

COMPETÊNCIAS TRANSFERÍVEIS

Finanças Empresariais | 2021/22

degeit

Capítulo 1 1.4 Noções fundamentais de Cálculo Financeiro

Objetivos

- Saber trabalhar com diferentes regimes de juros
- Entender as diferenças entre taxas efetivas e nominais
- Diferenciar tipos de taxas de juro
- Perceber conceitos de atualização e capitalização
- Evidenciar a importância temporal do dinheiro
- Distinguir os vários tipos de modalidades de empréstimos
- Interligar conceitos relacionados com aplicações financeiras

"1€ hoje vale mais que 1€ amanhã"

O valor temporal do dinheiro é um dos <u>princípios fundamentais das</u> <u>finanças empresariais</u>, pelas seguintes razões

- Preferências por consumo imediato;
- Incerteza;
- Possibilidade de aplicação do montante respetivo

- Qual é o montante que recebido daqui a um ano é equivalente a ter hoje 100 euros?
- Se, no mercado, for possível **investir os 100 euros** num ativo sem risco com uma **taxa de juro de 5%:**
 - ⇒ Se eu investir os 100 euros hoje, daqui a um ano terei 105 euros : 100 x (1+0,05)

⇒ Ou seja, capital inicial (100€) **+ juro** (5€)

rei 105 euros: 100 x (1+0,05

Valor acumulado ou valor capitalizado

Operação financeira

Toda a ação que tem como objetivo alterar quantitativamente um capital, tendo como características base:

- Duração
- Taxa usada
- Contingência quanto à sua realização (certas ou aleatórias)

Juro e taxa de juro

O **juro** traduz a remuneração de um fator produtivo cedido ou aplicado temporariamente pelo titular do fator

O cálculo do juro é função de três variáveis:

- Do capital investido (C ou C₀ capital inicial ou capital referido ao momento 0)
- Da taxa de juro (i)
- Do prazo (n)

 $J = C \times n \times i \qquad (J - \text{juro produzido no final do período } n)$

Juro

Remuneração de determinado capital durante determinado prazo, em <u>valor</u> absoluto.

Taxa de juro

Montante, expresso em <u>percentagem</u>, que é pago para compensar o montante do empréstimo.

Capitalização e valores acumulados ; atualização e valores atuais

Comparar capitais em <u>diferentes momentos no tempo</u>, implica coloca-los num momento do tempo equivalente:

"Andar para a frente no tempo", colocando todos os capitais num mesmo **momento futuro**

Tempo

"Andar para trás no tempo", colocando todos os capitais no **momento presente**

 $C_n = V_n$

Capital acumulado corresponde ao valor acumulado ou capitalizado

 $C_0 = V_0$

Capital inicial designa-se por valor atual ou atualizado

Tempo

Exemplos

1. Suponha que alguém está disposto a oferecer-lhe 100€, e lhe dá a escolher entre receber agora ou receber a mesma importância daqui a 10 anos. Que hipótese escolher?

R: Será preferível receber agora, e fazer uma aplicação financeira desses 100€ que poderá aumentar esse valor.

2. E se lhe for proposto receber agora os 100€ ou 200€ no fim de 10 anos. Que hipótese escolher?

Para responder à questão basta ter UMA das seguintes informações:

OU o Valor Futuro dos 100€, OU o Valor Presente dos 200€.

$$C_n = C_0(1 + i)^n$$

Suponha que a taxa de juro de mercado a 10 anos é de 5%; então:

- Valor Futuro dos 100€: C_n= 100 (1+0,05)¹⁰ ≈163€
- Valor Presente dos 200€: 200 = C_0 (1+0,05)¹⁰ <=> C_0 ≈123€

R: Será preferível esperar 10 anos e receber os 200€ no futuro.

Tempo

Exemplos

3. Suponha que no seu atual emprego, o seu vencimento anual ronda os 14.000€ e não está previsto que nos próximos 3 anos sofra alterações. Você tem uma nova proposta de trabalho em que o vencimento inicial seria de 13.000€, esperando-se um aumento anual de 10% nos próximos 3 anos.

