Teoria de Modelos e Aplicações

Caio Lopes, Henrique Lecco

ICMC - USP

27 de julho de 2020

Revisão

Revisão

Definição (Submodelo)

Um modelo $\mathcal M$ é dito submodelo de $\mathcal N$, denotado por $\mathcal M\subset \mathcal N$, se:

- \bullet $M \subset N$;
- ullet $\mathbf{f}^{\mathcal{M}}=\mathbf{f}^{\mathcal{N}}|_{M};$
- ullet $\mathbf{c}^{\mathcal{M}}=\mathbf{c}^{\mathcal{N}};$
- $\bullet \ R^{\mathcal{M}} = R^{\mathcal{N}}|_{\mathit{M}}.$

Revisão

Definição (Submodelo)

Um modelo \mathcal{M} é dito submodelo de \mathcal{N} , denotado por $\mathcal{M} \subset \mathcal{N}$, se:

- \bullet $M \subset N$;
- \bullet $\mathbf{f}^{\mathcal{M}} = \mathbf{f}^{\mathcal{N}}|_{\mathcal{M}};$
- ullet $\mathbf{c}^{\mathcal{M}}=\mathbf{c}^{\mathcal{N}};$
- $\bullet \ \mathbf{R}^{\mathcal{M}} = \mathbf{R}^{\mathcal{N}}|_{M}.$

Definição (Submodelo Elementar)

 $\mathcal{M} \subset \mathcal{N}$ é dito elementar, denotado por $\mathcal{M} \prec \mathcal{N}$, se para toda fórmula $\varphi(x_1,...,x_n)$ e $m_1,...,m_n \in M$

$$\mathcal{M} \vDash \varphi(m_1, ..., m_n) \Leftrightarrow \mathcal{N} \vDash \varphi(m_1, ..., m_n)$$

Definição (Teoria)

Uma L-teoria é uma coleção T de sentenças. Dizemos que \mathcal{M} é um modelo de T se para toda sentença φ de T, temos que $\mathcal{M} \models \varphi$.

Definição (Teoria)

Uma L-teoria é uma coleção T de sentenças. Dizemos que \mathcal{M} é um modelo de T se para toda sentença φ de T, temos que $\mathcal{M} \models \varphi$.

Definição (κ -categórica)

Uma teoria é κ -categórica se todo modelo de cardinalidade κ é isoformo.

Definição (Teoria)

Uma L-teoria é uma coleção T de sentenças. Dizemos que \mathcal{M} é um modelo de T se para toda sentença φ de T, temos que $\mathcal{M} \models \varphi$.

Definição (κ -categórica)

Uma teoria é κ -categórica se todo modelo de cardinalidade κ é isoformo.

Fim da revisão

Considere \mathcal{M} , \mathcal{N} dois modelos tais que $\mathcal{M} \subset \mathcal{N}$.

Considere \mathcal{M} , \mathcal{N} dois modelos tais que $\mathcal{M} \subset \mathcal{N}$. Seja $\varphi(x)$ uma fórmula sem quantificadores.

Considere \mathcal{M} , \mathcal{N} dois modelos tais que $\mathcal{M} \subset \mathcal{N}$. Seja $\varphi(x)$ uma fórmula sem quantificadores.

Sabemos que para todo $m \in M$

$$\mathcal{M} \vDash \varphi(m) \Leftrightarrow \mathcal{N} \vDash \varphi(m)$$

Considere \mathcal{M} , \mathcal{N} dois modelos tais que $\mathcal{M} \subset \mathcal{N}$. Seja $\varphi(x)$ uma fórmula sem quantificadores.

Sabemos que para todo $m \in M$

$$\mathcal{M} \vDash \varphi(m) \Leftrightarrow \mathcal{N} \vDash \varphi(m)$$

Observe o seguinte:

Considere \mathcal{M} , \mathcal{N} dois modelos tais que $\mathcal{M} \subset \mathcal{N}$. Seja $\varphi(x)$ uma fórmula sem quantificadores.

