

COMMERCE MENTORSHIP PROGRAM

FINAL REVIEW SESSION

COMM 294

TABLE OF CONTENTS

Topic 1: Standard Costs & Balanced Scorecard

Topic 2: Absorption & Variable Costing

Topic 3: Responsibility Accounting

Topic 4: ROI vs. Residual Income

Topic 5: Transfer Pricing

Topic 6: Incremental Analysis

Topic 1:

Standard Costs & Balanced Scorecard

Budgetary Control Process

Static VS Flexible Budget

Static Budget

- Projection of budget data at a single level of activity before actual activity occurs
- Only effective if actual level of activity closely approximates budgeted activity level, or if costs are predominantly fixed

N	Barto Manufacturing Overh For the Year End			
			Difference	
	Budget	Actual	Favorable - F Unfavorable - U	
Production in units	10,000	12,000		
Costs				
Indirect materials	\$ 250,000	\$ 295,000	\$ 45,000	U
Indirect labor	260,000	312,000	52,000	U
Utilities	190,000	225,000	35,000	U
Depreciation	280,000	280,000	0	
Property taxes	70,000	70,000	0	
Supervision	50,000	50,000	0	
	\$1,100,000	\$1,232,000	\$132,000	U

Flexible Budget

- Projection of budget data at various levels of activity (E.g. Marriott Hotels can budget revenues and net income on the basis of 60%, 80%, and 100% of room occupancy)
- Much more effective for evaluating overall performance and variances

	Barto facturing Overho For the Year End			
			Difference	
	Budget	Actual	Favorable - F Unfavorable - U	
Production in units	12,000	12,000		
Variable costs				
Indirect materials (\$25)	\$ 300,000	\$ 295,000	\$5,000	F
Indirect labor (\$26)	312,000	312,000	0	
Utilities (\$19)	228,000	225,000	3,000	F
Total variable costs	840,000	832,000	8,000	F
Fixed costs				
Depreciation	280,000	280,000	0	
Property taxes	70,000	70,000	0	
Supervision	50,000	50,000	0	
Total fixed costs	400,000	400,000	0	
Total costs	\$1,240,000	\$1,232,000	\$8,000	F

Intro to Standard Costs

What are standard costs?

- Predetermined unit costs: the typical, normal cost for something
- Estimated per unit, as opposed to budgets which are estimated as totals
- Used to determine variances between **actual costs** and **expected costs**

Setting Standard Costs

Determine standards for DM, DL and MOH to determine standard cost per unit

Accumulate **actual amounts** over the year

Calculate variances
(differences between actual costs and standard costs)

Intro to Variances

Variance = Flexible Budget - Actual Results

Favourable Variances (-)

- Actual Costs < Budgeted Costs
- Actual Income > Budgeted Income

Unfavourable Variances (+)

- Actual Costs > Budgeted Costs
- Actual Income < Budgeted Income

	Static Budget	Flexible Budget	Actual Results	Variance
Production in Units	10,000 units	12,000 units	12,000 units	
Variable Costs	T	10		
Indirect Materials (\$25)	\$ 250,000	\$ 300,000	\$ 295,000	\$ 5,000 F
Indirect Labour (\$26)	260,000	312,000	312,000	0
Utilities (\$19)	190,000	228,000	225,000	3,000 F
Total Variable Costs	\$ 700,000	\$ 840,000	\$ 832,000	\$ 8,000 F
Fixed Costs				
Depreciation	\$ 280,000	\$ 280,000	\$ 280,000	\$ 0
Property Taxes	70,000	70,000	70,000	0
Supervision	50,000	50,000	50,000	0
Total Fixed Costs	\$ 400,000	\$ 400,000	\$ 400,000	\$ 0
Total Costs	\$ 1,100,000	\$ 1,240,000	\$ 1,232,000	\$ 8,000 F

Total Variance = Materials Variance + Labour Variance + Overhead Variance

Topic 1: Standard Costs & Balanced Scorecard

Variance Formula Notation

AH: Actual Hours Used	SH: Standard Hours
AP: Actual Price	SP: Standard Price
AQ: Actual Quantity	SQ: Standard Quantity
AR: Actual Rate Per Hour	SR: Standard Rate Per Hour

