Linear Algebra Homework 3b

Ali Muhammad Asad

February 10, 2023

Chapter 1: Linear Equations and Matrices

Ex Set 1.5 Elementary Matrices and a Method for finding A^{-1}

2. Find a row operation that will restore the given matrix to an identity matrix

(a)
$$\begin{bmatrix} 1 & 0 \\ -3 & 1 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

(a)
$$\begin{bmatrix} 1 & 0 \\ -3 & 1 \end{bmatrix}$$
 (b) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$ (d) $\begin{bmatrix} 1 & 0 & -\frac{1}{7} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

Solution:

- (a) $R_3 \longrightarrow R_3 + 3R_1$ (b) $R_3 \longrightarrow \frac{1}{3}R_3$

- (c) $R_3 \longleftrightarrow R_1$ (d) $R_1 \longrightarrow R_1 + \frac{1}{7}R_3$
- **3.** Consider the matrices:

$$A = \begin{bmatrix} 3 & 4 & 1 \\ 2 & -7 & -1 \\ 8 & 1 & 5 \end{bmatrix}, \quad B = \begin{bmatrix} 8 & 1 & 5 \\ 2 & -7 & -1 \\ 3 & 4 & 1 \end{bmatrix}, \quad C = \begin{bmatrix} 3 & 4 & 1 \\ 2 & -7 & -1 \\ 2 & -7 & 3 \end{bmatrix}$$

Find the elementary matrices E_1, E_2, E_3 , and E_4 such that

(a)
$$E_1 A = B$$

(b)
$$E_2 B = A$$
 (c) $E_3 A = C$

(c)
$$E_2A = C$$

(d)
$$E_4C = A$$

Solution:

(a) A can be converted to B with the following row operation: $R_1 \longleftrightarrow R_3$.

$$\implies E_1 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

(b) B can be converted to A with the following row operation: $R_1 \longleftrightarrow R_3$.

$$\implies E_2 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

(c) A can be converted to C with the following row operation: $R_3 \longrightarrow R_3 - 2R_1$. $\implies E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$

$$\implies E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$$

(d) C can be converted to A with the following row operation: $R_3 \longrightarrow R_3 + 2R_1$.

$$\implies E_4 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}$$

9. Find the inverse of the following 4×4 matrices, where k_1, k_2, k_3, k_4 and k are all nonzero

(a)
$$\begin{bmatrix} k_1 & 0 & 0 & 0 \\ 0 & k_2 & 0 & 0 \\ 0 & 0 & k_3 & 0 \\ 0 & 0 & 0 & k_4 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} 0 & 0 & 0 & k_1 \\ 0 & 0 & k_2 & 0 \\ 0 & k_3 & 0 & 0 \\ k_4 & 0 & 0 & 0 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 0 & 0 & 0 & k_1 \\ 0 & 0 & k_2 & 0 \\ 0 & k_3 & 0 & 0 \\ k_4 & 0 & 0 & 0 \end{bmatrix}$$

Solution:

(a) Using row operations, we can obtain the inverse by:

$$\begin{bmatrix} k_1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & k_2 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & k_3 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & k_4 & 0 & 0 & 0 & 1 \end{bmatrix}$$

(a) Using row operations, we can obtain the inverse by:
$$\begin{bmatrix} k_1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & k_2 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & k_3 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & k_4 & 0 & 0 & 0 & 1 \end{bmatrix}$$
The following operations give us the inverse:
$$R_1 \rightarrow \frac{1}{k_1} R_1 \quad R_2 \rightarrow \frac{1}{k_2} R_2 \quad R_3 \rightarrow \frac{1}{k_3} \quad R_4 \rightarrow \frac{1}{k_4} R_4$$

$$\implies \begin{bmatrix} 1 & 0 & 0 & 0 & \frac{1}{k_1} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & \frac{1}{k_2} & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & \frac{1}{k_4} \end{bmatrix}$$
Then our inverse is
$$\begin{bmatrix} \frac{1}{k_1} & 0 & 0 & 0 \\ 0 & \frac{1}{k_2} & 0 & 0 \\ 0 & 0 & \frac{1}{k_3} & 0 \\ 0 & 0 & 0 & \frac{1}{k_4} \end{bmatrix}$$

Then our inverse is
$$\begin{bmatrix} \frac{1}{k_1} & 0 & 0 & 0 \\ 0 & \frac{1}{k_2} & 0 & 0 \\ 0 & 0 & \frac{1}{k_3} & 0 \\ 0 & 0 & 0 & \frac{1}{k_4} \end{bmatrix}$$

