

9 रेिंट. 9 म. जि.

রসায়ন শর্ট সিলেবাসের সকল জ্ঞানমূলক, অনুধাবনমূলক থাকছে ভেতরে

রসায়ন ২য় পত্র

প্রধান পরিকল্পক

নুমেরি সাত্তার অপার ইফতেখার রিমন খন্দকার আশিকুর রহমান

সম্পাদনা পর্ষদ

লাবিবা সালওয়া ইসলাম মোসা: মোরশেদা খাতুন জিয়াউল কবীর সামি

সার্বিক সহযোগিতায়

কাওসার আহমেদ ইফতি মো. সাহারিয়াজ হোসেন

প্রচ্ছদ

শাহরীয়ার তানভীর তাসিন

জ্ঞানমূলক

অনুধাবনমূলক

জ্ঞান ও অনুধাবনের কিছু গুরুত্বপূর্ণ টপিক/প্রশ্ন

জৈব রসায়ন

<u>জ্ঞানমূলক</u>

অনুধাবনমূলক

জ্ঞান ও অনুধাবনের কিছু গুরুত্বপূর্ণ টপিক/প্রশ্ন

পরিমাণগত রসায়ন

জ্ঞানমূলক

অনুধাবনমূলক

জ্ঞান ও অনুধাবনের কিছু গুরুত্বপূর্ণ টপিক/প্রশ্ন

তড়িৎ রসায়ন

জ্ঞানমূলক

অনুধাবনমূলক

জ্ঞান ও অনুধাবনের কিছু গুরুত্বপূর্ণ টপিক/প্রশ্ন

যে টপিকে যেতে চান সে টপিকে Click করুন

জ্ঞানমূলক

১) সম্ভাব্যতম বেগ কী?

[সি. বো. '১৫]

<mark>উ:</mark> কোনো গ্যাসের অণুসমূহের বিভিন্ন গতিবেগের মধ্যে যে বেগটি সর্বাধিক অণুর মধ্যে বর্তমান তাকে সম্ভাব্যতম বেগ বলে।

২) TDS কী?

[ঢা. বো. '১৬]

উ: পানিতে দ্রবীভূত কঠিন পদার্থের মোট পরিমাণই হলো TDS (Total Dissolved Solid)।

৩) পরমশূন্য তাপমাত্রা কী?

[য. বো. '১৭; ব. বো. '১৫]

উ: যে তাপমাত্রায় কোনো গ্যাসের আয়তন তাত্ত্বিকভাবে শূন্য হয় তাকে পরমশূন্য তাপমাত্রা বলে।

৪) বাস্তব গ্যাস কাকে বলে?

[রা. বো. '১৯]

<mark>উ:</mark> যে সকল গ্যাস আদর্শ গ্যাস সমীকরণ (PV = nRT) কে নিম্ন চাপ এবং উচ্চ তাপমাত্রা ব্যতীত অন্য কোনো অবস্থাতেই মেনে চলে না, তাদেরকে বাস্তব গ্যাস বলে।

৫) স্থায়ী খরতা কাকে বলে?

[সি. বো. '১৯]

<mark>উ:</mark> পানিতে ক্যালসিয়াম, ম্যাগনেসিয়াম ও অ্যালুমিনিয়ামের ক্লোরাইড, নাইট্রেট ও সালফেট লবণ দ্রবীভূত থাকলে পানির স্থায়ী খরতা সৃষ্টি হয়।

৬) চার্লসের সূত্র কী?

[রা. বো. '১৬]

উ: 'স্থির চাপে নির্দিষ্ট ভরের কোনো গ্যাসের আয়তন এর পরম তাপমাত্রা বা কেলভিন তাপমাত্রার সমানুপাতিক।' এটিই চার্লসের সূত্র।

৭) অ্যাভোগেড্রোর সূত্রটি কী?

<mark>উ:</mark> অ্যাভোগেড্রোর সূত্রানুসারে "স্থির তাপমাত্রা ও চাপে সম-আয়তনের সকল গ্যাসে সমান সংখ্যক অণু থাকে।"

৮) গে-লুস্যাকের চাপীয় সূত্রটি কী?

উ: "স্থির আয়তনে নির্দিষ্ট ভর বিশিষ্ট কোনো গ্যাসের চাপ তার পরম তাপমাত্রার সমানুপাতিক" এটি গে-লুস্যাকের চাপীয় সূত্র।

৯) ব্যাপন কী?

<mark>উ:</mark> পদার্থের অণুসমূহের বেশি ঘনত্বের স্থান থেকে কম ঘনত্বের দিকে স্বতঃস্ফূর্তভাবে ছড়িয়ে পড়ার ঘটনাকে ব্যাপন বলে।

১০) আইসোথার্ম কাকে বলে?

উ: স্থির তাপমাত্রায় নির্দিষ্ট ভরের কোনো গ্যাসের উপর বিভিন্ন চাপ প্রয়োগ করে এবং সংশ্লিষ্ট চাপে ঐ গ্যাসের আয়তন লিপিবদ্ধ করে X অক্ষ বরাবর চাপ ও Y অক্ষ বরাবর আয়তন স্থাপন করলে যেসব রেখাসমূহ পাওয়া যায়, তাদের আইসোথার্ম বলে।

জ্ঞানমূলক

১১) আইসোবারিক রেখা কাকে বলে?

উ: নির্দিষ্ট চাপে নির্দিষ্ট ভরের কোনো গ্যাসের তাপমাত্রার পরিবর্তন করে এবং ভিন্ন ভিন্ন তাপমাত্রায় ঐ গ্যাসের আয়তন লিপিবদ্ধ করে লেখচিত্র অংকন করলে যে রেখাগুলো পাওয়া যায় তাকে আইসোবারিক রেখা বলে।

১২) সমআয়তনীয় লেখ কী?

উ: গে-লুসাকের চাপের সূত্রের সমীকরণ P = kT মতে চাপ (P) বনাম কেলভিন তাপমাত্রা (T) এর লেখচিত্র মূলবিন্দুগামী সরলরেখা হয়; এরূপ লেখকে আইসোকোর (isochor) বা গ্যাসের সমআয়তনীয় লেখ বলে।

১৩) SATP কী?

উ: SATP (Standard Ambient Temperature and Pressure) দারা বায়ুমন্ডলের প্রমাণ তাপমাত্রা (25°C) ও চাপ (1 atm) বোঝায়।

১৪) আদর্শ গ্যাস কী?

উ: যে সকল গ্যাস সকল তাপমাত্রা ও চাপে বয়েল, চার্লস এবং অ্যাভোগেড্রোর সূত্র অর্থাৎ আদর্শ গ্যাস সমীকরণ (PV=nRT) মেনে চলে তাদেরকে আদর্শ গ্যাস বলে।

১৫) সংকোচনশীলতা গুণাংক কাকে বলে?

উ: একই তাপমাত্রা ও চাপে বাস্তব গ্যাসের মোলার আয়তন ও আদর্শ গ্যাসের মোলার আয়তনের অনুপাতকে সংকোচনশীলতা গুণাংক বলে।

১৬) আংশিক চাপ কাকে বলে?

উ: কোনো নির্দিষ্ট তাপমাত্রায় বিক্রিয়াহীন কোনো গ্যাস মিশ্রণের কোন একটি উপাদান গ্যাস ঐ তাপমাত্রায় মিশ্রণের সমস্ত আয়তন একাকী দখল করলে যে চাপ প্রয়োগ করে তাকে ঐ উপাদান গ্যাসের আংশিক চাপ বলে।

১৭) বোল্টজম্যান ধ্রুবক কাকে বলে?

<mark>উ:</mark> প্রতি অণুর গ্যাসের জন্য সম্প্রসারণজনিত কাজ হলো বোন্টলম্যান ধ্রুবক। একে k দ্বারা সূচিত করা হয়।

১৮) STP কী?

[রাজশাহী বোর্ড '১৫]

<mark>উ:</mark> STP এর পূর্ণরূপ Standard Temperature and Pressure। এই পদ্ধতিতে তাপমাত্রা 0^o C এবং চাপ 1 atm বা 101325 Pa.

১৯) মোলার গ্যাস ধ্রুবক কী?

উ: 1 mol গ্যাসের তাপমাত্রা 1 K বৃদ্ধি করলে যে পরিমাণ সম্প্রসারণজনিত কাজ সম্পাদিত হয়।

জ্ঞানমূলক

২০) নিঃসরণ বা অণুব্যাপন কী?

<mark>উ:</mark> চাপ প্রয়োগে সরু ছিদ্র পথে কোনো গ্যাসের নির্গত বা বের হওয়ার প্রক্রিয়াকে নিঃসরণ বা অণুব্যাপন বলে।

২১) গ্যাসের গতীয় সমীকরণ কী?

<mark>উ:</mark> গ্যাসের গতীয় তত্ত্বের স্বীকার্যগুলোর উপর ভিত্তি করে গ্যাসের চাপ সংক্রান্ত যে সমীকরণটি প্রতিষ্ঠা করা হয়েছে তা গ্যাসের গতীয় সমীকরণ নামে পরিচিত। সমীকরণটি হলো-

$$PV = \frac{1}{3}mNc^2$$

২২) সেলসিয়াস স্কেল ও কেলভিন স্কেল সমন্বিত সমীকরণটি কী?

উ: সেলসিয়াস স্কেল ও কেলভিন স্কেল সমন্বিত সমীকরণটি হলো t °C = (273+t)K।

২৩) রাসায়নিক অক্সিজেন চাহিদা বা COD কী?

<mark>উ:</mark> প্রতি লিটার পানির নমুনায় থাকা জৈব ও অজৈব দূষককে সম্পূর্ণরূপে জারিত করতে যত মিলিগ্রাম $hita_2$ প্রয়োজন হয় তাকে পানির COD (Chemical Oxygen Demand) বলে।

২৪) ডাল্টনের আংশিক চাপ সূত্রটি লেখ।

<mark>উ:</mark> কোনো নির্দিষ্ট উষ্ণতায় পরস্পর বিক্রিয়াহীন দুই বা ততোধিক গ্যাসের একটি মিশ্রণের মোট চাপ মিশ্রণে উপস্থিত উপাদান গ্যাসসমূহের আংশিক চাপের সমষ্টির সমান।

২৫) বর্গমূল গড় বর্গবেগ (r.m.s বেগ) কী?

[সকল. বো. '১৮]

উ: কোনো গ্যাসের অণুসমূহের গতিবেগের বর্গের গড় মানের বর্গমূলকে গ্যাসটির অণুসমূহের বর্গমূল গড় বর্গবেগ বা RMS (Root Mean Square Velocity) বলে।

২৬) বাস্তব গ্যাসের জন্য ভ্যানডার ওয়ালস সমীকরণটি লেখ।

উ: ভ্যান্ডার ওয়ালস সমীকরণ-

$$\left(P + \frac{n^2 a}{V^2}\right)(V - nb) = nRT$$

২৭) অ্যামাগা রেখা কাকে বলে?

<mark>উ:</mark> স্থির তাপমাত্রায় **বাস্তব গ্যাসসমূহের** PV এর মানের বিপরীতে P এর লেখচিত্র অঙ্কন করলে যে বক্ররেখা পাওয়া যায়, সেই রেখাগুলোকে অ্যামাগা রেখা বলে।

২৮) ক্ষারকের অম্লত্ব কী?

উ: ক্ষারকের একটি এসিডকে প্রশমিত করার ক্ষমতাকে ক্ষারকের অম্লত্ব বলে।

জ্ঞানমূলক

- ২৯) উভধর্মী পদার্থ কাকে বলে?
- উ: যেসব পদার্থ এসিড এবং ক্ষারক উভয় ধর্মই প্রদর্শন করে তাদেরকে উভধর্মী পদার্থ বলে ।
- ৩০) অনুবন্ধী ক্ষারক কী?
- উ: অনুবন্ধী ক্ষারক হলো কোনো অম্ল থেকে প্রোটন অপসারণেরফলে সৃষ্ট ক্ষারক।
- ৩১) Cu^{2+} আয়নকে কী এসিড বলা হয়?
- <mark>উ:</mark> Cu^{2+} আয়নকে লুইস এসিড বলা হয়।

অনুধাবনমূলক

১) "নমুনা পানির BOD 10 ppm"- বলতে কী বুঝ?

[সি. বো. '১৬]

<mark>উ:</mark> নমুনা পানির BOD 10~ppm বলতে বোঝায় ঐ নমুনা পানির 1 লিটারে দ্রবীভূত থাকা জৈব দূষক পদার্থকে অণুজীব (ব্যাকটেরিয়া) দ্বারা জারিত করতে 10~mg অক্সিজেন প্রয়োজন।

২) তাপমাত্রা বৃদ্ধি করলে গ্যাসের চাপ বৃদ্ধি পায় কেন?

[ব. বো. '১৯]

উ: গ্যাস পাত্রের আয়তন স্থির রেখে কোন গ্যাসকে উচ্চ তাপমাত্রায় তাপ দিলে, সে গ্যাসের অণুসমূহের মধ্যে আন্তঃআণবিক দূরত্ব বেড়ে যায়। অণুগুলো তাপ হতে শক্তি গ্রহণ করে বলে, তাদের গতিশক্তি ও কম্পনশক্তি বৃদ্ধি পায়। ফলে, অণুসমূহের ছোটাছুটি বেড়ে যায় এবং পাত্রের উপর চাপের সৃষ্টি হয়। এভাবে তাপমাত্রা বৃদ্ধি করলে গ্যাসের চাপ বেড়ে যায়।

৩) HCl(g) অপেক্ষা $NH_3(g)$ -এর ব্যাপন হার বেশি কেন?

বি. বো. '১৫]

উ: গ্রাহামের গ্যাস ব্যাপন সূত্রানুসারে ব্যাপন হার, $r=rac{1}{\sqrt{M}}$ [যেখানে M= আণবিক ভর]

$$\therefore \frac{r_{HCl}}{r_{NH_3}} = \sqrt{\frac{M_{NH_3}}{M_{HCl}}} = \sqrt{\frac{17}{36.5}} = 0.682$$
$$r_{NH_3} : r_{HCl} = 1.46 : 1$$

সুতরাং আণবিক ভর কম হওয়ার কারণে NH_3 এর ব্যাপন হার বেশি হবে।

8) 64 g অক্সিজেন গ্যাসের জন্য ভ্যানডারওয়ালস সমীকরণটি লেখো।

[চ. বো. '১৬]

উ: ভ্যানডার ওয়ালস্ এর সাধারণ সমীকরণ হচ্ছে

$$\left(P + \frac{n^2 a}{V^2}\right)(V - nb) = nRT$$

এখন 64~g অক্সিজেন অর্থাৎ 2~mol অক্সিজেনের (n=2) জন্য সমীকরণটি হবে-

$$\left(P + \frac{4a}{V^2}\right)(V - 2b) = 2RT$$

৫) পানির BOD 5 mg/L বলতে কী বোঝ?

[দি. বো. '১৭]

<mark>উ:</mark> কোনো নমুনা পানির BOD 5 mg/L বলতে বুঝায় ঐ নমুনা পানির 1 লিটারে দ্রবীভূত থাকা জৈব দৃষক পদার্থকে অণুজীব (ব্যাকটেরিয়া) দ্বারা জারিত করতে 5 mg অক্সিজেন প্রয়োজন।

৬) বাস্তব গ্যাসের চাপ আদর্শ গ্যাসের চাপ অপেক্ষা কম কেন?

[ঢা. বো. '১৬]

উ: গ্যাসের গতীয়তত্ত্ব যে সমস্ত স্বীকার্যের উপর প্রতিষ্ঠিত, তার মধ্যে অন্যতম হলো, গ্যাসের অণুসমূহ সরলরৈখিক পথে ইতস্ততভাবে সদা সঞ্চরণশীল। অণুগুলো পরস্পরের সঙ্গে এবং পাত্রের দেওয়ালের সঙ্গে অবিরত ধাক্কার ফলে গ্যাসের চাপ সৃষ্টি হয়। আদর্শ গ্যাসের অণুসমূহের মধ্যে কোনো আকর্ষণ বা বিকর্ষণ বল নেই বলে বিবেচনা করা হয়। তবে বাস্তব গ্যাসের অণুসমূহের মধ্যে এই সমস্ত বল বিদ্যমান। এ কারণে, আদর্শ অবস্থায় আকর্ষণমুক্ত অণুগুলোর যে পরিমাণ ধাক্কা দেওয়ালে দেওয়ার কথা, তা বাস্তব গ্যাসের অণুসমূহ দিতে পারে না। ফলে বাস্তব গ্যাসের চাপ আদর্শ গ্যাসের চাপ অপেক্ষা কম হয়।

অনুধাবনমূলক

৭) গ্যাস ও বাষ্পের মধ্যে ২টি পার্থক্য লেখো।

উ: গ্যাস ও বাষ্পের মধ্যে পার্থক্য নিম্নরূপ:

	গ্যাস	বাষ্প
i.	কোনো পদার্থের সন্ধি তাপমাত্রার ওপরে পদার্থের গ্যাসীয় বা বায়বীয় অবস্থাকে গ্যাস বলে।	কোনো পদার্থের সন্ধি তাপমাত্রার নিচে পদার্থের বায়বীয় বা গ্যাসীয় অবস্থাকে বাষ্প বলে।
ii.	এ অবস্থায় পদার্থকে শুধুমাত্র চাপ প্রয়োগে সংকুচিত করে তরলে রূপান্তরিত করা যায়।	সন্ধি তাপমাত্রার উপরে গ্যাসীয় অবস্থাকে চাপ প্রয়োগে সংকুচিত করে তরল করা যায় না।

৮) ব্যাপন বলতে কী বোঝ?

উ: উচ্চ ঘনত্বের স্থান থেকে নিম্ন ঘনত্বের স্থানের দিকে কোনো পদার্থের অণুসমূহের পরিব্যপ্ত হওয়ার প্রক্রিয়াকে ব্যাপন বলে। গ্যাসীয় ক্ষেত্রে সর্বত্র গ্যাসের চাপ সমান না হওয়া পর্যন্ত গ্যাস অণুসমূহ উচ্চচাপের অঞ্চল থেকে নিম্ন চাপের অঞ্চলের দিকে স্থানান্তরিত হয়। যেমন- বেগুনি বর্ণের আয়োডিন বাষ্পকে একটি ছিদ্রযুক্ত কাচ পাত্রে নিয়ে ছিদ্রের মাধ্যমে অপর একটি কাচ পাত্রের সংযোগ দিয়ে কিছুক্ষণ রেখে দেয়ার পর দেখা যায় বেগুনি বর্ণের গ্যাস ছিদ্র দিয়ে অপর পাত্রটির সর্বত্র ছড়িয়ে পড়েছে। এই প্রক্রিয়াটিই ব্যাপনের বাস্তব উদাহরণ।

৯) পানির BOD এর মান 50 ppm বলতে কী বুঝ?

উ: BOD হলো Biochemical Oxygen Demand যা পানির বিশুদ্ধতার একটি মাপকাঠি। কোনো পানির BOD এর মান 50 ppm (বা 50 mg/L) বলতে বোঝায়, ঐ পানির প্রতি লিটারে উপস্থিত পচনশীল জৈব বস্তুকে অণুজীব দ্বারা বিযোজিত করতে 50 mg অক্সিজেনের প্রয়োজন। BOD এর মান যতো বেশী, পানিতে পচনশীল জৈব দূষকের পরিমাণ ততো বেশী।

১০) কি কি শর্তে একটি বাস্তব গ্যাস আদর্শ আচরণ করে তা উল্লেখ করো।

উ: বাস্তব গ্যাস সাধারণত আদর্শ গ্যাসের ন্যায় আচরণ করে না। গ্যাসের গতিতত্ত্বে স্বীকার্য অনুযায়ী গ্যাসের অণুসমূহের আয়তন প্রায় নগণ্য ধরা হয়। এছাড়া অণু সমূহের মধ্যে বিদ্যমান আন্তঃআণবিক আকর্ষণ বল ধরা হয় না। তাই আদর্শ গ্যাস ও বাস্তব গ্যাসের আচরণ আলাদা। কিন্তু নিম্নোক্ত শর্তে বাস্তব গ্যাস আদর্শ গ্যাসের ন্যায় আচরণ করে:

- (i) উচ্চ তাপমাত্রার প্রয়োগ
- (ii) নিম্ন চাপ সৃষ্টি

অনুধাবনমূলক

১১) আদর্শ গ্যাসের অবস্থার সমীকরণ বলতে কী বোঝ?

উ: গ্যাস সূত্রসমূহের সমন্বয়ে প্রতিষ্ঠিত PV = nRT সমীকরণটি তাত্ত্বিকভাবে সব গ্যাসের জন্য প্রযোজ্য হলেও বাস্তবক্ষেত্রে এর কিছুটা বিচ্যুতি দেখা যায়। যেসব গ্যাস সকল তাপমাত্রা ও চাপে বয়েল ও চার্লসের সূত্র মেনে চলে তাদেরকে আদর্শ গ্যাস বলা হয়। আদর্শ গ্যাস উপরিউক্ত সমীকরণকেও মেনে চলবে। সুতরাং এ সমীকরণকে আদর্শ গ্যাসের অবস্থার সমীকরণ বলা হয়।

১২) সমতাপ রেখা কী? ব্যাখ্যা করো।

উ: একই তাপমাত্রায় চাপ ও আয়তনের বিপরীতে যে অধিবৃত্তীয় রেখাসমূহ পাওয়া যায় তাকে সমতাপ রেখা বলে। নির্দিষ্ট তাপমাত্রায় নির্দিষ্ট ভরের কোনো গ্যাসের ওপর বিভিন্ন চাপ প্রয়োগ করে এবং বিভিন্ন চাপে ঐ গ্যাসের আয়তন লিপিবদ্ধ করে Y অক্ষে চাপ (P) এবং X অক্ষে আয়তন (V) ধরে লেখচিত্র অঙ্কন করলে যে রেখাগুলো পাওয়া যায় সেগুলোর আকৃতি অধিবৃত্তীয় হয়।

১৩) একটি ফুটবলকে পাম্প করার সময় তার ভেতরের গ্যাসের আয়তন ও চাপ দুই-ই বাড়ে। এ ঘটনা কি বয়েলের সূত্রের বিরোধী?

উ: বয়েলের সূত্রানুযায়ী, ''স্থির তাপমাত্রায় নির্দিষ্ট ভরের যেকোনো গ্যাসের আয়তন তার উপর প্রযুক্ত চাপের বিপরীত অনুপাতে পরিবর্তিত হয়।'' ফুটবলকে পাম্প করলে ফুটবলের ভেতরে বায়ুর পরিমাণ এবং উক্ত বায়ুর উষ্ণতা উভয়ই বৃদ্ধি পায়। যেহেতু ফুটবলের ভেতরে বায়ুর তাপমাত্রা ও ভর স্থির থাকে না, তাই এক্ষেত্রে বয়েলের সূত্র প্রযোজ্য নয়।

১৪) দেখাও যে, পরম শূন্য তাপমাত্রায় সকল গ্যাসের আয়তন তাত্ত্বিকভাবে শূন্য হয়।

উ: ধরি, স্থির চাপে 0° C তাপমাত্রায় কোনো গ্যাসের আয়তন V_0 এবং t° C তাপমাত্রায় কোনো গ্যাসের আয়তন V_t ।

সুতরাং চার্লসের সূত্রানুসারে, $V_t=V_0\left(1+rac{t}{273}
ight)$ এখন প্রমশ্ন্য তাপমাত্রা অর্থাৎ t=-273~K

উক্ত সমীকরণে বসিয়ে
$$V_{-273}=V_0\left(1+\frac{-273}{273}\right)$$
 $=V_0(1-1)=0$

অর্থাৎ পরম শূন্য তাপমাত্রায় কোনো গ্যাসের আয়তন তত্ত্বীয়ভাবে শূন্য হয়।

১৫) মোলার গ্যাস ধ্রুবকের মান গ্যাসের প্রকৃতির ওপর নির্ভর করে না ব্যাখ্যা করো।

উ: এক মোল কোনো গ্যাসের তাপমাত্রা 1K বৃদ্ধি করলে যে পরিমাণ সম্প্রসারণজনিত কাজ হয় তাকে মোলার গ্যাস ধ্রুবক বলে। মোলার গ্যাস ধ্রুবকের মান সব গ্যাসের ক্ষেত্রে একই হয়। মোলার গ্যাস ধ্রুবক (R) এর মাত্রা হলো কাজ (বা শক্তি) কেলভিন $^{-1}$ মোল $^{-1}$ । সুতরাং, কাজ বা শক্তিকে যে এককে প্রকাশ করা হয় তার ওপর মোলার গ্যাস ধ্রুবকের মান নির্ভর করবে। তাই মোলার গ্যাস ধ্রুবকের মান গ্যাসের প্রকৃতির ওপর নির্ভর করে না।

অনুধাবনমূলক

১৬) মোলার গ্যাস ধ্রুবকের SI একক নির্ণয় করো?

উ: আমরা জানি, PV = nRT $\Rightarrow R = \frac{PV}{nT}$ $\Rightarrow R = \frac{101325 \times 22.414 \times 10^{-3}}{1 \times 273.15}$ $= 8.314 \ NmK^{-1}mol^{-1}$ $= 8.314 \ IK^{-1}mol^{-1}$

আয়তন, V = 22.414L= $22.414 \times 10^{-3} m^3$

허প, P = 101.325 kPa= 101325 Pa= $101325 Nm^{-2}$

STP তে গ্যাসের-

তাপমাত্রা, T = 273.15 K

মোল সংখ্যা, $n=1 \, mol$

সুতরাং SI এককে R এর মান $8.314\,JK^{-1}mol^{-1}$

১৭) PV=nRT সমীকরণটি কঠিন পদার্থের ক্ষেত্রে প্রযোজ্য নয় কেন?

উ: PV = nRT এই সূত্রটি হল বয়েল, চার্লস ও অ্যাভোগেড্রোর সমন্বিত সূত্র। এই তিনটি সূত্রই শুধুমাত্র গ্যাসের ক্ষেত্রে প্রযোজ্য। অন্যদিকে, কঠিন বস্তুর আকার বা আয়তন, চাপ কিংবা তাপমাত্রায় খুব বেশি পরিবর্তিত হয় না। আর পরিবর্তিত হলেও তা বয়েল বা চার্লসের সূত্র মেনে চলে না। এ কারণেই সমন্বিত সূত্রটি কঠিন বস্তুর ক্ষেত্রে প্রযোজ্য নয়।

১৮) পানির খরতার কারণ ব্যাখ্যা করো।

উ: পানিতে Ca^{2+} , Mg^{2+} , Al^{3+} , Fe^{2+} , HCO_3^- , SO_4^{2-} ইত্যাদির মাত্রাতিরিক্ত উপস্থিতিকে পানির খরতা বলে। তবে বাইকার্বনেট আয়ন উপস্থিত থাকলে পানি অস্থায়ীভাবে খর হয়। অন্যদিকে Ca^{2+} এবং Mg^{2+} আয়নের উপস্থিতিকেই প্রধানত পানির খরতার জন্য দায়ী করা হয়ে থাকে।

১৯) প্রোটনীয় মতবাদ অনুসারে প্রশমন বর্ণনা কর।

উ: এসিড ও ক্ষার প্রশমন বিক্রিয়ায় অংশগ্রহণ করে। ব্রনস্টেড লাউরি এর প্রোটনীয় মতবাদ অনুযায়ী এসিড প্রোটন-দাতা এবং ক্ষার হলো প্রোটন গ্রহীতা।

প্রশমন বিক্রিয়ার ক্ষেত্রে এসিড এক বা একাধিক প্রোটন বা H^+ প্রদান করে এবং ক্ষার তা গ্রহণ করে।

এসিডের জলীয় দ্রবণে H^+ উৎপন্ন করে ক্ষার যেমন, OH^- উক্ত H^+ কে গ্রহণ করে প্রশমিত হয়ে পানি উৎপন্ন করে। এটিই হলো প্রোটনীয় মতবাদ অনুসারে প্রশমন।

$$HCl \rightarrow H^+ + Cl^-$$

 $OH^- + H^+ \rightarrow H_2O$ (প্রশমন)

অনুধাবনমূলক

২০) সিজিএস এককে R এর মান নির্ণয় কর।

উ: আমরা জানি,

$$PV = nRT$$

বা,
$$R = \frac{PV}{nT}$$

এখানে.

P = CGS পদ্ধতিতে প্রমাণ চাপ = 76 cm(Hg)

$$= 76 \times 13.6 \times 981 \ dyne. cm^{-2}$$

V = CGS পদ্ধতিতে প্রমাণ চাপ ও তাপমাত্রায় 1 মোল গ্যাসের আয়তন $= 22400 \ cm^3$

T= প্রমাণ তাপমাত্রা =273~K

n = 1 mol

$$\therefore R = \frac{76 \times 13.6 \times 981 \times 22400}{1 \times 273}$$

 $= \frac{1 \times 273}{1 \times 10^{7} \text{ dyne. cm mol}^{-1} K^{-1}}$

 $= 8.314 \times 10^7 \ erg. mol^{-1}K^{-1}$

২১) গ্যাসের গতিশক্তি নির্ণয়ে rms বেগ, গড়বেগ অপেক্ষা অধিক উপযোগী কেন?

