

3	$\left(\frac{dV_1}{dt} - \frac{1}{m_1} \left(-F_f(t) + F_i(t) \right) \right)$
5	dt mi T
5	1 dv2 1 (
5	$\frac{dV_2}{dt} = \frac{1}{m_2} \left(F_f(t) + F_2(t) \right)$
	$\frac{d^2f}{dt} = k(V_1(t) - V_2(t))$
	$\frac{dX}{dt} = \frac{m_1 V_1(t) + m_2 V_2(t)}{m_1 + m_2}$
- '	$dt = m_1 + m_2$
~ \	
Kommerler	En prang med alt valja marscentrum-
:	koordinder som tillståndsvariabel är at
	ders andraderivala
	$\frac{d^2X}{dt^2} = \frac{1}{m_1 + m_2} \left\{ m_1 \frac{dV_1}{dt} + m_2 \frac{dV_2}{dt} \right\} = \frac{F_1(t) + F_2(t)}{m_1 + m_2}$
	dt mitmz (dt) mitmz
	påverker av de
	och all trå bora påverkus av de yttre krofterna (itsignalerna).
	Me kroperna (Wst.).

	Uppgift 2
	a) $F = 6\pi \eta RV G$ $y = \frac{F}{6\pi RV}$
	Enhelen for du dyraniska viskoritelen [7] = [F] N NS = [N= kgm] [7] = [R][V] m. m S
	$=\frac{kgms}{s^2m^2}=\frac{kg}{s\cdot m}$
	Svari SI-enther for par kg 3.m
	bl Vi har 6 olika storheter som kan uttyckus med ameriourna for
profession and the second seco	fyra oliha storher, mersa M, langd L, tid T, och ström I.
<i>p</i> ⁿ ,	[i] = I och [t] = T, on sjulvklure.
	Bestem Seden diversion for spanningen
	Joules dag => P=U.I (=> U==================================
	kraft vag Perenhet eftet

Uppgift 3 al For all få en beskrivning på tillstands form ska vi bara ha forstadeniator. Det En darfor lampligt alt infora en ytterligue $V = \frac{dx}{dt} = \frac{d^2x}{dt^2} = \frac{dv}{dt}$ Den givna differential eterationen kun då skrivare $\frac{dV + bV + sin x = u(t)}{dt}$ $\frac{dV}{dt} = -bV - Sinx + U(t)$ Vi har all bå dessutom dx = V Ekvaliouna (1) och (2) ger tillsammans en till stands beskning for tillstandsvektorn [x(t)]

र्	3-2
	b) u(t)=u0= \frac{1}{12}, beston stationar-
	Vi soker alltju tillstand som ger dV 0 5-bv-sihx + 1/2 = 0 dx = 0 V=0
	$Sinx = \sqrt{2} \qquad (x = \sqrt{1 + n \cdot 2\pi}) \qquad (x = 3\pi + n \cdot 2\pi)$ $V = 0 \qquad V = 0$ $V = 0 \qquad V = 0$
	V=0 $V=0$ $V=0$ $V=0$ $V=0$ $V=0$
	17/4 3TT/4 9TT 11TT Che
	Svar: Stationar tillstanden ges antigun (V=0 X=T+1.2T eller X=3T+1.2T
	dur nan ett heltal (som kan vara megahit).
	vara megalivt).

genom att. berakenn partial derivuloma 3-9)

for vi

A- COSXO - b - 1/12 0 / 0 Når delta salls in i ekv. (3) for vi $\frac{d\Delta V}{dt} = -b\Delta V - \frac{1}{\sqrt{2}}\Delta X + \Delta U$ dax a AV Svar: De båda ovarstarende ekvationer form kning stationen punkten (Vo = 0 Xo = 11/4 U0=1/12.

4-2) Ekvalionuma kan skrivas om di + Ri(t) + L V, (t) = L u(t) $C_1 \frac{dV_1}{dt} + C_2 \frac{dV_2}{dt} - i(t) = 0$ $V_1(t) - V_2(t) = 0$ Delha av ett system av ekvalion på DAE-form. CI Vi mander ett vaiabelbyla for alt bestemme undex. Jag belichnen de nya variablema med Z, Zz och Zz. · Strömmen i(t) behöver vi vola och behåller du som variabel => Z,(t)=i(t) · En annon variable som borde vara introssent ar spannilyen over ersallulyskaparitourn Cp for de både perallellkopplude konduratorerun C, och Cz, Cp=C,+Cz Vi Saller danfor Zz= total luddwing => Z2 = C, V, + Cz V2 Den trodje variabeln låter vi vara Z3= V1-V2, Z3 kommer att bertoner at ell transviller.

Viser mu at $V_1 = \frac{C_1 V_1 + C_2 V_1}{C_p} = \begin{cases} V_1 = V_2 \end{cases} = \frac{C_1 V_1 + C_2 V_2}{C_p} = Z_2 = V_2$ Vidua an de Co Codvi + Codve Med dersa samband kun DAEn Skrivas am 2000 dz1 + Rz, + L Z2 = Lu(x) $C_{p} \frac{dz_{2}}{dt} - i(t) = 0$ 73 = 0 Om blev. (5) divideras med Cp kun alla på malvisform geo Standard form I 1000 dz + = 1/c, 0 0 = [u(+)/L]
0100 dt 0010 dt 0001 dan 2 = 22 Matrisen franfor dt består au en entets matris au dirección 2x2 sunt N = [0], I och med all N=0 har systemet under 1.

Svan: Systemets molex ar 1.