

Seattle : Consommation et émissions des bâtiments NON destinés à l'habitation.

Projet 3 Sofia Velasco

Analyse exploratoire

A. Caractéristiques générales du jeu de données et traitement initial

2 années (2015 et 2016) → 2 dataset :

	2015	2016
Colonnes (Variables)	47	46
Lignes	3340	3376

- Homogénéisation des colonnes → Colonnes différentes entre les 2 années :
 - Split de la colonne « Location » (2015)
 - Coïncidence des noms des colonnes
 - Mise en ordre alphabétique
 - Coïncidence des types associés à chaque colonnes
- Regroupement des données dans un seul dataset → chaque bâtiment de chaque année est une entité nouvelle et indépendante:
 - 46 Colonnes, 6716 Lignes.

B. Nettoyage des données

- Comprendre les variables:
 - suffixes WN : "Weather Normalized" → la météo n'est pas à considérer X
 - GHG → CO2 **√**
 - GFA → Surface totale au sol ✓
 - EUI → Energie consommée par pied carré par an (kBtu/sf → Kilo-British thermal unit) ✓
 - Site Energy → Chaleur et énergie consommée présente dans la facture X
 - Source Energy → Quantité totale de combustible brut nécessaire au fonctionnement du bâtiment (transport depuis la source) ✓
- Élimination des variables avec les suffixes 'WN'
- Élimination des lignes 'Outliers' → on ignore à quoi ils font référence

43 variables: 23 quantitatives, 20 qualitatives

- Élimination des 'BuildingType' "NON DESTINES A L'HABITATION" → suffixes 'Multifamily'.
- Mise en format Python des noms des variables ('SourceEUI(kBtu/sf)' → 'SourceEUI_kBtu_sf')

C. Analyse des données

C.1 Corrélations entre les 43 variables \rightarrow Pearson pour les quantitatives ANOVA pour les qualitatives

C. Analyse des données

Pas de grandes corrélations entre nos variables, juste ├── 'PropertyGFA Total' qui est légèrement corrélée avec 'TotalGHGEmissions' et avec 'NumberofFloors'

> Parmi les variables qualitative 3 intéressantes:

'BuildingType', 'Neighborhood' / 'ZipCode'

ANOVA pour les 3 qualitatives:

Leur ANOVA avec chacune des 6 variables quantitatives sélectionnées montre existence de corrélation (ie. P<<0.05). Logique mais pas grave: ce qui nous intéresse c'est si ces variables décrivent la tendance en dépense énergétique et CO2 (ie. leur corrélation avec SourceEUI kBtu sf et TotalGHGEmissions).

6

Variables Sélectionnées :

- 0. Variable pour différentier les deux data sets: DataYear
- **1. Variables d'identification des bâtiments:** OSEBuildingID, TaxParcelldentificationNumber, PropertyName
- 2. Variables potentiellement explicatives du caractère éco-responsable:
 - 2.1 propre aux bâtiments:

*BuildingType, °YearBuilt, °NumberofFloors, °PropertyGFATotal et °ENERGYSTARScore → (on veut la tester)

2.2 propre aux zones où se trouvent les bâtiments:

*Neighborhood, *ZipCode

3. Variables cibles (2 variables qui mesurent le caractère éco-responsable des bâtiments): °SourceEUI(kBtu/sf) (dépense totale d'énergie), °TotalGHGEmissions (CO2)

'°' → variables quantitatives

'*' → variables qualitatives

B. Nettoyage des données

Identification et élimination des données manquantes

'SourceEUI(kBtu/sf)' et 'TotalGHGEmissions' → moins de 0.3% de NaN ont les élimine car il s'agit de nos variables cibles.

'TaxParcelldentificationNumber' et 'NumberofFloors' → **moins de 0.3% de NaN.** A la fin de tous les traitements si il en reste on les élimine (on ne peut pas les inventer)

'ENERGYSTARScore' → près de 33.5% de NaN, première faiblesse de cette variable. Lorsque on prendra en compte cette variable il faudra les éliminer car on ne peut pas les remplacer.