উ: গ্যাসের গতিশক্তি নির্ণয়ে rms বেগ গড়বেগ অপেক্ষা অধিক উপযোগী। কারণ ms বেগ হচ্ছে এমন একটি বেগ, যা প্রতিটি অণুর সাধারণ গতিবেগ ধরে অণুসমূহের গতিশক্তি হিসাব করলে তাদের প্রকৃত মোট গতিশক্তি পাওয়া যায়। গড়বেগ থেকে সরাসরি গতিশক্তি পাওয়া যায় না। এ কারণে গতিশক্তি নির্ণয়ে rms বেগ অধিক উপযোগী।

২২) ${\it CO}_2$ ও ${\it SO}_2$ গ্যাসের ক্ষেত্রে আংশিক চাপ সূত্র প্রযোজ্য কেনো?

উ: ডাল্টনের আংশিক চাপ সূত্রটি হলো-

"নির্দিষ্ট তাপমাত্রায় পরস্পর বিক্রিয়াহীন কোনো গ্যাস মিশ্রণের মোট চাপ ঐ তাপমাত্রায় উপাদান গ্যাসসমূহের আংশিক চাপ সমূহের যোগফলের সমান।" তাই সহজেই বুঝা যায় যে, আংশিক চাপ সূত্র সেই গ্যাস মিশ্রণের ক্ষেত্রেই প্রযোজ্য হবে যেখানে মিশ্রণে বিদ্যমান গ্যাসগুলো পরস্পর বিক্রিয়া বিহীন হয়। কোনো গ্যাস মিশ্রণে CO_2 এবং SO_2 বিদ্যমান থাকলে সেক্ষেত্রে কোনো রাসায়নিক বিক্রিয়া সংঘটিত হবে না। তাই CO_2 এবং SO_2 গ্যাসদ্বয় দ্বারা গঠিত সমসত্ত্ব মিশ্রণ থেকে সহজেই তাদের আংশিক চাপ নির্ণয় করা যাবে। সুতরাং CO_2 এবং SO_2 মিশ্রণের ক্ষেত্রে আংশিক চাপ সূত্র প্রযোজ্য।

অনুধাবনমূলক

২৩) TDS পানির বিশুদ্ধতার মানদন্ড ব্যাখ্যা করো।

উ: TDS এর পূর্ণরূপ হলো Total Dissolved Solid অর্থাৎ TDS দ্বারা কোনো নমুনা পানিতে সমস্ত দ্রবীভূত কঠিন পদার্থকে বুঝায়। খাবার পানিতে TDS থাকার অর্থ হলো ঐ পানিতে খনিজ উপাদান বেশি এবং স্বাস্থ্যের জন্য ভালো বিবেচিত। TDS এর আদর্শ মান হলো 500~ppm। TDS এর রাসায়নিক উপাদানগুলো হলো Ca^{2+} , PO_4^{3-} , NO_3^- , Na^+ , K^+ , Cl^- , Mg^{2+} এর বিভিন্ন যৌগ। খাবার পানিতে Pb^{2+} , Cd^{2+} , As^{3+} , Hg^{2+} , NO_3^- , CN^- প্রভৃতি থাকলে সে পানি পানের অযোগ্য। পানিতে TDS মেপে পানি গুণগত মান সম্পর্কে ধারণা পাওয়া যায়। তাই TDS হলো পানির বিশুদ্ধতার মানদণ্ড।

TDS মাত্রা	মন্তব্য
300 ppm এর মান	চমৎকার
300 – 500 ppm	অত্যন্ত ভালো
500 – 900 ppm	মোটামুটি ভালো
> 1000 ppm	খারাপ

২৪) H_2O একটি উভধর্মী পদার্থ কেন?

উ: প্রোটনীয় মতবাদ অনুসারে যেসব অণু বা আয়ন অবস্থাভেদে প্রোটন দাতা ও গ্রহীতা উভয় প্রকার আচরণ করে অর্থাৎ অম্ল ও ক্ষারক উভয়রূপে ক্রিয়া করে তাদেরকে উভধর্মী পদার্থ বলে। পানি একটি উভধর্মী পদার্থ। কারণ পানি ক্ষারের সাথে বিক্রিয়া করার সময় ক্ষারকে প্রোটন দান করে, আবার এসিডের সাথে বিক্রিয়া করার সময় প্রোটন গ্রহণ করে।

$$NH_3 + H_2O = NH_4^+ + OH^-$$

 $HCl + H_2O = H_3O^+ + Cl^-$

২৫) সম তাপমাত্রা ও চাপে একটি সচ্ছিদ্র দেয়ালের মধ্য দিয়ে NH_3, Cl_2 ও CO_2 গ্যাসকে ব্যাপিত করা হলে গ্যাসগুলোর ব্যাপন হারের উর্ধ্বক্রম কী হবে?

উ: গ্রাহামের সূত্রানুযায়ী, নির্দিষ্ট চাপ ও তাপমাত্রায় কোনো গ্যাসের ব্যাপন হার আণবিক ভরের বর্গমূলের ব্যাস্তানুপাতিক, $r \propto \frac{1}{\sqrt{M}}$; যেখানে M= গ্যাসের আণবিক ভর।

প্রসানুসারে,
$$r_{NH_3}=\frac{1}{\sqrt{17}}$$
; $r_{Cl_2}=\frac{1}{\sqrt{71}}$ এবং $r_{CO_2}=\frac{1}{\sqrt{44}}$ সুতরাং, r_{NH_3} : r_{Cl_2} : $r_{CO_2}=\frac{1}{\sqrt{17}}$: $\frac{1}{\sqrt{71}}$: $\frac{1}{\sqrt{44}}$

 $r_{Cl_2} < r_{CO_2} < r_{NH_3}$ । অর্থাৎ, যার আণবিক ভর যত কম হবে তার ব্যাপনের হার তত বেশি হবে।

অনুধাবনমূলক

২৬) বয়েলের সূত্র গ্যাসের গতীয় সমীকরণের একটি বিশেষ রূপ প্রমাণ করো।

উ: এখানে, অণুসমূহের গড় গতিশক্তি $\frac{1}{2}mc^2$ \therefore অণুসমূহের মোট গতিশক্তি, $E_T=\frac{1}{2}mNc^2$ আমরা জানি, গ্যাসের গতীয় সমীকরণ- $PV=\frac{1}{3}mNc^2=\frac{2}{3}N\times\frac{1}{2}mc^2=\frac{2}{3}\times E_T\dots (1)$ আবার, গতিতত্ত্বের স্বীকার্য মতে, মোট গতিশক্তি (E_T) কেলভিন তাপমাত্রার সমানুপাতিক । \therefore অণুসমূহের মোট গতিশক্তি $E_T \propto T$ বা, $E_T=K\times T$; এখানে, K হল ধ্রুবক । সুতরাং (1) নং সমীকরণে মোট গতিশক্তি E_T এর মান বসিয়ে পাই- $PV=\frac{2}{3}\times KT\dots (2); \ [স্থির তাপমাত্রায়]$ বা, PV=K' (ধ্রুবক); $\because \frac{2}{3}\times KT=K'$ (ধ্রুবক) বা, $V=K'\times\frac{1}{p}$ বা, $V\propto\frac{1}{p}$; [স্থির তাপমাত্রায়] এটিই বয়েলের সূত্রের গাণিতিক রূপ। অর্থাৎ বয়েলের সূত্র গ্যাসের গতীয় সমীকরণের একটি বিশেষ রূপ (প্রমাণিত)।

২৭) অ্যামাগা বক্র ব্যাখ্যা কর।

উ: বিজ্ঞানী অ্যামাগা নির্দিষ্ট ভরের কিছু গ্যাস নিয়ে স্থির তাপমাত্রায় বিভিন্ন চাপে (P) তাদের আয়তন নির্ণয় করেন। এরপর চাপের (P) বিপরীতে PV এর মান বসিয়ে কতকগুলো রেখা পান তার নামানুসারে এসব রেখাকে অ্যামাগা বক্ররেখা বলে। এ গ্রাফ পর্যবেক্ষণ করলে দেখা যায় যে, আদর্শ গ্যাসের ক্ষেত্রে চাপের (P) পরিবর্তনের সাথে সাথে PV অপরিবর্তিত থাকে। কিন্তু বাস্তব গ্যাসের ক্ষেত্রে পরিবর্তিত হয়। অর্থাৎ বাস্তব গ্যাস আদর্শ গ্যাসেরমতো আচরণ করে না।

২৮) কোনো নমুনার BOD অপেক্ষা COD এর মান বেশি হয় কেনো?

উ: কোন নমুনায় COD এর মান BOD থেকে বেশি হয়। কেননা COD প্রক্রিয়ায় সকল প্রকার জীব ভাঙনযোগ্য ও অভাঙনযোগ্য পদার্থ দারিত হয়। এর ফলে অক্সিজেনের ব্যবহার বেশি হয়। কিন্তু BOD ক্রিয়ায় কেবলমাত্র জীব ভাঙনযোগ্য পদার্থসমূহ জারিত হওয়ায় অক্সিজেনের ব্যবহার কম হয়। সুতরাং বলা যায়, কোনো নমুনায় BOD অপেক্ষা COD এর মান বেশি হয়।

২৯) ${\it CO}_2$ এর সন্ধি তাপমাত্রা $31.1\,{}^{\circ}{\it C}$ বলতে কী বোঝ?

উ: CO_2 এর সংকট তাপমাত্রা $31.1^\circ C$ বলতে বুঝায় $31.1^\circ C$ তাপমাত্রার উপরে CO_2 গ্যাসকে তরলে পরিণত করা সম্ভব নয়। কিন্তু $31.1^\circ C$ তাপমাত্রা বা এর নিচে যে কোনো তাপমাত্রায় CO_2 গ্যাসকে তরলে পরিণত করা সম্ভব।

অনুধাবনমূলক

৩০) গ্যাস মিশ্রণের আংশিক চাপ ব্যাখ্যা কর।

উ: কোনো গ্যাস মিশ্রণের কোনো একটি উপাদান গ্যাস ঐ তাপমাত্রায় মিশ্রণের সমস্ত আয়তন একাকী দখল করলে যে চাপ প্রয়োগ করে তাকে উক্ত গ্যাস মিশ্রণের আংশিক চাপ বলে। একটি গ্যাসের n মোল স্থির তাপমাত্রা T তে পৃথকভাবে V আয়তন দখলকরে P চাপ প্রয়োগ করলে মিশ্রণটির আংশিক চাপ হবে,

$$P = \frac{nRT}{V}$$

৩১) নাইট্রোজেন অণুতে দুটি নিঃসঙ্গ ইলেকট্রিন জোড় থাকা সত্ত্বেও নাইট্রোজেন অণুর ক্ষারকীয় ধর্ম না থাকার কারণ ব্যাখ্যা কর ?

উ: N(7)- পরমাণুর ইলেকট্রন বিন্যাস : $1s^2 \ 2s^2 \ 2p_x^{\ 1} \ 2p_y^{\ 1} \ 2p_z^{\ 1}$ এরপ দুটি নাইট্রোজেন পরমাণুর sp সংকরিত বিজোড় ইলেকট্রন অরবিটাল পরস্পরের অধিক্রমণে N-N সিগমা (σ) বন্ধন গঠন করে। অসংকরায়িত $2p_y^{\ 1}$ এবং $2p_z^{\ 1}$ ইলেকট্রন অরবিটাদের অধিক্রমণে দুটি পাই (π) বন্ধন এর সৃষ্টি হয়। সংকরিত অরবিটালে ১-অরবিটালের পরিমাণ এবং p-অরবিটালের পরিমাণ 50% করে থাকে। তুলনামূলকভাবে ১ অরবিটালের পরিমাণ বেশি হওয়ার জন্য নাইট্রোজেন অণুতে দুটি নাইট্রোজেন পরমাণুর সংকরিত নিঃসঙ্গ ইলেকট্রন লোড দুটি নিউক্রিয়াসের কাছে থাকে এবং নিউক্রিয়াস দুটি দ্বারা প্রবলভাবে আকৃষ্ট হয় বলে অন্য কারোর জন্য সহজলভ্য হয় না। ফলে নাইট্রোজেন অণু তার দুটি নিঃসঙ্গ ইলেকট্রন জোড় কোনো ইলেকট্রন লোড় গ্রহীতাকে দান করতে পারে না। এজন্য নাইট্রোজেন অণুতে দুটি নিঃসঙ্গ ইলেকট্রন জোড় থাকা সত্ত্বেও নাইট্রোজেন অণু ইলেকট্রন জোড় দান করে ক্ষারীয় ধর্ম প্রদর্শন করে না।

৩২) দুর্বল অম্লের অনুবন্ধী ক্ষারক শক্তিশালী হয় কেন?

উ: দুর্বল অম্লের অনুবন্ধী ক্ষারক শক্তিশালী হয়। কারণ দুর্বল অম্ল কর্তৃক প্রোটন ত্যাগের প্রবণতা কম হয়। ফলে দুর্বল অম্লের অনুবন্ধী ক্ষারকের প্রোটনের সাথে যুক্ত হওয়ার প্রবণতা বেশি থাকে। ফলে এটি তীব্র ক্ষারধর্মী হয় । তাই দুর্বল অম্লের অনুবন্ধী ক্ষারক শক্তিশালী হয়।

৩৩) এসিডের অনুবন্ধী ক্ষারকের প্রকৃতি কেমন হয়?

উ: এসিড যতো তীব্র হয়, তার প্রোটন ত্যাগের প্রবণতা ততো বেশি হয়। তখন এসিডের অনুবন্ধী ক্ষারকটি প্রোটনের সাথে যুক্ত হওয়ার প্রবণতা খুব কম হয়। অর্থাৎ এটি মৃদু ক্ষারধর্মী হয়। বিপরীতভাবে মৃদু এসিডের প্রোটন ত্যাগের প্রবণতা কম হওয়ায় মৃদু এসিডের অনুবন্ধী ক্ষারকের প্রোটনের সাথে যুক্ত হওয়ার প্রবণতা বেশি হয়। ফলে এটি তীব্র ক্ষারধর্মী হয়। সুতরাং তীব্র এসিডের অনুবন্ধী ক্ষারক মৃদু হয় এবং মৃদু এসিডের অনুবন্ধী ক্ষারক তীব্র হয়।

অনুধাবনমূলক

৩৪) নাইট্রোজেন এবং ফসফরাস একই গ্রুপের মৌল হওয়া সত্ত্বেও অ্যামোনিয়ার ক্ষারকীয় ধর্ম ফসফিন অপেক্ষা বেশি - ব্যাখ্যা কর।

উ: NH_3 অণুর নাইট্রোজেন (N) পরমাণুতে ও PH_3 অণুর ফসফরাস (P) পরমাণুতে একটি করে নিঃসঙ্গ ইলেকট্রন জোড় উপস্থিত আছে । N-পরমাণুর তড়িৎ ঋণাত্মকতা বেশি হওয়ার জন্য আ্যামোনিয়া অণুতে তিনটি N-H বন্ধনের বন্ধন ইলেকট্রন জোড় তিনটি N-পরমাণুর দিকে আকৃষ্ট হয়। ফলে N-পরমাণুর নিউক্লিয়াসে ইলেকট্রনের ঘনত্ব বেশি হওয়ার জন্য NH_3 অণুর N-পরমাণু তার নিঃসঙ্গ ইলেকট্রন জোড়টি সহজেই কোনো ইলেকট্রন জোড় গ্রহীতাকে দান করতে পারে । কিন্তু P-পরমাণুর তড়িৎ ঋণাত্মকতা কম হওয়ায় PH_3 অণুতে তিনটি P-H বন্ধনের বন্ধন ইলেকট্রন জোড় তিনটি পরমাণুর দিকে তেমনভাবে আকৃষ্ট হয় না। ফলে P-পরমাণুর নিউক্লিয়াসে ইলেকট্রনের ঘনত্ব অপেক্ষাকৃত কম হওয়ার জন্য PH_3 অণুর P-পরমাণু তার নিঃসঙ্গ ইলেকট্রন জোড়িট সহজে কোনো ইলেকট্রন গ্রহীতাকে দান করতে পারে না। এজন্য NH_3 এর ক্ষারকীয় ধর্ম, PH_3 অপেক্ষা বেশি।

৩৫) সব লুইস ক্ষারক ব্রনস্টেড ক্ষারক, কিন্তু ব্রনস্টেড অ্যাসিড মাত্রই লুইস এসিড নয় - ব্যাখ্যা কর।

<mark>উ:</mark> লুইস ক্ষারকগুলোতে এক বা একাধিক নিঃসঙ্গ ইলেকট্রন জোড় বর্তমান। এই ক্ষারকগুলো প্রোটন গ্রহণ করতে পারে। আবার, ব্রনস্টেড তত্ত্বানুসারে প্রোটন গ্রহণকারী পদার্থ হল ক্ষারক। সুতরাং, লুইস ক্ষারকগুলো প্রকৃতপক্ষে ব্রনস্টেড ক্ষারক। যেমন - NH_3

$$H_3N: + H^+ \rightleftharpoons NH_4^+$$

কিন্তু ব্রনস্টেড এসিডগুলো প্রোটন (H^+) সৃষ্টি করতে পারলেও প্রত্যেকে ইলেকট্রন জোড় গ্রহণে সক্ষম নাও হতে পারে। যেমন - HCl, HNO_3 তাই ব্রনস্টেড এসিড মাত্রই লুইস এসিড নয় ।

৩৬) অ্যামোনিয়া ক্ষারধর্মী কেন?

উ: অ্যামোনিয়া অণুর N-পরমাণুতে একটি নিঃসঙ্গ ইলেকট্রন জোড় আছে। ঐ নিংসঙ্গ ইলেকট্রন জোড়িটি কোনো এসিডের প্রতিস্থাপনীয় H^+ আয়ন দ্বারা গৃহীত হয়ে NH_4^+ আয়ন গঠিত হয় এবং NH_3 এর নিঃসঙ্গ ইলেকট্রন জোড় পানির H^+ আয়নের সাথে যুক্ত হয়েও NH_4^+ আয়ন গঠনকরে। লুইস তত্ত্ব অনুসারে এভাবে NH_3 অণু তার ইলেকট্রন জোড়িটি কোনো ইলেকট্রন জোড় গ্রহীতাকে দান করতে পারায় NH_3 ক্ষারধর্মী হয়।

$$NH_3 + HCl \rightleftharpoons NH_4^+ Cl^-$$

 $NH_3 + H - OH \rightleftharpoons NH_4^+ OH^-$

□ জ্ঞান ও অনুধাবনের কিছু গুরুত্বপূর্ণ টপিক/প্রশ্ন

জ্ঞানমূলক

कार्यकती मृलक कारक वर्ण?

[রা. বো. '১৯]

উ: জৈব যৌগের অণুস্থিত বিভিন্ন উপাদান মৌলের যে পরমাণু বা মূলক উক্ত যৌগের ধর্ম ও বিক্রিয়া নির্ধারণ করে তাকে ঐ যৌগ শ্রেণির কার্যকরী মূলক বলে।

২) মুক্তমূলক কী?

[ব. বো. '১৯]

উ: সমযোজী সিগমা বন্ধনের সুষম-ভাঙনের উৎপন্ন ফলে বিজোড় ইলেক্ট্রনযুক্ত পরমাণু বা মূলককে মুক্তমূলক বা ফ্রি-রেডিক্যাল বলে।

৩) ফরমালিন কী?

[সি. বো. '১৬]

<mark>উ:</mark> মিথান্যালের (HCHO) 30 — 40% জলীয় দ্রবণই ফরমালিন।

8) ইলেকট্রোফাইল কাকে বলে?

[রা. বো. '১৯]

উ: বিকারক অণুর দ্রাবক অথবা প্রভাবকের দ্বারা বন্ধনের অসম ভাঙ্গন (heterolysis) দ্বারা সৃষ্ট ধনাত্মক মূলককে ইলেকট্রোফাইল (electrophile) বলে।

৫) লুকাস বিকারক কী?

[কু. বো. '১৭]

f ar b: অনার্দ্র $ZnCl_2$ এবং গাঢ় HCl এর মিশ্রণকে লুকাস বিকারক বলে।

৬) কাইরাল কার্বন কী?

[চ. বো. '১৭]

<mark>উ:</mark> কোনো যৌগে একই কার্বন পরমাণুতে চারটি ভিন্ন পরমাণু বা মূলক যুক্ত থাকলে এ কার্বন পরমাণুর সাপেক্ষে যৌগটি অপ্রতিসম হয়ে থাকে, তখন ঐ কার্বনকে কাইরাল কার্বন বলে।

৭) রেসিমিক মিশ্রণ কী?

[চ. বো. '১৭]

উ: দুটি এনানসিওমারের সমমোলার মিশ্রণকে রেসিমিক মিশ্রণ বলে।

৮) IUPAC কী?

উ: IUPAC এর পূর্ণরূপ হলো International Union of Pure and Applied Chemistry অর্থাৎ আন্তর্জাতিক রসায়ন ও ফলিত রসায়ন সংস্থা। এ সংস্থা জৈব যৌগের নামকরণের জন্য একটি উপযোগী বিধিমালা প্রণয়ন করে।

৯) টটোমারিজম কী?

উ: একই আণবিক সংকেত বিশিষ্ট যদি দুটি ভিন্ন কার্যকরী মূলক বিশিষ্ট যৌগের মধ্যে একটি গতিশীল সাম্যাবস্থার সৃষ্টি হয় তবে এ ধরনের সামণুতাকে টটোমারিজম বলা হয়।

জ্ঞানমূলক

১০) এক সমতলীয় আলোক কী?

উ: অসংখ্য সমতলে লম্বভাবে স্পন্দিত একবর্ণী আলোকরশ্মিকে উপযুক্ত ছাকনি বা ফিল্টার-এর ভেতর দিয়ে প্রতিসরিত হতে দিলে শুধুমাত্র একটি তলে লম্বভাবে স্পন্দিত আলোকরশ্মি বের হয়ে আসে। এরূপ স্পন্দিত আলোকে এক সমতলীয় আলোক বলে।

১১) জ্যামিতিক সমাণুতা কাকে বলে?

উ: একই আণবিক সংকেত ও গাঠনিক সংকেত বিশিষ্ট জৈব যৌগের কার্বন-কার্বন বন্ধনের অক্ষ বরাবর মুক্ত আবর্তন সম্ভব না হলে ভিন্ন কনফিগারেশন বা জ্যামিতিক বিন্যাসযুক্ত দু'ধরনের যৌগ উৎপন্ন হয়। এ ধরনের ঘটনাকে জ্যামিতিক সমাণুতা বলে।

১২) সমাণু কাকে বলে?

<mark>উ:</mark> একই আণবিক সংকেত বিশিষ্ট কিন্তু ভিন্ন ভৌত ও রাসায়নিক ধর্ম সম্পন্ন যৌগসমূহকে পরস্পরের সমাণু বলে।

১৩) পাৰ্শ্ব শিকল কী?

উ: পার্শ্ব শিকল হলো সেসব কার্বন শিকল যেগুলো মূল শিকলের শাখা হিসেবে থাকে।

১৪) টটোমার কাকে বলে?

উ: যখন সমাণুগুলো সাধারণ অবস্থায় এক প্রকার কার্যকরীমূলক সম্বলিত কাঠামো থেকে স্বতঃস্ফূর্তভাবে ভিন্ন প্রকার কার্যকরীমূলক সৃষ্টির মাধ্যমে অন্য কাঠামোতে রূপান্তরিত হয় এবং উভয় কাঠামো সাম্যবস্থায় বিরাজ করে, তখন সমাণুগুলোকে একে অপরের টটোমার বলে।

১৫) $CH_3 - CH(CN) - CH = CH - CO - CHO$ এর IUPAC নাম কী?

উ: 6-মিথানোয়িল-2-মিথাইল-5-অক্সো-হেক্স-3-ইন নাইট্রাইল।

১৬) কনফিগারেশন কাকে বলে?

উ: যৌগের অণুতে বিভিন্ন পরমাণু বা গ্রুপ এর এক একটি নির্দিষ্ট ত্রিমাত্রিক বিন্যাস অর্থাৎ স্টেরিও সমাণুর ত্রিমাত্রিক বিন্যাসকে কনফিগারেশন বলে।

১৭) কার্বোক্যাটায়ন কী?

উ: জৈব যৌগের সমযোজী বন্ধনের বিষম বিভাজনের ফলে সৃষ্ট ধনাত্মক আধানযুক্ত কার্বন পরমাণু বিশিষ্ট আয়নই কার্বোক্যাটায়ন।

১৮) হ্যাকেল নীতি কি?

উ: হাকেল নীতিটি হলো— অ্যারোমেটিক যৌগের অণুতে (4n+2) সংখ্যক পাই (π) ইলেকট্রন থাকে। এখানে, n=0,1,2,3... পূর্ণ সংখ্যা। জৈব যৌগের অ্যারোমেটিসিটি এই নিয়ম অনুসরণ করে ব্যাখ্যা করা হয়।

জ্ঞানমূলক

১৯) গাঠনিক সমাণুতা কাকে বলে?

উ: যৌগসমূহের আণবিক গঠনের কাঠামোগত পরিবর্তনের জন্যে যে পরিবর্তনের ধরনের সমাণুতার উদ্ভব হয় তাকে গাঠনিক সমাণুতা বলে।

২০) কার্যকরী মূলক সমাণুতা কাকে বলে?

<mark>উ:</mark> একই আণবিক সংকেত বিশিষ্ট যৌগসমূহের ভিন্ন কার্যকরী মূলকের উপস্থিতির কারণে যে সমাণুতার সৃষ্টি হয় তাকে কার্যকরী মূলক সমাণুতা বলে।

২১) ওজোনীকরণ কী?

উ: সাধারণ তাপমাত্রায় নিচ্ছিয় দ্রাবক (যেমন: CCl_4) এ অ্যালকিন দ্রবীভূত করে উৎপন্ন দ্রবণের মধ্যে ওজোন গ্যাস চালনা করে অ্যালকিনের দ্বিবন্ধনে এক প্রকার অস্থিতিশীল ওজোনাইড নামক যৌগ গঠনের প্রক্রিয়াই হলো ওজোনীকরণ।

২২) ডায়াজোকরণ বিক্রিয়া কী?

উ: যে প্রক্রিয়ায় প্রাইমারি অ্যারোমেটিক অ্যামিনকে $(0-5)^{\circ}$ C নিম্ন তাপমাত্রায় HCl/H_2SO_4 দ্রবীভূত করে, উক্ত দ্রবণে $NaNO_2$ দ্রবণ যোগ করলে ডায়াজোনিয়াম লবণ উৎপন্ন হয়, তা-ই ডায়াজোটাইজেশন বা ডায়াজোকরণ বিক্রিয়া।

২৩) হফম্যান ক্ষুদ্রাংশকরণ বিক্রিয়াটির সংজ্ঞা দাও।

উ: অ্যামাইডের সাথে ব্রোমিন ও পটাশিয়াম হাইড্রোক্সাইড যোগ করে উত্তপ্ত করলে প্রাইমারি অ্যামিন উৎপন্ন হয় এ বিক্রিয়াটি হফম্যান ডিগ্রেডেশন বিক্রিয়া নামে পরিচিত।

২৪) স্যালিসাইলিক এসিডের IUPAC নাম লিখ।

<mark>উ:</mark> স্যালিসাইলিক এসিডের IUPAC নাম 2-হাইড্রোক্সি বেনজয়িক এসিড।

২৫) রেজোন্যান্স শক্তি কী?

উ: প্রকৃত অণুটির অন্তর্নিহিত শক্তির মধ্যে যে পার্থক্য হয় তাকে অণুটির রেজোন্যান্স শক্তি বলে।

২৬) কেন্দ্রাকর্ষী বিকারক কাকে বলে?

<mark>উ:</mark> যে সকল বিকারক বিক্রিয়াকালে ধনাত্মক কেন্দ্র বা নিউক্লিয়াসের প্রতি আকৃষ্ট হয় এবং ইলেকট্রন দান করে তাদেরকে কেন্দ্রাকর্ষী বিকারক বলে।

২৭) বেনজিন চক্রে কয়টি π -ইলেকট্রন আছে?

উ: বেনজিন চক্রে তিনটি π বন্ধনে মোট ছয়টি ইলেকট্রন বিদ্যমান।

জ্ঞানমূলক

২৮) নিজ্ঞিয়কারী মূলক কাকে বলে?

উ: যে সকল মূলক বেনজিন চক্রের ইলেকট্রোফিলিক বিক্রিয়ার সক্রিয়তা হ্রাস করে সেই সকল মূলককে নিষ্ক্রিয়কারী মূলক বলা হয়।

২৯) রেকটিফাইড স্পিরিট কী?

উ: 95.6% ইথাইল অ্যালকোহলই রেকটিফাইড স্পিরিট।

৩০) অ্যারোমেটিক যৌগ কাকে বলে?

উ: যেসব বলয়াকার সমতলীয় জৈব যৌগের অণুতে সঞ্চারণশীল (4n+2) সংখ্যক পাই (π) ইলেকট্রন থাকে, তাদেরকে অ্যারোমেটিক যৌগ বলে।

৩১) সালফোনেশন কাকে বলে?

