

# The Face Recognition Smart Lock System

Revolutionizing access control with cutting-edge facial authentication, integrating IoT and computer vision for unparalleled security and convenience.

# Addressing Modern Security Challenges

Traditional locks pose significant vulnerabilities, from theft and duplication to loss of keys, compromising security in an increasingly connected world. The demand for intelligent, user-friendly, and cost-effective contactless access control is critical.

#### Traditional Vulnerabilities

Prone to theft, key duplication, and loss, leading to compromised security and high replacement costs.

# Rising Demand for Smart Solutions

Increasing need for intelligent, user-friendly, and contactless access control systems in modern environments.

#### Seamless, Secure Access

A solution that offers real-time facial authentication for enhanced reliability and peace of mind.

## Why Face Recognition?

Face recognition technology is transforming secure access. Many current solutions are expensive or complex. Our project develops a smart, scalable, and educational system that combines facial recognition with IoT-based access control, offering practical experience in AI, IoT, and security.





#### Cost-Effective & Flexible

Designed to be an affordable and adaptable alternative to complex, proprietary systems.



#### Practical Learning Experience

Provides hands-on engagement with computer vision, real-time processing, and smart automation.



#### Real-World Implementation

Ideal for homes, offices, and institutional settings, demonstrating the power of AI and IoT in security.

# Project Objectives & Core Features

Our primary objective is to develop a smart and secure IoT-based face recognition lock system. This system will authenticate users through facial recognition, providing a contactless, reliable, and user-friendly alternative to traditional locks with real-time feedback and access logging.



#### Real-time Recognition

Utilizes a camera and advanced computer vision algorithms for instant face detection.



#### Secure Access Control

Replaces physical keys and PINs with robust facial authentication.



### Microcontroller Integration

Leverages Raspberry Pi/ESP32 for efficient processing and control.



#### Automated Lock Actuation

Activates a servo motor or electronic lock upon successful facial match.



### Intuitive GUI & Logs

A graphical user interface displays system status, recognition results, and access logs.



#### Cloud Data Management

Optional cloud database integration for scalable user data storage and management.

# Development Methodology

Our project development follows a structured approach, encompassing hardware setup, advanced face recognition programming, and robust control logic, ensuring a comprehensive and functional system.

### Hardware Setup

Connecting the ESP32-CAM module, FTDI programmer, and SG90 servo motor for system foundation.

### Access Control Logic

Defining rules for servo actuation based on recognition, handling unauthorized attempts, and maintaining detailed access logs.

### Face Recognition & Web Programming

Deploying OpenCV for real-time detection, storing facial data, and developing a web-based control panel for remote access.

#### **Ul** Integration

Enabling remote monitoring of logs, camera feeds, and user management through a browser or custom application.

## Key Technologies & Components

This project leverages a combination of widely available hardware and open-source software, making it both practical and accessible for development and deployment.

#### Hardware

- ESP32-CAM (camera module & microcontroller)
- Breadboard & Jumper Wires (circuit assembly)
- SG90 Servo Motor (lock mechanism)
- FTDI Programmer (ESP32-CAM programming)
- Computer/Laptop (for UI interaction)



#### Software

- Arduino IDE (microcontroller programming)
- HTML, CSS (web interface development)
- Blynk IoT Application (IoT connectivity)
- Libraries: PySerial, Tkinter (GUI support)
- Code Editor: VS Code (development environment)



# Robust Testing & Evaluation

Comprehensive unit testing ensures the system's reliability, responsiveness, and accuracy in various scenarios, while key metrics validate data flow and UI performance.

### Unit Testing

- Access Validation: Confirm correct lock behavior for authorized and unauthorized faces.
- Response Time: Measure activation speed from detection to lock mechanism.
- Auto-Lock Feature: Verify the door relocks after a specified duration.

#### Evaluation Metrics

- Data Transmission: Verify seamless data flow between camera, recognition, and controller.
- UI Accuracy: Ensure real-time display of "Access Granted" or "Denied" messages.
- Log & Error Handling: Confirm proper updates and error triggers for system issues.



# Future Prospects & Contributions

The Face Recognition Smart Lock System is a practical, real-world solution that integrates basic electronics with advanced software. It serves as an excellent foundation for future smart systems, empowering learners to explore advanced technologies while creating tangible solutions.

#### Enhanced Home Security

Offers a secure, keyless entry for residential properties.

#### Office & Institutional Access

Streamlines entry management in professional environments.

#### IoT Automation Learning

Provides a hands-on platform for understanding IoT integration and computer vision.

### Scalable & Adaptable

Modular design allows for easy upgrades and new features, such as wireless communication or mobile app integration.