Amendment of the Claims

Please cancel claim 14. The following listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently amended) An apparatus for metering the volume of an aerosolized fluid, the apparatus comprising:

a chamber comprising a gas region and a fluid region;

an atomizer in fluid communication with the fluid region of the chamber for aerosolizing fluid delivered from the fluid region;

an acoustic source configured to be acoustically coupled to the variable volume gas region of the chamber;

a microphone configured to be acoustically coupled to the variable-volume gas region of the chamber; and

a processor configured to receive a signal from the microphone, and further configured to determine a volume of the variable volume gas region of the chamber based on the received signal and thereby to determine a corresponding volume of aerosolized fluid, the processor being embedded on a printed circuit board.

- 2. (Currently amended) The apparatus of claim 1, wherein the acoustic source is embedded on [[the]] a printed circuit board.
- 3. (Currently amended) The apparatus of claim 1, wherein the microphone is embedded on [[the]] a printed circuit board.

- 4. (Currently amended) The apparatus of claim 1, wherein [[the]] a printed circuit board is disposed within a housing, and wherein the printed circuit board defines a first volume and a second volume within the housing.
- 5. (Currently amended) The apparatus of claim 4, wherein the processor is further configured to send a control signal to a valve, the control signal associated with the volume of the variable volume gas region of the chamber.
- 6. (Original) The apparatus of claim 5, wherein the control signal includes information associated with releasing an amount of fluid.
- 7. (Original) The apparatus of claim 5, wherein the control signal is further associated with a volume of fluid in aerosolized form.
- 8. (Currently amended) An apparatus for metering the volume of an aerosolized fluid, the apparatus comprising:

a housing containing a first volume and a second volume, the housing configured to be acoustically coupled to a third volume a chamber comprising a gas region and a fluid region;

an atomizer in fluid communication with the fluid region of the chamber for aerosolizing fluid delivered from the fluid region;

a first microphone disposed within the first volume; a second microphone disposed within the second volume;

a printed circuit board disposed within the housing such that the printed circuit board separates the first volume from the second volume, the printed circuit board including an acoustic source; and

wherein the apparatus further comprises

a processor configured to calculate a change in [[the third]] volume of the gas region of the chamber, and thereby to determine a quantity of fluid delivered to the atomizer that is associated with an amount of fluid output.

- 9. (Original) The apparatus of claim 8, wherein the printed circuit board further includes the processor.
- 10. (Currently amended) The apparatus of claim 8, wherein the third volume chamber is contained in a removable cassette, and wherein the second volume is acoustically coupled to the third volume chamber by a port.
- 11. (Original) The apparatus of claim 8, wherein the printed circuit board includes an inner layer configured to pass electrical signals.
- 12. (Original) The apparatus of claim 8, wherein the processor is further configured to receive a signal from the first microphone; receive a signal from the second icrophone; and output a control signal to a valve, the control signal being associated with the received signal from the first microphone and the received signal from the second microphone.
- 13. (Original) The apparatus of claim 8, wherein the printed circuit board includes a means for pressure equalization between the first volume and the second volume.
- 14. (Cancelled)
- 15. (Original) The apparatus of claim 8, wherein the acoustic source is a piezoelectric speaker.
- 16. (Currently amended) An apparatus for metering the volume of fluid delivered as an aerosol, the apparatus comprising:

an atomizer for aerosolizing fluid;

a housing configured to be in communication with a valve, the housing containing a first volume, a second volume and a third volume including a gas region and a fluid region, the gas region [[that is]] acoustically coupled to the second volume and the fluid region coupled to the atomizer;

a printed circuit board disposed within the housing such that the printed circuit board separates the first volume from the second volume, the printed circuit board including

an acoustic source;

a first microphone disposed within the first volume;

a second microphone disposed within the second volume;

and wherein the apparatus further comprises

a processor configured to calculate a change in [[the third]] volume of the gas region and thereby to determine that is associated with an amount of fluid output to the atomizer.

- 17. (Original) The apparatus of claim 16, wherein the printed circuit board further includes the processor.
- 18. (Original) The apparatus of claim 16, wherein the second volume is acoustically coupled to the third volume by a port.
- 19. (Original) The apparatus of claim 16, wherein the printed circuit board includes an inner layer configured to pass electrical signals.
- 20. (Original) The apparatus of claim 16, wherein the processor is further configured

receive a signal from the first microphone;

to

receive a signal from the second microphone; and

output a control signal to the valve, the control signal being associated with the received signal from the first microphone and the received signal from the second microphone.

- 21. (Original) The apparatus of claim 16, wherein the printed circuit board includes a means for pressure equalization between the first volume and the second volume.
- 22. (Original) The apparatus of claim 16, wherein the acoustic source is a piezoelectric speaker.
- 23. (Original) The apparatus of claim 16, wherein the third volume is an air region that is separated from a fluid region by a diaphragm, and wherein the air region and the fluid region form a fixed volume.
- 24. (Currently amended) An apparatus for metering the volume of an aerosolized fluid, the apparatus comprising:
 - a housing configured to be in communication with a valve;
- a printed circuit board disposed within the housing such that the printed circuit board defines a first volume and a second volume including a gas region and a fluid region, the printed circuit board including

an acoustic source;

- a first microphone disposed within the first volume;
- a second microphone disposed within the second volume;

and wherein the apparatus further comprises

a processor configured to calculate a change in [[the second]] volume of the gas region and thereby to determine that is associated with an amount of fluid output from the fluid region for aerosolization.

- 25. (Original) The apparatus of claim 24, wherein the printed circuit board further includes the processor.
- 26. (Original) The apparatus of claim 24, wherein the printed circuit board includes an inner layer configured to pass electrical signals.
- 27. (Original) The apparatus of claim 24, wherein the processor is further configured to receive a signal from the first microphone; receive a signal from the second microphone; and output a control signal to the valve, the control signal being associated with the received signal from the first microphone and the received signal from the second microphone.
- 28. (Original) The apparatus of claim 24, wherein the printed circuit board includes a means for pressure equalization between the first volume and the second volume.
- **29.** (Original) The apparatus of claim 24, wherein the acoustic source is a piezoelectric speaker.
- 30. (Original) The apparatus of claim 26, wherein the second volume is an air region that is separated from a fluid region by a diaphragm, and wherein the air region and the fluid region form a fixed volume.