I.1 (4 Punkte)

Es seien (G, *) eine Gruppe mit neutralem Element e_G und (H, \cdot) eine weitere Gruppe.

- a) Geben Sie die Definition eines Gruppenhomomorphismus $\Phi: G \longrightarrow H$ an und beweisen Sie, dass für solch einen Gruppenhomomorphismus $\Phi(e_G)$ das neutrale Element von H ist.
- b) Nun besitze G die Eigenschaft, dass für alle $g \in G$ eine ungerade natürliche Zahl n existiert mit $g^n = e_G$.

Zeigen Sie, dass es keinen surjektiven Gruppenhomomorphismus $\Phi: G \longrightarrow \{1, -1\}$ gibt.

Lösung:

a) Ein Gruppenhomomorphismus von G nach H ist eine Abbildung $\Phi: G \longrightarrow H$, sodass für alle $g_1, g_2 \in G$ die Gleichung

$$\Phi(g_1 * g_2) = \Phi(g_1) \cdot \Phi(g_2)$$

gilt.

Insbesondere gilt dann für $g_1 = g_2 = e_G$

$$\Phi(e_G) = \Phi(e_G * e_G) = \Phi(e_G) \cdot \Phi(e_G),$$

und durch Multiplikation dieser Gleichung mit dem in H inversen zu $\Phi(e_G)$ folgt

$$e_H = \Phi(e_G)^{-1} \cdot \Phi(e_G) = \Phi(e_G)^{-1} \cdot (\Phi(e_G) \cdot \Phi(e_G)) = \Phi(e_G).$$

Dabei bezeichnet e_H das neutrale Element in H.

b) Es sei $\Phi: G \longrightarrow \{1, -1\}$ ein Gruppenhomomorphismus. Weiter sei $g \in G$ beliebig und n eine ungerade Zahl mit $g^n = e_G$. Laut Voraussetzung existiert solch ein n. Dann gilt

$$1 = e_H = \Phi(e_G) = \Phi(q^n) = \Phi(q)^n$$
,

also ist $\Phi(g) = 1$, da $(-1)^n = -1$. Damit ist Φ konstant gleich 1 und mithin nicht surjektiv.

I.2 (4 Punkte)

Es seien K ein Körper, V, W zwei K-Vektorräume und $\Phi: V \longrightarrow W$ eine lineare Abbildung. Weiter seien $v_1, \ldots, v_p \in V$ gegeben und

$$w_i = \Phi(v_i), \quad 1 \le i \le p,$$

ihre Bildvektoren in W.

- a) Zeigen Sie: Wenn w_1, \ldots, w_p linear unabhängig sind, dann auch v_1, \ldots, v_p .
- b) Zeigen Sie: Ist Φ injektiv und sind v_1, \ldots, v_p linear unabhängig, so sind auch w_1, \ldots, w_p linear unabhängig.
- c) Gilt die Implikation in b) auch, wenn Φ nicht als injektiv vorausgesetzt wird? (Beweis oder Gegenbeispiel!)

Lösung:

a) Zu zeigen ist: Für $a_1, \ldots, a_p \in K$ folgt aus $\sum_i a_i v_i = 0$, dass alle a_i Null sind. Dies folgt auf dem Umweg über W, indem wir Φ auf die Gleichung $\sum_i a_i v_i = 0$ anwenden. Wegen der Linearität gilt nämlich

$$0 = \Phi(0) = \Phi(\sum_{i} a_{i} v_{i}) = \sum_{i} a_{i} \Phi(v_{i}) = \sum_{i} a_{i} w_{i}.$$

Da die w_i nach Voraussetzung linear unabhängig sind, folgt die gewünschte Aussage über die a_i .

b) Wenn $\sum_{i} a_{i} w_{i} = 0$ gilt, so folgt insbesondere

$$\Phi(\sum_{i} a_{i}v_{i}) = \sum_{i} a_{i}w_{i} = 0 = \Phi(0).$$

Die Injektivität von Φ erzwingt dann $\sum_i a_i v_i = 0$. Daher sind alle a_i Null, denn v_1, \ldots, v_p sind in b) als linear unabhängig vorausgesetzt. Also sind w_1, \ldots, w_p linear unabhängig.

c) Wenn Φ nicht injektiv ist, so wählen wir p=1 und einen von Null verschiedenen Vektor v_1 im Kern von Φ . Dann ist $\{v_1\}$ linear unabhängig, aber $\Phi(v_1)=0$ ist nicht linear unabhängig. Also braucht man die Injektivität von Φ für die Implikation in b).

