

Universidad Nacional de San Agustín de Arequipa

Escuela Profesional de Ciencia de la Computación

Computación Gráfica (Código: 1704146)

Semestre 2021-A

Indice

1	Curriculum Vitae en Formato ICACIT	4
2	Sílabo del Curso en Formato DUFA	5
3	Sílabo del Curso en Formato ICACIT	. 11
4	Mapeo del Resultado del Estudiante	. 14
5	Material del Curso	. 16
6	Prueba de Entrada	. 18
6.1	Prueba de Entrada entregada a los estudiantes	19
6.2	Resolución de la Prueba de Entrada	21
6.3	Informe	23
6.4	Evidencias	27
7	Evaluación Primer Parcial	. 29
7.1	Examen 1: Teórico/Oral/Investigaciones/Proyectos	30
7.2	Resolución de la Examen 1	35
7.3	Evidencias	40
7.4	Informe Estadístico del mapeo del resultado del estudiante	42
7.5	Lista de Cotejos del proceso de Evaluación Parcial	46

7.6	Porcentaje de avance y último contenido desarrollado de acuerdo silabo	2 a 48
8	Evalución Continua Fase 1	50
8.1	Consolidación de evaluaciones de práctica y/o laboratorio	51
8.2	Guías de práctica y/o laboratorio	55
8.3	Lista de Cotejos del proceso de Evaluación Continua	57

1. Curriculum Vitae en Formato ICACIT

2. Sílabo del Curso en Formato DUFA

UNIVERSIDAD NACIONAL DE SAN AGUSTÍN DE AREQUIPA

VICERRECTORADO ACADÉMICO

FACULTAD DE INGENIERÍA DE PRODUCCIÓN Y SERVICIOS DEPARTAMENTO ACADÉMICO DE INGENIERÍA DE SISTEMAS E INFORMÁTICA

SILABO 2021 A

ASIGNATURA: COMPUTACIÓN GRÁFICA

1. INFORMACIÓN ACADÉMICA

Periodo académico:	2021 - A	
Escuela Profesional:	Ciencias de la Comp	outación
Código de la asignatura	1704146	
Nombre de la asignatura	Computación gráfic	a
Semestre:	VII	
Características:	Semestral	
Duración:	17 semanas	
Número de horas	Teóricas	2
(Semestral)	Teórico - Prácticas	-
	Prácticas	2
	Laboratorio	2
Número de Créditos:	4	
Prerrequisitos:	1703238	Estructuras de datos avanzadas
	1703241	Matemática aplicada a la computación

2. INFORMACIÓN ADMINISTRATIVA

PROFESOR: Vicente Machaca Arceda

GRADO ACADÉMICO: Maestro en Ciencias Informática, con mención en Tecnologías de

Información

DEPARTAMENTO ACADÉMICO: Ingeniería de Sistemas e Informática

HORARIO	Lunes	Martes	Miércoles	Jueves	Viernes
Total Semanal: Hrs.		15:50 a 17:30	15:50 a 17:30	15:50 a 17:30	
Tipo de clase		Teoría	Práctica	Laboratorio	
Grupo		А	А	А	

3. FUNDAMENTACIÓN (JUSTIFICACIÓN)

Ofrece una introducción para el área de Computación Gráfica, la cual es una parte importante dentro de Ciencias de la Computación. El propósito de este curso es investigar los principios, técnicas y herramientas fundamentales para esta área.

4. SUMILLA DEL CURSO

Computación gráfica y dispositivos de visualización. Animación por computadora. Trazado de curvas, relleno de polígonos y transformaciones geométricas. Observación de escenas y recorte de primitivas. Curvas y superficies, modelado de sólidos y rendering. Colores y procesamiento de imágenes.

5. COMPETENCIAS

- Dominar tópicos y algoritmos de computación gráfica. (Resultado [a] nivel 2)
- Solucionar problemas aplicando algoritmos de computación gráfica. (Resultado [a] nivel 2, Resultado [b] nivel 2)

6. CONTENIDOS DE LA ASIGNATURA

UNIDAD 1:

Capítulo I: Introducción al modelado 3D

- Introducción a la computación gráfica y aplicaciones
- Dispositivos de visualización
- Puntos, vectores y matrices
- Transformaciones matriciales (traslación, escala y rotación)
- Proyecciones matriciales (vista perspectiva y geométrica)

Capítulo II: Modelamiento y Rendering

- Primitivas (puntos, líneas y triángulos)
- Modelamiento
- Texturas
- Iluminación
- Sombras
- Sky y backgrounds
- Superficies paramétricas (Bezier)

UNIDAD 2:

Capítulo III: Procesamiento de imágenes

- Operadores locales y globales
- Operadores geométricos y morfológicos
- Filtros
- Descriptores de imagen

7. ESTRATEGIAS DE ENSEÑANZA

- a) Métodos: Expositivo en clases teóricas y desarrollo de un trabajo práctico.
- b) Medios: Google Classroom, google meet.
- c) Formas de organización: Clases teóricas, exposición de clases magistrales.
- d) Programación de actividades que integren investigación formativa y responsabilidad social: Difusión del Pensamiento Computacional en la Región Arequipa.
- e) Seguimiento del aprendizaje: Desarrollo de los trabajos en el taller.

