Part-of-Speech Tagging

+

Neural Networks

CS 287

Quiz: ReLU

Last class we focused on standard hinge loss. Consider now the squared hinge loss, (ℓ_2 SVM)

$$L_{hinge} = \max\{0, 1 - (\hat{y}_c - \hat{y}_{c'})^2\}$$

What is the effect does this have on the loss? How do the parameters gradients change?

Contents

Syntactic Annotation

Window Models

Neural Networks

Dense Features

Penn Treebank (Marcus et al, 1993)

- ▶ The ur-dataset of statistical NLP
- ► Constructed from 1989-1992.
- Contains 4.5 million token
- Around 1 million make up the core PTB, text from 1989 Wall Street Journal

Tagging

So what if Steinbach had struck just seven home runs in 130 regular-season games , and batted in the seventh position of the A 's lineup .

Part-of-Speech Tags

So/RB what/WP if/IN Steinbach/NNP had/VBD struck/VBN just/RB seven/CD home/NN runs/NNS in/IN 130/CD regular-season/JJ games/NNS ,/, and/CC batted/VBD in/IN the/DT seventh/JJ position/NN of/IN the/DT A/NNP 's/NNP lineup/NN ./.

Syntax

Syntax

"Simplified" English Tagset I

- 1. , Punctuation
- 2. CC Coordinating conjunction
- 3. CD Cardinal number
- 4. DT Determiner
- 5. EX Existential there
- 6. FW Foreign word
- 7. IN Preposition or subordinating conjunction
- 8. JJ Adjective
- 9. JJR Adjective, comparative
- 10. JJS Adjective, superlative
- 11. LS List item marker

"Simplified" English Tagset II

- 12. MD Modal
- 13. NN Noun, singular or mass
- 14. NNS Noun, plural
- 15. NNP Proper noun, singular
- 16. NNPS Proper noun, plural
- 17. PDT Predeterminer
- 18. POS Possessive ending
- 19. PRP Personal pronoun
- 20. PRP\$ Possessive pronoun
- 21. RB Adverb
- 22. RBR Adverb, comparative

"Simplified" English Tagset III

- 23. RBS Adverb, superlative
- 24. RP Particle
- 25. SYM Symbol
- 26. TO to
- 27. UH Interjection
- 28. VB Verb. base form
- 29. VBD Verb, past tense
- 30. VBG Verb, gerund or present participle
- 31. VBN Verb, past participle
- 32. VBP Verb, non-3rd person singular present
- 33. VBZ Verb, 3rd person singular present

"Simplified" English Tagset IV

- 34. WDT Wh-determiner
- 35. WP Wh-pronoun
- 36. WP\$ Possessive wh-pronoun
- 37. WRB Wh-adverb

NN or NNS

Whether a noun is tagged singular or plural depends not on its semantic properties, but on whether it triggers singular or plural agreement on a verb. We illustrate this below for common nouns, but the same criterion also applies to proper nouns.

Any noun that triggers singular agreement on a verb should be tagged as singular, even if it ends in final -s.

EXAMPLE: Linguistics NN is/*are a difficult field.

If a noun is semantically plural or collective, but triggers singular agreement, it should be tagged as singular.

EXAMPLES: The group/NN has/*have disbanded. The jury/NN is/*are deliberating.

Language Specific?

► Chinese has circumpositions, German doesn't really gerunds, etc.

Universal Part-of-Speech Tags

- 1. VERB verbs (all tenses and modes)
- 2. NOUN nouns (common and proper)
- 3. PRON pronouns
- 4. ADJ adjectives
- 5. ADV adverbs
- 6. ADP adpositions (prepositions and postpositions)
- 7. CONJ conjunctions
- 8. DET determiners
- 9. NUM cardinal numbers
- 10. PRT particles or other function words
- 11. X other: foreign words, typos, abbreviations
- 12. . punctuation

Why do tags matter?

- ► Interesting linguistic question.
- Used for many downstream NLP tasks.
- ► Benchmark linguistic NLP task.

Why do tags matter?

- ▶ Interesting linguistic question.
- Used for many downstream NLP tasks.
- ▶ Benchmark linguistic NLP task.

However note,

- ▶ Possibly have "solved" PTB tagging (Manning, 2011)
- Deep Learning skepticism

Strawman: Sparse Tagging Models

Let,

- $ightharpoonup \mathcal{F}$; just be the set of word type
- $ightharpoonup \mathcal{C}$; be the set of part-of-speech tags, $|\mathcal{C}| \approx$ 40
- Use a linear model, $\hat{y} = f(\mathbf{xW} + \mathbf{b})$

However this runs into clear issues.

Why is tagging hard?

1. Rare Words

- 3% of tokens in PTB dev are unseen.
- What can we even do with these?

2. Ambiguous Words

- ► Around 50% of seen dev tokens are ambiguous in train.
- ▶ How can we decide between different tags for the same type?

Better Tag Features: Word Properties

Representation can use specific aspects of text.

- $ightharpoonup \mathcal{F}$; Prefixes, suffixes, hyphens, first capital, all-capital, hasdigits, etc.
- $ightharpoonup \mathbf{x} = \sum_i \delta(f_i)$

Example: Rare word tagging

in 130 regular-season/JJ games ,

$$\begin{array}{lll} \mathbf{x} & = & \delta(\texttt{prefix:3:reg}) + \delta(\texttt{prefix:2:re}) \\ & + & \delta(\texttt{prefix:1:r}) + \delta(\texttt{has-hyphen}) \\ & + & \delta(\texttt{lower-case}) + \delta(\texttt{suffix:3:son}) \dots \end{array}$$

Better Tag Features: Tag Sequence

Representation can use specific aspects of text.