I.3 (4 Punkte)

Im reellen Vektorraum $V = \mathbb{R}^5$ seien die Vektoren

$$u_{1} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \ u_{2} = \begin{pmatrix} 1 \\ 2 \\ 2 \\ 2 \end{pmatrix}, \ u_{3} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 3 \\ 3 \end{pmatrix}, \ w_{1} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 5 \\ 6 \end{pmatrix}, \ w_{2} = \begin{pmatrix} 2 \\ 4 \\ 6 \\ 8 \\ 9 \end{pmatrix}, \ w_{3} = \begin{pmatrix} 3 \\ 6 \\ 9 \\ 11 \\ 12 \end{pmatrix}$$

gegeben. Weiter sei U die lineare Hülle von $\{u_1, u_2, u_3\}$ und W die lineare Hülle von $\{w_1, w_2, w_3\}$.

Berechnen Sie Basen der Vektorräume U+W und $U\cap W$.

Lösung:

Da es sich um Vektoren im Standardraum handelt, kann man direkt die Vektoren als Spalten in eine Matrix schreiben und durch elementare Zeilenumformungen eine maximale linear unabhängige Teilmenge als Basis von U+W finden. Das führen wir zunächst durch und sehen dann am Ende der Rechnung, was $U\cap W$ ist.

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 2 & 3 \\ 1 & 2 & 2 & 2 & 4 & 6 \\ 1 & 2 & 3 & 3 & 6 & 9 \\ 1 & 2 & 3 & 5 & 8 & 11 \\ 1 & 2 & 3 & 6 & 9 & 12 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 1 & 1 & 1 & 2 & 3 \\ 0 & 1 & 1 & 1 & 2 & 3 \\ 0 & 1 & 2 & 2 & 4 & 6 \\ 0 & 1 & 2 & 4 & 6 & 8 \\ 0 & 1 & 2 & 5 & 7 & 9 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 1 & 1 & 1 & 2 & 3 \\ 0 & 1 & 1 & 1 & 2 & 3 \\ 0 & 0 & 1 & 1 & 2 & 3 \\ 0 & 0 & 1 & 3 & 4 & 5 \\ 0 & 0 & 1 & 4 & 5 & 6 \end{pmatrix} \rightsquigarrow$$

Hierbei wird zunächst die erste Zeile von den übrigen abgezogen, dann die zweite von den letzten drei, dann die dritte von den letzten beiden und schließlich das $\frac{3}{2}$ -fache der vierten von der fünften.

Die letzte Matrix hat Rang 4 und die ersten vier Spalten sind linear unabhängig, also ist $\dim(U+W)=4$ und $\{u_1,u_2,u_3,w_1\}$ ist eine Basis von U+W.

Weiter erzeugen die letzten drei Spalten einen zweidimensionalen Vektorraum, also gilt $\dim(W) = 2$, während die ersten drei Spalten linear unabhängig sind: $\dim(U) = 3$.

Die Dimensionsformel $\dim(U) + \dim(W) - \dim(U + W) = \dim(U \cap W)$ impliziert dann $\dim(U \cap W) = 1$. Die Differenz der vierten und fünften Spalte ist eine Linearkombination $\neq 0$ der ersten drei Spalten (nämlich gleich der dritten Spalte), und deshalb ist

$$w_2 - w_1 = (1, 2, 3, 3, 3)^{\top} = u_3$$

ein Erzeuger von $U \cap W$; eine Basis hiervon ist also $\{u_3\}$.

I.4 (4 Punkte)

Es seien V ein dreidimensionaler K-Vektorraum und $\varphi_1, \varphi_2, \varphi_3$ Linearformen auf V. Zeigen Sie, dass diese Linearformen genau dann linear abhängig sind, wenn es einen Vektor

 $v \in V \setminus \{0\}$ gibt mit

$$\forall i \in \{1, 2, 3\} : \varphi_i(v) = 0.$$

Lösung:

Wenn $\varphi_1, \varphi_2, \varphi_3$ nicht linear abhängig sind, so bilden sie eine Basis des Dualraums V^* von V, denn dieser ist auch dreidimensional. Da es zu jedem $v \neq 0$ eine Linearform ψ mit $\psi(v) \neq 0$ gibt, kann nicht $\varphi_i(v) = 0$ für i = 1, 2, 3 gelten, denn ψ lässt sich als Linearkombination von $\varphi_1, \varphi_2, \varphi_3$ schreiben.

