MIT Course X PhD Qualifying Exam Study Guide

April 22, 2016

Contents

1	Mu	ltiscale	Analys	is		6
	1.1	Basic	Physics (1-1)	 	6
	1.2	Quant	um		 	7
	1.3	Single	Molecule	(7-2 - 7-4)	 	7
	1.4	Molec	ular Ense	mble (2-1)	 	9
	1.5	Contin	nuum		 	9
	1.6	Macro	scopic Ar	nalysis	 	9
2	$\mathbf{Th}\epsilon$	ermody	namics			10
	2.1	Statist	tical Mecl	nanics and Calculus	 	10
		2.1.1	Ensembl	les and Averaging (2-2 - 2-5, 3-1)	 	10
		2.1.2	Applied	Statistical Mechanics (4-1 - 6-2)	 	12
		2.1.3	Property	y Frameworks	 	13
			2.1.3.1	Fundamental Surface (13-1 - 13-6)	 	13
			2.1.3.2	Legendre Transform (14-3)	 	13
			2.1.3.3	EOS (7-1)	 	13
	2.2	Prope	rty Relati	ons	 	14
		2.2.1	Models		 	14
			2.2.1.1	Volumetric (14-2, 14-41)		14

		2.2.1.1.1 Bridgeman (15-1 -18-1)	14
		2.2.1.2 Non-Volumetric (23-1)	14
		2.2.1.2.1 Energy Relationships (14-1) \dots	14
	2.2.2	Property Relations and Quantities	14
2.3	Mixtu	re Properties (34-1)	14
	2.3.1	Stability and Criteria (19-1 - 19-2)	14
	2.3.2	Gibbs-Duhem (24-1)	14
	2.3.3	Microscopic Mixing (8-1 - 9-3)	14
	2.3.4	Macroscopic Mixing (25-1)	17
	2.3.5	Non-Ideal Solutions (26-1 - 26-5)	17
	2.3.6	Ideal Solutions	17
2.4	Phase	and Chemical Equilibrium	17
	2.4.1	Chemical Equilibrium (31-1 - 33-2	17
	2.4.2	Stability Phase Criteria (19-1 - 19-2, 27-1)	17
	2.4.3	Macroscopic Behavior	17
		2.4.3.1 Graphical	17
		2.4.3.2 Volumetric Analysis	17
		2.4.3.2.1 Integral Approach (27-3, 29-1 - 30-2) \dots	17
		2.4.3.3 Non-Volumetric Analysis	17
		2.4.3.3.1 Differential Approach (27-2, 28-1 - 28-4)	17
	2.4.4	Bulk Properties	18
2.5	Pure (Components	18
	2.5.1	Chemical Equilibrium	18
	2.5.2	Stability and Phase Criteria (19-1 - 19-2)	18
	2.5.3	Macroscopic Behavior	18
		2.5.3.1 Graphical	18
		2.5.3.2 Departure Function (20-1 - 20-2)	18

			2.5.3.3 Volumetric Analysis (21-1 - 22-1)	18
		2.5.4	Thermodynamic Properties	18
	2.6	Balanc	ce Equations	18
		2.6.1	Macroscopic Balances	18
			2.6.1.1 First Law (10-1 - 10-3, 12-2)	18
			2.6.1.2 Second Law (11-1 - 11-2)	18
			2.6.1.3 Availability (12-1)	18
3	Tra	nsport	1	19
U	3.1	_		19
	0.1	3.1.1	- , ,	19
		0.1.1		19
				19
				19
			, ,	19
				19
				19
				19
			·	19
				20
			, ,	20
			* (20
			v	20
				20
		3.1.2		20
		311.2		20
				20
			<u>.</u>	

			3.1.2.1.2	Coupled	20
			3.1.2.2 Species/	Energy and Momentum (58-1)	20
			3.1.2.2.1	Forced Convection (53-1 - 55-4) $\dots \dots \dots \dots$	20
			3.1.2.2.2	Natural Convection (56-1 - 57-4)	20
		3.1.3	Fully-Simultaneou	as Systems	21
	3.2	Constit	utive Models (68-	1 -param est.)	21
		3.2.1	Momentum (36-2	, 36-4)	21
			3.2.1.1 Newtoni	an	21
			3.2.1.2 Binghan	n	21
			3.2.1.3 Power-L	aw	21
		3.2.2	Species (36-3)		21
			3.2.2.1 Fick's .		21
			3.2.2.2 Stefan-N	Maxwell	21
		3.2.3	Energy (36-1)		21
	3.3	Source	Terms and Body	Forces	21
	3.4	Bounda	ry Conditions		21
		3.4.1	Momentum (45-1	- 45-2)	21
		3.4.2	Species (50-1)		21
		3.4.3	Energy $(50-1)$		21
	3.5	Post Pr	cocessing		21
		3.5.1	Momentum (44-1	- 44-5)	21
		3.5.2	Species		21
		3.5.3	Energy		21
	3.6	Dimens	ionless Analysis (37-1)	21
	3.7	Bounda	ry Layer Analysis	s (43-1)	21
4	Mac	croscopi	ic Kinetics (82-	1 - 88-3)	22

