Introduction to Computer Systems Recitation ——Floating Point

Guo Jiarui 1900012974 ntguojiarui@pku.edu.cn

Peking University

October 15, 2020

Fractional Binary Numbers

$$b_{m} \quad b_{m-1} \quad \cdots \quad b_{1} \quad b_{0} \quad \cdot \quad b_{-1} \quad \cdots \quad b_{-n}$$

$$2^{m} \quad 2^{m-1} \quad \cdots \quad 2^{1} \quad 2^{0} \quad \quad 2^{-1} \quad \cdots \quad 2^{-n}$$

$$b = \sum_{i=-n}^{m} b_{i} \cdot 2^{i}$$

Note:

$$0.111 \cdots 1_2 \longleftrightarrow 1 - \varepsilon$$

IEEE Floating-Point Representation

$$V = (-1)^s \times M \times 2^E$$

- s: determine whether the floating-point is positive/negative
- ▶ M: a fractional binary number ranges between 1 and 2 − ε (or between 0 and 1 − ε)
- E: weigh the value by power of 2

Single precision: 32 bits

S	ехр	frac
1	8-bits	23-bits

Double precision: 64 bits

S	ехр	frac
1	11-hits	52-hits

Three different cases:

- 1. $\exp \neq 0$ && $\exp \neq 11 \cdots 1_2$. In this case:
 - ► E = e Bias, here $Bias = 2^{k-1} 1$.
 - ► M = 1 + f, here $1 \le M < 2$.
- 2. exp=0. In this case: E = 1 Bias, M = f.

Reason for why E=1-Bias rather than E=-Bias: When exp=0 and $frac=11\cdots 1_2$, $V=(1-\varepsilon)\times 2^{1-Bias}$. When exp=1 and frac=0, $V=1\times 2^{1-Bias}$.

- 3. $exp=11 \cdots 1_2$.In this case:
 - ightharpoonup f = 0, it represents infinity.
 - $ightharpoonup f \neq 0$, it represents NaN.

Rounding

Four modes of rounding:

- round-to-even, or round-to-nearest (default)
- round-toward-zero
- round-down
- round-up

Rounding

1.BBGRXX··· (Assume
$$k = 4, n = 3$$
)

- ► G: LSB(Last Saved Bit) of the result.
- R: First Removed Bit.
- S: Sticky Bit, OR of remaining bits.

Round-up Conditions:

- ► R=0: < 0.5. Remove.
- ightharpoonup R=1, S=0: = 0.5. Round to even.
 - ► G=0: Remove.
 - ► G=1: Increase.
- ightharpoonup R=1, S=1: > 0.5. Increase.

Example: (Assume k = 4, n = 3)

Value	Fraction	GRS	Increase?	Rounded
128	1.000 0000	000	N	1.000
15	1.101 0000	100	Ν	1.101
17	1.000 1000	010	N	1.000
19	1.001 1000	110	Υ	1.010
138	1.000 1010	011	Υ	1.001
63	1.111 1100	111	Υ	10.000

Converting an Integer into IEEE Floating Point Standard

Example: Convert 1245 into Floating Point Standard:

- 1. Determine the sign s: Here, s = 0 because 1245 > 0.
- 2. Change the integer into binary form:
 - Here, $1245 = 10011011101_2$.
- 3. Left shift the decimal point to get a normalize form: Here, $1245 = 1.0011011101_2 \times 2^{10}$.
- 4. Abandon the beginning 1 and add 0 at the end of the decimal point (if necessary) or round the number (if necessary) to get M.
 - Here, frac = [0011011101000000000000].
- 5. Add *Bias* to get *E*. Here, E = 10 + 127 = 137 and exp = [10001001].