Standard = Budgeted / Expected

Direct Material Variances

Total Variance = Materials Variance + Labour Variance + Overhead Variance

AP: Actual Price SP: Standard Price

AQ: Actual Quantity SQ: Standard Quantity

Material Price Variance

MPV = AQ purchased x (AP - SP)

Material Quantity Variance MQV = SP x (AQ - SQ)

Total Materials Variance (AQ x

 $(AQ \times AP) - (SQ \times SP)$

Direct Labour Variances

Total Variance = Materials Variance + Labour Variance + Overhead Variance

AH: Actual Hours Used	SH: Standard Hours	
AR: Actual Rate Per Hour	SR: Standard Rate Per Hour	

Labour Price Variance LPV = AH x (AR - SR)

Labour Quantity Variance LQV = SR x (AH - SH)

Total Labour Variance

 $(AH \times AR) - (SH \times SR)$

Manufacturing Overhead Variances

Total Variance = Materials Variance + Labour Variance + Overhead Variance

AH: Actual Hours Used	SH: Standard Hours
AR: Actual Rate Per Hour	SR: Standard Rate Per Hour

Variable OH Rate Var. VORV = AH x (AR - SR)

Variable OH Quantity Var. VOQV = SR x (AH - SH)

Total Overhead Variance

(AH x AR) - (SH x SR)

Variance Equation Summary

Total Variance = Materials Variance + Labour Variance + Overhead Variance **Material Price Variance** $MPV = AQ_{purchased} \times (AP -$ **Material Quantity Variance** $MQV = SP \times (AQ - SQ)$ SP) **Total Materials Variance** $(AQ \times AP) - (SQ \times SP)$ or MPV + MQV**Labour Price Variance** $LPV = AH \times (AR - SR)$ **Labour Quantity Variance** $LQV = SR \times (AH - SH)$ **Total Labour Variance** $(AH \times AR) - (SH \times SR)$ or LPV + LQV $VORV = AH \times (AR - SR)$ Variable OH Quantity Var. Variable OH Rate Var. $VOQV = SR \times (AH - SH)$

Total OH Variance (AH x AR) - (SH x SR) or VORV + VOQV

Lebron James Jersey Co. (LJJ Co.) produces high-quality authentic NBA jerseys. Bryce James, the controller, is looking to calculate the end-of-month variances to see how the company has been performing.

In April, LJJ Co. produced and sold 10,000 jerseys using 1,000 reams of polyester and 19,000 hours of labour. Total labour costs were \$221,000.

Bryce James originally thought each jersey would use 0.2 reams of polyester and 3 hours of labour. He expected that the company would purchase polyester at a rate of \$5 per ream and pay workers at a rate of \$10 per hour.

Help Bryce calculate:

- 1. The Material Quantity Variance
- 2. The Labour Price Variance

$$MQV = SP * (AQ - SQ)$$

SP = \$5/ream; AQ = 1000 reams; SQ = 10k jerseys * 0.2 = 2000 reams

MQV = 5 * (1k - 2k) = \$5,000 Favourable (F)

Actual quantity for 10k jerseys was less than expected! Woohoo!

LPV = AH * (AR - SR)

AH = 19k hours; AR = 221k/19k hours = \$11.63; SR = \$10

LPV = 19k * (11.63 - 10) = \$30,970 Unfavourable (U)

Actual labour price was more than expected. Yikes!

Balanced Scorecard

Incorporation of financial and nonfinancial measures in an integrated system that links **performance measurement with company strategic goals**. Measures **differ by industry**.

