Convolutional Neural Network (CNN) — Classifying Handwritten Digits

Dataset: MNIST Dataset (torchvision.datasets.MNIST)

Objective: Build and train a Convolutional Neural Network (CNN) to classify handwritten digits (0-9) from the MNIST dataset.

1. Load & Preprocess the Data

- Load the MNIST dataset.
- Normalize the images so that the pixel values are between 0 and 1 (important for neural networks).

2. Visualize the Data

- Pick any one digit (0–9) and display a few example images of that digit from the MNIST dataset.
- Optional: Display a few examples of other digits.

3. Build the CNN

- Implement a CNN with at least two convolutional layers, ReLU activation, and max pooling layers.
- Experiment with the architecture (e.g., number of layers, filter sizes) and hyperparameters (e.g., learning rate, batch size) to improve performance.
- o Use Cross Entropy Loss as the loss function and Adam as the optimizer.

4. Train the Model

- o Train the model for 10 epochs.
- After each epoch, calculate and print:
 - Training and test loss.
 - Training and test accuracy.

5. Create the Following Plots

- o Plot 1: Training and test loss vs. epochs
- Plot 2: Training and test accuracy vs. epochs
- Plot 3: Final confusion matrix (visualized as a heatmap with class labels)

Optional Extension: Improving Model Generalization with Data Augmentation

Objective: Explore how data augmentation can help your CNN generalize better by artificially expanding the training dataset with transformed images. This improves robustness to variations in input and reduces overfitting.

1. Understand the Concept of Data Augmentation

- Read about how data augmentation works and why it is useful in image classification tasks:
 - It creates new variations of training images using transformations such as rotation and shifting.
 - It helps the model learn to recognize patterns under different orientations.

2. Apply Data Augmentation to the Training Set

 Use torchvision.transforms to apply augmentations (e.g., random rotation, random translation) to the training set only.

3. Train the Model with Augmented Data

- o Retrain your CNN using the augmented training data.
- Keep the rest of your model and training configuration the same (e.g., architecture, optimizer, learning rate).

4. Compare with the Original Model

 Compare the final test accuracy and loss of the original model and the augmented model.