

Prof. Dr. Zimmermann

Klausur

Mathematik I11

3Q 2009

Name des Prüflings:				Matrikelnummer:			Zenturie:		
Dauer: 120 Min.		Se	eiten oh	— me Decl	kblatt 1	11		Dat	um: 9.10.2009
Hilfsmittel: Norda	kademi	e Tasch	enrechr	ner.					
Bemerkungen: Die	ese Kla	usur en	thält 8	Aufgab	en. Es l	können 1	.00 Pun	kte er	reicht werden
Bitte schreiben Sie I nicht auskommen, v		_	-	_	_	abenblät	ter. Fal	lls Sie	mit dem Platz
Trennen Sie nicht zeichnen Sie deutlich Ihrer Matrikelnumm	h die Z		_				_		· · · · · · · · · · · · · · · · · · ·
Schreiben Sie lese	erlich!								
Aufgabe:	1	2	3	4	5	6	7	8	Summe:
Punktzahl:	10	12	15	10	9	13	23	8	100
Davon erreicht:									
Datum:		_	Note:			Ergän	zungspi	rüfung	:
Untergebrift:									

Aufgabe 1 (10 Punkte)

Bitte kreuzen Sie an? Bewertung: Mindestens 6 richtige Antworten, dann für jede weitere richtige Antwort 2 Punkte. Tipp: P(M) ist die Potenzmenge der Menge M.

Frage	Antwortmöglichkeiten				
$\{1\} \in \{1, \{1, 2\}\}$	Wahr , Falsch				
$\{1\} \subseteq \{1, \{1, 2\}\}$	Wahr , Falsch				
$1 \in \{1, \{1, 2\}\}$	Wahr , Falsch				
$\emptyset \in \{1, \{1, 2\}\}$	Wahr , Falsch				
$\emptyset \not\subseteq \{1,\{1,2\}\}$	Wahr , Falsch				
$\emptyset_{\neq}^{\subseteq}\{1,\{1,2\}\}$	Wahr , Falsch				
$\emptyset \in \emptyset \times \{0, 1, 2\}$	Wahr , Falsch				
$\emptyset \in P(\{\emptyset, \{1, 2\}\})$	Wahr , Falsch				
$\{2\} \in \{\{x,y\} x \in \{1,2\} \land y \in \{2,3\}\}$	Wahr , Falsch				
Wenn S und T beliebige disjunkte Mengen sind, dann gilt: $ S \cup T = S + T $	Wahr , Falsch				
	Gilt für alle Mengen M				
$M \in P(M)$	Gilt für manche Mengen M				
	Gilt für keine Menge M				
	Gilt für alle Mengen M				
$M \subseteq P(M)$	Gilt für manche Mengen M				
	Gilt für keine Menge M				

- 1. $\{1\} \in \{1, \{1, 2\}\}\ F$
- 2. $\{1\} \subseteq \{1, \{1, 2\}\}$ W
- 3. $1 \in \{1, \{1, 2\}\}\ W$
- 4. $\emptyset \in \{1, \{1, 2\}\}\ F$
- 5. $\emptyset \not\subseteq \{1, \{1, 2\}\}\ F$
- 6. $\emptyset_{\neq}^{\subset} \{1, \{1, 2\}\}$ W

- 7. $\emptyset \in \emptyset \times \{0, 1, 2\}$ F
- 8. $\emptyset \in P(\{\emptyset, \{1, 2\}\})$ W
- 9. $\{2\} \in \{\{x,y\} | x \in \{1,2\} \land y \in \{2,3\}\}\$ W
- 10. Wenn S und T beliebige disjunkte Mengen sind, dann gilt: $|S \cup T| = |S| + |T|$ W
- 11. Für alle Mengen $M: M \in P(M)$
- 12. Für manche Mengen $M: M \subseteq P(M)$

Aufgabe 2 (12 Punkte)

(2.1) (2 Punkte) Geben Sie die formalen Definitionen von \subseteq und \cup wieder.

Lösung:

$$S \subseteq T \Leftrightarrow \forall x \in S : x \in T$$
$$S \cup T = \{x | x \in S \lor x \in T\}$$

(2.2) (10 Punkte) Beweisen Sie: Für beliebige Mengen S, T gilt: $S \cup T \subseteq S \Leftrightarrow T \subseteq S$.

Lösung:

• Seien zunächst S, T zwei beliebige Mengen mit $S \cup T \subseteq S$.

Wir sollen zeigen $T \subseteq S$:

Sei dazu $x\in T$ beliebig aber fest. Nach der Definition von \cup gilt $x\in S\cup T$. Nach der Voraussetzung $S\cup T\subseteq S$ ist deshalb auch $x\in S$.