Key Perspectives & Examples of Measures

Financial: measures directly related to your income statement

E.g. profit margin, cost per unit manufactured, % increase in sales, cost of spoilage, cost of securing new customers

Customer: customer satisfaction, perception of company and products

E.g. cost per customer, customer satisfaction ratings, % of market share, # of customer complaints, # of return customers

Internal Process: internal operations and efficiencies within company

E.g. % of spoilage, input cost per unit, % of capacity used, # of process improvements implemented, cost of quality inspection

Learning & Growth: intangible resources within company such as innovation and employee knowledge

E.g. # of employees trained on manufacturing process/customer service, # of employee initiatives implemented, employee turnover

Topic 2:

Absorption & Variable Costing

Review: Product & Period Costs

Manufacturing (AKA Product) Costs

- Direct Materials (DM), Direct Labour (DL),
 Manufacturing Overhead (MOH)
- DM/DL directly associated with finished product; e.g. workers paid by production level
- MOH = indirectly associated costs; e.g. depreciation, insurance, maintenance on factory, factory manager salary
- Recorded as inventory and expensed as sold (to COGS)

Non-Manufacturing (AKA Period) Costs

- Marketing/selling/admin expenses (e.g. advertising, shipping, sales travel, commissions, sales salaries, warehouse for manufactured goods)
- Includes selling costs and admin costs
- Selling Costs: help secure customer orders and get product into customer hands
- Admin Costs: general management costs
- NOT included in inventory; expensed when incurred

Absorption vs. Variable Costing

Absorption Costing

- Used for financial accounting (proper IFRS & ASPE requirements)
- Fixed MOH classified as product cost

Variable Costing

- Used for managerial accounting (variable costs matter more in decision making)
- Fixed MOH classified as period cost

Absorption vs. Variable Costing (cont.)

Absorption Costing

- Accumulate ALL manufacturing costs as product costs in inventory until sold
- DM + DL + VMOH + FMOH

Variable Costing

- Accumulates variable manufacturing costs ONLY in inventory until sold
- DM + DL + VMOH

Absorption vs. Variable Costing Statements

Sales (1,600 × \$500)		\$800,000
Cost of goods sold		
Direct materials (1,600 × \$185)	\$296,000	
Direct labor (1,600 × \$100)	160,000	
Manufacturing overhead	40,000	496,000
Gross profit		304,000
Operating expenses		
Sales commissions (1,600 × \$15)	24,000	
Sales personnel salaries	10,000	
CEO salary	150,000	184,000
Net income		\$120,000

	\$800,000
\$296,000	
160,000	
24,000	480,000
50.	320,000
40,000	
10,000	
150,000	200,000
	160,000 24,000 40,000 10,000

Determining Target Selling Prices

Absorption Costing

- 1. Compute manufacturing cost per unit
- DM per unit + DL per unit + Variable MOH per unit + Fixed MOH per unit
- 2. Compute markup percentage
- (Desired Return per unit + S&A expenses per unit) / manufacturing cost per unit
- 3. Set target selling price
- Manufacturing cost per unit + (markup percentage * manufacturing cost per unit)

Our target selling price will cover desired return and all S&A costs

Variable Costing

- 1. Compute variable cost per unit
- DM per unit + DL per unit + Variable MOH per unit + Other VC per unit (e.g. S&A)
- 2. Compute markup percentage
- (Desired Return per unit + Fixed costs per unit) / variable cost per unit
- 3. Set target selling price
- Variable cost per unit + (markup percentage * variable cost per unit)

Our target selling price will cover desired return and all fixed costs

Topic 2: Absorption & Variable Costing

UBC has built a new flower store on campus, Pushing Petals, offering affordable prices to romantic students. The following information reflects their 2024 sales and costs:

Number of Units Produced Annually: 22,000

Desired Return per unit: \$10

Variable costs per unit:

• DM, DL and VMOH \$6

Selling & Admin Expenses \$4

Fixed costs per year:

Manufacturing Overhead \$88,000Selling & Admin Expenses \$55,000

Determine Pushing Petal's markup percentage under variable costing.

Variable Costing = DM + DL + VMOH + other VC

$$DM + DL + VMOH + other VC = $6 + $4 = $10$$

Fixed costs per unit = (88k + 55k) / 22k = \$6.50

Markup
$$\% = (10 + 6.5) / 10 = 1.65$$

Under variable costing, we will apply a 165% markup to our variable costs to earn \$10 back on every bouquet.

Topic 2: Absorption & Variable Costing

UBC has built a new flower store on campus, Pushing Petals, offering affordable prices to romantic students. The following information reflects their 2024 sales and costs:

Number of Units Produced Annually: 22,000

Desired Return per unit: \$10

Variable costs per unit:

DM, DL and VMOH \$6Selling & Admin Expenses \$4

Fixed costs per year:

Manufacturing Overhead \$88,000Selling & Admin Expenses \$55,000

Determine Pushing Petal's target selling price under absorption costing.

