Model explanation

The model is conceptually zero-dimensional, and the initial conditions consider the minimal cell concentration recorded by Scalco et al. [2014] as gametogenesis trigger. Cell numbers and available nitrogen are expressed as abundance and concentration, respectively.

The simulation starts with a cell population (P) that enters the sexual reproduction phase after reaching a threshold value of a few thousand cells per ml (see Scalco et al. [2014]). During this phase of variable length, the population stops growing and experiences a prolonged burst of extra mortality. Within the same span, a P fraction will undergo gametogenesis and generate an offspring population (F_1) that will start to grow the moment $(t_{F,I})$ it appears. After t_{AE} days, the growth arrest will end and P will resumes its growth alongside F_1 . During the entire course of the simulation (set to ten days) cell growth is modulated by competition over nitrogen and cell size via an allometric relationship (see D'Alelio et al. [2010]). **Fig. 1** shows the relative variation of allometric growth (**plot** a).

A fundamental assumption, discussed later in the text, is that parental and daughter cells share a common, exclusive space, so that only P and F_1 compete for N made available in such space. This assumption is translated in the model as a decrease in growth rate as the total population $(F_1 + P)$ converges toward the carrying capacity, set as the total nitrogen content of initial parental cells.

To understand better how event timing and response amplitudes impact over F_1 recruitment success, we compared simulation outputs across selected parameters range. Our selected parameters are the P fraction that will generate F_1 (α) , gametogenesis-induced extra mortality of parental cells (d), duration of the growth arrest (t_{AE}) , and growth rates ratio among parental and initial cells $(r_P:r_{F_1})$ We deployed an interactive version of the model at the URL https: //arfalas.shinyapps.io/pns_toy/, code and figures are available on https://github.com/bhym/Stec (currently private)

Model description

Parental (P) and offspring (F_1) dynamics are defined as ODE:

$$\frac{dP}{dt} = \kappa \mu_P P - \delta P \tag{1}$$

$$\frac{dP}{dt} = \kappa \mu_P P - \delta P \tag{1}$$

$$\frac{dF_1}{dt} = \kappa \mu_{F_1} F_1 \tag{2}$$

where κ is the competition for N, defined as

$$1 - \frac{[N]_t}{1.2[N]_{t=0}}$$

with

$$[N_t] = [P]_t[N]_P + [F_1]_t[N]_{F_1}$$

 μ_P and μ_{F_1} are defined as

$$\mu_P = \begin{cases} 0 & \text{if } t < t_{AE} \\ \lambda_P(t)r_P & \text{if } t \ge t_{AE} \end{cases} ; \qquad \mu_{F_1} = \begin{cases} 0 & \text{if } t < t_{F_1I} \\ \lambda_{F_1}(t)r_{F_1} & \text{if } t \ge t_{F_1I} \end{cases}$$

with $\lambda_i(t)$ representing allometric scaling on length (L), defined as

$$\lambda_i(t) = 0.25 + 0.04L_i(t) - 0.0005L_i(t)^2$$

Length dynamics are based on cell's age (a) and are defined by the rule

$$L_i(t) = L_{0,i} - 0.1a(t)$$
 with i either P or F_1

Age is counted from the appearance of the population, and does not increase during GA. Finally, δ is an extra mortality term defined as

$$\begin{cases} d & \text{if } t < t_{AE} \\ 0 & \text{if } t > t_{AE} \end{cases}$$

The parameters values and ranges are reported in **Table 1**.

References

Eleonora Scalco, Krzysztof Stec, Daniele Iudicone, Maria Immacolata Ferrante, and Marina Montresor. The dynamics of sexual phase in the marine diatom p seudo-nitzschia multistriata (b acillariophyceae). *Journal of Phycology*, 50 (5):817–828, 2014. doi: 10.1111/jpy.12225.

Domenico D'Alelio, Maurizio Ribera d'Alcala, Laurent Dubroca, Adriana Zingone, and Marina Montresor. The time for sex: A biennial life cycle in a marine planktonic diatom. Limnology and Oceanography, 55(1):106-114, 2010. doi: 10.4319/lo.2010.55.1.0106.

Figure 1: Simulated size dependent growth and impact on the population dynamics — (a) dependence of specific growth rate on cell length; (b) Size reduction for the two sub-populations; examples of simulation outputs whith $r_p > r_{f1}$ (1.06 and 0.58, respectively) (c) and $r_p = r_{f1}$ (d). In (c) and (d): $\alpha = 0.012, d = 0.8$, all the other parameters as per **Tab. 1**.