5	Mat	th (appendix)	23
	5.1	DAE	24
		5.1.1 Basic Linear Algebra (75-1 - 76-4)	24
		5.1.2 Ax=b Solutions	24
		5.1.3 f(x)=0 Solutions (74-1 - 74-3)	24
	5.2	ODE (63-1)	24
		5.2.1 BVP	24
		5.2.1.1 FFT (66-1 - 67-3, 79-1)	24
		5.2.1.2 Finite Modeling (80-1 - 80-3)	24
		5.2.2 IVP (77-1 -78-2)	24
	5.3	PDE (64-1 - 65-2)	24
	5.4	Data Analysis	24
		5.4.1 Parameter Estimation (81-1 - 81-3)	24
		5.4.2 Probability and Statistics	24
		5.4.2.1 Properties of distributions	24
	5.5	Temporary Appendix - Quantity List	25
	5.6	Temporary Appendix - undeclared quantities	33

Multiscale Analysis

1.1 Basic Physics (1-1)

Physics (Box 1-1)

Descriptions of Matter, Energy, and Moments

Macro- and Micro- Views

Types of work interactions

 $\delta W = F \cdot d\underline{x}$

Type of work	$F\cdot \mathrm{d}\underline{x}$
Pressure-Volume	$-P \cdot d\underline{V}$
Frictional	$F_f \cdot \mathrm{d}\underline{x}$
Surface Deformation	$\sigma \cdot d\underline{a}$
Electrical Charge Transport	$\epsilon \cdot \mathrm{d}q$
Electric Polarization	$E \cdot d\underline{D}$
Magnetic Polarization	$H \cdot d\underline{B}$
Stress-Strain	$\underline{V}_0(F_x/\underline{a})d\Omega = \underline{V}_0(F_x/\underline{a})dx/x_0$

1.2 Quantum

1.3 Single Molecule (7-2-7-4)

Potential Fundamentals (Box 7-2)

$$F = \frac{\mathrm{d}u}{\mathrm{d}r}$$

Coulombic interaction: $u \sim \frac{q_i q_j}{r}$

Dipole-Dipole: $u_{d-d} \sim \frac{-\epsilon_{dipole}}{r^6 kT}$

Dispersion-Attraction: $u_{att} \sim \frac{-\epsilon_{att}}{r^6}$

Repulsion: $u_{rep} \sim \frac{-\epsilon_{rep}}{r^{12}}$

Mixing for Potential Functions (Box 7-3)

$$\sigma_{ij} = \frac{\sigma_{ii} + \sigma_{jj}}{2}$$

$$\epsilon_{ij} = \left(\epsilon_{ii}\epsilon_{jj}\right)^{1/2}$$

Potential (Box 7-4)

Ideal

 $- \quad \Phi(r) = 0$

- Parameters: none

Hard Sphere

$$- \quad \Phi(r) = \begin{cases} \infty & r \le \sigma \\ 0 & r > \sigma \end{cases}$$

– Parameters: σ

Square well

$$- \quad \Phi(r) = \begin{cases} \infty & r \le \sigma \\ -\epsilon & \sigma < r \le R\sigma \\ 0 & r > R\sigma \end{cases}$$

- Parameters: σ, ϵ, R

Lennard-Jones

$$- \Phi(r) = 4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]$$

- Parameters: σ, ϵ

Kihara

$$- \quad \Phi(r) = 4\epsilon \left[\left(\frac{\sigma - 2a}{r - 2a} \right)^{12} - \left(\frac{\sigma - 2a}{r - 2a} \right)^{6} \right]$$

- Parameters: σ, ϵ, a

Sutherland (νdW)

$$- \quad \Phi(r) = \begin{cases} \infty & r \le \sigma \\ -\epsilon \left(\frac{\sigma}{r}\right)^6 & r > \sigma \end{cases}$$

– Parameters: σ, ϵ

1.4 Molecular Ensemble (2-1)

Statistical Mechanics (Box 2-1)

Goal: Connect quantum state of matter (microscopic) to classical thermodynamics (macroscopic).

Postulates

- Ergodic
 - Time averaging equivalent to ensemble averaging
- Equal A Priori Probabilites
 - States with equal N,V,E are equally likely

$$\beta = \frac{1}{kT}, \ \langle B \rangle = \sum P_i B_i, \ \ln N! \approx N \ln N - N, \ P_i = \frac{\exp(-\beta \underline{E}_i)}{\sum \exp(-\beta \underline{E}_i)}$$

1.5 Continuum

1.6 Macroscopic Analysis

Thermodynamics

2.1 Statistical Mechanics and Calculus

Ensembles and Averaging (2-2 - 2-5, 3-1) 2.1.1

Microcanonical (Box 2-2)

Constant: N, \underline{V} , \underline{E}

Constraint Equations: $\sum n_i = \tilde{N}$

Partition Function:

 $\Omega \equiv \omega(\underline{E})$

Natural Function: $S = k \ln \Omega$

Canonical (Box 2-3)

Constant: N, $\underline{\mathbf{V}}$, T

Constraint Equations: $\sum n_i = \tilde{N}, \ \sum n_i \underline{E}_i = \underline{E}^{total}$

