Universidade Federal de Santa Catarina Centro de Ciências, Tecnologias e Saúde Coord. Esp. de Física, Química e Matemática

Lista 5 - Cálculo III

VETORES TANGENTE, NORMAL E BINORMAL UNITÁRIOS

Referência: Cálculo, vol. 2, Tradução da 7ªed. norte-americana, James Stewart

17-20

(a) Determine os vetores tangente e normal unitários $\mathbf{T}(t)$ e $\mathbf{N}(t)$.

17.
$$\mathbf{r}(t) = \langle t, 3 \cos t, 3 \sin t \rangle$$

18. $\mathbf{r}(t) = \langle t^2, \sin t - t \cos t, \cos t + t \sin t \rangle$, $t > 0$
19. $\mathbf{r}(t) = \langle \sqrt{2}t, e^t, e^-t \rangle$
20. $\mathbf{r}(t) = \langle t, \frac{1}{2}t^2, t^2 \rangle$

Definições necessárias para os próximos exercícios: Os nomes são diferentes, mas o conteúdo já foi estudado em Geometria Analítica.

PLANO NORMAL a uma Curva num ponto P: plano determinado pelos vetores Normal (**N**) e Binormal (**B**), que contém o ponto P.

PLANO OSCULADOR a uma Curva num ponto P: plano determinado pelos vetores Tangente (T) e Normal (N), que contém o ponto P.

49–50 Determine as equações dos planos normal e osculador da curva no ponto indicado.

49.
$$x = 2 \sin 3t$$
, $y = t$, $z = 2 \cos 3t$; $(0, \pi, -2)$
50. $x = t$, $y = t^2$, $z = t^3$; $(1, 1, 1)$

- **55.** Determine as equações dos planos normais e osculador da curva de interseção dos cilindros parabólicos $x = y^2$ e $z = x^2$ no ponto (1, 1, 1).
- **56.** Mostre que o plano osculador em cada ponto da curva $\mathbf{r}(t) = \langle t+2, 1-t, \frac{1}{2}t^2 \rangle$ é o mesmo plano. O que você pode concluir sobre a curva?