitschnitts

Ablauf des Seminars

		Mrz 20		Apr 20				Mai 20				Jun 20				Jul 20				
Aufgaben	Zeit geplant in h:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
Literaturrecherche	10																			
Einarbeitung Digital Twin	20																			
Einarbeitung Angriffe	5															_				
Einarbeitung STIX/ JSON	15																			
Entwicklung Digital Twin	40																			
Simulation Angriff	20																			
Aufarbeitung der Daten	40																			
Vorbereitung der Präsentation	10		•		•		•			•	•				•					·
Textbearbeitung	20																			
Gesamt	180																			

- Start im März mit Literaturrecherche
- Anhaltspunkt für Zeitplanung war die Anzahl der Credits (30 x 6 ECTS)
- Einarbeitung hat viel Zeit beansprucht

Tools

- Versionierung: Github
- Programmierung: PyCharm, Notepad++
- Programmiersprache: Python, JSON (STIX)
- Virtualisierung: OracleVirtualbox, Ubuntu 18.04

- 1 Aufbau und Ziel des Praxisseminars
- 2 Entwicklung des "Digital Twins"
- 3 Angriffssimulation
- 4 Aufarbeitung der Daten
- **5** Zusammenfassung und Fazit
- 6 Quellenverzeichnis

"Digital Twin" – was ist das und wie wird es erzeugt

- Digital Twin (DT, auch Digitaler Zwilling): Die digitale Spiegelung eines Realwelt-Systems (z.B. Wasseraufbereitungsanlage)
 - Ermöglichen das Überwachen, Simulieren, Optimieren und die Prognose von CPS (cyber physical systems) ohne auf das eigentliche System einzugreifen [Eckhart2018, 1]
 - Meistens sind echte Systeme f
 ür Security-Forscher nicht offen zugänglich [Antonioli2015, 1]
 - Für IT-Security relevant: Man kann das digitale Spiegelbild unter realen Bedingungen testen, ohne das reale System zu gefährden ("Spielwiese für Security-Experten")
- Wie wird ein DT erstellt:
 - Entscheidung für die Entwicklung eines DT, der ein ICS System darstellen soll
 - Auswahl des Frameworks (z.B. https://github.com/hslatman/awesome-industrial-control-system-security)
 - Entscheidung für MiniCPS, da zu diesem Framework ein Paper der Entwickler existiert, dass das System relativ ausführlich erklärt und weil Code in Python geschrieben wird [Antonioli2015]
 - MiniCPS arbeitet auf Basis von Mininet
 - Netzwerk Emulator, wodurch man ein realistisches virtuelles Netzwerk mit Switches und Hosts erzeugen kann (lässt sich mit Python entwickeln)

Idee zum Digital Twin – Teil I

- Industrial Control System (ICS) auf Basis von Mininet und MiniCPS
- Das Industrial Control System ist Bestandteil eines Abfüllanlagensystems, dass bei Auslieferung an den Kunden bei einer Drittfirma eingerichtet wird
- Um die Komplexität für das Praxisseminar einzuschränken => Konzentration auf ein Teilsystem
- Teilsystem stellt die Bedienung eines F\u00f6rderbandes dar
- Förderband verfügt über einen Motor und die Geschwindigkeit wird durch einen Sensor überwacht
- Sensor und Motor sind über einen PLC (programmable logic controller) mit dem Netzwerk verbunden
- Ein HMI (human machine interface) kann auf die Daten des PLCs zugreifen und diese auch verändern
- Das Netzwerk besteht aus einem Switch, dem PLC und einem Host auf dem das HMI-Programm läuft

Idee zum Digital Twin – Teil II

Code Digital Twin

- Präsentation aus Zeitgründen nur Einzelausschnitte
 - Topologie (mininet-Code)
 - HMI
- Gesamter Code unter https://github.com/EnjoyFitness92/Praxisseminar-SS2020
 einsehbar

Code Digital Twin I – Mininet Topologie

```
class CbTopo (Topo) :
   """Fliessband 1 plc + 1 Host mit HMI + 1 Angreifer + 1 Switch"""
   def build(self):
       switch = self.addSwitch('s1')
       plc1 = self.addHost(
           'plc1',
           ip=IP['plc1'] + NETMASK,
           mac=MAC['plc1'])
       self.addLink(plc1, switch)
       host1 = self.addHost(
           'host1',
           ip=IP['host1'] + NETMASK,
           mac=MAC['host1'])
       self.addLink(host1, switch)
       attacker = self.addHost(
            'attacker',
           ip=IP['attacker'] + NETMASK,
           mac=MAC['attacker'])
       self.addLink(attacker, switch)
       Praxisseminar test logger.info('PLC1, Host1 und Attacker')
```