- F; Prefixes, suffixes, hyphens, first capital, all-capital, hasdigits, etc.
- Also include features on previous tags

Example: Rare word tagging with context

$$\begin{split} \mathbf{x} &= \delta(\texttt{last:CD}) + \delta(\texttt{prefix:3:reg}) + \delta(\texttt{prefix:2:re}) \\ &+ \delta(\texttt{prefix:1:r}) + \delta(\texttt{has-hyphen}) \\ &+ \delta(\texttt{lower-case}) + \delta(\texttt{suffix:3:son}) \ldots \end{aligned}$$

Modeling Context

- ▶ Features on context require inference.
- Still standard way to do tagging.
- Very fast implementation in Stanford CoreNLP

Features used in state of the art

Contents

Syntactic Annotation

Window Models

Neural Networks

Dense Features

Sentence Tagging

- \triangleright w_1, \ldots, w_n ; sentence words
- $ightharpoonup t_1, \ldots, t_n$; sentence tags
- $ightharpoonup \mathcal{C}$; output class, set of tags.

Window Model

Goal: predict t_5 .

Windowed word model.

$$W_1 W_2 [W_3 W_4 W_5 W_6 W_7] W_8$$

- ▶ w₃, w₄; left context
- ► *w*₆, *w*₇; right context

Boundary Cases

Goal: predict t_2 .

$$[< s > w_1 w_2 w_3 w_4] w_5 w_6 w_7 w_8$$

Goal: predict t_8 .

$$w_1 w_2 w_3 w_4 w_5 [w_6 w_7 w_8 < /s > < /s >]$$

k Symbols $\langle s \rangle$ and $\langle s \rangle$ represent boundary padding.

The Role of Features

- ► Recall Zipf's law.
- ► Many words are ..
- ► Can capture patterns. example.

How much does this matter?

 $graph\ of\ tagging.$

Sparse Tagging Model

Create training data,

$$(\mathbf{x}_1, \mathbf{y}_1), \ldots, (\mathbf{x}_n, \mathbf{y}_n)$$

- ► Each **x**_i includes features of window.
- ▶ Each y_i is the one-hot tag encoding.
- Prediction accuracy is measured identically.

Naive Bayes/Logistic Regression for Tagging

Setup is identical to text classification.

$$\hat{\mathbf{y}} = \mathbf{xW} + \mathbf{b}$$

Contents

Syntactic Annotation

Window Models

Neural Networks

Dense Features

Collobert and Weston Natural Language Processing (almost) from
Scratch

Two ideas

- ► Non-linear Models
- ► Dense Word embeddings

(1) Non-Linear Models for Classification

▶ Neural network represent any non-linear classifier, for example

$$NN_1 = f_1(\mathbf{x}\mathbf{W}^1 + \mathbf{b}^1))$$
$$\hat{\mathbf{y}} = f_2(NN_1\mathbf{W}^2 + \mathbf{b}^2)$$

- lacksquare Where $\mathbf{W}^1 \in \mathbb{R}^{d_{\mathrm{in}} \times dmid}$, $\mathbf{b}^1 \in \mathbb{R}^{1 \times dmid}$
- $ightharpoonup \mathbf{W}^2 \in \mathbb{R}^{dmid imes dout}$, $\mathbf{b}^2 \in \mathbb{R}^{1 imes d_{\mathrm{out}}}$
- ▶ Activation f_1 is non-linear.

Decision $\arg\max\hat{y}$

Can learn non-linear decision boundary. Diagram

For instance,
$$f_1$$
 Sigmoid and f_2 softmax

 $\frac{\partial L(y, \hat{y})}{\partial \hat{y}_i} = \frac{\mathbf{1}(y_j = 1)}{\hat{y}_i}$

For instance, f_1 ReLU and f_2 hinge-loss

Backpropagation

► Chain rule

Contents

Syntactic Annotation

Window Models

Neural Networks

Dense Features

(2) Dense Features

Instead of defining $\mathbf{x} = \sum_{i=1}^n \delta(f_i)$ Where $v: \mathcal{F} \mapsto \mathbb{R}^d$ for instance $v(f) = \delta(f) \mathbf{W}^0$ and define $\mathbf{x} = [v(f_1) \dots v(f_k)]$ (For now we assume all examples have fixed length)

Dense Features for Tagging

Instead of defining
$$\mathbf{x} = \sum_{i=1}^n \delta(f_i)$$

Where $v: \mathcal{F} \mapsto \mathbb{R}^d$ for instance $v(f) = \delta(f)\mathbf{W}^0$
and define $\mathbf{x} = [v(f_1) \dots v(f_k)]$
(For now we assume all examples have fixed length)

Dense Features for Tagging

```
Instead of defining \mathbf{x} = \sum_{i=1}^n \delta(f_i)
Where v: \mathcal{F} \mapsto \mathbb{R}^d for instance v(f) = \delta(f) \mathbf{W}^0
and define \mathbf{x} = [v^1(f_1) \dots v^1(f_k) \dots v^2(f_k+1) \dots v^2(f_k)]
(For now we assume all examples have fixed length)
```

Parameters

- ightharpoonup With word features $|\mathcal{V}|$
- With all pair word features $|\mathcal{V}|^2$
- lacktriangle With word embedding features $d|\mathcal{V}|$ Representation that allows parameter sharing.

Lookup layer is Learned too

results

objective Diagram