Partition Function:

$$Q_N \equiv \sum_{\underline{E}_i} \Omega \exp(-\beta \underline{E}_i) = \sum_{\underline{E}_i} \omega(\underline{E}_i) \exp(-\beta \underline{E}_i)$$

$$Q_N \equiv \sum_i \exp(-\beta \underline{E}_i)$$

Natural Function: $A = -kT \ln Q_N$

Grand Canonical (Box 2-4)

Constant: μ, \underline{V}, T

Constraint Equations: $\sum n_i = \tilde{N}, \ \sum n_i \underline{E}_i = \underline{E}^{total}, \ \sum n_i N = N^{total}$

Partition Function:

$$\Xi \equiv \sum\limits_{N} \sum\limits_{\underline{E}_{i}} Q_{N} \exp(\beta \mu N) = \sum\limits_{N} \sum\limits_{\underline{E}_{i}} \omega(\underline{E}_{i}) \exp(-\beta \underline{E}_{i}) \exp(\beta \mu N)$$

$$\Xi \equiv \sum_{N} \sum_{i} \exp(-\beta \underline{E}_{i}) \exp(\beta \mu N)$$

Natural Function: $PV = kT \ln \Xi$

Isobaric/Isothermal (Box 2-5)

Constant: N, P, T

Constraint Equations: $\sum n_i = \tilde{N}, \sum n_i \underline{E}_i = \underline{E}^{total}, \sum n_i \underline{V}_i = \underline{V}^{total}$

Partition Function:

$$\Delta \equiv \sum\limits_{\underline{V}} \sum\limits_{\underline{E}_i} Q_N \exp(-\beta P \underline{V}) = \sum\limits_{\underline{V}} \sum\limits_{\underline{E}_i} \omega(\underline{E}_i) \exp(-\beta \underline{E}_i) \exp(-\beta P \underline{V})$$

$$\Delta \equiv \sum\limits_{\underline{V}} \sum\limits_{i} \exp(-\beta \underline{E}_{i}) \exp(-\beta P \underline{V})$$

Natural Function: $\underline{G} = -kT \ln \Delta$

Applied Statistical Mechanics (4-1 - 6-2) 2.1.2

Classical Approach (Box 6-1)

Criteria: $\Delta E/kT \ll 1$

 $Q_{cl} = Q_{int}Q_{cm} = Q_{int}Q_{trans}Z = \frac{ZQ_{int}}{\Lambda^{3N}N!}$, classical partition coefficient

- $\Lambda \equiv \left(\frac{h^2}{2\pi mkT}\right)^{1/2}$, thermal DeBroglie wavelength
- $Q_{int} = \frac{q_{int}^{N}}{N!}$, internal partition coefficient
 - $\circ \quad \ q_{int} = q_{elec}q_{nuc}q_{vib}q_{rot}, \ \ \text{molecular partition coefficient}$
- $Z^* \equiv \int \dots \int \exp \left[-\frac{\Phi(\underline{r}^N)}{kT} \right] d\underline{r}^N$, configurational integral

Mean Field Theory (Box 6-2)

$$Z^* = \exp\left[-\frac{\left\langle\Phi(\underline{r}^N)\right\rangle}{2kT}\right]^N \left[\underline{V}_f\right]^N$$
$$-\left\langle\Phi(\underline{r}^N)\right\rangle = \frac{N\langle\rho\rangle}{2} \int_0^\infty \Phi_{ij}(r)g(r)4\pi r^2 dr$$

$$- \left\langle \Phi(\underline{r}^N) \right\rangle = \frac{N \left\langle \rho \right\rangle}{2} \int_{0}^{\infty} \Phi_{ij}(r) g(r) 4\pi r^2 dr$$

- \circ g(r), radial distribution function
- \circ $\Phi_{ij}(r)$, potential function

2.1.3 Property Frameworks

2.1.3.1 Fundamental Surface (13-1 - 13-6)

2.1.3.2 Legendre Transform (14-3)

2.1.3.3 EOS (7-1)

Virial (Box 7-1)

Form

-
$$p = \rho kT + kT \sum_{n=2}^{\infty} B_n(T)\rho^n = \rho kT(1 + B_2\rho + ...)$$

$$- B_2(T) = -2\pi N_A \int_0^\infty \left[\exp[-\beta \Phi(r)] - 1 \right] r^2 dr$$

- \circ Quantifies the two-body interaction
 - McMillan-Mayer TM 471

$$\circ \quad \text{Hard sphere: } B_2 = \frac{2\pi\sigma^3}{3}$$

$$\circ \quad \text{Square well: } B_2 = \frac{2\pi\sigma}{3} \Big[1 + (1 - \exp(\beta\epsilon))(R^3 - 1) \Big]$$

• Lennard-Jones:
$$B_2(T) = -2\pi N_A \int_0^\infty \left[\exp\left[-\beta \left(4\epsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^6\right]\right)\right] - 1\right] r^2 dr$$

2.2 Property Relations

- **2.2.1** Models
- 2.2.1.1 Volumetric (14-2, 14-41)
- 2.2.1.1.1 Bridgeman (15-1 -18-1)
- 2.2.1.2 Non-Volumetric (23-1)
- 2.2.1.2.1 Energy Relationships (14-1)
- 2.2.2 Property Relations and Quantities
- 2.3 Mixture Properties (34-1)
- 2.3.1 Stability and Criteria (19-1 19-2)
- 2.3.2 Gibbs-Duhem (24-1)
- 2.3.3 Microscopic Mixing (8-1 9-3)