Absorption Costing = DM + DL + VMOH + FMOH

DM + DL + VMOH = \$6; FMOH/unit = 88k/22k = \$4; Per unit cost = 6 + 4 = \$10

S&A expense per unit = Fixed = 55k/22k = \$2.5 + \$4 (Variable) = \$6.5

Markup % = (10 + 6.5) / 10 = 165%

Target Selling price = 10 + (165% * 10) = \$26.50

Under absorption costing, we will sell each bouquet for \$26.50 to earn \$10 in net income.

Topic 3:

Responsibility Accounting

Segment Reporting

Responsibility Accounting

- Identifying and reporting costs and revenues on the basis of the manager who makes day-to-day decisions about the items
- A manager's performance is evaluated
 ONLY on matters directly under their control

Traceable (Direct) Fixed Costs

- Fixed costs that only apply to a specific segment
- If we removed that segment, the cost would not exist anymore either
- E.g. production manager for Tesla battery cells
 -> direct labour costs for the cell division

Common (Indirect) Fixed Costs

- Fixed costs that can be identified with multiple segments
- If we removed a specific segment, the cost would still exist
- E.g. cost of software update for an entire organization

Responsibility Centres

Cost Centre

Managers responsible to operate within a budget

Not evaluated on how much income they can generate

E.g. production lines and customer service centres

Profit Centre

Managers responsible for improving the 'bottom line' profits

Evaluated on ability to achieve profit targets

E.g. retail stores, bank branches and McDonalds franchises

Investment Centre

Managers responsible for making investment decisions

Evaluated on return on investment (ROI)

E.g. investments in new product lines, mergers & acquisitions

Responsibility Report for Profit Centres

Controllable Fixed Costs

Most direct fixed costs (traceable costs) are **controllable** by a profit centre

E.g. profit centre supervisor salary, payroll for profit centre employees

Non-Controllable Fixed Costs

Indirect fixed costs (common costs) are **non-controllable** by a profit centre

E.g. property tax on head office, HR department costs

		Budget	Actual	Favourable (F) Unfavourable (U)
	Sales	XXX	XXX	XXX
	- Variable Costs	(XXX)	(XXX)	(XXX)
\	= Contribution Margin	XXX	XXX	xxx
	- Controllable FC	(XXX)	(XXX)	(XXX)
	= Controllable Margin	XXX	XXX	XXX

Controllable Margin = Contribution Margin - Controllable FC

Cost Centres vs. Profit Centres

Fe	Fox Compa Finishing Depar Responsibility I or the Month Ended Ja	rtment Report		
-			Difference	
Controllable Costs	Budget	Actual	Favorable - F Unfavorable - U	
Indirect materials	\$13,500	\$14,000	\$ 500	U
Indirect labor	18,000	17,000	1,000	F
Utilities	4,500	4,600	100	U
Supervision	4,000	4,000	0	
Total	\$40,000	\$39,600	\$ 400	F

Manager able to control all MOH costs except depreciation, property taxes and their own salary

For t	Mantle Com Marine Div Responsibility he Year Ended De	ision Report		
			Difference	
	Budget	Actual	Favorable - F Unfavorable - U	
Sales	\$1,200,000	\$1,150,000	\$50,000	1
Variable costs				
Cost of goods sold	500,000	490,000	10,000	
Selling and administrative	160,000	156,000	4,000	
Total	660,000	646,000	14,000	
Contribution margin	540,000	504,000	36,000	1
Controllable fixed costs				
Cost of goods sold	100,000	100,000	0	
Selling and administrative	80,000	80,000	0	
Total	180,000	180,000	0	
Controllable margin	\$ 360,000	\$ 324,000	\$36,000	1

All indirect costs are omitted from the report

Topic 3: Responsibility Accounting

Bob has decided to shut down Bob's Burgers and open up a McDonald's franchise instead. Now, Mac Donald, CEO of McDonald's is determining the performance of Bob's franchise for the previous year, using the following information. Assume McDonald's only sells one item - the Big Mac.

