for Staples

for Staples

Network Overview

- Network diagram : โครองภาย NW ว่าลีการที่อองต่อย่างใน ->physical : เข็อเฉกายกรที่อองต่อ post/interface /=> logical : เรื่องต่อ NW โดงการ IP
- · Network Protocol: TCP/UDP, FTP(Rie Transfer Protocol) Fu-ing file server-client, ARP (Address Resolution Protocol) map IP-MAC address, SMTP, POP3, IMAP (email) ICMP (Internet Control Message Protocol) ping, DNS: map domain - IP, Telnet (remote desktop command), 55H (remote command & security)

Network Address: IP (logical) #3 / MAC cophysical) #9 protocol one media / Port (service) #4

- Network Components => HW (devices) => End devices: 000 and 2000 man 1 / 1
 - " Intermediary devices: Beissesing polnsin ex. NW access / Internetworking / Security
 - [Hub/Repeater #1: agantos.murner collision 14" (SMA/CD (Carrier Sense Multiple → 100 collision grands)

 Access with Collision Detection)
 - = Smitch / Bridge #2: Learning / Flooding / Filtering / Formarding / Aging
 - 8 Router #3: Routing
 - => Network media: Herrary ex. copper / fiber optic / wireless straight / --- cross
 - => 5W => switch iden port (identiseen), router identificans
- ・ Types of Networks => Sizes => Small Home NW (注oenから知られらい) => Small Office/Home Office (config なかれのかがかられり
 - => Medium to large NW commismalar 100-1000 10000 / => Horld Wide NW c Internets
 - => Infrastructures => Local Area NW (LAN): single admin on a policy, security / => Wide Area NW (WAN)

mis-visanonia policy 183 -> LAN / onto-wan => Metropolitan Area NW (MAN) /=> Hireless LAN (WLAN) /=> Storage Area NW (SAN) /=> Personal Area NW (PAN)

- Reliable Network => Fault Tolerance: กามต่อ คงามผิดพลาด /=> Scalability: ปรับกปลัดนานาอกรปรัฐาน โดยไม่ส่วนลกับ และ เดิม
 - => Security: from msist of land such any /=> Quality of Service (QOS): notion service let quality to initial

•	Layers	wit	h TCP/IP and	OSI Model
		6.	Application Presentation Session	Application
Port	Segment	4.	Transport	Transport
IP	Packet	3.	Network	Internet
รม่าก็ค้า ต้องมั MAC	Frame Bit		Data Link Physical	Network Access
				A. Contract of the Contract of

- · Types of Connections in a LAN => UTP - CATS : BW 100 Mbps , 100 m => Straight / Cross edura restaura cross => WAN connection : 17891: ving router · DCE (female) :+ command clock rate
 - . DIE (Male)
 - => Console (Rollover Cable) :

labeled TERMINAL (comport)

: manage command misg

Basic Router Configuration

- · Port Address: nymalow The Internet Assigned Numbers Authority (IANA)
 - => 0-1023 : well known ports (requesting entities) /=> 1024-49151 : registered port number / => 49152-65535 : dynamic /private (randomly generate) ex. 20: FTP(data) , 21: FTP(control) , 25: SMTP(simple mail transfer protocol) , 50: DNS , 80: HTTP , 443: HTTPS , 81: HOSTSQ Hame Server
- · Logical Address : IP Address (IPv4)
 - => 5 classes: A, B, C, D (multicast), E creserve) fragult classless pronomination max. number of workstations required
 - => 110705 NW 01055 unique logical name (domain name) / => 110705 node/computer 01055 unique host part of IP apublic IP is unique toist best of time
 - => class A: NW Host Host Host 0-197

OSI (Reference Model) TCP/IP (Protocol Model)

- I => NM ID : GIDINAM NM NA
 - 192.168.1.1/24 (prefix length) 1 Class AFC 1918 Internal Address Range . CIPR Prefix
- => private addressing : reuse to, unique has some on

- class B: NW NW Host Host 198-191 class C: NW NW NW Host 199-993 class D: 1110
 - morases hu NW last 955. 955. 855.0 subnet mask 294-239 (multicast) 192.168.1.955 broadcast IP
- 10.00.0 10.955.955.955 172.16.0.0 - 172.31.255.255

199.168.0.0 - 199.168.255.955

10.0.0.0 /8 179.16.0.0/12

- 240-255 (experimential) class E: IIII Standard TL 1 Byte => 955 140 router -1
- IPv4: 232 IPv6: 2128

255.955.255.255 broadcast NW

- Physical Addresses: MAC Address
 - => Ethernet: 48-bit binary -> 19 hexadecimal digits
 - => preparation IEEE : name 3-byte (94-bit) code -> "Organizationally Unique Identifler (OUI)"
 - : ng 2 no MAC ningarato lai NIC / Ethernet device our overhi our 3-byte usn -> no MAC ni same our overnique last a byte
 - => Message Delivery -> Unicast: 2012 de dremano In HW 1000 mil Towns / -> Broad cast: 2000 moleculos NW 1000 mil (FF-FF-FF-FF-FF) - Multicast: ส่วงสายเครื่อง เครื่องที่เพื่อ service ถึงละได้รับ ทั้ง อหังด้วย 01-00-5E
- Cisco 105 (Internetwork Operating System) CLI-based / text-based