Osmotic Pressure (Box 8-1)

Vant Hoff Formulation (ideal)

- $\quad \Pi = C_s RT$
- Parallel to Ideal Gas Law (Cs = N/V)

Equilibrium Approach

$$- \mu_w(T, 1bar + \Pi, x_s) = \mu_w(T, 1bar, pure) + RT \ln \gamma_w x_w + \int_1^{1+\Pi} \overline{V}_w dP$$

• For incompressible

$$\blacksquare \quad \ln(\gamma_w) \approx -\ln(x_w) - \frac{\Pi \overline{V}_w}{RT} \text{ with } x_w = 1 - x_s$$

Statistical Mechanics Approach

- McMillan-Mayer Theory
 - o Grand Canonical Function as natural variable

- Under dilute solution limit,
 - $\blacksquare \qquad \frac{\Pi}{kT} = \rho_2 + B_2 \rho_2^2 + \dots$

$$\blacksquare \qquad \frac{\Pi}{C} = \frac{RT}{M_W} + \frac{B_2NRT}{(M_W)^2}C + \dots$$

• Graph of (Π/C) v. C

$$\circ \quad \text{ Intercept: } M_W = \frac{RT}{(\Pi/C)_{C \to 0}}$$

• Assuming Pairwise additivity

$$B_2 = -2\pi \int_0^\infty \left(\exp\left[\frac{-\langle \Phi_{12} \rangle}{kT}\right] - 1 \right) r^2 dr$$

■ For Hard Sphere Interactions

$$\bullet \quad B_2 = \frac{16}{3}\pi b_0^3, \ B_3 = \frac{5}{8}B_2^2$$

- \circ Using a ΔG^{EX} function
 - $-\overline{V}_1\Pi = RT\ln a_1$
 - Flory-Huggins (11-66)

$$\bullet \quad \frac{\partial \Delta G^{EX}}{\partial N_1} = RT \ln a_1$$

Flory Huggins Theory (Box 8-2)

$$\Delta G_{mix} = RT \left[N\phi_1 \phi_2 \chi + \left(x_1 \ln \phi_1 + x_2 \ln \phi_2 \right) \right]$$

$$\frac{\partial \Delta G_{mix}}{\partial x_1} = \mu_1, \ \frac{\partial \Delta G_{mix}}{\partial x_2} = \mu_2$$

$$N_1 = V \phi_1 \ and \ \phi_2 = \frac{nN_2}{N_1 + nN_2}$$

Binodal

$$- \mu_1 - \mu_1^0 = RT \left[\ln \left(1 - \phi_2 \right) + \left(1 - \frac{1}{n} \right) + \chi \phi_2^2 \right]$$

$$- \mu_2 - \mu_2^0 = RT \left[\ln \phi_2 + (1 - \phi_2)(1 - n) + \chi(1 - \phi_2)^2 \right]$$

Spinodal

$$- \frac{\partial^2 \Delta G_{mix}}{\partial x_2^2} = 0 = \frac{\partial \Delta \mu_1}{\partial \phi_2} = -\frac{1}{1 - \phi_2} + 1 - \frac{1}{n} + 2\chi \phi_2$$

Critical Point

$$- \frac{\partial^{3} \Delta G_{mix}}{\partial x_{2}^{3}} = 0 = \frac{\partial^{2} \Delta \mu_{1}}{\partial \phi_{2}^{2}} = -\frac{1}{(1 - \phi_{c2})^{2}} + 2\chi_{c}$$

$$- \chi_c = \frac{1}{2\phi_{1,c}} + 1 - \frac{1}{n} + \frac{1 - \phi_{1,c}}{\phi_{1,c}^2} = 0$$

$$- \chi_c = \frac{1}{2} (1 + n^{-1/2})^2$$

- 2.3.4 Macroscopic Mixing (25-1)
- 2.3.5 Non-Ideal Solutions (26-1 26-5)
- 2.3.6 Ideal Solutions
- 2.4 Phase and Chemical Equilibrium
- 2.4.1 Chemical Equilibrium (31-1 33-2
- 2.4.2 Stability Phase Criteria (19-1 19-2, 27-1)
- 2.4.3 Macroscopic Behavior
- 2.4.3.1 Graphical
- 2.4.3.2 Volumetric Analysis
- 2.4.3.2.1 Integral Approach (27-3, 29-1 30-2)
- 2.4.3.3 Non-Volumetric Analysis
- 2.4.3.3.1 Differential Approach (27-2, 28-1 28-4)

- 2.4.4 Bulk Properties
- 2.5 Pure Components
- 2.5.1 Chemical Equilibrium
- 2.5.2 Stability and Phase Criteria (19-1 19-2)
- 2.5.3 Macroscopic Behavior
- 2.5.3.1 Graphical
- 2.5.3.2 Departure Function (20-1 20-2)
- 2.5.3.3 Volumetric Analysis (21-1 22-1)
- 2.5.4 Thermodynamic Properties
- 2.6 Balance Equations
- 2.6.1 Macroscopic Balances
- 2.6.1.1 First Law (10-1 10-3, 12-2)
- 2.6.1.2 Second Law (11-1 11-2)
- 2.6.1.3 Availability (12-1)

