深度學習實作與應用 Deep learning and its applications

Convolutional Networks

IM5062, Spring 2024

Some slides adopted from Alex Smola, Chien-Yao Wang

黃意婷

Outline

- What is Convolution
- Use Convolution
- Convolution (d2l.ch7)
 - Kernel/Filter
 - Padding
 - Stride
- Pooling
 - Max/Average Pooling
- Multiple Channels
- Summary

- LeNet/AlexNet (d2l.ch8.1)
- CNN for Go & Text Classification
- Batch normalization (d2l.ch8.5)
- Network in Network (d2l.ch8.3)
- RasNet (d2l.ch8.6)

Convolution

Convolution

-1 是弱化 1 是強化

Why use Convolution

Filter

可以找到特定的特徵

Why use Convolution

Translation Invariance

Why use Convolution

任何輸入大小都能做

Convolutional Neural Network

- Convolution
- Pooling
- Full Connection

Image

Convolved Feature

Convolved feature

Pooled feature

Image classification

MINST dataset

10

Image classification

W=784*512=401,408

00

100

W=100*100*3*1024>3*10⁷

Convolutional network

Input X

2 5 6 8

Kernel W (Filter)

$$0 \times 0 + 1 \times 1 + 3 \times 2 + 4 \times 3 = 19$$

$$n_h \times n_w$$
 3×3

$$k_h \times k_w$$

 2×2

$$k_h \times k_w$$
 $(n_h - k_h + 1) \times (n_w - k_w + 1)$
 2×2 $(3 - 2 + 1) \times (3 - 2 + 1)$
 2×2

Kernel W (Filter)

$$0 \times 0 + 1 \times 1 + 3 \times 2 + 4 \times 3 = 19$$

 $1 \times 0 + 2 \times 1 + 4 \times 2 + 5 \times 3 = 25$

$$n_h \times n_w$$
 3×3

$$k_h \times k_w$$
 $(n_h - k_h + 1) \times (n_w - k_w + 1)$
2 × 2 $(3 - 2 + 1) \times (3 - 2 + 1)$
2 × 2

6

Kernel W (Filter)

$$0 \times 0 + 1 \times 1 + 3 \times 2 + 4 \times 3 = 19$$

 $1 \times 0 + 2 \times 1 + 4 \times 2 + 5 \times 3 = 25$
 $3 \times 0 + 4 \times 1 + 6 \times 2 + 7 \times 3 = 37$
 $4 \times 0 + 5 \times 1 + 7 \times 2 + 8 \times 3 = 43$

$$n_h \times n_w$$
 3×3

$$k_h \times k_w$$

 2×2

$$k_h \times k_w$$
 $(n_h - k_h + 1) \times (n_w - k_w + 1)$
 2×2 $(3 - 2 + 1) \times (3 - 2 + 1)$
 2×2

(Filter)

(Filter)

(Filter)

(Filter)

(Filter)

(Filter)

Kernel W

- $X: n_h \times n_w$ input matrix
- $W: k_h \times k_w$ kernel matrix
- b: scalar bias

• **Y**:
$$(n_h - k_h + 1) \times (n_w - k_w + 1)$$
 output matrix

$$Y = X \otimes W + b$$

Input X

W and b are learnable parameters.

Fully-Connected Multilayer Perceptron

Locally-Connected Multilayer Perceptron

Convolutional Neural Network

$$\mathbf{x}^{(2)} = \mathbf{W}^{(1)} * \mathbf{x}^{(1)} + \mathbf{b}^{(1)}$$

$$\mathbf{x}^{(3)} = \mathbf{W}^{(2)} \mathbf{x}^{(2)} + \mathbf{b}^{(2)}$$

$$\hat{\mathbf{y}} = \mathbf{W}^{(3)} \mathbf{x}^{(3)} + \mathbf{b}^{(3)}$$

Convolutional Neural Network

20

DNN & CNN

DNN & CNN

Input Layer

- Each neuron only connects to part of previous layer.
 - → parameter sharing
 - → Less parameters then fully connected layer.

Due to parameter sharing Idea #1 – Translation Invariance Idea #2 – Locality

Receptive Field (filter size)

• For any element x of some layer, its receptive field refers to all the elements (from all the previous layers) that may affect the calculation of x during the forward propagation.

Receptive Field (filter size)

• For any element x of some layer, its receptive field refers to all the elements (from all the previous layers) that may affect the calculation of x during the forward propagation.