উ: যে বিক্রিয়ায় অ্যালকাইল বা অ্যারাইলমূলক ধূমায়িত H_2SO_4 এর সাথে 80^0C তাপমাত্রায় বিক্রিয়া করে অ্যালকাইল বা অ্যারাইল মূলক হতে H পরমাণু সালফোনিক এসিডমূলক $(-SO_3H)$ দ্বারা প্রতিস্থাপিত হয়ে অ্যালকাইল/অ্যারাইল সালফোনিক এসিড উৎপন্ন করে তাকে সালফোনেশন বিক্রিয়া বলে।

৩২) অপ্রতিসম অ্যালকিন কাকে বলে?

<mark>উ:</mark> অসম্পৃক্ত হাইড্রোকার্বনের দ্বিবন্ধনযুক্ত কার্বন পরমাণু দুটির সাথে অসম সংখ্যক *H-*পরমাণু যুক্ত থাকলে তাদেরকে অপ্রতিসম অ্যালকিন বলে।

৩৩) ডিকার্বক্সিলেশন কী?

<mark>উ:</mark> যে বিক্রিয়ায় সোডালাইম সহযোগে ফ্যাটি এসিডের সোডিয়াম লবণকে উত্তপ্ত করলে প্যারাফিন উৎপন্ন হয় তাকে ডিকার্বক্সিলেশন বিক্রিয়া বলে।

৩৪) বেনজিনের IUPAC নাম লিখ।

উ: বেনজিনের IUPAC নাম হলো- 1,3,5-সাইক্লোহেক্সাট্রাইন।

৩৫) অ্যালকাইল মূলক কাকে বলে?

উ: সম্পৃক্ত হাইড্রোকার্বন বা অ্যালকেনের অণু থেকে একটি হাইড্রোজেন পরমাণুকে অপসারণ করলে যে একযোজী মূলক অবশিষ্ট থাকে তাকে অ্যালকাইল মূলক বলা হয়।

৩৬) অ্যালডল ঘনীভবন বিক্রিয়া কাকে বলে?

উ: লঘু ক্ষার $(NaOH, Na_2CO_3)$ দ্রবণের উপস্থিতিতে $\alpha-H$ পরমাণু বিশিষ্ট অ্যালডিহাইড বা কিটোনের 2 অণু পরস্পর যুক্ত হয়ে β হাইড্রোক্সি অ্যালডিহাইড বা β -হাইড্রক্সি কিটোন উৎপন্ন করার বিক্রিয়াকেই অ্যালডল ঘনীভবন বিক্রিয়া বলা হয়।

অনুধাবনমূলক

১) C_3H_6O টটোমারিজম প্রদর্শন করে- ব্যাখ্যা করো।

[দি. বো. '১৯]

উ: একই আণবিক সংকেতের দুটি যৌগের পারস্পরিক পরিবর্তনের মাধ্যমে একটি গতিশীল সাম্যাবস্থার সৃষ্টি হলে তাকে উটোমারিজম এবং যৌগ দুটির একটিকে অপরটির উটোমার বলে। C_3H_6O যৌগটি হলো অ্যাসিটোন। অ্যাসিটোনকে (C_3H_6O) সাধারণত কিটোন হিসাবে লেখা হলেও $-CH_3$ এর একটি প্রোটন (H^+) কার্বনিল মূলকের অক্সিজেন পরমাণুতে স্থানান্তরিত হয়ে কার্বন-কার্বন দ্বিবন্ধন (C=C) গঠন করে। এটি একটি চলমান পারস্পরিক প্রক্রিয়া।

২) $-NO_2$ মূলককে মেটা নির্দেশক মূলক বলা হয় কেন?

[ব. বো. '১৯]

উ: নাইট্রো মূলকের ঋণাত্মক মেসোমারিক ফলের প্রভাবে বেনজিন বলয়ের π ইলেকট্রন মেঘ নিজের দিকে টেনে নেয়। তখন বেনজিন বলয়ে অনুরণন নিম্নরূপে ঘটে। ফলে অনুরণন কাঠামো II-IV মতে অর্থো ও প্যারা অবস্থানে ইলেকট্রন ঘনত্ব হ্রাস পায়; অর্থাৎ বেনজিন বলয়টি কিছুটা নিষ্ক্রিয় হয়। তুলনামূলকভাবে মেটা অবস্থানে ইলেকট্রন ঘনত্ব বেশি থাকে। তাই ইলেকট্রোফাইল উক্ত মেটা স্থানে প্রতিস্থাপন ঘটাতে পারে। তাই $-NO_2$ মূলককে মেটা নির্দেশক মূলক বলা হয়।

৩) মিথাইল অ্যামিন অ্যানিলিনের চেয়ে বেশি ক্ষারীয়- ব্যাখ্যা করো।

[দি. বো. '১৯]

উ: অ্যানিলিনের N-পরমাণুর মুক্ত জোড় ইলেকট্রন আংশিকভাবে বেনজিন বলয়ের সঞ্চারণশীল π ইলেকট্রনের সাথে মিলিত হয়। ফলে N-এর মুক্ত ইলেকট্রন জোড় বেনজিন বলয়ের দিকে আকৃষ্ট থাকে। তখন প্রোটনের সাথে N-পরমাণুর মুক্ত ইলেকট্রন যুগলের সন্নিবেশন বন্ধন গঠনের সম্ভাবনা কমে যায়। এ কারণে অ্যানিলিন দুর্বল ক্ষারক। অপরদিকে মিথাইল অ্যামিনে মিথাইল মূলক N-পরমাণুতে ইলেকট্রন ক্ষমতা বৃদ্ধি করে। ফলে মিথাইল অ্যামিনের পানি থেকে প্রোটন গ্রহণের ক্ষমতা বৃদ্ধি পায়। তাই মিথাইল অ্যামিন অ্যানিলিনের চেয়ে বেশি ক্ষারীয়।

অনুধাবনমূলক

8) কক্ষ তাপমাত্রায় ইথেন গ্যাস কিন্তু ইথানল তরল কেন?

চি. বো. '১৭]

উ: ইথেন হলো অ্যালকেন শ্রেণির দ্বিতীয় সদস্য। ইথেন অণুতে কার্বন ও হাইড্রোজেনের মধ্যে তড়িৎ ঋণাত্মকতার তেমন কোনো পার্থক্য নেই বলে ইথেন অণুতে কোনো পোলারিটির উদ্ভব হয় না। এজন্য ইথেন অণুর মধ্যে ডাইপোল-ডাইপোল আকর্ষণ বা হাইড্রোজেন বন্ধন সৃষ্টির কোনো সুযোগ নেই। তাই ইথেন অণুসমূহের মধ্যে আন্তঃআণবিক আকর্ষণ বল থাকে ন্যূনতম। অপরদিকে ইথানলের কার্বন ও অক্সিজেনের মধ্যে তড়িৎ ঋণাত্মকতার পার্থক্য বেশি হওয়ায় ইথানল অণুতে পোলারিটি বা হাইড্রোজেন বন্ধনের সৃষ্টি হয়। তাই ইথানলের অণুসমূহের মধ্যে আন্তঃআণবিক আকর্ষণ বল থাকে স্বাধিক। এ কারণেই কক্ষ তাপমাত্রায় ইথেন গ্যাস কিন্তু ইথানল তরল অবস্থায় বিরাজ করে।

৫) ফ্রিডেল-ক্র্যাফট বিক্রিয়ায় অনার্চ্চ $AlCl_3$ ব্যবহার করা হয় কেন?

[ঢা. বো. '১৯]

উ: ফ্রিডেল ক্রাফটস বিক্রিয়ায় অনার্দ্র লুইস এসিড (অনার্দ্র $FeCl_3$ বা $AlCl_3$) ব্যবহার করা হয়। এটি একটি ইলেকট্রন আকর্ষী প্রতিস্থাপন বিক্রিয়া। তাই উল্লিখিত বিক্রিয়ার কৌশলে সংশ্লিষ্ট ইলেকট্রোফাইল (R^+,RCO^+,X^+) অপরিহার্য। ঐ ইলেকট্রোফাইল উৎপন্ন করার জন্য ইলেকট্রন ঘাটতি অনার্দ্র লুইস এসিড প্রয়োজন। জলীয় $AlCl_3$ ব্যবহার করলে ইলেকট্রন ঘাটতি সম্পন্ন $AlCl_3$ পানির সাথে $Al(OH)_3$ যৌগ গঠন করে। ফলে, এটি ইলেকট্রোফাইল তৈরি করতে পারে না। তাই উপযুক্ত ইলেকট্রোফাইল তৈরির জন্য লুইস এসিড অনার্দ্র বা শুষ্ক হওয়া অপরিহার্য।

৬) রেসিমিক মিশ্রণ আলোক নিষ্ক্রিয়- ব্যাখ্যা করো।

[য. বো. '১৯]

উ: দুটি এনানসিওমার সমাণুর সমতুল বা সম-পরিমাণ মিশ্রণকে রেসিমিক মিশ্রণ বলে। এ ধরনের মিশ্রণ সমবর্তিত আলোর তলকে ঘুরাতে পারে না। মিশ্রণের একটি সমাণু এক সমতলীয় আলোর তলকে যদি এক দিকে ঘুরায় তবে অপর সমাণু আলোর তলকে সমান কোণে বিপরীত দিকে ঘুরায়। মিশ্রণের সমপরিমাণ উপাদানের এরূপ সমান ও বিপরীতমুখী ঘূর্ণনের কারণে ঘূর্ণনিক্রয়া নৃষ্ট হয়। এজন্য রেসিমিক মিশ্রণ আলোক নিষ্ক্রিয় হয়।

৭) উর্টজ বিক্রিয়ায় কেন শুষ্ক ইথার ব্যবহার করা হয়?

[রা. বো. '১৯]

উ: উর্টজ বিক্রিয়ায় অ্যালকাইল হ্যালাইডের সাথে ধাতব সোডিয়ামের বিক্রিয়ায় উচ্চতর অ্যালকেন তৈরি করা হয়। এই বিক্রিয়ায় ব্যবহৃত ধাতব Na অত্যন্ত সক্রিয়। এজন্য এমন একটি দ্রাবক নির্বাচন করা হয় যা ধাতব Na এর সাথে বিক্রিয়া করবে না। তাই বিক্রিয়া মাধ্যম হিসেবে অ্যাপ্রোটিক এবং অপোলার শুষ্ক ইথার ব্যবহার করা হয়।

অনুধাবনমূলক

৮) প্রাইমারি অ্যামিন শনাক্তকরণে কার্বিল অ্যামিন পরীক্ষা লেখো।

[য. বো. '১৭]

উ: ক্লোরোফর্ম ও অ্যালকোহলিয় কস্টিক পটাশ (KOH) দ্রবণের সাথে প্রাইমারি (অ্যালিফেটিক ও অ্যারোমেটিক) অ্যামিনকে উত্তপ্ত করলে তীব্র গন্ধযুক্ত আইসো-সায়ানাইড বা কার্বিল অ্যামিন উৎপন্ন হয়। বিক্রিয়ার সাহায্যে প্রাইমারি অ্যামিনকে সহজেই শনাক্ত করা যায়। এই বিক্রিয়াকে কার্বিল অ্যামিন পরীক্ষা বলা হয়। যেমন-

$$CH_3NH_2+CHCl_3+KOH \longrightarrow CH_3N=C+3KCl+3H_2O$$
মিথাইল ক্লোরোফর্ম মিথাইল কার্বিল অ্যামিন

$$C_6H_5NH_2+CHCl_3+KOH$$
 \longrightarrow $C_6H_5-N=C+3KCl+3H_2O$ ফিনাইল কার্বিল অ্যামিন আমেন

উল্লেখ্য যে, 2^0 অ্যামিন ও 3^0 অ্যামিনসমূহ কার্বিল অ্যামিন বিক্রিয়া প্রদর্শন করে না।

৯) অ্যালকাইন-1 অম্লধর্মী কিন্তু অ্যালকাইন-2 অম্লধর্মী নয় কেন?

[রা. বো. '১৯]

উ: অ্যালকাইন-2 ও অ্যালকাইন-1 এর সংকেত যথাক্রমে

$$CH_3 - C \equiv C - CH_3 \le CH_3 - CH_2 - C \equiv CH$$

সংকেত হতে দেখা যায় অ্যালকাইন-1 এ ১ম ও ২য় কার্বন ত্রিবন্ধন দ্বারা আবদ্ধ। ফলে বন্ধন শক্তি অনেক বেশি। পাশাপাশি ১ম কার্বন হাইড্রোজেনের সাথে অপেক্ষাকৃত দুর্বল বন্ধন তৈরি করে। ফলে ক্ষারে বা ধাতুর উপস্থিতিতে অ্যালকাইন-1 সহজে হাইড্রোজেন দান করে।

$$R - C \equiv C - H \rightarrow C \equiv C^- + H^+$$

যেহেতু অ্যালকাইন-1 প্রোটন দান করে সেহেতু এটি অস্লীয়। পক্ষান্তরে $CH_3-C\equiv C-CH_3$ যৌগে এরূপ ঘটে না। এ যৌগে ত্রিবন্ধন প্রান্ত থাকেনা। ফলে প্রান্তিক C থেকে H অপসারিত হয় না। এজন্য এটি অস্লধর্মী নয়।

১০) গ্রিগনার্ড বিকারক বলতে কী বুঝ?

[দি. বো. '১৫]

উ: অ্যালকাইল কিংবা অ্যারাইল ম্যাগনেসিয়াম হ্যালাইডকে গ্রিগনার্ড বিকারক বলে। হ্যালোজেনো অ্যালকেন কিংবা হ্যালোজেনো অ্যারিনসমূহ শুষ্ক ইথারীয় মাধ্যমে ম্যাগনেসিয়াম ধাতুর গুঁড়ার সাথে বিক্রিয়া করে গ্রিগনার্ড বিকারক উৎপন্ন করে। যেমন-

$$CH_3Cl + Mg$$
 শুষ্ক ইথার CH_3MgCl

অনুধাবনমূলক

১১) ল্যাকটিক এসিড আলোক সমাণুক-ব্যাখ্যা করো।

[রা. বো. '১৭]

<mark>উ:</mark> ল্যাকটিক এসিড [CH₃CH(OH)COOH] একটি আলোক সক্রিয় যৌগ। এর দুটি আলোক সক্রিয় সমাণু আছে। তাদের একটিকে d-ল্যাকটিক এসিড ও অপরটিকে l-ল্যাকটিক এসিড বলে। এদের দুটি দর্পণ প্রতিবিম্বের মত ভিন্ন কনফিগারেশন হলো নিম্নরূপ-

ল্যাকটিক এসিডের কনফিগারেশন থেকে দেখা যাচ্ছে যে, ল্যাকটিক এসিডে অপ্রতিসম কার্বন পরমাণু বা কাইরাল কেন্দ্র বিদ্যমান। উভয় সমাণুর কফিগারেশন পরস্পরের দর্পণ প্রতিবিম্ব এবং উভয় কনফিগারেশন অসমাপতিত হয়।

১২) ন্যাপথালিন একটি অ্যারোমেটিক যৌগ – ব্যাখ্যা করো।

[য. বো. '১৯]

উ: যে সকল যৌগ হাকেল নিয়ম বা (4n+2) সংখ্যক সঞ্চরণশীল π ইলেকট্রন নিয়ম মেনে চলে তাদেরকে অ্যারোমেটিক যৌগ বলা হয়। যেখানে, n হবে বলয় সংখ্যা। এখানে ন্যাপথালিন যৌগে দুটি বলয় আছে, সুতরাং n=2। অর্থাৎ হাকেল নিয়ম অনুসারে $(4\times 2+2)=10$ টি π -ইলেকট্রন থাকবে। আবার দেখা যায়, যৌগটিতে 5টি দ্বিবন্ধন বিদ্যমান সুতরাং এতে 10টি π -ইলেকট্রন বিদ্যমান। সুতরাং ন্যাপথালিন যৌগটি একটি অ্যারোমেটিক যৌগ।

১৩) অ্যালকোহল পানিতে দ্রবণীয়-ব্যাখ্যা করো।

[সকল বোর্ড '১৮]

উ: কম ভরের অ্যালকোহল যেমন- মিথানল, ইথানল পানিতে দ্রবীভূত হয়। কারণ অ্যালকোহলের অণুর কাঠামো হতে দেখা যায় যে, এর অণুতে -OH মূলক বর্তমান। -OH মূলকের O-পরমাণু অধিক তড়িৎ ঋণাত্মক। ফলে বন্ধন ইলেকট্রন নিজের দিকে টেনে নেয়। ফলে আংশিক ধনাত্মক ও আংশিক ঋণাত্মক পোল তথা পোলারিটির সৃষ্টি হয়।

H-বন্ধনের কারণে সৃষ্ট আকর্ষণ বল অ্যালকোহলের অণুগুলোকে পানিতে দ্রবীভূত করতে মূখ্য ভূমিকা পালন করে।

১৪) "অ্যালকাইন-1 অম্লীয়"- ব্যাখ্যা করো।

[চ. বো. '১৭]

উ: অ্যালকাইন-। $(RC \equiv CH)$ অম্লধর্মী। এর কারণ অ্যালকাইন-। অণুর C পরমাণু sp সংকরিত। এ সংকর অরবিটালে s ও p এর অনুপাত 1:1। ক্ষুদ্রাকৃতি s অরবিটাল এর অনুপাত তুলনামূলকভাবে বেশি হওয়ায় অ্যালকাইন-। এর C-H বন্ধনের শেয়ারকৃত ইলেকট্রন যুগল C পরমাণুর নিউক্লিয়াসের অধিকতর কাছে দৃঢ়ভাবে যুক্ত থাকে। তাই দূরে অবস্থিত H পরমাণুটির বন্ধন শিথিল হয়ে যায়। ফলে বন্ধনটি ভেঙে H পরমাণু H^+ আয়ন হিসেবে বিচ্যুত হয়। এজন্যই অ্যালকাইন-। অম্লধর্মী হয়।

অনুধাবনমূলক

১৫) HCOOH অপেক্ষা CH3COOH দুর্বল এসিড কেন?

[চ. বো. '১৭]

উ: ${
m HCOOH}$ এসিডে কার্বক্সিল মূলকের সাথে ${
m H}$ পরমাণু এবং ${
m CH_3COOH}$ এসিডে কার্বক্সিল মূলকের সাথে মিথাইল $(-CH_3)$ মূলক যুক্ত আছে। ${
m CH_3COOH}$ এসিডে কার্বক্সিল মূলকের সাথে ধনাত্মক আবেশধর্মী মিথাইল মূলক থাকায় কার্বক্সিল মূলকের কার্বন পরমাণুস্থিত আংশিক ধনাত্মক চার্জ হ্রাস পায়, ফলে -OH মূলকের আয়নীকরণও হ্রাস পায়। ${
m cooh}$ এসিডের বিয়োজন ধ্রুবক K_a এর মান থেকে উভয়ের অম্লত্মের তুলনা করা যায়। ${
m CH_3COOH}$ এসিডের K_a এর মান ${
m 1.8} \times {
m 10^{-5}}$, ${
m HCOOH}$ এসিডের ${
m 1.8} \times {
m 10^{-4}}$ চেয়ে কম হওয়ায় ${
m CH_3COOH}$ এসিড ${
m HCOOH}$ এসিডের চেয়ে দুর্বল এসিড।

১৬) অ্যালিফেটিক $\mathbf{1}^0$ অ্যামিন ক্ষারক কেন? ব্যাখ্যা করো।

[সি. বো. '১৯]

উ: অ্যালিফেটিক 1^0 অ্যামিন, যেমন: মিথাইল অ্যামিন (CH_3NH_2) অণুর N পরমাণুতে নিঃসঙ্গ ইলেকট্রন যুগল থাকায় প্রোটন গ্রহণ করতে পারে। তাই এটি ক্ষারক। জলীয় দ্রবণে CH_3NH_2 পানির সাথে উভমুখী বিক্রিয়ায় পানি থেকে প্রোটন গ্রহণ করে ঋণাত্মক OH^- আয়ন ও মিথাইল অ্যামেনিয়াম আয়ন $(CH_3NH_3^+)$ উৎপন্ন করে।

$$H$$
 H H $H_3C-N:+H-OH \Rightarrow H_3C-N-H+OH^ H$ মিথাইল অ্যামিন মিথাইল অ্যামোনিয়াম আয়ন

উৎপন্ন মিথাইল অ্যামোনিয়াম আয়নের ধনাত্মক চার্জ নাইট্রোজেন পরমাণু ও একটি কার্বন পরমাণু শোয়ার করে থাকে। ধনাত্মক চার্জের বিস্তরণের ফলে তুলনামূলকভাবে ইথাইল অ্যামোনিয়াম আয়ন অধিক সুস্থিত হয়। CH_3NH_2 ও পানির বিক্রিয়ার ক্ষেত্রে OH^- আয়নের পরিমাণ বৃদ্ধ পায় অর্থাৎ এর আয়নীকরণ ধ্রুবক K_b এর মান বেড়ে $K_b=4.4\times 10^{-4}$ এবং

 $pK_b = 3.36$ হয়।

এ কারণে অ্যালিফেটিক 1^0 অ্যামিন হলো ক্ষারক।

১৭) HSO_4^- একটি অ্যান্ফিপ্রোটিক আয়ন কেনো?

উ: প্রোটনীয় মতবাদ অনুসারে যে সব অণু বা আয়ন অবস্থানভেদে প্রোটন দাতা ও গ্রহীতা উভয় প্রকার আচরণ করে তাদেরকে উভধর্মী পদার্থ বলে। HSO_4^- একটি উভধর্মী পদার্থ। কারণ এটি অবস্থানভেদে প্রোটন দাতা ও গ্রহীতা উভয় হিসেবে আচরণ করে।

প্রোটন দাতা : $HSO_4^- + OH^- \rightleftharpoons SO_4^{\ 2^-} + H_2O$ প্রোটন গ্রহীতা : $HSO_4^- + H_2O \rightleftharpoons H_2SO_4 + OH^-$

অনুধাবনমূলক

১৮) অ্যালকেনের সাধারণ প্রস্তুত প্রণালী কী?

উ: ফ্যাটি এসিডের সোডিয়াম লবণের সাথে সোডালাইম যোগ করে মান যতো বেশী, পানিতে পচনশীল জৈর দূষকের পরিমাণ ততো বেশী। উত্তপ্ত করলে লবণটি বিয়োজিত হয়ে অ্যালকেন উৎপন্ন করে। এটিই অ্যালকেনের সাধারণ প্রস্তুত প্রণালী।

১৯) ল্যাকটিক এসিড আলোক সমাণুতা প্রদর্শন করে কেন?

উ: ল্যাকটিক এসিডের গাঠনিক সংকেত হলো-

$$COOH$$
 $H - C^* - OH$
 CH_3
 $* =$ কাইরাল কার্বন

ল্যাকটিক এসিডের কেন্দ্রীয় কার্বন পরমাণুটি অপ্রতিসম কার্বন আর অপ্রতিসম কার্বনযুক্ত জৈব যৌগ আলোক সমাণুতা প্রদর্শন করে।

d-সমানুটি একবর্ণী এক সমতলীয় আলোকে ডানদিকে ঘুরায় এবং l-সমাণুটি একবর্ণী এক সমতলীয় আলোকে বাম দিকে ঘুরায়। সূতরাং ল্যাকটিক এসিড আলোক সমাণুতা প্রদর্শন করে।

২০) সাইজেফ সূত্রটি সমীকরণসহ ব্যাখ্যা করো।

উ: হ্যালোজেনো অ্যালকেন থেকে HX অপসারনের বেলায় যে কার্বনে কম সংখ্যক β হাইড্রোজেন থাকে সেই কার্বন থেকে H পরমাণু α -কার্বনের X সহ HX রূপে অপসারিত হয়ে অ্যালকিন উৎপন্ন করে। যেমন:

$$CH_{3} - CH_{2} - \overset{\alpha}{CH} - \overset{\beta}{CH_{3}} \xrightarrow{KOH \ (alc)} CH_{3} - CH = CH - CH_{3} + HBr$$

$$Br$$

অনুধাবনমূলক

২১) জ্যামিতিক সমাণুতার শর্ত ব্যাখ্যা করো।

উ: জ্যামিতিক সমাণুতার শর্ত:

- কার্বন-কার্বন বন্ধনের মুক্ত ঘূর্ণন রহিত হতে হবে।
- দ্বি-বন্ধন যুক্ত অথবা চাক্রিক যৌগ হতে হবে।
- C = C অণুতে $a \neq b$ হতে হবে । উদাহরণ : $CH_3 CH = CH CH_3$ জ্যামিতিক সমাণু দিবে ।
- lacksquare $C = C igg|_{d}^{a}$ অণুতে $a \neq b, b \neq d$ হতে হবে। উদাহরণ: $CH_3 CH = CH Cl$ জ্যামিতিক সমাণু দিবে।

২২) প্রোপাইনের অম্লধর্মীতা ব্যাখ্যা করো।

উ: প্রোপাইন $(CH_3-C\equiv CH)$ অম্লধর্মী। এর কারণ প্রোপাইন অণুর C পরমাণু sp সংকরিত। এ সংকর অরবিটালে s ও p এর অনুপাত 1:1। ক্ষুদ্রাকৃতি s অরবিটাল এর অনুপাত তুলনামূলকভাবে বেশি হওয়ায় প্রোপাইন C-H বন্ধনের শেয়ারকৃত ইলেকট্রন যুগল C পরমাণুর নিউক্লিয়াসের অধিকতর কাছে দৃঢ়ভাবে যুক্ত থাকে। তাই দূরে অবস্থিত H পরমাণুটির বন্ধন শিথিল হয়ে যায়। ফলে বন্ধনটি ভেঙে H পরমাণু H^+ আয়ন হিসেবে বিচ্যুত হয়। এজন্যই প্রোপাইন অম্লধর্মী হয়।

২৩) 1^0 অপেক্ষা 2^0 কার্বানায়ন স্বল্পস্থায়ী কেন?

উ: ঋণাত্মক চার্জযুক্ত কার্বন পরমাণু সংবলিত জৈব আয়নকে কার্বানায়ন বলে। ঋণাত্মক আধানযুক্ত কার্বনের সাথে একটি অ্যালকাইল মূলক যুক্ত থাকলে তাকে 1^0 কার্বানায়ন বলে। অপরদিকে দুটি অ্যালকাইল মূলক যুক্ত থাকলে তাকে 2^0 কার্বানায়ন বলে। আবেশীয় প্রভাবযুক্ত অ্যালকাইল গ্রুপ কার্বানায়নের স্থায়িত্ব হ্রাস করে। অ্যালকাইল গ্রুপের

আবেশীয় প্রভাবযুক্ত অ্যালকাইল গ্রুপ কার্বানায়নের স্থায়িত্ব হ্রাস করে। অ্যালকাইল গ্রুপের আবেশীয় প্রভাবের কারণে কার্বানায়নের ঋণাত্মক আধানযুক্ত কার্বনের ইলেকট্রনের ঘনত্ব অধিকমাত্রায় বেড়ে যায়। ফলে কার্বানায়নের স্থায়িত্বের হ্রাস ঘটে। সুতরাং কার্বানায়নের কার্বন পরমাণুর সাথে যত অধিক সংখ্যক অ্যালকাইল মূলক (R) যুক্ত থাকবে ততই ঐ কার্বানায়নের স্থায়িত্ব কমে যাবে। 2^0 কার্বানায়নে দুইটি ইলেকট্রন বিকর্ষীমূলক $(-CH_3)$ এবং 1^0 কার্বানায়নে থকটি $(-CH_3)$ মূলক যুক্ত থাকে। তাই 1^0 অপেক্ষা 2^0 কার্বানায়ন স্বল্পস্থায়ী।

অনুধাবনমূলক

২৪) কার্বক্সিলিক এসিডসমূহ অম্লধর্মীতা প্রদর্শন করে কেন?

উ: কার্বক্সিলিক এসিডসমূহের সাধারণ সংকেত RCOOH যার কার্যকরীমূলক
— COOH. RCOOH দ্রবণে নিম্নরূপে বিয়োজিত হয় ।

$$RCOOH \rightarrow RCOO^- + H^+$$

সুতরাং কার্বক্সিলিক এসিড দ্রবণে H^+ দান করে যার ফলে এটি অম্লধর্মী হয়। RCOOH আংশিক বিয়োজিত হয় বলে এদের অম্লধর্মীতা মৃদু হয়। যার দ্রবণ নীল লিটমাসকে লাল করে।

২৫) মার্কনিকভ নীতি ব্যাখ্যা করো।

উ: অপ্রতিসম, অসম্পৃক্ত যৌগের সাথে অপ্রতিসম বিকারকের যুত বিক্রিয়ায় বিকারক অণুর ঋণাত্মক অংশ সাধারণত অসম্পৃক্ত যৌগের π (পাই) বন্ধনযুক্ত যে কার্বনে কম সংখ্যক হাইড্রোজেন প্রমাণু আছে সেটিতে যুক্ত হয়। এটিকেই মার্কনিকভ নীতি বলা হয়

যেমন : প্রোপিনের সাথে HBr এর বিক্রিয়ায় প্রধান উৎপাদ হবে iso-প্রোপাইল ব্রোমাইড।

২৬) $CH_3-CH=CH_2$ যৌগটি জ্যামিতিক সমাণুতা প্রদর্শন করবে কিনা যুক্তি দাও।

উ: $CH_3 - CH = CH_2$ যৌগটি জ্যামিতিক সমাণুতা প্রদর্শন করবে না। কারণ-

$$CH_3$$
 $C = C$ একই গ্ৰুপ

যৌগটিতে গাঠনিক সংকেত দেখে বোঝা যায় যে, C_1 কার্বনের সাথে একই গ্রুপ বিদ্যমান অর্থাৎ দুইটি H পরমাণু C_1 কার্বনের সঙ্গে যুক্ত। তাই এটি জ্যামিতিক সমাণু প্রদর্শন করবে না।

২৭) গ্রিগনার্ড বিকারক থেকে কীভাবে মিথেন পাবে?

