EXERCICE N°1 (Le corrigé)

Compléter les égalités en n'utilisant que les points de la figure ci-contre :

1)
$$\overrightarrow{IB} = \overrightarrow{...A} + \overrightarrow{A...}$$

 $\overrightarrow{IB} = \overrightarrow{IA} + \overrightarrow{AB}$
2) $\overrightarrow{HG} + \overrightarrow{...} = \overrightarrow{HF}$
 $\overrightarrow{HG} + \overrightarrow{GF} = \overrightarrow{HF}$
3) $\overrightarrow{D...} + \overrightarrow{C...} = \overrightarrow{...B}$
 $\overrightarrow{DC} + \overrightarrow{CB} = \overrightarrow{DB}$
4) $\overrightarrow{E...} + \overrightarrow{...E} = \overrightarrow{...}$
 $\overrightarrow{EA} + \overrightarrow{AE} = \overrightarrow{EE} = \overrightarrow{0}$

Pour la question n°4, l'idée est de faire apparaître une relation de Chasles. On peut donc mettre n'importe quelle lettre à la place de « A ».

EXERCICE N°2 (Le corrigé)

Écrire le plus simplement possible

1)
$$\overrightarrow{BD} + \overrightarrow{DA}$$

$$\overrightarrow{BD} + \overrightarrow{DA} = \overrightarrow{BA}$$

4)
$$\overrightarrow{BD} - \overrightarrow{BA}$$

$$\overline{BD} - \overline{BA}$$

$$= \overline{BD} + \overline{AB}$$

$$= \overline{AB} + \overline{BD}$$

$$= \overline{AD}$$

2)
$$\overrightarrow{BD} + \overrightarrow{AA}$$

$$\overrightarrow{BD} + \overrightarrow{AA} = \overrightarrow{BD}$$

5)
$$\overrightarrow{BD} + \overrightarrow{AD} + \overrightarrow{BA}$$

$$\overrightarrow{BD} + \overrightarrow{AD} + \overrightarrow{BA}$$

$$= \overrightarrow{BD} + \overrightarrow{BA} + \overrightarrow{AD}$$

$$= \overrightarrow{BD} + \overrightarrow{BD}$$

$$= 2 \overrightarrow{BD}$$

3)
$$\overrightarrow{BD} + \overrightarrow{DB}$$

$$\overrightarrow{BD} + \overrightarrow{DB} = \overrightarrow{0}$$

6)
$$\overrightarrow{BD} - \overrightarrow{BA} + \overrightarrow{DA} - \overrightarrow{DB}$$

$$\overrightarrow{BD} - \overrightarrow{BA} + \overrightarrow{DA} - \overrightarrow{DB}$$

$$= \overrightarrow{BD} + \overrightarrow{AB} + \overrightarrow{DA} + \overrightarrow{BD}$$

$$= \overrightarrow{BD} + \overrightarrow{BD} + \overrightarrow{DA} + \overrightarrow{AB}$$

$$= \overrightarrow{BD} + \overrightarrow{BD} + \overrightarrow{DB}$$

$$=\overrightarrow{BD}$$

Les relations de Chasles sont signalées en bleu.

Les réponses aux questions 4, 5 et 6 sont très détaillées, vous irez plus vite, si vous le souhaitez. D'autres chemins sont parfois possibles, par exemple à la question 6 : on pouvait considérer $\overrightarrow{AB} + \overrightarrow{DA} = \overrightarrow{DA} + \overrightarrow{AB} = \overrightarrow{DB}$ au lieu de passer par $\overrightarrow{DA} + \overrightarrow{BD}$

Par contre, le résultat sera le même à la fin!

EXERCICE N°3 (Le corrigé)

Soit *A*, *B* et *C* trois points.

1) Construire le point *D* tel que $\overrightarrow{AB} = \overrightarrow{CD}$

Comme $\overline{AB} = \overline{CD}$, la <u>propriété n°1</u> nous incite à construire le parallèlogramme ABDC (attention à l'ordre des lettres).

On peut faire cette construction au compas en se rappelant que dans un parallèlogramme les côtés opposés ont la même longueur deux à deux.

On prend l'écartement AB, on pointe en C et on trace un arc de cercle.

Puis, on prend l'écartement AC, on pointe en B et on trace un arc de cercle.

L'intersection de ces deux arcs nous donne le point D.