Se a decisão de manter-se no atual emprego ou mudar-se para o novo dependesse apenas da questão salarial, qual deveria ser a sua escolha?

Resposta:

1ª Opção) usar operações de capitalização :

Valor Futuro Vencimentos no atual emprego: $C_n = 14.000(1+0.02)^3 + 14.000(1+0.02)^2 + 14.000(1+0.02)^1 ≈ 44.279€$

Valor Futuro Vencimentos no novo emprego: $C_n = 13.000(1+0.02)^3 + 14.300(1+0.02)^2 + 15.730(1+0.02)^1 ≈ 44.718€$

2ª Opção) usar operações de atualização:

Valor Presente Vencimentos no atual emprego: $C_0 = 14.000(1+0.02)^{-1} + 14.000(1+0.02)^{-2} + 14.000(1+0.02)^{-3} \approx 40.105$ €

Valor Presente Vencimentos no novo emprego: $C_0 = 13.000(1+0,02)^{-1} + 14.300(1+0,02)^{-2} + 15.730(1+0,02)^{-3} ≈ 41.313$ €

R: À luz de qualquer uma das duas opções de resolução, será preferível o emprego novo.

Juro simples

Regime de juro simples

Os juros saem do circuito de capitalização no momento do seu vencimento. O capital aplicado permanece constante durante todo o prazo da aplicação; mais utilizado em operações de <u>curto prazo.</u>

- ☐ Fórmula geral do cálculo de juros, em regime de juro simples:
 - Anual: $J = C_0.n.i$
 - Se o período de capitalização é fornecido em dias (ano civil): J = (C₀.n.i) / 365
 - No caso da contagem de dias ser feita em ano comercial: J = (C₀.n.i) / 360
 - Se n for fornecido em meses: J = (C₀.n.i) / 12
- \square Para calcular o juro dum período específico x temos: $j_x = C_0$.i
- \Box Fórmula de capitalização para n períodos (anuais): $C_n = C_0 + J = C_0 + C_0$.n.i = C_0 (1 + n.i)

Neste caso, não há juros de juros!

⇒ o capital sobre o qual se calculam os juros mantém-se constante, bem como o juro pago no final de cada período

Juro composto

Regime de juro composto

Os juros, no momento do seu vencimento, são integrados no circuito de capitalização. O capital aplicado vai aumentando no início de cada período, pela adição dos juros vencidos; mais utilizado em operações <u>de médio e longo prazo.</u>

Fórmula geral:
$$J = C_0.[(1+i)^n - 1]$$
; $j_x = C_0 (1+i)^{x-1}.i$

$$C_n = C_{n-1} + J_n = C_{n-1} (1 + i)$$
; i constante

Com taxa de juro constante ao longo de n períodos temos um crescimento exponencial:

$$\begin{split} &C_1 = C_0 + J_1 = C_0 + C_0.i = C_0 \ (1+i) \\ &C_2 = C_1 \ (1+i) = C_0 \ (1+i)(1+i) = C_0 \ (1+i)^2 \\ & \textbf{C_n} = C_{n-1} \ (1+i) = C_0 \ (1+i)(1+i)...(1+i) = \textbf{C_0} \ \textbf{(1+i)}^n \implies \textbf{(Fórmula Geral)} \end{split}$$

"Juros vencem juros"

- ⇒ Incorporação dos juros produzidos ao longo dos períodos de aplicação no capital aplicado inicialmente
- ⇒ O valor do capital aplicado aumenta e o juro de cada período será superior ao juro do período anterior

Juro composto

Conforme esquema slide 6

Generalizando, em regime de juro composto, e considerando que a taxa de juro i não varia:

Capitalização: $C_n = C_0(1+i)^n$

Atualização: $C_0 = \frac{C_n}{(1+i)^n} = C_n(1+i)^{-n}$

Fatores de atualização:

Um período: (1+i)⁻¹

n períodos: (1+i)⁻ⁿ

Fatores de atualização:

Um período: (1+i)¹

n períodos: (1+i)ⁿ

Exemplos

Capital (C)	1,000.00€
Anos (n)	3
Taxa de juro (i)	2%

	•	Juros compostos $C_n = C_0 (1+i)^n$	$C_0 = C_n (1+i)^{-n}$
	1,060.00	1,061.21	
Capital	1,000.00		
Juro Ano 1	20.00	1,020.00	
Juro Ano 2	20.00	1,040.40	
Juro Ano 3	20.00	1,061.21	1,000.00
	1,060.00		_
	Capital	ização	Atualização

Se eu ganho 100 em t, 200 em t+1 e 150 em t+2, quanto vale isso hoje?

$$V_0 = C_0 = 100 + 200 + 150$$
?

Não! Se quisermos fazer operações envolvendo <u>quantias recebidas e/ou pagas em diferentes momentos</u> <u>do tempo</u> temos de exprimir todos esses montantes em unidades de dinheiro que sejam realmente <u>equivalentes.</u>

⇒ Ou seja, temos de calcular o valor de todas as quantias no mesmo momento do tempo:

Para t = 0
$$\Rightarrow$$
 V₀ = C₀ = 100 + 200/(1+i) + 150/(1+i)²
No momento t+2 (com t = 0) teremos (capitalização) \Rightarrow V_{n=2} = 100 (1+i)² + 200 (1+i) + 150

- A **taxa de juro** para um certo período de tempo é o <u>preço</u> de utilizar uma unidade monetária durante esse período de tempo.
- Se para uma dada taxa de juro, o montante que os agentes estão dispostos a emprestar é inferior ao montante que os outros agentes desejam pedir emprestado (<u>Oferta < Procura</u>), haverá tendência para o preço subir (taxa de juro aumenta).

Relação entre diferentes períodos e tipologias

☐ Importância da variável taxa de juro

- representa o valor de mercado do dinheiro
- valor ao qual os credores estão dispostos a emprestar dinheiro ou os devedores estão dispostos a pedir emprestado dinheiro
- Por vezes o período de determinação dos juros não coincide com o período da taxa. Normalmente, <u>o</u> sistema financeiro indica taxa anual, mas o período de contabilização dos juros é diferente de um ano: semestral, quadrimestral, trimestral, mensal, diário.

☐ Conceitos a abordar:

- 1. Taxas proporcionais
- 2. Taxas equivalentes
- 3. Taxas efetivas e taxas nominais
- 4. Taxas correntes e reais (quando a taxa de inflação está a ser considerada ou não, respetivamente)
- 5. Taxas ilíquidas e líquidas (quando estão incluídos ou excluídos os impostos sobre o juro)
- Outros conceitos de taxas

1. Taxas proporcionais

- Em regime de juro simples, quando se relacionam taxas apenas se pode falar em taxas proporcionais.
- Duas taxas dizem-se proporcionais (efetivas) quando, sendo de períodos diferentes, existe entre elas a mesma relação de valor que existe entre os seus períodos:

$$i_k = \frac{i_m^k}{m} \iff i_m^k = i_k \times m$$

m = nº de períodos no ano (periodicidade da taxa)

 $\frac{i_k}{k} = \frac{i_m^k}{m} \iff i_m^k = i_k \times m$ $\frac{k}{k} = A, S, T, Q, M, ... (A = anual; S = Semestral; T = trimestral; Q = quadrimestral; M = mensal)$ indica o período k da taxa

- **Exemplo**: Considere uma taxa anual e uma taxa trimestral
 - Relação entre períodos: 4 para 1

• Taxa anual =
$$i_m^k$$
 = 8% \Rightarrow taxa trimestral = $i_k = \frac{i_m^k}{m} = \frac{8\%}{4} = 2\%$

Regra da proporcionalidade

2. Taxas equivalentes

- Usadas em regime de juro composto
- Não é possível aplicar diretamente as <u>taxas proporcionais</u> em regime de juro composto, dado que estas <u>não consideram o processo de capitalização</u> de juros de juros
- Duas taxas dizem-se equivalentes quando, sendo relativas a períodos diferentes, aplicadas durante o mesmo prazo e ao mesmo capital, produzem um valor acumulado (ou atualizado) igual, em regime de juro composto:

$$i_L = (1 + i_k)^m - 1 \Leftrightarrow i_k (1 + i_L)^{1/m} - 1$$

 $\underline{i_k}$ a taxa efetiva de período menor $\underline{i_L}$ a taxa efetiva de período maior \underline{m} a variável que traduz a relação entre as taxas (m = nº meses período maior / nº meses período menor; se em meses); L = A, S, T, Q, M,...