Transport

- 3.1 General Conservation Equations (35-1 35-4)
- 3.1.1 Non-Simultaneous
- 3.1.1.1 Momentum (38-1 38-5)
- 3.1.1.1.1 Turbulent (69-1 -70-3) Laminar
- 3.1.1.1.1 Unidirectional (39-1 40-2)
- 3.1.1.1.1.2 Creeping (41-1 41-4)
- 3.1.1.1.3 High Reynolds Number (42-1 42-5)
- 3.1.1.2 Species and Energy (46-1)
- 3.1.1.2.1 Steady
- 3.1.1.2.1.1 No Source (47-1 47-4, 51-2, 52-1)

- 3.1.1.2.1.2 Source (51-1)
- 3.1.1.2.2 Pseudo-steady (48-1)
- 3.1.1.2.3 Unsteady
- 3.1.1.2.3.1 Analytical (49-1)
- 3.1.1.2.3.2 Numerical
- 3.1.2 Simultaneous Systems
- 3.1.2.1 Species and Energy (59-1 62-2)
- **3.1.2.1.1** Uncoupled
- 3.1.2.1.2 Coupled
- 3.1.2.2 Species/Energy and Momentum (58-1)
- 3.1.2.2.1 Forced Convection (53-1 55-4)
- 3.1.2.2.2 Natural Convection (56-1 57-4)

- 3.1.3 Fully-Simultaneous Systems
- 3.2 Constitutive Models (68-1 -param est.)
- 3.2.1 Momentum (36-2, 36-4)
- 3.2.1.1 Newtonian
- **3.2.1.2** Bingham
- 3.2.1.3 Power-Law
- 3.2.2 Species (36-3)
- 3.2.2.1 Fick's
- 3.2.2.2 Stefan-Maxwell
- 3.2.3 Energy (36-1)
- 3.3 Source Terms and Body Forces
- 3.4 Boundary Conditions
- 3.4.1 Momentum (45-1 45-2)
- 3.4.2 Species (50-1)
- 3.4.3 Energy (50-1)
- 3.5 Post Processing
- 3.5.1 Momentum (44-1 44-5)
- 3.5.2 Species
- 3.5.3 Energy
- 3.6 Dimensionless Analysis (37-1)
- 3.7 Boundary Layer Analysis (43-1)

Macroscopic Kinetics (82-1 - 88-3)

Math (appendix)

- 5.1 DAE
- 5.1.1 Basic Linear Algebra (75-1 76-4)
- 5.1.2 Ax=b Solutions
- 5.1.3 f(x)=0 Solutions (74-1 74-3)
- 5.2 ODE (63-1)
- 5.2.1 BVP
- 5.2.1.1 FFT (66-1 67-3, 79-1)
- 5.2.1.2 Finite Modeling (80-1 80-3)
- 5.2.2 IVP (77-1 -78-2)
- 5.3 PDE (64-1 65-2)
- 5.4 Data Analysis
- 5.4.1 Parameter Estimation (81-1 81-3)
- 5.4.2 Probability and Statistics
- 5.4.2.1 Properties of distributions

5.5 Temporary Appendix - Quantity List

```
A
B
B
 B_i
 Bi
Br
C_D
C_P
C_V
 D
D_{ij}
D_i
Da
D_e
D_0
\underline{e}_i
\begin{array}{c} \underline{e} \\ E \\ F \\ \widehat{f} \\ f \\ \underline{e_i} \\ F \end{array}
F_B
g(r)
G
Gr
h
H
\mathcal{H}
H
\mathcal{H}_i
H_V
Ι
 J_i
k_{c,i}
K
K
\mathcal{K}_i
                                                                                                      25
```

```
K_a
K_P
K_y
K_{\gamma}
K_{\phi}^{'}
L
m
M_W
\underline{n}
N
N_i
Nu
P
P
Pe
Pr
q_i
q
q_{elec}
q_{int}
q_{nuc}
q_{rot}
q_{trans}
q_{vib} \\ q^{(x)}
\overline{Q}
Q_{int}
Q_{cl}
Q_{cm}
Q_N
r
R_V
Ra
Re
S
S_A
\underline{S}
\overline{S}c
Sh
Sr
t
T
u
{\cal U}
U
```

```
v
V
V_f
\underline{w}
\underline{\underline{w}}
W
\boldsymbol{x}
x_i
x_i
z
z_i
Z
Z^*
\alpha
β
β
\beta_i
\gamma_i
\frac{\gamma}{\underline{\Gamma}}
\Delta
\epsilon_M, \epsilon_i, \epsilon_E
\eta
\eta
Θ
\Theta_{\nu}
\Theta_n
\kappa
\lambda
\lambda
\lambda
\Lambda
\mu
\mu
\nu
\nu_{ij}
\nu_i
\xi
\xi
\Xi
\Pi
ρ
```

```
\sigma
 \sigma
\frac{\underline{\sigma}}{\tau}
	au_{ij}
 \phi_i
 \phi
 \phi
 Φ
 Φ
\Phi_{ij}(r)
\Phi_n
_{\Psi }^{\chi }
  Ψ
 \omega
\omega
\omega_e
Ω
\Omega_{mix}
 {\mathfrak F}
 80
\mathcal{R}
 c
 e
_{\mathcal{F}}^{g}
 h
  \av
 R
 k_B
 \pi
 \boldsymbol{x}
 \underline{x}
\underline{\underline{x}}
\begin{array}{c} \tilde{x} \\ \mathbf{X} \\ \widehat{x} \\ \overline{x} \\ \underline{\nabla} \\ \underline{\nabla} \\ E^4 \\ 0 \\ i \end{array}
```