8. CRONOGRAMA ACADÉMICO

Semana	Tema / Evaluación	Docente	Avance
1	Tema 1	Vicente Machaca Arceda	6%
2	Tema 2	Vicente Machaca Arceda	12%
3	Tema 3	Vicente Machaca Arceda	20%
4	Tema 4	Vicente Machaca Arceda	25%
5	Examen parcial 1	Vicente Machaca Arceda	35%
6	Tema 5	Vicente Machaca Arceda	40%
7	Tema 6	Vicente Machaca Arceda	46%
8	Tema 7	Vicente Machaca Arceda	52%

9	Tema 8	Vicente Machaca Arceda	58%
10	Tema 9	Vicente Machaca Arceda	60%
11	Examen parcial 2	Vicente Machaca Arceda	65%
12	Tema 10	Vicente Machaca Arceda	71%
13	Tema 11	Vicente Machaca Arceda	80%
14	Tema 12	Vicente Machaca Arceda	86%
15	Tema 13	Vicente Machaca Arceda	92%
16	Tema 14	Vicente Machaca Arceda	95%
17	Examen final	Vicente Machaca Arceda	100%

9. ESTRATEGIAS DE EVALUACIÓN

Evaluación Continua.

Práctica y Laboratorios en cada clase sobre los temas realizados, tanto para el primer parcial ´(EC1), segundo parcial (EC2) y tercer parcial (EC3).

Evaluación Periódica.

Al ser un curso basado en lenguajes de programación, la evaluación periódica consta en la revisión de un trabajo de implementación y el promedio de las prácticas.

Cronograma

Evaluación	Fecha de Evaluación	Examen Teoría	Evaluación Continua	Ponderación porcentual
Evaluación parcial	13/05/2021	15%	15%	30%
Evaluación parcial	27/06/2021	15%	15%	30%
Evaluación final	29/07/2021	20%	20%	40%

Tipo de evaluación

Heteroevaluación, es la evaluación que realiza una persona sobre otra respecto de su trabajo, rendimiento.

Instrumentos de evaluación

Proyecto de curso y exposiciones.

10. REQUISITOS DE APROBACIÓN

Para aprobar el curso se deberá haber presentado todos sus trabajos. Los trabajos o tareas deberán ser originales, la copia o plagio a cualquier tipo de nivel, o cualquier tipo de actitud deshonesta, será castigado con cero en todo el componente donde se haya detectado la copia.

11. BIBLIOGRAFÍA

Bibliografía básica obligatoria

- [1] Marschner, S., & Shirley, P. (2018). Fundamentals of computer graphics. CRC Press.
- [2] Gordon, V. S., & Clevenger, J. L. (2020). *Computer Graphics Programming in OpenGL with C++*. Stylus Publishing, LLC.
- [3] Foley, J. D., Van, F. D., Van Dam, A., Feiner, S. K., Hughes, J. F., Angel, E., & Hughes, J. (1996). Computer graphics: principles and practice (Vol. 12110). Addison-Wesley Professional.

Bibliografía de consulta

- [3] Patricio, V. G. (2019). The Book of Shaders. Retrieved February, 8.
- [4] MIT, Computer graphics course (2020). Enlace:

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-837-computer-graphics-fall-2012/lecture-notes/

Vicente Machaca Arceda

3. Sílabo del Curso en Formato ICACIT

UNIVERSIDAD NACIONAL DE SAN AGUSTÍN DE AREQUIPA FACULTAD DE INGENIERÍA DE PRODUCCIÓN Y SERVICIOS

Sílabos del Curso

ESCUELA PROFESIONAL DE CIENCIA DE LA COMPUTACIÓN

1. Nombre del curso:

Código	Nombre	Semestre
1704146	Computación gráfica	2021-A

2. Créditos y horas semanales:

N ^a créditos	H. Teoría	H. Práctica	Н. Т-Р	H. Lab	T. Horas
4	2	2		2	6

3. Nombre del instructor o coordinador del curso:

MSc. Vicente Machaca Arceda

- 4. Libro texto: Título, autor y año:
 - a. Obligatoria

Título	Autor	Año
Computer Graphics: Principles and Practice	J. Foley and A. van Dam	1990

b. Otros materiales suplementarios

Título	Autor	Año
Computer Graphics in C.	D Hearn and M P Baker	1994

UNIVERSIDAD NACIONAL DE SAN AGUSTÍN DE AREQUIPA FACULTAD DE INGENIERÍA DE PRODUCCIÓN Y SERVICIOS

- 5. Información específica del curso:
 - a. Breve descripción del contenido del curso:

Computación gráfica y dispositivos de visualización. Animación por computadora. Trazado de curvas, relleno de polígonos y transformaciones geométricas. Observación de escenas y recorte de primitivas. Curvas y superficies, modelado de sólidos y rendering. Colores y procesamiento de imágenes.

b. Requisitos previos o correquisitos:

1703238 - Estructuras de datos avanzadas

1703241 - Matemática aplicada a la computación

c. Obligatorio o Electivo:

Obligatorio Electivo X

6. Objetivos específicos del curso:

Dominar tópicos y algoritmos de computación gráfica. (Resultado [a] nivel 2) Solucionar problemas aplicando algoritmos de computación gráfica. (Resultado [a] nivel 2, Resultado [b] nivel 2)

