1.
$$\int 4e^{-7x} dx$$
; $u = -7x \rightarrow \frac{1}{7} du = dx$) substitute
$$\int 4e^{4x} - \frac{1}{7} dy \rightarrow -\frac{4}{7} \int e^{4x} dy \rightarrow -\frac{4}{7} \left(e^{4x} - C\right)$$

2.
$$\frac{dN}{dt} = -3150/t^{+4} - 220 = N'$$

$$\int_{N_{4}}^{1} - \int_{1}^{1} (-3150/t^{+4} - 220) dt$$

$$V(t) = \frac{1050}{t^{3}} - 120t + C$$

$$C = 6530 - \frac{1050}{t^{3}} - 220t + C$$

$$C = 5700$$

interept

$$y_1 = y_2$$

 $x+2 = x^2 - 2x - 2$
 $0 = x^2 - 3y - y$
 $0 = (x-y)(x+1)$
 $x \in [-1, y]$

Area =
$$\int_{-1}^{4} (x+2) dx - \int_{-1}^{4} (x^2 - 2x - 2) dx = (-\frac{b4}{3} + \frac{4b}{2} - 16) - (+\frac{1}{3} - \frac{3}{2} + 4)$$

= $\int_{-1}^{4} (-x^2 + 3x + 4) dx$
= $-\frac{x^3}{3} - \frac{3x^2}{2} - 4x \Big|_{-1}^{4}$
= 20.83

5.
$$n \cdot x = 110$$
 $2 = \frac{110}{n}$
 $C = 8.25n + 3.75 \times \frac{x}{2}$
 $= 8.25n + 3.75 \times \frac{110}{2}$

denv by toppinal

Tyens each 22 units

6.
$$\int \ln(9x) \cdot x^6 dx$$

TBP uv

 $U = \ln(9x)$
 $dv = x^6 dx$
 $v = \frac{1}{7}x^7$
 $du = x^6$

$$\int u dv = u v - \int v du$$

$$= \left[\ln \left(9x \right) \cdot \frac{1}{7} x^{7} - \int \frac{1}{7} x^{7} \cdot \frac{1}{x} \right]$$

$$= \frac{1}{7} x \ln \left(9x \right) - \frac{1}{19} x^{7} + C$$

7.
$$\int_{1}^{e^{\frac{1}{b}}} \frac{1}{b^{\frac{1}{b}}} dx = \frac{1}{b} \int_{1}^{e^{\frac{1}{b}}} \frac{1}{b^{\frac{1}{b}}} dx = \frac{1}{b} \ln(x) \Big|_{1}^{e^{\frac{1}{b}}} \rightarrow \frac{1}{b} \left(\ln(e^{\frac{1}{b}}) - \ln(1) \right)$$

$$= \frac{1}{b} \left(\left(\frac{1}{b} \right) - \frac{1}{b} \right)$$

$$= \frac{1}{b} \left(\left(\frac{1}{b} \right) - \frac{1}{b} \right)$$

the PDF must be equal to I for integral range, So vange is valid.