Classifier evaluation - Victor Kitov

Classifier evaluation

Victor Kitov

v.v.kitov@yandex.ru

Confusion matrix

Confusion matrix $M = \{m_{ij}\}_{i,j=1}^{C}$ shows the number of ω_i class objects predicted as belonging to class ω_j .

Diagonal elements correspond to correct classifications and off-diagonal elements - to incorrect classifications.

Example of confusion matrix visualization

Example of confusion matrix visualization

Example of confusion matrix visualization

Example of confusion matrix visualization

- We see here that errors here are concentrated at distinguishing between classes 1 and 2.
- We can
 - unite classes 1 and 2 into new class «1+2»
 - then solve 6-class classification problem
 - separate classes 1 and 2 for all objects assigned to class «1+2» with a separate classifier.

2 class case

Confusion matrix:

		Prediction	
		+	-
True class	+	, ,	FN (false negatives)
	-	FP (false positives)	TN (true negatives)

P and N - number of observations of positive and negative class.

$$P = TP + FN$$
, $N = TN + FP$

2 class case

Confusion matrix:

Prediction

True class

		+	-
Ì	+		FN (false negatives)
	-	FP (false positives)	TN (true negatives)

P and N - number of observations of positive and negative class.

$$P = TP + FN$$
, $N = TN + FP$

Accuracy:	$\frac{TP+TN}{P+N}$
Error rate:	1-accuracy= $\frac{FP+FN}{P+N}$

2 class case

Confusion matrix:

		Prediction	
		+	-
True class	+	TP (true positives)	FN (false negatives)
	-	FP (false positives)	TN (true negatives)

P and N - number of observations of positive and negative class.

$$P = TP + FN$$
, $N = TN + FP$

Accuracy:	$\frac{TP+TN}{P+N}$
Error rate:	1-accuracy= $\frac{FP+FN}{P+N}$

Not informative for skewed classes and one class of interest!

"Positive class" quality metrics

FPR (error rate on negatives):	<u>FP</u>
TPR (correct rate on positives):	TP P
Precision:	TP TP+FP
Recall:	TP P
F-measure:	$\frac{2}{\frac{1}{Precision} + \frac{1}{Recall}}$
Weighted F-measure:	$\frac{1}{\frac{\beta^2}{1+\beta^2} \frac{1}{Precision} + \frac{1}{1+\beta^2} \frac{1}{Recall}}$

Class label versus class probability evaluation¹

- Discriminability quality measures evaluate class label prediction.
 - examples: error rate, precision, recall, etc..

¹Give example when class labels are predicted optimally, but class probabilities - not.

Class label versus class probability evaluation¹

- Discriminability quality measures evaluate class label prediction.
 - examples: error rate, precision, recall, etc..
- Reliability quality measures evaluate class probability prediction.
 - Example: probability likelihood:

$$\prod_{i=1}^{N} \widehat{p}(y_i|x_i)$$

Brier score:

$$\frac{1}{N} \sum_{n=1}^{N} \sum_{c=1}^{C} (\mathbb{I}[y_n = c] - \widehat{p}(y = c|x_n))^2$$

¹Give example when class labels are predicted optimally, but class probabilities - not.

Classifier evaluation - Victor Kitov ROC curves

Table of Contents

ROC curves

Bayes decision rule

Loss matrix:

forecasted class

true class

	1010000	- Cu Clubb
	f=1	f=2
y=1	0	λ_1
y=2	λ_2	0

Bayes decision rule

• Expected loss f=1: $L(f=1) = \lambda_2 p(y=2|x) = \lambda_2 p(y=2) p(x|y=2)/p(x)$

• Expected loss
$$f=2$$
:
$$L(f=2)=\lambda_1 p(y=1|x)=\lambda_1 p(y=1)p(x|y=1)/p(x)$$

Bayes decision rule minimizes expected loss:

$$\widehat{y} = \arg\min_{f} L(f)$$

• This is equivalent to:

$$\widehat{y} = 1 \Leftrightarrow \lambda_2 p(y=2) p(x|y=2) < \lambda_1 p(y=1) p(x|y=1) \Leftrightarrow$$

$$\frac{p(x|y=1)}{p(x|y=2)} > \frac{\lambda_2 p(y=2)}{\lambda_1 p(y=1)} = \mu$$

Discriminant decision rules

- Decision rule based on discriminant functions:
 - predict $\omega_1 \iff g_1(x) g_2(x) > \mu$
 - predict $\omega_1 \Longleftrightarrow g_1(x)/g_2(x) > \mu$ (for $g_1(x) > 0$, $g_2(x) > 0$)
- Decision rule based on probabilities:
 - predict $\omega_1 \iff P(\omega_1|x) > \mu$

ROC curve²

- ROC curve is a function TPR(FPR).
- It shows how the probability of correct classification on positive classes ("recognition rate") changes with probability of incorrect classification on negative classes ("false alarm").
- It is build as a set of points $TPR(\mu)$, $FPR(\mu)$.
- ullet If $\mu\downarrow$, the algorithm predicts ω_1 more often and
 - TPR=1 $-\varepsilon_1$ ↑
 - FPR= $\varepsilon_2 \uparrow$
- Characterizes classification accuracy for different μ .
 - more concave ROC curves are better

 $^{^2}$ Prove that diagonal ROC corresponds to random assignment of ω_1 and ω_2 with probabilities p and 1-p.

Comparison of classifiers using ROC curves

Comparison of classifiers using ROC curves

How to compare different classifiers?

Area under the curve

- AUC area under the ROC curve:
 - ullet global quality characteristic for different μ
 - AUC∈ [0,1]
 - AUC=0.5 equivalent to random guessing
 - AUC=1 no errors classification.
 - AUC property: it is equal to probability that for 2 random objects $x_1 \in \omega_1$ and $x_2 \in \omega_2$ it will hold that: $\widehat{p}(\omega_1|x_1) > \widehat{p}(\omega_2|x)$