- " locate & loads a default los misura RAM

- => function -> Addressing /-> Interface /-> Routing /-> Managing Resource /-> Security /-> Qos
- => Router & Switch Boot Sequence
- ROM POST (Power ON Self Test)
 - RUN boot loader sw
- ROM Boot loader does low-level CPU initialization
- FTP Server " " initializes the flash filesystem
- . Accessing a Cisco 10s Device
 - => Console port : 13/013/20 -> Terminal Emulation Programs (Putty, Tera Term, Secure CRT, HyperTerminal, Os X Terminal)

C

- => Telnet
- => Secure Shell (SSH)
- => Aux Port


```
Navigating the IOS => Primary Modes: User (>) / Privileged (#) -> global config "(config) #"/ -> other config "(config
        The Command Structure => Context Sensitive Help (9)/=> Command Syntax Check
                                                   => Hot Keys and Shortcuts / => IOS Examination Commands (Show ..)
                                                                   => Router # configure terminal
         Getting Basic => Router> enable
                                                                                              & Limiting Access to Device Configuration
          1 Hostnames : nouter (config) # hostname name
                                                                                                     - Banner Messages : router cconfig ) # banner motel # messages #

    Addressing Devices :→1000 interface

                · Physical / Loopback Interface: interface type port type slot/port
                                                                                                      - Security Device Access : enable password / secret ?
                                                                        type slot 1 sublot 1 port
                                                                                                                                        : console password / VTY password (remote access)
                                                                                                                                            line console o / line vty o 15 -> password -> login
                · Smitch virtual interfaces (SVIs): interface vlan number
                                                                                                                                        : Encrypting Password Display service password-encryption
               -> set IP: ip address ip-address subnet-mask -> no shutdown

    Verifying Connectivity: Monistropedo
    Some startup-config / show interface / show ip interface / show ip interface / show ip interface brief / traceroute
    → Router # show running-config / show startup-config / show ip route / show interface / show ip interface / show ip interface brief / traceroute

               -> PC > ping reply / timeout instantion / two reachable (connect tailor) / tradcere / route print / nslookup
                                                                                                                                                                                             1111 (reply) .... (timeout)
          Saving Configurations: Router # copy running-config startup-config
                                                                                                                                                                                            un cunreachables
    Static Routing & Dynamic Routing Protocol
   · Functions of a Router => Characteristics of a Network: Topology / Speed / Cost / Security / Availability / Scalability / Reliability
         => Router Choose Best Path -> static routes เมื่อการที่ set -> dynamic routing เปลือนกลั้นการไอ้เอง
         Packet Forwarding Methods >> Process switching: processon CPU / => Fast switching: smitching: smitching: simple life in it / => (isco Express forwarding (CEF): 1529740
    · Connect Devices
        => Default Gateways: first (.1) / last (.954) usable host infum soonirestoles NW du
         => Document Network Addressing: Device names, Interfaces, IP addresses and subnet mask, Default gateways
         => Enable IP on a Host -> Statically Assigned IP Address (manual) -> Dynamically Assigned IP Address
       Switching Packets between Networks : frame - , router decap - , package - , routing with routing table - , encap -
        Path Determination
                                                                                                                        packet in interfore
                                                                                                                                                  dest. IP match subnet
          2> Best Path : lowest metric (cost)
                                                                                i=> Load Balancing
                                                                                      : $ > 1 1894mg
              - Dynamic Routing Protocols
                                                                                                                        match routing table
                                                                                                                                                                                     if ARP cache
T1 = 1.544 Mbg - Routing Information Protocol (RIP): Hop count
                                                                                        ולווסו מיו ולווחושותו או ואוים וחוושו
                                                                                                                                                             interface
                  · Open Shortest Path First (OSPF) : BN mnago |=> Administrative Distance (AD)
                                                                                       "trust worthiness": popular set and Internal EIG
                  · Enhanced Interior Gateway Routing Protocol
                    (EIGRP) : Bw, delay, load, reliability
                                                                                        admin กับ protocol อังโกล้องน่าเพื่อก็อ RIP: 120
                                                                                                                          no packet & is ICMP
                                                                                                                           MANUEL SOUTCE IP
                                               D 10.1.1.0/24 [90/2170119] via 209.165, 200.226,
         - laisnann ? : C (Directly connect) / D(EIGRP) / B(BGP) / S(Static) / R(RIP) / O (OSPF) /.
                                                                                @ Next hop IP address - elapsed time @ outgoing cexit; interface
                                                        -cost matric
   · Routing
         => Static routes: manual จัดตั: security, ใช้ resource ฉัดยในการ process, ลด routing entry จับเลีย: ลำจากในการ scalability, ไม่คาดารกาปลัยมเล้าสารใต้
               Summary: 19ma 1 ocona
                                                      Floating private link + static link / Router (config. H ip route dest_IP subnet_mask & IP-nexthop lexit-int)
                                                                                                               default static route ip route 0.0.0.0
         => Dynamic Routing Protocol: automatically learned
               - Exterior Routing Protocols (EGP) - BGP
                                                                                                         DV (Distance Vector)/ Link State
                 - Interior Gateway Routing Protocols (IGP) - RIP / OSPF / EIGRP / IS-IS (Intermediate System-to-Intermediate Syste
    · Classful Addressing: update one class
    · Classless Inter-Domain Routing (CIDR): taken class
          => CIDR and Route Summarization: 190419 - ocionomy, tempinesia
                                                                                                                 -> 11943 IP IQUETUR 2 ILAS ISA bit minimum set las oios no ip route envirinm

    VLSM (Variable Length Subnet Mask)

          >> Fixed Length Subnet Masking : 1968 n bit 1199 2 from
```