উ: গ্রিগনার্ড বিকারক থেকে হাইড্রোকার্বন সংশ্লেষণ করা যায়। মিথাইল ম্যাগনেসিয়াম ক্লোরাইড CH_3MgCl হলো একটি গ্রিগনার্ড বিকারক। একে পানির উপস্থিতিতে হাইড্রোলাইসিস করলে মিথেন প্রস্তুত হয়।

$$CH_3MgCl + H - OH \rightarrow CH_4 + Mg(OH)Cl$$

মিথেন

অনুধাবনমূলক

২৮) অ্যাসিটিলিন অম্লধর্মী- ব্যাখ্যা করো।

<mark>উ:</mark> প্রান্তীয় অ্যালকাইনের ত্রি-বন্ধনযুক্ত কার্বন পরমাণুর সাথে যুক্ত H-পরমাণু সামান্য অস্লধর্মী হয়। অ্যাসিটিলিন ($H-C\equiv C-H$) এ $-C\equiv C-H$ মূলক থাকে বলে অ্যাসিটিলিন মৃদু অস্লধর্ম প্রকাশ করে।

এ জন্য সোডিয়াম ধাতু, অ্যামোনিয়া মিশ্রিত $AgNO_3$ দ্রবণ এবং অ্যামোনিয়া মিশ্রিত কিউপ্রাস ক্লোরাইড দ্রবণের সঙ্গে অ্যাসিটিলিন এর বিক্রিয়ায় ধাতব লবণ বা ধাতব অ্যালকাইনাইড উৎপন্ন হয়।

 $H - C \equiv C - H + 2Na \xrightarrow{NH_3} NaC \equiv CNa + H_2$

২৯) CH_3COCl যৌগটি হ্যালোফর্ম বিক্রিয়া দেয় না কেনো?

উ: হ্যালোফরম বিক্রিয়ার প্রধান শর্ত হলো- (1) জৈব যৌগটি CH_3CO- মূলকযুক্ত কার্বনিল যৌগ হবে অথবা হ্যালোজেন দ্বারা জারণযোগ্য অ্যালকোহলটি জারণের পর CH_3CO- মূলকযুক্ত কার্বনিল যৌগ সৃষ্টি করবে।

(2) CH_3CO- মূলকটি H পরমাণু অথবা অ্যালকাইল মূলক (যেমন $-CH_3$) অথবা অ্যারাইল মূলক (যেমন $-C_6H_5$) এর সাথে যুক্ত থাকবে।

কিন্তু, CH_3COCl যৌগে CH_3CO- মূলকটি H পরমাণু বা অ্যালকাইল মূলকের সাথে যুক্ত হয়নি। তাই CH_3CO-Cl প্রকৃত কার্বনিল যৌগ নয়। এটি হলো কার্বক্সিলিক এসিডের জাতক। কার্বক্সিলিক এসিড ও এর জাতকসমূহ হ্যালোফর্ম বিক্রিয়ার প্রধান শর্তটি পূরণ করে না। এই কারণে CH_3COCl হ্যালোফর্ম বিক্রিয়া দেয় না।

৩০) অ্যানিলিনকে নাইট্রেশন করলে মেটা উৎপাদন পাওয়া যায় কেনো?

উ: অ্যানিলিনের $-NH_2$, গ্রুপ অর্থো-প্যারা নির্দেশক হলেও অ্যানিলিনের নাইট্রেশন মেটা অবস্থানে ঘটে। কারণ নাইট্রেশনের সময় গাঢ় HNO_3 অ্যানিলিনের সাথে বিক্রিয়া করে অ্যানিলিনিয়াম আয়ন $[C_6H_5-NH_3^+]$ উৎপন্ন করে। উৎপন্ন অ্যানিলিনিয়াম আয়ন মেটা নির্দেশক বলে পরবর্তীতে যখন নাইট্রেশন ঘটে তা মেটা অবস্থানে ঘটে এবং মেটা নাইট্রোঅ্যানিলিন উৎপন্ন হয়।

$$NH_2$$
 NH_3 NH_2 NH_2 NH_3 NH_2 NH_3 NH_2 NH_3 NH_2 NH_3 NH_4 NH_2 NH_2 NH_3 NH_4 NH_2 NH_4 NH_5 NH_5 NH_6 NH_6 NH_6 NH_6 NH_6 NH_7 NH_8 NH_8 NH_8 NH_9 NH_9

অনুধাবনমূলক

৩১) কীভাবে কার্বানায়ন সৃষ্টি হয়?

<mark>উ:</mark> কোনো সমযোজী জৈব পদার্থের অণুতে সমযোজী বন্ধনের বিষম ভাঙ্গনের ফলে সৃষ্ট ঋণাত্মক চার্জযুক্ত কার্বন পরমাণু বিশিষ্ট আয়নকে কার্বানায়ন বলে।

কোনো জৈব অণুতে কার্বনের সঙ্গে বন্ধনযুক্ত কোন পরমাণুর তড়িৎ ধনাত্মকতা কার্বন অপেক্ষা যথেষ্ট বেশি হলে বন্ধন গঠনকারী ইলেকট্রন যুগল কার্বন পরমাণুতে স্থানান্তরিত হয় এবং বন্ধনের বিষম বিভাজন ঘটে। ফলে কার্বন পরমাণুতে ঋণাত্মক চার্জযুক্ত কার্বানায়ন সৃষ্টি হয়। যেমন-

$$CH_3 - C \equiv CNa \rightarrow CH_3 - C \equiv C^- + Na^+$$
 কার্বনায়ন

৩২) মিথাইল অ্যামিন ও অ্যানিলিনের মধ্যে কোনটি অধিকতর ক্ষার ধর্মী? ব্যাখ্যা কর।

উ: অ্যানিলিনের N -পরমাণুর নিঃসঙ্গ ইলেকট্রন যুগল আংশিকভাবে বেনজিন বলয়ের সঞ্চারণশীল π ইলেকট্রনের সাথে মিলিত হয়। ফলে N এর নিঃসঙ্গ ইলেকট্রন জোড় বেনজিন বলয়ের দিকে আকৃষ্ট থাকে। তখন প্রোটনের সাথে N-পরমাণুর নিঃসঙ্গ ইলেকট্রন যুগলের সন্ধিবেশন বন্ধন গঠনের সম্ভাবনা কমে যায়। এ কারণে অ্যানিলিন দুর্বল ক্ষারক। অপরদিকে মিথাইল অ্যামিনে মিথাইল মূলক N-পরমাণুতে ইলেকট্রন ঘনতু বৃদ্ধি করে। ফলে মিথাইল অ্যামিনের পানি থেকে প্রোটন গ্রহণের ক্ষমতা বৃদ্ধি পায়। তাই মিথাইল অ্যামিন অ্যানিলিনের চেয়ে বেশি ক্ষারীয়।

৩৩) অ্যালডল ঘনীভবন বিক্রিয়া ব্যাখ্যা করো।

উ: লঘু ক্ষারের উপস্থিতিতে α -কার্বন পরমাণুতে হাইড্রোজেন বিশিষ্ট অ্যালডিহাইড বা কিটোনের দুটি অণুর পরস্পর সংযোগে যে হাইড্রোক্সিকার্বনিল যৌগ উৎপন্ন হয় তাকে অ্যালডল ঘনীভবন বলে। যে বিক্রিয়ায় অ্যালডল গঠিত হয় তাকে অ্যালডল ঘনীভবন বিক্রিয়া বলে। যেমন:

অনুধাবনমূলক

৩৪) বেয়ারের (Bayer's test) পরীক্ষা কেন করা হয়?

<mark>উ:</mark> বেয়ারের পরীক্ষার মাধ্যমে কোনো যৌগে অসম্পৃক্ততা, অর্থাৎ কার্বন-কার্বন দ্বি-বন্ধন (বা ত্রিবন্ধন) আছে কিনা বোঝা যায়।

 $KMnO_4$ এর শীতল ও লঘু (1-2%) ক্ষারীয় দ্রবণের মধ্যে ইথিলিন গ্যাস চালনা করলে পারম্যাঙ্গানেটের লালচে-বেগুনি বর্ণের দ্রবণ বর্ণহীন হয়। ইথিন জারিত হয়ে বর্ণহীন ইথিলিন গ্লাইকলে পরিণত হয়।

$$CH_2 = CH_2 + H_2O + [O] \frac{\text{লঘু ক্ষারীয়}}{KMnO_4} \text{ দ্রবণ } CH_2 - CH_2 OH OH OH হিথিলিন গ্লাইকল (বর্ণহীন)$$

৩৫) আবেশীয় ফল ও হাইপারকনজুগেশনের পার্থক্য লিখ।

উ: নিম্নে আবেশীয় ফল ও হাইপারকন জুগেশনের পার্থক্য দেয়া হলো-

	আবেশীয় ফল	হাইপারকনজুগেশন
i.	সিগমা বন্ধনের মধ্যদিয়ে ইলেকট্রনের সঞ্চারণকে আবেশীয় ফল বলে।	সিগমা বন্ধনের ইলেকট্রন যদি বন্ধন ভেঙ্গে স্থানান্তরিত হয়, তখন তাকে হাইপারকনজুগেশন বলে।
ii.	ধণাত্মক (+I) ঋণাত্মক (-I) এই দুই প্রকারের আবেশীয় ফল হতে পারে।	কার্বোক্যাটায়নের স্থিতিশীলতার জন্য এক ধরনেরই হাইপারকনজুগেশন বিদ্যমান।
iii.	সিগমা বন্ধনের মধ্য দিয়ে ঘটে।	বন্ধনবিহীন মুক্ত অবস্থানের মধ্য দিয়ে ঘটে।

অনুধাবনমূলক

৩৬) মিথান্যাল ক্যানিজারো বিক্রিয়া দিলেও ইথান্যাল দেয় না কেন?

উ: ক্যানিজারো বিক্রিয়ার শর্ত হলো যে সমস্ত অ্যালডিহাইডে lpha-হাইড্রোজেন নেই, তারাই শুধুমাত্র ক্যানিজারো বিক্রিয়া প্রদর্শনে সক্ষম। যেমন:

$$H-CHO+H-CHO$$
 $CH_3-OH+H-COONa$ ফরমালডিহাইড বা মিথানল সোডিয়াম মিথানালে মিথানোয়েট

এ কারণেই মিথান্যাল ক্যানিজারো বিক্রিয়া প্রদর্শন করে। কিন্তু ইথান্যাল (CH_3-CHO) ক্যানিজারো বিক্রিয়া প্রদর্শন করে না।

৩৭) আলোক সমাণুতার শর্তসমূহ ব্যাখ্যা করো।

উ: একই ভৌত ও রাসায়নিক ধর্ম সম্পন্ন যে সকল জৈব যৌগের আণবিক ও গাঠনিক সংকেত অভিন্ন, কিন্তু তল সমাবর্তিত আলোর প্রতি ভিন্ন আচূরণ প্রদর্শন করে, তাদেরকে আলোক সমানু বলে। আলোক সমানুতার শর্তগুলো হলো:

- i. অপ্রতিসম বা কাইরাল কার্বন থাকতে হবে।
- ii. উভয় সমাণুর কনফিগারেশন পরস্পরের দর্পণ প্রতিবিম্ব হতে হবে।
- iii. তল সমাবর্তিত আলোর তলকে ডানে বা বামে ঘুরাতে সক্ষম হতে হবে।

৩৮) বেনজিনকে অ্যারোমেটিক যৌগ বলা হয় কেন?

উ: যে সকল যৌগ অ্যারোমেটিসিটি অর্থাৎ হাকেল তত্ত্ব মেনে চলে তাদেরকে অ্যারোমেটিক যৌগ বলে। হাকেল তত্ত্ব মতে যেসব বলয়াকার সমতলীয় জৈব যৌগের অণুতে সঞ্চারণশীল (4n+2)সংখ্যক পাই (π) ইলেকট্রন থাকে তাদেরকে অ্যারোমেটিক যৌগ বলে।

- i. বেনজিনের গঠন চ্যাপ্টা সমতলীয় চাক্রিক এবং বলয় গঠনকারী পরমাণুর সংখ্যা 6।
- ii. বলয় গঠনকারী প্রতিটি পরমাণুতে p-অরবিটাল আছে। আণবিক অরবিটালে সঞ্চারণশীল ইলেকট্রন সংখ্যা 6 যা $[4n+2=4\times 1+2=6$ (যখন n=1)] হাকেল তত্ত্বকে অনুসরণ করে।

একারণে বেনজিন একটি অ্যারোমেটিক যৌগ।

অনুধাবনমূলক

৩৯) প্রোপিন ও প্রোপাইনের মধ্যে কীভাবে পার্থক্যকরণ করবে- ব্যাখ্যা কর।

উ: প্রোপিন এবং প্রোপাইনের পার্থক্যকরণের দুটি বিক্রিয়া দেওয়া হলো:

i. **অ্যামোনিয়া মিশ্রিত** $AgNO_3$ দ্বেণ পরীক্ষা: প্রোপাইন, অ্যামোনিয়া মিশ্রিত $AgNO_3$ দ্বেণসহ বিক্রিয়ায় সিলভার প্রোপানাইডের সাদা অধঃক্ষেপ দেয়। কিন্তু প্রোপিন এ বিক্রিয়া দেয় না।

$$CH_3C \equiv CH + Ag(NH_3)_2NO_3 \rightarrow CH_3C \equiv C.Ag(s)$$

প্রোপাইন

ii. অ্যামোনিয়া মিশ্রিত কিউপ্রাস ক্লোরাইড দ্রবণ পরীক্ষা: প্রোপাইন অ্যামোনিয়া মিশ্রিত কিউপ্রাস ক্লোরাইড দ্রবণসহ বিক্রিয়ায় কপার প্রোপানাইডের লাল অধঃক্ষেপ দেয়। কিন্তু প্রোপিন বিক্রিয়া দেয় না।

$$CH_3C\equiv CH+Cu(NH_3)_2Cl\rightarrow CH_3C\equiv C.Cu(s)+NH_4Cl+NH_3$$
 প্রোপাইন লাল অধঃক্ষেপ

৪০) চাক্রিক যৌগে কীভাবে জ্যামিতিক সমাণুতা সৃষ্টি হয়?

উ: চাক্রিক যৌগে জ্যামিতিক সমাণুতা দেখা যায়। চাক্রিক যৌগের বেলায় অণুর ত্রিমাত্রিক কাঠামোতে অভিন্ন পরমাণু বা মূলকগুলো এক পাশে থাকলে সিস্ এবং বিপরীত পাশে থাকলে ট্রান্স সমাণু গঠিত হয়। যেমন: 1,2-ডাই মিথাইল সাইক্লোপ্রোপেনের দুটি জ্যামিতিক সমাণু সম্ভব।

8১) মিথেনকে প্রোপেনের সমগোত্রক বলা হয় কেন?

উ: মিথেনকে (CH_4) প্রোপেনের (C_3H_8) সমগোত্রক বলার কারণ নিম্নরূপ-

- i. এদের সাধারণ সংকেত $\mathcal{C}_n H_{2n+2}$ দ্বারা প্রকাশ করা যায়।
- ii. এদের কার্যকরী মূলক একই হওয়ায় এরা একই ধরনের রাসায়নিক ধর্ম প্রকাশ করে।
- iii. এদের একই সাধারণ পদ্ধতির সাহায্যে প্রস্তুত করা যায়

অনুধাবনমূলক

৪২) জ্যামিতিক সমাণুসমূহ কি কি ধর্ম প্রদর্শন করে?

<mark>উ:</mark> জ্যামিতিক সমাণু দুটি - সিস্ সমাণু এবং ট্রান্স সমাণু। এ সমাণুদ্বয় কিছু সাধারণ ধর্ম প্রদর্শন করে। ধর্মসমূহ হলো-

- ১. ট্রান্স-সমাণুর চেয়ে সিস-সমাণুর গলনাঙ্ক কম।
- ২. সিস্-সমাণুর সুস্থিতি কম (অভ্যন্তরীণ শক্তি বেশি), সেজন্য সিস সমাণুর দহন তাপ বেশি।
- ৩. ট্রান্স-সমাণুর চেয়ে সিস সমাণুর দ্রাব্যতা, প্রতিসরাঙ্ক বেশি হয়।

৪৩) অ্যারোমেটিকত্ব বলতে কী বুঝ?

উ: অ্যারোমেটিকত্ব বলতে সুষম ষড়ভুজাকার চাক্রিক ও সমতলীয় যৌগে হাকেল নিয়ম ভিত্তিক সঞ্চারণশীল (4n+2) সংখ্যক π ইলেকট্রনের বিদ্যমান থাকা বুঝায়। সঞ্চরণশীল π ইলেকট্রনের কারণে অ্যারোমেটিক যৌগে নিম্নোক্ত ধর্ম প্রকাশ পায়। যেমন-

- i . বিশেষ ধরনের অসম্পুক্ততা
- ii. প্রতিস্থাপন বিক্রিয়া
- iii. বিশেষ স্থায়িত্ব
- iv. অনুরণন

88) ব্যাখ্যা করো বেনজিন ইথাইনের পলিমার।

উ: বেনজিন, ইথাইনের পলিমার। কারণ 400^{0} তাপমাত্রায় তপ্ত লৌহ নলের ভেতর দিয়ে ইথাইন চালনা করলে পলিমারকরণ বিক্রিয়ার মাধ্যমে বেনজিন তৈরি হয়। এক্ষেত্রে বেনজিনের আণবিক ভর ইথাইন এর আণবিক ভরের পূর্ণ গুণিতক। তাই বেনজিনকে ইথাইনের পলিমার বলা হয়।

$$3CH = CH \xrightarrow{Fe} 400^{\circ}C$$

৪৫) $ClCH_2COOH$ ও CH_3COOH এর মধ্যে কোনটি অধিকতর শক্তিশালী এসিড কারণসহ উল্লেখ কর ।

উ: যে এসিডের প্রোটন ত্যাগের প্রবণতা যত বেশি সে এসিড তত বেশি শক্তিশালী। জৈব এসিডের অ্যালকাইল মূলকে কোনো ইলেকট্রন গ্রাহী গ্রুপ বা পরমাণু থাকলে তার আকর্ষণে C-H বন্ধনের ইলেকট্রন ঐ পরমাণুর দিকে স্থানান্তরিত হয় ফলে বন্ধনটি দুর্বল হয়ে পড়ে এবং সহজে প্রোটন (H^+) পরিত্যক্ত হয়। $ClCH_2COOH$ এ এক্ষেত্রে Cl পরমাণু অধিক ইলেকট্রনগ্রাহী। একারণে ইথানোয়িক এসিড অপেক্ষা ক্লোরো ইথানোয়িক এসিড অধিক শক্তিশালী।

অনুধাবনমূলক

৪৬) অ্যানিলিনের নাইট্রেশনে মেটানাইট্রো অ্যানিলিন পাওয়া যায় কেন?

উ: অ্যানিলিনের $-NH_2$ গ্রুপ অর্থো প্যারা নির্দেশক হলেও অ্যানিলিনের নাইট্রেশন মেটা অবস্থানে ঘটে। কারণ নাইট্রেশনের সময় গাঢ় HNO_3 অ্যানিলিনের সাথে বিক্রিয়া করে অ্যানিলিনিয়াম আয়ন $[C_6H_5-NH_3^+]$ উৎপন্ন করে। উৎপন্ন অ্যানিলিনিয়াম আয়ন মেটা নির্দেশক বলে পরবর্তীতে যখন নাইট্রেশন ঘটে তা মেটা অবস্থানে ঘটে এবং মেটা নাইট্রো অ্যানিলিন উৎপন্ন করে।

$$NH_2$$
 NH_3 NH_2 NH_2 NH_2 NH_3 NH_2 NH_2

৪৭) ডিকার্বোক্সিলেশন বিক্রিয়ার সাহায্যে মিথেন প্রস্তুত করার বিক্রিয়াটি ব্যাখ্যা করো।

<mark>উ:</mark> ইথায়নিক এসিডের সোডিয়াম লবণকে সোডালাইম (NaOH + CaO এর মিশ্রণ) দ্বারা উত্তপ্ত করলে মিথেন পাওয়া যায়। এক্ষেত্রে CO_2 হিসাবে কার্বক্সিল মূলক অপসারিত হয়।

$$CH_3 - COONa + NaOH(CaO) \xrightarrow{\Delta} CH_4 + Na_2CO_3(CaO)$$

৪৮) সাইজেফ সূত্রটি সমীকরণসহ ব্যাখ্যা করো।

<mark>উ:</mark> হ্যালোজেনো অ্যালকেন থেকে HX অপসারনের বেলায় যে কার্বনে কম সংখ্যক β হাইড্রোজেন থাকে সেই কার্বন থেকে H পরমাণু α-কার্বনের X সহ HX রূপে অপসারিত হয়ে অ্যালকিন উৎপন্ন করে। যেমন:

$$CH_3 - \overset{\beta}{CH_2} - \overset{\alpha}{CH} - \overset{\beta}{CH_3} \xrightarrow{KOH \ (alc)} CH_3 - CH = CH - CH_3 + HBr$$
 Br

৪৯) বেনজিনকে ইথাইনের পলিমার বলা হয় কেন?

উ: বেনজিন, ইথাইনের একটি পলিমার। কারণ $400^{\circ}C$ তাপমাত্রায় উত্তপ্ত লৌহ নলের ভেতর দিয়ে ইথাইন চালনা করলে পলিমারকরণ বিক্রিয়ার মাধ্যমে বেনজিন তৈরি হয়। এক্ষেত্রে বেনজিনের আণবিক ভর ইথাইন এর আণবিক ভরের পূর্ণ গুণিতক। তাই বেনজিনকে ইথাইনের পলিমার বলা হয়।

অনুধাবনমূলক

৫০) ফিনাইল অ্যামিন অপেক্ষা মিথাইল অ্যামিন তীব্র ক্ষার কেন? ব্যাখ্যা করো।

উ: অ্যালকাইল মূলক সাধারণত ইলেকট্রন ত্যাগী হয়। ফলে CH_3-NH_2 যৌগে নাইট্রোজেনের সাথে যুক্ত $(-CH_3)$ মূলক তাদের বন্ধন ইলেকট্রন নাইট্রোজেনের দিকে এগিয়ে দিয়ে নাইট্রোজেন পরমাণুর ইলেকট্রন ঘনত্ব বৃদ্ধি করে। কিন্তু $C_6H_5-NH_2$ যৌগে নাইট্রোজেনের সাথে যুক্ত মূলকে (C_6H_5-) এ π ইলেকট্রন থাকলেও তা সঞ্চারণশীল। তাই এগুলো নাইট্রোজেন পরমাণুর ইলেকট্রন প্রাপ্যতার উপর প্রভাব ফেলতে পারে না। ফলে CH_3-NH_2 , $C_6H_5-NH_2$ অপেক্ষা তীব্র ক্ষারক হয়।

৫১) C_5H_{12} দারা সম্ভাব্য সমাণুগুলো লিখ।

উ: C_5H_{12} হলো পেন্টেন। এর সম্ভাব্য সমাণুগুলো হলো:

i.
$$CH_3 - CH_2 - CH_2 - CH_2 - CH_3$$

$$CH_3$$
ii. $CH_3 - CH - CH_2 - CH_3$

iii.
$$CH_3 - C - CH_3$$

$$CH_3$$

৫২) SO_3 একটি ইলেকট্রোফাইল বিকারক কেনো?

উ: যদিও SO_3 একটি প্রশম অণু; তবে এর অনুরণনকালে সালফার পরমাণুতে একটি ধনাত্মক আধান বা চার্জ সৃষ্টি হয়। ফলে SO_3 ইলেকট্রন আকর্ষী বা ইলেকট্রোফাইলরূপে কাজ করতে পারে। যেমন-

$$0 \qquad 0\delta - \qquad 0\delta - \qquad 0$$

$$|| \qquad \delta - \delta - \qquad \delta - \qquad 0$$

$$0 = S = 0 \leftrightarrow 0 = S - 0 \leftrightarrow 0 - S = 0 - S - 0$$

$$\delta + \qquad \delta + \qquad \delta + \qquad \delta + \qquad \delta$$

ইলেকট্রন আকর্ষী বিকারক SO_3 বেনজিন বলয়ের π ইলেকট্রন দ্বারা আকৃষ্ট হয়ে বেনজিন বলয়ের একটি কার্বনের সাথে ধনাত্মক কার্বোনিয়াম আয়ন বা σ জটিল উৎপন্ন হয়।

$$+SO_3$$
 $+SO_3$ -

অনুধাবনমূলক

৫৩) $H_3C-CH(OH)-COOH$ দ্বারা গঠিত সমাণুগুলোর নাম ও গাঠনিক সংকেত লেখো।

উ: $H_3C - CH(OH) - COOH$ যৌগটির দুইটি আলোক সক্রিয় সমাণু আছে। যথা-d-ল্যাকটিক এসিড ও l-ল্যাকটিক এসিড।

৫৪) $CH_3-CH(NH_2)-COOH$ যৌগটি আলোক সমাণুতা প্রদর্শন করবে কি? উত্তরের স্বপক্ষে যুক্তি দেখাও। (সমাণু প্রদর্শনসহ)

উ: ${
m CH_3-CH(NH_2)-COOH}$ যৌগটি হল অ্যালানিন। যৌগটি আলোক সমাণুতা প্রদর্শন করবে। কারণ এতে কাইরাল কার্বন আছে।

$$COOH$$
 $HOOC$ $HOOC$ $HO-C-H$ $HO-C-H$ H_3C

অ্যালানিন একটি আলোক সমাণু কারণ এর দুটি কনফিগারেশন একটি অপরটির দর্পণ প্রতিবিম্ব এবং দুটি অউপরিস্থাপনীয় কনফিগারেশন পরস্পরের প্রতিবিম্বের ন্যায় আচরণ করে এবং সমাবর্তিত আলোর তলকে ঘড়ির কাঁটার দিকে ও বিপরীত দিকে আবর্তন করে।

৫৫) এনানসিওমারের সমমোলার মিশ্রণ আলোক সক্রিয়তা প্রদর্শন করে না কেন?

উ: রেসিমিক মিশ্রণ হলো এনানসিওমার এর সমমোলার মিশ্রণ। দুটি এনানসিওমার উভয়েই তল সমাবর্তিত আলোর তলকে সমান কৌণিক উপস্থিত থাকলে আগত পরিমাণে বিপরীত দিকে ঘুরায়। এ দুটি সমাণুর সমপরিমাণ মিশ্রণ পরস্পরকে বিপরীত ঘূর্ণন ক্রিয়াকে বিনষ্ট করবে। তাই, রেসিমিক মিশ্রণ আলোক সক্রিয়তা প্রদর্শন করে না।

অনুধাবনমূলক

৫৬) গ্রিগনার্ড বিকারক পানির অনুপস্থিতিতে তৈরি করা হয় কেন? ব্যাখ্যা করো।

উ: হ্যালোজেনো অ্যালকেনসমূহ শুষ্ক ইথারীয় দ্রবণে ম্যাগনেসিয়াম হ্যালাইড (Mg) গুড়ার সাথে বিক্রিয়া করে অ্যালকাইল ম্যাগনেসিয়াম নামক গ্রিগনার্ড বিকারক তৈরি করে। গ্রিগনার্ড বিকারক আর্দ্রতার অনুপস্থিতিতে তৈরি করা হয় কারণ গ্রিগনার্ড বিকারক শক্তিশালী নিউক্লিওফিলিক, এরা পানির সাথে অতিদ্রুত বিক্রিয়া করে বিকারককে বিশ্লেষিত করে ফেলে।

$$R-X+Mg$$
 স্থার $RMgX$ $RMgX+H_2O$ $RH+Mg(OH)X$

৫৭) প্রোপিন ও বিউটিন পরস্পর সমগোত্রক কেন?

উ: প্রোপিন ও বিউটিনের সংকেত হলো যথাক্রমে $CH_3-CH=CH_2$ ও $CH_3-CH_2-CH=CH_2$ । যৌগদ্বয়ের মধ্যে শুধুমাত্র মিথিলিন মূলকের $(-CH_2)$ পার্থক্য বিদ্যমান। এদের সাধারণ সংকেত C_nH_{2n} । এদের একই কার্যকরী মূলক বিদ্যমান। এদেরকে একই সাধারণ পদ্ধতির মাধ্যমে প্রস্তুত করা যায়। তাই বলা যায় যে, প্রোপিন ও বিউটিন সমগোত্রক।

৫৮) ডাইমিথাইল অ্যামিন ট্রাইমিথাইল অ্যামিনের চেয়ে বেশি ক্ষারধর্মী কেন?

