

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/699,097	10/30/2003	Lotien Richard Huang	10434/60901	2657
26646	7590	04/14/2008	EXAMINER	
KENYON & KENYON LLP ONE BROADWAY NEW YORK, NY 10004				DAM, DUSTIN Q
ART UNIT		PAPER NUMBER		
1795				
MAIL DATE		DELIVERY MODE		
04/14/2008		PAPER		

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Office Action Summary	Application No.	Applicant(s)	
	10/699,097	HUANG ET AL.	
	Examiner	Art Unit	
	DUSTIN Q. DAM	1795	

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

1) Responsive to communication(s) filed on 25 January 2008.

2a) This action is **FINAL**. 2b) This action is non-final.

3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

4) Claim(s) 1-26 is/are pending in the application.

4a) Of the above claim(s) _____ is/are withdrawn from consideration.

5) Claim(s) _____ is/are allowed.

6) Claim(s) 1-26 is/are rejected.

7) Claim(s) _____ is/are objected to.

8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

9) The specification is objected to by the Examiner.

10) The drawing(s) filed on _____ is/are: a) accepted or b) objected to by the Examiner.

 Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).

 Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).

11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).

a) All b) Some * c) None of:

- Certified copies of the priority documents have been received.
- Certified copies of the priority documents have been received in Application No. _____.
- Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

1) Notice of References Cited (PTO-892)

2) Notice of Draftsperson's Patent Drawing Review (PTO-948)

3) Information Disclosure Statement(s) (PTO/SB/08)
Paper No(s)/Mail Date _____.

4) Interview Summary (PTO-413)
Paper No(s)/Mail Date. _____.

5) Notice of Informal Patent Application

6) Other: _____.

DETAILED ACTION

Continued Examination Under 37 CFR 1.114

1. A request for continued examination under 37 CFR 1.114, including the fee set forth in 37 CFR 1.17(e), was filed in this application after final rejection. Since this application is eligible for continued examination under 37 CFR 1.114, and the fee set forth in 37 CFR 1.17(e) has been timely paid, the finality of the previous Office action has been withdrawn pursuant to 37 CFR 1.114. Applicant's submission for the Request for Continued Examination filed on January 25, 2008 and submission for amendments after a final action filed December 10, 2007 have been entered.

2. Claims 1-26 are currently pending and have been fully considered.

Oath/Declaration

3. The oath or declaration is defective. A new oath or declaration in compliance with 37 CFR 1.67(a) identifying this application by application number and filing date is required. See MPEP §§ 602.01 and 602.02.

The oath or declaration is defective because:

The Declaration filed April 8, 2004 claims priority to provisional application 60/442,309 filed "October 30, 2002" in which it is construed that applicant intended to claim priority to the provisional application 60/442,309 filed on "January 24, 2003" which is the correct filing date of provisional application 60/442,309.

Specification

4. The disclosure is objected to because of the following informalities: The first sentence of paragraph [0001] of the original specification filed on October 30, 2003 claims priority to

provisional application 60/442,309 filed "October 30, 2002" in which it is construed that applicant intended to claim priority to the provisional application 60/442,309 filed on "January 24, 2003" which is the correct filing date of provisional application 60/442,309.

Appropriate correction is required.

Claim Rejections - 35 USC § 102

5. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless –

(b) the invention was patented or described in a printed publication in this or a foreign country or in public use or on sale in this country, more than one year prior to the date of application for patent in the United States.

6. Claims 1-7, 9, 10, 13, 15, 16, 17, 19-22, and 24 are rejected under 35 U.S.C. 102(b) as being clearly anticipated by WIKTOROWICZ et al. (U.S. Patent 6,214,191 B1).

a. With regards to claim 1, WIKTOROWICZ et al. discloses an integrated microfluidic device comprising a sample chamber (160, FIG. 3) and a fluid reservoir (140, FIG. 4) connected by a microfluidic channel (170, FIG. 3), wherein the microfluidic channel comprises an inlet and an outlet (FIG. 3 shows inlet of channel 170 at end towards 160 and outlet at end towards 140), the sample chamber is positioned at the inlet of the microfluidic channel (FIG. 3) and comprises a first electrode (135, FIG. 3 is port for electrode, see line 57-58, column 15) and a second electrode (132, FIG. 3 is port for electrode, see line 44-47, column 7 "132a") structurally capable of generating a first electric field in the sample chamber, wherein the sample chamber containing the first and second electrode is a single compartment (160, FIG. 3), wherein the first electric field is

configured to transfer charged molecules in the sample chamber to the inlet of the microfluidic channel, and the fluid reservoir is positioned at the outlet of the microfluidic channel (FIG. 3) and comprises a third electrode (140, FIG. 4 is port for electrode, see line 57-58, column 15) structurally capable of generating a second electric field with at least the second electrode.

