

Demo day - Curso de Machine Learning

Equipe 2 Classificação de Alimentos: Food vs Non-Food

Equipe

Equipe 3

- Camila dos Santos Silva
- Eloane Laís Berto
- Felipe Barbosa de Lima
- Saimom Goz Siebem

Sumário

- Introdução
- Metodologia
- Resultados
- Conclusões

Introdução

<u>Introdução</u>

- O projeto tem como objetivo classificar imagens em alimentos e não alimentos utilizando o Food-5K Image Dataset.
- Com foco é avaliar o desempenho das abordagens baseadas em Redes Neurais Convolucionais (CNNs).

Introdução

- Aplicações reais da classificação Food vs Non-Food:
 - o Aplicativos de dieta e monitoramento alimentar
 - Recomendadores de cardápios e controle nutricional
 - Filtros de conteúdo alimentar em redes sociais

Conjunto de 5000 imagens balanceadas em 2 classes: ∘ food/ → imagens com imagens comida Número de imagens por formato non_food/ → imagens sem comida 5000 Divisão: Treinamento: 3.000 Validação: 1.000 3000 Teste: 1.000 imagens redimension foram Todas as imagens 128 x 128 pixels 1000 Foram normalizadas entre 0 e 1

image format

Quatro arquiteturas foram avaliadas para identificar a abordagem mais eficaz na classificação de imagens como **Food** ou **Non-Food**. Cada modelo representa uma estratégia diferente de design e otimização.

CNN Básica ->
Arquitetura da Literatura

CNN com Otimização ->

Ajuste fino de hiperparâmetros para melhor desempenho

CNN Leve -> Ajuste simplificada para eficiência

MobileNetV2 -> Transfer learning com modelo pré-treinado

Modelo 1 – CNN básica (modelo de referência).

Modelo da Literatura

Camadas Principais:

- Conv2D com ativação ReLU
- MaxPooling2D para redução espacial
- Dropout para regularização
- Dense com ativação Sigmoid

Acurária Obtida: 83,6%

Modelo 2 – CNN com Otimização de Hiperparâmetros

- Estrutura mais leve, com redução do número de filtros.
- Aplicação de dropout mais moderado.
- Taxa de aprendizado reduzida (0.0005) para maior estabilidade -> optimizer = Adam(learning_rate=0. 0005)

```
model_opt = tf.keras.Sequential()
# É onde o input é definido
# Camada cov
# Primeira convolução
model_opt.add(tf.keras.layers.Conv2D(32, kernel_size=(3,3), activation='relu', input_shape=(128,128,3))
model_opt.add(tf.keras.layers.MaxPooling2D(2,2))
model_opt.add(tf.keras.layers.Dropout(0.25))
# Segunda convolução
model_opt.add(tf.keras.layers.Conv2D(64, kernel_size=(3,3), activation='relu'))
model_opt.add(tf.keras.layers.MaxPooling2D(2,2))
model_opt.add(tf.keras.layers.Dropout(0.25))
# Classificação Final
model opt.add(tf.keras.lavers.Flatten())
model_opt.add(tf.keras.layers.Dense(256, activation='relu'))
# Saida(Output Layer)
model_opt.add(tf.keras.layers.Dense(1, activation='sigmoid'))
```

Modelo 2 – CNN com Otimização de Hiperparâmetros

Modelo 3 – CNN Leve (Arquitetura Mais Leve)

- Menos camadas convolucionais e uso de GlobalAveragePooling2D.
- Foco em eficiência e baixo custo computacional.
- Ideal para dispositivos com restrição de hardware.

Etapa	Função	Explicação resumida	
Input	Entrada da imagem	Redimensionada e normalizada	
Conv + Pooling	Extração de padrões visuais	Detecta bordas e texturas	
GAP	Reduz parâmetros	Faz média por filtro → modelo leve	
Dense (Sigmoid)	Classificação binária	Retorna probabilidade (0 = Non-Food, 1 = Food)	

Modelo 3 – CNN Leve (Arquitetura Mais Leve)

Arquitetura Modelo:


```
model_light = tf.keras.Sequential([
    tf.keras.layers.Conv2D(32, (3,3), activation='relu', input_shape=(128,128,3)),
    tf.keras.layers.MaxPooling2D(2,2),
    tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
    tf.keras.layers.GlobalAveragePooling2D(),
    # Camada densa de saída
    tf.keras.layers.Dense(1, activation='sigmoid')
])
model_light.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
```

Modelo 4 - MobileNetV2

Este modelo aproveita o poder do transfer learning utilizando a arquitetura MobileNetV2 pré-treinada no dataset ImageNet. As camadas base congeladas preservam conhecimento visual genérico enquanto um classificador é treinado especificamente para a tarefa Food/Non-Food.