Exemplo:

- $i_s = 10\%$ semestral (S); i anual = ?
- $i_{\Delta} = (1 + 0.1)^{12/6} 1 = 0.21 = 21\%$

Regra da equivalência

3. Taxas efetivas e taxas nominais

Na prática comercial é frequente usar taxas anuais proporcionais para períodos de juros <1 ano, distinguindo-se pelo facto da taxa <u>refletir ou não a existência de juros de juros</u>

- Efetiva: considera o efeito de <u>capitalizações sucessivas</u>. Apenas se faz referência a <u>1 período</u> (taxa anual, taxa semestral,...). O período de formação e incorporação dos juros ao capital <u>coincide</u> com aquele a que a taxa está referida: "25% ao semestre com capitalização semestral". **Usualmente esta é a taxa aplicável.**
- Nominal: o período de formação e incorporação dos juros ao capital <u>não coincide</u> com aquele a que a taxa está referida: "34% ao ano com capitalização mensal". Há sempre <u>2 períodos indicados</u>: o da taxa e o de cálculo dos juros; taxa anual convertível semestralmente: ano = período da taxa; semestre = período de cálculo dos juros. Ou seja, taxa proporcional anual da taxa semestral.
- ☐ **Formulação**: Para qualquer taxa efetiva, pode apresentar-se a seguinte expressão:

$$i_L = \left(1 + \frac{i_m^k}{m}\right)^m - 1$$
 e, invertendo a equação: $i_m^k = \left[(1 + i_L)^{1/m} - 1\right] \times m$ $\stackrel{i_L}{\longrightarrow}$ i_m^k - taxa efetiva i_m^k - taxa nominal

- $\frac{i_m^k}{m}$ taxa nominal do período k [anual (A), semestral (S), ...] com capitalização m (semestral=2, se k=ano; trimestral=4 se k=ano)
- \square **Exemplo**: para converter na efetiva mensal = Nominal anual / 12 = (34%/12)

3. Taxas efetivas e taxas nominais – exemplo

Exemplo 1:

Um investidor efetuou um depósito a prazo de um ano com juros trimestrais.

A taxa indicada pelo banco é de 4% ao ano com cálculo de juros trimestrais.

Ou seja, taxa de juro nominal \Rightarrow taxa nominal anual convertível trimestralmente.

Apesar da taxa de juro indicada ser a anual, os juros são calculados por trimestre, com base na taxa trimestral proporcional à taxa nominal anual de 4%. O rendimento será efetivamente de 1% ao trimestre

- A taxa efetiva trimestral será: $i_T = 4\% / 4 = 1\%$
- De acordo com a <u>fórmula de equivalência de taxas:</u>
- Taxa anual efetiva será: $i_A = (1+0.01)^4 1 = 0.040604 \implies 4.0604\%$

(A – Anual; T – Trimestral)

3. Taxas efetivas e taxas nominais – exemplo

Exemplo 2:

Se uma conta poupança paga uma taxa de juro anual de 10%, um depósito de 100€ transformar-se-á num valor de 110€ ao fim de 1 ano.

Contudo, se a <u>capitalização do juro for semestral em vez de anual</u>, a conta de poupança proporcionará uma taxa de juro de 5% em cada semestre.

