Методические рекомендации по выполнению лаб.3

Обучение и использование нейронной сети при помощи Neural network toolbox в среде Matlab

Neural network toolbox в среде Matlab

"Обучение и использование нейронной сети при помощи Neural network toolbox в среде Matlab" на YouTube

https://youtu.be/2afTCq1IWNc

Все большее значение приобретают методы машинного обучения нейронных сетей

Знакомство с НС

Формирование обучающей выборки

С помощью программы Excel создать обучающую выборку, которая представляет базу знаний нейросетевой ЭС и сохранить ее в формате *.xls.

Для этой цели запустить не менее 25 раза программу ANIES и сформировать не менее 25 примеров обучающей выборки, разделив столбцы на входные и выходные.

Как формировать обучающую выборку?

Входной вектородна строка обучающей выборки

Выходной вектор- одна строка обучающей выборки

Запускается ANIES не менее 25 раз (три запуска для идентификации одной из 7 гипотез).

Иллюстрация обучающей выборки

Входной вектор- одна строка обучающей выборки

Выходной вектор- одна строка обучающей выборки

ln1	In2	In3	•••	in32	out1	out2	out3	•••	out7
0,55	0,63	0,25		0,80	0,9	0,1	0,12	•••	-0,21
-0,35	0,63	0,25		0,20	-0,19	0,1	0,79	•••	-0,11
0,45	-0,63	-0,25		-0,60	0,01	0,85	0,12	•••	-0,12
0,35	0,46	0,55		0,75	0,11	0,1	0,12	•••	-0,13
-0,65	0,63	0,25		0,20	-0,19	0,1	0,79	•••	-0,11
0,75	-0,63	-0,25		-0,60	0,01	0,85	0,12	•••	-0,12
0,85	0,46	0,55		0,75	0,81	0,1	0,12	•••	-0,13

Обучение и использование нейронной сети при помощи Neural network toolbox в среде Matlab

Матрица входных данных

-0,75	0,75	0,7	-0,7	-0,7	-0,8	-0,8	0,8	-0,7	-0,
0,65	-0,65	-0,55	-0,55	0,55	0,7	-0,7	-0,7	0,7	-0,
-0,7	0,7	-0,75	-0,75	0,75	-0,7	0,7	-0,7	-0,75	0,7
0,6	-0,6	-0,7	0,7	-0,7	0,7	-0,7	-0,7	0,65	-0,6
-0,75	0,75	0,7	-0,7	-0,7	-0,65	0,65	-0,65	-0,7	0,
0,85	-0,85	-0,35	-0,35	0,35	-0,45	-0,45	0,45	0,85	-0,8
-0,8	0,8	-0,45	-0,45	0,45	-0,45	-0,45	0,45	-0,5	-0,
-0,75	0,75	0,7	-0,7	-0,7	-0,8	-0,8	0,8	-0,75	-0,7
0,75	-0,75	-0,8	-0,8	0,8	0,5	-0,5	-0,5	0,65	-0,6
-0,85	0,85	-0,8	-0,8	0,8	-0,65	0,65	-0,65	-0,85	0,8
0,85	-0,85	-0,9	0,9	-0,9	0,85	-0,85	-0,85	0,6	-0,
-0,9	0,9	0,95	-0,95	-0,95	-0,85	0,85	-0,85	-0,65	0,6
0,85	-0,85	-0,5	-0,5	0,5	-0,45	-0,45	0,45	0,8	-0,
-0,85	0,85	-0,6	-0,6	0,6	-0,5	-0,5	0,5	-0,9	-0,
-0,9	0,9	0,9	-0,9	-0,9	-0,8	-0,8	0,8	-0,85	-0,8
0,85	-0,85	-0,9	-0,9	0,9	0,9	-0,9	-0,9	0,9	-0,
-0,9	0,9	-0,85	-0,85	0,85	-0,9	0,9	-0,9	-0,9	0,
0,9	-0,9	-0,9	0,9	-0,9	0,9	-0,9	-0,9	0,9	-0,
-0,9	0,9	0,9	-0,9	-0,9	-0,85	0,85	-0,85	-0,85	0,8
0,9	-0,9	-0,85	-0,85	0,85	-0,85	-0,85	0,85	0,85	-0,8
-0,9	0,9	-0,9	-0,9	0,9	-0,9	-0,9	0,9	-0,9	-0,
-0,35	0,35	0,35	-0,35	-0,35	-0,4	-0,4	0,4	-0,4	-0,
0,35	-0,35	-0,45	-0,45	0,45	0,45	-0,45	-0,45	0,45	-0,4
-0,5	0,5	-0,5	-0,5	0,5	-0,45	0,45	-0,45	-0,45	0,4
0,45	-0,45	-0,45	0,45	-0,45	0,45	-0,45	-0,45	0,5	-0,