7. Breve lista de temas a ser abordados en el curso:

Fundamentos matemáticos

Modelado

Rendering

Procesamiento de imágenes

Operaciones, Operadores morfológicos y geométricos

Filtros

4. Mapeo del Resultado del Estudiante

UNIVERSIDAD NACIONAL DE SAN AGUSTÍN DE AREQUIPA

ESCUELA PROFESIONAL DE CIENCIA DE LA COMPUTACIÓN

FACULTAD DE INGENIERÍA DE PRODUCCIÓN Y SERVIVIOS DEPARTAMENTO ACADÉMICO DE INGENIERÍA DE SISTEMAS E INFORMÁTICA

ASIGNATURA: COMPUTACIÓN GRÁFICA

MAPEO DE RESULTADOS DEL ESTUDIANTE

[A]	Conocimientos en computación	Nivel 2
[B]	Análisis de problemas	Nivel 2
[C]	Diseño y desarrollo de soluciones	Nivel 2
[G]	Aprendizaje continuo	Nivel 2

ESCALA PARA MOSTRAR LOS NIVELES

Escala para mostrar el nivel de desarrollo:

- = No se desarrolla
- 0 = Conoce
- 1 = Comprende
- 2 = Aplica en un nivel intermedio
- 3 = Logra el Resultado del Estudiante

5. Material del Curso

UNIVERSIDAD NACIONAL DE SAN AGUSTÍN DE AREQUIPA

ESCUELA PROFESIONAL DE CIENCIA DE LA COMPUTACIÓN FACULTAD DE INGENIERÍA DE PRODUCCIÓN Y SERVIVIOS DEPARTAMENTO ACADÉMICO DE INGENIERÍA DE SISTEMAS E INFORMÁTICA

MATERIAL DEL CURSO

Las presentaciones utilizadas en en el desarrollo del curso se encuentran en la siguiente tabla:

Tabla 5.1: Material del Curso

Grupos	Material
MATERIAL	Link

6. Prueba de Entrada

6.1 P	rueba	de	Entrada	entregada	a los	estudiantes
-------	-------	----	---------	-----------	-------	-------------

19

6.1 Prueba de Entrada entregada a los estudiantes

Universidad Nacional de San Agustín de Arequipa Escuela Profesional de Ciencia de la Computación Curso: Computación Gráfica

EXAMEN DE ENTRADA

Docente: MSc. Vicente Machaca Arceda Abril, 2020

Apellidos
Nombre:
CIII.

- Con Matlab, Ocave o Numpy desarrolle: (5 puntos)
 Dadas la siguiente matriz: A = [1, 2, 3; 4, 5, 6; 7, 8, 9; 10, 11, 12; 13, 14, 15]
 Cómo obtengo la submatriz B = [2, 3; 5, 6] a partir de la matriz A
- 2. Una imagen se representa como un arreglo en 3 dimensiones, la dimensión x y y representan el ancho y alto de la imagen respectivamente, mientras que la dimensión z representa los canales de la imagen. Los canales tienen 3 valores y estos representan el color Red, Green y Blue. Desarrolle un programa que convierta la imagen a cuestión en una imagen a escala de grises, es decir, la imagen resultante tendrá 2 dimensiones. (8 puntos)

Entrada: int img[2][4][3] = $\{3, 4, 2, 3, 0, -3, 9, 11, 23, 12, 23, 2, 13, 4, 56, 3, 5, 9, 3, 5, 5, 1, 4, 9\}$; Salida:: int img_out[2][4] = ?

3. Explique que es la transformada de Fourier (7 puntos)

21

6.2 Resolución de la Prueba de Entrada

Universidad Nacional de San Agustín de Arequipa **Escuela Profesional de Ciencia de la Computación** Curso: Computación Gráfica

EXAMEN DE ENTRADA

Docente: MSc. Vicente Machaca Arceda Abril, 2020

Apellidos: Nombre: CUI:

Con Matlab, Ocave o Numpy desarrolle: (5 puntos)
 Dadas la siguiente matriz: A = [1, 2, 3; 4, 5, 6; 7, 8, 9; 10, 11, 12; 13, 14, 15]
 Cómo obtengo la submatriz B = [2, 3; 5, 6] a partir de la matriz A

A[0:2, 1,3]

2. Una imagen se representa como un arreglo en 3 dimensiones, la dimensión x y y representan el ancho y alto de la imagen respectivamente, mientras que la dimensión z representa los canales de la imagen. Los canales tienen 3 valores y estos representan el color Red, Green y Blue. Desarrolle un programa que convierta la imagen a cuestión en una imagen a escala de grises, es decir, la imagen resultante tendrá 2 dimensiones. (8 puntos)

```
Entrada: int img[2][4][3] = {3, 4, 2, 3, 0, -3, 9, 11, 23, 12, 23, 2, 13, 4, 56, 3, 5, 9, 3, 5, 5, 1, 4, 9};

Salida: int img_out[2][4] = ?

r, g, b = img[:,:,0], img[:,:,1], img[:,:,2]

gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
```

3. Explique que es la transformada de Fourier (7 puntos)

Es una transformación matemática empleada para transformar señales entre el dominio del tiempo y el dominio de la frecuencia. En otras palabras, también se dice que cualquier señal puede expresarse como la suma de muchas señales de senos y cosenos, esta representación de senos y cosenos es la transformada de Fourier.