$CHAPTER \ 5. \ MATH \ (APPENDIX) \qquad 5.5. \ TEMPORARY \ APPENDIX - \ QUANTITY \ LIST$

mix atherm σ c EX id sat

Index

```
B_n - n^{th} Virial Coefficient \left[\left(\frac{m^3}{Kg}\right)^n\right], 9, 13, 15, V_f – Free Volume \left[m^3\right], 27 Z^* – Configurational Integral \left[none\right], 12, 27
                                                                  \Delta – Isobaric/Isothermal Partition Function, 12,
C_P – Constant Pressure Heat Capacity \left| \frac{J}{KgK} \right|,
                                                                             15, 16, 27
                                                                  \Im – Degrees of Freedom [none], 28
C_V – Constant Volume Heat Capacity \left| \frac{J}{KaK} \right|,
                                                                 \Lambda – DeBroglie Wavelength [m], 12, 27
                                                                 \Omega – Microcanonical Partition Function, 6, 10,
D_0 – Measured Bond Dissociation Energy \left[\frac{J}{mol}\right],
                                                                            Combinatorial Mixing Function [none],
                                                                 \Omega_{mix} –
D_e – Energy of Atomization \left[\frac{J}{mol}\right], 25
D_{ij} – Diffusivity of component i in fluid j \left| \frac{m^2}{s} \right|,
                                                                  \Phi – Dissipation Function, 28
                                                                  \Phi - Potential, 7, 8, 12, 13, 15, 28, 33
                                                                  \Phi_{ij}(r) – Potential Function, 12, 13, 28
D_i – Pseudobinary diffusivity of i \left| \frac{m^2}{s} \right|, 25
                                                                  \Phi_n – FFT Basis Function, 28
E^4 – Axisymmetric Biharmonic Operator, 28
                                                                 \Pi – Osmotic Pressure [Pa], 14, 15, 27
F_B – Body Force [N], 25
                                                                  \Psi – Dimensionless Electric Potential [none], 28
H_V – Volumetric Energy Source \left[\frac{W}{m^3}\right], 25
                                                                 \Psi – Stream Function \left|\frac{m^2}{s}\right|, 28
J_i – Molar Diffusive species flux of i \left[\frac{mol}{sm^2}\right], 25 K_P – Pressure Equilibrium Constant Contribu-
                                                                  Θ – Dimensionless Concentration or Tempera-
                                                                              ture [none], 27
            tion [varies], 26
                                                                  \Theta_{\nu} – Vibrational Frequency Factor, 27
K_{\gamma} – Activity Coefficient Equilibrium Constant
                                                                  \Theta_n - n^{th} FFT Coefficients, 27
            Contribution [varies], 26
                                                                  \Xi – Grand Canonical Partition Function, 11, 15,
K_{\phi} - Fugacity Coefficient Equilibrium Constant
            Contribution [varies], 26
                                                                 \alpha – Thermal Diffusivity \left|\frac{m^2}{s}\right|, 27
K_a – Equilibrium Constant [varies], 26
                                                                 \beta – Boltzmann Normalization \left[\frac{1}{J}\right], 9, 11–13, 27
K_y – Mole Fraction Equilibrium Constant Con-
            tribution [varies], 26
                                                                  \beta – Thermal Expansion Coefficient \left[\frac{1}{K}\right], 27
M_W – Molecular Weight \left[\frac{g}{mol}\right], 15, 26
                                                                  \beta_i – Solute Expansion Coefficient due to species
                                                                             i\left[\frac{1}{mol}\right], 27
N_i – Mass Species Flux of i\left[\frac{Kg}{m^2s}\right], 13, 16, 26,
                                                                  \chi - Flory-Huggins Parameter [none], 16, 28
                                                                  \delta – Boundary Layer Thickness [m], 6, 27
Q_N – Canonical Partition Function, 11, 12, 26
                                                                 \epsilon – Dielectric Constant \left\lceil \frac{Coulombs^2}{Jm} \right\rceil, 6–8, 13, 27,
Q_{cl} - Classical Partition Coefficient, 12, 26
Q_{cm} - Center-of-Mass Partition Coefficient, 12,
                                                                  \epsilon_M, \epsilon_i, \epsilon_E – Eddy Diffusivity for Momentum, Species
Q_{int} – Internal Partition Coefficient, 12, 26
                                                                             and Energy \left|\frac{m^2}{s}\right|, 27
R_V – Volumetric Species Source \left[\frac{mol}{sm^3}\right], 26
                                                                 \eta – Intrinsic Viscosity \left[\frac{m^3}{Kg}\right], 27
S_A – Surface Area [m^2], 26
```