(b) Using row operations, we can obtain the inverse by:

$$\left[\begin{array}{ccc|ccc|c}
0 & 0 & 0 & k_1 & 1 & 0 & 0 & 0 \\
0 & 0 & k_2 & 0 & 0 & 1 & 0 & 0 \\
0 & k_3 & 0 & 0 & 0 & 0 & 1 & 0 \\
k_4 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]$$

$$\begin{bmatrix} 0 & 0 & 0 & k_1 & 1 & 0 & 0 & 0 \\ 0 & 0 & k_2 & 0 & 0 & 1 & 0 & 0 \\ 0 & k_3 & 0 & 0 & 0 & 0 & 1 & 0 \\ k_4 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$
First we swap the rows: $R_1 \longleftrightarrow R_4$ and $R_2 \longleftrightarrow R_3$.
$$\Rightarrow \begin{bmatrix} k_4 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & k_3 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & k_2 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & k_1 & 1 & 0 & 0 & 0 \end{bmatrix}$$

Next we can perform the following row operations, $R_1 \rightarrow \frac{1}{k_4}R_1$, $R_2 \rightarrow \frac{1}{k_3}R_2$, $R_3 \rightarrow \frac{1}{k_4}R_1$ $\frac{1}{k_2}R_3$, $R_4 \to \frac{1}{k_1}R_4$

$$\frac{1}{k_2}R_3, R_4 \to \frac{1}{k_1}R_4$$

$$\Rightarrow \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{k_4} \\
0 & 1 & 0 & 0 & 0 & 0 & \frac{1}{k_3} & 0 \\
0 & 0 & 1 & 0 & 0 & \frac{1}{k_2} & 0 & 0 \\
0 & 0 & 0 & 1 & \frac{1}{k_1} & 0 & 0 & 0
\end{bmatrix}$$
Then our inverse is
$$\begin{bmatrix}
0 & 0 & 0 & \frac{1}{k_4} \\
0 & 0 & \frac{1}{k_3} & 0 \\
0 & \frac{1}{k_2} & 0 & 0 \\
\frac{1}{k_1} & 0 & 0 & 0
\end{bmatrix}$$

- **10.** Consider the matrix $A = \begin{bmatrix} 1 & 0 \\ -5 & 2 \end{bmatrix}$
- (a) Find the elementary matrices E_1 and E_2 such that $E_2E_1A = I$
- (b) Write A^{-1} as a product of two elementary matrices.
- (c) Write A as a product of two elementary matrices.

Solution:

- (a) To reduce A to identity, we can observe the following row operations: $R_2 \to R_2 + 5R_1$ followed by $R_2 \to \frac{1}{2}R_2$. Then our elementary matrices in order become
- $E_1 = \begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix}, E_2 = \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{bmatrix}$ as first A will get premultiplied by E_1 and then followed by premultiplication with E_2 .
- (b) Since $A^{-1}A = I$ holds true, and A is reduced to an identity matrix following the two row operations, the matrix A^{-1} can be defined as $A^{-1} = E_2 E_1$.
- (c) Similarly, $E_2E_1A = I \implies E_1^{-1}E_2^{-1}E_2E_1A = E_1^{-1}E_2^{-1}I \implies A = E_1^{-1}E_2^{-1}$

16. Show that
$$A = \begin{bmatrix} 0 & a & 0 & 0 & 0 \\ b & 0 & c & 0 & 0 \\ 0 & d & 0 & e & 0 \\ 0 & 0 & f & 0 & g \\ 0 & 0 & 0 & h & 0 \end{bmatrix}$$
 is not invertible for any values of the entries.

[Hint: The row containing b must become the first row after ERO have been carried out and the one with g must be the last row. Why? this caused problems when trying to reduce the middle column to only one nonzero entry.]

Solution: It is sufficient to show that A can have a row of zeroes through elementary row operations to show that A is not invertible.

We can perform the following row operations: $R_1 \to \frac{d}{a}R_1$ and $R_5 \to \frac{e}{h}R_5$.

$$\implies A = \begin{bmatrix} 0 & d & 0 & 0 & 0 \\ b & 0 & c & 0 & 0 \\ 0 & d & 0 & e & 0 \\ 0 & 0 & f & 0 & g \\ 0 & 0 & 0 & e & 0 \end{bmatrix}$$
Then by the following row operations, $R_3 \to R_3 - R_1$ and $R_3 \to R_3 - R_5$ we get

$$A = \begin{bmatrix} 0 & d & 0 & 0 & 0 \\ b & 0 & c & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & f & 0 & g \\ 0 & 0 & 0 & e & 0 \end{bmatrix}$$

Therefore, we are left with a row of zeroes which shows that A is not invertible for any values of the entries as we get a row of zeroes through elementary row operations.