- b. With regards to claim 2, WIKTOROWICZ et al. discloses an integrated microfluidic device wherein the charged molecules are nuclei acid molecules (line 9, column 2).
- c. With regards to claim 3, WIKTOROWICZ et al. discloses an integrated microfluidic device wherein the nucleic acid molecules are deoxyribonucleic acids (line 17-26, column 12 “blood” inherently comprises DNA).
- d. With regards to claim 4, WIKTOROWICZ et al. discloses an integrated microfluidic device wherein the charged molecules are proteins (line 10, column 2).
- e. With regards to claim 5, WIKTOROWICZ et al. discloses an integrated microfluidic devices comprising a sample chamber (160, FIG. 3) and a fluid reservoir (140, FIG. 4) connected by a microfluidic channel (170, FIG. 3), wherein the microfluidic channel comprises an inlet and an outlet (FIG. 3 shows inlet of channel 170 at end towards 160 and outlet at end towards 140), the sample chamber is positioned at the inlet of the microfluidic channel (FIG. 3) and comprises a first electrode (135, FIG. 3 is port for electrode, see line 57-58, column 15) and a second electrode (132, FIG. 3 is port for electrode, see line 44-47, column 7 "132a") structurally capable of generating a first electric field in the sample chamber, and a section of matrix material comprising charged

molecules (line 15-18, column 2 “cross linked matrix”), wherein the sample chamber containing the first and second electrodes is a single compartment (160, FIG. 3), wherein the first electric field is configured to electro-elute the charged molecules from the section of matrix material and to transfer the charged molecules to the inlet of the microfluidic channel, and the fluid reservoir is positioned at the outlet of the microfluidic channel (FIG. 3) and comprises a third electrode (140, FIG. 4 is port for electrode, see line 57-58, column 15) structurally capable of generating a second electric field with at least the second electrode.

- f. With regards to claim 6, WIKTOROWICZ et al. discloses an integrated microfluidic device wherein the charged molecules are nucleic acid molecules (line 9, column 2).
- g. With regards to claim 7, WIKTOROWICZ et al. discloses an integrated microfluidic device wherein the nucleic acid molecules are deoxyribonucleic acids (line 17-26, column 12 “blood” inherently comprises DNA).
- h. With regards to claim 9, WIKTOROWICZ et al. discloses an integrated microfluidic device wherein the charged molecules are proteins (line 10, column 2).
- i. With regards to claim 10, WIKTOROWICZ et al. discloses an integrated microfluidic device wherein the charged molecules are polypeptide (line 8-12, column 2) sodium dodecyl sulfate supra molecules (line 29-34, column 2 “SDS”).
- j. With regards to claim 13, WIKTOROWICZ et al. discloses an integrated microfluidic device wherein the sample chamber comprises three electrodes (line 52-58, column 15).

k. With regards to claim 15, WIKTOROWICZ et al. discloses an integrated microfluidic device comprising a sample chamber (160, FIG. 3) and a fluid reservoir (130, FIG. 4) connected by a microfluidic channel (180, FIG. 3), wherein the microfluidic channel comprises an inlet and an outlet (FIG. 3 shows inlet of channel 180 at end towards 130 and outlet at end towards 160), the sample chamber is positioned at the outlet of the microfluidic channel (FIG. 3), and comprises a first electrode (135, FIG. 3 is port for electrode, see line 57-58, column 15) and a second electrode (132, FIG. 3 is port for electrode, see line 44-47, column 7 "132a") structurally capable of generating a first electric field in the sample chamber, wherein the sample chamber containing the first and second electrode is a single compartment (160, FIG. 3), and wherein the first electric field is configured to transfer charged molecules from the outlet of the microfluidic channel into the sample chamber, and the fluid reservoir is positioned at the inlet of the microfluidic channel (FIG. 3) and comprises a third electrode (130, FIG. 3 is port for electrode, see line 38-44, column 7 "130a") structurally capable of generating a second electric field with at least the second electrode.

l. With regards to claim 16, WIKTOROWICZ et al. discloses an integrated microfluidic device wherein the charged molecules are nucleic acid molecules (line 9, column 2).

m. With regards to claim 17, WIKTOROWICZ et al. discloses an integrated microfluidic device wherein the nucleic acid molecules are deoxyribonucleic acids (line 17-26, column 12 "blood" inherently comprises DNA).