Object Edge Detection in Images

Input X

10	10	10	10	0	0	0	0
10	10	10	10	0	0	0	0
10	10	10	10	0	0	0	0
10	10	10	10	0	0	0	0
10	10	10	10	0	0	0	0
10	10	10	10	0	0	0	0
10	10	10	10	0	0	0	0
10	10	10	10	0	0	0	0

Kernel W (Filter)

1	0	-1	
1	0	-1	
1	0	-1	

Feature map

0	0	30	30	0	0
0	0	30	30	0	0
0	0	30	30	0	0
0	0	30	30	0	0
0	0	30	30	0	0
0	0	30	30	0	0

Edge

Padding

Padding adds row/columns around input.

Input X

0	0	0	0	0
0	0	1	2	0
0	3	4	5	0
0	6	7	8	0
0	0	0	0	0

Kernel W (Filter)

Output Y

0
 1

 2
 3

$$= \begin{bmatrix} 0 & 3 & 8 \\ 9 & 19 & 25 \\ 21 & 37 & 43 \end{bmatrix}$$

$$0 \times 0 + 0 \times 1 + 0 \times 2 + 0 \times 3 = 0$$

$$(n_h + p_h) \times (n_w + p_w)$$
$$(3+2) \times (3+2)$$
$$5 \times 5$$

$$p_h \times p_w \\ 2 \times 2$$

$$k_h \times k_w$$

 2×2

$$(n_h + p_h) \times (n_w + p_w)$$
 $k_h \times k_w$ $(n_h - k_h + p_h + 1) \times (n_w - k_w + p_w + 1)$
 $(3+2) \times (3+2)$ 2×2 $(3-2+2+1) \times (3-2+2+1)$
 5×5 4×4

4

10

16

Padding

Padding adds row/columns around input.

Input X

Kernel W (Filter)

Output Y

0
 1

 2
 3

$$= \begin{bmatrix} 0 & 3 & 8 \\ 9 & 19 & 25 \\ 21 & 37 & 43 \end{bmatrix}$$

$$0 \times 0 + 0 \times 1 + 0 \times 2 + 0 \times 3 = 0$$

 $0 \times 0 + 0 \times 1 + 0 \times 2 + 1 \times 3 = 3$

$$(n_h + p_h) \times (n_w + p_w)$$
$$(3+2) \times (3+2)$$
$$5 \times 5$$

$$p_h \times p_w$$

2 × 2

$$k_h \times k_w$$
 2×2

$$(n_h + p_h) \times (n_w + p_w)$$
 $k_h \times k_w$ $(n_h - k_h + p_h + 1) \times (n_w - k_w + p_w + 1)$
 $(3+2) \times (3+2)$ 2×2 $(3-2+2+1) \times (3-2+2+1)$
 5×5 4×4

Padding for consistent input/output shape

• Padding p_h rows and p_w columns, output shape will be $(n_h - k_h + p_h + 1) \times (n_w - k_w + p_w + 1)$

- A common choice is $p_h = k_h 1$ and $p_w = k_w 1$
 - Odd k_h : pad $\frac{p_h}{2}$ on both sides
 - e.g., $k_h = 3, \frac{p_h}{2} = 1$ (上下各一); $k_w = 3, \frac{p_w}{2} = 1$ (左右各一)
 - Even k_h : pad $\left\lceil \frac{p_h}{2} \right\rceil$ rows on the top, $\left\lfloor \frac{p_h}{2} \right\rfloor$ rows on the bottom.
 - e.g., $k_h = 2$, $p_h = 1$, $\left[\frac{p_h}{2}\right] = \left[\frac{1}{2}\right] = 1$, $\left|\frac{p_h}{2}\right| = \left|\frac{1}{2}\right| = 0$

Stride (How to move)

Stride is the #rows/#columns per slide

Stride

Stride is the #rows/#columns per slide

Stride

• Stride is the #rows/#columns per slide

Stride

• Given stride s_h for the height and stride s_w for the width, the output shape is

$$(n_h - k_h + p_h + s_h)/s_h \times (n_w - k_w + p_w + s_w)/s_w$$

• With
$$p_h = k_h - 1$$
 and $p_w = k_w - 1$ (超出範圍的不計算) $\lfloor (n_h + s_h - 1)/s_h \rfloor \times \lfloor (n_w + s_w - 1)/s_w \rfloor$

• If input height/width are divisible by strides $(n_h/s_h) \times (n_w/s_w)$

Multiple Channels

- Color image may have three RGB channels
- Converting to grayscale loses information

Multiple Input Channels

 Have a kernel for each channel, and then sum results over channels.

