Multivariate Time Series (Chapter 7)

7.1 Examples

Bivariate Time Series : $\{\mathbf{X}_{t} = (X_{t1}, X_{t2})'\}$. Mean vector : $\mu_{t} = \begin{bmatrix} EX_{t1} \\ EX_{t2} \end{bmatrix}$

Covariance matrices : $\Gamma(t+h, t) := Cov(\mathbf{X}_{t+h}, \mathbf{X}_t)$

 $\{X_t = (X_{t1}, X_{t2})'\}$ is (weakly) stationary if μ_t and

 $\Gamma(t+h, t)$ do not depend on t. In this case, write

$$\mu = \begin{bmatrix} EX_{t1} \\ EX_{t2} \end{bmatrix}$$
 and $\Gamma(h) := Cov(\mathbf{X}_{t+h}, \mathbf{X}_t)$

Properties of

 $\Gamma(\mathbf{h}) = \begin{bmatrix} \gamma_{11}(\mathbf{h}) & \gamma_{12}(\mathbf{h}) \\ \gamma_{21}(\mathbf{h}) & \gamma_{22}(\mathbf{h}) \end{bmatrix} , \quad \gamma_{ij}(\mathbf{h}) = \operatorname{Cov}(X_{t+h,i}, X_{t,j}).$

- (i) $\Gamma(h) = \Gamma'(-h)$,
- (ii) $|\gamma_{12}(h)| \le [\gamma_{11}(0) \gamma_{22}(0)]^{1/2}$,
- (iii) $\gamma_{11}(h)$ and $\gamma_{22}(h)$ are the ACVFs of $\{X_{t1}\}$ and $\{X_{t2}\}$
- (iv) Γ (h) is a non-negative definite matrix sequence.

Efficient market hypothesis suggests modelling this data as random walks.

Transform data to percentage relative price changes (DJAOPC2.TSM) given by:

$$X_{t1} = 100 (D_t - D_{t-1}) / D_{t-1}, \quad t = 1, \dots, 250,$$

 $X_{t2} = 100 (A_t - A_{t-1}) / A_{t-1}, \quad t = 1, \dots, 250.$

Fig 7.4 Sample cross-correlations $\rho_{21}(h)$ between $X_{t-h,1}$ and X_{t2} .

Graph indicates correlation between $X_{t-1,1}$ and X_{t2} .

7

7.6 Modelling with Multivariate AR

Multivariate white noise: $\{\mathbf{Z}_t\} \sim WN(\mathbf{0},\Sigma)$ means

- $EZ_t = 0$.
- $E(\mathbf{Z}_{t}\mathbf{Z}_{s}') = \begin{cases} \Sigma, & \text{if } s=t, \\ 0, & \text{otherwise.} \end{cases}$

Multivariate AR(p) Process:

 $\{X_t\}$ is an AR(p) process if $\{X_t\}$ is stationary and

$$\boldsymbol{X}_{t} = \boldsymbol{\Phi}_{1} \, \boldsymbol{X}_{t-1} + \, \cdots \, + \boldsymbol{\Phi}_{p} \, \boldsymbol{X}_{t-p} + \, \boldsymbol{Z}_{t} \; , \; \{\boldsymbol{Z}_{t}\} \sim WN(\boldsymbol{0}, \boldsymbol{\Sigma})$$

Causality:

An AR(p) process $\{X_t\}$ is causal, or a causal function of $\{Z_t\}$ if there exist matrices $\{\Psi_i\}$ such that

$$\mathbf{X}_{\mathrm{t}} = \sum_{j=0}^{\infty} \Psi_{\mathrm{j}} \, \mathbf{Z}_{\mathrm{t-j}} \, .$$

Result: Causality is equivalent to the condition

$$det(\Phi(z)) \neq 0$$
 for all $|z| \leq 1$,

where

$$\Phi(z) = I - \Phi_1 z - \cdots - \Phi_p z^p.$$

9

Yule-Walker Equations:

$$\boldsymbol{X}_{t} = \boldsymbol{\Phi}_{1} \, \boldsymbol{X}_{t-1} + \, \cdots \, + \boldsymbol{\Phi}_{p} \, \boldsymbol{X}_{t-p} + \, \boldsymbol{Z}_{t} \, , \quad \{\boldsymbol{Z}_{t}\} \sim WN(\boldsymbol{0}, \boldsymbol{\Sigma}).$$