Distance Vector Routing Protocols RIP version 1

· Dynamic Routing Protocols

Function (s)

- Cynamically share information between routers.

- Automatically update routing table when topology changes.

- Determine best path to a destination.

- Discover remote networks.

- Maintaining up-to-date routing information

- Choosing the best path to destination networks

- Ability to find a new best path if the current path is no longer available

Components :

EIGRP

- Algorithm: nonnoisem demine me routing information

al			protocol	,	: routing	0	ion
· Clo	ous sys	item	Dynamic	Routing	Protocols		
		Gateway	Protocol	(IGP)	Exterior	Gateway	Protocols (EG
Distance	Vector	Protocols		Link-State	Protocols	bur	
RIP		IGRP	OSE	F	15-15		

	Dynamic routing	Static routing		
Configuration Complexity	Generally independent of the network size	Increase with network size		
Required administrator knowledge	Advanced knowledge required	No extra knowledge required (admin Munantinuma)		
Topology changes	Automatically adopt to topology changes	Administrator intervention required		
Scaling	Suitable for simple and complex topologies	Suitable for simple topologies		
Security	Less secure	More secure		
Resource usage	Uses CPU, memory, link bandwill	No extra resource needed		
Predictability	Route depends on the current topology	Route to destination is always the same		

Interior Gateway Protocols (IGP)

- Distance Vector

· distance & direction · incomplete view of network topology

Routing Table Maintenance

- Holddown timer (180)

preriodic updates.

- Link state

· complete view of network topology is created

· Periodic Update : RIP Update timer (default 30)

- Flush timer (240): Agrouter & down ing mana

· Random Jitter (1979 router multiple access)

Triggered Update (update Toet size periodic update)

- Invalid timer (180): milistra routing information me

Bounded Update: EIGRP (17thernilater oration is update overtu)

Convergence: apraisalants update touting table stationary Takenal As Takingan I Area (consistency)

for Staples

RIPVS

· Distance Vector Routing Protocols

- Distance to final destination - Vector, or direction, traffic should be directed

Characteristics: - Periodic update carrons update) - Heighbors crowler tisy)

- Entire routing table - routing update - Boardcast updates (255.255.255.255)

Criteria used to compare routing protocols: - Time to convergence

- Scalability - Resource usage - Implementation & maintenance

Network Discovery · Cold Starts : Router Initial Start Up

· Initial Exchange of Routing Information · Exchange of Routing Information

· Slow Convergence

Routing Loops: เกือการส่งของเป็น loop เมื่อ interface ใด down แล้ว กะighbor a's update an hat (। पंछ information ने update an) -> hop count निर्ने ने विषय (count to infinity) L> 11/19/2012 - Set Maximum hop count = 15 (16 = unreachable) - Holdown timers: 10 x 2012 down to update - split Horizon Rule: ได้ส่ว information ไปที่ interface ที่ได้อับลก

- Route Poisoing: set unreachable 1122 in update estal - Split + Poison: 100 unreachable minis over rule split horizon is network in down - IP& TTL: packet and loop nationalise TTL=0

RIP version 1: classful, metric = hop count, max = 15, boardcast update 30 seconds, AD = 190

2 message types: O Request :- startup enable interface - enable neighbors to send routing table @ Response : is routing information # network nw ip (oterniste RIP learn network for sociotis) @ # router rip Basic RIPVI Configuration: (basic config # show ip protocols 10 protocols miles # debug ip rip (anns update network send/receive)

passive-interface interface-type interface-number (inon interface missores nisto update)

Automatic Summarization: classful Boundary Routers: network (Devoing (RIPVI - classful)

- 2 rules (Processing RIP Updates) -> interface same network : update on a subnet mask

- interface different network: update classful

- 960 : reduce size routing update, fast lookup routing table (single routes represent multiple routes) ท้อเลีย: not support VLSM, discontiguous network (boundary เดียงกัน แต่ให้เด้าอกัณ) อาจทำให้เกิด load balance Default Route and RIPvi : # ip route 0.0.0.0 0.0.0.0 interface?

