Polynomial Regression

Machine Learning Primer Course

Georgios C. Anagnostopolous and Spencer G. Lyon October 2, 2020

Purpose

Show how polynomial regression – fitting a polynomial curve to data – can be performed via linear regression

Table of contents

- 1. Motivation
- 2. Theory
- 3. Demo

Motivation

Motivation

Often when modeling a single feature/single response data (x and y are scalars) it makes little sense to fit a line:

Motivation continued

It might make more sense to use a cubic polynomial in this case

$$y = w_3 x^3 + w_2 x^2 + w_1 x + w_0$$

Theory

How does it work?

The previous example becomes

$$y = \underbrace{\begin{bmatrix} x^3 & x^2 & x & 1 \end{bmatrix}}_{\triangleq \phi^T(x)} \begin{bmatrix} w_3 \\ w_2 \\ w_1 \\ w_0 \end{bmatrix} = \phi^T(x) \mathbf{w}$$

- Notice the prediction model is non-linear in the feature x
- ... however it is still linear in the parameters w

How does it work?

The previous example becomes

$$y = \underbrace{\begin{bmatrix} x^3 & x^2 & x & 1 \end{bmatrix}}_{\triangleq \phi^T(x)} \begin{bmatrix} w_3 \\ w_2 \\ w_1 \\ w_0 \end{bmatrix} = \phi^T(x) \mathbf{w}$$

- Notice the prediction model is non-linear in the feature x
- ... however it is still linear in the parameters w

We can use linear regression to fit a polynomial

Fitting Polynomials

 To fit a *D*-degree polynomial, each scalar x needs to be transformed into a feature vector:

$$\phi: x \mapsto \phi(x) \triangleq \begin{bmatrix} x^D \\ x^{D-1} \\ \vdots \\ x^2 \\ x \\ 1 \end{bmatrix} \in \mathbb{R}^{D+1}$$

Then the prediction model for polynomial regression is:

$$\hat{y} = f(x|\mathbf{w}) = \phi^T(x)\mathbf{w}$$

The New Feature Matrix

- Training data: $\{x_n, y_n\}_{n=1}^N$
- We construct a new feature matrix by transforming each x_n using ϕ :

$$\Phi \triangleq \begin{bmatrix} \phi^{T}(x_{1}) \\ \phi^{T}(x_{2}) \\ \vdots \\ \phi^{T}(x_{N}) \end{bmatrix} \\
= \begin{bmatrix} x_{1}^{D} & x_{1}^{D-1} & \cdots & x_{1}^{2} & x_{1} & 1 \\ x_{2}^{D} & x_{2}^{D-1} & \cdots & x_{2}^{2} & x_{2} & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ x_{N}^{D} & x_{N}^{D-1} & \cdots & x_{N}^{2} & x_{N} & 1 \end{bmatrix} \in \mathbb{R}^{N \times (D+1)}$$

What is Happening?

Hard to visualize and to appreciate at this point in time, but the following two statements are equivalent:

- 1. Fitting a polynomial curve, where the (x, y) samples reside¹
- 2. Fitting a hyper-plane in the (D+2)-dimensional space, where the $(\phi(x),y)$ samples ${\rm reside}^2$

 $^{^{1}}$ both being scalars, they reside on the (x, y) plane

 $^{^2\}phi({\it x})$ is (D+1)-dimensional and ${\it y}$ is scalar; thus, in D+1+1 dimensions

Demo

Play time!

- Let's play with the jupyter notebooks
 - PolyRegDemoMakeData.ipynb
 - PolyRegDemoFit.ipynb

 What to do: Change the degree of polynomial to be fitted and/or number of training points and observe impact on fitted model

Remarks

- In practice we can't increase D arbitrarily
- There are some computational reasons:
 - As D increases, the matrix $R = \Phi^T \Phi$ becomes singular \Longrightarrow np.linalg.inv(R) is unreliable
 - Using np.linalg.pinv(Φ) can support larger D, but still has issues

³Statistically, this is known as multi-colinearity

⁴This makes interpreting coefficients less reliable

Remarks

- In practice we can't increase D arbitrarily
- There are some computational reasons:
 - As D increases, the matrix $R = \Phi^T \Phi$ becomes singular \Longrightarrow np.linalg.inv(R) is unreliable
 - Using np.linalg.pinv(Φ) can support larger D, but still has issues
- And (at least one) subtle statistical theory one:
 - For large D, x^D and x^{D-1} look quite similar³
 - In practice you may see small changes in x lead to large changes in weights w⁴
 - Also increases risk of overfitting stay tuned for next lecture!

³Statistically, this is known as multi-colinearity

⁴This makes interpreting coefficients less reliable

Feature Engineering

- Transforming raw input features X in potentially non-linear ways is common practice in ML
- This is known as feature engineering and is a significant part of applying classical (non-deep) ML techniques
- To do properly, requires an understanding of mathematics behind the algorithms/transformations and domain knowledge
- We'll encounter this concept throughout the course

Feature Engineering

- Transforming raw input features X in potentially non-linear ways is common practice in ML
- This is known as feature engineering and is a significant part of applying classical (non-deep) ML techniques
- To do properly, requires an understanding of mathematics behind the algorithms/transformations and domain knowledge
- We'll encounter this concept throughout the course

Deep Learning

One benefit of deep learning is automated feature engineering, meaning you feed in raw X and neural network learns feature transformations that lead to optimal reduction in loss