উ: যদিও ট্রাইমিথাইল অ্যামিনে ইলেকট্রন দানকারী তিনটি মিথাইল মূলক যুক্ত আছে তবুও ট্রাইমিথাইল অ্যামিন অপেক্ষা ডাইমিথাইল অ্যামিন অধিক ক্ষারধর্মী। এই ব্যতিক্রমের কারণ হলো 3^0 অ্যামিনের বেলায় একটি N পরমাণুতে তিনটি $(-CH_3)$ মূলক যুক্ত রয়েছে। পরস্পর বিকর্ষণের ফলে $(-CH_3)$ মূলকগুলো N পরমাণুকে চারদিক থেকে ঘিরে রাখে।

$$CH_3 - N$$
 CH_3

ফলে স্টেরিক বাধার কারণে N পরমাণুতে H^+ আয়ন সহজে আসতে পারে না। অপরদিকে 2^0 অ্যামিনের N-পরমাণুর নিকটে H^+ আয়ন সহজে আসতে পারে। একারণে ডাইমিথাইল অ্যামিন ট্রাইমিথাইল অ্যামিন অপেক্ষা বেশি ক্ষারধর্মী।

৫৯) পিরিডিন একটি অ্যারোমেটিক যৌগ- ব্যাখ্যা করো।

উ: হাকেল নীতি অনুসারে যে সকল যৌগে (4n+2) সংখ্যক সঞ্চরণশীল π ইলেকট্রন থাকে তাদেরকে অ্যারোমেটিক যৌগ বলা হয়। পিরিডিন একটি অ্যারোমেটিক যৌগ বলে। কারণ পিরিডিন অণুতে সঞ্চারণশীল 6টি π -ইলেকট্রন বিদ্যমান এবং 6 একটি হাকেল সংখ্যা। হাকেল সংখ্যা (4n+2) এ n=1 বসালে এর মান 6 পাওয়া যায়। তাই বলা যায়, পিরিডিন একটি অ্যারোমেটিক যৌগ।

অনুধাবনমূলক

৬০) সাইক্লোহেক্সেন একটি অ্যারোমেটিক যৌগ নয়- ব্যাখ্যা করো।

<mark>উ:</mark> সাইক্লোহেক্সেন অ্যারোমেটিক যৌগ নয়। কেননা, সাইক্লোহেক্সেনের কাঠামো বলয়টি শুধু কার্বন পরমাণু দ্বারা গঠিত এবং এদের মধ্যে কোনো দ্বিবন্ধন থাকে না।

তাই এটি অ্যারোমেটিক যৌগ হতে পারে না। কেননা অ্যারোমেটিক যৌগ হতে হলে কার্বন-কার্বন দিবন্ধন থাকতে হবে। তাই, সাইক্লোহেক্সেন অ্যারোমেটিক যৌগ নয়। উপরস্তু সকল অ্যারোমেটিক যৌগে হাকেল নীতি অনুসারে (4n+2) সংকরক ঘূর্ণায়মান π ইলেকট্রন থাকা আবশ্যক। সাইক্লোহেক্সেন এ শর্ত পূরণ করে না বলে ইহা অ্যারোমেটিক হতে পারে না।

৬১) 2-ক্লোরো বিউটিন সিস-ট্রান্স সমাণুতা দেখায় কেন?

উ: প্রতিস্থাপিত অ্যালকিনের জ্যামিতিক সমাণু দুটির সাধারণ সংকেত (ab)C = C বা (ab)C = C(ay) এর মত হয়। এদের একটিকে সিস সমাণু ও অন্যটিকে ট্রান্স সমাণু বলে। অর্থাৎ যেসব যৌগের গাঠনিক সংকেত a.b.C = C.ay এর মত হয় তারা সিস-ট্রান্স সমাণুতা দেখায়।

2-ক্লোরো বিউটিন এর গাঠনিক সংকেত নিম্নরূপ-

$$CH_3$$
 CH_3 CH_3

তাই 2-ক্লোরো বিউটিন সিস-ট্রান্স সমাণুতা দেখায়।

৬২) মেসো যৌগ আলোক নিষ্ক্রিয় কেন? ব্যাখ্যা করো।

উ: কোন যৌগে অপ্রতিসম কার্বন পরমাণু থাকা সত্ত্বেও যদি যৌগটির এক অংশ তার অপর অংশের সমবর্তিত আলোর তলের আবর্তন মাত্রাকে প্রশমিত করে দেয় ফলে যৌগটি সামগ্রিকভাবে আলোক নিদ্ধিয় হয়, তবে এরূপ যৌগকে মেসো যৌগ বলে। মেসো যৌগের অণুর অংশ দুটিকে পৃথক করা যায় না। (টারটারিক এসিড একটি মেসো যৌগ)

অনুধাবনমূলক

৬৩) 2-ক্লোরো বিউটিন যে সমাণুতা দেয় তার শর্ত লিখো।

উ: 2-ক্লোরো বিউটিন জ্যামিতিক সমাণুতা প্রদর্শন করে।

শর্তসমুহ :

- ১. যৌগে কার্বন-কার্বন দ্বিবন্ধন থাকতে হবে।
- ২. যৌগ চাক্রিক হতে হবে।

৬৪) আলোক সমানুতার শর্তসমূহ ব্যাখ্যা করো।

উ: একই ভৌত ও রাসায়নিক ধর্ম সম্পন্ন যে সকল জৈব যৌগের আণবিক ও গাঠনিক সংকেত অভিন্ন, কিন্তু তল সমাবর্তিত আলোর ভিন্ন আচরণ প্রদর্শন করে, তাদেরকে আলোক সমানু বলে। আলোক সমানুতার শর্তগুলো হলো:

- ১. অপ্রতিসম বা কাইরাল কার্বন থাকতে হবে।
- ২. উভয় সমাণুর কনফিগারেশন পরস্পরের দর্পণ প্রতিবিম্ব হতে হবে।
- ৩. তল সমাবর্তিত আলোর তলকে ডানে বা বামে ঘুরাতে সক্ষম হতে হবে।

৬৫) গ্লাইসিন আলোক সক্রিয় নয়- ব্যাখ্যা কর।

উ: গ্লাইসিনের গাঠনিক সংকেত নিম্নরূপ:

$$H$$

$$|$$

$$H_3N - C - COO -$$

গ্লাইসিনের কেন্দ্রীয় কার্বনে 2টি হাইড্রোজেন যুক্ত থাকায় এটি কাইরাল কার্বন নয়। অলোক সক্রিয় হওয়ার শর্ত হলো কাইরাল কার্বন থাকা। কিন্তু গ্লাইসিন এ কাইরাল কার্বন না থাকায় এটি আলোক সক্রিয় নয়।

৬৬) হফম্যান ক্ষুদ্রাংশকরণ বিক্রিয়া বলতে কী বোঝ?

উ: অ্যামাইডকে ক্ষার দ্রবণের সঙ্গে ব্রোমিনসহ উত্তপ্ত করলে প্রাই অ্যামিন উৎপন্ন হয়। এক্ষেত্রে অ্যামাইডের কার্বনাইল মূলকটি CO_2 রূপে অপসারিত হয়। এখানে বিক্রিয়ক অপেক্ষা উৎপাদে কার্বন সংখ্যা কমে যায় বলে উদ্ভাবকের নামানুসারে এই বিক্রিয়াকে হফম্যান ক্ষুদ্রাংশক বিক্রিয়া বলা হয়।

$$CH_3 - CO - NH_2 + Br_2 + 4NaOH \xrightarrow{\Delta} CH_3 - NH_2 + NaBr + Na_2CO_3 + H_2O$$

অনুধাবনমূলক

৬৭) -OH মূলক অর্থো-প্যারা নির্দেশক ব্যাখ্যা কর।

উ: —OH মূলকের ধনাত্মক মেসোমারিক প্রভাবের জন্য এটি বেনজিন বলয়ে ইলেকট্রন যোগান দেয়। ফলে ইলেকট্রন সঞ্চারণের ক্ষেত্রে অর্থো ও প্যারা অবস্থানে ইলেকট্রনের আধিক্য দেখা যায়

অর্থো প্যারা অবস্থানে ইলেকট্রন আধিক্যের কারণে বেনজিন বলয় (-OH) মূলকের উপস্থিতিতে অর্থো প্যারা অবস্থানে সহজে যুত বিক্রিয়া দেয়। এজন্য -OH মূলক বলয় সক্রিয়কারী।

৬৮) প্রোপিনের অসম্পুক্ততা কীভাবে প্রমাণ করবে?

উ: পানি বা CCl_4 দ্রাবকে Br_2 দ্রবণ তৈরি করলে এটি লাল বর্ণের হয় । এই লাল বর্ণের দ্রবণ যে কোন অসম্পৃক্ত জৈব যৌগ যেমন প্রোপিন এর সাথে যোগ করলে ব্রোমিন দ্রবণের লাল বর্ণ বিনষ্ট হয়। ফলে বর্ণহীন ডাইব্রোমো প্রোপেন উৎপন্ন হয়। ইহা দ্বারাই প্রোপিন এর অসম্পৃক্ততা ব্যাখ্যা করা যায়।

1, 2-ডাইব্রোমো প্রোপেন (বর্ণহীন)

৬৯) n-পেন্টেন যৌগের সমাণুতা ব্যাখ্যা করো।

<mark>উ:</mark> একই আণবিক সংকেত কিন্তু ভিন্ন গাঠনিক সংকেত বিশিষ্ট একাধিক যৌগের অস্তিত্বকে সমাণুতা বলা হয়। যেমন, পেন্টেন (C_5H_{12}) যৌগের তিনটি সমাণু রয়েছে। এদের আণবিক সংকেত একই হলেও গাঠনিক সংকেত ভিন্ন হওয়ার কারণে এরা তিনটি পৃথক যৌগ।

i.
$$CH_3 - CH_2 - CH_2 - CH_2 - CH_3$$
 (n-পেন্টেন)

$$CH_3$$
 ii. $CH_3-CH-CH_2-CH_3$ (2-মিথাইল বিউটেন)

অনুধাবনমূলক

৭০) এসিড দ্রবণে $CH_2(NH_2)COOH$ এর ধর্ম ব্যাখ্যা কর।

উ: ${
m CH_2(NH_2)COOH}$ এসিডের অণুতে অম্লীয় (-COOH) ও ক্ষারকীয় $(-NH_2)$ উভয় প্রকার গ্রুপ উপস্থিত থাকার ফলে -COOH গ্রুপ হতে একটি প্রোটন (H^+) বিচ্ছিন্ন হয়ে কার্বক্সিলেট $-(COO^-)$ আয়নে পরিণত হয় এবং একই অণুর অন্তর্গত $-NH_2$ গ্রুপের সাথে

যুক্ত হয়ে $-NH_3$ গ্রুপে পরিণত হয়। অর্থাৎ $\mathrm{CH}_2(\mathrm{NH}_2)\mathrm{COOH}$ এসিডের অণু একটি ডাইপোলার আয়ন রূপে আচরণ করে। এই ডাইপোলার আয়নকে জুইটার আয়ন বলে।

৭১) 3^0 অ্যামিন অপেক্ষা 2^0 অ্যামিন অধিক ক্ষারধর্মী কেন?

উ: যদিও R_3N এ ইলেকট্রন দানকারী তিনটি মিথাইল মূলক যুক্ত আছে। তবুও R_3N অপেক্ষা R_2NH অধিক ক্ষারধর্মী। এই ব্যতিক্রমের কারণ হলো 3^0 অ্যামিনের বেলায় একটি N পরমাণুতে তিনটি (-R) মূলক যুক্ত রয়েছে। পরস্পর বিকর্ষণের ফলে (-R) মূলকগুলো N পরমাণুকে চারদিক থেকে ঘিরে রাখে।

$$CH_3 \rightarrow N \stackrel{CH_3}{\longleftarrow} CH_3 \rightarrow NH \leftarrow CH_3$$

ফলে স্টেরিক বাঁধার কারণে N পরমাণুতে H^+ আয়ন আসতে পারে না। অপরদিকে 2^0 অ্যামিনে দুইটি অ্যালকাইল মূলকের ধনাত্মক আবেশীয় ফলের কারণে এর নাইট্রোজেনে ইলেকট্রনের অধিক ঘনত্বের কারনে এটি ইলেকট্রন প্রদানে সক্ষম। তাই 2^0 -অ্যামিন 3^0 - অ্যামিন অপেক্ষা অধিক ক্ষারধর্মী।

৭২) মিথানয়িক অ্যাসিড একটি এসিড ও একটি অ্যালডিহাইড- ব্যাখ্যা কর।

উ: আণবিক গঠনে কাৰ্বক্সিল মূলক থাকায় মিথানোয়িক এসিড জলীয় দ্ৰবণে আয়নিত হয়ে প্ৰোটন দেয়। ফলে ঐ দ্ৰৰণে নীল লিটমাস লাল বৰ্ণ হয়।

$$H - COOH \rightleftharpoons H - COO^- + H^+$$

 $H^+ +$ নীল লিউমাস → লাল লিউমাস

সুতরাং, মিথানয়িক এসিড এসিডরূপে কাজ করে। আবার, আনবিক গঠনে অ্যালডিহাইড মূলক থাকায় মিথানয়িক এসিড মৃদু বিজারকরূপে মৃদু জারককে বিজারিত করে এবং নিজে জারিত হয়ে CO_2 গ্যাস ও H_2O উৎপন্ন করে। এটি ফেলিং দ্রবণকে বিজারিত করে কিউলাস অক্সাইডের লাল অধঃক্ষেপ সৃষ্টি করে।

$$H - COOH + 2Cu(OH)_2 + 2NaOH \xrightarrow{\Delta} Cu_2O \downarrow + Na_2CO_3 + 4H_2O$$

সূতরাং, মিথানরিক অ্যাসিড একটি অ্যালডিহাইড এবং অ্যাসিড।

অনুধাবনমূলক

৭৩) ইথাইন অম্লীধর্মী কেন?

উ: ইথাইন ($HC \equiv CH$) অম্লধর্মী। এর কারণ ইথাইন অণুর C পরমাণু sp সংকরিত। এ সংকর অরবিটালে s ও p এর অনুপাত 1:1। ক্ষুদ্রাকৃতি s অরবিটাল এর অনুপাত তুলনামূলকভাবে বেশি হওয়ায় ইথাইনে C-H বন্ধনের শেয়ারকৃত ইলেকট্রন যুগল C পরমাণুর নিউক্লিয়াসের অধিকতর কাছে দৃঢ়ভাবে যুক্ত থাকে। তাই দূরে অবস্থিত H পরমাণুটির বন্ধন শিথিল হয়ে যায়। ফলে বন্ধনটি ভেঙে H পরমাণু H^+ আয়ন হিসেবে বিচ্যুত হয়। এজন্যই ইথাইন অম্লধর্মী হয়। যেমন- $H-C \equiv C+2Na(s)$ $Na.C \equiv C.Na+H_2$

৭১)নাইট্রেশন বিক্রিয়ায় গাঢ় H_2SO_4 এর ভূমিকা লিখ?

উ: নাইট্রেশন বিক্রিয়ায় গাঢ় H_2SO_4 এর ভূমিকা হলো -

(১)গাঢ় H₂SO₄ ও গাঢ় HNO₃ এর বিক্রিয়ায় ইলেকট্রোফাইল নাইট্রোনিয়াম আয়ন (NO₂) তৈরী করে।

(২)বিক্রিয়ার মাধ্যমে পানি থাকলে NO2 আয়ন ঐ পানি ও -HSO4 এর সাথে একত্রে বিক্রিয়া করে HNO3 এবং H2SO4 উৎপন্ন করে। এরূপে নাইট্রেশন বিক্রিয়ায় উৎপন্ন পানিকে গাঢ় H2SO4 শোষণ করে HNO3এর ঘনমাত্রা অপরিবর্তিত রাখে এবং বিক্রিয়াকে সম্মুখমুখী হতে সহায়তা করে।

৭৩) $C_6H_5NH_2$ অপেক্ষা CH_3NH_2 তীব্র ক্ষারক কেন?

উ: $C_6H_5NH_2$ (ফিনাইল অ্যামিন) অপেক্ষা CH_3NH_2 (মিথাইল অ্যামিন) তীব্র ক্ষারক । মিথাইল অ্যামিনে উপস্থিত মিথাইল মূলক ($-CH_3$) ধনাত্মক আবেশীয় ফল দ্বারা নাইট্রোজেন পরমাণুতে ইলেকট্রন ঘনত্ব বৃদ্ধি করে। ফলে, মিথাইল অ্যামিনের পানি হতে প্রোটন গ্রহণের ক্ষমতা বৃদ্ধি পায় এবং মিথাইল অ্যামিন যথেষ্ট ক্ষারধর্মী হয়। অন্যদিকে, ফিনাইল অ্যামিনে নাইট্রোজেন পরমাণুর নিঃসঙ্গ ইলেকট্রন যুগল আংশিকভাবে বেনজিন বলয়ের সঞ্চারণশীল পাইইলেকট্রনের সাথে মিলিত হয়। তখন, প্রোটনের সাথে নাইট্রোজেন পরমাণুর নিঃসঙ্গ ইলেকট্রন যুগলের সন্ধিবেশ বন্ধন গঠনের সুযোগ কমে যায়। এ কারণে $C_6H_5NH_2$ (ফিনাইল আমিন) অপেক্ষা CH_3NH_2 (মিথাইল অ্যামিন)তীব্র ক্ষারক।

□ জ্ঞান ও অনুধাবনের কিছু গুরুত্বপূর্ণ টপিক/প্রশ্ন

নামকরণ

অর্থো প্যারা নির্দেশক

অ্যারোমেটিক যৌগ

জ্যামিতিক সমানুতার শর্ত

টটোমারিজম

রেসিমিক মিশ্রণ

ফেনল অম্লধর্ম হওয়ার কারণ 1,2,3 কার্বোক্যাটায়ন ও কার্বনায়ন

হেক্সামিন

অ্যারোমেটিক যৌগ

এনানসিওমার

ফেনল কার্বলিক এসিড

জ্ঞানমূলক

1) নির্দেশক কাকে বলে?

[সি. বো. '১৯]

উ: যেসব পদার্থ তাদের বর্ণের পরিবর্তন ঘটিয়ে এসিড-ক্ষার সমাপ্তি বা প্রশমন ক্রিয়া সম্পূর্ণ হওয়ার সঠিক মুহূর্তটিকে নির্দেশ করে তাদেরকে নির্দেশক বলে।

২) COD কাকে বলে?

[দি. বো. '১৯]

উ: পানির নমুনায় পচনশীল ও অপচনশীল সব ধরনের জৈব দূষক পদার্থকে বিযোজনের জন্য প্রয়োজনীয় অক্সিজেনের পরিমাণকে COD (Chemical Oxygen Demand) বলে।

৩) জারণ সংখ্যা কাকে বলে?

[সি. বো. '১৯]

<mark>উ:</mark> ইলেকট্রন ত্যাগ বা গ্রহণের ফলে কোনো মৌলের পরমাণুতে সৃষ্ট ধনাত্মক বা ঋণাত্মক চার্জের সংখ্যাকে ঐ মৌলের জারণ সংখ্যা বলে।

৪) অনুবন্ধী অম্ল কী?

[সকল বোর্ড '১৮]

উ: কোনো ক্ষারকের সাথে একটি প্রোটন সংযোগের ফলে যে অম্লের সৃষ্টি হয় তাকে ঐ ক্ষারকের অনুবন্ধী অম্ল বলে।

৫) ppm কী?

[য. বো. '১৯]

<mark>উ:</mark> ppm (parts per million) হলো প্রতি million অর্থাৎ দশ লক্ষ ভাগ দ্রবণে বা প্রতি 10^6 অংশ দ্রবণে যত ভাগ অংশ দ্রব দ্রবীভূত থাকে।

৬) অসামঞ্জস্য বিক্রিয়া কাকে বলে?

[চ. বো. '১৯]

<mark>উ:</mark> একটি বিক্রিয়ায় যদি কোন পরমাণু একই সাথে জারিত এবং বিজারিত হয় তাকে অসামঞ্জস্য বিক্রিয়া বিক্রিয়া বলে।

উদাহরণ: $Cu_2O(aq)+H_2SO_4(aq)\to Cu(s)+CuSO_4(aq)+H_2O(l)$ এখানে, Cu জারণ অবস্থা +1 (Cu_2O) থেকে জারণ অবস্থা শূন্যতে (Cu) এবং জারণ অবস্থা +2 $(CuSO_4)$ এ উপনীত হয়।

৭) অ্যাভোগেড্রোর সংখ্যাটি কত?

উ: অ্যাভোগেড্রোর সংখ্যাটি হলো $6.022 imes 10^{23}$ ।

৮) লুইস মতবাদ অনুযায়ী এসিড কী?

উ: যেসব পদার্থ মুক্তজোড় ইলেকট্রন গ্রহণে সক্ষম তাদেরকে লুইস মতবাদ অনুযায়ী এসিড বলে।

৯) অনুবন্ধী অম্ল-ক্ষারক কী?

উ: কোনো অম্ল থেকে একটি প্রোটন অপসারণের ফলে যে ক্ষারক সৃষ্টি হয় তাকে সে অম্লের অনুবন্ধী ক্ষারক বলে আবার কোনো ক্ষারকের সাথে একটি প্রোটন সংযোগের ফলে যে অম্লের সৃষ্টি হয়, তাকে সে ক্ষারকের অনুবন্ধী অম্ল বলে।

জ্ঞানমূলক

১০) আরহেনিয়াস তত্ত্বানুসারে ক্ষারক কী?

<mark>উ:</mark> যেসব পদার্থ জলীয় দ্রবণে বিয়োজিত হয়ে হাইড্রাইড আয়ন (OH^-) দান করতে সক্ষম সে সকল পদার্থকে ক্ষারক বলে।

১১) pH কী?

<mark>উ:</mark> কোনো দ্রবণের হাইড্রোজেন (H^+) আয়নের মোলার ঘনমাত্রার ঋণাত্মক লগারিদমকে ঐ দ্রবণের pH বলে।

১২) ব্রনস্টেড লাউরী মতবাদে অম্ল কী?

উ: যেসব পদার্থ প্রোটন দান করতে সক্ষম তাদেরকে অম্ল বা এসিড বলে।

১৩) দর্শক আয়ন কী?

<mark>উ:</mark> যেসব আয়ন বিক্রিয়ায় অপরিবর্তিত অবস্থায় থেকে যায়, কারোর সাথে বিক্রিয়া করে না তা-ই দর্শক আয়ন।

১৪) পানযোগ্য পানির pH সীমা কত?

উ: পানযোগ্য পানির pH সীমা 6.7-7.4।

১৫) জারণ বিক্রিয়া কী?

উ: যে বিক্রিয়ায় কোন রাসায়নিক সত্ত্বা ইলেকট্রন দান করে তাকে জারণ বিক্রিয়া বলে।

১৬) BOD কাকে বলে?

<mark>উ:</mark> পানিতে উপস্থিত জৈব দূষক পদার্থের জৈব বিযোজনের জন্য প্রয়োজনীয় অক্সিজেনের পরিমাণকে জৈবরাসায়নিক অক্সিজেন চাহিদা বা BOD (Biochemical Oxygen Demand) বলে।

১৭) সোডিয়াম থায়োসালফেট এর সংকেত কী?

<mark>উ:</mark> সোডিয়াম থায়োসালফেট এর সংকেত : $Na_2S_2O_3$ ।

১৮) End point কী?

<mark>উ:</mark> টাইট্রেশনের সময় নির্দেশকের বর্ণ পরিবর্তনের মাধ্যমে যে বিন্দুতে বিক্রিয়ার সমাপ্তি ঘটে বোঝা যায় তাকে End Point বলে।

১৯) অম্লীয় মাধ্যমে মিথাইল রেড কোন বর্ণ ধারণ করে?

উ: অম্লীয় মাধ্যমে মিথাইল রেড হলুদ বর্ণ ধারণ করে।

জ্ঞানমূলক

২০) অম্লমিতি কাকে বলে?

<mark>উ:</mark> প্রমাণ ক্ষার দ্রবণের সাহায্যে উপযুক্ত নির্দেশকের উপস্থিতিতে এসিড দ্রবণের ঘনমাত্রা নির্ণয়ের পদ্ধতিকে অম্লমিতি বলে।

২১) প্রশম বিন্দু কাকে বলে?

<mark>উ:</mark> টাইট্রেশনের সময় ব্যুরেট থেকে যে শেষ ফোঁটা দ্রৰণ কনিক্যাল ফ্লাস্কে যোগ করার সাথে সাথে ফ্লাস্কের দ্রবণের বর্ণের পরিবর্তন ঘটে সেই ফোঁটাকে প্রশম বিন্দু বলে।

২২) তুল্য পরিমাণ এসিড কাকে বলে?

উ: কোনো এসিডের আণবিক ভরকে ঐ এসিডের ক্ষারকতা দ্বারা ভাগ করলে যে মান পাওয়া যায় তাকে ঐ এসিডের তুল্য পরিমাণ এসিড বলে।

২৩) জারণ বিভব কী?

<mark>উ:</mark> তড়িৎ রাসায়নিক কোষের যে তড়িৎদ্বারে জারণ ঘটে তার বিভব বা পটেনশিয়ালই জারণ বিভব।

২৪) প্রাইমারি স্ট্যান্ডার্ড পদার্থ কাকে বলে?

উ: বিশুদ্ধ অবস্থায় প্রাপ্ত যেসব কঠিন পদার্থের প্রস্তুতকৃত দ্রবণের ঘনমাত্রা অনেকদিন পর্যন্ত অপরিবর্তিত থাকে তাদেরকে প্রাইমারি স্ট্যান্ডার্ড পদার্থ বলে।

২৫) জারণ-বিজারণ অর্ধবিক্রিয়া কাকে বলে?

<mark>উ:</mark> জারণ-বিজারণ বিক্রিয়ার যে অংশে জারণ ঘটে তাকে জারণ অর্ধবিক্রিয়া এবং যে অংশে বিজারণ ঘটে তাকে বিজারণ অর্ধ-বিক্রিয়া বলে।

২৬) মোলারিটি কী?

<mark>উ:</mark> স্থির তাপমাত্রায় 1.0 লিটার দ্রবণে দ্রবীভূত দ্রবের গ্রাম আণবিক ভর বা মোল সংখ্যাই দ্রবণের মোলারিটি।

২৭) নন-রেডক্স বিক্রিয়া কাকে বলে?

উ: এক বা একাধিক বিক্রিয়ক থেকে নতুন যৌগ উৎপন্ন হওয়ার সময় বিক্রিয়কে বিদ্যমান মৌলসমূহের মধ্যে ইলেকট্রন আদান-প্রদান না হলে বিক্রিয়াকে নন-রেডক্স বিক্রিয়া বলে।

২৮) মোল ভগ্নাংশ কী?

উ: কোনো মিশ্রণে একটি উপাদানের মোল সংখ্যা এবং ঐ মিশ্রণে মোট মোল সংখ্যার অনুপাতকে ঐ উপাদানের মোল ভগ্নাংশ বলে।

জ্ঞানমূলক

২৯) আয়োডিমিতি কী?

<mark>উ:</mark> প্রমাণ আয়োডিন দ্রবণের সাহায্যে বিভিন্ন বিজারক পদার্থের টাইট্রেশন করার মাধ্যমে এদের ঘনমাত্রা বা পরিমাণ নির্ণয় করার পদ্ধতিকে আয়োডিমিতি বলে।

৩০) অধঃক্ষেপণ টাইট্রেশন কাকে বলে?

<mark>উ:</mark> যে টাইট্রেশন পদ্ধতিতে কোনো পরীক্ষাধীন দ্রবণের উপাদান পদার্থ এবং প্রমাণ দ্রবণের উপযুক্ত উপাদান পদার্থের মধ্যে তাৎক্ষণিক সংঘটিত ক্রিয়ায় মাত্রিকভাবে কোনো অদ্রবর্ণীয় অধঃক্ষেপের সৃষ্টি হয়, তাকে অধ্যক্ষেপণ টাইট্রেশন বলে।

৩১) মোলার পরিবাহিতা কী?

<mark>উ:</mark> কোনো দ্রবণের যত cm^3 আয়তনে এক মোল তড়িৎ বিশ্লেষ্য পদার্থ দ্রবীভূত থাকে তাকে দ্রবণটির আপেক্ষিক পরিবাহিতার দ্বারা গুণ করলে যে ফলাফল পাওয়া যায়, তাকেই দ্রবণটির মোলার পরিবাহিতা বলে।

৩২) দ্ৰবণ চাপ কী?

