

Representação de Conhecimento

Lógica Proposicional

Representação de conhecimento

- O que é conhecimento?
- O que é representar?

Representação mental de **solidariedade**

Símbolo como CENTRO da representação

Desafios para representação de conhecimento

- O que é representar?
- Quem interpretará a representação?
 - Humano
 - Computador
- Que linguagem de representação utilizar?

Representação de conhecimento

- Lógica
 - Proposicional
 - 1ª Ordem
- Redes semânticas
- Frames
- Regras de produção

Lógica matemática

- Lógica matemática -> ciência do raciocínio e da demonstração (século XIX)
 - George Boole → matemático inglês (1815 1864)
 - Álgebra Boolean

 utiliza símbolos e operações algébricas para representar proposições e suas inter-relações.
 - As idéias de Boole -> Base da Lógica Simbólica
 - Aplicação -> computação e eletrônica.
 - Sentenças declarativas -> proposições
 - Pré-requisitos:
 - Princípio do terceiro excluído: uma proposição só pode ser verdadeira ou falsa, não havendo outra alternativa.
 - Princípio da não contradição: uma proposição não pode ser ao mesmo tempo verdadeira e falsa.

Conceitos básicos

- Proposição → enunciado verbal, susceptível de ser verdadeiro ou falso.
- Exemplos de proposições:
 - 1. A terra é azul.
 - 2. Recife é a cidade do frevo.
 - Glória Perez escreve a novela Salve Jorge.
 - 4. 2+2=5
 - 5. Lula foi o Presidente da República Federativa do Brasil.
- Uma proposição só pode ter um valor lógico: verdadeiro ou falso

Conceitos básicos

- Proposição
 - Simples: menor grão de significado
 - Ilaim é o professor de IA da turma de 2012.2 (V)
 - Flamengo é o atual campeão brasileiro (F)
 - Composta: constituída de proposições simples interligadas por conectivos lógicos
 - O Aviador não ganhou o Oscar de melhor filme.
 - Menina de Ouro levou o Oscar de melhor filme, de melhor atriz e de melhor ator coadjuvante.
 - Se chover hoje, vou ao cinema.

Conceitos básicos

- Conectivos:
 - NÃO (negação)
 - E (conjunção)
 - OU (disjunção)
 - SE-ENTÃO (condicional)
 - SE, E SOMENTE SE (bi-condicional)

A linguagem proposicional

Alfabeto

- Variáveis proposicionais: nomes que representam proposições simples.
- Conectivos lógicos:

¬ : Não

V : OU

•Λ : E

 \rightarrow : Se..Então

 $\bullet \leftrightarrow$: Se, e somente Se

Símbolos auxiliares: ()

A Linguagem proposicional

- Sentenças
 - Toda proposição é uma sentença
 - Se α é uma sentença, então $\neg \alpha$ também é
 - Se α e β são sentenças, então são:
 - α ^ β também é
 - α V β
 - $\alpha \rightarrow \beta$
 - $\alpha \leftrightarrow \beta$
- Exemplos:
 - (chuva→usar_capa)^(sol→ ¬usar_capa)

- ν :Variáveis proposicionais (V, F)
- Exemplos

Sejam as proposições simples:

- P: A Terra gira em torno do sol.
- Q: Salvador é a capital da Bahia.
- R: 3,2 é um número inteiro.
- Temos então:
 - v(P) = V
 - v(Q) = V
 - v(R) = F

Exemplo para n=3

Р	Q	R	
Т	Т	Т	
Т	Т	F	
Т	F	Т	
Т	F	F	
F	Т	Т	
F	Т	F	
F	F	Т	
F	F	F	

- O valor lógico de uma sentença é dado pela função v, definida abaixo:
 - Para toda variável proposicional P, v(P) = v(P).
- Se α é uma sentença, então $\nu(\neg P) = \neg \nu(P) = \neg$, onde:

$$\neg V = F$$

$$\neg F = V$$

• Ou seja, $v(\neg \alpha)$ é definido pela

tabela verdade:

α	$\neg \alpha$
>	F
ш	V

$$v(\alpha \land \beta) = v(\alpha) \land v(\beta)$$

Onde → tabela verdade

Р	Q	¬P	P^Q	PvQ	P→Q	P↔Q
V	V	F	V	V	V	V
V	F	F	F	V	F	F
F	V	V	F	V	V	F
F	F	V	F	F	V	V

- Supressão de parêntesis:
 - A ordem de precedência é:
 - 1. ¬
 - 2. ^
 - 3. v
 - 4. **→**
 - $5. \leftrightarrow$
 - Para conectivos idênticos, faz-se associação à esquerda.
 Exemplo:
 - P v Q ^ ¬R v S → T v U
 - denota
 - $((P \lor ((Q \land \neg R) \lor S)) \rightarrow (T \lor U))$

Definições

- Sentença
 - Verdadeira ou Falsa
- Interpretação
 - V ou F
- Modelo (sentença satisfazível)
 - Um contexto onde $v(\alpha) = V$

Definições

- Sentença válida
 - Sentença verdadeira para todas as interpretações
- Sentença contraditória (insatisfazível)
 - Sentença falsa para todas as interpretações
- Contingência
 - Nem contradição nem válida

Definições

• ν satisfaz $\alpha : \nu(\alpha) = V$

$$v = \alpha$$

- $\circ \alpha$ é **tautologia**, se e somente se, $^{v} \models = \alpha$ para todo v
- \circ α é **contradição**, se e somente se, não existe ν tal que $| \cdot | = \alpha$
- α é **satisfazível**, se e somente se, existe ν tal que α $|==\alpha$
- \circ α é **insatisfazível**, se e somente se, α é uma Contradição

