BLAAI ASSEBLIEF OM

EKSAMEN DATABLAD VIR DIE FISIESE WETENSKAPPE (FISIKA)

TABEL 1 FISIESE KONSTANTES

NAAM	SIMBOOL	WAARDE
Versnelling a.g.v. gravitasie	g	9,8 m⋅s ⁻²
Spoed van lig in 'n vakuum	С	$3.0 \times 10^8 \text{m} \cdot \text{s}^{-1}$
Universele gravitasiekonstante	G	$6.7 \times 10^{-11} \text{ N} \cdot \text{m}^2 \cdot \text{kg}^{-2}$
Coulomb se konstante	k	$9.0 \times 10^9 \text{N} \cdot \text{m}^2 \cdot \text{C}^{-2}$
Grootte van lading op elektron	е	$1.6 \times 10^{-19} \mathrm{C}$
Massa van 'n elektron	m _e	$9,1 \times 10^{-31} \text{ kg}$
Planck se konstante	h	6,6 × 10 ^{−34} J⋅s
1 elektronvolt	eV	$1.6 \times 10^{-19} \mathrm{J}$

TABEL 2 FISIESE FOMULES

BEWEGING

$v = u + at$ of $V_f = V_i + a\Delta t$	$s = \left(\frac{v+u}{2}\right)t \text{ of } \Delta x = \left(\frac{v_f + v_i}{2}\right)\Delta t$		
$v^2 = u^2 + 2as$ of $v_f^2 = v_i^2 + 2a\Delta x$	$s = ut + \frac{1}{2}at^2 \text{ of } \Delta x = v_i \Delta t + \frac{1}{2}a(\Delta t)^2$		

KRAG EN MOMENTUM

TANA EN MOMENTOM			
F _{net} = ma	$F_{net} = rac{\Delta p}{\Delta t}$ of $F_{net} \Delta t = m \Delta v$	$\Delta p = mv - mu$ \mathbf{of} $\Delta p = mv_f - mv_i$	
p = mv	$W = F_g = mg$	$F_f^{maks} = \mu F_N$	

WERK, ENERGIE EN DRYWING (ARBEIDSTEMPO)

W = Fs of $W = Fof W = F\Delta x \cos \theta$	D = D = D = D		$P = \frac{W}{t}$		
$E_p = mgh$	E	$\overline{c}_k = \frac{1}{2} m v^2$	$W_{net} = \Delta E$	K	$effektiwiteit = \frac{drywing_{uit}}{power_{in}}$

GRAVITASIE EN ELEKTRIESE VELDE

$F = G \frac{m_1 m_2}{r^2}$		$g = G\frac{M}{r^2}$	
$F = k \frac{q_1 q_2}{r^2}$	$E = \frac{F}{q}$		$E = \frac{kQ}{r^2}$

IEB Copyright © 2018

ELEKTRIESE STROOMBANE

$I = \frac{Q}{t}$	$V = \frac{W}{q}$		
$R = \frac{V}{I}$	$emk = I(R_{eks} + r)$		
$R_{S} = R_{1} + R_{2} + \dots$	$\frac{1}{R_{P}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \dots$		
$P = \frac{W}{t}$ of $W = Pt$			
W = VIt of $W =$	I^2Rt of $W = \frac{V^2}{R}t$		
P = VI of $P = VI$	$= I^2 R \qquad \text{of} \qquad P = \frac{V^2}{R}$		

ELEKTRODINAMIKA

$\Phi = BA\cos\theta$	$emk = -\frac{N\Delta\Phi}{\Delta t}$
$V_{\rho}I_{\rho}=V_{s}I_{s}$	$\frac{N_s}{N_p} = \frac{V_s}{V_p}$

FOTONE EN ELEKTRONE

$c = f \lambda$	E = t	of of	$E = \frac{hc}{\lambda}$
$E = W_0 + E_{K(maks)}$	$W_0 = hf_0$	$E_{\kappa(m)}$	$n_{maks} = \frac{1}{2} m v_{maks}^2$