False discovery proportion estimation by permutations: confidence for SAM

Jesse Hemerik, Jelle Goeman

Leiden University Medical Center, The Netherlands

Adaptive Designs and Multiple Testing Procedures Workshop 2016

Main message

- SAM ("Significance Analysis of Microarrays") is a useful method for FDP estimation
- First paper about SAM (2001) cited 10,000 times
- SAM is only heuristic
- We provide confidence bound for FDP
- We use closed testing to decrease the bound

FDP

We test hypotheses $H_1, ..., H_m$

$$\mathcal{R} := \{1 \le i \le m : H_i \text{ is rejected}\}\$$

 $\mathcal{N} := \{1 \le i \le m : H_i \text{ is true}\}\$

$$V:=\#(\mathcal{N}\cap\mathcal{R})$$
 number of false positives

$$R := \# \mathcal{R}$$

$$FDP := \frac{V}{R}$$

Setting of SAM

- Hypotheses $H_1, ..., H_m$
- Data X with any distribution
- Test statistics $T_1(X), ..., T_m(X)$
- G a finite group of transformations from and to the range of X
- Joint distr. of the $T_i(gX)$ with $i \in \mathcal{N}$, $g \in G$, is invariant under all transformations in G of the data X.

Output of SAM

- 1 User chooses a rejection region $D \subset \mathbb{R}$
- **2** SAM rejects the H_i with $T_i \in D$ and provides \widehat{FDP}

SAM's calculation of \widehat{FDP}

- 2 For each permutation g_j , calculate $R(g_jX) = \#\{1 \le i \le m: T_i(g_jX) \in D\}$
- $\widehat{V} := \text{median of the values } R(g_i X), \ 1 \le j \le w$
- $\widehat{FDP} := \frac{\widehat{V}}{R}$

$$\widehat{\mathit{FDP}}' := \widehat{\mathit{FDP}} \cdot \widehat{\pi}_0 \qquad (\pi_0 = \frac{\#\mathcal{N}}{m})$$

Part 2: our results

Results on \widehat{FDP}

Proven: \widehat{FDP} is a median controlling estimator of FDP, i.e.

$$P(FDP \le \widehat{FDP}) \ge \frac{1}{2}$$
.

$$\widehat{\mathit{FDP}}' = \widehat{\mathit{FDP}} \cdot \widehat{\pi}_0$$
 has unknown properties

Generalization

Choose:

- for each T_i any rejection region $D_i \subset \mathbb{R}$
- some $\alpha \in [0,1]$

We provide:

a $(1 - \alpha)100\%$ -confidence upper bound \overline{FDP} for the FDP:

$$P(FDP \le \overline{FDP}) \ge 1 - \alpha$$

Calculation of upper bound

The $(1-\alpha)100\%$ -confidence upper bound is

$$\overline{FDP} := \frac{\overline{V}}{R},$$

where \overline{V} is the $(1-\alpha)$ -quantile of the values $R(g_jX),\ 1\leq j\leq w$

Recall permutation test:

- Consider:
 - data X with any distribution
 - a group G of transformations from and to the range of X
 - a test statistic T(X)
- H_0 : $X \stackrel{d}{=} gX$ for all $g \in G$.
- Let $T^{1-\alpha}$ be the $(1-\alpha)$ -quantile of the values $T(gX), g \in G$.
- Then under H_0 , $P(T(X) > T^{1-\alpha}) \leq \alpha$.

Proof upper bound

First note:

 \mathcal{R} , and V depend on the data. Write $\mathcal{R}(x)$, V(x). \mathcal{N} does not depend on the data. Thus $V(x) = \#(\mathcal{R}(x) \cap \mathcal{N})$.

To show: $P(V > \overline{V}) \le \alpha$.

Proof: Let $V^{1-\alpha}$ be the $(1-\alpha)$ -quantile of the values

$$V(g_jX), \quad 1 \leq j \leq w.$$

By permutation principle:

$$P(V(X) > V^{1-\alpha}) \le \alpha.$$

Finally note that $V^{1-\alpha} \leq \overline{V}$.

Data analysis

- Same data as in SAM paper (Tusher et al 2001)
- \sim 7000 hypotheses $H_1, ..., H_m$
- H_i: Expression rate of gene i same for irradiated and unirradiated cells

Δ	R	\widehat{FDP}	$\overline{FDP} \ (\alpha = 0.1)$
0.5	191	0.30	0.99
0.6	162	0.25	0.98
0.9	80	0.13	0.88
1.2	46	0.09	0.67
1.8	26	0.08	0.46
2.5	12	0.08	0.42
3	10	0.10	0.30
3.5	3	0	0.33

Conservativeness

When there are many false hypotheses, \widehat{FDP} is conservative

SAM software therefore uses
$$\widehat{\mathit{FDP}}' := \widehat{\mathit{FDP}} \cdot \widehat{\pi}_0$$

Unknown properties. No confidence

We want to decrease the bound without losing the property $P(FDP \le \overline{FDP}) \ge 1 - \alpha$

Part 3: Closed testing for improved bounds

General definition closed testing

Goal:

Want to test each intersection hypothesis $H_{\mathcal{I}} = \bigcap_{i \in \mathcal{I}} H_i$, $\mathcal{I} \subseteq \{1, ..., m\}$ such that $P(\text{no false positives}) \geq 1 - \alpha$

Closed testing:

For each $H_{\mathcal{I}}$, define a test of level α . (So $2^m - 1$ local tests)

C.t.p. rejects all $H_{\mathcal{I}}$ for which every $H_{\mathcal{J}}$ with $\mathcal{J}\supseteq\mathcal{I}$ is rejected by its local test

Deriving upper bounds using c.t.p.

