Praktikum Wissenschaftliches Rechnen (CFD, Final Project)

Group 9: Breznik, E., Cheng, Z., Ni, W., Schmidbartl, N.

1 The Topic

2 Implementation

2.1 Boundary conditions for the velocities

We have 5 different boundary conditions, namely no-slip, free-slip, outflow, inflow, moving wall. We implement them for the 6 boundaries of our 3D domain, as well as for internal boundaries.

2.1.1 No-Slip boundary condition

For no-slip conditions, the fluid vanishes at the boundary. As a consequence, both the velocity component normal to and parallel to the boundary are zero. Using staggered grid, the discrete velocity components normal to and parallel to the boundary lie directly at the boundary, whilst the one parallel to the boundary is the average of the boundary cell's and its neighbouring fluid cell's velocity components.

Therefore, for the B₀ case, we set the following boundary conditions:

$$u_{i,j,k} = 0, v_{i,j-1,k} = -v_{i+1,j-1,k}, v_{i,j,k} = -v_{i+1,j,k}, w_{i,j,k-1} = -w_{i+1,j,k-1}, w_{i,j,k} = -w_{i+1,j,k}, (1)$$

and we analogously set the boundary conditions for the following 5 cases: B_W, B_N, B_S, B_U and B_D.

For the B_NO case, we set the following boundary conditions:

$$u_{i,j,k} = 0, u_{i-1,j,k} = -u_{i-1,j+1,k}, v_{i,j,k} = 0, v_{i,j-1,k} = -v_{i+1,j-1,k}, w_{i,j,k} = -\frac{1}{2}(w_{i+1,j,k} + w_{i,j+1,k}), w_{i,j,k-1} = -\frac{1}{2}(w_{i+1,j,k-1} + w_{i,j+1,k-1}),$$
(2)

and we analogously set the boundary conditions for the following 11 cases: B_NW, B_NU, B_ND, B_SO, B_SW, B_SU, B_SD, B_OU, B_WU, B_OD and B_WD.

For the B_NOU case, we set the following boundary conditions:

$$u_{i,j,k} = 0, \quad u_{i-1,j,k} = -\frac{1}{2}(u_{i-1,j+1,k} + u_{i-1,j,k+1}),$$

$$v_{i,j,k} = 0, \quad v_{i,j-1,k} = -\frac{1}{2}(v_{i+1,j-1,k} + v_{i+1,j-1,k+1}),$$

$$w_{i,j,k} = 0, \quad w_{i,j,k-1} = -\frac{1}{2}(w_{i+1,j,k-1} + w_{i,j+1,k-1}),$$
(3)

and we analogously set the boundary conditions for the following 7 cases: B_NWU, B_NOD, B_NWD, B_SOU, B_SWU, B_SOD, and B_SWD.

2.1.2 Free-Slip boundary condition

For free-slip conditions, the fluid flows freely parallel to the boundary, but does not cross the boundary. As a consequence, the velocity component normal to the boundary is zero, as well as the normal derivative of the velocity component parallel to the wall. Using staggered grid, the discrete velocity components normal to the boundary lie directly at the boundary, whilst the one parallel to the boundary is the average of the boundary cell's and its neighbouring fluid cell's velocity components.

Therefore, for the B_O case, we set the following boundary conditions:

$$u_{i,j,k} = 0, v_{i,j-1,k} = v_{i+1,j-1,k}, v_{i,j,k} = v_{i+1,j,k}, w_{i,j,k-1} = w_{i+1,j,k-1}, w_{i,j,k} = w_{i+1,j,k},$$

$$(4)$$

and we analogously set the boundary conditions for the following 5 cases: B_W , B_N , B_S , B_U and B_D .

For the B_NO case, we set the following boundary conditions:

$$u_{i,j,k} = 0, u_{i-1,j,k} = u_{i-1,j+1,k}, v_{i,j,k} = 0, v_{i,j-1,k} = v_{i+1,j-1,k}, (5)w_{i,j,k} = \frac{1}{2}(w_{i+1,j,k} + w_{i,j+1,k}), w_{i,j,k-1} = \frac{1}{2}(w_{i+1,j,k-1} + w_{i,j+1,k-1}),$$

and we analogously set the boundary conditions for the following 11 cases: B_NW, B_NU, B_ND, B_SO, B_SW, B_SU, B_SD, B_OU, B_WU, B_OD and B_WD.