Sind umgekehrt $\varphi_1, \varphi_2, \varphi_3$ linear abhängig, so gibt es Elemente $a_1, a_2, a_3 \in K$, die nicht alle 0 sind, und so, dass $a_1\varphi_1 + a_2\varphi_2 + a_3\varphi_3 = 0$. Die lineare Abbildung

$$\Phi: V \longrightarrow K^3, \quad \Phi(v) = (\varphi_i(v))_{1 \le i \le 3}.$$

ist dann nicht surjektiv, denn für alle $v \in V$ gilt

$$(a_1, a_2, a_3) \cdot \Phi(v) = \sum_{i=1}^{3} a_i \varphi_i(v) = 0,$$

und daher können nicht alle Vektoren der Standardbasis im Bild von Φ liegen.

Wegen der Dimensionsformel ist

$$\dim(\operatorname{Kern}(\Phi)) = 3 - \dim(\operatorname{Bild}(\Phi)) > 0,$$

also $Kern(\Phi) \neq \{0\}.$

Daher gibt es ein $v \in V$, $v \neq 0$, mit $\Phi(v) = 0$, oder auch

$$\forall i \in \{1, 2, 3\} : \varphi_i(v) = 0.$$

I.5 (4 Punkte)

In Abhängigkeit vom reellen Parameter t sei die Matrix

$$A_t = \begin{pmatrix} t+4 & 0 & 5 & 1\\ 0 & 2 & 0 & t\\ 1 & 0 & t & 1\\ 0 & 0 & 0 & 2 \end{pmatrix} \in \mathbb{R}^{4 \times 4}$$

gegeben.

- a) Bestimmen Sie alle $t \in \mathbb{R}$, für die A_t diagonalisierbar ist.
- b) Berechnen Sie eine reguläre Matrix $S \in \mathbb{R}^{4\times 4}$, für die $S^{-1}A_0S$ diagonal ist.

Lösung:

a) Das charakteristische Polynom $\det(XI_4-A_t)$ berechnet sich durch Laplace-Entwicklung erst nach der letzten Zeile und dann nach der zweiten Spalte zu

$$CP(A_t, X) = (X-2)^2 \cdot ((X-t-4)(X-t)-5) = (X-2)^2 \cdot (X^2 - (2t+4)X + t^2 + 4t - 5).$$

Die Eigenwerte außer 2 sind nach der Mitternachtsformel

$$\frac{1}{2}(2t+4\pm\sqrt{4t^2+16t+16-4t^2-16t+20}) = \frac{1}{2}(2t+4\pm\sqrt{36}),$$

also t+5 und t-1.

Die algebraische Vielfachheit von 2 ist mindestens 2. Damit A_t diagonalisierbar sein kann, muss also die geometrische Vielfachheit des Eigenwerts 2 auch mindestens 2 sein, der Rang von $A_t - 2I_4$ also höchstens 4 - 2 = 2. Rangbestimmung für diese Matrix:

$$A_z - 2I_4 = \begin{pmatrix} t+2 & 0 & 5 & 1\\ 0 & 0 & 0 & t\\ 1 & 0 & t-2 & 1\\ 0 & 0 & 0 & 0 \end{pmatrix} \leadsto \begin{pmatrix} 0 & 0 & 9-t^2 & -t-1\\ 0 & 0 & 0 & t\\ 1 & 0 & t-2 & 1\\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Hier wurde das (t+2)-fache der dritten Zeile von der ersten abgezogen. Der Rang dieser Matrix ist also 2, wenn entweder t=0 oder $t=\pm 3$ gilt. Ansonsten ist er 3. Demnach ist A_t höchstens für $t \in \{-3,0,3\}$ diagonalisierbar.

Im Fall t = 0 ist A_t tatsächlich diagonalisierbar, da die geometrische Vielfachheit des Eigenwerts 2 mit der algebraischen Vielfachheit übereinstimmt und die beiden anderen Eigenwerte 5 und -1 algebraisch und damit auch geometrisch einfach sind.

Im Fall $t=\pm 3$ ist 2 ein algebraisch dreifacher Eigenwert, während nach obiger Rangberechnung die geometrische Vielfachheit von 2 nur 2 ist: $A_{\pm 3}$ ist nicht diagonalisierbar.

Also ist A_t genau im Fall t = 0 diagonalisierbar.

b) Es sei t = 0.

