Министерство образования Республики Беларусь Учреждение образования Гомельский государственный технический университет имени П. О. Сухого

Машиностроительный факультет Кафедра «Технология машиностроения»

Отчет по лабораторной работе №1

Тема: Определение погрешности базирования при установке цилиндрических заготовок в призме

Выполнил: студент гр. АП-31 Сальников С.Д.

Принял преподаватель Акулова Н.М.

Лабораторная работа № 1

Цель работы: Исследование влияния допуска на изготовление или погрешности диаметрального размера заготовки и угла призмы на погрешность базирования при установке цилиндрических заготовок в призме и анализ способов уменьшения этой погрешности.

Основные положения

При установке партии цилиндрических заготовок с диаметральным размером D_{-T}^0 в призме (рис.1) погрешности базирования при обработке поверхностей с размерами, проставленными на чертеже от разных конструкторских баз, на настроенном станке будут определяться по следующим формулам:

- для размеров, проставленных от нижней точки цилиндрической поверхности

$$\varepsilon_{\rm Bh} = \frac{T}{2} \left(\frac{1}{\sin \alpha / 2} - 1 \right) \tag{1},$$

- для размеров, проставленных от оси цилиндрической поверхности

$$\varepsilon_{\rm Bc} = \frac{T}{2 \cdot \sin \alpha / 2} \tag{2},$$

- для размеров, проставленных от верхней точки цилиндрической поверхности

$$\varepsilon_{\text{Ba}} = \frac{T}{2} \left(\frac{1}{\sin \alpha / 2} + 1 \right) \tag{3},$$

с, а (рис.1а);

T – допуск на диаметр D заготовки;

 α - угол призмы.

Рисунок 1 – Схема образования погрешностей базирования ЕБЬ, ЕБа, ЕБС

					Лабораторная работа № 1					
Изм.	Лист	№ докум.	Подпись	Дата	Jidoopamophan paooma Vi2 1					
Разра	б.					Лит.	Лист	Листов		
Прове	ровер. Акулова Кафедра и		Кафедра «Технология		1	4				
Реценз		машиностроения»	ГГТУ им. П.О. Сухого							
					мишиностроения//	1				
Утв.							АП-3			

Рисунок 2 – Эскиз заготовки

Рисунок 3 – Схемы измерения отклонений положения поверхности А при установке на плоскость (a) и в призму (δ)

Таблица 1 – Результаты измерений, мм

Номер	Фактические значения размеров		Отклонение положения поверхности А при базировании				
Номер заготовки	D	h	в призме α = 60°	в призме α = 90°	в призме α = 120°	На плоскости α = 180°	
1.	30,38	27,15	0,04	0,08	0,09	0,05	
2.	30,21	27,16	0,06	0,04	0,03	0,03	
3.	30,21	27,17	0,03	0,11	0,04	0,04	
4.	30,09	27,16	0,03	0,09	0,02	0,03	
5.	30,19	27,15	0,06	0,07	0,03	0,04	
6.	30,20	27,24	0,06	0,12	0,14	0,04	

						Лист
					Лабораторная работа № 1	
Изм.	Лист	№ докум.	Подпись	Дата		

7.	30,24	27,16	0,06	0,04	0,14	0,05
8.	30,24	27,16	0,12	0,06	0,21	0,03
9.	30,17	27,17	0,04	0,08	0,15	0,06
10.	30,11	27,16	0,10	0,11	0,18	0,03
11.	30,24	27,16	0,10	0,10	0,13	0,06
12.	30,16	27,16	0,12	0,07	0,14	0,05
13.	30,18	27,15	0,06	0,14	0,13	0,04
14.	30,14	27,15	0	0	0	0

$$\epsilon_{Bh} = \frac{T}{2} \left(\frac{1}{\sin \alpha/2} - 1 \right) \quad \epsilon_{Bh \ 60^\circ} = 0,09; \ \epsilon_{Bh \ 90^\circ} = 0,37; \ \epsilon_{Bh \ 120^\circ} = 0,014; \ \epsilon_{Bh \ 180^\circ} = 0.$$

$$\varepsilon_{\rm Bc} = \frac{T}{2 \cdot \sin \alpha / 2}$$
 $\varepsilon_{\rm Bc \ 60^{\circ}} = 0.18$; $\varepsilon_{\rm Bc \ 90^{\circ}} = 0.13$; $\varepsilon_{\rm Bc \ 120^{\circ}} = 0.1$; $\varepsilon_{\rm Bc \ 180^{\circ}} = 0.09$.