Utilizando a relação de proporcionalidade do tempo (1 ano=2 semestres), conseguimos transformar taxas nominais em taxas efetivas, ou seja,

Taxa de juro nominal anual = 10% \rightarrow Taxa de juro efetiva semestral = 10%/2 = 5%

Portanto, o montante que irá existir na conta poupanças com capitalização semestral ao fim de um ano será: 100 (1 + 0.05)² = 110,25€

Concluindo, o depósito inicial crescerá, efetivamente a uma taxa de juro anual de 10.25% em vez de 10%, efeito

da capitalização semestral, que pode ser obtida assim: $i_A = (1+0.05)^2 - 1 = 0.1025$

pela relação de equivalência.

Taxa real

4. Taxas correntes e taxas reais

Taxas correntes /reais: distinção tem a ver com o facto de a taxa refletir ou não o efeito da <u>inflação</u>

A **fórmula de cálculo** é: Taxa de juro real = taxa de juro nominal - inflação

Taxa de inflação observada – IHPC

Evolução das taxas de juro nominais e reais na área do euro:

A título de curiosidade

A título de exemplo, em inícios da década de 1980, embora a taxa de juro nominal média fosse elevada na área do euro, a inflação também era elevada. Consequentemente, a taxa de juro real média era baixa.

O gráfico mostra a evolução das taxas de juro nominais e reais médias dos depósitos bancários de curto prazo nos países da área do euro e a taxa de inflação desde 1981.

In https://www.ecb.europa.eu/explainers/tell-me/html/nominal_and_real_interest_rates.pt.html

5. Taxas ilíquidas e líquidas

Taxas ilíquidas/líquidas – a distinção tem a ver com o facto de a taxa refletir ou não a existência de <u>impostos sobre juros</u> (efeito da fiscalidade)

- Taxa ilíquida ou bruta é a taxa que não leva em consideração o efeito fiscal
- Taxa líquida: contempla o efeito fiscal, ou seja, o valor que efetivamente recebemos numa aplicação financeira: i_{liq} = (1-t_{imp}).i_{iliq}

4. Outros conceitos de taxas

Spread:

Relacionado com o conceito de taxas ouvimos frequentemente a expressão *spread*, que é a diferença entre a taxa ativa (ex. empréstimos concedidos) e a taxa passiva (ex. depósitos).

Por regra superior a zero, uma vez que normalmente as instituições financeiras (IF) remuneram os depósitos a taxas inferiores àquelas que obtêm quando concedem empréstimos, obtendo uma margem de lucro pelo diferencial das taxas

O termo *spread* também pode ser usado como o acréscimo que as IF aplicam a uma determinada taxa de referência para obter a taxa de juro que será utilizada numa determinada operação bancária (ex. crédito à habitação de taxa indexada).

Euribor:

A designação *Euribor* é o acrónimo de *Euro Interbank Offered Rate*, que traduz uma média das taxas de juros às quais os principais bancos que operam na Zona Euro trocam euros entre s.

- ☐ De forma a financiar investimentos, as empresas podem recorrer a uma fonte de capital alheio, como é o caso dos empréstimos bancários (outras formas de financiamento alheio, como obrigações, não serão abordadas por simplificação nesta UC).
- ☐ A liquidação desses empréstimos pressupõe o pagamento de prestações. Estas dividem-se em:
 - amortização do capital (m),correspondente ao reembolso do capital pedido
 - pagamento de juros (j), no decorrer da duração do empréstimo
- ☐ Em empréstimos apenas falamos de regime de juros compostos (RJC)

Modalidades de amortização de empréstimos

A combinação de diferentes alternativas de:

- Pagamento de juros: único no final, único no início, ao longo do empréstimo,
- Reembolso do capital: único no final, em prestações (diversos pagamentos escalonados ao longo do prazo = reembolso a prestações)

Ficamos com 6 modalidades possíveis de liquidação de empréstimos:

- Modalidade 1 Reembolso do capital e juros pagos de uma só vez no final do empréstimo
- Modalidade 2 Reembolso do capital de uma só vez e juros pagos no início do empréstimo
- Modalidade 3 Reembolso do capital de uma só vez e juros pagos ao longo do prazo do empréstimo
- Modalidade 4 Reembolso do capital ao longo do prazo do empréstimo e juros pagos no início do empréstimo
- Modalidade 5 Reembolso do capital ao longo do prazo do empréstimo e juros pagos no final do empréstimo