Variables Sélectionnées	Nombre de NaN
DataYear	0
OSEBuildingID	0
TaxParcelIdentificationNumber	1
PropertyName	0
BuildingType	0
YearBuilt	0
NumberofFloors	8
PropertyGFATotal	0
ENERGYSTARScore	1095
SourceEUI_kBtu_sf	7
TotalGHGEmissions	7
Neighborhood	0
ZipCode_New	0

D. Distributions des variables cibles

SourceEUI_kBtu_sf

Afin de rapprocher des valeurs extrêmes pour obtenir un graphique de distribution moins étendu on fait log(x+1)

9

TotalGHGEmissions Distribution des bâtiments par leur TotalGHGEmissions (zoom sur TotalGHGEmissions<1000) Distribution des bâtiments par leur TotalGHGEmissions

D. Distributions des variables cibles

Afin de rapprocher des valeurs extrêmes pour obtenir un graphique de distribution moins étendu on fait log(x+1)

BuildingType: Les 'Campus' ressortent sont les plus et consommateurs d'énergie et émetteurs de carbone.

Consommation d'énergie moyenne & emission moyenne totale de carbone vs type de bâtiment

YearBuilt: les bâtiments les bâtiments de moins de 23 ans (construits entre 1992 et 2015) consomment le plus d'énergie et émettent le plus de carbone.

Consommation d'énergie moyenne & emission moyenne totale de carbone vs année de construction

D. Distribution des variables explicatives (features) NumberofFloors: 99 étages → moins de consommation d'énergie et d'émission de CO2? → pas de sens → variable à ne pas considérer.

Consommation d'énergie moyenne & emission moyenne totale de carbone vs nombre d'étages

PropertyGFATotal: les bâtiments entre 800 000 et 1 000 000 m^2 parmi ceux qui consomment le plus d'énergie et ceux qui émettent le plus de carbone. Jusqu'à 200 000 m^2 c'est le contraire.

Consommation d'énergie moyenne & emission moyenne totale de carbone vs surface de construction au sol

Neighborhood: 'Downtow', 'East' et le 'Lake Union' consomment le plus d'énergie et émettent le plus de carbone.

Consommation d'énergie moyenne & emission moyenne totale de carbone vs quartier

ZipCode: Le code postal 98185 consomme le plus d'énergie.Le code postal 98145 celui émet le plus de carbone.

Consommation d'énergie moyenne & emission moyenne totale de carbone vs code postale

ENERGYSTARScore: Pas vraiment de correspondance entre la consommation moyenne d'énergie et le ENERGYSTARScore ; plus de tendance avec l'émission moyenne totale de carbone mais qui ne se confirme pas forcément pour les ENERGYSTARScore bas.

Consommation d'énergie moyenne & emission moyenne totale de carbone vs ENERGYSTARScore

Ceci unis à l'instabilité dans le temps de cette variable, ses difficultés de calcul et le nombre de données manquantes font que ENERGYSTARScore ne soit pas très intéressante pour nous, mais on la testera quand même

Bases de données FINALES pour nos modèles:

- Deux bases une avec et une sans le ENERGYSTARScore
- Features sélectionnés (présents dans les 2 bases):
 - *BuildingType, °YearBuilt, °PropertyGFATotal, *Neighborhood, °ZipCode
- Variables cibles (présents dans les 2 bases):

°SourceEUI(kBtu/sf) (dépense totale d'énergie), °TotalGHGEmissions (CO2)

'°' → variables numériques

'*' → variables catégorielles → on les rend continues → OneHotEncoder

			0.0	NonResid	lential
			D Multifamil	y_MR No	0.0
		HR Multifami	ly_LR	0.0	0.0
Camp	ous Multifami	10	0.0	0.0	0.0
	0.0	1.0		0.0	0.0
0	0.0	1.0	0.0	0.0	0.0
1	0.0		0.0	0.0	
2	0.0	1.0	1.0		
3		0.0			0
4	0.0		0.0	0.0	(
		1.0		0.0	
	0.0	1.0	0.0	0.0	
3242	0.0		0.0	0.0	
3243	0.0	1.0	0.0	1.0	
3244		1.0	0.0	1.0	
324	0.0	0.0	-		
-	0.0				