$$\epsilon_{Ba} = \frac{T}{2} \left(\frac{1}{\sin \alpha/2} + 1 \right) \quad \epsilon_{Ba \ 60^\circ} = 0,27; \ \epsilon_{Ba \ 90^\circ} = 0,22; \ \epsilon_{Ba \ 120^\circ} = 0,19; \ \epsilon_{Ba \ 180^\circ} = 0,18.$$

Определяем поле рассеяния размера h

$$\omega_i = x_{\max_i} - x_{\min_i}$$

$$\omega_h = 27,24 - 27,15 = 0,09 \text{ mm}$$

$$\omega_D = 30,38 - 30,09 = 0,29 \text{ mm}$$

Определяем поле рассеяния диаметра заготовки

$$K_p = \omega_D/T = 0.29/0.18 = 1.61 \text{ mm}$$

На основе проведенных измерений определить погрешности базирования при установке заготовок в призмы с углами 60° , 90° , 120° и 180°

$$\epsilon_{Bh_2} = \omega_{Bh_2} - \omega_{Bh_1}$$

$$\varepsilon_{\text{Bh}_2 60^{\circ}} = 0.09 - 0.09 = 0 \text{ MM}$$

$$\varepsilon_{\text{Bh}_2 90^{\circ}} = 0.1 - 0.09 = 0.01 \text{ MM}$$

$$\varepsilon_{\text{Bh}^2 120^\circ} = 0.19 - 0.09 = 0.1 \text{ MM}$$

$$\epsilon_{\text{Bh}_2 \ 180^{\circ}} = 0.03 - 0.09 = -0.06 \ \text{mm}$$

Изм.	Лист	№ докум.	Подпись	Дата

Строим график зависимости погрешности базирования от угла призмы $(60^\circ, 90^\circ, 120^\circ$ и $180^\circ)$

Вывод: Исследовал влияние допуска на изготовление или погрешности диаметрального размера заготовки и угла призмы на погрешность базирования при установке цилиндрических заготовок в призме и анализ способов уменьшения этой погрешности. Провёл необходимые вычисления по формулам, а также построил график зависимости.

Изм.	Лист	№ докум.	Подпись	Дата

Министерство образования Республики Беларусь Учреждение образования Гомельский государственный технический университет имени П. О. Сухого

Машиностроительный факультет Кафедра «Технология машиностроения»

Отчет по лабораторной работе №2

Тема: Исследование погрешностей при установке заготовок на плоскость и два пальца

Выполнил: студент гр. АП-31 Сальников С.Д.

Принял: преподаватель Акулова Н.М.

Лабораторная работа № 2

Цель работы: Исследование схемы установки на плоскость и два пальца с изучением факторов, влияющих на величину погрешности установки в указанной схеме.

Основные положения

Схема базирования заготовки по плоскости и двум точным отверстиям, из которых одним отверстием заготовка устанавливается на цилиндрический палец, а другим на срезанный (ромбический), приведена на рис.1. Эта схема базирования часто применяется при обработке плит, корпусов, картеров; при установке сменных наладок в таких системах приспособлений как универсально-наладочные приспособления (УНП), специализированные наладочные приспособления (СНП), а также при установке приспособлений спутников на автоматических линиях.