default-information originate: 1700 default route 18th RIP 170 update (static -> dynamic)

Lo router girton static co dynamic

KIPVI RIPv2 IGRP ETGRP slow Speed of Convergence slow slow fast Scalability - size of my small small small large Use of VLSM × Resource usage low medium

Implementation 8 simple simple simple complex

for Staples

RIP version & Access Control Lists

show access - lists

```
· RIPv9: classless cupdate subnet mask), update next hop address, update multicast, authentication, region discontiguous quantital
             support VLSM, support route summarization
  Similarities between RIPV & RIPV2: It timer alexage routing loops, use split horizon or split horizon with poison reverse
              use triggered updates, Maximum hop count = 15
- RIPVI Limitations: Loopback interfaces (virtual interface ministral routing table the update to ) -> ping virtual interface -> reply
                     : Null Interfaces (virtual interface) -> black hold ตัวอังกามเจ้าไข่ใน กพตักา์ขณต -> drop คัว -> null (discard)
                      : Static routes and null interface -> null interface involvingueniseen static route #1p route summary-route subnet-mask Mullo
                      : Route redistribution comologian static ที่เพิ่มทั่งใช้ในม่ - update RIP) # redistribute static
• RIPV9 : · Enabling and Verifying RIPv9 Configuring RIP -> RIPV1 (AUV1, v2/1/2011) -> RIPV2 (AUV2/1/2012)
                                                     · Auto-Summary & RIPve: smaller than classful coubnet macks
            · Configuring RIPv2 # version 2
            · Disabling Auto-Summary ( minder discontiguous ) # no auto-summary
            · VLSM & CIDA -> VLSM: classless (disseminate network address & subnet mask)
                            - CIDA: uses supernetting (bunch of contiguous classful network that is addressed as a single network)
· Authentication : RIPva, EIGRP, OSPF, IS-IS, BGP
· Access Control Lists (ACL): Address nisitions -> sequence -> conversation
     Packet Filtering: Layer 2 a dest / source
     Operation: originalis sequence statement a implicit deny or state normal interior in atch no state local - discard
                 Standard ACLS
                                                                       Extended ACLS
          - check source address
                                                                - check source and destination address
          - generally permits or denies entire protocols suite
                                                                 - generally permits or denies specific protocols
                                                                 - numbered ACL: 100 - 199 & 2000 - 2699
           - numbered ACL: 1-99 & 1300-1999
     Wildcard Mask: inverse subnet mask -> "o": match /fix
                                                                       -> "1" : ignore (=:15itat)
                       : set of ip - bit minu => 0 minuae => 1 prames nun pattern
                       : wildcard are subnet = 255.955.955 - subnet mask
                       : keyword -> 0.0.0.0 = host , 255.255.255.255 : any
     ACL creation: Three Ps -> One ACL per protocol: control traffic flow on interface
                               - One ACL per direction: inbound / outbound
                               -> One ACL per interface
     Place ACLs: Extended ACLs: close to the source
                                                               / Standard ACLs: close to the destination
     Configure Standard IPV4 ACLS
          # access-list access-list-number denylpermit | remark source [source-wildcard] [log]
          Securing VTY ports
                                # access - class access-list-number { in [vrf-also] | out }
     Configure Extended IPV4 ACLS
          # access-list access-list-number & deny 1 permit 1 remark) protocol source (source-wildcard) (operator operand)
            [port port-number or name] destination [destination-mildcard] [operator operand] [port port-number or name]
           Cesta blished ]
     Applying to Interfaces
          # ip access-group {access-list-number | access-list-name } fin lout}
                          # no ip access - group
                                                               # no access-list
```

inbound ACL. Outbound ACL

OSPF & DHCP

```
· Link- State Routing Protocol: complete map of the network topology -> select best path (Dijkstra's) -> SPF
   L> 1020-2010 : hierachical clarge networks, Fast convergence, administrators have good knowledge
   Link- State Updates: 1 learns each own directly connected @ "saying hello" neighbors
      3 build Link-State Packets (LSP) and
                                          @ flood LSP to all neighbors -> in ab
      5 1er LSP 800 neighbor sanía ha 08 (1912 tree) risis complete map -> 921 best path + OSPF Route -> Routing Table
   @ Hierarchical design (large network) -> multiple area -> 11.2012/acuteaunidla area
   Tolde C additional memory
                               @ additional CPU processing
                                                            @ Bandwidth
   Minimize Router Resource Usage : 🕉 area O réa black bone otertha area o riniata, man LSP Mietha are, ह=धरोप area को border отгложе
```

