Homework 2

Class	50.021 Artificial Intelligence		
© Created	@Jun 5, 2021 4:55 PM		
Materials	2021_theoryhw_csp.pdf		
Reviewed			
Type	Homework		
# Week	3		

Question 1

Compare between standard search problems and constraint satisfaction problems. List

down two similarities and three differences.

Similarities:

- They both have states, to physically represent a configuration of the problem, so that it is possible to work towards a goal.
- They both have goals, and goal tests to see if the programme has arrived at a state that is the goal.

Differences:

- SSP is more interested in the sequence of actions (path) to the goal while
 CSP is more interested in the goal itself, not the sequence of actions (path)
 there
- For SSP, paths have various costs and depths while for CSP, all paths have the same depth (for some formulations)
- ullet For SSP, the state space is quite broad, and can be strings, or countries etc, while for CSPs, the states are represented by variables X_i which can take on values from domain D_i

Question 2

Homework 2 1

Formulate this as a CSP problem, by stating all variables, domains and constraints.

Also, draw the corresponding constraint graph.

Variables: A, B, C, D, E, X_1, X_2

where X_1, X_2 represent the carryover for each decimal position

Domains: $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

Constraints:

• alldiff(A, B, C, D, E)

•
$$B + B = E + X_1 \cdot 10$$

•
$$A + A + X_1 = D + X_2 \cdot 10$$

•
$$C = X_2$$

Question 3

Variable	Colour	Inconsistency found	
V1	R		
V2	G		
V3	R	×	
V3	G		
V4	G	×	
V2	B		
V3	R	×	
V1	G		
V2	G	×	
V2	B		
V3	R		
V4	G	solution	

 $\therefore \text{ the solution is } \{V1:G,V2:B,V3:R,V4:G\}$

Question 4

Variable	Colour	Domain empty
V1	R	
V2	G	×
V2	B	
V3	G	×
V1	G	
V2	B	
V3	R	
V4	G	solution

^{*}may change depending on profs answer

Question 5

Homework 2 3

Variable	Variable	Domain	Domain
V1	V2	D1:RGB	D2:GB
V4	V2	D4:G	D2:GB
V1	V3	D1:RGB	D3:RG
V2	V1	D2:GB	D1:RGB
V2	V4	D2:GB	D4:G
V3	V1	D3:RG	D1:RGB
V3	V4	D3:RG	D4:G
V4	V3	D4:G	D3:RG
V1	V2	D1:RGB	D2: GB
V4	V2	D4:G	D2: GB
V1	V3	D1: RGB	D3:RG
V4	V3	D4:G	D3:RG
V2	V1	D2: GB	D1: RGB
V3	V1	D3:RG	D1: RGB

Each domain is actually left with only one letter after doing the arc consistency check, meaning there is only one possible solution for this problem: $\{V1:G,V2:B,V3:R,V4:G\}$

Homework 2 4