3.5 Graph Neural Networks in Biomedicine

Petro Lio, Paul Scherer, Emma Rocheteau, Andreea Deac, Nikola Simidjievski pl219@cam.ac.uk

https://www.cl.cam.ac.uk/teaching/2122/L45/

General tour of GNN

- Mathematical Formulation
 - Graphs: nodes (objects) + edges (interactions) between them
- Types of graphs
 - o Undirected
 - Weighted
 - Multirelational
 - Heterogeneous
- Euclidean to non-Euclidean perspective
 - Increased interpretability
 - Better concentration of information
 - E.g. Superpixel
- Tasks on a graph: by scale
 - Node-level labels
 - Edge-level labels
 - Graph-level labels
 - Using neural network use appropriate loss function
 - E.g. cross-entropy for classification or mean-squared error for regression
 - Optimise by gradient + backpropagation
 - Existing libraries:
 - PyTorch Geometric,
 - DGL
 - Spektral,
 - Jraph
- Formalization of Graph embedding
- Encoder-decoder Setup
 - Encode node
 - Decode neighborhood
- How a GNN operates
 - Input: Feature matrix X, preprocessed adjacency matrix A
 - Output:
 - Node classification:
 - softmax(z)
 - E.g. Kipf & Welling (ICLR 2017)
 - Graph classification:
 - softmax(sum z)
 - E.g. Duvenaud et al. (NIPS 2015)
 - Link prediction:
 - p(A) = sig(zz)

- Cancer Graph Network
 - https://www.medrxiv.org/content/10.1101/2021.09.01.21262086v2
- Multilayer networks
 - Not so much different to other networks
 - Adjacency matrix as a single matrix
- Directional graph neural networks
 - o Grid Graph
 - Molecular graph
- Higher Order networks
 - Hypergraph
 - Multi-to-multi nodes
 - https://www.nature.com/articles/s41567-021-01371-4
- Systemic level signal detection
 - Multi-organ, multi-omics
 - Modelling connection between layer is complex
 - Hypergraph
 - https://www.biorxiv.org/content/10.1101/2022.07.31.502211v3
- Sheaf Neural Networks
 - https://arxiv.org/pdf/2206.08702.pdf
 - https://arxiv.org/pdf/2202.04579.pdf

Towards understanding mechanisms: adding logics

https://arxiv.org/pdf/2007.04612.pdf

ODEs and deep learning

Digital Patient

- https://arxiv.org/pdf/2009.08299.pdf
- Better understanding systemically

From MLPs to GNNs for learning in biomedical contexts

Geo2DR: https://github.com/paulmorio/geo2dr

PyG-T: https://github.com/benedekrozemberczki/pytorch_geometric_temporal

Predicting Patient Outcomes - EHR in ICU

- Electronic Health Records in the ICU
 - https://arxiv.org/abs/2101.03940
- Distribution of diagnoses in eICU database
 - Mean frequency with each diagnosis in data 229 patients
 - Not sufficient for DL algorithm
 - Traditionally
 - Only use common diagnoses excluding rare diseases

- Encoding layer to reduce dimension
- Adopted to doctor's
 - How to learn from rare patient cases from doctors
 - Relatedness
- Relatedness
 - Doctor recalling how they treated rare cases in the past
 - Compare how new patient is similar and different from the past
 - Emulated to architecture
 - New representation for each patient
- Graph construction
 - Word embeddings from word2vec/ LightBERT followed by cosine similarity
 - New similarity matrix
 - Constructed with other clinicians

Diagnosis Graph Construction We start by assigning a pairwise similarity score between all patients. First, we transform the diagnoses into a multi-hot vector for each patient, resulting in a diagnosis matrix $\mathcal{D} \in \mathbb{R}^{N \times m}$ where m is the number of unique diagnoses and N is the number of patients. The similarity score \mathcal{M}_{ij} between nodes i and j is defined as