Variable Meaning Units Value Reference P_0 initial concentration of P cells cells/ml 4E3Experiment detailed in the paper fraction of P that will generate F_1 [0.01, 0.2]Explored via simulations α day^{-1} net growth rate of P[0.5, 3]Explored via simulations r_P day^{-1} net growth rate of F_1 r_{F_1} 1 end day of the growth arrest day[2,6]Explored via simulations t_{AE} day of appearence of the offspring Experiment detailed in the paper day t_{F_1I} 3 starting length for P cells 40 Experiment detailed in the paper $L_{0,P}$ μm L_{0,F_1} starting length for F_1 cells 80 Experiment detailed in the paper μm gametogenesis-induced extra mortality dday [0.1, 0.9]Explored via simulations

Table 1: Values and ranges for model parameters

	0.01	0.03	0.05	0.08	0.1	0.12	0.15	0.17	0.2
3	-1.88	-1.40	-1.16	-0.94	-0.83	-0.74	-0.63	-0.56	-0.47
2.7	-1.88	-1.39	-1.16	-0.94	-0.83	-0.74	-0.62	-0.56	-0.47
2.5	-1.88	-1.39	-1.16	-0.94	-0.83	-0.74	-0.62	-0.56	-0.47
2.2	-1.87	-1.39	-1.15	-0.93	-0.82	-0.73	-0.62	-0.55	-0.46
2	-1.87	-1.38	-1.15	-0.93	-0.82	-0.73	-0.62	-0.55	-0.46
1.7	-1.86	-1.37	-1.14	-0.92	-0.81	-0.72	-0.61	-0.54	-0.46
1.5	-1.86	-1.37	-1.14	-0.92	-0.81	-0.72	-0.61	-0.54	-0.45
1.2	-1.84	-1.35	-1.12	-0.90	-0.80	-0.71	-0.59	-0.53	-0.44
1	-1.83	-1.34	-1.11	-0.89	-0.78	-0.69	-0.58	-0.52	-0.43

(a) $\alpha, r_p : r_{f1}$, with d = 0.2

	0.01	0.03	0.05	0.08	0.1	0.12	0.15	0.17	0.2
3	-1.79	-1.30	-1.07	-0.84	-0.73	-0.63	-0.51	-0.44	-0.34
$\frac{2.7}{2.5}$	-1.79 -1.78	-1.30 -1.29	-1.06 -1.06	-0.83 -0.83	-0.72 -0.72	-0.63 -0.62	-0.50 -0.50	-0.43 -0.43	-0.33 -0.33
2.2	-1.78	-1.28	-1.05	-0.82	-0.71	-0.61	-0.49	-0.42	-0.32
2	-1.77	-1.28	-1.04	-0.81	-0.70	-0.61	-0.48	-0.41	-0.32
1.7	-1.76	-1.26	-1.03	-0.80	-0.69	-0.59	-0.47	-0.40	-0.30
$\frac{1.5}{1.2}$	-1.74 -1.72	-1.25 -1.23	-1.02 -0.99	-0.79 -0.76	-0.68 -0.65	-0.58 -0.55	-0.46 -0.43	-0.39 -0.36	-0.29 -0.27
1	-1.69	-1.20	-0.96	-0.73	-0.62	-0.53	-0.41	-0.34	-0.24

(b) $\alpha, r_p : r_{f1}, \text{ with } d = 0.4$

	0.01	0.03	0.05	0.08	0.1	0.12	0.15	0.17	0.2
3 2.7	-1.73 -1.72	-1.24 -1.23	-1.00 -0.99	-0.76 -0.76	-0.65 -0.64	-0.55 -0.54	-0.42 -0.41	-0.34 -0.34	-0.24 -0.23
2.5	-1.72	-1.22	-0.98	-0.75	-0.63	-0.53	-0.40	-0.33	-0.22
$\frac{2.2}{2}$	-1.70 -1.69	-1.21 -1.20	-0.97 -0.96	-0.74 -0.73	-0.62 -0.61	-0.52 -0.51	-0.39 -0.38	-0.31 -0.30	-0.21 -0.20
1.7	-1.68	-1.18	-0.94	-0.70	-0.59	-0.49	-0.36	-0.28	-0.17
$\frac{1.5}{1.2}$	-1.66 -1.62	-1.16 -1.12	-0.92 -0.88	-0.69 -0.64	-0.57 -0.53	-0.47 -0.42	-0.34 -0.29	-0.26 -0.21	-0.15 -0.11
1	-1.58	-1.08	-0.84	-0.60	-0.48	-0.38	-0.25	-0.17	-0.06

(c) $\alpha, r_p : r_{f1}$, with d = 0.6

Table 2: Tabular data of $\log_{10}(F_1/P)$ for different values of parameters showed at bottom and growth arrest duration of three days. All other parameters were assigned as per **Tab. 1**