DEMONSTRAÇÃO CONDICIONAL E DEMONSTRAÇÃO INDIRETA

Lógica Matemática

REGRA DE EXPORTAÇÃO-IMPORTAÇÃO

LEMBRETE

x 10. Exportação-Importação (EI): $p \land q \rightarrow r \Leftrightarrow p \rightarrow (q \rightarrow r)$

DEFINIÇÃO

- * A demonstração condicional é outro método útil para demonstrar a validade de um argumento. No entanto, ele somente pode ser usado se a conclusão do argumento tem a forma condicional.
- X Considere o seguinte argumento, cuja conclusão se encontra na forma condicional:

$$P_1, P_2, \dots, P_n \vdash (A \rightarrow B)$$

X Sabe-se que este argumento é válido, se e somente se, a sua condicional associada:

$$P_1 \wedge P_2 \wedge \dots \wedge P_n \rightarrow (A \rightarrow B)$$

- **X** É uma tautologia.
- X Pela regra de equivalência Exportação-Importação (de fato importação) a condicional é equivalente à seguinte:

$$P_1 \wedge P_2 \wedge \dots \wedge P_n \wedge A \rightarrow B$$

DEFINIÇÃO

X Com isso, qualquer argumento, cuja conclusão se encontra na forma condicional:

$$P_1, P_2, \ldots, P_n \vdash (A \rightarrow B)$$

X Será válido, se e somente se, o argumento associado, pela regra de importação também é válido:

$$P_1, P_2, \ldots, P_n, A \vdash B$$

X Em resumo, a demonstração condicional (DC) estabelece que para demonstrar a validade de um argumento, cuja conclusão tem a forma condicional, $A \rightarrow B$, basta introduzir A como premissa adicional e deduzir B.

EXEMPLO 1

1) Demonstrar a validade do argumento: X

$$p \lor (q \rightarrow r), \quad \neg r \vdash q \rightarrow p$$

X Demonstração: Pela regra DC, demonstrar a validade do argumento acima equivale a demonstrar a validade do argumento:

$$p \lor (q \rightarrow r), \quad \neg r, \quad q \vdash p$$

Logo:

- 1. $p \lor (q \rightarrow r)$ Por premissa
- 7
 Por premissa
 q
 Por premissa adicional

4.
$$p \lor (\neg q \lor r)$$
 De (1) por EQ. COND

5.
$$(p \lor \neg q) \lor r$$
 De (4) por EQ. ASSOC

6.
$$(p \lor \neg q)$$
 De (5) e (2) por SD

7.
$$\neg \neg q$$
 De (3) por DN

7.
$$\neg \neg q$$
 De (3) por DN
8. p De (6) e (7) por SD

EXEMPLO 2

2) Demonstrar a validade do argumento:

$$\neg p \rightarrow \neg q \lor r$$
, $s \lor (r \rightarrow t)$, $\neg p \lor s$, $\neg s \vdash q \rightarrow t$

X Demonstração: Pela regra DC, demonstrar a validade do argumento acima equivale a demonstrar a validade do argumento:

$$\neg p \rightarrow \neg q \lor r$$
, $s \lor (r \rightarrow t)$, $\neg p \lor s$, $\neg s$, $q \vdash t$

- 1. $\neg p \rightarrow \neg q \lor r$ Por premissa
- 2. $s \lor (r \rightarrow t)$ Por premissa
- 3. $\neg p \lor s$ Por premissa
- 4. $\neg s$ Por premissa
- 5. q Por premissa Adicional

- 6. $(r \rightarrow t)$ De (2) e (4) por SD
- 7. $\neg p$ De (3) e (4) por SD
- 8. $\neg q \lor r$ De (1) e (7) por MP
- 9. r De (8) e (5) por SD
- 10. t De (6) e (9) por MP

Exemplo 3

X 3) Demonstrar a validade do argumento:

$$\neg p \rightarrow (q \rightarrow r)$$
, s $\lor (r \rightarrow t)$, $p \rightarrow s \vdash \neg s \rightarrow (q \rightarrow t)$

Demonstração: Pela regra DC, demonstrar a validade do argumento acima equivale a demonstrar a validade do argumento:

$$\neg p \rightarrow (q \rightarrow r)$$
, s $\lor (r \rightarrow t)$, $p \rightarrow s$, $\neg s \vdash (q \rightarrow t)$

X Aplicando novamente a regra DC, temos que demonstrar o argumento:

$$\neg p \rightarrow (q \rightarrow r)$$
, s $\vee (r \rightarrow t)$, $p \rightarrow s$, $\neg s$, $q \vdash t$

