EXHIBIT 18

COMPOSITION

100 sheets • 200 pages '9¾ x 7½ in/24.7 x 19.0 cm wide ruled • 09910

—The Mead Corporation, Dayton, Ohio 45463 U.S.A.

chicken gene homologous to pomel 17: Japan human melanocyte RNA 700, (500, 400, 300 bp 100-00)

[press = deletion same donor sufer or miles of the superior is filler acceptor in the superior in the superior is acceptor. become undler (500 bg) when doned rm gel [700]

** get 700 // > 900 bp / p26 4-1BB (-> 200)

4-1BB (-> 200) (500) - closed partially seg. 380 380 -7 cloned but ? pHA-Stoumleted human PBL Tell 300 300 Riboral birdy protes O MLA poly At (Gilbon Tell) Turkat (hunt) 3 Molty (hum-T)

Service to the service of the servic

Neg. Control

Neg. Control

MLA puly 4+ H2

" " 2+36

" Total H2

" " 2+36

More 4 Total H1

" 1+3K

" 2+376

10-1135 MLA polyA+ [1+2 Total RNA pit 2 - z + 3 Tr Molt 4 R8 poly At 1+2 Negative control 10 ml each, 100 n 400 bp 15 x 20 cm gel (Bro-Rad) in TBE, 150 30x hr [1% Agarose [1.5% Sea Plague] [19:30 - 19:30 run until front dye is out start 12: 20 at 104 V 50 mA 12:45 10 bV 56 mA 18: 40 denaturali KWON000132

BSTXI COMF

A marker

con cert PXM

RI cut pXM

CDBM 8 cut = BSTX I

plasmid 20 ul

NEB buffer 3 10 ul

water 65 ul

BSTX T 5 ul

100 ul 11:28 -

at stoc

CIP treat &

- 68°C 45 mm in the presence of 10 mm EGTA

- hot phenol 60°C entiretion 5 min twice

- cholorofor extratur at RT.

1. Negative control
2 5/ver - New 150 pl
3 " 3. ul
4 " old 30 pl
5 heterozygote
6 C57 BL
7 C3 H
8 > make Ful(30 ng)

(if meathering) when the x 64.5 × 10° = MM = proble / 15 1 Mg/Ml (3081.7) PCR Y 0 2028 buffer 10X Y.2016 Malle somM 5-luer-old Gluer-new c57BL (571ver + (5786) Fi C3H 30 ml reaction each x (5 reaction + 1 negative) = 180 ml (- 6=17 ml) 10x buffer 18,0 ml Mycla (somm) 5.4 ml (1.5 mM final) olNTP (2mm) 18.0 ml (0.2 mm find) primer (5/283) 1. onl (0,71 primbe/al finel) " (51284) 1. onl (0.19 pm. 1 il 1) 43 4 ml witer 129,6 Tay polymerage 10 il (5 miss) 174.0 divide 29 ml x 6 1. Blank 2. Silver-now 3. Silver-old 4. DSTRL & FI 6 C34 genois PNA Int KWON000137

50 mg/ml find conc : 55 mg/es Dr. Park's # 8, 11, 26 + two more Silver = soul + 35 oul of 78/505/proter see is buffer -> 65°C > (hr. -> Chloroforpeters 3 C57BL C34 10 Septs - protomose 10 dyestin 17:05~ (18:05 ~20:25

@ went Jurket 100

@ Jowket for ut = RI

3 Jurked for cut & RIL HTE

@ > merten 250 Mg (5 ml)

QCDM8/BSEXI at, purified on 5-10/ KOAC (Int out of roomly)

30mg/ml x 200

6 mg - 12

Test ent pGZM 7Z+ + Jurked 500 (in Smal site) E HIM I and ENRI plasmid 30 pl (40 mg) React 3 10 ml water 55 ml EcoBI sul 100 ml at 37°c 1 he (11:05-12:43) verify out on sparose GE. CIAI Residi 100ml React I loul (with Rent 3 + beamer React 2) 95 pl water Hind IL 5 ml 200 pl (12:55~ 2:35) - Load Whole Rx mixture outor (% Agarose cut out band load land outo 3.1% PAGZ purity -9 Nick translation KWON000140

100 by ladder Molt 4 total 1237.

