BROUILLON - COURBES POLYNOMIALES SIMILAIRES MANQUE DES DESSINS!

CHRISTOPHE BAL

Mentions « légales »

Ce document est mis à disposition selon les termes de la licence Creative Commons "Attribution – Pas d'utilisation commerciale – Partage dans les mêmes conditions 4.0 International".

Table des matières

1.	Où allons-nous?	2
2.	Cas des polynômes de degré 3	2
3.	AFFAIRE À SUIVRE	3

Date: 2 Octobre 2020.

1. Où allons-nous?

Il est connu ques les courbes des fonctions affines sont toutes des droites, et celles représentant des trinômes du $2^{\rm e}$ degré sont toutes des paraboles. Quand on présente ce résultat au lycée, on n'a pas défini exactement ce qu'est une parabole $^{\rm l}$. On explique que l'on peut passer de la représentation de la fonction carrée $f: x \mapsto x^2$ à celle du trinôme $g: x \mapsto a\,x^2 + b\,x + c$ via une translation, une dilatation verticales et/ou une dilatation horizontale. Ceci nous amènes aux deux questions suivantes.

- (1) Peut-on passer de la courbe de $f: x \mapsto x^3$ à celle du polynôme $g: x \mapsto a x^3 + b x^2 + c x + d$ où $a \neq 0$ via une translation, une dilation verticales et/ou une dilatation horizontale.
- (2) Que se passe-t-il pour les courbes des fonctions $f: x \mapsto x^k$ pour $k \ge 4$?

2. Cas des polynômes de degré 3

Soit \mathscr{C}_g la courbe de la fonction $g: x \mapsto a x^3 + b x^2 + c x + d$ où $a \neq 0$. Nous allons démontrer que \mathscr{C}_g s'obtient à partir de l'une des courbes suivantes en utilisant une translation horizontale, une translation verticale, une dilatation verticale et/ou une dilatation horizontale.

- (1) Γ_1 représente $f_1: x \mapsto x^3$.
- (2) Γ_2 représente $f_2: x \mapsto x^3 3x$.
- (3) Γ_3 représente $f_3: x \mapsto x^3 + 3x$.

Démonstration. Distinguons trois cas en notant que l'on peut supposer que a=1.

(1) g'(x) a une unique racine réelle.

Nous avons ici $\alpha \in \mathbb{R}$ tel que $g'(x) = 3(x - \alpha)^2$ et donc $g(x) = (x - \alpha)^3 + k$. Il est immédiat que l'on peut passer de Γ_1 à \mathscr{C}_q à l'aide des transformations autorisées.

(2) g'(x) a deux racines réelles.

Nous avons ici $\alpha \neq \beta$ deux réels tels que $g'(x) = 3(x - \alpha)(x - \beta)$. Les faits suivants montrent que l'on peut passer de \mathscr{C}_g à Γ_2 , et donc aussi de Γ_2 à \mathscr{C}_g , à l'aide des transformations autorisées.

- (a) En posant $\delta = \frac{\alpha + \beta}{2}$, $g'(x + \delta) = 3\left(x + \frac{\beta \alpha}{2}\right)\left(x + \frac{\alpha \beta}{2}\right)$. Ceci nous fournit $g'(x + \delta) = 3(x \lambda)(x + \lambda)$ avec $\lambda \neq 0$ puis ensuite $g'(\lambda x + \delta) = \lambda^2 f_2'(x)$.
- (b) En résumé, $f_2'(x) = \frac{1}{\lambda^2} g'(\lambda x + \delta)$ puis par intégration $f_2(x) = \frac{1}{\lambda^3} g(\lambda x + \delta) + k$.
- (3) g'(x) n'a pas de racine réelle.

La forme canonique de g'(x) est ici $g'(x) = 3(x-p)^2 + m$ où les réels p et m sont tels que m > 0. Les faits suivants montrent que l'on peut passer de \mathscr{C}_g à Γ_3 , et donc aussi de Γ_3 à \mathscr{C}_g , à l'aide des transformations autorisées.

- (a) $g'(x+p) = 3x^2 + m$.
- (b) Notant $\mu = \sqrt{\frac{m}{3}}$, on a ensuite $g'(\mu x + p) = mx^2 + m$ soit $g'(\mu x + p) = \frac{m}{3}f'_3(x)$.
- (c) En résumé, $f_3'(x) = \frac{3}{m}g'(\mu x + p)$ puis par intégration $f_3(x) = \frac{3}{\mu m}g(\mu x + p) + k$.

Il est évident qu'il n'est pas possible de passer de Γ_i à Γ_j à l'aide des transformations autorisées. On peut donc parler de trois types de courbe pour les polynômes de degré 3 contre un seul pour les fonctions affines et un seul pour les trinômes du 2^e degré.

^{1.} La définition géométrique des grecques anciens restent la meilleure.

3. AFFAIRE À SUIVRE...