Рисунок 1 – Схема базирования при установке на плоскость и два пальца

Изм.	Лист	№ докум.	Подпись	Дата	1 1	Лабораторная работа № 2			
Разра	аб.					Лит.	Лист	Листов	
Пров	ер.	Акулова			Кафедра «Технология		1	5	
Реце	нз.				машиностроения»	ГГТУ им. П.О. Сухого			
Н. контр.								•	
Утв.						АП-31			

Рисунок 2 — Схема установки заготовки на плоскость и два пальца: a — при симметричном расположении пальцев в отверстиях; δ — при наличии максимального угла поворота α

Срезанный палец устанавливается так, чтобы большая ось его была перпендикулярна к линии, соединяющей центры отверстий заготовки, что дает возможность устанавливать на пальцы любую заготовку с отверстиями тех же размеров и с расстоянием между ними в заданных пределах. Зазор между отверстием и срезанным пальцем в направлении линии, соединяющей центры отверстий, позволяет в некоторых пределах $(\pm x)$ компенсировать отклонения расстояний между осями отверстий устанавливаемой заготовки и осями пальцев приспособлений (см. рис.2а).

Практическая часть

1.
$$16js8$$

$$D_{max} = 16 + 0.0135 = 16.0135 \text{ mm}$$

$$D_{min} = 16 - 0.0135 = 15.9865 \text{ mm}$$
 $16f6$

$$d_{max} = 16 + 0.027 = 16.027 \text{ mm}$$

$$d_{min} = 16 - 0.027 = 15.973 \text{ mm}$$
 $12js9$

$$D_{max} = 12 + 0.0215 = 12.0215 \text{ mm}$$

$$D_{min} = 12 - 0.0215 = 11.9785 \text{ mm}$$
 $12f6$

$$d_{max} = 12 + 0.027 = 12.027 \text{ mm}$$

$$d_{min} = 16 - 0.027 = 11.973 \text{ mm}$$

					Лабораторная работа № 2
Изм.	Лист	№ докум.	Подпись	Дата	1 1 1

Лист

$$16js7$$
 $D_{max}=16+0,009=16,009 \, \mathrm{mm}$
 $D_{min}=16-0,009=15,991 \, \mathrm{mm}$
 $16f6$
 $d_{max}=16+0,027=16,027 \, \mathrm{mm}$
 $d_{min}=15,973 \, \mathrm{mm}$
 $14f7$
 $D_{max}=14,034 \, \mathrm{mm}$
 $D_{min}=13,966 \, \mathrm{mm}$
 $14f6$
 $d_{max}=14,027 \, \mathrm{mm}$
 $d_{min}=13,973 \, \mathrm{mm}$

2. По эскизу мастер-плиты для заданных номеров отверстий рассчитать максимальные зазоры в соединениях «базовое отверстие – установочный палец»

$$Z_{max} = D_{max} - d_{min}$$

$$Z_{
m max\,4}^{
m II}=0.0405\
m mM$$
 $Z_{
m max\,9}^{
m c}=0.0485\
m mM$ $Z_{
m max\,7}^{
m c}=0.036\
m mM$ $Z_{
m max\,7}^{
m II}=0.061\
m mM$

3. Рассчитать наибольший угол поворота α

$$\alpha = arctg \frac{Z_{\text{ll} max} + Z_{c max}}{L}$$

$$\alpha = arctg \frac{0,0405 + 0,0485}{160} = 0,03^{\circ}$$

$$\alpha = arctg \frac{0,061 + 0,036}{160} = 0,03^{\circ}$$

4. Рассчитываем положение центра поворота O

$$O_{\mathbf{u}}O = \frac{Z_{\mathbf{u}\,max} \cdot L}{Z_{\mathbf{u}\,max} + Z_{c\,max}}$$

$$O_{\text{I}\text{I}}O = \frac{0,0405 \cdot 160}{0,0405 + 0,0485} = 118,3 \text{ MM}$$