Multiple Input Channels

- X: $c_i \times n_h \times n_w$ input
- W: $c_i \times k_h \times k_w$ kernel
- Y: $m_h \times m_w$ output

$$Y = \sum_{i=0}^{c_i} X_{i,:,:} \otimes W_{i,:,:}$$

Multiple Output Channels

- No matter how many inputs channels, so far we always get single output channel
- We can have multiple 3-D kernels, each one generates a output channel
- Input X: $c_i \times n_h \times n_w$ (3*3*3)
- Output Y: $c_o \times m_h \times m_w$ (2*3*3)
- Kernel W: $c_o \times c_i \times k_h \times k_w$ (2*1*1*1)

Convolution is sensitive to position

- We need some degree of invariance to translation
 - Lighting, object positions, scales, appearance vary among images

- Max Pooling
 - Return the maximal value in the sliding windows
 - The strongest pattern signal in a window

- Average Pooling
 - Return the mean value in the sliding windows
 - The average signal in a window

- Pooling layers have similar padding and stride as convolutional layers
- No learnable parameters
- Apply pooling for each input channel to obtain the corresponding output channel (每個channel獨立做pooling)
- # output channels = # input channels

CNN loop and flatten

Summary

- Convolutional layer
 - Reduced model capacity compared to dense layer
 - Efficient at detecting spatial patterns
 - Control output shape via padding, strides (o_h & o_w) and (output) channels

- Max/Average Pooling layer
 - Provides some degree of invariance to translation

	MINST	ImageNet
	00000000000000000000000000000000000000	
Images	Gray image for hand- written digits	Color images with nature objects
Size	28 * 28	469 * 387
# examples (training)	60K	1.2M
# classes	10	1000

LeNet

LeCun, Yann, Léon Bottou, Yoshua Bengio, and Patrick Haffner. "Gradient-based learning applied to document recognition." *Proceedings of the IEEE* 86, no. 11 (1998): 2278-2324.

Source: LeCun et al. (1998).

深度學習實作與應用

LeNet

AlexNet

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." *Advances in neural information processing systems* 25 (2012): 1097-1105.

3*3 MaxPool, stride 2 3*3 Conv (384), pad 1 3*3 Conv (384), pad 1 3*3 Conv (384), pad 1 3*3 MaxPool, stride 2 5*5 Conv (256), pad 2 上下左右各2 3*3 MaxPool, stride 2 11*11 Conv (96), stride 4 Image (3*224*224) 46

LeNet vs. AlexNet

深度學習實作與應用

LeNet vs. AlexNet

LeNet vs. AlexNet

AlexNet

- AlexNet won ImageNet competition in 2012
- Deeper and bigger LeNext
- Key modifications
 - Change activation from sigmoid to ReLU (no more vanish gradient)
 - Add a dropout layer after two hidden dense layers (better robustness / regularization)
 - MaxPooling

1D, 2D and 3D Convolution

• 1-D

• 2-D

• 3-D

$$y_{i,j} = \sum_{a=1}^{h} v_a x_{i+a}$$

$$y_{i,j} = \sum_{a=1}^{h} \sum_{b=1}^{w} v_{a,b} x_{i+a,j+b}$$

$$y_{i,j} = \sum_{a=1}^{h} v_a x_{i+a} \qquad y_{i,j} = \sum_{a=1}^{h} \sum_{b=1}^{w} v_{a,b} x_{i+a,j+b} \qquad y_{i,j,k} = \sum_{a=1}^{h} \sum_{b=1}^{w} \sum_{c=1}^{d} v_{a,b,c} x_{i+a,j+b,k+c}$$

- Text
- Time series
- Voice

- Images
- Voice

- Video
- Medical images

Text Classification

Zhang, Ye, and Byron C. Wallace. "A sensitivity analysis of (and practitioners' guide to) convolutional neural networks for sentence classification." IJCNLP2017.

Problems (Internal Covariate Shift)

- Changes in model parameters during learning change the distributions of the outputs of each hidden layer.
 - Loss occurs at last layer
 - Data is at bottom layer
 - Bottom layers (weights) change everything changes
- This means that later layers need to adapt to these (often noisy) changes during training.
- Can we avoid changing last layers while learning first layer?

Recall input standardization

- Numerical inputs
 - Standardize: rescaling features to zero mean and unit variance

$$x = \frac{x - \mu}{\sigma}$$

- First, it proves convenient for optimization.
- Second, because we do not know a priori which features will be relevant, we do not want to penalize coefficients assigned to one feature more than on any other.