Modelo 4 - MobileNetV2

Base Pré-treinada - MobileNetV2 com pesos do ImageNet (camadas congeladas)

Classifier Head - GlobalAveragePooling2D → Dense(128, ReLU) → Dropout(0.3) → Sigmoid

Data Augmentation - Rotação, zoom, flip, shear para robustez

Modelo 4 - MobileNetV2

Etapa	Função	Explicação resumida	
Input	Entrada da imagem	Recebe imagens 128x128x3 para análise	
Backbone (MobileNetV2)	Extração de características	Rede pré-treinada no ImageNet — reconhece formas, texturas e padrões	
Global Average Pooling 2D	Redução de dimensionalidade	Resume cada mapa de ativação em um único valor médio	
Dropout (0.3)	Regularização	Desativa 30% dos neurônios para evitar overfitting	
Dense (128, ReLU)	Combinação de características	Interpreta e combina os padrões extraídos pela MobileNetV2	
Dense (1, Sigmoid)	Classificação binária	Retorna probabilidade (0 = Non-Food, 1 = Food)	

Modelo 4 - MobileNetV2

Arquitetura do modelo:

Modelo 1 – CNN básica (modelo de referência).

Acurária Obtida: 83,6%

Modelo 2 – CNN com Otimização de Hiperparâmetros

Acurácia: 85,6%

Modelo 3 – CNN Leve (Arquitetura Mais Leve)

Acurácia: 75,7%

Modelo 4 - MobileNetV2

Acurácia: 90,2%

Gráfico de desempenho: Modelo 4 - MobileNetV2

Classification Report:					
	precision	recall	f1-score	support	
food	0.84	1.00	0.91	500	
non_food	1.00	0.81	0.89	500	
accuracy			0.90	1000	
macro avg	0.92	0.90	0.90	1000	
weighted avg	0.92	0.90	0.90	1000	

Tabela. Matriz quadrada com linhas e colunas representando as classes.

	Previsto positivo	Previsto negativo	
Positivo real	Verdadeiro positivo (VP)	Falso negativo (FN)	
Negativo real	Falso positivo (FP)	Verdadeiro negativo (NV)	

Componentes principais:

- Verdadeiro positivo (VP)
- Falso positivo (FP)
- Falso negativo (FN)
- Verdadeiro negativo (TN)

Tabela de Falsos e Verdadeiros:

	Predito	Positivo	Predito Nega	tivo
Real Positivo		403		97
Real Negativo		1		499

Acurácia

$$\label{eq:acuracia} \text{Acurácia} = \frac{VP + VN}{VP + VN + FP + FN}$$

Substituindo:

$$\frac{403 + 499}{403 + 97 + 1 + 499} = \frac{902}{1000} = 0,902$$

Recall (sensibilidade)

$$\text{Recall} = \frac{VP}{VP + FN}$$

90,2% de acerto

Substituindo:

Precisão (classe positiva)

$$Precisão = \frac{VP}{VP + FP}$$

80,6%, indicando que o modelo deixa escapar algumas imagens que são "comida".

Substituindo:

$$\frac{403}{403+1} = 0{,}997$$

Curva ROC e AUC

Modelo Acurácia (%)
 Modelo 4 - MobileNetV2 (Transfer Learning)
 Modelo 2 - Otimização de Hiperparâmetros
 Modelo 1 - Original (Baseline)
 Modelo 3 - Arquitetura Leve
 75.70

- Transfer Learning mostrou-se mais eficaz, especialmente com dataset limitado.
- Pesos pré-treinados permitiram extrair características mais robustas e generalizáveis.
- Ainda há espaço para melhoria (erros em imagens ambíguas).
- Desempenho pode ter sido influenciado por fatores como tamanho do dataset, balanceamento de classes e qualidade das imagens.

Sugestões para trabalhos futuros

- Ampliar o dataset: aumentar a variedade e quantidade de imagens para melhor generalização e menor overfitting.
- Melhorar a qualidade das imagens: aplicar pré-processamento (iluminação, contraste, remoção de ruído).
- Balancear as classes: usar oversampling ou undersampling para corrigir desequilíbrios entre food e non-food.

Sugestões para trabalhos futuros

- Ajustar hiperparâmetros: testar diferentes taxas de aprendizado, batch size, épocas e funções de ativação.
- **Explorar novas arquiteturas:** experimentar redes pré-treinadas como EfficientNet ou MobileNetV3 para melhor equilíbrio entre precisão e eficiência.

Referências Bibliográficas

FOOD-5K Dataset - Kaggle.

Howard et al. (2019). MobileNetV2: Inverted Residuals and Linear Bottlenecks.

Goodfellow, I., Bengio & Courville (2016). Deep Learning. MIT Press.

Chollet, F. (2017). Deep Learning with Python. Manning.