Изм.	Лист	№ докум.	Подпись	Дата

$$O_{\text{II}}O = \frac{0,061 \cdot 160}{0,061 + 0,036} = 163,5 \text{ MM}$$

5. Рассчитываем погрешности установки для двух точек С и D, расположенных на мастер-плите в местах, указанных преподавателем

$$S = 2 \left| \pm \frac{S}{2} \right| = 2 \cdot l \cdot tg \frac{\alpha}{2} \approx l \cdot tg \alpha$$

$$S = 103 \cdot tg(0.03^{\circ}) = 0.054 \text{ mm}$$

6. Рассчитываем наибольший перекос на 100 мм длины заготовки $S_{100} = tg(\alpha) \cdot 100 = tg(0.03^\circ) \cdot 100 = 0.0523$ мм

Экспериментальная часть

1.

$$Z_{\max c} = 0.2 \text{ MM}$$

$$a = 0.02 \text{ MM}$$

$$Z_{
m max\, {\scriptscriptstyle I}{\scriptscriptstyle I}}=0$$
,12 мм

$$a = 0.02 \text{ MM}$$

2.

$$\alpha = arctg \frac{0.1 + 0.2}{160} = 0.11^{\circ}$$

$$\alpha = arctg \frac{0.12 + 0.3}{160} = 0.15^{\circ}$$

3.

$$O_{\text{II}}O = \frac{0.1 \cdot 160}{0.2 + 0.1} = 53.3 \text{ mm}$$

$$O_{\text{II}}O = \frac{0.12 \cdot 160}{0.12 + 0.3} = 45.7 \text{ mm}$$

4.

$$S_{100} = tg$$
 (0,11 $^{\circ}$) \cdot 100 $=$ 0,2 мм

$$S_{100} = tg(0.15^{\circ}) \cdot 100 = 0.262$$
 мм

5.

$$S = 103 \cdot tg(0,11^{\circ}) = 0,2 \text{ mm}$$

$$S = 103 \cdot tg(0,15^{\circ}) = 0,269 \text{ mm}$$

6.

$$S' = |0.02 - 0.08| = |-0.06 \text{ mm}| = 0.06 \text{ mm}$$

			·	
Изм.	Лист	№ докум.	Подпись	Дата

Лаборато	рная	работа	$N_{\underline{o}}$	2

 $Z_{\text{max}\,\text{II}} = 0.1\,\text{мм}$

 $Z_{\text{maxcp}} = 0.3 \text{ мм}$

b = 0.01 MM

b = 0.28 MM

$$S' = |0,02 - 0,028| = |-0,008 \text{ mm}| = 0,008 \text{ mm}$$
7.
$$\alpha' = arctg \frac{S'}{P} \approx \frac{S' \cdot 180}{P \cdot \pi} = \frac{0,06 \cdot 180}{100 \cdot \pi} = 0,034^{\circ}$$

$$\alpha' = \frac{0,008 \cdot 180}{100 \cdot \pi} = 0,046^{\circ}$$
8.
$$S_{100} = \frac{S' \cdot 100}{P} = \frac{0,06 \cdot 100}{100} = 0,06 \text{ mm}$$

$$S_{100} = \frac{0,08 \cdot 100}{100} = 0,08 \text{ mm}$$

Вывод: Исследовал схемы установки на плоскость и два пальца с изучением факторов, влияющих на величину погрешности установки в указанной схеме. Провели формульный анализ, а также экспериментальный опыт и расчеты.

Изм.	Лист	№ докум.	Подпись	Дата

Министерство образования Республики Беларусь Учреждение образования Гомельский государственный технический университет имени П. О. Сухого

Машиностроительный факультет Кафедра «Технология машиностроения»

Отчет по лабораторной работе N = 3

Тема: Исследование сил закрепления заготовки на магнитной плите

Выполнил: студент гр. АП-31 Сальников С.Д.

Принял преподаватель Акулова Н.М.