Shared Diagnoses
$$\mathcal{M}_{ij} = a \sum_{\mu=1}^{m} \left(\mathcal{D}_{i\mu} \mathcal{D}_{j\mu} (d_{\mu}^{-1} + c) \right) - \sum_{\mu=1}^{m} \left(\mathcal{D}_{i\mu} + \mathcal{D}_{j\mu} \right)$$
(1)

where d_{μ} is the occurrence of diagnosis μ , and a and c are tunable constants. The first term positively rewards shared diagnoses. Note that the d_{μ}^{-1} term incorporates the idea that two patients sharing a rare diagnosis is more significant than a common one. The second term penalises the total number of diagnoses – this is to prevent patients with many diagnoses becoming 'hubs' of high connectivity, attracting imprecise

matches with several non-shared diagnoses. We examine \mathcal{M} under a k-Nearest Neighbour (k-NN) scheme to establish k edges per node. The parameters a, c and k were treated as hyperparameters (c = 0.001, a = 5 and k = 3 in the final model).

We experimented with alternative graph construction methods, such as applying a score threshold for edges (more akin to Malone et al. [18]), or using BERT [5] to encode diagnosis texts prior to similarity computation. Empirically we have found the presented method to work best through manual inspection of the resultant graph and preliminary experimentation.

- 1st dimension: index of patient
- 2nd dimension: index of diagnosis
- D = long diagnosis factors
- Taking *k* nearest neighbour to construct graph

Fig. 2 Approach Overview. First, we construct a patient graph, which becomes the input to an end-to-end LSTM-GNN model. Through the LSTM-GNN, each node's temporal features are encoded by a temporal encoder followed by a graph encoder, and the static features are encoded separately. Finally, these are concatenated and passed to a fully-connected layer for prediction.

Fig. 4 An example showing graph attention weights in LSTM-GAT* (indicated by edge thickness).

Inductive biases for molecular interactions

- Molecular interactions: Infer the bipartite links between graphs
 - Antibody-antigen interactions
 - https://arxiv.org/abs/1806.04398
 - https://arxiv.org/abs/2106.00757
- Motivation for studying antibodies
 - Antibodies are

- Y-shaped proteins
- Critical part of our immune system
- Neutralise pathogenic bacteria and viruses by tagging the antigen
 - "Lock and key" system
- Designing antibodies would be a big step towards personalised medicine
- Towards personalised medicine
 - Generating an antibody requires first predicting the specific amino acids (the paratope) which participate in the neutralisation of the antigen
 - Input:
 - A sequence of (one-hot encoded) antibody amino acids
 - +) A sequence of (one-hot encoded) antigen amino acides
 - Output:
 - Probability for each amino acid to participate in binding with the antigen

Common challenges in practice: real data from clinical cancer trials

- Multimodal and high dimensional data
 - Complex models dont scale nor transfer
 - Sophisticated approaches need substantial amount of data (samples) for training
- OntoGCN

Figure 1: Overview of the OntoGCN applied to gene expression data for patient classification.

- https://arxiv.org/pdf/2011.10998.pdf
- Each patient is a graph instance
 - Node: 3 different ontologies
 - Edges: k nearest genes
- Improved performance over graph-based and non-graph-based baselines on different tasks of cancer subtyping even with low data regimes (100s)

Table 2: Performance comparison of the graphs directing GCN structure on the PAM50 classification task (accuracy \pm std). The GCN used expression values as the nodes' input, without the node embedding mechanism.

	PAM 50	
	train size=100	train size=1500
OntoGCN	72.3±2.9	81.2±0.8
Random graph	68.9±3.9	78.0 ± 4.7
GeneMANIA graph [18]	71.7 ± 2.6	80.1±2.1
STRINGdb graph [26]	71.2±2.5	80.7 ± 1.2
Random Forest	69.3±1.1	78.4±1.0
Multi-Layer Perceptron	60.1±5.0	77.9 ± 2.5

- o Feature selection setting
- Diet approaches: GRL for network parametrization

0

Readings:

https://web.stanford.edu/class/cs224w/