Big Mac selling price per unit: \$7

Big Mac variable cost per unit: \$3

Total units sold: 50,000

Fixed costs:

Payroll at Bob's franchise: \$120,000

McDonalds head office rent: \$400,000

Manager's salary (not Bob): \$40,000

National advertising costs: \$68,000

Determine the controllable margin per unit for Bob's franchise.

Topic 3: Responsibility Accounting

Contribution margin = 7 - 3 = \$4 per unit

Controllable fixed costs = payroll & Bob's salary

Non-controllable costs = head office rent & advertising

Controllable fixed costs per unit = (120k + 40k) / 50k = \$3.20

Controllable margin = \$4 - \$3.2 = \$0.80 per Big Mac

Topic 4:

ROI vs. Residual Income

Responsibility Report for Investment Centres

Controllable Fixed Costs

ALL FIXED COSTS are controllable by the manager of an investment centre

Return on Investment

In addition to the profit centre report inclusions, this report also shows **budgeted and actual ROI**

ROI for an investment centre =

Controllable Margin

Average Operating Assets

	Budget	Actual	Favourable (F) Unfavourable (U)
Sales	XXX	XXX	XXX
- Variable Costs	(XXX)	(XXX)	(XXX)
= Contribution Margin	XXX	XXX	XXX
- Controllable FC	(XXX)	(XXX)	(XXX)
= Controllable Margin	XXX	XXX	XXX
Return on Investment	XXX %	XXX %	XXX %

Return on Investment (ROI)

Operating assets = current assets and factory assets used in operations and controlled by the manager

Non-Operating assets = idle factory assets, land held for future cost; excluded from equation

Application of ROI

Can increase ROI by:

- Increasing sales
- Reducing operating expenses
- Reducing operating assets

Compare calculated figure against company's prev ROI or ROI of similar company

Manager evaluated ONLY on ROI may reject profitable investment opportunities

Residual Income (RI)

Residual Income = Controllable Margin - (Minimum Rate of Return x Average Operating Assets)

Benefits

- Encourages managers to make profitable investments that would be rejected by managers under ROI
- i.e. If an investment would decrease ROI, the manager evaluated on ROI would reject it.
 However, if evaluated on RI, the manager would accept it if RI is positive.

Drawbacks

- Cannot be used to compare performance of different- sized divisions (\$1 million operating income vs. \$100,000 operating income)
- Does not indicate what earnings should be (need an external benchmark)
- Does not incorporate non-financial indicators

If Residual Income > 0, accept project

If Residual Income < 0, reject project

Practice Problem #5

The Dunder Mifflin Scranton branch has a controllable margin of \$72,000. This year's operating assets are \$500,000 and last year's were \$385,000. The minimum required rate of return for Dunder Mifflin is 15%.

Determine:

- The ROI of the branch
- 2. The RI of the branch

3. If the manager of the branch is evaluated on ROI, will an investment of \$21,000 that generates additional controllable margin of \$3,250 be accepted or rejected?

4. Following the last question, if they are instead evaluated on RI, will the investment be accepted or rejected?

Practice Problem #5

1. Average Operating Assets = (500k + 385k) / 2 = 442.5k; **ROI = 72k / 442.5k = 16.3%**

2. RI = 72k - 0.15 * 442.5k = \$5,625

3. ROI of investment = 3250 / 21k = 15.5%; **reject investment because 15.5% < 16.3%** (new ROI < original ROI)

4. RI of investment = 3250 - 0.15 * 21k = \$100; accept investment because RI > 0

Topic 5:

Transfer Pricing

What are Transfer Prices?

Price that one division in an organization charges another division for products or services

Company's net income stays the same no matter what the transfer price is

Normally will occur between a parent and its subsidiary

Example: If Division A charges Division B \$18 for Product X, this will produce the same company-wide net income as if they charged \$15 for Product X to Division B.