Лабораторная работа №2

Цель работы: Ознакомиться с методами исследований сил закрепления заготовок в магнитных приспособлениях. Определить и исследовать зависимости усилий притяжения и сдвига заготовок в магнитном приспособлении от матер

3 Общие положения

Обоснованный подход к проектированию и эксплуатации магнитных приспособлений требует определения его технологических и эксплуатационных возможностей, расчета рабочих характеристик. Среди ряда прочностных и точностных параметров, таких как прочность, жесткость, точность, усилие закрепления и др., одними из основных факторов, определяющими возможность применения приспособления на той или иной операции, являются силовые параметры, которые обеспечивает приспособление.

Практика эксплуатации магнитных приспособлений свидетельствует о том, что наряду с усилием притяжения к зеркалу плиты (Q), часто представляется целесообразным знать максимальную силу сопротивления сдвигу $(F_{c\partial})$. Экспериментальное исследование сдвиговых характеристик магнитной плиты и определение максимального усилия сопротивления сдвигу производится с помощью специально выполненных устройств или в производственных условиях на металлорежущих станках.

В первом случае к основанию приспособления 1 на котором крепится и магнитная плита 2, устанавливается стойка с эксцентриковым механизмом зажима. Нагружение заготовки 3 через немагнитный наконечник 4 производится поворотом рукоятки эксцентрика 7 через динамометр камертонного типа 5. Максимальная нагрузка, соответствующая усилию сопротивления сдвигу, фиксируется индикатором 6 (рис.8).

Рисунок 8. Устройство для определения силы сдвига в лабораторных условиях

					Лист
Из	Лист	Nº	Подпись	Дата	

Рисунок 9. Определение силовых характеристик магнитной плиты в производственных условиях

Усилие сопротивления сдвигу во многом зависит от коэффициентов трения между заготовкой и зеркалом плиты. Коэффициент трения в свою очередь зависит от материалов трущихся пар, состояния поверхностей, температуры, скорости и т.д. и не является стабильной величиной. Поэтому оценку качества работы плиты по сопротивлению сдвигу можно получить лишь экспериментальным путем на основании большого числа наблюдений.

Придерживаясь утверждения [1], что при закреплении заготовки на магнитной плите возникает не только сила притяжения Q, определяющая возникновение силы трения F_{mp} , но и дополнительное усилие F вследствие наличия некоторой магнитной силы, препятствующей сдвигу, силу $F_{c\partial}$ сопротивления сдвигу заготовки на магнитной плите можно определить по формуле

$$F_{co} = Q \cdot f_{mp} + F , \qquad (1)$$

где $F_{c\partial}$ - сила сопротивления сдвигу заготовки (сила сдвига),

Q - сила притяжения заготовки магнитной плитой,

 f_{mp} - коэффициент трения между заготовкой и зеркалом магнитной плиты ($f_{mp} = 0.16...0.18$),

 ${\it F}\,$ - дополнительная магнитная сила, препятствующая сдвигу заготовки.

Поскольку сила F вызывается действием магнитного поля плиты, то представляется возможным выразить ее как функцию магнитной силы притяжения O в виде

$$F = O \cdot \Delta$$
, (2)

где Δ - коэффициент магнитного сопротивления сдвигу заготовки; который зависит от конструкции плиты и направления сдвига (вдоль или поперек полюсников магнитной плиты), из опытов $\Delta = 0.05...0.08$.

Тогда с учетом формул (1) и (2) усилие сдвига заготовки можно определить по формуле

Из Ј	Тист	Nº	Подпись	Дата

где $f_{c\partial}$ - коэффициент сопротивления сдвигу.

Таким образом, усилие сдвига заготовки на магнитной плите является результатом действия не только сил трения, а и дополнительной силы магнитного сопротивления сдвигу, а ее величина определяется коэффициентом сопротивления сдвигу, который представляет сумму двух коэффициентов:

$$f_{c\partial} = f_{mp} + \Delta . (4)$$

С целью определения дополнительной величины коэффициента сдвига — коэффициента магнитного сопротивления сдвигу Δ - при закреплении заготовки с помощью магнитного поля и ее зависимости от упомянутых факторов были проведены многочисленные эксперименты. Исследования проводились на элементарной магнитной системе с переменной индукцией.