Sabemos que para todo $m \in M$

$$\mathcal{M} \vDash \varphi(m) \Leftrightarrow \mathcal{N} \vDash \varphi(m)$$

Observe o seguinte:

•
$$\mathcal{M} \models \exists x \varphi(x) \Rightarrow \mathcal{N} \models \exists x \varphi(x)$$

Considere \mathcal{M} , \mathcal{N} dois modelos tais que $\mathcal{M} \subset \mathcal{N}$. Seja $\varphi(x)$ uma fórmula sem quantificadores.

Sabemos que para todo $m \in M$

$$\mathcal{M} \vDash \varphi(m) \Leftrightarrow \mathcal{N} \vDash \varphi(m)$$

Observe o seguinte:

- $\mathcal{M} \models \exists x \varphi(x) \Rightarrow \mathcal{N} \models \exists x \varphi(x)$
- $\mathcal{N} \vDash \forall x \varphi(x) \Rightarrow \mathcal{M} \vDash \forall x \varphi(x)$

Considere \mathcal{M} , \mathcal{N} dois modelos tais que $\mathcal{M} \subset \mathcal{N}$. Seja $\varphi(x)$ uma fórmula sem quantificadores.

Sabemos que para todo $m \in M$

$$\mathcal{M} \vDash \varphi(m) \Leftrightarrow \mathcal{N} \vDash \varphi(m)$$

Observe o seguinte:

- $\mathcal{M} \models \exists x \varphi(x) \Rightarrow \mathcal{N} \models \exists x \varphi(x)$
- $\mathcal{N} \vDash \forall x \varphi(x) \Rightarrow \mathcal{M} \vDash \forall x \varphi(x)$

Quantificadores aumentam a complexidade das fórmulas.

Definição

Uma teoria T é modelo-completa se,

Definição

Uma teoria T é modelo-completa se, dados \mathcal{A}, \mathcal{B} modelos de T,

Definição

Uma teoria T é *modelo-completa* se, dados \mathcal{A}, \mathcal{B} modelos de T, então $\mathcal{A} \subset \mathcal{B} \Rightarrow \mathcal{A} \prec \mathcal{B}$.

Definição

Uma teoria T é *modelo-completa* se, dados \mathcal{A}, \mathcal{B} modelos de T, então $\mathcal{A} \subset \mathcal{B} \Rightarrow \mathcal{A} \prec \mathcal{B}$.

Definição

A classe dos submodelos de uma teoria T é a coleção de todos os submodelos dos modelos de T.

Definição

Uma teoria T é *modelo-completa* se, dados \mathcal{A}, \mathcal{B} modelos de T, então $\mathcal{A} \subset \mathcal{B} \Rightarrow \mathcal{A} \prec \mathcal{B}$.

Definição

A classe dos submodelos de uma teoria T é a coleção de todos os submodelos dos modelos de T. Esses submodelos não necessariamente são modelos para a teoria.

Dissemos que quantificadores estão relacionados à complexidade de uma fórmula.

Dissemos que quantificadores estão relacionados à complexidade de uma fórmula. Um parâmetro que indica a complexidade de uma fórmula é o número de quantificadores alternados.

Dissemos que quantificadores estão relacionados à complexidade de uma fórmula. Um parâmetro que indica a complexidade de uma fórmula é o número de quantificadores alternados.

Considere as fórmulas abaixo:

Dissemos que quantificadores estão relacionados à complexidade de uma fórmula. Um parâmetro que indica a complexidade de uma fórmula é o número de quantificadores alternados.

Considere as fórmulas abaixo:

• $\forall x \forall y \forall z \varphi(x, y, z)$;

Dissemos que quantificadores estão relacionados à complexidade de uma fórmula. Um parâmetro que indica a complexidade de uma fórmula é o número de quantificadores alternados.