\$18 charged

	Division A	Division B
Sales	\$18	\$30
cogs	\$5	\$18
= Net Income	<u>\$13</u>	<u>\$12</u>

\$15 charged

	Division A	Division B
Sales	\$15	\$30
cogs	\$5	\$15
= Net Income	<u>\$10</u>	<u>\$15</u>

Transfer Pricing Methods

Negotiated	Selling division and buying division negotiate a price to transfer at that leaves both parties better off.
Market-Based	Company uses market price of similar goods traded on external market to determine internal transfer prices.
Cost-Based	Divisions sell items to other division at the cost of production (COGS). Results in improper transfer pricing, causing losses in profitability and ignoring opportunity cost.

E.g. Doc Martens states that the Sole Division must use a transfer price based on the variable cost of the sole.

Before Boot Division Sole Division Selling price of boots \$90 Selling price of sole \$18 Variable cost of boot Variable cost per sole 11 (not including sole) 35 Cost of sole purchased from 17 \$38 outside supplier Contribution margin \$ 7 Contribution margin per unit Total contribution margin per unit \$45 (\$38 + \$7

Negotiated Method: Minimum Transfer Price

Negotiated

Selling division and buying division negotiate a price to transfer at that leaves both parties better off.

The Selling Division <u>must not</u> be worse off - they will determine the lower limit, i.e. the minimum transfer price.

Incremental Costs

Technically, this includes both variable costs and relevant fixed costs

Relevant fixed costs are rare

- Additional costs required for internal transfer to occur (new equipment/supervisor)
- Does not include fixed costs that occur regardless of internal transfer

Negotiated Method: Minimum Transfer Price

Negotiated

Selling division and buying division negotiate a price to transfer at that leaves both parties better off.

The Selling Division <u>must not</u> be worse off - they will determine the lower limit, i.e. the minimum transfer price.

Opportunity Costs

Applies when selling division does not have excess capacity

i.e. If the selling division would be able to sell the goods to external buyers instead of transferring internally, there is an opportunity cost. If they wouldn't be bought regardless, then there is no opportunity cost.

Negotiated Method: Minimum Transfer Price

There are three scenarios that can occur to determine our minimum transfer price.

Selling division has excess capacity.

Minimum Transfer Price = Variable Cost

Selling division does not have excess capacity.

Minimum Transfer Price = Variable Cost +

Lost CM from lost sales for all units transferred

of units transferred

Selling division has partial excess capacity.

Minimum Transfer Price = Variable Cost +

Lost CM from lost sales (only for # units of lost sales)

of units transferred

Negotiated Method: Maximum Transfer Price

Negotiated

Selling division and buying division negotiate a price to transfer at that leaves both parties better off.

The Buying Division <u>must not</u> be worse off - they will determine the upper limit, i.e. the max transfer price.

Market Price

The max transfer price will be dictated by the selling price of an external supplier.

i.e. If the external supplier sells the product at \$17/unit while the transfer price is \$20/unit, why would the buying division transfer internally?

Maximum TP > Minimum TP, Transfer!

Maximum TP < Minimum TP, Don't Transfer!

Practice Problem #6a

New Balance has a Leather Division and a Sneaker Division. The Leather Division has a production capacity of 100,000 leather squares per year. Currently, they sell each square for \$15 and it costs \$8 to produce.

The Sneaker division is currently purchasing 40,000 leather squares per year from an outside supplier at \$20 each. They now are considering buying internally from the Leather Division.

Part 1:

- 1. If the Leather Division is already operating at capacity selling externally, what is the minimum transfer price they would accept from the Sneaker division? Will this transaction be accepted?
- 2. The Leather Division is still operating at capacity, but they can avoid \$2 in sales commission expenses per square sold if they divert to selling internally. What is the minimum transfer price they would accept from the Sneaker division?

Practice Problem #6a

Operating @ capacity, then:

Minimum Transfer Price = Variable Cost +

Lost CM from lost sales for all units transferred

of units transferred

Therefore, Min Transfer Price = \$8 (VC) + (\$15 - \$8) (Lost CM from external sales lost) = \$15

Max Transfer Price = market price = \$20; 15 < 20, so the Sneaker Division will accept.