• Seien nun S, T zwei beliebige Mengen mit $T \subseteq S$.

Wir sollen zeigen $S \cup T \subseteq S$:

Sei dazu $x \in S \cup T$ beliebig aber fest. Nach der Definition von \cup gilt $x \in S$ oder $x \in T$. Wir machen nun eine Fallunterscheidung.

- 1. Fall $x \in S$ Dann sind wir sofort fertig.
- 2. Fall $x \in T$ Nach der Voraussetzung $T \subseteq S$ ist deshalb auch $x \in S$.

In jedem Fall folgt $x \in S$, was zu beweisen war.

Aufgabe 3 (15 Punkte)

- (3.1) (15 Punkte) Sei f_n , $n \in \mathbb{N}_0$ eine Folge von Zahlen, die den Bedingungen genügt:
 - 1. $f_0 = 1$ und $f_1 = 3$

2.
$$\forall n \in \mathbb{N}_2 : f_n = 2f_{n-1} + 3f_{n-2}$$

Beweisen Sie durch vollständige Induktion: $f_n = 3^n$

Hinweise: $\mathbb{N}_2 = \{2, 3, 4, 5, \ldots\}$. "Präzisieren" Sie zunächst die Aufgabenstellung.

Lösung:

Behauptung:

$$\forall n \in \mathbb{N} : f_n = 3^n \wedge f_{n-1} = 3^{n-1}$$

Beweis durch vollständige Induktion:

1. Induktionsanfang n=1

Linke Seite: $f_1 = 3$ und $f_0 = 1$

Rechte Seite: $3^1 = 3$ und $3^0 = 1$.

2. Induktionsschluss

Sein $n \in \mathbb{N}$ beliebig aber fest.

(a) Induktionsvoraussetzung

$$f_n = 3^n \wedge f_{n-1} = 3^{n-1}$$

(b) Induktionsbehauptung

$$f_{n+1} = 3^{n+1} \land f_n = 3^n$$

(c) Induktionsschritt Der zweite Teil der Induktionsbehauptung ist gleich dem ersten Teil der Induktionsvoraussetzung. Deshalb braucht dafür nichts mehr beweisen werden.

Zum ersten Teil
$$f_{n+1} = 2f_n + 3f_{n-1} = 2 * 3^n + 3 * 3^{n-1} = 2 * 3^n + 3^n = 3 * 3^n = 3^{n+1}$$

...

Aufgabe 4 (10 Punkte)

- (4.1) (8 Punkte) Benutzen Sie als Betrachtungsbereiche die Menge S der Studenten der Nordakademie und die Menge P der Prüfungen. Wir haben ein zweistelliges Prädikat, das Bestehen einer Prüfung: "· besteht ·". Formulieren Sie folgende Aussagen und deren Negationen mit Quantoren. Achten Sie darauf, dass keine Quantor negiert vorkommt.
 - 1. Alle Studenten bestehen eine Prüfung.
 - 2. Es gibt eine Prüfung, die alle Studenten bestehen.
 - 3. Es gibt einen Studenten, der alle Prüfungen besteht.
 - 4. Wenigstens ein Student besteht wenigstens eine Prüfung nicht.

- 1. $\forall s \in S \ \exists p \in P : s \ besteht \ p$.
- 2. $\exists p \in P \ \forall s \in S : s \ besteht \ p$.
- 3. $\exists s \in S \ \forall p \in P : s \ besteht \ p$.
- 4. $\exists p \in P \ \exists s \in S : \neg(s \ besteht \ p). \ oder \ \exists s \in S \ \exists p \in P : \neg(s \ besteht \ p).$
- 1. $\exists s \in S \ \forall p \in P : \neg s \ besteht \ p$.
- 2. $\forall p \in P \ \exists s \in S : \neg s \ besteht \ p$.
- 3. $\forall s \in S \ \exists p \in P : \neg s \ besteht \ p$.
- 4. $\forall p \in P \ \forall s \in S : (s \ besteht \ p). \ oder \ \forall s \in S \ \forall p \in P : (s \ besteht \ p).$

(4.2) (2 Punkte) In der vorherigen Teilaufgabe gibt es eine logische Beziehung zwischen Aussage 1 und Aussage 2. Welche der Implikationen (1) \Rightarrow (2) bzw. (2) \Rightarrow (1) ist immer richtig, egal Studenten welche Prüfungen bestehen.