Eine Basis des Eigenraums von A_0 zum Eigenwert 2 besteht zum Beispiel aus den Vektoren

$$b_1 := \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, b_2 := \begin{pmatrix} -7 \\ 0 \\ 1 \\ 9 \end{pmatrix},$$

wie sich durch Lösung des homogenen LGS $(A_0 - 2I_4) \cdot v = 0$ ergibt.

Analog ergeben sich die Vektoren

$$b_3 := \begin{pmatrix} 5 \\ 0 \\ 1 \\ 0 \end{pmatrix} \text{ und } b_4 := \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix}$$

als Eigenvektoren zu den Eigenwerten 5 und -1.

Daher ist $\{b_1, b_2, b_3, b_4\}$ eine Basis aus Eigenvektoren. Die Matrix $S := (b_1, b_2, b_3, b_4)$ ist regulär und erfüllt

$$S^{-1}A_0S = \text{diag}(2, 2, 5, -1).$$

I.6 (4 Punkte)

Es sei $\alpha \in \mathbb{R}$ und $A = (a_{ij})$ in $\mathbb{R}^{n \times n}$ durch

$$a_{ij} = \begin{cases} \alpha & \text{falls } |i - j| = 1, \\ 0 & \text{sonst} \end{cases}$$

gegeben.

Berechnen Sie det(A).

Lösung:

Die Einträge der Matrix A sind 0 außer in den beiden Nebendiagonalen, wo der Eintrag α steht. Damit sieht A also so aus:

$$A = \begin{pmatrix} 0 & \alpha & 0 & 0 & \dots & 0 \\ \alpha & 0 & \alpha & 0 & \ddots & 0 \\ 0 & \alpha & 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \alpha & 0 & \alpha \\ 0 & \dots & 0 & 0 & \alpha & 0 \end{pmatrix}$$

Wir berechnen für $n \in \{0, 1, 2, 3\}$ die Determinante von A und erhalten in dieser Reihenfolge die Werte $1, 0, -\alpha^2, 0$.

Nun sei $n \geq 2$. Dann ergibt sich die Determinante von A durch Entwicklung nach der letzten Zeile als

$$\det(A) = -\alpha \cdot \det\left(\begin{pmatrix} \tilde{A} & & 0\\ \tilde{A} & & \vdots\\ & & 0\\ \hline 0 & \dots & 0 & \alpha & \alpha \end{pmatrix}\right) = -\alpha^2 \det(\tilde{A}),$$

wobei $\tilde{A} \in \mathbb{R}^{(n-2)\times (n-2)}$ genauso gebildet ist wie A und beim zweiten Gleichheitszeichen nach der letzten Spalte entwickelt wird..

Wir können also rekursiv die Determinante von A auf die Fälle n=0 oder n=1 zurückführen und erhalten

$$\det(A) = \begin{cases} (-\alpha^2)^k & \text{, falls } n = 2k, \ k \in \mathbb{N}, \\ 0 & \text{, falls } n \text{ ungerade.} \end{cases}$$

II.1 (4 Punkte)

Es seien V ein n-dimensionaler komplexer Vektorraum und $\Phi:V\longrightarrow V$ eine lineare Abbildung.

- a) Zeigen Sie, dass V die direkte Summe der Untervektorräume Kern (Φ^n) und Bild (Φ^n) ist.
- b) Geben Sie ein Beispiel dafür an, dass V im Allgemeinen nicht die direkte Summe von $\operatorname{Kern}(\Phi)$ und $\operatorname{Bild}(\Phi)$ ist.

Lösung:

a) Da Φ^n ein Endomorphismus von V ist, gilt nach der Dimensionsformel

$$\dim V = \dim \operatorname{Kern}(\Phi^n) + \dim \operatorname{Bild}(\Phi^n).$$

Um die Behauptung zu zeigen genügt es also, die Direktheit der Summe zu zeigen, denn daraus folgt dann bekanntlich

$$\dim(\operatorname{Bild}(\Phi^n) + \operatorname{Kern}(\Phi^n)) = \dim(V),$$

und das zeigt

$$Bild(\Phi^n) + Kern(\Phi^n) = V,$$

weil die linke Seite in der rechten enthalten ist und dieselbe Dimension hat.