Foco nesta UC: Modalidade 6 / opção 2

Modalidade 6 – Reembolso do capital ao longo do prazo do empréstimo e juros pagos ao longo do prazo do empréstimo. É a mais utilizada em empréstimos e podemos ter:

- (1) O valor do reembolso do capital é constante em cada período;
- (2) O valor da prestação total (reembolso do capital + juros) é constante em cada período => Sistema francês de quotas constantes, mais usual em Portugal e que será o nosso foco nesta UC

Nota: O empréstimo também pode considerar períodos de carência, com impacto no cálculo na amortização do empréstimo (não abordado nesta UC).

Modalidades de amortização de empréstimos

Não aprofundado na UC

Modalidade 1 – Reembolso do capital e juros pagos de uma só vez no final do empréstimo

Expressão geral para o cálculo dos juros a pagar no final do período: $J_n = C_n - C_0$

Não aprofundado na UC

Modalidade 2 – Reembolso do capital de uma só vez e juros pagos no início do empréstimo

Expressão geral para o cálculo dos juros a pagar no início do período: $J_0 = C_0 - C_0 / (1+i)^n$

Não aprofundado na UC

Modalidade 3 – Reembolso do capital de uma só vez e juros pagos ao longo do prazo do empréstimo

Expressão geral para o cálculo dos juros a pagar: $j = C_0$.i

Modalidades de amortização de empréstimos

Não aprofundado na UC

Modalidade 4 – Reembolso do capital ao longo do prazo do empréstimo e juros pagos no início do empréstimo

Expressão geral para o cálculo dos juros a pagar no início do período: $J_0 = C_0 [(n - a_{n|i})/n]$

an|i corresponde ao fator de atualização das anuidades disponível nas tabelas financeiras que considera o número de anuidades (n) e a taxa de juro (i)

Não aprofundado na UC

Modalidade 5 – Reembolso do capital ao longo do prazo do empréstimo e juros pagos no final do empréstimo

Expressão geral para o cálculo dos juros a pagar: $J_n = C_0 \left[(n - a_{n|i}) / (n.(1+i)^{-n}) \right]$

Modalidades de amortização de empréstimos

Modalidade 6 – Reembolso do capital ao longo do prazo do empréstimo e juros pagos ao longo do prazo do empréstimo

Não aprofundado na UC

1) Reembolsos de Capital Constantes

- Os juros são pagos ao longo do prazo do empréstimo
- O reembolso do capital é efetuado ao longo do prazo do empréstimo, sendo o valor das amortizações efetuadas em cada período constante: $m_1 = m_2 = ...= m_n$

Quadro de Amortização de Empréstimos (Reembolsos de Capital Constantes)						
Período (t)	Dívida no	Juro a pagar no fim do	Prestação (pt)	no final do	Acumuladas	Capital em dívida no final
	início (C _{t-1})	período (j _t)	(período (m _t)	(M _t)	(C_t)
1	C_0	j_1	p_1	m	m	C_1
2	C_1	j_2	p_2	m	2m	C_2
3	C_2	j ₃	p_3	m	3m	C_3
•••	•••	•••	•••	•••	•••	•••
n	$C_{n-1} = m$	j _n	p_n	m	n.m	C_{n}

Valor prestação (p_t): $p_t = m_t + j_t$ Valor juro (j_t): $j_t = [C_0-(t-1).m].i$ ou $j_t = C_{t-1} x i$ Valor em dívida em cada período (C_t): $C_t = (n-t).m$ Valor do capital já reembolsado: $M_t = t.m$

A prestação varia, o juro varia, mas m está constante

Modalidades de amortização de empréstimos

Modalidade 6 – Reembolso do capital ao longo do prazo do empréstimo e juros pagos ao longo do prazo do empréstimo

2) Prestações (Capital e juros) constantes (mais frequente nos empréstimos à habitação)

Neste caso consideramos que:

- Os juros são pagos ao longo do prazo do empréstimo
- O reembolso do capital é efetuado ao longo do prazo do empréstimo
- O valor da prestação total é constante em cada período