6.3 Informe 23

6.3 Informe

INFORME DE RESULTADOS

Nota máxima	19
Nota mínima	12
Nota promedio	17

En la Figura 6.1, detallamos el histograma de frecuencias de las notas por grupo y en la Figura 6.2, mostramos el consolidado.

Figura 6.1: Histograma de notas.

6.3 Informe 25

Figura 6.2: Histograma de notas (consolidado). Excelente (nota \geq 17), Bueno (14 \leq nota \leq 16), Aceptable (11 \leq nota \leq 13), Mejorable (07 \leq nota \leq 10), Deficiente (nota \leq 06)

Tabla 6.1: Notas del grupo A.

CUI	ALUMNO	NOTA
20170734	FERNANDEZ/MAMANI, BRAYAN GINO	19
20151195	PFUTURI/HUISA, OSCAR DAVID	13
20173450	QUIÑONEZ/LOPEZ, EFRAIN GERMAN	17
20173453	QUISPE/MENOR, HERMOGENES	19
20151196	SANTOS/APAZA, YORDY WILLIAMS	19
20151122	QUISPE TOTOCAYO RAUL	15
20133429	VISA/FLORES, ALBERTO	15
20111683	FLORES/HERRERA, JEFFERSON MIGUEL	17
20180688	GONZA/CONDORI, GABRIEL DAVID	18
20181744	MITA/YAGUA, LESLY YANETH	19
20182909	PINTO/MEDINA, BRIAN WILBERT	15
20153707	CASTILLO/CACCIRE, KEMELY FRANCIS	14
20182907	CHULLUNQUIA/ROSAS, SHARON ROSSELY ALISSON	19
20123723	COLQUE/ZEGARRA, FRANKS JHON	19
20111438	ZUÑIGA/COAYLA, JERSON	19
20180692	BUENDIA/GUTIERREZ, IVAN RAFAEL	17
20182908	PORTOCARRERO/ESPIRILLA, DIEGO ARMANDO	18
20110989	TAPARA/QUISPE, JHOEL SALOMON	17
20181741	BEDREGAL/VENTO, ADRIAN ROLANDO	16
20180684	MENDOZA/SURCO, YOBER MAYKOL	19
20180682	VALDIVIA/RAMOS, LEONARDO DANIEL	19
20161791	CCARI/QUISPE, JOSE CARLOS	19
20150974	COAYLA/ZUÑIGA, GONZALO EDUARDO	18
20160758	JANAMPA/CANAHUIRE, VICTOR MANUEL	17
20153689	JARA/HUILCA, ARTURO JESÚS	16
20173457	CHAYÑA/BATALLANES, JOSNICK	18
20181742	PEREZ/RODRIGUEZ, ANGELO ALDO	19
20180694	PUCHO/ZEVALLOS, KELVIN PAUL	19
20170730	SIHUINTA/PEREZ, LUIS ARMANDO	19
20181739	VILCAPAZA/FLORES, LUIS FELIPE	15
20160748	CESPEDES/FUENTES, RENATO GONZALO	18
20170739	MAMANI/SUCACAHUA, RODRIGO ALEXANDER	18
20160759	OXA/CACYA, SHIRLEY MICHELLE	18
20153709	QUISPE/QUISPE, YARA JEANETTE	12
20131661	BARRIONUEVO/PAREDES, FABRICIO JOSE	18
20060733	FLORES/PACHECO, JHON ISMAEL	19
20160750	PANIBRA/MAMANI, THALES GONZALO	17

6.4 Evidencias 27

6.4 Evidencias

UNIVERSIDAD NACIONAL DE SAN AGUSTÍN DE AREQUIPA

ESCUELA PROFESIONAL DE CIENCIA DE LA COMPUTACIÓN

FACULTAD DE INGENIERÍA DE PRODUCCIÓN Y SERVIVIOS DEPARTAMENTO ACADÉMICO DE INGENIERÍA DE SISTEMAS E INFORMÁTICA

EVIDENCIAS

Los exámenes fueron tomados utilizando la plataforma Classroom, es así que estas evidencias están guardades en Google Drive. En la siguiente tabla presentamos dicho enlace.

Tabla 6.2: Evidencias de los exámenes.

Descripción	Enlace
Exámenes	Drive

7. Evaluación Primer Parcial

30	Chapter 7. Evaluación Primer Parcial

7.1 Examen 1: Teórico/Oral/Investigaciones/Proyectos

Primer Examen Parcial

MSc. Vicente Machaca Arceda 20 de mayo de 2021

Nombre: Apellidos: CUI:

NOTA: Elaborar un documento (en el editor de texto de su preferencia) con la solución de cada pregunta. Puede incluir fotos si respondio las preguntas en papel. Al final debe **entregar la solución en un archivo PDF**.

