57-32

N95-13210

32072

Aircraft Wake RCS Measurement.

W. Gilson,
Massachusetts Institute of Technology

ABS: next page

Radar Measurements of Aircraft Wakes at Kwajalein, R.M.I.

William H. Gilson
Lincoln Laboratory, Massachusetts Institute of Technology
244 Wood Street
Lexington, Massachusetts 02173-9108

ABSTRACT

A series of multi-frequency radar measurements of aircraft wakes at altitudes of 5,000 to 25,000 ft. was performed at Kwajalein, R.M.I., in May and June of 1990. Two aircraft were tested, a Learjet 35 and a Lockheed C-5A. The cross-section of the wake of the Learjet was too small for detection at Kwajalein. The wake of the C-5A, although also very small, was detected and measured at VHF, UHF, L-, S-, and C-bands, at distances behind the aircraft ranging from about one hundred meters to tens of kilometers. The data suggest that the mechanism by which aircraft wakes have detectable radar signatures is, contrary to previous expectations, unrelated to engine exhaust but instead due to turbulent mixing by the wake vortices of pre-existing index of refraction gradients in the ambient atmosphere. These measurements were of necessity performed with extremely powerful and sensitive instrumentation radars, and the wake cross-section is too small for most practical applications.

This work was sponsored by the Office of Naval Technology. The views expressed are those of the author and do not reflect the official policy or position of the U.S. Government.

AIRCRAFT WAKE RCS MEASUREMENTS

WILLIAM H. GILSON

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

THIS WORK WAS SPONSORED BY THE OFFICE OF NAVAL TECHNOLOGY. THE VIEWS EXPRESSED ARE THOSE OF THE AUTHOR AND DO NOT REFLECT THE OFFICIAL POLICY OR POSITION OF THE U.S. GOVERNMENT

OUTLINE

- BACKGROUND
- RADARS AND AIRCRAFT
- RADAR DATA EXAMPLES
- WAKE SIGNATURES
 - STRENGTH
 - POSSIBLE MECHANISMS
 - ARE WAKES USEFUL "TELL-TALES?"
- SUMMARY

AIRCRAFT WAKE STRUCTURE AND RADAR SCATTERING

WAKE STRUCTURES

- SENSITIVE TO AIRCRAFT CONFIGURATION
- INITIALLY LAMINAR FLOW DECAYS TO TURBULENCE
- UP TO 10 TO 20 km LONG

POTENTIAL SCATTERING MECHANISMS

- REFRACTIVITY VARIATIONS
 EXHAUST HEAT AND MOISTURE
 MIXING OF ATMOSPHERIC STRATA
 VORTEX DYNAMICS
- EXHAUST PARTICULATES AND AEROSOLS

AIRCRAFT WAKE SIGNATURE PRIOR MEASUREMENTS AND CALCULATIONS

EXTRAPOLATION

FREQUENCY (GHz)

KWAJALEIN ATOLL

ROLLVANTERISTANT

ROLNAMUR ISLAND

KIERNAN REENTRY MEASUREMENT SYSTEM (KREMS) RADARS TRADEX ALCOR MMW **ALTAIR** FREQ. BAND Κд VHF UHF 100 10 0.1 FREQUENCY (GHz) ALTAIR TRADEX ALCOR MMW 84 45 **APERTURE DIAMETER (ft)** 150 40 K. VHF UHF S C 0.025PEAK POWER (MW) 2 7 SINGLE PULSE SENSITIVITY -51 -73 -68 -56 -45 -64 AT 200 km (dBsm)

AEROMET LEARJET 36 FLY-BY 25 MAY 1990

GATES LEARJET 36

WING SPAN 12 m MASS, EMPTY 4300 kg MASS, MAX T.O. 8300 kg FUEL FLOW AT 45,000 ft 1100 lbs/hr