	BALLARD	CENTRAL						N/		
0	0.0	- TOAL	DELRIDGE	DOWNTOWN	FACT			K		
1	0.0	0.0	0.0	10	-431	GREATER_DUWAMISH	LAVE			
2	0.0	0.0	0.0	1.0	0.0	0.0	LAKE_UNION	MAGNOLIA_QUEEN_ANNE		
3	0.0	0.0	0.0	1.0	0.0	0.0	0.0	ANNE	NORTH	NORTHEAST
	0.0	0.0	0.0	1.0	0.0		0.0	0.0	0.0	
4	0.0	0.0		1.0	0.0	0.0	0.0	0.0	0.0	0.0
•••			0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0
3242	0.0					0.0	0.0	0.0		0.0
3243	0.0	0.0	0.0	0.0			0.0	0.0	0.0	0.0
3244		0.0	0.0	0.0	0.0	1.0		0.0	0.0	0.0
3245	0.0	0.0	0.0		0.0		0.0			(
3246	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0246	0.0	0.0		0.0	0.0	1.0	0.0	0.0	0.0	
			0.0	0.0	.0	0.0	1.0	0.0	0.0	1.0
						0.0	0.0	0.0	0.0	0.0
							0.0	0.0		0.0
									0.0	

Procédure à suivre avant de lancer les modèles

Training et Test sets.

On divise le dataset en 2 sets: un "training set" (80 % des données) et un "test set" (20 % des données).

Normalisation des données.

Recommandé de normaliser les variables ayant différentes échelles → le modèle peut converger sans normalisation mais l'entraînement est plus difficile et le résultat dépend des unités utilisées pour les variables.

	count	mean	std	min	25%	50%	75%	max
SourceEUI_kBtu_sf_log	2598.0	4.815094	0.894457	0.0	4.360548	4.891476	5.31959	7.828874e+00
YearBuilt	2598.0	1961.527329	32.799983	1900.0	1929.250000	1965.000000	1989.00000	2.015000e+03
PropertyGFATotal	2598.0	115634.953811	262326.888549	16300.0	30152.000000	50017.000000	104313.25000	9.320156e+06
ZipCode_New	2598.0	98116.581601	17.223689	98006.0	98104.000000	98109.000000	98122.00000	9.819900e+04
Campus	2598.0	0.013472	0.115306	0.0	0.000000	0.000000	0.00000	1.000000e+00
Multifamily_HR	2598.0	0.886451	0.317324	0.0	1.000000	1.000000	1.00000	1.000000e+00
Multifamily_LR	2598.0	0.041186	0.198757	0.0	0.000000	0.000000	0.00000	1.000000e+00
Multifamily_MR	2598.0	0.000385	0.019619	0.0	0.000000	0.000000	0.00000	1.000000e+00
NonResidential	2598.0	0.058507	0.234744	0.0	0.000000	0.000000	0.00000	1.000000e+00
BALLARD	2598.0	0.041570	0.199644	0.0	0.000000	0.000000	0.00000	1.000000e+00
CENTRAL	2598.0	0.033872	0.180935	0.0	0.000000	0.000000	0.00000	1.000000e+00
DELRIDGE	2598.0	0.027329	0.163071	0.0	0.000000	0.000000	0.00000	1.000000e+00
DOWNTOWN	2598.0	0.225943	0.418282	0.0	0.000000	0.000000	0.00000	1.000000e+00
EAST	2598.0	0.073133	0.260405	0.0	0.000000	0.000000	0.00000	1.000000e+00
GREATER_DUWAMISH	2598.0	0.200539	0.400481	0.0	0.000000	0.000000	0.00000	1.000000e+00
LAKE_UNION	2598.0	0.090069	0.286336	0.0	0.000000	0.000000	0.00000	1.000000e+00
MAGNOLIA_QUEEN_ANNE	2598.0	0.090839	0.287435	0.0	0.000000	0.000000	0.00000	1.000000e+00
NORTH	2598.0	0.036567	0.187731	0.0	0.000000	0.000000	0.00000	1.000000e+00
NORTHEAST	2598.0	0.071209	0.257223	0.0	0.000000	0.000000	0.00000	1.000000e+00
NORTHWEST	2598.0	0.053888	0.225839	0.0	0.000000	0.000000	0.00000	1.000000e+00
SOUTHEAST	2598.0	0.029638	0.169620	0.0	0.000000	0.000000	0.00000	1.000000e+00
SOUTHWEST	2598.0	0.025404	0.157380	0.0	0.000000	0.000000	0.00000	1.000000e+00