1. Preguntas

1. Explique que se obtiene con estas matrices de transformación (6 puntos):

$$f_0 = \begin{bmatrix} 0.5 & 0 & 0 & 0 \\ 0 & 0.5 & 0 & 0 \\ 0 & 0 & 0.5 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$f_1 = \begin{bmatrix} \sqrt{2}/2 & -\sqrt{2}/2 & 0 & 0 \\ \sqrt{2}/2 & \sqrt{2}/2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$f_2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

2. Obtenga la matriz de transformación que permita el resultado obtenido en la Figura 1. Si son varias matrices, detalle cada matriz. (3 puntos)

 $Figura\ 1:\ Transformaciones.$

Alternativas:

$$\begin{aligned} Matrix &= \begin{bmatrix} 1 & 0 & 0 & m \\ 0 & 1 & 0 & n \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} 0.5 & 0 & 0 & 0 \\ 0 & 0.5 & 0 & 0 \\ 0 & 0 & 0.5 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} \sqrt{2}/2 & -\sqrt{2}/2 & 0 & 0 \\ \sqrt{2}/2 & \sqrt{2}/2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ Matrix &= \begin{bmatrix} 1 & 0 & 0 & m \\ 0 & 1 & 0 & n \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} 0.5 & 0 & 0 & 0 \\ 0 & 0.5 & 0 & 0 \\ 0 & 0 & 0.5 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ Matrix &= \begin{bmatrix} 1 & 0 & 0 & m \\ 0 & 1 & 0 & n \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} \sqrt{2}/2 & -\sqrt{2}/2 & 0 & 0 \\ \sqrt{2}/2 & \sqrt{2}/2 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ Matrix &= \begin{bmatrix} 1 & 0 & 0 & m \\ 0 & 1 & 0 & n \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} 0.5 & 0 & 0 & 0 \\ 0 & 0.5 & 0 & 0 \\ 0 & 0 & 0.5 & 0 \\ 0 & 0 & 0.5 & 0 \\ 0 & 0 & 0.5 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} * \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \end{aligned}$$

- 3. Sabemos que la camara en OpenGL está situada en el origen. Si usted desea **simular** un movimiento de la camará a la posición (10, 15, 20, 1) con un angúlo de giro de 45 grados en el eje z, ¿Que transformación debe realizar sobre los objetos de la escena?. (3 puntos)
- 4. ¿Cual es la matriz de transformación necesaria para obtener una proyección perspectiva con los siguientes datos? (3 puntos)
 - field of view: 45 grados.
 - width: 100.
 - height: 100.
 - $Z_{near}:50$
 - $Z_{far}:500$

Alternativas:

$$P = \begin{bmatrix} 2,41 & 0 & 0 & 0 \\ 0 & 2,41 & 0 & 0 \\ 0 & 0 & -1,2 & -111,0 \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

$$P = \begin{bmatrix} 2,41 & 0 & 0 & 0 \\ 0 & 2,41 & 0 & 0 \\ 0 & 0 & 1,2 & 111,0 \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1,2 & -111,0 \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

$$P = \begin{bmatrix} 2,41 & 0 & 0 & 0 \\ 0 & 2,41 & 0 & 0 \\ 0 & 0 & 111,0 & 1,2 \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

5. Complete el siguiente código de manera tal que simule un sistema solar. El cubo verde, cafe y azul, representan el sol, la tierra y la luna respectivamente (Figura 2). **Debe utilizar transformaciones**. Al final adjunte el archivo HTML de su implementación. (5 puntos)

```
<! DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Document</title>
</head>
<body>
<script type='module'>
import * as THREE from 'https://cdn.skypack.dev/three';
var sol = new THREE.Mesh( new THREE.BoxGeometry( 5, 5, 5 ), new THREE.
   MeshPhongMaterial( {color:0xFCFF33}) );
var tierra = new THREE.Mesh( new THREE.BoxGeometry( 4, 4, 4 ), new THREE.
   MeshPhongMaterial( {color:0x8E5229}) );
var luna = new THREE.Mesh( new THREE.BoxGeometry( 2, 2, 2 ), new THREE.
   MeshPhongMaterial( {color:0x51CEDF}) );
tierra.position.x = 20
luna.position.x = 25
var camera = new THREE.PerspectiveCamera(45, window.innerWidth/window.innerHeight
    ,1,500);
camera.position.z = 100;
camera.position.y = 10;
var scene = new THREE.Scene();
scene.backgroundColor = new THREE.Color(0xffffff);
scene.add(sol);
scene.add(tierra);
scene.add(luna);
const light = new THREE.HemisphereLight(0xB1E1FF, 0x000000, 1);
scene.add(light);
var renderer = new THREE.WebGLRenderer();
renderer.setSize( window.innerWidth, window.innerHeight );
document.body.appendChild( renderer.domElement );
// Defina aqui las matrices de transformacion
var animate = function(){
requestAnimationFrame(animate);
  // aplique aqui, cada matriz de transformacion a cada objeto
  // por ejemplo: sol.geometry.applyMatrix4( matrix_rotation );
 renderer.render( scene, camera );
}
animate();
</script>
</body>
</html>
```


Figura 2: Solar system.

35

7.2 Resolución de la Examen 1

Primer Examen Parcial - Solución

MSc. Vicente Machaca Arceda 1 de junio de 2021

Nombre: Apellidos: CUI:

NOTA: Elaborar un documento (en el editor de texto de su preferencia) con la solución de cada pregunta. Puede incluir fotos si respondio las preguntas en papel. Al final debe **entregar la solución en un archivo PDF**.