0,7	0,7	-0,7	-0,7	-0,6	0,6	-0,8	0,8
-0,7	0,7	-0,7	-0,7	-0,7	0,7	-0,75	0,75
-0,75	0,8	-0,8	-0,8	0,7	-0,7	0,65	0,65
-0,65	-0,7	0,7	-0,7	0,7	-0,7	-0,6	0,6
-0,7	-0,8	-0,8	0,8	-0,75	0,75	0,65	-0,65
-0,85	-0,35	0,35	-0,35	0,4	-0,4	0,5	-0,5
0,5	-0,6	0,6	-0,6	0,65	-0,65	0,7	-0,7
0,75	0,6	-0,6	-0,6	-0,6	0,6	-0,85	0,85
-0,65	0,85	-0,85	-0,85	-0,4	0,4	-0,9	0,9
-0,85	0,5	-0,5	-0,5	0,65	-0,65	-0,4	0,4
-0,6	-0,6	0,6	-0,6	0,55	-0,55	-0,8	0,8
-0,65	-0,7	-0,7	0,7	-0,75	0,75	0,8	-0,8
-0,8	-0,5	0,5	-0,5	0,55	-0,55	0,8	-0,8
0,9	-0,45	0,45	-0,45	0,5	-0,5	0,75	-0,75
0,85	0,9	-0,9	-0,9	-0,85	0,85	-0,85	0,85
-0,9	0,85	-0,85	-0,85	-0,85	0,85	-0,9	0,9
-0,9	0,85	-0,85	-0,85	0,85	0,85	-0,9	0,9
-0,9	0,9	-0,9	-0,9	0,9	-0,9	-0,9	0,9
-0,85	-0,85	-0,85	0,85	-0,85	0,85	0,85	-0,85
-0,85	-0,85	0,85	-0,85	0,8	-0,8	0,9	-0,9
0,9	-0,9	0,9	-0,9	0,9	-0,9	0,9	-0,9
0.4	0.4	-0.4	-0.4	-0.4	0.4	-0.4	0.4

Матрица выходных данных

0,91	-0,37	-0,39	-0,75	-0,8	-0,83	-0,96
-0,175	0,8914	-0,456	-0,869	-0,994	-0,538	0,579
-0,298	-0,258	0,9718	-0,628	-0,811	-0,768	-0,907
-0,8011	0,1754	-0,8607	-0,8903	-0,9325	-0,35403	0,98759
-0,24006	-0,80696	-0,19713	0,81538	-0,9303	-0,52568	-0,99233
-0,96369	-0,82606	-0,97704	-0,94525	-0,7045	0,98107	-0,4816
-0,5906	-0,87884	-0,53896	-0,61542	0,99867	0,848857	-0,88091
0,94717	0,08217	-0,20689	-0,90826	-0,7356	-0,99511	-0,98585
0,30193	0,944568	0,68509	-0,98953	-0,997	-0,99404	-0,39907
-0,44588	-0,47799	0,984676	-0,74927	0,23106	-0,92617	-0,93484
-0,89051	-0,00095	-0,79959	-0,97199	-0,99262	-0,97675	0,998029
-0,13911	-0,86445	-0,13658	0,854345	-0,84678	-0,99836	-0,99708
-0,99591	-0,97868	-0,99643	-0,99145	-0,84499	0,996364	-0,9395
-0,48362	-0,89791	-0,67207	-0,67603	0,999769	0,88103	-0,96985
0,977676	0,33939	0,124684	-0,96277	-0,95733	-0,99971	-0,99852
0,298105	0,978989	-0,0216	-0,99111	-0,99961	-0,99785	-0,51475
-0,34	-0,37939	0,998989	-0,99511	-0,99448	-0,99955	-0,94456
-0,95601	-0,36	-0,7194	-0,99691	-0,9978	-0,98575	0,99987
-0,29811	-0,88224	-0,11102	0,877699	-0,88297	-0,99855	-0,99851
-0,99973	-0,99847	-0,99977	-0,99947	0,21356	0,99989	-0,99488
-0,936	-0,98926	-0,954	-0,96109	0,99999	0,99687	-0,99439
0,78175	0,198615	-0,06117	-0,65289	-0,592	-0,91441	-0,8897
0,21906	0,824412	-0,12905	-0,8008	-0,92781	-0,87496	-0,38175
-0,2	-0,2	0,953153	-0,86218	-0,79975	-0,93693	-0,66127
-0,73856	-0,09649	-0,48651	-0,84704	-0,86938	-0,68625	0,959575

Запускаем nnstart

Добавляем данные для обучения нейронной сети в среду Matlab:

```
>> uiopen('D:\7 cemecTp\TPR3.xlsx',1)
```

Размечаем входные и выходные матрицы:

☐ Datain 25x18 double ☐ Dataout 25x7 double

Запускаем расширение создания и обучения нейронных сетей с помощью команды nnstart:

>> nnstart

В открывшемся диалоговом окне нажимаем кнопку Fitting app

Выбираем входные и выходные данные для обучения нейронной сети

Выбираем параметры обучения и алгоритм обучения

Множество примеров выборки можно разбить на 3 подмножества

Множество примеров выборки можно разбить на 3 подмножества:

- 1. Подмножество для обучения НС (Training)
- 2. Подмножество для проверки обобщающей способности HC (Validation)

Не участвует в обучении

3. Подмножество для тестирования (Testing) Не участвует в обучении

Подмножество для проверки обобщающей способности HC (Validation)

Одно из важнейших свойств нейронных сетей — это способность к обобщению полученных знаний.