1.
$$\neg p \rightarrow (q \rightarrow r)$$
 Por premissa

2.
$$s \lor (r \rightarrow t)$$
 Por premissa

3.
$$p \rightarrow s$$
 Por premissa

4.
$$\neg s$$
 Por premissa adicional

Exemplo 3

1.	$\neg p \rightarrow (q \rightarrow r)$	Por premissa
2.	$s \lor (r \rightarrow t)$	Por premissa
3.	$p \rightarrow s$	Por premissa
4.	$\neg s$	Por premissa adicional
5.	q	Por premissa adicional
-		
6.	$\neg p$	De (3) e (4) por MT
6. 7.	$ \begin{array}{c} $	De (3) e (4) por MT De (1) e (6) por MP
7.	$q \rightarrow r$	De (1) e (6) por MP

EXEMPLO 4

X 4) Demonstrar a validade do argumento:

$$p \to q$$
, $q \leftrightarrow s$, $t \lor (r \land \neg s) \vdash (p \to t)$

X Demonstração: Pela regra DC, demonstrar a validade do argumento acima equivale a demonstrar a validade do argumento:

```
p \rightarrow q, q \leftrightarrow s, t \lor (r \land \neg s), p \vdash t

1. p \rightarrow q Por premissa
2. q \leftrightarrow s Por premissa
3. t \lor (r \land \neg s) Por premissa
4. p Por premissa adicional
```

```
5. q De (1) e (4) por MP
6. (q \rightarrow s) \land (s \rightarrow q) De (2) por EQ. BICOND
7. (q \rightarrow s) De (6) por SIMP
8. s De (7) e (5) por MP
9. (t \lor r) \land (t \lor \neg s) De (3) por EQ. DIST
10. (t \lor \neg s) De (9) por SIMP
11. t De (8) e (10) por SD
```

EXEMPLO 5

X 5) Demonstrar a validade do argumento:

$$\neg p \rightarrow \neg q$$
, $(r \rightarrow s)$, $(\neg p \land t) \lor (r \land u) \vdash q \rightarrow s$

X Demonstração: Pela regra DC, demonstrar a validade do argumento acima equivale a demonstrar a validade do argumento:

$$\neg p \rightarrow \neg q$$
, $(r \rightarrow s)$, $(\neg p \land t) \lor (r \land u)$, $q \vdash s$

X Logo:

1. $\neg p \rightarrow \neg q$ Por premissa 2. $r \rightarrow s$ Por premissa

3. $(\neg p \land t) \lor (r \land u)$ Por premissa

4. q Por premissa adicional

EXEMPLO 6

x 6) Demonstrar a validade do argumento:

1.
$$(y = 4 \rightarrow x > y) \land x > z$$

2.
$$x > y \lor z > y \rightarrow y < 4 \land y \neq 3$$

3.
$$y = 2 \rightarrow z > y$$

$$\therefore y = 2 \lor y = 4 \rightarrow y < 4 \lor y > 3$$

X Demonstração: Pela regra DC, devemos demonstrar:

1.
$$(y = 4 \rightarrow x > y) \land x > z$$

2.
$$x > y \lor z > y \rightarrow y < 4 \land y \neq 3$$

3.
$$y = 2 \rightarrow z > y$$

4.
$$y = 2 \lor y = 4$$

Por Premissa

Por Premissa

Por Premissa

Por Premissa adicional

 $\therefore \quad y < 4 \lor y > 3$

EXEMPLO 6

1.
$$(y = 4 \rightarrow x > y) \land x > z$$

2.
$$x > y \lor z > y \rightarrow y < 4 \land y \neq 3$$

3.
$$y = 2 \rightarrow z > y$$

4.
$$y = 2 \lor y = 4$$

Por Premissa

Por Premissa

Por Premissa

Por Premissa adicional

$$\therefore \quad y < 4 \lor y > 3$$

Neste caso, devemos converter as expressões matemáticas em proposições utilizando símbolos proposicionais.

$$p: y = 4$$

t:
$$y < 4$$

$$p: y = 4$$
 $r: x > z$ $t: y < 4$ $w: y = 2$

$$q: x > y$$
 $s: z > y$ $u: y = 3$ $y: y > 3$

s:
$$z > y$$

$$u: y = 3$$

y:
$$y > 3$$

Substituindo temos:

1.
$$(p \rightarrow q) \wedge r$$

2.
$$q \lor s \rightarrow t \land \neg u$$

3.
$$w \rightarrow s$$

4.
$$w \lor p$$

$$\therefore$$
 $t \lor y$

DEFINIÇÃO

X A demonstração indireta (ou demonstração pelo absurdo) é outro método empregado para demonstrar a validade de um dado argumento:

$$P_1, P_2, \ldots, P_n \vdash Q$$

- X Consiste em admitir a negação $\neg Q$ (da conclusão Q) como verdadeira e a partir dela e das premissas P_1 , P_2 , ..., P_n deduzir uma contradição qualquer C.
- X A demonstração indireta procura demostrar que o seguinte argumento é válido:

$$P_1, P_2, \ldots, P_n, \neg Q \vdash C$$

X Observe que pela demonstração condicional (DC), se o argumento anterior é válido temos que também é válido:

$$P_1, P_2, \dots, P_n \vdash \neg Q \rightarrow C$$

- **X** Pela regras de equivalência temos que: $\neg Q \rightarrow C \Leftrightarrow \neg \neg Q \lor C \Leftrightarrow Q \lor C \Leftrightarrow Q$
- **X** Com isso, também é válido: $P_1, P_2, \dots, P_n \vdash Q$

DEFINIÇÃO

X Com isso, qualquer argumento:

$$P_1, P_2, \ldots, P_n \vdash Q$$

x será válido, se e somente se, o seguinte argumento associado a demonstração indireta é válido:

$$P_1, P_2, \ldots, P_n, \neg Q \vdash C$$

- X onde C representa uma contradição qualquer.
- X Em resumo, a demonstração indireta (DI) estabelece que para demonstrar a validade de um argumento cuja conclusão é Q, basta introduzir $\neg Q$ como premissa adicional e deduzir uma contradição qualquer C.

EXEMPLO 1

X 1) Demonstrar a validade do argumento:

$$p \to \neg q$$
, $r \to q \vdash \neg (p \land r)$

X Demonstração: Pela regra DI, demonstrar a validade do argumento acima equivale a demonstrar a validade do argumento, onde $\mathcal C$ é qualquer contradição:

$$p \rightarrow \neg q$$
, $r \rightarrow q$, $p \wedge r \vdash C$

X Logo:

- 1. $p \rightarrow \neg q$ Por premissa
- 2. $r \rightarrow q$ Por premissa
- 3. $p \wedge r$ Por premissa adicional
- 4. p De (3) por SIMP
- 5. r De (3) por SIMP
- 6. $\neg q$ De (1) e (4) por MP
- 7. q De (2) e (5) por MP
- 8. $\neg q \land q$ De (6) e (7) por CONJ

Exemplo 2

2) Demonstrar a validade do argumento: X

$$\neg p \rightarrow q$$
, $\neg q \lor r$, $\neg r \vdash p \lor s$

Demonstração: Pela regra DI, demonstrar a validade do argumento acima equivale a demonstrar a validade do argumento, onde C é qualquer contradição:

$$\neg p \rightarrow q$$
, $\neg q \lor r$, $\neg r$, $\neg (p \lor s) \vdash C$

Logo:

- 1. $\neg p \rightarrow q$ Por premissa
- 2. $\neg q \lor r$ Por premissa 3. $\neg r$ Por premissa
- 4. $\neg (p \lor s)$ Por premissa adicional

5. De (4) por DM $\neg p \land \neg s$

- **6**. ¬*p* De (5) por SIMP
- 7. q De (1) e (6) por MP
- r De (2) e (7) por SD
- De (3) e (8) por CONJ $\neg r \wedge r$

Exemplo 3

X 3) Demonstrar a validade do argumento:

$$p \rightarrow q \lor r$$
, $\neg r \vdash p \rightarrow q$

X Demonstração: Pela regra DC, demonstrar a validade do argumento acima equivale a demonstrar a validade do argumento:

$$p \rightarrow q \vee r$$
, $\neg r$, $p \vdash q$

X Pela regra DI, demonstrar a validade do argumento acima equivale a demonstrar a validade do argumento, onde $\mathcal C$ é qualquer contradição:

X Logo:

$$p \rightarrow q \lor r$$
, $\neg r$, p , $\neg q \vdash C$

- 1. $p \rightarrow q \vee r$ Por premissa
- 2. $\neg r$ Por premissa
- 3. Por premissa adicional
- 4. $\neg q$ Por premissa adicional

5.
$$q \vee r$$
 De (1) e (3) por MP

- 7. $\neg q \land q$ De (4) e (6) por CONJ

EXEMPLO 4

X 4) Demonstrar a validade do argumento:

$$\neg p \lor q$$
, $\neg q$, $\neg r \to s$, $\neg p \to (s \to \neg t) \vdash t \to r$

X Demonstração: Pela regra DC, demonstrar a validade do argumento acima equivale a demonstrar a validade do argumento:

$$\neg p \lor q$$
, $\neg q$, $\neg r \to s$, $\neg p \to (s \to \neg t)$, $t \vdash r$

