LP Duality

```
Linear Programming (vars: xER)
                   (c∈R<sup>2</sup>)
   max <c,x>
   st Ax=b (AER mxn, bERm)
How do you "prove" that optimal value is at most blah?
 max 4X_1 + X_2 + 3X_3
  5.t. 2X_1 + 2X_2 + X_3 \le 5 (i)
        X_1 + 4X_2 + 3X_3 \le 7 (ii)
        \chi \geq 0
Suppose we multiply (i) by 4,20 and
                     (ii) by y=20
Can we get some upper bound on OPT?
YES, Say 4=1, 42=2
        2X_1 + 2X_2 + X_3 \le 5 ... \times 1 to preserve "direction"

X_1 + 4X_2 + 3X_3 \le 7 ... \times 2 of inequalities.
   + X1 + 4X2 + 3X3 ≤ 7 ··· × 2
     4x_1 + 10x_2 + 7x_3 \le 19
put objective function was used x 20 and

4x, + x2 + 3x3

(coefficient of x7 in LHS)
```

Since xZQ 1924X1+16X2+7X324X1+X2+3X3!

Therefore, OPT ≤ 19.

But, can we find a better upper bound?

Above, we used that

(i) y,, y2 >0

(ii) vi, coeff of Xi in derived inequality Z

" " objective function.

(in) x ≥0 (quaranteed by LP)

If y_1, y_2 satisfy (i) and (71), upper bound we get is $5y_1 + 7y_2$.

max 4X1 + X2 + 3X3

5.t. $2X_1 + 2X_2 + X_3 \le 5 \dots y,$

 $X_1 + 4X_2 + 3X_3 \le 7 \cdot \cdot \cdot \cdot y_2$

x20

Write (ii) explicitly.

for X1: 241+4224

X2: 24,+44221

X3: Y1+342≥3.

Therefore, if y, y= satisfy y, y=20 and above

three inequalities, 5y, +7y= is an upper bound!

And all ineqs are "linear" again!

Sos dual: Primal min 54+742 $max 4X_1 + X_2 + 3X_3$ 5.t. $2y_1+y_2=4$... x_1 x_2 $x_3 \le 5$... y_1 $2y_1+4y_2\geq 1 - x_2$ $x_1 + 4x_2+3x_3 \leq 7 - y_2$ 41+343≥3 ... x3 ×≥0 920 If Primal is max < c,x> st. Ax ≤ b, x ≥ 0 (x,ceR, AER", LER") Dual is min < b,y> s.t. ATyzc, yzo (yERM, A,b,c same) If y is feasible for Dual and \times " " Primal, then $\langle b, y \rangle \geq \langle Ax, y \rangle = \langle x, A^{T}y \rangle \geq \langle x, c \rangle$ $\downarrow b \geq Ax$ $\downarrow y \geq 0$ $\downarrow x = \sum_{i \in [n]} x_i y_i A_{ii}$ $\downarrow x \geq 0$ TELMI Weak Puality, OPTprind < OPTdual. Strong Duality, OP Tprind = OPT duel.

Max-Flow Min-Cort Duality

```
Given directed G=(U,E), capacities c: E -> RD, s,+ EV.
(WLOG, no edge goes into s and no edge coming out of t).
 Max-Flow (vars: feRE)
 max (s,v) = f(s,v)
  s.t. (u,v)=E f(u,v) - [(v,u)=0...yu du EV) (15,t)
       f(z) \leq c(z)
       f \geq n
 Dual (vars: y ERVI 15,41, ZERE)
 Min \geq C(z) Z_e
                                 e= (s.w) EE
 s.t. Ze-yu ≥1
                                V e = (u, v) ∈ [ (u, v € | s, +?)
      Ze+yu-yv>0
                               ¥ e = (a,€) ∈ E
       Ze+4u 20
       ZZQ (y is unconstrained since primal constraints
                  Corresponding to a one equalities!)
 Since we've minimizing. Zora = max (1+yu, 0)
                             Z(410) = max (y, -yu., 0)
                             Z(ux) = max (-yu, 0)
if y_v \in \{-1, 0\} v \neq S.E. and S = \{v: y_v = -1\} \cup \{s\}, then
     \( \sigma c(e) Ze = c(S, V\S). So (min s-t cut capacity)
                                     > OPT dual 12
```

So,	Max-Flow Min-Cut Thin says
	OPT max flow = OPT dual-LP = OPT min cut.

