# **NYCU-ECE DCS-2024**

#### **HW01**

Design: Calculation Task

#### 資料準備

1. 從 TA 目錄資料夾解壓縮:

#### % tar -xvf ~dcsTA01/HW01.tar

- 2. 解壓縮資料夾 hw01 包含以下:
  - a. 00\_TESTBED/
  - b. 01 RTL/
  - c. 02\_SYN/
  - d. 03\_GATE/
  - e. 09\_UPLOAD/

#### **Block Diagram**



#### 設計描述

本次作業目標設計對輸入數字進行解碼、排序並做些指定的運算。

你會接收到一個opcode和六個數字{in\_n0, in\_n1, in\_n2, in\_n3, in\_n4, in\_n5}, opcode會決定對六個數字的運算方式,最後輸出運算後的數字out\_n。

首先收到的六個數字{in\_n0, in\_n1, in\_n2, in\_n3, in\_n4, in\_n5}是register(暫存器)的address,並非資料的值。本次作業助教會提供register file的module,你們必須透過module connection(name mapping),將暫存器與你的design連接,以取得暫存器內的資料值。

# 暫存器的位置及內容如下:

| Address(4 bits) | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 |
|-----------------|------|------|------|------|------|------|------|------|
| Value(5 bits)   | 9    | 27   | 30   | 3    | 11   | 8    | 26   | 17   |
| Address(4 bits) | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |
| Value(5 bits)   | 3    | 12   | 1    | 10   | 15   | 5    | 23   | 20   |

六個Address{in\_n0, in\_n1, in\_n2, in\_n3, in\_n4, in\_n5}會對應到六個數值 {value\_0, value\_1, value\_2, value\_3, value\_4, value\_5}, 注意取出的資料是5 bits。例如: {10, 9, 15, 2, 12,0}會對應到數值{1, 12, 20, 30, 15, 9},接下來由opcode決定 這六個數值要進行的排列與運算。

接下來會**先排序再運算結果**,opcode為5 bits可以分成兩個部分,會決定排序 與運算的結果,兩個部分的控制如下:

| 1. Sorting     | 如果 <b>opcode[4:3] 為 11</b> ,這六個數值 <b>由小到大</b> 進行排列。<br>例如: $\{1, 12, 20, 30, 15, 9\} \rightarrow \{1, 9, 12, 15, 20, 30\}$                                                                             |  |  |  |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                | 如果 <b>opcode[4:3] 為 10</b> ,這六個數值 <b>由大到小</b> 進行排列。<br>例如: $\{1, 12, 20, 30, 15, 9\} \rightarrow \{30, 20, 15, 12, 9, 1\}\}$                                                                           |  |  |  |
|                | 如果 <b>opcode[4:3] 為 01</b> ,這六個數值 <b>順序為原本的相反</b> 。<br>例如: $\{1, 12, 20, 30, 15, 9\} \rightarrow \{9, 15, 30, 20, 12, 1\}$                                                                             |  |  |  |
|                | 如果 <b>opcode[4:3] 為 00</b> ,這六個數值 <b>維持原本的順序</b> 。<br>例如: $\{1, 12, 20, 30, 15, 9\} \rightarrow \{1, 12, 20, 30, 15, 9\}$                                                                              |  |  |  |
| 2. Calculation | 假設排序後的數列為{num0, num1, num2, num3, num4, num5}                                                                                                                                                          |  |  |  |
|                | 如果 <b>opcode[2:0] 為 000</b> ,進行 $\mu = \Sigma_{i=0}^5 \frac{num_i}{6}$ 例如: $\{1, 12, 20, 30, 15, 9\} \rightarrow \mu = 87 / 6 = 14 \text{ (round down)}$ 並以 $\mu$ 當作及格分數判斷及格人數 $\rightarrow$ out_n = 3 |  |  |  |
|                | 如果 <b>opcode[2:0] 為 001</b> , 進行 <b>out_n = num0 + num5</b><br>例如: {1, 12, 20, 30, 15, 9} → out_n = 1 + 9 = 10                                                                                         |  |  |  |
|                | 如果 <b>opcode[2:0] 為 010</b> , 進行 <b>out_n = (num3 * num4) / 2</b><br>例如: {1, 12, 20, 30, 15, 9} → out_n = (15 * 20) / 2 = 150                                                                          |  |  |  |
|                | 如果 <b>opcode[2:0] 為 011</b> ,進行 <b>out_n = num0 + (num2 * 2)</b><br>例如: {1, 12, 20, 30, 15, 9} → out_n = 1 + (12 * 2) = 25                                                                             |  |  |  |

如果 opcode[2:0] 為 100, 進行 out\_n = num1 & num2
例如: {1, 12, 20, 30, 15, 9} → out\_n = 01001<sub>(2)</sub>&01100<sub>(2)</sub>

