## Survival Modeling

In this notebook we will develop "survival models". These will be mathematical devices to (in the next notebook) evaluate our current existential risk situation.

What I want to achieve with these existential risk/survival models, is to estimate a civilization's life-span, as a function of current risk levels, and based on it's handling of these risks.

```
# Imports
import matplotlib.pyplot as plt
import numpy as np
import seaborn as srs
import pandas as pd
from matplotlib.ticker import FuncFormatter
import time
import pprint

from the_extinction_game.models.single_risk_binary_tree import build_xrisk_tree, estimate_s:
from the_extinction_game.models.disjoint_events_constant_risk import DisjoinEventsConstantE:
from the_extinction_game.reporting import plot_survival_analysis
from the_extinction_game.models.multi_risk_binary_tree import MultiRiskBinaryTreeModel
from the_extinction_game.experiment import Experiment

# Setup seaborn
srs.set_theme()
```

## The Extinction Game

The basis for developing the survival models in this notebook is what I call *The Extinction Game*.

We start with basic models, and then proceed to make them progressively more complex, allowing us to model more complex dynamics, like the change of X-Risk through the centuries, and making successive Extinction Games dependent.

So what is the Extinction Game?

It's a game that the virtual civilizations' - whose fate we're trying to capture in a mathematical model - play once every century. The game has two possible outcomes:

- The civilization survives and goes on to play again in the next century, or
- it looses, and doesn't get to play again

We're not going to go into the details of what it means to *win* or *loose* the game, that'll be a subject for later, which involves a more philosophical discussion. In this notebook, we'll focus on the more technical and mathematical aspects.

We'll devise the following survival models:

- ☐ Disjoint events with constant risk
- oxtimes Single risk binary tree with constant risk change
- ☑ Multi risk binary tree with constant risk change
- ☐ Multi risk binary tree with risk change correlations
- ☐ Multi risk binary tree with asymmetric risk change

Let's get to it!

## Disjoint Events with Constant Total Risk

This is the simplest model. In it, humanity's existential risk is modeled as a probability cascade, where the extinction game is played every century, and every century is independent - meaning that the outcome in one century doesn't affect the game in other centuries. We also use a constant figure for total risk.

Though this model has the downside of modeling each century as independent - which they're arguably not - it could serve as a "business as usual" scenario, where risk levels are maintained, reflecting a lack of effort to actively reduce them, or just enough effort to not let them increase.

To describe the problem we introduce the following events and expressions:

- E: Extinction in a randomly chosen century
- $E_n$ : Extinction after n centuries
- S: Survival in a randomly chosen century
- $S_n$ : Survival after n centuries
- P(E): Probability of extinction in a randomly chosen century
- P(S): Probability of survival in a randomly chosen century
- $P(E_n)$ : Probability of extinction after n centuries
- $P(S_n)$ : Probability of survival after n centuries

We can establish the relationships between P(E), P(S),  $P(E_n)$ , and  $P(S_n)$ .

First we assume that P(S) and P(E) are complementary and mutually exclusive. Either there is or isn't an extinction event in a randomly chosen century. And similarly, after n centuries, either there has been or there hasn't been an extinction event, so  $P(E_n)$ , and  $P(S_n)$  are also mutually exclusive and complementary.

$$P(S) = 1 - P(E)$$

$$P(S_n) = 1 - P(E_n)$$

To model the survival probability after n centuries, we can just multiply the survival probability n times, or raise it to the power of n:

$$P(S_n) = P(S)^n$$
  
 
$$P(S_n) = [1 - P(E)]^n$$

The expression  $P(S_n)$  tells us then that the probability of survival after n centuries is the complementary existential risk (1 - P(E)) raised to the power of n.

We've now modeled the survival probability in a very simple way. Let's see how this model behaves.

```
model = DisjoinEventsConstantRiskModel(1000, 0.1)
experiment = Experiment(model, n_simulations=10000)
survival, extinction_centuries = experiment.run()
stats, survival_by_century = experiment.get_stats()
fig, axes = plt.subplots(2, 1, figsize=(8, 8))
ax = experiment.plot_survival_rate(ax=axes[0])
latest_extinction = stats['latest_extinction'].max()
ax.set_xlim([0, latest_extinction + 1])
ax_hist = experiment.plot_extinction_century_histogram(ax=axes[1])
```