উ: কোনো অণু বা পরমাণুর এক দশা হতে আরেক দশায় প্রবেশ করার প্রবণতা-ই ঐ দ্রবণের দ্রবণ চাপ।

অনুধাবনমূলক

১) মোল ভগ্নাংশ তাপমাত্রার উপর নির্ভর করে কি? ব্যাখ্যা করো।

[দি. বো. '১৭]

উ: মোল ভগ্নাংশ তাপমাত্রার উপর নির্ভর করে না। মোল ভগ্নাংশের সংজ্ঞানুসারে, দ্রবণের কোনো উপাদানের মোল সংখ্যা এবং দ্রবণে বিদ্যমান সব উপাদানের মোল সংখ্যার যোগফলের অনুপাতকে সে উপাদানের মোল ভগ্নাংশ বলে।

যে কোনো দ্রবণে যে কোনো উপাদানের মোল ভগ্নাংশ একটি ভগ্নাংশ হবে, যার সর্বনিম্ন মান শূন্য (অর্থাৎ দ্রবণে তা অনুপস্থিত) এবং যার সর্বোচ্চ মান এক (অর্থাৎ বিশুদ্ধ উপাদানে, এতে অন্য কোনো উপাদান নেই)। মোল ভগ্নাংশ শুধুমাত্র উপাদানসমূহের মোলসংখ্যার উপর নির্ভরশীল, যা আবার উপাদানসমূহের ভর ও আণবিক ভরের উপর নির্ভরশীল। এ দুটি বিষয় তাপমাত্রা বা অন্য কিছুর উপর নির্ভরশীল না হওয়ায় মোল ভগ্নাংশ তাপমাত্রার উপর নির্ভরশীল নয়। কেননা তাপমাত্রার পরিবর্তনে কোনো পদার্থের ভর বা মোল সংখ্যার কোনো পরিবর্তন হয় না।

২) $K_2Cr_2O_7$ যৌগে Cr-এর জারণ সংখ্যায় নির্ণয় করো।

[ঢা. বো. '১৬]

উ: $K_2Cr_2O_7$ যৌগে Cr-এর জারণ সংখ্যা x হলে- $1 \times 2 + x \times 2 + (-2) \times 7 = 0$ $\Rightarrow 2 + 2x - 14 = 0$ $\Rightarrow x = +6$

সুতরাং $\mathrm{K_2Cr_2O_7}$ যৌগে Cr -এর জারণ সংখ্যা +6।

৩) মোলার দ্রবণ একটি প্রমাণ দ্রবণ- ব্যাখ্যা করো।

[কু. বো. '১৭]

উ: যে দ্রবণের ঘনমাত্রা জানা থাকে তাকে প্রমাণ দ্রবণ বলে। মোলার দ্রবণ বলতে 1L বা $1000\ mL$ দ্রবণে $1\ mol$ দ্রব দ্রবীভূত থাকাকে বোঝায়। অর্থাৎ এর ঘনমাত্রা 1M। মোলার দ্রবণের ঘনমাত্রা 1M যা আমাদের জানা, তাই এটি একটি প্রমাণ দ্রবণ।

8) H₃PO₄ অপেক্ষা HNO₃ সবল কেন?

[চ. বো. '১৬]

উ: অক্সো এসিডসমূহের সক্রিয়তা তাদের কেন্দ্রীয় পরমাণুর জারণ মানের উপর নির্ভর করে। জারণ মান সমান হলে যেটির কেন্দ্রীয় পরমাণুর আকার ছোট সেটি হবে অধিক সবল অম্ল। H_3PO_4 এবং HNO_3 এসিডদ্বয়ের কেন্দ্রীয় পরমাণুতে উভয়ের জারণ মান সমান (+5)। কিন্তু নাইট্রোজেন এর আকার ফসফরাসের তুলনায় ছোট হওয়ায় HNO_3 , H_3PO_4 অপেক্ষা অধিক সবল অম্ল।

৫) মৃদু অম্ল ও মৃদু ক্ষারকের টাইট্রেশনে কোনো উপযুক্ত নির্দেশক নেই কেন? [সি. বো. '১৫]

উ: মৃদু এসিড দ্রবণে মৃদু ক্ষার দ্রবণ ফোঁটায় ফোঁটায় যোগ করলে দ্রবণের pH এর মান ধীরে ধীরে বৃদ্ধি পেতে থাকে এবং সমাপ্তি বিন্দুর কাছাকাছি pH মানের আকস্মিক কোনো পরিবর্তন লক্ষ করা যায় না। প্রকৃত পক্ষে, এরূপ প্রশমনে pH এর মান প্রশমনের শুরু থেকে শেষ পর্যন্ত ধীর গতিতে বৃদ্ধি পেতে থাকে। তাই মৃদু এসিড ও মৃদু ক্ষারের প্রশানের ক্ষেত্রে কোনো উপযুক্ত নির্দেশক পাওয়া যায় না। তবে মিশ্র নির্দেশক ব্যবহার করে এরূপ প্রশমনের প্রশমন বিন্দু নির্ণয় করা যায়।

অনুধাবনমূলক

৬) $FeCl_3$ কে লুইস অম্ন বলা হয় কেন?

[সি. বো. '১৯; দি. বো. '১৯]

<mark>উ:</mark> FeCl_3 একটি লুইস এসিড। কারণ আমরা জানি, যেসকল যৌগ মুক্ত জোড় ইলেকট্রন গ্রহণে সক্ষম তাদেরকে লুইস এসিড বলে। FeCl_3 এর কেন্দ্রীয় পরমাণুর অষ্টক সম্প্রসারিত হয়েছে। ফলে, এটি Cl_2 অণুর বন্ধন ইলেকট্রন গ্রহণের মাধ্যমে ইলেকট্রোফাইল গঠন করে।

$$\begin{array}{c|c} Cl \\ \vdots Cl - : Cl + Fe - Cl \rightarrow FeCl_4^{-} \end{array}$$

তাই, FeCl₃ একটি লুইস এসিড।

৭) পানির স্থায়ী খরতার কারণ কী?

[ব. বো. '১৫]

উ: পানিতে Ca^{2+} , Mg^{2+} , Fe^{2+} আয়ন দ্রবীভূত থাকলে ঐ পানিকে খর পানি বলে। সাধারণত সোডিয়াম সাবান খর পানিতে ক্যালসিয়াম ম্যাগনেসিয়াম আয়নের অদ্রবণীয় সাবানরূপে ভেসে উঠে।

$$2HCO_{3}^{-}(aq) \stackrel{\triangle}{\rightleftharpoons} CO_{2}(g) + H_{2}O(l) + CO_{3}^{2-}(aq)$$

$$Ca^{2+}(aq) + CO_{3}^{2-}(aq) \rightarrow CaCO_{3}(s) \downarrow$$

$$Mg^{2+}(aq) + CO_{3}^{2-}(aq) \rightarrow MgCO_{3}(s) \downarrow$$

যা গাঁদ বা স্কাম হিসেবে পানিতে ভেসে উঠে। এ কারণেই পানি স্থায়ীভাবে খর হয়।

৮) অম্লীয় $KMnO_4$ একটি জারক- ব্যাখ্যা করো।

[ঢা. বো. '১৫]

উ: জারণ-বিজারণ বিক্রিয়ায় যেসব মৌল, মূলক বা আয়ন ইলেকট্রন গ্রহণ করে নিজে বিজারিত হয় এবং অপরকে জারিত করে তাদেরকে জারক বলে। $KMnO_4$ একটি জারক পদার্থ। কেননা $KMnO_4$ জারণ-বিজারণ বিক্রিয়ায় ইলেকট্রন গ্রহণ করে। যেমন-

$$2KMnO_4 + 3H_2SO_4 + 5H_2O_2 \rightarrow K_2SO_4 + 2MnSO_4 + 8H_2O + 5O_2$$
 এখানে,

 $KMnO_4$ যৌগে Mn এর জারণ মান =+7

 $MnSO_4$ যৌগে Mn এর জারণ মান =+2। উপরোক্ত বিক্রিয়ায় 5টি ইলেকট্রনের গ্রহণ ঘটেছে। অর্থাৎ বিক্রিয়ায় MnO_4^- আয়ন ইলেকট্রন গ্রহণ করে Mn^{2+} আয়নে পরিণত হয়েছে। এর অর্থ হলো MnO_4^- আয়ন বিজারিত হয়েছে। সুতরাং, $KMnO_4$ একটি জারক পদার্থ।

৯) তীব্র এসিড-তীব্র ক্ষারকের টাইট্রেশনে কোন নির্দেশক ব্যবহার করা হয়? ব্যাখ্যা করো।

[কু. বো. '১৯]

উ: প্রশমন বিক্রিয়ায় অংশগ্রহণকারী এসিড ও ক্ষারক উভয়ই যদি তীব্র হয়, তাহলৈ এক্ষেত্রে যে লবণ উৎপন্ন হয় তা জলীয় দ্রবণে আর্দ্র বিশ্লেষিত হয় না। প্রশমন দ্রবণে সামান্য তীব্র এসিড বা ক্ষার যোগ করলেই pH এর মান ব্যাপকভাবে কমে বা বেড়ে যায়। ফলে, এক্ষেত্রে pH এর বিস্তৃতি অনেক বেশি (pH 3.0 - 10.0 পর্যন্ত) থাকে। এজন্য তীব্র এসিড তীব্র ক্ষারের টাইট্রেশনের ক্ষেত্রে যে কোনো নির্দেশক ব্যবহার করা হয়।

অনুধাবনমূলক

১০) Fe^{2+} একটি বিজারক-ব্যাখ্যা করো।

[সি. বো. '১৫]

<mark>উ:</mark> যে মৌল, যৌগ বা যৌগমূলক ইলেকট্রন দান করে নিজে জারিত হয়। তাকে বিজারক বলা হয়। যেমন-

$$2Fe^{2+} \rightarrow 2Fe^{3+} + 2e^{-}$$

$$Cl_2 \rightarrow 2Cl$$

$$2Cl + 2e^- \rightarrow 2Cl^-$$

$$2Fe^{2+} + 2Cl \rightarrow 2Fe^{3+} + 2Cl^{-}$$

অর্থাৎ Fe^{2+} আয়ন একটি e^- দান করে Fe^{3+} আয়নে রূপান্তরিত হয় এবং নিজে জারিত হয়ে অন্যকে বিজারিত করে। একারণে Fe^{2+} একটি বিজারক।

১১) HSO_4^- অনুবন্ধী ক্ষারক কী? ব্যাখ্যা কর।

[ঢা. বো. '১৯]

উ: কোনো অস্ল একটি প্রোটন ত্যাগ করলে যে ক্ষারকের সৃষ্টি হয় তাকে ঐ অস্লের অনুবন্ধী ক্ষারক বলে। ${
m HSO_4^-}$ আয়ন অনুবন্ধী ক্ষারক কারণ H_2SO_4 এসিড হতে একটি প্রোটন ত্যাগের ফলে ${
m HSO_4^-}$ এ পরিণত হয় অর্থাৎ ক্ষারকের সৃষ্টি হয় কারণ এটি আবার প্রোটন গ্রহণ করতে চায়। তাই, ${
m HSO_4^-}$ কে H_2SO_4 এর অনুবন্ধী ক্ষারক বলে।

$$H_2SO_4 + H_2O \rightleftharpoons H_3O^+ + HSO_4^-$$
অস্ত্র ক্ষার্ক অস্ত্র ক্ষার্ক

অনুবন্ধী যুগল

১২) NaOH-কে প্রাইমারি স্ট্যান্ডার্ড পদার্থ বলা হয় না কেন?

[ব. বো. '১৯]

উ: যে সকল পদার্থ প্রকৃতিতে বিশুদ্ধ অবস্থায় থাকে, বায়ু সংস্পর্শে অপরিবর্তিত থাকে এবং দ্রবণের ঘনমাত্রা দীর্ঘদিন রেখে দিলে ঘনমাত্রার পরিবর্তন হয় না তাদেরকে প্রাইমারি স্ট্যান্ডার্ড পদার্থ বলে। NaOH প্রাইমারি স্ট্যান্ডার্ড পদার্থ নয়। কারণ NaOH বায়ুর সংস্পর্শে খুব সহজে CO_2 ও O_2 দ্বারা আক্রান্ত হয় এবং এর দ্রবণ রেখে দিলে এর ঘনমাত্রা সময়ের সাথে সাথে পরিবর্তিত হয়। তাই NaOH-কে প্রাইমারি স্ট্যান্ডার্ড পদার্থ নয়।

১৩) $H_2 O_2$ জারক ও বিজারক উভয়রূপে ক্রিয়া করে কেন?

[চ. বো. '১৯]

উ: H_2O_2 জারক এবং বিজারক উভয়ের সাথেই বিক্রিয়া করতে পারে। জারকের সাথে বিক্রিয়ার সময় বিজারক হিসেবে এবং বিজারকের সাথে বিক্রিয়ার সময় জারক হিসেবে কাজ করে। যেমন-জারক হিসেবে: $H_2O_2 + H_2S \to 2H_2O + S$

বিজারক হিসেবে: $Cl_2 + H_2O_2 \rightarrow 2HCl + O_2$

অনুধাবনমূলক

১৪) Sn^{2+} আয়ন জারক ও বিজারক উভয় হিসেবে আচরণ করে- ব্যাখ্যা করো।

[য. বো. '১৯]

উ: Sn^{2+} আয়ন বিজারক রূপে ক্রিয়া করে। যেমন- $SnCl_2 + 2FeCl_3 \rightarrow 2FeCl_2 + SnCl_4$

এখানে Sn^{2+} দুইটি ইলেকট্রন ত্যাগ করে Sn^{4+} আয়নে পরিণত হয়।

 $Sn^{2+} \rightarrow Sn^{4+} + 2e^{-}$

ইহা একটি জারণ ক্রিয়া। তাই উপরোক্ত বিক্রিয়ায় Sn^{2+} একটি বিজারক।

আবার, Sn^{2+} আয়ন দুইটি ইলেকট্রন গ্রহণ করে ধাতব Sn-এ পরিণত হতে পারে। $Sn^{2+} + 2e^- \to Sn$

সুতরাং Sn^{2+} জারকরূপেও ক্রিয়া করে।

১৫) ClCH2COOH, CH3COOH অপেক্ষা শক্তিশালী এসিড কেন?

[রা. বো. '১৯]

উ: গঠন অনুসারে এসিটিক এসিড বা ইথানোয়িক এসিডে কার্বক্সিল মূলকের সাথে ধনাত্মক আবেশধর্মী মিথাইল (CH_3-) মূলক যুক্ত থাকে। অপরদিকে ক্লোরো এসিটিক এসিডে ঋণাত্মক আবেশধর্মী Cl পরমাণু α -কার্বনে যুক্ত আছে। তাই ক্লোরো এসিটিক এসিডের বেলায় কার্বক্সিল মূলকের আয়নীকরণ জলীয় দ্রবণে বৃদ্ধি পায়। ফলে ক্লোরো এসিটিক এসিডের $ClCH_2COOH$ অস্লধর্মীতা এসিটিক এসিড CH_3COOH অপেক্ষা অধিক হয়।

এসিটিক এসিডের বিয়োজন ধ্রুবক $K_a=1.8\times 10^{-5}$ এবং ক্লোরো এসিটিক এসিডের বিয়োজন ধ্রুবক $K_a=1.4\times 10^{-3}$ । উভয় এসিডের বিয়োজন ধ্রুবকের মান থেকে বোঝা যায়, ক্লোরো এসিটিক এসিডের অস্ল ধর্মের তীব্রতা এসিটিক এসিডের তুলনায় প্রায় 77.78 গুণ বেশি।

১৬) Disproportion বিক্রিয়া বলতে কী বুঝায়?

উ: যে বিক্রিয়ায় কোন মৌলের দুটি পরমাণু বা একই আয়নসমূহের মধ্যে একই সাথে জারণ ও বিজারণ ঘটে সে বিক্রিয়াকে উক্ত মৌলের অসামঞ্জস্যতা বিক্রিয়া বা ডিস্প্রোপরশন (Disproportion) বিক্রিয়া বলে।

কক্ষ তাপমাত্রায় লঘু NaOH দ্রবণ ও Cl_2 এর বিক্রিয়ায় সোডিয়াম ক্লোরাইড (NaCl), সোডিয়াম ক্লোরেট (I) লবণ NaClO ও পানি উৎপন্ন হয়।

$$0 \xrightarrow{-1} +1$$

$$Cl_2(g) + 2NaOH(aq) \xrightarrow{25^0C} NaCl(aq) + NaClO(aq) + H_2O(l)$$

এক্ষেত্রে প্রথমে বিক্রিয়ক ক্লোরিনের দুটি পরমাণুর জারণ অবস্থা শূন্য (0)। কিন্তু বিক্রিয়া শেষে উৎপন্ন NaCl এর ক্লোরাইড (Cl^-) আয়নে Cl এর জারণ অবস্থা হ্রাস পেয়ে -1 হয়েছে অর্থাৎ Cl পরমাণুর বিজারণ ঘটেছে। আবার উৎপন্ন NaClO এর ক্লোরেট (I) আয়নে Cl-এর জারণ অবস্থা বৃদ্ধি পেয়ে +1 হয়েছে অর্থাৎ Cl পরমাণুর জারণ ঘটেছে। ক্লোরিনের দুটি পরমাণু এ বিক্রিয়ায় একই সাথে জারিত ও বিজারিত হোয়ায় এটি ক্লোরিনের একটি ডিসপ্রোপরশন বিক্রিয়া।

অনুধাবনমূলক

১৭) NaOH এবং COOH এর টাইট্রেশনে নির্দেশক হিসেবে ফেনলফথেলিন ব্যবহার করা হয় কেন? | COOH

উ: মৃদু এসিড ও তীব্র ক্ষারক থেকে উৎপন্ন লবণের প্রকৃতি ক্ষারীয় হয়। এই লবণ আর্দ্রবিশ্লেষিত হয়ে তীব্র ক্ষার উৎপন্ন করে। এজন্য এ জাতীয় এসিড ক্ষারকের প্রশমন বিন্দুতে pH এর মান 7 এর উপরে (8-10) থাকে। এ পরিসরে ফেনলফথ্যালিন বিয়োজিত হয়। ফলে মৃদু এসিড COOH তীব্র ক্ষার NaOH এর টাইট্রেশনে ফেনলথ্যালিন উৎকৃষ্ট নির্দেশক।

১৮) $HCl(aq) + NaOH(aq) \rightarrow NaCl(aq) + H_2O(l)$ বিক্রিয়াটি জারণ-বিজারণ বিক্রিয়া নয় কেন?

<mark>উ:</mark> যে সকল বিক্রিয়ায় বিক্রিয়ক ও উৎপাদের জারণ সংখ্যা হ্রাস বৃদ্ধি ঘটে, সে সকল বিক্রিয়াকে জারণ-বিজারণ বিক্রিয়া বলে।

জারণ-বিজারণ বিক্রিয়ায় জারক ইলেকট্রন গ্রহণ করে এবং বিজারক ইলেকট্রন ত্যাগ করে। এতে জারকের জারণ সংখ্যা হ্রাস পায় এবং বিজারকের জারণ সংখ্যা বৃদ্ধি পায়। NaOH এবং HCl যৌগদ্বয় যথাক্রমে ক্ষার এবং অম্ল। অম্ল ও ক্ষার বিক্রিয়া করে লবণ ও পানি উৎপন্ন করে। অম্ল ও ক্ষার হতে প্রাপ্ত আয়ন ইলেকট্রন আদান প্রদান না করায় এদের জারণ সংখ্যার পরিবর্তন ঘটে না। তাই বিক্রিয়াটি জারণ-বিজারণ বিক্রিয়া নয়।

১৯) Ca(OCl)Cl যৌগের দুটি Cl পরমাণুর জারণ সংখ্যা এক নয় কেন?

উ: Ca(OCl)Cl যৌগে দুটি Cl পরমাণুর জারণ সংখ্যা এক নয়। কারণ Ca(OCl)Cl যৌগটি বিভিন্ন বিকারকের সাথে বিক্রিয়াকালে Cl পরমাণুর ভিন্ন ভিন্ন (+1,-1) জারণ অবস্থা প্রকাশ করে।

যেমন: Ca(OCl)Cl এর সাথে পানির বিক্রিয়া লক্ষ্য করা যাক-

$$2Ca(OCl)Cl + H_2O + CO_2 \longrightarrow CaCO_3 + CaCl_2 + 2HClO$$
 একারণে $Ca(OCl)Cl$ যৌগে Cl এর জারণ মান পরিবর্তিত হয়।

২০) Fe^{2+} জারক ও বিজারক উভয় হিসেবে ক্রিয়া করে- ব্যাখ্যা করো।

<mark>উ:</mark> Fe^{2+} আয়ন দারা ইলেকট্রন গ্রহণ এবং বর্জন উভয় সম্ভব। এজন্য এটি জারক ও বিজারক উভয় হিসেবে কাজ করে।

$$Fe^{2+}(aq) - e^- \to Fe^{3+}(aq)$$
 (বিজারক হিসেবে) $Fe^{2+}(aq) + 2e^- \to Fe(s)$ (জারক হিসেবে) সুতরাং Fe^{2+} জারক ও বিজারক উভয়রূপে কাজ করে।

<u>পরিমাণগত</u> রসায়ন

অনুধাবনমূলক

২১) $10\% \left(\frac{w}{v}\right) NaOH$ এর মোলারিটি কত?

উ: $10\% \left(\frac{w}{v}\right) NaOH$ এর দ্রবণের অর্থ হলো- 100~mL দ্রবণে NaOH এর পরিমাণ =10~g আমরা জানি.

$$S = \frac{w \times 1000}{MV} = \frac{10 \times 1000}{40 \times 100} = 2.5 M$$

অতএব, NaOH এর মোলারিটি $2.5\ mol L^{-1}$ ।

এখানে, NaOH এর পরিমাণ, w=10~g NaOH এর আণবিক ভর, M=40 আয়তন, V=100~mL

২২) $10\%~H_2SO_4$ দ্রবণের মোলারিটিতে শক্তিমাত্রা কত?

উ: 10% H₂SO₄ দ্ৰবণ

অর্থাৎ 100~mL দ্রবণে H_2SO_4 আছে =10~g

$$\therefore~1000~mL$$
 দ্ৰবণে H_2SO_4 আছে $=rac{10 imes1000}{100}~g$ $=~100~g$

 H_2SO_4 -এর আণবিক ভর = 98

 $\therefore H_2 SO_4$ দ্রবণের ঘনমাত্রা $= \frac{100}{98} = 1.02 M$

২৩) MnO_4^- কে জারক বলা হয় কেন?

f v: কোনো পরমাণু, মূলক বা আয়ন ইলেকট্রন গ্রহণ করলে তাকে জারক বলে। MnO_4^- জারক রূপে ক্রিয়া করে:

$$Fe^{2+}(aq) \rightarrow Fe^{3+}(aq) + e^{-}$$

$$MnO_4^-(aq) + 8H^+(aq) + 5e^- \rightarrow Mn^{2+}(aq) + 4H_2O$$

সামগ্রিকভাবে
$$MnO_4^- + 5Fe^{2+}(aq) + 8H^+(aq) \rightarrow Mn^{2+} + 5Fe^{3+}(aq)$$

 $+4H_2O(l)$

এ বিক্রিয়ায় MnO_4^- ইলেকট্রন গ্রহণ করে বিজারিত হয়। সুতরাং MnO_4^- একটি জারক।

২৪) SO_4^{2-} এর প্রকৃতি ব্যাখ্যা কর।

<mark>উ:</mark> ${\rm SO_4^{\,2-}}$ যৌগ মূলকটি অম্লীয় প্রকৃতির। পানিতে দ্রবীভূত অবস্থায় পানির H^+ আয়নের সাথে যুক্ত হয়ে H_2SO_4 উৎপন্ন করে। যা নীল লিটমাসকে লাল করে।

$$2H^+ + SO_4^{2-} \rightarrow H_2SO_4$$

আবার, এটি ক্ষারের সাথে বিক্রিয়ায় লবণ উৎপন্ন করে।

$$NaOH + SO_4^{2-} \rightarrow Na_2SO_4 + OH^-$$

তাই, SO_4^{2-} অম্লীয় প্রকৃতির।

অনুধাবনমূলক

২৫) অ্যামোনিয়া একটি লুইস ক্ষারক ব্যাখ্যা করো।

উ: লুইস মতবাদ অনুসারে যে সকল যৌগ বা আয়ন তাদের নিঃসঙ্গ ইলেকট্রন জোড় অন্য যৌগ বা আয়নকে প্রদান করতে পারে তাদেরকে লুইস ক্ষারক বলে। NH_3 অণুতে N এর বহিঃস্থ শেলে ১টি ইলেকট্রনের মধ্যে তিনটি ইলেকট্রন হাইড্রোজেনের সাথে সমযোজী বন্ধনে আবদ্ধ থাকে এবং এক জোড়া ইলেকট্রন নিঃসঙ্গ অবস্থায় থেকে যায়। তাই NH_3 একটি লুইস ক্ষারক। যেমন-

২৬) কীভাবে $250\ mL\ 0.1 M\ Na_2 CO_3$ দ্রবণ তৈরি করা হয়?

উ: Na_2CO_3 এর আণবিক ভর $= 2 \times 23 + 12 + 16 \times 3 = 106$

 $\therefore 1000~mL~1M~Na_2CO_3$ দ্রবণে থাকে $106~g~Na_2CO_3$

 $\therefore 1 \ mL$ $1M \ Na_2CO_3$ দ্ৰবণে থাকে $=\frac{106}{1000} \ g \ Na_2CO_3$

 $\therefore 250 \ mL$ $1M \ Na_2CO_3$ দ্ৰবণে থাকে $= \frac{\frac{106 \times 250 \times 0.1}{1000}}{1000} \ g \ Na_2CO_3$ $= 2.65 \ g \ Na_2CO_3$

অতএব, $250\ mL$ পানিতে $2.65\ g\ Na_2CO_3$ মিশালে $250\ mL\ 0.1M\ Na_2CO_3$ দ্রবণ তৈরি হবে।

২৭) গাঢ় H_2SO_4 প্রাইমারি স্ট্যান্ডার্ড পদার্থ নয় কেন?

উ: H_2SO_4 বায়ুতে উন্মুক্ত রাখলে সহজেই বায়ুর উপাদান যেমন, O_2 , CO_2 বা জলীয় বাষ্পদারা আক্রান্ত হয়ে পরিবর্তিত হয়ে যায়। একারণে H_2SO_4 কে প্রাইমারী স্ট্যান্ডার্ড পদার্থ বলা হয় না।

না। ২৮) $K_2 C r_2 O_7$ কে প্রাইমারি স্ট্যান্ডার্ড পদার্থ বলা হয় কেন?

উ: পটাসিয়াম ডাইক্রোমেট $(K_2Cr_2O_7)$ বিশুদ্ধ অবস্থায় পাওয়া যায়। বায়ুর সংস্পর্শে অপরিবর্তিত থাকে অর্থাৎ বায়ুস্থ CO_2 ও O_2 এবং জলীয় বাষ্প দ্বারা আক্রান্ত হয় না। রাসায়নিক নিজ্তিতে সঠিকভাবে ভর মেপে প্রমাণ দ্রবণ প্রস্তুত করা যায়। প্রস্তুত প্রমাণ দ্রবণের ঘনমাত্রা অনেকদিন পর্যন্ত অপরিবর্তিত থাকে, তাই পটাসিয়াম ডাইক্রোমেট $(K_2Cr_2O_7)$ কে প্রাইমারি স্ট্যান্ডার্ড পদার্থ বলা হয়।

অনুধাবনমূলক

২৯) HNO_3 অপেক্ষা H_3PO_4 দুর্বল এসিড কেন?

উ: আমরা জানি, অক্সি এসিডসমূহের ক্ষেত্রে যার কেন্দ্রীয় পরমাণুর ধনাত্মক জারণ সংখ্যা যত বেশি তার তীব্রতাও ততো বেশি হয়। আবার ধনাত্মক জারণ সংখ্যার মান সমান হলে যে পরমাণুর আকার ছোট তার তীব্রতা বেশি হয়।

$$^{+5}_{HNO_3}$$
 $^{+5}_{H_3PO_4}$

 HNO_3 ও H_3PO_4 এর ক্ষেত্রে কেন্দ্রীয় প্রমাণু নাইট্রোজেন ও ফসফরাসের ধনাত্মক জারণ সংখ্যার মান সমান। কিন্তু নাইট্রোজেনের আকার ফসফরাস অপেক্ষা ছোট বিধায় এতে চার্জ ঘনত্ব বেশি। তাই স্বভাবতই HNO_3 এর তীব্রতা H_3PO_4 অপেক্ষা অধিক হয়। তাই, HNO_3 অপেক্ষা H_3PO_4 দুর্বল এসিড

৩০) $S_2 O_3^{\; 2-}$ একটি বিজারক পদার্থ ব্যাখ্যা করো।

<mark>উ:</mark> যেসব মৌল, মূলক বা আয়ন বিক্রিয়া কালে ইলেকট্রন বর্জন বা ত্যাগ করে তাদেরকে বিজারক বলে।

 $S_2 O_3^{\ 2-}$ আয়ন একটি বিজারক কারণ বিক্রিয়াকালে দুটি ইলেকট্রন ত্যাগ করে $S_4 O_6^{\ 2-}$ আয়ন গঠন করে ।

$$S_2 O_3^{\ 2-} - 2e^- o S_4 O_6^{\ 2-}$$
 [জারণ বিক্রিয়া]

৩১) HS⁻ উভধর্মী কেন?

