HWO5 - liner algebra Sauce Paleri 98108542

سوال اول

با استفاده از الگوریتم MP و OMP مسئله P_0 را برای ${f x}$ حل نمایید. همچنین مقدار spark(A) و $\mu(A)$ را محاسبه کنید.

$$A = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 \end{bmatrix} \cdot y = \begin{bmatrix} 0 \\ 2 \\ 3 \\ 5 \end{bmatrix}$$

كَوْرِي مَدِسَ أَدُونَ لِلْمُ مُعْمِعُ مِن مُنْ مِنْ مِنْ مِنْ مُنْ مُنْ مِنْ مُنْ مُنْ مُنْ مِنْ مُنْ مُنْ مُ سسى هرباد السيطان أبرائى ابنكه كم مَنْفِر آزاد له باسند، بنسر 0 با مندمل ماننم . أن مباي م أر rof(A) را درياءرس , سي در العل بال را اورين به ٢= spack(A) عربم.

$$ref(A) = \begin{bmatrix} 1 & 0 & 0 & 0 & 11 & 3 \\ 0 & 1 & 0 & 0 & 11 & 5 \\ 0 & 0 & 1 & 0 & -10 & -3 \\ 0 & 0 & 0 & 1 & 0 & -10 \end{bmatrix}$$

