G-Painleve eguations, mutations and reductions

Joint project (in progress) with

Gavrylenko Marshakov Semenyakin

200M 24 March 2023

• Goncharov-Kenyon integrable systems

· (good) Bipartate graph on torus

• Orient edges \longrightarrow Weight of edge wie) $\in \mathbb{C}^*$

face $\int_{e \in \partial f} w(e) = x_f - face variables$ $\int_{e \in \partial f} x(e) = x_f - face variables$

A, B cycles - w(A)=A, w(B)=n [concrete representatives)

· Quiver

• Poisson Structure $d \times_i \times_i = \mathcal{E}_{i,j} \times_i \times_j$ logarithmically constant

Example

· Dimer configuration - perfect matching

Example $x_1 x_2$ x_4 $x_1 x_2$ $x_1 x_2$ $x_1 x_2$ $x_2 x_3$ x_4 $x_1 x_2$ $x_1 x_2$ $x_2 x_3$ $x_1 x_2$ $x_2 x_3$ $x_3 x_4$ $x_1 x_2$ $x_1 x_2$ $x_2 x_3$ $x_3 x_4$ $x_1 x_2$ $x_1 x_2$ $x_2 x_3$ $x_1 x_2$ $x_2 x_3$ $x_3 x_4$ $x_1 x_2$ $x_1 x_2$ $x_2 x_3$ $x_1 x_2$ $x_2 x_3$ $x_3 x_4$ $x_1 x_2$ $x_1 x_2$ $x_1 x_2$ $x_2 x_3$ $x_1 x_2$ $x_1 x_2$ $x_2 x_3$ $x_1 x_2$ $x_1 x_2$ $x_1 x_2$ $x_1 x_2$ $x_2 x_3$ $x_1 x_2$ $x_1 x_2$ $x_1 x_2$ $x_1 x_2$ $x_1 x_2$ $x_2 x_3$ $x_1 x_2$ $x_1 x_2$ $x_1 x_2$ $x_2 x_3$ $x_1 x_2$ $x_1 x_3$ $x_1 x_2$ $x_1 x_3$ $x_1 x_2$ $x_1 x_3$ $x_$

I = # interiour points

B = # Boundary points

Action of $SA_2(Z) = SL_2(Z) \times Z^2$

 $C = \{(\lambda, \mu) | 2(\lambda, \mu) = 0\}$ cpectral curve

Th (Goncharov, Kenyon, ...) (1) 2 Area(s) = # faces = dim X (2) $(a, b) \in \partial \Delta$ $f_{ab} - Casimirs$, lessentially χ cluster $(a, b) \in \Delta \setminus \partial \Delta$ $f_{ab} - Hamiltonians$ (in particular, $f_{ab} = 2I$) $\sqrt{\frac{3ac(C)}{-integrable}}$ System $\pi x_i = 1$, $\pi x_i - Casimir$ Mutation (spider

Properties Poisson map, 2 is preserved

Def Dual Surface \geq -inversion of ribbon struct. in black vertices

Def Zig-zag path

Black - right

white - left

Prop Faces on 2 - zig-zag paths

In example above

Th [GK] Z = C (topologically)

General definition of mutation of polynomial Def SL(2, Z) action (a b) acts $(\lambda, \mu) \mapsto (\lambda^a \mu^b, \lambda^c \mu^a)$ Def $P(\lambda, n) = \mu^h P_h(\lambda) + \mu^{h-1} P_{h-1}(\lambda) + \dots + P_0(\lambda) + \pi^{-1} P_1(\lambda) + \dots + \pi^{h} P_h(\lambda)$ if $(\lambda - a)^h | P_h(\lambda)$, $(\lambda - a)^{h-1} | P_{h-1}(\lambda)$... $(\lambda - a) | P_1(\lambda)$ then $v = \mu(\lambda - a)$, $P \sim P(\lambda, v)$. Laurent polynomial <u>Mutation</u> — composition of such transform and $SL_2(Z)$

Remark (1) For h=1 no special conditions on P

2) Integrable system Igenerated by coefficients of spectral curve) is preserved

For given h we have h-1 casimirs h-1 hamiltonian h-1 hamiltonians h-1 reduction

Reduction case $g = Area \Delta + 1 - \frac{B}{2} - \# reduct$

Lemma Let $\exists p \in \Delta n \mathbb{Z}^2 \text{ s. t. for any side } \frac{l_s}{h_s} \in \mathbb{Z}$, where l_s is integer length of s $\Longrightarrow g=1$ h_s is distance from p to s.

Mizuno

Example

Partition function $Z = P_{2}(\mu) \lambda^{2} + P_{1}(\mu) \lambda^{1} + P_{0}(\mu) + P_{1}(\mu) \lambda + P_{2}(\mu) \lambda^{2}$

Reduction condition

$$P_{-2}(n) \sim \mu^{2}(n-a)^{2}$$

$$P_{2}(n) \sim \pi^{2}(n-c)^{2}$$

$$Casimirs$$

$$P_1(\alpha) = 0$$

Hamiltonians

 $P_1(c) = 0$

Bipartite

 $a_{1}a_{2}a_{3}a_{4} = 1$ (casimiss $c_{1}c_{2}c_{3}c_{4} = 1$ (casimiss $1+a_{2}(1+a_{3}(1+a_{4})) = 0$ (Hamiltonians $1+c_{2}(1+c_{3}(1+c_{4})) = 0$ (

Quiver

$$a_{1}a_{2}a_{3}a_{4} = 1$$
 (asimiss
$$c_{1}c_{2}c_{3}c_{4} = 1$$
 (asimiss
$$1+a_{2}(1+a_{3}(1+a_{4})) = 0$$
 (Hamiltonians
$$1+c_{2}(1+c_{3}(1+c_{4})) = 0$$

Mcz Maz Mcz May

$$a_1' = a_2' = c_1' = c_2' = -1$$

$$B_1 = B_1 a_3 c_3$$
 commute
 $d_1 = d_1 a_3 c_3$ with
 $d_1 = d_1 a_3 c_3$ a_1', a_1', c_1', c_2'

• quiver coincides with quiver for dual surface

Has w(E_f) symmetry

Conclusion and Further questions

- Goncharov Kenyon C Hamiltonian (Goncharov Kenyon) Integrable systems reduction (Integrable systems)
- Zig-zag (polinomial, polygon) mutations: equivalence between reduced GKIS
- q-Painleve IS = reduced GKIS
- Similar story exists for Fock-Goncharov-Shen varieties