ADMM based Scalable Machine Learning on Apache Spark

Sauptik Dhar, Mohak Shah

Bosch Al Research

Data is transformational

Image: https://www.slideshare.net/mongodb/internet-of-things-and-big-data-vision-and-concrete-use-cases

Big data, Spark and Status-quo

► Challenges

- ► Learning → (Convex) Optimization
- Current solutions (MLLib/ML packages) adopt
 - SGD: convergence dependent on step-size, conditionality
 - LBFGS: Adapting to non-differentiable functions non-trivial

Spark Ecosystem

https://www.simplilearn.com/apache-spark-guide-for-newbies-article

- ► ADMM (Alternating Direction Method of Multipliers)
 - ► Large problem → (simpler) sub-problems
 - Guaranteed convergence and robustness to step-size selection
 - ► Robust to ill-conditioned problems

ADMM advantages

- ► ADMM for Spark
- ► Coverage (ML algorithms)
- ► Go beyond MLLib/ML for Python community
- ► Address sub-optimality leading from internal normalization (MLLib/ML)

ADMML Package

- ► Generic ADMM based formulation: **Coverage** (ML algorithms)
- ► Robust Guarantees on Convergence and Accuracy
- ▶ Python API's give **accessibility** to users, developers and designer

Generic ML formulation

Methods	Loss Function $L(f_{\mathbf{w},b}(\mathbf{x}), y)$	Regularizer $R(\mathbf{w})$
	Classification $y \in \{-1,+1\}$	Elastic-net
Logistic Regression	$(1/N) \sum_{i=1}^{N} \log(1 + e^{-y_i(\mathbf{w}^T \mathbf{x}_i + b)})$	$ \sum_{j=1}^{D} \delta_{j} \left\{ \alpha \left \mathbf{w}_{j} \right + (1 - \alpha) \frac{\mathbf{w}_{j}^{2}}{2} \right\} $
LS-SVM	$(1/2N)\sum_{i=1}^{N}(1-y_{i}(\mathbf{w}^{T}\mathbf{x}_{i}+b))^{2}$	$\int_{j=1}^{\infty} \int_{j=1}^{\infty} \left[\int_{j=1}^{\infty} \int$
Squared-Hinge SVM	$(1/2N)\sum_{i=1}^{N}(\max(1-y_i(\mathbf{w}^T\mathbf{x}_i+b)))^2$	$\alpha = 0 \text{ (L2-reg)}$
	Regression $y \in \mathbb{R}$	$\alpha = 1 \text{ (L1-reg)}$
Linear Regression	$(1/2N)\sum_{i=1}^{N}(y_i-(\mathbf{w}^T\mathbf{x}_i+b))^2$	
Huber	$ \left \frac{1/2(y_i - (\mathbf{w}^T \mathbf{x}_i + b))^2, \text{ if } \left y_i - (\mathbf{w}^T \mathbf{x}_i + b) \right \le \mu}{\mu \left y_i - (\mathbf{w}^T \mathbf{x}_i + b) \right - (1/2)\mu^2, \text{ else}} \right $	Group
	,, <u>, , , , , , , , , , , , , , , , , ,</u>	$\sum_{g \in G} \delta_g \left\ \mathbf{w}_g \right\ _2$
Pseudo-Huber	$(1/N)\sum_{i=1}^{N} \sqrt{\mu^2 + (y_i - (\mathbf{w}^T \mathbf{x}_i + b))^2 - \mu}$	

ADMM algorithm

$$\min_{\mathbf{w}} L(f_{\mathbf{w}}(\mathbf{x}), y) + \lambda R(\mathbf{w}) = \min_{\mathbf{w}, \mathbf{z}} L(f_{\mathbf{w}}(\mathbf{x}), y) + \lambda R(\mathbf{z}) \text{ s.t. } \mathbf{w} = \mathbf{z}$$

Augmented Lagrangian,

$$\ell_{\rho} := L(f_{\mathbf{w}}(\mathbf{x}), y) + \lambda R(\mathbf{z}) + (\rho/2) \|\mathbf{w} - \mathbf{z} + \mathbf{u}\|^2 + (const)$$