Consequência lógica

- Em outras palavras: $\beta \mid == \alpha$, se, e somente se $^{\vee} \mid == \alpha$ para todo ν tal que $^{\vee} \mid == \beta$.
- Seja um conjunto de sentenças
 - A={ β_1 , β_2 ,... β_n } e
 - uma sentença α.
- Então, A $= \alpha$ se e somente se $\beta_1, \beta_2,...\beta_n = \alpha$
- Exemplos:
 - (Modus Ponens)
 - (Modus Tollens)

Teorema

- $\alpha \mid == \beta$ se e somente se $\alpha \rightarrow \beta$ é uma tautologia
- Regra do Silogismo Hipotético
 - (P ^ ¬ P)→Q é tautologia. Logo,
 - (P ^ ¬ P) l== Q
 - de uma contradição se deduz qualquer sentença
- Duas sentenças α e β são **logicamente** e **equivalentes** (α **|==|** β) se, e somente se:
 - $\alpha \mid == \beta \in \beta \mid == \mid \alpha$
 - Exemplo:
 - ¬ (¬ P v Q) |==| P ^ Q

verificável pela tabela verdade

Propriedades da consequência lógica

- Reflexividade:
 - $\alpha \mid == \alpha$
- Transitividade:
 - Se α |== β e β |== δ então α |== δ

Propriedades da equivalência lógica

- Reflexividade:
 - $\alpha = |\alpha|$
- Transitividade:
 - Se α |==| β e β |==| δ então α |==| δ
- Simetria:
 - Se α |==| β e β |==| α

•Um "argumento" é uma afirmação de que uma dada sentença α (a conclusão) é consequência de outras sentenças $\{\beta_{1,...,},\beta_{n,},n-1\}$ (as premissas).

Notação:

 $\frac{\beta_n}{\alpha}$

Para dizer que α é uma consequência de $\{\beta_{1,...},\beta_{n}\}$

Um argumento pode ser "válido" (correto, legítimo) ou "não válido" (incorreto, ilegítimo).

Dizemos ainda que um argumento não válido é um "sofisma".

Um argumento:

$$\begin{array}{c} \beta_1 \\ \cdot \\ \cdot \\ \beta_n \\ \hline \alpha \end{array}$$

é válido se, e somente se

$$\{\beta_{1,...},\beta_{n}\}\mid == \mathbf{C}$$

e, portanto, se e somente se

$$(\beta_1 \wedge \beta_n) \rightarrow \alpha$$

é tautologia.

 Uma regra de inferência é um argumento válido utilizado em deduções.

1. Adição (AD)

$$\frac{\alpha}{\alpha \vee \beta}$$
 $\frac{\alpha}{\beta \vee \alpha}$

2. Simplificação (Simp)

$$\frac{\alpha \wedge \beta}{\alpha} \quad \frac{\alpha \wedge \beta}{\beta}$$

$$\frac{\alpha}{\beta} \qquad \frac{\alpha}{\beta \wedge \alpha}$$

4. Absorção (Abs)

$$\frac{\alpha \rightarrow \beta}{\alpha \rightarrow (\alpha \land \beta)}$$

$$\alpha \rightarrow \beta$$
 α
 β

6. Modus Tollens (MT)

$$\alpha \rightarrow \beta$$
 $\neg \beta$
 $\neg \alpha$

7. Silogismo Disjuntivo (SD)

$$\begin{array}{cccc} \alpha \vee \beta & \alpha \vee \beta \\ \neg \alpha & \neg \beta \\ \beta & \alpha \end{array}$$

8. Silogismo Hipotético (SH)

$$\begin{array}{c|c}
\alpha \longrightarrow \beta \\
\beta \longrightarrow \gamma \\
\hline
\alpha \longrightarrow \gamma
\end{array}$$

$$\begin{array}{c}
\alpha \longrightarrow \beta \\
\beta \longrightarrow \sigma \\
\alpha \vee \gamma \\
\beta \vee \sigma
\end{array}$$

Exemplo

Logo_{
$$P \land Q, P \lor R \rightarrow S$$
} |- $P \land S$
{ $P \land Q, P \lor R \rightarrow S$ } |== $P \land S$

Se existe uma seqüência de sentenças

$$\beta_1, \beta_2, \beta_n$$

- Tal que:
- É β_n , α e
- Cada β_i é uma sentença de A, ou o resultado da aplicação de uma regra de inferência com premissas antes de β_i.

se A
$$\mid$$
- α então A \mid == α

Problema: Existe um conjunto de regras de inferência tal que:

se A
$$= \alpha$$
 então $-\alpha$

Observe que para toda **tautologia** , σ

$$\{\} \models = \sigma$$

logo, além das regras de inferência, precisamos de axiomas a partir dos quais as **tautologias** possam ser deduzidas: os chamados Axiomas Lógicos.

Em outras palavras, estamos procurando um "sistema dedutivo". Um sistema dedutivo é dito ser consistente se, e somente se

se A
$$\mid$$
- α então A \mid == α

Um sistema dedutivo é dito ser completo se, e somente se

se A
$$\mid$$
- α então A \mid == α

O problema se torna então: "Existe um sistema dedutivo e completo para o cálculo proposicional?"

- Regra de inferência:
- Modus Ponens (MP)

$$\alpha \rightarrow \beta$$
 α
 β

 Seja um sistema dedutivo consistente e completo.
 Então um conjunto de sentenças A é inconsistente se, e somente se

A
$$\mid -\alpha \mid eA \mid -\alpha \mid$$

para alguma sentença lpha .

Exercícios

Mostrar:

$$(P \rightarrow Q) \land P = Q$$

 $P = Q \rightarrow P$