X Pela regra DI, demonstrar a validade do argumento acima equivale a demonstrar a validade do argumento, onde C é qualquer contradição:

$$\neg p \lor q$$
, $\neg q$, $\neg r \to s$, $\neg p \to (s \to \neg t)$, t , $\neg r \vdash C$

- 1. $\neg p \lor q$ Por premissa
- 2. $\neg q$ Por premissa
- 3. $\neg r \rightarrow s$ Por premissa
- 4. $\neg p \rightarrow (s \rightarrow \neg t)$ Por premissa
- 5. t Por premissa adicional
- 6. $\neg r$ Por premissa adicional

EXEMPLO 4

X Logo:

```
1. \neg p \lor q Por premissa
```

2.
$$\neg q$$
 Por premissa

3.
$$\neg r \rightarrow s$$
 Por premissa

4.
$$\neg p \rightarrow (s \rightarrow \neg t)$$
 Por premissa

6.
$$\neg r$$
 Por premissa adicional

7.
$$\neg p$$
 De (1) e (2) por SD

8.
$$s \rightarrow \neg t$$
 De (4) e (7) por MP

9.
$$s$$
 De (3) e (6) por MP

10.
$$\neg t$$
 De (8) e (9) por MP

11.
$$t \land \neg t$$
 De (5) e (10) por CONJ

EXEMPLO 5

x 5) Demonstrar a validade do argumento:

1.
$$\neg (y \neq 1 \lor z \neq -1)$$

2. $(x < y \land x > z) \land z = -1 \rightarrow x = 0$
3. $\neg (y = 1 \lor x = 0) \lor (x < y \land x > z)$
 $x = 0$

X Demonstração: Pela regra DI, devemos demonstrar a validade do argumento onde \mathcal{C} é qualquer contradição:

1.
$$\neg(y \neq 1 \lor z \neq -1)$$
 Premissa
2. $(x < y \land x > z) \land z = -1 \rightarrow x = 0$ Premissa
3. $\neg(y = 1 \lor x = 0) \lor (x < y \land x > z)$ Premissa
4. $x \neq 0$ Premissa adicional

EXEMPLO 5

1.
$$\neg(y \neq 1 \lor z \neq -1)$$
 Premissa
2. $(x < y \land x > z) \land z = -1 \rightarrow x = 0$ Premissa
3. $\neg(y = 1 \lor x = 0) \lor (x < y \land x > z)$ Premissa
4. $x \neq 0$ Premissa adicional

X Neste caso, devemos converter as expressões matemáticas em proposições utilizando símbolos proposicionais.

$$p: y = 1$$
 $r: x < y$ $t: x = 0$
 $q: z = -1$ $s: x > z$

Substituindo temos:

1.
$$\neg(\neg p \lor \neg q)$$
 Por premissa
2. $(r \land s) \land q \rightarrow t$ Por premissa
3. $\neg(p \lor t) \lor (r \land s)$ Por premissa
4. $\neg t$ Por premissa

EXEMPLO 6

X 6) Demonstrar a validade do argumento:

1.
$$x = 1 \lor \neg(x + y = y \lor x \not> y)$$

2. $x > y \rightarrow x^2 > xy \land y = 1$
3. $x \neq 1$

$$\neg(y = 1 \rightarrow x^2 \not> xy)$$

X Demonstração: Pela regra DI, devemos demonstrar a validade do argumento onde \mathcal{C} é qualquer contradição:

1.
$$x = 1 \lor \neg(x + y = y \lor x \not> y)$$
 Premissa
2. $x > y \rightarrow x^2 > xy \land y = 1$ Premissa
3. $x \neq 1$ Premissa
4. $y = 1 \rightarrow x^2 \not> xy$ Premissa adicional

EXEMPLO 7

x 7) Demonstrar a validade do argumento:

1.
$$x < y \rightarrow xy = x$$

2. $x \neq y \land xy \neq x$
3. $x \lessdot y \lor y = 1 \rightarrow x = 2$
 $\therefore \neg(x = 2 \leftrightarrow x = y)$

X Demonstração: Pela regra DI, devemos demonstrar a validade do argumento onde C é qualquer contradição:

1.
$$x < y \rightarrow xy = x$$
 Premissa
2. $x \neq y \land xy \neq x$ Premissa
3. $x \not < y \lor y = 1 \rightarrow x = 2$ Premissa
4. $x = 2 \leftrightarrow x = y$ Premissa adicional

REFERÊNCIAS

Matemática. Capítulo 13. Demonstração Condicional e Demonstração Indireta. São Paulo. 1975. Reimpresso em 2015