<mark>উ:</mark> যেসব যৌগ ও আয়ন অবস্থাভেদে অপর বিক্রিয়কের প্রকৃতির উপর নির্ভর করে একাধিক বিক্রিয়ায় অম্ল ও ক্ষারক উভয়রূপে ক্রিয়া করে তাদের উভধর্মী যৌগ বা আয়ন বলে। HS^- আয়নটি উভধর্মী। কারণ এটি অম্ল ও ক্ষার উভয়রূপে বিক্রিয়া করে।

অম্লরূপে: $HS^- + NH_3 \rightleftharpoons NH_4^+ + S^{2-}$ ফারকরূপে: $HS^- + HCl \rightleftharpoons H_2S + Cl^-$

৩২) তড়িৎবিশ্লেষণ জারণ বিজারণ বিক্রিয়া ব্যাখ্যা কর।

উ: বিগলিত ও জলীয় দ্রবণের তড়িৎ বিশ্লেষণের সময় জারণ-বিজারণ বিক্রিয়া সংঘটিত হয়। জারণ-বিজারণের আধুনিক মতবাদ অনুসারে ইলেকট্রন দান এবং ইলেকট্রন গ্রহণ করলে বিজারণ ঘটে। যেমন- NaCl ও এর তড়িৎবিশ্লেষণের সময় দ্রবণে Na^+ ও Cl^- আয়ন থাকে। বিদ্যুৎ প্রবাহের সময় Na^+ ক্যাথোড দ্বারা আকৃষ্ট হয় এবং Cl^- অ্যানোড দ্বারা আকৃষ্ট হয়। ক্যাথোডে Na^+ ইলেকট্রন গ্রহণ কর বিজারিত এবং অ্যানোডে Cl^- ইলেকট্রন দান করে জারিত হয়।

ক্যাথোড বিক্রিয়া: $Na^+ + e^- \rightarrow Na$ (বিজারণ) অ্যানোড বিক্রিয়া: $Cl^- - e^- \rightarrow Cl$ (জারণ) $Cl + Cl \rightarrow Cl_2$

অনুধাবনমূলক

৩৩) অনুবন্ধী অম্ল-ক্ষারক মতবাদ উদাহরণসহ লিখ।

<mark>উ:</mark> কোনো ক্ষারকের সাথে একটি প্রোটন সংযোগের ফলে যে অম্লের সৃষ্টি হয় তাকে সে ক্ষারকের অনুবন্ধী অম্ল বলা হয়। যেমন :

$$NH_3 + H^+ \rightleftharpoons NH_4^+$$

ক্ষারক প্রোটন অনুবন্ধী অম্ল

কোনো অম্ল থেকে একটি প্রোটন অপসারণের ফলে যে ক্ষারকের সৃষ্টি হয় তাকে সে অম্লের অনুবন্ধী ক্ষারক বলা হয়। যেমন :

$$HCl \rightleftharpoons H^+ + Cl^-$$

এসিড প্রোটন অনুবন্ধী ক্ষারক

৩৪) আদর্শ গ্যাসের সমীকরণটি প্রতিপাদন করো।

<mark>উ:</mark> বয়েলের সূত্র থেকে আমরা জানি, স্থির কোনো গ্যাসের আয়তন ঐ গ্যাসের উপর প্রযুক্ত চাপের ব্যস্তানুপাতিক।

অর্থাৎ $V \propto \frac{1}{P}$ যেখানে, V= গ্যাসের আয়তন ও P= গ্যাসের চাপ।

স্থিরচাপে নির্দিষ্ট ভরের কোনো গ্যাসের আয়নত ঐ তাপমাত্রার সমানুপাতিক।

চার্লসের সূত্র থেকে পাই,

যদি তাপমাত্রা T হয় তাহলে, $V \propto T$

স্থির চাপে ও তাপমাত্রায় নির্দিষ্ট ভরের কোনো গ্যাসের আয়তন তার অণুর সংখ্যার সমানুপাতিক। এবং অ্যাভোগেড্রোর সূত্র হতে পাই,

 $V \propto n$ এখানে, n = মোল সংখ্যা

সুতরাং
$$V \propto \frac{1}{p} \times T \times n$$

বা,
$$V = K \frac{1}{P} \times T \times n$$

বা,
$$PV = KnT$$

K একটি সমানুপাতিক ধ্রুবক। সকল গ্যাসের জন্য K এর মান সমান। তাই একে সার্বজনীন মোলার গ্যাস ধ্রুবক বলে। একে সাধারণত R দ্বারা প্রকাশ করা হয়। তাহলে, আদর্শ গ্যাস সমীকরণ, PV=nRT।

৩৫) মৃদু এসিড ও তীব্র ক্ষারের টাইট্রেশনে নির্দেশক হিসেবে ফেনলফথ্যালিন ব্যবহৃত হয় ব্যাখ্যা কর।

উ: মৃদু এসিড ও শক্তিশালী ক্ষারের টাইট্রেশনে জলীয় দ্রবণে অসম শক্তির এসিড-ক্ষারের লবণ আর্দ্র বিশ্লেষিত হয়। তাই মৃদু অম্ল ও তীব্র ক্ষারকের বিক্রিয়ায় উৎপন্ন লবণ আর্দ্র বিশ্লেষিত হয়ে তীব্র ক্ষার উৎপন্ন করে। এজন্য এ জাতীয় এসিড-ক্ষারকের প্রশমন বিন্দুতে pH এর মান 7 এর উপরে (প্রায় 8-10) থাকে। এ পরিসরে ফেনলফথ্যালিন বিয়োজিত হয়। ফলে মৃদু অম্ল-শক্তিশালী ক্ষারের টাইট্রেশনে ফেনলফথ্যালিন একটি কার্যকরী নির্দেশক।

অনুধাবনমূলক

৩৬) ফেনফথ্যালিন নির্দেশক অম্লীয় দ্রবণে বরণীয় কিন্তু ক্ষার দ্রবণে গোলাপী বর্ণ ধারণ করে কেন?

উ: ফেনফথ্যালিন যখন আয়নিত অবস্থায় থাকে না তখন সে বর্ণহীন এবং ফেনফথ্যালিন যখন আয়নিত অবস্থায় থাকে তখন সে গোলাপী বর্ণের হয়।

$$HIn (aq) \longrightarrow H^+ + In^-$$
ফেনফথ্যালিন ফেনফথ্যালিন আয়ন (গোলাপী বর্ণ)
বর্ণহীন

প্রতিটি নির্দেশক একটি নির্দিষ্ট pH এ আয়নিত হয়ে বর্ণ পরিবর্তন করে। আর ফেনফথ্যালিন এর ক্ষেত্রে সেই pH এর মানের রেঞ্জ (8.3-10)। যেটি কিনা ক্ষারকের pH রেঞ্জে পড়েছে। তাই रकनकथानिन जन्नीय प्राप्त वर्णशैन वर्ष कातीय प्राप्त शानाशी वर्णत रहा।

৩৭) শতকরা হার হিসেবে কীভাবে দ্রবণের ঘনমাত্রা প্রকাশিত হয়?

উ: শতকরা হার হিসেবে দ্রবণের ঘনমাত্রা বিভিন্নভাবে প্রকাশিত করা হয়। প্রচলিত তিনটি পদ্ধতি হলো :

(i) ভর %
$$\left(\frac{w}{w}\right) = \frac{$$
 দ্রবের ভর $\times 100\%$

(ii) আয়তন %
$$\left(\frac{v}{V}\right) = \frac{$$
দ্রবের আয়তন $\times 100\%$

(ii) আয়তন %
$$\left(\frac{v}{v}\right) = \frac{\text{দ্রবের আয়তন}}{\text{দ্রবের আয়তন}} \times 100\%$$
(iii) ভর/আয়তন % $\left(\frac{w}{v}\right) = \frac{\text{দ্রবের ভর, } g}{\text{দ্রবের আয়তন,} mL} \times 100\%$

৩৮) একটি কৃত্রিম ঘি'র 30 g নমুনায় $0.06 \ g$ নিকেল আছে। নমুনাটিতে নিকেলের ঘনমাত্রা ppm এককে হিসাব করো।

উ: w/w এককে ppm (parts per million) অর্থ প্রতি কেজি দ্রবণে যত মিলিগ্রাম দ্রব দ্রবীভূত থাকে।

এখানে, দ্রবণ কৃত্রিম ঘি
$$=30~g$$

$$= 30 \times 10^{-3} \, kg$$

দ্রব নিকেলের পরিমাণ = 0.06 g

$$= 0.06 \times 10^3 \, mg$$

$$ppm$$
 এককে ঘনমাত্রা = $\frac{0.06 \times 10^3}{30 \times 10^{-3}} = 2000 \ ppm$

৩৯) $0.001M\ Pb(NO_3)_2$ দ্রবণে Pb^{2+} আয়নের পরিমাণ ppm এককে কত?

উ:
$$Pb(NO_3)_2$$
 এর আণবিক ভর $=331~g$ ppm এককে ঘনমাত্রা $=$ মোলার ঘনমাত্রা $imes$ আণবিক ভর $imes 10^3$

$$\therefore 0.001M \ Pb(NO_3)_2 = 0.001 \times 331 \times 10^3 \ ppm \ Pb(NO_3)_2$$

$$= 331 \ ppm \ Pb^{2+}$$

অনুধাবনমূলক

80) $10\%~Na_2CO_3$ দ্রবর্ণের ঘনমাত্রাকে মোলার ঘনমাত্রায় প্রকাশ কর।

উ: $10\%\ Na_2CO_3$ -এর অর্থ হলো $100\ mL$ দ্রবণে Na_2CO_3 আছে $10\ g$ । Na_2CO_3 এর

আণবিক ভর, M=106~g/mol। আমরা জানি.

$$S = \frac{1000 W}{MV}$$

$$= \frac{1000 \times 10}{106 \times 100}$$

$$= 0.943 M$$

এখানে,
$$M=106~g/mol$$
 $V=100~mL$
 $W=10~g$
 $S=?$

৪১) কীভাবে $1.5\%~H_2SO_4$ দ্রবণকে ppm এ রূপান্তর করবে?

উ: $1.5\% H_2SO_4$ বলতে বুঝায়,

100~mL দ্রবণে আছে $1.5~g~H_2SO_4$

 $1000 \ mL$ বা 1 L দ্ৰবণে আছে $\frac{1.5 \times 1000}{100} \ g \ H_2 SO_4$ $= 15 \ g \ H_2 SO_4$

 $= 15000 mg H_2 SO_4$

৪২) অনার্দ্র Na_2CO_3 দ্রবণের ঘনমাত্রা দীর্ঘদিন অপরিবর্তিত থাকে- ব্যাখ্যা কর।

উ: যে সকল পদার্থ প্রকৃতিতে বিশুদ্ধভাবে পাওয়া যায় তাকে প্রাইমারি স্ট্যান্ডার্ড পদার্থ বলে। এ ধরনের পদার্থ বাতাসের জলীয়বাষ্প, কার্বন ডাইঅক্সাইড, অক্সিজেন দ্বারা আক্রান্ত হয় না। Na_2CO_3 কেলাসকে দীর্ঘদিন বাতাসে উন্মুক্ত রেখে দিলেও বিশুদ্ধ থাকে। একে সরাসরি নিজ্তিতে ওজন করে প্রমাণ দ্রবণ তৈরি করা যায় এবং এই প্রমাণ দ্রবণের ঘনমাত্রা সময়ের সাথে কোন পরিবর্তন হয় না। তাই Na_2CO_3 কে প্রাইমারি স্ট্যান্ডার্ড পদার্থ বলে। যেহেতু অনার্দ্র Na_2CO_3 একটি প্রাইমারী স্ট্যান্ডার্ড পদার্থ তাই এর ঘনমাত্রা দীর্ঘদিন অপরিবর্তিত থাকে।

অনুধাবনমূলক

৪৩) আদর্শ পানির TDS Value 500 ppm বলতে কী বুঝ?

উ: TDS বা Total Dissolved Solid হলো পানিতে দ্রবীভূত কঠিন পদার্থের মোট পরিমাণ। পানিতে দ্রবীভূত কঠিন উপাদানের মধ্যে উল্লেখযোগ্য হলো- $Ca^+, Mg^+, Al^{3+}, Na^+, K^+$ । এছাড়াও $CO_3^{2-}, HCO_3^-, Cl^-, SO_4^{2-}, NO_3^-$ এবং Pb^{2+}, Cd^{2+}, As^+ ইত্যাদি। পানের জন্য আদর্শ বা সুপেয় পানিতে এইগুলি দ্রবীভূত কঠিন পদার্থের মোট পরিমাণ প্রতি লিটারে 500~mg এর নিচে তথা 500~ppm এর নিচে থাকতে হবে।

88) জারণ সংখ্যা ও যোজনীর মধ্যে পার্থক্য কী?

<mark>উ:</mark> জারণ সংখ্যা এবং যোজনী আপাত দৃষ্টিতে একই মনে হলেও এদের মাঝে অনেক পার্থক্য বিদ্যমান। যেমন-

	জারণ সংখ্যা	যোজনী
i.	ইলেকট্রন ত্যাগ বা গ্রহণের ফলে পরমাণুতে সৃষ্ট ধনাত্মক বা ঋণাত্মক চার্জের সংখ্যাকেই জারণ সংখ্যা বলে।	একটি মৌলের পরমাণুর সাথে অন্য মৌলের পরমাণু যুক্ত হওয়ার ক্ষমতাই হচ্ছে যোজনী।
ii.	জারণ সংখ্যা ধনাত্মক বা ঋণাত্মক হতে পারে।	যোজনী সব সময় ধনাত্মক।
iii.	জারণ সংখ্যা ভগ্নাংশ কিংবা পূর্ণ সংখ্যা উভয়ই হতে পারে।	যোজনী সবসময় পূর্ণ সংখ্যা।

□ জ্ঞান ও অনুধাবনের কিছু গুরুত্বপূর্ণ টপিক/প্রশ্ন

প্রমাণ দ্রবণ

জারণ সংখ্যা

তড়িৎ বিশ্লেষণ একটি জারণ বিজারণ প্রক্রিয়া

 $Na_2S_2O_3$ তে S এর জারণ সংখ্যা

 $KMnO_4$, $K_2Cr_2O_7$ জারক হওয়ার কারণ

জ্ঞানমূলক

ফ্যারাডের তড়িৎ বিশ্লেষণের প্রথম সূত্রটি লেখো।

[ঢা. বো. '১৯; সকল বোর্ড '১৮]

উ: তড়িৎ বিশ্লেষণের সময় যে কোনো তড়িৎদ্বারে সংঘটিত রাসায়নিক বিক্রিয়ার পরিমাণ অর্থাৎ কোনো তড়িৎদ্বারে সঞ্চিত বা দ্রবীভূত পদার্থের পরিমাণ প্রবাহিত বিদ্যুতের পরিমাণের সমানুপাতিক।

২) তড়িচ্চালক বল বা e.m.f কী?

[য. বো. '১৯; চ. বো. '১৭]

<mark>উ:</mark> বৈদ্যুতিক সার্কিট খোলা থাকা অবস্থায় তড়িদদ্বার দুটির মধ্যে যে বিভব পার্থক্য দেখা যায় তাকেই কোষের তড়িচ্চালক বল বলা হয়।

৩) তড়িৎ রাসায়নিক তুল্যাঙ্ক কী?

[চ. বো. '১৫]

উ: তড়িৎ বিশ্লেষণের সময় এক কুলম্ব বিদ্যুৎ প্রবাহের ফলে কোনো পদার্থের যত পরিমাণ অ্যানোডে দ্রবীভূত বা ক্যাথোডে সঞ্চিত হয় সে পরিমাণই সেই পদার্থের তড়িৎ রাসায়নিক তুল্যাঙ্ক।

৪) ফ্যারাডে ধ্রুবক কী?

[সি. বো. '১৭]

<mark>উ:</mark> ফ্যারাডের সূত্র মতে, এক মোল একক ধনাত্মক আয়নকে চার্জমুক্ত করতে এক মোল ইলেকট্রনের প্রয়োজন। প্রতি মোল ইলেকট্রন প্রবাহ দ্বারা যে মোট ঋণাত্মক বিদ্যুৎ চার্জ উৎপন্ন হয়, তাকে ফ্যারাডে ধ্রুবক বলে।

৫) লবণ সেতু কী?

উ: যে ব্যবস্থায় দুটি অর্ধকোষের মধ্যে পরোক্ষ সংযোগের জন্য একটি বিশেষ লবণ যেমন- KCI বা KNO, এর সম্পৃক্ত দ্রবণ ভর্তি U-আকৃতির কাচনলের উভয় মুখকে তুলা দ্বারা বন্ধ করে অর্ধকোষদ্বয়ের উভয় তরলের মধ্যে ডুবিয়ে রাখা হয় তাই লবণ সেতু।

৬) আপেক্ষিক পরিবাহিতা কী?

<mark>উ:</mark> কোনো দ্রবণের রোধ নির্ণয় করে উক্ত রোধের বিপরীত সংখ্যা নিলে দ্রবণটির যে পরিবাহিতা পাওয়া যায়, তাকেই আপেক্ষিক পরিবাহিতা বলে।

৭) ধাতুর সক্রিয়তা সিরিজ কী?

উ: বিভিন্ন ধাতু এবং তাদের আয়নের দ্রবণের মধ্যে বিজারণ বিভবের ক্রমবর্ধমান মান অনুসারে মৌলগুলোকে পরপর একটি শ্রেণিতে সাজালে যে শ্রেণি বা সিরিজ পাওয়া যায়, তাকে ধাতুর সক্রিয়তা সিরিজ বলে।

৮) অসমোটিক চাপ কী?

[নটর ডেম কলেজ, ঢাকা]

উ: একই সঙ্গে কোনো ধাতু বা হাইড্রোজেনকে তাদের নিজেদের আয়নের দ্রবণে স্থাপন করা হলে ধাতু অথবা হাইড্রোজেন গ্যাসের দ্রবণে যাওয়ার প্রবণতা বিপরীতমুখী একটি চাপ দ্বারা বাধাপ্রাপ্ত হয়। দ্রবণের এ বিপরীতমুখী চাপকে দ্রবণের অসমোটিক চাপ বলে।

জ্ঞানমূলক

৯) তড়িৎবিশ্লেষ্য কোষ কাকে বলে?

<mark>উ:</mark> যে কোষে একটি গলিত বা দ্রবীভূত তড়িৎ বিশ্লেষ্য পদার্থের মধ্যদিয়ে বাইরের উৎস থেকে তড়িৎ প্রবাহিত করার ফলে রাসায়নিক বিক্রিয়া সংঘটিত হয় এবং একাধিক নতুন পদার্থে পরিণত হয় তাকে তড়িৎ বিশ্লেষ্য কোষ বলে।

১০) মৃদু তড়িৎবিশ্লেষ্য কোষ কী?

উ: যে সকল তড়িৎবিশ্লেষ্য পদার্থ দ্রবণে আংশিক আয়নিত অবস্থায় থাকে তাদেরকে মৃদু তড়িৎ বিশ্লেষ্য কোষ বলে।

১১) তীব্র তড়িৎবিশ্লেষ্য পদার্থ কাকে বলে?

উ: যে সকল তড়িৎবিশ্লেষ্য পদার্থ দ্রবণে প্রায় সম্পূর্ণরূপে আয়নিত অবস্থায় থাকে তাদেরকে তীব্র তডিৎবিশ্লেষ্য পদার্থ বলা হয়।

১২) মোলার পরিবাহীতা কী?

<mark>উ:</mark> 1 মোল পরিমাণের দ্রবণকে 1 cm দূরত্বে থাকা ২টি উপযুক্ত তড়িৎদ্বারের মধ্যবর্তী স্থানে রাখলে সৃষ্ট তড়িৎ পরিবাহিতাকে মোলার পরিবাহীতা বলে ।

১৩) সিলভারের তড়িৎ রাসায়নিক তুল্যাঙ্ক $1.118 imes 10^{-3}$ বলতে কী বুঝ?

উ: সিলভারের তড়িৎ রাসায়নিক তুল্যাঙ্ক $1.118 \times 10^{-3} \ \mathrm{g} coul^{-1}$ বলতে বুঝায়, তড়িৎ বিশ্লেষণের সময় এক কুলম্ব বিদ্যুৎ প্রবাহের ফলে সিলভারের $1.118 \times 10^{-3} \ \mathrm{g}$ অ্যানোডে দ্রবীভূত বা ক্যাথোডে সঞ্চিত হয়।

১৪) তড়িৎ রাসায়নিক তুল্যভর কী?

[চ. বো. '১৫]

উ: কোনো পদার্থের তড়িৎ বিশ্লেষণের মাধ্যমে এক সেকেন্ডে এক অ্যাম্পিয়ার তড়িৎ চালনা করলে কোনো তড়িৎদ্বারে যে পরিমাণ পদার্থ জমা হয়, তাকে ঐ পদার্থের তড়িৎ রাসায়নিক তুল্যভর বলে।

১৫) প্রমাণ জারণ-বিজারণ বিভব কী?

উ: প্রমাণ অবস্থায় অ্যানোডের বিভব তথা জারণ তড়িৎদ্বার বিভবকে প্রমাণ জারণ বিভব বলে। প্রমাণ অবস্থায় ক্যাথোডের বিভব তথা বিজারণ তড়িৎদ্বার বিভবকে প্রমাণ **জারণ-বিজারণ** বিভব বলে।

১৬) প্রমাণ তড়িৎদার বিভব কী?

[চ. বো. '১৯]

<mark>উ:</mark> প্রমাণ অবস্থায় অর্থাৎ 25°C তাপমাত্রায় 1M ঘনমাত্রা বিশিষ্ট তড়িৎ বিশ্লেষ্যের সাথে তড়িৎদ্বারের যে বিভব পার্থক্যের সৃষ্টি হয় তাকে প্রমাণ তড়িৎদ্বার বিভব বলে।

জ্ঞানমূলক

১৭) জারণ বিভব কী?

<mark>উ:</mark> জারণ বিভব হলো অ্যানোডে ইলেকট্রন বর্জনের ফলে অ্যানোড ও সংশ্লিষ্ট তড়িৎ বিশ্লেষ্যের সংযোগস্থলে উৎপন্ন বিভব পার্থক্য।

১৮) বিজারণ বিভব কাকে বলে?

<mark>উ:</mark> বিজারণ বিভব হলো ইলেকট্রন গৃহীত হয়ে বিজারণ ঘটলে যে পরিমাণ শক্তি বিমুক্ত হয় তার। পরিমাণ।

১৯) Redox বিক্রিয়া কী?

উ: যে বিক্রিয়ায় জারণ-বিজারণ বিক্রিয়া একই সাথে সংঘটিত হয় তাকে Redox বিক্রিয়া বলে।

২০) রেফারেন্স বা নির্দেশক তড়িৎদার কী?

[ঢা. বো., দি. বো. '১৭]

উ: কোনো একক তড়িৎদ্বারের বিভব নির্ণয়ের জন্য একে তড়িৎদ্বার বিভব জানা আছে এ রকম যে তড়িৎদ্বারের সঙ্গে সংযোগ স্থাপন করে তড়িৎ রাসায়নিক কোষ গঠন করা হয় তাকে রেফারেন্স তডিৎদ্বার বলে।

২১) অর্ধকোষ কী?

<mark>উ:</mark> কোনো তড়িৎ রাসায়নিক কোষের তড়িৎদ্বার এবং তড়িতবিশ্লেষ্য সংলগ্ন যুগলকে একত্রে অর্ধকোষ বলে।

২২) প্রমাণ হাইড্রোজেন তড়িৎদার কাকে বলে?

উ: একক সক্রিয়তাবিশিষ্ট অর্থাৎ $1 \ mol L^{-1}$ ঘনমাত্রার H^+ আয়নের দ্রবণে প্লাটিনাম ধাতুর গুঁড়ার আস্তরণ যুক্ত প্লাটিনাম পাত রেখে তাতে $298 \ K$ তাপমাত্রায় ও $1 \ atm$ চাপে বিশুদ্ধ হাইড্রোজেন গ্যাস বুদবুদ আকারে চালনা করার ফলে সৃষ্ট তড়িদ্বারকে প্রমাণ হাইড্রোজেন তড়িদ্বার বলে।

২৩) "প্রমাণ হাইড্রোজেন তড়িৎদার" এর তড়িৎদার বিভব কত?

উ: "প্রমাণ হাইড্রোজেন তড়িৎদ্বার" এর তড়িৎদ্বার বিভব $0\ V$ ।

২৪) S.H.E এর পূর্ণরূপ কী?

উ: S.H.E এর পূর্ণরূপ Standard Hydrogen Electrode.

২৫) সেকেন্ডারি কোষ কী?

উ: যে তড়িৎ রাসায়নিক কোমে বাহির থেকে বিদ্যুৎ প্রবাহিত করে বিদ্যুৎ শক্তিকে রাসায়নিক শক্তিরূপে সঞ্চিত করা হয় এবং পরে ঐ রাসায়নিক শক্তিকে পুনরায় বিদ্যুৎ শক্তিতে রূপান্তরিত করা হয়, তাকে গৌণ বা সেকেন্ডারি বা সঞ্চয়ী কোষ বলে।

জ্ঞানমূলক

২৬) ইলেকট্রোপ্লেটিং কী?

<mark>উ:</mark> তড়িৎবিশ্লেষ্য বা ইলেক্ট্রোলাইসিস এর মাধ্যমে একটি ধাতুর তৈরি জিনিসের উপর অন্য একটি কম সক্রিয় ধাতুর প্রলেপ সৃষ্টি করাকে ইলেকট্রোপ্লেটিং বা তড়িৎ প্রলেপন বলে।

২৭) এক কুলম্ব কী?

উ: কোনো পরিবাহীর মধ্য দিয়ে 1.0 সেকেন্ড যাবৎ 1.0 অ্যাম্পিয়ার তড়িৎ প্রবাহের ফলে প্রবাহিত মোট তড়িৎ চার্জের পরিমাণকে এক কুলম্ব তড়িৎ প্রবাহ বলে।

২৮) SOFC কী?

উ: SOFC হলো Solid Acid Fuel Cell.

২৯) ফুয়েল সেল কী?

<mark>উ:</mark> ফুয়েল সেল এক প্রকার গ্যালভানিক কোষ এবং এতে বিক্রিয়ক হিসেবে H_2 গ্যাস বা মিথানল (CH_3OH) ইত্যাদি ব্যবহার করা হয়।

৩০) অর্ধকোষ কী?

<mark>উ:</mark> একটি পূর্ণাঙ্গ কোষের এক একটি তড়িদদ্বার ও তড়িৎবিশ্লেষ্যের যুগলই অর্ধকোষ নামে পরিচিত।

৩১) জারণ অর্ধকোষ কী?

উ: জারণ অর্ধকোষ হলো ঐ সকল অর্ধকোষ যেখানে একটি ধাতব দণ্ডকে তার দ্রবণে নিমজ্জিত করলে ধাতব দণ্ডটি ইলেকট্রন ত্যাগ করে জারিত হয়।

৩২) তড়িদদার বা ইলেকট্রোড কী?

উ: তড়িদদ্বার হলো দ্রবীভূত তড়িৎবিশ্লেষ্য পদার্থের মধ্যে নিমজ্জিতধাতব পাত বা দণ্ড।

অনুধাবনমূলক

১) তড়িৎ বিশ্লেষণ একটি রেডক্স বিক্রিয়া ব্যাখ্যা করো।

সকল বোর্ড '১৮]

উ: তড়িৎ বিশ্লেষণ একটি রেডক্স বিক্রিয়া, কারণ তড়িৎ বিশ্লেষণ প্রক্রিয়ায় অ্যানোডে জারণ এবং ক্যাথোডে বিজারণ বিক্রিয়া সংঘটিত তথা সক্রিয়তা হ্রাস পায়। হয়। গলিত NaCl দ্রবণে Na^+ ও Cl^- আয়ন হিসেবে থাকে। বিদ্যুৎ চালনা করলে Cl^- অ্যানোডে গিয়ে ইলেকট্রন ত্যাগ করে জারিত হয় এবং Na^+ ক্যাথোড হতে সেই ইলেকট্রন গ্রহণ করে বিজারিত হয়।

অ্যানোড বিক্রিয়া: $Cl^--e^ightarrow rac{1}{2}Cl_2$ (জারণ)

ক্যাথোড বিক্রিয়া: $Na^+ + e^- \rightarrow Na$ (বিজারণ)

এই ইলেকট্রন বর্জন-গ্রহণ একই সাথে ঘটতে থাকে। সুতরাং তড়িৎ বিশ্লেষণ একটি জারণ-বিজারণ বা রেডক্স বিক্রিয়া।

২) ডেনিয়েল সেলে 'Zn' বিজারক হিসেবে কাজ করে কেন?