Universität Regensburg

Code Digital Twin II – HMI Geschwindigkeit

```
Geschwindigkeit einstellen
elif eingabe == 2:
   Praxisseminar test logger.debug ("User befindet sich in der zweiten if-Abfrage")
   motor = self.receive (MOTOR, PLC1 ADDR)
   print "DEBUG plc1 erhaelt motor: " + motor
   Praxisseminar test logger.info('Motor erhaelt von PLC1 ADDR: ' + motor)
   # siehe Eingabe '1'
   if motor == '1':
       Praxisseminar test logger.info("Der Motor ist an")
       sensor = self.receive(SENSOR, PLC1 ADDR)
       print 'DEBUG plc1 motor: An mit der Geschwindigkeit' + sensor
       Praxisseminar test logger.info('Sensor erhaelt von PLC1 ADDR: ' + sensor)
       # Wollen Sie die Geschwindiqkeit veraendern? Wie hoch soll die Geschwindiqkeit sein (Rahmen der Geschwindiqkeit anpassen)
       change = raw input ("Wollen Sie die Geschwindigkeit veraendern? J/N")
       Praxisseminar test logger.debug ("Der User hat folgendes eingegeben: %s" % change)
       if change == "J" or change == "j":
           new vel = float(raw input("Geben Sie die neue Geschwindigkeit ein: "))
           Praxisseminar test logger.debug("Der User hat folgendes eingegeben: %s" % str(new vel))
           self.send(SENSOR, new vel, PLC1 ADDR)
           print 'DEBUG plc1 motor: An mit neuer Geschwindigkeit' + str(new vel)
           Praxisseminar test logger.info('HMI sendet folgende SENSOR-Daten an PLC1 ADDR: ' + str(new vel))
       elif change == "N" or change == "n":
           Praxisseminar test logger.debug ("Elif-Abfrage wurde erreicht weil User ein N/n eingegeben hat")
           continue
   elif motor == '0':
       print 'DEBUG plc1 motor: Aus'
       Praxisseminar test logger.info("Der Motor ist aus")
```


- 1 Aufbau und Ziel des Praxisseminars
- 2 Entwicklung des "Digital Twins"
- 3 Angriffssimulation
- 4 Aufarbeitung der Daten
- **5** Zusammenfassung und Fazit
- 6 Quellenverzeichnis

Annahmen zum Angriff

- Angreifer ist ein Innentäter und verfügt über Detailwissen zum System
- Weiß um die Schwachstellen des Systems und umgeht Hindernisse
- Verfügt über Expertenwissen und weiß wie er sich unerkannt im System aufhalten kann
- Motivation: Rache wegen einer anstehenden Entlassung oder Bestechung durch eine konkurrierende Firma

Erklärung zum Angriff – DOS Attacke

Live-Simulation eines DOS-Angriffs auf den Digital-Twin

- 1 Aufbau und Ziel des Praxisseminars
- 2 Entwicklung des "Digital Twins"
- 3 Angriffssimulation
- 4 Aufarbeitung der Daten
- 5 Zusammenfassung und Fazit
- 6 Quellenverzeichnis

Woher kommen die Daten?

- Aufzeichnung der Daten mittels Wireshark
- Wireshark zeichnet alle Pakete auf, die über den Switch kommuniziert werden
- Daten werden in JSON-Format abgespeichert
- Was passiert dann?

Was ist STIX?

- STIX (auch Structured Threat Information Expression) eine standardisierte Sprache, um Bedrohungen im Cyber-Umfeld zu beschreiben [Jordan2020, 14]
- Informationen lassen sich einfach teilen, speichern, analysieren oder automatisiert verarbeiten
- STIX 2.x verwendet JSON als Serialisierungssprache
- Graph-basiertes Modell: Domain
 Objekte als Knoten und Beziehungs Objekte als Kanten
- Besteht aus: Domain Objects,
 Relationship Objects, Cyber-observable
 Objects, Meta Objects, Bundle Objects

■ SDO: z.B. "Threat Actor"

Threat Actor

Beispiel Code für eine SRO "Relationship":

Mapping der Daten

- Um den Traffic genauer unter die Lupe zu nehmen ist ein Parser hilfreich
- Wichtig: welche Daten sind für mich relevant (Bspw. Verbindungsdaten)
- Beispiel: Codeausschnitt Python Parser

```
or d in data:
  protocol = d[' source']['layers']['frame']['frame.protocols']
  if TCP PROTO in protocol:
      proto = 'TCP'
       time = fortime(d[' source']['layers']['frame']['frame.time'])
       eth dst = d[' source']['layers']['eth']['eth.dst']
       eth src = d[' source']['layers']['eth']['eth.src']
       ip src = d[' source']['layers']['ip']['ip.src']
       ip dst = d[' source']['layers']['ip']['ip.dst']
       tcp src port = d[' source']['layers']['tcp']['tcp.srcport']
       tcp dst port = d[' source']['layers']['tcp']['tcp.dstport']
       # Daten in ein Liste schreiben
       liste.append([time, proto, eth dst, eth src, ip src, ip dst, tcp src port, tcp dst port])
  elif ARP PROTO in protocol:
      proto = 'ARP'
       time = fortime(d[' source']['layers']['frame']['frame.time'])
       eth dst = d[' source']['layers']['eth']['eth.dst']
      eth src = d[' source']['layers']['eth']['eth.src']
       # Daten in ein Liste schreiben
       liste.append([time, proto, eth dst, eth src])
  else:
       continue
```