Post multiply with \mathbf{X}_{t-j} and take expectations to get

$$\begin{split} \Sigma &= \Gamma(0) - \sum_{j=1}^p \; \Phi_j \, \Gamma(j), \\ \Gamma(i) &= \; \sum_{j=1}^p \; \Phi_j \, \Gamma(i{-}j), \quad i=1, \, \ldots \, , \, p. \end{split}$$

Given $\Gamma(0), \ldots, \Gamma(p)$, these equations can be solved for Φ_1, \ldots, Φ_p and Σ .

Yule-Walker Estimates:

Replace $\Gamma(i)$ with $\hat{\Gamma}(i)$, $i=1,\ldots,p$ in the Y-W eqns and solve for Φ_1,\ldots,Φ_p and Σ .

- Method uses Whittle's algorithm.
- These estimates are computed in ITSM2000

Order Selection:

Choose p to minimize the AICC statistic $AICC = -2 \ln L(\Phi_1, \dots, \Phi_p, \Sigma) + \frac{2(pm^2+1)nm}{nm-pm^2-2}$

11

Ex 7.6.1 (Dow-Jones, All ordinaries indices).

- In ITSM, open new project and select multivariate for project type.
- Select the data file DJAOPC2.TSM
- Enter 2 for the number of columns
- Click on the blue button labeled Y-W
 (Program finds the Y-W AR(p), p=0, ..., 20, with minimum AICC.)

Minimum AICC Y-W AR model is

$$\begin{bmatrix} X_{t1} \\ X_{t2} \end{bmatrix} - \begin{bmatrix} .0262 \\ .0268 \end{bmatrix} = \begin{bmatrix} .0146 & .0177 \\ .6493 & .0958 \end{bmatrix} \begin{bmatrix} X_{t-1,1} \\ X_{t-1,2} \end{bmatrix} - \begin{bmatrix} .0262 \\ .0268 \end{bmatrix} + \begin{bmatrix} Z_{t1} \\ Z_{t2} \end{bmatrix}$$

$$\Sigma = \begin{bmatrix} .3478 & .0334 \\ .0334 & .6319 \end{bmatrix}$$

13

7.6.2 Forecasting Multivariate AR

One-step predictors:

Since

$$\mathbf{X}_{n+1} = \Phi_1 \, \mathbf{X}_n + \cdots + \Phi_p \, \mathbf{X}_{n+1-p} + \mathbf{Z}_{n+1},$$

it follows that for n > p.

$$\hat{\mathbf{X}}_{n+1} = P_n \; \mathbf{X}_{n+1} = \Phi_1 \; \mathbf{X}_n + \; \cdots \quad + \; \Phi_p \; \mathbf{X}_{n+1-p}$$

h-step predictors:

Found from the recursions

$$P_n X_{n+h} = \Phi_1 P_n X_{n+h-1} + \cdots + \Phi_p P_n X_{n+h-p}$$

Forecasting All-ordinaries:

1. Using the multivariate AR(1) model.

$$\hat{X}_{251,2} = .0268 + .6493 (X_{250,1} - .0262) + .0958(X_{250,2} - .0268)$$
$$= .869$$

with MSE

$$E(X_{251,2} - \hat{X}_{251,2})^2 = .6319$$
.

15

2. Using a univariate AR(1) model.

$$X_{t,2} = .0273 + .1180 X_{t-1,2} + Z_t, \{Z_t\} \sim WN(0,.7604).$$

Best predictor is

$$\hat{X}_{251,2} = .0273 + .11180 X_{250,2} = .6016$$

with MSE

$$E(X_{251,2} - \hat{X}_{251,2})^2 = .7604$$
.

Summary of one-step prediction MSE

MSE Model

.6319 multivariate AR(1)model

.7678 univariate AR(2)

.7911 white noise

Comparison of one-step predictors on next 40 observations ($\mathbf{X}_{251}, \dots, \mathbf{X}_{290}$).

Observed MSE Model

.3931 multivariate AR(1)model

.3947 univariate AR(2)

.4699 white noise

Remark: Last 40 observations less variable than the first 250.