Considere as fórmulas abaixo:

- $\forall x \forall y \forall z \varphi(x, y, z)$;
- $\forall x \forall y \exists z \varphi(x, y, z)$;

Dissemos que quantificadores estão relacionados à complexidade de uma fórmula. Um parâmetro que indica a complexidade de uma fórmula é o número de quantificadores alternados.

Considere as fórmulas abaixo:

- $\forall x \forall y \forall z \varphi(x, y, z)$;
- $\forall x \forall y \exists z \varphi(x, y, z)$;
- $\exists x \forall y \exists z \varphi(x, y, z)$;

Dissemos que quantificadores estão relacionados à complexidade de uma fórmula. Um parâmetro que indica a complexidade de uma fórmula é o número de quantificadores alternados.

Considere as fórmulas abaixo:

- $\forall x \forall y \forall z \varphi(x, y, z)$;
- $\forall x \forall y \exists z \varphi(x, y, z)$;
- $\exists x \forall y \exists z \varphi(x, y, z)$;

O grau de complexidade delas é crescente.

Dissemos que quantificadores estão relacionados à complexidade de uma fórmula. Um parâmetro que indica a complexidade de uma fórmula é o número de quantificadores alternados.

Considere as fórmulas abaixo:

- $\forall x \forall y \forall z \varphi(x, y, z)$;
- $\forall x \forall y \exists z \varphi(x, y, z)$;
- $\exists x \forall y \exists z \varphi(x, y, z)$;

O grau de complexidade delas é *crescente*. Daremos o nome da formalização dessa ideia de *hierarquia*.

Definição

A hierarquia de uma teoria é:

Definição

A hierarquia de uma teoria é:

• \forall_0 ou \exists_0 se suas fórmulas são livre de quantificadores;

Definição

A hierarquia de uma teoria é:

- \forall_0 ou \exists_0 se suas fórmulas são livre de quantificadores;
- ∀_n se suas fórmulas pertencem a menor classe de fórmulas que contém as fórmulas ∃_{n-1} e é fechada por ∧, ∨ e por adicionar ∀ na frente;

Definição

A hierarquia de uma teoria é:

- \forall_0 ou \exists_0 se suas fórmulas são livre de quantificadores;
- ∀_n se suas fórmulas pertencem a menor classe de fórmulas que contém as fórmulas ∃_{n-1} e é fechada por ∧, ∨ e por adicionar ∀ na frente;
- \exists_n se suas fórmulas pertencem a menor classe de fórmulas que contém as fórmulas \forall_{n-1} e é fechada por \land, \lor e por adicionar \exists na frente.

Definição

A hierarquia de uma teoria é:

- \forall_0 ou \exists_0 se suas fórmulas são livre de quantificadores;
- ∀_n se suas fórmulas pertencem a menor classe de fórmulas que contém as fórmulas ∃_{n-1} e é fechada por ∧, ∨ e por adicionar ∀ na frente;
- ∃_n se suas fórmulas pertencem a menor classe de fórmulas que contém as fórmulas ∀_{n-1} e é fechada por ∧, ∨ e por adicionar ∃ na frente.

Portanto uma teoria é \forall_2 se suas fórmulas podem ser escritas na forma "para todos $x_1, x_2, ..., x_n$ existem $y_1, y_2, ..., y_m$ tais que..."

Cadeia de modelos

Definição

Seja $(A_i : i < \lambda)$ uma sequência de L-modelos, onde λ é um cardinal qualquer.

Cadeia de modelos

Definição

Seja $(A_i : i < \lambda)$ uma sequência de L-modelos, onde λ é um cardinal qualquer. Suponha que $A_i \subset A_j$ se $i < j < \lambda$.