INDEX

η – heat cycle efficiency [none], 27	∇ – Gradient Operator, 28
γ – Surface Tension, CHANGE SIGMAS $\left[\frac{N}{m}\right]$,	
14, 15, 27, 33	\underline{e} – Multicomponent Energy Flux , 25
γ_i – Activity Coefficient for species i [none], 27	\underline{e}_i – Unit Vector in direction i [none], 25
κ – COME BACK, 27	\underline{n} – Normal Vector [none], 26
λ – Debye Length $[m]$, 27	$\frac{\overline{w}}{}$ – Vorticity Vector, 27
λ – Latent heat $\left[\frac{J}{mol}\right]$, 27	\underline{x} – Extensive Vector, 6, 28
λ – Wavelength [m], 27	$\underline{\underline{\Gamma}}$ — Rate-of-Strain Tensor, 27
\dot{x} – Time derivative, 28	_
\hat{f} – Mixture Fugacity, 25	$\underline{\underline{\sigma}}$ – Stress Tensor, 28
\hat{x} – Intensive Scalar, 28	$\underline{\underline{w}}$ – Vorticity Tensor, 27
\tilde{x} – Extensive Vector, 28	$\underline{\underline{x}}$ – Extensive Vector, 28
\mathcal{F} - Faraday's Constant, 28	\wp – Dynamic Pressure [Pa], 28
\mathcal{H} – Surface Mean Curvature, 25	ξ – Conjugate Coordinate, 27
	A – Extent of Reaction [none], 27
\mathcal{H}_i – Henry's Law Constant for specie $i \left[\frac{atm}{molfractio} \right]$	$c_D^{(i)}$, Drag Coefficient [none], 25
	f – Fugacity, 6, 12, 25, 33
\mathcal{K}_i - Partition Coefficient [none], 25	$f_{\underline{e}_i}$ – Differential Force in direction of \underline{e}_i , 25
R – Surface Reaction Rate, 28	k_B – Boltzmann Constant, 28
μ – Chemical Potential [J], 11, 14, 16, 27, 33	$k_{c,i}$ – Mass Transfer Coefficient for species $i\left[\frac{mol}{sm^2conc.difference}\right]$,
$\mu - \text{Viscosity } [Pas], 27$	
ν - Frequency $\left\lfloor \frac{1}{s} \right\rfloor$, 8, 27	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
ν – Kinematic Viscosity $\left[\frac{m^2}{s}\right]$, 27	q ^(x) – Dufour Heat Flux, 26 Floatronic Molecular Portition Coefficient
ν_{ij} – Stoichiometric Coefficient for species i in	q_{elec} – Electronic Molecular Partition Coefficient,
reaction j , 27	12, 26 Internal Molecular Partition Coefficient
ν_i – Charge Valency of species $i, 27$	q_{int} – Internal Molecular Partition Coefficient,
ω – Accentricity Factor [none], 28	12, 26
ω – Microcanonical Partition Function, 10–12,	q _i - charge [Coulombs], 7, 26
28	q _{nuc} - Nuclear Molecular Partition Coefficient,
ω_e – Electronic Degeneracy [none], 28	12, 26 a - Rotational Molocular Partition Coefficient
\overline{x} – Partial Molar, 28	q_{rot} - Rotational Molecular Partition Coefficient, 12, 26
ϕ — Electric Potential, 28	
ϕ – Fugacity Coefficient [none], 28	q _{trans} - Translational Molecular Partition Coef-
ϕ_i – Flory-Huggins Mole Fraction of species i	ficient, 26 a. Vibrational Molecular Partition Coefficients
[none], 16, 28	q_{vib} – Vibrational Molecular Partition Coeffi-
π – Constant, 12, 13, 15, 28	cient, 12, 26 $x_i - i^{th}$ Conjugate Coordinate, 27
$\rho - \text{Density}\left[\frac{Kg}{m^3}\right], 12, 13, 15, 27$	$x_i = t$ Conjugate Coordinate, 27 x_i - Fraction of species i [none], 14–16, 27, 33
σ – Molecular Radius [A], 7, 8, 13, 28, 33	z_i - Charge of species i [Coulombs], 27
σ – Note that Teaches [A], 7, 8, 13, 28, 33 σ – Symmetry Factor, 28	z_i = Charge of species i [Contomos], z_i 0 = Initial, 6, 15, 16, 28, 33
σ – Symmetry Factor, 28 σ – boundary, 6, 29, 33	0 11110161, 0, 10, 10, 20, 00
σ – Boundary, 6, 29, 33 τ – Torque $[Nm]$, 28	a – Activity, 6, 8, 15, 16, 25, 33
τ_{ij} – Shear Rate in direction <i>i</i> perpendicular to <i>j</i>	A – Helmholtz Energy [J], 11, 13, 25, 33
(CHECK FOR ONSISTENCY) $\left[\frac{N}{m^2}\right]$,	atherm – Athermal Function, 29
(CHECK FOR ONSISTENCT) $\left[\frac{m^2}{m^2}\right]$,	
X – Matrix, 28	B - Exergy [J], 9, 25
\underline{X} - Matrix, 26 \underline{S} - Stress Vector, 26	B – Magnetic Induction $\left[\frac{Vs}{m^2}\right]$, 6, 25
<u>D</u> DUICOD VCCUOI, 20	the 3 cm