ADMM Steps at each iteration k+1

• w - update:
$$\mathbf{w}^{k+1} = \underset{\mathbf{w}}{\operatorname{arg\,min}} \ L(f_{\mathbf{w}}(\mathbf{x}), y) + (\rho/2) \|\mathbf{w} - \mathbf{z}^k + \mathbf{u}^k\|^2$$
• z - update:
$$\mathbf{z}^{k+1} = \underset{\mathbf{w}}{\operatorname{arg\,min}} \ R(\mathbf{z}) + (\rho/2) \|\mathbf{w}^{k+1} - \mathbf{z} + \mathbf{u}^k\|^2$$

z - update:
$$\mathbf{z}^{k+1} = \underset{\mathbf{z}}{\operatorname{arg\,min}} R(\mathbf{z}) + (\rho/2) \|\mathbf{w}^{k+1} - \mathbf{z} + \mathbf{u}^k\|^2$$

• **u** – update:
$$\mathbf{u}^{k+1} = \mathbf{u}^k + (\mathbf{w}^{k+1} - \mathbf{z}^k)$$

Solve smaller sub-problems which can be easily distributed.

Example (Linear Regression with Elastic-Net)

- \square Given $(\mathbf{x}_i, y_i)_{i=1}^N$ with $\mathbf{x} \in \mathbb{R}^D$ and $y \in \mathbb{R}$
- $\min_{\mathbf{w}} \lambda \sum_{j=1}^{D} \delta_{j} \left\{ \alpha \left| \mathbf{w}_{j} \right| + (1 \alpha) \frac{\mathbf{w}_{j}^{2}}{2} \right\} + \frac{1}{2N} \sum_{i=1}^{N} (y_{i} \mathbf{x}_{i}^{T} \mathbf{w})^{2}$ ☐ Solve
- □ ADMM updates,

$$\mathbf{w}^{k+1} = \underset{\mathbf{w}}{\operatorname{arg\,min}} \quad \frac{1}{2N} \sum_{i=1}^{N} (y_i - \mathbf{x}_i^T \mathbf{w})^2 + \frac{\rho}{2} \|\mathbf{w} - \mathbf{z}^k + \mathbf{u}^k\|_2^2$$

$$= P^{-1}\mathbf{q}; \quad P = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i} \mathbf{x}_{i}^{T} + \rho I_{D} \text{ and } q = \frac{1}{N} \sum_{i=1}^{N} y_{i} \mathbf{x}_{i} + \rho (\mathbf{z}^{k} - \mathbf{u}^{k})$$

$$= P^{-1}\mathbf{q}; \quad P = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i} \mathbf{x}_{i}^{T} + \rho I_{D} \text{ and } q = \frac{1}{N} \sum_{i=1}^{N} y_{i} \mathbf{x}_{i} + \rho (\mathbf{z}^{k} - \mathbf{u}^{k})$$

$$\mathbf{z}^{k+1} = \underset{\mathbf{z}}{\operatorname{arg min}} \quad \lambda \sum_{j=1}^{D} \delta_{j} \left\{ \alpha \left| \mathbf{z}_{j} \right| + (1-\alpha) \frac{\mathbf{z}_{j}^{2}}{2} \right\} + \frac{\rho}{2} \left\| \mathbf{w}^{k+1} - \mathbf{z} + \mathbf{u}^{k} \right\|_{2}^{2}$$

$$z_i^{k+1} = \frac{S_{\kappa_j}(\mathbf{w}_j^{k+1} + \mathbf{u}_j^k)}{1 + \lambda S_j(1 - \alpha)/\rho}$$
; $\kappa_j = \lambda S_j \alpha/\rho$ and $S_{\kappa} = (1 - \frac{\kappa}{|t|})_+ t$

Example (Logistic Regression with Elastic-Net)

- \square Given $(\mathbf{x}_i, y_i)_{i=1}^N$ with $\mathbf{x} \in \mathbb{R}^D$ and $y \in \{-1, +1\}$
- Solve $\min_{\mathbf{w}} \lambda \sum_{j=1}^{D} \delta_{j} \left\{ \alpha \left| \mathbf{w}_{j} \right| + (1-\alpha) \frac{\mathbf{w}_{j}^{2}}{2} \right\} + \frac{1}{N} \sum_{i=1}^{N} \log(1 + e^{-y_{i} \mathbf{w}^{T} \mathbf{x}_{i}})$
- ADMM updates,

$$\mathbf{w}^{k+1} = \underset{\mathbf{w}}{\operatorname{arg\,min}} \frac{1}{N} \sum_{i=1}^{N} \log(1 + e^{-y_i \mathbf{x}_i^T \mathbf{w}})$$
$$+ \frac{\rho}{2} \|\mathbf{w} - \mathbf{z}^k + \mathbf{u}^k\|_2^2$$

Gradient

$$-\frac{1}{N}\sum_{i}y_{i}(1-p_{i})\mathbf{x}_{i}+\rho(\mathbf{w}-\mathbf{z}^{k}+\mathbf{u}^{k})$$