For the B_NOU case, we set the following boundary conditions:

$$u_{i,j,k} = 0, \quad u_{i-1,j,k} = \frac{1}{2}(u_{i-1,j+1,k} + u_{i-1,j,k+1}),$$

$$v_{i,j,k} = 0, \quad v_{i,j-1,k} = \frac{1}{2}(v_{i+1,j-1,k} + v_{i+1,j-1,k+1}),$$

$$w_{i,j,k} = 0, \quad w_{i,j,k-1} = \frac{1}{2}(w_{i+1,j,k-1} + w_{i,j+1,k-1}),$$
(6)

and we analogously set the boundary conditions for the following 7 cases: B_NWU , B_NOD , B_NWD , B_SOU , B_SWU , B_SOD , and B_SWD .

2.1.3 Outflow boundary condition

For outflow conditions, the normal derivatives of both the velocity components are zero. Using staggered grid, the discrete velocity component normal to the boundary lie directly at the boundary, whilst the one parallel to the boundary is the average of the boundary cell's and its neighbouring fluid cell's velocity components.

Therefore, for the B₀ case, we set the following boundary conditions:

$$u_{i,j,k} = u_{i+1,j,k}, v_{i,j-1,k} = v_{i+1,j-1,k}, v_{i,j,k} = v_{i+1,j,k}, w_{i,j,k-1} = w_{i+1,j,k-1}, w_{i,j,k} = w_{i+1,j,k},$$
(7)

and we analogously set the boundary conditions for the following 5 cases: B_W , B_N , B_S , B_U and B_D .

For the B_NO case, we set the following boundary conditions:

$$u_{i,j,k} = u_{i+1,j,k}, u_{i-1,j,k} = u_{i-1,j+1,k}, v_{i,j,k} = v_{i,j+1,k}, v_{i,j-1,k} = v_{i+1,j-1,k}, w_{i,j,k} = \frac{1}{2}(w_{i+1,j,k} + w_{i,j+1,k}), w_{i,j,k-1} = \frac{1}{2}(w_{i+1,j,k-1} + w_{i,j+1,k-1}),$$
(8)

and we analogously set the boundary conditions for the following 11 cases: B_NW, B_NU, B_ND, B_SO, B_SW, B_SU, B_SD, B_OU, B_WU, B_OD and B_WD.

For the B_NOU case, we set the following boundary conditions:

$$u_{i,j,k} = u_{i+1,j,k}, \quad u_{i-1,j,k} = \frac{1}{2}(u_{i-1,j+1,k} + u_{i-1,j,k+1}), v_{i,j,k} = v_{i,j+1,k}, \quad v_{i,j-1,k} = \frac{1}{2}(v_{i+1,j-1,k} + v_{i+1,j-1,k+1}), w_{i,j,k} = w_{i,j,k+1}, \quad w_{i,j,k-1} = \frac{1}{2}(w_{i+1,j,k-1} + w_{i,j+1,k-1}),$$

$$(9)$$

and we analogously set the boundary conditions for the following 7 cases: B_NWU , B_NOD , B_NWD , B_SOU , B_SWU , B_SOD , and B_SWD .

2.1.4 Inflow boundary condition

For inflow conditions, we assume the inflow velocity is perpendicular to the inflow boundary. We implement the following 6 cases, B_O, B_W, B_N, B_S, B_U and B_D, and forbid the other cases.

For the B₋O case, the boundary velocities are same with those the noslip condition, except that $u_{i,j,k} = \text{velIN}$, where the inflow velocity velIN is larger than zero.

Similarly, for the B_W case, the boundary velocities are same with those of the no-slip condition, except that $u_{i,j,k} = -\text{velIN}$, where velIN is larger than zero, and we analogously set the boundary conditions for the following 4 cases: B_N, B_S, B_U and B_D.