1. Preguntas

1. Explique que se obtiene con estas matrices de transformación (6 puntos):

$$f_0 = \begin{bmatrix} 0.5 & 0 & 0 & 0 \\ 0 & 0.5 & 0 & 0 \\ 0 & 0 & 0.5 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$f_1 = \begin{bmatrix} \sqrt{2}/2 & -\sqrt{2}/2 & 0 & 0 \\ \sqrt{2}/2 & \sqrt{2}/2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$f_2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Solución:

Escala a la mitad de tamaño, rotación de 45 grados en el ejezy rotación de 90 grados en el ejex

2. Obtenga la matriz de transformación que permita el resultado obtenido en la Figura 1. Si son varias matrices, detalle cada matriz. (3 puntos)

Figura 1: Transformaciones.

Solución:

$$Matrix = \begin{bmatrix} 1 & 0 & 0 & m \\ 0 & 1 & 0 & n \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} 0.5 & 0 & 0 & 0 \\ 0 & 0.5 & 0 & 0 \\ 0 & 0 & 0.5 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} \sqrt{2}/2 & -\sqrt{2}/2 & 0 & 0 \\ \sqrt{2}/2 & \sqrt{2}/2 & \sqrt{2}/2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- 3. Sabemos que la camara en OpenGL está situada en el origen. Si usted desea **simular** un movimiento de la camará a la posición (10, 15, 20, 1) con un angúlo de giro de 45 grados en el eje z, ¿Que transformación debe realizar sobre los objetos de la escena?. (3 puntos)
- 4. ¿Cual es la matriz de transformación necesaria para obtener una proyección perspectiva con los siguientes datos? (3 puntos)

• field of view : 45 grados.

• width: 100.

• height: 100.

 $Z_{near}:50$

 $Z_{far}:500$

Solución:

$$P = \begin{bmatrix} 2,41 & 0 & 0 & 0 \\ 0 & 2,41 & 0 & 0 \\ 0 & 0 & -1,2 & -111,0 \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

5. Complete el siguiente código de manera tal que simule un sistema solar. El cubo verde, cafe y azul, representan el sol, la tierra y la luna respectivamente (Figura 2). **Debe utilizar transformaciones**. Al final adjunte el archivo HTML de su implementación. (5 puntos)

```
<!DOCTYPE html>
<html lang="en">
<head>
```



```
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Document</title>
</head>
<body>
<script type='module'>
import * as THREE from 'https://cdn.skypack.dev/three';
var sol = new THREE.Mesh( new THREE.BoxGeometry( 5, 5, 5 ), new THREE.
   MeshPhongMaterial( {color:0xFCFF33}) );
var tierra = new THREE.Mesh( new THREE.BoxGeometry( 4, 4, 4 ), new THREE.
   MeshPhongMaterial( {color:0x8E5229}) );
var luna = new THREE.Mesh( new THREE.BoxGeometry( 2, 2, 2 ), new THREE.
   MeshPhongMaterial( {color:0x51CEDF}) );
tierra.position.x = 20
luna.position.x = 25
var camera = new THREE.PerspectiveCamera(45, window.innerWidth/window.innerHeight
   ,1,500);
camera.position.z = 100;
camera.position.y = 10;
var scene = new THREE.Scene();
scene.backgroundColor = new THREE.Color(Oxffffff);
scene.add(sol);
scene.add(tierra);
scene.add(luna);
const light = new THREE.HemisphereLight(0xB1E1FF, 0x000000, 1);
scene.add(light);
var renderer = new THREE.WebGLRenderer();
renderer.setSize( window.innerWidth, window.innerHeight );
document.body.appendChild( renderer.domElement );
// Defina aqui las matrices de transformacion
var animate = function(){
requestAnimationFrame(animate);
 // aplique aqui, cada matriz de transformacion a cada objeto
 // por ejemplo: sol.geometry.applyMatrix4( matrix_rotation );
 renderer.render( scene, camera );
animate();
</script>
</body>
</html>
```


Figura 2: Solar system.

7.3 Evidencias

7.3 Evidencias 41

UNIVERSIDAD NACIONAL DE SAN AGUSTÍN DE AREQUIPA

ESCUELA PROFESIONAL DE CIENCIA DE LA COMPUTACIÓN

FACULTAD DE INGENIERÍA DE PRODUCCIÓN Y SERVIVIOS DEPARTAMENTO ACADÉMICO DE INGENIERÍA DE SISTEMAS E INFORMÁTICA

EVIDENCIAS

Los exámenes fueron tomados utilizando la plataforma Classroom, es así que estas evidencias están guardades en Google Drive. En la siguiente tabla presentamos dicho enlace.

Tabla 7.1: Evidencias de los exámenes.

Descripción	Enlace	Nota	CUI
Exámenes	Drive	-	-
Nota promedio	Drive	13	-
Mayor nota	Drive	20	20181741
Menor nota	Drive	0	20161791

42	Chapter 7. Evaluación Primer Parcial
7.4	Informe Estadístico del mapeo del resultado del estudiante

INFORME DE RESULTADOS

Nota máxima	20
Nota mínima	0
Nota promedio	13

En la Figura 7.1, detallamos el histograma de frecuencias de las notas por grupo y en la Figura 7.2, mostramos el consolidado.

