

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS Prof. Adriano Barbosa

Análise Numérica — Exame

Eng. Mecânica	13 de Abril de 2017

1	
2(a)	
2(b)	
3(a)	
3(b)	
Total	

Aluno(a):....

- (1) Dada $f(x) = \frac{\sin(5x)}{x}$:
 - (a) É possível garantir um zero de f(x) no intervalo [1,2]? E no intervalo [2,3]? Justifique.
 - (b) Calcule três iterações do método da bisseção para f(x) nos intervalos acima, se possível.
 - (c) O método de Newton com $p_0 = 1$ converge para o valor $p \approx 1.256637$. Verifique que p é a aproximação de um zero de f(x) no intervalo [1,2]. Por que isso não invalida sua resposta no item (a)?
- (2) Dado o problema de valor inicial y' = y, y(0) = 2, $x \in [0, 1]$.
 - (a) Resolva o problema acima usando o método do ponto médio e h=0.2.
 - (b) Use interpolação de Lagrange de grau 2 para calcular y(0.1).
- (3) Seja

$$A = \left[\begin{array}{rrr} 10 & -1 & 0 \\ -1 & 10 & -2 \\ 0 & -2 & 10 \end{array} \right]$$

- (a) Use o método de Gauss-Seidel para resolver o sistema Ax=b, com b=(-1,10,-2), $x^{(0)}=(0,0,0)$ e precisão de 10^{-3} .
- (b) Compare o resultado do item (a) com a solução exata do sistema.

Boa Prova!