Assignment 10

Abhishek Kumar

IIT Hyderabad

1 May,2022

Outline

Question

Solution

Question Statement

Question: The random variables X_k are independent with densities $f_k(x)$ and the random variable variable n is independent of X_k with $P(n = k) = p_k$. Show that

$$s = \sum X_k \Rightarrow F_s(s) = \sum p_k[f_1(s) \times f_2(s) \dots \times f_n(s)]$$
 (1)

Solution

Solution: f denotes p.d.f. and F denotes c.d.f.

Approach

we will use the concept of conditional probability and extension of bayes theorem in probability density distribution

We shall first determine the conditional probability

$$F_s(s|n=n) = P(s \le s, n=n)/P(n=n)$$
 (2)

The event $(s \le s, n = n)$ consists of all outcomes such that n=n and $\sum X_k \le s$.since the RV n is independent of RVs X_k , this yields

$$F_s(s) = P(\sum X_k \le s)P(n=n)/p(n=n) = P(\sum X_k)$$
 (3)

From the independence of RVs X_k , it follows that

$$F_s(s|n=n) = f_1(s) \times f_2(s) \times f_3(s) \dots \times f_n(s)$$
(4)

Extending the concept of bayes theorem in probability density distribution concept, we get

$$F(x) = F(x|A_1)P(A_1) + \dots + F(x|A_n)P(A_n)$$
 (5)

setting $A_k = (n = k)$ in equation(5), we obtain

$$F_s(s) = \sum P(X_k)[f_1(s) \times f_2(s) \dots \times f_n(s)]$$
 (6)

$$\Rightarrow F_s(s) = \sum P(X_k)[f_1(s) \times f_2(s)..... \times f_n(s)]$$
 (7)