2. Reduced VC = \$8 - \$2 commission = \$6 VC

Lost CM = \$15 - \$8 = \$7 (note that we don't use the reduced VC calculated above because we would not reduce our VC with external sales)

Min Transfer Price = \$6 + \$7 = \$13

Practice Problem #6b

New Balance has a Leather Division and a Sneaker Division. The Leather Division has a production capacity of 100,000 leather squares per year. Currently, they sell each square for \$15 and it costs \$8 to produce.

The Sneaker division is currently purchasing 40,000 leather squares per year from an outside supplier at \$20 each. They now are considering buying internally from the Leather Division.

Part 2:

- 1. Suppose the Leather Division instead has excess capacity of 12,000 leather squares. If the Sneaker Division offers them \$12.50 per square, will they accept this transaction?
- 2. Suppose the Sneaker Division requires special textured leather that is different to the squares currently produced by the Leather Division. The additional variable cost of texturing is \$3 per square. The Leather Division is currently operating at full capacity and taking on the special order would displace production of 25,000 regular squares. What is the minimum transfer price the Leather Division would accept?

Practice Problem #6b

1. Partial excess capacity

CM per unit: \$15 - \$8 = \$7

Lost CM from lost sales
(only for # units of lost sales)
Minimum Transfer Price = Variable Cost +

of units transferred

Lost sales: 40,000 (total Sneaker sales) - 12,000 = 28,000 units

Min. Transfer Price = \$8 (VC) + [(\$7 * 28,000) / 40,000] = \$12.90

\$12.90 > \$12.50, therefore Leather Division will not accept

2. Textured leather VC = \$8 + \$3 = \$11

Opportunity Cost (Lost CM): [(\$7 * 25,000) / 40,000] = \$4.38

Min. Transfer Price = \$11 + \$4.38 = **\$15.38**

Topic 6:

Incremental Analysis

Types of Decisions

Types	Strategy
Scrap OR Keep	Pick one side or the other and find relevant costs for that side
Make OR Buy	Pick one side or the other and find relevant costs for that side
Sell OR Process Further	Compare extra revenues to extra costs and calculate net impact
Keep OR Drop	Compare Segment CM lost to Controllable Fixed Costs saved
Accept OR Reject Special Order	VC + Relevant FC + Opportunity Costs vs. Revenue

Scrap OR Keep / Make OR Buy

Strategy

- 1. Pick one side or the other (not both)
- 2. Find **relevant costs** for that side
- Determine whether each relevant cause causes an inflow (+) or outflow (-)
- 4. Add up **all relevant costs** and determine positive or negative impact
- 5. Choose decision w/ positive impact

Relevant Costs VS Irrelevant Costs

Relevant: avoidable (differential) costs, opportunity costs

Irrelevant: unavoidable costs, sunk costs, joint costs

E.g. Scrap or Keep

An employee at Enterprise Rent-A-Car accidentally drives one of the rental cars into a pole, damaging it. Enterprise purchased the car 3 years ago for \$50,000. Since then, they have added a GPS system for \$100. The rental car has depreciated by \$10,000 and has a useful life of 7 years.

The rental manager contacts the scrap yard, who offers the company \$10,000 for the damaged car. If Enterprise goes with this option, they will need to purchase a replacement car for \$12,000.

Alternatively, Enterprise can keep and fix the vehicle. This will require parts costing \$800 and safety inspection costing \$400.

Scrap OR Keep / Make OR Buy

E.g. Scrap or Keep

An employee at Enterprise Rent-A-Car accidentally drives one of the rental cars into a pole, damaging it. Enterprise purchased the car 3 years ago for \$50,000. Since then, they have added a CPS system for \$100. The rental car has depreciated by \$10,000 and has a useful life of 7 years.

The rental manager contacts the scrap yard, who offers the company \$10,000 for the damaged car. If Enterprise goes with this option, they will need to purchase a replacement car for \$12,000.

Alternatively, Enterprise can keep and fix the vehicle. This will require parts costing \$800 and safety inspection costing \$400.

Scraping it results in an outflow, so keeping it results in an inflow.