[সি. বো. '১৯]

উ: গ্যালভানিক কোষের অ্যানোডে জারণ ও ক্যাথোডে বিজারণ ঘটে। আমরা জানি, যারা ইলেকট্রন ত্যাগ করে তারা বিজারক হিসেবে কাজ করে। এছাড়া আমরা জানি, তড়িৎ রাসায়নিক সিরিজে যে ধাতু যত উপরে অবস্থান করবে, তার ইলেকট্রন ত্যাগের প্রবণতা ততো বাড়বে। যেহেতু ডেনিয়েল সেলের Zn ধাতু ও Cu ধাতুর মধ্যে, Zn ধাতু তড়িৎ রাসায়নিক সিরিজে Cu ধাতুর চেয়ে উপরে অবস্থান করে, সেহেতু Zn ধাতুর ইলেকট্রন ত্যাগের প্রবণতা Cu এর চেয়ে বেশি হবে। আর এ কারণে ডেনিয়েল সেলে Zn ধাতু বিজারক হিসেবে কাজ করে।

৩) হাইড্রোজেন তড়িৎদারকে মূখ্য নির্দেশক তড়িৎদার বলা হয় কেন?

[কু. বো. '১৫]

উ: প্রমাণ হাইড্রোজেন তড়িৎদ্বার বিভবের মানকে সর্বসম্মতিক্রমে শূন্য ধরা হয়েছে। প্রমাণ হাইড্রোজেন তড়িৎদ্বারের বিভব জানা থাকায় এর সাথে অপর কোনো পরীক্ষণীয় তড়িৎদ্বার সংযোগ করে একটি রাসায়নিক কোষ গঠন করলে হাইড্রোজেন তড়িৎদ্বারের জানা বিভবের সাপেক্ষে পরীক্ষণীয় তড়িৎদ্বারটির বিভব নির্ণয় করা যায়। এজন্য হাইড্রোজেন তড়িৎদ্বারকে মূখ্য নির্দেশক তড়িৎদ্বার বলে।

8) তড়িৎ রাসায়নিক কোষে লবণ সেতু ব্যবহার করা হয় কেন?

[ব. বো. '১৭]

উ: তড়িৎ রাসায়নিক কোষে লবণ সেতু ব্যবহারের কারণ

- i. লবণ সেতু অর্ধকোষদ্বয়ের উভয় দ্রবণের মধ্যে সংযোগ স্থাপন করে কোষের বর্তনী পূর্ণ করে।
- ii. লবণ সেতুর মধ্যস্থ তড়িৎ বিশ্লেষ্য যেমন, KNO_3 উভয় অর্ধকোষের দ্রবণের সাথে কোন রাসায়নিক বিক্রিয়া করে না; বরং উভয় তরলের মধ্যে প্রয়োজনমত ধনাত্মক ও ঋণাত্মক আয়ন বিনিময়ের মাধ্যমরূপে কাজ করে।
- iii. লবণ সেতু উভয় অর্ধকোষের দ্রবণের তড়িৎ-নিরপেক্ষতা বজায় রাখতে কাজ করে।
- iv. লবণ সেতুর অভাবে উভয় অর্ধকোষে জারণ-বিজারণ ক্রিয়া বাধাপ্রাপ্ত হয়ে অল্প সময়ের মধ্যে কোষ বিক্রিয়া তথা বিদ্যুৎ প্রবাহ বন্ধ হয়ে যায়।

অনুধাবনমূলক

৫) জিংক ইলেকট্রোডের প্রমাণ জারণ বিভব $E^0_{Zn/Zn^{2+}} = +0.76~V$ বলতে কী বোঝায়? [দি. বো. '১৭]

উ: তড়িৎদার ও দ্রবণের সংযোগ স্থলে অ্যানোড কর্তৃক ইলেকট্রন ত্যাগের প্রবণতার ফলে যে বিভব পার্থক্যের সৃষ্টি হয় তাকে প্রমাণ জারণ বিভব বলে। জিংক ইলেকট্রোডের প্রমাণ জারণ বিভব $E^0_{Zn/Zn^{2+}} = +0.76\,V$ বলতে বোঝায়, 25^0C তাপমাত্রায় Zn ধাতব তড়িৎদারকে $ZnSO_4$ লবণের 1 মোলার ঘনমাত্রার দ্রবণে নিমজ্জিত করলে Zn তড়িৎদার ও $ZnSO_4$ দ্রবণের সংযোগ স্থলে যে জারণ বিভবের সৃষ্টি হয় তার মান হলো $0.76\,V$ ।

৬) গ্যালভানিক কোষ কয় প্রকোষ্ঠবিশিষ্ট কোষ? ব্যাখ্যা করো।

[কু. বো. '১৯]

উ: গ্যালভানিক কোষ দুই প্রকোষ্ঠ বিশিষ্ট। প্রতিটি প্রকোষ্ঠে একটি উপযুক্ত তড়িৎ বিশ্লেষ্য ও একটি ধাতব তড়িৎদার আংশিকভাবে ডুবানো থাকে। প্রতিটি পাত্রে ব্যবহৃত তড়িৎ বিশ্লেষ্য ও অর্ধ নিমজ্জিত তড়িৎদার সমন্বয়ে একটি অর্ধকোষ গঠিত হয়। তড়িৎ প্রবাহ চলাকালীন যে অর্ধকোষে জারণ ঘটে তাকে জারণ অর্ধকোষ ও যে অর্ধকোষে বিজারণ ঘটে তাকে বিজারণ অর্ধকোষ বলে। জারণ অর্ধকোষ থেকে নির্গত ইলেকট্রন বিজারণ অর্ধকোষ শোষিত হয়। অর্ধকোষ দুইটিকে লবণ সেতু বা কপার তার দ্বারা যুক্ত করলে তড়িৎ প্রবাহ শুরু হয়। যেমন- ড্যানিয়েল কোষ যার অর্ধকোষ দুইটি-

 $Zn(s)/ZnSO_4(aq)$ ও $Cu/CuSO_4(aq)$ সার্বিক কোষ সংকেত $Zn(s)/ZnSO_4(aq)$ ॥ $CuSO_4(aq)/Cu(s)$ । $Zn/ZnSO_4$ অর্থকোষে জারণ, $CuSO_4/Cu$ অর্থকোষে বিজারণ হয়।

৭) NaCl দ্রবণ তড়িৎ বিশ্লেষ্য পরিবাহী কেন?

[ঢা. বো. '১৯; কু. বো. '১৫]

<mark>উ:</mark> Na⁺Cl⁻ একটি আয়নিক কেলাসাকার যৌগ। জলীয় দ্রবণে *NaCl* লবণ সম্পূর্ণরূপে বিয়োজিত হয়ে ধনাত্মক Na⁺ ও Cl⁻ ঋণাত্মক আয়ন তৈরি করে। ধনাত্মক ও ঋণাত্মক আয়ন থাকায় এর মধ্য দিয়ে তড়িৎ প্রবাহিত করলে এরা বিদ্যুৎ পরিবহন করে নতুন পদার্থ তৈরি করে। সুতরাং *NaCl* দ্রবণ একটি তড়িৎ বিশ্লেষ্য পরিবাহী।

৮) এসিড মিশ্রিত পানিকে তড়িৎ বিশ্লেষ্য পরিবাহী বলা হয় কেন?

[চ. বো. '১৬]

<mark>উ:</mark> বিশুদ্ধ পানি তড়িৎ কুপরিবাহী। এই পানিতে অল্প পরিমাণ এসিড যোগ করলে এসিডের প্রভাবে তা H^+ এবং OH^- আয়নে বিশ্লিষ্ট হয়। এতে তড়িচ্চালক বল চালনা করলে ক্যাথোডে হাইড্রোজেন গ্যাস (H_2) এবং অ্যানোডে অক্সিজেন গ্যাস উৎপন্ন হয়। অর্থাৎ এসিড মিশ্রিত পানিতে আয়নের চলাচল বিদ্যমান থাকায় বিদ্যুৎ পরিবাহিত হয়।

 $2H^+ + 2e^- \rightarrow H_2(g)$ (ক্যাথোডে বিক্রিয়া)

 $40H^- o 2H_2O + O_2(g) + 4e^-$ (আনোডে বিক্রিয়া)

সুতরাং এসিড মিশ্রিত পানি তড়িৎ বিশ্লেষ্য পরিবাহী।

অনুধাবনমূলক

১৪) রাসায়নিক তুল্যাঙ্ক ও তড়িৎ রাসায়নিক তুল্যাংকের মধ্যে পার্থক্য লেখো।

উ: রাসায়নিক তুল্যাঙ্ক ও তড়িৎ রাসায়নিক তুল্যাঙ্কের মধ্যে পার্থক্য নিচে দেওয়া হলো-

	রাসায়নিক তুল্যাঙ্ক	তড়িৎ রাসায়নিক তুল্যাঙ্ক
i.	এক মোল হাইড্রোজেন আয়ন অথবা এক মোল ইলেকট্রনের সঙ্গে কোনো পদার্থের যত গ্রাম বিক্রিয়া করে তাকে ঐ পদার্থের তুল্য ভর বা রাসায়নিক তুল্যাঙ্ক বলে।	তড়িৎ বিশ্লেষণের সময় এক কুলম্ব বিদ্যুৎ প্রবাহের ফলে কোনো পদার্থের যত পরিমাণ ক্যাথোডে সঞ্চিত বা অ্যানোডে দ্রবীভূত হয়, তাকে সেই পদার্থের তড়িৎ রাসায়নিক তুল্যাঙ্ক বলে।
ii.	রাসায়নিক তুল্যাঙ্ককে Eq দ্বারা প্রকাশ করা হয় যা নরমাল দ্রবণ তৈরিতে ব্যবহৃত হয়।	তড়িৎ রাসায়নিক তুল্যাঙ্ককে Z দ্বারা প্রকাশ করা হয় যা ক্যাথোডে সঞ্চিত পদার্থের ভর নির্ণয়ের ক্ষেত্রে ব্যবহৃত হয়।

১৫) কপারের তড়িৎ রাসায়নিক তুল্যাঙ্ক $0.000329\ gC^{-1}$ বলতে কী বুঝায়?

উ: তড়িৎ বিশ্লেষণের সময় একটি তড়িৎ বিশ্লেষ্য পদার্থের দ্রবণে 1 কুলম্ব বিদ্যুৎ চার্জ প্রবাহিত করলে যত গ্রাম পদার্থ তড়িৎদ্বারে সঞ্চিত বা দ্রবীভূত হয় তাকে ঐ পদার্থের তড়িৎ রাসায়নিক তুল্যাঙ্ক বলে। সুতরাং Cu এর তড়িৎ রাসায়নিক তুল্যাঙ্ক $0.000329\ gC^{-1}$ বলতে বুঝায়, Cu এর তড়িৎ বিশ্লেষ্য দ্রবণে 1C চার্জ প্রবাহিত করলে $0.000329\ g$ কপার তড়িৎদ্বারে সঞ্চিত হবে।

১৬) i. Fe/Fe^{2+} ও ii. Zn/Zn^{2+} অর্ধকোষ দুটি দ্বারা কোষ সংকেত অঙ্কন করে কোষ বিক্রিয়া দেখাও।

উ: অ্যানোড অর্ধবিক্রিয়া : $Zn-2e^- o Zn^{2+}$

ক্যাথোড অর্ধবিক্রিয়া: $Fe^{2+} + 2e^- \rightarrow Fe$

কোষ বিক্রিয়া: $Zn+Fe^{2+}
ightarrow Zn^{2+}+Fe$

উপরিউক্ত কোষের কোষ ডায়াগ্রাম হলো $Zn/Zn^{2+} \parallel Fe^{2+}/Fe$ ।

১৭) কপার অপেক্ষা জিংক সক্রিয় কেন?

উ: যে ধাতুর সক্রিয়তার সিরিজ হতে দেখা যায়, যে ধাতুর অবস্থান যত উপরে তার সক্রিয়তা তথা জারণ বিভবের মান তত বেশি। অর্থাৎ এটি সহজে বিক্রিয়ায় ইলেকট্রন ত্যাগ করে ও জারণ ঘটায়। কপার ও জিংক এর তুলনায় জিংক এর জারণ বিভব বেশি হওয়ায় এটি ইলেকট্রন ত্যাগ করে জারিত হয়। এক্ষেত্রে নিম্নরূপ বিক্রিয়া সংঘটিত হয়।

 $Zn + Cu^{2+} \rightarrow Zn^{2+} + Cu$

বিজারক

অনুধাবনমূলক

১৮) তড়িৎ কোষ বিভব সংক্রান্ত নার্নস্ট সমীকরণটি লিখ।

উ: তড়িৎ কোষ বিভব সংক্রান্ত নার্নস্টের সমীকরণ হল:

$$E_{cell}=E_{cell}^0-rac{RT}{nF}lnrac{[$$
উৎপাদ আয়নের ঘনমাত্রা]} যেখানে,

 $E_{cell}=$ মোট কোষবিভব

 $E_{cell}^0=$ প্রমাণ কোষ বিভব

n = চার্জ আদান প্রদান

R = মোলার গ্যাস ধ্রুবক

T = তাপমাত্রা

F = ফ্যারাডের ধ্রুবক

১৯) তড়িৎ বিশ্লেষণ কোষ এবং গ্যালভানিক কোষের পার্থক্য লিখ।

উ:

	গ্যালভানিক কোষ	তড়িৎ বিশ্লেষ্য কোষ
i.	গ্যালভানিক কোষে রাসায়নিক শক্তি বিদ্যুৎ শক্তিতে রূপান্তরিত হয়।	তড়িৎবিশ্লেষ্য কোষে বিদ্যুৎ প্রবাহের ফলে রাসায়নিক বিক্রিয়া ঘটে।
ii.	এটি তড়িৎশক্তি উৎপাদী কোষ	এটি তড়িৎ শক্তিব্যয়ী কোষ।
iii.	তড়িৎদ্বারে অ্যানোড ঋণাত্মক ও ক্যাথোড ধনাত্মক হয়।	তড়িৎদ্বারে অ্যানোড ধনাত্মক ও ক্যাথোড ঋণাত্মক হয়।

২০) প্রমাণ বিজারণ বিভবের মান ঋণাত্মক বলতে কী বুঝ?

উ: কোনো মৌলের প্রমাণ বিজারণ বিভবের মান ঋণাত্মক হলে বুঝতে হবে যে হাইড্রোজেনের চেয়ে মৌলটির বিজারিত হওয়ার প্রবণতা কম কিন্তু জারিত হওয়ার প্রবণতা বেশি। যেমন, Ca এর প্রমাণ বিজারণ বিভবের মান ঋণাত্মক অর্থাৎ $-2.87\ Volt$ বলে Ca ধাতু সহজেই ইলেকট্রন ত্যাগ করে জারিত হয়।

$$Ca(s) \to Ca^{2+}(aq) + 2e^{-} \left[E_{Cu^{2+}/Cu}^{0} = -2.87 V \right]$$

অনুধাবনমূলক

২১) অর্ধকোষ উপস্থাপন ব্যাখ্যা করো।

<mark>উ:</mark> দুটি অর্ধকোষ নিয়ে সাধারণত একটি কোষ গঠিত হয়। কোষের এ অর্ধকোষ দুটিকে নিচের নিয়মে উপস্থাপন করতে হয়-

- i. ধাতু ও ধাতব আয়ন এর সংস্পর্শকে একটি তীর্যক রেখা দিয়ে প্রকাশ করা হয়। যেমন- $Fe/Fe^{2+};\ Ag/Ag^+$
- ii. অর্ধকোষে জারণ বিক্রিয়া সংঘটিত হলে প্রথমে ইলেকট্রোড ও পরে ইলেকট্রোলাইটিক আয়ন এবং বিজারণ বিক্রিয়া সংঘটিত হলে প্রথমে ইলেকট্রোলাইটিক আয়ন ও পরে ইলেকট্রোডকে উল্লেখ করতে হয়। ইলেকট্রোড হিসেবে নিদ্ধিয় ধাতু থাকলে তাও উল্লেখ করতে হয়।

$$Ag/Ag^+; Ag \to Ag^+ + e^-$$
 (জারণ) $Zn^{2+}/Zn; Zn^{2+} + 2e^- \to Zn$ (বিজারণ) $Pt, H_2/H^+; H_2 \to 2H^+ + 2e^-$ (জারণ)

২২) তড়িৎদার বিভবের উপর ঘনমাত্রা এবং তাপমাত্রার প্রভাব ব্যাখ্যা করো।

<mark>উ:</mark> তড়িৎ বিভবের মান দ্রবণের ঘনমাত্রা ও তাপমাত্রা দ্বারা প্রভাবিত হয় যা নার্নস্ট সমীকরণের সাহায্যে ব্যাখ্যা করা যায়। একটি জারণ অর্ধবিক্রিয়া M/M^{2+} এর জন্য সমীকরণ বিবেচনা করি।

$$M \rightarrow M^{n+} + ne^-$$
....(i)

(i) নং এর জন্য নার্নস্ট সমীকরণ হলোঃ

$$E_{M/M^{n+}}=E_{M/M^{n+}}^0-rac{2.303RT}{nF}\lograc{[M^{n+}]}{[M]}$$
..(ii) এখানে, R মোলার গ্যাস ধ্রুবক, $T=$ তাপমাত্রা $[M^{n+}]$ দ্রবণ M আয়নের ঘনমাত্রা

F =ফারাডে (96500C)

(ii) নং সমীকরণ থেকে সহজেই বুঝা যাচ্ছে $E_{M/M^{n+}}$ তড়িৎদ্বার বিভবের মান $[M^{n+}]$ এর ঘনমাত্রা ও তাপমাত্রা (T) দ্বারা প্রভাবিত হবে। অনুরুপভাবে বিজারণ বিভবও দ্রবণের ঘনমাত্রা ও তাপমাত্রা দ্বারা প্রভাবিত হবে। সুতরাং তড়িৎদ্বারের মান দ্রবণের ঘনমাত্রা ও তাপমাত্রা দ্বারা প্রভাবিত হয়।

২৩) লেড স্টোরেজ ব্যাটারী অপেক্ষা লিথিয়াম আয়ন ব্যাটারী বেশি সুবিধাজনক কেন?

- <mark>উ:</mark> লেড স্টোরেজ ব্যাটারী অপেক্ষা লিথিয়াম আয়ন ব্যাটারী বেশি সুবিধাজনক। এর কারণসমূহ নিম্নরূপ :
- i. লেড স্টোরেজ ব্যাটারী আকারে অনেক বড় ও ওজনে ভারী কিন্তু লিথিয়াম আয়ন ব্যাটারী ছোট ও হালকা।
- ii. লেড স্টোরেজ ব্যাটারী দুত চার্জ উপযোগী নয় কিন্তু লিথিয়াম আয়ন ব্যাটারী দ্রুত চার্জযোগ্য।
- iii. লেড স্টোরেজ ব্যাটারী পরিবেশ দূষণ ঘটায় কিন্তু লিথিয়াম আয়ন ব্যাটারী তুলনামূলক কম পরিবেশ দৃষণ ঘটায়।

অনুধাবনমূলক

২৪) প্রমাণ হাইড্রোজেন তড়িৎদ্বার কাকে বলে?

[চ. বো. '১৫, ১৭]

উ: একক সক্রিয়তা বিশিষ্ট অর্থাৎ 1 mole L^{-1} ঘনমাত্রার H^+ আয়নের দ্রবণে প্লাটিনাম ধাতুর গুড়ার আস্তরণযুক্ত প্লাটিনাম পাত রেখে তাতে 25°C তাপমাত্রায় ও 1 atm চাপে বিশুদ্ধ হাইড্রোজেন গ্যাস বুদবুদ আকারে সরবরাহের ফলে সৃষ্ট তড়িদ্বারকে প্রমাণ হাইড্রোজেন তড়িৎদ্বার বলে। প্রমাণ হাইড্রোজেন তড়িৎদ্বারকে নিম্নরুপে লিখা হয়:

 Pt, H_2 $(1 \ atm) \parallel H^+(1 \ M); \ E^0 = 0.0 \ V$ যে কোন তড়িৎদ্বারের বিভবের মান নির্ণয়ের জন্য মুখ্য বা প্রাইমারী নির্দেশক তড়িৎদ্বার হিসেবে প্রমাণ হাইড্রোজেন তড়িৎদ্বার ব্যবহার করা হয়।

২৫) সালফিউরিক এসিড দ্রবণকে তীব্র তড়িৎবিশ্লেষ্য বলে হয় কেন?

উ: সালফিউরিক এসিড একটি শক্তিশালী এসিড যা তার কেন্দ্রীয় পরমাণু S (সালফার) এর জারণ সংখ্যা (+6) থেকে বোঝা যায়। আবার, যেসব যৌগিক পদার্থ গলিত অবস্থায় দ্রাবকে দ্রবীভূত হয়ে তড়িৎ পরিবহন করে এবং তড়িৎ পরিবহনকালে রাসায়নিকভাবে বিয়োজিত হয়ে নতুন পদার্থ সৃষ্টি করে তাদেরকে তীব্র তড়িৎ বিশ্লেষ্য পদার্থ বলা হয়। সালফিউরিক এসিড শক্তিশালী হওয়ায় দ্রবণে দ্রুত আয়নিত হয়ে প্রোটন (H^+) উৎপন্ন করে।

 $H_2SO_4 \to 2H^+ + SO_4^{2-}$

যেঁহেতু H_2SO_4 দ্রুত আয়নিত হয়ে বিদ্যুৎ পরিবহনে সাহায্য করে, এ কারণে H_2SO_4 -এর দ্রুবণকে তীব্র তড়িৎ বিশ্লেষ্য বলা হয়।

২৬) ফ্যারাডের ২য় সূত্রটি লেখো।

উ: যদি বিভিন্ন তড়িৎ বিশ্লেষ্য পদার্থের মধ্য দিয়ে একই পরিমাণ বিদ্যুৎ প্রবাহিত করা হয়। তবে বিভিন্ন তড়িৎদ্বারে সঞ্চিত বা দ্রবীভূত পদার্থগুলোর ভরের পরিমাণ তাদের নিজ নিজ গ্রাম পরমাণু ভরকে সংশ্লিষ্ট আয়নের চার্জ সংখ্যা দিয়ে ভাগ করে যে ভাগফল পাওয়া যায়, তাদের সমানুপাতিক।

২৭) দেখাও যে, 1F = 96500 কুলম।

উ: আমরা জানি, এক মোল ইলেকট্রনের মোট চার্জের পরিমাণকে এক ফ্যারাডে বলে।

$$1 \ mol \ e^- = 6.02 \times 10^{23} \ \ e^-$$
 1 ট e^- এর চার্জ $= 1.6 \times 10^{-19} \ C$

$$\therefore 6.02 \times 10^{23}$$
 টি e^- এর চার্জ = $(1.6 \times 10^{-19} \times 6.02 \times 10^{23})C$
= $96320C$
 $\approx 96500C$

অনুধাবনমূলক

২৮) ফ্যারাডের সূত্রের ২টি সীমাবদ্ধতা লেখো।

উ: ফ্যারাডের সূত্রের ২টি সীমাবদ্ধতা হলো-

- i. ইলেকট্রনীয় পরিবাহীর ক্ষেত্রে যেহেতু কোনো রাসায়নিক পরিবর্তন বা বস্তুর স্থানান্তর ঘটে না, তাই এ পরিবাহীর ক্ষেত্রে ফ্যারাডের সূত্র প্রয়োগ করা যায় না।
- ii. তড়িৎ বিশ্লেষণে এক সঙ্গে একাধিক বিক্রিয়া সংঘটিত হলে ফ্যারাডের সূত্রের ক্রটি পরিলক্ষিত হয়।

২৯) তড়িৎ কোষের EMF বলতে কী বোঝ?

উ: তড়িৎ রাসায়নিক কোষের দুপ্রান্তে অ্যানোড ও ক্যাথোড তড়িৎদ্বার দুটির বিভব পার্থক্যের কারণে কোষে যে বিভব সৃষ্টি হয়ে এবং যার ফলে তড়িৎ চার্জ প্রবাহিত হয় তাকে EMF বলে।

৩০) NaCl এর জলীয় দ্রবণ তড়িৎ বিশ্লেষ্য পরিবাহী হয়, ব্যাখ্যা কর।

উ: যে সব যৌগ দ্রবীভূত অবস্থায় তাদের ধনাত্মক ও ঋণাত্মক আয়ন তড়িৎ পরিবহন করে এবং সেসাথে রাসায়নিক পরিবর্তন ঘটে তাদেরকে তড়িৎ বিশ্লেষ্য পরিবাহী পদার্থ বলে।

NaCl এর জলীয় দ্রবণে তড়িৎ বিশ্লেষ্য পরিবাহী হয় কারণ জলীয় NaCl এর মধ্য দিয়ে বিদ্যুৎ প্রবাহিত করলে ক্যাথোডে Na ধাতু এবং অ্যানোডে ক্লোরাইড গ্যাস উৎপন্ন হয়। অর্থাৎ, তড়িৎ পরিবহনে রাসায়নিক পরিবর্তন সংঘটিত হয়।

৩১) বিগলিত NaCl তড়িৎ পরিবাহিত করলেও কঠিন NaCl করে না কেন?

উ: বিগলিত NaCl এ কঠিন লবণ ভেঙে সোডিয়াম (Na^+) ও ক্লোরাইড (Cl^-) আয়নে পরিণত হয়। পরবর্তী এ আয়নসমূহ বিদ্যুৎ পরিবহন করে। কিন্তু কঠিন NaCl এ আয়ন সমূহ দৃঢ়ভাবে আবদ্ধ থাকে বিধায় তড়িৎ পরিবহন করে না। তাছাড়া NaCl ও কোন মুক্ত ইলেকট্রন ও থাকে না।

৩২) ফ্যারাডের ১ম সূত্রের গাণিতিক ব্যাখ্যা দাও।

উ: তড়িৎ বিশ্লেষণের সময় যে কোনো তড়িৎদ্বারে সংঘটিত রাসায়নিক বিক্রিয়ার পরিমাণ অর্থাৎ কোনো তড়িৎদ্বারে সঞ্চিত বা দ্রবীভূত পদার্থের পরিমাণ প্রবাহিত বিদ্যুতের পরিমাণের সমানুপাতিক।

$$\therefore W \propto Q$$

বা, $W = ZQ \ [\because Q = It]$
বা, $W = ZIt$

এখানে,

W = ক্যাথোডে সঞ্চিত ধাতু/অধাতুর পরিমাণ

0 = বর্তনীর মধ্যদিয়ে প্রবাহিত চার্জের পরিমাণ

Z = তড়িৎ রাসায়নিক তুল্যাঙ্ক

অনুধাবনমূলক

৩৩) ফ্যারাডের সূত্র থেকে একটি ইলেকট্রনের চার্জ গণনা কর।

উ: ফ্যারাডের সূত্র হতে আমরা পাই,

একযোজী একমোল আয়নকে চার্জ মুক্ত করতে $1\,F$ বিদ্যুতের প্রয়োজন। n যোজী একমোল আয়নকে চার্জ মুক্ত করতে বিদ্যুতের প্রয়োজন $(1\times n)F=n$ 96500C বিদ্যুৎ। একমোল আয়নে উপস্থিত আয়নের সংখ্যা $=N=6.02\times 10^{23}$ টি। ধরি

একটি ইলেকট্রনের চার্জ = e

N সংখ্যক আয়নের পরিবাহিত চার্জ $=N~e=6.02 imes10^{23} imes e$

 $Ne = n \times 96500C [n = 1]$

 $e = \frac{96500}{6.023 \times 10^{23}}$

 $= 1.602 \times 10^{-19} C$

৩৪) তড়িৎ রাসায়নিক কোষে লবণ সেতু ব্যবহার করা হয় কেন?

উ: তড়িৎ রাসায়নিক কোষে লবণ সেতু ব্যবহার করা হয়। তড়িৎ রাসায়নিক কোষের তড়িদদ্বারে জারণ-বিজারণ বিক্রিয়ার সময় লবণ সেতুর অনুপস্থিতিতে জারণ অর্ধকোষে ক্যাটায়ন ও বিজারণ অর্ধকোষে অ্যানায়নের আধিক্য ঘটে। ফলে তড়িৎপ্রবাহ ব্যাহত হয় এবং হ্রাস পেতে পেতে এক সময় তা বন্ধ হয়ে যায়। তাই পূর্ণ তড়িৎ রাসায়নিক কোষ উপস্থাপনের ক্ষেত্রে জারণ তড়িদদ্বার ও বিজারণ তড়িদদ্বারের সাথে লবণ সেতুকে উপস্থাপন করা হয়। এক্ষেত্রে লবণ সেতু গুরুত্ব বহন করে।

৩৫) সঞ্চয়ী ব্যাটারি চার্জিত করলে পূর্বে পানি ব্যবহার করা হয় কেন?

উ: সঞ্চয়ী ব্যাটারি চার্জিত করলে পূর্বে পানি যোগ করা হয়। কারণ ব্যাটারি যখন চার্জিত হয় তখন H_2SO_4 মিশ্রিত পানি বিশ্লিষ্ট হয়ে H_2 এবং O_2 গ্যাসে পরিণত হয়। ফলে, পানির পরিমাণ কমতে থাকে। তাই ব্যাটারিতে মাঝে পানি যোগ করে H_2SO_4 দ্রবণের ঘনমাত্রা ১.২ তে স্থির রাখা হয়।

🔲 জ্ঞান ও অনুধাবনের কিছু গুরুত্বপূর্ণ টপিক/প্রশ্ন

