

Dual Core Machine Learning Accelerator for Attention Mechanism

ECE260B - Group 9

Motivation

The objective is to design a well optimized dual core AI accelerator, in which the architecture processes data in a pipeline of computations performed in parallel. Thus, resulting in a better throughput and lower latency. Due to this architecture's exceptional computational efficiency, it is a commonly used for signal processing, image processing, and complex matrix computations in the field of AI.

UCSD ECE260B WI23 Project Description ppt by Mingu Kang

Synthesis Results

	WNS (ns)	Total Power	Total Cell Area (µm²)	
Single Core	-1.682	170.18mW	441861	
Dual Core	-1.7	170.28mW	440056	
Dual Core Optimized	0	822uW	182870	

PNR Results

	WNS(ns)	Leakage Power (mW)	Switching Power (mW)	Total Power (mW)	Total Cell Area (µm²)	VCD Power Total(mW)
Single Core	1.005	1.05	16.5	66.4	450912	133.734
Dual Core	-3.443	2.6	169	743.8	918147	164.02
Dual Core Optimized	-0.085	2.113	57	199.7	365633	102.5

Alpha 1: Reconfigurable Mode

Reconfigurability

- Hardware configurability
- 4bit * 4bit (via sfp_row → normalization)
- 4bit * 8bit (via special function unit sfu)
- Bit precision support
- Signed and unsigned base

Dual Core

Parallel processing:

- Utilize 2 single cores for parallel computation
 - Process 16 vectors (8 vectors per core)
- FIFO Synchronizer
 - Sum exchange btw two cores → normalization
- Similar instruction signals for both cores

Alpha 2: Optimization

Goal: Improve performance of dual core computation in terms of power & timing

Applied Techniques/Methods

- Lowering of bit precision to 4 & set PR = 8
- Synthesis → Flatten all
- Pipelining
- 1.) sfp_row
 - Reading from fifo & sum
- 2.) mac_col
 - Product & sum
- Multicycle paths

→ Result

Improvements

- Timing → 0 WNS
- Power → Decreased by ~37%
- Cell Area → Decreased by ~60%

Future Improvements

• <u>Improvements</u>

- Clock gating for more power reduction
- Multicycle paths in PNR
- Increasing the total # of cores
 - More parallelism
- SDF (VCD)