Die Direktheit der Summe bedeutet hier (zwei Summanden):

$$\operatorname{Kern}(\Phi^n) \cap \operatorname{Bild}(\Phi^n) = \{0\}.$$

Wir nützen aus, dass laut Vorlesung Kern (Φ^n) der Hauptraum von Φ zu 0 ist. Das heißt:

$$\operatorname{Kern}(\Phi^n) = \{ v \in V \mid \exists k \in \mathbb{N} : \Phi^k(v) = 0 \}.$$

Wenn nun v im Durchschnitt $\operatorname{Kern}(\Phi^n) \cap \operatorname{Bild}(\Phi^n)$ liegt, so gibt es ein $w \in V$ mit $\Phi^n(w) = v$, und wir haben noch dazu $\Phi^n(v) = 0$. Das impliziert $\Phi^{2n}(w) = 0$. Also liegt w im Hauptraum zu 0, was nach dem eben erinnerten der Kern von Φ^n ist:

$$v = \Phi^n(w) = 0.$$

Das zeigt die Direktheit der Summe und damit nach oben Gesagtem alles, was behauptet war.

b) Für den Endomorphismus Φ von \mathbb{C}^2 , der durch

$$\Phi(\binom{x}{y}) := \binom{y}{0}$$

gegeben ist, gilt:

$$\operatorname{Kern}(\Phi) = \mathbb{C} \cdot e_1 = \operatorname{Bild}(\Phi).$$

Hierbei ist e_1 der erste Vektor der Standardbasis. Das zeigt schon, dass die Summe nicht direkt sein kann.

II.2 (4 Punkte)

Es sei

$$F = \begin{pmatrix} 3 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \in \mathbb{R}^{3 \times 3}.$$

Auf $V = \mathbb{R}^3$ wird durch die Formel

$$\forall v, w \in V : \langle v, w \rangle := v^{\top} \cdot F \cdot w$$

eine symmetrische Bilinearform $\langle \cdot, \cdot \rangle$ festgelegt.

- a) Zeigen Sie, dass $\langle \cdot, \cdot \rangle$ ein Skalarprodukt auf V ist.
- b) Normieren Sie $e_1 = (1,0,0)^{\top}$ bezüglich $\langle \cdot, \cdot \rangle$ und ergänzen Sie den so entstandenen Vektor zu einer Orthonormalbasis von V bezüglich $\langle \cdot, \cdot \rangle$.
- c) Bestimmen Sie den bezüglich $\langle \cdot, \cdot \rangle$ orthogonalen Komplementärraum zu dem von $(0,1,2)^{\top}$ und $(1,-2,-3)^{\top}$ erzeugten Untervektorraum von V.

Lösung:

a) Dass es sich um eine symmetrische Bilinearform handelt, gilt laut Aufgabenstellung. Nur die Positivität ist nachzuweisen.

Um diese einzusehen, verwenden wir das Hurwitz-Kriterium für die Matrix F, denn diese ist die Fundamentalmatrix für die Bilinearform $\langle \cdot, \cdot \rangle$ bezüglich der Standardbasis von V. Die Hauptminoren von F sind alle positiv:

$$\det((3)) = 3 > 0, \ \det(\begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix}) = 5 > 0, \ \det(F) = 5 > 0$$

Damit ist F positiv definit und $\langle \cdot, \cdot \rangle$ ein Skalarprodukt.

b) Die Norm von e_1 ist $\sqrt{3}$, also $b_1 := \frac{1}{\sqrt{3}}e_1$ der normierte Vektor zu e_1 . Wir verwenden das Schmidt'sche Orthogonalisierungsverfahren, um aus der Standardbasis $\{e_1, e_2, e_3\}$ eine ONB $\{b_1, b_2, b_3\}$ zu gewinnen. b_1 liegt schon fest. Als nächstes berechnen wir

$$\widetilde{b_2} := e_2 - \frac{\langle e_1, e_2 \rangle}{\langle e_1, e_1 \rangle} \cdot e_1 = e_2 - \frac{1}{3}e_1.$$

Dieser Vektor hat Norm $\sqrt{\widetilde{b_2}^{\top} F \widetilde{b_2}} = \sqrt{\frac{1}{3} - 2 \cdot \frac{1}{3} + 2} = \sqrt{5/3}$. Wir setzen also

$$b_2 := \sqrt{3/5} \cdot \widetilde{b_2}.$$

 e_3 steht schon auf b_1 und b_2 senkrecht und hat Länge 1, wir können also

$$b_3 := e_3$$

wählen, und haben damit eine ONB gefunden, die b_1 enthält.