Figura 7.1: Histograma de notas.

Figura 7.2: Histograma de notas (consolidado). Excelente (nota \geq 17), Bueno (14 \leq nota \leq 16), Aceptable (11 \leq nota \leq 13), Mejorable (07 \leq nota \leq 10), Deficiente (nota \leq 06)

Tabla 7.2: Notas del grupo A.

CUI	ALUMNO	NOTA
20170734	FERNANDEZ/MAMANI, BRAYAN GINO	0
20151195	PFUTURI/HUISA, OSCAR DAVID	15
20173450	QUIÑONEZ/LOPEZ, EFRAIN GERMAN	13
20173453	QUISPE/MENOR, HERMOGENES	13
20151196	SANTOS/APAZA, YORDY WILLIAMS	12
20151122	QUISPE TOTOCAYO RAUL	9
20133429	VISA/FLORES, ALBERTO	12
20111683	FLORES/HERRERA, JEFFERSON MIGUEL	15
20180688	GONZA/CONDORI, GABRIEL DAVID	16
20181744	MITA/YAGUA, LESLY YANETH	15
20182909	PINTO/MEDINA, BRIAN WILBERT	12
20153707	CASTILLO/CACCIRE, KEMELY FRANCIS	15
20182907	CHULLUNQUIA/ROSAS, SHARON ROSSELY ALISSON	16
20123723	COLQUE/ZEGARRA, FRANKS JHON	15
20111438	ZUÑIGA/COAYLA, JERSON	15
20180692	BUENDIA/GUTIERREZ, IVAN RAFAEL	16
20182908	PORTOCARRERO/ESPIRILLA, DIEGO ARMANDO	15
20110989	TAPARA/QUISPE, JHOEL SALOMON	15
20181741	BEDREGAL/VENTO, ADRIAN ROLANDO	20
20180684	MENDOZA/SURCO, YOBER MAYKOL	15
20180682	VALDIVIA/RAMOS, LEONARDO DANIEL	12
20161791	CCARI/QUISPE, JOSE CARLOS	0
20150974	COAYLA/ZUÑIGA, GONZALO EDUARDO	12
20160758	JANAMPA/CANAHUIRE, VICTOR MANUEL	12
20153689	JARA/HUILCA, ARTURO JESÚS	9
20173457	CHAYÑA/BATALLANES, JOSNICK	15
20181742	PEREZ/RODRIGUEZ, ANGELO ALDO	16
20180694	PUCHO/ZEVALLOS, KELVIN PAUL	10
20170730	SIHUINTA/PEREZ, LUIS ARMANDO	15
20181739	VILCAPAZA/FLORES, LUIS FELIPE	15
20160748	CESPEDES/FUENTES, RENATO GONZALO	12
20170739	MAMANI/SUCACAHUA, RODRIGO ALEXANDER	15
20160759	OXA/CACYA, SHIRLEY MICHELLE	15
20153709	QUISPE/QUISPE, YARA JEANETTE	15
20131661	BARRIONUEVO/PAREDES, FABRICIO JOSE	15
20060733	FLORES/PACHECO, JHON ISMAEL	15
20160750	PANIBRA/MAMANI, THALES GONZALO	13

46		Chapter 7. Evaluación Primer Parcial
7	7.5	Lista de Cotejos del proceso de Evaluación Parcial

ESCUELA PROFESIONAL DE CIENCIA DE LA COMPUTACIÓN FACULTAD DE INGENIERÍA DE PRODUCCIÓN Y SERVIVIOS DEPARTAMENTO ACADÉMICO DE INGENIERÍA DE SISTEMAS E INFORMÁTICA

ASIGNATURA: COMPUTACIÓN GRÁFICA

LISTA DE COTEJO Y PROCESO DE EVALUACIÓN

Docente MSc. Vicente Machaca Arceda	
Categoría/Regimen	Auxiliar/ TP20
Semestre	2021-A
Fecha	26 de Mayo

N°	Examen	Puntaje	Comentario	Porcentaje
1	Examen de conocimientos	15	Opción multiple y respuestas cor-	11.25%
			tas	
2	Solución de un problema	5	Rúbrica	3.75%
			TOTAL	20
	TOTAL PORCENTAJE 15%			15%

7.6	Porcentaje de avance y último	o contenido desarrollado de acuerdo a silabo

Chapter 7. Evaluación Primer Parcial

48

ESCUELA PROFESIONAL DE CIENCIA DE LA COMPUTACIÓN FACULTAD DE INGENIERÍA DE PRODUCCIÓN Y SERVIVIOS DEPARTAMENTO ACADÉMICO DE INGENIERÍA DE SISTEMAS E INFORMÁTICA

ASIGNATURA: COMPUTACIÓN GRÁFICA

PORCENTAJE DE AVANCE Y ÚLTIMO CONTENIDO DESARROLLADO

Docente MSc. Vicente Machaca Arceda	
Categoría/Regimen	Auxiliar/ TP20
Semestre	2021-A
Fecha	26 de Mayo

N	° Fecha	Porcentaje	Contenido
1	13 de Mayo	30%	Transformaciones matriciales

8. Evalución Continua Fase 1

3.1 Consolidación de evaluaciones de práctica y/o laboratorio
8.1 Consolidación de evaluaciones de práctica y/o laboratorio

INFORME DE RESULTADOS

Nota máxima	19
Nota mínima	9
Nota promedio	18

En la Figura 8.1, detallamos el histograma de frecuencias de las notas por grupo y en la Figura 8.2, mostramos el consolidado.