☐ Hessian

$$\frac{1}{N}\sum_{i}p_{i}(1-p_{i})\mathbf{x}_{i}\mathbf{x}_{i}^{T}+\rho I$$

Algorithm 1: Iterative Algorithm for \mathbf{w}^{k+1}

Input: $\mathbf{w}^k, \mathbf{z}^k, \mathbf{u}^k$

Output: \mathbf{w}^{k+1}

initialize $\mathbf{v}^{(0)} \leftarrow \mathbf{w}^k, j \leftarrow 0$

while not converged do

$$p_i^{(j)} \leftarrow 1/(1 + e^{-\mathbf{x}_i^T \mathbf{v}^{(j)}})$$

$$P^{(j)} \leftarrow \frac{1}{N} \sum_{i} p_{i} (1 - p_{i}) \mathbf{x} \mathbf{x}_{i}^{T} + \rho I$$

$$\mathbf{q}^{(j)} \leftarrow -\frac{1}{N} \sum_{i} y_{i} (1 - p_{i}) \mathbf{x}_{i} + \rho (\mathbf{w} - \mathbf{z}^{k} + \mathbf{u}^{k})$$
$$\mathbf{v}^{(j+1)} \leftarrow \mathbf{v}^{(j)} - (P^{(j)})^{-1} \mathbf{q}^{(j)}$$

$$\mathbf{v}^{(j+1)} \leftarrow \mathbf{v}^{(j)} - (P^{(j)})^{-1} \mathbf{q}^{(j)}$$

Code Structure (UML diagram)

Experiment (Regression)

System Configuration:

- No. of nodes = 6 (Hortonworks 2.7)
- No. of cores (per node) = 12 (@ 3.20GHz)
- RAM size (per node) = 64 GB.
- Hard disk size (per node) = 2 TB.

Spark Configuration:

- No. of executors = 15.
- Cores per executor = 2.
- Executor memory = 10 GB.
- Driver memory = 2GB.

Data:
$$\mathbf{x} \in U[-1,1]^{20}$$
 and $\delta \sim \mathbb{N}(0,1)$
 $y = 5(x_1 + x_2 + x_3) - 1(x_4 + x_5) - 5(x_6 + x_7 + x_8) + 1(x_9 + x_{10}) + \dots - x_{20} + 2 + \delta$

- Small Data: No. of samples = 10000000 (~5GB)
- ☐ Big Data: No. of samples = 100000000 (~50GB)

Experiment (Regression)

Table. Time comparisons ADMM vs. MLLib (in sec)

MLLIB (SGD)	ML (L-BFGS)	ADMM		
Small Data: No. of samples = 10000000 (~5GB)				
1584.6 (9.6)	290.8 (4.4)*	653.5(0.75) [†]		
Big Data: No. of samples = 100000000 (~50GB)				
_	2597 (8.5)	5811 (7.6)		

^{*} convergence in 1 iteration

- ADMM provides competitive computation speeds compared to L-BFGS.
- Initial ρ selection and advanced adaptive strategies can lead to faster convergence. For example: following [4] convergence in 5 iterations ~ 485 sec.
- For *un-normalized data* ML / MLLib internal normalization may lead to sub-optimal solutions. For example: ML / MLLib : $f_{opt}=$ 15.07 and ADMML: $f_{opt}=$ 12.34

[†]convergence in 7 iteration

ADMML Package

- ► Generic ADMM based formulation: **Coverage** (ML algorithms)
- ► Robust Guarantees on Convergence and Accuracy
- ▶ Python API's give **accessibility** to users, developers and designer

https://github.com/DL-Benchmarks/ADMML

Current Algorithms

Classification (Elastic/Group - Regularized)

- Logistic Regression
- LS-SVM
- L2-SVM

Regression (Elastic/Group - Regularized)

- Least Squares (i.e. Ridge Regression, Lasso, Elastic-net, Group-Lasso etc.)
- Huber
- Pseudo-Huber

Future Roadmap

- Initial step-size selection.
- Consensus ADMM (coverage for various discontinuous loss functions, like SVMs, alpha- trimmed functions etc.)
- Multiclass algorithms (like, multinomial logistic regression, C&S-SVM etc.)

Contributors: Sauptik Dhar, Naveen Ramakrishnan, Jeff Irion, Jiayi Liu, Unmesh Kurup, Mohak Shah

Please cite: Dhar S, Yi C, Ramakrishnan N, Shah M. ADMM based scalable machine learning on Spark. IEEE Big Data 2015.