Cadeia de modelos

Definição

Seja $(A_i : i < \lambda)$ uma sequência de L-modelos, onde λ é um cardinal qualquer. Suponha que $A_i \subset A_j$ se $i < j < \lambda$. Defina o modelo $\mathcal{B} = \bigcup_{i < \lambda} A_i$ ponto a ponto, da seguinte forma:

Definição

Seja $(A_i : i < \lambda)$ uma sequência de L-modelos, onde λ é um cardinal qualquer. Suponha que $A_i \subset A_j$ se $i < j < \lambda$. Defina o modelo $\mathcal{B} = \bigcup_{i < \lambda} A_i$ ponto a ponto, da seguinte forma:

• O domínio de \mathcal{B} é $\bigcup_{i<\lambda} A_i$;

Definição

Seja $(A_i : i < \lambda)$ uma sequência de L-modelos, onde λ é um cardinal qualquer. Suponha que $A_i \subset A_j$ se $i < j < \lambda$. Defina o modelo $\mathcal{B} = \bigcup_{i < \lambda} A_i$ ponto a ponto, da seguinte forma:

- O domínio de \mathcal{B} é $\bigcup_{i<\lambda} A_i$;
- $c^{\mathcal{B}} = c^{\mathcal{A}_i}$;

Definição

Seja $(A_i : i < \lambda)$ uma sequência de L-modelos, onde λ é um cardinal qualquer. Suponha que $A_i \subset A_j$ se $i < j < \lambda$. Defina o modelo $\mathcal{B} = \bigcup_{i < \lambda} A_i$ ponto a ponto, da seguinte forma:

- O domínio de \mathcal{B} é $\bigcup_{i<\lambda} A_i$;
- $c^{\mathcal{B}} = c^{\mathcal{A}_i}$;
- $f^{\mathcal{B}}(a) = f^{\mathcal{A}_i}(a)$, onde A_i é o primeiro conjunto da cadeia que contém a;

Definição

Seja $(A_i : i < \lambda)$ uma sequência de L-modelos, onde λ é um cardinal qualquer. Suponha que $A_i \subset A_j$ se $i < j < \lambda$. Defina o modelo $\mathcal{B} = \bigcup_{i < \lambda} A_i$ ponto a ponto, da seguinte forma:

- O domínio de \mathcal{B} é $\bigcup_{i<\lambda} A_i$;
- $c^{\mathcal{B}} = c^{\mathcal{A}_i}$;
- $f^{\mathcal{B}}(a) = f^{\mathcal{A}_i}(a)$, onde A_i é o primeiro conjunto da cadeia que contém a;
- $a \in R^{\mathcal{B}}$ se $a \in R^{\mathcal{A}_i}$ para todos os A_i que contém a.

Definição

Uma classe de modelos é *fechada por uniões de cadeias ascendentes* quando a união de cadeias de modelos é modelo.

Definição de la composição de la composi

Uma classe de modelos é *fechada por uniões de cadeias ascendentes* quando a união de cadeias de modelos é modelo. Analogamente, uma teoria é dita fechada por cadeias ascendentes quando a união de cadeias de modelos da teoria é um modelo da teoria.

Lemma

Se T é uma teoria \forall_2 , então T é fechada por uniões de cadeias ascendentes.

Lemma

Se T é uma teoria \forall_2 , então T é fechada por uniões de cadeias ascendentes.

Prova: Seja

$$A_0 \subset ... \subset A_{\xi} \subset ...$$

Uma cadeia ascendente de modelos para a teoria \mathcal{T} .

Lemma

Se T é uma teoria \forall_2 , então T é fechada por uniões de cadeias ascendentes.

Prova: Seja

$$A_0 \subset ... \subset A_{\xi} \subset ...$$

Uma cadeia ascendente de modelos para a teoria T.

Queremos mostrar que $\mathcal{A} = \bigcup_{\xi < \lambda} \mathcal{A}_{\xi}$ é modelo para \mathcal{T} .

Lemma

Se T é uma teoria \forall_2 , então T é fechada por uniões de cadeias ascendentes.

Prova: Seja

$$A_0 \subset ... \subset A_{\xi} \subset ...$$

Uma cadeia ascendente de modelos para a teoria T.

Queremos mostrar que $\mathcal{A}=\bigcup_{\xi<\lambda}\mathcal{A}_{\xi}$ é modelo para T. Seja φ uma sentença de T.