Проведенные работы позволили сделать следующий вывод: величина коэффициента сопротивления сдвигу колеблется в значительных пределах (от 0,12 до 0,35). Поэтому следует избегать схем установок, при которых сдвиг проявляется в чистом виде, а заготовки следует закреплять по схеме с упорными планками. При этом упорная планка является не только ориентирующим элементом, но и может воспринимать часть усилия резания.

Так, например, если плита должна развивать усилие $F_{c\partial}$, обеспечивающее неподвижность заготовки под действием силы резания, то упорная планка должна проверяться на усилие

$$F_{c\partial.n\pi.} = Q(f_{c\partial.cp} - f_{c\partial.\min}), \tag{5}$$

где $\,Q\,$ - усилие притяжения заготовки, полностью перекрывающей зеркало плиты, H;

 $f_{c\partial.cp}\,$ - среднее значение коэффициента сопротивления сдвигу;

 $f_{c\partial.\,\mathrm{min}}$ - минимальная величина коэффициента сопротивления сдвигу.

Результаты замеров по определению усилия Q от толщины заточки

Таблица 1 – Результаты замеров

3.5		_		1 3 6			
Материал	h	$F_{ m c_{ m Z}}$	Q	Материал	h	$F_{\!\scriptscriptstyle{ ext{C}}\!\!\!/\!$	Q
стали				стали			
Сталь 3	10	0,28	1,75	Сталь 45	3	0,26	1,6
Сталь 3	2	0,18	1,125	Сталь 45	5	0,26	1,625
Сталь 3	4	0,25	1,562	Сталь 20	3	0,31	1,935
Сталь 3	15	0,22	1,375	Ж45Х	5	0,22	1,375
Сталь 3	30	0,33	2,06	Сталь 20	7	0,25	1,56
Сталь 3	30	0,2	1,25	45X	3	0,26	1,625
Сталь 45	4	0,35	2,188	20X	15	0,23	1,438
Сталь 45	30	0,38	2,375	20X	10	0,24	1,5
Сталь 45	10	0,32	2	Сталь 3	5	0,26	1,625
Сталь 45	2	0,32	2				
Сталь 45	14	0,32	2				
20 X	15	0,3	1,875				

Из	Лист	Nº	Подпись	Дата

$$F_{\text{c},\text{d}} = Q * f_{\text{c},\text{d}}; f_{\text{c},\text{d}} = 0.16$$

$$Q = \frac{F_{\text{c},\text{d}}}{f_{\text{c},\text{d}}}$$

Вывод: Ознакомился с методами исследований сил закрепления заготовок в магнитных приспособлениях. Определил и исследовал зависимости усилий притяжения и сдвига заготовок в магнитном приспособлении от материла

Из	Лист	Nº	Подпись	Дата

Министерство образования Республики Беларусь Учреждение образования Гомельский государственный технический университет имени П. О. Сухого

Машиностроительный факультет Кафедра «Технология машиностроения»

Отчет по лабораторной работе № 4

Тема: Тарирование приборов, измеряющих силовые характеристики

Выполнил: студент гр. АП-31 Сальников С.Д.

Принял преподаватель Акулова Н.М.

Лабораторная работа № 4

Тарирование приборов, измеряющих силовые характеристики.

Цель работы: научиться производить метрологическую операцию тарирования (градуировки измерительных устройств) динамометров, измеряющих усилие в (H) и динамометрических ключей , измеряющих момент пары сил (H·м).

1. Основные положения

Тарирование (градуировка) — это метрологическая операция, в результате которой делениям шкалы измерительного прибора, устройства или инструмента присваиваются соответствующие значения измеряемой величины в принятых единицах измерения с требуемой точностью этого соответствия.

