Problem Set #6

Given: Mon., Oct. 22 **Recommended Completion Date:** Mon., Oct. 29 **Do not submit for grading**

Problem 1: A plate of stainless steel ($\rho = 7817 \text{ kg/m}^3$; c = 460 J/kg-°C; k = 19 W/m-°C) has thickness of 3 cm and is initially at a uniform temperature of $T_i = 500^{\circ}\text{C}$. The plate is suddenly exposed to same convection cooling environment on sides characterized by $T_{\infty} = 40^{\circ}\text{C}$ and $h = 150 \text{ W/m}^2\text{-°C}$. Calculate the times for the center and face temperatures of the plate to reach 100°C.

Ans.: center: t = 787.76 s; face: t = 766.46 s (Heisler Charts were used, please check these with one-term app.)

Problem 2: A slab of metal ($\rho = 8000 \text{ kg/m}^3$; c = 1000 J/kg-°C; k = 25 W/m-°C), in the shape of a rectangular parallelepiped and at a uniform temperature of $T_i = 520 \text{°C}$, has three of its surfaces very well insulated (essentially adiabatic), as shown in the figure. At time t = 0 s it is suddenly exposed to convective cooling: $T_{\infty} = 20 \text{°C}$ and $h = 1000 \text{ W/m}^2 - \text{°C}$.

- a) At t = 200 s into the cooling process, what are the maximum and minimum temperature inside the slab?
- b) If at this time, the cube is wrapped completely in excellent insulation (all surfaces essentially adiabatic) what would be its final equilibrium temperature?

Ans.: a) $T_{max} = 96.08 \, \text{°C}$, $T_{min} = 41.11 \, \text{°C}$; b) $T_{final} = 72.05 \, \text{°C}$