$$c_1 \approx 0.7544$$
 $c_2 \approx -0.2456$ $c_3 \approx 1..3618$ (17a)

$$\eta \approx 1.7024 \quad \beta \approx 0.7024 \quad \delta \approx 2.4457$$
(17b)

Fig.3(a) shows the ancient solution, while Fig.3(b) illustrates the ancient solution for a_0'

FIG. 3: $a'^2(\lambda')$ vs λ' for 4th order flow

 $1.3048(a'_{\infty}=constant)$. Fig.3(c) with $a'_{0}>1.3048(a'_{\infty}=constant)$ demonstrates the eternal solution.

4. $2nd \ order \ flow \ on \ H^2$

Proposition III.4 2nd order flow on hyperbolic space with $\alpha' > 0$ generates two kinds of final metrics depending on the initial scale factors. For $b'(\lambda')^2 > 1$ it is expanding and for $b'(\lambda')^2 < 1$ it is converging. In both cases the scale factor asymptotically tends to 1 in backward time($b'_{-\infty} = 1$). For $\alpha' < 0$, we obtain an immortal solution.