Одним из способов измерения усилий, возникающих при эксплуатации технологической оснастки, является измерение с помощью динамометров различных конструкций. А для измерения моментов кручения применяют динамометрические ключи. В этих приборах используются элементы, которые при воздействии внешних сил создают уравновешивающие их силы упругости. По закону Гука сила упругости вектору деформации (удлинения пропорциональна ИЛИ противоположна ему по направлению:

$$F_v = -K \cdot \Delta L$$
 (1)

где

 F_{y} -сила упругости (H); ΔL -вектор деформации (м); K -жесткость упругого элемента (H/м);

Так как внешняя сила уравновешивается силой упругости, то $F_y=F_B$ и вектор деформации связан с внешней силой выражением:

$$\Delta L = \frac{F_{\rm B}}{K} \tag{2}$$

где

 $F_{\scriptscriptstyle B}$ -вектор внешней силы, воздействующей на упругий элемент прибора.

Выражение (2) справедливо для упругих деформаций, когда напряжение упругого элемента находятся в пределах пропорциональности. Пределом пропорциональности называется напряжение, при котором закон Гука (1) нарушается.

При тарировании приборов, служащих для измерения усилий и моментов, следует по закону Гука поставить каждой единице измерения деформации соответствующее изменение силы или момента. Тогда шкала измерения деформаций упругого элемента прибора превратиться в шкалу регистрации действующего усилия или момента. Например, если при

регистрации деформаций индикатором часового типа с ценой деления 0,01мм было отмечено, что деформация 0,03 мм появлялась при усилии 150 H, а деформация 0,08 мм при усилии 400 H, то это значит, что показаниями индикатора можно регистрировать усилия с ценой деления 50 H.

В практических измерениях линейная зависимость усилий от деформаций в законе Гука может быть нарушена некоторыми причинами, например, наличием зазоров, снижающих жесткость измерительной системы в начале деформирования; случайными отклонениями; силовых характеристик; погрешностями измерения деформаций. Чтобы исключить названные причины при тарировании следует правильно выбирать интервалы измеряемых усилий каждого динамометра и стремиться к максимально возможной точности регистрации измеряемых величин. Регистрацию производят в таблицах 1 или на координатной плоскости (OF; O Δ L). В последнем случае, соединяя точки, можно построить тарировочный график прибора и увидеть зависимость $F=f(\Delta L)$.

Эту зависимость следует привести к линейному виду, как и для закона Гука. Такое приведение можно выполнить в результате аппроксимации табличных данных тарирования линейной зависимостью методом наименьших квадратов (МНК). В результате применения МНК к данным тарирования для каждого прибора может быть получена формула вида

$$F = B_0 + B_1 \cdot \Delta L \tag{6},$$

где

$$B_{o} = \frac{\sum F_{i} \cdot_{\Delta} L_{i} \cdot \sum_{\Delta} L_{i} - \sum F_{i} \cdot \sum_{\Delta} L_{i}^{2}}{(\sum_{\Delta} L_{i})^{2} - n\sum_{\Delta} L_{i}^{2}}$$
(7),

$$B_{1} = \frac{n \sum F_{i} \cdot_{\Delta} L_{i} - \sum_{\Delta} L_{i} \cdot \sum F_{i}}{n \cdot \sum_{\Delta} L_{i}^{2} - (\sum_{\Delta} L_{i})^{2}}$$
(8),

в_о - свободный член формулы (6) учитывающий нарушения закона Гука, вызванные случайными факторами;

 ${\tt B}_1$ – линейный коэффициент зависимости (6) или цена деления шкалы индикатора;

 $\sum F_i \cdot_{\Lambda} L_i$ - сумма произведений усилия на деформацию во всех измерениях;

 $\sum F_i$ - сумма усилий во всех измерениях;

 $\sum_{\mbox{\ensuremath{\Delta}}} L_i$ - сумма деформаций во всех измерениях;

 $\sum_{\Delta}L_{i}^{2}$ - сумма квадратов деформаций;

n – общее число измерений при тарировании.

II. Методические указания

Для выполнения лабораторной работы необходимы: набор динамометров камертонного типа; пружинные динамометры; регулируемый динамометрический ключ; установка для создания регулируемого усилия.