439 MAW C-5A FLY-BY 15 JUNE 1990

LOCKHEED C-5A GALAXY

WING SPAN 68 m MASS, EMPTY 150,000 kg MASS, MAX T.O. 350,000 kg

FUEL FLOW AT 40,000 ft

40,000 ft 18,000 lbs/hr

FLIGHT PATH AND DATA RECORDING TEST RUN AT 5,000 ft ALTITUDE

61,

S-BAND RANGE-DOPPLER SLICE THROUGH C-5A WAKE

5,000 ft ALTITUDE 60 s (6.7 km) AFTER PASSAGE OF AIRCRAFT

615

S-BAND RANGE-DOPPLER SLICE THROUGH C-5A WAKE

5,000 ft ALTITUDE 240 s (27 km) AFTER PASSAGE OF AIRCRAFT

C-5A WAKE DATA

AIRCRAFT WAKE SIGNATURE PRIOR MEASUREMENTS AND CALCULATIONS

EXTRAPOLATION C-5A DATA AT 5 kft C-5A DATA AT 10 kft

FREQUENCY (GHz)

SUMMARY OF C-5A WAKE SIGNATURE **DEPENDENCE**

	PARAMETER	DEPENDENCE	CONCLUSION
	DISTANCE	INCREASES FOR CA. 10 km, THEN TRAILS OFF	RELATED TO TURBULENCE
618	FREQUENCY	LARGELY FLAT, FALLING OFF AT C-BAND	NOT PARTICULATES
	ALTITUDE	DECREASES WITH HEIGHT; NOT SEEN ABOVE 27 kft	RELATED TO LOW- ALTITUDE CLIMATE
	ENGINE THRUST	NONE: IDLE TO MILITARY RATED THRUST	WEAK EXHAUST CONTRIBUTION
	FLAP SETTING	NONE: ZERO TO HALF FLAPS	INDEP. OF DETAILED VORTEX STRUCTURE
	AIR SPEED	NONE: 100 kn VARIATION	INDEP. OF DETAILED VORTEX STRUCTURE

POSTULATED MECHANISM

- TURBULENT MIXING OF ATMOSPHERIC INDEX OF REFRACTION GRADIENTS
 - CONSISTENT WITH RCS DEPENDENCE ON

ALTITUDE

THRUST

TIME

FREQUENCY

- STRENGTH DEPENDS ON CLIMATE
 - STRONGEST IN TROPICS NEAR SEA LEVEL
- EXHAUST HEAT AND MOISTURE MAY GIVE LOWER LIMIT

SUMMARY

- PRIOR WORK SUGGESTED A VERY SMALL WAKE RCS
- AT KWAJALEIN
 - ENGINE EXHAUST COMPONENT NOT DISCERNIBLE
 - DOMINANT ATMOSPHERIC MIXING CONTRIBUTION
- NO USEFUL "TELL-TALE"
 - STRONG CLIMATE DEPENDENCE
 - LARGE AND COMPLEX SYSTEM
 - CLEAR AIR TURBULENCE CLUTTER

Peak pover	MOTE	AL COR 3 MW	ALION/MOTH
Beam width	10	50	-14 18
Duty foctor	0.14	54	17 48
	3km	15km	-14 08
Beam-Filling loss (ion vake)	•	-10 UB
Relative sensiti	VITA to Wake C.	re sensitive	-1600
41R(RAFT 4-7	LEAR)ET 36	C-SA	
22 h.lls	10 hlbs	3304lls	dy

QUESTION #3

Can a rader detect and quantify the UDRTEX STRENGTH?

DBVIOUS ANSWER - IN Principle - YES, WITH ENOUGH RANGE OR ANGULAR RESOLUTION?

MY QUESTION FOR THE MERO DYNAMICISTS?

WHAT IS ENOUGH RESOLUTION?

Leg. Im range by 50 m (cross ronge)

623

Rawinson des

AM, PM

WSMR

KREMS 1130, from Kwos.

Weother

Met. Stotion, Before 2 after Sly-bys Met. station on Karaj. Mornings, before missions.