c) Ein Vektor $v=(x,y,z)^{\top}\in V$ steht genau dann auf den beiden angegebenen Erzeugern senkrecht, wenn

$$(0,1,2) \cdot F \cdot v = (1,-2,-3) \cdot F \cdot v = 0.$$

Konkreter heißt das

$$(1,2,2) \cdot v = (1,-3,-3) \cdot v = 0,$$

und das bedeutet x=0,y=-z. Damit ist der gesuchte orthogonale Komplementärraum genau

$$\{(x, y, z)^{\top} \in \mathbb{R}^3 \mid x = 0, y = -z\}.$$

II.3 (4 Punkte)

Es seien V ein endlichdimensionaler euklidischer Vektorraum und Φ, Ψ zwei selbstadjungierte Endomorphismen von V.

Zeigen Sie:

- a) $\Phi \circ \Psi$ ist selbstadjungiert $\iff \Phi \circ \Psi = \Psi \circ \Phi$.
- b) Ist $\Phi \circ \Psi$ selbstadjungiert, so besitzt jeder Eigenraum von Φ eine Basis, die aus Eigenvektoren von Ψ besteht.
- c) Ist $\Phi \circ \Psi$ selbstadjungiert, so ist jeder Eigenwert von $\Phi \circ \Psi$ ein Produkt eines Eigenwerts von Φ und eines Eigenwerts von Ψ .

Lösung:

a) Da Φ und Ψ selbstadjungiert sind, gilt für alle $v, w \in V$:

$$\langle \Phi \circ \Psi(v), w \rangle = \langle \Phi(\Psi(v)), w \rangle = \langle \Psi(v), \Phi(w) \rangle = \langle v, \Psi(\Phi(w)) \rangle = \langle v, \Psi \circ \Phi(w) \rangle.$$

Damit ist $\Psi \circ \Phi$ der zu $\Phi \circ \Psi$ adjungierte Endomorphismus. Da $\Phi \circ \Psi$ definitionsgemäß genau dann selbstadjungiert ist, wenn es mit seinem adjungierten übereinstimmt, folgt die Behauptung.

b) Wenn $\Phi \circ \Psi$ selbstadjungiert ist, dann gilt nach a) $\Phi \circ \Psi = \Psi \circ \Phi$.

Es sei λ ein Eigenwert von Φ und $v\in \mathrm{Eig}(\Phi,\lambda)$ im zugehörigen Eigenraum. Dann gilt

$$\Phi(\Psi(v)) = \Psi(\Phi(v)) = \Psi(\lambda v) = \lambda \Psi(v).$$

und demnach ist auch $\Psi(v) \in \text{Eig}(\Phi, \lambda)$.

Also ist dieser Eigenraum ein Ψ -invarianter Untervektorraum. Die Einschränkung von Ψ auf diesen Vektorraum ist dann immer noch selbstadjungiert (bezüglich des auf den Eigenraum eingeschränkten Skalarprodukts), und daher gibt es nach dem Spektralsatz für selbstadjungierte Endomorphismen eine Basis von Eig (Φ, λ) , die aus Eigenvektoren von Ψ besteht.

c) Es sei v ein gemeinsamer Eigenvektor für Φ und Ψ , also ein Vektor $\neq 0$, für den es $\lambda, \mu \in \mathbb{R}$ gibt mit $\Phi(v) = \lambda v, \Psi(v) = \mu v$.

Dann gilt
$$\Phi \circ \Psi(v) = \Phi(\mu v) = \mu \Phi(v) = \lambda \mu v$$
.

Da es nach b) eine Basis von V aus gemeinsamen Eigenvektoren von Φ und Ψ gibt (V ist nach dem Spektralsatz die direkte Summe der Eigenräume von Φ , da Φ selbstadjungiert ist), ist jeder Eigenwert von $\Phi \circ \Psi$ ein Produkt von Eigenwerten von Φ und von Ψ .

II.4 (4 Punkte)

Zeigen Sie, dass für

$$A = \frac{1}{4} \begin{pmatrix} \sqrt{3} + 2 & \sqrt{3} - 2 & -\sqrt{2} \\ \sqrt{3} - 2 & \sqrt{3} + 2 & -\sqrt{2} \\ \sqrt{2} & \sqrt{2} & 2\sqrt{3} \end{pmatrix} \in \mathbb{R}^{3 \times 3}$$

die Abbildung $\Phi: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$, $x \mapsto A \cdot x$, eine Isometrie des euklidischen Standardraums \mathbb{R}^3 ist.