Lemma

Se T é uma teoria \forall_2 , então T é fechada por uniões de cadeias ascendentes.

Prova: Seja

$$A_0 \subset ... \subset A_{\xi} \subset ...$$

Uma cadeia ascendente de modelos para a teoria T.

Queremos mostrar que $\mathcal{A}=\bigcup_{\xi<\lambda}\mathcal{A}_{\xi}$ é modelo para T. Seja φ uma sentença de T.

Por T ser \forall_2 , segue que φ é do tipo

$$\forall y((\exists z)\psi(y,z)),$$

com $\psi(y,z)$ sendo uma fórmula livre de quantificadores.

Seja $a \in \bigcup_{\xi < \lambda} A_{\xi}$.

Seja $a\in\bigcup_{\xi<\lambda}A_{\xi}$. Seja A_{ξ} o primeiro universo da cadeia de forma que $a\in A_{\xi}$.

Seja $a \in \bigcup_{\xi < \lambda} A_{\xi}$. Seja A_{ξ} o primeiro universo da cadeia de forma que $a \in A_{\xi}$.

Por A_{ξ} ser modelo de T, $A_{\xi} \models \exists z \psi(a, z)$.

Seja $a \in \bigcup_{\xi < \lambda} A_{\xi}$. Seja A_{ξ} o primeiro universo da cadeia de forma que $a \in A_{\xi}$.

Por A_{ξ} ser modelo de T, $A_{\xi} \models \exists z \psi(a, z)$. Seja $b \in A_{\xi}$ tal que $A_{\xi} \models \psi(a, b)$

Seja $a \in \bigcup_{\xi < \lambda} A_{\xi}$. Seja A_{ξ} o primeiro universo da cadeia de forma que $a \in A_{\xi}$.

Por A_{ξ} ser modelo de T, $A_{\xi} \models \exists z \psi(a, z)$. Seja $b \in A_{\xi}$ tal que $A_{\xi} \models \psi(a, b)$

Como $A_{\xi} \models \psi(a, b), \forall \xi < \lambda$, segue que $A \models \psi(a, b)$ e portanto $A \models \varphi \square$

Lemma

Se uma classe de modelos é fechada por uniões de cadeias ascendentes, então todo modelo admite uma extensão que é fechada por extensões.

Lemma

Se uma classe de modelos é fechada por uniões de cadeias ascendentes, então todo modelo admite uma extensão que é fechada por extensões.

Prova:

Lemma

Se uma classe de modelos é fechada por uniões de cadeias ascendentes, então todo modelo admite uma extensão que é fechada por extensões.

Prova: :/

Definição (Que na verdade é um teorema)

Sejam $\mathcal{M}\subset\mathcal{N}$ e P uma relação unária da linguagem tal que $P^{\mathcal{N}}=M.$

Definição (Que na verdade é um teorema)

Sejam $\mathcal{M}\subset\mathcal{N}$ e P uma relação unária da linguagem tal que $P^{\mathcal{N}}=M$. Então para toda fórmula $\varphi(x)$, existe uma $\varphi^P(x)$ de forma que

Definição (Que na verdade é um teorema)

Sejam $\mathcal{M}\subset\mathcal{N}$ e P uma relação unária da linguagem tal que $P^{\mathcal{N}}=M$. Então para toda fórmula $\varphi(x)$, existe uma $\varphi^P(x)$ de forma que

$$\mathcal{N} \models \varphi^{P}(x) \leftrightarrow \mathcal{M} \models \varphi(x).$$

Definição (Que na verdade é um teorema)

Sejam $\mathcal{M}\subset\mathcal{N}$ e P uma relação unária da linguagem tal que $P^{\mathcal{N}}=M$. Então para toda fórmula $\varphi(x)$, existe uma $\varphi^P(x)$ de forma que

$$\mathcal{N} \models \varphi^{P}(x) \leftrightarrow \mathcal{M} \models \varphi(x).$$

Teorema (Teste de Lindström - Teorema 8.3.4 Model-Theory - Hodges)

Seja λ um cardinal não enumerável.