On normalise aussi la variable cible \rightarrow pas vraiment nécessaire, ça évite de possibles bias.

Packaging sklearn:

- 1) « .fit », entraîne notre modèle à partir du training set
- 2) « .predict », prédit la variable cible à partir du test set.
- 3) « GridSearchCV », lance apprentissage sur des rangs de valeur des hyperparamètres et trouve ceux qui optimisent le modèle.

Tout Modèle implique:

- 1) Un choix de **métrique** → pour comparer les modèles entre eux.
 - Plus courante: R², mais un R² mauvais (ie. R² <<0.6) n'implique pas un modèle inadapté.
 - Il faut plusieurs métriques pour évaluer un modèle. Le RMSE (bon si <=0.5), et la MAE (fixée par modèle naïf et à diminuer le plus possible) sont de bonnes métriques de comparaison. On utilisera les 3 pour tous nos modèles.
- 2) L'optimisation des **hyperparamètres** du modèles (ie. paramètre dont la valeur contrôle le processus d'apprentissage) → en les modulant on contrôle « l'apprentissage» ou adaptation au training set → s'adapter trop au training set rend le test set trop différent et difficile à prédire.
- 3) Le temps d'apprentissage → le moins de temps le mieux. Compteur à déclencher juste avant l'optimisation des hyperparamètres, et à stopper juste après l'apprentissage (ie. juste après les fonction 'fit' ou 'GridSearchCV').

R² → Coefficient de détermination RMSE → Erreur quadratique moyenne MAE → Erreur absolue moyenne

	Modèle Naïf	Madàlas	Linéaires	Modèle Non Linéaires		
	Modele Nali	Modeles			Support Vector Regression	
	Dummy Regression (Médiane*)	Linear Regression	ElasticNet	Random Forest Regressor	SVR	
Définition	Prédiction basée sur la médiane du training set	Cherche à établir une relation linéaire entre la variable cible et les variables explicatives	Extension de la régression linéaire, avec un paramètre de pénalité supplémentaire qui vise à minimiser la complexité et/ou à réduire le nombre de variables (features) utilisées dans le modèle. Mélange de Lasso (pénalité L1) et Ridge Regression (pénalité L2)	Adapte un certain nombre d'arbre de décision sur divers sous- échantillons de l'ensemble de données et utilise la moyenne pour améliorer la précision prédictive et contrôler le sur ajustement.	Cherche à minimiser les "pénalités" (L2 en particulier), donnant la flexibilité de définir la quantité d'erreur acceptable dans notre modèle et trouvant une ligne appropriée (ou un hyperplan) pour s'adapter aux données.	
Hyperparamètres	Pas d'hyperparamètres	Pas d'hyperparamètres	alpha L1_ratio Tol	n_estimators min_samples_leaf max_features Max_depth	gamma Epsilon C	
Métriques			R ² / RMSE / MAE	:		

L'optimisation des hyperparamètres choisis se fait en donnant des rangs de valeurs à chaque hyperparamètre et en utilisant ensuite la fonction « GridSearchCV » au lieu de « fit » pour lancer l'apprentissage sur tous les rang et ainsi trouver ceux qui optimisent le modèle.

Hyperparamètres du ElasticNet:

```
(1 / (2 * n_samples) )* ||y - Xw||^2_2 + alpha * |1_ratio * ||w||_1 + 0.5 * alpha * (1 - |1_ratio) * ||w||^2_2
```

alpha:

Attribue le poids accordé à chacune des pénalités L1 et L2.

