On rappelle des formules pour la convolution 1) de fonctions $f*g(x) = \int_{-\infty}^{+\infty} f(x-y)g(y)dy$, 2) de suites $u*v(n) = \sum_{m=-\infty}^{+\infty} u_{n-m}v_m$. Pour le calcul (surtout lorsque d'une des deux fonctions/suites a support borné) on pourra se souvenir que f*g=g*f similairement pour les suites.

Exercice 1 Pour chacun des cas suivants, reconnaître et justifier si la relation entre l'entrée et la sortie est

- Linéaire
- Invariante par translation

Si la relation est linéaire et invariante par translation, donner, si possible, la réponse impulsionnelle pour les exemples suivants:

- 1. L'entrée est la suite u et la sortie est la suite v et $\forall n \in \mathbb{Z}, v_n = u_n u_{n-1} + 3u_{n+1}$.
- 2. L'entrée est la suite u et la sortie est la suite v et $\forall n \in \mathbb{Z}, v_n = u_{2n}$.
- 3. L'entrée est la suite u et la sortie est la suite v et $\forall n \in \mathbb{Z}, v_n = \max(u_n, u_{n-1}, u_{n+1})$.
- 4. L'entrée est la suite u et la sortie est la suite v et $\forall n \in \mathbb{Z}, v_n = u_{n-1}$.
- 5. L'entrée est une fonction $f \in L^1 \cap L^2$ définie sur $\mathbb R$ et la sortie une fonction g définie sur $\mathbb R$ par $\forall x \in \mathbb R$, $g(x) = \int_{x-\frac{1}{2}}^{x+\frac{1}{2}} f(x) dx$ x 1/2 f(t)dt.
- 6. L'entrée est une fonction $f \in L^1 \cap L^2$ continue définie sur \mathbb{R} et la sortie une fonction g définie sur \mathbb{R} par $\forall x \in \mathbb{R}$, $g(x) = \max\{f(t), t \in [x-1, x+1]\}$.

Exercice 2 Pour chaque suite u et v données ci-dessous, calculer le résultat de leur convolution :w = u * v

- 1. $u_0 = 1$, $u_n = 0$ si $n \neq 0$ et $v_n = \sqrt{\log(\cos(3n) + 2)}$.
- 2. $u_0 = 2$ $u_1 = -\frac{1}{2}$, $v_0 = 5$, $v_1 = 3$ $v_2 = 4$ (tous les autres termes de u et v sont nuls).
- 3. $u_{-1} = 2$ $u_0 = -\frac{1}{2}$, $v_0 = 5$, $v_1 = 3$ et $v_2 = 4$ (tous les autres termes de u et v sont nuls. Utiliser le calcul précédent).
- 4. $u_{-1} = 2$, $u_0 = 1.5$, $u_1 = -\frac{1}{2}$, $v_0 = 5$, $v_1 = 3$ et $v_2 = 4$ (tous les autres termes de u et v sont nuls. Remarquer que cette suite u est la somme des deux suites u précédentes.).
- 5. $u_n = (-\frac{1}{2})^n$ (pour *n* positif ou nul, $u_n = 0$ sinon). $v_0 = 1$, $v_1 = \frac{1}{2}$ (les autres termes de *v* sont nuls). On dit que *v* est le filtre inverse de *u*.