Definição (Que na verdade é um teorema)

Sejam $\mathcal{M}\subset\mathcal{N}$ e P uma relação unária da linguagem tal que $P^{\mathcal{N}}=M$. Então para toda fórmula $\varphi(x)$, existe uma $\varphi^P(x)$ de forma que

$$\mathcal{N} \models \varphi^{P}(x) \leftrightarrow \mathcal{M} \models \varphi(x).$$

Teorema (Teste de Lindström - Teorema 8.3.4 Model-Theory - Hodges)

Seja λ um cardinal não enumerável. Se T é uma L-teoria \forall_2 e λ -categórica, então ela é modelo-completa.

Prova:

Prova: Suponha que não.

Prova: Suponha que não.

Então existem $A \subset B$ modelos e $\varphi(x)$ tais que $B \models \varphi(x)$ e $A \models \neg \varphi(x)$.

Prova: Suponha que não.

Então existem $A \subset B$ modelos e $\varphi(x)$ tais que $B \models \varphi(x)$ e $A \models \neg \varphi(x)$.

Seja $L^+ = L \cup \{P\}$, onde P é uma relação unária.

Prova: Suponha que não.

Então existem $A \subset B$ modelos e $\varphi(x)$ tais que $B \models \varphi(x)$ e $A \models \neg \varphi(x)$.

Seja $L^+ = L \cup \{P\}$, onde P é uma relação unária.

Defina \mathcal{B}^+ como \mathcal{B} para o novo vocabulário, com a interpretação $P^{\mathcal{B}^+}=A$.

Temos que $\mathcal{B}^+ \models \exists x (\varphi(x) \land \neg \varphi^P(x))$, pois existe $x \in A$ tal que $\mathcal{B}^+ \models \varphi(x)$ e, como $\mathcal{A} \not\models \varphi(x)$ (por hipótese), então $\mathcal{B}^+ \not\models \varphi^P(x)$, portanto $\mathcal{B}^+ \models \neg \varphi^P(x)$

Temos que $\mathcal{B}^+ \models \exists x (\varphi(x) \land \neg \varphi^P(x))$, pois existe $x \in A$ tal que $\mathcal{B}^+ \models \varphi(x)$ e, como $\mathcal{A} \not\models \varphi(x)$ (por hipótese), então $\mathcal{B}^+ \not\models \varphi^P(x)$, portanto $\mathcal{B}^+ \models \neg \varphi^P(x)$

Tome, agora, \mathcal{D}^+ uma extensão elementar de \mathcal{B}^+ tal que a cardinalidade de $|P^{\mathcal{D}^+}|$ seja λ .

Temos que $\mathcal{B}^+ \models \exists x (\varphi(x) \land \neg \varphi^P(x))$, pois existe $x \in A$ tal que $\mathcal{B}^+ \models \varphi(x)$ e, como $\mathcal{A} \not\models \varphi(x)$ (por hipótese), então $\mathcal{B}^+ \not\models \varphi^P(x)$, portanto $\mathcal{B}^+ \models \neg \varphi^P(x)$

Tome, agora, \mathcal{D}^+ uma extensão elementar de \mathcal{B}^+ tal que a cardinalidade de $|P^{\mathcal{D}^+}|$ seja λ . Podemos fazer isso introduzindo uma quantidade infinita de constantes no vocabulário.

Temos que $\mathcal{B}^+ \models \exists x (\varphi(x) \land \neg \varphi^P(x))$, pois existe $x \in A$ tal que $\mathcal{B}^+ \models \varphi(x)$ e, como $\mathcal{A} \not\models \varphi(x)$ (por hipótese), então $\mathcal{B}^+ \not\models \varphi^P(x)$, portanto $\mathcal{B}^+ \models \neg \varphi^P(x)$

Tome, agora, \mathcal{D}^+ uma extensão elementar de \mathcal{B}^+ tal que a cardinalidade de $|\mathcal{P}^{\mathcal{D}^+}|$ seja λ . Podemos fazer isso introduzindo uma quantidade infinita de constantes no vocabulário.