L1 ratio:

```
Paramètre de pénalité de mélange.

L1_ratio = 0 \rightarrow pénalité L2 (Ridge).

L1_ratio = 1 \rightarrow pénalité L1 (Lasso).

0 < L1 ratio < 1 \rightarrow pénalité combinaison de L1 et L2.
```

tol:

Tolérance d'optimisation → quand le modèle arrête-t-il le processus d'optimisation.

Hyperparamètres du Random Forest:

n_estimators:

Nombre d'arbres.

min_samples_leaf:

Nombre minimum d'échantillons aux feuille de l'arbre.

max_features:

Nombre de variables (ie. features) à considérer lors de la recherche de la meilleure répartition.

max_depth:

Module la profondeur pour éviter que le modèle sur apprenne.

Hyperparamètres du SVR:

gamma (Kernel coefficient):

Étendue de l'influence d'un seul exemple d'entraînement, valeurs faibles → "loin"; valeurs élevées → "proche".

epsilon:

Coefficient associé à la pénalité dans la fonction des pertes (loss fonction).

C (Coefficient de régularisation):

Il calibre le modèle et doit être positif pour éviter des over et under fit.

Valeurs grandes → marge petite haute précision apprentissage; valeurs petites → grande marge au détriment de l'apprentissage.

Prédiction consommation totale d'énergie

Résultats concernant les dépenses énergétiques

(Métriques pour SourceEUI_kBtu_sf_log)

Sans ENERGYSTARScore

Avec ENERGYSTARScore

	Modèle	R^2	MSE	RMSE	MAE	Temps de calcul (s)		Modèle	R^2	MSE	RMSE	MAE	Temps de calcul (s)
0	Dummy Regressor	-0.004197	1.035714	1.017700	0.735766	1	0	Dummy Regressor	-0.064185	1.166623	1.080103	0.777485	0
1	Linear Regression	0.144916	0.881921	0.939107	0.670013	1	1	Linear Regression	0.329891	0.734613	0.857096	0.559039	0
2	ElasticNet	0.143766	0.883107	0.939738	0.668716	15	2	ElasticNet	0.329416	0.735134	0.857399	0.559058	15
3	Random Forest	0.528152	0.486657	0.697608	0.400458	316	3	Random Forest	0.581775	0.458483	0.677114	0.362651	266
4	SVR	0.133011	0.894200	0.945621	0.638368	342	4	SVR	0.398244	0.659681	0.812207	0.472230	174

Le meilleur modèle est clairement le Random Forest (considérant ou pas le ENERGYSTARScore).

- Son R² atteint presque le 0.6 qui permettrait de valider le modèle.
- Son RMSE reste supérieur à 0.5 mais il a énormément diminué par rapport aux autres modèles.
- Son MAE a lui aussi énormément diminué par rapport au MAE de référence (ie. Celui du modèle naïf Dummy Regressor).

Quant au temps de calcul de l'ordre de 5 min, on peut la considérer bonne compte tenue du nombre de lignes du training set (ie. 2598 lignes sans et 1738 lignes avec le ENERGYSTARScore).

En considérant le **ENERGYSTARScore** on améliore un peu les valeurs des métriques. Vaut-il le coup de considérer cette variable aux données manquantes et si difficile à calculer? → **NON pas vraiment!**

Importance des variables ("features importances")

(pour le "meilleur" modèle de Random Forest → celui aux "meilleurs" hyperparamètres")

	Coeff
YearBuilt	0.320537
PropertyGFATotal	0.395080
ZipCode_New	0.099425
Campus	0.003465
Multifamily_HR	0.013831
Multifamily_LR	0.007846
Multifamily_MR	0.000040
NonResidential	0.037574
BALLARD	0.009580
CENTRAL	0.009382
DELRIDGE	0.006672
DOWNTOWN	0.011696
EAST	0.006976
GREATER_DUWAMISH	0.023965
LAKE_UNION	0.009186
MAGNOLIA_QUEEN_ANNE	0.010797
NORTH	0.005337
NORTHEAST	0.005324
NORTHWEST	0.007449
SOUTHEAST	0.006749
SOUTHWEST	0.009086

On utilise la fonction « .feature_importances_ » associée au « RandomForestRegressor » de « sklearn.ensemble ».