Lösung:

 $(2) \Rightarrow (1)$ ist immer richtig

Aufgabe 5 (9 Punkte)

- (5.1) (9 Punkte) Sei $m \in \mathbb{N}$ ein fester Modulus. Welche der folgenden Definitionen ist sinnvoll? Begründen Sie mit einem Beweis/Beispiel.
 - 1. $\forall a, b \in \mathbb{Z} : [a]_m \odot [b]_m = [a \cdot b]_m$
 - 2. $\forall a, b \in \mathbb{Z} : [a]_m < [b]_m = a < b$

Lösung:

Die erste Definition ist sinnvoll, weil sie vom Repräsentanten unabhängig ist. Um die Unabhängigkeit von den Repräsentanten zu beweisen, seien zwei ganze Zahlen $a, a' \in \mathbb{Z}$ gegeben, die dieselbe Restklasse repräsentieren, also $[a]_m = [a']_m$. Ferner seien die Zahlen $b, b' \in \mathbb{Z}$ so, dass $[b]_m = [b']_m$. Wir müssen beweisen, dass $[a*b]_m = [a'*b']_m$ ist. Nach der Voraussetzung gibt es ganze Zahlen $q_1, q_2 \in \mathbb{Z}$, so dass $a - a' = q_1 * m$ und $b - b' = q_2 * m$. Dann gilt:

$$a*b - (a'*b') = a*b - a'*b + a'*b - a'*b' = (a - a')*b + a'*(b - b') = q_1*m*b + a'*q_2*m = (q_1*b + a'*q_2)*m$$

Die zweite Definition ist nicht sinnvoll, da sie nicht unabhängig vom Repräsentanten ist:

Beispiel: Es ist $[2]_3=[5]_3$ und $[2]_3<[3]_3$ weil 2<3aber nicht $[5]_3<[3]_3$ da nicht 5<3

...

Aufgabe 6 (13 Punkte)

Seien M_1, M_2, M_3 beliebige Mengen und $F: M_1 \to M_2$, $G: M_2 \to M_3$ beliebige Abbildungen.

(6.1) (3 Punkte) Geben Sie die Eigenschaften einer Funktion F mit Quantoren an. Wann ist die Funktion injektiv?

Lösung:

- F ist linkstotal: $\forall x \in M_1 \exists y \in M_2 : (x,y) \in F$
- F ist rechtseindeutig: $\forall x \in M_1 \forall y_1, y_2 \in M_2 : (x, y_1) \in F \land (x, y_2) \in F \Rightarrow y_1 = y_2$
- F ist injektiv: $\forall y \in M_2 \forall x_1, x_2 \in M_1 : (x_1, y) \in F \land (x_2, y) \in F \Rightarrow x_1 = x_2$
- (6.2) (10 Punkte) Beweisen Sie die Aussage: Wenn $F \circ G$ injektiv ist, dann ist F injektiv.

Lösung:

Seien F, G wie in der Aufgabe beschrieben, insbesondere $F \circ G$ injektiv. Wir müssen zeigen: $\forall x_1, x_2 \in M_1, y \in M_2 : (x_1, y) \in F \land (x_2, y) \in F \Rightarrow x_1 = x_2$.

Sei dazu $x_1, x_2 \in M_1$ und $y \in M_2$ beliebig mit $(x_1, y) \in F \land (x_2, y) \in F$. Da G linkstotal ist, gibt es es ein $z \in M_3$, so dass $(y, z) \in G$. Nach der Definition der Verkettung von Relationen gilt $(x_1, z) \in F \circ G$ und $(x_2, z) \in F \circ G$. Aus der Injektivität von $F \circ G$ folgt nun $x_1 = x_2$.

Aufgabe 7 (23 Punkte)

Sei (G, \circ) eine Gruppe. Wir definieren in G die Relation \equiv durch

Für $a, b \in G$ beliebig gilt $a \equiv b$ genau dann, wenn $\exists g \in G : a = g^{-1} \circ b \circ g$.

(7.1) (6 Punkte) Geben Sie die Definition einer Gruppe wieder.

Lösung:

Eine algebraische Struktur (G, \circ) heißt Gruppe , wenn gilt:

- 1. $\forall a, b, c \in G : (a \circ b) \circ c = a \circ (b \circ c)$ (Assoziativgesetz)
- 2. Es gibt ein $e \in G$ (neutrales Element von G) mit folgenden Eigenschaften:
 - (a) $e \circ a = a$ für alle $a \in G$, (linksneutrales Element)
 - (b) Zu jedem $a \in G$ gibt es ein $a' \in G$ mit $a' \circ a = e$.
- (7.2) (8 Punkte) Gegeben sei die Gruppe D_3 mit der folgenden Verknüpfungstafel.