IEEE 754 单精度浮点数转换

。发布日期: 2013-1-17 来源: www.styb.cn					
>>逐回产品中心) 返回首页 ②2013 上大吹来 服务挑线: <u>029-84211211</u> ,传真: <u>029-84211219</u> ,产品中心:http://cp.styb.cn					
十进制(1245)的单精度浮点数值: 449BA000 ,(010001001101110100000000000000)					
请输入数值: 1245 长度(1~25)					
转換类型: ● 十进制转单精度浮点数 ○ 单精度浮点数转十进制 ○ STM明渠流量计MODBUS协议返回包					
开始转换					

Reference:http://www.styb.cn/cms/ieee_754.php

Floating-Point Operations — Multiplication

$$(-1)^{s_1} \cdot M_1 \cdot 2^{E_1} \times (-1)^{s_2} \cdot M_2 \cdot 2^{E_2} = (-1)^s \cdot M \cdot 2^E$$

- Exact Result:
 - $ightharpoonup s = s_1 \hat{s}_2.$
 - $M = M_1 \times M_2$.
 - $E = E_1 + E_2$.
- Fixing:
 - if $M \ge 2$: M >>= 1; E + +:
 - if E out of range: return infinity;
 - round M to fit the precision.

Floating-Point Operations — Multiplication

Properties:

- closed under multiplication: may generate infinity or NaN.
- 2. commutative: a * b = b * a (even if we can get infinity).
- 3. not associative: $(1e20 * 1e20) * 1e-20 = \infty$; 1e20 * (1e20 * 1e-20) = 1e20.
- 4. not distribute over addition: 1e20 * (1e20 1e-20) = 0; 1e20 * 1e20 1e20 * 1e20 = NaN
- 5. multiplicative identity: 1
- 6. monotonicity: $a \ge b, c \ge 0 \Rightarrow a * c \ge b * c$ (except infinity and NaN).
- 7. positive definite: for $a \neq NaN$, $a * a \geq 0$.

Question: The maximum a for a * a = 0?

Floating-Point Operations — Addition

$$(-1)^{s_1} \cdot M_1 \cdot 2^{E_1} + (-1)^{s_2} \cdot M_2 \cdot 2^{E_2} = (-1)^s \cdot M \cdot 2^E$$

(We assume that $E_1 > E_2$)

Exact Result: $s = s_1, E = E_1$.

Get binary points lined up

- Fixing:
 - if $M \ge 2$: M >>= 1; E + +;
 - if M < 1: M <<= k; E-= k;
 - ▶ if E out of range: return infinity;
 - round M to fit the precision.

Floating-Point Operations — Addition

Properties:

- closed under addition: may generate infinity or NaN.
- 2. commutative: a + b = b + a (even if we can get infinity).
- 3. not associative: (3.14 + 1e20) 1e20 = 0; 3.14 + (1e20 1e20) = 3.14.
- 4. additive identity: 0
- 5. monotonicity:

$$a \ge b \Rightarrow a + c \ge b + c$$
 (except infinity and NaN).

```
Special: About NaN and inf:

(-inf) + inf = NaN;

inf == inf;

NaN != NaN;

Expression if(NaN) will return 1.
```

6. additive inverse: except infinity and NaN.

Floating Point in C

About casting values between int, float and double:

- int -> float: not overflow, possibly rounded Question: The smallest positive integer that cannot be represented exactly for single-precision format?
- int, float -> double: precise (because double has greater range and greater precision)
- double -> float: possibly overflow & rounded
- float, double -> int: round-to-zero, possibly overflow

Additional Slides

Homework 2.84

Fill in the return value for the following procedure which tests whether its its first argument is less than or equal to its second.

One possible answer:

$$(sx \&\& !sy) || (!sx \&\& !sy \&\& ux <= uy) || (sx \&\& sy \&\& ux >= uy)$$

Additional Slides

Comparisons of binary representations between int and float: Homework 2.6, 2.48

decimal	hexadecimal	binary
3510593	0×00359141	[0000000001101011001000101000001]
3510593.0	0×4A564504	[0100101001011100100010100000100]

Homework 2.89

A True

B Possibly overflow

C True

D Precision can be different

E dx (or dz) can be 0