· OSPF AD = 110

```
Data Structures -> Neighbor Table # show ip ospf neighbor
                - Topology Table (mis map) # show ip ospf database
                 -> Routing Table (shortest path) # show ip route
Messages -> Encapsulating: MAC dest. = multicast: 01-00-5E-00-05 or 01-00-5E-00-00-05 , Protocol Field = 89
          -> Types of OSPF Packets
                  1 : Hello -> every 10 sec (default on multiaccess & point-to-point NW)
                             -> every 30 sec cdefault non-broadcast multiaccess [NBMA] NW)
                                                                                          -> Cisco: 4 times Hello interval
                  2 : Database Description (DBD) -> synchronization between routers
                  3 : Link-State Request (LSR) -> request Link-State
                  4 : Link-State Update (LSU) -> send update Link-State
                  5 : link-State Acknowledgment -> send Ack
Operation: Fire montessie Down State -> Init State (is hello) -> Two-Way State (onequira)
                         -> Exstart State -> Exchange State -> Loading State -> Full State
Configuring Single-Area OSPF va # router ospf process-id (1-65505, locally significant)
            ter-id 1.1.1.1 | It loopback | nithingumm -> active interface ip range
      # network network-address mildcard-mask area area-id
OSPF Cost Cost = 108 (reference bandwidth) / interface bandwidth in bps
       L, 10 Gigabit Ethernet (10 Gbps) ~ 1
                                              Gigabit Ethernet (1Gbps) ~ 1
                                                                                             # show ip ospf interface brief
                                                                                             # show ip ospf
          Fast Ethernet (100 Mbps) ~ 1
                                                    Ethernet (10 Mbps) ~ 10
           Serial (1.544 Mbps) ~ 64
                                                     Serial (198 kbps) ~ 781
                                                                                             # show ip ospf neighbor
           Serial (64 kbps) ~ 1569
                                                                                            (config-router)
      # auto-cost reference - bandwidth bandwidth - mbps
                                                                                             # redistribute ? (1400 in 010 ou)
```

for Staples

```
. DHCP (Dynamic Host Configuration Protocol): automatic IP to clients (subnet, default gateway, DMs server)
    methods - Manual allocation : assign 189
                                                                       # show running -config I section dhop
                                                                       # show ip dhop binding
```

- Automatic allocation: pool, No lease - Dynamic Allocation : lease, limit period of time # show ip dhop server statistics

Adjusting the Interface Bandwidths # bandwidth bandwidth_hbps

Manually Setting OSPF Cost # ip ospf cost cost

```
Configuring a DHCPV4 Server
                                                                   (config-if)
     # ip dhop excluded - address ip-address
                                                          112 router # ip helper-address ?
```

ไ แล้วแต่การใช้อาจะ (รื่อำจำเจ็น)

ip dhop pool name

(dhop-config)

network network-address subnet-mask router so dhop # ip address dhop # default-router ip-address-default-router

> Debuggin DHCP V4 # debug ip packet ?

> > # debug 1p dhap server events

for Staples

no service dhop

dns - server ?

domain - name ?

RIPVI: message format

command | version 10 address family identifier(2) 1 = request 2 = reply

IP address chetwork address must be zero (next hop va)

OSPF : message format

version 18 type 1 packet length checksum Autype anthentication

hello interval 1 option dead interval designated rowler backup designated router list of neighbors

rowle entry max of 25

link aggregation

for Staples

Basic Switch Address Resolution Protocol

LAN Design: Borderless switched network design - Hierarchical, Modularity, Resiliency, Flexibility

- Three-Tier LAN Design : Core, Distribution, Access Two-Tier LAN Design : Collapsed Core/Distribution, Access
- Layer 3 support, L. Core Layer Switch Features: enononomous, very high forwarding rate, 1005915 witch 107
- Lo Distribution Layer Switch Features: 915-2004 core access, high forwarding rate, security policies/ACL Gig/10 Gig Ethernet (कारीक BW (कांचा) ,
- Lo Access Layer Switch Features: one end device, port security, VLANs, Fa/Gig Ethernet, Power over Ethernet: 12000000 power line it of auality of Service (QoS)
- Maximum available LAN BW & Perfomance
 - * Function & Placement Server -> Enterprise Servers: 1910457845020605: MDF (Main Distribution Facility) -19172672740973200 -> Workgroup Servers: 1419947= nas : IDF (Intermediate Distribution Facility) -> 1900 core & access
 - · Broadcast domain issues : ADS & TANDIÁN · Collision detection issues: almannsons 4420054 · Segmentation issues: nishinishon VCC : Vertical cross-connect : optical fiber, MDF + IDF HCC: Horizontal cross-connect: UTP, Distribution → Access
- Segmentation: process of split a single collision domain -> smaller collision domain: 20 frage collision and LAN segment -> device layer 2 ex. bridge
- Broadcast Domain : in broadcast data frame in device mosis in router layer 3 -> reduce size collision domain 8 broadcast domain