$$x_{p,} = [2, 4, -2, 0, 1, 0]$$

م هانفد که ما مده ی سود دازی مهر مرای SparkiAl=4

 $\tilde{A} = \begin{bmatrix} \tilde{A} & \tilde{A} & \tilde{A} \\ \tilde{A} & \tilde{A} \end{bmatrix}$ $\tilde{A} = \begin{bmatrix} \tilde{A} & \tilde{A} \\ \tilde{A} & \tilde{A} \end{bmatrix}$ $\tilde{A} = \begin{bmatrix} \tilde{A} & \tilde{A} \\ \tilde{A} & \tilde{A} \end{bmatrix}$ $\tilde{A} = \begin{bmatrix} \tilde{A} & \tilde{A} \\ \tilde{A} & \tilde{A} \end{bmatrix}$ $\tilde{A} = \begin{bmatrix} \tilde{A} & \tilde{A} \\ \tilde{A} & \tilde{A} \end{bmatrix}$ $\tilde{A} = \begin{bmatrix} \tilde{A} & \tilde{A} \\ \tilde{A} & \tilde{A} \end{bmatrix}$ $\tilde{A} = \begin{bmatrix} \tilde{A} & \tilde{A} \\ \tilde{A} & \tilde{A} \end{bmatrix}$ $\tilde{A} = \begin{bmatrix} \tilde{A} & \tilde{A} \\ \tilde{A} & \tilde{A} \end{bmatrix}$ $\tilde{A} = \begin{bmatrix} \tilde{A} & \tilde{A} \\ \tilde{A} & \tilde{A} \end{bmatrix}$ $\tilde{A} = \begin{bmatrix} \tilde{A} & \tilde{A} \\ \tilde{A} & \tilde{A} \end{bmatrix}$ $\tilde{A} = \begin{bmatrix} \tilde{A} & \tilde{A} \\ \tilde{A} & \tilde{A} \end{bmatrix}$ $\tilde{A} = \begin{bmatrix} \tilde{A} & \tilde{A} \\ \tilde{A} & \tilde{A} \end{bmatrix}$ $\tilde{A} = \begin{bmatrix} \tilde{A} & \tilde{A} \\ \tilde{A} & \tilde{A} \end{bmatrix}$ $\tilde{A} = \begin{bmatrix} \tilde{A} & \tilde{A} \\ \tilde{A} & \tilde{A} \end{bmatrix}$ $\tilde{A} = \begin{bmatrix} \tilde{A} & \tilde{A} \\ \tilde{A} & \tilde{A} \end{bmatrix}$ $\tilde{A} = \begin{bmatrix} \tilde{A} & \tilde{A} \\ \tilde{A} & \tilde{A} \end{bmatrix}$ $\tilde{A} = \begin{bmatrix} \tilde{A} & \tilde{A} \\ \tilde{A} & \tilde{A} \end{bmatrix}$ $\tilde{A} = \begin{bmatrix} \tilde{A} & \tilde{A} \\ \tilde{A} & \tilde{A} \end{bmatrix}$ $\tilde{A} = \begin{bmatrix} \tilde{A} & \tilde{A} \\ \tilde{A} & \tilde{A} \end{bmatrix}$ $\tilde{A} = \begin{bmatrix} \tilde{A} & \tilde{A} \\ \tilde{A} & \tilde{A} \end{bmatrix}$ $\tilde{A} = \begin{bmatrix} \tilde{A} & \tilde{A} \\ \tilde{A} & \tilde{A} \end{bmatrix}$ $\tilde{A} = \begin{bmatrix} \tilde{A} & \tilde{A} \\ \tilde{A} & \tilde{A} \end{bmatrix}$ $\tilde{A} = \begin{bmatrix} \tilde{A} & \tilde{A} \\ \tilde{A} & \tilde{A} \end{bmatrix}$ $\tilde{A} = \begin{bmatrix} \tilde{A} & \tilde{A} \\ \tilde{A} & \tilde{A} \end{bmatrix}$ $\tilde{A} = \begin{bmatrix} \tilde{A} & \tilde{A} \\ \tilde{A} & \tilde{A} \end{bmatrix}$ $\tilde{A} = \begin{bmatrix} \tilde{A} & \tilde{A} \\ \tilde{A} & \tilde{A} \end{bmatrix}$ $\tilde{A} = \begin{bmatrix} \tilde{A} & \tilde{A} \\ \tilde{A} & \tilde{A} \end{bmatrix}$ $\tilde{A} = \begin{bmatrix} \tilde{A} & \tilde{A} \\ \tilde{A} & \tilde{A} \end{bmatrix}$ $\tilde{A} = \begin{bmatrix} \tilde{A} & \tilde{A} \\ \tilde{A} & \tilde{A} \end{bmatrix}$ $\tilde{A} = \begin{bmatrix} \tilde{A} & \tilde{A} \\ \tilde{A} & \tilde{A} \end{bmatrix}$ $\tilde{A} = \begin{bmatrix} \tilde{A} & \tilde{A} \\ \tilde{A} & \tilde{A} \end{bmatrix}$ $\tilde{A} = \begin{bmatrix} \tilde{A} & \tilde{A} \\ \tilde{A} & \tilde{A} \end{bmatrix}$ $\tilde{A} = \begin{bmatrix} \tilde{A} & \tilde{A} \\ \tilde{A} & \tilde{A} \end{bmatrix}$ $\tilde{A} = \begin{bmatrix} \tilde{A} & \tilde{A} \\ \tilde{A} & \tilde{A} \end{bmatrix}$ $\tilde{A} = \begin{bmatrix} \tilde{A} & \tilde{A} \\ \tilde{A} & \tilde{A} \end{bmatrix}$ $\tilde{A} = \begin{bmatrix} \tilde{A} & \tilde{A} \\ \tilde{A} & \tilde{A} \end{bmatrix}$ $\tilde{A} = \begin{bmatrix} \tilde{A} & \tilde{A} \\ \tilde{A} & \tilde{A} \end{bmatrix}$ $\tilde{A} = \begin{bmatrix} \tilde{A} & \tilde{A} \\ \tilde{A} & \tilde{A} \end{bmatrix}$ $\tilde{A} = \begin{bmatrix} \tilde{A} & \tilde{A} \\ \tilde{A} & \tilde{A} \end{bmatrix}$ $\tilde{A} = \begin{bmatrix} \tilde{A} & \tilde{A} \\ \tilde{A} & \tilde{A} \end{bmatrix}$ $\tilde{A} = \begin{bmatrix} \tilde{A} & \tilde{A} \\ \tilde{A} & \tilde{A} \end{bmatrix}$ $\tilde{A} = \begin{bmatrix} \tilde{A} & \tilde{A} \\ \tilde{A} & \tilde{A} \end{bmatrix}$ $\tilde{A} = \begin{bmatrix} \tilde{A} & \tilde{A} \\ \tilde{A} & \tilde{A} \end{bmatrix}$ $\tilde{A} = \begin{bmatrix} \tilde{A} & \tilde{A} \\ \tilde{A} & \tilde{A} \end{bmatrix}$ $\tilde{A} = \begin{bmatrix} \tilde{A} & \tilde{A} \\ \tilde{A} & \tilde{A} \end{bmatrix}$ $\tilde{A} = \begin{bmatrix} \tilde{A} & \tilde{A} \\ \tilde{A} & \tilde{A} \end{bmatrix}$ $\tilde{A} = \begin{bmatrix} \tilde{A} & \tilde{A} \\ \tilde{A} & \tilde{A} \end{bmatrix}$ $\tilde{A} = \begin{bmatrix} \tilde{A} & \tilde{A} \\ \tilde{A} & \tilde{A} \end{bmatrix}$ $\tilde{A} = \begin{bmatrix} \tilde{A} & \tilde{A} \\ \tilde{A} & \tilde{A} \end{bmatrix}$ $\tilde{A} = \begin{bmatrix} \tilde{A} & \tilde{A} \\ \tilde{A}$

$$\sim p$$
 max $(\tilde{A}^T A) = N(A) = 0.5 \Rightarrow 1+1 = 3$
 $N(A)$

م طام های بودی را نیز بر بعدس داند مل می می دارم :

م باریاهمی در نو می دفت کا بالا فره در مرفله مجام ، در ط عی الم ۱۱۲ ارسی .