Molt 4 total 1237.

MUA Total 1237.

MUA poly A * 1237.

Muantine C * 1 KWON000141

lelling of 4	-188 (1. 21<5) by	Nule-Tra	nsletion	
4-1BB (1,2(6))	1 pl (100 n			
NT buffer	5 ml	<i>5</i>	<u></u>	
0.1 M DT7	2 µl	2-	<u> </u>	
dGTP (10mm)	inl			
d TTP (10 mm)	Inl		1	
C3-PId ATP	loul	10 10	10	
[3°p]dotp	(oul		20	
DN Apose/pol	2 ml	2	2-	
water	(I ul	27	4:12~	
	50 ul a	t 16°C	4:12~ 1.5~ (1:00 2hv	2)
			~14:20	

3 × 10t cpm/ × 100 ml × 100 mg - Mg = 3×108 cpm/

300 .60 2004314 1864848

3340523.3 3141413.3

· hybridization is x so cm NYTRAN 5M Naci 10 ml 10% SDS 150 Mg/ml 5.5. PNA (10 mg/ml × 750 ml) 750 ml × 50 ml = 7.5 mg

Probe 3 × 106 cpm/ml 50 soml × 106 cpm/ml = 5×107cpm (+10°cpm/3×106cpm/2 = 20 pl at 65°C O/N Wash 1. 2×55C+1%5PS at R-7. (total sound) 2. 2x55c + 1%, 5ps at 42°C for 15mm. expose film at -70°C develop after 18 hrs

Agarose 1%

Bs+XI cut (300 mg) ExoRI cut (") uncut pcono 1

1 wong

PCPNA test cut · dilute DNA (4 ng/ul) I ul in TE19 ul (1:20 d-/utio) . RX 1 diluted DNA (200 ng/ul) 3 rel (600 ng) 2 ril NEB buffer 14 ml water BstXI 1 ul 20 ml 50°C . 17:55 diluted DNA Rx2 3 ul (formy) REOUT 3 2 ml water inl CwKI 37° - 17:50

Mamme strip 0.2% SBS [10mM Tris pH 8.0 85°C 2h (50mm by fault) 20:40 ~ 21:40

Nick translation of Jorkat too per fragonest (PAGE purifiel) DNA (100 mg) follows 4-188 latelling protocol (page 15) at 16°C 16:25~18:25 -: 37 2003346 - 1871272 - 31267275 1/1899175 4.7 ×106 cpm/nl × 30 pl = 1,2×10 cpm sp. act. 1.11×10° Cp /ml x 25 ml = 5 ml 8x17.5 am membra : 14,0 cm² - 28 ml 50 ml x 6x = 15 ml (4 20×55c) toml x 0.5% = 2.5ml (1 10% sps) 10 mg/ml x to ml = 500 ml (of 10 mg/ \$5-DNA)

cycle profite

super 14. 94°C 2 min

15. 94°C 1 min 55°C 1 min 72 1 min

16. 94°C " " " " 2 min

17 72°C 10 min

7 25°C

PCR template of solver Theten Silver (Pr. Pank's # 1, 8, 11, 26,33) 3 C57BL G C3H 30 ml/reaction × (9 reactions + 1 negative control)
= 300 ml (- Inl & template ×10 template = 290 ml) Master mix (0X buffer 30,0 ml MgCh. (50mM) 9.0 ml (1.5 mM fmel) dNTP(5mH) 12.0 ml (0.2 mM ") primer (51283) 20 ml (09 pm/e/ul) 290.0 pt - divide 29 ul virato (0 tubes that contains I've template on the wall - add paroffin al (3 drops)
- vortex - spin - cycle

MR Break

Brent 900

steel @1166 /

(b) 480

\$ 380

MIP @ 900

Q 750

(k) 70~

(1) 120

...3..3..5...