Decision: Keep the Car

Process

- Cross out any irrelevant costs (historical price, GPS, depreciation)
- 2. Choose a side let's choose "Scrap"!
- Calculate as follows:

Sale of Vehicle	10,000	I
Purchase of Vehicle	(12,000)	0
New Parts	800	I
Safety Inspection	400	I
Total	(800)	0

Sell OR Process Further

Strategy

- Cross out all costs that will be incurred regardless of decision. This includes any costs prior to the "split off point".
- 2. Compare extra revenue to extra costs.

Extra Revenue > Extra Costs, then process further

Extra Revenue < Extra Costs, then sell as is

Extra Considerations

Should production occur at all or would we be better off without it?

What should we produce and sell to maximize contribution margin?

Keep OR Drop a Segment

E.g. Keep or Drop

Lebron James Jersey Co. has two departments: one that sells authentic jerseys and one that sells replica jerseys. The company info is presented below:

	Authentic	Replica	Total
Sales	9,000	4,500	13,500
- VC	(7,050)	(3,020)	(10,070)
= CM	1,950	1,480	3,430
- Direct FC	(500)	1,500	(2,000)
= Controllable Margin	1,450	(20)	1,430

Direct fixed expenses include depreciation on equipment of \$40 for the Authentic Department and \$30 for the Outdoor Department.

Strategy

- Compare segment CM lost to direct FC saved if we were to drop the segment.
- Add inflows and outflows to get net effect. Ensure that these do not include non-controllable fixed costs or sunk costs.
- 3. Keep segment if:

CM lost > (FC avoided + CM gained)

Keep OR Drop a Segment

E.g. Keep or Drop

Lebron James Jersey Co. has two departments: one that sells authentic jerseys and one that sells replica jerseys. The company info is presented below:

	Authentic	Replica	Total
Sales	9,000	4,500	13,500
- VC	(7,050)	(3,020)	(10,070)
= CM	1,950	1,480	3,430
- Direct FC	(500)	1,500	(2,000)
= Controllable Margin	1,450	(20)	1,430

Direct fixed expenses include depreciation on equipment of \$40 for the Authentic Department and \$30 for the Outdoor Department.

Should we shut down the Replica department?

Segment CM Lost = 1,480 O

Direct Fixed Costs saved = 1,500 - 30 = **1,470 I**

1,470 I - 1,480 O = (10) O

Answer: We should keep the Replica department because we lose \$10 more in Contribution Margin by shutting it down.

Other reasons to keep the Replica dept:

- 1. Replica dept may drive sales to other segments
- 2. We don't want to lose loyal customers
- 3. Company morale and overall reputation

Accept OR Reject Special Orders

Strategy

- 1. Find costs (outflows) pertaining to the special order.
- 2. Compare to revenues (inflows).

Relevant Costs > Relevant Revenues, then reject!

Relevant Costs < Relevant Revenues, then accept!

Outflows

Variable Costs such as DM, DL, VMOH, Relevant Fixed Costs

Typically, there will be an opportunity cost (current capacity)

E.g. Suppose the Sneaker Division requires special textured leather that is different to the squares currently produced by the Leather Division. The additional variable cost of texturing is \$3 per square. The Leather Division is currently operating at full capacity and taking on the special order would displace production of 25,000 regular squares...

Practice Problem #7

Tesla incurs the follow annual costs in producing 500,000 battery cells for their new Roadster model launch.

Direct materials	1,000,000
Direct labour	1,500,000
Variable MOH	800,000
Fixed MOH	900,000
Total Manufacturing Costs	4,200,000

Instead of producing in-house, Tesla may purchase battery cells externally for \$10 per unit. \$500,000 of the fixed MOH will still be incurred if the cells are purchased. What should Tesla and Elon Musk do?

Practice Problem #7

Direct materials	1,000,000	Outflow
Direct labour	1,500,000	Outflow
Variable MOH	800,000	Outflow
Fixed MOH	900,000	Partial Outflow
Total Manufacturing Costs	4,200,000	

Choose a side: continuing to make the cells

Direct materials incurred	(1m)	0
Direct labour incurred	(1.5m)	0
Variable MOH	(800k)	0
Fixed MOH	900k - 500k = (400k)	0
Purchase Price	500k * \$10 = 5m	I
Total Annual cost	1.3m	I

Continue to make the cells. There is a 1.3m inflow by doing so instead of purchasing externally.

Questions?