سوال سوم
در الگوریتم MP در گام شماره k ، مجموعه S به صورت $\{j_0\} \cup S^k = S^{k-1} \cup S^k$ به روز رسانی میشود که j_0 ستونی از $A \in (R)^{m imes n}$ ماتریس واژه نامه $A \in (R)^{m imes n}$ است که (j) تعریف شده به صورت زیر را حداگل میکند:
ماتریس واژه نامه $A \in (R)^{m \wedge n}$ است که $\epsilon(j)$ تعریف شده به صورت زیر را حدا کل میکند:
$ \mathbf{r}^{k-1} _2^2 - rac{(\mathbf{a}_j^T\mathbf{r}^{k-1})^2}{ \mathbf{a}_j _2^2}$
$ \mathbf{a}_j _2^2$
نشان دهید برای بردار دلخواه ${f b}$ و تکرار k ،مجموعه S^k در دوحالت زیر یکسان است:
$\mathbf{A} = egin{bmatrix} \mathbf{a_1} & \mathbf{a_2} & \cdots & \mathbf{a_n} \end{bmatrix}$ ماتریس واژه نامه $ullet$
ماتریس واژه نامه $\widetilde{\mathbf{A}}=\mathbf{AD}$ که در آن $\mathbf{D}\in\mathbb{R}^{n imes n}$ یک ماتریس گطری معکوس پذیر است.

الف. بردار دلخواه $\mathbf{b} \in \mathbb{R}^n$ را در نظر بگیرید. میخواهیم بردار $\mathbf{x} \in \mathbb{R}^n$ در همسایگی b را به گونهای به دست آوریم که سخه هموارشده آن باشد. این مسئله را به صورت حداقل مربعات چندهدفه زیر مدلسازی نمایید ($\lambda>0$):

$$\min ||\mathbf{A}\mathbf{x} - \mathbf{b}||^2 + \lambda ||\mathbf{D}\mathbf{x} - \mathbf{d}||^2$$

که در مسئله فوق عبارت اول نزدیکی دو بردار $\mathbf x$ و $\mathbf b$ و عبارت دوم، همواری بردار $\mathbf x$ را برآورده مینماید (ماتریسهای $\mathbf A$ ، $\mathbf D$ و $\mathbf D$ را به دست آورید که $\mathbf D$ است).

ب. برای حالت خاص n=2 ، $\hat{\mathbf{x}}(\lambda)$ (پاسخ مسئله بهینهسازی فوق) را به دست آورید.

ج. بردار $\hat{\mathbf{x}}(\lambda) \to \lim_{\lambda o \infty} \hat{\mathbf{x}}(\lambda)$ ج. بردار

 $A = I_{\text{nxn}} = \frac{1}{100} \frac{1}{10$

م عبن رأی عذران بابع که - 10 و منم تؤدکه می مکم تؤد می مرانی ب فرب رای ماده او این ماده می این او این او این ا

(b) n=2 $\Rightarrow D = \begin{bmatrix} 1,-1 \end{bmatrix}, d=0, A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

 $\vec{A}(\lambda) = (\vec{A} \vec{A}) - \vec{A} \vec{b}, \text{ where } \vec{A} = \begin{bmatrix} 0 & 1 \\ \sqrt{2} & \sqrt{2} \end{bmatrix}, \vec{b} = \begin{bmatrix} 01 \\ b2 \\ 0 \end{bmatrix}$

 $(\overrightarrow{A}\overrightarrow{A})^{-1} = \left[\begin{bmatrix} 1 & 0 & \sqrt{\lambda} \\ 0 & 1 & -\sqrt{\lambda} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ \sqrt{\lambda} & -\sqrt{\lambda} \end{bmatrix} \right]^{-1} = \frac{1}{1+2\lambda} \begin{bmatrix} 1+\lambda & \lambda \\ \lambda & 1+\lambda \end{bmatrix} \boxed{1}$