Quadro de Amortização de Empréstimos						
(Prestações Constantes (Capital + Juros))						
Período (t)	Capital em Dívida no início (C _{t-1})	Juro a pagar no fim do período (j _t)	Prestação (pt)	Amortizaçã o no final do período (m _t)	Amortizações Acumuladas (M _t)	Capital em dívida no final (C_t)
1	C_0	j_1	р	$m_{\scriptscriptstyle{1}}$	$M_\mathtt{1}$	C_1
2	$C_\mathtt{1}$	j_2	р	m_2	M_2	C_2
3	C_2	j_3	р	m_3	M_3	C_3
•••		•••	•••		•••	•••
n	$C_{n-1} = m_n$	\mathbf{j}_{n}	р	m_n	M_n	C_n

Notas:

- j é muito elevado no início e diminui depois, porque C₀ é mais elevado que C_t
- m é baixo no início e vai aumentando para compensar

Modalidades de amortização de empréstimos

Modalidade 6 – Reembolso do capital ao longo do prazo do empréstimo e juros pagos ao longo do prazo do empréstimo

2) Prestações (Capital e juros) constantes (cont)

- a) Cada uma das prestações $\underline{\mathbf{p}}$ abrange uma parte $(\underline{\mathbf{m}}_{\underline{\mathbf{t}}})$ destinada ao reembolso do capital e outra ao pagamento dos juros do período (j_t) : $p = m_t + j_t$
- b) Os valores de reembolso de capital de períodos sucessivos variam segundo uma progressão geométrica de razão (1+i); então: $m_t = m_{t-1}$ (1+i), o que permite calcular o valor de um qualquer reembolso no período t a partir de outro reembolso. Como: $m_2 = m_1$ (1+i); $m_3 = m_2$ (1+i) = m_1 (1+i)²; etc; ou seja: $m_t = m_1$ (1+i)^{t-1}
- c) Isto também permite calcular o valor inicial do empréstimo a partir do valor do 1º reembolso, fazendo:

$$C = m_1 [1 + (1+i) + (1+i)^2 + ... + (1+i)^{n-1}], \text{ ou seja, } C = m_1.s_{n|i}$$

d) Se pretendermos determinar o valor do primeiro reembolso podemos utilizar a expressão:

$$m_1 = C (1 / s_{n|i}) = C/[((1+i)^{n-1})/i]$$

e) O valor em dívida em cada período é função das prestações vincendas, ou seja, prestações que ainda não venceram. Se considerarmos que está previsto o pagamento de um empréstimo através de n prestações constantes, pode-se determinar o valor em dívida num determinado momento t através da expressão: $C_t = p \cdot a_{n-t|i} = p \cdot [(1-(1+i)^{-(n-t)})/i]$

Modalidade 6 | Caso 2: Exemplo

Exemplo:

Considere o seguinte quadro de amortização, relativo a um empréstimo contraído a uma taxa efetiva trimestral de 2,713192921%.

Preencha os espaços em branco no quadro de amortização, apresentando os respetivos cálculos de base.

Período (em anos) t	Capital em dívida no início do período C_{t-1}	Juro do período j _t	Amortização do capital do período m _t	Prestação do período p _t = m _t +j _t	Capital em dívida no final do período C _t = C _{t-1} -m _t
1	25,275.00	2,856.08	5,055.00	7,911.08	20,220.00
2	20,220.00	2,284.86	5,055.00	7,339.86	15,165.00
3	15,165.00	1,713.65	5,055.00	6,768.65	10,110.00
4	10,110.00	1,142.43	5,055.00	6,197.43	5,055.00
5	5,055.00	571.22	5,055.00	5,626.22	0.00

Cálculos auxiliares:

 $i_A = (1+i_T)^4 - 1 = (1,02713192921)^4 - 1 = 11,30\%$ (Nota: se nada for dito em contrário utilizar a taxa percentual dada)

$$j1 = 25.275$$
€ x 11.30 % = $2.856,08$ €

(...)