Lecture 18: K-fold Repetition Code

Summary:

We examine the k-fold repetition code in detail, introducing fundamental concepts of coding theory including code size, length, and rate. We define Hamming distance and weight, proving that Hamming distance forms a metric. We establish conditions for error detection and correction, demonstrating how the minimum distance of a code determines its error-correcting capabilities.

Topics Covered: code, Hamming distance, Hamming distance and error correction theorem, Hamming weight, k-fold repetition code

K-fold repetition code:

We have a message $n \in \mathbb{F}_2^n$

The code word is

$$y=(\underbrace{x,x,\ldots,x})\in \mathbb{F}_2^{kn}$$

For example, if x = 01 and k = 3, then, we have

$$y = 010101$$

Codes:

 \mathbb{F}_q is a finite field with q elements. $q=p^{lpha}$ for prime p and $lpha\in\mathbb{Z}_{>0}$

Messages are all possible words of length n (vectors in \mathbb{F}_2^n)

A code is

$$C\subseteq \mathbb{F}_q^m$$

for some $m \geq n$

We want an injective function

$$\mathbb{F}_q^n o C$$

- $ullet y \in C$ is the encoded word
- $ullet z \in \mathbb{F}^m$ is the word after transmission

When $z \notin C$, an error has been detected.

If y' = y, we decoded correctly.

Definition:

The size of the code is the number of code words in it.

Definition:

The length of a code is the number of bits in a code word. In the case of $C\subseteq \mathbb{F}_q^m$, it is m.

Definition:

The rate of a code is defined as

$$ratio = \frac{number\ of\ bits\ in\ message}{number\ of\ bits\ in\ codeword}$$

Definition:

Let $y=(y_1,\ldots,y_m)\in \mathbb{F}_q^m.$ We define the hamming weight

$$w(y) = |\{i \in [k] \; ; \; y_i
eq 0\}|$$

Definition:

Let $y,z\in\mathbb{F}_q^m.$ We define the hamming distance

$$d(y,z) = w(y-z) = w(z-y)$$

The hamming distance counts the number of bits in which y and z differ.

Definition:

Let $C\subseteq \mathbb{F}_q^m$. We define the hamming distance of the code to be

$$d(C)=\min\{d(x,y)\ :\ x,y\in C.\ x\neq y\}$$

Definition:

Let $y \in C$ (the codeword sent) and $z \in \mathbb{F}_q^m$ (word received).

- 1. $z \notin C$ we say that an error has been detected
- 2. If there is a unique $y' \in C$ such that $d(y',z) < d(y'',z), \ \forall y'' \in C, y'' \neq y'$, then we say that y' is the decoding of z
 - ullet y' is the unique code word with the closest hamming distance to z

Exercise:

Show that the Hamming distance is a metric, meaning it satisfies the following axioms:

- 1. $\forall x. \ d(x,x) = 0$
- 2. $\forall x, y. \ d(x, y) = d(y, x)$
- 3. $\forall x, y, z. \ d(x, y) \leq d(x, z) + d(z, y)$

Theorem:

Let C be a code with the Hamming distance d(C).

- 1. C detects up to s errors $\iff d(C) \ge s+1$.
- 2. C corrects up to t errors $\iff d(C) \geq 2t+1$
- $(1) \Leftarrow \mathsf{proof}$:

Assume that $d(C) \geq s+1$. Suppose we send $y \in C$ and we receive $z \in \mathbb{F}_q^n$ and i errors occurred. This means

$$d(y,z) = i$$

We need to show that if $i \leq s$ then the error was detected.

We know that $d(y, z) = i \le s < s + 1 \le d(C)$

$$\implies d(y,z) < d(C)$$

Suppose, for contradiction, that z was a code word. Then, we also have

$$d(y,z) \geq d(C)$$

Which is a contradiction. Therefore, we conclude that z is not a code word. So, we have detected the error.

QED

 $(1) \implies \mathsf{proof}$:

C detects $1, 2, \ldots, s$ errors

Let $d(C) = i \implies \exists y_1 \neq y_2$ with $y_1, y_2 \in C$, $d(y_1, y_2) = i$. Note that if we send y, make i errors and receive y_2 , we won't know that errors occurred!

$$d(C) = i \geq s+1$$
 QED

 $(2) \Leftarrow \mathsf{proof}$:

Assume that $d(C) \geq 2t+1$. We want to prove that one can correct up to t errors.

We send $y \in C$ and receive $z \in \mathbb{F}_q^m$ with i errors, $i \le t$, i.e. d(y,z) = i. To correct the error means that y is the unique closest codeword to z. Suppose that to the contrary, $x \in C$ is such that d(x,z) < i.

$$d(x,y) \leq d(x,z) + d(z,y) \leq i+i = 2i < 2t+1 \leq d(C)$$
 $\implies d(x,y) < d(C)$

This implies that x and y are not code words. Therefore, $x \notin C$.

QED

 $(2) \implies \mathsf{proof}$:

Assuming our code can correct $1,2,3,\ldots,t$ errors. Want to conclude that $d(C)\geq 2t+1$.

Let d(C)=i. This means $\exists y_1 \neq y-2, y_1, y_2 \in C$ such that $d(y_1,y_2)=i$.

$$f = \left\lfloor rac{i}{2}
ight
floor$$
 $c = \left\lceil rac{i}{2}
ight
ceil$ $i = f + c$

Build a new word z be replacing f of the i bits in y, in which y_1 and y_2 differed

$$d(y_1,z)=f$$
 $d(y_2,z)=c$ $d(y_1,z)\leq d(y_2,z)$

Send y_2 as our message, receive z. We don't know how to correct $\implies i \ge t+1$.

$$d(C)=i=f+c\geq c-1+c=2c-1\geq 2(t+1)=2t+1$$
 QED