On ne considère pas la variable ENERGYSTARScore

→ au vu de la performance ça ne vaut pas la peine.

Notez que les variables qui on le plus de poids sont: **YearBuilt** et **PropertyGFATotal**.

Ça ne doit pas nous étonnez compte tenue de nos histogrammes et du poids équitable de chaque classe associée à ces 2 variables.

Prédiction émissions de CO2

Résultats concernant les émissions carbone

(Métriques TotalGHGEmissions_log)

Sans ENERGYSTARScore

AVAC ENERGYSTARScore

	Modèle	R^2	MSE	RMSE	MAE	Temps de calcul (s)
0	Dummy Regressor	-0.004425	1.048740	1.024080	0.792805	1
1	Linear Regression	0.289287	0.742070	0.861435	0.682741	5
2	ElasticNet	0.212837	0.821893	0.906583	0.705609	14
3	Random Forest	0.756289	0.254463	0.504443	0.346645	337
4	SVR	0.396834	0.629777	0.793585	0.618638	457

			AVCC		01017	NOCOIC
	Modèle	R^2	MSE	RMSE	MAE	Temps de calcul (s)
0	Dummy Regressor	-0.001851	1.018274	1.009096	0.778984	1
1	Linear Regression	0.392084	0.617882	0.786055	0.612551	1
2	ElasticNet	0.390408	0.619585	0.787137	0.613251	25
3	Random Forest	0.752303	0.251757	0.501754	0.358595	411
4	SVR	0.561551	0.445636	0.667560	0.491549	220

Le meilleur modèle est clairement le Random Forest (considérant ou pas le ENERGYSTARScore).

- Son R² dépasse le 0.6 qui permettrait de valider le modèle.
- Son RMSE est de l'ordre de 0.5.
- Son MAE a lui aussi énormément diminué par rapport au MAE de référence (ie. Celui du modèle naïf Dummy Regressor).

Quant au temps de calcul de l'ordre de 5 min, on peut la considérer bonne compte tenue du nombre de lignes du training set (ie. 2598 lignes sans et 1738 lignes avec le ENERGYSTARScore).

En considérant le **ENERGYSTARScore** on améliore un peu les valeurs des métriques. Vaut-il le coup de considérer cette variable aux données manquantes et si difficile à calculer? → **NON pas** vraiment!

29

Importance des variables ("features importances")

(pour le "meilleur" modèle de Random Forest → celui aux "meilleurs" hyperparamètres")

0.238204	YearBuilt	
0.554891	PropertyGFATotal	
0.084185	ZipCode_New	
0.012634	Campus	
0.010432	Multifamily_HR	
0.005527	Multifamily_LR	
0.000076	Multifamily_MR	
0.004293	NonResidential	
0.003091	BALLARD	
0.005123	CENTRAL	
0.003354	DELRIDGE	
0.010996	DOWNTOWN	
0.010690	EAST	
0.019799	GREATER_DUWAMISH	(
0.005816	LAKE_UNION	
0.007374	NOLIA_QUEEN_ANNE	MAG
0.004313	NORTH	
0.005413	NORTHEAST	
0.004885	NORTHWEST	
0.003616	SOUTHEAST	
0.005288	SOUTHWEST	

On utilise la fonction « .feature_importances_ » associée au « RandomForestRegressor » de « sklearn.ensemble ».

On ne considère pas la variable ENERGYSTARScore

→ au vu de la performance ça ne vaut pas la peine.

Notez que les variables qui on le plus de poids sont: **YearBuilt** et **PropertyGFATotal**.

Ça ne doit pas nous étonnez compte tenue de nos histogrammes et du poids équitable de chaque classe associée à ces 2 variables.

Pour les émissions de CO2 le poids bien supérieur de **PropertyGFATotal** est expliqué au vu de la corrélation de 0.52 existante avec la variable cible **TotalGHGEmissions**.

MERCI

