## SVM

### Support Vector Machines

#### **Decision Boundaries**



# Regla de decisión



### Ancho del Canal



#### Kernels





$$z = x^2 + y^2$$



## Soft-Margin



# Ejercicios

| 1.13. | El espacio de hipótesis de una máquina de vectores de soporte esta dado por el set de hiperplanos que potencialmente puedan separar los datos de entrenamiento. |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |                                                                                                                                                                 |
|       |                                                                                                                                                                 |
|       |                                                                                                                                                                 |
|       |                                                                                                                                                                 |

f) Un SVM puede tener como mínimo dos vectores de soporte. (0.75 ptos.)

| 1.16. | En una máquina de vectores soporte se puede evitar, o aminorar, problemas de sobreajuste aumentando el valor de la constante asociada a la penalización dada a las variables de slack $\xi_k$ en la función de pérdida. |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|



h) Un Soft-margin SVM no puede clasificar perfectamente el problema presentado en la siguiente figura (0.75 ptos.):



**b.** (8 pts) En la siguiente figura indique el valor exacto o un rango posible de valores para las variables de slack asociadas a los 6 puntos  $P_1$  a  $P_6$ , destacados con un doble círculo.