Пружинный динамометр (Рис.3.

- 1 основание; 2 фланец нижний; 3 пружина тарельчатая; 4 фланец верхний; 5 подшипник опорный;

- 6 втулка;

- 7 кронштейн верхний;

- 8 индикатор; 9 винт стопорный; 10 кронштейн нижний; 11 крепежные винты; 12 гайка.)

Создание переменного внешнего усилия $F_{\rm B}$ на установке, изображенной на рис.5, обеспечивается как размещением разного числа грузов 11 на подвеске 10, так и различным соотношением длин L и l.

Перед тарированием динамометра или динамометрического ключа система противовес 3 — рычаг 9 — подвеска 10 приводятся в равновесие. Для этого подбирается такое положение противовеса 3 и фиксируется стопором 13, которое уравновешивает момент создаваемый относительно оси вала 4 весом рычага 9 и подвески 10. После этого устанавливаются на подвеску 10 грузы 11, которые будут создавать момент внешней силы, равный

$$M_{B} = \sum_{i=1}^{n} m_{11} \cdot g \cdot L$$
 (3)

где

 $M_{\rm B}$ -момент внешней силы (H·м);

n -количество грузов 11; m₁₁ -масса груза 11(кг);

 $g=9.81 \text{ м/c}^2$ -ускорение свободного падения;

L=0,5м -длина рычага 9.

При установке динамометра 8 на расстоянии ℓ от оси вала 4 его сила упругости F_v через переходник 7 создаст момент, равный

$$F_{y} \cdot \ell = M_{B}. \tag{4}$$

Тогда $F_y = \sum_{i=1}^n m_{11} \cdot g \cdot \frac{L}{\ell}$, а со стороны рычага 9 на диаметр 8 будет действовать равная силе упругости внешняя сила F_B .

$$F_{B} = \sum_{i=1}^{n} m_{11} \cdot g \cdot \frac{L}{\ell}. \tag{5}$$

Деформация динамометра, вызванная силой $F_{\mbox{\tiny B}}$, будет регистрироваться индикатором 6 на рис.5.

Величины деформаций динамометров, нагруженных внешней силой $F_{\rm B}$, определяется индикаторами часового типа (3 на рис. 2 и 8 на рис. 3) с ценой деления 0,01мм. Для измерения крутящего момента динамометрический ключ, изображенный на рис. 4, устанавливается сменным ключом 2 (рис. 4) на квадратную ступень 5 вала 4 (рис. 5). Противодействие внешнему моменту $M_{\rm B}$ будет оказываться штангой 4, заканчивающейся рукояткой 9 (рис. 4). Под действием момента $M_{\rm B}$ штанга 9 будет изгибаться относительно неподвижного кронштейна 3. Величина изгиба (деформации) регистрируется индикатором 6, который крепится в подвижном кронштейне 5. Перемещение кронштейна 5 по штанге 4 создает возможность изменения длины ℓ , обеспечивающей большую или меньшую жесткость упругой системы инструмента. Наименьшая жесткость при наибольшей длине ℓ .

Величина $M_{\text{в}}$, определенная по формуле (3), будет соответствовать деформации, которая фиксируется индикатором 6 (рис. 4) и отмечается на тарировочном графике, у которого ось ординат будет представлять момент $M_{\text{в}}$ в $H\cdot M$.

Результаты тарирования следует представлять сперва в таблице 1, а затем переносить на тарировочный график.

Таблица 1 Результаты тарирования

Номер измерения		2	3	 n	Σ
Усилие F _в (H)					
$($ Момент $M_{\scriptscriptstyle B} (H\cdot M))$					
Деформация $_{\Delta}$ L (0,01 мм)					
$F \cdot_{\Delta} L$					
Δ L ²					
Расчетное F _в (Расчетный М _в)					

III. Порядок выполнения работы.

- 1. Группа студентов (2-3 человека) получает набор динамометров у преподавателя.
- 2. Получает указания о выборе значения ℓ (см. рис. 5) для каждого динамометра.