= 01000<sub>(2)</sub>

如果 opcode[2:0] 為 101, 進行 out\_n = ~num0
例如: {1, 12, 20, 30, 15, 9} → out\_n = ~00001<sub>(2)</sub>=11110<sub>(2)</sub>

如果 opcode[2:0] 為 110, 進行 out\_n = num3 ^ num4
例如: {1, 12, 20, 30, 15, 9} → out\_n = 01111<sub>(2)</sub>^10100<sub>(2)</sub>

= 11011<sub>(2)</sub>

如果 opcode[2:0] 為 111, 進行 out\_n = num1<<1
例如: {1, 12, 20, 30, 15, 9} → out\_n = 01001<sub>(2)</sub><<1
= 10010<sub>(2)</sub>

# ※當opcode[2:0]=000/010時,除法為無條件捨去,Ex: 15/2 = 7, 391/2 = 195, etc.

最後將會輸出一個9-bit的數字out\_n,testbench測試pattern將會在下一組測資 進來之前測試這9-bit output。

#### **Inputs**

| Signal name | Number of bit | Description                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|-------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| opcode      | 5 bits        | opcode[4:3]決定六個數值的排序方式。 opcode[4:3] = 00,維持原順序, opcode[4:3] = 01,順序相反 opcode[4:3] = 10,由大到小 opcode[4:3] = 11,由小到大  假設排序後的數列為 {num0, num1, num2, num3, num4, num5} opcode[2:0]決定排序後數值的運算。 opcode[2:0] = 000, average & compare opcode[2:0] = 001, num0 + num5 opcode[2:0] = 010, (num3 * num4) / 2 opcode[2:0] = 011, num0 + (num2 * 2) opcode[2:0] = 100, num1 & num2 opcode[2:0] = 110, num3 ^ num4 opcode[2:0] = 111, num1 << 1 |  |  |

| in_n0 | 4 bits |                   |
|-------|--------|-------------------|
| in_n1 | 4 bits |                   |
| in_n2 | 4 bits | 範圍為 0~15 的隨機正整數。  |
| in_n3 | 4 bits | 配图局 0~13 fy阅像正整数。 |
| in_n4 | 4 bits |                   |
| in_n5 | 4 bits |                   |

#### **Outputs**

| Signal name Number of bit |        | Description            |  |  |
|---------------------------|--------|------------------------|--|--|
| out_n                     | 9 bits | 運算後的答案,範圍為 0~511 的正整數。 |  |  |

## **Specifications**

- 1. Top module name: **CT**(File name : **CT.sv**)
- 2. 請用 Systemverilog 完成你的作業。
- 3. 請用 combination circuit 完成你的作業。
- 4. 請用助教給予你的 register module 拿資料。
- 5. 02\_SYN result 不行有 error 且不能有任何 latch。

## **Example waveform**

| Ver Ø opcode[4:0]         | 1_1001 | 1_1001 | 1_1011 | 1_0110 |    |
|---------------------------|--------|--------|--------|--------|----|
| Ver 🔯 in_n0[3:0]          | 13     | 13     | 3      | 8      | 0  |
| Ver 🔯 in_n1[3:0]          | 8      | 8      | 4      | 15     | 5  |
| Ver 🔯 in_n2[3:0]          | 9      | 9      | 7      | 3      | 10 |
| Ver 🔯 in_n3[3:0]          | 0      | 0      | 5      | 14     |    |
| Ver 🔯 in_n4[3:0]          | 9      | 9      | 2      | 13     | 4  |
| Ver 🔯 in_n5[3:0]          | 12     | 12     | 14     | 5      | 0  |
| <br>  ⊎er   Ø  out_n[8:0] | 18     | 18     | 25     | 6      | 1  |

## 上傳檔案

- 1. Code使用09\_UPLOAD/01\_upload上傳。
- 2. report\_dcsxx.pdf, xx is your server account. 上傳至new E3。
- 3. 1de 請在 3/21 16:30 pm 之前上傳 / 2de 請在 3/28 16:30 pm 之前上傳

## **Grading policy**

- 1. Pass the RTL& Synthesis simulation. 70%
- 2. Area 15%
- 3. Report 15%

Template folders and reference commands:

- 1. 01\_RTL/ (RTL simulation)  $\rightarrow$  **./01\_run**
- 2.  $02_SYN/(synthesis) \rightarrow ./01_run_dc$
- 3.  $03_{GATE}/(GATE \text{ simulation}) \rightarrow ./01_{run}$
- 4.  $09\_UPLOAD/(upload) \rightarrow ./01\_upload$

# 報告請簡單且重點撰寫,不超過兩頁A4,並包括以下內容

- 1. 描述你的設計方法,包含但不限於如何加速(減少critical path)或降低面積。
- 2. 基於以上,畫出你的架構圖(Block diagram)
- 3. 心得報告,不侷限於此次作業,對於作業或上課內容都可以寫下。