Automates (3) option informatique

Théorème de Kleene

Formulation du théorème

Le **théorème de Kleene** affirme l'équivalence entre langages rationnels et langages reconnaissables.

Théorème 1 (de Kleene)

Un langage L sur un alphabet Σ est rationnel si et seulement s'il existe un automate fini $\mathcal A$ tel que le langage reconnu $\mathcal L(\mathcal A)$ par cet automate soit égal à L.

Démonstration

Pour établir que tout langage rationnel est reconnaissable par un automate fini :

- l'algorithme de Berry-Sethi décrit une procédure de construction d'un automate fini non déterministe qui reconnaît une expression rationnelle;
- l'automate obtenu est appelé automate de Glushkov de l'expression rationnelle.

Le lemme d'Arden permet, à partir d'un automate, de construire une expression rationnelle qui dénote le langage reconnu par l'automate. C'est la réciproque du théorème.

Langage rationnel?

Pour montrer qu'un langage est rationnel, on peut :

- ▶ soit exhiber une expression rationnelle qui le dénote;
- soit construire un automate qui le reconnaît.

On peut ajouter deux autres résultats importants.

- Les langages reconnus par un automate sont clos par complémentation et par intersection.
- ► Le lemme de l'étoile permet de montrer qu'un langage est non rationnel.

Clôture

Complémentation

Théorème 2 (Clôture par complémentation)

Les langages reconnaissables sont clos par complémentation.

Démonstration

- La démonstration s'appuie sur la notion d'automate déterministe complet.
- Soit L un langage reconnu par un automate déterministe complet
 A = (Σ, Q, q₀, F, δ).
- ▶ Le langage complémentaire \bar{L} de L est $\Sigma^* \setminus L$.
- ▶ Définissons l'automate déduit de $\mathcal A$ en remplaçant les états acceptants F par $Q \setminus F$. Alors, par construction :

$$\mathcal{A}' = (\Sigma, Q, q_0, Q \setminus F, \delta)$$

reconnaît \bar{L} .

Commentaires

- Le caractère **complet** est indispensable car un blocage de \mathcal{A} serait aussi un blocage de \mathcal{A}' .
- L'idée de la démonstration est que les mots reconnus par $\mathcal A$ sont les mots qui se terminent sur un état acceptant de $\mathcal A$. Tous les mots de Σ^* qui se terminent sur un état non acceptant de $\mathcal A$ ne sont pas reconnus par $\mathcal A$. Ce mots sont ceux de $\Sigma^* \smallsetminus \mathcal L$. Ils sont reconnus par l'automate $\mathcal A'$ dont les états acceptant sont tous les états de $\mathcal A$ autres que ses états acceptants.

Intersection

Théorème 3 (Clôture par intersection)

Les langages reconnaissables sont clos par intersection.

Pour finir

- Nous venons de voir que les langages rationnels sont clos par complémentation et par intersection.
- Les propriétés de stabilité par union, par concaténation et par passage à l'étoile de Kleene des langages rationnels permettent d'en déduire que les langages reconnaissables sont clos par union, par concaténation et par passage à l'étoile de Kleene.
- Enfin, les langages reconnaissables sont clos par passage au miroir. Par le théorème de Kleene, les langages rationnels sont aussi stables par passage au miroir.

Lemme de l'étoile

Idée intuitive du lemme de l'étoile

- ▶ Le **lemme de l'étoile** affirme que passé une certaine taille, tout mot d'un langage *L* peut être construit par répétition d'un facteur itérant *y* s'insérant au sein d'un mot *xz* de *L*.
- Ce résultat, évident pour tout langage fini, reste valable pour tout langage de cardinal infini.
- Ce lemme est aussi nommé lemme de pompage car le facteur itérant y peut être « pompé » autant de fois que nécessaire pour produire un mot de L.
- ► Noter que le résultat n'est pas une équivalence mais une implication. Il existe des langages rationnels qui vérifient les conclusions du lemme.

Analyse

Théorème 4 (Lemme de l'étoile)

Si L est un langage rationnel, il existe $k \in \mathbb{N}$ tel que tout mot $m \in L$ vérifiant $|m| \ge k$ se factorise sous la forme m = xyz avec $y \ne \varepsilon$, $|xy| \le k$ et pour tout entier naturel n, $xy^nz \in L$.

L'entier k, appelé la constante d'itération, ne dépend que de L. y est appelé le facteur itérant.