Figura 8.1: Histograma de notas.

Figura 8.2: Histograma de notas (consolidado). Excelente (nota \geq 17), Bueno (14 \leq nota \leq 16), Aceptable (11 \leq nota \leq 13), Mejorable (07 \leq nota \leq 10), Deficiente (nota \leq 06)

Tabla 8.1: Notas del grupo A.

CUI	ALUMNO	NOTA
20170734	FERNANDEZ/MAMANI, BRAYAN GINO	19
20151195	PFUTURI/HUISA, OSCAR DAVID	19
20173450	QUIÑONEZ/LOPEZ, EFRAIN GERMAN	17
20173453	QUISPE/MENOR, HERMOGENES	19
20151196	SANTOS/APAZA, YORDY WILLIAMS	19
20151122	QUISPE TOTOCAYO RAUL	12
20133429	VISA/FLORES, ALBERTO	12
20111683	FLORES/HERRERA, JEFFERSON MIGUEL	19
20180688	GONZA/CONDORI, GABRIEL DAVID	18
20181744	MITA/YAGUA, LESLY YANETH	19
20182909	PINTO/MEDINA, BRIAN WILBERT	19
20153707	CASTILLO/CACCIRE, KEMELY FRANCIS	19
20182907	CHULLUNQUIA/ROSAS, SHARON ROSSELY ALISSON	19
20123723	COLQUE/ZEGARRA, FRANKS JHON	19
20111438	ZUÑIGA/COAYLA, JERSON	19
20180692	BUENDIA/GUTIERREZ, IVAN RAFAEL	17
20182908	PORTOCARRERO/ESPIRILLA, DIEGO ARMANDO	17
20110989	TAPARA/QUISPE, JHOEL SALOMON	17
20181741	BEDREGAL/VENTO, ADRIAN ROLANDO	16
20180684	MENDOZA/SURCO, YOBER MAYKOL	19
20180682	VALDIVIA/RAMOS, LEONARDO DANIEL	19
20161791	CCARI/QUISPE, JOSE CARLOS	19
20150974	COAYLA/ZUÑIGA, GONZALO EDUARDO	19
20160758	JANAMPA/CANAHUIRE, VICTOR MANUEL	19
20153689	JARA/HUILCA, ARTURO JESÚS	16
20173457	CHAYÑA/BATALLANES, JOSNICK	18
20181742	PEREZ/RODRIGUEZ, ANGELO ALDO	19
20180694	PUCHO/ZEVALLOS, KELVIN PAUL	19
20170730	SIHUINTA/PEREZ, LUIS ARMANDO	19
20181739	VILCAPAZA/FLORES, LUIS FELIPE	19
20160748	CESPEDES/FUENTES, RENATO GONZALO	18
20170739	MAMANI/SUCACAHUA, RODRIGO ALEXANDER	18
20160759	OXA/CACYA, SHIRLEY MICHELLE	18
20153709	QUISPE/QUISPE, YARA JEANETTE	9
20131661	BARRIONUEVO/PAREDES, FABRICIO JOSE	18
20060733	FLORES/PACHECO, JHON ISMAEL	18
20160750	PANIBRA/MAMANI, THALES GONZALO	18

8.2 Guías de práctica y/o laboratorio

ESCUELA PROFESIONAL DE CIENCIA DE LA COMPUTACIÓN FACULTAD DE INGENIERÍA DE PRODUCCIÓN Y SERVIVIOS DEPARTAMENTO ACADÉMICO DE INGENIERÍA DE SISTEMAS E INFORMÁTICA

GUÍAS DE PRÁCTICA Y/O LABORATORIO

Las prácticas utilizadas en en el desarrollo del curso se encuentran en la siguiente tabla:

Tabla 8.2: Guías de práctica y/o laboratorio.

Descripción	Enlace
Laboratorio 1	Link
Laboratorio 2	Link
Laboratorio 3	Link
Laboratorio 4	Link
Laboratorio 5	Link
Laboratorio 6	Link

8.3 Lista de Co	otejos del prod	ceso de Evalı	uación Continu	а

57

8.3 Lista de Cotejos del proceso de Evaluación Continua

ESCUELA PROFESIONAL DE CIENCIA DE LA COMPUTACIÓN FACULTAD DE INGENIERÍA DE PRODUCCIÓN Y SERVIVIOS DEPARTAMENTO ACADÉMICO DE INGENIERÍA DE SISTEMAS E INFORMÁTICA

ASIGNATURA: COMPUTACIÓN GRÁFICA

LISTA DE COTEJO Y PROCESO DE EVALUACIÓN

Docente	MSc. Vicente Machaca Arceda	
Categoría/Regimen	Auxiliar/ TP20	
Semestre	2021-A	
Fecha	26 de Mayo	

N°	Examen	Puntaje	Comentario	Porcentaje	
1	Resolución de problemas	5	Rúbrica	3.75%	
	matemáticos				
2	Solución de un problema	15	Rúbrica	11.25%	
TOTAL					
TOTAL PORCENTAJE					