310

220

200

15

PAGE purification	of Steel, Brent (p	mel 17) and M	IP PCR
EOH ppt if 100 ml	l of pcr $Rx. \rightarrow re$		
(add Glycoze	-or Imear PA)		
1.5 (.5 (.5		And the second s	
1.5 1.5 (.5 cm cm cm		· · · · · · · · · · · · · · · · · · ·	
Steel Brent Mif	(adher	The of Conditionary Constraints of Condition (1989) and the constraints of Condition (1989) and the condition (1989) and	**************************************
polished the end (na h		
OND »	20 ml (in 6,6, w.)		
10× buffer	10 ml		
wate	68 ml mas	ter mix	
Kinese	inl -		^
Klenow	(ml)	10x buffer	130 ml
	(المرمد 13 = 13 ما الدين ()	water	8 90
	,	Kinase	ioul
		Klenow	ionl
8= +1 - 3	; 4 5	Klenow	049 ul
			e i e e emeri i e essi, i di di manggara e e i ye ayan gene gan
		KWON	000153

water property in process

1. <100, 1-2-1

PCR templete O STIVER @ heters 3 c57BL DES SPMZLI7CONA (helf vol.)

(or ul/reaction x (freations + Inegative control) = for (-1 ml x 5.0 \$ 545.7) 50 ul 10 x buffer. MgC/2 (50mM) 30 ml (2mM fmel) dNTP (10mM) if ml (0.2mM ,) fromer (51283) 4 ml (~0.8 pm/e/ml) primer (5(284) and (12 Subtetel 38 ul 3 ul (\$500:05) \$04 445.5 495.5 Tag. water divide 99 ul each (x5) and 50 ul

Preparation for cONA Synthesis 1. PXM/RI Cap treatment ~ 20 Mg pXM/RZ (page 5) P/ extracted & EOH gro dissolved in 90 Ml of Tris CPH 8.4) CPH 8.3) aliquet I wh and pave add 10 ml CEP butter (10 mm ZnC1-10 mm Mgch coomet Tras (prof. 4) add I'ml CI unitful) of BM CEP montate at 37°c for 30 min. add 2 pl of 0.5M EGTA (final 10mM) (and members at 68°C for us min (or 65°C) add pre-heated (55°C) phenol/chlorofon, voitex and mulate at site for suin - 5pm and transfor supper ag-layer to new take > repeat EOH PAT

\$ 4 3 2 1

PCR repeat (page 25) template o silver @ heters @ CTBL @ silver DNA @ Omouse pMZi 17 CDNA volume and some on page 21 Cycle profile legel Ober 14 Offic zmin 50°C 1.5mm 4 cycle user 15 94°C 1 min 16 grec I min 55°C 1.0 mm 15 cycle over 17 94°C /min 55°C 20min 72°C 202 72°C 10min 7 xc R.T 50 ml/reaction X 5 reactions = 250 nl (- inftemplete x to template = 245 nl) master mix 10x butter 25 ml Mgc/2(sonm) 75 ml (1.5 mM final) dUTP (10mm) 5 ml (0.2 mm n) primer (51283) 20 ml (1 pmole (ml) 4 (51284) 2,0 ml (4) subtatel 41.5 ml 20 ml water 201,5 ul 245.0 ml divide 49 ml x 5 tube KWON000158

	A320	A280	A?
substantial form of a large or a large	***************************************	*** **** *** *** ***	
1.0000	0.0000	0.0000	0.0
2.0000	0.0043	0.0700	0.1
3.0000	-0.001	-0.001	· (),
4.0000	-0.001	0.0477	0.0
5.0000	-0.001	0,0490	0.0
6.0000	0.0048	0.0034	(1, 0)
7.0000	0.0040	0.0030	0.0
8.0000	0.0079	0.1348	0.2
9.0000	0.0075	0.1344	0.2

COM & 4-183/RI PXM

CDM 8: Stuffer neman?

PX M = Some uniset

Test ligation of CIP Tx PXM/RI vectors

CDM8/B5+XI

1. PXM/RI (111 mg/nl) ID Ml inl

4-1BB (15.7 mg/nl) 1.7 ml

5X BKL batter 4.0 ml 4.0 ml

TH DNA Expare 1.0 ml 1.0 ml

water 12.3 14.0 ml

Nextors are not prepared well!

Nextors are not prepared well!

Vertors are not prepared well!