Bestimmen Sie die euklidische Normalform B von A sowie eine orthogonale Matrix $S \in O(3)$ mit der Eigenschaft $B = S^{-1}AS$.

Lösung:

Da A die Abbildungsmatrix von Φ bezüglich einer Orthonormalbasis von \mathbb{R}^3 ist, ist Φ genau dann eine Isometrie, wenn $A^{\top} \cdot A = I_3$ die Einheitsmatrix ist, was auch der Fall ist.

Wäre -1 ein Eigenwert von Φ , so wäre das ein Diagonaleintrag in der Isometrienormalform von A. Die beiden anderen Diagonaleinträge müssten sich also zu $2+\sqrt{3}$ addieren, denn die Spur von A ist $1+\sqrt{3}$. Das geht aber nicht, denn die Beträge der Einträge der Normalform sind ≤ 1 . Deshalb ist -1 kein Eigenwert von Φ . Es ist also 1 ein Eigenwert und det A=1 (das hätte man natürlich auch so nachrechnen können...).

Damit finden wir (wegen der bekannten Spur) die Isometrienormalform

$$B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ 0 & \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}.$$

Aus

$$A - I_3 = \frac{1}{4} \begin{pmatrix} \sqrt{3} - 2 & \sqrt{3} - 2 & -\sqrt{2} \\ \sqrt{3} - 2 & \sqrt{3} - 2 & -\sqrt{2} \\ \sqrt{2} & \sqrt{2} & 2\sqrt{3} - 4 \end{pmatrix} \in \mathbb{R}^{3 \times 3}$$

ergibt sich $b_1 := \frac{\sqrt{2}}{2} \cdot (1, -1, 0)^{\top}$ als ein normierter Eigenvektor zum Eigenwert 1 von Φ . Im Orthogonalraum dazu findet sich der dritte Standardbasisvektor $b_2 := e_3$, und

$$b_3 := 2 \cdot (Ab_2 - \frac{\sqrt{3}}{2}b_2) = \frac{\sqrt{2}}{2}(1, 1, 0)^{\top}$$

steht auf b_1, b_2 senkrecht und erfüllt nach Konstruktion

$$Ab_2 = \frac{\sqrt{3}}{2}b_2 + \frac{1}{2}b_3.$$

Da $\{b_1, b_2, b_3\}$ eine ONB ist, ist

$$S = \begin{pmatrix} \frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \\ 0 & 1 & 0 \end{pmatrix}$$

eine mögliche Wahl für S.

II.5 (4 Punkte)

Es seien V ein endlichdimensionaler euklidischer Vektorraum mit Skalarprodukt $\langle \cdot, \cdot \rangle$ und Φ ein Endomorphismus von V mit der Eigenschaft

$$\forall v \in V : \langle v, \Phi(v) \rangle = 0.$$

Zeigen Sie:

- a) Für jeden zweidimensionalen Untervektorraum U von V mit $\Phi(U) \subseteq U$ und für jede Orthonormalbasis $\{b_1, b_2\}$ von U gibt es eine reelle Zahl a, sodass $\Phi(b_1) = ab_2$ und $\Phi(b_2) = -ab_1$.
- b) In der Situation aus Teil a) ist der Betrag von a von der Wahl einer Orthonormalbasis in U unabhängig.
- c) $-\Phi$ ist der zu Φ adjungierte Endomorphismus, und Φ ist normal.

Lösung:

a) Da $\Phi(b_1)$ auf b_1 senkrecht steht und auch in U liegt, muss es ein Vielfaches von b_2 sein. Genauso ist $\Phi(b_2)$ ein Vielfaches von b_1 . Es gibt also Zahlen a und \tilde{a} mit

$$\Phi(b_1) = ab_2, \ \Phi(b_2) = \tilde{a}b_1.$$

Zu zeigen ist noch $\tilde{a}=-a$. Das folgt aber daraus, dass nach Voraussetzung auch $\Phi(b_1+b_2)=ab_2+\tilde{a}b_1$ auf b_1+b_2 senkrecht steht:

$$0 \stackrel{!}{=} \langle ab_2 + \tilde{a}b_1, b_1 + b_2 \rangle = a + \tilde{a}.$$

Die letzte Gleichheit folgt daraus, dass b_1, b_2 normiert und orthogonal sind, und aus der Bilinearität des Skalarprodukts.

b) Die Abbildungsmatrix der Einschränkung von Φ auf U bezüglich $\{b_1, b_2\}$ ist

$$\left(\begin{array}{cc} 0 & -a \\ a & 0 \end{array}\right).$$

Daher hat dieser Endomorphismus von U Determinante a^2 . Da die Determinante nicht von der Wahl einer Basis abhängt, ist auch der Betrag von a von der Basiswahl unabhängig.

