

CORSO DI MISURE ELETTRONICHE

a.a. 2020/2021

Docente: PROF. ING. PASQUALE DAPONTE

ELABORATO RELATIVO ALL'ESERCITAZIONE N. 2

"CURVE DI REGRESSIONE"

EFFETTUATA IN DATA 23.11.2020 DAGLI STUDENTI DEL GRUPPO N. 13 COMPOSTO DA:

BOCCHINO Daniele matr. 863000271
CROVELLA Alessio matr. 862002168
RANAURO Giuliano matr. 863002135
RICCIUTO Luigi matr. 863002184

SCOPO

Lo scopo dell'esercitazione è quello di effettuare la calibrazione di un voltmetro analogico fornendo le curve di regressione lineare, quadratica e cubica che meglio approssimano gli errori assoluti forniti dal voltmetro analogico con i valori di riferimento.

SETUP DI MISURA

DESCRIZIONE

Il circuito analizzato è formato dall'alimentatore stabilizzato **Agilent E3634A** e collegato tramite dei morsetti in parallelo al voltmetro analogico **Agilent 34401A** e allo stesso modo al multimetro digitale **Nimex CMU-38**, **classe 2.5**.

Sono state effettuate 10 misure, 5 in salita e 5 in discesa, per ognuno dei 4 campioni di tensione scelti [4 , 8 , 12 , 16] V . Ciascuna misura è stata effettuata incrementando la tensione fino al valore del campione in oggetto, [4, 8, 12, 16] V, Inoltre è stata effettuata una misura non annotata a 20 V per campionare i valori in discesa imponendo le solite 4 tensioni in ordine decrescente. Poi ripartendo da 0 V si ritorna al punto iniziale per ottenere un'altra sequenza di misure(tutto questo eseguito 5 volte).

Tutte le misure ottenute sono state trascritte nella tabella sottostante con i vari errori calcolati dalla differenza del valore letto e quello fornito dall alimentatore stabilizzato.

VALORI MISURATI IN LABORATORIO

	V = 4V		V = 8V		V = 12V		V = 16V	
N.	V.C. [V]	E.A. [V]	V.C. [V]	E.A. [V]	V.C. [V]	E.A. [V]	V.C. [V]	E.A. [V]
MISURE IN SALITA								
1	3,981445	-0,018555	7,969326	-0,030674	12,35698	0,35698	15,94696	-0,05304
2	3,981635	-0,018365	7,969488	-0,030512	12,20704	0,20704	15,94690	-0,05310
3	3,981704	-0,018296	7,969533	-0,030467	12,20721	0,20721	15,99633	-0,00367
4	4,081751	0,081751	7,969570	-0,030430	12,00797	0,00797	16,04594	0,04594
5	4,032096	0,032096	7,969587	-0,030413	11,95965	-0,04035	15,99667	-0,00333
MISURE IN DISCESA								
1	3,981723	-0,018277	7,969779	-0,030221	12,20749	0,20749	15,94725	-0,05275
2	4,032101	0,032101	7,969768	-0,030232	12,20740	0,20740	15,99662	-0,00338
3	4,032124	0,032124	7,920307	-0,079693	12,00817	0,00817	15,94708	-0,05292
4	4,032170	0,032170	8,020411	0,020411	12,10731	0,10731	15,99654	-0,00346
5	4,082005	0,082005	8,020603	0,020603	12,00845	0,00845	15,99696	-0,00304

CALCOLO DEI PARAMETRI

Una volta ottenute le misure dei valori e degli errori, sono stati inseriti nei vari grafici sull'asse delle ascisse i valori dei campioni scelti e sull'asse delle ordinate gli errori.

Fatto ciò è stato calcolata la regressione e tracciata una curva che teneva conto di quest'ultima nei grafici. La curva segue un andamento definito da equazioni di diverso tipo: 1°, 2° e 3° ordine. Per ogni tipo di equazione è stato riportato un grafico con una curva associata alle tipologie di equazioni: lineare, quadratica e cubica.

CURVA DI REGRESSIONE LINEARE

CURVA DI REGRESSIONE QUADRATICA

CURVA DI REGRESSIONE CUBICA

$$R^{2} = 1 - \frac{\sum_{i=1}^{N} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{N} (y_{i} - \hat{y}_{i})^{2}}$$
 HIGH IS BETER

$$S_{XY} = \sqrt{\frac{\sum_{i=1}^{N} (\hat{y}_i - y_i)^2}{N^{-2}}}$$
 Low is BETER

	Lineare	Quadratica	Cubica	
Sxy	0,09081🊫	0,08770	0,06168	

La curva che approssima meglio l'andamento della distribuzione è quella ottenuta dalla regressione cubica perché presenta il valore dell'errore standard della stima Sxy minore. Inoltre, l'approssimazione più accurata viene definita anche dal coefficiente di determinazione R^2 più elevato dato dalla curva di regressione cubica.

CLASSE DELLO STRUMENTO

La classe C dello strumento si ricava dividendo il valore massimo degli errori in valore assoluto C il valore di fondo scala del voltmetro analogico n moltiplicato per 100 e approssimando per eccesso il valore a classi di :

(0.05)-(0.1)-(0.2)-(0.3)-(0.5)-(1)-(1.5)-(2)-(2.5)-(3)-(5)

$$C = \frac{0.35698}{30V} \cdot 100 = 1.18993$$

$$C = \frac{|E|_{max}}{n} \cdot 100 = 1,189933333 \Rightarrow approssimazione \Rightarrow 1.5;$$

dove:

 $|E|_{max} = 0$, $356980 \ V$ è il valore massimo degli errori in valore assoluto, e n=30 è il valore di fondo scala del voltmetro.

Classe dello strumento	1,5

Massimo Errore
$$\mathcal{E} = \frac{\text{Classe} \cdot \left| E_{\text{MAX}}[V] \right|}{400} = \frac{1.5 \cdot 0.356980}{100} = \pm 5.3547 \times 10^{-3}$$

$$= 0 \text{ Incertezza tipo} \quad \mathcal{M} = \frac{\mathcal{E}}{\sqrt{3}} = 3.09154 \times 10^{-3}$$