Exercice 1

Soit $A = \begin{pmatrix} 0 & 8 \\ 1 & -7 \end{pmatrix}$. Montrer qu'il existe une matrice $B \in \mathcal{M}_2(\mathbb{R})$ telle que $B^3 = A$.

Exercice 2

Soit ϕ l'application qui à tout polynôme P(X) associe le polynôme $\phi(P) = P(X) - (X-1)P'(X) + \frac{(X-1)^2}{2}P''(X)$.

- 1) Pour tout entier positif n, montrer que ϕ définit un endomorphisme sur $\mathbb{R}_n[x]$. déterminer son noyau.
- 2) On se place dans cette question uniquement dans le cas n=2: donner une base de $\mathbb{R}_2[X]$ et déterminer la matrice de ϕ dans cette base.
- 3) Quelles sont, en fonction de n, les valeurs propres de ϕ ?

Soit $n \in \mathbb{N}^*$ et soient $A, B \in \mathcal{M}_n(\mathbb{R})$ telles que AB est diagonalisable.

- 1) Montrer que si A ou B est inversible, alors BA est diagonalisable.
- 2) Si A et B ne sont pas inversible, a-t-on toujours ce résultat?

Soit *a* un réel non nul et $A = \begin{pmatrix} 1 & a & a^2 \\ 1/a & 1 & a \\ 1/a^2 & 1/a & 1 \end{pmatrix}$.

1) Déterminer valeurs et vecteurs propres de A. A est-elle diagonalisable?

On fixe un entier $n \ge 1$ et 2n réels a_1, \ldots, a_n et b_1, \ldots, b_n (certains d'entre eux peuvent être nuls). On note M la matrice $(a_ib_j)_{1 \le i,j \le n}$.

- 2) Montrer que M = A pour des paramètres n, a_i et b_j à préciser.
- 3) Donner les valeurs propres de M (et leur multiplicité) en fonction des a_i et des b_j dans le cas général, et indiquer une condition nécessaire et suffisante de diagonalisabilité de M.

On pose $E = \mathbb{R}_n[X]$ et on considère l'endomorphisme $f \in \mathcal{L}(E)$ défini par

$$\forall P \in \mathbb{R}_n[X], \quad f(P) = [(X^2 - 1)P']'$$

- 1) Calculer la matrice de f dans la base canonique.
- 2) Déterminer les valeurs propres de f.
- 3) Montrer que f est diagonalisable.

Soit f un endomorphisme de $E = \mathbb{R}^n$ avec $n \ge 2$ tel que $\operatorname{rg}(f) \le 1$ et $f^3 + f = 0$.

- 1) Montrer que 0 est l'unique valeur propre de f.
- 2) On suppose que $f \neq 0_{\mathcal{L}(E)}$.
 - a) Montrer que $\operatorname{Im}(f) \subset \operatorname{Ker}(f)$
 - b) En déduire une contradiction. Conclure.

Exercice 7

Soit E un \mathbb{R} -espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$ tel que $u^3 - 5u^2 + 6u = 0$. Étudier la diagonalisabilité de u.

Soit E un \mathbb{R} -espace vectoriel de dimension n et u un endomorphisme nilpotent de E, de rang n-1.

- 1) Montrer que pour tout $k \in [0, n]$, $0 \le \dim(\operatorname{Im}(u^k)) \dim(\operatorname{Im}(u^{k+1})) \le 1$ Indication: appliquer le théorème du rang à la restriction de u à $\operatorname{Im}(u^k)$
- 2) Montrer que s'il existe $k_0 \in [0, n-1]$ tel que $\operatorname{Ker}(u^{k_0}) = \operatorname{Ker}(u^{k_0+1})$, alors $\operatorname{Ker}(u^{k_0}) = E$.
- 3) En déduire que la suite $(\dim(\operatorname{Ker}(u^k)))_{0 \le k \le n}$ forme une suite strictement croissante, puis que $\dim(\operatorname{Ker}(u^k)) = k$ pour tout $k \in [0, n]$.
- 4) Montrer que les seuls sous-espaces vectoriels de E stables par u sont les $Ker(u^k)$ pour $k \in [0, n]$.

On appelle **matrice stochastique** une matrice carrée à coefficients positifs telle que la somme des coefficients de chaque ligne soit égale à 1.

 $A = (a_{i,j})_{1 \leqslant i,j \leqslant n} \text{ est une matrice stochastique si } \left\{ \begin{array}{c} \forall (i,j) \in \llbracket 1,n \rrbracket^2, \ a_{i,j} \geq 0 \\ \forall i \in \llbracket 1,n \rrbracket, \ \sum_{j=1}^n a_{i,j} = 1 \end{array} \right..$

- 1) Montrer que si A, B sont deux matrices stochastiques, alors AB est stochastique.
- 2) Montrer que si A est une matrice stochastique, alors 1 est valeur propre de A.
- 3) Montrer que toute valeur propre λ de A vérifie $|\lambda| \leq 1$

Soient A et B deux éléments de $\mathcal{M}_n(\mathbb{R})$, et I la matrice identité de taille n.

- 1) Montrer que s'il existe $\alpha \in \mathbb{R}$ tel que $AB BA = \alpha I$, alors A et B commutent. (Indication: considérer la trace).
- 2) Soit $W \in \mathcal{M}_n(\mathbb{R})$ une matrice de rang 1.
 - a) Montrer que si W est diagonalisable, alors $tr(W) \neq 0$
 - b) Montrer que si $tr(W) \neq 0$, alors W est diagonalisable.
 - c) Montrer que si la trace de W est nulle, alors $W^2 = 0$
- 3) On suppose que V = AB BA est de rang 1. Montrer que pour tout entier k, $VA^kV = 0$. On pourra commencer par montrer que $(VA^k)^2 = 0$.