- " Switch Operation (Learing: Receive Frame -> MAC Address (source) oin orienta port from -> MAC Address Table (source/CAM) -> refresh Aging 3 Flooding: As Frame bengin port 150 - broadcast I multicast I unknown unicast (Aging : ore) ha MAC Table sines or -> 975 # Filtering: si dest vos Frame or port roesina source -> tailains 5 Forwarding: sistal port clest > moeila Table
- · Switch Formarding Methods (Frame Formarding) · Store & Formard: check error (FCS), auto buffering, slow formarding
 - · Cut Through Switching: check ansista, 10 ms, no FCS check, no auto buffering, fast-forward ~ 12 bytes I fragment-free < 64 bytes -> Through
- B Switching Domains Collision domains: เกิดการชาเชื้อสารับลาราชารับลกัน -> switch เป็นตัวเพา่ง
 - · Broadcast domains: เข้าอเล่า broadcast แล้ว domain เพียงกับ + router เป็นเข้างาน่า
- Basic Switch Concept & Configuration
 - · Basic Switch Configuration Switch Boot Sequence: find 105 image -> command in NVRAM
 - Preparing for Basic Switch Management: 125 loopback, name IP1x interface 1210 -, SVI (Switch Virtual Interface) -> config in VLAN
 - Configure Switch Ports -> Duplex communication: Half/Full (switch Inanueres) & Sources (config-if) # duplex full -> (config-if) # speed speed -> Auto-MDIX: aloritation cross notionismons reliarnated coordig-its # duplex auto -> coordig-its # speed auto -> coordig-its # mdix auto
 - · Security Remote Access SSH (Secure Shell) Operation : encrypted pass -> TCP port 22 | Telnet : TCP port 23 (config) # ip dornain-name name -> config) # crypto key generate rsa -> config) # username admin password pw -> config) # line why 0 15 (config-line) # transport input ssh => (config-line) # login local Verify # show ip ssh 1 # show ssh
 - · Switch Port Security: name policies la MAC Address Milon Verity # show port-security interface interface I # show port-security address (config-if) # switchport mode access -> (config-if) # switchport port-security -> inon 1 distan
 - Static (config-if) # switchport port-security mac-address MAC-ADD violation (config-if) # switchport port-security violation
 - Dynamic (config-ifs# switchport part-security mac-address sticky - Maximum (config-if) H switchport port-security maximum MAX
- 1 protect I restrict: send syslog msg, increases violation counter 1 shutdown: default, increase violation counter, shutdown port }
- Address Resolution Protocol (ARP): Mapping IP to MAC Address -> ARP cache ina -> map to dest (10/1/2040) MAC)

LAN redundancy & Spanning Tree Protocol

- · Issue with Layer 1 Redundancy · Broadcast Storm: packet town on the sine router (TTL town)
 - · MAC Database Instability: MAC Address Table tainnes Mariana · Multiple Frame Transmissions: taisurane Frame (Flooding)
- Spanning Tree Protocol (STP) 1 Root Bridge/Network / 1 Root Port/Non-Root Bridge / 1 Designated Port / Segment
 - . STP Operation Root Bridge: เริ่มตัวงากตัวเขิน RB แลก BPDU (Bridge Protocol Data Unit) 802.10 -> Root War เมื่อเจ้ากลรบาทุกตัวแล้ว -> จังจารมนา Bridge ID (BID) -> priority สวลุด (เลาลกก) -> MAC -> Path Cost -> BID Sender -> BID Port
 - Path Cost: cumulative (เพิ่มกัดเรียงๆ) จุกเล้าเกางาก AB tol Non-AB แต่ละตัว (เก้า switch cost เพิ่ม)
 - Extended System ID : set BID on W VLAN
 - · Spanning Tree Configuration (2960) Verify # show spanning tree
 - Set root (config) # spanning-tree VLAN 1 root (primary) secondary)
 - Set priority (config) # spanning tree VLAN 1 priority 24576 - Port Fast and BPDU Quard (config-if)# spanning-tree port fast (config-if)# spanning-tree boduquard enable (12:43 BPDU)
- 4 PVST+ : MERICATION IEEE 809.10 -> load balance : 1160 root/VLAN -> set root primary/secondary | priority
- Verify # show spanning-tree active Rapid PVST + : 901 alternate port (block: judatajunaisu) . (config) # spanning - tree mode rapid-pvst
 - · Edge Ports: port 1 men host a switch cooming-if) # spanning-tree portfast
 - · Links Types: port item switch -> point-to-point (config-if) # spanning-tree link-type point-to-point # clear spanning-tree detected-protocols

