

Automated and Connected Driving Challenges

Section 4 – Vehicle Guidance

Vehicle Guidance on Guidance Level Tasks

Bastian Lampe

Institute for Automotive Engineering

Vehicle Guidance on Guidance Level

Exercise

Assignment: Trajectory-Planning using a direct multiple shooting approach

- Implement the system dynamics model
- Integrate different cost terms regarding:
 - Lateral and longitudinal jerk
 - Steering rate
 - Velocity deviation
 - Dynamic objects
- Using a Closed-Loop-Simulation within the ROS-Framework

Vehicle Guidance on Guidance Level

RWTHAACHEN UNIVERSITY

Exercise 1 – OCP System Definition

1. Define system state

$$\mathbf{x} = (x \quad y \quad s \quad v \quad a_{long} \quad \psi \quad \delta)^T$$

2. Define system controls

•
$$\mathbf{u} = (j \quad \alpha)^T$$

3. Choose a vehicle model to describe the system dynamics:

Task 1

Kinematic Single-Track-Model

$$\dot{x} = ?$$

$$\dot{y} = ?$$

$$\dot{s} = ?$$

$$\dot{v} = ?$$

$$\dot{a}_{long} = ?$$

$$\dot{\psi} = ?$$

$$\dot{\delta} = ?$$

Constraints

$$0 \leq v$$

$$\delta_{min} \leq \delta \leq \delta_{max}$$

$$j_{min} \le j_{long} \le j_{max}$$

$$\alpha_{min} \leq \alpha \leq \alpha_{max}$$

$$\|\boldsymbol{a}_{max}\|_{2} \geq \|\boldsymbol{a}\|_{2}, \ \boldsymbol{a} = (a_{lon}, a_{lat})^{T}$$

Image: ika, <u>Nietzschmann et al. 2018</u> Source: <u>Nietzschmann et al. 2018</u>

Vehicle Guidance on Guidance Level

Ka I

Exercise 2, 3 & 4 – Definition of Cost Function

Cost function	lask 2
Lateral jerk	$c_{j,lat}(\mathbf{x}(t),\mathbf{u}(t))$
Control variable penalty	$c_j(\mathbf{u}(t)), c_\alpha(\mathbf{u}(t))$
Reference path deviation	$c_p(\mathbf{x}(t))$
Consideration of dynamic objects	$c_{dyn}(\mathbf{x}(t))$
Heading deviation at end point	$h_N(\mathbf{x}(t))$ Task 4

 \rightarrow Deviation from reference velocity is propulsive term $c_v(\mathbf{x}(t))$

Task 3

$$\min_{\substack{\mathbf{x}_0, \dots, \mathbf{x}_N \\ \mathbf{u}_0, \dots, \mathbf{u}_{N-1}}} \sum_{k=1}^{N} [w_v c_{v,k}^2 + w_p c_{p,k}^2 + w_j c_{j,k}^2 + \cdots] + w_\psi c_{\psi,N}^2$$

Image: ika, Nietzschmann et al. 2018 Source: Nietzschmann et al. 2018