

Universidad Nacional de Ingeniería Facultad de Ciencias Escuela Profesional de Matemática

Ciclo 2020-1

[Cod: CM431 Curso: Análisis Numérico II]

[Prof: L. Paredes]

Práctica Dirigida Nro. 04

1. De la derivación numérica donde es llamada de diferencias progresiva, si h>0, y de diferencias regresiva si h<0. Use esta fórmula para determinar las aproximaciones que completan las siguientes tablas

	\boldsymbol{x}	f(x)	f'(x)
	0,5	0,8776	
<i>a</i>)	0,6	0,8253	
	0,7	0,7648	
	0,8	0,6967	

	x	f(x)	f'(x)
	0,1	4,3952	
<i>b</i>)	0,3	5,1599	
	0,5	5,8988	
	0,7	6,6238	

 Los datos del problema 1. se tomaron de las siguientes funciones. Calcule los errores reales del problemas 1. y obtenga las cotas por medio de las fórmulas de error.

a)
$$f(x) = Cos(x)$$

b)
$$f(x) = e^x + 3x - x^2 + 3$$

3. Use la fórmula de los tres puntos más conveniente para determinar las aproximaciones con que se completarían las siguientes tablas:

	\boldsymbol{x}	f(x)	f'(x)
	1,1	0,11800	
<i>a</i>)	1,2	0,09070	
	1,3	0,07427	
	1,4	0,06081	

	$oldsymbol{x}$	f(x)	f'(x)
	2,9	$-7,\!4719$	
<i>b</i>)	3,0	$-8,\!4866$	
	3,1	$-9,\!4728$	
	3,2	$-10,\!4093$	

	\boldsymbol{x}	f(x)	f'(x)
	8,0	133,084	
<i>c</i>)	8,1	137,247	
	8,2	141,482	
	8,3	145,789	

	\boldsymbol{x}	f(x)	f'(x)
	2,0	0,1286	
d)	2,1	0,1463	
	2,2	0,1907	
	2,3	0,2630	

4. Los datos del problema 5. se tomaron de las siguientes funciones. Calcule los errores reales del problema 5. y obtenga las cotas por medio de las fórmulas de error

a)
$$f(x) = sen^2(x)$$

b)
$$f(x) = e^{\frac{x}{2}} + x$$

- 5. Usando la expansión de Taylor demuestre que $f'(x_0) \;\; \approx \;\; \frac{1}{2h^3} \left[f(x_0+2h) 2f(x_0+h) + \\ 2f(x_0-h) f(x_0-2h) \right]$
- 6. Usando la expansión de Taylor demuestra que $f'(x_0) \;\; \approx \;\; \frac{1}{h^4} \left[f(x_0+2h) 4f(x_0+h) + \\ 6f(x_0) 4f(x_0-h) + f(x_0-2h) \right]$
- 7. Estime el valor óptimo de h para las fórmulas de tres puntos.
- 8. Estime el valor óptimo de h para las fórmulas que permiten aproximar $f''(x_0)$ y $f'''(x_0)$.
- 9. En un circuito eléctrico con un voltaje impreso $\varepsilon(t)$ y una inductancia L, la primera ley de Kirchhoff nos da la siguiente relación

$$Lrac{di}{dt} + Ri = arepsilon(t),$$

donde R es la resistencia del circuito e i es la corriente. Suponga que medimos la corriente con varios valores de t y obtenemos

t	1,00	1,01	1,02	1,03	1,04
i	3,10	3,12	3,14	3,18	3,24

donde t se mide en segundos, i se da en amperes, la inductancia L es una constante de 0,098 henries y la resistencia es de 0,142 ohms. Aproxime el voltaje $\varepsilon(t)$ en los valores $t=1,00,\ 1,01,\ 1,02,\ 1,03\ y\ 1,04.$

- 10. Dada la función $f(x) = x^5 3x^4 5x 1$ se desea calcular su integral en el intervalo [0; 3] empleando los siguientes métodos:
 - a) Integral exacta.
 - b) Mediante la fórmula de Newton-Cotes de 3 puntos. Mejora si empleas 4 puntos.
 - c) Mediante la fórmula de Newton-Cotes de 5 puntos.

11. Determine un $n \in \mathbb{N}$ tal que al aproximar la integral

$$\int_{-1,5}^{1} 5 cos(1-2x) - 2(x+1) sin(1-2x) dx$$

con el método de Simpson, el error estimado sea menor o igual a $\epsilon = 0.5 \times 10^{-7}$. Para esto, use la fórmula de error de este método. Sugerencia: $f^{(5)}(x) = 64(x+1)cos(1-2x)$ y $f^{(4)}(x) = 16cos(1-2x)-32(x+1)sen(1-2x)$.

- 12. Sea $\int_0^\pi sin(x)dx=2$, usando la regla de Trapecio Compuesta.
 - a) Aproxime con n = 4 y estime el error.
 - b) Estime n para obtener unerror de $E \le 0.5 \times 10^{-8}$.
- 13. Sea $\int_0^\pi sin(x)dx=2$, usando la regla de Simpson Compuesta.
 - a) Aproxime con n = 4 y estime el error.
 - b) Estime n para obtener unerror de $E \le 0.5 \times 10^{-8}$.
- 14. La función error está definida por

$$E=rac{2}{\sqrt{\pi}}\int_0^x e^{-t^2}dt.$$

Encuentre E(2).

15. La función S está definida por

$$S(x) = \int_0^x rac{sin(t)}{t} dt.$$

Encuentre S(2).

16. La función C está definida por

$$C(x) = \int_0^x \frac{\cos(t)}{t} dt.$$

Encuentre C(2).

17. La función C está definida por

$$C(x) = \int_0^x cos\left(rac{\pi t^2}{2}
ight) dt.$$

Encuentre C(2).

18. La función S está definida por

$$S=\int_{0}^{x}sin\left(rac{\pi t^{2}}{2}
ight)dt.$$

Encuentre S(2).

19. La integral elíptica completa de primera clase está definida por

$$K(m)=\int_0^{rac{\pi}{2}}rac{1}{\sqrt{1-msin^2(t)}}dt.$$

Encuentre K(1) y K(4).

20. La integral elíptica completa de segunda clase está definida por

$$K(m)=\int_0^{rac{\pi}{2}}\sqrt{1-msin^2(t)}dt.$$

Encuentre K(1) y K(4).

21. Encuentre la longitud de arco de la curva descrita por la función

$$y = ln(x), x \in <1; 2>,$$

la longitud está dada por

$$\int_{1}^{2} \sqrt{1+x^{-2}} dx$$
.

22. Aplique todos los métodos posible para

$$\int_1^2 x^2 ln(x) dx, \ n = 4.$$

23. Aplique todos los métodos posible para

$$\int_0^2 \frac{3}{x^2 + 9} dx, \ n = 6.$$

10 de Julio del 2020^*

^{**}Hecho en LAT_EX