2) Construire le point E tel que $\overrightarrow{AB} = \overrightarrow{EC}$

Idem mais cette fois-ci avec le quadrilatère ABCE (Encore une fois : Attention à l'ordre des lettres)

3) Que peut-on dire du point C? Justifier.

On sait que : $\overrightarrow{AB} = \overrightarrow{CD}$ et $\overrightarrow{AB} = \overrightarrow{EC}$

On en déduit que $\overrightarrow{EC} = \overrightarrow{CD}$ ce qui signifie que C est le milieu de [ED]

Ici c'est la propriété n°4 qui nous sert...

EXERCICE N°4 (Le corrigé)

ABC est un triangle tel que AB=2.5 cm, AC=2 cm et BC=3 cm.

1) Construire le point M tel que $\overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{AC}$.

La propriété n°3 nous apprend que ABMC est un parallélogramme.

On peut faire cette construction au compas en se rappelant que dans un parallèlogramme les côtés opposés ont la même longueur deux à deux.

On prend l'écartement AB, on pointe en C et on trace un arc de cercle.

Puis, on prend l'écartement AC, on pointe en B et on trace un arc de cercle.

L'intersection de ces deux arcs nous donne le point M

2) Construire le point P tel que $\overrightarrow{MP} = \overrightarrow{AB} + \overrightarrow{CB}$.

L'idée est ici de construire un représentant de \overline{AB} d'origine M (on peut l'appeler \overline{MN} par exemple) puis un représentant de \overline{CB} d'origine N (Le vecteur \overline{NP}).

Pour \overline{MN} :

 $\overline{MN} = \overline{AB}$ signifie que ABNM est un parallélogramme. On construit donc le point N avec la même méthode qu'à la question 1.

Pour \overline{NP} :

 $\overline{NP} = \overline{CB}$ signifie que BPNC est un parallélogramme. On construit donc le point P avec la même méthode qu'à la question 1.

3) à quel vecteur est égale la somme $\overrightarrow{AM} + \overrightarrow{MP}$?

- **1**)
- **/** 2)
- **3**)

EXERCICE N°5 (Le corrigé)

1) Construire un triangle ABC isocèle en A tel que AB=3 cm et BC=2 cm.

On va compléter sur des figures différentes pour une meilleure lisibilité.

2) Construire les points M et N tels que $\overline{AM} = 2\overline{AB} + 3\overline{AC}$ et $\overline{CN} = -\overline{BC} + 2\overline{BA}$.

EXERCICE N°1

Compléter les égalités en n'utilisant que les points de la figure ci-contre :

2)
$$\overrightarrow{HG} + \overrightarrow{\dots} = \overrightarrow{HF}$$

3)
$$\overrightarrow{D...} + \overrightarrow{C...} = \overrightarrow{...B}$$

4)
$$\overrightarrow{E} \cdot \cdot \cdot + \overrightarrow{E} = \overrightarrow{E}$$

EXERCICE N°2

Écrire le plus simplement possible

1)
$$\overrightarrow{BD} + \overrightarrow{DA}$$

2)
$$\overrightarrow{BD} + \overrightarrow{AA}$$

3)
$$\overrightarrow{BD} + \overrightarrow{DB}$$

4)
$$\overrightarrow{BD} - \overrightarrow{BA}$$

5)
$$\overrightarrow{BD} + \overrightarrow{AD} + \overrightarrow{BA}$$

6)
$$\overrightarrow{BD} - \overrightarrow{BA} + \overrightarrow{DA} - \overrightarrow{DB}$$

EXERCICE N°3

Soit A, B et C trois points.

1) Construire le point D tel que $\overrightarrow{AB} = \overrightarrow{CD}$

2) Construire le point E tel que $\overrightarrow{AB} = \overrightarrow{EC}$

3) Que peut-on dire du point C? Justifier.

EXERCICE N°4

ABC est un triangle tel que AB=2.5 cm , AC=2 cm et BC=3 cm .

1) Construire le point M tel que $\overline{AM} = \overline{AB} + \overline{AC}$.

2) Construire le point P tel que $\overline{MP} = \overline{AB} + \overline{CB}$.

3) à quel vecteur est égale la somme $\overrightarrow{AM} + \overrightarrow{MP}$?

EXERCICE N°5

1) Construire un triangle ABC isocèle en A tel que AB=3 cm et BC=2 cm.

2) Construire les points M et N tels que $\overline{AM} = 2\overline{AB} + 3\overline{AC}$ et $\overline{CN} = -\overline{BC} + 2\overline{BA}$.