for Staples

for Staples

MAC

VLAN (Virtual LAN): logical partition of layer 2 network (ASLA network 1101 broadcast domain & VLAN 10000 run of control of layer 2 network Ly 100 : security policy, smaller broadcast domain, better performance L. 2960, 3560 series switch support > 4,000 VLANs [VLAN 1 : default / native -> cannot renamed / deleted] · Normal Range: 1-1005, configuration stored in vlan, dat (flash), VTP can learn and store, 1 Henrichery · Extended Range: 1006-4096, configuration stored in running-config (NVRAM), VTP not learn Port - base VLAN: interface Inigh membership () urunning-config) # show vlan brief VLANs in a Multi-Switched Environment - VLANS Trunk: config ni interface between switch, > 1 VLAN, tag before trunk link -> untag before non-trunk port Dest MAC SYC MAC Tag Type/Length Data FCS - on CRC Train Frame -> IEEE 809.19 (tagging) Broadcast domain: VLAN limit broadcast frames (control), VLAN/broadcast domain Native VLAN : default VLAN 1 , no tag in trunk , la VLAN new set mis vlan เตียงกันครรับเหมือนกัน Create VLAN: (config: # vlan vlan-id -> (config-vlan) # name vlan-name 1 # vlan database -> (vlan) # vlan vlan-id name vlan-name Assigned port to VLAN: (config-if) # switchport mode access -> (config-if) # switchport access vlan vlan-id | switchport mode trunk | switchport trunk native vlan vlanid | switch port trunk allowed vlan vlan-list | no switchport access vlan | no vlan Verify: # show vlan name vlan-name | # show vlan vlan-id | # show vlan summary | # show vlan | # show interfaces interfaces witch port Inter-VIAN: subinterfaces -> youter -> trunk (config-subifir# encapsulation doting vlan-id -> ip address no shutdown in interface VTP & NAT VTP (VLAN Trunking Protocol): layer 9 trunk -> manage VLAN (addition, deletion, renaming VLAN) single domain (4017) for domain) L, Cisco ISL / IEEE 809.1Q Rings trunk-links VTP Operation: Cisco ISL, IEEE 809.1Q, IEEE 809.1D, ATM LANE trunk . three mode: server, client, transparent L, revision number 39-bit: 0-4294977995 -> recycles back to 0 (1 cmd 1 revision) L. client cannot create, modify or delete -> transparent mode forward (Mauniforsina) VTP Configuration Case sensitive! (ver 2 support Token Ring VLANS) # wtp mode [client, server, transparent] · Global: cconfig1# vtp version 9 -> #vtp domain domain (1-32 characters) -> #vtp password password (8-64 characters longs) · VLAN: (vlan) # vtp vg-mode -> # vtp domain domain -> # vtp password password -> # vtp [client | server | transparent] Verify: #show vtp status 1 #show vtp counters VIP Pruning: manage traffic la interface assers -> remove assaratatoria (vlan) # vtp pruning (config-if) # switchport trunk pruning vlan remove vlan-id NAT (Network Address Translation): Translation private IP -> public IP (real IP) [Router] · Static NAT : original real IP map inhino IP mit assign -> one-to-one mapping -> intradicionational formation (accessions) (config) # ip not inside source static local-ip global-ip · Dynamic NAT : สร้าง pool ของ public IP -> สร้าง ACL ของ private IP -> first-come, first served สับอัลเต้องออกา (พื้นอยู่กับ router) 737 many-to-one (config. # ip not pool name start-ip end-ip Inetmask netmask | prefix-length prefix-length } (config) # access-list access-list-number permit source [source-wildcard] (config) # ip not inside source list access-list-number pool name · Port Address Translation NAT (PAT): one-to-many, multiple private -> single public, network to port: is port one mila network sentaguieng now . NAT overload 1 Asia pool 112. ACL 1850 dynamic -> (config.) ip not inside source list access-list-number pool name overload 1 toliation pool astin ACL -> (config. 4 ip not inside source list access-list-number interface type number overload Assign to interface : coonfig-if1 # ip nat inside loutside Verify: #show ip not translations I #clear ip not statistics #show ip not statistics ยางาาการร PEREMPIELE NVRAM Client Transparent Feature Server Inside Global Outside Global Outside Local Insid Local Source VTP Message × Inside -> Outside : 119/03 SA map table Listen to VTP Message Outside -> Inside : 11910 DA Create VLANS

> Remember VLANS 1 mm = origin taines me domain

X

IPv6 & Routing

EIGRP (Enhanced IGRP): Cisco proprietary universal standard (1992) -> large, multiprotocol network EIGRP Feature

- · Diffusing Update Algorithm (DUAL): guarantees loop-free and backup paths (very fast convergence si link down is backup paths
- · Establishing Neighbor Adjacencies: track the status of these neighbors · Reliable Transport Protocol: use by DUAL
- · Partial and Bounded updates: อันเออาเฉพาะที่มีการศโล้ยพแปลจุดร้อกระขณ (minimizing BW)
- · Equal and Unequal cost Load Balancing: cost to ignilloring load balance to

EIGRP uses protocol-dependent modules (PDMs) support different protocols -> table/protocol -> neighbor/topology/routing table Hello, ACK mane OSPF, support authentication

EIGRP Packet Types

- · Hello: taiorosonou ACK BW > 1.544 Mb/s -> TI, Ethernet -> Hello Interval 5 secs -> Hold Time 15 secs cunreliably)
- Query: multicast } exoloisis } -> ACK: dataless (reliable)
 Reply: unicast

EIGRP Messages - 1Pv6: FF09 :: A · Multicast dest - MAC: 01-00-5E-00-00-0A - IPv4: 984.0.0.10

· protocol : 88 · TLV (Type/Length/Value) Types: 0 x 0001

Autonomous System (AS): collection of networks under the control of a single authority (RFC 1930)