STIX Codeausschnitt

```
"type": "bundle",
"id": "bundle--1",
"objects": [
        "type": "threat-actor",
        "spec version": "2.1",
        "id": "threat-actor--1",
        "created": "2020-07-08T23:39:03.893Z",
        "modified": "2020-07-08T23:39:03.893Z",
        "name": "Innentaeter",
        "description": "Ein Innentaeter versucht den aktiven Prozess mitzuhoeren, Informationen zu gewinnen und Daten zu manipulieren."
        "threat actor types": [
            "insider-disgruntled"
        "roles": [
            "agent"
        "goals": [
            "Informationen ueber den Netzwerkverkehr im Unternehmen gewinnen",
            "Daten manipulieren"
        "sophistication": "expert",
        "resource level": "organization",
        "primary motivation": "personal-gain",
        "secondary motivations": [
            "dominance"
        "type": "infrastructure",
        "spec version": "2.1",
        "id": "infrastructure--1",
        "created": "2020-07-08T23:39:03.893Z",
        "modified": "2020-07-08T23:39:03.8932",
        "name": "Netzwerk - Firma A",
        "description": "Das Netzwerk der Firma A, welches aus mehreren Teilnehmern besteht."
        "type": "identity",
        "spec version": "2.1",
        "id": "identity--1",
        "created": "2020-07-08T23:39:03.8932",
        "modified": "2020-07-08T23:39:03.893Z",
        "name": "Firma B",
        "description" : "Firma B versucht Innentaeter anzuwerben und dadurch der Konkurrenz zu schaden.",
        "identity class": "organization"
```


Visualisierung (bspw. mit STIX Visualizer)

- 1 Aufbau und Ziel des Praxisseminars
- 2 Entwicklung des "Digital Twins"
- 3 Angriffssimulation
- 4 Aufarbeitung der Daten
- **5** Zusammenfassung und Fazit
- 6 Quellenverzeichnis

Zusammenfassung und Fazit

Zusammenfassung:

- Im Rahmen des Seminars wurde ein DT mittels miniCPS-Framework erstellt.
- Der DT simulierte ein einfaches F\u00f6rderbandsystem, dass \u00fcber einen PLC mit dem Netzwerk verbunden wurde und \u00fcber eine HMI bedient werden konnte
- Auf den DT wurde ein DOS-Angriff simuliert und der Netzwerkverkehr mit Wireshark aufgezeichnet
- Mit Stix 2.x wurden die Daten des Netzwerkmitschnitts strukturiert aufgearbeitet

Fazit:

- Thema bietet noch viel mehr Spielraum als gezeigt ABER: limitiert durch Zeit nur Konzentration auf das Wichtigste
- Durch einen DT kann die Security einer ICS auch während des Betriebs getestet werden
- Durch die Verwendung von STIX können Security-Experten strukturiert miteinander zusammenarbeiten
- Sehr intensiv in neue Themen eingearbeitet
- Vielen Dank an die Unterstützung durch die Betreuer Marietheres Dietz und Daniel Schlette

- 1 Aufbau und Ziel des Praxisseminars
- 2 Entwicklung des "Digital Twins"
- 3 Angriffssimulation
- 4 Aufarbeitung der Daten
- **5** Zusammenfassung und Fazit
- 6 Quellenverzeichnis

Quellenverzeichnis

[Antonioli2015]

Antonioli, D. & Tippenhauer, N. O.: MiniCPS: A toolkit for security research on CPS Networks

[Bodewein2020]

Bodewein, L.: Australien meldet massiven Cyberangriff. https://www.tagesschau.de/australien-cyberangriffe-101.html, Abruf am 2020-07-13.

[Eckhart2018]

Eckhart, M. & Ekelhart, A.: Towards Security-Aware Virtual Environments for Digital Twins. Proceedings of the 4th ACM Workshop on Cyber-Physical System Security - CPSS '18, ACM Press, 2018

[Holland2020]

Holland, M.: Während Coronavirus-Pandemie: Cyberangriff legt tschechisches Krankenhaus lahm. https://www.heise.de/security/meldung/Waehrend-Coronavirus-Pandemie-Cyberangriff-legt-tschechisches-Krankenhaus-lahm-4683370.html, Abruf am 2020-07-13.

[Jordan2020]

Jordan, B.; Piazza, R. & Darley, T.: StixTM version 2.1. Committee Specification 01

[Schmitz2020]

Schmitz, P.: COVID-19 Cyber Threat Assessment. Cyberangriffe folgen der Entwicklung von COVID-19. https://www.security-insider.de/cyberangriffe-folgen-der-entwicklung-von-covid-19-a-926037/, Abruf am 2020-07-13.

Fragen / Diskussion