0	d_0	d_{120}	d_{240}	s_0	s_1	s_2
$\overline{d_0}$	d_0	d_{120}	d_{240}	s_0	s_1	s_2
d_{120}	d_{120}	d_{240}	d_0	s_1	s_2	s_0
d_{240}	d_{240}	d_0	d_{120}	s_2	s_0	s_1
s_0	s_0	s_2	s_1	d_0	d_{240}	d_{120}
s_1	s_1	s_0	s_2	d_{120}	d_0	d_{240}
s_2	s_2	s_1	s_0	d_{240}	d_{120}	d_0

Berechnen Sie:

$$s_0^{-1} \circ d_0 \circ s_0 =$$

$$d_{120}^{-1} \circ d_0 \circ d_{120} =$$

$$s_0^{-1} \circ d_{120} \circ s_0 =$$

$$s_1^{-1} \circ d_{120} \circ s_1 =$$

$$s_2^{-1} \circ d_{120} \circ s_2 =$$

$$d_0^{-1} \circ s_0 \circ d_0 =$$

$$d_{120}^{-1} \circ s_0 \circ d_{120} =$$

$$d_{240}^{-1} \circ s_0 \circ d_{240} =$$

$$s_0^{-1} \circ d_0 \circ s_0 = d_0$$

$$d_{120}^{-1} \circ d_0 \circ d_{120} = d_0$$

$$s_0^{-1} \circ d_{120} \circ s_0 = d_{240}$$

$$s_1^{-1} \circ d_{120} \circ s_1 = d_{240}$$

$$s_2^{-1} \circ d_{120} \circ s_2 = d_{240}$$

$$d_0^{-1} \circ s_0 \circ d_0 = s_0$$

$$d_{120}^{-1} \circ s_0 \circ d_{120} = s_1$$

$$d_{120}^{-1} \circ s_0 \circ d_{240} = s_2$$

(7.3) (6 Punkte) Beweisen Sie: \equiv ist eine Äquivalenzrelation.

Lösung:

 \equiv ist reflexiv: Sei $a \in G$ beliebig, dann gilt $a = n^{-1} \circ a \circ n$. Also $a \equiv a$.

 \equiv ist symmetrisch: Seien $a,b\in G$ beliebig mit $a\equiv b$. Dann gibt es ein $g\in G$, so dass $a=g^{-1}\circ b\circ g$. Daher gilt $(g^{-1})^{-1}\circ a\circ g^{-1}=(g^{-1})^{-1}\circ g^{-1}\circ b\circ g\circ g^{-1}=n\circ a\circ n=a$. Also $b\equiv a$.

 \equiv ist transitiv: Seien $a,b,c\in G$ beliebig mit $a\equiv b$ und $b\equiv c$. Dann gibt es $g_1,g_2\in G,$ so dass $a=g_1^{-1}\circ b\circ g_1$ und $b=g_2^{-1}\circ c\circ g_2.$ Dann gilt $a=g_1^{-1}\circ b\circ g_1=g_1^{-1}\circ g_2^{-1}\circ c\circ g_2\circ g_1=(g_2\circ g_1)^{-1}\circ c\circ (g_2\circ g_1).$ Daher gilt auch: $a\equiv c.$

(7.4) (3 Punkte) Welches sind die Äquivalenzklassen von d_0,d_{120},s_0 bezüglich $\equiv.$

$$[d_0] = \{d_0\}$$
$$[d_{120}] = \{d_{120}, d_{240}\}$$
$$[s_0] = \{s_0, s_1, s_2\}$$

Aufgabe 8 (8 Punkte)

Lösen Sie die Gleichung $[35]_{3559} \odot [x]_{3559} = [14]_{3559}$. Machen Sie eine Probe.

Geben Sie für x mit $0 \le x < 3559$ an:

Lösung:

Euklids Algorithmus

- 1. 3559 = 101 * 35 + 24
- $2. \ 35 = 1 * 24 + 11$
- 3. 24 = 2 * 11 + 2
- 4. 11 = 5 * 2 + 1
- 5. 2 = 2 * 1 + 0

Bestimmen des inversen zu 35:

- 1. 1 = 11 5 * 2
- 2. = 11 5 * (24 2 * 11)
- 3. = 11 * 11 5 * 24
- 4. = 11 * (35 1 * 24) 5 * 24
- 5. = 11 * 35 16 * 24
- 6. = 11 * 35 16 * (3559 101 * 35)
- 7. = 1627 * 35 16 * 3559

 $[1627]_{3559}$ ist das multiplkative inverse zu $[35]_{3559}$

Daher ist $[1627 * 14]_{3559} = [1424]_{3535}$ das gesuchte Element.

Viel Erfolg