INDEX**INDEX**

Bi - Biot Number [none], 25

Br – Brinkman Number [none], 25

C - Concentration $\left|\frac{kgofi}{m^3}\right|$, 14, 15, 25, 33

c - Critical, 16, 29

c - Speed of Light, 28

D — Electric Displacement $\left[\frac{Coulombs}{m^2}\right],\,6,\,25$ Da — Damkohler Number $[none],\,25$

e – Base of Natural Logarithm, 28

E – Electric Field Strength $\left[\frac{V}{m}\right]$, 6, 25

E - Energy [J], 9-12, 25, 33

EX - Excess Function, 15, 16, 29

F - Force [N], 6, 7, 25, 33

G - Gibbs Energy [J], 12, 15, 16, 25

g - Gravitational Acceleration, 28

g(r) - Radial Distribution Function [none], 12, 13, 25

Gr - Grashof Number [none], 25

H - Enthalpy [J], 25

h – Heat Transfer Coefficient $\left[\frac{W}{m^2 k}\right]$, 25 H – Magnetic Field Strength $\left[\frac{A}{m}\right]$, 6, 25

h - Planck's Constant, 12, 28

i – Current Density $\left\lfloor \frac{A}{m^2} \right\rfloor$, 25

 $I - Moment of Inertia [Kgm^2], 25$

i – State or Level, COMPONENT?, 28

id – Ideal Gas, 29

K – Dilation Factor, 25

K - Taylor Dispersion, 25

k – Thermal Conductivity $\left[\frac{W}{mK}\right]$, 7, 9–13, 15, 25

L - Length Scale [m], 26

m - Mass [Kg], 12, 26

mix - Mixing Function, 29

N - Number of Moles [none], 9-12, 14-16, 26,

Nu - Nusselt Number [none], 26

P - Probability [none], 9, 26

P - Thermodynamic Pressure [Pa], 6, 11, 12,14, 15, 26

Pe – Peclet Number [none], 26

Pr - Prandtl Number [none], 26

Q - Heat Flow [W], 12, 26, 33

q - heat flux $\left[\frac{\dot{W}}{m^2}\right]$, 6, 26, 33

R – Ideal Gas Constant, 8, 13–16, 28, 33

r - Position [m], 7, 8, 12, 13, 15, 26, 33

Ra – Rayleigh Number [none], 26

Re – Reynolds Number [none], 26

 $S - Entropy \left[\frac{J}{K}\right], 10, 26$

sat - Saturated Vapor, 29

Sc – Schmidt Number [none], 26

Sh – Sherwood Number [none], 26

Sr - Strouhal Number [none], 26

T - Temperature [K], 7, 9-16, 26

t - Time [s], 26

u - Force Potential, 7, 26, 33

U - Internal Energy [J], 26

 $U - Velocity \left[\frac{m}{s}\right], 26$

v — Velocity $\left[\frac{m}{s}\right]$, 27 V — Volume $\left[m^3\right]$, 6, 9–12, 14–16, 27, 33

W - Work [J], 6, 8, 27

x - Displacement [m], 6, 27, 33

x - Extensive Scalar, 28

Z – Compressibility [none], 12, 27

z - Height [m], 27

5.6 Temporary Appendix - undeclared quantities

box number	undeclared symbol/s	uncertain symbol/s
		F_f (force + fugacity)
		σ (boundary)
		q (heat flux)
		$\underline{\underline{V}}_0$ (volume + initial)
		F_x (force + displacement)
1-1	none	x_0 (displacement + initial)
		B_i (nth virial coefficient)
2-1	none	\underline{E}_i (energy)
2-2	n_i	\tilde{N} (number of moles)
2-3	n_i	\tilde{N} (number of moles)
2-4	n_i	\tilde{N} (number of moles)
2-5	n_i	\tilde{N} (number of moles)
		Q_{trans} (heat flow)
6-1	n	$\Phi(\underline{r}^N)$ (potential + position + number of moles)
6-2	n	\underline{V}_f (volume + fugacity)
		N_A (mass species flux of i, + Helmholtz energy)
		$\Phi(r)$ (potential + position)
7-1	р	σ (molecular radius)
7.0		$u_{d-d}, u_{att}, u_{rep}$ (force potential)
7-2	none	$\epsilon_{dipole}, \epsilon_{att}, \epsilon_{rep} \text{ (dielectric)}$
7.9		σ_{ij} (molecular radius)
7-3	none	ϵ_{ij} (dielectric constant) σ (molecular radius)
		R (ideal gas constant);
7-4	none	$\Phi(r)$ (potential + position)
1-4	none	C_s, C_s (concentration)
		x_s, x_w (fraction of species i)
		μ_w (chemical potential)
		γ_w (surface tension)
		$\overline{V}_w, V ext{ (volume)}$
		B_2, B_3 (nth virial coefficient)
		N_i (mass species flux of i);
		Φ_{12} (potential)
8-1	$\mathbf{w}, \mathbf{s}, bar, pure, b_0$	a_1 (activity)
Ü 1	, 5,0ar, parc, ou	μ_i (chemical potential)
8-2	n	x_i (fraction of species i)