As number: exchange routes between As -> manage by IANA assigned by RIRs to ISPs: 16-bit (0-65535) -> 2007 (32-bit) Configuration

router eigrp As-# -> process ID(Ame ospf: local significant 1 -> routing domain -> #eigrp router-id router-id

network network-number civildcard-masks -> # passive-interface type number cdefaults - 1 silvi update in int?

no auto-summary Verify # show ip eigrp neighbors

show ip protocols

EIGRP Metrics cost meer -> or : delay meer Bu neo:

Default Composite Formula: metric = [KI × BW + K3 *delay] × 256

· Delay: cumulative } default · Reliability: worst reliability Complete Composite Formula: metric = [K1 x Bw + (K2 x Bw)/(256 - load)

+ K3 * delay 1 * [K5/reliability + K4)]

· Load : worst load on a link Default Value KI(BW) = 1, K2(load) = 0, K3(delay) = 1, K4(reliability) = 0, K5(reliability) = 0

metric weights too ki ke ka ka ka (config-if) # bandwidth kilobits-bandwidth-value

Delay (DLY) : Gigabit Ethernet = 10 usec , Fast Ethernet = 100 usec , T1 (Serial Default) = 20,000 usec

((10,000,000 / lowest BW) + (sum of delay/101) × 256 = Metric

EIGRP Operation

- · Initial: 1) R1 sent hello packets all eigrp enable interface 2) R2 receives add to neighbor table -> send update -> send hello 3> R1 update neighbor table
- · Discovery : 1) R1 update topology table 2) RI -> ACK 3) RI -> update (split horizon) 4) R2 add information topology table 5) R2-> ACK use DUAL - update best routes to each dest. - routing table

DUAL and Topology Table

- · successor : least cost route · Feasible Distance (FD) : lowest calculated metric ain router 974900
- Feasible Successor (F5): Backup path -> condition: if (RD (FD) -> F5 (>) motion
- · Reported Distance (RD): advertised distance reported metric from neighbor advertising (noted cost ?)
- # show ip eigrp topology -> no F5 · Passive State: stable state & available for use · Active State: recomputed by DUAL
- # show ip eigrp topology all-links

		Int	erior Gateway	Protocol		Exterior Gateway Protocol
			e Vector	Li	nk State	Path Vector
TPV4	Classful	RIP	IGRP			EGP
1 1	Classless	RIPva	EIGRP	OSPFVQ	15-15	8GP V4
IPV6		RIPng	EIGAP for IPv6	OSPF v3	IS-IS For IPV6	BGPV4 for IPV6

for Staples

for Staples


```
IPv6 Network Address : Base 16, 198-bit
   · Migration - Dual Stack : run both IPv4 and IPv6 (implement sie)
                - Tunneling: core onaestai support -> tunneling rata 1PV4
                - Translation : NAT 64
    IPv6 Addressing: - Rule 1 - Omit Leading Os: 11 of a partition o magnitarions
                         · Rule 2 - Omit all o segment : 11904 o morrouenny -> :: (tornionen)
                                            · Multicast: send single packet to multiple dest.
                                                                                             · Anycast: unicast can
               · Unicast: single source
                                                                                              assigned multiple devices
     Prefix Length: 0-128, most LAN is 164
                     · Global unicast: globally unique, Internet routable address (Añe public IPV4)
   · Unicast Address
                      · Link-local: communicate same local-link (1919412) ab local) FESO::/10
                      · Unique Local: came private IPv4) FC00::/7 - FDFF::/7
                                                                   · Unspecified Address : ::/128
                      · Loopback : :: 1/128
         · Structure IPv6 Global Unicast Address
             - first three bits of ool or 2000 :: /3
            - three parts . Alobal Routing Prefix: assigned by provider typically 148 } 4 hextets
                           · Subnet ID : organization
                                                                                        4 hextets
                            · Interface ID: host
   Configuration # ipv6 unicast - routing -> enable # ipv6 address ipv6-address/prefix-length
                         # ipvb route ipvb-prefix/prefix-length fipvb-address lexit-intf}
   Routing . Static
                         default route # ipro route :: 10 lipro-address lexit-intf? (1Pru)
              Dynamic (EIGRP) # ipv6 router eigrp As-# -> # eigrp router-id router-id -> # no shutdown
                         tains network noitalns # ipv6 eigrp As-# m interface unas
   Verify # show ipu6 route 1 #show ipu6 eigrp neighbors 1 #show ipu6 protocols
               -> hop count ( > 15 unreachable), broadcast every 30 secs
```

```
RIP VI -> hop count (> 15 unreachable), broadcast every 30 secs

RIP VQ -> hop count (max: 15), multicast 294.0.0.9

OSPF -> multicast: MAC dest. 01-00-5E-00-00-05 or 01-00-5E-00-00-06

IPV4 dest. 294.00.5 or 294.0.0.6 / IPV6 FF02:: 5

protocol 89

10 secs multiaccess & point-to-point, 30secs non-broadcast (NBMA)

BW
```