	Total RIVA)
NESO ES PORTES MESAS E MANAGEMENTAL AND	Dot blot of MLA Lpoly A SPCR products
ggiggggggggggggggggggggggggggggggggggg	
and definition of the same of	4-18B DXM page rooms Lader > 904 - 3 98 110 120 135 150 150
	210 200 240 295 300 440 490 490 550 570 600 650
	700 780 200 370 380 410 4-188
	3 nl each of pop product (out of roul) dotted
	-4-188 gong
And the second s	pxm 100 ng
	pcDM 8 wong
	Ladder 300 ng (0.3 nl)
and the state of t	1 to mg
	after application float on D.D.W
	a denoture for 5'
	3 mentralization for 5'
	3 mentralization for 5' 4 rûnse in 2×55C
and the state of t	5. partially dried -> Stabiline
	V
	KWON000161

SAMPLE	ASSO	A280	A260	2807270	260/280 PROTEIN NUCLEIC ACID
0000	0.0000 0.0188 0.0000 0.0050 0.0021 0.0028 0.0013 0.0051 0.0000 0.0161	0.0000 0.0399 0.0000 0.1120 0.0023 0.0026 0.0000 0.0432 0.0000 0.1060	0.0000 0.0662 0.0000 0.2163 0.0026 0.0036 0.0000 0.0812 0.0000 0.1713	****** 0.4464 ***** 0.5062 0.9462 -0.182 1.0000 0.5005 ******	A CONTROL OF THE CONTROL OF THE STATE OF THE

regation of BS+XI cut pCDM8 & pCDNAI with adapted prut fragment of pMZL 17 (: pr pXM frz) Adaptor ligation PVUI fragment (22 m/ul) 2 ul BS+XI adapter (0.5 mg/ul) Inl 5x BRL log. buffer 4 ul water 12 ml 1 ml T4 Lysse 20 ml at 16° 1 hop 11:420 01:00 at 65°C comin add NaI (gene clear (Ci+) 150 ml · add zul of glasamilk (01:17) · follow gene clear procedure · elute turce - total soul

0.3 ml add 3: (RV BS 86) (1) 02 43 (0) 02 03 rlamed) heat shock at \$42°c water both for 65 seconds onice for > zmin. add 350 pl of SOC medien (provided by Invitrage) 37°c on the wheel for 1 m. plate whole thing on Ang-LB plate (8. h; before plating add 3ml CB)
and plate 100 ul each 50 x 325= 18,200/ng 279 102/ KWON000164

ligation of adator-pMZL17/pvil Z repm8 L pcont 1 gene-cleaned adapter-pmel 17/pm = 10 ul (~20 mg) @cpm8 (87 my/ml) (pcDNA1 (34 my/ml) 1 ml 3 ml 5x (z. buffer (BKL) voter vertor alone 4 pl 2 pl ligare (T4 DNA 1yane. BRI) (T) 1 pl 1 pl 20 pl 20 pl 20 pl 20 pl at 16°C * control: pmel 17/pvett in place of adapter-pmel 17/pmil pmel 17/pvuz (22 ng/ul) Jul jul @ CDM8/ (97 mg/ml) pcDNAI Inl 3 ml 4nl 4nl 5x 1y. beller 13 ml 11 ml Cul Jul ligase . Transform provertor plane [CDMS X vector + frag. L pCONA 1 vector + adapter + frag uncut vector (ing)

O B

COMS FIDNER KW KWON000165

lightion of pXM/RI CIP

1. pXM/RI (78my/ul) CIP 2 ul 2 ul 1 ul

4-1813 (16 mg/ul) 2.5 ul

5X BR ly. buffer 4 ul 4 4

water 10.5 13 ul 14

TY legare (BRL) 1 ul 1 /

20 ul

20 ul

A PXM/RI CIP-not To Inl

1. 2,3,4,6,8,10 M2p400 : 1 2,3,4,5,6,9 :5,7 (no insert) : 7

KWON000167

digestion of MIP 400 L MIP 500 dones (10 ench \$ 2) · masternfix I for 20 Mx 20 = 400 (- 5 ml of miniprep x 20 gro) REaut 3 40 ml water 240 ml EnRI 20 ml - divide into so used & washed tubes · add Jul of minipeeps. .. mix and at37°c for 2hr . take 10 ul separate Into remaining 10 ul add 10 ul of maternix 2 moster mix 2 REact i zoul water 170 Handte 10 ml mix boad mulate for 1 hr at 37°C take coul and run gel