For each $K \subseteq \{1, ..., m\}$ define

$$\overline{V}_{\mathsf{ct}}(\mathcal{K}) = \mathsf{max}\{\#\mathcal{I}: \ \mathcal{I} \subseteq \mathcal{K}, \ \mathsf{H}_{\mathcal{I}} \ \mathsf{not} \ \mathsf{rejected} \ \mathsf{by} \ \mathsf{c.t.p.}\}$$

By Goeman and Solari (2011):

$$P\left[\bigcap_{\mathcal{K}\subseteq\{1,...,m\}}\left\{\#\mathcal{K}\cap\mathcal{N}\leq\overline{V}_{\mathsf{ct}}(\mathcal{K})
ight\}
ight]\geq 1-lpha$$

Our c.t.p.

In the SAM context, recall

$$\mathcal{R}(X) = \{1 \leq i \leq m : T_i(X) \in D_i\}.$$

For each $H_{\mathcal{I}}$ consider local test that rejects iff

$$\#\mathcal{I}\cap\mathcal{R}(X)>R_{\mathcal{I}}^{1-\alpha},$$

where $R_{\mathcal{I}}^{1-\alpha}$ is the $(1-\alpha)$ -quantile of the values $\#\mathcal{I} \cap \mathcal{R}(g_jX)$, $1 \leq j \leq w$.

we consider the c.t.p. based on these local tests.

Upper bound based on c.t.p.

By Goeman and Solari,

$$\overline{V}_{\mathrm{ct}} := \overline{V}_{\mathrm{ct}}(\mathcal{R}) = \max\{\#\mathcal{I} : \mathcal{I} \subseteq \mathcal{R}, H_{\mathcal{I}} \text{ is not rejected by c.t.p.}\}$$
 is a $1 - \alpha$ -upper bound for $\#\mathcal{R} \cap \mathcal{N} = V$.

In theory this bound is ideal.

Problem: naively calculating $\overline{V}_{\rm ct}$ is often infeasible. Indeed, to check if $H_{\mathcal{I}}$ is rejected by c.t.p., requires to check if all $H_{\mathcal{J}}$ with $\mathcal{I}\subseteq\mathcal{J}$ are rejected...

Shortcut

The bound $\overline{V}_{\rm ct}$ equals \min R,

$$\min\left\{1\leq M\leq R: \text{ for all } \mathcal{I}\subseteq\mathcal{R} \text{ with } \#\mathcal{I}=M, \ M>R_{\mathcal{I}\cup R^c}^{1-\alpha}\right\}-1\right]$$

Using this shortcut, we can often calculate $\overline{V}_{\rm ct}$ when there are many hypotheses.

When $\binom{R}{V_{\rm ct}}$ is large, calculating $\overline{V}_{\rm ct}$ is infeasible.

→ Conservative shortcut

Simulations

$$m = 100$$
, $D = (0, 0.01)$ and $\alpha = 0.1$

π_0	Correlation	$\mathbb{E}(R)$	$\mathbb{E}(\overline{V}/R)$	$\mathbb{E}(\overline{V}_{CT}/R)$
0.9	no	8.8 ± 0.1	$\textbf{0.35} \pm 0.01$	$\textbf{0.33} \pm \textbf{0.01}$
0.9	yes	7.6 ± 0.2	$\textbf{0.46} \pm 0.01$	$\textbf{0.45} \pm 0.01$
0.7	no	$\textbf{24.6} \pm \textbf{0.5}$	$\textbf{0.18} \pm \textbf{0.01}$	$\textbf{0.12} \pm 0.01$
0.7	yes	$\textbf{20.8} \pm 1.1$	$\textbf{0.23} \pm 0.01$	$\textbf{0.18} \pm \textbf{0.02}$
0.5	no	$\textbf{40.0} \pm 0.6$	$\textbf{0.16} \pm 0.01$	$\textbf{0.07} \pm \textbf{0.00}$
0.5	yes	$\textbf{34.1} \pm 1.8$	$\textbf{0.18} \pm \textbf{0.01}$	$\textbf{0.11} \pm 0.01$

Conclusion

- Until now SAM was only heuristic
- We have extended SAM with a CI for the FDP
- Using closed testing, we have decreased the estimate and upper bound