NLP PROJECT

Multimodal Cause & Effect Detection (Joy)

Aadit Sharma - 2101AI02

Akash Sinha - 2101CS90

Atul Pande - 2101CS88

Problem Statement

The problem statement was majorly divided into 3 tasks:

Dataset Collection

1000 video conversations that portray "joy" emotion. Deriving the audio and textual features from them.

Annotation

Labelling frames, audio parts and text segments into emotion clause and cause clause

Model

Using a transformer model to predict emotion and its cause

Dataset Research

We researched and found 2 multi-modal datasets (audio, video and text) relevant to our task

IEMOCAP Dataset:

Each segment is annotated for nine emotions (angry, excited, fear, sad, surprised, frustrated, happy, disappointed, and neutral) along with valence, arousal, and dominance.

MELD Dataset:

- MELD includes dialogues with multiple speakers.
- Each utterance is annotated with emotion and sentiment labels.

Dataset Collection

Dataset

Gemini API

OpenAl whisper

Video Clip (12.mp4)

```
1
00:00:00,000 --> 00:00:02,000
You had the tooth knocked out this time.

2
00:00:02,000 --> 00:00:03,000
Oh, yes.

3
00:00:03,000 --> 00:00:06,500
I had a concussion, whiplash, stitches in my hand,

4
00:00:06,500 --> 00:00:07,500
dislocated shoulder.
```

SRT file (subtitles12.srt)

Annotated (res12.csv)

timestamp_range	cause_text	emotion_text
00:01:00,000> 00:01:03,000	But I have a 10 month old son.	So, it still works.
00:02:21,000> 00:02:23,000	I had an injury.	I got a rubber stuck on my nose
00:02:54,000> 00:03:09,000	My brother dared me to put a pencil up my nose.	LAUGHTER
00:06:36,000> 00:06:43,000	Did you see how politely though we handled that?	Oh, that's so good.
00:06:46,000> 00:06:48,000	Oh, my God.	It's my favorite.
00:09:01.000> 00:09:05.000	And I had chosen a day when all of a sudden, randomly.	Oh!

/ideo_name	cause_text	emotion_text	timestamp_range
l2-001.mp4	But I have a 10 month old son.	So, it still works.	00:01:00,000> 00:01:03,000
l2-002.mp4	I had an injury.	I got a rubber stuck on my nose	.00:02:21,000> 00:02:23,000
l2-007.mp4	Stop kicking me under the table.	And I've got my hair in his foot.	00:04:00,000> 00:04:05,000
l2-009.mp4	Did you see how politely though we handled that?	Oh, that's so good.	00:06:36,000> 00:06:43,000
l2-010.mp4	Oh, my God.	It's my favorite.	00:06:46,000> 00:06:48,000
l2-011.mp4	And I had chosen a day when all of a sudden, randomly,	Oh!	00:09:01,000> 00:09:05,000

final.csv (clips)

Intuition

Outline for model training after annotation.

Subtitle generation

To obtain the srt files containing the dialogues, openai/whisper was used, subsequently producing the subtitles separating every sentence.

Annotate utterances

The collected dataset was passed through gemini-2.0-flash to annotate utterances in a particular dialogue as either the emotion clause or as the cause clause.

Classification Problem

Treat this as a classification problem by passing the emotion/cause pair embeddings

Sample Preparation

video_namecause_textemotion_texttimestamp_range12-009.mp4Did you see how politely though we handled that?Oh, that's so good.00:06:36,000 --> 00:06:43,000

Processed annotated clip

12-009-001.mp4 12-009.mp4 12.mp4	Did you see how politely though we handled that?	0:06:36> 0:06:39
	Utterance 1	
12 000 002 777 4 12 000 777 4 12 777 4		
12-009-002.mp4	Because we thought you would lost your mind, thou	ugn. 0:06:39> 0:06:41
	Utterance 2	
12-009-003.mp4 12-009.mp4 12.mp4	Yeah.	0:06:41> 0:06:42
	Utterance 3	
12-009-004.mp4 12-009.mp4 12.mp4	Oh, that's so good.	0:06:42> 0:06:43
	Utterance 4	

Training Process

A brief sequence on how the model will be trained

cause-effect detection task as a binary classification problem → classifying a pair of utterances as joy cause/effect

Embeddings

Extracted multimodal embeddings for each utterance using the models mentioned before and then concatenated them.

