Séries de fonctions - Chapitre 3 Révisions sur les complexes

Rappels sur les nombres complexes

Définitions et formes usuelles

Un nombre complexe z s'écrit sous la forme :

$$z = a + ib$$
 $(a, b \in \mathbb{R}, i^2 = -1)$

où a est la partie réelle $\Re(z)$ et b la partie imaginaire $\Im(z)$.

Forme algébrique : z = a + ib

Forme trigonométrique :

$$z = r(\cos\theta + i\sin\theta)$$

où $r = |z| = \sqrt{a^2 + b^2}$ est le **module** de z, et $\theta = \arg(z)$ est un **argument** de z (défini à 2π près).

<u>Forme exponentielle</u> (formule d'Euler) :

$$z = re^{i\theta}$$

avec $e^{i\theta} = \cos \theta + i \sin \theta$.

Module, argument et conjugué

— Module: $|z| = \sqrt{a^2 + b^2}$

— <u>Argument</u> : $\theta = \arctan\left(\frac{b}{a}\right)$ (attention au quadrant)

— Conjugué : $\overline{z} = a - ib$

Formule de Moivre

Pour tout $n \in \mathbb{Z}$,

$$(\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta)$$

ou, sous forme exponentielle:

$$\left(e^{i\theta}\right)^n = e^{in\theta}$$

Racines n-ièmes de l'unité

Les solutions de $z^n = 1$ sont :

$$z_k = e^{i\frac{2\pi k}{n}}, \quad k = 0, 1, \dots, n-1$$

Module et argument 1

Ecrire sous la forme a+ib, puis sou forme exponentielle les nombres complexes suivants :

- 1. Nombre de module 2 et d'argument $\pi/3$.
- 2. Nombre de module 3 et d'argument $-\pi/8$.
- 3. Nombre de module 1 et d'argument $\pi/4$.
- 4. Nombre de module 2 et d'argument $-\pi/6$.
- 5. Nombre de module 7 et d'argument $-\pi/2$.

$\mathbf{2}$ Forme exponentielle \rightarrow forme algébrique

Écrire sous la forme a+ib les nombres complexes suivants, donnés sous forme exponentielle :

1.
$$z_1 = 5e^{i\frac{\pi}{6}}$$

4.
$$z_4 = 7e^{i\pi}$$

2.
$$z_2 = 2e^{-i\frac{\pi}{4}}$$

5.
$$z_5 = 4e^{i0}$$

3.
$$z_3 = 3e^{i\frac{2\pi}{3}}$$

6.
$$z_6 = 6e^{-i\frac{\pi}{2}}$$

Forme exponentielle 3

Mettre sous forme exponentielle les nombres complexes suivants :

1.
$$z_1 = 1 + i\sqrt{3}$$
,

5.
$$z_5 = -2i$$
,

9.
$$z_9 = -3$$

2.
$$z_2 = 1 + i$$
,

6.
$$z_6 = -3$$
,

9.
$$z_9 = -3$$

10. $z_{10} = \frac{-i\sqrt{2}}{1+i}$

3.
$$z_3 = -2\sqrt{3} + 2i$$
,

7.
$$z_7 = 1$$

11.
$$z_{11} = \frac{(1+i\sqrt{3})^3}{(1-i)^5}$$

12. $z_{12} = \sin x + i\cos x$.

4.
$$z_4 = i$$
,

8.
$$z_8 = 9i$$

12.
$$z_{12} = \sin x + i \cos x$$

Exponentielle

Résoudre l'équation $e^z = 3\sqrt{3} - 3i$.

5 Trigonométrique

En utilisant les nombres complexes, calculer $\cos 5\theta$ et $\sin 5\theta$ en fonction de $\cos \theta$ et $\sin \theta$.

6 Pour préparer les séries de fourier

Calculer les intégrales suivantes, pour toute valeur de n et m dans les entiers relatifs :

$$\int_0^{\pi} e^{inx} e^{imx} dx$$

$$\int_0^\pi \cos(nx)\cos(mx)dx$$

$$\int_0^\pi \sin(nx)\sin(mx)dx$$

$$\int_0^\pi \cos(nx)\sin(mx)dx$$

7 Exponentielle

On pose

$$z_1 = 4e^{i\frac{\pi}{4}}, \qquad z_2 = 3ie^{i\frac{\pi}{6}}, \qquad z_3 = -2e^{i\frac{2\pi}{3}}$$

Écrire sous forme exponentielle les nombres complexes :

$$z_1, \qquad z_2, \qquad z_3, \qquad z_1 z_2, \qquad \frac{z_1 z_2}{z_2}$$

8 Racines carrées

Calculer de deux façons les racines carrées de 1+i et en déduire les valeurs exactes de $\cos\left(\frac{\pi}{8}\right)$ et $\sin\left(\frac{\pi}{8}\right)$.