* Transform XL-1 blue ? ligations mixture of polished pcr produits of page 27 & 47

page 27 (Steel 1Kb, 480 380 page 47 ()

map 300, 750, 750, 500 page 47 () * pick 4 colonies seek from each plate prepare planid

digest with

a1 23 61-4 " c1-4 d1-4 " e1-4 " f1-4 | g1-2

KWON000170

per products Esation of Steel 146, 480, 380 (7 fraguet) reation 7/20pl = 140 pl (- 10x70 = 70ml) 5x bitter 28 ml vector Int (pteru3/smar CIPTx) witer 36 ml divide into 7 tubes (10 ul each)
and per troj. (10 ul each) T4 lyace 5ml 70 ml at roc 65°C in 17 jetion of pck products from Sylver genomic 1-2 (350bp) mouse pMBL17 CDNA 5-1,5-2 57/ver cDNA 4 (350 bp) (page 33) solver genomic / (1,2 kb@ and 350bp) 6x 20 ml = 120 ml (- 10 ml x 6 = 60 ml) a 1-2 Hit (out) divide into 6 tilles 10 ml ench add orepaired freg. 5% buffer 24 rd vector c 5-2 West (1" ul) d K4 2 ml T4 ligure 3 ml at so'c e 1 (1.6 Ko) half + 1 (350 hat

Sprenybridisates

6×55C

6×55C

5× Denhardor

5× Denhardor

1°6 5D5

1°6 5D5

1°6 5D5

1°7 por reg/ml 55. DNA

at 7:20 at 65°C

4-1BB prohe 5×10°C prom/ml

8:20

1. Lalder 4-13B 2. 4-13B ladder 3. 98 220, 570 75/4

poly A+

total RNA

11. (270) 410 11. 350

13. 4-184 ledder

14 4-183

SAMPLE	A320	A280	A260	280/240	240/280	PROTEIN	NUCLEIC ACID
many effect claim right from Sept. More	and a series are been selected to be a series dead	The Control of the Co	- "This work sept matter your Wildle Built color o	nggan (1966) nga iku iki yang kalan Mari yang dipina unan masar	i Alline (nin) (de en eine) nemme wijen (de bestie en er ende bleen	and the leaves self-free at the fact to bloom to 170 Marks 170 km many	way ware ware from the first order on a copy from the complete of the first order.
1.0000	-0,001	0,0000	0.0010	0.5098	1.9615	0.0692	0.0909
2.0000	0.0049	0.0424	0.0801	0.4989	2.0043	1.2821	3.3794 pRC/CMV (BstxI) = when
3.0000	-0.001	-0,001	0,0000	~0.080	-12.50	-0.881	3.3794 pRC/CMV (BstxI) = unter 0.0658 2.5: 57.5 = 84 ng/ml
4.0000	0.0293	0.0520	0.0678	0.5894	1.6966	6.0585	1.6039
5.0000	-0.001	0,0000	0.0000	1.0000	1.0000	0.9536	0.0323
6.0000	0.0119	0.0201	0.0300	0.4523	2.2108	-0.997	0.8410
7.0000	0.0112	0,0205	0.0295	0.5098	1.9614	0.6212	0.8143
8.0000	-0.002	-0.002	-0.002	-2.000	-0.500	-0.618	0.0216
9.,0000	0.0174	0.0338	0.0498	0.5222	1.9148	1.6751	1.3883] PMZL 17-1/PVUL BS+X1: wide
10,000	0:0181	0.0340	0.0495	0.5077	1.9599	0.9589	1.3994
							5:55 > 16.8 mg/l
							Juc

cut pRC/CMV TO BSEXI 15 ml (15 mg) plasmid 10 ul NZB #3 70 ul water 5-ul BSTXI 100 ul 9 5x leg. butfor 4 4 pVUI/B,+x1 Master mix 20 x 6 = 120 {- (1+25) x 6 = 100} fx bulter 24 water 69 witer Lyare KWON000174 De stilling 1 Kb.

De Ken han light

plate X2-1 blace

2) all the fragues of M1p-pcp

Stilling has been repaired

& cloned