17

Ex 7.6.2 (Sales with a Leading Indicator; LS2.DAT).

- In ITSM, open new project and select multivariate for project type.
- Select the data file LS2.TSM
- Enter 2 for the number of columns
- Difference the data at lag 1 using Transfer
- Click on the blue button labeled Y-W
 (Program finds the Y-W AR(p), p=0, ..., 20, with minimum AICC.)
- Can also try Burg estimates (use BRG button).

Minimum AICC Y-W AR model has order 5 with

$$\hat{\Phi}_1 = \begin{bmatrix} -.517 & .024 \\ -.019 & -.051 \end{bmatrix}, \hat{\Phi}_2 = \begin{bmatrix} -.192 & -.018 \\ .047 & .250 \end{bmatrix}$$

$$\hat{\Phi}_3 = \begin{bmatrix} -.073 & .010 \\ 4.678 & .207 \end{bmatrix}, \hat{\Phi}_4 = \begin{bmatrix} -.032 & .009 \\ 3.664 & .004 \end{bmatrix}$$

$$\hat{\Phi}_5 = \begin{bmatrix} .022 & .011 \\ 1.300 & .029 \end{bmatrix}, \hat{\Sigma} = \begin{bmatrix} .076 & -.003 \\ -.003 & .095 \end{bmatrix}$$

Note: Upper right component of each coefficient matrix is nearly 0 X_{t1} can be modelled independent of X_{t2}

19

Model for X_{t1} :

$$X_{t1} = (1 - .474B)U_t$$
, $\{U_t\} \sim WN(0,.0779)$

Model for X_{t2} . Setting all the small values in the bottom rows of the estimated coefficients to 0, we obtain

$$X_{\rm t2} = .250 \ X_{\rm t\text{-}2,2} + .207 \ X_{\rm t\text{-}3,2} + 4.678 \ X_{\rm t\text{-}3,1} + \ 3.664 \ X_{\rm t\text{-}4,1} \\ + 1.300 \ X_{\rm t\text{-}5,1} + Z_{\rm t2}$$

or equivalently,

$$X_{t2} = \frac{4.678 \text{ B}^{3} (1+.783 \text{ B}+.278 \text{ B}^{2})}{1-.250 \text{ B}^{2}-.207 \text{ B}^{3}} X_{t1} + \frac{Z_{t1}}{1-.250 \text{ B}^{2}-.207 \text{ B}^{3}}$$

(Transfer function model (see Section 10.1).)

Coherency plot in R:

 $spectrum(NhtCo2SoiRes, spans=6, plot.type="coh") \\ \textit{Series: x-Squared Coherency}$

25

Interpretation:

- Slope of phase $\phi_{\{1,2\}}(\omega)$ corresponds to the lag of the second component behind the first. That is, if $\phi_{\{1,2\}}(\omega)$ is d, then $X_{t,1}$ will lead $X_{t,2}$ by d lags. So in the previous graphs, we see that the slope of $\phi_{\{1,2\}}(\omega)$ and $\phi_{\{1,3\}}(\omega)$ is slightly negative for large frequencies ω which suggests temperature follows CO2 and SOI.
- The coherency $\kappa(\omega)$ is a measure of correlation between series at frequency ω . In this case, the partial coherency for the original data (not trend corrected) gives similar results as the coherency for the detrended data.
- These methods are often used for constructing vector AR models using graphical models.

Best fitting VAR model to detrended data has order 2:

```
Optimal value of p = 2
PHI(0)
   .095850
   -.008256
  -2.398619
PHI(1)
   .104591
             5.561032
                         -.398659
   .000391
             1.071852
                        -.016209
   .048084
             9.027895
                         .294766
PHI(2)
   .070975
             -4.431574
                         .429041
   -.006298
             -.247972
                          .013592
   -.061732 -10.778030
                         -.055049
Y-W White Noise Covariance Matrix, V
 .127399E+03 1.555684 -16.446952
   1.555684
              .110922
                         .357138
  -16.446952
               .357138 .131796E+03
```

Note: a) The coefficients of AR matrices are near zero in first column. **b)** The residuals look good.

Observed data versus 1-step predicted values based on quadratic model plus VAR(2): Data in blue, predictions in red.

