Benchmarking Variant Callers

 Compare variant calls to a reference truth set

 Split results for individual analysis

Benchmarking Variant Callers

RESULTS

And comparison to the state of the art

Evaluation

Kosugi *et al. Genome Biology* (2019) 20:117 https://doi.org/10.1186/s13059-019-1720-5

Genome Biology

• Datasets and results for other software from :

RESEARCH Open Access

Comprehensive evaluation of structural variation detection algorithms for whole genome sequencing

Shunichi Kosugi^{1,2}, Yukihide Momozawa³, Xiaoxi Liu³, Chikashi Terao^{1,2}, Michiaki Kubo⁴ and Yoichiro Kamatani^{1,2*}

- Evaluated results from 69 software
 - Simulated Datasets
 - Real Datasets

Deletion Caller Results

Deletion Caller – Simulated Data

Precision:

 $\frac{\text{# Deletions found}}{\text{# Deletions predicted}}$

Sensitivity (Recall):

 $\frac{\text{# Deletions found}}{\text{# Existing deletions}}$

Deletion Caller – Real Data – HG001 (NA12878)

Precision:

 $\frac{\text{# Deletions } found}{\text{# Deletions } predicted}$

Sensitivity (Recall):

 $\frac{\text{# Deletions found}}{\text{# Existing deletions}}$

Note: new results evaluated on HG001 (NA12878) with DGV known variants + long read calls. In report only HG002 with GIAB data set, (46.4%, 29.2%)

Deletion Caller – Real Data – HG001 (NA12878)

Precision:

 $\frac{\text{# Deletions found}}{\text{# Deletions predicted}}$

Sensitivity (Recall):

 $\frac{\text{# Deletions found}}{\text{# Existing deletions}}$

Threshold for number of pairs with reads mapped too far away changed from 10% to 20% of coverage!

Duplication Caller Results

Duplication Caller – Simulated Data

Precision:

 $\frac{\text{# Duplications found}}{\text{# Duplications predicted}}$

Sensitivity (Recall):

 $\frac{\text{# Duplications found}}{\text{# Existing duplications}}$

Duplication Caller – Real Data (NA12878)

Duplication Caller Performance

Precision:

 $\frac{\text{# Duplications found}}{\text{# Duplications predicted}}$

Sensitivity (Recall):

 $\frac{\text{# Duplications found}}{\text{# Existing duplications}}$

Inversion Caller Results

Inversion Caller – Simulated Data

Precision:

 $\frac{\text{# Inversions } found}{\text{# Inversions } predicted}$

Sensitivity (Recall):

 $\frac{\# Inversions \ found}{\# Existing \ Inversions}$

Inversion Caller – Real Data (NA12878)

Precision:

 $\frac{\text{# Inversions found}}{\text{# Inversions predicted}}$

Sensitivity (Recall):

 $\frac{\# Inversions \ found}{\# Existing \ Inversions}$

Insertion Caller

- Not benchmarked because unfinished
- Predicted insertion sites were assessed with long reads
 - PacBio long reads from Real Data (HG001)
- Assembly results were manually explored for several regions

Results – Runtime

- A Whole-Genome can be analyzed in about one hour on a normal computer (30x Coverage, 100-200 GB alignment file)
 - Extracting all signals ~ 30 minutes
 - Running Deletion, Duplication, and Inversion calling ~ 10-20 minutes
- Parallelized at the chromosome level running on 8 threads

Results – Runtime

- Comparison to the state of the art
 - Single Core
 - Chromosome 8

Results – Runtime (single core)

 Chromosome 8 Total:

> Signal extraction 5 min 46 s

 Call Deletions 48 s

 Call Duplications 1 min 20 s

 Call Inversions 1 min 18 s

• Predict Insertions 53 s

Log Scale

Comprehensive evaluation of structural variation detection algorithms for whole genome sequencing

10 min 8 s

Results Summary

- Collection of variant callers
 - Detection capabilities close to the state of the art
 - Require tuning to get better precision (filter false positives)
- Fast runtime
 - Short development loop (~1 min to analyze a whole chromosome)
 - Can be used for cohort or population studies (~1 hour per whole-genome)
- Analysis of the missed variants and false positives
 - Insights on the caller performance