Your grade: 100%

Your latest: 100% • Your highest: 100% • To pass you need at least 70%. We keep your highest score.

Next item →

1.	The term Bagging stands for bootstrap aggregating.	1/1 point			
True					
	○ False				
	Correct Correct! You can find more information in the lesson: Ensemble Based Methods and Bagging.				
2.	This is the best way to choose the number of trees to build on a Bagging ensemble.	1/1 point			
	Choose a number of trees past the point of diminishing returns				
	Tune number of trees as a hyperparameter that needs to be optimized				
	Choose a large number of trees, typically above 100				
	O Prioratize training error metrics over out of bag sample				
	 Correct Correct! You can find more information in the lesson: Ensemble Based Methods and Bagging. 				
3.	Which type of Ensemble modeling approach is NOT a special case of model averaging?	1/1 point			
	The Bagging method of Bootstrap aggregation				
	O Random Forest methods				
	Boosting methods				
	The Pasting method of Bootstrap aggregation				
	○ Correct Correct! You can find more information in the lesson Overview of Boosting.				
4.	What is an ensemble model that needs you to look at out of bag error?	1/1 point			
	Out of Bag Regression				
	Random Forest				
	O Logistic Regression.				
	○ Stacking				
	 Correct Correct! You can find more information in the lesson Random Forest. 				
5.	What is the main condition to use stacking as ensemble method?	1/1 point			
	Models need to output predicted probabilities				
	Models need to be parametric				
	Models need to output residual values for each class				
	Models need to be nonparametric				
	 Correct Correct! You can find more information in the lesson Stacking. 				

6.	This tree ensemble method only uses a subset of the features for each tree:	1/1 point
	○ Stacking	
	Random Forest	
	O Bagging	
	O Adaboost	
	 Correct Correct! This tree ensemble only uses a subset of the features for each tree. For more information, please review the Random Forest lesson. 	
7.	Order these tree ensembles in order of most randomness to least randomness:	1/1 point
	○ Random Forest, Bagging, Random Trees	
	O Bagging, Random Forest, Random Trees	
	○ Random Forest, Random Trees, Bagging	
	Random Trees, Random Forest, Bagging	
	Correct Correct! Random Trees add one more degree of randomness than Random Forests and two more than Bagging. You can find more information in the Random Forest lesson.	
8.	This is an ensemble model that does not use bootstrapped samples to fit the base trees, takes residuals into account, and fits the base trees iteratively:	1/1 point
	Boosting	
	○ Random Trees	
	O Random Forest	
	O Bagging	
	Correct Correct! These are all characteristics of boosting algorithms. You can find more information in the Boosting lesson.	
9.	When comparing the two ensemble methods Bagging and Boosting, what is one characteristic of Boosting?	1/1 point
	Fits entire data set	
	O No weighting used	
	Only data points are considered	
	O Bootstraped samples	
	 Correct Correct. With Boosting you can use the entire data set to train each of the classifiers 	
10.	What is the most frequently discussed loss function in boosting algorithms?	1/1 point
	Gradient Boosting Loss Function	
	AdaBoost Loss Function	
	0-1 Loss Function	
	○ Gradient Loss Function	
	○ Correct	
	Correct. The 0-1 Loss function is the most frequently discussed loss function.	