(Das Vorzeichen ändert sich bei geänderter Reihenfolge der Basisvektoren, aber danach war nicht gefragt...).

c) Es seien $v, w \in V$ Dann gilt

$$\begin{array}{ll} 0 = & \langle \Phi(v+w), v+w \rangle = \langle \Phi(v), v \rangle + \langle \Phi(v), w \rangle + \langle \Phi(w), v \rangle + \langle \Phi(w), w \rangle \\ = & \langle \Phi(v), w \rangle + \langle \Phi(w), v \rangle, \end{array}$$

da v und w auf ihren Bildern unter Φ senkrecht stehen. Wegen der Symmetrie des Skalarprodukts haben wir dann

$$\forall v,w \in V: \ \langle \Phi(v),w \rangle = -\langle \Phi(w),v \rangle = -\langle v,\Phi(w) \rangle = \langle v,-\Phi(w) \rangle$$

und daher ist $\Phi^* = -\Phi$ (nach Definition der adjungierten Abbildung).

Klar folgt hieraus $\Phi^* \circ \Phi = \Phi \circ \Phi^*$, und das Erfülltsein dieser Gleichung ist das definierende Kriterium der Normalität von Φ .

II.6 (4 Punkte)

 $V=\mathbb{R}^3$ sei mit dem Standardskalarprodukt ausgestattet. Mit e_1,e_2,e_3 seien die Vektoren der Standardbasis bezeichnet.

In V seien die Geraden g und h durch

$$g = \mathbb{R} \cdot e_1 = \{ te_1 \mid t \in \mathbb{R} \}$$

$$h = e_3 + \mathbb{R} \cdot (e_1 + e_2) = \{ e_3 + s(e_1 + e_2) \mid s \in \mathbb{R} \}$$

gegeben.

Schließlich bezeichnen wir für $x \in V$ mit d(x,g) und d(x,h) die Abstände von x zu den Geraden g und h.

Zeigen Sie, dass

$$Q = \{x \in V \mid d(x, q) = d(x, h)\}$$

eine Quadrik in V ist und bestimmen Sie deren affine Normalform.

Lösung:

Zunächst berechnen wir die Abstände vom Punkt $x=(x_1,x_2,x_3)^{\top}$ zu den Geraden g und h.

Es gilt

$$d(x,g) = \min\{\sqrt{(x_1 - t)^2 + x_2^2 + x_3^2} | t \in \mathbb{R}\} = \sqrt{x_2^2 + x_3^2}$$

und

$$d(x,h) = \min\{\sqrt{(x_1 - s)^2 + (x_2 - s)^2 + (x_3 - 1)^2} \mid s \in \mathbb{R}\} = \sqrt{\frac{(x_1 - x_2)^2}{2} + (x_3 - 1)^2}$$

Letzteres sieht man zum Beispiel daran, dass für den Wert s, bei dem das Minimum angenommen wird, der Vektor $(x_1 - s, x_2 - s, x_3 - 1)^{\top}$ auf dem Richtungsvektor $(1, 1, 0)^{\top}$ von h senkrecht stehen muss: $s = (x_1 + x_2)/2$.

Da die Abstände niemals negativ werden, ist die Gleichung d(x,g) = d(x,h) gleichwertig mit der Gleichung $2d(x,g)^2 = 2d(x,h)^2$. Mit den eben berechneten Abständen ist das

$$2x_2^2 + 2x_3^2 = x_1^2 - 2x_1x_2 + x_2^2 + 2x_3^2 - 4x_3 + 2,$$

also gilt

$$Q = \{x \in \mathbb{R}^3 \mid x_1^2 - 2x_1x_2 - x_2^2 - 4x_3 + 2 = 0\},\$$

und das ist eine Quadrik.

Führt man hier neue Koordinaten $u = \sqrt{2}x_1$, $v = x_1 + x_2$, $w = 4x_3 - 2$ ein, so wird die Quadrik Q durch die Gleichung

$$u^2 - v^2 - w = 0$$

beschrieben. Das ist schon die affine Normalform, es handelt sich um ein hyperbolisches Paraboloid.