 $\hat{\mathcal{L}} = \hat{\mathcal{L}} \begin{bmatrix} 1+\lambda & \lambda \\ \lambda & 1+\lambda \end{bmatrix} \begin{bmatrix} 1 & 0 & \sqrt{\lambda} \\ 0 & 1 & -\sqrt{\lambda} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$

 $\Rightarrow \hat{\alpha}(\lambda) = \frac{1}{1+2\lambda} \left(b_1 \begin{bmatrix} 1+\lambda \\ \lambda \end{bmatrix} + b_2 \begin{bmatrix} \lambda \\ 1+\lambda \end{bmatrix} \right) = \frac{1}{1+2\lambda} \begin{bmatrix} (1+\lambda)b_1 + \lambda b_2 \\ \lambda b_1 + (1+\lambda)b_2 \end{bmatrix}$

 $\lim_{\lambda \to \infty} \hat{x}(\lambda) = \begin{bmatrix} \underline{b_1 + b_2} \\ \underline{b_1 + b_2} \end{bmatrix}$

در مسئله حداقل مربعات، تابع هدف ما (جهت کمینه کردن)، به صورت زیر است:

$$||Ax - b||^2 = \sum_{i=1}^{m} (\tilde{a}_i^T - b_i)^2$$

که در آن \tilde{a}_i^T سطر iام ماتریس A است و هدف، یافتن بردار $\hat{x}\in\mathbb{R}^n$ است. در یک نسخه دیگر از مسئله حداقل مربعات،

$$\sum_{i=1}^{m} w_i (\tilde{a}_i^T - b_i)^2$$

که وزنهای w_i مثبت هستند و به ما داده شدهاند.

الف. نشان دهید با انتخاب ماتریس قطری D به صورت مناسب، میتوان این مسئله را به مسئله حداقل مربعات معمولی تبدیل کرد به طوری که تابع هدف به صورت $||D(Ax-b)||^2$ خواهد شد و عملا تابع هدف در مسئله جدید خواهد بود:

$$||Bx - d||^2$$

d=Db و B=DA به طوری که

 $\,$ ب. نشان دهید اگر ستونهای ماتریس $\,A$ مستقل خطی باشند، ستونهای ماتریس $\,B\,$ نیز مستقل خطی هستند.

ج. جواب مسئله حداقل مربعات جدید را بر حسب
$$A$$
 و b و b و $W := \operatorname{diag}(w)$ به دست آورید.

$$D = \begin{bmatrix} \sqrt{w_1} & 0 \\ \sqrt{w_2} & 0 \\ 0 & \ddots \\ 0 & \sqrt{w_m} \end{bmatrix} \cdot \begin{bmatrix} -a^T - \\ -a^T - \\ -a^T - \\ -a^T - \end{bmatrix} - n's A c'_1 i i i jo'_2$$

$$\begin{bmatrix} -a_1^T \\ -a_2^T \end{bmatrix}$$

$$B = DA = \begin{bmatrix} -\sqrt{w_1} a_1 & -\sqrt{w_2} a_2 & -\sqrt{w_1} b_1 \\ -\sqrt{w_2} a_2 & -\sqrt{w_2} & -\sqrt{w_2} b_1 \end{bmatrix}$$

$$\begin{bmatrix} \sqrt{w_1} b_1 \\ \sqrt{w_m} b_m \end{bmatrix}$$

$$d = Db = \begin{bmatrix} \sqrt{w_m} b_m \end{bmatrix}$$

$$= \sum_{i=1}^{m} (\sqrt{w_{i}})^{2} \left[\alpha_{i}^{T} \chi_{i} - b_{i} \right]^{2} = \sum_{i=1}^{m} W_{i} \left(\alpha_{i}^{T} \chi_{i} - b_{i} \right)^{2}$$

ازرجان تملف اسفا ده یانم ، مزفن کنم که سکل های ۵ مسئل خطی نباسف _ که طب نمسر مربعی فالف هزواهدرست . هـ Bx=0

به تنافی رسیم. درجانعه رض کرده بورم سن مای کا معلی تعلی کا شد

 $\frac{-1}{D} \chi^{\dagger} = (B^{T}B)^{-1}B d \qquad \frac{B = DA \, \mathbb{I}}{D = \sqrt{\text{dig}(W)} \, \mathbb{I}} \qquad \chi^{\dagger} = (A^{T}D^{T}D \, A) \, DA \, Db$ $d = Db \, \mathbb{I}$

=i x* = (A diag(w)A) A diag(w)b