- n. With regards to claim 19, WIKTOROWICZ et al. discloses an integrated microfluidic device wherein the charged molecules are proteins (line 10, column 2).
- o. With regards to claim 20, WIKTOROWICZ et al. discloses an integrated microfluidic device comprising a sample chamber (160, FIG. 3) and a fluid reservoir (130, FIG. 4) connected by a microfluidic channel (180, FIG. 3), wherein the microfluidic channel comprises an inlet and an outlet (FIG. 3 shows inlet of channel 180 at end towards 130 and outlet at end towards 160), the sample chamber is positioned at the outlet of the microfluidic channel (FIG. 3), and comprises a first electrode (135, FIG. 3 is port for electrode, see line 57-58, column 15) and a second electrode (132, FIG. 3 is port for electrode, see line 44-47, column 7 "132a") structurally capable of generating a first electric field in the sample chamber, and a section of matrix material (line 15-18, column 2 "cross linked matrix"), wherein the sample chamber containing the first and second electrode is a single compartment (160, FIG. 3), and wherein the first electric field is configured to transfer charged molecules from the outlet of the microfluidic channel into the sample chamber, and the fluid reservoir is positioned at the inlet of the microfluidic channel (FIG. 3) and comprises a third electrode (130, FIG. 3 is port for electrode, see line 38-44, column 7 "130a") structurally capable of generating a second electric field with at least the second electrode.
- p. With regards to claim 21, WIKTOROWICZ et al. discloses an integrated microfluidic device wherein the charged molecules are nucleic acid molecules (line 9, column 2).

- q. With regards to claim 22, WIKTOROWICZ et al. discloses an integrated microfluidic device wherein the nucleic acid molecules are deoxyribonucleic acids (line 17-26, column 12 “blood” inherently comprises DNA).
- r. With regards to claim 24, WIKTOROWICZ et al. discloses an integrated microfluidic device wherein the charged molecules are proteins (line 10, column 2).

Claim Rejections - 35 USC § 103

7. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

8. The factual inquiries set forth in *Graham v. John Deere Co.*, 383 U.S. 1, 148 USPQ 459 (1966), that are applied for establishing a background for determining obviousness under 35 U.S.C. 103(a) are summarized as follows:

1. Determining the scope and contents of the prior art.
2. Ascertaining the differences between the prior art and the claims at issue.
3. Resolving the level of ordinary skill in the pertinent art.
4. Considering objective evidence present in the application indicating obviousness or nonobviousness.

9. Claims 8, 14, 18, and 23 are rejected under 35 U.S.C. 103(a) as being unpatentable over WIKTOROWICZ et al. (U.S. Patent 6,214,191 B1) in view of ADCOCK (U.S. Patent 4,959,133).

- a. With regards to claim 8, dependent claim 7 is clearly anticipated by WIKTOROWICZ et al. under 35 U.S.C. 102(b) as discussed above.

WIKTOROWICZ et al. does not appear to explicitly disclose an integrated microfluidic device wherein the DNA is greater than about 50 kilobases in size.

However, ADCOCK discloses a method of filed inversion electric pulses to force DNA or protein out of a gel and into an appropriate receiver (ABSTRACT). The inverted pulsed electric field allows for the electro-elution of higher molecular weights (line 57-60, column 2 such as "larger in molecular weight than 2×10^4 base pairs").

Thus, at the time of the invention, it would have been obvious to a person having ordinary skill in the art to modify the integrated microfluidic device, as disclosed by WIKTOROWICZ et al., to include applying an inverted pulsed electric field, as disclosed by ADCOCK, because the inverted pulsed electric field allows for the electro-elution of higher molecular weights.

b. With regards to claim 14, independent claim 5 is clearly anticipated by WIKTOROWICZ et al. under 35 U.S.C. 102(b) as discussed above. WIKTOROWICZ et al. discloses an integrated microfluidic device comprising a plurality of electrodes.

WIKTOROWICZ et al. does not appear to explicitly disclose an integrated microfluidic device wherein the two electrodes generate repeatedly inverted electric pulses.

However, ADCOCK discloses a method of filed inversion electric pulses to force DNA or protein out of a gel and into an appropriate receiver (ABSTRACT). The inverted pulsed electric field allows for the electro-elution of higher molecular weights (line 57-60, column 2 such as "larger in molecular weight than 2×10^4 base pairs").

Thus, at the time of the invention, it would have been obvious to a person having ordinary skill in the art to modify the integrated microfluidic device, as disclosed by WIKTOROWICZ et al., to include applying an inverted pulsed electric field, as disclosed by ADCOCK, because the inverted pulsed electric field allows for the electro-elution of higher molecular weights.

c. With regards to claim 18, dependent claim 17 is clearly anticipated by WIKTOROWICZ et al. under 35 U.S.C. 102(b) as discussed above. WIKTOROWICZ et al. discloses an integrated microfluidic device comprising a plurality of electrodes.

