1

EE3025 ASSIGNMENT- 1

Amgoth Hrithik Pawar - EE17BTECH11006

Download all python codes from

https://github.com/AA/EE3025-IDP/tree/main/Assignment-1/codes

And Latex-tikz codes from -

https://github.com/AA/EE3025-IDP/tree/main/Assignment-1

1 PROBLEM

Modify the following code given in problem 2.3 with different input parameters to get the best possible output.

import soundfile as sf from scipy import signal

#sampling frequency of Input signal sampl_freq=fs

#order of the filter order = 4

#cutoff frequency 4kHz cutoff_freq=4000.0

#digital frequency Wn=2*cutoff freq/sampl freq

b and a are numerator and denominator polynomials respectivelyb, a = signal.butter(order,Wn,'low')

#filter the input signal with butterworth filter

input signal)

2 Solution

The input parameters that can be modified are:

- Casacading the filter
- Cutoff frequency

2.1 Casacading the filter

Instead of increasing the order(N) k times if we cascade the same filter k times, we get the same response. The Transfer function of k*N order Butt-terworth filter is given by:

$$H(J\omega) = \frac{1}{\sqrt{1 + \left(\frac{\omega}{\omega_c}\right)^{k*2N}}}$$
 (2.1.1)

$$At \frac{\omega}{\omega_c} >> 1, |H(j\omega)|_{indB} = -k * 10N \log_{10} \left(\frac{\omega}{\omega_c}\right)$$
(2.1.2)

Now the Transfer function of cascading k times is given by:

$$H(j\omega) = \left(\frac{1}{\sqrt{1 + \left(\frac{\omega}{\omega_c}\right)^{2N}}}\right)^k \tag{2.1.3}$$

$$At \frac{\omega}{\omega_c} >> 1, |H(j\omega)|_{indB} = -k * 10N \log_{10} \left(\frac{\omega}{\omega_c}\right)$$
(2.1.4)

2.2 Cutoff frequency

To find a better cut-off frequency which eliminates noise, we plot all peaks in magnitude response, then take cut-off frequency which has peak above a threshold. The following table shows the cut-off frequency for various thresholds.

Thresholds	Cut-off frequency
100	4439.78 Hz
200	4191.30 Hz
370	3732.44 Hz
450	2111.66 Hz
600	2111.66 Hz

For threshold peak of 450 , we get $2111.66\ Hz$ as cut-off frequency.

3 RESULTS

The following plots are Frequency response of original and Filtered signals respectively.

4 Summary

Parameter	Original Signal	Filtered Signal
Cutoff Frequency	4000 Hz	2111.66 Hz
Order of filter	4	4
No of times	0	5
cascaded(filter)		
Integral of FFT	15780177.52	14417054.75
from 0 to cutoff		
Integral of FFT	3658619.29	103996.57
after cutoff		
Ratio of components	0.232	0.007
after and before		
cutoff frequency		

Fig. 0: Frequency Response of Original signal

Fig. 0: Frequency Response of Filtered signal