Como \mathcal{D}^+ é equivalente a \mathcal{B}^+ , é natural pensarmos que existe em $\mathcal{D}+$ um submodelo parecido com \mathcal{A} , uma vez que $\mathcal{A}\subset\mathcal{B}^+$.

Temos que $\mathcal{B}^+ \models \exists x (\varphi(x) \land \neg \varphi^P(x))$, pois existe $x \in A$ tal que $\mathcal{B}^+ \models \varphi(x)$ e, como $\mathcal{A} \not\models \varphi(x)$ (por hipótese), então $\mathcal{B}^+ \not\models \varphi^P(x)$, portanto $\mathcal{B}^+ \models \neg \varphi^P(x)$

Tome, agora, \mathcal{D}^+ uma extensão elementar de \mathcal{B}^+ tal que a cardinalidade de $|P^{\mathcal{D}^+}|$ seja λ . Podemos fazer isso introduzindo uma quantidade infinita de constantes no vocabulário.

Como \mathcal{D}^+ é equivalente a \mathcal{B}^+ , é natural pensarmos que existe em \mathcal{D}^+ um submodelo parecido com \mathcal{A} , uma vez que $\mathcal{A} \subset \mathcal{B}^+$. Seja \mathcal{C} esse submodelo, onde $\mathcal{C} = \mathcal{P}^{\mathcal{D}^+}$.

Temos que $\mathcal C$ é um modelo para $\mathcal T$ de cardinalidade λ , por construção.

Temos que $\mathcal C$ é um modelo para $\mathcal T$ de cardinalidade λ , por construção.

Como T é \forall_2 , então pelo Lema 1 segue que ela é fechada por uniões de cadeias ascendentes.

Temos que $\mathcal C$ é um modelo para $\mathcal T$ de cardinalidade λ , por construção.

Como T é \forall_2 , então pelo Lema 1 segue que ela é fechada por uniões de cadeias ascendentes.

Pelo Lema 2, existe um modelo \mathcal{M} para a teoria \mathcal{T} fechado por extensões e de cardinalidade λ .

Como a teoria é por hipótese λ -categórica, segue que $\mathcal C$ será isomorfo a $\mathcal M$, e portanto fechado por extensão.

Como a teoria é por hipótese λ -categórica, segue que $\mathcal C$ será isomorfo a $\mathcal M$, e portanto fechado por extensão.

Isso significa, então, que não é possível ter $\mathcal{D}^+ \models \exists x (\varphi(x) \land \neg \varphi^P(x)),$

Como a teoria é por hipótese λ -categórica, segue que $\mathcal C$ será isomorfo a $\mathcal M$, e portanto fechado por extensão.

Isso significa, então, que não é possível ter $\mathcal{D}^+ \models \exists x (\varphi(x) \land \neg \varphi^P(x)) \text{, pois isso significa que existe uma fórmula que é satisfeita em } \mathcal{D}^+ \text{ e não é em } \mathcal{C} \text{, o que não pode ocorrer pois } \mathcal{C}$ é fechado por extensão. \square

Corpos algebricamente fechados

Na próxima aula mostraremos que a teoria de corpos algebricamente fechados é modelo-completa.

Corpos algebricamente fechados

Na próxima aula mostraremos que a teoria de corpos algebricamente fechados é modelo-completa.

Na linguagem algébrica isso se traduz como:

Corpos algebricamente fechados

Na próxima aula mostraremos que a teoria de corpos algebricamente fechados é modelo-completa.

Na linguagem algébrica isso se traduz como: se L/K é uma extensão de corpos algebricamente fechados e p(x) é um polinômio com coeficientes em K, é verdade que se p(x) tem raiz em L, então ele tem raiz em K.

Acabou

Até amanhã!