Сеть, натренированная на обучающей выборке, генерирует ожидаемые результаты при подаче на ее вход данных, которые не участвовали в обучении.

Все множество данных можно разделить на обучающее, валидационное и тестовое подмножества

Запускаем процесс обучения ИНС

Иллюстрация результатов обучения НС

Выбор параметров

Выбор алгоритма

Обучаем нейронную сеть

Результаты обучения HC (mse)

Характеристика mse

MSE — это среднеквадратичная ошибка обучения HC N $MSE=\sum(yi-di)^2$

Выполнить 5-7 экспериментов

- 1. Поменять количество нейронов ИНС с одним скрытым слоем (трехслойная сеть)
- 2. Поменять количество примеров в подмножестве для проверки обобщающей способности НС (Validation) в пределах 10-20%
- 3. Поменять количество примеров в подмножество для тестирования (Testing) в пределах 10-20%

Изменения количества примеров в подмножестве(Validation) и примеров в подмножестве (Testing)

Результат обучения НС

Точность обучения

Качество аппроксимации

Получение результатов в ответ на входной вектор

>> net([6 1 0 1 1 1 0 1 20 2])

Оценка качества обучения нейронных сетей

- 1. Оценка качества обучения нейронных сетей основана на функциях оценки качества, выбираемых из списка {mae | mse | sse}.
- 2. mse функция производительности сети. Это определяет эксплуатационные качества сети согласно среднему значению ошибок в квадрате.
- 3. mae функция производительности сети. Это определяет эксплуатационные качества сети согласно среднему значению абсолютных ошибок.

Сохраняем результаты и создаём простой скрипт

Сравнение результатов нейронной сети с результатом продукционной ЭС (ANIES)

```
sim(net,[-0.7500;
                                  0.7500; 0.7000; -0.7000;
                                                                       -0.7000;
                                                                                          -0.8000;
                                                                                                            -0.8000;
                0.8000; -0.7000; -0.7000;
                                                     0.7000; 0.7000; -0.7000;
                                                                                          -0.7000;
                                                                                                            -0.6000;
                0.6000; -0.8000;
                                            0.8000])
>> sim(net,[-0.7500; 0.7500; 0.7000; -0.7000;
                                           -0.7000;
                                                     -0.8000;
                                                               -0.8000;
                                                                         0.8000; -0.7000; -0.7000; 0.7000; 0.7000; -0.7000;
                                                                                                                        -0.7000;
                                                                                                                                  -0.6000
ans =
   0.9082
  -0.3700
  -0.3900
  -0.7500
  -0.8000
  -0.8300
  -0.9600
```

-0,8

-0,83

-0,96

Полученный выходной вектор полностью совпал с результатом ANIES:

-0,75

-0,39

-0,37

0,91

Сделаем ещё несколько сравнений (скрипт)

Вектор результата также совпал с результатом ANIES

Подробно можно посмотреть

"Обучение и использование нейронной сети при помощи Neural network toolbox в среде Matlab" на YouTube

https://youtu.be/2afTCq1IWNc

Литература

1.Ростовцев В.С. Теория принятия решений: методические указания к самостоятельным и лабораторным работам.-Киров: Изд-во ВятГУ, 2020.-49 с.

2. Ростовцев В.С. Искусственные нейронные сети: учебник В.С.

Ростовцев. – Киров: Изд-во ВятГУ, 2014. – 208 с. *Э4743*

3."Лекция «Введение в MatLAB»" на YouTube

https://youtu.be/v1hiVfvVKgQ

4. "MATLAB 01 Начало работы" на YouTube

https://youtu.be/fcrhXFxCbD8

5."MATLAB 02 Среда разработки" на YouTube

https://youtu.be/Y2eTIYtGkXk

6."MATLAB 03 Написание программ" на YouTube

https://youtu.be/_6dmJulZVkg

7."MATLAB 04 Массивы и матрицы" на YouTube

https://youtu.be/7AsTymGlWo4

8."MATLAB 05 Фундаментальные классы (типы данных)" на YouTube

https://youtu.be/Xriwl2jbwjU

9."MATLAB 06 Структуры и массивы ячеек" на YouTube

https://youtu.be/8TUxIRpMj7E

10."MATLAB 07 Интерактивное построение графиков" на YouTube

https://youtu.be/J hGJ7wYCr4

11."Обучение и использование нейронной сети при помощи Neural network toolbox в среде Matlab" на YouTube

https://youtu.be/2afTCq1IWNc

12. "Что умеют делать нейросети" на YouTube

https://youtu.be/3eM6hRlqcwE

13. "Практическое применение нейронных сетей" на YouTube

https://youtu.be/8q15K8ym_n0