Démonstration

- Soit $A = (\Sigma, Q, q_0, F, \delta)$ et k = |Q|.
- ▶ Soit m un mot de L tel que $|m| \ge k$.
- ► Le chemin $q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} q_2 \dots \xrightarrow{a_p} q_p$ reconnaissant m implique p+1 états.
- ▶ Il passe donc nécessairement deux fois par le même état $q_i = q_j$ avec $1 \le i < j \le k$.

$$q_0 \xrightarrow{a_1} \ldots \xrightarrow{a_i} q_i \ldots \xrightarrow{a_j} q_j \ldots \xrightarrow{a_p} q_p$$

- ▶ Posons : $x = a_1 \dots a_i$ $y = a_{i+1} \dots a_j$ $z = a_{j+1} \dots a_p$. Alors, pour tout $n \in \mathbb{N}$, le chemin étiqueté par xy^nz conduit à l'état acceptant q_p .
- ▶ Donc $xy^nz \in L$.

Exercice

Soit $\Sigma = \{a, b\}$ un alphabet. Considérons le langage défini par :

$$L = \{a^n b^n \mid n \in \mathbb{N}\}$$

Montrer que *L* n'est pas rationnel.

L'idée générale de la démonstration est d'établir par l'absurde, à l'aide du lemme de l'étoile, que le langage n'est pas rationnel.

Exemple 1 - démonstration 1

Démonstration 1

- ▶ Supposons *L* rationnel. Il existe $k \in \mathbb{N}^*$ tel que tout mot *w* vérifiant $|w| \ge k$ satisfait le **lemme de l'étoile**. Prenons $w = a^k b^k$.
- ▶ Puisque |w| = 2k, w est assez long et $w \in L$. D'après le lemme de l'étoile, il existe x, y, z tels que w = xyz, avec $|xy| \le k$, $y \neq \varepsilon$, vérifiant :

$$\forall q \in \mathbb{N}, xy^q z \in L$$

- Puisque la condition |xy| ≤ k doit être vérifiée, y doit apparaître dans les k premiers caractères de w sous la forme a^p, pour un certain entier p. Comme y ≠ ε, alors : p ≥ 1.
 Par exemple, x = a^{k-p} et y = a^p.
- Écrivons alors xy^2 (lemme avec q = 2). Le mot résultant est de la forme :

$$a^{k+p}b^k$$

Or, ce mot n'appartient pas à L alors que le lemme de l'étoile affirme le contraire.

Il existe donc au moins un mot qui ne satisfait pas le lemme de l'étoile. L n'est pas rationnel.

Démonstration 2

- Si L est reconnaissable, il existe un entier n ≥ 1 tel que le lemme de l'étoile soit vérifié.
- ▶ Posons :

$$x = \varepsilon$$
 $y = a^n$ $z = b^n$

▶ Alors, il existe $p \in \mathbb{N}^*$ tel que :

$$\forall k \in \mathbb{N}$$
 $a^{n+kp}b^n \in L$

Ce résultat est absurde puisque de tels mots contiennent plus de a que de b. L n'est pas rationnel.

Exercice

Soit $\Sigma = \{(,)\}$ un alphabet. Considérons le langage des expressions bien parenthésées défini par :

$$L = \{ w \in \Sigma^* \mid w \text{ bien parenthésé} \}$$

Montrer que L n'est pas rationnel.

Démonstration

Remarquons d'abord que L contient des mots comme (())(()()) ou comme ((((()))). Pour utiliser le lemme de l'étoile, l'idée est de considérer un mot aussi simple que possible. Par exemple, pour un entier naturel k:

$$w = {k \choose k}^k$$

Puisque |w| = 2k et w ∈ L, w doit satisfaire les conditions du lemme de l'étoile. Il doit dont exister x, y, z tels que w = xyz, , avec |xy| ≤ k, y ≠ ε, vérifiant :

$$\forall\,q\in\mathbb{N},\quad xy^qz\in L$$

- Puisque la condition |xy| ≤ k doit être vérifiée, y doit apparaître dans les k premiers caractères de w sous la forme (^p, pour un certain entier p. Comme y ≠ ε, alors : p ≥ 1.
- Puisque q = 2, alors $xy^q = {k+p \choose k}$. Puis :

$$xy^2z=\binom{k+p}{k}$$

 Ce mot doit appartenir à L, en vertu du lemme de l'étoile. Or ce mot est une expression mal parenthésée, qui n'est pas dans L. Donc, L n'est pas rationnel.