Individual 4

Yu Fan Mei Introduction to Proof and Problem Solving

October 7, 2024

Problem 12. (1) Consider the statement

$$p \equiv \{ \forall M \in \mathbb{R}, \exists K \in \mathbb{R} \text{ s.t. } \forall x > K, f(x) > M \}.$$

- (a) Write $\neg p$.
- (b) Consider the function f from \mathbb{R} into \mathbb{R} defined by

$$f(x) = \begin{cases} \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}.$$

Does f satisfy p or $\neg p$? Prove your answer.

Solution. (a) The negation of p is

$$\neg p \equiv \{\exists M \in \mathbb{R} \text{ such that } \forall K \in \mathbb{R}, \exists x > K \text{ such that } f(x) \leq M\}$$

Proof. We will prove that f satisfies p. Let M_0 be any real number. Set $K_0 = |M_0| + 1$. Let x_0 be any real number greater than K_0 . Since M_0 .

Proof. We will prove that f satisfies $\neg p$. Set $M_0 = 1$. Let K_0 be any real number. Set $x_0 = -|K_0| - 1$. Since $|K_0| \ge 0$, then we know that $-|K_0| \le 0$. Since -1 < 0, when we subtract 1 from the left hand side we get

$$-|K_0| - 1 < 0$$

 $x_0 < 0$

We know that -1 < 0. Since $x_0 < 0$, $x_0 \neq 0$ and we are allowed to divide both sides of the inequality by x_0 .

$$\frac{1}{x_0} < 0.$$

Since 0 < 1, we know that the inequality below must also be true:

$$\frac{1}{x_0} \le 1.$$

Thus, f satisfies $\neg p$.

While working on this proof, I received no external assistance aside from advice from Professor Mehmetaj.