WIKTOROWICZ et al. does not appear to explicitly disclose an integrated microfluidic device wherein the DNA is greater than about 50 kilobases in size.

However, ADCOCK discloses a method of filed inversion electric pulses to force DNA or protein out of a gel and into an appropriate receiver (ABSTRACT). The inverted pulsed electric field allows for the electro-elution of higher molecular weights (line 57-60, column 2 such as "larger in molecular weight than 2×10^4 base pairs").

Thus, at the time of the invention, it would have been obvious to a person having ordinary skill in the art to modify the integrated microfluidic device, as disclosed by WIKTOROWICZ et al., to include applying an inverted pulsed electric field, as disclosed by ADCOCK, because the inverted pulsed electric field allows for the electro-elution of higher molecular weights.

d. With regards to claim 23, dependent claim 22 is clearly anticipated by WIKTOROWICZ et al. under 35 U.S.C. 102(b) as discussed above. WIKTOROWICZ et al. discloses an integrated microfluidic device comprising a plurality of electrodes.

WIKTOROWICZ et al. does not appear to explicitly disclose an integrated microfluidic device wherein the DNA is greater than about 50 kilobases in size.

However, ADCOCK discloses a method of filed inversion electric pulses to force DNA or protein out of a gel and into an appropriate receiver (ABSTRACT). The inverted pulsed electric field allows for the electro-elution of higher molecular weights (line 57-60, column 2 such as "larger in molecular weight than 2×10^4 base pairs").

Thus, at the time of the invention, it would have been obvious to a person having ordinary skill in the art to modify the integrated microfluidic device, as disclosed by WIKTOROWICZ et al., to include applying an inverted pulsed electric field, as disclosed by ADCOCK, because the inverted pulsed electric field allows for the electro-elution of higher molecular weights.

10. Claims 11, 12, 25, and 26 are rejected under 35 U.S.C. 103(a) as being unpatentable over WIKTOROWICZ et al. (U.S. Patent 6,214,191 B1) in view of GAUTSCH (U.S. Patent 6,162,602).

a. With regards to claim 11 and 12, independent claim 5 is clearly anticipated by WIKTOROWICZ et al. under 35 U.S.C. 102(b) as discussed above. WIKTOROWICZ et al. discloses an integrated microfluidic device comprising a section of matrix material.

WIKTOROWICZ does not appear to explicitly disclose an integrated microfluidic device wherein the section of matrix material is an agarose gel plug.

However, GAUTSCH discloses a method for nucleic acid base sequencing and discloses separating fragments by means of capillary electrophoresis employing agarose or polyacrylamide gel (line 10-17, column 3).

Thus, at the time of the invention, it would have been obvious to a person having ordinary skill in the art to substitute the section of matrix material in the integrated microfluidic device, as disclosed by WIKTOROWICZ et al., with an agarose gel plug, as disclosed by GAUTSCH, because the agarose gel is an improved method over slab gel and agarose is a functional equivalent to the polyacrylamide (GAUTSCH: line 10-17, column 3) and one with ordinary skill would have a reasonable expectation of success since both WIKTOROWICZ et al. and GAUTSCH are concerned with separating fragments.

b. With regards to claim 25 and 26, independent claim 20 is clearly anticipated by WIKTOROWICZ et al. under 35 U.S.C. 102(b) as discussed above. WIKTOROWICZ et al. discloses an integrated microfluidic device comprising a section of matrix material.

WIKTOROWICZ does not appear to explicitly disclose an integrated microfluidic device wherein the section of matrix material is an agarose gel plug.

However, GAUTSCH discloses a method for nucleic acid base sequencing and discloses separating fragments by means of capillary electrophoresis employing agarose or polyacrylamide gel (line 10-17, column 3).

Thus, at the time of the invention, it would have been obvious to a person having ordinary skill in the art to substitute the section of matrix material in the integrated microfluidic device, as disclosed by WIKTOROWICZ et al., with an agarose gel plug, as disclosed by GAUTSCH, because the agarose gel is an improved method over slab gel and agarose is a functional equivalent to the polyacrylamide (GAUTSCH: line 10-17, column 3) and one with ordinary skill would have a reasonable expectation of success

since both WIKTOROWICZ et al. and GAUTSCH are concerned with separating fragments.

Conclusion

Any inquiry concerning this communication or earlier communications from the examiner should be directed to DUSTIN Q. DAM whose telephone number is (571)270-5120. The examiner can normally be reached on Monday through Thursday, 7:30 AM to 5:00 PM.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Nam Nguyen can be reached on (571)272-1342. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/Nam X Nguyen/
Supervisory Patent Examiner, Art Unit
1753

dd
April 7, 2008

Application/Control Number: 10/699,097
Art Unit: 1795

Page 14