Matching / Vertex Cover

```
(IP-M) maximize EEXe
                                V €AUB
            S.t. e:vee <1
                    x E foilgE
(LP-M) maximize EEE Xe
           S.t. Eivee Xe < 1 VEAUB
                   XZO
Dual of LP-M? Vars: y E RAUB.
Constraints: VeEE, if we sum up y_v(\sum_{e:v \in e} X_e) \leq y_v
            Over all vEV, the coeff. of each Xe must be 21.
         => be=(u,v) €E, yu+yv≥1
(LP-VC) minimize SEAUB YV
                    yu+y,≥1 Ve=(u,v) EE
             S.t.
                  420.
What happens if we restrict y & foil3 AUB, any combinatorial
                                      meaning?
(TP-VC) minimize SEAUB YV
             s.t. yu+yv≥1 ve=(u,v) EE
                    461.13 AUB
```

TVertex Cover.	-
Input: undirected G=(VIE)	
Output: SEV that touches every edge.	
Goal: Min (S)	

So, OPTIPM < OPTIPM < OPTIPN < OPTIPN.

LEMMA OPTIPH = OPTIPH.

Pf. Reconsider reduction from matching (in G) to max flow (in G).

— edges from G.
— new edges in G!

Max-Flow Min-cut than says (max matching size in G)

= (max flow value in G') = (min s-t cut size in G').

Let (S,T) be a s-t ninaxt in G! (s \in S, t \in T).

If \(\frac{3}{4}(u_1v) \in \in S \in \in \in S, v \in T, \) move v to S - c(S,T)

doesn't increase!

At the end, \$(u,v) EE sx. uES, vET.
c(S,T)=(S -1)+(T1-1). So, (S\(s))u(T\(+i)) is a
vertex cover of size c(S,T)= OPTIPH 1
Halles condittion.
Corollary, Bipartine graph G= (AUB, E) with (Al=1B)=n has
a perfect matching iff \ \A' \in A, \ A' \leq N(A') , where
$N(A') := 16 \in B$: $\frac{1}{2}$ (a.6) $\in E$ for some $a \in A'$?
Pf =) If = A' s.+. (A')> (N(A')), then N(A') U(A\A') is
a vertex cover with strictly less than n vertices,
\Leftarrow) If $(A'UB')$ is a vertex cover with $ A' + B' < n$, $A' \subseteq A$, $B' \subseteq B$
then $N(A A') \subseteq B'$, which implies $n-(A') \le B' $. contradiction.

D A D A A P Man-cost
Prince-Duck Algo for Perfect matching.
Min-cost Perfect Matching.
Input: Bipartite graph G=(AUB, E), w:E-R. Dutput: Perfect matching MSE minimizing c(M)
matching mox-weight (non-perfect) motohing country vertex. Can be reduced to this
Princl Dual
Primal min EEE We Xe max yo
5.t. \(\frac{2}{2} \text{Xe} = 1 \) \(\frac{4}{3} \) \(\xi \) \
If x is primal-feasible and y is dual-feasible,
E We Xe > \(\left(y_u + y_v \right) \text{Xe} = \text{\subset} y_u \text{\subset} \text{Xe} = \text{\subset} y_u.
So, if x is (indicator vector of) a perfect mothing in $Ey = \{(u,v) \in E : y_u + y_v = we\}.$
Ey = { (u,v) EE : Yu+Yu = We}.
this the quality becomes = and x is optimal!
Primal-Dual algorithm: mointain both primal (integral) and dual
(fractional) solutions guiding each other!

Primal-Dual.
y <0 neighbors of A' in Eq.
While \$ perfect matching in Ey. (otherwise, we're done.)
Find A' SA S.+. I Ny (A') I < (A') K Hall 25 condiction.
For all v, Y, \int \begin{aligned} \begin{aligned} \text{y} & \int \text{if } \cup \int \text{A} & \text{of Ey exists between } \\ \text{y} & \int \text{v} \int \text{Ny(A)} & \text{A' and B\Ny(A')} \\ \text{s.i.} \end{aligned} \]
Correctness, +y is feasible for duch always. (why?)
* if = perfect matching in Eq. it is opt as argued above
Running time. If w is integer and W=max weight,
E is always ≥1 and # ita-atius ≤nW.
(again Pseudo-pdy)
, 3