Batch Normalization

$$x = \frac{x - \mu}{\sigma}$$

Input: Values of x over a mini-batch: $B = \{x_1, ... x_m\}$ Learnable parameters: γ, β

Output:
$$\{y_i = BN_{\gamma,\beta}(x_i)\}$$

// Fix mean and variance

$$\mu_B = \frac{1}{|B|} \sum_{i \in B} x_i, \ \sigma_B^2 = \frac{1}{|B|} \sum_{i \in B} (x_i - \mu_B)^2$$

// normalize

$$\widehat{x_i} = \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}$$

// scale and shift

$$y_i = \gamma \widehat{x_i} + \beta$$

Batch normalization during testing

Solution 1:

 Mean and variance were calculated using the whole training data, rather than mini-batch.

Solution 2:

- The moving average of mean and variance of the batches were computed during training
- running_mean = momentum * running_mean + (1 momentum) * sample_mean
- running_var = momentum * running_var + (1 momentum) * sample_var

e.g. momentum = 0.1

Batch Normalization 好處

- •解決 Internal Covariate Shift 的問題
- 有正則化的效果 (可以不使用Dropout)
- 減緩梯度消失
- 加速收斂

Batch Normalization

• Fully connected layer (before activation function):

$$h = \phi(BN(Wx + b))$$

• CNN:

- We can apply batch normalization after the convolution and before the nonlinear activation function.
- When the convolution has multiple output channels, one normalization per channel, each channel has its own scale and shift parameters.
- Before: 速度快,因為BN可以merge到weight & bias
- After: 效果佳,真的讓output distribution被正規化

Batch Normalization in CNN

- Assume that our minibatches contains m examples,
 - The output of convolution has height p and width q
 - m*p*q elements per channel are normalized.

Network in Network (NiN)

- The network in network (NiN) blocks (Lin et al., 2013):
 - (i) use 1×1 convolutions to <u>add local</u> nonlinearities across the channel activations
 - (ii) use global average pooling to integrate across all locations in the last representation layer.
 - Note that global average pooling would not be effective, were it not for the added nonlinearities.

Network in Network (NiN)

NiN block:

 The resulting 1×1 convolution can be thought as <u>a fully connected layer</u> acting independently on each pixel location.

Convolutional Neural Network

Network In Network

深度學習實作與應用

Network In Network

1 × 1 Conv

Cascade Cross Channel Parametric Pooling = 1 x 1 Convolution

Network in Network (NiN)

- Global AvgPool:
 - NiN avoids fully connected layers altogether.

 - This design significantly reduces the number of required model parameters, albeit at the expense of a potential increase in training time.

Global Average Pooling

Network In Network

What are Residual Networks

• Plain Networks: stacking of convolutional layers. (LeNet, AlexNet, VGG, ...)

Residual Networks: shortcut connections between feature maps.

Residual Block of Residual Networks

Residual Block

Why Residual Networks work (3/5)

Plain Networks are just like...

Why Residual Networks work (4/5)

Residual Networks know what following layers know.

https://www.youtube.com/watch?v=mIHdYIwPZFA

Why Residual Networks work (5/5)

Plain Networks vs Residual Networks

Plain Networks

Each layer need to learn all things by information from next layer

Residual Networks

Each layer only need to learn things that other layers not yet learned

Why Residual Networks are important

Residual networks make super deep networks learn well.

深度學習實作與應用

Why Residual Networks work (1/5)

Learning residual information

$$H(x_0) = x_0 + F_0(x_0) + F_1(x_1) + F_2(x_2)$$

架 度 學 習 書 作 超 應 用

Why Residual Networks work (2/5)

Plain Networks vs Residual Networks

Plain Networks Residual Networks $H(x_0) = F_2(F_1(F_0(x_0)))$ $H(x_0) = x_0 + F_0(x_0) + F_1(x_1) + F_2(x_2)$ % Residual Networks $H(x_0) = x_0 + F_0(x_0) + F_1(x_1) + F_2(x_2)$

Properties of Residual Networks

• Residual networks behave like ensembles of relatively shallow networks, it avoid the vanishing gradient problem (think about chain rule) by short

深度學習實作與應用

從一個 o 走到前一個 o 都有兩條路可以選擇 (1. 走identity; 2. 走 f_i)。 所以三個residual layers就有 2 x 2 x 2 共 8 條路。

我們把 (1. 走identity; 2. 走 f_i) 展開 · 就可以得到等效結構 。

Gradient computation of Residual Networks

 Simply add gradients from following layers.

Assignment 2

- Will be announced on 3/29.
- Will be addressed next week.
- Due date will be 4/8.