Classification Input

Created pairs of utterances as input samples for classification

Model Training

Trained our model to classify whether each pair exhibits a cause-effect relationship.

Model Components

The models used for the multimodal embeddings

Text

Sentence-Transformer "all-mpnet-base-v2"

AST Audio Spectrogram Transformer

Video

ResNet50

Took mean of features of frame

Methodology

Video Clip

CLASSIFICATION DETAILS

During the train-test split, we conducted our experimentation on 2 levels - segregating on the basis of video level and on clip level.

Based on the classification results we pair up all the utterances present in a single clip and then predict the probability that a particular utterance pair would be our actual Cause/Effect pair!

We mark the pair giving the highest probability and use it to find the accuracy for all clips given.

Results (Video-level)

Accuracy: 55.43%

Weighted Metrics:
 Precision: 0.5687
 Recall: 0.5543
 F1 Score: 0.5299

Per-Class Metrics:
 Class 0 - Precision: 0

Class 0 - Precision: 0.6000, Recall: 0.3261, F1: 0.4225 Class 1 - Precision: 0.5373, Recall: 0.7826, F1: 0.6372

Classification Report:

support	f1-score	recall	precision		
92	0.42	0.33	0.60	0	
92	0.64	0.78	0.54	1	
104	0 55			r001/	20011
184	0.55			racy	accui
184	0.53	0.55	0.57	avg	macro
184	0.53	0.55	0.57	avg	eighted

Confusion Matrix:

[[30 62] [20 72]] Confusion Matrix Explanation:

True Negatives (Class 0 correctly predicted): 30

False Positives (Class 0 incorrectly predicted as Class 1): 62
False Negatives (Class 1 incorrectly predicted as Class 0): 20

True Positives (Class 1 correctly predicted): 72

Test Results Summary:

Loss: 0.7391 Accuracy: 55.43%

Class 0 - Precision: 0.6000, Recall: 0.3261, F1: 0.4225 Class 1 - Precision: 0.5373, Recall: 0.7826, F1: 0.6372 Clip-level Accuracy: 0.8272

Total clips evaluated: 81

Final Prediction Results

Classification Results

Results (Clip-level)

```
Accuracy: 66.36%
Weighted Metrics:
 Precision: 0.6688
 Recall: 0.6636
 F1 Score: 0.6610
Per-Class Metrics:
 Class 0 - Precision: 0.6392, Recall: 0.7512, F1: 0.6907
 Class 1 - Precision: 0.6983, Recall: 0.5760, F1: 0.6313
Classification Report:
            precision recall f1-score support
                 0.70
                                                217
                                                434
  macro avq
weighted avg
Confusion Matrix:
[[163 54]
 [ 92 125]]
```

```
Confusion Matrix Explanation:
```

True Negatives (Class 0 correctly predicted): 163
False Positives (Class 0 incorrectly predicted as Class 1): 54
False Negatives (Class 1 incorrectly predicted as Class 0): 92
True Positives (Class 1 correctly predicted): 125

Test Results Summary:

Loss: 1.0640 Accuracy: 66.36%

Class 0 - Precision: 0.6392, Recall: 0.7512, F1: 0.6907 Class 1 - Precision: 0.6983, Recall: 0.5760, F1: 0.6313 Clip-level Accuracy: 0.8632

Total clips evaluated: 190

Final Prediction Results

Classification Results

Contributions

Aadit Sharma - 2101AI02

- Annotated clips using Gemini to identify and separate cause-effect pairs
- Extracted multimodal embeddings from each segment
- Contributed to model architecture design and implementation

Akash Sinha - 2101CS90

- Collected half of the video dataset from YouTube.
- Generated the srt files for the video clips using whisper.
- Prepared classification pairs for cause-effect detection in training.

Atul Pande - 2101CS88

- Collected half of the video dataset using YouTube.
- Segmented videos into utterance-wise clips
- Collaborated on model architecture development and implementation

Thank You