2.1.5 Moving wall boundary condition

For moving wall conditions, again we need to restrict the moving wall directions

When the boundary cell is like B_-0 , we set the moving wall direction to the direction of next (first nonfixed) coordinate, i.e., if x/y/z is fixed, the wall moving in y/z/x. For example, if the flag is B_-0 , the moving wall direction is +y or -y. Consequently, the velocities are same with those of the no-slip condition, except for the ones along this moving wall direction and parallel to the boundary. Therefore, for the B_-0 case, the following boundary conditions differ from those of the no-slip condition:

$$v_{i,j-1,k} = 2 * \text{velMW}_y - v_{i+1,j-1,k}, \quad v_{i,j,k} = 2 * \text{velMW}_y - v_{i+1,j,k}$$
 (10)

, where \mathtt{velMW}_x [\mathtt{velMW}_x , \mathtt{velMW}_y , \mathtt{velMW}_z] is the moving wall velocity vector, and \mathtt{velMW}_x is its component along the x axis. We analogously set the boundary conditions for the following 5 cases: B_W, B_N, B_S, B_U and B_D.

When the boundary cell is like B_NO, we set the directions of moving walls N and O in a "circular" way. For example, if N moves in the +x direction, then O moves in the -y direction. Alternatively, if N moves in the -x direction, then O moves in the +y direction. Therefore, for the B_NO case, the following boundary conditions differ from those of the no-slip condition:

$$\begin{array}{ll} u_{i,j,k} = 2 * \text{velMW}_x - u_{i,j+1,k}, & u_{i-1,j,k} = 2 * \text{velMW}_x - u_{i-1,j+1,k}, \\ v_{i,j,k} = 2 * \text{velMW}_y - v_{i+1,j,k}, & v_{i,j-1,k} = 2 * \text{velMW}_y - v_{i+1,j-1,k} \end{array} \tag{11}$$

and we analogously set the boundary conditions for the following 11 cases: B_NW , B_NU , B_ND , B_SO , B_SW , B_SU , B_SD , B_OU , B_WU , B_OD and B_WD .

However, for the moving wall condition we forbid the boundary conditions for the following 8 cases: B_NOU , B_NWU , B_NOD , B_NWD , B_SOU , B_SWU , B_SOD , and B_SWD .

2.2 Boundary condition for the pressure

On the other hand, for all the 5 aforementioned boundary conditions, the boundary values for the pressure are derived from the discretized momentum equation and result in discrete *Neumann* conditions.

Therefore, for the B_O case, we set the following boundary conditions:

$$F_{i,i,k} = u_{i,i,k}, \quad p_{i,i,k} = p_{i+1,i,k}$$
 (12)

and we analogously set the boundary conditions for the following 5 cases: B_W, B_N, B_S, B_U and B_D.

For the B_NO case, we set the following boundary conditions

$$F_{i,j,k} = u_{i,j,k}, \quad G_{i,j,k} = v_{i,j,k}, \quad p_{i,j,k} = \frac{1}{2}(p_{i+1,j,k} + p_{i,j+1,k}))$$
 (13)

and we analogously set the boundary conditions for the following 11 cases: B_NW, B_NU, B_ND, B_SO, B_SW, B_SU, B_SD, B_OU, B_WU, B_OD and B_WD.

For the B_NOU case, we set the following boundary conditions

$$F_{i,j,k} = u_{i,j,k}, \quad G_{i,j,k} = v_{i,j,k}, \quad H_{i,j,k} = w_{i,j,k}, p_{i,j,k} = \frac{1}{3} (p_{i+1,j,k} + p_{i,j+1,k} + p_{i,j,k+1})$$
(14)

and we analogously set the boundary conditions for the following 7 cases: B_NWU, B_NOD, B_NWD, B_SOU, B_SWU, B_SOD, and B_SWD.

3 Problems, current state and future work

References

- [1] Griebel, M., Dornsheifer, T., Neunhoeffer, T.: Numerical Simulation in Fluid Dynamics: A Practical Introduction. SIAM, 1998.
- [2] Hirt, C. W., Nichols, B. D.: Volume of Fluid Method for the Dynamics of Free Boundaries. Journal of Computational Physics 39 (1981).
- [3] Hirt, C. W., Nichols, B. D., Hotchkiss, R. S.: SOLA-VOF: A solution Algorithm for Transient Fluid Flow with Multiple Free Boudaries. LASL, 1980.